Supporting Information for

Iron(II) Active Species in Iron-Bisphosphine Catalyzed Kumada and Suzuki-Miyaura Cross-Couplings of Phenyl Nucleophiles and Secondary Alkyl Halides

Stephanie L. Daifuku, Jared L. Kneebone, Benjamin E. R. Snyder and Michael L. Neidig*

Department of Chemistry, University of Rochester, Rochester, NY 14627 USA

Table of Contents

1. Supplementary Spectral Data .. S2
 1.1 Mössbauer ... S2
 1.2 UV-Vis MCD ... S16
 1.3 EPR ... S17
 1.4 NMR .. S18

2. Reaction/GC Data ... S19

3. X-ray Crystal Structure Details .. S20
 3.1 Fe(η^6-biphenyl)(SciOPP) (2) .. S21
 3.2 Fe(Ph)Br(SciOPP) (5-Br) .. S66
1. Supplementary Spectral Data

1.1 Mössbauer

![Mössbauer spectrum](image)

Figure S1. The 80 K 57Fe Mössbauer spectrum of the in-situ iron species from reaction of 57Fe-1-Cl$_2$ with 20 equiv PhMgBr in 1:1 THF:2-MeTHF at 25 °C. Data (black dots), total fit (black line) and individual components are shown. The individual components exhibit Mössbauer parameters of δ = 0.44 mm/s and ΔE$_Q$ = 1.75 mm/s (94%, purple) and δ = 0.46 mm/s and ΔE$_Q$ = 0.65 mm/s (6%, orange).

Table S1. Mössbauer parameters of the in-situ iron species during the reaction of 2 with 20 equiv chlorocycloheptane in 1:1 THF:2-MeTHF at 25 °C. The colors of the components below match those in Figure 2. Times are relative to the addition of chlorocycloheptane.

Time (min)	Mössbauer Parameters	Amount of Total Iron (%)
0	δ = 0.44 mms, ΔE$_Q$ = 1.75 mm/s δ = 0.46 mms, ΔE$_Q$ = 0.65 mm/s	95 5
5	δ = 0.44 mms, ΔE$_Q$ = 1.75 mm/s δ = 0.46 mms, ΔE$_Q$ = 0.65 mm/s δ = 0.94 mms, ΔE$_Q$ = 2.80 mm/s	87 5 8
15	δ = 0.44 mms, ΔE$_Q$ = 1.75 mm/s δ = 0.46 mms, ΔE$_Q$ = 0.65 mm/s δ = 0.94 mms, ΔE$_Q$ = 2.80 mm/s	78 5 17
45	δ = 0.44 mms, ΔE$_Q$ = 1.75 mm/s δ = 0.46 mms, ΔE$_Q$ = 0.65 mm/s δ = 0.94 mms, ΔE$_Q$ = 2.80 mm/s	62 5 33
Figure S2. Pseudo-first order kinetic data for the reaction of 2 with 20 equiv chlorocycloheptane in 1:1 THF:2-MeTHF at 25 °C using freeze-trapped 57Fe Mössbauer spectroscopy. The observed rate is $9.0(5) \times 10^{-3}$ min$^{-1}$. Errors are determined from the average of multiple measurements and the error for quantitation by Mössbauer ($\pm 3\%$).

Figure S3. The 5 K 57Fe Mössbauer spectrum of the in-situ generated iron species from reaction of 57Fe-1-Cl$_2$ with 2 equiv PhMgBr in 1:1 THF:2-MeTHF at 0 °C for 5 min. Data (black dots), total fit (black line) and individual components are shown. The individual components exhibit Mössbauer parameters of $\delta = 0.33$ mm/s and $\Delta E_Q = 1.50$ mm/s (63%, red), $\delta = 0.32$ mm/s and $\Delta E_Q = 3.13$ mm/s (33%, blue) and $\delta = 0.46$ mm/s and $\Delta E_Q = 0.65$ mm/s (4%, orange). The parameters of these components are identical to those obtained for the same sample at 80 K and all quantitations are within 2 % of those for the 80 K data, within the error for quantitation ($\pm 3\%$).
Figure S4. The 80 K 57Fe Mössbauer spectrum of the in-situ generated iron species from reaction of 57Fe-1-Cl$_2$ + 1 equiv free SciOPP ligand with 2 equiv PhMgBr in 1:1 THF:2-MeTHF at 0 °C for 5 min. Data (black dots), total fit (black line) and individual components are shown. The individual components exhibit Mössbauer parameters of $\delta = 0.33$ mm/s and $\Delta E_Q = 1.50$ mm/s (59%, red), $\delta = 0.32$ mm/s and $\Delta E_Q = 3.13$ mm/s (35%, blue) and $\delta = 0.46$ mm/s and $\Delta E_Q = 0.65$ mm/s (6%, orange). The parameters of these components are identical to those obtained for the same sample at 80 K without added ligand and all quantitations are within the error (± 3 %).

Table S2. Mössbauer Parameters of the In-Situ Iron Species During the Reaction of 57Fe-1-Cl$_2$ with 2 equiv PhMgBr in 1:1 THF:2-MeTHF at 25 °C. The colors of the components below match those in Figure 4.

Time (min)	Mössbauer Parameters	Amount of Total Iron (%)
0.5	$\delta = 0.33$ mms, $\Delta E_Q = 1.50$ mm/s	62
	$\delta = 0.32$ mms, $\Delta E_Q = 3.13$ mm/s	32
	$\delta = 0.46$ mms, $\Delta E_Q = 0.65$ mm/s	6
3	$\delta = 0.33$ mms, $\Delta E_Q = 1.50$ mm/s	49
	$\delta = 0.32$ mms, $\Delta E_Q = 3.13$ mm/s	22
	$\delta = 0.46$ mms, $\Delta E_Q = 0.65$ mm/s	6
	$\delta = 0.44$ mms, $\Delta E_Q = 1.75$ mm/s	23
5	$\delta = 0.33$ mms, $\Delta E_Q = 1.50$ mm/s	44
	$\delta = 0.32$ mms, $\Delta E_Q = 3.13$ mm/s	18
	$\delta = 0.46$ mms, $\Delta E_Q = 0.65$ mm/s	6
	$\delta = 0.44$ mms, $\Delta E_Q = 1.75$ mm/s	32
10	$\delta = 0.33$ mms, $\Delta E_Q = 1.50$ mm/s	27
	$\delta = 0.32$ mms, $\Delta E_Q = 3.13$ mm/s	10
	$\delta = 0.46$ mms, $\Delta E_Q = 0.65$ mm/s	7
	$\delta = 0.44$ mms, $\Delta E_Q = 1.75$ mm/s	56
Figure S5. Pseudo-first order kinetic data for the formation of 2 from reaction of $^{57}\text{Fe-1-Cl}_2$ with 2 equiv PhMgBr at 25 °C using freeze-trapped ^{57}Fe Mössbauer spectroscopy. The observed rate is 0.12(2) min$^{-1}$. Errors are determined from the average of multiple measurements and the error for quantitation by Mössbauer (± 3 %).
Figure S6. The 80 K 57Fe Mössbauer spectrum of the in-situ iron species as a function of reaction time at 0 °C in 1:1 THF:2-MeTHF upon reaction of 57Fe-1-Cl$_2$ with 2 equiv PhMgBr. The Mössbauer parameters of the individual components are given in Table S3.
Table S3. Mössbauer parameters of the in-situ iron species during the reaction of 57Fe-I-Cl_2 with 2 equiv PhMgBr in 1:1 THF:2-MeTHF at 0 °C. The colors of the components below match those in Figure S6.

Time (min)	Mössbauer Parameters	Amount of Total Iron (%)
1	$\delta = 0.33$ mms, $\Delta E_Q = 1.50$ mm/s	
	$\delta = 0.32$ mms, $\Delta E_Q = 3.13$ mm/s	
	$\delta = 0.46$ mms, $\Delta E_Q = 0.65$ mm/s	
20	$\delta = 0.33$ mms, $\Delta E_Q = 1.50$ mm/s	
	$\delta = 0.32$ mms, $\Delta E_Q = 3.13$ mm/s	
	$\delta = 0.46$ mms, $\Delta E_Q = 0.65$ mm/s	
	$\delta = 0.44$ mms, $\Delta E_Q = 1.75$ mm/s	
90	$\delta = 0.33$ mms, $\Delta E_Q = 1.50$ mm/s	
	$\delta = 0.32$ mms, $\Delta E_Q = 3.13$ mm/s	
	$\delta = 0.46$ mms, $\Delta E_Q = 0.65$ mm/s	
	$\delta = 0.44$ mms, $\Delta E_Q = 1.75$ mm/s	
150	$\delta = 0.33$ mms, $\Delta E_Q = 1.50$ mm/s	
	$\delta = 0.32$ mms, $\Delta E_Q = 3.13$ mm/s	
	$\delta = 0.46$ mms, $\Delta E_Q = 0.65$ mm/s	
	$\delta = 0.44$ mms, $\Delta E_Q = 1.75$ mm/s	

Figure S7. 80 K 57Fe Mössbauer spectra of the in-situ generated iron species from reaction of 57Fe-I-Cl_2 with 2 equiv PhMgBr in (A) THF and (B) Et$_2$O at 0 °C for 5 min. Data (black dots), total fit (black line) and individual components are shown for each spectrum. In THF, two major components are observed with Mössbauer parameters of $\delta = 0.31$ mm/s and $\Delta E_Q = 1.45$ mm/s (74%, red), and $\delta = 0.33$ mm/s and $\Delta E_Q = 3.17$ mm/s (26%, blue). In Et$_2$O, a single species is observed with Mössbauer parameters of $\delta = 0.32$ mm/s and $\Delta E_Q = 1.38$ mm/s.
Figure S8. The 80 K 57Fe Mössbauer spectrum of the in-situ generated iron species from reaction of 57Fe-1-Cl$_2$ with 1 equiv PhMgBr in 1:1 THF:2-MeTHF at (A) 25 °C for 1 min and (B) 0 °C for 5 min. Data (black dots), total fit (black line) and individual components are shown for each spectrum. The individual components for spectrum A exhibit Mössbauer parameters of $\delta = 0.51$ mm/s and $\Delta E_Q = 2.33$ mm/s (72%, green), $\delta = 0.33$ mm/s and $\Delta E_Q = 1.50$ mm/s (18%, red), and $\delta = 0.32$ mm/s and $\Delta E_Q = 3.13$ mm/s (5%, blue) and $\delta = 0.94$ mm/s and $\Delta E_Q = 2.80$ mm/s (6%, brown). The same components with identical Mössbauer parameters are observed for spectrum B with the following quantitations: 75 % (green), 15 % (red), 4 % (blue) and 6 % (brown).
Figure S9. 80 K Mössbauer spectra of the in-situ iron species formed as a function of time at 25 °C in 1:1 THF:2-MeTHF following reaction of 3 mM 57Fe-1-Cl$_2$ with 1 equiv PhMgBr. The Mössbauer parameters of the individual components are given in Table S4.
Table S4. Mössbauer parameters of the in-situ iron species during the disproportionation of 5-X formed in-situ from the reaction of 57Fe-1-Cl$_2$ with 1 equiv PhMgBr in 1:1 THF:2-MeTHF at 25 °C. The colors of the components below match those in Figure S9. Note that the reductive elimination of the $\delta = 0.33, 0.32$ mm/s species at 25 °C at early reaction times contributes to initial formation of 2 as previously determined.

Time (min)	Mössbauer Parameters	Amount of Total Iron (%)
1	$\delta = 0.51$ mms, $\Delta E_Q = 2.33$ mm/s	72
	$\delta = 0.33$ mms, $\Delta E_Q = 1.50$ mm/s	18
	$\delta = 0.32$ mms, $\Delta E_Q = 3.13$ mm/s	5
	$\delta = 0.94$ mms, $\Delta E_Q = 2.80$ mm/s	5
15	$\delta = 0.51$ mms, $\Delta E_Q = 2.33$ mm/s	63
	$\delta = 0.33$ mms, $\Delta E_Q = 1.50$ mm/s	5
	$\delta = 0.94$ mms, $\Delta E_Q = 2.80$ mm/s	11
	$\delta = 0.44$ mms, $\Delta E_Q = 1.75$ mm/s	21
40	$\delta = 0.51$ mms, $\Delta E_Q = 2.33$ mm/s	52
	$\delta = 0.94$ mms, $\Delta E_Q = 2.80$ mm/s	17
	$\delta = 0.44$ mms, $\Delta E_Q = 1.75$ mm/s	31
60	$\delta = 0.51$ mms, $\Delta E_Q = 2.33$ mm/s	46
	$\delta = 0.94$ mms, $\Delta E_Q = 2.80$ mm/s	22
	$\delta = 0.44$ mms, $\Delta E_Q = 1.75$ mm/s	33

Figure S10. Second order kinetic data for the disproportionation of 5-X at 25 °C in 1:1 THF:2-MeTHF using freeze-trapped 57Fe Mössbauer spectroscopy. The observed rate is $4.7(6) \times 10^{-3}$ mM$^{-1}$min$^{-1}$. Errors are determined from the average of multiple measurements and the error for quantitation by Mössbauer (± 3 %).
Figure S11. 80 K 57Fe Mössbauer spectra of the in-situ generated iron species from reaction of 57Fe-1-Cl$_2$ with 1 equiv PhMgBr in 1:1 THF:2-MeTHF at 0 °C demonstrating the stability of 5-X at 0 °C.
Figure S12. 80 K Mössbauer spectra of the in-situ iron species formed at 0 °C in 1:1 THF:2-MeTHF upon addition of 1 equiv PhMgBr to 3 mM 57Fe-1-Cl$_2$ and subsequent reaction with 20 equiv chlorocycloheptane as a function of time at 0 °C. Initial reaction with 1 equiv PhMgBr was for 5 min prior to electrophile addition. All times given in the figure are relative to the addition of chlorocycloheptane. The Mössbauer parameters of the individual components are given in Table S5.
Figure S13. 80 K Mössbauer spectra of the in-situ iron species formed at 0 °C in 1:1 THF:2-MeTHF upon addition of 2 equiv PhMgBr to 3 mM 57Fe-1-Cl$_2$ and subsequent reaction with 2 equiv chlorocycloheptane as a function of time at 0 °C. Initial reaction with 2 equiv PhMgBr was for 5 min prior to electrophile addition. All times given in the figure are relative to the addition of chlorocycloheptane. The Mössbauer parameters of the individual components are given in Table S6.
Figure S14. 5 K Mössbauer spectra of the in-situ iron species formed at 0 °C in 1:1 THF:2-MeTHF upon addition of 2 equiv PhMgBr to 3 mM 57Fe-1-Cl$_2$ and subsequent reaction with 2 equiv chlorocycloheptane as a function of time at 0 °C. Initial reaction with 2 equiv PhMgBr was for 5 min prior to electrophile addition. All times given in the figure are relative to the addition of chlorocycloheptane. The Mössbauer parameters of the individual components are given in Table S7.
Table S5. Mössbauer parameters of the in-situ iron species during the reaction of 57Fe-1-Cl$_2$ with 1 equiv PhMgBr in 1:1 THF:2-MeTHF at 0 °C and subsequent reaction as a function of time at 0 °C with 20 equiv chlorocycloheptane. The colors of the components below match those in Figure S12.

Time (min)	Mössbauer Parameters	Amount of Total Iron (%)
0	$\delta = 0.51$ mms, $\Delta E_Q = 2.33$ mm/s	75
	$\delta = 0.33$ mms, $\Delta E_Q = 1.50$ mm/s	15
	$\delta = 0.32$ mms, $\Delta E_Q = 3.13$ mm/s	4
	$\delta = 0.94$ mms, $\Delta E_Q = 2.80$ mm/s	6
10	$\delta = 0.51$ mms, $\Delta E_Q = 2.33$ mm/s	44
	$\delta = 0.94$ mms, $\Delta E_Q = 2.80$ mm/s	56
20	$\delta = 0.51$ mms, $\Delta E_Q = 2.33$ mm/s	35
	$\delta = 0.94$ mms, $\Delta E_Q = 2.80$ mm/s	65
60	$\delta = 0.51$ mms, $\Delta E_Q = 2.33$ mm/s	20
	$\delta = 0.94$ mms, $\Delta E_Q = 2.80$ mm/s	80

Table S6. 80 K Mössbauer parameters of the in-situ iron species during the reaction of 57Fe-1-Cl$_2$ with 2 equiv PhMgBr in 1:1 THF:2-MeTHF at 0 °C and subsequent reaction as a function of time at 0 °C with 2 equiv chlorocycloheptane. The colors of the components below match those in Figure S13.

Time (min)	Mössbauer Parameters	Amount of Total Iron (%)
0	$\delta = 0.33$ mms, $\Delta E_Q = 1.50$ mm/s	62
	$\delta = 0.32$ mms, $\Delta E_Q = 3.13$ mm/s	32
	$\delta = 0.46$ mms, $\Delta E_Q = 0.65$ mm/s	6
1	$\delta = 0.33$ mms, $\Delta E_Q = 1.50$ mm/s	38
	$\delta = 0.32$ mms, $\Delta E_Q = 3.13$ mm/s	18
	$\delta = 0.46$ mms, $\Delta E_Q = 0.65$ mm/s	6
	$\delta = 0.51$ mms, $\Delta E_Q = 2.33$ mm/s	40
5	$\delta = 0.33$ mms, $\Delta E_Q = 1.50$ mm/s	32
	$\delta = 0.32$ mms, $\Delta E_Q = 3.13$ mm/s	11
	$\delta = 0.46$ mms, $\Delta E_Q = 0.65$ mm/s	6
	$\delta = 0.51$ mms, $\Delta E_Q = 2.33$ mm/s	53
15	$\delta = 0.33$ mms, $\Delta E_Q = 1.50$ mm/s	18
	$\delta = 0.32$ mms, $\Delta E_Q = 3.13$ mm/s	2
	$\delta = 0.46$ mms, $\Delta E_Q = 0.65$ mm/s	6
	$\delta = 0.51$ mms, $\Delta E_Q = 2.33$ mm/s	65
Table S7. 5 K Mössbauer parameters of the in-situ iron species during the reaction of 57Fe-1-Cl$_2$ with 2 equiv PhMgBr in 1:1 THF:2-MeTHF at 0 °C and subsequent reaction as a function of time at 0 °C with 2 equiv chlorocycloheptane. The colors of the components below match those in Figure S14.

Time (min)	Mössbauer Parameters	Amount of Total Iron (%)
0	$\delta = 0.33$ mms, $\Delta E_Q = 1.50$ mm/s	62
	$\delta = 0.32$ mms, $\Delta E_Q = 3.13$ mm/s	32
	$\delta = 0.46$ mms, $\Delta E_Q = 0.65$ mm/s	6
1	$\delta = 0.33$ mms, $\Delta E_Q = 1.50$ mm/s	38
	$\delta = 0.32$ mms, $\Delta E_Q = 3.13$ mm/s	18
	$\delta = 0.46$ mms, $\Delta E_Q = 0.65$ mm/s	6
	$\delta = 0.51$ mms, $\Delta E_Q = 2.33$ mm/s	40
5	$\delta = 0.33$ mms, $\Delta E_Q = 1.50$ mm/s	32
	$\delta = 0.32$ mms, $\Delta E_Q = 3.13$ mm/s	11
	$\delta = 0.46$ mms, $\Delta E_Q = 0.65$ mm/s	6
	$\delta = 0.51$ mms, $\Delta E_Q = 2.33$ mm/s	53
15	$\delta = 0.33$ mms, $\Delta E_Q = 1.50$ mm/s	18
	$\delta = 0.32$ mms, $\Delta E_Q = 3.13$ mm/s	2
	$\delta = 0.46$ mms, $\Delta E_Q = 0.65$ mm/s	6
	$\delta = 0.51$ mms, $\Delta E_Q = 2.33$ mm/s	65

1.2 UV-Vis MCD

Figure S15. 5 K, 7 T UV-Vis MCD spectrum of the iron species in solution upon reaction of 1-Cl$_2$ with 2 equiv PhMgBr at 0 °C for 5 min in 1:1 THF:2-MeTHF.
1.3 EPR

Figure S16. 10 K EPR Spectrum of the $S = 1/2$ species 3 present in solution after addition of 2 equiv PhMgBr to 1-Cl$_2$ at 0 °C in 1:1 THF-2-MeTHF. The orange spectrum is 3 min after PhMgBr addition and the black spectrum is 120 min after addition. Spin quantitation indicates no change within error of the amount of 3 present over this time frame ($\sim 5\%$), where significant reductive elimination to form 2 has occurred (see Figure S5).

Figure S17. 10 K EPR Spectrum of 3 present in solution after addition of 2 equiv PhMgBr to 1-Cl$_2$ at 0 °C in 1:1 THF-2-MeTHF (orange) and following reaction with 2 equiv cycloheptylchloride at 0 °C for 1 min (blue) and 5 min (black). Spin quantitation indicates no change in the amount of 3 present over this time frame ($\sim 3-4\%$), where significant consumption of $4a/4b$ to form 5-X has occurred (see Figure S13).
1.4 NMR

Figure S18. In-situ (A) 1H-NMR and (B) 31P-NMR spectra (500 MHz) of the formation of 2 from the reaction of 1-Cl$_2$ with 2 equiv PhMgBr at 0 °C followed by slow warming to 25 °C. The inset in (A) shows the growth with time of the 5 protons associated with η^6-aryl coordination. The observed 31P NMR resonance (88.98 ppm) and 1H resonances at 4.48 and 5.66 ppm are in a range consistent with previously reported values for (η^6-napthalene)Fe0(bisphosphine) complexes, where the presence of multiple η^6-aryl 1H resonances is consistent with asymmetric η^6-aryl coordination. Note: The in-situ 1H NMR spectrum also contains contributions from unreacted PhMgBr, THF (from PhMgBr solution that is added) and paramagnetic intermediates that are consumed with time. A minor amount of free SciOPP ligand is also observed to form with time in both spectra.

1. Kubo, H.; Hirano, M.; Komiya, S. *J. Organomet. Chem.* 1998, 556, 89-95.
2. Reaction/GC Data

Table S8. GC data for reactions on in-situ generated phenylated iron(II)-SciOPP species with chlorocycloheptane (ChpCl) at 25 °C. All yields are with respect to iron.

PhMgBr (equiv)	time	Chp-Ph	cycloheptene
1	60 s	35 %	13 %
1	150 s	48 %	14 %
1	300 s	58 %	14 %
2	10 s	87 %	67 %
2	30 s	104 %	67 %
2	60 s	104 %	65 %

Note: 1-Cl shows no reactivity towards bromocycloheptane at 25 °C (i.e. no ChpBr consumption or product generation following reaction for 10 min) as determined by GC analysis.

Table S9. GC data for reactions on in-situ generated phenylated iron(II)-SciOPP species with chlorocycloheptane and bromocycloheptane at 0 °C. Results are also given for quenching the phenylated iron(II)-SciOPP species without added electrophile which results in formation of biphenyl due to the quenching process. All yields are with respect to iron.

PhMgBr (equiv)	ChpX (equiv)	time (min)	Chp-Ph	cycloheptene	biphenyl
2	-	5 min	0 %	0 %	51 %
2	Cl	60 min	24 %	52 %	37 %
2	Cl	30 min	58 %	51 %	16 %
2	Cl	10 min	108 %	96 %	9 %
2	Br	20 min	56 %	46 %	14 %
2	Br	20 min	105 %	71 %	8 %
2	Br	5 min	88 %	96 %	9 %
1	-	5 min	0 %	0 %	15 %
1	Cl	60 min	96 %	32 %	6 %
1	Br	20 min	85 %	22 %	3 %

Identical GC results were obtained using either dilute HCl or aqueous NaHSO₄ for quenching.

For the reaction of Fe(η⁶-biphenyl)(SciOPP) with chlorocycloheptane at 25 °C, the following product distributions were observed by GC: cycloheptene (41 %), biphenyl (71 %) and phenylcycloheptane (4 %). All yields are with respect to iron.
3. X-ray Crystal Structure Details

General Comments: For the Fe(η⁶-biphenyl)(SciOPP) (2) crystal structure there are two independent iron molecules in the asymmetric unit, which lie in general positions. Additionally there is a cocrystallized isopropanol molecule that lies in a crystallographic inversion center, over which it is modeled as disordered (0.50:0.50). The π-ligand disorder on molecule Fe1 is a site disorder of biphenyl and benzene with an occupancy ratio of 0.67:0.33. There appears to be a cocrystallized n-hexane solvent molecule that is only present when the ligand is benzene, presumably to fill the void. Although there is a similar disorder on molecule Fe2, the biphenyl ligand is present much more of the time (> 90 % by mass) and no solvent could be identified for the minor component of the disorder (which was not modeled anyway because no significant improvement to the overall model was achieved). While the quality of the structure determination is less than desirable due to the disorder and ligand exchange with solvent, the results provide unambiguous information on the connectivity and geometry of 2. For the Fe(Ph)Br(SciOPP) (5-Br) structure, the phenyl ligand and tert-butyl groups C35-C38 and C55-C58 are modeled as disordered over two positions each (0.70:0.30, 0.78:0.22, and 0.72:0.28, respectively). Extensive efforts to obtain less disordered crystals for both species were unsuccessful, including the use of alternative solvents for crystallization. Both structure determinations are consistent with the formulations proposed from the synthesis and spectroscopic studies.
3.1 Fe(η^6-biphenyl)(SciOPP) (2)

CRYSTAL STRUCTURE REPORT

C_{74.75} H_{101.66} Fe O_{0.25} P_{2}

or

[(PP)Fe(η^6-biphenyl)]_{0.834} · [(PP)Fe(η^6-benzene)]_{0.166} · ¼ iPrOH

Report prepared for:
B. Snyder, Prof. M. Neidig

July 14, 2012

William W. Brennessel
X-ray Crystallographic Facility
Department of Chemistry, University of Rochester
120 Trustee Road
Rochester, NY 14627
Data collection
A crystal (0.18 x 0.10 x 0.06 mm³) was placed onto the tip of a 0.1 mm diameter glass capillary tube or fiber and mounted on a Bruker SMART APEX II CCD Platform diffractometer for a data collection at 100.0(5) K.¹ A preliminary set of cell constants and an orientation matrix were calculated from reflections harvested from three orthogonal wedges of reciprocal space. The full data collection was carried out using MoKα radiation (graphite monochromator) with a frame time of 120 seconds and a detector distance of 4.01 cm. A randomly oriented region of reciprocal space was surveyed: five major sections of frames were collected with 0.50º steps in ω at five different φ settings and a detector position of -38º in 2θ. The intensity data were corrected for absorption.² Final cell constants were calculated from the xyz centroids of 2152 strong reflections from the actual data collection after integration.³ See Table 1 for additional crystal and refinement information.

Structure solution and refinement
The structure was solved using SIR97⁴ and refined using SHELXL-97.⁵ The space group P-1 was determined based on intensity statistics. A direct-methods solution was calculated which provided most non-hydrogen atoms from the E-map. Full-matrix least squares / difference Fourier cycles were performed which located the remaining non-hydrogen atoms. All non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were placed in ideal positions and refined as riding atoms with relative isotropic displacement parameters. The final full matrix least squares refinement converged to \(R_1 = 0.0880 \) (\(F^2, I > 2\sigma(I) \)) and \(wR_2 = 0.2103 \) (\(F^2, \text{all data} \)).

Structure description
The structure is similar to the one suggested. All atoms of the iron molecules lie in general positions, but the cocrystallized isopropanol molecule lies in a crystallographic inversion center, over which it is modeled as disordered (50:50). The pi-ligand disorder on molecule Fe1 is a site disorder of biphenyl and benzene/n-hexane (67:33). The cocrystallized n-hexane solvent molecule is only present when the ligand is benzene. Although there is a similar disorder on molecule Fe2, the biphenyl ligand is present much more of the time (> 90 % by mass) and no solvent could be identified for the minor component of the disorder (which was not modeled because no significant improvement to the overall model was achieved).

Unless noted otherwise all structural diagrams containing thermal displacement ellipsoids are drawn at the 50 % probability level.

Data collection, structure solution, and structure refinement were conducted at the X-ray Crystallographic Facility, B51 Hutchison Hall, Department of Chemistry, University of Rochester. All publications arising from this report MUST either 1) include William W. Brennessel as a coauthor or 2) acknowledge William W. Brennessel and the X-ray Crystallographic Facility of the Department of Chemistry at the University of Rochester.
Some equations of interest:

\[R_{\text{int}} = \Sigma |F_o^2 - F_c^2| / \Sigma F_o^2 \]
\[R1 = \Sigma |F_o| - |F_c| / \Sigma F_o \]
\[wR2 = [\Sigma w(F_o^2-F_c^2)^2] / \Sigma [w(F_o^2)^2]]^{1/2} \]

where \(w = 1 / [\sigma^2(F_o^2) + (aP)^2 + bP] \) and \(P = 1/3 \max (0, F_o^2) + 2/3 F_c^2 \)
\[\text{GOF} = S = \{ \Sigma [w(F_o^2-F_c^2)^2] / (m-n) \} ^{1/2} \]

where \(m = \) number of reflections and \(n = \) number of parameters
Identification code	neibs06
Empirical formula	C74.75 H101.66 Fe O0.25 P2
Formula weight	1122.01
Temperature	100.0(5) K
Wavelength	0.71073 Å
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	
\(a\)	14.922(3) Å
\(\alpha\)	77.487(3)°
\(b\)	21.309(4) Å
\(\beta\)	80.874(3)°
\(c\)	22.714(4) Å
\(\gamma\)	71.734(3)°
Volume	6664(2) Å³
Z	4
Density (calculated)	1.118 Mg/m³
Absorption coefficient	0.315 mm⁻¹
\(F(000)\)	2433
Crystal color, morphology	red-purple, plate
Crystal size	0.18 x 0.10 x 0.06 mm³
Theta range for data collection	1.79 to 25.03°
Index ranges	-17 ≤ \(h\) ≤ 17, -25 ≤ \(k\) ≤ 25, -27 ≤ \(l\) ≤ 27
Reflections collected	87423
Independent reflections	23523 \([R(\text{int}) = 0.3618]\)
Observed reflections	7831
Completeness to theta = 25.03°	100.0%
Absorption correction	Multi-scan
Max. and min. transmission	0.9814 and 0.9455
Refinement method	Full-matrix least-squares on \(F^2\)
Data / restraints / parameters	23523 / 44 / 1502
Goodness-of-fit on \(F^2\)	0.931
Final \(R\) indices \([I>2\sigma(I)]\)	\(R_1 = 0.0880, wR_2 = 0.1455\)
\(R\) indices (all data)	\(R_1 = 0.2742, wR_2 = 0.2103\)
Largest diff. peak and hole	0.427 and -0.448 e.Å⁻³
Table S11. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å^2 x 10^3). \(U_{eq} \) is defined as one third of the trace of the orthogonalized \(U_{ij} \) tensor.

	x	y	z	\(U_{eq} \)																																						
Fe1	843(1)	2006(1)	3110(1)	29(1)																																						
P1	1234(1)	979(1)	3007(1)	24(1)																																						
P2	1103(1)	2213(1)	2143(1)	27(1)																																						
C1	1160(8)	2747(5)	3404(4)	58(3)																																						
C2	272(9)	2988(4)	3239(4)	58(3)																																						
C3	-403(7)	2646(5)	3453(4)	52(3)																																						
C4	-167(7)	2058(5)	3854(4)	49(3)																																						
C5	739(7)	1810(4)	4052(3)	42(2)																																						
C6	1443(6)	2143(5)	3824(4)	47(3)																																						
C7	2379(11)	1978(7)	4052(6)	59(3)																																						
C8	2510(11)	1682(8)	4635(6)	74(5)																																						
C9	3378(17)	1540(14)	4864(12)	106(5)																																						
C10	4119(13)	1709(9)	4487(6)	59(3)																																						
C11	3977(13)	2029(11)	3903(8)	80(5)																																						
C12	3112(12)	2161(8)	3677(7)	80(6)																																						
C211	2850(20)	2413(16)	5579(15)	106(5)																																						
C212	2580(20)	2066(18)	5211(16)	106(5)																																						
C213	3370(30)	1500(20)	4980(20)	106(5)																																						
C214	4200(20)	1728(18)	4798(13)	59(3)																																						
C215	4140(30)	2130(20)	4150(15)	80(5)																																						
C216	5050(20)	2105(16)	3836(12)	80(5)																																						
C21	1828(5)	860(4)	2252(3)	25(2)																																						
C22	2283(5)	251(4)	2070(3)	29(2)																																						
C23	2759(5)	221(4)	1503(4)	32(2)																																						
C24	2793(5)	805(4)	1105(4)	37(2)																																						
C25	2324(5)	1427(4)	1275(4)	33(2)																																						
C26	1832(5)	1454(4)	1846(3)	25(2)																																						
C27	2102(5)	374(3)	3505(3)	26(2)																																						
C28	1843(5)	57(4)	4072(3)	27(2)																																						
C29	2519(6)	-345(4)	4459(3)	29(2)																																						
C30	3467(5)	-420(4)	4258(3)	29(2)																																						
	C31	C32	C33	C34	C35	C36	C37	C38	C39	C40	C41	C42	C43	C44	C45	C46	C47	C48	C49	C50	C51	C52	C53	C54	C55	C56	C57	C58	C59	C60	C61	C62	C63	C64	C65	C66	S27					
---	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------
C67	1328(14)	4628(9)	920(13)	55(3)																																						
------	----------	----------	---------	-------																																						
C68	285(15)	4909(10)	1142(14)	55(3)																																						
C69	1850(30)	5120(30)	970(20)	98(9)																																						
C70	1410(30)	4550(20)	258(15)	84(13)																																						
C67'	1235(16)	4643(10)	988(14)	55(3)																																						
C68'	372(18)	4910(11)	1424(14)	55(3)																																						
C69'	1780(30)	5160(30)	810(30)	98(9)																																						
C70'	900(40)	4550(20)	418(18)	84(13)																																						
C71	4245(7)	2971(4)	1837(5)	58(3)																																						
C72	4834(7)	3084(5)	1204(5)	87(4)																																						
C73	4343(6)	3468(5)	2206(4)	71(3)																																						
C74	4658(6)	2270(5)	2117(5)	71(3)																																						
C75	-586(6)	2393(4)	173(3)	31(2)																																						
C76	-1470(6)	2754(4)	-171(4)	46(2)																																						
C77	269(6)	2541(5)	-238(3)	57(3)																																						
C78	-483(7)	1648(4)	295(4)	54(3)																																						
C79	-2277(6)	3916(4)	1708(4)	41(2)																																						
C80	-3193(6)	3736(4)	1746(4)	56(3)																																						
C81	-2316(6)	4550(4)	1192(4)	53(3)																																						
C82	-2190(6)	4101(5)	2303(4)	72(3)																																						
Fe2	3865(1)	6336(1)	1983(1)	26(1)																																						
P3	3728(1)	6330(1)	2933(1)	26(1)																																						
P4	3252(1)	7393(1)	1906(1)	25(1)																																						
C101	4169(6)	6347(4)	1051(3)	35(2)																																						
C102	3398(6)	6087(4)	1274(3)	31(2)																																						
C103	3483(6)	5556(4)	1765(3)	32(2)																																						
C104	4341(6)	5300(4)	2028(4)	34(2)																																						
C105	5097(6)	5579(4)	1833(4)	35(2)																																						
C106	5016(6)	6115(4)	1326(4)	33(2)																																						
C107	5820(7)	6379(5)	1092(5)	58(3)																																						
C108	6514(8)	6353(5)	1471(5)	79(3)																																						
C109	7325(8)	6574(6)	1198(7)	98(5)																																						
C110	7453(10)	6799(7)	578(8)	112(6)																																						
C111	6782(9)	6841(7)	208(7)	105(5)																																						
C112	5996(8)	6632(5)	447(5)	80(4)																																						
C121	3568(5)	7166(4)	3092(3)	24(2)																																						
C122	3726(5)	7317(4)	3625(4)	36(2)																																						
C123	3553(5)	7975(4)	3685(4)	37(2)																																						
C124	3217(5)	8489(4)	3210(4)	34(2)																																						
C125	3074(5)	8346(4)	2675(4)	34(2)																																						
C126	3274(5)	7680(4)	2599(3)	25(2)																																						
C127	4731(5)	5797(4)	3352(3)	26(2)																																						
C128	5528(5)	6029(4)	3300(3)	30(2)																																						
C129	6346(6)	5640(4)	3573(4)	37(2)																																						
C130	6359(6)	4995(4)	3860(3)	39(2)																																						
C131	5605(6)	4738(4)	3913(4)	36(2)																																						
C132	4793(5)	5160(4)	3649(3)	29(2)																																						
C133	2744(5)	6077(4)	3424(3)	24(2)																																						
C134	2233(5)	6408(4)	3883(3)	28(2)																																						
C135	1511(6)	6189(4)	4251(4)	32(2)																																						
C136	1312(6)	5622(4)	4154(3)	33(2)																																						
C137	1834(5)	5274(4)	3690(3)	29(2)																																						
C138	2525(5)	5518(4)	3323(3)	28(2)																																						
C139	3862(5)	7922(3)	1357(3)	23(2)																																						
C140	4632(5)	8044(4)	1529(3)	31(2)																																						
C141	5148(5)	8436(4)	1139(4)	32(2)																																						
C142	4881(6)	8678(4)	550(4)	39(2)																																						
C143	4133(6)	8541(4)	352(4)	37(2)																																						
C144	3625(5)	8158(4)	762(3)	31(2)																																						
C145	1990(5)	7770(4)	1769(3)	24(2)																																						
C146	1406(5)	7357(4)	1966(3)	27(2)																																						
C147	441(5)	7584(4)	1922(3)	25(2)																																						
C148	63(5)	8254(4)	1669(3)	24(2)																																						
C149	607(5)	8705(4)	1467(3)	24(2)																																						
C150	1584(5)	8448(3)	1525(3)	26(2)																																						
C151	7210(6)	5902(5)	3540(4)	45(2)																																						
C152	7009(6)	6649(4)	3245(4)	56(3)																																						
C153	8042(6)	5487(5)	3163(4)	65(3)																																						
C154	7454(6)	5824(4)	4182(4)	59(3)																																						
C155	5636(6)	4022(4)	4236(4)	43(2)																																						
C156	4776(13)	3820(9)	4220(10)	62(4)																																						
C157	6522(13)	3537(8)	3935(9)	56(4)																																						
Atom	X	Y	Z	U1	U2	U3	U4	U5																																		
-------	-------	-------	-------	------	------	------	------	------																																		
C158	5820(15)	3953(9)	4903(9)	61(4)																																						
C56"	6528(13)	3617(9)	4509(10)	62(4)																																						
C57"	4836(14)	4042(8)	4782(9)	56(4)																																						
C58"	5421(15)	3659(9)	3777(9)	61(4)																																						
C159	910(6)	6568(4)	4757(3)	34(2)																																						
C160	987(6)	6079(4)	5368(3)	47(2)																																						
C161	1243(6)	7145(4)	4823(4)	43(2)																																						
C162	-134(5)	6829(4)	4632(4)	43(2)																																						
C163	1594(6)	4654(4)	3601(4)	35(2)																																						
C164	2236(10)	4342(6)	3083(7)	70(4)																																						
C165	546(7)	4867(5)	3443(5)	49(3)																																						
C166	1732(9)	4132(5)	4169(5)	50(3)																																						
C64"	830(40)	4490(30)	3980(30)	70(4)																																						
C65"	2550(30)	4050(20)	3760(20)	49(3)																																						
C66"	1590(40)	4670(20)	2990(20)	50(3)																																						
C167	5922(6)	8634(4)	1362(4)	38(2)																																						
C168	5498(6)	9356(4)	1471(4)	52(3)																																						
C169	6781(6)	8584(4)	874(4)	50(3)																																						
C170	6256(6)	8194(4)	1952(4)	50(3)																																						
C171	3872(7)	8829(4)	-291(4)	46(2)																																						
C172	3221(7)	8514(6)	-490(4)	83(4)																																						
C173	3314(7)	9592(5)	-314(4)	68(3)																																						
C174	4745(6)	8779(4)	-757(3)	47(2)																																						
C175	-153(5)	7099(4)	2186(3)	29(2)																																						
C176	-1194(5)	7422(4)	2083(3)	34(2)																																						
C177	223(5)	6468(4)	1891(4)	37(2)																																						
C178	-85(5)	6883(4)	2868(3)	36(2)																																						
C179	194(5)	9441(4)	1208(3)	26(2)																																						
C180	-835(5)	9610(4)	1070(4)	47(2)																																						
C181	793(5)	9647(3)	625(3)	31(2)																																						
C182	230(6)	9861(4)	1672(3)	42(2)																																						
O1	4388(13)	4711(9)	686(7)	128(5)																																						
C201	4780(15)	4764(14)	73(8)	128(5)																																						
C202	5744(18)	4880(17)	49(13)	128(5)																																						
C203	4251(18)	5452(13)	-261(12)	128(5)																																						
Table S12. Bond lengths [Å] and angles [°].

Bond	Length (Å)
Fe(1)-C(1)	2.046(9)
Fe(1)-C(2)	2.062(8)
Fe(1)-C(4)	2.074(8)
Fe(1)-C(5)	2.078(8)
Fe(1)-C(3)	2.082(9)
Fe(1)-C(6)	2.085(8)
Fe(1)-P(1)	2.137(2)
Fe(1)-P(2)	2.143(2)
P(1)-C(21)	1.833(7)
P(1)-C(27)	1.844(7)
P(1)-C(33)	1.845(7)
P(1)-C(45)	1.830(7)
P(2)-C(26)	1.841(7)
P(2)-C(39)	1.841(7)
C(1)-C(2)	1.346(12)
C(1)-C(6)	1.414(12)
C(1)-H(1A)	0.9500
C(2)-C(3)	1.389(12)
C(2)-H(2A)	0.9500
C(3)-C(4)	1.361(12)
C(3)-H(3A)	0.9500
C(4)-C(5)	1.398(11)
C(4)-H(4A)	0.9500
C(5)-C(6)	1.418(11)
C(5)-H(5A)	0.9500
C(6)-C(7)	1.477(16)
C(6)-H(6A)	0.9500
C(7)-C(8)	1.354(14)
C(7)-C(12)	1.379(15)
C(8)-C(9)	1.39(2)
C(8)-H(8)	0.9500
C(9)-C(10)	1.38(2)
C(9)-H(9)	0.9500
C(10)-C(11)	1.369(18)
C(10)-H(10) 0.9500	
C(11)-C(12) 1.388(19)	
C(11)-H(11) 0.9500	
C(12)-H(12) 0.9500	
C(211)-C(212) 1.40(3)	
C(211)-H(21A) 0.9800	
C(211)-H(21B) 0.9800	
C(211)-H(21C) 0.9800	
C(212)-C(213) 1.53(4)	
C(212)-H(21D) 0.9900	
C(212)-H(21E) 0.9900	
C(213)-C(214) 1.45(5)	
C(213)-H(21F) 0.9900	
C(213)-H(21G) 0.9900	
C(214)-C(215) 1.53(4)	
C(214)-H(21H) 0.9900	
C(214)-H(21I) 0.9900	
C(215)-C(216) 1.43(3)	
C(215)-H(21J) 0.9900	
C(215)-H(21K) 0.9900	
C(216)-H(21L) 0.9800	
C(216)-H(21M) 0.9800	
C(216)-H(21N) 0.9800	
C(21)-C(22) 1.380(9)	
C(21)-C(26) 1.396(9)	
C(22)-C(23) 1.372(10)	
C(22)-H(22A) 0.9500	
C(23)-C(24) 1.380(10)	
C(23)-H(23A) 0.9500	
C(24)-C(25) 1.397(10)	
C(24)-H(24A) 0.9500	
C(25)-C(26) 1.389(9)	
C(25)-H(25A) 0.9500	
C(27)-C(28) 1.377(9)	
C(27)-C(32) 1.401(10)	
C(28)-C(29) 1.392(10)	
C(28)-H(28A) 0.9500	
C(29)-C(30) 1.385(9)	
C(29)-C(51) 1.533(10)	
C(30)-C(31) 1.401(10)	
C(30)-H(30A) 0.9500	
C(31)-C(32) 1.392(10)	
C(31)-C(55) 1.539(10)	
C(32)-H(32A) 0.9500	
C(33)-C(38) 1.373(9)	
C(33)-C(34) 1.399(9)	
C(34)-C(35) 1.399(10)	
C(34)-H(34A) 0.9500	
C(35)-C(36) 1.392(9)	
C(35)-C(59) 1.528(10)	
C(36)-C(37) 1.389(9)	
C(36)-H(36A) 0.9500	
C(37)-C(38) 1.403(9)	
C(37)-C(63) 1.534(9)	
C(38)-H(38A) 0.9500	
C(39)-C(44) 1.385(10)	
C(39)-C(40) 1.393(10)	
C(40)-C(41) 1.393(10)	
C(40)-H(40A) 0.9500	
C(41)-C(42) 1.388(11)	
C(41)-C(67) 1.536(12)	
C(41)-C(67') 1.539(12)	
C(42)-C(43) 1.385(10)	
C(42)-H(42A) 0.9500	
C(43)-C(44) 1.389(10)	
C(43)-C(71) 1.524(11)	
C(44)-H(44A) 0.9500	
C(45)-C(46) 1.377(9)	
C(45)-C(50) 1.405(9)	
C(46)-C(47) 1.393(9)	
C(46)-H(46A) 0.9500	
C(47)-C(48) 1.384(10)	
C(47)-C(75) 1.529(10)	
C(48)-C(49) 1.405(10)	
C(48)-H(48A) 0.9500	
C(49)-C(50) 1.391(10)	
C(49)-C(79) 1.531(10)	
C(50)-H(50A) 0.9500	
C(51)-C(54) 1.532(9)	
C(51)-C(53) 1.534(9)	
C(51)-C(52) 1.539(10)	
C(52)-H(52A) 0.9800	
C(52)-H(52B) 0.9800	
C(52)-H(52C) 0.9800	
C(53)-H(53A) 0.9800	
C(53)-H(53B) 0.9800	
C(53)-H(53C) 0.9800	
C(54)-H(54A) 0.9800	
C(54)-H(54B) 0.9800	
C(54)-H(54C) 0.9800	
C(55)-C(56) 1.520(10)	
C(55)-C(58) 1.529(10)	
C(55)-C(57) 1.552(10)	
C(56)-H(56A) 0.9800	
C(56)-H(56B) 0.9800	
C(56)-H(56C) 0.9800	
C(57)-H(57A) 0.9800	
C(57)-H(57B) 0.9800	
C(57)-H(57C) 0.9800	
C(58)-H(58A) 0.9800	
C(58)-H(58B) 0.9800	
C(58)-H(58C) 0.9800	
C(59)-C(62) 1.506(10)	
C(59)-C(61) 1.537(9)	
C(59)-C(60) 1.539(10)	
C(60)-H(60A) 0.9800	
C(60)-H(60B) 0.9800	
C(60)-H(60C) 0.9800	
C(61)-H(61A) 0.9800	
C(61)-H(61B) 0.9800	
C(61)-H(61C) 0.9800	
C(62)-H(62A) 0.9800	
C(62)-H(62B) 0.9800	
C(62)-H(62C) 0.9800	
C(63)-C(65) 1.522(10)	
C(63)-C(66) 1.531(9)	
C(63)-C(64) 1.542(9)	
C(64)-H(64A) 0.9800	
C(64)-H(64B) 0.9800	
C(64)-H(64C) 0.9800	
C(65)-H(65A) 0.9800	
C(65)-H(65B) 0.9800	
C(65)-H(65C) 0.9800	
C(66)-H(66A) 0.9800	
C(66)-H(66B) 0.9800	
C(66)-H(66C) 0.9800	
C(67)-C(68) 1.527(9)	
C(67)-C(69) 1.527(9)	
C(67)-C(70) 1.529(10)	
C(68)-H(68A) 0.9800	
C(68)-H(68B) 0.9800	
C(68)-H(68C) 0.9800	
C(69)-H(69A) 0.9800	
C(69)-H(69B) 0.9800	
C(69)-H(69C) 0.9800	
C(70)-H(70A) 0.9800	
C(70)-H(70B) 0.9800	
C(70)-H(70C) 0.9800	
C(67')-C(69') 1.529(10)	
C(67')-C(68') 1.530(10)	
C(67')-C(70') 1.531(10)	
C(68')-H(68D) 0.9800	
C(68')-H(68E) 0.9800	
C(68')-H(68F) 0.9800	
C(69')-H(69D) 0.9800	
C(69')-H(69E) 0.9800	
C(69')-H(69F) 0.9800	
C(70')-H(70D) 0.9800	
C(70')-H(70E) 0.9800	
C(70')-H(70F) 0.9800	
C(71)-C(74) 1.467(11)	
C(71)-C(73) 1.538(12)	
C(71)-C(72) 1.575(13)	
C(72)-H(72A) 0.9800	
C(72)-H(72B) 0.9800	
C(72)-H(72C) 0.9800	
C(73)-H(73A) 0.9800	
C(73)-H(73B) 0.9800	
C(73)-H(73C) 0.9800	
C(74)-H(74A) 0.9800	
C(74)-H(74B) 0.9800	
C(74)-H(74C) 0.9800	
C(75)-C(78) 1.513(10)	
C(75)-C(77) 1.532(10)	
C(75)-C(76) 1.539(10)	
C(76)-H(76A) 0.9800	
C(76)-H(76B) 0.9800	
C(76)-H(76C) 0.9800	
C(77)-H(77A) 0.9800	
C(77)-H(77B) 0.9800	
C(77)-H(77C) 0.9800	
C(78)-H(78A) 0.9800	
C(78)-H(78B) 0.9800	
C(78)-H(78C) 0.9800	
C(79)-C(80) 1.516(10)	
C(79)-C(82) 1.522(11)	
C(79)-C(81) 1.578(11)	
C(80)-H(80A) 0.9800	
C(80)-H(80B) 0.9800	
C(80)-H(80C) 0.9800	
Bond	Distance
----------------------	----------
C(81)-H(81A)	0.9800
C(81)-H(81B)	0.9800
C(81)-H(81C)	0.9800
C(82)-H(82A)	0.9800
C(82)-H(82B)	0.9800
C(82)-H(82C)	0.9800
Fe(2)-C(105)	2.069(7)
Fe(2)-C(102)	2.080(7)
Fe(2)-C(104)	2.080(8)
Fe(2)-C(101)	2.091(8)
Fe(2)-C(103)	2.091(7)
Fe(2)-C(106)	2.094(8)
Fe(2)-P(4)	2.128(2)
Fe(2)-P(3)	2.133(2)
P(3)-C(121)	1.830(7)
P(3)-C(127)	1.831(8)
P(3)-C(133)	1.845(7)
P(4)-C(126)	1.817(7)
P(4)-C(139)	1.824(7)
P(4)-C(145)	1.848(7)
C(101)-C(106)	1.400(10)
C(101)-C(102)	1.409(10)
C(101)-H(10D)	0.9500
C(102)-C(103)	1.396(10)
C(102)-H(10E)	0.9500
C(103)-C(104)	1.400(10)
C(103)-H(10F)	0.9500
C(104)-C(105)	1.403(10)
C(104)-H(10G)	0.9500
C(105)-C(106)	1.425(10)
C(105)-H(10H)	0.9500
C(106)-C(107)	1.457(12)
C(107)-C(108)	1.429(13)
C(107)-C(112)	1.461(13)
C(108)-C(109)	1.436(14)
C(108)-H(108)	0.9500
C(109)-C(110) 1.389(17)	
C(109)-H(109) 0.9500	
C(110)-C(111) 1.377(17)	
C(110)-H(110) 0.9500	
C(111)-C(112) 1.374(13)	
C(111)-H(111) 0.9500	
C(112)-H(112) 0.9500	
C(121)-C(122) 1.391(10)	
C(121)-C(126) 1.403(9)	
C(122)-C(123) 1.376(10)	
C(122)-H(12B) 0.9500	
C(123)-C(124) 1.389(10)	
C(123)-H(12C) 0.9500	
C(124)-C(125) 1.379(10)	
C(124)-H(12D) 0.9500	
C(125)-C(126) 1.399(9)	
C(125)-H(12E) 0.9500	
C(127)-C(132) 1.362(9)	
C(127)-C(128) 1.403(9)	
C(128)-C(129) 1.394(10)	
C(128)-H(12F) 0.9500	
C(129)-C(130) 1.384(10)	
C(129)-C(151) 1.543(11)	
C(130)-C(131) 1.376(10)	
C(130)-H(13A) 0.9500	
C(131)-C(132) 1.396(9)	
C(131)-C(155) 1.534(10)	
C(132)-H(13B) 0.9500	
C(133)-C(134) 1.376(9)	
C(133)-C(138) 1.403(9)	
C(134)-C(135) 1.393(10)	
C(134)-H(13C) 0.9500	
C(135)-C(136) 1.397(10)	
C(135)-C(159) 1.549(10)	
C(136)-C(137) 1.409(10)	
C(136)-H(13D) 0.9500	
Bond	Distance
----------------------	-----------
C(137)-C(138)	1.380(9)
C(137)-C(163)	1.535(10)
C(138)-H(13E)	0.9500
C(139)-C(140)	1.382(9)
C(139)-C(144)	1.397(9)
C(140)-C(141)	1.394(10)
C(140)-H(14A)	0.9500
C(141)-C(142)	1.399(10)
C(141)-C(167)	1.533(10)
C(142)-C(143)	1.399(10)
C(142)-H(14B)	0.9500
C(143)-C(144)	1.394(10)
C(143)-C(171)	1.517(10)
C(144)-H(14C)	0.9500
C(145)-C(146)	1.385(9)
C(145)-C(150)	1.405(9)
C(146)-C(147)	1.381(9)
C(146)-H(14D)	0.9500
C(147)-C(148)	1.389(9)
C(147)-C(175)	1.533(10)
C(148)-C(149)	1.405(9)
C(148)-H(14E)	0.9500
C(149)-C(150)	1.403(9)
C(149)-C(179)	1.515(9)
C(150)-H(15A)	0.9500
C(151)-C(154)	1.520(11)
C(151)-C(153)	1.536(11)
C(151)-C(152)	1.540(11)
C(152)-H(15B)	0.9800
C(152)-H(15C)	0.9800
C(152)-H(15D)	0.9800
C(153)-H(15E)	0.9800
C(153)-H(15F)	0.9800
C(153)-H(15G)	0.9800
C(154)-H(15H)	0.9800
C(154)-H(15I)	0.9800
C(154)-H(15J) 0.9800	
C(155)-C(156) 1.484(18)	
C(155)-C(56") 1.486(18)	
C(155)-C(158) 1.551(19)	
C(155)-C(58") 1.551(19)	
C(155)-C(157) 1.564(19)	
C(155)-C(57") 1.577(19)	
C(156)-H(15K) 0.9800	
C(156)-H(15L) 0.9800	
C(156)-H(15M) 0.9800	
C(157)-H(15N) 0.9800	
C(157)-H(15O) 0.9800	
C(157)-H(15P) 0.9800	
C(158)-H(15Q) 0.9800	
C(158)-H(15R) 0.9800	
C(158)-H(15S) 0.9800	
C(56")-H(56D) 0.9800	
C(56")-H(56E) 0.9800	
C(56")-H(56F) 0.9800	
C(57")-H(57D) 0.9800	
C(57")-H(57E) 0.9800	
C(57")-H(57F) 0.9800	
C(58")-H(58D) 0.9800	
C(58")-H(58E) 0.9800	
C(58")-H(58F) 0.9800	
C(159)-C(161) 1.507(10)	
C(159)-C(162) 1.531(10)	
C(159)-C(160) 1.542(10)	
C(160)-H(16A) 0.9800	
C(160)-H(16B) 0.9800	
C(160)-H(16C) 0.9800	
C(161)-H(16D) 0.9800	
C(161)-H(16E) 0.9800	
C(161)-H(16F) 0.9800	
C(162)-H(16G) 0.9800	
C(162)-H(16H) 0.9800	
C(162)-H(16I) 0.9800	
C(163)-C(66") 1.37(5)	
C(163)-C(64") 1.41(5)	
C(163)-C(166) 1.504(12)	
C(163)-C(164) 1.525(13)	
C(163)-C(165) 1.562(12)	
C(163)-C(65") 1.62(4)	
C(164)-H(16J) 0.9800	
C(164)-H(16K) 0.9800	
C(164)-H(16L) 0.9800	
C(165)-H(16M) 0.9800	
C(165)-H(16N) 0.9800	
C(165)-H(16O) 0.9800	
C(166)-H(16P) 0.9800	
C(166)-H(16Q) 0.9800	
C(166)-H(16R) 0.9800	
C(64")-H(64D) 0.9800	
C(64")-H(64E) 0.9800	
C(64")-H(64F) 0.9800	
C(65")-H(65D) 0.9800	
C(65")-H(65E) 0.9800	
C(65")-H(65F) 0.9800	
C(66")-H(66D) 0.9800	
C(66")-H(66E) 0.9800	
C(66")-H(66F) 0.9800	
C(167)-C(170) 1.516(10)	
C(167)-C(168) 1.528(10)	
C(167)-C(169) 1.548(10)	
C(168)-H(16S) 0.9800	
C(168)-H(16T) 0.9800	
C(168)-H(16U) 0.9800	
C(169)-H(16V) 0.9800	
C(169)-H(16W) 0.9800	
C(169)-H(16X) 0.9800	
C(170)-H(17A) 0.9800	
C(170)-H(17B) 0.9800	
Bond	Distance (Å)
----------------------	--------------
C(170)-H(17C)	0.9800
C(171)-C(172)	1.511(11)
C(171)-C(174)	1.535(10)
C(171)-C(173)	1.570(11)
C(172)-H(17D)	0.9800
C(172)-H(17E)	0.9800
C(172)-H(17F)	0.9800
C(173)-H(17G)	0.9800
C(173)-H(17H)	0.9800
C(173)-H(17I)	0.9800
C(174)-H(17J)	0.9800
C(174)-H(17K)	0.9800
C(174)-H(17L)	0.9800
C(175)-C(176)	1.523(9)
C(175)-C(178)	1.528(9)
C(175)-C(177)	1.539(10)
C(176)-H(17M)	0.9800
C(176)-H(17N)	0.9800
C(176)-H(17O)	0.9800
C(177)-H(17P)	0.9800
C(177)-H(17Q)	0.9800
C(177)-H(17R)	0.9800
C(178)-H(17S)	0.9800
C(178)-H(17T)	0.9800
C(178)-H(17U)	0.9800
C(179)-C(180)	1.530(10)
C(179)-C(181)	1.536(9)
C(179)-C(182)	1.539(9)
C(180)-H(18A)	0.9800
C(180)-H(18B)	0.9800
C(180)-H(18C)	0.9800
C(181)-H(18D)	0.9800
C(181)-H(18E)	0.9800
C(181)-H(18F)	0.9800
C(182)-H(18G)	0.9800
C(182)-H(18H)	0.9800
Bond	Distance
---------------------------	----------
C(182)-H(18I)	0.9800
O(1)-C(201)	1.417(10)
O(1)-H(1)	0.8400
C(201)-C(202)	1.525(10)
C(201)-C(203)	1.526(10)
C(201)-H(201)	1.0000
C(202)-H(20A)	0.9800
C(202)-H(20B)	0.9800
C(202)-H(20C)	0.9800
C(203)-H(20D)	0.9800
C(203)-H(20E)	0.9800
C(203)-H(20F)	0.9800
C(1)-Fe(1)-C(2)	38.2(3)
C(1)-Fe(1)-C(4)	84.4(4)
C(2)-Fe(1)-C(4)	70.0(4)
C(1)-Fe(1)-C(5)	71.2(3)
C(2)-Fe(1)-C(5)	82.8(3)
C(4)-Fe(1)-C(5)	39.4(3)
C(1)-Fe(1)-C(3)	70.8(4)
C(2)-Fe(1)-C(3)	39.2(3)
C(4)-Fe(1)-C(3)	38.2(3)
C(5)-Fe(1)-C(3)	70.1(3)
C(1)-Fe(1)-C(6)	40.0(3)
C(2)-Fe(1)-C(6)	70.9(4)
C(4)-Fe(1)-C(6)	72.4(4)
C(5)-Fe(1)-C(6)	39.8(3)
C(3)-Fe(1)-C(6)	85.1(3)
C(1)-Fe(1)-P(1)	148.4(3)
C(2)-Fe(1)-P(1)	171.9(4)
C(4)-Fe(1)-P(1)	103.8(3)
C(5)-Fe(1)-P(1)	95.6(2)
C(3)-Fe(1)-P(1)	132.9(3)
C(6)-Fe(1)-P(1)	112.8(3)
C(1)-Fe(1)-P(2)	105.1(3)
C(2)-Fe(1)-P(2)	97.4(3)
C(4)-Fe(1)-P(2)	146.4(3)
Bond	Angle (°)
-----------------------------	-----------
C(5)-Fe(1)-P(2)	173.8(3)
C(3)-Fe(1)-P(2)	113.9(3)
C(6)-Fe(1)-P(2)	134.4(3)
P(1)-Fe(1)-P(2)	85.05(9)
C(21)-P(1)-C(27)	102.0(3)
C(21)-P(1)-C(33)	102.0(3)
C(27)-P(1)-C(33)	104.2(3)
C(21)-P(1)-Fe(1)	111.8(3)
C(27)-P(1)-Fe(1)	116.8(2)
C(33)-P(1)-Fe(1)	118.0(2)
C(45)-P(2)-C(26)	103.0(3)
C(45)-P(2)-C(39)	100.1(3)
C(26)-P(2)-C(39)	102.9(3)
C(45)-P(2)-Fe(1)	119.9(3)
C(26)-P(2)-Fe(1)	111.3(2)
C(39)-P(2)-Fe(1)	117.4(2)
C(2)-C(1)-C(6)	121.4(9)
C(2)-C(1)-Fe(1)	71.5(5)
C(6)-C(1)-Fe(1)	71.5(5)
C(2)-C(1)-H(1A)	119.3
C(6)-C(1)-H(1A)	119.3
Fe(1)-C(1)-H(1A)	130.4
C(1)-C(2)-C(3)	122.0(9)
C(1)-C(2)-Fe(1)	70.2(6)
C(3)-C(2)-Fe(1)	71.2(5)
C(1)-C(2)-H(2A)	119.0
C(3)-C(2)-H(2A)	119.0
Fe(1)-C(2)-H(2A)	132.9
C(4)-C(3)-C(2)	119.2(10)
C(4)-C(3)-Fe(1)	70.6(5)
C(2)-C(3)-Fe(1)	69.6(5)
C(4)-C(3)-H(3A)	120.4
C(2)-C(3)-H(3A)	120.4
Fe(1)-C(3)-H(3A)	132.3
C(3)-C(4)-C(5)	120.0(9)
C(3)-C(4)-Fe(1)	71.2(5)
Bond	Angle (°)
-----------------------------	-----------
C(5)-C(4)-Fe(1)	70.5(5)
C(3)-C(4)-H(4A)	120.0
C(5)-C(4)-H(4A)	120.0
Fe(1)-C(4)-H(4A)	131.1
C(4)-C(5)-C(6)	121.4(8)
C(4)-C(5)-Fe(1)	70.2(5)
C(6)-C(5)-Fe(1)	70.4(5)
C(4)-C(5)-H(5A)	119.3
C(6)-C(5)-H(5A)	119.3
Fe(1)-C(5)-H(5A)	133.6
C(1)-C(6)-C(5)	115.9(8)
C(1)-C(6)-C(7)	117.2(10)
C(5)-C(6)-C(7)	126.1(10)
C(1)-C(6)-Fe(1)	68.5(5)
C(5)-C(6)-Fe(1)	69.8(5)
C(7)-C(6)-Fe(1)	140.0(8)
C(1)-C(6)-H(6A)	122.0
C(5)-C(6)-H(6A)	122.0
Fe(1)-C(6)-H(6A)	132.1
C(8)-C(7)-C(12)	119.6(15)
C(8)-C(7)-C(6)	120.7(13)
C(12)-C(7)-C(6)	119.7(11)
C(7)-C(8)-C(9)	121.6(16)
C(7)-C(8)-H(8)	119.2
C(9)-C(8)-H(8)	119.2
C(10)-C(9)-C(8)	119(2)
C(10)-C(9)-H(9)	120.5
C(8)-C(9)-H(9)	120.5
C(11)-C(10)-C(9)	119(2)
C(11)-C(10)-H(10)	120.4
C(9)-C(10)-H(10)	120.4
C(10)-C(11)-C(12)	121.2(16)
C(10)-C(11)-H(11)	119.4
C(12)-C(11)-H(11)	119.4
C(7)-C(12)-C(11)	119.3(15)
C(7)-C(12)-H(12)	120.4
C(11)-C(12)-H(12) 120.4	
C(212)-C(211)-H(21A) 109.5	
C(212)-C(211)-H(21B) 109.5	
H(21A)-C(211)-H(21B) 109.5	
C(212)-C(211)-H(21C) 109.5	
H(21A)-C(211)-H(21C) 109.5	
H(21B)-C(211)-H(21C) 109.5	
C(211)-C(212)-C(213) 116(3)	
C(211)-C(212)-H(21D) 108.4	
C(213)-C(212)-H(21D) 108.4	
C(211)-C(212)-H(21E) 108.4	
C(213)-C(212)-H(21E) 108.4	
H(21D)-C(212)-H(21E) 107.4	
C(214)-C(213)-C(212) 107(3)	
C(214)-C(213)-H(21F) 110.2	
C(212)-C(213)-H(21F) 110.2	
C(214)-C(213)-H(21G) 110.2	
C(212)-C(213)-H(21G) 110.2	
H(21F)-C(213)-H(21G) 108.5	
C(213)-C(214)-C(215) 108(2)	
C(213)-C(214)-H(21H) 110.0	
C(215)-C(214)-H(21H) 110.0	
C(213)-C(214)-H(21I) 110.0	
C(215)-C(214)-H(21I) 110.0	
H(21H)-C(214)-H(21I) 108.4	
C(216)-C(215)-C(214) 112(3)	
C(216)-C(215)-H(21J) 109.2	
C(214)-C(215)-H(21J) 109.2	
C(216)-C(215)-H(21K) 109.2	
C(214)-C(215)-H(21K) 109.2	
H(21J)-C(215)-H(21K) 107.9	
C(215)-C(216)-H(21L) 109.5	
C(215)-C(216)-H(21M) 109.5	
H(21L)-C(216)-H(21M) 109.5	
C(215)-C(216)-H(21N) 109.5	
H(21L)-C(216)-H(21N) 109.5	
Bond/Distance	Angle (°)
------------------------	-----------
H(21M)-C(216)-H(21N)	109.5
C(22)-C(21)-C(26)	119.4(7)
C(22)-C(21)-P(1)	126.0(6)
C(26)-C(21)-P(1)	114.6(6)
C(23)-C(22)-C(21)	121.0(7)
C(23)-C(22)-H(22A)	119.5
C(21)-C(22)-H(22A)	119.5
C(22)-C(23)-C(24)	120.2(8)
C(22)-C(23)-H(23A)	119.9
C(24)-C(23)-H(23A)	119.9
C(23)-C(24)-C(25)	119.8(8)
C(23)-C(24)-H(24A)	120.1
C(25)-C(24)-H(24A)	120.1
C(26)-C(25)-C(24)	119.7(7)
C(26)-C(25)-H(25A)	120.1
C(24)-C(25)-H(25A)	120.1
C(25)-C(26)-C(21)	119.9(7)
C(25)-C(26)-P(2)	126.9(6)
C(21)-C(26)-P(2)	113.2(6)
C(28)-C(27)-C(32)	119.1(7)
C(28)-C(27)-P(1)	122.9(6)
C(32)-C(27)-P(1)	117.3(6)
C(27)-C(28)-C(29)	121.3(7)
C(27)-C(28)-H(28A)	119.3
C(29)-C(28)-H(28A)	119.3
C(29)-C(29)-C(28)	118.2(7)
C(30)-C(29)-C(51)	118.1(7)
C(28)-C(29)-C(51)	123.7(7)
C(29)-C(30)-C(31)	122.7(7)
C(29)-C(30)-H(30A)	118.7
C(31)-C(30)-H(30A)	118.7
C(32)-C(31)-C(30)	117.1(7)
C(32)-C(31)-C(55)	121.6(7)
C(30)-C(31)-C(55)	121.3(7)
C(31)-C(32)-C(27)	121.5(7)
C(31)-C(32)-H(32A)	119.3
Bond	Angle
------	----------
C(27)-C(32)-H(32A)	119.3
C(38)-C(33)-C(34)	118.8(7)
C(38)-C(33)-P(1)	126.9(6)
C(34)-C(33)-P(1)	114.1(5)
C(33)-C(34)-C(35)	122.1(7)
C(33)-C(34)-H(34A)	118.9
C(35)-C(34)-H(34A)	118.9
C(36)-C(35)-C(34)	116.8(7)
C(36)-C(35)-C(59)	123.4(7)
C(34)-C(35)-C(59)	119.8(7)
C(37)-C(36)-C(35)	122.9(7)
C(37)-C(36)-H(36A)	118.5
C(35)-C(36)-H(36A)	118.5
C(36)-C(37)-C(38)	118.0(7)
C(36)-C(37)-C(63)	121.4(7)
C(38)-C(37)-C(63)	120.6(7)
C(33)-C(38)-C(37)	121.4(7)
C(33)-C(38)-H(38A)	119.3
C(37)-C(38)-H(38A)	119.3
C(44)-C(39)-C(40)	119.0(7)
C(44)-C(39)-P(2)	119.0(6)
C(40)-C(39)-P(2)	121.9(6)
C(41)-C(40)-C(39)	121.6(7)
C(41)-C(40)-H(40A)	119.2
C(39)-C(40)-H(40A)	119.2
C(42)-C(41)-C(40)	117.0(8)
C(42)-C(41)-C(67)	121.8(11)
C(40)-C(41)-C(67)	121.1(12)
C(42)-C(41)-C(67')	125.4(13)
C(40)-C(41)-C(67')	117.5(13)
C(43)-C(42)-C(41)	123.4(8)
C(43)-C(42)-H(42A)	118.3
C(41)-C(42)-H(42A)	118.3
C(42)-C(43)-C(44)	117.6(8)
C(42)-C(43)-C(71)	120.9(8)
C(44)-C(43)-C(71)	121.5(7)
C(39)-C(44)-C(43) 121.4(7)	
C(39)-C(44)-H(44A) 119.3	
C(43)-C(44)-H(44A) 119.3	
C(46)-C(45)-C(50) 117.7(7)	
C(46)-C(45)-P(2) 124.8(6)	
C(50)-C(45)-P(2) 117.3(6)	
C(45)-C(46)-C(47) 123.0(7)	
C(45)-C(46)-H(46A) 118.5	
C(47)-C(46)-H(46A) 118.5	
C(48)-C(47)-C(46) 117.7(7)	
C(48)-C(47)-C(75) 122.8(7)	
C(46)-C(47)-C(75) 119.4(7)	
C(47)-C(48)-C(49) 121.9(7)	
C(47)-C(48)-H(48A) 119.1	
C(49)-C(48)-H(48A) 119.1	
C(50)-C(49)-C(48) 118.0(7)	
C(50)-C(49)-C(79) 121.6(7)	
C(48)-C(49)-C(79) 120.4(7)	
C(49)-C(50)-C(45) 121.6(7)	
C(49)-C(50)-H(50A) 119.2	
C(45)-C(50)-H(50A) 119.2	
C(54)-C(51)-C(29) 109.0(6)	
C(54)-C(51)-C(53) 109.6(6)	
C(29)-C(51)-C(53) 111.1(6)	
C(54)-C(51)-C(52) 107.8(6)	
C(29)-C(51)-C(52) 112.1(6)	
C(53)-C(51)-C(52) 107.2(6)	
C(51)-C(52)-H(52A) 109.5	
C(51)-C(52)-H(52B) 109.5	
H(52A)-C(52)-H(52B) 109.5	
C(51)-C(52)-H(52C) 109.5	
H(52A)-C(52)-H(52C) 109.5	
H(52B)-C(52)-H(52C) 109.5	
C(51)-C(53)-H(53A) 109.5	
C(51)-C(53)-H(53B) 109.5	
H(53A)-C(53)-H(53B) 109.5	
C(51)-C(53)-H(53C) 109.5	
H(53A)-C(53)-H(53C) 109.5	
H(53B)-C(53)-H(53C) 109.5	
C(51)-C(54)-H(54A) 109.5	
C(51)-C(54)-H(54B) 109.5	
H(54A)-C(54)-H(54B) 109.5	
C(51)-C(54)-H(54C) 109.5	
H(54A)-C(54)-H(54C) 109.5	
H(54B)-C(54)-H(54C) 109.5	
C(56)-C(55)-C(58) 110.5(7)	
C(56)-C(55)-C(31) 112.9(7)	
C(58)-C(55)-C(31) 109.2(6)	
C(56)-C(55)-C(57) 107.5(7)	
C(58)-C(55)-C(57) 108.7(7)	
C(31)-C(55)-C(57) 107.9(7)	
C(55)-C(56)-H(56A) 109.5	
C(55)-C(56)-H(56B) 109.5	
H(56A)-C(56)-H(56B) 109.5	
C(55)-C(56)-H(56C) 109.5	
H(56A)-C(56)-H(56C) 109.5	
H(56B)-C(56)-H(56C) 109.5	
C(55)-C(57)-H(57A) 109.5	
C(55)-C(57)-H(57B) 109.5	
H(57A)-C(57)-H(57B) 109.5	
C(55)-C(57)-H(57C) 109.5	
H(57A)-C(57)-H(57C) 109.5	
H(57B)-C(57)-H(57C) 109.5	
C(55)-C(58)-H(58A) 109.5	
C(55)-C(58)-H(58B) 109.5	
H(58A)-C(58)-H(58B) 109.5	
C(55)-C(58)-H(58C) 109.5	
H(58A)-C(58)-H(58C) 109.5	
H(58B)-C(58)-H(58C) 109.5	
C(62)-C(59)-C(35) 111.5(6)	
C(62)-C(59)-C(61) 109.0(7)	
C(35)-C(59)-C(61) 109.2(6)	
Bond	Angles (°)
----------------------	------------
C(62)-C(59)-C(60)	109.4(6)
C(35)-C(59)-C(60)	109.0(6)
C(61)-C(59)-C(60)	108.7(6)
C(59)-C(60)-H(60A)	109.5
C(59)-C(60)-H(60B)	109.5
H(60A)-C(60)-H(60B)	109.5
C(59)-C(60)-H(60C)	109.5
H(60A)-C(60)-H(60C)	109.5
H(60B)-C(60)-H(60C)	109.5
C(59)-C(61)-H(61A)	109.5
C(59)-C(61)-H(61B)	109.5
H(61A)-C(61)-H(61B)	109.5
C(59)-C(61)-H(61C)	109.5
H(61A)-C(61)-H(61C)	109.5
H(61B)-C(61)-H(61C)	109.5
C(59)-C(62)-H(62A)	109.5
C(59)-C(62)-H(62B)	109.5
H(62A)-C(62)-H(62B)	109.5
C(59)-C(62)-H(62C)	109.5
H(62A)-C(62)-H(62C)	109.5
H(62B)-C(62)-H(62C)	109.5
C(65)-C(63)-C(66)	109.0(6)
C(65)-C(63)-C(37)	113.0(6)
C(66)-C(63)-C(37)	110.5(6)
C(65)-C(63)-C(64)	107.4(6)
C(66)-C(63)-C(64)	108.3(6)
C(37)-C(63)-C(64)	108.5(6)
C(63)-C(64)-H(64A)	109.5
C(63)-C(64)-H(64B)	109.5
H(64A)-C(64)-H(64B)	109.5
C(63)-C(64)-H(64C)	109.5
H(64A)-C(64)-H(64C)	109.5
H(64B)-C(64)-H(64C)	109.5
C(63)-C(65)-H(65A)	109.5
C(63)-C(65)-H(65B)	109.5
H(65A)-C(65)-H(65B)	109.5
C(63)-C(65)-H(65C) 109.5	
H(65A)-C(65)-H(65C) 109.5	
H(65B)-C(65)-H(65C) 109.5	
C(63)-C(66)-H(66A) 109.5	
C(63)-C(66)-H(66B) 109.5	
H(66A)-C(66)-H(66B) 109.5	
C(63)-C(66)-H(66C) 109.5	
H(66A)-C(66)-H(66C) 109.5	
H(66B)-C(66)-H(66C) 109.5	
C(68)-C(67)-C(69) 108.2(10)	
C(68)-C(67)-C(70) 109.1(9)	
C(69)-C(67)-C(70) 110.0(10)	
C(68)-C(67)-C(41) 112.8(14)	
C(69)-C(67)-C(41) 108(3)	
C(70)-C(67)-C(41) 109(3)	
C(69')-C(67')-C(68') 108.0(10)	
C(69')-C(67')-C(70') 109.0(10)	
C(68')-C(67')-C(70') 109.4(10)	
C(69')-C(67')-C(41) 115(3)	
C(68')-C(67')-C(41) 108.4(16)	
C(70')-C(67')-C(41) 107(3)	
C(74)-C(71)-C(43) 114.1(8)	
C(74)-C(71)-C(73) 112.1(9)	
C(43)-C(71)-C(73) 108.7(8)	
C(74)-C(71)-C(72) 106.4(9)	
C(43)-C(71)-C(72) 107.9(8)	
C(73)-C(71)-C(72) 107.4(8)	
C(71)-C(72)-H(72A) 109.5	
C(71)-C(72)-H(72B) 109.5	
H(72A)-C(72)-H(72B) 109.5	
C(71)-C(72)-H(72C) 109.5	
H(72A)-C(72)-H(72C) 109.5	
H(72B)-C(72)-H(72C) 109.5	
C(71)-C(73)-H(73A) 109.5	
C(71)-C(73)-H(73B) 109.5	
H(73A)-C(73)-H(73B) 109.5	
Bond	Angle
----------------------	------------
C(71)-C(73)-H(73C)	109.5
H(73A)-C(73)-H(73C)	109.5
H(73B)-C(73)-H(73C)	109.5
C(71)-C(74)-H(74A)	109.5
C(71)-C(74)-H(74B)	109.5
H(74A)-C(74)-H(74B)	109.5
C(71)-C(74)-H(74C)	109.5
H(74A)-C(74)-H(74C)	109.5
H(74B)-C(74)-H(74C)	109.5
C(78)-C(75)-C(47)	109.5(6)
C(78)-C(75)-C(77)	110.5(7)
C(47)-C(75)-C(77)	108.7(6)
C(78)-C(75)-C(76)	107.8(7)
C(47)-C(75)-C(76)	113.0(7)
C(77)-C(75)-C(76)	107.5(6)
C(75)-C(76)-H(76A)	109.5
C(75)-C(76)-H(76B)	109.5
H(76A)-C(76)-H(76B)	109.5
C(75)-C(76)-H(76C)	109.5
H(76A)-C(76)-H(76C)	109.5
H(76B)-C(76)-H(76C)	109.5
C(75)-C(77)-H(77A)	109.5
C(75)-C(77)-H(77B)	109.5
H(77A)-C(77)-H(77B)	109.5
C(75)-C(77)-H(77C)	109.5
H(77A)-C(77)-H(77C)	109.5
H(77B)-C(77)-H(77C)	109.5
C(75)-C(78)-H(78A)	109.5
C(75)-C(78)-H(78B)	109.5
H(78A)-C(78)-H(78B)	109.5
C(75)-C(78)-H(78C)	109.5
H(78A)-C(78)-H(78C)	109.5
H(78B)-C(78)-H(78C)	109.5
C(80)-C(79)-C(82)	110.1(8)
C(80)-C(79)-C(49)	110.7(7)
C(82)-C(79)-C(49)	113.7(7)
C(80)-C(79)-C(81) 108.0(7)	
C(82)-C(79)-C(81) 108.3(7)	
C(49)-C(79)-C(81) 105.8(7)	
C(79)-C(80)-H(80A) 109.5	
C(79)-C(80)-H(80B) 109.5	
H(80A)-C(80)-H(80B) 109.5	
C(79)-C(80)-H(80C) 109.5	
H(80A)-C(80)-H(80C) 109.5	
H(80B)-C(80)-H(80C) 109.5	
C(79)-C(81)-H(81A) 109.5	
C(79)-C(81)-H(81B) 109.5	
H(81A)-C(81)-H(81B) 109.5	
C(79)-C(81)-H(81C) 109.5	
H(81A)-C(81)-H(81C) 109.5	
H(81B)-C(81)-H(81C) 109.5	
C(79)-C(82)-H(82A) 109.5	
C(79)-C(82)-H(82B) 109.5	
H(82A)-C(82)-H(82B) 109.5	
C(79)-C(82)-H(82C) 109.5	
H(82A)-C(82)-H(82C) 109.5	
H(82B)-C(82)-H(82C) 109.5	
C(105)-Fe(2)-C(102) 85.4(3)	
C(105)-Fe(2)-C(104) 39.5(3)	
C(102)-Fe(2)-C(104) 70.6(3)	
C(105)-Fe(2)-C(101) 71.1(3)	
C(102)-Fe(2)-C(101) 39.5(3)	
C(104)-Fe(2)-C(101) 83.1(3)	
C(105)-Fe(2)-C(103) 72.3(3)	
C(102)-Fe(2)-C(103) 39.1(3)	
C(104)-Fe(2)-C(103) 39.2(3)	
C(101)-Fe(2)-C(103) 71.0(3)	
C(105)-Fe(2)-C(106) 40.0(3)	
C(102)-Fe(2)-C(106) 72.2(3)	
C(104)-Fe(2)-C(106) 71.6(3)	
C(101)-Fe(2)-C(106) 39.1(3)	
C(103)-Fe(2)-C(106) 85.8(3)	
Bond	Angle (°)
-----------------------------	-----------
C(105)-Fe(2)-P(4)	144.9(3)
C(102)-Fe(2)-P(4)	104.8(2)
C(104)-Fe(2)-P(4)	174.3(2)
C(101)-Fe(2)-P(4)	95.3(2)
C(103)-Fe(2)-P(4)	135.1(2)
C(106)-Fe(2)-P(4)	110.5(2)
C(105)-P(4)-Fe(2)	85.16(9)
C(121)-P(3)-C(127)	103.6(3)
C(121)-P(3)-C(133)	102.4(3)
C(127)-P(3)-C(133)	100.2(3)
C(121)-P(3)-Fe(2)	111.5(3)
C(127)-P(3)-Fe(2)	117.0(2)
C(133)-P(3)-Fe(2)	119.9(2)
C(126)-P(4)-C(139)	100.7(3)
C(126)-P(4)-C(145)	101.2(3)
C(139)-P(4)-C(145)	104.2(3)
C(126)-P(4)-Fe(2)	111.8(3)
C(139)-P(4)-Fe(2)	116.8(2)
C(145)-P(4)-Fe(2)	119.6(2)
C(106)-C(101)-C(102)	122.1(8)
C(106)-C(101)-Fe(2)	70.6(4)
C(102)-C(101)-Fe(2)	69.8(4)
C(106)-C(101)-H(10D)	118.9
C(102)-C(101)-H(10D)	118.9
Fe(2)-C(101)-H(10D)	134.4
C(103)-C(102)-C(101)	119.9(8)
C(103)-C(102)-Fe(2)	70.9(4)
C(101)-C(102)-Fe(2)	70.7(4)
C(103)-C(102)-H(10E)	120.1
C(101)-C(102)-H(10E)	120.1
Fe(2)-C(102)-H(10E) 131.1
C(102)-C(103)-C(104) 118.5(8)
C(102)-C(103)-Fe(2) 70.0(4)
C(104)-C(103)-Fe(2) 70.0(4)
C(102)-C(103)-H(10F) 120.8
C(104)-C(103)-H(10F) 120.8
Fe(2)-C(103)-H(10F) 132.0
C(103)-C(104)-C(105) 122.2(7)
C(103)-C(104)-Fe(2) 70.8(4)
C(105)-C(104)-Fe(2) 69.8(4)
C(103)-C(104)-H(10G) 118.9
C(105)-C(104)-H(10G) 118.9
Fe(2)-C(104)-H(10G) 134.2
C(104)-C(105)-C(106) 119.4(7)
C(104)-C(105)-Fe(2) 70.7(4)
C(106)-C(105)-Fe(2) 70.9(5)
C(104)-C(105)-H(10H) 120.3
C(106)-C(105)-H(10H) 120.3
Fe(2)-C(105)-H(10H) 130.6
C(101)-C(106)-C(105) 117.8(7)
C(101)-C(106)-C(107) 122.2(8)
C(105)-C(106)-C(107) 119.9(8)
C(101)-C(106)-Fe(2) 70.3(4)
C(105)-C(106)-Fe(2) 69.0(4)
C(107)-C(106)-Fe(2) 135.0(6)
C(108)-C(107)-C(106) 121.9(10)
C(108)-C(107)-C(112) 116.5(10)
C(106)-C(107)-C(112) 121.3(9)
C(107)-C(108)-C(109) 118.7(12)
C(107)-C(108)-H(108) 120.7
C(109)-C(108)-H(108) 120.7
C(110)-C(109)-C(108) 121.6(13)
C(110)-C(109)-H(109) 119.2
C(108)-C(109)-H(109) 119.2
C(111)-C(110)-C(109) 120.6(13)
C(111)-C(110)-H(110) 119.7
C(109)-C(110)-H(110) 119.7
C(112)-C(111)-C(110) 120.0(14)
C(112)-C(111)-H(111) 120.0
C(110)-C(111)-H(111) 120.0
C(111)-C(112)-C(107) 122.6(12)
C(111)-C(112)-H(112) 118.7
C(107)-C(112)-H(112) 118.7
C(122)-C(121)-C(126) 120.4(7)
C(122)-C(121)-P(3) 126.7(6)
C(126)-C(121)-P(3) 112.8(6)
C(123)-C(122)-C(121) 120.3(8)
C(123)-C(122)-H(12B) 119.9
C(121)-C(122)-H(12B) 119.9
C(122)-C(123)-C(124) 119.7(8)
C(122)-C(123)-H(12C) 120.2
C(124)-C(123)-H(12C) 120.2
C(125)-C(124)-C(123) 120.7(8)
C(125)-C(124)-H(12D) 119.7
C(123)-C(124)-H(12D) 119.7
C(124)-C(125)-C(126) 120.5(7)
C(124)-C(125)-H(12E) 119.8
C(126)-C(125)-H(12E) 119.8
C(125)-C(126)-C(121) 118.3(7)
C(125)-C(126)-P(4) 126.8(6)
C(121)-C(126)-P(4) 114.9(6)
C(132)-C(127)-C(128) 118.1(7)
C(132)-C(127)-P(3) 123.6(6)
C(128)-C(127)-P(3) 117.8(6)
C(129)-C(128)-C(127) 121.8(7)
C(129)-C(128)-H(12F) 119.1
C(127)-C(128)-H(12F) 119.1
C(130)-C(129)-C(128) 116.6(7)
C(130)-C(129)-C(151) 121.3(7)
C(128)-C(129)-C(151) 122.1(7)
C(131)-C(130)-C(129) 123.8(7)
C(131)-C(130)-H(13A) 118.1
C(129)-C(130)-H(13A) 118.1
C(130)-C(131)-C(132) 116.9(7)
C(130)-C(131)-C(155) 122.8(7)
C(132)-C(131)-C(155) 120.2(7)
C(127)-C(132)-C(131) 122.6(7)
C(127)-C(132)-H(13B) 118.7
C(131)-C(132)-H(13B) 118.7
C(134)-C(133)-C(138) 119.5(7)
C(134)-C(133)-P(3) 122.8(6)
C(138)-C(133)-P(3) 117.7(6)
C(133)-C(134)-C(135) 120.7(7)
C(133)-C(134)-H(13C) 119.7
C(135)-C(134)-H(13C) 119.7
C(134)-C(135)-C(136) 119.4(7)
C(134)-C(135)-C(159) 121.3(7)
C(136)-C(135)-C(159) 119.3(8)
C(135)-C(136)-C(137) 120.6(7)
C(135)-C(136)-H(13D) 119.7
C(137)-C(136)-H(13D) 119.7
C(138)-C(137)-C(136) 118.4(7)
C(138)-C(137)-C(163) 122.6(7)
C(136)-C(137)-C(163) 118.9(7)
C(137)-C(138)-C(133) 121.3(7)
C(137)-C(138)-H(13E) 119.3
C(133)-C(138)-H(13E) 119.3
C(140)-C(139)-C(144) 119.6(7)
C(140)-C(139)-P(4) 118.0(6)
C(144)-C(139)-P(4) 122.2(6)
C(139)-C(140)-C(141) 122.2(7)
C(139)-C(140)-H(14A) 118.9
C(141)-C(140)-H(14A) 118.9
C(140)-C(141)-C(142) 116.8(7)
C(140)-C(141)-C(167) 121.3(7)
C(142)-C(141)-C(167) 121.7(7)
C(141)-C(142)-C(143) 122.6(8)
C(141)-C(142)-H(14B) 118.7
C(143)-C(142)-H(14B) 118.7
C(144)-C(143)-C(142) 118.4(7)
C(144)-C(143)-C(171) 121.8(8)
C(142)-C(143)-C(171) 119.8(8)
C(143)-C(144)-C(139) 120.2(7)
C(143)-C(144)-H(14C) 119.9
C(139)-C(144)-H(14C) 119.9
C(146)-C(145)-C(150) 118.9(7)
C(146)-C(145)-P(4) 116.5(6)
C(150)-C(145)-P(4) 124.5(6)
C(147)-C(146)-C(145) 122.4(7)
C(147)-C(146)-H(14D) 118.8
C(145)-C(146)-H(14D) 118.8
C(146)-C(147)-C(148) 117.4(7)
C(146)-C(147)-C(175) 118.5(7)
C(148)-C(147)-C(175) 124.0(7)
C(147)-C(148)-C(149) 123.5(7)
C(147)-C(148)-H(14E) 118.3
C(149)-C(148)-H(14E) 118.3
C(150)-C(149)-C(148) 116.8(7)
C(150)-C(149)-C(179) 119.5(7)
C(148)-C(149)-C(179) 123.7(7)
C(149)-C(150)-C(145) 121.1(7)
C(149)-C(150)-H(15A) 119.5
C(145)-C(150)-H(15A) 119.5
C(154)-C(151)-C(153) 110.7(7)
C(154)-C(151)-C(152) 108.3(7)
C(153)-C(151)-C(152) 108.8(8)
C(154)-C(151)-C(129) 108.2(7)
C(153)-C(151)-C(129) 108.5(7)
C(152)-C(151)-C(129) 112.3(7)
C(151)-C(152)-H(15B) 109.5
C(151)-C(152)-H(15C) 109.5
H(15B)-C(152)-H(15C) 109.5
C(151)-C(152)-H(15D) 109.5
H(15B)-C(152)-H(15D) 109.5
H(15C)-C(152)-H(15D) 109.5
C(151)-C(153)-H(15E) 109.5
C(151)-C(153)-H(15F) 109.5
H(15E)-C(153)-H(15F) 109.5
C(151)-C(153)-H(15G) 109.5
H(15E)-C(153)-H(15G) 109.5
H(15F)-C(153)-H(15G) 109.5
C(151)-C(154)-H(15H) 109.5
C(151)-C(154)-H(15I) 109.5
H(15H)-C(154)-H(15I) 109.5
C(151)-C(154)-H(15J) 109.5
H(15I)-C(154)-H(15J) 109.5
H(15J)-C(154)-H(15K) 109.5
C(156)-C(155)-C(56") 128.6(11)
C(156)-C(155)-C(131) 115.3(9)
C(56")-C(155)-C(131) 116.0(9)
C(156)-C(155)-C(158) 109.7(12)
C(56")-C(155)-C(158) 54.5(10)
C(131)-C(155)-C(158) 108.0(9)
C(156)-C(155)-C(58") 50.7(10)
C(56")-C(155)-C(58") 110.3(13)
C(131)-C(155)-C(58") 107.6(9)
C(158)-C(155)-C(58") 144.3(11)
C(156)-C(155)-C(157) 109.8(12)
C(56")-C(155)-C(157) 52.6(10)
C(131)-C(155)-C(157) 106.9(9)
C(158)-C(155)-C(157) 106.9(11)
C(58")-C(155)-C(157) 64.6(10)
C(156)-C(155)-C(57") 57.6(10)
C(56")-C(155)-C(57") 104.8(12)
C(131)-C(155)-C(57") 110.1(9)
C(158)-C(155)-C(57") 56.7(10)
C(58")-C(155)-C(57") 107.6(12)
C(157)-C(155)-C(57") 142.7(10)
C(155)-C(156)-H(15K) 109.5
C(155)-C(156)-H(15L) 109.5
C(155)-C(156)-H(15M) 109.5
C(155)-C(157)-H(15N) 109.5
C(155)-C(157)-H(15O) 109.5
C(155)-C(157)-H(15P) 109.5
C(155)-C(158)-H(15Q) 109.5
C(155)-C(158)-H(15R) 109.5
C(155)-C(158)-H(15S) 109.5
C(155)-C(56")-H(56D) 109.5
C(155)-C(56")-H(56E) 109.5
C(155)-C(56")-H(56F) 109.5
C(155)-C(57")-H(57D) 109.5
C(155)-C(57")-H(57E) 109.5
C(155)-C(57")-H(57F) 109.5
C(155)-C(58")-H(58D) 109.5
C(155)-C(58")-H(58E) 109.5
C(155)-C(58")-H(58F) 109.5
C(161)-C(159)-C(162) 109.3(7)
C(161)-C(159)-C(160) 107.1(6)
C(162)-C(159)-C(160) 108.3(7)
C(161)-C(159)-C(135) 112.8(7)
C(162)-C(159)-C(135) 110.1(6)
C(160)-C(159)-C(135) 109.1(6)
C(159)-C(160)-H(16A) 109.5
C(159)-C(160)-H(16B) 109.5
H(16A)-C(160)-H(16B) 109.5
C(159)-C(160)-H(16C) 109.5
H(16A)-C(160)-H(16C) 109.5
H(16B)-C(160)-H(16C) 109.5
C(159)-C(161)-H(16D) 109.5
C(159)-C(161)-H(16E) 109.5
H(16D)-C(161)-H(16E) 109.5
C(159)-C(161)-H(16F) 109.5
H(16D)-C(161)-H(16F) 109.5
H(16E)-C(161)-H(16F) 109.5
C(159)-C(162)-H(16G) 109.5
C(159)-C(162)-H(16H) 109.5
H(16G)-C(162)-H(16H) 109.5
C(159)-C(162)-H(16I) 109.5
H(16G)-C(162)-H(16I) 109.5
H(16H)-C(162)-H(16I) 109.5
C(66")-C(163)-C(64") 116(3)
C(166)-C(163)-C(164) 107.9(9)
C(66")-C(163)-C(137) 109(2)
C(64")-C(163)-C(137) 117(2)
C(166)-C(163)-C(137) 109.5(7)
C(164)-C(163)-C(137) 111.4(7)
C(166)-C(163)-C(165) 110.8(8)
C(164)-C(163)-C(165) 108.2(9)
C(137)-C(163)-C(165) 109.1(7)
C(66")-C(163)-C(65") 102(3)
C(64")-C(163)-C(65") 108(3)
C(137)-C(163)-C(65") 102.9(16)
C(163)-C(164)-H(16J) 109.5
C(163)-C(164)-H(16K) 109.5
C(163)-C(164)-H(16L) 109.5
C(163)-C(165)-H(16M) 109.5
C(163)-C(165)-H(16N) 109.5
C(163)-C(165)-H(16O) 109.5
C(163)-C(166)-H(16P) 109.5
C(163)-C(166)-H(16Q) 109.5
C(163)-C(166)-H(16R) 109.5
C(163)-C(64")-H(64D) 109.5
C(163)-C(64")-H(64E) 109.5
C(163)-C(64")-H(64F) 109.5
C(163)-C(65")-H(65D) 109.5
C(163)-C(65")-H(65E) 109.5
C(163)-C(65")-H(65F) 109.5
C(163)-C(66")-H(66D) 109.5
C(163)-C(66")-H(66E) 109.5
C(163)-C(66")-H(66F) 109.5
C(170)-C(167)-C(168) 108.0(7)
C(170)-C(167)-C(141) 112.5(7)
C(168)-C(167)-C(141) 107.4(7)
C(170)-C(167)-C(169) 109.0(7)
C(168)-C(167)-C(169) 110.4(7)
C(141)-C(167)-C(169) 109.5(7)
C(167)-C(168)-H(16S) 109.5
C(167)-C(168)-H(16T) 109.5
H(16S)-C(168)-H(16T) 109.5
C(167)-C(168)-H(16U) 109.5
H(16S)-C(168)-H(16U) 109.5
H(16T)-C(168)-H(16U) 109.5
C(167)-C(169)-H(16V) 109.5
C(167)-C(169)-H(16W) 109.5
H(16V)-C(169)-H(16W) 109.5
C(167)-C(169)-H(16X) 109.5
H(16V)-C(169)-H(16X) 109.5
H(16W)-C(169)-H(16X) 109.5
C(167)-C(170)-H(17A) 109.5
C(167)-C(170)-H(17B) 109.5
H(17A)-C(170)-H(17B) 109.5
C(167)-C(170)-H(17C) 109.5
H(17A)-C(170)-H(17C) 109.5
H(17B)-C(170)-H(17C) 109.5
C(172)-C(171)-C(143) 113.8(7)
C(172)-C(171)-C(174) 108.1(7)
C(143)-C(171)-C(174) 112.6(7)
C(172)-C(171)-C(173) 106.2(8)
C(143)-C(171)-C(173) 107.6(7)
C(174)-C(171)-C(173) 108.2(7)
C(171)-C(172)-H(17D) 109.5
C(171)-C(172)-H(17E) 109.5
H(17D)-C(172)-H(17E) 109.5
C(171)-C(172)-H(17F) 109.5
H(17D)-C(172)-H(17F) 109.5
H(17E)-C(172)-H(17F) 109.5
C(171)-C(173)-H(17G) 109.5
C(171)-C(173)-H(17H) 109.5
H(17G)-C(173)-H(17H) 109.5
C(171)-C(173)-H(17I) 109.5
H(17G)-C(173)-H(17I) 109.5
H(17H)-C(173)-H(17I) 109.5
C(171)-C(174)-H(17J) 109.5
C(171)-C(174)-H(17K) 109.5
H(17J)-C(174)-H(17K) 109.5
C(171)-C(174)-H(17L) 109.5
H(17J)-C(174)-H(17L) 109.5
H(17K)-C(174)-H(17L) 109.5
C(176)-C(175)-C(178) 108.0(6)
C(176)-C(175)-C(147) 111.8(6)
C(178)-C(175)-C(147) 109.8(6)
C(176)-C(175)-C(177) 108.7(6)
C(178)-C(175)-C(177) 108.4(6)
C(147)-C(175)-C(177) 110.0(6)
C(175)-C(176)-H(17M) 109.5
C(175)-C(176)-H(17N) 109.5
H(17M)-C(176)-H(17N) 109.5
C(175)-C(176)-H(17O) 109.5
H(17M)-C(176)-H(17O) 109.5
H(17N)-C(176)-H(17O) 109.5
C(175)-C(177)-H(17P) 109.5
C(175)-C(177)-H(17Q) 109.5
H(17P)-C(177)-H(17Q) 109.5
C(175)-C(177)-H(17R) 109.5
H(17P)-C(177)-H(17R) 109.5
H(17Q)-C(177)-H(17R) 109.5
C(175)-C(178)-H(17S) 109.5
C(175)-C(178)-H(17T) 109.5
H(17S)-C(178)-H(17T) 109.5
C(175)-C(178)-H(17U) 109.5
H(17S)-C(178)-H(17U) 109.5
H(17T)-C(178)-H(17U) 109.5
C(149)-C(179)-C(180) 112.6(6)
C(149)-C(179)-C(181) 110.3(6)
C(180)-C(179)-C(181) 108.9(6)
C(149)-C(179)-C(182) 108.5(6)
C(180)-C(179)-C(182) 108.6(6)
C(181)-C(179)-C(182) 107.6(6)
C(179)-C(180)-H(18A) 109.5
C(179)-C(180)-H(18B) 109.5
H(18A)-C(180)-H(18B) 109.5
C(179)-C(180)-H(18C) 109.5
H(18A)-C(180)-H(18C) 109.5
H(18B)-C(180)-H(18C) 109.5
C(179)-C(181)-H(18D) 109.5
C(179)-C(181)-H(18E) 109.5
H(18D)-C(181)-H(18E) 109.5
C(179)-C(181)-H(18F) 109.5
H(18D)-C(181)-H(18F) 109.5
H(18E)-C(181)-H(18F) 109.5
C(179)-C(182)-H(18G) 109.5
C(179)-C(182)-H(18H) 109.5
H(18G)-C(182)-H(18H) 109.5
C(179)-C(182)-H(18I) 109.5
H(18G)-C(182)-H(18I) 109.5
H(18H)-C(182)-H(18I) 109.5
C(201)-O(1)-H(1) 109.5
O(1)-C(201)-C(202) 107.3(17)
O(1)-C(201)-C(203) 107.3(17)
C(202)-C(201)-C(203) 98.8(18)
O(1)-C(201)-H(201) 114.0
C(202)-C(201)-H(201) 114.0
C(203)-C(201)-H(201) 114.0
C(201)-C(202)-H(20A) 109.5
C(201)-C(202)-H(20B) 109.5
H(20A)-C(202)-H(20B) 109.5
C(201)-C(202)-H(20C) 109.5
H(20A)-C(202)-H(20C) 109.5
3.2 Fe(Ph)Br(SciOPP) (5-Br)

CRYSTAL STRUCTURE REPORT

\[\text{C}_{72} \text{H}_{103} \text{Br Fe O P}_2 \]

or

\[(\text{SciOPP})\text{Fe(Br)(Ph) \cdot Et}_2\text{O}\]

Report prepared for:

J. Kneebone, Prof. M. Neidig

April 04, 2015

William W. Brennessel
X-ray Crystallographic Facility
Department of Chemistry, University of Rochester
120 Trustee Road
Rochester, NY 14627
Data collection
A crystal (0.36 x 0.14 x 0.10 mm3) was placed onto the tip of a thin glass optical fiber and mounted on a Bruker SMART APEX II CCD platform diffractometer for a data collection at 100.0(5) K. A preliminary set of cell constants and an orientation matrix were calculated from reflections harvested from three orthogonal wedges of reciprocal space. The full data collection was carried out using MoK$_\alpha$ radiation (graphite monochromator) with a frame time of 90 seconds and a detector distance of 4.02 cm. A randomly oriented region of reciprocal space was surveyed: three major sections of frames were collected with 0.50° steps in ω at three different ϕ settings and a detector position of -38$^\circ$ in 2θ. The intensity data were corrected for absorption. Final cell constants were calculated from the xyz centroids of 4057 strong reflections from the actual data collection after integration. See Table 1 for additional crystal and refinement information.

Structure solution and refinement
The structure was solved using SIR20114 and refined using SHELXL-2014/7.5 The space group $Pna2_1$ was determined based on systematic absences and intensity statistics. A direct-methods solution was calculated which provided most non-hydrogen atoms from the E-map. Full-matrix least squares / difference Fourier cycles were performed which located the remaining non-hydrogen atoms. All non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were placed in ideal positions and refined as riding atoms with relative isotropic displacement parameters. The final full matrix least squares refinement converged to $R_1 = 0.0624$ ($F^2, I > 2\sigma(I)$) and $wR_2 = 0.1258$ (F^2, all data).

Structure description
The structure is the one suggested. The asymmetric unit contains one iron complex and one cocrystallized diethyl ether solvent molecule, both in general positions. The phenyl ligand and tert-butyl groups C35-C38 and C55-C58 are modeled as disordered over two positions each (0.70:0.30, 0.78:0.22, and 0.72:0.28, respectively).

Unless noted otherwise all structural diagrams containing thermal displacement ellipsoids are drawn at the 50% probability level.

Data collection, structure solution, and structure refinement were conducted at the X-ray Crystallographic Facility, B51 Hutchison Hall, Department of Chemistry, University of Rochester. All publications arising from this report MUST either 1) include William W. Brennessel as a coauthor or 2) acknowledge William W. Brennessel and the X-ray Crystallographic Facility of the Department of Chemistry at the University of Rochester.
Some equations of interest:

\[R_{\text{int}} = \frac{\sum |F_o^2 - \langle F_o^2 >|}{\sum |F_o^2|} \]
\[R1 = \frac{\sum |F_o||F_c|}{\sum |F_o|} \]
\[wR^2 = \left[\frac{\sum [w(F_o^2 - F_c^2)^2]}{\sum w(F_o^2)^2} \right]^{1/2} \]
\[\text{where } w = \frac{1}{\sigma^2 (F_o^2) + (aP)^2 + bP} \text{ and } \]
\[P = \frac{1}{3} \text{ max } (0, F_o^2) + \frac{2}{3} F_c^2 \]
\[\text{GOF} = S = \left[\frac{\sum [w(F_o^2 - F_c^2)^2]}{(m-n)} \right]^{1/2} \]

where \(m \) = number of reflections and \(n \) = number of parameters
Table S13. Crystal data and structure refinement for Fe(Ph)Br(SciOPP).

Property	Value
Identification code	neijk42
Empirical formula	C72 H103 Br Fe O P2
Formula weight	1182.24
Temperature	100.0(5) K
Wavelength	0.71073 Å
Crystal system	orthorhombic
Space group	Pna2_1
Unit cell dimensions	\(a = 31.239(7) \) Å, \(\alpha = 90^\circ \)
	\(b = 14.820(4) \) Å, \(\beta = 90^\circ \)
	\(c = 15.184(4) \) Å, \(\gamma = 90^\circ \)
Volume	7030(3) Å³
Z	4
Density (calculated)	1.117 Mg/m³
Absorption coefficient	0.867 mm\(^{-1}\)
\(F(000) \)	2536
Crystal color, morphology	pale yellow, needle
Crystal size	0.36 x 0.14 x 0.10 mm³
Theta range for data collection	1.870 to 25.099°
Index ranges	-28 ≤ h ≤ 37, -17 ≤ k ≤ 17, -18 ≤ l ≤ 17
Reflections collected	47332
Independent reflections	12010 \([R(int) = 0.1546]\)
Observed reflections	7665
Completeness to theta = 25.028°	99.8%
Absorption correction	Multi-scan
Max. and min. transmission	0.7452 and 0.6336
Refinement method	Full-matrix least-squares on \(F^2 \)
Data / restraints / parameters	12010 / 165 / 770
Goodness-of-fit on \(F^2 \)	1.007
Final \(R \) indices [\(I > 2 \sigma(I) \)]	\(R1 = 0.0624, wR2 = 0.1059 \)
\(R \) indices (all data)	\(R1 = 0.1208, wR2 = 0.1258 \)
Absolute structure parameter	0.037(8)
Largest diff. peak and hole	0.411 and -0.520 e.Å\(^{-3}\)
Table S14. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å^2 x 10^3). \(U_{eq} \) is defined as one third of the trace of the orthogonalized \(U_{ij} \) tensor.

	x	y	z	\(U_{eq} \)
Fe1	771(1)	4990(1)	5315(1)	21(1)
Br1	787(1)	4223(1)	3940(1)	38(1)
P1	193(1)	4507(1)	6260(1)	16(1)
P2	1186(1)	4299(1)	6497(1)	17(1)
C1	416(2)	4500(5)	7376(5)	14(2)
C2	151(3)	4555(5)	8109(5)	19(2)
C3	322(2)	4534(4)	8956(6)	21(2)
C4	766(3)	4496(5)	9070(6)	25(2)
C5	1030(3)	4470(5)	8330(5)	18(2)
C6	868(3)	4462(5)	7487(5)	17(2)
C7	-315(2)	5109(5)	6350(5)	14(2)
C8	-309(3)	6042(5)	6251(5)	19(2)
C9	-690(2)	6541(5)	6302(5)	17(2)
C10	-1063(3)	6081(5)	6455(5)	21(2)
C11	-1086(3)	5147(5)	6561(5)	19(2)
C12	-704(3)	4669(5)	6510(5)	21(2)
C13	25(2)	3348(5)	6069(5)	15(2)
C14	81(2)	2659(5)	6685(6)	20(2)
C15	-69(3)	1795(5)	6506(5)	20(2)
C16	-280(3)	1644(5)	5709(5)	20(2)
C17	-335(2)	2330(5)	5082(5)	16(2)
C18	-172(2)	3178(5)	5265(6)	20(2)
C19	1272(2)	3081(5)	6454(5)	16(2)
C20	1398(3)	2576(5)	7191(6)	22(2)
C21	1485(3)	1669(5)	7119(6)	22(2)
C22	1458(3)	1284(5)	6286(6)	26(2)
C23	1333(3)	1743(6)	5544(6)	25(2)
C24	1247(3)	2660(5)	5645(6)	22(2)
C25	1709(3)	4764(5)	6765(5)	18(2)
C26	2080(3)	4301(5)	6543(6)	24(2)
C27	2479(3)	4680(5)	6635(6)	25(2)
---	---	---	---	---
C28	2500(3)	5544(5)	6994(6)	30(2)
C29	2140(3)	6047(5)	7221(6)	21(2)
C30	1743(3)	5630(5)	7095(6)	23(2)
C31	-663(3)	7570(5)	6199(6)	26(2)
C32	-1112(3)	8015(5)	6214(7)	39(3)
C33	-464(3)	7803(5)	5298(7)	36(2)
C34	-386(3)	7946(5)	6947(6)	35(3)
C35	-1510(3)	4645(7)	6674(7)	26(2)
C36	-1626(4)	4164(10)	5804(7)	41(4)
C37	-1875(4)	5296(8)	6934(11)	49(4)
C38	-1470(4)	3933(9)	7415(8)	36(3)
C35'	-1502(7)	4649(18)	6790(20)	26(2)
C36'	-1736(13)	5120(30)	7570(20)	41(4)
C37'	-1445(15)	3640(20)	7030(30)	49(4)
C38'	-1790(14)	4710(30)	5960(20)	36(3)
C39	-13(3)	1012(5)	7150(5)	24(2)
C40	204(3)	1307(5)	8008(6)	32(2)
C41	-452(3)	588(5)	7374(6)	33(2)
C42	269(3)	292(5)	6704(6)	31(2)
C43	-580(3)	2113(5)	4240(6)	28(2)
C44	-584(3)	2914(6)	3602(6)	32(2)
C45	-384(3)	1305(5)	3768(6)	33(2)
C46	-1047(3)	1894(6)	4484(6)	36(3)
C47	1643(3)	1103(6)	7903(6)	29(2)
C48	1373(3)	242(6)	7989(7)	44(3)
C49	1616(3)	1609(6)	8778(6)	43(3)
C50	2105(3)	831(7)	7751(7)	42(3)
C51	1289(3)	1308(6)	4634(6)	35(2)
C52	1503(3)	1893(6)	3929(7)	48(3)
C53	810(3)	1222(6)	4420(6)	40(3)
C54	1495(4)	368(7)	4584(8)	61(3)
C55	2882(3)	4151(8)	6345(8)	40(3)
C56	2869(5)	4076(12)	5344(9)	67(5)
C57	2883(5)	3211(9)	6745(13)	77(6)
C58	3298(4)	4615(10)	6608(12)	56(5)
C55'	2895(6)	4201(16)	6346(18)	40(3)
	3212(12)	4150(30)	7110(20)	67(5)
-----	----------	----------	----------	--------
C56'				
C57'	3086(13)	4780(20)	5620(30)	77(6)
C58'	2825(11)	3253(19)	5990(30)	56(5)
C59	2178(3)	6996(6)	7614(6)	30(2)
C60	2203(4)	6877(7)	8629(7)	67(4)
C61	2572(3)	7496(6)	7275(8)	50(3)
C62	1786(3)	7571(6)	7375(8)	52(3)
C63	801(7)	6391(6)	5334(15)	27(3)
C64	803(6)	6870(10)	6071(14)	31(3)
C65	795(5)	7827(9)	6112(15)	41(4)
C66	786(5)	8301(9)	5320(15)	44(4)
C67	781(6)	7833(11)	4542(13)	43(4)
C68	781(8)	6875(11)	4548(15)	36(3)
C69	2982(4)	1171(8)	9688(8)	61(4)
C70	3047(4)	2166(9)	9620(8)	62(4)
O1	2654(2)	2605(5)	9445(5)	57(2)
C71	2685(5)	3548(8)	9444(9)	79(4)
C72	2260(5)	3969(8)	9149(9)	85(5)

S72
Table S15. Bond lengths [Å] and angles [°].

Bond	Length [Å]
Fe(1)-C(63')	2.067(13)
Fe(1)-C(63)	2.079(9)
Fe(1)-Br(1)	2.3777(15)
Fe(1)-P(1)	2.415(3)
Fe(1)-P(2)	2.438(2)
P(1)-C(13)	1.819(7)
P(1)-C(7)	1.825(7)
P(1)-C(1)	1.832(8)
P(2)-C(6)	1.817(8)
P(2)-C(25)	1.820(8)
P(2)-C(19)	1.826(7)
C(1)-C(2)	1.390(10)
C(1)-C(6)	1.425(10)
C(2)-C(3)	1.394(11)
C(2)-H(2)	0.9500
C(3)-C(4)	1.398(11)
C(3)-H(3)	0.9500
C(4)-C(5)	1.394(11)
C(4)-H(4)	0.9500
C(5)-C(6)	1.376(11)
C(5)-H(5)	0.9500
C(7)-C(8)	1.390(10)
C(7)-C(12)	1.401(10)
C(8)-C(9)	1.403(10)
C(8)-H(8)	0.9500
C(9)-C(10)	1.371(11)
C(9)-C(31)	1.535(10)
C(10)-C(11)	1.396(10)
C(10)-H(10)	0.9500
C(11)-C(12)	1.390(10)
C(11)-C(35)	1.529(11)
C(11)-C(35')	1.534(15)
C(12)-H(12)	0.9500
C(13)-C(18)	1.390(11)
Bond	Distance (Å)
----------------------	--------------
C(13)-C(14)	1.397(10)
C(14)-C(15)	1.390(10)
C(14)-H(14)	0.9500
C(15)-C(16)	1.395(11)
C(15)-C(39)	1.528(11)
C(16)-C(17)	1.404(11)
C(16)-H(16)	0.9500
C(17)-C(18)	1.384(10)
C(17)-C(43)	1.524(11)
C(18)-H(18)	0.9500
C(19)-C(24)	1.379(11)
C(19)-C(20)	1.403(11)
C(20)-C(21)	1.376(11)
C(20)-H(20)	0.9500
C(21)-C(22)	1.391(12)
C(21)-C(47)	1.539(12)
C(22)-C(23)	1.372(11)
C(22)-H(22)	0.9500
C(23)-C(24)	1.395(11)
C(23)-C(51)	1.530(12)
C(24)-H(24)	0.9500
C(25)-C(30)	1.381(11)
C(25)-C(26)	1.388(11)
C(26)-C(27)	1.377(11)
C(26)-H(26)	0.9500
C(27)-C(28)	1.393(11)
C(27)-C(55)	1.544(16)
C(27)-C(55')	1.546(12)
C(28)-C(29)	1.392(11)
C(28)-H(28)	0.9500
C(29)-C(30)	1.400(11)
C(29)-C(59)	1.533(11)
C(30)-H(30)	0.9500
C(31)-C(34)	1.532(12)
C(31)-C(33)	1.543(12)
C(31)-C(32)	1.549(11)
C(32)-H(32A) 0.9800	
C(32)-H(32B) 0.9800	
C(32)-H(32C) 0.9800	
C(33)-H(33A) 0.9800	
C(33)-H(33B) 0.9800	
C(33)-H(33C) 0.9800	
C(34)-H(34A) 0.9800	
C(34)-H(34B) 0.9800	
C(34)-H(34C) 0.9800	
C(35)-C(36) 1.544(10)	
C(35)-C(37) 1.544(10)	
C(35)-C(38) 1.547(10)	
C(36)-H(36A) 0.9800	
C(36)-H(36B) 0.9800	
C(36)-H(36C) 0.9800	
C(37)-H(37A) 0.9800	
C(37)-H(37B) 0.9800	
C(37)-H(37C) 0.9800	
C(38)-H(38A) 0.9800	
C(38)-H(38B) 0.9800	
C(38)-H(38C) 0.9800	
C(39)-C(40) 1.531(11)	
C(39)-C(42) 1.541(11)	
C(39)-C(41) 1.546(12)	
C(40)-H(40A) 0.9800	
C(40)-H(40B) 0.9800	
C(40)-H(40C) 0.9800	
C(41)-H(41A) 0.9800	
C(41)-H(41B) 0.9800	
C(41)-H(41C) 0.9800	
C(42)-H(42A) 0.9800	
C(42)-H(42B) 0.9800	
C(42)-H(42C) 0.9800	
C(43)-C(45) 1.525(11)	
C(43)-C(44) 1.532(11)	
C(43)-C(46) 1.538(12)	
C(44)-H(44A) 0.9800	
C(44)-H(44B) 0.9800	
C(44)-H(44C) 0.9800	
C(45)-H(45A) 0.9800	
C(45)-H(45B) 0.9800	
C(45)-H(45C) 0.9800	
C(46)-H(46A) 0.9800	
C(46)-H(46B) 0.9800	
C(46)-H(46C) 0.9800	
C(47)-C(50) 1.517(12)	
C(47)-C(49) 1.527(13)	
C(47)-C(48) 1.537(11)	
C(48)-H(48A) 0.9800	
C(48)-H(48B) 0.9800	
C(48)-H(48C) 0.9800	
C(49)-H(49A) 0.9800	
C(49)-H(49B) 0.9800	
C(49)-H(49C) 0.9800	
C(50)-H(50A) 0.9800	
C(50)-H(50B) 0.9800	
C(50)-H(50C) 0.9800	
C(51)-C(52) 1.531(13)	
C(51)-C(54) 1.538(13)	
C(51)-C(53) 1.537(12)	
C(52)-H(52A) 0.9800	
C(52)-H(52B) 0.9800	
C(52)-H(52C) 0.9800	
C(53)-H(53A) 0.9800	
C(53)-H(53B) 0.9800	
C(53)-H(53C) 0.9800	
C(54)-H(54A) 0.9800	
C(54)-H(54B) 0.9800	
C(54)-H(54C) 0.9800	
C(55)-C(57) 1.519(11)	
C(55)-C(56) 1.524(11)	
C(55)-C(58) 1.525(11)	
C(56)-H(56A) 0.9800	
C(56)-H(56B) 0.9800	
C(56)-H(56C) 0.9800	
C(57)-H(57A) 0.9800	
C(57)-H(57B) 0.9800	
C(57)-H(57C) 0.9800	
C(58)-H(58A) 0.9800	
C(58)-H(58B) 0.9800	
C(58)-H(58C) 0.9800	
C(55')-C(58') 1.521(12)	
C(55')-C(56') 1.521(13)	
C(55')-C(57') 1.523(13)	
C(56')-H(56D) 0.9800	
C(56')-H(56E) 0.9800	
C(56')-H(56F) 0.9800	
C(57')-H(57D) 0.9800	
C(57')-H(57E) 0.9800	
C(57')-H(57F) 0.9800	
C(58')-H(58D) 0.9800	
C(58')-H(58E) 0.9800	
C(58')-H(58F) 0.9800	
C(59)-C(61) 1.528(12)	
C(59)-C(62) 1.534(12)	
C(59)-C(60) 1.553(13)	
Bond	Distance (Å)
-----------------------	--------------
C(60)-H(60A)	0.9800
C(60)-H(60B)	0.9800
C(60)-H(60C)	0.9800
C(61)-H(61A)	0.9800
C(61)-H(61B)	0.9800
C(61)-H(61C)	0.9800
C(62)-H(62A)	0.9800
C(62)-H(62B)	0.9800
C(62)-H(62C)	0.9800
C(63)-C(64)	1.325(14)
C(63)-C(68)	1.393(13)
C(64)-C(65)	1.420(14)
C(64)-H(64)	0.9500
C(65)-C(66)	1.394(15)
C(65)-H(65)	0.9500
C(66)-C(67)	1.370(16)
C(66)-H(66)	0.9500
C(67)-C(68)	1.419(15)
C(67)-H(67)	0.9500
C(68)-H(68)	0.9500
C(69)-C(70)	1.493(15)
C(69)-H(69A)	0.9800
C(69)-H(69B)	0.9800
C(69)-H(69C)	0.9800
C(70)-O(1)	1.415(12)
C(70)-H(70A) 0.9900	
C(70)-H(70B) 0.9900	
O(1)-C(71) 1.401(13)	
C(71)-C(72) 1.536(16)	
C(71)-H(71A) 0.9900	
C(71)-H(71B) 0.9900	
C(72)-H(72A) 0.9800	
C(72)-H(72B) 0.9800	
C(72)-H(72C) 0.9800	
C(63')-Fe(1)-Br(1) 114.2(14)	
C(63)-Fe(1)-Br(1) 119.3(7)	
C(63')-Fe(1)-P(1) 112.1(15)	
C(63)-Fe(1)-P(1) 108.7(6)	
Br(1)-Fe(1)-P(1) 113.29(8)	
C(63')-Fe(1)-P(2) 116.5(14)	
C(63)-Fe(1)-P(2) 112.7(6)	
Br(1)-Fe(1)-P(2) 115.74(7)	
P(1)-Fe(1)-P(2) 80.51(8)	
C(13)-P(1)-C(7) 102.9(4)	
C(13)-P(1)-C(1) 104.6(4)	
C(7)-P(1)-C(1) 105.2(3)	
C(13)-P(1)-Fe(1) 113.6(3)	
C(7)-P(1)-Fe(1) 123.3(3)	
C(1)-P(1)-Fe(1) 105.5(3)	
C(6)-P(2)-C(25) 104.8(4)	
C(6)-P(2)-C(19) 104.0(3)	
C(25)-P(2)-C(19) 104.4(3)	
C(6)-P(2)-Fe(1) 105.3(3)	
C(25)-P(2)-Fe(1) 118.8(3)	
C(19)-P(2)-Fe(1) 117.8(3)	
C(2)-C(1)-C(6) 119.9(7)	
C(2)-C(1)-P(1) 121.0(6)	
C(6)-C(1)-P(1) 119.1(6)	
C(1)-C(2)-C(3) 120.6(8)	
C(1)-C(2)-H(2) 119.7	
C(3)-C(2)-H(2) 119.7	
Bond	Angle (°)
----------------------	-----------
C(2)-C(3)-C(4)	119.7(8)
C(2)-C(3)-H(3)	120.1
C(4)-C(3)-H(3)	120.1
C(5)-C(4)-C(3)	119.3(8)
C(5)-C(4)-H(4)	120.4
C(3)-C(4)-H(4)	120.4
C(6)-C(5)-C(4)	122.1(8)
C(6)-C(5)-H(5)	118.9
C(4)-C(5)-H(5)	118.9
C(5)-C(6)-C(1)	118.3(7)
C(5)-C(6)-P(2)	124.7(6)
C(1)-C(6)-P(2)	116.7(6)
C(8)-C(7)-C(12)	119.5(7)
C(8)-C(7)-P(1)	117.8(6)
C(12)-C(7)-P(1)	122.6(6)
C(7)-C(8)-C(9)	120.5(7)
C(7)-C(8)-H(8)	119.8
C(9)-C(8)-H(8)	119.8
C(10)-C(9)-C(8)	118.0(7)
C(10)-C(9)-C(31)	123.9(7)
C(8)-C(9)-C(31)	118.1(7)
C(9)-C(10)-C(11)	123.8(8)
C(9)-C(10)-H(10)	118.1
C(11)-C(10)-H(10)	118.1
C(12)-C(11)-C(10)	117.1(8)
C(12)-C(11)-C(35)	120.2(7)
C(10)-C(11)-C(35)	122.6(8)
C(12)-C(11)-C(35')	119.7(13)
C(10)-C(11)-C(35')	123.1(13)
C(11)-C(12)-C(7)	121.2(7)
C(11)-C(12)-H(12)	119.4
C(7)-C(12)-H(12)	119.4
C(18)-C(13)-C(14)	120.7(7)
C(18)-C(13)-P(1)	116.1(6)
C(14)-C(13)-P(1)	123.2(6)
C(15)-C(14)-C(13)	120.0(7)
Bond	Angle (°)
----------------------	-----------
C(15)-C(14)-H(14)	120.0
C(13)-C(14)-H(14)	120.0
C(14)-C(15)-C(16)	118.5(7)
C(14)-C(15)-C(39)	122.3(7)
C(16)-C(15)-C(39)	119.2(7)
C(15)-C(16)-C(17)	122.0(7)
C(15)-C(16)-H(16)	119.0
C(17)-C(16)-H(16)	119.0
C(18)-C(17)-C(16)	118.4(7)
C(18)-C(17)-C(43)	123.0(7)
C(16)-C(17)-C(43)	118.6(7)
C(17)-C(18)-C(13)	120.3(7)
C(17)-C(18)-H(18)	119.9
C(13)-C(18)-H(18)	119.9
C(24)-C(19)-C(20)	119.0(7)
C(24)-C(19)-P(2)	118.1(6)
C(20)-C(19)-P(2)	122.7(6)
C(21)-C(20)-C(19)	120.8(8)
C(21)-C(20)-H(20)	119.6
C(19)-C(20)-H(20)	119.6
C(20)-C(21)-C(22)	117.5(8)
C(20)-C(21)-C(47)	122.3(8)
C(22)-C(21)-C(47)	120.0(7)
C(23)-C(22)-C(21)	124.1(7)
C(23)-C(22)-H(22)	118.0
C(21)-C(22)-H(22)	118.0
C(22)-C(23)-C(24)	116.6(8)
C(22)-C(23)-C(51)	123.9(8)
C(24)-C(23)-C(51)	119.5(8)
C(19)-C(24)-C(23)	121.9(8)
C(19)-C(24)-H(24)	119.1
C(23)-C(24)-H(24)	119.1
C(30)-C(25)-C(26)	119.0(8)
C(30)-C(25)-P(2)	120.1(6)
C(26)-C(25)-P(2)	120.5(6)
C(27)-C(26)-C(25)	122.0(8)
Bond	Angle (°)
-----------------------	-----------
C(27)-C(26)-H(26)	119.0
C(25)-C(26)-H(26)	119.0
C(26)-C(27)-C(28)	117.2(8)
C(26)-C(27)-C(55')	123.1(12)
C(28)-C(27)-C(55')	119.7(12)
C(26)-C(27)-C(55)	120.1(8)
C(28)-C(27)-C(55)	122.7(9)
C(29)-C(28)-C(27)	123.5(8)
C(29)-C(28)-H(28)	118.3
C(27)-C(28)-H(28)	118.3
C(28)-C(29)-C(30)	116.5(7)
C(28)-C(29)-C(59)	121.7(8)
C(30)-C(29)-C(59)	121.7(8)
C(25)-C(30)-C(29)	121.8(8)
C(25)-C(30)-H(30)	119.1
C(29)-C(30)-H(30)	119.1
C(34)-C(31)-C(9)	108.5(7)
C(34)-C(31)-C(33)	110.3(7)
C(9)-C(31)-C(33)	109.6(7)
C(34)-C(31)-C(32)	110.2(7)
C(9)-C(31)-C(32)	111.9(7)
C(33)-C(31)-C(32)	106.4(7)
C(31)-C(32)-H(32A)	109.5
C(31)-C(32)-H(32B)	109.5
H(32A)-C(32)-H(32B)	109.5
C(31)-C(32)-H(32C)	109.5
H(32A)-C(32)-H(32C)	109.5
H(32B)-C(32)-H(32C)	109.5
C(31)-C(33)-H(33A)	109.5
C(31)-C(33)-H(33B)	109.5
H(33A)-C(33)-H(33B)	109.5
C(31)-C(33)-H(33C)	109.5
H(33A)-C(33)-H(33C)	109.5
H(33B)-C(33)-H(33C)	109.5
C(31)-C(34)-H(34A)	109.5
C(31)-C(34)-H(34B)	109.5
H(34A)-C(34)-H(34B) 109.5	
C(31)-C(34)-H(34C) 109.5	
H(34A)-C(34)-H(34C) 109.5	
H(34B)-C(34)-H(34C) 109.5	
C(11)-C(35)-C(36) 109.4(8)	
C(11)-C(35)-C(37) 111.4(8)	
C(36)-C(35)-C(37) 109.5(9)	
C(11)-C(35)-C(38) 110.0(9)	
C(36)-C(35)-C(38) 109.0(8)	
C(37)-C(35)-C(38) 107.5(8)	
C(35)-C(36)-H(36A) 109.5	
C(35)-C(36)-H(36B) 109.5	
H(36A)-C(36)-H(36B) 109.5	
C(35)-C(36)-H(36C) 109.5	
H(36A)-C(36)-H(36C) 109.5	
H(36B)-C(36)-H(36C) 109.5	
C(35)-C(37)-H(37A) 109.5	
C(35)-C(37)-H(37B) 109.5	
H(37A)-C(37)-H(37B) 109.5	
C(35)-C(37)-H(37C) 109.5	
H(37A)-C(37)-H(37C) 109.5	
H(37B)-C(37)-H(37C) 109.5	
C(35)-C(38)-H(38A) 109.5	
C(35)-C(38)-H(38B) 109.5	
H(38A)-C(38)-H(38B) 109.5	
C(35)-C(38)-H(38C) 109.5	
H(38A)-C(38)-H(38C) 109.5	
H(38B)-C(38)-H(38C) 109.5	
C(11)-C(35')-C(38') 106(2)	
C(11)-C(35')-C(36') 111(2)	
C(38')-C(35')-C(36') 108.5(14)	
C(11)-C(35')-C(37') 115(3)	
C(38')-C(35')-C(37') 108.1(14)	
C(36')-C(35')-C(37') 107.9(14)	
C(35')-C(36')-H(36D) 109.5	
C(35')-C(36')-H(36E) 109.5	
H(36D)-C(36')-H(36E) 109.5	
C(35')-C(36')-H(36F) 109.5	
H(36D)-C(36')-H(36F) 109.5	
H(36E)-C(36')-H(36F) 109.5	
C(35')-C(37')-H(37D) 108.4	
C(35')-C(37')-H(37E) 109.0	
H(37D)-C(37')-H(37E) 109.6	
C(35')-C(37')-H(37F) 108.6	
H(37D)-C(37')-H(37F) 109.6	
H(37E)-C(37')-H(37F) 111.4	
C(35')-C(38')-H(38D) 109.5	
C(35')-C(38')-H(38E) 109.5	
H(38D)-C(38')-H(38E) 109.5	
C(35')-C(38')-H(38F) 109.5	
H(38D)-C(38')-H(38F) 109.5	
H(38E)-C(38')-H(38F) 109.5	
C(15)-C(39)-C(40) 112.3(7)	
C(15)-C(39)-C(42) 108.1(7)	
C(40)-C(39)-C(42) 108.5(7)	
C(15)-C(39)-C(41) 110.4(7)	
C(40)-C(39)-C(41) 108.7(7)	
C(42)-C(39)-C(41) 108.8(7)	
C(39)-C(40)-H(40A) 109.5	
C(39)-C(40)-H(40B) 109.5	
H(40A)-C(40)-H(40B) 109.5	
C(39)-C(40)-H(40C) 109.5	
H(40A)-C(40)-H(40C) 109.5	
H(40B)-C(40)-H(40C) 109.5	
C(39)-C(41)-H(41A) 109.5	
C(39)-C(41)-H(41B) 109.5	
H(41A)-C(41)-H(41B) 109.5	
C(39)-C(41)-H(41C) 109.5	
H(41A)-C(41)-H(41C) 109.5	
H(41B)-C(41)-H(41C) 109.5	
C(39)-C(42)-H(42A) 109.5	
C(39)-C(42)-H(42B) 109.5	
H(42A)-C(42)-H(42B) 109.5	
C(39)-C(42)-H(42C) 109.5	
H(42A)-C(42)-H(42C) 109.5	
H(42B)-C(42)-H(42C) 109.5	
C(17)-C(43)-C(45) 111.0(7)	
C(17)-C(43)-C(44) 111.7(6)	
C(45)-C(43)-C(44) 108.3(8)	
C(17)-C(43)-C(46) 108.6(7)	
C(45)-C(43)-C(46) 109.2(7)	
C(44)-C(43)-C(46) 108.0(7)	
C(43)-C(44)-H(44A) 109.5	
C(43)-C(44)-H(44B) 109.5	
H(44A)-C(44)-H(44B) 109.5	
C(43)-C(44)-H(44C) 109.5	
H(44A)-C(44)-H(44C) 109.5	
H(44B)-C(44)-H(44C) 109.5	
C(43)-C(45)-H(45A) 109.5	
C(43)-C(45)-H(45B) 109.5	
H(45A)-C(45)-H(45B) 109.5	
C(43)-C(45)-H(45C) 109.5	
H(45A)-C(45)-H(45C) 109.5	
H(45B)-C(45)-H(45C) 109.5	
C(43)-C(46)-H(46A) 109.5	
C(43)-C(46)-H(46B) 109.5	
H(46A)-C(46)-H(46B) 109.5	
C(43)-C(46)-H(46C) 109.5	
H(46A)-C(46)-H(46C) 109.5	
H(46B)-C(46)-H(46C) 109.5	
C(50)-C(47)-C(49) 108.5(8)	
C(50)-C(47)-C(48) 108.4(7)	
C(49)-C(47)-C(48) 107.6(8)	
C(50)-C(47)-C(21) 109.5(7)	
C(49)-C(47)-C(21) 112.8(7)	
C(48)-C(47)-C(21) 110.0(7)	
C(47)-C(48)-H(48A) 109.5	
C(47)-C(48)-H(48B) 109.5	
H(48A)-C(48)-H(48B) 109.5	
C(47)-C(48)-H(48C) 109.5	
H(48A)-C(48)-H(48C) 109.5	
H(48B)-C(48)-H(48C) 109.5	
C(47)-C(49)-H(49A) 109.5	
C(47)-C(49)-H(49B) 109.5	
H(49A)-C(49)-H(49B) 109.5	
C(47)-C(49)-H(49C) 109.5	
H(49A)-C(49)-H(49C) 109.5	
H(49B)-C(49)-H(49C) 109.5	
C(47)-C(50)-H(50A) 109.5	
C(47)-C(50)-H(50B) 109.5	
H(50A)-C(50)-H(50B) 109.5	
C(47)-C(50)-H(50C) 109.5	
H(50A)-C(50)-H(50C) 109.5	
H(50B)-C(50)-H(50C) 109.5	
C(23)-C(51)-C(52) 110.7(8)	
C(23)-C(51)-C(54) 112.9(8)	
C(52)-C(51)-C(54) 107.2(8)	
C(23)-C(51)-C(53) 108.3(8)	
C(52)-C(51)-C(53) 108.9(8)	
C(54)-C(51)-C(53) 108.8(8)	
C(51)-C(52)-H(52A) 109.5	
C(51)-C(52)-H(52B) 109.5	
H(52A)-C(52)-H(52B) 109.5	
C(51)-C(52)-H(52C) 109.5	
H(52A)-C(52)-H(52C) 109.5	
H(52B)-C(52)-H(52C) 109.5	
C(51)-C(53)-H(53A) 109.5	
C(51)-C(53)-H(53B) 109.5	
H(53A)-C(53)-H(53B) 109.5	
C(51)-C(53)-H(53C) 109.5	
H(53A)-C(53)-H(53C) 109.5	
H(53B)-C(53)-H(53C) 109.5	
C(51)-C(54)-H(54A) 109.5	
C(51)-C(54)-H(54B) 109.5	
H(54A)-C(54)-H(54B) 109.5	
C(51)-C(54)-H(54C) 109.5	
H(54A)-C(54)-H(54C) 109.5	
H(54B)-C(54)-H(54C) 109.5	
C(57)-C(55)-C(56) 109.4(10)	
C(57)-C(55)-C(58) 107.8(10)	
C(56)-C(55)-C(58) 108.5(10)	
C(57)-C(55)-C(27) 110.7(10)	
C(56)-C(55)-C(27) 107.5(9)	
C(58)-C(55)-C(27) 113.0(9)	
C(55)-C(56)-H(56A) 109.5	
C(55)-C(56)-H(56B) 109.5	
H(56A)-C(56)-H(56B) 109.5	
C(55)-C(56)-H(56C) 109.5	
H(56A)-C(56)-H(56C) 109.5	
H(56B)-C(56)-H(56C) 109.5	
C(55)-C(57)-H(57A) 109.5	
C(55)-C(57)-H(57B) 109.5	
H(57A)-C(57)-H(57B) 109.5	
C(55)-C(57)-H(57C) 109.5	
H(57A)-C(57)-H(57C) 109.5	
H(57B)-C(57)-H(57C) 109.5	
C(55)-C(58)-H(58A) 109.5	
C(55)-C(58)-H(58B) 109.5	
H(58A)-C(58)-H(58B) 109.5	
C(55)-C(58)-H(58C) 109.5	
H(58A)-C(58)-H(58C) 109.5	
H(58B)-C(58)-H(58C) 109.5	
C(58')-C(55')-C(56') 108.7(14)	
C(58')-C(55')-C(57') 109.0(14)	
C(56')-C(55')-C(57') 108.7(14)	
C(58')-C(55')-C(27) 114(2)	
C(56')-C(55')-C(27) 111(2)	
C(57')-C(55')-C(27) 106(2)	
C(55')-C(56')-H(56D) 109.5	
C(55')-C(56')-H(56E) 109.5	
H(62A)-C(62)-H(62B) 109.5	
C(59)-C(62)-H(62C) 109.5	
H(62A)-C(62)-H(62C) 109.5	
H(62B)-C(62)-H(62C) 109.5	
C(64)-C(63)-C(68) 116.6(10)	
C(64)-C(63)-Fe(1) 123.1(12)	
C(68)-C(63)-Fe(1) 120.0(12)	
C(63)-C(64)-C(65) 124.8(12)	
C(63)-C(64)-H(64) 117.6	
C(65)-C(64)-H(64) 117.6	
C(66)-C(65)-C(64) 117.8(13)	
C(66)-C(65)-H(65) 121.1	
C(64)-C(65)-H(65) 121.1	
C(67)-C(66)-C(65) 119.2(13)	
C(67)-C(66)-H(66) 120.4	
C(65)-C(66)-H(66) 120.4	
C(66)-C(67)-C(68) 120.1(13)	
C(66)-C(67)-H(67) 120.0	
C(68)-C(67)-H(67) 120.0	
C(63)-C(68)-C(67) 121.4(13)	
C(63)-C(68)-H(68) 119.3	
C(67)-C(68)-H(68) 119.3	
C(64')-C(63')-C(68') 122(2)	
C(64')-C(63')-Fe(1) 127(3)	
C(68')-C(63')-Fe(1) 111(3)	
C(63')-C(64')-C(65') 122(2)	
C(63')-C(64')-H(64') 118.9	
C(65')-C(64')-H(64') 118.9	
C(66')-C(65')-C(64') 116(2)	
C(66')-C(65')-H(65') 121.9	
C(64')-C(65')-H(65') 121.9	
C(67')-C(66')-C(65') 122(2)	
C(67')-C(66')-H(66') 119.1	
C(65')-C(66')-H(66') 119.1	
C(66')-C(67')-C(68') 119(2)	
C(66')-C(67')-H(67') 120.3	
Bond	Angle
----------------------	--------
C(68')-C(67')-H(67')	120.3
C(63')-C(68')-C(67')	118(2)
C(63')-C(68')-H(68')	120.8
C(67')-C(68')-H(68')	120.8
C(70)-C(69)-H(69A)	109.5
C(70)-C(69)-H(69B)	109.5
H(69A)-C(69)-H(69B)	109.5
C(70)-C(69)-H(69C)	109.5
H(69A)-C(69)-H(69C)	109.5
H(69B)-C(69)-H(69C)	109.5
O(1)-C(70)-C(69)	110.4(10)
O(1)-C(70)-H(70A)	109.6
C(69)-C(70)-H(70A)	109.6
O(1)-C(70)-H(70B)	109.6
C(69)-C(70)-H(70B)	109.6
H(70A)-C(70)-H(70B)	108.1
C(71)-O(1)-C(70)	113.4(9)
O(1)-C(71)-C(72)	110.2(11)
O(1)-C(71)-H(71A)	109.6
C(72)-C(71)-H(71A)	109.6
O(1)-C(71)-H(71B)	109.6
C(72)-C(71)-H(71B)	109.6
H(71A)-C(71)-H(71B)	108.1
C(71)-C(72)-H(72A)	109.5
C(71)-C(72)-H(72B)	109.5
H(72A)-C(72)-H(72B)	109.5
C(71)-C(72)-H(72C)	109.5
H(72A)-C(72)-H(72C)	109.5
H(72B)-C(72)-H(72C)	109.5