Contents

Zlatozar Boev
A specimen of little bush moa *Anomalopteryx didiformis* (Owen, 1844), Emeidae Bonaparte, 1854 from the National Museum of Natural History, Sofia ... 3

Petar Beron
Stoitse Andreev (1937–2018) – In memoriam .. 6
A specimen of little bush moa *Anomalopteryx didiformis* (Owen, 1844), Emeidae Bonaparte, 1854 from the National Museum of Natural History, Sofia

Zlatozar Boev

National Museum of Natural History, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd, 1000 Sofia, Bulgaria, boev@nmnhs.com, zlatozarboev@gmail.com

Abstract: A complete right tarsometatarsus from an unknown site of New Zealand was identified as little bush moa (*Anomalopteryx didiformis* (Owen, 1844)), possibly an adult male individual.

Keywords: Dinornithiformes, moa, *Anomalopteryx didiformis*, extinct birds, New Zealand

Introduction

The specimen, described here, is the only representative of the order Dinornithiformes Bonaparte, 1852 in the collections of the National Museum of Natural History in Sofia (NMNHS). In a previous paper (Boev, 2005), it was reported as “Dinornithidae gen. indet.” of “(Holocene) from an unknown locality in New Zealand”. The specimen is a complete right tarsometatarsus (tmt) of very good preservation. The whole bone was burnt, an indication the species had been used as prey of local people. It was given as a gift by Dr Cyril Alexander Walker (1939–2009) from the Natural History Museum, London during the author’s short visit in May 1986.

Material and methods

Material: tarsometatarsus dex. ad. The date, collector’s name and the site are unknown.

For the species identification of this subfossil find, we used the special key for identification of the long bones of moas (Worthy, 1988). The measurements of this specimen are given in Table 1.

Results and discussion

According Worthy (1988), if the ratio TL : WD is less than 2.5, the tmt belongs to a species of Anomalopterygidae. If this ratio is 2.1–2.5, the key leads

Measurement	Abbreviation	Value (mm)
Maximum total length	TL	185.00
Width of proximal epiphysis	WP	65.93
Width of distal epiphysis	WD	85.15
Minimal width of diaphysis	MW	35.89
Diameter of condyles medialis of trochlea metatarsi tertii	DM	36.69
Diameter of condyles lateralis of trochlea metatarsi tertii	DL	37.00
Length of cotyla medialis	LC	39.64

Table 1. Measurement of tarsometatarsus dex. ad. NMNHS 3852 of *Anomalopteryx didiformis*.

Received: 7 November 2018 • Editor: Petar Beron
to *Eneus crassus* (Owen, 1846) or *Anomalopteryx didiformis* (Owen, 1844). The ratio TL : WD of the specimen NMNHS 3852 was 2.17 and fell within the range.

Other features that helped to identify the species as *Anomalopteryx didiformis* (Worthy, 1988): lateral hypotarsal ridge longer than medial (Plate 1 – b); medial nutrition foramen not in distinct hollow, bounded proximally by a ridge (Plate 1 – b); length typically 2.2 times distal width (in the specimen NMNHS 3852 it is 2.17, i.e. approx. 2.2).

Measurements (Cracraft, 1976): TL – 179.02 (n = 43); WP – 59.15 (n = 41); WD – 77.43 (n = 42). The values of all these measurements for the specimen NMNHS 3852 were very close to them (Table 1). As they exceeded slightly the mean values of Cracraft (1976), I supposed the examined specimen belonged to an adult male individual.

At present, the little bush moa *Anomalopteryx didiformis* belongs to the family of the emeid moas Emeidae Bonaparte, 1854 (Worthy & Scofield, 2012). The species used to be “the more common and occurred on both the North and South islands (Cracraft, 1976). According Day (1981), *A. didiformis* belongs to the group of the so-called “Pygmy Moas”, which used to be between 90 cm and 120 cm in height.”. The same is stated by Cracraft (1980). The last moas survived until 600 to 800 B.P., although “a small species of *Anomalopteryx*… may have survived in the remote wilderness of the Southern Alps until the eighteenth or nineteenth centuries.” (Cracraft, 1980). The little bush moa used to be abundant at “slightly lower altitudes” (Worthy & Scofield, 2012).

Anomalopteryx didiformis is known from the Fern Flat, Marton, near the Waimutu Stream, the Kaimatira Pumice Sand (dated 700 000 to 800 000 years ago), Scinde Island, Hawke’s Bay, Near Napier, Hawke’s Bay, Gleniti Valley, Timaru, Cook Strait (New Zealand). The finds of “Timaru Basalt, would be about 2.5 m. y. old and would, therefore, be the oldest known fossil record of moa.” (Worthy et al., 1991). Another locality where it has been recorded is the Takaka Fos-
A specimen of little bush moa *Anomalopteryx didiformis* (Owen, 1844)…

sil Cave on the Takaka Hill, South Island (Worthy & Roscoe, 2003).

Worthy (1997) summarises that (1) *A. didiformis* preferred unmodified habitats, (2) it disappeared in the prehistoric time and (3) it is known from a total of 22 sites (9 on the Northern Island and 13 on the South Island).

Thus, the little bush moa is the moa species of both the oldest and the latest fossil/subfossil record of all nine species of Dinornithiformes.

Conclusions

Although relatively numerous at the paleontological and archaeological sites in the New Zealand, the little bush moa is a rarity among the avian museum collections. The examined tarsometatarsus NMNHS 3852 is one of the most valued specimens in the avian collection of fossil and subfossil birds of the NMNHS.

References

Boev Z. 2005 Fossil birds in the National Museum of Natural History, Sofia: composition, development and scientific value. Zoologische Mededelingen 79–3 (4): 35–44.

Cracraft J. 1976 The Species of Moas (Aves: Dinornithidae). In: Olson S. (ed.) Collected Papers in Avian Paleontology Honoring the 90th Birthday of Alexander Wetmore. Smithsonian Contributions to Paleobiology. Smithsonian Institution Press Washington 189–205.

Cracraft J. 1980 Moas and the Maori. Unraveling the evolution and extinction of a large, flightless bird. Natural History 89 (10): 28–36.

Day D. 1981 The Giants. In: The Doomsday Book of Animals. Studio Book. The Viking Press New York 19–25.

Worthy T. 1988 An illustrated key to the main leg bones of Moas (Aves: Dinornithiformes). National Museum of New Zealand Miscellaneous Series 17: 1–37.

Worthy T. 1997 What was on the Menu? Avian Extinction in New Zealand. New Zealand. Journal of Archaeology 19: 125–160.

Worthy T., Edwards A., Millener P. 1991 The fossil record of moas (Aves: Dinornithiformes) older than the Otira (last) Glaciation. Journal of the Royal Society of New Zealand 21 (2): 101–118.

Worthy T., Roscoe D. 2003 Takaka Fossil Cave – a stratified Late Glacial to Late Holocene deposit from Takaka Hill New Zealand. Tuhinga 14: 41–60.

Worthy T., Scofield R. 2012 Twenty-first century advances in knowledge of the biology of moa (Aves: Dinornithiformes): A new morphological analysis and moa diagnoses revised. New Zealand Journal of Zoology 39 (2): 87–153.
Stoitse Andreev (1937–2018) – In memoriam

Petar Beron

National Museum of Natural History, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd, 1000 Sofia, Bulgaria, beron@mail.bg

Dr Stoitse Andreev is a prominent Bulgarian carcinologist and biospeleologist. Born on 8th July 1937 in Sofia, he graduated from the University of Sofia as a zoologist and hydrobiologist. For many years he has studied caves and cave animals in Bulgaria and other countries, also hyporheic fauna, mountain lakes and sea creatures. Stoitse Andreev became specialist on Isopoda and Amphipoda of the Balkan Peninsula, describing one new genus and many new species, mostly Isopoda Oniscidea (28 species from Bulgaria and Greece) and Anthuridea (two new species from Sarawak and Papua New Guinea), also three new taxa of Amphipoda. He published 75 scientific papers. Half of his papers deal with biochemistry of sea weeds and animals (sterols and other active substances in Porifera, Bryozoa, Coelenterata, Mollusca, Tunicata).

Stoitse Andreev retired in 2002, after many years of work in the National Museum of Natural History in Sofia. He was head of the Department of Non-insect Invertebrates (1993–2002) and scientific secretary (1994–1999) of the museum (Dr since 1988, associate professor since 1988). From 1971 to 1983, Dr Andreev was member of the Board of the Bulgarian Federation of Speleology. Having accumulated knowledge and experience in some of the leading museums in Europe and Cuba, Stoitse Andreev was very useful for consulting the projects for new expositions in the museums in Sofia and elsewhere. He was also consultant in many projects for protected territories. Stoitse Andreev has enjoyed the esteem and sympathy of his colleagues and is recognised by many foreign specialists.

In 2007 I published a biobibliography of Stoitse Andreev (Historia naturalis bulgarica 18). Here it is completed with the papers he published since this time.

Andreev S., Kenderov L. 2012 Sur une nouvelle espèce du genre Niphargus de la Turquie – Niphargus turcicus n. sp. (Amphipoda, Niphargidae). Historia naturalis bulgarica 20: 47–56.

Andreev S. 2013 A new cave species Alpionicus gueorguievii n. sp. (Isopoda, Oniscidea,Trichoniscidea) from continental Greece. Acta zoologica bulgarica 65 (2): 297–298.

Andreev S. 2013 A new cave species of genus Alpionicus (Isopoda) from Albania. Acta zoologica bulgarica 65 (2): 263–264.