IYAMA’S HIGHER AUSLANDER CORRESPONDENCE VIA THE HOMOLOGICAL THEORY OF IDEMPOTENT IDEALS.

JORDAN McMAHON

Abstract. A celebrated result in representation theory is that of higher Auslander correspondence. Let \(\Lambda \) an Artin algebra and \(X \) a \(d \)-cluster-tilting module. Iyama has shown that the endomorphism ring \(\Gamma \) of \(X \) is a \(d \)-Auslander algebra, and moreover this gives a correspondence between \(d \)-cluster-tilting modules and \(d \)-Auslander algebras. We present a self-contained and concise proof using the homological theory of idempotent ideals of Auslander–Platzeck–Todorov.

1. Introduction

The aim of this note is to present a concise proof of Iyama’s higher Auslander correspondence. For the benefit of the reader, it is as self-contained as possible. Let us stress that all the main arguments used are well known: Section 3 is based on the work of Iyama [4], Section 4 follows from the ideas of Auslander–Platzeck–Todorov [1], while Section 5 is also due to Iyama [3].

2. Preliminaries

Let \(K \) be a field and \(\Lambda \) a finite-dimensional \(K \)-algebra. We denote by \(\text{mod}\Lambda \) the category of (finitely-generated left) \(\Lambda \)-modules. For morphisms \(f : X \to Y \) and \(g : Y \to Z \), we denote the composition by \(fg \). Let \(\text{add}(M) \) be the full subcategory of \(\text{mod}\Lambda \) composed of all \(\Lambda \)-modules isomorphic to direct summands of finite direct sums of copies of \(M \). The functor \(D = \text{Hom}_K(_, K) \) defines a duality.

Recall that the dominant dimension \(\text{dom.dim}(\Lambda) \) to be the number \(n \) such that for a minimal injective resolution of \(\Lambda \):

\[0 \to \Lambda \to I_0 \to \cdots \to I_{n-1} \to I_n \to \cdots \]

the modules \(I_0, \ldots, I_{n-1} \) are projective-injective and \(I_n \) is not projective. Equivalently, \(\text{dom.dim}(\Lambda) \) is the number \(n \) such that for a minimal projective resolution of \(D\Lambda \):

\[\cdots \to P_n \to P_{n-1} \to \cdots \to P_0 \to D\Lambda \to 0 \]

the modules \(P_0, \ldots, P_{n-1} \) are projective-injective and \(P_n \) is not.
Let \(\mathcal{C} \) be an additive subcategory of \(\text{mod}\Lambda \). A \(\mathcal{C} \)-module is a contravariant additive functor from \(\mathcal{C} \) to the category of abelian groups. A \(\mathcal{C} \)-module \(M \) is finitely presented if there exists a morphism \(f : X \to Y \) in \(\text{mod}\Lambda \) and an exact sequence

\[
\text{Hom}_\Lambda(C, X) \xrightarrow{\text{Hom}_\Lambda(C, f)} \text{Hom}_\Lambda(C, Y) \to M \to 0
\]

for all \(C \in \mathcal{C} \). Denote by \(\text{mod} \mathcal{C} \) the category of finitely-presented \(\mathcal{C} \)-modules. If \(\mathcal{C} = \text{add}(X) \) for some \(X \in \text{mod}\Lambda \), it is known that the categories \(\text{mod} \mathcal{C} \) and \(\text{mod} \text{End}_\Lambda(X) \) are equivalent.

A subcategory \(\mathcal{C} \) of \(\text{mod}\Lambda \) is precovering or contravariantly finite if for any \(M \in \text{mod}\Lambda \) there is an object \(C_M \in \mathcal{C} \) and a morphism \(f : C_M \to M \) such that \(\text{Hom}(C, -) \) is exact on the sequence

\[
C_M \to M \to 0
\]

for all \(C \in \mathcal{C} \). The module \(C_M \) is said to be a right \(\mathcal{C} \)-approximation. The dual notion of precovering is preenveloping or covariantly finite. A subcategory \(\mathcal{C} \) that is both precovering and preenveloping is called functorially finite. A right \(\mathcal{C} \)-resolution is a sequence

\[
\cdots \to C_1 \to C_0 \to M \to 0
\]

with \(C_i \in \mathcal{C} \) for each \(i \), and which becomes exact under \(\text{Hom}_\Lambda(C, -) \) for each \(C \in \mathcal{C} \). Define a left \(\mathcal{C} \)-resolution dually.

Definition 3.1. [4, Definition 2.2] A functorially-finite subcategory \(\mathcal{C} \subseteq \text{mod}\Lambda \) is a \(d \)-cluster-tilting subcategory if it satisfies the following conditions:

\[
\mathcal{C} = \{ X \in \text{mod}\Lambda \mid \operatorname{Ext}^i_\Lambda(C, X) = 0 \forall \ 0 < i < d, \ C \in \mathcal{C} \}.
\]

\[
\mathcal{C} = \{ X \in \text{mod}\Lambda \mid \operatorname{Ext}^i_\Lambda(X, C) = 0 \forall \ 0 < i < d, \ C \in \mathcal{C} \}.
\]

If \(\mathcal{C} = \text{add}(M) \), then we say \(M \) is a \(d \)-cluster-tilting module.

In particular, all projective and all injective \(\Lambda \)-modules are contained in \(\mathcal{C} \).

Theorem 3.2. [4, Theorem 3.6.1] Let \(\mathcal{C} \subseteq \text{mod}\Lambda \) be a \(d \)-cluster-tilting subcategory. Then

1. Any \(M \in \text{mod}\Lambda \) has a right \(\mathcal{C} \)-resolution

\[
0 \to C_{d-1} \to \cdots \to C_1 \to C_0 \to M \to 0.
\]

2. Any \(M \in \text{mod}\Lambda \) has a left \(\mathcal{C} \)-resolution

\[
0 \to M \to C_0 \to C_1 \to \cdots \to C_{d-1} \to 0.
\]
Proof. We give a proof for right resolutions. There is a right C-approximation $f : C_0 \to M$, since C is precovering. The morphism f is surjective, since every projective Λ-module is in C. Hence there is a short exact sequence

$$0 \longrightarrow K \longrightarrow C_0 \overset{f}{\longrightarrow} M \longrightarrow 0.$$

For any $C \in C$, there is a long exact sequence

$$0 \longrightarrow \text{Hom}_\Lambda(C, K) \longrightarrow \text{Hom}_\Lambda(C, C_0) \overset{\text{Hom}_\Lambda(C, f)}{\longrightarrow} \text{Hom}_\Lambda(C, M) \longrightarrow 0.$$

Since $\text{Hom}_\Lambda(C, f)$ is surjective, this implies $\text{Ext}_\Lambda^1(C, K) = 0$ and that there is an exact sequence

$$0 \longrightarrow \text{Hom}_\Lambda(C, K) \longrightarrow \text{Hom}_\Lambda(C, C_0) \overset{\text{Hom}_\Lambda(C, f)}{\longrightarrow} \text{Hom}_\Lambda(C, M) \longrightarrow 0.$$

For some $K' \in \text{mod}\Lambda$ there is a short exact sequence induced by the right C-approximation $C_N \to N$:

$$0 \longrightarrow K' \longrightarrow C_N \longrightarrow N \longrightarrow 0.$$

Now suppose there is a Λ-module N such that for all $0 < i < d - 1$ we have $\text{Ext}_\Lambda^i(C, N) = 0$ and that for any $C \in C$ there is an exact sequence

$$0 \longrightarrow \text{Hom}_\Lambda(C, N) \longrightarrow \text{Hom}_\Lambda(C, C_{d-2}) \longrightarrow \cdots \longrightarrow \text{Hom}_\Lambda(C, C_0) \overset{\text{Hom}_\Lambda(C, f)}{\longrightarrow} \text{Hom}_\Lambda(C, M) \longrightarrow 0.$$

For any $C \in C$ and any $1 < i < d$, there is an exact sequence

$$\text{Ext}_\Lambda^{i-1}(C, N) \longrightarrow \text{Ext}_\Lambda^i(C, K') \longrightarrow \text{Ext}_\Lambda^i(C, C_N) = 0$$

which, together with the above argument for $d = 1$, implies $\text{Ext}_\Lambda^i(C, K') = 0$ for all $0 < i < d$. So $K' \in C$. Additionally there is an exact sequence

$$0 \longrightarrow \text{Hom}_\Lambda(C, K) \longrightarrow \text{Hom}_\Lambda(C, C_N) \longrightarrow \text{Hom}_\Lambda(C, C_{d-2}) \longrightarrow \cdots \longrightarrow \text{Hom}_\Lambda(C, C_0) \overset{\text{Hom}_\Lambda(C, f)}{\longrightarrow} \text{Hom}_\Lambda(C, M) \longrightarrow 0.$$

This finishes the proof. \qed
4. Homological theory of idempotent ideals

Let Γ be a finite-dimensional algebra, and P be a projective Γ-module. Let $\mathcal{I} = \tau_P(\Gamma)$, the trace of P in Γ which is the ideal generated by the homomorphic images of P in Γ, be the idempotent ideal corresponding to P. When $P = \Gamma e$, then $\mathcal{I} = \langle e \rangle$, the two-sided ideal generated by the idempotent e. For a positive integer d, we define P_{d-1} to be the full subcategory of modΓ consisting of the Γ-modules X having a projective resolution

$$\cdots \rightarrow P_1 \rightarrow P_0 \rightarrow X \rightarrow 0$$

with $P_i \in \text{add}(P)$ for all $0 \leq i \leq d - 1$. There is a characterisation of P_{d-1}.

Proposition 4.1. [1, Proposition 2.4] Let P be a projective Λ-module. The following conditions are equivalent for a Γ-module X:

(i) X is in P_{d-1}.
(ii) $\text{Ext}^i_{\Gamma}(X, Y) = 0$ for all A/\mathcal{I}-modules Y and $0 < i < d$.
(iii) $\text{Ext}^i_{\Gamma}(X, Y) = 0$ for all injective A/\mathcal{I}-modules Y and $0 < i < d$.

Proof. by induction on d. \hfill \square

We omit a more detailed proof of Proposition 4.1 since it is not used in the sequel. Note that in the special case $X = \Gamma$ (as used by Iyama [3, Lemma 3.5.1]) Proposition 4.1 reduces the proof of the following result, which also uses arguments from Sections 5 and 6 of [2].

Theorem 4.2. [1, Theorem 3.2] Let P be a projective Γ-module and $\Lambda := \text{End}_{\Gamma}(P)$. For any $Y \in \text{mod}\Gamma$ and any $d \geq 1$, the functor $G := \text{Hom}_{\Gamma}(P, -)$ induces an isomorphism

$$\text{Ext}^{d-1}_{\Gamma}(X, Y) \rightarrow \text{Ext}^{d-1}_{\Lambda}(GX, GY)$$

provided $X \in P_d$.

Proof. We prove by induction, omitting the case $i = 2$ since the argument requires only minor modifications. Let Y be a fixed, but arbitrary Γ-module. Recall that there is a canonical isomorphism $\text{Hom}_{\Gamma}(P, Y) \cong \text{Hom}_{\Lambda}(GP, GY)$. First suppose $X \in P_1$; so there is an exact sequence $P_1 \rightarrow P_0 \rightarrow X \rightarrow 0$ such that $P_0, P_1 \in \text{add}P$. Then there is a commutative diagram

$$\begin{array}{cccccc}
0 & \rightarrow & \text{Hom}_\Gamma(X, Y) & \rightarrow & \text{Hom}_\Gamma(P_0, Y) & \rightarrow & \text{Hom}_\Gamma(P_1, Y) \\
\downarrow & & \downarrow \cong & & \downarrow \cong & \\
0 & \rightarrow & \text{Hom}_\Lambda(GX, GY) & \rightarrow & \text{Hom}_\Lambda(GP_0, GY) & \rightarrow & \text{Hom}_\Lambda(GP_1, GY)
\end{array}$$
implying \(\text{Hom}_ \Gamma(X, Y) \cong \text{Hom}_ \Lambda(GX, GY) \) by the Five Lemma. Now suppose for some \(i \geq 2 \) that for all \(M \in P_i \) there are isomorphisms

\[
\text{Ext}^{i-1}_\Gamma(M, Y) \to \text{Ext}^{i-1}_\Lambda(GM, GY).
\]

Let \(X \in P_{i+1} \) and consider an exact sequence \(0 \to K \to P_0 \to X \to 0 \) with \(P_0 \in \text{add}(P) \). Since \(K \in P_i \), we get \(\text{Ext}^{i-1}_\Gamma(K, Y) \cong \text{Ext}^{i-1}_\Lambda(GK, GY) \). From the commutative diagram

\[
\begin{array}{ccc}
0 & \longrightarrow & \text{Ext}^{i-1}_\Gamma(K, Y) \\
\downarrow & & \downarrow \\
0 & \longrightarrow & \text{Ext}^{i-1}_\Lambda(GK, GY)
\end{array}
\]

we find also \(\text{Ext}^i_\Gamma(X, Y) \cong \text{Ext}^i_\Lambda(GX, GY) \).

\[\square\]

5. Higher Auslander Correspondence

Recall for a \(\Lambda \)-module \(X \) such that \(\Lambda, D \Lambda \in \text{add}(X) \), the endomorphism algebra \(\Gamma := \text{End}_\Lambda(X) \) has projective modules given by \(\text{add}(\text{Hom}_\Lambda(X, X)) \), and projective-injective modules given by \(\text{add}(\text{Hom}_\Lambda(X, D \Lambda)) \).

Proposition 5.1. Suppose \(\Lambda \) is an artin algebra and \(X \) is a \(d \)-cluster-tilting module in \(\text{mod} \Lambda \). Then \(\Gamma := \text{End}_\Lambda(X) \) satisfies

\[
\text{dom.dim}(\Gamma) \geq d + 1 \geq \text{gl.dim}(\Gamma),
\]

i.e. \(\Gamma \) is a \(d \)-Auslander algebra.

Proof. Let \(F := \text{Hom}_\Lambda(X, -) \) and \(C := \text{add}(X) \). We have that \(F \Gamma = FX \). Suppose \(X \) has an injective resolution:

\[
0 \to X \to I_0 \to I_1 \to \cdots
\]

Since \(X \) is \(d \)-cluster tilting, we have an exact sequence

\[
0 \to FX \to FI_0 \to \cdots \to FI_d
\]

whereby \(FI_j \) is projective-injective for each \(0 \leq j \leq d \). Hence \(\text{dom.dim}(\Gamma) \geq d + 1 \).

For each \(M \in \text{mod} \Gamma \), we show \(\text{proj.dim}(M) \leq d + 1 \), and hence \(\text{gl.dim}(\Gamma) \leq d + 1 \).

Since \(\text{mod} \Gamma \) is equivalent to \(\text{mod} C \), there exist \(C_{-2}, C_{-1} \in C \) and an exact sequence:

\[
FC_{-1} \to FC_{-2} \to M \to 0.
\]

By Theorem 3.2, this extends to an exact sequence

\[
0 \to FC_d \to \cdots \to FC_0 \to FC_{-1} \to FC_{-2} \to M \to 0
\]

such that \(C_i \in C \) for all \(-2 \leq i \leq d \). Hence \(d + 1 \geq \text{gl.dim}(\Gamma) \) and we are done. \[\square\]

Proposition 5.2. Let \(\Gamma \) be a \(d \)-Auslander algebra, let \(P \) be a minimal projective-injective generator and let \(\Lambda := \text{End}_\Gamma(P) \). Then there is a \(d \)-cluster-tilting subcategory \(C \subseteq \text{mod} \Lambda \).
Proof. Let Λ := EndΓ(P) and G : HomΓ(P, −). We will show C := add(GΓ) ⊆ mod(Λ) is d-cluster tilting. By assumption DT ∈ Pd. So Theorem 4.2 implies an isomorphism
\[\text{Ext}^i_\Lambda(X, Y) \to \text{Ext}^i_\Lambda(GX, GY) \]
for all X, Y ∈ add(Γ) and all 0 < i < d. Hence Ext^i_\Lambda(GX, GY) = 0 for all 0 < i < d. To show add(GΓ) is a d-cluster-tilting subcategory, we have to show maximality. So suppose on the other hand that there exists some M /∈ C such that Ext^i_\Lambda(C, M) = 0 for all 0 < i < d and all C ∈ C. Let F := Hom_\Lambda(GTΓ, −) and suppose M has an injective resolution:
\[0 \to M \to I_0 \to I_1 \to \cdots \]
Since Ext^i_\Lambda(C, M) = 0 for all 0 < i < d, we have an exact sequence
\[0 \to FM \to FI_0 \to \cdots \to FI_d \]
whereby FI_j is projective-injective for each 0 ≤ j ≤ d. Let N be the Λ-module N := coker(FI_{d-1} → FI_d). Since gl.dim(Γ) ≤ d + 1, the sequence
\[0 \to FM \to FI_0 \to \cdots \to FI_d \to N \to 0 \]
is a projective resolution of N, and hence FM is projective, in other words M ∈ C. Therefore C ⊆ modΛ is d-cluster tilting. □

Lemma 5.3. Let Λ, Γ, X as above. There are mutually inverse equivalences
\[F : \text{add}(X) \to \text{add}(Γ) \]
\[G : \text{add}(Γ) \to \text{add}(X) \]
Proof. That F is an equivalence has already been discussed. Moreover
\[G \circ F = \text{Hom}_\Gamma(P, \text{Hom}_\Lambda(X, -)) \]
\[= \text{Hom}_\Lambda(X \otimes_\Gamma P, -) \]
\[= \text{Hom}_\Lambda(X \otimes_\Gamma \text{Hom}_\Gamma(X, \Lambda), -) \]
\[= \text{Hom}_\Lambda(\Lambda, -) \]
\[= 1 \]
\[\Box \]

Let two d-cluster-tilting modules M, N ∈ modΛ be equivalent whenever the categories add(M) and add(N) are equivalent.

Theorem 5.4 (d-Auslander correspondence). [3, Theorem 0.2] For any d ≥ 1 there exists a bijection between the equivalence classes of d-cluster-tilting modules X ∈ modΛ and the set of Morita-equivalence classes of d-Auslander algebras, given by X ↦ End_Λ(X).

Proof. This follows from Proposition 5.1, Proposition 5.2 and Lemma 5.3 □
REFERENCES

1. M. Auslander, M. I. Platzeck, and G. Todorov, Homological theory of idempotent ideals, Trans. Amer. Math. Soc. 332 (1992), no. 2, 667–692. MR 1052903

2. Maurice Auslander, Representation theory of artin algebras. I, Communications in algebra 1 (1974), 177–268.

3. Osamu Iyama, Auslander correspondence, Adv. Math. 210 (2007), no. 1, 51–82. MR 2298820

4. ———, Higher-dimensional Auslander-Reiten theory on maximal orthogonal subcategories, Adv. Math. 210 (2007), no. 1, 22–50. MR 2298819

UNAFFILIATED

Email address: jordanmcmahon37@gmail.com