A University of California author or department has made this article openly available. Thanks to the Academic Senate's Open Access Policy, a great many UC-authored scholarly publications will now be freely available on this site. Let us know how this access is important for you. We want to hear your story! http://escholarship.org/reader_feedback.html

Peer Reviewed

Title:
CHROMOSOMAL ASSIGNMENT OF THE HL-A COMMON ANTIGENIC DETERMINANTS IN MAN-MOUSE SOMATIC CELL HYBRIDS

Journal Issue:
European Journal of Immunogenetics, 3(2)

Author:
Smith, M
Gold, P
Shuster, J
Tanigaki, N
Pressman, D

Publication Date:
04-01-1976

Series:
UC Irvine Previously Published Works

Permalink:
http://escholarship.org/uc/item/34q7t410

DOI:
https://doi.org/10.1111/j.1744-313X.1976.tb00561.x

Local Identifier(s):
UCPMS ID: 896955

Copyright Information:

Copyright 1976 by the article author(s). This work is made available under the terms of the Creative Commons Attribution 4.0 license, http://creativecommons.org/licenses/by/4.0/

eScholarship provides open access, scholarly publishing services to the University of California and delivers a dynamic research platform to scholars worldwide.
CHROMOSOMAL ASSIGNMENT OF THE HL-A COMMON ANTIGENIC DETERMINANTS IN MAN–MOUSE SOMATIC CELL HYBRIDS*

MOYRA SMITH, P. GOLD, J. SHUSTER, N. TANIGAKI AND D. PRESSMAN

Division of Clinical Immunology and Allergy of the Montreal General Hospital and the McGill University Medical Clinic of the Montreal General Hospital Research Institute, Montreal, Quebec, Canada and Department of Immunology and Immunochemistry Research, Roswell Park Memorial Institute, Buffalo, New York

(Received 11 October 1975)

SUMMARY

In the study presented here, man–mouse somatic cell hybrid clones were examined by means of radioimmunoassays for the presence of both β₂-microglobulin (β₂m) and the HL-A xenoantigenic determinant. In addition, the clones were examined for their karyotype and the expression of enzymes with known chromosomal assignments. The results obtained indicate that the gene coding for the HL-A xenoantigenic determinant is carried on chromosome 6. The data obtained provides a direct demonstration that the gene coding for β₂m segregates independently of that coding for the alloantigenic polypeptide chain of the HL-A molecule, and that the gene coding for β₂m is carried on chromosome 15.

INTRODUCTION

Recent studies have demonstrated that the HL-A molecule obtained after papain digestion of cell membranes consists of two polypeptide chains (Cresswell et al., 1973; Tanigaki, et al., 1973a, Tanigaki, et al., 1974). The 11,000-dalton fragment constitutes one polypeptide chain while the remaining portion of the HL-A molecule, with a molecular size of approximately 33,000 daltons, constitutes the second polypeptide chain. This 33,000-dalton polypeptide chain carries the HL-A alloantigenic determinant (Nakamuro et al., 1975; Tanigaki et al., 1975). The 11,000-dalton portion of HL-A molecule has been demonstrated in free form in both serum and urine and has been identified as beta-2-microglobulin (β₂m) (Grey et al., 1973; Nakamuro et al., 1973; Peterson et al., 1974). The β₂m polypeptide chain is structurally identical in all HL-A molecules, regardless of the alloantigenic specificity.

* This research was supported in part by the National Cancer Institute of Canada, United States Public Health Service (Grant AI-08899) and the John A. Hartford Foundation.

Correspondence: Dr Moyra Smith, Division of Human Genetics, Department of Pediatrics, Mount Sinai Hospital, 100th Street & 5th Avenue, New York, N.Y. 10029, U.S.A.
HL-A molecules carrying different HL-A alloantigenic specificities share certain common antigenic structures that stimulate antibody production in heterologous animals. These common antigenic structures which have been designated HL-A common antigenic determinants, have been detected by use of rabbit antisera directed against HL-A molecules on both the 11,000-dalton and 33,000-dalton polypeptide chains, and they have been shown to be distinct from the HL-A alloantigenic determinants (Miyakawa et al., 1973). In this study, the common antigenic determinant on the 11,000-dalton portion will be termed the β₂m determinant, while that on the 33,000-dalton portion will be termed the HL-A xenoantigenic determinant to distinguish it from the HL-A alloantigenic determinant. The xenoantigenic determinant, or a very similar one, has been shown to be present on the Rhesus monkey histocompatibility antigens, RhL-A, and has previously been referred to as the HL-A primate cross-reacting determinant (Katagiri et al., 1974). Since this determinant has been located on the 33,000-dalton polypeptide chain carrying high HL-A alloantigenic activity (Nakamura et al., 1975), the HL-A common antigenic determinant apparently represents a part of the invariant portion of the product of the genes which code for HL-A alloantigenic chains. Further insight into the relationship between HL-A alloantigenic determinants, the HL-A xenoantigenic determinant and the β₂m determinant, may be obtained through genetic studies on the segregation of genetic markers in man–mouse somatic cell hybrids. Through such studies it is possible to establish the number of genes responsible for the production of the structural components of HL-A molecule, and more importantly, to clarify the interrelations of these genes in the antigenic expression of the HL-A molecule.

In the present study, man–mouse somatic cell hybrid clones were examined by means of radioimmunoassay for the presence of the β₂m determinant and for the presence of the HL-A xenoantigenic determinant. The cell clones were also analysed for both chromosomal composition and a variety of enzyme markers, and the results were correlated with those of the antigenic analyses. The data obtained indicate that the gene coding for the HL-A xenoantigenic determinant is syntenic with the genes for soluble malic enzyme (ME1) and tetrameric iodophenol oxidase (IPO B) on chromosome 6, the chromosome that also carries the genes coding for the alloantigenic determinants of the HL-A molecules (van Someren et al., 1974; Jongsm et al., 1973). Confirmation was obtained that the gene coding for the β₂m determinant is carried by chromosome 15 (Goodfellow et al., 1975; Smith et al., 1975). Moreover, it was shown that the production of HL-A, as determined by the presence of HL-A xenoantigenic determinant, occurs in hybrids in which no detectable human β₂m is produced.

MATERIALS AND METHODS

Cell types used

In this study the two human cell types used were peripheral blood lymphocytes isolated from two healthy donors and the established lymphoid culture line cells ODY and EB4. Each of these cell types were fused with RAG cells, a hypoxanthine-phosphoribosyl-transferase deficient mutant mouse cell line (Ruddle et al., 1970).

Fusion

Fusion of human cells with mouse cells was performed using Sendai virus inactivated by ultra-violet light as previously described (Smith et al., 1975).
Enzyme analyses

Lysates for enzyme studies were prepared by washing cells in Dulbecco's phosphate buffered saline (pH 7.2) and then subjecting the cells to one or two cycles of freezing and thawing. Lysates derived from different hybrid clones were examined for the presence of thirteen different murine, human and hybrid enzyme phenotypes by means of starch gel electrophoresis. The enzymes studied are listed in Tables 2 and 3. The enzyme detection systems and the chromosomal assignment for these enzymes are referenced in Table 3.

Chromosomal analyses

The methods used for chromosomal analyses have been previously described (Smith et al., 1975).

Radioimmunoassay for HL-A and β2m

The radioimmunoassays for the HL-A xenoantigenic determinant (Katagiri et al., 1974; Nakamuro et al., 1975), the HL-A2 alloantigenic determinant (Tanigaki et al., 1973) and β2m (Smith et al., 1975) were performed as previously described. The β2m activity and the HL-A activities were assayed in cell lysates. In solubilizing cells for use in the β2m and HL-A assays, 3 × 10^7 cells/ml were treated with a 1% solution of the non-ionic detergent, IGEPAL CA-630 (GAF Corporation, New York). The lysates were centrifuged for 10 min at 1000 RCF and the supernatants were assayed. Activity was defined as the capacity of a specific quality (i.e. 50 μl) of cell lysate to inhibit the binding of a defined amount of antibody to a defined amount of radioiodinated reference antigen.

In the HL-A assay systems, samples were considered positive if the inhibition of binding of labelled antigen to antibody caused by the prior addition of the test sample was over 10%. Control lysates from human cell clones showed 83–95% inhibition. In the β2m assay system, samples were considered positive if the inhibition of binding of labelled antigen to antibody caused by the prior addition of the test sample was over 5%. Control samples from human cell clones showed 95–98% inhibition.

RESULTS

From the results of the radioimmunoassays for HL-A xenoantigenic activity and for β2m activity, shown in Table 1, it will be seen that clones could be classified into four categories as follows: HL-A-positive and β2m-positive; HL-A-positive and β2m-negative; HL-A-negative and β2m-positive; and HL-A-negative and β2m-negative. In Tables 2 and 3, the segregation of human β2m, HL-A and thirteen human enzyme markers are shown. A high degree of discordance was observed between the expression of human β2m and HL-A. A similarly high degree of discordance was observed in the expression of HL-A and mannose phosphate isomerase (MPI) which maps on chromosome 15 (van Heynigen et al., 1975).

A high degree of concordance was observed between the expression of HL-A and the expression of enzymes ME1 and IPO B which have been assigned to human chromosome 6 (van Someren et al., 1974; Jongsmma et al., 1973). In the case of segregation of HL-A and ME1 two discordant clones were observed. Both of these clones were, however, positive for IPO B. From Table 4 it will be seen that in the case of segregation of IPO B and HL-A, the
TABLE 1. HL-A and human β_2-microglobulin (β_2m) expression in man–mouse somatic cell hybrid clones and control cell clones

Cell clones	Designation	β_2m activity	Cell clones	Designation	β_2m activity
HL-A positive	RLyA3	59	HL-A negative	RLyA1	-3
β_2m positive	RLyAl2	22	β_2m positive	RLyA4	-5
hybrid cell clones	RLyG	29	hybrid cell clones	RLyA7	-2
RLYJ	50	RLyA8	-2		
RLYMSae	73	RLYA9	2		
RLYMSbc	61	RLYA10	0		
RLYMSbe	19	RLYA16	6		
RLYMSCd	26	RLYMSCg	4		
RLYMSCf	38	RLYMSNa	1		
RODYLb	42	RLYMSNb	-6		
REB4Cc	35	RLYMSNf	0		
HL-A positive	RLYC9	38	HL-A negative	RLYG13	-2
β_2m negative	RLYC1l	35	β_2m negative	RLYM	-3
hybrid cell clones	RLYG8	39	hybrid cell clones	RLYMSAb	0
RLYG10	25	RLYMSva	-7		
RLYG12	33	RLYMSb	0		
RLYMSWb	39	REB4Bc	-2		
Control human cell clones	Chang	83	Control mouse cell clones	RAG	0
Hep-2	83				
HeLa	83				
RPMI 1788	94				
B46MC-1	95				

* HL-A as determined by the HL-A xenoantigenic activity.
† Activity is expressed as % inhibition.
‡ The first three are non-lymphoid cell clones and the others are lymphoid cell clones.
§ This is the parental mouse cell clone that was used for cell fusion.

Concordant clones were almost equally distributed in the HL-A-positive and IPO B-positive clones, and in the HL-A-negative and IPO B-negative clones. Thus, the observed concordant segregation cannot be attributed to insufficient chromosomal loss from hybrid clones. In the case of segregation of ME1 and HL-A, a similar distribution of concordant clones was observed. A high degree of discordance was seen in the segregation of HL-A and the remaining enzyme markers examined. These markers have a known distribution of nine chromosomes (Table 3). Table 4 also shows a high degree of concordance in the expression of β_2m and the expression of the enzyme MPI.

Chromosomal analyses were carried out on twenty-four of the thirty-five clones assayed for HL-A xenoantigenic activity. The results of the chromosomal analyses are shown in Table 5. It can be seen that HL-A xenoantigenic activity was expressed in all of the clones in which chromosome 6 was present. Similarly HL-A xenoantigenic activity was absent from clones in which chromosome 6 was absent. Furthermore, no other chromosome was found to be consistently present in HL-A-positive clones and consistently absent from HL-A-negative clones.
Man–mouse somatic cell hybrids

Table 2. Assessment of HL-A,* human β2-microglobulin (β2m) and human enzyme phenotypes in man–mouse hybrid clones

Clones	HL-A*	β2m	MPI	ME1	IPO A	IPO B	Pep A	Pep B	LDH A	LDH B	EST D	MDH(S)	G6PD	NP
RLYA3		+	+	+	+	+	+	+	+	+	+	+		
RLYA12		+	+	+	+	+	+	+	+	+	+	+		
RLYG		+	+	+	+	+	+	+	+	+	+	+		
RLYJ		+	+	+	+	+	+	+	+	+	+	+		
RLYMS Ae		+	+	+	+	+	+	+	+	+	+	+		
RLYMSBc		+	+	+	+	+	+	+	+	+	+	+		
RLYMSBe		+	+	+	+	+	+	+	+	+	+	+		
RLYMSCd		+	+	+	NT	+	NT	+	NT	+	NT	+		
RLYMS Cf		+	+	+	+	+	+	+	+	+	+	+		
RODYLb		+	+	+	+	+	+	+	+	+	+	+		
R4BCC		+	+	+	+	+	+	+	+	+	+	+		
RLYC9		+	-	+	NT	+	NT	+	NT	+	NT	+		
RLYC11		+	-	+	NT	+	NT	+	NT	+	NT	+		
RLYG8		+	-	+	+	+	+	+	+	+	+	+		
RLYG10		+	-	+	NT	+	+	+	+	+	+	+		
RLYG12		+	-	+	+	+	+	+	+	+	+	+		
RLYMSwB		+	-	+	+	+	+	+	+	+	+	+		
RLYA1		-	+	+	-	+	+	+	+	+	+	+		
RLYA4		-	+	+	-	+	+	+	+	+	+	+		
RLYA7		-	+	+	-	+	+	+	+	+	+	+		
RLYA8		-	+	+	-	+	+	+	+	+	+	+		
RLYA9		-	+	NT	-	NT	-	+	+	+	+	+		
RLYA10		-	+	+	-	NT								
RLYA16		-	+	+	-	NT	NT	+	NT	-	NT	NT		
RLYMSCg		-	+	+	-	NT	NT	NT	NT	-	NT	NT		
RLYMSN a		-	+	+	-	NT	NT	NT	NT	-	NT	NT		
RLYMSNb		-	+	+	NT									
RLYMSNf		-	+	+	-	NT								
R4BCb		-	+	+	-	NT	+	-	+	+	+	+		
R4BCd		-	+	NT	NT	NT	NT	NT	NT	NT	NT	NT		
RLYG13		-	-	-	+	+	+	+	+	+	+	+		
RLYM		-	-	-	NT	NT	-	NT	-	NT	-	NT		
RLYMSAb		-	-	-	NT	NT	-	NT	-	NT	-	NT		
RLYMSVa		-	NT	NT	NT	NT	NT	NT	NT	NT	-	NT		
R4Bc		-	-	-	-	NT	+	+	+	+	+	+		

* *HL-A as determined by the HL-A xenoantigenic activity.

Abbreviations: β2m, Beta-2 microglobulin; MPI, mannose phosphate isomerase; IPO A and B, indophenoloxidases A and B; ADA, adenosine deaminase; Pep A and B, peptidases A and B; LDH A and B, lactate dehydrogenases A and B; EST D, esterase D; MDH, soluble malic dehydrogenase; ME1, malic enzyme; G6PD, glucose 6 phosphate dehydrogenase; NP, nucleoside phosphorylase; NT, not tested.

Several clones of RLYMS, derived from the fusion of RAG cells with the normal peripheral lymphocytes from an individual (MS) whose HL-A phenotype is known to be 2, 5, 7 and 12, were tested for HL-A2 alloantigenic activity by the radioimmunoassay. Two clones were positive for HL-A2 alloantigenic activity. The two clones, RLYMSAe and RLYMSWb, were also positive for HL-A xenoantigenic activity and had only chromosomes 6 and 10 in common.
Genetic Marker	Chromosome Assignment	Number of Concordant clones	Number of Discordant clones	Total number of clones examined	Reference of detection method	Reference of chromosome assignment
β₂m	15	16	19	35	Smith et al., 1975	Smith et al., 1975
MPI	15	15	16	31	Nichols et al., 1973	Van Heyningen, et al., 1975
ME1	6	32	2	34	Ruddle & Nichols, 1971	Van Someren et al., 1974
IPO B	6	23	0	23	Brewer, 1967	Van Someren et al., 1974
IPO A	21	18	10	28	Brewer, 1967	Tan et al., 1973
Pep A	18	10	12	22	Lewis & Harris, 1967	Ruddle, 1974
Pep B	12	16	9	25	Lewis & Harris, 1967	Santachiara et al., 1970
LDH B	12	14	8	22	Ruddle & Nichols, 1971	Santachiara et al., 1970
LDH A	11	4	13	17	Ruddle & Nichols, 1971	Boone et al., 1972
EST D	13	20	10	30	Hopkinson et al., 1973	Van Heyningen, et al., 1975
MDH(S)	2	11	13	24	Shows, 1970	Shows, 1970
G6PD	X	16	6	22	Ruddle & Nichols, 1971	Nabholz et al., 1969
NP	14	17	13	30	Edwards et al., 1971	Ruddle, 1974
ADA	20	7	9	16	Spencer et al., 1968	Ruddle, 1974

* HL-A as determined by the HL-A xenoantigenic activity.
Man–mouse somatic cell hybrids

TABLE 4. Linkage relationships between HL-A* and human β_2-microglobulin (β_2m), MPI, MEI, and IPO B.

β_2m	+	11	13
-	6	5	
MPI	+	10	10
-	6	5	

MEI	+	15	0
-	2	17	
IPO B	+	12	0
-	0	11	

β_2m	+	-
MPI	+	-
-	2	10

* HL-A as determined by the HL-A xenoantigenic activity.

DISCUSSION

The results of this study indicate that the HL-A xenoantigenic determinant can be assayed in man–mouse hybrid cells by means of radioimmunoassay and that the expression of this determinant in such hybrids is apparently dependent only upon the presence of human chromosome 6. The results also provide direct evidence that the human β_2m gene segregates independently of the gene coding for both the HL-A alloantigenic and the HL-A xenoantigenic portions of the HL-A molecule. These results are, therefore, in agreement with previous reports on the chromosomal linkage relationships of HL-A antigens (Goodfellow *et al.*, 1975; Smith *et al.*, 1975).

Studies on the inheritance of HL-A alloantigens in families have revealed that the HL-alloantigens are determined by three closely linked structural gene loci (Thorsby, 1974), and that the genes determining HL-A alloantigens are linked to the gene for the enzyme phosphoglucomutase (PGM 3) (Lamm *et al.*, 1971). Studies on man–Chinese hamster somatic cell hybrids have demonstrated that the PGM 3 gene and the genes determining ME1 and IPO B are located on chromosome 6 (van Someren *et al.*, 1974; Jongsma *et al.*, 1974). van Someren *et al.*, have also demonstrated a good correlation between the occurrence of HL-A alloantigens and the enzymes ME1, IPO B, and PGM 3 in man–Chinese hamster somatic cell hybrids. However, in their study, a number of discordant clones were observed. In six out of thirty-five clones examined, IPO B and HL-A alloantigenic activity segregated discordantly, while in five out of thirty-one clones, ME1 and HL-A allotypic activity segregated discordantly. In attempting to account for the observed discordance, they drew attention to the diffi-
TABLE 5. Human chromosome analyses in man–mouse hybrid clones

Clones	Expression of HL-A†β2m	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	X	Y
RLyA12	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
RLyG	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
RLyJ	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
RLyMSAe	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
RLyMSBc	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
RLyMSCf	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
RLyC9	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
RLyC11	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
RLyG8	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
RLyG12	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
RLyMSWb	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
RLyA4	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
RLyA7	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
RLyA9	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
RLyA10	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
RLyA16	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
RLyMSNa	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
RLyMSNb	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
REB4Cb	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
RLyG13	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
RLyM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
RLyMSVa	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
REB4Bc	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	

* In each case a minimum of 10 cells was examined.
† HL-A as determined by the HL-A xenoantigenic activity.

... Faculties encountered in studying HL-A alloantigenic expression in hybrid cells, and ascribed this problem to the possibility of reduced expression of HL-A alloantigens after prolonged periods in cell culture. They also suggested the possibility that 'new' HL-A alloantigenic specificities might appear in hybrids due to the interaction between human HL-A and mouse H-2 polypeptide chains.

Studies on the linkage relationships of β2m in man–mouse somatic cell hybrids by Goodfellow et al., (1975) and by Smith et al., (1975) indicated that β2m is coded for by a gene carried on chromosome 15 rather than one on chromosome 6, the chromosome previously shown to carry the genetic constituents responsible for the synthesis of the HL-A alloantigens. In both of these studies, however, the independent segregation of β2m and HL-A was demonstrated by indirect evidence based on the analysis of hybrid cells for β2m activity, karyotypic composition and the production of enzymes with known chromosomal assignments, rather than by the direct measurement of HL-A activity in the hybrid cells. In the present study, we assayed man–mouse somatic cell hybrids for both the β2m activity and the HL-A xenantigenic activity and most directly showed the independent segregation of β2m and HL-A.
The use of rabbit antisera directed against HL-A molecules greatly facilitated the demonstration of HL-A expression in hybrid cells having different HL-A phenotypes. Since the rabbit antisera contain antibodies directed to the antigenic determinant common to the alloantigenic polypeptide chain of HL-A molecule, it was possible to detect the presence of HL-A alloantigenic chains in clones derived from hybrid cells produced by the fusion of RAG cells with lymphocytes of different individuals, regardless of their HL-A phenotypes. However, even with this radioimmunoassay method for HL-A, the HL-A activity detected was extremely low in the hybrid clones tested, and the amount detected on hybrid cells was usually 1/100, or less, than that produced by human lymphoid cell lines (unpublished data). In order to overcome this difficulty, it was necessary to use cell lysates in high concentration.

The present data indicates that the HL-A alloantigenic chain, as detected by the presence of the HL-A xenoantigenic determinant, is expressed in cell hybrids that do not carry human chromosome 15 and, thus, do not produce any human β_2m. Similarly, hybrid clones were obtained that expressed β_2m in the absence of demonstrable HL-A xenoantigenic activity. However, in both types of clones, we have obtained evidence that hybrid molecules may be formed between human β_2m and mouse H-2 alloantigenic chains, and between mouse β_2m and human HL-A alloantigenic chains (unpublished data).

Recently, Ostberg et al. (1975) reported that a Burkitt lymphoma cell line, Daudi, does not produce β_2m and yet produces a polypeptide chain that is devoid of HL-A allospecificity but is very similar in the xenoantigenic and physicochemical characteristics to the HL-A alloantigenic polypeptide chains isolated from other human cell lines and suggested that β_2m and the HL-A alloantigenic chains are under separate genetic regulation. They also mentioned that Daudi cells have a deletion of chromosome 15.

ACKNOWLEDGMENTS

The authors are indebted to Mrs Lorna Katz, Miss Phyllis Overturf and Mrs Jeanette Shaver for their excellent technical assistance.

REFERENCES

BOONE, C.M., CHEN, R.R. & RUDDLE, F.H. (1972) Assignment of three human genes to chromosomes. LDH A to 11, TK to 17, IDH to 20 and evidence for translocation between human and mouse chromosomes in somatic cell hybrids. *Proceedings of the National Academy of Science, United States of America*, 69, 510.

BREWER, G.J. (1967) Achromatic regions of tetrazolium stained starch gels. *American Journal of Human Genetics*, 19, 674.

CRESSWELL, P., TURNER, M.J. & STROMINGER, J.L. (1973) Papain-solubilized HL-A antigens from cultured human lymphocytes contain two peptide fragments. *Proceedings of the National Academy of Science, United States of America*, 70, 1603.

EDWARDS, Y.H., HOPKINSON, D.A. & HARRIS, H. (1971) Inherited variants of nucleoside phosphorylase. *Annals of Human Genetics*, 34, 395.

GOODFELLOW, P.N., JONES, E.A., VAN HEYNINGEN, V., SOLOMON, E., BOBROW, M., MIGGIANO, V. & BODMER, W.F. (1975) The beta-2-microglobulin gene is on chromosome 15 and not in the HL-A region. *Nature*, 254, 267.

GREY, H.M., KUBO, R.T., COLON, S.M., POULIK, M.D., CRESSWELL, P.M., SPRINGER, T., TURNER, M.J. & STROMINGER, J.L. (1973) The small sub-unit of HL-A antigens is beta-2-microglobulin. *Journal of Experimental Medicine*, 138, 1608.

HOPKINSON, D.A., MESTRINER, M.A., CORNER, J. & HARRIS, H. (1973) Esterase D: a new human polymorphism. *Annals of Human Genetics*, 37, 119.
Moyra Smith et al.

Jongsm, A., Van Someren, H., Westerveld, A., Hagemeier, A. & Pearson, P. (1973) Localization of genes on human chromosomes using human–Chinese hamster somatic cell hybrids. Assignment of PGM3 to chromosome C6 and regional mapping of the PGD, PGM1 and Peps genes on chromosome A1. Human Genetik, 20, 195.

Katagiri, M., Tanigaki, N., Kreiter, V.P. & Pressman, D. (1974) Common antigenic structures of HL-A antigens III. An HL-A common antigenic marker closely associated with HL-A alloantigenic activity and detected by use of rabbit anti-rhesus monkey cell membrane antibodies. Immunology, 27, 487.

Lamm, L.U., Sveaard, A. & Kissmeyer-Nielsen, F. (1971) PGM1: HL-A is another linkage in man. Nature, New Biology, 231, 109.

Leh, W.H.P. & Harris, H. (1967) Human red cell peptidases. Nature, 215, 351.

Miyakawa, Y., Tanigaki, N., Yagi, Y. & Pressman, D. (1973) Common antigenic structures of HL-A antigens I. Antigenic determinants recognizable by rabbits on papain-solubilized HL-A molecular fragment. Immunology, 24, 67.

Nabholz, M., Miggiano, V. & Bodmer, W.F. (1969) Genetic analysis with human–mouse somatic cell hybrids. Nature, 223, 358.

Nakamura, K., Tanigaki, N. & Pressman, D. (1973) Multiple common properties of human beta-2-microglobulin and the common portion fragment derived from HL-A molecules. Proceedings of the National Academy of Science, U.S.A., 70, 2863.

Nakamura, K., Tanigaki, N. & Pressman, D. (1975) Common antigenic structures of HL-A antigens VI. Common antigenic determinants located on the 33,000 dalton alloantigenic fragment portion of papain-solubilized HL-A molecules. Immunology, 29, 1119.

Nichols, E.A., Chapman, V.M. & Ruddle, F.H. (1973) Polymorphism and linkage for mannose phosphate isomerase in Mus musculus. Biochemical Genetics, 8, 47.

Osterg, L., Rask, L., Nilsson, K. & Peterson, P.A. (1975) Independent expression of the two HL-A antigen polypeptide chains. European Journal of Immunology, 5, 462.

Peterson, P.A., Rask, L. & Lindblom, J.B. (1974) Highly purified papain-solubilized HL-A antigens contain β_2-microglobulin. Proceedings of the National Academy of Science, U.S.A., 71, 35.

Ruddle, F.H., Chapman, V.M., Chen, T.R. & Klebe, R.J. (1970) Linkage between human lactate dehydrogenase A and B and peptidase B. Nature, 227, 251.

Ruddle, F.H. & Nichols, E.A. (1971) Starch gel electrophoretic phenotypes of mouse × human somatic cell hybrids and mouse isozyme polymorphisms. In Vitro, 7, 120.

Ruddle, F.H. (1974) Genetic linkage and gene mapping. In: Somatic Cell Hybridization, vol. I (Ed. by R.L. Davidson & F. de la Cruz), p. 1. Raven Press, New York.

Santachiara, A.A., Nabholz, M., Miggiano, V., Darlington, A.J. & Bodmer, W.F. (1970) Genetic analysis with man–mouse somatic cell hybrids: linkage between human lactate dehydrogenase B and peptidase B genes. Nature, 227, 248.

Shows, T.B. (1970) Mitochondrial malate dehydrogenase and malic enzyme: Mendelian inherited electrophoretic variants in the mouse. Biochemical Genetics, 4, 707.

Smith, M., Gold, P., Freedman, S.O. & Shuster, J. (1975) Studies of the linkage relationship of beta-2-microglobulin in man–mouse somatic cell hybrids: linkage between human lactate dehydrogenase B and peptidase B genes. Nature, 227, 248.

Spencer, N., Hopkinson, D.A. & Harris, H. (1968) Adenosine deaminase polymorphism in man. Annals of Human Genetics, 32, 9.

Tan, Y.H., Tischfield, J. & Ruddle, F.H. (1973) The linkage of genes of the human interferon induced anti-viral protein and indophenol oxidase A traits. Journal of Experimental Medicine, 137, 317.

Tanigaki, N., Katagiri, M., Nakamura, K., Kreiter, V.P. & Pressman, D. (1973a) A structural component of papain solubilized HL-A antigen molecules. Federation Proceedings, 32, 1017 Abs.

Tanigaki, N., Miyakawa, Y., Yagi, Y., Kreiter, V.P. & Pressman, D. (1973b) Radioiodinated soluble HL-A antigens: HL-A alloantigenic characterization and use in radioimmunoassay. Journal of Immunological Methods, 3, 109.

Tanigaki, N., Katagiri, M., Nakamura, K., Kreiter, V.P. & Pressman, D. (1974) Common antigenic structures of HL-A antigens II. Small fragments derived from papain-solubilized HL-A antigen molecules. Immunology, 26, 155.

Tanigaki, N., Nakamura, K., Natori, T., Minowada, J. & Pressman, D. (1975) Structure of HL-A histocompatibility antigens. The structural components of papain-solubilized HL-A antigen molecules. Transplantation Proceedings, 7, 195.
Man–mouse somatic cell hybrids

THORSBY, E. (1974) The human major histocompatibility system. Transplantation Reviews, 18, 51.

VAN HEYNINGEN, V., BOBROW, M., BODMER, W.F., GARDINER, S.E., POVEY, M.S. & HOPKINSON, D.A. (1975) Chromosome assignment of some human enzyme loci: mitochondrial malate dehydrogenase to 7, mannose phosphate isomerase and pyruvate kinase to 15 and probably, esterase D to 13. Annals of Human Genetics, (in press).

VAN SOMEREN, H., WESTERVELD, A., HAGEMEIJER, A., MEES, J.R., MEERA KHAN, P. & ZAAALBERG, O.B. (1974) Human antigen and enzyme markers in man–Chinese hamster somatic cell hybrids: evidence for synteny between HL-A, PGM3, ME1 and IPO B loci. Proceedings of the National Academy of Science, United States of America, 71, 962.