Original Research Article

Effects of fish meal replacement with Chlorella meal on growth performance, pigmentation, and liver health of largemouth bass (Micropterus salmoides)

Longwei Xi a,b, Qisheng Lu a,b, Yulong Liu a,b, Jingzhi Su a,b, Wen Chen a,b, Yulong Gong a, Dong Han a,b,c,*, Yunxia Yang a, Zhimin Zhang a, Junyan Jia, Haokun Liu a, Xiaoming Zha, Shouqi Xie a,b,d

a State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
b College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
c Hubei Engineering Research Center for Aquatic Animal Nutrition and Feed, Wuhan 430072, China
d The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China

A R T I C L E I N F O

Article history:
Received 27 August 2021
Received in revised form
18 February 2022
Accepted 29 March 2022
Available online 4 April 2022

Keywords:
Chlorella meal
Growth
Liver health
Micropterus salmoides
Pigmentation

A B S T R A C T

Chlorella meal is a potential protein source for aquafeeds. However, the physiological response of carnivorous fish fed Chlorella meal remains elusive. This study evaluated the effects of replacing dietary fish meal with Chlorella meal on growth performance, pigmentation, and liver health in largemouth bass. Five diets were formulated to replace dietary fish meal of 0% (C0, control), 25% (C25), 50% (C50), 75% (C75), and 100% (C100) with Chlorella meal, respectively. Total 300 fish (17.6 ± 0.3 g) were randomly assigned to 15 tanks (3 tanks/group). Fish were fed the experimental diet twice daily for 8 weeks. The increased dietary Chlorella meal quadratically influenced the final body weight (FBW), weight gain rate (WGR), specific growth rate (SGR), and feed intake (FI), which were significantly lower in the C100 group than in the other groups (P < 0.05). The feed conversion ratio (FCR) increased linearly or quadratically with dietary Chlorella meal. Dietary Chlorella meal linearly or quadratically increased the lutein content of plasma, liver, and dorsal muscle of largemouth bass (P < 0.05). Compared to the C0 group, all supplemented Chlorella meal groups significantly improved the yellowness (b*) of the dorsal body (1.5 to 2.0 fold), abdominal body (1.5 to 1.8 fold), and dorsal muscle (3.8 to 5.4 fold) of largemouth bass (P < 0.05). In addition, compared to the C0 group, the liver vacuolation area of fish was significantly increased in the C75 and C100 groups (P < 0.05). Transcriptional levels of apoptosis-related genes of β-cell lymphoma-2 (bcl2), caspase-9-like (casp9), and caspase-3a (casp3) were markedly upregulated (0.9 to 1.6 fold) in the C100 group compared to the C0 group (P < 0.05). Based on the quadratic regression analysis between FBW, WGR, or SGR and dietary Chlorella meal level, largemouth bass had the best growth when replacing fish meal (40%) with Chlorella meal (47.45%) caused growth retardation, apoptosis, and liver damage in largemouth bass.

© 2022 Chinese Association of Animal Science and Veterinary Medicine. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In aquafeeds, fish meal is an excellent protein source because of its relatively balanced nutrient composition, low levels of anti-nutritional factors, and good palatability (Zhou et al., 2005). However, the high price and limited resources of fish meal seriously restrict its use in aquafeeds (Li et al., 2021a). Therefore, the
exploitation of new alternative protein sources for fish meal is pressing. At present, numerous protein sources have been studied to replace fish meal, including plant protein sources (Arriaga-Hernandez et al., 2021; Huang et al., 2017; Zhang et al., 2020a), animal protein sources (Cao et al., 2020; Jones et al., 2021; Psafakis et al., 2020; Stenberg et al., 2019; Terova et al., 2021), and single-cell protein sources (Hansen et al., 2019; Valente et al., 2019; Yang et al., 2021). However, many plant protein sources contain anti-nutritional factors (Francis et al., 2001; Jannathulla et al., 2019), imbalanced amino acid composition (Espe et al., 2006, 2007), and display poor palatability (Luo et al., 2010). Some animal protein sources also have an imbalanced amino acid composition (Bureau et al., 2000), poor digestibility (Luthada-Raswiswi et al., 2021), and high saturated fatty acid content (Liland et al., 2021). These disadvantages largely limit the use of them to replace fish meal in aquafeeds.

In recent years, microalgae have been recognized as a single-cell protein source in aquafeeds, which contain balanced amino acid composition, high polysaturated fatty acid, and display good palatability (Ahmad et al., 2020; Alagawany et al., 2021; Radhakrishnan et al., 2014; Liu et al., 2019). The utilization of microalgae has less adverse effects on the growth performance of some aquatic animals (Kousoulaki et al., 2016; Man et al., 2020; Safavi et al., 2019; Watanabe et al., 1990). Moreover, the utilization of microalgae in aquafeeds improved the body color of aquatic species (Guroy et al., 2012; Roohani et al., 2019; Ju et al., 2012; Pulcini et al., 2020), which may be attributed to the pigments present in microalgae, such as lutein (a carotenoid) (Liu et al., 2019). As natural pigment sources, microalgae are different from artificial pigments because they are non-toxic and have certain nutritional or pharmacological effects. As one of the well-studied genera of microalgae, Chlorella exhibits abundant nutritional elements, biological safety, and ease of culture, which make it a potential alternative protein source for fish meal (Liu and Chen, 2016; Chen et al., 2018). At present, replacing fish meal with Chlorella meal in rainbow trout (Oncorhynchus mykiss) (Chen et al., 2021), African catfish (Clarias gariepinus) (Raji et al., 2020), zebrafish (Danio rerio) (Carneiro et al., 2020), and crucian carp (Carassius auratus) (Shi et al., 2017b) did not cause negative growth performance. These results indicate that fish meal could potentially be replaced with Chlorella meal. However, the effects of dietary inclusion of Chlorella meal on the growth, pigmentation, and liver health in carnivorous fish, which normally depend on large amounts of fish meal in feeds, have remained elusive.

In China, largemouth bass (Micropterus salmoides) has been widely cultured with an annual production of more than 0.6 million metric tons (Jiang et al., 2018; Zhang et al., 2019). Furthermore, as a typical carnivorous fish, there is a high content of fish meal (about 40% to 54%) in the feeds of largemouth bass (Li et al., 2020a; Wu et al., 2021; Zhang et al., 2020b), which indicate that further development might encounter more challenges from unsustainable fish meal sources. Therefore, there is an urgent requirement to find new alternative proteins to replace fish meal for largemouth bass. However, the replacement of fish meal with Chlorella meal in largemouth bass has not been reported. The present study aimed to investigate the effects of dietary Chlorella meal to replace fish meal on the growth performance, pigmentation, and liver health of largemouth bass.

2. Materials and methods

All fish experiments were conducted according to the Guiding Principles for Care and Use of Laboratory Animals and were approved by the Institute of Hydrobiology, Chinese Academy of Science (IHB, CAS, Protocol No. 2016–018).
ADCi (%) = ADt + [(ADt - ADr) × (0.7 × Dr/0.3 × Di)].

where ADCi is the apparent digestibility coefficient of the ingredient, ADt is the apparent digestibility of the nutrient in the test diet, ADr is the apparent digestibility of nutrient in the reference diet, Dr is the nutrient content in the reference diet, and Di is the nutrient content in the test ingredient.

2.2. Experimental diets

Chlorella meal (Demeter Bio-Tech Co., Ltd., Wuhan, China) and fish meal were used as the main protein sources in the experimental diets. The biochemical composition of fish meal and *Chlorella* meal was shown in Table 2. In the present study, *Chlorella* meal was used at concentrations of 11.85%, 23.7%, 35.6%, and 47.45% to replace dietary fish meal at levels of 25% (C25), 50% (C50), 75% (C75), and 100% (C100). A basal diet containing 40% fish meal was used as the control group (C0). Five isonitrogenous and isolipidic experimental diets were formulated according to Table 3. The five extruded pellet diets were made at the Feed Research Institute, Chinese Academy of Agricultural Sciences (Beijing, China). First, all ingredients of each diet were ground through a 100 mesh. Second, they were completely mixed to pass through a twin-screw extruder (EXT50A, Yanggong Machine, Beijing, China) into 2-mm diameter pellets under the following extrusion conditions: feeding section (100°C), compression section (109°C) and metering section (124°C). Third, all pellets were dried in an oven at 65°C. All the diets were stored at 4°C for the feeding experiment. The proximate composition of the diets was shown in Table 3, and their amino acid composition was presented in Table 4.

2.3. Fish and the feeding experiment

The largemouth bass were obtained from a fish farm (Ezhou, Hubei, China). All fish were then transferred into fiberglass cylinders (1,500 L). During the acclimation period of 2 weeks, fish were fed a commercial feed (>49% crude protein and >5% crude lipid, Largemouth bass 1st, from Wuhan CP Aquatic Co., Ltd., Wuhan, Hubei, China) twice a day at 08:30 and 16:30. The feeding experiment was performed in an indoor recirculating water system containing 15 fiberglass cylinders (rearing volume of 200 L). Residual feed was removed immediately after each feeding, and a siphon was used to remove feces from each tank to maintain the stable operation of the rearing system and to control the water quality. One-fifth of the water in each tank was re-recirculated every day. The recycled water was removed from the suspended particulates through a microfiltration machine, trapped the impurities through a sand filter, and eliminated pathogenic bacteria through an ultraviolet sterilizer.

After 24 h of fasting, a total of 300 healthy fish (initial weight: 17.6 ± 0.03 g, n = 15) were randomly distributed into 15 tanks with 20 fish per tank (semidiameter: 30 cm; height: 70 cm; with 167 L of actual water volume). One of the five experimental diets was fed to three tanks (3 tanks per group). Fish were fed twice a day at 08:30 to 09:30 and 16:30 to 17:30 for 8 weeks. Every feeding lasted for 1 h until all fish in the tank were in apparent satiation (there were a few uneaten pellets in each tank). The remaining pellets of each tank were collected, dried, and weighed to calculate the daily feed intake.

During the experiment, continuous aeration was provided to each tank except for the feeding time, and the water flow rate into each tank was approximately 1.4 L/min. The water temperature was maintained at 28 ± 2°C, and the photoperiod was 12-h light to 12-h dark with a light period from 08:00 to 20:00. The water quality parameters were monitored twice a week, and the values were as follows:

Table 2

Item	Fish meal	*Chlorella* meal
Proximate composition, % dry matter		
Moisture, % wet weight	6.80	2.67
Crude protein	68.21	57.50
Crude lipid	9.00	10.20
Crude ash	14.05	4.71
Crude fiber	1.61	0.89
Carbohydrate (crude fiber free)	0.33	240.03
Gross energy, kJ/g	19.98	19.00
Lutein, mg/kg	0.00	79.73
ADC of dry matter	81.29	72.94
ADC of protein	92.62	87.38
Indispensable amino acids (IAA), % dry matter		
Methionine	1.65	0.87
Lysine	4.44	2.80
Threonine	2.42	2.05
Isoleucine	2.63	1.89
Histidine	1.82	0.93
Valine	2.53	2.34
Leucine	4.50	4.31
Arginine	2.19	2.12
Phenylalanine	2.33	2.48
γ-IAA	24.52	19.80
γ-TAA	27.02	25.38
γ-DAA	51.54	45.18
Fatty acid composition, % total fatty acids		
C14:0	8.12	0.32
C15:0	0.55	0.26
C16:0	14.13	14.11
C17:0	0.64	0.31
C18:0	7.04	1.54
C20:0	0.18	0.17
C24:0	0.41	0.28
γ-SFA	31.40	17.12
γ-MUFA	21.08	21.25
C18:3n-3	0.56	19.23
C20:3n-3	0.09	0.00
C20:5n-3	13.37	0.00
C22:6n-3	0.10	0.00
C22:6n-6	0.21	0.15
C20:2n-6	0.20	0.00
C20:3n-6	0.14	0.00
C20:4n-6	0.10	0.00
C22:2n-6	0.61	0.00
n-3 PUFA	37.03	19.23
n-6 PUFA	10.45	47.05
γ-HUFA	47.48	66.28

Where ADC is the apparent digestibility coefficient of the ingredient, ADt is the apparent digestibility of the nutrient in the test diet, Dr is the nutrient content in the control diet, and Di is the nutrient content in the test diet.

1. Fish meal: from Superprime, TASA Fish Product Co., Ltd., Peru.
2. *Chlorella* meal: from Demeter Bio-Tech Co., Ltd., Wuhan, Hubei, China.
3. Carbohydrate (crude fiber free) = 100 - (Moisture + Crude protein + Crude lipid + Crude ash + Crude fiber).

After 24 h of fasting, a total of 300 healthy fish (initial weight: 17.6 ± 0.03 g, n = 15) were randomly distributed into 15 tanks with 20 fish per tank (semidiameter: 30 cm; height: 70 cm; with 167 L of actual water volume). One of the five experimental diets was fed to three tanks (3 tanks per group). Fish were fed twice a day at 08:30 to 09:30 and 16:30 to 17:30 for 8 weeks. Every feeding lasted for 1 h until all fish in the tank were in apparent satiation (there were a few uneaten pellets in each tank). The remaining pellets of each tank were collected, dried, and weighed to calculate the daily feed intake.

During the experiment, continuous aeration was provided to each tank except for the feeding time, and the water flow rate into each tank was approximately 1.4 L/min. The water temperature was maintained at 28 ± 2°C, and the photoperiod was 12-h light to 12-h dark with a light period from 08:00 to 20:00. The water quality parameters were monitored twice a week, and the values were as follows:
Before sampling, the fish from each tank were randomly selected and the dorsal muscle tissues of the fish were killed from the abdomen using scissors and the dorsal body skin was peeled with a scalpel and forceps for the colorness measurement of dorsal muscle. Three fish (9 fish per group) were collected for blood sampling (from the caudal vein using heparin-free syringes) and 0.2% heparin sodium (configured with 0.68% NaCl) (CAS 9041-08-1, Solarbio, China) was prepared to rinse the syringes and centrifuge tubes before blood sampling. Then, blood samples were centrifuged at 2,054 g for 10 min to acquire plasma, which was stored at -80 °C for further analysis. After blood sampling, the fish were killed from the abdomen using scissors and most of the liver and dorsal muscle from each fish were immediately dissected on ice and frozen in liquid nitrogen, then stored at -80 °C for further analysis. A small part of each liver was fixed by 4% paraformaldehyde for histological analysis.

2.5. Biochemical analysis

The proximate composition of moisture, crude protein, crude lipid, crude ash, and gross energy content of the fish meal, Chlorella meal, experimental diets, whole fish, and dorsal muscle tissues were determined according to the methods of AOAC (2000). Briefly, moisture content was determined by drying the samples to a constant weight at 105 °C for 24 h and calculated as the percentage of water loss. Lipid content was determined using the chloroform-methanol (2:1) method (the samples were crushed and sonicated before the extraction process). Crude protein content (N × 6.25) was determined after acid digestion using an auto Kjeldahl system (Kjeltec-8400, FOSS Tectar, Hagen, Sweden). Crude ash content was determined by incineration in a muffle furnace at 550 °C for 12 h. Gross energy was determined using a Philips Microbomb Calorimeter (Gentry Instruments Inc., Aiken, USA). The crude fiber of fish meal, Chlorella meal, and experimental diets was analyzed using an automatic fiber analyzer (A2000I, ANKOM, USA). The amino acid composition of fish meal, Chlorella meal, and experimental diets were analyzed using an A300 amino acid analyzer (membraPure, Germany) after using the acid hydrolysis method to process all samples (Liu et al., 2016). Fatty acid composition of fish meal and Chlorella meal was analyzed as described by Fei et al. (2020) using a gas chromatograph-mass spectrometer (GC–MS, 7890A, Agilent Technologies, USA). Plasma glucose content was determined by incineration in a muffle furnace at 550 °C for 12 h.
measured using commercial assay kits (638-50971, Wako Pure Chemical Industries, Tokyo, Japan). Each test was performed with at least 2 replicates.

2.6. qRT-PCR analysis

Total RNA was extracted using TRIzol reagent according to the manufacturer’s instructions (Invitrogen, Carlsbad, USA). Agarose gel electrophoresis and NanoDrop ND-2000 UV–Vis Spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA) analysis were performed to detect RNA quality and quantity, respectively, and the total RNA was stored at −80 °C for cDNA synthesis. cDNA was synthesized using cDNA synthesis kit (TransGen Biotech, AE31-03) according to the manufacturer’s instructions. Real-time quantitative PCR was carried out with SYBR Green I Master Mix (Roche, Germany) on a Light-Cycler 480 System (Roche). All reactions were performed in a 6 µL volume containing 2 µL cDNA template, 0.24 µL each of forward and reverse primers, 3 µL LightCycler 480 SYBR Green I Master, and 0.52 µL ddH2O. The template was replaced with ddH2O and amplified in the same plate as the negative controls. The parameters were as follows: pre-incubation at 95 °C for 5 min, followed by 40 cycles of 10 s at 95 °C, 20 s at 60 °C, and 10 s at 72 °C. β-actin was used as a housekeeping gene, and the primers used in this study were listed in Table 5. Each sample was run in triplicate, and the results were expressed according to the method described by Bustin et al. (2009).

2.7. Photographing and colorness determination

A Canon EOS 80D camera (Japan) was used for photographing the whole fish, liver, and dorsal muscle of the fish after largemouth bass fed different experimental diets for 8 weeks. The color of the dorsal body, abdominal body, and dorsal muscle of the fish were measured using a Konica Minolta CR-400 tristimulus colorimeter (Minolta, Osaka, Japan). Dorsal body and abdominal body areas were indicated by the red dashed box and black solid box, respectively (Fig. 1A). The dorsal muscle area was where the dorsal body skin was peeled. The L* value represents lightness (0 for black, 100 for white), a* represents the red/green dimension (redness), and b* represents the yellow/blue dimension (yellowness), according to the recommendations of the International Commission on Illumination (Pauli, 1976).

2.8. Lutein determination

The pretreatments of samples were conducted as previously described: fish meal, Chlorella meal, and diets (Ferreira et al., 2007), plasma (Breithaupt et al., 2003), and liver and dorsal muscle tissues (Liu et al., 2019). After pretreatment, the obtained samples were redissolved in 1 mL extract liquid (methanol: dichloromethane = 3:1; vol:vol), filtered, and immediately used for HPLC (Waters e2695, USA) analyses (Liu et al., 2019). All the steps were performed under dim light. Lutein was identified according to the peak time of the lutein standard product (PHL97723-5 MG, Supelco, USA), and the lutein content was quantified according to the standard curve (Y = 5E-08X, R² = 0.998).

2.9. Histological analysis

Liver samples were dehydrated in a graded ethanol series after fixation for 24 h in 4% paraformaldehyde. They were then embedded in paraffin and cut into 4 µm sections that were stained with hematoxylin and eosin (H&E), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), and 4,6-diamidino-2-phenylindole (DAPI), respectively. H&E staining sections were pictured (Nikon Eclipse CI, Japan) and scored (1 to 2 = severe damage, 3 to 4 = moderate, 5 to 6 = mild, 7 to 8 = slight, 9 to 10 = normal) according to their vacuolation area. TUNEL and DAPI staining were pictured (Nikon Eclipse Ti-SR, Japan), and the color area was calculated to determine the apoptosis rate (%). All the steps were performed under dim light. The pretreatments of samples were conducted as previously described: fish meal, Chlorella meal, and diets (Ferreira et al., 2007), plasma (Breithaupt et al., 2003), and liver and dorsal muscle tissues (Liu et al., 2019). After pretreatment, the obtained samples were redissolved in 1 mL extract liquid (methanol: dichloromethane = 3:1; vol:vol), filtered, and immediately used for HPLC (Waters e2695, USA) analyses (Liu et al., 2019). All the steps were performed under dim light. Lutein was identified according to the peak time of the lutein standard product (PHL97723-5 MG, Supelco, USA), and the lutein content was quantified according to the standard curve (Y = 5E-08X, R² = 0.998).

2.10. Statistical analysis

Results were shown as the means ± the standard error of the mean (SEM). All data were analyzed using SPSS 24.0 software (IBM, USA). Levene’s test was applied to the homogeneity of variances. One-way analysis of variance (ANOVA) was performed to test the effect of dietary Chlorella meal, and Duncan’s multiple range test with P < 0.05 was used to detect the significance of differences among all groups. Orthogonal polynomial contrasts were used to determine whether there was a linear and/or quadratic regression (Wei et al., 2019). A quadratic equation was used to calculate the dietary inclusion level of Chlorella meal when fish achieved...
maximum values (final body weight, weight gain rate, specific growth rate, or plasma lutein concentrations). R^2 (0.7 < R^2 ≤ 1) indicated a good fit of the regression equation to the data (Xu et al., 2018).

3. Results

3.1. The ADC of fish meal and Chlorella meal

The ADC of dry matter in fish meal and Chlorella meal were 81.29% and 72.94%, respectively. The ADC of protein in fish meal and Chlorella meal were 92.62% and 87.38%, respectively (Table 2).

3.2. Growth, feed utilization, and morphological indices

Growth, feed utilization, and morphological indices were listed in Table 6. Increased levels of Chlorella meal significantly influenced final body weight (FBW), weight gain rate (WGR), specific growth rate (SGR), feed intake (FI), feed conversion ratio (FCR), and HSI ($P < 0.05$). However, survival rate (SR) and CF were not affected by dietary Chlorella meal levels. There were significant linear or quadratic regressions regarding dietary Chlorella meal levels for FBW, WGR, SGR, FCR, and HSI ($P < 0.05$). The lowest FBW, WGR, and SGR values were found in the C100 group among all treatments ($P < 0.05$). There was a significant quadratic regression regarding the dietary Chlorella meal levels for FI, which was significantly lower in the C100 group than in the other groups ($P < 0.05$). Higher FCR and HSI values were found in the C75 and C100 groups than in the other groups ($P < 0.05$). Based on the quadratic regression analysis between FBW, WGR, or SGR and dietary Chlorella meal level, largemouth bass had the best growth when adding 15.03% to 15.43% dietary Chlorella meal (replace 31.7% to 32.6% of fish meal).

3.3. Biochemical indicators

The plasma glucose content and proximate composition of the whole fish and dorsal muscle were shown in Table 7. The increasing levels of Chlorella meal significantly affected the plasma glucose and crude protein of the whole fish and dorsal muscle ($P < 0.05$). No significant effects of dietary Chlorella meal levels were observed on whole fish and dorsal muscle, including moisture, crude lipid, crude ash, and gross energy. With increasing dietary Chlorella meal levels, plasma glucose increased linearly or quadratically, whereas plasma...
glucose significantly increased in the C75 and C100 groups compared to the other groups (P < 0.05). With increasing dietary Chlorella meal levels, the crude protein of the whole fish and dorsal muscle decreased linearly and quadratically, with the lowest content in the C100 group (P < 0.05).

3.4. Transcriptional expression in liver tissues

As shown in Table 8, increasing levels of Chlorella meal significantly affected the liver transcriptional levels of insulin-like growth factor 1 (igf-1), insulin pathway-related genes of insulin receptor a (ira) and insulin receptor substrate 1 (irs1), glycolysis-related genes of glucokinase (gck) and pyruvate kinase (pk), gluconeogenesis-related genes of glucose-6-phosphatase catalytic subunit (g6pc) and phosphoenolpyruvate carboxykinase (pepc), apoptosis-related genes of β-cell lymphoma-2 (bcl2), caspase-9-like (casp9), and caspase-3α (casp3), and amino acid response pathway-related genes of activating transcription factor 4 (atf4) (P < 0.05). However, the dietary Chlorella meal did not significantly affect caspase-8-like (casp8), elongation initiation factor 2α (eif2α), and target of rapamycin (TOR) pathway-related genes of target of rapamycin (tor) and ribosomal protein s6 (s6). The liver transcriptional levels

Table 6

Growth, feed utilization, and morphological indices of largemouth bass fed different experimental diets for 8 weeks (mean ± SEM, n = 3 for IBW, FBW, WGR, SGR, FI, FCR, and SR; n = 9 for HSI and CF).

Item	C0	C25	C50	C75	C100	Pr > F
	ANOVA	Linear trend	Quadratic trend			
IBW, g/sh	16.78 ± 0.08	17.68 ± 0.07	17.60 ± 0.09	17.68 ± 0.09	17.57 ± 0.07	0.804 0.474 0.718
FBW, g/sh	66.85 ± 2.03abc	71.70 ± 2.11c	68.93 ± 1.43bc	64.83 ± 2.14a	51.21 ± 1.97a	0.000 0.003 0.000
WGR, %	278.80 ± 13.09abc	305.56 ± 10.47c	291.77 ± 9.43bc	266.64 ± 10.62b	191.54 ± 11.48a	0.000 0.003 0.000
SGR, %/d	2.22 ± 0.065	2.33 ± 0.045	2.27 ± 0.045	2.16 ± 0.055	1.78 ± 0.085	0.000 0.003 0.000
FI, g/sh	41.39 ± 1.24b	45.22 ± 1.43b	44.49 ± 0.79b	43.49 ± 1.63b	36.58 ± 1.79b	0.010 0.106 0.001
FCR	0.84 ± 0.014a	0.84 ± 0.014a	0.87 ± 0.014a	0.92 ± 0.011b	1.09 ± 0.011c	0.000 0.000 0.000
SR, %	91.67 ± 4.41	96.67 ± 3.33	98.33 ± 1.67	96.67 ± 1.67	96.67 ± 1.67	0.540 0.259 0.226
HSI, %/g	3.02 ± 0.11c	3.37 ± 0.12c	3.54 ± 0.10c	4.32 ± 0.27b	4.94 ± 0.23a	0.000 0.000 0.000
CF, %/g/sh	2.32 ± 0.05	2.24 ± 0.02	2.28 ± 0.03	2.29 ± 0.03	2.22 ± 0.05	0.174 0.238 0.496

Table 7

Plasma glucose and proximate composition of whole fish and dorsal muscle of largemouth bass fed different experimental diets for 8 weeks (mean ± SEM, n = 6 for glucose content; n = 3 for the proximate composition of whole fish and dorsal muscle parameters).

Item	Diets1	Pr > F				
	ANOVA	Linear trend	Quadratic trend			
Plasma						
Glucose content, mg/dL	60.21 ± 2.31a	57.97 ± 3.78a	62.70 ± 3.73a	81.24 ± 5.52b	91.14 ± 3.96b	0.000 0.000 0.000
Whole fish, % wet weight						
Moisture	71.44 ± 0.65	70.35 ± 0.38	71.00 ± 0.17	71.60 ± 0.14	71.65 ± 0.62	0.311 0.339 0.334
Crude protein	17.04 ± 0.19bc	17.09 ± 0.03bc	16.93 ± 0.16bc	16.64 ± 0.22ab	16.50 ± 0.9ab	0.024 0.002 0.007
Crude lipid	8.01 ± 0.37	8.91 ± 0.30	8.59 ± 0.17	8.37 ± 0.21	8.40 ± 0.51	0.443 0.621 0.426
Crude ash	3.78 ± 0.11	3.84 ± 0.11	3.93 ± 0.08	3.82 ± 0.06	3.66 ± 0.06	0.320 0.383 0.100
Gross energy	23.16 ± 0.40	24.44 ± 0.66	23.65 ± 0.12	23.46 ± 0.15	23.74 ± 0.41	0.320 0.895 0.709
Dorsal muscle, % wet weight						
Moisture	77.89 ± 0.23	78.17 ± 0.03	78.14 ± 0.08	78.78 ± 0.37	78.75 ± 0.11	0.542 0.503 0.623
Crude protein	19.09 ± 0.13bc	19.00 ± 0.07bc	19.03 ± 0.08ab	18.59 ± 0.19ab	18.33 ± 0.05b	0.000 0.000 0.000
Crude lipid	2.47 ± 0.17	2.49 ± 0.19	2.52 ± 0.14	2.47 ± 0.18	2.51 ± 0.15	0.999 0.896 0.990
Crude ash	1.37 ± 0.02	1.32 ± 0.02	1.39 ± 0.03	1.35 ± 0.02	1.41 ± 0.04	0.238 0.225 0.247
Gross energy	21.84 ± 0.03	21.85 ± 0.09	21.73 ± 0.09	21.76 ± 0.07	21.72 ± 0.04	0.537 0.114 0.297

1. C0, C25, C50, C75, and C100 represent diets in which Chlorella meal replaced fish meal levels of 0%, 25%, 50%, 75%, and 100%, respectively. Duncan’s multiple range test was used to detect the significance of differences among all groups. Different superscripts on the same row indicate significant differences (P < 0.05).

2. Significance probability associated with the F-statistic.

3. Gross energy in whole fish (dry matter basis).

4. Gross energy in dorsal muscle (dry matter basis).
of igf-1, g6pc, and pepck significantly decreased linearly or quadratically \((P < 0.05)\), whereas igf-1 and pepck significantly decreased in the C75 and C100 groups compared with the C0 group \((P < 0.05)\), and g6pc significantly decreased in the C50 and C100 groups compared with the C0 group \((P < 0.05)\). Moreover, compared to the C0 group, the liver transcriptional levels of bcl2, casp9, and casp3 in the C100 group were markedly upregulated 1.1-fold, 0.9-fold, and 1.6-fold, respectively.

3.5. Colorness and lutein content

Compared to the C0 group, all other groups showed visual color changes in the whole fish (Fig. 1A), liver (Fig. 1B), and dorsal muscle tissues (Fig. 1C) of largemouth bass. As shown in Table 9, the a* (redness) in the dorsal body, abdominal body, and b* (yellowness) in the dorsal body, abdominal body, and dorsal muscle were significantly affected by the dietary Chlorella meal levels \((P < 0.05)\). No significant effects of dietary Chlorella meal levels were observed on the L* (lightness) of the dorsal body, abdominal body, and dorsal muscle. There were significant linear or quadratic trends regarding the dietary Chlorella meal levels for the a* in the dorsal body and abdominal body and for the b* in the dorsal body, abdominal body, and dorsal muscle \((P < 0.05)\). Moreover, the b* value of the dorsal body, abdominal body, and dorsal muscle in all supplemented Chlorella meal groups were significantly increased 1.5 to 2.0 fold, 1.5 to 1.8 fold, and 3.8 to 5.4 fold, respectively.

Linear and quadratic regressions were analyzed by orthogonal polynomial contrasts, and then the equation with a higher R² score was selected to make the figures shown in Fig. 2. The lutein concentrations in plasma (Fig. 2A), liver (Fig. 2B), and dorsal muscle (Fig. 2C) were significantly affected by dietary Chlorella meal levels \((P < 0.05)\), and there were significant linear or quadratic trends between the increasing levels of Chlorella meal \((P < 0.05)\). Based on quadratic regression analysis between plasma lutein concentrations and dietary Chlorella meal levels, largemouth bass had the maximum plasma lutein concentration when adding 43.83% of Chlorella meal to the diet. Similarly, there were significant linear or quadratic relationships between b* and lutein concentrations in the dorsal muscles (Fig. 2D) \((P < 0.05)\).

3.6. Histological changes

The fish liver in the C25 group showed the best health status compared to the other groups (Fig. 3). However, with the increased inclusion of dietary Chlorella meal, liver cells became bigger, and many nuclei disappeared in cells, especially in the C100 group (Fig. 3A). Fish fed the C75 and C100 diets exhibited much more severe liver vacuolization than those fed the other diets (Fig. 3B). The results of liver DAPI and TUNEL staining were shown in Fig. 4. The C100 group showed the highest apoptosis rate in the liver compared to the other groups (Fig. 4B) \((P < 0.05)\).

4. Discussion

4.1. Effects of dietary Chlorella meal on growth performance of fish

In the present study, compared to the control group (40% dietary fish meal), Chlorella meal replacing 31.7% to 32.6% of the dietary fish meal had the best growth (FBW, WGR, and SGR) in largemouth bass and Chlorella meal, replacing up to 50% of dietary fish meal did not have a negative influence on growth and FCR. This is in agreement with many previous studies showing that dietary Chlorella inclusion had no negative impact on growth in rainbow trout (Gouveia et al., 1996), sterlet (Acipenser ruthenus) (Sergejevova and Masojidek, 2012), gilthead seabream (Sparus aurata) (Gouveia et al., 2002), zebrafish (Carneiro et al., 2020) and Nile tilapia (Oreochromis niloticus) (Teuling et al., 2017). In olive flounder (Paralichthys olivaceus), supplementation with 10% to 15% Chlorella vulgaris enhanced the growth performance of fish after 8-week feeding (Rahimnejad et al., 2017). In rainbow trout, dietary inclusion of 10% Chlorella sorokiniana meal (containing 26.6% dietary fish meal) did not significantly influence the FBW, WGR, SGR, and FCR compared with the control diet (containing 30% dietary fish meal) after a 90-day feeding experiment (Chen et al., 2021). Similarly, the SGR of rainbow trout was not influenced by the dietary inclusion of 4% C. vulgaris after 9-week feeding (Gouveia et al., 1996). These results indicate that Chlorella meal is an effective alternative protein source for fish meal in aquatic animals, including largemouth bass. This may be due to the abundant nutrients of Chlorella, such as balanced amino acids, high levels of

Gene	Diets	C0	C25	C50	C75	C100	Pr × F² ANOVA	Linear trend	Quadratic trend
igf-1	1.06 ± 0.16a	1.20 ± 0.13ab	0.87 ± 0.03b	0.43 ± 0.10a	0.67 ± 0.07a	0.001	0.001	0.004	
ira	1.05 ± 0.14a	1.62 ± 0.25ab	1.08 ± 0.17a	1.35 ± 0.10ab	2.39 ± 0.56a	0.021	0.023	0.026	
ir3	1.32 ± 0.44a	1.23 ± 0.17ab	2.22 ± 0.51f	3.20 ± 0.12ab	9.19 ± 2.73b	0.003	0.001	0.000	
gck	1.24 ± 0.29ab	1.17 ± 0.10a	1.65 ± 0.33ab	1.00 ± 0.19a	3.62 ± 1.26b	0.021	0.030	0.018	
pk	1.19 ± 0.32a	1.06 ± 0.18a	0.71 ± 0.03a	2.13 ± 0.42ab	3.47 ± 1.23ab	0.006	0.005	0.001	
g6pc	1.03 ± 0.12	1.18 ± 0.04a	0.64 ± 0.02	0.66 ± 0.10ab	0.61 ± 0.04b	0.000	0.000	0.001	
pepck	1.07 ± 0.18b	0.77 ± 0.14ab	0.65 ± 0.15ab	0.50 ± 0.12a	0.58 ± 0.07a	0.055	0.007	0.009	
bcl2	1.13 ± 0.28a	1.14 ± 0.13a	0.87 ± 0.19a	1.03 ± 0.11a	2.39 ± 0.70a	0.039	0.055	0.013	
casp8	1.04 ± 0.35	1.17 ± 0.16	0.96 ± 0.15	1.03 ± 0.09	1.45 ± 0.30	0.488	0.311	0.315	
casp9	1.16 ± 0.30a	0.90 ± 0.07a	0.99 ± 0.15a	1.23 ± 0.08ab	2.97 ± 0.23a	0.000	0.003	0.000	
casp3	1.04 ± 0.21a	1.12 ± 0.07a	0.94 ± 0.15a	1.17 ± 0.06a	1.94 ± 0.09b	0.001	0.005	0.000	
tor	1.09 ± 0.22	1.19 ± 0.09	1.07 ± 0.13	0.97 ± 0.14	1.04 ± 0.06	0.846	0.444	0.749	
s6	1.10 ± 0.22	1.21 ± 0.06	0.87 ± 0.09	0.85 ± 0.11	0.96 ± 0.19	0.358	0.160	0.326	
eff2a	1.11 ± 0.26	1.20 ± 0.10	0.96 ± 0.09	0.81 ± 0.15	1.23 ± 0.14	0.322	0.777	0.441	
atf4	1.01 ± 0.23ab	0.93 ± 0.10a	1.26 ± 0.11ab	1.18 ± 0.08ab	2.22 ± 0.82ab	0.044	0.013	0.015	

1. β-actin was used as a housekeeping gene.
2. C0, C25, C50, C75, and C100 represent diets in which Chlorella meal replaced fish meal levels of 0%, 25%, 50%, 75%, and 100%, respectively. Duncan’s multiple range test was used to detect the significance of differences among all groups. Different superscripts on the same row indicate significant differences \((P < 0.05)\).
3. Significance probability associated with the F-statistic.
highly unsaturated fatty acids, antioxidants, pigments, vitamins, and a growth substance known as the *Chlorella* growth factor (CGF), which made *Chlorella* have a similar nutritional contribution as fish meal (Alagawany et al., 2021; Kotrbacek et al., 2015).

However, the growth performance of largemouth bass was significantly decreased when the fish meal was completely replaced by 47.45% dietary *Chlorella* meal. This could be due to the significantly decreased FI. The digestibility, especially the protein digestibility, was lower in *Chlorella* meal than in the fish meal, which might lead to inadequate utilization of the nutrients in *Chlorella* meal by largemouth bass, and decrease the growth in totally replacement group. The inadequate utilization of the nutrients could be caused by the thick cell walls of *Chlorella* meal (Shah et al., 2018). This was further evidenced by the significantly increased FCR in the C75 and C100 groups. In addition, the balanced dietary amino acid composition is essential for the growth of aquaculture species (Canada et al., 2016; Oliveira et al., 2021). For largemouth bass, the optimal dietary level of methionine is 1.22% (Chen et al., 2010). In the present study, compared to *Chlorella* meal, the fish meal content. The inadequate utilization of the nutrients could be caused by the thick cell walls of *Chlorella* meal (Shah et al., 2018). This was further evidenced by the significantly increased FCR in the C75 and C100 groups. In addition, the balanced dietary amino acid composition is essential for the growth of aquaculture species (Canada et al., 2016; Oliveira et al., 2021). For largemouth bass, the optimal dietary level of methionine is 1.22% (Chen et al., 2010). In the present study, compared to *Chlorella* meal, the fish meal was completely replaced by 47.45% dietary *Chlorella* meal. This could be due to the significantly decreased FI. The digestibility, especially the protein digestibility, was lower in *Chlorella* meal than in the fish meal, which might lead to inadequate utilization of the nutrients in *Chlorella* meal by largemouth bass, and decrease the growth in totally replacement group. The inadequate utilization of the nutrients could be caused by the thick cell walls of *Chlorella* meal (Shah et al., 2018). This was further evidenced by the significantly increased FCR in the C75 and C100 groups. In addition, the balanced dietary amino acid composition is essential for the growth of aquaculture species (Canada et al., 2016; Oliveira et al., 2021). For largemouth bass, the optimal dietary level of methionine is 1.22% (Chen et al., 2010). In the present study, compared to fish meal, the low level of methionine in *Chlorella* meal led to the low dietary level of methionine (0.64%) in the C100 group, which is 50% of the requirement of largemouth bass. Furthermore, the protein

Table 9

The color parameters of the dorsal body, abdominal body, and dorsal muscle of largemouth bass fed different experimental diets for 8 weeks (mean ± SEM, n = 6).

Item	Diets1	C0	C25	C50	C75	C100	Pr > F²
Dorsal body²							ANOVA
L*	42.15 ± 2.43ab	41.06 ± 1.54a	43.79 ± 1.21ab	47.01 ± 1.57b	41.63 ± 1.89a		
a*	-4.85 ± 0.30a	-6.74 ± 0.33bc	-6.76 ± 0.20bc	-7.28 ± 0.33a	-6.20 ± 0.45b		
b*	5.34 ± 0.28a	13.73 ± 0.59bc	13.36 ± 1.10b	16.02 ± 1.29a	14.65 ± 0.76bc		
Abdominal body³							Linear trend
L*	76.02 ± 0.68a	78.18 ± 1.06c	79.84 ± 1.25a	78.47 ± 1.23c	76.23 ± 2.16a		
a*	-6.72 ± 0.21a	-8.95 ± 0.20a	-8.88 ± 0.30a	-9.27 ± 0.49a	-8.60 ± 0.19a		
b*	6.84 ± 0.53a	21.83 ± 1.0b	21.85 ± 1.74a	24.47 ± 1.76b	21.30 ± 0.77b		
Dorsal muscle⁴							Quadratic trend
L*	42.99 ± 0.51a	42.09 ± 1.07c	41.17 ± 1.44a	42.05 ± 0.74b	41.64 ± 1.10a		
a*	-3.31 ± 0.08a	-3.32 ± 0.46b	-3.90 ± 0.40bc	-4.48 ± 0.16a	-3.68 ± 0.34ab		
b*	1.38 ± 0.14a	6.63 ± 0.69a	7.41 ± 0.83bc	7.70 ± 0.54bc	8.89 ± 0.65a		

L* — lightness; a* — redness; b* — yellowness.

1. C0, C25, C50, C75, and C100 represent diets in which *Chlorella* meal replaced fish meal levels of 0%, 25%, 50%, 75%, and 100%, respectively. Duncan’s multiple range test was used to detect the significance of differences among all groups. Different superscripts on the same row indicate significant differences (P < 0.05).

2. Significance probability is associated with the F-statistic.

3. Refer to Fig. 1A for the specific measured position.

4. Refer to Fig. 1A for the specific measured position.

5. Refer to Fig. 1A for the specific measured position, measured after peeled the skin of dorsal body.

Fig. 2. The regression analyses between lutein concentrations and different parameters of largemouth bass fed different experimental diets for 8 weeks (mean ± SEM, n = 3). (A) The quadratic regression analysis between the plasma lutein concentrations and dietary *Chlorella* meal content. (B) The linear regression analysis between the liver lutein concentrations and dietary *Chlorella* meal content. (C) The linear regression analysis between the dorsal muscle lutein concentrations and dietary *Chlorella* meal content. (D) The linear regression analysis between the dorsal muscle lutein concentrations and b* of dorsal muscle. (Interpretation: Linear and quadratic trends were analyzed by orthogonal polynomial contrasts, and then the equation with a higher R² score was selected to make the figures shown above.)
digestibility was lower in *Chlorella* meal than fish meal, which meant the available amino acid would be even lower in the C100 group. This might be one key reason for the decreased growth in the C100 group. Li et al. (2021b) proved that compared to the control diet (65.3% of fish meal), supplementation with 0.5% of methionine to the low fish meal diet (14.5% of fish meal) significantly improved the growth of largemouth bass.

Besides, excessive dietary *Chlorella* meal could not be efficiently utilized because of excessive supplementation of *Chlorella* meal led to high dietary carbohydrate, which was 28.85% carbohydrate (crude fiber-free) in the C100 group. Zhang et al. (2019) reported that high dietary starch levels (24 to 36%) could cause significant adverse effects on largemouth bass. This could cause glucose intolerance, abnormal glucose metabolism, and retarded growth of largemouth bass, as evidenced by the present results of significantly increased plasma glucose level, decreased growth, and glucose metabolism in the C100 group. Furthermore, the crude protein content was significantly decreased in the C100 group, which might be a further subject along with the decreased growth in the C100 group.

In addition, the growth of fish is mainly regulated by some pathways, including Growth Hormone-IGF-1 and insulin signals. *Igf-1* is an essential regulator of fish growth (Dai et al., 2020). It has been reported that total replacement of fish meal (70.37% fish meal in control diet) by a mixture of plant proteins significantly decreased the growth and down-regulated the expression of *igf-1* in the liver of gilthead sea bream (*S. aurata*) (Gomez-Requeni et al., 2004). In Japanese flounder (*P. olivaceus*), a 3.7% ultrafiltration diet significantly increased the growth and upregulated the expression of *igf-1* in the fish liver (Zheng et al., 2012). In the present study, significantly reduced growth was accompanied by down-regulation of liver *igf-1* in the C100 group. This could partly explain the suppressed growth of largemouth bass in the C100 group.

Fig. 3. Liver H&E staining analysis of largemouth bass fed different experimental diets for 8 weeks. C0, C25, C50, C75, and C100 represent diets in which *Chlorella* meal replaced fish meal levels of 0%, 25%, 50%, 75%, and 100%, respectively. (A) Representative images (100×, scale bar = 100 μm); The black arrows represent the cell nucleus disappear and the cytoplasmic vacuolization. (B) Images’ statistical analysis (mean ± SEM, n = 9); Liver relative health status of largemouth bass was scored according to the degree of its vacuolization (1 to 2: severe damage, 3 to 4: moderate, 5 to 6: mild, 7 to 8: slight, 9 to 10: normal). Duncan’s multiple range test used to detect its significance. Values marked with different superscripts above the bars indicate significant differences (P < 0.05).
Fig. 4. Liver DAPI and TUNEL staining analyses of largemouth bass fed different experimental diets for 8 weeks. C0, C25, C50, C75, and C100 represent diets in which Chlorella meal replaced fish meal levels of 0%, 25%, 50%, 75%, and 100%, respectively. (A) Representative images (200 ×, scale bar = 100 µm). Under the fluorescence microscope, the blue color represents the nucleus and the green color represents apoptotic cells. (B) Images' statistical analysis (mean ± SEM, n = 9). Apoptosis rate (%) = 100 × [Green color area (TUNEL area)]/[Blue color area (DAPI area)]. TUNEL – terminal deoxynucleotidyl transferase dUTP nick end labeling; DAPI – 40, 6-diamidino-2-phenylindole. Duncan's multiple range test used to detect its significance. Values marked with different superscripts above the bars indicate significant differences (P < 0.05).
The insulin pathway is important in maintaining glucose homeostasis. Activation of the insulin pathway usually stimulates glycolysis and inhibits gluconeogenesis (Wang et al., 2020). In the present study, the C100 group significantly induced the transcriptional levels of ‗ira‘ and ‗irs1‘ in the liver, indicating activation of the insulin pathway. Meanwhile, a significant upregulation of ‗gck‘ and ‗pk‘ was found in the liver of the C100 group, which plays a key role in glycolysis. This was supported by previous results showing an obvious upregulation of ‗gk‘ and ‗pk‘ in the liver of largemouth bass fed high-carbohydrate diets (24% to 36% dietary starch) (Zhang et al., 2019). In the present study, the transcriptional levels of ‗pepck‘ and ‗g6pc‘, key enzymes in gluconeogenesis, were significantly downregulated in the largemouth bass liver of the C100 group. This was also supported by the fact that high dietary corn starch (20%) could suppress gluconeogenesis by downregulating the expression of ‗pepck‘ and ‗g6pc‘ in the liver of largemouth bass (Zhang et al., 2020c). All these activated glucose metabolism genes indicated that the C100 group received the effects of increased dietary carbohydrate, which would cause the suppressed growth of largemouth bass.

Many studies have shown that dietary Chlorella does not affect the crude protein content of the whole body or muscle fish (Kim et al., 2016; Rahimzadeh Ch., 2017; Lu et al., 2018). Similar to our results showed that replacing up to 75% of fish meal with Chlorella meal did not significantly affect the crude protein content of the whole body and dorsal muscle of largemouth bass. However, crude protein content was significantly decreased in the C100 group. In fish, the TOR pathway mainly regulates protein synthesis (Song et al., 2016). In the present study, no significant changes in ‗tor‘ and ‗s6‘, two key factors in the TOR pathway, were found in the liver tissues of largemouth bass fed different Chlorella meal diets. In contrast to the TOR pathway, the amino acid response pathway is key to regulating protein catabolism through the activation of ‗atf4‘ (Kilberg et al., 2005; Dai et al., 2020). In the present study, ‗atf4‘ was significantly upregulated in the C100 group, indicating the induction of protein catabolism. This was responsible for the reduced crude protein content of the whole body and dorsal muscle and finally suppressed the growth of largemouth bass in the C100 group.

4.2. Dietary inclusion of Chlorella meal improves the pigmentation of fish

The carotenoid is a pigment commonly found in some microalgae, such as Dunaliella salina, Haematococcus pluvialis, C. vulgaris, and Porphyridium cruentum (Ahmad et al., 2020; Gong and Bassi, 2016). Feed supplemented carotenoids (including natural-source carotenoids of microalgae) improved fish pigmentation because fish cannot de novo synthesis of carotenoids (Alagawany et al., 2021). Chlorella is a type of microalgae rich in carotenoids (0.4% on a dry basis) (Gouveia et al., 2002), which can improve the health and body color of fish (Zhu and Mai, 2003). The present study observed that dietary Chlorella meal could enhance the pigmentation of largemouth bass. In agreement with our study, the inclusion of Chlorella in the feed also enhanced the pigmentation of sterlet (Sergejevova and Masojidek, 2012), rainbow trout (Gouveia et al., 1996, 1997, 1998), and gilthead seabream (Gouveia et al., 2002). It has been reported that the lutein (a primary carotenoid) content in Chlorella was about ten times higher than that in marigold, where marigold is the main plant species that produces lutein in the industry (Chen et al., 2018; Chen and Liu, 2018; Gong and Bassi, 2017). This indicates that Chlorella contains abundant lutein and has been directly used as a source of natural pigments in medicine, food, and cosmetics (Ahmad et al., 2020). In the present study, rich lutein content was found in the plasma, liver, and dorsal muscle tissues of largemouth bass fed different Chlorella meal diets. This is mainly caused by the high lutein content in Chlorella meal (79.73 mg/kg) because no lutein content was detected in the control diet, and fish could not synthesize lutein by themselves. This result was supported by previous studies showing that dietary lutein could accumulate in the fillets of channel catfish (Ictalurus punctatus) (Li et al., 2007), skin and liver tissues of yellow catfish (Pelteobagrus fulvidraco) (Liu et al., 2019). Moreover, Melisza et al. (2017) found that the dietary inclusion of 0.1% lutein could significantly increase the muscle carotenoid (including lutein) content in the Lake Kursumli rainbowfish (Melanotaenia parva). These studies indicate that lutein accumulates in different tissues of different fish species. Yellow body color is determined by xanthophores containing carotenoids (Kimler and Taylor, 2002). b* is an important parameter used to analyze coloration in fish (Wei et al., 2019; Liu et al., 2019). Storebakken et al. (2004) used several mathematical models to describe the relationship between instrumentally assessed coloration and carotenoid concentration, indicating that instrument color analysis under standard conditions can accurately predict carotenoid levels. Liu et al. (2019) found a positive correlation between b* and lutein content in the abdominal and dorsal skin and suggested that lutein could be a key indicator for judging the pigmentation of different fish species. Yellow body color is determined by xanthophores containing carotenoids (Kimler and Taylor, 2002). b* is an important parameter used to analyze coloration in fish (Wei et al., 2019; Liu et al., 2019). Storebakken et al. (2004) used several mathematical models to describe the relationship between instrumentally assessed coloration and carotenoid concentration, indicating that instrument color analysis under standard conditions can accurately predict carotenoid levels. Liu et al. (2019) found a positive correlation between b* and lutein content in the abdominal and dorsal skin and suggested that lutein could be a key indicator for judging the pigmentation of different fish species.

4.3. Excess replacing fish meal with Chlorella meal leads to liver damage of fish

Histological changes in the liver are crucial for understanding nutrition-related pathological alterations in fish (Shi et al., 2017a, b). Dietary inclusion of Chlorella meal has been reported to lead to karyopyknosis and enlarged hepatocyte size in the liver tissues of crucian carp (Shi et al., 2017b). Another study found that replacing fish meal with a combination of soybean meal and Chlorella meal also caused the disappearance of the nuclear membrane in cells, karyopyknosis, and hepatocyte necrosis in juvenile crucian carp (Shi et al., 2017a). Similarly, in the present study, replacing 75% or 100% dietary fish meal with Chlorella meal led to severe vacuolation in the liver of largemouth bass. The reason could be that the high dietary inclusion of Chlorella meal (35.6% to 47.45%) increased dietary carbohydrate (crude fiber-free) content (25.99% in the C75 group and 28.85% in the C100 group), which caused glucose intolerance and liver impairment of largemouth bass, which was evidenced by the increased plasma glucose levels and liver apoptosis signals in the C75 and C100 groups. This was also supported by high dietary carbohydrates (24% to 36% of dietary starch) causing hyperglycemia and severe liver vacuolation in largemouth bass. Apoptosis is essential for the development and maintenance of cellular homeostasis (Kumar et al., 2016). However, the overactivation of these signals induces irreparable apoptosis, which is detrimental to the liver health of fish (Li et al., 2020b; Lu et al., 2021). The C100 group significantly induced the liver transcriptional level of bc12, one of the major markers of anti-apoptosis, which implied that feedback regulation was stimulated under adverse conditions to maintain cellular homeostasis. The caspase family plays a very important role in mediating apoptosis (Elmore, 2007). Many studies have suggested that there is a close relation between proteolysis and apoptotic pathways (Yin et al., 2019). Caspase-8 and caspase-9 are two essential proteases of the apoptosis process.
extrinsic and intrinsic apoptotic pathways, respectively (Wang and Lenardo, 2000). In the present study, the relative expressions of liver caspase-9 and caspase-3 were significantly upregulated in the C100 group. These together with TUNEL staining results suggested that apoptotic pathways might be induced in the liver of largemouth bass. A recent study also found that caspase-9 and caspase-3 were significantly upregulated when more than 50% fish meal (40% fish meal in the control diet) was replaced by a single-cell protein, Clostridium autoethanogenum, in the largemouth bass liver (Lu et al., 2021). The significantly increased liver transcriptional levels of caspase-9 and caspase-3 and significantly increased liver apoptosis rate (TUNEL and DAPI) in the C100 group implied that apoptosis induced by caspsases might cause irreversible liver damage.

5. Conclusions

In the present study, based on the quadratic regression analysis between FBW, WCR, SGR, and dietary Chlorella meal, largemouth bass had the best growth when replacing 31.7% to 32.6% of fish meal with 15.03% to 15.43% dietary Chlorella meal. Dietary inclusion of Chlorella meal (11.85% to 47.45%) significantly improved the pigmentation of largemouth bass. Total replacement of fish meal (40%) by Chlorella meal (47.45%) caused suppressed growth, decreased feed utilization, and liver damage in largemouth bass. In future, further studies could be focused on the bioactive substances in Chlorella meal on the immune response of fish and the specific mechanism of Chlorella meal in modulating fish pigmentation. Furthermore, whether supplementation with amino acids (such as methionine) in Chlorella meal could alleviate the negative effects on fish under high replacement of fish meal also needs to be considered.

Author contributions

Longwei Xi: writing—original draft, methodology, software, data curation, formal analysis, investigation. Qisheng Lu: methodology, software, formal analysis, investigation. Yulong Liu: methodology, software, formal analysis, investigation. Jingzhi Su: methodology, software, formal analysis, investigation. Wen Chen: data curation, investigation. Yulong Gong: formal analysis, investigation. Dong Han: conceptualization, writing—review & editing, supervision, funding acquisition. Yunxia Yang: resources. Zhiemin Zhang: resources. Junyan Jin: resources. Haokun Liu: resources. Xiaoming Zhu: conceptualization, funding acquisition, resources. Shouqi Xie: conceptualization, funding acquisition, resources.

Declaration of competing interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, and there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the content of this paper.

Acknowledgements

This research was funded by National Natural Science Foundation of China (U21A20266, 31972771, 31972805, 31672670), China Agriculture Research System of MOF and MARA (CARS—46), National Key R&D Program of China (2018YFD0900400), Fund Project in State Key Laboratory of Freshwater Ecology and Biotechnology (2019FBZ02, 2019FBZ05), and Hubei High-tech Innovation and Business Incubation Center (2019-02-055). The authors are grateful to Guanghan Nie for his technical help. We would like to thank Jun Men and Yanxia Zuo at the Analysis and Testing Center of Institute of Hydrobiology, Chinese Academy of Sciences for the composition of amino acids and fatty acids analysis. We would like to thank Prof. Xia Wan at Oil Crops Research Institute, Chinese Academy of Agricultural Sciences for assistance with the crude fiber analysis.

References

Ahmad MT, Shariff M, Md Yusoff F, Goh YM, Banjerje S. Applications of microalgae Chlorella vulgaris in aquaculture. Rev Aquacult 2020;12:328—46.
Alagawany M, Taha AA, Noreldin A, El-Tarabily KA. Nutritional applications of species of Spirulina and Chlorella in farmed fish: a review. Aquaculture 2021;542:736841.
Aoac. Official method of analysis. 17th ed. Arlington, Virginia: USA Association of Official Analytical Chemists Inc.; 2000.
Arrigau-Hernandez D, Hernandez C, Martinez-Montano E, Ibbara-Castro L, Lizarraga-Velayzquez E, Leyva-Lopez N, et al. Fish meal replacement by soybean products in aquaculture feeds for white snook, Centropomus velifera: effect on growth, diet digestibility, and digestive capacity. Aquaculture 2021;530:715823.
Breithaupt DE, Weller P, Grashorn MA. Quantification of carotenoids in chicken plasma after feeding free or esterified lutein and capsanthin using high-performance liquid chromatography and liquid chromatography-mass spectrometry analysis. Poultry 2010;35:399—411.
Bureau DP, Harris AM, Bevan D, Simmons LA, Azevedo PA, Cho CY. Feather meals and meat and bone meals from different origins as protein sources in rainbow trout (Oncorhynchus mykiss) diets. Aquaculture 2000;181:281—91.
Breithaupt DE, Hellemans L, Huggett J, Kubista M, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 2009;55:611—22.
Cao SH, Li PY, Huang BS, Zhang ZD, Hao TT, Wang CQ, et al. Assessing feasibility of replacement of fish meal and feather meal in the diet of juvenile turbot (Scophthalmus maximus L.). Aquacult Nutr 2020;26:1340—52.
Carneiro WF, Castro TFD, Orlando TM, Meurer F, Paula DBR, Vieito BDR, et al. Replacing fish meal by Chlorella sp. meal: effects on zebrafish growth, reproductive performance, biochemical parameters and digestive enzymes. Aquaculture 2020;528:735612.
Canada P, Engrola S, Richard N, Lopes AF, Pinto W, Valente LMP, et al. Dietary indispensable amino acids profile affects protein utilization and growth of Senegalese sole larvae. Fish Physiol Biochem 2016;42:1493—508.
Chen CY, Liu CC. Optimization of lutein production with a two-stage mixotrophic cultivation system with Chlorella sorokiniana MB-1. Bioreourc Technol 2018;262:74—9.
Chen CY, Lu IC, Nagarajan D, Chang CH, Ng IS, Lee DJ, et al. A highly efficient two-stage cultivation strategy for lutein production using heterotrophic culture of Chlorella sorokiniana MB-1. Bioreourc Technol 2018;253:141—7.
Chen NS, Ma JZ, Zhou HY, Zhou J, Qiu XJ, Jin LN, et al. Assessment of dietary methionine requirement in largemouth bass, Micropterus salmoides. J Fish China 2010;34:1244—53.
Chen WJ, Luo L, Han DX, Long FP, Chi QL, Hu Q, Effect of dietary supplementation with Chlorella sorokiniana meal on the growth performance, antioxidant status, and immune response of rainbow trout (Oncorhynchus mykiss). J Appl Physiol 2021;33:3133—22.
Dai M, Li SL, Fu CF, Qiu HJ, Chen NS. The potential role of marine protein hydrolysates in elevating nutritive values of diets for largemouth bass, Micropterus salmoides. Front Mar Sci 2020;7:197.
Dolmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol 2007;35(4):495—516.
Espe M, Lemme A, Petri A, El-Mowafi A. Can Atlantic salmon (Salmo salar) grow on diets devoid of fish meal? Aquaculture 2006;255:255—62.
Espe M, Lemme A, Petri A, El-Mowafi A. Assessment of lysine requirement for maximal protein accretion in Atlantic salmon using plant protein diets. Aquaculture 2007;263:168—78.
Ferreira A, Yeum KJ, Matsubara LS, Matsubara BB, Correa CR, Pereira Ej, et al. Doxorubicin as an antioxidant: maintenance of myocardial levels of lycopene under doxorubicin treatment. Free Radical Biol Med 2007;43(5):740—51.
Fet SZ, Chen Z, Xia Y, Liu HK, Han D, Jin YJ, et al. Effects of dietary arachidonic acid on reproduction performance, tissue fatty acid profile and gonadal steroidogenesis in female yellow catfish Pterobranchus fulvidraco. Aquaculture 2020;1:12—00.
Francis G, Makkar HPD, Becker K. Antinutritional factors present in plant-derived proteins in aquaculture feeds for white snook, Micropterus salmoides. Front Mar Sci 2020;7:197.
Gomez-Quejani P, Mingarro M, Calduch-Giner JA, Medale F, Martin-Sam, Houben DL, et al. Protein growth performance, amino acid utilisation and somatotropic axis responsiveness to fish meal replacement by plant protein sources in gilthead sea bream (Sparus aurata). Aquaculture 2004;232:493—510.
Gong M, Bassi A. Investigation of Chlorella vulgaris UTEX 265 cultivation under light and low temperature stressed conditions for lutein production in flasks and the Coiled Tree Photo-Bioreactor (CTPBR). Appl Biochem Biotechnol 2017;183:652—71.
Gong MY, Bassi A. Carotenoids from microalgae: a review of recent developments. Biotechnol Adv 2016;34:1396—412.
Gouveia L, Gomes E, Empis J. Potential use of a microalgae (Chlorella vulgaris) in the pigmentation of rainbow trout (Onchorhyncus mykiss) muscle. Leben Unter Forsch 2015;65:75–79.

Gouveia L, Gomes E, Empis J. Use of Chlorella vulgaris in rainbow trout, Onchorhyncus mykiss, to enhance muscle pigmentation. J Appl Aquacult 1997;7:61–70.

Gouveia L, Choubert G, Gomes E, Rêpa M, Empis J. Use of Chlorella vulgaris as a carotenoid source for rainbow trout: effect of dietary lipid content on pigmentation, digestibility and retention in the muscle tissue. Aquaculture Int 1998;6:269–79.

Gouveia L, Choubert G, Pereira N, Santinha J, Empis J, Gomes E. Pigmentation of gilthead seabream, Sparus aurata (L 1875), using Chlorella vulgaris (Chlorophyta, Volvocales) microalga. Aquaculture Rev 2002;33:987–93.

Goury B, Sahin I, Mantoulo S, Kayah I. Spirulina as a natural carotenoid source on growth, pigmentation and oxidative stress response of yellow tail tilapia (Pseudotropheus aequidens). Aquaculture 2012;20(5):869–78.

Hansen JO, Hofsoesæter M, Sahlmann C, Anestad R, Reveco-Urzaa FE, Press CM, et al. Effect of Condoil oil on growth and intestinal health of Atlantic salmon (Salmo salar) par. Aquaculture 2019;511:734239.

Huang F, Wang L, Zhang CX, Song K. Replacement of fishmeal with soybean meal and mineral supplements in diets of Litopenaeus vannamei reared in low-salinity water. Aquaculture 2017;473:172–80.

Jannanthala R, Rajaram V, Kalanjam R, Ambasankar K, Muridhalad M, Dayal JS. Fishmeal availability in the scenario of climate change: inevitability of fishmeal replacement in aquafeeds and approaches for the utilization of plant protein sources. J Funct Foods 2013;5:3493–505.

Jiang Y, Zhao PF, Lin SM, Tang RJ, Chen YJ, Luo L. Partial substitution of soybean meal with fermented soybean residue in diets for juvenile largemouth bass, Micropterus salmoides. Aquaculture Nutr 2018;24:1213–22.

Jolliffe DH, A. Adesina A, Shippon T, Kaiser H. The effect of fishmeal replacement with terrestrial protein sources on growth, body condition and intestinal microbiota of juvenile dusky kob Argynsops jronucus. Afr J Mar Sci 2021;43:45–52.

Ju ZY, Deng DF, Dominy W. A defatted microalgae (Haematococcus pluvialis) meal as a protein ingredient to partially replace fishmeal in diets of Pacific white shrimp (Litopenaeus vannamei, Boone, 1931). Aquaculture 2012;354:50–5.

Kilberg MS, Pan YX, Chen H, Leung-Pineda V. Nutritional control of gene expression in juvenile Japanese quacking (Brachydanio rerio). J Nutr 2005;135:2521–25.

Kilmer VA, Taylor JD. Morphological studies on the mechanisms of pigmentary organelle transport in fish xanthophores and melanophores. Microsc Tech Rev 2002;58:470–80.

Krothbach V, Doucheb J, Doucha J. The chlorococcacean alga Chlorella in animal nutrition: a review. J Appl Physiol 2015;27:2173–80.

Kousoulaki K, Mørkøre T, Nengas I, Berge RK, Sweetman J. Microalgae and organic fertilizers to improve nutritional status and health parameters in juvenile seabream, Sparus aurata L. Aquacult Res 2002;33:987–93.

Kotrbacek V, Doubek J, Doucha J. The chlorococcalean alga Chlorella ellipsoidea and Ulva intestinalis in the diets deprived of fishmeal. J Appl Phycol 2015;27:2173–80.

Kusar K, Markovic V, Tengna N, Berge RK, Sweetman J, Microalgae and organic minerals enhance lipid retention efficiency and fillet quality in Atlantic salmon (Salmo salar). Aquaculture 2016;451:47–57.

Kumar S, Stokes J, Singh UP, Gunn KS, Acharya A, Manune U, et al. Targeting Hsp70: a possible therapy for cancer. Cancer Lett 2016;374:55–66.

Liland NS, Araujo P, Xu XX, Lock EJ, Radhakrishnan G, Prabhu AJP, et al. A meta-analysis on the nutritional value of invertebrates in aquafeeds. J Insects Food Feed Sci 2021;7:743–50.

Li X, Wei G, Guo X, Mi SC, Hua XM, Li NY, et al. Enhanced growth performance, muscle quality, and liver health of largemouth bass (Micropterus salmoides) were related to dietary small peptides supplementation. Aquaculture 2020;202a:2619–77.

Li HY, Xu WJ, Wu LY, Dong B, Jin JY, Han D, et al. Distinct dietary cadmium toxic effects and defense strategies in two strains of gibel carp (Carassius gibelio) revealed by a comprehensive perspective. Chemosphere 2020;261:127597.

Li M, Robinson EH, Oberle DF, Zimba PV. Effects of various dietary carotenoid pigments on fillet appearance and pigment absorption in channel catfish, Micropterus salmoides. J World Aquacult Soc 2007;38:557–63.

Li SL, Dai M, Qiu HJ, Chen NS. Effects of fishmeal replacement with composite mixture of shrimp hydrolysate and plant protein on growth performance, feed utilization, and target of rapamycin pathway in largemouth bass. Micropterus salmoides. Aquaculture 2014;437:533–1785.

Li XY, Zheng ZQ, Cheng KM, Ma XK, Wu GY. Apparent digestibility of nutrients in four animal protein ingredients with different processing technology for yellow catfish (Peleobus fulvidraco). Acta Hydrobiol Sin 2020;44:6.

Li HK, Zhu YM, Yang TX, Han J, Ji Y, Xie SQ, et al. Effects of dietary Arthrospira platensis supplementation on the growth, pigmentation, and antioxidation in yellow catfish (Peleobus fulvidraco). Aquaculture 2019;510:267–75.

Liu C, Zhou FC, Liu JY, Han J, Ji JY, Yang YX, et al. Apparent digestibility of nutrients in four animal protein ingredients with different processing technology for yellow catfish (Peleobus fulvidraco). Acta Hydrobiol Sin 2020;44:6.

Liu HK, Zhu YM, Yang TX, Han J, Ji JY, Xie SQ. Effect of substitution of dietary fishmeal by soybean meal on different sizes of gibel carp (Carassius auratus gibelio): nutrient digestibility, growth performance, body composition and morphology. Aquaculture 2016;262:142–57.

Liu J, Chen F. Biology and industrial applications of Chlorella: advances and prospects. Microalgae Biotechnology 2016;15:1–35.
Valente LM, Custodio M, Batista S, Fernandes H, Kiron N. Defatted microalgae (Nannochloropsis sp.) from biorefinery as a potential feed protein source to replace fishmeal in European sea bass diets. Fish Physiol Biochem 2019;45:1067–81.

Wang A, Li SL, Liu YJ, Han ZH, Chen NS. The inclusion of fenugreek seed extract aggravated hepatic glycogen accumulation through reducing the expression of genes involved in insulin pathway and glycolysis in largemouth bass, Micropterus salmoides. Aquaculture 2020;528:735567.

Wang J, Lenardo MJ. Roles of caspases in apoptosis, development, and cytokine maturation revealed by homozygous gene deficiencies. J Cell Sci 2000;113:753–7.

Watanabe T, Liao WL, Takeuchi T, Yamamoto T. Effect of dietary Spirulina supplementation on growth performance and flesh lipid of cultured striped jack. J Tokyo Univ Fish 1990;77:231–9.

Wei YT, Shen HH, Xu WQ, Pan Y, Chen J, Zhang WB, et al. Replacement of dietary fishmeal by Antarctic krill meal on growth performance, intestinal morphology, body composition and organoleptic quality of large yellow croaker Lariimichthys crocea. Aquaculture 2019;512:753–69.

Wu YB, Ma HJ, Wang XJ, Ren X. Taurine supplementation increases the potential of fishmeal replacement by soybean meal in diets for largemouth bass Micropterus salmoides. Aquacult Nutr 2021;27:691–669.

Xu J, Feng L, Jiang W, Wu P, Liu Y, Jiang J, et al. Different dietary protein levels affect flesh quality, fatty acids and alter gene expression of Nrfl2–mediated antioxidant enzymes in the muscle of grass carp (Ctenopharyngodon idella). Aquaculture 2018;493:272–82.

Yang PX, Li XQ, Song BW, He M, Wu CY, Meng XJ. The potential of Clostridium autoethanogenum, a new single cell protein, in substituting fish meal in the diet of largemouth bass (Micropterus salmoides): growth, feed utilization and intestinal histology. Aquaculture and Fisheries 2021. https://doi.org/10.1016/j.aaf.2021.03.003 [in press].

Yin P, Xie SW, Huo YJ, Guo TY, Fang HH, Zhang YM, et al. Effects of dietary oxidized fish oil on growth performance, antioxidant defense system, apoptosis and mitochondrial function of juvenile largemouth bass (Micropterus salmoides). Aquaculture 2019;500:347–58.

Zhang W, Liu K, Tan BP, Liu HY, Dong XH, Yang QH, et al. Transcriptome, enzyme activity and histopathology analysis reveal the effects of dietary carbohydrate on glycometabolism in juvenile largemouth bass, Micropterus salmoides. Aquaculture 2019;504:39–51.

Zhang XD, Zhang HZ, Zhang JW, Lin BB, Chen LS, Wang QM, et al. Assessment of rapeseed meal as fish meal alternative in diets for juvenile Asian red-tailed catfish (Hemibagrus wyckioides). Aquacult Rep 2020a;18:100497.

Zhang YM, Xie SW, Guo TY, Liu ZL, Fang HH, Zheng L, et al. High dietary starch inclusion impairs growth and antioxidant status, and alters liver organization and intestinal microbiota in largemouth bass Micropterus salmoides. Aquacult Nutr 2020b;26:1806–12.

Zhang YM, Xie SW, Wei HL, Zheng L, Liu ZL, Fang HH, et al. High dietary starch impaired growth performance, liver histology and hepatic glucose metabolism of juvenile largemouth bass, Micropterus salmoides. Aquacult Nutr 2020c;26:1083–95.

Zheng K, Liang M, Yao H, Wang J, Chang Q. Effect of dietary fish protein hydrolysate on growth, feed utilization and IGF-I levels of Japanese flounder (Paralichthys olivaceus). Aquacult Nutr 2012;18:297–303.

Zhou QC, Mai KS, Liu YJ, Tan BP. Advances in animal and plant protein sources in place of fish meal. J Fish China 2005;29:404–10.

Zhu YF, Mai KS. A review of xarotenoid of pigmentation additives in fish feeds. Acta Hydrobiol Sin 2003;27:196–200.