Cloning and Expression of Intercellular Adhesion Molecule 3 Reveals Strong Homology to Other Immunoglobulin Family Counter-receptors for Lymphocyte Function-associated Antigen 1

By Antonin R. de Fougerolles,* Lloyd B. Klickstein, and Timothy A. Springer

Summary

Based on protein sequence, we have isolated a cDNA for intercellular adhesion molecule 3 (ICAM-3), the most recently defined counter-receptor for lymphocyte function-associated antigen 1 (LFA-1). Expression of the cDNA yields a product that reacts with monoclonal antibody to ICAM-3 and functions as a ligand for LFA-1. The deduced 518-amino acid sequence of the predicted mature protein defines a highly glycosylated type I integral membrane protein with five immunoglobulin (Ig)-like domains. The five Ig-like domains of ICAM-3 are highly homologous with those of human ICAM-1 (52% identity) and human ICAM-2 (37% identity).

Materials and Methods

Monoclonal Antibodies. The following previously described murine mAbs to human antigens were used: TS1/22 (anti-CD11a, IgG1) (6), CBR-IC3/1 (anti-ICAM-3, IgG1) (5), W6/32 (anti-HLA, A, B, C, IgG2a) (7), and X63 (nonbinding antibody, IgG1). CBR-IC3/2 (anti-ICAM-3, IgG2a) was generated by immunizing mice with purified ICAM-3 and screening hybridomas for reactivity to purified ICAM-3 and ICAM-3-bearing cells (A. de Fougerolles et al., manuscript in preparation). All mAbs were used at a saturating concentration of 20 μg/ml for flow cytometry and adhesion assays.

Purification of ICAM-3 and Peptide Sequencing. ICAM-3 was purified from detergent lysates of human tonsil by immunoaffinity chromatography at 4°C using the anti-ICAM-3 mAb CBR-IC3/1. mAb CBR-IC3/1 was purified from ascites on a protein A affinity column (8) and then coupled to cyanogen bromide-activated Sepharose CL-4B (Pharmacia Fine Chemicals, Piscataway, NJ) (9). Frozen human tonsils (30 g) were finely diced and lysed in 450 ml lysis buffer (100 mM Tris HC1, pH 8.0, 150 mM NaCl, 2% Triton X-100, 5 mM iodoacetamide, 1 mM PMSF, 0.24 trypsin inhibitor units (TIU)/ml aprotinin, 0.025% azide) for 90 min while stirring gently. The resultant lysate was centrifuged at 10,000 g for 2 h; the supernatant was decanted and subjected to ultracentrifugation at 100,000 g for 1 h. The clarified lysate was precleared with human Ig-coupled Sepharose (40 pl of a 1:1 slurry/ml of lysate) during rotation overnight. The human Ig-coupled Sepharose was pelleted and the precleared lysate passed over the CBR-IC3/1 immunoaffinity column (bed volume, 6 ml; 3 mg/ml CBR-IC3/1) at a rate of 30 ml/h. The column was sequentially washed at 30 ml/h with 20-bed volumes 50 mM Tris-HCl, pH 8.0, 150 mM NaCl, 0.1% Triton X-100, and with 10-bed volumes 50 mM Tris-HCl, pH 8.0, 150 mM NaCl, 1% octyl β-D-glucopyranoside (OG). ICAM-3 was eluted from the immunoaffinity column with 10-bed volumes of 50 mM glycine, pH 3.8, 150 mM NaCl, 1% OG, and neutralized with 1:10 vol 1 M Tris, pH 8.6, 1% OG, aliquoted, and stored frozen at −70°C for 3–6 mo without loss of activity.

ICAM-3 fractions were pooled and concentrated by centrifugal ultrafiltration (Centricon-30; Amicon, Beverly, MA), subjected to SDS-7.5% PAGE under reducing conditions, and protein electroblotted onto nitrocellulose (Schleicher & Schuell, Inc., Keene, NH). The nitrocellulose-blotted proteins were excised and subjected to in situ enzymatic cleavage with lysyl endopeptidase (Lys-C) (10).
Results

ICAM-3 purified from human tonsil by mAb affinity chromatography was homogeneous by SDS-PAGE (Fig. 1). Attemps to obtain NH$_2$-terminal sequence were unsuccessful, suggesting that the NH$_2$-terminus was blocked. To obtain internal amino acid sequence, blotted material was digested with Lys-C protease. Reverse-phase HPLC yielded a small number of peptide peaks that were subjected to gas-phase microsequencing. The sequence of peptide 17, IALETSLSK, was significantly homologous to ICAM-1 and ICAM-2 in a region of the first Ig-like domain. The sequence of peptide 10, IDRATCPQHLK, was weakly homologous to the fifth Ig-like domain of human ICAM-1.

The sequence of each peptide was used to design an oligonucleotide probe. One clone (11.2) was isolated from a size-selected Agt11 tonsil cDNA library that hybridized to both oligonucleotides probes, and yielded an insert of 1.6 kb. This clone and its 5' EcoRI-EcoNI fragment were utilized to isolate cDNA clones that extended further in the 5' and 3' directions. The overlapping cDNA clones were subjected to restriction mapping (Fig. 2) and sequencing (EMBL/GenBank/DDBJ accession number X69819). The two peptide sequences were in perfect agreement with the translated amino acid sequence (Fig. 3, thin overlining), establishing the authenticity of the cDNA as that of ICAM-3. Two potential ATG initiation codons at nucleotide positions 9 and 18 are present, both of which fit Kozak's criteria for a translation initiation site (16). The first initiation codon is followed by an open reading frame of 1,641 bp. An in-frame stop codon (TGA) at position 1650 is followed by an untranslated region of 79 bp. The poly(A) tail is present 15 bp after a consensus polyadenylation sequence at position 1710.

The deduced amino acid sequence of the mature protein is shown in Fig. 3. Hydrophobicity analysis (17) suggests the presence of an NH$_2$-terminal signal peptide sequence and a 25-amino acid transmembrane segment near the COOH terminus, and thus ICAM-3 is a type I membrane protein. A consensus signal peptide cleavage site (18) predicts that glutamine is NH$_2$-terminal in the mature polypeptide chain. This is consistent with our inability to obtain an NH$_2$-terminal amino acid sequence as glutamine may cyclize to pyroglutamic acid, resulting in a blocked NH$_2$ terminus. The mature ICAM-3 polypeptide chain contains a 456-amino acid NH$_2$-terminal region predicted to be extracellular and a
Percent amino acid identity between Ig-like domains was determined with the GAP program from GCG (26). Bold numbers represent comparison of ICAM-3 domains with the corresponding ones in ICAM-1 or -2.

ICAM-1	ICAM-2	ICAM-3
D1	38 16 27 21 23	36 18
D2	30 77 22 23 28	26 38 16
D3	15 26 52 22 20 25	32 29 21
D4	21 25 23 51 18	9 22 17 24 20
D5	14 13 22 20 37	16 13 19 20 14 20

Table 1. Identities between ICAM Ig-like Domains

Figure 2. Restriction map of ICAM-3 cDNA clones. The top line is the map of the full-length cDNA as described in Materials and Methods. (K, KpnI; P, PstI; En, EcoNI; B, BstXI; B, BamHI; B, BglII; S, Smal; X, XhoI; T, PvuII; and S, SalI). EcoRI and HindIII sites present in the pBlue-script KS+ polylinker are not shown. The open reading frame is shown as a thick line.

Figure 3. Homology of ICAM-3 with ICAM-1 and ICAM-2. The sequences of ICAM-3, mouse and human ICAM-1 (23, 24), and mouse and human ICAM-2 (19, 25) were aligned using the GCG PileUp (26) program and by inspection. The amino acid sequence of ICAM-3 was deduced from the cDNA sequence. The amino acid sequences of Lys-C-deaved peptides are overlaid, and potential N-linked glycosylation sites are indicated by inverted triangles. The entire mature sequence of ICAM-3, and residues in ICAM-1 and ICAM-2 that differ from ICAM-3, are shown. Gaps appear as dots. Boundaries of the Ig-like domains and boundaries of D5 with the transmembrane domain are based on exon boundaries of ICAM-1 (27) and ICAM-2 (19).
unusually high for a cell surface glycoprotein. Some of these sites, particularly closely paired sites at residues 55 and 58, and at residues 424 and 428, may be resistant to N-glycanase. If so, the average size of the N-linked chains is 4,500 Mr.

The extracellular region of ICAM-3 contains five Ig-like domains and is strikingly homologous to ICAM-1 and ICAM-2 (Fig. 3). Like ICAM-1 and ICAM-2, the Ig-like domains of ICAM-3 are of the C2 set, and the first Ig-like domain contains two putative intradomain disulfide bonds. The extracellular five Ig-like domains of ICAM-3 are 52% identical in amino acid sequence to the corresponding region in human ICAM-1, with the highest identity contained within domain 2 and the first half of domain 3. The homology with ICAM-2 is lower (Table 1). All ICAM-3 Ig-like domains are most closely related to the domains with the corresponding position in ICAM-1 and ICAM-2 (Table 1). The transmembrane and cytoplasmic domains of ICAM-3 show little if any conservation with those of ICAM-1 and ICAM-2.

To express ICAM-3, cDNA segments from clones 15a2.2, 11.2, and 7.3.1 were ligated together to obtain a full-length cDNA clone. COS cells transfected with the ICAM-3 cDNA reacted specifically with the anti-ICAM-3 mAb, CBR-IC3/1 (Fig. 4). Transfectants expressing human ICAM-3 bound efficiently to purified human LFA-1 on plastic (Fig. 5). By contrast, mock-transfected cells bound poorly, showing equivalent binding to substrates bearing LFA-1 and BSA. Binding to LFA-1 of COS cells transfected with ICAM-3 was blocked by LFA-1 mAb, and by a combination of anti-ICAM-3 mAbs.

Discussion

We have characterized a cDNA clone for ICAM-3. Its authenticity is proven by the presence in the translated amino acid sequence of the two Lys-C-cleaved ICAM-3 peptide fragments. Additionally, when expressed, the ICAM-3 cDNA is recognized by anti-ICAM-3 mAbs and is functionally active in binding to purified LFA-1.

The cloning and analysis of the human ICAM-3 cDNA demonstrates ICAM-3 to be a type I integral membrane protein belonging to the Ig superfamily. ICAM-3 is the most heavily glycosylated LFA-1 ligand with 15 putative N-linked glycosylation sites, as compared with eight and six for ICAM-1 and -2, respectively. The apparent size of the carbohydrate is high for ICAM-3 at 4,500 Mr per site, as it is for ICAM-1 and ICAM-2, which average 5,000 and 5,250 Mr per site, respectively.

The sequence relationships among the extracellular domains of the three ICAMs define them as a subfamily of the Ig superfamily. The homology between ICAM-1 and ICAM-3 is particularly striking, with 52% amino acid identity and the same number of Ig domains. The first two domains of ICAM-3 are closely related to the two domains of ICAM-2, with 37% identity. The relationship with all other Ig superfamily members is much weaker, on the order of 20%. Compar-

Figure 4. Surface expression of ICAM-3 on COS cells. COS cells transfected with (A) ApM9 vector alone (mock) or (B) pCDIC-3 were labeled with saturating amounts of control mAb X63 (thin line) or mAb CBR-IC3/1 (anti-ICAM-3), followed by FITC-anti-mouse Ig. Cells were subjected to immunofluorescent flow cytometry.

Figure 5. Adhesion of transfected COS cells to purified LFA-1. Cells transfected with pCDIC-3 or ApM9 alone (mock) were allowed to bind to LFA-1-coated microtiter wells for 60 min at 37°C and then washed four times by aspiration. Control wells lacked LFA-1. Cells were pretreated with the indicated mAb or, alternatively, the absorbed purified LFA-1 was pretreated with mAb TS1/22 (anti-LFA-1α). To achieve effective blockade of the ICAM-3/LFA-1 adhesion pathway both anti-ICAM-3 mAbs are required. One representative experiment of four is shown and error bars indicate 1 SD.

Figure 6. Evolutionary relationship of the ICAMs. The horizontal axis represents the percent difference in amino acid sequence of the extracellular domains.
isons of individual Ig-like domains of ICAM-3 with those in ICAM-1 and ICAM-2 show that the ICAM-3 Ig-like domains are most closely related to the corresponding domains in ICAM-1 or ICAM-2. These relationships suggest that ICAM-1, -2, and -3, evolved from a primordial ICAM gene in two steps (Fig. 6).

In contrast to the extracellular domains, there is little conservation of the transmembrane and cytoplasmic domains among ICAM-1, -2, and -3. However, these domains are well conserved between mouse and human ICAM-1, and between mouse and human ICAM-2. Thus, there may be important differences among ICAMs in localization on the cell surface, interaction with the cytoskeleton, and signaling.

The ICAM molecules were identified and named based on their ability to bind LFA-1 (3, 5, 19). Since all three ligands are homologous, we predict that the ligand recognition sites lie in homologous positions and contain key conserved residues. The binding site for LFA-1 has been mapped in ICAM-1 to the first Ig domain and key residues have been identified as E34 and Q73 (20). Both of these residues are conserved in ICAM-3 and in ICAM-2 (Fig. 3). However, compared with other domains in ICAM-3, domain I is one of the least well conserved with ICAM-1. The reason for the high level of identity (77%) between the second Ig-like domains of ICAM-1 and ICAM-3 remains unclear, because no ligand binding sites have been mapped to this domain. The third Ig-like domain of ICAM-1 is the binding site for the integrin Mac-1 (21); whether ICAM-3 also binds to Mac-1 is not known.

The existence of a subfamily of Ig-related molecules containing three members, ICAM-1, -2, and -3, that has evolved to bind to the integrin LFA-1 attests to the importance of this adhesion pathway. The multiplicity of ICAMs may allow finer regulation of this adhesion pathway since there are significant differences in tissue distribution and inducibility. ICAM-1 is highly inducible in immune and inflammatory reactions on many cell types (1), whereas ICAM-2 is constitutively expressed on endothelium (3). Thus, these molecules may regulate leukocyte circulation and localization patterns in disease and health, respectively. ICAM-3 is well expressed on all leukocytes and absent from nonhematopoietic cells. As ICAM-3 represents the major LFA-1 ligand on resting lymphocytes (5), it may play an important role in initiating immune responses. The distinct transmembrane and cytoplasmic domains of the ICAMs provide further diversity. The cytoplasmic regions of ICAM-1, -2, and -3 may impart different signals when LFA-1 is bound or cause differing localizations on the cell surface (22).

We thank William S. Lane of the Harvard Microchemistry Facility for the superb digestion, separation, and peptide microsequencing of ICAM-3. We also thank Mr. M. York for oligonucleotide synthesis and Mr. E. Luther for flow cytometric analysis.

L. B. Klickstein is supported in part by a Merck-American Federation for Clinical Research Fellowship. This work was supported by National Institutes of Health grant CA-37918.

Address correspondence to Timothy A. Springer, Center for Blood Research and Department of Pathology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115.

Received for publication 1 December 1992 and in revised form 22 January 1993.

Note added in proof: While this paper was in review, two other groups reported a cDNA encoding an LFA-1 ligand that was similar in tissue distribution and molecular weight, but not tested for identity with ICAM-3 (28, 29). The sequence of one (29) is identical to that reported here; the other (28) has two silent substitutions at nucleotide positions 187 and 1268 in our sequence and a 2-bp deletion after the polyadenylation signal.

References
1. Springer, T.A. 1990. Adhesion receptors of the immune system. Nature (Lond.). 346:425.
2. Rothlein, R., M.L. Dustin, S.D. Marlin, and T.A. Springer. 1986. A human intercellular adhesion molecule (ICAM-1) distinct from LFA-1. J. Immunol. 137:1270.
3. de Fougerolles, A.R., S.A. Stacker, R. Schwarting, and T.A. Springer. 1991. Characterization of ICAM-2 and evidence for a third counter-receptor for LFA-1. J. Exp. Med. 174:253.
4. Nortamo, P., R. Salcedo, T. Timonen, M. Patarroyo, and C.G. Gahmberg. 1991. A monoclonal antibody to the human leukocyte adhesion molecule intercellular adhesion molecule-2: cellular distribution and molecular characterization of the antigen. J. Immunol. 146:2530.
5. de Fougerolles, A.R., and T.A. Springer. 1992. Intercellular adhesion molecule 3, a third adhesion counter-receptor for lymphocyte function-associated molecule 1 on resting lymphocytes. J. Exp. Med. 175:185.
6. Sanchez-Madrid, F., A.M. Krensky, C.F. Ware, E. Robbins, J.L. Strominger, S.J. Burakoff, and T.A. Springer. 1982. Three distinct antigens associated with human T lymphocyte-mediated cytolysis: LFA-1, LFA-2, and LFA-3. Proc. Natl. Acad. Sci. USA. 79:7489.
7. Barnstable, C.J., W.F. Bodmer, G. Brown, G. Galfre, C. Milstein, A.F. Williams, and A. Ziegler. 1978. Production of mono-
clonal antibodies to group A erythrocytes, HLA and other human cell surface antigens—new tools for genetic analysis. *Cell.* 14:9.

8. Ey, P.L., S.J. Prowse, and C.R. Jenkin. 1978. Isolation of pure IgG1, IgG2a and IgG2b immunoglobulins from mouse serum using protein A-Sepharose. *Immunochemistry.* 15:429.

9. March, S.C., I. Parikh, and P. Cuatrecasas. 1974. A simplified method for cyanogen bromide activation of agarose for affinity chromatography. *Anal. Biochem.* 60:149.

10. Aebersold, R.H., J. Leavitt, R.A. Saavedra, L.E. Hood, and S.B.H. Kent. 1987. Internal amino acid sequence analysis of proteins separated by one- or two-dimensional gel electrophoresis after *in situ* protease digestion on nitrocellulose. *Proc. Natl. Acad. Sci. USA.* 84:6970.

11. Lane, W.S., A. Galat, M.W. Harding, and S.L. Schreiber. 1991. Complete amino acid sequence of the FK506 and rapamycin binding protein, FKBP, isolated from calf thymus. *J. Protein Chem.* 10:151.

12. Wong, W.W., L.B. Klickstein, J.A. Smith, J.H. Weis, and D.T. Fearon. 1985. Identification of a partial cDNA clone for the human receptor for complement fragment C3b/C4b. *Proc. Natl. Acad. Sci. USA.* 82:7711.

13. Sambrook, J., E.F. Fritsch, and T. Maniatis. 1989. *Molecular Cloning: A Laboratory Manual.* Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

14. Lathe, R. 1985. Synthetic oligonucleotide probes deduced from amino acid sequence data: theoretical and practical considerations. *J. Mol. Biol.* 183:1.

15. Aruffo, A., and B. Seed. 1987. Molecular cloning of a CD28 cDNA by a high efficiency COS cell expression system. *Proc. Natl. Acad. Sci. USA.* 84:8573.

16. Kozak, M. 1984. Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. *Nucleic Acids Res.* 12:857.

17. Kyte, J., and R.F. Doolittle. 1982. A simple method for displaying the hydrophatic character of a protein. *J. Mol. Biol.* 157:105.

18. von Heijne, G. 1986. A new method for predicting signal sequence cleaving sites. *Nucleic Acids Res.* 14:4683.

19. Xu, H., L.L. Tong, A.R. de Fougerolles, and T.A. Springer. 1992. Isolation, characterization, and expression of ICAM-2 complementary and genomic DNA. *J. Immunol.* 149:2650.

20. Staunton, D., M.L. Dustin, H.P. Erickson, and T.A. Springer. 1990. The arrangement of the immunoglobulin-like domains of ICAM-1 and the binding site for LFA-1 and rhinovirus. *Cell.* 61:243.

21. Diamond, M.S., D.E. Staunton, S.D. Marlin, and T.A. Springer. 1991. Binding of the integrin Mac-1 (CD11b/CD18) to the third Ig-like domain of ICAM-1 (CD54) and its regulation by glycosylation. *Cell.* 65:961.

22. Carpen, O., P. Pallai, D.E. Staunton, and T.A. Springer. 1990. Association of intercellular adhesion molecule-1 (ICAM-1) with actin-containing cytoskeleton and alpha-actinin. *J. Cell Biol.* 118:1223.

23. Staunton, D.E., S.D. Marlin, C. Stratowa, M.L. Dustin, and T.A. Springer. 1988. Primary structure of intercellular adhesion molecule 1 (ICAM-1) demonstrates interaction between members of the immunoglobulin and integrin superfamilies. *Cell.* 52:925.

24. Siu, G., S.M. Hedrick, and A.A. Brian. 1989. Isolation of the murine intercellular adhesion molecule 1 (ICAM-1) gene: ICAM-1 enhances antigen-specific T cell activation. *J. Immunol.* 143:3813.

25. Staunton, D.E., M.L. Dustin, and T.A. Springer. 1989. Functional cloning of ICAM-2, a cell adhesion ligand for LFA-1 homologous to ICAM-1. *Nature (Lond.)* 339:61.

26. Devereux, J., P. Haebeler, and O. Smithies. 1984. A comprehensive set of sequence analysis programs for the VAX. *Nucleic Acids Res.* 12:387.

27. Voraberger, G., R. Schäfer, and C. Stratowa. 1991. Cloning of the human gene for intercellular adhesion molecule 1 and analysis of its 5'-regulatory region: induction by cytokines and phorbol ester. *J. Immunol.* 147:2777.

28. Fawcett, J., C.L. Holness, L.A. Needham, H. Turley, K.C. Gatter, D.Y. Mason, and D.L. Simmons. 1992. Molecular cloning of ICAM-3, a third ligand for LFA-1, constitutively expressed on resting leukocytes. *Nature (Lond.)* 360:481.

29. Vazquez, R., P.A. Hoffman, J.K. Tomita, E.S. Dickinson, R.L. Jasman, T. St. John, and W.M. Gallatin. 1992. Cloning and characterization of a new intercellular adhesion molecule ICAM-R. *Nature (Lond.)* 360:485.

1192 Human Intercellular Adhesion Molecule 3 cDNA Cloning