Insights into the antineoplastic mechanism of Chelidonium majus via systems pharmacology approach

Xinzhe Xiao¹, Zehui Chen², Zengrui Wu¹, Tianduanyi Wang¹, Weihua Li¹, Guixia Liu¹, Bo Zhang²*, Yun Tang¹,*

¹ Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
² Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi 832002, China
* Correspondence: bozhang_lzu@126.com, ytang234@ecust.edu.cn

Received July 29, 2018; Revised October 18, 2018; Accepted October 22, 2018

Background: The antineoplastic activity of Chelidonium majus has been reported, but its mechanism of action (MoA) is unsuspected. The emerging theory of systems pharmacology may be a useful approach to analyze the complicated MoA of this multi-ingredient traditional Chinese medicine (TCM).

Methods: We collected the ingredients and related compound-target interactions of C. majus from several databases. The bSDTNBI (balanced substructure-drug-target network-based inference) method was applied to predict each ingredient’s targets. Pathway enrichment analysis was subsequently conducted to illustrate the potential MoA, and prognostic genes were identified to predict the certain types of cancers that C. majus might be beneficial in treatment. Bioassays and literature survey were used to validate the in silico results.

Results: Systems pharmacology analysis demonstrated that C. majus exerted experimental or putative interactions with 18 cancer-associated pathways, and might specifically act on 13 types of cancers. Chelidonine, sanguinarine, chelerythrine, berberine, and coptisine, which are the predominant components of C. majus, may suppress the cancer genes by regulating cell cycle, inducing cell apoptosis and inhibiting proliferation.

Conclusions: The antineoplastic MoA of C. majus was investigated by systems pharmacology approach. C. majus exhibited promising pharmacological effect against cancer, and may consequently be useful material in further drug development. The alkaloids are the key components in C. majus that exhibit anticancer activity.

Keywords: systems pharmacology; mechanism of action; traditional Chinese medicine; Chelidonium majus

Author summary: Tremendous and persistent efforts have been made to seek novel antineoplastic drugs in the everlasting fight against cancers. In this work, we integrated several systems pharmacology approaches to uncover the MoA of C. majus’ antineoplastic activity. We have found that the alkaloids in C. majus may be the significant components for its anticarcinogenic effect. Our research unlocked the antineoplastic mechanism of this medicinal herb that was employed as an analgesic in TCM. The polypharmacological character of C. majus can be utilized for further drug research and development.

INTRODUCTION

Traditional Chinese medicine (TCM), mainly consisting of medicinal herbs, has been widely utilized both pharmaceutically and clinically in China and other countries. At present, TCM still takes a place in eastern countries. Although TCM is clinically effective for medical treatment [1], its mechanism of action (MoA) is rather ambiguous. One hypothesis is that TCM acts in a sophisticated way, with multiple components affecting multiple targets simultaneously, so the individual study on one specific target is usually insufficient [2]. Therefore,
the therapeutic mechanism of TCM needs to be investigated in a more holistic way.

Celindonium majus is a medicinal herb belonging to the Papaveraceae family that distributes in Europe, Asia and North America. While _C. majus_ is utilized as an analgesic in TCM formula, the polypharmacological effects of _C. majus_ have also been discovered. It was reported to exert anti-infectious, anti-inflammatory and antineoplastic effects [3,4]. The anticancer effect of _C. majus_ was observed by a plenty of studies, yet the molecular MoA of _C. majus_ remains unclear.

As the development of systems biology and network pharmacology, systems pharmacology [5,6] has emerged to be a novel methodology for us to understand the complex mechanism of multi-component TCM. Systems pharmacology treats the human body as a closely integrating and dynamically changing system, which coincides with the TCM theory. Therefore, systems pharmacology appears to be a powerful approach in understanding the MoA of multi-component TCM.

Recently, we developed a series of network-based methods to predict drug-target interactions, namely network-based inference (NBI) [7], substructure-drug-target network-based inference (SDTNBI) [8] and balanced SDTNBI (bSDTNBI) [9]. These methods do not rely on the three-dimensional structures of targets, and hence show great advantages in target prediction. The SDTNBI and bSDTNBI methods can be used to predict potential targets for both old drugs and new chemical entities, with substructures to bridge the gap between new compounds and old drugs. Our previous studies have demonstrated that both SDTNBI and bSDTNBI methods are powerful tools to uncover the pharmacological and toxicological mechanisms of TCM with complex compositions [10,11], and bSDTNBI outperformed SDTNBI.

In this study, we investigated the anticancer MoA of _C. majus_ with systems pharmacology approach, together with bioassays and literature survey. We firstly collected the chemical components and known targets of _C. majus_ from several databases. Then, putative targets were predicted for each ingredient via bSDTNBI method. Afterwards, pathway enrichment analysis was performed on the basis of experimental and putative compound-target interactions (CTIs). Network analysis was subsequently conducted to unravel the potential mechanism of _C. majus_, and genetic prognostic factors were analyzed to determine the certain cancer types on which _C. majus_ might be effective. The key components from _C. majus_ that exert potent anticancer activity were also identified.

RESULTS

The whole workflow of this study was illustrated in Figure 1, including three major steps: data collection and analysis, network construction and analysis, experimental validation.

Collection and analysis of _C. majus’_ ingredients

Totally 44 chemical components of _C. majus_ were obtained from three TCM databases, including TCM Database@Taiwan [12], TCMSP [13] and TCMID [14]. Duplicated molecules were removed. The logP value and molecule weight of each compound were then calculated to build the chemical space (Figure 2). The compounds

![Figure 1. The schematic diagram of the workflow used in the study.](image-url)
from *C. majus* exhibit high superposition with the chemical space of the compounds from the bSDTNBI model we built before [11], except four compounds with logP value higher than 7, which are lupeol acetate, chelidimerine, ergosterol and spinasterol. Most of the ingredients have logP values greater than zero, which implies their not-so-good water solubility. The results showed that all of *C. majus’* ingredients fitted well in the bSDTNBI model, which consists of 1495 herbal ingredients and 2385 drugs.

Target retrieval and prediction

We collected 201 known CTI pairs between 15 ingredients and 111 targets from four databases, including ChEMBL [15], BindingDB [16], IUPHAR/BPS Guide to PHARMACOLOGY [17], and PDSP Ki Database [18]. Afterwards, we predicted top 20 putative targets for each 44 ingredient using our bSDTNBI method. Duplicated CTIs were removed. In all, we obtained 1025 CTIs between 44 ingredients and 173 targets.

Pathway enrichment analysis

The 173 known and putative targets of 44 *C. majus’* ingredients were then uploaded to the Database for Annotation, Visualization and Integrated Discovery (DAVID) v6.8 online server [19,20] for pathway enrichment analysis. These pathways are associated with chemical metabolism, nervous system, cancer, infection, and inflammation, which are consistent with the fact that *C. majus* has been clinically used as an analgesic in TCM [21]. Meanwhile, *C. majus* exerts significant association with the cancer-related pathways, which indicates that *C. majus* might exert promising antineoplastic activity.

Besides, *C. majus’* ingredients interact with 37 targets enriched in 18 crucial cancer-associated pathways. 22 of them were known targets and 13 ones were putative targets. The 18 cancer-associated pathways included cell cycle pathway, apoptosis pathway, PI3K-Akt signaling pathway, NF-κB signaling pathway, etc. The pathways were highly correlated with cell division, cell proliferation, apoptosis, metastasis and angiogenesis [22–26]. These pathways were perceived as the potential mechanisms of *C. majus’* anticancer activity. A network was constructed to illustrate the MoA of *C. majus’* anticancer activity (Figure 3). From Figure 3, we can see that several components are vastly discovered, such as sanguinarine, luteolin, berberine, and chelerythrine. There are 38 known CTIs and 118 putative CTIs, and 44 ingredients have all interacted with the 37 cancer-associated targets.

Cancer biomarker analysis

Although the ingredients from *C. majus* can modulate several signal pathways that are highly associated with cancers, *C. majus* might exert therapeutic activities against several certain types of cancers. We therefore
investigated the known and putative targets whose expression levels are significantly associated with the prognosis of cancer patients, which were referred as the genetic prognostic factors. The genetic prognostic factors were obtained from the Human Protein Atlas [27]. The known and putative targets were mapped into the genetic prognostic factors. Among the 173 known and putative targets of *C. majus*, 22 targets were identified as the genetic prognostic factors of 13 types of cancers, including renal cancer, liver cancer, endometrial cancer, pancreatic cancer, head and neck cancer, urothelial cancer, ovarian cancer, colorectal cancer, thyroid cancer, prostate cancer, melanoma, lung cancer, and breast cancer (Table 1). Theoretically, *C. majus* might exert positive therapeutic activities against these 13 specific types of cancers.

Identification of key anticancer components in *C. majus*

C. majus mainly composes of several alkaloids including chelidonine, chelerythrine, sanguinarine, coptisine, berberine and their derivatives. Among them, chelidonine, sanguinarine, chelerythrine, berberine and coptisine are the dominant components [28]. Through our study, we found that alkaloids were the dominant antineoplastic components in *C. majus*. We have observed relevant mechanisms to explain the promising antineoplastic activity that alkaloids have showed. A tripartite network was constructed to illustrate the function of the five dominant components in the anticancer activity of *C. majus* (Figure 4). The 18 cancer-associated pathways can be classified into 4 clusters based on their function in...

Figure 3. The network of *C. majus’* ingredients with their known and putative targets. The ingredients were denoted by magenta square, and targets were denoted by cyan circle. Known CTIs were represented in solid lines, while putative CTIs were represented in dotted lines. This figure, together with Figure 4, was prepared via Cytoscape 3.6.0.
the hallmarks of cancer [29,30]. It can be observed from Figure 4 that the five dominant ingredients modulate 19 cancer-associated targets, and subsequently regulate the 18 cancer-associated pathways. These pathways are classiﬁed into four clusters based on their biological functions in cancer. The compounds were denoted by magenta square, targets by cyan circle, the pathways by purple triangle.

Figure 4. The tripartite network of 5 key anticancer ingredients, the targets, and cancer-associated pathways. These pathways were classiﬁed into four clusters based on their biological functions in cancer. The compounds were denoted by magenta square, targets by cyan circle, the pathways by purple triangle.

Table 1 The relationships of cancer types and genetic prognostic factors

Cancer type	Genetic prognostic factor*
Renal cancer	CDK2, CHEK1, F2, GNAS, GSK3B, HSP90AB1, LCK, MAPK10, MMP9, MTOR, NFKB1, PDE4D, PLAU, PTGS2
Liver cancer	CDK2, CHEK1, GSK3B, MAPK1, MMP9, PPAR, UBE2I
Endometrial cancer	LCK, MMP9, PLAU, TP53
Pancreatic cancer	CHEK1, PLAU, SMAD3
Head and neck cancer	CDK2, LCK, PLAU
Colorectal cancer	CHEK1, HSPB1
Ovarian cancer	GNAS, HSP90AB1
Urothelial cancer	CASP9, MAPK10
Lung cancer	PLAU
Melanoma	LCK
Prostate cancer	TP53
Thyroid cancer	UBE2I
Breast cancer	CASP9

* The genetic prognostic factors were represented in their ofﬁcial gene symbols.
crucial in the cell proliferation, apoptosis, cancer angiogenesis and cancer metastasis [22–26,31–42]. From Figure 4, we can also see that cell proliferation was regulated by all the five alkaloids, while berberine and sanguinarine can modulate the apoptosis process. Chelerythrine, coptisine and sanguinarine can inhibit cancer metastasis through four pathways, and chelidonine, sanguinarine and chelerythrine can exert anti-angiogenesis activity. Considering the abundant content of the five alkaloids in *C. majus*, chelidonine, sanguinarine, chelerythrine, berberine and coptisine are therefore identified as the key anticancer components of *C. majus*. The structures of these alkaloids were presented in Table 2.

Name	Structure	Number of cancer-related genes
Chelidonine	![Structure of Chelidonine](image)	4
Sanguinarine	![Structure of Sanguinarine](image)	12
Chelerythrine	![Structure of Chelerythrine](image)	6
Berberine	![Structure of Berberine](image)	9
Coptisine	![Structure of Coptisine](image)	3

Bioassays and literature survey to verify the prediction

Our systems pharmacology study revealed that *C. majus* is a potent anticancer medicinal herb that inhibits proliferation, metastasis and angiogenesis, as well as induces apoptosis in cancer cells. Plenty of literatures have validated our results. Our computational results have shown that *C. majus* might be effective on several types of cancers (Table 1). Chelerythrine, the main component of *C. majus*, was reported to induce apoptosis in renal cancer cell lines [43]. Chelidonine has also been reported to exert antiproliferative activity against breast cancer cells [44]. Besides, we also found that the potential anti-colorectal
cancer activity of sanguinarine, another key component of *C. majus*, was reported. The anticancer activity was mediated by inducing apoptosis in HT-29 human colon cancer cells [45].

We also performed bioassays to validate part of our predictions. Based on our prediction, chelidonine is the key component in *C. majus* that exerts anticancer activity, but its biological data are limited. Thus, we conducted a bioassay to show chelidonine’s antiproliferative activity on the B16F10 melanoma cell line. With the elevation of chelidonine’s concentration, the percentage of B16F10 cells in G1/M phase increased (Figure 5), while the G1 phase and S phase were insignificantly influenced. The results indicated that chelidonine could induce G2/M phase cell cycle arrest in B16F10 melanoma cell line, which was consistent with our computational analysis that chelidonine and its derivatives may affect the cell cycle pathway.

![Figure 5. Chelidonine induced cell cycle arrest in B16F10 melanoma cell line.](image)

The B16F10 cells were treated with 0.5 μM, 1 μM, 2 μM and 4 μM chelidonine for 24 hours and one control group without chelidonine. The line chart in the lower right represented the B16F10 cells percentage in different cell cycle phases. The blue line represented G1 phase, orange line represented G2 phase and grey line represented S phase.
DISCUSSION

Key anticancer components of *C. majus*

C. majus consists of multiple ingredients, but there are several components that might be essential to the anticancer activity. We hereby discussed the MoA of *C. majus* based on the CTIs and gene ontology. The detailed interaction network is presented in Figure 4.

Sanguinarine. Sanguinarine is an antimicrobial and antioxidant agent firstly discovered in the root of *Sanguinaria canadensis* L. Recent studies stated that sanguinarine exerts both antiproliferative and apoptotic effects in cancer cell lines [46,47]. Our study indicated that sanguinarine interacts with 18 crucial pathways, which are highly correlated with cell proliferation, metastasis and apoptosis. Although sanguinarine was experimentally acknowledged to interact with classic cancer-related targets, such as the tumor protein 53 (TP53) [32], peroxisome proliferator-activated receptor (PPAR) [38] and p38α (MAPK14) [40], other putative targets were also predicted to be associated with cancers. The overexpression of urokinase, encoded by gene PLAU, was highly correlated with cancer metastasis [33,34], and inhibition of urokinase can successfully suppress the metastasis [31]. In our study, hydroxysanguinarine and dihydrosanguinarine, derivatives of sanguinarine that coexisted in *C. majus*, were predicted to act on the urokinase. Thus, *C. majus* might also prevent the tumor invasion and metastasis.

Chelerythrine. Chelerythrine is another substantial alkaloid existing in *C. majus* that exhibits selective inhibition against protein kinase C [48]. Chelerythrine was reported to exert cytotoxic effect against human prostate cancer cells [49] and induce cell cycle arrest in the human leukemia HL-60 cell lines [50]. In our study, chelerythrine was predicted to interact with urokinase and heat shock protein (HSP) 90β [39], both of which were overexpressed in cancer cells. Therefore, chelerythrine might suppress cancers by interacting with urokinase and HSP 90β. Our study also indicated the interaction between chelerythrine and the c-Jun protein, which was encoded by the proto-oncogene Jun [35]. Chelerythrine might inhibit the c-Jun protein to suppress tumors.

Chelidonine and derivatives. Chelidonine and its derivatives including homochelidonine, isochelidonine, methoxylchelidonine and 6-oxochelidonine were reported to manifest antiproliferative activities against tumor cells in a cellular level, but the MoA was still uncertain. However, the experimental data of chelidonine in the molecular level was very limited. In our study, we predicted top 20 targets for chelidonine and its derivatives. Ten CTI pairs, which we believed might explain the potential anticancer mechanism of chelidonine, were identified. It was predicted by bSDTNBI method that chelidonine and three derivatives interacted with androgen and estrogen receptors, which are highly associated with hormone-dependent cancers. Apart from the nuclear receptors, methoxylchelidonine was predicted to interact with cyclin-dependent kinase 2 (CDK2), which is highly related to cell division [36]. Chelidonine and derivatives might induce cell cycle arrest in cancer cells.

Berberine and coptisine. Berberine and coptisine also predominantly exist in *C. majus*. The two alkaloids have been extensively studied on their anticancer activities. Berberine can suppress cell invasion, induce apoptosis and arrest cell cycle in plenty cancer cells [51]. Similar pharmacological activities were also observed in coptisine against cancer cells [52,53].

Potential antineoplastic mechanisms of *C. majus*

From our study, we can see that *C. majus* might exert positive therapeutic activities against 13 types of cancers through several cancer-related pathways. We discussed three major pathways here.

Cell cycle arrest. The cell cycle pathway is the biological process of DNA replication and cell division, which takes place in almost all types of cells. Five targets were enriched in the cell cycle pathway, namely SMAD3, CHEK1, CDK2, GSK3B, and TP53. More than one-third compounds (16 out of 44) from *C. majus* interact with these targets, ten of which are alkaloids. It is interesting that five targets distribute in the G1 phase and S phase of cell cycle, so the cell division might be arrested in the G2/M phase.

Apoptosis induction. Inducing apoptosis in certain cancer cells has been a hotspot in oncology research and drug development. Our study found that seven compounds interact with four targets in the apoptosis process, including TNF, CASP9, TP53 and NFKB1. *C. majus* might suppress the tumor cells by inducing apoptosis. Eight compounds from *C. majus* explicitly or putatively interacted with these targets above, inducing programmed cell death in cancer cells. Several researches verified *C. majus*’ antiproliferative activity on diverse cancer cells by inducing apoptosis. In a study, methanol extract of *C. majus* inhibited cytotoxicity towards human promyelocytic leukemia HL-60 cell lines in a dose-dependent pattern [54]. Another study showed that *C. majus* extract exerts both cell cycle arrest and apoptosis activity against six cancer cell lines [55].

Signal transduction. Cell cycle arrest and apoptosis induction were perceived to be the key mechanisms that *C. majus* exerts antineoplastic activity again cancer cells. Besides, *C. majus* might also suppress cancer in other pathways. A research reported that the PI3K-Akt signaling pathway was activated in the early stage of
tumorigenesis [41], and this cascade was considered to be a promising target for cancer treatment [37]. C. majus may act on the PI3K-Akt signaling pathway and affecting the downstream signaling pathways, including the NF-κB signaling pathway and VEGF signaling pathway, and suppress angiogenesis and cell proliferation. Moreover, C. majus remarkably influenced the MAPK signaling pathway, including the extracellular-signal regulated kinases (ERK) subfamily and p38 subfamily, and subsequently led to cell cycle arrest and apoptosis. In addition, the focal adhesion pathway, regulation of actin cytoskeleton pathway and epithelial cell signaling pathway are high correlated with cancer metastasis. C. majus might inhibit metastasis through interacting with these pathways.

Comparison with other similar work

Recently, a systems pharmacology research on the antitumor mechanism of C. majus was reported [56]. Compared with that report, we noticed that they collected 442 known targets of C. majus, greater than 111 known targets that we have retrieved in this work. However, we found that the 442 targets came from multiple species; most of them are unrelated to human cancers. Besides, the SysDT method [57] they applied for target prediction requires negative samples to build a predictive model, while negative samples are usually rarely reported. Our bSDTNBI method, on the other hand, needs no negative samples to build a predictive model. In addition, the chelidonine, which is the most abundant component in their report. However, our study elucidated that chelidonine is a promising anticancer ingredient in C. majus by both computational method and bioassay.

CONCLUSIONS

In this study, the bSDTNBI method, integrated with pathway enrichment, network analysis and cancer biomarker analysis, was successfully used to decipher the antineoplastic mechanism of C. majus at the molecular level. Systems pharmacology approach was proven to be a useful tool in understanding the pharmacological activity of multi-component TCM.

MATERIALS AND METHODS

Data collection and preparation

The chemical components of C. majus were collected from three TCM databases, namely TCM Database@-Taiwan, TCMSp and TCMD, as well as research literatures reporting C. majus composition. The compounds were converted into canonical SMILES via our in-house script integrated with Python, OpenBabel toolkit [58] and Schrödinger 2015 package [59].

The known CTI pairs were collected from four databases including ChEMBL, BindingDB, IUPHAR/BPS Guide to PHARMACOLOGY and PDSP Ki Database. The interaction pairs were exacted only when the data met below four criteria: (i) the IC$_{50}$, EC$_{50}$, K$_i$, K$_d$ or potency values ≤10 μM; (ii) the target protein was labelled as “reviewed” in the UniProt Database [60]; (iii) the target proteins originate from Homo sapiens; (iv) duplicate CTIs were removed.

Chemical space analysis

We conducted a chemical space comparison between chemical ingredients of C. majus and compounds from the bSDTNBI model, to analyze the drug-like properties of those ingredients. The molecular weight and logP values were calculated by Schrödinger 2015 package.

Prediction of putative targets

Our bSDTNBI method was applied for target prediction. Based on our previous study [9], three parameters, α, β and γ, were set to 0.41, 0.06 and –0.51, respectively. Our previous study also showed that the inference method manifested better performance when the Klekota-Roth (KR) fingerprint [61] was selected to generate substructures for each compound.

Canonical SMILES format was firstly converted to KR fingerprint via PaDEL-Descriptor [62]. The top 20 putative targets were predicted for each compound by bSDTNBI method. The putative targets were then converted to their official gene symbols for further pathway enrichment analysis.

Pathway enrichment analysis

After removing duplicates, the known and putative targets were merged for pathway enrichment analysis. The pathway enrichment analysis was conducted by DAVID v6.8 server (https://david.ncifcrf.gov/), an online functional annotation tool. The 173 targets were uploaded onto DAVID v6.8 online server. “Homo sapiens” was selected as background species for gene annotation. “KEGG_PATHWAY” was selected for functional annotation.

Compound-target network construction

We constructed a binary network (Figure 3) including 44 compounds and 173 targets to illustrate the CTI of C. majus. We also constructed a tripartite network (Figure 4)
to illustrate the relationship between the key anticancer components, targets and cancer-related pathways. The tripartite network was prepared via Cytoscape 3.6.0 [63].

Cell culture and treatments

The melanoma cell line B16F10 was purchased from the Cancer Cell Repository of Shanghai Cell Bank, Shanghai, China, which was maintained in DMEM, supplemented with 10% FBS, 100 units per milliliter penicillin and streptomycin. B16F10 cells were cultured at 37°C in 5% CO₂ and the medium was replaced as required.

Analysis of cell cycle

B16F10 cells were treated treated with DMEM or drugs for 24 h, then collected and washed with PBS. To analyze cell cycle, B16F10 cells were stained with PI (BD Biosciences, Franklin Lakes, NJ, USA; cat no. 556547). Fluorescence was measured by a FACSCalibur flow cytometer (FACSCalibur; BD Biosciences, Franklin Lakes, NJ, USA).

ACKNOWLEDGEMENTS

This work was supported by the National Key Research and Development Program of China (No. 2016YFA0502304), the National Natural Science Foundation of China (Nos. 81673356 and U1603122) and the 111 Project Program of China (No. 2016YFA0502304).

REFERENCES

1. Chen, S.L., Song, J.Y., Sun, C., Xu, J., Zhu, Y.J. and Verpoorte, R. (2015) Herbal genomics: examining the biology of traditional medicine. Science/AAAS Custom Publishing Office, 347, S27–S29
2. Yin, N., Ma, W., Pei, J., Ouyang, Q., Tang, C. and Lai, L. (2014) Synergistic and antagonistic drug combinations depend on network topology. PLoS One, 9, e93939
3. Colombo, M. L. and Bosisio, E. (1996) Pharmacological activities of Chelidonium majus L. (Papaveraceae). Pharmacol. Res., 33, 127–134
4. Gilca, M., Gaman, I., Panait, E., Stoian, I. and Atanasiu, V. (2010) Chelidonium majus – an integrative review: traditional knowledge versus modern findings. Forsch. Komplementarmed., 17, 241–248
5. Dunhof, M. (2016) Systems pharmacology – towards the modeling of network interactions. Eur. J. Pharm. Sci., 94, 4–14
6. Xie, L., Draizen, E. J. and Boume, P. E. (2017) Harnessing big data for systems pharmacology. Annu. Rev. Pharmacol. Toxicol., 57, 245–262
7. Cheng, F., Liu, C., Jiang, J., Lu, W., Li, W., Liu, G., Zhou, W., Huang, J. and Tang, Y. (2012) Prediction of drug-target interactions and drug repositioning via network-based inference. PLoS Comput. Biol., 8, e1002503
8. Wu, Z., Cheng, F., Li, J., Li, W., Liu, G. and Tang, Y. (2017) SDTNBI: an integrated network and chemoinformatics tool for systematic prediction of drug-target interactions and drug repositioning. Brief. Bioinform., 18, 333–347
9. Wu, Z., Lu, W., Wu, D., Luo, A., Bian, H., Li, J., Li, W., Liu, G., Huang, J., Cheng, F., et al. (2016) In silico prediction of chemical mechanism of action via an improved network-based inference method. Br. J. Pharmacol., 173, 3372–3385
10. Wang, Y., Li, J., Wu, Z., Zhang, B., Yang, H., Wang, Q., Cai, Y., Liu, G., Li, W. and Tang, Y. (2017) Insights into the molecular mechanisms of Polygonum multiflorum Thumb-induced liver injury: a computational systems toxicology approach. Acta Pharmacol. Sin., 38, 719–732
11. Wang, T., Wu, Z., Sun, L., Li, W., Liu, G. and Tang, Y. (2018) A computational systems pharmacology approach to investigate molecular mechanisms of herbal formula Tian-Ma-Gou-Teng-Yin for treatment of Alzheimer’s disease. Front. Pharmacol., 9, 668
12. Chen, C. Y.-C. (2011) TCM Database@Taiwan: the world’s largest traditional Chinese medicine database for drug screening in silico. PLoS One, 6, e15939
13. Ru, J., Li, P., Wang, J., Zhou, W., Li, B., Huang, C., Li, P., Guo, Z., Tao, W., Yang, Y., et al. (2014) TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 6, 13
14. Xue, R., Fang, Z., Zhang, M., Yi, Z., Wen, C. and Shi, T. (2013) TCMD: traditional Chinese medicine integrative database for herb molecular mechanism analysis. Nucleic Acids Res., 41, D1089–D1095
15. Gaulton, A., Bellis, L. J., Bento, A. P., Chambers, J., Davies, M., Hersey, A., Light, Y., Mcglinchey, S., Michalovich, D., Al-Lazikani, B., et al. (2012) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res., 40, D1100–D1107
16. Liu, T., Lin, Y., Wen, X., Jorissen, R. N. and Gilson, M. K. (2007) BindingDB: a web-accessible database of experimentally determined protein–ligand binding affinities. Nucleic Acids Res., 35, D198–D201
17. Southan, C., Sharma, J. L., Benson, H. E., Faccenda, E., Pawson, A. J., Alexander, S. P. H., Buneman, O. P., Davenport, A. P., McGrath, J. C., Peters, J. A., et al. (2016) The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. Nucleic Acids Res., 44, D1054–D1068
18. Roth, B. L., Lopez, E., Patel, S. and Kroese, W. K. (2000) The multiplicity of serotonin receptors: uselessly diverse molecules or an embarrassment of riches? Neuroscientist, 6, 252–262
19. Huang, D. W., Sherman, B. T. and Lempicki, R. A. (2008)
Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc., 4, 44–57
20. Huang, D. W., Sherman, B. T. and Lempicki, R. A. (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res., 37, 1–13
21. Lei, Q., Zhao, X., Xu, L., Peng, Y. and Xiao, P. (2014) Chemical constituents of plants from tribe Chelidonieae and their bioactivities. Chin. Herb. Med., 6, 1–21
22. Stork, P. J. S. and Schmitt, J. M. (2002) Crosstalk between cAMP and MAP kinase signaling in the regulation of cell proliferation. Trends Cell Biol., 12, 258–266
23. Mehlen, P. and Puisieux, A. (2006) Metastasis: a question of life or death. Nat. Rev. Cancer, 6, 449–458
24. Otrock, Z. K., Mahfouz, R. A. R., Makarem, J. A. and Shamseddine, A. I. (2007) Understanding the biology of angiogenesis: review of the most important molecular mechanisms. Blood Cells Mol. Dis., 39, 212–220
25. Lambert, A. W., Pattabiraman, D. R. and Weinberg, R. A. (2017) Emerging biological principles of metastasis. Cell, 168, 670–691
26. Sanchez-Vega, F., Mina, M., Armenia, J., Chatila, W. K., Luna, A., La, K. C., Dimitriadiy, S., Liu, D. L., Kenthetti, H. S., Saghafinia, S., et al. (2018) Oncogenic signaling pathways in the Cancer Genome Atlas. Cell, 173, 321–337.e310
27. Uhlen, M., Zhang, C., Lee, S., Benfeitas, R., Arif, M., Liu, Z., Edfors, F., et al. (2017) A pathology atlas of the human cancer transcriptome. Science, 357, eaan2507
28. Sárközi, Á., Janicsák, G., Kursinszki, L. and Kéry, Á. (2006) Alkaloid composition of Chelidonium majus L. studied by different chromatographic techniques. Chromatographia, 63, S81–S86
29. Hanahan, D. and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation. Cell, 144, 646–674
30. Hanahan, D. and Weinberg, R. A. (2000) The hallmarks of cancer. Cell, 100, 57–70
31. Crowley, C. W., Cohen, R. L., Lucas, B. K., Liu, G., Shuman, M. A. and Levinson, A. D. (1993) Prevention of metastasis by inhibition of the urokinase receptor. Proc. Natl. Acad. Sci. USA, 90, 5021–5025
32. Miller, C. and Koeffler, H. P. (1993) P53 mutations in human cancer. Leukemia, 7, S18–S21
33. Achbarou, A., Kaiser, S., Tremblay, G., Ste-Marie, L.-G., Brodt, P., Goltzman, D. and Rabbani, S. A. (1994) Urokinase overproduction results in increased skeletal metastasis by prostate cancer cells in vivo. Cancer Res., 54, 2372–2377
34. Xing, R. H. and Rabbani, S. A. (1996) Overexpression of urokinase receptor in breast cancer cells results in increased tumor invasion, growth and metastasis. Int. J. Cancer, 67, 423–429
35. Vogt, P. K. (2001) Jun, the oncoprotein. Oncogene, 20, 2365–2377
36. Stead, E., White, J., Faast, R., Conn, S., Goldstone, S., Rathjen, J., Dhingra, U., Rathjen, P., Walker, D. and Dalton, S. (2002) Pluripotent cell division cycles are driven by ectopic Cdk2, cyclin A/E and E2F activities. Oncogene, 21, 8320–8333
37. Chang, F., Lee, J. T., Navolanic, P. M., Steelman, L. S., Shelton, J., G., Blalock, W. L., Franklin, R. A. and Mcubrey, J. A. (2003) Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia, 17, 590–603
38. Michalik, L., Desvergne, B. and Wahli, W. (2004) Peroxisome-proliferator-activated receptors and cancers: complex stories. Nat. Rev. Cancer, 4, 61–70
39. Ciocca, D. R. and Calderwood, S. K. (2005) Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones, 10, 86–103
40. Hui, L., Bakiri, L., Marthorfer, A., Schweifer, N., Haslinger, C., Kenner, L., Komnenovic, V., Scheuch, H., Beug, H. and Wagner, E. F. (2007) p38α suppresses normal and cancer cell proliferation by antagonizing the JNK-c-Jun pathway. Nat. Genet., 39, 741–749
41. Gustafson, A. M., Soldi, R., Anderlini, C., Scholand, M. B., Qian, J., Zhang, X., Cooper, K., Walker, D., Mcwilliams, A., Liu, G., et al. (2010) Airway PI3K pathway activation is an early and reversible event in lung cancer development. Sci. Transl. Med., 2, 26ra25
42. Malumbres, M. (2014) Cyclin-dependent kinases. Genome Biol., 15, 122
43. Chen, X.-M., Zhang, M., Fan, P.-L., Qin, Y.-H. and Zhao, H.-W. (2016) Chelerythrine chloride induces apoptosis in renal cancer HEK-293 and SW-839 cell lines. Oncol. Lett., 11, 3917–3924
44. Nouraeini, S. K. and Esmaili, H. (2014) Multiple mechanisms of cell death induced by chelidonine in MCF-7 breast cancer cell line. Chem. Biol. Interact., 223, 141–149
45. Lee, J. S., Jung, W.-K., Jeong, M. H., Yoon, T. R. and Kim, H. K. (2012) Sanguinarine induces apoptosis of HT-29 human colon cancer cells via the regulation of Bax/Bcl-2 Ratio and caspase-9-dependent pathway. Int. J. Toxicol., 31, 70–77
46. Ahmad, N., Gupta, S., Huisain, M. M., Heiskanen, K. M. and Mukhtar, H. (2000) Differential antiproliferative and apoptotic response of sanguinarine for cancer cells versus normal cells. Clin. Cancer Res., 6, 1524–1528
47. Adhami, V. M., Aziz, M. H., Reagan-Shaw, S. R., Nihal, M., Mukhtar, H. and Ahmad, N. (2004) Sanguinarine causes cell cycle blockade and apoptosis of human prostate carcinoma cells via modulation of cyclin kinase inhibitor-cyclin-cyclin-dependent kinase machinery. Mol. Cancer Ther., 3, 933–940
48. Herbert, J. M., Augereau, J. M., Gleye, J. and Maffrand, J. P. (1990) Chelerythrine is a potent and specific inhibitor of protein kinase C. Biochem. Biophys. Res. Commun., 172, 993–999
49. Malikova, J., Zdarilova, A. and Hlobilkova, A. (2006) Effects of sanguinarine and chelerythrine on the cell cycle and apoptosis. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 150, 5–12
50. Vrba, J., Doležel, P., Vičár, J., Modrianský, M. and Ulrichová, J. (2008) Chelerythrine and dihydrochelerythrine induce G1 phase arrest and bimodal cell death in human leukemia HL-60 cells. Toxicol. In Vitro, 22, 1008–1017
51. Sun, Y., Xun, K., Wang, Y. and Chen, X. (2009) A systematic review of the anticancer properties of berberine, a natural product from Chinese herbs. Anticancer Drugs, 20, 757–769
Antineoplastic mechanism of *C. majus*

52. Li, J., Qiu, D. M., Chen, S. H., Cao, S. P. and Xia, X. L. (2014) Suppression of human breast cancer cell metastasis by coptisine in vitro. Asian Pac. J. Cancer Prev., 15, 5747–5751

53. Rao, P. C., Begum, S., Sahai, M. and Sriram, D. S. (2017) Coptisine-induced cell cycle arrest at G2/M phase and reactive oxygen species-dependent mitochondria-mediated apoptosis in non-small-cell lung cancer A549 cells. Tumour Biol., 39

54. Nadova, S., Miadokova, E., Alfoldiova, L., Kopaskova, M., Hasplova, K., Hudecova, A., Vaculcikova, D., Gregan, F. and Cipak, L. (2008) Potential antioxidant activity, cytotoxic and apoptosis-inducing effects of *Chelidonium majus* L. extract on leukemia cells. Neuroendocrinol. Lett., 29, 649–652

55. Deljanin, M., Nikolic, M., Baskic, D., Todorovic, D., Djurdjevic, P., Zoric, M., Stankovic, M., Todorovic, M., Avramovic, D. and Popovic, S. (2016) *Chelidonium majus* crude extract inhibits migration and induces cell cycle arrest and apoptosis in tumor cell lines. J. Ethnopharmacol., 190, 362–371

56. Zhang, L., Chen, Z. H., Chen, H. Y., Wang, X. Q., Zhang, B. and University, S. (2018) Study on antitumor molecular mechanism of *Chelidonium majus* based on network pharmacology. Chin. Tradit. Herbal Drugs, 49, 646–657

57. Yu, H., Chen, J., Xu, X., Li, Y., Zhao, H., Fang, Y., Li, X., Zhou, W., Wang, W. and Wang, Y. (2012) A systematic prediction of multiple drug-target interactions from chemical, genomic, and pharmacological data. PLoS One, 7, e37608

58. O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T. and Hutchison, G. R. (2011) Open Babel: an open chemical toolbox. J. Cheminform., 3, 33

59. Small-Molecule Drug Discovery Suite 2015-2, Schrödinger, LLC, New York, 2015

60. Bairach, A., Apweiler, R., Wu, C. H., Barker, W. C., Boeckmann, B., Ferro, S., Gasteiger, E., Huang, H., Lopez, R., Magrane, M., et al. (2005) The Universal Protein Resource (UniProt). Nucleic Acids Res., 33, D154–D159

61. Klekota, J. and Roth, F. P. (2008) Chemical substructures that enrich for biological activity. Bioinformatics, 24, 2518–2525

62. Yap, C. W. (2011) PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. J. Comput. Chem., 32, 1466–1474

63. Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B. and Ideker, T. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res., 13, 2498–2504