The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/209367

Please be advised that this information was generated on 2020-05-08 and may be subject to change.
Sex- and Gender-Stratified Risks of Psychological Factors for Incident Ischemic Heart Disease: Systematic Review and Meta-Analysis

Veerle R. Smaardijk, MSc; Paul Lodder, MSc; Willem J. Kop, PhD; Bente van Gennep, MSc; Angela H.E.M. Maas, MD, PhD; Paula M. C. Mommersteeg, PhD

Background—Psychological factors are associated with an increased risk of developing ischemic heart disease (IHD). Women more often report psychological factors, and sex and gender differences are present in IHD. In this meta-analysis we examine the risks of psychological factors for IHD incidence in women and men. We hypothesize that a broad range of psychological factors are related to a higher risk for incident IHD, with a higher risk for women.

Methods and Results—PubMed, EMBASE, and PsycINFO were searched for studies assessing the risk between psychological factors and incident IHD. Psychological factors included depression, anxiety or panic disorder, social support, hostility, anger, personality (type D), type A behavior pattern, posttraumatic stress disorder, and psychological distress. In the primary analyses, 62 studies (77 separate reports) that included 2 145 679 women and 3 119 879 men and reported confounder-adjusted hazard ratios or relative risks were included. Pooled effect confounder-adjusted estimates from random-effects models showed that psychological factors (all combined) were associated with incident IHD in women (hazard ratio: 1.22; 95% CI, 1.14–1.30) and men (hazard ratio: 1.25; 95% CI, 1.19–1.31). No sex and gender differences were found for these pooled effect estimates (P=0.547).

Conclusions—Psychological factors are associated with incident IHD in both women and men, but no significant differences were observed between women and men. IHD is predominantly being studied as obstructive coronary artery disease, which is more prevalent in men. Data are needed on psychological predictors and other manifestations of IHD such as coronary microvascular disease, which is more common in women. (J Am Heart Assoc. 2019;8:e010859. DOI: 10.1161/JAHA.118.010859.)

Key Words: gender • incidence • ischemic heart disease • meta-analysis • psychology and behavior • sex

Cardiovascular disease is the most important cause of death globally and has obvious sex and gender (S&G) differences.1 In 2015, 17.7 million people died from a cardiovascular disease event, of which an estimated 7.4 million were due to ischemic heart disease (IHD).2 The prevalence of IHD is higher in men than in women (7.4% and 5.3% respectively, in US adults), and IHD mortality is up to 5 times higher in men than in women.3,4 Women develop IHD 10 years later than men on average, with risks increasing after menopause.1 IHD comprises all cardiac conditions with an ischemic origin (ie, both obstructive coronary artery disease [CAD] and coronary microvascular disease). The term IHD is particularly relevant for cardiac diagnosis in women because women present more often than men with signs and symptoms of IHD in the absence of obstructive coronary arteries.5 The combination of nonobstructive CAD and vasomotor disorders dominates in women at middle age and is often underestimated or not included in clinical studies.5,6 Whereas men more often experience the classic symptoms of chest pain with radiation to the back and arms, women more often present with “atypical” symptoms such as shortness of breath, chest pain at rest, nausea, and back or jaw pain than men, and these symptoms are not readily recognized as diagnostic for IHD.2

Several risk factors have been related to the development of IHD (incidence). Behavioral risk factors for IHD include smoking, an unhealthy diet, physical inactivity, and harmful use of alcohol.2 Negative psychological factors are being acknowledged by the European Society of Cardiology as important cardiac risk factors related to adverse IHD incidence and prognosis.7 Psychological factors
S&G Meta-Analysis of Psychological Risk for IHD  Smaardijk et al

Clinical Perspective

What Is New?

• This meta-analysis is the first assessing the association between psychological factors and incident ischemic heart disease (IHD) outcomes, stratified for women and men.
• Psychological factors were associated with a significantly increased risk of developing IHD in both women (22%) and men (25%).

What Are the Clinical Implications?

• Healthcare professionals should recognize and acknowledge the importance of psychological factors in developing IHD in women and men.
• IHD is predominantly being studied as obstructive coronary artery disease, which is more prevalent in men than in women.
• Data are needed on psychological predictors of other manifestations of IHD such as coronary microvascular disease, which is more common in women.

comprise a number of concepts including depression, anxiety or panic disorder, (di)stress, loneliness or perceived social isolation, hostility, posttraumatic stress disorder (PTSD), and personality (type D).7,8

The prevalence of some psychological factors differs by S&G in the general population. Depression is more common in women than in men (prevalence >7.5% and >5.5%, respectively, for those aged 55–74 years).9 The same holds for anxiety disorders (4.6% versus 2.6%, respectively, at the global level).9 Given that IHD manifests differently in women and men, psychological factors could affect the progression of IHD differently for women and men.1,7 To date, some meta-analyses have investigated the relationship between psychological factors and the incidence of IHD events. Tully et al examined a meta-analysis showing an increased risk for panic disorder with incident CAD; however, no S&G-stratified results were reported.10 Low and colleagues performed a literature review of studies examining S&G differences for psychological factors with incident IHD and showed that depression; stress at home or in a relationship; and, to a lesser extent, anxiety predict IHD risk in women; however, they did not perform a structured meta-analysis.11 The individual patient data meta-analysis of Doyle et al examined a significant sex x depression interaction for outcomes, with men showing worse cardiac prognosis than women, but focused on post-MI patients only, of which men are more prevalent.12

In this systematic review and meta-analysis, we aim to assess S&G-stratified risks of negative psychological factors for the development of IHD. We hypothesize that both women and men with psychological factors have an increased risk of developing IHD, with a more pronounced risk in women than men. As a secondary aim, we investigate diversity and confounding associated factors related to the S&G-stratified risk of psychological factors for IHD incidence.

Methods

The protocol for this systematic review and meta-analysis, including a second systematic review and meta-analysis regarding adverse outcomes (prognosis) in S&G-stratified IHD populations, has been registered in the PROSPERO international prospective register of systematic reviews (registration number CRD42017067087). This meta-analysis was developed following the key steps and recommendations of the American Heart Association.13 The data, analytic methods, and study materials have been made available to other researchers for purposes of reproducing the results or replicating the procedure.14

Search Strategy

Two authors (V.S. and P.M.) conducted the literature search using PubMed, EMBASE, and PsychnFO. The search terms used in each database were composed in cooperation with the authors (V.S., P.L., W.K., A.M., and P.M.) and a medical librarian with experience in electronic literature searching. Furthermore, to increase the yield of relevant studies, a hand search was performed by 1 reviewer (V.S.) who examined reference lists of relevant systematic reviews and meta-analyses. Our first search was limited to English studies and a publication period between January 1, 2000, and April 17, 2017. To ensure that as many studies as possible were included in our analyses, a second search was performed on January 17, 2018, until that date. This search included a second hand search by another reviewer (P.M.). A complete overview of the performed searches, including search terms, can be found in Table S1.

Psychological Factors

Psychological factors included in this review were derived from the “core questions for the assessment of psychological risk factors in clinical practice” of the 2016 European guidelines on cardiovascular disease prevention.7 Search terms were developed for depression; anxiety and panic disorder; social isolation, social support, and loneliness; hostility; anger; personality (type D); type A behavior pattern; PTSD; and psychological distress. Psychological distress was defined as general distress, psychosocial stress, psychological stress, or a combination of similar psychological factors.
Eligibility Criteria

Only prospective cohort studies for incident IHD were eligible in this meta-analysis. Study participants had to develop incident fatal or nonfatal IHD after a follow-up period. Each included study had to investigate $\geq 1$ of the psychological prognostic factors, measured with a self-reported questionnaire or diagnosed by clinical interview.

We excluded case-control studies, cross-sectional studies, retrospective studies, reviews and meta-analyses, letters to the editors, and dissertation findings (irrelevant study design). Studies were also excluded if they focused exclusively on acute stress-induced cardiac events or if the end point involved predominantly cardiovascular diseases such as heart failure, arrhythmias, and peripheral vascular disease or when data were not separately presented for IHD. Furthermore, we excluded studies with self-reported IHD incidence. At last, studies were excluded if the psychological factor was not a variable of interest (eg, neighborhood psychological factors, work-related psychological factors, annoyance from noise, early life events, bereavement or loss of significant other), and other mental disorders (eg, schizophrenia and attention deficit hyperactivity disorder).

Study Selection Process

Two reviewers (V.S. and P.M.) independently performed the screening process. In the first step, titles and abstracts were screened and studies were included or excluded based on the established criteria. Title and abstract screening was performed using the Covidence platform. In the second step, studies that passed the first round were included or excluded based on full-text screening. If publications were based on the same sample and reported results on the same predictors and outcomes, then we chose to include the study that reported results of dichotomized over continuous psychological factors, included the largest sample size and/or longest follow-up time. Disagreements were discussed for consensus, and if no consensus was reached, a third reviewer (A.M. or W.K.) was consulted.

Data Extraction

After completion of the screening, data were extracted by one reviewer (V.S., P.M., or B.v.G.) and verified by a second reviewer (V.S., P.M., or B.v.G.) based on a customized standardized data extraction form. The following data were extracted: study identification (authors, global continent, year of publication, study period, type of study design), study characteristics (number and percentage of male and female participants, mean age of sample, mean follow-up duration, number and percentage of European descent or white participants, number of participants free of IHD), psychological factors (psychological factors, measurement methods, prevalence [reported in the study or calculated based on data present]), adjustment for covariates (including the categories demographic; lifestyle; cardiac risk factors, history, and disease severity; diabetes mellitus-related; somatic comorbidity; psychological comorbidity; medication and cardiac treatment; study-specific [see Table S2 for details]), and outcomes (IHD-related outcomes, number of events, statistical effect sizes for women and men [both adjusted and unadjusted] with corresponding 95% CIs). Furthermore, we reported whether a study included only women, only men, or both.

Authors of studies that included both women and men but did not further stratify for S&G were contacted by email to provide us with S&G-stratified data. The longest follow-up moment was used in case multiple follow-up moments were reported in 1 study. We chose to extract both unadjusted effect sizes and effect sizes adjusted for the most complete set of confounders. If $>1$ measure of the same psychological factor was included, we chose to include the measurement used most often in other included studies with the same psychological factor. Moreover, if a psychological factor was divided in $>2$ categories, the most detrimental score of a factor was chosen to represent the effect. For example, when both high and medium perceived stress were examined in a study and investigated with the same questionnaire, we chose the high perceived stress (compared with low perceived stress) category to represent the effect of the psychological factor.\footnote{If $>1$ outcome was reported in a study, the outcome comprising the most cardiac events was chosen to be included in our primary analyses.}

Statistical Analysis

Hazard ratios (HRs) and relative risks were considered equivalent and were used as the primary effect sizes of this meta-analysis. Authors were contacted when no effect size estimate or only odds ratios were reported and these effects could not be calculated based on other statistics reported in the study (eg, numbers of men and of women with or without the psychological factor and with or without the outcome). When studies did not report S&G-stratified effect sizes but did report S&G-stratified $2 \times 2$ tables, the frequencies in these tables were used to calculate relative risks and 95% CIs.\footnote{Primary analyses were based on effect sizes adjusted for confounders. When studies reported fully adjusted models as well as minimally adjusted models (eg, for age only), the latter were considered as unadjusted.}

To reduce bias due to heterogeneity between studies and to examine whether the relationship between psychological factors and IHD differed between specific groups, a priori planned subgroup analyses were performed in several studies.
These analyses were done when ≥2 studies in each subgroup could be included. Analyses were based on follow-up duration (<11 and ≥11 years), global continent of study performance, number of analyzed people (<5000, ≥5000), mean age of the study participants at baseline (<60, 60–65, and >65 years), percentage of European descent or white study participants (<50%, ≥50%), type of measurement (clinical diagnosis, questionnaire), unadjusted raw score versus minimally adjusted (eg, age only), baseline free of IHD or not, publication year (<2010, ≥2010), S&G-stratified results reported in the study versus received from the authors, IHD outcome divided into other relevant outcomes reported in the study (cardiac mortality, IHD, myocardial infarction [MI]), sample (community, high risk [eg, diabetes mellitus, hypercholesterolemia, hypertension], military, menopausal), and whether adjustment for lifestyle factors was done (yes versus no). The cutoffs were calculated by using the median of included studies (eg, for age, number of analyzed people, and follow-up duration). The Bonferroni–Holm procedure was used to correct for multiple testing.\(^{17}\) The pooled effect estimates reflect the risk of developing IHD in the presence versus absence of exposure to the psychological risk factor under consideration.

Heterogeneity was assessed with the Cochran Q statistic\(^{18}\) and the Higgins \(I^2\) index.\(^{19}\) An \(I^2\) value of 25% means that a small degree of inconsistency or statistical heterogeneity exists. An \(I^2\) value of 50% implies a moderate degree, and 75% implies a large degree.\(^{20}\) We chose random-effects models for the pooled analyses because we assume that our included studies are a random sample from the population of possible studies on this topic. Moreover, we assume that the moderator variables examined in our meta-analysis are not exhaustive and thus that unexplained heterogeneity remains in the present meta-analysis. We aim to accommodate this residual by using a random-effects model. Sensitivity and additional meta-analyses were performed to assess studies using unadjusted data, continuous data, and odds ratios. It has been argued recently that meeting the assumption of homogeneity is not necessary when using fixed-effects models, indicating that the presence of heterogeneity does not preclude using fixed-effects models to estimate overall effects in meta-analyses.\(^{21}\) Consequently, we additionally fit fixed-effects models to our primary data. Possible publication bias was investigated using funnel plots, Egger tests,\(^{22}\) and the Duval and Tweedie trim-and-fill method.\(^{23}\) Comprehensive Meta-Analysis v2.0 (Biostat) was used to perform all analyses.

Results

Study Selection

The search resulted in 12,330 studies of which 668 were eligible after title–abstract screening, and 132 were eligible after full-text screening (Figure 1). The most common reasons for exclusion of studies were overlap with another study from the same author and/or cohort (n=128), irrelevant study design (n=94), outcome other than IHD (n=72), and predictor falling outside selection criteria (n=51). Another 157 studies were relevant for our systematic review and meta-analysis regarding adverse outcomes in cardiac populations (prognosis) and thus were not included in this meta-analysis.

In total, 55 studies (42%) did not stratify for S&G, 11 (8%) studies reported for women only, 29 (22%) included only men, and 37 (28%) reported S&G-stratified results. One study reported S&G-stratified results for only 1 of 3 relevant psychological factors, and the authors were contacted.\(^{24}\) Three authors of studies included after the second hand search could not be contacted because of time constraints. After contacting the 52 authors who did not report S&G-stratified results, we received the results of 21 (41%) nonstratified studies, 13 (26%) authors did not respond, and 18 (35%) were unable or unwilling to perform S&G-stratified analyses. The 34 studies without S&G-stratified data were excluded from our meta-analyses. In total, 98 studies were included comprising 160 separate reports of psychological factors and/or IHD outcomes. In the primary analysis, we excluded 66 reports of unadjusted results, 17 reports with possibly multiple overlapping IHD outcomes, 14 reports with continuous data, and/or 2 reports reporting odds ratios only. One report was also excluded because no CI was reported for the primary effect size and this interval could not be determined based on other reported statistics.\(^{25}\) After exclusion, 62 studies (comprising 77 separate reports) were left and eligible for our primary analyses. These 62 studies provide data from at least 2,145,679 women and 3,119,879 men, with at least 654,345 incident IHD events.

Study Characteristics

Table 1 presents the baseline characteristics of the 77 reports included in our primary analysis.\(^{15,24,26–85}\)

In total, 8 (10%) studies reported results for women only, 23 (30%) reported for men only, and 46 (60%) reported separate results for both women and men. Two studies did not report the number of included women and men. Across the 62 studies, on average, women comprised 41% of the study sample (median: 52%; range: 0–100%). The mean age of the study participants was 51.3 years (median: 49.6 years; range: 18.3–80.2 years). The mean follow-up duration was 11.8 years (median: 10.4 years; range: 2–37 years). Baseline sampling was conducted until 2008. Depression (48%) was the most examined psychological factor, followed by anxiety and panic disorder (18%). In 75% of the studies, a questionnaire was used to measure the psychological factor. On average, 17% (median: 15%; range: 0–48%) of the study sample was determined based on other reported statistics.\(^{25}\) After exclusion, 62 studies (comprising 77 separate reports) were left and eligible for our primary analyses. These 62 studies provide data from at least 2,145,679 women and 3,119,879 men, with at least 654,345 incident IHD events.
participants were scoring high on a psychological factor, based either on the cutoff of the questionnaire score or on a diagnosis by a clinical interview.

On average, 8% (median: 5%; range: 0–35%) of these participants developed IHD after follow-up compared with an average of 6% (median: 3%; range: 0–30%) in the group without the psychological factor. IHD outcomes were most commonly measured by (national) registries, medical records, clinical diagnoses, and death certificates. In addition, 83% of the included reports adjusted for factors related to lifestyle.

Psychological Factors and Incident IHD

Random-effects models showed that psychological factors were associated overall with an increased risk of incident IHD in both women (HR: 1.22; 95% CI, 1.14–1.30),* and men (HR: 1.25; 95% CI, 1.19–1.31)† (Figures 2 and 3) in adjusted models. The difference in the effect sizes for psychological factors predicting IHD incidence for women and men was not significant (P=0.547). Of 53 reports of which data for women were available, 19 (36%) showed a statistically significant positive relation between psychological factors and incident IHD. For the 67 reports with data stratifiable for men, this number was 28 (42%). With respect to women, significant results were found for anxiety (HR: 1.29; 95% CI, 1.03–1.60), depression (HR: 1.24; 95% CI, 1.15–1.33), and distress (HR: 1.31; 95% CI, 1.08–1.58). For men,
Table 1. Characteristics of Studies Included in Our Primary Analyses

| First Author (Year)* | Global Continent | Analyzed (n) | Baseline IHD Free | Age, y | S&G | % W | % European Descent | Q or D | Outcome | Adj. for Lifestyle | S&G in Study |
|----------------------|-----------------|-------------|-------------------|--------|-----|-----|---------------------|-------|---------|-------------------|-------------|
| **Anger**            |                 |             |                   |        |     |     |                     |       |         |                   |             |
| Boyle (2006)28 4     | North America   | 2105        | Yes               | 46.7   | M   | 0   | 94                  | Q     | IHD     | Yes               | Yes         |
| Chang (2003)30       | North America   | 1055        | Yes               | 26.4   | M   | 0   | 98                  | Q     | IHD     | Yes               | Yes         |
| Eng (2010)34         | North America   | 23 522      | Yes               | 61.9   | M   | 0   | NR                  | Q     | IHD     | Yes               | Yes         |
| Haukkala (2010)34    | Europe          | 7368        | Yes               | 46.9   | WM  | 53  | NR                  | Q     | IHD     | Yes               | Yes         |
| Kubzansky (2006)31 3 | North America   | 1306        | Yes               | 61.0   | M   | 0   | NR                  | Q     | IHD     | Yes               | Yes         |
| Player (2007)32 1    | North America   | 2334        | Yes               | NR     | WM  | 52  | 80                  | Q     | IHD     | Yes               | Yes         |
| Stürmer (2006)33 2   | Europe          | 3892        | Yes               | 53.4   | WM  | 52  | NR                  | Q     | MI      | Yes               | No          |
| **Anxiety**          |                 |             |                   |        |     |     |                     |       |         |                   |             |
| Albert (2005)36      | North America   | 72 359      | Yes               | 54.4   | W   | 100 | NR                  | Q     | MI      | Yes               | Yes         |
| Berge (2016)37       | Europe          | 7052        | Yes               | 43.1   | WM  | 48  | NR                  | Q     | IHD     | Yes               | Yes         |
| Boyle (2006)28 2     | North America   | 2105        | Yes               | 46.7   | M   | 0   | 94                  | Q     | IHD     | Yes               | Yes         |
| Carriere (2013)36    | Europe          | 1708        | No                | NR     | WM  | 59  | NR                  | D     | CM      | Yes               | Yes         |
| Denollet (2009)39    | Europe          | 5073        | Yes               | 50.4   | W   | 100 | 100                 | Q     | CM      | Yes               | Yes         |
| Gustad (2014)40 2    | Europe          | 57 953      | Yes               | 47.7   | WM  | 54  | NR                  | Q     | MI      | Yes               | No          |
| Janszky (2010)41 2   | Europe          | 49 321      | Yes               | 61.0   | M   | 0   | NR                  | Q     | IHD     | Yes               | Yes         |
| Kubzansky (2006)31 2 | North America   | 1306        | Yes               | 61.0   | M   | 0   | NR                  | Q     | IHD     | Yes               | Yes         |
| Mathur (2016)42 2    | Europe          | 524 952     | Yes               | 35.9   | WM  | 47  | 42                  | D     | MI      | Yes               | No          |
| Nefs (2015)43 2      | Europe          | 961         | Yes               | 67.0   | WM  | 53  | 98                  | Q     | CVD     | No                | No          |
| Phillips (2009)44 2  | North America   | 4256        | NR                | 39.1   | M   | 0   | 82                  | D     | CM      | Yes               | Yes         |
| Ringbäck (2005)45    | Europe          | 34 511      | NR                | 42.6   | WM  | 50  | NR                  | Q     | IHD     | Yes               | Yes         |
| Smoller (2007)46     | North America   | 3243        | No                | 65.9   | W   | 100 | 73                  | Q     | IHD     | Yes               | Yes         |
| Stewart (2016)47     | North America   | 2041        | Yes               | 68.5   | WM  | 73  | 42                  | Q     | MI      | Yes               | No          |
| **Depression**       |                 |             |                   |        |     |     |                     |       |         |                   |             |
| Ahto (2007)34        | Europe          | 660         | Yes               | 71.4   | WM  | 57  | NR                  | Q     | CM      | No                | Yes         |
| Boyle (2006)28 3     | North America   | 2105        | Yes               | 46.7   | M   | 0   | 94                  | Q     | IHD     | Yes               | Yes         |
| Brunnler (2014)35    | Europe          | 5717        | Yes               | 61.0   | WM  | 29  | 93                  | Q     | CM/MI   | No                | No          |
| Chi (2014)37         | Asia            | 13 209      | Yes               | NR     | WM  | 63  | NR                  | D     | MI      | No                | Yes         |
| Clouse (2003)38      | North America   | 76          | Yes               | 41.3   | W   | 100 | 58                  | D     | IHD     | Yes               | Yes         |
| Cohen (2001)49       | North America   | 5564        | Yes               | 53.2   | WM  | 36  | 34                  | Q     | IHD     | Yes               | Yes         |
| Daskalopoulos (2016)19 | Europe       | 1 233 937   | Yes               | 47.3   | WM  | 49  | NR                  | D     | MI      | Yes               | Yes         |
| Ferkeitch (2000)50    | North America   | 7903        | Yes               | 54.5   | WM  | 63  | 86                  | Q     | IHD     | Yes               | Yes         |
| Gale (2014)51        | Europe          | 1 107 524   | Yes               | 18.3   | M   | 0   | NR                  | D     | IHD     | No                | Yes         |
| Gasse (2014)32       | Europe          | 4 545 327   | Yes               | NR     | WM  | NR  | NR                  | D     | IHD     | No                | Yes         |
| Gump (2005)53        | North America   | 11 216      | Yes               | 46.4   | M   | 0   | 90                  | Q     | CM      | Yes               | Yes         |
| Gustad (2014)40 1    | Europe          | 57 953      | Yes               | 47.7   | WM  | 54  | NR                  | Q     | MI      | Yes               | No          |
| Haukkala (2009)54    | Europe          | 7674        | Yes               | 47.7   | WM  | 52  | NR                  | Q     | IHD     | Yes               | Yes         |
| Hiles (2015)55       | Oceania         | 1692        | Yes               | 65.2   | WM  | 53  | NR                  | Q     | CVD     | NR                | No          |
| Hiltunen (2014)56    | Europe          | 508         | NR                | 80.2   | WM  | 73  | NR                  | Q     | CM      | No                | No          |
| Huang (2013)57       | Asia            | 39 685      | Yes               | NR     | WM  | 63  | NR                  | D     | IHD     | Yes               | No          |
| Janszky (2010)41 1   | Europe          | 49 321      | Yes               | NR     | M   | 0   | NR                  | D     | IHD     | Yes               | Yes         |

Continued...
# Table 1. Continued

| First Author (Year)* | Global Continent | Analyzed (n) | Baseline IHD Free | Age, y | S&G | % W | % European Descent | Q or D | Outcome | Adj. for Lifestyle | S&G in Study |
|----------------------|------------------|-------------|-------------------|-------|-----|-----|------------------|-------|---------|-------------------|-------------|
| Kamphuis (2006)58     | Europe           | 799         | Yes               | 76.3  | M   | 0   | NR               | Q     | CM      | Yes               | Yes         |
| Kendler (2009)59      | Europe           | 27 517      | Yes               | 57.3  | WM  | 53  | NR               | Q     | IHD     | No                | Yes         |
| Khambaty (2016)60     | North America    | 26 144      | Yes               | 48.0  | WM  | 3   | 38               | D     | MI      | Yes               | No          |
| Klabbers (2009)61     | Europe           | 2374        | Yes               | 41.9  | WM  | 51  | NR               | Q     | IHD     | No                | Yes         |
| Kubzansky (2006)67    | North America    | 1306        | Yes               | 61.0  | M   | 0   | NR               | Q     | IHD     | Yes               | Yes         |
| Liu (2016)62          | Asia             | 486 541     | Yes               | 51.0  | WM  | 59  | NR               | D     | IHD     | Yes               | No          |
| Majed (2012)63        | Europe           | 9601        | Yes               | 54.9  | M   | 0   | NR               | Q     | IHD     | Yes               | Yes         |
| Mallon (2002)64       | Europe           | 1870        | No                | 56.0  | WM  | 52  | NR               | Q     | CM      | Yes               | Yes         |
| Mathur (2016)62       | Europe           | 524 952     | Yes               | 35.9  | WM  | 47  | 42               | D     | MI      | Yes               | No          |
| Mejia-Lancheros (2014)65 | Europe         | 7263        | Yes               | 67.0  | WM  | 58  | NR               | D     | CVD     | Yes               | Yes         |
| Nefs (2015)63         | Europe           | 961         | Yes               | 67.0  | WM  | 53  | 98               | Q     | CVD     | No                | No          |
| Phillips (2009)64     | North America    | 4256        | NR                | 39.1  | M   | 0   | NR               | D     | CM      | Yes               | No          |
| Shah (2011)66         | North America    | 7641        | Yes               | 28.1  | WM  | 54  | 29               | D     | CM      | Yes               | Yes         |
| Stürmer (2006)33      | Europe           | 3892        | Yes               | 53.4  | WM  | 52  | NR               | Q     | MI      | Yes               | No          |
| Sun (2013)67          | Asia             | 62 839      | NR                | NR    | WM  | 66  | NR               | Q     | CM      | Yes               | Yes         |
| Sundquist (2005)66    | Europe           | 19 649      | Yes               | 53.4  | WM  | 52  | NR               | Q     | MI      | Yes               | Yes         |
| Surtees (2008)69      | Europe           | 19 649      | Yes               | 53.4  | WM  | 52  | NR               | Q     | MI      | Yes               | Yes         |
| Wasserthull-Smoller (2004)70 | North America | 73 098      | Yes               | NR    | W   | 100 | 83               | Q     | IHD     | Yes               | Yes         |
| Whang (2009)71        | North America    | 63 469      | Yes               | 58.4  | W   | 100 | NR               | Q     | MI      | Yes               | Yes         |
| Yasuda (2002)72       | Asia             | 817         | Yes               | 72.0  | WM  | 61  | NR               | Q     | CM      | Yes               | Yes         |

**Distress**

| First Author (Year)* | Global Continent | Analyzed (n) | Baseline IHD Free | Age, y | S&G | % W | % European Descent | Q or D | Outcome | Adj. for Lifestyle | S&G in Study |
|----------------------|------------------|-------------|-------------------|-------|-----|-----|------------------|-------|---------|-------------------|-------------|
| Gustad (2014)40      | Europe           | 57 953      | Yes               | 47.7  | WM  | 54  | NR               | Q     | MI      | Yes               | No          |
| Kubzansky (2006)40    | North America    | 1306        | Yes               | 61.0  | M   | 0   | NR               | Q     | IHD     | Yes               | Yes         |
| Macleod (2002)15     | Europe           | 5606        | No                | 48.0  | M   | 0   | NR               | Q     | IHD     | Yes               | Yes         |
| Nicholson (2005)76   | Europe           | 5075        | Yes               | 49.2  | M   | 0   | NR               | Q     | IHD     | Yes               | Yes         |
| Nielsen (2008)77     | Europe           | 12 128      | No                | 56.5  | WM  | 55  | NR               | Q     | CM      | Yes               | Yes         |
| Ohlin (2004)78       | Europe           | 13 280      | Yes               | 45.2  | WM  | 20  | NR               | Q     | IHD     | Yes               | Yes         |
| Player (2007)32      | North America    | 2334        | Yes               | NR    | WM  | 52  | 80               | Q     | IHD     | Yes               | Yes         |
| Rasul (2005)80       | Europe           | 6575        | Yes               | 54.5  | WM  | 55  | NR               | Q     | IHD     | No                | Yes         |
| Rasul (2007)79       | Europe           | 1864        | Yes               | 57.4  | M   | 0   | NR               | Q     | MI      | Yes               | Yes         |

**Hostility**

| First Author (Year)* | Global Continent | Analyzed (n) | Baseline IHD Free | Age, y | S&G | % W | % European Descent | Q or D | Outcome | Adj. for Lifestyle | S&G in Study |
|----------------------|------------------|-------------|-------------------|-------|-----|-----|------------------|-------|---------|-------------------|-------------|
| Boyle (2006)26       | North America    | 2105        | Yes               | 46.7  | M   | 0   | 94               | Q     | IHD     | Yes               | Yes         |
| Klabbers (2009)61    | Europe           | 2374        | Yes               | 41.9  | WM  | 51  | NR               | Q     | IHD     | No                | Yes         |
| Tindle (2009)57      | North America    | 97 253      | Yes               | NR    | W   | 100 | 92               | Q     | IHD     | Yes               | Yes         |

**PTSD**

| First Author (Year)* | Global Continent | Analyzed (n) | Baseline IHD Free | Age, y | S&G | % W | % European Descent | Q or D | Outcome | Adj. for Lifestyle | S&G in Study |
|----------------------|------------------|-------------|-------------------|-------|-----|-----|------------------|-------|---------|-------------------|-------------|
| Boscariino (2008)72  | North America    | 4328        | Yes               | 38.0  | M   | 0   | 82               | D     | CM      | Yes               | Yes         |
| Jordan (2013)75      | North America    | 46 346      | Yes               | 41.1  | WM  | 40  | 56               | Q     | IHD     | Yes               | Yes         |

**Low social support**

| First Author (Year)* | Global Continent | Analyzed (n) | Baseline IHD Free | Age, y | S&G | % W | % European Descent | Q or D | Outcome | Adj. for Lifestyle | S&G in Study |
|----------------------|------------------|-------------|-------------------|-------|-----|-----|------------------|-------|---------|-------------------|-------------|
| De Vogli (2007)74    | Europe           | 8499        | Yes               | 44.3  | WM  | 32  | NR               | Q     | IHD     | Yes               | No          |
| Ikeda (2008)82       | Asia             | 44 152      | Yes               | 53.6  | WM  | 52  | NR               | Q     | IHD     | Yes               | Yes         |
| Kuper (2006)83       | Europe           | 48 066      | Yes               | 40.3  | W   | 100 | NR               | Q     | IHD     | Yes               | Yes         |

Continued
significant results were found on anger (HR: 1.27; 95% CI, 1.05–1.53), anxiety (HR: 1.42; 95% CI, 1.19–1.69), depression (HR: 1.23; 95% CI, 1.16–1.31), distress (HR: 1.35; 95% CI, 1.15–1.59), and hostility (HR: 1.17; 95% CI, 1.03–1.34) with incident IHD. Regarding the separate psychological factors, no significant differences in the risk for incident IHD were found between women and men (based on the P values resulting from the test on the interaction between gender and psychological factor on IHD, reported in the last column of Table 2). Pooled HRs could not be calculated for type A behavior pattern, type D personality, and PTSD (for women only) because <2 studies per psychological factor were available. A moderate to large degree of heterogeneity was found in reports focusing on both women (Q[52]=146.46, P<0.001, I²=64.54%) and men (Q[66]=165.22, P<0.001, I²=60.05%).

### Subgroup Analyses
We performed subgroup analyses of follow-up duration, global continent, number of people analyzed, mean age, percentage of European descent or white people, type of measurement, adjustment for lifestyle, baseline free of IHD, S&G-stratified results in the study, publication year, and IHD outcome (Table 3). For women, no significant subgroup differences were found. After the Bonferroni–Holm correction, for men, a significantly higher pooled HR was found in reports with a shorter follow-up duration (<11 years; HR: 1.35; 95% CI, 1.24–1.48) compared with a longer follow-up duration (>11 years; HR: 1.16; 95% CI, 1.11–1.21; P=0.002). Moderate to high heterogeneity was observed in most subgroups.

### Sensitivity Analyses and Additional Analyses for Separate Psychological Factors
Table S3 shows the characteristics of included studies in sensitivity and additional analyses. Three of our initially included reports could not be analyzed because of missing CIs and an asymmetric CI. Unadjusted analyses of psychological factors and incident IHD including 54 separate reports focusing on women and 78 reports on men resulted in pooled HRs of 1.39 (95% CI, 1.29–1.50) and 1.39 (95% CI, 1.32–1.47), respectively (Table S4). No significant between-group S&G differences for the risk of combined psychological factors for IHD incidence were found (P=0.996).

In unadjusted studies reporting on women, significant effects were found for anxiety (HR: 1.45; 95% CI, 1.20–1.75), depression (HR: 1.46; 95% CI, 1.32–1.61), and distress (HR: 1.33; 95% CI, 1.14–1.55) on IHD incidence. With respect to men, significant positive effects were found for each individual psychological factor. The largest unadjusted association was found between anxiety and IHD (HR: 1.68; 95% CI, 1.38–2.03) in men. Because of a limited amount of studies for type A behavior, type D personality, and hostility (for women only), no analyses could be performed on these factors. However, although the pattern of psychological IHD risk factors is different, no significant differences between women and men were found for the risk of individual psychological factors on IHD incidence (Table S4).

In addition to the aforementioned random-effects models, we also examined the data using fixed-effects models. Fixed-effects analyses of the primary data revealed similar results and showed that psychological factors were associated overall with an increased risk of incident IHD in both women (HR: 1.17; 95% CI, 1.14–1.20) and men (HR: 1.18; 95% CI, 1.16–1.21; Table S5). The difference in the effect sizes for psychological factors predicting IHD incidence between women and men was not significant (P=0.505).

In unadjusted reports in women, no significant differences between subgroups were found (Table S6). Subgroup analyses on unadjusted findings for men showed that inclusion of <5000 participants results in a higher pooled HR for psychological factors predicting IHD incidence than including >5000 participants (HR: 1.57 [95% CI, 1.44–1.72] and 1.28 [95% CI, 1.20–1.37], respectively; P=0.001; Table S6). Furthermore, a larger pooled HR was found when S&G-stratified results were reported in the study (HR: 1.47; 95% CI, 1.37–1.57) in comparison with reports that did not stratify (HR:

---

**Table 1. Continued**

| First Author (Year)* | Global Continent | Analyzed (n) | Baseline IHD Free | Age, y | S&G % w | % European Descent | Q or D | Outcome | Adj. for Lifestyle | S&G in Study |
|----------------------|------------------|-------------|-------------------|-------|--------|-------------------|-------|---------|-------------------|-------------|
| Rosengren (2004)85    | Europe           | 741         | Yes               | 50.0  | M 0    | NR                | 1.23  | 1.68    | Q IHD             | Yes         |
| Lohse (2017)84        | Europe           | 9921        | NR                | 43.6  | WM 51  | NR                | 1.23  | 1.35    | Q CM              | Yes         |

Adj. indicates adjusted; CM, cardiac mortality; CVD, cardiovascular disease; D, diagnosis; IHD, ischemic heart disease; M, men; MI, myocardial infarction; NR, not reported; PTSD, posttraumatic stress disorder; Q, questionnaire; S&G, sex and gender; W, women; WM, women and men.

*Numbers (1, 2, 3, etc) after the reference indicate the separate study reports of the study.

---

2References 24, 26, 27, 32–40, 42, 43, 45–50, 52, 54–57, 59–62, 65–72, 74, 75, 77, 78, 80–84.

3References 15, 24, 27–35, 37, 40–45, 47–69, 72–80, 82, 84, 85.

4References 15, 30, 31, 41, 49, 50, 52, 65, 68, 70, 71, 78, 81, 82.
1.21; 95% CI, 1.13–1.29; P < 0.001). Table S7 shows additional analyses on continuous data and HRs, relative risks, and odds ratios separated for both unadjusted and adjusted data. Regarding analyses of unadjusted data, significant effects of psychological factors on incident IHD outcomes were found, for both women and men. Analyses of continuous adjusted data.
Figure 3. Forest plot showing individual and overall effect size estimates with 95% CIs for psychological factors and incident IHD in men (adjusted findings). Includes reports from the following studies: §HR indicates hazard ratio; PTSD, posttraumatic stress disorder; Q, Cochran Q statistic.
Table 2. S&G-Stratified Analyses of HRs and Relative Risks for Incident IHD Associated With Psychological Factors: Adjusted Findings

| Variable                | Women |      |      |      | Men |      |      |      |      |
|-------------------------|-------|------|------|------|-----|------|------|------|------|
|                         | n     | HR (95% CI) | Q   | P_het | P_val | n     | HR (95% CI) | Q   | P_het | P_val |
| Anger                   | 3     | 1.29 (0.49–3.43) | 0.610 | 3.44  | 0.179 | 41.9 | 7     | 1.27 (1.05–1.53) | 0.012 | 10.3 | 0.114 | 41.6 | 0.974 |
| Anxiety                 | 10    | 1.29 (1.03–1.60) | 0.024 | 31.2  | <0.001 | 71.2 | 9     | 1.42 (1.19–1.69) | 0.001 | 27.9 | 0.001 | 71.3 | 0.491 |
| Depression              | 28    | 1.24 (1.15–1.33) | <0.001 | 84.3  | <0.001 | 68.0 | 34    | 1.23 (1.16–1.31) | <0.001 | 94.4 | <0.001 | 65.0 | 0.898 |
| Distress                | 5     | 1.31 (1.08–1.58) | 0.005 | 3.21  | 0.524 | 0    | 9     | 1.35 (1.15–1.59) | <0.001 | 18.4 | 0.018 | 56.6 | 0.798 |
| Hostility               | 2     | 1.52 (0.59–3.91) | 0.385 | 4.21  | 0.040 | 76.2 | 2     | 1.17 (1.03–1.34) | 0.019 | 0.52 | 0.470 | 0    | 0.595 |
| PTSD                    | 1     | ... | ...   | ...   | ...   | 2    | 1.17 (0.91–2.06) | 0.133 | 1.46 | 0.228 | 31.3 | ...   |
| Low social support      | 3     | 0.89 (0.61–1.31) | 0.555 | 3.57  | 0.167 | 44.0 | 3     | 1.21 (0.92–1.60) | 0.178 | 3.46 | 0.177 | 42.2 | 0.192 |
| Type A behavior         | 1     | ... | ...   | ...   | ...   | 1    | ...   | ...   | ...   | ...   | ...   | ...   |
| Type D personality      | 0     | ... | ...   | ...   | ...   | 0    | ...   | ...   | ...   | ...   | ...   | ...
| Psychological combined  | 53    | 1.22 (1.14–1.30) | <0.001 | 146.6 | <0.001 | 64.5 | 67    | 1.25 (1.19–1.31) | <0.001 | 165.2 | <0.001 | 60.1 | 0.547 |

HR indicates hazard ratio; IHD, ischemic heart disease; P_between, P value between groups (women and men); P_het, P value for heterogeneity; PTSD, posttraumatic stress disorder; Q, Cochran Q statistic; S&G, sex and gender.

data did not show significant results for women but showed a small but significant effect for men.

Discussion

General Findings

This meta-analysis is the first to assess the association between psychological factors and incident IHD outcomes, stratified for women and men. The results showed a significant association between psychological factors and the development of IHD for women, with a 22% increase in risk based on 53 confounder-adjusted reports. For men, 67 pooled adjusted reports showed a 25% increase in the risk of psychological factors for IHD incidence. However, against our expectations, no significant differences in the risk of psychological factors for IHD incidence were found between women and men. Separate analyses for women showed statistically significant effects of the psychological factors anxiety, depression, and distress, but not for anger, hostility, and low social support. For men, significant effects were found on the psychological factors anger, anxiety, depression, distress, and hostility on incident IHD. PTSD and low social support were not significantly associated with incident IHD outcomes. No significant subgroup differences were found in studies reporting on women. For men, subgroup analyses showed a larger effect in studies with a shorter follow-up time.

(No) Differences Between Women and Men

There are several explanations for why the associations of psychological factors with IHD did not differ between women and men. First, studies included in our meta-analyses assessed IHD outcomes including mainly obstructive CAD,
Table 3. S&G-Stratified Analyses of HRs and Relative Risks for Incident IHD Associated With Psychological Factors by Subgroup: Adjusted Findings

| Variable                             | Women                        | Men                          |
|--------------------------------------|------------------------------|------------------------------|
|                                      | n | HR (95% CI) | Q | $P_{\text{het}}$ | $I^2$, % | $P_{\text{between}}$ | n | HR (95% CI) | Q | $P_{\text{het}}$ | $I^2$, % | $P_{\text{between}}$ |
| Follow-up, y                         | 32 | 1.22 (1.12–1.32) | 55.0 | <0.001 | 55.0 | 34 | 1.35 (1.24–1.48) | 72.8 | <0.001 | 55.0 |
| <11                                  |  0.521 | 0.002 |
| ≥11                                  | 17 | 1.17 (1.06–1.28) | 44.3 | <0.001 | 63.9 | 29 | 1.16 (1.11–1.21) | 43.4 | 0.032 | 35.5 |
| Global continent                     | 0.496 | 0.118 |
| Europe                               | 32 | 1.24 (1.15–1.34) | 81.4 | <0.001 | 61.9 | 38 | 1.20 (1.13–1.27) | 102.6 | <0.001 | 63.9 |
| North America                        | 14 | 1.29 (1.10–1.52) | 47.1 | <0.001 | 72.4 | 22 | 1.33 (1.22–1.45) | 46.6 | 0.001 | 54.9 |
| Asia                                 | 6  | 1.13 (0.99–1.29) | 8.48 | 0.132 | 41.0 | 6  | 1.32 (1.16–1.50) | 6.81 | 0.235 | 26.6 |
| Oceania                              | 1  | …            | …  | …      | …      | 1  | …            | …  | …      | …      |
| No. of people analyzed               | 0.057 | 0.025 |
| <5000                                | 16 | 1.48 (1.17–1.86) | 31.6 | 0.007 | 52.6 | 28 | 1.35 (1.23–1.48) | 72.8 | <0.001 | 62.9 |
| ≥5000                                | 36 | 1.17 (1.10–1.24) | 71.5 | <0.001 | 51.0 | 38 | 1.20 (1.14–1.26) | 62.5 | 0.006 | 40.8 |
| Age, y                               | 0.770 | 0.062 |
| <60                                  | 32 | 1.26 (1.14–1.39) | 66.7 | <0.001 | 53.5 | 43 | 1.19 (1.14–1.24) | 49.5 | 0.199 | 15.2 |
| 60–65                                | 2  | 1.77 (0.69–4.49) | 0.07 | 0.789 | 0     | 7  | 1.74 (1.20–2.51) | 24.0 | <0.001 | 75.0 |
| >65                                  | 8  | 1.24 (0.97–1.58) | 19.4 | 0.007 | 63.8 | 7  | 1.09 (0.96–1.25) | 6.69 | 0.351 | 10.3 |
| European descent                     | 0.960 | 0.756 |
| <50%                                 | 6  | 1.39 (1.09–1.77) | 12.0 | 0.035 | 58.3 | 6  | 1.18 (1.02–1.36) | 7.48 | 0.187 | 33.2 |
| ≥50%                                 | 12 | 1.40 (1.13–1.74) | 29.9 | 0.002 | 63.3 | 15 | 1.21 (1.15–1.27) | 14.6 | 0.406 | 4.14 |
| Type of measurement                  | 0.650 | 0.676 |
| Questionnaire                        | 40 | 1.20 (1.11–1.30) | 78.7 | <0.001 | 50.4 | 50 | 1.23 (1.19–1.33) | 109.1 | <0.001 | 55.1 |
| Diagnosis by a clinical interview    | 13 | 1.24 (1.11–1.38) | 53.2 | <0.001 | 77.4 | 17 | 1.23 (1.14–1.34) | 48.6 | <0.001 | 67.1 |
| Adjusted for lifestyle               | 0.954 | 0.373 |
| No                                   | 12 | 1.23 (1.10–1.36) | 51.5 | <0.001 | 78.6 | 12 | 1.20 (1.09–1.32) | 57.3 | <0.001 | 80.8 |
| Yes                                  | 40 | 1.23 (1.13–1.34) | 92.1 | <0.001 | 57.7 | 54 | 1.27 (1.20–1.34) | 103.2 | <0.001 | 48.7 |
| Baseline free of IHD                 | 0.158 | 0.958 |
| No                                   | 3  | 1.90 (0.99–3.66) | 6.33 | 0.042 | 68.4 | 3  | 1.25 (0.86–1.80) | 4.70 | 0.095 | 57.5 |
| Yes                                  | 44 | 1.19 (1.12–1.26) | 87.5 | <0.001 | 50.9 | 56 | 1.23 (1.18–1.29) | 116.1 | <0.001 | 52.6 |
| S&G-stratified results in study      | 0.209 | 0.347 |
| No                                   | 17 | 1.28 (1.19–1.39) | 9.60 | 0.887 | 0     | 16 | 1.20 (1.11–1.31) | 18.1 | 0.258 | 17.0 |
| Yes                                  | 36 | 1.20 (1.11–1.29) | 130.8 | <0.001 | 73.3 | 51 | 1.26 (1.20–1.33) | 147.0 | <0.001 | 66.0 |
| Publication year                     | 0.814 | 0.066 |
| <2010                                | 28 | 1.23 (1.11–1.38) | 111.7 | <0.001 | 75.8 | 40 | 1.30 (1.21–1.39) | 124.8 | <0.001 | 68.7 |
| ≥2010                                | 25 | 1.22 (1.14–1.30) | 34.9 | 0.070 | 31.2 | 27 | 1.19 (1.12–1.27) | 39.1 | 0.05  | 33.6 |
| IHD outcome*                         | 0.482 | 0.186 |
| CM                                   | 19 | 1.34 (1.14–1.57) | 134.1 | <0.001 | 86.6 | 24 | 1.37 (1.19–1.57) | 112.8 | <0.001 | 79.6 |
| IHD                                  | 29 | 1.24 (1.13–1.37) | 91.6 | <0.001 | 69.4 | 40 | 1.28 (1.21–1.35) | 94.9 | <0.001 | 58.9 |
| MI                                   | 18 | 1.20 (1.10–1.31) | 38.2 | 0.002 | 55.5 | 23 | 1.19 (1.09–1.30) | 42.2 | 0.006 | 47.9 |

Continued
which is a classic disease pattern dominated by male patients. Female patients more often suffer from nonobstructive CAD including functional CAD (spasm and vascular dysfunction) and coronary microvascular disease. Because we did not find any cohort studies including these outcomes, only women with obstructive CAD were included, which may have affected our findings. Women are currently underrepresented in studies assessing the association between psychological factors and incident IHD. A recent study, however, found that vascular responses to mental stress were more present in younger women than in men after a recent MI, presumably related to vasomotor disorders. In total, 30% of our included studies reported results in men only, compared with 10% in women only. Including a broader range of IHD, more representative of the female pattern, may change the effect between women and men.

Second, the age of the participants might play an important role. The mean age of the study participants was on average 51.3 years at baseline. In studies reporting in women only, 66% of the participants were <55 years. Because women on average develop IHD 10 years later than men, with increasing risks after menopause, it is possible that including older women would increase the effect of psychological factors and IHD. However, subgroup analyses showed no significant differences between age categories.

Third, as a consequence of several societal and psychological factors, men are less likely to seek treatment for emotional problems and depressive symptoms. Although men less often report psychological problems than women, questionnaires use the same cutoffs for women and men; this means that men with psychological problems might be underrepresented in the included studies. Averaged across studies reporting on men, 14% of the included men were defined as having the psychological factor. In studies reporting on women only, this number was 22%. Moreover, because 75% of the reports measured psychological factors assessed with a questionnaire, symptoms of psychological factors rather than a clinical diagnosis were included; that approach may have influenced our results. By choosing the most detrimental subgroup as possible, we tried to prevent

Table 3. Continued

| Variable          | Women                  | Men                    | Sample | n  | HR (95% CI) | Q     | P<sub>het</sub> | I<sup>2</sup> | P<sub>between</sub> | n  | HR (95% CI) | Q     | P<sub>het</sub> | I<sup>2</sup> | P<sub>between</sub> |
|-------------------|------------------------|------------------------|--------|----|-------------|-------|----------------|-----------|------------------|----|-------------|-------|----------------|-----------|-------------------|
|                   |                        |                        |        |    |             |       |                |           |                  |    |             |       |                |           |                  |
| Community         | 40                     | 1.22 (1.14–1.30)       | 110.5  | <0.001 | 64.7          |        | 50              | 1.25 (1.18–1.33) | 146.6 | <0.001 | 66.6 | 0.605 |
| High risk         | 9                      | 1.34 (0.88–2.05)       | 16.1   | 0.040  | 50.4          |        | 8               | 1.26 (1.13–1.39) | 6.86  | 0.443  | 0    |       |
| Military sample   | ...                    | ...                    | ...    | ...   | ...          |        | 9               | 1.20 (1.13–1.28) | 10.2  | 0.249  | 21.8 |       |
| Menopausal        | 4                      | 1.29 (0.99–1.68)       | 14.7   | 0.002  | 79.6          |        | ...            | ...          |                  |    |             |       |                |           |                  |

CM indicates cardiac mortality; HR, hazard ratio; IHD, ischemic heart disease; MI, myocardial infarction; P<sub>between</sub>, P value between groups; P<sub>het</sub>, P value for heterogeneity; Q, Cochran Q statistic; S&G, sex and gender.

*Includes additional reports from the following studies:

![Figure 4. Funnel plot of studies focusing on women (white dots) and studies imputed according to the trim and fill method (black dots). The pooled hazard ratio (HR) of included studies (HR: 1.22; 95% CI, 1.14–1.30) decreases after imputing studies (HR: 1.18; 95% CI, 1.10–1.26).](Image)

![Figure 5. Funnel plot of studies focusing on men (white dots) and studies imputed according to the trim and fill method (black dots). The pooled hazard ratio (HR) of included studies (HR: 1.25; 95% CI, 1.19–1.31) decreases after imputing studies (HR: 1.20; 95% CI, 1.14–1.26).](Image)
this problem. However, subgroup analyses showed no significant difference between questionnaires and diagnoses by clinicians.

Fourth, nonsignificant differences between men and women could be explained by insufficient power. For example, for hostility and low social support, the effect sizes for women and men appear to be different, but the statistical tests for differences showed nonsignificant findings. These effect size estimates are based on only 4 reports for hostility and 6 reports for low social support, which may represent insufficient power to detect statistical differences between women and men. However, no significant differences between men and women were observed for depression and anxiety. The effect size estimates and CIs were almost identical, and these estimates were based on a higher number of reports. Based on these results, it is unlikely that insufficient power is an explanation for the nonsignificant differences in depression and anxiety, but it may be the case for hostility and social support.

Comparison With Other Meta-Analyses

The results of our meta-analysis are partly consistent with those of other meta-analyses that assessed the association between depression and incident IHD,92,93 panic disorder and IHD,10 and perceived stress and IHD.94 Wu and Kling showed a confounder-adjusted pooled HR of 1.22 (95% CI, 1.13−1.32) on the association between depression and MI and coronary death, based on 19 studies.92 This result overlaps with the increased risk we found for both women and men. In their S&G-stratified subgroup analyses of depression and incident MI, Gan et al found an HR of 1.27 (95% CI, 1.17−1.39) in reports on depression and MI in coronary death.93 Their pooled risk estimates for men are slightly lower than our S&G-results. This difference may be explained by the fact that their S&G-stratified subgroup analyses comprised only incident MI as outcome, instead of the broader range of IHD events in our meta-analysis. In our subgroup analyses, the association including only the outcome MI also showed a smaller risk estimate in comparison with the outcomes of cardiac mortality only and IHD. Results of the meta-regression of Tully et al showed an increased risk of 49% on incident IHD in people with panic disorder, panic symptoms, and anxiety neurosis.10 The lower risk we found on anxiety and IHD in both women and men was mainly based on symptoms of anxiety, whereas Tully et al included mostly people with panic disorder and/or panic symptoms in their meta-analysis, which might explain the different pooled effect estimates. Richardson et al examined in their meta-analysis the adjusted association between high perceived stress and incident IHD and found an increased risk of 27%.94 Our pooled HRs of distress in women (1.31; 95% CI, 1.08−1.58) and men (1.35; 95% CI, 1.15−1.59) are slightly higher. Because Richardson et al included all types of stress including work stress and posttraumatic stress and excluded symptoms of psychological disorders, a different definition of distress was used, which might explain the difference in effect estimates.

Strengths and Limitations

The strength of this meta-analysis includes our search in several databases and additional reference searches, followed by a screening process and data extraction performed by at least 2 reviewers, which resulted in a high number of eligible multivariate-adjusted studies comprising a total sample size of at least 2 145 679 women and 3 119 879 men. Moreover, contacting 52 authors of studies that did not report S&G-stratified data increased the number of included studies in our meta-analysis. We identified all studies included in previous meta-analyses. Studies reporting unadjusted results, continuous data, and/or odds ratios were separately analyzed. We excluded studies with self-reported IHD as outcomes because this might lead to an overestimation of IHD events.95 This meta-analysis also has limitations. First, moderate to large heterogeneity was found between included studies, which means that the pooled effect sizes must be interpreted with caution. We performed subgroup analyses to reduce heterogeneity, but moderate to high heterogeneity remained. Second, we found indications of publication bias, which means that the true associations between psychological factors and incident IHD might actually be smaller than those found in our meta-analysis. However, the pooled HR remained significant after imputing studies with the Duval and Tweedie trim-and-fill method. Third, we included the most detrimental score of psychological factors when results of both medium and high strengths were reported. When including medium instead of high perceived stress, our results would probably show lower effect sizes.

Implications for Future Research and Clinical Practice

Several recommendations can be made based on the findings of our meta-analysis. First, cohort studies focusing on psychological factors and nonobstructive IHD outcomes should be developed. We could include only studies examining obstructive IHD outcomes; therefore, women were underrepresented and underinvestigated in our meta-analysis. Moreover, it has been recently shown that feminine gender roles and personality traits (anxiety) importantly affect outcomes after MI.96 These should be studied more often to provide tailored prevention advice to all patients after an MI.

Second, because today’s cardiologists focus more on differences between women and men, it is advisable to report
S&G-stratified results in studies. The fact that we did not find S&G differences might be explained by the underinclusion of women, which might be related to a power problem in our meta-analysis. Moreover, our unadjusted subgroup analyses for men showed a 26% higher risk of psychological factors and incident IHD when S&G-stratified results were reported in a study, in comparison with S&G results that we received after contacting the author of a non-S&G study. The asymmetric funnel plots and the results of the Egger test also suggest publication bias, although our results remained significant after imputing studies.

Third, none of our included studies were conducted in Africa and South America, and only a few in Asia and Oceania, which means non-Western countries and cultures are underrepresented and our results should not be generalized to non-Western countries. Only 26 of 76 reports (34%) reported the number of European descent or white people, of which 20 included >50% European descent or white people, indicating underrepresentation of non-European descent or white people. More studies should be conducted in non-Western countries and include people of non-European descent.

Fourth, most of our included studies investigated the association between depression or anxiety and incident IHD. Because only a few studies focused on anger, distress, hostility, PTSD, low social support, type A behavior, and type D personality, our results should be interpreted with caution. More research into these psychological factors is needed to strengthen the association between these factors and incident IHD outcomes in women and men.

Conclusion
This meta-analysis of prospective cohort studies shows that psychological factors are associated with an increased and comparable risk for incident IHD in both women and men.

Acknowledgments
We thank Gemma Indemans (Radboud University, Nijmegen) for her support on the search strategy. We also thank all contacted authors who responded, and who provided us with the S&G-stratified results of their studies.

Sources of Funding
This work was supported by ZonMw and the Dutch Heart Foundation (de Hartstichting) “Gender and Health” program to Dr Mommersteeg (grant number #84910001).

Disclosures
None.

References
1. Regitz-Zagrosek V. Sex and gender differences in health. Science & Society Series on Sex and Science. EMBO Rep. 2012;13:596–603.
2. WHO. Cardiovascular diseases (CVDs). 2017. Available at: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
3. Benjamini EJ, Vireni SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, Chiuwe SE, Gushima M, Delling FN, Deo R, de Ferrari SD, Ferguson JF, Fornage M, Gillespie C, Isais CR, Jimenez MC, Jordan LC, Judd SE, Lackland D, Lichtman JH, Lisabeth L, Liu S, Longenecker CT, Lutsay PL, Mackey JS, Matchar DB, Matsushita K, Mussolino ME, Nasir K, O’Flaherty M, Palaianapan LP, Pandey A, Pandey DK, Reeves MJ, Ritchey MD, Rodriguez CJ, Roth GA, Rosamond WD, Sampson UKA, Satou GM, Shah SH, Spartano NL, Tirschwell DL, Taao CW, Voeks JH, Willez JZ, Wilkins JT, Wu JH, Alger HM, Vong SS, Muntner P. Heart disease and stroke statistics—2018 update: a report from the American Heart Association. Circulation. 2018;137:e67–e492.
4. Bots SH, Peters SA, Woodward M. Sex differences in coronary heart disease and stroke mortality: a global assessment of the effect of ageing between 1980 and 2010 BMJ Global Health. 2017;2:e000298.
5. Albadri A, Wei J, Mehta PK, Shah R, Herscovic R, Gulati M, Shufelt C, Bairey Merz N. Sex differences in coronary heart disease risk factors: rename it ischaemic heart disease! Heart. 2017;103:1567–1568.
6. Regitz-Zagrosek V, Oertelt-Prigione S, Prescott E, Francconi F, Gerds E, Foryst-Ludwig A, Mias AH, Kaufmann U, Kitchens K, Kitchens U, Ludwig KH, Schenck-Gustafsson K, Stangl V. Gender in cardiovascular diseases: impact on clinical manifestations, management, and outcomes. Eur Heart J. 2016;37:24–34.
7. Piepoli MF, Hoes AW, Agewall S, Albus C, Brotons C, Caterino A, Cooney MT, Coste J, Cosyns B, Deaton C, Graham I, Hall MS, Hobbs FDR, Loton C, Lonn E, Lowi J, Lohse C, Lohse ML, Lollgen H, Marques-Vidal P, Perk J, Prescott E, Redon J, Richter DJ, Sattar N, Smulders Y, Tiberi M, van der Worp HB, van Duy Vinis, Verschuren WMM, Binno S. 2016 European guidelines on cardiovascular disease prevention in clinical practice: the Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts). Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur Heart J. 2016;37:2315–2381.
8. Anand SS, Islam S, Rosengren A, Franzosi MG, Steyn K, Yusufali AH, Keltai M, Diaz R, Rangarajan S, Yusuf S. Risk factors for myocardial infarction in women and men: insights from the INTERHEART study. Eur Heart J. 2008;29:932–940.
9. WHO. Depression and other common mental disorders: global health estimates. 2017.
10. Tully PJ, Turnbull DA, Beltrade J, Horowitz J, Cosh S, Wittert GA. Panic disorder and incident coronary heart disease: a systematic review and meta-regression in 1131612 persons and 58111 cardiac events. Psychol Med. 2015;45:2909–2920.
11. Low CA, Thurston RC, Matthews KA. Psychosocial factors in the development of heart disease in women: current research and future directions. Psychosom Med. 2010;72:842–854.
12. Doyle F, McGee H, Conroy R, Conradi HJ, Meijer A, Steeds R, Sato H, Stewart DE, Parakh K, Carney R, Freedland K, Anselmino M, Pelletier R, Ros EH, de Jonge P. Systematic review and individual patient data meta-analysis of sex differences in depression and prognosis in persons with myocardial infarction: a MINDMAPS study. Psychosom Med. 2015;77:419–428.
13. Rao G, Lopez-Jimenez F, Boyd J, D’Arms F, Durant NH, Hlatky MA, Howard G, Kirley K, Masai C, Powell-Wiley TM, Solomides AD, West CP, Wessel J. Methodological standards for meta-analyses and qualitative systematic reviews of cardiovascular prevention and treatment studies: a scientific statement from the American Heart Association. Circulation. 2017;136:e172–e194.
14. Mommersteeg PMC, Smaardijk VR, Lodder P, Kop WJ, van Gennep B, Maas AHEM. Replication data for: sex and gender-stratified risks of psychological factors for incident ischemic heart disease and prognosis: a systematic review and meta-analysis. 2018.
15. Macleod J, Smith GD, Heslop P, Metcalfe C, Carroll D, Hart C. Psychological stress and cardiovascular disease empirical: demonstration of bias in a prospective observational study of Scottish men. BMJ. 2002;324:1247–1251.
16. Bewick V, Cheek L, Ball J. Statistics review 11: assessing risk. Crit Care. 2004;8:287–291.
17. Giacalone M, Agata Z, Cuzzocci PC, Alibrandi A, Bonferroni-Holm and permutation tests to compare health data: methodological and applicative issues. BMC Med Res Methodol. 2018;18:81.
18. Cochran WG. The combination of estimates from different experiments. Biometrics. 1954;10:101–129.
19. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539–1558.
20. Huedo-Medina TB, Sanchez-Meca J, Marin-Martinez F, Botella J. Assessing heterogeneity in meta-analysis: Q statistic or I2 index? Psychol Methods. 2006;11:193–206.

21. Rice K, Higgins JP, Lumley T. A re-evaluation of fixed effect(s) meta-analysis. J R Statistic Soc A. 2018;181:205–227.

22. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–634.

23. Duval S, Tweedie R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics. 2000;56:455–463.

24. Haukka A, Konttinen H, Laatikainen T, Kawachi I, Uutela A. Hostility, anger control, and anger expression as predictors of cardiovascular disease. Psychosom Med. 2010;72:556–562.

25. Šmīgelskas K, Žemaitienė N, Juklunen K, Kauhanen J. Type A behavior pattern is not a predictor of premature mortality. Int J Behav Med. 2015;22:161–169.

26. Albert CM, Chae CU, Rexrude KM, Manson JE, Kawachi I. Phobic anxiety and risk of coronary heart disease and sudden cardiac death among women. Circulation. 2005;111:480–487.

27. Berge LI, Skogen JC, Sulo G, Igland J, Wilhelmsen I, Vollset SE, Tell GS. Depression and anxiety screens as predictors of 8-year incidence of myocardial infarction and stroke in primary care patients. Psychosom Med. 2016;78:593–601.

28. Smoller JW, Pollack MH, WSSERTHEL-SMOLLER S, Jackson RD, Oberman A, Wong ND, Sheps D. Panic attacks and risk of incident cardiovascular events among postmenopausal women in the Women’s Health Initiative Observational Study. Arch Gen Psychiatry. 2007;64:1153–1160.

29. Stewart JC, Hawkins MAW, Khamatby T, Perkins AJ, Callahan CM. Depression and anxiety screens as predictors of 8-year incidence of myocardial infarction and stroke in primary care patients. Psychosom Med. 2016;78:593–601.

30. Cohen HW, Madhavan S, Alderman MH. History of treatment for depression: risk factor for myocardial infarction in hypertensive patients. Psychosom Med. 2001;63:203–209.

31. Daskalopoulou M, George J, Walters K, Osborn DP, Battigiani D, Rapsomaniki E, Pujades-Rodriguez M, Denaxas S, Udumyan R, Kivimaki M, Hemingway H. Depression as a risk factor for the initial presentation of twelve cardiac, cerebrovascular, and peripheral arterial diseases: data linkage study of 1.9 million women and men. PLoS One. 2016;11:e0153838.

32. Ferketich AK, Schwartzbaum JA, Fid D, Moeschberger ML. Depression as an antecedent to heart disease among women and men in the NHANES I study. National Heart and Nutrition Examination Survey, Int Arch Med. 2000;160:1261–1268.

33. Gale CR, Battigiani DP, Dreyfus P, Rasmussen F. Mental disorders across the adult life course and future coronary heart disease: evidence for general susceptibility. Circulation. 2014;129:186–193.

34. Gasse C, Laursen TM, Saune BT. Major depression and first-time hospitalization with ischemic heart disease, cardiac procedures and mortality in the general population: a retrospective Danish population-based cohort study. Eur J Prev Cardiol. 2014;21:532–540.

35. Gump BB, Matthews KA, Eberly LE, Chang YF. Depressive symptoms and mortality in men: results from the Multiple Risk Factor Intervention Trial. Stroke. 2005;36:98–102.

36. Haukka A, Konttinen H, Uutela A, Kawachi I, Laatikainen T. Gender differences between the association of depressive symptoms, cardiovascular diseases, and all-cause mortality. Ann Epidemiol. 2009;19:623–629.

37. Hiles SA, Baker AL, de Malmanche T, McEvoy M, Boyle M, Attia J. The role of inflammatory markers in explaining the association between depression and cardiovascular hospitalisations. J Behav Med. 2015;38:609–619.

38. Hiltunen M, Nieminen T, Kettunen R, Hartikainen S, Sulkava R, Vuotoehano O, Kerola T. Depressive symptoms and cardiovascular burden-related mortality among the aged. Eur J Clin Invest. 2014;44:486–492.

39. Huang CJ, Hsieh MH, Hou WH, Liu JC, Jeng C, Tsai PS. Depression, antidepressants, and the risk of coronary heart disease: a population-based cohort study. Int J Cardiol. 2013;168:471–476.

40. Kamphuis MH, Kalmijn S, Tijhuis MA, Geerlings MI, Gamiapoli S, Nissinen A, Grobbee DE, Kromhout D, Deppe DE. Mental depression and myocardial infarction in older European men: the Finland, Italy and Netherlands Elderly (FINE) study. Eur J Cardiovasc Prev Rehabil. 2006;13:199–206.

41. Kendler KS, Gardner CO, Fiske A, Gatz M. Major depression and coronary artery disease in the Swedish twin registry: phenotypic, genetic, and environmental sources of comorbidity. Arch Gen Psychiatry. 2009;66:857–864.

42. Hambaty T, Stewart JC, Gupta SK, Chang CH, Bedimo RJ, Budoff MJ, Butt AA, Crane H, Gibert CL, Leaf DA, Rimland D, Tindle HA, So-Armah KA, Justice AC, Freiberg MS. Association between depressive disorders and incident acute myocardial infarction in middle-aged women. J Atheroscler Thromb. 2016;23:471–476.

43. Liu N, Pan XF, Yu C, Lu J, Guo Y, Bian Z, Yang L, Chen Y, Wu T, Chen Z, Pan A, Li L. Association of major depression with risk of ischemic heart disease in a mega-cohort of Chinese adults: the China Kadoorie Biobank Study. J Am Heart Assoc. 2016;5:e004687. DOI: 10.1161/JAHA.116.004687.

44. Majed B, Arevalier D, Bingham A, Ferrieres J, Ruidavets JB, Montaye M, Appleton K, Haas B, Kee F, Amouyal P, Ducimetiere P, Enprodia JP. Depressive symptoms, a time-dependent risk factor for coronary heart disease and stroke in middle-aged men: the PRIME study. Stroke. 2012;43:1761–1767.
S&G Meta-Analysis of Psychological Risk for IHD  Smardaik et al

64. Mallon L, Bromm J, Hetta J. Sleep complaints predict coronary artery disease mortality in males: a 12-year follow-up study of a middle-aged Swedish population. J Intern Med. 2002;251:207–216.

65. Mejia-Lancheros C, Estruch R, Martinez-González MA, Salas-Salvadó J, Castañer O, Corella D, Arós F, Gómez-Graña E, Fiol M, Lapetra J, Serra-Majem L, Pintó X, Ros E, Diez-Espino J, Basora J, Sorli JV, Lamuela-Raventos RM, Ruiz-Gutiérrez V, Muñoz MA. Impact of psychosocial factors on cardiovascular mortality: a prospective cohort study. BMC Cardiovasc Disord. 2014;14:135.

66. Shah AJ, Veledar E, Hong Y, Bremner JD, Vaccarino V. Depression and history of attempted suicide as risk factors for heart disease mortality in young individuals. Arch Gen Psychiatry. 2011;68:1135–1142.

67. Sun WJ, Xu L, Chan WM, Lam TH, Schooling CM. Are depressive symptoms a predictor of long-term cardiovascular morbidity and mortality in middle-aged men. J Am Heart Assoc. 2013;2:1107–1115.

68. Sundquist J, Li X, Johansson S-E, Sundquist K. Depression as a predictor of hospitalization due to coronary heart disease. Am J Prev Med. 2005;29:428–433.

69. Surtees PG, Wainwright NWJ, Luben RN, Wareham NJ, Bingham SA, Khaw KT. Depression and ischemic heart disease mortality: evidence from the EPIC-Norfolk United Kingdom prospective cohort study. Am J Psychiatry. 2008;165:515–523.

70. Wassertheil-Smoller S, Shumaker SA, Ockene JK, Talavera G, Greenland P, Surtees PG, Wainwright NWJ, Luben RN, Wareham NJ, Bingham SA, Khaw KT. Depression and ischemic heart disease mortality: evidence from the EPIC-Norfolk United Kingdom prospective cohort study. Am J Psychiatry. 2008;165:515–523.

71. Whang W, Kubzansky LD, Kawachi I, Rexrode KM, Kroenke CH, Glynn RJ, Garen H, Albert CM. Depression and risk of sudden cardiac death and coronary heart disease in women. Results from the Nurses’ Health Study. J Am Coll Cardiol. 2009;53:950–958.

72. Yasuda N, Mino Y, Koda S, Obara H. The differential influence of distinct clusters of psychiatric symptoms, as assessed by the General Health Questionnaire, on cause of death in older persons living in a rural community of Japan. J Am Geriatr Soc. 2002;50:313–320.

73. Borscarnio JA. A prospective study of PTSD and early-age heart disease mortality among Vietnam veterans: implications for surveillance and prevention. Psychosom Med. 2008;70:668–676.

74. De Vogli R, Chandola T, Marmot MG. Negative aspects of close relationships and heart disease. Arch Intern Med. 2007;167:951–1957.

75. Jordan HT, Stellman SD, Morabia A, Miller-Archie SA, Alper H, Laskaris Z, De Vogli R, Chandola T, Marmot MG. Negative aspects of close relationships as risk factors for heart disease mortality in young individuals. Arch Gen Psychiatry. 2011;68:1135–1142.

76. Sundquist J, Li X, Johansson S-E, Sundquist K. Depression as a predictor of hospitalization due to coronary heart disease. Am J Prev Med. 2005;29:428–433.

77. Waterthel-Smoller S, Shumaker SA, Ockene JK, Talavera G, Greenland P, Surtees PG, Wainwright NWJ, Luben RN, Wareham NJ, Bingham SA, Khaw KT. Depression and ischemic heart disease mortality: evidence from the EPIC-Norfolk United Kingdom prospective cohort study. Am J Psychiatry. 2008;165:515–523.

78. Wassertheil-Smoller S, Shumaker SA, Ockene JK, Talavera G, Greenland P, Surtees PG, Wainwright NWJ, Luben RN, Wareham NJ, Bingham SA, Khaw KT. Depression and ischemic heart disease mortality: evidence from the EPIC-Norfolk United Kingdom prospective cohort study. Am J Psychiatry. 2008;165:515–523.

79. Whang W, Kubzansky LD, Kawachi I, Rexrode KM, Kroenke CH, Glynn RJ, Garen H, Albert CM. Depression and risk of sudden cardiac death and coronary heart disease in women. Results from the Nurses’ Health Study. J Am Coll Cardiol. 2009;53:950–958.

80. Rasul F, Stansfeld SA, Hart CL, Smith GD. Psychological distress, physical illness, and risk of coronary heart disease. J Epidemiol Community Health. 2005;59:140–145.

81. Tindle HA, Chang YF, Kulier LH, Manson JE, Robinson JG, Rosal MC, Siegle GJ, Matthews KA. Optimism, cynical hostility, and incident coronary heart disease and mortality in the Women’s Health Initiative. Circulation. 2009;120:656–662.

82. Ikeda A, Iso H, Kawachi I, Yamagishi K, Inoue M, Tsugane S. Social support and stroke and coronary heart disease: the JPHC study cohorts II. Stroke. 2008;39:768–775.

83. Kuper H, Adami HO, Theorell T, Weiderpass E. Psychosocial determinants of coronary heart disease in middle-aged women: a prospective study in Sweden. Am J Epidemiol. 2006;164:349–357.

84. Lohse T, Rohrmann S, Richard A, Bopp M, Faeh D. Type A personality and mortality: competitiveness but not speed is associated with increased risk. Atherosclerosis. 2017;262:19–24.

85. Rosengren A, Wilhelmsen L, Orth-Gomér K. Coronary disease in relation to social support and social class in Swedish men: a 15-year follow-up in the study of men born in 1933. Eur Heart J. 2004;25:56–63.

86. Gafarov VV, Panov DO, Gromova EA, Gagulov IV, Gafarova AV. The influence of depression on risk development of acute cardiovascular diseases in the female population aged 25–64 in Russia. Int J Circumpolar Health. 2013;72:21223.

87. Rosenthal R, The, “File Drawer Problem” and Tolerance for Null Results. Psychological Bulletin. 1979;86:638–641.

88. Mez CN. The Yentl syndrome is alive and well. Eur Heart J. 2011;32:1313–1315.

89. Vaccarino V, Badimon L, Corti R, de Wit C, Dorobantu M, Manfrini O, Koller A, Pries A, Cenzo E, Bugiardini R. Presentation, management, and outcomes of ischaemic heart disease in women. Nat Rev Cardiol. 2013;10:508–518.

90. Vaccarino V, Sullivan S, Hammadah M, Wiltot K, Al Mheid J, Ramadan R, Elon L, Pimple PM, Garcia EV, Nye J, Shah AJ, Alkhdore A, Levantsevych O, Gay H, Obideen M, Huang M, Lewis TT, Bremner JD, Quyyumi AA, Raggi P. Mental stress-induced-myocardial ischemia in young patients with recent myocardial infarction: sex differences and mechanisms. Circulation. 2018;137:794–805.

91. Moller-Leimkuhler AM. Barriers to help-seeking by men: a review of sociocultural and clinical literature with particular reference to depression. J Affect Disord. 2002;71:1–9.

92. Wu Q, Kling JM. Depression and the risk of myocardial infarction and coronary death: a meta-analysis of prospective cohort studies. Medicine. 2016;95:e2815.

93. Gan Y, Gong Y, Tong X, Sun H, Cong Y, Dong X, Wang Y, Xu X, Yin X, Deng J, Li L, Cao S, Lu Z. Depression and the risk of coronary heart disease: a meta-analysis of prospective cohort studies. BMJ Psychiatry. 2014;14:371.

94. Richardson S, Shaffer JA, Falzon L, Krupka D, Davidson KW, Edmondson D. The Yentl syndrome is alive and well. Eur Heart J. 2004;25:56–63.

95. Barr EL, Tonkin AM, Welborn TA, Shaw JE. Validity of self-reported cardiovascular disease events in comparison to medical record adjudication and a statewide morbidity and mortality database. AustDiabstast. Intern Med J. 2009;39:49–53.

96. Pelletier R, Khan NA, Cox J, Daskalopoulou SS, Eisenberg MJ, Bacon SL, Lavoie KL, Daskalopoulou SS, Eisenberg MJ, Bacon SL, Lavoie KL, Daskalopoulou SS, Eisenberg MJ, Bacon SL, Lavoie KL. Sex versus gender-related characteristics: which predicts outcome after acute coronary syndrome in the young? J Am Coll Cardiol. 2016;67:127–135.

Downloaded from http://ahajournals.org by on November 18, 2019
SUPPLEMENTAL MATERIAL
Table S1. Search terms.

| EMBASE | 1                                                                 |
|--------|------------------------------------------------------------------|
|        | 'ischemic heart disease*':ab,ti OR 'ischaemic heart disease*' OR ('ihd':ab,ti AND 'heart':ab,ti) OR 'myocardial ischemia':ab,ti OR 'myocardial ischaemia':ab,ti OR 'acute coronary syndrome':ab,ti OR 'coronary disease*':ab,ti OR 'coronary occlusion*':ab,ti OR 'coronary stenosis':ab,ti OR 'coronary artery obstruction':ab,ti OR 'coronary thrombosis':ab,ti OR 'coronary artery thrombosis':ab,ti OR 'coronary vasospasm*':ab,ti OR 'myocardial infarction*':ab,ti OR 'cardiogenic shock':ab,ti OR 'percutaneous coronary intervention*':ab,ti OR (pci:ab,ti AND coronary:ab,ti) OR 'myocardial revascularization*':ab,ti OR 'coronary balloon angioplasty':ab,ti OR 'coronary atherectomy':ab,ti OR 'coronary artery bypass':ab,ti OR (cag:ab,ti AND coronary:ab,ti) OR 'myocardial reperfusion*':ab,ti OR 'spontaneous coronary artery dissection*':ab,ti OR (scad:ab,ti AND coronary:ab,ti) OR takotsubo:ab,ti OR 'tako-tsubo':ab,ti OR 'angiocardiography':ab,ti OR 'coronary angiography':ab,ti OR (cag:ab,ti AND coronary:ab,ti) OR 'myocardial perfusion imaging':ab,ti OR angina:ab,ti OR 'coronary microvascular disease*':ab,ti OR 'coronary vasomotor disorder*':ab,ti OR 'microvascular angina':ab,ti OR 'cardiac syndrome x':ab,ti |

|        | 2                                                                 |
|--------|------------------------------------------------------------------|
|        | 'heart muscle ischemia'/de OR 'coronary artery occlusion'/de OR 'syndrome x'/de OR 'heart muscle revascularization'/de OR 'transluminal coronary angioplasty'/de OR 'heart infarction'/de OR 'heart muscle reperfusion'/de |

|        | 3                                                                 |
|--------|------------------------------------------------------------------|
|        | 'depressive disorder*':ti,ab OR 'depressive symptom*':ti,ab OR 'depressive episode*':ti,ab OR 'dysthymic disorder*':ti,ab OR 'depressed mood':ti,ab OR 'panic disorder*':ti,ab OR 'panic attack*':ti,ab OR 'social support':ti,ab OR 'social isolation':ti,ab |
|   |   |
|---|---|
| OR loneliness:ti,ab OR hostility:ti,ab OR 'aggressive behavior':ti,ab OR anger:ti,ab OR personality:ti,ab OR 'type a personality':ti,ab OR 'type a behavior':ti,ab OR 'type a behaviour':ti,ab OR 'type d personality':ti,ab OR temperament:ti,ab OR neuroticism:ti,ab OR 'posttraumatic stress disorders':ti,ab OR 'posttraumatic stress disorder':ti,ab OR (ptsd:ti,ab AND stress:ti,ab) OR 'psychological trauma':ti,ab OR 'psychological traumas':ti,ab OR 'psychological stress':ti,ab OR 'psychological distress':ti,ab OR 'psychosocial symptom*':ti,ab OR 'psychosocial factor*':ti,ab OR 'psychosocial stress':ti,ab OR 'psychosocial stressor*':ti,ab OR 'psychosocial domain*':ti,ab OR anxiety:ti,ab OR aggression:ti,ab OR depression:ti,ab |
| 4 | 'anxiety'/de OR 'aggression'/de OR 'depression'/de OR 'coronary prone behavior'/de |
| 5 | ('article'/it OR 'article in press'/it) AND [2000-2018]/py |
| OR 4) AND 5 | **PsycINFO** |
| 1 | TI (“Ischemic heart disease*” OR “Ischaemic heart disease*” OR (IHD AND Heart) OR “Myocardial Ischemia” OR “Myocardial Ischaemia” OR “Acute Coronary Syndrome” OR “Coronary Disease*” OR “Coronary Artery Disease*” OR “Coronary Occlusion*” OR “Coronary Stenosis” OR “Coronary Thrombosis” OR “Coronary Vasospasm*” OR “Myocardial Infarction*” OR “Cardiogenic Shock” OR “Percutaneous Coronary Intervention*” OR (PCI AND Coronary) OR “Myocardial Revascularization*” OR “Coronary Balloon Angioplasty” OR “Coronary Atherectomy” OR “Coronary Artery Bypass” OR (CAG AND Coronary) OR “Myocardial Reperfusion*” OR “Spontaneous Coronary Artery Dissection*” OR (SCAD AND Coronary) OR Takotsubo OR Tako-tsubo OR “Angiocardiology” OR “Coronary Angiography” OR (CABG AND coronary) OR |
| 2 | AB (“Ischemic heart disease**” OR “Ischaemic heart disease**” OR (IHD AND Heart) OR “Myocardial Ischemia” OR “Myocardial Ischaemia” OR “Acute Coronary Syndrome” OR “Coronary Disease**” OR “Coronary Artery Disease**” OR “Coronary Occlusion**” OR “Coronary Stenosis” OR “Coronary Thrombosis” OR “Coronary Vasospasm**” OR “Myocardial Infarction**” OR “Cardiogenic Shock” OR “Percutaneous Coronary Intervention**” OR (PCI AND Coronary) OR “Myocardial Revascularization**” OR “Coronary Balloon Angioplasty” OR “Coronary Atherectomy” OR “Coronary Artery Bypass” OR (CAG AND Coronary) OR “Myocardial Reperfusion**” OR “Spontaneous Coronary Artery Dissection**” OR (SCAD AND Coronary) OR Takotsubo OR Tako-tsubo OR “Angiocardiography” OR “Coronary Angiography” OR (CABG AND coronary) OR “Myocardial Perfusion Imaging” OR Angina OR “Chest Pain” OR “Coronary Microvascular Disease**” OR “Coronary Microvascular Dysfunction**” OR “Coronary Vasomotor Disorder**” OR “Microvascular angina” OR “Cardiac Syndrome X”) |
| 3 | DE (“Ischemic heart disease**” OR “Ischaemic heart disease**” OR (IHD AND Heart) OR “Myocardial Ischemia” OR “Myocardial Ischaemia” OR “Acute Coronary Syndrome” OR “Coronary Disease**” OR “Coronary Artery Disease**” OR “Coronary Occlusion**” OR “Coronary Stenosis” OR “Coronary Thrombosis” OR “Coronary Vasospasm**” OR “Myocardial Infarction**” OR “Cardiogenic Shock” OR “Percutaneous Coronary Intervention**” OR (PCI AND Coronary) OR “Myocardial Revascularization**” OR “Coronary Balloon Angioplasty” OR “Coronary Atherectomy” OR “Coronary Artery Bypass” OR (CAG AND Coronary) OR “Myocardial Reperfusion**” OR “Spontaneous Coronary Artery Dissection**” OR (SCAD AND Coronary) OR Takotsubo OR Tako-tsubo OR “Angiocardiography” OR “Coronary Angiography” OR (CABG AND coronary) OR “Myocardial Perfusion Imaging” OR Angina OR “Chest Pain” OR “Coronary Microvascular Disease**” OR “Coronary Microvascular Dysfunction**” OR “Coronary Vasomotor Disorder**” OR “Microvascular angina” OR “Cardiac Syndrome X”) |
|   |   |
|---|---|
| 4 | **TI ("depressive disorder*" OR "depressive symptom*" OR "depressive episode*" OR "Dysthymic Disorder*" OR depression OR "depressed mood" OR anxiety OR "Panic Disorder*" OR "Panic Attack*" OR "Social Support" OR "Social Isolation" OR loneliness OR hostility OR aggression OR anger OR personality OR "Type A Personality" OR "type a behavior" OR "type a behaviour" OR "Type D Personality" OR Temperament OR Neuroticism OR "Post-Traumatic Stress Disorders" OR "Post-Traumatic Stress Disorder" OR (PTSD AND Stress) OR "Psychological Trauma" OR "Psychological Stress" OR "Psychological Distress" OR "Psychosocial symptom*" OR "Psychosocial Factor*" OR "Psychosocial Stress" OR "Psychosocial stressors" OR "Psychosocial domain*" )** |
| 5 | **AB ("depressive disorder*" OR "depressive symptom*" OR "depressive episode*" OR "Dysthymic Disorder*" OR depression OR "depressed mood" OR anxiety OR "Panic Disorder*" OR "Panic Attack*" OR "Social Support" OR "Social Isolation" OR loneliness OR hostility OR aggression OR anger OR personality OR "Type A Personality" OR "type a behavior" OR "type a behaviour" OR "Type D Personality" OR Temperament OR Neuroticism OR "Post-Traumatic Stress Disorders" OR "Post-Traumatic Stress Disorder" OR (PTSD AND Stress) OR "Psychological Trauma" OR "Psychological Stress" OR "Psychological Distress" OR "Psychosocial symptom*" OR "Psychosocial Factor*" OR "Psychosocial Stress" OR "Psychosocial stressors" OR "Psychosocial domain*" )** |
| Page | Text |
|------|------|
| 6    | DE ("depressive disorder*" OR "depressive symptom*" OR "depressive episode*" OR "Dysthymic Disorder*" OR depression OR “depressed mood” OR anxiety OR "Panic Disorder*" OR "Panic Attack*" OR "Social Support" OR "Social Isolation" OR loneliness OR hostility OR aggression OR anger OR personality OR “Type A Personality” OR “type a behavior” OR “type a behaviour” OR “Type D Personality” OR Temperament OR Neuroticism OR "Post-Traumatic Stress Disorders" OR "Post-Traumatic Stress Disorder” OR (PTSD AND Stress) OR "Psychological Trauma" OR "Psychological Stress" OR "Psychological Distress" OR “Psychosocial symptom*” OR “Psychosocial Factor*” OR “Psychosocial Stress” OR “Psychosocial stressors” OR “Psychosocial domain*” )

(1 OR 2 OR 3) AND (4 OR 5 OR 6) |

PubMed |

1 | ("Ischemic heart disease*" [Title/Abstract] OR “Ischaemic heart disease*”[Title/Abstract] OR (IHD [Title/Abstract] AND Heart [Title/Abstract]) OR “Myocardial Ischemia”[Title/Abstract] OR “Myocardial Ischaemia”[Title/Abstract] OR “Acute Coronary Syndrome” [Title/Abstract] OR “Coronary Disease*” OR “Coronary Artery Disease*”[Title/Abstract] OR “Coronary Occlusion*”[Title/Abstract] OR “Coronary Stenosis”[Title/Abstract] OR “Coronary Thrombosis”[Title/Abstract] OR “Coronary Vasospasm*”[Title/Abstract] OR “Myocardial Infarction*”[Title/Abstract] OR “Cardiogenic Shock”[Title/Abstract] OR “Percutaneous Coronary Intervention*”[Title/Abstract] OR (PCI [Title/Abstract] AND Coronary[Title/Abstract]) OR “Myocardial Revascularization*”[Title/Abstract] OR “Coronary Balloon Angioplasty”[Title/Abstract] OR “Coronary Atherectomy”[Title/Abstract] OR “Coronary Artery Bypass”[Title/Abstract] OR (CABG[Title/Abstract] AND Coronary[Title/Abstract]) |
| OR “Myocardial Reperfusion*”[Title/Abstract] OR “Spontaneous Coronary Artery Dissection*”[Title/Abstract] OR (SCAD[Title/Abstract] AND Coronary[Title/Abstract]) OR Takotsubo[Title/Abstract] OR Tako-tsubo[Title/Abstract] OR “Angiography”[Title/Abstract] OR “Coronary Angiography”[Title/Abstract] OR (CAG[Title/Abstract] AND Coronary[Title/Abstract]) OR “Myocardial Perfusion Imaging”[Title/Abstract] OR Angina[Title/Abstract] OR “Chest Pain”[Title/Abstract] OR “Coronary Microvascular Disease*”[Title/Abstract] OR “Coronary Microvascular Dysfunction*”[Title/Abstract] OR “Coronary Vasomotor Disorders”[Title/Abstract] OR “Microvascular angina”[Title/Abstract] OR “Cardiac Syndrome X”[Title/Abstract])
| OR “depressive disorder*”[Title/Abstract] OR “depressive symptom*”[Title/Abstract] OR “depressive episode*”[Title/Abstract] OR “Dysthymic Disorder*”[Title/Abstract] OR depression*[Title/Abstract] OR “depressed mood”[Title/Abstract] OR anxiety[Title/Abstract] OR “Panic Disorder*”[Title/Abstract] OR “Panic Attack*”[Title/Abstract] OR “Social Support”[Title/Abstract] OR “Social Isolation”[Title/Abstract] OR loneliness[Title/Abstract] OR hostility[Title/Abstract] OR aggression[Title/Abstract] OR anger[Title/Abstract] OR personality[Title/Abstract] OR “Type A Personality”[Title/Abstract] OR “type a behavior”[Title/Abstract] OR “type a behaviour”[Title/Abstract] OR “Type D Personality”[Title/Abstract] OR Temperament[Title/Abstract] OR Neuroticism[Title/Abstract] OR “Post-Traumatic Stress Disorders”[Title/Abstract] OR “Post-Traumatic Stress Disorder”[Title/Abstract] OR PTSD[Title/Abstract] OR Stress[Title/Abstract]) OR “Psychological Trauma*”[Title/Abstract] OR “Psychological Stress”[Title/Abstract] OR “Psychological Distress”[Title/Abstract] OR “Psychosocial symptom*”[Title/Abstract] OR “Psychosocial
| Factor**[Title/Abstract] OR “Psychosocial Stress”[Title/Abstract] OR “Psychosocial stressor**[Title/Abstract] OR “Psychosocial domain**[Title/Abstract] |
|---|
| 3  |
| ( "2000/01/01"[PDat] : "3000/12/31"[PDat] ) |
| 1 AND 2 AND 3 |
Table S2. Covariate adjustment: main categories and covariates.

| Category          | Covariates                                                                                                                                                                                                 |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| **Demographic**   | # of friends; # of relatives; age; annual household income; Australian versus New Zealander; body height; cohabitation status; deployment; education; ethnicity; father’s occupation; gender; geographic area; income; marital status; military pay grade; nursing home admission; occupational class; place of service; poverty index; private health insurance; region; school education; service branch; service compound; social class; social status; socio-economic status; Theater status (veterans who served in Vietnam); urbanization |
| **Lifestyle**     | 10 year changes in mobility; ADL (activities of daily living); alcohol/drug abuse; body mass index; cocaine abuse or dependence; coping strategies; Daily activity limitations; DIS (difficulties initiating sleep); DMS (difficulties maintaining sleep); drinking status; habitual snoring; health status; hyperlipidemia; MedDietScore; monthly expenditure; multivitamin use; obese; overweight; physical activity; physical activity at one-year follow-up; sedentary behavior; self-rated general health; SF36 physical function; sleeping; smoking; tobacco use; Vitamin E supplement use; waist circumference; waist to hip-ratio |
| **Cardiac risk factors, history, and disease severity** | **Cardiac risk factors:** Cholesterol; EuroSCORE; Framingham risk score; Gensini score; GRACE risk score; hazard score (LVEF; ECG abnormality at rest; number of vessels with >=75% narrowing; age; indicators of myocardial damage); heart rate; high density lipoprotein cholesterol; hypercholesterolemia; hypertension; low density lipoprotein cholesterol; non-Q-wave infarction; plasma cholesterol; prognostic risk (GRACE and DASI); pulse rate; serum levels of total cholesterol; systolic blood pressure; systolic blood pressure on arrival; triglycerides |
|                   | **Women specific risk factors:** Menopausal status and postmenopausal hormone use                                                                                                                           |
| **Cardiac history** |                                                                                                                                                                                                          |
CAD (coronary artery disease); Cardiac history; Cardiovascular diseases; history of coronary artery revascularisation; history of CVD (cardiovascular disease); parental history of myocardial infarction before age 60 years; previous angina; previous CABG (coronary artery bypass graft surgery); previous congestive heart failure; prior myocardial infarction; prior MI (myocardial infarction) and PCI (percutaneous coronary intervention) during index hospitalization; reason for cardiac catheterization (AMI, symptoms or positive stress test); stroke history

**Cardiac disease severity:**

Angina; anterior location of infarct; atherosclerosis severity; atrial fibrillation; cardiac disease; CSS angina class; ejection fraction; ejection fraction <40% and workload <115 W; evidence of ischemia; exercise ECG risk; exercise-induced myocardial ischaemia; functional imaging risk; inducible ischemia; Killip Class on arrival; left ventricular hypertrophy; microvascular condition; multivessel disease; native stenosis (possible locations of stenosis); number of diseased vessels; number of health problems; occurrence of nonfatal CVD events during the trial; proximal versus distal localization of target lesion; severity of congestive heart failure; single versus multi-vessel disease; ST-elevation myocardial infarction; stent; type, diameter and length of intracoronary stent

**Biomarkers:**

Albumin; B-type natriuretic peptide (BNP); C-peptide; C-reactive protein (CRP); creatinine; cystatin C; Factor VIIc; fasting glucose; fibrinogen (viscosity); haemoglobin; HbA1c; HDL; heart rate; LDL; lnGGT; NT-proBNP; presence of microvascular complications; triglycerides; troponin I; white blood cell count (WBC)

**Diabetes-related**

Blood sugar; diabetes; duration of diabetes; history of diabetes; insulin sensitivity; overt nephropathy

**Kidney:**
| **Somatic comorbidity** | Acute kidney injury; chronic kidney disease; creatinine clearance <40 ml/minute; eGFR; glomerular filtration rate; renal disease; renal failure; severity of retinopathy |
|------------------------|--------------------------------------------------------------------------------------------------|
| **COPD:**              | Chronic lung disease; chronic obstructive pulmonary disease; percentage of forced expiratory volume in one second; respiratory disease |
| **STROKE/TIA/PAD:**    | Peripheral vascular disease; stroke; traumatic brain injury |
| **Cancer:**            | Cancer; nonskin cancer |
| **Other/general:**     | Antiretroviral therapy regimen; CD4 cell counts; Charlson comorbidity index; chronic health conditions; dementia; Deyo, Cherkin, & Ciol Comorbidity Index; distal symmetric polyneuropathy; frailty diagnosis; hepatitis C infection; HIV-1 RNA values; inflammatory arthritis; MRC dyspnea score >=3; non-vascular chronic disease; noncardiac comorbidities; peptic ulcer; physical comorbidity score; rheumatoid arthritis; psoriasis; Seattle Angina Questionnaire physical limitation score; self-rated health; urogenital disease |
| **Psychological comorbidity** | Anhedonia; anxiety; availability of close or casual neighbors; Berkman-Syme Social Network Index (social support); bipolar; clinically-significant depressive symptoms (based on prescription of antidepressants); cognitive impairment; depression; deprivation; dysphoria; dysthymia; history of depression requiring treatment; Mini Mental State Examination at baseline; PTSD; NA (negative affect); NA by SI (social inhibition); pain status; perceived stress; preoperative STAI-T (continuously); schizophrenia; SI; social support; sometimes lonely; stress; suppressed anger; symptoms of negative affect; Townsend deprivation score; trauma quartile; Type D personality |
| **Cardiac medication:** | |
| Medication and cardiac treatment | ACE-inhibitors; antihypertensives; aspirin use; b-blockers; blood pressure and lipid medications; calcium antagonists; calcium channel blockers; diuretics; hypertension treatment at entry; number of medicines; previous cardiac medication use (aspirin, beta-blockers, calcium channel blockers, angiotensin-converting enzyme inhibitors, lipid drugs, diuretics); renin–angiotensin system inhibitors; statins |
| Other medication: | Alpha linolenic acid intake; antidepressant describing; antipsychotics; corticosteroids; digoxine; habitual sleeping pull usage; HRT use; medication adherence; n-3 fatty acid intake; secondary prophylactic medication; use of antidepressants; use of hormone therapy; valium use |
| Cardiac procedure: | CABG; Cardiac procedure; cardiac surgery; cardiopulmonary bypass time; hospital level factors availability (e.g. CAG or CAG/PCI or CAG/PCI/CABG); in-hospital processes of care; intra-operative variables (e.g. blood pressure, duration of cardiopulmonary bypass and medications administered during surgery); length of hospital stay; number of grafts; percent and number of quality of care indicators received; peri-operative events (e.g. complications, postoperative blood loss, arrhythmias, length of stay); physician performing CAG; presence of an internal cardioverter defibrillator; post catheterization intervention; referring physician; revascularization; single valve operation; surgical status; thrombolysis; treatment within 90 days |
| Study-specific | Beginning year of follow-up; calendar year interval; cohort belongings; conscripting testing center; employed during enrollment; first recruitment period; hospital readmission between index event and CAQ assessment four months after discharge in the model evaluating HR at four months; hospital site; inclusion group (congestive heart failure, ischemic heart disease and high risk (presence of ≥3 classic risk factors of IHD)); observation study cohort vs. clinical trial status; randomised treatment; screening interval; site; study (MONICA wave 1, NRP1A); |
| study arm (intervention/control); study centers; time of implantable cardioverter-defibrillator implantation before enrollment; treatment assignment; treatment group; type Mediterranean diet intervention; year of examination; year of study entry |
Table S3. Characteristics of papers included in unadjusted, sensitivity, and additional analyses.

| Unadjusted HR/RR* | Global continent | Analyzed (n) | Baseline IHD free | Age | W/M | % W | % European descent | Q or D | Outcome | Raw score/Minimally adjusted | S&G in paper |
|-------------------|------------------|--------------|-------------------|-----|-----|-----|-------------------|-------|---------|-------------------------------|-------------|
| **Anger**         |                  |              |                   |     |     |     |                   |       |         |                               |             |
| Boyle (2006)¹ 4   | N. America       | 2,105        | Yes               | 46.7| M   | 0%  | 94%               | Q     | IHD     | Adjusted                      | Yes         |
| Chang (2002)²     | N. America       | 1,055        | Yes               | 26.4| M   | 0%  | 98%               | Q     | IHD     | Raw score                     | Yes         |
| Eng (2003)³       | N. America       | 23,522       | Yes               | 61.9| M   | 0%  | N.R.              | Q     | IHD     | Adjusted                      | Yes         |
| Kubzansky (2006)⁴ | N. America       | 1,306        | Yes               | 61.0| M   | 0%  | N.R.              | Q     | IHD     | Adjusted                      | Yes         |
| Stürmer (2006)⁵  2| Europe           | 3,892        | Yes               | 53.4| WM  | 52% | N.R.              | Q     | MI      | Raw score                     | No          |
| Tanno (2007)⁶ 2   | Asia             | 75,551       | N.R.              | N.R.| WM  | 59% | N.R.              | Q     | CM      | Adjusted                      | Yes         |
| **Anxiety**      |                  |              |                   |     |     |     |                   |       |         |                               |             |
| Albert (2005)⁷    | N. America       | 72,359       | Yes               | 54.4| W   | 100%| N.R.              | Q     | MI      | Adjusted                      | Yes         |
| Berge (2016)⁸     | Europe           | 7,052        | Yes               | 43.1| WM  | 48% | N.R.              | Q     | IHD     | Adjusted                      | Yes         |
| Boyle (2006)¹ 2   | N. America       | 2,105        | Yes               | 46.7| M   | 0%  | 94%               | Q     | IHD     | Adjusted                      | Yes         |
| Carriere (2013)⁹  | Europe           | 1,708        | No                | N.R.| WM  | 59% | N.R.              | D     | CM      | Raw score                     | Yes         |
| Crum-Cianflone (2014)¹⁰ | N. America   | 23,794       | Yes               | 32.2| WM  | 22% | 64%               | Q     | IHD     | N.R.                          | No          |
| Denollet (2009)¹¹  | Europe           | 5,073        | Yes               | 50.4| W   | 100%| 100%              | Q     | CM      | Adjusted                      | Yes         |
| Einvik (2009)¹² 1 | Europe           | 433          | No                | 70.0| M   | 0%  | N.R.              | Q     | CVD     | Raw score                     | Yes         |
| Gafarov (2007)¹³  | Europe           | 2,149        | Yes               | N.R.| M   | 0%  | N.R.              | Q     | MI      | Raw score                     | Yes         |
| Gustad (2014)¹⁴ 2 | Europe           | 57,953       | Yes               | 47.7| WM  | 54% | N.R.              | Q     | MI      | Adjusted                      | No          |
| Study                  | Year | Continent | N      | IHD free | Age | W/M | %W | %Europ. | Q or D | Outcome  | Raw/Adj. | S&G |
|------------------------|------|-----------|--------|----------|-----|-----|-----|---------|--------|----------|----------|-----|
| Boyle (2006)           | 2006 | N. America| 2,105  | Yes      | 46.7| M   | 0%  | 94%     | Q      | IHD      | Adjusted | Yes |
| Chi (2014)             | 2014 | Asia      | 132,090| Yes      | N.R.| WM  | 63% | N.R.    | D      | MI       | Adjusted | Yes |
| Clouse (2003)          | 2003 | N. America| 76     | Yes      | 41.3| W   | 100%| 58%     | D      | IHD      | Adjusted | Yes |
| Cohen (2001)           | 2001 | N. America| 55,64  | Yes      | 53.2| WM  | 36% | 34%     | Q      | IHD      | Adjusted | Yes |
| Crum-Cianflone (2014)  | 2014 | N. America| 23,794 | Yes      | 32.2| WM  | 22% | 64%     | Q      | IHD      | N.R.     | No  |
| Einvik (2009)          | 2009 | Europe    | 433    | No       | 70.0| M   | 0%  | N.R.    | Q      | CVD      | Raw score| Yes |
| Ferketich (2000)       | 2000 | N. America| 7,903  | Yes      | 54.5| WM  | 63% | 86%     | Q      | IHD      | Raw score| Yes |
| Gale (2014)            | 2014 | Europe    | 1,107,524| Yes     | 18.3| M   | 0%  | N.R.    | D      | IHD      | Adjusted | Yes |
| Greenawalt (2013)      | 2013 | N. America| 501,489| No       | 56.8| WM  | 7%  | 77%     | D      | IHD      | Raw score| No  |
| Gromova (2006)         | 2006 | Europe    | 657    | Yes      | N.R.| M   | 0%  | N.R.    | Q      | MI       | Raw score| Yes |
| Gump (2005)            | 2005 | N. America| 11,216 | Yes      | 46.4| M   | N.R.| 90%     | Q      | CM       | Raw score| Yes |
| Gustad (2014)          | 2014 | Europe    | 57,953 | Yes      | 47.7| WM  | 54% | N.R.    | Q      | MI       | Adjusted | No  |
| Haukkala (2009)        | 2009 | Europe    | 7,674  | Yes      | 47.7| WM  | 52% | N.R.    | Q      | IHD      | Adjusted | Yes |
| Hiltunen (2014)        | 2014 | Europe    | 508    | N.R.     | 80.2| WM  | 73% | N.R.    | Q      | CM       | Raw score| No  |
| Study (Year) | Region | Sample Size | Mortality | Cause of Death | Adjusted | Methodology | Score | Notes |
|-------------|--------|-------------|-----------|----------------|----------|-------------|-------|-------|
| Huang (2013) | Asia   | 39,685      | Yes       | N.R.           | WM       | D           | IHD   | Raw score | No    |
| Jakobsen (2008) | Europe | 328,349     | Yes       | N.R.           | WM       | D           | MI    | Adjusted  | No    |
| Janszky (2010) | Europe | 49,321      | Yes       | N.R.           | M        | 0%          | N.R.  | IHD      | Raw score | Yes   |
| Joukamaa (2001) | Europe | 7,217       | N.R.      | N.R.           | WM       | 55%         | N.R.  | D        | CM    | Adjusted | Yes   |
| Kamphuis (2006) | Europe | 799         | Yes       | 76.3           | M        | 0%          | N.R.  | Q        | CM    | Adjusted | Yes   |
| Khambaty (2016) | N. America | 26,144    | Yes       | 48.0           | WM       | 3%          | 38%   | D        | MI    | Adjusted | No    |
| Kubzansky (2006) | N. America | 1,306     | Yes       | 61.0           | M        | 0%          | N.R.  | Q        | IHD   | Adjusted | Yes   |
| Ladwig (2005) | Europe | 3,021       | Yes       | 57.2           | M        | 0%          | N.R.  | Q        | IHD   | Raw score | Yes   |
| Ladwig (2006) | Europe | 4,729       | Yes       | N.R.           | WM       | 47%         | N.R.  | Q        | IHD   | Adjusted | Yes   |
| Liu (2016) | Asia   | 486,541     | Yes       | 51.0           | WM       | 59%         | N.R.  | D        | IHD   | Raw score | No    |
| Majed (2012) | Europe | 9,601       | Yes       | 54.9           | M        | 0%          | N.R.  | Q        | IHD   | Raw score | Yes   |
| Mallon (2002) | Europe | 1,870       | No        | 56.0           | WM       | 52%         | N.R.  | Q        | CM    | Adjusted | Yes   |
| Marzari (2005) | Europe | 2,766       | Yes       | 73.5           | WM*      | 49%         | N.R.  | Q        | IHD   | Raw score | Yes   |
| Mathur (2016) | Europe | 524,952     | Yes       | 35.9           | WM       | 47%         | 42%   | D        | MI    | Adjusted | No    |
| Nefs (2015) | Europe | 961         | Yes       | 67.0           | WM       | 53%         | 98%   | Q        | CVD   | Raw score | No    |
| O'Neil (2016) | Oceania | 860        | Yes       | 48.0           | W        | 100%        | N.R.  | D        | IHD   | Raw score | Yes   |
| Parruti (2013) | Europe | 233         | Yes       | 45.1           | WM       | 24%         | N.R.  | Q        | CVD   | Raw score | No    |
| Phillips (2009) | N. America | 4,256    | N.R.      | 39.1           | M        | 0%          | 82%   | D        | CM    | Adjusted | Yes   |
| Roy (2007) | N. America | 449       | Yes       | 27.5           | WM       | 60%         | 0%    | Q        | CVD   | Raw score | No    |
| Shah (2011) | N. America | 7,641     | Yes       | 28.1           | WM       | 54%         | 29%   | D        | CM    | Raw score | Yes   |
| Stürmer (2006) | Europe | 3,892       | Yes       | 53.4           | WM       | 52%         | N.R.  | Q        | MI    | Raw score | No    |
| Sun (2013) | Asia   | 62,839      | N.R.      | N.R.           | WM       | 66%         | N.R.  | Q        | CM    | Raw score | Yes   |
| Sundquist (2005) | Europe | N.R.        | N.R.      | N.R.           | WM       | N.R.        | N.R.  | D        | IHD   | Adjusted | Yes   |
| Study (Year) | Continent | N      | IHD free | Age | W/M  | %W  | %Europ. | Q or D | Outcome | Raw/Adj. | Additional Information |
|-------------|-----------|--------|----------|-----|------|-----|---------|-------|---------|----------|-----------------------|
| Surtees (2008) | Europe    | 19,649 | Yes      | N.R. | WM   | N.R. | N.R.    | Q     | CM      | Adjusted | Yes                  |
| Wassertheil-Smoller (2004) | N. America | 73,098 | Yes      | N.R. | W    | 100%| 83%     | Q     | IHD     | Adjusted | Yes                  |
| Whang (2009) | N. America | 63,469 | Yes      | 58.4 | W    | 100%| N.R.    | Q     | MI      | Adjusted | Yes                  |
| Xian (2010) | Asia      | 1,159  | Yes      | 55.4 | M    | 0%  | N.R.    | D     | IHD     | Raw score | Yes                  |

**Distress**

| Study (Year) | Continent | N      | IHD free | Age | W/M  | %W  | %Europ. | Q or D | Outcome | Raw/Adj. | S&G |
|-------------|-----------|--------|----------|-----|------|-----|---------|-------|---------|----------|-----|
| Gustad (2014) | Europe    | 57,953 | Yes      | 47.7 | WM   | 54% | N.R.    | Q     | MI      | Adjusted | No  |
| Kubzansky (2006) | N. America | 1,306  | Yes      | 61.0 | M    | 0%  | N.R.    | Q     | IHD     | Adjusted | Yes |
| Macleod (2002) | Europe    | 5,606  | No       | 48.0 | M    | 0%  | N.R.    | Q     | IHD     | Adjusted | Yes |
| Nicholson (2005) | Europe   | 5,075  | Yes      | 49.2 | M    | 0%  | N.R.    | Q     | IHD     | Adjusted | Yes |
| Nielsen (2008) | Europe    | 12,128 | No       | 56.5 | WM   | 55% | N.R.    | Q     | CM      | Adjusted | Yes |
| Ohlin (2004) | Europe    | 13,280 | Yes      | 45.2 | WM   | 20% | N.R.    | Q     | IHD     | Adjusted | Yes |
| Rasul (2005) | Europe    | 6,575  | Yes      | 54.5 | WM   | 55% | N.R.    | Q     | IHD     | Adjusted | Yes |
| Rasul (2007) | Europe    | 1,864  | Yes      | 57.4 | M    | 0%  | N.R.    | Q     | MI      | Adjusted | Yes |
| Tanno (2007) | Asia      | 77,135 | N.R.     | N.R. | WM   | 59% | N.R.    | Q     | CM      | Adjusted | Yes |

**Hostility**

| Study (Year) | Continent | N      | IHD free | Age | W/M  | %W  | %Europ. | Q or D | Outcome | Raw/Adj. | S&G |
|-------------|-----------|--------|----------|-----|------|-----|---------|-------|---------|----------|-----|
| Boyle (2006) | N. America | 2,105  | Yes      | 46.7 | M    | 0%  | 94%     | Q     | IHD     | Adjusted | Yes |
| Matthews (2004) | N. America | 518    | Yes      | 48.7 | M    | 0%  | 91%     | Q     | CM      | Raw score | Yes |
| Todaro (2005) | N. America | 754    | Yes      | 59.7 | M    | 0%  | N.R.    | Q     | MI      | Raw score | Yes |

**Low social support**

| Study (Year) | Continent | N      | IHD free | Age | W/M  | %W  | %Europ. | Q or D | Outcome | Raw/Adj. | S&G |
|-------------|-----------|--------|----------|-----|------|-----|---------|-------|---------|----------|-----|
| Andre-Petersson (2006) | Europe    | 414    | No       | N.R. | M    | 0%  | N.R.    | Q     | MI      | Raw score | Yes |
| Gafarov (2013) | Europe    | 870    | Yes      | N.R. | W    | 100%| N.R.    | Q     | MI      | Adjusted | Yes |
| Ikeda (2008b) | Asia      | 44,152 | Yes      | 53.6 | WM   | 52% | N.R.    | Q     | IHD     | Adjusted | Yes |
| Kuper (2006) | Europe    | 48,066 | Yes      | 40.3 | W    | 100%| N.R.    | Q     | IHD     | Adjusted | Yes |
| Study                        | Region          | Sample Size | Yes/No | Age | Gender | % W | % Q | Outcome | Adjusted | Raw score | Yes/No |
|------------------------------|-----------------|-------------|--------|-----|--------|-----|-----|---------|----------|-----------|--------|
| **PTSD**                     |                 |             |        |     |        |     |     |         |          |           |        |
| Rosengren (2004)             | Europe          | 741         | Yes    | 50.0| M      | 0%  | N.R.| Q       | Yes      | Raw score | Yes    |
| Boscarino (2008)             | N. America      | 4,328       | Yes    | 38.0| M      | 0%  | 82% | D       | Adjusted | Yes       |        |
| Crum-Cianflone (2014)        | N. America      | 23,794      | Yes    | 32.2| WM     | 22% | 64% | Q       | IHD      | Raw score | No     |
| Gradus (2015)                | Europe          | 4,724       | Yes    | 39.3| WM     | 60% | N.R.| D       | MI       | Raw score | Yes    |
| Greenawalt (2013)            | N. America      | 501,489     | No     | 56.8| WM     | 7%  | 77% | D       | IHD      | Raw score | No     |
| Vaccarino (2013)             | N. America      | 562         | Yes    | 42.6| M      | 0%  | 96% | D       | IHD      | Raw score | Yes    |
| **Type A behavior**          |                 |             |        |     |        |     |     |         |          |           |        |
| Lohse (2017)                 | Europe          | 9,921       |        |     |        |     |     |         |          |           |        |
| **Type D personality**       |                 |             |        |     |        |     |     |         |          |           |        |
| Parruti (2013)               | Europe          | 206         | Yes    | 45.1| WM     | 23% | N.R.| Q       | CVD      | Raw score | No     |
| Continuous HR/RR, adjusted*  | Global continent| Analyzed     | Baseline IHD free | Age | W/M | % W | % Q or D | Outcome | Adjusted | S&G in paper |
| **Anger**                    |                 |             |        |     |        |     |     |         |          |           |        |
| Haukkala (2010)              | Europe          | 7,388       | Yes    | 46.9| WM     | 53% | N.R.| Q       | IHD      | Yes       | No     |
| **Anxiety**                  |                 |             |        |     |        |     |     |         |          |           |        |
| Davidson (2010)              | N. America      | 1,739       | Yes    | 46.2| WM     | 50% | N.R.| Q       | IHD      | Yes       | No     |
| Haines (2001)                | Europe          | 1,408       | Yes    | N.R.| M      | 0%  | 0% | Q       | CM       | Yes       | Yes    |
| Nabi (2010)                  | Europe          | 24,128      | Yes    | N.R.| WM     | 59% | N.R.| Q       | IHD      | Yes       | Yes    |
| **Depression**               |                 |             |        |     |        |     |     |         |          |           |        |
| Davidson (2010)              | N. America      | 1,739       | Yes    | 46.2| WM     | 50% | N.R.| Q       | IHD      | Yes       | No     |
| Study                        | Continent | n   | Yes | W/M | % W | % European descent | Outcome | Raw score/Minimally adjusted | S&G in paper |
|------------------------------|-----------|-----|-----|-----|-----|---------------------|---------|-------------------------------|--------------|
| Extraversion                 |           |     |     |     |     |                     |         |                               |              |
| Jokela (2014)73              | N. America| 38,514 | N.R. | 57.5 | WM  | 58%                | N.R.    | Q CM                         | Yes No       |
| Hostility                    |           |     |     |     |     |                     |         |                               |              |
| Davidson (2010)70            | N. America| 1,739 | Yes | 46.2 | WM  | 50%                | N.R.    | Q IHD                        | Yes No       |
| Haukkala (2010)69            | Europe    | 7,396 | Yes | 46.9 | WM  | 53%                | N.R.    | Q IHD                        | Yes No       |
| Surtees (2005)74             | Europe    | 20,550| Yes | 61.0 | WM  | N.R.               | N.R.    | Q CM                         | Yes Yes      |
| Neuroticism                  |           |     |     |     |     |                     |         |                               |              |
| Jokela (2014)73              | N. America| 38,514 | N.R. | 57.5 | WM  | 58%                | N.R.    | Q CM                         | Yes No       |
| PTSD                         |           |     |     |     |     |                     |         |                               |              |
| Kubzansky (2007)75           | N. America| 1,002 | Yes | 63.0 | M   | 0%                 | N.R.    | Q IHD                        | Yes Yes      |
| Type A behavior              |           |     |     |     |     |                     |         |                               |              |
| Eaker (2004)76               | N. America| 3,682 | Yes | 48.5 | WM  | 52%                | N.R.    | Q IHD                        | Yes Yes      |
| Continuous HR/RR, unadjusted*|           |     |     |     |     |                     |         | Raw/Adj                       | S&G paper    |
| Anger                        |           |     |     |     |     |                     |         |                               |              |
| Eaker (2004)76              | N. America| 3,682 | Yes | 48.5 | WM  | 52%                | N.R.    | Q IHD                        | Adjusted Yes |
| Haukkala (2010)69            | Europe    | 7,388 | Yes | 46.9 | WM  | 53%                | N.R.    | Q IHD                        | Adjusted No  |
| Anxiety                      | Continent | N   | IHD free | Age | W/M | %W | %European | Q or D | Outc. | Row/Adj | S&G       |
| Davidson (2010)70            | N. America| 1,739 | Yes | 46.2 | WM  | 50%                | N.R.    | Q IHD                        | Adjusted No  |
| Nabi (2010)72                | Europe    | 24,128| Yes | N.R. | WM  | 59%                | N.R.    | Q IHD                        | Raw score Yes |
| **Depression** |  |
|---------------|-------------------|---------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--------|
| Davidson (2010)\(^7^0\) 1 | N. America 1,739 | Yes | 46.2 | WM | 50% | N.R. | Q | IHD | Adjusted | No |
| Pössel (2015)\(^7^7\) | Europe 2,005 | Yes | 52.5 | M | 0% | N.R. | Q | MI | Raw score | Yes |
| **Extraversion** |  |
| Jokela (2014)\(^7^3\) 1 | N. America 38,514 | N.R. | 57.5 | WM | 58% | N.R. | Q | CM | Adjusted | No |
| **Hostility** |  |
| Davidson (2010)\(^7^0\) 2 | N. America 1,739 | Yes | 46.2 | WM | 50% | N.R. | Q | IHD | Adjusted | No |
| Eaker (2004)\(^7^6\) 3 | N. America 3,682 | Yes | 48.5 | WM | 52% | N.R. | Q | IHD | Adjusted | Yes |
| Haukkala (2010)\(^6^9\) 3 | Europe 7,396 | Yes | 46.9 | WM | 53% | N.R. | Q | IHD | Adjusted | No |
| Surtees (2005)\(^7^4\) | Europe 20,550 | Yes | 61.0 | WM | N.R. | N.R. | Q | CM | Adjusted | Yes |
| **Neuroticism** |  |
| Jokela (2014)\(^7^3\) 2 | N. America 38,514 | N.R. | 57.5 | WM | 58% | N.R. | Q | CM | Adjusted | No |
| **PTSD** |  |
| Kubzansky (2007)\(^7^5\) 3 | N. America 1,002 | Yes | 63.0 | M | 0% | N.R. | Q | IHD | Adjusted | Yes |
| **Type A behavior** |  |
| Eaker (2004)\(^7^6\) 1 | N. America 3,682 | Yes | 48.5 | WM | 52% | N.R. | Q | IHD | Adjusted | Yes |
| Fickley (2013)\(^7^8\) 1 | N. America 506 | Yes | 29.1 | WM\(^f\) | 51% | N.R. | Q | CM | Raw score | No |
| Ikeda (2008a)\(^7^9\) 2 | Asia 86,361 | Yes | 51.6 | WM | 52% | N.R. | Q | IHD | Raw score | Yes |
| **Studies reporting OR** |  |
| Global continent | Analyzed \(n\) | Baseline IHD free | Age | W/M | % W | % European descent | Q or D | Outcome | Adjusted for lifestyle | S&G in paper |
| **Anxiety** |  |
| Study                  | Continent | N. America | IHD free | Age | W/M | %W  | % Europ. | Q or D | Outcome | Raw/Adj. | S&G |
|------------------------|-----------|------------|----------|-----|-----|------|----------|------|---------|---------|-----|
| Depression             |           |            |          |     |     |      |          |      |         |         |     |
| Crum-Cianflone (2014)  | N. America| 23,794     | Yes      | 32.2| WM  | 22% | 64%      | Q    | IHD     | Yes     | No  |
| O'Neil (2016)          | Oceania   | 860        | Yes      | 48.0| W   | 100%| N.R.     | D    | IHD     | Yes     | Yes |
| Greenawalt (2013)      | N. America| 501,489    | No       | 56.8| WM  | 7%  | 77%      | D    | IHD     | No      | No  |
| O'Neil (2016)          | Oceania   | 860        | Yes      | 48.0| W   | 100%| N.R.     | D    | IHD     | Yes     | Yes |
| Xian (2010)            | Asia      | 1,159      | Yes      | 55.4| M   | 0%  | N.R.     | D    | IHD     | No      | Yes |
| Hostility              |           |            |          |     |     |      |          |      |         |         |     |
| Matthews (2004)        | N. America| 518        | Yes      | 48.7| M   | 0%  | 91%      | Q    | CM      | Yes     | Yes |
| PTSD                   |           |            |          |     |     |      |          |      |         |         |     |
| Crum-Cianflone (2014)  | N. America| 23,786     | Yes      | 32.2| WM  | 22% | 64%      | Q    | IHD     | Yes     | No  |
| Greenawalt (2013)      | N. America| 501,489    | No       | 56.8| WM  | 7%  | 77%      | D    | IHD     | No      | No  |
| Vaccarino (2013)       | N. America| 562        | Yes      | 42.6| M   | 0%  | 96%      | D    | IHD     | Yes     | Yes |

Adj., Adjusted; CM, Cardiac mortality; D, Diagnosis; Europ., European; IHD, Ischemic Heart Disease; M, Men; MI, Myocardial infarction; N. America, North America; PTSD, Post-traumatic Stress Disorder; Q, Questionnaire; S&G, Sex and Gender; W, Women; WM, Women and men

*Numbers (1,2,3, etc.) after the reference indicate the separate study reports of the paper

†Only results in men were analyzed. In women, the lower limit of the confidence interval was not less than the point value.
Table S4. Unadjusted HR/RR of S&G-stratified analyses of psychological factors for incident IHD.

| Variable        | Women                                    | Men                                      |
|-----------------|------------------------------------------|------------------------------------------|
|                 | N   | HR (95% CI) | p<sub>HR</sub> | Q  | p<sub>het</sub> | I<sup>2</sup>, % | N   | HR (95% CI) | p<sub>HR</sub> | Q  | p<sub>het</sub> | I<sup>2</sup>, % | p<sub>between</sub> |
| Anger           | 2   | 0.82 (0.27-2.50) | 0.725 | 2.10 | 0.148 | 52.3 | 6   | 1.23 (1.03-1.48) | 0.024 | 9.95 | 0.077 | 49.8 | 0.561 |
| Anxiety         | 11  | 1.45 (1.20-1.75) | <0.001 | 28.6 | 0.001 | 65.0 | 13  | 1.68 (1.38-2.03) | <0.001 | 49.9 | <0.001 | 76.0 | 0.290 |
| Depression      | 28  | 1.46 (1.32-1.61) | <0.001 | 82.9 | <0.001 | 67.4 | 37  | 1.40 (1.29-1.52) | <0.001 | 135.7 | <0.001 | 73.5 | 0.551 |
| Distress        | 5   | 1.33 (1.14-1.55) | <0.001 | 2.25 | 0.690 | 0   | 9   | 1.32 (1.11-1.57) | 0.002 | 26.7 | 0.001 | 70.1 | 0.946 |
| Hostility       | 0   | -           | -   | -   | -   | -   | 3   | 1.31 (1.18-1.45) | <0.001 | 1.69 | 0.429 | 0   | -   |
| PTSD            | 3   | 1.22 (0.81-1.82) | 0.339 | 0.99 | 0.609 | 0   | 5   | 1.57 (1.06-2.32) | 0.024 | 18.6 | 0.001 | 78.5 | 0.388 |
| Low social support | 3   | 1.18 (0.50-2.79) | 0.712 | 5.43 | 0.066 | 63.2 | 3   | 1.46 (1.14-1.88) | 0.003 | 0.84 | 0.659 | 0   | 0.261 |
| Type A behavior | 1   | -           | -   | -   | -   | -   | 1   | -           | -   | -   | -   | -   | -   |
| Type D personality | 1   | -           | -   | -   | -   | -   | 1   | -           | -   | -   | -   | -   | -   |
| Psychological combined | 54  | 1.39 (1.29-1.50) | <0.001 | 134.4 | <0.001 | 60.6 | 78  | 1.39 (1.32-1.47) | <0.001 | 257.5 | <0.001 | 70.1 | 0.996 |

N, Number of studies; p<sub>between</sub>, p-value between groups (women and men); p<sub>het</sub>, p-value for heterogeneity; p<sub>HR</sub>, p-value Hazard Ratio
Table S5. S&G-stratified analyses of HR/RR for incident IHD associated with psychological factors: adjusted findings using a fixed effects model.

| Variable          | Women                        | Men                          |
|-------------------|------------------------------|------------------------------|
|                   | N   | HR (95% CI) | p_HR | Q   | p_het | I^2, % | N   | HR (95% CI) | p_HR | Q   | p_het | I^2, % | p_between |
| Anger             | 3   | 1.61 (0.84-3.07) | 0.150 | 3.44 | 0.179 | 41.9   | 7   | 1.23 (1.12-1.36) | <0.001 | 10.3 | 0.114 | 41.6   | 0.428     |
| Anxiety           | 10  | 1.10 (1.00-1.20) | 0.053 | 31.2 | <0.001 | 71.2   | 9   | 1.22 (1.13-1.30) | <0.001 | 27.9 | 0.001 | 71.3   | 0.077     |
| Depression        | 28  | 1.19 (1.16-1.22) | <0.001 | 84.3 | <0.001 | 68.0   | 34  | 1.17 (1.14-1.20) | <0.001 | 94.4 | <0.001 | 65.0   | 0.463     |
| Distress          | 5   | 1.31 (1.08-1.58) | 0.005 | 3.21 | 0.524 | 0      | 9   | 1.25 (1.14-1.37) | <0.001 | 18.4 | 0.018 | 56.6   | 0.681     |
| Hostility         | 2   | 1.05 (0.96-1.14) | 0.281 | 4.21 | 0.040 | 76.2   | 2   | 1.17 (1.03-1.34) | 0.019  | 0.52 | 0.470 | 0      | 0.165     |
| PTSD              | 1   | -             | -     | -     | -     | -      | 2   | 1.28 (1.03-1.59) | 0.028  | 1.46 | 0.228 | 31.3   | -         |
| Low social support| 3   | 0.90 (0.69-1.16) | 0.401 | 3.57 | 0.167 | 44.0   | 3   | 1.17 (0.97-1.41) | 0.105  | 3.46 | 0.177 | 42.2   | 0.102     |
| Type A behavior   | 1   | -             | -     | -     | -     | -      | 1   | -             | -     | -     | -     | -      | -         |
| Type D personality| 0   | -             | -     | -     | -     | -      | 0   | -             | -     | -     | -     | -      | -         |
| Psychological combined | 53  | 1.17 (1.14-1.20) | <0.001 | 146.6 | <0.001 | 64.5   | 67  | 1.18 (1.16-1.21) | <0.001 | 165.2 | <0.001 | 60.1   | 0.505     |
Table S6. Unadjusted HR/RR of S&G-stratified analyses of subgroups of psychological factors for incident IHD.

| Variable                      | Women                          |                               | Men                          |                               |
|-------------------------------|--------------------------------|--------------------------------|------------------------------|--------------------------------|
|                               | N   | HR (95% CI) | Q     | $p_{het}$ | $I^2$, % | $p_{between}$ | N   | HR (95% CI) | Q     | $p_{het}$ | $I^2$, % | $p_{between}$ |
| Follow up (years)             |     |             |       |           |          |               |     |             |       |           |          |               |
| < 11                          | 36  | 1.41 (1.28-1.56) | 61.8  | 0.003    | 43.4     | 0.459         | 46  | 1.42 (1.32-1.55) | 122.6 | <0.001  | 36.3     |                               |
| ≥ 11                          | 17  | 1.33 (1.19-1.49) | 39.6  | 0.001    | 59.6     |               | 31  | 1.34 (1.24-1.44) | 93.1  | <0.001  | 67.8     |                               |
| Global continent              |                               | 0.235                                      |                              |                               |
| Europe                        | 31  | 1.45 (1.31-1.60) | 78.0  | <0.001   | 61.6     | 0.824         | 42  | 1.39 (1.29-1.51) | 127.5 | <0.001  | 67.8     |                               |
| North America                 | 15  | 1.42 (1.14-1.76) | 36.7  | 0.001    | 61.9     |               | 27  | 1.39 (1.27-1.52) | 83.1  | <0.001  | 68.7     |                               |
| South America                 | -   | -            | -     | -        | -        |               | -   | -            | -     | -        | -        |               |
| Asia                          | 7   | 1.29 (1.19-1.40) | 6.05   | 0.418    | 0.81     |               | 8   | 1.31 (1.10-1.57) | 26.9  | <0.001  | 74.0     |                               |
| Oceania                       | 1   | -            | -     | -        | -        |               | -   | -            | -     | -        | -        |               |
| No. of people analyzed        |                               | 0.327                                      |                              |                               |
| < 5,000                       | 16  | 1.56 (1.18-2.07) | 25.5  | 0.043    | 41.3     | <0.001        | 37  | 1.57 (1.44-1.72) | 84.0  | <0.001  | 57.1     |                               |
| ≥ 5,000                       | 37  | 1.35 (1.26-1.45) | 77.2  | <0.001   | 53.4     |               | 40  | 1.28 (1.20-1.37) | 119.3 | <0.001  | 67.3     |                               |
| Age (years)                   |                               | 0.949                                      |                              |                               |
| < 60                          | 36  | 1.41 (1.26-1.58) | 78.6  | <0.001   | 55.4     |               | 50  | 1.32 (1.25-1.39) | 103.2 | <0.001  | 52.5     |                               |
| 60-65                         | -   | -            | -     | -        | -        |               | 5   | 1.77 (1.15-2.71) | 20.7  | <0.001  | 80.7     |                               |
| > 65                          | 4   | 1.44 (0.82-2.51) | 6.97   | 0.073    | 56.9     |               | 7   | 1.57 (1.21-2.03) | 6.13   | 0.409   | 2.06      |                               |
| % European descent            |                               | 0.207                                      |                              |                               |
| < 50%                         | 6   | 1.76 (1.34-2.31) | 10.4   | 0.065    | 51.8     |               | 6   | 1.32 (1.18-1.48) | 5.24   | 0.388   | 4.55      |                               |
| ≥ 50%                         | 12  | 1.35 (0.99-1.83) | 21.0   | 0.033    | 47.6     |               | 19  | 1.27 (1.17-1.38) | 45.3   | <0.001  | 60.2     |                               |
Table S6. Unadjusted HR/RR of S&G-stratified analyses of subgroups of psychological factors for incident IHD.

| Type of measurement | 0.556 | 0.533 |
|---------------------|-------|-------|
| Questionnaire       | 37    | 1.36 (1.24-1.51) | 64.7 | 0.002 | 44.4 | 56 | 1.37 (1.29-1.47) | 125.3 | <0.001 | 56.1 |
| Diagnosis by a clinical interview | 17 | 1.43 (1.27-1.61) | 65.0 | <0.001 | 75.4 | 22 | 1.43 (1.29-1.58) | 132.2 | <0.001 | 84.1 |
| Raw score           |       |       |       |       |       | 64.7 | 65.0 | <0.001 | 75.4 |
| No                  | 31    | 1.38 (1.26-1.51) | 94.1 | <0.001 | 68.1 | 41 | 1.36 (1.27-1.46) | 167.2 | <0.001 | 76.1 |
| Yes                 | 23    | 1.41 (1.22-1.63) | 40.1 | 0.011  | 45.1 | 37 | 1.45 (1.32-1.59) | 89.2  | <0.001 | 59.6 |
| Baseline free of IHD |       |       |       |       |       | 44.4 | 75.4 | <0.001 | 75.4 |
| No                  | 6     | 1.46 (1.04-2.03) | 6.67 | 0.247  | 25.0 | 8  | 1.19 (1.04-1.37) | 16.1  | 0.024  | 56.5 |
| Yes                 | 40    | 1.39 (1.28-1.51) | 87.7 | <0.001 | 55.5 | 59 | 1.39 (1.31-1.47) | 136.0 | <0.001 | 57.3 |
| Publication year    |       |       |       |       |       | 44.4 | 75.4 | <0.001 | 75.4 |
| < 2010              | 27    | 1.34 (1.21-1.49) | 82.8 | <0.001 | 68.6 | 48 | 1.45 (1.35-1.55) | 171.1 | <0.001 | 72.5 |
| ≥ 2010              | 27    | 1.45 (1.30-1.62) | 49.8 | 0.003  | 47.8 | 30 | 1.31 (1.20-1.43) | 76.7  | <0.001 | 62.2 |
| S&G-stratified in paper |     |       |       |       |       | 44.4 | 75.4 | <0.001 | 75.4 |
| No                  | 23    | 1.39 (1.25-1.54) | 43.2 | 0.004  | 49.1 | 23 | 1.21 (1.13-1.29) | 35.2  | 0.037  | 37.5 |
| Yes                 | 31    | 1.41 (1.26-1.57) | 86.9 | <0.001 | 65.5 | 55 | 1.47 (1.37-1.57) | 178.9 | <0.001 | 69.8 |
| IHD outcome*        |       |       |       |       |       | 44.4 | 75.4 | <0.001 | 75.4 |
| CM                  | 18    | 1.57 (1.35-1.82) | 54.9 | <0.001 | 69.0 | 24 | 1.53 (1.32-1.76) | 106.3 | <0.001 | 78.4 |
| IHD                 | 27    | 1.36 (1.19-1.55) | 60.7 | <0.001 | 57.1 | 45 | 1.39 (1.30-1.49) | 147.5 | <0.001 | 70.2 |
| MI                  | 17    | 1.40 (1.27-1.53) | 51.5 | <0.001 | 68.9 | 26 | 1.36 (1.24-1.50) | 85.8  | <0.001 | 70.9 |
| Sample              |       |       |       |       |       | 44.4 | 75.4 | <0.001 | 75.4 |
| Community           | 38    | 1.39 (1.29-1.51) | 110.8 | <0.001 | 66.6 | 52 | 1.42 (1.33-1.53) | 182.5 | <0.001 | 72.1 |
| High risk           | 8     | 1.69 (1.02-2.81) | 11.8  | 0.109  | 40.5 | 10 | 1.32 (1.17-1.48) | 8.60  | 0.471  | 0   |
|               | N |   |   |   |           |   |   |   |   |           |
|---------------|---|---|---|---|-----------|---|---|---|---|-----------|
| Military      | 5 | 0.76 (0.44-1.31) | 1.50 | 0.827 | 0         | 16 | 1.28 (1.17-1.41) | 44.7 | <0.001 | 66.5      |
| Menopausal    | 3 | 1.67 (1.02-2.73) | 4.43 | 0.109 | 54.9      | -  | -  | -  | -  | -         |

CM, Cardiac mortality; IHD, Ischemic Heart Disease; MI, Myocardial infarction; N, Number of studies; $p_{between}$, between group $p$-value; $p_{het}$, $p$-value for heterogeneity; S&G, Sex and Gender

*Includes additional reports from the following papers: 3, 4, 7, 16, 25, 48, 49, 52, 55, 62, 80
Table S7. S&G-stratified analyses for psychological factors associated with incident IHD by subgroup: unadjusted and adjusted findings of different effect sizes.

| Psychological factors combined | Women                  | Men                  |
|-------------------------------|------------------------|----------------------|
|                               | N  | ES (95%CI) | p-value | Q  | p_{het} | I², % | N  | ES (95%CI) | p-value | Q  | p_{het} | I², % |
| Continuous, HR/RR             |    |            |         |    |         |       |    |            |         |    |         |       |
| unadjusted                    | 13 | 1.04 (1.01-1.06) | 0.003   | 14.8 | 0.254   | 18.7  | 16 | 1.03 (1.01-1.06) | 0.020   | 51.9 | <0.001 | 71.1  |
| adjusted                      | 10 | 1.01 (0.99-1.04) | 0.252   | 8.85 | 0.451   | 0     | 13 | 1.04 (1.01-1.08) | 0.016   | 29.4 | 0.003  | 59.2  |
| OR only                       |    |            |         |    |         |       |    |            |         |    |         |       |
| unadjusted                    | 0  | -         |         | -  | -       | -     | 1  | -         |         | -  | -       | -     |
| adjusted                      | 6  | 1.28 (0.61-2.68) | 0.511   | 1.11 | 0.049   | 55.0  | 8  | 1.19 (0.84-1.69) | 0.325   | 58.9 | <0.001 | 88.1  |
| RR only                       |    |            |         |    |         |       |    |            |         |    |         |       |
| unadjusted                    | 20 | 1.33 (1.13-1.57) | 0.001   | 33.6 | 0.021   | 43.4  | 30 | 1.57 (1.40-1.76) | <0.001  | 101.5 | <0.001 | 71.4  |
| adjusted                      | 8  | 1.21 (0.99-1.48) | 0.064   | 20.2 | 0.005   | 65.4  | 14 | 1.49 (1.25-1.77) | <0.001  | 37.4 | <0.001 | 65.3  |
| HR only                       |    |            |         |    |         |       |    |            |         |    |         |       |
| unadjusted                    | 34 | 1.41 (1.30-1.54) | <0.001  | 90.4 | <0.001  | 63.5  | 48 | 1.32 (1.24-1.41) | <0.001  | 156.0 | <0.001 | 69.9  |
| adjusted                      | 45 | 1.23 (1.15-1.31) | <0.001  | 121.3| <0.001  | 63.7  | 53 | 1.21 (1.16-1.27) | <0.001  | 120.4 | <0.001 | 56.8  |

ES, effect size; N, Number of studies; p_{het}, p-value for heterogeneity
Supplemental References:

1. Boyle SH, Michalek JE and Suarez EC. Covariation of psychological attributes and incident coronary heart disease in U.S. Air Force veterans of the Vietnam war. *Psychosomatic medicine*. 2006;68:844-850.
2. Chang PP, Ford DE, Meoni LA, Wang NY and Klag MJ. Anger in young men and subsequent premature cardiovascular disease: The Precursors Study. *Archives of Internal Medicine*. 2002;162:901-906.
3. Eng PM, Fitzmaurice G, Kubzansky LD, Rimm EB and Kawachi I. Anger expression and risk of stroke and coronary heart disease among male health professionals. *Psychosomatic medicine*. 2003;65:100-110.
4. Kubzansky LD, Cole SR, Kawachi I, Vokonas P and Sparrow D. Shared and unique contributions of anger, anxiety, and depression to coronary heart disease: a prospective study in the normative aging study. *Annals of behavioral medicine: a publication of the Society of Behavioral Medicine*. 2006;31:21-9.
5. Stürmer T, Hasselbach P and Amelang M. Personality, lifestyle, and risk of cardiovascular disease and cancer: Follow-up of population based cohort. *British Medical Journal*. 2006;332:1359-1362.
6. Tanno K and Sakata K. Psychological factors and mortality in the Japan Collaborative Cohort Study for Evaluation of Cancer (JACC). *Asian Pacific journal of cancer prevention: APJCP*. 2007;8 Suppl:113-122.
7. Albert CM, Chae CU, Rexrode KM, Manson JE and Kawachi I. Phobic anxiety and risk of coronary heart disease and sudden cardiac death among women. *Circulation*. 2005;111:480-487.
8. Berge LI, Skogen JC, Sulo G, Iglund J, Wilhelmsen I, Vollset SE, Tell GS and Knudsen AK. Health anxiety and risk of ischaemic heart disease: A prospective cohort study linking the Hordaland Health Study (HUSK) with the Cardiovascular Diseases in Norway (CVDNOR) project. *BMJ Open*. 2016;6.
9. Carriere I, Ryan J, Norton J, Scal J, Stewart R, Ritchie K and Ancelin ML. Anxiety and mortality risk in community-dwelling elderly people. *The British journal of psychiatry: the journal of mental science*. 2013;203:303-9.
10. Crum-Cianflone NF, Bagnell ME, Schaller E, Boyko EJ, Smith B, Maynard C, Ulmer CS, Vernalis M and Smith TC. Impact of combat deployment and posttraumatic stress disorder on newly reported coronary heart disease among US active duty and reserve forces. *Circulation*. 2014;129:1813-1820.
11. Denollet J, Maas K, Knottnerus A, Keyzer JJ and Pop VJ. Anxiety predicted premature all-cause and cardiovascular death in a 10-year follow-up of middle-aged women. *Journal of clinical epidemiology*. 2009;62:452-6.
12. Einvik G, Ekeberg Ø, Klemsdal TO, Sandvik L and Hjerkinn EM. Physical distress is associated with cardiovascular events in a high risk population of elderly men. *BMJ Cardiovascular Disorders*. 2009;9.
13. Gafarov VV, Gromova HA, Gagulin IV, Ekimova YC and Santrapinskiy DK. Arterial hypertension, myocardial infarction and stroke: risk of development and psychosocial factors. *Alaska medicine*. 2007;49:117-9.
14. Gustad LT, Laugsand LE, Janszky I, Dalen H and Bjørkeset O. Symptoms of anxiety and depression and risk of acute myocardial infarction: The HUNT 2 study. *European heart journal*. 2014;35:1394-1403.
15. Jakobsen AH, Foldager L, Parker G and Munk-Jørgensen P. Quantifying links between acute myocardial infarction, anxiety and schizophrenia using case register databases. *Journal of Affective Disorders*. 2008;109:177-181.
16. Janszky I, Ahnve S, Lundberg I and Hemmingsson T. Early-Onset Depression, Anxiety, and Risk of Subsequent Coronary Heart Disease. 37-Year Follow-Up of 49,321 Young Swedish Men. *Journal of the American College of Cardiology*. 2010;56:31-37.
17. Mathur R, Pérez-Pinar M, Fougnet-Boreu Q, Ayis S and Ayerbe L. Risk of incident cardiovascular events amongst individuals with anxiety and depression: A prospective cohort study in the east London primary care database. *Journal of Affective Disorders*. 2016;206:41-47.
18. Nefs G, Pop VJM, Denollet J and Pouwer F. Depressive Symptom Clusters Differentially Predict Cardiovascular Hospitalization in People With Type 2 Diabetes. *Psychosomatics*. 2015;56:662-673.
19. Phillips AC, Batty GD, Gale CR, Deary IJ, Osborn D, MacIntyre K and Carroll D. Generalized anxiety disorder, major depressive disorder, and their comorbidity as predictors of all-cause and cardiovascular mortality: the Vietnam experience study. *Psychosomatic medicine*. 2009;71:395-403.

20. Ringback Weitoft G and Rosen M. Is perceived nervousness and anxiety a predictor of premature mortality and severe morbidity? A longitudinal follow up of the Swedish survey of living conditions. *Journal of epidemiology and community health*. 2005;59:794-8.

21. Smoller JW, Pollack MH, Wassertheil-Smoller S, Jackson RD, Oberman A, Wong ND and Sheps D. Panic attacks and risk of incident cardiovascular events among postmenopausal women in the women's health initiative observational study. *Archives of General Psychiatry*. 2007;64:1153-1160.

22. Chi MJ, Yu E, Liu WW, Lee MC and Chung MH. The bidirectional relationship between myocardial infarction and depressive disorders: A follow-up study. *International Journal of Cardiology*. 2014;177:854-859.

23. Clouse RE, Lustman PJ, Freedland KE, Griffith LS, McGill JB and Carney RM. Depression and coronary heart disease in women with diabetes. *Psychosomatic medicine*. 2003;65:376-83.

24. Cohen HW, Madhavan S and Alderman MH. History of treatment for depression: Risk factor for myocardial infarction in hypertensive patients. *Psychosomatic medicine*. 2001;63:203-209.

25. Ferketich AK, Schwartzbaum JA, Frid DJ and Moeschberger ML. Depression as an antecedent to heart disease among women and men in the NHANES I study. National Health and Nutrition Examination Survey. *Arch Intern Med*. 2000;160:1261-8.

26. Gale CR, Batty GD, Osborn DP, Tynelius P and Rasmussen F. Mental disorders across the adult life course and future coronary heart disease: evidence for general susceptibility. *Circulation*. 2014;129:186-93.

27. Greenawalt DS, Copeland LA, MacCarthy AA, Sun FF and Zeber JE. Posttraumatic stress disorder and odds of major invasive procedures among U.S. Veterans Affairs patients. *Journal of psychosomatic research*. 2013;75:386-393.

28. Gromova HA, Gafarov VV and Gagulin IV. Depression and risk of cardiovascular diseases among males aged 25-64 (WHO MONICA--psychosocial). *Alaska medicine*. 2006;49:255-258.

29. Gump BB, Matthews KA, Eberly LE and Chang YF. Depressive symptoms and mortality in men: results from the Multiple Risk Factor Intervention Trial. *Stroke*. 2005;36:98-102.

30. Haukkala A, Konttinen H, Uutela A, Kawachi I and Laatikainen T. Gender differences in the associations between depressive symptoms, cardiovascular diseases, and all-cause mortality. *Annals of epidemiology*. 2009;19:623-9.

31. Hiltunen M, Nieminen T, Kettunen R, Hartikainen S, Sulakava R, Vuolteenaho O and Kerola T. Depressive symptoms and cardiovascular burden-related mortality among the aged. *European Journal of Clinical Investigation*. 2014;44:486-492.

32. Huang CJ, Hsieh MH, Hou WH, Liu JC, Jeng C and Tsai PS. Depression, antidepressants, and the risk of coronary heart disease: a population-based cohort study. *Int J Cardiol*. 2013;168:4711-6.

33. Joukamaa M, Heliovaara M, Knekt P, Aromaa A, Raitasalo R and Lehtinen V. Mental disorders and cause-specific mortality. *The British journal of psychiatry: the journal of mental science*. 2001;179:498-502.

34. Kamphuis MH, Kalmijn S, Tijhuis MA, Geerlings MI, Giampaoli S, Nissinen A, Grobbee DE and Kromhout D. Depressive symptoms as risk factor of cardiovascular mortality in older European men: the Finland, Italy and Netherlands Elderly (FINE) study. *European journal of cardiovascular prevention and rehabilitation: official journal of the European Society of Cardiology, Working Groups on Epidemiology & Prevention and Cardiac Rehabilitation and Exercise Physiology*. 2006;13:199-206.

35. Khambaty T, Stewart JC, Gupta SK, Chang CH, Bedimo RJ, Budoff MJ, Butt AA, Crane H, Gibert CL, Leaf DA, Rimland D, Tindle HA, So-Armah KA, Justice AC and Freiberg MS. Association Between Depressive Disorders and Incident Acute Myocardial Infarction in Human Immunodeficiency Virus-Infected Adults: Veterans Aging Cohort Study. *JAMA cardiology*. 2016;1:929-937.
36. Ladwig KH, Marten-Mittag B, Löwel H, Döring A and Koenig W. C-reactive protein, depressed mood, and the prediction of coronary heart disease in initially healthy men: Results from the MONICA-KORA Augsburg Cohort Study 1984-1998. European heart journal. 2005;26:2537-2542.

37. Ladwig KH, Marten-Mittag B, Lowel H, Doring A and Wichmann HE. Synergistic effects of depressed mood and obesity on long-term cardiovascular risks in 1510 obese men and women: results from the MONICA-KORA Augsburg Cohort Study 1984-1998. International journal of obesity (2005). 2006;30:1408-14.

38. Liu N, Pan XF, Yu C, Lv J, Guo Y, Bian Z, Yang L, Chen Y, Wu T, Chen Z, Pan A and Li L. Association of Major Depression With Risk of Ischemic Heart Disease in a Mega-Cohort of Chinese Adults: The China Kadoorie Biobank Study. Journal of the American Heart Association. 2016;5.

39. Majed B, Arveiler D, Bingham A, Ferrieres J, Ruidavets JB, Montanye M, Appleton K, Haas B, Kee F, Amouyel P, Ducimetiere P and Empana JP. Depressive symptoms, a time-dependent risk factor for coronary heart disease and stroke in middle-aged men: The PRIME study. Stroke. 2012;43:1761-1767.

40. Mallon L, Broman JE and Hetta J. Sleep complaints predict coronary artery disease mortality in males: a 12-year follow-up study of a middle-aged Swedish population. Journal of internal medicine. 2002;251:207-16.

41. Marzari C, Maggi S, Manzato E, Destro C, Noale M, Bianchi D, Minicucci N, Farchi G, Baldereschi M, Di Carlo A, Crepaldi G, Candelise L, Scarpini E, Carbonin P, Scafato E, Bresciaiini S, Grigoletto F, Perissinotto E, Battistin L, Bressan M, Enzi G, Bortolan G, Loeb C, Gandolfo C, Canal N, Franceschi M, Ghetti A, Vergassola R, Inzitari D, Bonaiuto S, Fini F, Vesprini A, Cruciani G, Capurso A, Livrea P, Lepore V, Motta L, Carnazzo G, Bentivegna P and Rengo F. Depressive Symptoms and Development of Coronary Heart Disease Events: The Italian Longitudinal Study on Aging. The Journals of Gerontology: Series A: Biological Sciences and Medical Sciences. 2005;60:85-92.

42. O'Neil A, Fisher AJ, Kibbey KJ, Jacka FN, Kotowicz MA, Williams LJ, Stuart AL, Berk M, Lewandowski PA, Taylor CB and Pasco JA. Depression is a risk factor for incident coronary heart disease in women: An 18-year longitudinal study. Journal of Affective Disorders. 2016;196:117-124.

43. Parruti G, Vadini F, Sozio F, Mazzott E, Ursini T, Polili E, Di Stefano P, Tontodonati M, Verrocchio MC, Fulcheri M, Calella G, Santilli F and Manzoli L. Psychological Factors, Including Alexithymia, in the Prediction of Cardiovascular Risk in HIV Infected Patients: Results of a Cohort Study. PLoS ONE. 2013;8.

44. Roy MS, Peng B and Roy A. Risk factors for coronary disease and stroke in previously hospitalized African-Americans with Type 1 diabetes: A 6-year follow-up. Diabetic Medicine. 2007;24:1361-1368.

45. Shah AJ, Veledar E, Hong Y, Bremner JD and Vaccarino V. Depression and history of attempted suicide as risk factors for heart disease mortality in young individuals. Archives of General Psychiatry. 2011;68:1135-1142.

46. Sun WJ, Xu L, Chan WM, Lam TH and Schooling CM. Are depressive symptoms associated with cardiovascular mortality among older Chinese: a cohort study of 64,000 people in Hong Kong? The American journal of geriatric psychiatry : official journal of the American Association for Geriatric Psychiatry. 2013;21:1107-15.

47. Sundquist J, Li X, Johansson S-E and Sundquist K. Depression as a Predictor of Hospitalization Due to Coronary Heart Disease. American Journal of Preventive Medicine. 2005;29:428-433.

48. Surtees PG, Wainwright NWJ, Luben RN, Wareham NJ, Bingham SA and Khaw K-T. Depression and ischemic heart disease mortality: Evidence from the EPIC-Norfolk United Kingdom prospective cohort study. The American Journal of Psychiatry. 2008;165:515-523.

49. Wassertheil-Smoller S, Shumaker S, Ockene J, Talavera GA, Greenland P, Cochrane B, Robbins J, Aragaki A and Dunbar-Jacob J. Depression and Cardiovascular Sequelae in Postmenopausal Women: The Women's Health Initiative (WHI). Archives of Internal Medicine. 2004;164:289-298.
50. Whang W, Kubzansky LD, Kawachi I, Rexrode KM, Kroenke CH, Glynn RJ, Garan H and Albert CM. Depression and Risk of Sudden Cardiac Death and Coronary Heart Disease in Women. Results From the Nurses' Health Study. Journal of the American College of Cardiology. 2009;53:950-958.
51. Xian H, Scherrer JF, Franz CE, McCaffery J, Stein PK, Lyons MJ, Jacobsen K, Eisen SA and Kremen WS. Genetic vulnerability and phenotypic expression of depression and risk for ischemic heart disease in the Vietnam era twin study of aging. Psychosomatic medicine. 2010;72:370-375.
52. Macleod J, Smith GD, Heslop P, Metcalfe C, Carroll D and Hart C. Psychological stress and cardiovascular disease empirical: Demonstration of bias in a prospective observational study of Scottish men. British Medical Journal. 2002;324:1247-1251.
53. Nicholson A, Fuhrer R and Marmot M. Psychological distress as a predictor of CHD events in men: The effect of persistence and components of risk. Psychosomatic medicine. 2005;67:522-530.
54. Nielsen NR, Kristensen TS, Schnohr P and Grønbæk M. Perceived stress and cause-specific mortality among men and women: Results from a prospective cohort study. American Journal of Epidemiology. 2008;168:481-491.
55. Ohlin B, Nilsson PM, Nilsson JA and Berglund G. Chronic psychosocial stress predicts long-term cardiovascular morbidity and mortality in middle-aged men. European heart journal. 2004;25:867-73.
56. Rasul F, Stansfeld SA, Hart CL and Smith GD. Psychological distress, physical illness, and risk of coronary heart disease. European journal of epidemiology and community health. 2005;59:140-145.
57. Rasul F, Stansfeld SA, Davey Smith G, Shlomo YB and Gallagher J. Psychological distress, physical illness and risk of myocardial infarction in the Caerphilly study. Psychological medicine. 2007;37:1305-1313.
58. Matthews KA, Gump BB, Harris KF, Haney TL and Barefoot JC. Hostile Behaviors Predict Cardiovascular Mortality among Men Enrolled in the Multiple Risk Factor Intervention Trial. Circulation. 2004;109:66-70.
59. Todaro JF, Con A, Niaura R, Spiro lii A, Ward KD and Roytberg A. Combined effect of the metabolic syndrome and hostility on the incidence of myocardial infarction (The Normative Aging Study). American Journal of Cardiology. 2005;96:221-226.
60. Andre-Persson L, Hedblad B, Janzon L and Ostergren PO. Social support and behavior in a stressful situation in relation to myocardial infarction and mortality: who is at risk? Results from prospective cohort study "Men born in 1914," Malmo, Sweden. Int J Behav Med. 2006;13:340-7.
61. Gafarov VV, Panov DO, Gromova EA, Gagulin IV and Gafarova AV. The influence of social support on risk of acute cardiovascular diseases in female population aged 25-64 in Russia. International Journal of Circumpolar Health. 2013;72.
62. Ikeda A, Iso H, Kawachi I, Yamagishi K, Inoue M and Tsugane S. Social support and stroke and coronary heart disease: The JPHC study cohorts II. Stroke. 2008b;39:768-775.
63. Kuper H, Adami HO, Theorell T and Weiderpass E. Psychosocial determinants of coronary heart disease in middle-aged women: A prospective study in Sweden. American Journal of Epidemiology. 2006;164:349-357.
64. Rosengren A, Wilhelmsen L and Orth-Gomér K. Coronary disease in relation to social support and social class in Swedish men: A 15 year follow-up in the study of men born in 1933. European heart journal. 2004;25:56-63.
65. Boscarino JA. A prospective study of PTSD and early-age heart disease mortality among Vietnam veterans: Implications for surveillance and prevention. Psychosomatic medicine. 2008;70:668-676.
66. Gradus JL, Farkas DK, Svensson E, Ehrenstein V, Lash TL, Milstein A, Adler N and Sorensen HT. Associations between stress disorders and cardiovascular disease events in the Danish population. BMJ Open. 2015;5:e009334.
67. Vaccarino V, Goldberg J, Rooks C, Shah AJ, Veledar E, Faber TL, Votaw JR, Forsberg CW and Bremer JD. Post-traumatic stress disorder and incidence of coronary heart disease: A twin study. Journal of the American College of Cardiology. 2013;62:970-978.
68. Lohse T, Rohrmann S, Richard A, Bopp M and Faeh D. Type A personality and mortality: Competitiveness but not speed is associated with increased risk. *Atherosclerosis*. 2017;262:19-24.

69. Haukkala A, Konttinen H, Laatikainen T, Kawachi I and Uutela A. Hostility, anger control, and anger expression as predictors of cardiovascular disease. *Psychosomatic medicine*. 2010;72:556-562.

70. Davidson KW, Mostofsky E and Whang W. Don't worry, be happy: Positive affect and reduced 10-year incident coronary heart disease: The Canadian nova scotia health survey. *European heart journal*. 2010;31:1065-1070.

71. Haines A, Cooper J and Meade TW. Psychological characteristics and fatal ischaemic heart disease. *Heart (British Cardiac Society)*. 2001;85:385-389.

72. Nabi H, Hall M, Koskenvuo M, Singh-Manoux A, Oksanen T, Suominen S, Kivimaki M and Vahtera J. Psychological and somatic symptoms of anxiety and risk of coronary heart disease: the health and social support prospective cohort study. *Biological psychiatry*. 2010;67:378-85.

73. Jokela M, Pulikki-Råback L, Elovainio M and Kivimäki M. Personality traits as risk factors for stroke and coronary heart disease mortality: Pooled analysis of three cohort studies. *Journal of Behavioral Medicine*. 2014;37:881-889.

74. Surtees PG, Wainwright NW, Luben R, Day NE and Khaw KT. Prospective cohort study of hostility and the risk of cardiovascular disease mortality. *Int J Cardiol*. 2005;100:155-61.

75. Kubzansky LD, Koenen KC, Spiro A, III, Vokonas PS and Sparrow D. Perspective study of posttraumatic stress disorder symptoms and coronary heart disease in the normative aging study. *Archives of General Psychiatry*. 2007;64:109-116.

76. Eaker ED, Sullivan LM, Kelly-Hayes M, D'Agostino RB and Benjamin EJ. Anger and Hostility Predict the Development of Atrial Fibrillation in Men in the Framingham Offspring Study. *Circulation*. 2004;109:1267-1271.

77. Pössel P, Mitchell AM, Ronkainen K, Kaplan GA, Kauhanen J and Valtonen M. Do depressive symptoms predict the incidence of myocardial infarction independent of hopelessness? *Journal of health psychology*. 2015;20:60-68.

78. Fickley CE, Lloyd CE, Costacou T, Miller RG and Orchard TJ. Type a behavior and risk of all-cause mortality, cad, and cad-related mortality in a type 1 diabetic population: 22 years of follow-up in the pittsburgh epidemiology of diabetes complications study. *Diabetes Care*. 2013;36:2974-2980.

79. Ikeda A, Iso H, Kawachi I, Inoue M and Tsugane S. Type A behaviour and risk of coronary heart disease: the JPHC Study. *International journal of epidemiology*. 2008a;37:1395-405.

80. Gasse C, Laursen TM and Baune BT. Major depression and first-time hospitalization with ischemic heart disease, cardiac procedures and mortality in the general population: A retrospective Danish population-based cohort study. *European Journal of Preventive Cardiology*. 2014;21:532-540.