Abstract: The prevalence of fungal infections has increased in immunocompromised patients, leading to millions of deaths annually. Arachidonic acid (AA) metabolites, such as eicosanoids, play important roles in regulating innate and adaptive immune function, particularly since they can function as virulence factors enhancing fungal colonization and are produced by mammalian and lower eukaryotes, such as yeasts and other fungi (Candida albicans, Histoplasma capsulatum and Cryptococcus neoformans). C. albicans produces prostaglandins (PG), Leukotrienes (LT) and Resolvins (Rvs), whereas the first two have been well documented in Cryptococcus sp. and H. capsulatum. In this review, we cover the eicosanoids produced by the host and fungi during fungal infections. These fungal-derived PGs have immunomodulatory functions analogous to their mammalian counterparts. Prostaglandin E2 (PGE2) protects C. albicans and C. parapsilosis cells from the phagocytic and killing activity of macrophages. H. capsulatum PGs augment the fungal burden and host mortality rates in histoplasmosis. However, PGD2 potentiates the effects and production of LTB4, which is a very potent neutrophil chemotactant that enhances host responses. Altogether, these data suggest that eicosanoids, mainly PGE2, may serve as a new potential target to combat diverse fungal infections.

Keywords: eicosanoids; immune response; fungi; fungal eicosanoids; pathogenesis

1. Introduction

Fungal infections are a major global threat, particularly due to their increasing prevalence in immunocompromised patients [1], the limited number of therapeutic options, their chronicity, and frequently time-consuming diagnosis [2,3]. Classical virulence factors of pathogenic fungi include the presence of urease, proteases, heat shock proteins, melanins and a polysaccharidic capsule and other structures such as α-glucans and mannans, among many others, which contribute to the spread of the pathogens and modulation of host immune responses [4]. During fungal infections the role of inflammatory mediators such as cytokines, growth factors and chemokines has been widely studied, and these products have been considered the main soluble protein mediators of host defense against pathogens. However, the role of lipid mediators during fungal infections has not been fully explored and a variety of unique lipids can also play important roles in regulating innate and adaptive immune functions [5–7].

Biologically active lipid mediators derive from omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFA) [8] and include the 20-carbon arachidonic acid (AA; 20:4, n-6) and eicosapentaenoic acid (EPA; 20:5, n-3)-derived eicosanoids and docosahexaenoic acid (DHA; 22:6(n-3))-derived docosanoids. These PUFAs, usually obtained from...
dietary sources or released from membrane phospholipids upon the hydrolysis of esterified fatty acids (FAs) by phospholipase A2 (PLA2), can be oxidized by three distinct main pathways involving cyclooxygenase (COX), lipoxygenase (LOX), and heme-containing cytochrome P450 (CYTP450) oxidase or epoxygenase enzymes (Figure 1) [8]. Classic n-6 PUFA AA-derived eicosanoids participate actively during immune responses [4,9], and can be classified into the prostanoids such as prostaglandins (PGs), prostacyclin (PGI₂) and thromboxanes (TXs), in addition to leukotrienes (LTs) and lipoxins [10]. In contrast with lipoxins, which are formed from AA, the pro-resolving mediators (SPMs) such as protectins, resolvins (RVs) and maresins [11] have n-3 PUFAs as their precursors, i.e., EPA and DHA [12].

An important feature about AA-derived eicosanoids is their short response time, as their formation does not require protein synthesis, due to the fact that the AA precursor is present in mammalian cell membranes and the converting enzymes are usually constitutively expressed. However, these compounds can also be produced by lower eukaryotes, including yeasts and other fungi, having an active role during infection and representing a potential class of virulence factors [4,13].

Prostaglandins (PGs) are five-carbon ring eicosanoids that are produced through the conversion of AA to prostaglandin H₂ (PGH₂) by the cyclooxygenase-1 and -2 enzymes (prostaglandin endoperoxide H synthases COX-1 and COX-2, respectively) [5]. Depending on the following enzymatic step, PGH₂ can be modified to produce different PGs (PGF₂α, PGD₂, and PGE₂), prostacyclin (PGI₂) or thromboxane A₂ (TXA₂) [14]. They regulate numerous processes throughout the body, such as kidney function, platelet aggregation, neurotransmitter release, and modulation of inflammatory responses, where they participate, among other tasks, in thermoregulation (inducing fever) and pain [5]. PGs bind to distinct types of GPCRs (G-protein coupled receptors), consisting of DP1 (Prostaglandin D₂ receptor 1) and or CRTH2 (chemoattractant receptor-homologous molecule expressed on Th2 cells; also known as DP2, PG DP2 receptor) that recognize PGD₂, rhodopsin-type receptors (EP1, EP2, EP3, EP4) that recognize PGE₂, FP (prostaglandin F receptor) that recognizes PGF₂α, IP (prostacyclin receptor) that recognizes PGI₂, and TP (thromboxane receptor) that recognizes TXA₂ [15–18]. These GPCRs generate several second messengers and trigger distinct signal transduction pathways [19]. EP1 induces intracellular Ca²⁺ mobilization via the Gq protein, whereas EP2 and EP4 increase cyclic adenosine monophosphate (cAMP) production via Gi, and EP3 inhibits adenylyl cyclase (thus decreasing cAMP) via Gi and elicits Ca²⁺ mobilization and phosphoinositide 3-kinase (PI3K) activation [15,20–23]. For these reasons, they modulate the activation of protein kinase A (PKA), transcription factors such as CREB [24], and extracellular signal-regulate kinases (ERKs) as well as the expression of cytokines during the immune response [13,25,26]. PGE₂ is the most studied PG, which is produced by several cells such as macrophages and fibroblasts, and has diverse effects on the regulation and activity of distinct cells [5]. For example, PGE₂ can modulate the activity of professional antigen presenting cells (APCs) such as dendritic cells (DCs) and macrophages and the production of cytokines [5].
Figure 1. Schematics of the eicosanoids synthesis pathway for the production of prostanoids (Prostaglandins—PGs, Prostacyclin and Thromboxanes—TXs), Leukotrienes (LTs) and resolving mediators including D- and E-series resolvins (Rvs), protectins and maresins. The boxes depicted with bold borders illustrate the eicosanoids produced by fungi.
Together with PGs in the prostanoid groups, thromboxanes (TXs) are produced as a six-member ether-containing ring upon the catalysis of the thromboxane synthase (TXS), producing the intermediate TXA$_2$ or the final synthesis product TXB$_2$ [10]. The thromboxane receptor (T prostanoid receptor, TP) is a GPCR, with either a G$_{q}$ or G$_{12/13}$ coupled subunit [10,27]. TXs are produced by several types of cells such as monocytes, macrophages, epithelial, and endothelial cells as well as platelets (thrombocytes), promoting the activation/aggregation and degranulation of platelets leading to the formation of blood clots [10,28,29]. TXA$_2$ is the most potent known vasoconstricor, and its proinflammatory action occurs by enhancing the activation of monocytes, cytokine production, expression of leukocyte adhesion molecule, and vascular permeability [29]. TXA$_2$ also promotes T-cell activation and proliferation, and facilitates the development of effector cytolytic T-cells [7]. For instance, TXA$_2$ participates in the damage caused by ischemic injury and inflammation in acute stages of Trypanosoma cruzi infections [29], exacerbates acute lung injury by promoting edema formation [27] and its excessive production causes significant hyper-permeability, resulting in severe edema by disrupting the endothelial barrier via Ca$^{2+}$/Rho kinase signaling [30]. In addition to these immunomodulatory functions, TXs receptors (TPs) are expressed in high levels in the thymus where they participate in the negative selection of maturing T lymphocytes [7,30].

Leukotrienes (LTs) are synthetized from AA by the enzyme 5-lipoxygenase (5-LO) and 5-lipoxygenase activating protein (FLAP) into 5-hydroperoxyeicosatetraenoic acid (5- HpETE), which is further metabolized into leukotriene A$_4$ (LTA$_4$), the precursor of all forms of LTs [31]. LTA$_4$ is converted by LTA$_4$ hydrolase (LTA4H) into leukotriene B$_4$ (LTB$_4$), or it can be conjugated with reduced glutathione by leukotriene C$_4$ (LTC$_4$) synthase to yield the cysteinyl leukotriene (CysLT) LTC$_4$ and its derivatives [31]. LTB$_4$ and LTC$_4$ are exported via the specific ATP-binding cassette (ABC) transporters and, whereas further released LTC$_4$ is converted to leukotriene D$_4$ (LTD$_4$), which can undergo further conversion into leukotriene E$_4$ (LTE$_4$) [31,32]. LT receptors are also GPCRs located on the outer plasma membrane of resident and inflammatory cells, among other cell types. They induce the increase in intracellular Ca$^{2+}$ and the reduction in intracellular cAMP levels [31,33,34]. LTB$_4$ binds to BLT1 and BLT2 receptors, whereas the most known receptor of cysteinyl LTs is the type 1 CysLT receptor (CysLTR1), with high affinity for LTD4 and it is the target for antagonists clinically used for the management of asthma, such as Montelukast, Zafirlukast and Pranlukast [31,32,34,35]. LTs play an important role in amplifying the inflammatory responses to infection [31]. LTB$_4$ participates in the activation and recruitment of neutrophils, macrophages, monocytes, mast cells, and T lymphocytes, while increasing phagocytosis, microbicidal activity, and generating and modulating chemokines and cytokines [31]. It is one of the main modulators of the activation and maintenance of the innate and adaptive immune response [35,36]. Fungal zymosan and peptidoglycan from Aspergillus fumigatus induce the production of LTs in the airways that contributes to the initiation of asthma and causes and exacerbates potent bronchoconstrictive effects, such as edema through vasodilation, increased vascular permeability, and enhanced recruitment of effector cells [37]. In contrast, gliotoxin from A. fumigatus suppresses the biosynthesis of LTB$_4$ by direct interference with LTA4H activity resulting in impaired neutrophil functions [38–40].

Non-classical eicosanoids compose the group of specialized pro-resolving mediators (SPM) also called resolvins (Rvs) [8]. SPMs derived from EPA are designated E-series Rvs (Resolvin E1 or RvE1, RvE2 and RvE3), whereas those from DHA are referred to as D-series Rvs (RvD1-6) [12,41] (Figure 1). Four further metabolites of DHA have a hydroxy group at the 13-position and have been designated as 13-series resolvins (RvT). DHA is converted to three Rvs of which RvD1(n-3DPA) is the most abundant [8]. Rvs are involved in the resolution stage of inflammation, ending the chronicity of the inflammatory process and, hence, reducing or preventing tissue damage [11,12]. RvE1 is an eicosanoid that protects human tissues from leukocyte regulated inflammatory processes [42–44]. RvE1 dramatically reduces dermal inflammation, peritonitis and interleukin (IL) production.
and inflammatory pain [45]. RvE2 can effectively reduce joint pain in arthritis [11]. RvD2 ameliorates bacterial sepsis, with RvD3 acting in later stages of resolution and RvD4 helping the clearance of apoptotic cells by skin fibroblasts [8]. In general, RvDs also block tumor necrosis factor (TNF)-α-induced IL-1β transcripts and are potent regulators of PMN infiltration in brain, skin, and peritonitis in vivo [11,12].

2. Molecular Basis of Eicosanoid Production in Fungi

The molecular background of eicosanoid biosynthesis was first revealed in mammals, with the description of three main enzymes pathways (COX, LO, and CYTP450) [46]. Eicosanoid production in yeasts was first uncovered in the early 1990’s in the non-pathogenic fungus *Dipodascopsis uninnucleata*. Van Dyk and colleagues isolated a 20-carbon chained AA metabolite identified as 3-hydroxy-5,8,11,14-eicosatetraenoic acid (3-HETE) [47]. Later, the same oxylipin was found in other yeasts of *Dipodascaceae* spp. and the filamentous *Mucor* spp. and *Rhizomucor* spp. [48,49]. Noverr et al. [13] examined several pathogenic fungi for the production of eicosanoids, and each analyzed species was able to produce compounds that eluted together with mammalian PGs and LTs, in the absence and presence of exogenous AA, by either, respectively de novo or a “trans-species” mechanism with fungal phospholipases acting on host phospholipids (Figure 2) [6].

![Diagram](image_url)

Figure 2. Eicosanoids production in *Candida* sp., *Cryptococcus* sp. and *Histoplasma capsulatum*. The figure illustrates genes involved in the synthesis of eicosanoids, with exception of *H. capsulatum*, with as yet undescribed genes involved. Lines and arrows indicate the eicosanoids produced by *Candida* sp. (solid lines), *Cryptococcus* sp. (dashed lines) and *H. capsulatum* (dotted lines).

However, whole genome sequencing analyses revealed that fungi have no homologues for the abovementioned mammalian enzymes, suggesting that fungi have evolved alternative routes for the synthesis of eicosanoids [46]. Yet, the use of COX inhibitors, such as aspirin, indomethacin, and etodolac and the inhibition of the LO pathway with...
nordihydroguaiaretic acid inhibited eicosanoids production and clearly impacted growth of *Cryptococcus neoformans* and *Candida albicans*, offering a link between fungal growth and eicosanoid production [50–52].

2.1. Production of Eicosanoids by Candida albicans and Non-Albicans Species

Deva et al. revealed that the opportunistic human fungal pathogen *C. albicans* produces 3,18-dihydroxy-5,8,11,14-eicosatetraenoic acid (3,18-di-HETE) by utilizing exogenous AA [53]. A subsequent study reported that, besides 3,18-di-HETE, *C. albicans* synthesizes an uncharacterized prostaglandin (PGE_x) [50]. This eicosanoid was later shown to be indistinguishable from mammalian PGE_2 [52]. Further investigations identified two non-COX/LO/CYP450-related enzymes, namely the fatty acid stearyl-coenzyme A desaturase (Ole2) and the multicopper ferroxidase (Fet3), which are potentially involved in *C. albicans* (Ca) PGE_2 biosynthesis (Figure 2) [13,52]. Homozygous deletion of both the fatty acid desaturase CaOLE2 and the multicopper oxidase CaFET3 resulted in a significant reduction in PGE_2 synthesis by approximately 50–70% and 40–50%, respectively. However, PGE_2 levels were still measurable in the corresponding homozygous mutant suggesting the presence of yet undiscovered PGs regulatory pathways in this species. *C. albicans* is also able to produce other PGs, such as PGD_2 and PGD_2α [13,52].

Besides *C. albicans*, several non-albicans *Candida* species such as *C. dubliniensis*, *C. tropicalis*, *C. glabrata*, and *C. parapsilosis* synthesize PGE_2 [54–56], all of which are frequently associated with human fungal infections. HPLC-MS analysis of the fatty acid biosynthesis of *C. parapsilosis* by Grózer and colleagues revealed that this species, similar to *C. albicans*, is able to produce various PGs besides PGE_2, and highlighted PGD_2 as another major eicosanoid produced by *C. parapsilosis* [56]. A 2018 follow-up study with *C. parapsilosis* also identified an uncommon oxylipin, an autoxidative isomer of PGD_2 (5-D2- IsoProstane) secreted upon incubation with exogenous AA (Figure 2) [57]. However, our knowledge of its biosynthesis is scarce [58]. A recently published study by Chakraborty and colleagues aimed to identify the molecular basis of PG production in *C. parapsilosis* and identified several genes involved in the process [57]. These include CPAR2_603600 (a homologue of the CaFET3), CPAR2_807710 (Acy-CoA oxidase in *S. cerevisiae*, ScPOX1-3) and CPAR2_800020 (Acy-CoA thiolase in *S. cerevisiae*, ScPOT1) (Figure 2). LC/MS data revealed that *C. parapsilosis’* PGE_2 biosynthesis is decreased by approximately 60–70% if any of these genes are disrupted. The double deletion of CPAR2_603600 and CPAR2_800020 leads to about 80% decrease in PGD_2 production, suggesting their significant role in its biosynthesis. Their removal also effected the secretion of 15-keto-PGE_2, a metabolite generated by the degradation of PGE2. CPAR2_807710 was shown to be most involved in 15-keto-PGE_2 production. In contrast to *C. albicans*, the homologue of CaOLE2 has no significant role in PGE_2 biosynthesis in *C. parapsilosis* [56].

Notably, in addition to PGs, *C. albicans* also utilizes AA for the biosynthesis of LTs, such as LTB_4 and CysLTs (Figure 2) [13]. During *Candida* spp. infection, the synthesis of some LTs is altered to reduce host immune responses as a strategy for the establishment and maintenance of the infection [35]. LTB_4 and CysLT production are both mediated by lipoxygenases through the production of 5-HpETE from exogenous AA [13], whereas RvE1 synthesis in *C. albicans* is produced from EPA [42], and some biosynthetic precursors (18-HEPE, 15-HEPE and 5-HEPE), by neutrophil 5-lipoxygenase principally, cytochrome P450 monoxygenase enzymes (CYP45), and other specific enzymes remain unknown [13,42,59]. The detailed biosynthetic pathway of LTs and RvE1 in *C. albicans* also remains enigmatic. Other human pathogenic non-albicans *Candida* species such as *C. dubliniensis*, *C. tropicalis*, and *C. glabrata* may also be able to produce these eicosanoids; however, this remains unconfirmed.

2.2. Production of Eicosanoids by Cryptococcus sp.

C. neoformans produces biologically active eicosanoids from exogenous sources of AA during infection, which are indistinguishable from host eicosanoids and modulate host defenses [50,51]. The major AA metabolite produced is an authentic PGD_2, but
the fungus is also able to produce heptadecatrienoic acid, 5-HETE, PGF\textsubscript{2}, TXB\textsubscript{2}, and PGE\textsubscript{2} [50]. Two enzymes expressed by \textit{C. neoformans}, phospholipase B1 (PLB1) and laccase (CNLAC1 gene), are believed to be associated with cryptococcal eicosanoid synthesis (Figure 2). Pharmacological enzymatic inhibition or deletion of phospholipase B1 (\textit{Δplb1}) reduces secreted levels of all eicosanoids produced by \textit{C. neoformans} [60,61]. In turn, deletion of laccase (\textit{Δlac1} mutants) or enzymatic inhibition by anti-lac1 antibody resulted specifically in the loss of PGE\textsubscript{2} [51]. The addition of PGE\textsubscript{2} was sufficient to promote growth of \textit{Δplb1} and \textit{Δlac1} in vitro and in vivo, independently of host PGE\textsubscript{2} [60,61]. In fact, laccase is an important virulence factor for \textit{C. neoformans} with a broad spectrum oxidase activity, converting polyphenolic compounds into the cell wall pigment melanin, and this polymer protects \textit{C. neoformans} against oxidants, microbiocidal proteins and antifungals as well as to phagocytosis and killing by macrophages [62,63]. Additionally, recombinant laccase readily converts PGG\textsubscript{2} into PGE\textsubscript{2} and 15-keto-PGE\textsubscript{2}, and it is suggested as a key cryptococcal prostaglandin enzyme for this recently described unique production pathway (Figure 2) [51].

2.3. Production of Eicosanoids by \textit{Histoplasma capsulatum}

Although \textit{Histoplasma capsulatum} can produce eicosanoids [13,54], further studies are necessary to dissect the pathways involved in their production and to determine whether they play a role during infection (Figure 2).

3. The Role of Eicosanoids during Fungal Infections

The production of eicosanoids by pathogenic fungi, such as \textit{C. albicans}, \textit{C. dubliniensis}, \textit{C. glabrata}, \textit{C. tropicalis}, \textit{C. neoformans}, \textit{H. capsulatum} and \textit{A. fumigatus} is linked to the pathogenesis of each fungal infection [4,9,51,60,64–66]. Some fungal-derived eicosanoids can enhance both fungal colonization and induce immunomodulatory effects. Overall, fungal LTs act by enhancing the acute inflammation, whereas PGs have negative effects on innate and cellular Th1 responses against mycosis, resulting in immunological tolerance and contributing to the chronicity of fungal infections [13]. Herein, we discuss the roles of eicosanoids in three major fungal infections.

3.1. Eicosanoids in Candidiasis

Eicosanoids play an important role in both sides of the host–\textit{Candida} interaction. Depending on the organ or tissue environment, host-derived PGE\textsubscript{2} either decreases [64,67] or improves [68,69] the protective Th1 and Th17 responses that particularly may help the host restrain \textit{C. albicans} at barrier surfaces and in the bloodstream.

\textit{C. albicans} induces host cells to release AA from membrane phospholipids and infection-derived stimuli can also induce COX-2 expression and trigger the synthesis of PGs in various cell types [66,70]. \textit{C. albicans} stimulates AA metabolism and the generation of PGE\textsubscript{2} by synovial fibroblast, alveolar and peritoneal macrophages, and epithelial cells via stimulation of TLR2 and TLR4 [14]. \textit{Candida} mannan and β-1,3-glucan induce PGE\textsubscript{2} via stimulation of mannose receptor and dectin-1 in peripheral blood mononuclear cells, respectively [71]. PGE\textsubscript{2} signaling stimulates Th2 and Th17 responses to yeast and limits the ability of macrophages to clear \textit{Candida sp.} [71].

Although the exact role of \textit{Candida}-derived eicosanoids during host–pathogen interactions is largely undiscovered, a limited number of studies are available that provide insights into how these lipid metabolites affect fungal virulence [57,67]. Many studies have pointed out the major role of host derived AA and fungi derived PGE\textsubscript{2} in the modulation of yeast cell growth, morphogenesis, and biofilm formation in \textit{C. albicans} [50,55]. In contrast, some studies focusing on the negative impact of PGE\textsubscript{2} on yeast biology have shown that PGE\textsubscript{2} inhibits germ tube formation by antagonizing yeast to hyphal transformation in \textit{C. albicans}, which may limit tissue invasion [72].

In a previous study, the PGE\textsubscript{2} biosynthesis associated genes OLE2, FET3, and FET31 were knocked out in \textit{C. albicans} strains and the mutant’s capacity for PGE\textsubscript{2} secretion was
decreased in vitro. The authors examined the killing of the mutants by macrophages and immune-modulatory effects in vitro as well as their capacity for organ colonization ability in various mouse models of invasive candidiasis. The ole2−/− showed similar fitness and rates of hyphal formation than the wild-type (WT) counterpart. However, the gut colonizing capacity of the ole2−/− strain decreased compared to the WT strain. Besides its role in promoting colonization and survival in the mouse gut, C. albicans derived PGE2 also inhibited fungal cell internalization by phagocytes [65]. However, in CD11b+ DC and macrophage depleted mice, the WT C. albicans strain was not able to overgrow the ole2−/− strain [65], suggesting that the presence of PGE2 is beneficial for fungal growth, overcoming phagocytosis, and enhancing survival within the host.

Regarding non-albicans Candida species, the presence of AA increases biofilm formation and PGE2 production by C. glabrata, C. parapsilosis, and C. tropicalis [58]. These findings suggest that Candida spp. evolved the capacity to produce PGs, primarily PGE2, to enhance their fitness and survival within certain niches of the host that could directly promote the fungus’ pathogenesis upon a potential commensal-to-pathogenic shift event. The work of Chakraborty and colleagues suggests that fungal-derived PGs in C. parapsilosis also negatively regulate yeast cell phagocytosis and killing by macrophages, as PGs (PGE2, PGD2, and 15-keto-PGE2)-deficient C. parapsilosis cells were more susceptible to phagocytosis and killing by human peripheral blood monocyte-derived macrophages (PBMC-DM) compared to the WT strain [57]. As the virulence of PG deficient C. parapsilosis mutant strains also decreased in vivo compared to the WT strain, fungal PGs could also actively contribute to the virulence of this species.

These observations, together with other previous reports, suggest that fungi-derived prostaglandins have immunomodulatory functions analogous to their mammalian counterparts [54, 73]. To further support this suggestion, another study reported that C. albicans-produced PGE2 up-regulates anti-inflammatory responses through enhancing IL-10 released by murine spleenocytes. Moreover, the levels of mouse keratinocyte-derived chemokine (KC, analog to human IL-8) and other pro-inflammatory cytokines, such as TNFα, decreased after 24 h of fungal PGE2 treatment [67, 71]. Fungal-derived PGE2 decreases the killing of C. albicans by intestinal macrophages, supporting the idea that fungal prostaglandins could also inhibit the killing activity of host cells.

A similar conclusion can be drawn for C. parapsilosis, where the absence of PGE2-related genes increased the expression of pro-inflammatory cytokines such as pro-IL-1β, IL-6 and TNFα [57]. Thus, C. parapsilosis PGE2 could also negatively regulate host inflammatory responses. In C. parapsilosis, PGs production actively contributes to host cell damage, as revealed by the decreased [57] death of PBMC-DMs following infection with PG-deficient strains compared to the WT strain. C. parapsilosis PGs secretion is also suggested to contribute to organ colonization when studied in a mouse model of systemic candidiasis. However, the studied PG-related genes contributed unequally to the fungal load of each examined organ, which may suggest that the observed effect is not solely due to the presence of fungal PGE2, PGD2 and 15-keto-PGE2 [57].

LTs were also described as biologically active immunomodulatory eicosanoids [74, 75]. Host-derived LTs increase capillary permeability, and activate and recruit eosinophils and neutrophils [75]. The present literature lacks information about the immunomodulatory function of fungal-derived LTs. However, a recent study showed that the amount of LTF4 increased in patients with candidemia, suggesting that LTF4 may also contribute to host responses to Candida spp. [35].

A previous study in 2007 showed that C. albicans-derived RvE1 is chemically identical to the human RvE1 [42]. When administered at low concentrations, fungal RvE1 reduced the IL-8-mediated chemotaxis of human neutrophils and also the recruitment of DCs [42, 59]. In contrast, higher doses of fungal RvE1 enhanced phagocytic activity and fungicidal reactive oxygen species (ROS) production by human neutrophils against C. albicans. Interestingly, inoculation of RvE1 into mice with fungemia due to C. albicans, led to a more rapid clearance of the pathogen from the bloodstream [42]. These facts suggest that
low concentrations of fungal RvE1 protects C. albicans due to the inhibition of neutrophil recruitment, although higher fungal burden (together with increased fungal RvE1 levels) could act as an alarming signal for neutrophils, which would then be able to control and restrict fungal invasion.

3.2. Eicosanoids in Cryptococcosis

C. neoformans secretes phospholipase B (PLB), which is a virulence factor. This single cryptococcal protein has three separate enzymatic activities: phospholipase B (PLB), which removes both acyl chains simultaneously from phospholipids; lysophospholipase (LPL), which removes the single acyl chain from lysophospholipids; and lysophospholipase transacylase (LPTA), which adds an acyl chain to lysophospholipids [61]. Despite the lack of understanding on the structure and mechanism of action of PLB, this enzyme is involved in the survival of Cryptococci within macrophages, the destruction of lung tissue and the production of eicosanoids, which modulate phagocytic activity [61]. As mentioned, C. neoformans produces eicosanoids from exogenous AA and utilizes them to modulate the immune response favoring its own survival. For instance, LTB₄ significantly reduced neutrophil recruitment in the lung vasculature of mice infected intravenously with C. neoformans, demonstrating a critical role of LTB₄ in intravascular neutrophil swarming during infection [76]. The presence of CysLts and LTB₄ produced by C. neoformans strains B-3501A and H99 through the activity cryptococcal phospholipase cPLA2α and 5-LO, can contribute to fungal penetration of the blood–brain barrier in vitro and in vivo, specifically facilitating central nervous system (CNS) infection [77].

C. neoformans is also able to modulate the host inflammatory state during infection by directly manipulating host eicosanoid signaling and PGE₂ is considered a mediator of cryptococcal virulence [60,78]. During macrophages infection, C. neoformans produces the dehydrogenated form of PGE₂ (15-keto-PGE₂) enhancing its virulence via the activation of the host nuclear transcription factor, PPAR-γ [60]. In C. neoformans infections, the use of antagonists of either EP2 or EP4 receptors improves the host defense by promoting TLR-4-mediated cytokine production, and enhancing M1 macrophage polarization followed by yeast killing [78].

3.3. Eicosanoids in Histoplasmosis

A 1992 study showed that peritoneal macrophages challenged with heat-killed H. capsulatum produce prostanoids (PGE₂ and PGI₂) and LTs (LTB₄ and LTC₄), the former being produced in a COX-dependent fashion [79]. This first observation was the stepping-stone for the study of eicosanoids in histoplasmosis. Notably, different forms of LTs and PGs are produced by the host during in vitro and in vivo challenges with H. capsulatum, but, interestingly, they commonly have opposite roles [80,81].

Sub-lethal H. capsulatum infections in mice treated with a FLAP inhibitor or in 5-LO deficient mice are fatal, suggesting that LTs are important for the host response in histoplasmosis [81,82]. Even though LTB₄ and LTC₄ are produced in mice infected with H. capsulatum [81], data show that administration of microspheres-associated LTB₄ to 5-LO deficient mice can restore the production of cytokines and control the fungal burden [83].

Although LTB₄ is an important mediator for the host response against H. capsulatum, the mechanism behind its effects is controversial. LTB₄ is a very potent neutrophil chemoattractant [84], but 5-LO deficient mice and mice treated with FLAP inhibitors have lower levels of LTs and increased neutrophil recruitment when compared to their control counterparts. The increased neutrophil recruitment is followed by higher inflammatory response, an elevation of splenic fungal burdens, and 100% of mortality 14 days post-infection, even in scenarios of non-lethal H. capsulatum infections [81,82]. This suggests that features other than neutrophil chemotaxis are behind LTs’ effects during histoplasmosis. The effector mechanisms employed by macrophages are also responsive to LTs, as 5-LO deficient mice have a remarkable impairment in their ability to phagocytose non-opsonized or even IgG-opsonized H. capsulatum yeast cells, a deficiency that is bypassed by the exogenous
addition of LTB₄ or LTC₄ [82]. Although LTs as well as PGs are usually produced at the onset of the inflammatory process, further steps in the host defense are modulated by the presence of these mediators [85]. Immunization of mice with cell-free antigens from H. capsulatum fails to confer protection in 5-LO deficient mice, possibly due to an inability to induce the recruitment of CD4+ and CD8+ cells to the lungs, and also a failure to increase the production of IFN-γ [86]. The production of LTs has an impact on events of the innate, but also of the adaptive, response during H. capsulatum infection, which modifies the outcome of the host–pathogen interaction.

The role of PGs during H. capsulatum infection is not as well studied relative to the leukotrienes. A fundamental piece of data is that the inhibition of COX-2 protects mice against lethal infection with H. capsulatum, a phenotype marked by lower fungal burden and a milder inflammatory process [80]. Curiously, when inhibiting the synthesis of prostanoids, an increase in the synthesis of LTB₄ is observed, which is also beneficial to the host. The higher survival rates are associated with a decrease in neutrophil recruitment, consistent with the effects of LTs [80]. PGE₂ has been associated with the deleterious effects on H. capsulatum infection [16], which correlates with the expression and activity of galectin-1 (Gal-1) [87]. Gal-1 represses the expression of PGE₂ synthase, thus reducing the levels of PGE₂ in H. capsulatum-infected mice. In contrast, H. capsulatum infection in Gal-1 KO mice leads to an increase in PGE₂ production followed by increased fungal burden and higher mortality rates when compared to WT mice [87]. Even though PGE₂ has such deleterious effects to the infected host, PGD₂ has opposite effects to PGE₂. The pharmacological inhibition of the endogenous production of PGD₂ in H. capsulatum-infected macrophages leads to a severe inhibition of the leukocyte’s fungicidal activity, an effect that is reversed by the exogenous addition of PGD₂. PGD₂ also upregulates the expression of LTB₄ receptor (BLT1R), potentiating the effects of LTB₄ [87]. The role and mechanism of eicosanoids in the host response against H. capsulatum is still understudied, but data suggest that LTB₄ and PGE₂ have opposite effects in histoplasmosis by modulating the recruitment of neutrophils and the effector mechanisms of macrophages. In agreement, PGE₂ also inhibits the production of hydrogen peroxide and TNF-α by monocytes, limiting the killing of Paracoccidioides brasiliensis [88]. Further studies are necessary to dissect whether other eicosanoids have a role in the infection by H. capsulatum, including ones of fungal origin and also the mechanisms involved in immune regulation.

4. Concluding Remarks

Human pathogenic fungal species such as Candida spp., C. neoformans and H. capsulatum produce eicosanoids. C. albicans utilizes exogenous AA in order to produce 3,18-di-HET, LTB₄, Cys-LTs, RvE1 and prostaglandins such as PGE₂, PGD₂, PGF₂α. Non-albicans Candida species such as C. dubliniensis, C. tropicalis, C. glabrata, and C. parapsilosis also synthesize PGE₂ from AA. Additionally, C. parapsilosis produces other prostaglandins such as PGD₂ and 15-keto-PGE₂. The exact molecular mechanisms behind the Candida-derived eicosanoid production are only uncovered in the case of PGs in C. albicans and C. parapsilosis. PGE₂ synthesis in C. albicans is regulated by OLE2, while C. parapsilosis evolved OLE2-independent PGs production pathways. This difference may explain the contrast in vivo results: C. albicans-derived PGE₂ is not required for virulence while PGs produced by C. parapsilosis influence the yeast’s capacity for host damage. Overall, the presence of fungal PGE₂ has proven to be beneficial for C. albicans through increasing the ability of the pathogen to colonize the gut. Furthermore, fungal PGE₂ protects C. albicans and C. parapsilosis cells from the phagocytic and killing activity of macrophages. C. albicans-derived RvE1 protects the fungus at low concentrations, whereas high concentrations expose the fungus to the host. C. neoformans produces 15-Keto-PGE₂ to enhance its growth and ability to survive macrophage infection. In histoplasmosis, the inhibition of the PGs production is beneficial to the host as it favors LTB₄ production, which induces a decrease in the fungal burden, mortality rates and neutrophil recruitment. PGE₂ has deleterious effects on histoplasmosis, as opposed to the positive effects of PGD₂, which upregulates the
expression of BLT1R in H. capsulatum infected macrophages and potentiates the effects of LTB4. LTs are important for the host response, as, for example, LTB4 mediates the immune response helping to control the fungal burden. However, the mechanism behind its effect is controversial as LTB4 is a neutrophil chemoattractant and mice with lower levels of LTs have increased inflammatory responses, fungal burdens and mortality rates. However, further investigations are needed to understand the precise role of eicosanoids, mainly PGE2, during host–pathogen interactions.

5. Future Trends

The production of eicosanoids seems to be a conserved feature among several eukaryotic organisms, including filamentous and yeast fungi, protozoa and higher eukaryotes such as mammals. Independently on the organism, their biosynthetic pathways may vary considerably, as well as the full eicosanoid portfolio produced. Since pathogenic fungi are able to secrete these molecules, the exact mechanism in how they alter the microbial physiology has not been fully explored, although current research and published data have demonstrated their effects on the modulation of interactions with the host and immune responses.

Then, as it is completely plausible that fungal eicosanoids might function as virulence factors, further investigations might enable us to understand their precise role during host–pathogen interactions, as well as exploring the unique steps of the fungal eicosanoids biosynthesis, as a new potential target to combat C. albicans, C. parapsilosis, C. neoformans and H. capsulatum and possibly other fungal infections.

Author Contributions: S.R.M.; D.Z.-M.; T.T.; A.G.; J.D.N. and A.J.G. All authors have read and agreed to the published version of the manuscript.

Funding: A.J.G. was supported by grants from the Brazilian agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, grants 311470/2018-1) and Fundação Carlos Chagas de Amparo à Pesquisa no Estado do Rio de Janeiro (E-26/202.696/2018). S.R.M. was supported by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior).

Institutional Review Board Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

Abbreviation	Description
15-keto-PGE2	Dehydrogenated form of Prostaglandin E2
3-HETE	3-hydroxy-5,8,11,14-eicosatetraenoic acid
3,18-di-HETE	3,18-dihydroxy-5,8,11,14-eicosatetraenoic acid
5- HpETE	5-hydroperoxyeicosatetraenoic acid
5-LO	Enzyme 5-lipoxygenase
AA	Arachidonic acid
AA (20:4, n-6)	Arachidonic acid (20-carbon, 4 insaturations, omega 6 family)
ABC	ATP-binding cassette transporter
APCs	Antigen presenting cells
BLT1	Leukotriene B4 high-affinity receptor
BLT2	Leukotriene B4 Low-affinity receptor
CaFET3	Candida albicans multicopper ferroxidase
cAMP	Cyclic adenosine monophosphate
CaOLE2	C. albicans fatty acid stearyl-coenzyme A desaturase
CNLAC1	Cryptococcus neoformans laccase gene
CNS	Central nervous system
COX	Cyclooxygenase
CRTH2	Chemoattractant receptor-homologous molecule expressed on Th2 cells; also known as DP2, PG DP2 receptor
Abbreviation	Full Form
--------------	-----------
CysLT	Cysteinyl leukotriene
CysLTR1	Type 1 cysteinyl leukotriene receptor
CYTP450	Cytochrome P450 oxidase
DCs	Dendritic cells
DHA	Docosahexaenoic acid
DP1	Prostaglandin D\(_2\) receptor 1
EP (1-4)	Rhodopsin-type receptors
EPA	Eicosapentaenoic acid
ERKs	Extracellular signal-regulate kinases
FAs	Fatty acids
FLA	5-lipoxygenase activating protein
FP	Prostaglandin F receptor
Gal-1	Galectin-1
GPCRs	G-protein coupled receptors
IL	Interleukin
IP	Prostacyclin receptor
LOX	Lipoxigenase
LPL	Lysophospholipase
LPTA	Lysophospholipase transacylase
LT	Leukotriene
LTA4	Leukotriene A\(_4\)
LTA4H	LTA\(_4\) hydrolase
LTB4	Leukotriene B\(_4\)
LTD4	Leukotriene D\(_4\)
LTE4	Leukotriene E\(_4\)
LTF4	Leukotriene F\(_4\)
LTs	Leukotrienes
n-3	Omega-3
n-6	Omega-6
PBMC-DM	Peripheral blood monocyte-derived macrophages
PGs	Prostaglandins
PGD\(_2\)	Prostaglandin D\(_2\)
PGE\(_2\)	Prostaglandin E\(_2\)
PGE\(_x\)	Uncharacterized prostaglandin
PGF\(_2\)	Prostaglandin F\(_2\)
PGG\(_2\)	Prostaglandin G\(_2\)
PGH\(_2\)	Prostaglandin H\(_2\)
PGI\(_2\)	Prostacyclin
PIPK	Phosphoinositide 3-kinase
PKA	Protein kinase A
PLA	Phospholipase A
PLB	Phospholipase B
PMN	Polymorphonuclear neutrophil
PUFA	Polyunsaturated fatty acids
Rvs	Resolvins
RvD	D-series Resolvins (RvD1-6)
RvE1	E-series Resolvins (RvE1-3)
RvT	13-series resolvins
SPM	Specialized pro-resolving mediator
Th	T-helper
TNF-\(\alpha\)	Tumor necrosis factor alpha
TP	Thromboxane receptor
TX	Thromboxane
TXA2	Thromboxane A2
TXS	Thromboxane synthase
\(\Delta\)lac1	Laccase gene *Cryptococcus neoformans* mutant
\(\Delta\)plb1	Phospholipase B1 *Cryptococcus neoformans* mutant
References

1. Kanamori, H.; Rutala, W.A.; Sickbert-Bennett, E.E.; Weber, D.J. Review of Fungal Outbreaks and Infection Prevention in Healthcare Settings during Construction and Renovation. *Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am.* 2015, 61, 433–444. [CrossRef] [PubMed]

2. Spitzer, M.; Robbins, N.; Wright, G.D. Combinatorial Strategies for Combating Invasive Fungal Infections. *Virulence* 2017, 8, 169–185. [CrossRef] [PubMed]

3. Janbon, G.; Quintin, J.; Lanternier, F.; d’Enfert, C. Studying Fungal Pathogens of Humans and Fungal Infections: Fungal Diversity and Diversity of Approaches. *Genes Immun.* 2019, 20, 403–414. [CrossRef]

4. Ellis, R.; Kock, J.L.; Albertyn, J.; Pohl, C.H. Arachidonic Acid Metabolites in Pathogenic Yeasts. *Lipids Health Dis.* 2012, 11, 100. [CrossRef] [PubMed]

5. Harris, S.G.; Padilla, J.; Kouamas, L.; Ray, D.; Phipps, R.P. Prostaglandins as Modulators of Immunity. *Trends Immunol.* 2002, 23, 144–150. [CrossRef]

6. Ghannoum, M.A. Potential Role of Phospholipases in Virulence and Fungal Pathogenesis. *Clin. Microbiol. Rev.* 2000, 13, 122–143, table of contents. [CrossRef]

7. Tilley, S.L.; Coffman, T.M.; Koller, B.H. Mixed Messages: Modulation of Inflammation and Immune Responses by Prostaglandins and Thromboxanes. *J. Clin. Invest.* 2001, 108, 15–23. [CrossRef] [PubMed]

8. Christie, W.W.; Harwood, J.L. Oxidation of Polyunsaturated Fatty Acids to Produce Lipid Mediators. *Essays Biochem.* 2020, 64, 401–421. [CrossRef]

9. Ghannoum, M.A. Extracellular Phospholipases as Universal Virulence Factor in Pathogenic Fungi. *Nihon Ishinkin Gakkai Zasshi Jpn. J. Med. Mycol.* 1998, 39, 55–59. [CrossRef]

10. Lehninger, A.L.; Nelson, D.L.; Cox, M.M. *Lehninger Principles of Biochemistry*, 4th ed.; W.H. Freeman: New York, NY, USA, 2005; ISBN 978-0-7167-4339-2.

11. Serhan, C.N. Novel Eicosanoid and Docosanoid Mediators: Resolvins, Docosatrienes, and Neuroprotectins. *Curr. Opin. Clin. Nutr. Metab. Care* 2005, 8, 115–121. [CrossRef]

12. Serhan, C.N.; Gotlinger, K.; Hong, S.; Arita, M. Resolvins, Docosatrienes, and Neuroprotectins, Novel Omega-3-Derived Mediators, and Their Aspirin-Triggered Endogenous Epimers: An Overview of Their Protective Roles in Catabasis. *Prostagland. Other Lipid Mediat.* 2004, 73, 155–172. [CrossRef] [PubMed]

13. Noverr, M.C.; Toews, G.B.; Huffnagle, G.B. Production of Prostaglandins and Leukotrienes by Pathogenic Fungi. *Infect. Immun.* 2002, 70, 400–402. [CrossRef] [PubMed]

14. Martinez-Colón, G.J.; Moore, B.B. Prostaglandin E2 as a Regulator of Immunity to Pathogens. *Pharmacol. Ther.* 2018, 185, 135–146. [CrossRef]

15. Coleman, R.A.; Smith, W.L.; Narumiya, S. International Union of Pharmacology Classification of Prostanoid Receptors: Properties, Distribution, and Structure of the Receptors and Their Subtypes. *Pharmacol. Rev.* 1994, 46, 205–229.

16. Pereira, P.A.T.; Assis, P.A.; Prado, M.K.B.; Ramos, S.G.; Aronoff, D.M.; de Paula-Silva, F.W.G.; Sorgi, C.A.; Faccioli, L.H. Prostaglandins D2 and E2 Have Opposite Effects on Alveolar Macrophages Infected with Histoplasma Capsulatum. *Prostaglandins Med.* 2011, 15, 11613–11617. [CrossRef]

17. Hardwick, J.P.; Eckman, K.; Lee, Y.K.; Abdelmegeed, M.A.; Esterle, A.; Chilian, W.M.; Chiang, J.Y.; Song, B.-J. Eicosanoids in Lung Injury via Promoting Edema Formation. *Sci. Rep.* 2016, 6, 32109. [CrossRef] [PubMed]

18. Altieri, D.C.; Mannucci, P.M. Thromboxane Generation by Human Monocytes Enhances Platelet Function. *J. Exp. Med.* 1986, 164, 1815–1820. [CrossRef]

19. Sun, L.; Ye, R.D. Role of G Protein-Coupled Receptors in Inflammation. *Acta Pharmacol. Sin.* 2003, 24, 342–350. [CrossRef]

20. Sugimoto, Y.; Narumiya, S. Prostaglandin E Receptors. *J. Biol. Chem.* 2007, 282, 11613–11617. [CrossRef] [PubMed]

21. Narumiya, S.; Sugimoto, Y.; Ushikubi, F. Prostanoid Receptors: Structures, Properties, and Functions. *Physiol. Rev.* 1999, 79, 1193–1226. [CrossRef] [PubMed]

22. Woodward, D.F.; Jones, R.L.; Narumiya, S. International Union of Basic and Clinical Pharmacology. LXXXIII: Classification of Prostanoid Receptors, Updating 15 Years of Progress. *Pharmacol. Rev.* 2011, 63, 471–538. [CrossRef] [PubMed]

23. Tsuge, K.; Inazumi, T.; Shimamoto, A.; Sugimoto, Y. Molecular Mechanisms Underlying Prostaglandin E2-Exacerbated Inflammation and Immune Diseases. *Int. Immunol.* 2019, 31, 597–606. [CrossRef] [PubMed]

24. Cheng, X.; Ji, Z.; Tsalkova, T.; Mei, F. Epac and PKA: A Tale of Two Intracellular CAMP Receptors. *Acta Biochim. Biophys. Sin.* 2008, 40, 651–662. [CrossRef] [PubMed]

25. Regan, J.W. EP2 and EP4 Prostanoid Receptor Signaling. *Life Sci.* 2003, 74, 143–153. [CrossRef]

26. Breyer, R.M.; Bagdassarian, C.K.; Myers, S.A.; Breyer, M.D. Prostanoid Receptors: Subtypes and Signaling. *Annu. Rev. Pharmacol. Toxicol.* 2001, 41, 661–690. [CrossRef]

27. Kobayashi, K.; Horikami, D.; Omori, K.; Nakamura, T.; Yamazaki, A.; Maeda, S.; Murata, T. Thromboxane A2 Exacerbates Acute Lung Injury via Promoting Edema Formation. *Sci. Rep.* 2016, 6, 32109. [CrossRef] [PubMed]

28. Kaltz, D.K.; Agarwal, R.; Garg, G.; Aggarwal, B.B. Pro-inflammatory Signaling Pathways: Relevance to Chronic Disease. *Curr. Opin. Clin. Nutr. Metab. Care* 2013, 1693–1226. [CrossRef] [PubMed]

29. Wood, J.; Brown, S.; George, J.; Williams, T.; Aronoff, D.M.; de Paula-Silva, F.W.G.; Sorgi, C.A.; Faccioli, L.H. Thromboxane A2 Exacerbates Acute Lung Injury via Promoting Edema Formation. *Sci. Rep.* 2016, 6, 32109. [CrossRef] [PubMed]
55. Alem, M.A.; Douglas, L.J. Prostaglandin Production during Growth of Candida Albicans Biofilms. J. Med. Microbiol. 2005, 54, 1001–1005. [CrossRef]

56. Grözer, Z.; Tóth, A.; Tóth, R.; Kecskeméti, A.; Vágvölgyi, C.; Nosanchuk, J.D.; Szekeres, A.; Gácsér, A. Candida Parapsilosis Produces Prostaglandins from Exogenous Arachidonic Acid and OLE2 Is Not Required for Their Synthesis. Virulence 2015, 6, 85–92. [CrossRef] [PubMed]

57. Chakrabarty, T.; Thuer, E.; Heijrink, M.; Tóth, R.; Bodai, L.; Vágvölgyi, C.; Giera, M.; Gabaldón, T.; Gácsér, A. Eicosanoid Biosynthesis Influences the Virulence of Candida Parapsilosis. Virulence 2018, 9, 1019–1035. [CrossRef]

58. Mishra, N.N.; Ali, S.; Shukla, P.K. Arachidonic Acid Affects Biofilm Formation and PGE2 Level in Candida Albicans and Non-Albicans Species in Presence of Subinhibitory Concentration of Fluconazole and Terbinafine. Braz. J. Infect. Dis. Off. Publ. Braz. Soc. Infect. Dis. 2014, 18, 287–293. [CrossRef]

59. Arika, M.; Bianchini, F.; Aliberti, J.; Sher, A.; Chiang, N.; Hong, S.; Yang, R.; Petasis, N.A.; Serhan, C.N. Stereochemical Assignment, Antiinflammatory Properties, and Receptor for the Omega-3 Lipid Mediator Resolvin E1. J. Exp. Med. 2005, 201, 713–722. [CrossRef] [PubMed]

60. Evans, R.J.; Pline, K.; Loynes, C.A.; Needs, S.; Aldrovandi, M.; Tiefenbach, J.; Bielska, E.; Rubino, R.E.; Nicol, C.J.; May, R.C.; et al. 15-Keto-Prostaglandin E2 Activates Host Peroxisome Proliferator-Activated Receptor Gamma (PPAR-γ) to Promote Cryptococcus Neoformans Growth during Infection. PLoS Pathog. 2019, 15, e1007597. [PubMed]

61. Ganendren, R.; Widmer, F.; Singhal, V.; Wilson, C.; Sorrell, T.; Wright, L. In Vitro Antifungal Activities of Inhibitors of Phospho-

62. Panepinto, J.C.; Williamson, P.R. Intersection of Fungal Fitness and Virulence in Cryptococcus Neoformans. FEMS Yeast Res. 2006, 6, 489–498. [CrossRef] [PubMed]

63. Zhu, X.; Williamson, P.R. Role of Laccase in the Biology and Virulence of Cryptococcus Neoformans. FEMS Yeast Res. 2004, 5, 1–10. [CrossRef] [PubMed]

64. Valdez, P.A.; Vithayathil, P.J.; Janelsins, B.M.; Shaffer, A.L.; Williamson, P.R.; Datta, S.K. Prostaglandin E2 Suppresses Antifungal [PubMed]

65. Arita, M.; Bianchini, F.; Aliberti, J.; Sher, A.; Chiang, N.; Hong, S.; Yang, R.; Petasis, N.A.; Serhan, C.N. Stereochemical Assignment, Antiinflammatory Properties, and Receptor for the Omega-3 Lipid Mediator Resolvin E1. J. Exp. Med. 2005, 201, 713–722. [CrossRef] [PubMed]

66. Filler, S.G.; Ibe, B.O.; Luckett, P.M.; Raj, J.U.; Edwards, J.E. Candida Albicans Stimulates Endothelial Cell Eicosanoid Production. J. Exp. Med. 1982, 154, 323–333. [CrossRef] [PubMed]

67. Ma, H.; Wan, S.; Xia, C.-Q. Immunosuppressive CD11b+Ly6Chi Monocytes in Pristane-Induced Lupus Mouse Model. J. Exp. Med. 2014, 213, 999–1010. [CrossRef] [PubMed]

68. Yao, C.; Sakata, D.; Esaki, Y.; Li, Y.; Matsuoka, T.; Kuroiwa, K.; Sugimoto, Y.; Narumiya, S. Prostaglandin E2-EP4 Signaling Promotes Immune Inflammation through Th1 Cell Differentiation and Th17 Cell Expansion. Immunity 2012, 36, 668–679. [PubMed]

69. Sun, D.; Shi, M. Neutrophil Swarming toward Cryptococcus Neoformans Is Mediated by Complement and Leukotriene B4. Biochem. Biophys. Res. Commun. 2016, 477, 945–951. [CrossRef]

70. Zhu, L.; Maruvada, R.; Sapirstein, A.; Peters-Golden, M.; Kim, K.S. Cysteinyl Leukotrienes as Novel Host Factors Facilitating Cryptococcus Neoformans Penetration into the Brain. Cell. Microbiol. 2017, 19, e12661. [PubMed]

71. Smeekens, S.P.; van de Veerdonk, F.L.; van der Meer, J.W.M.; Kullberg, B.J.; Joosten, L.A.B.; Netea, M.G. The Candida Th17 Response Is Dependent on Mannan- and -Glucan-Induced Prostaglandin E2. Int. Immunol. 2010, 22, 889–895. [CrossRef]

72. Kalo-Klein, A.; Witkin, S.S. Prostaglandin E2 Enhances and Gamma Interferon Inhibits Germ Tube Formation in Candida Albicans. Infect. Immun. 1990, 58, 260–262. [CrossRef]

73. Kim, Y.G.; Udayanga, K.G.S.; Totsuka, N.; Weinberg, J.B.; Núñez, G.; Shibuya, A. Gut Dysbiosis Promotes M2 Macrophage Polarization and Allergic Airway Inflammation via Fungi-Induced PGE2. Cell Host Microbe 2014, 15, 95–102. [CrossRef] [PubMed]

74. Bernström, K.; Hammartström, S. A Novel Leukotriene Formed by Transpeptidation of Leukotriene E. Biochem. Biophys. Res. Commun. 1982, 109, 800–804. [CrossRef]

75. Singh, R.K.; Gupta, S.; Dastidar, S.; Ray, A. Cysteinyl Leukotrienes and Their Receptors: Molecular and Functional Characteristics. Pharmacol. Rev. 2010, 62, 336–349. [CrossRef] [PubMed]

76. Sun, D.; Shi, M. Neutrophil Swarming toward Cryptococcus Neoformans Is Mediated by Complement and Leukotriene B4. Biochem. Biophys. Res. Commun. 2016, 477, 945–951. [CrossRef]

77. Zhu, L.; Maruvada, R.; Sapirstein, A.; Peters-Golden, M.; Kim, K.S. Cysteinyl Leukotrienes as Novel Host Factors Facilitating Cryptococcus Neoformans Penetration into the Brain. Cell. Microbiol. 2017, 19, e12661. [PubMed]

78. Shen, L.; Liu, Y. Prostaglandin E2 Blockade Enhances the Pulmonary Anti-Cryptococcus Neoformans Immune Reaction via the Induction of TLR-4. Int. Immunopharmacol. 2015, 28, 376–381. [CrossRef]

79. Wolf, J.E.; Massof, S.E.; Peters, S.P. Alterations in Murine Macrophage Arachidonic Acid Metabolism Following Ingestion of Nonviable Histoplasma Capsulatum. Infect. Immun. 1992, 60, 2559–2564. [CrossRef] [PubMed]
80. Pereira, P.A.T.; Trindade, B.C.; Secatto, A.; Nicolete, R.; Peres-Buzalaf, C.; Ramos, S.G.; Sadikot, R.; Bitencourt, C.D.S.; Faccioli, L.H. Celecoxib Improves Host Defense through Prostaglandin Inhibition during Histoplasma Capsulatum Infection. Mediat. Inflamm. 2013, 2013, 950981. [CrossRef]

81. Medeiros, A.I.; Sá-Nunes, A.; Soares, E.G.; Peres, C.M.; Silva, C.L.; Faccioli, L.H. Blockade of Endogenous Leukotrienes Exacerbates Pulmonary Histoplasmosis. Infect. Immun. 2004, 72, 1637–1644. [CrossRef]

82. Secatto, A.; Rodrigues, L.C.; Serezani, C.H.; Ramos, S.G.; Dias-Baruffi, M.; Faccioli, L.H.; Medeiros, A.I. 5-Lipoxygenase Deficiency Impairs Innate and Adaptive Immune Responses during Fungal Infection. PLoS ONE 2012, 7, e31701. [CrossRef]

83. Nicolete, R.; Secatto, A.; Pereira, P.A.T.; Soares, E.G.; Faccioli, L.H. Leukotriene B4-Loaded Microspheres as a New Approach to Enhance Antimicrobial Responses in Histoplasma Capsulatum-Infected Mice. Int. J. Antimicrob. Agents 2009, 34, 365–369. [CrossRef] [PubMed]

84. Metzemaekers, M.; Gouwy, M.; Proost, P. Neutrophil Chemoattractant Receptors in Health and Disease: Double-Edged Swords. Cell. Mol. Immunol. 2020, 17, 433–450. [CrossRef] [PubMed]

85. Samuchiwal, S.K.; Boyce, J.A. Role of Lipid Mediators and Control of Lymphocyte Responses in Type 2 Immunopathology. J. Allergy Clin. Immunol. 2018, 141, 1182–1190. [CrossRef] [PubMed]

86. Medeiros, A.I.; Sá-Nunes, A.; Turato, W.M.; Secatto, A.; Frantz, F.G.; Sorgi, C.A.; Serezani, C.H.; Deepe, G.S.; Faccioli, L.H. Leukotrienes Are Potent Adjuvant during Fungal Infection: Effects on Memory T Cells. J. Immunol. 2008, 181, 8544–8551. [CrossRef] [PubMed]

87. Rodrigues, L.C.; Secatto, A.; Sorgi, C.A.; Dejani, N.N.; Medeiros, A.I.; Prado, M.K.B.; Ramos, S.G.; Cummings, R.D.; Stowell, S.R.; Faccioli, L.H.; et al. Protective Effect of Galectin-1 during Histoplasma Capsulatum Infection Is Associated with Prostaglandin E2 and Nitric Oxide Modulation. Mediat. Inflamm. 2016, 2016, 5813794. [CrossRef]

88. Bordon, A.P.; Dias-Melicio, L.A.; Acorci, M.J.; Calvi, S.A.; Serrão Peraçoli, M.T.; Victoriano de Campos Soares, A.M. Prostaglandin E2 Inhibits Paracoccidioides Brasiliensis Killing by Human Monocytes. Microbes Infect. 2007, 9, 744–747. [CrossRef]