Scrub typhus: risks, diagnostic issues, and management challenges

John Antony Jude Prakash
Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India

Abstract: Scrub typhus is an acute febrile illness in the “tsutsugamushi triangle”, transmitted by chiggers that can be treated effectively if detected early. Laboratory testing, including molecular and serological assays, is needed for confirming the diagnosis, especially in the absence of the pathognomonic eschar. In this review, factors that play a role in disease occurrence and clinical clues for diagnosis, in addition to risk factors contributing to disease severity, including mortality, are discussed in detail. Moreover, issues related to diagnostic assays, treatment, and mixed infections are also enumerated and described.

Keywords: Orientia tsutsugamushi, disease severity, mortality predictors, diagnosis, coinfections, treatment

Introduction
Scrub typhus is a vector-borne zoonosis endemic in South Asia, Southeast Asia, East Asia, the Pacific Islands, and Northern Australia (the “tsutsugamushi triangle”), with reports of similar infections from Africa, the Middle East, and South America. This infection is caused by Orientia tsutsugamushi, which is transmitted to humans by the bite of infected chiggers (larvae) of trombiculid mites. The name “tsutsugamushi disease” was given by Hashimoto in 1810. The tsutsugamushi triangle is home to more than half the world’s population, with 2 billion at risk and 1 million cases of scrub typhus occurring per year. Clinical manifestations range from asymptomatic to severe disease. The mortality rate varies and can be as high 50%, such that the mortality among 1 million infections in a single year is likely enormous. This is because the organism responsible affects the vascular endothelium and mononuclear macrophages. Therefore, all organs, including the lungs, liver, kidneys, and central nervous system, can be affected. Misdiagnosis and underdiagnosis is also known to occur due to lack of availability of diagnostic tests and the aspecific nature of symptoms, especially when the characteristic eschar is not present.

Scrub typhus is not transmitted directly from person to person; it is only transmitted by the bites of vectors. The vector responsible is the chigger of the trombiculid mite belonging to the genus Leptotrombidium, but recently newer vector genera have been discovered that are capable of transmitting this agent. Tilak et al reported that Schoengastiella ligula (northeast India) transmitted O. tsutsugamushi in tea-garden workers, while Lee et al discovered this agent could be transmitted by Euschoengastia koreaensis in South Korea. Knowledge of the vector, including species, distribution, density, and habitats, is important to understand the epidemiology of scrub typhus in...
a given area or region.15 Vector activity is related to temperature, rainfall (climate), land use (ecology), and various socioeconomic factors.4,15–17 An increase in vector density contributes to increased transmission, due to more humans being bitten by infected chiggers.

\textit{O. tsutsugamushi} serotype distribution varies from region to region in the tsutsugamushi triangle, and strain types are identified by sequencing the 56 kDa gene.18–20 In South Korea, the Boryong serotype is predominantly encountered, the Karp and Gilliam serotypes are common in Taiwan, and the Gilliam serotype is prevalent in China.18 In India, based on a 56 kDa analysis, strains similar to Kato and Karp are common, whereas in Japan Kato, Karp, Gilliam, Kawasaki, and Kuroki types are observed.19

Scrub typhus without the eschar is a febrile illness without any evidence of localization, and is hence termed “acute undifferentiated fever.”21–24 This illness is thus clinically indistinguishable from malaria, dengue fever, other rickettsioses, leptospirosis, and enteric fever, which are common causes of acute undifferentiated fever in the Asia-Pacific region.10,22,23,25–29 In this review, factors describing populations at risk, severity predictors, clinical clues, diagnostic assays, coinfections observed, and drugs available for treatment of scrub typhus are described.

Risk factors for acquiring scrub typhus

The abundance of the chigger of the trombiculid mite, which is the vector for scrub typhus, determines the chance of acquiring scrub typhus, which in turn determines the prevalence of scrub typhus in a given region.4 There is always a spurt of cases during certain seasons in the endemic areas described, and this varies from country to country and is dependent on the climate1 and environment. Additionally, within a country, certain regions show increased prevalence.

Chiggers are abundant in locales with high relative humidity (60%–85%), low temperature (20°C–30°C), low incidence of sunlight, and a dense substrate-vegetative canopy.20,32 As such, they are found in great numbers in forest clearings, riverbanks, and grassy regions. Humans acquire scrub typhus on exposure to infected larvae (chiggers) of trombiculid mites. The density of chiggers of \textit{Leptotrombidium pallidum} and \textit{L. scutellare} is very high from September to November in South Korea, with a consequent rise in scrub typhus in humans. This provides evidence that an increase in chigger density of the vector species is responsible for the high seasonal prevalence in endemic areas.17 This variation in chigger activity gives rise to the seasonality of scrub typhus. Peak prevalence in South Korea occurs in autumn (September–November), in Japan increased cases are observed in autumn and winter, in north China (Shandong) in September–November, and in south China in June–September. In south India, scrub-typhus cases occur mostly in the cooler months (August–January), while in Southeast Asia scrub-typhus cases are highest in July–November.32 Incidence of scrub typhus can vary from country to country and also region in large countries like India and China. It has been reported that each 1°C and 1% change in temperature can cause an increase in incidence,36 as evidenced by a 15% rise in scrub-typhus cases in Guangzhou, China.8

In addition to temperature, secondary vegetation and rainfall also increase the incidence of scrub typhus.33 Occupational risk is higher in farmers (aged 50–69 years), females,4 and those working in vegetable fields, harvesting in autumn,34 and rural highlands.35 In a study by Kweon et al, outdoor activities like resting on a grass field without a mat, working in short sleeves and bare hands, and defecating and/or urinating outdoors while squatting increased risk for scrub typhus.12 In a case-control study from South Korea, individuals engaged in fruit farming, gathering chestnuts, and taking breaks in areas adjacent to agricultural operations had an increased risk of contracting scrub typhus compared to controls. The authors opined that providing a health-education program would lower the risk in these individuals and similar groups.36 Land use is another determinant, as scrub-typhus incidence increases when forest lands are converted to fields, palm oil, and rubber plantations,2 and also when urbanization occurs.36

Clinical clues favoring a diagnosis of scrub typhus

Presence of eschars

The presence of eschars is considered pathognomonic. It has been reported that eschar incidence varies from 7% to 97% in endemic areas9 and is painless.37 Eschars are often found in covered areas of the body, such as the groin, axilla, chest, and lower back, including the buttocks.9,10,38–40 Recently, there have been reports of multiple eschars41,42 and atypical eschars,43 which were punched-out ulcers with slough. This could also be due to the original eschar scab being removed by scratching44 or falling away, especially during bathing. This seems plausible, because the eschar appears at the chigger-bite site a few days before the onset of symptoms.37 Therefore, a thorough examination becomes necessary and improves eschar detection, leading in turn to improvement in the diagnosis of scrub typhus in a clinical setting. This has been observed at our center: eschar incidence improved from...
Eschars of scrub typhus appear a few days after at chigger-bite sites, before the disease manifests. The eschar is painless and consists of a black scab, with an erythematous halo and minimal edema. Detection of eschars is dependent not only on the clinical experience of the examining physician but is also influenced by skin color (eschars are more easily seen on the fair-skinned than the dark-complexioned) and also on the thoroughness of the physical examination. The differentials for a scrub-typhus eschar include insect bites (including spider bites) and post-traumatic scabs, which can all be ruled out with a little patience and perseverance. The eschar of anthrax, though painless, is surrounded by extensive or marked edema that is gelatinous and stretches the skin, and is often preceded by a pruritic papule. Table 1 gives a summary of clinical and laboratory findings favoring or not favoring a diagnosis of scrub typhus.

Supporting a diagnosis of scrub typhus	Against a diagnosis of scrub typhus (usually diagnosed)
Eschar	Bone pain (dengue)
Regional lymphadenopathy	Bleeding manifestations (dengue)
Total fever ≥8 days	Loose stools (enteric fever)
CRP >32 mg/L	White blood-cell counts <5,000/mm³ (dengue)
ALT/AST >1	Platelets <50,000/mm³ (dengue)
Defervescence within 48–72 hours of specific therapy	Bilirubin >2 mg/dL (malaria, hepatitis A)
	AST >500 U/L (dengue)
	ALT <100 U/L (malaria)
	ALT >500 U/L (hepatitis A)

Risk factors determining severity and outcome in scrub typhus

Severity of disease based on genotype

The severity of scrub typhus varies considerably, which might correlate with the virulence of the particular O. tsutsugamushi strain responsible for the infection. There is evidence that frequency of eschars and rash in scrub typhus is dependent on the infecting genotype. South Korean individuals with the Boryong genotype have significantly higher incidence (97%) of eschars and skin rash compared to 74% with the Karp genotype.

Clinical and laboratory parameters predicting severity in scrub typhus

Parameters that show very significant P-values (0.01) by multivariate logistic regression analysis have been included in the tables. In a meta-analysis of 89 studies (19,644 patients with scrub typhus), fatal outcome was reported in 2,488 patients, with an overall mortality of 12.7%. Though increasing age
was associated with fatality, presence or absence of eschars did not affect the outcome.65

Laboratory diagnosis of scrub typhus

Scrub typhus can mimic other acute febrile illnesses common in the tropics, especially when pathognomonic eschars are absent.10 Therefore, laboratory tests become mandatory for confirmation of the diagnosis.38,75,76 Methods available include direct methods like isolation of the pathogen in cell cultures (HeLa, L929, Vero, and BHK21) and detection of scrub typhus-specific DNA like 56 kDa, 47 kDa, 16S ribosomal RNA, and GroEL gene targets by polymerase chain reaction (PCR). Indirect methods include detection of antibodies to *O. tsutsugamushi* by immunofluorescence assay (IFA), enzyme-linked immunosorbent assay (ELISA),77 and rapid diagnostic assays.78,79 Tables 4 and 5 give performance characteristics of the available assays for laboratory confirmation of scrub typhus.

Real-time PCR assays like the 47 kDa, 56 kDa, and GroEL are increasingly used, and these detect 10–50 copies/μL of *O. tsutsugamushi*. Real-time PCR specificity is higher if type-specific genes are used (eg, 56 kDa and 47 kDa genes for *O. tsutsugamushi*) than if genus-specific genes are used (17 kDa genes for *Rickettsia* spp.), which again are stronger than nonspecific conserved “housekeeping” genes like HSPD1 (GroEL) and 16S ribosomal RNA.27 The drawback

Table 2 Predictors of mortality in patients diagnosed with scrub typhus (P<0.01)

Parameter	Significant value	OR (95% CI)	Study
Age	>65 years	14.5 (1.3–166.4)	Prakash et al26
Creatinine	>1.5 times normal	12.8 (1.8–92.1)	Thipmontree et al24
Total bilirubin	>3 mg/dL	24.8 (2.1–286.6)	Chrispal et al21
Creatinine	≤10 g/dL	32.1 (2.6–393.8)	Lee et al70
Inotropic support	BP <90 mmHg	10.1 (4.5–22.9)	Varghese et al24
Metabolic acidosis	Venous HCO3 <17 mmol/L	6.1 (1.8–21.3)	Thipmontree et al26
ARDS Bilateral pulmonary infiltrates (CXR); peak flow ratio <200; normal CVP	3.1 (1–9.9)	Prakash et al26	
Altered sensorium	Present	6.5 (2.8–12.8)	Chrispal et al21
Shock	Systolic BP <90 mmHg	3.1 (1–9.8)	Prakash et al26

Abbreviations: OR, odds ratio; CI, confidence interval; CNS, central nervous system; ARDS, acute respiratory distress syndrome; CXR, chest X-ray; CVP, central venous pressure; BP, blood pressure.

Table 3 Parameters associated with adverse events in patients with scrub typhus (P<0.01)

Patient group	Outcome	Variable/parameter	Significant value	OR (95% CI)	Study
Elderly (≥60 years)	Severe disease (AKI)	WBC count >10,000/mm³	2.6 (1.3–5.1)	Jang et al24	
Adults (≥16 years)	ICU admission	WBC counts >11,000/mm³	1.3 (1–1.5)	Lee et al20	
Adults (≥16 years)	Hospital stay >10 days	MODS Two or more organs damaged	10 (2.3–43.9)	Lee et al20	
Adults (≥16 years)	Severe scrub typhus	WBC counts >10,000/mm³	4.6 (1.6–7.9)	Kim et al11	
Adults (≥18 years)	Severe scrub typhus	Serum albumin ≤3 g/dL	8.5 (1.7–14.9)	Chrispal et al21	
Adults (≥18 years)	Severe scrub typhus	Age ≥60 years	3.1 (1.5–6.4)	Thipmontree et al26	
Adults (≥18 years)	Severe scrub typhus	Eschar Absent	6.6 (1.2–35.8)	Chrispal et al21	
Children (<14 years)	MODS	AST >160 IU/mL	4.7 (1.4–15.6)	Zhao et al73	
Not mentioned	AKI	ICU admission	2.9 (1.4–5.8)	Attur et al24	
Children and adults	Severe scrub typhus	Pulse rate >100/min	3.2 (1.9–5.4)	Sriwongpan et al21	
Children and adults	Severe scrub typhus	Creatinuria Present	3 (1.6–5.4)	Sriwongpan et al21	
Children and adults	Severe scrub typhus	Natrium ≥14 mg/dL	8.2 (5.1–13.4)	Sriwongpan et al21	

Abbreviations: OR, odds ratio; CI, confidence interval; AKI, acute kidney injury; WBC, white blood cell; MDRD, Modification of Diet in Renal Disease; APACHE, Acute Physiology and Chronic Health Evaluation; ICU, intensive care unit; MODS, multiple-organ dysfunction syndrome; Htn, hypertension; DM, diabetes mellitus; CKD, chronic kidney disease.
of molecular assays is that the best yield is seen with eschar biopsy, followed by buffy coat, whole blood, and blood clots. As obtaining eschar biopsies is challenging, eschar-swab specimens have been used and found to be adequate for detection of scrub typhus-specific DNA. In contrast to eschar PCR, buffy-coat positivity by PCR (scrub typhus) falls to 10%, 4 days after treatment. Sometimes, typical eschars are not observed, and in such situations PCR or immunohistochemical staining methods using eschar-like crust lesions will be useful. Though determination of scrub-typhus antibodies is the mainstay of scrub-typhus diagnosis, definitive evidence of causation by serology is provided only when paired sera demonstrate a fourfold rise in titer or seroconversion. As paired sera are seldom available, a single cutoff titer for IFA, ELISA, and rapid diagnostic tests can be used for diagnosis, provided the background noise in the population has been determined. Serology can determine past and recent infection criteria have been used. Moreover, a WHO culture, PCR, and serological positivity like scrub typhus-case definition for scrub typhus also is available, as is an expert-derived Indian Council of Medical Research case definition. Lim et al concluded that combinations of IgM ICT and presence of eschars have good specificity and can be

Table 4 Performance of nonmolecular diagnostic tests used for detection of scrub typhus

Type of assay	Sensitivity (%)	Specificity (%)
Cell culture	5–56	100
Antigen detection	65–100	100
IgM IFA	70–100	100
IgM + IgG IFA	70–97	100
IgM ELISA	70–100	97–100
IgG ELISA	58–96	92–98
IgM ICT	47–99	95–100
IgM + IgG ICT	61–100	74–100

Abbreviations: IFA, immunofluorescence assay; ELISA, enzyme-linked immunosorbent assay; ICT, immunochromatographic test.

Table 5 Summary of performance characteristics of molecular assays for diagnosis of scrub typhus

Target	Assay	Sensitivity (%)	Specificity (%)
56 kDa	Conventional PCR	0–96	100
	Nested PCR	16–100	88–100
	qPCR	65–73	100
47 kDa	Conventional PCR	3–7	100
	Nested PCR	81–85	100
	qPCR	63–81	90–100
	LAMP	52	94
16S rRNA	Conventional PCR	45–87	100
	qPCR	52	100
GroEL	Conventional PCR	66	100
	Nested PCR	90.4	100
	qPCR	56.4	96.2
	LAMP	87.5	100

Note: An evaluation done using 24 eschar samples from scrub typhus-confirmed cases showed sensitivity and specificity of 83.3% and 100%, respectively (Prakash, unpublished data, 2012).

Abbreviations: qPCR, quantitative polymerase chain reaction; LAMP, loop-mediated isothermal amplification; rRNA, ribosomal RNA.
used in resource-poor situations as point-of-care diagnostic tests, whereas performance of a PCR would be very useful in centers with facilities for same.49

Coinfections and scrub typhus

In endemic areas, coinfections have been described, and these include infections with other pathogens causing similar illness. Table 6 enumerates the grading of coinfections according to Phommasone et al,27 and Tables 7 and 8 describe such infections.

A few scenarios are described for our understanding. The first is by Sonthayanon et al, who found that among the 82 serological coinfections observed, molecular assays were positive for leptospirosis in 43 (52%), scrub typhus in nine (11%), and both in five (6%), whereas 25 (30%) were negative for both leptospirosis and scrub typhus. Possible explanations for the difference observed between serologic and molecular results include low sensitivity of the molecular assay, failure to test a sample obtained during the window of bacteremia in leptospirosis, serologic cross-reactivity, and acute infection caused by one pathogen in the background of a recent but inactive infection caused by the second pathogen.128

Second, in the presence of eschars, testing for *Leptospira* serology is unwarranted, according to Lee and Liu, as four of the seven cases who were *Leptospira* serology-positive had eschars.26 As treatment with doxycycline or azithromycin is very effective against *Leptospira* and *Orientia*, serological cross-reaction or coinfection does not matter, as treatment with either will be beneficial to the patient with an acute febrile illness when both serologies are positive.129

Third, dual and triple infections occur, as reported by Ahmad et al, who described malaria, dengue, and scrub typhus in five cases, 21 were dengue cross-reactive, malaria smears were positive in 14, and nine individuals had IgM antibodies to scrub typhus and dengue. Further clarification regarding which was a cross-reaction could have been determined if information regarding presence or absence of

Table 6 Grading of coinfections
Grade

I
II
III

Abbreviation: NAATs, nucleic acid-amplification tests.

Table 7 Coinfections (dual) demonstrated in scrub-typhus patients
Evidence grade

Grade I
Grade I
Grade I and II
Grade II
Grade I and II
Grade I and II
Grade II
Grade II
Grade II
Grade II
Grade II
Grade II
Grade II
Grade II
Grade II
Grade III
Grade III
Grade III
Grade III
Grade III
Grade III
Grade III

Abbreviations: PCR, polymerase chain reaction; MAT, microscopic agglutination test; IFA, immunofluorescence assay; ELISA, enzyme-linked immunosorbent assay; JEV, Japanese encephalitis virus.
eschars was available or determination of NS1-antigen positivity, as was done by Basheer et al.

Management challenges

Atypical clinical features and absence of eschars may result in delayed diagnosis, complications, or death. Scrub typhus responds promptly to effective treatment, with patients becoming afebrile within 24–48 hours, so much so that when enteric fever, septicemia, and malaria are ruled out, empirical treatment with doxycycline (even when given late in the disease) is clinically useful. Therefore, empirical therapy with doxycycline is to be encouraged in regions or locales where scrub typhus is endemic or reemerging. This will lead to a reduction in complications, with a corresponding decrease in morbidity and mortality. Treatment for scrub typhus has been reviewed extensively by Peter et al and Rajapakse et al. Doxycycline is useful as an empirical treatment, because of its high cost-effectiveness and wide spectrum of activity, and is considered safe in children and wide spectrum of activity, and is considered safe in children given short-course doxycycline. Moreover, doxycycline reaches good concentrations in cerebrospinal fluid, as does minocycline, though use of the latter is limited by dose-related vestibular side effects. Fluoroquinolones are not good drugs for treatment, nor are penicillins, clarithromycin, and cephalosporins. Orientia tsutsugamushi with reduced susceptibility has been observed for doxycycline and chloramphenicol in Chiang Rai, northern Thailand. This may not have been true resistance, but due to delayed treatment or tolerance.

Data on scrub typhus in pregnancy are scanty. Among the 82 cases reviewed from the literature till 2014 by McGready et al, 2.5% were associated with maternal mortality. Miscarriage occurred in 17%, and poor neonatal outcomes (stillbirth, preterm labor, and low birth weight) were documented in 42%. Macrolide antibiotics, such as azithromycin, are safe in pregnancy, but doxycycline, which is cheaper, can also be used if the former is not available. The aim of therapy is to save both mother and child, and the benefits of therapy with doxycycline outweigh the risks. Cross et al opined that doxycycline treatment should be used in children and pregnant women for treating scrub typhus, as the infection-associated risks are too large and thus overwhelmingly against avoiding therapy with this agent. Recently, Jang et al reported that intravenous azithromycin was efficacious in the treatment of severe scrub typhus.

The major concern is that misdiagnosis occurs when the characteristic eschars are absent. This is of importance, as treatment with an appropriate antibiotic (doxycycline, tetracycline, or chloramphenicol) renders patients afebrile within 48 hours, such that pyrexia persisting beyond 72 hours rules out scrub typhus. Such patients have jaundice (icteric sclera and/or total bilirubin >1.5 mg/dL), no headache, and relative bradycardia (<110/min).

Conclusion

Scrub typhus is an important cause of febrile illness in the Asia-Pacific region. The main management challenge is institution of specific therapy in a timely and an effective manner, as stated elsewhere in this review. For this, rapid and accurate diagnosis becomes necessary, especially in the absence of eschars. In resource-poor endemic settings, clinical prediction rules have been defined and found useful. In addition, a battery of tests is needed for increasing diagnostic yield and sorting out the issue of coinfections. Finally, appropriate treatment should be initiated, keeping in mind the risk and benefits afforded by such treatment.

Disclosure

The author reports no conflicts of interest in this work.

Table 8 Details of infections with two other pathogens in scrub-typhus patients

First pathogen (test)	Second pathogen (test)	Third pathogen (test)	Number (evidence)
Orientia tsutsugamushi (PCR)	Rickettsia typhi (PCR)	Mycobacterium tuberculosis (culture)	1 (Grade I)
O. tsutsugamushi (PCR)	R. typhi (PCR)	Salmonella enterica, group D (culture)	1 (Grade I)
O. tsutsugamushi (PCR)	Leptospriosis (PCR)	JE (IgM-capture ELISA)	2 (Grade II)
Plasmodium vivax (RDT)	O. tsutsugamushi (PCR)	Dengue (NS1 antigen)	1 (Grade I)
Malaria (smear)	Dengue (IgM ELISA)	O. tsutsugamushi (IgM ELISA)	5 (Grade III)
O. tsutsugamushi (IFA)	R. typhi (IFA)	Spotted fever, group rickettsia (IFA)	6 (Grade III)

Abbreviations: PCR, polymerase chain reaction; JE, Japanese encephalitis virus ELISA; RDT, rapid diagnostic test; IFA, immunofluorescence assay.

References

1. Horton KC, Jiang J, Maina A, et al. Evidence of Rickettsia and Orientia infections among abattoir workers in Djibouti. Am J Trop Med Hyg. 2016;95(2):462–465.
2. Jin HS, Chu C, Han DY. Spatial distribution analysis of scrub typhus in Korea. Osong Public Health Res Perspect. 2013;4(1):4–15.
3. Bang HA, Lee MJ, Lee WC. Comparative research on epidemiological aspects of tsutsugamushi disease (scrub typhus) between Korea and Japan. Jpn J Infect Dis. 2008;61(2):148–150.

4. Li T, Yang Z, Dong Z, Wang M. Meteorological factors and risk of scrub typhus in Guangzhou, southern China. 2006–2012. BMC Infect Dis. 2014;14:139.

5. Paris DH, Sheth TR, Day NP, Walker DH. Unresolved problems related to scrub typhus: a seriously neglected life-threatening disease. Am J Trop Med Hyg. 2013;89(2):301–307.

6. Hu J, Tan Z, Ren D, et al. Clinical characteristics and risk factors of an outbreak with scrub typhus in previously unrecognized areas, Jiangsu Province, China. 2013. PLoS One. 2015;10(5):e0125999.

7. Chikeka I, Dumlur JS. Neglected bacterial zoonoses. Clin Microbiol Infect. 2015;21(5):404–415.

8. Jeung YS, Kim CM, Yun NR, Kim SW, Han MA, Kim DM. Effect of latitude and seasonal variation on scrub typhus, South Korea, 2001–2013. Am J Trop Med Hyg. 2016;94(1):22–25.

9. Sundriyal D, Kumar N, Chandrasekharan A, Sharma B. Eschar: an important clue to diagnosis. BMJ Case Rep. 2013;2013:010105.

10. Kundavaram AP, Jonathan AJ, Nathaniel SD, Varghese GM. Eschar in scrub typhus: a valuable clue to the diagnosis. J Postgrad Med. 2013;59(3):177–178.

11. Park JH, Kim SJ, Youn SK, Park K, Gwack J. Epidemiology of scrub typhus and the eschars patterns in South Korea from 2008 to 2012. Jpn J Infect Dis. 2014;67(6):458–463.

12. Kweon SS, Choi JS, Lim HS, et al. A community-based case-control study of behavioral factors associated with scrub typhus during the autumn epidemic season in South Korea. Am J Trop Med Hyg. 2009;80(3):442–446.

13. Tilak R, Kunwar R, Wankhade UB, Tilak VW. Emergence of Schoenostegiella ligula as the vector of scrub typhus outbreak in Darjeeling: has Leptotrombidium deliens been replaced? Indian J Public Health. 2011;55(2):92–99.

14. Lee HI, Shim SK, Song BG, et al. Detection of Orientia tsutsugamushi, the causative agent of scrub typhus, in a novel mite species, Eushoengastia alfreddegasi in Korea. Vector Borne Zoonotic Dis. 2011;11(3):209–214.

15. Park GM, Shin HS. Geographical distribution and seasonal indices of chigger mites on small mammals collected on the east coast of the Republic of Korea. J Parasitol. 2016;102(2):193–198.

16. Yang LP, Liu J, Wang XJ, Ma W, Jia CX, Jiastu BF. Effects of meteorological factors on scrub typhus in a temperate region of China. Epidemiol Infect. 2014;142(10):2217–2226.

17. Lee KY, Kim HC, Lee YS, et al. Geographical distribution and relative abundance of vectors of scrub typhus in the Republic of Korea. Korean J Parasitol. 2009;47(4):381–386.

18. Lee YM, Kim DM, Lee SH, Jang MS, Neupane GP. Phylogenetic analysis of the 56 kDa protein genes of Orientia tsutsugamushi in southwest area of Korea. Am J Trop Med Hyg. 2011;84(2):250–254.

19. Varghese GM, Janardhanan J, Mahajan SK, et al. Molecular epidemiology and genetic diversity of Orientia tsutsugamushi from patients with scrub typhus in 3 regions of India. Emerg Infect Dis. 2015;21(6):69–79.

20. Ruang-Arecate T, Jeannawattanarert P, Rodkvamtook W, Richards AL, Sunyakumthorn P, Gaywee J. Genotype diversity and distribution of Orientia tsutsugamushi causing scrub typhus in Thailand. J Clin Microbiol. 2011;49(7):2584–2589.

21. Chriplan A, Booruhi H, Gopinath KG, et al. Scrub typhus: an unrecognized threat in South India – clinical profile and predictors of mortality. Trop Doct. 2010;40(3):129–133.

22. Acestor N, Cooksey R, Newton PN, et al. Mapping the aetiology of non-malarial febrile illness in Southeast Asia through a systematic review: terra incognita impairing treatment policies. PLoS One. 2012;7(9):e44269.

23. Jung HC, Chon SB, Oh WS, Lee DH, Lee HJ. Etiologies of acute undifferentiated fever and clinical prediction of scrub typhus in a non-tropical endemic area. Am J Trop Med Hyg. 2015;92(2):256–261.

24. Leelarasamee A, Chupaprawan C, Chenchittikul M, Udompornthirat S. Etiologies of acute undifferentiated febrile illness in Thailand. J Med Assoc Thai. 2004;87(5):464–472.

25. Lai CH, Huang CK, Weng HC, et al. Clinical characteristics of acute Q fever, scrub typhus, and murine typhus with delayed deferescence despite doxycycline treatment. Am J Trop Med Hyg. 2008;79(3):441–446.

26. Lee CH, Liu JW. Coinfection with leptospirosis and scrub typhus in Taiwanese patients. Am J Trop Med Hyg. 2007;77(3):525–527.

27. Phommasonke K, Paris DH, Anantarat T, et al. Concurrent infection with murine typhus and scrub typhus in southern Laos: the mixed and the unmixd. PLoS Negl Trop Dis. 2013;7(8):e2163.

28. Chang K, Lee NY, Ko WC, et al. Identification of factors for physicians to facilitate early differential diagnosis of scrub typhus, murine typhus, and Q fever from dengue fever in Taiwan. J Microbiol Immunol Infect. 2017;50(1):104–111.

29. Paris DH, Dumlur JS. State of the art in diagnosis of rickettsial diseases: the use of blood specimens for diagnosis of scrub typhus, spotted fever group rickettsiosis, and murine typhus. Curr Opin Infect Dis. 2016;29(5):433–439.

30. Tsai PJ, Yeh HC. Scrub typhus islands in the Taiwan area and the association between scrub typhus disease and forest land use and farmer population density: geographically weighted regression. BMC Infect Dis. 2013;13:191.

31. Clopton RE, Gold RE. Distribution and seasonal and diurnal activity patterns of Eutrombicula alfreddegasi (Acari: Trombiculidae) in a forest edge ecosystem. J Med Entomol. 1993;30(1):47–53.

32. Aung AK, Spelman DW, Murray RJ, Graves S. Rickettsial infections in Southeast Asia: implications for local populace and febrile returned travelers. Am J Trop Med Hyg. 2014;91(3):451–460.

33. Wu YC, Qian Q, Magalhaes RJ, et al. Spatiotemporal dynamics of scrub typhus transmission in mainland China, 2006-2014. PLoS Negl Trop Dis. 2016;10(8):e0004875.

34. Lyu Y, Tian L, Zhang L, et al. A case-control study of risk factors associated with scrub typhus infection in Beijing, China. PLoS One. 2013;8(5):e63668.

35. Wardrop NA, Kuo CC, Wang HC, Clements AC, Lee PF, Atkinson PM. Bayesian spatial modelling and the significance of agricultural land use to scrub typhus infection in Taiwan. Geospat Health. 2013;8(1):229–239.

36. Kim DM, Kim KY, Nam HS, Kweon SS, Park MY, Ryu SY. Risk-factors for human infection with Orientia tsutsugamushi: a case-control study in Korea. Clin Microbiol Infect. 2008;14(2):174–177.

37. Richards AL. Worldwide detection and identification of new and old rickettsiae and rickettsial diseases. FEMS Immunol Med Microbiol. 2012;64(1):107–10.

38. Koh GC, Maude RJ, Paris DH, Newton PN, Blacksell SD. Diagnosis of scrub typhus. Am J Trop Med Hyg. 2010;82(3):368–370.

39. Rose W, Rajan RJ, Punnen A, Ghosh U. Distribution of eschar in scrub typhus patients. J Trop Med Hyg. 2010;83(2):250–254.

40. Varghese GM, Abraham OC, Mathai D, et al. Scrub typhus among returning travelers from endemic areas. BMJ Case Rep. 2015;2015:010105.

41. Park GM, Shin HS, Geographical distribution and seasonal indices of chigger mites on small mammals collected on the east coast of the Republic of Korea. J Parasitol. 2016;102(2):193–198.

42. Ruang-Arecate T, Jeannawattanarert P, Rodkvamtook W, Richards AL, Sunyakumthorn P, Gaywee J. Genotype diversity and distribution of Orientia tsutsugamushi causing scrub typhus in Thailand. J Clin Microbiol. 2011;49(7):2584–2589.

43. Chriplan A, Booruhi H, Gopinath KG, et al. Scrub typhus: an unrecognized threat in South India – clinical profile and predictors of mortality. Trop Doct. 2010;40(3):129–133.

44. Acestor N, Cooksey R, Newton PN, et al. Mapping the aetiology of non-malarial febrile illness in Southeast Asia through a systematic review: terra incognita impairing treatment policies. PLoS One. 2012;7(9):e44269.

45. Varghese GM, Abraham OC, Mathai D, et al. Scrub typhus among hospitalised patients with febrile illness in south India: magnitude and clinical predictors. J Infect. 2006;52(1):56–60.
For personal use only.
128. Sonthayanon P, Chierakul W, Wuthiekanun V, et al. Molecular confirmation of co-infection by pathogenic Leptospira spp. and Orientia tsutsugamushi in patients with acute febrile illness in Thailand. *Am J Trop Med Hyg*. 2013;89(4):797–799.

129. Phimda K, Hoontrakul S, Suttinont C, et al. Doxycycline versus azithromycin for treatment of leptospirosis and scrub typhus. *Antimicrob Agents Chemother*. 2007;51(9):3259–3263.

130. Ahmad S, Dhar M, Mittal G, et al. A comparative hospital-based observational study of mono- and co-infections of malaria, dengue virus and scrub typhus causing acute undifferentiated fever. *Eur J Clin Microbiol Infect Dis*. 2016;35(4):705–711.

131. Basheer A, Iqbal N, Moonkappan S, et al. Clinical and laboratory characteristics of dengue-Orientia tsutsugamushi co-infection from a tertiary care center in south India. *Medit J Hematol Infect Dis*. 2016;8(1):e2016028.

132. Zhang L, Li X, Zhang D, et al. Molecular epidemic survey on co-prevalence of scrub typhus and marine typhus in Xuyi city, Yunnan province of China. *Clin Med Eng (Engl)*. 2007;120(15):1314–1318.

133. McGready R, Ashley EA, Wuthiekanun V, et al. Arthropod borne disease: the leading cause of fever in pregnancy on the Thai-Burmaese border. *PloS Negl Trop Dis*. 2010;4(11):e888.

134. Lee WS, Ou TY, Chen FL, Hsu CW, Jean SS. Co-infection with *Orientia tsutsugamushi* and *Mycoplasma pneumoniae* in a traveler. *J Microbiol Immunol Infect*. 2015;48(1):121–122.

135. Dittrich S, Rattanavong S, Lee SJ, et al. Orientia, Rickettsia, and Leptospira pathogens as causes of CNS infections in Laos: a prospective study. *Lancet Glob Health*. 2015;3(2):e104–e112.

136. Suputtamongkol Y, Niwattayakul K, Suttinont C, et al. An open, randomized, controlled trial of penicillin, doxycycline, and cefotaxime for patients with severe leptospirosis. *Clin Infect Dis*. 2004;39(10):1417–1424.

137. Lai CH, Chen YH, Lin JN, Chang LL, Chen WF, Lin HH. Acute Q fever and scrub typhus, southern Taiwan. *Emerg Infect Dis*. 2009;15(10):1659–1661.

138. Mayxay M, Sengvilaiapaseuth O, Chanthhoungip A, et al. Causes of fever in rural southern Laos. *Am J Trop Med Hyg*. 2015;93(3):517–520.

139. Wei YF, Chiu CT, Lai YF, Lai CH, Lin HH. Successful treatment of septic shock and respiratory failure due to leptospirosis and scrub typhus coinfection with penicillin, levofloxacin, and activated protein C. *J Microbiol Immunol Infect*. 2012;45(3):251–254.

140. Chen YS, Cheng SL, Wang HC, Yang PC. Successful treatment of scrub typhus and leptospirosis in patients with pyrexia of unknown origin in Longdian district of Arunachal Pradesh in 2013. *Indian J Med Microbiol*. 2016;34(1):88–91.

141. Kularatne SA, Edirisinha JS, Gavarammana IB, Urakami H, Chenchitikul M, Kailo I. Emerging rickettsial infections in Sri Lanka: the pattern in the hilly Central Province. *Trop Med Int Health*. 2003;8(9):803–811.

142. Kumar S, Kumar PS, Kaur G, Bhalia A, Sharma N, Varma S. Rare concurrent infection with scrub typhus, dengue and malaria in a young female. *J Vector Borne Dis*. 2014;51(1):71–72.

143. Premaratna R, Rajapakse RP, Chandrasena TG, et al. Contribution of rickettsioses in Sri Lankan patients with fever who responded to empirical doxycycline treatment. *Trans R Soc Trop Med Hyg*. 2010;104(5):368–370.

144. Rajapakse S, Rodrigo C, Fernado SD. Drug treatment of scrub typhus. *Trop Doct*. 2011;41(1):1–4.

145. Boast A, Curtis N, Gwee A. Teething issues: can doxycycline be safely used in young children? *Arch Dis Child*. 2016;101(8):772–774.

146. Todd SR, Dahlgren FS, Traeger MS, et al. No visible dental staining in children treated with doxycycline for suspected Rocky Mountain spotted fever. *J Pediatr*. 2015;166(5):1246–1251.

147. Botelho-Nevers E, Rovey C, Richet H, Raoult D. Analysis of risk factors for malignant Mediterranean spotted fever indicates that fluorquinolone treatment has a deleterious effect. *J Antimicrob Chemother*. 2011;66(8):1821–1830.

148. Cross R, Ling C, Day NP, McGready R, Paris DH. Revisiting doxycycline in pregnancy and early childhood: time to rebuild its reputation? *Expert Opin Drug Saf*. 2016;15(3):367–382.

149. Tantibhedhyangkul W, Angelakis E, Tongyo N, et al. Intrinsic florquinolone resistance in *Orientia tsutsugamushi*. *Int J Antimicrob Agents*. 2010;35(4):338–341.

150. Kurup A, Issac A, Loh JP, et al. Scrub typhus with sepsis and acute respiratory distress syndrome. *J Clin Microbiol*. 2013;51(8):2787–2790.

151. Watt G, Kantipong P, Jongsakul K, Jongsakul P, Phulsuksombat D, Strickman D. Doxycycline and rifampicin for mild scrub typhus infections in northern Thailand: a randomised trial. *Lancet*. 2000;356(9235):1057–1061.

152. Watt G, Kantiyong P, Jongsakul K, Watcharapichat P, Phulsuksombat D, Strickman D. Doxycycline and rifampicin for mild scrub typhus infections in northern Thailand: a randomised trial. *Lancet*. 2000;356(9235):1057–1061.

153. Strickman D, Sheer T, Salata K, et al. In vitro effectiveness of azithromycin against doxycycline-resistant and -susceptible strains of *Rickettsia tsutsugamushi*, etiologic agent of scrub typhus. *Antimicrob Agents Chemother*. 1995;39(11):2406–2410.

154. Watanapanworawit W, Kolakowska E, Hanboonkunopakarn B, Ling C, McGready R. Scrub typhus infection in pregnancy: the dilemma of diagnosis and treatment in a resource-limited setting. *Clin Case Rep*. 2015;4(6):584–588.

155. Jang MO, Jang JC, Kim UJ, et al. Outcome of intravenous azithromycin therapy in patients with complicated scrub typhus compared with that of doxycycline therapy using propensity-matched analysis. *Antimicrob Agents Chemother*. 2014;58(3):1488–1493.