A Role for Zinc in Plant Defense Against Pathogens and Herbivores

Catalina Cabot1*, Soledad Martos2, Mercè Llugany2, Berta Gallego2, Roser Tolrà2 and Charlotte Poschenrieder2

1 Departament of Biology, Universitat de les Illes Balears, Palma, Spain, 2 Plant Physiology Laboratory, Bioscience Faculty, Universitat Autònoma de Barcelona, Barcelona, Spain

Pests and diseases pose a threat to food security, which is nowadays aggravated by climate change and globalization. In this context, agricultural policies demand innovative approaches to more effectively manage resources and overcome the ecological issues raised by intensive farming. Optimization of plant mineral nutrition is a sustainable approach to ameliorate crop health and yield. Zinc is a micronutrient essential for all living organisms with a key role in growth, development, and defense. Competition for Zn affects the outcome of the host–attacker interaction in both plant and animal systems. In this review, we provide a clear framework of the different strategies involving low and high Zn concentrations launched by plants to fight their enemies. After briefly introducing the most relevant macro- and micronutrients for plant defense, the functions of Zn in plant protection are summarized with special emphasis on superoxide dismutases (SODs) and zinc finger proteins. Following, we cover recent meaningful studies identifying Zn-related passive and active mechanisms for plant protection. Finally, Zn-based strategies evolved by pathogens and pests to counteract plant defenses are discussed.

Keywords: zinc deprivation, zinc toxicity, zinc hyperaccumulation, Zn-triggered organic defenses, plant enemies

MINERAL NUTRIENTS IN PLANT DEFENSE

Mineral nutrients are directly involved in plant protection as structural components and metabolic regulators (Huber, 1980). As a first line of defense, the nutritional status can determine plants’ susceptibility to pests and pathogens (Walters and Bingham, 2007; Marschner and Marschner, 2012). Essential and beneficial elements affect plant health both directly, by activating enzymes that produce defense metabolites (callose, glucosinolates, lignin, phenols, and phytoalexins), and indirectly, by altering root exudates, rhizosphere pH, and microbial activity (Datnoff et al., 2007). In addition to chemical and/or biochemical factors, plant protection strategies include physical (shape, surface properties, hairs, color, etc.) and mechanical (fibers, silicon) properties (Marschner, 1995); all these features are also influenced by mineral nutrients.

The nutritional status of the host plant affects the colonization success by pests and pathogens. However, it is not possible, either globally or individually, to generalize the effects of nutrients for all plant–pest/pathogen systems (Huber, 1980).

Many studies have focused on the relationship between macronutrients and plant pests and diseases, and several sound reviews link both topics. Most attention has centered on the effects of N, P, and K due to their reduced availability in many soils and their elevated plant demand (Huber, 1980; Walters and Bingham, 2007; Amtmann et al., 2008). However, inconsistent results of macronutrient fertilization and damage by insect herbivory have been reported (Aqueel and Leather, 2011; Chesnais et al., 2016). Furthermore, silicon has deserved special attention, primarily...
on account of its structural role in the reinforcement of cell walls, and more recently as an activator of defense genes (Fauteux et al., 2005; Cabot et al., 2013; Van Bochoven et al., 2013) and pest protection (He et al., 2015).

Micronutrient roles in plant defense are predominantly documented for Mn, Cu, Fe, and Zn (Graham and Webb, 1991; Dordas, 2008; Fones and Preston, 2013). Manganese participates in the production of phenolic compounds and other plant defense mechanisms (Fernando et al., 2009), while Ni is involved in the plant antioxidant system and in the plant response to stress (Fabiano et al., 2015). Best studied are the pathogenesis-related mechanisms based on the Fe redistribution at the cellular level (Greenshields et al., 2007; Liu et al., 2007). Zinc seems to be a major player in both animal (Hojyo and Fukada, 2016) and plant immune responses (Shirasu et al., 1999; Gupta et al., 2012a).

However, so far, no general model has been proposed for Zn, despite the fact that several processes involving this element have been analyzed in different pathosystems. Furthermore, most of these studies have focused on metal hyperaccumulating species that absorb and accumulate a wide range of elements, including micronutrients like Mn, Fe, Ni, and Zn, or other trace elements like Cd, Se, or As. The high tissue concentrations of these elements may protect plants against pests and diseases (Poschenrieder et al., 2006) (see below).

This review compiles the still scant available information characterizing the Zn-related strategies employed by plants to fight their attackers. The generated overview will hopefully permit the reader to see the state of the art of this topic, as well as the existing gaps, where current knowledge established in plant systems is derived either from Fe research or taken from animal systems.

DEFENSE-RELATED FUNCTIONS OF ZINC IN PLANTS

Zinc is a catalytic and structural protein cofactor in hundreds of enzymes (Hambidge et al., 2000) and has key structural functions in the protein domains that interact with other molecules. The “Zn finger” proteins mediate DNA binding of transcription factors and protein–protein interactions (Sinclair and Kramer, 2012). Zn-binding sites can now be predicted from sequenced metal-binding motifs using bioinformatic approaches. Based on these findings, the Zn proteome may represent about 9% of the metal-binding motifs using bioinformatic approaches. Based on these findings, the Zn proteome may represent about 9% of the metal-binding motifs using bioinformatic approaches. Based on these findings, the Zn proteome may represent about 9% of the metal-binding motifs using bioinformatic approaches. Based on these findings, the Zn proteome may represent about 9% of the metal-binding motifs using bioinformatic approaches. Based on these findings, the Zn proteome may represent about 9% of the metal-binding motifs using bioinformatic approaches. Based on these findings, the Zn proteome may represent about 9% of the metal-binding motifs using bioinformatic approaches. Based on these findings, the Zn proteome may represent about 9% of the metal-binding motifs using bioinformatic approaches. Based on these findings, the Zn proteome may represent about 9% of the metal-binding motifs using bioinformatic approaches.

Both Zn excess and Zn deficiency cause Zn to become prooxidant (Kinraide et al., 2011). Therefore, in all organisms, the cellular concentration and compartmentation of mobile Zn is tightly controlled by different sets of proteins responsible for sensing, transporting, buffering, storing, and releasing Zn. An outstanding reason for the requirement of a strict control of Zn homeostasis comes from studies conducted in animal systems demonstrating that Zn is an intracellular second messenger in several signaling pathways (Yamasaki et al., 2007); therefore, this element plays key roles in the organism’s metallo-neurochemistry. Zinc acts as a neuromodulator in the central nervous system (Goldberg and Lippard, 2018), and Zn transporter ZnT3 is responsible for Zn concentration in synaptic vesicles of certain glutamatergic neurons (McAllister and Dyck, 2017). While glutamate has a recognized function in plant signaling (Forde and Lea, 2007), a connection to Zn in this process has not yet been established in plants.

Zinc plays a pivotal function in the plant response to pests and diseases. Nonetheless, Zn defense-related mechanisms in plants greatly vary. The outcomes of plant–pest/pathogen interactions differ, depending on the effectiveness of the Zn-related responses in limiting the invader’s attack as well as on the enemy’s ability to circumvent the plant defenses, in addition to other environmental conditions that can favor either host or invader. Several studies have shown that, in most cases, Zn fertilization decreased plant symptoms (Grewal et al., 1996; Li et al., 2016; Machado et al., 2018). However, a protective Zn concentration against certain pathogens can also induce a higher susceptibility to another pathogen on the same plant (Helfenstein et al., 2015) (see below).

Zn proteins play a dual role in plant defense, with potential to simultaneously aid and abet the plant and its invaders. Table 1 provides evidence of some of the described connections of Zn proteins with the plant defense and/or the invader virulence. The most commonly assigned functions of Zn proteins are listed in this table, along with examples relating a specific protein function with their respective defense mechanisms. The table denotes that certain similar Zn protein-based mechanisms have been described for both plant defense factors and the pathogenicity factors of their invaders. In the reported cases, the described mechanism is either exclusively mediated through Zn or Zn is mentioned to be involved. The results of these studies summarized in Table 1 globally address an effective plant defense/invader attack with increased gene expression or enhanced activity of the referred protein function. It should be underscored that the described strategies of defense are not exclusively assigned to Zn proteins but also combined with other responses. Among those, two broad-spectrum responses involved in plant–pest/pathogen interactions are tightly related to Zn: oxidative stress and regulation of Zn finger proteins, both of which are more extensively discussed in the following subsections.

Superoxide Dismutases (Sods)

Zinc affects plant–pathogen interactions via its key role in the activation/stabilization of metalloenzymes (Fones and Preston, 2012). A common component in the plant responses to stress conditions caused by insufficient Zn availability and/or pathogen attack is the plant’s capacity to overcome oxidative stress. Under Zn-deficient conditions, reactive oxygen species (ROS) are considered to be the primary factor responsible for plant growth inhibition (Cakmak, 2000). Additionally, changes in the antioxidant capacity and increased ROS formation have also been reported in plants in response to excess Zn (Jain et al., 2010; Feigl et al., 2015). On the other hand, the immune system uses ROS to fight pathogens directly by causing oxidative damage or indirectly by triggering different non-oxidative mechanisms, i.e., pattern recognition and receptor signaling. After plant recognition of pathogen attack, a rapid oxidative burst of oxygen radicals is needed in many cases to trigger plant defense mechanisms, i.e., the hypersensitive response and systemic acquired resistance.
TABLE 1 | Most common assigned functions of Zn proteins with examples relating a specific protein function with defense mechanisms. Similar Zn protein-based mechanisms have been described for the plant defense factors against pathogens (P) or phytophagous insects (I).

Role in defense of plants challenged by pathogen/ insect	Role in pathogen/herbivore virulence
Alcohol dehydrogenase (AD)	(P) Up-regulation of zinc-binding AD in pathogen-inoculated plants. Mechanism display in resistant cultivars (Kumar et al., 2016). (I) Cinnamyl AD (CAD) increased activity induce reduced fitness pest (Caporlini, 1997). / CAD higher activity related to resistance after pest infestation (Shivashankar et al., 2015).
Carbonic anhydrase (CA)	(P) CA function of salicylic acid-binding protein required for pathogen infection (Wang et al., 2009). / CA-silenced plants more susceptible to pathogen spreading (Festrepo et al., 2009). (I) -
α-Mannosidase (Ma)	(P) MT1 highly expressed during fungal infection (Kim et al., 2001). / High constitutive expression of certain MT genes in resistant plant variety (Degenhardt et al., 2005). (I) MT involved in the plant resistance to pest-fungal interaction (Cali et al., 2017).
Metallothionein (MT)	(P) SOD-transformed lines showed increased resistance to pathogenic bacteria (Kim et al., 2007). / ROS detoxification proteins highly expressed in pathogen-infected resistance cultivars (Vongpia and Lomthaisong, 2019). / Enhanced SOD levels, among other enzymes, in the highly resistant plant species to fungal pathogen (Subramanian et al., 2005). / Elevated SOD activity in virus-infected leaves (El-Moshty et al., 1993). (I) Increased SOD activity after insect damage (Chang et al., 2012). / SOD activity negatively correlated with foliar damage after pest attack (Khaledi et al., 2018).
Superoxide-dismutase (SOD)	(P) Znf gene key in the R-gene-specific resistance of plants to pathogens (Liu et al., 2002; Tomerlo et al., 2002; Wang et al., 2017). / Znf transcription factor (TF) contributes to enhance disease resistance (Kim et al., 2004). (I) Insect infestation induces Znf TF synthesis (Lawrence et al., 2014) / Znf TF play significant role in the resistance to insects (Schweizer et al., 2013).
Zn finger (Znf)	(P) Effector with Ma function required for pathogenesis of pathogenic fungus (Martinez-Cruz et al., 2018). (I) -
	(P) MT1 with very high affinity for Zn essential for fungal pathogenicity involved in penetration of leaf surfaces (Tucker et al., 2004). / Putative metallothioneins strongly up-regulated during fungal parasitic growth (Jakupovic et al., 2008). (I) Enhanced MT levels in specialized (Liu et al., 2014) and polyfagus pests (Shu et al., 2012) after ingestion of heavy-metal enriched diets. (P) Pathogenicity factor confirmed for Zn-only SOD (Liu et al., 2016). / Cu-Zn SODs conserved in wide range of plant pathogens (Fones and Preston, 2012). (I) SOD crucial to control provoxant activity of allelochemicals in plant pests (Pitinos et al., 1991). / SOD crucial to prevent the first step of the free-radical cascade of oxygen in herbivorous insects (Ahmad, 1992).
	(P) Znf TF of fungal pathogen involved in phytoalexin detoxification (Kettle et al., 2018). (I) -

* - * means Not yet described.

(SAR) (Sutherland, 1991; Lehman et al., 2015). Oxygen radicals are controlled by the activity of antioxidant enzymes, and among them, SODs catalyze the conversion of superoxide radicals to hydrogen peroxide, which is involved in abiotic and biotic stress signaling (Miller et al., 2008). Cu/Zn-SOD activity is commonly increased in herbivore/pathogen-challenged plants (Fodor et al., 1997; Montalbini and Buonaurio, 1986; Zacheo and Bleve-Zacheo, 1988; Deepak et al., 2006), yet its activity decreased in Zn-deficient plants (see below).

Zinc Finger Proteins

In addition to their role in plant growth and development, zinc finger proteins regulate plant responses to biotic stress conditions (Noman et al., 2019b). With a broad spectrum of structures and functions, these proteins are defined as those with a small, freely folded functional domain that requires one or more zinc ions to stabilize its structure (Laity et al., 2001). Zinc finger binding domains are present in the well-known plant resistance proteins NBS-LRRs (nucleotide binding sites-leucine rich) that are involved in the effector-triggered immune response (Gupta et al., 2012a). The authors of this study analyzed 70 plant disease-resistance proteins from different crops. Of these proteins, 37% contain zinc finger domains, which suggests a major role for this protein class in the host’s resistance to pathogens. One of the R-genes with a zinc finger domain studied was Pi54, which confers durable resistance against the fungus *Magnaporthe oryzae*. In a transgenic line of rice containing the Pi54 gene, the up-regulation of defense response genes (callose, laccase, PAL, and peroxidase) and genes related to transcription factors (NAC6, Dof zinc finger, MAD box, bZIP, and WRKY) was observed (Gupta et al., 2012b). Additionally, RAR1, a zinc binding protein of wheat, confers resistance against the stripe rust pathogen through salicylic acid (SA)-mediated oxidative burst and hypersensitive response (Wang et al., 2017). Insect infestation has been related to the up-regulation of two zinc finger transcription factors in potato (Lawrence et al., 2014). Some members of the family of transcription regulators cysteine2/histidine2-type zinc finger proteins (ZAT) play key roles in ROS signaling in the
response of plants to biotic and abiotic stresses (Miller et al., 2008). A member of this family, AtZAT6, participates in plant development and positively modulates the Arabidopsis response to pathogen infection by activating the expression of SA-related genes such as PATHOGENESIS-RELATED GENE1 (PR1), PR2, and PR5.

In plant and animal systems, direct roles of Zn to control pests and pathogens include mechanisms to produce either low- or high-Zn scenarios (Figure 1). Host-imposed Zn starvation by sequestering Zn from the infection site in a biologically inactive form is a common strategy deployed by the immune system in animals to fight pathogens (Vignesh et al., 2013). Zinc removal strategies from the media to prevent microbial growth have been less documented in plants, yet most of the research on this topic has focused on Fe (Fones and Preston, 2013). On the other hand, hosts may actively deploy high Zn concentrations to control pathogen proliferation. Such active mechanisms have mostly been reported in animal systems (McDevitt et al., 2011), while few studies have been conducted in plants so far (Stolpe et al., 2017). Most of the research in plants concerning the potential protective role of high Zn concentrations has focused on Zn hyperaccumulating species. High Zn concentrations could protect plants from invaders by direct Zn toxicity and by enhancing Zn-triggered organic defenses (Poschenrieder et al., 2006; Fones and Preston, 2013).

In the following sections, plant strategies to fight pests and diseases related to low and high Zn concentrations as well as mechanisms evolved by pathogens and pests to counteract Zn-related plant defenses will be discussed.

DEFENSE MECHANISMS AGAINST BIOTIC STRESS UNDER LOW-ZINC CONDITIONS

Role of Zn Deficiency in Plant Defense

In general, Zn-deficient plants are more susceptible to diseases (Marschner, 1995; Grewal et al., 1996; Streeter et al., 2001; Helfenstein et al., 2015). Most studies looking for a potential relationship between plant Zn status and disease severity have reported an ameliorated response to diseases caused by fungi in plants supplemented with Zn (Grewal, 2001; Simoglou and Dordas, 2006; Huber and Haneklaus, 2007; Khoshgoftarmanesh et al., 2010). For example, a study conducted on the effect of different pathogens in soybeans with different Zn treatments showed that plants grown with either normal or high Zn

FIGURE 1 | Low- and high-Zn conditions created by plants to confront pests, pathogens, and herbivores. Low-Zn conditions when resulted from a poor Zn diet can trigger the synthesis of organic defenses against a wide variety of plant enemies. Active Zn-sequestering/efflux from/to the extracellular media reduces/increases Zn availability, causing deficiency/toxicity to pathogens. The presence of high Zn concentrations in the above-ground parts of Zn hyperaccumulating species causes Zn toxicity to plant attackers.
fertilization had fewer positive counts for bacterial pustules caused by Xanthomonas axonopodis pv. glycines and less lesion area affected by the necrotrophic fungus Sclerotinia sclerotiorum than plants grown with low Zn (Helfenstein et al., 2015).

Along this line, Zn-efficient genotypes have been found to be more disease resistant, showing a positive relationship between increased plant growth and reduced pathogen susceptibility (Graham and Webb, 1991). Although the response of plants to Zn deficiency has been extensively studied, the different components and mechanisms involved in the efficient use of Zn remain unclear (Hacisalihoglu and Kochian, 2003). The oxidative damage due to ROS production is reduced in Zn efficient genotypes (Rose et al., 2012). Moreover, supplemental Zn has been found to increase SOD activity in plants under abiotic stress (Noman et al., 2018).

Recently, important advances on microRNA (miRNA) functions have been achieved, which would contribute to clarifying the mechanisms involved in the responses of plants to pests and pathogens under Zn scarcity. In addition to plant growth and development, miRNAs modulate plant responses to stress conditions (Noman et al., 2017b). The ROS-quenching metalloenzyme Cu/Zn-SOD is post-transcriptionally regulated by a miRNA; specifically, the miR398 targets isoforms CSD1 and CSD2, which are located at the cytosol and chloroplast, respectively (Jones-Rhoades et al., 2006). The down-regulation of miR398 induces the CSD1 gene expression, a mechanism triggered by bacterial infection (Psuedomonas syringae) in Arabidopsis (Sunkar et al., 2006). However, miR398 was up-regulated under low Cu²⁺ concentrations. Although the effect of Zn starvation on miR398 has not been reported, the up-regulation response found for Cu could also be associated to Zn, as the protein is cofactored by both elements. Nonetheless, further studies are needed to clearly establish the relationship between Zn deficiency and pathogen susceptibility.

Reduced protein synthesis is one effect of Zn deficiency that leads to a higher accumulation of amino acids. This increase has been related to higher incidences of sucking insects present on the plant (Fageria et al., 2002). Similar results were obtained for Zn-deficient soybean plants that showed increased aphid colonization compared to plants grown at physiologically sufficient Zn concentrations (Helfenstein et al., 2015). Contrastingly, in the same study, the biotrophic obligate pathogen that causes soybean rust, Phakopsora pachyrhizi, had a lesser rate of spread in deficient plants. The authors concluded that one single element can differentially affect the response of a specific host to aphids and pathogens. These results revealed the lack of a Zn-specific requirement to fight pests and pathogens, which is a limiting factor for the use of micronutrient fertilization to manage diseases.

Some of the mechanisms involved in the relationship between low Zn and disease susceptibility are starting to emerge. Plant innate immune mechanisms against biotrophic pathogens are associated with the buildup of SA concentrations, the ROS burst, and the trigger of SA-dependent SAR in non-infected tissues (Cameron et al., 1994; Breitenbach et al., 2014). Different compounds participate in the long-distance transmission of SAR, among them, the C9 dicarboxylic acid, azelaic acid (AzA) (Jung et al., 2009). A recent report revealed an evolutionary conserved Zn sensing-mechanism, which connects root growth to the plant’s pathogen responses (Bouain et al., 2018). The authors found that AZELAIC ACID INDUCED1 [AZI1], a member of the lipid transfer protein family (LTPs) of pathogenesis related (PR) proteins, is triggered by azelaic acid (AzA) during SAR. AZI1 regulated growth and immunity responses depending on Zn availability. The results demonstrated that signaling triggered by low Zn and AzA interact. The low Zn status negatively affected the expression of defense-related genes, among others PRI, a SA-induced marker gene that modulated the response to AzA. During early development, when Zn availability is low, Arabidopsis can prioritize root growth over defense responses, leading to an increase in soil volume mined for available Zn. The authors highlighted the need for more extensive studies on the plant interacting signaling networks between defense and growth. Along this line, it would be very interesting to test these signaling pathways in genotypes with contrasting Zn efficiency. A close connection between biotic stress defense and growth signaling networks becomes especially evident in the view of the fact that AzA is listed among the agricultural chemicals for plant resistance priming (Aranega-Bou et al., 2014), but was found to severely inhibit root growth in Arabidopsis plants supplied with sufficient Zn concentrations (Bouain et al., 2018).

Zn-Sequestering Defense Strategies

The requirement of Zn and other micronutrients by pathogens has impelled the animal immune system to evolve mechanisms to sequester them in order to restrict pathogen access to these essential nutrients, a process known as nutritional immunity (Hood and Skaar, 2012). There is still little evidence on metal-withholding mechanisms in plants to fight microbes, and most studies focused on Fe. In the case of pathogenic bacteria, the withholding of Fe within a plant storage compartment is considered one of the first mechanisms of defense (Fones and Preston, 2013). A research by Mila et al. (1998) suggested that polyphenols in plants may play a similar role to that of ion-binding proteins in animals by withholding iron away from pathogens. The sequestration of Fe might induce the expression of genes associated with Fe homeostasis and activation of immune responses against biotrophic pathogens (Dellagi et al., 2005). Recently, the expression levels of an apoplastic iron chelating protein has been found to correlate with tolerance to the necrotrophic bacterium Pectobacterium carotovorum subsp. carotovorum (Pcc) (Hsiao et al., 2017).

In the view of the essential role of Zn in key metabolic processes in both plants and pathogens, nutritional immunity mechanisms based on competition for Zn are highly plausible. Metal-chelating compounds could restrict the availability of metals to pathogens in plants. A recent study on the Zinc-INDUCED FACILITATOR [ZIF1], a nicotianamine (NA) transporter located at the tonoplast in A. thaliana, showed that the perturbation of the subcellular distribution of the Zn-chelator NA has a great effect in the subcellular and inter-organ partitioning of Zn (Haydon et al., 2012). As suggested by the authors, such studies, in addition to helping to advance the biofortification of crops, also contribute in providing clues concerning Zn-related mechanisms to ameliorate the plant’s resistance to pathogens. Along this line, a ZIF-1 orthologue in
Zea mays, Zm-mfs1, was previously reported to be induced by fungal infection in resistant as well as in susceptible interactions (Simmons et al., 2003).

Zn Deficiency-Triggered Defense Mechanisms

Nutrient deficiencies usually render plants more susceptible to pests and pathogens. Nonetheless, some signaling pathways triggered in response to nutrient scarcity boost the plant immune system.

Such a defense activation implying altered gene-expression profiles and further metabolite production has specifically been reported for Fe- and Mn-deficient conditions (Rodríguez-Celma et al., 2013; Fourcroy et al., 2014; Schmid et al., 2014; Rodríguez-Celma et al., 2016). Information regarding Zn deficiency is still scarce, but some studies indicate that pathways signaling Zn-deficient conditions can trigger plant defense responses.

Defensins (DFN) are known for their involvement in the innate immune defense system (Stotz et al., 2009). Recently, an increased expression of three DFN-like proteins in *A. thaliana* grown under Zn-deficient conditions has been found (Inaba et al., 2015). These proteins were under the direct control of the basic region leucine-zipper transcription factor gene bZIP19. This transcription factor plays a role in the Zn-depletion responses by regulating ZIP transporter gene expression (Assunçao et al., 2010). The bZIPs regulate key processes in both plants and animals. In plants, bZIPs participate among other processes, in response to abiotic and biotic stress (Noman et al., 2019a). The bZIP TFs are key players in plant innate immunity regulating genes associated with PAMP-triggered immunity, ET immunity, and hormonal signaling networks (Noman et al., 2017a). Although plant DFN are also implicated in plant growth and development (Stotz et al., 2009), exploration and functional characterization of novel bZIP TFs in planta could be helpful tools to improve crop resistance against pathogens and environmental stresses (Inaba et al., 2015).

Defense Mechanisms Against Biotic Stress Under High-Zinc Conditions

Many studies have reported enhanced plant resistance to diseases and pests after supplemental Zn concentrations, or when a mix of micronutrients including Zn was applied (Graham and Webb, 1991; Dordas, 2008; Chavez-Dulanto et al., 2018). In fact, several phytosanitary formulae are based on Zn-organic complexes. In this situation, microorganisms and herbivores may be directly affected by the toxic effect of Zn rather than through plant metabolic responses (Graham and Webb, 1991).

Zn Efflux Defense Strategies

High Zn concentrations are toxic to pests and pathogens. In animals, excess Zn can displace other essential metals from their catalytic center within the protein. Accordingly, the deployment of high Zn concentrations in mucosal surfaces infected with *Streptococcus pneumoniae* has been found to produce a displacement of Mn from the pathogen’s Mn transporters, inducing Mn starvation and enhancing bacterial sensitivity to oxidative stress, among other effects (McDevitt et al., 2011).

Few similar Zn efflux mechanisms have been reported in plants, although Stolpe et al. (2017) found that aphid infestation in *Arabidopsis halleri* increased phloem Zn concentration as a first line of defense. Phloem Zn content varied and was higher in the phloem exudates of highly valuable tissues needing protection; i.e., young leaves were better defended than older ones, which agrees with the optimal defense theory (Strauss et al., 2004).

Zinc-Concentration-Dependent Plant Defense Mechanisms

High Zn concentrations are potentially toxic to all organisms. Zn phytotoxicity usually becomes visible at leaf concentration higher than 300 mg Zn kg\(^{-1}\) (Broadley et al., 2007). Zinc toxicity-associated symptoms in plants include reduced yield and stunted growth, reduced export of photoassimilates from leaves to roots (Ruano et al., 1988), and Fe-deficiency-induced chlorosis through reductions in chlorophyll synthesis and chloroplast degradation (Chaney, 1993). The use of high Zn in plant defense depends on the relative host and pest/pathogen Zn-tolerance. In this context, the potential use of Zn as a toxic compound for plant defense has mostly been studied in metal hyperaccumulating species, which tolerate extremely high Zn tissue concentrations. Metal hyperaccumulation can provide defense against herbivores and pathogens in plants, an adaptive advantage that might have driven the evolution of this trait (Boyd and Martens, 1992). Multiple studies have related metal hyperaccumulation to plant defense against biotic stress. Different mechanisms for such metal-based protection have been proposed. According to the original “Metal Defense Hypothesis,” the metal concentrations reached in shoot tissues of hyperaccumulating species would be high enough to intoxicate the attacking pest or pathogen (Boyd and Martens, 1992; Poschenrieder et al., 2006). Afterwards, it was found that high metal concentration and organic compounds may cooperate in the plant’s defense (Boyd, 2012). This led to the “Joint-Effects Hypothesis” proposing that high metal concentrations in non-hyperaccumulating species in cooperation with organic substances can be effective in plant defense. In fact, high Zn concentrations found in non-hyperaccumulating species can enhance plant defense (Cheruiyot et al., 2013; Martos et al., 2016).

Direct Zn Toxicity

Direct elemental defense by Zn implies that the high Zn accumulation in the plant tissues is more toxic to the pest/pathogen than the plant. A trade-off between metal-based and organic defenses may further benefit the plant as a potential energy-saving mechanism under biotic stress (Strauss et al., 2002). However, no hard data are available comparing the energy costs for production of organic defenses and metal accumulation, chelation, and compartmentation to demonstrate such a trade-off. Few studies have shown a direct Zn toxicity mechanism in plants against pathogens. In the hyperaccumulating species *Noccaea caerulescens*, high tissue Zn concentrations restricted the infection of the biotrophic pathogen *P. syringae pv. maculicola*. ROS-dependent defense mechanisms commonly associated
with plant defense against biotrophs, such as callose deposition and pathogenesis-related (PR) gene expression, were not triggered despite the fact of increased salicylic acid (SA) levels in the infected plants. This suggests that in this model, a direct toxic effect of Zn would be the main factor limiting bacterial colonization (Fones et al., 2010; Fones and Preston, 2013).

A recent study monitoring the effect of high Zn supply in the response of *N. caerulescens* to *Alternaria brassicicola* (Gallego et al., 2017) showed that the average *Noccaea* leaf Zn concentration, after 5 weeks of growth in 25% modified Hoagland solution with 102 µM ZnSO₄, was 5,000 µg/g dry weight. This is equivalent to 10 mM Zn in the cell sap, a concentration 20 times higher than the EC₅₀ for *A. brassicicola in vitro* (Figure 2A). Because *Alternaria* is a necrotrophic fungus, a direct effect of Zn would be feasible due to the release of toxic Zn concentrations into the extracellular space as a consequence of cell compartmentation destruction during the colonization process (Figure 2B). However, joint effects may also operate, as in this pathosystem, high Zn also triggered organic defenses.

Nonetheless, most supporting evidence for direct Zn toxicity as a plant defense mechanism in Zn hyperaccumulating species has come from studies with insect herbivores (Boyd, 2007; Vesk and Reichman, 2009). High Zn exposure induced metal accumulation in insect bodies and eggs, causing lower fecundity (Shu et al., 2009, Shu et al., 2012), reduced growth, and higher mortality rates (Nursita et al., 2005; Jhee et al., 2006; Noret et al., 2007; Lagisz, 2008; Kazemi-Dinan et al., 2014). The high Zn concentration in Zn hyperaccumulating species can affect insect herbivores with a chewing feeding mode. High Zn concentrations in the diet resulted in a clear deterrent effect (Behmer et al., 2005; Kazemi-Dinan et al., 2014; Kazemi-Dinan et al., 2015; Stolpe et al., 2017). Fewer studies have focused on insects with a sucking-feeding mode. A Zn-rich diet increased the growth of the generalist aphid *Myzus persicae*, while enrichment with Cd had no effect (Stolpe and Müller, 2016). However, the combination of both metals produced a greater negative effect on the phloem-sucking insects with respect to individual metals. The higher phloem concentrations of Cd and Zn found in the metal hyperaccumulator *A. halleri* growing on metal-rich soils deterred aphid infestation (Stolpe et al., 2017). Furthermore, Zn can additively enhance the toxicity to insects of other metals (Cd, Ni, or Pb). This has been observed both in studies using artificial diets (Jhee et al., 2006) and by adding leaves of hyperaccumulator plants to the insects’ diet (Kazemi-Dinan et al., 2014). A global overview concerning the influence of Zn hyperaccumulation on the plant–predator interaction is given in Table 2.

Direct metal toxicity caused by the ingestion of hyperaccumulator plants is difficult to test, as any other potential organic defense may contribute and mask the results. Most studies have been conducted using species belonging to the Brassicaceae family. In these species, glucosinolates (GS) are constitutive or stress-induced compounds that, upon damage, generate hydrolysis products active against insects and pathogens (Hopkins et al., 2009; Kissen et al., 2009).

In order to evaluate the role of Zn in plant defense, the presence of organic defense compounds such GS in Brassicaceae must be considered. For example, Stolpe et al. (2017) conducted a study on the effect of Cd and Zn exposure and aphid infestation on the phloem exudate composition of *A. halleri* and found higher amounts of GS in addition to Zn for Zn-supplemented plants.

Several studies on the feeding preferences of snails with *Thaspi caerulescens* and *A. halleri* and high Zn showed that Zn-hyperaccumulation did not play a key role in leaf palatability, with GS proving more efficient than Zn in deterring these generalist herbivores (Huitson and Macnair, 2003; Noret et al., 2005, Noret et al., 2007). Recently, it has been observed that the snail *Cantareus aspersus* preferentially feeds on leaves of the Zn-Cd-hyperaccumulator *Noccaea praecox* with low metal concentrations (Llugany et al., 2019) and, better yet, low Zn-Cd leaves with the lowest GS concentrations. However, more prevailing for preferred

FIGURE 2 Zinc concentration that caused a 50% inhibition of *Alternaria brassicicola* growth in *vitro* (*Alternaria brassicicola* EC₅₀) and theoretical correspondence between Zn leaf concentration and Zn concentration in solution in *Noccaea caerulescens* plants grown at 12 and 102 µM Zn (A). Plant and pathogen response curves to metal concentration. A higher optimal metal concentration for the plant fitness than for the pathogen can lead to protection against diseases by elemental defense (B).
consumption than low metal and GS was a high leaf sugar concentration (Llugany et al., 2019).

High Zn Triggers Organic Defenses

Besides its potential direct toxic role in defense, high Zn leaf concentrations may contribute to defense by the priming of defense signaling pathways and enhanced structural defenses (Poschenrieder et al., 2006). High metal concentrations and pathogens trigger signaling pathways that share common elements (Mithöfer et al., 2004). Salicylic acid and jasmonates (JA) play pivotal roles in the systemic defense of plants against biotic stress (Thomma et al., 1998). Nguyen et al. (2014) reported that a JA-induced enhancement of plant DFN increased Zn tolerance in the non-hyperaccumulating species *A. thaliana*. Moreover, the Zn-tolerant species, *A. halleri*, constitutively expressed high DFN and showed an increased tolerance to the necrotrophic fungi *Botrytis cinerea*.

It is noteworthy that in plants with normal Zn supply, the xylem-colonizing bacteria *Xylella fastidiosa* requires the expression of Zn detoxification mechanisms for successful host colonization (Navarrete and De La Fuente, 2015). A recent study by Martos et al. (2016) using different non-hyperaccumulating *Arabidopsis* genotypes infected with the necrotrophic fungi *A. brassicicola* highlighted the key importance of Zn in plant defense

TABLE 2 | Overview of the influence of Zn hyperaccumulation on the plant–predator interaction.

Plant species	Metal	Diet	Biotic stress factor (BSF)	Type of BSF	BSF response	Plant protection	References
Arabidopsis halleri	Zn-Cd	Natural	*Myzus persicae*	Generalist aphid	Increase GSL in phloem of young leaves	Yes	Stolpe et al., 2017
Brassica rapa	Zn-Cd	Artifical	*Myzus persicae*	Generalist aphid	Less survival and performance	Yes	Stolpe and Müller, 2016
Sinapis alba cv. salva	Zn-Cd	Leaf discs	*Pieris napi*	Crucifer specialist caterpillar	Additive toxic effect	Yes	Kazemi-Dinan et al., 2014
Arabidopsis halleri	Zn-Cd	Natural	*Athalia rosae*	Crucifer specialist sawfly larvae	Deterrence effect		
Arabidopsis halleri	Zn-Cd	Leaf discs	*Phaedon cockeariae*	Crucifer specialist beetle			
Arabidopsis halleri	Zn-Cd	Natural	Heliothis virensesc not defined	Generalist caterpillar			
Arabidopsis halleri	Zn-Cd	Natural	Leaf-damaging insects				
None	Zn / Zn-Cd	Artifical	*Plutella xylostella*	Crucifer specialist moth larvae			
Noccaea caerulescens	Zn	Natural and artificial	*Schistocerca gregaria*	Polyphagous locust	Post-ingestive rejection of high-Zn diets	Yes	Behmer et al., 2005
Noccaea caerulescens	Zn	Natural	*Schistocerca gregaria*	Polyphagous locust	Post-ingestive rejection of high-Zn plants	Yes	Pollard and Baker, 1997
Noccaea caerulescens	Zn	Natural	Deroceras caraneae	Slug	Post-ingestive rejection of high-Zn plants		
Noccaea caerulescens	Zn	Natural	*Pieris brassicae*	Caterpillar	Deterrence effect		Jhee et al., 1999
Arabidopsis halleri	Zn	Natural	*Helix aspersa*	Caterpillar	Deterrent effect of high-Zn leaves	Yes	Coleman et al., 2005
None	Zn	Artificial	*Plutella xylostella*	Caterpillar	Toxicity at normal Zn range	Yes	Cheruyot et al., 2013
Noccaea caerulescens	Zn	Natural	*Spodoptera exigua*	Generalist larvae	Toxicity at normal Zn range	Yes	Noret et al., 2005
Noccaea caerulescens	Zn	Natural	*Helix aspersa*	Generalist hervibore	Choice of food not affected	No	Noret et al., 2007
Arabidopsis halleri	Zn	Natural	*Helix aspersa*	Generalist hervibore	No deterrence effect	No	Huitson and Macnair, 2003
Noccaea praecox	Cd/Zn	Natural	*Cantareus asperatus*	Generalist hervibore	No discrimination due to internal Zn	No	Llugany et al., 2019

1Formerly Thlaspi.
2Formerly Helix.
natural diet means plant material, and artificial diet means synthetic diet.
defense and supported the joint effect hypothesis (Boyd, 2012), i.e., the cooperation between metal and organic defenses in plants. Camalexin is a phytoalexin that is essential for the \textit{A. thaliana} resistance against \textit{A. brassicicola} (Thomma et al., 1999). Experimental infection with \textit{A. brassicicola} of the camalexin-deficient mutant of \textit{A. thaliana}, \textit{pad3}, revealed that high leaf Zn concentrations could not completely substitute the role of camalexin. However, in the wild type, Zn enhanced the JA-ethylene (ET)-dependent defense signaling pathway and the expression of \textit{PAD3}, an enzyme that catalyzes the last step in camalexin synthesis (Figure 3).

Moreover, Zn hyperaccumulation is essential for \textit{N. caerulescens} resistance to \textit{A. brassicicola} infection. Regardless of the Zn concentration, \textit{Alternaria} triggers JA-ET- and SA-dependent defense pathways. However, only Zn hyperaccumulating plants showed incompatible interactions with the pathogen. Nonetheless, a joint effect of Zn and organic defenses could not be discarded, as higher GS concentrations were also found in \textit{Alternaria}-inoculated Zn hyperaccumulating plants (Gallego et al., 2017).

Nitric oxide (NO) is reported to play a role in the plant response to toxic Zn concentrations (Xu et al., 2010). Recently, NO has been found in \textit{Solanum nigrum} to participate in the expression of many Zn-mediated miRNA, with the predicted target genes indicating that excess Zn modulates pathogen tolerance and the transcriptional process by miRNA pathways (Xie et al., 2017).

PATHOGENS AND PESTS EVOLVE MECHANISMS TO COUNTERACT ZINC-RELATED PLANT DEFENSE

To counteract the host-imposed Zn scarcity or toxicity, pathogens and pests have evolved efficient Zn management mechanisms and the capability to use Zn to increase virulence.

In pathogens, high Zn use efficiency implies mechanisms that lead to higher Zn import, export, or/and Zn-buffering capacity. In bacteria, the Zn uptake regulator (Zur), a Zn-responsive transcription factor, member of the Fur family of proteins, is the most common transcription factor that regulates cellular Zn

FIGURE 3 | Zn and camalexin, a phytoalexin essential for \textit{A. thaliana} resistance against \textit{Alternaria brassicicola}, showed a joint effect in the Arabidopsis response to \textit{Alternaria}. High leaf Zn concentration could not substitute the role of camalexin in the Arabidopsis camalexin-deficient mutant, \textit{pad3}, infected with \textit{A. brassicicola}. Nonetheless, in the wild type, Zn supplementation greatly enhanced the JA-ET-dependent defense signaling pathway and the expression of \textit{PAD3}, an enzyme that catalyzes the last step in camalexin synthesis.
upregulation of antioxidative enzymes (Govrin and Levine, 2013). Apart from antioxidant enzymes, acid phosphatase (ACP) and alkaline phosphatase (AKP) have been associated with detoxification. An example of enhanced activity of these metalloenzymes has been observed in several herbivores under metal toxicity stress (Zhao and Sun, 2000). In order to survive, herbivores activate an effective antioxidant defense system (enzymes and non-enzyme compounds) that includes the ingestion of toxic metal concentrations (Ihechiluru et al., 2015) and the induction of glutathione (GSH) production (Stork et al., 2013; Jean et al., 2016). Variations of SOD and catalase (CAT) activities have been reported to correlate with metal stress and confer tolerance to toxic metal concentrations (Zhu et al., 2010). The ingestion of heavy metals has been proposed as a key mechanism to cope with the presence of toxic Zn concentrations in plant tissues. Herbivores have also elaborated protective mechanisms against the presence of toxic Cu concentrations in plant tissues. The ingestion of toxic metal concentrations induces ROS against the presence of toxic Zn concentrations in plant tissues (Stork et al., 2013; Jean et al., 2016). Variations of SOD and catalase (CAT) activities have been reported to correlate with metal stress and confer tolerance to toxic metal concentrations (Zhu et al., 2010).

Metalloproteases that use Zn as a cofactor are further potential virulence factors during bacterial and fungal infection. Metalloproteases have been reported to suppress the host immune responses in animal systems (Staats et al., 2013; Sun et al., 2016). Zn-metalloproteases, in addition to breaking down the host defense barriers, could interfere in the host-defense mechanisms. However, their specific role in fighting the plant immune system remains elusive (Figaj et al., 2019).

Herbivores have also elaborated protective mechanisms against the presence of toxic Zn concentrations in plant tissues. In order to survive, herbivores activate an effective antioxidant defense system (enzymes and non-enzyme compounds) that includes the ingestion of toxic metal concentrations. Variations of SOD and catalase (CAT) activities have been reported to correlate with metal stress and confer tolerance to toxic metal concentrations. The ingestion of heavy metals has been proposed as a key mechanism to cope with the presence of toxic Zn concentrations in plant tissues. Herbivores have also elaborated protective mechanisms against the presence of toxic Cu concentrations in plant tissues. The ingestion of toxic metal concentrations induces ROS against the presence of toxic Zn concentrations in plant tissues (Stork et al., 2013; Jean et al., 2016). Variations of SOD and catalase (CAT) activities have been reported to correlate with metal stress and confer tolerance to toxic metal concentrations (Zhu et al., 2010).
turning Zn into a highly valuable tool to understand the mechanisms underlying the plant–pest/pathogen interactions.

The presence of highly efficient Zn sensing probes and Zn detoxification systems in herbivores and pathogens indicates the relevance of Zn-related defense mechanisms in plants, which include different strategies not restricted to Zn-hyperaccumulating species. Nonetheless, some pests and pathogens have evolved mechanisms to circumvent the plant’s Zn-poisoning strategies. Therefore, future studies should tackle this issue in a more integrative manner by contributing to the understanding of the zinc homeostatic mechanisms in plants and pests and pathogens, as well as to their interaction. keystones for future research advances should further clarify the double role of defensins as Zn-ligand and biotic stress signaling molecules, the ligand exchange processes, and the cellular and subcellular compartmentation mechanisms for both Zn and its ligands. The outcomes of these studies would strongly contribute to visualize potential strategies that might benefit the host immune system and to design specific Zn-related tools to trick plant attackers or/and to ameliorate plant defense.

AUTHOR CONTRIBUTIONS

All coauthors contributed to search of information and structuring of the review. CC and SM wrote the manuscript with inputs from RT, ML, and CP. BG drew the figures and CP acted as the coordinator and the supervisor.

FUNDING

This study was funded by the Spanish Government (Ministerio de Ciencia, Innovación y Universidades; projects BFU2013-42839-R and BFU2016-75176-R).

REFERENCES

Ahmad, S. (1992). Biochemical defence of pro-oxidant plant allelochemicals by herbivorous insects. Biochem. Syst. Ecol. 20, 269–296. doi: 10.1016/0305-1978(92)90040-K

Amtmann, A., Trouttford, S., and Armengaud, P. (2008). The effect of potassium nutrition on pest and disease resistance in plants. Physiol. Plant. 133, 682–691. doi: 10.1111/j.1399-3054.2008.01075.x

Andreini, C., Bertini, L. and Rosato, A. (2009). Metalloproteomes: a bioinformatic approach. Acc. Chem. Res. 42, 1471–1479. doi: 10.1021/ar90015x

Aquiel, M. A., and Leather, S. R. (2011). Effect of nitrogen fertilizer on the growth and survival of Rhaphosiphum padi (L.) and Sitobion avenae (F.) (Homoptera: Aphididae) on different wheat cultivars. Crop Protect. 30, 216–221. doi: 10.1016/j.cropro.2010.09.013

Aranega-Bou, P., de la O’Leiva, M., Finiti, L., Garcia-Agustín, P., and González-Aqueel, M. A., and Leather, S. R. (2011). Effect of nitrogen fertilizer on the growth and survival of Zn-poisoning strategies. Therefore, future studies should tackle this issue in a more integrative manner by contributing to the understanding of the zinc homeostatic mechanisms in plants and pests and pathogens, as well as to their interaction. keystones for future research advances should further clarify the double role of defensins as Zn-ligand and biotic stress signaling molecules, the ligand exchange processes, and the cellular and subcellular compartmentation mechanisms for both Zn and its ligands. The outcomes of these studies would strongly contribute to visualize potential strategies that might benefit the host immune system and to design specific Zn-related tools to trick plant attackers or/and to ameliorate plant defense.

AUTHOR CONTRIBUTIONS

All coauthors contributed to search of information and structuring of the review. CC and SM wrote the manuscript with inputs from RT, ML, and CP. BG drew the figures and CP acted as the coordinator and the supervisor.

FUNDING

This study was funded by the Spanish Government (Ministerio de Ciencia, Innovación y Universidades; projects BFU2013-42839-R and BFU2016-75176-R).

REFERENCES

Ahmad, S. (1992). Biochemical defence of pro-oxidant plant allelochemicals by herbivorous insects. Biochem. Syst. Ecol. 20, 269–296. doi: 10.1016/0305-1978(92)90040-K

Amtmann, A., Trouttford, S., and Armengaud, P. (2008). The effect of potassium nutrition on pest and disease resistance in plants. Physiol. Plant. 133, 682–691. doi: 10.1111/j.1399-3054.2008.01075.x

Andreini, C., Bertini, L. and Rosato, A. (2009). Metalloproteomes: a bioinformatic approach. Acc. Chem. Res. 42, 1471–1479. doi: 10.1021/ar90015x

Aquiel, M. A., and Leather, S. R. (2011). Effect of nitrogen fertilizer on the growth and survival of Rhaphosiphum padi (L.) and Sitobion avenae (F.) (Homoptera: Aphididae) on different wheat cultivars. Crop Protect. 30, 216–221. doi: 10.1016/j.cropro.2010.09.013

Aranega-Bou, P., de la O’Leiva, M., Finiti, L., Garcia-Agustín, P., and González-Aqueel, M. A., and Leather, S. R. (2011). Effect of nitrogen fertilizer on the growth and survival of Zn-poisoning strategies. Therefore, future studies should tackle this issue in a more integrative manner by contributing to the understanding of the zinc homeostatic mechanisms in plants and pests and pathogens, as well as to their interaction. keystones for future research advances should further clarify the double role of defensins as Zn-ligand and biotic stress signaling molecules, the ligand exchange processes, and the cellular and subcellular compartmentation mechanisms for both Zn and its ligands. The outcomes of these studies would strongly contribute to visualize potential strategies that might benefit the host immune system and to design specific Zn-related tools to trick plant attackers or/and to ameliorate plant defense.

AUTHOR CONTRIBUTIONS

All coauthors contributed to search of information and structuring of the review. CC and SM wrote the manuscript with inputs from RT, ML, and CP. BG drew the figures and CP acted as the coordinator and the supervisor.

FUNDING

This study was funded by the Spanish Government (Ministerio de Ciencia, Innovación y Universidades; projects BFU2013-42839-R and BFU2016-75176-R).

Ahmad, S. (1992). Biochemical defence of pro-oxidant plant allelochemicals by herbivorous insects. Biochem. Syst. Ecol. 20, 269–296. doi: 10.1016/0305-1978(92)90040-K

Ahmad, S. (1992). Biochemical defence of pro-oxidant plant allelochemicals by herbivorous insects. Biochem. Syst. Ecol. 20, 269–296. doi: 10.1016/0305-1978(92)90040-K

Ahmad, S. (1992). Biochemical defence of pro-oxidant plant allelochemicals by herbivorous insects. Biochem. Syst. Ecol. 20, 269–296. doi: 10.1016/0305-1978(92)90040-K

Ahmad, S. (1992). Biochemical defence of pro-oxidant plant allelochemicals by herbivorous insects. Biochem. Syst. Ecol. 20, 269–296. doi: 10.1016/0305-1978(92)90040-K

Ahmad, S. (1992). Biochemical defence of pro-oxidant plant allelochemicals by herbivorous insects. Biochem. Syst. Ecol. 20, 269–296. doi: 10.1016/0305-1978(92)90040-K
Crawford, A. C., Lehtovirta-Morley, L. E., Alamir, O, Niemiec, M. J., Alawfi, B., Alssarraf, M., et al. (2018). Biphasic zinc compartmentalisation in a human fungal pathogen. *PLoS Path.* 14, e1007013. doi: 10.1371/journal.ppat.1007013

Datnoff, L. E., Elmer, W., and Huber, D. M. (2007). *Mineral nutrition and plant disease.* (St Paul, Minn: APS Press). *PLoS Genet.* 14(4), e1007304

Deepak, S. A., Ishii, H., and Park, P. (2006). Acibenzolar-S-methyl primes cell wall strengthening genes and reactive oxygen species forming/scavenging enzymes in cucumber after fungal pathogen attack. *Physiol. Mol. Plant Pathol.* 69, 52–61. doi: 10.1016/j.pmpp.2006.12.006

Degenhardt, J., Al-Masri, A. N., Kurkuçuoglu, S., Szankowski, L. and Gau A. E. (2005). Characterization by suppression subtractive hybridization of transcripts that are differentially expressed in leaves of apple scab-resistant and susceptible cultivars of *Malus domestica.* *Mot. Genom. Genomics* 273, 326–335. doi: 10.1007/s00438-005-1136-7

Dellagi, A., Rigault, M., Segond, D., Roux, C., Kreaipfel, Y., Cellier, E., et al. (2005). Siderophore-mediated upregulation of *Arabidopsis* ferritin expression in response to *Erwinia chrysanthemi* infection. *Plant J.* 43, 262–272. doi: 10.1111/j.1365-313X.2005.02451.x

Dordas, C. (2008). Role of nutrients in controlling plant diseases in sustainable agriculture. *A review.* *Agron. Sust. Develop.* 28, 33–46. doi: 10.1051/agro:2007051

El-Moshaty, F. I. B., Pike, S. M., Novacky, A. J., and Sehgal, O. P. (1993). Lipid peroxidation and superoxide production in *cowpea* (*Vigna unguiculata*) leaves infected with tobacco ringspot virus or southern bean mosaic virus. *Physiol. Mol. Plant Pathol.* 43, 109–119. doi: 10.1016/0032-9828(93)90050-1

Figaj, D., Ambroziak, P., Przepiora, T., and Skorko-Glonek, J. (2019). The role of *Uromyces pisi* in *S.aba* infection. *Front. Physiol.* 9, 6844–6854. doi: 10.3389/fphys.2018.01270

Forde, B. G., and Lea, P. J. (2007). Glutamate in plants: metabolism, regulation, and function. *Science.* 315, 1120–1124. doi: 10.1126/science.1140827

Gao, S., Wang, Y. B., and Huang, J. L. (2016). Zinc alleviates copper toxicity in tobacco plants. *Sci. Rep.* 6, 21926. doi: 10.1038/srep21926

El-Moshaty, F. I. B., Pike, S. M., Novacky, A. J., and Sehgal, O. P. (1993). Lipid peroxidation and superoxide production in *cowpea* (*Vigna unguiculata*) leaves infected with tobacco ringspot virus or southern bean mosaic virus. *Physiol. Mol. Plant Pathol.* 43, 109–119. doi: 10.1016/0032-9828(93)90050-1

Fabiano, C. C., Tezotto, T., Polacco, J. C., and Mazzafera, P. (2015). Essentiality of nickel in plants: a role in plant stresses. *Agron. Sust. Develop.* 35, 833–848. doi: 10.1007/s13583-014-0522-4

Fageria, N. K., Baligar, V. C. and Clark R. B. (2002). Micronutrients in crops. *Agron. Sust. Develop.* 22, 99–120. doi: 10.1007/BF02345177

Figaj, D., Ambroziak, P., Przepiora, T., and Skorko-Glonek, J. (2019). The role of *Uromyces pisi* in *S.aba* infection. *Front. Physiol.* 9, 6844–6854. doi: 10.3389/fphys.2018.01270

Greenshields, D. L., Liu, G., and Wei, Y. (2007). Role of iron in controlling plant diseases in sustainable agriculture. *A review.* *Agron. Sust. Develop.* 28, 33–46. doi: 10.1051/agro:2007051

Fodor, J., Gullner, G., Adam, A. L., Barna, B., Komives, T. and Kiraly, Z. (1997). Vacuolar nicotianamine has critical and distinct roles under iron deficiency. *Plant Physiol.* 114, 1443–1451. doi: 10.1104/pp.114.4.1443

Fones, H. N., and Preston, G. M. (2010). Metal hyperaccumulation armors plants against disease. *PLoS Path.* 6, e1001093. doi: 10.1371/journal.ppat.1001093

Fones, H. N., and Preston, G. M. (2012). Reactive oxygen and oxidative stress tolerance in plant pathogenic *Pseudomonas.* *FEBS Microbiol. Lett.* 327, 1–8. doi: 10.1111/j.1574-6988.2011.02449.x

Fones, H. N., and Preston, G. M. (2013). The impact of transition metals on bacterial plant disease. *FEBS Microbiol. Rev.* 37, 495–519. doi: 10.1002/1575-9476.201204

Forde, B. G., and Lea, P. J. (2007). Glutamate in plants: metabolism, regulation, and signalling. *J. Exp. Bot.* 58, 2339–2358. doi: 10.1093/jxb/erm121

Forsythe, P. S., Prior, L. R., and Kaur, D. K. (2005). *Agricultural and Environmental Microbiology.* 1st ed. New York, Academic Press, 381–406. doi: 10.1016/j.femsle.2005.06.034

Huber, D. M. (1980). "The role of mineral nutrition in defense," in *Plant disease: An advanced treatise, Vol. 5. How plants defend themselves,* eds J. G. Horsfall, E. B. Cowling (New York, Academic Press), 381–406. doi: 10.1016/j.femsle.2005.06.034

Hood, M. I., and Skaar, E. P. (2012). Nutritional immunity: transition metals at the pathogen–host interface. *PLoS Path.* 8, e1002578. doi: 10.3389/fpath.2010.002578

Horsfall, E. B. Cowling (New York, Academic Press), 381–406. doi: 10.1016/j.femsre.fux.050-050902

Huang, Q., Wang, Y., Ma, J., Li, L., Xu, Q., Su, M., et al. (2013). Depletion of silicon provided as a nutrient in hydroponic culture enhances rice responses to fungal infections. *Front. Plant Sci.* 4, e24578. doi: 10.3389/fpls.2015.00754

Huber, D. M., and Haneklaus, S. (2007). Managing nutrition to control plant disease. *Landbauforsch. Volk.* 4, 313–322.
Kim, M. S., Kim, H. S., Kim, Y. S., Baek, K. H., Moon, J. S., Choi, D., et al. (2007). Expression of lily chloroplastic Cu. Zn superoxide dismutase enhances resistance to Erwinia carotovora in potatoes. Plant Pathol. J. 23, 300–307. doi: 10.5423/PPJ.2007.23.4.300

Kim, S. H., Hong, J. K., Lee, S. C., Sohn, K. H., Jung, H. W., and Hwang, B. K. (2004). CAZFP1, CYS2/His(2)-type zinc-finger transcription factor gene functions as a pathogen-induced early-defense gene in Capsicum annuum. Plant Mol. Biol. 55, 883–904. doi: 10.1023/B:PSPF.0000011034-2151-5

Kiráde, T. B., Poschenrieder, C., and Kopitke, P. M. (2011). The standard electrode potential (E°) predicts the prooxidant activity and the acute toxicity of metal ions. J. Inorg. Biochem. 105, 1438–1445. doi: 10.1016/j.inorgbio.2011.08.024

Kissen, R., Rossiter, J. T. and Bones, A. M. (2009). The ‘mustard oil bomb’: Not so easy to assemble! Localization, expression and distribution of the components of the myrosinase enzyme system. Phytochem. Rev. 8, 69–86. doi: 10.1007/s11101-006-9109-1

Kumar, D., Rampuria, S., Singh, N. K., and Kirti, P. B. (2016). A novel zinc-binding alcohol dehydrogenase 2 from Arachis hypogea, expressed in response to resistance against late leaf spot pathogen, induces cell death when transexpressed in tobacco. FEBS Open Bio. 6, 200–210. doi: 10.1111/feb2.12404

Lagisz, M. (2008). Changes in morphology of the ground beetle Pterostichus obsolentus F. (Coleoptera; Carabidae) from vicinities of a zinc-and-lead ecosystem. Environ. Toxicol. Chem. 27, 1744–1747. doi: 10.1897/07-661.1

Laiti, J. Y., Lee, B. M., and Wright, P. E. (2001). Zinc finger proteins: New insights into structural and functional diversity. Curr. Op. Str. Biol. 11, 39–46. doi: 10.1007/s10886-005-9000-0

Lawrence, S. D., Novak, N. G., Jones, R. W., Farrar, R. R., and Blackburn, M. B. (2014). Herbivory responsive C.H. zinc finger transcription factor protein CBF2 from potato. Plant Physiol. Biochem. 80, 226–233. doi: 10.1016/j.plaphy.2014.04.010

Lehman, C. M., Pahls, D. R., Meredith, J. M., Sommer, R. D., Heinekey, D. M., Cundari, T. R. et al. (2015). Oxyfunctionalization with Cp*Ir-III(NHC)(Me) with O2: Identification of a rare bimetallic Ir-IV uox-intermediate. J. Am. Chem. Soc. 137, 3574–3584. doi: 10.1021/jacs.5b03290

Li, Z., Fan, Y. C., Gao, L., Cao, X., Ye, J. L., and Li, G. H. (2016). The dual roles of zinc in mitigating peach gummosis. Plant Dis. 100, 345–351. doi: 10.1094/PDIS-01-15-0131-RE

Liu, G., Greenshields, D. L., Sammynaiken, R., Hirji, R. N., Selvaraj, G., and Wei, Y. (2007). Targeted alterations in iron homeostasis underlie plant defense responses. J. Cell Sci. 120, 596–605. doi: 10.1242/jcs.001362

Liu, J., Guan, T., Zheng, P., Chen, L., Yang, H., Huai, B., et al. (2016). An extracellular Zn-only superoxide dismutase from Puccinia striiformis confers enhanced resistance to host-derived oxidative stress. Environ. Microbiol. 18, 4118–4135. doi: 10.1111/1462-2920.13451

Liu, Y., Wu, H., Kou, L., Liu, X., Zhang, J., Guo, Y., et al. (2014). Two metallothionein genes in Oxya chinensis: molecular characteristics, expression patterns and roles in heavy metal stress. PLoS One 9, e112759. doi: 10.1371/journal.pone.0112759

Liu, Y. L., Schif, M., Marathe, R., and Dinesh-Kumar, S. P. (2002). Tobacco RAR1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J. 30, 415–429. doi: 10.1046/j.1365-313X.2002.01297.x

Llugany, M., Tolrà, R., Barceló, J., and Poschenrieder, C. (2019). Snails prefer it sweet: A multifactorial test of the metal defence hypothesis. Plant Physiol. Biochem. 132, 300–307. doi: 10.1016/j.plaphy.2018.11.013

López-Cruz, J., Oscar, C. S., Emma, F. C., Pilar, G. A., and Carmen, G. B. (2017). Absence of Cu-Zn superoxide dismutase BCSOD1 reduces Botrytis cinerea virulence in Arabidopsis and tomato plants, revealing interplay among reactive oxygen species, callose and signalling pathways. Mol. Plant Pathol. 18, 16–31. doi: 10.1007/s11107-016-0000-4

Madhoo, A. E., Fraternali, F., and Sibata, O. (2015). Function of iron in plants: A physiological perspective. J. Inorg. Biochem. 159, 1541–1545. doi: 10.1016/j.jinorgbio.2015.08.007

Ma, L., Terviliger, A., and Maresso, A. W. (2015). Iron and zinc exploitation during herbivory on low-zinc phenotypes of the hyperaccumulator Thlaspi caerulescens (Brassicaceae). Plant Physiol. Biochem. 84, 2982–2994. doi: 10.1016/j.plaphy.2016.01.015

Marguerettaz, M., Dieppois, G., Que, Y. A., Ducret, V., Zuchuat, S., and Perron, K. (2016). Sputum containing zinc enhances carbapenem resistance, biofilm formation and virulence of Pseudomonas aeruginosa. Microb. Pathog. 77, 36–41. doi: 10.1016/j.micpath.2014.10.011

Marcshner, H. (1995). Mineral Nutrition of Higher Plants. (Boston, USA: Academic Press).

Marcshner, H., and Marcshner, P. (2012). Marschner's mineral nutrition of higher plants, 3rd ed. (San Diego, Elsevier Academic Press), 1–651.

Marschner, P., and Marschner, H. (1995). Marschner's mineral nutrition of higher plants. (Boston, USA: Academic Press).

Marschner, H., and Marschner, P. (2012). Marschner’s mineral nutrition of higher plants, 3rd ed. (San Diego, Elsevier Academic Press), 1–651.
Martínez-Cruz, J., Romero, D., de la Torre, F. N., Fernandez-Ortuno, D., Tores, J. A., de Vicente, A., et al. (2018). The functional characterization of Podosphaera xanthii candidate effector genes reveals novel target functions for fungal pathogenicity. Mol. Plant Microbe Interact. 31, 914–931. doi:10.1094/ MPMI-12-17-0318-R

Martos, S., Gallego, B., Cabot, C., Llugany, M., Barceló, J., and Poschenrieder, C. (2016). Zinc triggers signaling mechanisms and defense responses promoting resistance to Alternaria brassicicola in Arabidopsis thaliana. Plant Sci. 249, 13–24. doi:10.1016/j.plantsci.2016.05.001

McAllister, B. B., and Dyck, R. H. (2017). Zinc transporter 3 (ZnT3) and vesicular zinc in central nervous system function. Neurosci. Biobehav. Rev. 80, 329–350. doi:10.1016/neubiorev.2017.06.006

McDevitt, C. A., Ogunniyi, A. D., Valkov, E., Lawrence, M. C., Kobe, B., McEwan, A. G., et al. (2011). A molecular mechanism for bacterial susceptibility to zinc. PLoS Path. 7, e1002357. doi:10.1371/journal.ppat.1002357

Mikhaylina, A., Ksibe, A. Z., Scanlan, D. J., and Blindauer, C. A. (2018). Bacterial attributes of water-stressed radish (Raphanus sativus) against infestation by melon fly, Rhodnius prolixus. J. Med. Entomol. 55, 631–641. doi:10.1093/jmedent/7jv003

Mohan, A., Garg, H., Saha, A., and Sanyal, A. (2017). Zinc oxide NPs enhanced the antioxidant defense and photochemical quantum yield of hydroponically grown methylcotyledonous soybean plants. J. Plant Physiol. 212, 174–182. doi:10.1016/j.jplph.2016.11.021

Mohan, A.; Aqeel, M., Khalid, N., Islam, W., Sanaullah, T., Anwar, M., Khan, S., Ye, W., and Lou, Y. (2019b). Zinc finger protein transcription factors: integrated line of action for plant antimicrobial activity. Microb. Pathog. 132, 141–149. doi:10.1016/j.micpath.2019.04.042

Noret, N., Josens, G., Escarre, J., Lefebvre, C., Panichelli, S., and Meerts, P. (2007). Development of Issoria lathonia (Lepidoptera: Nymphalidae) on zinc-accumulating and nonaccumulating Viola species (Violaceae). Environ. Toxicol. Chem. 26, 565–571. doi:10.1002/etc.1138

Noret, N., Meerts, P., Tolrà, R., Poschenrieder, C., Barceló, J., and Escarré, J. (2005). Palatability of Thelaspi caerulescens for snails: influence of zinc and glucosinolates. New Phytol. 165, 763–772. doi:10.1111/j.1469-8137.2004.01286.x

Nurata, A. I., Balwant, S., and Lees, E. (2005). The effect of cadmium, copper, lead, and zinc on the growth and reproduction of Prisotonima minutia Tullberg (Collembola). Ecotaxotol. Environ. Saf. 60, 306–314. doi:10.1016/j.ecoenv.2005.02.001

Oliver, J. E., Sefick, S. A., Parker, J. K., Arnold, T., Cobine, P. A., and De La Fuente, L. (2014). Ionome changes in Xylella fastidiosa-infected Nicotiana tabacum correlate with virulence and discriminate between subspecies of bacterial isolates. Mol. Plant Mic. Interact. 27, 1048–1058. doi:10.1016/j.mpmi.2015.01.015

Pollard, A. J. and Baker, A. J. M. (1997). Deterrence of herbivory by zinc hyperaccumulation in Thlaspi caerulescens (Brassicaceae). New Phytol. 135, 655–658.

Poschenrieder, C., Tolrà, R., and Barceló, J. (2006). Can metals defend plants against biotic stress? Trends Plant Sci. 11, 288–295. doi:10.1016/j.tplants.2006.04.007

Pritos, C. A., Pastorf, J., and Pardini, R. S. (1991). Role of superoxide dismutase in the protection and tolerance to the protonoid alelochemical quercetin in Papilio polyxenes, Spodoptera eridania, and Trichoplusia ni. Arch. Insect Biochem. Physiol. 16, 273–282. doi:10.1002/arch.940160406

Restrepo, S., Myers, K. L., del Pozo, O., Martin, G. B., Hart, A. L., Buell, C. R., et al. (2005). Gene profiling of a compatible interaction between Phytophthora infestans and Solanum tuberosum suggests a role for carbonic anhydrase. Mol. Plant Microbe Interact. 18, 913–922. doi:10.1094/MPMI-18-913

Rodriguez-Celma, J., Lin, W. D., Fu, G. M., Abadía, J., López-Millán, A. F., and Schmidt, W. (2013). Mutually exclusive alterations in secondary metabolism are critical for the uptake of insoluble iron compounds by Arabidopsis and Medicago truncatula. Plant Physiol. 162, 1473–1485. doi:10.1104/pp.113.220426

Rodriguez-Celma, J., Tsai, Y. H., Wen, T. N., Wu, Y. C., Curie, C., and Schmidt, W. (2016). Systems-wide analysis of manganese deficiency-induced changes in gene activity of Arabidopsis roots. Sci. Rep. 6, 35846. doi:10.1038/srep35846

Rose, M. T., Rose, T. J., Pariasca-Tanaka, J., Yoshihashi, T., Neuweger, H., and Thoelen, M. (2013). Feruloyl-CoA hydration and 4-hydroxyphenylpyruvate hydratase1-dependent coumarins mediate iron acquisition from alkaline substrates in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 110, 1602–1607. doi:10.1073/pnas.1216008110

Schlaepi, K., Bodenhauen, N., Buchala, A., Mauch, F., and Reymond, P. (2008). The glutathione-deficient mutant pad2-1 accumulates lower amounts of glucosinolates and is more susceptible to the insect herbivore Spodoptera littoralis. Plant J. 55, 774–786. doi:10.1111/j.1365-313X.2008.03545.x

Schmid, N. B., Giehl, R. F., Döll, S., Mock, H. P., Strehmel, N., Scheel, D., et al. (2006). Can metals defend plants against biotic stress? Trends Plant Sci. 11, 288–295. doi:10.1016/j.tplants.2006.04.007

Shirasu, K., Nielsen, K., Pfabfani, P., Oliver, R., and Schulze-Lefert, P. (1999). Cell-cell communication of mild resistance using a biotic transient expression system. Plant J. 17, 293–299. doi:10.1046/j.1365-313X.1999.00376.x

Shivasankar, S., Sumathi, M., Krishnakuma, R. N. K. and Raj, V. K. (2015). Role of phenolic acids and enzymes of phenylpropanoid pathway in resistance of chayote fruit (Sechium edule) against infestation by melon fly (Bactrocera cucurbitae). Ann. Appl. Biol. 166, 420–433. doi:10.1111/aab.12194

Shu, Y., Gao, Y., Sun, H., Zou, Z., Zhou, Q., and Zhang, G. (2009). Effects of zinc on the reproduction of the Spodoptera littoralis Fabricius (Lepidoptera: Zinc in Plant Defense

Noman et al., Zinc in Plant Defense
Zinc in Plant Defense

Noctuidae). Ecotoxicol. Environ. Saf. 72, 2130–2136. doi: 10.1016/j.ecoenv.2009.06.004
Shu, Y. H., Zhang, G. R., and Wang, J. W. (2012). Response of the common cutworm Spodoptera litura to zinc stress: Zn accumulation, metallothionein and cell ultrastructure of the midgut. Sci. Total Environ. 438, 210–217. doi: 10.1016/j.scitotenv.2012.06.065
Simmons, C. R., Frieldender, M., Navarro, P. A., and Yalpani, N. (2003). A maize defense-inducible gene is a major facilitator superfamily member related to bacterial multidrug resistance efflux antiporters. Plant Mol. Biol. 52, 433–446. doi: 10.1023/A:1023982704901
Simoglou, K. B., and Dordas, C. (2006). Effect of foliar applied boron, manganese and zinc on tan spot in winter durum wheat. Crop Prot. 25, 656–663. doi: 10.1016/j.cropro.2006.07.007
Sinclair, S. A., and Kramer, U. (2012). Fungal zinc metabolism and its connections to virulence. Front. Cell. Infect. Microbiol. 3, 65. doi: 10.3389/fcimb.2012.00065
Stolpe, C., and Müller, C. (2016). Effects of single and combined heavy metals and their chelators on aphid performance and preferences. Environ. Toxicol. Chem. 35, 3023–3030. doi: 10.1002/etc.3489
Stolpe, C., Giehren, F., Kramer, U., and Müller, C. (2017). Both heavy metal-amendment of soil and aphid-infection increase Cd and Zn concentrations in phloem exudates of a metal-hyperaccumulating plant. Phytocochem. 139, 109–117. doi: 10.1016/j.phytochem.2017.04.010
Stork, M., Griipstra, J., Bos, M. P., Mañas-Torres, C., Devos, N., Poelmann, J. T., et al. (2013). Zinc piracy as a mechanism of Neisseria meningitidis for evasion of nutritional immunity. PLoS Pathog. 9, e1003733. doi: 10.1371/journal.ppat.1003733
Stotz, H. U., Thomson, J. G., Wang, Y. (2009). Plant defensins. Defense, development and application. Plant Sig. Behav. 4, 1010–1012. doi: 10.4161/psb.4.10.11755
Strauss, S. Y., Rudgers, J. A., Lau, J. A., and Irwin, R. E. (2002). Direct and ecological costs of resistance to herbivory. Trends Ecol. Evol. 17, 278–285. doi: 10.1016/S0169-5347(02)02483-7
Strauss, S. Y., Irwin, R. E., and Lambrix, V. M. (2004). Optimal defence theory and application. ppata.1003733
Strauss, S. Y., Irwin, R. E., and Lambrix, V. M. (2004). Optimal defence theory and application. ppata.1003733
Streeter, T. C., Rengel, Z., Neate, S. M., and Graham, R. D. (2001). Zinc fertilisation of two Cu/Zn superoxide dismutase genes in Arabidopsis. Plant Mol. Biol. 438, 210–217. doi: 10.1016/j.scitotenv.2012.06.065
Tucker, S. L., Thornton, C. R., Tasker, K., Jacob, C., Giles, E., Gnan, M., et al. (2004). A fungal metallothionein is required for pathogenicity of Magnaporthe grisea. Plant Cell 16, 1575–1588. doi: 10.1016/j.ppc.2004.09.007
Van Bochkoven, J., De Vleesschauwer, D., and Hofte, M. (2013). Towards establishing broad-spectrum disease resistance in plants: Silicon leads the way. J. Exp. Bot. 64, 1281–1293. doi: 10.1093/jxb/ers329
Veski, P., and Reichman, S. (2009). Hyperaccumulators and herbivores: a Bayesian meta-analysis of feeding choice trials. J. Chem. Ecol. 35, 289–296. doi: 10.1007/s10886-009-9607-7
Walters, D. R., and Bingham, J. I. (2007). Influence of nutrition on disease development caused by fungal pathogens: implications for plant disease control. Ann. Appl. Biol. 151, 307–324. doi: 10.1111/j.1744-7348.2007.01176.x
Wang, X., Wang, Y., Liu, P., Ding, Y., Mu, X., Liu, X., et al. (2017). TaRar1 is involved in wheat defense against stripe rust pathogen mediated by YrSr. Front. Plant Sci. 8, 156. doi: 10.3389/fpls.2017.00156
Wang, Y. Q., Freech, A., Yun, B. W., Shafei, R., Hofmann, A., Taylor, P., et al. (2009). S-nitrosylation of AISAP3B antagonizes the expression of plant immunity. J. Biol. Chem. 284, 2131–2137. doi: 10.1074/jbc.M806782200
Wong, A., and Lomthaisong, K. (2010). Changes in the 2DE protein profiles of chilli pepper (Capsicum annuum) leaves in response to Fusarium oxysporum infection. Scienciae 36, 259–270. doi: 10.2306/scienias151-1874.2010.36.259
Wu, G., and Yi, Y. (2015). Effects of dietary heavy metals on the immune and antioxidant systems of Galleria mellonella larvae. Comp. Biochem. Physiol. C. Toxicol. Pharmacol. 167, 131–139. doi: 10.1016/j.cbpc.2014.10.004
Xie, Z., Zhang, P., Zhao, J., Wang, R., Gao, J., and Xu, J. (2017). Identification of microRNAs from Zn-treated Solanum nigrum roots by small RNA sequencing. Acta Physiol. Plant. 39, 32. doi: 10.1007/s11738-016-2337-x
Xu, J., Yin, H., Li, Y., and Liu, X. (2010). Nitric oxide is associated with long-term zinc tolerance in Solanum nigrum. Plant Physiol. 154, 1319–1334. doi: 10.1104/pp.110.162982
Yamakita, S., Hasegawa, K., Suezuki, T., Tai, K., Sato, E., et al. (2007). Zinc is a novel intracellular second messenger. Scienceasia 33, 259–270. doi: 10.2306/scienceas151-1874.2010.36.259
Zhao, H., and Eide, D. J. (1997). Zap1p, a metalloregulatory protein involved in Cd regulation in Saccharomyces cerevisiae. J. Biol. Chem. 272, 30449–30455. doi: 10.1016/S0021-9258(97)87505-6
Zhang, Y., Sun, G., Wang, Z., Zhang, J., Song, S., Ma, E., and Guo, Y. (2011). Chronic accumulation of cadmium and its effects on antioxidant enzymes and malondialdehyde in Oryza chinesis (Orthoptera: Acrididae). Ecotoxicol. Environ. Saf. 74, 1355–1362. doi: 10.1016/j.ecoenv.2011.03.002

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Cabot, Martos, Llugany, Gallego, Tóth and Poschenrieder. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.