Composition and thermodynamics of nuclear matter with light clusters

S. Typel,1,2 G. Röpke,3 T. Klähn,4,5 D. Blaschke,5,6 and H.H. Wolter7

1Excellence Cluster Universe, Technische Universität München, Boltzmannstraße 2, D-85748 Garching, Germany
2GSF Helmholtzzentrum für Schwerionenforschung GmbH, Theorie, Planckstraße 1, D-64291 Darmstadt, Germany
3Institut für Physik, Universität Rostock, Universitätsplatz 3, D-18051 Rostock, Germany
4Theory Group, Physics Division, Building 203, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
5Instytut Fizyki Teoretycznej, Uniwersytet Wrocławski, Max Born Place 9, 50-204 Wrocław, Poland
6Bogoliubov Laboratory for Theoretical Physics, JINR Dubna, Joliot-Curie Street 6, 141980 Dubna, Russia
7Fakultät für Physik, Universität München, Am Coulombwall 1, D-85748 Garching, Germany

(Dated: December 18, 2009)

We investigate nuclear matter at finite temperature and density, including the formation of light clusters up to the α particle (1 < A < 4). The novel feature of this work is to include the formation of clusters as well as their dissolution due to medium effects in a systematic way using two many-body theories: a microscopic quantum statistical (QS) approach and a generalized relativistic mean field (RMF) model. Nucleons and clusters are modified by medium effects. While the nucleon quasi-particle properties are determined within the RMF model from the scalar and vector self energies, the cluster binding energies are reduced due to Pauli blocking shifts calculated in the QS approach. Both approaches reproduce the limiting cases of nuclear statistical equilibrium (NSE) at low densities and cluster-free nuclear matter at high densities. The treatment of the cluster dissociation is based on the Mott effect due to Pauli blocking, implemented in slightly different ways in the QS and the generalized RMF approaches. This leads to somewhat different results in the intermediate density range of about $10^{-3}$ to $10^{-1}$ fm$^{-3}$, which gives an estimate of the present accuracy of the theoretical predictions. We compare the numerical results of these models for cluster abundances and thermodynamics in the region of medium excitation energies with temperatures $T \leq 20$ MeV and baryon number densities from zero to a few times saturation density. The effect of cluster formation on the liquid-gas phase transition and on the density dependence of the symmetry energy is studied. It is demonstrated that the parabolic approximation for the asymmetry dependence of the nuclear equation of state breaks down at low temperatures and at subsaturation densities due to cluster formation. Comparison is made with other theoretical approaches, in particular those, which are commonly used in astrophysical calculations. The results are relevant for heavy-ion collisions and astrophysical applications.

PACS numbers: 21.65.Mn, 26.50.+x, 21.30.Fe, 25.75.-q, 97.60.Bw
Keywords: Nuclear matter equation of state, Symmetry energy, Cluster formation, Supernova simulations, Low-density nuclear matter, Relativistic mean-field model, Nuclear statistical equilibrium, Virial expansion

I. INTRODUCTION

The composition and the equation of state (EoS) of nuclear matter, possible phase transitions or condensates are widely discussed in several areas of nuclear physics. They attain an increasing importance in astrophysics and cosmology. Many of the systems under consideration have large charge asymmetries and cover a broad range of densities. Therefore, a deeper understanding of the composition and the thermodynamical properties of nuclear matter, and, in particular, the density dependence of the symmetry energy, from very low to super-saturation densities is of great interest. Let us mention three examples for systems where the knowledge of the symmetry energy in a broad range of densities is of crucial importance: (1) the surface structure of exotic nuclei with large neutron excess or new exotic collective modes, (2) the structure and composition of neutron stars from the ultra-dense core to the crust.
at subsaturation densities with varying asymmetry due to \(\beta\)-equilibrium, and (3) core collapse supernovae, where at high densities the symmetry energy determines the energy of the shock, and at low densities it affects the nuclear composition, neutrino interactions and aspects of nucleosynthesis.

This wide spectrum of applications illustrates the importance of gathering reliable information on the EoS of nuclear matter, and, specifically, the symmetry energy, since predictions of its density dependence differ strongly for different theoretical approaches. Therefore, considerable efforts have been taken to obtain constraints from observational data on all aspects of the EoS. A promising source of information arises from the study of heavy-ion collisions, where transient states of very different densities can be investigated and the asymmetry can be varied to a certain extent by choosing the collision system. Central collisions at high energies yield large compressions and provide information from observations of nucleon flow \[1\] and particle production as shown for kaons, e.g., in \[2, 3\]. Recent reviews of studies of the symmetry energy in heavy-ion collisions were given in \[4, 5, 6\].

Recently, particular interest has been devoted to the properties of nuclear and neutron matter at very low densities, down to the limit of zero density. Below saturation density, correlations are expected to become important and nuclear matter can become inhomogeneous. An aspect of this is seen in fragmentation as a signature of the liquid-gas phase transition. At even smaller densities, down to one hundredth or one thousandth of saturation density and at moderate temperatures, few-body correlations remain important. This results from the fact, that at low densities the system can minimize its energy by forming light clusters such as deuterons, or particularly strongly bound \(\alpha\) particles. With increasing density such clusters will dissolve due to the Pauli principle. Thus there exists an interesting detailed evolution of the correlations and the composition in nuclear matter depending on the density and temperature, which presents a challenge to a theoretical description.

In the laboratory, low-density matter occurs in the outer regions of heavy nuclei, in halo nuclei, in expanding hot matter from heavy-ion reactions, in the envelopes of core-collapse supernovae, and also in recently discussed low-density isomers such as the Hoyle state of \(^{12}\)C \[5\]. Experimental information on the composition and behavior of very low density nuclear matter was recently obtained by Kowalski et al. \[8\] from the observation of the light particles emitted in low-energy heavy-ion collisions. It was found that the fraction of light particles is substantial at very low densities, implying a finite symmetry energy in the limit of zero density.

Nonrelativistic Skyrme Hartree-Fock and relativistic mean-field calculations revealed a tight correlation between the density derivative of the neutron matter EoS near 2/3 of the saturation density and the neutron skin thickness \(\Delta R_{np}\) of heavy nuclei \[9, 10\]. This observation translates into a correlation of the density dependence of the symmetry energy at saturation density with \(\Delta R_{np}\) \[6, 11, 12, 13, 14, 15, 16\]. The scheduled PREX experiment at JLab is expected to provide a precise value of the neutron skin thickness of \(^{208}\)Pb from the observation of parity-violations in electron scattering \[17\], hence providing an independent constraint on the density dependence of the symmetry energy.

At densities beyond nuclear saturation constraints on the EoS are expected in increasing quality from neutron star observables as, e.g., masses, mass-radius relations, gravitational binding energy and the cooling behavior of neutron stars. A recent review by Klähn et al. \[18\] discusses these constraints in confrontation with those from heavy-ion collisions. It demonstrates that at present it is far from trivial to obtain an EoS which is consistent with all these available observational data. The study of exotic structures like pasta phases in the inner crust of neutron stars gives information on very neutron rich matter around normal densities \[19, 20, 21, 22, 23\].

The actual composition of very low density matter is also relevant for the investigation of various stages in supernova explosions as pointed out in a number of recent publications. It is known to affect the effectiveness of the neutrino reheating of the shock wave \[24\]. Also, the stellar core collapse is mostly determined during the dynamical plunge phase at densities between \(10^{12}\) and \(10^{14}\) g/cm\(^3\), where temperatures between \(10^{10}\) and \(10^{11}\) K are reached \[25, 26\]. The sensitivity of the collapse dynamics on the properties of matter in this density regime could strongly influence the structure and composition of the proto-neutron star \[27\] and possible gravitational wave and neutrino signals emitted in various stages during and after core bounce.

Only very few models for the EoS are applicable in actual supernova simulations. The reason is found in the required wide range of temperatures, densities and asymmetries, which are either not available, e.g. in tabular form, or not covered by the model. The most frequently used EoS are those of Lattimer and Swesty \[28\] and of Shen, Toki et al. \[29\]. The former one is based on an extended liquid drop model for the nuclei embedded in a nucleon and \(\alpha\)-particle gas, while the latter one has been developed in the framework of the Relativistic Mean Field (RMF) approach with non-linear meson self-couplings \[30\]. Shen et al. use the Thomas-Fermi approximation to describe heavy nuclei embedded in a gas. They consider \(\alpha\) particles as a separate species, using an excluded volume prescription to model the dissolution of \(\alpha\) particles at high densities which accounts for medium effects only in a very global way. The model neglects other light clusters such as deuterons, tritons, and helions \((^3\text{He})\).

The problem of cluster formation in low-density nuclear matter has been addressed recently based on a virial expansion \[31\] to obtain the EoS for nuclear matter at all asymmetries including nucleons and \(\alpha\) particles \((^4\text{He})\) \[32\] and in later work also tritons and helions \[33\] (see also \[34\] for a closely related formulation in an \(S\)-matrix approach and the quasiparticle gas model \[35\]). The virial coefficients in the Beth-Uhlenbeck approach \[36\] are given by the
cluster bound state energies and scattering phase shifts. In Ref. [32] these were taken directly from experiment, thus providing an exact limit for the EoS at very low densities, where the scattering is not yet influenced by medium effects. These results are believed to be reliable for densities up to $n_{\text{sat}}/1000$ and not too small temperatures. They provide a benchmark for other calculations.

The present paper emphasizes that correlations, in-medium modifications of cluster properties and mean-field effects have to be considered simultaneously in the description of low-density nuclear matter, since all these affect the thermodynamical properties of the EoS. The occurrence of clusters also changes the symmetry energy, since the cluster correlations depend on the asymmetry of the system. Here we will restrict ourselves to matter in thermodynamic equilibrium at temperatures $T \leq 20$ MeV and baryon number densities $n \leq 0.2$ fm$^{-3}$, where the quark substructure and excitations of internal degrees of freedom of nucleons (protons and neutrons) are not important and the nucleon-nucleon interaction can be represented by an effective interaction potential.

In this work, we explore two approaches to the problem: one is a quantum statistical (QS) formulation based on the thermodynamic Green function method [37]. This approach makes explicit use of an effective nucleon-nucleon interaction. It allows us to consider medium effects on the cluster properties. The second approach is a generalized relativistic mean-field (RMF) model, where the medium modified clusters are introduced as explicit degrees of freedom. The two methods have their strengths and deficiencies. The RMF method is reliable to determine the nucleon quasiparticle propagator in the medium, and this information is introduced into the QS model. The QS model, on the other hand, can determine the medium modifications of the clusters, such as the mass shift and the (momentum-dependent) Mott densities, where the clusters get dissolved. These are then introduced in parametrized form into the RMF method.

The particle number density $n_\tau(T, \mu_\tau, \mu_\tau)$ of protons ($\tau = p$) or neutrons ($\tau = n$) depends on the temperature $T$ and the chemical potentials $\mu_\tau$. In the QS approach it is obtained from the single-particle spectral function, which can be expressed in terms of the self-energy. This is the main quantity to be evaluated. Considering the ladder approximation [37, 38], the formation of bound states is taken into account in a Bethe-Goldstone equation which in the low-density limit reduces to an effective Schrödinger equation. Effects of the medium can be included in a self-consistent way within the cluster mean-field approximation (for references see [38, 39, 40]). The bound state energies are also modified due to Pauli blocking in the correlated medium. An extended discussion of the two-particle problem can be found in [41]. This generalized Beth-Uhlenbeck formulation accounts for medium effects suppressing correlations at high densities. It allows to determine the second virial coefficient and also contains the Brueckner approach to matter near saturation density. The approach has been extended to three and four-particle bound states in Refs. [38, 42]. The medium dependent shift of the cluster binding energies has been investigated in [43, 44]. We emphasize again that this quantum statistical approach avoids the introduction of semi-empirical concepts such as the excluded volume mechanism to mimic in-medium effects. However, since the quasiparticle propagator is introduced from the outside (i.e. from the RMF model) the back effect of the clusters on the mean field is not included.

The RMF model, on the other hand, takes this back reaction fully into account. On the other hand, only the bound state contributions of the clusters are included (from the QS model). Thus the continuum contributions are missing, which, as we shall see, leads to an overestimation of the two-particle correlations. Thus, by investigating both these models we also obtain an estimate of the remaining uncertainties of theoretical approaches. Also, in the present work, in both approaches, we have not yet included the contribution of heavier clusters, that should appear in the intermediate density range before the matter becomes homogenous again at densities near saturation. This problem will be treated in a later work.

Extending the quasiparticle approach including the formation of light clusters enables us to describe the smooth transition from the low-density limit, where the nuclear statistical equilibrium (NSE) or the virial expansion are applicable, to the region of the saturation density where mean-field concepts have been successfully applied. None of the existing approaches to model the EoS gives satisfactory results in both regions simultaneously. More precisely, the EoS of Lattimer and Swesty [28] as well as the EoS of Shen, Toki et al. [29] fail to reproduce the NSE in the low-density limit, while the EoS in the virial expansion [31, 32, 33] ignores medium effects on light clusters and cannot describe the dissolution of clusters at high densities.

The outline of this paper is as follows: In Sect. III we review the QS approach to the EoS and put particular emphasis on the calculation of the medium modifications of the clusters. As one result we obtain a density and temperature dependent modification of the binding energies of the clusters. In Sect. III we introduce our generalized RMF model with light clusters as explicit degrees of freedom. We use a RMF model with density dependent meson-nucleon couplings [40], which was used very successfully to describe nuclear structure in a wide region of the nuclear chart and has also been tested in heavy-ion collisions. The medium dependent masses of the clusters lead to a coupling of the nucleon and cluster dynamics. We also show how the thermodynamic quantities, such as free and internal energy, pressure and entropy, are obtained as functions of density and temperature. In Sect. IV we discuss the composition of nuclear matter and present the thermodynamical quantities for symmetric nuclear matter in both approaches. We also compare to the NSE model which gives the correct low density limit. Of particular interest is the phase transition from
is the kinetic energy of the free nucleon. The solution of the relation \( \delta \) yields a \( E \) given to describe the equation of state of nuclear matter including the formation of bound states \([38, 41]\). It is most energies so that problems, including nuclear structure, heavy-ion reactions, and supernovae simulations. Throughout the paper we use natural units where \( \hbar = c = k_B = 1 \).

II. QUANTUM STATISTICAL APPROACH TO THE EQUATION OF STATE

A. Single-particle spectral function and quasiparticles

Using the finite-temperature Green function formalism, a non-relativistic quantum statistical approach can be given to describe the equation of state of nuclear matter including the formation of bound states \([38, 41]\). It is most convenient to start with the nucleon number densities \( n_\tau(T, \hat{\mu}_p, \hat{\mu}_n) \) as functions of temperature \( T \) and non-relativistic chemical potentials \( \hat{\mu}_\tau \) for protons (\( \tau = p \)) and neutrons (\( \tau = n \)), respectively,

\[
n_\tau(T, \hat{\mu}_p, \hat{\mu}_n) = \frac{1}{\Omega} \sum_{k_1}^\infty \left( a_{k_1}^\dagger a_{k_1} \right) \delta_{\tau, \tau_1} = 2 \int \frac{d^3 k_1}{(2\pi)^3} \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} f_{1, Z}(\omega) S_1(1, \omega),
\]

where \( \Omega \) is the system volume, \( \{1\} = \{k_1, \sigma_1, \tau_1\} \) denotes the single-nucleon quantum numbers momentum, spin, and isospin. Summation over spin yields the factor 2 and

\[
f_{A, Z}(\omega) = \left( \exp \{\beta [\omega - Z \hat{\mu}_p - (A - Z)\hat{\mu}_n]\} - (-1)^A \right)^{-1}
\]
is the Fermi or Bose distribution function which depends on the inverse temperature \( \beta = 1/T \). The non-relativistic chemical potential \( \hat{\mu}_\tau \) is related to the relativistic chemical potential \( \mu_\tau \) by \( \mu_\tau = \hat{\mu}_\tau + m_\tau \) with the nucleon mass \( m_\tau \). Instead of the isospin quantum number \( \tau \) we occasionally use the mass number \( A \) and the charge number \( Z \). Both the distribution function and the spectral function \( S_1(1, \omega) \) depend on the temperature and the chemical potentials \( \hat{\mu}_p, \hat{\mu}_n \), not given explicitly. We work with a grand canonical ensemble and have to invert Eq. (1) to write the chemical potentials as functions of the densities \( n_p, n_n \). For this EoS, expressions such as the Beth-Uhlenbeck formula and its generalizations have been derived \([32, 38, 41]\).

We consider both the total number densities of protons and neutrons, \( n_p^{\text{tot}} \) and \( n_n^{\text{tot}} \), and the temperature \( T \) as given parameters. Alternatively, the total baryon density \( n = n_p^{\text{tot}} + n_n^{\text{tot}} \) and the asymmetry of nuclear matter \( \delta = (n_p^{\text{tot}} - n_n^{\text{tot}})/n = 1 - 2Y_p \) are used. \( Y_p \) denotes the total proton fraction. In addition to the frozen equilibrium where \( n_p^{\text{tot}} \) and \( n_n^{\text{tot}} \) are given, we assume homogeneity and isotropy in space. Thermodynamical stability is considered in Sects. \([41, 47]\). In a further development, allowing for weak interactions, \( \beta \)-equilibrium may be considered, which is of interest for astrophysical applications. In that case the asymmetry \( \delta \) is uniquely determined for given \( n \) and \( T \).

The spectral function \( S_1(1, \omega) \) is related to the self-energy \( \Sigma(1, z) \) according to

\[
S_1(1, \omega) = \frac{2 \text{Im} \Sigma(1, \omega - i0)}{[\omega - E(1) - \text{Re} \Sigma(1, \omega)][\text{Im} \Sigma(1, \omega - i0)]^2},
\]

where the imaginary part has to be taken for a small negative imaginary part in the frequency \( \omega \). \( E(1) = k_T^2/(2m_1) \) is the kinetic energy of the free nucleon. The solution of the relation

\[
E_1^{\text{SE}}(1) = E(1) + \text{Re} \Sigma[1, E_1^{\text{SE}}(1)]
\]
defines the single-nucleon quasiparticle energies \( E_1^{\text{SE}}(1) = E(1) + \Delta E^{\text{SE}}(1) \). Expanding for small \( \text{Im} \Sigma(1, z) \), the spectral function yields a \( \delta \)-like contribution. The densities are calculated from Fermi distributions with the quasiparticle energies so that

\[
n_\tau^{\text{qp}}(T, \hat{\mu}_p, \hat{\mu}_n) = \frac{2}{\Omega} \sum_{k_1} f_{1, Z}[E_1^{\text{SE}}(1)]
\]

follows for the EoS in mean field approximation. This result does not contain the contribution of bound states and therefore fails to be correct in the low-temperature, low-density limit where the NSE describes the nuclear matter EoS.
As shown in Refs. [38, 41], the bound state contributions are obtained from the poles of Im $\Sigma(1, z)$ which cannot be neglected in expanding the spectral function with respect to Im $\Sigma(1, z)$. A cluster decomposition of the self-energy has been proposed, see [38]. The self-energy is expressed in terms of the $A$-particle Green functions which read in bilinear expansion

$$G_A(1...A, 1'...A', z_A) = \sum_{\nu K} \psi_{A\nu K}(1...A) \frac{1}{z_A - E_{A,\nu}^{nu}(K)} \psi^*_{A\nu K}(1'...A').$$

(6)

The $A$-particle wave function $\psi_{A\nu K}(1...A)$ and the corresponding eigenvalues $E_{A,\nu}^{nu}(K)$ result from solving the in-medium Schrödinger equation (see the following subsections). $K$ denotes the center of mass momentum of the $A$-nucleon system. Besides the bound states, the summation over the internal quantum states $\nu$ includes also the scattering states.

The evaluation of the equation of state in the low-density limit is straightforward. Considering only the bound-state contributions, we obtain the result

$$n^\text{tot}_p(T, \tilde{\mu}_p, \tilde{\mu}_n) = \frac{1}{\Omega} \sum_{A,\nu, K} Z f_{A,\nu} [E_{A,\nu}^{nu}(K; T, \tilde{\mu}_p, \tilde{\mu}_n)],$$

$$n^\text{tot}_n(T, \tilde{\mu}_p, \tilde{\mu}_n) = \frac{1}{\Omega} \sum_{A,\nu, K} (A - Z) f_{A,\nu} [E_{A,\nu}^{nu}(K; T, \tilde{\mu}_p, \tilde{\mu}_n)]$$

(7)

for the EoS describing a mixture of components (cluster quasiparticles) obeying Fermi or Bose statistics. The total baryon density results as $n(T, \tilde{\mu}_p, \tilde{\mu}_n) = n^\text{tot}_p(T, \tilde{\mu}_p, \tilde{\mu}_n) + n^\text{tot}_n(T, \tilde{\mu}_p, \tilde{\mu}_n)$. To derive the extended Beth-Uhlenbeck formula, see [42], we restrict the summation to $A \leq 2$, but extend the summation over the internal quantum numbers $\nu$, not only to the excited states, but also the scattering states. Note that at low temperatures Bose-Einstein condensation may occur.

The NSE is obtained in the low-density limit if the in-medium energies $E_{A,\nu}^{nu}(K; T, \tilde{\mu}_p, \tilde{\mu}_n)$ can be replaced by the binding energies of the isolated nuclei $E_{A,\nu}^{nu}(0) = E_{A,\nu}^{nu}(K) + K^2/(2m)$, with $m = 939$ MeV the average nucleon mass. For the cluster contributions, i.e. $A > 1$, the summation over the internal quantum numbers is again restricted to the bound states only. We have

$$n^\text{NSE}_p(T, \tilde{\mu}_p, \tilde{\mu}_n) = \frac{1}{\Omega} \sum_{A,\nu, K} Z f_{A,\nu} [E_{A,\nu}^{nu}(0)],$$

$$n^\text{NSE}_n(T, \tilde{\mu}_p, \tilde{\mu}_n) = \frac{1}{\Omega} \sum_{A,\nu, K} (A - Z) f_{A,\nu} [E_{A,\nu}^{nu}(0)].$$

(8)

The summation over $A$ includes also the contribution of free nucleons, $A = 1$.

In the nondegenerate and nonrelativistic case assuming a Maxwell-Boltzmann distribution, the summation over the momenta $K$ can be performed analytically and the thermal wavelength $\lambda = \sqrt{2\pi/(mT)}$ of the nucleon enters. As shown below, the medium effects in nuclear matter are negligible below $10^{-4}$ times the saturation density $n_{\text{sat}}$ for the temperatures considered here.

Interesting quantities are the mass fractions of the different clusters. From the EoS considered here, thermodynamical potentials can be obtained by integration, in particular the free energy per volume $F/\Omega$. In the special case of symmetric nuclear matter, $Y^s_p = 0.5$, the free energy per volume is obtained from the averaged chemical potential $\tilde{\mu} = (\tilde{\mu}_p + \tilde{\mu}_n)/2$ as

$$F(T, n, Y^s_p)/\Omega = \int_0^n \mathring{n}^s \tilde{\mu}(T, n, Y^s_p).$$

(10)

In the quantum statistical approach described above, we relate the EoS to properties of the correlation functions, in particular to the peaks occurring in the $A$-nucleon spectral function describing the single-nucleon quasiparticle ($A = 1$) as well as the nuclear quasiparticles ($A \geq 2$). Different approaches to these quasiparticle energies can be given by calculating self-energies which reproduce known properties of the nucleonic system. In the following Subsects. II B and II C we discuss results obtained from a microscopic Hamiltonian approach to nuclear matter. In Sect. III a relativistic mean field (RMF) approach is given, which is based on an effective nucleon-meson Lagrangian.
B. Medium modification of single nucleon properties

The single-particle spectral function contains the single-nucleon quasiparticle contribution, \( E^{\text{nu}}_\tau(1) = E^{\text{nu}}_{\tau n}(k) \), given in Eq. (4), where \( \tau \) denotes isospin of particle 1 and \( k \) is the momentum. In the effective mass approximation, the single-nucleon quasiparticle dispersion relation reads

\[
E^{\text{nu}}_{\tau n}(k) = \Delta E^{\text{SE}(n)}(0) + \frac{k^2}{2m^*_{\tau n}},
\]

where the quasiparticle energies are shifted at zero momentum \( k \) by \( \Delta E^{\text{SE}(n)}(0) \), and \( m^*_{\tau n} \) denotes the effective mass of neutrons (\( \tau = n \)) or protons (\( \tau = p \)). Both quantities, \( \Delta E^{\text{SE}(n)}(0) \) and \( m^*_{\tau n} \), are functions of \( T, n_p \) and \( n_n \), characterizing the surrounding matter.

Expressions for the single-nucleon quasiparticle energy \( E^{\text{nu}}_{\tau n}(k) \) can be given by the Skyrme parametrization \[47\] or by more sophisticated approaches such as relativistic mean-field approaches \[30\], see Sec. III, and relativistic Dirac-Brueckner Hartree-Fock \[48\] calculations. We will use the density-dependent relativistic mean field approach of \[46\] that is designed not only to reproduce known properties of nuclei, but also agrees with microscopic calculations in the low density region. It is expected that this approach gives at present an optimal fit to the quasiparticle energies and is applicable in a large interval of densities and temperatures.

Microscopic calculations are based on a model describing the interaction between the nucleons. To go beyond the mean-field approximation, strong interaction as well as bound state formation has to be taken into account. This can be done in the low-density region where in the non-relativistic case a T-matrix can be introduced. We start from a nonrelativistic Hamiltonian in fermion second quantization

\[
H = \sum_i^1 E(1)\sigma_i^1 a_i^\dagger a_i + \frac{1}{2} \sum_{12,1'2'} V(12,1'2')\sigma_i^1\sigma_i^1 a_i^\dagger a_{i'}^\dagger a_{i'} a_i,
\]

where the kinetic energy is \( E(1) = P_i^2/(2m_i) \), and the potential energy contains the matrix element \( V(12,1'2') \) of the nucleon-nucleon interaction.

Since there is no fundamental expression for the nucleon-nucleon interaction, a phenomenological form is assumed to reproduce empirical data such as the nucleon scattering phase shifts. Different parametrizations are in use. For calculations one can use potentials such as PARIS and BONN or their separable representations \[49\]. To obtain the empirical parameter values of nuclear matter at saturation density, three-body forces have been introduced in the Hamiltonian \[12\]. In particular, the Argonne AV18/UIX potential \[50\] has been used to calculate light nuclei \[51\].

Replacing the two-particle T-matrix in Born approximation with the interaction potential \( V \), we obtain the Hartree-Fock approximation for the energy shift

\[
\Delta E^{\text{HF}}(1) = \sum_2 |V(12,12) - V(12,21)|f_{1,1'}\Sigma_1[E(2) + \Delta E^{\text{HF}}(2)].
\]

In this approximation, all correlations in the medium are neglected. The self-energy does not depend on frequency, i.e. it is instantaneous in time, with vanishing imaginary part.

A full Dirac-Brueckner Hartree-Fock (DBHF) calculation has been performed by Fuchs \[52\] and has been compared with RMF approaches. The relation between the \( T \) matrix approach and the Brueckner \( G \) matrix approach was discussed in detail in Ref. \[53\]. Extended work has been performed using sophisticated interaction potentials to evaluate the quasiparticle energies in the DBHF approximation, for recent reviews see Refs. \[15\] \[52\] \[54\]. There was reasonable agreement between the RMF parametrisation of the quasiparticle energies and the DBHF results.

We can assume \[15\] that the density-dependent RMF parametrisation covers a large density region (which will be discussed in detail in Sect. III), and that it can be used instead of the above Hartree-Fock shifts to determine the single-nucleon quasiparticle energies. They result as

\[
E^{\text{nu}}_{n_p}(0) = \sqrt{[m - \Sigma_{n_p}(T, n, \delta)]^2 + k^2 + \Sigma^0_{n_p}(T, n, \delta)},
\]

where \( \Sigma_{n_p} \) and \( \Sigma^0_{n_p} \) are the scalar and the time component of the vector self energy, respectively. In the nonrelativistic limit, the shifts of the quasiparticle energies are

\[
\Delta E^{\text{SE}}_{\tau n}(k) = \Sigma^0_{n_p}(T, n, \delta) - \Sigma_{n_p}(T, n, \delta).
\]

The effective masses for neutrons and protons are given by

\[
m^*_{n_p} = m - \Sigma_{n_p}(T, n, \delta).
\]
Approximations for the functions $\Sigma_{n,p}(T, n, \delta)$ and $\Sigma_{n,p}(T, n, \delta)$ are given in the Appendix. These functions reproduce the empirical values for the saturation density $n_{\text{sat}} \approx 0.15 \text{ fm}^{-3}$ and the binding energy per nucleon $B/A \approx -16 \text{ MeV}$, see Subsection [III.D]. The effective mass is somewhat smaller than the empirical value $m^* \approx m(1 - 0.17 n/n_{\text{sat}})$ for $n < 0.2 \text{ fm}^{-3}$.

C. Medium modification of cluster properties

Recent progress of the description of clusters in low density nuclear matter \[27, 55, 56, 57\] enables us to evaluate the properties of deuterons, tritons, helions and helium nuclei in a non-relativistic microscopic approach, taking the influence of the medium into account.

In addition to the $\delta$-like nucleon quasiparticle contribution, also the contribution of the bound and scattering states can be included in the single-nucleon spectral function by analyzing the imaginary part of $\Sigma(1, z)$. Within a cluster decomposition, $A$-nucleon $T$ matrices appear in a many-particle approach. These $T$ matrices describe the propagation of the $A$-nucleon cluster in nuclear matter. In this way, bound states contribute to $n_\tau = n_\tau(T, \tilde{\mu}_n, \tilde{\mu}_p)$, see \[38, 41\].

Restricting the cluster decomposition only to the contribution of two-particle correlations, we obtain the so-called $T_2G$ approximation. In this approximation, the Beth-Uhlenbeck formula is obtained for the EoS, as shown in \[38, 41\]. In the low-density limit, the propagation of the $A$-nucleon cluster is determined by the energy eigenvalues of the corresponding nucleus, and the simple EoS \[41\] results describing the nuclear statistical equilibrium (NSE).

For nuclei imbedded in nuclear matter, an effective wave equation can be derived \[38, 57\]. The $A$-particle wave function $\psi_{A\nu K}(1 \ldots A)$ and the corresponding eigenvalues $E_A^{nu}(K)$ follow from solving the in-medium Schrödinger equation

$$[E_A^{nu}(1) + \ldots + E_A^{nu}(A) - E_A^{nu}(K)]\psi_{A\nu K}(1 \ldots A) + \sum_{i' \ldots A'} \sum_k \frac{1}{2} \delta_{kk'} \psi_{A\nu K}(1' \ldots A') = 0.$$  \hspace{1cm} (17)

This equation contains the effects of the medium in the single-nucleon quasiparticle shifts as well as in the Pauli blocking terms. The $A$-particle wave function and energy depend on the total momentum $K$ relative to the medium.

The in-medium Fermi distribution function $\tilde{f}(1) = (\exp \{\beta [E_A^{nu}(1) - \tilde{\mu}_1]\} + 1)^{-1}$ contains the non-relativistic effective chemical potential $\tilde{\mu}_1$ which is determined by the total proton or neutron densities (i.e. including those bound in clusters) calculated in quasiparticle approximation, $n_\tau^{\text{tot}} = \Omega^{-1} \sum_1 \tilde{f}(1)\delta_{n_\tau}$ for the particles inside the volume $\Omega$. It describes the occupation of the phase space neglecting any correlations in the medium. The solution of the in-medium Schrödinger equation (17) can be obtained in the low-density region by perturbation theory. In particular, the quasiparticle energy of the $A$-nucleon cluster with $Z$ protons in the ground state follows as

$$E_A^{nu}(K) = E_A^{0}(K) = E_A^{0}(0) + \frac{K^2}{2Am} + \Delta E_A^{\text{SE}}(K) + \Delta E_A^{\text{Pauli}}(K) + \Delta E_A^{\text{Coul}}(K) + \ldots$$  \hspace{1cm} (18)

with various contributions. Besides the cluster binding energy in the vacuum $E_A^{0}(0)$, the kinetic term, the self-energy shift $\Delta E_A^{\text{SE}}(K)$, the Pauli shift $\Delta E_A^{\text{Pauli}}(K)$ and the the Coulomb shift $\Delta E_A^{\text{Coul}}(K)$ enter. The latter can be evaluated for dense matter in the Wigner-Seitz approximation \[45, 55, 59\]. It is given by

$$\Delta E_A^{\text{Coul}}(K) = \frac{Z^2}{A^{1/3}} \frac{3}{5} \frac{e^2}{r_0} \left[ \frac{3}{2} \left( \frac{2n_p}{n_{\text{sat}}} \right)^{1/2} - \frac{n_p}{n_{\text{sat}}} \right]$$  \hspace{1cm} (19)

with $r_0 = 1.2 \text{ fm}$. Since the values of $Z$ are small, this contribution is small as well and disregarded here in the quasiparticle energy \[15\].

The self-energy contribution to the quasiparticle shift is determined by the contribution of the single-nucleon shift

$$\Delta E_A^{\text{SE}}(0) = (A - Z)\Delta E_n^{\text{SE}}(0) + Z\Delta E_p^{\text{SE}}(0) + \Delta E_A^{\text{SE, eff.mass}}.$$  \hspace{1cm} (20)

The contribution to the self-energy shift due to the change of the effective nucleon mass can be calculated from perturbation theory using the unperturbed wave function of the clusters, see \[27\], so that

$$\Delta E_A^{\text{SE, eff.mass}} = \left( 1 - \frac{m^*}{m} \right) s_{A,Z}.$$  \hspace{1cm} (21)
Values of $s_{A,Z}$ for \{A, Z\} = \{i\} = \{d, t, h, \alpha\} are given in Tab. \[1\] Inserting the medium-dependent quasiparticle energies in the distribution functions \[2\] the first two contributions to the quasiparticle shift in \[20\] can be included renormalizing the chemical potentials.

The most important effect in the calculation of the abundances of light elements comes from the Pauli blocking term in Eq. \[17\] in connection with the interaction potential. This contribution is restricted only to the bound states so that it may lead to the dissolution of the nuclei if the density of nuclear matter increases. The corresponding shift $\Delta E_{A,Z}^{\text{Pauli}}(K)$ can be evaluated in perturbation theory provided the interaction potential and the ground state wave function are known. After angular averaging where in the Fermi functions the mixed scalar product $\vec{k} \cdot \vec{K}$ between the total momentum $\vec{K}$ and the remaining Jacobian coordinates $\vec{k}$ is neglected, the Pauli blocking shift can be approximated as

$$\Delta E_{A,Z}^{\text{Pauli}}(K) \approx \Delta E_{A,Z}^{\text{Pauli}}(0) \exp \left( -\frac{K^2}{2A^2mT} \right).$$ \[22\]

Avoiding angular averaging, the full solution gives the result up to the order $K^2$

$$\Delta E_{A,Z}^{\text{Pauli}}(K) \approx \Delta E_{A,Z}^{\text{Pauli}}(0) \exp \left( -\frac{K^2}{g_{A,Z}} \right)$$ \[23\]

with the dispersion that can be calculated from

$$g_i(T, n, Y_p) = \frac{g_{i,1} + g_{i,2}T + h_{i,1}n}{1 + h_{i,2}n}.$$ \[24\]

The values for $g_{i,1}$ and $g_{i,2}$ can be calculated from perturbation theory using the unperturbed cluster wave functions; the density corrections $h_{i,1}$ and $h_{i,2}$ are fitted to variational solutions of the in-medium wave equation Eq. \[17\] for given $T$, $n_p$, $n_n$ and $K$. Numerical values of the parameters in symmetric nuclear matter ($Y_p = 0.5$) are given in Tab \[1\]

The shift of the binding energy of light clusters at zero total momentum which is of first order in density \[55, 56\] has been calculated recently \[57\]. The light clusters of the deuteron ($d = ^2\text{H}$), triton ($t = ^3\text{H}$), helium ($h = ^3\text{He}$) and the $\alpha$ particle ($^4\text{He}$) have been considered. The interaction potential and the nucleonic wave function of the few-nucleon system have been fitted to the binding energies and the rms radii of the corresponding nuclei.

With the neutron number $N_i = A_i - Z_i$, it can be written as

$$\Delta E_{A,Z}^{\text{Pauli}}(0; n_p, n_n, T) = -\frac{2}{A_i} [Z_in_p + N_in_n] \delta E_i^{\text{Pauli}}(T, n),$$ \[25\]

where the temperature dependence and higher density corrections are contained in the functions $\delta E_i^{\text{Pauli}}(T, n)$. These functions have been obtained with different approximations for the wave function. In case of the deuteron, the Jastrow approach leads to a functional form

$$\delta E_i^{\text{Pauli}}(T, n) = \frac{a_{i,1}}{T^{3/2}} \left[ \frac{1}{\sqrt{y_i}} - \sqrt{\pi}a_{i,3} \exp \left( a_{i,3}^2y_i \right) \text{erfc} \left( a_{i,3}\sqrt{y_i} \right) \right] \frac{1}{1 + [b_{i,1} + b_{i,2}/T]n}$$ \[26\]

with $y_i = 1 + a_{i,2}/T$. For the other clusters $i = t, h, \alpha$, the Gaussian approach is used which gives the simple form

$$\delta E_i^{\text{Pauli}}(T, n) = \frac{a_{i,1}}{T^{3/2}} \frac{1}{y_i^{3/2}} \frac{1}{1 + [b_{i,1} + b_{i,2}/T]n}.$$ \[27\]

The parameters $a_{i,1}$, $a_{i,2}$ and $a_{i,3}$ are determined by low-density perturbation theory from the unperturbed cluster wave functions. The parameters $b_{i,1}$ and $b_{i,2}$ are density corrections and are fitted to the numerical solution of the in-medium wave equation Eq. \[17\] for given $T$, $n_p$, $n_n$, $P = 0$. Values are given in Tab \[1\]

Now, the nucleon number densities \[7\] can be evaluated as in the non-interacting case, with the only difference that the number densities of the particles are calculated with the quasiparticle energies. In the light cluster-quasiparticle approximation, the total densities of neutrons

$$n_{n}^{\text{tot}} = n_n + \sum_{i=d,t,h,\alpha} N_in_i$$ \[28\]
bound in the clusters with densities 
so-called Mott density, where the bound states at
term; the self-energy contributions to the quasiparticle shifts act on bound as well as on scattering states. Above the
by specifying the total nucleon density
with explicit bound and scattering terms.
E
K > K
only over that region
contain the densities of the free neutrons and protons
with the continuum of scattering states. The summation over
considered as quasiparticles with the energy dispersion given by the RMF approach.
the single-nucleon self-energy shifts. These expressions guarantee a smooth behavior when the bound states merge
see Eq. (10), the free energy is obtained, and all the other thermodynamic functions are derived from this quantity
- equilibrium is considered.
energy per nucleon. In the calculations for the quantum statistical (QS) model shown below, the contributions of
of importance for the deuteron system, when the temperature is comparable or large compared with the binding
Uhlenbeck equation, see [31, 41]. This leads also to correct ions in comparison with the NSE that accounts only for the
contribution of scattering states explicitly. For the treatment of continuum states in the two-nucleon case, as well as
they move as resonances into the continuum of scattering states. This improved NSE, however, does not contain the
the region of saturation density. The bound state contributions to the EoS are fading with increasing density because
of the heavier clusters.
which takes also the contribution of heavier clusters into account, see [45]. Future work will include the contribution
diagram to that area where the abundances of heavier clusters are small. For a more general approach to the EoS
which takes also the contribution of heavier cluster into account, see [43]. Future work will include the contribution of
the heavier clusters.

and of protons
\[ n_p^{\text{tot}} = n_p + \sum_{i=d,t,h,a} Z_i n_i \]  
(29)
contain the densities of the free neutrons and protons \(n_n\) and \(n_p\), respectively, and the contributions from the nucleons
bound in the clusters with densities \(n_i\). The state of the system in chemical equilibrium is completely determined
by specifying the total nucleon density \(n = n_n^{\text{tot}} + n_p^{\text{tot}}\), the asymmetry \(\delta\) and the temperature \(T\) as long as no
\(\beta\)-equilibrium is considered.

This result is an improvement of the NSE and allows for the smooth transition from the low-density limit up to
the region of saturation density. The bound state contributions to the EoS are fading with increasing density because
they move as resonances into the continuum of scattering states. This improved NSE, however, does not contain the
contribution of scattering states explicitly. For the treatment of continuum states in the two-nucleon case, as well as
the evaluation of the second virial coefficient, see [32, 41].

The account of scattering states needs further consideration. Investigations on the two-particle level have been
performed and extensively discussed [32, 38, 41]. We use the Levinson theorem to take the contribution of scattering
states into account in the lowest-order approximation. Each bound state contribution to the density has to accom-
panied with a continuum contribution that partly compensates the strength of the bound state correlations. As a
consequence, the total proton and neutron densities are given by

\[ n_p^{\text{tot}}(T, \tilde{\mu}_p, \tilde{\mu}_n) = \frac{1}{\Omega} \sum_{A,\nu,K}^{\text{bound}} Z \left[ f_{A,Z}[E_{A,\nu}^{\text{qu}}(K; T, \tilde{\mu}_p, \tilde{\mu}_n)] - f_{A,Z}[E_{A,\nu}^{\text{cont}}(K; T, \tilde{\mu}_p, \tilde{\mu}_n)] \right] \]  
(30)
\[ n_n^{\text{tot}}(T, \tilde{\mu}_p, \tilde{\mu}_n) = \frac{1}{\Omega} \sum_{A,\nu,K}^{\text{bound}} (A - Z) \left[ f_{A,Z}[E_{A,\nu}^{\text{qu}}(K; T, \tilde{\mu}_p, \tilde{\mu}_n)] - f_{A,Z}[E_{A,\nu}^{\text{cont}}(K; T, \tilde{\mu}_p, \tilde{\mu}_n)] \right] \]  
(31)
with explicit bound and scattering terms. \(E_{A,\nu}^{\text{cont}}\) denotes the edge of the continuum states that is also determined by
the single-nucleon self-energy shifts. These expressions guarantee a smooth behavior when the bound states merge
with the continuum of scattering states. The summation over \(A\) includes also the contribution of free nucleons, \(A = 1\),
considered as quasiparticles with the energy dispersion given by the RMF approach.

The summation over \(K\) and the subtraction of the continuum contribution is extended only over that region of
momentum space where bound states exist. The disappearance of the bound states is caused by the Pauli blocking
term; the self-energy contributions to the quasiparticle shifts act on bound as well as on scattering states. Above the
so-called Mott density, where the bound states at \(K = 0\) disappear, the momentum summation has to be extended
only over that region \(K > K_{\text{Mott}}(T, \nu, \delta)\) where the bound state energy is lower than the continuum of scattering
states. The contribution of scattering states is necessary to obtain the second virial coefficient according to the Beth-
Uhlenbeck equation, see [31, 41]. This leads also to corrections in comparison with the NSE that accounts only for the
bound state contributions, neglecting all effects of scattering states. These corrections become important at increasing
temperatures for weakly bound clusters. Thus, the corrections which lead to the correct second virial coefficient are
of importance for the deuteron system, when the temperature is comparable or large compared with the binding
energy per nucleon. In the calculations for the quantum statistical (QS) model shown below, the contributions of
these continuum correlations have been taken into account.

Solving Eqs. (30) and (31) for given \(T\), \(n_p^{\text{tot}}\) and \(n_n^{\text{tot}}\), we find the chemical potentials \(\mu_p\) and \(\mu_n\). After integration,
see Eq. (11), the free energy is obtained, and all the other thermodynamic functions are derived from this quantity
without any contradictions. Results are given below.

We do not consider the formation of heavy clusters here. This limits the parameter range \(n_n^{\text{tot}}, n_p^{\text{tot}}, T\) in the phase
diagram to that area where the abundances of heavier clusters are small. For a more general approach to the EoS
which takes also the contribution of heavier cluster into account, see [43]. Future work will include the contribution of
the heavier clusters.

| cluster | \(s_i\) | \(a_{i,1}\) | \(a_{i,2}\) | \(a_{i,3}\) | \(b_{i,1}\) | \(b_{i,2}\) | \(g_{i,1}\) | \(g_{i,2}\) | \(h_{i,1}\) | \(h_{i,2}\) |
|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| d       | 11.147 | 38336.4| 22.5204| 0.2223 | 1.048  | 285.7  | 0.85   | 0.223  | 132    | 17.5   |
| t       | 24.575 | 69516.2| 7.49232| -      | -      | -      | -      | -      | -      | -      |
| h       | 20.075 | 58442.5| 6.07718| -      | 4.414  | 43.90  | 2.638  | 0.434  | 43     | -      |
| a       | 49.868 | 164371 | 10.6701| -      | -      | -      | -      | -      | 8.236  | 0.772  |

TABLE I: Parameters for the cluster binding energy shifts.
Further approximations refer to the linear dependence on density of the shifts of binding energies, calculated in perturbation theory. A better treatment will improve these shifts, but it can be shown that the changes are small. The approximation of the uncorrelated medium can be improved considering the cluster mean-field approximation \[38, 33, 57\]. Furthermore, the formation of quantum condensates will give additional contributions to the EoS. However, in the region considered here the formation of quantum condensates does not appear. This is in contrast to a recent work employing a quasiparticle gas model \[53\] where Bose-Einstein condensation of deuterons is observed because the Pauli shift of the deuteron binding energy at high densities is not considered.

### III. GENERALIZED RELATIVISTIC MEAN-FIELD MODEL WITH LIGHT CLUSTERS

A main ingredient to construct the low-density EoS is the proper determination of the nucleonic quasiparticle energies that enter the single-nucleon distribution functions, Eqs. (17) but also the cluster energies via the in-medium Schrödinger equation (17). Recently, realistic values for the nucleon quasiparticle shifts were obtained from sophisticated calculations within Hamiltonian approaches, such as Dirac-Brueckner Hartree-Fock calculations \[52, 54, 57\]. RMF approaches proved to be very successful to interpret properties near saturation density, see, e.g., Refs. \[18, 46\].

We extract the single-nucleon quasiparticle shifts from the results of the RMF model with density-dependent couplings and use them in our QS approach. In the following we show how this RMF model can be extended to include light clusters, which are considered as quasiparticles modified by medium effects as obtained in the QS approach. A comparison of the generalized RMF model with the QS model will show distinct differences in the thermodynamical properties that are related to the employed approximations.

In a conventional relativistic mean-field description \[30\] of homogeneous and isotropic nuclear matter, nucleons interact by the exchange of mesons where usually isoscalar $\omega$ and $\sigma$ and isovector $\rho$ mesons are included. Neutrons and protons are described by Dirac spinors $\psi_i$ ($i = n, p$). The mesons are represented by Lorentz vector fields $\omega_\mu$ and $\rho_\mu$ and Lorentz scalar fields $\sigma$. The electromagnetic interaction is not considered in nuclear matter. A possible isovector, Lorentz scalar $\delta$ meson is not included in the present model. The mesons couple minimally to the nucleons. In our approach, non-linear meson self-interactions are not introduced, but the couplings are assumed to be functionals of the nucleon operator-valued currents in order to simulate a medium dependence of the interaction.

In the generalized RMF model with light clusters, the ground states of the deuteron ($d = \text{H}_2$), the triton ($t = \text{H}_3$), the helium ($\text{He}_4$) and the $\alpha$ particle ($\alpha = \text{He}_4$) are introduced as additional degrees of freedom with the corresponding spin 0 field $\phi_\alpha$, spin 1 field $\psi_\alpha$ and spin 1/2 fields $\psi_i$ ($i = t, h$). The clusters are treated as point-like particles and their internal structure is not taken into account. The influence of the medium on the cluster properties is described by density and temperature dependent shifts of the binding energies as introduced in the previous section. The Pauli shifts, cf. Eq. (23), are taken from the nonrelativistic calculation neglecting the dependence on the c.m. momentum $K$ of the cluster, while this is taken into account in the QS approach. On the other hand, the self-energy shift is treated self-consistently in the RMF description in contrast to the QS approach where it enters in parametrized form from an independent model, namely the RMF model described in this section.

#### A. Lagrangian density and field equations

In the present approach, the model Lagrangian has the form

\[
\mathcal{L} = \sum_{i=n,p,t,h} \bar{\psi}_i (\gamma_\mu i D_\mu^i - M_i) \psi_i + \frac{1}{2} (i D^\mu_\alpha \varphi_\alpha)^* (i D_{\alpha \mu} \varphi_\alpha) - \frac{1}{2} \varphi^*_\alpha M^2_\alpha \varphi_\alpha \\
+ \frac{1}{4} (i D_\mu^i \varphi_\alpha^* - i D_\alpha^i \varphi_\mu^*)^* (i D_{\alpha \mu} \varphi_\alpha - i D_{\mu \alpha} \varphi_\beta) - \frac{1}{4} \varphi^*_\mu M^2_\mu \varphi_\mu \\
+ \frac{1}{2} \left( \partial_\mu \alpha \partial_\sigma \varphi_\sigma - m_\sigma^2 \varphi_\sigma^2 - \frac{1}{2} G^{\mu \nu} G_{\mu \nu} + m_\omega^2 \omega_\mu \omega_\mu - \frac{1}{2} \mathcal{H}_{\mu \nu} \cdot \mathcal{H}_{\mu \nu} + m_\rho^2 \varphi^\mu \varphi_\mu \right)
\]

with the field tensors

\[
G_{\mu \nu} = \partial_\mu \omega_\nu - \partial_\nu \omega_\mu \\
\mathcal{H}_{\mu \nu} = \partial_\mu \varphi_\nu - \partial_\nu \varphi_\mu
\]

of the Lorentz vector fields. Vectors in isospin space carry an arrow. Nucleons form an isospin doublet with $\tau_3 \psi_n = \psi_n$ and $\tau_3 \psi_p = - \psi_p$. Similarly, for the triton and helium one has $\tau_3 \psi_t = \psi_t$ and $\tau_3 \psi_h = - \psi_h$, respectively. Deuterons and $\alpha$-particles are treated as isospin singlets.
The covariant derivative
\[ iD_i^\mu = i\partial^\mu - \Gamma_\omega A_i^\mu - \Gamma_\rho |N_i - Z_i| \vec{\tau} \cdot \vec{\rho}^\mu \] (34)
for a particle \( i \) contains the interaction with the Lorentz vector mesons with a strength that is determined by the density-dependent couplings \( \Gamma_\omega, \Gamma_\rho \) and the mass \( (A_i) \), neutron \( (N_i) \) and proton \( (Z_i) \) number of a particle \( i \). The scalar \( \sigma \) meson with coupling strength \( \Gamma_\sigma \) appears in the effective mass
\[ M_i = m_i - \Gamma_\sigma A_i \sigma - \Delta B_i \] (35)
of a particle \( i \) with vacuum rest mass \( m_i \). The vacuum rest mass of a cluster \( i = d,t,h,\alpha \) is given by
\[ m_i = Z_i m_p + N_i m_n - B_{0i} \] (36)
which defines the vacuum binding energies \( B_{0i} > 0 \). The medium dependent Pauli shift \( \Delta B_i \) appears only for clusters. The couplings \( \Gamma_m = \Gamma_m(\rho) \ (m = \omega, \sigma, \rho) \) are functionals of the Lorentz scalar density
\[ \rho = \sqrt{J^\mu J_\mu} \] (37)
that contains the free nucleon current
\[ J^\mu = j_p^\mu + j_n^\mu \] (38)
with \( j_i^\mu = \bar{\psi}_i \gamma^\mu \psi_i \). The Pauli shifts of the binding energies were derived in the previous section as a function \( \Delta B_i(n_p^{\text{tot}}, n_n^{\text{tot}}, T) \) depending on the total proton and neutron densities \( n_p^{\text{tot}} \) and \( n_n^{\text{tot}} \) and the temperature \( T \). In principle, the densities have to be replaced by the corresponding quantities expressed in terms of the field operators of the nucleons and clusters. In the case of the fermions, this poses no problem since the currents of the triton and helion have the same form as the currents of the nucleons. However, for the bosons, the definition of the conserved currents contains the meson fields and the Pauli shifts. A dependence of the Pauli shifts on these currents leads to additional rearrangement contributions that modify the self-energies and requires a redefinition of the conserved currents. In order to avoid these complications, the dependence of the Pauli shifts on the densities is replaced by a dependence on the vector meson fields. In this way the Pauli shifts are treated in an equivalent way as the usual single-particle shifts. In consequence, we replace the dependence on the total densities
\[ n_n^{\text{tot}} \rightarrow n_n^{\text{ps}} = \frac{1}{2} \left[ \rho_\omega + \rho_\rho \right] \] (39)
\[ n_p^{\text{tot}} \rightarrow n_p^{\text{ps}} = \frac{1}{2} \left[ \rho_\omega - \rho_\rho \right] \] (40)
by pseudo-densities \( n_n^{\text{ps}} \) and \( n_p^{\text{ps}} \) with the quantities
\[ \rho_\omega = \lambda_\omega \sqrt{\omega^\mu \omega_\mu} \] (41)
and
\[ \rho_\rho = \lambda_\rho \sqrt{\rho^\mu \rho_\mu} . \] (42)
The coefficients \( \lambda_\omega = m_\omega^2 / \Gamma_\omega(0) \) and \( \lambda_\rho = m_\rho^2 / \Gamma_\rho(0) \) are defined such that the correct low-density limit is obtained.

The field equations for mesons, nucleons and clusters are derived from the Lagrangian density in the usual way. They are solved self-consistently in the mean-field approximation where the meson fields are treated as classical fields and sea-states of the fermions are not considered. The couplings \( \Gamma_m \ (m = \omega, \sigma, \rho) \) become simple functions of \( \rho = \sqrt{\langle J^\mu J_\mu \rangle} \) where the brackets \( \langle \cdot \rangle \) indicate the summation over all occupied states of the system. The field equations simplify considerably due to the symmetries of homogeneous and isotropic nuclear matter at rest. The scalar meson field is directly given by
\[ \sigma = \frac{\Gamma_\sigma}{m_\sigma^2} n_\sigma \] (43)
with the source density
\[ n_\sigma = \sum_{i=n,p,d,t,h,\alpha} A_i n_i^s \] (44)
that is a sum of the scalar densities \( n_i^s = \langle \psi_i \gamma_0 \psi_i \rangle \) of the fermions \( i = n, p, t, h \) and the scalar densities \( n_\alpha^s = \langle \varphi_\alpha \varphi_\alpha \rangle \) of the \( \alpha \) particle. The non-vanishing components of the vector meson fields are

\[
\omega_0 = \frac{\Gamma_\omega}{m_\omega^2} n_\omega - \sum_{i=d,t,h,\alpha} \frac{\lambda_\omega}{2m_\omega^2} \left( \frac{\partial \Delta B_i}{\partial n_{\mu}^o} + \frac{\partial \Delta B_i}{\partial n_{\mu}^o} \right) n_i^s
\]

(45)

\[
(\bar{n}_\rho)_3 = \frac{\Gamma_\rho}{m_\rho^2} n_\rho - \sum_{i=d,t,h,\alpha} \frac{\lambda_\rho}{2m_\rho^2} \left( \frac{\partial \Delta B_i}{\partial n_{\mu}^o} - \frac{\partial \Delta B_i}{\partial n_{\mu}^o} \right) n_i^s
\]

(46)

with two different source contributions. The regular source densities

\[
n_\omega = \sum_{i=n,p,d,t,\alpha} A_i n_i
\]

(47)

\[
n_\rho = \sum_{i=n,p,d,t,\alpha} \left( N_i - Z_i \right) n_i
\]

(48)

depend on the vector densities \( n_i = \langle \psi_i \gamma_0 \psi_i \rangle \) of the fermions \( i = n, p, t, h \), the vector density of the deuteron

\[
n_d = \frac{1}{2} \left( (iD_{d0} \varphi_{d0} - iD_{d0} \varphi_{d0})^s \varphi_d^s + \varphi_d^s \right)
\]

(49)

and of the \( \alpha \) particle

\[
n_\alpha = \frac{1}{2} \langle (iD_{\alpha0} \varphi_\alpha)^s \varphi_\alpha + \varphi_\alpha^s \rangle.
\]

(50)

The second contribution in eqs. (45) and (46) with the derivatives of the binding energy shifts is proportional to the scalar densities of the clusters.

The Dirac equation for the spin 1/2 particles \( (i = n, p, t, h) \) assumes the form

\[
[\gamma^\mu \left( i\partial_\mu - \Sigma_{\mu} \right) - (m_i - \Sigma_i)] \psi_i = 0
\]

(51)

with scalar and vector self-energies \( \Sigma_i \) and \( \Sigma_{\mu} \), respectively. The field equations for the \( \alpha \)-particle and the deuteron are the Klein-Gordon equation

\[
- \left((i\partial_\mu - \Sigma_{\alpha\mu})(i\partial^\mu - \Sigma_{\alpha\mu}) + (m_\alpha - \Sigma_\alpha)^2 \right) \varphi_\alpha = 0
\]

(52)

and the Proca equation

\[
- (i\partial_\mu - \Sigma_{d\mu}) \left((i\partial^\mu - \Sigma_{d\mu}) \varphi_d^\mu - (i\partial^\nu - \Sigma_{d\nu}) \varphi_d^\nu \right) + (m_d - \Sigma_d)^2 \varphi_d = 0,
\]

(53)

respectively. The scalar self-energies are given by

\[
\Sigma_i = \Gamma_i A_i \sigma + \Delta B_i
\]

(54)

where the binding energy shift \( \Delta B_i \) appears only for clusters. The non-vanishing component of the vector self-energy is the zero-component

\[
\Sigma_{i0} = \Gamma_\omega A_i \omega_0 + \Gamma_\rho \left( N_i - Z_i \right) (\bar{n}_\rho)_3 + \Sigma^R_{i0}
\]

(55)

with the ‘rearrangement’ contribution

\[
\Sigma^R_{i0} = \Gamma'_i \omega_0 n_\omega + \Gamma'_\rho (\bar{n}_\rho)_3 n_\rho - \Gamma'_\sigma n_\sigma
\]

(56)

that appears only for nucleons. It contains contributions with derivatives \( \Gamma_m = d\Gamma_m/d\rho \) of the meson-nucleon couplings.

Since the self-energies are momentum-independent in homogeneous and isotropic nuclear matter, the field equations of the nucleons and of the clusters are easily solved. The solutions are plane waves with shifted masses and energies as compared to the vacuum solution, i.e. nucleons and clusters can be considered as quasiparticles. At finite temperatures \( T \) the relevant vector and scalar densities are easily calculated with these solutions by integrating over all momenta.
with the correct distribution functions. Thus, the vector and scalar densities of the fermions \((i = n, p, t, h)\) are given by

\[
n_i = g_i \int \frac{d^3k}{(2\pi)^3} \left[ f_i^+(k) - f_i^-(k) \right]
\]

\[
n_i^s = g_i \int \frac{d^3k}{(2\pi)^3} \frac{m_i - \Sigma_i}{e_i(k)} \left[ f_i^+(k) + f_i^-(k) \right]
\]

with degeneracy factor \(g_i = 2\) and the energy

\[
e_i(k) = \sqrt{k^2 + (m_i - \Sigma_i)^2}.
\]

The Fermi-Dirac distribution for the particle \((\eta = 1)\) and antiparticle \((\eta = -1)\) contributions is defined by

\[
f_i^\eta(k) = \left\{ \exp[\eta \beta (E_i^\eta - \mu_i)] + 1 \right\}^{-1}
\]

where \(\beta = 1/T\) and \(E_i^\eta(k) = \Sigma_i + \eta e_i(k)\) is the quasiparticle energy. The (relativistic) chemical potential of a particle \(i\) is denoted by \(\mu_i\). The densities of the bosons \((i = d, \alpha)\) are obtained from

\[
n_i = g_i \int \frac{d^3k}{(2\pi)^3} b_i(k) + \tilde{n}_i
\]

\[
n_i^s = g_i \int \frac{d^3k}{(2\pi)^3} \frac{m_i - \Sigma_i}{e_i(k)} b_i(k) + \tilde{n}_i^s
\]

with the Bose-Einstein distribution

\[
b_i(k) = \left\{ \exp[\beta (E_i^+ - \mu_i)] - 1 \right\}^{-1}
\]

and degeneracy factors \(g_d = 3\) and \(g_\alpha = 1\), respectively. A possible contribution to the densities from particles that are condensed in the ground state is denoted by \(\tilde{n}_i\) and \(\tilde{n}_i^s\). In homogeneous and isotropic matter these two are actually identical. For a system of nucleons and clusters in chemical equilibrium, the (relativistic) chemical potential of a cluster \(i\) is determined by

\[
\mu_i = N_i \mu_n + Z_i \mu_p.
\]

Thus, there are only two independent chemical potentials.

For given total baryon number density \(n\), asymmetry \(\delta\) and temperature \(T\), the coupled field equations of the generalized RMF model are solved self-consistently. This procedure yields the chemical potentials of neutrons and protons that determine the densities of all particles. Finally, all thermodynamical quantities, that are specified in the following subsection, can be calculated.

### B. Thermodynamical quantities

The energy density \(\varepsilon\) and the pressure \(p\) are derived from the energy-momentum tensor \(T^{\mu\nu}\) with the results

\[
\varepsilon = \langle T^{00} \rangle = \sum_{i=n,p,t,h} g_i \int \frac{d^3k}{(2\pi)^3} \sum_\eta f_i^\eta e_i(k) + \sum_{i=d,\alpha} \left[ g_i \int \frac{d^3k}{(2\pi)^3} b_i e_i(k) + \tilde{n}_i (m_i - \Sigma_i) \right]
\]

\[
+ \Gamma_\omega \omega_0 n_\omega + \Gamma_\rho \rho_0 n_\rho + \frac{1}{2} \left[ m_\sigma^2 \sigma^2 - m_\omega^2 \omega_0^2 - m_\rho^2 \rho_0^2 \right]
\]

and

\[
p = \frac{1}{3} \sum_{m=1}^3 \langle T^{mm} \rangle = \frac{1}{3} \sum_{i=n,p,t,h} g_i \int \frac{d^3k}{(2\pi)^3} \sum_\eta f_i^\eta \frac{k^2}{e_i(k)} + \frac{1}{3} \sum_{i=d,\alpha} \left[ g_i \int \frac{d^3k}{(2\pi)^3} b_i \frac{k^2}{e_i(k)} \right]
\]

\[
+ (n_n + n_p) \left[ \Gamma'_\omega \omega_0 n_\omega + \Gamma'_\rho \rho_0 n_\rho - \Gamma'_\sigma \sigma n_\sigma \right] - \frac{1}{2} \left[ m_\sigma^2 \sigma^2 - m_\omega^2 \omega_0^2 - m_\rho^2 \rho_0^2 \right]
\]
with $\rho_0 = (\rho_0^0)_3$. The condensed bosons do not contribute to the pressure but to the energy density. The entropy density $s$ can be extracted from the grand-canonical potential density $\omega(T, \mu_n, \mu_p) = -p$ as $s = -\left(\frac{\partial \omega}{\partial T}\right)_{\mu_n, \mu_p}$. However, it is more practical to use the thermodynamic relation

$$\varepsilon = Ts - p + \sum_{i=n,p,t,h} \mu_i n_i$$

(67)

corresponding to the Hugenholtz-van-Hove theorem. After partial integration the standard result

$$s = -\sum_{i=n,p,t,h} g_i \int \frac{d^3 k}{(2\pi)^3} \sum_\eta [f_i^0 \ln f_i^0 + (1 - f_i^0) \ln (1 - f_i^0)]$$

(68)

is obtained. The thermodynamical pressure

$$p = n^2 \frac{\partial}{\partial n} \left( \frac{f}{n} \right) \bigg|_{T, \delta}$$

(69)

calculated from the free energy density $f = \varepsilon - Ts$ is identical to the pressure (66) in the fieldtheoretical approach. Since the energy density in the RMF model contains the contribution of the rest mass of the particles, it is convenient to define the internal energy per nucleon as

$$E_A(n, \delta, T) = \frac{1}{n} [\varepsilon(n, \delta, T) - n_{n_{\text{tot}}} n_{n} - n_{p_{\text{tot}}} m_p]$$

(70)

and correspondingly the free energy per nucleon

$$F_A(n, \delta, T) = E_A - T \frac{s}{n}$$

(71)

where the rest mass has been subtracted. We emphasize that both the generalized RMF model and the QS approach are thermodynamically consistent.

C. Dissolution of clusters

In the generalized RMF approach, the quasiparticle energy shift of the clusters contains the self-energy shift due to the mean fields of the mesons. The effective-mass shift is already included in the relativistic approach and the Coulomb shift is neglected. For the binding energy shift $\Delta B_i$ only the effect of the Pauli blocking is considered. The dependence of the Pauli shift on the cluster momentum relative to the medium is neglected since the introduction of a momentum dependence in the RMF Lagrangian is non-trivial [46]. With increasing density of the medium, the linear approximation of the Pauli shift (25) in the densities is not sufficient and higher-order terms have to be considered. In the present RMF calculation, an empirical quadratic form

$$\Delta B_i(n_{p_{\text{tot}}}, n_{n_{\text{tot}}}, T) = -\tilde{n}_i \left[ 1 + \frac{\tilde{n}_i}{2 \tilde{n}_0^i(T)} \right] \delta B_i(T)$$

(72)

is used, where the abbreviation

$$\tilde{n}_i = \frac{2}{A_i} [Z_i n_{p_{\text{tot}}} + N_i n_{n_{\text{tot}}}]$$

(73)

and the density scale

$$\tilde{n}_0^i(T) = \frac{B_0^i}{\delta B_i(T)}$$

(74)

for the dissolution of the cluster $i$ with the vacuum binding energy $B_0^i$ are introduced. The quantity $\delta B_i(T)$ is given by $\delta E_i^{\text{Pauli}}(T, 0)$ in eq. [20] for deuterons and in eq. [27] for the other clusters. In the limit $T \to 0$ the shifts and their derivatives remain finite for all clusters.
The total binding energy of a cluster $i$ is the sum $B_i = B_{i0}^0 + \Delta B_i$ of the experimental binding energy $B_{i0}^0$ in the vacuum and the binding energy shift $\Delta B_i$ that in general depends on the c.m. momentum $K$ (see II C). The dependence of the cluster binding energies on the total nucleon density $n = n_{tot}^{n} + n_{tot}^{p}$ of the medium is depicted for symmetric nuclear matter in Fig. 1 for various temperatures $T$ and clusters at rest. For $n \rightarrow 0$ the experimental binding energy is recovered. The density where a cluster becomes unbound, i.e. $B_i = 0$, increases with increasing temperature. This behavior is expected since the Pauli blocking of states is less effective at higher temperatures. Note that both free nucleons and nucleons bound in clusters are relevant for the Pauli principle occupying phase space in momentum representation. In principle, this is not described by a Fermi distribution but by the bound state wave functions. A more exact theory taking this into account is given by the cluster mean-field approximation [57], which, however, is very complex and has not been solved in general so far. Here we use the approximation of an effective Fermi distribution with an effective chemical potential which includes both free and bound state nucleons, as discussed following Eq. 17. It is clearly seen that the weakly bound deuteron dissolves in the medium at much lower densities than the more tightly bound $\alpha$-particle.

The quadratic form (72) of the binding energy shift $\Delta B_i$ predicts a transition of the cluster bound state to the continuum at a transition density of $\tilde{n}_i(T) = \sqrt{3} - 1 \tilde{n}_i^0(T)$ where the cluster binding energy $B_i$ becomes zero, i.e. there are only scattering correlations remaining and the energy corresponds to that of a resonance. In case of the triton, helium and $\alpha$-particle, the resonance energy rapidly moves to larger energies in the continuum with increasing density leading to a strong suppression of the cluster fractions. In contrast, the deuteron-like resonance stays closer to the threshold causing a much weaker suppression of two-particle correlations at high densities. The change of the binding energy from positive to negative values allows to describe a continuous suppression of the cluster fraction with increasing density. A simple neglect of the cluster contribution to the EoS as soon the energy crosses zero would lead to an unphysical jump in the cluster density and the thermodynamical properties. In the QS model, the

FIG. 1: (Color online) Change of the binding energy $B_i = B_{i0}^0 + \Delta B_i$ of the clusters $i = d, t, h, \alpha$ at rest in symmetric nuclear matter due to the binding energy shift $\Delta B_i$ as used in the generalized RMF model as a function of the total nucleon density $n = n_{tot}^{n} + n_{tot}^{p}$ of the medium for various temperatures $T$. The total binding energy of a cluster $i$ is the sum $B_i = B_{i0}^0 + \Delta B_i$ of the experimental binding energy $B_{i0}^0$ in the vacuum and the binding energy shift $\Delta B_i$ that in general depends on the c.m. momentum $K$ (see II C). The dependence of the cluster binding energies on the total nucleon density $n = n_{tot}^{n} + n_{tot}^{p}$ of the medium is depicted for symmetric nuclear matter in Fig. 1 for various temperatures $T$ and clusters at rest. For $n \rightarrow 0$ the experimental binding energy is recovered. The density where a cluster becomes unbound, i.e. $B_i = 0$, increases with increasing temperature. This behavior is expected since the Pauli blocking of states is less effective at higher temperatures. Note that both free nucleons and nucleons bound in clusters are relevant for the Pauli principle occupying phase space in momentum representation. In principle, this is not described by a Fermi distribution but by the bound state wave functions. A more exact theory taking this into account is given by the cluster mean-field approximation [57], which, however, is very complex and has not been solved in general so far. Here we use the approximation of an effective Fermi distribution with an effective chemical potential which includes both free and bound state nucleons, as discussed following Eq. 17. It is clearly seen that the weakly bound deuteron dissolves in the medium at much lower densities than the more tightly bound $\alpha$-particle.

The quadratic form (72) of the binding energy shift $\Delta B_i$ predicts a transition of the cluster bound state to the continuum at a transition density of $\tilde{n}_i(T) = \sqrt{3} - 1 \tilde{n}_i^0(T)$ where the cluster binding energy $B_i$ becomes zero, i.e. there are only scattering correlations remaining and the energy corresponds to that of a resonance. In case of the triton, helium and $\alpha$-particle, the resonance energy rapidly moves to larger energies in the continuum with increasing density leading to a strong suppression of the cluster fractions. In contrast, the deuteron-like resonance stays closer to the threshold causing a much weaker suppression of two-particle correlations at high densities. The change of the binding energy from positive to negative values allows to describe a continuous suppression of the cluster fraction with increasing density. A simple neglect of the cluster contribution to the EoS as soon the energy crosses zero would lead to an unphysical jump in the cluster density and the thermodynamical properties. In the QS model, the
bound state contributions are rapidly cancelled by the continuum contributions, Eqs. \ref{eq:30},\ref{eq:31}, leading to a more rapid suppression also of the deuteron correlations. The differences in the continuum correlations will be seen to have large effects in the comparison of the results from the RMF and QS models.

D. Model parameters

The generalized RMF model contains several parameters: the masses of the particles, the couplings and binding energy shifts with their specific functional dependence on densities and temperature. In the present approach, experimental neutron and proton masses \( m_n \) and \( m_p \) are used instead of an average nucleon mass \( m_{\text{nuc}} = (m_n + m_p)/2 \). With the experimental binding energies \( E_0 \) in the vacuum from \cite{40} the masses \( m_{\text{sat}} \) of the clusters are also fixed. For the masses of the \( \omega \) and \( \rho \) meson standard values of previous RMF models are assumed. The mass of the \( \sigma \) meson is determined from a fit of the RMF parameters to properties of finite nuclei (see below). The numerical values of the nucleon and meson masses are given in table \ref{table:II}

The functional dependence of the couplings on the density is described by

\[
\Gamma_i(x) = \Gamma_i(n_{\text{sat}}) f_i(x) \tag{75}
\]

with \( x = n/n_{\text{sat}} \) where a rational function

\[
f_i(x) = \frac{1 + b_i(x + d_i)^2}{1 + c_i(x + d_i)^2} \tag{76}
\]

is used for the isoscalar mesons \( i = \omega, \sigma \) and an exponential function

\[
f_i(x) = \exp[-a_i(x - 1)] \tag{77}
\]

for the isovector meson \( i = \rho \). In order to reduce the number of independent parameters the conditions \( f_i(1) = 1 \) and \( f''_i(0) = 0 \) are imposed on the rational function. These functions were introduced in \cite{40} and are now widely used in RMF models with density-dependent couplings. The saturation density \( n_{\text{sat}} \), the mass of the \( \sigma \) meson \( m_\sigma \), the couplings \( \Gamma_i(n_{\text{sat}}) \) and the coefficients \( a_i, b_i, c_i \) and \( d_i \) are found by fitting the properties of finite nuclei (binding energies, spin-orbit splittings, charge and diffraction radii, surface thicknesses and the neutron skin thickness of \( ^{208}\text{Pb} \)) in the same way as for the parametrization DD in Ref. \cite{40}. In total, there are ten independent parameters in the fit. Numerical values of the coupling parameters can be found in table \ref{table:III}. This new parametrization is called DD2 since it is a modification of the set DD where the only difference is the use of experimental nucleon masses.

On the basis of this fit, the saturation density of symmetric nuclear matter at zero temperature is obtained as \( n_{\text{sat}} = 0.149065 \text{ fm}^{-3} \) with a binding energy per nucleon of \(-16.02 \text{ MeV} \). The incompressibility turns out to be \( K_\infty = 242.7 \text{ MeV} \) with a derivative \( K' = -529.8 \text{ MeV} \). See \cite{18,40} for the definition of these quantities. These values are very reasonable and close to the results of other modern RMF parametrizations. The large negative value of \( K' \) is a result of the fit to the surface properties of nuclei and leads to a rather stiff EoS for symmetric nuclear matter at high densities. The small effective Dirac mass at saturation of 0.5625 \( m_{\text{nuc}} \) is required in order to get a good description of the spin-orbit splittings. This corresponds to an effective Landau mass of \( m^* = 0.6255 m_{\text{nuc}} \).

The value and the density dependence of the symmetry energy near the nuclear saturation density \( n_{\text{sat}} \) are usually characterized by the quantities \( J = E_{\text{sym}}(n_{\text{sat}},0,0) \) and the slope parameter \( L = 3 dE_{\text{sym}}/dn_{\text{sat}}|_{n=n_{\text{sat}},T=0} \). With the parametrization of the present RMF model, the values \( J = 32.73 \text{ MeV} \) and \( L = 57.94 \text{ MeV} \) are found. The obtained symmetry energy at saturation \( J \) is fully consistent with all modern RMF parametrizations and expectations.

### TABLE II: Masses of the nucleons and mesons in the relativistic mean-field model.

| particle | neutron | proton | \( \omega \) meson | \( \sigma \) meson | \( \rho \) meson |
|---------|---------|--------|------------------|------------------|----------------|
| \( m_i \) [MeV] | 939.56536 | 938.27203 | 783 | 546.212459 | 763 |

### TABLE III: Parameters of the couplings in the relativistic mean-field model.

| meson | \( \Gamma_i(n_{\text{sat}}) \) | \( a_i \) | \( b_i \) | \( c_i \) | \( d_i \) |
|-------|-----------------|--------|--------|--------|--------|
| \( \omega \) | 13.342362 | 1.369718 | 0.496475 | 0.817753 | 0.638452 |
| \( \sigma \) | 10.686681 | 1.357630 | 0.634442 | 1.095358 | 0.575810 |
| \( \rho \) | 3.626940 | 0.518903 |
rather small slope coefficient $L$ is a consequence of fitting the neutron skin thickness of $^{208}\text{Pb}$ that is not known precisely so far. Similar low values for $L$ are found in other contemporary RMF parametrizations with density dependent couplings or with extended non-linear meson self-interactions. Older non-linear RMF models were not able to give a reasonable value of the neutron skin thickness with values for $L$ in excess of 100 MeV. They displayed a much stiffer symmetry energy because of a restricted form for the isospin dependence of the interaction. The symmetry energy of nuclear matter parameters at subsaturation densities is one of the central results of this work and will be discussed in section \[\text{VI}\].

IV. PROPERTIES OF SYMMETRIC NUCLEAR MATTER WITH LIGHT CLUSTERS

The appearance of light clusters in nuclear matter at densities below saturation affects the composition and the thermodynamical properties of the system. In this section we will compare the results of the quantum statistical approach (QS) with the generalized relativistic mean-field model (RMF) in reference to the nuclear statistical equilibrium (NSE) model, which gives the correct behavior in the limit of small densities. We will start to discuss the composition of the system, which shows most directly the differences of the models. In all figures in this section we consider isothermes in symmetric nuclear matter as a function of the total baryon density for temperatures between 2 MeV and 20 MeV in steps of 2 MeV keeping the same color code. This representation immediately allows to study the systematic evolution of the various properties.

A. Composition

We start to discuss the composition of the system, i.e. the fractions $X_i = A_i n_i / n$ of the various particle species $i$ as calculated in the RMF and the QS models. We first describe the results and then attempt to give an explanation of the differences between the models at the end of the subsection.

In Fig. 2 the density dependence of the free proton fraction, i.e. of protons not bound in a cluster, is shown for different temperatures in symmetric nuclear matter (which in this case is nearly identical to the neutron fraction). The two approaches are compared to the NSE model up to densities $n < 2 \times 10^{-2} \text{fm}^{-3}$. For finite temperatures $T$ the free proton fraction in symmetric nuclear matter always approaches the value 0.5 for $n \to 0 \text{fm}^{-3}$. It first decreases
FIG. 3: (Color online) Cluster fractions $X_i$ in symmetric nuclear matter as a function of the total density $n$ for various temperatures $T$ in the generalized RMF model (thick solid lines). The result of the NSE calculation with light clusters is denoted by thin solid lines for low densities. See Fig. 2 for the color code.

with increasing densities because of the formation of clusters, but then increases again because the clusters dissolve at higher densities. Eventually the system becomes homogeneous again, and the nucleon fractions attain the value 0.5. For densities below $n \sim 10^{-4}$ fm$^{-3}$ the fraction of free protons in both models is very well described by the NSE result since here mean-field effects and changes of the cluster properties are practically negligible. With increasing density, the NSE proton fraction approaches zero asymptotically irrespective of the temperature, i.e. all protons are predicted to be bound in clusters. This unphysical result does not occur in both the RMF and QS approaches. Instead, the clusters dissolve at high densities leading to free protons and neutrons at high densities, i.e. the correct limit is obtained.

The two approaches, RMF and QS, generally show a similar behavior. However, in the transition region where the clusters dissolve, there are significant differences, which are more pronounced at high temperatures. In the QS approach the minimum of the free proton fraction increases with the temperature monotonously, and the minimum position is slightly shifted to higher values in density but stays close to $10^{-2}$ fm$^{-3}$. Essentially all protons are free at saturation density independent of temperature. In the RMF model the behavior at temperatures above $\approx 8$ MeV is different. The minimum of $X_p$ starts to decrease again and the minimum position moves considerably to higher densities with increasing temperature, such that the model predicts that some protons are still bound in clusters even at saturation density.

The information on the fractions of the different light clusters, deuteron to $^4$He, is shown in Figs. 3 for the RMF.
model and in Fig. 4 for the QS model, again in comparison with NSE. At zero temperature and density the cluster fractions are simply determined by the binding energies. Thus in symmetric nuclear matter all nucleons are bound in alpha particles. With increasing temperature the cluster fractions show the complementary behavior compared to the free nucleon fractions, discussed above. At low densities and higher temperatures all cluster fractions are small decreasing with temperature but increasing with density. For a fixed temperature first the deuteron appears, then the three-body bound states and finally the $\alpha$ particle. The distribution between the clusters changes with increasing density of the medium such that correlations between more and more nucleons become important. As a consequence, the fractions of the lighter clusters decrease whereas the $\alpha$-particle fraction still increases. In the QS model (but not in the RMF model) at higher densities the more strongly bound $\alpha$-particle are formed more frequently than deuterons. The same trend is observed for the NSE calculation. However, for densities beyond nuclear saturation, the NSE predicts that all nucleons in symmetric nuclear matter would be bound in clusters, which again is unphysical since in this model the medium modification and the eventual disappearance of the clusters is not taken into account.

Again there are significant differences in the two approaches. In the RMF model the cluster fractions along isothermes rise and fall monotonously with a single maximum. In general they stay below the fractions predicted by the NSE calculation, since the clusters are less bound inside the medium. In the QS approach, on the other hand, at lower temperatures, the fractions of deuterons, tritons and helions exhibit a sudden drop around densities of $10^{-2}$ fm$^{-3}$, which is accompanied by an increase in the $\alpha$-particle fraction as compared to the NSE result. Generally,
the range of densities where the clusters disappear is more confined in the QS relative to the RMF model.

Many of the differences in the behavior of the models can be traced back to the different treatment of the deuteron correlations. The QS approach takes the continuum contributions explicitly into account, which effectively reduces the strength of the two-body correlations, as is, e.g., seen in Eqs. (30), (31). In RMF, on the other hand, the deuteron correlations are represented by a single state that slowly moves to higher energies in the continuum, and thus two-body correlations are overestimated. Also in NSE the deuteron correlations are overestimated, since there is no continuum contribution. This has an strong effect on the deuteron fraction and - in competition - also on the fractions of nucleons and other clusters. We see that in the RMF model the deuteron fractions at higher densities are generally larger than in the QS model, as seen by comparing the upper left panels of Figs. 3 and 4. This, in turn, has a strong effect on the $\alpha$ fractions, which are much lower in the RMF model as seen in the lower right panels of these figures, but also leads to the decrease of the free nucleon fraction at higher densities, as seen in Fig. 2. These effects can also be seen in the comparison with the NSE limit, where they lead to larger deuteron fractions relative to the QS model. Only at temperatures smaller than the deuteron binding energy, the bound state is the dominating two-body correlation. A similar effect occurs in the virial description of matter at low densities that is encoded in the temperature dependence of the second virial coefficient. For heavier clusters the influence of the continuum on the fractions is much less pronounced due to their larger binding energies.

As we remarked above, the QS model shows a particularly enhanced alpha particle fraction at the higher densities, as seen in the increase above the NSE limit at densities around $n \sim 10^{-2} \text{fm}^{-3}$ in Fig. 4. This has much of the appearance of an onset of an alpha particle condensation. As a consequence, the fractions of the other clusters show a dip around this density, and there are also consequences in the thermodynamical quantities, as seen below. All these effects are not present in the RMF model. However, mean field contributions from the rather substantial cluster fractions in this density range are not taken into account in the QS model, the effect of which needs to be further investigated. It is important to note that the $\alpha$ particle is usually not the most frequent cluster and that there are substantial contributions from the deuteron, the triton and the helium at intermediate densities and temperatures that are not considered in the EoS of Lattimer and Swesty [28] or Shen, Toki et al. [29]. Furthermore, the excluded-volume mechanism to suppress the formation of clusters at high densities does not take into account any temperature dependence in this process which is clearly present in our more microscopic models.

### B. Thermodynamical quantities

In this subsection we discuss the thermodynamical quantities for symmetric nuclear matter. The essential effects of the formation of clusters in the various models are given by the pressure $p$ as a function of the total baryon number density $n$. For a better representation, we depict in Fig. 3 the ratio $p/n$ as a function of $n$. The left and right panels of the figure show the results of the RMF and the QS models, respectively, with thick lines. The thin lines in both panels represent a NSE calculation with neutrons, protons and the light clusters $d, t, h$ and $\alpha$. They are shown only for densities below $2 \cdot 10^{-2} \text{fm}^{-3}$ because the contribution of heavier clusters can be substantial at higher densities, at least for low temperatures, and the NSE becomes unrealistic.

At very low densities, all models approach the ideal gas limit with $p/n = T$ since the cluster fraction is very small and nuclear matter is composed primarily of neutrons and protons (see Subsect. [IV.A]). Relativistic and mean field effects are not important here. With increasing density the NSE calculation exhibits a reduction of the pressure relative to the ideal gas that is caused by the formation of light clusters. Both the RMF and the QS models follow this trend but there are considerable differences. The QS results stays closer to the NSE calculation whereas RMF shows a deviation already at lower densities around $10^{-3} \text{fm}$. However, both models predict a stronger decrease of the pressure than the NSE, because at these densities the changes of the cluster properties and the mean-field effects are already effective. An exception is seen for the RMF approach at temperatures below approx. 6 MeV where it shows an increase relative to the NSE.

In the density range from $10^{-2}$ to $2 \cdot 10^{-1} \text{fm}^{-3}$ the ratio $p/n$ displays considerable structure and passes through at least one minimum, eventually with negative pressure, before it rises sharply for densities above nuclear saturation ($p/n = 0$) and the matter becomes very incompressible. In this region, we observed the most pronounced differences in the behavior of the RMF and QS models with respect to the composition in Subsect. [IV.A]. They are generated partly by differences in the description of the cluster correlations and partly by a different treatment of the mean-field effects. In the QS approach, the strengths of the mean fields and thus the quasi-particle energies and mass shifts are independent of the composition of the system since they are taken in parametrized form from the RMF calculation without clusters. In contrast, in the RMF approach the additional contributions in the source terms of the meson fields, see Eqs. (15) and (16), depend on the cluster densities. They describe the back reaction of the cluster formation on the medium (apart from the contribution of the bound nucleons) and are inevitable for the thermodynamical consistency of this model. In the density region where the cluster fraction is substantial, the additional terms lead to a sizable
FIG. 5: (Color online) Ratio pressure over density \( p/n \) of symmetric nuclear matter as a function of the total density \( n \) for various temperatures \( T \) in the generalized RMF model (a) and the QS approach (b) with light clusters (thick solid lines). The result of the NSE calculation with light clusters is denoted by thin solid lines for low densities. See Fig. 2 for the color code.

Modification of the vector meson fields. In the density range around \( n \sim 10^{-2} \text{ fm}^{-3} \) the pressure is lower in the QS relative to the RMF model. This correlates with increased alpha formation (\( \alpha \) “condensation”) in this model relative to RMF, as was seen in Fig. 4.

The relativistic baryon chemical potentials \( \mu = (\mu_p + \mu_n)/2 \) of the RMF and the QS approaches are displayed in Fig. 6 in comparison with the NSE calculation. They reflect the behavior observed for the pressure of the various models. At very low densities, the three calculations agree with each other and the ideal gas dependence of the chemical potential \( \mu = m + T \ln (n\lambda^3/4) \) on temperature and density. With increasing density, the chemical potential of both the RMF and QS calculations are below the NSE results, except for the RMF model at low temperatures as already seen for the pressure. Here, the chemical potential rises above the NSE result with increasing density and a pronounced maximum occurs. In the QS model, the chemical potential generally stays below the NSE result. Deviations from the NSE predictions appear already at lower densities in the RMF relative to the QS model. In general, however, the differences between two approaches are less obvious in the chemical potential than in the pressure. In both models the low-density and the high-density limit are correctly described.

The density dependence of the free energy per nucleon \( F_A \), Eq. (71), is shown in Fig. 7 and closely follows the density dependence of the chemical potential. In the QS approach, \( F_A \) is obtained by a simple direct integration of the chemical potential, cf. Eq. (10). Both models agree perfectly with the NSE result for densities below \( 10^{-4} \text{ fm}^{-3} \).

At the nuclear saturation density, the free binding energy per nucleon approaches the local minimum at \(-16 \text{ MeV}\) in the limit \( T \rightarrow 0 \text{ MeV} \) as expected.

The results for the internal energy per nucleon \( E_A \) are depicted in Fig. 8. Here the differences between the RMF and QS results are less pronounced than in the chemical potential \( \mu \) or the free binding energy per nucleon \( F_A \). In contrast to the latter quantities, \( E_A \) increases with temperature at a given density. For \( n \rightarrow 0 \) the classical limit \( E_A \rightarrow 3T/2 \) of an ideal gas is approached. Slight deviations stem from the use of relativistic dispersion relations.

The entropy per nucleon \( S_A = s/n \), shown in Fig. 9 generally decreases monotonously with increasing density \( n \) except for a small range in density at low temperatures when the light clusters suddenly dissolve in the medium. At low densities the entropy per nucleon in the RMF and QS models approaches the NSE result and at very low densities, a dependence \( S_A \propto -\ln(n) + \text{const.} \) is found consistent with the behavior of an ideal gas. The occurrence of clusters is found to lead to a reduction of the entropy per nucleon as compared to pure neutron-proton matter.
FIG. 6: (Color online) Relativistic baryon chemical potential \( \mu = (\mu_p + \mu_n)/2 \) of symmetric nuclear matter as a function of the total density \( n \) for various temperatures \( T \) in the generalized RMF model (a) and the QS approach (b) with light clusters (thick solid lines). The result of the NSE calculation with light clusters is denoted by thin solid lines for low densities. See Fig. 2 for the color code.

FIG. 7: (Color online) Free energy per nucleon \( F_A \) of symmetric nuclear matter as a function of the total density \( n \) for various temperatures \( T \) in the generalized RMF model (a) and the QS approach (b) with light clusters (thick solid lines). The result of the NSE calculation with light clusters is denoted by thin solid lines for low densities. See Fig. 2 for the color code.
FIG. 8: (Color online) Internal energy per nucleon $E_A$ of symmetric nuclear matter as a function of the total density $n$ for various temperatures $T$ in the generalized RMF model (a) and the QS approach (b) with light clusters (thick solid lines). The result of the NSE calculation with light clusters is denoted by thin solid lines for low densities. See Fig. 2 for the color code.

FIG. 9: (Color online) Entropy per nucleon $S_A$ of symmetric nuclear matter as a function of the total density $n$ for various temperatures $T$ in the generalized RMF model (a) and the QS approach (b) with light clusters (thick solid lines). The result of the NSE calculation with light clusters is denoted by thin solid lines for low densities. See Fig. 2 for the color code.
FIG. 10: (Color online) Pressure (a) and relativistic baryon chemical potential (b) of symmetric nuclear matter as a function of the baryon number density in the generalized RMF model with clusters (solid lines) and without clusters (dashed line) taking the phase transition into account. See Fig. 2 for the color code.

V. LIQUID-GAS PHASE TRANSITION

In a system of given total neutron and protons number densities, \( n_{\text{tot}}^n \) and \( n_{\text{tot}}^p \), and temperature \( T \), the corresponding thermodynamical potential, i.e. the free energy density \( f(n_{\text{tot}}^n, n_{\text{tot}}^p, T) \), should be minimized. However, this procedure does not necessarily give the correct equilibrium state. Thermodynamic laws require that the free energy density is a convex function in the variables \( n_{\text{tot}}^n \), \( n_{\text{tot}}^p \) and \( T \) to assure the stability of the system. This condition leads to the occurrence of phase transitions. The coexistence region of different phases in thermodynamical equilibrium is separated from the region of a single phase by the so-called binodal surface. It can be obtained for a given temperature by a general Gibbs construction where the values of the intensive variables pressure \( p \) and the chemical potentials of protons \( \mu_p \) and neutrons \( \mu_n \) in the two phases have to be identical, see, e.g. \([61, 62]\). Thus, the binodal surface is found from a global criterion in contrast to the spinodal surface that defines the boundary of local instability of the system, which occurs, e.g., when the compressibilities of the system become negative. In general, the spinodal is enclosed by the binodal and both become identical along critical lines. In the case of symmetric nuclear matter, the problem becomes one-dimensional and a usual Maxwell construction for the phase transition is sufficient with constant pressure \( p \) and baryon chemical potential \( \mu \) for densities inside the coexistence region. In the general case of asymmetric matter, the pressure and chemical potentials do not stay constant. In addition, the low-density phase has a larger isospin asymmetry than the coexisting high-density phase.

Nuclear matter as considered here is an idealized physical system where the Coulomb interaction is neglected and charge neutrality is not demanded. The phase transition boundary as constructed by the above standard procedure only gives a first indication of where the formation of inhomogeneities and heavy nuclei occurs. In more realistic calculations with Coulomb interaction the system has to be globally charge neutral and at least the contribution of electrons has to be considered, e.g. in applications of the EoS to astrophysics. We will not follow up on this issue in the present work. For references to work in this direction, see our discussion of pasta phases in the Introduction.

The results for the pressure \( p \), Fig. 5, and the baryon chemical potential \( \mu \), Fig. 6, allow to construct the phase transition in symmetric nuclear matter from the gas phase with nucleons and light clusters at small densities to the liquid phase of pure nucleon matter at high densities. In the following we consider the example of the RMF model. In Fig. 10 the pressure \( p \) and the chemical potential \( \mu \) with phase transition are shown for the cases without and with light clusters. Inside the coexistence region of the two phases pressure and chemical potential stay constant...
as characteristic for a Maxwell construction. As the temperature approaches zero, the density range of this region becomes larger with the limits $p \rightarrow 0$ MeV fm$^{-3}$ and $\mu \rightarrow m - 16$ MeV. The differences between the calculations without and with clusters increase at higher temperatures with a larger coexistence pressure in the latter case. Finally, the critical temperature is reached beyond which no phase transition occurs any more.

At low temperatures the binodal line at the lower boundary of the coexistence region is reached already at very small densities. At this point the cluster fraction is still rather small, and, consequently, the appearance of clusters has little effect on the determination of the phase boundary for low temperatures. Larger effects of the clusters on the phase transition are observed only at higher temperatures where the cluster fraction at the lower density boundary reaches larger values. The binodal on the high density side of the phase coexistence region is hardly affected when clusters are considered in the calculation because here the matter is essentially composed of free nucleons.

Results as in Fig. 10 can be used to extract the binodal line enclosing the phase coexistence region in the $p-n$ diagram and the phase transition line in the $T-\mu$ diagram. These are shown in the left and right parts of Fig. 11 respectively, for the RMF model without and with clusters and the QS approach. The occurrence of light clusters in the system narrows the width of the coexistence region and shifts the maximum to a higher density and larger pressure in the generalized RMF model as compared to the calculation without clusters. In the RMF model the critical temperature $T_c$ increases from 13.72 MeV without clusters to 15.12 MeV with clusters. The corresponding values of the critical density $n_c$ are 0.0452 fm$^{-3}$ and 0.1018 fm$^{-3}$, and of the critical pressure $p_c$ 0.1781 MeV fm$^{-3}$ and 0.9029 MeV fm$^{-3}$, respectively. Thus, in the RMF model the position of the critical point shifts rather drastically when light clusters are considered. There is also a marked effect on the phase transition line in the $T-\mu$ diagram. In RMF without clusters, the chemical potential decreases monotonously with increasing temperature until it reaches the critical point at a critical chemical potential of $\mu_c = 914.48$ MeV. At low temperatures the phase transition line with clusters follows closely the line without clusters. However, towards the critical point the transition line with light clusters has a $S$ shape. At temperatures $T$ above $\approx 8$ MeV the curve finally bends to higher chemical potentials ending at the critical point with $\mu_c = 918.9$ MeV.

In the QS approach a very different trend is found. The binodal line exhibits a characteristic dip on the low-density side that is related to the enhancement of the $\alpha$-particle fraction, cf. Fig. 11. The critical point moves to a smaller temperature of $T_c = 12.1$ MeV and a slightly higher chemical potential of $\mu_c = 915.61$ MeV as compared to the RMF calculation without clusters. The critical pressure hardly changes. The observed differences between the RMF
and the QS approaches are again related to the fact that many-body correlations at high temperatures, especially of the deuteron, are overestimated in the former. The behavior of the RMF approach must be considered unphysical in this respect, because one would expect, that correlations decrease the chemical potential and the pressure of the phase transition. In an improved version of the generalized RMF approach which takes the continuum contributions explicitly into account, it is expected that the critical point moves to lower temperatures.

VI. SYMMETRY ENERGY

The internal energy per nucleon $E_A$ of asymmetric nuclear matter, as defined in Eq. (70), can be expanded for given density $n$ and temperature $T$ in powers of the asymmetry $\delta$

$$E_A(n, \delta, T) = E_A(n, 0, T) + E_{\text{sym}}(n, T)\delta^2 + \ldots .$$

(78)

The symmetry energy is the coefficient of the first term in the expansion that depends on the asymmetry $\delta$ quadratically. Thus, it is defined as the second derivative

$$E_{\text{sym}}(n, T) = \frac{1}{2} \left. \frac{\partial^2 E_A}{\partial \delta^2} \right|_{\delta=0} .$$

(79)

Usually, the dependence of $E_A(n, \delta, T)$ for the complete range of asymmetries is quite well approximated by a quadratic function. In this case the symmetry energy also represents the difference between the binding energy per nucleon of neutron matter and of symmetric nuclear matter. At finite temperatures one has to distinguish between the internal symmetry energy $E_{\text{sym}}(n, T)$ and the free symmetry energy $F_{\text{sym}}(n, T)$ that is similarly defined.

However, the quadratic approximation is not valid in general, especially for a system with cluster correlations at densities $n$ below the nuclear saturation density. This is clearly seen for our models in the dependence of $E_A$ and $F_A$ on $\delta$ for given $n$ and $T$. In Fig. (12) the free binding energy per nucleon (left) and the internal binding energy per nucleon (right) are shown as a function of the asymmetry for a fixed density $n = 0.001 \text{ fm}^{-3}$ and different temperatures. Without clusters, the dependence on $\delta$ is rather weak and can be well described by a parabolic function irrespective of the temperature. With clusters, the binding energies per nucleon are substantially lowered around $\delta = 0$, i.e. symmetric nuclear matter, particularly for low temperatures. The system gains additional binding energy.
by forming clusters. Large deviations from a global quadratic dependence develop and especially at low temperatures the parabola changes to a triangular shape, most obviously seen for the internal energy per nucleon. This behavior leads to a very large and thus not very meaningful symmetry energy in the limit $T \to 0$ MeV when the conventional definition (79) is used. Hence, a more appropriate characterization for the symmetry energy is required. A reasonable choice is given by the finite difference formula

$$E_{\text{sym}}(n,T) = \frac{1}{2} [E_A(n,1,T) - 2E_A(n,0,T) + E_A(n,-1,T)]$$

(80)

that is identical to (79) for an exact quadratic dependence of the internal binding energy per nucleon on $\delta$. This modified definition gives a good measure of the binding energy differences between neutron, proton, and symmetric nuclear matter. A corresponding equation defines the free symmetry energy $F_{\text{sym}}(n,T)$.

The density dependence of the internal symmetry energy $E_{\text{sym}}$ and of the free symmetry energy $F_{\text{sym}}$ as defined above is presented in Figs. 13 and 14, respectively, as a function of density for various temperatures. In these figures, the results of the RMF and QS approaches with clusters are compared to the RMF result without clusters. Just as for the free energy, Fig. 7 and the internal energy, Fig. 8 of symmetric nuclear matter, the free and internal symmetry energies exhibit a different behavior for $n \to 0$. In all models, $E_{\text{sym}}$ approaches zero in this limit, but $F_{\text{sym}}$ converges to $T \ln 2$.

In the RMF model without clusters both internal and free symmetry energies rise continuously with increasing density, and $E_{\text{sym}}$ is almost independent of $T$. When the formation of clusters is taken into account, the internal symmetry energy increases substantially at low densities, see Fig. 13. This behavior is caused by the additional binding of symmetric nuclear matter, that was already seen in Fig. 12 which is particularly pronounced at low temperatures with a large cluster fraction. The density dependence of the internal symmetry energy is rather different for the in the RMF calculation the fraction of deuterons is enhanced in the transition region whereas three- and four-body correlations are suppressed as compared to the QS approach. Correspondingly, symmetric nuclear matter is less bound here and the symmetry energy is reduced relative to the QS approach. Since two-body correlations survive in the RMF model to too high densities for larger temperatures, the internal symmetry energy is also lowered considerably when the total baryon number density approaches the saturation density. In the QS approach, $E_A$ is much closer to the RMF result without
clusters with increasing density. The free symmetry energy, see Fig. 14, shows essentially the same features as the internal symmetry. However, they are less pronounced because of the different low-temperature limit.

VII. COMPARISON WITH OTHER APPROACHES

We discuss light cluster abundances obtained from our approaches in comparison with results from other models, which appear in the literature and which have been discussed in this paper. These are: the EoS of Shen et al. [29], an EoS based on a virial expansion as presented in [32], and a nuclear statistical equilibrium calculation that takes into account the ground states of all nuclei in the atomic mass evaluation (AME 2003) [60]. Fig. 15 shows the \( \alpha \)-particle fraction in symmetric nuclear matter at four different temperatures as a function of density. We have not explicitly included the results of the model of Lattimer and Swesty [28] in this comparison. They use the same excluded volume prescription as Shen et al. [29] to take into account the medium dependence of the \( \alpha \)-particle fraction. Therefore, the behavior with density of their results is similar to that of Shen et al., even though absolutely there are differences due to a different treatment of the heavy particle fraction. A direct comparison of \( X_\alpha \) of Shen et al. and Lattimer et al. [28], can be found in Ref. [31].

At low densities all models show a decreasing \( \alpha \)-particle fraction with decreasing total baryon number density. However, there are some subtle differences. The virial expansion (black dash-dotted lines) takes scattering contributions to the second virial coefficient into account. These are important at higher temperatures and cause a slightly higher prediction for \( X_\alpha \) at small \( n \). The effect of cluster dissociation is absent in this model and results in a monotonic increase of the cluster fraction with increasing density, which is unphysical since one does not expect to see clusters in nuclear matter at saturation density.

The NSE approach (green dotted lines) compared to the virial approach shows a reduction of the \( \alpha \)-particle fraction at all densities, due to the formation of heavier clusters. \( \alpha \)-particles survive even beyond the nuclear saturation density, since medium modification and dissolution of clusters are absent in this model, which also fails to describe the transition from clusterized matter to cluster-free nuclear matter at high densities.

The Shen et al. EoS (blue dashed lines) neglects the contribution of deuteron, triton and helium clusters. This leads to an overestimation of the \( \alpha \)-particle fraction at low densities where actually lighter clusters dominate the
composition. In contrast to the above two approaches, there is a steep decrease of the $\alpha$-cluster abundance when approaching the saturation density. However, one notes some irregularities which are understood as an effect of the excluded volume approach when the closest packing is reached.

The generalized RMF model (red solid lines) developed in this work describes the decrease of the $\alpha$-particle fraction at high densities by a reduction of their binding energy due to the Pauli blocking which leads to the Mott effect for vanishing binding. The maximum cluster density is reached around the Mott density. Due to the presence of strong correlations in the scattering state continuum which are effectively represented by one resonance, there is a nonvanishing cluster fraction above the Mott density. Among all models presented in the comparison of Fig. 15, the generalized RMF approach shows the strongest reduction of the $\alpha$-cluster fraction.

In the QS approach the behavior of the density dependence of $X_{\alpha}$ is similar to that of the generalized RMF model, but has for all densities a higher $\alpha$-cluster fraction, which is accompanied by smaller light cluster abundances. As discussed in Subsect. [IV A] the difference in $X_{\alpha}$ between the two models is mainly due to the overemphasis of the deuteron correlations in RMF, which suppresses the $\alpha$-particle fraction. On the other hand, the RMF takes into account the back-reaction of the cluster formation on the mean-field which is missing in the QS approach.
The difference between the two approaches of this paper, shown in Fig. 15 in direct comparison, also gives an indication of the effects of possible improvements in the models, apart, of course, from the inclusion of heavier clusters, resp. of nuclei embedded in a clustered gas. On the other hand, the synopsis of Fig. 15 demonstrates the advantage of systematic many-body approaches to the description of cluster formation over alternative approaches which lack a microphysical mechanism to account for the cluster breakup, but which are extensively used, e.g., in astrophysical applications.

VIII. CONCLUSIONS

Up to now there exist different strategies to model the EoS of nuclear matter and, in particular, to extract the symmetry energy: (1) phenomenological density functional methods, such as non-relativistic Skyrme or relativistic RMF functionals, (2) effective-field theory approaches based on density functional or chiral perturbation theory, or (3) \textit{ab initio} approaches, such as Brueckner-type methods, variational calculations or Green function methods. A recent overview over these methods with references can be found, e.g., in Ref. [52]. These methods are developed to obtain reliable equations of state for nuclear matter for a range of densities and asymmetries. In particular, the density-dependent RMF model can be considered phenomenologically a very useful approach in this respect since it has been applied with great success in the simultaneous description of cold nuclear matter in finite nuclei and compact stars as well as of hot nuclear matter in heavy-ion collisions and supernova explosions. However, all these approaches fail in the low-density limit, where cluster formation becomes essential. In this region, simple approaches which take clusters into account, such as the NSE or the Beth-Uhlenbeck formula of the virial expansion, show that clusters give a substantial contribution to the composition and the thermodynamic properties. On the other hand, models like the NSE or the virial expansion fail at higher densities where in-medium effects become important leading to a dissolution of clusters and the transition to cluster-free nuclear matter.

Here we propose, for the first time, a unified treatment that takes both limits into account describing the smooth transition from clustered matter at low densities to pure nucleonic matter at high densities. We thus suggest a symbiotic framework which combines the merits of a QS approach in describing cluster properties in a medium with those of the RMF approach to model nucleonic self-energy effects, resulting in two hybrid approaches to the problem of cluster formation and dissolution. On the one hand we use a microscopic QS approach to describe the medium modification of cluster binding energies due to Pauli blocking. In this approach we employ nucleon self-energies taken in parametrized form from a very recent version of the density-dependent RMF model. On the other hand, the results of the QS approach for the cluster properties inside the medium are incorporated into an effective hadronic field theory using a Lagrangian formulation. Such a theory already has the correct high-density behavior as deduced from comparisons to heavy-ion collision experiments. We improve the low-density behavior by explicitly including light clusters, such as deuterons, tritons, helions and \(\alpha\)-particles as explicit degrees of freedom taking into account the medium modification of their binding energies from the results of the QS approach.

In the numerical evaluation of both hybrid approaches developed in this work, we find that well-defined clusters appear only for densities below approximately 1/10 to 1/100 of the saturation density and get dissolved at higher densities. A direct confirmation of the given approach can be obtained from a comparison with recent results from heavy-ion collisions at low-energies [8]. These investigations indicate larger values for the symmetry energy in comparison with the mean field results at low densities, which seem to be in agreement with our findings [65].

Realistic approaches to the clustering in low-density nuclear matter should include excited states such as resonances and also the contribution of the continuum of scattering states. This can be done for the second virial coefficient, as demonstrated by the generalized Beth-Uhlenbeck approach [41]. In this way one can also reach the exact low-density limit of the virial approach [31, 32, 33]. Compared with the approaches of Lattimer et al. [28] and Shen et al. [29], who employ phenomenological concepts such as the excluded volume, we have given in this work a description of medium effects on the clusters and of their breakup as a result of the fundamental Pauli principle.

The extension of the present framework to larger clusters beyond the \(\alpha\)-particle is straightforward along the lines given in this work. For the evaluation of self-energies and Pauli shifts of \(A\)-particle clusters in nuclear matter, see [45]. The generalization of the given approach to account for clusters of arbitrary size would lead to an improvement in the low-density limit when comparing the nuclear statistical equilibrium as used, e.g., in multifragmentation models [63, 64]. One can alternatively also introduce the formation of heavier nuclei [45] in the presence of a nucleon and cluster gas, in a similar way as it was done in the Thomas-Fermi approximation in the Shen et al. approach. This will be relegated to a subsequent paper. We restricted our present work to that region of the phase diagram where heavier clusters with \(A > 4\) are not relevant.

In our models, we constructed the phase transition from clustered, gaseous low-density matter to a cluster-free nuclear liquid at high densities. The coexistence region gives a hint about the range in temperature and density where the occurrence of inhomogeneities and the formation of heavy clusters become relevant. An issue for future investiga-
tions is an improved description near the phase transition taking into account effects of the Coulomb interaction and charge screening.

We are able to give the composition and the thermodynamic quantities in a large region of densities, temperatures and asymmetries as they are required, e.g., in supernova simulations. We did not consider contributions from, e.g., electrons, neutrinos or photons, to the thermodynamical quantities. In astrophysical applications of the EoS, they have to be included. They will modify the properties of the system and affect, in particular, the occurrence of inhomogeneities and of the liquid-gas phase transition.

As a long-range objective, we aim at a unified description of nuclear matter from very low density to, eventually, the deconfinement phase transition that is based on a more microscopic and self-contained description than previous approaches to the EoS which are used up to now in astrophysical models.

Acknowledgements

This research was supported by the DFG cluster of excellence “Origin and Structure of the Universe” and by CompStar, a Research Networking Programme of the European Science Foundation. The work of TK was supported by the Department of Energy, Office of Nuclear Physics, contract no. DE-AC02-06CH11357. DB acknowledges support from the Polish Ministry for Research and Higher Education under grants No. N N202 0953 33, No. N N202 2318 37 and from the Russian Fund for Fundamental Investigations under grant No. 08-02-01003-a.

[1] P. Danielewicz, R. Lacey and W. G. Lynch, Science 298, 1592 (2002).
[2] C. Fuchs, A. Faessler, E. Zabrodin and Y. M. Zheng, Phys. Rev. Lett. 86, 1974 (2001).
[3] G. Ferini, T. Gaitanos, M. Colonna, M. Di Toro and H. H. Wolter, Phys. Rev. Lett. 97, 202301 (2006).
[4] V. Baran, M. Colonna, V. Greco and M. Di Toro, Phys. Rept. 410, 335 (2005).
[5] A. W. Steiner, M. Prakash, J. M. Lattimer and P. J. Ellis, Phys. Rept. 411, 325 (2005).
[6] B. A. Li, L. W. Chen and C. M. Ko, Phys. Rept. 464, 113 (2008).
[7] A. Tohsaki, H. Horiuchi, P. Schuck and G. Röpke, Phys. Rev. Lett. 87, 192501 (2001).
[8] S. Kowalski et al., Phys. Rev. C 75, 014601 (2007).
[9] B. A. Brown, Phys. Rev. Lett. 85, 5296 (2000).
[10] S. Typel and B. A. Brown, Phys. Rev. C 64, 027302 (2001).
[11] L. W. Chen, C. M. Ko and B. A. Li, Phys. Rev. Lett. 94, 032701 (2005); Phys. Rev. C 72, 064309 (2005); Phys. Rev. C 76, 054316 (2007).
[12] R. J. Furnstahl, Nucl. Phys. A 706, 85 (2002).
[13] M. Baldo, C. Maieron, P. Schuck and X. Vīnas, Nucl. Phys. A 736, 241 (2004).
[14] S. S. Avancini, J. R. Marinelli, D. P. Menezes, M. M. W. de Moraes and C. Providência, Phys. Rev. C 75, 055805 (2007).
[15] M. Centelles, X. Roca-Maza, X. Vīnas and M. Warda, Phys. Rev. Lett. 102, 122502 (2009).
[16] M. Warda, X. Vīnas, X. Roca-Maza and M. Centelles, Phys. Rev. C 80, 024316 (2009).
[17] C. J. Horowitz, S. J. Pollock, P. A. Souder and R. Michaels, Phys. Rev. C 63, 025501 (2001); [http://hallaweb.jlab.org/parity/prex].
[18] T. Klüh et al., Phys. Rev. C 74, 035802 (2006).
[19] S. S. Avancini, L. Brito, J. R. Marinelli, D. P. Menezes, M. M. W. de Moraes, C. Providência and A. M. Santos, Phys. Rev. C 79, 035804 (2009).
[20] C. J. Horowitz and D. K. Berry, Phys. Rev. C 78, 035806 (2008).
[21] H. Sonoda, G. Watanabe, K. Sato, T. Takiwaki, K. Yasuoka and T. Ebisuzaki, Phys. Rev. C 75, 042801(R) (2007).
[22] T. Maruyama, T. Tatsuni, T. Endo and S. Chiba, Recent Res. Devel. Physics 7, 1 (2006).
[23] W. G. Newton, J. R. Stone and A. Mezzacappa, J. Phys. Conf. Ser. 46, 408 (2006).
[24] J. M. Lattimer and M. Prakash, Science 304, 536 (2004).
[25] H. Dimmelmeier, C. D. Ott, H. T. Janka, A. Marek and E. Muller, Phys. Rev. Lett. 98, 251101 (2007).
[26] H. Dimmelmeier, C. D. Ott, A. Marek and H. T. Janka, Phys. Rev. D 78, 064056 (2008).
[27] K. Sumiyoshi and G. Röpke, Phys. Rev. C 77, 055804 (2008).
[28] J. M. Lattimer and F. D. Stacey, Nucl. Phys. A 535, 331 (1991).
[29] Y. Chen, H. Toki, K. Oyamatsu and K. Sumiyoshi, Progr. Theor. Phys. 100, 1013 (1998); Nucl. Phys. A 637, 435 (1998).
[30] B. D. Serot and J. D. Walecka, Adv. Nucl. Phys. 16, 1 (1986).
[31] C. J. Horowitz and A. Schwenk, Phys. Lett. B 642, 326 (2006).
[32] C. J. Horowitz and A. Schwenk, Nucl. Phys. A 776, 55 (2006).
[33] E. O’Connor, D. Gazit, C. J. Horowitz, A. Schwenk and N. Barnea, Phys. Rev. C 75, 055803 (2007).
[34] S. Mallik, J. N. De, S. K. Samaddar and S. Sarkar, Phys. Rev. C 77, 032201(R) (2008).
[35] S. Heckel, P. P. Schneider and A. Sedrakian, Phys. Rev. C 80, 015805 (2009).
The vector field is nearly independent of temperature, the scalar field has a weak temperature dependence.

\[ S. \text{C. Pieper and R. B. Wiringa, Ann. Rev. Nucl. Part. Sci. 51} \]
\[ C. Fuchs and H. H. Wolter, Eur. Phys. J. A 30 \]
\[ T. Alm, G. Röpke, A. Schnell, N. H. Kwong, and H. S. Kohler, Phys. Rev. C 70 \]
\[ E. N. E. van Dalen, C. Fuchs and A. Faessler, Phys. Rev. Lett. 86, 014002 (2009). \]

\[ G. Röpke, M. Schmidt and H. Schulz, Nucl. Phys. A 424, 594 (1984). \]
\[ S. Typel, Phys. Rev. C 71, 064301 (2005). \]
\[ D. Vautherin and D. M. Brink, Phys. Rev. C 9, 293 (1974). \]
\[ J. Margueron, E. van Dalen and C. Fuchs, Phys. Rev. C 76, 034309 (2007). \]
\[ J. Haidenbauer and W. Plessas, Phys. Rev. C 30, 1822 (1984). \]
\[ L. Mathelitsch, W. Plessas and W. Schweiger, Phys. Rev. C 26, 65 (1982). \]
\[ M. Schmidt, G. Röpke, and H. Schulz, Ann. Phys. (N.Y.) 60, 34004 (1999); M. Beyer, S. A. Sofianos, C. Kuhrt, G. Röpke and P. Schuck, Phys. Lett. B 488, 247 (2000). \]
\[ A. Sedrakian and J. W. Clark, Phys. Rev. C 73, 035803 (2006). \]
\[ G. Röpke, M. Schmidt and H. Schulz, Nucl. Phys. A 424, 594 (1984). \]
\[ S. Typel, Phys. Rev. C 71, 064301 (2005). \]
\[ D. Vautherin and D. M. Brink, Phys. Rev. C 9, 293 (1974). \]
\[ J. Margueron, E. van Dalen and C. Fuchs, Phys. Rev. C 76, 034309 (2007). \]
\[ J. Haidenbauer and W. Plessas, Phys. Rev. C 30, 1822 (1984). \]
\[ L. Mathelitsch, W. Plessas and W. Schweiger, Phys. Rev. C 26, 65 (1982). \]
\[ R. B. Wiringa, V. G. J. Stoks and R. Schiaviulla, Phys. Rev. C 51, 38 (1995). \]
\[ S. C. Pieper and R. B. Wiringa, Ann. Rev. Nucl. Part. Sci. 51, 53 (2001). \]
\[ C. Fuchs and H. H. Wolter, Eur. Phys. J. A 30, 5 (2006). \]
\[ T. Alm, G. Röpke, A. Schnell, N. H. Kwong, and H. S. Köhler, Phys. Rev. C 53, 2181 (1996); H.J. Schulze, A. Schnell, G. Röpke, and U. Lombardo, Phys. Rev. C 55, 3006 (1997). \]
\[ E. N. E. van Dalen, C. Fuchs and A. Faessler, Phys. Rev. Lett. 95, 022302 (2005). \]
\[ G. Röpke, A. Grigo, K. Sumiyoshi and Hong Shen, Phys. Part. Nucl. Lett. 2(5), 275 (2005). \]
\[ G. Röpke, A. Grigo, K. Sumiyoshi and Hong Shen, in Superdense QCD Matter and Compact Stars, NATO Science Series II: Mathematics, Physics and Chemistry, Vol. 197, edited by D. Blaschke and D. Sedrakian (Springer, Dordrecht, 2006), p. 75. \]
\[ G. Röpke, Phys. Rev. C 79, 014002 (2009). \]
\[ S. Shlomo and V. M. Kolomietz, Rep. Prog. Phys. 68, 1 (2005). \]
\[ A. Kolomietz, V. M. Kolomietz and S. Shlomo, Phys. Rev. C 55, 1376 (1997). \]
\[ G. Audi, A. H. Wapstra and C. Thibault, Nucl. Phys. A 729, 337 (2002). \]
\[ M. Barranco and J. R. Buchler, Phys. Rev. C 22, 1729 (1980). \]
\[ H. Müllner and B. D. Serot, Phys. Rev. C 52, 2072 (1995). \]
\[ J. P. Bondorf, A. S. Botvina, A. S. Ilinov, I. N. Mishustin and K. Sneppen, Phys. Rept. 257, 133 (1995). \]
\[ D. H. E. Gross, Rep. Prog. Phys. 53, 605 (1990). \]
\[ S. Typel et al., work in preparation. \]

**APPENDIX A: LOW-DENSITY EXPANSION**

A density-dependent RMF model was considered in [46]. The following low-density expansions are derived from this model and reproduce the DD-RMF results below the baryon density \( n \leq 0.2 \text{ fm}^{-3} \) within 0.1%; variables are the total baryon density \( n = n_{\text{tot}}^{\text{n}} + n_{\text{tot}}^{\text{p}} \) in units of \( \text{fm}^{-3} \), the asymmetry \( \delta = (n_{\text{tot}}^{\text{p}} - n_{\text{tot}}^{\text{n}})/(n_{\text{tot}}^{\text{p}} + n_{\text{tot}}^{\text{n}}) \) and the temperature \( T \) in MeV. The scalar field in MeV is given by

\[
\Sigma_{n,p}(T, n, \delta) = n_B[(4524.13 - 6.926 T) - 14.5157\delta^2/4 + 0.833943\delta^3/16 - 9.00693\delta^6/64] \\
+ n^2[(-19190.7 - 2426.57\delta^2/4 - 317.732\delta^4/16 - 1547.38\delta^6/64] \\
+ n^3[62169.5 + 2521.29\delta^2/4 + 3470.28\delta^4/16] \\
+ n^4[-91005.1 + 3984.82\delta^2/4 - 9148.6\delta^6/16]; \tag{A1}
\]

and the vector field in MeV by

\[
\Sigma_\nu(T, n, \delta) = \Sigma_\nu(0, n, -\delta) = n[3462.24 + 946.705\delta/2 - 0.334508\delta^2/4] \\
+ n^2[-11312.4 - 6246.21\delta/2 - 6353.53\delta^2/4 - 0.099478\delta^4/8] \\
+ n^3[20806.1 + 18717.6\delta/2 + 29298.\delta^2/4 - 0.490543\delta^3/8] \\
+ n^4[352371 - 24887.2\delta/2 - 39807.4\delta^2/4 - 0.346218\delta^3/8]. \tag{A2}
\]

The vector field is nearly independent of temperature, the scalar field has a weak temperature dependence.