Circular chromatic index of graphs of maximum degree 3

Peyman Afshani∗, Mahsa Ghandehari† Mahya Ghandehari‡ Hamed Hatami§, Ruzbeh Tusserkani¶ and Xuding Zhu∥∥∗∗

November 22, 2021

Mathematical Subject Classification: 05C15

Abstract

This paper proves that if G is a graph (parallel edges allowed) of maximum degree 3, then
\[\chi'_c(G) \leq \frac{11}{3} \]
provided that G does not contain H_1 or H_2 as a subgraph, where H_1 and H_2 are
obtained by subdividing one edge of K_3^2 (the graph with three parallel edges between two vertices)
and K_4, respectively. As $\chi'_c(H_1) = \chi'_c(H_2) = 4$, our result implies that there is no graph
G with $11/3 < \chi'_c(G) < 4$. It also implies that if G is a 2-edge connected cubic graph, then
$\chi'(G) \leq 11/3$.

1 Introduction

Graphs considered in this paper may have parallel edges but no loops. Given a graph $G = (V, E)$, and
positive integers $p \geq q$, a (p, q)-coloring of G is a mapping $f : V \rightarrow \{0, 1, \ldots, p-1\}$ such that for every
edge $e = xy$ of G, $q \leq |f(x) - f(y)| \leq p - q$. The \textit{circular chromatic number} $\chi_c(G)$ of G is defined as
\[\chi_c(G) = \inf \{ p/q : G \text{ has a } (p, q)\text{-coloring} \}. \]

It is known [4, 6] that for any graph G, the infimum in the definition is always attained and
\[\chi(G) - 1 < \chi_c(G) \leq \chi(G). \]

For a graph $G = (V, E)$, the \textit{line graph} $L(G)$ of G has vertex set E, in which $e_1 \sim e_2$, if e_1 and e_2 have
an end vertex in common. The \textit{circular chromatic index} $\chi'_c(G)$ of G is defined as
\[\chi'_c(G) = \chi_c(L(G)). \]

Recall that the \textit{chromatic index} $\chi'(G)$ of G is defined as $\chi'(G) = \chi(L(G))$. So we have
\[\chi'(G) - 1 < \chi'_c(G) \leq \chi'(G). \]

If G is connected and $\Delta(G) = 2$, then G is either a cycle or a path. This implies that either $\chi'_c(G) = 2$
or $\chi'_c(G) = 2 + \frac{1}{k}$ for some positive integer k. Since graphs G with $\Delta(G) \geq 3$ have $\chi'_c(G) \geq 3$, ‘most’
of the rational numbers in the interval $(2, 3)$ are not the circular chromatic index of any graph. The
following question was asked in [4]:

*Department of Computer Science, University of Waterloo
†Department of Industrial Engineering, Sharif University of Technology
‡Department of Mathematics & Statistics, Concordia University
§Department of Computer Science, University of Toronto
¶Department of Computer Engineering, Sharif University of Technology
∥Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, Taiwan 80424, e-mail: zhu@math.nsysu.edu.tw
∗∗This research was partially supported by the National Science Council under grant NSC92-2115-M-110-007
Question 1.1 For which rational \(r \geq 3 \), there is a graph \(G \) with circular chromatic index \(r \)? In particular, is it true that for any rational \(r \geq 3 \), there is a graph \(G \) with \(\chi'_c(G) = r \)?

If \(3 < \chi'_c(G) < 4 \), then \(G \) has maximum degree 3. It is well-known that the Four Color Theorem is equivalent to the statement that every 2-edge connected cubic planar graph \(G \) has \(\chi'_c(G) = 3 \). For nonplanar 2-edge connected cubic graphs, Jaeger [2] (see also page 197 of [3]) proposed the following conjecture (Petersen Coloring Conjecture):

Conjecture 1.2 If \(G \) is a 2-edge connected cubic graph, then one can color the edges of \(G \), using the edges of the Petersen graph as colors, in such a way that any three mutually adjacent edges of \(G \) are colored by three edges that are mutually adjacent in the Petersen graph.

Since the Petersen graph has circular chromatic index 11/3, Conjecture 1.2 would imply that every 2-edge connected cubic graph \(G \) has \(\chi'_c(G) \leq 11/3 \). The following two open problems are proposed in [6]:

Question 1.3 Prove that if \(G \) is a 2-edge connected cubic planar graph, then \(\chi'_c(G) < 4 \), without using the Four Color Theorem.

Question 1.4 Are there any 2-edge connected cubic graph \(G \) with \(\chi'_c(G) = 4 \)?

This paper proves the following result:

Theorem 1.5 Let \(H_1 \) and \(H_2 \) be the graphs as shown in Figure 1. If \(G \) is graph of maximum degree 3 and \(G \) does not contain \(H_1 \) or \(H_2 \) as a subgraph, then \(\chi'_c(G) \leq 11/3 \).

It is easy to verify that \(\chi'_c(H_1) = \chi'_c(H_2) = 4 \). Since graphs \(G \) with \(\Delta(G) \geq 4 \) have \(\chi'_c(G) \geq 4 \), we have the following corollary:

Corollary 1.6 There is no graph \(G \) with \(11/3 < \chi'_c(G) < 4 \).

Corollary 1.6 answers the second part of Question 1.3 in the negative.

To prove Theorem 1.5, it suffices to consider 2-edge connected graphs. Indeed, if a graph \(G \) is not 2-edge connected, say \(e \) is a cut edge of \(G \), then either \(e \) is a hanging edge, i.e., incident to a degree 1 vertex, or \(e \) is a cut vertex in \(L(G) \). In the latter case, \(\chi'_c(L(G)) = \max\{\chi'_c(B) : B \) is a block of \(L(G)\}\). If \(e \) is a hanging edge of \(G \), then \(e \) has degree at most 2 in \(L(G) \), and hence any \((11,3)\)-coloring of \(L(G) - e \) can be extended to a \((11,3)\)-coloring of \(L(G) \). In the remainder of this paper, we assume that \(G \) is 2-edge connected and hence has minimum degree at least 2. It is easy to see that if \(G \) is 2-edge connected and has maximum degree at most 3, then \(G \) cannot contain \(H_1 \) or \(H_2 \) as a proper subgraph.

Therefore Theorem 1.5 is equivalent to the following:

Theorem 1.7 Suppose \(G \) is 2-edge connected and has maximum degree 3. If \(G \neq H_1, H_2 \), then \(\chi'_c(G) \leq 11/3 \).

Theorem 1.7 implies the following corollary, which answers Questions 1.3 and 1.4.

Corollary 1.8 The circular edge chromatic number of every 2-edge connected cubic graph \(G \) is less than or equal to 11/3.
2 Cubic chromatic index

The remainder of the paper is devoted to the proof of Theorem 4. In this section, we consider triangle free cubic graphs. First we prove a lemma which is needed in our proof.

Suppose c is a k-coloring of a graph $G = (V, E)$ with colors $0, 1, \ldots, k - 1$. If xy is an edge of G and $c(y) = c(x) + 1 \pmod{k}$, then we say xy is a tight arc with respect to c. Let A be the set of tight arcs, and let $D_c(G) = (V, A)$, which is a directed graph with vertex set V. It is known \cite{1, 6} that if there is a k-coloring c of G for which $D_c(G)$ is acyclic, then $\chi_c(G) < k$. The following lemma is a strengthening of this result.

Lemma 2.1 Let c be a k-coloring of a graph G with colors $0, 1, \ldots, k - 1$, where $k > 2$. If $D_c(G)$ is acyclic and each directed path of $D_c(G)$ contains at most n vertices of color $k - 1$, then $\chi_c(G) \leq \frac{k - 1}{n + 1}$.

Proof. Let $p = k(n + 1) - 1$ and $q = n + 1$. It suffices to give an (p, q)-coloring for G. For each vertex v of G, let $l(v)$ be the maximum number of vertices with color $k - 1$ on a directed path of $D_c(G)$ which ends in v, without considering v itself. We claim that the coloring c' defined as

$$c'(v) = (c(v)q + l(v)) \mod p$$

is a proper (p, q)-coloring of G. Consider two adjacent vertices u and v. If $2 \leq |c(u) - c(v)| \leq k - 2$, then since both $l(u)$ and $l(v)$ are less than q, we have $q \leq |c'(u) - c'(v)| \leq p - q$. If $c(u) - c(v) = 1$, then vu is a tight arc and hence $l(u) \geq l(v)$. So we have $q \leq |c'(u) - c'(v)| \leq p - q$. Finally, if $c(u) = 0$ and $c(v) = k - 1$, then vu is a tight arc and $l(u) \geq l(v) + 1$. Again we have $q \leq |c'(u) - c'(v)| \leq p - q$.

Suppose c is a k-edge coloring of G and $e = xy$ is an edge of G. The two arcs xy' and $y'x$ are called arcs corresponding to e. We say an arc xy' is unblocked with respect to c, if there is a directed walk $W = (e_1, e_2, \ldots, e_n, e, e_1', e_2', \ldots, e_n')$ in $D_c(L(G))$ such that (i) $c'(e_1) = c'(e_n') = k - 1$, and (ii) $e_n = x'x$ and $e_1' = yy'$. The arc xy' is blocked with respect to c if no such directed walk exists. An edge $e = xy$ is said to be blocked in the direction $x \rightarrow y$ with respect to c, if the arc xy' is blocked. An edge $e = xy$ is completely blocked with respect to c, if both arcs xy' and $y'x$ are blocked. Given a partial k-edge coloring c' of G (i.e., c' colors a subset of edges of G), we say an arc xy' is unblocked with respect to c', if c' can be extended to a k-edge coloring c of G such that xy' is unblocked with respect to c. If no such extension exists, then we say xy' is blocked with respect to c'. Similarly, we say an edge e is completely blocked with respect to c', if both arcs xy' and $y'x$ are blocked with respect to c'.

Theorem 2.2 If G is a cubic graph of girth at least 4 and has a perfect matching, then $\chi_c'(G) \leq 11/3$.

Proof. By Lemma 2.1 it suffices to prove that there exists a 4-edge coloring ϕ of G such that $D_\phi(L(G))$ is acyclic and each directed path of $D_\phi(L(G))$ contains at most two vertices (i.e., two edges of G) which are colored by 3.

Let M be a perfect matching of G. Then $G - M$ is a collection of cycles. A 4-edge coloring of G is called a valid coloring with respect to M, if the following hold:

- All the M-edges (an edge in M is called an M-edge) are colored by color 0.

- The edges of any even cycle C of $G - M$ are colored by colors 1 and 2.

- The edges of any odd cycle C of $G - M$ are colored by colors 1 and 2, except one edge which is colored by color 3.

Let c' be a partial 4-edge coloring of G which can be extended to a valid 4-edge coloring of G with respect to M. We are interested in the blocked directions of the M-edges with respect to c'. Suppose $e = xy$ is an M-edge, and C and C' (not necessarily different) are cycles of $G - M$ such that $x \in V(C)$ and $y \in V(C')$. If xy' is an unblocked arc with respect to c', then we say xy' is an input of C' and an output of C with respect to c'.
Let C be a cycle of $G - M$, and let c_C be the partial edge coloring of G which is the restriction of a valid coloring c to $M \cup C$. If C is an even cycle, then it is easy to see that every edge $e \in M$ incident to C is completely blocked with respect to c_C. If C is an odd cycle of $G - M$, then Figure 2 shows the blocked directions of the M-edges incident to C with respect to c_C.

In Figure 2, a thick edge indicates an M-edge. An arrow on an M-edge indicates a blocked direction of that edge. An M-edge with opposite arrows is completely blocked. Since G has girth at least 4, the four vertices v_1, v_2, v_3, v_4 as indicated in Figure 2 are distinct. Note that an M-edge e incident to C is completely blocked with respect to c_C, unless e is incident to one of the vertices v_1, v_2, v_3, v_4, which are the vertices on a path whose edges are colored by colors 1, 2, 3. So there are at most 4 M-edges incident to C that are not completely blocked. An M-edge incident to C could be a chord of C. If an M-edge e incident to v_1, v_2, v_3, v_4 is a chord of C, then e could be completely blocked. We will discuss this case later in more detail. If an M-edge e incident to C is not completely blocked with respect to c_C, then exactly one direction of e is blocked.

For a valid 4-edge coloring c of G, let $\phi(c)$ be the total number of not completely blocked M-edges. Let $\psi(c)$ be the number of not completely blocked M-edges that are chords of cycles of $G - M$.

Claim 2.3 Suppose c is a valid 4-edge coloring of G (with respect to a perfect matching M). If $G - M$ has a cycle C which has an input as well as an output, then there is a valid 4-edge coloring c^* of G for which $\phi(c^*) + \psi(c^*) < \phi(c) + \psi(c)$.

Proof. Assume C is a cycle of $G - M$ which has an input as well as an output with respect to a valid 4-edge coloring c. Then C is an odd cycle and the M-edges incident to C contributes at least 2 to the summation $\phi(c) + \psi(c)$. We shall construct a valid 4-edge coloring c^* of G such that each M-edge not incident to C contributes the same amount to $\phi(c^*) + \psi(c^*)$ and $\phi(c) + \psi(c)$. However, the M-edges incident to C contributes at most 1 to the summation $\phi(c^*) + \psi(c^*)$.

Uncolor the edges of C to obtain a partial 4-edge coloring c' of G. The valid 4-edge coloring we shall construct is an extension of c'. It is obvious that for any valid 4-edge coloring c' of G which is an extension of c', each M-edge not incident to C contributes the same amount to $\phi(c^*) + \psi(c^*)$ and $\phi(c) + \psi(c)$. So we only need to make sure that the M-edges incident to C contribute at most 1 to the summation $\phi(c^*) + \psi(c^*)$.

First we consider the case that C has no chord. As each M-edge e incident to C is incident to another cycle of $G - M$, at least one direction of e is blocked with respect to c'. Since C is an odd cycle and C has an input and an output with respect to c, it is easy to see that there are four consecutive vertices v_1, v_2, v_3, v_4 of C such that with respect to the partial edge coloring c', the M-edges incident to v_1, v_2 have a common blocked direction (i.e., either both are blocked in the direction towards C or both are blocked in the direction away from C), and the M-edges incident to v_3, v_4 have an opposite
Circular chromatic index

5

block direction. Depending on which directions of the four edges are blocked, there are four cases as depicted in Figure 3.

![Figure 3: The blocked directions of M-edges incident to the uncolored cycle C of G − M](image)

We use the following convention to interpret Figure 3 and the figures in the remaining of the paper: An M-edge without an arrow could be completely blocked, or blocked in one direction, or unblocked in both directions. An M-edge with one arrow means that the indicated direction of that edge is blocked, but the other direction of that edge could be blocked or unblocked. An M-edge with a pair of opposite arrows means that edge is completely blocked.

Consider the case indicated in Figure 3 (a) and 3 (b). We extend c' to a valid 4-edge coloring c^* of G by letting $c^*(e_1) = 3, c^*(e_2) = 2, c^*(e_3) = 1$ (the other edges of C are colored by 1 and 2 alternately). It is easy to verify that in the case indicated in Figure 3(a), e_7 is the only edge which is probably not completely blocked with respect to c^*. In Figure 3(b), e_6 is the only edge which is probably not completely blocked. Thus the M-edges incident to C contributes at most 1 to the summation $\phi(c^*) + \psi(c^*)$.

For the cases in Figure 3(c) and 3(d), let $c^*(e_1) = 1, c^*(e_2) = 2, c^*(e_3) = 3$. Then the M-edges incident to C contributes at most 1 to the summation $\phi(c^*) + \psi(c^*)$.

Next we consider the case that C has a chord.

Since C is an odd cycle, there is an M-edge incident to C which is not a chord of C. So there is a vertex v_2 of C which is incident to a chord of C and a neighbour v_1 of v_2 in C is not incident to a chord of C. Let v_3, v_4 be the vertices of C following v_1, v_2 (as shown in Figure 4).

Assume the M-edges incident to v_3, v_4 are not chords of C and have a common blocked direction, as shown in Figure 4(a) or 4(b). In the case as shown in Figure 4(a), extend c' to c^* by letting $c^*(e_1) = 1, c^*(e_2) = 2, c^*(e_3) = 3$ (and color the other edges of C alternately by colors 1 and 2). In the case as shown in Figure 4(b), extend c' to c^* by letting $c^*(e_1) = 3, c^*(e_2) = 2, c^*(e_3) = 1$. In any case, it is easy to verify that all the chords of C are completely blocked, and there is at most one M-edge incident to C which is not completely blocked.

Assume the M-edges incident to v_3, v_4 have opposite blocked directions or at least one of the M-edges incident to v_3, v_4 is a chord of C. Then depending on which direction of the M-edge incident to v_1 is blocked (with respect to c'), we color the edges as in Figure 5.

In each of the colorings, it is straightforward to verify that the M-edges incident to C contribute at
most 1 to the summation \(\phi(c^*) + \psi(c^*) \). This completes the proof of Claim 2.3.

Now we choose a valid 4-edge coloring \(c \) of \(G \) such that \(\phi(c) + \psi(c) \) is minimum. By Claim 2.3, no cycle \(C \) of \(G - M \) has an input and an output. Since each cycle \(C \) of \(G - M \) contains at most one edge of color 3, it follows that every directed path of \(D_c(L(G)) \) contains at most 2 vertices (i.e., edges of \(G \)) with color 3. By Lemma 2.1, \(\chi_c'(L(G)) = \chi'_c(G) \leq \frac{11}{3} \).

Corollary 2.4 If \(G \) is a 2-edge connected graph of maximum degree 3 and has girth at least 4, then \(\chi'_c(G) \leq \frac{11}{3} \).

Proof. If \(G \) is cubic, then by Petersen Theorem, \(G \) has a perfect matching. Otherwise, take the disjoint union of two copies of \(G \), say \(G \) and \(G' \). For each degree 2 vertex \(x \) of \(G \), connect \(x \) to the corresponding vertex \(x' \) in \(G' \) by an edge. The resulting graph \(G'' \) is cubic (as \(G \) has minimum degree 2) and is either 2-edge connected (if \(G \) has at least two degree 2 vertices), or has exactly one cut edge. In any case \(G'' \) has a perfect matching (see for example [5], page 124) and has girth at least 4. Hence \(\chi'_c(G'') \leq \frac{11}{3} \) by Theorem 2.2.

3 Proof of Theorem 1.7

We prove Theorem 1.7 by induction on the number of edges. If \(|E(G)| = 3 \), then it is equal to \(K_3^3 \), and has circular chromatic index 3. Assume \(|E(G)| \geq 4 \) and \(G \neq H_1, H_2 \). If \(G \) has girth at least 4, then the conclusion follows from Theorem 2.2. Thus we assume that \(G \) has a pair of parallel edges or has a triangle.

Case I: Suppose there is a pair of parallel edges between \(u \) and \(v \). Since \(G \) is 2-edge connected and \(G \neq H_1 \), we conclude that \(u \) is connected to another vertex \(u' \), \(v \) is connected to another vertex \(v' \), and \(u' \neq v' \). Let \(G \bowtie uv \) be the graph obtained from \(G \) by deleting the two vertices \(u \) and \(v \) from \(G \) and adding an edge between \(u'v' \). Note that this new edge may cause a multiple edge between \(u' \) and \(v' \). If \(G \bowtie uv \notin \{H_1, H_2\} \), then by induction hypothesis, \(\chi'_c(G \bowtie uv) \leq \frac{11}{3} \). Figure 6(a) illustrates that
Circular chromatic index

(a):

(b):

(c):

Figure 6: (a), (b), and (c) show that how a (11/3)-edge coloring of the new graph leads to a (11, 3)-edge coloring of the previous one: (a): In the (11, 3)-edge coloring of the main graph $b = (a + 3) \mod 11$ and $c = (a + 6) \mod 11$, (b): contracting a triangle with three vertices of degree 3, (c): after contracting a triangle with one vertex of degree 2, we can always find a color c to complete the (11, 3)-coloring of the old graph.

A (11, 3)-coloring of $L(G \odot uv)$ can be ‘extended’ to a (11, 3)-coloring of $L(G)$. If $G \odot uv \in \{H_1, H_2\}$, then G is one of the graphs illustrated in Figure 7 or Figure 8 where a (7, 2)-coloring of $L(G)$ is given.

Case II: Suppose G has a triangle uvw. Since G is 2-edge connected and $G \neq H_1$, there are no multiple edges in this triangle. Let $G \odot uvw$ be the graph obtained from G by contracting the triangle uvw in G to a new vertex. If $G \odot uvw \notin \{H_1, H_2\}$, then by induction hypothesis, $\chi'_c(G \odot uvw) \leq 11/3$.

Figure 8(b,c) illustrates that a (11, 3)-coloring of $L(G \odot uvw)$ can be ‘extended’ to a (11, 3)-coloring of $L(G)$. If $G \odot uvw \in \{H_1, H_2\}$, then G is one of the graphs illustrated in Figure 8 or Figure 8 where a (7, 2)-coloring of $L(G)$ is given. So in any case, $\chi'_c(G) \leq 11/3$. This completes the proof of Theorem 1.7.

Based on the result in this paper, we propose the following conjecture:

Conjecture 3.1 For any integer $k \geq 2$, there is an $\epsilon > 0$ such that the open interval $(k - \epsilon, k)$ is a gap for circular chromatic index of graphs, i.e., no graph G has $k - \epsilon < \chi'_c(G) < k$.

If Conjecture 3.1 is true, then let ϵ_k be the largest real number for which $(k - \epsilon_k, k)$ is a gap for the circular chromatic index of graphs. The next problem would be to determine the value of ϵ_k. For
Figure 8: The graphs that can be converted to H_2 by the “⊙” operation. For each graph a $(7, 2)$-edge coloring is given.

$k = 2, 3, 4$, Conjecture 3.1 is true and we know that $\epsilon_2 = 1, \epsilon_3 = 1/2$ and $\epsilon_4 = 1/3$. So a natural guess for ϵ_k is that $\epsilon_k = 1/(k - 1)$. However, at present time, support for such a conjecture is still weak. For $k \geq 4$, we do not have natural candidate graphs G with $\chi'_c(G) = k - 1/(k - 1)$.

References

[1] D.R. Guichard. Acyclic graph coloring and the complexity of the star chromatic number. *J. Graph Theory*, 17:129–134, 1993.

[2] F. Jaeger. Nowhere-zero flow problems. In: L.W. Beineke and Sheehan, editors, *Selected Topics in Graph Theory*, 3:71–95, 1988.

[3] T.R. Jensen and B. Toft. *Graph Coloring Problems*. John Wiley & Sons, United States of America, 1995.

[4] A. Vince. Star chromatic number. *J. Graph Theory*, 12:551–559, 1988.

[5] D.B. West. *Introduction to Graph Theory*. Prentice-Hall, Inc, USA, 2001. 2nd Edition.

[6] X. Zhu. Circular chromatic number: a survey. *Discrete Math.*, 229:371–410, 2001.