Current and future perspective on antimicrobial and anti-parasitic activities of *Ganoderma* sp.: an update

Buddha Bahadur Basnet, Li Liu, Li Bao and Hongwei Liu

*State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China; International College, University of Chinese Academy of Sciences, Beijing, People’s Republic of China; *Savaid Medical School, University of Chinese Academy of Sciences, Beijing, People’s Republic of China

ABSTRACT

Medicinal mushroom *Ganoderma* sp. is considered to be a key source for the production of therapeutic agents. Our current review indicates that a limited number (<19%; 79 out of >430) of isolated compounds have been tested and known to be active against several microorganisms and parasites. In this review, we aim to summarise all the antimicrobial and anti-parasitic works on *Ganoderma* sp. displayed on web of science, google scholar and endnote X7 from 1932 to August 2016. We further present and discuss the structure of active compounds against microorganisms and parasites. In addition, we also discuss the possible further research to identify lead compounds from *Ganoderma* sp. as a novel strategy to combat the potential global emergence of bad bugs and parasites.

ARTICLE HISTORY

Received 21 February 2017
Accepted 25 April 2017

KEYWORDS

Ganoderma sp; antimicrobial; anti-parasitic; triterpenoid; quinone structures

1. Introduction

Ganoderma sp. is a medicinal mushroom producing a group of frequently studied bioactive compounds. They belong to the kingdom of Fungi, division of Basidiomycota, class of Agaricomycetes, order Polyporales, family of Ganodermataceae and genus of Ganoderma. A search for “Ganoderma” in the database Index Fungorum displayed 409 species records, including synonyms (http://www.speciesfungorum.org). *Ganoderma* sp., especially *G. lucidum*, *G. tsugae* and *G. applanatum*, are well studied and have been in use in East Asian countries since the ancient times for the treatment of various diseases (Ofodile et al. 2005; Paterson 2006; Ferreira et al. 2015). Triterpenes and polysaccharides are considered key constituents isolated from fruiting bodies, gills, spores and mycelia for their bioactivities (Xia et al. 2014).

Literature reviews suggest, besides its antimicrobial activities, *Ganoderma* sp. components exhibit a variety of bioactivities, including anti-tumour, immune-modulatory, antioxidant, anti-hypertensive and anti-androgenic. Moreover, *Ganoderma* sp. is widely used for the remedy of various chronic diseases such as cancers, diabetes, hypertension and hepatitis (Ofodile et al. 2005; Zhang et al. 2015). To date, most of the reviews on *Ganoderma* sp. have been focused on its anticancer and antioxidant activities and immune modulation (Sanodiya et al. 2009). Therefore, our basic aim is to provide a glimpse on the antimicrobial and anti-parasitic activities of *Ganoderma* sp. In addition, we also provide possible future prospect for research on *Ganoderma* sp. and its compounds.

In this review, we have performed literature searches in English (ISI Web of Science and Google Scholar) and Endnote X7 (online search, Pub Med) to find publications that described *Ganoderma* sp. for antimicrobial activities. We have used the keywords “Ganoderma” and “Antimicrobial”. Finally, we filtered individual references to determine the relevancy to our study. The inclusion criterion was the study that provided data or results or discussion on the antimicrobial activities of *Ganoderma* sp.

2. Antimicrobial and anti-parasitic bioactive compounds

Ganoderma sp. has been reported as important sources of antimicrobial bioactive compounds. Terpenes, terpenoids and polyketides of farnesyl quinones types are the major secondary metabolites
(SMs) produced by *Ganoderma* sp. In *Ganoderma* sp., more than 316 terpenes have been reported, with the majority of compounds from *G. lucidium* (Xia et al. 2014).

Chemical analysis of numerous *Ganoderma* sp. has showed *Ganoderma* Triterpenes (GTs) are mainly lanostanoid-type triterpene (Zhang et al. 2015). Among them, majority contain 30 or 27 carbon atoms, and some occasionally may contain 24 carbon atoms. These compounds possess the same parent skeleton, namely a trans-configuration of rings A/B, B/C, C/D and 10β, 13β, 14α, 17β substituent. In addition, the substituents are always found at the C-3, 7, 11, 12, 15, 22, 23, 24 and 25 positions of the parent nucleus (Xia et al. 2014). Thirty carbon terpenoids are usually formed by the fusion of two smaller terpenoids precursors, each containing 15 carbons sesquiterpene. Head-to-tail fashion linking of isoprene units to form linear chains and various cyclisations and rearrangements is the core mechanism to give cyclic terpenoids (Mothana et al. 2000; Hill & Connolly 2013). The parent carbon skeleton of antimicrobial and anti-parasitic GTs is shown in Figure 1, from which it can be concluded that GTs are the most common antimicrobial and anti-parasitic compounds reported from *Ganoderma* sp.

Farnesyl quinone, a polyketide type, is the second most common antimicrobial and anti-parasitic compound from *Ganoderma* sp. Quinones are known to be oxidised derivatives of aromatic compounds and are often readily made from reactive aromatic compounds with electron-donating substituent such as catechols and phenols. Besides GTs, polypeptides, small peptides such as ganodermin, polysaccharide such as sacchachitin, and chitosan also possess antimicrobial and anti-parasitic properties (Mothana et al. 2000; Wang & Ng 2006; Sanodiya et al. 2009; Chuang et al. 2013). Structures of antimicrobial and anti-parasitic compounds from *Ganoderma* sp. are shown in Figure 2.

3. Isolation of antimicrobial and anti-parasitic bioactive compounds

Extracts from fruiting bodies, both wild and cultivated, and mycelia from fermentation broth (Tables 1–4) are used for the isolation of antimicrobial and anti-parasitic bioactive compounds. Literatures divulge that most commonly ethanol (EtoAc) (Tables 1–4) is used to prepare crude extract; sometimes some researchers preferred other solvents such as chloroform (CHCl₃), EtOH, and acetone (Isaka et al. 2016). In addition, our review reveals that hexane and ether are poorly used for the preparation of extract from *Ganoderma* sp. Moreover, some techniques such as microwave, ultrasound and enzyme treatments can facilitate the breakdown of the cell wall (Ferreira et al. 2015). Solvents like MeOH, EtOH, CH₂Cl₂, CHCl₃ and aqueous – both cold and hot – are used for further purifications and isolation. Techniques such as thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC), and column chromatography (CC) are used to facilitate the purification and isolation process (Huie & Di 2004). The general procedures of the isolation of antimicrobial and anti-parasitic compounds are shown in Figure 3. In addition, this outline can be used for other chemical investigations from *Ganoderma* sp.

Figure 1. Parent carbon skeletons of triterpenoid and farnesyl quinone type of polyketide from *Ganoderma* sp. with antimicrobial and anti-parasitic activities.
4. Antibacterial activities of compounds and extracts of *Ganoderma* sp

Currently bioassay-guided antibiotics identification, TLC and chromatography bio-autography are used to track antibacterial ingredients from the extract (Huie & Di 2004). Minimum inhibitory concentration (MIC) and 50% inhibitory concentration (IC₅₀) values are used to determine the potency of antibacterial agents. Our literatures review showed that MeOH and EtOH are good solvents for the extraction of antibacterial compounds of interest rather than other organic solvents; however, the parts of *Ganoderma* sp. used and the tested bacterial strains may be the limiting factors in
choosing the solvent. Most studies that use alcoholic solvents for extraction showed very low MIC (Li et al. 2012; Shang et al. 2013; Cilerdzic et al. 2016). Several studies on the fruiting bodies of *Ganoderma* sp. reveal that the compounds have the inhibitory ability to the different types of Gram positive bacteria (GPB), Gram negative bacteria (GNB) including the mycobacteria (Al-Fatimi et al. 2005; Isaka et al. 2016).

Colossolactone E (6) and 23-hydroxycolossolactone E (53), two colossolactones-triterpenes, were active against *Bacillus subtilis* and *Pseudomonas syringae*. However, the researcher did not determine the MIC and MBC of compounds against this bacterium (Ofodile et al. 2011). Moreover, two hydroquinones, ganomycins A (27) and B (28), were found to be the most effective to inhibit the bacterium. The MIC values of compounds 27 and 28 were 25 µg/ml.
against *Staphylococcus aureus* and 2.5 µg/ml against *Micrococcus flavus*, respectively, taking positive control ampicillin (MIC = 0.05 µg/ml and 0.25 µg/ml for *S. aureus* and *M. flavus*, respectively). In addition, in agar diffusion assay Zone of Inhibition (ZOI) 15–25 mm/100 µg/paper disk was found for GPB such as *B. subtilis, S. aureus* and *M. flavus*. However, *P. aeruginosa, Candida albicans* and *C. maltose* at 100 µg/paper disk did not respond to these compounds (Mothana et al. 2000). In a work performed by Isaka et al. (2016), EtOAc and MeOH extract of *Ganoderma* sp. BCC 16,642 isolated different compounds astraodoric acid C (50), ganorbiformin F (72), ganoderic acid TR (34), ganoderic acid T (73), ganoderic acid S (18), lanostanoid, ((22S,24E)-3β,15α,22-triacetoxylanosta-8,24-dien-26-oic acid (45), (24E)-3β-acetoxy-7α-hydroxylanosta-8,24-dien-26-oic acid (44), (24E)-3β,15α-diace oxy-7α-hydroxylanosta-8,24-dien-26-oic acid (43), (22S,24E)-7α-hydroxy-3β,15α,22-triacetoxylanosta-8,24-dien-26-oic acid (42), (22S,24E)-3β,22-diacetoxy-7α-methoxy-8,24-dien-26-oic acid (46), (22S,24E)-7α-methoxy-3β,15α,22-triacetoxylanosta-8,24-dien-26-oic acid (47), (22S,24E)-3β,22-diacetoxylanosta-7,9(11),24-trien-26-oic acid (41), which were observed to be active against the *Tubercular bacilli* with the MIC value in the range of 0.781–50 µg/ml. In another study, steroidal compounds like ergosta-5,7,22-trien-3β-yl acetate (11), ergosta-5,7,22-dien-3β-yl acetate (70), ergosta-7,22-dien-3-one (15), ergosta-7,22-dien-3β-ol (13), ergosta-5,7,22-trien-3β-ol (12) and ganoderadiol (20) were found to be effective against *S. aureus* and *B. subtilis* with MIC value of 2.5–5 mg/ml (Vazirian et al. 2014). Ethanolic and EtOAc extract
compounds 12β-acetoxy-3β, 7β-dihydroxy-11, 15, 23-trioxolanost-8-en-26-oic acid butyl ester (71) from fruiting bodies of *G. lucidium* showed significant inhibition against *S. aureus* and *B. subtilis* with MIC values of 68.5 µM and 123.8 µM, respectively (positive control ampicillin = 4.1 µM and 19.3 µM, resp.) (Liu et al. 2014).

Literatures reveal most of the antibacterial tests are performed on crude extract with significant effective results rather than pure compounds (Sa-Ard et al. 2015; Zengin et al. 2015; Cilerdzic et al. 2016). In addition, scanty information is available on the in vivo model test of effective compounds; we noticed only compounds (27) and (28) have been tested the in vivo model of the Methicillin-resistant Staphylococcus aureus (MRSA)-infected mouse (Mikolasch et al. 2016).

5. **Antifungal activities of compounds and extracts of *Ganoderma* sp**

An antifungal protein – ganodermin – isolated from the fruiting bodies of *G. lucidium* inhibits the growth of *Botrytis cinerea, Fusarium oxysporum* and *Physalo..."
Ganoderma sp.	Extraction Solvent	Parts/products/compounds	Tested bacteria strains	Method	MIC/MBC	References
G. atrum	EtOH soluble acidic components	Fruiting bodies	*S. aureus* sub species Aureus, *E. coli*, *B. subtilis*, *P. vulgaris*	Micro dilution	1.56-25mg/ml/3.125-25mg/ml	(Li et al. 2012)
G. lucidum	96% EtOH	Fruiting bodies	*H. pylori* ATCC 43504, *S. aureus* ATCC 26003	Micro plate Agar, Disc fusion Assay	ND	(Shang et al. 2013)
G. colossum	Hexane: CH$_2$Cl$_2$ (2:7)	Collosolactone E(6), 23 hydroxycollosolactone E(53)	*B. subtilis* IMI 347329, *P. syringae* var IMI 34748(ACTCC 19310)	TLC Agar Overlay	ND	(Laureta Nawannaka Ofoide et al. 2011)
G. pfeifferi	CH$_2$Cl$_2$	Ganomycins A-B(27–28)	*S. aureus* (ATCC 6538), *B. subtilis* (SBUG 14), *E. coli* (SBUG 13), *P. mirabilis* (SBUG 47), *S. marcescens* (SBUG 9), *M. flavus* (SBUG 16)	Micro dilution	2.5-25µg/ml/ND	(Mohtama et al. 2000)
G. applanatum	96% EtOH	Mycelia extract	*B. cereus* (clinical isolate), *M. flavus* ATCC 10240, *S. aureus* ATCC 6538, *L. monocytogenes* NCTC 9793, *E. coli* ATCC 35218, *E. cloacae* (human isolate), *P. aeruginosa* ATCC 27853 and *S. typhimurium* ATCC 13311	Micro dilution	4.00mg/ml/1.25-25mg/ml	(Cilerdzic et al. 2016)
G. carnosum	96% EtOH	Mycelia extract	*B. cereus* (clinical isolate), *M. flavus* ATCC 10240, *S. aureus* ATCC 6538, *L. monocytogenes* NCTC 9793, *E. coli* ATCC 35218, *E. cloacae* (human isolate), *P. aeruginosa* ATCC 27853 and *S. typhimurium* ATCC 13311	Micro dilution	4.00mg/ml/1.25-25mg/ml	(Cilerdzic et al. 2016)
G. lucidum	96% EtOH	Mycelia extract	*B. cereus* (clinical isolate), *M. flavus* ATCC 10240, *S. aureus* ATCC 6538, *L. monocytogenes* NCTC 9793, *E. coli* ATCC 35218, *E. cloacae* (human isolate), *P. aeruginosa* ATCC 27853 and *S. typhimurium* ATCC 13311	Micro dilution	1.00-1.67mg/ml/1.16-400mg/ml	(Cilerdzic et al. 2016)
G. colossum	CH$_2$Cl$_2$, MeOH, H$_2$O	Fruiting bodies	*S. aureus* (ATCC 29213), *B. subtilis* (ATCC 6059), *E. coli* (ATCC 25922), *P. aeruginosa* (ATCC 27853), *M. flavus* (SBUG 16)	Micro dilution	4.00mg/ml/1.25-25mg/ml	(Al-Fatimi et al. 2005)
G. resinaceum	CH$_2$Cl$_2$, MeOH, H$_2$O	Fruiting bodies	*S. aureus* (ATCC 29213), *B. subtilis* (ATCC 6059), *E. coli* (ATCC 25922), *P. aeruginosa* (ATCC 27853), *M. flavus* (SBUG 16)	Micro dilution	4.00mg/ml/1.25-25mg/ml	(Al-Fatimi et al. 2005)
G. applanatum	MeOH	Fruiting bodies	*E. coli* (ATCC 25922)	Micro dilution	ND	(Zengin et al. 2015)
G. lucidum	EtOH and H$_2$O	Fruiting bodies	*S. aureus* (MTCC 96), *B. cereus* (MTCC 430), *P. aeruginosa* (MTCC 424)	Micro dilution	80-200mg/ml/ND	(Kansu & Rai 2012)
G. lucidum	Hexane and chloroform	Fruiting bodies	*S. aureus* (ATCC 6538), *B. subtilis* (ATCC 6633)	Micro dilution	6.25mg/ml/ND	(Vazirian et al. 2014)
G. lucidum	Hexane and chloroform	Ergosta-5,7,22-trien-3β-yl acetate (11), ergosta-7,22-dien-3β-yl acetate (70), ergosta-7,22-dien-3-one (15), ergosta-7,22-dien-3β-ol (13), ergosta-5,7,22 trien-3β-ol (12), ganoderadiol (20)	*S. aureus* (ATCC 6538), *B. subtilis* (ATCC 6633)	Micro dilution	2.5-5mg/ml/ND	(Vazirian et al. 2014)
G. lucidum	Hot H$_2$O	Carpophores	*B. anthracis* ATCC 6603, *B. cereus* ATCC 27348, *B. subtilis* ATCC 6633, *M. luteus* ATCC 9341, *S. aureus* ATCC 25923, *E. coli* ATCC 25922, *K. oxytoca* ATCC 8724, *K. pneumoniae* ATCC 10031, *P. vulgaris* ATCC 27853, *S. typhimurium* ATCC 6229	Micro dilution	1.25-5.0mg/ml/ND	(Yoon et al. 1994)
G. lucidum	96% EtOH	Basidiocarps	*B. cereus* (clinical isolate), *M. flavus* ATCC 10240, *S. aureus* ATCC 6538, *L. monocytogenes* NCTC 9793, *E. coli* ATCC 35218, *E. cloacae* (human isolate), *P. aeruginosa* ATCC 27853 and *S. typhimurium* ATCC 13311	Micro plate Agar, Disc fusion Assay	1–3.4mg/ml/1.4–4.0mg/ml	(Člerdzic et al. 2014)

(Continued)
Mycelia (Protein extract) 95% EtOH 12β-acetoxy-3β-hydroxy-7α-β-dihydroxy-acetoxy-7α-hydroxy-15α,22-triacetoxy-8,24-dien-26-oic acid butyl ester, (24R, 22S, 24 R)-7α-hydroxy-3β-β,15α,22-triacetoxy-8,24-dien-26-oic acid, (24R, 22S, 24 R)-3β-β,15α,22-triacetoxy-7α-hydroxy-8,24-dien-26-oic acid.

S. aureus, S. epidermidis, B. subtilis, B. cereus, E. coli, P. aeruginosa

M. tuberculosis

Micro dilution 68.5 µg/mL/0.035 ml/0.0125 ml/0.035 ml/1.5 mg/ml/20 µg/ml ND.

P. aeruginosa

Micro dilution 0.0125 µg/ml/0.035 µg/ml/0.75 mg/ml/0.781-50 µg/mL/ND.

0.75 µg/ml/0.035 µg/ml

0.75 mg/ml/0.035 µg/ml/0.781-50 µg/mL/ND

0.75 mg/ml/0.035 µg/ml/0.781-50 µg/mL/ND

81.5-512 mg/ml/ND

NG

G. lucidum

Colossolactone A from G. lucidum was isolated from the chloroform extract of G. lucidum with an IC₅₀ value of 15.2 mM, 12.4 mM and 18.1 mM, respectively (Wang & Ng 2006).

Triterpenoids like applanoxic acids A (1), C (2) and F (3) isolated from G. annulare inhibit the growth of the fungi Microsporum cannis and Trichophyton mentagrophytes at concentrations of 500–1000 µg/ml (Smania et al. 2003).

In another study, researchers synthesised the complexes of polysaccharide with different rare earth metal (RE–CGAP (RE: La, Eu and Yb)) and evaluated their efficacy against fungi and reported that rare earth carboxymethylated G. Applanatum polysaccharide (RE–CGAP complexes with antifungal activities with EC₅₀ value of 1.01–28.48 mg/ml (>100 mg/ml not included) (Sun et al. 2014). The details of the antifungal action of Ganoderma sp. are demonstrated in Table 2.

6. Antiviral activities of compounds and extracts from Ganoderma sp

It is interesting to note that the majority of antiviral investigations on Ganoderma sp. have been performed from fruiting body against the protease enzyme of HIV virus. The compounds ganoderiol F (22) and ganodermanontriol (23) were found to be active as anti-HIV-1 agents with an inhibitory concentration of 7.8 µg/ml. In addition, in the same experiment ganoderiol B (51), ganoderiol A (21), ganoderic acid A (76), ganoderic acid B (77), ganoderic acid C1 (78) and ganoderic acid H (79) were found to be moderate in their efficacy (El-Mekkawy et al. 1998; El Dine et al. 2008). Colossolactone types of triterpenoids such as colossolactone V (10), colossolactone VII (8), colossolactone VIII (7), schisanlactone A (33), carboxymethylated polysaccharide (RE–CGAP) and ganomycin B (28) were isolated from the chloroform extract from G. lucidum with and IC₅₀ value of 5–39 µg/ml (El Dine et al. 2008). Similarly in Sato et al. (2009), isolated lanostane-type triterpenoids-ganoderiol F (22), ganoderic acid GS-2 (48) and 20-hydroxyxidicenic acid N (74), 20(21)-dehydroxylidicenic acid N (39) from CHCl₃ extract of the fruiting body of G. sinense and demonstrated the anti-HIV-1 protease activity with IC₅₀ values of 20–40 µM (El Dine et al. 2008; Sato et al. 2009). Compounds from the CHCl₃ extract of the fruiting bodies of G. colossum, farnesyl hydroquinone, ganomycin I (29) and ganomycin B (28), competitively inhibit the active site of HIV-1 protease enzyme with IC₅₀

Table 2

Tested bacteria strains	Tested extracts	Reference
S. aureus	Mycelial extract	Liu et al. 2014
S. epidermidis	Mycelial protein extract	Liu et al. 2014
B. subtilis	Mycelial extract	Liu et al. 2014
B. cereus	Mycelial extract	Liu et al. 2014
E. coli	Mycelial extract	Liu et al. 2014
P. aeruginosa	Mycelial extract	Liu et al. 2014
M. tuberculosis	Mycelial extract	Liu et al. 2014
values of 7.5 and 1.0 μg/ml, respectively (El Dine et al. 2008).

Ganoderma pfeifferi triterpenes, ganoderadiol (20), lucidadiol (30) and apllanoxidic acid G (4), were active against influenza virus type A with EC₅₀ of greater than 0.22 mM, 0.22 mM and 0.19 mM, respectively (MothanaRa et al. 2003). Similarly other triterpenes such as ganoderone C (26) (IC₅₀: 2.6 μg/ml), lucialdehydye B (31) (IC₅₀:3.0 μg/ml) and ergosta-7, 22-dien-3β-ol (14) (IC₅₀: 0.78 μg/ml) inhibited the growth of Madin-Darby canine kidney (MDCK) cells infected with influenza virus (Niedermeyer et al. 2005). Herpes simplex virus were inhibited by triterpenes such as compound (20) (ED₅₀: 0.068 mM), ganoderone A (25) (IC₅₀:0.075 μg/ml), (31) (IC₅₀:0.03 μg/ml) and compound 14 (IC₅₀: 0.03 μg/ml), whereas compounds 21 and 51 were less effective in comparison (MothanaRa et al. 2003; Niedermeyer et al. 2005). *G. lucidium* triterpenes lanosta-7, 9 (11), 24-trien-3-one, 15; 26-dihydroxy (GLTA) (40) and ganoderic acid Y (19) possess inhibitory action towards enterovirus 71 with IC₅₀ value of 0.16–4 μg/ml (Zhang et al. 2015). The details of the antiviral activities of *Ganoderma* sp. have been illustrated in Table 3.

7. Anti-parasitic activities of compounds and extracts from *Ganoderma* sp

Nortriterpenes-ganoboninketals A-C (15–17) obtained from the biochemical analysis of the fruiting bodies of

Table 2. Illustration of antifungal activities of *Ganoderma* sp. parts, products and compounds.

Ganoderma Sp.	Extraction Solvent	Parts/products/ compounds	Tested Fungal strains	Method	Antifungal Concentration/ZOI/MIC/MFC/EC₅₀ value	References
G. colossus	MeOH	Fruiting bodies	C. maltosa	Agar Diffusion Assay	8mm/2mg/disc-ZOI	(Al-Fattimi et al. 2005)
G. applanatum	MeOH& H₂O	NG	A. clavatus and C. parasilosis	Broth Micro dilution	1.25 & 2.5mg/ml-Antifungal activity 1.25 & 2.5mg/ml-Antifungal activity	(Zengin et al. 2015)
G. resinaceum	MeOH& H₂O	NG	A. clavatus and C. parasilosis	Broth Micro dilution	0.5-308mg/ml-MIC; 1.0–4.0mg/ml-MFC	(Cideržić et al. 2014)
G. lucidium	96%EtOH	Fruiting bodies	Acremonium strictumBEOFB10m, A. flavusBEOFB21m, A. fumigatusBEOFB22m, A. nigerBEOFB23m, A. nidulansBEOFB24m, A. terreusBEOFB26m, T. virideBEOFB61m	Disc-diffusion & Micro dilution	0.005–15mg/ml-MIC; 0.1–4.5mg/ml-MFC	(Heleno et al. 2013)
G. lucidium	MeOH	Fruiting bodies	A. fumigatus(human isolate), A. versicolor(ATTCC 11730), A. zochraceus(ATTCC 12066), A. niger (ATTCC 6275), T. viride IAMs0561, P. funiculosum(ATTCC 36839), P. ochrochloron(ATTCC 9112)and P. verrucosum var. cyclopium (food isolate)	Micro dilution	0–568.30mg/ml-MIC	(Sun et al. 2014)
G. lucidum	EtOH& chemical synthesis	RE–CGAP(RE: La, EuandYb)	V. mali, F. oxysporum, G. graminis, C. gloeosporioides, A. brassicae	Disc diffusion	1.85–568.30mg/ml-MIC	(Wang & Ng 2006)
G. lucidum	dH₂O	Ganodermin Botrytis cinerea, F. oxysporum and Physalo sporapiricola	M. canis & T. mentagrophytes	Paper Disks	8.1–12.4M-MF Anti fungal	(Smania et al. 2003)
G. annulare	NG	Applanoxidic acids A(1), C(2) & F(3)	M. canis & T. mentagrophytes	Micro dilution	500 to 1000mg/MF Anti fungal	(Cideržić et al. 2016)
G. applanatum	96%EtOH	Mycelia Acremonium strictum, A. glaucus, A. flavus, A. fumigatus, A. niger, A. terreus, T. viride	Micro dilution	1.00–2.00mg/ml-MIC; 1.17–4.00mg/ml-MFC	(Cideržić et al. 2016)	
G. cinnamomeum	96%EtOH	Mycelia Acremonium strictum, A. glaucus, A. flavus, A. fumigatus, A. niger, A. terreus, T. viride	Colorimetric	0.83–2.00mg/ml-MIC; 2.00–3.33mg/ml-MFC	(Cideržić et al. 2016)	
G. lucidum	96%EtOH	Mycelia Acremonium strictum, A. glaucus, A. flavus, A. fumigatus, A. niger, A. terreus, T. viride	Colorimetric	0.50–2.00mg/ml-MIC; 1.17–4.00mg/ml-MFC	(Cideržić et al. 2016)	

MeOH: Methanol; EtOH: Ethanol; dH₂O: Distilled water; NG: Data Not Given; ZOI: Zone Of Inhibition; MIC: Minimum Inhibitory Concentration; MFC: Minimum Fungicidal Concentration; EC₅₀: Concentration; RE–CGAP: Rare Earth-CarboxymethylatedGanodermaapplanatum Polysaccharide; μM: Micro Mole; mg/ml: milligram/millilitre.
Table 3. Illustration of antiviral activities of *Ganoderma* sp. parts, products and compounds.

Ganoderma sp.	Tested Viral strains	Extraction Solvent	Parts/products/compounds	Method	IC₅₀ (≤<sup>50μM)/EC₅₀/ED₅₀ value	References	
G. sinense	HIV 1 (HIV-1 protease)	CHCl₃	Ganoderonic acid GS-2(48), 20-hydroxylucidenic acid N(74), 20(21)-dehydrolycidenic acid N(39) & ganoderol F(22)	In vitro (Enzymatic)	20 – 40μM	(Sato et al. 2009)	
G. colossum	HIV 1 (HIV-1 protease)	CHCl₃	Colossolactone VII(10), Colossolactone VII(8), Colossolactone VIII(7), Schisanlactone A(33), Colossolactone G(5), Colossolactone A(9)	In vitro (Enzymatic)	5-39μg/mL	(El Dine et al. 2008)	
G. colossum	HIV 1 (HIV-1 protease)	CHCl₃	Ganomycin I(29) & Ganomycin B(28)	In vitro (Enzymatic)	7.5 and 1.0 μg/mL	(El Dine et al. 2009)	
G. lucidum	HIV 1 (HIV-1 protease)	MeOH	Ganoderol F(21) & Ganodermanontriol(23)	In vitro (Enzymatic)	7.8μg/mL	(El-Mekawy et al. 1998)	
G. lucidum	Herpes Simplex Virus types 1 (HSV-1) and 2 (HSV-2), Influenza A virus (Flu A) and Vesicular Stomatitis Virus (VSV) Indiana and New Jersey strains	H₂O & MeOH	Carpophores	Cytopathic Effect (CPE) Inhibition Assay & Plaque Reduction Assay	68-1790μg/mL-EC50	(Eo et al. 2000)	
G. lucidum	HSV-1 and HSV-2	H₂O/MeOH	Acidic protein bound polysaccharide	Plaque Reduction Assay		(Eo et al. 2000)	
G. lucidum	Oral Human Papillomavirus (HPV)	NG	Fruiting bodies	In vivo (Human)	87% clearance of virus	(Donatini 2014)	
G. lucidum	Newcastle Disease Virus (anti-neuraminidase)	MeOH, EtOAc & Butanol		In vitro	Virus dilution ratio: 1:16, 1:32	(Shamaki et al. 2014)	
G. lucidum	Epstein-Barr Virus	MeOH	Fruiting bodies	In vitro	96–100% at 1 103 mol ratio/TPA	(Watatsuki et al. 2003)	
G. lucidum	Hepatitis B virus	NG	mycelia	In vitro (HepG2 cells)	IRA(HBsAg, HBeAg) up to 100% Inhibition of production of HBV surface antigen and HBVe at 8μg/ml	(Y. Li et al. 2006)	
G. lucidum	Hepatitis B	H₂O and CHCl₃	mycelia(Ganoderic acid)	In vitro (HepG2215)		(Y.-Q. Li & Wang 2006)	
G. pfeiffer	Influenza virus type A and HSV type 1	NG	Ganodermadiol(20), lucidadiol (30) & applanoxic acid G(4)	Dye Uptake Assay	Influenza ED50(0.19–0.22mmol/l); HSV 1 (0.068 mmol/l for ganodermadiol)	(Mothenar et al. 2003)	
G. pfeiffer	HSV type 1	CH₂C₂	Ganoderone A(25), Lucialdehyde B(31), Ergosta-7,22-dien-3-ol(14), Ganaderol A(21) & Ganoderol B(51)	In vitro (Vero cells)	0.03–0.75μg/ml(IC50)	(Niedermeyer et al. 2005)	
G. pfeiffer	Influenza virus type A	CH₂C₂	Ganoderone C(26), Lucialdehyde B(31) & Ergosta-7,22-dien-3-ol(14)	In vitro (MDCK cells)	0.78–2.6μg/ml(IC50)	(Niedermeyer et al. 2005)	
G. lucidum	Enterovirus 71	NG	Lanosta-7,9(11),24-trien-3-one,15,26-dihydroxy (GLTA)(40), Ganoderic acid Y(19)	In vitro (Human	Rhabdomyosarcoma)	0.16 to 4 μg/ml(IC50)	(W. Zhang et al. 2014)

MeOH: Methanol; EtOH: Ethanol; H₂O: water; NG: Data Not Given; IC₅₀: half-maximal Inhibitory Concentration; EC₅₀: half-maximal Effective Concentration; ED₅₀: median effective dose; μM: Micro Mole; mg/m: Milligram/Millilitre; μg/ml: Microgram/millilitre; *(Lucidenic acid P(58), Methyl lucidenate P(59), Methyl lucidenate Q(60), Lucidenic acid A(61), Methyl lucidenate A(62), Lucidenic acid C(63), Lucidenic acid D(64), Methyl lucidenate D2(65), Lucidenic acid E2(66), Methyl lucidenate E2(67), Methyl lucidenate F(68), Methyl lucidenate L(69), Ganoderolic acid E(54), Ganoderic acid F(57), Methyl ganoderate F(56), Ganoderic acid T-Q(54)).
Table 4. Details of anti-parasitic activities of *Ganoderma* sp. parts and compounds.

Ganoderma sp.	Extraction Solvent	Parts/compounds	Test Parasite	Method	LD₅₀/IC₅₀ value	References
Ganoderma sp.	EtOAc&MeOH	Fruiting bodies(schisanlactone B(32), Ganodermalactone F(24), colossolactone E(6))	*P. falciparum*	Micro culture Radioisotope Technique	6.0–10.0 μM	(Lakornwong et al. 2014)
G. lucidum	EtOAc&MeOH	Fruiting bodies*	*P. falciparum*	Micro culture Radioisotope Technique	6.0-20μM	(Adams et al. 2010)
G. boninense	EtOH	Ganoboninketals A(75) Ganoboninketals B-C(16–17)	*P. falciparum*	DNA Fluorescence Signal Test	4.0, 7.9, and 1.7 μM	(Ma et al. 2014)
G. lucidum	EtOH	Crude extract	*P. berghei*	In Vivo Malarial activity	>10 mg/ml	(Oluba et al. 2012)
G. lucidum	NG	Lectin	*H. glycines*	Parasite Mortality Test	(>10 mg/ml/2hrs, 4.5 mg/ml/24hrs, 1.7 mg/ml/48hrs)	(Zhao et al. 2009)
G. lucidum	NG	Lectin	*D. dipsaci*	Parasite Mortality Test	>10 mg/ml	(Zhao et al. 2009)

EtoAc: Ethyl Acetate; EtOH: ethanol; MeOH: Methanol; *P. falciparum*: Plasmodium falciparum; *H. glycines*: Heteroderaglycines; *D. dipsaci*: Ditylenchus dipsaci; NG: Data Not Given; μM: Micro Mole; mg/ml: milligram/millilitre; *(Ganoderic acid DM(35), Ganoderic Acid TR 1(52), Ganoderic Aldehyde TR(37), 23-Hydroxyganoderic Acid S(36), Ganoderic acid S(18), Ganodermannondiol(37), Ganofuran B(49)).

Figure 3. Flowchart of isolation of antimicrobial and anti-parasitic compounds from *Ganoderma* sp.
G. boninense were found to possess anti-parasitic activity against *P. falciparum* with IC$_{50}$ values of 4.0, 7.9 and 1.7 μM, respectively (Adams et al. 2010; Ma et al. 2014). Similarly three triterpenes – schisanlac-tone B (32), ganodermalactone F (24) and colossolactone E (6) – isolated with EtOAc and MeOH from *Ganoderma* sp. KM01 are active against *P. falciparum* in the range 6.0–10.0 μM (Lakornwong et al. 2014a). In addition, *G. lucidium* terpenes – ganoderic acid DM (35), ganoderic acid TR1 (52), ganoderic aldehyde TR (37), ganoderic acid S (18), ganodermanondiol (38) and ganofuran B (49) – isolated from EtOAc inhibit *P. falciparum* with IC$_{50}$ value of range 6.0–20 μM (Adams et al. 2010). In a recent study, Zhao et al. found lectin to be active against the plant nematodes *Heterodera glycines* and *Ditylenchus dipsaci*, though their potency was not significant to be used practically (Zhao et al. 2009).

8. Conclusion and future perspective

Ganoderma sp. has been used for treatment in various diseases over a long period (Paterson 2006). Our review clearly showed that compounds from *Ganoderma* sp., under the extensive in vivo and pharmacological research, can be used in various microorganisms and parasitic diseases. However, the in vivo experiment and pharmacological research of the identified compounds are very limited. Therefore, future work should be focused on in vivo and pharmacological assays of known compounds, especially Ganoderma terpenes that have antimicrobial and anti-parasitic properties. A better understanding of the antimicrobial and anti-parasitic compounds from *Ganoderma* sp. is crucial for identifying the potential side effects and trace out the new host target and molecular mechanisms, which will provide evidence to further clinical applications of these compounds.

Although extensive researches have been carried out on *Ganoderma* sp., most of the studies were concentrated on few species, *G. lucidum* for instance. Researchers must need to pay more attention to closely related species based on the phylogenic analysis though numerous challenges including genetic analysis, biosynthetic metabolism, separation, isolation and identification may be encountered. In addition, due to the rapid emergence of drug resistance in microorganisms and parasites, fewer options have been left for the treatment of diseases caused by microorganism and parasites. To fight back this problem, further research should be focused on this field for all the identified compounds and the unidentified compounds, which are on the way to be identified. Our review revealed numerous extracts of *Ganoderma* sp. exhibit the inhibition to microorganisms including parasites, indicating that *Ganoderma* sp. in particular still seem to possess opportunities for new drug lead compounds.

Scanty literatures are found on the assay of identified compounds for animal and plants pathogens including parasites, indicating that this area of research for the *Ganoderma* sp. compounds is overlooked. Also, our current experience on a literatures review of *Ganoderma* sp. compounds, more than 430 compounds identified (Baby et al. 2015; Rai et al. 2015), most of the compounds have not been performed on the antimicrobial and anti-parasite assay. Therefore, further studies need to be carried out in order to explore this concealed area.

No doubt, it is evident that *Ganoderma* sp. is going to serve as one of the potential sources of novel antibiotics and anti-parasitic drugs in the near future. To reach the apex and specificity of effective antimicrobial and anti-parasite activity, cooperative investigations need to be carried out in the areas of genomic, bioinformatics, chemistry and pharmacology. Moreover, strategies to evoke the sleeping gene clusters linked for the production of bioactive compounds and its regulation need to be adopted.

Acknowledgements

We would like to express sincere gratitude to the laboratory members of State Key Laboratory of Mycology, Chinese Academy of Sciences, and we would like to thank the reviewers in advance for their comments that will help improve an earlier version of the manuscript.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported financially by the National Nature Science Foundation (numbers 21472233 and 81673334) and the Youth Innovation Promotion Association of Chinese Academy of Sciences (number 2014074).
References

Adams M, Christen M, Plitzko I, Zimmermann S, Brun R, Kaiser M, Hamburger M. 2010. Anti plasmodial Lanostanes from the Ganoderma lucidum Mushroom. J Nat Prod. 73:897–900.

Al-Fatimi M, Wurster M, Kreisel H, Lindequist U. 2005. Antimicrobial, cytotoxic and antioxidant activity of selected basidiomycetes from Yemen. Pharmazie. 60:776–780.

Baby S, Johnson AJ, Govindan B. 2015. Secondary metabolites from Ganoderma. Phytochem. 114:66–101.

Chuang CM, Wang HE, Chang CH, Peng CC, Ker YB, Lai JE, Chen KC, Peng RY. 2013. Sacchachitin, a novel chitin-poly-saccharide conjugate macromolecule present in Ganoderma lucidum: purification, composition, and properties. Pharm Biol. 51:84–95.

Čilerđić J, Vukojević J, Stajić M, Stanojković T, Gamočlija J. 2014. Biological activity of Ganoderma lucidum basidiocarps cultivated on alternative and commercial substrate. J Ethnopharmacol. 155:312–319.

Čilerđić J, Stajić M, Vukojević J. 2016. Potential of submergently cultivated mycelia of Ganoderma spp. as antioxidant and antimicrobial agents. Curr Pharm Biotechnol. 17:275–282.

Donatini B. 2014. Control of Oral Human Papillomavirus (HPV) by medicinal mushrooms, tranetes versicolor and Ganoderma lucidum: A preliminary clinical trial. Int J Med Mushrooms. 16:497–498.

El Dine RS, El Halawany AM, Ma C-M, Hattori M. 2008. Anti-HIV Protease Activity of Lanostane Triterpenes from the Vietnamese Mushroom Ganoderma colossum. J Nat Prod. 71:1022–1026.

El Dine RS, El Halawany AM, Ma C-M, Hattori M. 2009. Inhibition of the Dimerization and Active Site of HIV-1 Protease by Secondary Metabolites from the Vietnamese Mushroom Ganoderma colossum. J Nat Prod. 72:2019–2023.

El-Mekawy S, Meselhy MR, Nakamura N, Tezuka Y, Hattori M, Kikuchi N, Shimotohno K, Kawahata T, Otake T. 1998. Anti-HIV-1 and anti-HIV-1 protease substances from Ganoderma lucidum. Phytochem. 49:1651–1657.

Eo SK, Kim YS, Lee CK, Han SS. 2000. Possible mode of antiviral activity of acidic protein bound polysaccharide isolated from Ganoderma lucidum on herpes simplex viruses. J Ethnopharmacol. 72:475–481.

Ferreira ICFR, Heleno SA, Reis F5, Stojkovic D, Queiroz MJRP, Vasconcelos MH, Sokovic M. 2015. Chemical features of Ganoderma polysaccharides with antioxidant, antimutator and antimicrobial activities. Phytochem. 114:38–55.

Heleno SA, Ferreira IC, Esteves AP, Cirić A, Glamočlija J, Martins A, Soković M, Queiroz MJR. 2013. Antimicrobial and demelanizing activity of Ganoderma lucidum extract, p-hydroxybenzoic and cinnamic acids and their synthetic acetylated glucuronide methyl esters. Food Chemotoxicol. 58:95–100.

Hill RA, Connolly JD. 2013. Triterpenoids. Nat Prod Rep30:1028–1065. Available from: http://www.speciesfungorum.org/

Huie CW, Di X. 2004. Chromatographic and electrophoretic methods for Lingzhi pharmacologically active components. J Chromatogr B Analyt Technol Biomed Life Sci. 812:241–257.

Isaka M, Chinthanom P, Sappan M, Danwisetkajana K, Boonpratuang T, Choeyklin R. 2016. Antitubercular Lanostane Triterpenes from Cultures of the Basidiomycete Ganoderma sp. BCC 16642. J Nat Prod. 79:161–169.

Iwatsuki K, Akihisa T, Tokuda H, Ukiya M, Oshikubo M, Kimura Y, Asano T, Nomura A, Nishino H. 2003. Lucidinic Acids P and Q, Methyl Lucidenate P, and Other Triterpenoids from the Fungus Ganoderma lucidum and Their inhibitory effects on Epstein–Barr virus activation. J Nat Prod. 66:1582–1585.

Karwa A, Rai M. 2012. Naturally occurring medicinal mushroom-derived antimicrobials: A case-study using lingzhi or reishi Ganoderma lucidum (W. Curt.: fr.) P. Karst. (Higher Basidiomycetes). Int J Med Mushrooms.14:481.

Lakornwong W, Kanokmedhakul K, Kanokmedhakul S, Kongsaeere P, Prabpai S, Sibounnavong P, Soytong K. 2014. Triterpene Lactones from Cultures of Ganoderma sp. KM01. J Nat Prod. 77:1545–1553.

Li WJ, Nie SP, Liu XZ, Zhang H, Yang Y, Yu Q, Xie MY. 2012. Antimicrobial properties, antioxidant activity and cytotoxicity of ethanol-soluble acidic components from Ganoderma atrum. Food Chem Toxicol. 50:689–694.

Li Y, Yang Y, Fang L, Zhang Z, Jin J, Zhang K. 2006. Anti-hepatitis activities in the broth of Ganoderma lucidum supplemented with a Chinese herbal medicine. Am J Chin Med. 34:341–349.

Li YQ, Wang SF. 2006. Anti-hepatitis B activities of ganoderic acid from Ganoderma lucidum. Biotechnol Lett. 28:837–841.

Liu DZ, Zhu YQ, Li XF, Shan WG, Gao PF. 2014. New triterpenoids from the fruiting bodies of Ganoderma lucidum and their bioactivities. ChemBiodivers. 11:982–986.

Ma K, Ren JW, Han JJ, Bao L, Li L, Yao YJ, Sun C, Zhou B, Liu HW. 2014. Ganoboninketals A–C, antiplasmoidal 3,4-seco-27-norlanostane triterpenes from Ganoderma boninense Pat. J Nat Prod. 77:1847–1852.

Mikolasch A, Hildebrandt Q, Schlüter R, Hammer E, Witt S, Lindequist U. 2016. Targeted synthesis of novel β-lactam antibiotics by laccase-catalyzed reaction of aromatic substrates selected by pre-testing for their antimicrobial and cytotoxic activity. Appl Microbiol Biotechnol. 100:4885–4899.

Mothena RAA, Jansen R, Jülrich WD, Lindequist U. 2000. Ganomycins A and B, New antimicrobial famesyl hydroquinones from the basidiomycete Ganoderma pfeifferi. J Nat Prod. 63:416–418.

MothenaRa A, Awadh Ali NA, Jansen R, Wegner U, Mentel R, Lindequist U. 2003. Antiviral lanostanoid triterpenes from the fungus Ganoderma pfeifferi. Fitoterapia. 74:177–180.

Niedermeyer THJ, Lindequist U, Mentel R, Gördes D, Schmidt E, Thurow K, Lalk M. 2005. Antiviral terpenoid constituents of Ganoderma pfeifferi. J Nat Prod. 68:1728–1731.
Ofodile LN, Ogbe AO, Oladipupo O. 2011. Effect of the mycelial culture of *Ganoderma lucidum* on human pathogenic bacteria. Int J Biol. 3: 111-114.

Ofodile LN, Uma NU, Kokubun T, Grayer RJ, Ogundipe OT, Simmonds MSJ. 2005. Antimicrobial activity of some *Ganoderma* species from Nigeria. Phytother Res. 19:310–313.

Oluba OM, Olusola AO, Fagbohunka BSOnyeneke E. 2012. *Ganoderma lucidum* (higher basidiomycetes), in plasmodium berghei-infected mice. antimalarial And Hepatoprotective Effects Of Crude Ethanolic Extract Of lingzhi Or Reishi Medicinal mushroom, *Ganoderma Lucidum*. 14:459-466.

Paterson RRM. 2006. *Ganoderma* – A therapeutic fungal biofactory. In: Phytochem. 67: 1985–2001.

Rai MK, Gaikwad S, Nagaonkar D, Dos Santos CA. 2015. Current advances in the antimicrobial potential of species of genus *ganoderma* (Higher basidiomycetes) against human pathogenic microorganisms (Review). Int J Med Mushrooms. 17: 921-932.

Sa-Ard P, Sarnthima R, Khammuang S, Kanchanarach W. 2015. Antioxidant, antibacterial and DNA protective activities of protein extracts from *Ganoderma lucidum*. J Food Sci Technol. 52:2966–2973.

Sanodiya BS, Thakur GS, Baghel RK, Prasad G, Bison PS. 2009. *Ganoderma lucidum*: a potent pharmacological macrofungus. Curr Pharm Biotechnol. 10:717–742.

Sato N, Zhang Q, Ma C-M, Hattori M. 2009. Anti-human immunodeficiency virus-1 protease activity of new lanostane-type triterpenoids from *Ganoderma sinense*. Chem Pharm Bull. 57:1076–1080.

Shamaki BU, Sandabe UK, Ogbe AO, Abdulrahman FI, El-Yuguda A-D. 2014. Methanolic soluble fractions of lingzhi or reishi medicinal mushroom, *Ganoderma lucidum* (Higher basidiomycetes) Extract inhibit neuraminidase activity in newcastle disease virus (LaSota). Int J Med Mushrooms. 16: 579-583.

Shang X, Tan Q, Liu R, Yu K, Li P, Zhao G-P. 2013. In vitro anti-Helicobacter pylori effects of medicinal mushroom extracts, with special emphasis on the Lion’s Mane mushroom, *Hericium erinaceus* (higher Basidiomycetes). Int J Med Mushrooms. 15: 165-174.

Smania EFA, DelleMonache F, Smania A, Yunes RA, Cuneo RS. 2003. Antifungal activity of sterols and triterpenes isolated from *Ganoderma annulare*. Fitoterapia. 74:375–377.

Sun X, Jin X, Pan W, Wang J. 2014. Syntheses of new rare earth complexes with carboxymethylated polysaccharides and evaluation of their in vitro antifungal activities. Carbohydr Polym. 113:194–199.

Vazirian M, Faramarzi MA, Ebrahimi SES, Esfahani HRM, Samadi N, Hosseini SA, Asghari A, Manayi A, Mousazadeh SA, Asef MR, et al. 2014. Antimicrobial effect of the Lingzhi or Reishi medicinal mushroom, *Ganoderma lucidum* (higher Basidiomycetes) and its main compounds. Int J Med Mushrooms. 16: 77-84.

Wang H, Ng TB. 2006. Ganodermin, an antifungal protein from fruiting bodies of the medicinal mushroom *Ganoderma lucidum*. Peptides. 27:27–30.

Xia Q, Zhang H, Sun X, Zhao H, Wu L, Zhu D, Yang G, Shao Y, Zhang X, Mao X, et al. 2014. A comprehensive review of the structure elucidation and biological activity of triterpenoids from *Ganoderma* spp. Molecules. 19:17478–17535.

Yoon SY, Eo SK, Kim YS, Lee CK, Han SS. 1994. Antimicrobial activity of *Ganoderma lucidum* extract alone and in combination with some antibiotics. Arch Pharm Res. 17:438–442.

Zengin G, Sarikurkcu C, Gunes E, Uysal R, Ceylan Uysal S, Gungor H, Aktumsek A. 2015. Two *Ganoderma* species: profiling of phenolic compounds by HPLC–DAD, antioxidant, antimicrobial and inhibitory activities on key enzymes linked to diabetes mellitus, Alzheimer’s disease and skin disorders. Food Funct. 6:2794–2802.

Zhao S, Guo YX, Liu QH, Wang HX, Ng TB. 2009. Lectins but not antifungal proteins exhibit anti-nematode activity. Environ Toxicol Pharmacol. 28:265–268.