SPACETIME AS THE MANIFOLD OF
THE INTERNAL SYMMETRY ORBITS
IN THE EXTERNAL SYMMETRIES

Heinrich Saller
Max-Planck-Institut für Physik and Astrophysik
Werner-Heisenberg-Institut für Physik
München

Abstract

Interactions and particles in the standard model are characterized by the action of internal and external symmetry groups. The four symmetry regimes involved are related to each other in the context of induced group representations. In addition to Wigner’s induced representations of external Poincaré group operations, parametrized by energy-momenta, and the induced internal hyperisospin representations, parametrized by the standard model Higgs field, the external operations, including the Lorentz group, can be considered to be induced also by representations of the internal hypercharge-isospin group. In such an interpretation nonlinear spacetime is parametrized by the orbits of the internal action group in the external action group.

1hns@mppmu.mpg.de
Contents

1 Introduction .................................................. 2
2 External Transmutation from Particles to Interactions .... 3
3 Internal Transmutation from Particles to Interactions ...... 5
4 The Operational Triunit: Internal-Spacetime-External ... 6
5 Internal-External Actions on Standard Model Fields .... 8
6 Induced Representations ..................................... 9
7 Transmutators ................................................. 10
8 Fields as Internal-External Transmutators ................. 11
   8.1 The Fundamental Transmutator on Nonlinear Spacetime . . 12
   8.2 Standard Model Fields as Transmutators on Linear Spacetime . 12
1 Introduction

Particle physics as described in the standard model for electroweak and strong interactions is characterized by four symmetry regimes. First one has the external spacetime related transformation groups, the Lorentz group $SO_0(1,3)$ with its double cover $SL(\mathbb{C}^2)$, and the internal compact groups - $U(1)$ for hypercharge, $SU(2)$ for isospin and $SU(3)$ for color acting on the quantum fields which describe the interaction. From these symmetries for the interaction, one has to distinguish sharply the external and internal symmetries for the asymptotic particle states. A particle is characterized by one translation eigenvalue, its mass, and one space rotation number, its spin for nontrivial mass and its polarization for the massless case. The rotation invariants are related to external subgroups - spin $SU(2)$ and polarization $SO(2)$. With respect to the internal symmetry only an abelian electromagnetic $U(1)$ remains as symmetry for the particles. Color symmetry is confined and hypercharge-isospin is spontaneously broken. The groups involved

| internal | external |
|----------|----------|
| particles | $U(1)$ | $SU(2), SO(2)$ |
| interactions | $U(1) \circ [SU(2) \times SU(3)]$ | $SL(\mathbb{C}^2)$ |

The three arrows for inclusion relations will be related below to induced representations. They are labeled with manifold parameters, the Higgs parameters $\Phi \in \mathbb{C}^2$ with $\| \Phi \|^2 = M^2 > 0$ for the internal induction from particle symmetry (lower left) to interaction symmetry, the mass shell energy-momenta $q \in \mathbb{R}^4$ with $q^2 = m^2 \geq 0$ for the corresponding external induction, and strictly future spacetime parameters $x_\succ \in \mathbb{R}^4$ with $x_\succ^2 > 0$ and $x_\succ_0 > 0$ parametrizing the induction from internal to external interaction symmetries. To motivate and
to understand these transmutations from groups to subgroups is the aim of this paper.

2 External Transmutation from Particles to Interactions

According to Wigner particles are embedded into an irreducible definite unitary action of the Poincaré group $\mathbb{R}^4 \times SO_0(1, 3)$ as the semidirect product of the orthochronous Lorentz group $SO_0(1, 3)$ with the spacetime translations $\mathbb{R}^4$. The infinite dimensional Poincaré group representations are induced by finite dimensional irreducible representations of direct product subgroups where the homogeneous factor comes from energy-momentum fix groups ('little groups'): The rest system rotations $SO(3)$ for energy-momenta $q \in \mathbb{R}^4$ with $q^2 > 0$, the noncompact group $SO_0(1, 2)$ for energy-momenta with $q^2 < 0$ and the axial rotations $SO(2)$ around the momentum direction as 'fixgroup in the fixgroup' $\mathbb{R}^2 \times SO(2) \subset SO_0(1, 3)$ for nontrivial energy-momenta with $q^2 = 0$. Only particles with the representations for causal momenta $q^2 \geq 0$ and compact little groups $SO(3)$ and $SO(2)$ are found.

With respect to the halfinteger spin particles the twofold coverings simply connected groups $SL(\mathbb{C}^2) \supset SU(2)$ for $SO_0(1, 3) \supset SO(3)$ are used

\[ u \in SU(2) \Rightarrow O(u)_b^a = \frac{1}{2} \text{tr} \, u \sigma^au^* \sigma^b \in SO(3) \cong SU(2)/\mathbb{I}(2) \]

\[ s \in SL(\mathbb{C}^2) \Rightarrow \Lambda(s)_j^i = \frac{1}{2} \text{tr} \, s \sigma^i \sigma^j \in SO_0(1, 3) \cong SL(\mathbb{C}^2)/\mathbb{I}(2) \]

with $\text{centr} \, SL(\mathbb{C}^2) = \text{centr} \, SU(2) = \mathbb{I}(2) = \{ \pm 1_2 \}$

The traces involve the hermitian Pauli-Weyl matrices: $\sigma^i = (1_2, \sigma^a) = 1_s$, $\begin{cases} a = 1, 2, 3 \\ i = 0, 1, 2, 3 \end{cases}$

Therewith the twofold cover of the Poincaré group comes with the multiplicity law

\[ \mathbb{R}^4 \times SL(\mathbb{C}^2) \ni (x, s) \text{ with } \begin{cases} x = x_j \sigma^j = \left( \begin{array}{c} x_0 + x_3 \\ x_1 + ix_2 \\ x_0 - x_3 \end{array} \right) \in \mathbb{R}^4 \\ (x, s) \circ (x', s') = (x + s \circ x' \circ s^*, s \circ s') \end{cases} \]

The induction procedure used for massive and massless particles is symbolized with the representation equivalence classes $\text{rep}$ as follows

\[ \text{rep} \left[ \mathbb{R} \times SU(2) \right] \not\equiv \text{rep} \left[ \mathbb{R} \times SO(2) \right] \not\equiv \text{rep} \left[ \mathbb{R}^4 \times SL(\mathbb{C}^2) \right] \]

The discrete invariants $2J \in \mathbb{N}$ for $SU(2)$ and $\pm z \in \mathbb{Z}$ for $SO(2)$ give spin and polarization resp., the continuous invariant $q^2 = m^2 \geq 0$ for the translations gives the corresponding mass. According to Wigner’s particle definition, confined quarks are no particles.

In the case of spin $SU(2)$, the transition from a massive particle rest system, defining a time direction, to the Lorentz group action compatible framework
is performed with the boost representations, parametrized by the three real numbers in the energy-momenta $\frac{\vec{q}}{m}$:

$$s \left( \frac{\vec{q}}{m} \right) = e^{\frac{q_\perp^2}{2m}} \sqrt{m + m_0} \left[ I_2 + \frac{\vec{q} \cdot \vec{p}}{m + m_0} \right] \in SL(\mathfrak{g}^2)$$

with

\[
\begin{align*}
  \bar{\beta} &= \frac{q_\perp}{|q|} \arctanh \frac{|q_\perp|}{q_0} \\
  q_0 &= \sqrt{m^2 + q_\perp^2} \\
  s \left( \frac{\vec{q}}{m} \right) m \bar{1}_2 s^* \left( \frac{\vec{q}}{m} \right) &= q_j \sigma^j
\end{align*}
\]

In the case of polarization $SO(2)$, the transition from a space system with the distinguished polarization axis as 3rd direction to a rotation group action compatible framework is performed with the 2-sphere representations, parametrized by the two real numbers in the momenta $\frac{\vec{q}}{|q|}$:

$$u \left( \frac{\vec{q}}{|q|} \right) = e^{i \frac{\vec{q} \cdot \vec{p}}{|q|}} \sqrt{\frac{|q| + q_\perp^2}{2 |q|}} \left[ I_2 + i \frac{\vec{q} \cdot \vec{p}}{|q| + q_\perp^2} \right] \in SU(2)$$

with

\[
\begin{align*}
  \bar{\alpha} &= \frac{q_\perp}{|q|} \arctan \frac{|q_\perp|}{q_0} \\
  q_0 &= (q_2, -q_1, 0) \\
  u \left( \frac{\vec{q}}{|q|} \right) |q| \sigma^j u^* \left( \frac{\vec{q}}{|q|} \right) &= \bar{q} \sigma^j
\end{align*}
\]

Such linear representations of coset representatives, here $s \left( \frac{\vec{q}}{m} \right)$ and $\bar{s} \left( \frac{\vec{q}}{m} \right) = s^{-1} \left( \frac{\vec{q}}{m} \right)$ for the boosts $SL(\mathfrak{g}^2)/SU(2) \cong SO_0(1, 3)/SO(3)$ in the two fundamental Weyl representations (often introduced as solutions of the Dirac equation) and $u \left( \frac{\vec{q}}{|q|} \right)$ for the 2-sphere $SU(2)/SO(2) \cong SO(3)/SO(2)$ in the fundamental Pauli representation, will be called transmutators. They have a characteristic hybrid transformation property: The left action with the subgroup gives the transmutator for the transformed momenta up to a right action with the subgroup:

\[
\lambda \in SL(\mathfrak{g}^2) \quad \Rightarrow \quad \lambda \circ s \left( \frac{\vec{q}}{m} \right) = s \left( \Lambda \left( \lambda \right) \frac{\vec{q}}{m} \right) \circ u \quad \text{with} \quad u = u \left( \frac{\vec{q}}{m}, \lambda \right) \in SU(2)
\]

\[
v \in SU(2) \quad \Rightarrow \quad v \circ u \left( \frac{\vec{q}}{|q|} \right) = u \left( O \left( v \right) \frac{\vec{q}}{|q|} \right) \circ a \quad \text{with} \quad a = a \left( \frac{\vec{q}}{|q|}, v \right) \in SO(2)
\]

External transmutators show up in the harmonic (Fourier) analysis of quantum fields with respect to the particle-antiparticle ($u, a$) creation and annihilation operators involved, e.g. for the left and right handed Weyl component of a Dirac electron field

$$\Psi(x) = \left( \frac{r^L}{1^L} \right)(x) = \int \frac{d^4q}{(2\pi)^4} \frac{s \left( \frac{\vec{q}}{m} \right) A}{\bar{s} \left( \frac{\vec{q}}{m} \right) C} e^{i \frac{q_\perp^2}{2m}} \frac{e^{i q_\perp \cdot \vec{r}_A C (\vec{q}) + e^{-i q_\perp \cdot \vec{r}^* A C (\vec{q})}}}{\sqrt{2}}$$

The infinite dimensionality ($\mathbb{R}^2$-cardinality) of the definite unitary representations of the noncompact Poincaré group is seen in the momentum integral $\int \frac{d^4q}{(2\pi)^4} \cong \bigoplus_{\vec{q} \in \mathbb{R}^3}$ over all transmutators.

Higher spin and polarization fields, e.g. the massive weak vector bosons or the massless electromagnetic vector potential, need transmutators which are products of the two fundamental Weyl transmutators and the fundamental Pauli transmutator resp., e.g.

\[
\begin{align*}
  \Lambda \left( \frac{\vec{q}}{m} \right)^b_a &= \frac{1}{2} \text{tr} s \left( \frac{\vec{q}}{m} \right) \sigma^b s^* \left( \frac{\vec{q}}{m} \right) \sigma^a \in SO_0(1, 3) \\
  O \left( \frac{\vec{q}}{|q|} \right)^a_b &= \frac{1}{2} \text{tr} u \left( \frac{\vec{q}}{|q|} \right) \sigma^a u^* \left( \frac{\vec{q}}{|q|} \right) \sigma^b \in SO(3)
\end{align*}
\]
3 Internal Transmutation from Particles to Interactions

In addition to the external rotation and translation properties particles are characterized also by particle-antiparticle $U(1)$-symmetries, e.g. the electromagnetic charge number or a fermion-antifermion number, e.g. for the neutrinos or the neutron. In the standard model of electroweak interactions the electromagnetic real 1-dimensional abelian internal $U(1)$-symmetry is the only remaining symmetry from the real 12-dimensional rank 4 hyperisospin-color group. Particles have no isospin or color symmetry. E.g. the proton-neutron doublet displays the isospin multiplicity two, but with the different masses - no isospin $SU(2)$-symmetry.

In the standard model, the electromagnetic group $U(1)$ is the only proper fixgroup (‘little group’) for the hyperisospin group $U(2)$ acting on the complex 2-dimensional Hilbert space with the Higgs field $\Phi \in \mathbb{C}^2$ with nontrivial scalar product $\|\Phi\|^2 = M^2 > 0$. The internal induction from electromagnetic $U(1)$ to hyperisospin $U(2)$

$$\text{rep } U(1) \xrightarrow{\text{ind}} \text{rep } U(2)$$

is in analogy to the external inductions. The analogy to the rest systems, defined by $q_3 \sigma^j = m_1 \mathbf{1}_2$ up to rotations $SO(3)$, and the polarization systems, defined by $\vec{q} \vec{\sigma} = |\vec{q}| \sigma^3$ up to axial rotations $SO(2)$, is the electromagnetic system which is defined by $(\Phi_1, \Phi_2)$ up to electromagnetic transformations $e^{i(\mathbf{1}_2 + \tau^3) \gamma_0} \in U(1)$. The internal induction employs the Higgs field defined transformation

$$v(\frac{\Phi}{M}) = \frac{1}{M} \begin{pmatrix} \Phi^*_2 & \Phi_1 \\ -\Phi^*_1 & \Phi_2 \end{pmatrix} \in U(2) \text{ with } \begin{cases} \|\Phi\|^2 = M^2 > 0 \\ v(\frac{\Phi}{M}) \left( \begin{array}{c} 0 \\ M \end{array} \right) = (\frac{\Phi_1}{\Phi_2}) \end{cases}$$

from the electromagnetic system to the hyperisospin $U(2)$ compatible framework. The Goldstone manifold $U(2)/U(1)_+$ involved is parametrized with the three real parameters in $\frac{\Phi}{M}$. The hybrid transformation looks like

$$u \in U(2) \Rightarrow u \circ v(\frac{\Phi}{M}) = v(u, \frac{\Phi}{M}) \circ t \text{ with } t = t(u) \in U(1)_+$$

The transition from the interaction parametrizing fields with hyperisospin symmetry to the particle electromagnetic symmetry is performed with the Higgs transmutator $v(\frac{\Phi}{M})$ (in analogy to the Weyl and Pauli transmutators), e.g. from the left-handed lepton isodoublet $(L_\alpha)_{\alpha=1,2}$ to the left-handed components for the charged massive lepton field and its neutrino which, in turn, are transmuted to their particle systems as described in the last section

$$L_\alpha^A = v(\frac{\Phi}{M})_{\alpha} \left( ^A \nu^1 \right), \quad \begin{cases} ^A \nu^A(x) = \cdots \\ ^A l^A(x) = \cdots \end{cases}$$

In contrast to the external case only compact groups are involved. Their irreducible representations are finite dimensional. Therefore there is no analogue
to the momentum integral, necessary for the infinite dimensional representation of the external noncompact groups.

Higher isospin fields, e.g. the isotriplet gauge field, need transmutators which are products of the fundamental Higgs transmutator, e.g.

\[ O(\frac{\Phi}{M})^a_b = \frac{1}{2} \text{tr} v(\frac{\Phi}{M})^a \tau^a v^*(\frac{\Phi}{M})^b \in SO(3) \]

4 The Operational Triunit: Internal-Spacetime-External

The transition from the large operational symmetry group of the standard model interactions to the small symmetry groups of the related particles involves the external Weyl-Pauli transmutations and the internal Higgs transmutation

\[
\text{rep}[U(1) \times \mathbb{R} \times SU(2)] \uplus \text{rep}[U(1) \times \mathbb{R} \times SO(2)] \\
\text{ind} \quad \text{rep}[U(2)] \times \mathbb{R}^4 \times SL(\mathbb{C}^2)]
\]

If SU(3) color fields are included the right hand side has to be written with the hyperisospin-color group \([I \uplus I] \) whose three factors are correlated via the centrum \(I(2) \times I(3) = I(6) = \{z \in \mathbb{Z} | z^6 = 1\}\) of the nonabelian factor

\[
\text{rep } U(1) \quad \text{ind} \quad \text{rep } U(2 \times 3) \text{ with } U(2 \times 3) = \frac{U(1) \times SU(2) \times SU(3)}{I(2) \times I(3)}
\]

For the following considerations the color group is excluded. It cannot be described in the structures below, its occurrence has to be explained differently, e.g. as proposed in \([I \uplus I]\).

The three factors in the standard model interaction symmetry \(U(2) \times [\mathbb{R}^4 \times SL(\mathbb{C}^2)]\) describe the internal operations, the spacetime translations and the homogeneous external operations resp. Such a product constitutes a characteristic structure \([I \uplus I \uplus I]\) occurring for representations of a group \(G\) induced by representations of a subgroup \(U \subseteq G\). In the representation induction, which will be described in more detail below, the group \(G\) is decomposed into disjoint subgroup \(U\)-orbits and representatives \((U \setminus G)\text{repr}\) for the cosets \(U \setminus G\)

\[
G = U \times (U \setminus G)\text{repr} = \bigsqcup_{\text{repr } k_r \in G} U k_r
\]

For notational convenience the left classes \(Uk\), i.e. the \(U\)-orbits under left multiplication are taken

\[
u \in U : \quad L_u : G \longrightarrow G, \quad L_u(k) = uk
\]

To establish the standard model operations as an example for the abstract structure

\[
U(2) \times [\mathbb{R}^4 \times SL(\mathbb{C}^2)] \isor \ U \times [(U \setminus G)\text{repr} \times G]
\]
the Lorentz group cover $\text{SL}(\mathbb{C}^2)$ is filled up by a phase $U(1)$-group (fermion number) and a dilatation group $D(1)$ (causal group) to the full linear group $\text{GL}(\mathbb{C}^2)$, a real 8-dimensional Lie group

$$
\text{GL}(\mathbb{C}^2) = D(1_2) \times \text{UL}(2)
$$

The direct unimodular factor involved is the centrally correlated product of two normal subgroups, the fermion number and the Lorentz covering group

$$
\text{UL}(2) = U(1_2) \circ \text{SL}(\mathbb{C}^2) = \{ g \in \text{GL}(\mathbb{C}^2) \mid |\det g| = 1 \} \\
U(1_2) \cap \text{SL}(\mathbb{C}^2) = I(2) = \{ \pm 1_2 \}, \quad \begin{cases} 
\text{UL}(2)/\text{SL}(\mathbb{C}^2) \cong U(1) \\
\text{UL}(2)/U(1_2) \cong \text{SL}(\mathbb{C}^2)/I(2) \\
\cong \text{SO}_0(1,3)
\end{cases}
$$

Therewith the triad $U \times [(U \setminus G)_{\text{repr}} \times G]$ of the internal-spacetime-external transformations will be defined with a maximal compact subgroup $U(2)$, defining the internal operations, in the full group $\text{GL}(\mathbb{C}^2)$, defining the external operations

**operational triunit:** $U(2) \times [D(2) \times \text{GL}(\mathbb{C}^2)]$

The manifold of hyperisospin $U(2)$ orbits in the full external group $\text{GL}(\mathbb{C}^2)$ is a real 4-dimensional rank 2 symmetric space $D(2)$ which will be used as model for nonlinear spacetime [8, 10]. It has as representatives the hermitian invertible $2 \times 2$-matrices which can also be parametrized by the translations of the strictly future lightcone

$$
(U(2) \setminus \text{GL}(\mathbb{C}^2))_{\text{repr}} = D(2) = \{ k \in \text{GL}(\mathbb{C}^2) \mid k = k^* = \left( \begin{array}{cc} k_0 + k_3 & k_1 - ik_2 \\
 k_1 + ik_2 & k_0 - k_3 \end{array} \right) \\
\text{and spec } k > 0 \} 
$$

All $2 \times 2$-matrices with $U(2)$-conjugation constitute a $C^*$-algebra with the natural spectral order and the polar decomposition of the full group into internal compact operations and noncompact spacetime

$$
\text{GL}(\mathbb{C}^2) = U(2) \times D(2), \quad k = u \circ |k|, \quad |k| = \sqrt{k^* \circ k}
$$

In the general structure, the group $G$ acts on the left orbits $Uk$ of a subgroup $U$ by right inverse multiplication which may look quite complicated for the chosen orbit representatives

\[
g \in G : \quad R_g : \quad (U \setminus G)_{\text{repr}} \longrightarrow (U \setminus G)_{\text{repr}}, \quad (U \setminus G)_{\text{repr}} \longrightarrow (U \setminus G)_{\text{repr}}, \quad R_g(Uk) = Ukg^{-1} \\
R_g(Uk) = Ukg^{-1}, \quad k_r \mapsto k_r, \quad \text{for } k_r, g^{-1} = uk_r, \quad \text{with } u = u(k_r, g^{-1}) \in U
\]

In the physical structure proposed one obtains the action of the full external group $\text{GL}(\mathbb{C}^2)$ on the nonlinear spacetime $D(2)$

\[
g \in \text{GL}(\mathbb{C}^2) : \quad D(2) \longrightarrow D(2), \quad |k| \mapsto |k'| \text{ for } |k| \circ g^{-1} = u \circ |k'| \\
\text{with } u = u(|k|, g^{-1}) \in U(2) \\
\Rightarrow \quad |k'| = \sqrt{g^{-1} \circ |k|^2 \circ g^{-1}} = |k \circ g^{-1}|
\]
The tangent space of the symmetric space $D(2)$ constitutes the spacetime translations with the faithful action of the causal Lorentz group

$$\log D(2) = \{ x = x_j\sigma^j \mid e^x = |k| \in D(2) \} \cong \mathbb{R}^4$$

$$g = e^{\frac{i\theta + i\phi}{2}}s \in GL(\mathbb{C}^2) : \ x \mapsto g \circ x \circ g^*$$

$$\Rightarrow \frac{1}{2} \text{tr} g\sigma^i g^*\sigma_j = e^{i\theta}A(s) \in D(1) \times SO_0(1,3) \cong GL(\mathbb{C}^2)/U(1)$$

5 Internal-External Actions on Standard Model Fields

The transformation behavior of fields with respect to external Lorentz and internal hyperisospin operations is quite different: The fields used in the standard model with the operations $U(2) \times [\mathbb{R}^4 \times SL(\mathbb{C}^2)]$, e.g. the left-handed lepton isodoublet $\{L^A_{\alpha}\}_{A=1,2}$, map the spacetime translations $\mathbb{R}^4$ into a complex vector space

$$L^A_{\alpha} : \mathbb{R}^4 \rightarrow W \otimes V^T, \ x \mapsto L^A_{\alpha}(x)$$

The value space is the tensor product of a finite dimensional space $W$ with the representation of hyperisospin $U(2)$, in the example the defining representation on $W \cong \mathbb{C}^2$ with $U(1)$-hypercharge number $y = -\frac{1}{2}$

$$D : U(2) \rightarrow GL(W), \ D(u) = u = e^{-i\theta_1 + i\phi_2^u}$$

$$U(2) \times W \rightarrow W, \ uL^A_{\alpha} = u^B_{\beta}L^A_{\alpha}$$

and another finite dimensional vector space $V$ with a Lorentz group representation, in the example the defining left handed Weyl representation on $V \cong \mathbb{C}^2$

$$T : SL(\mathbb{C}^2) \rightarrow GL(V), \ T(s) = s = e^{(i\alpha + \beta)^2}$$

Since also the spacetime translations $\mathbb{R}^4$ are acted upon with the Lorentz group, the field as a mapping between two vector spaces with Lorentz group action transforms $L \mapsto L_s$ as given by the commutative diagram [1]

$$\begin{array}{ccc}
\mathbb{R}^4 & \xrightarrow{\Lambda(s)} & \mathbb{R}^4 \\
\downarrow & & \downarrow \\
V^T & \xrightarrow{L_s} & V^T \\
\Lambda = \Lambda(s) \in SO_0(1,3) & & \Rightarrow \text{L}_s(\Lambda.x) = s.\text{L}(x) \\
\text{SL}(\mathbb{C}^2) \times V^T \rightarrow V^T, \ (L_s^A_{\alpha}(x) = L^B_{\alpha}(\Lambda^{-1}.x)s^A_B$$

For notational convenience the dual space $V^T$ (linear $V$-forms) is used.
Both internal and external transformation behavior can be collected into one diagram, e.g. for the lepton isodoublet left-handed Weyl field above

\[
\begin{array}{ccc}
L & \mathbb{R}^4 & \Lambda(s) \\
\downarrow & \downarrow & \downarrow \\
W \otimes V^T & \mathbb{R}^4 & L_s, \quad (L_s)_\alpha^A(x) = u^A_\beta L_B^\beta (\Lambda^{-1} x) s_B^A \\
\end{array}
\]

or for the isotriplet gauge vector field \( \{ A_j^a \}_{j=0,1,2,3} \) valued in the vector space \( W' \otimes V'^T \cong \mathbb{C}^3 \otimes \mathbb{C}^4 \)

\[
\begin{array}{ccc}
A & \mathbb{R}^4 & \Lambda(s) \\
\downarrow & \downarrow & \downarrow \\
W' \otimes V'^T & \mathbb{R}^4 & A_s, \quad (A_s)_j^a(x) = O^b_b A_k^k (\Lambda^{-1} x) A_j^i_s \\
\end{array}
\]

These transformation properties are compared in the next sections with the transformation properties occurring for induced representations.

### 6 Induced Representations

The structure of induced representations as used e.g. for Wigner’s particles classification can be sketched for our purposes - without discussion of topological structures - as follows:

A group \( G \)-representation induced by the representation of a subgroup \( D : U \rightarrow \text{GL}(W) \) on a complex vector space acts on the subgroup intertwiners, i.e. on the mappings from the group \( G \) into the vector space \( W \), compatible with the action of \( U \) on \( G \) by left multiplication and on \( V \) by the representation \( D \)

\[
\begin{array}{ccc}
& L_u & \\
& G & \downarrow \quad G \\
\downarrow w & \quad \downarrow w & \quad \downarrow w \\
W & \rightarrow & W \\
D(u) & \\
\end{array}
\]

The intertwiner space dimensionality is the product of the \( W \)-dimensionality with the cardinality of the \( U \)-orbits, i.e. in general infinite for Lie groups

\[
\dim W_U^{U}(G) = \dim W \cdot \text{card } U \setminus G
\]
The group $G$ action on the vector space with the intertwiners $w \in W_U(G)$ is defined by the following commutative diagram which involves the right inverse multiplication $k \mapsto k^{-1}g$ on the group $G$, not used in the definition of the intertwiners

\[
\begin{array}{ccc}
G & \xrightarrow{R_g} & G \\
\downarrow{w} & & \downarrow{w_g} \\
W & \xrightarrow{id_W} & W
\end{array}
\]

for all $k \in G, g \in G$

\[
G \times W_U(G) \rightarrow W_U(G), \quad w \mapsto w_g
\]

Again, both diagrams can be taken together. With a decomposition into $U$-orbits and representatives $G = U \times (U \setminus G)_{\text{repr}} = \bigoplus_r U k_r$ the induced $G$-representation reads

\[
\begin{array}{ccc}
G & \xrightarrow{L_u \circ R_g} & G \\
\downarrow{w} & & \downarrow{w_g} \\
W & \xrightarrow{D(u) \circ id_W} & W
\end{array}
\]

for all $u \in U, k \in G, g \in G$

\[
w_g(uk) = D(u).w(kg)
\]

for $k_r g = uk_r'$ with $u = u(k_r,g) \in U$

7 Transmutators

In general, an induced $G$-representation is infinite dimensional and - in many cases, e.g. for compact groups - highly reducible, e.g. the right regular representation on the algebra $\mathbb{C}(G) = \{ G \rightarrow \mathbb{C} \}$ with the group functions, which is induced by the trivial representation of the trivial subgroup $U = \{ e \}$ on the numbers $\mathbb{C}$, or the $G$-representation on an intertwiner space $W_U(G)$.

The group functions $\mathbb{C}(G)$ contain - up to isomorphy - the representation space of each finite dimensional $G$-representation

\[T : G \rightarrow \text{GL}(V)\]

via the representation matrix elements, isomorphic to $V \otimes V^T$

\[T(g) : V \rightarrow V\]

\[V \otimes V^T \cong \{ T^v_\omega \mid v \in V, \omega \in V^T \} \subset \mathbb{C}(G) \text{ with }\]

\[
\begin{cases}
T^v_\omega : G \rightarrow \mathbb{C} \\
T^v_\omega(k) = \langle \omega, T(k).v \rangle \\
T^v_\omega(kg) = T^v_\omega(g).T(k)
\end{cases}
\]

A decomposition of a $G$-representation into $U$-representations with projectors $\{ P_i \}_i$

\[V = \bigoplus W_i, \quad T[U].W_i \subseteq W_i, \quad T|_U = D = \bigoplus D_i\]

\[P_i : V \rightarrow W_i, \quad D_i : U \rightarrow \text{GL}(W_i), \quad D_i(u) : W_i \rightarrow W_i\]
and an orbit decomposition of the full group $G = U \times (U \setminus G)_{\text{repr}} = \biguplus \cap U k_r$ give rise to transmutators which are valued in the tensors $W_i \otimes V^T$ as products of the $G$-space $V$ and a $U$-subspace $W_i$

$$T_i : G \rightarrow W_i \otimes V^T, \quad T_i(uk_r) = D_i(u) \circ P_j \circ T(k_r) : V \rightarrow W_i$$

If $V \cong \mathbb{C}^n$, then $T(k)$ has an $n \times n$-matrix form. If $W_i \cong \mathbb{C}^m$ with $m \leq n$, then $D_i(u)$ has an $m \times m$-matrix form and $T_i(k_r)$ an $m \times n$-matrix form.

All 'right-sided' matrix elements of a transmutator constitute a $G$-stable subspace of the $U$-intertwiners

$$W_i \otimes V^T \cong \{ T^v_i | v \in V \} \subset W_i U(G) \text{ with }$$

$$\begin{cases} T^v_i : G \rightarrow W_i \\ T^v_i(uk_r) = D_i(u) \circ P_j \circ T(k_r) \circ v \\ T^v_i(kg) = T^v_i(g) \circ v(k) \end{cases}$$

Therewith the intertwiner space $W_U(G)$ contains - up to isomorphy - all tensor products $W \otimes V^T$ where $V$ is acted on with a finite dimensional supresentation of the full group $G$

$$D[U].W \subseteq T[G].V \Rightarrow W \otimes V^T \hookrightarrow W_U(G)$$

$U \setminus G$-transmutators for irreducible $G$-representations are building blocks of induced representations. They transform from a vector space $V$ with the action of a group $G$ to a vector subspace $W$ with the action of a subgroup $U$. Transmutators with $W = V$ are called complete, i.e. all $U$-representations contained in the $G$-representation are included. Complete transmutators are bijections.

### 8 Fields as Internal-External Transmutators

Spacetime fields $\Psi$ for the operational trunit $U \times [(U \setminus G)_{\text{repr}} \times G]$ will be defined to be transmutators from external group $G$-representations on a vector space $V$ to internal subgroup $U$-representations on a vector subspace $W$. They are parametrized with the orbit manifold $U \setminus G$ of the possible $U$’s in $G$

$$\Psi : (U \setminus G)_{\text{repr}} \rightarrow W \otimes V^T, \begin{cases} U \times W \rightarrow W, & \text{(internal)} \\ G \times V \rightarrow V, & \text{(external)} \\ U \subseteq G, \ W \subseteq V \end{cases}$$

The geometrical structure can be formulated also in a bundle language.

The internal hyperisospin group $U(2)$ is a maximal compact subgroup of the external group $\text{GL}(\mathbb{C}^2) = D(1_2) \times U(1) \otimes \mathbb{C}^2$ with the causal group and the unimodular fermion number-Lorentz group cover $\text{UL}(2) = U(1) \circ \text{SL}(\mathbb{C}^2)$ as direct factors. Nonlinear spacetime $\text{D}(2)$ parametrizes the noncompact manifold $U(2) \setminus \text{GL}(\mathbb{C}^2)$. 
8.1 The Fundamental Transmutator on Nonlinear Spacetime

The fundamental spacetime field for the operational triunit

\[ U(2) \times [D(2) \times \text{GL}(\mathbb{C}^2)] \]

transmutes from the defining internal \( U(2) \)-isodoublet space \( W \cong \mathbb{C}^2 \) to the defining external \( \text{SL}(\mathbb{C}^2) \)-Weyl spinor space \( V \cong \mathbb{C}^2 \)

\[ \Psi^A: D(2) \rightarrow W \otimes V^T, \quad |k| \mapsto \Psi^A_\alpha(|k|) \]

It has the internal \( U(2) \) and the external \( \text{GL}(\mathbb{C}^2) \) transformation behavior

\[ U(2) \times W \rightarrow W, \quad \Psi^A_\alpha \mapsto u^\alpha_\beta \Psi^A_\beta \]
\[ \text{GL}(\mathbb{C}^2) \times V \rightarrow V, \quad \Psi^A_\alpha(|k|g) = \Psi^B_\beta(|k|)g^A_\alpha = u(|k|, g) \Psi^A_\alpha(|k \circ g|) \]

Since the nonlinear spacetime manifold can be parametrized as the strictly future lightcone \( D(2) \cong \mathbb{R}^4 \subset \mathbb{R}^4 \), of its tangent space, the spacetime translations \( \log D(2) \cong \mathbb{R}^4 \), the fundamental isospinor Weyl spinor field has causal support without spacelike particle interpretable contributions. Its spectrum with respect to the action of the causal group \( D(1) \) has to be investigated to find its particle interpretable content which can be defined for all spacetime translations \( \mathbb{R}^4 \). First steps on this way have been tried in [11].

The fundamental isospinor-spinor dyad \( \{\Psi^A_\alpha\}_{A=1,2} \) for the hyperisospin \( U(2) \) orbits in the extended Lorentz group \( \text{GL}(\mathbb{C}^2) \) can be seen in some analogy [10] to the tetrad \( \{h^\mu_{\alpha j}\}_{\mu=0,1,2,3} \) in general relativity for the orbits of the Lorentz group \( \text{SO}_0(1,3) \) in the general linear group \( \text{GL}(\mathbb{R}^4) \).

8.2 Standard Model Fields as Transmutators on Linear Spacetime

Without being able so far to determine the spectrum of the causal group action on the fundamental transmutator for a particle interpretation one may start less ambitiously and try to interpret the standard model fields as a linear approximation, i.e. as internal-external transmutators parametrized with spacetime translations \( \log D(2) \cong \mathbb{R}^4 \)

\[ U(2) \times [\mathbb{R}^4 \times \text{GL}(\mathbb{C}^2)] \]

Any representation of a group \( D : G \rightarrow \text{GL}(V) \) is faithful up to its kernel, a normal \( G \)-subgroup, i.e. \( D[G] \cong G/\ker D \). Therefore the representations of the internal hyperisospin group \( U(2) = U(1_2) \circ SU(2) \) with \( U(1_2) \cap SU(2) = \mathbb{I}(2) \) have as nontrivial images three groups - the full hyperisospin, the hypercharge and the iso-rotation group

\[ \text{U}(2)\text{-representation images: } U(2), \ U(1) \cong U(2)/SU(2) \]
\[ \text{SO}(3) \cong U(2)/U(1_2) \]
to be compared with the three nontrivial representation images of the external unimodular group, given by the full group, the fermion number and the Lorentz group

\[ \text{UL}(2) \text{-representation images: } \text{UL}(2), \ U(1) \cong \text{UL}(2)/\text{SL}(C^2) \]
\[ \text{SO}_0(1, 3) \cong \text{UL}(2)/U(1_2) \]

There are three nontrivial internal-external embeddings - hyperisospin \( U(2) \) and hypercharge \( U(1) \) into the fermion number-Lorentz group \( \text{UL}(2) \) and isorotations \( \text{SO}(3) \) into the Lorentz group \( \text{SO}_0(1, 3) \)

\[ U(2) \leftrightarrow \text{UL}(2), \ U(1) \leftrightarrow \text{UL}(2), \ \text{SO}(3) \leftrightarrow \text{SO}_0(1, 3) \]

In the standard model the left-handed Weyl isodoublet field \( L \), the right-handed 2-component Weyl field \( R \) and the Lorentz vector isosinglet-isotriplet gauge fields \( \mathbf{A} \) are the corresponding transmutators as mappings from the coset tangent space \( \log(U \backslash G)_{\text{rep}} \rightarrow W \otimes V^T \) into an internal-external vector space tensor product with the faithful action of the represented images \( D[U] \otimes T[G] \)

\[ \begin{align*}
L : \mathbb{R}^4 & \rightarrow \mathfrak{C}^2 \otimes \mathfrak{C}^2 \quad \text{with } U(2) \otimes \text{UL}(\mathfrak{C}^2) \\
x & \mapsto L_A^\alpha(x), \quad \alpha = 1, 2; \quad A = 1, 2 \\
R : \mathbb{R}^4 & \rightarrow \mathfrak{C}^2 \otimes \mathfrak{C}^2 \quad \text{with } U(1) \otimes \text{UL}(\mathfrak{C}^2) \\
x & \mapsto R_A^{1,2}(x), \quad \hat{A} = 1, 2 \\
\mathbf{A} : \mathbb{R}^4 & \rightarrow \mathfrak{C}^4 \otimes \mathfrak{C}^4 \quad \text{with } \text{SO}(3) \times \text{SO}_0(1, 3) \\
x & \mapsto \mathbf{A}_{j,a}^\alpha(x), \quad a = 1, 2, 3; \quad j = 0, 1, 2, 3
\end{align*} \]

There are two fermionic and one bosonic transmutator. With coinciding internal and external representation space all three transmutators are complete. The right-handed 2-component Weyl field \( R \) comprises two isosinglets \( \{ \mathbf{R}_1, \mathbf{R}_2 \} \), and the 4-component Lorentz vector field \( \mathbf{A} \) four internal degrees of freedom, an isosinglet and an isotriplet \( \{ \mathbf{A}_0, \hat{A} \} \).

The transition from those standard fields for the interactions to particles for the state space requires internal transmutators, parametrized with the Higgs degrees of freedom (Goldstone manifold), as discussed above

\[ v : (U(2)/U(1)_+)_{\text{repr}} \rightarrow \mathfrak{C}^2 \otimes \mathfrak{C}^2 \quad \text{with } U(1) \otimes U(2) \]
\[ \frac{\mathbf{v}}{\mathfrak{M}} \mapsto v(\frac{\mathbf{v}}{\mathfrak{M}})^{1,2}_{\alpha}, \quad \alpha = 1, 2 \]

and external Weyl and Pauli transmutators, parametrized with the momenta as coset representatives (boost manifold, 2-sphere)

\[ \begin{align*}
s, \hat{s} : (\text{SL}(\mathfrak{C}^2)/\text{SU}(2))_{\text{repr}} & \rightarrow \mathfrak{C}^2 \otimes \mathfrak{C}^2 \quad \text{with } \text{SU}(2) \otimes \text{SL}(\mathfrak{C}^2) \\
\frac{\mathbf{s}}{\mathfrak{M}} & \mapsto s(\frac{\mathbf{s}}{\mathfrak{M}})_C^A, \quad \hat{s}(\frac{\mathbf{s}}{\mathfrak{M}})^A_C, \quad C = 1, 2; \quad \hat{A}, A = 1, 2 \\
u : (\text{SU}(2)/\text{SO}(2))_{\text{repr}} & \rightarrow \mathfrak{C}^2 \otimes \mathfrak{C}^2 \quad \text{with } \text{SO}(2) \otimes \text{SU}(2) \\
\frac{\mathbf{u}}{\mathfrak{I}_I} & \mapsto u(\frac{\mathbf{u}}{\mathfrak{I}_I})^{1,2}_{\alpha}, \quad \alpha = 1, 2
\end{align*} \]

The operational triunits for the internal and external interaction-particle transmutations are

\[ \begin{align*}
\text{Higgs} & : \ U(1) \times [(U(2)/U(1)_+)_{\text{repr}} \times U(2)] \\
\text{Weyl} & : \ \text{SU}(2) \times [(\text{SL}(\mathfrak{C}^2)/\text{SU}(2))_{\text{repr}} \times \text{SL}(\mathfrak{C}^2)] \\
\text{Pauli} & : \ \text{SO}(2) \times [(\text{SU}(2)/\text{SO}(2))_{\text{repr}} \times \text{SU}(2)]
\end{align*} \]
References

[1] N. Bourbaki, *Lie Groups and Lie Algebras, Chapters 1-3* (1989), Springer, Berlin, Heidelberg, New York, London, Paris, Tokyo

[2] G.B. Folland, *A Course in Abstract Harmonic Analysis* (1995), CRC Press, Boca Raton, Ann Arbor, London, Tokyo

[3] W. Fulton, J. Harris, *Representation Theory* (1991), Springer

[4] J. Hucks, Phys. Rev. D 43 (1991), 2709

[5] G.W. Mackey, *Induced Representations of Group and Quantum Mechanics* (1968), W.A. Benjamin, New York, Amsterdam

[6] E. P. Wigner, *Annals of Mathematics* 40 (1939), 149

[7] H. Saller, *Nuovo Cimento* 105A (1992), 1745; 106A (1993), 1189; 107A (1994), 1679; 111A (1998), 1375

[8] H. Saller, *International Journal of Theoretical Physics* 36 (1997), 2783

[9] H. Saller, *International Journal of Theoretical Physics* 38 (1999), 1697

[10] H. Saller, *International Journal of Theoretical Physics* 37 (1998), 2333

[11] H. Saller, hep-th/0010057

[12] H. Saller, hep-th/0011265