Global climate change and above–belowground insect herbivore interactions

Scott W. McKenzie1,2,3,4, *, William T. Hentley1,2,3,4, Rosemary S. Hails1, T. Hefin Jones1, Adam J. Vanbergen1 and Scott N. Johnson2

1 Centre for Ecology and Hydrology, Wallingford, Oxfordshire, UK
2 Centre for Ecology and Hydrology, Penshurst, Maidstone, UK
3 Cardiff School of Biosciences, Cardiff University, Cardiff, UK
4 Hawkesbury Institute for the Environment, University of Western Sydney, Sydney, NSW, Australia

Predicted changes to the Earth’s climate are likely to affect above–belowground interactions. Our understanding is limited, however, by past focus on two-species aboveground interactions mostly ignoring belowground influences. Despite their importance to ecosystem processes, there remains a dearth of empirical evidence showing how climate change will affect above–belowground interactions. The responses of above- and belowground organisms to climate change are likely to differ given the fundamentally different niches they inhabit. Yet there are few studies that address the biological and ecological reactions of belowground herbivores to environmental conditions in current and future climates. Even fewer studies investigate the consequences of climate change for above–belowground interactions between herbivores and other organisms, those that do provide no evidence of a directed response. This paper highlights the importance of considering the belowground fauna when making predictions on the effects of climate change on plant-mediated interspecific interactions.

INTRODUCTION

Trophic interactions are likely to be crucial in shaping net effects of global climate change on ecosystems (e.g., Harrington et al., 1999; Tyllanakis et al., 2008). Modified interactions between trophic groups (e.g., spatial or phenological decoupling of herbivore and predator populations) could have far reaching consequences across a range of natural and managed ecosystems with implications for food security (Gregory et al., 2009). In particular, the plant-mediated interactions between above- and belowground herbivores (Gange and Brown, 1989; Blossey and Hunt-Joshi, 2003; Johnson et al., 2012) may be important in the structuring of herbivore and multi-trophic communities (Berd尽快t and Casey, 2010; Megías and Müller, 2010; Soler et al., 2012; Johnson et al., 2013). Surprisingly, investigating the potential impacts of climate change on above–belowground interactions, has received little attention (Schnitzer et al., 2004). Given that root and shoot herbivores affect plants in dramatically different ways, but also interact with each other (Meyer et al., 2009), the conclusions drawn from studies of climate change impacts limited to only aboveground herbivores may be misleading.

This perspectives paper uses empirical examples to illustrate how belowground herbivores influence aboveground plant–insect interactions. It draws on studies concerning above–belowground interactions as well as studies showing how climate change can alter soil herbivore communities. Finally, it considers the few examples that exist where above–belowground interactions have been studied under climate change scenarios to show how such plant-mediated interactions are, or may be, modified. Thus, this paper will highlight the potential for incomplete or inaccurate predictions of climate change impacts on plant–insect relationships, because of lack of consideration of belowground interactions.

ABOVE–BELOWGROUND INTERACTIONS IN THE CURRENT CLIMATE

Studies of plant-mediated interactions between spatially separated herbivores have revealed contrasting ecological patterns (van Dam and Heil, 2011) that have evolved and built upon two major hypotheses: the Stress Response Hypothesis (Masters et al., 1993; Bezemer et al., 2004) and the Defense Induction Hypothesis (Bezemer et al., 2002). The Stress Response Hypothesis suggests root herbivory impairs the plant’s capacity to increase palatability to aboveground herbivores. In contrast, the Defense Induction Hypothesis suggests that belowground herbivores will induce a systemic increase in plant-defense chemicals, making it more difficult for herbivore colonization to occur aboveground (Bezemer and van Dam, 2005; Kaplan et al., 2008). These plant-mediated mechanisms arise through a complex path of communication between root and shoot tissues involving primary (e.g., Johnson et al., 2009) and secondary (Bezemer and van Dam, 2005) chemicals. The nature and mode of signaling between roots and leaves is a rapidly expanding area of research (Rasmann and Agrawal, 2003). Some hypotheses suggest that interactions between phytohormonal pathways regulate interspecific
herbivore interactions (Soler et al., 2013). Different feeding guilds elicit different phytohormonal pathways. For example, jasmonic acid (induced by root-chewers) reduces a plant’s salicylic acid defense response against aphids (Soler et al., 2013). Given that above- and belowground herbivores can systemically alter the defensive phenotype of plants, future models of plant defense allocation would benefit greatly from a systemic plant approach (Rasmann et al., 2009).

The consequences of interactions between spatially segregated organisms are more far-reaching than simple pair-wise herbivore-herbivore interactions, with effects cascading across species networks spanning trophic levels and the above- and belowground sub-systems (Schuetz, 2001; Bardgett and Wardle, 2003; Wardle et al., 2004). The effects of root herbivory can, for instance, affect tertiary trophic levels. Root herbivores such as the cabbage root fly (Delia radicum) have been observed to affect, via the host plant, an aboveground herbivore (Pieris brassicae), its parasitoid (Cotesia glomerata), and hyper-parasitoid (Lysibia nana) (Soler et al., 2005). In this instance, D. radicum increased the development time of P. brassicae and C. glomerata, and the body size of both parasitoid and hyper-parasitoid were reduced. These effects were attributed to an alteration in the blend of phyto-toxins (glucosinolates) emitted post-herbivory (Soler et al., 2005).

Conversely, aboveground herbivory can have a negative effect on belowground herbivores and associated natural enemies (Jones and Finch, 1987; Soler et al., 2007). For instance, the presence of butterfly larvae (P. brassicae) reduced the abundance of the belowground herbivore (D. radicum) and its parasitoid (Trybiplographa rapa) by up to 50% and decreased the body size of emerging parasitoid and root herbivore adults (Soler et al., 2007). If these broader interactions between organisms inhabiting the plant rhizosphere and canopy are typical, they could scale up to play important roles in governing ecosystem function.

CLIMATE CHANGE AND BELOWGROUND HERBIVORES

Many studies and comprehensive reviews address the effects of global climate change on aboveground insect herbivores (e.g., Bale et al., 2002; Cornelissen, 2011), whereas there are substantially fewer studies of the impacts on belowground organisms (Staley and Johnson, 2008). Soil fauna are, at least to some extent, buffered from the direct impacts of climate change (Bale et al., 2002). Carbon dioxide concentrations are already high within the soil due to root respiration and microbial processes (Haimi et al., 2005), and therefore soil fauna are less likely to be affected by increased atmospheric CO\(_2\) (Norby, 1994). While higher soil temperature may also increase root growth, temperature increase may directly affect soil herbivore development and insect phenology (van Asch et al., 2007). Reduced soil moisture, potentially a consequence of increased temperature, can also impact many soil insect life-history traits, such as survival and abundance (Pacchioli and Hower, 2004). Predicted increases in climatic extremes under a future climate (e.g., increased flooding and drought events) may also drown or desiccate soil biota and herbivores, thus reducing their prevalence in the soil (Parmesan et al., 2000).

Soil-dwelling insect herbivores feed on the roots and therefore have very different effects on plant traits than their aboveground counterparts. These effects may alter the predicted consequences of global climate change on shoot herbivores (Robinson et al., 2012; Zavala et al., 2013). For instance, most plants increase biomass accumulation and rates of photosynthesis in response to elevated CO\(_2\) (Ainsworth and Long, 2005); this depends on plants maximizing water and nitrogen use efficiency. To facilitate this, many plants increase their root:shoot biomass ratio in response to elevated CO\(_2\), but this may be compromised by root herbivores, which remove root mass, therefore impairing water and nutrient uptake (Johnson and Murray, 2008). A recent meta-analysis by Zereva and Kostov (2012) showed that root herbivores reduced rates of photosynthesis in host plants, this contrasts with many aboveground herbivores that actually stimulate it (e.g., Thomson et al., 2003). Empirical evidence also suggests that root herbivory can effectively reverse the effects of elevated CO\(_2\) on eucalypt chemistry (e.g., increased foliar C:N ratio) and biomass, potentially altering the outcomes for aboveground herbivores (Johnson and Riegler, 2013).

CLIMATE CHANGE AND ABOVE–BELOWGROUND INTERACTIONS: EMPIRICAL EVIDENCE

To our knowledge, there are only two peer-reviewed published examples describing how an elevated CO\(_2\) environment affects the interaction between above- and belowground herbivores. The first focused on the interaction between the root-feeding (Pemphigus populitransversus) and shoot-feeding (Aphis fabae fabae) aphids, on Cardamine pratensis (Salt et al., 1996). The study concluded the interaction between these spatially separated aphids was unaffected by CO\(_2\), because root herbivore populations were always smaller in the presence of an aboveground herbivore regardless of the CO\(_2\) environment. The second study investigated the conspecific interaction between aboveground adults and belowground larvae of the clover root weevil (Sitona lepida) (Johnson and McNicol, 2010). Elevated CO\(_2\) increased leaf consumption by adult weevils but resulted in lower rates of oviposition. These patterns were interpreted by the authors to be a compensatory feeding response to reduced leaf nitrogen and lower reproductive output due to inadequate nutrition. Despite reduced rates of oviposition, larval survival was much greater at elevated than at ambient CO\(_2\) levels potentially due to increased nodulation (increased food source) of the host plant (Trifolium repens) under elevated CO\(_2\) conditions (Johnson and McNicol, 2010).

Enrichment with CO\(_2\) is not only expected to increase plant biomass both above- and belowground, but also to reduce plant tissue quality through increases in the C:N ratio and secondary metabolite concentrations (Bezemer and Jones, 1998). Compensatory feeding by phytophagous insects in an elevated CO\(_2\) environment may thus increase exposure to defensive chemicals present in plant tissue. This is likely, however, to be contingent on plant taxonomic identity, as concentrations of defensive chemicals may increase (e.g., glucosinolates in Arabidopsis thaliana (Bidari-Bouzat et al., 2003)), or remain unchanged (e.g., tannins in Quercus myrtifolia (Rossi et al., 2004)) in response to CO\(_2\) enrichment.
Temperature changes may alter above–belowground interactions either by affecting invertebrate phenology directly (Gordo and Samu, 2005; Harrington et al., 2007) or indirectly through changes in the plant (Harrington et al., 1999; Bale et al., 2002; Singer and Parmesan, 2010), although this remains to be tested empirically. A predicted increase in global mean temperatures may also result in an increased water stress response in plants (Huberty and Denno, 2004), making them more susceptible to herbivory both above- and belowground.

Summer drought is another factor associated with climate change that has been shown to influence above–belowground interactions. Typically, root-chewing Agriotes sp. larvae reduced the abundance and performance of leaf-mining Stephania brunichellia larvae and its associated parasitoid (Staley et al., 2007). This effect was, however, negated under drought conditions. Changes to summer rainfall may, therefore, reduce the occurrence or alter the outcome of plant–mediated interactions between insect herbivores.

Above–belowground interactions may also be influenced by variation in soil moisture. Experimentally elevated rainfall increased the suppression of an outbreak of the herbivorous moth larvae Hepialus californicus by an entomopathogenic nematode (Heterorhabditis matrulatus), thereby indirectly protecting the host plant – bush lupine (Lupinus arboreus) (Preissner and Strong, 2004). Thus climate change, by altering patterns of precipitation, has the potential to modify herbivore–natural enemy interactions to reduce herbivore pressure.

Few studies have integrated the multiple abiotic factors associated with climate change (i.e., water supply, temperature, CO₂, etc.) to investigate their combined effects on above–belowground interactions. One such study (Stevbak et al., 2012) manipulated CO₂ concentration, air and soil temperature, and precipitation to show that soil microbial biomass was altered by aboveground herbivory (Chorthippus brunneus). The combination of multiple climate change treatments with aboveground herbivory increased microbivorous protist abundance in the soil, emphasizing the importance of considering climate change in above–belowground interactions.

The future of above–belowground interactions and climate change research

Johnson et al. (2012) conducted a meta-analysis on two-species above–belowground herbivore interactions. Although restricted by not including other trophic groups, the meta-analysis did identify several factors that determine the outcomes of interactions between spatially separated herbivores. From these outcomes it is possible to develop hypotheses of how specific interactions are likely to be affected by climate change. The chronological sequence in which herbivores fed on shared plants was a major determinant of interaction outcome. In particular, aboveground herbivores negatively affected belowground herbivores when they fed first, but not when feeding synchronously or following belowground herbivores. Conversely, belowground herbivores typically had positive effects on aboveground herbivores only when synchronously feeding, otherwise they had a negative impact (Johnson et al., 2012). Many of the data on aboveground species are from aphids; we know that elevated CO₂ and temperature results in earlier and longer seasonal occurrences of many pest species, including aphids (Harrington et al., 2007). Therefore in the future it might be reasonable to expect that some aphids may initiate feeding on the plant prior to belowground herbivores. Under such circumstances, aphids may negatively affect the belowground herbivore while remaining unaffected themselves, the reverse of the interaction under current conditions. Likewise, if drought conditions delayed root herbivore development this change could become even more pronounced.

Feeding guild identity (e.g., chewers, suckers, gallers) can affect the outcome of above–belowground interactions. Johnson et al. (2012) showed that the effects on aboveground herbivores depended on belowground herbivore guild. Individual feeding guilds and trophic levels respond differently to climate change (Voigt et al., 2003), but how this translates into changes in above–belowground trophic interactions remains unexplored. The increased level of defense compounds in plant tissue, predicted to occur under climate change scenarios (Robinson et al., 2012), are likely to have a disproportionate effect between (a) herbivores feeding above- or belowground: defense compounds may be concentrated in either leaf or root tissue, and (b) different feeding guilds: chewing insects being more susceptible to defensive compounds than phloem-feeders. There is, however, a strong bias in the literature, with certain herbivore guilds and orders (e.g., Lepidoptera) having been represented disproportionately within empirical studies (Robinson et al., 2012). Conclusions extrapolated regarding general herbivore-responses to climate change should, therefore, be treated with appropriate caution.

There are few long-term above–belowground interaction studies. Some Arctic long-term manipulative field studies (e.g., Rues et al., 1999) that illustrate the effects of climate warming on soil faunal structure provide essential information on legacy effects in natural ecosystems. These data that above–belowground interactions may be separated temporally (Kostenko et al., 2012) as well as spatially. Long-term field experiments may also yield different results to laboratory experiments conducted over a smaller timescale (Johnson et al., 2012).

Conclusion and research agenda

Our understanding of how individual species respond to climate change has increased dramatically over the past 25 years. We have a relatively well-informed understanding of how aboveground herbivores may react to different aspects of climate change (e.g., Bale et al., 2002) but our knowledge of belowground species responses remains lacking. Johnson and Murray (2008) illustrate how this area of research is a “hot topic” for multidisciplinary research while others (Soeler et al., 2005; van Dam and Held, 2011) underline the importance of a more integrated understanding of climate change impacts on ecosystems that incorporates above- and belowground trophic linkages.

Based on current knowledge of above–belowground interactions we are able to formulate hypotheses that could be tested empirically in future research. For example:

(1) Root herbivory is likely to change fundamentally plant responses to an elevated CO₂ environment, since root function...
usually underpins the plants ability to respond to environmental changes. We hypothesise that inclusion of root herbivores will reverse the effects of elevated CO₂ on certain aboveground herbivores, particularly those negatively affected by higher C:N ratios (e.g., leaf-miners).

(2) Plant functional identity may shape how above–belowground interactions respond to climate change. For instance, plants with C₃ and C₄ photosynthetic pathways will respond differently to climate change, and notably elevated CO₂ (Barbehenn et al., 2004a). In particular, C₃ plants potentially show a greater decline in nutritional quality than C₄ plants, which are often inherently less favorable hosts to insect herbivores (see the C₃-C₄ hypothesis of Carvell et al., 1973). This might lead to compensatory feeding on C₄, but not C₃, plants in future climates (Barbehenn et al., 2014b). We hypothesize that above–belowground interactions are likely to be more affected on C₃ than C₄ plants.

(3) Belowground herbivory induces a water stress on the plant, similar to drought. Experiments investigating drought effects on aboveground plant–herbivore interactions may, therefore, be analogous to aboveground–belowground herbivore interactions generally. We hypothesize that the combination of a drought treatment and a belowground herbivore may have additive negative effects on the plant and consequently on aboveground herbivores (through increased susceptibility to herbivory).

Increasing trophic complexity in empirical climate change research will strengthen the ability to make more accurate predictions of trophic interactions in future environments (Robinson et al., 2012). Making predictions based on simple plant–herbivore interactions compared to wider communities may be misleading and interaction outcomes may be altered with the inclusion of higher trophic levels. As seen aboveground, climate change may not directly affect the abundance of a herbivore, however, if the abundance or impact of an associated antagonist is reduced then climate change may increase herbivore abundance indirectly. Disrupted phenological synchrony between predator and prey (Hance et al., 2007) may be one mechanism, another may be a reduction in plant production of chemical attractants (synonymes) that recruit natural enemies, which then regulate herbivore numbers (Yuan et al., 2009). Alternatively, climate change may benefit the prey and antagonist equally, with any increase in herbivore abundance merely supporting greater numbers of natural enemies and thus leading to no net change in populations (e.g., Chen et al., 2005). An integrated approach considering trophic interactions as an integral part of an ecosystem comprising above- and belowground components will provide a more accurate estimation of climate change impacts. For example, aphids increase generally in abundance under elevated CO₂, whereas leaf-miners generally decrease (Robinson et al., 2012). Alternatively, further research may simply reveal a lack of general responses of above–belowground interactions to climate change. For instance, despite the large body of research on aphid–plant interactions under climate change, aphid responses to CO₂ enrichment still appear to be highly species-specific (see Sun and Ge, 2011 and references therein). The challenge for ecologists therefore is to utilize current knowledge of individual species responses to climate change and develop our understanding into general hypotheses for functional guilds, networks of species and ecosystem processes.

REFERENCES

Ainsworth, E. A., and Long, S. P. (2004). **Plant–Microbe Interaction** 8137.2004.01224.x

Bale, J. S., Masters, G. J., Hodkinson, I. D., Ameen, C., Bezemer, T. M., Brown, V. K., Holdaway, N. M. (2005). Linking above- and belowground communities. *Ecology* 86, 2206–2216. doi: 10.1890/0022-0495(2005)0116<2206:LAABOV>2.0.CO;2

Bezemer, T. M., Jones, T. H., and Knight, K. J. (1998). Long-term effects of elevated CO₂ and temperature on populations of the potato aphid *Myzus persicae* and its parasitoid *Aphelinus matricariae*. *Oecologia* 116, 119–125. doi: 10.1007/s00442-002-0274-x

Benjamin, T. M., and Iones, T. H. (1998). Plant–insect herbivore interactions in elevated atmospheric CO₂: quantifying and understanding the effects of elevated CO₂ on insect herbivores—hypothesis. *Environ. Entomol.* 27, 82–121. doi: 10.1603/0044-8240-27.1.82

Benjamin, T. M., Jones, T. H., and Wäckers, F. L. (2004). Aboveground–Belowground Linkages: Biotic Interactions, Ecosystem Processes and Human Change. Oxford: Oxford University Press.

Benjamin, T. M., van Dam, N. M., and Wäckers, F. L. (2005). Interactions of trophic interactions in future environments (Robinson et al., 2012) apparent idiosyncratic outcomes of climate change impacts on plant-herbivore interactions give way to reveal generalities. Trends have become apparent in some aspects of insect herbivory in elevated CO₂ (Zavala et al., 2013), for example, phloem feeders generally increase in abundance under elevated CO₂, whereas leaf-miners generally decrease (Robinson et al., 2012). Alternatively, further research may simply reveal a lack of general responses of above–belowground interactions to climate change. For instance, despite the large body of research on aphid–plant interactions under climate change, aphid responses to CO₂ enrichment still appear to be highly species-specific (see Sun and Ge, 2011 and references therein). The challenge for ecologists therefore is to utilize current knowledge of individual species responses to climate change and develop our understanding into general hypotheses for functional guilds, networks of species and ecosystem processes.

Climate change and above–belowground interactions

McKenzie et al., 2012

REFERENCES

Ainsworth, E. A., and Long, S. P. (2005). What have we learned from 15 years of free-air CO₂ enrichment (FACE)? A meta-analysis of the response of photosynthesis, canopy properties and plant production to rising CO₂. *New Phytol.* 165, 551–572. doi: 10.1111/j.1469-8137.2004.01224.x

Bale, J. S., Masters, G. J., Hodkinson, I. D., Ameen, C., Bezemer, T. M., Brown, V. K., et al. (2002). Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. *Glob. Change Biol.* 8, 1–16. doi: 10.1046/j.1365-2486.2002.00451.x

Barbehenn, R. V., Chen, Z., Karowe, D. N., and Spickard, A. (2004a). C₃ grasses have higher nutritional quality than C₄ grasses under ambient and elevated atmospheric CO₂. *Glob. Change Biol.* 10, 1565–1575. doi: 10.1111/j.1365-2486.2004.00853.x

Barbehenn, R., Karowe, D., and Chen, Z. (2004b). Performance of a generalist grasshopper on a C₃ and a C₄ grass: compensation for the effects of elevated CO₂ on plant nutritional quality. *Oecologia* 140, 96–103. doi: 10.1007/s00442-004-1755-x

Bardgett, R. D., and Wardle, D. A. (1999). Herbivore-mediated linkages between aboveground and belowground communities. *Ecology* 84, 2206–2216. doi: 10.1890/0022-0495(2005)0116<2206:LAABOV>2.0.CO;2

Benjamin, T. M., Jones, T. H., and Wäckers, F. L. (2004). Aboveground–Belowground Linkages: Biotic Interactions, Ecosystem Processes and Human Change. Oxford: Oxford University Press.

Benjamin, T. M., van Dam, N. M., and Wäckers, F. L. (2005). Linking aboveground and belowground interactions via induced plant defenses. *Trends Ecol. Evol.* 20, 617–624. doi: 10.1016/j.tree.2005.08.006

Benjamin, T. M., Wagenet, R., van Dam, N. M., van der Putten, W. H., and Wäckers, F. L. (2004). Above- and below-ground terpened skylark injury in cotton, *Gossypium herbaceum*, following root and leaf injury. *J. Chem. Ecol.* 30, 53–67. doi: 10.1023/B:JOEC.0000013182.59662.2a

Boden assurance, M., Milten, R., and Barbourhnan, M., (2010). Effects of prolonged exposure to dry soils enhancing hydro-herbivore-induced defense responses of *Arabidopsis thaliana*. *Oecologia* 145, 413–424. doi: 10.1007/s00442-005-0120-5

Blossey, B., and Hunt-Joshi, T. R. (2003). Belowground herbivory by insects: influence on plants and aboveground herbivores. *Annu. Rev. Entomol.* 48, 521–547. doi: 10.1146/annurev.ento.48.081901.112700

Carvell, H., Broid, F., Stephanos, S. N., and Werner, P. A. (1997). Phoretical-predictive pathways and selective herbivory—hypothesis. *Annu. Rev. Entomol.* 42, 465–485

Chen, F., Ge, F., and Panizzi, A. (2001). Impact of elevated CO₂ on the trophic interaction of *Geospira kusminii*. *Aphis gossypii*, and *Leucaena esculenta*. *Environ. Entomol.* 30,
Hance, T., van Baaren, J., Vernon, P., and McKenzie et al. Climate change and above–belowground interactions

Gregory, P. J., Johnson, S. N., Newton, Gordo, O., and Sanz, J. (2005).

Gange, A. C., and Brown, V. K. (1989).

Johnson, S. N., Hawes, C., and Karley, A. J. (2009). Interactions between above- and belowground herbivores:

Boivin, G. (2007). Impact of extreme temperatures on parasitoids in a garden pea plant.

Staples, T. (1999). Climate change and its effects on terrestrials and herbivory patterns.

McKenzie et al. Climate change and above–belowground interactions

Johnson, S. N., and McNicol, J. (2010). Elevated CO2 and aboveground–belowground herbivory by the clover root weevil.

Johnson, S. N., Mitchell, C., Thompson, J., and Kafatos, A. J. (2015). Doornatress drivers—root herbivores shape community of aboveground herbivores and natural enemies via plant nutrients. J. Anim. Ecol. 84, 1202–1210 [Fifth ahead of print].

Johnson, S. N., and Murray, P. J. (2008). Root Feeders: An Ecosystem Perspective. Wallingford: CABI. doi: 10.1007/BF00377007

Florin, J. (2007). Impact of chemical deterrant, released from the grass of cattail species and insect, on root fly emergence. Environ. Exp. Bot. 58, 239–249. doi: 10.1016/j.envexpbot.2007.08.015

Kaplan, I., Haltmiche, R., Kesler, A., Sardanas, S., and Denn, R. (2008). Constitutive and induced defenses to herbivory in above- and belowground plant tissue. Ecology 89, 392–406. doi: 10.1890/07-0871.1

Johnson, S. N., van de Vooorde, T., Kostenko, O., van der Putten, W. H., and Harvey, J. A. (2012). Legacy effects of above-ground herbivory interactions. Ecol. Lett. 15, 833–841. doi: 10.1111/1466-5238.12282

Maurer, G. J., Brown, V. K., and Gange, A. (1995). Plant mediated interactions above and below-ground insect herbivores. Oikos 70, 146–150. doi: 10.2307/3548298

Moore, A. G., and Muller, C. (2010). Root herbivores and detritivores shape above-ground multivariate assembly through plant-mediated effects. J. Ecol. 98, 833–852. doi: 10.1111/j.1365-2745.2009.01684.x

Meyer, K. M., Vos, M., Mooij, W. et al. (2009). Soil and moisture effects on the dynamics of early miner clover root Caragol (Caragola Calcarulatina) and biomass of alfalfa root nodules. Environ. Exper. Bot. 69, 119–127. doi: 10.1016/j.envexpbot.2009.01.016

Pauchet, M. A., and Hower, A. A. (2004). Soil and moisture effects on the dynamics of early miner clover root Caragol (Caragola Calcarulatina) and biomass of alfalfa root nodules. Environ. Exper. Bot. 59, 107–126. doi: 10.1016/S0098-8472(02)00118-7

Parmesan, C., Root, T. L., and Willig, M. B. (2000). Impacts of extreme weather and climate on terrestrial biodiversity. Biol. Rev. 75, 1–40. doi: 10.1017/S1464793100001449

Sparks, T. (1999). Climate change and its effects on terrestrial insect communities: A historical and experimental perspective. Trends Ecol. Evol. 14, 217–220. doi: 10.1016/S0169-5347(99)01604-3

Root herbivores and natural enemies via plant nutritional quality. J. Anim. Ecol. 74, 1121–1130. doi: 10.1111/j.1365-2656.2004.01069.x

Shi, R., van der Putten, W. H., Harvey, J. A., Verb, L. E. M., Over, M. D., Brown, V. K., and Mason, P. J. (Wallingford: CABI), 2008. Root herbivory effects on above-ground multivariate interactions: patterns, processes and mechanisms. J. Ecol. 96, 775–787. doi: 10.1111/j.1365-2745.2008.01765.x

Staley, J. T., and Johnson, S. N. (2008). “Climate change impacts on root herbivores,” in Root Feeders: An Ecosystem Perspective, ed S. N. Johnson and P. J. Murray (Wallingford: CABI), Pp. 192–215.

Stevnbak, K., Scherber, C., Gladisch, J. D., Biese, C., Mikkelsen, T. N., and Chronin, C. S. (2012). Interactions between above- and belowground organisms modified in climate change experiments. Nat. Clim. Chang. 2, 805–808. doi: 10.1038/nclimate1544

Stromhuk, K., Scherber, C., Gladisch, J. D., Biese, C., Mikkelsen, T. N., and Chronin, C. S. (2012). Interactions between above- and belowground organisms modified in climate change experiments. Nat. Clim. Chang. 2, 805–808. doi: 10.1038/nclimate1544

Stromhuk, K., Scherber, C., Gladisch, J. D., Biese, C., Mikkelsen, T. N., and Chronin, C. S. (2012). Interactions between above- and belowground organisms modified in climate change experiments. Nat. Clim. Chang. 2, 805–808. doi: 10.1038/nclimate1544

Sun, Y., and Gau, F. (2011). How do plants respond to elevated CO2? J. Asia Pac. Entomol. 14, 217–220. doi: 10.1007/s12598-010-0001-1
McKenzie et al. Climate change and above–belowground interactions

Thomson, V., Cunningham, S., Ball, M., and Nicotra, A. (2003). Compensation for herbivory by Cucumis sativus through increased photosynthetic capacity and efficiency. Oecologia 154, 167–175. doi: 10.1007/s00442-003-1102-6

Tylianakis, J. M., Dullingham, R. K., Boschetti, L., and Wardle, D. A. (2008). Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11, 1351–1363. doi: 10.1111/j.1461-0248.2008.01250.x

van Asch, M., van Tienderen, P. H., Hollemann, L. J. M., and Visser, M. E. (2007). Predicting adaptation of phenology in response to climate change, an insect herbivore example. Glob. Change Biol. 13, 1094–1105. doi: 10.1111/j.1365-2486.2007.01390.x

van Dam, N. M., and Heil, M. (2011). Multitrophic interactions below and above ground: en route to the next level. J. Ecol. 99, 77–88. doi: 10.1111/j.1365-2745.2010.01783.x

Vogt, W., Perret, I., Davis, A. J., Eggers, T., Schumacher, I., Buhmann, R., et al. (2003). Trophic levels are differentially sensitive to climate. Ecol. 84, 2444–2453. doi: 10.1890/03-0269

Wardle, D. A., Bardgett, R. D., Klironomos, J. N., Setälä, H., van der Putten, W. H., and Wall, D. H. (2004). Ecological linkages between aboveground and belowground biota. Science 304, 1629–1633. doi: 10.1126/science.1094875

White, T. C. (1984). The abundance of invertebrate herbivores in relation to the availability of nitrogen in stressed food plants. Oecologia 64, 90–105. doi: 10.1007/BF00379790

Yuan, J. S., Himanen, S. J., Holopainen, J. K., Chen, F., and Stewart, C. N. (2009). Smelling global climate change: mitigation of function for plant volatile organic compounds. Trends Ecol. Evol. 24, 325–331. doi: 10.1016/j.tree.2009.01.012

Zavala, J. A., Nabity, P. D., and DeLucia, E. H. (2013). An emerging understanding of mechanisms governing insect herbivory under elevated CO2. Annu. Rev. Entomol. 58, 79–97. doi: 10.1146/annurev-ento-120811-175944

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 01 May 2013; paper pending published: 14 June 2013; accepted: 29 September 2013; published online: 22 October 2013.

van Dam, N. M., and Heil, M. (2011). Multitrophic interactions below and above ground: en route to the next level. J. Ecol. 99, 77–88. doi: 10.1111/j.1365-2745.2010.01783.x.

van Dam, N. M., and Heil, M. (2011). Multitrophic interactions below and above ground: en route to the next level. J. Ecol. 99, 77–88. doi: 10.1111/j.1365-2745.2010.01783.x.

van Dam, N. M., and Heil, M. (2011). Multitrophic interactions below and above ground: en route to the next level. J. Ecol. 99, 77–88. doi: 10.1111/j.1365-2745.2010.01783.x.

van Dam, N. M., and Heil, M. (2011). Multitrophic interactions below and above ground: en route to the next level. J. Ecol. 99, 77–88. doi: 10.1111/j.1365-2745.2010.01783.x.

van Dam, N. M., and Heil, M. (2011). Multitrophic interactions below and above ground: en route to the next level. J. Ecol. 99, 77–88. doi: 10.1111/j.1365-2745.2010.01783.x.

van Dam, N. M., and Heil, M. (2011). Multitrophic interactions below and above ground: en route to the next level. J. Ecol. 99, 77–88. doi: 10.1111/j.1365-2745.2010.01783.x.

van Dam, N. M., and Heil, M. (2011). Multitrophic interactions below and above ground: en route to the next level. J. Ecol. 99, 77–88. doi: 10.1111/j.1365-2745.2010.01783.x.

van Dam, N. M., and Heil, M. (2011). Multitrophic interactions below and above ground: en route to the next level. J. Ecol. 99, 77–88. doi: 10.1111/j.1365-2745.2010.01783.x.

van Dam, N. M., and Heil, M. (2011). Multitrophic interactions below and above ground: en route to the next level. J. Ecol. 99, 77–88. doi: 10.1111/j.1365-2745.2010.01783.x.

van Dam, N. M., and Heil, M. (2011). Multitrophic interactions below and above ground: en route to the next level. J. Ecol. 99, 77–88. doi: 10.1111/j.1365-2745.2010.01783.x.