Common immunologic mechanisms in inflammatory bowel disease and spondylarthropathies

Massimo C Fantini, Francesco Pallone, Giovanni Monteleone

INTRODUCTION

The term spondyloarthropathy (SpA) indicates a group of related diseases, including ankylosing spondylitis (AS), reactive and psoriatic arthritis (ReA and PsA), and undifferentiated spondyloarthritis (uSpA). All these forms of SpA share common clinical features which are sacroiliitis, inflammatory low back pain and oligoarticular asymmetric synovitis. SpA is a frequently observed extraintestinal manifestation in Crohn's disease (CD) and ulcerative colitis (UC), the two major forms of inflammatory bowel diseases (IBD). Indeed, the prevalence of SpA associated with CD and UC was 45.7% and 9.9%, respectively in a recent series. Moreover a subtle gut inflammation is present in 25%-75% of patients with documented SpA, depending on the subtype, and among these, 6%-13% may evolve to overt IBD, suggesting common pathogenetic mechanisms between these two clinical entities.

The observation that SpA may occur during IBD has led to the hypothesis that IBD-related SpA originates from extraintestinal spreading of the immunologic process originating in the gut. Results from several studies suggest that the activation of the intestinal immune system may indeed lead, in certain conditions, to the generation of T cell clones which leave the gut compartment to home into the joints.

© 2009 The WJG Press and Baishideng. All rights reserved.

Key words: Cell adhesion molecules; Antigens; Th17; Helper T-cells; Tumor necrosis factor-α

Peer reviewers: Elke Cario, MD, Division of Gastroenterology and Hepatology, University Hospital of Essen, Institutsgruppe I, Virchowstr. 171, Essen D-45147, Germany; Emiko Mizoguchi, MD, PhD, Department of Medicine, Gastrointestinal Unit, GRJ 702, Massachusetts General Hospital, Boston, MA 02114, United States

Fantini MC, Pallone F, Monteleone G. Common immunologic mechanisms in inflammatory bowel disease and spondylarthropathies. World J Gastroenterol 2009; 15(20): 2472-2478 Available from: URL: http://www.wjgnet.com/1007-9327/15/2472.asp DOI: http://dx.doi.org/10.3748/wjg.15.2472
allow the reactivation of these cells. Finally, the immune response shaped in the gut must be responsible for the inflammation-related tissue damage observed in SpA.

FROM THE GUT TO THE JOINT: THE T CELL HOMING

A critical point for transfer of the inflammatory process from the gut to the joints is the possibility of redirecting the tissue-specific homing of inflammatory cells, mainly T cells, into the synovial compartment. In IBD, the abnormal reactivity of T cells against harmless antigens expressed by the commensal flora is thought to cause chronic intestinal inflammation. In the gut-associated lymphoid tissue (i.e. Peyer’s patches and lymphoid follicles) and mesenteric lymph nodes, professional antigen presenting cells (i.e. dendritic cells, DC) migrate from the intestinal lamina propria, prime naïve T cells which in turn differentiate into specialized T helper cells (e.g. Th1, Th2, Th17), thus acquiring the capacity to sustain a specific immune response. The profound changes observed in differentiated T cells in the secondary lymphoid organs include the expression of cell surface adhesion molecules and chemokine receptors which are responsible for the gut-specific T cell homing. Indeed, T cells activated in the Peyer’s patches and mesenteric lymph nodes express the gut-addressing integrin α4/β7 and the chemokine receptor CCR9. Once activated, these cells reach the bloodstream through the efferent lymphatics and the thoracic duct. In the gut mucosa, the interaction between α4/β7 integrin and its ligand, the mucosal addressin cell adhesion molecule 1 (MadCAM-1) expressed on the venular endothelial sheet causes the initial rolling and subsequent arrest of activated T cells. MadCAM-1 is normally expressed on the intestinal mucosa and its expression is further enhanced during inflammation. Once arrested on the surface of the intestinal venules, activated T cells transmigrate through the endothelial layer and move into the lamina propria following the gradient formed by the CCR-9-specific ligand CCL-25. Therefore, the specific interaction between α4/β7 integrin with MadCAM-1 and CCR9 with CCL-25 is pivotal for T cell homing into the gut. However, it is worth noting that other molecules mediate the cell-to-cell interaction in this process. For instance CD44, the very late antigen-4 (VLA-4, α4β1) and the lymphocytes function associated antigen-1 (LFA-1, αLβ2) expressed by activated T cells play a role in the recruitment of T cells into the gut. Moreover the expression of the vascular activated peptide-1 (VAP-1), intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and different subgroups of selectins (i.e. P- and E-selectins) which bind P-selectin glycoprotein-1 (PSGL-1) on T cells, is enhanced in endothelial cells of the inflamed intestine. However, these molecules are not gut specific and they seem to contribute marginally to the specificity of T cell homing into the intestine. Nevertheless, many lines of evidence indicate that these molecules may be involved in the homing of gut-activated T cells in other organs. Initial studies indicated that lamina propria lymphocytes (LPL) isolated from uninflamed gut were able to bind to uninflamed synovial vessels and that this interaction was critically mediated by CD44, VLA-4 and LFA-1. In contrast, the adherence of lamina propria T cells to inflamed synovial vessels was dependent on VAP-1 and CD44. When LPL were isolated from the inflamed gut of IBD patients, these cells bound more efficiently to synovial vessels than cells isolated from uninflamed gut. This higher affinity could be explained by the observation that, in contrast with cells isolated from uninflamed gut, the binding of small, memory-like, T cells from IBD patients was, in addition to VLA-4, α4β7-dependent, thus indicating a more varied use of adhesion molecules by IBD lamina propria T cells. By contrast, immunoblasts isolated from the lamina propria of IBD patients relied on CD44, LFA-1 and VAP-1 for their adhesion to synovial vessels, similar to immunoblasts from uninflamed gut.

Overall these data indicate that T cells primed in the gut-draining secondary lymphoid organs express a pattern of adhesion molecules that in part are responsible for the intestinal specific homing but that might, in particular conditions, mediate the entrance of activated T cells into extraintestinal compartments such as synovial tissue (Figure 1).

ROLE OF ANTIGEN MIMICRY AND HLA-B27 IN THE ANTIGENIC STIMULATION

As previously mentioned, intestinal commensal bacteria
are thought to sustain intestinal inflammation in IBD. Analogously, IBD-related SpA is also supported by the strong genetic association between SpA and the human leukocyte antigen (HLA) class I B-27 (HLA-B27). HLA-B27 was found in 75%-95% of patients affected by SpA and in 25%-78% of IBD patients without SpA who developed this extraintestinal manifestation at a later stage of the disease. Despite the strong genetic association, the pathogenic role of HLA-B27 is still poorly understood. Activation of CD4+ T cells involved in the arthritic process by specific bacterial antigens exposed on HLA-B27 has been proposed. Moreover, it has been shown that CD4+ T cells isolated from patients with reactive arthritis are activated by bacterial peptides presented in the context of HLA-B27. These data draw a possible scenario in which activated CD4+ T cells migrate into the joints from the gut, in response to bacterial antigens presented by HLA-B27-expressing macrophages. Not necessarily in contrast with this hypothesis are data demonstrating the homology between HLA-B27 sequences and antigens derived from virus and enterobacteria. Indeed a certain level of antigen mimicry may contribute to the outcome and/or maintenance of the inflammatory process initially induced by bacterial antigens. For instance, the nonapeptide, LRRYLENGK, derived from HLA-B27 can be presented by HLA-B27, determining the activation of the same T cell repertoire. Moreover, a dodecapeptide contained in the intracytoplasmic tail of HLA-B27 shows a strong homology with the sequence contained in the DNA primase of the arthritogenic bacteria Chlamydia trachomatis. This fits well with the observation that high titers of antibodies anti-Saccharomyces cerevisiae (ASCA) and anti-neutrophils (pANCA) antibodies are present in IBD-related SpA. Indeed pANCA have been shown to cross-react with both neutrophil nuclear membrane and a E. coli proteins, while no self-antigens have been so far identified for ASCA. These data indicate that in the presence of HLA-B27 but also independently of this HLA antigen, an immune response initially evoked by a bacterial antigen may be further sustained by the cross-reactivity with self-antigens.

Recently, the process of folding and expression of the HLA-B27 heavy chain has received increasing attention as a potential mechanism involved in the pathogenesis of SpA. Under normal conditions, the peptide-loaded HLA class I heavy chain binds the β2-microglobulin (β2m). This assembling process takes place in the endoplasmic reticulum. The folding process of the HLA-B27 heavy chain is slower than that of other HLA alleles thus leading to the generation of misfolded chains. Misfolded chains are usually removed in the endoplasmic reticulum, but in certain conditions, such as viral infection, they accumulate thus generating a cascade of intracellular events including the activation of the protein BiP, the endoplasmic reticulum-unfolded-protein-response (UPR) and the activation of nuclear factor κB (NFκB) which plays a critical role in the induction of inflammation. In contrast with this theory, it has been recently demonstrated that in HLA-B27 over-expressing rats, which normally develop colitis and SpA, the increased expression of β2m prevented colitis but not SpA. In this study over-expression of β2m caused a reduction of HLA-B27 misfolding and an unfolded protein response, suggesting that HLA-B27 heavy chain misfolding may be critical in the development of colitis but not of SpA. In addition to misfolding, data suggest that HLA-B27 heavy chains preferentially form homodimers which bind immunoglobulin-like receptors expressed on the cell surface of natural killer (NK) cells, T cells and monocytes. However, the actual role played by the interaction between HLA-B27 homodimer and its paired receptor in the inflammatory process is still poorly understood. Finally, data suggest that deposition of β2m, caused by the high dissociation rate between HLA-B27 heavy chain and β2m, occurring within synovial tissue, may lead to the initiation of chronic inflammation.

COMMON INFLAMMATORY MECHANISMS: FROM THE GUT TO THE JOINTS

The concept that immune cells, activated in the...
inflamed gut and migrating into the joints, may be able to reproduce in this tissue a similar immune response, is sustained by the observation that common immunological processes operate at both these sites. Attention has been recently focused on the role of T helper 17 cells (Th17) in IBDs and IBD-related SpA. Th17 cells form a novel class of T helper cells characterized by the expression of the proinflammatory cytokines interleukin (IL)-17A, from which comes the name Th17, IL-17F, IL-22 and TNFα. IL-6 and TGFβ have been shown to be crucial for the differentiation of these cells while IL-23, another proinflammatory cytokine, is thought to be important for their maintenance and expansion\cite{41,42}. Several lines of evidence indicate that Th17 cells may play a role in the induction and maintenance of gut inflammation in CD while their role in UC is still uncertain. Indeed, IL-17A and IL-17F are highly expressed in the gut of patients affected by CD, and Th17 cells have been shown to induce intestinal inflammation in different mouse models of colitis\cite{43-46}. Analogously, high expression of IL-17 was found in the synovial fluids of SpA-affected patients and an increased number of circulating Th17 memory-like T cells has been recently reported in these patients\cite{47,48}. An association between Th17 cells and IBD is further supported by the observation that mutations of IL-23 receptor reduce the risk of developing IBD\cite{49} and the same mutations were found to protect against SpA\cite{50}. Although the functional role of IL-23R mutations remains unclear, the fact that IL-23 signaling plays a critical role in the Th17-mediated inflammation, implicates that Th17 cells may represent a common pathogenetic mechanism in both IBD and SpA.

Tumor necrosis factor-α (TNFα) is a proinflammatory cytokine largely expressed in the lamina propria of patients affected by IBD (mainly CD and to a lesser extent UC), rheumatoid arthritis (RA) and SpA. The role of TNFα in IBD-related SpA has been investigated in the Tnfα_ΔARE knockout mice model which is characterized by the high expression of TNFα. These mice develop a phenotype dominated by IBD-like intestinal inflammation and arthritis thus implicating TNFα as a required factor for the induction of inflammation in both IBD and IBD-related SpA\cite{51}. In this model, intact TNFα signaling in radiation-resistant mesenchymal cells was found to be required for the induction of SpA as shown by the absence of SpA observed in lethally irradiated TNFαRI knockout mice reconstituted with Tnfα_ΔARE_RI bone marrow cells\cite{52}. Moreover, selective expression of TNFαRI in intestinal myofibroblasts (IMF) and synovial fibroblasts (SF) was sufficient to re-establish intestinal inflammation and SpA in Tnfα_ΔARE_TNFαRI knockout mice. IMF and SF expressed high levels of extracellular matrix-degrading metalloproteinase (MMP)-9 and -3 accompanied by reduced levels of the tissue inhibitor of MMPs-1 (TIMP-1) in response to TNFα stimulation which were in part responsible for the tissue damage observed in both the gut and the joints.

COMMON TREATMENT OPTIONS

These studies provide a rationale for developing new strategies for the therapy of IBD-related SpA. However, only the neutralization of TNFα has so far found clinical application in the therapy of IBD-related SpA. An early report showed that two patients affected by CD-associated AS refractory to conventional therapy, experienced amelioration of the axial symptoms after anti-TNFα therapy with infliximab 5 mg/kg intravenously\cite{53}. The efficacy of infliximab in the therapy of SpA was later confirmed by two randomized controlled trials. In a first randomized, double-blind trial 40 patients affected by SpA were randomly assigned to receive either infliximab 5 mg/kg (weeks 0, 2, and 6) or placebo. At 12 wk there was a significant improvement of both the BASDAI (Bath Ankylosing Spondylitis Disease Activity Index) and BASFI (Bath Ankylosing Spondylitis Functional Index) in the infliximab group in comparison to controls\cite{54}. Similar results were obtained by Braun et al\cite{55} in a randomized, controlled, multicenter trial in which 53% (18 of 34) patients affected by AS treated with infliximab 5 mg/kg (weeks 0, 2, 6) vs 9% (3 of 35) treated with placebo showed a reduction of at least 50% of the BASDAI, BASFI and BASMI (Bath Ankylosing Spondylitis Metrology Index) compared to baseline. However the presence of concomitant IBD in the patients participating in both these trials was unknown. The only trial evaluating the efficacy of anti-TNFα in a cohort of patients affected by CD-related SpA is an open-label study comparing infliximab vs conventional therapy\cite{56}. In this study 21 patients with active SpA were enrolled. Sixteen patients with active CD were treated with infliximab (5 mg/kg) at 0, 2, and 6 wk. If remission was achieved patients were treated with a maintenance dose of 3 mg/kg every 6-8 wk otherwise 5 mg/kg was administered. Eight CD-affected patients were in clinical remission at the beginning of the study. These patients were treated with a dose of 3 mg/kg following the same schedule. Twelve additional patients affected by active CD and SpA underwent conventional therapies. Results from this study showed a significant reduction of the BASDAI and spinal pain in the group treated with infliximab in comparison to patients undergoing conventional therapy. Finally, it has been recently suggested that treatment of SpA with infliximab but not etanercept (another anti-TNFα agent) prevents new onset or flares of IBD\cite{57}.

The use of adalimumab, a fully humanized anti-TNFα has achieved similar results. A multicenter, randomized, placebo-controlled, trial aimed at assessing the efficacy and safety of 40 mg adalimumab administered subcutaneously for 12 and 24 wk, found that adalimumab was significantly more effective in inducing ASAS20 (20% response according to the ASsessment in Ankylosing Spondylitis International Working Group criteria) than placebo\cite{58}. Moreover the long term efficacy of adalimumab regimen in the treatment of IBD-related SpA has been recently confirmed in a 2-year follow-up study after the initial treatment\cite{59}.

www.wjgnet.com
CONCLUSION

SpA is a common extraintestinal manifestation of IBD. However, the immunological mechanisms linking gut and joint inflammation are still poorly characterized. The observation that in most of the cases intestinal inflammation precedes SpA has led to the hypothesis that the inflammatory process initially localized in the gut may be “relocated” to a different site. Indeed most of the data summarized here support this concept, providing evidence that T cells and monocytes/macrophages activated by gut-related antigens may be able to home in to the synovial tissue as a result of the expression of adhesion molecules which partially overlap with those expressed by endothelial cells in the gut. In synovial tissue, activation of inflammatory cells may be sustained by several mechanisms including the presence of bacterial antigens and/or by the altered expression of HLA-B27. Finally Th17 cells and high expression of TNFα may play a crucial role in the inflammation-related tissue damage in both the gut and the joints by inducing the expression of extracellular matrix metalloproteinases. However, it is important to note that in some cases, SpA has been shown to precede IBD thus indicating that the illustrated mechanism may not be always applicable and that other immunological processes may link gut inflammation to inflammatory processes localized in different extra-intestinal sites.

REFERENCES

1 Turkcapar N, Toruner M, Soykan I, Aydintug OT, Cetinkaya H, Duzgun N, Ozden A, Duman M. The prevalence of extraintestinal manifestations and HLA association in patients with inflammatory bowel disease. *Rheumatol Int* 2006; 26: 663-668

2 Leirisalo-Repo M, Turunen U, Stenman S, Helenius P, Seppala K. High frequency of silent inflammatory bowel disease in spondylarthropathy. *Arthritis Rheum* 1994; 37: 23-31

3 Mielants H, Veys EM, Cuvelier C, De Vos M, Goemaere S, De Clercq L, Schatteman L, Gyselbrecht L, Elewaut D. The evolution of spondyloarthropathies in relation to gut histology. III. Relation between gut and joint. *J Rheumatol* 1995; 22: 2279-2284

4 Mielants H, Veys EM, Cuvelier C, De Vos M, Goemaere S, De Clercq L, Schatteman L, Elewaut D. The evolution of spondyloarthropathies in relation to gut histology. II. Histological aspects. *J Rheumatol* 1995; 22: 2273-2278

5 Mielants H, Veys EM, De Vos M, Cuvelier C, Goemaere S, De Clercq L, Schatteman L, Elewaut D. The evolution of spondyloarthropathies in relation to gut histology. I. Clinical aspects. *J Rheumatol* 1995; 22: 2266-2272

6 Xavier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel disease. *Nature* 2007; 448: 427-434

7 Sartor RB, Muehlbauer M. Microbial host interactions in IBD: implications for pathogenesis and therapy. *Curr Gastroenterol Rep* 2007; 9: 497-507

8 Campbell DJ, Butcher EC. Rapid acquisition of tissue-specific homing phenotypes by CD4(+) T cells activated in cutaneous or mucosal lymphoid tissue. *J Exp Med* 2002; 195: 135-141

9 Berlin C, Bargatze RF, Campbell JI, von Andrian UH, Szabo MC, Hassig SR, Nelson RD, Berg EL, Erlandsen SL, Butcher EC. alpha 4 integrins mediate lymphocyte attachment and rolling under physiologic flow. *Cell* 1995; 80: 413-422

10 Berlin C, Berg EL, Briskin MJ, Andrew DP, Kilshaw PJ, Holzmann B, Weissman IL, Hamann A, Butcher EC. Alpha 4 beta 7 integrin mediates lymphocyte binding to the mucosal vascular addressin MadCAM-1. *Cell* 1993; 74: 185-195

11 Souza HS, Elia CC, Spencer J, MacDonald TT. Expression of lymphocyte-endothelial receptor-ligand pairs, alpha4beta7/ MadCAM-1 and OX40/OX40 ligand in the colon and jejunum of patients with inflammatory bowel disease. *Gut* 1999; 45: 856-863

12 Stenstad H, Ericsson A, Johansson-Lindbom B, Svensson M, Marsal J, Mack M, Picarella D, Soler D, Marquez G, Briskin M, Agace WW. Gut-associated lymphoid tissue-primed CD4+ T cells display CCR9-dependent and -independent homing to the small intestine. *Blood* 2006; 107: 3447-3454

13 Johansson-Lindbom B, Svensson M, Wurbel MA, Malissen B, Marquez G, Agace W. Selective generation of gut tropic T cells in gut-associated lymphoid tissue (GALT): requirement for GALT dendritic cells and adjuvant. *J Exp Med* 2003; 198: 963-969

14 Salmi M, Jalkanen S. Endothelial ligands and homing of mucosal leukocytes in extraintestinal manifestations of IBD. *Inflamm Bowel Dis* 1998; 4: 149-156

15 Salmi M, Andrew DP, Butcher EC, Jalkanen S. Dual binding capacity of mucosal immunoblasts to mucosal and synovial endothelium in humans: dissection of the molecular mechanisms. *J Exp Med* 1995; 181: 137-149

16 Salmi M, Rajala P, Jalkanen S. Homing of mucosal leukocytes to joints. Distinct endothelial ligands in synovium mediate leukocyte-subtype specific adhesion. *J Clin Invest* 1997; 99: 2165-2172

17 Salmi M, Jalkanen S. Human leukocyte subpopulations from inflamed gut bind to joint vasculature using distinct sets of adhesion molecules. *J Immunol* 2001; 166: 4650-4657

18 Taurog JD, Richardson JA, Croft JT, Simmons WA, Zhou M, Fernandez-Suero JL, Balish E, Hammer RE. The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. *J Exp Med* 1994; 180: 2359-2364

19 Rath HC, Wilson KH, Sartor RB. Differential induction of colitis and gastritis in HLA-B27 transgenic rats selectively colonized with Bacteroides vulgatus or Escherichia coli. *Infect Immun* 1999; 67: 2969-2974

20 Rath HC, Herfarth HH, Ikeda JS, Geenrther WB, Hamm TE Jr, Balish E, Taurog JD, Hammer RE, Wilson KH, Sartor RB. Normal luminal bacteria, especially Bacteroides species, mediate chronic colitis, gastritis, and arthritis in HLA-B27/ human beta2 microglobulin transgenic rats. *J Clin Invest* 1996; 98: 945-953

21 Hammer M, Zeidler H, Klimsa S, Heesemann J. Yersinia enterocolitica in the synovial membrane of patients with Yersinia-induced arthritis. *Arthritis Rheum* 1990; 33: 1795-1800

22 Granfors K, Jalkanen S, Lindberg AA, Maki-Ikola O, von Essen R, Lahesmaa-Rantal a R, Isomaki H, Saario R, Arnold WJ, Toivanen A. Salmonella lipopolysaccharide in synovial cells from patients with reactive arthritis. *Lancet* 1990; 335: 685-688

23 Granfors K, Jalkanen S, von Essen R, Lahesmaa-Rantal a R, Isomaki O, Pekkola-Heino K, Merilathi-Palo R, Saario R, Isomaki H, Toivanen A. Yersinia antigens in synovial-fluid cells from patients with reactive arthritis. *N Engl J Med* 1989; 320: 216-221

24 Purrmann J, Zeidler H, Bertrams J, Juli E, Cleveland S, Berges W, Genss R, Specker C, Reis HE. HLA antigens in ankylosing spondylitis associated with Crohn’s disease. Increased frequency of the HLA phenotype B27,B44. *J Rheumatol* 1988; 15: 1658-1661

25 Palm O, Mourn B, Ongre A, Gran JT. Prevalence of ankylosing spondylitis and other spondyloarthropathies among patients with inflammatory bowel disease: a population study (the IBSEN study). *J Rheumatol* 2002; 29: 511-515
26 de Vlam K, Mielants H, Cuvelier C, De Keyser F, Veys EM, De Vor M. Spondyloarthritis is underestimated in inflammatory bowel disease: prevalence and HLA association. J Rheumatol 2000; 27: 2860-2865

27 Steer S, Jones H, Hibbert J, Kondeatis E, Vaughan R, Sanderson J, Gibson T. Low back pain, sacroilitis, and the relationship with HLA-B27 in Crohn's disease. J Rheumatol 2003; 30: 518-522

28 Kuon W, Sieper J. Identification of HLA-B27-restricted peptides in reactive arthritis and other spondyloarthropathies: computer algorithms and fluorescent activated cell sorting analysis as tools for hunting of HLA-B27-restricted chlamydial and autologous crossreactive peptides involved in reactive arthritis and ankylosing spondylitis. Rheum Dis Clin N Am 2003; 29: 595-611

29 Mertz AK, Wu P, Sturniolo T, Stoll D, Rudwaleit M, Lauster R, Braun J, Sieper J. Multispecific CD4+ T cell response to a single 12-mer epitope of the immunodominant heat-shock protein 60 of Yersinia enterocolitica in Yersinia-triggered reactive arthritis: overlap with the B27-restricted CD8 epitope, functional properties, and epitope presentation by multiple DR alleles. J Immunol 2000; 164: 1529-1537

30 Thiel A, Wu P, Lauster R, Braun J, Radbruch A, Sieper J. Analysis of the antigen-specific T cell response in reactive arthritis by flow cytometry. Arthritis Rheum 2000; 43: 2834-2842

31 Scofield RH, Kurien B, Gross T, Warren WL, Harley JB. HLA-B27 binding of peptide from its own sequence and similar peptides from bacteria: implications for spondyloarthopathies. Lancet 1995; 345: 1542-1544

32 Ramos M, Alvarez I, Sesma L, Logean A, Rogran D, Lopez de Castro JA. Molecular mimicry of an HLA-B27-derived ligand of arthritis-linked subtypes with chlamydial proteins. J Biol Chem 2002; 277: 37573-37581

33 Torok HP, Glas J, Gruber R, Brumberger V, Strasser C, Kellner H, Mark-Hermerman E, Folwaczny C. Inflammatory bowel disease-specific autoantibodies in HLA-B27-associated spondyloarthropathies: increased prevalence of ASCA and pANCA. Digestion 2004; 70: 49-54

34 Cohavy O, Bruckner D, Gordon LK, Misra R, Wei B, Eggena ME, Targan SR, Braun J. Colonic bacteria express ASCA and pANCA. Arthritis Rheum 2003; 49: 543-554

35 Pamer E, Cresswell P. Mechanisms of MHC class I--restricted antigen processing. Annu Rev Immunol 1998; 16: 323-358

36 Mear JP, Schreiber KL, Munz C, Zhu X, Stevanovic S, Rammensee HG, Rowland-Jones SL, Colbert RA. Misfolding of HLA-B27 as a result of its B pocket suggests a novel mechanism for its role in susceptibility to spondyloarthopathies. J Immunol 1999; 163: 6665-6670

37 Pahl HL, Sester M, Burget HG, Baueerle PA. Activation of transcription factor NF-kappaB by the adenovirus E3/19K protein requires its ER retention. J Cell Biol 1996; 132: 511-522

38 Tran TM, Dorriss ML, Satumtira N, Richardson JA, Hammer RE, Shang J, Taurog JD. Additional human beta2-microglobulin curbs HLA-B27 misfolding and promotes arthritis and spondylitis without colitis in male HLA-B27-transgenic rats. Arthritis Rheum 2006; 54: 1317-1327

39 Kolllnberger S, Bird LA, Roddis M, Macquard-Boulder C, Kubagawa H, Bodmer HC, Breban M, McMichael AJ. Bowness P. HLA-B27 heavy chain homodimers are expressed in HLA-B27 transgenic rodent models of spondyloarthritis and are ligands for paired Ig-like receptors. J Immunol 2004; 173: 1699-1707

40 Uchanska-Ziegler B, Ziegler A. Ankylosing spondylitis: a beta2m-deposition disease? Trends Immunol 2003; 24: 73-76

41 Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo V. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006; 441: 235-238

42 Mangan PR, Harrington LE, O’Quinn DB, Helms WS, Bullard DC, Elson CO, Hatton RD, Wahl SM, Schoeb TR, Wolfs H. Transforming growth factor-beta induces development of the TH17 lineage. Nature 2006; 441: 231-234

43 Yan D, Cheung J, Scheerens H, Poulret F, Mcclanahan T, McKenzie B, Kleinschek MA, Owyang A, Mattson J, Blumenschein W, Murphy E, Sathe M, Cua DJ, Kastelijn RA, Rennick D. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J Clin Invest 2006; 116: 1310-1316

44 Elson CO, Cong Y, Weaver CT, Schoeb TR, Mcclanahan TK, Fick RB, Kastelijn RA. Monoclonal anti-interleukin 23 reverses active colitis in a T cell-mediated model in mice. Gastroenterology 2007; 133: 2359-2370

45 Fina D, Sarra M, Fantini MC, Rizzo A, Caruso R, Caprioli F, Stolfi C, Cardolini I, Dottori M, Boirivant M, Pallone F, Macdonald TT, Monteleone G. Regulation of gut inflammation and th17 cell response by interleukin-21. Gastroenterology 2008; 134: 1038-1048

46 Seidler J, Elben I, Diegelmann J, Glas J, Stallbofer J, Tillack CP, Fennig S, Jurgens M, Schmelch S, Konrad A, Goke B, Ochsennkun T, Muller-Myskow B, Lohse P, Brandt S. Role of the novel Th17 cytokine IL-17F in inflammatory bowel disease (IBD): upregulated colonic IL-17F expression in active Crohn's disease and analysis of the IL17F p.His161Arg polymorphism in IBD. Inflamm Bowel Dis 2008; 14: 437-445

47 Jandus C, Bioley G, Rivals JP, Dudler J, Speiser D, Romero P. Increased numbers of circulating polyfunctional Th17 memory cells in patients with ankylosing spondylarthritis. Arthritis Rheum 2008; 58: 2507-2517

48 Wendling D, Codoz JP, Racadot E, Dumoulin G. Serum IL-17, BMP-7, and bone turnover markers in patients with ankylosing spondylitis. Joint Bone Spine 2007; 74: 304-305

49 Duer R, Taylor KD, Brant SR, Rioux JD, Silverberg MS, Daly MJ, Steinhardt AH, Abraham C, Regueiro M, Griffiths A, Dassopoulos T, Bitton A, Yang H, Targan S, Datta LW, Kistner EO, Schumm LP, Lee AT, Gregersen PK, Barmada MM, Rotter JI, Nicolae DL, Cho JH. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 2006; 314: 1461-1463

50 Rahman P, Inman RD, Gladman DD, Reeve JP, Peddle L, Maksymowych WP. Association of interleukin-23 receptor variants with ankylosing spondylitis. Arthritis Rheum 2008; 58: 1020-1025

51 Kontoyiannis D, Pasparakis M, Pizarro TT, Cominelli F, Kollas G. Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: implications for joint and gut-associated immunopathologies. Immunity 1999; 10: 387-398

52 Armaka M, Apostolaki M, Jacques P, Kontoyiannis DL, Elewaout D, Kollas G. Mesenchymal cell targeting by TNF as a common pathogenic principle in chronic inflammatory joint and intestinal diseases. J Exp Med 2008; 205: 331-337

53 Van den Bosch F, Kruithof E, De Vos M, De Keyser F, Mielants H, Veys EM. Randomized double-blind comparison of chimeric monoclonal antibody to spondyloarthopathy: effect of TNF-alpha blockade with infliximab on articular symptoms. Lancet 2000; 356: 1821-1822

54 Van Den Bosch F, Kruithof E, Baeten D, Herssen S, de Keyser F, Mielants H. Crohn's disease associated with spondyloarthopathy. Arthritis Rheum 2002; 46: 735-745

55 Braun J, Brandt J, Listing J, Zink A, Alten R, Golder W, Gromnica-Ihle E, Kellner H, Krause A, Schneider M, Sorensen H, Zeidler H, Thieme W, Sieper J. Treatment of active ankylosing spondylitis with infliximab: a randomised
controlled multicentre trial. *Lancet* 2002; 359: 1187-1193

56 Generini S, Giacomelli R, Fedi R, Fulminis A, Pignone A, Frieri G, Del Rosso A, Viscido A, Galletti B, Fazzi M, Tonelli F, Matucci-Cerinic M. Infliximab in spondyloarthropathy associated with Crohn's disease: an open study on the efficacy of inducing and maintaining remission of musculoskeletal and gut manifestations. *Ann Rheum Dis* 2004; 63: 1664-1669

57 Braun J, Baraliakos X, Listing J, Davis J, van der Heijde D, Haibel H, Rudwaleit M, Sieper J. Differences in the incidence of flares or new onset of inflammatory bowel diseases in patients with ankylosing spondylitis exposed to therapy with anti-tumor necrosis factor alpha agents.

58 van der Heijde D, Kivitz A, Schiff MH, Sieper J, Dijkmans BA, Braun J, Dougados M, Reveille JD, Wong RL, Kupper H, Davis JC Jr. Efficacy and safety of adalimumab in patients with ankylosing spondylitis: results of a multicenter, randomized, double-blind, placebo-controlled trial. *Arthritis Rheum* 2006; 54: 2136-2146

59 van der Heijde D, Schiff MH, Sieper J, Kivitz AJ, Wong RL, Kupper H, Dijkmans BA, Mease PJ, Davis JC Jr. Adalimumab effectiveness for the treatment of ankylosing spondylitis is maintained for up to 2 years: long-term results from the ATLAS trial. *Ann Rheum Dis* 2009; 68: 922-929