ABSTRACT

Canine retraction is a very important step in treatment of patients with crowding, or first premolar extraction cases. In severe crowding cases until, the canines have been distilized to relieve the crowding, space to correctly align the incisors will not be available. Correct positioning of the canines after retraction is of great importance for the function, stability, and esthetics. The aim of this systematic review was to examine, in an evidence-based way, which kinds of canine retraction methods/techniques are most effective and which have the least side effects. A literature survey was performed by applying the Medline Database (Entrez PubMed) and Science Direct database covering the period from 1985 to 2014, to find out efficient ways to accomplish canine retraction. Randomized controlled trials (RCTs), prospective and retrospective controlled studies, and clinical trials were included. Two reviewers selected and extracted the data independently and assessed the quality of the retrieved studies. The search strategy resulted in 324 articles, of which 22 met the inclusion criteria. Due to the vast heterogeneity in study methods, the scientific evidence was too weak to evaluate retraction efficiency during space closure. The data so far reviewed proved that elastomeric power chains, elastic threads, magnets, NiTi coil springs, corticotomies, distraction osteogenesis, and laser therapy, all are able to provide optimum rate of tooth movements. All the methods were nearly similar to each other for retraction of canines Most of the techniques lead to anchorage loss in various amounts depending on the methods used. Most of the studies had serious problems with small sample size, confounding factors, lack of method error analysis, and no blinding in measurements. To obtain reliable scientific evidence, controlled RCT’s with sufficient sample sizes are needed to determine which method/technique is the most effective in the respective retraction situation. Further studies should also consider patient acceptance and cost analysis as well as implants and minor surgeries for canine retraction.

Key words: Canine retraction, extractions, space closure

INTRODUCTION

There has always been a conflict between extraction and non extraction treatments in orthodontics.[1‑3] This debate is never ending. Extraction treatment has gained popularity from 1930s.[4] This was to achieve a more stable result.[5] Premolars were chiefly considered for extraction followed by canine retraction.[6‑9] Since space closure is a routine procedure in orthodontics, researchers have always tried to find efficient methods for canine retraction.[10]

Canines can be retracted by two ways:
• Frictional (sliding) mechanics
• Non frictional (non sliding) mechanics.

Frictional mechanics is the sliding of a tooth along an arch wire by application of force.[11]

Non frictional mechanics uses loops for tooth movement (non sliding). Canines can be retracted individually or can be retracted along with the incisors. Retraction of the canines along with the anterior teeth as one unit is known as en masse retraction. Both techniques depend on the type of malocclusion and operators’ skill and preference. To date, several studies have been published concerning different techniques of canine retraction with the aspect of the application, mechanics, or

Access this article online
Quick Response Code:
Website:
www.jorthodsci.org
DOI:
10.4103/2278-0203.149608
effectiveness. However, it can be difficult for the practitioner to interpret the results and evidence presented in these studies because a variety of study designs, sample sizes, and research approaches. In view of this, a systematic review of the present knowledge seems desirable. This systematic review was undertaken to answer the following questions.

- What kind of canine retraction methods/techniques are evaluated in an evidence-based manner?
- How effective and efficient are the different methods of retraction?
- Which technique retracts the canine in the least amount of time and the most physiological way?

Risk of Bias

Two reviewers (Drs. Kulshrestha and Chandra) [Table 1] independently assessed all the articles with respect to the inclusion and exclusion criteria, and the kappa score measuring the level of agreement was 0.94 (very good). Any inter examiner conflicts were resolved by discussion to reach consensus.

MATERIALS AND METHODS

Reporting of this systematic review was performed in accordance with the PRISMA guidelines for reporting systematic reviews of health sciences interventions. Three hundred and twenty-two articles were searched to find the most efficient ways to retract the canines. To identify all the studies that examined canine retraction and their effectiveness, a literature survey was done by applying the Medline Database (Entrez PubMed) and Science Direct database covering the period from 1985 to 2014, and used the Medical Subject Heading “orthodontics” and was crossed with a combination of the following term “retraction.” A flow diagram of the data search can be seen in Figure 1.

The inclusion criteria for the articles were:

- All journal articles, including clinical trials, abstracts
- \textit{In vivo} human studies
- Studies with first maxillary or mandibular premolar extractions
- Similar methodology applied for measurement of tooth movement in all the studies.

Table 1: Kappa scores measuring levels of agreement between the two reviewers in assessing data extraction and quality scores of the included articles

Type	Kappa value	Level of agreement
Study design	0.97	Very good
Sample size	1.0	Very good
Selection description	1.0	Very good
Valid measurement methods	1.0	Very good
Method error analysis	0.75	Good
Blinding in measurements	1.0	Very good
Adequate statistics provided	0.72	Good
Confounding factors	0.77	Good
Judged quality standard	0.94	Very good

Kappa values – 0.20: 5 poor, 0.21–0.40: 5 fair, 0.41–0.6: 5 moderate, 0.61–0.8: 5 good, 0.81–1.0: 5 very good

![Figure 1: Flow diagram of data search according to PRISMA](image-url)
The exclusion criteria included [Table 2].

- Thesis, letters, editorials, case reports where no abstract was available
- All animal studies
- Nonextraction or extraction of teeth other than first premolar
- Studies with different methodologies applied for the measurement of tooth movement.

Methodology

To identify all the studies that examined the relationship between the type of force applied and resultant canine retraction, a literature survey was done. No restrictions were set for the sample size. Only in vivo human studies that have undergone 1st premolar extraction followed by canine retraction were included. Age and gender restrictions are not applied.

Data were collected and analyzed according to these headings:

- Journal of Publication
- Study design
- Sample size
- Type of force application
- Magnitude of force
- Rate of canine retraction
- Side effects.

Limitations that were seen are also discussed and analyzed.

Twenty-two articles were finally reviewed to calculate the effectiveness of different methods of canine retraction.\(^{[15-36]}\)

RESULTS

Retraction evaluated at leveling and alignment stages, application of different techniques for rapid distalization of canine such as distraction osteogenesis, laser therapy, and corticotomies before canine retraction, are all included in the review. All articles were randomized controlled trials (RCTs) with a split-mouth study design for better correlation [Table 3].

Huffman and Way\(^{[19]}\) compared wires of two different sizes 0.016 and 0.020 stainless steel (SS) and found out no difference. Cacciafesta et al.\(^{[24]}\) compared elastomeric auxiliaries in the form of Unitek Alastik chain, Rocky Mountain elastic chain, and Elastic thread and found out that there was no difference between the three. Ziegler and Ingervall\(^{[17]}\) compared frictional with frictionless mechanics; they compared elastic chain with Gjessing retraction spring and also compared Rickett’s retraction spring with NiTi coil spring. They found out that with springs rotation is less and tipping is more.

Samuels et al.\(^{[18,21]}\) performed one study comparing medium NiTi coil spring with elastic module. They further compared the light, medium, and heavy NiTi coil springs with elastic modules to establish which treatment modality was more effective. Three more studies were reviewed, which compared elastomeric auxiliaries with NiTi coil spring.\(^{[21-23]}\) Daskalogiannakis and McLachlan\(^{[20]}\) evaluated the rate of canine retraction with reference to a continuous or an interrupted force delivery with magnets and a vertical loop, respectively. Two studies compared the tipping with bodily mechanics.\(^{[17,24]}\) Deguchi et al.\(^{[26]}\) explained the difference between steel ligatures tied plastic bracket with a metal slot and frictionless Clear Snap brackets. Forces were in the range of 70–450 g with a mean of 150–200 g. NiTi coil spring produced a continuous force for the required interval, whereas elastomeric auxiliaries had declining force application.\(^{[27]}\) Three studies showed NiTi coil spring produced a faster rate of canine retraction.\(^{[20-22]}\) Nightingale and Jones showed power chains to be as efficient as NiTi coil springs for retraction.\(^{[23]}\)

Elastic chain compared with Paul Gjessing retraction spring and Rickett’s retraction spring compared with NiTi coil spring proved that there was no considerable difference in rates of canine retraction.\(^{[15]}\) One study showed elastic chain, Rocky Mountain elastic chain and elastic thread to be as effective in retracting canines.\(^{[16]}\) One study showed that rate of retraction was quite similar when size of the round wire was increased from 0.016” SS to 0.020” SS.\(^{[15]}\) When tipping mechanics was compared with bodily mechanics one study reported no significant difference,\(^{[17]}\) whereas Shpack et al.\(^{[28]}\) showed a shorter duration of space closure with tipping mechanics. Thiruvenkatachari et al.\(^{[29]}\) found that canine retraction using implants was very effective. Martins et al.\(^{[31]}\) and Mehta and Sable\(^{[39]}\) found that loops made of titanium molybdenum alloy wire were more effective than loops made of SS wires. Kharkar and Kotrashetti\(^{[33]}\) and Raj and Kumar\(^{[35]}\) found that distraction osteogenesis for canine retraction was a promising technique. Corticotomy assisted canine retraction proved to be very efficient.\(^{[34]}\) Sukurica et al.\(^{[27]}\) used segmental alveolar distraction technique for canine retraction using distractors and raising of the flap. They retracted the canine by 3 mm/month way faster than any other technique. Yousseff et al.\(^{[39]}\) irradiated the canine region with a low-level laser before retraction in their patients. They found that accelerated tooth movement was seen, and the pain felt during orthodontic movement was greatly reduced. Low-level laser therapy can highly accelerate tooth movement.

Table 2: Exclusion criteria and number of excluded articles in this systematic review

Exclusion criteria	Number of articles excluded
Thesis, letters, editorials	72
Animal studies	23
Case reports where no abstract was available	50
Studies with different methodologies applied for the measurement of tooth movement	56
Nonextraction or extraction of teeth other than first premolar	101
Total	302
Table 3: Different methods of canine retraction

Article, journal	Year	Study design	Sample size	Force applied	Magnitude of force	Rate of canine retraction	Side effects	Conclusions
Huffman and Way, Am J Orthod	1986	Split-mouth	16	0.016" versus 0.020" SS	200 g	1.37 mm/month and 1.20 mm/month	Tipping with small sized wire was more than larger wire	NS* difference between the two wire sizes
Sonis et al., Am J Orthod	1986	Split-mouth	25	Unitak Alastik chain, Rocky mountain chain, Elastic thread	350-400 g	1.28 mm/3 weeks and 1.51 mm/3 weeks	Force degradation of all the elastomeric auxiliaries occurred	NS difference
Ziegler and Ingervall, Am J Orthod Dentofacial Orthop	1989	Split-mouth	21	Alastic chain, Gjessing retraction spring	380 g	Initial decaying to 1.4 mm/3-4 weeks and 1.91 mm/3 weeks	Tipping, rotation of canine and anchorage loss of molars	NS difference with spring tipping is less and rotation is more
Samuels et al., Am J Orthod Dentofacial Orthop	1993	Split-mouth	17	NiTi spring, Elastic module	150 g	Not mentioned	Force degradation with elastic module	Spring delivers a greater and more consistent force than elastic module
Lotzof et al., Am J Orthod Dentofacial Orthop	1996	Split-mouth	12	Tippedge bracket versus edgewise bracket, Force applied with power chain	200 g	1.88 mm/3 weeks and 1.63 mm/3 weeks	More tipping with tip edge Anchorage loss inconclusive due to small sample size	NS difference
Daskalogiannakis and McLachian, Am J Orthod Dentofacial Orthop	1996	Split-mouth	6	Vertical loop, Magnets	70 g	0.63 mm/28 days and 1.62 mm/28 days	Not mentioned	Light force of a continuous nature is most efficient for tooth movement
Samuels et al., Am J Orthod Dentofacial Orthop	1998	Split-mouth	18	NiTi coil spring, Light/medium/heavy Elastic module	100 g	0.16 mm/week and 0.26 mm/week	Force value declines after few weeks	Medium and heavy spring produces a faster and consistent rate of space closure than the light spring or elastic module
Dixon et al., J Orthod	2002	RCT	12	Active ligatures, Power chain, NiTi coil springs	200 g	0.35 mm/month and 0.58 mm/month	Force value declines after few weeks	Fastest with NiTi coil spring
Nightingale and Jones, J Orthod	2003	RCT	22	Elastomeric power chain, NiTi coil spring	209-109 g and 300-149 g	0.21 mm/week and 0.26 mm/week	Modest sample size, timing of space closure, many variables which could not be standardized	NS difference
Cacciafesta et al., Am J Orthod Dentofacial Orthop	2003	Split-mouth	8	Ricketts spring, NiTi coil spring	1 N	1.91 mm/30 days and 1.41 mm/30 days	Small sample size	NS difference
Bokas and Woods, Aust Orthod	2006	Split-mouth	12	NiTi coil spring, Power chain, Plastic brackets with metal slot Clear Snap brackets, Force applied with closed coil spring	200 g	1.85 mm/month and 1.68 mm/month	Anchorage loss	Similar rates by both the methods
Deguchi et al., Angle Orthod	2007	Split-mouth	30	NiTi coil spring, Power chain, Plastic brackets with metal slot Clear Snap brackets, Force applied with closed coil spring	Not mentioned time measured instead	Not mentioned	Newer and more efficient technique	Clear Snap brackets closed space quicker due to increased rate of canine retraction
Sukurica et al., Angle Orthod	2007	Split-mouth	8	Segmental alveolar distraction	250 g	3 mm/1-month	Distal tipping of canine Anchorage loss	Quick and efficient technique

Contd.,
DISCUSSION

The strict inclusion and exclusion criteria applied for the present review may have resulted in a few articles. However, strength of the evidence in a review is more dependent on the quality of the included studies than on the degree of completeness. Since different types of forces are applied within the same arch wire, it is believed the arch wire may twist under the influence. This might have affected the results of rate of retraction in these studies. In such clinical trials, it is difficult to keep the variables of individual response, fluctuations of oral environment, lapses between appointments, precise and repeatable method of measurement of the rate of canine retraction, the force systems, could not be compared accurately. Some believe that the varied response to different methods of canine retraction was not dependent on the type of force; rather it was due to individual metabolic response.

Side Effects

Tipping was reported with quite a few studies especially when wire of small diameter was used. With power chain force degradation was reported. The degradation of force was overcome by increasing the initial force application. Rotation of canine and tipping affected the rate of canine retraction, the force systems, could not be compared accurately to many studies. Root resorption was also seen in some of the studies along with increased anchorage loss.

Risk of bias assessment of the 22 selected reports, 17 were retrospective studies, 3 were prospective studies, and 2 RCTs were present [Table 4].

Table 3: Contd

Article, journal	Year	Study design	Sample size	Force applied	Magnitude of force	Rate of canine retraction	Side effects	Conclusions
Shpack et al., Angle Orthod	2008	Split-mouth	14	Tip edge bracket Edgewise bracket Force applied with NiTi coil spring	0.5-0.75 N	Not mentioned	Rotation and anchorage loss tipping was not followed by root uprighting in tip edge	Tipping mechanics closed space in lesser tone more bodily mechanics
Thiruvenkatachari et al., Am J Orthod Dentofacial Orthop	2008	Split-mouth	12	Closed coil spring with implant anchorage	100 g	4.29 mm on implant anchorage side 3.7 mm on the control side	Not mentioned	Canine retraction proceeds faster when titanium micro implants are used for anchorage
Youssef et al., Lasers Med Sci	2008	Split-mouth	15	One side laser irradiation Other side control	200 g	2 mm/2 months	Anchorage loss	Pain was reduced greatly in the laser irradiated side then control
Martins et al., Am J Orthod Dentofacial Orthop	2009	Split-mouth	10	17×25 Beta titanium alloy T-loop	150 g	3.2 mm/8 weeks	Cusp tips intruded Apices were protruded	NS difference
Xu et al., Am J Orthod Dentofacial Orthop	2010	Split-mouth	64	En masse retraction lace backs 2 step retraction lace backs	Not mentioned	4.3 mm	Anchorage loss	NS difference
Kharkar and Kotrasheit, Oral Surg Oral Med Oral Patol Oral Radiol Endod	2010	Split-mouth	6	Dentoalveolar distraction Distractions	100 g	6.5 mm/12 days	Tipping Anchorage loss	Distraction osteogenesis for rapid tooth movement is promising
Aboul-Ela et al., Am J Orthod Dentofacial Orthop	2011	Split-mouth	13	Closed NiTi coil spring Corticotomy assisted Control without corticotomy	150 g	5.88 mm/ 4 months 3.38 mm/ 4 month	Not mentioned	Corticotomy assisted retraction is more efficient
Raj and Kumar, J Ind Orthod Soc	2013	Split-mouth	5	Intraoral distractor	200 g	0.8 mm/day	Tipping	Significant reduction in total treatment time
Mehta and Sable, J Ind Orthod Soc	2013	Split-mouth	15	17×25 TMA T-loop	200 g	5.46 mm/ 4 months	Less rotational control	TMA loop retraction offers more canine retraction and more tipping control
				16×22 SS T-loop	200 g	4.20 mm/ 4 months	More tipping	SS loop offers more rotational control

*NS – Not significant; TMA – Titanium-molybdenum alloy; SS – Stainless steel; RCT – Randomized clinical trial

During orthodontic treatment and can effectively reduce pain level.

Side Effects

Tipping was reported with quite a few studies especially when wire of small diameter was used. With power chain force degradation was reported. The degradation of force was overcome by increasing the initial force application. Rotation of canine and tipping affected the rate of canine measurement and sample sizes were inconclusive to many studies. Root resorption was also seen in some of the studies along with increased anchorage loss.
Table 4: Quality evaluation of the selected studies

Author (year)	Study design	Sample size	Selection description	Valid measurement methods	Method error analysis	Blinding in measurements	Adequate statistic provided	Judged quality standard
Huffman and Way 1986	Retrospective comparative split-mouth	Inadequate	Adequate	Yes	Yes	No	Yes	Low
Sonis et al. 1986	Retrospective comparative split-mouth	Adequate	Adequate	Yes	Yes	No	Yes	Medium
Ziegler and Ingervall 1989	Retrospective comparative split-mouth	Inadequate	Inadequate	Yes	Yes	No	Yes	Low
Samuels et al. 1993	Retrospective comparative split-mouth	Inadequate	Adequate	No	No	No	Yes	Low
Lotzof et al. 1996	Retrospective comparative split-mouth	Inadequate	Adequate	Yes	Yes	No	Yes	Low
Daskalogiannakis and McLachlan 1996	Retrospective comparative split-mouth	Inadequate	Inadequate	Yes	Yes	No	No	Low
Samuels et al. 1998	Retrospective comparative split-mouth	Inadequate	Adequate	Yes	Yes	Yes	No	Medium
Dixon et al. 2002	Randomized controlled clinical trial	Adequate	Adequate	Yes	No	Yes	Yes	High
Nightingale and Jones 2003	Randomized controlled clinical trial	Adequate	Adequate	Yes	No	Yes	Yes	High
Caccialfesta et al. 2003	Prospective comparative split-mouth	Inadequate	Adequate	Yes	No	No	Yes	Low
Bokas and Woods 2006	Retrospective comparative split-mouth	Inadequate	Adequate	Yes	Yes	No	No	Low
Deguchi et al. 2007	Retrospective comparative split-mouth	Adequate	Adequate	Yes	No	No	Yes	Medium
Sukurica et al. 2007	Retrospective comparative split-mouth	Inadequate	Inadequate	Yes	Yes	No	Yes	Low
Shpack et al. 2008	Retrospective comparative split-mouth	Inadequate	Adequate	Yes	Yes	No	No	Low
Thiruvanukarathiri et al. 2008	Retrospective comparative split-mouth	Inadequate	Adequate	Yes	No	No	Yes	Low
Youssef et al. 2008	Prospective comparative split-mouth	Inadequate	Adequate	Yes	Yes	No	Yes	Low
Martins et al. 2009	Retrospective comparative split-mouth	Inadequate	Adequate	No	Yes	No	Yes	Low
Xu et al. 2010	Retrospective comparative split-mouth	Adequate	Adequate	Yes	No	No	Yes	Low
Kharkar and Kotreshetti 2010	Retrospective comparative split-mouth	Inadequate	Adequate	Yes	No	No	Yes	Low
Aboul et al. 2011	Retrospective comparative split-mouth	Inadequate	Adequate	Yes	Yes	No	No	Low
Raj and Kumar 2013	Retrospective comparative split-mouth	Inadequate	Adequate	Yes	Yes	No	Yes	Low
Mehta and Sable 2013	Prospective comparative split-mouth	Inadequate	Adequate	Yes	No	No	No	Low

Sample size generally applied for these clinical trials was considered conclusive in a few researches.\(^{[19,20]}\) Optimum force for movement has no specific value.\(^{[32]}\) However, a range of 100–200 g is suggested sufficient by Quinn and Yoshikawa\(^{[12,17,33]}\) and this was the force range observed in the review. It is not the magnitude of force applied rather its duration that is considered important for good biologic tooth response.\(^{[18]}\) Light continuous force up to a threshold can provide an optimum force.\(^{[28]}\) High initial forces did not achieve greater space closure but resulted in the greater percentage of force decay.\(^{[22]}\) NiTi coil springs are believed to provide this constant force.\(^{[24]}\) However, one study contradicted this.\(^{[22]}\) In sliding mechanics, the force of friction is encountered, which tends to reduce the force available eventually for effective tooth movement.\(^{[11]}\) The data so far reviewed proved that elastomeric power chains, elastic threads, magnets, NiTi coil springs,\(^{[20]}\) corticotomy,\(^{[24]}\) distraction osteogenesis,\(^{[27]}\) and laser therapy\(^{[20]}\) all are able to provide optimum rate of tooth movements. All the methods were nearly similar to each other for retraction of canines. No one method can be considered superior to another in terms of faster tooth movement or limited side effects.
Quality of Analysis
Several methods and scales to incorporate quality into systematic reviews have been proposed and have since been extensively applied to various RCTs in medicine. However, many items were clearly not applicable, for example, placebo appearance/taste, patient blinded, or observer blind to treatment. Instead, the quality of the articles was judged as low, medium, or high according to a scoring system based on the characteristics given in Table 4. Many of the studies had serious defects, and according to the criteria used, the majority of the articles were judged to be of low quality. The most serious shortcomings were retrospective study design in combination with small sample size and inadequate selection description. Problems of lack of method error analysis, the absence of blinding in measurements were other examples of shortcomings. Furthermore, the choice of statistical methods was not explained. In all studies, the methods to analyze canine retraction were valid and well-known.

However, different measurement methods were used to analyze the retraction, which caused difficulties in comparing the results of the studies. From a methodological point of view, it was notable that only 2 of the 22 studies declared the use of blinding in measurements. It is known that nonrandomized trials or RCT without blinding design are more likely to show the advantage an innovation has over a standard treatment method.12 This implies that the measurements can be affected by the researcher. An RCT is our most powerful tool to evaluate therapy, and the quality of the trial significantly affects the validity of the conclusions. However, randomization is not always possible, and good quality observational studies may be another option.28 Two RCT studies22,23 were identified in this systematic review, and both of them were judged to have high quality. In the future, there is a need for additional, well-controlled RCTs concerning the effectiveness of different canine retraction techniques including implant systems and for assessing costs and side effects of the interventions.

CONCLUSIONS
Two main canine retraction methods were identified: (1) Sliding mechanics (2) Loop mechanics.

- The scientific evidence was too weak to evaluate the efficiency of different canine retraction methods during space closure because a vast heterogeneity of the studies existed
- Sliding mechanics leads to anchorage loss in the molar region in various amounts depending on the method of retraction
- Loop mechanics has its drawbacks but can provide adequate retraction
- Most of the studies have serious problems with small sample size, confounding variables, lack of method error analysis, and no blinding in measurements. No evidence-based conclusions were, therefore, possible to draw from these studies
- Any method of force application would be considered effective as long as it is able to overcome the force of friction and at the same time achieve the maximum rate of tooth movement with as little side effects as possible
- To obtain reliable scientific evidence, additional RCT’s with sufficient sample size are needed to determine which canine retraction technique is the most effective. Further studies should also consider patient acceptance and compliance as well as cost analysis.

REFERENCES
1. Vaden JL, Dale JG, Klontz HA. The tweed-merrifield edgewise appliance: Philosophy, diagnosis, and treatment. In: Graber TM, Vanarsdall RL, editors. Orthodontics: Current Principle Sand Techniques. 4th ed. St. Louis: Mosby; 2005. p. 675-715.
2. Hans MG, Groisser G, Damon C, Amberman D, Nelson S, Palomo JM. Cephalometric changes in overbite and vertical facial height after removal of 4 first molars or first premolars. Am J Orthod Dentofacial Orthop 2006;130:183-8.
3. Jan H. Restore a wide radiant smile without dental extractions. Pak Oral Dent J 2005;25:65-8.
4. Profit WR, Fields HW Jr, Sarver DM. Contemporary Orthodontics. 4th ed. St Louis: Mosby; 2007.
5. McLaughlin RP, Bennett JC, Travesi HJ. Systemized Orthodontic Treatment Mechanics. Edinburgh: Mosby; 2001.
6. Stalpers MJ, Booij JW, Bronkhorst EM, Kuijpers-Jagtman AM, Katsaros C. Extraction of maxillary first permanent molars in patients with Class II Division 1 malocclusion. Am J Orthod Dentofacial Orthop 2007;132:316-23.
7. Erden AE, Nanda RS, Isiksal E. Relapse of anterior crowding in patients treated with extraction and nonextraction of premolars. Am J Orthod Dentofacial Orthop 2006;129:775-84.
8. Chaushu G, Becker A, Zeltser R, Vasker N, Branski S, Chaushu S. Patients’ perceptions of recovery after routine extraction of healthy premolars. Am J Orthod Dentofacial Orthop 2007;131:170-5.
9. Janson G, Busato MC, Henriques JF, de Freitas MR, de Freitas LM. Alignment stability in Class II malocclusion treated with 2-and 4-premolar extraction protocols. Am J Orthod Dentofacial Orthop 2006;130:189-95.
10. Hayashi K, Uechi J, Murata M, Mizoguchi I. Comparison of maxillary canine retraction with sliding mechanics and a retraction spring: A three-dimensional analysis based on a midpalatal orthodontic implant. Eur J Orthod 2004;26:585-9.
11. Nishio C, da Motta AF, Elias CN, Mucha JN. In vitro evaluation of frictional forces between archwires and ceramic brackets. Am J Orthod Dentofacial Orthop 2004;125:56-64.
12. National Health Service (NHS) Center for Reviews and Dissemination. Report Number 4. Undertaking Systematic Reviews of Research on Effectiveness. 2nd ed. University of York: York Publishing Services Ltd.; 2001.
13. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977;33:159-74.
14. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. J Clin Epidemiol 2009;62:e1-e34. doi:10.1016/j.jclinepi.2009.06.006.
15. Huffman DJ, Way DC. A clinical evaluation of tooth movement along arch wires of two different sizes. Am J Orthod 1986;83:453-9.
16. Sonis AL, Van der Plas E, Gianelly A. A comparison of elastomeric auxiliaries versus elastic thread on premolar extraction site closure: An in vivo study. Am J Orthod 1986;89:73-8.
17. Ziegler P, Ingvall B. A clinical study of maxillary canine retraction with a retraction spring and with sliding mechanics. Am J Orthod Dentofacial Orthop 1989;95:99-106.
18. Samuels RH, Rudge SJ, Mair LH. A comparison of the rate of space...
Kulshrestha, et al.: Different methods of canine retraction

19. Lotzof LP, Fine HA, Cisneros GJ. Canine retraction: A comparison of two preadjusted bracket systems. Am J Orthod Dentofacial Orthop 1996;110:191-6.

20. Daskalogiannakis J, McLachlan KR. Canine retraction with rare earth magnets: An investigation into the validity of the constant force hypothesis. Am J Orthod Dentofacial Orthop 1996;109:489-95.

21. Samuels RH, Rudge SJ, Mair LH. A clinical study of space closure with nickel-titanium closed coil springs and an elastic module. Am J Orthod Dentofacial Orthop 1998;114:73-9.

22. Dixon V, Read MJ, O’Brien KD, Worthington HV, Mandall NA. A randomized clinical trial to compare three methods of orthodontic space closure. J Orthod 2002;29:31-6.

23. Nightingale C, Jones SP. A clinical investigation of force delivery systems for orthodontic space closure. J Orthod 2003;30:229-36.

24. Cacciafesta V, Sfondrini MF, Ricciardi A, Scribante A, Klersy C, Auricchio F. Evaluation of friction of stainless steel and esthetic self-ligating brackets in various bracket-archwire combinations. Am J Orthod Dentofacial Orthop 2003;124:395-402.

25. Bokas J, Woods M. A clinical comparison between nickel titanium springs and elastomeric chains. Aust Orthod J 2006;22:39-46.

26. Deguchi T, Imai M, Sugawara Y, Ando R, Kushima K, Takano-Yamamoto T. Clinical evaluation of a low-friction attachment device during canine retraction. Angle Orthod 2007;77:968-72.

27. Sukurica Y, Karaman A, Gürel HG, Dolanmaz D. Rapid canine distalization through segmental alveolar distraction osteogenesis. Angle Orthod 2007;77:226-36.

28. Shpack N, Davidswich M, Sarne O, Panayi N, Vardimon AD. Duration and anchorage management of canine retraction with bodily versus tipping mechanics. Angle Orthod 2008;78:95-100.

29. Thiruvendrakumar B, Ammayappan P, Kandaswamy R. Comparison of rate of canine retraction with conventional molar anchorage and titanium implant anchorage. Am J Orthod Dentofacial Orthop 2008;134:30-5.

30. Youssef M, Ashkar S, Hamade E, Gutknecht N, Lampert F, Mir M. The effect of low-level laser therapy during orthodontic movement: A preliminary study. Lasers Med Sci 2008;23:27-33.

31. Martins RP, Buschang PH, Gandini LG Jr, Rossouw PE. Changes over time in canine retraction: An implant study. Am J Orthod Dentofacial Orthop 2009;136:87-93.

32. Xu TM, Zhang X, Oh HS, Boyd RL, Korn EL, Baumrind S. Randomized clinical trial comparing control of maxillary anchorage with 2 retraction techniques. Am J Orthod Dentofacial Orthop 2010;138:544.e1-9.

33. Kharkar VR, Kotrashetti SM. Transport dentoalveolar distraction osteogenesis-assisted rapid orthodontic canine retraction. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;109:687-93.

34. Aboul-Ela SM, El-Beialy AR, El-Sayed KM, Selim EM, El-Mangoury NH, Mostafa YA. Miniscrew implant-supported maxillary canine retraction with and without corticotomy-facilitated orthodontics. Am J Orthod Dentofacial Orthop 2011;139:252-9.

35. Raj AB, Kumar MV. Rapid canine retraction with dentoalveolar distraction osteogenesis. J Indian Orthod Soc 2013;47:21-7.

36. Mehta KR, Sable RB. Comparison of the amount of maxillary canine retraction with T-loops using TMA and stainless steel wires. A Clinical study. J Indian Orthod Soc 2013;47:178-83.

37. Esfandiari L, Borzabadi-Farahani A, Hassanzadeh-Ashiri A, Badiee MR, Fekrazad R. The effect of 810-nm low-level laser therapy on pain caused by orthodontic elastomeric separators. Lasers Med Sci 2014;29:559-64.

38. McIlvaine E, Borzabadi-Farahani A, Lane CJ, Azen SP, Yen SL. Apriori feasibility testing of randomized clinical trial design in patients with cleft deformities and Class III malocclusion. Int J Pediatr Otorhinolaryngol 2014;78:725-30.

How to cite this article: Kulshrestha RS, Tandon R, Chandra P. Canine retraction: A systematic review of different methods used. J Orthodont Sci 2015;4:1-8.

Source of Support: Nil, Conflict of Interest: None declared.

Announcement

Android App

A free application to browse and search the journal’s content is now available for Android based mobiles and devices. The application provides “Table of Contents” of the latest issues, which are stored on the device for future offline browsing. Internet connection is required to access the back issues and search facility. The application is compatible with all the versions of Android. The application can be downloaded from https://market.android.com/details?id=comm.app.medknow. For suggestions and comments do write back to us.