Cloning of the Endoglucanase Gene from a *Bacillus amyloliquefaciens* PSM 3.1 in *Escherichia coli* Revealed Catalytic Triad Residues Thr-His-Glu

1Zeily Nurachman, 1Sari Dewi Kurniasih, 1Ferra Puspitawati, 1Sarwono Hadi, 2Ocky Karna Radjasa and 1Dessy Natalia

1Biochemistry Division, Faculty of Mathematics and Natural Sciences, Institute Technology Bandung, Jl. Ganesha No 10, Bandung 40132, Indonesia
2Department of Marine Science, Faculty of Fishery and Marine Sciences, Diponegoro University, Jl. Prof. Soedharto, S.H. Tembalang, Semarang 50275, Indonesia

Abstract: Problem statement: An Indonesian marine bacterial isolate, *Bacillus amyloliquefaciens* PSM 3.1 was isolated for hydrolyzing cellulose. A 1500-bp nucleotide fragment was amplified from the chromosomal DNA by the use of primers directed against the conserved sequence of *Bacilli* endoglucanase genes obtained from GenBank. **Approach:** The fragment was cloned and expressed in *Escherichia coli*. **Results:** The endoglucanase gene (*eglII* gene) had an open reading frame of 1500 nucleotides encoding a protein of 499 amino acids. The EglII protein belonged to Glycosyl Hydrolase family 5 (GH5) with a Cellulose Binding Module 3 (CBM 3). The structure model of the EglII protein revealed that the catalytic residues seemed to be Glu169 (as proton donor) and Glu257 (as nucleophile) and the catalytic triad residues were Thr256, His229 and Glu169. The EglII endoglucanase exhibited an optimum pH of 6.0 and temperature of 50°C and the enzyme tolerated to high salt concentration. **Conclusion/Recommendations:** This EglII endoglucanase is a promising candidate for many applications in biomass degradation.

Key words: *Bacillus amyloliquefaciens, Escherichia coli*, catalytic triad residues, endoglucanase, cellobiohydrolases, cellulytic, *Galaxea* sp, nucleotides, hydrolysis, agarose gel electrophoresis, synthesized, polysaccharide, DNA polymerase, carboxymethyl cellulose

INTRODUCTION

Cellulose is completely hydrolyzed by means of three synergistic enzymes: endoglucanases (endo-1,4-β-D-glucanases, EC 3.2.1.4, hydrolyze internal 1,4-β-glucosidic bond randomly in the cellulose chain), cellobiohydrolases (exo-1,4-β-D-glucanases, EC 3.2.1.91, cleave off cellobiose units from the ends of cellulose chains) and β-glucosidases (1,4-β-D-glucosidases, EC 3.2.1.21, hydrolyze cellobiose and cellobiose oligosaccharides to glucose units) (Henrissat, 1994; Wood and Garica-Campayo, 1990; Zhang and Lynd, 2004). Of these complex enzymes, the role of endoglucanase is very important for initiating cellulose hydrolyses. The looking for new endoglucanases and its correlated genes are still continuing since most of these enzymes have not met the requirements in industrial yet. Hence, worldwide efforts for searching microorganisms producing endoglucanases with higher activities and greater efficiency are being undertaken. Endoglucanases from a wide range of terrestrial organisms have been reported, however, few endoglucanase reports from marine sources are known. In order to explore Indonesian marine microbial collections, gene encoding enzyme for hydrolyzing cellulose is investigated. Of 32 isolates we have, *Bacillus amyloliquefaciens* PSM 3.1, which isolated from the surface of the hard coral *Galaxea* sp.-collected from Pantai Merah, Komodo Island, Flores, Indonesia by scuba diving at depth of approximately 3 m, shows the highest cellulytic activity. Here, we report the cloning of endoglucanase gene of *B. amyloliquefaciens* PSM 3.1 in *E. coli*. Protein structure model of the endoglucanase from amino acid residues deduced its gene shows novel catalytic triad residues.

MATERIALS AND METHODS

Bacterial strains, vector and culture conditions: The bacterial strains and plasmids that used in this study are listed in Table 1. The *B. amyloliquefaciens* PSM 3.1 was cultivated in marine broth medium (0.25% yeast extract and 0.5% bacto peptone in seawater-water 3:1).
Table 1: Strains and plasmids used in this study

Strains	Description	Source
B. amylolyquefaciens PSM 3.1	Wild-type, can degrade cellulose	Isolated by our research group
E. coli TOP 10	General cloning host strain	Purchased from Invitrogen
E. coli BL21 (DE3)	Expression host strain	Purchased from Promega
Plasmids		
pGEM-T	General cloning vector, Amp\^r	Purchased from Promega
pET-20b	Expression vector, Amp\^r	Purchased from Novagen
pG-Cel	eglII gene clone into pGEM-T	Constructed in this study
pET-Egl	eglII gene clone into pET-20b	Constructed in this study

The E. coli strains were cultivated in LB broth medium. For plating, 1% bacto agar was added to LB broth medium. For screening of recombinants, 100 μg mL\(^{-1}\) of ampicillin, 100 mM Isopropyl-β-Thiogalactopyranoside (IPTG) and 50 mg mL\(^{-1}\) 5 bromo-4-chloro-3-indoly-β-D-galactopyranoside (X-Gal) were added to agar plate.

DNA manipulations: The molecular cloning procedure was performed mainly using the procedure of Sambrook et al. (1989). Genomic DNA was isolated from B. amyloliquefaciens PSM 3.1 using a Wizard Genomic Purification Kit (Promega). Digestion of DNA with restriction endonuclease, separation of fragment by agarose gel electrophoresis, ligation of DNA fragments, transformation of E. coli with plasmid DNA and extraction of recombinant DNA were all performed as described by Sambrook et al. (1989). DNA fragments were recovered from agarose gel using Gel Extraction Kit (QiaGen).

Primers and PCR amplification conditions of the endoglucanase gene: According to the published sequences of endoglucanase genes in the GenBank database (accession nos. AY044252, Z29076, DQ116829, DQ82954 and EU022560), two DNA oligonucleotide primers were designed and synthesized to allow the PCR amplification of the entire gene from genomic DNA of B. amyloliquefaciens PSM 3.1. The primers were as follows:

- **CelF:** 5′-ATGAAACGGTCAATCTC-3′ (deduced from conserved sequence in the genus of Bacillus)
- **CelR:** 5′-CTAATTTGGTTCTGTTCC-3′ (deduced from conserved sequence in the genus of Bacillus)

The PCR reaction mixtures for 25 μL volume reaction system contained 1× Dream Taq reaction buffer (Fermentas), 0.2 mM forward primer and reverse primer, 0.2 mM dNTP, 2mM MgCl\(_2\), 2.5 U Dream Taq DNA polymerase (Fermentas) and 2 ng of DNA template. The PCR started with a 2 min denaturation at 94°C, followed by 30 cycles of 1 min at 94°C, 1.5 min at 51°C and 2 min at 72°C. A final extension of 5 min at 72°C was performed. The amplified PCR products were analyzed by agarose gel electrophoresis.

Cloning and expression of endoglucanase gene: The PCR products with size of 1500 bp which is predicted as an endoglucanase gene (Fig. 1A) was cloned into a pGEM-T vector, yielding pG-Cel and then transformed into E. coli TOP10 for sequencing and assaying. According to the result of sequences (Fig. 1B), two new primers were designed and synthesized to allow the PCR amplification of the endoglucanase gene in pG-Cel without signal peptide sequence (1-87) and addition of restriction sites for EcoRI and Xhol. The primers were as follows:

- **Egl-F:** 5′-AGAATTCGGCAGGGACAAGAACGCCAGTACG-3′ (underline, EcoRI restriction site)
- **Egl-R:** 5′-ACTCGAGATTTGGTTCTGTTCC-3′ (underline, Xhol restriction site)

Each of PCR products were cloned into a pET-20b vector, yielding the expression vector pET-Egl. The recombinant plasmids were then transformed into E.coli BL21 (DE3) for further analysis and expression experiments.

Late assays for endoglucanase activity: The transformed E.coli BL21 (DE3) cells harbouring pET-Egl were screened for the expression of endoglucanase activity by the Congo-red assay (Wood et al., 1988). The transformed cells were overlaid on LB agar medium containing 1% Carboxymethyl Cellulose (CMC) and then incubated at 37°C overnight. Following incubation, the plates were stained with 1% Congo-red for 5 min and destained with 1M NaCl for 5 min. Positive clones were identified by a clear zone around endoglucanase-expressing colonies.
DNA sequencing and protein structure modeling:
The resulting DNAs were sequenced using dye-end terminator (Macrogen, Korea). A similarity analysis of the nucleotide sequence arising from PCR amplification was carried out using the BLAST(N) program (http://www.ncbi.nlm.nih.gov). A similarity analysis of the deduced amino acid sequence of the cloned gene was performed using the BLAST(P) program (http://www.ncbi.nlm.nih.gov). Protein structure modeling was carried out by using the SWISS-MODEL (Arnold et al., 2006).

Nucleotide sequence number: The DNA sequence of the endoglucanase gene from \textit{B. amyloliquefaciens} PSM 3.1 has been deposited at GenBank under accession no. GU390463.

Enzyme assays: The positive clone producing endoglucanase was cultured in LB broth medium and induced by IPTG. The cells were harvested by centrifugation (7000×g for 20 min at 4°C), suspended in 50 mM universal buffer (succinic acid, Na2HPO4, glycine), pH 6.0 in a ratio of 1 g cell: 2 mL buffer and
then sonicated (50% pulse for 15 second at 4°C, repeat 10 times). The endoglucanase was obtained from centrifugation (11000×g for 20 min at 4°C) of the solution and its activity was measured by measuring the release of reducing sugar, as given by the Dinitrosalicylic acid (DNS) method using cellobiose as a standard (Miller, 1959). One unit of endoglucanase activity was defined as the amount of enzyme producing 1 μmol of reducing equivalents per minute under the assay condition. All assays were conducted in triplicates.

Effect of pH, temperature and NaCl on endoglucanase activity: The optimal pH of endoglucanase activity was determined by evaluating the hydrolysis reaction in the range of pH 4.0-10.0 using 25 mM universal buffers at 50°C. The optimum temperature of endoglucanase activity determined by evaluating the hydrolysis reaction in the temperature range of 26-80°C at pH 6.0. The influence of NaCl on the endoglucanase activity was determined by incubation of reaction mixture with different NaCl concentration at 50°C and pH 6.0.

Protein determination: Total protein concentration was determined by the Bradford method using bovine serum albumin as a standard (Bradford, 1976).

RESULTS AND DISCUSSION

Analysis of the endoglucanase gene: Endoglucanases are the most diverse class of enzymes amongst cellulolytic enzymes (http://afmb.cnrs-mrs.fr/CAZY/index.html). Most of endoglucanase genes are obtained by PCR or by constructing DNA libraries. Here, the PCR products obtained using B. amyloliquefaciens PSM 3.1 chromosomal DNA as template were about 1500 bp and other non-specific bands (Fig. 1A). A 1500 bp band of the PCR products was recovered from the agarose gel and ligated to pGEM-T vector and then recombinant plasmids (pG-Cel) were transformed into E. coli TOP10.

To analyze whether pG-Cel containing the targeted endoglucanase gene, the nucleotide sequence was determined (Fig 1B). The nucleotide sequence of endoglucanase gene B. amyloliquefaciens PSM 3.1 was generally 97% identical to that of endoglucanase (engA) gene of B. amyloliquefaciens strain UMAS1002 (GenBank no AF363635.1) and 97% identical to that of endoglucanase (bglC) gene of B. subtilis DLG (GenBank no M16185.1B) and there are 17 base differences. Thus, with respect to the sequence identity, the 1500 bp PCR product of the genome DNA is considered to be an endoglucanase gene (designated as egII gene).

To examine expression of endoglucanase, the egIII gene of pG-Cel was PCR amplified using primers Egl-F and Egl-R, cloned to pET-20b vector and then recombinant plasmids (pET-Egl) were transformed into E. coli BL21 (DE3). The transformed cells were screened and positive clones were identified by the presence of a clear zone surrounding colonies suggesting CMC hydrolysis (Fig. 2A). A positive clone contained pET-Egl harboring about 1423 bp of egIII gene (Fig. 2B). Further resequencing result of the egIII gene in pET-Egl showed no significant nucleotide sequence difference from that of egII gene in pG-Cel, except signal peptide sequence. So, the egIII gene contained an Open Reading Frame (ORF) of 1500 nucleotides that started with ATG start codon and terminated with a non coding TAG as stop codon (Fig. 1B).
Fig. 3: Deduced amino acid sequence of EglII endoglucanase of *B. amyloliquefaciens* PSM 3.1 (A), and its topology (B). The enzyme has two domains: catalytic domain (Glycosyl Hydrolase 5 (GH5); residues 48-301, red) and substrate binding domain (CBM 3; residues 356-437, blue). Four residues for conserved catalytic residues were underlined.

Structural analysis of the endoglucanase model:

Endoglucanases are modular enzymes consisting of two or more functional modules, such as catalytic modules and carbohydrate binding modules (Ohmiya et al., 1977). The amino acid sequence deduced from *eglII* gene is shown in Fig. 3A. The ORF of *eglII* gene consisted of 1500 nucleotides encoding a protein 499 amino acids, called EglII endoglucanase. BLAST(P) result of EglII endoglucanase revealed a modular enzyme composed of a signal peptide (1-29), a catalytic domain (48-301) of Glycosyl Hydrolase family 5 (GH5) and a substrate binding domain (CBM 3; residues 356-437, blue). Four residues for conserved catalytic residues were underlined.

Activity of the endoglucanase: Recombinant EglII endoglucanase was obtained from *E. coli* BL21 (DE3) harboring pET-Egl. The profile of activity of EglII endoglucanase versus pH seemed to be a saddle-like curve (Fig. 5A). The optimal pH of EglII endoglucanase was determined to be 6.0. The enzyme retained more than 50% of its activity in a wide range of pH (4-10).
The apparent optimal temperature of EglII endoglucanase at pH 6.0 was 50°C, with 50% of maximum activity being retained between 40 and 60°C (Fig. 5B). EglIII endoglucanase was found to be salt tolerant (Fig. 5C). The enzyme retained more than 90% of its activity in the presence of up to 2M NaCl. The overall characteristics of recombinant endoglucanase EglIII activity were similar to those of wild type EglIII endoglucanase.

CONCLUSION

The EglIII endoglucanase features described here show cellulolytic activity across a broad pH range,
moderate thermostable and high salt tolerant. On the basis of this characteristics, EgII endoglucanase is a promising candidate for application in biomass degradation, cellulose processing industry and biotechnological processes. In the future, it will be essential to perform further study of structure-function relationship of the enzyme.

ACKNOWLEDGEMENT

This study was financially supported by a grant from the Riset Unggulan, Institute Technology Bandung, Indonesia. We thank Mr. Joshua Christian Tumboimbela for molecular artworks.

REFERENCES

Arnold, K., L. Bordoli, J. Kopp and T. Schwede, 2006. The SWISS-MODEL Workspace: A web-based environment for protein structure homology modeling. Bioinformatics, 22: 195-201. DOI: 10.1093/bioinformatics/bti770

Bischoff, K., S. Liu and S.R. Hughes, 2007. Cloning and characterization of a recombinant family 5 endoglucanase from Bacillus licheniformis strain B-41361. Process Biochem., 42: 1150-1154. DOI: 10.1016/j.procbio.2007.05.001

Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72: 248-254. DOI: 10.1016/0003-2697(76)90527-3

Davies, G.J., L. Mackenzie, A. Varrot, A.M. Brzozowski and M. Schülein et al., 1998. Snapshots along an enzymatic reaction coordinate: Analysis of retaining β-glycoside hydrolase. Biochem., 37: 11707-11713. DOI: 10.1021/bi981315i

Henrisat, B., 1994. Cellulases and their interaction with cellulose. Cellulose, 1:1 69-196. DOI: 10.1007/BF00813506

Lee, Y.J., B.K. Kim, B.H. Lee, K.I. Jo and N.K. Lee et al., 2008. Purification and characterization of cellulase produced by Bacillus amyloliquefaciens DL-3 utilizing rice hull. Bioreasour. Technol., 99: 378-386. DOI: 10.1016/j.biortech.2006.12.013

Li, W., X. Huan, Y. Zhou, Q. Ma and Y. Chen, 2009. Simultaneous cloning and expression of two cellulase gene from Bacillus subtilis newly isolated from Golden Takin (Budorcas taxicolor Bedfordi). Biochem. Biophys. Res. Commun., 383: 397-400. DOI: 10.1016/j.bbrc.2009.04.027

Miller, G.L., 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem., 31: 426-428. DOI: 10.1021/ac60147a030

Ohmiya, K., K. Sakka, S. Shikata and T. Kimura, 1977. Structure of cellulase and their applications. Biotechnol. Gen. Eng. Rev., 14: 365-414. ISSN: 0264-8725

Sambrook, J., E.F. Fritsch and T. Maniatis, 1989. Molecular Cloning: A Laboratory Manual. 2nd Edn., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

Shaw, A., R. Bott, C. Vonrhein, G. Bricogne and S. Power et al., 2002. A novel combination of two classic catalytic shemes. J. Mol. Biol., 320: 303-309. DOI: 10.1016/S0022-2836(02)00387-X

Shimon, L.J., W. Shimon, S. Pagès, A. Belaich and J.P. Belaich et al., 2000. Structure of a family IIIa scaffolding CBD from the Cellulosome of Clostridium cellulolyticum at 2.2 Å resolution. Acta Cryst., 56: 1560-1568. DOI: 10.1107/S0907444900012889

Wood, P.J., J.D. Erfle and R.M. Teather, 1988. Use of Congo red polysaccharide interaction complex formation between Congo red and polysaccharide in detection and assay of polysaccharase hydrolyses. Methods Enzymol., 160: 59-74. DOI: 10.1016/0076-6879(88)60107-8

Wood, T.M. and V. Garcia-Campayo, 1990. Enzymology of cellulose degradation. Biodegradation, 1: 147-161. DOI: 10.1007/BF00058833

Zhang, Y.H.P. and L.R. Lynd, 2004. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems. Biotechnol. Bioeng., 88: 797-824. DOI: 10.1002/bit.20282