THE LEMMENS-SEIDEL CONJECTURE FOR BASE SIZE 5

KIYOTO YOSHINO

Abstract. In 2020, Lin and Yu claimed to prove the so-called Lemmens-Seidel conjecture for base size 5. However, their proof has a gap, and in fact, some set of equiangular lines found by Greaves et al. in 2021 is a counterexample to one of their claims. In this paper, we give a proof of the conjecture for base size 5. Also, we answer in the negative a question of Greaves et al. in 2021 whether some sets of 57 equiangular lines with common angle \(\arccos(1/5) \) in dimension 18 are contained in a unique set of 276 equiangular lines with common angle \(\arccos(1/5) \) in dimension 23. In addition, we answer in the negative a question of Cao et al. in 2021 whether a strongly maximal set of equiangular lines with common angle \(\arccos(1/5) \) exists except the set of 276 equiangular lines with common angle \(\arccos(1/5) \) in dimension 23.

1. Introduction

A set of lines through the origin in a Euclidean space is **equiangular** if any pair from these lines forms the same angle. The problem of determining the maximum cardinality of a set of equiangular lines in a Euclidean space dates back to the result of Haantjes [9]. Denote by \(N(d) \) the maximum cardinality of a set of equiangular lines in dimension \(d \). The values of \(N(d) \) are known for \(d \leq 43 \) with \(d \neq 18, 19, 20, 42 \) [1, 7, 8, 12, 14]. Also, Gerzon proved the so-called absolute bound \(N(d) \leq d(d+1)/2 \) [12, Theorem 3.5]. If equality holds, then \(d+2 \) is 4, 5 or the square of an odd integer at least 3.

For a fixed angle, sets of equiangular lines have been studied. Denote by \(N_\alpha(d) \) the maximum cardinality of a set of equiangular lines with common angle \(\arccos(\alpha) \) in dimension \(d \). Lemmens and Seidel proved that for a set of \(n \) equiangular lines with common angle \(\arccos(\alpha) \) in dimension \(d \), \(1/\alpha \) is an odd integer if \(n > 2d \) [12, Theorem 3.4]. In low dimensions, they proved \(N_\alpha(d) \leq d(1-\alpha^2)/(1-d\alpha^2) \) for \(d < 1/\alpha^2 \). In high dimensions, Jiang et al. proved for every integer \(k \geq 2 \), \(N_1/\alpha_2(kd-1)(d) = [k(d-1)/(k-1)] \) for all sufficiently large \(d \) [10, Corollary 1.3].

In the case where the common angle is \(\arccos(1/3) \) or \(\arccos(1/5) \), sets of equiangular lines have been investigated precisely. Lemmens and Seidel introduced the pillar method, and determined the values of \(N_1/3(d) \) for all \(d \) [12, Theorem 3.6]. Their pillar method is the main tool to prove our result, and will be given in Definition 2.1. In another way by using root lattices, Cao et al. [4] investigated sets of equiangular lines with common angle \(\arccos(1/3) \) more precisely. Also, Lemmens and Seidel raised the following, which is the so-called Lemmens-Seidel conjecture.

Theorem 1.1 (The Lemmens-Seidel conjecture). For \(d \geq 23 \), \(N_1/5(d) = \max \{276, [(3d-3)/2]\} \).

Here a set of 276 equiangular lines with common angle \(\arccos(1/5) \) in dimension 23 is known to be unique [6, Theorem A]. In order to prove the Lemmens-Seidel conjecture, we need to show it for base sizes 3, 4, 5 and 6, where the base size will be given in Definition 2.1. In 1973, Lemmens and Seidel proved it for base size 6 [12, Theorem 5.7]. In 2020, Lin and Yu proved the conjecture for base size 3 with a computer [13, Theorem 4.3], and claimed to prove it for base size 5 [13, Theorem 4.6]. However, there is a gap in [13, Proof of Theorem 4.6 (1)]. In 2022, Cao et al. proved the conjecture for base sizes 3 and 4 without a computer [5, Theorems 6.1, 7.5 and 9.3]. Hence, to complete a proof of the conjecture, we give Theorem 1.2, which immediately implies the conjecture for base size 5.

Theorem 1.2 (The Lemmens-Seidel conjecture for base size 5). A set of \(n \) equiangular lines with common angle \(\arccos(1/5) \) with base size 5 in dimension \(d \) satisfies \(n \leq \max \{276, [(4d+36)/3]\} \).

The gap in [13, Proof of Theorem 4.6 (1)] is in claiming that a set of equiangular lines with common angle \(\arccos(1/5) \), base size 6 and at least two pillars having edges is contained in a unique set of 276 equiangular lines in dimension 23. Since a set of equiangular lines with base size 5 without \((5,1)\)-pillars can be regarded as one with base size 6 by adding some extra line, they discussed sets of equiangular lines with base size 6. However, the four sets of 57 equiangular lines with common angle \(\arccos(1/5) \) in dimension 18 induced by the Seidel matrices written as

\[A = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 1 \end{pmatrix}. \]
S_1, S_2, S_3 and S_4 in [7] are counterexamples to their claim. To show it, we will answer the following question in the negative in Proposition 7.3, and verify an easy fact in Proposition 7.2.

Question 1.3 ([7] Question 2.1). Can the two sets of 57 equiangular lines in dimension 18 corresponding to the Seidel matrices S_1 and S_2 in [7] be found inside the set of 276 equiangular lines in dimension 23?

Although Greaves et al. found more sets of 57 equiangular lines in dimension 18 [7], they posed a question about only two Seidel matrices S_1 and S_2. Note that we treat the four Seidel matrices S_1, S_2, S_3 and S_4, which are explicitly given in [7]. Also, we will show that the sets of equiangular lines induced by the Seidel matrices S_1, S_2, S_3 and S_4 are strongly maximal in Proposition 7.3. As a result, we answer the following question in the negative.

Question 1.4 ([4] Question 5.7). Is the set of 276 equiangular lines with common angle $\arccos(1/5)$ in dimension 23 a unique strongly maximal set of equiangular lines with common angle $arccos(1/5)$?

Here a set U of equiangular lines is said to be *strongly maximal* if there is no set of equiangular lines properly containing U. Note that the concept of strong maximality was defined for graphs and Seidel matrices in [4]. It is well known that there exists a set of equiangular lines with common angle $arccos(\alpha)$ satisfying the absolute bound for each $1/\alpha \in \{2, \sqrt{3}, 3\}$. Cao et al. showed that a set of equiangular lines is strongly maximal if it satisfies the absolute bound [4, Theorem 5.5]. In addition, they proved uniqueness of strongly maximal sets of equiangular lines with common angle $arccos(\alpha)$ for $1/\alpha \in \{2, \sqrt{3}, 3\}$, and posed Question 1.4.

This paper is organized as follows. In Section 2 we introduce some concepts in connection with equiangular lines, and explain some notations. In Section 3 we rewrite Lemmens and Seidel’s results for sets of equiangular lines with common angle $arccos(1/5)$ and base size 5. In Section 4 we prove a key theorem to show the Lemmens-Seidel conjecture for base size 5. In Section 5 we give an upper bound on the order of $(5,2)$-pillars under some assumptions. In Section 6 we prove the Lemmens-Seidel conjecture for base size 5. In Section 7 we show some properties of sets of 57 equiangular lines with common angle $arccos(1/5)$ in dimension 18 found by Greaves et al. [7], and answer Questions 1.3 and 1.4 in the negative.

2. Notations

Throughout this paper, we will consider undirected graphs, without loops and multiedges. Let H be a graph. Denote by $V(H)$ the set of vertices, and by $E(H)$ the set of edges. Denote by $N(x) = N_H(x)$ the set of neighbors of a vertex x in H. We write $G + H$ for the disjoint union of two graphs G and H. For a non-negative integer m, we write mH for the disjoint union of m copies of H. A clique in H is an induced subgraph isomorphic to a complete graph, and a maximum clique is a clique such that there is no clique with more vertices. We will identify a clique with its vertex set. The clique number $\chi(H)$ is the maximum value of the orders of cliques in H.

Denote by I and J the identity matrix and the all-ones matrix, respectively. If the size of each matrix is not clear, then we will indicate its size by a subscript.

A **Seidel matrix** is a symmetric matrix with zero diagonal and all off-diagonal entries ± 1. Two Seidel matrices S and S' are said to be switching equivalent if there exist a permutation matrix P and a diagonal matrix D with diagonal entries ± 1 such that $(PD)^\top S (PD) = S'$. For a graph H, denote by $A(H)$ the adjacency matrix of H, and define $S(H) := J - I - 2A(H)$. Note that for any Seidel matrix S, there exists a graph H such that $S = S(H)$. The eigenvalues of $S(H)$ are called the **Seidel eigenvalues** of H. Two graphs G and H are said to be switching equivalent if $S(G)$ and $S(H)$ are switching equivalent.

Fix a set U of n equiangular lines with common angle $arccos(\alpha)$. Then we may take unit vectors u_1, \ldots, u_n such that $U = \{ \mathbb{R} u_1, \ldots, \mathbb{R} u_n \}$. There exists a Seidel matrix S such that $I + \alpha S$ equals the Gram matrix of u_1, \ldots, u_n. Hence the set U equiangular lines induces the Seidel matrix S up to switching. In addition, it induces the graph H with $S = S(H)$ up to switching. Note that the smallest Seidel eigenvalue of H is at least $-1/\alpha$. Conversely, we can recover U from the Seidel matrix S or the graph H.

Definition 2.1. Let U be a set of equiangular lines. The maximum value of clique numbers of graphs induced by U is called the base size of U.

Denote by $\langle v_1, \ldots, v_n \rangle$ the linear space generated by vectors v_1, \ldots, v_n. Also denote by (u, v) the inner product of two vectors u and v.

Definition 2.2. Let H be a graph, and B be a maximum clique. A **pillar** $P_{B, U}$ with respect to B for a subset $U \subseteq B$ is defined to be the induced subgraph in H on

$$\{ x \in V(H) \setminus B \mid N(x) \cap B = U \}.$$
Moreover, this is called a \(|B|, |U|\)-pillar. Also, assume that the smallest Seidel eigenvalue of \(H\) is at least \(-5\). Then denote by \(\tilde{x}\)'s the vectors such that
\[
(\tilde{x}, \tilde{y}) = (S(H) + 5I)_{xy} \quad (x, y \in V(H)).
\]
Denote by \(\tilde{x}\) the orthogonal projection of \(\tilde{x}\) onto the subspace \(\tilde{b} : b \in B \)\(\perp\).

The connected graphs with largest eigenvalue at most 2 are enumerated in Figure 1 (cf. [3] Theorem 3.13]).

Figure 1. The connected graphs having largest eigenvalue at most 2, where the colors of vertices will be used in Lemma 5.1.

3. Lemmens and Seidel’s results

The proof of the following lemma is essentially contained in [13] Proof of Theorem 4.6.

Lemma 3.1. Let \(H\) be a graph with smallest Seidel eigenvalue at least \(-5\) having a maximum clique \(B = \{b_1, \ldots, b_6\}\). Assume that the only pillars in \(H\) with respect to \(B\) having at least one vertex are \((5, 2)\)-pillars. Then there exist a supergraph \(G\) of \(H\) with smallest Seidel eigenvalue \(-5\) and a vertex \(b_6 \in V(G)\) satisfying the following.

(i) \(V(H) \cup \{b_6\} = V(G)\), and \(B \cup \{b_6\}\) is a maximum clique.

(ii) The \((5, 2)\)-pillars in \(H\) with respect to \(B\) coincide with the \((6, 3)\)-pillars adjacent to \(b_6\) in \(G\) with respect to \(B \cup \{b_6\}\).

Proof. Define \(G\) by taking a vertex \(b_6\) such that \(\tilde{b}_6 = -b_1 - b_2 - b_3 - b_4 - b_5\).

By this lemma, we can rewrite some results in [12] on graphs with Seidel smallest eigenvalue at least \(-5\) and clique number 6 as follows. We remark that if the base size is 6 and common angle \(\arccos(1/5)\), then the only pillars with respect to some clique of size 6 are \((6, 3)\)-pillars.

Theorem 3.2 ([12] Theorem 5.2]). Let \(H\) be a graph with smallest Seidel eigenvalue at least \(-5\) and clique number 5. Let \(P\) be a \((5, 2)\)-pillar. If another \((5, 2)\)-pillar has at least one vertex, then the following hold.

(i) If an induced subgraph of \(P\) is isomorphic to \(\tilde{A}_t\), then \(t + 1 \mod 3 = 0\).

(ii) If an induced subgraph of \(P\) is isomorphic to \(\tilde{D}_t\), then \(t + 1 \mod 3 = 2\).

Theorem 3.3 ([12] Theorems 5.3, 5.4 and 5.5]). Let \(H\) be a graph with smallest Seidel eigenvalue at least \(-5\) and clique number 5. Assume a \((5, 2)\)-pillar is isomorphic to \(mK_2 + nK_1\) for some non-negative integers \(m\) and \(n\).

(i) \(2m + n \leq 18\) if another \((5, 2)\)-pillar has an edge.

(ii) \(2m + n \leq 24\) if another \((5, 2)\)-pillar has non-adjacent vertices.

(iii) \(2m + n \leq 36\) if another \((5, 2)\)-pillar has a vertex.

Theorem 3.4 ([12] Proof of Theorem 5.6 with Theorems 5.3, 5.4 and 5.5]). Let \(H\) be a graph with smallest Seidel eigenvalue at least \(-5\) and clique number 5. Let \(P\) be a \((5, 2)\)-pillar.

(i) \(|V(P)| \leq 27\) if another \((5, 2)\)-pillar has an edge.
(ii) \(|V(P)| \leq 36\) if another \((5, 2)\)-pillar has non-adjacent vertices.

(iii) \(|V(P)| \leq 54\) if another \((5, 2)\)-pillar has a vertex.

4. \((5, 2)\)-PILLARS ISOMORPHIC TO \(mK_2\) AND \((5, 1)\)-PILLARS

The following theorem plays a key role in proving the main result Theorem \[\text{[12]}\]. It is proved at the end of this section.

Theorem 4.1. Let \(H\) be a graph with smallest Seidel eigenvalue at least \(-5\) having a maximum clique \(B = \{b_1, \ldots, b_5\}\). Assume that the \((5, 2)\)-pillar \(P_{B,\{b_1,b_2\}}\) is isomorphic to \(mK_2\), for some integer \(m\), and assume one of the following.

(I) The \((5, 1)\)-pillar \(P_{B,\{b_1\}}\) has non-adjacent vertices.

(II) Both \((5, 1)\)-pillars \(P_{B,\{b_1\}}\) and \(P_{B,\{b_2\}}\) have at least one vertex.

If the \((5, 2)\)-pillar \(P_{B,\{b_3,b_4\}}\) contains at least one edge, then \(m \leq 8\).

By \[\text{[11]}\ Proposition 3.10\], we have the following lemma.

Lemma 4.2. Let \(H\) be a graph with smallest Seidel eigenvalue at least \(-5\) having a maximum clique \(B = \{b_1, \ldots, b_5\}\). For \(\{i, j, k, l, m\} = \{1, \ldots, 5\}\) the following hold.

(i) For a vertex \(x\) in the \((5, 2)\)-pillar \(P_{B,\{b_1,b_2\}}\), the orthogonal projection of \(x\) onto \((b : b \in B)\) is \(\frac{1}{3} \left(b_k + b_l + b_m\right)\).

(ii) For a vertex \(x\) in the \((5, 1)\)-pillar \(P_{B,\{b_1\}}\), the orthogonal projection of \(x\) onto \((b : b \in B)\) is \(\frac{1}{3} \left(b_i + 2b_j + 2b_k + 2b_l + 2b_m\right)\).

In particular, we have the following inner products.

(iii) For \(x, y \in P_{B,\{b_1,b_2\}}\) and \(z, w \in P_{B,\{b_1\}}\), the following hold.

\[
\frac{15}{2} \cdot (\bar{x}, \bar{y}) = \begin{cases}
6 & \text{if } x = y, \\
-3 & \text{if } x \sim y, \\
0 & \text{if } x \not\sim y.
\end{cases}
\]

\[
\frac{15}{2} \cdot (\bar{z}, \bar{w}) = \begin{cases}
4 & \text{if } z = w, \\
-2 & \text{if } z \not\sim w.
\end{cases}
\]

(iv) For \(x \in P_{B,\{b_1,b_2\}}, y \in P_{B,\{b_1,b_4\}}, z \in P_{B,\{b_1\}}, w \in P_{B,\{b_2\}}\), the following hold.

\[
\frac{15}{2} \cdot (\bar{x}, \bar{y}) = \begin{cases}
-1 & \text{if } x \sim y, \\
2 & \text{if } x \not\sim y.
\end{cases}
\]

\[
\frac{15}{2} \cdot (\bar{z}, \bar{z}) = \begin{cases}
-3 & \text{if } x \sim z, \\
0 & \text{if } x \not\sim z.
\end{cases}
\]

\[
\frac{15}{2} \cdot (\bar{y}, \bar{z}) = \begin{cases}
-2 & \text{if } y \sim z, \\
1 & \text{if } y \not\sim z.
\end{cases}
\]

\[
\frac{15}{2} \cdot (\bar{z}, \bar{w}) = \begin{cases}
-4 & \text{if } z \sim w, \\
-1 & \text{if } z \not\sim w.
\end{cases}
\]

Let \(s, t\) and \(r\) be positive integers, and \(Z\) and \(Y\) be sets of numbers. Denote by \(M_{r,s}(Z)\) the set of \(r \times s\)-matrices all of whose entries are in \(Z\), and write \(M_r(Z)\) for \(M_{r,r}(Z)\) if \(r = s\). Denote by \(M_{r,s,t}(Z,Y)\) the set of \(r \times (s+t)\)-matrices obtained by joining a matrix in \(M_{r,s}(Z)\) and one in \(M_{r,t}(Y)\) horizontally. For example,

\[
M_{2,1,2}(\{0,1\}, \{2,3\}) = \left\{ \begin{bmatrix} i & e & f \\ j & g & h \end{bmatrix} : i, j \in \{0,1\}, e, f, g, h \in \{2,3\} \right\}.
\]

To prove Theorem 4.1, we prepare some matrices as follows. Let \(r\) be a positive integer. Let \(M\) be a finite set of \(2 \times r\) matrices, and \(a : M \to \mathbb{Z}_{\geq 0}\) a function. Define

\[
Q_{21} = Q_{21}(a)
\]

as the matrix obtained by joining all \(a(A)\) copies of \(A \in M\) vertically. Let \(m\) be the sum of the images of the function \(a\), and define

\[
Q_{22} = Q_{22}(m) := (9I_2 - 3J_2)^{\oplus m} = \begin{bmatrix} 6 & -3 \vspace{1em} \\ -3 & 6 \end{bmatrix}^{\oplus m}.
\]

In addition, let \(Q_{11}\) be an \(r \times r\) matrix, and define

\[
Q = Q \left(Q_{11}; a \right) := \begin{bmatrix} Q_{11} & Q_{21} \\ Q_{21} & Q_{22} \end{bmatrix}.
\]
For example, we let \(a : M_2(\{2, -1\}) \to \mathbb{Z}_{\geq 0} \) be a function such that \(a \left(\begin{bmatrix} -1 & -1 \\ 2 & -1 \end{bmatrix} \right) = 1, a \left(\begin{bmatrix} 2 & 2 \\ -1 & 1 \end{bmatrix} \right) = 2, \) and \(a \) takes 0 on the other matrices. Then

\[
Q_{21}(a) = \begin{bmatrix}
-1 & -1 \\
2 & -1 \\
-1 & 2 \\
-1 & 2 \\
2 & -1 \\
2 & -1
\end{bmatrix}
\quad \text{and} \quad
Q(5I_2 - J_2; a) = \begin{bmatrix}
4 & -1 & -1 & 2 & 2 & 2 & 2 \\
-1 & 4 & -1 & -1 & 2 & 2 & 2 \\
-1 & -1 & 6 & -3 & 0 & 0 & 0 \\
2 & -1 & -3 & 6 & 0 & 0 & 0 \\
2 & 2 & 0 & 0 & 6 & -3 & 0 & 0 \\
2 & -1 & 0 & 0 & -3 & 6 & 0 & 0 \\
2 & 2 & 0 & 0 & 0 & 6 & -3 & 0 & 0 \\
2 & -1 & 0 & 0 & 0 & -3 & 6 & 0 & 0
\end{bmatrix}.
\]

For each \(2 \times t \) matrix \(A \), let \(\bar{A} \) be the matrix obtained from \(A \) by exchanging the first and second row. Although Theorem 4.4 has been proved in [12], Proof of Theorem 5.3], we give a proof for the convenience of the readers. Let

\[
\mathcal{M} := \left\{ A, \bar{A} : A \in\left\{ \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}, \begin{bmatrix} 2 & -1 \\ -1 & -1 \end{bmatrix}, \begin{bmatrix} -1 & 2 \\ -1 & -1 \end{bmatrix} \right\} \right\}.
\]

Lemma 4.3 (Theorem 2.7.1). Let \(C \) be a positive definite matrix. Then a symmetric matrix \(\begin{bmatrix} A & B \\ B^\top & C \end{bmatrix} \) is positive semidefinite if and only if \(A - BC^{-1}B^\top \) is positive semidefinite.

Theorem 4.4. Let \(a : M_2(\{1, 2\}) \to \mathbb{Z}_{\geq 0} \) be a function. Let \(m \) be the sum of images of \(a \). If \(Q(9I_2 - 3J_2; a) \) is positive semidefinite, then \(m \leq 9 \). Furthermore, if equality holds, then \(a(A) = 0 \) for \(A \not\in \mathcal{M} \).

Proof. Since \(Q(9I_2 - 3J_2; a) \) is positive semidefinite, Lemma 4.3 implies that

\[
\Delta := (9I_2 - 3J_2) - \sum_{A \in M_2(\{-1, 1, 2\})} a(A) \cdot A^\top (9I_2 - 3J_2)^{-1} A
\]

is positive semidefinite. We have

\[
0 \leq 3 \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ -1 & 1 \end{bmatrix}^\top \Delta \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}
= 36 - 4 \sum_{A \in \mathcal{M}} a(A) - 2a \left(\begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} \right)
= 36 - 4 \sum_{A \in \mathcal{M}} a(A) - 2a \left(\begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} \right)
\]

\[
- 16 \left(a \left(\begin{bmatrix} 2 & 2 \\ 2 & -1 \end{bmatrix} \right) + a \left(\begin{bmatrix} 2 & 1 \\ 2 & 2 \end{bmatrix} \right) + a \left(\begin{bmatrix} 2 & -1 \\ 2 & 2 \end{bmatrix} \right) + a \left(\begin{bmatrix} 2 & -1 \\ 2 & 2 \end{bmatrix} \right) + a \left(\begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} \right) \right)
\]

\[
- 8 \left(a \left(\begin{bmatrix} 2 & 2 \\ 2 & -1 \end{bmatrix} \right) + a \left(\begin{bmatrix} 2 & -1 \\ 2 & 2 \end{bmatrix} \right) + a \left(\begin{bmatrix} 2 & -1 \\ 2 & 2 \end{bmatrix} \right) + a \left(\begin{bmatrix} 2 & -1 \\ 2 & -1 \end{bmatrix} \right) \right) \]

\[
\leq 36 - 4m.
\]

Hence \(m \leq 9 \). Moreover, if \(m = 9 \) then \(a(A) \) is equal to 0 for every \(A \not\in \mathcal{M} \). This is the desired condition. \(\square \)

To prove Theorem 4.1, we prepare some more matrices as follows.

\[
B_{11}^{(1)} := \begin{bmatrix} 4 & -2 \\ -2 & 4 \end{bmatrix}, \quad B_{11}^{(2)} := \begin{bmatrix} 4 & -1 \\ -1 & 4 \end{bmatrix}, \quad B_{22} := \begin{bmatrix} 6 & -3 \\ -3 & 6 \end{bmatrix}.
\]

We let

\[
B_{21}^{(1)} := \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \quad B_{21}^{(2)} := \begin{bmatrix} -2 & 1 \\ 1 & 1 \end{bmatrix}, \quad B_{21}^{(3)} := \begin{bmatrix} -2 & -2 \\ -2 & 1 \end{bmatrix}, \quad B_{21}^{(4)} := \begin{bmatrix} -2 & 1 \\ 1 & 1 \end{bmatrix},
\]

\[
B_{21}^{(5)} := \begin{bmatrix} -2 & 1 \\ 1 & -1 \end{bmatrix}, \quad B_{21}^{(6)} := \begin{bmatrix} -2 & -2 \\ -2 & 1 \end{bmatrix}, \quad B_{21}^{(7)} := \begin{bmatrix} -2 & -2 \\ -2 & -2 \end{bmatrix}, \quad B_{21}^{(8)} := \begin{bmatrix} -2 & 1 \\ 1 & -1 \end{bmatrix},
\]

and set

\[
B(X, i) := \begin{bmatrix} B_{11}^{(X)} & B_{21}^{(i)} \\ B_{21}^{(i)} & B_{22} \end{bmatrix}.
\]
Lemma 4.5. Let \(a : M_{2,2,2}((-3,0),(-1,2)) \to \{0\} \) be the zero map. If \((X,i) \in \{(I,6),(I,7),(II,7)\}\), then \(Q(B(X,i);a)\) is not positive semidefinite.

Proof. This follows from direct calculation. \(\square\)

Lemma 4.6. Let \(a : M_{2,2,2}((-3,0),(-1,2)) \to \mathbb{Z}_{\geq 0} \) be a function. Assume \((X,i) \in \{(I,1),(I,3),(I,4)\} \cup \{(II,1),(II,3),(II,4),(II,6)\}\). The sum of images of \(a\) is at most 6 if \(Q(B(X,i),a)\) is positive semidefinite.

Proof. By Lemma 4.3 we see that
\[
\Delta := B(X,i) - \sum_{A \in M_{2,2,2}((-3,0),(-1,2))} a(A) \cdot A^\top (9I_2 - 3J_2)^{-1}A
\]
is positive semidefinite. We let
\[
x := \begin{cases}
[1 \ 1 \ -1 \ -1]^\top & \text{if } (X,i) \in \{(I,1),(II,1)\}, \\
[1 \ 1 \ 1 \ 0]^\top & \text{if } (X,i) \in \{(I,3),(II,3)\}, \\
[1 \ 0 \ 1 \ 1]^\top & \text{if } (X,i) \in \{(I,4),(II,4)\}, \\
[1 \ 1 \ 1 \ 1]^\top & \text{if } (X,i) = (II,6).
\end{cases}
\]
We regard \(x^\top \Delta x\) as a linear polynomial with variables \(a(A)\)'s. The constant term satisfies
\[
x^\top B(X,i)x = \begin{cases}
2 & \text{if } (X,i) \in \{(I,1),(I,3),(I,4)\} \cup \{(II,4),(II,6)\}, \\
4 & \text{if } (X,i) \in \{(II,1),(II,3)\}.
\end{cases}
\]
Also, the coefficients satisfy
\[
\min \left\{ (Ax)^\top (9I_2 - 3J_2)^{-1}Ax : A \in M_{2,2,2}((-3,0),(-1,2)) \right\} = \frac{2}{3}.
\]

Since \(x^\top \Delta x \geq 0\), the sum of images of \(a\) is at most \(4/(2/3) = 6\). \(\square\)

Lemma 4.7. Let \(a : M_{2,2,2}((-3,0),(-1,2)) \to \mathbb{Z}_{\geq 0} \) be a function. Assume \(X \in \{I,II\}\). The sum of images of \(a\) is at most 8 if \(Q(B(X,5),a)\) is positive semidefinite.

Proof. Let \(m\) be the sum of images of \(a\). By Theorem 4.4 \(m \leq 9\) holds. By way of contradiction, we assume \(m = 9\). By applying Theorem 4.4 again,
\[
a \begin{bmatrix} A_1 & A_2 \end{bmatrix} = 0
\]
holds for every \(A_1 \in M_2((-3,0))\) and \(A_2 \notin M\). We define a positive semidefinite matrix \(\Delta\) as \(4.1\). Let
\[
x_1 := [1 \ 0 \ -1 \ -1]^\top, \quad x_2 := [1 \ 1 \ 1 \ 1]^\top, \quad x_3 := [0 \ 1 \ -1 \ 1]^\top.
\]
We regard \(\sum_{i=1}^3 x_i^\top \Delta x_i\) as a linear polynomial with variables \(a(A)\)'s. The constant term satisfies
\[
\sum_{i=1}^3 x_i^\top B(X,5)x_i = \begin{cases}
38 & \text{if } X = I \\
40 & \text{if } X = II
\end{cases}
\]
Also, the coefficients satisfy
\[
\min \left\{ \sum_{i=1}^3 \left[\begin{bmatrix} A_1 & A_2 \end{bmatrix} x_i \right]^\top (9I_2 - 3J_2)^{-1} \begin{bmatrix} A_1 & A_2 \end{bmatrix} x_i : A_1 \in M_2((-3,0)), A_2 \in M \right\} = \frac{14}{3}.
\]

Hence \(m \leq \left[40/\left(14/3\right)\right] = 8\). This is a contradiction. We have \(m \leq 8\). \(\square\)

Let \(M_I'\) be the set of
\[
\begin{bmatrix} 0 & 0 & -1 & -1 \\
0 & 0 & -1 & 2 \end{bmatrix}, \begin{bmatrix} 0 & 0 & -1 & -1 \\
0 & 0 & 2 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & -1 & 2 \\
0 & 0 & 2 & -1 \end{bmatrix}, \begin{bmatrix} -3 & 0 & 2 & -1 \\
0 & -3 & -1 & -1 \end{bmatrix}, \begin{bmatrix} 0 & -3 & -1 & -1 \end{bmatrix}.
\]

Let \(M_{II}'\) be the union of \(M_I'\) and the set of
\[
\begin{bmatrix} -3 & 0 & 2 & -1 \\
0 & -3 & -1 & -1 \end{bmatrix}, \begin{bmatrix} -3 & 0 & 2 & -1 \\
0 & 0 & -1 & 2 \end{bmatrix}, \begin{bmatrix} -3 & 0 & 2 & -1 \\
0 & 0 & -1 & 2 \end{bmatrix}, \begin{bmatrix} -3 & 0 & 2 & -1 \\
0 & 0 & -1 & 2 \end{bmatrix}.
\]
For $X \in \{I, II\}$, we let

$$\mathcal{M}_X := \mathcal{M}'_X \cup \{ A : A \in \mathcal{M}'_X \}.$$

Lemma 4.8. Let $a : M_{2,2,2}(\{-3,0\}, \{-1,2\}) \to \mathbb{Z}_{\geq 0}$ be a function. Let $X \in \{I, II\}$. If $Q(B(X,2), a)$ is positive semidefinite and the sum of images of a equals 9, then $a(A) = 0$ holds for every $A \notin \mathcal{M}_X$.

Proof. Let m be the sum of images of a. Assume $m = 9$. We define a positive semidefinite matrix Δ as (4.42). By applying Theorem 1.2.3 we have $a([A_1 \ A_2]) = 0$ for any $A_1 \in M_2(\{-3,0\})$ and $A_2 \notin \mathcal{M}$.

We let

$$x_1 := [0 \ -1 \ 1 \ 1]^\top, \quad x_2 := [1 \ 0 \ 1 \ 0]^\top, \quad x_3 := [1 \ 1 \ 0 \ -1]^\top.$$

We regard $x_i^\top \Delta x_i$ as a linear polynomial with variables x_i's. The constant term satisfies $x_i^\top B(X,2)x_i = 0$ for each $(X,i) \in \{(I,1), (I,2), (I,3)\} \cup \{(II,1), (II,2)\}$. Also, the coefficients satisfy

$$\min \left\{ \left(\begin{array}{c} A_1 \ A_2 \end{array} \right) (9I_2 - 3J_2)^{-1} \left(\begin{array}{c} A_1 \ A_2 \end{array} \right) x_i : A_1 \in M_2(\{-3,0\}), A_2 \in \mathcal{M} \right\} = \frac{2}{3}$$

for $i \in \{1, 2, 3\}$. Hence for $(X,i) \in \{(I,1), (I,2), (I,3)\} \cup \{(II,1), (II,2)\}$,

$$0 \leq x_i^\top \Delta x_i = x_i^\top B(X,2)x_i - a(A) \cdot (x_i^\top (9I_2 - 3J_2)^{-1}Ax_i)$$

$$= x_i^\top B(X,2)x_i - \sum_{A_1 \in M_2(\{-3,0\}), A_2 \in \mathcal{M}} a ([A_1 \ A_2]) \cdot \left(\begin{array}{c} A_1 \ A_2 \end{array} \right) (9I_2 - 3J_2)^{-1} \left(\begin{array}{c} A_1 \ A_2 \end{array} \right) x_i$$

$$= \sum_{A_1 \in M_2(\{-3,0\}), A_2 \in \mathcal{M}} a ([A_1 \ A_2]) \cdot \left(\begin{array}{c} A_1 \ A_2 \end{array} \right) (9I_2 - 3J_2)^{-1} \left(\begin{array}{c} A_1 \ A_2 \end{array} \right) x_i - \frac{2}{3} x_i.$$

We may verify by direct calculation that

$$\left(\begin{array}{c} A_1 \ A_2 \end{array} \right) (9I_2 - 3J_2)^{-1} \left(\begin{array}{c} A_1 \ A_2 \end{array} \right) x_i > \frac{2}{3},$$

for some i if $[A_1 \ A_2] \notin \mathcal{M}_X$. Hence $a([A_1 \ A_2]) = 0$ holds for every $A \notin \mathcal{M}_X$.

Proof of Theorem 4.7 Let $x_{i,1}$ and $x_{i,2}$ be adjacent vertices of $P_{B,(i,b_1,b_2)}$ for $i \in \{1, \ldots, m\}$. Let y_1 and y_2 be adjacent vertices of $P_{B,(b_1,b_2)}$. In the case of (I), we set $X := I$, and let z_1 and z_2 be vertices of $P_{B,(b_1)}$.

In the case of (II), we set $X := II$. Let z_1 be a vertex of $P_{B,(b_1)}$, and z_2 one in $P_{B,(b_2)}$. Then z_1 and z_2 are not adjacent. Indeed, if z_1 and z_2 are adjacent, then we have by Lemma 4.2 $(\bar{z}_1, \bar{z}_2) = (\bar{z}_2, \bar{z}_2) = 8/15$, and $(\bar{z}_1, \bar{z}_2) = -8/15$. These imply $\bar{z}_1 = -\bar{z}_2$. Also Lemma 4.2 asserts $(\bar{z}_1, \bar{y}_1), (\bar{z}_2, \bar{y}_2) \in \{-2/15, 4/15\}$. Hence we have a contradiction, and see that z_1 and z_2 are not adjacent.

The Gram matrix G of $z_1, \bar{z}_2, \bar{y}_1, \bar{y}_2, \bar{x}_{1,1}, \bar{x}_{1,2}, \ldots, \bar{x}_{m,1}, \bar{x}_{m,2}$ is positive semidefinite. By Lemma 4.2 we see that $(15/2)G$ is

$$Q \left(\begin{array}{cc} P_{11}^{(X)} & B_{21}^\top \\ B_{21} & B_{22}^\top \end{array} \right) : a$$

for some $B_{21} \in M_2(\{-1,2\})$ and some function $a : M_{2,2,2}(\{-3,0\}, \{-1,2\}) \to \mathbb{Z}_{\geq 0}$. Let m be the sum of images of a. By exchanging y_1 and y_2, or z_1 and z_2 if necessary, we may assume $B_{21} = B_{21}^{(i)}$ for some $i \in \{1, \ldots, 7\}$. By Lemmas 4.5, 4.6 and 4.7 we have $m \leq 8$ if $i \neq 2$. Hence we consider the case of $i = 2$.

We write C_1, \ldots, C_5 for the matrices in (4.2) in order from left to right. In addition, we write C_6, C_7 and C_8 for the three matrices in (4.3) in order from left to right. Note that

$$\mathcal{M}'_I = \{C_1, C_2, C_3, C_4, C_5\} \quad \text{and} \quad \mathcal{M}'_II = \mathcal{M}'_I \cup \{C_6, C_7, C_8\}.$$

We have

$$C_1^\top (9I_2 - 3J_2)^{-1}C_1 = C_2^\top (9I_2 - 3J_2)^{-1}C_2 = C_3^\top (9I_2 - 3J_2)^{-1}C_3 = \frac{1}{9} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -3 \end{bmatrix}$$
and

\[
\begin{align*}
C_4^T (9I_2 - 3J_2)^{-1} C_4 &= \frac{1}{9} \cdot \begin{bmatrix} 18 & 0 & -9 & 9 \\ 0 & 0 & 0 & 0 \\ -9 & 0 & 6 & -3 \\ 9 & 0 & -3 & 6 \end{bmatrix}, & C_5^T (9I_2 - 3J_2)^{-1} C_5 &= \frac{1}{9} \cdot \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 18 & 0 & 9 \\ 0 & 0 & 6 & -3 \\ 0 & 9 & -3 & 6 \end{bmatrix}, \\
C_6^T (9I_2 - 3J_2)^{-1} C_6 &= \frac{1}{9} \cdot \begin{bmatrix} 18 & 0 & -9 & 0 \\ 0 & 0 & 0 & 0 \\ -9 & 0 & 6 & -3 \\ 0 & 0 & -3 & 6 \end{bmatrix}, & C_7^T (9I_2 - 3J_2)^{-1} C_7 &= \frac{1}{9} \cdot \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 18 & 0 & 9 \\ 0 & 9 & 6 & -3 \\ 0 & 0 & -3 & 6 \end{bmatrix}, \\
C_8^T (9I_2 - 3J_2)^{-1} C_8 &= \frac{1}{9} \cdot \begin{bmatrix} 18 & 9 & -9 & 9 \\ 9 & 18 & 0 & 9 \\ -9 & 0 & 6 & -3 \\ 9 & 9 & -3 & 6 \end{bmatrix}.
\end{align*}
\]

Theorem 4.3 asserts \(m \leq 9 \). In order to prove \(m \leq 8 \) by way of contradiction, we assume \(m = 9 \). By Lemma 4.8 we have \(a(A) = 0 \) for \(A \notin \mathcal{M}_X \). Also, we may assume that \(a(A) = 0 \) for each \(A \in \mathcal{M}_X \setminus \mathcal{M}_X' \) by exchanging \(x_{i,1} \) and \(x_{i,2} \) (\(i \in \{1, \ldots, m\} \)) if necessary. Below we consider the values of \(a(A) \) with \(A \in \mathcal{M}_X' \) for \(\Delta \) to be positive semidefinite. We have

\[
\Delta = B(X, 2) - \sum_{A \in \mathcal{M}_{2,2,2}(-3,0,\{\{-1,2\}\})} a(A) \cdot A^T (9I_2 - 3J_2)^{-1} A
\]

\[
= B(X, 2) - \sum_{A \in \mathcal{M}_X} a(A) \cdot A^T (9I_2 - 3J_2)^{-1} A
\]

\[
= B(X, 2) - \sum_{i=1}^{8} a(C_i) \cdot C_i^T (9I_2 - 3J_2)^{-1} C_i.
\]

Noting that \(a(C_1) + \cdots + a(C_8) = m = 9 \), we obtain

\[
\Delta = \begin{bmatrix}
B_{11}^{(X)} & -2 & 1 \\
-2 & 1 & 1 \\
1 & 1 & 1
\end{bmatrix} - a(C_4) \cdot \begin{bmatrix} 2 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} - a(C_5) \cdot \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}
\]

\[
- a(C_6) \cdot \begin{bmatrix} 2 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} - a(C_7) \cdot \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} - a(C_8) \cdot \begin{bmatrix} 2 & 1 & -1 & 1 \\ 1 & 2 & 0 & 1 \\ -1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}.
\]

Here note that \(a(C_6) = a(C_7) = a(C_8) = 0 \) if \(X = I \). However, if \(X = I \), then the principal submatrix of \(\Delta \) indexed by \(\{2, 3\} \) has negative determinant. This is a contradiction, and \(m \leq 8 \) holds.

Next we consider the case of \(X = \Pi \). Since every principal submatrix of order 2 has non-negative determinant, the submatrix of \(\Delta \) indexed by \(\{1, 2\} \times \{3, 4\} \) is zero. Thus, we have \((a(C_4), a(C_5), a(C_6), a(C_7), a(C_8)) \in \{(1, 1, 1, 1, 0), (0, 0, 1, 1, 1)\} \). Then the principal submatrix indexed by \(\{1, 2\} \) is \(2I_2 - 2J_2 \) or \(3I_2 - 3J_2 \). Since these two matrices are not positive semidefinite, we obtain a contradiction. Therefore \(m \leq 8 \).

\section{(5, 2)-Pillars and (5, 1)-Pillars}

The following lemma is obtained by slightly improving [12] Proof of Theorem 5.6).

\textbf{Lemma 5.1.} Let \(G \) be a connected graph with largest eigenvalue at most 2. Assume that \(G \) is not isomorphic to \(\tilde{A}_t \) \((t+1 \equiv 0 \pmod{3}) \) or \(D_t \) \((t+1 \equiv 2 \pmod{3}) \). Then there exist non-negative integers \(n \) and \(m \) such that \(G \) contains an induced subgraph isomorphic to \(nK_1 + mK_2 \) and the order of \(G \) is at most

\[
\frac{4n}{3} + 3m.
\]

\textbf{Proof.} The graph \(G \) is isomorphic to one of the graphs in Figure [1] (cf. [3] Theorem 3.1.3). If \(G \) is not isomorphic to \(D_t \), then the graph obtained from \(G \) by removing the white vertices in Figure [1] is the desired induced subgraph. Hence
we consider the case where G is isomorphic to D_t for some $t \geq 4$. Here we may assume that the vertices of G are indexed as in Figure 1. Let H be the graph obtained from G by removing the following vertices.

$$\begin{align*}
\{1\} & \cup \{i \in \{2, \ldots, t-1\} : i \mod 3 = 0\} \text{ if } t \mod 3 = 0, \\
\{2\} & \cup \{i \in \{3, \ldots, t-1\} : i \mod 3 = 1\} \text{ if } t \mod 3 = 1, \\
\{i \in \{1, \ldots, t-1\} : i \mod 3 = 2\} & \text{ if } t \mod 3 = 2.
\end{align*}$$

Then H is isomorphic to

$$\begin{align*}
\begin{cases}
mK_2 & \text{if } t \mod 3 = 0, \\
3K_1 + (m-1)K_2 & \text{if } t \mod 3 = 1, \\
2K_1 + mK_2 & \text{if } t \mod 3 = 2,
\end{cases}
\end{align*}$$

where $m := \lfloor t/3 \rfloor$. We see that H is the desired induced subgraph. \hfill \square

Corollary 5.2. Let H be a graph with smallest Seidel eigenvalue at least -5 having a maximum clique $B = \{b_1, \ldots, b_5\}$. Assume one of the following.

(i) The $(5, 1)$-pillar $P_{B, \{b_1\}}$ has non-adjacent vertices.

(ii) Both $(5, 1)$-pillars $P_{B, \{b_1\}}$ and $P_{B, \{b_2\}}$ have at least one vertex.

If the $(5, 2)$-pillar $P_{B, \{b_3, b_4\}}$ contains at least one edge, then the $(5, 2)$-pillar $P_{B, \{b_3, b_2\}}$ is of order at most 26.

Proof. Set $G := P_{B, \{b_1, b_2\}}$. By Lemma 4.2, the graph G has largest eigenvalue at most 2. Hence, by Lemma 5.1 there exists an induced subgraph H' of G isomorphic to $nK_1 + mK_2$ for some non-negative integers n and m such that $|V(G)| \leq 4n/3 + 3m$. Also Theorem 3.3 asserts $2m + n \leq 18$, and Theorem 4.1 asserts $m \leq 8$. Therefore,

$$|V(G)| \leq \frac{4n}{3} + 3m = \frac{4}{3} \cdot (2m + n) + \frac{1}{3} \cdot m \leq 24 + \frac{8}{3} < 27.$$

\hfill \square

6. A Proof of the Lemmens-Seidel Conjecture for Base Size 5

In this section, we prove the main result Theorem 1.2. First, we provide an upper bound on the sum of orders of $(5, 1)$-pillars, which is smaller than the upper bound in Lemma D.1.

Lemma 6.1. Let H be a graph with smallest Seidel eigenvalue at least -5 having a maximum clique B of size 5. Then the sum of orders of $(5, 1)$-pillars with respect to B in H is at most 5.

Proof. If the tuple of orders of $(5, 1)$-pillars is $(4, 0, 0, 0, 0), (3, 1, 0, 0, 0), (2, 2, 1, 0, 0)$ or $(2, 1, 1, 1, 0)$ up to permutation, then we see by direct calculation that the smallest Seidel eigenvalue of the graph obtained from H by removing all $(5, 2)$-pillars is less than -5. Here note that there is no edge in each $(5, 1)$-pillar. Thus the sum of orders of $(5, 1)$-pillars is at most 5. \hfill \square

Theorem 6.2 [13, Theorem 4.6 (2)]. Let U be a set of n equiangular lines with common angle $\arccos(1/5)$ and base size 5 in dimension d. Let H be a graph induced by U with maximal clique B of size 5. If at most one $(5, 2)$-pillar with respect to B in H has a vertex, then

$$n \leq \left\lfloor \frac{4d + 36}{3} \right\rfloor. \quad (6.1)$$

Proof of Theorem 1.2 Let U be a set of n equiangular lines with common angle $\arccos(1/5)$ and base size 5 in dimension d. Fix a graph H induced by U such that H has a maximal clique $B = \{b_1, \ldots, b_5\}$ of size 5. Below we consider pillars with respect to B in H. If at most one $(5, 2)$-pillar has a vertex, then Theorem 6.2 gives (6.1). Thus we may assume that at least two $(5, 2)$-pillars have vertices. Also, by Lemma 6.1 the sum of orders of $(5, 1)$-pillars is at most 5.

We may assume that there is a $(5, 2)$-pillar of order at least 2. First, we assume that every $(5, 2)$-pillar has no edge. Then by Theorem 3.3 we have

$$n \leq 5 + 5 + 9 \cdot 24 + 36 = 262.$$

Secondly we assume that only one $(5, 2)$-pillar has edges. Then by Theorems 3.3 and 3.4 we have

$$n \leq 5 + 5 + 9 \cdot 18 + 54 = 226.$$
Thirdly we assume that at least two \((5, 2)\)-pillars have edges, and that at least one \((5, 2)\)-pillar has no edge. Then by Theorem \ref{thm:base_size_18} we have

\[
 n \leq 5 + 5 + 9 \cdot 27 + 18 = 271.
\]

Below we assume that every \((5, 2)\)-pillar has at least one edge. We consider the case where a \((5, 1)\)-pillar is of order at least 2. Without loss of generality we may assume that \(P_{B_i}^{(b_i)}\) is of order at least 2. Since the base size of \(U\) is 5, we see that every \((5, 1)\)-pillar has no edges. Hence Corollary \ref{cor:base_size_18} implies that \(P_{B_i}^{(b_i)}\) \((i = 2, 3, 4, 5)\) are of order at most 26. In addition, Theorem \ref{thm:base_size_18} implies that the other \((5, 2)\)-pillars are of order at most 27. Hence

\[
 n \leq 5 + 5 + 6 \cdot 27 + 4 \cdot 26 = 276.
\]

Next we consider the other case, where every \((5, 1)\)-pillar is of order at most 1. Let \(k\) be the number of \((5, 1)\)-pillars of order 1. Without loss of generality we may assume that \(P_{B_i}^{(b_i)}\) \((i = 1, \ldots, k)\) is of order 1. If \(k = 1\), then

\[
 n \leq 5 + 1 + 10 \cdot 27 = 276.
\]

Otherwise by Corollary \ref{cor:base_size_18} \((5, 2)\)-pillars \(P_{B_i}^{(b_i)}\) \((1 \leq i < j \leq k)\) are of order at most 26. Then we have

\[
 n \leq 5 + k + \left(10 - \left(\frac{k}{2}\right)\right) \cdot 27 + \frac{k}{2} \cdot 26 = 275 + k - \frac{k}{2} \leq 276.
\]

This ends the proof. \(\square\)

7. Some properties of sets of 57 equiangular lines with common angle \(\arccos(1/5)\) in dimension 18 found by Greaves et al. \cite{Greaves}

In this section, we answer Questions 1.3 and 1.4 in the negative with the aid of a computer. For each \(i \in \{1, \ldots, 4\}\), write \(F_i\) for the \(10 \times 57\) matrix in \cite{Greaves} Figures 1-4. Let \(S_i := F_i^T F_i/2 - 5I\). Let \(L_i\) be the lattice generated by the 57 columns of \(F_i/\sqrt{2}\). Let \(f_i\) be the \(i\)-th column of \(F_i/\sqrt{2}\), and write \(L_G := L_1\).

Proposition 7.1. The four lattices \(L_1, L_2, L_3\) and \(L_4\) are pairwise isometric, and their minimum norms are at most 4. In particular, the four sets of 57 equiangular lines with common angle \(\arccos(1/5)\) in dimension 18 induced by \(S_1, S_2, S_3\) and \(S_4\) are not contained in the set of 276 equiangular lines with common angle \(\arccos(1/5)\) in dimension 23.

Proof. First, we can verify that \(L_1, L_2, L_3\) and \(L_4\) are pairwise isometric by software such as Magma \cite{Magma}. Next the vector

\[
 [0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ -1 \ -1 \ -1 \ 1 \ 0 \ -1 \ 0 \ 0 \ 1]^T/\sqrt{2}
\]

has norm 4, and is represented as

\[
 f_{44} - f_{48} - f_{49} + f_{51} - f_{52} + f_{53}.
\]

This means that the minimum norm of \(L_G\) is at most 4.

Let \(S_W\) be the Seidel matrix with smallest eigenvalue 5 corresponding to the set of 276 equiangular lines with common angle \(\arccos(1/5)\) in dimension 23, and let \(L_W\) be the lattice with Gram matrix \(5I + S_W\). If the set of equiangular lines corresponding to \(S_i\) is contained in the set of 276 equiangular lines in dimension 23 for some \(i \in \{1, 2, 3, 4\}\), then \(L_G\) is a sublattice of \(L_W\) up to isometry. However, we can verify that the minimum norm of \(L_W\) equals 5 by a computer. Hence \(L_G\) is not a sublattice of \(L_W\) up to isometry. Therefore, the four sets of equiangular lines corresponding to the Seidel matrices \(S_1, S_2, S_3\) and \(S_4\) are not contained in the set of 276 equiangular lines in dimension 23. \(\square\)

Recall that the gap in \cite{Dinke} Proof of Theorem 4.6 (1)] is in claiming that a set of equiangular lines with common angle \(\arccos(1/5)\), base size 6 and at least two pillars having edges is contained in a unique set of 276 equiangular lines in dimension 23. The following together with Proposition 7.1 implies that the four sets of equiangular lines induced by \(S_1, S_2, S_3\) and \(S_4\) are counterexamples to their claim.

Proposition 7.2. The sets of 57 equiangular lines with common angle \(\arccos(1/5)\) in dimension 18 induced by \(S_1, S_2, S_3\) and \(S_4\) have base size 6 and at least two pillars with edges.

Proof. Let \(G\) be the graph induced by the Seidel matrix \(S_1\) with vertex set \(V(G) = \{1, \ldots, 57\}\). Then we can easily check that \(B := \{9, 13, 16, 17, 18, 28\}\) is a maximum clique, and edges \(\{1, 54\}\) and \(\{5, 8\}\) are contained in two distinct pillars with respect to \(B\), respectively. Similarly, we may find a desired clique and edges for each of \(S_2, S_3\) and \(S_4\). \(\square\)
Finally we answer Question 1.4 in the negative as follows.

Proposition 7.3. The sets of 57 equiangular lines with common angle $\arccos(1/5)$ in dimension 18 induced by S_1, S_2, S_3 and S_4 are strongly maximal.

Proof. Recall that L_G is generated by f_1, \ldots, f_{57}, and $5I + S_1$ equals the Gram matrix of the vectors f_1, \ldots, f_{57}. We see that the set is not strongly maximal if and only if there is a non-zero vector $u \in L_G^*: = \{v \in \mathbb{Q}L_G : (v, w) \in \mathbb{Z} \text{ for every } w \in L_G\}$ of norm at most 5 such that $(u, f_i) \in \{1, -1\}$ for every $i \in \{1, \ldots, 57\}$. With a computer, we can verify that such a vector does not exist. Hence we see that the set of equiangular lines corresponding to S_1 is strongly maximal. Similarly, we may obtain the desired result for each of S_2, S_3 and S_4. □

ACKNOWLEDGEMENTS

I am grateful to Akihiro Munemasa for his helpful comments.

REFERENCES

[1] A. Barg and W.-H. Yu. New bounds for equiangular lines. *Contemp. Math.*, 625:111–121, 2014.
[2] W. Bosma, J. Cannon and C. Playoust. The Magma algebra system. I. The user language. *J. Symbolic Comput.*, 24(3-4):235–265, 1997.
[3] A.E. Brouwer and W.H. Haemers. *Spectra of graphs*. Universitext. Springer, New York, 2012.
[4] M.-Y. Cao, J.H. Koolen, A. Munemasa and K. Yoshino. Maximality of Seidel matrices and switching roots of graphs. *Graphs Combin.*, 37(5):1491–1507, 2021.
[5] M.-Y. Cao, J.H. Koolen, Y.-C. R. Lin and W.-H. Yu. The Lemmens-Seidel conjecture and forbidden subgraphs. *J. Combin. Theory Ser. A*, 185:Paper No. 105538, 28, 2022.
[6] J.-M. Goethals and J.J. Seidel. The regular two-graph on 276 vertices. *Discrete Math.*, 12:143–158, 1975.
[7] G.R.W. Greaves, J. Syatriadi and P. Yatsyna. Equiangular lines in euclidean spaces: dimensions 17 and 18. *arXiv:2104.04330* 2021.
[8] G.R.W. Greaves, J. Syatriadi and P. Yatsyna. Equiangular lines in low dimensional Euclidean spaces. *Combinatorica*, 41(6):839–872, 2021.
[9] J. Haantjes. Equilateral point-sets in elliptic two- and three-dimensional spaces. *Nieuw Arch. Wiskunde*, 22(2):355–362, 1948.
[10] Z. Jiang, J. Tidor, Y. Yao, S. Zhang and Y. Zhao. Equiangular lines with a fixed angle. *Ann. of Math. (2)*, 194(3):729–743, 2021.
[11] E.J. King and X. Tang. New upper bounds for equiangular lines by pillar decomposition. *SIAM J. Discrete Math.*, 33(4):2479–2508, 2019.
[12] P.W.H. Lemmens and J.J. Seidel. Equiangular lines. *J. Algebra*, 24:494–512, 1973.
[13] Y.-C. R. Lin and W.-H. Yu. Equiangular lines and the Lemmens-Seidel conjecture. *Discrete Math.*, 343(2):111667, 2020.
[14] J.H. van Lint and J.J. Seidel. Equilateral point sets in elliptic geometry. *Nederl. Akad. Wetensch. Proc. Ser. A*, 28(3):335–348, 1966.

TOHOKU UNIVERSITY, GRADUATE SCHOOL OF INFORMATION SCIENCES, 6-3-09 AOBA, ARAMAKI-KAZA, AOBA-KU, SENDAI, MIYAGI, 980-8579, JAPAN

Email address: kiyoto.yosino.r2@dc.tohoku.ac.jp