Model-independent WIMP Characterization
Using ISR

Christoph Bartels

University of Hamburg, DESY

LCWS11 Granada, September 27, 2011
Dark Matter at the ILC?

- **WIMP properties:**
 - Electrically neutral
 - Stable \Rightarrow new conserved quantum number
 - Cold, i.e. non-relativistic
 - Cross sections $\mathcal{O}(100\,\text{fb})$
 - Massive $M \sim 100\,\text{GeV}$

- Well known initial state \Rightarrow precision physics
- Longitudinal polarized beams: $P_{e^-} = 80\%$ and $P_{e^+} \geq 30\%$
- Machine Parameters: RDR, SB-2009 impact beam energy spectrum
Direct WIMP Production in e^+e^--Collisions

Model-independent WIMP pair production (Birkedal et al.):

- Annihilation cross section determined by relic DM abundance
- Annihilation and production cross sections related by detailed balancing
- $\Rightarrow e^+e^- \rightarrow \chi\chi$, invisible in collider experiment, use ISR

- Search for high p_T photons balancing invisible WIMP system
- Model dependent interpretation (SUSY) \rightarrow O. Kittel tomorrow
Neutrino pair production $e^+ e^- \rightarrow \nu\nu\gamma$

- Irreducible
- Large production cross section
- Polarization dependent

⇒ Precise event reconstruction, excellent $\delta P / P$

Other: Multi-photon, radiative Bhabha scattering
Analysis Strategy I

- Observables: Photon energy E_γ (and polar angle Θ_γ)
- Measure from ISR spectrum
- Cross sections, Coupling structure, Mass, Partial wave

Threshold energy ⇔ missing mass, threshold behaviour ⇔ partial wave
Achievable precision, influence of polarization measurement?
Analysis Strategy II

- Large WIMP parameter space
 - Select irreducible $e^+e^- \rightarrow \nu\nu\gamma$ background
 - Reweight $\nu\nu\gamma$ events with $\frac{\sigma(\chi\chi\gamma)}{\sigma(\nu\nu\gamma)}$
- Large backgrounds: $S/B \approx O(10^{-3})$
 - Include photon in matrix element
 - Full detector simulation
 - Photon reconstruction
- Precise background prediction required
 - Parametrization of independent background sample
 - Generate signal prediction from parametrization

![Signal and Background Comparison](chart.png)
Reconstruction algorithm tends to split electromagnetic clusters
- Photons: no tracking information, fracturing not recovered
- Merge photon candidates with cone based method
- Optimize cone opening angle w.r.t. purity and efficiency
- Small amount of fracturing remaining at high photon energies
Reconstruction algorithm tends to split electromagnetic clusters
- Photons: no tracking information, fracturing not recovered
- Merge photon candidates with cone based method
- Optimize cone opening angle w.r.t. purity and efficiency
- Small amount of fracturing remaining at high photon energies
Reconstruction algorithm tends to split electromagnetic clusters
Photons: no tracking information, fracturing not recovered
Merge photon candidates with cone based method
Optimize cone opening angle w.r.t. purity and efficiency
Small amount of fracturing remaining at high photon energies
Selection of single high p_T photons

- **Signal definition:**
 - $10 \text{ GeV} < E_\gamma < 220 \text{ GeV}$, $|\cos \Theta_\gamma| < 0.98$
 - Low energy ISR, massless Z final state
 - Tracking and calorimetric acceptance

- **Maximal exclusive visible energy**
 - $E_{vis} - E_\gamma < 20 \text{ GeV}$
 - Reject multi-photon final states
 - Reject hadronic and leptonic final states

- **Tag electrons in forward calorimeters**
 - Reduce abundant Bhabha background

- **Veto high p_T tracks**
 - $p_T < 3 \text{ GeV}$
 - Reject hadronic and leptonic final states
Selection Efficiencies

\[\nu\nu\gamma \quad \Rightarrow \quad \chi\chi\gamma \]

- Selection efficiency of \(\nu\nu\gamma \) background energy dependent
- Reduced efficiency due to remaining cluster fracturing at high \(E_\gamma \)
- Signal photon spectrum mass dependent
- P-wave WIMP spectrum peaked sharper at low \(E_\gamma \)
Selection Efficiencies

\[\nu\nu\gamma \quad \Rightarrow \quad \chi\chi\gamma \]

- Selection efficiency of \(\nu\nu\gamma \) background energy dependent
- Reduced efficiency due to remaining cluster fracturing at high \(E_\gamma \)
- Signal photon spectrum mass dependent
- P-wave WIMP spectrum peaked sharper at low \(E_\gamma \)
- WIMP selection efficiency mass dependent \(\epsilon > 90\% \)
Cross Section and Coupling Structure

\[\sigma = \mathcal{F}(\sigma_{RR}, \sigma_{LL}, \sigma_{RL}, \sigma_{LR}; P_{e^-}, P_{e^+}) \]

Fully polarized cross sections \(\Leftrightarrow\) Coupling structure of WIMP interactions

- Study three scenarios:
 - "Equal": \(\sigma_{RR} = \sigma_{LL} = \sigma_{RL} = \sigma_{LR}\)
 - "Helicity": \(\sigma_{RL} = \sigma_{LR}\)
 - "Anti-SM": \(\sigma_{RL}\)

- Requires four measurements with polarized beams:
 - 200 fb\(^{-1}\) with \((+|P_{e^-}|; -|P_{e^+}|)\),
 - 200 fb\(^{-1}\) with \((-|P_{e^-}|; +|P_{e^+}|)\),
 - 50 fb\(^{-1}\) with \((+|P_{e^-}|; +|P_{e^+}|)\),
 - 50 fb\(^{-1}\) with \((-|P_{e^-}|; -|P_{e^+}|)\).

- Assume \(\sigma_0 = 100\) fb throughout
Systematic Uncertainties

- $\delta P/P$:
 - Cross sections, coupling structure $\sigma_{\{R,L\}}$
 - 0.25% to 0.1%

- $\delta L/L$:
 - Cross sections, coupling structure $\sigma_{\{R,L\}}$
 - 0.01%

- $\delta \epsilon/\epsilon$:
 - Cross sections, coupling structure $\sigma_{\{R,L\}}$
 - 2.0%
 - Calibrate with radiative Z-return

- Beam energy spectrum
 - Cross sections, Partial wave, Mass
 - Estimate from signal spectra of SB2009 and RDR parameter sets

- Beam energy scale
 - Mass
 - Calibrate with radiative Z-return
"Equal" scenario, $P_{e^-} = +0.8$, $P_{e^+} = -0.3$, $\mathcal{L} = 50 \text{ fb}^{-1}$, $\sigma_{P_{e^-}, P_{e^+}} = 100 \text{ fb}$

Parameter	Value	$\delta\sigma$ [fb]
$\delta P/P$	0.25%	5.7
$\delta \epsilon/\epsilon$	1.73%	1.7
$\delta \mathcal{L}/\mathcal{L}$	0.01%	0.01
Total		5.9
Coupling Structure

"Equal"

- $|P_{e^-}| = 0.8$
- $|P_{e^+}| = 0.3$
- $\delta P/P = 0.25\%$

"Helicity"

"Anti-SM"

- Scenarios distinguishable with $\chi^2/ndf > 10 \ (p < 10^{-8})$
- $|P_{e^+}| = 0.3, \ \delta P/P = 0.25\%: \ \Delta \sigma_{\{R,L\}} = 20 \text{ fb to } 40 \text{ fb}$
Model Independent WIMP Search

Coupling Structure

"Equal"

- Systematics only
- Total error

\[
\left| P_{e^{-}} \right| = 0.8 \quad \left| P_{e^{+}} \right| = 0.6 \quad \delta P/P = 0.25\%
\]

- Scenarios distinguishable with \(\chi^2/ndf > 10 \) (\(p < 10^{-8} \))

"Helicity"

- Systematics only
- Total error

"Anti-SM"

- Systematics only
- Total error
Coupling Structure

P_{e^-}	P_{e^+}	$\delta P/P$
0.8	0.6	0.10%

- Scenarios distinguishable with $\chi^2/ndf > 10$ ($p < 10^{-8}$)
- $|P_{e^+}| = 0.3$, $\delta P/P = 0.25\%$: $\Delta \sigma_{\{R,L\}} = 20$ fb to 40 fb
- $|P_{e^+}| = 0.6$, $\delta P/P = 0.25\%$: $\Delta \sigma_{\{R,L\}} = 10$ fb to 30 fb
- $|P_{e^+}| = 0.6$, $\delta P/P = 0.10\%$: $\Delta \sigma_{\{R,L\}} = 7$ fb to 20 fb
- Combine measurements: $\Delta \sigma_0/\sigma_0 = 2\%$ to 5%
Partial Wave Determination

- $\mathcal{L} = 500 \text{ fb}^{-1}$, "Helicity" scenario
- Test template s- and p-wave spectra against data spectrum
- χ^2_{min} indicates partial wave

- $P_{e^{-}} = +0.0$
- $P_{e^{+}} = +0.0$
Partial Wave Determination

- $\mathcal{L} = 500 \text{ fb}^{-1}$, "Helicity" scenario
- Test template s- and p-wave spectra against data spectrum
- χ^2_{min} indicates partial wave
- Partial wave determination requires polarized beams
Mass Measurement

- **Equal**
 - \((P_e/P_p) = (0.8/0.0)\)
 - \(J_0 = 1; \text{Equal}\)

- **Helicity**
 - \((P_e/P_p) = (0.8/0.0)\)
 - \(J_0 = 1; \text{Helicity}\)

- **Anti-SM**
 - \((P_e/P_p) = (0.8/0.0)\)
 - \(J_0 = 1; \text{Anti-SM}\)

- \(\mathcal{L} = 500 \text{ fb}^{-1}\), p-wave WIMPs, \(\sigma_0 = 100 \text{ fb}\)
- Relative errors mass dependent: \(\Delta M/M = 0.5\% \text{ to } 2.5\%\)
- Scenario dependent increase in precision for polarized beams
- Systematic errors: Luminosity spectrum, beam energy scale
Mass Measurement

- $\mathcal{L} = 500 \text{ fb}^{-1}$, p-wave WIMPs, $\sigma_0 = 100 \text{ fb}$
- Relative errors mass dependent: $\Delta M/M = 0.5\%$ to 2.5%
- Scenario dependent increase in precision for polarized beams
- Systematic errors: Luminosity spectrum, beam energy scale
Conclusion

- Model independent WIMP search by detection of high p_T photons
- Structure of studied coupling scenarios distinguishable
- Unpolarized cross section σ_0 determined to 2% to 5%
- Dominant uncertainty: Polarization measurement

- Partial wave can be determined with polarized beams
- Masses determined to ≤ 2.5
- Dominant uncertainty: Beam energy spectrum

- Increased precision on Polarization measurement \rightarrow factor two reduction of systematic errors
- Study of e.g. SUSY scenarios where only $\tilde{\chi}_1^0$ accessible (see O. Kittel tomorrow)