Research Article

Synthesis, Characterization, Crystal Structure, and Biological Studies of a Cadmium(II) Complex with a Tridentate Ligand 4′-Chloro-2,2′:6′,2′′-Terpyridine

L. A. Saghatforoush,1 L. Valencia,2 F. Chalabian,3 and Sh. Ghammamy4

1 Chemistry Department, Payame Noor University, Tehran 19395-4697, Iran
2 Departamento de Quimica Inorganica, Facultad de Quimica, Universidade de Vigo, 36310 Vigo, Spain
3 Department of Biology, Islamic Azad University, Tehran North Campus, Tehran, Iran
4 Department of Chemistry, Imam Khomeini International University, Qazvin 34149-16818, Iran

Correspondence should be addressed to L. A. Saghatforoush, saghatforoush@gmail.com

Received 25 January 2011; Revised 23 March 2011; Accepted 24 March 2011

Academic Editor: Giovanni Natile

Copyright © 2011 L. A. Saghatforoush et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A new Cd(II) complex with the ligand 4′-chboro-2,2′:6′,2′′-terpyridine (Cltpy), [Cd(Cltpy)(I)2], has been synthesized and characterized by CHN elemental analysis, 1H-NMR, 13C-NMR, and IR spectroscopy and structurally analyzed by X-ray single-crystal diffraction. The single-crystal X-ray analyses show that the coordination number in complex is five with three terpyridine (Cltpy) N-donor atoms and two iodine atoms. The antibacterial activities of Cltpy and its Cd(II) complex are tested against different bacteria.

1. Introduction

Terpyridine molecules with three nitrogen atoms acting as tridentate ligands to coordinate with various transition metal ions have been extensively studied [1, 2]. Coordination chemistry of the multitopic ligand of 2,2′:6′,2′′-terpyridine (tpy) particularly those substituted at the 4-position has been recently attracting growing attention in the design of the supramolecular building blocks based on the metal-directed self-assembly [3–26]. The 4′-chloro-2,2′:6′,2′′-terpyridine (Cltpy) ligand (Figure 1) contains one widely used tpy coordinative site and the other Cl site at the 4′-position. These two sites are able to bind with different metal ions, thus leading to the coordination polymers with various frameworks [21]. Tpy can bind to both low- and high-oxidation state metal ions, almost always in tridentate fashion [27–32]. The synthesis of tpy derivatives has been extensively studied by Constable’s group, and varieties of substituted tpy compounds have been reported [19, 20]. For example, they offered interesting prospects for metal-activated drug delivery system, where the activity could be switched by metal-ion coordination through the study of the interactions between bioreceptors and ligand with sugar substituents [19, 20]. In clinical applications and biochemistry, functionalized terpyridines have found a wide range of potential uses, ranging from colorimetric metal determination to DNA binding agents [33]. Metal terpyridine complexes due to the binding to nucleic acids have the ability or potential to serve as anticancer, antibacterial, and antiparasitic drugs [34–39]. The exact mechanisms are not known in some cases and may involve protein binding or membrane binding. The interaction Cd(II) ion with biomolecules is one of the most studying fields in coordination chemistry, and cadmium is a very toxic metal and widely used in many industrial processes [40, 41]. In this research we used new tridentate ligand 4′-chloro-2,2′:6′,2′′-terpyridine (Cltpy) that has been used for synthesis of a new cadmium(II) complex. The structural and biological properties of this new complex have been studied.
2. Experimental

2.1. Materials and Measurements. All chemicals were reagent grade and used without further purification. Elemental analyses (CHN) were performed using a Carlo ERBA model EA 1108 analyzer. FT-IR spectra were collected on a Shimadzu prestige 21 spectrophotometer in the range of 4000–400 cm$^{-1}$. 1H and 13C NMR spectra were recorded with a Bruker spectrometer at 250 MHz in D$_6$-DMSO.

2.2. Preparation of [Cd(Cltpy)I$_2$]. 4′-chloro-2,2′:6′,2″-terpyridine (0.268 g, 1 mmol) was placed in one arm of a branched tube, cadmium(II) acetat (0.264 g, 1 mmol) and potassium iodide (0.332 g, 2 mmol) in the other. Methanol was carefully added to fill both arms, the tube was then sealed, and the ligand-containing arm was immersed in a bath at 60°C, while the other remained at ambient temperature. After two days, the light brown crystals that had deposited in the cooler arm were filtered off, then washed with diethylether, and air dried. Yield: 71%. Analyses: found: C: 28.38, H: 1.51, N: 6.59%. Calculated for C$_{15}$H$_{10}$CdClI$_2$N$_3$: C: 28.38, H: 1.51, N: 6.59%. Calculated for C$_{15}$H$_{10}$CdClI$_2$N$_3$: C: 28.42, H: 1.59, N: 6.63%.

2.3. Antibacterial Activity Test. In vitro activity test was carried out using the growth inhibitory zone (well method) [42–45]. The potency of components was determined against the three Gram-positive bacteria, Streptococcus pyogenes (RITCC 1940), Staphylococcus aureus (RITCC 1885), and Bacillus anthracis (RITCC 1036), and also against the three Gram-negative bacteria, Klebsiella pneumonia (RITCC 1249), Escherichia coli (RITCC 1330), and Pseudomonas aeruginosa (RITCC 1547). Microorganisms (obtained from enrichment culture of the microorganisms in 1 mL Muller-Hinton broth incubated at 37°C for 12 h) were cultured on Muller-Hinton agar medium. The inhibitory activity was compared with that of standard antibiotics, such as gentamicin (10 μg). After drilling wells on the medium using a 6 mm cork borer, 100 μL of solution from different compounds were poured into each well. The plates were incubated at 37°C overnight. The diameter of the inhibition zone was measured as precisely as possible. Each test was carried out in triplicate, and the average was calculated for inhibition zone diameters. A blank containing only DMSO showed no inhibition in a preliminary test. The macrodilution broth susceptibility assay was used for the evaluation of minimal inhibitory concentration (MIC). The use of 12 test tubes is required by the macrodilution method. By including 1 mL Muller-Hinton broth in each test and then adding 1 mL extract with concentration 100 mg/mL in the first tube, we made a serial dilution of this extract from the first tube to the last tube. Bacterial suspensions were prepared to match

Identification code	Cd (terpy-Cl) I$_2$ (7)
Empirical formula	C$_{15}$H$_{10}$CdClI$_2$N$_3$
Formula weight	633.91
Colour	light brown
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	P2(1)/c
Unit cell dimensions	
a = 11.4865(10) Å	
b = 8.9326(7) Å	
c = 17.7570(14) Å	
α = 90°	
β = 94.242(2)°	
γ = 90°	
Volume	1817.0(3) Å3
Z	4
Density (calculated)	2.317 g cm$^{-3}$
Absorption coefficient	4.745 mm$^{-1}$
F(000)	1168
Crystal size	0.27 × 0.14 × 0.13 mm3
Theta range for data collection	1.78 to 25.02°
Index ranges	
$-11 \leq h \leq 13$	
$-10 \leq k \leq 10$	
$-21 \leq l \leq 19$	
Reflections collected	9236
Independent reflections	3184
Absorption correction	Empirical
Max. and min. transmission	0.5774 and 0.3606
Refinement method	Full-matrix
Least-squares on F^2	
Data/restraints/parameters	3184/0/199
Goodness-of-fit on F^2	1.063
Final R indices [$I > 2\sigma (I)$]	$R_1 = 0.0309$
R_2	0.0747
R indices (all data)	$R_1 = 0.0504$
wR_2	0.0862
Largest diff. peak, hole	0.802 and −0.708e· Å$^{-3}$
3. Results and Discussion

3.1. Spectroscopic Analysis. The reaction of CdX2 (X: nitrate and acetate) with 4’-chloro-2,2‘,6,2’‘-terpyridine (Cltpy) and potassium iodide yielded crystalline material formulated as [Cd(Cltpy)I2]. The IR spectra display characteristic absorption bands for the tpyCl ligands. The relatively weak absorption bands at around 3042–3065 cm\(^{-1}\) are due to the C–H modes involving the aromatic ring hydrogen atoms. The absorption bands with variable intensity in the frequency range 1400–1620 cm\(^{-1}\) correspond to aromatic ring vibrations of the tpyCl ligand [29–40, 49].

The \(^1\)H-NMR spectra of DMSO solutions of complex at room temperature show two triplets, a singlet, and a multiplet for the aromatic protons of Cltpy ligand. The \(^13\)C-NMR spectra of DMSO solutions of these compounds show eight distinct bands assigned to the aromatic carbon atoms of the pyridine rings of the Cltpy ligand.

3.2. Structural Analysis. The solid-state structure of compound was determined by single-crystal X-ray diffraction. Crystal and structure refinement data of the compound are given in Table 1. X-ray crystal analysis reveals that the compound crystallizes in monoclinic with space group P2(1)/c. The crystal structure of compound consists of monomeric units. Each cadmium atom chelated by three Cltpy nitrogen atoms and two iodine atoms (Figure 2). The resulting coordination number of five is augmented with CdN\(_3\)I\(_2\) molecule core. Selected bond lengths and angles of complex are given in Table 2.

The complex structure was described in detail. Five coordinate complexes with chelating ligands can exhibit either square pyramidal or trigonal bipyramidal geometries, and the particular case is influenced by both steric and electronic factors. The variation of five coordinate species between square pyramidal or trigonal bipyramidal is quantified by the \(\tau\) parameter [50–52]:

\[
\tau = \frac{(\beta - \alpha)}{60}.
\]

The new [Cd(Cltpy)(I)\(_2\)] complex reported herein takes on a slightly distorted square pyramidal structure as evidenced by the \(\tau\) value of 0.029. Definition of the bond angles (\(\theta\)) in [Cd(Cltpy)(I)\(_2\)] complex is illustrated in Figure 1. The Cd1–N1, Cd1–N2, and Cd1–N3 bond lengths are within the normal range of Cd–N bonds. The average bond length of Cd–N is 2.7417(7) \(\AA\) that is slightly shorter than the reported bond length [53]. The I2 occupies the apical position in complex at relatively longer distance. The rigid character of the tpy bite leads Cd–N bond lengths in the complex to follow the general trend of Cdtpy complexes, that is, to have their Cd–N

![Figure 2: Molecular structure of [Cd(Cltpy)I2] including the atom numbering scheme. All hydrogen atoms have been omitted for clarity.](image-url)
Table 3: Intermolecular interactions in crystals of [Cd(Cltpy)I₂] complex.

A⋯H-B	H⋯A/A	B⋯A/A	B-H⋯A/°
I2⋯H14–C14(−x, y, −z + 1/2)	2.937	3.620(2)	166.16
I2⋯H12–C12(−x, y, −z + 1/2)	3.130	3.435(2)	161.15
I2⋯H13–C13(−x, y, −z + 1/2)	3.163	3.308(2)	135.50
C2(N1C1–C5)⋯C8(N2C6–C10)			
Centroid⋯centroid (N1C1–C5)⋯(N2C6–C10)			
Centroid⋯centroid (N3C11–C15)⋯(N3C11–C15)			

Table 4: Antibacterial activities (zone of growth inhibition and minimal inhibitory concentrations) of Cltpy ligand and Cd (II) complex and gentamicin (as a standard compound).

Method	Main compounds	Microorganisms
Growth Inhibitory zone [mm]	Cltpy	Klebsiella pneumonia (−)
	Complex	Escherichia coli (−)
		Pseudomonas aeruginosa (−)
		Streptococcus pyogenes (+)
		B. anthracis (+)
		Staphylococcus aureus (+)
Standard	Gentamicin	100
Minimum inhibitory concentration (mg/mL) (MIC)	L	100
	Complex	100

central bond slightly shorter than the Cd–N lateral [54, 55]. The tpy ligand is not planar; due to coordination strain the molecule is bent into a concave shape, the central pyridyl group subtending dihedral angles of 5.85(1) and 9.19(1)° to the lateral ones.

This complex has some intermolecular interactions. Intermolecular interactions in crystal of [Cd(Cltpy)I₂] complex are shown in Table 3. There are aromatic π-π stacking interactions between the parallel aromatic rings of the 4′-chloro-2,2′:6′,2″-terpyridine (Cltpy) ligands as seen in Figure 3(b).

The unit cell of complex is shown in Figure 2. Molecules occupied half of tetrahedral holes and used zinc blend system that is not a closed packed system.

3.3. Antibacterial Activity. The antibacterial activities of Cltpy and its Cd(II) complex are shown in Table 4. The free ligand has considerable activity against Staphylococcus pyogenes, Bacillus anthracis, and Pseudomonas aeruginosa (inhibitory zones ≥20 mm) but has moderate activity against Escherichia coli and Streptococcus aureus (inhibitory zones ≤15 mm) [42, 43]. In comparison with free Cltpy ligand, the complex has more activity against Escherichia coli (more inhibitory zones), but it is less active against Staphylococcus pyogenes, Bacillus anthracis, and Streptococcus aureus, [45]. It is should be noticed that the antibacterial activity of Cltpy ligand is higher than standard antibiotic (gentamicin) against Pseudomonas aeruginosa, Streptococcus pyogenes, and Klebsiella pneumonia.
Against *Escherichia coli*, antibacterial activity of complex is higher than Cltpy ligand. The higher activity of complex may be explained on the basis of chelation theory [42, 43]. Also the better antibacterial activity of complex is probably due to the existence of I– anion in its structure [44, 45]. The quantitative assays gave MIC values in the range 50–100 mg ml⁻¹ (Table 4) that confirmed the previous results.

4. Conclusion

New multidentate ligand, 4'-chloro-2,2',6',2''-terpyridine (Cltpy), has been used for preparation of an inorganic complex. A new Cd(II) complex [Cd(Cltpy)₂] has been synthesized and characterized by CHN elemental analysis, ¹H-NMR, ¹³C-NMR, and IR spectroscopy, and structurally analyzed by X-ray single-crystal diffraction. The single-crystal X-ray analyses show that the coordination number in this complex is five with three terpyridine (Cltpy) N-donor atoms and two iodine atoms. The antibacterial activities of Cltpy and its Cd(II) complex are tested against different bacteria. The complex has good activity against all tested bacteria. Against *Escherichia coli*, antibacterial activity of complex is higher than Cltpy ligand. The higher activity of complex may be explained on the basis of chelation theory.

Additional Data

CCDC reference number 799987 contains the additional crystallographic data for this paper. These data can be obtained free of charge at http://www.ccdc.cam.ac.uk/conts/retrieving.html.

Acknowledgments

This work was supported by the Payame Noor University, Khoy in Iran and Facultad de Quimica, Universidad de Vigo, Vigo Pontevedra in Spain.

References

[1] S. Wang, B. D. Li, R. Y. Wang, B. L. Wu, and H. Y. Zhang, “Synthesis and crystal structure of a novel mixed-valent tricopper complex of 4'-p-tolyl-2,2',6',2''-terpyridine,” *Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry*, vol. 39, no. 6, pp. 353–359, 2009.

[2] E. C. Constable, “Expanded ligands-an assembly principle for supramolecular chemistry,” *Coordination Chemistry Reviews*, vol. 252, no. 8-9, pp. 842–855, 2008.

[3] S. K. Padhi, R. Sahu, and V. Manivannan, “Ni(II) complexes of 4′-(2-pyridyl)-2,2',6',2''-terpyridine; structure of mono- and bis-chelates containing anion...II interactions,” *Polyhedron*, vol. 27, no. 9–10, pp. 2221–2225, 2008.

[4] J. p. Sauvage, J. p. Collin, J. C. Chambron et al., “Ruthenium(II) and osmium(II) bis(terpyridine) complexes in covalently-linked multicomponent systems: synthesis, electrochemical behavior, absorption spectra, and photochemical and photophysical properties,” *Chemical Reviews*, vol. 94, no. 4, pp. 993–1019, 1994.

[5] G. J. Meyers, “Molecular approaches to solar energy conversion with coordination compounds anchored to semiconductor surfaces,” *Inorganic Chemistry*, vol. 44, no. 20, pp. 6852–6864, 2005.

[6] S. Bonse, J. M. Richards, S. A. Ross, G. Lowe, and R. L. Krauth-Siegel, "(2',2'',6'',2''-terpyridine)platinum(II) complexes are irreversible inhibitors of trypanosoma cruzi trypanothione reductase but not of human glutathione reductase," *Journal of Medicinal Chemistry*, vol. 43, no. 25, pp. 4812–4821, 2000.

[7] G. Chelucci, “Optically active 2,2',6',2''-terpyridine : synthesis of 6-6,6,6-dimethylnoptyran-2-YL- and 6,6'-BIS-6,6-dimethylnoptyran-2-YL-2,2',6',2''-terpyridine,” *Synthetic Communications*, vol. 23, no. 13, pp. 1897–1903, 1993.

[8] G. Chelucci, M. A. Cabras, and A. Saba, “Enantioselective cyclopropanation of styrene with optically active nitrogen ligands based on the pyridine framework,” *Journal of Molecular Catalysis*, vol. 95, no. 1, pp. L7–L10, 1995.

[9] G. F. Swiegers and T. J. Malefetse, “New self-assembled structural motifs in coordination chemistry,” *Chemical Reviews*, vol. 100, no. 9, pp. 5483–5537, 2000.

[10] J. Chambers, B. Eaves, D. Parker, R. Claxton, p. S. Ray, and S. J. Slattery, “Inductive influence of 4'-terpyridyl substituents on redox and spin state properties of iron(II) and cobalt(II) bis-terpyridyl complexes,” *Inorganica Chimica Acta*, vol. 359, no. 8, pp. 2400–2406, 2006.

[11] W. Huang and H. Qian, “C–H...X hydrogen-bond-mediated supramolecular frameworks: syntheses and crystal structures of hydrochloroate hexafluorophosphate and hydrochloroate tetrafluorooborate of 4'-chloro-2,2',6',2''-terpyridine,” *Journal of Molecular Structure*, vol. 832, no. 1–3, pp. 108–116, 2007.

[12] J. M. Lehn, *Supramolecular Chemistry*, VCH, Weinheim, Germany, 1995.

[13] C. A. Hunter, “Meldola lecture. The role of aromatic interactions in molecular recognition,” *Chemical Society Reviews*, vol. 23, no. 2, pp. 101–109, 1994.

[14] G. R. Desiraju, “Designer crystals: intermolecular interactions, network structures and supramolecular synthons,” *Chemical Communications*, no. 16, pp. 1475–1482, 1997.

[15] M. C. Etter, “Encoding and decoding hydrogen-bond patterns of organic compounds,” *Accounts of Chemical Research*, vol. 23, no. 4, pp. 120–126, 1990.

[16] W. Huang, H. B. Zhu, and S. H. Gou, "Self-assembly directed by dinuclear zinc(II) macrocyclic species," *Coordination Chemistry Reviews*, vol. 250, no. 3-4, pp. 414–423, 2006.

[17] U. Koch and p. L. A. Popelier, “Characterization of C-H-O hydrogen bonds on the basis of the charge density,” *Journal of Physical Chemistry*, vol. 99, no. 24, pp. 19747–19754, 1995.

[18] J. E. Beves, p. Chwalisz, E. C. Constable et al., “A new poly-morph of 4'-tolyl-2,2',6',2''-terpyridine (tty) and the single crystal structures of [Fe(ttpon).]:[PF₄] and [Ru(ttpon).]:[PF₄]₂,” *Inorganic Chemistry Communications*, vol. 11, no. 9, pp. 1009–1011, 2008.

[19] W. Huang, W. You, L. Wang, and C. Yao, “Anionic effects on the formation of tridentate 4'-chloro-2,2',6',2''-terpyridine copper(II) complexes having 1:1 or 1:2 ratio of metal and ligand and their crystal symmetry,” *Inorganica Chimica Acta*, vol. 362, no. 9, pp. 2127–2135, 2009.

[20] W. Huang and H. Qian, “Supramolecular frameworks composed of Ru(II), Cu(II), Zn(II), Ni(II) and Fe(II) complexes having tridentate 4'-chloro-2,2',6',2''-terpyridine ligand and 1:1 or 1:2 ratios of metal and ligand,” *Journal of Molecular Structure*, vol. 874, no. 1–3, pp. 64–76, 2008.

[21] F. Guo, W. Sun, Y. Liu, and K. Schanze, "Synthesis, photophysics, and optical limiting of platinum(II) 4'-tolopyridyl...
arylacylide complexes,” *Inorganic Chemistry*, vol. 44, no. 11, pp. 4055–4065, 2005.

[22] J. H. Wang, Y. Q. Fang, G. S. Hanan, F. Loiseau, and S. Campagna, “Synthesis and properties of the elusive ruthenium(II) complexes of 4’-cyano-2,2’,6’,2”-terpyridine,” *Inorganic Chemistry*, vol. 44, no. 1, pp. 5–7, 2005.

[23] C. F. Zhang, H. X. Huang, B. Liu, M. Chen, and D. J. Qiana, “Spectroscopic study of the 4’-(4-pyridyl)-2,2’,6’,2”-terpyridine and its metal complexes,” *Journal of Luminescence*, vol. 128, no. 3, pp. 469–475, 2008.

[24] E. Constable, E. L. Dunphy, C. E. Housecroft et al., “Structural development of free or coordinated 4’-(4-pyridyl)-2,2’,6’,2”-terpyridine ligands through N-alkylation: new strategies for metallamacrocycle formation,” *Chemistry—A European Journal*, vol. 12, no. 17, pp. 4600–4610, 2006.

[25] S. D. Cummings, “Platinum complexes of terpyridine: interaction and reactivity with biomolecules,” *Coordination Chemistry Reviews*, vol. 253, no. 9-10, pp. 1495–1516, 2009.

[26] A. Jain, B. S. J. Winkel, and K. J. Brewer, “In vivo inhibition of E. coli growth by a Ru(II)Pt(II) supramolecule [{(tpy)RuCl(dpp)PtCl2}(PF6)]”, *Inorganic Biochemistry*, vol. 101, no. 10, pp. 1525–1528, 2007.

[27] A. W. Addison, T. N. Rao, J. Reedijk, J. Van Rijn, and G. C. Verschoor, “Synthesis, structure and spectroscopic properties of copper(II) compounds containing nitrogen-sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2-yl)-2,6-dithiaheptane]copper(II) perchlorate,” *Journal of the Chemical Society, Dalton Transactions*, no. 7, pp. 1349–1356, 1984.

[28] D. Reinen and C. Friebel, “Cu in 5-coordination: a case of a second-order Jahn–Teller effect. 2. CuCl and other CuI complexes: trigonal bipyramidal or square pyramid?” *Inorganic Chemistry*, vol. 23, no. 7, pp. 791–798, 1984.
[53] E. S. Lang, R. Stieler, and G. N. M. de Oliveira, “Synthesis, structural characterization and growth features of some (Ph)Se-Cd cluster compounds (Ph = phenyl),” *Polyhedron*, vol. 29, no. 7, pp. 1760–1763, 2010.

[54] W. You, W. Huang, Y. Fan, and C. Yao, “Studies on two cadmium(II) and two zinc(II) complexes of 4’-chloro-2,2’:6’,2”-terpyridine with 1:1 or 1:2 ratio of metal and ligand,” *Journal of Coordination Chemistry*, vol. 62, no. 13, pp. 2125–2137, 2009.

[55] M. A. Harvey, S. Baggio, M. T. Garland, and R. Baggio, “X-ray study of two new cadmium acetato complexes,” *Journal of Coordination Chemistry*, vol. 58, no. 3, pp. 243–253, 2005.