Dataset of allele, genotype and haplotype frequencies of four LIN28B gene polymorphisms analyzed for association with age at menarche in Russian women

Irina Ponomarenko, Evgeny Reshetnikov, Oleg Golovchenko, Alexey Polonikov, Irina Verzilina, Inna Sorokina, Inna Aristova, Anna Yermachenko, Volodymyr Dvornyk, Mikhail Churnosov

To cite this version:
Irina Ponomarenko, Evgeny Reshetnikov, Oleg Golovchenko, Alexey Polonikov, Irina Verzilina, et al.. Dataset of allele, genotype and haplotype frequencies of four LIN28B gene polymorphisms analyzed for association with age at menarche in Russian women. Data in Brief, 2019, 25, pp.104323. 10.1016/j.dib.2019.104323. hal-02409021

HAL Id: hal-02409021
https://hal.sorbonne-universite.fr/hal-02409021

Submitted on 13 Dec 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Dataset of allele, genotype and haplotype frequencies of four LIN28B gene polymorphisms analyzed for association with age at menarche in Russian women

Irina Ponomarenko, Evgeny Reshetnikov, Oleg Golovchenko, Alexey Polonikov, Irina Verzilina, Inna Sorokina, Inna Aristova, Anna Yermachenko, Volodymyr Dvornyk, Mikhail Churnosov

Abstract

In this paper, we present the allele, genotype and haplotype frequencies of 4 single nucleotide polymorphisms (SNPs) in LIN28B gene (rs4946651, rs7759938, rs314280, rs314276) in a sample of Russian women. These SNPs had been previously identified to be associated with age at menarche in genome-wide association studies (GWAS). The information about age at menarche was obtained using the questionnaire. The frequencies of alleles, genotypes and haplotypes of four SNPs were classified in 3 groups: the whole sample, individuals with the early age at menarche (<12 years), and those with the average age at menarche (12–14 years).

© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Data

The dataset represents the raw data (supplementary Table), frequencies of alleles, genotypes and haplotypes for single nucleotide polymorphisms (SNPs) rs4946651, rs7759938, rs314280 and rs314276 of the LIN28B gene associated with age at menarche in previously published genome-wide and candidate gene association studies [1-7]. The data were divided into three groups according to the age at menarche (AAM) of the participants: the whole sample, the early age at menarche (<12 years), and the average age at menarche (12–14 years). The frequencies of the alleles, genotypes and haplotypes are presented in Table 1 and Table 2 respectively. The structure of linkage disequilibrium of rs4946651, rs7759938, rs314280 and rs314276 in LIN28B gene is shown in Fig. 1.

2. Experimental design, materials, and methods

2.1. Subjects

The recruitment of the participants was carried out through the Perinatal Centre of the Belgorod Regional Clinical Hospital of St. Joasaph during 2008–2013. All participants were unrelated women of Russian descent (self-declared) living in Central Russia [8]. The following exclusion criteria were adopted: non-Russian descent, a birthplace outside of Central Russia, malignant tumors of a small pelvis and breast, benign tumors and hyperplastic disorders of the reproductive organs in women (leiomyoma, endometriosis, and endometrial hyperplasia), chronic severe diseases of the vital organs (heart, respiratory or renal failure), severe autoimmune diseases. The research protocol was approved by the Regional Ethics Committee of Belgorod State University. Written informed consent for participation was obtained from all individuals enrolled in the research.

The information about AAM was obtained using the questionnaire. AAM was defined as age (full years) of first menses. Each participant was asked a question: “How old were you when you had the first menses?” Women with AAM ≥18 years (n = 4) or women who refused to answer (n = 13) were excluded from the research. In total, 674 females participated in the research.
The frequencies of haplotypes for single nucleotide polymorphisms (SNPs) rs4946651, rs7759938, rs314280 and rs314276 of the LIN28B gene in the sample of Russian women.

Table 1
The frequencies of alleles and genotypes for single nucleotide polymorphisms (SNPs) rs4946651, rs7759938, rs314280 and rs314276 of the LIN28B gene in the sample of Russian women.

SNP genotype or allele	All (n = 674)	Age at menarche					
	n	frequency	Mean, years	Early (<12 yrs) (n = 66)	Average (12–14 yrs) (n = 579)		
rs4946651							
AA	120	0.1780	12.67 ± 1.00	8	0.1212	108	0.1865
GA	333	0.4941	12.65 ± 1.09	35	0.5303	282	0.4870
GG	221	0.3279	12.56 ± 1.03	23	0.3485	189	0.3265
A	573	0.4251		51	0.3864	498	0.4301
G	775	0.5749		81	0.6136	660	0.5699
rs7759938							
CC	52	0.0772	12.73 ± 1.12	4	0.0606	45	0.0777
TC	298	0.4421	12.67 ± 1.07	28	0.4242	255	0.4404
TT	324	0.4807	12.56 ± 1.03	34	0.5152	279	0.4819
C	402	0.2982		36	0.2727	345	0.2979
T	946	0.7018		96	0.7273	813	0.7021
rs314280							
TT	109	0.1617	12.68 ± 1.01	8	0.1212	97	0.1675
CT	344	0.5104	12.65 ± 1.09	35	0.5303	293	0.5060
CC	221	0.3279	12.56 ± 1.03	23	0.3485	189	0.3265
T	562	0.4169		51	0.3864	487	0.4206
C	786	0.5831		81	0.6136	671	0.5794
rs314276							
AA	63	0.0935	12.68 ± 1.10	6	0.0909	54	0.0933
CA	300	0.4451	12.71 ± 1.07	25	0.3788	259	0.4473
CC	311	0.4614	12.53 ± 1.02	35	0.5303	266	0.4594
A	426	0.3160		37	0.2803	367	0.3169
C	922	0.6840		95	0.7197	791	0.6831

Table 2
The frequencies of haplotypes for single nucleotide polymorphisms (SNPs) rs4946651, rs7759938, rs314280 and rs314276 of the LIN28B gene in the sample of Russian women.

Haplotype (rs4946651, rs7759938, rs314280, and rs314276)	All (n = 674), frequency	Age at menarche	
		Early (<12 yrs) (n = 66), frequency	Average (12–14 yrs) (n = 579), frequency
ACTA	0.287	0.265	0.287
GTCA	0.024	0.015	0.024
ATTC	0.122	0.114	0.126
GTCC	0.551	0.598	0.547

Fig. 1. The structure of linkage disequilibrium of rs4946651, rs7759938, rs314280 and rs314276 in the LIN28B gene in the sample of Russian women. Linkage disequilibrium was measured by Lewontin’s coefficient D’. The dark red (D’ = 1) indicates that there exists strong pairwise LD between SNPs. A) All sample set. B) Early age at menarche (<12 years). C) Average age at menarche (12–14 years).
Table 3
Regulatory effects of the 4 SNPs of the LIN28B gene (HaploReg, v4.1, update 05.11.2015) (https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php).

| pos (hg38) | variant | Ref | Alt | AFR freq | AMR freq | ASN freq | EUR freq | GERP SiPhy | Promoter Enhancer | DNAse Proteins | Motifs | NHGRI/EBI GRASP QTL | Selected eQTL | GENCODE | dbSNP | freq | freq | freq | freq |
|------------|---------|-----|-----|----------|----------|----------|----------|------------|-------------------|----------------|---------|-------------------|--------------|----------|-------|------|------|------|------|------|
| 104921635 | rs4946651 | A | G | 0.18 | 0.63 | 0.70 | 0.52 | 1 hit | 15kb 3' of LINC00577 |
| 104931079 | rs7759938 | C | T | 0.37 | 0.72 | 0.70 | 0.65 | ESC, IPSC | 6 hits | 2 hits |
| 104952962 | rs314280 | A | G | 0.18 | 0.62 | 0.70 | 0.52 | 6 tissues | 4 tissues | 11 tissues 5 bound proteins |
| 104960124 | rs314276 | A | C | 0.53 | 0.67 | 0.70 | 0.64 | IPSC | HNF1,OTX,Pou2f2 2 hits 11 hits |

4. I. Ponomarenko et al. / Data in brief 25 (2019) 104323
2.2. Blood sample collection and DNA handling

The phlebotomy was performed by a certified nurse. Five milliliters of blood was taken from the ulnar vein into a plastic vial (Vacutainer®) with 0.5M EDTA solution (pH = 8.0). Extraction of lymphocyte DNA was done by standard phenol-chloroform technique and quantified by Nanodrop 2000 spectrophotometer (Thermo Scientific, Inc.). Only samples with $A_{260}/A_{280} = 1.7–2.0$ were used for the analysis.

2.3. SNP selection

The 4 SNPs in the LIN28B gene (rs4946651, rs7759938, rs314280 and rs314276) were selected for the analysis based on the following criteria [9,10]: 1) Previously reported associations with AAM and phenotypes, which share metabolic pathways with menarche (e.g., obesity, anthropometric characteristics, vitamin D metabolism, etc.), 2) Regulatory potential (regSNP), 3) Effect on gene expression (eSNP), 4) Tag value (tagSNP) and 5) MAF > 5%.

The selected polymorphic loci have functional significance: all SNPs appear to have a significant regulatory potential (Table 3) (determined using the online tools HaploReg, v4.1 update 05.11.2015, https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php) and to influence gene expression level (Table 4) (determined using the GTEx data, http://www.gtexportal.org/).

2.4. SNP genotyping

DNA samples were genotyped using the Sequenom MassARRAY® iPLEX platform at the Centre of Genomic Sciences (University of Hong Kong). The procedure for DNA sample preparation and data quality control are described elsewhere [10].

2.5. Statistical analysis

The correspondence of the SNPs to the Hardy-Weinberg equilibrium was checked using the chi-square test. No significant differences in allele frequencies between the group with the early age at menarche (<12 years) and group with the average age at menarche (12–14 years) (p > 0.05) were revealed. The Haplovlew version 4.2 software (https://www.broadinstitute.org/haploview/haplovlew) was used to quantify the linkage disequilibrium (LD) between rs4946651, rs7759938, rs314280 and rs314276 in LIN28B gene. Haplotype frequencies were determined using the EM algorithm. The LD block structure was defined using the Solid Spine of the LD algorithm [11] provided by the Haplovlew 4.2. The degree of genetic linkage between the 4 SNPs in each groups was estimated as Lewontin’s coefficient D', where no color ($D' = 0$) indicates that LD is weak or nonexistent and the dark red ($D' = 1$) indicates that there exists strong pairwise LD between SNPs (Fig. 1).

Table 4
The cis-eQTL values of the 4 SNPs of the LIN2B gene (according to Genotype-Tissue Expression (GTEx) (http://www.gtexportal.org/)).

SNP	Gene expression	Allele ref	Allele alt	Effect Size (β)	P-Value	Tissue
rs4946651	LIN28B	A	G	−0.40	7.6x10$^{-8}$	Pituitary
	LINCO0577			0.58	0.0000016	Brain - Cortex
	LINCO0577			0.48	0.0000022	Brain - Putamen (basal ganglia)
rs7759938	LIN28B	C	T	−0.50	1.3x10$^{-11}$	Pituitary
rs314280	LIN28B	A	G	−0.40	7.6x10$^{-8}$	Pituitary
	LINCO0577			0.58	0.0000016	Brain - Cortex
	LINCO0577			0.48	0.0000022	Brain - Putamen (basal ganglia)
rs314276	LIN28B	A	C	−0.50	9.4x10$^{-12}$	Pituitary
Acknowledgements

This is a self-funded work with no external sponsorship.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.dib.2019.104323.

References

[1] C. He, P. Kraft, C. Chen, J.E. Buring, G. Paré, S.E. Hankinson, S.J. Chanock, P.M. Ridker, J. David, D.I. Chasman, Genome-wide association studies identify novel loci associated with age at menarche and age at natural menopause, Nat. Genet. 6 (2009) 724–728, https://doi.org/10.1038/ng.385.

[2] K.K. Ong, C.E. Elks, S. Li, J.H. Zhao, J. Luan, B. Andersen, S.A. Bingham, S. Brage, G.D. Smith, U. Ekelund, C.J. Gillson, B. Glaser, J. Golding, R. Hardy, K.T. Khaw, D. Kuh, R. Luben, M. Marcus, M.A. McGeehin, A.R. Ness, K. Northstone, S.M. Ring, C. Rubin, M.A. Sims, K. Song, D.P. Strachan, P. Vollenweider, G. Waaber, D.M. Waterworth, A. Wong, P. Deloukas, I. Barroso, V. Moozer, R.J. Loos, N.J. Wareham, Genetic variation in LIN28B is associated with the timing of puberty, Nat. Genet. 6 (2009) 729–733, https://doi.org/10.1038/ng.382.

[3] J.R. Perry, L. Stolk, N. Franceschini, K.L. Lunetta, G. Zhai, P.F. McArdle, A.V. Smith, T. Aspelund, S. Bandinelli, E. Boerwinkle, L. Cherkas, G. Eiriksdottir, K. Estrada, L. Ferrucci, A.R. Folsom, Garcia, M. Gudnason, Y.A. Hofman, D. Karasik, D.P. Kiel, L.J. Launer, J. van Meurs, M.A. Nalls, F. Rivadeneira, A.R. Shuldiner, A. Singleton, K. Song, Wilson, V. Zhuang, E.A. Streeten, T.B. Harris, A. Murray, T.D. Spector, E.W. Demerath, A.G. Uitterlinden, J.M. Murabito, Meta-analysis of genome-wide association data identifies two loci influencing age at menarche, Nat. Genet. 6 (2009) 648–650, https://doi.org/10.1038/ng.386.

[4] P. Sulem, D.F. Gudbjartsson, T. Rafnar, H. Holm, E.J. Olafsdottir, G.H. Olafsdottir, T. Jonsson, P. Alexandersen, B. Feenstra, H. A. Boyd, K.K. Aben, A.L. Verbeek, N. Roeleveld, A. Jonasdottir, U. Styrkarsdottir, A. Karason, S.N. Stacey, J. Gudmundsson, M. Jakobsdottir, G. Thorleifsson, G. Hardarson, J. Gulcher, A. Kong, L.A. Kiemeney, M. Melbye, C. Christiansen, L. Tryggvadottir, U. Thorsteinsdottir, K. Stefansson, Genome-wide association study identifies sequence variants on 6q21 associated with age at menarche, Nat. Genet. 6 (2009) 734–738, https://doi.org/10.1038/ng.383.

[5] C.E. Elks, J.R.B. Perry, P. Sulem, D.I. Chasman, N. Franceschini, C. He, K.L. Lunetta, J.A. Visser, E.M. Byrne, D.L. Cousminer, et al., Thirty new loci for age at menarche identified by a meta-analysis of genome-wide association studies, Nat. Genet. 12 (2010) 1077–1085, https://doi.org/10.1038/ng.714.

[6] J.R. Perry, F. Day, C.E. Elks, P. Sulem, D.J. Thompson, T. Ferreira, C. He, D. Chasman, T. Esko, G. Thorleifsson, et al., Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche, Nature 7520 (2014) 92–97, https://doi.org/10.1038/nature13545.

[7] R.J. Delahanty, A. Beeghly-Fadiel, J.R. Long, Y.T. Gao, W. Lu, Y.B. Xiang, Y. Zheng, B.T. Ji, W.Q. Wen, Q.Y. Cai, et al., Evaluation of GWAS-identified genetic variants for age at menarche among Chinese women, Hum. Reprod. 4 (2013) 1135–1143, https://doi.org/10.1093/humrep/det011.

[8] I.N. Sorokina, N.A. Rudykh, L.N. Bezmanova, I.S. Polyakova, Population genetic characteristics and genetic epidemiological research of candidate genes associations with multifactorial diseases, Research Results in Biomedicine 4 (4) (2018) 20–30, https://doi.org/10.18413/2313-8955-2018-4-4-0-3 (in Russian).

[9] I.Y. Ponomarenko, Selection of polymorphic loci for association analysis in genetic-epidemiological studies, Research Result. Medicine and Pharmacy 4 (2) (2018) 40–54, https://doi.org/10.18413/2313-8955-2018-4-2-0-5 (in Russian).

[10] I. Ponomarenko, E. Reshetnikov, O. Altuchova, A. Polonikov, I. Sorokina, A. Yermachenko, V. Dvornyk, M. Chernosov, Association of genetic polymorphisms with age at menarche in Russian women, Gen 686 (2019) 228–236.

[11] J.C. Barrett, B. Fry, J. Maller, M.J. Daly, Haploview: analysis and visualization of LD and haplotype maps, Bioinformatics 21 (2005) 263–265.