AN INTEGRAL EXPRESSION OF THE FIRST NON-TRIVIAL ONE-COCYCLE OF THE SPACE OF LONG KNOTS IN \mathbb{R}^3

KEICHI SAKAI

Abstract. Our main object of study is a certain degree-one cohomology class of the space K_3 of long knots in \mathbb{R}^3. We describe this class in terms of graphs and configuration space integrals, showing the vanishing of some anomalous obstructions. To show that this class is not zero, we integrate it over a cycle studied by Gramain. As a corollary, we establish a relation between this class and (\mathbb{R}-valued) Casson’s knot invariant. These are \mathbb{R}-versions of the results which were previously proved by Teiblyum, Turchin and Vassiliev over $\mathbb{Z}/2$ in a different way from ours.

1. Introduction

A long knot in \mathbb{R}^n is an embedding $f : \mathbb{R}^1 \hookrightarrow \mathbb{R}^n$ that agrees with the standard inclusion $\iota(t) = (t, 0, \ldots, 0)$ outside $[-1, 1]$. We denote by K_n the space of long knots in \mathbb{R}^n equipped with C^∞-topology.

In [7] a cochain map $I : D^* \rightarrow \bigOmega^*_{DR}(K_n)$ from certain graph complex D^* was constructed for $n > 3$. The cocycles of K_n corresponding to trivalent graph cocycles via I generalize an integral expression of finite type invariants for (long) knots in \mathbb{R}^3 (see [1, 2, 11, 17]). In [13] the author found a nontrivalent graph cocycle $\Gamma \in D^*$ and proved that, when $n > 3$ is odd, it gives a non-zero cohomology class $[I(\Gamma)] \in H^3_{DR}(K_n)$. On the other hand, when $n = 3$, some obstructions to I being a cochain map (called anomalous obstructions; see for example [17, §4.6]) may survive, so even the closedness of $I(\Gamma)$ was not clear. However, the obstructions for trivalent graph cocycles X (of “even orders”) in fact vanish [1], hence the map I still yields closed zero-forms $I(X)$ of K_3 (they are finite type invariants). This raises our hope that all the obstructions for any graphs may vanish and hence the map I would be a cochain map even when $n = 3$.

In this paper we will show (in Theorem 2.4) that the obstructions for the nontrivalent graph cocycle Γ mentioned above also vanish, hence the map I yields the first example of a closed one-form $I(\Gamma)$ of K_3. To show that $[I(\Gamma)] \in H^3_{DR}(K_3)$ is not zero, we will study in part how $I(\Gamma)$ fits into a description of the homotopy type of K_3 given in [3, 4, 5]. It is known that on each component $K_3(f)$ that contains $f \in K_3$, there exists a one-cycle G_f called the Gramain cycle [9, 3, 14, 16]. The Kronecker pairing gives an isotopy invariant $V : f \mapsto \langle I(\Gamma), G_f \rangle$. We show in

2000 Mathematics Subject Classification. 58D10; 55P48, 57M25, 57M27, 81Q30.

Key words and phrases. The space of long knots; configuration space integrals; non-trivalent graphs; an action of little cubes; Gramain cycles; Casson’s knot invariant.

The author is partially supported by Grant-in-Aid for Young Scientists (B) 21740038, The Sumitomo Foundation, The Iwanami Fujukai Foundation, and JSPS Research Fellowships for Young Scientists 228006.
Theorem 3.1 that \(V \) coincides with Casson's knot invariant \(v_2 \), which is characterized as the coefficient of \(z^2 \) in the Alexander-Conway polynomial. This result will be generalized in Theorem 5.6 for one-cycles obtained by using an action of little two-cubes operad on the space \(\tilde{K}_3 \) of framed long knots \(4 \).

Closely related results have appeared in \([14, 16]\), where the \(\mathbb{Z}/2 \)-reduction of a cocycle \(v^3 \) of \(K_n \) (\(n \geq 3 \)), appearing in the \(E_1 \)-term of Vassiliev's spectral sequence \([15]\), was studied. A natural quasi-isomorphism \(D^* \to E_0 \otimes \mathbb{R} \) maps our cocycle \(\Gamma^* \) to \(v^3 \). In this sense, our results can be seen as “lifts” of those in \([14, 16]\) to \(\mathbb{R} \).

The invariant \(v_2 \) can also be interpreted as the linking number of collinearity manifolds \([3]\). Notice that in each formulation (including the one in this paper) the value of \(v_2 \) is computed by counting some collinearity pairs on the knot.

2. Construction of a close differential form

2.1. Configuration space integral

We briefly review how we can construct (closed) forms of \(K_n \) from graphs. For full details see \([7, 14]\).

Let \(X \) be a graph in a sense of \([7, 17]\) (see Figure 2.1 for examples). Let \(v_i \) and \(v_f \) be the numbers of the interval vertices (or \(i \)-vertices for short; those on the specified oriented line) and the free vertices (or \(f \)-vertices; those which are not interval vertices) of \(X \), respectively. With \(X \) we associate a configuration space

\[
C_X := \left\{ (f: x_1, \ldots, x_{v_i}; x_{v_i+1}, \ldots, x_{v_f}) \in \mathcal{K}_n \times \text{Conf}(\mathbb{R}^3, v_i) \times \text{Conf}(\mathbb{R}^n, v_f) \mid f(x_i) \neq x_j \text{ for any } 1 \leq i \leq v_i \leq j \leq v_i + v_f \right\}
\]

where \(\text{Conf}(M, k) := M^{\times k} \setminus \bigcup_{1 \leq i < j \leq k} \{ x_i = x_j \} \) for a space \(M \).

Let \(e \) be the number of the edges of \(X \). Define \(\omega_X \in \Omega^{(n-1)e}_\text{DR}(C_X) \) as the wedge of closed \((n-1)\)-forms \(\varphi^*_X \text{vol}_{S^{n-1}} \), where \(\varphi_X : C_X \to S^{n-1} \) is the Gauss map, which assigns a unit vector determined by two points in \(\mathbb{R}^n \) corresponding to the vertices adjacent to an edge \(\alpha \) of \(X \) (for an \(i \)-vertex corresponding to \(x_i \in \mathbb{R}^3 \), we consider the point \(f(x_i) \in \mathbb{R}^n \)). Here we assume that \(\text{vol}_{S^{n-1}} \) is \("\text{(anti)symmetric}\"\), namely \(\iota^* \text{vol}_{S^{n-1}} = (-1)^n \text{vol}_{S^{n-1}} \) for the antipodal map \(\iota : S^{n-1} \to S^{n-1} \). Then \(I(X) \in \Omega^{(n-1)e-\nu_i-n\nu_f}(K_n) \) is defined by

\[
I(X) := (\pi_X)_\ast \omega_X,
\]

the integration along the fiber of the natural fibration \(\pi_X : C_X \to K_n \). This fiber is a subspace of \(\text{Conf}(\mathbb{R}^3, v_i) \times \text{Conf}(\mathbb{R}^n, v_f) \). Such integrals converge, since the fiber can be compactified in such a way that the forms \(\varphi^*_X \text{vol}_{S^{n-1}} \) are still well-defined on the compactification (see \([2, \text{Proposition 1.1}]\)). We extend \(I \) linearly onto \(\mathcal{D}^* \), a cochain complex spanned by graphs. The differential \(\delta \) of \(\mathcal{D}^* \) is defined as a signed sum of graphs obtained by “contracting” the edges one at a time.

One of the results of \([7]\) states that \(I : \mathcal{D}^* \to \Omega^\ast_{\text{DR}}(K_n) \) is a cochain map if \(n > 3 \). The proof is outlined as follows. By the generalized Stokes theorem, \(dI(X) = \pm (\pi_X)^\ast \omega_X \), where \(\pi_X \) is the restriction of \(\pi_X \) to the codimension one strata of the boundary of the (compactified) fiber of \(\pi_X \). Each codimension one stratum corresponds to a collision of subconfigurations in \(C_X \), or equivalently to \(A \subset V(X) \cup \{ \infty \} \) (here \(V(X) \) is the set of vertices of \(X \)) with a consecutiveness property: if two \(i \)-vertices \(p, q \) are in \(A \), then all the other \(i \)-vertices between \(p \) and \(q \) are in \(A \). Here \("\in A\" \) means that the points \(x_l \) (\(l \in A \)) escape to infinity. When \(\infty \notin A \), the interior \(\text{Int} \Sigma_A \) of the corresponding stratum \(\Sigma_A \) to \(A \) is described by
Here

\begin{itemize}
 \item X_A is the maximal subgraph of X with $V(X_A) = A$, and X/X_A is a graph obtained by collapsing the subgraph X_A to a single vertex v_A;
 \item $B_A = S^{n-1}$ if A contains at least one i-vertex, and $B_A = \{\ast\}$ otherwise;
 \item If A consists of i-vertices i_1, \ldots, i_s ($s > 0$) and f-vertices i_{s+1}, \ldots, i_{s+t}, then
\end{itemize}

\begin{equation}
\hat{B}_A := \left\{ \left(v; (x_{i_1}, \ldots, x_i; x_{i_{s+1}}, \ldots, x_{i_{s+t}}) \right) \in S^{n-1} \times \text{Conf} (\mathbb{R}^1, s) \times \text{Conf} (\mathbb{R}^n, t) \mid x_{i_p} \neq x_i \text{ for any } 1 \leq p \leq s < q \leq s + t \right\} / \sim
\end{equation}

where \sim is defined as

\begin{equation}
(v; (x_{i_1}, \ldots, x_i; x_{i_{s+1}}, \ldots, x_{i_{s+t}})) \sim (v; (a(x_{i_1} + r), \ldots, a(x_i + r); a(x_{i_{s+1}} + rv), \ldots, a(x_{i_{s+t}} + rv)))
\end{equation}

for any $a \in \mathbb{R}_{>0}$ and $r \in \mathbb{R}$ (if A consists only of t f-vertices, then

\begin{equation}
\hat{B}_A := \text{Conf} (\mathbb{R}^n, t) / (\mathbb{R}_{>0} \times \mathbb{R}^n),
\end{equation}

where $\mathbb{R}_{>0} \times \mathbb{R}^n$ acts on $\text{Conf} (\mathbb{R}^n, t)$ by scaling and translation;

\begin{itemize}
 \item ρ_A is the natural projection;
 \item when A contains at least one i-vertices, $D_A : C_X/X_A \to S^{n-1}$ maps $(f; (x_i))$ to $f'(v_{x_A}) / f'(v_{x_A})$.
\end{itemize}

We omit the case $\infty \in A$; see \cite{JJ} Appendix.

By properties of fiber integrations and pullbacks, the integration of ω_X along $\text{Int} \Sigma_A$ can be written as $(\pi_{X/X_A})_*(\omega_{X/X_A} \wedge D_A(\rho_A)_*\hat{\omega}_{X_A})$, where $\hat{\omega}_{X_A} \in \Omega^*_{DR}(\hat{B}_A)$ is defined similarly to $\omega_X \in \Omega^*_{DR}(C_X)$.

The stratum Σ_A is called \textit{principal} if $|A| = 2$ \textit{hidden} if $|A| \geq 3$, and \textit{infinity} if $\infty \in A$. Since two-point collisions correspond to contractions of edges, we have $dI(X) = I(\delta X)$ modulo the integrations along hidden and infinity faces. When $n > 3$, the hidden/infinity contributions turn out to be zero; in fact $(\rho_A)_*\hat{\omega}_{X_A} = 0$ if $n > 3$ and if A is not principal (see \cite{JJ} Appendix) or the next Example 2.1. This proves that the map I is a cochain map if $n > 3$.

\textbf{Example 2.1.} Here we show one example of vanishing of an integration along a hidden face Σ_A. Let X be the seventh graph in Figure 2.1 and $A := \{1, 4, 5\}$. Then in (2.1), $B_A = S^{n-1}$ since A contains an i-vertex 1, and

\begin{equation}
\hat{B}_A = \{(v; x_1, x_4, x_5) \in S^{n-1} \times \mathbb{R}^1 \times \text{Conf} (\mathbb{R}^n, 2) \mid x_1 v \neq x_4, x_5 \}/ \sim,
\end{equation}

where $(v; x_1, x_4, x_5) \sim (v; a(x_1 + r); a(x_4 + rv), a(x_5 + rv))$ for any $a > 0$ and $r \in \mathbb{R}^1$.

The subgraph X_A consists of three vertices $1, 4, 5$ and three edges $14, 15$ and 45. The open face $\text{Int} \Sigma_A$, where three points $f(x_1), x_4$ and x_5 collide with each other, is a hidden face and is described by the square (2.1). Then the integration of ω_X
along $\text{Int } \Sigma_A$ is $(\pi_{X/X_A})_*(\omega_{X/X_A} \wedge D^*_A(\rho_A), \hat{\omega}_{X_A})$, where

$$\hat{\omega}_{X_A} = \varphi^*_{14} \text{vol}_{S^{n-1}} \wedge \varphi^*_{15} \text{vol}_{S^{n-1}} \wedge \varphi^*_{45} \text{vol}_{S^{n-1}} \in \Omega^{3(n-1)}_{DR}(\hat{B}_A);$$

$$\varphi_{1j} := \frac{x_j - x_1 v}{|x_j - x_1 v|} \quad (j = 4, 5), \quad \varphi_{45} := \frac{x_5 - x_4}{|x_5 - x_4|}.$$

In this case we can prove that $(\rho_A)_* \hat{\omega}_{X_A} = 0$, hence the integration of ω_X along $\text{Int } \Sigma_A$ vanishes. Indeed a fiberwise involution $\chi : \hat{B}_A \to \hat{B}_A$ defined by

$$\chi(v; x_1; x_4; x_5) := (v; x_1; 2x_1 v - x_4, 2x_1 v - x_5)$$

preserves the orientation of the fiber but $\chi^* \hat{\omega}_{X_A} = -\hat{\omega}_{X_A}$ (here we use that $\text{vol}_{S^{n-1}}$ is antisymmetric), hence we have $(\rho_A)_* \hat{\omega}_{X_A} = - (\rho_A)_* \hat{\omega}_{X_A}$.

2.2. Nontrivalent cocycle. It is shown in [7] that, when $n > 3$, the induced map I on cohomology restricted to the space of trivalent graph cocycles is injective. In [13], the author gave the first example of a nontrivalent graph cocycle Γ (Figure 2.1) which also gives a nonzero class $[I(\Gamma)] \in H^{3n-8}_{DR}(K_n)$ when $n > 3$ is odd. In Figure 2.1 nontrivalent vertices and trivalent f-vertices are marked by \times and \bullet, respectively, and other crossings are not vertices. Here we say an i-vertex v is trivalent if there is exactly one edge emanating from v other than the specified oriented line. Each edge ij ($i < j$) is oriented so that i is the initial vertex.

Remark 2.2. An analogous nontrivalent graph cocycle for the space of embeddings $S^1 \to \mathbb{R}^n$ for even $n \geq 4$ can be found in [12].

If $n = 3$, integrations along some hidden faces (called *anomalous contributions*) might survive, and hence the map I might fail to be a cochain map. However, nonzero anomalous contributions arise from limited hidden faces.

Theorem 2.3. Let X be a graph and $A \subset V(X) \cup \{\infty\}$ be such that Σ_A is not principal. When $n = 3$, the integration of ω_X along Σ_A can be nonzero only if the subgraph X_A is trivalent.

Our main theorem is proved by using Theorem 2.3.

Theorem 2.4. $I(\Gamma) \in \Omega^I_{DR}(K_3)$ is a closed form.

Proof. We call the nine graphs in Figure 2.1 $\Gamma_1, \ldots, \Gamma_9$ respectively. The graphs Γ_i, $i \neq 3, 4, 9$, do not contain trivalent subgraphs X_A satisfying the consecutive property (see the paragraph just before (2.1)). So $dI(\Gamma_i) = I(d\Gamma_i)$ for $i \neq 3, 4, 9$ by Theorem 2.3.

Possibly the integration of ω_{Γ_i} ($i = 3, 4, 9$) along Σ_A ($A := \{2, \ldots, 5\}$) might survive, since the corresponding subgraph X_A is trivalent. However, we can prove $(\rho_A)_* \hat{\omega}_{X_A} = 0$ (and hence $dI(\Gamma) = I(d\Gamma)$) as follows: $(\rho_A)_* \hat{\omega}_{X_A} = 0$ for Γ_3, Γ_6, Γ_9.
because there is a fiberwise free action of $\mathbb{R}_{>0}$ on \hat{B}_A given by translations of x_2 and x_4 (see [17] Proposition 4.1) which preserves $\hat{\omega}_{X_A}$. Thus $(\rho_A)_*\hat{\omega}_{X_A} = 0$ by dimensional reason. The proof for Γ_4 has appeared in [2] page 5271; $\hat{\omega}_{X_A} = 0$ on \hat{B}_A since the image of the Gauss map $\varphi : B_A \to (S^2)^3$ corresponding to three edges of X_A is of positive codimension. As for Γ_9, $(\rho_A)_*\hat{\omega}_{X_A} = 0$ follows from $\deg(\rho_A)_*\hat{\omega}_{X_A} = 4$ which exceeds $\dim B_A$ (in fact $B_A = \{\ast\}$ in this case). □

Proof of Theorem 2.3. Let A be a subset of $V(X)$ with $|A| \geq 3$ or $\infty \in A$, and X_A is nontrivalent. We must show the vanishing of the integrations along the nonprincipal face Σ_A of the fiber of $C_X \to K_3$. To do this it is enough to show $(\rho_A)_*\hat{\omega}_{X_A} = 0$. By dimensional arguments (see [7] (A.2)) the contributions of infinite faces vanish. So below we consider the hidden faces Σ_A with $|A| \geq 3$.

If X_A has a vertex of valence ≤ 2, then $(\rho_A)_*\hat{\omega}_{X_A} = 0$ is proved by dimensional arguments or existence of a fiberwise symmetry of B_A which reverses the orientation of the fiber of $\rho_A : \hat{B}_A \to B_A$ but preserves the integrand $\hat{\omega}_{X_A}$ (like χ from Example 2.1 see also [7] Lemmas A.7-A.9).

Next, consider the case that there is a vertex of X_A of valence ≥ 4. Let e, s and t be the numbers of the edges, the i-vertices and the f-vertices of X_A respectively. Then $\deg\hat{\omega}_{X_A} = 2e$ and the dimension of the fiber of ρ_A is $s + 3t - k$, where $k = 2$ or 4 according to whether $s > 0$ or $s = 0$ (see [7] (A.1)). Thus $(\rho_A)_*\hat{\omega}_{X_A} \in \Omega^*_{DR}(B_A)$ is of degree $2e - s - 3t + k$. It is not difficult to see $2e - s - 3t > 0$ because at least one vertex of X_A is of valence ≥ 4. Hence $\deg(\rho_A)_*\hat{\omega}_{X_A}$ exceeds $B_A \ast 0$ or 2) and hence $(\rho_A)_*\hat{\omega}_{X_A} = 0$.

Thus only the integrations along Σ_A with X_A trivalent can survive. □

Remark 2.5. Every finite type invariant v for long knots in \mathbb{R}^3 can be written as a sum of $I(\Gamma_v)$ (Γ_v is a trivalent graph cocycle) and some “correction terms” which kill the contributions of hidden faces corresponding to trivalent subgraphs (see [1] [2] [11] [17]). So by Theorem 2.3 the problem whether $I : D^* \to \Omega^*_{DR}(K_3)$ is a cochain map or not is equivalent to the problem whether one can eliminate all the correction terms from integral expressions of finite type invariants. □

3. Evaluation on some cycles

Here we will show that $[I(\Gamma)] \in H^1_{DR}(K_3)$ restricted to some components of K_3 is not zero.

We introduce two assumptions to simplify computations.

Assumption 1. The support of (antisymmetric) vol_{S^2} is contained in a sufficiently small neighborhood of the poles $(0, 0, \pm 1)$ as in [13]. So only the configurations with the images of the Gauss maps lying in a neighborhood of $(0, 0, \pm 1)$ can nontrivially contribute to various integrals below. Presumably $[I(\Gamma)] \in H^1_{DR}(K_3)$ may be independent of choices of vol_{S^2} (see [7] Proposition 4.5).

Assumption 2. Every long knot in \mathbb{R}^3 is contained in xy-plane except for over-arc of each crossing, and each over-arc is in $\{0 \leq z \leq h\}$ for a sufficiently small $h > 0$ so that the projection onto xy-plane is a regular diagram of the long knot.

3.1. The Gramain cycle. For any $f \in K_3$, we denote by $K_3(f)$ the component of K_3 which contains f. Regarding $S^1 = \mathbb{R}/2\pi\mathbb{Z}$ and fixing f, we define the map $G_f : S^1 \to K_3(f)$, called the Gramain cycle, by $G_f(s)(t) := R(s)f(t)$, where $R(s) \in SO(3)$ is the rotation by the angle s fixing “long axis” (the x-axis). G_f generates an infinite cyclic subgroup of $\pi_1(K_3(f))$ if f is nontrivial [9]. The homology class
[G_f] \in H_1(K_3(f)) is independent of the choice of f in the connected component; if \(f_t \in K_3 \) \((0 \leq t \leq 1)\) is an isotopy connecting \(f_0 \) and \(f_1 \), then \(G_{f_t} : [0, 1] \times S^1 \to K_3 \) gives a homotopy between \(G_{f_0} \) and \(G_{f_1} \). Therefore the Kronecker pairing gives an isometry invariant \(V(f) := \langle I(\Gamma), G_f \rangle \) for long knots.

Theorem 3.1. The invariant \(V \) is equal to Casson’s knot invariant \(v_2 \).

Corollary 3.2. \(\langle I(\Gamma), |K_3(f)| \rangle \in H^1_{DR}(K_3(f)) \) is not zero if \(v_2(f) \neq 0 \).

We will prove two statements which characterize Casson’s knot invariant: \(V \) is of finite type of order two and \(V(3_1) = 1 \), where \(3_1 \) is the long trefoil knot. To do this, we will represent \(G_f \) using Browder operation, as in [13].

3.1.1. Little cubes action.

Let \(\bar{K}_n \) be the space of framed long knots in \(\mathbb{R}^n \) (embeddings \(\bar{f} : \mathbb{R}^1 \times D^{n-1} \to \mathbb{R}^n \) that are standard outside \([-1, 1] \times D^{n-1}\)). There is a homotopy equivalence \(\Phi : \bar{K}_3 \simeq K_3 \times \mathbb{Z} \) [3] that maps \(\bar{f} \) to the pair \((\bar{f}|_{\mathbb{R}^1 \times \{0,0\}}, \text{fr} \bar{f})\), where the framing number \(\text{fr} \bar{f} \) is defined as the linking number of \(\bar{f}|_{\mathbb{R}^1 \times \{0,0\}} \) with \(\bar{f}|_{\mathbb{R}^1 \times \{1,0\}} \). Since \(\text{fr} \bar{f} \) is additive under the connected sum, \(\Phi \) is a homotopy equivalence of \(H \)-spaces. In general, \(\bar{K}_n \simeq K_n \times \Omega SO(n-1) \) as \(H \)-spaces, where \(\Omega \) stands for the based loop space functor.

In [4] an action of the little two-cubes operad on the space \(\bar{K}_n \) was defined. Its second stage gives a map \(S^1 \times (\bar{K}_n)^2 \to \bar{K}_n \) up to homotopy, which is given as “shrinking one knot \(f \) and sliding it along another knot \(g \) by using the framing, and repeating the same procedure with \(f \) and \(g \) exchanged” (see [4, Figure 2]). Fixing a generator of \(H_1(S^1) \), we obtain the Browder operation \(\lambda : H_p(\bar{K}_n) \otimes H_q(\bar{K}_n) \to H_{p+q+1}(\bar{K}_n) \), which is a graded Lie bracket satisfying the Leibniz rule with respect to the product induced by the connected sum. The author proved in [13] that \(\langle I(\Gamma), r \cdot \lambda(c, v) \rangle = 1 \) when \(n > 3 \) is odd, where \(r : \bar{K}_n \to K_n \) is the forgetting map, \(c \in H_{n-3}(\bar{K}_n) \) comes from the space of framings, and \(v \in H_2(n-3)(\bar{K}_n) \) is the first nonzero class of \(K_n \) represented by a map \((S^{n-3})^\times 2 \to K_n \) (see below).

3.1.2. The case \(n = 3 \).

In [13] the assumption \(n > 3 \) was used only to deduce the closedness of \(I(\Gamma) \) from the results of [7]. The cycles \(e \) and \(v \) are defined even when \(n = 3 \):

- Under the homotopy equivalence \(\bar{K}_3 \simeq K_3 \times \mathbb{Z} \), the zero-cycle \(e \) is given by \((t, 1)\) where \(t \) is the trivial long knot \((t, t, 0, 0)\) for any \(t \in \mathbb{R}^1 \).
- The zero-cycle \(v = v(T) \) is given by \(\sum_{\varepsilon_1, \varepsilon_2} \varepsilon_1 \varepsilon_2 T_{\varepsilon_1, \varepsilon_2} \), where \(T = 3_1 \) and \(T_{\varepsilon_1, \varepsilon_2} \) is \(T \) with its crossing \(p_i \), for \(i = 1, 2 \) changed to be positive if \(\varepsilon_i = +1 \) and negative if \(\varepsilon_i = -1 \) (see Figure 3.1).

Notice that, for any \(f \in K_3 \) and any pair \((p_1, p_2)\) of its crossings, an analogous zero-cycle \(v = v(f; p_1, p_2) \) can be defined.
Regard \(f \in \mathcal{K}_3 \) as a zero-cycle of \(\bar{\mathcal{K}}_3 \) (with \(\text{fr}f = 0 \)) and consider \(r_s \lambda(e, f) \).

During a knot \(f \) “going through” \(e \), \(f \) rotates once around \(x \)-axis. Thus the one-cycle \(r_s \lambda(e, f) \) is homologous to the Gramain cycle \(G_f \). This leads us to the fact that, for \(v = v(f; p_1, p_2) \), the one-cycle \(r_s \lambda(e, v) \) is homologous to the sum \(\sum_{e_i = \pm 1} \varepsilon_1 \varepsilon_2 G_{f, e_i, e_2} \).

This is why we can apply the method in [13] to compute

\[
D^2V(f) := \sum_{e_j = \pm 1} \varepsilon_1 \varepsilon_2 V(f_{e_j, e_2}) = \sum_{e_j = \pm 1} \varepsilon_1 \varepsilon_2 (I(\Gamma), G_{f, e_1, e_2}) = (I(\Gamma), r_s \lambda(e, v(f))).
\]

Recall that our graph cocycle \(\Gamma \) is a sum of nine graphs \(\Gamma_1, \ldots, \Gamma_9 \) (see Figure 2.1). By Assumption 1, the integration \((I(\Gamma_i), G_f) \) can be computed by “counting” the configurations with all the images of the Gauss maps corresponding to edges of \(\Gamma_i \) being around the poles of \(S^2 \). Lemma 3.4 below was proved in such a way in [13] when \(n > 3 \). Since \([v(f)] \in H_0(\mathcal{K}_3(f)) \) is independent of small \(h > 0 \) (see Assumption 2), we may compute \(D^2V(f) \) in the limit \(h \to 0 \).

Definition 3.3. We say that the pair \((p_1, p_2)\) of crossings of \(f \) respects the diagram \(\square \circ \square \) if there exist \(t_1 < t_2 < t_3 < t_4 \) where \(f(t_1) \) and \(f(t_3) \) correspond to \(p_1 \), while \(f(t_2) \) and \(f(t_4) \) correspond to \(p_2 \). The notion of \((p_1, p_2)\) respecting \(\square \circ \square \) or \(\square \circ \square \) is defined analogously.

Lemma 3.4 ([13]). Suppose that \((p_1, p_2)\) respects \(\square \circ \square \). Then, in the limit \(h \to 0 \), \(P_i(f) := \sum_{e_j = \pm 1} \varepsilon_1 \varepsilon_2 (I(\Gamma_i), G_{f, e_1, e_2}) \) converges to zero for \(i \neq 2 \), and \(P_2(f) \) converges to 1. Thus \(D^2V(f) = 1 \).

Outline of proof. Let \(\hat{\mathcal{C}}_{f, i} \to S^1 \) be the pullback of \(\mathcal{C}_{f, i} \to \mathcal{K}_3 \) via \(G_f \), and let \(\hat{G}_f : \hat{\mathcal{C}}_{f, i} \to \mathcal{C}_{f, i} \) be the lift of \(G_f \). By the properties of pullbacks and fiber-integrations,

\[
P_i(f) = \sum_{e_j = \pm 1} \varepsilon_1 \varepsilon_2 \int_{\hat{\mathcal{C}}_{f, i}} \hat{G}_{f, e_1, e_2}^* \omega_{\mathcal{C}_{f, i}}.
\]

Let \(t_1 < \cdots < t_4 \) be such that \(f(t_1) \) and \(f(t_3) \) correspond to \(p_1 \), while \(f(t_2) \) and \(f(t_4) \) correspond to \(p_2 \). Define the subspace \(\mathcal{C}_{f, i}' \subset \hat{\mathcal{C}}_{f, i} \) as consisting of \((G_f(s); (x_j)) \) (\(s \in S^1 \)) such that, for each \(j = 1, 2 \), there is a pair \((l, m)\) of \(i \)-vertices of \(\Gamma_i \) such that \(x_j \) is on the over-arc of \(p_j \), \(x_m \) is on the under-arc of \(p_j \), and there is a sequence of edges in \(\Gamma_i \) from \(l \) to \(m \).

First observation: The integration over \(\hat{\mathcal{C}}_{f, i} \setminus \mathcal{C}_{f, i}' \) does not essentially contribute to \(P_i(f) \) in the limit \(h \to 0 \). This is because, over \(\hat{\mathcal{C}}_{f, i} \setminus \mathcal{C}_{f, i}' \), the integrals in (3.1) are well-defined and continuous even when \(h = 0 \) (\(p_j \) becomes a double point), so two terms in \(P_i(f) \) corresponding to \(\varepsilon_j = \pm 1 \) cancel each other. This implies \(\lim_{h \to 0} P_i(f) = 0 \) for \(i = 7, 8, 9 \), since \(\mathcal{C}_{f, i}' = \emptyset \) if \(\{i \text{-vertices}\} \leq 3 \).

Second observation: Consider the configurations \((x_i) \in \mathcal{C}_{f, i}' \) such that, for any pair \((l, m)\) of \(i \)-vertices of \(\Gamma_i \) with \(x_k \) on the over-arc of \(p_j \) and \(x_m \) on the under-arc of \(p_j \), all the points \(x_k \) (\(k \) is in a sequence in \(\Gamma_i \) from \(l \) to \(m \)) are near \(p_j \). Such configurations also do not essentially contribute to \(P_i(f) \) in the limit \(h \to 0 \), by the same reason as above. This implies \(\lim_{h \to 0} P_i(f) = 0 \) for \(i = 4, 5, 6 \); the configurations \((x_i) \in \mathcal{C}_{f, i}' \) (\(4 \leq i \leq 6 \)) must be such that the point \(x_2 \in \mathbb{R}^3 \) (\(1 \leq l \leq 4 \)) is near \(t_i \). By the second observation, the “free point” \(x_5 \) must be near \(p_1 \) or \(p_2 \). But then \(\omega_{\mathcal{C}_{f, i}} = 0 \), since at least one Gauss map \(\varphi_{i5} \) has its image outside the support of \(\text{vol}_{S^2} \) (see Assumption 1). Thus \(\lim_{h \to 0} P_i(f) = 0 \).
Finally consider $P_i(f)$ for $i = 1, 2, 3$. For $i = 1$ we have $\omega_{i1} = 0$ over C_{i1}, since the Gauss map corresponding to the edge 12 has its image outside of the support of vol_{S^2}. The same reasoning, using the loop edge 11, shows that $\omega_{12} = 0$ over C_{12}. Only $P_2(f)$ survives, since the configurations with x_1 near t_1, x_2 near t_2, x_3 and x_4 near t_3, and x_5 near t_4, contribute nontrivially to the integral (see [13] Lemma 4.6 for details).

\textbf{Remark 3.8.} $\langle t \rangle$ stands for the connected sum.

Lemma 3.5. If (p_1, p_2) respects $\bigcirc\bigcirc$ or $\bigcirc\bigcirc$, then $D^2V(f) = 0$.

Proof. For $i = 4, \ldots, 9$, we see in the same way as in Lemma 3.4 that $P_i(f)$ approaches 0 as $h \to 0$. That $\lim_{h \to 0} P_i(f)$ for $i = 2, 3$ and the $\bigcirc\bigcirc$-case for $i = 1$ is proved by the first observation in the proof of Lemma 3.4.

In the $\bigcirc\bigcirc$-case for $P_i(f)$ over C_{i1}, only the configurations with x_j near t_j, with $j = 1, 2, 3$, and x_5 near t_4 may essentially contribute to $P_i(f)$; in this case the edges 12 and 35 join the over/under arcs of p_1 and p_2 respectively. However, the Gauss map φ_{14} cannot have its image in the support of vol_{S^2}, so ω_{11} vanishes. □

Proof of Theorem 3.6. For three crossings (p_1, p_2, p_3) of $f \in K_3$, consider the third difference

$$D^3V(f) := \sum_{\epsilon_j = 1} \epsilon_1 \epsilon_2 \epsilon_3 V(f_{\epsilon_1, \epsilon_2, \epsilon_3}) = D^2V(g_{+1}) - D^2V(g_{-1})$$

where $g_{\pm 1} := f_{+1, +1, \pm 1}$ and $D^2V(g_{\pm 1})$ are taken with respect to (p_1, p_2). Since the pair (p_1, p_2) of g_{+1} respects the same diagram as (p_1, p_2) of g_{-1}, we have $D^2V(g_{+1}) = D^2V(g_{-1})$ by above Lemmas 3.4 and 3.5. Thus $D^3V = 0$ and hence V is finite type of order two. Moreover $V(\iota) = 0$ for the trivial long knot ι since $K_3(\iota)$ is contractible [10]; therefore $G_3 \sim 0$, and $V(3) = 1$ by Lemma 3.4 and $V(\iota) = 0$. These properties uniquely characterize Casson’s knot invariant v_2. □

\textbf{3.2. The Browder operations.} We denote a framed long knot corresponding to (f, k) under the equivalence $\tilde{K}_3 \simeq K_3 \times \mathbb{Z}$ by $f^k \in \tilde{K}_3$ (unique up to homotopy). As mentioned above, the Gramain cycle can be written as $[G_f] = [r_* \lambda (f^k, l^1)]$ (k may be arbitrary). Below we will evaluate $I(\Gamma)$ on more general cycles $r_* \lambda (f^k, g^l)$ of K_3 for any nontrivial $f, g \in K_3$ and $k, l \in \mathbb{Z}$. This generalizes Theorem 3.1.

Theorem 3.6. We have $\langle I(\Gamma), r_* \lambda (f^k, g^l) \rangle = lv_2(f) + kv_2(g)$ for any $f, g \in K_3$ and $k, l \in \mathbb{Z}$.

Corollary 3.7. If at least one of $v_2(f)$ and $v_2(g)$ is not zero, then

$$[I(\Gamma)|_{\kappa_3(f^k g^l)}] \in H^3_{DR}(\kappa_3(f^k g^l)) \neq 0,$$

where \sharp stands for the connected sum.

Proof. This is because $r_* \lambda (f^k, g^l)$ is a one-cycle of $\kappa_3(f^k g^l)$ for any $k, l \in \mathbb{Z}$. Since $v_2(f)$ or $v_2(g)$ is not zero, there exist some k, l such that $lv_2(f) + kv_2(g) \neq 0$, so $\langle I(\Gamma), r_* \lambda (f^k, g^l) \rangle \neq 0$ by Theorem 3.6. □

Remark 3.8. If $v_2(f) = \mp v_2(g)$, then $v_2(f g^l) = 0$ since it is known that v_2 is additive under \sharp. Hence we cannot deduce $[I(\Gamma)|_{\kappa_3(f g^l)}] \neq 0$ from Corollary 3.2. Moreover if $v_2(f) = \mp v_2(g) \neq 0$, then Corollary 3.7 implies $[I(\Gamma)|_{\kappa_3(f g^l)}] \neq 0$. □
To prove Theorem 3.6 first we remark that $f^m \sim f^0 g^m$. Since λ satisfies the Leibniz rule, $\lambda(f^k, g^l)$ is homologous to
\[
\lambda(f^0, g^0)z^{k+l} + \lambda(f^0, l^i)z^k + \lambda(k, l^i)z^l + \lambda(k, l^i)z^0 g^0.
\]
Since by definition $r_\ast \lambda(f^k, l^m) \sim m G_f$ ($k, m \in \mathbb{Z}$) and $G_i \sim 0$,
\[
(3.2) \quad r_\ast \lambda(f^k, g^l) \sim r_\ast \lambda(f^0, g^0) + l G_f z g + k f z g.
\]
Notice that ζ makes \mathcal{K}_3 an H-space and induces a coproduct Δ on $H^*_DR(\mathcal{K}_3)$.

Lemma 3.9. $\Delta([I(\Gamma)]) = 1 \otimes [I(\Gamma)] + [I(\Gamma)] \otimes 1 \in H^*_DR(\mathcal{K}_3)^{22}$.

Proof. \mathcal{D} also admits Δ defined as a “separation” of the graphs by removing a point from the specified oriented line (see [8, §3.2]). Theorem 6.3 of [8] shows, without using $n > 3$, that $(I \otimes I) \Delta(X) \Delta(I(X))$ if X satisfies $dI(X) = I(\delta X)$.

As for our graphs in Figure 3.1 $\Delta \Gamma_i = 1 \otimes \Gamma_i + \Gamma_i \otimes 1$ and $\Delta(\Gamma_3 - \Gamma_4) = 1 \otimes (\Gamma_3 - \Gamma_4) + (\Gamma_3 - \Gamma_4) \otimes 1 + 1 \otimes 1 \otimes 1$, where Γ' and Γ'' are as shown in Figure 3.2. Thus
\[
\Delta I(\Gamma') = 1 \otimes I(\Gamma') + I(\Gamma') \otimes 1 + I(\Gamma'') \otimes I(\Gamma').
\]
But in fact $\Gamma' = \delta \Gamma_0$ where $\Gamma_0 = \bigcirc$, and $I(\Gamma') = dI(\Gamma_0)$ since there is no hidden face in the boundary of the fiber of π_{Γ_0}.

By (3.2), Lemma 3.9 and Theorem 3.1
\[
\langle I(\Gamma), r_\ast \lambda(f^k, g^l) \rangle = \langle I(\Gamma), r_\ast \lambda(f^0, g^0) \rangle = l v_2(f) + k v_2(g).
\]
Thus it suffices to prove Theorem 3.6 in the case $k = l = 0$.

Proof of Theorem 3.6. Fix g and regard $\langle I(\Gamma), r_\ast \lambda(f^0, g^0) \rangle$ as an invariant $V_0(f)$ of f. We choose two crossings p_1 and p_2 from the diagram of f in xy-plane, and compute $D^2 V_0(f) := \sum_{x \in x_1} \langle I(\Gamma_i), r_\ast \lambda(f^0, x_2, g^0) \rangle$ in the limit $h \to 0$ as in (3.1) if this is zero for any (p_1, p_2), then the arguments similar to that in the proof of Theorem 3.1 show that V_0 is of order two and takes the value zero for the trefoil knot, thus identically $V_0 = 0$ for any g. This will complete the proof.

We will compute each $P_i := \sum_{x \in x_1} \langle I(\Gamma_i), r_\ast \lambda(f^{x_1, s_2}, g^0) \rangle$ (1 \leq i \leq 9) in the limit $h \to 0$. The two observations appearing in the proof of Lemma 3.4 allow us to conclude $P_i' \to 0$ for 4 \leq i \leq 9 in the same way as before, so we compute P_i' for $i = 1, 2, 3$ below. We may concentrate to the integration over C_{T_1} by the first observation. Recall $C_{T_1} \subset S^1 \times \text{Conf}(\mathbb{R}^3, s) \times H^3(\mathbb{R}^3, t)$ by definition. We take S^1-parameter $\alpha \in S^1 = \mathbb{R}^1/2\pi \mathbb{Z}$ so that g goes through f during $0 \leq \alpha \leq \pi$, and f goes through g during $\pi \leq \alpha \leq 2\pi$.

First consider the integration over $0 \leq \alpha \leq \pi$. We may shrink g sufficiently small. Then the sliding of g through f does not affect the integration, so almost all the integrations converge to zero for the same reasons as in Lemmas 3.4 and 3.5. Only the configurations $(x_i) \in C_{T_1}$ with x_1 and x_2 near p_1 may essentially contribute.
to P'_i when g comes around p_1; the form $\varphi_{12}^*\text{vol}_{S^2}$ may detect the knotting of g. However two terms for $\varepsilon_1 = \pm 1$ cancel each other.

Next consider the integration over $\pi \leq \alpha \leq 2\pi$. There may be two types of contributions to P'_i. One type comes from the configurations in which all the points on the knot concentrate in a neighborhood of f. Such a contribution depends only on the framing number fr_g of g, not on the global knotting of g. Since $fr_g^0 = 0$ here, such configurations do not essentially contribute to P'_i.

The other possible contributions arise when f comes near the crossings of g. For example, consider the case that (p_1, p_2) respects $\begin{tikzpicture}[baseline=0pt,scale=0.5]
\draw[->,thick] (0,0) -- (1,1);
\draw[->,thick] (1,0) -- (0,1);
\draw[->,thick] (0.5,0.5) -- (0,0);
\end{tikzpicture}$. When f comes near a crossing of g, a configuration $(x_1, \ldots, x_5) \in C_{\Gamma_1}$ as in Figure 3.3 is certainly in C'_{Γ_1}, so it may contribute to P'_i. However, such contributions converge to zero in the limit $h \to 0$, because x_1 cannot be near p_1 (see the second observation in the proof of Lemma 3.4). For Γ_3, we should take the configuration (x_1, \ldots, x_5) with x_j ($2 \leq j \leq 5$) near t_{j-1} into account; but in this case the Gauss map φ_{11} cannot have the image in the support of vol_{S^2}. In such ways we can check that all such contributions of Γ_i ($i = 1, 2, 3$) can be arbitrarily small.

\section*{References}

[1] D. Altschuler and L. Freidel, \textit{Vassiliev knot invariants and Chern-Simons perturbation theory to all orders}, Comm. Math. Phys. 187 (1997), no. 2, 261–287.

[2] R. Bott and C. Taubes, \textit{On the self-linking of knots}, J. Math. Phys. 35 (1994), no. 10, 5247–5287.

[3] R. Budney, \textit{Topology of spaces of knots in dimension 3}, Proc. London Math. Soc. (2010) 101 (2), 477–496.

[4] R. Budney and F. R. Cohen, \textit{On the homology of the space of knots}, Geom. Topol. 13 (2009), 99–139.

[5] T. Kohno, \textit{Vassiliev invariants and de Rham complex on the space of knots}, Contemp. Math., vol. 179, pp. 123–138.

[6] R. Longoni, \textit{Nontrivial classes in $H^* (\text{Imb} (S^1, \mathbb{R}^n))$ from nontrivalent graph cocycles}, Int. J. Geom. Methods Mod. Phys. 1 (2004), no. 5, 639–650.

[7] K. Sakai, \textit{Nontrivalent graph cocycle and cohomology of the long knot space}, Algebr. Geom. Topol. 8 (2008), 1499–1522.
[14] V. Turchin, Calculating the First Nontrivial 1-Cocycle in the Space of Long Knots, Math. Notes 80 (2006), no. 1, 101–108.

[15] V. Vassiliev, Complements of discriminants of smooth maps: topology and applications, Trans. Math. Monographs, vol. 98, Amer. Math. Soc.

[16] , Combinatorial formulas for cohomology of knot spaces, Moscow Math. J. 1 (2001), no. 1, 91–123.

[17] I. Volić, A survey of Bott-Taubes integration, J. Knot Theory Ramifications 16 (2007), no. 1, 1–42.

Department of Mathematical Sciences, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
E-mail address: ksakai@math.shinshu-u.ac.jp
URL: http://math.shinshu-u.ac.jp/~ksakai/index.html