Rarely, SSRIs including sertraline, fluoxetine, escitalopram, and fluvoxamine may also lead to increase in prolactin levels with resultant symptoms. Furthermore, drug interaction between risperidone and fluoxetine through CYP2D6 leading to increased prolactin levels and gynecomastia has been reported previously. Therefore, it is possible that the combination of SSRIs and olanzapine resulted in the adverse event.

Samir Kumar Praharaj

Department of Psychiatry, Kasturba Medical College, Manipal - 576104, Karnataka, India

Correspondence to:

Dr. Samir Kumar Praharaj,

E-mail: samirpsyche@yahoo.co.in

Anti-inflammatory and in vitro antioxidant activity of *Desmodium triquetrum* (L.)

Sirs,

Desmodium triquetrum contains a wide variety of free radical scavenging molecules, such as phenolic and nitrogen compounds, terpenoids, and carotenoids that are rich in antioxidant activity. The chloroform and alcohol extracts of *D. triquetrum* were reported for their antibacterial activity. Epidemiological studies have shown that many of these antioxidant compounds possess anti-inflammatory, anti-atherosclerotic, antitumor, anti-mutagenic, antibacterial, antiviral, anti-carcinogenic, and anti-allergic activities. Thus, based on its chemical constituents, the present study was undertaken to evaluate *D. triquetrum* for anti-inflammatory and in vitro antioxidant activity. Leaves of *D. triquetrum* were collected, authenticated, shade dried, coarsely powdered, and extracted with 95% ethanol using Soxhlet extractor. The preliminary phytotoxic analysis of the extract confirmed the presence of flavonoids, glycosides, steroids, saponins, phenolic compounds, and amino acids.

Adult albino Wistar rats of either sex, weighing about 150-180 g were used for the study. They were maintained on standard animal diet and water *ad libitum*. The study was approved by the Institutional Animal Ethics Committee. All chemicals and reagents used were of the analytical grade.

Acute toxicity studies were carried out as per the Organization for Economic Co-operation and Development (OECD) guidelines 423. Animals were divided into five groups of six each. They were fasted overnight, but allowed free access to water. Group 1 served as normal control, received 1 ml of vehicle orally. Animals of group 2, 3, 4 received ethanol extract of *D. triquetrum* leaf (DTE) in the dose of 100, 200 and 300 mg/kg body weight p.o., respectively, and group 5 standard drug, diclofenac sodium, 15 mg/kg body weight orally. Paw volume of all the animals were measured using plethysmometer (UGO Basile, Italy). After 30 min of dosing, all the animals were injected 0.1 ml of 1% w/v suspension of carrageenan in saline in the sub plantar region of left hind paw. The paw volume was measured at one hour interval till 3 h and compared with standard group.

Antioxidant activity of DTE was tested in vitro by following methods. The free radical scavenging activity of the samples was measured by 1, 1-diphenyl-2-picryl-hydrazil (DPPH) using the method described by Shimada et al. The ability of samples to scavenge H$_2$O$_2$ was determined according to the method of Ruch et al. The interaction of samples with NO was assessed by the nitrite detection method.

All tests were performed in triplicate. Ascorbic acid was used as positive control.

The results obtained were analyzed using one-way analysis of variance (ANOVA) followed by Dunnett’s multiple comparison tests. Differences between the data were considered significant at *P* < 0.05.

DTE was found to be safe up to at a dose of 2000 mg/kg. Hence, the doses of 100, 200, and 300 mg/kg were selected for the present study. The results of the present investigation suggest that DTE produced significant anti-inflammatory and antioxidant activity. Carrageenan administration to the control group resulted in increase in paw volume at 30 and 60 min and gradually decreased after 120 min. The treatment with DTE in all the doses showed significant decrease in the paw volume compared to control (*P* < 0.05). The maximum inhibition of paw edema was observed at 60 min at the dose...
Letters to the Editor

Table 1:

Effect of ethanol extract of *D. triquetrum* leaf on carrageenan induced paw edema in rats

Groups	Mean change in paw volume (ml) ± SEM (% of inhibition)			
	30 min	60 min	120 min	180 min
Control	0.47±0.03	0.64±0.03	0.92±0.02	1.04±0.01
D. triquetrum (100 mg/kg)	0.44±0.03	0.55±0.02	0.80±0.01	0.91±0.01
D. triquetrum (200 mg/kg)	0.41±0.01	0.53±0.03	0.68±0.01	0.86±0.01
D. triquetrum (300 mg/kg)	0.38±0.07	0.48±0.01	0.62±0.02	0.66±0.02
Diclofenac sodium (15 mg/kg)	0.33±0.02	0.44±0.03	0.58±0.02	0.61±0.03
	(200 mg/kg)			
	(29.78%)	(31.25%)	(36.95%)	(41.34%)

Data were analyzed by ANOVA followed by Dunnett’s test. Each value is the mean ± S.E.M.; *n = 6, *P <0.01 when compared to control group.

to its antioxidant activity as evidenced by the presence of flavonoids. Further, the isolation of the compounds responsible for the claimed activities has to be taken up to support the present findings.

G.A. Kalyani, Purnima Ashok1, A.D. Taranalli, C.K. Ramesh2, V. Krishna3, A.H.M. Viswanatha Swamy4

KLES’s College of Pharmacy, JNMC Campus, Belgaum-590010, 1Department of Pharmacology, KLES’s College of Pharmacy, Bangalore, 2Department of Biotechnology, Sahyadri Science College, Shimogga, 3Department of Biotechnology, Kuvempu University, Shankaraghatta-577451, Shimogga District, 4Department of Pharmacology, K.L.E. University’s College of Pharmacy, Hubli, Karnataka, India

Correspondence to:
Prof. G.A. Kalyani,
E-mail: gakalyani2008@gmail.com

Acknowledgement
The authors thank Principal, K.L.E. University’s College of Pharmacy, Belgaum, India, for providing the necessary facilities to carry out the work.

References
1. Zheng W, Wang SY. Antioxidant activity and phenolic compounds in selected herbs. J Agri Food Chem 2001;49:5165-70.
2. Winter CA, Risley EA, Nuss EW. Carrageenan-induced oedema in hind paws of the rat as a assay for anti-inflammatory drugs. Proc Soc Exp Biol Med 1962;11:544-7.
3. Shimada K, Fujikawa, Yahara K, Nakamura T. Antioxidative properties of xanthone in the auto oxidation of soybean in cyclodextrin emulsion. J Agri Food Chem 1992;40:945-8.
4. Ruch RJ, Cheng SJ, Klauning JE. Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis 1989;10:1003-8.
5. Miller MJ, Sadowska-Krowicka H, Chlotinarucomol, Kakkis JL, Clark DA. Amelioration of chronic ileitis by nitric oxide synthase inhibition. J Pharmacol Exp Ther 1993;264:11-6.
6. Vinegar R, SchreiberW, Hugo R. Biphasic development of carrageenan oedema in rats. J Pharmacol Exp Ther 1969;169:96-103.
7. Naik SR. Increased cyclic AMP-phosphodiesterase activity during inflammation and its inhibition by anti-inflammatory drugs. Eur J Pharmacol 1984;17:253-9.
8. Chit K, Myint W, Thein K, Maw WW, Myint MM, ThanA, Khin M. Cyclic AMP Phosphodiesterase Inhibitory Activity and Chemical Screening of Four Medicinal Plants. Pharma Biol 2001;39:181-3.

Letters to the Editor

Efficacy of amprolium and toltrazuril in chicken with subclinical infection of cecal coccidiosis

Sir,

Coccidiosis is a significant problem in the poultry industry throughout the world. It is responsible for 6–10% of all broiler mortalities.[1] In subclinical coccidiosis, minor damage of the intestinal wall will lead to deteriorated performance. In such cases, the farm owners are complaining poor performance of the chicken. The diagnosis of coccidiosis is carried out promptly
