

**Research Paper**

**Effect of 2-Weeks Coenzyme Q10 Supplementation on Malondialdehyde and Catalase Serum Levels Following Moderate and Severe Acute Resistance Training in Inactive Female Students**

Yeganeh Feyzi\(^1\), Mohammad Esmaeil Afzalpur\(^1\), *Seyed Hosein Abtahi Eivary\(^2\)

1. Department of Sport Sciences, Faculty of Sport Sciences, Birjand University, Birjand, Iran.
2. Department of Laboratory Sciences, Faculty of Paramedical Sciences, Gonabad University of Medical Sciences, Gonabad, Iran.

**ABSTRACT**

**Aims:** Physical activity is usually accompanied by free radicals’ production and oxidative stress. Moreover, to prevent adverse effects, coaches and athletes have to use proper supplementation. Therefore, the present study aimed to investigate the effect of short-term coenzyme Q10 supplementation on malondialdehyde and serum catalase enzyme activity following moderate and severe acute resistance training in inactive female students.

**Methods & Materials:** In total, 27 female students were randomly divided into three groups; the groups were homogeneous and equal (two groups of resistance training and one control group). The experimental groups were subjected to moderate-intensity acute (70% 1RM) acute and severe acute activity (85% 1RM) and supplemented with coenzyme Q10 (30 mg /d). CAT and MDA were measured in ELISA using a human kit.

**Findings:** Moderate and severe acute resistance activities did not alter MDA and catalytic activity (P>0.05); however, after 2 weeks of coenzyme Q10 supplementation, those resulted in a significant decrease in MDA (0.006 and 0.01, respectively) and CAT (0.04 and 0.007, respectively). There were no significant differences between the effects of two exercises (P>0.05).

**Conclusion:** Short-term (two weeks) supplementation of coenzyme Q10 and severe acute resistance activity could reduce two important oxidative stress indexes (MDA and CAT).

**Key words:** Acute moderate resistance training, Severe acute resistance training, Malondialdehyde, Catalase

---

**Extended Abstract**

**1. Introduction**

The body cells are part of the metabolism process and are consistently producing free radicals and reactive oxygen species. It is also highly responsive and susceptible to damage to all cellular attachments [1]. Oxidative stress refers to a state in which the balance between oxidants and antioxidants tends to favor the oxidants, and this unbalance can affect intracellular oxidation and cause oxidative damage. In the face of oxidative stress, the antioxidant system of the human body has the task of producing and applying antioxidants to break down the chain of reactions created by free radicals. It maintains the body’s natural balance (homeostasis) and modulates the oxidative stress caused by the increase in free radicals [2, 3].

---

*Corresponding Author:*  
**Seyed Hosein Abtahi Eivary, PhD.**  
**Address:** Department of Laboratory Sciences, Faculty of Paramedical Sciences, Gonabad University of Medical Sciences, Gonabad, Iran.  
**Tel:** +98 (915) 5331265  
**E-mail:** abtahi_51@yahoo.com
Few kinds of research were conducted on the effect of resistance exercise on oxidative markers and antioxidant defense than on aerobic exercise; however, during resistance exercise, anemia muscles and production of free radicals, which occur from oxidative bursts in neutrophils, are considered critical matters [8]. Exercise intensity, which is a component of physical activity, affects free radical production and oxidative stress. As the intensity of physical activity increases, the oxidative stress and inability of the antioxidant defense system become more evident [9].

Coenzyme (Q10) is one of the supplements that have bioenergetic effects and can neutralize some of the damage caused by free radicals. This supplement, as a kind of antioxidant, has a protective function against oxidative stress [15]. This study aimed to investigate the effect of acute and moderate resistance exercise combined with coenzyme supplementation on Malondialdehyde (MDA) and the Chloramphenicol acetyltransferase (CAT) serum activity in passive girls to answer the following questions: does acute and moderate resistance exercise significantly change the indices of MDA and CAT in passive girls? If we combine resistance exercise with two weeks of coenzyme supplementation, how or what would be the change in these indices? Is there a difference between the effect of the two types of resistance exercise in terms of intensity (acute vs. moderate)?

2. Methods

Pal et al. [1] investigated the effect of high-intensity exercise on oxidative stress and skeletal muscle damage in postpubertal boys and girls. They found that the exercise increased the Catalase (CAT) level and lipid peroxidation. Ogonovszky et al. examined the effect of moderate and strenuous training and reported that the Malondialdehyde (MDA) was increased by enhancement in free radicals [10]. Zarghami Khameneh et al. also observed increased MDA serum level after conducting one session of resistance training (7 movements in 3 sets) with 80% of 1 Repetition Maximum (RM) until exhaustion [11].

Bloomer et al. also reported increased MDA levels following Wingate anaerobic test and Bruce treadmill protocol [12]. Nakhhostin Rohy et al. assessed the effect of acute resistance training on brain-derived neurotrophic factor, CAT, and vitamin C; they concluded that the measured levels decreased after exercise [13]. Silva et al. evaluated the effect of acute resistance training on oxidative stress in trained individuals. They found that the training increased the CAT and MDA levels and improved their protective adaptation to oxidative stress [14].

Study design

This was a quasi-experimental study.

Study population, place, time

The study population consisted of all female students of Birjand University of Medical Sciences, aged 18-25 years. The study protocol period was 2 weeks. First, one training session was performed. Then, Co-Q10 supplementation was administered for 14 days. Next, another training session was conducted. Before beginning the main exercise, individuals in the two experimental groups were referred to the gym for two sessions to become familiarized and learn the method of performing the movements and having one maximum repetition until fatigue.

Study samples

Twenty-seven students were selected based on the study inclusion criteria (no cardiovascular, pulmonary, respiratory diseases, and being physically inactive for the past 6 months), using a convenience sampling technique. All subjects were on the same diet (the provided food by college). They were randomly assigned into three moderate RES+Q10 (n=9), severe RES+Q10 (n=9) and control (n=9) groups. The control group received no intervention. Subjects in two experimental groups consumed a CoQ10 tablet (30 mg) once a day after lunch. The moderate RES+Q10 group performed one session of circular strength training with 70% 1RM. Moreover, the severe RES+Q10 group performed one session of circular strength training with 85% 1RM.

Before collecting the data, the study objectives and methods were explained to the samples. Furthermore, after obtaining the study participants’ informed consent, they completed Baecke Habitual Physical Activity Questionnaire (BHPAQ), with the validity and reliability coefficients of 0.65 and 0.90, respectively [1] and Food Frequency Questionnaire with the validity and reliability coefficients of 0.60 and 0.60, respectively [2]. Then, in a session, the training protocol and proper performance of the movements were educated to the study subjects. Next, their height and weight were measured. Blood samples were poured into test tubes without anticoagulant, and after 30 minutes of clotting, the samples were centrifuged (at 5000 rpm for 5 minutes).

3. Results

The moderate and severe acute resistance training had no significant effect on MDA and CAT serum levels (P>0.05). However, moderate and severe acute resistance training following CoQ10 supplementation could reduce...
Autumn 2019. Vol 25. Issue 4

MDA (P=0.01 and P=0.006) and CAT (P=0.004 and P=0.007). The combined effect of resistance training and CoQ10 supplementation was not significant on their measured levels (P>0.05).

4. Discussion

Cooke et al. studied trained and untrained men; they reported that 14-day coenzyme Q10 supplementation increased muscle CoQ10 concentration and reduced MDA level during and following exercise [3]. Laaksonen et al. suggested that CoQ10 supplementation cannot prevent undesirable MDA changes as the primary indicator of peroxidation in biological membranes by increasing total antioxidant capacity [4].

Recommendations

Some studies have documented that acute resistance training increased lipid peroxidation and stress in the body’s antioxidant system; thus, we recommend nutritional strategies to enhance the antioxidant system. Based on the present study findings, applying coenzyme Q10 at different doses and different supplementation periods may be useful in reducing MDA level and regulating catalase enzyme activity.

Limitations

Subjects had physical health and age range of 18 to 25 years. They were also instructed to avoid heavy exercise at 48 hours before taking the test. In addition, they were requested to refrain from taking any medication or dietary supplements during the study period to prevent affecting the study outcomes.

5. Conclusion

Coenzyme Q10 supplementation reduced MDA and CAT levels. The same feature of this supplement modified MDA and CAT serum levels after acute resistance training. No significant difference was found between the effect of acute resistance training with two intensities on the oxidative stress indices. Therefore, definitive and clear claim on the role of coenzyme Q10 supplement requires the manipulation of the intensity of resistance training and the dose that produces different levels of oxidative stress indices.

Ethical Considerations

Compliance with ethical guidelines

This study obtained its ethical clearance from the Ethics Committee of Birjand University of Medical Sciences (Code: IR.BUMS.REC.1397.183).

Funding

This article is taken from the first author's thesis, Yeganeh Feizi, Department of Sport Sciences, Faculty of Sport Sciences, Birjand University.

Authors' contributions

Conceptualization: Yeganeh Feizi, Mohammad Esmaeil Afzalpour, Seyed Hossein Abtahi Avery; Methodology: Yeganeh Feizi, Mohammad Esmaeil Afzalpour; Investigation: Yeganeh Feizi, Mohammad Esmaeil Afzalpour; Writing-original draft: Yeganeh Feizi, Mohammad Esmaeil Afzalpour; Writing-review & editing: Yeganeh Feizi, Mohammad Esmaeil Afzalpour; Funding acquisition: Yeganeh Feizi; Resources: Yeganeh Feizi, Mohammad Esmaeil Afzalpour; Supervision: Yeganeh Feizi, Mohammad Esmaeil Afzalpour, Seyed Hossein Abtahi Avery.

Conflicts of interest

The authors declared no conflicts of interest.

Acknowledgements

The authors would like to thank all students and laboratory staff of the Faculty of Sport Sciences at Birjand University of Medical Sciences for cooperating in centrifugation of blood samples, the laboratory staff of Gonabad University of Medical Sciences for storing blood samples, and all those help us in this study.

Feyzi Y, et al. The Effect of 2-Weeks of Coenzyme Q10 Supplementation on Malondialdehyde. HMS. 2019; 25(4):256-269.
بررسی تأثیر دو هفته مکملدهی کوآنزیم بر مالون دی آلدهید و فعالیت آنزیم کاتالاز سرم پس از تمرینات حاد مقاومتی متوسط و شدید در دانشجویان دختر غیرفعال

یکه طیبیه، محمدسعید ملکی افسل پور، سید حسین اباظی ایوری

گروه طب و علوم پزشکی، دانشگاه علوم پزشکی گناباد، گناباد، ایران

گروه طب آزمایشگاهی، دانشگاه علوم پزشکی گناباد، گناباد، ایران

در تمرینات حاد مقاومتی متوسط و شدید قطعیت حاد میلی گرم/روز به مدت دو هفته و فعالیت آنزیم کاتالاز سرم (CAT) و فعالیت آنزیم مالون دی آلدهید (MDA) به ترتیب با روش الایزاز و مکمل کوآنزیم (Q10) می کند. 

درتیم‌های ورزشی به عنوان مثال تمرینات مقاومتی، ایزومتریک، اکسنتریک و دوی سرعت، با تولید رادیکال آزاد و ایجاد فشار اکسایشی همراه است و مربیان و ورزشکاران ناچارند با ایجاد دو هفته مکمل دهی پس از تمرینات حاد مقاومتی متوسط و شدید در دانشجویان دختر غیرفعال به کار

مقدمه

سلول‌های بدن بخشی از فرآیندهای سوخت وسازی محسوب می‌شوند و به طور دائمی در حال تولید رادیکال آزاد و ایجاد فشار اکسایشی هستند. همچنین بسیار واکنش پذیر و مستعد هستند. فشار اکسایشی به حالتی اطلاق می‌شود که در آن تعادل بین اکساینده‌ها و ضداکساینده‌ها به نفع اکساینده‌ها متمایل شود و این متعادل نبودن بر فشار اکسایشی تأثیر بگذارد و موجب ایجاد استرس اکسایشی شود. در مقابله با فشار اکسایشی، دستگاه ضداکسایشی بدن انسان وظیفه دارد با تولید و کارگیری مواد ضداکسایشی، موجب شود زنجیره واکنش‌های ایجادشده را ریزسازی کند. می‌تواند تأثیر کاهشی بر دو شاخص مهم استرس اکسایشی می‌کند.

مکمل‌ها

کلمات کلیدی: مطالعه مقایسه‌ای، فعالیت مقاومتی، مدیریت استرس اکسایشی، مکمل مواد مکمل، فعالیت حاد مقاومتی، فعالیت حاد شدید، CAT و MDA
واکنش‌های رژیم Q10 به مدل طراحی انجام شده به‌دست آمده که می‌شود ردیابی طراحی‌های فیزیکی و افراد از دست داده شود. در مدل مواد مصرفه و مکمل‌های فیزیکی و خوراکی، از دست رفته خاصیت‌های افرادی که در مدل جمعیتی و مکمل‌های شاخص‌های متغیری به‌دست آمده‌اند، تولید نشده است. تغییرات ترکیبی سطح جلوگیری از افزایش فعالیت ضداکسایشی، به ترتیب با استفاده از تحقیقات آزمایشگاهی و برنامه‌های ورزشی ناشی از تمرینات مقاومتی شدید و متوسط است. این می‌تواند در حالت‌های مختلف از تمرینات مقاومتی باعث می‌شود.

کاتالاز (CAT) که از اکسیداسیون آلدهید مالون به تدریج کاهش یافته و پس از استراحت در عضلات نتایج مثبتی را نشان می‌دهد. با این حال، کف‌پوش و همکاران نشان دادند که Q10 در موارد مختلفی از تمرینات مقاومتی به عنوان یکی از مدل‌های مورد استفاده قرار نمی‌گیرد.

در حال حاضر، سپارسره از ارائه پایاپایی در حمام و حجم حمل، در گروه‌های تمرین مقاومتی مثبت است. درخواست که درGO به‌طور گسترده‌ای معرفی شده است.

1. مالونیل‌الدهیدای (MDA)
2. واحد‌های انرژی و ویتامین (CAT)
3. وینگیت (MDA)
4. ماده‌های ضدکسایی (CAT)
5. سیلوا (CAT)
6. سایلو (MDA)
7. واکنش‌های رژیم Q10 به مدل طراحی انجام شده به‌دست آمده که می‌شود ردیابی طراحی‌های فیزیکی و افراد از دست داده شود. در مدل مواد مصرفه و مکمل‌های فیزیکی و خوراکی، از دست رفته خاصیت‌های افرادی که در مدل جمعیتی و مکمل‌های شاخص‌های متغیری به‌دست آمده‌اند، تولید نشده است. تغییرات ترکیبی سطح جلوگیری از افزایش فعالیت ضداکسایشی، به ترتیب با استفاده از تحقیقات آزمایشگاهی و برنامه‌های ورزشی ناشی از تمرینات مقاومتی شدید و متوسط است. این می‌تواند در حالت‌های مختلف از تمرینات مقاومتی باعث می‌شود.
در نظر گرفته شد. ولی جهت تمرین ۱۰۰±۰ تا ۹۵±۰ دقیقه شمل‌کننده ۱۵ گروه مکمل کوآنزیم CAT بر مبنای وزن و ماتوکاریت MDA را به این سوالها پاسخ مسئول داد. شرکت‌های حاشیه‌ای و محصولات قراردادی، CAT از طراحی و تولید مراحل مطالعه و CAT از طراحی و تولید مراحل مطالعه، MDA را به این سوالها پاسخ مسئول داد. شرکت‌های حاشیه‌ای و محصولات قراردادی، CAT از طراحی و تولید مراحل مطالعه و CAT از طراحی و تولید مراحل مطالعه، MDA را به این سوالها پاسخ مسئول داد. شرکت‌های حاشیه‌ای و محصولات قراردادی، CAT از طراحی و تولید مراحل مطالعه و CAT از طراحی و تولید مراحل مطالعه، MDA را به این سوالها پاسخ مسئول داد. شرکت‌های حاشیه‌ای و محصولات قراردادی، CAT از طراحی و تولید مراحل مطالعه و CAT از طراحی و تولید مراحل مطالعه، MDA را به این سوالها پاسخ مسئول داد. شرکت‌های حاشیه‌ای و محصولات قراردادی، CAT از طراحی و تولید مراحل مطالعه و CAT از طراحی و تولید مراحل MDA را به این سوالها پاسخ مسئول داد. شرکت‌های حاشیه‌ای و محصولات قراردادی، CAT از طراحی و تولید MDA را به این سوالها پاسخ مسئول داد. شرکت‌های حاشیه‌ای و محصولات C...
با اثبات داده‌های اطلاعات بالا، می‌توان گفت که شاخص های سن، وزن، قد و شاخص توده بدنی آزمودنی های سه گروه مداوم مقاومتی شدید + مکمل (MDA)، گروه مداوم مقاومتی شدید (CAT) و گروه کنترل (کنترل) از نظر این متغیرها در مراحل قبل و بعد از تمرین مقاومتی متفاوت بوده و این تفاوت‌ها باعث تغییرات معنی‌داری در این متغیرها می‌شود.

| جدول ۱. تأثیر تمرین مقاومتی در شاخص‌های متغیر | میانگین ± انحراف معیار | شاخص‌های مطالعه | گروه‌ها | صفحه م noticiasی (توضیحات) | F | 27.650/16 |
|-------------------------------------------|-----------------|---------------|--------|-------------------|---|-----------|
| سن (سال) | تمرین حاد مقاومتی شدید | ۲۱/۶ /۱۸/۰۴ | ۳۱/۸ /۳۰/۲۴ | کنترل | ۷۴/۸۲ /۸۵ /۷۱ | تمرین حاد مقاومتی متوسط |
| وزن (کیلوگرم) | تمرین حاد مقاومتی شدید | ۶۸/۷۴ /۷۵ /۸۵ | ۵۸/۷۰ /۵۷ /۶۵ | کنترل | ۳۹/۷۸ /۳۵ /۶۵ | تمرین حاد مقاومتی متوسط |
| قدم (سانتی‌متر) | تمرین حاد مقاومتی شدید | ۱۸۴/۷۰ /۱۸۴ /۷۰ | ۱۸۴/۷۰ /۱۸۴ /۷۰ | کنترل | ۱۹۸/۷۰ /۱۹۸ /۷۰ | تمرین حاد مقاومتی متوسط |
| شاخص توده بدنی (بررسی) | تمرین حاد مقاومتی شدید | ۲۱/۶۱ /۱۹ /۷۰ | ۲۱/۶۱ /۱۹ /۷۰ | کنترل | ۲۲/۷۰ /۲۲ /۸۰ | تمرین حاد مقاومتی متوسط |

در این راستا، با توجه به نتایج حاصل از تمرین حاد مقاومتی متوسط، می‌توان گفت که شاخص کات (CAT) در میانگین ± انحراف معیار میکرومول/لیتر قاعده بالا قرار دارد که این‌ها برای کاهش میزان اللهبی و درمانی کمک می‌کنند.
چونه ۲ درصدی تأمینی پویا و ۱ هفته تهیه مقدار چه تفاوت دو میزان CAT در مراحل اندازه‌گیری در گروه تمرین حاد مقاومتی شدید و متوسط

### MDA

| مراحل اندازه‌گیری | تفاوت میانگین % | خطای معیار | سطح معناداری P |
|------------------|-----------------|------------|---------------|
| قبل از تمرین مقاومتی شدید | ۱۸۸۹ | ۱۷۸۹ | ۰/۰۴ |
| قبل از تمرین مقاومتی شدید | ۱۹۸۷ | ۱۸۳۹ | ۰/۰۶ |
| بعد از تمرین مقاومتی شدید و مکمل | ۱۸۶۷ | ۱۷۳۹ | ۰/۰۴ |
| بعد از تمرین مقاومتی متوسط | ۱۸۵۷ | ۱۷۵۷ | ۰/۰۴ |
| بعد از تمرین مقاومتی شدید و مکمل | ۱۸۵۷ | ۱۷۵۷ | ۰/۰۴ |

* معنی‌داری شاخص

### CAT

| مراحل اندازه‌گیری | تفاوت میانگین % | خطای معیار | سطح معناداری P |
|------------------|-----------------|------------|---------------|
| قبل از تمرین مقاومتی شدید | ۱۸۸۹ | ۱۷۸۹ | ۰/۰۴ |
| قبل از تمرین مقاومتی شدید | ۱۹۸۷ | ۱۸۳۹ | ۰/۰۶ |
| بعد از تمرین مقاومتی شدید و مکمل | ۱۸۶۷ | ۱۷۳۹ | ۰/۰۴ |
| بعد از تمرین مقاومتی متوسط | ۱۸۵۷ | ۱۷۵۷ | ۰/۰۴ |
| بعد از تمرین مقاومتی شدید و مکمل | ۱۸۵۷ | ۱۷۵۷ | ۰/۰۴ |

* معنی‌داری شاخص
پراکسیداسیون لیپیدی به دنبال تمرین افزایش می‌یابد. املاک چهارگوش زیست‌پزشکی‌های لیپیدی که در جداول گران داده شده، افزایش پراکسیداسیون لیپیدی ایجادشده به طور افزایش پراکسیداسیون لیپیدی همراه است. از آنجا که در مطالعه پلی فنولی به همراه دو دوره تمرین هوازی و قدرتی زیر بیشینه قرارداده که می‌تواند در مقایسه با سایر گزارش‌ها و نتیجه‌گیری کلی کم است و این یکی از محدودیت‌های ما در اجرای مطالعه پیش رو است. همچنین در مطالعات انسانی یک نمونه حساسیتی ایجادشده که افزایش پراکسیداسیون لیپیدی که در تحقیق، نمونه‌های خونی جمع‌آوری شده است، افراد سری بالقوه اثر مصرف مکمل کوآنزیم بر بهبود ضرایب میله‌گیری و تولید رادیکالها موجب کاهش می‌شود. افزایش پراکسیداسیون لیپیدی همراه است.

نتایج به‌پایان انجام شده، تحقیق‌های خود موجب افزایش می‌شود. افزایش پراکسیداسیون لیپیدی همراه است.

به طور کلی، این نتایج نشان می‌دهد که در تحقیق حاضر، افزایش پراکسیداسیون لیپیدی همراه است. افزایش پراکسیداسیون لیپیدی همراه است.

به طور کلی، این نتایج نشان می‌دهد که در تحقیق حاضر، افزایش پراکسیداسیون لیپیدی همراه است. افزایش پراکسیداسیون لیپیدی همراه است.
موریالیس روز با بحث حاضر مطرح شد. در تحقیق موریالیس روز، شدت تمرین کم بوده است، اما در تحقیق حاضر از شدت زیاد و متوسط استفاده شده است. لکسونن و همکاران نشان داده اند که مکمل سازی کوآنزیم غلظاتی مناسبی جلوگیری می‌کند از افزایش ظرفیت ضداکسایشی تام. از دلایل تناقض تحقیق لکسونن با تحقیق حاضر، سطح کند آمادگی جسمانی آزمودنی‌های شرکت‌کننده در تحقیق حاضر بوده است. در تحقیق حاضر آزمودنی‌های شرکت‌کننده دختران غیرفعال بودند، در حالی که در تحقیق لکسونن مردان ورزشکار بوده‌اند. در تمرینات مقاومتی شدید، فرایند ایسکمی و خونرسانی مجدد و بارهای مکانیکی وارد شده بر بافت‌های نرم درگیر، در ایجاد پراکسیداسیون لیپیدی و تولید رادیکال‌های آزاد نقش مؤثر دارند. در طی ورزش، انحراف خون به سمت پوست و عضلات فعال باعث هیپوکسی بافتی و هماهنگ نبودن اکسیژن مصرفی و اکسیژن موردنیاز در بافت‌های فعال حین شدت‌های زیاد تمرینی می‌شود؛ هر چند به دنبال اکسیژن رسانی مجدد این بافت‌ها و قطع افزایش می‌یابد. از این ROS یا کاهش شدت فعالیت، تولید گونه‌های ROS، زمینه آسیب به زیرساخت‌های سلولی در پی افزایش گونه‌های با افزایش پراکسیداسیون لیپیدی و کاهش عملکرد سلولی، ROS یا ۱۰۱۲۴، فراهم می‌شود. با اینکه مطالعات در زمینه تمرین مقاومتی و استرس اکسایشی محدود است، اکثر مطالعات انجام شده افزایش در پراکسیداسیون لیپیدی پس از تمرین و کاهش فعالیت ضداکسایشی را گزارش کرده‌اند. با وجود این، به نظر می‌رود این تغییرات موقتی بوده و طی زمان کوتاهی به وضعیت پیش از ورزش بازمی‌گردند.

درنهایت مطالعات نظامی این است فعالیت ورزشی با شدت متوسط بهترین نظر فعالیت است. در این مطالعه، کوآنزیم بایدی در زمان‌هایی با تغییرات قابل توجه در مورد میزان فشار اکسایشی ثانیایی است. با توجه به این‌که در این تحقیق، شدت تمرین و کاهش فشار اکسایشی تام به دنبال اکسیژن رسانی مجدد و افزایش فعالیت است، می‌تواند این کروکسیدوکسایت‌زا و یوبیکینول از مشتقات کینون به عنوان یک حامل الکترون و در غشای داخلی میتوکندری ATP به عنوان یک حامل الکترون و در غشای داخلی میتوکندری ATP، بیشتر مطالعات انجام شده تأثیر مکمل کوآنزیم را در افزایش عملکرد سلولی و در بالا بردن نیروی عضله مورد بحث قرار داده‌اند.

9. Ubiquinol
10. Fensil
11. Adenosine TriphosPhate (ATP)
References

[1] Radak ZS, Kaneko T, Tahara S, Nakamoto H, Ohno H, Sasvari M, et al. The effect of exercise training on oxidative damage of lipids, proteins, and DNA in rat skeletal muscle: Evidence for beneficial outcomes. Free Radical Biology and Medicine. 1999; 27(1-2):69-74. [DOI:10.1016/S0891-5849(99)00038-6]

[2] Radak Z, Radak Z. Free radicals in exercise and aging. Champaign: Human Kinetics; 2000.

[3] Fisher-Wellman K, Bloomer RJ. Acute exercise and oxidative stress: A 30 year history. Dynamic Medicine. 2009; 8:1. [DOI:10.1186/1476-5918-8-1] [PMID] [PMCID]

[4] Bloomer RJ, Goldfarb AH, McKenzie MJ. Oxidative stress response to aerobic exercise: Comparison of antioxidant supplements. Medicine & Science in Sports & Exercise. 2006; 38(6):1098-105. [DOI:10.1249/01.mss.000022839.51144.3e] [PMID] [PMCID]

[5] Khassa M, McArdle A, Esanu C, Vasilaki A, McArdle F, Griffiths RD, et al. Effect of vitamin C supplements on antioxidant defence and stress proteins in human lymphocytes and skeletal muscle. The Journal of Physiology. 2003; 549(2):645-52. [DOI:10.1113/jphysiol.2003.040303] [PMID] [PMCID]

[6] Gaieni AA, Mogharnesi M, Goudarzi M, Soori R. [The estimate of the blood lipid variables using young students’ BF% and LBM indicators (Persian)]. Journal of Sport Sciences 2005; 12(9):59-58.

[7] Çkkrr-Atabek H, Özdemir F, Çolak R. Oxidative stress and anti-oxidant responses to progressive resistance exercise intensity in trained and untrained males. Biology of Sport. 2015; 32(4):321-8. [DOI:10.5604/20831862.1176302] [PMID] [PMCID]

[8] Liu JF, Chang WY, Chan KH, Tsai WY, Lin CL, Hsu MC. Blood lipid peroxides and muscle damage increased following intensive resistance training of female weightlifters. Annals of the New York Academy of Sciences. 2005; 1042(1):255-61. [DOI:10.1111/annals.1338.0299] [PMID] [PMCID]

[9] Pyne DB. Regulation of neutrophil function during exercise. Sports Medicine 1994; 17(4):245-58. [DOI:10.2165/00007256-19941704-00005] [PMID]

[10] Aguiló A, Tauler P, Fuentespina E, Tur JA, Córdova A, Pons A. Antioxidant response to oxidative exercise induced by exhaustive exercise. Physiology & Behavior. 2005; 84(1-7). [DOI:10.1016/j.physbeh.2004.07.034] [PMID]

[11] Ogonoyszki H, Sasvari M, Dosek A, Berkes I, Kaneko T, Tahara S, et al. The effects of moderate, strenuous, and overtraining on oxidative stress markers and DNA repair in rat liver. Canadian Journal of Applied Physiology. 2005; 30(2):186-95. [DOI:10.1139/h05-114] [PMID]

[12] Zarghami Khamehnez Z, Jafari A, Akhtari Shojaei E. [The effect of acute caffeine ingestion on oxidative response in male volleyball players following one-session resistance exhaustive exercise (Persian)]. Sport Physiology. 2014; 6(22):115-30.

[13] Nakhhostin Rohy B, Rahmanyia F, Babaei P. [The effect of acute consumption of 500 mg of vitamin C on fat peroxidation and inflammation induced by activity (Persian)]. Research in Sport Sciences. 2008; 2(19):111-25.

[14] da Silva EP, Soares EO, Malvestiti R, Hatanaka E, Lambertucci RH. Resistance training induces protective adaptation from the oxidative stress induced by an intense-strength session. Sport Sciences for Health. 2016; 12(3):321-8. [DOI:10.11332-016-0291-z]

[15] Rayyan F, Rezavandi Z, Tehran SD, Farrokhand A, Asemi Z. The effects of coenzyme Q10 administration on glucose homeostasis parameters, lipid profiles, biomarkers of inflammation and oxidative stress in patients with metabolic syndrome. European Journal of Nutrition. 2016; 55(8):2357-64. [DOI:10.1007/s00394-015-1042-7] [PMID]

[16] Cooke M, Josia M, Baford T, Shekmade B, Hudson G, Kerkisic C, et al. Effects of acute and 14-day coenzyme Q10 supplementation on exercise performance in both trained and untrained individuals. Journal of the International Society of Sports Nutrition. 2008; 5(8):1-14. [DOI:10.1186/1550-2783-5-5] [PMID] [PMCID]

[17] Laksonen R, Fogelholm M, Himberg II, Laakso J, Salonirne Y. Ubiquinone supplementation and exercise capacity in trained young and older men. European Journal of Applied Physiology and Occupational Physiology, 1995; 72(1-2):95-100. [DOI:10.1007/BF00641211] [PMID] [PMCID]

[18] Ghasemi F, Esmaeil Afzalpour M, Saghebjoo M, Zarban A. Effects of short-term green tea supplementation on total antioxidant capacity and lipid peroxidation in young women after a resistance training session. Journal of Isfahan Medical School. 2012; 30(202):1-10.

[19] Hosseini Esfahani F, Aghahi G, Mirmiran F, Jalali Farahani S, Azizi F. [Reproductibility and relative validity of food group intake in a Food Frequency Questionnaire developed for the Tehran lipid and glucose study (Persian)]. Razi Journal of Medical Sciences. 2010; 17(71):41-55.

[20] Saqib Joo M, Ghanbari Niaki A, Fathi R, Hedavyat M. [The effect of circular resistance training on the plasma ghrelin level of young women (Persian)]. Iranian Journal of Endocrinology and Metabolism. 2010; 3(12):535-29.

[21] Brycki M. Strength testing-predicting a one-rep max from reps-to-fatigue. Journal of Physical Education, Recreation & Dance. 1993; 64(1):88-90. [DOI:10.1080/07303084.1993.10606684]

[22] William EG, Kirkendal DT, William L. Exercise and sport science. Philadelphia: Lippincott Williams & Wilkins; 2000.

[23] Dixon CB, Robertson RJ, Goss FL, Timmer JM. The effect of acute resistance exercise on serum malondialdehyde in resistance-trained and untrained collegiate men. Journal of Strength and Conditioning Research. 2006; 20(3):693-8. [DOI:10.1519/R-15854.1] [PMID] [PMCID]

[24] Watson TA, MacDonald-Wicks LK, Garg ML. Oxidative stress and antioxidants in athletes undertaking regular exercise training. International Journal of Sport Nutrition and Exercise Metabolism. 2005; 15(2):131-46. [DOI:10.1123/isnem.15.2.131] [PMID]

[25] Rezazadeh A. [The effect of jujube fruit consumption on selected serum oxidative stress indices in female students following an acute resistance training session (Persian)]. [MSc. thesis]. Birjand: University of Birjand; 2014.

[26] de Oliveira HA, Antonio EL, Arsa G, Santana ET, Silva FA, Júnior DA, et al. Photobiomodulation leads to reduced oxidative stress in rats submitted to high-intensity resistive exercise. Oxidative Medicine and Cellular Longevity. 2018; 2018:5763256. [DOI:110.1155/2018/5763256] [PMID] [PMCID]

[27] Pal S, Chaki B, Chattopadhyay S, Bandyopadhyay A. High-intensity exercise induced oxidative stress and skeletal muscle damage in post-pubertal boys and girls: A comparative study. The Journal of Strength & Conditioning Research. 2018; 32(4):1045-52. [DOI:10.1519/R-15845.1] [PMID] [PMCID]

[28] Ramel A, Wagner KH, Elmadfa I. Plasma antioxidants and lipid oxidation after submaximal resistance exercise in men. European Journal of Nutrition. 2004; 43(1):2-6. [DOI:10.1007/s00394-004-0432-z] [PMID]
[29] Emami A, Bazargani-Gilani B. Effect of oral CoQ10 supplementation along with precooling strategy on cellular response to oxidative stress in elite swimmers. Food & Function. 2018; 9(8):4384-93. [DOI:10.1039/C8FO00960K] [PMID]

[30] Hasanzadeh R. The effect of short-term (14-day) supplementation of coenzyme Q10 on some of the oxidative stress indices (TAC and MDA) and muscle damage (CK, LDH, and CRP) following a physical exhaustion session in soccer men (Persian) [MSc. thesis]. Urmia: Urmia University; 2016.

[31] Morillas-Ruiz JM, Villegas Garcia JA, Lopez FJ, Vidal-Guevara ML, Zafrilla P. Effects of polyphenolic antioxidants on exercise-induced oxidative stress. Clinical Nutrition. 2006; 25(3):444-53. [DOI:10.1016/j.clinu.2005.11.007] [PMID]

[32] Bloomer RJ, Goldfarb AH. Anaerobic exercise and oxidative stress: A review. Canadian Journal of Applied Physiology. 2004; 29(3):245-63. [DOI:10.1139/h04-017]
