PMAL: Open Set Recognition via Robust Prototype Mining

- Problems of learning prototypes in OSR
 - High quality sample
 - Low quality sample
 - Prototype

- Effect Visualization

(a) Quality

(b) Diversity

Undesired learned prototypes

Redundancy

Multifarious Appearance

TinyImageNet

Contact E-mail: lujing6@hikvision.com Jing Lu
PMAL: Open Set Recognition via Robust Prototype Mining

Jing Lu1,*, Yunlu Xu1,*, Hao Li1, Zhanzhan Cheng1,2†, Yi Niu1

1 Hikvision Research Institution, Hangzhou, China
2 Zhejiang University, Hangzhou, China
{lujing6, xuyunlu, lihao50, chengzhanzhan, niuyi}@hikvision.com
Problems

- **Implicit Learned Prototypes**

 - High quality sample
 - Low quality sample
 - Prototype

 - Undesired learned prototypes
 - Redundancy
 - Multifarious Appearance

(a) Quality

(b) Diversity
Motivation

- **Explicit Prototype Mining**: PMAL

(a) *Mine High-quality Candidates*

(b) *Filter with diversity*
Preliminary

- Open Set Recognition (OSR)

- **Ideal: Close Set Assumption**
 - Closed: Training and testing samples come from known classes
 - Multi-class Classification

- **Actually: Open Set Environment**
 - Open: Multiple known classes, many unknown classes

Scheirer, W. J., et al. 2013. Towards Open Set Recognition. TPAMI.
Preliminary

- Prototype-based OSR

 - Softmax-based close-set recognition

 - Prototype-based OSR

✓ Unable to tell UNKNOWN classes

✓ Learn compact intra-class embedding
✓ Reserve more space for UNKNOWN classes

Jaderberg, M, et al. 2015. Spatial Transformer Networks. NeurIPS.
Method

- Overview of PMAL
Method

• Mine \textit{high-quality} samples as prototype candidates

\begin{itemize}
 \item Data uncertainty modelling[1]
 \begin{equation}
 z(x_i) = \phi(x_i) + n(x_i), \quad n(x_i) \sim \mathcal{N}(0, \sigma(x_i))
 \end{equation}
 \item Key properties of high-quality samples
 \begin{equation}
 d_M(\phi_i^1, \phi_j^1) \approx d_M(\phi_i^2, \phi_j^2)
 \end{equation}
 \textit{Mahalanobis distance}
 \item Embedding Topology
 \begin{equation}
 t(z_i) \triangleq (d_M(z_i, z_1), \ldots, d_M(z_i, z_N))
 \end{equation}
 \item Embedding Topology robustness
 \begin{equation}
 r(x_i) \triangleq \exp(-\|t(z_i^1) - t(z_i^2)\|_2)
 \end{equation}
\end{itemize}

High-quality samples satisfy[2]:
\[z_i \approx \phi_i \]

- For a high-quality samples \(x_i \)

\begin{itemize}
 \item Embedding space \(Z^1 \)
 \[r(x_i) \rightarrow 1 \]
 \item Embedding space \(Z^2 \)
\end{itemize}
Method

• Mine *high-quality* samples as prototype candidates

✓ Data uncertainty modelling\(^1\)

Equa. 1: \(z(x_i) = \phi(x_i) + n(x_i), \ n(x_i) \sim \mathcal{N}(0, \sigma(x_i)) \)

✓ Key properties of high-quality samples

Equa. 2: \[d_M(\phi^1_i, \phi^1_j) \approx d_M(\phi^2_i, \phi^2_j) \]

\(\text{Mahalanobis distance} \)

✓ Embedding Topology robustness

Equa. 3: \(t(z_i) \triangleq (d_M(z_i, z_1), \ldots, d_M(z_i, z_N)) \)

Equa. 4: \(r(x_i) \triangleq \exp(-\|t(z^1_i) - t(z^2_i)\|_2) \)

High-quality samples satisfy\(^2\):

\[z_i \approx \phi_i \]

□ For a low-quality samples \(x_i \)

![Diagram](attachment:image.png)

(b)
Method

• Filter with diversity

- Local maximum robustness
- Large embedding distance

• Greedy filtering algorithm

\[
P_k = \bigcup_{i=1}^{T} \{ x_i | \max_{z_i \in C_k} \min_{x_j \in C_k} d_M(z_i, z_j) | r(x_j) > r(x_i) \}\]

- \(C_k \): candidate set of class \(k \)
- \(P_k \): final prototype set of class \(k \)
Method

- Embedding optimization

✓ Point to Set distance

\[z_i \quad \text{query} \quad z(P_k) = (z(p_{k,1}), \ldots, z(p_{k,T})) \in \mathbb{R}^{D \times T} \]

Equa.1: \[z_i^{\text{att}}(P_k) = \text{SoftMax}(\frac{z_i^T z(P_k)}{\sqrt{d}}) z(P_k) \]

Equa.2: \[d(z_i, z(P_k)) = 1 - \frac{z_i^T z_i^{\text{att}}(P_k)}{|z_i^T| |z_i^{\text{att}}(P_k)|} \]
Method

• Embedding optimization

PMAL:
Explicitly updated by model forward pass

Existed methods:
Implicitly learned

Equation 1:
\[
\mathcal{L}_p = \frac{1}{N} \sum_{i=1}^{N} [d(z_i, \pi(P_m)) - d(z_i, \pi(P_u)) + \delta]^+
\]

Equation 2:
\[
P_u = \arg \min_{P_k \in P \setminus P_m} (d(z_i, \pi(P_k)))
\]
Ablation

• Each component

Components	(a)	(b)	(c)	(d)	(e)	(f)
PM High-Quality	✓	✓	✓	✓	✓	✓
PM Diversity	✓	✓	✓	✓	✓	✓
EO Point-to-Set		✓	✓	✓		✓
AUROC	80.3	78.1	81.6	80.2	81.9	83.1

• Both high quality and diversity matters for prototypes.
• Point-to-set distance helps learning better embedding space.
Ablation

• Each component

Components	(a)	(b)	(c)	(d)	(e)	(f)
PM High-Quality	✓	✓	✓	✓	✓	✓
Diversity	✓	✓	✓	✓	✓	✓
EO Point-to-Set	✓	✓	✓	✓	✓	✓
AUROC	80.3	78.1	81.6	80.2	81.9	**83.1**

• Both high quality and diversity matters for prototypes.
• Point-to-set distance helps learning better embedding space.
Ablation

- Replace components in PM with existed strategies

Table 4: Comparisons with other methods on the quality and diversity property.

Method	ACC	AUROC
Probability	81.9	79.3
(b)Deep Ensembles	82.3	80.5
(c)MC-dropout	81.6	78.8
(a)Randomization	81.5	79.1
(b)Clustering	81.8	79.6
Ours	**84.7**	**83.1**
Visualization

- High quality
Visualization

- Diversity

✓ Multifarious prototypes
Visualization

- Embedding space

Each color denotes different classes and ‘gray’ denotes unknowns.

- On simple MNIST, all prototype-based methods performs satisfying.
- On more complex TinyImageNet, PMAL performs much better.
Performance

- Mainstream small-scale benchmarks

Table 1: Close set ACC and Open set AUROC on small datasets. ‘*’ denotes implemented results and ‘C’ is short for ‘CIFAR’.

Methods	Close set ACC		Open set AUROC											
	MNIST	SVHN	C10	C+10	C+50	TINY	MNIST	SVHN	C10	C+10	C+50	TINY		
SoftMax	99.5	94.7	80.1	-	-	-	97.8	88.6	67.7	81.6	80.5	57.7		
CPN (Yang et al.)	99.7	96.7	92.9	94.8*	95.0*	81.4*	99.0	92.6	82.8	88.1	87.9	63.9		
PROSER (Zhou, Ye, and Zhan)	-	96.5	92.8	-	-	52.1	94.3	-	89.1	96.0	95.3	69.3		
CGDL (Sun et al.)	99.6	94.2	91.2	-	-	-	99.4	93.5	90.3	95.9	95.0	76.2		
OpenHybrid (Zhang et al.)	94.7	92.9	86.8	-	-	-	99.5	94.7	95.0	96.2	95.5	79.3		
RPL-OSRCI (Chen et al.)	99.5*	95.3*	94.3*	94.6*	94.7*	81.3*	99.3	95.1	86.1	85.6	85.0	70.2		
ARPL (Chen et al.)	99.5	94.3	87.9	94.7	92.9	65.9	99.7	96.7	91.0	97.1	95.1	78.2		
RPL-WRN (Chen et al.)	99.6*	95.8*	95.1*	95.5*	95.9*	81.7*	99.6	96.8	90.1	97.6	96.8	80.9		
PMAL-OSRCI	99.6	96.5	96.3	96.4	96.9	84.4	99.5	96.3	94.6	96.0	94.3	81.8		
PMAL-WRN	**99.8**	**97.1**	**97.5**	**97.8**	**98.1**	**84.7**	**99.7**	**97.0**	**95.1**	**97.8**	**96.9**	**83.1**		
Performance

- Mainstream small-scale benchmarks

Table 1: Close set ACC and Open set AUROC on small datasets. ‘*’ denotes implemented results and ‘C’ is short for ‘CIFAR’.

| Methods | MNIST | SVHN | C10 | C+10 | C+50 | TINY | MNIST | SVHN | C10 | C+10 | C+50 | TINY |
|---------|-------|------|-----|------|------|------|-------|------|-----|------|------|------|-------|
| SoftMax | 99.5 | 94.7 | 80.1| - | - | - | 97.8 | 88.6 | 67.7| 81.6 | 80.5 | 57.7 |
| CPN (Yang et al.) | 99.7 | 96.7 | 92.9| 94.8*| 95.0*| 81.4*| 99.0 | 92.6 | 82.8| 88.1 | 87.9 | 63.9 |
| PROSER (Zhou, Ye, and Zhan) | - | 96.5 | 92.8| - | - | 52.1 | 94.3 | - | 89.1| 96.0 | 95.3 | 69.3 |
| CGDL (Sun et al.) | 99.6 | 94.2 | 91.2| - | - | - | 99.4 | 93.5 | 90.3| 95.9 | 95.0 | 76.2 |
| OpenHybrid (Zhang et al.) | 94.7 | 92.9 | 86.8| - | - | - | 99.5 | 94.7 | 95.0| 96.2 | 95.5 | 79.3 |
| RPL-OSCR (Chen et al.) | 99.5* | 95.3*| 94.3*| 94.6*| 94.7*| 81.3*| 99.3 | 95.1 | 86.1| 85.6 | 85.0 | 70.2 |
| ARPL (Chen et al.) | 99.5 | 94.3 | 87.9| 94.7 | 92.9 | 65.9 | 99.7 | 96.7 | 91.0| 97.1 | 95.1 | 78.2 |
| RPL-WRN (Chen et al.) | 99.6* | 95.8*| 95.1*| 95.5*| 95.9*| 81.7*| 99.6 | 96.8 | 90.1| 97.6 | 96.8 | 80.9 |
| PMAL-OSCR | 99.6 | 96.5 | 96.3| 96.4 | 96.9 | 84.4 | 99.5 | 96.3 | 94.6| 96.0 | 94.3 | 81.8 |
| PMAL-WRN | **99.8** | **97.1** | **97.5** | **97.8** | **98.1** | **84.7** | **99.7** | **97.0** | **95.1** | **97.8** | **96.9** | **83.1** |
Performance

- More large-scale benchmarks

Table 2: Comparisons on 3 large-scale datasets. We denote ‘ImageNet’ as ‘IN’ for simplicity.

Method	Close Set ACC			Open Set AUROC			Additional Params		
	IN-LT	IN-100	IN-200	IN-LT	IN-100	IN-200	IN-LT	IN-100	IN-200
Softmax	37.8	81.7	79.7	53.3	79.7	78.4	0	0	0
CPN	37.1	86.1	82.1	54.5	82.3	79.5	2M	0.2M	0.4M
RPL	39.0	81.8*	80.7*	55.1	81.2*	80.2*	2M	0.2M	0.4M
RPL++	39.7	-	-	55.2	-	-	4M	-	-
PMAL	**42.9**	**86.2**	**84.1**	**71.7**	**94.9**	**93.9**	0	0	0

✓ More obvious advantages on complicated scenarios
PMAL: Open Set Recognition via Robust Prototype Mining

Contact E-mail: lujing6@hikvision.com Jing Lu

Our Team Homepage: https://davar-lab.github.io/