Quantum dynamics in a time-dependent hard-wall spherical trap

S. V. Mousavi(a)

Department of Physics, The University of Qom - P. O. Box 37165, Qom, Iran

received 10 June 2012; accepted in final form 12 July 2012
published online 7 August 2012

PACS 03.75.-b – Matter waves
PACS 03.65.-w – Quantum mechanics
PACS 03.75.Dg – Atom and neutron interferometry

Abstract – Exact solution of the Schrödinger equation is given for a particle inside a hard sphere whose wall is moving with a constant velocity. Numerical computations are presented for both contracting and expanding spheres. The propagator is constructed and compared with the propagator of a particle in an infinite square well with one wall in uniform motion.

Exact solution. – Consider a particle with mass μ inside a hard sphere with a time-dependent radius $L(t)$. The potential energy function is zero if $r < L(t)$ and infinity otherwise. The Schrödinger equation is then

$$i\hbar \frac{\partial}{\partial t} \Psi(r,t) = -\frac{\hbar^2}{2\mu} \nabla^2 \Psi(r,t),$$

with the boundary condition $\Psi(r,t)|_{r=L(t)} = 0$.

The instantaneous energy eigenfunctions and eigenvalues are, respectively,

$$u_{lnm}(r,t) = \sqrt{\frac{2}{L^3(t)}} \frac{1}{|j_{l+1}(x_{ln})|} j_l \left(\frac{x_{ln} r}{L(t)} \right) Y_{lm}(\theta,\phi),$$

$$E_{ln}(t) = \frac{\hbar^2 x_{ln}^2}{2\mu L^2(t)},$$

for $l = 0, 1, 2, \ldots; n = 1, 2, 3, \ldots$ and $m = -l, -l+1, \ldots, l-1, l$, where $j_l(x)$ and $Y_{lm}(\theta,\phi)$ are, respectively, spherical Bessel functions and harmonics. x_{ln} is the n-th zero of the spherical Bessel function of order l, i.e., $j_l(x_{ln}) = 0$. It must be noted that all Bessel functions with $l \neq 0$ have a zero at the origin, but to have a non-zero wave function these zeros must be excluded.

Using the method of “separation of variables” for solving the partial differential equation (1), we propose the solution

$$\Psi(r,t) = \frac{U(r,t)}{r} Y_{lm}(\theta,\phi),$$

where we have used the spherical symmetry of the Hamiltonian.
Putting eq. (4) into eq. (1) one gets
\[i\hbar \frac{1}{r} \frac{\partial U(r,t)}{\partial t} = \frac{\hbar^2}{2\mu} \left[\frac{\partial^2 U(r,t)}{r \partial r^2} - \frac{l(l+1)}{r^2} U(r,t) \right]. \tag{5} \]

The radial part of the proposed wave function, \(R(r,t) = U(r,t)/r \), must be zero on the shell, thus the boundary conditions on \(U(r,t) \) are \(U(r,t)|_{r=0} = 0 = U(r,t)|_{r=L(t)} \).

Now, we follow [2] to solve the eq. (5). By defining a new coordinate
\[s = \frac{r}{L(t)}, \tag{6} \]
we get
\[i\hbar \frac{\partial U(s,t)}{\partial t} = i\hbar \frac{\partial }{ \partial s } U(s,t) - \frac{\hbar^2}{2\mu} \frac{1}{L^2(t)} \frac{\partial^2 U(s,t)}{\partial s^2} - \frac{l(l+1)}{s^2} U(s,t), \tag{7} \]
where \(L(t) = \frac{dL(t)}{dt} \) and moving boundary conditions are replaced by fixed-boundary ones; \(U(s,t)|_{s=0} = 0 = U(s,t)|_{s=1} \). When the transformation
\[U(s,t) = \sqrt{\frac{2}{L(t)}} \exp \left[\frac{i\mu}{2\hbar} L(t) \frac{s^2}{2} \right] \phi(s,t), \tag{8} \]
is introduced in eq. (7), one obtains
\[i\hbar \frac{\partial \phi(s,t)}{\partial t} = -\frac{\hbar^2}{2\mu} \frac{1}{L^2(t)} \frac{\partial^2 \phi(s,t)}{\partial s^2} - \frac{l(l+1)}{s^2} \phi(s,t), \tag{9} \]
for the uniform motion of the wall, \(\tilde{L}(t) = 0 \). Boundary conditions on \(\phi(s,t) \) are \(\phi(s,t)|_{s=0} = 0 = \phi(s,t)|_{s=1} \). Defining the new time variable \(\tau \) as
\[\tau(t) = \int_0^t \frac{dt'}{L(t')} \Rightarrow \frac{\partial }{ \partial \tau } = \frac{1}{L(t)} \frac{\partial }{ \partial t }, \tag{10} \]
eq (9) transforms to
\[i\hbar \frac{\partial \phi(s,\tau)}{\partial \tau} = -\frac{\hbar^2}{2\mu} \left[\frac{\partial^2 \phi(s,\tau)}{\partial s^2} - \frac{l(l+1)}{s^2} \phi(s,\tau) \right]. \tag{11} \]
Inserting \(\phi(s,\tau) = \exp(-iE'\tau/\hbar)\psi(s) \) in (11), one gets
\[E'\psi(s) = -\frac{\hbar^2}{2\mu} \left[\frac{\partial^2 \psi(s)}{\partial s^2} - \frac{l(l+1)}{s^2} \psi(s) \right]. \tag{12} \]
By introducing new variable \(k^2 = 2\mu E'/\hbar^2 \), we obtain
\[\frac{\partial^2 \psi(s)}{\partial s^2} + \left(k^2 - \frac{l(l+1)}{s^2} \right) \psi(s) = 0. \tag{13} \]
The solutions of this equation are the spherical Bessel functions
\[\psi(s) = s[c_1 j_l(ks) + c_2 n_l(ks)]. \tag{14} \]
If the radial wave function \(R(r) \) is finite at the origin, \(c_2 = 0 \). The requirement that \(\psi(s) = 0 \) at \(s = 1 \) means that \(k \) can take on only those special values
\[k_n = x_n \quad (n = 1, 2, 3, \ldots). \tag{15} \]
For the uniform change of the radius with velocity \(u \)
\[L(t) = a + ut, \tag{16} \]
where \(a \) is the initial radius, one has
\[\tau(t) = \frac{t}{a(a + ut)}. \tag{17} \]
By using eqs. (17), (16), (15), (8) and (6) one obtains
\[R_{ln}(r,t) = c_1 \sqrt{\frac{2}{L(t)}} \exp \left[\frac{i\mu}{2\hbar} \frac{r^2}{L(t)} - \frac{i}{2\mu} \frac{\hbar^2}{aL(t)} \right] \times j_l \left(x_n \frac{r}{L(t)} \right), \tag{18} \]
for the radial part of the wave function. Unknown coefficient \(c_1 \) is determined by the normalization condition
\[\int_0^{L(t)} dr \int d\Omega |\Psi_{lnm}(r,t)|^2 = 1, \tag{19} \]
where
\[\Psi_{lnm}(r,t) = R_{ln}(r,t)Y_{lm}(\theta, \phi). \tag{20} \]
are the solutions of the Schrödinger equation (1) for a particle in a spherical box with a wall in uniform motion and
\[\int d\Omega = \int_{-1}^1 d(cos \theta) \int_0^{2\pi} d\phi. \]
Using the orthogonality of the spherical Bessel functions [11]
\[\int_0^1 ds \, s^2 j_l(xlns) j_l(xlns) = \frac{1}{2} [j_{l+1}(xln)]^2 \delta_{nm}, \tag{21} \]
one obtains
\[|c_1|^2 = \frac{1}{L(t)} \frac{1}{[j_{l+1}(xln)]^2}. \tag{22} \]
Thus, apart from a phase factor, one obtains
\[\Psi_{lnm}(r,t) = \frac{1}{L(t)} \sqrt{\frac{2}{L(t)}} \frac{1}{[j_{l+1}(xln)]} \]
\[\times \exp \left[\frac{i\mu}{2\hbar} \frac{r^2}{L(t)} - \frac{i}{2\mu} \frac{\hbar^2}{aL(t)} \right] \]
\[\times j_l \left(x_n \frac{r}{L(t)} \right) Y_{lm}(\theta, \phi) \equiv \exp \left[i\alpha \xi(t) \left(\frac{r}{L(t)} \right)^2 - i\frac{\hbar^2}{aL(t)} \frac{1-1}{4\alpha} \right] \]
\[\times u_{lnm}(r,t), \tag{23} \]
where we have introduced new dimensionless parameters \(\alpha = \mu au/(2\hbar) \) and \(\xi(t) = L(t)/a \).
Functions $\Psi_{lnm}(r, t)$ vanish at $r = L(t)$, remain normalized as the radius changes, and form a complete orthogonal set. The general solution of eq. (1) is a superposition of functions (23),

$$\Psi(r, t) = \sum_{l' = 0}^{\infty} \sum_{n' = 1}^{\infty} \sum_{m' = -l'}^{l'} c_{l'n'm'}(r, t) \Psi_{l'n'm'}(r, t),$$ \tag{24}$$

with time-independent coefficients $c_{l'n'm'}$ determined from the relation

$$c_{l'n'm'} = \int_0^a dr r^2 \int d\Omega \Psi_{l'n'm'}^*(r, 0) \Psi(r, 0).$$ \tag{25}$$

The general solution can also be expanded in terms of instantaneous eigenfunctions as

$$\Psi(r, t) = \sum_{l' = 0}^{\infty} \sum_{n' = 1}^{\infty} \sum_{m' = -l'}^{l'} b_{l'n'm'}(t) u_{l'n'm'}(r, t),$$ \tag{26}$$

now with time-dependent coefficients $b_{l'n'm'}(t)$ determined from the relation

$$b_{l'n'm'}(t) = \int_0^{L(t)} dr r^2 \int d\Omega u_{l'n'm'}^*(r, t) \Psi(r, t).$$ \tag{27}$$

Using eqs. (27) and (24) and the orthogonality of the spherical harmonics, one finds

$$b_{l'n'm'}(t) = \frac{2}{[j_{l' + 1}]^2} \sum_{n'' = 1}^{\infty} c_{l'n'm'} \frac{1}{[j_{l' + 1}]} \exp \left[-i\xi^2 \frac{1 - 1/n}{4a} \right] I_{l'n'm'}(t, \alpha),$$ \tag{28}$$

where

$$I_{l'n'm'}(t, \alpha) = \int_0^1 ds s^{2} e^{-i\alpha \xi s} j_{l'}(x_{l'n'm'} s) j_{l'}(x_{l'n'm'} s).$$ \tag{29}$$

This integral is not elementary and following the procedure of [8], can be reduced to a combination of terms involving the Fresnel integrals and the derivative of the Legendre polynomials.

The expectation value of the energy of the particle is obtained from

$$\langle E(t) \rangle = \sum_{l'n'm'} |b_{l'n'm'}|^2 E_{l'n'm'}(t).$$ \tag{30}$$

If the particle is initially in an energy eigenstate, i.e., $\Psi(r, 0) = u_{l'm'}(r, 0)$, then

$$c_{l'n'm'} = \delta_{l'l} \delta_{m'm'} \frac{2}{[j_{l'+1}]} \frac{1}{[j_{l'+1}]} I_{lm}(0, \alpha),$$ \tag{31}$$

which is not an unexpected result as the quantum numbers l and m do not change.

Fig. 1: (Color online) Transition probabilities vs. $\xi(t)$ for different values of the velocity parameter α: (a) $\alpha = -2$; (b) $\alpha = -4$; (c) $\alpha = -6$ and (d) $\alpha = -10$. In each part the black curve shows $|b_{111m}|^2$, the red one $|b_{122m}|^2$, the green one $|b_{133m}|^2$ and the blue one $|b_{144m}|^2$.

Fig. 2: (Color online) Ratio of the energy expectation value to the instantaneous first excited energy as a function of $\xi(t)$ for three different values of the velocity parameter.

Numerical calculations. – Numerical computations are shown in figs. 1 and 2 for a particle that is initially in the first excited state with threefold degeneracy. In this case we have

$$\frac{\langle E(t) \rangle}{E_{11m}(t)} = \sum_{n'} |b_{1n'm'}|^2 \left(\frac{x_{1n'}}{x_{11}} \right)^2,$$ \tag{32}$$

for the ratio of energy expectation value to the instantaneous first excited state energy.

Figure 1 shows the squares of energy eigenfunction expansion coefficients vs. $\xi(t)$ for three different contraction rates α. For these values of α, it was found that series (28) converges for the first ten terms.

Figure 2 shows the ratio of the expectation value of the energy to the energy the particle would have if it remained in the first excited state u_{11m} for the sphere in contraction. Here fifteen terms in eq. (32) lead to convergency.

We have plotted the dimensionless radial probability density $p_{lnm}(\eta \bar{t}, T_{ln}) = \lambda_{lnm} \eta^2 [R(\eta, T_{ln})/2]^{2}$ in fig. 3 for a particle initially in the state u_{l000}, vs. the dimensionless position coordinate $\eta_{ln} = r/\lambda_{ln}$ at the dimensionless
where the dimensionless position coordinate \(\eta_n \) at the time coordinate \(T_{ln} \), for six different values of the expansion rate; \(\alpha = 0 \) (black curve), \(\alpha = 0.01\alpha_n \) (red curve), \(\alpha = \alpha_n \) (green curve), \(\alpha = 10\alpha_n \) (blue curve), \(\alpha = 15\alpha_n \) (yellow curve) and \(\alpha = 20\alpha_n \) (magenta curve); where \(\alpha_n = x_{ln}/2 \).

Propagator. – One can construct the propagator as follows:

\[
|\Psi(t)\rangle = S(t,t_0)|\Psi(t_0)\rangle
= \sum_{ln} \sum_{l'n'm'} |\Psi_{lnm}(t)\rangle \langle \Psi_{lnm}(t)|S(t,t_0)|\Psi_{l'n'm'}(t_0)\rangle \\
\times \langle \Psi_{l'n'm'}(t_0)|\Psi(t_0)\rangle
= \sum_{ln} |\Psi_{lnm}(t)\rangle \langle \Psi_{lnm}(t_0)|\Psi(t_0)\rangle,
\]

where \(S(t,t_0) \) is the time evolution operator and we have used the fact that if the particle is in the state \(|\Psi_{lnm}(t_0)\rangle\) at \(t_0 \), it remains in that state as the wall moves, i.e., \(S(t,t_0)|\Psi_{lnm}(t_0)\rangle = |\Psi_{lnm}(t)\rangle \). Now, we write this equation in the form

\[
\Psi(r,t) = \int_0^a \int_0^\pi d\phi d^2t' \int d\Omega K(r,t; x', t') \Psi(r', \theta', \phi', t'),
\]

where we have introduced the propagator as

\[
K(r,t; x', t') = \sum_{l=0}^\infty \sum_{n=1}^\infty \sum_{m=-l}^l \Psi_{lnm}(r,t)\Psi^*_{lnm}(r', t')
= \frac{2}{L^{3/2}(t)L^{3/2}(t')} \sum_{lm} \frac{1}{|j_{l+1}(x_{ln})|^2}
\times \exp \left[\frac{ip\mu \alpha}{2\hbar} \left(\frac{r^2}{L(t)} - \frac{r'^2}{L(t')} \right) \right]
\times \exp \left[-i\hbar \frac{x_{ln}}{2\mu \alpha} \left(\frac{t}{L(t)} - \frac{t'}{L(t')} \right) \right]
\times j_l \left(x_{ln} \frac{r}{L(t)} \right) j_l \left(x_{ln} \frac{r'}{L(t')} \right)
\times Y_{lnm}(\theta, \phi) Y^*_{lnm}(\theta', \phi').
\]

One can see that when \(l = 0 \), eq. (7) reduces to eq. (4) of [2], i.e., \(l = 0 \) corresponds to a particle in a 1D box with the left wall at \(x = 0 \) and the right wall in uniform motion. In order to have the relation

\[
\Psi(x,t) = \int_0^a K_{1D}(x,t; x', 0)\Psi(x', 0)dx',
\]

in 1D, we must write the 1D propagator as

\[
K_{1D}(x,t; x', t') = \frac{r'^2}{4\pi} K(r,t; x', t')
\equiv \sum_{n=1}^\infty \frac{U_{ln}(r) U^*_{ln}(r')}{\sqrt{4\pi}}
\times \sqrt{4\pi}.
\]
By preserving just the terms with $l = 0$, eq. (34) becomes

$$K(r, t; r', t') = \frac{2}{L^{3/2}(t)L^{3/2}(t')} \sum_{n=1}^{\infty} \frac{1}{|j_1(x_{0n})|^2} \times \exp \left[\frac{i\mu u}{2\hbar} \left(r^2 - L(t) - r'^2 - L(t') \right) \right] \times \exp \left[\frac{-ih}{2\mu a} \left(\frac{t}{L(t)} - \frac{t'}{L(t')} \right) \right] \times j_0 \left(x_{0n} \frac{r}{L(t)} \right) j_0 \left(x_{0n} \frac{r'}{L(t')} \right) \times \frac{1}{\sqrt{4\pi}} \frac{1}{\sqrt{4\pi}},$$ (37)

where we have used $Y_0 = 1/\sqrt{4\pi}$. The first two Bessel functions are

$$j_0(x) = \frac{\sin x}{x}, \quad j_1(x) = \frac{\sin x}{x^2} - \cos x,$$ (38)

thus $x_{0n} = n\pi$ and $j_1(x_{0n}) = (-1)^{n+1}/n\pi$. Using these in eq. (37), we find

$$K(r, t; r', t') = \frac{1}{4\pi rr'} \frac{2}{\sqrt{L(t)L(t')}} \times \exp \left[\frac{i\mu u}{2\hbar} \left(r^2 - L(t) - r'^2 - L(t') \right) \right] \times \sum_{n=1}^{\infty} \exp \left[\frac{ih}{2\mu a} \left(\frac{1}{L(t)} - \frac{1}{L(t')} \right) \right] \times \sin \left(n\pi \frac{r}{L(t)} \right) \sin \left(n\pi \frac{r'}{L(t')} \right).$$ (39)

Now from eq. (36) we obtain

$$K_{1D}(x, t; x', t') = \frac{2}{\sqrt{L(t)L(t')}} \times \exp \left[\frac{i\mu u}{2\hbar} \left(\frac{x^2}{L(t)} - \frac{x'^2}{L(t')} \right) \right] \times \sum_{n=1}^{\infty} \exp \left[\frac{ih}{2\mu u} \left(\frac{1}{L(t)} - \frac{1}{L(t')} \right) \right] \times \sin \left(n\pi \frac{x}{L(t)} \right) \sin \left(n\pi \frac{x'}{L(t')} \right),$$ (40)

which is exactly eq. (32) of ref. [9] for the propagator of a particle in a 1D box. This equation can be written in a compact form as a combination of ϑ_3 functions [10].

Summary and discussion. – In this letter we found solutions of the Schrödinger equation for a particle confined in a hard spherical trap with a wall moving at constant velocity. We see that in solutions (23), except for the phase factor $\exp(-i \int dt E_{inn}(t)/\hbar)$ which has no coordinate dependence, a coordinate-dependent phase $\exp[\frac{ih}{2\mu u} \frac{1}{2\pi}]$ appears. It has been shown that this factor leads to an effective quantum non-local interaction with the boundary: even though the particle is nowhere near the walls, it will be affected [1,12].

From fig. 1, one can see that as the velocity of the wall increases, larger amounts of energy states other than the initial one, i.e., u_{11m}, are mixed in. Figure 2 shows that for rapid contraction, the energy expectation value increases faster than the $1/L^2(t)$ increase which would be obtained in a quasi-static contraction. These results are in agreement with the ones of ref. [3] obtained for a particle in an infinite square well with one wall in uniform motion. Confinement of the particle to a smaller region leads to the enhancement of the energy expectation value. This can be explained by an application of the “old quantum theory” [13] or by uncertainty relations [14].

In the process of expansion, there are two characteristic times involved: t_e, over which the parameters of the system change appreciably, and t_i, representing the motion of the system itself. In our calculations, $t_e = a/u$ and $t_i = a/v_{in}$. Figure 3 shows that for $t_e \gg t_i$ ($u \ll v_{in}$), the particle, initially in the state $u_{0,0,0}$, will end up in the corresponding state of the expanded well. This process characterizes an adiabatic one for which external conditions change gradually [15], while, in the opposite limit, rapidly changing conditions prevent the system from adapting its configuration during the process, hence the probability density remains almost unchanged.

Looking at fig. 4, one can see a quasi-classical behavior in the high-energy limit [16] as the velocity of the wall increases. A non-monotonous increasing behavior of the density is seen for $T < T_1$ only when $u > v_{in}$, while for $T > T_2$ a non-monotonous decreasing behavior is seen irrespectively of the wall velocity. These results are in contrast to classical mechanics. The height of the first maximums decreases with u. The constructive interference with the reflected components from the wall for $u < v_{in}$ leads to this enhancement. The long-time behavior of the density in a given observation point, is the same for all values of the wall velocity, which is not an unexpected result considering the behavior of functions Ψ_{inn} at long times.

The propagator of the problem was derived using the spectral decomposition.

The author would like to acknowledge two anonymous referees for valuable comments on an earlier draft of the paper. Financial support from the University of Qom is gratefully acknowledged.
REFERENCES

[1] Makowski A. J., J. Phys. A: Math. Gen., 25 (1992) 3419.
[2] Makowski A. J. and Dembinski S. T., Phys. Lett. A, 154 (1991) 217.
[3] Doescher S. W. and Rice M. H., Am. J. Phys., 37 (1969) 1246.
[4] del Campo A., García-Calderón G. and Muga J. G., Phys. Rep., 476 (2009) 1.
[5] Moshinsky M., Phys. Rev., 88 (1952) 625.
[6] del Campo A., Muga J. G. and Kleber M., Phys. Rev. A, 77 (2008) 013608.
[7] Godoy S., Phys. Rev. A, 65 (2002) 42111; del Campo A. and Muga J. G., Europhys. Lett., 74 (2006) 965; Mousavi S. V., J. Phys. A: Math. Theor., 43 (2010) 035304.
[8] Godoy S., Phys. Rev. A, 67 (2003) 012102.
[9] da Luz M. G. E. and Cheng B. K., J. Phys. A: Math. Gen., 25 (1992) L1043.
[10] Grosche Ch., Phys. Lett. A, 182 (1993) 28.
[11] Arfken G. B. and Weber H. J., Mathematical Methods for Physicists (Elsevier Academic Press) 2005.
[12] Dodonov V. V. and Andrea M. A., Phys. Lett. A, 275 (2000) 173; Greenberger D. M., Physica B, 151 (1988) 374; Mousavi S. V., arXiv:1111.3962v3, preprint (2011).
[13] Pinder D. N., Am. J. Phys., 58 (1989) 54.
[14] Wilhelm H. E., J. Phys. A: Math. Gen., 16 (1983) 2149.
[15] Griffiths D. J., Introduction to Quantum Mechanics (Prentice Hall, NJ) 1994.
[16] Godoy S., Physica B, 390 (2007) 112.