NUMERICAL EVALUATION OF COHERENT-STATE PATH INTEGRALS WITH APPLICATIONS TO TIME-DEPENDENT PROBLEMS

BERND BURGHARDT AND JOACHIM STOLZE

Institut für Physik, Universität Dortmund, D-44221 Dortmund, Germany,
E-mail: Burghard@cip.physik.uni-dortmund.de

We study the application of the coherent-state path integral as a numerical tool for wave-packet propagation. The numerical evaluation of path integrals is reduced to a matrix-vector multiplication scheme. Together with a split-operator technique we apply our method to a time-dependent double-well potential.

1 Introduction and Definitions

Throughout this paper, we will consider a standard Hamiltonian

\[\hat{H} = \hat{T} + \hat{V} = \frac{\hat{P}^2}{2m} + V(\hat{Q}) \] (1)

for a system with one degree of freedom, described by the momentum operator \(\hat{P} \) and the position operator \(\hat{Q} \).

A coherent state \(|\alpha\rangle \) may be defined by means of harmonic oscillator creation and annihilation operators \(\hat{a}^\dagger \) and \(\hat{a} \), respectively,

\[\hat{a} := \frac{1}{\sqrt{2\hbar}}(\sqrt{m\omega_0} \hat{Q} + i \frac{1}{\sqrt{m\omega_0}} \hat{P}), \] (2)

through

\[|\alpha\rangle := \exp(\alpha \hat{a}^\dagger - \alpha^* \hat{a}) |0\rangle, \quad \alpha \in \mathbb{C}, \] (3)

where \(|0\rangle \) is the normalised ground state of the harmonic oscillator \(\hat{H}_0 = \hbar \omega_0 (\hat{a}^\dagger \hat{a} + 1/2) \), and the exponential is a displacement operator. (Note that the frequency \(\omega_0 \), and hence the characteristic length scale \((\hbar/m\omega_0)^{-1/2} \), is completely arbitrary and can be used as an adjustable parameter.)

The time evolution of a coherent state under \(H_0 \) is simple:

\[e^{-i\hat{H}_0 t} |\alpha\rangle = e^{-\frac{i\omega_0 t}{2}} |\alpha e^{-i\omega_0 t}\rangle. \] (4)

For an operator \(\hat{A} \) we define the antinormal symbol \(A_- (\alpha) \) implicitly by the relation \((d^2 \alpha := d \text{Re} \alpha d \text{Im} \alpha) \)

\[\hat{A} = \int \frac{d^2 \alpha}{\pi} |\alpha\rangle \langle \alpha| A_- (\alpha) \]. \] (5)
By virtue of the generalised Trotter formula
\[
\lim_{N \to \infty} \left(\hat{F}(t/N) \right)^N = e^{-it\hat{H}/\hbar},
\]
where \(\hat{F}(t) \) is any operator-valued function with the two properties
\[
\begin{align*}
\hat{F}(t = 0) &= \mathbb{I} \\
\hat{F}(t = 0) := \lim_{t \to 0^+} \frac{1}{t} \left(\hat{F}(t) - \mathbb{I} \right) &= -i \hat{H}/\hbar
\end{align*}
\]
we are able to define the antinormal coherent-state path integral (ACSPI).

However, to exploit the trivial time development of a coherent state under a harmonic oscillator (eq. 4), we consider \(\hat{F} \) of a generalised split-operator type:
\[
\hat{F}(t) := e^{-i\frac{1}{2\hbar}H_0} \hat{G}(t) e^{-i\frac{1}{2\hbar}H_0}
\]
with an operator \(\hat{G} \) such that (7) holds. We represent \(\hat{G} \) by eq. (5) and define the ACSPI
\[
\langle \alpha | e^{-it\hat{H}/\hbar} | \alpha' \rangle := e^{-i\omega_0 t/2}
\]
\[
\lim_{N \to \infty} \int \frac{d^2\alpha_1}{\pi} \cdots \frac{d^2\alpha_N}{\pi} \prod_{\nu=0}^{N} \langle \alpha_\nu e^{+i\omega_0 t/2} | \alpha_{\nu+1} e^{-i\omega_0 t/2} \rangle \prod_{\nu=1}^{N} G_- (\alpha_\nu; t/N)
\]
\[
\alpha \equiv \alpha_0 e^{+i\omega_0 t/2}, \alpha' \equiv \alpha_{N+1} e^{-i\omega_0 t/2}.
\]
Here we use
\[
\hat{G}(t) := \sum_{n=0}^{K} \frac{(-it)^n}{n!} (\hat{H}_1/\hbar)^n
\]
where \(\hat{H}_1 = V(\hat{Q}) - \frac{m\omega_0^2}{2} \hat{Q}^2 \) is the anharmonic part of the Hamiltonian \(\hat{H} \) and \(K \in \{4, 5, \ldots, 10\} \).

An analogous normal coherent-state path integral may also be defined but will not be considered here.

2 Numerical evaluation

For numerical evaluation of the ACSPI (eq. 9) we have to stop at a finite (Trotter-)number \(N \) of integrations and we perform each integration by a quadrature formula
\[
\int \frac{d^2\alpha}{\pi} f(\alpha) \approx \sum_j w_j f(\alpha_j)
\]
Figure 1. The Q-expectation value as a function of time for a particle in the potential of equation (15) is shown. In absence of an external field ($S = 0$) the particle is tunneling through the barrier due to nearly degenerate energy eigenvalues. The destruction of tunneling for $S \neq 0$ is due to degenerate quasi-energies in the Floquet picture.

with fixed sets of abscissas α_j and weights $w_j > 0$, and defining a matrix $P(t/N)$ and a vector v by their elements

$$P_{ij} = \sqrt{w_i w_j} e^{-i \frac{\bar{\hbar}}{\hbar} \langle \alpha_i e^{+i \frac{\bar{\hbar}}{\hbar}} | \alpha_j \rangle} \left[\langle \alpha_i e^{+i \frac{\bar{\hbar}}{\hbar}} | \psi \rangle - \langle \alpha_i e^{+i \frac{\bar{\hbar}}{\hbar}} | H(t/N) | \psi \rangle \right],$$

and

$$v_j := \sqrt{w_j} \langle \alpha_j | \psi \rangle,$$

the discretized version of a single time step propagation becomes a matrix-vector-multiplication

$$v'_i := \sqrt{w_i} \langle \alpha_i | e^{-i \frac{\bar{\hbar}}{\hbar} H(t/N)} | \psi \rangle \approx \sum_j P_{ij}(t/N) v_j.$$

The vector v' represents the wave packet propagated by the time t/N.

For time-dependent potentials we choose the time step small enough to treat the potential as time-independent during the time t/N.
3 Application to tunneling phenomena

We apply our method to a symmetric double well potential with an external time-periodic linear potential:

\[V(\tilde{Q}) = \frac{m\omega_0^2}{8Q_0^2} \left(\tilde{Q}^2 - Q_0^2 \right)^2 + S \sin(\omega t) \tilde{Q} \]

(15)

The time-independent case \((S = 0)\) shows the phenomena of tunneling (see fig. 1): A wave packet starting in one well moves through the barrier into the other well. However, Großmann et al. \(^3\) observed that application of a time-periodic linear potential with the right strength \(S\) and frequency \(\omega\) can localize the particle in one well.

In figure 1 we show the \(x\)-expectation value of the wave packet as a function of time. Without external field the particle needs about 2500 elementary (single well) oscillation periods to tunnel from one well to the other. However, application of a field with strength \(S = 0.0031\) and frequency \(\omega = 0.01\) suppresses the tunneling process. It is remarkable that this problem has three different time scales: The vibrational period \(T = 2\pi/\omega_0\) around one minimum, the period \(T = 200\pi/\omega_0\) of the driving force, and the tunneling period \(T \approx 2 \cdot 10^5/\omega_0\). This shows the capability of our method to give reliable results for problems with time scales ranging over several orders of magnitude.

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft through the Schwerpunktprogramm: Zeitabhängige Phänomene und Methoden in Quantensystemen der Physik und Chemie.

References

1. Paul R. Chernoff. Note on product formulas for operator semigroups. J. of Functional Analysis, 2:238–242, 1968.
2. B. Burghardt, J. Eicke, and J. Stolze. Evaluation of coherent-state path integrals in statistical mechanics by matrix multiplication. J. Chem. Phys., 108(4):1562–1569, 1998.
3. F. Grossmann, T. Dittrich, P. Jung, and P. Hänggi. Coherent destruction of tunneling. Phys. Rev. Lett., 67(4):516–519, 1991.