LETTERS TO THE EDITOR

Pancreatic cancer risk variant ABO rs505922 in patients with cholangiocarcinoma

Marcin Krawczyk, Florentina Mihalache, Aksana Höblinger, Monica Acalovschi, Frank Lammert, Vincent Zimmer

Marcin Krawczyk, Florentina Mihalache, Frank Lammert, Vincent Zimmer, Department of Medicine II, Saarland University Medical Center, 66421 Homburg, Germany
Florentina Mihalache, Monica Acalovschi, Department of Medicine III, University Iuliu Hatieganu, 400162 Cluj-Napoca, Romania
Aksana Höblinger, Department of Internal Medicine I, University Hospital Bonn, 53127 Bonn, Germany

Author contributions: Krawczyk M and Mihalache F contributed equally to this work; Mihalache F performed genotyping; Mihalache F, Höblinger A, Acalovschi M and European V included patients and controls in the study; Krawczyk M, Lammert F and Zimmer V analyzed the data; Zimmer V and FLammert F designed and supervised the project; Krawczyk M, Zimmer V and Lammert F wrote and edited the paper.

Correspondence to: Dr. Marcin Krawczyk, Department of Medicine II, Saarland University Medical Center, Kirrberger Str. 1, 66421 Homburg, Germany. marcin.krawczyk@uks.eu

Abstract

The aim of this study was to investigate an association between the development of cholangiocarcinoma (CCA) and the ABO variant rs505922 (known to increase pancreatic cancer risk) in a large cohort of European individuals with CCA. In total, 180 individuals with CCA and 350 CCA-free controls were included. The ABO variant rs505922 was genotyped using a polymerase chain reaction-based assay. Association between this single nucleotide polymorphism (SNP) and CCA was tested in contingency tables. Neither allele distributions nor association tests and regression analysis provided evidence for an increased risk of CCA among carriers of the ABO variant (all $P > 0.05$). Nevertheless, we documented a deviation from Hardy-Weinberg equilibrium in the entire CCA cohort ($P = 0.028$) and for patients with intrahepatic ($P = 0.037$) but not extrahepatic tumor localization ($P > 0.05$). The association tests did not provide evidence for a prominent role of the investigated SNP in the genetic risk of CCA. However, Hardy-Weinberg disequilibrium in the entire cohort and the intrahepatic CCA subgroup warrants future studies investigating a potential CCA risk modulation by individual blood groups.

Key words: ABO; Biliary tract cancer; Blood groups; Genetic risk; Single nucleotide polymorphism

Peer reviewers: Florencia Georgina Que, MD, Department of Surgery, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, United States

Krawczyk M, Mihalache F, Höblinger A, Acalovschi M, Lammert F, Zimmer V. Pancreatic cancer risk variant ABO rs505922 in patients with cholangiocarcinoma. World J Gastroenterol 2011; 17(41): 4640-4642 Available from: URL: http://www.wjgnet.com/1007-9327/full/v17/i41/4640.htm DOI: http://dx.doi.org/10.3748/wjg.v17.i41.4640

TO THE EDITOR

We were very interested to read the recent report by Greer et al[1], which further substantiates the association between an individual’s blood group and the risk of pancreatic cancer. In line with previous data, Greer et al[2] demonstrate that individuals with blood group O have a lower risk of pancreatic cancer relative to blood groups A or B. These serological data are consistent with results from a large genome-wide association study comprising 2457 patients with pancreatic cancer, whereby the common variant rs505922 (C $>$ T) in the ABO locus was identified as a genetic risk factor for this malignancy. Interestingly, the [TT] genotype, which proved to be protective against pancreatic malignancy, is in complete linkage disequilibrium

References:

1. Greer et al. J Clin Oncol 2010; 28(35): 5355-5360
2. Greer et al. Gastroenterology 2010; 139(6): 1866-1873
(\(r^2 = 1.0\)) with blood group O. Conversely, the [C] allele is present in individuals with blood groups A, B or AB.

Cholangiocarcinoma (CCA) albeit uncommon, represents the second most prevalent primary liver cancer, and is globally increasing in incidence\(^1\). As with pancreatic cancer, CCA is usually diagnosed in the late stages with locally advanced or metastatic disease, and is therefore characterized by poor prognosis. Hence, the identification of genetic variants contributing to CCA development is warranted, to further elucidate the pathobiological mechanisms modulating disease risk, and to assist with the development of novel screening strategies for detecting patients at risk of biliary malignancy. Many low-risk variants have been postulated to confer an increased risk for cancers, including CCA\(^3\). Indeed, our previous study demonstrated the genetic risk of CCA to be modulated by heterozygosity for the \(\alpha_1\)-antitrypsin Z allele\(^9\).

In the current study, we therefore specifically assessed the potential role of blood groups in CCA risk using a single nucleotide polymorphism (SNP)-based approach in a large European CCA cohort consisting of 180 individuals with CCA and 350 CCA-free controls. The details of this cohort are described in our previous study\(^5\).

Table 1 summarises the genotyping results. The frequency of [TT] individuals (known to carry blood group O) is consistent with the distributions reported in European populations (http://www.bloodbook.com/world-abo.html). As shown in Table 1, allele distributions did not differ significantly between cases and controls (\(P > 0.05\)). The association tests (common odds ratio (OR) = 1.01, \(P = 0.83\)) and regression analysis (OR for the [TT] variant = 1.11, \(P = 0.56\)) did not provide evidence for the involvement of the \(ABO\) variant in CCA. Similarly, subsequent exploratory data analysis stratifying cases according to gender and intra- vs extrahepatic tumour localisation yielded no significant association between \(rs505922\) and CCA (all \(P > 0.05\)). Interestingly, we detected a departure from Hardy-Weinberg equilibrium (HWE) was verified by exact tests (http://ihg2.helmholtz-muenchen.de/cgi-bin/hw/hwa1.pl). An association between the \(ABO\) variant and biliary cancer was tested in contingency tables (genotypes, Armitrage’s trend test; alleles, \(\chi^2\) test) and by regression analysis using SPSS software (version 18.0).

Table 1 summarises the genotyping results. The frequency of [TT] individuals (known to carry blood group O) is consistent with the distributions reported in European populations (http://www.bloodbook.com/world-abo.html). As shown in Table 1, allele distributions did not differ significantly between cases and controls (\(P > 0.05\)). The association tests (common odds ratio (OR) = 1.01, \(P = 0.83\)) and regression analysis (OR for the [TT] variant = 1.11, \(P = 0.56\)) did not provide evidence for the involvement of the \(ABO\) variant in CCA. Similarly, subsequent exploratory data analysis stratifying cases according to gender and intra- vs extrahepatic tumour localisation yielded no significant association between \(rs505922\) and CCA (all \(P > 0.05\)). Interestingly, we detected a departure from Hardy-Weinberg equilibrium (HWE) was verified by exact tests (http://ihg2.helmholtz-muenchen.de/cgi-bin/hw/hwa1.pl). An association between the \(ABO\) variant and biliary cancer was tested in contingency tables (genotypes, Armitrage’s trend test; alleles, \(\chi^2\) test) and by regression analysis using SPSS software (version 18.0).

Table 1 summarises the genotyping results. The frequency of [TT] individuals (known to carry blood group O) is consistent with the distributions reported in European populations (http://www.bloodbook.com/world-abo.html). As shown in Table 1, allele distributions did not differ significantly between cases and controls (\(P > 0.05\)). The association tests (common odds ratio (OR) = 1.01, \(P = 0.83\)) and regression analysis (OR for the [TT] variant = 1.11, \(P = 0.56\)) did not provide evidence for the involvement of the \(ABO\) variant in CCA. Similarly, subsequent exploratory data analysis stratifying cases according to gender and intra- vs extrahepatic tumour localisation yielded no significant association between \(rs505922\) and CCA (all \(P > 0.05\)). Interestingly, we detected a departure from Hardy-Weinberg equilibrium (HWE) was verified by exact tests (http://ihg2.helmholtz-muenchen.de/cgi-bin/hw/hwa1.pl). An association between the \(ABO\) variant and biliary cancer was tested in contingency tables (genotypes, Armitrage’s trend test; alleles, \(\chi^2\) test) and by regression analysis using SPSS software (version 18.0).

In conclusion, the blood group polymorphism investigated in this study does not appear to alter the general risk of developing CCA. Furthermore, due to the relatively small number of patients with intrahepatic CCA, departure from HWE should be interpreted with caution. Nevertheless, further dedicated studies exploring the possible functional role of \(ABO\) blood types in cholangiocarcinogenesis in selected groups of patients (i.e., with
intrahepatic CCA) may provide further insight into the pathobiological mechanisms that enhance the risk of this malignancy.

ACKNOWLEDGMENTS

The authors gratefully acknowledge Caroline S Stokes (Saarland University Hospital, Homburg) for her expertise and help during the preparation of this manuscript.

REFERENCES

1 Greer JB, Yazer MH, Raval JS, Barmada MM, Brand RE, Whitcomb DC. Significant association between ABO blood group and pancreatic cancer. World J Gastroenterol 2010; 16: 5588-5591

2 Amundadottir L, Kraft P, Stolzenberg-Solomon RZ, Fuchs CS, Petersen GM, Arslan AA, Bueno-de-Mesquita HB, Gross M, Helzlsouer K, Jacobs EJ, LaCroix A, Zheng W, Albanes D, Bamlet W, Berg CD, Berrino F, Bingham S, Buring JE, Bracci PM, Canzian F, Clavel-Chapelon F, Clipp S, Cotterchio M, de Andrade M, Duell EJ, Fox JW, Gallinger S, Gaziano JM, Giovannucci EL, Goggins M, González CA, Hallmans G, Hankinson SE, Hassan M, Holly EA, Hunter DJ, Hutchinson A, Jackson R, Jacobs KB, Jenab M, Kaaks R, Klein AP, Kooperberg C, Kurtz RC, Li D, Lynch SM, Mandelson M, McWilliams RR, Mendelsohn JB, Michaud DS, Olson SH, Overvad K, Patel AV, Peeters PH, Rajkovic A, Riboli E, Risch HA, Shu XO, Thomas G, Tobias GS, Trichopoulos D, Van Den Eeden SK, Wactawski-Wende J, Wolpin BM, Yu H, Yu K, Zeleniuch-Jacquotte A, Chanock SJ, Hartge P, Hoover RN. Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer. Nat Genet 2009; 41: 986-990

3 Blechacz BR, Gores GJ. Cholangiocarcinoma. Clin Liver Dis 2008; 12: 131-150, ix

4 Houlston RS, Peto J. The search for low-penetration cancer susceptibility alleles. Oncogene 2004; 23: 6471-6476

5 Mihalache F, Höblinger A, Grünhage F, Krawczyk M, Gärner BC, Acalovschi M, Sauerbruch T, Lammert F, Zimmer V. Heterozygosity for the alpha1-antitrypsin Z allele may confer genetic risk of cholangiocarcinoma. Aliment Pharmacol Ther 2011; 33: 389-394

6 Grover VK, Cole DE, Hamilton DC. Attributing Hardy-Weinberg disequilibrium to population stratification and genetic association in case-control studies. Ann Hum Genet 2010; 74: 77-87

7 Iodice S, Maisonneuve P, Botteri E, Sandri MT, Lowenfels AB. ABO blood group and cancer. Eur J Cancer 2010; 46: 3345-3350

S- Editor Sun H L- Editor Cant MR E- Editor Xiong L