Gap Analysis between ERP procedures and Construction procedures

F.S.T. Hewavitharana¹*, A.A.D.A.J. Perera¹

¹Department of Civil Engineering, University of Moratuwa, Bandaranayake Mawatha, Moratuwa 10400, Sri-Lanka

Abstract. Although Enterprise Resource Planning (ERP) offers many benefits to the construction industry, construction companies still hesitate to adopt ERP systems. This may be due to long-term practiced ad-hoc behaviors in the construction industry, which do not match with the standard procedures embedded in ERP systems. Therefore, through this research, it is expected to evaluate the gap between construction procedures and ERP procedures technically. Hence, to obtain indicative data for the study, a questionnaire was designed and distributed to selected 210 individuals among contractors, subcontractors, and clients in the Sri-Lankan construction industry who have used ERP. In total, 174 completed questionnaires were returned and then statistically analyzed using Chi-Square test with the Mini tab tool. It is concluded that there is a significant gap between the construction procedures and ERP procedures in identified fields related to the construction industry. The highest significant gap exists in the field of Inventory management with Chi-Square 158.76> 9.48. And HRM (142.366), Asset Management (130.264), Finance Management (126.267), Site Operation (103.793), Project management (53.88), Purchases (34.324), Petty cash (28.337), Estimating and Tendering (22.148), Sub-Contractor management (0.492) respectively. Ultimately with the identified gaps, a framework was established to meet the organizational processes and ERP processes.

1 Introduction

Before ERP came in to play Information technology/Information systems (IT/IS) used by the construction industry was very less, as the construction industry had its unique features [1,12,13]. However, with the technological development, companies moved towards computerization, and because of that in the past few decades, ERP has been drawing the full attention of the construction industry. The main purpose of an ERP is the standardization of the system and integration of the organizational functions. Task uncertainty and task interdependence combine with standardization. Task uncertainty is the “difference between information needed to complete a task and amount of information already present.” Low task uncertainty leads to create a good fit between the systems. “Task interdependence is the degree to which activities are connected to each other” According to previous research it has been noted that the ERP system is having a high level of task interdependence [3,9]. It is difficult to predict that ERP will fit in with an organization with Adcock behaviors and unformalized structures, as it contradicts with both the ERP literature and task uncertainty contingencies. But some of the companies are capable of customizing the ERP system according to their requirements so that they do not have to change their working environment much. However, these customization processes are costly and risky [1,4, 15,20].

Normally, an enterprise system is developed in four steps. In the first step, the company’s IT team collects and generates requirements for an ERP system. Then the company sends out a request for a proposal (RFP) to IT companies who develop enterprise resource planning systems [2,5]. Afterward, the company will receive proposals from IT companies, and they will evaluate the suitability of the proposed system using the “Request for Proposal” (RFP) guidelines. Finally, they select the system. However, though they select the system using the RFP guidelines a gap remains. This “Perception gap” indicates the difference between the system required by the construction company and the system developed by the IT Company [7,10]. According to the recommendations, main reasons for this gap are identified as high fragmentation of construction organizations and the prevailing of remote construction sites other than the main functional buildings [6,10].

This perception gap creates the misfit between the ERP and Organizational structure of any company. Misfits can be considered as the external manifestations of the differences between organizational needs and system capabilities. To analyze that misfit, carrying out a “FIT-GAP” is a closer look at reality. Most of the ERP packages are purchased or leased (Cloud-based) from ERP vendors. As it is done in such a way, the ERP system is developed already without identifying the system functionalities and own organizational procedures [11,13]. ERP systems are bundled with predefined, already built-in assumptions, and
with the predictions on how it could work [8,10]. Nevertheless, it may not practically adapt according to the real situation with on-going company operations. So, most of the time companies change their procedures to match with the ERP procedures [12,15,20]. After analyzing the previous literature, it is identified that there is a considerable number of research which were carried out to find out the reasons for this gap.

Organizational	Technological	Social
Lack of senior executives and management involvement [15,22]	Technological complexity [15,22]	Staff resistance to change [11]
Lack of flexibility [9]	Incompatibility of technical resources [2,16]	Insufficient training for end users [2,26]
Incompatible business process and strategic goals [1,13]	Standardization [10,9,26]	Organizational culture [6,16]
Failure to redesign the business process [2,16]	Lack of Hardware and Software [2,16,26]	The absence of a balanced combination in the project teams [9,16,22]
Misunderstanding of change requirement [9,16,22]	Lack of Technical staff and Technical knowledge [10,9,26]	Lack of awareness about ERP [2,26]

2 Methodology

The principal method used to collect information for this study was the questionnaire survey. Alternatively, a semi-structured interview was carried out to analyze the data qualitatively. The Questionnaire was developed based on criteria in PMBOK, ICTAD [14,16] namely Inventory Management, Finance Management, Site Operation, Estimating and Tendering, Sub-Contractor Management, Petty Cash Management, Asset Management, Human Resource Management, Purchases Management, Project Management. The Questionnaire was distributed among 210 selected individuals who used ERP, such as contractors, subcontractors and clients in the Sri-Lankan construction industry (From C1-C5 graded Construction Companies). The targeted people were the Top Management (CEO/Director, GM, PM, Engineer, Technical Manager), Technical Officer/IT officer, Quantity Surveyor, Data entry operator, a Stock Keeper. The Selected fields are described in Table 2. As Sri-Lanka is a developing country, people working in the construction industry resist to the adapting of the ERP implementation. Most of the small-scale construction organizations do not have the capacity to implement ERP systems [18,21].

Furthermore, the competency level of the engineers and the top management, regarding IT knowledge is comparatively low in those companies [17]. Thus, it is concluded that conducting a questionnaire survey among C1-C5 (552 Population Size) companies will be the most suitable option. For the sample size, the confidence interval was considered as 90% with Z=1.65, Standard deviation +0.5, Marginal error 5%. The sample size 210 (Required sample=182) is considered adequate for the analysis and is comparable to the response rate for ERP systems available in mid-sized organizations in Sri-Lanka.

In order to measure the criterions, they need to be operationalized with measurable indicators. In the operationalization process, main criteria were divided into the sub-variables (Likert scale was used as the main scale of measurement). After conducting the survey, 174 completed questionnaires were returned in total and then analyzed statistically using Chi-Square [31] with the Mini tab tool. Having identified the criteria where a significant gap exists, a framework was developed. It identified which processes should be aligned with the ERP procedures before the ERP implementation.

But most of those research were based on non-technical factors. They have identified the reasons for this misalignment in three ways; organizational misfit, technological misfit and social misfit. (See Table 1). Thus, this research was done to identify the gap between those two procedures mainly considering the incompatibility between the business structure and the organizational structure.

3 Discussion

3.1 Identification of the gap

As per the research conducted by Eli Husted, Moutaz Haddara and Baldvin Kavenes, it is concluded that an aperture always exists between organizational practice and the way an ERP system works, regardless of the organization [18,22]. However from this research results, it is identified that this gap is significant concerning the construction industry as it is difficult to satisfy their requirements. Further the results are verified by the research carried out by Chijoo and Chiheon [23] mentioning that “Perception gap” which often exists between the proposed system by ERP vendors and construction organizations [19,21].

After the statistical analysis it is concluded that there is a significant gap between construction procedures and ERP procedures in every field related to the construction industry.
The highest significant gap exists in the field of Inventory management with Chi-Square 158.766> 9.48. And HRM (142.366), Asset Management (130.264), Finance Management (126.267), Site Operation (103.793), Project management (53.88), Purchases (34.324), Petty Cash Management (28.337), Estimating and Tendering (22.148), Subcontractor Management (0.492) respectively.

3.2. Framework Development

The main objective of this research was to develop a framework which meets organizational procedures and ERP procedures, having identified the conflicting areas which creates the GAP between ERP procedures and construction practices. Table 3 shows the main gap areas and the recommendations to reduce those gaps.

Table 2. Description of the selected modules

Module	Description
Inventory Management [14,16]	This module represents the change in the inventory: such as reorder level, purchases, delivery of goods etc. of the organization.
Finance Management [14,16]	This module constitutes the operational aspects of the general accounting and financial information for the business unit.
Site Operation [16]	This module handles all the operations regarding the sites: such as Report generation, Scheduling of sites, Progress handling etc.
Estimating and Tendering [14]	This handles the BOQ before it is submitted to the tender process. Once it is accepted this is converted into the live project.
Subcontractor Management [16]	This module handles how the subcontractor selection is done, how the payments are done and how the working progresses of subcontractors are managed.
Petty Cash Management [14]	This module includes all transactions related to petty cash handling of the construction sites.
Human Resource Management [14,16]	This module includes all business processes required to efficiently manage the organization’s human resource needs: such as personal, payroll, recruiting, time management, training, benefits, workforce development and analytics.
Purchases Management [14]	This module includes the handling of purchases and suppliers.
Project Management [14,16]	This module handles all aspects of activities of the construction organization.
Asset Management [14,15]	This module handles all aspects of Assets throughout its life cycle: (Including Purchasing, Transfer, Maintenance and Release)

Table 3. Development of the framework

Criteria	Reasons for Gap	Recommendation
Inventory Management	The Existence of several item codes	Standardize a unique item code
	Deficiency in the generation of MR, PO and GRN	On-time generation of MR, PO and GRN
	The incorrect sequence of purchasing procedure	Practicing the correct circulation of procedures up to the payment
	Ad-hoc behaviors in Payment method	Appropriate top management involvement
	The absence of Re-Order level	Continuous Stock Updating
Finance	Delays in the authorization of payment	Initiation of online payment method
	Immoral reconciliation of transactions	Instantaneous actions for re-correction
	Long-term practiced erroneous accounting system	Maintain transparent and systematic accounting practice
Site Operation	Generation of Redundant reports	Identification of reports according to the requirement
	Malpractices in report generation	Restriction of passing random data to the system
	Lack of required data in the reports for decision making	Appropriate Top management involvement in the report generation
	The inadequacy of capturing necessary data	Proper planning when structuring the report
	Ad-hoc behaviors in scheduling	Proper scheduling about expected scenarios concerning the environmental situations like weather conditions
	Extreme Over usage or under usage of resources	Maintain proper resource usage record and correct planning of resource usage
Estimating and tendering	Inability to compare Planned, budgeted and actual costing	Adherence to generate cost accordance with BOQ items
	Malpractices in rate analysis	Standardize the rates used within the construction projects
	The inability to achieve the profit goal	Activation of the realistic approach for estimation and tendering

* Corresponding author: sachandrahewawitharana@gmail.com
| Subcontractor management | Excess of Variations |
|-------------------------|----------------------|
| Biased ways of selecting subcontractors | Hiring proper cost estimators to limit the variation |
| Lack of tracking the work done | Carry out background analysis of subcontractors in the selection process |
| Mixing up of subcontractor type | Manipulating working progress according to the BOQ items |
| Ad-hoc practices in Subcontractor payment | Analyzing the variation and initiating the requires method to handle |
| Petty cash | Area of fitting the construction practice. |
| No proper estimation of petty cash usage | Producing a systematic way of payment |
| Inappropriate usage of petty cash | Allocating fixed and adequate petty cash after a proper feasible study |
| Ad-hoc reimburse practices and poor control over petty cash | Carrying out proper estimation of resource usage |
| Immoral reconciliation of transactions | Carrying out a proper estimation of resource usage |
| Issues in authorization | Initiating online authorization system |
| Asset Management | |
| Malpractices in purchasing an asset | Call for quotations |
| No periodical maintenance of machinery and plants | Maintain standard records |
| No record on valuation methods | Maintaining a systematic way of valuating assets |
| No proper monitoring of the utilization of assets | Implementing a proper schedule on asset usage |
| The absence of systematic ways to transfer assets | Implementing a proper schedule on asset usage |
| HRM | |
| Poor Communication between Top management and the Employees | Introducing flat hierarchy level |
| Inefficiency in carrying out activities | Implementing a proper schedule on HR allocation |
| Ad-hoc leave allocations | Initiating a systematic approach to leave allocation |
| Lack of technical training for employees | Arranging periodical training sessions |
| No proper measurement of employee performance | Introducing a rewarding system |
| Purchases | |
| Delays in approval and authorization processes | Initiation of the online system |
| Biased method of selecting suppliers | Carry out a background analysis of the supplier in the selection process |
| Malpractices in purchasing resources | Call for Quotations |
| Displacement of MR, PO | Proper documentation |
| Project management | |
| Inability to carry out cost variance analysis | Adherence to generate cost in accordance with BOQ items |
| Manipulation of calculations | Providing the required level of authorization to access the information |
| Malpractices in rate analysis | Standardize the rates used within the construction projects |
| Inappropriate Practices in report generation | Restricting the pass in random data to the system |
| Lack of scheduling, monitoring and controlling activities | Usage of proper management tools |
| Scattered data among projects | Implementing integrating tools |

4 Conclusion

The gap was followed because of the specific demands on functionality in construction organizations, that were outside the standards of the ERP system [22,23]. Apart from that, laws, regulations, and norms of the industry strictly lead to the creation of a considerable gap between construction procedures and ERP procedures [24,28]. However, according to this study, it is concluded that the incompatibility between two procedures are created mainly because the way the construction industry is operating, and the way modules are standardized in ERPs. Because of that, a significant gap could be seen in each module of ERP with the construction practice.

Reasons for the significant gap are identified in the stage of framework development as per the Table 3. The variations are mostly seen in the inventory management, and least in Sub-contractor management, according to the research analysis. After identifying the most critical criterions, necessary actions to eliminate the gap are recommended, using sub-variables and their significant differences as per Table 3. By identifying the module with its significant difference, construction companies can concentrate more on modification requirements at the customization processes. Customization is the processes of fitting the chosen ERP software to the needs of a specific organization. A high level of customization may require a high cost as well as longer time [25,27]. Because of that, it is worth to identify the critical area which needs...
the modification and make adjustments more appropriately. The framework developed in this research will help the construction companies to identify the area of the gap, and minimize the customization required at the implementation stage of the ERP system.

The authors would like to acknowledge the support received from the Senate Research Committee of the University of Moratuwa under the Grant SRC/ST/2018/05.

References

1. Andreas, N., & Somnath, B. Organizational performance effects of ERP systems. Accounting Information Systems, (2005).
2. Azevedo, P. S., Azevedo, C., & Romao, M. Application Integration: Enterprise Resource Planning (ERP) systems in the hospitality industry. A Case Study in Portugal, (2014).
3. Babae, M., Gholami, Z., & Soudabeh. Challenges of enterprise resource planning in Iran large organizations. Information system, 7 (2015).
4. Bilal, M., Oyedele, L. O., Qadir, J., Munir, K., Ajayi, S. O., Akinade, O. O., et al. Big Data in the construction industry: A review of present status, Opportunities and future trends. Advanced Engineering Informatics, 21 (2016).
5. Botta-Genoulaz, V., & Millet, P.-A. A classification for better use of ERP systems. Computers in industry (2005).
6. Yang, J.-B., Wu, C.-T., & Tsai, C.-H. Selection of an ERP system for a construction firm in Taiwan: A case study. Automation in construction (2007).
7. EconomyWatch. 2010 Economic statics. from Economic Indicators, http://www.economywatch.com/economic-statistics/year/2010. [Accessed 07.06.2017]
8. Ehie, I. C., & Madsen, M. Identifying critical issues in enterprise resource. Computers in industry (2005).
9. Windapo, A. Fundamentals of Construction Management. Delhi: Open E- Book (2013).
10. Daniela, R., Maria, B., & Lucia, J. Analysis of the Construction Industry in the Slovak Republic. Procedia Social and Behavioral Sciences (2016).
11. Fleming, T., Lingard, H., & Wakefield, R. Guide to Best Practice for safer construction: Principles. Australia: Cooperative Research Centre for Construction Innovation, p. 24 (2007).
12. Gabriela, R., Silvia, A., & carmen, A. H. Organizational Context Factors Influencing Employee Performance. Social and Behavioral Sciences, 8 (2016).
13. Project Management Body of Knowledge (PMBOK Guide), 5th Edition, Project Management Institute
14. Gardiner, S., Hanna, J. B., & LaTour, M. S. ERP and the re-engineering of industrial marketing processes: A prescriptive overview for the new-age marketing manager. Industrial Marketing Management, 8 (2002).
15. Guidelines for Effective Construction Management, ICTAD Publication, ICTAD/CM/01.
16. Hustad, E., Haddara, M., & Kalvenes, B. ERP and organizational misfits: An ERP customization journey. Procedia Computer Science, 10 (2016).
17. Seo, G. Challenges in Implementing Enterprise Resource Planning (ERP) system in Large Organizations: Similarities and Differences Between Corporate and University Environment. (2013).
18. Ike C, E. a., & Mogens, M. Identifying critical issues in enterprise resource. Computers in industry (2005).
19. Jaafar, M., Aziz, A. R., Ramayah, T., & Saad, B. Integrating information technology in the construction industry. International Journal of Project Management, 6 (2007).
20. Josep, N. K. ERP system usage and benefit. A model of antecedents and outcomes. Computers in human behavior (2014).
21. Jyh-Bin Yang, C.-T. W., & Tsai, C.-H. Selection of an ERP system for a construction firm in Taiwan: A case study. Automation in construction (2007).
22. Khoudjia, M. L., Mezghiche, B., & Drissi, M. Experimental evaluation of workability and compressive strength. Construction and Building Materials, 194–203 (2015).
23. Lee, C., & Lee, C. Method to reduce the gap between construction and IT companies to improve suitability before selecting an enterprise system. Computers in Industry, 7(2017).
24. Lin, Y.-C., Lee, M.-H., & Tseng, H. P. Construction Enterprise Resource Planning Implementation: Critical. 6 (n.d.).
25. Mirian, P. M., & Osvaldo, H. Prioritization of enterprise resource planning system criteria: Focusing on construction industry. Production economics (2012).
26. Morton, N. A., & Hu, Q. Implications of the fit between organizational structure and ERP: A
Structural contingency theory perspective. Information Management, 11 (2008).

27. Skitch, I. (2017). Construction Challenges. From Sikich: http://www.sikich.com/find-solution/industries/construction/construction-challenges [Accessed 08.18.2017].

28. Nwankpa, J. K. ERP system usage and benefit. A model of antecedents and outcomes. Computers in Human Behavior (2014).

29. Paula, S. A., & Carlos, M. (2014). Application Integration: Enterprise Resource Planning (ERP) systems in the hospitality industry. A case Study in Portugal. (Not be found in an article)

30. Cochran, W. G., (1963), Sampling Techniques, 2nd Ed., John Wileys and Sons. (Not be found in an article)

31. Choudhury, I. A comparative analysis of user satisfaction with Enterprise Resource Planning (2017).