Morpheme Boundary Detection & Grammatical Feature Prediction for Gujarati: Dataset & Model

Jatayu Baxi
Dharmsinh Desai University / Nadiad
jatayubaxi.ce@ddu.ac.in

Dr. Brijesh Bhatt
Dharmsinh Desai University / Nadiad
brij.ce@ddu.ac.in

Abstract

Developing Natural Language Processing resources for a low resource language is a challenging but essential task. In this paper, we present a Morphological Analyzer for Gujarati. We have used a Bi-Directional LSTM based approach to perform morpheme boundary detection and grammatical feature tagging. We have created a data set of Gujarati words with lemma and grammatical features. The Bi-LSTM based model of Morph Analyzer discussed in the paper handles the language morphology effectively without the knowledge of any hand-crafted suffix rules. To the best of our knowledge, this is the first dataset and morph analyzer model for the Gujarati language which performs both grammatical feature tagging and morpheme boundary detection tasks.

1 Introduction

As Natural Language Processing is increasingly becoming an active area of research with many important applications, most of the research is focused only on a few languages. Developing NLP tools for under resource languages is an essential task, as it not only opens considerable economic perspectives but also prevents its extinction and Foster its expansion (Magueresse et al., 2020).

In this paper we present a morph analyzer for Gujarati. Gujarati is an Indo-Aryan language, spoken mainly in the Gujarat state of India. It is the 26th most widely spoken language with approximately 55 million speakers across the world. We identify various grammatical features of Gujarati morphology and prepare a gold data set of 16527 unique words. We have developed Bi-LSTM based morph analyzer inspired from (Premjith et al., 2018) and (Tkachenko and Sirts, 2018). For the training and evaluation of the morph analysis task, we have built the dataset for Gujarati language in the standard Unimorph format (Kirov et al., 2018). The neural architecture proposed in this paper does not require any language specific rules and captures linguistic characteristics of the language effectively.

The remaining of the paper is organized as follows: Section 2 describes related work. Section 3 describes the dataset details. Section 4 describes proposed approach. Section 5 describes experiments and observations. Section 6 describes result analysis from the linguistic perspective. In section 7, we discuss conclusion and future research direction.

2 Related Work

Morphological analysis is the task of analyzing the structure of the morphemes in a word and is generally a prelude to further complex NLP tasks such as parsing, machine translation, semantic analysis. It is observed that for development of high end NLP tasks such as text summarization, question answering, NLI, machine translation systems, the word level utilities like morph analyzer, POS taggers can help in performance improvement. (Hedderich et al., 2021)(Pandya and Bhatt, 2021)(Parida and Motlicek, 2019)

Existing approaches to build a Morphological Analyzer can be broadly classified as Rule Based approaches and Machine Learning based approaches. Recent breakthroughs in the field of Deep Learning has motivated researchers to apply the neural models to the Morphological Analyzer problem.

Two-level morphology (Koskenniemi, 1984) was the first practical general model in the history of computational linguistics for the analysis of morphologically complex languages. The current C version two-level compiler, called TWOLC, was created at PARC (Beesley and Karttunen,
1992). (Kenneth R. Beesley and Lauri Karttunen, 2003) introduced XFST, a finite state morphology tool. Finite state transducer based approach have been used to develop Morph analyzer for many languages (Beesley, 1998)(Beesley, 2003)(Megerdoomian, 2004).(Kumar et al., 2012) developed a morphological analyzer for Hindi using this approach. Following Hindi, morphological generators were developed for other Indian languages e.g. Kannada (Melinamath and Mallikarjunmath, 2011), Oriya (Sahoo, 2003), etc. (Bharati et al., 2002) described another popular approach named Paradigm Based approach for morphological analysis. A Paradigm defines all the word forms that can be generated from given Root along with grammatical feature set.

Apart from the rule based techniques, there have been some efforts to develop machine learning based methods to develop morph analyzer for Indian languages. (Anand Kumar et al., 2010) have defined the morphological analysis problem as classification problem and experimented with various kernel methods to capture non linear relationships of the morphological features using SVM Tool. (Srirampur et al., 2015) developed Statistical Morphological Analyzer for the Indian languages using linguistic features.

(Chakrabarty et al., 2016) proposed a Neural lemmatizer for the Bengali language. The proposed lemmatizer makes use of contextual information of the surface word to be lemmatized. (Heigold et al., 2016) investigated character based neural morphological tagger for morphologically rich languages having large tag set. They presented various neural architectures. The work is extended in (Heigold et al., 2017) by experimenting on 14 different languages. (Chakrabarty et al., 2017) introduced Deep Neural Network based method for lemmatization. This method works by identifying a correct edit tree for the word lemma transformation. (Premjith et al., 2018) developed a Deep Learning approach for detecting morpheme boundaries. They studied agglutinative nature and sandhi splitting process of Malayalam language. (Tkachenko and Sirts, 2018) explore 3 different neural architectures named simple multiclass multilabel model, hierarchical model and sequence model for Morphological tagging. The encoder used for this work is same as the one used in (Lample et al., 2016). (Gupta et al., 2020) evaluated various neural morphological taggers for Sanskrit with the focus on the fact that good result for morphological tagging should be achieved without an extensive linguistic knowledge.

There have also been effort to develop unsupervised approaches for morphological tagging task. (J., 2005) described an Automatic Morphological Analyser which can be adopted for different languages. Morphessor (Creutz, 2005) is another widely used tool which performs unsupervised morphological segmentation. (Ak and Yildiz, 2012) and (Narasimhan et al., 2015) have also proposed unsupervised morphological analyzer using Trie based approach and Log linear methods.

To the best of our knowledge, very less work is reported in the area of developing a morph analyzer for the Gujarati language. (Patel et al., 2010) built a stemmer using handcrafted suffix list along with unsupervised learning. (Suba et al., 2011) built Hybrid Inflectional Stemmer and Rule-based Derivational Stemmer. (Baxi et al., 2015) developed rule based lemmatizer for Gujarati by hand crafting of suffix rules. The language independent models such as morfessor can not be used to develop full fledged morph analyzer as they only give morphological segmentation and do not perform morphological feature tagging. The model suggested by (Heigold et al., 2017) can not be directly used as the language specific training data for Gujarati language is not available in penn treebank dataset.

3 Gujarati morphology and Data set Generation

Gujarati is a verb-final language and has a relatively free word order, it is an inflectional language. Words are formed by successfully adding suffixes to the root word in series. When suffixes are attached to the root, several morphophonemic changes take place. In this section, we describe the format and the details about the data set creation for the training and evaluation of morphological analyzer. For the creation of the dataset, we did a survey of available corpus for the Gujarati language. For the morphological analysis, it is preferable to have a POS tagged data, hence we have selected Gujarati Monolingual Text Corpus ILCI-II corpus for the creation of the dataset. The

1https://en.wikipedia.org/wiki/Gujarati_grammar
dataset is obtained from TDIL.2 We now discuss Gujarati morphology and details of dataset created for Noun, Verb and Adjective POS categories.

3.1 Noun

Gujarati nouns participate in three genders and two numbers. The genders are masculine, feminine and neuter and the numbers are singular and plural. Gujarati nouns also inflect for various cases. Table 1 shows various cases with corresponding case markers. The data set for the noun category contains 6847 number of unique nouns. Along with each noun entry, the corresponding root form, gender, number and case information are marked manually.

Case	Suffix
Nominative	ϕ
Genitive	$\text{g}l,\text{g}l,\text{g}l,\text{g}l$ (Nō, nī, num, nām)
Ergative	u (ē)
Objective/Dative	nō (nē)
Ablative	hō (thē)
Locative	mō (mām)

Table 1: Case Markers for Gujarati Noun

3.2 Verb

Gujarati verbs inflect for gender, number, person, tense, aspect and mood features. Table 2 and Table 3 shows example of Gujarati verb with different moods and aspects respectively. The dataset for the verb category contains 6334 inflected verb forms. Each verb form is marked with corresponding root form and corresponding linguistic features.

3.3 Adjective

Gujarati adjectives can be classified in two types based on their nature of inflections. One class of adjectives do not inflect while the other class inflect for gender and number. Table 4 shows example of each category. The dataset for the adjective contains 3346 inflected adjective forms marked with linguistic features type, gender and number.

2Technology Development for Indian Languages (TDIL), http://http://tdil-dc.in

4 Proposed Approach

We propose a morphological analyzer for Gujarati which performs morpheme boundary detection and grammatical feature tagging of a given inflected word. Gujarati is a morphologically rich language and manual hand crafting of rules is cumbersome process, hence we propose a deep learning based approach for this problem so that the features of an inflected word can be learned without supplying hand crafted rules. The morpheme boundary segmentation model inspired by (Premjith et al., 2018) and feature tagging module is based on the work reported in (Tkachenko and Sirts, 2018).

\begin{table}
\begin{tabular}{|c|c|c|}
\hline
POS Category & Features & Number of Words \\
\hline
Noun & Gender, Number, Case & 6847 \\
\hline
Verb & Gender, Number, Tense, Aspect, Person & 10128 \\
\hline
Adjective & Gender, Number & 3346 \\
\hline
\end{tabular}
\caption{Details about Dataset}
\end{table}

Figure 1: Block Diagram of the System

Figure 1 shows the overall architecture of the proposed system. We first prepare the training data and perform the model training for both tasks. The input word is passed to both models to get the corresponding morpheme segmentation and linguistic feature tagging outputs. For the preparation of training data, we represent inflected word as binary string and mark “1” in the position of the split character, rest all characters are marked as “0”. Fig-
Mood	Example	Transliteration	English Translation
Indicative	ધન્વી યોગદાન કર્યો.	Dhanvi cōkalēta khāya.chē.	Dhanvi is eating a chocolate.
Imperative	સવારે વાહેલો ઉઠા.	Savarē vahēlo úthajē.	Get up early in the morning..
Conditional	જો હું તયાર થયે છે, તો હું તમને મદદ કરી શક્યુ.	Jō hurē tyārē hōtā, tō hurē tamanē madada kari sākyō hōtā.	Had I were there, I would have helped..
Subjunctive	એ અતિ દીપક ન પરે હોવાનો.	Ė atyārē dipak nē dhēra hōvānō.	He must be at Dipak’s home right now.

Table 2: Moods of Gujarati Verb

Mood	Example	Transliteration	English equivalent
Simple	રામ મામદાવાદમારી રહે છે.	Rāma amadāvādamārn rahē chē.	Ram lives in Ahmedabad.
Progressive	રામ અતય રે પુસ્તક વાળી રહે છે.	Rāma atyārē pustaka vānchī rahē chē.	Ram is reading a book right now.
Perfect	રામ પુસ્તક વાળી લીધ.	Rāmē pustaka vānchī līdhē.	Ram has finished reading a book.
Perfect Progressive	રામ સવારથી પૂજા કરી રહેલ છે.	Rāma savārathī pūjā karī rahēl chē.	Ram was doing pooja since morning.

Table 3: Gujarati Verb Aspects

Type of Adjective	Example
Non-Inflected	ઉત્તમ (Uttama)
Inflected	સારો, સારી, સારુ, સાર (sārō, sārī, sārū, sār)

Table 4: Gujarati adjective inflection

Table 6 shows the sample output obtained for morpheme segmentation task.

Inflected Word	Morpheme separation
વાતમં (Vātomān)	વાત (vāta) + મં (mān)
પતની (Patnī)	પતની (patnī) + ની (nē)
કરતો હતો (Karato hatō)	કર (karo) + તો (tō) + હત (hatō)

Table 6: Morpheme Separation Example

In the Linguistic Feature Tagging module, we predict morphological features associated with an inflected word. Table 5 describes various features associated with different part of speech categories. We formulate this task as multi class classification problem. We have represented the class labels in a monolithic way such that each unique combination of different features is considered as one class. The number of classes for this task are 36, 198 and
13 for noun, verb and adjective categories respectively.

5 Experiments and Results

We use Keras Python library for the implementation of the system. Our model is sequential model with the first layer as embedding layer followed by a Bi-Directional LSTM layer followed by a dense layer for output prediction. We use Adam optimizer and binary cross entropy and categorical cross entropy loss for morpheme segmentation and feature tagging task respectively. We keep 80:20 ratio for training and testing of the model. Table 7 shows the results obtained for morpheme segmentation task.

# of words in test set	Correctly segmented words	Accuracy
4058	3614	89.05

Table 7: Morpheme boundary detection result - overall

Table 8 shows the results separately for each POS category.

POS Category	# of Words	Correctly predicted words	Accuracy
Noun	1369	1240	90.57 %
Verb	2025	1761	86.96 %
Adjective	669	645	97.49 %

Table 8: Morpheme Boundary Detection Results - POS category wise

To study the effect of POS category on the results, we repeat the experiments individually for each POS category. Table 9 shows the result of the morphological tagging task for various POS categories. We observe that system performs very well for morpheme boundary segmentation task across the POS categories.

We also compare the results of the neural morphological analyzer with an existing unsupervised morph analyzer Morphessor. Morphessor (Creutz, 2005) is a family of methods for unsupervised morphological segmentation. The first version of Morfessor, called Morfessor Baseline, was developed by Creutz and Lagus (2002) and its software implementation, Morfessor 1.0 was released by Creutz and Lagus (2005b). We have tested our dataset on morfessor implementation and compared the results of the neural model and the unsupervised model. For the Gujarati language, Morphessor implementation is available in Indic NLP (Kunchukuttan) library which is very popular NLP library for Indian Languages. However, the limitation of Morphessor is that it only performs morpheme segmentation task, whereas our proposed neural morphological analyzer performs both morpheme segmentation and morph feature tagging tasks. Due to this limitation, we are able to compare results for neural and unsupervised morph analyzer for only the morpheme segmentation task. We observe that the neural morphological analyzer outperforms unsupervised model by a large margin.

POS Category	Neural Model	Unsupervised Model
Noun	90.57 %	68.27 %
Verb	86.96 %	12.95 %
Adjective	97.49 %	25.72 %

Table 10: Accuracy comparison of neural and unsupervised model

6 Result analysis

6.1 Morpheme boundary detection

Using the LSTM based morpheme segmentation module, the system predicts a correct segmentation point for 3613 words out of 4058 total words in the test data set. Table 11 highlights few examples where system identifies correct splitting location for an inflected word:

Even though the morphemes splitting in all above cases are correct, It is observed that the first portion of the split may not be the valid root word every time. Table 12 highlights such examples.

We make an observation that the rules to form a valid root word are different for each word. These rules depend on POS category of the word and other grammatical features. Table 13 summarizes the rules.
There is an error in the feature prediction task. Due to these exceptions, there is no hold. In many other inflected words ending with suffix ʼI (I) as highlighted in the table 14. We also observe that the system does not produce correct segmentation in some cases where multiple suffixes are attached. For example, the correct segmentation of the word ʼI, ʼI (Kārakhāna) is ʼI, ʼI (Kārakhāna)++ (Nur) but the system does not identify any segmentation in the given word.

6.2 Grammatical feature prediction task

In this section, we do the result analysis of the grammatical feature prediction task from the linguistic perspective. We perform this analysis individually for each part of the speech category. **Noun:**

For Noun, we consider gender, number and case as morphological features. The model is trained in such a way that based on the inflections that a word takes, it predicts corresponding grammatical features. For most of the cases we have good correlation between suffix and grammatical features, but in some cases the correlation does not hold. Due to these exceptions, sometimes there is an error in the feature prediction task. Consider two noun examples ʼI (Bajārō) and ʼI (Dāyarō). Both words take similar suffix but in word ʼI (Bajārō), the suffix indicates

POS Category	Accuracy	Precision	Recall	F1-Score
Noun	70.64	0.7	0.68	0.68
Verb	16.18	0.1	0.17	0.12
Adjective	85.85	0.78	0.61	0.68

Table 9: Morphological Feature Tagging Task Result

Segmentation Example
पात्रमण (Pātramāṇ) → पात्र (Pātra)+म (Mān)
दोढी (Dōdi) → दोढा (dōda) +ए (e)
मजागु (Majāgū) → मजा (majā)+न (nē)
देखाश (Dēkhašē) → देखा (dēkha)+ (sē)
यात्रा (Yātṛa) → या (yātra)+ (o)
यहाँ (Yahān) → यां (Yān)+ (nā)
धोकā (Chōkā) → धोक (chōkā)+ (ā)
धानहु (Dānha) → धान (dāna)+ (ānūm)
इसार (Isārā) → इसार (iṣāra) + (ā)

Table 11: Segmentation Examples

POS Category	Other Features	Rule
Noun / Adjective	Gender = Male	Attach Suffix - । (O)
Noun / Adjective	Gender = Female	Attach Suffix - । (I)
Verb	-	Attach Suffix । (Nur)

Table 13: Rules to form correct root word

We supply POS category of the word as an input to the system and obtain the grammatical features using morph tagging module. Using this information, accuracy of the morpheme boundary detection task can be further enhanced.

It is also observed that due to ambiguities in the word formation rules, in some cases, the system is not able to identify correct segmentation. For example, words विदेश (Vidēśa) is spitted correctly as विदेश +ए (Vidēsa + o) and word जबार (Jabarō) is spitted correctly as जबार +ए (Jabar + o) . System tries to split the words खुलास (Khulāsa) and चोकार (Chōkā) using similar method leading to incorrect outputs खुलास (Khulāsa) and चोकार (Chōkā). The issue here is that system considers । (O) as the suffix but in some words । (O) is part of the root word not as a suffix. The similar issue is observed in many other inflected words ending with suffix । (I) as highlighted in the table 14.
plural marker but for the word Ṣlṣrō(Dāyarō), the suffix is part of the word itself and the word is not plural. Similarly the word Ṣlṣrō(Ghatana) is tagged with genitive case marker due to Ṣl(I) attachment but actually the suffix is part of the word.

Verb:
For the verb category, we consider gender, number, person, tense and aspect features. Due to different combinations of features, we get total 198 classes for tag prediction task. The accuracy of the prediction task for verb is poor due to large number of classes. It is also observed that for different combinations of the features, same verb form exists which makes classification task more difficult. Table 15 highlights such examples:

A possible solution to address the above issue is to look at the input at the sentence level rather than word level. When the sentence level input is taken, verb features becomes clear and unambiguous. For example, with reference to the examples 1 and 2 from the above table, by looking at only यती(Ramatō hatō), the person feature is not clear but when we look at the whole sentence: यती यती(Rāma ramatō hatō), the person feature becomes unambiguous (person = 3rd). Similarly, by looking at only यती(Chōkarī rāmatī hatī), the number feature is not clear but when we look at the whole sentence: यतीरेता यती(Chōkarī rāmatī hatī), the Number feature becomes unambiguous (Number=PL).

Table 12: Examples of incorrect root identification

Inflected word	Root morpheme detected by the system	Actual root word
श्रेणी (Dēkhāsē) → श्रेणी (dēkhā)+ ऐ (ṣē)	श्रेणी (dēkhā)	श्रेणी (Dēkhāvu m)
श्रेणी (Chōkarī) → श्रेणी (chōkara)+ ऐ (ā)	श्रेणी (chōkara)	श्रेणी (chōkara)+अ (U) +अ (m) → श्रेणी (Chōkaru m)
धुंध (Dhandhān m) → धुं (dhandha) + ऐ (ānu m)	धुं (dhandha)	धुं (dhandhō) → धुं (dhandhō)
श्रेणी (Īśārā) → श्रेणी (īśāra) + ऐ (ā)	श्रेणी (īśāra)	श्रेणी (īśāra) +अ (O) → श्रेणी (Īśārō)

Table 14: Segmentation Analysis

Segmentation	Remark
श्रेणी (Chōkarī) → श्रेणी (Chōkara) + ऐ (I)	Correct Segmentation
श्रेणी (Ganatarī) → श्रेणी (Ganata) + ऐ (I)	Incorrect Segmentation
श्रेणी (Irēnī) → श्रेणी (Irēna) + ऐ (I)	Incorrect Segmentation

Adjective
We consider the type of an adjective, gender and number as features for morph feature tagging of an adjective. Consider the adjective गते (Ajānī). As per the language specification, this adjective does not inflect with gender and number but by looking at ऐ (I) suffix, the system predicts it as inflecting type of adjective with female gender.

To summarize, we observe that linguistic issues such as stem to root word generation, attachment of multiple suffixes and ambiguity in suffix rules affects the performance of the system.

7 Conclusion and Future Scope

In this paper we have proposed a Bi-LSTM based morphological analyzer for the Gujarati language. We have prepared the dataset and evaluated the proposed system. The system effectively performs morpheme boundary detection and morphological feature tagging tasks. With the proposed system, morphological analysis of unknown inflected word can be performed without the knowledge of linguistic rules. We have done result analysis from the linguistic perspective. We also conclude that the proposed model performs better than the existing unsupervised model.

In future, we aim to expand the dataset, and implement other neural architectures such as seq2seq model. We also aim to study sentence level dependency for morphological analysis.
The PARAM Shavak HPC computer facility is used for some of our experiments. We are grateful to the Gujarat Council of Science and Technology (GJUCOST) for providing this facility to the institution so that deep learning studies are being carried out effectively.

Acknowledgement

The PARAM Shavak HPC computer facility is used for some of our experiments. We are grateful to the Gujarat Council of Science and Technology (GJUCOST) for providing this facility to the institution so that deep learning studies are being carried out effectively.

References

Koray Ak and Olcay Taner Yildiz. 2012. *Unsupervised Morphological Analysis Using Tries*. *Computer and Information Sciences II*, pages 69–75.

M Anand Kumar, V Dhanalakshmi, K.P Soman, and S Rajendran. 2010. *A Sequence Labeling Approach to Morphological Analyzer for Tamil Language*. *International Journal on Computer Science and Engineering*, 02(06):1944–1951.

Jatayu Baxi, Pooja Patel, and Brijesh Bhatt. 2015. *Morphological Analyzer for Gujarati using Paradigm based approach with Knowledge based and Statistical Methods*. *Proceedings of the 12th International Conference on Natural Language Processing*, (December):178–182.

Ken Beesley. 2003. *Finite-State Morphological Analysis and Generation for Aymara: Project Report*. *Proceedings of the Workshop of Finite-State Methods in Natural Language Processing, 10th Conference of the European Chapter of the Association for Computational Linguistics*, 5:2–5.

Kenneth R. Beesley. 1998. *Arabic morphology using only finite-state operations*. *Proceedings of the Workshop on Computational Approaches to Semitic languages*. *Association for Computational Linguistics*, page 50.

Kenneth R. Beesley and Lauri Karttunen. 1992. *Two-Level Rule Compiler*. *Technical Report, Xerox Palo Alto Research Center, Palo Alto, California*.

Akshar Bharati, Vinit Chaitanya, Rajeev Sangal, and Brendan Gillon. 2002. *Natural Language Processing: A Paninian Perspective*. Prentice Hall of India.

Abhishek Chakrabarty, Akshay Chaturvedi, and Utpal Garain. 2016. *A neural lemmatizer for Bengali*. In *Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16)*, pages 2558–2561, Portorož, Slovenia. European Language Resources Association (ELRA).

Abhishek Chakrabarty, Onkar Arun Pandit, and Utpal Garain. 2017. *Context sensitive lemmatization using two successive bidirectional gated recurrent networks*. In *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 1481–1491, Vancouver, Canada. Association for Computational Linguistics.

K. Creutz, M. Lagus. 2005. *Unsupervised morpheme segmentation and morphology induction from text corpora using Morfessor 1.0*. *Computer and Information Science, Helsinki University of Technology*.

Ashim Gupta, Amrith Krishna, Pawan Goyal, and Oliver Hellwig. 2020. *Evaluating neural morphological taggers for Sanskrit*. In *Proceedings of the 17th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology*, pages 198–203, Online. Association for Computational Linguistics.

Michael A. Hedderich, Lukas Lange, Heike Adel, Jan-nik Strötgen, and Dietrich Klakow. 2021. *A survey on recent approaches for natural language processing in low-resource scenarios*. *Georg Heigold, Guenter Neumann, and Josef van Gen-abith, 2017. An extensive empirical evaluation of character-based morphological tagging for 14 languages*. In *Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers*, pages 505–513, Valencia, Spain. Association for Computational Linguistics.

Georg Heigold, Guenter Neumann, and Josef van Gen-abith. 2016. *Neural Morphological Tagging from**

Sr No	Features	Verb Form
1	Gender= Male, Number=SG, Person=1st, Tense=Past, Aspect=Progressive	हती (रमतो hatō)
2	Gender= Male, Number=SG, Person=3rd, Tense=Past, Aspect=Progressive	हती (रमतो hatō)
3	Gender=Female, Number=SG, Person=3rd, Tense=Past, Aspect=Progressive	हती (रमती hatī)
4	Gender=Female, Number=PL, Person=3rd, Tense=Past, Aspect=Progressive	हती (रमती hatī)

Table 15: Ambiguity in verb form generation
Characters for Morphologically Rich Languages. arXiv e-prints, page arXiv:1606.06640.

Goldsmith J. 2005. Unsupervised learning of the morphology of a natural language. Computational Linguistics 27(2), pages 153–198.

Kenneth R. Beesley and Lauri Karttunen. 2003. Finite-State Morphology. (January).

Christo Kirov, Ryan Cotterell, John Sylak-Glassman, Géraldine Walther, Ekaterina Vylomova, Patrick Xia, Manaal Faruqui, Sabrina J. Mielke, Arya McCarthy, Sandra Kübler, David Yarowsky, Jason Eisner, and Mans Hulden. 2018. UniMorph 2.0: Universal morphology. In Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018), Miyazaki, Japan. European Language Resources Association (ELRA).

Kimmo Koskenniemi. 1984. A general computational model for word-form recognition and production. (July):178–181.

Deepak Kumar, Manjeet Singh, and Seema Shukla. 2012. FST Based Morphological Analyzer for Hindi Language. arXiv preprint arXiv:1207.5409.

Anoop Kunchukuttan. Indic NLP Python Library. https://anoopkunchukuttan.github.io/indic_nlp_library/.

Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami, and Chris Dyer. 2016. Neural architectures for named entity recognition. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 260–270, San Diego, California. Association for Computational Linguistics.

Alexandre Magueresse, Vincent Carles, and Evan Heederks. 2020. Low-resource Languages: A Review of Past Work and Future Challenges. arXiv e-prints, page arXiv:2006.07264.

Karine Megerdoomian. 2004. Finite-state morphological analysis of Persian. Proceedings of the Workshop on Computational Approaches to Arabic Script-based Languages, Association for Computational Linguistics, page 35.

Bhuvaneshwari C. Melinamath and A. G. Mallikarjunmath. 2011. A morphological generator for Kannada based on finite state transducers. ICECT 2011 - 2011 3rd International Conference on Electronics Computer Technology, 1:312–316.

Karthik Narasimuthu, Regina Barzilay, and Tommi Jaakkola. 2015. An Unsupervised Method for Uncovering Morphological Chains. Transactions of the Association for Computational Linguistics, 3:157–167.

Harim A. Pandya and Brijesh S. Bhatt. 2021. Question answering survey: Directions, challenges, datasets, evaluation matrices.

Shantipriya Parida and Petr Motlicek. 2019. Abstract text summarization: A low resource challenge. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 5994–5998, Hong Kong, China. Association for Computational Linguistics.

Pratik Kumar Patel, Kashyap Popat, and Pushpak Bhattacharyya. 2010. Hybrid Stemmer for Gujarati. In Proceedings of the 1st Workshop on South and Southeast Asian Natural Language Processing (WS-SANLP), August, pages 51–55, Beijing.

B. Premjith, K. P. Soman, and M. Anand Kumar. 2018. A deep learning approach for Malayalam morphological analysis at character level. Procedia Computer Science, 132:47–54.

Kalyanamalini Sahoo. 2003. Oriya nominal forms: A finite state processing. IEEE Region 10 Annual International Conference, Proceedings/TENCON, 3:730–734.

Saikrishna Srirampur, Ravi Chandibhamar, and Radhika Mamidi. 2015. Statistical Morph Analyzer (SMA++) for Indian Languages. Proceedings of the First Workshop on Applying NLP Tools to Similar Languages, Varieties and Dialects, pages 103–109.

Kartik Suba, Dipti Jiandani, and Pushpak Bhattacharyya. 2011. Hybrid Inflectional Stemmer and Rule-based Derivational Stemmer for Gujarati. Proceedings of the 2nd Workshop on South and Southeast Asian Natural Language Processing (WS-SANLP), pages 1–8.

Alexander Tkachenko and Kairit Sirts. 2018. Modeling composite labels for neural morphological tagging. In Proceedings of the 22nd Conference on Computational Natural Language Learning, pages 368–379, Brussels, Belgium. Association for Computational Linguistics.