In vitro and ex vivo microbial leakage assessment in endodontics: A literature review

Sohrab Tour Savadkouhi, Hengameh Bakhtiar, Safoura Emami Ardestani

Department of Endodontic, Dental Branch of Islamic Azad University, Tehran, Iran

Corresponding author (email: <safouraemami@yahoo.com>)
Dr. Safoura E. Ardestani, 10th Neyestan, Pasdaran Ave, Tehran, Iran.

Received: 20-07-16 Accepted: 12-10-16 Published: 12-12-16

Abstract

The aim of this study was to perform a literature review of published in-vitro and ex-vivo studies, which evaluated microbial leakage in endodontics in the past 10 years. A comprehensive electronic literature search was carried out in PubMed database for English articles published from 2005 to 2016 using the keywords “endodontics,” “in vitro,” “ex vivo,” “microbial leakage,” “microbial penetration,” “saliva,” “Enterococcus faecalis,” “E. faecalis,” “endodontic sealers,” “temporary filling material,” “apical plug,” “mineral trioxide aggregate,” and “MTA.” The keywords were combined using Boolean operators AND/OR. Based on our search strategy, 33 relevant articles were included in the study. There are three main methods for assessment of bacterial microleakage, namely, (A) the dual-chamber leakage model, (B) detection of bacteria using a scanning electron microscope (SEM), and (C) polymerase chain reaction. All bacterial leakage models have some limitations and may yield different results compared to other microleakage evaluation techniques (i.e., dye penetration, fluid filtration, or electrochemical tests). The results of SEM correlated with those of microbial leakage test in most studies. Microbial leakage test using saliva better simulates the clinical setting for assessment of the leakage of single or mixed bacterial species.

Key words: Dental leakage, endodontics, root canal obturation

INTRODUCTION

The ultimate goal of endodontic treatment is to eliminate the diseased pulpal tissue from the root canal system, provide a suitable environment for healing, and prevent apical periodontitis. Microorganisms are the main cause of pulpal and periapical diseases. Well-packed root canal filling material and a hermetic apical seal allowing no leakage are crucial for successful endodontic treatment. Evidence shows that apical periodontitis is caused by intracanal bacteria. Apical periodontitis is treated by chemomechanical cleaning and disinfection of the root canal system followed by filling of the root canal and providing apical and coronal seal to prevent reinfection. However, many studies have reported bacterial penetration through the entire length of the root canal within a few days following root canal filling with gutta-percha, which indicates that a perfect seal is hard to achieve in endodontic therapy.

In this regard, different methods have been designed for microbial leakage assessment in endodontics. The aim of this study was to evaluate the different techniques proposed for microbial leakage assessment in endodontics by reviewing the relevant articles published in the past 10 years.

A comprehensive electronic literature search was carried out in PubMed database for English articles published
from 2005 to 2016 using the keywords “endodontics,” “in vitro,” “ex vivo,” “microbial leakage,” “microbial penetration,” “saliva,” “Enterococcus faecalis,” “E. faecalis,” “endodontic sealers,” “temporary filling material,” “apical plug,” “mineral trioxide aggregate,” and “MTA.” The keywords were combined using Boolean operators AND/OR. Based on our search strategy, 33 relevant articles were included in the study [Table 1].

Search of the literature yielded 33 studies, which met our inclusion criteria. Information regarding the authors, titles, microbial leakage model used, and the results of the 33 studies are presented in Table 1.

Three main methods are available for assessment of bacterial microleakage, namely, (A) the dual-chamber leakage model, (B) detection of bacteria

Authors	Year	Title	Microbial leakage model	Result
Saberi et al.	2016	In-vitro evaluation of coronal microbial leakage after post space tooth preparation	Dual-chamber leakage model using Proteus mirabilis	The leakage occurred within 7–21 days in the group without temporary filling whereas it occurred within 28–47 days in the group with temporary filling
Balto et al.	2015	Obturation Techniques Allow Microbial Leakage Unless Protected	Dual-chamber leakage model using Enterococcus faecalis	No statistically significant difference was found between cold lateral compaction, continuous wave of condensation, or injectable gutta-percha
Amezcua et al.	2015	Sealing ability of root-end filling materials	Dual-chamber leakage model using Enterococcus faecalis-Staphylococcus aureus+Pseudomonas aeruginosa+Bacillus subtilis+Candida albicans	Root-end fillings with Super-EBA or mineral trioxide aggregate had the lowest bacterial filtration and RealSeal showed the highest bacterial filtration
Kazemipoor et al.	2014	Lack of correlation between microbial penetration method and electrochemical technique for assessment of leakage through the root canal fillings	Electrochemical microleakage test and dual-chamber leakage model using Enterococcus faecalis	The correlation between microbial penetration method and electrochemical technique was not statistically significant
Gomes et al.	2013	Coronal microleakage of endodontically treated teeth with intracanal post exposed to fresh human saliva	Dual-chamber leakage model using fresh human saliva	90% microleakage in root canals after 24 hours in group 1 (root canals instrumented, obturated, and prepared to receive an intracanal post) and 70% microleakage in samples after 40 days in group 2 (root canals with cemented posts but without coronal sealing)
Navarro-escobar et al.	2013	Ex vivo microbial leakage after using different final irrigation regimens with chlorhexidine	Dual-chamber leakage model using Enterococcus faecalis	EC40TM varnish showed the least leakage at 180 days, and was statistically similar to 2% chlorhexidine (CHX). No significant differences were observed between the group without final irrigation and 2% CHX group or 0.2% CHX plus 0.1% cetrimide
Table 1: Contd...

Authors	Year	Title	Microbial leakage model	Result
Bakhtiar et al.	2012	In vitro comparative study of the microbial leakage of one-step, thermafil and lateral condensation techniques	Dual-chamber leakage model using *Enterococcus faecalis*	Thermofil and one-step obturator can be advocated as effective obturation techniques for endodontic therapy
Maziar et al.	2011	Comparing Microleakage in Root Canals Obturated with Nanosilver Coated Gutta-Percha to Standard Gutta-Percha by Two Different Methods	Dual-chamber leakage model using *Enterococcus faecalis*	There was 84% bacterial leakage in standard gutta-percha group and 76% in the nanosilver gutta-percha group
Shashidhar et al.	2011	The comparison of microbial leakage in roots filled with Resilon and gutta-percha: An *in vitro* study	Dual-chamber leakage model using *Streptococcus mutans*	Resilon and Epiphany showed minimal leakage, which was significantly less than that of gutta-percha
Nawal et al.	2011	A comparative evaluation of 3 root canal filling systems	Dual-chamber leakage model using *Enterococcus faecalis* and scanning electron microscopy	Resilon and GuttaFlow showed optimal sealing ability. AH Plus sealer along with gutta-percha showed poor sealing ability. Results of the scanning electron microscopy correlated with the results of microbial leakage test
Lodiene et al.	2011	Sealing ability of mineral trioxide aggregate, glass ionomer cement and composite resin when repairing large furcal perforations	Dual-chamber leakage model using *Enterococcus faecalis* and scanning electron microscope	The percentage of leaking samples was significantly higher in composite resin than mineral trioxide aggregate and glass ionomer cement
Valadares et al.	2011	The efficacy of a cervical barrier in preventing microleakage of *Enterococcus faecalis* in endodontically treated teeth	Dual-chamber leakage model using *Enterococcus faecalis*	Two or 3 mm of cervical barrier is effective in preventing microbial leakage
Aminsobhani et al.	2010	Coronal Microleakage in Root Canals Obturated with Lateral Compaction, Warm Vertical Compaction and Guttaflow System	Dual-chamber leakage model using fresh human saliva	There were no significant differences among the experimental groups
Authors	Year	Title	Microbial leakage model	Result
-------------------------	------	--	--	---
De Almeida-Gomes et al.	2010	*Ex vivo* evaluation of coronal and apical microbial leakage of root canal—filled with gutta-percha or Resilon/Epiphany root canal filling material	Dual-chamber leakage model using fresh human saliva	There were no differences between the different filling materials (gutta-percha/Grossman sealer and Resilon/Epiphany) and obturation techniques (lateral compaction and system B technique) in coronal or apical leakage
Drukteinis et al.	2009	*In vitro* study of microbial leakage in roots filled with EndoREZ sealer/EndoREZ Points and AH Plus sealer/conventional gutta-percha	Dual-chamber leakage model using fresh human saliva	Both types of root fillings—EndoREZ sealer/EndoREZ Points and AH Plus sealer/gutta-percha points—showed microbial leakage with no statistically significant difference
Pitout et al.	2009	Leakage of teeth root-filled with GuttaFlow and a single GP cone compared to lateral condensation and warm vertical condensation	Dye leakage and dual-chamber leakage model using *Enterococcus faecalis*	The microleakage of GuttaFlow using a single cone technique was similar to that of gutta-percha using lateral compaction and less than that of gutta-percha using vertical condensation
Jacobovitz et al.	2009	Root canal filling with cements based on mineral aggregates: An *in vitro* analysis of bacterial microleakage	Dual-chamber leakage model using *Enterococcus faecalis*	Mineral trioxide aggregate and Endo Binder were efficient in sealing root canals
Salz et al.	2009	Sealing properties of a new root canal sealer	Dual-chamber leakage model using *Streptococcus mutans*	Apexit Plus had better sealing ability in comparison with AH Plus
Fransen et al.	2008	Comparative assessment of ActiV GP/glass ionomer sealer, Resilon/Epiphany, and gutta-percha/AH plus obturation: A bacterial leakage study	Dual-chamber leakage model using *Enterococcus faecalis*	There were no statistically significant differences among the three obturation systems
Weston et al.	2008	Comparison of preparation design and material thickness on microbial leakage through Cavit using a tooth model system	Dual-chamber leakage model using *Streptococcus mutans*	Four-mm thick Cavit prevented bacterial ingress for 2 weeks, however, microbial leakage may occur if the thickness is less than 3 mm or in a complex access preparation

Contd...
Authors	Year	Title	Microbial leakage model	Result
Pasqualini et al.	2008	Microbial leakage of Gutta-Percha and Resilon root canal filling material: A comparative study using a new homogeneous assay for sequence detection	Polymerase chain reaction and then identification by the OCEAN technique for *Enterococcus faecalis*	Resilon showed greater microleakage and calcium hydroxide did not have a relevant impact on the quality of the apical seal
Hollanda et al.	2008	Sealing ability of three commercial resin-based endodontic sealers	Dual-chamber leakage model using a mixture of bacterial markers	No statistically significant difference between Sealer 26 and AH Plus, although both materials differed significantly from Resilon/Epiphany, which took less time to display microbial leakage
Ghoddusi et al.	2007	An evaluation of microbial leakage after using MTAD as a final irrigation	Dual-chamber leakage model using *Streptococcus mutans*	It took longer for bacteria to penetrate when either EDTA or MTAD was used for smear layer removal. The root canals filled with AH Plus showed significantly longer resistance to bacterial penetration than canals filled with Rickert
Fathi et al.	2007	An *in vitro* comparison of bacterial leakage of three common restorative materials used as an intracoronal barrier	Dual-chamber leakage model using *Enterococcus faecalis*	No significant difference was found between the Ketac-Cem, Clearfil Protect Bond/Clearfil AP-X and Maxcem
Monticelli et al.	2007	Efficacy of two contemporary single-cone filling techniques in preventing bacterial leakage	Dual-chamber leakage model using *Streptococcus mutans*	Warm vertical condensation with gutta-percha/AH Plus appears to be more effective in minimizing bacterial leakage than single-cone technique with ActiV GP or Gutta-Flow
Chogle et al.	2007	Intracanal assessment of mineral trioxide aggregate setting and sealing properties	Dual-chamber leakage model using *Enterococcus faecalis*	Apical moisture may affect the setting time or sealing ability of mineral trioxide aggregate
Munoz et al.	2007	Microbial leakage of *Enterococcus faecalis* after post space preparation in teeth filled *in vivo* with RealSeal versus Gutta-percha	Dual-chamber leakage model using *Enterococcus faecalis*	No statistically significant difference existed in the microleakage of teeth filled with RealSeal compared with gutta-percha when post space was prepared
using a scanning electron microscope (SEM), and (C) polymerase chain reaction (PCR). In the dual-chamber leakage model, there is a split chamber with a connection path through the root canal of the teeth fixed at the center. The upper chamber contains bacterial species cultured in brain heart infusion broth and the lower chamber contains the brain heart infusion broth. The entire root is covered with a sealing material while the root tip (apex) is left uncovered. In case of occurrence of bacterial leakage, the culture medium in the lower chamber becomes turbid.[17,23,27] In the SEM and PCR techniques, bacteria can be directly visualized or detected in the root canal or dentinal tubules.[26,33] Karagenc et al.[34] reported a poor correlation between the results of microbial leakage test and fluid filtration, electrochemical test, and dye penetration. Nawal et al.[15] showed that the results of SEM correlated with those of microbial leakage test. In the PCR method, DNA extracted from the specimens is amplified and then identified by the OCEAN technique.[16]

In the dual-chamber or split chamber model, the upper chamber may contain a single species (\textit{E. faecalis}, \textit{S. mutans}, \textit{P. mirabilis}, or \textit{S. epidermidis}),[7,17,23,35] multiple species,[8,27] or saliva.[10,18] Timpawat et al.[39] demonstrated that bacterial leakage model (mainly coronal) better simulated the clinical and biological setting than the dye penetration method. According to their study, most endodontic cements have adequate antibacterial activity to stop the ingress of bacteria. Microbial leakage studies cannot estimate the time of occurrence of periradicular infection because it

Authors	Year	Title	Microbial leakage model	Result
Zehnder et al.[32]	2007	Prevention of bacterial leakage through instrumented root canals by bioactive glass S53P4 and calcium hydroxide suspensions \textit{in vitro}	Dual-chamber leakage model using \textit{Enterococcus faecalis} and scanning electron microscope	The bioactive glass material under investigation could not prevent the contamination of instrumented root canals
Karagenc et al.[34]	2006	A comparison of four different microleakage tests for assessment of leakage of root canal fillings	Fluid filtration, electrochemical, dye penetration, and bacterial leakage tests	There was a poor correlation among various methods for evaluation of hydraulic leakage
Celik et al.[35]	2006	Bacterial microleakage of barrier materials in obturated root canals	Dual-chamber leakage model using \textit{Staphylococcus epidermidis}	Glass ionomer cement leaked significantly less when compared with flowable composite resin
Wang et al.[36]	2006	Effect of intracanal medicament on the sealing ability of root canals filled with Resilon	Dual-chamber leakage model using \textit{Streptococcus mutans}	Calcium hydroxide did not adversely affect the seal of the root‑canal system filled with Resilon
Yucel et al.[37]	2006	Effects of different root canal obturation techniques on bacterial penetration	Dual-chamber leakage model using \textit{Enterococcus faecalis}	There was no significant difference between System B and lateral compaction technique at 60 days
Balto et al.[38]	2005	Microbial leakage of Cavit, IRM, and Temp Bond in post-prepared root canals using two methods of gutta-percha removal: An \textit{in vitro} study	Dual-chamber leakage model using \textit{Enterococcus faecalis}	Peeso-reamer yielded less leakage compared to using a hot plugger during the 30-day experimental period
depends on several factors such as the virulence of microorganisms, defense capacity of the periradicular tissues, nutritional status, and bacterial interactions. However, chronic or acute infections may occur when microorganisms are present at the periapex.

The usage of human saliva is advantageous because it highly simulates the clinical setting. However, it cannot simulate the alterations in the oral environment such as thermal changes or the effect of dietary regimen on the salivary flow. Verissimo et al. showed that the evaluation of coronal leakage by use of bacteria provided more biologically significant and clinically relevant data than other methods.

Assessment of the sealing ability of gutta-percha obturation using saliva leakage method is based on the activity of salivary hydrolytic enzymes and their ability to break the seal. Microbial products cause disintegration of gutta-percha and compromise the adaptation of gutta-percha to root canal walls, thus impairing the seal. In a study by Maniglia-Ferreira et al., decomposition and destruction of polyisoprene (the main substance of gutta-percha) produced high amounts of carboxyl and hydroxyl radicals during thermomechanical compaction and thermoplastic techniques, which resulted in molecular weight reduction and a decrease in the stability and sealing ability of the filling material and increased coronal microleakage. In this review study, we found 31 studies that used split chamber technique (25 single species, 2 multiple species, and 4 saliva), of which 3 studies had used SEM and 1 study had used PCR technology.

CONCLUSION

All bacterial leakage evaluation techniques have some limitations, and may yield different results compared to other microleakage assessment methods (i.e., dye penetration, fluid filtration, or electrochemical tests). In most reviewed studies, the results of SEM correlated with those of the microbial leakage test. Microbial leakage test using saliva better simulates the clinical setting in assessment of leakage of single or mixed bacterial species. The greatest advantage of the PCR technique is its high specificity for detection of target microorganisms and decreasing the false positive results, which refer to the presence of residual bacteria within the root canal system before obturation.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Antunes HS, Rôças IN, Alves FR, Siqueira JF. Total and specific bacterial levels in the apical root canal system of teeth with post-treatment apical periodontitis. J Endod 2015;41:1037-42.
2. Gupta R, Dhingra A, Panwar NR. Comparative Evaluation of Three Different Obturating Techniques Lateral Compaction, Thermafi and Calamus for Filling Area and Voids Using Cone Beam Computed Tomography: An In vitro study. Journal of clinical and diagnostic research: JCDR. 2015;9(8):ZC15.
3. Kist S, Kollmuss M, Jang J, Schubert S, Hickel R, Huth KC. Comparison of ozone gas and sodium hypochlorite/chlorhexidine two-visit disinfection protocols in treating apical periodontitis: A randomized controlled clinical trial. Clin Oral Investig 2016 [Epub ahead of print].
4. Bergenholtz G, Torneek C, Kishen A. Inter-appointment Medication with Calcium Hydroxide in Routine Cases of Root Canal Therapy: The Root Canal Biofilm. Springer: Berlin Heidelberg, 2015. p. 303-25.
5. Kishen A, Peters OA, Zehnder M, Diogenes AR, Nair MK. Advances in endodontics: Potential applications in clinical practice. J Conserv Dent 2016;19:199.
6. Balto HA. Obturation Techniques Allow Microbial Leakage Unless Protected. J Prosthodont 2015;25:224-8.
7. Saberi E, Akbari M, Ebrahimpour S, Jalilpour H. In-ivitro evaluation of coronal microbial leakage after post space tooth preparation. Minerva Stomatol 2016;65:1273.
8. Amezcua O, Gonzalez A, Borges A, Bandeja M, Estrela C, Estrela C. Sealing Ability of Root-end Filling Materials. J Contemp Dent Pract 2015;16:210-4.
9. Kazemipoor M, Modaresi J, Zandi H, Vasee N, Farzanch M. Lack of correlation between microbial penetration method and electro chemical technique for assessment of leakage through the root canal fillings. Contemp Clin Dent 2014;5:71.
10. Gomes DJ, Costa MHdN, Sousa ERd, Lund RG. Coronal microleakage of endodontically treated teeth with intracanal post exposed to fresh human saliva. J Appl Oral Sci 2013;21:403-8.
11. Navarro-Escobar E, Baca P, Gonzalez-Rodriguez MP, Arias-Moliz MT, Ruiz M, Ferret-Laque CM. Ex vivo microbial leakage after using different final irrigation regimens with chlorhexidine. J Appl Oral Sci 2013;21:74-9.
12. Bahltriar H, Heidari N, Mehrvarzar F, Ghavzini K, Jafarzadeh MH, Dastmalchi N. In vitro comparative study of the microbial leakage of one-step, thermafi and lateral condensation techniques. J Contemp Dent Pract 2012;13:27-30.
13. Maziar F, Dianat O, Mahjour F. Comparing microbial leakage in root canals obturated with nanosilver coated gutta-percha to standard gutta-percha by two different methods. Iran Endod J 2011;6:140-5.
14. Shashidhar C, Shivanna V, Shivarwadhy G, Shashidhar J. The comparison of microbial leakage in roots filled with resinol and gutta-percha: An in vitro study. J Conserv Dent 2011;14:21.
15. Nawal RR, Parande M, Sehgal R, Rao NR, Naik A. A comparative evaluation of 3 root canal filling systems. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2011;111:387-93.
16. Lodiene G, Kleiymr M, Bruzel E, Orstavik D. Sealing ability of mineral trioxide aggregate, glass ionomer cement and composite resin when repairing large furcal perforations. Br Dent J 2011;210:E7.
17. Valadare S, Soares J, Nogueira C, Cortes M, Leite M, Nunes E, et al. The efficacy of a cervical barrier in preventing microleakage of Enterococcus faecalis in endodontically treated teeth. Gen Dent 2016;59:e32-7.
18. Aminosubani M, Ghorbanzadeh A, Bolhari B, Shokouhinejad N, Ghahrezi S, Assadian H, et al. Coronal microleakage in root canals obturated with lateral compaction, warm vertical compaction and guttaflow system. Iran Endod J 2010;5:83-7.
19. de Almeida-Gomes F, Maniglia-Ferreira C, de Morais Vitoriano M,
Savadkouhi, et al.: In vitro and ex vivo microbial leakage assessment in endodontics

Carvalho-Sousa B, de Lima Guimarães NLS, dos Santos RA, et al. Ex vivo evaluation of coronal and apical microbial leakage of root canal-Filled with gutta-percha or Resilon/Epiphany root canal filling materials. Indian J Dent Res 2010;21:98.

20. Drukteinis S, Peciulevičiute V, Maineliene R, Bendinskaite R. In vitro study of microbial leakage in root canals filled with EndoREZ sealer/ EndoREZ Points and AH Plus sealer/conventional gutta-percha points. Stomatologija 2009;11:21-5.

21. Pitour E, Oberholzer T. Leakage of teeth root-filled with GuttaFlow and a single GP cone compared to lateral condensation and warm vertical condensation. SADJ 2009;64:104, 6-8.

22. Jacobovitz M, Vianna ME, Pandolfini VC, Oliveira IR, Rossetto HL, Gomes BP. Root canal filling with cements based on mineral aggregates: An in vitro analysis of bacterial microleakage. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009;108:140-4.

23. Salz U, Poppe D, Sibicego S, Roulet JF. Sealing properties of a new root canal sealer. Int Endod J 2009;42:1084-9.

24. Fransen JN, He J, Glieckman GN, Rios A, Shulman JD, Honeyman A. Comparative assessment of ActiV GP/glass ionomer sealer, Resilon/Epiphany, and gutta-percha/AH plus obturation: A bacterial leakage study. J Endod 2008;34:725-7.

25. Weston CH, Barfield RD, Ruby JD, Litaker MS, McNeal SF, Eleazer PD. Comparison of preparation design and material thickness on microbial leakage through Cavit using a tooth model system. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008;105:530-5.

26. Pasqualini D, Scotti N, Mollo L, Berutti E, Angelini E, Migliaretti G, et al. Microbial leakage of gutta-percha and Resilon™ root canal filling material: A comparative study using a new homogenous assay for sequence detection. J Biomater Appl 2008;23:37-52.

27. Hollanda A, Estrela C, Decurcio DA, Silva J, Estrela C. Sealing ability of three commercial resin-based endodontic sealers. Gen Dent 2008;57:568-73.

28. Ghodsioui J, Rohani A, Rashid T, Ghaziani P, Albari M. An evaluation of microbial leakage after using MTAD as a final irrigation. J Endod 2007;33:173-6.

29. Fathi B, Babacall J, Maki JS. An in vitro comparison of bacterial leakage of three common restorative materials used as an intracoronal barrier. J Endod 2007;33:872-4.

30. Monticelli F, Sadek FT, Schuster GS, Volkman KR, Looney SW, Ferrari M, et al. Efficacy of two contemporary single-cone filling techniques in preventing bacterial leakage. J Endod 2007;33:310-3.

31. Chogle S, Mickel A, Chan D, Hufnake K, Jones J. Intracanal assessment of mineral trioxide aggregate setting and sealing properties. Gen Dent 2006;55:306-11.

32. Muñoz HR, Saravia-Lemus GA, Florian WE, Lainfiesta JF. Microbial leakage of Enterococcus faecalis after post space preparation in teeth filled in vivo with RealSeal versus Gutta-percha. J Endod 2007;33:673-5.

33. Zehnder M, Baumgartner G, Marquardt K, Paqué F. Prevention of bacterial leakage through instrumented root canals by bioactive glass S3P4 and calcium hydroxide suspensions in vitro. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007;103:42-8.

34. Karagüne B, Geralbolü N, Ersoy M, Cansever G, Külekçİ G. A comparison of four different microleakage tests for assessment of leakage of root canal fillings. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006;102:110-3.

35. Çelik EU, Yasar AGD, Ateş M, Şen BH. Bacterial microleakage of barrier materials in obturated root canals. J Endod 2006;32:1074-6.

36. Wang CS, Debelian GJ, Teixeira FB. Effect of intracanal medicament on the sealing ability of root canals filled with Resilon. J Endod 2006;32:532-6.

37. Yücel MC, Çiftçi A. Effects of different root canal obturation techniques on bacterial penetration. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006;102:e88-92.

38. Balto H, Al-Nazhan S, Al-Mansour K, Al-Otaibi M, Siddiqui Y. Microbial Leakage of Cavit, IRM, and Temp Bond in Post-prepared Root Canals Using Two Methods of Gutta-percha Removal: An In Vitro Study. The Journal of Contemporary Dental Practice 2005;6(3):053.

39. Timpawat S, Amornchat C, Trisuwon W-R. Bacterial coronal leakage after obturation with three root canal sealers. J Endod 2004;27:36-9.

40. Zehnder M, Belibasakis GN. On the dynamics of root canal infections—what we understand and what we don't. Virulence 2015;6:216-22.

41. Siqueira JF, Nicucci D, Roaças IN. Bacterial Biofilms and Endodontic Disease: Histobacteriological and Molecular Exploration. In The Root Canal Biofilm. Springer Berlin Heidelberg; 2015. p. 103-25.

42. Veríssimo DM, Vale MSd. Methodologies for assessment of apical and coronal leakage of endodontic filling materials: A critical review. J Oral Sci 2006;48:93-8.

43. Marigida-Ferreira C, Böneck S, Silva J, De Paula R, Feitosa J, Souza-Filho F. Degradation of trans-polyisoprene after root filling with thermoplasticized techniques. Int Endod J 2008;41:296-302.