Tevatron constraint on the Kaluza-Klein gluon of the Bulk Randall-Sundrum model

M. Guchait\(^{(1)}\), F. Mahmoudi\(^{(2)}\) and K. Sridhar\(^{(3)}\)

1. Department of High Energy Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400 005, India.
2. Department of Physics, Mount Allison University, Sackville, New Brunswick, Canada E4L 1E6.
3. Department of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400 005, India.

ABSTRACT

The Bulk Randall-Sundrum model, where all Standard Model particles except the Higgs are free to propagate in the bulk, predicts the existence of Kaluza-Klein (KK) modes of the gluon with a large branching into top-antitop pairs. We study the production of the lowest KK gluon mode at the Tevatron energy and use the data on the top cross-section from the Run II of Tevatron to put a bound on the mass of the KK gluon. The resulting bound of 800 GeV, while being much smaller than the constraints obtained on the KK gluon mass from flavour-changing neutral currents, is the first, direct collider bound which is independent of the specificities of the model.

*guchait@tifr.res.in
\†nmahmoudi@mta.ca
\‡sridhar@theory.tifr.res.in
The past decade has been witness to a phase of intense theoretical activity in the area of extra space-dimensions and the resurgence of interest in the physics of extra dimensions, originally due to Kaluza and Klein, is due to the new paradigm of brane-worlds [1]. For high energy physics this is exciting because it provides fresh perspectives to the solution of the hierarchy problem and also suggests the discovery of new physics at TeV-scale colliders [2,3].

In an attempt to find a genuine solution to the hierarchy problem Randall and Sundrum discovered a model now known in the literature as the Randall-Sundrum model or the RS model [4]. In the RS model, one starts with a slice of anti-de Sitter spacetime in five dimensions (AdS5) with the fifth dimension ϕ compactified on a S^1/Z^2 orbifold with a radius R_c such that R_c^{-1} is somewhat smaller than M_P, the Planck length. Two D3-branes called the Planck brane and the TeV brane are located at $\phi = 0$, π, the orbifold fixed points, and the Standard Model (SM) fields are localised on the TeV brane. With a five-dimensional metric of the form

$$ds^2 = e^{-K R_c \phi} \eta_{\mu \nu} dx^\mu dx^\nu + R_c^2 d\phi^2.$$ (1)

the model provides a novel solution to the hierarchy problem. Here K is a mass scale related to the curvature. The warp factor acts as a conformal factor for the fields localised on the brane and mass factors get rescaled by this factor. So $M_P = 10^{19}$ GeV for the Planck brane at $\phi = 0$ gets rescaled to $M_P \exp(-K R_c \pi)$ for the TeV brane at $\phi = \pi$. The warp factor generates $\frac{M_P}{M_{EW}} \sim 10^{15}$ by an exponent of order 30 and solves the hierarchy problem. In order to solve the dynamical problem of stabilising R_c against quantum fluctuations a scalar field in the bulk [6] with a stabilising potential is introduced. Interesting collider phenomenology of the model results due to the prediction of the existence of Kaluza-Klein (KK) excitations of the graviton [7].

Insights gleaned from studying the RS model [8] using the AdS/CFT correspondence [9] have suggested deformations of the original scenario. The AdS/CFT correspondence informs us that the RS model is dual to a 4-d effective theory incorporating gravity and a strongly-coupled sector. The dual theory is conformally in-

1 More precisely, these authors proposed two models at more or less the same time with different features of quantum gravity in each of these. These are now referred to as the RS1 [4] and RS2 [5] models. In our work, we will describe and work with the RS1 model and refer to it throughout as the RS model.
variant from the Planck scale down to the TeV scale and it is the existence of the
TeV-brane that breaks conformal symmetry at the infrared scales. The KK excita-
tions as well as the fields localised on the TeV brane are TeV-scale composites. In
effect, the original RS theory is dual to a theory of TeV-scale compositeness of the
entire SM. Given the unviability of such a scenario in the face of existing experi-
mental information, the simplest possibility is to modify the model so that only the
Higgs field is localised on the TeV brane while the rest of the SM fields are in the
bulk [10].

In order to veer towards specific model realisations of such a deformation of
the RS model, flavour hierarchy, consistency with electroweak precision tests and
avoidance of flavour-changing neutral currents can be used as guiding principles
[11]. The location of the fermions in the bulk, or equivalently the shape of the pro-
files of the SM fermions, is determined by the fact that to get a large Yukawa cou-
pling i.e. overlap with the Higgs one needs to localise the fermion close to the TeV
brane. Conversely, the fermions close to the Planck brane will have small Yukawa
couplings. The top sector needs special attention, however: the large Yukawa of the
top demands proximity to the TeV brane. However, the left-handed electroweak
doublet, \((t, b)_L\), cannot be close to the TeV brane because that induces non-universal
couplings of the \(b_L\) to the Z constrained by \(Z \to b\bar{b}\). So the doublet needs to be as
far away from the TeV brane as allowed by \(R_b\) whereas the \(t_R\) needs to be localised
close to the TeV brane to account for the large Yukawa of the top. We stress that this
is one model realisation; a different profile results, for example, in models that in-
vokes a custodial symmetry or other discrete symmetries [12]. It has been found that
in order to avoid huge effects of flavour-changing neutral currents (FCNCs) and to
be consistent with precision tests of the electroweak sector, the masses of the KK
modes of the gauge bosons have to be strongly constrained. The resulting bounds
on the masses of the KK gauge bosons are found to be in the region of 2-3 TeV [11]
though this bound can be relaxed by enforcing additional symmetries. A review of
the literature on this subject can be found in Ref. [13].

There have been several studies of the phenomenology associated with this sce-
nario presented in the recent literature [14]. In particular, some of these studies have
focused on graviton production in the context of these models [15]. One of the interesting signals for this scenario is the production of KK gluons. The KK gluon couples strongly to the t_R, with a strength which is enhanced by a factor ξ compared to the QCD coupling where $\xi \equiv \sqrt{\log(M_{pl}/\text{TeV})} \sim 5$. Consequently, it decays predominantly to tops if produced. To the left-handed third-generation quarks, the KK gluon couples with the same strength as the QCD coupling whereas to the light quarks its couplings are suppressed by a factor $1/\xi$. The problem in producing the KK gluon at a collider, however, is that its coupling to the ordinary gluon vanishes because of the orthogonality of the profiles of these particles. The KK gluon can, therefore, be produced by annihilation of light quarks and this production mechanism has been studied in the context of the LHC [16].

In this paper, we investigate the production of KK gluons at the Tevatron and its decay into top pairs and use the measured top cross-section at the Tevatron to obtain a lower bound on the mass of the KK gluon. Given that the Tevatron reach is limited kinematically, it is not going to probe the range that is probed by precision electroweak tests, FCNCs, or by the LHC. Nevertheless, it is useful to determine what is the direct, model-independent bound that existing collider data can provide. To express it differently, even if a specific model avoids the problem of FCNCs through the incorporation of a new symmetry or by a novel choice of profiles of SM particles in the bulk and allows for the gluon KK modes to be much lower in mass, the Tevatron bound will still be applicable.

The cross-section for the production of a KK gluon of mass M_s via quark-antiquark annihilation is given by

$$\sigma = \frac{4\pi \Lambda_q^2}{9 M_s^2} \int dy \sum_q x_1 q(x_1, M_s^2) x_2 \bar{q}(x_2, M_s^2) + (x_1 \leftrightarrow x_2)$$

(2)

Λ_q is the coupling of the KK gluon to light quarks and is equal to $\sqrt{4\pi \alpha_s/5}$. A KK gluon with a mass just a little above the $t\bar{t}$ threshold has a very large branching into top pairs: the branching ratio is about 92.5% [16].

One can actually include the effect of QCD corrections quite trivially. Since the SM gluon does not couple to the KK gluon, the gluon in the NLO-QCD diagrams couple only to the quark legs. This is exactly like the Drell-Yan production of lepton
pairs and so one can simply put in the Drell-Yan K-factor here as an overall factor to account for the QCD corrections. This is given by

\[K = 1 + \frac{8\pi}{9} \alpha_s(M_*^2) \]

(3)

Figure 1: The cross-section for KK gluon production as a function of its mass. The horizontal lines show the CDF central value for the cross-section and the 2-sigma upper limit.

In Fig 1, we have plotted the cross-section as a function of the scale \(M_* \) for \(p\bar{p} \) collisions at the Tevatron energy of \(\sqrt{s} = 1.96 \) TeV. We have used the CTEQ4M densities [17] and the parton distributions are taken from PDFLIB [18]. For the QCD scale, we use \(Q = M_*/2 \). We have folded the calculated cross-section with the branching ratio of the KK gluon into \(t\bar{t} \) which is 92.5%. For the experimental value of the cross-section we have used the value presented by the CDF collaboration (averaged over all channels) from the Run II of the Tevatron given in Ref. [19] which is quoted as \(\sigma_{t\bar{t}} = 7.3 \pm 0.5(stat) \pm 0.6(syst) \pm 0.4(lum) \). The central value and the 2\(\sigma \) band of this cross-section (with the errors added in quadrature) are also shown in Fig 1. We see that a bound of about 800 GeV results at the 95% confidence level. For other choices of scale and parton distributions, the cross-section varies by about 25% resulting in about a 20-30 GeV in the value of the bound on \(M_* \).
In conclusion, one of the striking predictions of the bulk RS model is the existence of KK gluons which decay into a $t\bar{t}$ pair. We have computed the production cross-section of these particles at the Tevatron and compared it with the $t\bar{t}$ cross-section measurement from the Run II of the Tevatron. The lower bound on the KK gluon mass is obtained to be about 800 GeV at 95% C.L. This is the first direct collider bound on the mass of the KK gluon in this model.

References

[1] P. Horava and E. Witten, Nucl. Phys. B 460 (1996) 506 [arXiv:hep-th/9510209]; J. D. Lykken, Phys. Rev. D 54 (1996) 3693 [arXiv:hep-th/9603133]; E. Witten, Nucl. Phys. B 471 (1996) 135 [arXiv:hep-th/9602070].

[2] N. Arkani-Hamed, S. Dimopoulos and G. R. Dvali, Phys. Lett. B 429 (1998) 263 [arXiv:hep-ph/9803315]; I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G. R. Dvali, Phys. Lett. B 436 (1998) 257 [arXiv:hep-ph/9804398].

[3] I. Antoniadis, Phys. Lett. B 246 (1990) 377.

[4] L. Randall and R. Sundrum, Phys. Rev. Lett. 83 (1999) 3370 [arXiv:hep-ph/9905221].

[5] L. Randall and R. Sundrum, Phys. Rev. Lett. 83 (1999) 4690 [arXiv:hep-th/9906064].

[6] W. D. Goldberger and M. B. Wise, Phys. Rev. Lett. 83 (1999) 4922 [arXiv:hep-ph/9907447]; W. D. Goldberger and M. B. Wise, Phys. Lett. B 475 (2000) 275 [arXiv:hep-ph/9911457].

[7] H. Davoudiasl, J. L. Hewett and T. G. Rizzo, Phys. Rev. D 63 (2001) 075004 [arXiv:hep-ph/0006041]; K. Sridhar, JHEP 0105 (2001) 066 [arXiv:hep-ph/0103055]; B. C. Allanach, K. Odagiri, M. A. Parker and B. R. Webber, JHEP 0009 (2000) 019 [arXiv:hep-ph/0006114]; B. C. Allanach, K. Odagiri, M. J. Palmer, M. A. Parker, A. Sabetfakhri and B. R. Webber, JHEP 0212 (2002) 039 [arXiv:hep-ph/0211205].
[8] N. Arkani-Hamed, M. Porrati and L. Randall, JHEP 0108 (2001) 017 [arXiv:hep-th/0012148]; R. Rattazzi and A. Zaffaroni, JHEP 0104 (2001) 021 [arXiv:hep-th/0012248].

[9] J. M. Maldacena, Adv. Theor. Math. Phys. 2 (1998) 231 [arXiv:hep-th/9711200].

[10] A. Pomarol, Phys. Lett. B 486 (2000) 153 [arXiv:hep-ph/9911294]; T. Gherghetta and A. Pomarol, Nucl. Phys. B 586 (2000) 141 [arXiv:hep-ph/0003129].

[11] K. Agashe, A. Delgado, M. J. May and R. Sundrum, JHEP 0308 (2003) 050 [arXiv:hep-ph/0308036]; K. Agashe, A. Delgado and R. Sundrum, Nucl. Phys. B 643 (2002) 172 [arXiv:hep-ph/0206099]; R. Contino and A. Pomarol, JHEP 0411 (2004) 058 [arXiv:hep-th/0406257]; K. Agashe, R. Contino and A. Pomarol, Nucl. Phys. B 719 (2005) 165 [arXiv:hep-ph/0412089]; K. Agashe, G. Perez and A. Soni, Phys. Rev. Lett. 93 (2004) 201804 [arXiv:hep-ph/0406101].

[12] K. Agashe, R. Contino, L. Da Rold and A. Pomarol, Phys. Lett. B 641 (2006) 62 [arXiv:hep-ph/0605341]; M. Carena, E. Ponton, J. Santiago and C. E. M. Wagner, Nucl. Phys. B 759 (2006) 202 [arXiv:hep-ph/0607106].

[13] R. Contino, T. Kramer, M. Son and R. Sundrum, arXiv:hep-ph/0612180.

[14] K. Agashe, G. Perez and A. Soni, Phys. Rev. D 75 (2007) 015002 [arXiv:hep-ph/0606293]; R. Contino, L. Da Rold and A. Pomarol, arXiv:hep-ph/0612048; A. Djouadi, G. Moreau and F. Richard, arXiv:hep-ph/0610173; M. Carena, E. Ponton, J. Santiago and C. E. M. Wagner, arXiv:hep-ph/0701055.

[15] A. L. Fitzpatrick, J. Kaplan, L. Randall and L. T. Wang, arXiv:hep-ph/0701150; K. Agashe, H. Davoudiasl, G. Perez and A. Soni, arXiv:hep-ph/0701186.

[16] K. Agashe, A. Belyaev, T. Krupovnickas, G. Perez and J. Virzi, arXiv:hep-ph/0612015; B. Lillie, L. Randall and L. T. Wang, arXiv:hep-ph/0701166.
[17] H. L. Lai et al., Phys. Rev. D 55 (1997) 1280 [arXiv:hep-ph/9606399].

[18] H. Plothow-Besch, Comput. Phys. Commun. 75 (1993) 396.

[19] S. Cabrera [CDF and D0 Collaboration], FERMILAB-CONF-06-228-E, Presented at 14th International Workshop on Deep Inelastic Scattering (DIS 2006), Tsukuba, Japan, 20-24 Apr 2006.