The challenge of getting a high quality of RNA from oocyte for gene expression study

Yusoff Maisarah¹, Hashim Noor Hashida², Mohd-Yusuf Yusmin²,³*

¹ Institute of Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia; ² Biology Division, Centre for Foundation Studies in Science, University of Malaya, Kuala Lumpur, Malaysia; ³ Centre for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur, Malaysia.

Abstract

The extraction of intact RNA from oocyte is quite challenging and time-consuming. A standard protocol using commercial RNA extraction kit, yields a low quantity of RNA in oocytes. In the past, several attempts in getting RNA for gene expression study ended up with a few different modified methods. Extraction of high-quality RNA from oocyte is important before further downstream analyses such as reverse transcription-polymerase chain reaction, quantitative polymerase chain reaction, or northern blot analysis. In this review, the efficiency of RNA extraction methods from all species oocytes was compared between published articles and our research to gather all possible methods of RNA extraction. Two different methods of RNA extraction that were proposed from various experiments were reviewed to determine the best method of RNA extraction from the oocyte. Modified TRIzol method can be concluded as an efficient RNA extraction method especially for good RNA from oocytes. Meanwhile, comparing RNA extraction kits to extract the RNA from oocytes or pre-implantation embryos, the micro RNA extraction kit type is the best. Therefore, an appropriate RNA extraction method is important to obtain high quality of total RNA for gene expression profiling analysis.

Introduction

Each new life begins from a fascinating journey called fertilization, the union of two gametes; an oocyte and a sperm. Upon ovulation, the cumulus-oocytes complex (COC) will be released from the female ovary to the Fallopian tube or oviduct. Sperm will then continue to move towards the oocyte through intact cumulus cells. Once the capacitated sperm attach to oocyte’s zona pellucida, a process called acrosome reaction will occur, which releases all the hydrolytic enzymes to enable the sperm to penetrate the oocyte for fertilization. The two-pronuclear zygote will be formed from the fertilization of sperm and oocyte nuclei. Fertilized oocyte will then developed into a 2-cell stage embryo followed with 4-cell, 8-cell, morula, and lastly develops into blastocyst cell before embryo implantation in the uterus.

An oocyte is a female germ cell and one of the largest cells in the body. The oocyte is rich in the cytoplasm that contains yolk granules to support the cell’s growth, maturation, and the early development after fertilization. The oocyte is enclosed with a thick glycoprotein shell called the zona pellucida. The main role of the oocyte is to be fertilized and to grow into a fully functional organism. Therefore, the oocyte has to be able to regulate many different cellular and developmental processes such as regulation of the cell cycle progression and cellular metabolism, fertilization, embryo development, activation of the embryonic genome, and formation of body axes. During oocyte growth, a variety of maternally transcribed messenger RNAs (mRNAs) are supplied which represent the maternal contribution to the newly fertilized oocyte, zygote, and early embryo. These mRNAs can be stored in messenger ribonucleoprotein complexes and then translated when needed. These mRNAs also can be localized within a specific region of the cytoplasm or dispersed within the cytoplasm of the entire oocyte.

Oocyte serves as a basis for human or mammalian reproduction. Thus, the quality of oocyte is considered the most important aspect of successful fertilization, embryo...
maturation, and development. One way to determine the quality of oocyte is to explore the genes related using a few methods in gene expression study. In a gene expression study, RNA is extracted as genetic materials for further downstream analysis. However, extraction of high quality of RNA from oocytes and embryos is quite challenging due to limited quantity of cells and consequently, RNA. To overcome the limitation, large pools of up to 300 oocytes or embryos are used for RNA extraction. The major difficulty of using these large pool samples was the time-consumingness to collect a large number of oocytes and embryos. Therefore, various techniques and methods had been proposed to overcome the technical difficulties occurring during RNA extraction from oocytes and pre-implantation embryos as summarized in Table 1.

In the past, several attempts that focused on oocyte gene expression profiling by different approaches had resulted in finding a group of genes related to the quality of oocyte or other reproductive functions (Table 2). Oocyte gene expression can be evaluated using mRNA which provides genetic materials and the downstream effect of epigenetic influences mediating oocyte development. The first gene expression analyses in human oocytes was performed by reverse transcription-polymerase chain reaction (RT-PCR) and the latest with microarray technology. In the research done by Zhao et al, the authors managed to detect histamine type 2 receptor (H2) mRNA in mouse blastocysts during pre-implantation embryonic development using the RT-PCR technique. The study confirmed the existence of H2 in mouse blastocysts, which was believed to bind with histamine the uterus for embryo implantation.

Serotonin 5-HT1D receptor mRNA was expressed in mouse oocytes, zygotes, 2-cell embryos, compacted morulae, and in vivo produced expanded blastocysts through RT-PCR in a former study.

The expression of the mRNA 5-HT1D serotonin receptor was also detected in blastocysts cultured in vitro. Demonstration of the expression of 5-HT1D serotonin receptor in the mouse oocyte and pre-implantation embryos supports the idea of serotonin 5-HT1D receptor role in the early mammalian development, where cultured with specific serotonin 5-HT1D agonist sumatriptan (1.00 µM) significantly inhibited the development of mouse embryos.

The expression of the α2C-adrenergic receptor gene in the ovulated oocyte, 8 to 16-cell morulae, and expanded blastocysts using the RT-PCR method has also been demonstrated previously. Exposure of mouse pre-implantation embryos to α2C-adrenergic receptor agonists led to a significant reduction of the mean embryo cell number. The study suggested that elevated epinephrine and norepinephrine hormones during stress and trauma, could directly affect embryo development via adrenergic receptors. Therefore, from the findings, it is supported that maternal stress can influence embryo development even in the early stage of pregnancy.

Findings showed that gene expression study in the oocyte is important to understand the various mechanisms involving in the development of embryos, fertilization, and other processes related to reproduction. Few methods were applied to study gene expression profiling in oocytes such as RT-PCR, real-time PCR, or northern blot analysis. However, extraction of high-quality RNA from oocyte is crucial before the analysis. In this short communication, a comparison of two common methods of RNA extraction from oocytes; modified TRizol method and commercial RNA extraction kit, was carried out which could give some guidelines or ideas in extracting high quality of total RNA from oocytes in any species for further gene expression analysis.

### Table 1. Summary of various RNA extraction methods from oocyte.

| Method                        | Oocyte | Comment                                                                 | Reference |
|-------------------------------|--------|-------------------------------------------------------------------------|-----------|
| **Guanidine isothiocyanate procedure** | Murine | Large amounts of oocytes used; 200 oocytes. The RNA was extracted from pools of 20 oocytes and embryos. Expression of poly(A)-binding protein nuclear-like 1 gene was detected in oocytes and expression of methyl-CpG-binding domain protein 3-like 2 genes were detected in early embryos through RT-PCR. | 7         |
| **QuickPrep micro mRNA purification kit** | Bovine | The expression of CD44 gene in sheep oocyte and pre-implantation embryos had been detected through RT-PCR. Micro RNA kit is suggested especially for the extraction of RNA from oocyte compared to commercial RNA extraction kit. | 17        |
| **RNeasy Micro Kit** | Ovine | In RT-PCR, the DNMT1 gene amplified better using the RNA extracted from this method compared to RNA extracted using other methods. | 16        |
| **Bovine** | The amplification of polyadenylated RNA resulted in detectable DNA products ranging from ~ 500 to ~ 5000 nucleotides. The consistency of high RNA quality extracted across samples had demonstrated that the quality was appropriate for single-cell mRNA-sequencing. | 11        |
| **Modified TRizol method** | Bovine & Swine |                                                                 | 9         |

* Amersham Biosciences, Buckinghamshire, UK, and † Qiagen, Valencia, USA.
Table 2. List of genes involved in oocyte and embryo development in reproduction study.

| Genes                  | Source                                                                 | Year | Reference            |
|------------------------|------------------------------------------------------------------------|------|----------------------|
| Histamine type 2 receptor | Mouse blastocysts                                                      | 2000 | Zhao et al.⁹         |
| Serotonin 5-HT1D receptor | Mouse oocytes, zygotes, 2-cell embryos, compacted morulae and in vivo produced expanded blastocysts | 2003 | Veselá et al.⁷       |
| α2C-adrenergic receptor | Mouse oocytes, 8 to 16-cell morulae and expanded blastocysts           | 2007 | Cikos et al.⁸        |

Materials and Methods

Extraction of RNA using the modified TRizol method. Few studies had applied the modified TRizol method especially in extracting the RNA from oocytes (Table 3). Pavani et al. have modified TRizol protocol from Chomczynski and Sacchi, and used it to extract RNA from bovine oocytes.⁹,¹⁰ The modifications in the TRizol protocol were made to the minimum number of bovine oocytes. In 500 µL micro-centrifuge tubes, 100 µL of TRizol reagent was added with five to 60 oocytes each and centrifuged at 7,500 g at 4.00 °C. The supernatant was washed twice with 75.00% ethanol followed by centrifugation at the same parameters. The polymer in Phasemaker tubes is heavier than the aqueous phase of the TRizol reagent mix but lighter than the organic phase. After centrifugation, it positions itself between these two layers that will help to remove the aqueous phase containing RNA easily. Few modifications in extracting the RNA from oocytes include the use of Phasemaker™ tubes, a second chloroform wash of the aqueous phase and the precipitation of the RNA with glycogen in a 200 µL micro-centrifuge tube were made. First, the oocyte was thawed by adding 150 µL of TRizol and followed by adding 30.00 µL of chloroform. The mixture was transferred to the Phasemaker™ tube for centrifugation at 12,000 g for 5 min at 4.00 °C. In this experiment, the aqueous solution was mixed for the second time with 20.00 µL of chloroform which followed by second centrifugation at the same parameters. The aqueous solution was collected and mixed with 1.00 µL of glycogen (Glycoblu™; Thermo Fisher Scientific, Austin, USA) and 150 µL of isopropanol in a 200 µL tube and were centrifuged at 12,000 g for 10 min at 4.00 °C. The use of glycogen in the experiment was to help in nucleic acid recovery in the solution during alcohol precipitations. After the centrifugation, the supernatant was pipetted out and the RNA pellet at the bottom of the tube was washed twice with 75.00% ethanol followed by centrifugation at 7,500 g for 5 min at 4.00 °C. The pellet was air-dried and eluted in 1.00 µL of nuclease-free water.

Table 3. Summary of RNA extraction from oocytes using a modified TRizol method.

| Genes                                              | Source                                                                 | Year | Reference            |
|----------------------------------------------------|------------------------------------------------------------------------|------|----------------------|
| GAPDH, β-actin, ribosomal protein L7, 16s ribosomal protein, and histone H2A.Z | Mouse oocytes                                                      | 2005 | Jeong et al.¹³       |
| AdipoR1 (132 bp) and AdipoR2 (258 bp) gene         | Mouse pre-implantation embryos and oocytes                          | 2010 | Cikos et al.¹²        |
| DNMT1 gene                                         | Bovine oocytes                                                      | 2015 | Pavani et al.⁹       |
The amplification of polyadenylated RNA resulted in detectable DNA products ranging from ~500 to ~5000 nucleotides. The consistency of high RNA quality extracted across samples had demonstrated that the quality was appropriate for single-cell mRNA-sequencing.\textsuperscript{11}

In another study, the expression of adiponectin receptors in mouse pre-implantation embryos was detected using RT-PCR by Cikos et al.\textsuperscript{12} In this study, the authors used the RNA extracted from 90-100 mouse pre-implantation embryos and unfertilized oocytes using TRIzol reagents (Invitrogen Life Technologies, Karlsruhe, Germany) method. The RNA extracted using the TRIzol method is proved to have better purity since the authors managed to detect PCR products corresponding to AdipoR1 (132 bp) and AdipoR2 (258 bp) genes in oocytes as well as embryos of all other developmental stages.\textsuperscript{12}

While in other experiments done by Jeong et al, the authors employed three methods for the extraction of RNA from mouse oocytes. In one of the methods, total RNA of each oocyte or embryo was extracted using the TRIzol reagent (Gibco BRL, Carlsbad, USA).\textsuperscript{13} Secondly, messenger RNA was extracted with oligo-dT conjugated bead using the Dynabeads mRNA Direct Kit (Dynal Asa, Oslo, Norway) according to the manufacturer’s instructions and lastly, freeze/thaw cycles with the only reverse transcription buffer (Promega, Madison, USA) were carried out for the collection of total RNA.\textsuperscript{13} The total RNA extracted was compared for its efficacy by evaluating the expression levels of GAPDH, β-actin, ribosomal protein L7, 16s ribosomal protein, and histone H2AZ using real-time PCR. The amplification was evident from all the samples prepared with no significant differences of Ct values among the RNA extracted from all the three methods.\textsuperscript{13}

**Extraction of RNA using RNA extraction kit.** Several studies had proposed using an RNA extraction kit in extracting RNA from the oocyte (Table 4). There are many RNA extraction kits offered by different manufacturer companies over the world. As an example, in Steuerwald et al. study, total RNA was extracted from individual oocyte and embryo by using Micro RNA Isolation Kit (Stratagene, La Jolla, USA) according to the manufacturer’s protocol with the addition of 10.00 µg glycogen as a carrier.\textsuperscript{14}

In the experiment done by Zhu et al., RNeasy Micro Kit (Qiagen, San Francisco, USA) was employed to extract the RNA from porcine oocyte with some modifications to the samples. Snap frozen samples were incubated at 65.00 °C for 5 min to facilitate the lysis of the oocyte and the release of RNA before RNA extraction.\textsuperscript{15}

Another experiment also used the RNeasy Micro Kit for RNA extraction from oocytes. In this study, the expression of CD44 gene in sheep oocyte and pre-implantation embryos had been detected through RT-PCR using purified RNA extracted through RNeasy Micro Kit.\textsuperscript{16}

In Biase et al, study, poly (A)-binding protein nuclear-like 1 and methyl-CpG-binding domain protein 3-like 2 genes had been detected in oocytes and early embryos from the RNA extracted using the QuickPrep Micro mRNA Purification kit (Amersham Biosciences, Buckinghamshire, UK) according to the manufacturer’s instructions.\textsuperscript{17}

In addition to the experiments reviewed, the author had also done the experiments to compare the extraction of RNA from mouse oocytes and COC with two methods, using a modified TRIzol method and RNA extraction kit. In the beginning, total RNA was extracted from nine mouse COC and 200 of mouse oocytes using RNeasy Mini Kit (Qiagen, USA). Extractions of total RNA from mouse COC and oocyte were performed according to the manufacturer’s recommendations. Additionally, 10.00 µL of β-mercaptoethanol was added to 1.00 mL of RLT buffer solution to help in the process of sample lysis. In the other experiment, total RNA was extracted from snap freezing of 10 COC and 200 mouse oocytes using TRIzol reagents (Ambion, Austin, USA) with some modifications. The purified RNA was dissolved in 30.00 µL of DEPC-treated water followed by incubation at 55.00 °C for 10 min.

**Results**

Total RNA extracted from the two methods mentioned was analyzed by measuring optical density at 260 nm and 280 nm using Nanodrop 2000 ultraviolet spectrophotometer (Thermo Fisher Scientific). The RNA yielded from mouse COC and oocytes using RNeasy Mini Kit showed a very low quantity of RNA (Table 5).

**Table 5.** Spectrophotometric readings of RNA extraction using RNeasy Mini Kit.

| Sample          | Number of COC/oocytes | RNA concentration (ng µL\textsuperscript{-1}) | Purity 260/280 |
|-----------------|-----------------------|-----------------------------------------------|----------------|
| Blank           | 0                     | 0.60                                          | 1.04           |
| COC             | 9                     | 3.80                                          | 1.68           |
| CFO             | 200                   | 1.90                                          | 10.50          |

COC: Cumulus-oocytes complexes, and CFO: Cumulus free oocytes.

Meanwhile, total RNA extracted from mouse COC and oocytes using a modified TRIzol method showed higher quantity of total RNA compared to the RNA extracted using the RNeasy Mini Kit (Table 6). The total RNA solution was also evaluated for RNA integrity through gel electrophoresis. The extracted RNA solution was loaded on 1.00% agarose gel and electrophoretically separated at

**Table 4.** Summary of RNA extraction from oocytes using commercial RNA extraction kit.

| Genes          | Source            | Year | Reference      |
|----------------|-------------------|------|----------------|
| β-actin        | Human oocyte      | 1999 | Steuerwald et al.\textsuperscript{14} |
| PELP1, Myo5b, and CAST | Porcine oocyte | 2007 | Zhu et al.\textsuperscript{15} |
| CD44 gene      | Sheep oocyte      | 2012 | Luz et al.\textsuperscript{16} |
100 v for 40 min, separating intact 28S and 18S ribosomal RNA. From the results, RNA extracted using the TRIzol method showed intact 28S and 18S ribosomal RNA with two clear bands shown on the gel compared to RNA extracted using the RNeasy Mini Kit (Fig. 1).

Table 6. Spectrophotometric readings of RNA extraction using a modified TRIzol method.

| Sample | Number of COC/oocytes | RNA concentration (ng µL⁻¹) | Purity 260/280 |
|--------|-----------------------|-----------------------------|----------------|
| Blank  | 0                     | 0.60                        | 1.04           |
| COC    | 10                    | 151.00                      | 1.70           |
| CFO    | 200                   | 126.70                      | 1.68           |

COC: Cumulus-oocyte complexes, and CFO: Cumulus free oocytes.

The RNA was then used for further downstream analysis through RT-PCR. Total RNA extracted was reverse transcribed to cDNA before PCR amplification for the qualitative analysis. The PCR amplification of control genes, Gapdh and beta-actin were carried out in a total volume of 25.00 µL containing 1.00 µL of cDNA, 0.50 µM of each oligonucleotide primer, 2.00 mM MgCl₂, 0.20 mM dNTPs (dATP, dTTP, dCTP and dGTP) and 0.05 U mL⁻¹ Taq DNA polymerase (Promega). Amplification was performed for 35 cycles in PCR thermal cycler (ESCO, Singapore). Each cycle included target denaturation for 5 min, at 94.00 ºC, primer annealing for 30 sec, at 60.00 ºC and extension for 1 min at 72.00 ºC. After PCR amplification, the PCR solution was loaded in 1.00% agarose gel for gel electrophoresis by separation at 100 v for 40 min. Clearly, the results showed the amplification of the control gene and beta-actin from PCR analysis using the RNA extracted through the modified TRIzol method. The PCR analysis using the RNA extracted through the RNeasy Mini Kit showed no amplification of the control gene and Gapdh (Fig. 1).

Discussion

Several methods of RNA extraction from oocytes had been proposed for the gene expression profiling study in oocytes. Most of the experiments had employed the TRIzol method with some modifications and micro RNA extraction kit as efficient methods to extract high quality of total RNA from oocytes. TRIzol contains guanidium isothiocyanate, an RNAse inhibitor, which prevents RNAse activity in the environment. The RNA is extremely unstable compared to DNA and this RNAse will degrade the RNA. Therefore, due to the limitation of RNA in the single oocyte, TRIzol seems quite efficient in extracting RNA.¹⁰,¹ⁱ The lysis process in RNA extraction using TRIzol reagent for certain cells was generally proved to have a higher RNA yield as suggested by Poong et al.²⁰ The authors reported that extraction of RNA in high concentration of lipids and polysaccharides green microalgae using TRIzol reagent would give a higher RNA yield.
Most of the experiments using RNA extraction kit employed a micro RNA extraction kit to successfully extract total RNA from oocytes. This corresponds with the results from the author’s study where a low quantity of RNA was obtained using the RNeasy Mini Kit for RNA extraction from mouse oocytes. Yet, the RNeasy Micro Kit is a high-cost method for RNA extraction. Therefore, the modified TRizol method will be suggested as a low-cost and practical guide for RNA extraction in oocytes.

Acknowledgments

The authors are gratefully acknowledging the University of Malaya Research Grant (UMRG-RG310/14AFR) and University of Malaya Postgraduate Research Grant (PG110-2014B) for the funding of this project. Immense gratitude to Interactome Laboratory, High Impact Research, University of Malaysia, Kuala Lumpur, Malaysia for technical support, and usage of facilities. Also, special thanks to Kamilatulhusna Zaidi for technical guidance.

Conflict of interest

The authors declare that there is no conflict of interest.

References

1. Virant-Klun I, Knez K, Tomazevic T, et al. Gene expression profiling of human oocyte developed and matured in vivo or in vitro. BioMed Res Int 2013; 2013: 1-20.
2. Hafidh S, Capková V, Honys D. Safe keeping the message: mRNP complexes tweaking after transcription. Adv Exp Med Biol 2011; 722: 118-136.
3. Manes C, Byers MJ, Carver AS. Cellular and molecular aspects of implantation (pp 113-124). In: Glasser SR, Bullock DW (Eds). Mobilization of genetic information in the early rabbit trophoblast. New York, USA: Plenum Press 1981; 113-124.
4. Pikó L, Clegg KB. Quantitative changes in total RNA, total poly(A) and ribosomes in early mouse embryos. Dev Biol 1982; 89(2): 362-378.
5. Rascado TS, Martins LR, Watanabe Minto B, et al. Parthenogenetic development of domestic cat oocyte treated with ionomycin, cycloheximide, roscovitine and strontium. Theriogenology 2010; (4): 596-601.
6. Zhao X, Ma W, Das SK, et al. Blastocyst H (2) receptor is the target for uterine histamine in implantation in the mouse. Development 2000; 127(12): 2643-2651.
7. Veselá J, Rehák P, Mihalík J, et al. Expression of serotonin receptors in mouse oocyte and pre-implantation embryos. Physiol Res 2003; 52(2): 223-228.
8. Cikos S, Rehák P, Czikkova S, et al. Expression of adrenergic receptors in mouse preimplantation embryos and ovulated oocyte. Reproduction 2007; 133(6): 1139-1147.
9. Pavani KC, Baron EE, Faheem M, et al. Optimisation of total RNA extraction from bovine oocyte and embryos for gene expression studies and effects of cryoprotectants on total RNA extraction. Tsitol Genet 2015; 49 (4): 25-34.
10. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry 1987; 162(1): 156-159.
11. Kimble K, Dickinson S, Biase F. Extraction of total RNA from single-oocytes and single-cell mRNA sequencing of swine oocytes. BMS Res Notes 2018; 11: 155.
12. Cikos S, Burkus J, Bukovska A, et al. Expression of adiponectin receptors and effects of adiponectin isoforms in mouse preimplantation embryos. Hum Reprod 2010; 9: 2247-2255.
13. Jeong YJ, Choi HW, Shin HS, et al. Optimization of real time RT-PCR methods for the analysis of gene expression in mouse eggs and preimplantation embryos. Mol Reprod Dev 2005; 71(3): 284-289.
14. Steuerwald N, Cohen J, Herrera RJ, et al. Analysis of gene expression in single oocyte and embryos by real time rapid cycle fluorescence monitored RT-PCR. Mol Hum Reprod 1999; 11: 1034-1039.
15. Zhu GY, Feng ST, Li JT, et al. Comparison of gene expression patterns between porcine cumulus-oocyte complexes and naked oocytes. S Afr J Anim Sci 2007; 37(1): 57-63.
16. Luz JV, Alcântara-Neto AS, Batista, RITP, et al. Expression of CD44 in sheep oocyte and pre-implantation embryos. Genet Mol Res 2012; 2: 799-809.
17. Biase FH, Martelli L, Puga R. Messenger RNA expression of Pabpnl1 and Mbd3l2 genes in oocytes and cleavage embryos. Fertil Steril 2010; 93: 2507-2512.
18. Mishra A, Reddy IJ, Gupta PSP et al. Total RNA content in sheep oocytes and developing embryos produced in vitro, a comparative study between spectrophotometric and fluorometric assay. Cytology and Genetics 2018; 52: 62-74.
19. Brz zest M, Kranc W, Nawrocki MJ, et al. New markers for regulation of transcription and macromolecule metabolic process in porcine oocytes during in vitro maturation. Molecular Medicine Reports 2020; 21: 1537-1551.
20. Poong SW, Lim PE, Jeannette WSL, et al. Optimization of high quality total RNA isolation from the microalga, Chlorella sp. (Trebouxiophyceae, Chlorophyta) for next-generation sequencing. Phycological Research 2017; 65(2): 12165. doi: 10.1111/pre.12165.
21. Lisandra CC, Cristiana LMF, Luciene AB, et al. Validation of reference genes for gene expression studies in bovine oocytes and cumulus cells derived from in vitro maturation. Anim Reprod 2019; 16 (2): 290-296.