NMR spin-lattice relaxation rate of heavy fermion superconductor UBe$_{13}$

Kyohei Morita1, Keisuke Kuroda1, Yudai Hara1, Hisashi Kotegawa1, Hideki Tou1,†, Etsuji Yamamoto2, Yoshinori Haga2, and Yoshichika Ōnuki3

1Department of Physics, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
2Advanced Science Research Center, Japan Atomic Energy Agency, Tokai 319-1195, Japan
3Department of Physics, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
E-mail: † tou@crystal.kobe-u.ac.jp

Abstract. 9Be NMR measurements have been carried out for a single crystal UBe$_{13}$ with $T_c = 0.85$ K, in order to clarify unusual properties in the normal state. For the applied field parallel to [111] direction, the quadrupole split Be(II) lines gather around the central line. 9Be nuclear spin-lattice relaxation rate was measured for Be(II) sites for $H \parallel [111]$ at 0.85, 7, 15 T. $1/T_1$ does not depend on applied fields above $T_{NMR} \approx 5 - 9$ K and weakly depends on temperature. $1/T_1$ at 0.85 and 7 T is proportional to T^n with $n = 0.5 - 0.6$ down to $T = 2$ K, suggesting that antiferromagnetic spin fluctuations exist. On the other hand, $1/T_1$ is suppressed by applied magnetic field. The present field dependence of $1/T_1$ at low temperatures would give important information about the formation of the heavy quasiparticles in UBe$_{13}$.

1. Introduction

Since the discovery of heavy Fermion superconductivity in UBe$_{13}$ having the extremely large electronic specific heat coefficient of $\gamma_e = 1100$ mJ/(mol K2),[1, 2] extensive experimental and theoretical works have been carried out in order to clarify the nature of the superconducting state of UBe$_{13}$. For instance, specific heat [1, 2], neutron diffraction [3, 4], μSR [5, 6], and NMR measurements [7, 8, 9, 10], etc., have probed the unconventional nature of both normal and superconducting states.

The superconducting transition occurs at around $T_c \approx 0.85$ K with large specific heat jump, $\Delta C/\gamma_e T_c \approx 1$ [1, 2], indicating that the heavy-quasiparticles are responsible for the superconductivity. In the superconducting state, the power law temperature dependence of the specific heat [2], the NMR spin-lattice relaxation rate [8], etc., suggest that the superconducting energy gap vanishes at points and/or lines on the Fermi surface. These features have been interpreted as evidence for an anisotropic pairing state, most likely a p-wave triplet state, in UBe$_{13}$.

In the normal state, the temperature dependence of the electric resistivity shows $\rho(T) \propto -\ln T$ above 40 K [1, 11, 12], associated with the Kondo scattering. On the other hand, T^2 of resistivity and Pauli paramagnetic susceptibility expected for the heavy Fermi liquid state are not observed down to 2 K; $\rho(T)$ is almost temperature independent in the temperature range of 40 K – 2 K, and decreases gradually with decreasing temperature below $T^* = 2$ K.
down to T_c. $\rho(T_c) \approx 139 \, \mu\Omega\text{cm}$ is quite large in comparison with that in the other heavy fermion superconductors [12]. Temperature dependence of magnetic susceptibility $\chi(T)$ shows logarithmic divergence down to 2 K. These anomalies have attracted much attention as a non-Fermi liquid behavior. In order to explain the non-Fermi liquid behavior in UBe$_{13}$, a two-channel Kondo effect is proposed theoretically [13].

In order to investigate the normal state in UBe$_{13}$, we report magnetic field dependence of 9Be NMR relaxation rate $1/T_1$ in the single crystal UBe$_{13}$ at various magnetic fields.

2. Experimental

Single crystals of UBe$_{13}$ were grown by the Al-flux method. Details of sample preparation techniques for single crystals of UBe$_{13}$ was reported elsewhere [11]. Samples were characterized to be a single phase by a Laue photograph as well as the X-ray diffraction. UBe$_{13}$ crystallizes in the cubic NaZn$_{13}$-type structure (space group (Fm3c)) with the lattice constant of $a = 10.257$ Å, where the U atoms are in the position of 8(a) site of (0, 0, 0), $\pm(1/2, 1/2, 1/2)$, and Be atoms have two crystallographically inequivalent sites. Be(I) atoms are in the position of 8(b) of $\pm(1/4, 1/4, 1/4)$, and Be(II) atoms are in the position of 96(i) sites. The superconducting phase transition was confirmed to occur at $T_c \approx 0.85$ K by means of DC electrical resistivity and surface impedance measurements [13, 14].

![Figure 1](image-url). 9Be NMR spectra measured at $H = 7$ T and for $H \parallel [001]$ and $H \parallel [111]$.

9Be-NMR measurements were carried out by using a conventional pulsed NMR spectrometer in the temperature range of 1.5-100 K. A field angle was determined from the angular dependence of the 9Be-NMR peak position. The field calibration was carried out with 27Al resonance ($^{27}K \approx 0.161\%$ at 4.2 K) of a reference sample [12]. We confirmed that the linewidth of 9Be-NMR spectrum measured at $H = 0.85$ T and for $H \parallel [001]$ is as quite narrow as ≈ 10 G. Furthermore no extra signals associated with impurity phases were observed [12], which guarantee the high-quality of the single crystal from a microscopic level. In order to investigate the normal state in UBe$_{13}$, we report temperature dependence of the 9Be NMR relaxation rate $1/T_1$ in the single crystal UBe$_{13}$ at $H = 0.85$, 7 and 15 T and for $H \parallel [111]$.

2
3. Results and Discussions

Figure 1 shows 9Be NMR spectra measured at $H = 7$ T and for $H \parallel [001]$ and $H \parallel [111]$. When the magnetic field is applied to $[111]$ direction, quadrupole split Be(II) lines merge into the central resonance line around 7 T because the effect of the electric field gradient (EFG) is effectively canceled out. The peak observed around 7.012 T corresponds to the signal from Be(I) atoms in 8(b) site [12, 15].

Typical examples of 9Be-NMR relaxation curves for the Be(II) site are shown in Fig. 2(a) and (b). Since the effect of the EFG is canceled out for $H \parallel [111]$, the relaxation curve shows a single exponential relaxation curve, which can be fitted by $(M_0 - M(t))/M(t) = \exp(-t/T_1)$ by two digits. Therefore $1/T_1$ can be determined uniquely. The solid lines are the results of the fitting. Temperature dependence of $1/T_1$ was measured at the main peak of the Be(II) line.

Figure 2. (a) 9Be NMR spin-lattice relaxation curve for $H = 0.85$ T and $T = 1.5$ K. (b) 9Be NMR spin-lattice relaxation curve for $H = 15$ T and $T = 1.6$ K. (c) Temperature dependences of $1/T_1$ for $H \parallel [111]$ and at $H = 0.85$ (open triangles), 7 (closed circles), and 15 T (open circles). Solid lines in (a) and (b) are fits to relaxation data (see text). Solid line in (c) represents $1/T_1 \propto T_{0.15}^{\infty}$ as a guide for eyes.

Figure 2(c) shows the temperature dependences of $1/T_1$ in the paramagnetic normal state measured at $H = 0.85, 7, 15$ T. Overall temperature dependences of $1/T_1$ for $H = 0.85$ T and 7 T are almost consistent with the temperature dependence of $1/T_1$ reported by MacLaughlin et al.[7]. $1/T_1$ does not depend on applied fields above 10 K and exhibits weak temperature dependence. The solid line in Fig. 2(c) is a guide for the eyes for $1/T_1 \approx T_{0.15}^{\infty}$. With decreasing temperature, $1/T_1$ deviates from the line at T_N^{MR}. T_N^{MR} is obtained as $T_N^{\text{MR}} \approx 5$ K for $H = 0.85$ T and 7 T, whereas ≈ 9 K for $H = 15$ T. Below T_N^{MR}, the Korringa relation of $1/T_1 T = const.$, which is connected to the heavy Fermi liquid state, cannot be observed, but rather it obeys $1/T_1 \propto T^n$ with $n = 0.5 - 0.6$ down to $T = 2$ K, suggesting a non Fermi liquid (NFL) state by spin fluctuations near the quantum critical point.

Below T_N^{MR}, $1/T_1$ at $H = 15$ T is suppressed compared to that at $H = 0.85$ T and 7 T. Such a suppression of $1/T_1$ by applying magnetic fields is analogous with the breakdown of the heavy Fermi liquid state. Then, if one assumes that the heavy-quasiparticles are formed through Kondo mechanism, the characteristic critical field, H^*, corresponding to the breakdown of the Kondo coherency is estimated to be $7 \, T < H^* < 15$T. This field range is comparable to
\(T^*_{NMR} \approx 5 - 9 \) K, suggesting that the Kondo mechanism works for the formation of the heavy quasiparticles in UBe\(_{13}\).

However, one can find that the NFL like behavior observed below \(T^*_{NMR} \) is robust against the applied magnetic field. These features are contrasted with the typical relaxation behavior of the heavy Fermion system, in which \(1/T_1 \) undergoes a moderate crossover from the \(1/T_1 = \text{const.} \) behavior at higher temperatures than a characteristic temperature, \(T^K \approx T_K \), to the \(T_1T = \text{const.} \) behavior at low temperatures. Actually, the temperature independent Pauli susceptibility, which is expected for the heavy Fermi liquid state, is not observed down to \(\approx 2 \) K [12]. No observation of the Korringa relation, i.e., the NFL like behavior, implies the competition between the Kondo effect and other effect, e.g. crystal electric field states and/or multipoles, which would disturb the formation of the Kondo singlet[16].

4. Summary

The NMR results in this study provide insight into how the magnetic response is modified by applied fields. \(1/T_1 \) does not depend on applied fields above \(T^*_{NMR} \approx 5 - 9 \) K and weakly depends on temperature. Below \(T^*_{NMR} \), \(1/T_1 \) starts to decrease which is reminiscent of the development of the Kondo coherency. However \(1/T_1 \) does not follow the Korringa relation. Especially for \(H = 15 \) T, the Korringa relation cannot be observed though \(1/T_1 \) is suppressed compared with that at low fields. The NFL like behavior implies the competition between the Kondo effect and other effect, e.g. crystal electric field states and/or multipoles, which would disturb the formation of the Kondo singlet.

Acknowledgments

We gratefully acknowledge K. Miyake for informative discussions. This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas “Heavy Electrons” (20102005) of the Ministry of Education, Culture, Sports, Science and Technology, Japan and Grants-in-Aid for Scientific Research (B:22340102, 16037211) from the Japan Society for the Promotion of Science.

References

[1] Ott H R, Rudigier H, Fisk Z, and Smith J L 1983, *Phys. Rev. Lett.* **50** 1595.
[2] Ott H R, Rudigier H, Rice T M, Ueda K, Fisk Z, and Smith J L 1984, *ibid Phys. Rev. Lett.* **52** 1915.
[3] Goldman A I, Shapiro S M, Cox D E, Smith J L, and Fisk Z 1985, *Phys. Rev. B* **32** 6042.
[4] Goldman A I, Shapiro S M, Shirane S, Smith J L and Fisk Z, 1986, *Phys. Rev. B* **33** 1627.
[5] Heffner R H, Cooke D W, Giorgi A L, Hutson R L, Schillaci M E, Rempp H D, Smith J L, Willis J O, MacLaughlin D E, Boekema C, Lichti R L, Oostens J, Denison A B, 1989, *Phys. Rev. B* **39** 11345.
[6] Sonier J E, Heffner R H, MacLaughlin D E, Nieuwenhuys G J, Bernal O, Movshovich R, Pagliuso P G, Cooley J, Smith J L and Thompson J D, 2000, *Phys. Rev. Lett.* **85** 2821.
[7] MacLaughlin D E, Tien C, Clark W G, Lan M D, Fisk Z, Smith J L and Ott H R 1984, *Phys. Rev. Lett.* **53** 1833.
[8] Tien C and Jiang I M, 1989 *Phys. Rev. B* **40** 229.
[9] Ahrens E T, Heffner R H, Hammel P C, Reyes A P, Thompson J D, Smith J L, and Clark W G, 1999, *Phys. Rev. B* **59** 1432.
[10] Clark W G, Lan M C, Kalker N G v, Wong W H, Tien C, MacLaughlin D E, Smith J L, Fisk Z, and Ott H R, 1987, *J. Magn. Magn. Mater.* **63-64** 396.
[11] Haga Y, Yamamoto E, Honma T, Nakamura A, Hedo M, Araki S, Ohkuni H, and Onuki Y 1999, *Physica B* **259-261** 627.
[12] Tou H, Tsugawa N, Sera M, Harima H, Haga Y, Onuki Y, 2007, *J. Phys. Soc. Jpn.* **76** 024705.
[13] Cox D L, 1997, *Phys. Rev. Lett.* **59** 1240.
[14] Tou H, Tsugawa N, Doi M, Nakai Y and Sera M, 2006, *J. Phys. Soc. Jpn.* **75** Suppl. 201.
[15] Morita K, Hara Y, Sakano Z, Kogane H, Tou H, Haga Y, and Onuki Y, 2011, *J. Phys. Soc. Jpn.* **80** SA099.
[16] Nishiyama S, Matsureka H, Miyake K, 2010, *J. Phys. Soc. Jpn.* **79** 104711.