Thermal conductivity of GeTe/Sb2Te3 superlattices measured by coherent phonon spectroscopy

Hase Muneaki, Tominaga Junji

Journal or publication title: Applied physics letters
Volume: 99
Number: 3
Page range: 031902
Year: 2011

© 2011 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The article appeared in Appl. Phys. Lett. 99, 031902 and may be found at http://apl.aip.org/resource/1/applab/v99/i3/p031902_s1

URL: http://hdl.handle.net/2241/113671
doi: 10.1063/1.3611030
Phase change data storage technology offers high speed, rewritable, and reliable nonvolatile solid state memory, which may overcome the current generation of Si-based memory technologies. In the phase change memory (PCM) materials, the switching between a high resistance amorphous and low resistance crystalline phases can be operated by optical means. One of the most common and reliable materials for the modern optical recording is Ge$_2$Sb$_2$Te$_5$ (GST), in which the phase transition between the crystalline and amorphous phases serves rewritable recording. Recently, extensive theoretical investigations on the mechanism of the phase change in GST have been made using molecular dynamics simulations. In addition, experimental studies using extended x-ray absorption fine structure (XAFS), time-resolved x-ray absorption near-edge structure (XANES) (Ref. 5), and Raman scattering measurements have examined local atomic arrangements in GST materials.

One of the advantages of using GST films as the optical recording media is its ultra-high speed switching characteristics, whose time scale could be less than 1 ns. In the last decade, however, most of the literatures have studied nanosecond dynamics of the phase change in GST materials using nanosecond and picosecond laser (or electrical) pulses. Hence, thermal properties of GST materials have been believed to govern the phase change in GST materials when it is promoted by laser heating. There, thermal conductivity (κ) is important to engineer the performance of the phase change, such that lower thermal conductivity enables one to realize low power operation of the switching, where, focused laser irradiation causes lattice heating.

Coherent phonon spectroscopy (CPS) has recently been applied to GST materials of alloy and superlatticed films, and the related Sb$_2$Te$_3$ films. In their study, the observed local phonon modes in the amorphous GST films were found to be strongly damped modes, with its relaxation time of less than a few picoseconds due to the scattering by lattice defects. The CPS on GST compounds, however, have not yet been applied to investigate thermal properties, although Wang et al. have recently proposed to use CPS as a powerful method to estimate lattice thermal conductivity.

In this paper, we present detailed analysis on the ultrafast dynamics of coherent optical phonons in GeTe/Sb$_2$Te$_3$ superlattices (SLs) at low and room temperatures to investigate lattice thermal conductivity. Based on the Debye theory, we calculate the lattice thermal conductivity, including various phonon scattering processes, where the relaxation rate and the frequency of the observed coherent local modes are included in the model. The results indicate in amorphous (a-) GeTe/Sb$_2$Te$_3$ SL that κ ≈ 0.3–0.4 Wm$^{-1}$ K$^{-1}$ at T ≥ 100 K, while in the crystalline (c-) GeTe/Sb$_2$Te$_3$ SL κ is strongly temperature dependent and κ ≈ 2.0 Wm$^{-1}$ K$^{-1}$ at 300 K.

We have chosen GeTe/Sb$_2$Te$_3$ SL as a sample after the proposal of a class of superlattice-like GeTe/Sb$_2$Te$_3$. Significantly, lower SET and RESET programming current for GeTe/Sb$_2$Te$_3$ SL will be a potential candidate for the future PCM devises. The samples used in the present study were thin films of GeTe/Sb$_2$Te$_3$ SL fabricated using a helicon-wave RF magnetron sputtering machine on Si (100) substrate. The thickness of the films was 20 nm. The annealing of the as-grown SL films at 503 K (230°C) for 10 min changed the amorphous into the crystalline states. The TEM measurements confirmed that the c-GeTe/Sb$_2$Te$_3$ SL films have layered structures with clear interfaces.

A reflection-type pump-probe measurements using a mode-locked Ti:sapphire laser (pulse width = 20 fs and a central wavelength = 850 nm) was employed at the temperature range of 5–300 K. The average power of the pump and probe beams were fixed at 120 and 3 mW, respectively, from which we estimated the pump fluence to be 284 μJ/cm2 at 120 mW. The excitation of the GST-SL films with the 850 nm (= 1.46 eV) laser pulse generates nonequilibrium carriers across the narrow band gap of ≈ 0.5–0.7 eV. The transient reflectivity (TR) change (ΔR/R) was measured as a function of the time delay.

Figures 1(a) and 1(c) show the time-resolved TR signal (ΔR/R) observed at 5 and 300 K in GeTe/Sb$_2$Te$_3$ SL films...
with the amorphous and crystalline phases, respectively. After the transient electronic response due to the excitation of nonequilibrium carriers at the time delay zero, coherent oscillations with several picoseconds relaxation time appear. Fourier transformed (FT) spectra in Figs. 1(b) and 1(d) are obtained from the time-domain data in (a) and (c).

![Graphs](image)

FIG. 1. (Color online). (a) and (c) The time-resolved TR signal observed at 5 and 300 K in the α– and α–GeTe/Sb$_2$Te$_3$ SL films, respectively. (b) and (d) The FT spectra obtained from the time-domain data in (a) and (c).

used to compute the lattice thermal conductivity based on the Debye theory, combined with the resonant scattering model.\(^1\)\(^4\),\(^1\)\(^9\) Lattice thermal conductivity is expressed as,\(^2\)\(^0\)

$$\kappa(T) = \frac{1}{3} C_v v^2 \tau_c$$ \hfill (1)

where $x = h\omega/k_B T$, C_v is the lattice specific heat, v the sound velocity, Θ_D the Debye temperature,\(^2\)\(^1\) k_B the Boltzmann constant, ω the phonon frequency, and τ_c the acoustic phonon relaxation time, whose inverse (relaxation rate) can be given by contributions from various scattering mechanisms:\(^1\)\(^4\),\(^1\)\(^9\),\(^1\)\(^2\)

$$\tau_c^{-1} = \frac{v}{L} + A \omega^4 + B \omega^2 T e^{-\Theta_D/3T} + \frac{C \omega^2}{(\Omega^2 - \omega^2)^2},$$ \hfill (3)

where L, A, B, and C characterize grain boundary, phonon-defect scattering, phonon-phonon umklapp scattering, and phonon resonant scattering, respectively. Ω is the optical phonon frequency observed in the CPS and the last term in Eq. (3) represents the resonant scattering between the localized optical modes and acoustic phonon modes. From the low temperature limit of the relaxation rate of the coherent A_1 modes (0.253 ps$^{-1}$ for the amorphous and 0.026 ps$^{-1}$ for the crystalline phase),\(^1\)\(^2\) we can estimate the ratio of the phonon-defect scattering rate in the amorphous to the crystalline A_1 to be ≈ 10 for the GeTe/Sb$_2$Te$_3$ SL film. The same ratio of $B_{\text{def}}/B_1 = C_{\text{def}}/C_1 = 10$ has been applied in the simulation. We take the resonant phonon frequency (Ω) at 300 K from the FT spectra in Fig. 1. It is to be noted that, the choice of the optical phonon frequency at different temperatures does not significantly affect the results of the thermal conductivity, but the coefficient of the phonon resonant scattering (C) is more sensitive to the value of κ. The magnitudes of all the parameters (L, A, B, and C) are determined as listed in Table I to give the experimental value of κ for the α–GeTe/Sb$_2$Te$_3$ SL ($\kappa \approx 0.33$ Wm$^{-1}$ K$^{-1}$ at 300 K).\(^2\)\(^2\)

As shown in Fig. 2, comparing the thermal conductivity obtained for the SL films in different phases, we found that the thermal conductivity in α–GeTe/Sb$_2$Te$_3$ SL is less temperature dependent, being due to dominant contribution from the phonon-defect scattering.\(^1\)\(^2\),\(^1\)\(^2\) On the contrary, in the crystalline phase thermal conductivity is strongly temperature dependent, being attributed to significant contribution from umklapp and phonon resonant scatterings, both of which are related to the phonon dispersion curves and therefore, they are significantly temperature dependent.\(^2\)\(^4\) We note

TABLE I. Parameters used in Eqs. (2) and (3). For the α–GeTe/Sb$_2$Te$_3$ SL C_1 and C_4 represent the resonant scattering coefficient due to the A_1 local modes at 3.78 THz and 5.1 THz, respectively, while for the α–GeTe/Sb$_2$Te$_3$ SL C_1 represents that at 3.68 THz.

Samples	Θ_D (K)	v (m/s)	L (nm)	A (10^{-43} m3)	B (10^{-18} s K$^{-1}$)	C_1 (1018 s$^{-3}$)	C_2 (1018 s$^{-3}$)
α–GeTe/Sb$_2$Te$_3$ SL	250a	2250b	10.0	40.0	40.0	20.0	20.0
α–GeTe/Sb$_2$Te$_3$ SL	300a	3190b	100.0	4.0	4.0	2.0	--

aFrom Ref. 21.

bFrom Ref. 8.
Further that, the thermal conductivity obtained in the SL films is high compared to the conventional GST alloy films; $\kappa\approx0.2 \text{ W m}^{-1} \text{ K}^{-1}$ for the amorphous and $\kappa\approx0.4 \text{ W m}^{-1} \text{ K}^{-1}$ for the crystalline (cubic) phases. The higher thermal conductivity while the lower operation current found in GeTe/Sb$_2$Te$_3$ SL films, suggests that the phase change in the SL films under the irradiation of ultrashort laser pulses would not be promoted by thermal process, but rather by nonthermal process, which has recently been observed in sub-picosecond time scale.

In conclusion, our results on ultrafast coherent phonon spectroscopy have illustrated temperature dependence of lattice thermal conductivity in GeTe/Sb$_2$Te$_3$ SL films. These data show that the Debye model, including scatterings by grain boundary and point defect, umklapp process, and phonon resonant scattering, well reproduces the experimental data show that the Debye model, including scatterings by grain boundary and point defect, umklapp process, and phonon resonant scattering. We argue that the higher thermal conductivity in the α-GeTe/Sb$_2$Te$_3$ SL obtained in the SL films is less temperature dependent, due to the dominant phonon-defect scattering, while in the c-SL it is strongly temperature dependent because of the main contributions from umklapp and phonon resonant scatterings. We argue that the higher thermal conductivity in the SL films implies that the phase change in GeTe/Sb$_2$Te$_3$ SL under the irradiation of ultrashort laser pulses is not promoted by thermal process, i.e., lattice heating, but rather by nonthermal process, i.e., coherent lattice excitation, because, the thermal process requires lower thermal conductivity.

The authors thank Y. Miyamoto for the assistance at the early stage of the experiments. This work was supported in part by PRESTO-JST, KAKENHI-22340076 from MEXT, Japan and “Innovation Research Project on Nanoelectronics Materials and Structures – Research and development of superlatticed chalcogenide phase-change memory based on new functional structures” from METI, Japan.

1. N. Yamada, E. Ohno, K. Nishiuchi, and N. Akahira, J. Appl. Phys. 69, 2849 (1991).
2. J. Akola and R. O. Jones, Phys. Rev. B. 76, 235201 (2007).
3. J. Hegedûs and S. R. Elliott, Nature Mater. 7, 399 (2008).
4. A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, and T. Uruga, Nature Mater. 3, 703 (2004).
5. P. Fons, H. Osawa, A. V. Kolobov, T. Fukaya, M. Suzuki, T. Uruga, N. Kawamura, H. Tanida, and J. Tominaga, Phys. Rev. B. 82, 041203(R) (2010).
6. K. S. Andrikopoulos, S. N. Yannopoulos, A. V. Kolobov, P. Fons, and J. Tominaga, J. Phys. Chem. Solids 68, 1074 (2007).
7. J. Siegel, A. Schropp, J. Solis, C. N. Afonso, and M. Wuttig, Appl. Phys. Lett. 84, 2250 (2004).
8. H.-K. Lyeo, D. G. Cahill, B.-S. Lee, J. R. Abelson, M.-H. Kwon, K.-B. Kim, S. G. Bishop, and B.-K. Cheong, Appl. Phys. Lett. 89, 151904 (2006).
9. T.-Y. Lee, K. H. P. Kim, D.-S. Suh, C. Kim, Y.-S. Kang, D. G. Cahil, D. Lee, M.-H. Lee, M.-H. Kwon, K.-B. Kim, and Y. Kiang, Appl. Phys. Lett. 94, 243103 (2009).
10. H.-S. P. Wong, S. Raoux, S.-B. Kim, J. Liang, J. P. Reifenberg, B. Rajendra, M. Asheghi, and K. E. Goodson, Proc. IEEE, 98, 2201 (2010).
11. M. Först, T. Dekorsy, C. Trappe, M. Laurenzis, H. Kurz, and B. Bêchevet, Appl. Phys. Lett. 77, 1964 (2000).
12. M. Hase, Y. Miyamoto, and J. Tominaga, Phys. Rev. B. 79, 174112 (2009).
13. Y. Li, V. A. Stoica, L. Endicott, G. Wang, C. Uher, and R. Clarke, Appl. Phys. Lett. 97, 171908 (2010).
14. Y. Wang, X. Xu, and J. Yang, Phys. Rev. Lett. 102, 175508 (2009).
15. T. C. Chong, L. P. Shi, R. Zhao, P. K. Tan, J. M. Li, K. Lee, X. S. Miao, A. Y. Du, and C. H. Tung, Appl. Phys. Lett. 88, 122114 (2006).
16. J. Tominaga, P. Fons, A. V. Kolobov, T. Shima, T. C. Chong, R. Zhao, H. K. Lee, and L. Shi, Jpn. J. Appl. Phys. 47, 5763 (2008).
17. B.-S. Lee, J. R. Abelson, S. G. Bishop, D.-H. Kang, B.-K. Cheong, and K.-B. Kim, J. Appl. Phys. 97, 093509 (2005).
18. A. Bartels, T. Dekorsy, and H. Kurz, Phys. Rev. Lett. 82, 1044 (1999).
19. R. O. Pohl, Phys. Rev. Lett. 8, 481 (1962).
20. J. Callaway, Phys. Rev. 113, 1046 (1959).
21. M. Kuwahara, O. Suzuki, Y. Yamanaka, N. Takeo, T. Yagi, P. Fons, T. Fukaya, J. Tominaga, and T. Baha, Jpn. J. Appl. Phys. 46, 3909 (2007).
22. R. E. Simpson, P. Fons, A. V. Kolobov, M. Krhal, X. Wang, T. Yagi, and J. Tominaga, Proceedings of the 2nd International Symposium on Thermal Design and Thermophysical Property for Electronics and Energy, Tsukuba, Japan, 2010.
23. M. Hase, K. Ishioka, M. Kitajima, K. Ushida, and S. Hishita, Appl. Phys. Lett. 76, 1258 (2000).
24. P. G. Klemens, Phys. Rev. 148, 845 (1966).
25. M. Makino, J. Tominaga, and M. Hase, Opt. Exp. 19, 1260 (2011).