CHEMICAL CONSTITUENTS OF THE RHIZOMES OF Zingiber collinsii Mood &Theilade (ZINGIBERACEAE) GROWING IN VIETNAM

Le Thi My Chau¹,², Vu Dinh Hoang³, Nguyen Thi Minh Tu²,*, Tran Dinh Thang¹,*

¹Department of Chemistry, Vinh University, 182 Le Duan Street, Vinh City, Nghe An province
²School of Biotechnology and Food Technology, Hanoi University of Science and Technology, 1 Dai Co Viet Street, Hai Ba Trung District, Hanoi
³School of Chemical Engineering, Hanoi University of Science and Technology, 1 Dai Co Viet Street, Hai Ba Trung District, Hanoi

*Email: tu.nguyenthiminh@hust.edu.vn, thangtd@vinhuni.edu.vn

Received: 15 August 2016; Accepted for publication: 7 October 2016

ABSTRACT

A chemical investigation of the rhizomes of Zingiber collinsii Mood & Theilade (Zingiberaceae) resulted in the isolation and identification of seven compounds, including a sesquiterpenoid (zerumbone 1), acoumarin (scopoletin 2), two flavonoids (quercetin 3, rutin 4), a furfural derivative (5-(hydroxymethyl)furfural 5), and two curcuminoids (bisdemethoxycurcumin 6, demethoxycurcumin 7). The chemical structures of the seven compounds were determined on the basis of NMR and MS analyses.

Keywords: Zingiber collinsii, zerumbone, furfural, scopoletin, flavonoid, curcuminoid.

1. INTRODUCTION

About 25 species of Zingiberaceae are used to cure multiple disorders in human and animals [1]. In addition to their medicinal activities, Zingiberaceae plants extracts may also serve as a natural larvicidal agent. Ginger extracts have anti-inflammatory, anti-oxidant and anti-cancer effects. Shogaol can significantly attenuate a variety of neuro inflammatory responses in cortical astrocytes [2,3]. Ginger supplementations significantly reduce severity of acute chemotherapy-induced nausea in adult cancer patients. The genus Zingiber Boehm has been represented by 13 species in Indo-China. Among them 10 species were reported from Vietnam. Ho included 11 species in his Illustrated Flora of Vietnam [4]. The major pungent compounds in ginger are active gingerols and their derivatives, viz. shogaols, zingerone, and parado [5-8]. The ginger volatile oil is consisted of monoterpens camphene, cineole, linalool, limonene, citral, geraniol, citronellol and borneol and sesquiterpenes, α-zingiberene, ar-curcumene, β-bisabolene, β-sesquiphellandrene, zingiberol, and zingiberenol along with some aliphatic aldehydes and alcohols [9-13]. Ginger is added to a wide range of food as an indispensable curry powder or
sauce. It is often used to flavour bread, tea, carbonated drinks, biscuits, pickles, and other confectionaries because of its aroma and flavour. During a field trip to Vietnam in 1980 Mark Collins collected a most remarkable new species of *Zingiber*. *Zingiber collinsii* Mood & Theilade (*Zingiberaceae*), a deciduous species, was recently collected in Vietnam and introduced by Mark Collins [14]. Literature information is scanty on its volatile and non-volatile constituents as well as the biological potential of this plant [15].

In this paper we reported on the isolation and identification of seven compounds from the plant rhizomes.

2. EXPERIMENTS

2.1. General

Melting points were determined using Yanagimoto MP-S3 apparatus. NMR spectra were obtained on the Bruker AV-500 NMR spectrometer, with tetramethylsilane (TMS) as the internal standard and chemical shifts were reported in δ values (ppm). The electrospray ionization mass spectra (ESI-MS) were determined using an Agilent 1200 LC-MSD Trap spectrometer. Column chromatography (CC) was performed on silicagel (Kieselgel 60, 70 - 230 mesh and 230 - 400 mesh, E. Merck). Thin layer chromatography (TLC) was conducted on precoated Kieselgel 60 F254 plates (Merck) and the compounds were visualized by spraying with 10 % (v/v) H$_2$SO$_4$ followed by heating at 110 °C for 10 min.

2.2. Plant materials

The rhizomes of *Zingiber collinsii* Mood & Theilade (*Zingiberaceae*) were collected in Pu Mat, Nghe An in September 2013. They were identified by Assoc. Prof. Dr. Tran Huy Thai (Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology). Voucher specimens are kept at the Faculty of Biology, Vinh University.

2.3. Extraction and isolation

The dried powdered rhizomes of *Zingiber collinsii* (4.0 kg) were extracted three times with methanol at room temperature. The methanol extract was evaporated under vacuum to dryness as a dark brown mass (180 g). The methanol residue (180 g) was suspended in water and partitioned with ethylacetate and n-butanol to afford ethyl acetate (53 g) and n-butanol (30 g) extracts, respectively.

The ethyl acetate extract (53 g) was applied to silicagel column chromatography with an-hexan: acetone step gradient system (100:0; 50:1; 39:1; 30:1; 20:1; 15:1; 9:1; 4:1; 2:1; 1:1) to afford minor fractions which were combine into ten fractions. Fraction 1 was subjected to silicagel column chromatography (200 g, 60 × 3 cm) eluting with n-hexane-acetone (15:1; 9:1) to afford ten subfractions. Subfraction 1.1 was purified with silicagel column chromatography (200 g, 60 × 5 cm) eluting with n-hexane:acetone (15:1) to yield compound 5 (55.2 mg). Subfraction 1.3 was purified with silicagel column chromatography (60 g, 60 × 2 cm) eluting with a n-hexane:acetone step gradient system (9:1; 4:1) to yield compounds 1 (35 mg) and 2 (29 mg). Subfraction 1.4, eluting with chloroform: methanol (20:1), was further fractionated and purified with silicagel column chromatography (200 g, 60 × 3 cm) to afford compound 3 (83 mg).
The n-butanol extract (30 g) was applied to silicagel column chromatography with a chloroform:methanol (10:1:6:1) gradient system to give ten fractions. Fraction 5 was purified by silicagel column chromatography (200 g, 60 × 3 cm) to give compound 4 (34 mg). Fraction 6, eluting with chloroform:methanol (7:1), was purified with silicagel column chromatography to give compounds 6 (112 mg) and 7 (92 mg).

Zerumbone (1): yellowish crystals, m.p. 66 – 67 °C; ESI-MS m/z 218[M]+; 1H-NMR (CDCl₃, 500 MHz), δ (ppm): 6.12 (1H, d, J = 11.0 Hz, H-6), 5.95 (1H, s, H-10), 5.33 (1H, dd, J = 6.0, 10.0 Hz, H-9), 2.46-2.56 (1H, m, H-5), 2.38-2.44 (1H, m, H-4), 2.26-2.31 (1H, m, H-1), 1.93 (1H, d, J = 12.5 Hz, H-2), 1.79 (3H, s, 13-CH₃), 1.59 (3H, s, 12-CH₃), 1.26 (3H, s, 15-CH₃), 1.08 (3H, s, 14-CH₃); 13C-NMR (CDCl₃, 125 MHz), δ (ppm): 206.8 (C-8), 163.2 (C-10), 151.2 (C-6), 138.9 (C-7), 137.6 (C-3), 128.1 (C-9), 126.1 (C-2), 43.3 (C-1), 40.4 (C-4), 38.8 (C-11), 29.8 (C-15), 25.4 (C-5), 24.5 (C-14), 15.3 (C-12), 11.8 (C-13).

Scopoletin (2): yellow crystals, m.p. 203 – 204 °C; ESI-MS m/z 193 [M+H]+; 1H-NMR (CDCl₃, 500 MHz), δ (ppm): 7.60 (1H, d, J = 9.5 Hz, H-4), 6.92 (1H, s, H-5), 6.85 (1H, s, H-8), 6.28 (1H, d, J = 9.5 Hz, H-3), 3.95 (3H, s, 6-CH₃); 13C-NMR (CDCl₃, 125 MHz), δ (ppm): 161.5 (C-2), 150.3 (C-7), 149.8 (C-9), 144.1 (C-6), 143.3 (C-4), 113.4 (C-5), 111.5 (C-10), 107.5 (C-3), 103.2 (C-8), 56.6 (6-CH₃).

Quercetin (3): yellow needles, m.p. 313 – 314 °C; ESI-MS m/z 302 [M]+; 1H-NMR (DMSO-d₆, 500 MHz), δ (ppm): 7.67 (1H, d, J = 2.5 Hz, H-2'), 7.54 (1H, dd, J = 7.5, 2.5 Hz, H-6), 6.88 (1H, d, J = 8.5 Hz, H-5'), 6.40 (1H, d, J = 2.0 Hz, H-8), 6.18 (1H, d, J = 2.0 Hz, H-6); 13C-NMR (DMSO-d₆, 125 MHz), δ (ppm): 175.9 (C-4), 163.9 (C-7), 160.8 (C-5), 156.2 (C-9), 147.7 (C-4'), 146.9 (C-2), 145.1 (C-3'), 135.8 (C-3), 122.0 (C-1'), 120.0 (C-6'), 115.7 (C-5'), 115.1 (C-2'), 103.1 (C-10), 98.2 (C-6), 93.4 (C-8).

Rutin (4): yellow crystals, m.p. 214 – 215 °C; ESI-MS m/z 611 [M]+; 1H-NMR (DMSO-d₆, 500 MHz), δ (ppm): 7.54 (2H, dd, J = 2.5, 9.0 Hz, H-2', 2'; 6.84 (1H, d, J = 8.0 Hz, H-5'), 6.38 (1H, d, J = 2.0 Hz, H-8), 6.19 (1H, d, J = 2.0 Hz, H-6), 5.34 (1H, d, J = 7.0 Hz, gluc H-1'), 4.38 (1H, brs, rham H-1'''), 3.71-3.05 (m,12H of sugar moieties), 1.00 (3H, d, J = 6.0, rham-CH₃); 13C-NMR (125 MHz, DMSO-d₆), δ ppm: 177.5 (C-4), 164.2 (C-7), 161.3 (C-5), 156.7 (C-2), 156.5 (C-9), 148.5 (C-4'), 144.8 (C-3'), 133.4 (C-3), 121.7 (C-6'), 121.3 (C-1'), 116.4 (C-5'), 115.3 (C-2'), 104.0 (C-10), 101.3 (C-1''), 98.8 (C-6), 93.7 (C-8), 76.5 (C-3'), 76.0 (C-5'), 74.2 (C-2'), 71.9 (C-4''), 70.7 (C-3''), 70.5 (C-2''), 70.1 (C-4''), 68.3 (C-5''), 67.1 (C-6'), 17.8 (C-6').

5-(Hydroxymethyl)furfural (5): colorless oil; ESI-MS m/z 127 [M+H]+; 1H-NMR (CDCl₃, 500 MHz), δ (ppm): 9.49 (1H, s, H-1), 7.24 (1H, d, J = 3.5 Hz, H-3), 6.51 (1H, d, J = 3.5 Hz, H-4), 4.66 (2H, s, H-6); 13C-NMR (CDCl₃, 125 MHz), δ (ppm): 177.8 (C-1), 161.2 (C-5), 151.8 (C-1'), 128.3 (C-3), 109.9 (C-4), 56.9 (C-6).

Bisdemethoxycurcumin (6): yellow powder, m.p. 220 – 22 °C; ESI-MS m/z 309 [M+H]+; 1H-NMR (CDCl₃, 500 MHz), δ (ppm): 7.57 (2H, d, J = 16.0 Hz, H-4, 4'), 7.42 (4H, d, J = 9 Hz, H-6, 6', 10, 10'), 6.87 (4H, d, J = 9 Hz, H-7, 7', 9, 9'), 6.46 (2H, d, J = 16.0 Hz, H-3, 3'), 5.80 (1H, s, H-1); 13C-NMR (CDCl₃, 125 MHz), δ (ppm): 183.1 (C-2, 2'), 159.4 (C-8, 8'), 140.2 (C-4, 4'), 129.6 (C-6, 6', 10, 10'), 126.1 (C-5, 5'), 120.6 (C-3, 3'), 115.9 (C-7, 7', 9, 9'), 100.8 (C-1).

Demethoxycurcumin (7): yellow powder, m.p. 160 – 161 °C; ESI-MS m/z 339 [M+H]+; 1H-NMR (CDCl₃, 500 Hz), δ (ppm): 7.57 (2H, dd, J = 9.0, 16.0 Hz, H-4, 4'), 7.42 (2H, d, J = 8.5 Hz, H-6, 6'), 7.07 (2H, dd, J = 2.0, 4.0 Hz, H-10, 10'), 6.90 (1H, d, J = 8.5 Hz, H-7'), 6.87 (2H, Neumann & Zingiber Collinsii Mood & Theilade (Zingiberaceae)
3. RESULTS AND DISCUSSION

Compound 1 was isolated as yellowish crystals, m.p. 66 – 67 °C. The ESI-MS spectrum showed a pseudomolecular ion peak [M]+ at m/z 218 (C13H22O). The 1H-NMR spectrum showed four singlets of four methyl groups at δH 1.79 (13-CH₃), 1.59 (12-CH₃), 1.26 (15-CH₃) and 1.08 (14-CH₃), three methylene groups signals (H-1, H-4 and H-5) between δ 2.26-2.56 and a broad doublet at 6.12 (d, J = 11.0 Hz, H-6) of olefinic proton. The 13C-NMR and DEPT spectrum exhibited 15 carbons, including 4 quartenary carbons, three methylene groups, four methine and four methyl groups. In the very low field of the 13C-NMR spectrum, there appeared one signal at δC 206.8 (C-8) corresponding to a carbonylcarbon. The signals of four methyl groups appeared at δC 11.8 (C-13), 15.3 (C-12), 24.5 (C-14), and 29.8 (C-15). In addition, four downfield signals at δC 126.0, 151.2, 128.1 and 163.2 were assigned to methine carbons C-2, C-6, C-9 and C-10, respectively. This analysis suggested that the compound 1 is zerumbone. This is also confirmed by comparison of spectral data of 1 with literature [16].

Compound 2 was isolated as yellowish crystals, m.p. 203 – 204 °C. The ESI-MS spectrum showed a pseudomolecular ion peak [M+H]+ at m/z 193 (C₁₀H₁₉O₄). The 1H-NMR spectrum showed two specific doublets at δH 6.28 (d, J = 9.5 Hz, H-3) and 7.60 (d, J = 9.5 Hz, H-4) featuring two protons of pyrone ring of a coumarin. In low field, two aromatic protons present at 6.92 (s, H-5) and 6.85 (s, H-8) ppm. Besides, a signal of methoxy group appeared at δH 3.95 (s, 6-CH₃). The 13C-NMR spectrum showed 10 carbons, including signals at δC 161.5 (C-2) and 150.3 (C-7) corresponding to carbonyl group and phenolic carbon. The methoxy group also appeared at δC 56.0 ppm. These data proved that 2 has coumarin skeleton. The comparison of spectra of 2 with literature data [17] determined 2 as scopoletin.
Compound 3 was isolated as yellow needles, m.p. 313 – 314 °C. The ESI-MS spectrum showed a pseudomolecular ion peak [M]⁺ at m/z 302 (C₁₅H₁₉O₇). The ¹H-NMR spectrum showed two doublets of two aromatic protons at δ₆ 6.18 (d, J = 2.0 Hz, H-6) and 6.40 ppm (d, J = 2.0 Hz, H-8). Also, three protons at 7.67 (d, J = 2.5 Hz, H-2), 7.54 (dd, J = 7.5, 2.5 Hz, H-6') and 6.88 ppm (d, J = 8.5 Hz, H-5') showed ABX-type signals. The ¹³C-NMR spectrum of compound 3 showed 15 signals between δ 93.4-175.9 ppm of the flavonoid skeleton. The comparison of spectral data of 3 with literature data [18] determined 3 as quercetin.

Compound 4 was isolated as yellow crystals, m.p. 214 – 215 °C. The ESI-MS spectrum showed a pseudomolecular ion peak [M⁺]+ at m/z 611 (C₂₇H₂₆O₁₈). The structure of compound 4 could be elucidated by the comparison of its spectra with the NMR spectra of 3. The ¹H-NMR spectrum of compound 4 showed signals of one tri-substituted aromatic ring at 7.54 (m, H-2', 6'), and 6.84 (d, J = 8.0 Hz, H-5') and two anomic protons at 5.34 (d, J = 7.5 Hz, glc H-1") and 4.38 (d, J = 1.0 Hz, rham H-1”). This is evinced that compound 4 has the same aglycone moiety as 3. However, the ¹H-NMR spectrum of compound 4 showed the presence of proton signals of two glycosides at 3.71-3.05 (m, 12H of sugar moieties) and a methyl group at 0.99 (3H, d, J = 6.0, rham-CH₃). The ¹³C-NMR and DEPT spectra of 4 showed signals of 27 carbons, including 15 carbons of flavonoid skeleton and 12 carbons of the two sugar moieties of rutin (β-D-glucose: δC 101.3, 74.2, 76.5, 70.1, 76.0, 67.1 and α-L-rhamnose: δC 104.0, 74.1, 71.9, 70.7, 70.5, 17.8). The comparison of spectral data of 4 with literature data [18] confirmed 4 to be rutin (quercetin-3-O-[(α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranoside).

Compound 5 was isolated as colorless oil. It had a pseudomolecular ion peak [M+H]+ at m/z 127 in ESI-MS spectrum. The ¹H-NMR spectrum showed a signal of an aldehyde proton at δ 9.49 ppm, two olefinic protons at δ 7.24 (d, J = 3.5 Hz) and 6.51 ppm (d, J = 3.5 Hz). The ¹³C-NMR spectrum showed 6 carbon signals, including an aldehyde at 177.8, 4 olefinic carbons at 161.2 (C-5), 151.8 (C-2), 123.8 (C-3), and 109.9 (C-4), and an aliphatic oxygen-bearing carbon at 56.9 (C-6). Based on these data and the comparison with literature data [19], compound 5 is suggested to be 5-(hydroxymethyl)furfural.

Compounds 6 and 7 were isolated as yellow powders. They were identified as curcuminoins. The ¹H-NMR spectrum of compound 6 indicated the presence of a methine proton in the enolic form at 5.80 ppm (1H, s, H-1). Two doublets with a large coupling constant at δ 7.57 (2H, d, J = 16.0 Hz, H-4', 4") and 6.46 (2H, d, J = 16.0 Hz, H-3', 3") showed a transelinesystem. At downfield, it showed a presence of AB-type signals at δ 7.42 (4H, d, J = 9 Hz, H-6, 6', 10, 10') and 6.87 (4H, d, J = 9 Hz, H-7, 7', 9, 9'). The ¹³C-NMR spectrum of 6 showed 8 signals of 19 carbons. At very low field, one signal of two carbonyl groups presented at δ 183.1 (C-2, 2') and one signal at δ 159.4 (C-8, 8') corresponding to two phenolic carbons. The ¹³C-NMR spectrum also exhibited signals of aromatic carbons at δ 129.6 (C-6, 6', 10, 10'), 126.1 (C-5, 5'), 115.9 (C-7, 7', 9, 9') and olefinic carbons at δ 140.2 (C-4, 4'), 120.6 (C-3, 3'). The spectral data of compound 7 are similar with 6, but with difference in emergence of a methoxy group at δ 3.93 (3H, s) in ¹H-NMR spectrum and 55.6 in ¹³C-NMR spectrum. These spectral data proved that 6 and 7 were bisdemethoxycurcumin and demethoxycurcumin, respectively. The structures of these compounds were reaffirmed based on the comparison with literature data [20].

4. CONCLUSIONS

In the present study, the chemical constituents of the rhizomes of Zingiber collinsii Mood & Theilade (Zingiberaceae) collected in Pumat, Nghe An province was investigated, resulting in the isolation and identification of seven compounds such as azserumbone, scopoletin, quercetin,
rutin, (5-(hydroxymethyl)furfural), bisdemethoxycurcumin, and demethoxycurcumin. Their structures were determined based on NMR and MS analyses.

REFERENCES

1. Tushar B. S., Sarma G. C. and Rangan L. - Ethnomedical uses of Zingiberaceous plants of Northeast India, J. Ethnopharmacol. 132 (1) (2010) 286-296.
2. Shim S., Kim S., Choi D. S., Kwon Y. B. and Kwon J. - Anti-inflammatory effects of 6-shogaol: Potential roles of HDAC inhibition and HSP70 induction, Food Chem. Toxicol. 49 (11) (2011) 2734-2740.
3. El-Ghorab A. H., Nauman M., Anjum F. M., Hussain S. and Nadeem M. - A comparative study on chemical composition and antioxidant activity of ginger (Zingiber officinale) and cumin (Cuminum cyminum), J. Agric. Food Chem. 58 (14) (2010) 8231-8237.
4. Ho P. H. - An illustrated flora of Vietnam, Mekong Printing, Montreal 3 (1993) 549-553.
5. Govindarajan V. S. - Ginger-chemistry, technology, and quality evaluation: Part 2, Crit. Rev. Food. Sci. Nut. 17 (3) (1982) 189-258.
6. Singh G., Maurya S., Catalan C., and Lampasona M. P. - Studies on essential oil, Part 42: chemical, antifungal, antioxidant and sprout suppressant studies on ginger essential oil and its oleoresin, Flav. Frag. J. 20 (1) (2005) 1-6.
7. Suekawa M., Ishige A., Yuasa K., Sudo K., Aburada M. and Hosoya E. - Pharmacological studies on ginger. I. Pharmacological actions of pungent constituents, (6)-gingerol and (6)-shogaol, J. Pharmaco. 7 (11) (1984) 836-848.
8. Akhila A. and Tewari R. - Chemistry of ginger: A review, Curr. Res. Med. Arom. Plants 6 (3) (1984) 143-156.
9. Wohlmuth H., Smith M. K., Brooks L. O., Myer S. P. and Leach D. N. - Essential oil composition of diploid and tetraploid clones of ginger (Zingiber officinale Roscoe) grown in Australia, J. Agric. Food. Chem. 54 (4) (2006) 1414-1419.
10. De Melo G. A. N., Grespan R., Fonseca J. P., Farinha O. T., De Silva E. L., Romero A. L., Bersani Amado C. A. and Cuman R. K. N. - Inhibitory effects of ginger (Zingiber officinale Roscoe) essential oil on leukocyte migration in vivo and in vitro, J. Nat. Med. 65 (1) (2011) 241-246.
11. Vermin G. and Parkanyi C. - Ginger oil in spices, herb and edible fungi (Ed.G. Charalambour), Amsterdam, Elsevier. Sci. Publ., 1994.
12. Sasidharan I. and Menon A. N. - Comparative chemical composition and antimicrobial activity of fresh and dry ginger oils (Zingiber officinale Roscoe), International J. Cur. Pharm. Res. 2 (4) (2010) 40-43.
13. Rana V. S., Verdeguer M. and Blazquez M. A. - A comparative study on rhizome essential oils of three Zingiber species from Manipur, Indian Perfum. 52 (4) (2008) 17-21.
14. Theilade I. and Mood I. J. - A New Species of Zingiber (Zingiberaceae) from Vietnam, Nord. J. Bot. 19 (1999) 525-527.
Chemical constituents of the rhizomes of Zingibercollinsii Mood & Theilade (Zingiberaceae)

15. Abdul A. B. H., Al-Zubairi A. S., Tailan N. D., Wahab S. I. A., Zain Z. N. M., Ruslay S., and Syam M. M. - Anticancer activity of natural compound (zerumbone) extracted from Zingiber zerumbet in human HeLa cervical cancer cells, Int. J. Pharmacol. 4 (3) (2008) 160-168.

16. Mofiz U. K. N. M. and Sagar H. M. - Scopoletin and β-sitosterolglucoside from roots of Ipomoea digitata, J. Pharmacog. Phytochem. 4 (2) (2015) 5-7.

17. Lallemand J. Y. and Duteil M. - 13C NMR spectra of quercetin and rutin, Magnetic Resonance in Chemistry 9 (3) (1977) 179-180.

18. Tuyen N. Q., Ha P. T. T., HoaL. T. P. and Quang D. N. - Cytotoxic polyacetylenes and 5-hydroxy methylfurfural from the rhizomes of Panaxstipuleanatus, Der. Pharma. Chemica. 8 (1) (2016) 327-329.

19. Péret-Almeidaa L., Cherubinob A. P. F., Alvesc R. J., Dufosséd L., Glória M. B. A. - Separation and determination of the physico-chemical characteristics of curcumin, demethoxycurcumin and bisdemethoxycurcumin, Food Res. International 38 (8-9) (2005) 1039-1044.

TÓM TÁT

THÀNH PHẦN HÓA HỌC CỦA RỄ LOÀI GỪNG COLLINS (Zingiber collinsii Mood & Theilade (ZINGIBERACEAE)) Ở VIỆT NAM

Lê Thị Mỹ Châu1,2, Vũ Đình Hoàng3, Nguyễn Thị Minh Tú2, Trần Đình Thắng1

1 Khoa Hóa, Trường Đại học Vinh, 182 Lệ Duẩn, thành phố Vinh, tỉnh Nghệ An
2 Viện Công nghệ sinh học và Công nghệ thực phẩm, Trường Đại học Bách khoa Hà Nội, 1 Đại Cồ Việt, Hai Bà Trưng, Hà Nội
3 Viện Kỹ thuật Hóa học, Trường Đại học Bách khoa Hà Nội, 1, Đại Cồ Việt, Hai Bà Trưng, Hà Nội

Email: tu.nguyenthiminh@hust.edu.vn, thangtd@vinhuni.edu.vn

Nghiên cứu thành phần hóa học của rễ loài gừng Collins (Zingiber collinsii Mood & Theilade (Zingiberaceae)) bằng các phương pháp sắc ký đã phân lập được 7 hợp chất bao gồm sesquiterpenoid (zerumbone (1)), cumarin (scopoletin (2)), flavonoid (quercetin (3), rutin (4)), dẫn xuất furfural (5-(hydroxymethyl) furfural (5)) và curcuminoid (bisdemethoxycurcumin (6), demethoxycurcumin (7)) Các hợp chất này được xác định cấu trúc bằng các phương pháp phổ khối lượng (MS) và phổ cộng hưởng từ hạt nhân (NMR).

Từ khóa: Zingiber collinsii, zerumbone, furfural, coumarin, flavonoid, curcuminoid.