Graphitic Nitrogen in Carbon Catalysts Important for the Reduction of Nitrite Revealed by 15N NMR Spectroscopy at Natural Abundance

Zheng Chen, Aleksander Jaworski, Jianhong Chen, Tetyana M. Budnyak, Ireneusz Szewczyk, Anna Rokicińska, Richard Dronskowski, Niklas Hedin, Piotr Kuśtrowski*, and Adam Slabon*

Corresponding Authors
Adam Slabon - Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16 C, 106 91 Stockholm, Sweden; ORCID: 0000-0002-4452-1831; Email: adam.slabon@mmk.su.se

Piotr Kuśtrowski - Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; ORCID: 0000-0001-8496-0559; Email: piotr.kustrowski@uj.edu.pl

Authors
Zheng Chen - Institute of Inorganic Chemistry, RWTH Aachen University, 52056 Aachen, Germany; Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16 C, 106 91 Stockholm, Sweden; ORCID: 0000-0002-2021-3332

Aleksander Jaworski - Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16 C, 106 91 Stockholm, Sweden; ORCID: 0000-0002-7156-559X

Jianhong Chen - Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16 C, 106 91 Stockholm, Sweden; ORCID: 0000-0001-9020-1786

Tetyana M. Budnyak - Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16 C, 106 91 Stockholm, Sweden; ORCID: 0000-0003-2112-9308

Ireneusz Szewczyk - Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; ORCID: 0000-0003-2628-3865

Anna Rokicińska - Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; ORCID: 0000-0001-8397-4422

Richard Dronskowski - Institute of Inorganic Chemistry, RWTH Aachen University, D-52056 Aachen, Germany; Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen, Guangdong 518055, People’s Republic of China; ORCID: 0000-0002-1925-9624

Niklas Hedin - Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16 C, 106 91 Stockholm, Sweden; ORCID: 0000-0002-7284-2974

Content

Figure S1. The calibration curves used to calibrate the concentrations of NO$_2^-$ and NH$_4^+$ ion by spectrophotometer at 520 nm and 655 nm absorbance spectra, respectively; the fitting curves show a nice linear relation between absorbance and concentration of NO$_2^-$ and NH$_4^+$ ion.

Figure S2. CV curves of N-doped C (N$_2$) and N-doped C (NH$_3$) on OER and HER in 0.05 M H$_2$SO$_4$ (pH 1) electrolyte and 0.1 M NaOH (pH 13) electrolyte.

Figure S3. XRD of N-doped C (N$_2$) and N-doped C (NH$_3$).

Figure S4. SEM micrographs of N-doped C (NH$_3$) (a) and N-doped C (N$_2$) (b).
Figure S1. The calibration curves used to calibrate the concentrations of NO$_2^-$ and NH$_4^+$ ion by spectrophotometer at 520 nm and 655nm absorbance spectra, respectively; the fitting curves show a nice linear relation between absorbance and concentration of NO$_2^-$ and NH$_4^+$ ion.

Figure S2. CV curves of N-doped C (N$_2$) and N-doped C (NH$_3$) on OER (right) and HER (left) in 0.05 M H$_2$SO$_4$ (pH 1) electrolyte and 0.1 M NaOH (pH 13) electrolyte.
Figure S3. XRD of N-doped C (N$_2$) and N-doped C (NH$_3$).

Figure S4. SEM micrographs of N-doped C (NH$_3$) (a) and N-doped C (N$_2$) (b).