Separation of CO₂ from Small Gas Molecules Using Deca-Dodecasil 3 Rhombohedral (DDR3) Membrane Synthesized via Ultrasonically Assisted Hydrothermal Growth Method

Muhammad Mubashir,1 Yeong Yin Fong,2 Sidra Saqib,3 Ahmad Mukhtar,2 Sikander Rafiq,4 Muhammad Bilal K. Niazi,5 Muhammad Babar,2 Sami Ullah,6 Abdullah G. Al-Sehemi,6 and Farrukh Jamil3

1Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Netherlands
2Department of Chemical Engineering, Universiti Teknologi PETRONAS (UTP), Seri Iskandar, Perak 32610, Malaysia
3Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Punjab 54000, Pakistan
4Department of Chemical, Polymer and Composite Materials Engineering, University of Engineering and Technology Lahore, New Campus, Pakistan
5School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan
6Department of Chemistry, College of Science, King Khalid University, Abha 61413, P.O. Box 9004, Saudi Arabia

Correspondence should be addressed to Muhammad Mubashir; m.mubashir@tue.nl and Sikander Rafiq; sikanderafiq@gmail.com

Received 27 March 2020; Revised 11 June 2020; Accepted 19 June 2020; Published 20 July 2020

1. Introduction

Over the last few decades, much research has been done on the CO₂ separation especially in syngas production (mainly H₂) and natural gas purification. The presence of CO₂ in the syngas reduces the yield of hydrogen and methane recovery during the Fischer-Tropsch (FT) process [1, 2]. Similarly, the presence of CO₂ decreases the heating value of natural gas and caused equipment corrosion in the existence of water [3, 4]. Meanwhile, membrane separation technology has received much attention in CO₂ separation mainly due to its advantages compared to the conventional separation technologies [5–11]. Zeolite membrane is favored in the CO₂ separation among the membrane materials over polymeric and mixed matrix membranes due to its characteristics, including well-specified pores, the molecular filtering property, and
strong CO₂ permeation [12, 13]. Table 1 shows the comparison of different zeolite membranes reported in the literature for CO₂ separation from CH₄.

Referring to Table 1, Li et al. [13] reported CO₂ separation from light gases through the SAPO-34 membrane and CO₂ permeance of 1.60 × 10⁻⁷ mol/m²sPa was achieved. Meanwhile, H₂/CO₂, CO₂/CH₄, and CO₂/N₂ selectivities of 0.44, 25, and 8.30 were obtained, respectively. Subsequently, Wang and his coworkers [14] reported on the CO₂ removal selectivity of 3.70 was achieved at ambient conditions. Temperature and feed pressure were maintained at room temperature and 0.1 bar using MKS instrument while the temperature (MKS instrument) and feed pressure controllers, respectively. Temperature and feed pressure were controlled with an error of +/−0.1°C and 0.1 bar using MKS instrument temperature and feed pressure controllers, respectively. The gas permeation was calculated using equation (1), while ideal selectivity was calculated using equation (2) as follows [22, 23].

\[\alpha_{ij} = \frac{P_j}{P_i}, \]

where \(P_i \) is the flux (mol/m²s) and \(\Delta P \) is the pressure drop (Pa) while \(\alpha_{ij} \) is the gas pair selectivity.

2. Materials and Methods

Chemicals and the procedure used for the synthesis of DDR3 membrane have been reported in detail in our previous work [10, 22]. Firstly, the mixture solution was prepared using 1-adamantaneamine, tetramethoxy silane, ethylenediamine, and water. Subsequently, the mixture solution was undergoing ultrasonic-irradiation pretreatment for 1 h prior to hydrothermal growth for 1 day. Then, the seeds were recovered, washed with deionized water, and attached on α-alumina support via a vacuum-assisted seeding method. In the typical synthesis of DDR3 membrane, the seeded support was placed in an autoclaved filled with solution mixture prepared using a similar recipe and procedure as described in our previous work [10]. After that, the membrane was grown in 2 days under hydrothermal heating. Consequently, the resultant membrane was preceded for calcination and characterization. The crystallinity and morphology of the membrane were characterized using an X-ray diffractometer (Bruker D8 Advance) and field emission scanning electron microscopy (Zeiss Supra 55 VP).

2.1. Permeation Study

2.1.1. Pure Gas Permeability. The performance of the resultant DDR3 membrane was investigated using the permeation test rig as shown in Figure 1. The membrane was sealed in the permeation cell, and the flow rate of the targeted gases including, H₂, CO₂, N₂, and CH₄ was fixed at 200 ml/min while the temperature (MKS instrument) and feed pressure were maintained at room temperature and 2 bar, respectively. Temperature and feed pressure were controlled with an error of +/−0.1°C and 0.1 bar using MKS instrument temperature and feed pressure controllers, respectively. The gas permeation was calculated using equation (1), while ideal selectivity was calculated using equation (2) as follows [22, 23].

\[P_i = \frac{J_i}{\Delta P}, \]

\[\alpha_{ij} = \frac{P_j}{P_i}, \]

Table 1: Comparison of different zeolite membranes used for CO₂ separation from CH₄.

Membranes	H₂/CO₂ selectivity	CO₂/CH₄ selectivity	CO₂/N₂ selectivity	CO₂ permeance (mol/m²sPa)	Ref.
MFI membrane	70	—	—	0.80 × 10⁻⁷	[14]
AlPO-18 membrane	—	220	45	6.30 × 10⁻⁷	[15]
SAPO-34 membrane	0.44	25	8.30	1.60 × 10⁻⁷	[13]
DDR3R membrane	3.70	—	—	1.10 × 10⁻⁷	[17]
DDR3 membrane	—	—	200	3.0 × 10⁻⁷	[18]
DDR3 membrane	—	—	6.1	8.70 × 10⁻⁷	[19]

2.1. Permeation Study

2.1.1. Pure Gas Permeability. The performance of the resultant DDR3 membrane was investigated using the permeation test rig as shown in Figure 1. The membrane was sealed in the permeation cell, and the flow rate of the targeted gases including, H₂, CO₂, N₂, and CH₄ was fixed at 200 ml/min while the temperature (MKS instrument) and feed pressure were maintained at room temperature and 2 bar, respectively. Temperature and feed pressure were controlled with an error of +/−0.1°C and 0.1 bar using MKS instrument temperature and feed pressure controllers, respectively. The gas permeation was calculated using equation (1), while ideal selectivity was calculated using equation (2) as follows [22, 23].

\[P_i = \frac{J_i}{\Delta P}, \]

\[\alpha_{ij} = \frac{P_j}{P_i}, \]

where \(J_i \) is the flux (mol/m²s) and \(\Delta P \) is the pressure drop (Pa) while \(\alpha_{ij} \) is the gas pair selectivity.

2. Materials and Methods

Chemicals and the procedure used for the synthesis of DDR3 membrane have been reported in detail in our previous work [10, 22]. Firstly, the mixture solution was prepared using 1-adamantaneamine, tetramethoxy silane, ethylenediamine, and water. Subsequently, the mixture solution was undergoing ultrasonic-irradiation pretreatment for 1 h prior to hydrothermal growth for 1 day. Then, the seeds were recovered, washed with deionized water, and attached on α-alumina support via a vacuum-assisted seeding method. In the typical synthesis of DDR3 membrane, the seeded support was placed in an autoclaved filled with solution mixture prepared using a similar recipe and procedure as described in our previous work [10]. After that, the membrane was grown in 2 days under hydrothermal heating. Consequently, the resultant membrane was preceded for calcination and characterization. The crystallinity and morphology of the membrane were characterized using an X-ray diffractometer (Bruker D8 Advance) and field emission scanning electron microscopy (Zeiss Supra 55 VP).

2.1. Permeation Study

2.1.1. Pure Gas Permeability. The performance of the resultant DDR3 membrane was investigated using the permeation test rig as shown in Figure 1. The membrane was sealed in the permeation cell, and the flow rate of the targeted gases including, H₂, CO₂, N₂, and CH₄ was fixed at 200 ml/min while the temperature (MKS instrument) and feed pressure were maintained at room temperature and 2 bar, respectively. Temperature and feed pressure were controlled with an error of +/−0.1°C and 0.1 bar using MKS instrument temperature and feed pressure controllers, respectively. The gas permeation was calculated using equation (1), while ideal selectivity was calculated using equation (2) as follows [22, 23].

\[P_i = \frac{J_i}{\Delta P}, \]

\[\alpha_{ij} = \frac{P_j}{P_i}, \]

where \(J_i \) is the flux (mol/m²s) and \(\Delta P \) is the pressure drop (Pa) while \(\alpha_{ij} \) is the gas pair selectivity.
2.1.2. Effect of Hydrocarbon Impurities and Stability Test on DDR3 Membrane. The effect of hydrocarbon impurities and stability test over the resultant membrane in CO$_2$ separation from CH$_4$ was also conducted using the same permeation test rig. The experiments were conducted in three consecutive steps in which the first and third steps were used to investigate the stability of DDR3 membrane. Meanwhile, the second step of the experiment was carried out to study the effect of hydrocarbon impurities on the performance of the resultant membrane in CO$_2$ separation from CH$_4$.

During the first step of the experiment, temperature, inlet pressure, and CO$_2$ inlet composition were maintained at 30.1°C, 1 bar, and 10 vol% (90 vol% of CH$_4$), respectively, because this experimental condition was obtained as the optimum CO$_2$/CH$_4$ separation condition as reported in our previous work [10]. After 24 h, the second step of the testing was conducted by feeding the CO$_2$ and CH$_4$ gas mixture containing hydrocarbon impurities with the compositions of 35.84% CO$_2$, 44.50% CH$_4$, 6.27% C$_3$H$_8$, 3.44% C$_4$H$_{10}$, and 9.94% C$_2$H$_6$ into the system. This composition resembled the natural gas composition presence in North Sumatra Basin, Indonesia. After 48 h of testing, the feed gas was cut off and the experiment was continued using the feed gas composition applied in the first step of the testing. After each step, prior to the measurement of gas permeances, the system was allowed to stabilize for 30 min.

Gas compositions were calculated using gas chromatographs in feed, permeate, and retention streams (PerkinElmer Clarus 580). The CO$_2$ and CH$_4$ permeations were determined with equation (1) with the amount of pressure decrease obtained by equation (3) [24]. The selectivity of the composition of CO$_2$/CH$_4$ was determined subsequently from the mole fractions as defined in equation (4).

\[
\Delta P_i = P_f - P_p,
\]

where \(P_f\) and \(P_p\) are partial pressures in feed and permeate, respectively.

\[
\text{Composition selectivity} = \frac{(X_i/X_j)_{P}}{(X_i/X_j)_{F}},
\]

where \(X_i\) and \(X_j\) are mole fractions of the \(i\) and \(j\) elements of the binary mixture. \(P\) and \(F\) subscriptions reflect both permeate and feed.

3. Results and Discussion

3.1. Characterization. The details on XRD, FESEM, FTIR, and EDX analysis on DDR3 membrane have been described in our previous work [10]. The significant XRD peaks and FESEM images obtained from the resultant membrane showed comparable crystallinity and hexagonal morphology which are analogous with those findings documented in the researches for DDR3 membrane [9, 10, 25, 26]. The surface and cross-sectional view of the membrane showed that a uniform, flat, and fully intergrown membrane layer was formed.
3.2. Gas Permeation. Figure 2 shows the performance of the membrane at ambient temperature and feed pressure of 2 bar. Referring to Figure 2, H2, CO2, N2, and CH4 permeances of 4.10×10^{-7} mol/m2sPa, 2.46×10^{-7} mol/m2sPa, 9.11×10^{-8} mol/m2sPa, and 4.73×10^{-8} mol/m2sPa are obtained, respectively. It can be observed from Figure 2 that H2 permeance is higher than that of those values obtained for CO2, N2, and CH4 gases. This could be due to the significant difference in the Knudsen diffusion value of the gases through the membrane. H2 with a molecular diameter of 0.29 nm is smaller than the molecular diameter of CO2, N2, and CH4, as well as the DDR3 pore channel. Meanwhile, the molecular diameter of CO2, N2, and CH4 of 0.33 nm, 0.36 nm, and 0.38 nm, respectively, is closer to the DDR3 pore channel. Thus, H2 can diffuse faster compared to CO2, N2, and CH4 gases.

From Figure 2, it is found that the gas permeances are decreased in the order of H2 > CO2 > N2 > CH4. This decreasing trend is mainly attributed to the molecular sieving behaviour of DDR3 membrane and Knudsen diffusion mechanism of the gases [25–28]. The diffusion rate of these gases through the DDR3 membrane decreases when the kinetic diameter of the gases increases, and thus, decreasing order of gas permeance has been observed [17]. Moreover, H2, CO2, N2, and CH4 permeances obtained from the membrane were comparable with those results reported in the literature [17, 20, 25].

As shown in Figure 2 also, the ideal selectivities of CO2/CH4, CO2/N2, and H2/CO2 of 5.22, 2.27, and 1.66, respectively, are obtained. It is interesting to note that the ideal selectivities of the gas pairs decreased in the sequence of CO2/CH4 > CO2/N2 > H2/CO2. This result is attributed to the CH4 permeance, which is much smaller than the permeance of H2 and N2, as shown in Figure 3. Overall, although the gas permeance and ideal selectivity results obtained in the present work are comparable with those results reported in the literature [25], the relatively low performance of DDR3 membrane could be due to the presence of minor defects or intercrystalline pores which have reduced the performance of the membrane. Thus, it is suggested that the membrane should be modified with a TEOS solution to minimized intercrystalline defects to enhance its performance in gas separation [24]. TEOS could penetrate into intercrystalline defects and seal it through the formation of hydrogen bonding between membrane zeolite materials and TEOS. In addition, it also slows down the CH4 permeation by providing extra resistance due to its higher kinetic diameter [25].

3.3. Effect of Hydrocarbon Impurities on the Performance of DDR3 Membrane. Figure 4 shows the stability test and effect of hydrocarbon impurities on the performance of the membrane in CO2 separation from CH4 for the testing duration of 96 h. Sections I and III shown in Figure 4 display the stability results of DDR3 membrane in CO2 separation from a binary gas mixture of CO2 and CH4 at a temperature of 30.1°C, inlet pressure of 1 bar, and CO2 inlet composition of 10 vol% because this experimental condition was obtained as the optimum CO2/CH4 separation condition which provided higher permeation performance of DDR3 membrane as reported in our previous work [10].

Meanwhile, section II in Figure 4 exhibits the effect of hydrocarbon impurities on the performance of DDR3 membrane in CO2 separation from CH4 at a temperature of 30.1°C and feed pressure of 1 bar. Referring to Figure 4, at points C and E, CO2 and CH4 permeances of 3.13×10^{-8} mol/m2sPa and 2.81×10^{-8} mol/m2sPa are obtained, respectively. Meanwhile, CO2/CH4 selectivity of 2.59 was obtained at point G. Results at points C*, E*, and G* were obtained when the feed gas was changed from a pure binary mixture of CO2/CH4 to CO2/CH4 gas mixture containing hydrocarbon impurities. At points C* and E*, CO2 and CH4 permeances of 3.11×10^{-8} mol/m2sPa and 2.83×10^{-8} mol/m2sPa are obtained, respectively. On the other hand, CO2/CH4 selectivity of 2.59 was obtained at point G*.

It can be seen from Figure 4 that the performance of the membrane slightly decreases when the gas mixture containing hydrocarbon impurities is fed into the system. Besides, from Figure 4, it is found that CO2 and CH4 permeances decrease from point E* to F and C* to D, respectively, after...
testing duration of 40 h (from 32 h to 72 h). Meanwhile, CO₂ and CH₄ permeances of 1.91×10^{-8} mol/m²sPa and 1.65×10^{-8} mol/m²sPa were obtained at point F and point D, respectively. This result shows that CO₂ permeance is gradually dropped by about 39.1% with respect to the value of CO₂ permeance obtained at point E. Similarly, CH₄ permeance decreased by about 14.8% with respect to the initial value of CH₄ permeance obtained at point C. The decrease in CO₂ and CH₄ permeances could be due to the adsorption of hydrocarbon impurities in DDR3 pores which inhibited the diffusion of CO₂ and CH₄ molecules [3]. Adsorption of hydrocarbon impurities into the pores of DDR3 pore reduced its capacity for the diffusion of CO₂ and CH₄ molecules. Subsequently, adsorption of hydrocarbon impurities may also cause saturation for adsorption of CO₂ and CH₄ molecules which may also resulted to drop the performance of the membrane. In addition, a competitive sorption effect has been reported previously that mixed gas performance is always lower than pure gas due to a competitive sorption mechanism [4, 16]. However, CO₂/CH₄ selectivity of 2.54 was found at point H, which is slightly lower than the CO₂/CH₄ selectivity obtained at point G. It is found that
the loss of CO$_2$/CH$_4$ selectivity at point H was only about 4.2\% compared to the CO$_2$/CH$_4$ selectivity which was initially obtained at point G*. Furthermore, it can be seen from Figure 4 (section I) that, when the hydrocarbon impurities are not presented in the feed gas, the performance of DDR3 membrane remains stable. After 24 h, nearly constant CO$_2$ and CH$_4$ permeances of 7.23×10^{-8} mol/m2sPa and 4.51×10^{-8} mol/m2sPa were obtained, respectively, while CO$_2$/CH$_4$ selectivity of 3.66 was achieved (line A). These results are similar to those values obtained for CO$_2$ permeance, CH$_4$ permeance, and CO$_2$/CH$_4$ selectivity when the feed gas was changed to the binary gas mixture of CO$_2$ and CH$_4$ at the testing duration from 80 h to 96 h. In section III, CO$_2$ and CH$_4$ permeances of 7.08×10^{-8} mol/m2sPa and 4.41×10^{-8} mol/m2sPa were obtained (line B), while CO$_2$/CH$_4$ selectivity of 3.69 was achieved.

Therefore, it can be concluded that the presence of hydrocarbon impurities in CO$_2$ and CH$_4$ gas mixture has affected the performance of DDR3 membrane and caused a slight reduction of CO$_2$ and CH$_4$ gas over a testing duration of 40 h (from 32 h to 72 h). Consequently, CO$_2$/CH$_4$ selectivity of DDR3 membrane remained stable at testing condition of temperature of 30.1°C and feed pressure of 1 bar and CO$_2$ feed composition of 10 vol%.

3.4. Stability of DDR3 Membrane. Figure 4 also shows the stability of DDR3 membrane in CO$_2$ separation from CH$_4$. It can be seen from Figure 4 that CO$_2$ permeability, CH$_4$
permeability, and CO$_2$/CH$_4$ selectivity (7.06×10^{-8} mol/m2·sPa, 4.38×10^{-8} mol/m2·sPa, and 3.66, respectively) obtained over DDR3 membrane after 24 h are comparable with those values achieved after 96 h (CO$_2$ permeance = 7.08×10^{-8} mol/m2·sPa, CH$_4$ permeance = 4.41×10^{-8} mol/m2·sPa, and CO$_2$/CH$_4$ selectivity = 3.69). Overall, after 96 h of testing duration, CO$_2$ permeability, CH$_4$ permeability, and CO$_2$/CH$_4$ selectivity were dropped by about 0.28%, 0.68%, and 0.81% compared to the original values obtained at line A shown in Figure 4. From these results, it has been found that membrane performance was dropped in small quantity and thus, it was decided that the membrane was stable in the presence of hydrocarbons.

In conclusion, the permeation performance of DDR3 membrane in the separation of CO$_2$/CH$_4$ remained steady up to 96 h with small losses of CO$_2$ permeability, CH$_4$ permeability, and CO$_2$/CH$_4$ selectivity. Thus, the separation performance of DDR3 membrane is durable and stable in the presence of hydrocarbon impurities.

The findings seen in the literature under the same temperature and pressure condition assess the efficiency of DDR3 membrane in CO$_2$/CH$_4$, H$_2$/CO$_2$, and CO$_2$/N$_2$ separations. With respect to Figure 5(a), the ideal CO$_2$/CH$_4$ selectivity obtained in this analysis is comparable to the published findings by Yajima and Nakayama [21]. However, this value is below the published results by Himeno et al. [18] and van den Bergh et al. [25]. Relatively low CO$_2$/CH$_4$ ideal selectivity of the DDR3 membrane obtained during the present research may be triggered by the existence of slight membrane defects which may influence CO$_2$ or CH$_4$ transport pathways via the membrane.

On the other hand, the performance of DDR3 membrane in CO$_2$/N$_2$ and H$_2$/CO$_2$ separation is shown in Figures 5(b) and 5(c). From Figure 5(b), it is found that the CO$_2$/N$_2$ selectivity obtained in the present work is lower than those results reported by Nakayama et al. [19]. Referring to Figure 5(c), the ideal selectivity of H$_2$/CO$_2$ obtained in the present study is slightly higher than those results reported by Tomita et al. [20] and Zheng et al. [26]. However, these values were lower than those results reported by Bose et al. [17]. Low ideal selectivity values of CO$_2$/N$_2$ and H$_2$/CO$_2$ obtained in the present work could be because of the similar reason as described previously for the performance of the membrane in CO$_2$/CH$_4$ separation. The presence of defects in the membrane affected the transport mechanisms of N$_2$, H$_2$, and CO$_2$ through the membrane and lowered the selectivity values of CO$_2$/N$_2$ and H$_2$/CO$_2$.

4. Conclusions

In the present work, the performance of DDR3 membrane for the CO$_2$ separation from gas molecules exhibiting comparatively smaller kinetic diameters, i.e., N$_2$ and CH$_4$, has been successfully conducted. The permeances of the gases obtained over the membrane decreased in the order of H$_2$ > CO$_2$ > N$_2$ > CH$_4$. Subsequently, it was also found that the DDR3 membrane demonstrated an ideal selectivity of 5.22 for CO$_2$/CH$_4$ which was higher than the ideal selectivity of H$_2$/CO$_2$ and CO$_2$/N$_2$ gas pairs. Besides, ideal selectivities obtained from DDR3 membrane decreased in the sequence of CO$_2$/CH$_4$ > CO$_2$/N$_2$ > H$_2$/CO$_2$. Furthermore, it was observed that the presence of hydrocarbon impurities in the CO$_2$ and CH$_4$ gas mixture directly affects the performance of DDR3 membrane and contributed to the losses of CO$_2$ permeability, CH$_4$ permeability, and CO$_2$/CH$_4$ selectivity of 39.1%, 14.8%, and 4.2%, respectively. Consequently, from the stability test, it can be suggested that the permeation performance of DDR3 membrane remained stable for 96 h, even after the separation testing of a gas mixture containing hydrocarbon impurities, with losses of CO$_2$ permeability, CH$_4$ permeability, and CO$_2$/CH$_4$ selectivity of 2.35%, 4.43%, and 0.55%, respectively. From the comparison study, it was concluded that the permeation performance of DDR3 membrane in CO$_2$ separation from H$_2$, CH$_4$, and N$_2$ still needs to be improved mainly due to the presence of defects in the membrane.

Data Availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] D. Mendes, A. Mendes, L. Madeira, A. Iulianelli, J. Sousa, and A. Basile, “The water-gas shift reaction: from conventional catalytic systems to Pd-based membrane reactors—a review,” Asia-Pacific Journal of Chemical Engineering, vol. 5, no. 1, pp. 111–137, 2010.

[2] W. Xingjun, G. Miao, H. Bingqing et al., “Study on surface morphology and selectivity of precipitated iron catalysts of FTS,” Asia-Pacific Journal of Chemical Engineering, vol. 4, no. 5, pp. 723–728, 2009.

[3] M. Mubashir, Y. F. Yeong, T. L. Chew, and K. K. Lau, “Optimization of spinning parameters on the fabrication of NH$_2$-MIL-53(Al)/cellulose acetate (CA) hollow fiber mixed matrix membrane for CO$_2$ separation,” Separation & Purification Technology, vol. 215, pp. 32–42, 2019.

[4] M. Mubashir, Y. F. Yeong, K. K. Lau, and T. L. Chew, “Effect of spinning conditions on the fabrication of cellulose acetate hollow fiber membrane for CO$_2$ separation from N$_2$ and CH$_4$,” Polymer Testing, vol. 73, pp. 1–111, 2019.

[5] S. Saqib, S. Rafiq, N. Muhammad et al., “Perylene based novel mixed matrix membranes with enhanced selective pure and mixed gases (CO$_2$, CH$_4$, and N$_2$) separation,” Journal of Natural Gas Science and Engineering, vol. 73, p. 103072, 2020.

[6] M. Chawla, H. Saulat, M. Masood Khan et al., “Membranes for CO$_2$/CH$_4$ and CO$_2$/N$_2$ Gas separation,” Chemical Engineering & Technology, vol. 43, no. 2, pp. 184–199, 2019.

[7] S. Ullah, M. A. Assiri, A. G. al-Sehemi et al., “High-temperature CO$_2$ removal from CH$_4$ using silica membrane: experimental and neural network modeling,” Greenhouse Gases: Science and Technology, vol. 9, no. 5, pp. 1010–1026, 2019.
[8] S. Saqib, S. Rafiq, M. Chawla et al., “Facile CO₂ separation in composite membranes,” Chemical Engineering & Technology, vol. 42, no. 1, pp. 30–44, 2019.

[9] M. Muhammad, Y. F. Yeong, K. K. Lau, and A. B. Mohd Sharif, “Issues and challenges in the development of deca-dodecasil 3 rhombohedral membrane in CO₂ capture from natural gas,” Separation & Purification Reviews, vol. 44, pp. 331–340, 2015.

[10] M. Mubashir, Y. F. Yeong, and K. K. Lau, “Ultrasonic-assisted secondary growth of deca-dodecasil 3 rhombohedral (DD3R) membrane and its process optimization studies in CO₂/CH₄ separation using response surface methodology,” Journal of Natural Gas Science and Engineering, vol. 30, pp. 50–63, 2016.

[11] S. Saqib, S. Rafiq, N. Muhammad et al., “Influence of interfacial layer parameters on gas transport properties through modeling approach in MWCNTs based mixed matrix composite membranes,” Chemical Engineering Science, vol. 218, article 115543, 2020.

[12] F. Chang, J. Zhou, P. Chen et al., “Microporous and mesoporous materials for gas storage and separation: a review,” Asia-Pacific Journal of Chemical Engineering, vol. 8, no. 4, pp. 618–626, 2013.

[13] Y. Li, H. Chen, J. Liu, and W. Yang, “Microwave synthesis of LTA zeolite membranes without seeding,” Journal of Membrane Science, vol. 277, no. 1-2, pp. 230–239, 2006.

[14] H. Wang, X. Dong, and Y. S. Lin, “Highly stable bilayer MFI zeolite membranes for high temperature hydrogen separation,” Journal of Membrane Science, vol. 450, pp. 425–432, 2014.

[15] H. Shi, “Organic template-free synthesis of SAPO-34 molecular sieve membranes for CO₂–CH₄ separation,” RSC Advances, vol. 5, no. 48, pp. 38330–38333, 2015.

[16] M. Mubashir, Y. F. Yeong, and K. K. Lau, “Comparison of post-treatment methods on the performance of hollow fiber membranes containing metal organic framework in gases separation,” Industrial & Engineering Chemistry Research, vol. 58, no. 17, pp. 7120–7130, 2019.

[17] A. Bose, M. Sen, J. K. Das, and N. Das, “Sonication mediated hydrothermal process—an efficient method for the rapid synthesis of DDR zeolite membranes,” RSC Advances, vol. 4, no. 36, pp. 19043–19052, 2014.

[18] S. Himeno, T. Tomita, K. Suzuki, K. Nakayama, K. Yajima, and S. Yoshida, “Synthesis and permeation properties of a DDR-type zeolite membrane for separation of CO₂/CH₄ gaseous mixtures,” Industrial & Engineering Chemistry Research, vol. 46, no. 21, pp. 6989–6997, 2007.

[19] K. Nakayama, K. Suzuki, M. Yoshida, K. Yajima, and T. Tomita, Method for preparing DDR type zeolite membrane, DDR type zeolite membrane, and composite DDR type zeolite membrane, and method for preparation thereof, Google Patents, 2006.

[20] T. Tomita, K. Nakayama, and H. Sakai, “Gas separation characteristics of DDR type zeolite membrane,” Microporous and Mesoporous Materials, vol. 68, no. 1-3, pp. 71–75, 2004.

[21] K. Yajima and K. Nakayama, Process for producing ddr type zeolite membrane, Google Patents, 2009.

[22] M. Mubashir, Y. F. Fong, and L. K. Keong, “Synthesis of deca-dodecasil 3 rhombhedral (DD3R) membranes via secondary hydrothermal growth method and their gas permeation performance in CO₂ and CH₄,” ARPN Journal of Engineering and Applied Sciences, vol. 11, no. 18, pp. 11145–11149, 2016.

[23] A. L. Ahmad, A. R. Sunarti, L. K. Teong, and W. J. N. Fernando, “Development of thin film composite for CO₂ separation in membrane gas absorption application,” Asia-Pacific Journal of Chemical Engineering, vol. 4, no. 5, pp. 787–792, 2009.

[24] S. Li, J. G. Martinek, J. L. Falconer, R. D. Noble, and T. Q. Gardner, “High-pressure CO₂/CH₄ separation using SAPO-34 membranes,” Industrial & Engineering Chemistry Research, vol. 44, no. 9, pp. 3220–3228, 2005.

[25] J. van den Bergh, A. Tihaya, and F. Kapteijn, “High temperature permeation and separation characteristics of an all-silica DDR zeolite membrane,” Microporous and Mesoporous Materials, vol. 132, no. 1-2, pp. 137–147, 2010.

[26] Z. Zheng, A. S. Hall, and V. V. Gulians, “Synthesis, characterization and modification of DDR membranes grown on α-alumina supports,” Journal of Materials Science, vol. 43, no. 7, pp. 2499–2502, 2008.

[27] M. Mubashir, Y. F. Yeong, K. K. Lau, and A. B. M. Shariff, “Synthesis and performance of deca-dodecasil 3 rhombohedral (DDR)-type zeolite membrane in CO₂ separation—a review,” ASEAN Journal of Chemical Engineering, vol. 2, no. 14, p. 48, 2015.

[28] M. Mubashir, Y. F. Yeong, K. K. Lau, and A. B. M. Shariff, “Methods comparison for the synthesis of deca-dodecasil 3 rhombohedral (DDR3) zeolite crystals,” Applied Mechanics and Materials, vol. 773-774, pp. 1096–1100, 2015.