RAILS: A Robust Adversarial Immune-inspired Learning System

REN WANG1, TIANQI CHEN1, STEPHEN LINDSLY.1, COOPER STANSBURY1, ALNAWAZ REHEMTULLA.1, INDINDIKA RAJAPAKSE.1 and ALFRED HERO1 (Life Fellow, IEEE)

1University of Michigan, Ann Arbor, MI 48109 USA (e-mail: renwang@umich.edu, tqch@umich.edu, lindsly@umich.edu, cstan@cs.umich.edu, aln@cs.umich.edu, indikar@umich.edu, hero@eecs.umich.edu)

Corresponding authors: Alfred Hero (e-mail: hero@eecs.umich.edu); Indika Rajapakse (e-mail: indikar@umich.edu).

This work was partially supported by the United States Dept of Defense, Defense Advanced Research Projects Agency (DARPA) under grant HR00112020011.

ABSTRACT Adversarial attacks against deep neural networks (DNNs) are continuously evolving, requiring increasingly powerful defense strategies. We develop a novel adversarial defense framework inspired by the adaptive immune system: the Robust Adversarial Immune-inspired Learning System (RAILS). Initializing a population of exemplars that is balanced across classes, RAILS starts from a uniform label distribution that encourages diversity and uses an evolutionary optimization process to adaptively adjust the predictive label distribution in a manner that emulates the way the natural immune system recognizes novel pathogens. RAILS’ evolutionary optimization process explicitly captures the tradeoff between robustness (diversity) and accuracy (specificity) of the network, and represents a new immune-inspired perspective on adversarial learning. The benefits of RAILS are empirically demonstrated under eight types of adversarial attacks on a DNN adversarial image classifier for several benchmark datasets, including: MNIST; SVHN; CIFAR-10; and CIFAR-10. We find that PGD is the most damaging attack strategy and that for this attack RAILS is significantly more robust than other methods, achieving improvements in adversarial robustness by ≥5.62%, 12.5%, 10.32%, and 8.39%, on these respective datasets, without appreciable loss of classification accuracy. Codes for the results in this paper are available at https://github.com/wangren09/RAILS.

INDEX TERMS Bio-inspired deep learning, adversarial robustness, deep network defense strategies.

I. INTRODUCTION THE state of the art in supervised deep learning has dramatically improved over the past decade [1]. Deep learning techniques have led to significant advances in applications such as: face recognition [2]; object detection [3]; and natural language processing [4]. Despite these successes, deep learning techniques are not resilient to evasion attacks (a.k.a. adversarial attacks) on test inputs and poisoning attacks on training data [5]–[7]. The adversarial vulnerability of deep neural networks (DNN) have restricted their application, motivating researchers to develop effective defense methods. The focus of this paper is to develop a novel deep defense framework inspired by the mammalian immune system.

Current adversarial defense strategies can be divided into four classes: (1) detection of adversarial samples [8]–[10]; (2) Robust training [11]–[14]; (3) data denoising and reconstruction [15], [16]; and (4) deep adversarial learning architectures [17], [18]. The first class of methods defends a DNN using simple outlier detection models for detecting adversarial examples. However, it has been shown that such adversarial detection methods can be easily defeated [19]. Robust training aims to harden the model to deactivate attacks such as evasion attacks. Known robust training methods are often tailored to a certain level of attack strength in the context of ℓ_p-perturbation. Moreover, the trade-off between accuracy and robustness presents design challenges [12]. The data denoising and reconstruction class of methods is driven by an intuitive idea that adversarial examples can be mapped to the manifold of clean examples through data reconstruction by denoising. However, while denoising can reduce adversarial perturbations it can also distort the inputs [20], providing new opportunities for an attacker to exploit the defense mechanism [21]. Deep adversarial learning architectures directly design the defense into the layers of the neural network, e.g., by robustifying them with k-NN’s [17].
or modifying a generative adversarial network (GAN) [18]. Despite these advances, current methods still have difficulty providing an acceptable level of robustness to novel attacks [22].

To design an effective defense, it is natural to consider a learning strategy that emulates mechanisms of the naturally robust biological immune system. The power of artificial immune system (AIS) models have been established in many other applications [23]–[25]. While AIS approaches to enhancing DNN adversarial robustness have been previously developed [26], [27], they have been restricted to simple simulations of the innate immune system. In this paper, we propose a new framework, Robust Adversarial Immune-inspired Learning System (RAILS), that can effectively defend deep learning architectures against aggressive attacks based on a refined biology model of the adaptive immune system. Built upon a class-wise k-Nearest Neighbor (kNN) structure, given a test sample RAILS finds an initial small population of proximal samples, balanced across different classes, with uniform label distribution. RAILS then promotes the specificity of the label distribution towards the ground truth label through a test sample RAILS finds an initial small population of proximal samples, balanced across different classes, with uniform label distribution. RAILS then promotes the specificity of the label distribution towards the ground truth label through an evolutionary optimization. RAILS can efficiently correct adversarial label flipping by balancing label diversity against specificity. While RAILS can be applied to defending against many different types of attacks, in this paper we restrict attention to evasion attacks on the input. Figure 1 shows that RAILS outperforms existing methods on various types of evasion attacks.

![Figure 1. RAILS launches the best defense against different types of attacks.](image)

Compared to existing defense methods, we make the following contributions:

- RAILS achieves better adversarial robustness by assigning a uniform label distribution to each input and evolving it to a distribution that is concentrated about the input’s true label class. (see Section II and Table 2)
- RAILS incorporates a life-long robustifying process by adding synthetic “virtual data” to the training data. (see Section II and Table 5)
- RAILS evolves the distribution via mutation and crossover mechanisms and is not restricted to \(\ell_p \), or any other specific type of attack. (see Section III and Figure 1)
- We demonstrate that RAILS improves robustness of existing methods for different types of attacks (Figure 1). In particular, RAILS improves robustness against the highly damaging PGD attack by \(\geq 5.62\%/12.5\%/10.32\%/8.39\% \) for the MNIST, SVHN, CIFAR-10 and CIFAR-100 datasets (Table 2). Furthermore, we show that the RAILS implementation of life-long learning with training data augmentation yields a 2.3% robustness improvement with only 5% augmentation of the training data (Table 5).
- RAILS is the first adversarial defense framework to be based on the biology of the adaptive immune system. In particular: (a) RAILS computationally emulates the principal mechanisms of the immune response (Figure 2); and (b) our computational and biological experiments demonstrate the fidelity of the emulation - the learning patterns of RAILS and the immune system are closely aligned (Figure 7).

A. RELATED WORK

After it was established that DNNs were vulnerable to evasion attacks [6], different types of defense mechanisms have been proposed. An intuitive idea is to eliminate the adversarial examples through outlier detection, including training an additional discrimination sub-network [8], [10] and using kernel density estimation [9]. The above approaches rely on the fundamental assumption that the distributions of benign and adversarial examples are easily distinguishable, an assumption that has been challenged in [19].

In addition to adversarial attack detection, other methods have been proposed that focus on robustifying the deep architecture during the learning phase [11]–[13]. One recent approach combines training with perturbed inputs and hierarchical feature alignment between the adversarial and clean domains to robustify the feature learning process [14]. Though such defenses are effective against adversarial examples with moderate levels of \(\ell_p \) attack strength, they have limited power to defend against stronger attacks, and there is often a sacrifice in overall classification accuracy. In contrast, RAILS is developed to defend against diverse powerful attacks with less sacrifice in accuracy, and can improve any model’s robustness, including robust models.

A different family of defenses models adversarial inputs as deviating from the manifold of clean data. This motivates the use of projection methods for denoising the inputs, where the inputs are mapped to the manifold [15], [16]. Examples include mapping adversarial examples to a high-resolution manifold using wavelet denoising and super resolution techniques [15] and to a low dimensional quasi-natural space with a sparse transformation layer [16]. Despite the simple and clear motivation, denoising methods have their own limitations. For example, they can introduce distortions into
transfer learning [36, 37], which aims to maintain robustness when there is covariate shift between training data and test data. We remark that covariate shift is naturally handled by the mutation mechanism in our adaptive immune system emulation of RAILS that adapts the defense to novel attacks.

B. LEARNING STRATEGIES OF IMMUNE SYSTEM

Systems robustness is a property that must be intentionally designed into the architecture, and one of the greatest examples of this is the mammalian adaptive immune system [38]. The adaptive immune system is incredibly complex and not something that we can hope to replicate at this time. However, we can simplify its robust learning process into four steps: sensing, flocking, affinity maturation, and consensus (Figure 2 left) [39], [40]. The architecture of the adaptive immune system ensures a robust response to foreign antigens, splitting the work between active sensing and competitive growth to produce an effective antibody. Sensing of a foreign attack leads to antigen-specific B-cells flocking to some temporary structures for affinity maturation [33]. In the affinity maturation phase, a diverse initial set of antigen-specific B-cells divide to populate the temporary structures. Then the genetic identity of each B-cell is encoded by the shape and sequence of its protein, which can change from generation to generation. The degree to which the encoding of the B-cell matches the antigen is called the affinity. The B-cells with the highest affinity to the antigen are selected to divide and mutate, which leads to new B-cells with higher affinity to the antigen. B-cells that reach consensus, or achieve a threshold affinity against the foreign antigen, undergo terminal differentiation into plasma B-cells. Plasma B-cells represent the antigen-specific solutions. Memory B-cells are selected and stored to defend against similar attacks in the future.

C. NOTATION AND PRELIMINARIES

Given a mapping $f : \mathbb{R}^d \rightarrow \mathbb{R}^d$ and $x_1, x_2 \in \mathbb{R}^d$, we first define the affinity score $A(f; x_1, x_2)$ between x_1 and x_2. This affinity score can be defined in many ways, e.g., cosine similarity, inner product, or inverse L_p distance, but here we use $A(f; x_1, x_2) = -\|f(x_1) - f(x_2)\|_2$, the negative similarity, inner product, or inverse L_p distance, but here we use $A(f; x_1, x_2) = -\|f(x_1) - f(x_2)\|_2$, the negative similarity, inner product, or inverse L_p distance, but here we use $A(f; x_1, x_2) = -\|f(x_1) - f(x_2)\|_2$, the negative
Euclidean distance. In the context of DNN, f denotes the feature mapping from input to feature representation, and A measures the similarity between two inputs. Higher affinity score indicates higher similarity.

II. RAILS: OVERVIEW

In this section, we give an overview of RAILS, and provide a comparison to the natural immune system. The architecture of RAILS is illustrated in Figure 3. For each selected hidden layer l, RAILS builds class-wise kNN architectures on training samples D_{tr}. Then for each test input x, a population of candidates is selected and goes through an evolutionary optimization process to obtain the optimal solution. In RAILS, two types of data are obtained after the evolutionary optimization: ‘plasma data’ for optimal predictions of the present inputs, and ‘memory data’ for the defense against future attacks. These two types of data correspond to plasma B cells and memory B cells in the biological system, and play important roles in static learning and adaptive learning, respectively.

A. DEFENSE WITH STATIC LEARNING

Adversarial perturbations can severely affect deep classifiers, forcing the predictions to be dominated by adversarial classes rather than the ground truth. For example, a single kNN classifier is vulnerable to adversarial inputs, as shown in Figure 4. The purpose of static learning is to address this issue, i.e., maintaining or increasing the prediction probability of the ground truth $p_{true}^{l}(x)$ when the input x is manipulated by an adversary. The key components include (i) a label initialization via class-wise kNN search on D_{tr}, that guarantees labels across different classes are uniformly distributed for each input; and (ii) an evolutionary data-label optimization that promotes label distribution specificity towards the input’s true label class. Our hypothesis is that the covariate shift of the adversarial examples from the distribution of the ground truth class is small in the input space, and therefore new examples inherited from parents of ground truth class y_{true} have higher chance of reaching high-affinity. The evolutionary optimization thus promotes the label specificity towards the ground truth. The solution denotes the data-label pairs of examples with high-affinity to the input, which we call plasma data. After the process, a majority vote of plasma data is used to make the class prediction. We refer readers to Section III for more implementation details and Section IV-A for visualization. In short, static learning defenses seek to correct the predictions of current adversarial inputs and do not plan ahead for future attacks.

B. DEFENSE WITH ADAPTIVE LEARNING

Different from static learning, RAILS adaptive learning tries to use information from past attacks to harden the classifier to defend against future attacks. Hardening is done by leveraging another set of data - memory data generated during evolutionary optimization. Unlike plasma data, memory data is selected from examples with moderate-affinity to the input, which can rapidly adapt to new variants of the adversarial examples. This selection logic is based on maximizing coverage over future attack-space rather than optimizing for the current attack. Adaptive learning is a life-long learning process and can use hindsight to greatly enhance resilience of $p_{true}^{l}(x)$ to attacks. This paper will focus on static learning and single-stage adaptive learning that implements a single cycle of classifier hardening.

C. A BIOLOGICAL PERSPECTIVE

RAILS is inspired by and closely associated with the biological immune system. The architecture of the adaptive immune system ensures a robust response to foreign antigens to produce an effective antibody. Figure 2 displays a comparison between the immune system workflow and the RAILS workflow. Both systems are composed of a four-step process. For example, RAILS emulates flocking from the immune system by initializing a population of candidates that provide diversity, and emulates affinity maturation via an evolutionary optimization process to promote specificity. Similar to the functions of plasma B cells and memory B cells generated in the immune system, RAILS generates plasma data for predictions of the present inputs (immune
III. DETAILS ON RAILS WORKFLOW

Algorithm 1 shows the four-step workflow of RAILS. We explain each step below.

a: Sensing.

This step performs an initial discrimination between adversarial and benign inputs to prevent the RAILS computation from becoming overwhelmed by false positives, i.e., only implementing the main steps of RAILS on suspicious inputs. While there are many outlier detection procedures that could be used for this step [9], [42], we can exploit the fact that the DNN and kNN applied on hidden layers will tend to make similar class predictions for benign inputs. Thus, we propose using an cross-entropy measure to generate an adversarial threat score for each input \(\mathbf{x} \). In the main text results, we skip the sensing stage since the major benefit from sensing is providing an initial detection. We refer readers to Appendix B for more details.

b: Flocking

The initial population from each class needs to be selected with a certain degree of affinity measured using the hidden representations in order to satisfy our hypothesis, as illustrated in Figure 7. By constructing class-wise k-Nearest Neighbor (kNN) architecture, we find the kNN that have the highest initial affinity score to the input data from each class and each selected layer. Mathematically, we select

\[
\mathcal{N}_i^c = \left\{ (\tilde{x}, y_c) | R_c(\tilde{x}) \leq k, (\tilde{x}, y_c) \in \mathcal{D}_c \right\}
\]

Given \(A(f_l; \mathbf{x}_i; \mathbf{x}) \leq A(f_l; \mathbf{x}_j^c; \mathbf{x}) \iff R_c(i) > R_c(j) \) \(\forall c \in [C], l \in L, \forall i, j \in [n_c] \),

where \(\mathbf{x} \) is the input. \(L \) is the set of the selected layers. \(\mathcal{D}_c \) is the training data from class \(c \) and the size \(|\mathcal{D}_c| = n_c \). \(R_c: [n_c] \rightarrow [n_c] \) is a ranking function that sorts the indices based on the affinity score. In the adaptive learning context, if the memory database has been previously populated, flocking will select the nearest neighbors using both the training data and the memory data. The immune system leverages flocking step to find initial B cells and form temporary structures for affinity maturation [33]. Note that in RAILS, the kNN sets \(\mathcal{N}_i^c \) are constructed independently for each class, thereby ensuring that every class is fairly represented in the initial population.

c: Affinity maturation (evolutionary optimization)

As flocking brings diversity to the label distribution of the initial population, the affinity maturation step, in contrast, promotes specificity towards the ground truth class. Here we use evolutionary optimization to generate new examples (offspring) from the existing examples (parents) in the population. The evolution happens within each class independently, and new generated examples from different classes are not affected by one another before the consensus stage. The first generation parents in each class are the \(K \) nearest neighbors found by \([4] \) in the flocking step, where \(K \) is the number of nearest neighbors. Given a total population size \(TC \), the 0-th generation is obtained by copying each nearest neighbor \(T/K \) times with random mutations. Given the population of class \(c \) in the \((g-1) \)-st generation \(\mathcal{P}^{(g-1)}_c = \{x_c(1), x_c(2), \ldots, x_c(T)\} \in \mathbb{R}^{d \times T} \), the candidates for the \(g \)-th generation are selected as

\[
\mathcal{P}^{(g-1)}_c = \mathcal{P}^{(g-1)}_c Z_c^{(g-1)} ,
\]

where \(\mathcal{P}^{(g-1)}_c \) denotes the set of randomly selected reproductions of the population at the previous generation \(g-1 \). These are computed before applying mutation and crossover operations to populate the \(g \)-th generation \(\mathcal{P}^{(g)}_c \). \(Z_c^{(g-1)} \in \mathbb{R}^{T \times T} \) is a binary selection matrix whose columns are independent and identically distributed draws from \(\text{Mult}(1, \mathbf{P}_c) \), the multinomial distribution with probability vector \(\mathbf{P}_c \in [0, 1]^T \). The process can also be viewed as creating new nodes from existing nodes in a Preferential Attachment (PA) evolutionary graph [43], where the details can be viewed in Appendix D. After selection, RAILS generates new examples through the operations of mutation and cross-over, which will be discussed in more detail later. After new examples are generated, RAILS calculates each example’s affinity relative to the input. The new examples are associated with labels that are inherited from their parents, which always come from the same class. According to our hypothesis in Section II, examples inherited from parents of the ground truth class \(y_{true} \) have a higher chance of reaching high-affinity, and thereby the population members with high-affinity are concentrating about the input’s true class.

d: Consensus

Consensus is responsible for the final selection and predictions. In this step, RAILS selects generated examples with high-affinity scores to be plasma data, and examples with moderate-affinity scores are saved as memory data. The selection is based on a ranking function.

\[
S_{opt} = \{(\tilde{x}, \hat{y}) | R_g(\tilde{x}) \leq \gamma |\mathcal{P}^{(G)}|, (\tilde{x}, \hat{y}) \in \mathcal{P}^{(G)}\},
\]

where \(R_g: |\mathcal{P}^{(G)}| \rightarrow |\mathcal{P}^{(G)}| \) is the same ranking function as \(R_c \) except that the domain is a set having cardinality equal to that of the final population \(\mathcal{P}^{(G)} \). \(\gamma \) is a proportionality parameter and is selected as 0.05 and 0.25 for plasma data and memory data, respectively. Note that the memory data can be selected in each generation. For simplicity, we select memory
data only in last generation. Memory data will be saved in the secondary database and used for model hardening.

Given that all examples in the population are associated with a label inherited from their parents, RAILS uses majority voting of the plasma data for prediction of the class label of x.

Algorithm 1 Robust Adversarial Immune-inspired Learning System (RAILS)

Require: Test data point x; Training dataset \(D_{tr} = \{D_1, D_2, \cdots, D_C\} \); Number of Classes C; Model M with feature mapping \(f_l(\cdot), l \in \mathcal{L} \); Affinity function A.

First Step: Sensing
1: Check the threat score given by an outlier detection strategy to detect the threat of \(x \).

Second Step: Flocking
2: for \(c = 1, 2, \ldots, C \) do
3: In each layer \(l \in \mathcal{L} \), find the k-nearest neighbors \(\mathcal{N}_l(x) \) of \(x \) in \(D_c \) by ranking the affinity score.
4: end for

Third Step: Affinity Maturation
5: for each layer \(l \in \mathcal{L} \); do
6: Generate \(P_c^{(0)} \) through mutating each of \(x' \in \mathcal{N}_l(x) \) \(T/K \) times, \(\forall c \in [C] \).
7: for \(g = 1, 2, \ldots, G \) do
8: for \(t = 1, 2, \ldots, T \) do
9: Select data-label pairs (\(x_c, y_c \); (\(x'_c, y_c \)) from \(P_c^{(g-1)} \) based on \(P_c^{(g-1)} \).
10: \(x_{os} = \text{Mutation}((\text{Crossover}(x_c, x'_c)); P_c^{(g)} \leftarrow (x_{os}, y_c) \).
11: end for
12: end for
13: end for

Fourth Step: Consensus
14: Calculate the affinity score \(A(f_l; P^{(G)}(x), \forall c \in [C] \) given \(P^{(G)} = P_1^{(G)} \cdots \cup \cdots \cup P_C^{(G)} \).
15: Select the top 5% as plasma data \(S_p^l \) and the top 25% as memory data \(S_m^l \) based on the affinity scores, \(\forall l \in \mathcal{L} \); Obtain the prediction \(y \) of \(x \) using the majority vote of the plasma data.
16: **Output:** \(y \), the memory data \(S_m = \{S_m^1, S_m^2, \cdots, S_m^C\} \)

e: Computational cost

The computational cost of RAILS is dominated by the flocking and affinity maturation stage. kNN structure construction in flocking is a fixed setup cost that can be handled off-line with fast approximate kNN approximation [44, 45]. There are three strategies for reducing the computational cost of the affinity maturation stage. First, the evolutionary optimization can be replaced by a mean field approximation. Second, parallelization can be used to accelerate the computations since each sample is generated and utilized separately. Third, one can use a more stringent false positive threshold in the sensing step, thereby reducing the number of false positives resulting in a reduction in the downstream computational burden. More discussion can be viewed in Appendix [D].

f: Operations in the evolutionary optimization.

Three operations support the creation of new examples: selection, cross-over, and mutation. The selection operation is shown in (2). We compute the selection probability for each candidate through a softmax function.

\[P(x_i) = \frac{\exp(A(f_i; x_i, x)/\tau)}{\sum_{x_j} \exp(A(f_i; x_i, x)/\tau)}, \]

where \(S \) is the set of data points and \(x_i \in S \). \(\tau > 0 \) is the sampling temperature that controls sharpness of the softmax operation. Given the selection probability \(P \), defined on the current generation in (3), the candidate set \(\{ (x_i, y_i) \}_{i=1} \) for the next generation is randomly drawn (with replacement).

The cross-over operator combines two parents \(x_c \) and \(x'_c \) from the same class, and generates new offspring by randomly selecting each of its elements (pixels) from the corresponding element of either parent. Mathematically,

\[x_{os} = \text{Crossover}(x_c, x'_c) = \begin{cases} x_c^{(i)} & \text{with prob } \frac{A(f_i; x_c, x'_c)}{A(f_i; x_c, x'_c) + A(f_i; x'_c, x)}; \forall i \in [d], \\ x'_c^{(i)} & \text{with prob } \frac{A(f_i; x'_c, x)}{A(f_i; x'_c, x) + A(f_i; x, x'_c)}; \end{cases} \]

where \(i \) represents the \(i \)-th entry of the example and \(d \) is the dimension of the example. The mutation operation randomly and independently mutates an offspring with probability \(\rho \), adding uniformly distributed noise in the range \([−\delta_{\text{max}}, −\delta_{\text{min}}] \cup [\delta_{\text{min}}, \delta_{\text{max}}]\). The resulting perturbation vector is subsequently clipped to satisfy the domain constraint that examples lie in \([0, 1]^d\).

\[x_{os} = \text{Mutation}(x_{os}) = \text{Clip}_{[0, 1]}(x_{os} + 1(Bernoulli(\rho)) \mathbf{u}[−\delta_{\text{max}}, −\delta_{\text{min}}] \cup [\delta_{\text{min}}, \delta_{\text{max}}]), \]

where \(1(Bernoulli(\rho)) \) takes value 1 with probability \(\rho \) and value 0 with probability \(1 − \rho \). \(\mathbf{u}[−\delta_{\text{max}}, −\delta_{\text{min}}] \cup [\delta_{\text{min}}, \delta_{\text{max}}] \) is the vector in \(\mathbb{R}^d \) having i.i.d. entries drawn from the punctured uniform distribution \(\mathcal{U}[−\delta_{\text{max}}, −\delta_{\text{min}}] \cup [\delta_{\text{min}}, \delta_{\text{max}}] \). \(\text{Clip}_{[0, 1]}(x) \) is equivalent to \(\max(0, \min(x, 1)) \).

IV. EXPERIMENTAL RESULTS

We conduct experiments in the context of image classification using several benchmark image classification datasets. We compare RAILS with Convolutional Neural Network (CNN) Classification and Deep k-Nearest Neighbors (DkNN) Classification [17] on the MNIST [46], SVHN [47], CIFAR-10 and CIFAR-100 [48] datasets. We test our framework using a four-convolutional-layer neural network for MNIST, VGG16 [49] for the SVHN dataset, and adversarially trained VGG16 for the CIFAR-10 and CIFAR-100 datasets. We refer readers to Appendix [3] for more details of the datasets, models, and parameter selection. In addition to the benign test examples, we also generate an equal number of adversarial examples generated from adversarial attacks.
using MNIST, SVHN, CIFAR-10, and CIFAR-100 data. The attack strength is \(\epsilon = 40/60 \) for MNIST, and \(\epsilon = 8 \) for SVHN, CIFAR-10, CIFAR-100 by default. Performance comparisons are based on standard accuracy (SA) evaluated using benign (unperturbed) test examples and robust accuracy (RA) evaluated using the adversarial (perturbed) test examples. Besides the default \(\ell_\infty \) norm PGD attack \([11]\), we also implement seven other attacks (Figure 1 and Table 3).

A. PERFORMANCE IN SINGLE LAYERS

We first test RAILS in a single layer of the CNN model and compare the obtained accuracy with the results from the DkNN. Table 1 shows the comparisons in the input layer, the first convolutional layer (Conv1), and the second convolutional layer (Conv2) on MNIST. One can see that for both standard accuracy and robust accuracy, RAILS performs better than the DkNN in the hidden layers and achieve better results in the input layer. The input layer results indicate that RAILS can also outperform supervised learning methods like kNN. The confusion matrices in Figure 5 show that RAILS has fewer incorrect predictions for those data that DkNN gets wrong. Each value in Figure 5 represents the percentage of intersections of RAILS (correct or wrong) and DkNN (correct or wrong).

![FIGURE 5. RAILS has fewer incorrect predictions for those data that DkNN gets wrong. Confusion Matrices of adversarial examples classification in Conv1 and Conv2 (RAILS vs. DkNN).](image)

TABLE 1. RAILS outperforms DkNN on single layers. Standard Accuracy (SA)/Robust Accuracy (RA) performance of RAILS versus DkNN in single layer (MNIST).
Input
SA
RA
(\(\epsilon = 40 \))
RA
(\(\epsilon = 60 \))

B. RAILS LEARNING PROCESS

Flocking provides a balanced initial population while affinity maturation within RAILS creates new examples in each generation. To better understand the capability of RAILS, we can visualize the changes of some key indices during runtime.

C. OVERALL PERFORMANCES IN DIFFERENT SCENARIOS

To demonstrate that the proposed RAILS computational system captures important properties of the actual (in-vitro) immune system, we compare the learning curve of RAILS to the learning curve of B-cell antigen recognition (see Appendix C for a description of the biological experiment we performed). For the biological experiment the measured affinity between a population of actual B-cells and an antigen is obtained experimentally over time (several hours). For RAILS each test input (potentially the adversarial example) is treated as an antigen and the affinity is computed as RAILS iterates over time. Figure 7 shows that both the in-vitro immune system and RAILS have similar learning patterns. One can also see that the affinity increases again after the decrease, indicating both the immune system and RAILS can escape from a local optimal under strong attacks. The difference between the green and red curves is that the initial population for the red curve is found based on another test input (antigen), which has lower correlation to the current input (antigen). The non-convergence of the red curve indicates that the initial population should be selected close to the input, and the flocking using kNN search emulated the natural flocking process. We refer readers to Appendix C for more details.
Here we show the results of RAILS defending against eight any models’ robustness, even a robust trained model.

We compare RAILS with CNN and DkNN in terms of standard accuracy (SA) and robust accuracy (RA). The results are shown in Table 2. On MNIST with \(\epsilon = 60 \), one can see that RAILS delivers a 5.62% improvement in RA over DkNN without appreciable loss of SA. On CIFAR-10 (SVHN), RAILS leads to 10.32% (12.5%) and 19.4% (46%) robust accuracy improvements compared to DkNN and CNN, respectively. We refer readers to Appendix F for more results under different strengths and types of attacks. Note that there is no competitive relationship between RAILS and robust training since RAILS is a general method that can improve any models’ robustness, even a robust trained model.

Table 2. RAILS achieves higher robust accuracy (RA) at small cost of standard accuracy (SA) for all three datasets (MNIST, SVHN and CIFAR-10) as compared to CNN and DkNN.

Dataset	SA (\(\epsilon = 60 \))	RA (\(\epsilon = 60 \))	SA (\(\epsilon = 8 \))	RA (\(\epsilon = 8 \))	SA (CIFAR-10)	RA (CIFAR-10)
MNIST	99.16%	76.67%	99.16%	1.01%	97.99%	71.05%
SVHN	90.62%	48.26%	94.55%	1.66%	93.18%	35.7%
CIFAR-10	82%	52.01%	87.26%	32.57%	86.63%	41.69%

a: Defense against PGD attack for CIFAR-10 and SVHN

We further evaluate RAILS on CIFAR-100 under the three most powerful attacks taken from Table 3. \(\ell_\infty \)-PGD; AutoAttack; and Boundary Attack. The standard accuracy of RAILS, DkNN, and CNN are 61.03%, 62.92%, and 65.57%. The results of defending against the three types of attacks on C

b: Defense against eight different attack types

Here we show the results of RAILS defending against eight types of attacks: (1,2) \(\ell_\infty \)-PGD attack and \(\ell_2 \)-PGD attack.
FIGURE 8. Visualization of the evolution of B-cell feature samples over several generations of the RAILS affinity maturation process. Feature representations of an adversarial CIFAR-10 input (antigen) and the RAILS selected feature populations of B-cells are mapped to a two-dimensional space (t-SNE). The random initialization of the population displays the B-cells as uniformly distributed over feature space. After six generations the affinity maturation process produces B-cells that cluster around the antigen and correctly identify its true class.

TABLE 3. RAILS achieves higher robust accuracy (RA) under eight types of attacks as compared to CNN and DkNN.

Attack Type	RAILS	DkNN	CNN
\(\ell_\infty \)-PGD (\(\epsilon = 8 \))	52.01%	41.69%	32.57%
\(\ell_2 \)-PGD (\(\epsilon = 127.5 \))	35.1%	24.64%	20.3%
FGSM (\(\epsilon = 8 \))	59.7%	53.46%	48.52%
Sq-Attack (\(\epsilon = 20 \))	74.5%	71.3%	53.7%
Boundary Attack (\(\ell_2 \))	70.6%	64.2%	37.81%
AutoAttack (\(\epsilon = 8 \))	52.84%	41.77%	30.26%
Adv-P (ratio= 0.1)	53.5%	42.7%	31.14%
ASK-Attack (\(\epsilon = 8 \))	45.5%	37.8%	34.21%

CIFAR-100 are shown in Table 4. One can see that RAILS outperforms adversarially trained CNN and DkNN.

TABLE 4. RAILS achieves higher robust accuracy (RA) than DkNN and CNN on CIFAR-100 under the three attacks.

Attack Type	RAILS	DkNN	CNN
\(\ell_\infty \)-PGD (\(\epsilon = 8 \))	41.35%	32.96%	23.76%
AutoAttack (\(\epsilon = 8 \))	42.84%	32.86%	25.63%
Boundary Attack (\(\ell_2 \))	53.6%	49.51%	29.1%

c: Defense against human-perceptible disturbances.

We test RAILS against disturbances visible to the naked eye using CIFAR-10 data. We consider the \(\ell_\infty \)-PGD attack with \(\epsilon = 28 \). Figure 9 shows the benign examples and their adversarial counterparts with large disturbances. The differences can be clearly observed. Under the human perceptible attack, the accuracy for RAILS, DkNN, and the adversarially trained CNN are 33.26%, 19.53%, and 0%. The results demonstrate that RAILS can effectively defend against human perceptible perturbations as compared with DkNN and CNN.

FIGURE 9. Two CIFAR-10 examples of human perceptible perturbations. The adversarial examples are generated by \(\ell_\infty \)-PGD attack with \(\epsilon = 28 \).

d: Diversity versus specificity.
The DkNN finds a group of feature space k-nearest neighbors that at each layer classify an input sample in a single shot. In contrast, starting from a initial uniform label distribution at each layer, RAILS constructs a classifier after maturation of several generations of feature representing B-cells using an evolutionary optimization process. Results in Table 2 show that evolving a population of features from highly diverse to highly specific provides additional robustness with little sacrifice on benign accuracy.

e: Ablation study.
Using the CIFAR-10 dataset and the third convolutional layer of a VGG16 model, we perform an ablation study to clarify...
the relative influence of different RAILS components on performance. Our findings are summarized as follows: (i) increasing the number of nearest neighbors in a certain range improves performance; (ii) higher mutation probability increases robust accuracy (iii) the magnitude of mutation is sensitive to the input data, but may be optimized to increase robust accuracy. We refer readers to Appendix [F] for more details on the ablation study. We also show that when we turn off the affinity maturation stage, the robust accuracy drops from 59.2% to 55.65% (on 2000 test examples), indicating the importance of including the affinity maturation step in RAILS.

f: Single-Stage Adaptive Learning.
In the previous sections we demonstrated that static learning is effective in predicting the class of current adversarial inputs. Here we show that RAILS can be implemented with single-stage adaptive learning (SSAL) to further improve accuracy and robustness. While the idea is not pursued in this paper, our SSAL results suggest that RAILS may be gainfully extended to the on-line learning setting. SSAL is implemented as follows. We first train a RAILS classifier on the training data as described in previous sections. Then we used RAILS to generate 3000 memory data (B-cells) when a subset of test data taken from MNIST was used as input to the initially trained RAILS. We then merged this new data with the population of training data, creating an augmented training set. Finally, we randomly selected and adversarially modified another 1000 test samples of MNIST, and, using RAILS with its expanded training data, evaluated its adversarial classification accuracy. Table 5 shows that the SSAL improves RA of DkNN by 2.3% with no SA loss using by augmenting the training data with only 3000 memory data samples (a total of 5% increase of the training data).

TABLE 5. When implemented with memory data and single-stage adaptive learning (SSAL), RAILS hardens DkNN against future attacks.

	Standard Accuracy (SA)	Robust Accuracy (RA) (ɛ = 60)
DkNN	98.5%	68.3%
DkNN-SSAL	99.2%	70.0%

V. CONCLUSION
Inspired by the immune system, we proposed a new defense framework for deep learning models. The proposed Robust Adversarial Immune-inspired Learning System (RAILS) has a one-to-one mapping to a simplified architecture immune system and its learning behavior aligns with in vitro biological experiments. RAILS incorporates static learning and adaptive learning, contributing to a robustification of predictions and dynamic model hardening, respectively. The experimental results demonstrate the effectiveness of RAILS. We believe this work is fundamental and delivers valuable principles for designing robust deep models. In future work, we will dig deeper into the mechanisms of the immune system’s adaptive learning (life-long learning) and covariate shift adjustment, which will be consolidated into our computational framework.

APPENDIX A A ONE-TO-ONE MAPPING FROM THE IMMUNE SYSTEM TO RAILS
Table 6 provides a detailed comparison between the Immune System and RAILS. The top part shows the detailed explanations of some technical terms. The bottom part shows the four-step process of the two systems.

APPENDIX B EXPERIMENTAL PARAMETER SETTINGS
A. DATASETS AND MODELS
We test RAILS on three public datasets: MNIST [46], SVHN [47], CIFAR-10 and CIFAR-100 [48]. The MNIST dataset is a 10-class handwritten digit database consisting of 60000 training examples and 10000 test examples. The SVHN dataset is another benchmark that is obtained from house numbers in Google Street View images. It contains 10 classes of digits with 73257 digits for training and 26032 digits for testing. CIFAR-10 (CIFAR-100) is a more complicated dataset that consists of 60000 (60000) colour images in 10 (100) classes. There are 50000 training images and 10000 test images. We use a four-convolutional-layer neural network for MNIST, and VGG16 [49] for SVHN, CIFAR-10, and CIFAR-100. For MNIST and SVHN, we conduct the affinity maturation in the inputs. Compared with MNIST and SVHN, features in the input images of CIFAR-10 and CIFAR-100 are more mixed and disordered. To reach a better performance using RAILS, we use adversarially trained models on ε = 4 and conduct the affinity maturation in layer one instead of the input layer. We find that both ways can provide better feature representations for CIFAR-10 and CIFAR-100, and thus improve RAILS performance.

B. THREAT MODELS
Though out this paper, we consider eight different types of attacks: (1) ℓ_{∞}-Projected Gradient Descent (PGD) attack [11] - We implement 20-step PGD attack for MNIST, and 10-step PGD attack for SVHN and CIFAR-10. The attack strength is $\epsilon = 40/60/76.5$ for MNIST, $\epsilon = 8$ for SVHN, and $\epsilon = 8/16$ for CIFAR-10. (2) ℓ_2-PGD attack - The attack strength is $\epsilon = 127.5$ for CIFAR-10 (3) Fast Gradient Sign Method [5] - The attack strength is $\epsilon = 76.5$ for MNIST, and $\epsilon = 4/8$ for SVHN and CIFAR-10. (4) Square Attack [28] - We implement 50-step attack for (50) MNIST, and 30-step attack for CIFAR-10. The attack strength is $\epsilon = 76.5$ for MNIST, and $\epsilon = 20/24$ for CIFAR-10. (5) Boundary Attack [31] - We set the maximum iteration to be 500 for CIFAR-10 experiments. (6) AutoAttack [30] - The attack strength is $\epsilon = 8$ and the maximum iteration is set to be 200 for CIFAR-10 experiments. (7) Adversarial Patch [29] - We use patch ratio = 0.1. (8) ASK-Attack [32] - We implement 20-step attack for CIFAR-10.
TABLE 6. A one-to-one mapping from the immune system to RAILS.

Immune System	RAILS	
Antigen	A molecule or molecular structure (self/non-self)	Test example (benign/adversarial)
Affinity	The strength of a single bond or interaction between antigen and B-Cell	The negative Euclidean distance between feature maps of input and another data point
Naive B-cells	The B-cells that have been recruited to generate new B-cells	The k-nearest neighbors from each class with highest affinity to the antigen
Plasma B-cells	Newly generated B-cells with top affinity to the antigen	Newly generated examples with top affinity to the input
Memory B-cells	Generated B-cells with moderate-affinity to the antigen	Generated examples with moderate-affinity to the input

Sensing	Classify between self and non-self antigens	Classify between non-adversarial and adversarial inputs using confidence scores
Flocking	Non-self antigens are presented to T cells, recruit highest affinity naive B-cells	Find the nearest neighbors from each class that have the highest initial affinity score to the input data
Affinity maturation	Naive B-cells divide and mutate to generate initial diversity. Affinity is maximized through selection by T cells for affinity.	Generate new examples from the nearest neighbors through mutation and crossover and calculate each example’s affinity score to the input. Affinity is maximized through selection.
Consensus	Memory B-cells are saved and Plasma B-cells are created. Antigen is recognized by majority voting, producing high affinity B-cells	Select generated examples with high-affinity scores to be Plasma data, and examples with moderate-affinity scores saved as Memory data. Plasma data use majority voting for prediction

C. PARAMETER SELECTION

By default, we set the size of the population \(T = 100 \) and the mutation probability \(\rho = 0.15 \). In Figure 6, we set \(T = 100 \) to obtain a better visualization. The maximum number of generations is set to \(G = 50 \) for MNIST, and \(G = 10 \) for CIFAR-10 and SVHN. When the model is large, selecting all the layers would slow down the algorithm. We use all four layers for MNIST. For CIFAR-10 and SVHN, we test on a few (20) validation examples and evaluate the kNN standard accuracy (SA) and robust accuracy (RA) on each layer. We then select layer three and layer four with SA and RA over 40%.

a: Mutation range.

The mutation range selection is related to the dataset. For MNIST whose features are well separated in the input, the upper bound of the mutation range could be set to a relatively large value. For the datasets with low-resolution and sensitive to small perturbations, we should set small upper bound of the mutation range. We also expect that the mutation could bring enough diversity in the process. Therefore, we will pick a lower bound of the mutation range. We set the mutation range parameters to \(\delta_{\text{min}} = 0.05(12.75), \delta_{\text{max}} = 0.15(38.25) \) for MNIST. Considering CIFAR-10 and SVHN are more sensitive to small perturbations, we set the mutation range parameters to \(\delta_{\text{min}} = 0.005(1.275), \delta_{\text{max}} = 0.015(3.825) \).

b: Sampling temperature.

Note that the initial condition found for adversarial examples could be worse than benign examples. It is still possible for examples (initial B-cells found in the flocking step) of wrong classes dominating the population affinity at the beginning. To reduce the gaps between the high-affinity examples and low-affinity examples, we use the sampling temperature \(\tau \) to control the sharpness of the softmax operation. The principle of selecting \(\tau \) is to make sure that the high-affinity examples in one class do not dominate the affinity of the whole population at the beginning. We thus select \(\tau \) to make sure that the top 5% of examples are not from the same class. We find that our method works well in a wide range of \(\tau \) once the principle is reached. For MNIST, the sampling temperature \(\tau \) in each layer is set to 3, 18, 18, and 72. Similarly, we set \(\tau = 1/10 \) and \(\tau = 300 \) for the selected layers for CIFAR-10 and SVHN, respectively.

c: The hardware and our code.

We apply RAILS on one Tesla V100 with 64GB memory and 2 cores. The code is written in PyTorch.

APPENDIX C RAILS EMULATION OF THE NATURAL IMMUNE SYSTEM

A. RAILS MIMICS THE BIOLOGICAL LEARNING CURVE

To demonstrate that the proposed RAILS computational system captures important properties of the immune system, we compare the learning curves of the two systems in Figure 7. In RAILS, we test treat data (potentially the adversarial example) as an antigen. Affinity in both systems measures the similarity between the antigen sequence and a potential matching sequence. The green and red curves depict the evolution of the mean affinity between the B-cell population and the antigen. The candidates selected in the flocking step (kNN) are close to a particular antigen. Two tests are performed to illustrate the learning curves when the same antigen (antigen 1) or a very different antigen (antigen 2) is presented during the affinity maturation step. When antigen 1 is presented (green curves), Figure 7 shows that both the immune system (left panel) and RAILS have learning curves that initially increase, then decrease, and then increase again.
This phenomenon indicates a two-phase learning process, and both systems can escape from local optimal points. On the other hand, when the different antigen 2 is presented, the flocking candidates converge more slowly to a high affinity population during the affinity maturation process (dashed curves).

B. IN-VITRO IMMUNE RESPONSE EXPERIMENT

We performed in-vitro experiments to evaluate the adaptive immune responses of mice to foreign antigens. These mice are engineered in a way which allows us to image their B cells during affinity maturation in an in-vitro culture. Using fluorescence of B cells, we can determine whether the adaptive immune system is effectively responding to an antigen, and infer the affinity of B cells to the antigen. In this experiment, we first immunized a mouse using lysozyme (Antigen 1). We then challenged the immune system in two ways: (1) reintroducing lysozyme and (2) introducing another very different antigen, ovalbumin (Antigen 2). We then measured the fluorescence of B cells in an in-vitro culture for each of these antigens, which we use as a proxy to estimate affinity. We use five fluorescence measurements over ten days to generate the affinity curves in Figure 7 (left). When plotting, we use a spline interpolation in MATLAB to smooth the affinity curves. For full experimental details, please refer to Figures 10 and the following three sections.

In-vitro culture of Brainbow B cells. For the in vitro culture of B cells, splenic lymphocytes from Rosa26Confetti+/+; AicdaCreERT2+/− mice were harvested and cultured following protocol from [50]. Mice were individually immunized with lysozyme and ovalbumin. Three days post-immunization, the mice were orally administered with Tamoxifen (50 µl of 20mg/ml in corn oil) and left for three days to activate the Cre-induced expression of confetti colors in germinal center B cells. Six days post-immunization, whole lymphocytes from spleen were isolated. 3 × 105 whole lymphocytes from spleen were seeded to a single well in a 96 well dish along with 3 × 104 dendritic cells derived from bone marrow hematopoietic stem cells for in vitro culture. The co-culture was grown in RPMI medium containing methyl cellulose (R&D systems, MN) supplemented with recombinant IL-4 (10 ng/ml) from, LPS (1 µg/ml), 50 µM 2-mercaptoethanol, 15% heat inactivated fetal calf serum, ovalbumin (10 µg/ml) for ovalbumin specific B cells and hen egg white lysozyme (10 µg/ml) for lysozyme specific B cells. Antigens were also added vice-versa for non-specific antigen control. The media was changed every two days. The cultures were imaged every day for 14 days.

Preparation of differentiated dendritic cells from bone marrow hematopoietic stem cells. Bone marrow cells from femurs and tibiae of C57BL/6 mice was harvested, washed and suspended in RPMI media containing GM-CSF (20ng/ml), (R&D Systems, MN), 2mM L-glutamine, 50 µM 2-mercaptoethanol and 10% heat inactivated fetal calf serum. On day two and four after preparation, 2 mL fresh complete medium with (20ng/ml) GM-CSF were added to the cells. The differentiation of hematopoietic stem cells into immature dendritic cells was completed at day seven.

Cell imaging. Confocal images shown in Figure 11 were acquired using a Zeiss LSM 710. The Brainbow 3.1 fluorescence was collected at 463-500 nm in Channel 1 for ECFP (excited by 458 laser), 416-727 nm in Channel 2 for EGFP and EYFP (excited by 488 and 514 lasers, respectively), and 599-753 nm in Channel 3 for mRFP (excited by 594 laser). Images were obtained with 20× magnification.

C. IN-SILICO RAILS EXPERIMENT

Similar to the in-vitro experiments, we test RAILS on two different inputs from CIFAR-10, as shown in the right panel of the conceptual diagram Figure 10 (cat as Antigen 1 and deer as Antigen 2). The candidates are all selected in the flocking step of antigen 1 (A1). Two tests are performed to illustrate the different responses when the same antigen (A1) or a very different antigen (A2) is presented during the affinity maturation step.

We first apply RAILS on Antigen 1 (A1) and obtain the average affinity of the true class as well as the initial B-cells, i.e. the nearest neighbors from all classes. The affinity vs generation curve is shown in the green line in the right panel of Figure 7. One can clearly see the learning pattern. And finally, the solution is reached with a high affinity. Then we apply the initial B-cells obtained from A1 to Antigen 2 (A2). The results show that A2 cannot reach the solution by using the given initial B-cells, as shown by the red line in the right panel of Figure 7.

APPENDIX D ADDITIONAL DETAILS ON RAILS

APPENDIX D ADDITIONAL DETAILS ON RAILS

a: Computational cost.

The RAILS prototype implemented in this paper has a relatively high computational cost, primarily due to the need to generate and select generations of in-silico B-cells using the genetic algorithm. Specifically, the average prediction time per sample is less than 0.1sec on CIFAR-10 with population size 100 and 20 generations. Note that all of our reported RAILS experiments were performed on a single GPU. RAILS speed can be dramatically accelerated by using multiple GPUs. We are currently investigating fast approximations to the genetic algorithm solution used by our prototype RAILS implementation.

b: Relations to preferential attachment

The process of selection can also be viewed as creating new nodes from existing nodes in a Preferential Attachment (PA) evolutionary graph generation process [43], where the probability of a new node linking to node i is

$$\Pi(k_i) = \frac{k_{i}}{\sum_j k_j}$$

and k_i is the degree of node i. In PA models new nodes prefer to attach to existing nodes having high vertex degree.
FIGURE 10. The conceptual diagram of in-vitro immune response (Left) and RAILS response (Right): The candidates are selected in the flocking step of antigen 1 \((A_1)\). Two tests are performed to illustrate the different responses when the same antigen \((A_1)\) or a very different antigen \((A_2)\) is presented during the affinity maturation step. In RAILS, we treat test data (cat and deer) as antigens. The solution can be reached when \(A_1\) is presented. There is no solution when \(A_2\) is presented.

FIGURE 11. In-vitro experimental results showing importance of antigen affinity in robustness of adaptive immune response. The figure shows images of the B-cell proliferation (top) and B-cell fold-change curves (bottom) over time for three initial antigen immunization types (Ovalbumin-injected mice, Lysozyme injected mice, and un-immunized) and three antigen post-immunization treatments (no-antigen, lysozyme antigen, Ovalbumin antigen) applied 6 days later. Ovalbumin and Lysozyme antigens produce similar adaptive immune responses for those mice previously immunized with either antigen while they produce no adaptive immune response for mice that have not been immunized. The images show clearly that proliferation of B-cells in the adaptive immune response is strongest when the lymphocytes are re-exposed to the same antigen as in the immunization but still elicits an adaptive response when exposed to a similar but non-identical antigen. The decrease in adaptive response is inversely proportional to the similarity (affinity) between the antigens.

In RAILS, we use a surrogate for the degree, which is the exponentiated affinity measure, and the offspring are generated by parents having high degree.

c: Early stopping criterion.

Considering the fast convergence of RAILS, one practical early stopping criterion is to check if a single class occupies most of the high-affinity population for multi-generation, e.g., checking the top 5% of the high-affinity population. We empirically find that it takes less than 5 iterations to convergence for most of the inputs from MNIST (CIFAR-10).

d: RAILS improves robustness of all models.

RAILS is a general framework that can be applied to any model. Specifically, we remark that there is no competitive relationship between RAILS and robust training since RAILS can improve all models’ robustness, even for the robust trained model. Moreover, RAILS can reach higher robustness based on a robust trained model.

APPENDIX E A SIMPLE SENSING STRATEGY

Sensing in the immune system aims to detect the self and non-self pieces, while RAILS leverages sensing to provide initial detection of adversarial examples. Sensing can also prevent the RAILS computation from becoming overwhelmed by false positives, i.e., recognizing benign exam-
Distributions in layer three

The assumption we make here is that benign examples have more consistency between the features learned from a shallow layer and the DNN prediction compared with adversarial examples. This consistency can be measured by the cross-entropy between the DNN and layer-l kNN predicted class probability score. Specifically, we have the cross-entropy (adversarial threat score) for each input x in the following form

$$ce(x)^l = - \sum_{c=1}^{C} F_c(x) \log v_c^l$$

where F_c denotes the neural network prediction score of the c-th class. The prediction score is obtained by feeding the output of the neural network to a softmax operation. v_c^l is the c-th entry of the normalized kNN vector in layer-l, which is defined as follows

$$v_c^l = \frac{r_c}{k} = \frac{|\{x \in Q^l \cap D_c\}|}{k}$$

where D_c represents the training data belonging to class c. Q^l denotes the k-nearest neighbors of x in all classes by ranking the affinity score $A(f_l; x, x)$.

All the sensing experimental results shown below are obtained on CIFAR-10. We first compare the adversarial threat score distributions of benign examples and adversarial examples on layer two and layer three in Figure [12]. We use 1400 benign examples for layer two and layer three. The adversarial examples are all successful attacks. One can see that there are more adversarial examples with larger ce^2 (ce^3) compared to benign examples. The results suggest that a large number of benign examples could be separated from adversarial examples, and thus can prevent the RAILS computation from becoming overwhelmed by false positives.

Figure [13] shows the Receiver Operating Characteristic (ROC) curves of the adversarial threat scores for benign examples and adversarial examples: There are more adversarial examples with larger ce compared to benign examples. The results suggest that a large number of benign examples could be separated from adversarial examples, and thus can prevent the RAILS computation from becoming overwhelmed by false positives.

The ROC curves in layer two and layer three, respectively. The True Positive Rate (TPR) represents the adversarial examples successfully detected rate. The False Positive Rate (FPR) represents the rate of benign examples accidentally been detected as adversarial examples. The Area Under the Curve (AUC) is 0.70 and 0.77 for layer two and layer three.

Algorithm 2 Sensing: Adversarial Example Detection

Input: Test data point x; Training dataset $D_{tr} = \{D_1, D_2, \cdots, D_C\}$; Number of Classes C; Model F with feature mapping $F_l(\cdot)$ in layer l, $l \in L_s$; Affinity function A; A preset threshold κ

for all layer $l \in L_s$ in parallel do

Find the k-nearest neighbors Q_l of x in all classes by ranking the affinity score $A(f_l; x, x)$.

Obtain the normalized vector $v^l = (r_1, r_2, \cdots, r_C)/k$, $r_c = |\{\hat{x} \in Q_l \cap D_c\}|$.

Obtain the softmax prediction vector ($F(x)$).

Calculate the cross entropy $ce(x)^l = - \sum_{c=1}^{C} F_c(x) \log v_c^l$.

for $c \leftarrow 1$, $\sum_{l \in L_s} ce(x) > \kappa$ then

x is a potential adversarial example and return $I_{Adv} = 1$.

else

x is benign and return the prediction $\arg \max_c F_c(x)$

end if

We then select L_s to only include layer three, and apply the threshold of 0.4 in the sensing step on CIFAR-10. The results...
show that the false positive rate can be reduced by 40%, while
the SA remains the same and the RA only decreases 0.2%.

APPENDIX F ADDITIONAL EXPERIMENTS
A. ADDITIONAL COMPARISONS ON MNIST
Figure [14] provides the confusion matrices for benign examples
classifications and adversarial examples classifications in
Conv1 and Conv2 when \(\epsilon = 60 \). The confusion matrices
in Figure [14] show that RAILS has fewer incorrect predictions
for those data that DkNN gets wrong. Each value in Figure [14]
represents the percentage of intersections of RAILS (correct
or wrong) and DkNN (correct or wrong).

In Table 7, we provide the experimental results with
Square Attack [28] (a black-box attack) showing that RAILS
improves the robust accuracy of DkNN by 1.35% (11% attack success rate) on MNIST with \(\epsilon = 76.5 \).

![Figure 14. RAILS has fewer incorrect predictions for those data that DkNN gets wrong. Confusion Matrices of adversarial examples and benign examples classification in Conv1 and Conv2 (RAILS vs. DkNN \(\epsilon = 60 \)).](image)

TABLE 7. RAILS improves the robust accuracy of DkNN by 1.35% (11% attack success rate) on MNIST with \(\epsilon = 76.5 \).

	SA	RA
RAILS (ours)	97.95%	89.35%
DkNN	97.99%	88%

TABLE 8. RAILS outperforms DkNN and CNN on defending PGD attack with strength \(\epsilon = 8 \) and \(\epsilon = 16 \) on CIFAR-10. The difference of robust accuracy (RA) between RAILS and DkNN increases when \(\epsilon \) increases, indicating that RAILS can defend stronger attacks.

	SA	RA (\(\epsilon = 8 \))	RA (\(\epsilon = 16 \))
RAILS (ours)	82%	52.01%	39.04%
CNN	87.26%	32.57%	18.25%
DkNN	86.63%	41.69%	26.21%

We also show the SA/RA performance of RAILS under PGD attack and Fast Gradient Sign Method (FGSM) when \(\epsilon = 76.5 \). The results in Table [12] indicate that RAILS can reach higher RA than DkNN with close SA.

B. ADDITIONAL COMPARISONS ON CIFAR-10
In this subsection, we test RAILS on CIFAR-10 under PGD
attack and FGSM with attack strength \(\epsilon = 8/16 \). The results
are shown in Figure 8 and Figure 9. RAILS outperforms
DkNN and CNN on different attack types and strengths.
We also find that the difference of RA between RAILS and
DkNN increases when \(\epsilon \) increases, indicating that RAILS can
defend stronger attacks.

We then conduct experiments with Square Attack, which
is one of the black-box attacks. The results are provided in
Table 7 and show that RAILS improves the robust accuracy
of DkNN by 3% on CIFAR-10 with \(\epsilon = 20 \) and \(\epsilon = 24 \).

![Figure 15. Shows the confusion matrices of the overall performance when \(\epsilon = 60 \). The confusion matrices indicate that RAILS’ correct predictions agree with a majority of DkNN’s correct predictions and disagree with DkNN’s wrong predictions.](image)

TABLE 9. RAILS outperforms DkNN and CNN on defending FGSM attacks with strength \(\epsilon = 8 \) and \(\epsilon = 16 \) on CIFAR-10.

	SA	RA (\(\epsilon = 8 \))	RA (\(\epsilon = 16 \))
RAILS (ours)	82%	59.7%	45.26%
CNN	87.26%	48.52%	30.55%
DkNN	86.63%	53.46%	37.19%

TABLE 10. RAILS achieves higher robust accuracy (RA) than DkNN on CIFAR-10 under Square Attack [28] with \(\epsilon = 20 \) and \(\epsilon = 24 \).

	SA	RA (\(\epsilon = 20 \))	RA (\(\epsilon = 24 \))
RAILS (ours)	82%	74.5%	72.8%
DkNN	86.63%	71.3%	69.5%

We also show the SA/RA performance of RAILS under
PGD attack and Fast Gradient Sign Method (FGSM) when
\(\epsilon = 76.5 \). The results in Table [12] indicate that RAILS can
reach higher RA than DkNN with close SA.

TABLE 13. Default parameter for RAILS. For each parameter of interest all other parameters are set to the default values listed in this table.

Parameter	Default Value	Layer
\(C \) Classes	10	3
\(N \) Neighbors	10	3
Population Size	\(N \) Neighbors	3
Sampling Temperature	1	3
Max generation	10	3
Mutation Range	(0.005 - 0.015)	3

TABLE 14. Increasing the \(N \) neighbors within a certain range yields improved standard accuracy (SA) and robust accuracy (RA). We hold the population size as a fixed \(N \) neighbor value (it’s minimum possible value).

\(N \) Neighbors	SA	RA	Difference	Population Size
2	0.702	0.535	0.167	2
6	0.732	0.596	0.136	6
10	0.755	0.588	0.167	10
14	0.751	0.601	0.150	14
18	0.764	0.594	0.170	18
22	0.758	0.586	0.172	22
26	0.752	0.606	0.146	26
TABLE 11. RAILS achieves higher robust accuracy (RA) than DkNN on CIFAR-10 under a (customized) ASK-Attack with $\epsilon = 8$. ASK-Attack is applied on different layers.

RAILS (ours)	RA (Conv 3)	RA (Conv 4)	RA (Conv 3, 4)
DKNN	34%	34.4%	37.8%

TABLE 12. RAILS can reach higher robust accuracy (RA) than DkNN with similar standard accuracy (SA) on defending PGD attack and FGSM ($\epsilon = 76.5$) on MNIST.

RAILS (ours)	SA	RA (PGD)	RA (FGSM)
DKNN	97.99%	47.05%	52.23%

TABLE 13. Increasing population size improves robustness when N is small, and does not yield significant improvement when N is large with low mutation magnitude and low mutation probability. We present an increased population coefficient κ, where the population T equals $\kappa \times (N \text{ neighbors})$. We present two cases: where N neighbors is small and where N neighbors is large. Small N: Increasing κ from one to two improves the robustness. However, further increasing κ does not bring significant improvement. Large N: Note that population size does not have an apparent impact on either standard or robust accuracy when N neighbors is large. This may suggest that the number of perturbed input ‘exemplars’ does not lead to more robust accuracy on adversarial inputs without sufficient mutation. This is consistent with the core principal in the adaptive immune system that mutation is necessary to converge on optimal solutions.

SA	RA	Difference	N Neighbors	Population Size
0.696	0.532	0.164	2	2
0.720	0.558	0.162	2	4
0.727	0.562	0.165	2	6
0.720	0.558	0.162	2	8
0.735	0.562	0.173	2	10
0.740	0.604	0.136	10	10
0.753	0.595	0.158	10	20
0.754	0.597	0.157	10	30
0.755	0.598	0.157	10	40
0.767	0.595	0.172	10	50

TABLE 14. Increasing mutation upper bound within a small value window increases robustness. We observe that over several experiments mutation range has a narrow window where it positively impacts both standard accuracy (SA) and robust accuracy (RA). This may suggest that this parameter is an important hyper-parameter to tune during training.

SA	RA	Difference	Mutation Range LB	Mutation Range UB
0.764	0.569	0.195	0.002	0.005
0.740	0.586	0.154	0.002	0.010
0.746	0.581	0.165	0.002	0.015
0.743	0.577	0.166	0.002	0.020
0.732	0.587	0.145	0.002	0.025
0.737	0.583	0.154	0.002	0.030

TABLE 15. Crossover is an important mechanism for improving performance. We observe better performance when we use cross-over as opposed to mutation alone during training. We also note that population size alone does not necessarily contribute to better performance for either strategy.

Operator	SA	RA	Difference	Population Size
crossover	0.736	0.570	0.166	10
mutation	0.708	0.552	0.156	10
crossover	0.744	0.589	0.155	20
mutation	0.724	0.563	0.161	20
crossover	0.759	0.598	0.161	50
mutation	0.733	0.558	0.175	50

C. DETAILS ON RAILS ABLATION STUDY

For this subsection, RAILS is trained on CIFAR-10 with VGG16 as the classifier. Results are evaluated using model classification accuracy. Accuracy is compared before and after a projected gradient descent (PGD) attack on the training data with $\epsilon = 8/255$. The baseline model performance for benign data (standard accuracy) was 87.26%. After the training data was adversarially attacked the VGG16 accuracy (robust accuracy) fell to 32.57%. By implementing RAILS, we are able to achieve a robust accuracy of 54.3% using the parameterization described in Table 13. All the experiments are conducted on convolutional layer 3. Each experiment holds these parameters fixed while exploring a range of values over independent training regimes. Both standard and robust accuracy are compared for each parameter choice. The purpose of this section is to investigate RAILS’ sensitivity towards parameter choices. Details for each experiment are listed in the table captions.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553, pp. 436–444, 2015.
[2] M. Mehdipour Ghazi and H. Kemal Ekenel, “A comprehensive analysis of deep learning based representation for face recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition workshops, 2016, pp. 34–41.
[3] Z.-Q. Zhao, P. Zheng, S.-t. Xu, and X. Wu, “Object detection with deep learning: A review,” IEEE transactions on neural networks and learning systems, vol. 30, no. 11, pp. 3212–3232, 2019.
[4] T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent trends in deep learning based natural language processing,” IEEE Computational Intelligence Magazine, vol. 13, no. 3, pp. 55–75, 2018.
[5] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.
[6] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus, “Intriguing properties of neural networks,” arXiv preprint arXiv:1312.6199, 2013.
[7] T. Gu, B. Dolan-Gavitt, and S. Garg, “Badnets: Identifying vulnerabilities in the machine learning model supply chain,” arXiv preprint arXiv:1708.06733, 2017.
[8] J. H. Metzen, T. Genewein, V. Fischer, and B. Bischoff, “On detecting adversarial perturbations,” in International Conference on Learning Representations, 2017.
R. Feinman, R. R. Curtin, S. Shintre, and A. B. Gardner, “Detecting adversarial samples from artifacts,” arXiv preprint arXiv:1703.00410, 2017.

K. Grosse, P. Manoharan, N. Papernot, M. Backes, and P. McDaniel, “On the (statistical) detection of adversarial examples,” arXiv preprint arXiv:1702.06280, 2017.

A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep learning models resistant to adversarial attacks,” arXiv preprint arXiv:1706.06083, 2017.

H. Zhang, Y. Yu, J. Jiao, E. P. Xing, L. E. Ghaoui, and M. I. Jordan, “Theoretically principled trade-off between robustness and accuracy,” International Conference on Machine Learning, 2019.

J. Cohen, E. Rosenfeld, and Z. Kolter, “Certified adversarial robustness via randomized smoothing,” in International Conference on Machine Learning, 2019, pp. 1310–1320.

X. Zhang, J. Wang, T. Wang, R. Jiang, J. Xu, and L. Zhao, “Robust feature learning for adversarial defense via hierarchical feature alignment,” Information Sciences, vol. 560, pp. 256–270, 2021.

A. Mustafa, S. H. Khan, M. Hayat, J. Shen, and L. Shao, “Image super-resolution as a defense against adversarial attacks,” IEEE Transactions on Image Processing, vol. 29, pp. 1711–1724, 2019.

B. Sun, N.-h. Tsai, F. Liu, R. Yu, and H. Su, “Adversarial defense by stratified convolutional sparse coding,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 11447–11456.

N. Papernot and P. McDaniel, “Deep k-nearest neighbors: Towards confident, interpretable and robust deep learning,” arXiv preprint arXiv:1803.04765, 2018.

P. Samangouei, M. Kabkab, and R. Chellappa, “Defense-gan: Protecting classifiers against adversarial attacks using generative models,” in International Conference on Learning Representations, 2018.

N. Carlini and D. Wagner, “Adversarial examples are not easily detected: Bypassing ten detection methods,” in Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, ACM, 2017, pp. 3–14.

A. Aalldahooo, W. Hamidouche, S. A. Fezza, and O. Deforges, “Adversarial example detection for dnn models: A review,” arXiv preprint arXiv:2105.00203, 2021.

Z. Niu, Z. Chen, L. Li, Y. Yang, B. Li, and J. Yi, “On the limitations of denoising strategies as adversarial defenses,” arXiv preprint arXiv:2012.09184, 2020.

A. Athalye, N. Carlini, and D. Wagner, “Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples,” in International Conference on Machine Learning, 2018, pp. 274–283.

S. Jamali and R. Fotohi, “Dawa: Defending against wormhole attack in manets by using fuzzy logic and artificial immune system,” the Journal of Supercomputing, vol. 73, no. 12, pp. 5173–5196, 2017.

G. F. Scaranti, L. F. Carvalho, S. Barbon, and M. L. Proença, “Artificial immune systems and fuzzy logic to detect flooding attacks in software-defined networks,” IEEE Access, vol. 8, pp. 100172–100184, 2020.

M. Tarao and T. Okamoto, “Toward an artificial immune server against cyber attacks: enhancement of protection against dos attacks,” Procedia Computer Science, vol. 96, pp. 1137–1146, 2016.

K. D. Gupta and D. Dasgupta, “Using negative detectors for identifying adversarial data manipulation in machine learning,” in 2021 International Joint Conference on Neural Networks (IJCNN), IEEE, 2021, pp. 1–8.

T. J. Rademaker, E. Bengio, and P. François, “Attack and defense in cellular decision-making: lessons from machine learning,” Physical Review X, vol. 9, no. 3, p. 031012, 2019.

M. Andriushchenko, F. Croce, N. Flammarion, and M. Hein, “Square attack: a query-efficient black-box adversarial attack via random search,” in European Conference on Computer Vision. Springer, 2020, pp. 484–501.

T. B. Brown, D. Mané, A. Roy, M. Abadi, and J. Gilmer, “Adversarial patch,” arXiv preprint arXiv:1712.09665, 2017.

F. Croce and M. Hein, “Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks,” in International conference on machine learning. PMLR, 2020, pp. 2206–2216.

W. Brendel, J. Rauber, and M. Bethge, “Decision-based adversarial attacks: Reliable attacks against black-box machine learning models,” arXiv preprint arXiv:1712.04248, 2017.

R. Wang, T. Chen, P. Yao, S. Liu, I. Rajapakse, and A. Hero, “Ask: Adversarial soft k-nearest neighbor attack and defense,” arXiv preprint arXiv:2106.14300, 2021.

N. S. De Silva and U. Klein, “Dynamics of b cells in germinal centres,” Nature reviews immunology, vol. 15, no. 3, pp. 137–148, 2015.

J.-H. Choi, H. Zhang, J.-H. Kim, C.-J. Hsieh, and J.-S. Lee, “Evaluating robustness of deep image super-resolution against adversarial attacks,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 303–311.

D. A. Fernandes, M. M. Freire, P. A. Fazendeiro, and P. R. Inácio, “Applications of artificial immune systems to computer security: A survey,” Journal of Information Security and Applications, vol. 35, pp. 138–159, 2017.

H. Liu, M. Long, J. Wang, and M. Jordan, “Transferable adversarial training: A general approach to adapting deep classifiers,” in International Conference on Machine Learning, 2019, pp. 4013–4022.

A. Shafahi, P. Saadatpanah, C. Zhu, A. Ghiasi, C. Studer, D. Jacobs, and T. Goldstein, “Adversarially robust transfer learning,” in International Conference on Learning Representations, 2020. [Online]. Available: https://openreview.net/forum?id=rydBGGYyB

I. Rajapakse and M. Grouinie, “On emerging nuclear order,” Journal of Cell Biology, vol. 192, no. 5, pp. 711–721, 2011.

F. Cucker and S. Smale, “Emergent behavior in flocks,” IEEE Transactions on automatic control, vol. 52, no. 5, pp. 852–862, 2007.

I. Rajapakse and S. Smale, “Emergence of function from coordinated cells in a tissue,” Proceedings of the National Academy of Sciences, vol. 114, no. 7, pp. 1462–1467, 2017.

L. Mesin, J. Ersching, and G. D. Victora, “Germinal center b cell dynamics,” Immunity, vol. 45, no. 3, pp. 471–482, 2016.

W. Xu, D. Evans, and Y. Qi, “Feature squeezing: Detecting adversarial examples in deep neural networks,” arXiv preprint arXiv:1704.01153, 2017.

A.-L. Barabási and R. Albert, “Emergence of scaling in random networks,” science, vol. 286, no. 5439, pp. 509–512, 1999.

A. Bewley and B. Upcroft, “Advantages of exploiting projection structure for segmenting dense 3d point clouds,” in Australian Conference on Robotics and Automation, vol. 2, 2013.

A. Rajaraman and J. D. Ullman, Mining of massive datasets. Cambridge University Press, 2011.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, Nov 1998.

Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng, “Reading digits in natural images with unsupervised feature learning,” 2011.

A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny images,” Master’s thesis, Department of Computer Science, University of Toronto, 2009.

K. Simonoyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

I. Wand, P. Holzlihzer, S. Neupert, B. Micheel, and K. Heilmann, “Cooperation of dendritic cells with naïve lymphocyte populations to induce the generation of antigen-specific antibodies in vitro,” Journal of biotechnology, vol. 156, no. 3, pp. 173–181, 2011.
TIANQI CHEN received the B.S. degree in Mathematics from Fudan University, Shanghai, China, in 2019 and the M.S. degree in Statistics from University of Michigan, Ann Arbor, MI, USA in 2021. He is currently pursuing the Ph.D. degree in Statistics at University of Texas, Austin, TX, USA.

ALNAWAZ REHEMTULLA received his MSc and PhD degrees in microbiology and immunology from the University of Calgary. Following a fellowship at the Scripps Research Institute in vascular biology, he joined the Genetics Institute in Boston as staff scientist and subsequently as faculty at the University of Michigan Medical School in 1999. He is currently Division Director for Molecular Imaging in the Department of Radiation Oncology. His research program has focused on developing and leveraging technologies for non-invasive imaging to provide novel insights into biological processes using cultured cells, mouse models and in clinical studies.

STEPHEN M. LINDSLEY was born in Midland, MI, USA in 1995. He received the B.S. degree in computer engineering in 2017 and the Ph.D. degree in bioinformatics in 2021 from the University of Michigan, Ann Arbor. From 2013 to 2017, he was a Research Assistant in the Rajapakse Laboratory and a Graduate Student Instructor from 2018 to 2021. He is currently an Application Engineer at MathWorks. His research interests include the development of computational tools for the study of genome cell biology and harnessing biological systems to improve engineering design.

COOPER M. STANSBURY was born in Ann Arbor, Michigan. He received a B.A. in Philosophy from Earlham College in 2012. He received a M.S. in Data Science from University of Michigan Dearborn in 2019 and a M.S. in Bioinformatics from University of Michigan in Ann Arbor in 2021. As of 2021 he is a PhD student in Bioinformatics in Dr. Rajapakse’s Lab at the University of Michigan, Ann Arbor.

INDIKA RAJAPAKSE is currently an Associate Professor of Computational Medicine & Bioinformatics, in the Medical School, and an Associate Professor of Mathematics at the University of Michigan. He is also a member of the Smale Institute. His research is at the interface of biology, engineering and mathematics. His areas include dynamical systems, networks, mathematics of data and cellular reprogramming.

ALFRED O. HERO III (F’97) received the B.S. (summa cum laude) from Boston University (1980) and the Ph.D from Princeton University (1984), both in Electrical Engineering. Since 1984 he has been with the University of Michigan, Ann Arbor, where he is the John H. Holland Distinguished University Professor of Electrical Engineering and Computer Science and the R. Jamison and Betty Williams Professor of Engineering. His primary appointment is in the Department of Electrical Engineering and Computer Science and he also has appointments, by courtesy, in the Department of Biomedical Engineering and the Department of Statistics. His recent research interests are in high dimensional spatio-temporal data, multi-modal data integration, statistical signal processing, and machine learning. Of particular interest are applications to social networks, network security and forensics, computer vision, and personalized health. He is a Section Editor of the SIAM Journal on Mathematics of Data Science and a Senior Editor of the IEEE Journal on Selected Topics in Signal Processing. He is on the editorial board of the Harvard Data Science Review (HDSR) and serves as moderator for the Electrical Engineering and Systems Science category of the arXiv. He was co-General Chair of the 2019 IEEE International Symposium on Information Theory (ISIT) and the 1995 IEEE International Conference on Acoustics, Speech and Signal Processing. He was founding Co-Director of the University’s Michigan Institute for Data Science (MIDAS) (2015-2018). From 2008-2013 he held the Digiteo Chaire d’Excellence at the Ecole Superieure d’Electricite, Gif-sur-Yvette, France. He is a Fellow of the Institute of Electrical and Electronics Engineers (IEEE) and the Society for Industrial and Applied Mathematics (SIAM). Several of his research articles have received best paper awards. He was awarded the University of Michigan Distinguished Faculty Achievement Award (2011), the Stephen S. Attwood Excellence in Engineering Award (2017), and the H. Scott Fogler Award for Professional Leadership and Service (2018). He received the IEEE Signal Processing Society Meritorious Service Award (1998), the IEEE Third Millenium Medal (2000), the IEEE Signal Processing Society Technical Achievement Award (2014), the Society Award from the IEEE Signal Processing Society (2015) and the Fourier Award from the IEEE (2020). He was President of the IEEE Signal Processing Society (2006-2008) and was on the IEEE Board of Directors (2009-2011) where he served as Director of Division IX (Signals and Applications). From 2011 to 2020 he was a member and Chair (2017-2020) of the Committee on Applied and Theoretical Statistics (CATS) of the US National Academies of Science.

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS