Kairomonal communication in mice is concentration-dependent with a proportional discrimination threshold
[version 1; peer review: 1 approved, 1 approved with reservations, 1 not approved]

Anand Vasudevan, Ajai Vyas
School of Biological Sciences, Nanyang Technological University, 637551, Singapore

Abstract
Odors of predators are often co-opted by prey species to serve as warning signals. Perceptual properties of such kairomonal communication are under studied despite their common use in many mammals. We demonstrate that the kairomonal response in mice to rat odors varies monotonically with the volume of rat odor. Moreover, the ability of mice to differentiate between two strengths of rat odors is dependent on the ratio of the two concentrations. These results show that mice can compare kairomonal strength over a large range of values, and that kairomonal communication follows Weber’s law.

Keywords
Major urinary proteins; Olfaction; Pheromone; Predator; Rat; Weber’s law

Open Peer Review

Approval Status
1. Joanne Yew, National University of Singapore, Singapore, Singapore
2. Kazumi Osada, Health Sciences University of Hokkaido, Hokkaido, Japan
3. Fernando Martínez-García, University of Valencia, Valencia, Spain
Lluis Fortes-Marco, University of Valencia, Valencia, Spain

Any reports and responses or comments on the article can be found at the end of the article.
Introduction
Foraging animals continually face a conflict between 1) the need to seek opportunities such as food and mating partners; and, 2) the need to avoid exposure to predators. In response to predation pressure, many prey species have co-opted predator odors as kairomones; chemicals emitted by one species, usually for inter-species communication, but intercepted by other species resulting in benefit for the receiver and detriment of the emitter. In this role, predator odors such as urine, fecal material or body odors initiate a rapid avoidance response in prey, thus reducing the probability of successful predation1,2. Such avoidance of predator cues needs to be ‘traded-off’ against foraging opportunities. In view of this, it can be speculated that a kairomonal responses may not be an absolute all-or-nothing phenomenon. Rather avoidance is expected to be relative to the intensity of the predator cue. Implicit in this speculation is the idea that animals can quantitatively perceive differences in kairomonal strength.

A wide variety of animals can make quantitative estimates of percepts such as time, foraging opportunities, efforts and rewards3,4,5. These quantitative estimates are often derived using a comparative representational system that is dependent on the ratios between opposing quantities6–9. The ability to make quantitative estimates is important because it allows calibration of behavioral responses to incipient environmental opportunities and challenges. In accordance with the comparative nature of such perceptual systems, it can be predicted that greater quantities of kairomones evoke greater response i.e. that the response is dose-dependent. More importantly, sensitivity to changes in the magnitude of a stimulus decreases when stimulus magnitude increases. In other words, the discrimination threshold (i.e. the ‘just-noticeable difference’ between two stimuli of different intensities) is smaller when both stimuli are weak compared to when both stimuli are strong. This formulation is often termed Weber’s law10, and is a fundamental property of many percepts.

Kairomonal communication has been widely studied in insects10–11. Additionally, the neurobiology and physiology of rodent kairomones has attracted significant scientific interest in the recent past12. Yet, the perceptual properties of kairomonal communication in mammals have so far been understudied, including, the dose-responsivity of kairomonal communication13 and the relationship of discrimination threshold to stimulus magnitude.

House mice (Mus musculus) are predated by rats (Rattus norvegicus)14–16 and accordingly, the mice express innate avoidance to rat odors17,18. In this report, we investigate the dose-responsivity and discrimination threshold of kairomonal communication in mice.

Materials and methods

Animals
The Nanyang Technological University (IACUC number: ARF SBS/NIE-A-0106AZ) institutional animal care and use committee reviewed and approved all procedures. Fifteen male Balb/c mice (7–8 weeks old, housed five per cage (369 x 156 x 132 mm; 1145T, Tecniplast, UK)) were obtained from the vivarium of the National University of Singapore. Eight male Wistar rats (48 days old, housed two per cage (425 x 266 x 185 mm; 1291H, Tecniplast, UK)) were obtained from the same vivarium and used as a kairomonal source. Standard corn cob cage bedding was changed twice a week. Animals were maintained on a 12 hours light-dark cycle, with temperature and relative humidity ranging between 20–25 degree celsius and 70–80%, respectively. Experiments were conducted during the light phase. Food and water was available ad libitum. The diet consisted of standard laboratory chow (PicoLab Rodent Diet 20, 5053) with 20% protein content.

Kairomone collection
Rat urine was collected using metabolic cages (Harvard Apparatus). Rat urine contains volatile compounds and major urinary proteins (MUPs). The urine was treated with menadione (M5625 Sigma-Aldrich, Singapore) to competitively displace volatile compounds bound to the MUPs, followed by centrifugation (Millipore, 3000 g for 5 minutes) through a size-exclusion column (>3 kDa). Only the high molecular-weight fraction containing MUPs and devoid of volatiles was used, in accordance with the prior demonstration that rat MUPS serve as kairomones to mice13.

Dose-responsivity to kairomones
The response of mice (n = 10) to increasing doses of MUP fraction of rat urine (henceforth referred to as rat urine) was studied (trial duration = 600s). Avoidance was quantified by comparing time spent by mice in two opposing bisects of an arena (76 x 9 cm; 15 cm high). Data on time spent in each bisect was collected by automated behavioral tracking software (ANY-maze, version 4.3, Stoelting). Opposing arms contained either rat urine or phosphate-buffered saline. The amount of rat urine was systematically varied from 1X to 16X (3.125, 6.25, 12.5, 25 and 50 µl). X was arbitrarily defined as 3.125 µl of rat urine. The same set of mice was used in successive testing for all doses (starting from lower to higher doses) with 24 hours elapsing between two successive trials.

Discrimination threshold
Both arms of the arena contained rat urine in this condition. The amount of rat urine in one arm was varied in five discrete doses (6.25–25 µl), equidistant on a Log\textsubscript{2} scale. The opposing arm contained volume that was greater by ratio of either 1.2 or 1.3. The percentage of time that mice (n = 15, the same mice that were used in the previous experiment) spent in the arm with the greater volume of urine, was quantified. The same set of mice were used in successive testing for all doses (starting from lower to higher doses), with two successive trials (24 hours apart).

Statistics
All statistical tests were conducted using IBM SPSS software (version 20) One-way analysis of variance followed by ‘Fisher’s least significant difference’ (LSD) post-hoc test was used to analyze increasing doses of kairomones on mouse behaviour. A two-way analysis of variance was carried out to determine main effect and/or interaction of kairomone dose and its corresponding ratios.

Results

Dose responsivity of kairomonal communication
One-way analysis of variance (ANOVA) revealed that the amount of time spent near rat urine decreased with an incremental increase in the amount of rat urine (Figure 1; n = 10; F\textsubscript{(4,46)} = 6.9; p = 0.0002).
A two-way ANOVA for dose and ratio revealed a significant main effect of the ratio (Figure 2A; $F_{(1,138)} = 32.1$, $p = 0.00000008$). The main effect of doses themselves did not reach statistical significance ($F_{(4,138)} = 1.347$, $p = 0.256$). Similarly, interaction between doses and ratios was not significant ($F_{(4,138)} = 1.214$, $p = 0.308$). Thus, regardless of the dose studied, detection threshold was constantly proportional to the kairomone strength (Figure 2B) by a ratio ≤ 1.3 but above >1.2. In other words, the discrimination threshold was smaller for weaker stimuli and bigger for stronger stimuli.

Discussion

Kairomones are compounds emitted by one species and co-opted by another receiving species, resulting in benefit for the receiver and detriment for the emitter. Kairomones can be used by both predators to locate prey and by prey to secure advanced warning of predator presence. Odors used as pheromones in intra-species communication are often the most vulnerable for co-option as kairomones. This is because use in conspecific communication requires robust expression of odors, making them more liable for eavesdropping by other species (reviewed in Kolluru and Zuk[26]). In agreement with this formulation, rats use urine marks to communicate status and sexual attractiveness[21-23]; and, proteins secreted with rat urine are sufficient to initiate innate avoidance in mice[1], a prey species of rats[24-26]. The salient kairomone in this case has been identified to be a major urinary protein, MUP13[1]. These involatile rodent kairomones provide a unique opportunity to study kairomonal perception by virtue of their stability in the ambient environment and due to their ease of reliably controlling their dosing. This is in contrast with the volatile nature of many kairomones that require onerous delivery methods using olfactometers.

Several pheromonal responses in insects and mammals show dose responsivity whereby a stronger pheromonal stimulus evokes a greater response (e.g. Coureaud et al.[16], He et al.[23] and Perma et al.[24-25]). In contrast, the dose responsivity of kairomonal communication has not been well-studied. In this report, we demonstrate that mice perceive rat kairomones in a dose-dependent manner. We speculate that the relative nature of kairomonal communication permits prey to calibrate foraging responses according to perceived predatory threats. For example, a weak kairomonal stimulus might signal the passage of a long period of time since the urine mark was laid, and thereby evoke lesser avoidance. In contrast, a stronger odor is likely to be fresh and a better indicator of predator presence. Similar dose-responsivity has been previously described during the perception of cat odors by rats[14].

The ability to calibrate avoidance also suggests that mice are able to differentiate between various amounts of kairomones. Animals can indeed discriminate between different amounts of many percepts, including olfactory sensations[23-25]. In the absence of an absolute numerical system, these discriminations are often dependent on a relative estimation based on comparative perceptions. Weber and Fletcher formalized one of the hallmarks of such relative estimation by showing that the discrimination threshold is a constant fraction of the stimulus intensity in many perceptual systems ($k = \Delta I/I$; where k is a constant, I is intensity and ΔI is just-noticeable
difference). In this report, we demonstrate that kairomonal communication in mice follows Weber’s law with Weber’s fraction valued at greater than 0.2 but smaller than 0.3. Weber’s law has been previously studied in human olfaction for volatile odors, yielding a comparable sensitivity of 0.28. Similarly, pheromonal communication in Argentine Ants (*Linepithema humile*) has been recently shown to follow Weber’s law. To the best of our knowledge, this is the first demonstration of Weber’s law applied to kairomones.

Figure 2. Detection threshold in mice is proportional to kairomone strength (mean±SEM). The detection threshold at varying doses of rat urine was further examined by setting up an avoidance-avoidance conflict, where mice chose to spend time in arms containing either lower or higher amounts of rat urine. The higher dose was of either a 20% (un-shaded bars) or 30% (shaded bars) greater magnitude (e.g. 120% or 130% of 2X). Abscissa depicts the lower dose used in each of the comparisons (e.g. 2X). Ordinate depicts time spent in arm with the greater amount of rat urine divided by the sum of the time spent in both arms (gray line = 50% chance). N = 15 mice for all comparisons. Log scale; arbitrarily set as 3.125 µl of rat urine.

Author contributions

Anand Vasudevan (AV) and Ajai Vyas (AY) designed the experiments. AV collected the urine samples and carried out the experiments. AV and AY analyzed the data. AY prepared the manuscript. Both were involved in revising the script and approve the final content.

Competing interests

No competing interests were disclosed.

Grant information

This research was funded by Nanyang Technological University and the Ministry of Education, Singapore (MOE2011-T2-2-111). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

1. Apfelbach R, Blanchard CD, Blanchard RJ, et al.: The effects of predator odors in mammalian prey species: a review of field and laboratory studies. *Neurosci Biobehav Rev* 2005; 29(8): 1123–1144. [PubMed Abstract](#)|[Publisher Full Text](#)
2. Wisenden BD: Olfactory assessment of predation risk in the aquatic environment. *Philos Trans R Soc Lond B Biol Sci.* 2000; 356(1401): 1205–1208. [PubMed Abstract](#)|[Publisher Full Text](#)
3. Baker JM, Shivil J, Jordan KE: Tracking of food quantity by coyotes (*Canis latrans*). *Behav Processes.* 2011; 88(2): 72–75. [PubMed Abstract](#)|[Publisher Full Text](#)
4. Meck WH, Church RM: A mode control model of counting and timing processes. *J Exp Psychol Anim Behav Process.* 1983; 9(3): 320–334. [PubMed Abstract](#)|[Publisher Full Text](#)
5. Shafiei N, Gray M, Viau V, et al.: Acute Stress Induces Selective Alterations in Cost/Benefit Decision-Making. *Neuropsychopharmacology.* 2012; 37(10): 2194–209. [PubMed Abstract](#)|[Publisher Full Text](#)|[Free Full Text](#)
6. Mohring W, Libertus ME, Berlin E: Speed discrimination in 6- and 10-month-old infants follows Weber’s law. *J Exp Child Psychol.* 2012; 111(3): 405–418. [PubMed Abstract](#)|[Publisher Full Text](#)
7. Stone H, Bosley J: Olfactory Discrimination and Weber’s Law. Percept Mot Skills. 1965; 20: 657–665. PubMed Abstract | Publisher Full Text

8. Glimcher PW: Foundations of neuroeconomic analysis. (Oxford University Press, New York) pp xix, 2011; 467. Publisher Full Text

9. Svensson GP, Larsson MC, Hedin J: Attraction of the larval predator Elater ferrugineus to the sex pheromone of its prey, Osmoderma eremita, and its implication for conservation biology. J Chem Ecol. 2004; 30(2): 353–363. PubMed Abstract | Publisher Full Text

10. Larsson MC, Svensson GP: Pheromone monitoring of rare and threatened insects: exploiting a pheromone-kairomone system to estimate prey and predator abundance. Conserv Biol. 2009; 23(6): 1516–1525. PubMed Abstract | Publisher Full Text

11. Rutledge C: A survey of identified kairomones and synomones used by insect parasitoids to locate and accept their hosts. Chemoecology. 1996; 7(3): 121–131. Publisher Full Text

12. Miller DR, Asaro C, Crowe CM, et al.: Bark beetle pheromones and pine volatiles: attractant kairomone lure blend for longhorn beetles (Cerambycidae) in pine stands of the southeastern United States. J Econ Entomol. 2011; 104(4): 1245–1257. PubMed Abstract | Publisher Full Text

13. Papes F, Logan DW, Stowers L: The vomeronasal organ mediates interspecies defensive behaviors through detection of protein pheromone homologs. Cell. 2010; 144(4): 692–703. PubMed Abstract | Publisher Full Text | Free Full Text

14. Takahashi LK, Nakashima BR, Hong H, et al.: The smell of danger: a behavioral and neural analysis of predator odor-induced fear. Neurosci Biobehav Rev. 2005; 29(8): 1157–1167. PubMed Abstract | Publisher Full Text

15. Galet BG Jr: Aggression and timidity: responses to novelty in feral Norway rats. J Comp Physiol Psychol. 1970; 70(3): 376–381. PubMed Abstract | Publisher Full Text

16. Hsouchou H, Ho YJ, Shui HA, et al.: Effects of incisor-cutting on muricidal behavior induced by olfactory bulbectomy in rats. Physiol Behav. 2002; 76(4-5): 669-675. PubMed Abstract | Publisher Full Text

17. Karli P: The Norway rat’s killing response to the white mouse: an experimental analysis. Behaviour. 1965; 10: 81–103. Publisher Full Text

18. Amaral VC, Santos Gomes K, Nunes-de-Souza RL: Increased corticosterone levels in mice subjected to the rat exposure test. Horm Behav. 2010; 57(2): 128–133. PubMed Abstract | Publisher Full Text

19. Yang M, Augustsson H, Markham CM, et al.: The rat exposure test: a model of mouse defensive behaviors. Physiol Behav. 2004; 81(3): 465–473. PubMed Abstract | Publisher Full Text

20. Kolluru GR, Zuk M: Exploitation of sexual signals by predators and parasitoids. Q Rev Biol. 1998; 73(4): 415–438. Publisher Full Text

21. Taylor GT, Haller J, Bartko G, et al.: Conspecific urine marking in male-female pairs of laboratory rats. Physiol Behav. 1984; 32(4): 541–546. PubMed Abstract | Publisher Full Text

22. Taylor GT, Regan D, Haller J: Sexual experience, androgens and female choice of a mate in laboratory rats. J Endocrinol. 1983; 96(1): 43–52. PubMed Abstract | Publisher Full Text

23. Taylor GT, Haller J, Regan D: Female rats prefer an area vacated by a high testosterone male. Physiol Behav. 1982; 28(6): 953–958. PubMed Abstract | Publisher Full Text

24. Couraud G, Langlois D, Scard G, et al.: Newborn rabbit responsiveness to the mammary pheromone is concentration-dependent. Chem Senses. 2004; 29(4): 341–350. PubMed Abstract | Publisher Full Text

25. He J, Ma L, Kim S, et al.: Distinct signals conveyed by pheromone concentrations to the mouse vomeronasal organ. J Neurosci. 2010; 30(22): 7473–7483. PubMed Abstract | Publisher Full Text | Free Full Text

26. Perna A, Granovsky B, Garnier S, et al.: Individual Rules for Trail Pattern Formation in Argentine Ants (Linepithema humile). PLoS Comput Biol. 2012; 8(7): e1002550. PubMed Abstract | Publisher Full Text | Free Full Text
Open Peer Review

Current Peer Review Status:

© 2013 Martínez-García F et al. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Fernando Martínez-García
Faculty of Biology, University of Valencia, Valencia, Spain
Lluis Fortes-Marco
Faculty of Biology, University of Valencia, Valencia, Spain

The manuscript by Vasudevan and Vyas explores the interesting hypothesis that the response of mice to urine-borne kairomones of rats is dose dependent according to the Weber's law. To do so the authors basically analyse the avoidance of mice to different amounts of urine. In fact, the authors purify the MUPs fraction (>3 kD mw), where the kairomone is contained according to Papes et al. (2010), and they treat this fraction with high concentrations of menadione to displace odorants contained in the lipophilic pockets of the MUPs. This strategy ensures that the reaction of mice to the stimulus is due to the major urinary proteins and not to urine-borne volatiles.

The results apparently lend support to the authors' hypothesis. There is a highly significant (negative) correlation between the amount of stimulus and the time spent near it by the mice, following a sigmoid dose-response curve.

The authors further test their hypothesis by checking whether mice are able to discriminate different amounts of rat kairomone. To do so they design a simple two-choice test in which the mice can explore two arms of an arena in which two different amounts of MUPs are present, the ratio between the amount in both sides being 1.2 or 1.3. There is a clear, highly significant avoidance of the arm containing the higher amount, as compared to the other arm. This demonstrates that, throughout the linear region of the dose-response curve, mice discriminate two “doses” differing by x1.2 or x1.3.

The main problem with this experimental design is that the authors are checking the response to different amounts (from 3.125 to 50 μL) of the putative kairomone, rather than to different concentrations of it. If the kairomone were volatile, there would be a direct relationship between amount of sample (volume) and the concentration of the substance in the air: the larger air-liquid interface, the more molecules would be in the air phase. However, a MUP is, due to its high molecular weight, virtually non-volatile. Being a vomeronasal stimulus (according to Papes et al.,...
2010, trp–/– do not avoid rat urine), for the animal to detect the kairomone it must contact the “drop” of MUP solution and perform vomeronasal pumping.

The important question here is how the MUP solution is presented, and no details are found in Material and Methods. Very likely, a drop of the MUP solution would be deposited in a piece of filter paper or a similar absorbent material. Depending on the volume of solution, a given area of the paper would become soaked by capillarity.

In a regular piece of absorbent material, a drop of liquid would diffuse giving an approximately circular wet area. Accordingly, one can calculate the theoretical relationship between the volume (V) of MUP solution and the radius (r) of the resulting spot (circular wet area) which would be related to the function: \(V = \pi r^2 \). The radius of the spot of urine increases with the volume of the drop. Depending on the size of the area considered in each experiment as “near urine”, this fact, rather than the effect of the “dose”, may explain the results.

In Material and methods, under the heading “Dose-responsivity to kairomones”, the authors explain that “avoidance was quantified by comparing the time spent by mice in two opposing bisects of the area (76x9 cm; 15 cm)”. The term bisect is confusing (it may mean a line sectioning something in two halves, or just sectioning it in two pieces of different size). It is difficult, therefore, to have a clear idea of what the authors are really measuring, for two reasons. First, in spite of what they say (“…comparing the time spent by mice in two opposing bisects”) in their Fig. 1 the authors only represent the time spent “near rat urine”. It seems that this is the measurement analysed statistically (no comparison is made with the side containing PBS).

Second, the arena employed for the tests seems to be a long corridor 76cm long per 9 cm wide, but there is no mention of the actual size of the area that the authors consider “near rat urine”. I assume that they are using an identical area throughout the experiment, maybe a given region at the end of the arm where urine (or MUP solution) is presented. But, if so, as the volume of urine (or MUP solution) increases, the urine spot occupies a larger proportion of the area “near rat urine”. If we assume that contacting the urine allows detecting the kairomone (by vomeronasal pumping) and results in avoidance, the larger the urine spot (which would be the region actually avoided), the shorter the time in the area “near rat urine”. When the spot diameter approaches the size of the area “near rat urine” (e.g. the width of the arena), the time visiting this area reaches an asymptotic line at a minimum. This would explain Figure 1 of the manuscript.

In the same vein, if two spots of different size are located in the two sides of the arena (experiment 2; discrimination threshold) and animals are avoiding contact with the MUP spot, the time in area “near rat urine” on the side having a larger spot (let’s say a 70% of the area “near rat urine”) will be shorter than the time in the side having a smaller spot (which may represent just a 20% of the area “near rat urine”).

As a conclusion, the main problem of the work reported in the manuscript, otherwise well designed and performed, is that the authors are using the term “dose” in a misleading way. The volume of MUP solution is probably not a proper measurement of the “dose” of the stimulus, or the response of the sensory organ (VNO). Vomeronasal neurons respond to the stimulus (MUP) in a concentration-dependent manner (e.g. Leinders-Zufall et al., 2000; Leinders-Zufall et al., 2004), rather than in a way proportional to the volume of the MUP solution (and the area of the resulting “urine” spot). Therefore, varying the concentration of MUPs in the solution while using a fixed
volume would really test the hypothesis that the dose-response to a kairomone follows Weber's law.

Anyway, the results are difficult to interpret due to the lack of details on procedure. The way in which the stimulus is presented is not properly described, and the size of the area “near rat urine” must be known in order to check if the explanation of the results by the authors is correct or not.

Competing Interests: No competing interests were disclosed.

We confirm that we have read this submission and believe that we have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however we have significant reservations, as outlined above.

Author Response 30 Nov 2013

Ajai Vyas, Nanyang Technological University, 637551, Singapore

We have attempted to address the concerns of referee #3 in second version of the manuscript. The referee's comments are based on two strands of criticisms, both of which arise because of our inadequate and unclear description of methods:

- The assumption that the authors varied volume in order to vary amount of the stimulus, rather than concentration.
- The bisect area was undefined in the original methods.

The volume of urine stimuli used was constant; concentrations were varied instead to reach varying amounts. This distinction has now been made clearly in the revised version. Since the volume of the spot was constant, the radius/area of the spot of urine remains constant across the different doses, which addresses the question of variance in the area of the spot of urine affecting our results.

In addition, we have defined the time spent near rat urine by providing dimensions of bisects. In this case, bisects were obtained by equal division of the arena. This point has been clearly mentioned now in the revision. A rather big difference in size of bisect and size of the stimulus spot, along with equal volume of stimuli across doses, avoids substantial interaction between doses and bisect definition.

We believe additional clarifications and elaborations in the material and methods sections adequately respond to all of referee's comments.

In figure 1, we did not show data for PBS because time spent near PBS is directly dependent on time spent neat rat urine stimuli. We use two equal bisects to measure time spent near PBS and rat odor (i.e. the arena is virtually divided in two equal compartments). In this design, time spent near PBS is merely subtraction of time near rat odor from total trial duration. Dependence of these two measures then means that statistics for both of them will be redundant.

Competing Interests: I declare that there are no competing interests that might be construed to influence my judgment of the article's or referee response's validity or
Kazumi Osada
Division of Physiology, Health Sciences University of Hokkaido, Hokkaido, Japan

This paper showed the quantitative relationship between the amount of crude rat urinary kairomone fraction, and aversive behavior in mice. The figure 1 data is reasonable, but not interesting.

The figure 2 data fails to demonstrate the relationship between the amount of rat urine and the "detection threshold" of the mice. On top of that, this evaluation system is not suitable for detecting the detection threshold of kairomones. This is because if mice spent time evenly in this system, you cannot say that the mice cannot distinguish between these two sources, you can only say that the mice did not distinguish between them.

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to state that I do not consider it to be of an acceptable scientific standard, for reasons outlined above.

Ajai Vyas, Nanyang Technological University, 637551, Singapore

We believe revisions to the script address the main concerns raised by referee #2. The referee posits that creating an avoidance-avoidance conflict in figure two does not differentiate between possibilities that mice cannot detect rat odor, versus that mice avoid both sources of odor with equal magnitude. Our goal in this figure is not the detection but the discrimination between sets of two odor source. The detection itself is being tested in Figure 1, which does not use avoidance-avoidance conflict.

In other words, we are asking if mice can discriminate an odor (i.e. baseline) from another odor that is incrementally stronger and is presented simultaneously (baseline X Δ). Weber’s law predicts that increment in odor strength required for discrimination will be proportional to baseline (i.e. Δ remains constant). Because Weber’s law pertains to discrimination and
not detection, we tested our hypothesis in Figure 2 using avoidance-avoidance conflict.

We have revised the manuscript to incorporate “discrimination” instead of “detection” in the appropriate results and figure sections.

Competing Interests: I declare that there are no competing interests that might be construed to influence my judgment of the article's or referee response's validity or importance.

Reviewer Report 14 October 2013

https://doi.org/10.5256/f1000research.2236.r1883

© 2013 Yew J. This is an open access peer review report distributed under the terms of the [Creative Commons Attribution License](https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Joanne Yew
Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore

This article addresses and characterizes rat urine kairomonal effects on mouse avoidance behavior. The study convincingly shows that 1) the effect is dose-dependent and 2) mice display proportional discrimination across several different concentrations.

The title of the study and abstract provide an adequate summary. With respect to the methods, I would like some clarification on whether the different urine doses were made from the same initial sample. If several different urine collections were used, it should be stated how it was verified that the concentration of MUPs in the size exclusion fraction is similar from sample to sample.

Otherwise, the conclusions are justified on the basis of the results and the paper is well-written.

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Author Response 30 Nov 2013

Ajai Vyas, Nanyang Technological University, 637551, Singapore

The same urine sample was indeed used to create all doses during this experiment. The second version of the manuscript now clearly states this in material and methods section.

Competing Interests: I declare that there are no competing interests that might be
construed to influence my judgment of the article’s or referee response's validity or importance

The benefits of publishing with F1000Research:

• Your article is published within days, with no editorial bias
• You can publish traditional articles, null/negative results, case reports, data notes and more
• The peer review process is transparent and collaborative
• Your article is indexed in PubMed after passing peer review
• Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com