On Sharp Thresholds of Monotone Properties: Bourgain’s Proof Revisited.

Deepak Bal
Department of Mathematical Sciences,
Carnegie Mellon University,
Pittsburgh, PA 15213.

Abstract

The purpose of this expository note is to give the proof of a theorem of Bourgain with some additional details and updated notation. The theorem first appeared as an appendix to the breakthrough paper by Friedgut, Sharp Thresholds of graph properties and the k-SAT Problem [2]. Throughout, we use notation and definitions akin to those in O’Donnell’s book, Analysis of Boolean Functions [5].

1 Background and Theorem

Random structures often exhibit what is called a threshold phenomenon. That is, a relatively small change in a parameter can cause a swift change in the structure of the overall system. In the random graph $G(n, p)$, the probability space consisting of n vertices and edge probability p, this phenomenon is a central object of study. In his 1999 paper, Sharp Thresholds of graph properties and the k-SAT Problem, Friedgut gave a simple characterization of monotone graph properties with coarse thresholds. The result is important because unlike results which preceded, it holds when $p = p(n) \to 0$ like $n^{-\Theta(1)}$ which is a range in which many thresholds occur. In the appendix to that paper, Bourgain gave a characterization of general monotone properties (as opposed to graph properties) which exhibit coarse thresholds. In this note, we explain the proof of this result with more details.

Let (Ω, π) be a finite probability space and for $n \in \mathbb{N}$, let $(\Omega^n, \pi^\otimes n)$ be the n dimensional product probability space. We will write $x \sim \pi^\otimes n$ to indicate

*dbal@cmu.edu
that x is drawn from Ω^n according to $\pi^{\otimes n}$. Bourgain’s result concerns the particular product space $\{0,1\}^n$, μ_p is the p-biased distribution on $\{0,1\}$. So $\mu_p(1) = p$, $\mu_p(0) = q := 1 - p$. We will use the notation $\{0,1\}_p^n$ for $\{(0,1)^n, \mu_p^{\otimes n}\}$.

Throughout, unless otherwise specified, we will write $P[\cdot]$ for $P_{x \sim \pi^{\otimes n}}[\cdot]$ and $E[\cdot]$ for $E_{x \sim \pi^{\otimes n}}[\cdot]$. If we are in the context of $\{0,1\}_p^n$, then the probability and expectations will be with respect to $\mu_p^{\otimes n}$.

In this note, we will consider $f : \Omega^n \to \{-1,1\}$. This will simplify some calculations from Bourgain’s proof where the range is taken to be $\{0,1\}$. We say $f : \{0,1\}^n \to \{-1,1\}$ is monotone (increasing) if $f(x) \leq f(y)$ whenever $x \leq y$ component-wise. For any subset $S \subseteq [n]$, we write x_S to refer to the coordinates of x from S. In an abuse of notation, sometimes this will refer to a vector of length $|S|$ and sometimes we will want x_S to be a vector of length n. Also, for $S \subseteq [n]$, we write 1_S for the vector of length n with 1s in the positions corresponding to S and 0s elsewhere.

Let $f : \Omega^n \to \{-1,1\}$. The ith expectation operator, E_i, applied to f takes the expectation with respect to variable x_i. So

$$E_i f(x) = E_{x_i \sim \pi} [f(x_1, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_n)]$$

is a function of $x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n$. We also define the ith directional Laplacian operator, L_i, by

$$L_i f = f - E_i f.$$

The influence of coordinate i on f is defined as

$$\text{Inf}_i[f] = \langle f, L_i f \rangle = \langle L_i f, L_i f \rangle$$

where the inner product is defined by

$$\langle f, g \rangle = E_{x \sim \pi^{\otimes n}} [f(x)g(x)].$$

The total influence of f is $\|f\| = \sum_{i=1}^n \text{Inf}_i[f]$.

Let $f = \sum_{S \subseteq [n]} f^=S$ be the generalized Walsh expansion or orthogonal decomposition of f. Recall, that the orthogonal decomposition of f is the unique decomposition that satisfies the following two properties

1. For every $S \subseteq [n]$, $f^=S(x) = f^=S(x_1, \ldots, x_n)$ depends only on x_i for which $i \in S$.

2. For every $S \subseteq [n]$, $E_i f^=S(x) = 0$ for all $i \in S$.

2
In the case of $\{0,1\}_p^n$, for any $S \subseteq [n]$, we have that
\[
f^S(x) = \hat{f}(S) \prod_{i \in S} r(x_i)
\]
where $r(0) = -\sqrt{\frac{1-p}{p}}$ and $r(1) = \sqrt{\frac{1-p}{p}}$. We also have that $\hat{f}(S) = \mathbb{E}_{x \sim \mu_p^n} [f(x) \prod_{i \in S} r(x_i)]$.

If $S \subseteq [n]$ and $\bar{S} = [n] \setminus S$, we let $f^{\leq S}$ represent the function dependent on the coordinates of S where we take the expectation of f over the variables in \bar{S}. So if we think of x as $(x_S, x_{\bar{S}})$, then
\[
f^{\leq S}(x) = f^{\leq S}(x_S) = \mathbb{E}_{x_{\bar{S}} \sim \pi^n_{\bar{S}}} [f(x_S, x_{\bar{S}})].
\]

f^S and $f^{\leq S}$ are related by the following two formulas:
\[
f^S = \sum_{J \subseteq S} (-1)^{|S| - |J|} f^{\leq J} \tag{1.1}
\]
and
\[
f^{\leq S} = \sum_{J \subseteq S} f^{=J} \tag{1.2}
\]

Basic Fourier formulas, which hold for the orthogonal decomposition, give us that
\[
L_i f = \sum_{S \ni i} f^{=S}, \quad \text{Inf}_i[f] = \sum_{S \ni i} \|f^{=S}\|_2^2 = \sum_{S \ni i} \hat{f}(S)^2 \tag{1.3}
\]
and
\[
\Pi[f] = \sum_{i=1}^n \|L_i f\|_2^2 = \sum_{S \subseteq [n]} |S| \|f^{=S}\|_2^2 \tag{1.4}
\]
where the last equality in (1.3) holds in the case of $\{0,1\}_p^n$.

For products of general finite probability spaces, we have the following result

Theorem 1. For any $f : \Omega^n \to \{-1,1\}$ with $\mathbb{E} [f(x)] = 0$ and $\Pi[f] < C$, we have
\[
\mathbb{E} \left[\max_{0 < |S| \leq 10C} |f^{\leq S}(x)| \right] > \delta \tag{1.5}
\]
where $\delta = 2^{-O(C^2)}$.

3
This result is the main ingredient in Bourgain’s proof and it does not rely on the space being p-biased bits, so we will prove it here without such an assumption.

For a monotone boolean function $f : \{0,1\}^n \rightarrow \{-1,1\}$, Margulis [4] and Russo [6] proved the following relationship between the total influence and the sharpness of the threshold:

$$p(1-p) \frac{d}{dp} \mathbb{P} [f(x) = 1] = \mathbb{I}[f]$$ \hspace{1cm} (1.6)

where \mathbb{P} and \mathbb{I} are both with respect to $\mu_p^\otimes n$. In other words, the rate of transition of f from -1 to 1 with respect to the rate of increase of p is determined by the total influence. Hence functions with large total influence should have “sharp” thresholds and functions with small total influence should have “coarse” thresholds.

Bourgain’s result in [2] is now given. This result basically states the following. Let $f : \{0,1\}^n \rightarrow \{-1,1\}$ be a monotone boolean function and let p be the critical probability (which is allowed to approach 0 rapidly with n), when f is equally likely to be -1 or 1. Then if f’s total influence is bounded, either (1) a non-negligible portion (according to $\mu_p^\otimes n$) of the x’s with $f(x) = 1$ have a small witness, or (2) there exists a small set of coordinates such that conditioning on these coordinates being 1 boosts the expected value of f by a non-negligible amount. Keep in mind that in the following statement, E, \mathbb{P} and \mathbb{I} are with respect to $\mu_p^\otimes n$.

Corollary 1. Let $f : \{0,1\}^n \rightarrow \{-1,1\}$ be monotone (increasing) and suppose that $p = p(n)$ is such that $E[f] = 0$ and $\mathbb{I}[f] < C$. Then there exists some $\delta' = 2^{-O(C^2)}$ such that if $p < \delta' \frac{C}{20C}$ then at least one of the following two possibilities holds:

1. \[\mathbb{P} [\exists S \subseteq [n], |S| \leq 10C, 1_S \leq x, f(1_S) = 1] > \delta'. \hspace{1cm} (1.7) \]

2. There exists $S' \subseteq [n]$ with $|S'| \leq 10C$ with $f(1_{S'}) = 0$ such that

\[f \subseteq S' (1_{S'}) > \delta'. \hspace{1cm} (1.8) \]

Proof of Corollary [7]. Let $\delta' = \delta/2$ where δ is given by Theorem [1]. Suppose that the first alternative of the theorem, (1.7), does not hold, i.e.,

\[\mathbb{P} [\exists S \subseteq [n], |S| \leq 10C, 1_S \leq x, f(1_S) = 1] \leq \delta'. \hspace{1cm} (1.9) \]
Then applying Theorem 1 if n is sufficiently large, there must exist $\bar{x} \in \{0,1\}^n$ and $S \subseteq [n], |S| \leq 10C$ such that for all $x' \leq \bar{x}$ with at most $10C$ 1’s, we have $f(x') = 0$ and

$$|f^{\subseteq S}(\bar{x})| > \delta'.$$ \hfill (1.10)

Now by monotonicity of f, we have for all S, x_S

$$f^{\subseteq S}(x_S) = \mathbb{E}_{x_S \sim \mu_p^S}[f(x_S, x_S)]$$

$$\geq \mathbb{E}_{x_S \sim \mu_p^S}[f(\bar{0}_S, x_S)]$$

$$\geq \mathbb{E} \left[f(x) - \sum_{i \in S} 1\{x_i = 1\} \right]$$

$$= -p |S| > \frac{\delta'}{2}.$$ \hfill (1.11)

So (1.10) implies that

$$f^{\subseteq S}(\bar{x}) > \delta'$$

which implies the second alternative of the theorem, (1.8), by taking

$$S' = S \cap \{i : \bar{x}_i = 1\}.$$ \hfill \qed

The following easy corollary may be a useful statement.

Corollary 2. Let $f : \{0,1\}^n \to \{-1,1\}$ be monotone (increasing) and suppose that $p = p(n) < \frac{\delta}{100C}$ is such that $\mathbb{E}[f] = 0$ where $\delta = 2^{-O(C^2)}$. Furthermore, suppose that $\mathbb{P}[f] < C$. Then there exists a subset $S \subseteq [n]$ with $|S| \leq 10C$ such that

$$\mathbb{E}[f(x) \mid x_S = (1, \ldots, 1)] > \delta.$$ \hfill (1.11)

To derive this from Corollary 1 note that if the first alternative holds, then there exists a small S which makes the expectation in (1.11) equal to 1. If the second alternative holds, note that (1.8) and (1.11) are equivalent.

As a corollary of his very general theorem, Hatami [3] proves that in fact the expectation in (1.11) can be made arbitrarily close to 1. The size of the guaranteed S may have size exponential in C^2, but it is still independent of n.

5
2 The Proof

Proof of Theorem \[\text{[1]}\] First observe that the facts \(\|f=0\|^2 = 0\) and \(\sum_{S \subseteq [n]} \|f=S\|^2 = 1\) and the assumption that \(\sum_{S \subseteq [n]} |S| \|f=S\|^2 < C\) imply that

\[
\frac{9}{10} \leq \sum_{0 < |S| \leq 10C} \|f=S\|^2 \tag{2.1}
\]

since

\[
\sum_{|S| > 10C} \|f=S\|^2 \leq \sum_{S \subseteq [n]} \frac{|S|}{10C} \|f=S\|^2 < \frac{C}{10C} = 1/10.
\]

Now, consider the following functions

\[
h_i(x) := \left(\sum_{S \ni i, |S| \leq 10C} |f=S(x)|^2 \right)^{1/2}
\]

and

\[
h(x) = \left(\sum_{|S| \leq 10C} |f=S(x)|^2 \right)^{1/2}
\]

By Prop. 6 of \[\text{[1]}\], we may say that for a fixed \(1 < q \leq 2\), we get

\[
\|h_i(x)\|_q^q \leq c_1 \|L_i f\|_q^q = c_1 \mathbb{E} \|L_i f\|_q^q \\
\leq c_2 \mathbb{E} \|L_i f\| \\
\leq C_1 \mathbb{E} \|L_i f\|^2 \\
= C_1 \text{Inf}_i[f]. \tag{2.2}
\]

with \(C_1 = C_1(q) = 2^{O(C)}\) and \(c_1, c_2\) are some constants which also depend only on \(q\). The reader should note that in the proof that follows, we will only apply the result of \[\text{[1]}\] with \(q = 4/3\). If \(q' = \frac{q}{q-1}\), then we also have

\[
\|h(x)\|_{q'} \leq C_1 \|f\|_{q'} = C_1. \tag{2.3}
\]
Hence we have
\[
\sum_{i=1}^{n} \|h_i(x)\|^q \leq C \sum_{i=1}^{n} \text{Inf}_i[f] \leq C \cdot C_1.
\] (2.4)

Let \(0 < \varepsilon < M < \infty\) be constants which are taken to be \(\varepsilon = 2^{-O(C)}\) and \(M = O\left(\frac{1}{\varepsilon}\right)\) and let
\[
\eta_i(x) = \mathbb{1}\{h_i(x) > \varepsilon\},
\]
\[
\xi(x) = \mathbb{1}\{\sum_i \eta_i(x) < M\}.
\] (2.5) (2.6)

Specific values for \(M\) and \(\varepsilon\) may be determined in terms of \(C\) and \(C_1\) by analyzing the inequalities that follow.

Now \(1 - \xi(x)\) is the indicator of the event that there are more than \(M\) coordinates \(i\), such that \(h_i(x) > \varepsilon\). Given relation (1.4) and the assumption that total influence is bounded, we should expect this event to have small probability. Hence we have, using Markov’s theorem twice, that
\[
\mathbb{E}\left[1 - \xi(x)\right] \leq \frac{1}{M} \mathbb{E}\left[\sum_{i=1}^{n} \eta_i(x)\right] \\
\leq \frac{1}{M \varepsilon^2} \mathbb{E}\left[\sum_{i=1}^{n} h_i(x)^2\right] \\
\leq \frac{1}{M \varepsilon^2} \mathbb{E}\left[\sum_{i=1}^{n} \sum_{S \ni i} f^S(x)^2\right] \\
\leq \frac{C}{M \varepsilon^2}.
\]

Now, inequality (2.1) tells us that
\[
\frac{9}{10} < \mathbb{E}\left[\sum_{0 < |S| \leq 10C} f^S(x)^2\right].
\]

Note that for any \(x\), either there exist \(\geq M\) many \(i\) such that \(h_i(x) > \varepsilon\), or there are \(< M\) such \(i\). In the latter case, there are two types of \(S \subseteq [n]\) with \(0 < |S| \leq 10C\): those which contain an \(i\) such that \(h_i(x) \leq \varepsilon\) and those containing only \(i\)’s such that \(h_i(x) > \varepsilon\).
Hence, using the indicator functions ξ, η, and recalling the definitions of $h(x)$ and $h_i(x)$, we may split up the following expectation as

$$
\mathbb{E} \left[\sum_{0 < |S| \leq 10C} f_S(x)^2 \right] \leq \mathbb{E} \left[h(x)^2 (1 - \xi(x)) \right] \quad (2.7)
$$

$$
+ \mathbb{E} \left[\sum_{i=1}^{n} h_i(x)^2 (1 - \eta_i(x)) \right] \quad (2.8)
$$

$$
+ \mathbb{E} \left[\sum_{0 < |S| \leq 10C} f_S(x)^2 \left(\prod_{i \in S} \eta_i(x) \right) \xi(x) \right]. \quad (2.9)
$$

We now bound each of these terms in turn.

For (2.7), we apply Cauchy-Schwarz and see that

$$
\mathbb{E} \left[h(x)^2 (1 - \xi(x)) \right] \leq \mathbb{E} \left[h(x)^4 \right]^{1/2} \mathbb{E} \left[(1 - \xi(x))^2 \right]^{1/2}
$$

$$
\leq \|h(x)\|_4^2 \mathbb{E} \left[(1 - \xi(x))^2 \right]^{1/2}
$$

$$
\leq C_i^2 \cdot \frac{C}{M^2} \quad (2.10)
$$

where we used (2.3) with $q' = 4$ (and hence $q = 4/3$) to go from (2.11) to (2.12).

For (2.8), we note that in this expectation, $h_i(x) \leq \varepsilon$ for any x such that $\eta_i(x) = 0$. Also, since each h_i is a positive function, we may write $h_i^2 = h_i^{2/3} h_i^{4/3}$. So

$$
\mathbb{E} \left[\sum_{i=1}^{n} h_i(x)^2 (1 - \eta_i(x)) \right] = \sum_{i=1}^{n} \mathbb{E} \left[h_i(x)^{2/3} h_i(x)^{4/3} (1 - \eta_i(x)) \right]
$$

$$
\leq \varepsilon^{2/3} \sum_{i=1}^{n} \mathbb{E} \left[|h_i(x)|^{4/3} \right]
$$

$$
= \varepsilon^{2/3} \sum_{i=1}^{n} \|h_i(x)\|_{4/3}^{4/3}
$$

$$
\leq \varepsilon^{2/3} \cdot C \cdot C_1
$$

where we used (2.4) with $q = 4/3$ to get the last line.

Finally, for (2.9), we first observe that for any x, we have that

$$
\sum_{0 < |S| \leq 10C} \left(\prod_{i \in S} \eta_i(x) \right) \xi(x) < M^{10C}
$$
since if \(\xi(x) = 1 \), then \(\mathcal{M}_x = \{ i : \eta_i(x) = 1 \} \) has \(|\mathcal{M}_x| < M \). So the non-zero terms in the sum correspond to \(S \subseteq \mathcal{M}_x, 0 < |S| \leq 10C \). So we get

\[
\mathbb{E} \left[\sum_{0 < |S| \leq 10C} f^S(x)^2 \left(\prod_{i \in S} \eta_i(x) \right) \xi(x) \right] \\
\leq \mathbb{E} \left[\max_{0 < |S| \leq 10C} f^S(x)^2 \sum_{0 < |S| \leq 10C} \left(\prod_{i \in S} \eta_i(x) \right) \xi(x) \right] \\
\leq M^{10C} \mathbb{E} \left[\max_{0 < |S| \leq 10C} f^S(x)^2 \right].
\]

Adding these three estimates gives

\[
\frac{9}{10} < C_1^2 \sqrt{\frac{C}{M \varepsilon^2}} + \varepsilon^{2/3} C_1 + M^{10C} \mathbb{E} \left[\max_{0 < |S| \leq 10C} f^S(x)^2 \right]. \tag{2.13}
\]

Now, by taking \(\varepsilon = 2^{-O(C)} \) and \(M = O(1/\varepsilon) \), we easily have that

\[
\mathbb{E} \left[\max_{0 < |S| \leq 10C} f^S(x)^2 \right] > 2^{-O(C^2)}.
\]

Now note that for any \(S \subseteq [n] \), by (1.11),

\[
|f^S| = \left| \sum_{J \subseteq S} (-1)^{|S|-|J|} f^J \right| \\
\leq \sum_{J \subseteq S} |f^J| \leq 2^{|S|} \max_{J \subseteq S} \{ |f^J| \} \tag{2.14}
\]

\[
\leq 2^{|S|}. \tag{2.15}
\]

since \(|f^J| \leq 1 \). So applying (2.14) and (2.15) and using the fact that
\(f \subseteq \emptyset = \mathbb{E}[f] = 0 \), we have

\[
2^{-O(C^2)} \leq \mathbb{E} \left[\max_{0 < |S| \leq 10C} f^{S}(x)^2 \right] \\
= \mathbb{E} \left[\max_{0 < |S| \leq 10C} |f^{S}(x)| |f^{S}(x)| \right] \\
\leq 2^{10C} \mathbb{E} \left[\max_{0 < |S| \leq 10C} |f^{S}(x)| \right] \\
\leq 2^{20C} \mathbb{E} \left[\max_{0 < |S| \leq 10C} \max_{J \subseteq S} |f^{\subseteq J}(x)| \right] \\
= 2^{20C} \mathbb{E} \left[\max_{0 < |S| \leq 10C} |f^{\subseteq S}(x)| \right]
\]

which completes the proof.

\[\square \]

References

[1] J. Bourgain, “Walsh subspaces of \(L^p \)-product spaces.” Séminaire Analyse fonctionnelle (dit ”Maurey-Schwartz”) (1979-1980): 1-14. http://eudml.org/doc/109239

[2] E. Friedgut, J. Bourgain, “Sharp Thresholds of Graph Properties, and the \(k \)-SAT Problem.” Journal of the American Mathematical Society (1999): Vol. 12, No. 4, 1017-1054.

[3] H. Hatami, “A structure theorem for Boolean functions with small total influences.” Annals of Mathematics, to appear.

[4] G. A. Margulis, “Probabilistic characteristics of graphs with large connectivity.” Problemy Perdachi Informacii (1974): Vol. 10, No. 2, 101-108.

[5] R. O’Donnell, “Analysis of Boolean Functions.” http://www.analysisofbooleanfunctions.org

[6] L. Russo, “An approximate zero-one law.” Z. Wahrsch. Verw. Gabiete (1981): Vol. 61, No. 1, 129-139.