LIFTING FIXED POINTS
OF COMPLETELY POSITIVE SEMIGROUPS

BEBE PRUNARU

Abstract. Let \(\{ \phi_s \}_{s \in S} \) be a commutative semigroup of completely positive, contractive, and weak*-continuous linear maps acting on a von Neumann algebra \(N \). Assume there exists a semigroup \(\{ \alpha_s \}_{s \in S} \) of weak*-continuous \(*\)-endomorphisms of some larger von Neumann algebra \(M \supset N \) and a projection \(p \in M \) with \(N = pMp \) such that \(\alpha_s(1-p) \leq 1-p \) for every \(s \in S \) and \(\phi_s(y) = p\alpha_s(y)p \) for all \(y \in N \). If \(\inf_{s \in S} \alpha_s(1-p) = 0 \) then we show that the map \(E : M \to N \) defined by \(E(x) = pxp \) for \(x \in M \) induces a complete isometry between the fixed point spaces of \(\{ \alpha_s \}_{s \in S} \) and \(\{ \phi_s \}_{s \in S} \).

Let \((S, +, 0)\) be a commutative semigroup with unit 0. Consider the partial pre-order on \(S \) induced by the semigroup structure as follows. If \(s, t \in S \) then \(s \leq t \) if and only if there exists \(r \in S \) such that \(s + r = t \). If \(X \) is a Hausdorff topological space and \(f : S \to X \) is a function, then \(\lim_{s \in S} f(s) \) denotes its limit along the directed set \((S, \leq)\), whenever this limit exists.

Let \(M \) be a von Neumann algebra. Let \(CP(M) \) denote the semigroup of all completely positive, contractive and weak*-continuous linear maps \(\beta : M \to M \). Let also \(End(M) \) be the semigroup of all weak*-continuous \(*\)-endomorphisms of \(M \). A family \(\{ \beta_s \}_{s \in S} \subset CP(M) \) is called a semigroup if the map \(s \mapsto \beta_s \) is a unital homomorphism of semigroups from \(S \) into \(CP(M) \).

Suppose now that \(\{ \alpha_s \}_{s \in S} \subset End(M) \) is a semigroup. Let \(p \) be an orthogonal projection in \(M \) such that
\[
\alpha_s(1-p) \leq 1-p \quad \forall s \in S.
\]
Then one can define, for every \(s \in S \), a completely positive mapping on the von Neumann algebra \(N = pMp \) as follows:
\[
\phi_s(x) = p\alpha_s(x)p \quad \forall x \in N.
\]
It is clear that \(\{ \phi_s \}_{s \in S} \subset CP(N) \). A short calculation shows that
\[
\phi_s(px) = p\alpha_s(x)p \quad \forall x \in M,
\]
and using this, one can show that \(\{ \phi_s \}_{s \in S} \) is a semigroup. According to the terminology used in Chapter 8 of [1], where this construction is given for one-parameter semigroups, \(\{ \alpha_s \}_{s \in S} \) is a dilation of \(\{ \phi_s \}_{s \in S} \) and \(p \) is a co-invariant projection for \(\{ \alpha_s \}_{s \in S} \).

We shall prove the following result, which shows that, under a suitable minimality condition, the fixed point spaces of \(\{ \alpha_s \}_{s \in S} \) and \(\{ \phi_s \}_{s \in S} \) are completely isometric. We point out that the minimality condition is always satisfied by the minimal E-dilation of a CP-semigroup as constructed in [1].

2000 Mathematics Subject Classification. Primary 46L55, Secondary 46L05.
Key words and phrases. dilation theory, completely positive semigroups, fixed points.
Then there exists z the sense that it admits invariant means.
Since α is a state on the von Neumann algebra \mathcal{M}, it follows that \mathcal{M} is a menable, in
This means that \mathcal{M} is a *-homomorphism from \mathcal{M} onto \mathcal{M}_α such that $(\pi \circ \mathcal{M})(x) = x$ for all $x \in \mathcal{M}_\alpha$.

Let $E : \mathcal{M} \to \mathcal{M}$ be defined by

Then the following hold true:

1. For each $y \in C^*(\mathcal{N})$ there exists the limit (in the strong operator topology)
 $\pi(y) = \lim_{s \in S} \alpha_s(y)$
 and the map $y \mapsto \pi(y)$ is a *-homomorphism from $C^*(\mathcal{N})$ onto \mathcal{M}_α such
 that $(\pi \circ E)(x) = x$ for all $x \in \mathcal{M}_\alpha$.
2. E induces a complete isometry between \mathcal{M}_α and \mathcal{N}.
3. For each $y \in C^*(\mathcal{N})$ there exists the limit
 $\Phi(y) = \lim_{s \in S} \phi_s(y)$
 and the map $y \mapsto \Phi(y)$ is completely positive, idempotent, $\text{Ran}(\Phi) = \mathcal{N}$,
 and $E \circ \pi = \Phi$ on $C^*(\mathcal{N})$.

Proof. First, we show that $E(\mathcal{M}_\alpha) = \mathcal{N}$. It is clear that $E(\mathcal{M}_\alpha) \subset \mathcal{N}$. Let μ be
an invariant mean on S. This means that μ is a state on the von Neumann algebra $\ell^\infty(S)$ of all complex-valued bounded functions on S that remains invariant under translations. It is well known [5] that any commutative semigroup is amenable, in
the sense that it admits invariant means.

Let $y \in \mathcal{N}$. For each γ in the predual \mathcal{M}_s of \mathcal{M}, let $f_\gamma \in \ell^\infty(S)$ be defined by

Then there exists $z \in \mathcal{M}$ such that

$$(z, \gamma) = \mu(f_\gamma) \quad \forall \gamma \in \mathcal{M}_s.$$

Since α_s are weak * continuous and $\{\alpha_s\}_{s \in S}$ is a semigroup, it follows that $z \in \mathcal{M}_\alpha$.
Moreover $pwp = y$ and this shows that $E(\mathcal{M}_\alpha) = \mathcal{N}$.

In order to go further, we need to use the minimality assumption on $\{\alpha_s\}_{s \in S}$.
Suppose now that $w \in \mathcal{M}_\alpha$. Since $\lim_{t \in S} \alpha_t(1 - p) = 0$ we see that

$$\lim_{s \in S} \alpha_s(pwp) = w.$$

Let $\{\phi_s\}_{s \in S} \subset \mathcal{M}_\alpha$ be the compression of $\{\alpha_s\}_{s \in S}$ to $N = p\mathcal{M}p$ defined by

$\phi_s(x) = p\alpha_s(x)p \quad \forall x \in N$.

Let $M^\alpha = \{x \in M : \alpha_t(x) = x, \forall t \in S\}$
and

$N^\phi = \{x \in N : \phi_t(x) = x, \forall t \in S\}$
and let $C^*(\mathcal{N})$ be the C^*-subalgebra of N generated by N^ϕ. Let $E : \mathcal{M} \to \mathcal{M}$ be defined by

$E(x) = pwp \quad \forall x \in \mathcal{M}$.

Since \(E(M^\alpha) = N^\phi \) it follows that the limit
\[
\pi(y) = \lim_{s \in S} \alpha_s(y)
\]
extists for every \(y \in N^\phi \) and that \(\pi \circ E = id \) on \(M^\alpha \). In particular \(E \) is completely isometric on \(M^\alpha \). All the other assertions are straightforward consequences of what we have already proved.

\[
\square
\]

This result and its proof provide, in particular, an alternate and simplified approach to the lifting theorem for fixed points of completely positive maps from [6].

In the case when \(S \) is either a commutative, countable and cancellative semigroup or \(S = \mathbb{R}^d_+ \) for some \(d \geq 1 \), and \(\{\alpha_s\}_{s \in S} \) are unit preserving, part 2 of Theorem 1 follows directly from Proposition 4.4 together with Theorem 4.5 from [4]. In the case when \(\{\phi_s\}_{s \in S} \) is the semigroup induced by the unilateral shift on the Hardy space \(H^2 \), the existence of the limit in part 3 of Theorem 1 is proved in [2].

We close with the following result which shows that part 3 of the previous theorem holds true even without assuming the existence of a dilation.

Theorem 2. Let \(N \subset B(H) \) be a von Neumann algebra on some Hilbert space \(H \). Let \((S,+,0) \) be a commutative semigroup with unit. Let \(\{\phi_s\}_{s \in S} \) be a semigroup of completely positive, contractive and weak*-continuous linear maps on \(N \). Let
\[
N^\phi = \{ x \in N : \phi_t(x) = x, \forall t \in S \}
\]
and let \(C^*(N^\phi) \) be the \(C^* \)-subalgebra of \(N \) generated by \(N^\phi \). Then for each \(y \in C^*(N^\phi) \) there exists the strong-operator limit
\[
\Phi(y) = \lim_{s \in S} \phi_s(y)
\]
and the map \(y \mapsto \Phi(y) \) is completely positive, contractive, idempotent, and moreover \(\text{Ran}(\Phi) = N^\phi \).

Proof. Let \(\mu \) be an invariant mean on \(S \). Let \(y \in N \). For each \(\gamma \) in the predual \(N_\gamma \) of \(N \), let \(f_\gamma \in \ell^\infty(S) \) be defined by
\[
f_\gamma(s) = (\phi_s(y), \gamma) \quad s \in S.
\]
Then there exists \(z \in N \) such that
\[
(z, \gamma) = \mu(f_\gamma) \quad \forall \gamma \in N_\gamma.
\]
Since \(\{\phi_s\}_{s \in S} \) are weak* continuous and \(\{\phi_s\}_{s \in S} \) is a semigroup, it follows that \(z \in N^\phi \). Let us denote \(z = \rho(y) \). The mapping \(\rho : N \rightarrow N \) is completely positive, contractive, idempotent, and \(\text{Ran}(\rho) = N^\phi \). Moreover
\[
\phi_s \circ \rho = \rho \circ \phi_s = \rho.
\]
Let \(\Phi : C^*(N^\phi) \rightarrow N^\phi \) be the restriction of \(\rho \) to \(C^*(N^\phi) \). A well known result from [3] shows that
\[
\Phi(\Phi(x)y) = \Phi(\Phi(x)\Phi(y)) \quad \forall x, y \in C^*(N^\phi).
\]
This easily implies that \(\ker(\Phi) \) is the closed left ideal in \(C^*(N^\phi) \) generated by all the operators of the form \(xy - \Phi(xy) \) with \(x, y \in N^\phi \). Moreover by polarization we see that \(\ker(\Phi) \) is the closed ideal of \(C^*(N^\phi) \) generated by all the operators of the form \(x^* x - \Phi(x^* x) \) with \(x \in N^\phi \).
Let \(x \in N^\phi \). Since \(\{\phi_s\}_{s \in S} \) are completely positive, they satisfy the Kadison-Schwarz inequality, therefore
\[
\phi_s(x^*x) - x^*x \geq 0
\]
for all \(s \in S \) hence the net \(\{\phi_s(x^*x)\}_{s \in S} \) is monotone increasing. It follows from the way \(\Phi \) is constructed that
\[
\Phi(x^*x) = so - \lim_{s \in S} \phi_s(x^*x).
\]
Let \(y = \Phi(x^*x) - x^*x \). It follows that
\[
so - \lim_{s \in S} \phi_s(y) = 0.
\]
Let \(a \in C^*(N^\phi) \) and let \(h \in H \). Then
\[
\|\phi_s(ay^{1/2}h)\|^2 \leq (\phi_s(y^{1/2}a^*ay^{1/2})h, h) \leq \|a\|^2(\phi_s(y)h, h).
\]
This shows that \(\lim_{s \in S} \|\phi_s(z)h\| = 0 \) for every \(z \in \ker \Phi \) therefore
\[
\Phi(w) = so - \lim_{s \in S} \phi_s(w)
\]
for every \(w \in C^*(N^\phi) \). This completes the proof.

\[\Box\]

References

[1] W. Arveson, *Noncommutative dynamics and E-semigroups*, Springer Monographs in Mathematics, Springer-Verlag, New York, 2003.

[2] J. Barria and P. R. Halmos, *Asymptotic Toeplitz operators*, Trans. Amer. Math. Soc. **273** (1982), 621-630.

[3] M.D. Choi, E.G. Effros, *Injectivity and operator spaces*, J. Functional Analysis., **24** (1977), no. 2, 156–209.

[4] D. Courtney, *Asymptotic lifts of UCP semigroups*, Ph.D. Dissertation, University of California, Berkeley, 2007.

[5] J. Dixmier, *Les moyennes invariantes dans les semi-groupes et leurs applications*, Acta Sci. Math. (Szeged) **12** (1950), 585-590.

[6] B. Prunaru, *Lifting fixed points of completely positive mappings*, J. Math. Anal. Appl. **350** (2009), 333-339.

Institute of Mathematics “Simion Stoilow” of the Romanian Academy, P.O. Box 1-764 RO-014700 Bucharest Romania

E-mail address: bebe.prunaru@gmail.com