Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis

Yu Fu, Alexander W. Jung, Ramon Viñas Torne, Santiago Gonzalez, Harald Vöhringer, Artem Shmatko, Lucy R. Yates, Mercedes Jimenez-Linan, Luiza Moore and Moritz Gerstung

We use deep transfer learning to quantify histopathological patterns across 17,355 hematoxylin and eosin-stained histology slide images from 28 cancer types and correlate these with matched genomic, transcriptomic and survival data. This approach accurately classifies cancer types and provides spatially resolved tumor and normal tissue distinction. Automatically learned computational histopathological features correlate with a large range of recurrent genetic aberrations across cancer types. This includes whole-genome duplications, which display universal features across cancer types, individual chromosomal aneuploidies, focal amplifications and deletions, as well as driver gene mutations. There are widespread associations between bulk gene expression levels and histopathology, which reflect tumor composition and enable the localization of transcriptomically defined tumor-infiltrating lymphocytes. Computational histopathology augments prognosis based on histopathological subtyping and grading, and highlights prognostically relevant areas such as necrosis or lymphocytic aggregates. These findings show the remarkable potential of computer vision in characterizing the molecular basis of tumor histopathology.

The diagnosis of cancer is typically based on histopathological assessment of tissue sections, and supplemented by genetic and other molecular tests. Modern computer vision algorithms have high diagnostic accuracy and the potential to enhance histopathology workflows. Computational histopathology algorithms can process and cross-reference very large volumes of data, helping pathologists to navigate and assess slides more quickly and aid in quantifying aberrant cells and tissues. Often based on convolutional neural networks (CNNs), these algorithms build an implicit quantitative representation of histopathological image content, representing the patterns of the image as seen by the computer. These computational histopathological features are automatically learned for the original task of classifying the entire image and/or subregions of images into cancer or non-cancerous tissues. However, once learned, the feature representation may also be used to find similar images and to quantify associations with traits beyond tissue types. This approach, known as transfer learning, has been used to establish associations with genomic alterations, transcriptomic changes and survival.

Here we performed a pan-cancer computational histopathology (PC-CHiP) analysis to assess the utility of computer vision and transfer learning across 28 cancer types, to study the associations of histopathology and genomic driver alterations, whole transcriptomes and survival. At its core, PC-CHiP is based on Inception-V4, an established CNN, which was used to extract a set of 1,536 image features for tissue classification and transfer learning. The algorithm was fine-tuned on 17,355 hematoxylin and eosin-stained fresh-frozen tissue image slides from The Cancer Genome Atlas (TCGA), containing specimens from 10,452 individuals from 28 tumor types and 14 normal tissues with matched genomic, transcriptomic and clinical outcome data. Slides were tiled into more than 14 million 256×256µm-sized tiles with a digital resolution of 512 pixels x 512 pixels. Tiled images were generated to split into 80% training and 20% validation sets. The average AUC of discriminating all 42 different tissues was 0.98 (range: 0.91 to 0.99), including the 14 cancer types without matched normal samples (Supplementary Table 1; see Discussion for potential limitations). To achieve this classification, PC-CHiP builds an image representation of each tile consisting of the output of the last 1,536 neurons of the network. Hereafter we refer to this output as ‘computational histopathological features’ and demonstrate that this representation enables us to derive quantitative associations with a range of molecular traits. As the network was trained to discriminate different tissues, a two-dimensional uniform manifold approximation and projection for dimension reduction (UMAP) representation (see Methods) of the computational histopathological features showed clusters corresponding to each tissue class.

Results

Pan-cancer tissue classification and spatial deconvolution. For 14 cancers with normal and tumor images, the average tumor/normal tissue classification area under the receiver operating characteristic curve (AUC) was 0.99 (all values are given for the held-back validation set; range: 0.96 to 0.99; Fig. 1b). The average AUC of discriminating all 42 different tissues was 0.98 (range: 0.91 to 0.99), including the 14 cancer types without matched normal samples (Supplementary Table 1; see Discussion for potential limitations). To achieve this classification, PC-CHiP builds an image representation of each tile consisting of the output of the last 1,536 neurons of the network (Fig. 1a). Hereafter we refer to this output as ‘computational histopathological features’ and demonstrate that this representation enables us to derive quantitative associations with a range of molecular traits. As the network was trained to discriminate different tissues, a two-dimensional uniform manifold approximation and projection for dimension reduction (UMAP) representation (see Methods) of the computational histopathological features showed clusters corresponding to each tissue class.

E European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK. 2Moscow State University, Moscow, Russia. 3Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, UK. 4Department of Pathology, Addenbrooke’s Hospital, Cambridge, UK. 5Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany. 6Present address: Department of Computer Science and Technology, University of Cambridge, Cambridge, UK. 7Present address: Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain. 8These authors jointly supervised this work: Luiza Moore, Moritz Gerstung. ✉ e-mail: moritz.gerstung@ebi.ac.uk
with a certain resemblance of cancers from related organ sites (Fig. 1c and Extended Data Fig. 1). Generally, tumors tended to cluster together, indicating a convergent histological phenotype, usually characterized by a high cell density and loss of tissue architecture—as opposed to normal tissues, which were spread over the periphery in the reduced and original feature spaces (Fig. 1c,d).

PC-CHIP was trained using the consensus pathologist estimate of tumor content as soft labels for all tiles of a given slide. While this assigns the same training values for each tile on a given slide, this assigns the same training values for each tile on a given slide, of tumor content as soft labels for all tiles of a given slide. While this assigns the same training values for each tile on a given slide, of tumor content as soft labels for all tiles of a given slide, while this assigns the same training values for each tile on a given slide, while this assigns the same training values for each tile on a given slide, it recognizes that normal tiles from a tumor slide bear greater similarity with normal slides from the same organ site. Automatic deconvolution achieves a notable accuracy, with an average correlation between algorithm and pathologist-estimated tumor purity equal to 0.26 (range: 0.07 (for cervical cancer) to 0.60 (for uveal melanoma); Extended Data Fig. 2). The algorithm’s ability to localize signals will be particularly useful when studying the nature of molecular and prognostic associations, as shown in the following sections.

Transfer learning uncovers associations between histopathology and genomic alterations. Transfer learning describes the process of using PC-CHIP’s 1,536-dimensional histopathological feature representation to discover novel associations with genomic, transcriptional and prognostic traits. This amounts to using high-dimensional regression approaches, evaluated by fivefold cross-validation with patient level splits for each fold and separate assessment of each cancer type (Methods).

Associations between recurrent mutations and histopathological patterns could be detected for all types of genomic alterations, including whole-genome duplications (WGDs), chromosome arm gains and losses, focal amplifications and deletions, as well as point mutations in driver genes in almost every cancer type (five-fold cross-validated AUC>0.5; false discovery rate (FDR)<0.1; Methods and Fig. 2a,b). Of note, conventional tumor histopathological subtypes and histopathological grade generally only accounted for a fraction of these associations (Fig. 2c,d), indicating that deep learning quantifies histopathological patterns not entirely reflected in conventional classification systems.

WGDs alter nuclear morphology and histology. WGDs occur in about 30% of solid tumors, leading to cells with a nearly tetraploid genome, probably as a result of a single failed mitosis27. WGD status about 30% of solid tumors, leading to cells with a nearly tetraploid genome, probably as a result of a single failed mitosis27. WGDs could be detected for 19 out of 27 informative cancer types (five-fold cross-validated AUC>0.5; FDR<0.1; Methods) with an average AUC of 0.73; four cancer types showed an AUC greater than 0.8 (Fig. 2a,b and Supplementary Table 2). Histopathological subtypes and grades provided an inferior predictive accuracy (average AUC=0.59; see also Fig. 2d), indicating that additional morphological characteristics underlie these associations.

Tiles with greater probability for WGD displayed an increased nuclear staining, probably due to the higher nuclear DNA content (Fig. 3a; high-resolution images available as Supplementary Data 1). Explicitly quantifying cell nucleus sizes and intensities...
Fig. 2 | Widespread associations between histopathology and genomic alterations. a. Fraction of significant associations (Fisher’s combined P value from Wilcox’s rank-sum test47 adjusted0.48 to FDR < 0.1; the number of significant associations and the total number of tests used for multiple testing adjustments are indicated) between histopathological features and different types of genetic alterations across cancer types. The numbers of samples for each cancer type and alteration, as well as individual P values from each test can be found in Supplementary Table 2a–g. b. Boxplot with AUC values for all of the associations, grouped by alteration type, as indicated above. Each box corresponds to the distribution of significant associations for each alteration type. The sample size of each test can be found in Supplementary Table 2. All boxplots demarcate quartiles and median values, while whiskers extend to 1.5x the interquartile range. c. Pie charts showing the fraction (number) of genomic alterations by type that can be predicted by PC-CHIP only, by histological subtype only, and by both combined, in 20 cancer types with available histological subtype information. d. Pie charts showing the fraction (number) of genomic alterations by type that can be predicted by PC-CHIP only, by histological grades only, and by both combined, in ten cancer types with existing grading information.

using CellProfiler28 showed that the average cell nucleus size, as well as its variation across the tumor31, was elevated in WGD samples, but these features provided a lower predictive accuracy in all but one cancer type compared with PC-CHIP (average AUC = 0.58; range: 0.37 to 0.78; Fig. 3b and Extended Data Fig. 3a,b). Nevertheless, the histopathological features indicative of WGD appeared largely independent of the specific tissue type, as, remarkably, WGD could be predicted for 18 cancer types (FDR < 0.1) by models entirely trained on all but the evaluated cancer type, albeit with slightly reduced accuracy (average AUC = 0.68; Fig. 3c and Extended Data Fig. 3c).

Histopathological associations with copy number alterations. The same approach revealed frequent associations between histopathological patterns and gain and losses of whole chromosomes or chromosome arms (Fig. 2a and Supplementary Table 2). Yet, no simple histopathological differences between individual glioblastomas were found, and around 10% of gains and losses were associated with a higher histopathological grade (Fig. 2d). The most frequently associated gain was +8q, as identified in 12 different cancer types. Conversely, loss of chromosome arm 17p, which harbors the TP53 tumor suppressor gene, was identified in 12 cancers (Extended Data Fig. 4b).

Focal copy number alterations occur on the scale of several megabases and are thought to lead to oncogene amplification and tumor suppressor gene deletions. Based on a catalog of 140 variants (70 amplifications and deletions each)89, 53 out of 563 (9%) alteration–cancer pairs with more than ten recurrences showed significant histopathological associations, including ten amplifications and 43 deletions (FDR-adjusted P < 0.1; Fig. 2a,b and Supplementary Table 2). The cancer type with the largest number of significant focal copy number alterations was breast invasive carcinoma (four amplifications and 19 deletions). Notable examples include deletion of RB1 (13q14.2; AUC = 0.75; 95% confidence interval [95% CI] = 0.67 to 0.83) and deletion of PTEN (10q23.31; AUC = 0.69; 95% CI = 0.63 to 0.76), for which predictions based on histopathological subtypes were inferior (AUC = 0.67; 95% CI = 0.62 to 0.72 for RB1 and AUC = 0.56; 95% CI = 0.46 to 0.66 for PTEN).

Recurrently detected focal deletions involve CSMD1 (8p23.2; seven cancers) and PPP2R2A (8p21.2; seven cancers) (Supplementary Table 2). As these two deletions frequently co-occur (Cohen’s k = 0.88), it is possible that these histological associations reflect the same underlying alteration. Focal amplification of EGFRL (located at 7p11.2) in glioblastoma (AUC = 0.74; 95% CI = 0.69 to 0.78) was characterized by a distinct small cell morphology of cancer cells (Fig. 4a). This histopathological association has been noted previously41, although EGFRL amplifications do not exclusively define a molecular glioblastoma subtype42.

Driver gene mutations. Many oncogenic mutations are point mutations in cancer driver genes. Among all driver genes and cancers tested, 43 out of 151 (28%) gene–cancer pairs displayed significant histopathology associations involving 29 genes (FDR < 0.1; Fig. 2a and Supplementary Table 2). Interestingly, driver mutations in TP53—the most frequently mutated gene in cancers—could be detected in 12 out of 27 (44%) cancer types, including low-grade glioma (AUC = 0.84; 95% CI = 0.80 to 0.88), breast invasive carcinoma (AUC = 0.82; 95% CI = 0.78 to 0.87) and uterine cancer (AUC = 0.80; 95% CI = 0.73 to 0.87; Fig. 2b). Tumors with TP53 mutations were
generally less differentiated and showed higher-grade cell changes (Fig. 4b and Extended Data Fig. 4c).

A highly accurately predicted cancer driver gene was \textit{BRAF} in thyroid tumors, with an AUC as high as 0.92 (CI = 0.87 to 0.96), which was seemingly associated with a papillary morphology (Fig. 4c). While it is known that the prevalence of \textit{BRAF} mutations is only about 25% in follicular thyroid carcinomas (as opposed to 75% in classical papillary and tall cell thyroid carcinomas15,33), these data indicate that the canonical histopathological classification may be further improved (AUC = 0.81; 95% CI = 0.69 to 0.93). A similar association was observed for \textit{PTEN} in uterine cancers, with an AUC of 0.82 (95% CI = 0.76 to 0.89; Extended Data Fig. 4d), in part...
due to the enrichment of PTEN mutations in endometrial cancer24. When combined with histopathology subtypes, the AUC for PTEN mutations in uterine cancer increased to 0.92 (95% CI = 0.85 to 1). These widespread associations between genomics and histopathology illustrate how alterations either change cellular morphology or occur preferentially in a histopathologically distinct cellular context.

Transcriptomic associations reflect tumor composition and proliferation. Associations between gene expression and histopathology may not only reflect distinct tumor cell types with different morphological features, but also stromal and infiltrating immune cells. Overall, we found that 42% of all of the gene–cancer pairs tested showed an association between bulk transcriptome and histology across all cancer types (fivefold cross-validated $\rho > 0.25$; FDR < 0.1; Fig. 5a; Supplementary Table 2). For 6% of gene–cancer pairs, a correlation of $\rho > 0.5$ was found, and 0.2% displayed $\rho > 0.75$. Histopathological grade and subtype contributed to approximately 25% of these associations, but usually only accounted for a fraction of the signal (Fig. 5b,c). No obvious mechanistic insights were provided by the highest-scoring genes, yet many associations correlated with the extent of normal tissue. Interpretable trends emerged at the level of gene sets, showing that genes were enriched in pathways related to the immune system (24 cancers; $n = 106$ pathways), followed by cell cycle (11 cancers; $n = 76$ pathways) and signal transduction (20 cancers; $n = 59$ pathways; Fig. 5d), in broad agreement with recent reports21.

The emerging association between histopathology and transcriptional signals of cell proliferation was further supported by an analysis of transcriptomic proliferation scores22, which had histopathologically detectable signals in 25 out of 28 cancer types ($\rho > 0$; FDR < 0.1; Supplementary Table 2 and Extended Data Fig. 5a). While the histopathological patterns associated with high proliferation differed between cancer types, a common feature was elevated grade in tumors with high transcriptomic proliferation (eight out of ten cancers with available data; FDR < 0.1; Extended Data Fig. 5b,c). No systematic trends were observed in relation to histopathological and molecular tumor content (Extended Data Fig. 5d).

Localization of immune cells. Tumor-infiltrating lymphocyte (TIL) scores20 showed a significant ρ with histology for all 28 cancer types ($\rho > 0$; FDR < 0.1), with $\rho = 0.73$ (95% CI = 0.6 to 0.82) for thymoma and notable correlations for breast cancer ($\rho = 0.59$; 95% CI = 0.52 to 0.64), bladder cancer ($\rho = 0.63$; 95% CI = 0.51 to 0.72) and lung adenocarcinoma ($\rho = 0.48$; 95% CI = 0.39 to 0.57; Supplementary Table 2). Tiles predictive of TILs indeed contained lymphocytes, which typically were relatively small cells with dark nuclei and scant cytoplasm, often occurring at high densities (Fig. 6a).

These associations were confirmed by a blinded evaluation of tile-level TIL counts and densities by two expert pathologists for three representative cancer types (Fig. 6b, Extended Data Fig. 6a,b and Methods). Of note, tile-level predictions were independent of the bulk molecular TIL score, confirming the algorithm's ability to localize the TIL signal to specific areas ($P = 3 \times 10^{-4}$ for bladder; $P = 6 \times 10^{-4}$ for breast; $P = 3 \times 10^{-4}$ for lung adenocarcinoma; Wald test, including whole-slide TIL score). Although a transcriptomic training approach is likely to be inferior in its ability to map histopathological patterns of TILs compared with training on histopathologically labeled image areas2, it compares favorably in reconstructing overall molecular TIL signals (Fig. 6c).

Patterns of lymphocytic infiltration are recognized prognostic and therapeutic biomarkers11,13,15. On many slides, predicted TIL densities appeared relatively uniform, perhaps as a consequence of learning from bulk signals (Fig. 6d, top and middle panels); however, in other cases, the signals stemmed from confined regions containing defined lymphocytic aggregates (Fig. 6d, bottom panel). Given that the algorithm was never provided with explicitly labeled tiles, it is remarkable that these localized patterns of TILs were automatically learned to be a feature shared by a subset of tiles from different slides with a high overall transcriptomic TIL signal.

Prognostic effects across cancer types. There was a significant association of computational histopathological features with overall survival in 15 out of 18 cancer types with available data (family-wise error rate (FWER) < 0.05; mean concordance, $C = 0.6$; range: 0.53 to 0.67; Methods, Fig. 7a and Supplementary Table 3). Compared with canonical histological subtypes and grades, which are routinely used to assess prognosis, the computational histopathological features showed a significant improvement in 10 out of 16 cancer types. This prognostic signal remained measurable in the majority of these cancer types, even when further including age, gender and tumor stage (Fig. 7b, Extended Data Fig. 7 and Supplementary Table 3). As illustrated by the survival curves, PC-CHIP may be used to refine existing stage-based prognosis in breast, head and neck, and stomach cancer, as well as (to a lesser extent) clear cell renal cell carcinoma.

![Histopathological characteristics of driver mutations.](image-url) **Fig. 4** | **Histopathological characteristics of driver mutations.** a–c. Example tiles indicating the presence (left) and absence (right) of particular genomic alterations: EGFR-amplified glioblastoma (a); TP53 mutant breast cancer (b); and BRAF mutant thyroid cancer (c). For each panel, four representative tiles from the 100 best-predicted tiles are shown. Scale bars: 100 μm.
Fig. 5 | Widespread associations between histopathology and gene expression. a, Boxplots of cross-validated Spearman’s rank correlation (\(\rho\)) between whole-tumor messenger RNA expression levels and histopathological features for significant associations (defined as \(\rho > 0.25\) and Fisher’s combined \(P\)-value\(^{45}\) from a two-sided test\(^{45}\), adjusted\(^{46}\) to FDR < 0.1) across cancer types (n=17,256 genes tested for each cancer type; the number of samples for each cancer type is stated in the x-axis labels). The fraction of significant genes is shown at the bottom. Individual \(P\)-values for each gene are available in Supplementary Table 2h. b, Pie charts showing the fraction (number) of genes (subtypes, grades, and subtypes and grades) that can be predicted by PC-CHiP only, by histology only, and by both combined, in cancer types with available histological information (20 for subtypes and ten for grades). c, Boxplots showing the distribution of predicted Spearman’s \(\rho\) values for genes using PC-CHiP compared with those using histological subtypes and grades combined for each cancer type with available information (\(n=207,258\) gene–cancer pairs from ten cancer types tested). All boxplots demarcate quartiles and median values, while whiskers extend to 1.5 times the interquartile range. d, Gene Ontology analysis for significant genes (\(n=203,373\) transcript–cancer pairs tested; only pathways with FDR < 0.1 from a paired \(t\)-test are shown).

Fig. 6 | Transcriptomic associations reveal immune infiltration and stromal cell types. a, Example tiles of predicted TIL-rich (top) and TIL-poor regions (bottom) from hepatocellular carcinoma, thymoma and breast invasive carcinoma. For each cancer type, four representative examples selected from the 100 best-predicted tiles are shown. b, Systematic blinded assessment of TIL densities by two expert pathologists for three different cancer types (\(n=150\) for each cancer). Each boxplot shows the predicted TIL scores from PC-CHiP for tiles with different TIL densities, as independently evaluated by pathologists. Boxplots depict quartiles and median values, while whiskers extend to 1.5x the interquartile range. PV values for the PC-CHIP score were determined from a binomial generalized linear model with TIL fraction as the response and the additional covariate of whole-slide molecular TIL score. c, Spearman’s rank correlation (\(\rho\)) between transcriptomic TIL scores and computational TIL regional scores derived from ref.\(^{39}\) (left) and PC-CHIP predictions (right) for 13 cancer types. d, Example slides with high (top row), low (middle row) and localized TILs (bottom row). From left to right are the original hematoxylin and eosin-stained slides, predicted spatial TIL scores and example tiles with high and low TILs. Example tiles were manually selected from the best-predicted tiles. Scale bars in a and d: 100\(\mu\)m.

Reassuringly, many of the prognostic histopathological associations automatically learned by computer vision reflect distinct cancer subtypes, as for low-grade gliomas (Fig. 7c). Other features, including necrosis\(^{28}\) and high tumor grade, are associated with poor prognosis across tumor types. In contrast, a higher degree of differentiation\(^{39}\) and the presence of TILs are usually associated with a favorable risk\(^{28}\). Favorable and unfavorable patterns can frequently be identified on the same slide. This highlights the ability of computer vision to deconvolve the content of large tissue sections into molecularly and prognostically distinct areas (Fig. 7d), with necrosis and lymphocytic aggregates detected on the same specimen. Similarly, areas of low- and high-grade tumor differentiation identified on the same slide produced favorable and unfavorable risk predictions.

Validation on external cohorts. The PC-CHIP algorithm exhibited good generalization on two breast cancer validation cohorts,
comprising fresh-frozen hematoxylin and eosin-stained slides from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC; n = 471) and the Breast Cancer Somatic Genetics Study (BASIS) consortium (n = 151). The vast majority of genomic associations could be replicated in both cohorts, including associations with TP53 mutations and WGD, with only a moderate drop in accuracy (Fig. 8a,b, Extended Data Fig. 8a and Supplementary Table 4). Similarly, at least 59% (FDR < 0.1) of transcriptomic predictions were recovered in the METABRIC cohort with comparable correlation levels (Fig. 8c and Extended Data Fig. 8b). A subset of both cohorts contained pathologist-evaluated TIL categories, which confirmed the predicted trends, and the algorithm’s ability to localize TILs on a given slide was evident in both cohorts (Fig. 8d,f). Prognostic associations were replicated in both cohorts, although at reduced accuracy, particularly in METABRIC (Fig. 8c,e). As in the TCGA training data, the algorithm identified necrotic areas and TILs on slides from both cohorts as unfavorable and favorable prognostic markers (Fig. 8g).

Of note, there was a considerable tissue misclassification of tiles from the validation cohorts, possibly due to different file formats (Supplementary Table 4). Indeed, JPEG quality had a strong confounding effect on histopathological feature representation and tissue classification in the TCGA cohort (Extended Data Fig. 9a,b). Yet, these biases were mostly confined to the initial classification task and were largely mitigated by PC-ChiP’s tissue-aware transfer learning, as confirmed by the high validation rate of molecular associations. Biases of the histopathological feature representation could be further reduced using a file format-aware Inception-V4 architecture and additional data augmentation, which led to a slight drop in the tissue classification accuracy (average AUC = 0.95; Methods, Supplementary Table 4 and Extended Data Fig. 9c,d). Transfer learning using histopathological features from the modified architecture produced similar molecular and prognostic associations in TCGA and moderately improved the strength of associations in the METABRIC cohort, but not evidently in the BASIS cohort (Extended Data Fig. 10a–d).

Discussion
The results presented here provide a molecular basis for the histopathological observation that tumors are a diverse cellular ecosystem, and offer new ways to histologically deconvolute and map its molecularly defined content. Our findings demonstrate that links between a tumor’s morphology and its molecular composition can be found in every cancer type and for virtually every class...
of genomic and transcriptomic alteration. WGDs were characterized by (and likely caused) nuclear enlargement and increased nuclear intensities, reflecting abnormal chromatin content. Other alterations, such as EGFR amplifications or BRAF mutations, were associated with a distinct histology and it is currently unknown whether this is a consequence of the alteration or an indication that these mutations preferentially occur in particular cell types. Furthermore, a broad range of transcriptomic correlations were found reflecting stromal content, immune cell infiltration and cell proliferation.

In the majority of cancer types, computational histopathological features showed a good level of prognostic relevance, substantially improving prognostic accuracy compared with conventional grading and histopathological subtyping alone. While it is very remarkable that such predictive signals can be learned in a fully automated fashion, there was no measurable improvement over a full molecular and clinical workup. This might be a consequence of the far-ranging relationships between histopathological and molecular phenotypes described here, implying that histopathology is a reflection of the underlying molecular alterations rather than an independent trait. Yet, it probably also highlights the challenges of combining histopathological signals from different areas of the same tumor, which requires very large training datasets for each tumor entity.

One of the main current limitations of the study is that the training was performed on fresh-frozen tissue sections. These provide a better preservation of molecular content compared with formalin-fixed paraffin embedding, which is the diagnostic standard due to a better preservation of tissue morphology. Also, without further algorithmic amendments, there was a considerable dependence of the histopathological feature representation on image compression algorithms and their parameters, which could in part be mitigated by transfer learning. Given the sensitivity of deep learning algorithms and the associated risk of overfitting, it appears mandatory to critically assess whether discoveries could be explained by technical artefacts, and also whether algorithms are applicable to new datasets with different image properties.

While the pervasiveness of associations between histopathology and molecular traits is remarkable, at present, they are too weak to replace genetic or transcriptomic tests. However, we expect at least some associations to become more accurate using improved algorithms and larger, ideally spatially annotated training cohorts. Yet histopathological annotation is possible only for patterns known beforehand, and molecular spatial annotation currently has low throughput, but may become possible with spatial transcriptomic and sequencing technologies. Direct training on the molecular trait of interest, or ideally multi-objective learning, may provide superior results compared with transfer learning, which risks missing patterns that are irrelevant for the initial classification task. Alternatively, convolutional rather than linear transfer learning has been shown to yield promising results for transcriptomic associations. Also, less complex CNN architectures may suffice for classifying histopathology patterns, because tumor sections have a defined scale, unlike everyday images.

Looking forward, our analyses reveal the potential for using computer vision alongside molecular profiling. While the eye of a trained human pathologist constitutes the gold standard for recognizing clinically relevant histopathological patterns and definitive diagnosis, computers have the capacity to augment these tasks by sifting through millions of images to retrieve similar patterns and establish associations with known and novel traits. Taking the overlays presented in this study as examples, it is possible to imagine computationally augmented and molecularly informed histopathology workflows enabling more precise and faster diagnosis and prognosis in the future.
Methods

Images. We collected 17,355 hematoxylin and eosin-stained histopathology slides of 10,452 patients with 28 broadly defined cancer types from TCGA via the Genomic Data Commons Data Portal (https://portal.gdc.cancer.gov/), including normal and primary tissue samples. Sample inclusion criteria defined by TCGA required primary untreated samples, frozen and sufficiently sized resection samples and at least 60% tumor nuclei (https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga/studied-cancers). Scanned slides usually depict the top and bottom section of the tissue block used for molecular analysis. Only tissue types with at least 50 images with a magnification greater than 20X were included in this study. We first cropped the whole slides into tiles of 512 pixels × 512 pixels, with an overlap of 50 pixels, at 20X magnification. We then removed blurred and non-informative tiles by filtering on the weighted gradient magnitude (using Sobel operator, tiles with a weighted gradient magnitude smaller than 15 for more than half of the pixels were removed). Tiled from tumor samples with a tumor purity ≥85% were used in training/validation to avoid mislabeled tiles in the training process. To avoid bias caused by image preparation in individual laboratories, we randomly selected 80% of images for training, 1,338,534 tiles from 1,682 slides for validation, and 6,547,172 tiles from 7,628 slides for testing.

PC-CHIP. A pretrained Inception-V4 (ref. 35)—a deep CNN—was used to classify tiles into 42 classes and to extract histopathological features from each tile. We applied sample-specific label smoothing—an adapted version of the label smoothing approach introduced in ref. 38 (ref. 39)—in each model/layer/epoch) to absorb overfitting, in short, for a sample of size i, we set the ground-truth distribution \(q(k) = p_i \) for \(k = 1 \) and \(q(k) = (1 – p_i)/k-1 \) for \(k \neq 1 \), where \(n_i \) is the total number of classes, and \(p_i \) is the tumor purity of the sample. The model was trained in TensorFlow using Slim (https://github.com/\textregistered;google-research\textregistered;tf-slim) with the default hyperparameters for 100,000 steps (\(\leq 1 \) epoch). The scripts used for training are available from GitHub (https://github.com/\textregistered;gerstung\textregistered;lab/PC-CHIP), and the retrained model checkpoints are available from the BioStudies database (https://www.ebi.ac.uk/biostudies/) under accession number S-BST292.

We retrieved the probability for all 42 classes for each tile, and the associated 1,536 histopathological features from the last hidden layer of the trained Inception-V4. As in practice the cancer site is usually known, we also computed tumor versus normal classification within cancer types for each tile by comparing tumor versus normal classification within cancer types for each tile by comparing the undesired effects of different image qualities and prevent them from being implicitly learned on the deeper layer of the model. The predictive accuracy was evaluated within each cancer type to avoid reporting associations driven by different prevalence and levels of molecular traits across cancer types. Example tiles and slide overlays shown in this study were from hold-back validation folds.

Genomic alterations. Point mutations (single-nucleotide variants and short deletions and insertions) were called using CaVEMan and Pindel algorithms plus a set of dedicated post-processing filters, as described previously, for 8,769 patients from the TCGA cohort. Absolute copy number was called using the ASCAT algorithm. WGD status was determined using the criteria proposed by Chromosome and chromosome arm level gains and losses were retrieved from ref. 41. Focal amplifications and deletions were based on the regions defined in ref. 42. For each of the amplified regions, samples with an absolute copy number of at least 60% of the sample were called amplified. For each of the deleted regions, only samples with ≤1 copy not present in WGD were considered to be deleted. We performed LASSO regularization to regress to classify the gain, loss or non-alteration of 56 chromosomes or chromosome arms. We applied logistic regression with LASSO penalization for dichotomous genomic alterations. For alteration, AUCs were then calculated in one versus the rest fashion (for example, gain versus not altered and loss) for each cancer type using the statistical procedures described in the section ‘Transfer learning.’

Gene expression. Log-transformed upper-quantile normalized gene expression from RNA sequencing data was used as a readout. We performed linear regression with LASSO penalization on 17,256 genes that were expressed in at least 60% of the samples. The Spearman’s rank correlation (\(\rho \)) and predicted explained variance (\(R^2 \)) were calculated for each gene–cancer pair to evaluate the model performance. Associated Pvalues for \(\rho > 0 \) were estimated by Spearman’s rank correlation test. The Pvalues were then corrected controlling the FWER using the method of Benferroni. To identify functionally classes of genes that can be predicted by histopathology features, we then performed gene set enrichment analysis for a collection of REACTOME pathways. A normalized enrichment score and Pvalue were calculated for each pathway in each cancer type. The Pvalues were corrected to control for the FDR. Finally, we performed regression on the gene expression-based proliferation score and TIL signature using the same method used for single-gene expression.

Prognostic associations. Survival analysis was performed using penalized Cox’s proportional hazard regression using a mixture of \(L_1 \) and \(L_2 \) regularization, often referred to as the Cox elastic net. To evaluate discriminative performance, we used Harrell’s C Index as a measure of the concordance between predicted and actual risk. To obtain a scalable and sparse solution, we deployed proximal gradient descent updates. Due to the large-scale nature of the problem, an exhaustive hyperparameter search was infeasible. Therefore, hyperparameters, in particular \(L_1/L_2 \) penalization strength, were automatically determined using Bayesian optimization. Twenty repetitions of fivefold cross-validation were used to evaluate model performance. Each fold was further split into a training set (85%) and a validation set (15%) as described previously. A total of six models, each combining different combinations of variables, were evaluated for specific cancer types from TCGA. Cancers were included in the analysis if the sample size was at least 160 individuals and censorship was <90%. The first model (histology) contained the histological subtype and the corresponding tumor grade information. Routine clinical information for each individual included age, gender, tumor location, primary tumor site, and the histopathology features form the second model (clinical). The third model (clinical + expression) was a combination of clinical and gene expression data. Model four (PC-CHIP) used the extracted histopathological features from the CNN. Model five (clinical + PC-CHIP) contained the histopathology features and the clinical data. Lastly, Model six (all) was a set of all covariates. If observations were missing, they were excluded from the gene expression data, mean imputation was applied. The gene expression data comprised the first 30 components of a principal component analysis. For the survival analysis with the histopathology features, each extracted tile was used as an individual observation. A global risk estimate was obtained using the average risk across the tiles from a patient. Three different strategies were employed to assess the value of adding PC-CHIP to models based on conventional variables. First, it was tested whether the cross-validated linear predictor obtained using PC-CHIP alone added significant signal in a multivariate model. Second, it was assessed whether the pretrained predictor based on PC-CHIP improved the concordance \(C \) in a cross-validation statistic using Fisher’s method to assess whether there was a measurable level of association across folds. Combined Pvalues were then adjusted to control the FDR across the entirety of cancer–alteration pairs tested using the method of Benjamini and Hochberg. 95% CIs for the average AUC across folds were estimated using the cvAUC R package. To compare the predictive accuracy of histopathological features with conventional histopathological evaluation methods, we built generalized linear models to predict genomic alterations using histological subtypes or histological grades. AUC values and adjusted Pvalues were calculated as described above using the same fivefold split. Average cancer tissue types and the corresponding 95% CIs were calculated using a tanh−1 Fisher transformation. The predictive accuracy was evaluated within each cancer type to avoid reporting associations driven by different prevalence and levels of molecular traits across cancer types. Example tiles and slide overlays shown in this study were from hold-back validation folds.

Transfer learning. Regularized generalized linear models, which are broadly analogous to linear regression with L1 regularization, are used to learn molecular associations for each image tile. These models used the set of 1,536 histopathological features and the tissue type encoded as additive indicator variables as predictors, and were fitted using the glmnet R package. Per-slide predictions were calculated by averaging the prediction of all tiles within that slide. To avoid normal contamination, only samples with a tumor purity of ≥85% were included during training. The model performance was reported by the mean predicted accuracy of fivefold cross-validation, split at the level of patients. A total of 100 tiles were randomly selected from each whole slide for genomic alterations, and 50 tiles were selected for gene expression. Within each fold, tenfold cross-validation was used to select the glmnet regularization parameters (folds split at the patient level). For each of the five folds, a Pvalue was calculated by evaluating model predictions on the held-back fifth using Wilcoxon’s rank-sum test\(^{14-16} \) for categorical predictions of genomic data (equivalent to using AUC as a readout), or Spearman’s rank correlation test\(^{17} \) for quantitative predictions of transcriptomic data. The resulting five Pvalues from each test were combined into a single PValue statistic using Fisher’s method to assess whether there was a measurable level of association across folds. Combined Pvalues were then adjusted to control the FDR across the entirety of cancer–alteration pairs tested using the method of Benjamini and Hochberg. 95% CIs for the average AUC across folds were estimated using the cvAUC R package. To compare the predictive accuracy of histopathological features with conventional histopathological evaluation methods, we built generalized linear models to predict genomic alterations using histological subtypes or histological grades. AUC values and adjusted Pvalues were calculated as described above using the same fivefold split. Average cancer tissue types and the corresponding 95% CIs were calculated using a tanh−1 Fisher transformation. The predictive accuracy was evaluated within each cancer type to avoid reporting associations driven by different prevalence and levels of molecular traits across cancer types. Example tiles and slide overlays shown in this study were from hold-back validation folds.
setting. Third, a likelihood boosting approach was used to train Cox models from scratch, combining clinical/gene expression data with the histopathology features. To compare predictive performance across models, we examined the distribution of concordance indices across folds, as well as the mean difference concordance within folds. Furthermore, we used a paired Wilcoxon signed-rank test to compare C estimates across models. To account for multiple comparisons, we used the Holm–Bonferroni correction as the FWER procedure. Survival curves were estimated using the Kaplan–Meier estimator.

External validation using the METABRIC and BASiS dataset. Hematoxylin and eosin-stained slides from frozen tissue samples were downloaded and tiled into 512 pixel x 512 pixel tiles at 20x magnification in the same fashion as in TCGA. WGD status was calculated using the methods described previously59. The amended Inception-V4 architecture preprocessing scripts are available from GitHub [https://github.com/gerstung-lab/PC-CHIP], and the retrained model checkpoints are available from the BioStudies database [https://www.ebi.ac.uk/biostudies/] under accession number S-BBST292. Per-slide predictions for METABRIC and BASiS were calculated using all tiles.

Expert blinded assessment of TIL counts. To assess whether predicted TIL levels reflected the true level of immune cells for individual tiles, we randomly selected 150 tiles with different levels of TILs from three cancer types: breast, bladder and lung cancer (each set of 50 tiles were from the highest 10% quantile, the 50–70% quantile and the lowest 10% quantile, respectively). The number of TILs for each tile was independently evaluated by two expert pathologists, who were blinded to the predicted scores. The total number of nuclei was automatically learned using the algorithm described59. The relationship between the predicted TIL scores from PC-CHIP, the slide-level transcriptomic TIL scores and the true TIL scores was modeled using multiple linear regression.

Statistics and reproducibility. All statistical procedures were conducted as outlined above. Data from previously published studies were obtained from the sources stated below. Only tissue types from TCGA with at least 50 images with a magnification greater than 20x were included in this study. Histopathology slides with at least 85% tumor content (existing histopathological information) were used for training. Reproducibility of the image classification analysis was controlled using a randomly selected set of patients for evaluation. Fivefold cross-validation and subsequent hypothesis testing with multiple testing adjustment was performed to control for errors in genomic, transcriptomic and prognostic associations. The validity of discoveries was assessed on two validation cohorts (METABRIC and BASiS). No statistical method was used to predetermine the sample size. The experiments were not randomized. The investigators were not blinded to allocation during the experiments and outcome assessment, except for the histopathological assessment of TILs.

Reporting Summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability TCGA data (images, as well as genomic, transcriptomic and clinical data) are publicly available from http://gdac.cancer.gov. For METABRIC, images and genomic and transcriptomic data are available under controlled access at the European Genome-phenome Archive (https://ega-archive.org/) under study accession EGAS00000000098, and clinical data are available at https://www.cbioportal.org/. For BASiS, genomic data are freely available from ftp://ftp.sanger.ac.uk/pub/cancer/Nik-Zainal/BIAS-BreastGenomes, clinical data are published44, and histopathology images are available under controlled access at the European Genome-phenome Archive via accession EGAS00001001178. All other data supporting the findings of this study are available from the corresponding author upon reasonable request. Source data are provided with this paper.

Code availability The computational histopathology algorithm and analysis code are available at https://github.com/gerstung-lab/PC-CHIP. The retrained checkpoints for Inception-V4 and amended Inception-V4 architecture are available from the BioStudies database [https://www.ebi.ac.uk/biostudies/] under accession number S-BBST292. Source data are provided with this paper.

Received: 3 April 2020; Accepted: 26 May 2020; Published online: 27 July 2020

References
1. Lindeman, N. I. et al. Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. J. Thorac. Oncol. 8, 823–859 (2013).
2. Woodman, S. E., Lazar, A. J., Aldape, K. D. & Davies, M. A. New strategies in melanoma: molecular testing in advanced disease. Clin. Cancer Res. 18, 1195–1200 (2012).
3. Russnes, H. G., Lingjaerde, O. C., Borresen-Dale, A.-L. & Caldas, C. Breast cancer molecular stratification: from intrinsic subtypes to integrative clusters. Am. J. Pathol. 187, 2152–2162 (2017).
4. Dienstmann, R. et al. Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer. Nat. Rev. Cancer 17, 79–92 (2017).
5. Cancer Genome Atlas Research Network. The molecular taxonomy of primary prostate cancer. Cell 163, 1011–1025 (2015).
6. Bailey, P. et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 531, 47–52 (2016).
7. Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118 (2017).
8. Coudray, N. et al. Clans of driver mutations and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat. Med. 24, 1559–1567 (2018).
9. Campanella, G. et al. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat. Med. 25, 1301–1309 (2019).
10. Bera, K., Schalper, K. A., Rimm, D. L., Velcheti, V. & Madabhushi, A. Artificial intelligence in digital pathology—new tools for diagnosis and precision oncology. Nat. Rev. Clin. Oncol. 16, 703–715 (2019).
11. Hegde, N. et al. Similar image search for histopathology: SMILY. NPJ Digit. Med. 2, 56 (2019).
12. Saltz, J. et al. Spatial organization and molecular correlation of tumor-infiltrating lymphocytes using deep learning on pathology images. Cell Rep. 23, 181–193.e7 (2018).
13. Shia, J. et al. Morphological characterization of colorectal cancers in The Cancer Genome Atlas reveals distinct morphology–molecular associations: clinical and biological implications. Mod. Pathol. 30, 599–609 (2017).
14. Schaumberg, A. J., Rubin, M. A. & Fuchs, T. J. H&E-stained whole slide image deep learning predicts SPOC mutation state in prostate cancer. Preprint at bioRxiv https://doi.org/10.1101/064279 (2018).
15. Tsou, P. & Wu, C.-J. Mapping driver mutations to histopathological subtypes in papillary thyroid carcinoma: applying a deep convolutional neural network. J. Clin. Med. Res. 8, 1675 (2019).
16. Chang, P. et al. Deep-learning convolutional neural networks accurately classify genetic mutations in gliomas. AJNR Am. J. Neuroradiol. 39, 1201–1207 (2018).
17. Kancer, J. N. et al. Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer. Nat. Med. 25, 1054–1056 (2019).
18. Kather, J. N., Heij, L. R., Grabsh, H. I. & Kooreman, L. F. S. Pan-cancer image-based detection of clinically actionable genetic alterations. Nat. Cancer https://doi.org/10.1038/s43018-020-0087-6 (2020).
19. Kather, J. N., Schulze, J., Grabsh, H. L., Loefller, C. & Mutti, H. S. Deep learning detects virus presence in cancer histology. Preprint at bioRxiv https://doi.org/10.1101/690206 (2019).
20. Yu, K.-H. et al. Association of omics features with histopathology patterns in lung adenocarcinoma. Cell Syst. 5, 620–627.e3 (2017).
21. Schmauch, B., Romagnoni, A., Pronier, E. & Saillard, C. Transcriptomic learning for digital pathology. Preprint at bioRxiv https://doi.org/10.1101/760173 (2019).
22. Mobadersany, P. et al. Predicting cancer outcomes from histology and genomics using convolutional networks. Proc. Natl Acad. Sci. USA 115, E2970–E2979 (2018).
23. Cheng, J. et al. Integrative analysis of histopathological images and genomic data predicts clear cell renal cell carcinoma prognosis. Cancer Res. 77, e91–e100 (2017).
24. Yu, K.-H. et al. Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features. Nat. Commun. 7, 12474 (2016).
25. Szegedy, C., Ioffe, S., Vanhoucke, V. & Alemi, A. A. Inception-v4, Inception-ResNet and the impact of residual connections on learning, in Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. AAAI Press 4, 4278–4284 (2017).
26. Cooper, L. A. et al. PanCancer insights from The Cancer Genome Atlas: the pathologist’s perspective. J. Pathol. 244, 512–524 (2018).
27. Gerstung, M. et al. The evolutionary history of 2,658 cancers. Nature 578, 122–128 (2020).
28. Carpenter, A. E. et al. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7, R100 (2006).
29. Cancer Genome Atlas Research Network. Comprehensive and integrated genomic characterization of adult soft tissue sarcomas. Cell 171, 950–965.e28 (2017).
30. Zack, T. I. et al. Pan-cancer patterns of somatic copy number alteration. Nat. Genet. 45, 1134–1140 (2013).
31. Burger, P. C. et al. Small cell architecture—a histological equivalent of EGFR amplification in glioblastoma multiforme? J. Neuropathol. Exp. Neurol. 60, 1099–1104 (2001).
32. Verhaak, R. G. W. et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. *Cancer Cell* **17**, 98–110 (2010).
33. Kebebew, E. et al. The prevalence and prognostic value of BRAF mutation in thyroid cancer. *Ann. Surg.* **246**, 466–470 (2007).
34. O’Hara, A. J. & Bell, D. W. The genomics and genetics of endometrial cancer. *Adv. Genom. Genet.* **2012**, 33–47 (2012).
35. Thorsson, V. et al. The immune landscape of cancer. *Immunity* **48**, 812–830.e14 (2018).
36. Nawaz, S., Heindl, A., Koellke, K. & Yuan, Y. Beyond immune density: critical role of spatial heterogeneity in estrogen receptor-negative breast cancer. *Mod. Pathol.* **28**, 766–777 (2015).
37. Cabrita, R. et al. Tertiary lymphoid structures improve immunotherapy and survival in melanoma. *Nature* **577**, 561–565 (2020).
38. Pollheimer, M. J. et al. Tumor necrosis is a new promising prognostic factor in colorectal cancer. *Hum. Pathol.* **41**, 1749–1757 (2010).
39. Jogi, A., Vaapil, M., Johansson, M. & Pahlman, S. Cancer cell differentiation heterogeneity and aggressive behavior in solid tumors. *Ups. J. Med. Sci.* **117**, 217–224 (2012).
40. Gooden, M. J. M., de Bock, G. H., Leffers, N., Daemen, T. & Nijman, H. W. The prognostic influence of tumour-infiltrating lymphocytes in cancer: a systematic review with meta-analysis. *Br. J. Cancer* **105**, 93–103 (2011).
41. Curtis, C. et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. *Nature* **486**, 346–352 (2012).
42. Nik-Zainal, S. et al. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. *Nature* **534**, 47–54 (2016).
43. Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. *Science* **353**, 78–82 (2016).
44. Bayraktar, O. A., Bartels, T., Polioudkakis, D. & Holmespist, S. Single-cell in situ transcriptomic map of astrocyte cortical layer diversity. Preprint at bioRxiv https://doi.org/10.1101/432104 (2018).
45. Ke, R. et al. In situ sequencing for RNA analysis in preserved tissue and cells. *Nat. Methods* **10**, 857–860 (2013).
46. McInnes, I., Healy, J. & Melville, J. UMAP: uniform manifold approximation and projection for dimension reduction. Preprint at https://arxiv.org/abs/1802.03436 (2018).
47. Elston, R. C. On Fisher's method of combining P-values. *Biom. J.* **33**, 339–345 (1991).
48. Wilcoxon, F. Individual comparisons by ranking methods. *Biom. Bull.* **1**, 80–83 (1945).
49. Mann, H. B. & Whitney, D. R. On a test of whether one of two random variables is stochastically larger than the other. *Ann. Math. Stat.* **18**, 50–60 (1947).
50. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. *J. R. Stat. Soc. B Stat. Methodol.* **57**, 289–300 (1995).
51. Best, D. J. & Roberts, D. E. Algorithm AS 89: the upper tail probabilities of Spearman's rho. *J. R. Stat. Soc. C Appl. Stat.* **24**, 377–379 (1975).
52. Harrell, F. E. Jr, Califf, R. M., Pryor, D. B., Lee, K. L. & Rosati, R. A. Evaluating the yield of medical tests. *J. Am. Med. Assoc.* **247**, 2543–2546 (1982).
53. Grossman, R. L. et al. Toward a shared vision for cancer genomics data. *N. Engl. J. Med.* **375**, 1109–1112 (2018).
54. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. & Wojna, Z. Rethinking the inception architecture for computer vision. In *Proc. IEEE Conference on Computer Vision and Pattern Recognition* 2818–2826 (IEEE, 2016).
55. Téllez, D. et al. Quantifying the effects of data augmentation and stain color normalization in convolutional neural networks for computational pathology. Preprint at https://arxiv.org/abs/1902.06543 (2019).
56. Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. *J. Stat. Softw.* **33**, 1–22 (2010).
57. LeDell, E., Petersen, M. & van der Laan, M. Computationally efficient confidence intervals for cross-validated area under the ROC curve estimates. *Electron. J. Stat.* **9**, 1583–1607 (2015).
58. Fieller, E. C., Hartley, H. O. & Pearson, E. S. Tests for rank correlation coefficients. *Biom. Metrika* **44**, 470–481 (1957).
59. Martincorena, I. et al. Universal patterns of selection in cancer and somatic tissues. *Cell* **171**, 1029–1041.e21 (2017).
60. Van Loo, P. et al. Allele-specific copy number analysis of tumors. *Proc. Natl Acad. Sci. USA* **107**, 16919–16924 (2010).
61. Taylor, A. M. et al. Genomic and functional approaches to understanding cancer aneuploidy. *Cancer Cell* **33**, 676–689.e3 (2018).
62. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. *Proc. Natl Acad. Sci. USA* **102**, 15545–15550 (2005).
63. Croft, D. et al. The Reactome Pathway Knowledgebase. *Nucleic Acids Res.* **42**, D472–D477 (2014).
64. Cox, D. R. in *Breakthroughs in Statistics* (eds Kotz, S. & Johnson, N. L.) S27–541 (Springer, 1992).
65. Simon, N., Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for Cox's proportional hazards model via coordinate descent. *J. Stat. Softw.* **39**, 1–13 (2011).
66. Singer, Y. & Duchi, J. C. Efficient learning using forward-backward splitting. *Adv. Neural Inf. Proc. Syst.* **22**, 495–503 (2009).
67. Snoek, J., Larochelle, H. & Adams, R. P. Practical Bayesian optimization of machine learning algorithms. *Adv. Neural Inf. Proc. Syst.* **25**, 2951–2959 (2012).
68. Dentro, S. C. et al. Portraits of genetic intra-tumour heterogeneity and subclonal selection across cancer types. Preprint at bioRxiv https://doi.org/10.1101/312041 (2018).
69. Caicedo, J. C. et al. Nucleus segmentation across imaging experiments: the 2018 Data Science Bowl. * Nat. Methods* **16**, 1247–1253 (2019).

Author contributions
A.W.J. and M.G. are supported by grant NN170OC0027594 from the Novo Nordisk Foundation. L.M. is a recipient of a Cancer Research UK Clinical PhD Fellowship (C20/A20917). L.R.Y. is funded by a Wellcome Trust Clinical Research Career Development Fellowship (214584/Z/18/Z). The results shown here are in part based on data generated by the TCGA Research Network (https://www.cancer.gov/tcga). We thank C. Caldas, S.-F. Chin, Y. Yuan and the METABRIC consortium, as well as M. Stratton, M. Van de Vijver and the BASIS consortium for assistance and sharing data. We also thank all members of the Gerstung laboratory, I. Martincorena and A. Lawson for critical comments on the manuscript.

Competing interests
The authors declare no competing interests.

Additional information

Extended data is available for this paper at https://doi.org/10.1038/s43018-020-0085-8.

Supplementary information is available for this paper at https://doi.org/10.1038/s43018-020-0085-8.

Correspondence and requests for materials should be addressed to M.G.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature America, Inc. 2020
Extended Data Fig. 1 | Computational histopathological features discriminate between different tissue types. a, UMAP dimensionality reduction representation of the 1,536 histopathological features from randomly selected tiles colored by groups of cancer types (n=200 tiles per tissue type and JPEG quality). b, Example tiles from H&E-stained tissue sections of normal and tumor samples from different cancer types (arranged by row, manually selected from best predicted tiles). All tiles are manually selected from best predicted tiles.
Extended Data Fig. 2 | The distribution of predicted tumor purity by histopathological features for samples with different histopathologists evaluated tumor purity. Each boxplot corresponds to one cancer type, each box corresponds to the predicted tumor purity from histopathological features for samples with the histopathologist evaluated tumor purity indicated on x-axis (total number of slides n=14,862). Boxplots depict the quartiles and median, whiskers extend to 1.5x the inter quartile range.
Extended Data Fig. 3 | Pan-cancer morphological features of whole genome duplications. **a**, Distribution of cell nucleus size and intensity of samples with and without WGD. Each dot in the scatter plot corresponds to one of 12,000 tiles that were randomly selected across cancer types. The cell nucleus size and intensity were calculated using Cell Profiler with a pipeline provided by the software provider. Boxplots depict the quartiles and median, whiskers extend to 1.5× the inter quartile range. **b**, AUC from PC-CHiP (y-axis) compared to hard coded features (x-axis) for a set of n=500 randomly selected tiles for each cancer type. Each dot represents a cancer type. Error bars correspond to 95% confidence intervals. **c**, Histopathological prediction of WGD using 5-fold cross validation (red) and models trained leaving out one cancer type (blue). Error bars correspond to 95% confidence intervals estimated by bootstrap resampling.
Extended Data Fig. 4 | Example tiles for associations between computational histopathological and genomic alterations. a, Four example tiles for chromosome 8q gain (left column) and wild type (right column) breast invasive carcinoma (top row) and esophageal carcinoma (bottom row). b, Four example tiles for chromosome 17p loss (left column) and wild type (right column) for colon adenocarcinoma (top row) and lung squamous cell carcinoma (bottom row). c, Four example tiles for TP53 mutated (left column) and wild type (right column) liver cancer (hepatocellular carcinomas). d, Four example tiles for PTEN mutation (left column) and wild type (right column) for uterine cancer. Representative tiles are selected from 100 best predicted tiles.
Extended Data Fig. 5 | Histopathological associations with transcriptomic cell proliferation scores. a, Example tiles for low proliferation (top row) and high (bottom row) for breast invasive carcinoma, liver hepatocellular carcinoma, thymoma and lung adenocarcinoma. Four example tiles manually selected from best predicted tiles are shown for each tumour type. b, Boxplots show the different transcriptomic proliferation score for tumors with different histological grades for 10 cancer types with available data (n=11,080). G1-G4 corresponds to different grades with G1 being the lowest and G4 the highest, GX stands for “Grade cannot be assessed”, GB stands for “Borderline grade”. p-values were calculated by ANOVA. Boxplots depict the quartiles and median, whiskers extend to 1.5× the inter quartile range. c, Figure shows the increases of predictive accuracy of proliferation score from PC-CHiP compared to conventional histological grades. Each line represents one cancer type with the same colors as in Fig. 1e–g. d, Barplots showing the correlation of transcriptomic proliferation score and the tumor purity estimated by ASCAT (at patient level), histopathology (at patient level) and predicted tumor probability from PC-CHiP (at tile level) in each cancer (n=10,762 tumor samples for ASCAT, n=11,080 tumor samples for histopathology and n=6,188 tumor samples for PC-CHiP).
Extended Data Fig. 6 | Accuracy of TIL scores predicted by PC-CHiP. **a**, Systematic blinded assessment of TIL raw counts by two expert pathologists for three different cancer types (n=150 for each cancer). Each box plot shows the predicted TIL scores from PC-CHiP for tiles with different TIL raw counts, as independently evaluated by pathologists. **b**, Publically available slide-level TIL data displays lower concordance compared to with systematic blinded assessment of TIL (n=372 tiles). Each box plot shows the slide level TILs evaluation from TCGA for tiles with different TIL raw counts. Boxplots depict the quartiles and median, whiskers extend to 1.5x the inter quartile range.
Extended Data Fig. 7 | Patient risk stratification using histopathological features. Kaplan-Meier curves for high and low risk groups in different tumor types and stages. a, breast invasive carcinoma. b, stomach adenocarcinoma. c, head and neck squamous cell carcinoma. Only tumor stages with at least 20 patients are shown. Hazard ratios (HR) and the corresponding 95% confidence interval were computed using a Cox proportional hazards model.
Extended Data Fig. 8 | Overall performance of PC-CHIP in validation datasets. a, The validation accuracy in METABRIC (blue) and BASIS (green) datasets compared to TCGA dataset (red) for each significant association discovered in TCGA indicated at the bottom (total number of genomic alterations tested n=82). Each point corresponds to the predicted AUC for the genomic alteration indicated at the bottom. Error bars correspond to 95% confidence intervals. p-value estimated from Wilcox’s rank sum test and adjusted using FDR. b, The distribution of correlation between predicted and true transcript level in METABRIC (x-axis) compared to those in TCGA (y-axis). Each dot represents a gene (n=14,756 genes); blue dots are the genes that can be validated in METABRIC (Spearman’s rank correlation ρ > 0, p-value estimated using two sided t-test, adjusted FDR<0.1).
Extended Data Fig. 9 | Histopathological feature representations before and after retraining of Inception-V4. UMAP representation of the histopathological features from the original Inception model (n=200 tiles randomly selected for each tissue type/JPEG quality) (a, b) and the modified, retrained architecture (c, d). a, lung adenocarcinoma, squamous cell carcinoma and normal lung tissue highlighted. b, breast tumor and normal from TCGA and breast tumor from METABRIC highlighted. c, as in a, but for the modified architecture. d, as c based on the modified architecture. In each figure, the plot on the right side is colored by tissue type and the plot on the left side is colored by jpeg quality.
Extended Data Fig. 10 | Molecular associations before and after retraining of Inception-V4.

a, AUC for selected genetic alterations and survival for the original and modified Inception architecture. Error bars denote 95% confidence intervals. Sample sizes are \(n = 149 \) tumor samples for BASIS; for METABRIC, \(n = 454 \) tumor samples were used for WGD status and copy number alterations; \(n = 434 \) tumor samples were used for driver gene mutations. Additional details can be found in Supplementary Table 4.

b, Whole-slide average histopathology predictions for TILs from the modified network (\(x \)-axis) relative to expert pathologist categories (\(y \)-axis). Boxplots depict the quartiles and median, whiskers extend to 1.5\times the inter quartile range. Shown are \(n = 36 \) tumor samples for METABRIC and \(n = 129 \) tumor samples for BASIS with available TIL annotation.

c, Distribution of validated (deep green), indeterminate (light green) and invalid (gray) associations in METABRIC and BASIS across different alteration types. Distribution of validated (deep green), indeterminate (light green) and invalid (gray) transcriptomic associations in METABRIC. Sample sizes for genomic associations as in **a**; \(n = 456 \) tumor samples were used for transcriptomics. Details can be found in Supplementary Table 4.

d, Scatterplots of genomic and transcriptomic association strengths based on the original (\(x \)-axis) and modified (\(y \)-axis) Inception model for the TCGA cohort. Predictions from the original model are five-fold cross-validated, while those of the modified architecture are evaluated on a single 70% training / 30% testing split. Sample sizes and the number of alterations tested can be found in Supplementary Table 5.
Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

- [x] The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
- [x] A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
- [x] The statistical test(s) used AND whether they are one- or two-sided

 Only common tests should be described solely by name; describe more complex techniques in the Methods section.
- [x] A description of all covariates tested
- [x] A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
- [x] A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
- [x] For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted

 Give P values as exact values whenever suitable.
- [x] For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
- [x] For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
- [x] Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web *collection* on *statistics* for *biologists* contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection

As this study was a re-analysis of available data, no additional software was used for data collection.

Data analysis

- OpenCV 4.1.1
- OpenSlide 3.4.1
- Python 3.4
- Numpy 1.17.3
- tensorflow 1.12
- TF-slim 1.0
- R 3.3.1
- glmnet 3.0.2
- pROC 1.15.3
- cvAUC 1.1.0

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

TCGA data (images, genomic, transcriptomic and clinical data) is freely available from http://gdc.cancer.gov. For METABRIC, images, genomic and transcriptomic
Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

- Life sciences - Behavioural & social sciences - Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-list.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size	This was an exploratory analysis using available data from TCGA. No formal sample size calculations were made. Therefore the analysis does not provide evidence for absence of effects.
Data exclusions	No exclusion criteria were pre-established. Only tissue types with at least 50 images with a magnification greater than 20X are included in this study. Tissue with poor quality were removed (Methods, Images). Slides were excluded for the initial classification and molecular association testing if the tumour purity was lower than 85%. All slides were included for survival analyses.
Replication	The replication of the findings was assessed using 5 fold cross validation (classification, genomic, transcriptomic associations and survival). Findings for breast cancer were validated using data from the METABRIC and BASIS studies. 80/82 and 66/82 genomic associations replicated in METABRIC and BASIS, respectively (AUC > 0.5), as well as 85% of transcriptomic associations replicated in METABRIC (rho > 0). These results are shown in Figure 8, Extended Data Figure 8 and Supplementary Table 4.
Randomization	No experimental groups were defined.
Blinding	A blinded evaluation of Tumor Infiltrating Lymphocytes was performed by 2 expert pathologists independently on a set of randomly selected tiles for low, intermediated and high TIL predictions for 3 cancer types (bladder, breast and lung cancer).

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems

n/a	Involved in the study
☑	Antibodies
☑	Eukaryotic cell lines
☑	Palaeontology
☑	Animals and other organisms
☑	Human research participants
☑	Clinical data

Methods

n/a	Involved in the study
☑	ChIP-seq
☑	Flow cytometry
☑	MRI-based neuroimaging