Study of induced activity of 167Ho from different neutron capture paths

T S L Morais1 and M S Dias2

Nuclear and Energy Research Institute (IPEN-CNEN/SP)
Nuclear Metrology Laboratory (LMN) – Research Reactor Center (CRPq)
Av. Professor Lineu Prestes 2242, Cidade Universitária, 05508-000
São Paulo, SP, Brazil

1thales.morais@usp.br, 2msdias@ipen.br

Abstract. The main purpose of this study is to predict the induced activity of 167Ho produced by 165Ho(n,γ)166mHo(n,γ)167Ho, 165Ho(n,γ)166Ho(n,γ)167Ho and 166mHo(n,γ)167Ho reactions to choose the best path to measure the cross section with lowest uncertainty. The activation and decay scheme was established starting from the 165Ho target and considering single, double and triple neutron capture reactions. The activity results were deduced from differential activation equations and decay rates for all reaction products. The calculations were performed considering samples which were taken from a stock solution supplied by the Electrotechnical Laboratory (Japan) for purposes of an international comparison.

1. Introduction
To predict the induced activity from neutron capture reactions is an important step in planning a neutron cross section measurement. The Nuclear Metrology Laboratory (LMN) at the IPEN, in São Paulo, has been involved in improving the accuracy of neutron cross sections by irradiations at the IEA-R1 research reactor. For the measurement of the thermal neutron cross section and the resonance integral of the 166mHo(n,γ)167Ho reaction it is necessary to know all the different paths that 167Ho can be produced by neutron capture reactions. As a result, the best method of irradiation can be chosen in order to reduce the uncertainties in the measurements. The difficulty of conducting experiments with radioactive targets is due to the complex decay and activation schemes. This is one of the reasons why the thermal neutron cross section and the resonance integral data are scarce in the literature for the 166mHo(n,γ)167Ho reaction, when compared with reactions with stable isotopes.

2. Methodology
The activation and decay scheme was established starting from 165Ho considering single, double and triple neutron capture reactions (see Figure 1) and the calculations were performed considering samples with 20 MBq/g of Ho and 0.31 g/ml of HoCl$_3$ in 1N HCl according to stock solutions supplied by the Electrotechnical Laboratory (Japan) for purposes of an international comparison3.

The variation in the number of atoms of the target nucleus 165Ho (N_s) is given by:

$$\frac{dN_s}{dt} = -N_s\sigma_{5,6}\phi - N_s\sigma_{5,8}\phi$$ \hspace{1cm} (1)
Where:

- $\sigma_{5,6m}$ = cross section for 165Ho(n,γ)166mHo reaction;
- $\sigma_{5,6}$ = cross section for 165Ho(n,γ)166Ho reaction;
- ϕ = neutron flux.

Figure 1. Activation and decay scheme starting from 165Ho [1][2]

The first term refers to the production rate of 166mHo and the second refers to the production rate of 166Ho. Solving the differential equation (1) by the method of separation of variables, the result is:

$$N_5(t) = e^{-\sigma_{5,6m}^\phi + \sigma_{5,6}^\phi} \cdot e^{K_1}$$ \hspace{1cm} (2)

Where K_1 is a constant and t is the irradiation time. When $t = 0$, $N_5 = N_5^0$. Where N_5^0 is the number of atoms of 165Ho in the sample at the beginning of the irradiation. Replacing this information in the equation (2) one obtains $e^{K_1} = N_5^0$, therefore:

$$N_5(t) = N_5^0 \cdot e^{-\sigma_{5,6m}^\phi + \sigma_{5,6}^\phi}$$ \hspace{1cm} (3)

The variation of 166mHo atoms in the sample, must consider the formation of 166mHo atoms through the activation of 165Ho, the decay of the 166mHo, and its activation forming 167Ho, as follows:

$$\frac{dN_{6m}}{dt} = N_5^0 \sigma_{5,6m}^\phi - \lambda_{6m} N_{6m} - N_{6m} \sigma_{6m}^\phi$$ \hspace{1cm} (4)

Where:

- λ_{6m} = decay constant of 166mHo;
- σ_{6m} = cross section for 166mHo(n,γ)167Ho reaction.

Replacing equation (3) into equation (4), multiplying both sides by $e^{(\lambda_{6m} + \sigma_{6m})t}$ and solving the differential equation, the result is:

$$N_{6m}(t) = \frac{N^0_5 \sigma_{5,6m}^\phi e^{-(\sigma_{5,6m}^\phi + \sigma_{5,6}^\phi)t}}{\lambda_{6m} - (\sigma_{5,6m}^\phi + \sigma_{5,6} - \sigma_{6m}^\phi)} + K_2 e^{(\lambda_{6m} + \sigma_{6m})t}$$ \hspace{1cm} (5)
Where K_2 is a constant.
Considering that initially ($t = 0$) there was a certain amount of 166mHo atoms (N_{6m}^0), one obtains:

$$N_{6m}(t) = \frac{N_{6m}^0 \sigma_{5,6m} \phi}{\lambda_{6m} - (\sigma_{5,6m} + \sigma_{5,6} - \sigma_{6m}) \phi} \left[e^{-\left(\sigma_{5,6m} + \sigma_{5,6} - \sigma_{6m}\right)t} - e^{-\left(\lambda_{6m} + \sigma_{6m}\right)t} \right] + N_{6m}^0 e^{-\left(\lambda_{6m} + \sigma_{6m}\right)t} \tag{6}$$

The number of 166Ho atoms in the sample can be calculated in a similar way, as follows:

$$N_6(t) = \frac{N_6^0 \sigma_{5,6m} \phi}{\lambda_6 - (\sigma_{5,6m} + \sigma_{5,6} - \sigma_6) \phi} \left[e^{-\left(\sigma_{5,6m} + \sigma_{5,6} - \sigma_6\right)t} - e^{-\left(\lambda_6 + \sigma_6\right)t} \right] \tag{7}$$

Where:
- λ_6 = decay constant of 166Ho;
- σ_6 = cross section for 166Ho(n,γ)167Ho reaction.

Analyzing the production of 167Ho from 166Ho and 166mHo.

$$\frac{dN_7}{dt} = N_{6m} \sigma_{6m} \phi + N_6 \sigma_6 \phi - \lambda_7 N_7 - N_7 \sigma_7 \phi \tag{8}$$

Where:
- λ_7 = decay constant of 167Ho;
- σ_7 = sum of cross sections for 167Ho(n,γ)168Ho and 167Ho(n,γ)168mHo reactions.

The first term refers to the activation of 166mHo, the second refers to the activation of 166Ho, the third refers to the radioactive decay of 167Ho and the fourth refers to the activation of 167Ho.

Analogously to what has already been presented and replacing the values of N_{6m} and N_6 according to equations (6) and (7), we have:

$$N_7(t) = \frac{N_7^0 \sigma_{5,6} \phi^2}{\lambda_6 - (\sigma_{5,6} + \sigma_{5,6} - \sigma_6) \phi} \left[e^{-\left(\sigma_{5,6} + \sigma_{5,6} - \sigma_6\right)t} - e^{-\left(\lambda_6 + \sigma_6\right)t} \right] +$$

$$+ \frac{N_{6m}^0 \sigma_{5,6m} \sigma_{6m} \phi^2}{\lambda_{6m} - (\sigma_{5,6m} + \sigma_{5,6} - \sigma_{6m}) \phi} \left[e^{-\left(\sigma_{5,6m} + \sigma_{5,6} - \sigma_{6m}\right)t} - e^{-\left(\lambda_{6m} + \sigma_{6m}\right)t} \right] +$$

$$+ N_{6m}^0 \sigma_{6m} \phi \left[e^{-\left(\lambda_{6m} + \sigma_{6m}\right)t} - e^{-\left(\lambda_6 + \sigma_6\right)t} \right] \tag{9}$$

Since the induced activity of 167Ho is given by,

$$A_7(t) = A_7^{167}(t) + A_7^{166m}(t) + A_7^{166}(t) \tag{10}$$

The terms in equation (10) are the activities of 167Ho from 165Ho(n,γ)166Ho(n,γ)167Ho, 165Ho(n,γ)166mHo(n,γ)167Ho and 166mHo(n,γ)167Ho reactions, respectively.

Multiplying the equation (9) by λ_7 we get $A_7(t)$, so the following equations were determined:
3. Results

Figure 2 shows the activity (in Bq) of 167Ho as a function of irradiation time, considering samples with 10 mg from a solution with 20 MBq/g of 166mHo and 0.31 g/ml of HoCl$_3$ in 1N HCl[3]. As can be seen, the predominant contribution comes from the 166mHo(n,γ)167Ho reaction.

![Induced Activity of 167Ho](image)

Figure 2. Induced Activity of 167Ho as a function of irradiation time.

Acknowledgments

The authors are indebted to the National Counsel of Technological and Scientific Development (CNPq), from Brazil, for partial support of the present research work.

References

[1] International Atomic Energy Agency IAEA (2018) The Live Chart of Nuclides. https://www-nds.iaea.org/relnsd/vcharthtml/VChartHTML.html

[2] Harada H, Wada H, Nakamura S, Furutaka K and Katoh T (2000) “Measurement of Effective Neutron Capture Cross Section of 166mHo using Two Step Irradiation Technique”, Journal of Nuclear Science and Technology, 37:9, 821-823.

[3] Hino, Matui, Yamada, Takeuchi S, Onoma, Iwamoto and Kogure. “Absolute measurement of 166mHo radioactivity and development of sealed sources for standardization of gamma-ray emitting nuclides”, Applied radiation and isotopes, 52:3 (2000) 545-549.