Student characteristics, professional preferences, and admission to medical school

Abstract

Objectives: A potential new avenue to address the shortage of country doctors is to change the rules for admission to medical school. We therefore study the link between high-school grade point average and prospective physicians' choice to work in rural areas. To further inform the discussion about rules for admission, we also study the effects of other predictors: a measure of students' attitudes towards risk; whether they waited for their place of study (Wartesemester); whether their parents worked as medical doctors; and whether they have some practical experience in the medical sector.

Methods: We conducted two internet surveys in 2012 and 2014. In the first survey, the sample comprised 701 students and in the second, 474 students. In both surveys, we asked students for their regional preferences; in the 2014 survey, we additionally asked students for their first, second, and third preferences among a comprehensive set of specializations, including becoming a general practitioner. In both surveys, we asked students for basic demographic information (age and gender), their parents' occupation, a measure of subjective income expectations, a measure of risk attitudes, and their high-school grade point average (Abiturnote), and First National Boards Examination grade (Physikum). In 2014, we additionally asked for waiting periods (Wartesemester) as well as for prior professional experience in the health-care sector.

Results: We find that three factors increase the probability of having a preference for working in a rural area significantly, holding constant all other influences:

1. having a medical doctor among the parents,
2. having worse grades in the high-school grade point average, and
3. being more risk averse.

Moreover, we find that those willing to work in the countryside have significantly more experience in the medical sector before admission to medical school.

Discussion: Our results suggest that a change in the selection process for medical school may increase the supply of country doctors. Instead of focusing on the high-school grade point average, universities could even more intensely screen for study motivation through interviews or by taking into account students' background, extracurricular activities, or waiting periods.

Keywords: admission to medical school, specialization choice, physician shortages, rural work

1. Introduction

Countries throughout the world – both developed and developing – struggle with imbalances in their physician work force, in particular with shortages of general practitioners and of doctors in rural areas. These imbalances have resulted in a large body of research that analyses medical students' specialization and location choices and policy measures designed to alleviate physician shortages, see [1]. Research on these issues is also encouraged by the World Health Organization (WHO) through a program of work aimed at increasing supply of health workers in remote and rural areas [http://www.who.int/hrh/migration/retention/en/ accessed 9 August 2014]. Among the factors that have been shown to affect whether students are willing to work in rural areas are monetary [2], and non-monetary job attributes such as...
control over working hours or the possibility to work part-time [3], and medical students’ preferences [4]. In Germany, there are strong regional imbalances in the physician workforce, despite the fact that practice licenses are awarded on the basis of regional quota. Physician density in rural areas, especially in Eastern Germany, is low. In particular, there is a shortage of general practitioners [5]. This is a major concern for health policy as general practitioners play a central role in health care provision in rural areas. Consequently, there is an ongoing discussion in Germany about whether candidates who want to become rural practitioners should be provided with easier access to medical studies. According to an estimate of the National Association of Statutory Health Insurance Physicians (KVB), more than 66,000 general practitioners will retire until the year 2020, which must be compared to a total of about 9,000 physicians newly coming from university each year [6]. The goal of this paper is to inform this discussion with some recent evidence from two online surveys among medical students of two large German medical faculties. A potential new avenue to address the shortage of country doctors is to change the rules for admission to medical school. We therefore study the link between high-school grade point average and prospective physicians’ choice to work in rural areas. To further inform the discussion about rules for admission, we also elicit whether students waited for their place of study (Wartesemester), whether students’ parents worked as medical doctors, and whether students have some practical professional experience in the medical sector.

Our discussion focuses on the potential effects of entry requirements into medical schools (such as a threshold based on the high-school grade point average). If the high-school grade point averages of applicants who consider and those who do not consider rural careers have a different distribution, changing the entry threshold should change the shares of these two types among the admitted students. Another contribution of our study is that the statistical analysis allows for potential correlations between the choices of becoming a primary care physician and of working in the country-side.

2. Methods

Survey administration and samples

In 2012 and 2014, we conducted two online surveys among large samples of students from two large German universities, the University of Munich (LMU) and the Technical University of Munich (TUM). The surveys were administered by CentERdata Tilburg, Netherlands, and the medical faculties of both universities. We received the data with any personal identifiers removed; this was communicated to the participants before they took part in the survey.

A request for approval of the surveys was placed with the ethics commission of the Medical Faculty of the University of Munich. The ethics commission issued a declaration of no-objection (UENos. 260-12 and 540-14).

In 2012, about 2,800 medical students were enrolled for their clinical studies (years 3 to 6) at the two universities when our survey fieldwork took place; in 2014, this number was 3098 due to an increased intake. For both surveys, we sent out e-mails to all these students inviting them to participate in our study. In 2012 and 2014, 701 and 474 students participated, respectively.

Dependent and independent variables

Dependent variables

In both surveys, we asked students for their location preferences – working in an urban area, in a rural area, or abroad. We consider these three choices separately in the descriptive analysis; in the multivariate analysis we combine “urban” and “abroad” into one category that is then compared with “rural”. In the 2014 survey, we additionally asked students for their first, second, and third preferences among a comprehensive set of specializations, including becoming a general practitioner.

Independent variables

In both surveys, we asked students for basic demographic information (age and gender), their parents’ occupation, a measure of subjective income expectations, a measure of risk attitudes, and their high-school grade point average (Abiturnote), and their First National Boards Examination grade (Physikum). In 2014, we additionally asked for waiting periods (Wartesemester) as well as prior experience in the health-care sector (e.g., internships).

Details on measures and transformations

In Germany, school grades are measured on a scale from 1 (excellent) to 6 (fail). For our regression analysis, we standardize the high-school grade point measure by subtracting its mean and dividing by its standard deviation to obtain a variable with mean zero and standard deviation one.

We elicited the income expectations of medical students by asking five questions of the form “What do you think is the percent chance that your net income (after deductions and taxes) five years after finishing your studies will be less than X Euros per month?” Through the sequence of these five questions, the amount X increased. This method allows us to estimate the mean of students’ subjective distribution of future income using a statistical algorithm that approximates this distribution non-parametrically [7], [8].

We are also interested in risk aversion because it has been shown to be an important determinant of the decisions to become self-employed and to take up a profession with (relatively) high income variability. We ask students whether they are willing to take risks on a scale from zero to ten where zero means “not at all” and ten...
mean “very willing to take risks.” This measure was created for the German Socioeconomic Panel, and it has been validated using both experimental measures of risk preferences as well as actual decisions in the field [9]. We use this measure to create a binary variable that indicates whether students are in the upper or lower half of their peers regarding risk aversion.

**Statistical methods**

We begin by testing for differences in the means of the independent variables across the values of their location preference using t-tests. Next, we conduct multivariate regression analyses in order to assess the effect of the independent variables in a ceteris paribus sense, which also accounts for multiple testing. As the dependent variables are dichotomous, we estimate probit models. Because of the great importance of general practitioners for serving rural areas, we analyze the decision to work on the countryside and the decision to become a general practitioner jointly by estimating a bivariate probit model.

As the second dependent variable was elicited only in the 2014 survey, we restrict all multivariate regressions to this sample.

Male, parents physicians, high-school grade point average (Abiturnote), the First National Board Examination grade (Physikum), mean income expectations, risk aversion, waiting time, and experience in the medical sector denote the covariates which affect both dependent variables, the choices of becoming a rural and a general practitioner, respectively. We estimate both equations simultaneously using the bivariate probit method, which assumes that the error terms are jointly normally distributed with zero means, variances of one, and a correlation coefficient that can be estimated as a parameter along with the coefficients of the covariates [10].

We use a bivariate probit model for the following reasons: First, univariate probit or logit models permit statements about the influence of the independent variables on both dependent variables separately. For example, they would permit conclusions on how being male influences either the probability of becoming a general practitioner or the probability of practicing in a rural area. A bivariate probit model also allows us to test hypotheses – in addition, it allows us to test hypotheses on how the independent variables influence the joint probability of working as general practitioner and practicing in a rural area at the same time.

Second, in the bivariate probit model it is straightforward to test whether there is a correlation in the unobserved factors in the two equations (i.e., for the decisions to work in a rural area and the decision to specialize as a general practitioner). The bivariate probit model also reveals whether this correlation is positive or negative.

### 3. Results

In the 2014 (2012) survey, about 15.9 (17.7) percent of students stated that they intend to work in a rural area in Germany, 69.1 (66.9) percent intended to work in a city in Germany, and 15.03 (15.05) percent intended to work abroad. In the 2014 survey, 10.2 percent of students responded that their first job preference is to become a general practitioner. In the data from the 2014 survey, the correlation between the indicators for those who want to work in rural areas and those who want to become a general practitioner is 0.202.

Table 1 contains descriptive statistics and verbal definitions of all variables. We are mainly interested in differences in the means of the independent variables between those students who want to practice in a rural area in Germany and all other students (comparison group). Compared to all others, those willing to practice in rural areas have worse, but still very good, grades (two-sided t-tests, p=0.063 in 2012 and p=0.026 in 2014). Students willing to practice in a rural area also waited longer for a place to study medicine, but this difference is not significant at the 10 percent level using a two-sided t-test. They also gathered considerably more practical experience in the medical sector before taking up their studies (this question was only asked in 2014: two-sided t-test, p=0.072). Their parents are significantly more often physicians themselves. The difference is significant at the 10 percent level only for 2014 (two-sided t-test, p=0.051). Students who want to practice in rural areas are also significantly more risk averse than their fellow students (two-sided t-tests, p=0.054 in 2012 and p=0.012 in 2014).

Income expectations of students willing and not willing to practice in the countryside are surprisingly similar: In 2014, there are no significant differences between both groups. Students who want to work in rural areas and those who do not want to work in rural areas both expect to earn about 4400 Euro per month after taxes and deductions, and even the estimated variances of students’ income expectations are similar in these two groups. In 2012, income expectations were somewhat lower for those students intending to practice in a rural area, but differences were small (about 4200 Euros for those who want to practice in rural areas and 4300 Euros for all others).

Regarding the third group of students, those who consider going abroad, there are few significant differences to other students, with one notable exception: They tend to have better grades in their high school point diplomas. The difference is statistically significant in 2012 (two-sided t-test, p=0.005); in 2014, the difference is smaller and not significant at the ten percent level when using a two-sided t-test. Consequently, those students who consider going abroad have also experienced waiting periods significantly less often before being admitted as medical students (this question was only asked in 2014; two-sided t-test, p=0.058).
Next, we analyze all measured determinants of the choice to become a rural practitioner jointly using multivariate regression (which also takes account of multiple testing). As explained above, we have two dichotomous dependent variables, and thus estimate a bivariate probit model.

The bivariate probit model allows us to estimate the effect on the two outcomes (working in a rural area and working as general practitioner) separately, but also to estimate what influences the joint probability to practice as general practitioner in a rural area. In Table 2 we first consider the choices separately. We report marginal effects at the mean of the dependent variables (and for dichotomous variables, we report the effect for a change from zero to one).

We find that three factors increase the probability of having a preference for working in a rural area significantly, holding constant all other influences:

1. having a medical doctor among the parents,
2. having worse grades in the high school grade point average, and
3. being more risk averse.

Interestingly, we find that two of the variables that increase the probability of having a preference for working in a rural area also predict a preference for becoming a general practitioner – namely, having a parent who works as a doctor and being risk averse.

Regarding the size of the marginal effects, it is interesting to see them in relation to the probability of having preferences for becoming a general practitioner (10.2 percent of all students) and for practicing in a rural area (15.9 percent). Having a physician among the parents makes it 56.9 percent more likely to state “general practitioner” as the preferred specialization and 47.8 percent more likely to plan to practice in a rural area. Having grades that are one standard deviation worse than the average makes it 28.3 percent more likely to plan to practice in a rural area. And last, being risk averse makes the general practitioner choice 55 percent and the rural choice 64.8 percent more likely.

In Table 3, we consider the joint probability of having a preference for working as general practitioner and in a rural area. We find that four factors increase this probability, holding constant all other influences: being female (plus 21.7 percent), having a medical doctor among the parents (plus 30.4 percent), having worse grades in the high school grade point average (plus 12 percent), and being more risk averse (plus 34.8 percent).

We note that the error terms of the two regression equations that are jointly estimated in this bivariate probit model are significantly positively correlated (see the estimate in the last line of Table 3). Thus, there are also unobserved factors that determine both preferences jointly and in the same direction. The substantive implication is that students have a common taste for these two
professions. In a statistical sense, this result confirms that the two outcome equations should indeed be estimated jointly rather than using two separate probit or logit models.

4. Discussion

The results on entry grades and self-assessed ability as well as job attributes provide several insights into why students choose to become a country doctor. Perhaps the most interesting result is that high-school grade point averages are lower among students intending to work in rural areas. This suggests that lowering admission requirements for medical school might increase the share of students willing to work in rural areas. However,
this would inevitably increase the costs of education and the overall supply of physicians. Such a measure is unlikely to be accepted by policy makers and the medical profession. In the following, we discuss two instruments that may alleviate the imbalance in location choice and keep the total number of students (and physicians) constant.

The first policy instrument is multi-dimensional admission requirements. Medical schools could select applicants by considering not only their high-school grade point average but also their study motivation. In particular, it should be made easier for those willing to pursue a rural career to enter medical school. Motivational screening would have to be an important part of the admission process.

A promising source of information about study motivation could be an applicant’s curriculum vitae, see [11]. A number of activities indicate an intrinsic motivation to become a health worker (e.g., [12]), for example the completion of a voluntary social year; activities in social projects with children, elderly people or disabled persons; and voluntary work in religious communities. Medical schools could facilitate access for those applicants who are engaged in these activities, but have relatively low grades. In many institutions and disciplines, this type of motivational screening is already used to select students.

An alternative source of information about study motivation could be an interview with the applicant. Multiple mini-interviews (MMIs) are already used for the selection of medical students. It typically consists of several stations with different interviewers, each lasting approximately eight minutes. The interviewee’s performance in MMIs is usually not associated with cognitive, but rather with non-cognitive skills such as moral reasoning, study motivation and honesty, see, for example [13]. A properly designed MMI may thus also be used to obtain information on the willingness to work as country doctor.

One also could use waiting semesters as a signal for motivation. If an applicant is initially rejected, she has the option to wait for a semester to get a bonus on her high-school grade point average. Alternatively, she could start studying another subject. Some students spend their waiting semesters as health workers (e.g., nurses, medical specialists). We conjecture that those with high intrinsic motivation to become a medical doctor are more willing to wait for considerable time to be admitted and to be employed as health worker in the meantime.

Waiting semesters are already implemented in Germany, but only a small share of 20 percent of students is admitted because of this criterion.

Up to now, the success of entry requirements has mainly been discussed in terms of the percentage of students finishing their medical studies as well as their final grades. We suggest also including the specialization choice of students as a criterion when evaluating entry requirements.

Another measure to alter students’ specialization choice could be a change in the undergraduate medical curriculum. A recent observational study at Leipzig Medical School suggests that a highly practice-oriented family medicine curriculum may actually increase the share of graduates deciding to pursue postgraduate training as a general practitioner [14]. The presence of an independent institute and a chair for family medicine also seem to foster the motivation of medical students to consider a career as a general practitioner [15]. This is supported by [16] who surveyed final year medical students in their clinical elective in family medicine at seven German medical schools. When students were satisfied with the quality of this training they indicated a higher motivation to pursue a career in family medicine.

Finally, postgraduate training itself and the professional profile of family medicine in Germany play a crucial role for the decision to become a general practitioner [17]: 89 percent of a nationally surveyed sample of German general practitioners consider to work in private practice and 77 percent can imagine to do so in a rural setting. Key factors for their willingness to settle as a general practitioner in a rural area were a family-friendly environment, the rural location itself, and the opportunity for collaboration with colleagues.

Limitations

One limitation of our study is that we only have students’ overall grade point average in our data. This score determines students’ chances of getting admitted to medical school. It consists of academic achievements in different disciplines such as math, languages, and science subjects. It would be important to know which disciplines drive our results, i.e., in which subjects those who are willing to practice in the countryside perform worse (or better) than the other students. Moreover, it would be important to know how important these subjects are for a physician’s daily business. If those disciplines in which future country doctors perform worse than the rest are not essential for their job performance, changing entry requirements to increase the supply of country doctors may not be costly in terms of physician quality.

Another limitation of our data is that we measure students’ professional preferences during their studies, not their subsequent actual professional choices. To evaluate the link between entry requirements for medical school and occupational choices, longitudinal survey data that allow researchers to follow individuals’ choices throughout their studies and the early stages of their professional careers would be very useful. In particular, this is important since medical students may change their career plans as they advance in their studies (see, for example [18]).

To study the role of origin for location choice it would have been important to ask students about whether they grew up in a city or in the countryside. Future studies may want to include such a question in their surveys.

The response rates in our study are 25 percent (in 2012) and 15 percent (in 2014), respectively. Hence, our results are not representative for the total student population. A higher response rate would be desirable, but we note...
that the response rates we achieved are not atypical for social science surveys as response rates have declined considerably in recent years, see [19]. Moreover, it would be useful to have data from more than two universities. Finally, we only considered individuals studying to become a medical doctor. However, continuing education may also play a role for practicing physicians’ location choice. In recent years, this topic received increasing attention (see, for example [20]) since medical doctors have to keep track and take advantage of new technological developments in medicine.

Policy perspectives

Policies to increase the supply of country doctors could exploit the fact that those willing to work in rural areas come from a different pool of applicants. Policy instruments such as multidimensional entry requirements for medical schools and the differentiation of the study program into different tracks may alleviate the shortage of rural doctors. In particular, grade requirements for admission could be lowered for candidates who have already worked in a health context or have a family background of rural medicine. A special curricular track for general practitioners could also prepare future physicians better for the requirements of the daily work as a general practitioner. In the economics literature, individuals with higher risk-aversion scores have been shown to be less willing to take risks regarding the variability of their incomes and to become self-employed. Since the prospective rural practitioners in our study are more risk averse, they should be supported during residency training and when starting their own practice as a general practitioner, for instance with targeted loan subsidies, help for networking with colleagues, and infrastructure support.

Notes

1 A logit model would assume that the error terms follow an extreme value type II distribution. In general, the estimated effects of the logit and the probit model are very similar. This is also the case in our data.
2 However, [21] find that students admitted after a positive number of waiting semesters performed significantly worse in their medical studies than those admitted immediately.

Acknowledgements

We acknowledge the support by the German Science Foundation through SFB/TR 15. We thank Suzan Elshout and the team of programmers at CentERdata Tilburg.

Competing interests

The authors declare that they have no competing interests.

References

1. Misfeldt R, Linder J, Lait J, Hepp S, Armitage G, Jackson K, Suter E. Incentives for improving human resource outcomes in health care: overview of reviews. J Health Serv Res Pol. 2014;19(1):52-61. DOI: 10.1177/1358191613505746
2. Kruse J. Income Ratio and Medical Student Specialty Choice: The Primary Importance of the Ratio of Mean Primary Care Physician Income to Mean Consult-Ing Specialist Income. Fam Med. 2013;45(4):281-283.
3. Sivey P, Scott A, Witt J, Joyce C, Humphreys J. Junior doctors’ preferences for specialty choice. J Health Econ. 2012;31(6):813-823. DOI: 10.1016/j.jhealeco.2012.07.001
4. Sermeels P, Montalvo JG, Pettersson G, Lievens T, Butera JD, Kidanu A. Who wants to work in a rural health post? The role of intrinsic motivation, rural background and faith-based institutions in Ethiopia and Rwanda. B World Health Organ. 2010;88(5):342-349. DOI: 10.2471/BLT.09.072728
5. Korzilius H. Hausärztemangel in Deutschland: Die große Landflucht. Dtsch Arztebl. 2008;105(8):A373-A374.
6. Richter-Kuhllmann EA, Arztzahlstudie von BÄK und KBV: Die Lücken werden größer, Dtsch Arztebl. 2010;107:A-1670, B-1478, C-1458.
7. Dominitz J, Manski C. Using expectations data to study subjective income expectations. J Am Stat Assoc. 1997;92(439):855-867. DOI: 10.1080/01621459.1997.10474041
8. Bellemare C, Bissonnette L, Kröger S. Flexible approximation of subjective expectations using probability questions. J Bus Econ Stat. 2012;30(1):125-131. DOI: 10.1198/jbes.2011.09053
9. Dohmen T, Falk A, Huffman D, Sunde U, Schupp J, Wagner GG. Individual risk attitudes: Measurement, determinants, and behavioral consequences. J Eur Econ Assoc. 2011;9(5):522-550. DOI: 10.1111/j.1542-4774.2011.01015.x
10. Heinz M, Schumacher H. Signaling cooperation. CEPR Working Paper No. 10942. London: CEPR; 2015.
11. Hulsman RL, van der Ende JS, Oort FJ, Michels RP, Casteelen G, Griffioen FM. Effectiveness of selection in medical school admissions: evaluation of the outcomes among freshmen. Med Educ. 2007;41(4):369-377. DOI: 10.1111/j.1365-2929.2007.02708.x
12. Deutsch T, Lippmann S, Frese T, Sandholzer. Who wants to become a general practitioner? Student and curriculum factors associated with choosing a GP career – a multivariable analysis with particular consideration of practice-orientated GP courses. Scand J Prim Health Care. 2015;33(1):47-53. DOI: 10.3109/02813432.2015.1020661
15. Schneider A, Karsch-Voelk M, Rupp A, Fischer MR, Drexler H, Schelling J, Berberat P. Determinanten für eine hausärztliche Berufswahl unter Studierenden der Medizin: Eine Umfrage an drei bayerischen Medizinischen Fakultäten. GMS J Med Educ. 2013;30(4):Doc45. DOI: 10.3205/zma000888

16. Böhme K, Kotterer A, Simmenroth-Nayda A. Family practice as clinical elective – solution to combat shortage of future FP care? Z Allg Med. 2013;89(11):452-458.

17. Steinhäuser J, Annan N, Ross M, Szecsenyi J, Joos S. Approaches to reduce shortage of general practitioners in rural areas – results of an online survey of trainee doctors. Med Wochenschr. 2011;136(34-35):1715-1719. DOI: 10.1055/s-0031-1272576

18. Buddeberg-Fischer B, Klaghofer R, Stamm M, Marty F, Dreiding P, Zoller M, Buddeberg C. Primary care in Switzerland – no longer attractive for young physicians? Swiss Med Wkly. 2006;136(27-28):416-424.

19. Meyer BD, Mok WK, Sullivan JX. Household surveys in crisis. J Econ Perspect. 2015;29(4):199-226. DOI: 10.1257/jep.29.4.199

20. Herrmann WJ. International standards for postgraduate family medicine education compared to Germany. Z Allg Med. 2013;89(10):407-411.

21. Kadmon G, Resch F, Duelli R, Kadmon M. Predictive value of the school-leaving grade and prognosis of different admission groups for academic performance and continuity in the medical course – a longitudinal study. GMS J Med Educ. 2014;31(2):Doc21. DOI: 10.3205/zma000913

Please cite as
Kesternich I, Schumacher H, Winter J, Fischer MR, Holzer M. Student characteristics, professional preferences, and admission to medical school. GMS J Med Educ. 2017;34(1):Doc5. DOI: 10.3205/zma001082, URN: urn:nbn:de:0183-zma0010825

This article is freely available from http://www.egms.de/en/journals/zma/2017-34/zma001082.shtml

Received: 2016-05-06
Revised: 2016-09-15
Accepted: 2016-11-09
Published: 2017-02-15

Copyright ©2017 Kesternich et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License. See license information at http://creativecommons.org/licenses/by/4.0/.
Charakteristika von Studierenden, berufliche Präferenzen und Zulassung zum Medizinstudium

Zusammenfassung

**Forschungsziele:** Die Veränderung der Zugangsregelungen zum Medizinstudium stellt eine Möglichkeit dar, um die Knappheit von Landärzten zu verringern. Wir analysieren daher den Zusammenhang zwischen dem Abiturnotendurchschnitt und der Entscheidung zukünftiger Ärzte, in ländlichen Regionen zu arbeiten. Zur Anregung der Debatte über die Zulassungsregelungen beschäftigen wir uns zudem mit den Effekten anderer Einflussvariablen wie der Risikobereitschaft der Studierenden, der Anzahl der Wartesemester, der Zugehörigkeit der Eltern zum ärztlichen Berufsfeld sowie der praktischen Erfahrung der Studienbewerber im Gesundheitssektor.

**Methoden:** In den Jahren 2012 und 2014 führten wir zwei Internetbefragungen durch. Die erste Befragung umfasste 701 Studierende, die zweite 474 Studierende. In beiden Erhebungen wurden die Studierenden nach ihren regionalen Präferenzen für ihre künftige Berufsausübung gefragt; in der Befragung des Jahres 2014 ermittelten wir zudem die ersten, zweiten und dritten Präferenzen bezüglich der Facharztauswahl. In beiden Befragungen wurden demografische Merkmale (Alter und Geschlecht), die Berufe der Eltern, subjektive Einkommenserwartungen, die Risikobereitschaft sowie die Notendurchschnitte in Abitur und Physikum erhoben. 2014 fragten wir darüber hinaus nach der Anzahl der Wartesemester und vorherigen praktischen Erfahrungen im Gesundheitssektor.

**Ergebnisse:** Drei Faktoren erhöhen ceteris paribus die Wahrscheinlichkeit einer Präferenz für eine Beschäftigung in ländlichen Gebieten signifikant:

1. ein Elternteil ist Arzt,
2. relativ schlechtere Abiturnoten und
3. geringere Risikobereitschaft.

Des Weiteren zeigt sich, dass Studierende, die eine Tätigkeit auf dem Land anstreben, vor der Zulassung zum Medizinstudium signifikant häufiger eigene praktische Arbeitserfahrungen im Gesundheitssektor haben.

**Diskussion:** Unsere Ergebnisse legen nahe, dass eine Veränderung des Auswahlprozesses für das Medizinstudium das Angebot an Landärzten erhöhen könnte. Statt sich nur auf die Abiturnote zu konzentrieren, sollten die Universitäten die Motivation für das Studium in größerem Maße berücksichtigen, sei es mit Hilfe von Auswahlgesprächen oder durch die Berücksichtigung von Herkunft, außerschulischen Aktivitäten oder Wartesemestern.

**Schlüsselwörter:** Zulassung zum Medizinstudium, Facharztwahl, Hausärztemangel, Niedergelassene Ärzte in ländlichen Regionen

---

1. Universtät Leuven, Fachbereich Ökonomie, Leuven, Belgien
2. Universität München, Volkswirtschaftliche Fakultät, Seminar für Empirische Wirtschaftsforschung, München, Deutschland
3. Klinikum der Universität München, Institut für Didaktik und Ausbildungsforschung in der Medizin, München, Deutschland

---

1. **Einleitung**

Sowohl Industriel- als auch Entwicklungsländer haben mit Ungleichgewichten in der Verteilung ihrer Ärztenschaft zu kämpfen, vor allem mit dem Mangel an Allgemeinmedizinnern und Ärzten in ländlichen Gebieten. Es gibt daher eine intensive wissenschaftliche Diskussion, die Spezialisierungen und Standortentscheidungen von Medizinstudierenden sowie politische Maßnahmen zur Reduktion des Ärtemangels analysiert, siehe [1]. Im Rahmen eines Arbeitsprogramms, das auf eine Erhöhung des Angebots an Fachkräften im Gesundheitswesen in entlegenen und...
ländlichen Gegenden abzielt, fördert auch die World Health Organization (WHO) die Forschung in diesen Bereichen. [http://www.who.int/hrh/migration/retention/en/ zitiert am 09.08.2014]. Zu den Faktoren, die einen Effekt auf die Wahrscheinlichkeit einer Beschäftigung in ländlichen Regionen haben, zählen monetäre [2], aber auch nicht-monetäre Aspekte wie der eigene Einfluss auf die Arbeitszeit, die Möglichkeit einer Teilzeitschäftigung [3], und die Motivation von Medizinstudierenden [4].

In Deutschland gibt es starke räumliche Ungleichheiten in der Verteilung der Ärzteschaft, trotz der Vergabe von Praxislizenzen auf Basis regionaler Quoten. Die Ärztedichte in ländlichen Gegenden ist niedrig, vor allem in Ostdeutschland. Bedingt durch ihre zentrale Rolle in der Primärversorgung stellt insbesondere der Mangel an Allgemeinmedizinern in diesen Regionen eine wichtige Thematik in der Gesundheitspolitik dar [5]. Daraus resultiert eine andauernde Diskussion darüber, ob Bewerbern, die eine Beschäftigung in ländlichen Gegenden anstreben, der Zugang zum Medizinstudium erleichtert werden sollte. Laut einer Schätzung der Kassenärztlichen Bundesvereinigung (KBV) aus dem Jahr 2010 werden bis 2020 über 66.000 Hausärzte in Rente gehen, verglichen mit etwa 9.000 jährlichen Absolventen im Fach Humanmedizin insgesamt [6].

Diese Arbeit möchte mit aktuellen Daten aus zwei Online-Umfragen unter Medizinstudierenden zweier deutscher Universitäten zur Diskussion beitragen. Eine Veränderung der Zugangsregelungen zum Medizinstudium ist eine neue Möglichkeit, um gegen den Ärztemangel in ländlichen Regionen vorzugehen. Wir analysieren daher den Zusammenhang zwischen dem Abiturnotendurchschnitt und der voraussichtlichen Entscheidung zukünftiger Ärzte, in diesen Gebieten zu arbeiten. Zudem eruierten wir, ob die Studierenden Wartesemester oder praktische Erfahrungen im Gesundheitswesen vorweisen können und ob ihre Eltern als Ärzte arbeiteten.

Unsere Diskussion konzentriert sich auf mögliche Effekte von Zulassungsvoraussetzungen zum Medizinstudium wie dem Numerus clausus. Falls sich die Verteilung der Abiturnoten von zukünftigen Landärzten von derjenigen der anderen Befragten unterscheidet, sollte eine Änderung der Voraussetzungen die Anteile von Landärzten in diesen Regionen vorzugehen. Wir analysieren daher den Zusammenhang zwischen dem Abiturnotendurchschnitt und der voraussichtlichen Entscheidung zukünftiger Ärzte, in diesen Gebieten zu arbeiten. Zudem eruierten wir, ob die Studierenden Wartesemester oder praktische Erfahrungen im Gesundheitswesen vorweisen können und ob ihre Eltern als Ärzte arbeiteten.

Abhängige und unabhängige Variablen

Abhängige Variablen

In beiden Umfragen fragten wir die Studierende nach ihren lokalen Präferenzen für ihre spätere berufliche Tätigkeit bezüglich ländlichen oder städtischen Gegenden bzw. einer Beschäftigung im Ausland. Wir berücksichtigen diese drei Möglichkeiten separat in der deskriptiven Analyse, wohingegen wir in der multivariaten Analyse die beiden letztgenannten Optionen kombinieren und sie mit den ländlichen Regionen vergleichen. In der Befragung des Jahres 2014 ermittelten wir zusätzlich die ersten, zweiten und dritten Präferenzen aus einer umfassenden Menge an Spezialisierungsmöglichkeiten, speziell auch die Tätigkeit als Allgemeinarzt.

Unabhängige Variablen

In beiden Umfragen erhoben wir demographische Merkmale der Studierenden (Alter und Geschlecht), die Berufstätigkeit der Eltern, ein Maß für subjektive Einkommenserwartung, ein Maß für die Risikoerwartung sowie die Notendurchschnitte im Abitur und Physikum. 2014 fragten wir zusätzlich nach Wartesemestern und vorheriger praktischer Erfahrung im Gesundheitssектор, z.B. Praktika.

Details zu Maßzahlen und Umformungen

Für die Regressionsanalyse standardisieren wir die Abiturnoten, indem wir den Mittelwert abziehen und durch die Standardabweichung teilen. Die standardisierte Variable hat einen arithmetischen Mittel von null und eine Standardabweichung von eins.

Zur Evaluation der Einkommenserwartungen der Studierenden stellten wir fünf Fragen der Art „Wie hoch schätzt Sie die Wahrscheinlichkeit ein, dass Ihr Nettoeinkommen (abzüglich Abgaben und Steuern) fünf Jahre nach Ihrem Abschluss unter X Euro pro Monat liegt?“. Innerhalb dieser
fünf Fragen wurde X inkrementell erhöht. Mit Hilfe eines statistischen Algorithmus, der die subjektive Verteilung der erwarteten Einkommen nicht-parametrisch approximiert, kann somit der Erwartungswert dieser Verteilungen geschätzt werden [7], [8]. Wir erheben zusätzlich ein Maß der Risikoaversion, da gezeigt wurde, dass diese eine wichtige Rolle bei der Entscheidung zur Selbständigkeit oder der Wahl eines Berufs mit (relativ) hoher Einkommensvarianz spielt. Dazu fragten wir die Studierenden, wie risikofreudig sie sich selbst auf einer Skala von eins („gar nicht“) bis zehn („sehr“) einschätzten. Dieses Maß wurde im deutschen Sozio-ökonomischen Panel (SOEP) etabliert und durch Experimente und Feldforschung bestätigt [9]. Wir verwenden dieses Maß zur Erzeugung einer binären Variable, die angibt, ob die Risikoaversion eines Studierenden im Vergleich zu den anderen Befragten in der oberen oder unteren Hälfte der Verteilung liegt.

Statistische Methoden

Zuerst ermitteln wir mit Hilfe eines t-Tests, ob zwischen den Gruppen Unterschiede in den Mittelwerten der erklärenden Variablen bestehen. Daraufhin führen wir multivariate Regressionsanalysen durch, um den Effekt der unabhängigen Variablen ceteris paribus zu bestimmen und multiple Tests zu ermöglichen. Wegen der dichotomen Skalierung der abhängigen Variablen verwenden wir Probit-Modelle. Aufgrund der großen Bedeutung von Hausärzten für ländliche Gebiete modellieren wir die Entscheidung für eine Tätigkeit auf dem Land und den Entschluss, Allgemeinmediziner zu werden, gemeinsam, indem wir ein bivariates Probit-Modell schätzen. Da die zweite Variable nur in der Umfrage von 2014 erfasst wurde, beschränken wir die multivariate Analyse auf diese Stichprobe. Beide Regressanden werden von folgenden Faktoren beeinflusst: Männlich, mindestens ein Elternteil ist Arzt, Abiturnote, Physikumsnote, Medizinererwartungen, Risikoaversion, War tesemester und Arbeits erfahrung im Gesundheitswesen. Wir schätzen beide Gleichungen simultan mit Hilfe eines bivariaten Probit-Modells, unter der Annahme einer gemeinsamen Verteilung der Fehlerterme mit einem Mittelwert von null, Varianzen von eins und einem Korrelationskoeffizienten, der als Parameter zusammen mit den Koeffizienten der Kovariaten geschätzt werden kann [10].

Wir verwenden das bivariate Probit-Modell aus mehreren Gründen: Mit Probit- und Logit-Modellen können Aussagen über den Effekt der erklärenden Variablen auf jeder der beiden abhängigen Variablen separat getroffen werden. Beispielsweise könnten damit Rückschlüsse gezogen werden, wie das Geschlecht entweder die Wahrscheinlichkeit für eine Tätigkeit als Allgemeinmediziner oder die Wahrscheinlichkeit der Beschäftigung in einem ländlichen Gebiet beeinflusst. Ein bivariates Probit-Modell ermöglicht nicht nur die Bewertung solcher Hypothesen, sondern erlaubt es auch, gleichzeitig Hypothesen bezüglich des Einflusses der erklärenden Variablen auf die gemeinsame Verteilung der beiden abhängigen Variablen zu testen. Zum anderen kann mit dem bivariaten Probit-Modell direkt getestet werden, ob die unbeobachteten Einflussfaktoren (d.h. die Fehlerterme) der beiden Gleichungen für die abhängigen Variablen „Entscheidung für eine Tätigkeit als Allgemeinarzt“ und „Entscheidung, in einer ländlichen Region zu praktizieren“ miteinander korreliert sind. Das Modell gibt zudem das Vorzeichen dieser Korrelation an.

3. Ergebnisse

In der Befragung von 2014 (2012) gaben etwa 15,9 (17,7) Prozent der Teilnehmer an, in einer ländlichen Gegend in Deutschland zu arbeiten zu wollen, wohingegen 69,1 (66,9) Prozent eine Tätigkeit in einer deutschen Stadt anstrebten und 15,03 (15,05) Prozent im Ausland arbeiten wollten. In der zweiten Befragung (2012) antworteten 10,2 Prozent der Studierenden, dass Allgemeinmedizin ihre erste Berufspräferenz sei. Der Korrelationskoeffizient der beiden abhängigen Variablen im Jahr 2014 ist 0,202. Tabelle 1 enthält deskriptive Statistiken und verbale Definitionen aller Variablen. Wir interessieren uns insbesondere für die Unterschiede der Mittelwerte der erklärenden Variablen zwischen den Studierenden, die in einer ländlichen Region in Deutschland arbeiten wollen, und allen anderen Studierenden, die als Vergleichsgruppe dienen. Im Vergleich zu dieser Gruppe haben jene, die in einer ländlichen Gegend praktizieren wollen, schlechtere, aber immer noch sehr gute Abiturnoten (zweiseitige t-Tests, p=0,063 für 2012 und p=0,026 für 2014). Darüber hinaus warteten die Studierenden, die später auf dem Land arbeiten wollen, länger auf ihren Studienplatz. Die Differenz ist jedoch bei einem zweiseitigen t-Test auf dem Zehn-Prozent-Niveau nicht signifikant. Zudem hatten sie vor dem Studium deutlich mehr praktische Erfahrung im Gesundheitswesen (diese Frage wurde im Jahr 2014 gestellt; zweiseitiger t-Test, p=0,072). Ihre Eltern sind außerdem häufiger selbst Ärzte. Der Unterschied zwischen den beiden Gruppen ist aber nur für 2014 auf dem Zehn-Prozent-Niveau signifikant (zweiseitiger t-Test, p=0,051). Bei Medizinstudierenden, die eine Beschäftigung in ländlichen Gebieten anstreben, zeigte sich im Vergleich auch eine deutlich höhere Risikoaversion (zweiseitiger t-Test, p=0,054 für 2012 und p=0,012 für 2014). Die Einkommenserwartungen sind für beide Gruppen überraschend ähnlich – für 2014 zeigt sich kein Unterschied. Für beide Teile der Stichprobe liegt das erwartete monatliche Einkommen (nach Abzug von Steuern und Abgaben) bei 4.400 Euro; auch die geschätzten Varianzen der erwarteten Einkommen sind in den beiden Gruppen sehr ähnlich. Im Jahr 2012 war das erwartete Einkommen für die Studierenden, die eine Beschäftigung auf dem Land anstreben, mit 4.200 Euro etwas geringer als für die Vergleichsgruppe (4.300 Euro). Bei deren Teilnehmern, die eine Tätigkeit im Ausland in Betracht ziehen, zeigen sich keine signifikanten Unter-
schiene der betrachteten Merkmale zu anderen Studierenden. Eine bemerkenswerte Ausnahme von diesem Ergebnis ist, dass die Abiturnoten in dieser Gruppe besser sind. Die Differenz ist 2012 statistisch signifikant (zweiseitiger t-Test, p=0,005). In den Daten des Jahres 2014 ist der Unterschied geringer und bei einem zweiseitigen t-Test auf dem zehn Prozent Niveau nicht signifikant. Folglich ergibt sich für diese Gruppe auch eine signifikant geringere Anzahl an Wartesemestern (diese Frage wurde nur 2014 gestellt; zweiseitiger t-Test, p=0,058).

Im nächsten Schritt analysieren wir alle gemessenen Determinanten für die Entscheidung, auf dem Land zu arbeiten, gemeinsam mit einer multivariaten Regression. (Die berichteten Signifikanztests berücksichtigen somit auch das Vorliegen multipler Hypothesen.) Wie bereits erklärt, verwenden wir 2012 dichotome abhängige Variablen und schätzen deswegen ein bivariates Probit-Modell. Dieses Modell erlaubt es, nicht nur den Effekt der erklärenden Variablen auf die beiden abhängigen Variablen (Tätigkeit auf dem Land und Tätigkeit als Allgemeinmediziner) separat zu schätzen, sondern auch auf die gemeinsame Wahrscheinlichkeit, als Hausarzt in einer ländlichen Gegend zu praktizieren. In Tabelle 2 zeigen wir die beiden Entscheidungen getrennt voneinander und geben die marginalen Effekte am Mittelwert der abhängigen Variable an (für binäre erklärende Variablen geben wir den Effekt einer Veränderung von null auf eins an). Drei Faktoren erhöhen ceteris paribus die Wahrscheinlichkeit einer Präferenz für eine Beschäftigung in ländlichen Gebieten signifikant:

1. mindestens ein Elternteil ist Arzt,
2. schlechtere Abiturnoten und
3. höhere Risikoaversion.

Interessanterweise finden wir zudem, dass zwei dieser Variablen – ein Elternteil ist Arzt und höhere Risikoaversion – gleichzeitig die Wahrscheinlichkeit für die Präferenz einer Tätigkeit als Hausarzt erhöhen. Bezüglich der Größe der marginalen Effekte zeigt sich, dass die Wahrscheinlichkeit für die Präferenz einer Tätigkeit als Hausarzt (10,2 Prozent für alle Studierenden) geringer ist als die Wahrscheinlichkeit einer Präferenz für ländliche Gebiete (15,9 Prozent). Wenn mindestens ein Elternteil Arzt ist, erhöhen sich die Wahrscheinlichkeit, Hausarzt werden zu wollen, um 56,9 Prozent und die Wahrscheinlichkeit einer Präferenz für die Tätigkeit in

### Tabelle 1: Variablendefinition und deskriptive Statistiken

| Variable                          | Beschreibung                                                                 | 2012 | 2014 |
|-----------------------------------|------------------------------------------------------------------------------|------|------|
| Hausarzt                          | Binäre Variable. Gibt an, ob Befragte(r) eine Tätigkeit als Hausarzt in Deutschland in Erwägung zieht. | 0.10 | 0.30 |
| Beschäftigung auf dem Land        | Binäre Variable. Gibt an, ob Befragte(r) eine Beschäftigung auf dem Land in Deutschland in Erwägung zieht. | 0.18 | 0.36 |
| Männliches Geschlecht             | Binäre Variable. Gibt an, ob Befragte(r) männlich ist.                      | 0.33 | 0.47 |
| Eltern sind Ärzte                 | Binäre Variable. Gibt an, ob mindestens ein Elternteil Arzt ist.             | 0.29 | 0.45 |
| Abiturnote                        | Durchschnittliche Abiturnote (standardisiert).                              | 0.00 | 1.00 |
| Physikum                          | Durchschnittliche Physikumsnote (standardisiert).                           | 0.00 | 1.00 |
| Risikoaversion                    | Risikoaversion.                                                              | 0.43 | 0.50 |
| Mittlere Einkommenserwartung      | Medianeinkommenserwartung in 1.000 EUR.                                      | 4.32 | 0.74 |
| Wartesemester                     | Binäre Variable. Gibt an, ob Befragte(r) mindestens ein Wartesemester hat.   | 0.19 | 0.39 |
| Praktische Arbeits erfahrungen    | Binäre Variable. Gibt an ob Befragte(r) Erfahrung im Gesundheitssektor besitzt | 0.53 | 0.50 |
Tabelle 2: Multivariate Regressionsergebnisse (marginale Effekte auf marginale Wahrscheinlichkeiten des bivariaten Probit-Modells)

| Erklärende Variablen | Koeffizienten | Allgemeinarzt | Landarzt |
|----------------------|---------------|---------------|----------|
| Männlich             | -0.047        | -0.044        |          |
| Mindestens ein Elternteil ist Arzt | 0.058* | 0.075** |          |
| Abiturnote           | 0.014         | 0.045**       |          |
| Physik               | 0.011         | 0.019         |          |
| Median des erwarteten Einkommens (in 1000 EUR) | 0.007 | 0.030 |          |
| Risikoaversion       | 0.056**       | 0.103***      |          |
| Wartesemester        | -0.029        | -0.029        |          |
| Praktische Erfahrung | -0.013        | 0.027         |          |

Anzahl der Beobachtungen 459 459

Hinweis: Die Tabelle gibt die marginalen Effekte der erklärenden Variablen auf die marginalen Wahrscheinlichkeiten, entweder auf dem Land zu arbeiten oder Hausarzt zu werden, an (Koeffizienten auf Basis eines bivariaten Probit-Modells). Standardfehler in Klammern. *** p<0,01, ** p<0,05, * p<0,1.

Die Regressionsergebnisse lassen Rückschlüsse auf Variablen zu, die eine Präferenz für eine spätere Tätigkeit als Landarzt beeinflussen. Die Abiturnoten der Medizinstudierenden sind ein solcher Einflussfaktor. Eine Verschlechterung der Abiturnoten um eine Standardabweichung macht es um 28,3 Prozent wahrscheinlicher, eine solche Tätigkeit auf dem Land anzustreben. Dazu einige spezifische Ergebnisse:

- Eine Abiturnote von unter 55 (64,8) Prozent erhöht die Wahrscheinlichkeit, einen Beruf als Hausarzt zu ergreifen, um 55 (64,8) Prozent.
- Ein Elternteil als Arzt erhöht die Wahrscheinlichkeit, dass die Studierenden den Beruf als Hausarzt ergreifen, um 30,4 Prozent.
- Schlechtere Abiturnoten erhöhen die Wahrscheinlichkeit, einen Beruf als Hausarzt zu ergreifen, um 12 Prozent.
- Eine höhere Risikoaversion erhöht die Wahrscheinlichkeit, ein Beruf als Hausarzt zu ergreifen, um 34,8 Prozent.

Die Fehlterme der beiden indiesem bivariaten Probit-Modell gemeinsam geschätzten Regressionsgleichungen signifikant miteinander korreliert sind (siehe den Schätzwert der Korrelation in der untersten Zeile von Tabelle 3). Es zeigt sich, dass die Fehlerterme der beiden in diesem bivariaten Probit-Modell gemeinsam geschätzten Regressionsgleichungen signifikant miteinander korreliert sind (siehe den Schätzwert der Korrelation in der untersten Zeile von Tabelle 3).

Die Untersuchung der Motivation würde damit zu einem wichtigen Bestandteil des Auswahlverfahrens. Eine vielversprechende Informationsquelle könnte der Lebenslauf der Bewerber sein, siehe [11]. Eine Reihe von Aktivitäten können Anzeichen für die intrinsische Motivation sein, im Gesundheitsbereich zu arbeiten (siehe z.B. [12]). Dies könnte beispielsweise die Absolvierung eines freiwilligen sozialen Jahres, soziales Engagement in Projekten mit Kindern, älteren Personen oder Behinderten sowie freiwillige Arbeit in religiösen Gemeinschaften sein. Universitäten könnten den Zugang für Bewerber erleichtern, die in diesen Bereichen engagiert sind, aber relativ schlechtere Noten haben. In vielen anderen Institutionen

4. Diskussion

Die Regressionsergebnisse lassen Rückschlüsse auf Variablen zu, die eine Präferenz für eine spätere Tätigkeit als Landarzt beeinflussen. Das möglicherweise interessanteste Resultat bezieht sich auf die Abiturnoten der Medizinstudierenden: Der Notendurchschnitt der Studierenden, die eine Beschäftigung auf dem Land anstreben, ist schlechter. Eine Absenkung des Numerus clausus würde demnach zu einem höheren Anteil dieser Gruppe führen. Da dieses Vorgehen jedoch zwangsläufig eine Erhöhung der Studierendenzahlen und damit einen Anstieg der Ausbildungskosten sowie des Gesamtangebots an Ärzten hervorrufen, dürfte es bei Politikern und ärztlichen Berufsverbänden kaum auf Akzeptanz stoßen. Im Folgenden diskutieren wir zwei Instrumente, die die regionalen Ungleichgewichte in den Standortentscheidungen beseitigen könnten, ohne die Anzahl der Studierenden (und Ärzte) zu erhöhen.

Die erste denkbare Maßnahme ist die Einführung mehrdimensionaler Zulassungskriterien. So könnten Medizinische Fakultäten nicht nur die Abiturnote der Bewerber, sondern auch ihre Motivation für das Studium berücksichtigen. Insbesondere für diejenigen Bewerber, die eine Beschäftigung als Landarzt anstreben, sollte die Zulassung für das Medizinstudium vereinfacht werden. Die Untersuchung der Motivation würde damit zu einem wichtigen Bestandteil des Auswahlverfahrens. Eine vielversprechende Informationsquelle könnte der Lebenslauf der Bewerber sein, siehe [11]. Eine Reihe von Aktivitäten können Anzeichen für die intrinsische Motivation sein, im Gesundheitsbereich zu arbeiten (siehe z.B. [12]). Dies könnte beispielsweise die Absolvierung eines freiwilligen sozialen Jahres, soziales Engagement in Projekten mit Kindern, älteren Personen oder Behinderten sowie freiwillige Arbeit in religiösen Gemeinschaften sein. Universitäten könnten den Zugang für Bewerber erleichtern, die in diesen Bereichen engagiert sind, aber relativ schlechtere Noten haben. In vielen anderen Institutionen
Tabelle 3: Multivariate Regressionsergebnisse (marginale Effekte auf gemeinsame Wahrscheinlichkeit des bivariaten Probit-Modells)

| Erklärende Variablen                      | Ergebnis Allgemeinarzt & Landarzt |
|-------------------------------------------|-----------------------------------|
| Männlich                                  | -0.020* (0.012)                   |
| Mindestens ein Elternteil ist Arzt        | 0.028** (0.012)                   |
| Abiturnote                                | 0.011* (0.007)                    |
| Physikum                                  | 0.006 (0.005)                     |
| Median des erwarteten Einkommens (in 1000 EUR) | 0.007 (0.008)                   |
| Risikoaversion                            | 0.032*** (0.012)                 |
| Wartesemester                             | -0.013 (0.017)                    |
| Praktische Erfahrung                      | 0.001 (0.011)                     |

Anzahl der Beobachtungen: 459
Korrelationskoeffizient der Fehlerterme: 0.403***

Hinweise: Die Tabelle gibt die marginalen Effekte der erklärenden Variablen auf die gemeinsame Wahrscheinlichkeit, auf dem Land zu arbeiten oder Hausarzt zu werden, an (Koeffizienten auf Basis eines bivariaten Probit-Modells). Standardfehler in Klammern. *** p<0.01, ** p<0.05, * p<0.1.

und Disziplinen werden derartige Kriterien in Auswahlprozessen bereits miteinbezogen. Alternativ könnten Auswahlgespräche mit den Bewerbern Rückschlüsse auf die Studienmotivation zulassen. Seit längerem werden „Multiple Mini-Interviews“ (MMIs) zur Auswahl der Medizinstudierenden verwendet. In der Regel werden dazu mehrere etwa acht Minuten dauernde Gespräche mit verschiedenen Befragern durchgeführt. Die Leistung des Bewerbers hängt in MMIs weniger von kognitiven als von nicht-kognitiven Fähigkeiten ab, wie moralischem Urteilsvermögen, Beweggründe für das Studium und Ehrlichkeit, siehe z.B. [13]. Die Bereitschaft zur Tätigkeit als Allgemeinarzti könnte ebenfalls durch MMIs evaluiert werden. Zudem könnten Wartesemester als Signal für die Motivation interpretiert werden. Bei ursprünglich abgelehnten Bewerbern wird die Anzahl der Wartesemester positiv im Zulassungsverfahren berücksichtigt. Anstatt ein anderes Fach zu studieren, arbeiten viele Studierende im Gesundheitssektor, z.B. als Krankenpflegekraft oder medizinische Fachangestellte. Wir vermuten, dass eine hohe intrinsische Motivation, als Arzt zu arbeiten, die Bereitschaft zur Akkumulation von Wartesemestern erhöht. In Deutschland wird jedoch aktuell nur ein vergleichsweise geringer Anteil von 20 Prozent aufgrund der Wartesemester zum Studium zugelassen.
Bisher wurde der Erfolg von Zulassungskriterien vor allem auf Basis von Absolventenquoten und Abschlussnoten bewertet. Angesichts ihrer großen gesundheitspolitischen Bedeutung schlagen wir vor, die spätere Wahl der Spezialisierung als weiteres Kriterium zur Evaluation von Zulassungskriterien aufzunehmen. Die Entscheidung für eine Tätigkeit als Allgemeinarzt könnte auch durch eine Veränderung des Studienplans des medizinischen Grundstudiums beeinflusst werden. Eine aktuelle Beobachtungsstudie an der Universität Leipzig zeigt, dass ein stark praxisorientiertes, familienmedizinisches Curriculum den Anteil der Absolventen, die eine Tätigkeit als Hausarzt anstreben, erhöht [14]. Die Existenz eines unabhängigen Instituts sowie eines Lehrstuhls für Allgemeinmedizin scheinen auf diesen Anteil einen positiven Einfluss zu haben [15]. Diese Evidenz wird von [16], einer Umfrage unter Medizinstudierenden an sieben deutschen Universitäten, die im praktischen Jahr Allgemeinmedizin als Wahlfach gewählt hatten, unterstützt. Diese Daten zeigen, dass eine höhere Zufriedenheit mit der Ausbildung in diesem Bereich zu einer stärkeren Motivation führt, eine Karriere als Hausarzt einzuschlagen. Aber auch postgraduale Weiterbildung und das Berufsbild des Allgemeinarztes spielen bei der Entscheidung, Hausarzt zu werden, eine entscheidende Rolle [17]: In einer deutschlandweiten Stichprobe von Allgemeinmedizinern in Weiterbildung erwägen 89 Prozent die Tätigkeit in eigener Praxis, 77 Prozent können sich dies in einem ländlichen Umfeld vorstellen. Schlüsselfaktoren für ihre Bereitschaft zur Tätigkeit als Landarzt waren eine familienfreundliche Umgebung, die ländliche Lage an sich und die Möglichkeit zur Zusammenarbeit mit Kollegen.
Grenzen der Studie

Zum einen beinhalten unsere Daten nur die Abiturnoten- schnitte der Studierenden. Diese entscheiden zwar über die Zulassung zum Studium, setzen sich aber aus verschiedenen Fächern wie Mathematik, Sprachen oder Naturwissenschaften zusammen. Es wäre wichtig zu wissen, auf welche Disziplinen sich unsere Ergebnisse zurückführen lassen, d.h. in welchen Fächern die Studierenden mit einer Präferenz für die Beschäftigung als Landarzt schlechter (oder besser) als die anderen Studierenden abschneiden. Außerdem sollte dabei die Relevanz dieser Fächer für die tägliche Arbeit als Arzt berücksichtigt werden. Falls diejenigen Fächer, in denen die Studierenden mit einer Präferenz für die Beschäftigung als Landarzt schlechter abschneiden, nicht essentiell für die Arbeitsleistung sind, hätte eine Veränderung der Zulassungsbeschränkungen keine negativen Auswirkungen auf die Qualifikation der Ärzte.

Zum anderen messen wir nur die Präferenzen der Studierenden während ihres Studiums und nicht ihre tatsächlichen beruflichen Entscheidungen. Um den Zusammenhang von Eintrittsbeschränkungen für das Medizinstudium und die Berufswahl zu bestimmen, wären longitudinale Umfragedaten über das Studium und frühe Phasen des Berufslebens der Ärzte hinweg sehr hilfreich. Insbesondere sich im Laufe des Studiums verändernde Karrierepläne machen dies zu einem relevanten Thema (siehe z.B. [18]). Für den Effekt der Herkunft auf die Standortentscheidung wäre zudem die Frage wichtig gewesen, ob die Studierenden in einer Stadt oder auf dem Land aufgewachsen sind. Weitere Studien sollten diesen Faktor in ihren Umfragen berücksichtigen.

Die Rücklaufquoten der Befragungen betrugen 25 Prozent (2012) respektive 15 Prozent (2014). Folglich sind unsere Resultate nicht für alle Studierenden repräsentativ. Obwohl höhere Rücklaufquoten wünschenswert gewesen wären, sind sie wegen der in den letzten beträchtlich gesunkenen Antwortraten nicht ungewöhnlich niedrig für sozialwissenschaftliche Umfragen, siehe [19]. Darüber hinaus wären Daten von mehr als zwei Universitäten sinnvoll gewesen. Obwohl fortlaufende Weiterbildung für die Standortentscheidung praktizierender Ärzte auch eine Rolle spielen könnte, haben wir in unserer Studie nur Medizinstudierende berücksichtigt. Aufgrund der zunehmenden Wichtigkeit für die Ärzte, auf dem neuesten Stand medizinischer Technik zu bleiben, hat diese Thematik in den letzten Jahren an Aufmerksamkeit gewonnen (siehe z.B. [20]).

Implikationen für politische Entscheidungen

Maßnahmen zur Erhöhung des Angebots an Landärzten könnten sich auf die Tatsache stützen, dass die Studierenden, die in einer ländlichen Gegend praktizieren möchten, aus einer Bewerbergruppe mit einem spezifischen Profil stammen. Instrumente wie mehrdimensionale Zulassungskriterien oder die Differenzierung des Medizinstudiums in verschiedene Studienprogramme könnten die Knappheit an Landärzten reduzieren. Insbesondere für Bewerber mit praktischen Arbeitserfahrungen im Gesundheitssektor oder für solche, deren Eltern bereits auf dem Land praktizieren, könnte der Numerus clausus ge lockert werden. Auch ein spezielles Studienprogramm für Allgemeinmediziner könnte angehende Ärzte besser auf ihre Tätigkeit vorbereiten. Die ökonomische Literatur zeigt, dass Individuen mit höherer gemessener Risikoaversion seltener dazu bereit sind, volatile Einkommen zu akzeptieren und sich selbstständig zu machen. Da angehende Landärzte in unserer Studie risikoaverser sind, sollten sie während ihrer Facharztausbildung und der Gründung einer eigenen Praxis unterstützt werden, beispielsweise in Form von vergünstigten Darlehen, Hilfe bei der Vernetzung mit Kollegen oder unterstützender Infrastruktur.

Anmerkungen

1 Ein Logit-Modell würde annehmen, dass die Fehlerterme einer Extremwertverteilung vom Typ II folgen. Allgemein sind die geschätzten Werte von Logit- und Probit-Modellen sehr ähnlich. Dies trifft auch für unsere Daten zu.

2 Entgegen dieser Vermutung findet [21], dass Studierende mit einer positiven Anzahl an Wartesemestern signifikant schlechtere Noten hatten als Studierende ohne Wartesemester.

Danksagung

Wir danken für die Unterstützung der Deutschen Forschungsgemeinschaft durch den SFB/TR 15. Wir danken außerdem Suzan Elshout und dem Team von Programmiern von CentERdata Tilburg und Pascal Berberat von der Technischen Universität München für die Unterstützung bei der Datenerhebung und der Probandengewinnung.

Interessenkonflikt

Die Autoren erklären, dass sie keine Interessenkonflikte im Zusammenhang mit diesem Artikel haben.

Literatur

1. Misfeldt R, Linder J, Lait J, Hepp S, Armitage G, Jackson K, Suter E. Incentives for improving human resource outcomes in health care: overview of reviews. J Health Serv Res Pol. 2014;19(1):52-61. DOI: 10.1177/1355819613505746
2. Kruse J. Income Ratio and Medical Student Specialty Choice: The Primary Importance of the Ratio of Mean Primary Care Physician Income to Mean Consult–ing Specialist Income. Fam Med. 2013;45(4):281-283.
3. Sivey P, Scott A, Witt J, Joyce C, Humphreys J. Junior doctors’ preferences for specialty choice. J Health Econ. 2012;31(6):813-823. DOI: 10.1016/j.jhealeco.2012.07.001

4. Serneels P, Montalvo JG, Pettersson G, Liens T, Butera JD, Kidanu A. Who wants to work in a rural health post? The role of intrinsic motivation, rural background and faith-based institutions in Ethiopia and Rwanda. B World Health Organ. 2010;88(5):342-349. DOI: 10.2471/BLT.09.072728

5. Korzilus H. Hausärztemangel in Deutschland: Die große Landflucht. Dtsch Arztebl. 2008;105(8):A373-A374.

6. Richter-Kuhlmann EA. Arztzahlstudie von BÄK und KBV: Die Lücken werden größer. Dtsch Arztebl. 2010;107:A-1670, B-1478, C-1458.

7. Dominitz J, Manski C. Using expectations data to study subjective income expectations. J Am Stat Assoc. 1997;92(439):855-867. DOI: 10.1080/01621459.1997.10474041

8. Bellemare C, Bissonnette L, Kröger S. Flexible approximation of subjective expectations using probability questions. J Bus Econ Stat. 2012;30(1):125-131. DOI: 10.1198/jbes.2011.09053

9. Dohmen T, Falk A, Huffman D, Sunde U, Schupp J, Wagner GG. Individual risk attitudes: Measurement, determinants, and behavioral consequences. J Eur Econ Assoc. 2011;9(3):522-550. DOI: 10.1111/j.1542-4774.2011.01015.x

10. Fleming CM, Kler P. I’m too clever for this job: a bivariate probit analysis on overeducation and job satisfaction in Australia. Appl Econom. 2008;40(9):1123-1138. DOI: 10.1080/00036840600771254

11. Heinz M, Schumacher H. Signaling cooperation. CEPR Working Paper No. 10942. London: CEPR; 2015.

12. Hulsman RL, van der Ende JS, Oort FJ, Michels RP, Casteelen G, Griffioen FM. Effectiveness of selection in medical school admissions: evaluation of the outcomes among freshmen. Med Educ. 2007;41(4):369-377. DOI: 10.1111/j.1365-2929.2007.02708.x

13. Pau A, Jeevaratnam K, Chen YS, Fall AA, Khoo G, Nadarajah VD. The multiple mini-interview (MMI) for student selection in health professions training – a systematic review. Med Teach. 2013;35(12):1027-1041. DOI: 10.3109/0142159X.2013.829912

14. Deutsch T, Lippmann S, Fresse T, Sandholzer. Who wants to become a general practitioner? Student and curriculum factors associated with choosing a GP career – a multivariable analysis with particular consideration of practice-oriented GP courses. Scand J Prim Health Care. 2015;33(1):47-53. DOI: 10.3109/02813432.2015.1020661

15. Schneider A, Karsh-Voekl M, Rupp A, Fischer MR, Dresler H, Schelling J, Berberat P. Determinanten für eine hausärztliche Berufswahl unter Studierenden der Medizin: Eine Umfrage an drei bayerischen Medizinsichen Fakultäten. GMS J Med Educ. 2013;30(4):Doc45. DOI: 10.3205/zma000868

16. Böhme K, Kotterer A, Simmenroth-Nayda A. Family practice as clinical elective – solution to combat shortage of future FP care? Z Alig Med. 2013;89(11):452-458.

17. Steinhäuser J, Annan N, Ross M, Szecsenyi J, Joos S. Approaches to reduce shortage of general practitioners in rural areas – results of an online survey of trainee doctors. Med Wochenschr. 2011;136(34-35):1715-1719. DOI: 10.1055/s-0031-1272576

18. Buddeberg-Fischer B, Klagofer R, Stamm M, Marty F, Dreiding P, Zoller M, Buddeberg C. Primary care in Switzerland – no longer attractive for young physicians? Swiss Med Wkly. 2006;136(27-28):416-424.

19. Meyer BD, Mok WK, Sullivan JX. Household surveys in crisis. J Econ Perspect. 2015;29(4):199-226. DOI: 10.1257/jep.29.4.199

20. Herrmann WJ. International standards for postgraduate family medicine education compared to Germany. Z Alig Med. 2013;89(10):407-411.

21. Kadmon G, Resch F, Duelli R, Kadmon M. Predictive value of the school-leaving grade and prognosis of different admission groups for academic performance and continuity in the medical course – a longitudinal study. GMS J Med Educ. 2014;31(2):Doc21. DOI: 10.3205/zma000913

Korrespondenzadresse:
Joachim Winter
Universität München, Volkswirtschaftliche Fakultät, Seminar für Empirische Wirtschaftsforschung, Ludwigstraße 33, 80539 München, Deutschland, Tel.: +49 (0)89/2180-2459, Fax: +49 (0)89/2180-99-2459 winter@lmu.de

Bitte zitieren als
Kesternich I, Schumacher H, Winter J, Fischer MR, Holzer M. Student characteristics, professional preferences, and admission to medical school. GMS J Med Educ. 2017;34(1):Doc5. DOI: 10.3205/zma001082, URN: urn:nbn:de:0183-zma0010825

Artikel online frei zugänglich unter
http://www.europeanms.de/en/journals/zma/2017-34/zma001082.shtml

Eingereicht: 06.05.2016
Überarbeitet: 15.09.2016
Angenommen: 09.11.2016
Veröffentlicht: 15.02.2017

Copyright ©2017 Kesternich et al. Dieser Artikel ist ein Open-Access-Artikel und steht unter den Lizenzbedingungen der Creative Commons Attribution 4.0 License (Namensnennung). Lizenz-Angaben siehe http://creativecommons.org/licenses/by/4.0/.