Abstract. Let G be an algebraic group defined over an algebraically closed field k of characteristic zero. We give a simple proof of the following result: if $H^1(K_0, G) = \{1\}$ for some finitely generated field extension K_0/k of transcendence degree ≥ 3 then $H^1(K, G) = \{1\}$ for every field extension K/k.

ON A PROPERTY OF SPECIAL GROUPS

Z. REICHSTEIN AND B. YOUSSEIN

1. Introduction

Let G be an algebraic group. J.-P. Serre stated the following conjectures in [Se$_2$] (see also [Se$_3$, Chapter III]).

Conjecture I: If G is connected then $H^1(K, G) = \{1\}$ for every field K of cohomological dimension ≤ 1.

Conjecture II: If G is semisimple, connected and simply connected then $H^1(K, G) = \{1\}$ for every field K of cohomological dimension ≤ 2.

Conjecture I was proved by Steinberg [St$_1$]. Conjecture II remains open, though significant progress has been made in recent years; see [BP] and [Gi].

Our main result is a partial converse of Conjectures I and II. Recall that an algebraic group G is called special if $H^1(K, G) = \{1\}$ for every field K of transcendence degree d.

Theorem 1. Let G be an algebraic group defined over an algebraically closed field k of characteristic zero. Suppose $H^1(K, G) = \{1\}$ for some finitely generated field extension K of transcendence degree d.

(a) If $d \geq 1$ then G is connected.

(b) If $d \geq 2$ then G is simply connected.

(c) If $d \geq 3$ then G is special.

Note that the cohomological dimension of K equals d; see [Se$_3$, Section II.4]. Thus, informally speaking, the theorem may be interpreted as saying that Conjectures I and II cannot be extended or strengthened in a meaningful way.

Our proof of Theorem 1 is rather simple; the idea is to use nontoral finite abelian subgroups of G as obstructions to the vanishing of H^1. We remark that our argument (and, in particular, the proof of Lemma 3) does not rely on canonical resolution of singularities; cf. [RY, Remark 4.4].

1991 Mathematics Subject Classification. 14L30, 20G10.

Z. Reichstein was partially supported by NSF grant DMS-9801675 and (during his stay at MSRI) by NSF grant DMS-9701755.
Ph. Gille recently showed us an alternative proof of Theorem 1, based on case by case analysis and properties of the Rost invariant. We would like to thank him, J.-L. Colliot-Thélène and R. Parimala for informative discussions.

2. Preliminaries

Throughout this note k will denote an algebraically closed base field of characteristic zero. All fields, varieties, morphisms, algebraic groups, etc., will be assumed to be defined over k.

Let G be an algebraic group. An abelian subgroup A of G is called toral if A is contained in a torus of G and nontoral otherwise.

Lemma 2. Let G be an algebraic group, L be a Levi subgroup of G and A be a finite abelian subgroup of L. If A is nontoral in L then A is nontoral in G.

Proof. Assume the contrary: $A \subset T$ for some torus T of G. Since T is reductive, it lies in a Levi subgroup L_1 of G; see [OV, Theorem 6.5]. Denote the unipotent radical of G by U; then L and L_1 project isomorphically onto G/U. Since A is toral in L_1, it is toral in G/U, and hence, in L, as claimed. \qed

Recall that a G-variety X is an algebraic variety with a G-action; X is generically free if G acts freely on a dense open subset of X and primitive if $k(X)^G$ is a field (note that X is allowed to be reducible). Elements of $H^1(K, G)$ are in 1—1 correspondence with G-torsors over K, i.e., birational classes of primitive generically free G-varieties X such that $k(X)^G = K$; see e.g., [Po, Section 1.3]. If X is a primitive generically free G-variety, we shall write $\text{cl}(X)$ for the class in $H^1(k(X)^G, G)$ given by X.

Our proof of Theorem 1 is based on the following result.

Lemma 3. ([RY, Lemma 4.3]) Let G be an algebraic group, A be a nontoral finite abelian subgroup of G and X be a generically free primitive G-variety. Suppose A fixes a smooth point of X. Then $\text{cl}(X) \neq 1$ in $H^1(k(X)^G, G)$.

3. Construction of a nontrivial torsor

Lemma 4. Let A be an abelian group of rank r and let K be a finitely generated field extension of k of transcendence degree $d \geq r$. Then there exists an A-variety Y such that (i) $k(Y)^A = K$ and (ii) Y has a smooth A-fixed point.

Proof. Since k is algebraically closed, A has a faithful r-dimensional representation V_1. Let V_2 be the trivial $(d-r)$-dimensional representation of A, and $V = V_1 \oplus V_2$. Then the (geometric) quotient V/A is isomorphic to the affine space k^d. Denote the origin of V by 0, and its image in V/A by $\bar{0}$.

Let Y_0 be an affine variety over k such that $k(Y_0) = K; \dim(Y_0) = d$. Let $y_0 \in Y_0$ be a smooth point. Identifying $V/A = k^d$, we can find a dominant projection $f: Y_0 \to V/A$ such that $f(y_0) = \bar{0}$ and f is étale at y_0.

Now set $Y = Y_0 \times_{V/A} V$; the A-action on Y is induced from V. The natural projection $Y \to Y_0$ is a rational quotient map for this action; see, e.g., [R,
Lemma 2.16(a)]. Thus \(Y \) satisfies (i). To prove (ii), set \(y = (y_0, 0) \); \(y \) is fixed by \(A \). The morphism \(Y \to V \) is obtained from \(f \) by a base change, and hence, \(\text{étale} \) at \(y \); the smoothness of \(V \) implies then that \(Y \) is smooth at \(y \). Thus, \(y \in Y \) is a smooth point fixed by \(A \).

Proposition 5. Let \(G \) be an algebraic group, \(A \) be a nontoral abelian subgroup of \(G \) of rank \(r \), and \(K/k \) be a field extension of transcendence degree \(d \). If \(d \geq r \) then \(H^1(K, G) \neq \{1\} \).

Proof. Choose an \(A \)-variety \(Y \) and a smooth \(A \)-fixed point \(y \in Y \), as in Lemma 4. We claim that the image of \(c_Y \) under the natural map \(H^1(K, A) \to H^1(K, G) \) is nontrivial. Indeed, recall that the image of \(c_Y \) in \(H^1(K, G) \) is \(c_{X} \), where \(X = G \ltimes_A Y = (G \times Y) / A \) is the (geometric) quotient for the \(A \)-action on \(G \times Y \) given by \(a(g, y') = (ga^{-1}, ay') \); see [PV, Section 4.8]. By [PV, Proposition 4.22], \(G \ltimes_A Y \) is smooth at \(x = (1_G, y) \) since \(Y \) is smooth at \(y \). Moreover, \(x \) is an \(A \)-fixed point of \(X \); thus Lemma 3 tells us that \(c_X \neq 1 \) in \(H^1(K, G) \), as claimed.

4. **Proof of Theorem 1**

In view of Proposition 5 it is sufficient to show that \(G \) contains a nontoral finite abelian subgroup \(A \), where

- \((a') \) rank(\(A \)) = 1, if \(G \) is not connected,
- \((b') \) rank(\(A \)) \leq 2, if \(G \) is not simply connected and
- \((c') \) rank(\(A \)) \leq 3, if \(G \) is not special.

Moreover, in view of Lemma 2 we only need to prove \((a') \), \((b') \), and \((c') \) under the assumption that \(G \) is reductive (otherwise we may replace \(G \) by its Levi subgroup).

Proof of \((a') \): Write \(G = F G_0 \), where \(G_0 \) is the identity component of \(G \) and \(F \) is a finite group; see [V, Proposition 7]. Since \(G \) is disconnected, \(F \) is not contained in \(G_0 \). Choose \(a \in F \setminus G_0 \) and set \(A = \langle a \rangle \). Then \(A \) is cyclic, finite (because \(a \in F \)) and nontoral (because every torus of \(G \) is contained in \(G_0 \)), as desired.

Proof of \((b') \): In view of \((a') \) we may assume without loss of generality that \(G \) is connected. Now the desired conclusion follows from [St2, Theorem 2.27].

Proof of \((c') \): Suppose \(G \) is not special. By [Se4, 1.5.1], \(G \) has a torsion prime \(p \), and by [St2, Theorem 2.28] \(G \) has a nontoral elementary \(p \)-abelian subgroup \(A \) of rank \(\leq 3 \). see also [Se4, 1.3].

\(\square \)
References

[BP] E. Bayer-Fluckiger, R. Parimala, Galois cohomology of classical groups over fields of cohomological dimension \(\leq 2 \), Invent. Math. 122 (1995), 195–229.

[Gi] Ph. Gille, Cohomologie galoisienne des groupes quasi-déployés sur des corps de dimension cohomologique \(\leq 2 \), Compositio Math., to appear.

[Gr] A. Grothendieck, La torsion homologique et les sections rationnelles, Exposé 5, Séminaire C. Chevalley, Anneaux de Chow et applications, 2nd année, IHP, 1958.

[OV] A. L. Onishchik, E. B. Vinberg, Lie Groups and Algebraic Groups. Springer-Verlag, 1990.

[Po] V. L. Popov, Sections in Invariant Theory, Proceedings of the Sophus Lie Memorial Conference, Scandinavian University Press, 1994, 315–362.

[PV] V. L. Popov, E. B. Vinberg, Invariant Theory, in Encyclopaedia of Math. Sciences 55, Algebraic Geometry IV, edited by A. N. Parshin and I. R. Shafarevich, Springer-Verlag, 1994.

[R] Z. Reichstein, On the notion of essential dimension for algebraic groups, Transformation Groups, to appear. Preprint available at http://ucs.orst.edu/~reichstz/pub.html .

[RY] Z. Reichstein, B. Youssin, Splitting fields of \(G \)-varieties, preprint. Available at http://ucs.orst.edu/~reichstz/pub.html .

[Se1] J.-P. Serre, Espaces fibrés algébriques, Exposé 1, Séminaire C. Chevalley, Anneaux de Chow et applications, 2nd année, IHP, 1958.

[Se2] J.-P. Serre, Cohomologie galoisienne des groupes algébriques linéaires, Colloque de Bruxelles (1962), 53–67.

[Se3] J.-P. Serre, Galois Cohomology, Springer, 1997.

[Se4] J.-P. Serre, Sous-groupes fins des groupes de Lie, Séminaire Bourbaki, 1998–99, n° 864, Juin 1999.

[St1] R. Steinberg, Regular elements of semisimple groups, Publ. Math. I.H.E.S. 25 (1965), 281–312. Reprinted in [Se3], pp. 155–186.

[St2] R. Steinberg, Torsion in reductive groups, Advances in Math. 15 (1975), 63–92.

[V] E. B. Vinberg, On invariants of a set of matrices, J. of Lie theory 6 (1996), 249–269.