Source Apportionment of Fine Aerosol at an Urban Site of Beijing using a Chemical Mass Balance Model

Jingsha Xu1, Di Liu2, Xuefang Wu1,3, Tuan V. Vu1,4, Yanli Zhang4, Pingqing Fu5, Yele Sun6, WeiQi Xu7, Bo Zheng8, Roy M. Harrison1,9, Zongbo Shi1,9

1 School of Geography Earth and Environmental Science, University of Birmingham, Birmingham, B15 2TT, UK
2 Now at: Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
3 School of Geology and Mineral Resources, China University of Geosciences Xueyuan Road 29, Beijing, 100083, China
4 Now at: Faculty of Life Sciences & Medicine, King’s College London, London, WC2R 2LS, UK
5 Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
6 Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China
7 State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
8 State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
9 Now at: Laboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS-UVSQ, UMR8212, Gif-sur-Yvette, France

*Correspondence: Zongbo Shi (Z. Shi@bham.ac.uk) and Roy Harrison (r.m.harrison@bham.ac.uk)

Abstract

Fine particles were sampled from 9th November to 11th December 2016 and 22nd May to 24th June 2017 as part of the Atmospheric Pollution and Human Health in a Chinese megacity (APHH-China) field campaigns in urban Beijing, China. Inorganic ions, trace elements, OC, EC, and organic compounds including biomarkers, hopanes, PAHs, n-alkanes and fatty acids, were determined for source apportionment in this study. Carbonaceous components contributed on average 47.2% and 35.2% of total reconstructed PM2.5 during the winter and summer campaigns, respectively. Secondary inorganic ions (sulfate, nitrate, ammonium; SNA) accounted for 35.0% and 45.2% of total PM2.5 in winter and summer. Other components including inorganic ions (K+, Na+, Cl−), geological minerals, and trace metals only contributed 13.2% and 12.4% of PM2.5 during the winter and summer campaigns. Fine OC was explained by seven primary sources (industrial/residential coal burning, biomass burning, gasoline/diesel vehicles, cooking and vegetative detritus) based on a chemical mass balance (CMB) receptor model. It explained an average of 75.7% and 56.1% of fine OC in winter and summer, respectively. Other (unexplained) OC was compared with the secondary OC (SOC) estimated by the EC-tracer method, with correlation coefficients (R2) of 0.58 and 0.73, and slopes of 1.16 and 0.80 in winter and summer, respectively. This suggests that the unexplained OC by CMB was mostly associated with SOC. PM2.5 apportioned by CMB showed that the SNA and secondary organic matter were the highest two contributors to PM2.5. After these, coal combustion and biomass burning were also significant sources of PM2.5 in winter. The CMB results were also compared with results from Positive Matrix Factorization (PMF) analysis of co-located Aerosol Mass Spectrometer (AMS) data. The CMB was found to resolve more primary OA sources than AMS-PMF but the latter apportioned more secondary OA sources. The AMS-PMF results for major components, such as coal combustion OC and oxidized OC correlated well with the results from CMB. However, discrepancies and poor agreements were found for other OC sources, such as biomass burning and cooking, some of which were not identified in AMS-PMF factors.
Keywords: PM$_{2.5}$, Beijing, mass closure, CMB, AMS-PMF, source apportionment
1 Introduction

Beijing is the capital of China and a hotspot of particulate matter pollution. It has been experiencing severe PM$_{2.5}$ (particulate matter with an aerodynamic diameter of ≤2.5µm) pollution in recent decades, as a result of rapid urbanization and industrialization, and increasing energy consumption (Wang et al., 2009). High PM$_{2.5}$ pollution from Beijing could have significant impact on human health (Song et al., 2006a; Li et al., 2013). A case study in Beijing revealed that a 10 µg m$^{-3}$ increase of ambient PM$_{2.5}$ concentration will correspondingly increase 0.78%, 0.85% and 0.75% of the daily mortality of the circulatory diseases, cardiovascular diseases and cerebrovascular diseases, respectively (Dong et al., 2013). Furthermore, PM$_{2.5}$ causes visibility deterioration in Beijing. A better understanding of the sources of PM$_{2.5}$ in Beijing is essential to provide scientific evidence to control the PM$_{2.5}$ pollution.

Many studies have identified the possible sources of fine particulate matter in Beijing using various methods (Zheng et al., 2005; Song et al., 2006a; Song et al., 2006b; Li et al., 2015; Zhang et al., 2013; Yu and Wang, 2013). Song et al. (2006a) applied two eigenvector models, principal component analysis/absolute principal component scores (PCA/APCS) and UNMIX to study the sources of PM$_{2.5}$ in Beijing. Some studies used elemental tracers to do source apportionment of PM$_{2.5}$ by applying positive matrix factorization (PMF) (Song et al., 2006b; Li et al., 2015; Zhang et al., 2013; Yu and Wang, 2013). This approach has some underlying issues: firstly, PMF requires a relatively large sample size; and a “best” solution of achieved factors is subjective (Ulbrich et al., 2009); secondly, many important PM$_{2.5}$ emission sources do not have a unique elemental composition. Hence, an elemental tracer-based method cannot distinguish sources such as cooking or vehicle exhaust, as they emit mainly carbonaceous compounds (Wang et al., 2009). Generally, organic matter (OM) is comprised of primary organic matter (POM) and secondary organic matter (SOM). POM is directly emitted and SOM is formed through chemical oxidation of volatile organic compounds (VOCs) (Yang et al., 2016). OM was the largest contributor to PM$_{2.5}$ mass, which accounted for 30%-60% of PM$_{2.5}$ (Song et al., 2007; He et al., 2001; Huang et al., 2014), and can contribute up to 90% of submicron PM mass (Zhou et al., 2018). Furthermore, many organic tracers are more specific to particular sources, making them more suitable to identify and quantify different source contributions to carbonaceous aerosols and PM$_{2.5}$.

A few studies have also applied a Chemical Mass balance (CMB) model for source apportionment of PM in Beijing. For example, Zheng et al. (2005) investigated sources of PM$_{2.5}$ in Beijing, but the source profiles they used were mainly derived in the United States, which were less representative of the local sources. Liu et al. (2016) and Guo et al. (2013) apportioned the sources of PM$_{2.5}$ in a typical haze episode in winter 2013 in Beijing during the Olympic Games period in summer 2008, respectively. Wang et al. (2009) apportioned the sources of PM$_{2.5}$ in both winter and summer. A major challenge of the CMB model is that it cannot quantify the contributions of secondary organic aerosol and unknown sources, which are often lumped as “unexplained OC”.

In this study, PM$_{2.5}$ samples were collected in an urban site of Beijing during winter and summer 2016-2017. OC, EC, PAHs, alkanes, hopanes, fatty acids and monosaccharide anhydrides were determined. To ensure that the source profiles used in...
the CMB model are representative, we mainly selected those studies which had been
based in China: straw burning (Zhang et al., 2007b), wood burning (Wang et al., 2009),
gasoline and diesel vehicles (Cai et al., 2017), industrial and residential coal combustion
(Zhang et al., 2008), and cooking (Zhao et al., 2015). Source contributions of organic
carbon were examined and quantified applying the CMB model based on the source
profiles mentioned above. The results of this study are discussed and compared with
the results from Aerosol Mass Spectrometer-PMF analysis (AMS-PMF) (Ulbrich et al.,
2009; Elser et al., 2016) to improve our understanding of different sources of PM$_{2.5}$,
especially for secondary organic aerosols.

2 Methodology

2.1 Aerosol sampling

PM$_{2.5}$ was collected at an urban sampling site (116.39E, 39.98N) - the Institute of
Atmospheric Physics (IAP) of the Chinese Academy of Sciences in Beijing, China from
9th November to 11th December 2016 and 22nd May to 24th June 2017, as part of the
Atmospheric Pollution and Human Health in a Chinese megacity (APHH-China) field
campaigns (Shi et al., 2019). The sampling site (Fig. 1) is located in the middle between
the North 3rd Ring Road and North 4th Ring Road and approximately 200 m from a
major highway. Hence, it is subject to many local sources, such as traffic, cooking, etc.
The location of a rural site in Beijing - Pinggu during the APHH-China campaigns is
also shown in Fig. 1. Other information regarding the sampling site is described
elsewhere (Shi et al., 2019).

Figure 1. Locations of the sampling sites in Beijing (IAP - urban site: Institute of Atmospheric Physics of the Chinese Academy of Sciences; Pinggu - rural site) (source: © Google Maps).

PM$_{2.5}$ samples were collected on pre-baked (450°C for 6h) large quartz filters
(Pallflex, 8×10 inch) by Hi-Vol air sampler (Tisch, USA) at a flow rate of 1.1 m3 min$^{-1}$
1. A Medium-Vol air sampler (Thermo Scientific Partisol 2025i) was also deployed at
the same location to collect PM$_{2.5}$ samples simultaneously on 47 mm PTFE filters at a
flow rate of 15.0 L min$^{-1}$. Field blanks were also collected with the pump turned off
during the sampling campaign. Before and after sampling, all filters were put in a
balance room and equilibrated at a constant temperature and relative humidity (RH) for 24 h prior to any gravimetric measurements, which were 22°C and 30% RH for summer samples, 21°C and 33% RH for winter samples. PM$_{2.5}$ mass was determined through the weighing of PTFE filters using a microbalance (Sartorius model MC5, precision: 1 μg). After that, filters were wrapped separately with aluminum foil and stored at under −20°C in darkness until analysis. The large quartz filters were analyzed for OC, EC, organic compounds and ion species, while small PTFE filters were used for the determination of PM$_{2.5}$ mass and metals. Online PM$_{2.5}$ were determined by the TEOM FDMS 1405-DF instrument at IAP with filter equilibrating and weighing conditions comparable with the Federal Reference Method (RH: 30-40%; temperature; 20-23°C).

2.2 Chemical Analysis

2.2.1 OC and EC

A 1.5 cm2 punch from each large quartz filter sample was taken for organic carbon (OC) and elemental carbon (EC) measurements by a thermal/optical carbon analyzer (model RT-4, Sunset Laboratory Inc., USA) based on the EUSAAR2 (European Supersites for Atmospheric Aerosol Research) transmittance protocol. The uncertainties from duplicate analyses of filters were <10%. Replicate analyses were conducted once every ten samples. All sample results were corrected by the values obtained from field blanks, which were 0.40 and 0.01 μg m$^{-3}$ for OC and EC, respectively. Details of the OC/EC measurement method can be found elsewhere (Paraskevopoulou et al., 2014). The instrumental limits of detection of OC and EC in this study were estimated to be 0.03 and 0.05 μg m$^{-3}$, respectively.

2.2.2 Organic compounds

Organic tracers, including 11 n-alkanes (C$_{26}$-C$_{34}$), 2 hopanes (17a (H) -22, 29, 30-Trisnorhopane, 17b (H), 21a (H) -Norhopane), 17 PAHs (retene, phenanthrene, anthracene, fluoranthene, pyrene, benz(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(e)pyrene, benzo(a)pyrene, perylene, Indeno(1,2,3-cd)pyrene, dibenz(a,h)anthracene, benzo(ghi)perylenes, coronene, picene), 3 anhydrosugars (levoglucosan, mannosan, galactosan), 2 fatty acids (palmitic acid, stearic acid) and cholesterol in the PM$_{2.5}$ samples were determined in this study. A portion of the filters were extracted 3 times with dichloromethane/methanol (HPLC grade, v/v: 2:1) under ultrasonication for 10 minutes. The extracts were then filtered and concentrated using a rotary evaporator under vacuum, and blown down to dryness with pure nitrogen gas. 50 μL of N,O-bis-trimethylsilyl)trifluoroacetamide (BSTFA) with 1% trimethylsilyl chloride and 10 μL of pyridine were then added to the extracts, which were left reacting at 70 °C for 3 h to derivatize to TMS esters and -OH to TMS ethers. After cooling to room temperature, the derivatives were diluted with 140 μL of internal standards (C13 n-alkane, 1.43 ng μL$^{-1}$ in n-hexane prior to GC-MS analysis. The final solutions were analyzed by a gas chromatography mass spectrometry system (GC/MS, Agilent 7890A GC plus 5975C mass-selective detector) fitted with a DB-5MS column (30 m × 0.25 mm × 0.25 μm). The GC temperature program and MS detection details were reported in Li et al. (2018). Individual compounds were identified through the comparison of mass spectra with those of authentic standards or literature data (Fu et al., 2016). Recoveries for these compounds were in a range of 70-100%,
which were obtained by spiking standards to pre-baked blank quartz filters followed by the same extraction and derivatization procedures. Field blank filters were analyzed the same way as samples for quality assurance, but no target compounds were detected.

2.2.3 Inorganic components

Major inorganic ions including Na⁺, K⁺, NH₄⁺, Cl⁻, NO₃⁻ and SO₄²⁻ were determined by using an ion chromatograph (IC, Dionex, Sunnyvale, CA, USA), the detection limits (DLs) of them were 0.032, 0.010, 0.011, 0.076, 0.138, 0.240 and 0.142 µg m⁻³ respectively. The analytical uncertainty was less than 5% for all inorganic ions. An intercomparison study showed that our IC analysis of the above-mentioned ions agreed well with those of the other laboratories (Xu et al., 2020). Trace metal including Al (DLs in µg m⁻³, 0.221), Si (0.040), Ca (0.034), Ti (0.003) and Fe (0.044) were determined by X-ray fluorescence spectrometer (XRF). Other elements including V, Cr, Co, Mn, Ni, Cu, Zn, As, Sr, Cd, Sb, Ba and Pb were analyzed by Inductively-coupled plasma-mass spectrometer (ICP-MS), the detection limits of them were 1.32, 0.25, 0.04, 0.06, 2.05, 1.25, 1.22, 1.74, 0.02, 0.03, 0.11, 0.06 and 0.04 ng m⁻³, respectively. Mass concentrations of all inorganic ions and elements in this study were corrected for the field blank values, and the methods were quality assured with standard reference materials.

2.3 Chemical Mass Closure (CMC) Method

A Chemical Mass Closure analysis was carried out, which includes secondary inorganic ions (sulfate, nitrate, ammonium; SNA), sodium, potassium and chloride salts, geological minerals, trace elements, organic matter (OM), EC and bound water in reconstructed PM₁₋₅. Geological minerals were calculated applying the equation (Eq. 1) (Chow et al., 2015):

\[
\text{Geological minerals} = 2.2\text{Al} + 2.49\text{Si} + 1.63\text{Ca} + 1.94\text{Ti} + 2.42\text{Fe}
\]

Trace elements were the sum of all analysed elements excluding Al, Si, Ca, Ti and Fe. The average OM/OC ratios of organic aerosols (OA) from AMS elemental analysis were applied to calculate OM, which were 1.75±0.16 and 2.00±0.19 in winter and summer, respectively. Based on the concentrations of inorganic ions and gas-phase NH₃, particle bound water was calculated by ISORROPIA II model (available at http://isorropia.eas.gatech.edu) in forward mode and thermodynamically metastable phase state (Fountoukis and Nenes, 2007). Two sets of calculations were done for online and offline data, differing at the temperature and relative humidity as specified above.

2.4 Chemical Mass Balance (CMB) model

A receptor model, namely the chemical mass balance model (US EPA CMB8.2), was applied in this study to apportion the sources of OC. It utilizes a linear least squares solution and both uncertainties in source profiles and ambient measurements were taken into consideration in this model. The essential criteria in this model were met to ensure reliable fitting results. For instance, in all samples, R² were >0.80 (mostly >0.9), Chi² were <2, Tstat values were mostly greater than 2 except the source of vegetative detritus, and C/M ratios (ratio of calculated to measured concentration) for all fitting
species were in range of 0.8-1.2 in this study. The source profiles applied here were mostly from local studies in China to better represent the source characteristics, including straw burning (wheat, corn, rice straw burning) (Zhang et al., 2007b), wood burning (Wang et al., 2009), gasoline and diesel vehicles (including motorcycles, light- and heavy-duty gasoline and diesel vehicles) (Cai et al., 2017), industrial and residential coal combustion (including anthracite, sub-bituminite, bituminite, and brown coal) (Zhang et al., 2008), and cooking (Zhao et al., 2015), except vegetative detritus (Rogge et al., 1993; Wang et al., 2009). Fitting species should be stable during the transport from sources to receptor site and can represent the chemical characteristics of the sources (Wang et al., 2009). The selected fitting species were EC, levoglucosan, palmitic acid, stearic acid, fluoranthene, phenanthrene, retene, benz(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo[ghi]perylene, picene, 17a (H) -22, 29, 30-trisnorhopane, 17b (H), 21a (H) -norhopane and n-alkanes (C24-C33), the concentrations of which are provided in Table 1.

2.5 Positive Matrix Factorization analysis of data obtained from Aerosol Mass Spectrometer (AMS-PMF)

An Aerodyne AMS with a PM$_1$ aerodynamic lens was deployed on the roof of the neighboring building- the Tower branch of IAP for real-time measurements of non-refractory (NR) chemical species from 15th November to 11th December 2016 and 22nd May to 24th June 2017. The detailed information of the sampling sites is given elsewhere (Xu et al., 2019b). The submicron particles were dried and sampled into the AMS at a flow of ~0.1 L min$^{-1}$. NR-PM$_1$ can be quickly vaporized by the 600 °C tungsten vaporizer and then the NR-PM$_1$ species including organics, Cl$^-$, NO$_3^-$, SO$_4^{2-}$ and NH$_4^+$ were measured by AMS in mass sensitive V mode (Sun et al., 2020). Details of AMS data analysis, including the analysis of organic aerosol (OA) mass spectra can be found elsewhere (Xu et al., 2019b). While the source apportionment of fine OC in this study was conducted by using an offline chemical speciation dataset and source profiles, the source apportionment of organics in NR-PM$_1$ was carried out by applying PMF to the high-resolution mass spectra of OA. The procedures of the pretreatment of spectral data and error matrices can be found elsewhere (Ulbrich et al., 2009). The PMF analysis resulted in an optimal solution of 2 primary factors in summer: traffic-related hydrocarbon-like OA (HOA) and cooking OA (COA) and 3 secondary factors of oxygenated OA (OOA): OOA1, OOA2, OOA3. In winter, 3 primary factors were identified: coal combustion OA (CCOA), COA, biomass burning OA (BBOA), and 3 secondary factors: oxidized primary OA (OPOA), less-oxidized OA (LOOOA), and more-oxidized OA (MOOOA). It is noted that the data were missing during the period 09th - 14th November 2016 due to the malfunction of the AMS.

3 Results and discussion

3.1 Characteristics of PM$_{2.5}$ and Carbonaceous Compounds

Mean concentrations of PM$_{2.5}$, OC, EC and organic tracers during wintertime (9th November to 11th December 2016) and summertime (22nd May to 24th June 2017) at the
IAP site are summarized in Table 1 and Fig. S1. The average PM$_{2.5}$ concentration was 94.8±64.4 µg m$^{-3}$ during the whole winter sampling campaign. The winter sampling period was divided as haze (daily PM$_{2.5}$ > 75 µg m$^{-3}$) and non-haze days (<75 µg m$^{-3}$). The average daily PM$_{2.5}$ was 136.7±49.8 and 36.7±23.5 µg m$^{-3}$ on haze and non-haze days, respectively. Daily PM$_{2.5}$ in the summer sampling period was 30.2±14.8 µg m$^{-3}$, comparable with that on winter non-haze days.

OC concentrations ranged between 3.9-48.8 µg m$^{-3}$ (mean: 21.5 µg m$^{-3}$) and 1.8-12.7 µg m$^{-3}$ (mean: 6.4 µg m$^{-3}$) during winter and summer, respectively. They are comparable with the OC concentrations in winter (23.7 µg m$^{-3}$) and summer (3.78 µg m$^{-3}$) in Tianjin, China during an almost simultaneous sampling period (Fan et al., 2020), but much lower than the OC concentration (17.1 µg m$^{-3}$) in summer 2007 in Beijing (Yang et al., 2016). The average OC concentration during haze days (29.4±9.2 µg m$^{-3}$) was approximately three times that of non-haze days (10.7±6.2 µg m$^{-3}$) during winter. The average EC concentration during winter was 3.5±2.0 µg m$^{-3}$; its concentration was 4.6±1.3 µg m$^{-3}$ on haze days, approximately 2.4 times that on winter non-haze days (1.9±1.6 µg m$^{-3}$) and 5 times that (0.9±0.4 µg m$^{-3}$) during the summer sampling period. The OC and EC concentrations in this study were comparable with the OC (27.9±23.4 µg m$^{-3}$) and EC (6.6±5.1 µg m$^{-3}$) concentrations in winter Beijing in 2016 (Qi et al., 2018), but much lower than those in an urban area of Beijing during winter (OC and EC: 36.7±19.4 and 15.2±11.1 µg m$^{-3}$) and summer (10.7±3.6 and 5.7±2.9 µg m$^{-3}$) in 2002 (Dan et al., 2004).

On average, OC and EC concentrations in winter were 3.3 and 3.9 times those in summer. Additionally, OC and EC were well-correlated in this study, with R2 values of 0.85 and 0.63 during winter and summer, respectively, suggesting similar sources of carbonaceous aerosols, especially in winter. Less correlated OC and EC in summer could be a result of SOC formation. SOC in this study was estimated and is discussed in section 3.3.7.

Table 1. Summary of measured concentrations at IAP site in winter and summer.

Compounds* (ng m$^{-3}$)	Winter	Winter (n=31)	Summer (n=34)	
	Haze$^+$ (n=18)	Non-haze$^+$ (n=13)		
PM$_{2.5}$ (µg m$^{-3}$)	136.7±49.8 (80.5-239.9)	36.7±23.5 (10.3-72)	94.8±64.4 (10.3-239.9)	30.2±14.8 (12.2-78.8)
OC (µg m$^{-3}$)	29.4±9.2 (13.7-48.8)	10.7±6.2 (3.9-21.5)	21.5±12.3 (3.9-48.8)	6.4±2.3 (1.8-12.7)
EC (µg m$^{-3}$)	4.6±1.3 (1.6-6.6)	1.9±1.6 (0.3-5.2)	3.5±2.0 (0.3-6.6)	0.9±0.4 (0.2-2.7)
SOC (µg m$^{-3}$)	10.3±5.7 (2.9-24.6)	2.9±1.4 (0.6-5.5)	7.2±5.7 (0.2-24.6)	2.3±1.4 (0.0-6.0)
Levoglucosan	348.2±188.0 (83.1-512.5)	195.0±163.7 (19.1-539.5)	278.5±171.4 (19.1-539.5)	26.1±24.3 (2.9-172.2)
Palmitic acid	376.2±234.9 (44.5-1089.6)	278±280.6 (33.8-1173.2)	335±255.3 (33.8-1173.2)	25±11.9 (9.4-688)
Stearic acid	207.1±181.4 (23-464.7)	163.6±228.1 (17.3-903.2)	188.8±199.8 (17.3-903.2)	16.0±7.2 (6.6-164)
Phenanthrene	8.6±6.1 (1.8-14.9)	5.6±6.1 (1-24.8)	7.3±6.2 (1-24.8)	0.7±0.7 (0.3-8.3)
Fluoranthene	25.1±19.6 (4.2-76.2)	16.1±21.3 (4.2-84.3)	21.3±20.5 (4.2-84.3)	0.4±0.2 (0-0.9)
Retene	16±14.9 (2.5-52.2)	11±12.1 (0.5-45.5)	13.9±13.8 (0.5-52.2)	0.0 (0-0.1)
Benzo(a)anthracene	21.5±16.5 (0.3-62.7)	10.8±9.3 (1.4-30.5)	17±14.8 (0.3-62.7)	0.2±0.1 (0-0.5)
Chrysene	22.6±14.1 (3.7-47.3)	13.6±15.6 (0.1-59.5)	18.8±15.2 (0.1-59.5)	0.2±0.1 (0-0.3)
Benzo(b)fluoranthene	52.6±29 (10.7-98)	28±31 (2.4-113.6)	42.3±31.8 (2.4-113.6)	0.7±0.5 (0-2)
Benzo(k)fluoranthene	12.2±8 (0.25-3)	6.7±6.8 (0-23.7)	9.9±7.9 (0.25-3)	0.2±0.1 (0-0.4)
Picene	0.8±0.8 (0-2.6)	0.3±0.5 (0-1.3)	0.6±0.7 (0-2.6)	0.0 (0-0.0)
Benzo(ghi)perylene	7.0±4.7 (0-13.6)	4.0±4.1 (0-14.0)	5.6±4.6 (0-14.0)	0.6±0.1 (0-3.3)
17a (H) -22, 29, 30-Triarachano	2.7±1.6 (0.6-6.7)	1.6±1.5 (0.3-6.6)	2.2±1.6 (0.3-6.7)	0.01 (0-0.4)
17b (H), 21a (H) - Norhopane	3.1±1.6 (0.9-6.6)	1.8±1.8 (0.3-7.3)	2.6±1.8 (0.3-7.3)	0.0 (0-0.2)
The composition of PM$_{2.5}$ applying the chemical mass closure method is plotted in Fig. 2 and summarized in Table S1. Because the gravimetrically measured mass (offline PM$_{2.5}$) differs slightly from online PM$_{2.5}$ (Fig. S2), the regression analysis results between mass reconstructed using mass closure (reconstructed PM$_{2.5}$) and both measured PM$_{2.5}$ (offline PM$_{2.5}$/ online PM$_{2.5}$) were investigated and plotted in Fig. 3.
As shown in Fig. 3, measured offline/online PM$_{2.5}$ generally agrees well with the reconstructed PM$_{2.5}$. In winter, the regression results were good between reconstructed PM$_{2.5}$ and offline-PM$_{2.5}$. For online-PM$_{2.5}$, it was much higher than the reconstructed PM$_{2.5}$ when the mass was over 170 µg m$^{-3}$. After excluding the outliers (2 outliers of offline-PM$_{2.5}$ > 200 µg m$^{-3}$ and 4 outliers of online-PM$_{2.5}$ > 170 µg m$^{-3}$), the regression results improved with both slopes and R^2 approaching unity (Fig. S3). This could indicate some uncertainties in offline and online PM$_{2.5}$ measurement for heavily polluted samples. During the summer campaign, the slope of the reconstructed PM$_{2.5}$ and online-PM$_{2.5}$ was close to 1, but that of reconstructed PM$_{2.5}$ and offline-PM$_{2.5}$ was 1.26. This could be due to the positive artifacts of quartz filters for chemical analyses, which can absorb more organics than PTFE filters that are used for PM weighing. The datapoints were more scattered in summer, which could result from the large difference in OM-OC relationships from day to day. The reconstructed inorganics (reconstructed PM$_{2.5}$ excluding OM) correlated well with offline-PM$_{2.5}$, but OM did not (Fig. S4).

During the winter campaign, the carbonaceous components (OM & EC) accounted for 47.2% of total reconstructed PM$_{2.5}$, followed by the secondary inorganic ions (NH$_4^+$, SO$_4^{2-}$, NO$_3^-$) (35.0%). In summer, on the contrary, secondary inorganic salts represented 45.2% of PM$_{2.5}$ mass, followed by carbonaceous components (35.2%). Bound water contributed 4.6% and 7.2% of PM$_{2.5}$ during the winter and summer, respectively. All other components combined accounted for 13.2% and 12.4% of PM$_{2.5}$ during the winter and summer campaigns, respectively.

3.3 Source apportionment of fine OC in urban Beijing applying a CMB model

The CMB model resolved seven primary sources of OC in winter and summer, including vegetative detritus, straw and wood burning (biomass burning, BB), gasoline
vehicles, diesel vehicles, industrial coal combustion (Industrial CC), residential coal combustion (Residential CC) and cooking. It explained an average of 75.7% (45.3-91.3%) and 56.1% (34.3-76.3%) of fine OC in winter and summer, respectively. The averaged CMB source apportionment results in winter and summer are presented in Table 2. Daily source contribution estimates to fine OC and the relative abundance of different sources contributions to OC in winter and summer are shown in Fig. 4.

During the winter campaign, coal combustion (industrial and residential CC, 7.5 µg m$^{-3}$, 35.0% of OC) was the most significant contributor to OC, followed by Other OC (5.3 µg m$^{-3}$, 24.8%), biomass (3.8 µg m$^{-3}$, 17.6%), traffic (gasoline and diesel vehicles, 2.6 µg m$^{-3}$, 11.9%), cooking (2.2 µg m$^{-3}$, 10.3%), vegetative detritus (0.09 µg m$^{-3}$, 0.4%).

On winter haze days, industrial coal combustion, cooking and Other OC were significantly higher (nearly tripled) compared to non-haze days. During the summer campaign, Other OC (2.9 µg m$^{-3}$, 45.6%) was the most significant contributor to OC, followed by coal combustion (2.0 µg m$^{-3}$, 31.1%), cooking (0.7 µg m$^{-3}$, 10.3%), traffic (0.4 µg m$^{-3}$, 6.1%), biomass burning (0.3 µg m$^{-3}$, 5.3%), and vegetative detritus (0.1 µg m$^{-3}$, 1.7%).

Table 2. Source contribution estimates (SCE, µg m$^{-3}$) for fine OC in urban Beijing during winter and summer from the CMB model

Sources	Winter Haze (n=18)	Winter Non-haze (n=13)	Winter (n=31)	Summer (n=34)
Vegetative detritus	0.11±0.08	0.07±0.08	0.09±0.08	0.11±0.08
Biomass burning	4.80±2.23	2.38±2.57	3.78±2.64	0.34±0.39
Gasoline vehicles	2.35±1.27	1.59±1.85	2.03±1.56	0.31±0.16
Diesel vehicles	0.83±1.43	0.14±0.33	0.54±1.15	0.08±0.16
Industrial coal combustion	7.09±4.17	1.95±1.36	4.94±4.15	1.82±0.72
Residential coal combustion	3.64±3.72	1.16±0.96	2.60±3.12	0.18±0.11
Cooking	3.23±2.30	0.85±0.52	2.23±2.13	0.66±0.43
Other OCc	7.4±5.6	2.5±1.4	5.3±4.9	2.9±1.5
Calculated OCb	22.0±6.5	8.2±5.3	16.2±9.1	3.5±1.2
Measured OC	29.4±9.2	10.7±6.2	21.5±12.3	6.4±2.3

c Other OC is calculated by subtracting calculated OC from measured OC.
b Calculated OC is the sum of OC from all seven primary sources: vegetative detritus, biomass burning, gasoline vehicles, diesel vehicles, industrial coal combustion, residential coal combustion and cooking.
Figure 4. Daily source contribution estimates to fine OC in (a) winter and (c) summer and their relative abundance in winter (b) and summer (d)
3.3.1 Industrial and residential coal combustion

In China, a large amount of coal is used in thermal power plants, industries, urban and rural houses in northern China, especially during the heating period (mid-November to mid-March) (Huang et al., 2017; Yu et al., 2019). But urban household coal use experienced a remarkable drop of 58% during 2005-2015, which is much higher than that of rural household coal use (5% of decrease) (Zhao et al., 2018). In this study, coal combustion is the single largest contributor to primary OC in both winter and summer. In addition, industrial CC was a more significant source of OC than residential CC in urban Beijing. On average, coal combustion related OC was 7.5±5.0 µg m⁻³ (34.5±9.8% of OC) in winter, which was more than 3 times of that in summer - 2.0±0.8 µg m⁻³ (32.3±10.2% of OC), but the percentage contribution is similar. A similar seasonal trend was also found in other studies in Beijing (Zheng et al., 2005; Wang et al., 2009), but the relative contribution of coal combustion was much lower than in this study. Industrial CC derived OC was 4.94±4.15 and 1.82±0.72 µg m⁻³ in winter and summer, respectively. Residential CC derived OC was 2.60±3.12 and 0.18±0.11 µg m⁻³ in winter and summer, respectively. Residential CC was much higher in winter compared to that in summer. On haze days, industrial CC and residential CC derived OC were 3.6 and 3.1 times that on non-haze days, respectively, indicating an important contribution to haze formation from industrial CC.

Chloride has been considered as a tracer for coal combustion (Chen et al., 2014). The time series of OC from coal combustion (OC-CC) and Cl⁻ during winter and summer of Beijing are shown in Fig. 5. OC-CC and Cl⁻ exhibited similar trends in both seasons. The correlation coefficient (R²) between OC-CC and Cl⁻ during winter was 0.62 but there is no significant correlation between the two during the summer campaign while. This is probably related to the semi-volatility of ammonium chloride, which is liable to evaporate in summer (Pio and Harrison, 1987). A similar phenomenon has been observed in Delhi (Pant et al., 2015).

![Figure 5. Time series of OC from coal combustion (OC-CC) and Cl⁻ in winter and summer in Beijing](image)

3.3.2 Biomass burning

Biomass burning (BB), including straw and wood burning, is an important source of atmospheric fine OC, which ranked as the second highest primary source of OC, after industrial coal combustion during the winter campaign, and third highest during the summer campaign after industrial CC and cooking. As shown in Fig. 4, the relative
abundance of BB derived-OC during the winter campaign is much higher than the
summer campaign. BB-derived OC from the CMB results was 3.78±2.64 µg m⁻³ and
0.34±0.39 µg m⁻³ in winter and summer, contributing 17.6% and 5.3% of OC in these
two seasons, respectively. These results are lower than those in 2005-2007 Beijing
when BB accounted for 26% and 11% of OC in winter and summer, respectively (Wang
et al., 2009). The BB-derived OC on winter haze days (4.80±2.23 µg m⁻³) was
approximately double that of non-haze days (2.38±2.57 µg m⁻³), accounting for 16.3%
and 22.2% of OC on haze and non-haze days, respectively.

Levoglucosan is widely used as a key tracer for biomass burning emissions (Bhattarai
et al., 2019; Cheng et al., 2013; Xu et al., 2019a). Based on a levoglucosan to OC ratio
of 8.2 % (Zhang et al., 2007a; Fan et al., 2020), the BB-derived OC was 3.40±2.09 µg
m⁻³ and 0.32±0.35 µg m⁻³ during the winter and summer campaigns, respectively. These
results are comparable to BB-derived OC from the CMB in this study. The estimated
BB-derived OC concentration are also comparable with the BB-derived OC during the
same sampling periods in Tianjin (Fan et al., 2020), but higher than those at IAP in
2013-2014 (Kang et al., 2018). Both of the studies applied the levoglucosan/OC ratio
method to estimate the BB-derived OC although the actual ratio in Beijing air may be
very different to 8.2%. The heavily elevated OC concentration in winter compared to
summer could be a result of increased biomass burning activities for house heating and
cooking in Beijing in addition to the unfavorable dispersion conditions under stagnant
weather conditions in the winter.

In summer, the total OC concentration was highest on 17th June. The sudden rise of
OC on this day was attributed to the enhanced biomass burning activities, which led to
the highest level of BB-derived OC and highest BBOC to OC abundance. The
levoglucosan concentration on this day was also the highest in summer, which reached
172 ng m⁻³.

3.3.3 Gasoline and diesel vehicles

OC and EC are the key components of traffic emissions (gasoline vehicles & diesel
engines) (Chen et al., 2014; Chuang et al., 2016). Traffic related OC, as represented by
the total sum of OC from gasoline and diesel vehicles, was 2.4±2.3 and 0.39±0.22 µg
m⁻³, and contributed 12.1±7.8% and 6.1±3.3% of OC in winter and summer,
respectively. These results are lower than the contribution of vehicle emissions to OC
(13-20%) in Beijing during 2005 and 2006 (Wang et al., 2009), suggesting traffic
emissions may be a less significant contributor to fine OC in the atmosphere in Beijing
in 2016/2017. By multiplying by OM/OC factors of 2.39 and 1.47 in winter and summer,
respectively, as mentioned in section 2.3, traffic related organic aerosol contributed
8.2±6.5% and 2.3±1.7% of PM₂.₅ in winter and summer, respectively. The summer
result was comparable with the vehicular emissions contribution to PM₂.₅ (2.1%) in
summer in Beijing, but higher than that in winter (1.5%) in Beijing estimated by using
a PMF model (Yu et al., 2019). Gasoline vehicles dominated the traffic emissions;
gasoline vehicle-derived OC was 2.03±1.56 and 0.31±0.16 µg m⁻³ in winter and
summer, respectively, which are approximately four times than that in winter
(0.54±0.15 µg m⁻³) and summer (0.08±0.16 µg m⁻³) attributed to diesel vehicles. On
haze days, gasoline- and diesel-derived OC were 2.35±1.27 and 0.83±1.43 µg m⁻³,
respectively, much higher than gasoline- (1.59±1.85 µg m⁻³) and diesel-derived
(0.14±0.33 µg m⁻³) OC on non-haze days. Even though diesel vehicles played a less
important role in OC emissions, diesel-derived OC on haze days increased by around 6 times above that of non-haze days, and such an increase was much higher than for gasoline, suggesting a potentially important role of diesel emissions on haze formation.

3.3.4 Cooking

Cooking is expected to be an important contributor of fine OC in densely populated Beijing, which has a population of over 21 million. The cooking source profile was selected from a study which was carried out in the urban area of another Chinese megacity- Guangzhou, which includes fatty acids, sterols, monosaccharide anhydrides, alkanes and PAHs in particles from the Chinese residential cooking (Zhao et al., 2015). The resultant cooking related OC concentrations were 2.23±2.13 µg m⁻³ and 0.66±0.43 µg m⁻³ in winter and summer, respectively, and both accounted for about 10% to total OC. Cooking OC was 3.23±2.30 µg m⁻³ on winter haze days, around four times higher than that on non-haze days (0.85±0.52 µg m⁻³).

3.3.5 Vegetative detritus

Vegetative detritus made a minor contribution to fine particle mass. Its concentration was 0.09±0.08 µg m⁻³ (0.4%) and 0.11±0.08 µg m⁻³ (1.7%) of OC during the winter and summer campaigns, respectively. These contributions are comparable with that in winter (0.5%), but higher than that in summer (0.3%) in urban Beijing during 2006-2007 (Wang et al., 2009). These results are also higher than the plant debris-derived OC in Tianjin in winter 2016 (0.02 µg m⁻³) and summer 2017 (0.01 µg m⁻³), which were calculated based on the relationship of glucose and plant debris and a OM/OC ratio of 1.93 (Fan et al., 2020).

3.3.6 Other OC

The Other OC was calculated by subtracting the calculated OC (the sum of OC from seven main sources) from measured OC concentrations. As shown in Table S2, there are four major source categories of OC in Beijing based on the Multi-resolution Emission Inventory for China (MEIC), which include power, industry, residential and transportation (Zheng et al., 2018). In the “industry” category, industrial coal combustion has been resolved by the CMB model. The local emissions of OC from industrial coal in Beijing were zero (shown in Table S2), and hence, the resolved POC from industrial coal combustion in Beijing should be regionally-transported. The MEIC data also show a small industrial oil combustion source. Since the tracers for this are likely to be the same as those for petroleum-derived road traffic emissions in CMB, this may result in a small overestimation of the latter source. For the industrial processes related OC which have not been resolved by the CMB model, the annual average OC emissions in Beijing were 1161 and 1083 tonnes in 2016 and 2017 respectively, which accounted for 7.7% and 9.0% of the total OC emissions (POC). Therefore, the contribution from industrial processes to the total OC in the atmosphere (POC+SOC) was considered relatively small. The Other OC in this study is likely to be a mixture of predominantly SOC and a small portion of POC from sources such as industrial processes.
The Other OC was 5.3±4.9 and 2.9±1.5 µg m⁻³ in winter and summer, respectively, contributing 24.8% and 43.9% of total measured OC. This is in good agreement with the Other OC estimated by CMB in another study in urban Beijing, for which Other OC contributed 22% and 44% of OC in winter and summer, respectively (Wang et al., 2009). SOC/OC in summer was more than 10% higher than that in summer 2008 in Beijing estimated using a tracer yield method, with the SOC derived from specific VOC precursors (toluene, isoprene, α-pinene and β-caryophyllene) accounting for 32.5% of OC (Guo et al., 2012).

Even though the Other OC concentration was lower in summer, its relative abundance was higher than that in winter, suggesting relatively higher efficiency of SOA formation in summer due to more active photochemical processes under higher temperature and strong radiation. The Other OC on winter haze days was 7.4±5.6 µg m⁻³, approximately 3 times of that on non-haze days (2.5±1.4 µg m⁻³). Other OC is also compared with the SOC estimated by EC-tracer method below.

3.3.7 SOC calculated based on the EC-tracer method

EC is a primary pollutant, while OC can originate from both primary sources and form in the atmosphere from gaseous precursors, namely primary organic carbon (POC) and SOC, respectively (Xu et al., 2018). The OC/EC ratios can be used to estimate the primary and secondary carbonaceous aerosol contributions. Usually, OC/EC ratios > 2.0 or 2.2 have been applied to identify and estimate SOA (Liu et al., 2017). In this study, all samples were observed with higher OC/EC ratios (>2.2). SOC in this study was estimated using the equation below, assuming EC comes 100% from primary sources and the OC/EC ratio in primary sources is relatively constant (Turpin and Huntzicker, 1995; Castro et al., 1999):

\[
\text{SOC}_i = \text{OC}_i - \text{EC}_i \times (\text{OC/EC})_{\text{pri}}
\]

where \(\text{SOC}_i\), \(\text{OC}_i\) and \(\text{EC}_i\) are the ambient concentrations of secondary organic carbon, organic carbon and elemental carbon of sample i, respectively. \((\text{OC/EC})_{\text{pri}}\) is the OC/EC ratio in primary aerosols. It is difficult to accurately determining the ratio of \((\text{OC/EC})_{\text{pri}}\) for a given area. \((\text{OC/EC})_{\text{pri}}\) varies with the contributions of different sources and can also be influenced by meteorological conditions (Dan et al., 2004). In this work, \((\text{OC/EC})_{\text{pri}}\) was determined based on the lowest 5% of measured OC/EC ratios for the winter and summer campaigns, respectively (Pio et al., 2011). The average SOC concentrations during summer and winter were calculated and are shown in Table 1. Daily concentrations of Other OC estimated by CMB and SOC estimated by the EC-tracer method in winter and summer are plotted in Fig. 6, as well as their correlation relationship.
Figure 6. Time series of mean values for Other OC estimated by CMB and SOC estimated by the EC-tracer method in winter (a) and summer (c); Correlation relationship between Other OC estimated by CMB and SOC estimated by the EC-tracer method in winter (b) and summer (d).

The average SOC concentrations in winter and summer are presented in Table 1. The average SOC concentration during winter was 7.2±5.7 µg m⁻³, accounted for 36.6±15.9% of total OC. The average SOC concentration during summer was one third of that in winter, which was 2.3±1.4 µg m⁻³, accounting for 36.2±16.0% of total OC. The mean SOC concentrations during winter haze and non-haze periods were 10.3±5.7 µg m⁻³ and 2.9±1.4 µg m⁻³, contributing to 34.0±12.0% and 40.5±20.4% of OC during haze and non-haze episodes, respectively. As shown in Fig. 6, the SOC estimated by the EC tracer method followed a similar trend to the Other OC calculated by the CMB model. They were well-correlated in both seasons with R² of 0.58 and 0.73 in winter and summer samples, respectively and gradients of 1.16 and 0.80. This suggests that the estimates of Other OC calculated from the CMB outputs were reasonable and mainly represented the secondary organic aerosol.

3.4 Comparison with the source apportionment results in rural Beijing

The OC source apportionment results in this study are also compared with those in another study conducted at a rural site of Beijing - Pinggu during APHH-Beijing campaigns (Wu et al., 2020). CMB was run based on the results from high-time resolution PM₂.₅ samples that were collected in Pinggu during the same sampling period, but not on identical days. The comparison results are presented in Table 3.

As shown in Table 3, slightly more OC was explained by CMB at the urban site (75.7%) than the rural site (69.1%) during winter, but less OC was explained at the urban site (56.1%) than the rural site (63.4%) during summer. As at the urban site, biomass burning and coal combustion are important primary sources in rural Beijing. Diesel contributed more to OC at the rural site, while cooking contributed more at the urban site. The rural site also had a larger contribution from vegetative detritus to OC than the urban site. The source contribution estimates from biomass burning at the rural
Because of use Other OC
Cooking Residential CC Industrial CC Diesel Vegetative detritus OC explained

Preprint. Discussion started: 3 December 2020 © Author(s) 2020. CC BY 4.0 License.

Site was approximately 2 and 4 times that at the urban site during winter and summer. In winter, biomass burning contributed a similar percentage of OC at both sites. A higher percentage of OC from biomass burning was found at the rural site than the urban site in summer, possibly because of use of biomass for cooking. For traffic emitted OC, gasoline exceeded diesel at the urban site, while the rural site by contrast has a larger diesel contribution. Industrial CC emitted OC is higher at the urban site during winter, but lower in summer compared to the rural site. The source contribution estimates of residential CC at the urban site is only half that of the rural site in both seasons, and its relative contribution to OC was also lower at the urban site. Coal is widely used for cooking and heating at the villages around the rural site at the time of observations. Cooking accounted for over 10% of OC at the urban site, but less than 5% at the rural site, which is plausible as the urban site is more densely populated.

Table 3. Comparison of the source contribution estimates (SCE in µg m⁻³ (%OC)) at IAP with those at a rural site in Beijing- Pinggu

IAP (Urban) (This study)	Pinggu (Rural)	
Winter (31 days)	Winter (14 days)	
OC	21.5±12.3	36.5±29.3
OC explained	75.7±11.0%	69.1±7.1%
Vegetative detritus	0.1±0.1 (0.5±0.4%)	1.5±3.0 (2.8±3.4%)
Biomass burning	3.8±2.6 (17.4±8.7%)	6.8±5.6 (18.1±3.4%)
Diesel	0.5±1.2 (1.9±3.7%)	6.2±6.0 (13.7±6.0%)
Industrial CC	4.9±4.1 (22.0±11.2%)	3.2±2.6 (10.2±5.7%)
Residential CC	2.6±3.1 (12.5±10.2%)	5.7±4.3 (19.0±12.4%)
Cooking	2.2±2.1 (10.6±7.3%)	0.5±0.5 (2.0±2.3%)
Other OC	5.3±4.9 (24.8±12.1%)	11.7±10.4 (30.9±7.1%)
Winter (34 days)	6.4±2.3	10.7±4.9
Summer (34 days)	56.1±11.3%	63.4±12.6%
OC	1.5±0.1 (1.7±0.8%)	0.3±0.3 (2.1±1.4%)
Biomass burning	0.3±0.4 (4.8±3.4%)	1.1±0.6 (10.7±2.6%)
Diesel	0.1±0.2 (1.2±2.5%)	0.6±0.3 (6.2±4.8%)
Industrial CC	1.8±0.7 (29.0±9.0%)	3.8±2.5 (34.1±11.0%)
Residential CC	0.2±0.1 (3.3±3.5%)	0.4±0.2 (4.2±1.8%)
Cooking	0.7±0.4 (11.1±7.1%)	0.5±0.4 (4.9±3.9%)
Other OC	2.9±1.5 (43.9±11.4%)	3.9±2.3 (36.6±12.6%)
Summer (6 days)	6.4±2.3	10.7±4.9
OC	56.1±11.3%	63.4±12.6%
Biomass burning	0.3±0.4 (4.8±3.4%)	1.1±0.6 (10.7±2.6%)
Diesel	0.1±0.2 (1.2±2.5%)	0.6±0.3 (6.2±4.8%)
Industrial CC	1.8±0.7 (29.0±9.0%)	3.8±2.5 (34.1±11.0%)
Residential CC	0.2±0.1 (3.3±3.5%)	0.4±0.2 (4.2±1.8%)
Cooking	0.7±0.4 (11.1±7.1%)	0.5±0.4 (4.9±3.9%)
Other OC	2.9±1.5 (43.9±11.4%)	3.9±2.3 (36.6±12.6%)

3.5 Comparison with source apportionment results from AMS-PMF

Results from AMS-PMF were compared with the CMB source apportionment results to investigate the consistency and potential uncertainties of both methods, and also to provide supplemental source apportionment results. Six factors in non-refractory (NR)-PM₁ from the AMS were identified based on the mass spectra measured in winter at IAP by applying a PMF model, including coal combustion OA (CCOA), cooking OA (COA), biomass burning OA (BBOA) and 3 secondary factors of oxidized primary OA (OPOA), less-oxidized OA (LOOOA), and more-oxidized OA (MOOOA). In summer, the PMF analysis resulted in 5 factors including 2 primary factors of hydrocarbon-like OA (HOA), cooking OA (COA) and 3 secondary factors of oxygenated OA (OOA): OOA1, OOA2, OOA3. In order to compare with the source apportionment results of OC in this study from the CMB model, the OA concentrations from the AMS-PMF were converted to OC based on various OA/OC ratios measured in Beijing: 1.35 for CCOA/CCOC (coal combustion organic carbon), 1.31 for HOA/HOC (hydrocarbon-like organic carbon) (Sun et al., 2016), 1.38 for COA/OCOC (cooking organic carbon), 1.58 for BBOA/BBOC (biomass burning organic carbon) (Xu et al., 2019b), and 1.78 for OOA/OOC (Huang et al., 2010). The concentrations of OA and corresponding OC from AMS-PMF analysis are presented in Table 4.

Table 4. Source contributions of OA and OC (µg m⁻³) from AMS-PMF results in urban Beijing during winter and summer

Source	Winter/µg m⁻³	Summer/µg m⁻³
Residential CC	0.3±0.4	0.3±0.4
Industrial CC	0.2±0.1	0.2±0.1
Cooking	0.7±0.4	0.5±0.4
Other OC	2.9±1.5	3.9±2.3
Total OOA	3.9±2.3	3.9±2.3

Winter/µg m⁻³
The CCOA factor was mainly characterized by m/z of 44, 73 and 115 (Sun et al., 2016). In winter, CCOA was 6.2±4.4 µg m⁻³, contributing 16.9% of OM. CCOC was 4.6±3.3 µg m⁻³, which was much lower than the estimated coal combustion OC (7.5±5.0 µg m⁻³, industrial and residential coal combustion OC) by CMB. The time series of coal combustion related OC (CCOC) estimated by CMB and CCOC from AMS-PMF analysis in Fig. 7 showed a similar trend with relatively good correlation of R² = 0.71, but coal combustion estimated by CMB was consistently higher than by AMS-PMF, probably because AMS-PMF only resolved the sources of NR-PM₁₀, and some coal combustion particles are larger (Xu et al., 2011). The correlation coefficients (R²) of CCOC from AMS-PMF with Cl⁻ and NR-Cl⁻ were 0.49 and 0.65, respectively in the winter data.

BBOA from the AMS data in winter was 6.5±5.8 µg m⁻³, contributing 17.7% of OM. This BBOA factor included a high proportion of m/z 60 and 73, which are typical fragments of anhydrous sugars like levoglucosan (Srivastava et al., 2019). BBBOC was 4.1±3.7 µg m⁻³, which was very close to the estimated BBBOC (3.78±2.64 µg m⁻³, 17.6% of OC) by CMB in this study.
COA is as a common factor identified in both winter and summer AMS-PMF results. It is characterized by high m/z of 55 and 57 in the mass spectrum (Sun et al., 2016). COA was 5.9±4.1 and 1.8±1.0 µg m⁻³ in winter and summer, respectively, contributing 16.1% and 17.8% of OM. COC was 4.3±3.0 and 1.3±0.7 µg m⁻³ in winter and summer, respectively, which were almost 2 times of those for winter (2.23±2.13 µg m⁻³) and summer (0.66±0.43 µg m⁻³) in the CMB results.

HOA was 0.7±0.4 µg m⁻³ in summer, accounting for 6.9% of OM. HOA is usually identified based on the high contribution of aliphatic hydrocarbons in this factor, particularly m/z of 27, 41, 55, 57, 69 and 71 (Aiken et al., 2009). This result is lower than that (17% of OM) in rural Beijing during summer 2015 (Hua et al., 2018). HOC was 0.5±0.3 µg m⁻³ in summer, which is higher than the traffic (gasoline+diesel) emitted OC (0.4±0.2 µg m⁻³) from the CMB model. No obvious correlation was observed between HOC with nitrate and traffic emitted OC from the CMB model during summer.

AMS OOA concentrations (the sum of all oxidized OA) were 18.0±13.2 and 7.6±3.7 µg m⁻³ in winter and summer, respectively, accounting for 49.0% and 75.2% of OM. The derived OOC concentrations in winter and summer were 10.1±7.4 and 4.3±2.1 µg m⁻³ in winter and summer, respectively, higher than the Other OC estimated by CMB in winter (5.3±4.9 µg m⁻³) and summer (2.9±1.5 µg m⁻³) in this study. The time series and correlation of Other OC estimated by CMB results and OOC from AMS-PMF results is plotted in Fig. 8. A similar temporal trend was found between them, especially in summer, which was also observed with a better correlation (R²=0.73).

Figure 8. Time series of mean values for Other OC estimated by CMB, and OOC estimated by AMS-PMF in winter (a) and summer (c); Correlation relationship between Other OC estimated by CMB and OOC estimated by AMS-PMF in winter (b) and summer (d).
In summary, CMB is able to resolve almost all major known primary OA sources, but AMS-PMF can resolve more secondary OA sources. The AMS-PMF results for major components, such as CCOC and OOC agreed well with the results from CMB in the winter. However, discrepancies or poor agreement was found for other sources, such as BBOA and COA, although the temporal features were very similar. Furthermore, AMS-PMF did not identify certain sources, probably due to their relatively small contribution to particle mass. Overall, CMB and AMS-PMF offered complementary data to resolve both primary and secondary sources.

3.6 Source contributions to PM$_{2.5}$ from the CMB model

The source contributions to PM$_{2.5}$ were calculated by multiplication of the fine OC source estimates from CMB by the ratios of fine OC to PM$_{2.5}$ mass (Table S3), which were obtained from the same source profiles used for the OC apportionment by CMB (Zhang et al., 2007b; Wang et al., 2009; Cai et al., 2017; Zhang et al., 2008). For cooking, an OM/OC ratio of 1.4 was applied (Zhao et al., 2007). For vegetative detritus, OM/OC ratio of 2.1 was applied (Bae et al., 2006b). The OM/OC ratios for oxygenated OA were in the range of 1.85-2.3 (Zhang et al., 2005; Aiken et al., 2008), and the OM/OC ratio was 2.17 in secondary organic aerosols of PM$_{2.5}$ (Bae et al., 2006a). Therefore, an OM/OC ratio of 2.2 is applied in this study to convert the Other OC to OM. Instead of OC/PM$_{2.5}$, applying an OM/OC ratio for the calculation may result in an underestimation of PM$_{2.5}$ source contributions, because sources like cooking and vegetative detritus can also emit inorganic pollutants. However, cooking emissions are mostly organic and the contribution from vegetative detritus to PM$_{2.5}$ is very small, their effects on source contribution estimation here are considered negligible. The daily PM$_{2.5}$ contribution estimates are provided in Fig. 9. The seasonal average source contributions and their relative abundance in reconstructed PM$_{2.5}$ are summarized in Table S4.

As shown in Table S4, PM$_{2.5}$ mass was well explained by those sources which accounted for 91.9±24.1% and 99.0±19.1% of online PM$_{2.5}$ in winter and summer, respectively. In the summer, the offline PM$_{2.5}$ is lower than online observations. Thus, the CMB-based source contributions are more than offline PM$_{2.5}$ mass (121.7±26.6%). On average, the source contributions in winter ranked as SNA (30.5 µg m$^{-3}$, 34.1% of reconstructed PM$_{2.5}$ and hereafter), coal combustion (industrial & residential CC; 17.7 µg m$^{-3}$, 21.4%), Other OM (14.6 µg m$^{-3}$, 14.8%), biomass burning (8.9 µg m$^{-3}$, 11.0%), gasoline & diesel (5.6 µg m$^{-3}$, 7.5%), geological minerals (5.3 µg m$^{-3}$, 7.0%), cooking (3.1 µg m$^{-3}$, 3.9%) and vegetative detritus (0.2 µg m$^{-3}$, 0.3%); in summer these ranked as SNA (17.7 µg m$^{-3}$, 48.5%), other OM (8.0 µg m$^{-3}$, 18.3%), coal combustion (4.7 µg m$^{-3}$, 14.6%), geological minerals (3.5 µg m$^{-3}$, 10.4%), cooking (0.9 µg m$^{-3}$, 2.8%), gasoline & diesel (0.8 µg m$^{-3}$, 2.6%), biomass burning (0.8 µg m$^{-3}$, 2.1%) and vegetative detritus (0.2 µg m$^{-3}$, 0.7%).

Zheng et al. (2005) investigated the seasonal trends of PM$_{2.5}$ source contributions in Beijing during 2000 applying a CMB model. In winter (January), the contributions from coal combustion, biomass burning, diesel & gasoline, vegetative detritus to PM$_{2.5}$ were 9.55 µg m$^{-3}$ (16% of PM$_{2.5}$ and hereafter), 5.8 µg m$^{-3}$ (9%), 3.85 µg m$^{-3}$, 0.33 µg m$^{-3}$, respectively. Contributions from gasoline, diesel, coal combustion and biomass burning were enhanced in Beijing during winter in 2016 compared to 2000, while the contribution from vegetative detritus basically remained similar. In summer (July) 2000,
coal combustion contributed 2% of PM$_{2.5}$ (2.39 µg m$^{-3}$), much less than that in summer 2016 of this study. The contribution from diesel & gasoline (7.78 µg m$^{-3}$, Zheng et al., 2005) was approximately 10 times of that in 2016 (0.8 µg m$^{-3}$). Similarly, contributions from vegetative detritus and biomass burning were small and insignificant.

Zhou et al. (2017) estimated that coal combustion contributions in winter and summer of Beijing-Tianjin-Hebei area in 2013 were 15.9 µg m$^{-3}$ and 2.1 µg m$^{-3}$, respectively, which are comparable with those in this study. These results are also comparable with the PMF-resolved coal and oil combustion in Beijing during winter (17.4 µg m$^{-3}$) and summer (2.2 µg m$^{-3}$) in 2010 (Yu et al., 2013). SNA contributed 52.7 and 26.4 µg m$^{-3}$ of PM$_{2.5}$ during winter (January) and summer (July), respectively (Yu et al., 2013), which are much higher than those in this study. It is noteworthy that a severe haze pollution event occurred during January 2013, which was characterized by high concentrations of sulfate and nitrate in several studies (Zhou et al., 2017; Han et al., 2016). The contribution from biomass burning in winter is consistent (8.5 µg m$^{-3}$) with this study (8.9 µg m$^{-3}$), but higher in summer (2.6 µg m$^{-3}$) (0.8 µg m$^{-3}$). The cooking source contributed 4.8 and 1.3 µg m$^{-3}$ in PM$_{2.5}$ during winter and summer 2013, respectively, which is also comparable with this study.

Figure 9. Daily PM$_{2.5}$ source contribution estimates from the CMB model
4 Summary

Carbonaceous aerosols contributed approximately 59% and 41% of reconstructed PM$_{2.5}$ in winter and summer at the urban IAP site in Beijing. The OC and EC concentrations were comparable with more recent studies (Fan et al., 2020; Qi et al., 2018), but lower than those before 2013 (Yang et al., 2016; Dan et al., 2004), suggesting the effectiveness of air pollution control measures since 2013 (Vu et al., 2019; Zhang et al., 2019). CMB modelling showed that in the winter 2016, the top three primary contributors to PM$_{2.5}$-OC were coal combustion (35%), biomass burning (17%), and traffic (12%); these were in the same order with that at the rural site during the same study period: coal combustion (29%), biomass burning (18%), and traffic (17%) (Wu et al., 2020). In the summer 2017, the top three primary contributors to PM$_{2.5}$-OC were coal combustion (32%), cooking (11%), and traffic (6%); these were different to that at the rural site during the same study period: coal combustion (38%), biomass burning (11%), and traffic (7%) (Wu et al., 2020). The Other OC, which was well-correlated (R2: 0.6–0.7; slope: 0.8–1.2) with the secondary OC (SOC) estimated based on the EC-tracer method, accounted for 25% and 44% of OC at urban site and 31% and 37% of OC at rural site during winter and summer, respectively. Although the annual average PM$_{2.5}$ levels in Beijing reduced from 88 µg m$^{-3}$ in year 2013 to 58 µg m$^{-3}$ in year 2017 (Vu et al., 2019), and the deweathered concentration of PM$_{10}$ decreased by -38% in 2017 comparing to 2007 (Zhang et al., 2020), our CMB modelling results indicate that the coal combustion and biomass burning still remained the dominant primary OC sources in 2016 winter and 2017 summer, with road traffic ranked as the third highest. Cooking was more significant than biomass burning at the urban site during summer. Compared to other CMB studies in Beijing, it revealed an increase of the contributions from coal combustion, biomass burning and traffic to PM$_{2.5}$ in winter 2016 compared to winter 2000, while those in this study remained similar compared to winter 2013. Sulfate, nitrate and ammonium concentrations were significantly lower in this study compared to 2013 (Zheng et al., 2005; Zhou et al., 2017). It is however notable that there is a broad consistency in the findings of the CMB studies, whereas the more numerous studies which have used PMF come to rather diverse conclusions (Srivastava et al., 2020).

Data availability. The data in this article are available from the corresponding authors upon request.

Author contributions. JX did the CMB modelling and drafted the paper with the help of ZS, RMH and all co-authors. DL, TVV conducted the laboratory analysis of organics and inorganics, respectively. XW, YZ provided the CMB source profiles. YS provided the AMS-PMF data.

Competing interests. The authors have no conflict of interests.
Acknowledgement. This research was funded by the UK Natural Environment Research Council (NERC, NE/N007190/1; NE/R005281/1) and Royal Society Advanced Fellowship (grant no: NAF/R1/191220).

Reference

Aiken, A. C., DeCarlo, P. F., Kroll, J. H., Worsnop, D. R., Huffman, J. A., Docherty, K. S., Ulbrich, I. M., Mohr, C., Kimmel, J. R., Sueper, D., Sun, Y., Zhang, Q., Trimborn, A., Northway, M., Ziemann, P. J., Canagaratna, M. R., Onasch, T. B., Alfarra, M. R., Prevot, A. S. H., Dommen, J., Duplissy, J., Metzger, A., Baltensperger, U., and Jimenez, J. L.: O/C and OM/OC Ratios of Primary, Secondary, and Ambient Organic Aerosols with High-Resolution Time-of-Flight Aerosol Mass Spectrometry. Environ. Sci. Technol., 42, 4478-4485, 10.1021/es073009q, 2008.

Aiken, A. C., Salcedo, D., Cubison, M. J., Huffman, J. A., DeCarlo, P. F., Ulbrich, I. M., Docherty, K. S., Sueper, D., Kimmel, J. R., Worsnop, D. R., Trimborn, A., Northway, M., Stone, E. A., Schauer, J. J., Volkamer, R. M., Fortner, E., de Foy, B., Wang, J., Laskin, A., Shutthananadan, V., Zheng, J., Zhang, R., Gaffney, J., Marley, N. A., Paredes-Miranda, G., Arnott, W. P., Molina, L. T., Sosa, G., and Jimenez, J. L.: Mexico City aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0) - Part 1: Fine particle composition and organic source apportionment. Atmos. Chem. Phys., 9, 6633-6653, 10.5194/ACP-9-6633-2009, 2009.

Bae, M.-S., Demerjian, K. L., and Selwab, J. J.: Seasonal estimation of organic mass to organic carbon in PM2.5 at rural and urban locations in New York state, Atmospheric Environment, 40, 7467-7479, https://doi.org/10.1016/j.atmosenv.2006.07.008, 2006a.

Bae, M.-S., Schauer, J. J., and Turner, J. R.: Estimation of the Monthly Average Ratios of Organic Mass to Organic Carbon for Fine Particulate Matter at an Urban Site, Aerosol Sci. Technol., 40, 1123-1139, 10.1080/02786820601004085, 2006b.

Bhattarai, H., Saikawa, E., Wan, X., Zhu, H., Ram, K., Gao, S., Kang, S., Zhang, Q., Zhang, Y., Wu, G., Wang, X., Kawamura, K., Fu, P., and Cong, Z.: Levoglucosan as a tracer of biomass burning: Recent progress and perspectives, Atmos. Res., 220, 20-33, https://doi.org/10.1016/j.atmosres.2019.01.004, 2019.

Cai, T., Zhang, Y., Fang, D., Shang, J., Zhang, Y., and Zhang, Y.: Chinese vehicle emissions characteristic testing with small sample size: Results and comparison, Atmospheric Pollution Research, 8, 154-163, https://doi.org/10.1016/j.apr.2016.08.007, 2017.

Castro, L. M., Pio, C. A., Harrison, R. M., and Smith, D. J. T.: Carbonaceous aerosol in urban and rural European atmospheres: estimation of secondary organic carbon concentrations, Atmospheric Environment, 33, 2771-2781, https://doi.org/10.1016/S1352-2310(98)00331-8, 1999.

Chen, W.-N., Chen, Y.-C., Kuo, C.-Y., Chou, C.-H., Cheng, C.-H., Huang, C.-C., Chang, S.-Y., Roja Raman, M., Shang, W.-L., Chuang, T.-Y., and Liu, S.-C.: The real-time method of assessing the contribution of individual sources on visibility degradation in Taichung, Science of The Total Environment, 497-498, 219-228, https://doi.org/10.1016/j.scitotenv.2014.07.120, 2014.

Cheng, Y., Engling, G., He, K. B., Duan, F. K., Ma, Y. L., Du, Z. Y., Liu, J. M., Zheng, M., and Weber, R. J.: Biomass burning contribution to Beijing aerosol, Atmospheric Chemistry And Physics, 13, 7765-7781, 10.5194/acp-13-7765-2013, 2013.

Chow, J. C., Lowenthal, D. H., Chen, L. W. A., Wang, X. L., and Watson, J. G.: Mass reconstruction methods for PM2.5: a review, Air Quality Atmosphere And Health, 8, 243-263, 10.1007/s11869-015-0338-3, 2015.

Chuang, M.-T., Chen, Y.-C., Lee, C.-T., Cheng, C.-H., Tsai, Y.-J., Chang, S.-Y., and Su, Z.-S.: Apportionment of the sources of high fine particle matter concentration events in a developing aerotropolis in Taoyuan, Taiwan, Environmental Pollution, 214, 273-281, https://doi.org/10.1016/j.envpol.2016.04.045, 2016.

Dan, M., Zhuang, G., Li, X., Tao, H., and Zhuang, Y.: The characteristics of carbonaceous species and their sources in PM2.5 in Beijing, Atmospheric Environment, 38, 3443-3452, https://doi.org/10.1016/j.atmosenv.2004.02.052, 2004.

Dong, F.-m., Mo, Y.-z., Li, G.-x., Xu, M.-m., and Pan, X.-c.: [Association between ambient PM10/PM2.5 levels and population mortality of circulatory diseases: a case-crossover study in Beijing], Beijing Da Xue Xue Bao Yi Xue Ban, 45, 398-404, 2013.

Elser, M., Huang, R. J., Wolf, R., Slowik, J. G., Wang, Q., Canonaco, F., Li, G., Bozzetti, C., Daellenbach, K. R., Huang, Y., Zhang, R., Li, Z., Cao, J., Baltensperger, U., El-Haddad, I., and Prévôt, A. S. H.: New
insights into PM2.5 chemical composition and sources in two major cities in China during extreme haze events using aerosol mass spectrometry, Atmos. Chem. Phys., 16, 3207-3225, 10.5194/acp-16-3207-2016, 2016.

Fan, Y., Liu, C. Q., Li, L., Ren, L., Ren, H., Zhang, Z., Li, Q., Wang, S., Hu, W., Deng, J., Wu, L., Zhong, S., Zhao, Y., Pavuluri, C. M., Li, X., Pan, X., Sun, Y., Wang, Z., Kawamura, K., Shi, Z., and Fu, P.: Large contributions of biogenic and anthropogenic sources to fine organic aerosols in Tianjin, North China, Atmos. Chem. Phys., 20, 117-137, 10.5194/acp-20-117-2020, 2020.

Fountoukis, C., and Nenes, A.: ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K+–Ca2+–Mg2+–NH4+–Na+–SO42––NO3−–Cl––H2O aerosols, Atmos. Chem. Phys., 7, 4639-4659, 10.5194/acp-7-4639-2007, 2007.

Fu, P., Zhuang, G., Sun, Y., Wang, Q., Chen, J., Ren, L., Yang, F., Wang, Z., Pan, X., Li, X., and Kawamura, K.: Molecular markers of biomass burning, fungal spores and biogenic SOA in the Taklimakan desert aerosols, Atmospheric Environment, 130, 64-73, 10.1016/j.atmosenv.2015.10.087, 2016.

Guo, S., Hu, M., Guo, Q., Zhang, X., Zheng, M., Zheng, J., Chang, C. C., Schauer, J. J., and Zhang, R.: Primary Sources and Secondary Formation of Organic Aerosols in Beijing, China, Environ. Sci. Technol., 46, 9846-9853, 10.1021/acs.est.20042564, 2012.

Guo, S., Hu, M., Guo, Q., Zhang, X., Schauer, J. J., and Zhang, R.: Quantitative evaluation of emission controls on primary and secondary organic aerosol sources during Beijing 2008 Olympics, Atmos. Chem. Phys., 13, 8303-8314, 10.5194/acp-13-8303-2013, 2013.

Han, B., Zhang, R., Yang, W., Bai, Z., Ma, Z., and Zhang, W.: Heavy haze episodes in Beijing during January 2013: Inorganic ion chemistry and source analysis using highly time-resolved measurements from an urban site, Science of The Total Environment, 544, 319-329, https://doi.org/10.1016/j.scitotenv.2015.10.053, 2016.

He, K., Yang, F., Ma, Y., Zhang, Q., Yao, X., Chan, C. K., Cadle, S., Chan, T., and Mulawa, P.: The characteristics of PM2.5 in Beijing, China, Atmospheric Environment, 35, 4959-4970, https://doi.org/10.1016/S1352-2310(01)00301-6, 2001.

Hua, Y., Wang, S., Jiang, J., Zhou, W., Xu, Q., Li, X., Liu, B., Zhang, D., and Zheng, M.: Characteristics and sources of aerosol pollution at a polluted rural site southwest in Beijing, China, Science of The Total Environment, 626, 519-527, https://doi.org/10.1016/j.scitotenv.2018.01.047, 2018.

Huang, R.-J., Zhang, Y., Bozzetti, C., Ho, K.-F., Cao, J.-J., Han, Y., Duellench, K. R., Slowik, J. G., Platt, S. M., Canaco, E., Zotter, P., Wolf, R., Pieber, S. M., Bruns, E. A., Crippa, M., Ciarelli, G., Piazzalunga, A., Schwikowski, M., Abbassade, G., Schnelle-Kreis, J., Zimmermann, R., An, Z., Szidat, S., Baltensperger, U., Haddad, I. E., and Prévôt, A. S. H.: High secondary aerosol contribution to particulate pollution in haze events in China, Nature, 514, 218-222, 10.1038/nature13774, 2014.

Huang, X., Liu, Z., Liu, J., Hu, B., Wen, T., Tang, G., Zhang, J., Wu, J., Li, D., Wang, L., and Wang, Y.: Chemical characterization and source identification of PM2.5 at multiple sites in the Beijing–Tianjin–Hebei region, China, Atmos. Chem. Phys., 17, 12941-12962, 10.5194/acp-17-12941-2017, 2017.

Huang, X. F., He, L. Y., Hu, M., Canagaratna, M. R., Sun, Y., Zhang, Q., Zhu, T., Xue, L., Zeng, L. W., Liu, X. G., Zhang, Y. H., Jayne, J. T., Ng, N. L., and Worsnop, D. R.: Highly time-resolved chemical characterization of atmospheric submicron particles during 2008 Beijing Olympic Games using an Aerodyne High-Resolution Aerosol Mass Spectrometer, Atmos. Chem. Phys., 10, 8933-8945, 10.5194/acp-10-8933-2010, 2010.

Kang, M., Ren, L., Ren, H., Zhao, Y., Kawamura, K., Zhang, H., Wei, L., Sun, Y., Wang, Z., and Fu, P.: Primary biogenic and anthropogenic sources of organic aerosols in Beijing, China: Insights from saccharides and n-alkanes, Environmental Pollution, 243, 1579-1587, https://doi.org/10.1016/j.envpol.2018.09.118, 2018.

Li, L., Ren, L., Ren, H., Yue, S., Xie, Q., Zhao, W., Kang, M., Li, J., Wang, Z., Sun, Y., and Fu, P.: Molecular Characterization and Seasonal Variation in Primary and Secondary Organic Aerosols in Beijing, China, 2018.

Li, P., Xin, J., Wang, Y., Wang, S., Li, G., Pan, X., Liu, Z., and Wang, L.: The acute effects of fine particles on respiratory mortality and morbidity in Beijing, 2004–2009, Environ. Sci. Pollut. Res., 20, 6433-6444, 10.1007/s11356-013-1688-8, 2013.

Li, X., Nie, T., Qi, J., Zhou, Z., and Sun, X. S.: [Regional Source Apportionment of PM2.5 in Beijing in January 2013], Huan jing ke xue= Huanjing kexue, 36, 1148-1153, 2015.

Liu, B., Wu, J., Zhang, J., Wang, L., Yang, J., Liang, D., Bai, Q., Bi, X., Feng, Y., Zhang, Y., and Zhang, Q.: Characterization and source apportionment of PM2.5 based on error estimation from EPA PMF 5.0 model at a medium city in China, Environmental Pollution, 222, 10-22, https://doi.org/10.1016/j.envpol.2017.01.005, 2017.

Liu, Q., Baumgartner, J., Zhang, Y., and Schauer, J. J.: Source apportionment of Beijing air pollution...
during a severe winter haze event and associated pro-inflammatory responses in lung epithelial cells, 847
Atmospheric Environment, 126, 28-35, https://doi.org/10.1016/j.atmosenv.2015.11.031, 2016.
849
Pant, P., Shukla, A., Kohl, S. D., Chow, J. C., Watson, J. G., and Harrison, R. M.: Characterization of 849
ambient PM2.5 at a pollution hotspot in New Delhi, India and inference of sources, Atmospheric 849
Environment, 109, 178-189, https://doi.org/10.1016/j.atmosenv.2015.02.074, 2015.
851
Paraskevopoulou, D., Liakakou, E., Gerasopoulos, E., Theodosis, C., and Mihalopoulos, N.: Long-term 851
characterization of organic and elemental carbon in the PM$_{sub}^{2.5}$/PM$_{sub}^{5.0}$ fraction: the case of Athens, 851
Greece, Atmos. Chem. Phys., 14, 13313-13325, 10.5194/acp-14-13313-2014, 2014.
854
Pio, C., and Harrison, R.: Vapour pressure of ammonium chloride aerosol: Effect of temperature and 854
humidity, Atmospheric Environment (1967), 21, 2711-2715, 10.1016/0004-6981(87)90203-4, 1987.
857
Pio, C., Cerqueira, M., Harrison, R. M., Nunes, T., Mirante, F., Alves, C., Oliveira, C., Sanchez de la 857
Campa, A., Artiñano, B., and Matos, M.: OC/EC ratio observations in Europe: Re-thinking the approach 857
for apportionment between primary and secondary organic carbon, Atmospheric Environment, 45, 6121- 857
6132, https://doi.org/10.1016/j.atmosenv.2011.08.045, 2011.
859
Qi, M., Jiang, L., Liu, Y., Xiong, Q., Sun, C., Li, X., Zhao, W., and Yang, X.: Analysis of the 859
Characteristics and Sources of Carbonaceous Aerosols in PM(2.5) in the Beijing, Tianjin, and Langfang 859
Region, China, Int J Environ Res Public Health, 15, 1483, 10.3390/ijerph15071483, 2018.
861
Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., and Simonet, B. R. T.: Sources of fine 861
organic aerosol. 4. Particulate abrasion products from leaf surfaces of urban plants, Environ. Sci. Technol., 861
27, 2700-2711, 10.1021/es00049a008, 1993.
863
Shi, Z., Vu, T., Kotthaus, S., Harrison, R. M., Grimmond, S., Yue, S., Zhu, T., Lee, J., Han, Y., Demuzere, 863
M., Dunmore, R. E., Ren, L., Liu, D., Wang, Y., Wild, O., Allan, J., Acton, W. J., Barlow, J., Barratt, B., 863
Beddows, D., Bloss, W. J., Calzolai, G., Carruthers, D., Carslaw, D. C., Chan, Q., Chatzidiakou, L., Chen, 863
Y., Crilley, L., Coe, H., Dai, T., Doherty, R., Duane, F., Fu, P., Ge, B., Ge, M., Guan, D., Hamilton, J. F., 863
He, K., Heal, M., Heard, D., Hewitt, C. N., Hollaway, M., Hu, M., Ji, D., Jiang, X., Jones, R., Kalberer, M., 863
Kelly, F. J., Kramer, L., Langford, B., Lin, C., Lewis, A. C., Li, J., Li, W., Liu, H., Liu, J., Loh, M., 863
Lu, K., Lucarelli, F., Mann, G., McFiggans, G., Miller, M. R., Mills, G., Monk, P., Nemitz, E., O'Connor, 863
F., Ouyang, B., Palmer, P. I., Percival, C., Poppola, O., Reeves, C., Rickard, A. R., Shao, L., Shi, G., 863
Spracklen, D., Stevenson, D., Sun, Y., Sun, Z., Tao, S., Tong, S., Wang, Q., Wang, W., Wang, X., Wang, 863
X., Wang, Z., Wei, L., Whalley, L., Wu, X., Wu, Z., Xie, P., Yang, F., Zhang, Q., Zhang, Y., Zhang, Y., 863
Zheng, M.: Introduction to the special issue “In-depth study of air pollution sources and processes 863
within Beijing and its surrounding region (APHH-Beijing)”, Atmos. Chem. Phys., 19, 7519-7546, 863
10.5194/acp-19-7519-2019, 2019.
865
Song, Y., Xie, S., Zhang, Y., Zeng, L., Salmon, L. G., and Zheng, M.: Source apportionment of PM2.5 in 865
Beijing using principal component analysis/absolute principal component scores and UMINX, Science 865
of The Total Environment, 372, 278-286, https://doi.org/10.1016/j.scitotenv.2006.08.041, 2006a.
867
Song, Y., Zhang, Y., Xie, S., Zeng, L., Zheng, M., Salmon, L. G., Shao, M., and Slanina, S.: Source 867
apportionment of PM2.5 in Beijing by positive matrix factorization, Atmospheric Environment, 40, 867
1526-1537, https://doi.org/10.1016/j.atmosenv.2005.10.039, 2006b.
869
Song, Y., Tang, X., Xie, S., Zhang, Y., Wei, Y., Zhang, M., Zeng, L., and Lu, S.: Source apportionment 869
of PM2.5 in Beijing in 2004, Journal of Hazardous Materials, 146, 124-130, https://doi.org/10.1016/j. 869
j hazmat.2006.11.058, 2007.
871
Srivastava, D., Favez, O., Petit, J. E., Zhang, Y., Sofowote, U. M., Hopke, P. K., Bonnaire, N., Perraudin, 871
E., Gros, V., Villenave, E., and Albinet, A.: Speciation of organic fractions does matter for aerosol source 871
apportionment. Part 3: Combining off-line and on-line measurements, Science of The Total Environment, 871
690, 944-955, https://doi.org/10.1016/j.scitotenv.2019.06.378, 2019.
873
Srivastava, D., Xu, J., Liu, D., Vu, T. V., Shi, Z., and Harrison, R. M.: Insight into PM2.5 sources by 873
applying Positive Matrix factorization (PMF) at urban and rural sites of Beijing, Atmospheric Chemistry 873
and Physics (under review), 2020.
875
Sun, Y., Du, W., Fu, P., Wang, Q., Li, J., Ge, X., Zhang, Q., Zhu, C., Ren, L., Xu, W., Zhao, J., Han, T., 875
Worsnop, D. R., and Wang, Z.: Primary and secondary aerosol sources in Beijing in winter: sources, variations 875
and processes, Atmos. Chem. Phys., 16, 8309-8329, 10.5194/acp-16-8309-2016, 2016.
877
Sun, Y., He, Y., Kuang, Y., Xu, W., Song, S., Ma, N., Tao, J., Cheng, P., Wu, C., Su, H., Cheng, Y., Xie, 877
C., Chen, C., Lei, L., Qiu, Y., Fu, P., Croteau, P., and Worsnop, D. R.: Chemical Differences between 877
PM1 and PM2.5 in Highly Polluted Environment and Implications in Air Pollution Studies, Geophysical 877
Research Letters, n/a, e2019GL086288, 10.1029/2019GL086288, 2020.
879
Turpin, B. J., and Huntzicker, J. J.: Identification of secondary organic aerosol episodes and quantitation 879
of primary and secondary organic aerosol concentrations during SCAQS, Atmospheric Environment, 29, 879
3527-3544, https://doi.org/10.1016/1352-2310(94)00276-Q, 1995.
880
Ulbrich, I. M., Canagaratna, M. R., Zhang, Q., Worsnop, D. R., and Jimenez, J. L.: Interpretation of 880
organic components from Positive Matrix Factorization of aerosol mass spectrometric data, Atmos. Chem. Phys., 9, 2891-2918, 10.5194/acp-9-2891-2009, 2009.

Yu, T. V., Shi, Z. B., Cheng, J., Zhang, Q., He, K. B., Wang, S. X., and Harrison, R. M.: Assessing the impact of clean air action on air quality trends in Beijing using a machine learning technique, Atmospheric Chemistry And Physics, 19, 11303-11314, 10.5194/acp-19-11303-2019, 2019.

Wang, Q., Shao, M., Zhang, Y., Wei, Y., Hu, M., and Guo, S.: Source apportionment of fine organic aerosols in Beijing, Atmos. Chem. Phys., 9, 8573-8585, 10.5194/acp-9-8573-2009, 2009.

Wu, X., Chen, C., Yu, T. V., Liu, D., Baldo, C., Shen, X., Zhang, Q., Cen, K., Zheng, M., He, K., Shi, Z., and Harrison, R. M.: Source Apportionment of Fine Organic Carbon (OC) Using Receptor Modelling at a Rural Site of Beijing: Insight into Seasonal and Diurnal Variation of Source Contributions, Environmental Pollution (under review), 2020.

Xu, J., Jia, C., He, J., Xu, H., Tang, Y.-T., Ji, D., Yu, H., Xiao, H., and Wang, C.: Biomass burning and fungal spores as sources of fine aerosols in Yangtze River Delta, China – Using multiple organic tracers to understand variability, correlations and origins, Environmental Pollution, 251, 155-165, https://doi.org/10.1016/j.envpol.2019.04.090, 2019a.

Xu, J., Song, S., Harrison, R. M., Song, C., Wei, L., Zhang, Q., Sun, Y., Lei, L., Zhang, C., Yao, X., Chen, D., Li, W., Wu, M., Tian, H., Luo, L., Tong, S., Li, W., Wang, J., Shi, Q., Huangfu, Y., Tian, Y., Ge, B., Su, S., Peng, C., Chen, Y., Yang, F., Mihaljedi-Zelić, A., Đorđević, D., Swift, S. J., Andrews, I., Hamilton, J. F., Sun, Y., Kramawijaya, A., Han, J., Saksakulkrai, S., Baldo, C., Hou, S., Zheng, F., Duclenbach, K., R., Yan, C., Liu, Y., Kulmala, M., Fu, P., and Shi, Z.: An inter-laboratory comparison of aerosol in organic ion measurements by Ion Chromatography: implications for aerosol pH estimate, Atmos. Meas. Tech. Discuss., 2020, in-press, 10.5194/amet-2020-156, 2020.

Xu, M., Yu, D., Yao, H., Liu, X., and Qiao, Y.: Coal combustion-generated aerosols: Formation and properties of soot particles in the United States, Proceedings of the Combustion Institute, 33, 1681-1697, https://doi.org/10.1016/j.proci.2010.09.014, 2011.

Xu, W., Sun, Y., Wang, Q., Zhao, J., Wang, J., Ge, X., Xie, C., Zhou, W., Du, W., Li, J., Fu, P., Wang, Z., Worsnop, D. R., and Cao, H.: Changes in Aerosol Chemistry From 2014 to 2016 in Winter in Beijing: Insights From High-Resolution Aerosol Mass Spectrometry, Journal of Geophysical Research: Atmospheres, 124, 1132-1147, 10.1029/2018JD029245, 2019b.

Xu, Z., Zhang, H., Chen, J., Li, Q., Wang, X., Wang, W., Zhang, Q., Xue, L., Ding, A., and Mellouki, A.: Six sources mainly contributing to the haze episodes and health risk assessment of PM2.5 at Beijing suburb in winter 2016, Ecotoxicology and Environmental Safety, 166, 146-156, https://doi.org/10.1016/j.ecoenv.2018.09.069, 2018.

Yang, F., Kawamura, K., Chen, J., Ho, K., Lee, S., Gao, Y., Cui, L., Wang, T., and Fu, P.: Anthropogenic and biogenic organic compounds in summertime fine aerosols (PM2.5) in Beijing, China, Atmospheric Environment, 124, 166-175, https://doi.org/10.1016/j.atmosenv.2015.08.095, 2016.

Yu, L., and Wang, G.: Characterization and Source Apportionment of PM2.5 in an Urban Environment in Beijing, Aerosol Air Qual. Res., 13, 10.4209/aqar.2012.07.0192, 2013.

Yu, L. D., Wang, G. F., Zhang, R. J., Zhang, L. M., Song, Y., Wu, B. B., Li, X. F., An, K., and Chu, J. H.: Characterization and Source Apportionment of PM2.5 in an Urban Environment in Beijing, Aerosol Air Qual. Res., 13, 574-583, 10.4209/aqar.2012.07.0192, 2013.

Yu, S., Liu, W., Xu, Y., Yi, K., Zhou, M., Tao, S., and Liu, W.: Characteristics and oxidative potential of atmospheric PM2.5 in Beijing: Source apportionment and seasonal variation, Science of The Total Environment, 650, 277-287, https://doi.org/10.1016/j.scitotenv.2018.09.021, 2019.

Zhang, Q., Worsnop, D. R., Canagaratna, M. R., and Jimenez, J. L.: Hydrocarbon-like and oxygenated organic aerosols in Pittsburgh: insights into sources and processes of organic aerosols, Atmospheric Chemistry And Physics, 5, 3289-3311, 10.5194/acp-5-3289-2005, 2005.

Zhang, Q., Zheng, Y., Tong, D., Shao, M., Wang, S., Zhang, Y., Xu, X., Wang, J., He, H., Liu, W., Ding, Y., Lei, Y., Li, J., Wang, Z., Zhang, X., Wang, Y., Cheng, J., Liu, Y., Shi, Q., Yan, L., Geng, G., Hong, C., Li, M., Liu, F., Zheng, B., Cao, J., Ding, A., Gao, J., Fu, Q., Huo, J., Liu, B., Liu, Z., Yang, F., He, K., and Hao, J.: Drivers of improved PM_{2.5} air quality in China from 2013 to 2017, Proceedings of the National Academy of Sciences, 116, 24463-24469, 10.1073/pnas.1907956116, 2019.

Zhang, R., Jing, J., Tao, J., Hsu, S. C., Wang, G., Cao, J., Lee, C. S. L., Zhu, L., Chen, Z., Zhao, Y., and Shen, Z.: Chemical characterization and source apportionment of PM_{<2.5} in Beijing: seasonal perspective, Atmos. Chem. Phys., 13, 7053-7074, 10.5194/acp-13-7053-2013, 2013.

Zhang, X.-Y., Zhuang, G. S., Guo, J. H., Yin, K. D., and Zhang, P.: Characterization of aerosol over the Northern South China Sea during two cruises in 2003, Atmospheric Environment, 41, 7821-7836, 10.1016/j.atmosenv.2007.06.031, 2007a.

Zhang, Y.-x., Shao, M., Zhang, Y.-h., Zeng, L.-m., He, L.-y., Zhu, B., Wei, Y.-j., and Zhu, X.-l.: Source profiles of particulate organic matters emitted from cereal straw burnings, Journal of Environmental Chemistry And Physics, 5, 3289-3311, 10.5194/acp-5-3289-2005, 2005.
Zhang, Y., Schauer, J. J., Zhang, Y., Zeng, L., Wei, Y., Liu, Y., and Shao, M.: Characteristics of Particulate Carbon Emissions from Real-World Chinese Coal Combustion, Environ. Sci. Technol., 42, 5068-5073, https://doi.org/10.1021/es7022576, 2008.

Zhang, Y., Vu, T. V., Sun, J., He, J., Shen, X., Lin, W., Zhang, X., Zhong, J., Gao, W., Wang, Y., Fu, T. M., Ma, Y., Li, W., and Shi, Z.: Significant Changes in Chemistry of Fine Particles in Wintertime Beijing from 2007 to 2017: Impact of Clean Air Actions, Environ. Sci. Technol., 54, 1344-1352, https://doi.org/10.1021/acs.est.9b04678, 2020.

Zhao, B., Zheng, H., Wang, S., Smith, K. R., Lu, X., Aunan, K., Gu, Y., Wang, Y., Ding, D., Xing, J., Fu, X., Yang, X., Liou, K.-N., and Hao, J.: Change in household fuels dominates the decrease in PM_{2.5} exposure and premature mortality in China in 2005–2015, Proceedings of the National Academy of Sciences, 115, 12401-12406, 10.1073/pnas.1812955115, 2018.

Zhao, X., Hu, Q., Wang, X., Ding, X., He, Q., Zhang, Z., Shan, R., Liu, T., Fu, X., and Chen, L.: Composition profiles of organic aerosols from Chinese residential cooking: case study in urban Guangzhou, south China, Journal of Atmospheric Chemistry, 72, 1-18, 10.1007/s10874-015-9298-0, 2015.

Zhao, Y., Hu, M., Slanina, S., and Zhang, Y.: Chemical Compositions of Fine Particulate Organic Matter Emitted from Chinese Cooking, Environ. Sci. Technol., 41, 99-105, 10.1021/es0614518, 2007.

Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J., Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He, K., and Zhang, Q.: Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions, Atmos. Chem. Phys., 18, 14095-14111, 10.5194/acp-18-14095-2018, 2018.

Zheng, M., Salmon, L. G., Schauer, J. J., Zeng, L., Kiang, C. S., Zhang, Y., and Cass, G. R.: Seasonal trends in PM_{2.5} source contributions in Beijing, China, Atmospheric Environment, 39, 3967-3976, https://doi.org/10.1016/j.atmosenv.2005.03.036, 2005.

Zhou, J., Xiong, Y., Xing, Z., Deng, J., and Du, K.: Characterizing and sourcing ambient PM_{2.5} over key emission regions in China II: Organic molecular markers and CMB modeling, Atmospheric Environment, 163, 57-64, https://doi.org/10.1016/j.atmosenv.2017.05.033, 2017.

Zhou, W., Wang, Q., Zhao, X., Xu, W., Chen, C., Du, W., Zhao, J., Canonaco, F., Prévôt, A. S. H., Fu, P., Wang, Z., Worsnop, D. R., and Sun, Y.: Characterization and source apportionment of organic aerosol at 260 pm on a meteorological tower in Beijing, China, Atmos. Chem. Phys., 18, 3951-3968, 10.5194/acp-18-3951-2018, 2018.