The Effect of Ivabradine on the Heart Rate and Sympathovagal Balance in Postural Tachycardia Syndrome Patients

Merav Barzilai, M.D.1,2, and Giris Jacob, M.D., D.Sc.1,2,3*

1J. Recanati Autonomic Dysfunction Center and 2Medicine F, Tel Aviv “Sourasky” Medical Center, Tel Aviv, Israel and 3Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel

ABSTRACT

Background: Postural tachycardia syndrome (POTS) is a common form of chronic orthostatic intolerance. The remarkable increase in heart rate (HR) upon standing is the hallmark of this syndrome. Treatment of POTS patients is challenging and includes drugs that slow the HR. Ivabradine is a selective I\(_f\) channel blocker designed to slow the HR, as an anti-anginal agent. In view of its ability to slow the HR, we posited that ivabradine may be an ideal medication for treating POTS patients. This report provides the results of an investigation in which we studied ivabradine’s effect on the hemodynamics and sympathovagal balance in POTS patients.

Methods: An open-label trial, without a placebo control, was performed in eight patients with POTS of two years’ standing. Characterization of symptoms, hemodynamics, autonomic function tests, and HR and blood pressure (BP) variability were determined while patients were in a supine position and during a 20-minute head-up tilt before and after a single oral dose of 7.5 mg ivabradine.

Abbreviations: ANS, autonomic nervous system; BP, blood pressure; BPV, blood pressure variability; ECG, electrocardiography; HR, heart rate; HRV, heart rate variability; POTS, postural tachycardia syndrome; RMSSD, root mean square of the successive differences; SA, sinoatrial.

Citation: Barzilai M, Jacob G. The Effect of Ivabradine on the Heart Rate and Sympathovagal Balance in Postural Tachycardia Syndrome Patients. Rambam Maimonides Med J 2015;6 (3):e0028. doi:10.5041/RMMJ.10213

Copyright: © 2015 Barzilai and Jacob. This is an open-access article. All its content, except where otherwise noted, is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Conflict of interest: No potential conflict of interest relevant to this article was reported.

* To whom correspondence should be addressed. E-mail: jacobgi@tlvmc.gov.il
Results: Ivabradine slowed the HR of POTS patients at rest by 4±1 bpm ($P<0.05$). During a 5-minute head-up tilt, the HR decreased from 118±4 bpm to 101±5 bpm ($P<0.01$). Ivabradine did not affect the BP when patients were at rest in a supine position or in head-up tilt position. Cardiovascular vagal and sympathetic tone, extrapolated from the time and frequency domains of the HR and BP variability, were also not affected by ivabradine.

Conclusions: Ivabradine is an effective drug for slowing the HR of POTS patients at rest and during tilting, without producing significant adverse effects. Moreover, ivabradine exerts its effects without influencing the sympathovagal balance.

KEY WORDS: If channel blocker, postural tachycardia syndrome, orthostatic intolerance, sympathovagal balance

INTRODUCTION

Postural tachycardia syndrome (POTS) is a common form of chronic orthostatic intolerance that occurs on standing and is eventually relieved by lying down or sitting. The syndrome is characterized by a constellation of orthostatic symptoms (which include lightheadedness, dimming of vision, confusion, fatigue, exercise intolerance, and anxiety) and clinical signs (which include a bluish-red skin and edema in dependent limbs). The main physical finding in POTS is the dramatic remarkable increase in heart rate (HR) upon standing (>30 beats per minute [bpm]) without an appreciable decrease in blood pressure (BP). Most POTS patients are women, and the age of presentation is usually between the ages of 15 and 50 years. The quality of life of POTS patients can be substantially reduced to a debilitating level.

This syndrome is thought to be a primary adrenergic dysfunction. Most POTS patients have elevated plasma norepinephrine concentrations, hypovolemia, and excessive pooling of blood in the legs while standing. Some studies have shown that sympathetic denervation, especially of the veins in the legs, may be the underlying mechanism of the disease: such denervation results in blood pooling upon standing with reductions in the end-diastolic ventricular volume, and reflex tachycardia. Some POTS patients can present with idiopathic hypovolemia with or without a renin and aldosterone disorder. Other possible causes of POTS are a central hyperadrenergic state, which has a genetic predisposition, and indolent mastocytosis.

Secondary POTS can occur in conditions that affect the peripheral autonomic nervous system such as diabetes mellitus, amyloidosis, sarcoidosis, and paraneoplastic syndromes, or following chemotherapy.

Management of POTS is multifaceted and includes discontinuation of any medications that could contribute to orthostatic intolerance, such as α-adrenoceptor antagonists, diuretics, cGMP-specific phosphodiesterase type 5 inhibitors (sildenafil), and organic nitrates and nitrates, along with identifying those conditions that may cause secondary POTS.

Treating POTS patients comprises non-pharmacological and pharmacological interventions. Conservative measures for patients with mild POTS symptoms include plasma volume expansion and increasing dietary salt and fluid intake. Pharmacotherapy is needed for patients with moderate to severe POTS, and, currently, no drug has been officially approved by the US Food and Drug Administration (FDA) for treating POTS. In fact, most drugs that are given to POTS patients are usually prescribed “off label” and include fludrocortisone, desmopressin, and, sometimes, erythropoietin. Other drugs which can also be therapeutically beneficial in patients with POTS are (1) drugs that increase peripheral vascular resistance such as midodrine, a prodrug whose active metabolite is an α-adrenoceptor antagonist, and somatostatin analogs; (2) drugs that can modify the central and peripheral activity of the sympathetic nervous system such as β-adrenoceptor antagonists (mainly propranolol), serotonin and norepinephrine uptake inhibitors, and combined α- and β-adrenoceptor antagonists; and (3) drugs that reduce the sympathetic tone such as clonidine.

Treatment of POTS is challenging due to the potential for adverse effects from the abovementioned drugs and the limited effectiveness of non-pharmacologic treatments. Many POTS patients have difficulty achieving adequate control of their symptoms. In addition, none of the abovementioned medications are tailored specifically to blunt the
increase in HR that underlies the many symptoms of
POTS.

There is some anecdotal evidence that some
POTS patients can be successfully treated with
ivabradine, an anti-anginal agent designed to slow
the HR.15–26 Ivabradine is a selective antagonist of
the I\textsubscript{f} channel, an ionic current that determines the
slope of diastolic depolarization (phase IV action
potential). Accordingly, ivabradine controls the time
interval between successive action potentials and
the HR. Ivabradine also reduces the firing rate of
pacemaker cells in the sinoatrial (SA) node, where it
mainly influences the intrinsic HR at concentrations
that do not affect other cardiac currents, and has no
negative inotropic or lusitropic effects.17,27–32 In view
of its ability to slow the HR without affecting other
cardiovascular functions, we posited that ivabradine
may be an ideal medication for treating POTS
patients. We report herein on the results of an
investigation in which the effect of ivabradine on the
hemodynamics and sympathovagal balance of POTS
patients was studied.

\textbf{METHODS}

The investigation was an open-label trial without
placebo control. It was approved by the Tel Aviv
Sourasky Medical Center Institutional Review Board
and was performed according to the principles of the
Declaration of Helsinki. The study was done in the J.
Recanati Autonomic Dysfunction Center, Depart-
ment of Internal Medicine F, Tel Aviv “Sourasky”
Medical Center, Tel Aviv, Israel. After being pro-
vided with an explanation of the purpose, nature,
and potential risks of the investigation, each
recruited patient signed a consent form.

\textbf{Subjects}

Inclusion criteria for the investigation were POTS
patients with orthostatic intolerance for at least six
months; increased HR of at least 30 bpm without a
concomitant decrease in BP of more than 20/10
mmHg within 10 minutes of assuming a standing
position or during a head-up tilt on at least three
separate occasions; and the absence of any disease
that could account for symptoms of orthostatic
intolerance. Patients with orthostatic intolerance
were excluded from the investigation if they were
smokers; were pregnant; had an uncontrolled
thyroid or adrenal disorder; had a history of a
systemic illness that could influence autonomic
function, such as diabetes mellitus or systemic lupus
erythematosus, cardiovascular disease, or drug or
alcohol abuse; or had taken any drug that was
metabolized by cytochrome P450 (CYP3A4) during
the last 72 hours.

Study participants were requested to stop taking
their medications and not drink caffeine-containing
beverages, such as coffee, tea, or cola drinks, and
caffeine-containing foods, such as chocolate, for at
least 24 hours prior to testing. The participants were
also asked to complete an autonomic nervous
system questionnaire in order to obtain information
on the type and extent of their POTS symptoms
before and after testing. Anamnesis, a physical
examination, and electrocardiography (ECG) were
performed on all participants prior to testing.

\textbf{Experimental Protocol}

All measurements were made in each participant
between 08.00 and 11.00 a.m. in a quiet, darkened,
and air-conditioned room with an ambient tempera-
ture of ~24°C. The experimental protocol comprised
six phases during which the BP and HR were contin-
uously monitored. First, baseline measurements of
the arterial BP using a finger plethysmograph
(Nexfin, BMEYE, Amsterdam, Netherlands), HR
using a three-lead ECG, and respiratory rate (RR) of
each participant were made. Second, each partici-
pant rested in a supine position on a tilt table for 30
minutes. Third, the RR and BP were sampled for
eight minutes by a 500 Hz A/D converter whose
output was transferred to a standard personal com-
puter using a specialized software package. The data
on HR and BP variability (HRV and BPV, respec-
tively) from each participant were analyzed off-line
using a locally developed software package. Baro-
reflex sensitivity of each participant was calculated
from the time-domain of the beat-to-beat HR and
BP. Fourth, standard autonomic testing of the
parasympathetic and sympathetic nervous systems
were performed in each participant. Specifically,
testing of the parasympathetic nervous system
comprised the Valsalva maneuver and deep breath-
ing, and testing of the sympathetic nervous system
comprised a static hand grip for three minutes,
hyperventilation for one minute, and immersion of
the hand in ice water for one minute. Fifth, the
patient was then head-up tilted at 70° for 20
minutes. Finally, the patient was instructed to rest
in a supine position on a tilt table for 30 minutes.
This protocol was repeated 60–80 minutes after
administering a single oral dose of 7.5 mg
ivabradine.
Pharmacology of Ivabradine

Ivabradine was originally developed for the treatment of chronic stable angina pectoris. Ivabradine blocks the If channel (funny channel, HCN2/4 channel), which is a mixed Na+–K+ inward current that causes hyperpolarization of the membrane and is highly expressed in the SA node and atrioventricular node. This channel is typically controlled by the sympathetic nervous system. The sympathetic and parasympathetic nervous systems cause an increase and a decrease, respectively, in the Na+ inward current and results in either tachycardia or bradycardia. Currently, ivabradine is approved for use in Europe only for anginal syndromes and inappropriate sinus tachycardia syndrome.

The pharmacokinetics and pharmacodynamics of ivabradine have been extensively studied in animals and humans. Its bioavailability is 40%, and its elimination half-time is about two hours. On first pass, approximately 50% of the drug is metabolized by CYP3A4. Its protein-binding capacity is approximately 70%, and it is eliminated by the kidneys with preserved partial activity of its metabolite. Dose adjustment is not needed for patients whose glomerular filtration rate is less than 15 mL/min. Its Cmax is 8.8 ng/mL, and its tmax is 0.9 hours (45–90 minutes) for an oral dose of 5 mg. Maximal HR control is achieved by a 20 mg oral dose. In this study, we used a single oral dose of 7.5 mg for safety purposes. The main adverse effects of ivabradine are luminous phenomena (mainly a sensation of enhanced brightness with a fully maintained visual field), sinus bradycardia, first-degree atrioventricular blocks, ventricular extra systoles, dizziness, and/or blurred vision. Ivabradine is contraindicated in sick sinus syndrome and should not be taken concomitantly with CYP3A4 inhibitors.

RESULTS

In one year, we were able to recruit eight patients who met our inclusion criteria. Their general characteristics are depicted in Table 1. Three subjects were taking fludrocortisone, and six subjects were taking propranolol, the β-adrenoceptor antagonist (mean dose 17±2 mg/day) at the time of recruitment. Propranolol administration was gradually discontinued before the day of testing.

Patients reported that a single oral dose of 7.5 mg ivabradine attenuated the main orthostatic symptoms, such as dizziness, blurred vision, and palpitations. None of the participants reported adverse effects that were related to the test drug.

Ivabradine decreased the resting HR by 4±1 bpm. After tilting for five minutes, the HR significantly decreased (P<0.01) from 118±4 bpm to 101±5 bpm. Interestingly, ivabradine did not change the BP when the subject was resting in a supine position and during the head-up tilt (Table 2).

Ivabradine did not affect the cardiovascular vagal tone indices: Valsalva’s ratio (maximal increase (phase II)/maximal decrease (phase IV) in HR along the maneuver), time-domain analysis of the HR variability root mean square of the successive differences (RMSSD), and the high-frequency domain of RR intervals (Hfrr). The funny channel blocker did not influence cardiovascular sympathetic tone, as measured by the indices of the cardiovascular control of HR and systolic BP, namely the low-frequency domain of RR interval and systolic BP changes (Lfrr and LfBP, respectively) (Table 2). Ivabradine also did not change the Lfrr/Hfrr ratio during rest and tilt, a measure of the sympathovagal balance of HR (Table 2).

Table 1. General Characteristics of the Eight Study Participants.

Characteristic	Detail
Age	31±3 years
Female/Male	6/2
Body Mass Index	27±1.5 kg/cm²
POTS Duration	2.6±1 years (median: 2 years)

POTS, postural tachycardia syndrome.

Statistical Analysis

All data were analyzed using Microsoft Office Excel and Prism version 5.5 (GraphPad Software Inc., La Jolla, CA, USA). Results are presented as mean ± standard error of the mean, and statistical significance was set at 5%. Parametric continuous data were analyzed using a paired t test. Non-parametric continuous data were analyzed using the Mann–Whitney U test. The HRV and BPV were extracted from the time and frequency domains of the beat-to-beat systolic BP and RR intervals using a locally developed software package.
The results of this investigation showed that a single oral dose of 7.5 mg ivabradine significantly slowed the HR of POTS patients at rest and during tilting without any relevant adverse effects. Moreover, this dose of ivabradine had no effect on the indices of cardiovascular autonomic nervous system activity, especially the HRV.

Ivabradine is a pure HR-slowing agent, whose pharmacological target is the SA node. Hence, it is not altogether surprising that ivabradine slows the HR in POTS patients. This slowing of the HR can also be achieved following administration of β-adrenoceptor antagonists.9 Since this slowing of the HR is associated with adverse effects such as fatigue, sleep disorders, and impotence, many POTS patients frequently discontinue treatment with β-adrenoceptor antagonists.

There are anecdotal reports that describe a therapeutically beneficial effect of ivabradine on POTS symptoms and HR reduction in POTS patients. Sutton et al. recently reported that ivabradine prevented syncope in patients with vasovagal syncope that is preceded by tachycardia.33,34 McDonald et al. reported their clinical observations on the efficacy, drug tolerance, and adverse effects of ivabradine in 22 POTS patients.35 They found that ivabradine was well tolerated in most patients, and only a few adverse effects were reported. Six of these 22 patients discontinued the medication after 15 weeks due to the lack of a therapeutic benefit.

Our knowledge of the I_f channel, located in the SA node, is primarily based on animal studies. The activity of this channel is regulated by the autonomic nervous system (ANS).17 The sympathetic arm of the ANS activates the β1-adrenoreceptor; its second messenger, cyclic AMP, increases I_f channel conductance. This increased conductance permits more Na+ ions to move into the cells of the SA node. The HR increases due to the reduced polarity (phase IV of the action potential) of these cells. Parasympathetic or vagal tone of the heart is facilitated by M2 muscarinic receptors in the SA node. Stimulation of these receptors results in bradycardia by increasing the polarity of these cells in the SA node. Therefore, the sympathovagal balance of the SA node should affect I_f channel activity. We found that ivabradine did not change the sympathovagal balance, despite significant slowing of the HR. We also expected the indices of the vagal tone, namely the RMSSD and the H_f rri, to increase with the simultaneous decrease in sympathetic tone. These results are therefore unexpected and we have no precise explanation. However, possible explanations include (1) the low dose of ivabradine that was given to our study patients, (2) that ivabradine was given as an acute single oral dose before testing, and testing was not done in POTS patients who had been using ivabradine for a prolonged period, (3) the early

DISCUSSION

Parameter	Baseline	Ivabradine		
	Rest	Tilt	Rest	Tilt
HR (bpm)	70±3	118±4	66±2*	101±5*
Systolic BP (mmHg)	113±5	114±4	114±3	115±4
Diastolic BP (mmHg)	68±3	75±3	67±3	74±4
Valsalva ratio	1.43±0.1	-	1.52±0.2	-
RMSSD	35±4	16±2	28±6	18±2
L_f rri	715±160	470±180	790±150	390±120
H_f rri	790±120	180±80	840±140	210±90
L_f rri/H_f rri ratio	1.15±0.2	3.9±1.0	0.95±0.1	4.1±1.2
L_f BP	1.5±0.6	5.1±1.2	1.6±0.5	4.7±1.0

* Significant differences between the baseline and the tilt.

BP, blood pressure; bpm, beats per minute; H_f rri, RR intervals high-frequency domain; HR, heart rate; L_f BP, BP low-frequency domain; L_f rri, RR intervals low-frequency domain; RMSSD, root mean square of the successive differences.
sampling of the ECG and BP (time-dependent effect), or (4) that the pharmacological action of ivabradine exerted on the funny channel may have spared the “outcome” of sympathovagal tone.

Joannides et al. recently reported that acute administration of ivabradine has no effect on ANS activity and function in healthy subjects, as measured by HRV analysis, despite slowing of the HR during rest and exercise. They also reported no evidence of a depressant effect on cardiac function. Nerla et al. also reported that the ivabradine-induced increase in vagal cardiovascular tone, in syncope patients, was very modest and less than that observed in patients who were given a β-adrenoceptor antagonist.

CONCLUSIONS

Ivabradine is a selective blocker of the I_f channel in cells of the SA node and is effective in slowing the HR of POTS patients at rest and during tilting, without producing significant adverse effects. Moreover, ivabradine exerts its effects without influencing the sympathovagal balance. In view of the limited information on the therapeutic benefits of ivabradine in POTS patients, there is a need to carry out additional investigations on its clinical effectiveness in a large group of POTS patients in a randomized double-blind placebo-controlled crossover trial.

REFERENCES

1. Furlan R, Jacob G, Snell M, et al. Chronic orthostatic intolerance: a disorder with discordant cardiac and vascular sympathetic control. Circulation 1998;98: 2154–9. Full Text
2. Grubb BP. Postural tachycardia syndrome. Circulation 2008;117:2814–17. Full Text
3. Low PA, Sandroni P, Joyner M, Shen WK. Postural tachycardia syndrome (POTS). J Cardiovasc Electrophysiol 2009;20:352–8. Full Text
4. Streten DH. Orthostatic intolerance. A historical introduction to the pathophysiological mechanisms. Am J Med Sci 1999;317:78–87. Full Text
5. Jacob G, Shannon JR, Costa F, et al. Abnormal norepinephrine clearance and adrenergic receptor sensitivity in idiopathic orthostatic intolerance. Circulation 1999;99:1706–12. Full Text
6. Streten DH, Scullard TF. Excessive gravitational blood pooling caused by impaired venous tone is the predominant non-cardiac mechanism of orthostatic intolerance. Clin Sci (Lond) 1996;90:277–85.
7. Bohora S. Joint hypermobility syndrome and dysautonomia: expanding spectrum of disease presentation and manifestation. Indian Pacing Electrophysiol J 2010;10:158–61.
8. Gazit Y, Nahir AM, Grahame R, Jacob G. Dysautonomia in the joint hypermobility syndrome. Am J Med 2003;115:33–40. Full Text
9. Jacob G, Costa F, Shannon JR, et al. The neuropathic postural tachycardia syndrome. N Engl J Med 2000;343:1008–14. Full Text
10. Kanjwal K, Karabin B, Kanjwal Y, Grubb BP. Post-partum postural orthostatic tachycardia syndrome in a patient with the joint hypermobility syndrome. Cardiol Res Pract 2009;2009:187543. Full Text
11. Kanjwal K, Saeed B, Karabin B, Kanjwal Y, Grubb BP. Comparative clinical profile of postural orthostatic tachycardia patients with and without joint hypermobility syndrome. Indian Pacing Electrophysiol J 2010;10:173–8.
12. Keller NR, Robertson D. Familial orthostatic tachycardia. Curr Opin Cardiol 2006;21:173–9. Full Text
13. Rowe PC, Barron DF, Calkins H, Maumenee IH, Tong PY, Geraghty MT. Orthostatic intolerance and chronic fatigue syndrome associated with Ehlers-Danlos syndrome. J Pediatr 1999;135:494–9. Full Text
14. Shannon JR, Flattm NL, Jordan J, et al. Orthostatic intolerance and tachycardia associated with norepinephrine-transporter deficiency. N Engl J Med 2000;342:541–9. Full Text
15. Bohm M, Swedberg K, Komajda M, et al. Heart rate as a risk factor in chronic heart failure (SHIFT): the association between heart rate and outcomes in a randomised placebo-controlled trial. Lancet 2010;376:886–94. Full Text
16. Colin P, Ghaleb B, Monnet X, Hittinger L, Berdeaux A. Effect of graded heart rate reduction with ivabradine on myocardial oxygen consumption and diastolic time in exercising dogs. J Pharmacol Exp Ther 2004;308:236–40. Full Text
17. DiFrancesco D, Camm JA. Heart rate lowering by specific and selective If(f) current inhibition with ivabradine: a new therapeutic perspective in cardiovascular disease. Drugs 2004;64:1757–65. Full Text
18. Fox K, Ford I, Steg PG, Tendera M, Ferrari R. Ivabradine for patients with stable coronary artery disease and left-ventricular systolic dysfunction (BEAUTIFUL): a randomised, double-blind, placebo-controlled trial. Lancet 2008;372:807–16. Full Text
19. Gupta A, Sharma YP. Ivabradine and outcomes in chronic heart failure. Lancet 2010;376:2069–70. Full Text
20. Kang SM, Won H, Hong N, Oh J. Ivabradine and outcomes in chronic heart failure. Lancet 2010;376:2069–70. Full Text
21. Monnet X, Colin P, Ghaleh B, Hittinger L, Giudicelli JF, Berdeaux A. Heart rate reduction during exercise-induced myocardial ischemia and stunning. Eur Heart J 2004;25:579–86. Full Text
22. Reil JC, Bohm M. BEAUTIFUL results—the slower, the better? Lancet 2008;372:779–80. Full Text
23. Sulfi S, Timmis AD. Ivabradine -- the first selective sinus node I(f) channel inhibitor in the treatment of stable angina. Int J Clin Pract 2006;60:222–8. Full Text
24. Swedberg K, Komajda M, Bohm M, et al. Ivabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled study. Lancet 2010;376:875–85. Full Text
25. Fox K, Ford I, Steg PG, et al. Ivabradine in stable coronary artery disease without clinical heart failure. N Engl J Med 2014;371:1091–9. Full Text
26. Tardif JC, Ford I, Tendera M, Bourassa MG, Fox K. Efficacy of ivabradine, a new selective I(f) inhibitor, compared with atenolol in patients with chronic stable angina. Eur Heart J 2005;26:2529–36. Full Text
27. Bois P, Bescond J, Renaudon B, Lenfant J. Mode of action of bradycardic agent, S 16257, on ionic currents of rabbit sinoatrial node cells. Br J Pharmacol 1996;118:1051–7. Full Text
28. DiFrancesco D. Funny channels in the control of cardiac rhythm and mode of action of selective blockers. Pharmacol Res 2006;53:399–406. Full Text
29. DiFrancesco D, Borer JS. The funny current: cellular basis for the control of heart rate. Drugs 2007;67(Suppl 2):15–24. Full Text
30. DiFrancesco D. The role of the funny current in pacemaker activity. Circ Res 2010;106:434–46. Full Text
31. Thollon C, Cambarrat C, Vian J, Prost JF, Peglion JL, Vilaine JP. Electrophysiological effects of S 16257, a novel sino-atrial node modulator, on rabbit and guinea-pig cardiac preparations: comparison with UL-FS 49. Br J Pharmacol 1994;112:37–42. Full Text
32. Thollon C, Bedut S, Villeneuve N, et al. Use-dependent inhibition of hHCN4 by ivabradine and relationship with reduction in pacemaker activity. Br J Pharmacol 2007;150:37–46. Full Text
33. Sutton R, Salukhe T. Ivabradine in the treatment of orthostatic intolerance. Europace 2011;13:306–7. Full Text
34. Sutton R, Salukhe TV, Franzen-McManus AC, Collins A, Lim PB, Francis DP. Ivabradine in treatment of sinus tachycardia mediated vasovagal syncope. Europace 2014;16:284–8. Full Text
35. McDonald C, Frith J, Newton JL. Single centre experience of ivabradine in postural orthostatic tachycardia syndrome. Europace 2011;13:427–30. Full Text
36. Joannides R, Moore N, Iacob M, et al. Comparative effects of ivabradine, a selective heart rate-lowering agent, and propranolol on systemic and cardiac haemodynamics at rest and during exercise. Br J Clin Pharmacol 2006;61:127–37. Full Text
37. Nerla R, Di FA, Milo M, et al. Differential effects of heart rate reduction by atenolol or ivabradine on peripheral endothelial function in type 2 diabetic patients. Heart 2012;98:1812–16. Full Text