A genetically encoded sensor for measuring serotonin dynamics

Jinxia Wan1,2, Wanling Peng3, Xuelin Li1,2, Tongrui Qian1,2, Kun Song3, Jianzhi Zeng1,2,4, Fei Deng1,2, Suyu Hao1,2, Jiesi Feng1,2,4, Peng Zhang5, Yajun Zhang5, Jing Zou1,2,6, Sunlei Pan1,2,4, Mimi Shin7, B. Jill Venton7, J. Julius Zhu5, Miao Jing8, Min Xu3 and Yulong Li1,2,4

Serotonin (5-HT) is a phylogenetically conserved monoamine neurotransmitter modulating important processes in the brain. To directly visualize the release of 5-HT, we developed a genetically encoded G-protein-coupled receptor (GPCR)-activation-based 5-HT (GRAB5-HT) sensor with high sensitivity, high selectivity, subsecond kinetics and subcellular resolution. GRAB5-HT detects 5-HT release in multiple physiological and pathological conditions in both flies and mice and provides new insights into the dynamics and mechanisms of 5-HT signaling.

Serotoninergic signaling in the brain plays a critical role in a wide range of physiological processes, including mood control, reward processing and sleep–wake homeostatic regulation. Indeed, drugs targeting central serotonergic activity have been used to treat virtually every psychiatric disorder, with the best example being the use of selective 5-HT reuptake inhibitors for depression. Yet, despite the importance of 5-HT, our understanding of cell-specific 5-HT signaling during behaviors is very much lacking, in part due to our inability to measure 5-HT in vivo with high sensitivity and spatiotemporal resolution. Here, using molecular engineering, we developed a genetically encoded fluorescent sensor for directly measuring extracellular 5-HT.

Results

Development and characterization of the GRAB5-HT sensor in cultured cells. Previously, we and others independently developed GPCR-activation-based (GRAB) sensors for detecting different neurotransmitters by converting the conformational change in the respective GPCR to a sensitive fluorescence change in the circular permuted GFP (cpGFP). Using a similar strategy, we initiated the engineering of 5-HT-specific sensors by inserting a cpGFP into the third intracellular loop of various 5-HT receptors. Based on the performance of membrane trafficking and the affinity of receptor–cpGFP chimeras for 5-HT, we selected the 5-HT2C receptor-based chimera for further optimization (Extended Data Fig. 1a,b). Our previous experience in optimizing GRAB sensors10,11 shows that the N- and C-terminal linkers between GPCR and cpGFP are critical for the sensor’s performance. Therefore, we randomly mutated five sites in both the N-terminal and C-terminal linkers between the 5-HT2C receptor and cpGFP to improve the response of the 5-HT sensor. Moreover, we introduced mutations into the cpGFP, focusing on sites that are potentially critical for fast GFP folding and high levels of brightness12,13 (Extended Data Fig. 2). Mutagenesis and screening in the linker regions and the cpGFP moiety resulted in a sensor with a 250% change in fluorescence (ΔF/F0) in response to 5-HT in cultured HEK293T cells, which we named GRAB5-HT1.0 (referred to hereafter as simply 5-HT1.0; Fig. 1a and Extended Data Fig. 3). In addition, we generated a 5-HT-insensitive version of this sensor by introducing the D134N/Q substitution into the receptor14,15 (GRAB5-HTmut, referred to hereafter as 5-HT1mut; Fig. 1 and Extended Data Fig. 4). This mutant sensor showed similar membrane trafficking as that of 5-HT1.0 (Extended Data Fig. 4a) but had <2% ΔF/F0 even in the presence of 100 μM 5-HT (Fig. 1a and Extended Data Fig. 4a–d). In cultured rat cortical neurons, the 5-HT1.0 sensor produced a robust increase in fluorescence (280% ΔF/F0) in both the soma and neurites in response to bath application of 5-HT, whereas the 5-HT1mut sensor had no measurable change in fluorescence (Fig. 1b and Extended Data Fig. 4n).

Next, we characterized the properties of the 5-HT1.0 sensor in detail. Specifically, we measured the brightness, photostability, the dose–response curve, response kinetics, signal specificity and downstream coupling of this sensor. We found that the 5-HT1.0 sensor had brightness similar to and better photostability than enhanced (E) GFP in the presence of 5-HT (Extended Data Fig. 4e–g). Regarding the sensor’s kinetics, the τon and τoff values were around 0.2 s and 3.1 s, respectively, as measured by applying 5-HT (to measure the on rate τon), followed by the 5-HT receptor antagonist metergoline (Met, to measure the off rate τoff) in cultured HEK293T cells (Fig. 1c). In addition, the 5-HT1.0 sensor was highly sensitive to 5-HT, with a half-maximal effective concentration (EC50) of 22 nM (Fig. 1e). None of the other tested neurotransmitters or neuromodulators elicited a detectable fluorescence change. Importantly, the 5-HT-induced signal was eliminated by the specific 5-HT2C receptor antagonist SB-242084 (SB) (Fig. 1d and Extended Data Fig. 4o,p), indicating a high specificity for 5-HT. Moreover, unlike the native 5-HT2C receptor, which couples to intracellular G protein and β-arrestin signaling pathways, the 5-HT1.0 sensor showed no detectable coupling to either of these two pathways, as measured by calcium imaging, cAMP imaging16, the G protein–dependent luciferase

1State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China. 2PKU-IDG/McGovern Institute for Brain Research, Beijing, China. 3Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China. 4Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China. 5Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, USA. 6Department of Biological Sciences, Neurobiology Section, University of Southern California, Los Angeles, CA, USA. 7Department of Chemistry, University of Virginia, Charlottesville, VA, USA. 8Chinese Institute for Brain Research, Beijing, China. 9e-mail: yulongli@pku.edu.cn
Fig. 1 | Design, optimization and characterization of a new genetically encoded 5-HT sensor. **Left**: schematic representation illustrating the principle behind the GRAB_{5-HT} sensor. Crystal structures are from the Protein Data Bank (PDB) archive (PDB IDs 6BQH and 6BGQ for the inactive and active states of the 5-HT2C receptor, respectively¹⁴ and PDB ID 3EVW for cpGFP¹⁵). **Middle**: the 5-HT sensor was optimized over three main steps, including those targeting the cpGFP insertion site, the linker between cpGFP and the 5-HT2C receptor and critical amino acids in cpGFP. **Right**: optimization of cpGFP and engineering of 5-HT_{Mt}. The fluorescence change in each candidate sensor is plotted against the brightness, with both axes normalized to 5-HT_{1.0} (green) or 5-HT_{Mt} (gray); when indicated, 10 μM 5-HT images (left), fluorescence response traces (middle) and group data (right) of the fluorescence response in cultured rat cortical neurons expressing 5-HT_{1.0}.
Detecting 5-HT release in mouse brain slices and Drosophila with the GRAB_{5-HT}1.0 sensor. Having validated the sensor in cultured cells, to determine whether 5-HT_{1.0} could function well in mouse brain slices, we expressed 5-HT_{1.0} using adenov-associated virus (AAV) in the mouse hippocampus, which receives innervation from serotonergic neurons. The 5-HT_{1.0} sensor showed an increase in fluorescence of more than 100% in individual somata and neurites when 5-HT was exogenously applied (Extended Data Fig. 5a–d). In addition, we also expressed either 5-HT_{1.0} or 5-HTmut in the mouse dorsal raphe nucleus (DRN) by using AAVs (Fig. 2a). The DRN is the largest serotonergic nucleus in the brain and provides extensive projections to various brain regions⁴¹. In DRN slices expressing 5-HT_{1.0}, a single electrical pulse evoked detectable increases in fluorescence, and the response was progressively enhanced with increases in pulse number or frequency (Fig. 2b,c and Extended Data Fig. 5e). The stimulation-evoked response was repeatable for up to 25 min (Extended Data Fig. 5f) and blocked by the 5-HT receptor antagonist Met but not by the dopamine receptor antagonist haloperidol (Halo; Fig. 2d and Extended Data Fig. 5g,h).

By contrast, the same electrical stimuli did not affect fluorescence in DRN expressing 5-HTmut sensor (Fig. 2b,d). We also measured the kinetics of the fluorescence change in response to 100-ms electrical stimulation and found τ_{on} and τ_{off} values of approximately 0.15 s and 7.22 s (Fig. 2e). We further compared the 5-HT_{1.0} sensor with existing fast-scan cyclic voltammetry (FSCV) in recording 5-HT by simultaneously conducting fluorescence imaging and electrochemical recording in DRN slices (Fig. 2f). Both methods could sensitively detect the single pulse-evoked 5-HT signal and the increase in response following incremental frequencies (Fig. 2g and Extended Data Fig. 5i,j). The 5-HT_{1.0} sensor showed a better signal-to-noise ratio (SNR) than did FSCV (Fig. 2g). In sum, these results show that the 5-HT_{1.0} sensor has the ability to measure electrically induced endogenous 5-HT release ex vivo.

We next tested whether the 5-HT_{1.0} sensor could be used to measure sensory-relevant changes in 5-HT signaling in vivo. To this end, we first used the Drosophila model, as 5-HT is released from single serotonergic dorsal paired medial (DPM) neurons that innervate Kenyon cells (KCs) in the mushroom body (MB) of each hemisphere²³ and serotonergic signaling in the MB was implicated in odor-related memory consolidation²⁵. We expressed the 5-HT_{1.0} sensor in KCs and found that the sensor reliably reported 5-HT release evoked by electrical stimulation of the horizontal lobe of the MB with rapid on and off kinetics of ~0.07 s and ~4.08 s, respectively. Moreover, the signal was blocked by applying Met (Fig. 2h–j and Extended Data Fig. 6a–c). To determine whether the sensor could report physiologically relevant 5-HT release from a single cell, we directly expressed the 5-HT_{1.0} sensor either in a single presynaptic serotonergic DPM neuron or in prepysynaptic KCs. Consistent with a previous calcium imaging study in the DPM²³, the 5-HT_{1.0} sensor in either DPM neurons or KCs could report 5-HT release in the MB β′ lobe in response to odor application or body shock (Fig. 2k–q, Extended Data Fig. 6d–i and Supplementary Video 1). By contrast, no fluorescence change was detected in flies expressing the 5-HTmut sensor (Extended Data Fig. 6d–i and Supplementary Video 1). Neither odor application nor body shock produced a saturated response of the 5-HT_{1.0} sensor, as application of exogenous 5-HT at 100 μM in the same flies elicited much larger responses (Extended Data Fig. 6d–i). When we coexpressed the 5-HT_{1.0} sensor together with a red fluorescent calcium sensor, jRCaMP1a, in KCs, two-color imaging showed that odorant application...
increased both the 5-HT1.0-mediated green 5-HT fluorescence and the jRCaMP1a-mediated red calcium fluorescence responses (Fig. 2r–t). Moreover, jRCaMP1a-expressing flies with or without coexpression of 5-HT1.0 had similar odorant-evoked calcium signals, suggesting little effect of 5-HT1.0 sensor expression on neuronal calcium activities (Fig. 2r–t and Extended Data Fig. 6j,k).
Fig. 3 | GRAB\textsubscript{5HT}, can report endogenous serotonergic activity in freely behaving mice.

a. Schematic diagram illustrating the use of fiber photometry for measuring 5-HT\textsubscript{1.0} and 5-HT\textsubscript{mut} fluorescence in the BF of freely behaving mice during the sleep–wake cycle. EEG and EMG were also performed.

b. Representative EEG, EMG and 5-HT\textsubscript{1.0} (top) and 5-HT\textsubscript{mut} (bottom) fluorescence measured during the sleep–wake cycle. The REM sleep state is shaded pink, and the waking state is shaded light blue. Similar results were observed for three mice.

c. Summary of 5-HT\textsubscript{1.0} (top) and 5-HT\textsubscript{mut} (bottom) fluorescence measured in awake mice and during NREM and REM sleep; \(n = 3 \) mice in two sessions for each group. Two-tailed Student’s \(t \)-tests were performed. For 5-HT\textsubscript{1.0}, \(P = 0.00382 \) for awake versus NREM, \(P = 0.00374 \) for awake versus REM and \(P = 0.0334 \) for NREM versus REM. For 5-HT\textsubscript{mut}, \(P = 0.474 \) for awake versus NREM, \(P = 0.255 \) for awake versus REM and \(P = 0.107 \) for NREM versus REM.

d. Same as in a, except that the 5-HT\textsubscript{1.0} sensor was expressed in both the OFC (light green) and the BNST (dark green), and the fluorescence response in each nucleus was recorded and analyzed. Similar results were observed for four mice. The cross-correlation (CC) between the signals in the OFC and the BNST is shown in e; \(n = 4 \) mice in two sessions for each group. A two-tailed Student’s \(t \)-test was performed. \(P = 8.72 \times 10^{-8} \) for raw versus shuffled groups.

f. 5-HT\textsubscript{1.0} fluorescence was measured in the BNST and the BF as shown in f; when indicated, mice received an injection of saline (control) or Met. Normalized responses in the BNST (\(n = 3 \) mice) and the BF (\(n = 1 \) mouse) were combined for the group summary. Two-tailed Student’s \(t \)-tests were performed. \(P = 0.533 \) and \(P = 0.0361 \) for control and drug groups.

h. Schematic diagram illustrating the use of two-photon imaging to measure 5-HT\textsubscript{1.0} and 5-HT\textsubscript{mut} fluorescence in the PFC of head-fixed mice; MDMA or saline was i.p. injected. i. Representative fluorescence images of 5-HT\textsubscript{1.0} (top, left) and 5-HT\textsubscript{mut} (bottom, left) measured in the mouse PFC. The images on the right are the corresponding magnified views of the dashed boxes on the left. Similar results were observed for more than three mice. Scale bar, 50 \(\mu \text{m} \).

j. Basal fluorescence traces (k, top) and a group summary (k, bottom) showing changes in 5-HT\textsubscript{1.0} (top, green) and 5-HT\textsubscript{mut} (bottom, gray) fluorescence after an i.p. injection of saline (middle) or MDMA at 10 mg per kg (right); \(n = 5 \) mice for the 5-HT\textsubscript{1.0} group, \(n = 3 \) mice for the 5-HT\textsubscript{mut} group. Two-tailed Student’s \(t \)-tests were performed. \(P = 0.0106 \) for 5-HT\textsubscript{1.0} with MDMA versus 5-HT\textsubscript{1.0} with saline; \(P = 0.00669 \) for 5-HT\textsubscript{1.0} with MDMA versus 5-HT\textsubscript{mut} with MDMA; \(P = 0.00477 \) for 5-HT\textsubscript{1.0} with MDMA versus 5-HT\textsubscript{mut} with saline. Scale bar, 50 \(\mu \text{m} \). Data are shown as mean ± s.e.m. in c, e, g, k, with the error bars or shaded regions indicating the s.e.m., \(*P < 0.05, **P < 0.01 \) and ***\(P < 0.001 \).
Monitoring endogenous 5-HT dynamics in mice in vivo.

Following this, we examined whether the 5-HT1.0 sensor could measure the dynamics of serotonergic activity under physiological conditions in mice, such as during the sleep–wake cycle. The basal forebrain (BF), the orbital frontal cortex (OFC) and the bed nucleus of the stria terminalis (BNST) not only participate in the regulation of sleep and wake cycles but also receive extensive DRN serotonergic projections. Hence, we expressed the 5-HT1.0 sensor in these brain regions and then performed simultaneous fiber photometry and electroencephalography (EEG) and electromyography (EMG) recordings in freely behaving mice. The BF 5-HT1.0 sensor signal was generally higher during waking than during sleep. Comparing rapid-eye movement (REM) sleep and non-REM (NREM) sleep, the signal was lower during REM sleep, consistent with previous findings (Fig. 3a–c). As expected, we found no substantial change in fluorescence in mice expressing the 5-HTmut sensor during the sleep–wake cycle (Fig. 3a–c). Interestingly, simultaneous recordings of 5-HT1.0 in the OFC and the BNST revealed a tight correlation in fluorescence during NREM sleep (Fig. 3d,e), suggesting global synchrony of 5-HT signaling despite region-specific innervation by different subpopulations of serotonergic neurons in the DRN. Lastly, consistent with our previous findings, we found that treating mice with the 5-HT receptor antagonist Met largely blocked fluorescence changes of the 5-HT1.0 sensor (Fig. 3f,g), validating the specificity of measured signals in vivo.

Finally, to determine whether the sensor could reveal the action of psychostimulant drugs, we used methylenedioxyxymethamphetamine (MDMA), which is a synthetically addictive compound that can alter mood and perception; its effects are partially attributed to an increase in extracellular 5-HT concentrations in the brain. We examined the effect of MDMA in vivo by two-photon imaging of mice expressing the sensor in the prefrontal cortex (PFC), a higher cognitive region that receives abundant serotonergic innervation. Intraperitoneal (i.p.) injection of MDMA caused a gradual increase in 5-HT1.0 fluorescence, which peaked after 1 h and then gradually decayed over the following 3 h (Fig. 3h–k). This time course is comparable with that of the psychostimulation effect of MDMA in both humans and mice. Meanwhile, MDMA had no effect on the fluorescence of the 5-HTmut sensor (Fig. 3h–k). These results together suggest that the 5-HT1.0 sensor is suitable for stable and long-term imaging in vivo.

Discussion

In summary, we report the development and application of a new genetically encoded fluorescent GRAB sensor for measuring extracellular 5-HT dynamics. The newly developed GRAB5-HT1.0 sensor shows a high affinity for 5-HT (EC\textsubscript{50} ~22 nM), relatively fast on kinetics (τ\textsubscript{on} ~70 ms), high specificity and spatial resolution and a minimal impact on cellular physiology and thus is well suited for detecting physiologically relevant endogenous 5-HT release. Indeed, we demonstrated the utility of the GRAB5-HT1.0 Sensor in detecting endogenous 5-HT release in response to a variety of stimuli and under various behavioral conditions in different animal models. Our finding that 5-HT levels change dynamically throughout the sleep–wake cycle in mice provides new insights into the functional contribution of 5-HT to sleep regulation.

Regarding potential buffering by the 5-HT1.0 sensor, we measured G protein coupling by exogenously applying 5-HT at a broad range of concentrations in the 5-HT2C and 5-HT2C with 5-HT1.0 groups in cultured cells and did not observe a significant difference in 5-HT2C receptor-mediated G protein signaling between these two groups. In addition, the Drosophila in vivo imaging data also showed that the expression of 5-HT1.0 has little effect on odor-evoked neuronal calcium signals. Nevertheless, one still needs to be mindful about the buffering effect of the 5-HT1.0 sensor, especially under conditions of very low local 5-HT concentrations or very high 5-HT1.0 expression levels. One way to ameliorate the buffering effect is to balance expression levels and the photons (signal) generated from the 5-HT1.0 sensor. Future efforts could be applied to tune the sensor’s affinity while improving its brightness and ΔF/ΔF\text{0}.

Of note, there is a tradeoff between a sensor’s affinity and off kinetics. Given the high affinity of the 5-HT1.0 sensor, it inevitably shows slightly slow off kinetics. These kinetic features could be beneficial, as the rapid on kinetics precisely reports the initial timing of endogenous 5-HT release (for example, in local synaptic transmission), while the slow off kinetics helps to accumulate more photons and contributes to the high SNR. Nevertheless, fully capturing the dynamics of fast endogenous serotonergic signaling awaits future improvement of better sensors with both fast on and off kinetics.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41593-021-00823-7.

Received: 23 February 2020; Accepted: 19 February 2021; Published online: 5 April 2021

References

1. Lesch, K. P. et al. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 274, 1527–1531 (1996).
2. Li, Y. et al. Serotonin neurons in the dorsal raphe nucleus encode reward signals. Nat. Commun. 7, 10503 (2016).
3. Portas, C. M. et al. On-line detection of extracellular levels of serotonin in dorsal raphe nucleus and frontal cortex over the sleep/wake cycle in the freely moving rat. Neuroscience 83, 807–814 (1999).
4. Vassani, M., Linda, F. K. & Ramesh, S. Role of selective serotonin reuptake inhibitors in psychiatric disorders: a comprehensive review. Prog. Neuropsychopharmacol. Biol. Psychiatry 27, 85–102 (2003).
5. Fuller, R. W. Uptake inhibitors increase extracellular serotonin concentration measured by brain microdialysis. Life Sci. 55, 163–167 (1994).
6. Runin, M. A., Prioleau, C., Mailman, R. B. & Wightman, R. M. Release and uptake rates of 5-hydroxytryptamine in the dorsal raphe and substantia nigra reticulata of the rat brain. J. Neurochem. 70, 1077–1087 (1998).
7. Candelario, J. & Chacisvís, D. Mechanical stress stimulates conformational changes in 5-hydroxytryptamine receptor 1B in bone cells. Cell. Mol. Bioeng. 5, 277–286 (2012).
8. Jing, M. et al. A genetically encoded fluorescent acetylcholine indicator for in vitro and in vivo studies. Nat. Biotechnol. 36, 726–737 (2018).
9. Patriarchi, T. et al. Ultrafast neuronal imaging of dopamine dynamics with genetically encoded sensors. Science 360, eaat4422 (2018).
10. Sun, F. et al. A genetically encoded fluorescent sensor enables rapid and specific detection of dopamine in flies, fish, and mice. Cell 174, 481–496 (2018).
11. Feng, J. et al. A genetically encoded fluorescent sensor for rapid and specific in vivo detection of norepinephrine. Neuron 102, 745–761 (2019).
12. Bajar, B. T. et al. Improving brightness and photostability of green and red fluorescent proteins for live cell imaging and FRET reporting. Sci. Rep. 6, 20889 (2016).
13. Pedelacq, J. D., Cabantous, S., Tran, T., Tervillegger, T. C. & Waldo, G. S. Engineering and characterization of a superfolder green fluorescent protein. Nat. Biotechnol. 24, 79–88 (2006).
14. Peng, Y. et al. 5-HT2C receptor structures reveal the structural basis of GPCR polypharmacology. Cell 172, 719–730 (2018).
15. Ralletesteros, J. A. & Weinstein, H. [19] Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein–coupled receptors. Methods in Neurosciences 25, 366–428 (1995).
16. Harada, K. et al. Red fluorescent protein-based cAMP indicator applicable to optogenetics and in vivo imaging. Sci. Rep. 7, 7351 (2017).
17. Wan, Q. et al. Mini G protein probes for active G protein–coupled receptors (GPCRs) in live cells. J. Biol. Chem. 293, 7466–7473 (2018).
18. Barnea, G. et al. The genetic design of signaling cascades to record receptor activation. Proc. Natl Acad. Sci. USA 105, 64–69 (2008).
19. Inuhikura, K. et al. Quantitative analysis of the distribution of serotonin-immunoreactive cell bodies in the mouse brain. Neuror. Lett. 91, 265–270 (1988).
20. Waddell, S., Armstrong, J. D., Kitamoto, T., Kaiser, K. & Quinn, W. G. The amnesiac gene product is expressed in two neurons in the Drosophila brain that are critical for memory. Cell 103, 805–813 (2000).
21. Lee, P. T. et al. Serotonin–mushroom body circuit modulating the formation of anesthesia-resistant memory in Drosophila. Proc. Natl Acad. Sci. USA 108, 13794–13799 (2011).
22. Keene, A. C. et al. Diverse odor-conditioned memories require uniquely timed dorsal paired medial neuron output. Neuron 44, 521–533 (2004).
23. Yu, D. et al. Drosophila DPM neurons form a delayed and branch-specific memory trace after olfactory classical conditioning. Cell 123, 945–957 (2005).
24. Xu, M. et al. Basal forebrain circuit for sleep–wake control. Nat. Neurosci. 18, 1641–1647 (2015).
25. Ren, J. et al. Anatomically defined and functionally distinct dorsal raphe serotonin sub-systems. Cell 175, 472–487 (2018).
26. Oikonomou, G. et al. The serotonergic raphe promote sleep in zebrafish and mice. Neuron 103, 686–701 (2019).
27. Ren, J. et al. Single-cell transcriptomes and whole-brain projections of serotonin neurons in the mouse dorsal and median raphe nuclei. eLife 8, e49424 (2019).
28. Rudnick, G. & Will, S. C. The molecular mechanism of ‘ecstasy’ [3,4-me thylenedioxy-methamphetamine (MDMA)]: serotonin transporters are targets for MDMA-induced serotonin release. Proc. Natl Acad. Sci. USA 89, 1817–1821 (1992).
29. Bicks, L. K., Koike, H., Akbarian, S. & Morishita, H. Prefrontal cortex and social cognition in mouse and man. Front. Psychol. 6, 1805 (2015).
30. Liechti, M. E., Saur, M. R., Gamma, A., Helli, D. & Vollenweider, F. X. Psychological and physiological effects of MDMA (‘ecstasy’) after pretreatment with the 5-HT2 antagonist ketanserin in healthy humans. Neuropsychopharmacology 23, 396–404 (2000).
31. Hagino, Y. et al. Effects of MDMA on extracellular dopamine and serotonin levels in mice lacking dopamine and/or serotonin transporters. Curr. Neuropharmacol. 9, 91–95 (2011).
32. Wang, Q., Shui, B., Kotlikoff, M. I. & Sondermann, H. Structural basis for calcium sensing by GCaMP2. Structure 16, 1817–1827 (2008).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
© The Author(s), under exclusive licence to Springer Nature America, Inc. 2021
Methods

Primary cultures. Male and female postnatal day 9 (P9) Sprague–Dawley rat pups were obtained from Beijing Vital River and were used to prepare cortical neurons. The cortex was dissected, and neurons were dissociated using 0.25% trypsin–EDTA (Gibco), plated on 12-mm glass coverslips coated with poly-d-lysine (Sigma–Aldrich) and cultured in neurobasal medium (Gibco) containing 2% B-27 supplement (Gibco), 1% GlutaMAX (Gibco) and 1% penicillin–streptomycin (Gibco). Neurons were cultured at 37°C in a humidified atmosphere in air containing 5% CO2.

Cell lines. HEK293T cells were purchased from ATCC and verified based on their morphology observed by microscopy and an analysis of their growth curve. Stable cell lines expressing either the 5-HT2C receptor or 5-HT1.0 were generated by cotransfecting cells with the PiggyBac plasmid carrying the target genes together with that encoding Trx5 transposase into a stable HEK293T cell line. Cells expressing the target genes were selected using 2 μg/ml puromycin (Sigma). A HEK293T cell line stably expressing a RTA-dependent luciferase reporter and the gene encoding the β-arrestin2–TEV fusion used in the Tango assay was a generous gift from B.L. Roth (University of North Carolina Chapel Hill Medical School)33. All cell lines were cultured at 37°C with 5% CO2, in DMEM (Gibco) supplemented with 10% (vol/vol) FBS (Gibco) and 1% penicillin–streptomycin (Gibco).

Drosophila. UAS-GRAB5-HT (attP40, UAS-GRAB5-HT/UAS/CyO) and UAS-GRAB5-HTmut (attP40, UAS-GRAB5-HTmut/UAS/CyO) flies were generated in this study. The coding sequences of GRAB5-HT or that of GRAB5-HTmut was inserted into pH2Bact2 (ref. 36) (V. Ad ICON plasmid 3643) using Gibson assembly. These vectors were injected into embryos and integrated into attP40 via phiC31 by the Core Facility of Drosophila Resource and Technology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences. The following fly stocks were used in this study: R13F02-Gal4 (BDSC, 48571), UAS-GRAB5-HT (titer, 4.6 × 1014 particles/ml) or UAS-GRAB5-HTmut (titer, 1 × 1014 particles/ml) were injected (volume, 400 nl) into the hippocampus at the following coordinates relative to the bregma: anterior–posterior (AP), −2.0 mm; medial–lateral (ML), 1.5 mm; (depth, 2.3 mm). In experiments shown in Fig. 6a–d, AAV expressing CAG-GRAB5-HT (titer, 1.3 × 1014 particles/ml) or UAS-GRAB5-HT (titer, 1 × 1014 particles/ml) were injected (volume, 400 nl) into the DRN at the following coordinates relative to the bregma: AP, −4.3 mm; ML, 1.1 mm (depth, 2.85 mm, with a 20° ML angle). For the experiments shown in Fig. 2g and Extended Data Fig. 5l, Sindbis virus expressing GRAB5-HT was injected (volume, 50 nl) into the DRN at the following coordinates relative to the bregma: AP, −4.3 mm; ML, 0.0 mm (depth, 3.00 mm). For the experiments shown in Fig. 3a–g, AAVs expressing CAG-GRAB5-HT or hSyn-GRAB5-HT were injected (volume, 400 nl) into the BF at the following coordinates relative to the bregma: AP, −2.6 mm; ML, 1.3 mm; (depth, 3.8 mm). For the experiments shown in Fig. 3b–k, AAVs expressing CAG-GRAB5-HT (titer, 4.6 × 1014 particles/ml) or UAS-GRAB5-HTmut (titer, 1 × 1014 particles/ml) were injected (volume, 400 nl) into the PFC at the following coordinates relative to the bregma: AP, +2.8 mm; ML, 0.5 mm (depth, 0.5 mm).

Fluorescence imaging of HEK293T cells and cultured rat cortical neurons. An inverted Ti-E A1 confocal microscope (Nikon) and an Opera Phenix high-content screening system (PerkinElmer) were used for imaging. The confocal microscope was equipped with a x40, 1.35-numerical aperture (NA), oil-immersion objective, a 488-nm laser and a 561-nm laser. The GFP signal was collected using a 525/50-nm emission filter, and the RFP signal was collected using a 595/50-nm emission filter. Cultured cells expressing GRAB5-HT or GRAB5-HTmut were either bathed or perfused with Tyrode’s solution containing (in mM) 150 NaCl, 4 KCl, 2 MgCl2, 2 CaCl2, 10 HEPES and 10 glucose (pH 7.4). Drugs were delivered via a custom-made perfusion system or by bath application. The chamber was cleaned thoroughly between experiments using 75% ethanol. Photostability was measured using confocal microscopy (one-photon illumination) with the 488-nm laser at a laser power of 350 μW, and the Opera Phenix high-content screening system was equipped with a x40, 1.1-NA water-immersion objective, a 488-nm laser and a 561-nm laser. The GFP signal was collected using a 525/50-nm emission filter, and the GFP signal was collected using a 595/50-nm emission filter. Cultured cells expressing GRAB5-HT or GRAB5-HTmut were either bathed or perfused with Tyrode’s solution containing (in mM) 150 NaCl, 4 KCl, 2 MgCl2, 2 CaCl2, 10 HEPES and 10 glucose (pH 7.4). Drugs were delivered via a custom-made perfusion system or by bath application. The chamber was cleaned thoroughly between experiments using 75% ethanol. Photostability was measured using confocal microscopy (one-photon illumination) with the 488-nm laser at a laser power of 350 μW, and the Opera Phenix high-content screening system was equipped with a x40, 1.1-NA water-immersion objective, a 488-nm laser and a 561-nm laser. The GFP signal was collected using a 525/50-nm emission filter, and the GFP signal was collected using a 595/50-nm emission filter. Cultured cells expressing GRAB5-HT or GRAB5-HTmut were either bathed or perfused with Tyrode’s solution containing (in mM) 150 NaCl, 4 KCl, 2 MgCl2, 2 CaCl2, 10 HEPES and 10 glucose (pH 7.4). Drugs were delivered via a custom-made perfusion system or by bath application. The chamber was cleaned thoroughly between experiments using 75% ethanol. Photostability was measured using confocal microscopy (one-photon illumination) with the 488-nm laser at a laser power of 350 μW, and the Opera Phenix high-content screening system was equipped with a x40, 1.1-NA water-immersion objective, a 488-nm laser and a 561-nm laser. The GFP signal was collected using a 525/50-nm emission filter, and the GFP signal was collected using a 595/50-nm emission filter. Cultured cells expressing GRAB5-HT or GRAB5-HTmut were either bathed or perfused with Tyrode’s solution containing (in mM) 150 NaCl, 4 KCl, 2 MgCl2, 2 CaCl2, 10 HEPES and 10 glucose (pH 7.4). Drugs were delivered via a custom-made perfusion system or by bath application. The chamber was cleaned thoroughly between experiments using 75% ethanol. Photostability was measured using confocal microscopy (one-photon illumination) with the 488-nm laser at a laser power of 350 μW, and the Opera Phenix high-content screening system was equipped with a x40, 1.1-NA water-immersion objective, a 488-nm laser and a 561-nm laser. The GFP signal was collected using a 525/50-nm emission filter, and the GFP signal was collected using a 595/50-nm emission filter. Cultured cells expressing GRAB5-HT or GRAB5-HTmut were either bathed or perfused with Tyrode’s solution containing (in mM) 150 NaCl, 4 KCl, 2 MgCl2, 2 CaCl2, 10 HEPES and 10 glucose (pH 7.4). Drugs were delivered via a custom-made perfusion system or by bath application. The chamber was cleaned thoroughly between experiments using 75% ethanol. Photostability was measured using confocal microscopy (one-photon illumination) with the 488-nm laser at a laser power of 350 μW, and the Opera Phenix high-content screening system was equipped with a x40, 1.1-NA water-immersion objective, a 488-nm laser and a 561-nm laser. The GFP signal was collected using a 525/50-nm emission filter, and the GFP signal was collected using a 595/50-nm emission filter.
NaHCO₃, 7.5 M and MgCl₂, 25 glucose and 0.5 CaCl₂. Mice were then decapitated, and the brains were removed and placed in cold (0–4°C) oxygenated slicing buffer for an additional 1 min. Next, brains were rapidly mounted on the cutting stage of a VT1200 vibratome (Leica) for coronal sections. Three sections containing the hippocampus or the DRN were initially allowed to recover for ≥20 min at 34°C in oxygen-saturated Ringer’s buffer consisting of (in mM) 125 NaCl, 2.5 KCl, 1 NaH₂PO₄, 25 NaHCO₃, 1.3 MgCl₂, 25 glucose and 2 CaCl₂. For two-photon imaging, slices were transferred to a recording chamber that was continuously perfused with oxygen-saturated Ringer’s buffer at 34°C and placed in an FLUO-300MP two-photon microscope (Olympus) equipped with a ×25, 1.05-NA water-immersion objective. Next, 5-HT1.0 or 5-HT1mut fluorescence was excited using a mode-locked Mai Tai Ti:Sapphire laser (Spectra-Physics) at a wavelength of 920 nm and collected with a 495–540-nm filter. For electrical stimulation, a bipolar electrode (WE30031.0A3, MicroProbes) was positioned near the DRN in the slice, and imaging and stimulation were synchronized using an Arduino board with a custom-written program. The parameters of the frame scan were set to a size of 128 × 96 pixels with a speed of 0.148 Hz per frame for electrical stimulation and a size of 312 × 312 pixels with a speed of 1.109 Hz per frame for drug perfusion experiments. For kinetics measurements, single frames were scanned at a rate of 800–850 Hz. The stimulation voltage was set at 4–6 V, and the duration of each stimulation was set at 1 ms. Drugs were bath applied by perfusion into the recording chamber in premixed Ringer’s buffer. For mouse brain slices infected with Sindbis virus, wide-field epifluorescence imaging was performed using the Hamamatsu ORCA-Flash4.0 camera (Hamamatsu Photonics), and 5-HT1.0-expressing cells in acutely prepared tissue slices were excited with ultraviolet (UV) light using a low-noise LED (Prolux). The frame rate of the Flash4.0 camera was set to 10 Hz. To synchronize image capture with electrical stimulation and FSCV, the camera was set to external trigger mode and triggered with a custom-written IGOR Pro 6 program (WaveMetrics). For electrical stimulation, a home-made bipolar electrode was positioned near the DRN in the slice, and the stimulation current was set at 350 μA, and the duration of each stimulation was set at 1 ms.

Fast-scan cyclic voltammetry. CFMEs were fabricated as described previously. Briefly, cylindrical CFMEs (7 μm in radius) were constructed with T-650 carbon fiber (Cytex Engineered Materials), which was aspirated into a glass capillary (1.2-mm OD and 0.68-mm ID, A-M Systems), and the capillary was pulled using the PE-22 puller (Narishige International). The carbon fiber was trimmed to 50–70 μm in length from the pulled glass tip and sealed with Epon epoxy, which was cured at 100°C for 2 h followed by incubation at 150°C overnight. CFMEs were cleaned in isopropanol alcohol for 30 min before Nafion electrodeposition. Nafion was electrodeposited electrochemically by submerging CFME tips in Nafion solution (5% wt) 1100 EW Nafion (in methanol, Ion Power), and a constant potential of 1.0 V versus Ag–AgCl was applied to the electrode for 30 s. Next, Nafion-coated electrodes were air dried for 10 s and then incubated at 70°C for 40 min at 34°C in oxygen-saturated Ringer’s buffer consisting of (in mM) 131.25 NaCl, 3.0 KCl, 10.0 NaH₂PO₄, 1.2 MgCl₂, 2.0 Na₂SO₄, 7.0 MgCl₂, 25 glucose and 0.5 CaCl₂. Mice were then decapitated, and the brains were removed and placed in cold (0–4°C) oxygenated slicing buffer for 30 min at 34°C in oxygen-saturated Ringer’s buffer. Tissue slices from the DRN were then transferred into a solution with primary antibody diluted with dilution buffer (0.25% Triton X-100, 1% normal goat serum in PBS) for 24 h at 4°C. After washing three times, samples were incubated with the secondary antibody for 1–2 h at 4°C. Finally, the samples were washed three times with PBS, mounted with 50% glycerol, and the primary and secondary antibodies were rabbit anti-mCherry (1:500, Abcam, ab167453; RRID, AB_2571870) and Alex Fluor 647 goat anti-rabbit (1:500, AAT Bioquest, 167101). An inverted Ti-E AF 1 confoacial microscope (Nikon) was used for immunofluorescence imaging. The confocal microscope was equipped with a ×20, 0.75-NA objective. A 640-nm laser and a 663/738-nm emission filter were used for this experiment.

Two-photon imaging in mice. Fluorescence imaging in mice was performed using an Olympus two-photon microscope (FV1000) equipped with a Spectra-Physics Mai Tai Ti:Sapphire laser. The excitation wavelength was 920 nm, and fluorescence was collected using a 495–540-nm filter. To perform imaging in head-fixed mice, part of the mouse scalp was removed, and the underlying tissues and muscles were carefully removed to expose the skull. A metal recording chamber was affixed to the skull surface with glue, followed by a thin layer of dental cement to strengthen the connection. One or two days later, the skull above the PFC was carefully removed, taking care to avoid major blood vessels. AAs expressing GRAB5-HT1.0 or GRAB5-HTmut were injected via a glass pipette into the BF, OFC and BNST using a Nanoject II (Drummond Scientific). An optical fiber (200μm, 0.37 NA) with FC ferrule was carefully inserted at the same coordinates used for virus injection. The fiber was affixed to the skull surface using dental cement. After surgery, mice were allowed to recover for at least 1 week. The photometry rig was constructed using parts obtained from Doric Lenses, including a fluorescence optical mini cube (FM4C_AE(405)_B(460–490)_F(500–550)_S), a blue LED (CLED_465), an LED driver (LED_2) and a photoreceiver (NPM_2151_FOA_FC). To record GRAB5-HT1.0 and GRAB5-HTmut fluorescence signals, a beam of excitation light was emitted from an LED at 20 μW, and the optical signals from GRAB5-HT1.0 and GRAB5-HTmut were collected through optical fibers. For fiber-photometry data, a software-controlled lock-in detection algorithm was implemented in the TDT RZ2 system using the fiber-photometry ‘Gizmo’ in the Synapse software program (modulation frequency, 459 Hz; low-pass filter for demodulated signal, 20 Hz, sixth order). Photometry data were collected with a sampling frequency of 1,017 Hz. The recording fiber was bleached before recording to eliminate autofluorescence from the fiber, and the background fluorescence intensity was recorded and subtracted from the recorded signal during data analysis.

Electroencephalography and electromyography recordings. Mice were anesthetized with isoflurane (5% for induction; 1.5–2% for maintenance) and placed on a stereotaxic frame with a heating pad. For EEG, two stainless steel miniature screws were inserted in the skull above the visual cortex, and two additional steel screws were inserted in the skull above the frontal cortex. For EMG, two insulated EMG electrodes were inserted in the neck musculature, and a reference electrode was attached to a screw inserted in the skull above the cerebellum. The screws in the skull were affixed using thick dental cement. All experiments were performed at least 1 week after surgery. TDT system 3 amplifiers (RZ2 and PZ5) were used to record EEG and EMG signals; the signal was passed through a 0.5-Hz high-pass filter and digitized at 1,526 Hz. Quantification and statistical analysis. Animals or cells were randomly assigned into control or experimental groups. Data collection and analysis were not performed blind to the conditions of the experiments, and no data were excluded for the analysis. No statistical methods were used to predetermine sample sizes, but our sample sizes are similar to those reported in previous publications. Imaging data from cultured HEK293T cells, cultured rat cortical neurons, acute mouse brain slices, transgenic flies and head-fixed mice were processed using ImageJ (1.52p) software (NIH) and analyzed using custom-written MATLAB (R2020a) programs. Traces were plotted using Origin 2020 (2020). Exponential-function fitting in Origin was used to correct for slight photobleaching of the traces in Fig. 2b–d and Extended Data Fig. 6h. In Fig. 2e and Extended Data Fig. 6h, background levels measured outside the region of interest of the pseudocolor images were removed using ImageJ. Imaging data from head-fixed mice were corrected using a motion-correction algorithm (EZcalcium) to correct movement artifacts.
subtracted. For calculating ΔF/ΔF₀, a baseline value was obtained by fitting the autofluorescence-subtracted data with a second-order exponential function. Slow drift was removed from the z-score-transformed ΔF/ΔF₀ values using the MATLAB script ‘BEADS’ with a cutoff frequency of 0.00035 cycles per sample (https://www.mathworks.com/matlabcentral/fileexchange/49974-beads-baseline-estimation-and-denoising-with-sparcity). To quantify the change in 5-HT fluorescence across multiple animals, the z-score-transformed ΔF/ΔF₀ values were further normalized using the standard deviation of the signal measured during REM sleep (when there was no apparent fluctuation in the signal), yielding a normalized z score. This normalized z score was used for the analysis in Fig. 3a–g.

For EEG and EMG data analysis, fast Fourier transform was used to perform spectral analysis with a frequency resolution of 0.18 Hz. The brain state was classified semi-automatically in 5-s epochs using a MATLAB GUI and then validated manually by trained experimenters. Wakefulness was defined as desynchronized EEG activity combined with high EMG activity, and NREM sleep was defined as synchronized EEG activity combined high-amplitude delta activity (0.5–4 Hz) combined with low EMG activity, and REM sleep was defined as high power at theta frequencies (6–9 Hz) combined with low EMG activity.

Except when indicated otherwise, all summary data are reported as mean±s.e.m. The SNR was calculated as the peak response divided by the standard deviation of the baseline fluorescence. Data distribution was assumed to be normal, and equal variances were formally tested. Two-tailed Student’s t-tests and one-way ANOVA tests were performed. P values are denoted by *P<0.05, **P<0.01, ***P<0.001 and NS (P>0.05). Exact P values are specified in the legends. Cartoons in Fig. 3a,d,1H were created with https://biorender.com/.

Reporting Summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability
Plasmids for expressing the sensors used in this study were deposited at Addgene (https://www.addgene.org/140552/). The human GPCR cDNA library was obtained from the hORFeome database 8.1 (http://horfdb.dfci.harvard.edu/index.php?page=home). Source data are provided with this paper.

Code availability
The EZCalcium algorithm and BEADS baseline estimation and denoising with sparsity algorithm are available at https://github.com/porteralab/EZcalcium and https://www.mathworks.com/matlabcentral/fileexchange/49974-beads-baseline-estimation-and-denoising-with-sparcity.

References
33. Kroeze, W. K. et al. PRESTO-Tango as an open-source resource for interrogation of the druggable human GPCRome. *Nat. Struct. Mol. Biol.* 22, 362–369 (2015).
34. Pfeiffer, B. D., Truman, J. W. & Rubin, G. M. Using translational enhancers to increase transgene expression in *Drosophila*. *Proc. Natl Acad. Sci. USA* 109, 6626–6631 (2012).
35. Dana, H. et al. Sensitive red protein calcium indicators for imaging neural activity. *elife* 5, e12727 (2016).
36. Gibbon, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. *Nat. Methods* 6, 343–345 (2009).
37. Yusa, K. et al. Targeted gene correction of α1-antitrypsin deficiency in induced pluripotent stem cells. *Nature* 478, 391–394 (2011).
38. Shin, M. & Venton, B. J. Electrochemical measurements of acetylcholine-stimulated dopamine release in adult *Drosophila melanogaster* brains. *Anal. Chem.* 90, 10318–10325 (2018).
39. Cantu, D. A. et al. EZCalcium: open-source toolbox for analysis of calcium imaging data. *Front. Neural Circuits* 14, 25 (2020).

Acknowledgements
We thank Y. Rao for providing the two-photon microscope and X. Lei at PKU-CLS and the National Center for Protein Sciences at Peking University for support and assistance with the Opera Phenix high-content screening system. We thank D. Lin and X. Xu for critical reading of the manuscript. This work was supported by the Beijing Municipal Science & Technology Commission (Z181100001318002), the Beijing Brain Initiative of the Beijing Municipal Science & Technology Commission (Z181100001518004), a Guangdong grant, ‘Key Technologies for Treatment of Brain Disorders’ (2018B030320001), the General Program of National Natural Science Foundation of China (projects 31671118, 31871087 and 31925017), the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (81821092), the NIH BRAIN Initiative (NS103558), grants from the Peking-Tsinghua Center for Life Sciences and the State Key Laboratory of Membrane Biology at Peking University School of Life Sciences (to Y.L.), the Shanghai Municipal Science and Technology Major Project (2018SHZDZX05 to M.X.), and the Shanghai Pujiang Program (18PJ1410800 to M.X.), a Peking University Postdoctoral Fellowship (J.E.), an Alzheimer’s Association Postdoctoral Research Fellowship (AARF 19 619387 to P.Z.); a Peking-Tsinghua Center Excellence Postdoctoral Fellowship (Y.Z.) and the Beijing Nova Program (Z20100006820100 to M.J.).

Author contributions
Y.L. conceived and supervised the project. J.W., M.J., F.D., S.H., J.F. and Y.L. performed the experiments related to developing, optimizing and characterizing the sensor in cultured HEK293T cells and neurons. T.Q. performed the experiments related to developing the fiber-photometry recording of high-fidelity fixed mice. All authors contributed to data interpretation and analysis.

Competing interests
The authors declare competing financial interests. J.W., M.J., J.F. and Y.L. have filed patent applications, the value of which might be affected by this publication.

Additional information
Extended data is available for this paper at https://doi.org/10.1038/s41593-021-00823-7.
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41593-021-00823-7.
Correspondence and requests for materials should be addressed to Y.L.

Peer review information *Nature Neuroscience* thanks Adam Cohen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.
Extended Data Fig. 1 | Characterization of the membrane trafficking for 5-HT receptor-based chimeras. **a**, Representative fluorescence images of HEK293T cells co-expressing the indicated 5-HT receptors fused with cpGFP (green) and RFP-CAAX (red); EGFP-CAAX was used as a positive control. Similar results were observed for more than 100 cells. Scale bar, 10 μm. **b**, Normalized fluorescence intensity measured at the white dashed lines shown in (a) for each candidate sensor.
Extended Data Fig. 2 | Sequence alignment of cpGFP from 5-HT1.0 sensor, sfGFP, and mClover3. a. The sequence of cpGFP from the 5-HT1.0 sensor, sfGFP, and mClover3 are aligned. Amino acids in the cpGFP chose for optimization are labeled with light green color, and the mutations adopted by the 5-HT1.0 sensor are indicated with red stars.
Extended Data Fig. 3 | The amino acid sequence of 5-HT1.0. **a**, Schematic representation of the 5-HT1.0 structure. For simplicity, TM1-4, TM7, and H8 are not shown. **b**, The amino acid sequence of the 5-HT1.0 sensor after three steps of evolution. The mutated amino acids in cpGFP (cpGFP from GCaMP6s, see Chen, T.W., et al. 2013.) are indicated with red stars.
Extended Data Fig. 4 | See next page for caption.
Extended Data Fig. 4 | Further characterization of GRAB<inf>wt</inf> in cultured HEK293T cells and rat cortical neurons. a, Representative fluorescence and pseudocolor images of HEK293T cells expressing 5-HT₁ or 5-HTmut before (left) and after (right) application of 10 μM 5-HT. Similar results were observed for more than 20 wells. Scale bar, 20 μm. b–e, Representative fluorescence traces and group summary of the peak response in HEK293T cells expressing 5-HT₁ or 5-HTmut; n = 14 and 15 cells from 3 cultures for 5-HT₁ and 5-HTmut group. Two-tailed Student’s t-test was performed. P = 8.18 × 10⁻⁴ between 5-HT₁ and 5-HTmut group. d, 5-HT dose-response curves measured in cells expressing 5-HT₁ or 5-HTmut, the EC₅₀ for 5-HT₁ is shown. n = 3 wells per group with 300–500 cells per well. e, Representative normalized fluorescence measured in HEK293T cells expressing 5-HT₁, EGFP-CAAX, or iGluSnFR during continuous exposure to 488-nm laser (power: 350 μW). f, Summary of the decay time constant calculated from the photobleaching curves shown in (e). n = 10/3, 14/3, and 12/3 for 5-HT₁, EGFP-CAAX, and iGluSnFR, respectively. Two-tailed Student’s t-test was performed. P = 2.45 × 10⁻², 1.90 × 10⁻², 3.05 × 10⁻⁴, and 7.22 × 10⁻⁴ between EGFP-CAAX and iGluSnFR without or with Glu, and 5-HT₁ without or with 5-HT. P = 4.43 × 10⁻⁹ and 7.78 × 10⁻⁹ between iGluSnFR without or with Glu and 5-HT₁ without 5-HT. P = 4.62 × 10⁻¹ and 7.05 × 10⁻⁴ between iGluSnFR without or with Glu and 5-HT₁ with 5-HT.^g Summary of the brightness measured in HEK293T cells expressing 5-HT₁ or 5-HT₂C-EGFP in the absence or presence of 10 μM 5-HT, normalized to the 5-HT₂C-EGFP + 5-HT group; n = 3 wells per group with 300–500 cells per well. h, i, Intracellular calcium was measured in cells expressing 5-HT₁ or the 5-HT₂C receptor and loaded with the red fluorescent calcium dye Cal590. Representative traces are shown in (h), and the peak responses are plotted against 5-HT concentration in (i); n = 15/3 for each group. j, k, Fluorescence response of 5-HT₁ expressing cells to 5-HT perfusion for two hours. Representative fluorescence images (j) and the summary data (k) showing the response to 10 μM 5-HT applied at 30 min intervals to cells expressing 5-HT₁; n = 3 wells per group with 100–300 cells per well. Scale bar, 20 μm. F₀ = 0.888, P = 0.505 for 0 min, 30 min, 60 min, 90 min and 120 min by one-way ANOVA. l, Left, the Gs-coupled cAMP level was detected by pink-Flamindo with or without 5-HT₁ sensor expression. The exemplar fluorescence response traces of pink-Flamindo without (top) or with 5-HT₁ sensor (bottom) expression, when treated with 50 μM 5-HT or 50 μM 5-HT + 10 μM Forskolin. Right, quantification data for left. n = 23/3, 23 cells from 3 cultures for each group. Two-tailed Student’s t-test was performed. P = 0.084 and P = 0.488 for 5-HT and 5-HT + FSK group. m, Buffering effects of the 5-HT₁ sensor by luciferase complementation assay. Luminescence signals were measured when treated with different concentrations of 5-HT (left) or 5-HT₂C receptor specific agonist CP809101 (right) with or without co-expression of 5-HT₁ sensor with 5-HT₂C receptor. The luminescence signal of cells treated with the control buffer is normalized to 1. Data of 5-HT induced G-protein signaling in 5-HT₂C receptor expression group were re-plotted from Fig. 1f. n = 3 wells per group with 100–300 cells per well. Two-tailed Student’s t-test was performed. P = 0.693, 0.0402, 0.993, 0.340, 0.0618, 0.0691 and 0.127 between 5-HT₁ and 5-HT₁ + 5-HT₂C with 10⁻⁴, 10⁻⁵, 10⁻⁶, 10⁻⁷, 10⁻⁸, and 10⁻⁹ M 5-HT. P = 0.733, 0.801, 0.346, 0.998, 0.304 and 0.380 between 5-HT₁ and 5-HT₁ + 5-HT₂C with 10⁻⁴, 10⁻⁵, 10⁻⁶, 10⁻⁷, 10⁻⁸ and 10⁻⁹ M CP809101. o, Cultured rat cortical neurons expressing the 5-HTmut sensor were imaged before (left) and after (middle) 5-HT application. These insets in the left and middle fluorescence images show the region with increased contrast. The pseudocolor image on the right shows the change in fluorescence of 5-HTmut in response to 10 μM 5-HT. Similar results were observed for more than 10 neurons. Scale bar, 20 μm. p, Representative trace (o) and group summary (p) of cultured neurons expressing 5-HT₁ in response to indicated compounds at 10 μM each; in (p), Met was applied where indicated; n = 9/3. Two-tailed Student’s t-test was performed. P = 6.74 × 10⁻², 1.09 × 10⁻², 1.27 × 10⁻², 3.33 × 10⁻², and 0.0939 between 5-HTmut⁺ and DA, NE, His, ACh and 5-HT₂C. P = 1.97 × 10⁻¹⁶ between 5-HTmut⁺ and Met. Data are shown as the mean ± s.e.m. in b, d, f, g, i, k, m, p, with the error bars or shaded regions indicating s.e.m. *p < 0.05, **p < 0.01, ***p < 0.001, and n.s., not significant.
Extended Data Fig. 5 | Probing endogenous 5-HT release in mouse brain slices. a, Schematic diagram depicting the acute mouse brain slice preparation, with AAV-mediated expression of 5-HT1.0 in the hippocampus. b, Representative fluorescence images of the 5-HT1.0 sensor expressed in the mouse hippocampal neurons of brain slices in ACSF (left) and 50 μM 5-HT (right). Similar results were observed from 4 slices. Scale bar, 50 μm.

c, A magnified view of the rectangular region in (b) showing the 5-HT1.0 sensor response to exogenously applied 50 μM 5-HT; left, fluorescence image; right, corresponding pseudocolor image indicating ΔF/F₀. The arrowheads indicate somata. Scale bar, 15 μm.

d, Representative traces (left) and quantification (right) of peak ΔF/F₀ of the 5-HT1.0 sensor in response to 50 μM 5-HT from a single soma or neurite (n = 4 slices from 1 mouse). Two-tailed Student’s t-test was performed. P = 0.0226 between soma and neurite.

e, Left, schematic diagram depicting the acute mouse brain slice preparation, with AAV-mediated expression of 5-HT1.0 in the DRN. Middle and right, fluorescence traces (middle) and group data (right) of the change in 5-HT1.0 fluorescence in response to 10 electrical stimuli applied at the indicated frequencies; n = 7 slices from 5 mice.

f, Summary of the change in 5-HT1.0 fluorescence in response to 6 trains of electrical stimuli (20 pulses at 20 Hz) delivered at 5-min intervals. The responses are normalized to the first train; n = 8 slices from 5 mice. F₁,₄₂ = 1.18, P = 0.335 for 0 min, 5 min, 10 min, 15 min, 20 min, and 25 min by one-way ANOVA.

g, Representative fluorescence image, pseudocolor images (g), fluorescence traces (h, left), and group data (h, right) of 5-HT1.0 fluorescence in response to perfusion of 5-HT, 5-HT + Halo, and 5-HT + Met; n = 4 slices from 3 mice for each group. Two-tailed Student’s t-test was performed. P = 0.00297 between 5-HT and Halo. P = 0.00297 between 5-HT and Met. i, Left, representative FSCV data of 5-HT release in DRN. A specific 5-HT waveform (0.2 V to 1.0 V and ramped down to −0.1 V, and back to 0.2 V at a scan rate of 1000 V/s) was applied to the CFME at a frequency of 10 Hz. Right, current vs time traces are extracted at a horizontal white dashed line shows an immediate increase in 5-HT response after electrical stimulation (20 pulses, 2 ms pulse width, 64 Hz). A cyclic voltammogram (inset) is extracted at the vertical black dashed line shows oxidation and reduction peaks at 0.8 V and 0 V, respectively.

j, Left, group data of fluorescence response in 5-HT1.0-expressing DRN neurons to electrical stimuli with varied stimulating frequencies delivered at 20 pulses. Right, average data of peak 5-HT concentration measured by FSCV at varied stimulating frequencies delivered at 20 pulses; n = 11 neurons from 9 mice. Data are shown as the mean ± s.e.m. in d-f, h, j, with the error bars or shaded regions indicating s.e.m., *p < 0.05, ** p < 0.01, ***p < 0.001, and n.s., not significant.
Extended Data Fig. 6 | Probing endogenous 5-HT release in Drosophila in vivo. a, Schematic drawing showing in vivo two-photon imaging of a Drosophila, with the stimulating electrode positioned near the mushroom body (MB). b–c, Representative pseudocolor images (b), fluorescence traces, and group summary (c) of the change in 5-HT1.0 fluorescence in the MB horizontal lobe in response to 40 electrical stimuli at 15 Hz in control (saline) or 10 μM Met; n = 9 flies for each group. Two-tailed Student’s t-test was performed. P = 2.36 × 10⁻⁵ between saline and Met. Scale bar, 10 μm. d, Fluorescence images measured in the MB of flies expressing 5-HT1.0 or 5-HTmut; the β’ lobe is indicated. Scale bar, 10 μm. e–i, Representative pseudocolor images (e), fluorescence traces (f–h), and group summary (i) of 5-HT1.0 and 5-HTmut in the MB β’ lobe measured in response to a 1-s odor application, a 0.5-s body shock, and application of 100 μM 5-HT; n = 14, 12 and 10 flies for 5-HT1.0 group under odor, body shock and perfusion conditions; n = 9, 5 and 9 flies for 5-HTmut group under odor, body shock and perfusion conditions. Two-tailed Student’s t-test was performed. P = 1.14 × 10⁻⁵, P = 0.00273, P = 8.93 × 10⁻⁵ between 5-HT1.0 and 5-HTmut under odor, body shock and perfusion conditions. j, k, Quantification data of area under the calcium transient curves (k) and the on, off (j) in the main Fig. 2r,s; n = 11 and 10 flies for 5-HT1.0+ and 5-HT1.0- group. Two-tailed Student’s t-test was performed. P = 0.497 for calcium signal between two groups. P = 0.710 for on and P = 0.307 for off. Data are shown as the mean ± s.e.m. in c, i–k, with the error bars or shaded regions indicating s.e.m., *p < 0.05, **p < 0.01, ***p < 0.001, and n.s., not significant.
Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Item	Required	Confirmed
n/a	n/a	Confirmed
The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement	Yes	Yes
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly	Yes	Yes
The statistical test(s) used AND whether they are one- or two-sided	Yes	Yes
Only common tests should be described solely by name; describe more complex techniques in the Methods section.	Yes	Yes
A description of all covariates tested	Yes	Yes
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons	Yes	Yes
A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)	Yes	Yes
For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted	Yes	Yes
Give P values as exact values whenever suitable.	Yes	Yes
For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings	Yes	Yes
For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes	Yes	Yes
Estimates of effect sizes (e.g. Cohen’s d, Pearson’s r), indicating how they were calculated	Yes	Yes

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection

- The Harmony software of Opera Phenix high-content screening system (PerkinElmer).
- The NIS-Element software of Ti-E A1 confocal microscope (Nikon).
- The FV10-ASW software of FV1000MPE 2-photon microscope (Olympus).
- The commercial software of the photometry system (TDT).

Data analysis

- Matlab R2020a (MathWorks) and ImageJ 1.52p (NIH) software were used for imaging data processing, and data was plotted in Origin 2020b (OriginLab).
- EZcalcium algorism. https://github.com/porteralab/EZcalcium.
- BEADS baseline estimation and denoising with sparsity algorism. https://www.mathworks.com/matlabcentral/fileexchange/49974-beads-baseline-estimation-and-denoising-with-sparisity.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

The plasmid pAAV-hSyn-GRAB5-HT1.0 (#140552) has been deposited to Addgene database. Source data are provided with this paper.
Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

☑ Life sciences ☐ Behavioural & social sciences ☐ Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size	No statistical methods were used to predetermine sample size. We used similar sample sizes to the literatures in the field.
[1] Jing, Miao, et al. "A genetically encoded fluorescent acetylcholine indicator for in vitro and in vivo studies." Nature biotechnology 36.8 (2018): 726-737. [2] Sun, F., Zeng, J., Jing, M., Zhou, J., Feng, J., Owen, S. F., ... & Li, Y. (2018). A genetically encoded fluorescent sensor enables rapid and specific detection of dopamine in flies, fish, and mice. Cell, 174(2), 481-496. [3] Patriarchi, Tommaso, et al. "Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors." Science 360.6396 (2018). [4] Feng, Jiesi, et al. "A genetically encoded fluorescent sensor for rapid and specific in vivo detection of norepinephrine." Neuron 102.4 (2019): 745-761.	

Data exclusions	No data were excluded for the analysis.

Replication	Each experiment in this manuscript is reliably reproduced. The replication number of each experiment is indicated in the legend of corresponding figures.

Randomization	Animals or cells were randomly assigned into control or experimental groups.

Blinding	The investigators were not blind to group allocation during data collection and analysis. The experimental conditions were obvious to the researchers and the analysis were performed objectively and not subjective to human bias.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems	Methods
n/a	Involved in the study
☐ ☑ Antibodies	☐ ☑ ChiP-seq
☑ Eukaryotic cell lines	☑ Flow cytometry
☑ Palaeontology and archaeology	☑ MRI-based neuroimaging
☑ Animals and other organisms	
☑ Human research participants	
☑ Clinical data	
☑ Dual use research of concern	

Antibodies

Antibodies used	Primary antibody: (1) Rabbit anti-mCherry antibody (1:500) (Abcam) (Cat#: ab167453). Secondary antibody: (1) AlexFlour647 goat anti-rabbit (1:500) (AAT Bioquest) (Cat#: 16710).

Validation	The Rabbit anti-mCherry antibody (Abcam, Cat#:ab167453) used in immunohistochemistry has been verified in Bonaventura, Jordi, et al, Nature Communications 10.1 (2019): 4627-4627. The AlexFlour647 goat anti-rabbit antibody (AAT Bioquest, Cat#: 16710) used in immunohistochemistry has been verified in Zhao, Jingkun, et al, Oncotarget 8.17 (2017): 28442-28454.

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s)	HEK293T cells used in this paper were purchased from ATCC. The HEK293 cell line stably expressing a tTA-dependent luciferase reporter and the β-arrestin2-TEV fusion gene used in the TANGO assay was a generous gift from Bryan L. Roth.

Authentication
We have verified the cell line based on their morphology under microscope and an analysis of their growth curve.

Mycoplasma contamination
No mycoplasma contamination.

Commonly misidentified lines
(See ICLAC register)
No commonly misidentified cell lines were used.

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals
The following fly stocks were used in this study: R13F02-Gal4 (BDSC:48571), UAS-jRCaMP1a (BDSC: 63792), VT64246-Gal4 (VDSC:204311) UAS-GRAB5-HT1.0 (attp40, UAS-GRAB5-HT1.0/CyO) and UAS-GRAB5-HTmut (attp40, UAS-GRAB5-HTmut/CyO). Adult male flies within two weeks post eclosion were used for imaging, and their genotypes have been declared in the methods. Male and female postnatal day 0 (P0) Sprague-Dawley rat pups were used to prepare cortical neurons. Male and female wild-type C57BL/6N (P25-60) mice were used to prepare the acute brain slices and for the in vivo mouse experiments.

Wild animals
No wild animals were used in the study.

Field-collected samples
No field-collected samples were used in the study.

Ethics oversight
All procedures for animal surgery and maintenance were performed using protocols that were approved by the Animal Care & Use Committees at Peking University, the Chinese Academy of Sciences, University of Virginia, and were performed in accordance with the guidelines established by the US National Institutes of Health.

Note that full information on the approval of the study protocol must also be provided in the manuscript.