BABYSCAN: a whole body counter for small children in Fukushima

Ryugo S Hayano¹, Shunji Yamanaka², Frazier L Bronson³, Babatunde Oginni³ and Isamu Muramatsu⁴

¹ Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
² Department of Mechanical and Biofunctional Systems, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
³ Canberra Industries, Inc., 800 Research Parkway, Meriden, CT 06450, USA
⁴ Canberra Japan KK, 4-19-8 Asakusabashi, Taito-ku, Tokyo 111-0053, Japan

E-mail: hayano@phys.s.u-tokyo.ac.jp

Received 22 February 2014, revised 23 June 2014
Accepted for publication 24 June 2014
Published 13 August 2014

Abstract
BABYSCAN, a whole body counter for small children with a detection limit for ¹³⁷Cs of better than 50 Bq/body, was developed, and the first unit has been installed at a hospital in Fukushima, to help families with small children who are very much concerned about internal exposures. The design principles, implementation details and the initial operating experience are described.

Keywords: Fukushima Dai-ichi accident, radioactive caesium, whole-body counting, radiological protection

1. Introduction

The Fukushima Dai-ichi NPP accident [1] contaminated the soil of densely-populated regions of Fukushima Prefecture with radioactive caesium, which poses risks of internal (and external) exposures to the residents. If we apply the knowledge of post-Chernobyl accident studies [2], internal exposures in excess of several mSv y⁻¹ would be expected to be frequent in Fukushima.

Extensive whole-body-counter surveys of 21 785 residents in highly-affected Fukushima municipalities, however, showed that their actual internal exposure levels are much lower than estimated [3]; in 2012–2013, the ¹³⁷Cs detection percentages (the detection limit being ~300 Bq/body) are about 1% for adults, and practically 0% for children (age 6–15). These results are consistent with those of many other measurements and studies conducted.
so far in Fukushima, e.g., dose assessment [4–7], rice inspection [8], foodstuff screening and
duplicate-portion studies [9].

Nevertheless, there continue to be many residents, families with small children in particu-
lar, who are very much concerned about internal exposures. This is in part due to the fact the
whole body counters currently being used in Fukushima, such as the FASTSCAN [10], are
designed for radiation workers, who are adults. Children have been successfully measured
previously at Chernobyl, and in Fukushima Prefecture, by having them stand on a small stool
to get their bodies into the detection zone. While this is suitable to measure larger uptakes in
larger children, it is not optimum for measuring small children (\lesssim4 y), and is not suitable for
infants or children who cannot stand.

Scientifically, it is sufficient to measure parents, but worried parents strongly request to
have their babies measured. We therefore launched a project in the spring of 2013\(^5\) to develop
a whole body counter for small children called a ‘BABYSCAN’, and have installed the first
unit at the Hirata Central Hospital in Fukushima Prefecture in December 2013. The design
principles, implementation and the initial operating experience are reported.

2. BABYSCAN requirements

About 80% of some 60 whole body counters currently installed in Fukushima Prefecture are
Canberra’s FASTSCAN. A subject stands for two minutes in a shielding box made of iron,
which houses two $7.6 \times 12.7 \times 40.6$ cm sodium iodide (NaI) gamma-ray detectors. The detec-
tion limit for radioactive caesium is about 250–300 Bq/body (both for 134Cs and 137Cs), which
is nearly independent of height and/or weight of the adult subject (flat within $\sim \pm 15\%$).

This detection limit is however too high for reliably measuring small children, since the
biological half-life of radioactive caesium in children (~ 13 d for 1 year old, ~ 30 d for 5 year
old) is much shorter than that in adults (~ 110 d) [11, 12]. As a result, children’s internal con-
tamination is harder to detect.

For example, if an adult ingested 3 Bq of 137Cs every day, the body burden would reach an
equilibrium plateau of ~ 400 Bq/body [12]. This can be detected by the FASTSCAN. If on the
other hand a 1-year-old child ingested the same amount, the resultant body burden would be ~ 60
Bq/body. Therefore, the whole body counters for babies must have a much lower detection limit.

Our goal was to achieve a detection limit of <50 Bq/body for 134,137Cs. In order to realize
this high sensitivity, the BABYSCAN must be ergonomically designed so that a small child
can stay still for several minutes, without feeling afraid of confinement.

From the beginning, it was recognized that the BABYSCAN’s design must be reassuring
to parents, and that in addition to being a measurement device, it would be expected to play
an important role as a communication tool to facilitate interactions between medical staff and
residents.

3. BABYSCAN details

The BABYSCAN’s design principles and technologies were derived from those of FASTSCAN,
but in order to realize higher sensitivity, there are some crucial differences.

As shown in figure 1, the subject lies down inside the measurement chamber of BABYSCAN,
as opposed to standing as in the case of FASTSCAN. A child can either lie on the bed supine
(on their back and face up) or prone (on their stomach, face down). During development, we

\(^5\) FB gave the first proposal to Japan Atomic Energy Agency (JAEA) in spring 2012. Independently, RH received a
request to make such a device from the Hirata Central Hospital, also in spring 2012.
discovered that older children’s posture tends to be more stable in the prone position, as shown in the right-hand panel of figure 1. Small babies, however, tend to prefer the supine position, and are more comfortable when they can also see their mother’s face through the opening. Both positions are OK, as they have essentially the same efficiency.

There are four NaI detectors (7.6 × 12.7 × 40.6 cm each), arranged in a two-by-two geometry, installed in an iron-shielded compartment placed above the subject. The bottom of the NaI compartment has a window facing the subject, made of a carbon-honeycomb plate measuring 28 cm × 86 cm. The detectors are close to each other, therefore the area of the NaI group of detectors is approximately 26 cm × 82 cm. This is similar to the size of a small child, thereby achieving a high gamma-ray detection efficiency.

The detection efficiency can be further optimized by using a height-adjustable bed. The distance from the bed surface to the bottom of the NaI detector is either 20 cm, 25 cm or 30 cm. The left panel of figure 1 shows a 20 cm bed with a harness used for measuring small babies, while the right panel shows a child lying on a 25 cm bed. The bed is pulled out when a child enters/leaves the measurement chamber, and it is pushed in during the measurement.

The size of the measurement chamber is 30 cm (H) × 80 cm (W) × 140 cm (L), and the bed is 40 cm (W) × 120 cm (L). These dimensions limit the maximum height of the subject to be about 130 cm.

The measurement chamber and the detector compartment are surrounded by 10 cm-thick iron shielding as shown in the left panel of figure 1. The shielding at bottom has an additional 5 cm of iron and the front has an additional 3 cm of iron. The size of the opening through which the subject enters the measurement chamber is 44 cm (W) at the top and 32 cm (W) at the bottom. This reflects an optimum balance between ease of use and maximum shielding of background radiation.

This iron structure is covered by an ergonomically designed plastic cover. The exterior surface of BABYSCAN is covered by smooth curved panels (made of glass-fiber reinforced plastic (GFRP)) colored with natural white for its gentle appearance. In order to provide a cozy space for children, the interior surface is also covered by organic surface (made of carbon-fiber reinforced plastic (CFRP), so as to avoid the radium, thorium, and 40K background from the glass in GFRP), colored by light blue which looks like being made of soft materials. These panels are precisely assembled to eliminate the possibility of injuring baby’s skin by their gaps or edges.

All the materials used to manufacture BABYSCAN, including the bed and the tablet computer, were tested for natural radioactivity using a germanium detector prior to assembly. Materials known previously to be problematic were avoided. The approximate criteria for
acceptance was when any radioactivity in the component would not cause a detectable peak in the background of the BABYSCAN detectors with a subject in place, when the subject is counted ten times longer than normal, i.e. 30–40 min. No artificial nuclides were detected, but occasionally, low levels of natural radioactivity were detected.

Table 1 summarizes the BABYSCAN parameters.

4. BABYSCAN calibration

The BABYSCAN was calibrated using a Monte Carlo N-Particle Transport Code (MCNPX version 2.7.0) [13] for a wide variety of weight and height combinations for each of the three bed-height positions. These calibrations were validated with (1) a 4-year-old ANSI BOMAB phantom containing 290 kBq of 152Eu (made by Japan Isotope Association), and (2) 2-year-old and 6-year-old ‘universal’ phantoms, respectively containing 3113 Bq and 6225 Bq of 137Cs (made by STC RADEK, St. Petersburg), for three different bed heights.

In the ‘universal’ phantom, polyethylene blocks and 137Cs-containing rods are combined to make six different age and anthropometric types. We used 2- and 6-year-old phantoms to further check the BABYSCAN calibration, and also to compare the BABYSCAN’s characteristics with those of FASTSCAN.

Table 2 shows the results of these validation measurements at the 137Cs energy range for the three phantoms, using different bed heights.

Figure 2 shows the spectra of the 6-year-old phantom (6226 Bq of 137Cs) measured with the BABYSCAN (4 min, shown in black) and the FASTSCAN (2 min, shown in grey); they are installed in the same room of the hospital.

The 137Cs peak count of BABYSCAN is about 8 times larger as compared to the FASTSCAN. From the increase in the number of detectors ($\times 2$) and in the measurement time ($\times 2$), one would naively expect an increase of factor 4; the extra factor of 2 comes from the
closer subject–detector distance than in the FASTSCAN, and because the detectors are closer
to each other than in the FASTSCAN detector geometry.

The Cs-region background count of BABYSCAN is about 3.5 times higher than that of
FASTSCAN, which is 13% smaller than the factor 4 expected from the differences in both the
number of detectors and the measurement time. This 13% background reduction (despite a
rather large opening at the top) is the result of the increased shielding.

5. Initial operating experience of the BABYSCAN

The first BABYSCAN unit, installed at the Hirata Central Hospital in Fukushima Prefecture,
started operation on 2 December 2013. We here demonstrate its performance based on the data
of first 100 subjects, whose age distribution (minimum 3.8 months old, maximum 10 years
old, mean 4.2 years old) is shown in figure 3, and their anthropometric parameters are plotted
in figure 4 (minimum weight 6.5 kg, maximum weight 31.3 kg, mean 16.1 kg, minimum

![Figure 2. Comparison of the 137Cs 6-year-old phantom spectra. Black: BABYSCAN
4 min, grey: FASTSCAN 2 min.](image)

![Figure 3. Age distribution of the subjects.](image)
Radiocaesium was not detected in any of the 100 subjects, and the mothers were happy to learn the test results. Nevertheless, as expected, 40K was detected in all subjects. Typical gamma-ray energy spectra are presented in figure 5; the spectra shown in black dots were taken with subjects (4 min), and those in grey dots were taken without subject (measured for 5 h, normalized to 4 min). The background-subtracted spectra are shown in open circles.

Figure 6 shows the distribution of the 40K activity (Bq/body) versus the weight of the subject. The data shown in open circles/filled circles/open squares were measured with the

height 60.0 cm, maximum height 133.3 cm, mean 98.2 cm). This study was approved by the Ethics Committee of the University of Tokyo.
The data points show a linear correlation between the weight and the amount of 40K in the body, with a slope of 50.7 ± 0.9 Bq kg$^{-1}$. This is consistent with the known amount of 40K in human body.

The data shown in figure 6 indicates that 40K activities as low as 300 Bq were reliably detected, and accurately measured. One can use this information, to estimate the amount of 137Cs that can be reliably measured. The gamma yield of 137Cs is 85% while the gamma yield of 40K is only 10%. The 137Cs background (counts per keV) is 3 times the background of 40K, but the detector full width at half maximum (FWHM) for 137Cs is 0.6 times that of the 40K. The efficiency at 137Cs energies is 1.4 times larger than at 40K. These combine to convert a reliably measured 300 Bq 40K value into an estimated 35 Bq 137Cs value that should be reliably measured, all other things being equal. This is consistent with the calculated 137Cs MDA described in the next paragraph.

The minimum detectable activity (MDA) [14]6 for 137Cs (Bq/body), calculated for each subject, is plotted in figure 7 against weight (kg). Here again, data taken with 20 cm/25 cm/30 cm bed. The data points show a linear correlation between the weight and the amount of 40K in the body, with a slope of 50.7 ± 0.9 Bq kg$^{-1}$. This is consistent with the known amount of 40K in human body.

The data shown in figure 6 indicates that 40K activities as low as 300 Bq were reliably detected, and accurately measured. One can use this information, to estimate the amount of 137Cs that can be reliably measured. The gamma yield of 137Cs is 85% while the gamma yield of 40K is only 10% . The 137Cs background (counts per keV) is 3 times the background of 40K, but the detector full width at half maximum (FWHM) for 137Cs is 0.6 times that of the 40K. The efficiency at 137Cs energies is 1.4 times larger than at 40K. These combine to convert a reliably measured 300 Bq 40K value into an estimated 35 Bq 137Cs value that should be reliably measured, all other things being equal. This is consistent with the calculated 137Cs MDA described in the next paragraph.

The minimum detectable activity (MDA) [14]6 for 137Cs (Bq/body), calculated for each subject, is plotted in figure 7 against weight (kg). Here again, data taken with

6The MDA used here is the standard Currie lower limit of detection, where there is a 5% chance of Type 1 error, a 5% chance of a Type 2 error: [14].
20 cm/25 cm/30 cm beds are shown in open circles/filled circles/open squares. As the bed-to-detector distance decreases, the solid angle increases and hence the MDA decreases. This plot clearly shows that our initial goal of achieving a detection limit lower than 50 Bq/body has been met.

6. Conclusion

BABYSCAN, a whole body counter for small children was developed, and the first unit has been installed at a hospital in Fukushima. The radiocaesium detection limit of BABYSCAN is better than 50 Bq/body, which has been realized by a careful ergonomic design, optimized detector geometry and reinforced shielding. Even with this low detection limit, radiocaesium was not detected in any of the first 100 Fukushima children, while, as expected, 40K was detected in all subjects. The results of larger-scale measurements with the BABYSCAN will be reported in our forthcoming publications.

Acknowledgments

The authors would like to express their appreciation to Kinya Tagawa and Hisato Ogata of Takram design engineering for their assistance in the design of BABYSCAN. Thanks are also due to Nichinan Corporation and Shinwa kougyo Co., Ltd respectively for their contribution to the external panel and iron structure design and fabrication. This work was partially supported by donations by many individuals to RH through The University of Tokyo Foundation.

References

[1] Tanaka S 2012 Accident at the Fukushima Dai-ichi nuclear power stations of TEPCO outline and lessons learned Proc. Japan Acad. Ser. B: Phys. Biol. Sci. 88 471–84
[2] UNSCEAR 1988 Report, Annex D ‘Exposures from the Chernobyl Accident’ (New York: United Nations) ISBN-13: 978-92-1-142280-1
[3] Hayano R et al 2013 Internal radiocaesium contamination of adults and children in Fukushima 7–20 months after the Fukushima NPP accident as measured by extensive whole-body-counter surveys Proc. Japan Acad. Ser. B: Phys. Biol. Sci. 89 157–63
[4] Nagataki S, Takamura N, Kamiya K and Akashi M 2013 Measurements of individual radiation doses in residents living around the Fukushima nuclear power plant Radiat. Res. 180 439–47
[5] Tsubokura M et al 2013 Limited internal radiation exposure associated with resettlements to a radiation-contaminated homeland after the Fukushima Daiichi nuclear disaster PLoS One 8 e81909
[6] Tsubokura M, Shibuya K, Kato S, Oikawa T and Kanazawa Y 2013 Acute intake of radionuclides immediately after the incident as the main contributor of the internal radiation exposure after Fukushima Daiichi nuclear disaster JAMA Pediatr. 167 1169–70
[7] Sugimoto A, Gilmour S, Tsubokura M, Nomura S, Kami M, Oikawa T, Kanazawa Y and Shibuya K 2014 Assessment of the risk of medium-term internal contamination in Minamisoma City, Fukushima, Japan, after the Fukushima Dai-ichi nuclear accident Environ. Health Perspect. 122 587–93
[8] Results of Fukushima Brown Rice Inspection 2012 https://fukumegu.org/ok/kome/year/12 and 2013 https://fukumegu.org/ok/kome/year/13, last accessed 20 May 2014
[9] Sato O, Nonaka S and Tada J 2013 Intake of radioactive materials as assessed by the duplicate diet method in Fukushima J. Radiol. Prot. 33 823–38
Bronson F L, Booth L F and Richards D C 1984 FASTSCAN: a computerized, anthropometrically designed, high throughput, whole body counter for the nuclear industry Proc. 17th Midyear Topical Symp. of the Health Physics Society (Pasco, WA, Feb. 1984) (www.canberra.com/literature/invivo_counting/tech_papers/fastscan.pdf, last accessed: 18 Feb 2014)

ICRP Publication 78 1997 Individual Monitoring for Internal Exposure of Workers, Ann. ICRP 27 (3–4)

Ishigure N, Matsumoto M, Nakano T and Enomoto H 2004 Development of software for internal dose calculation from bioassay measurements Radiat. Prot. Dosim. 109 235–42

Waters L S 2002 MCNPX: a general purpose Monte Carlo radiation transport code Los Alamos National Laboratory Report LA-UR-02-2607

Currie L A 1968 Limits for qualitative detection and quantitative determination Anal. Chem. 40 586–693