Unblocking the rate-limiting step of the municipal sludge anaerobic digestion

Jiefu Wang | Yuepeng Sun | Dian Zhang | Tom Broderick | Mary Strawn | Hari Santha | Karen Pallansch | Allison Deines | Zhi-Wu Wang

1Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia, USA
2Arlington County Water Pollution Control Bureau, Arlington, Virginia, USA
3Alexandria Renew Enterprises, Alexandria, Virginia, USA
4Stantec, Fairfax, Virginia, USA

Correspondence
Zhi-Wu Wang, Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, USA.
Email: wzw@vt.edu

Abstract
Anaerobic digestion stabilizes municipal sludge through total solids reduction and biogas production. It is generally accepted that hydrolysis accounts for the rate-limiting step of municipal sludge anaerobic digestion, impacting the overall rates of solids reduction and methane production. Technically, the sludge hydrolysis rate can be enhanced by the application of thermal hydrolysis pre-treatment (THP) and is also affected by the total solids concentration, temperature, and solids retention time used in the anaerobic digestion. This study systematically analyzed and compared ways to take these four factors into the consideration of modern anaerobic digestion system for achieving the maximum solid reduction. Results showed that thermophilic anaerobic digestion was superior to mesophilic anaerobic digestion in terms of solids reduction but vice versa in terms of the methane production when integrated with THP. This difference has to do with the intermediate product accumulation and inhibition when hydrolysis outpaced methanogenesis in THP-enhanced thermophilic anaerobic digestion, which can be mitigated by adjusting the solids retention time.

Practitioner points
- THP followed by TAD offers the greatest solids reduction rate.
- THP followed by MAD offered the greatest methane production rate.
- FAN inhibition appears to be an ultimate limiting factor constraining the methane production rate.
- In situ ammonia removal technique should be developed to further unblock the rate-limiting step.

Keywords
anaerobic, hydrolysis, mesophilic, sludge, SRT, thermophilic

Zhi-Wu Wang is a member of the Water Environment Federation (WEF).

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2022 The Authors, Water Environment Research published by Wiley Periodicals LLC on behalf of Water Environment Federation.

https://doi.org/10.1002/wer.10793
INTRODUCTION

Anaerobic digestion is a biological process commonly used in water resources recovery facilities (WRRFs) for reducing the mass and volume of the primary and secondary sludge produced during wastewater treatment (Mills et al., 2014) and, in turn, saves the cost of biosolids transportation and disposal in the landfills or on the farmlands. Along with this solid reduction, the organic fraction of the sludge also can be biologically converted to biogas that can be utilized as a type of renewable energy for generating heat, electricity, and even vehicle fuel (Tian et al., 2021). Similar to the solids fermentation processes used in other fields (Chilakamarry et al., 2022; Liu et al., 2020), the rate of solids hydrolysis is usually the limiting step constraining the overall rate of the anaerobic digestion processes consisting of hydrolysis, acidogenesis, acetogenesis, and methanogenesis (Appels et al., 2008; Wang et al., 2011). Therefore, the purpose of this study is to develop a strategy that can substantially improve the municipal sludge hydrolysis rate, which is highly desired in industrial practices to unblock this rate-limiting step for upgrading the capacity of existing anaerobic digesters.

Technically, the sludge hydrolysis rate is affected by the total solids concentration (TS) (Di Capua et al., 2020; Xu et al., 2021), the solids retention time (SRT) (Appels et al., 2008; Ge et al., 2011; Jain et al., 2015; Pilli et al., 2015; Zhen et al., 2017), and the temperature (e.g., mesophilic or thermophilic) used in anaerobic digestion (AD) processes (Müller, 2000). In recent years, thermal hydrolysis pretreatment (THP) has also been increasingly used to further enhance the sludge hydrolysis rate (Appels et al., 2008; Ge et al., 2011; Jain et al., 2015; Pilli et al., 2015; Zhen et al., 2017). To date, these measures have not been investigated in a systematic manner to explore the extent to which the sludge hydrolysis rate can be maximized through the process integration and optimization. To this end, this study is aimed to determine the enhancement these four measures can possibly bring to the municipal sludge AD. It is anticipated that the outcomes from this study are able to provide engineering guidance for WRRFs to maximize the capacity of existing anaerobic digesters.

MATERIALS AND METHODS

THP setup

THP was performed in a 2 L pressure vessel (No. 4602, Parr Instrument, Moline, IL) (Figure 1a) heated in a muffle furnace at 170°C and 890 kPa for 2.5 h to ensure sufficient heat penetration. The THP temperature was selected based on the specification of full-scale Cambi THP process (Appels et al., 2008), which was also suggested by previous studies (Di Capua et al., 2020; Zhang et al., 2021) in terms of the extents of sludge solubilization and subsequent biogas production to be achieved under such conditions. We are aware that this lab-scale THP time (2.5 h) is much longer than the 0.5 h commonly used in full-scale THP, which uses hot stream for quick heat penetration. Due to the lab-scale setup limitation, we chose to make this necessary compromise as was practiced in many other similar lab-scale studies (Zhang et al., 2021). As a result, the outcome from this study is expected to overestimate the THP effects. The sludge processed in this lab-scale THP was then fed to the lab-scale anaerobic digesters shown in Figure 1b. More detailed information about the lab-scale THP setup can be found in the study by Zhang et al. (2021).

Anaerobic digester setup

A total of six stainless steel anaerobic digesters with the design described in a previous study were employed in this research (Zhang et al., 2021). Referring to Figure 1b,
Statistical analysis

Microsoft Excel was used to tabulate data and perform simple statistics such as mean, standard deviation, and T test. T tests were used to determine if the mean difference between two variables was statistically significant (p < 0.05). The AD steady states were also determined by T tests of random monitoring data sampled from the daily pH and volumetric methane production rate profiles presented in Figure 3; that is, experimental data collected after the time behind the dash lines in Figure 3 are with p > 0.05 and thus can be regarded as steady state data. The data from THP-TAD3 in Figure 1c did not have a steady state because of the failure in methane production.
Results

Effects of THP on sludge hydrolysis

The effect of 170°C THP for 2.5 h on sludge hydrolysis was studied in a MAD operated at an SRT of 15 days. Table 1 shows that the THP itself did not change TS, VS, pH, and tCOD of the sludge. However, THP has substantially increased all the soluble metrics. For example, sCOD, alkalinity, VFAs, and soluble protein and carbohydrate concentrations have increased for 0.6- to 7.9-folds as a result of THP (Table 1), which indicates the effectiveness of THP in hydrolyzing the municipal sludge solids.

The 2.5 times greater VFA availability in the effluent of THP (Table 1) was expected to grow more methanogens in the THP-MAD1, which can be reflected by its significantly greater volumetric methane production rate over that of the MAD without THP measured at the steady state (Table 2 and Figure 2a). In contrast, an insignificant difference of volumetric solids reduction rate between MAD and THP-MAD1 was measured in Table 2 and Figure 2a, suggesting that the microbial hydrolysis in MAD can be as good as that of the THP at such a low TS content of 4%. This conclusion can be supported by the similar VSR values measured in the two digesters (Table 2). It is also noteworthy that not much difference was found in the VFA-to-alkalinity ratio between MAD and THP-MAD1 at the steady state either (Table 2).

Because VFAs are the intermediate products between hydrolysis and methanogenesis assuming acidification and acetification are not the rate-limiting steps, this VFA-to-alkalinity ratio can be used an indicator of whether methanogenesis rate can catch up with the hydrolysis rate because the ratio would have substantially increased, and the pH would have dropped if otherwise (Lossie & Pütz, 2008). The similar VFA concentrations and neutral pH values in the two digesters' effluent suggest that the methanogenesis has paced well with the hydrolysis with or without THP. Again, the reason might have to do with the low TS loaded into both MADs because microbial hydrolysis apparently has handled such a low TS as well as the THP did. This hypothesis was tested in the subsequent TS effect study.

Effects of TS on sludge hydrolysis

The TS that can be effectively mixed via biogas recirculation in these lab-scale anaerobic digesters is below 8% (Figure 1b). Therefore, two MADs fed with 4% and 8% TS sludge were compared side-by-side to understand the TS effect on sludge hydrolysis when all other parameters such as THP, SRTs, and AD temperatures were kept the same. Results in Table 2 show that the VSR declined for 13.0% as a result of doubling the TS in the feed sludge.

Table 2 Performance of anaerobic digesters under various scenarios

	MAD	THP-MAD1	THP-MAD2	THP-TAD1	THP-TAD2	THP-TAD3
SRT (days)	15	15	15	25	15	7
Feedstock TS (%)	4.0 ± 0.1	4.0 ± 0.1	8.0 ± 0.1	8.0 ± 0.1	8.0 ± 0.1	8.0 ± 0.1
Feedstock VS (%)	85.0 ± 0.2	85.0 ± 0.2	85.0 ± 0.2	85.0 ± 0.2	85.0 ± 0.2	85.0 ± 0.2
Volumetric solids reduction rate (g L⁻¹ d⁻¹)	0.91 ± 0.09	0.99 ± 0.10	1.78 ± 0.12	1.76 ± 0.04	2.34 ± 0.46	4.20 ± 0.55
Volumetric methane production rate (L L⁻¹ d⁻¹)	0.54 ± 0.13	0.61 ± 0.08	1.23 ± 0.15	1.03 ± 0.10	0.80 ± 0.07	0.28 ± 0.12
VSR (%)	46.8 ± 3.7	50.7 ± 4.2	44.1 ± 2.3	63.4 ± 1.1	51.2 ± 7.3	41.0 ± 4.5
VFAs (mg Acetate L⁻¹)	1237.5 ± 317.5	1228.1 ± 398.4	3849.6 ± 332.7	4031.5 ± 110.5	5733.6 ± 224.4	7303.9 ± 273.9
Alkalinity (mg CaCO₃ L⁻¹)	4183.2 ± 329.4	4319.1 ± 427.4	6212.3 ± 549.1	6287.2 ± 499.3	5048.8 ± 818.8	4188.7 ± 781.6
VFA-to-alkalinity ratio	0.25 ± 0.02	0.24 ± 0.02	0.62 ± 0.04	0.80 ± 0.16	0.96 ± 0.09	2.20 ± 0.34
pH	7.16 ± 0.08	7.16 ± 0.06	7.33 ± 0.07	7.75 ± 0.07	7.66 ± 0.06	6.88 ± 0.25
CH₄ content in biogas (%)	60.8 ± 1.4	60.1 ± 1.6	57.7 ± 0.50	57.7 ± 0.3	63.3 ± 0.2	20.2 ± 0.1
TAN (mg L⁻¹)	698 ± 3	1380 ± 42	1538 ± 3	1960 ± 10	1750 ± 10	1570 ± 10
FAN (mg L⁻¹)	11.0 ± 0.1	26.8 ± 0.8	35.1 ± 0.1	349.4 ± 2.2	276.9 ± 1.9	155.4 ± 1.5

Note: Data under steady state from all systems (Figure 3) were used except for THP-TAD3. The data from THP-TAD3 were all included. Abbreviations: FAN, free ammonia nitrogen; MAD, mesophilic anaerobic digester; SRT, solids retention time; TAD, thermophilic anaerobic digester; THP, thermal hydrolysis pretreatment; TS, total solids concentration; VFA, volatile fatty acid; VS, volatile solids concentration; VSR, volatile solid reduction.
As a matter of fact, it is expected to see this hydrolysis efficiency decrease because the solids loading applied on the THP-MAD$_2$ has doubled that of the THP-MAD$_1$. Accordingly, the volumetric solids reduction rate and volumetric methane production rate with solids loading rates factored in THP-MAD$_2$ have also doubled those of the THP-MAD$_1$ operated with half solids loading (Table 2 and Figure 2b). This proportional increase in hydrolysis and methanogenesis rates along with the solids loading rates increase suggests that the methanogenesis was still able to keep up with the pace of the hydrolysis increase along with the TS increase and was subjected to minor inhibition from the accumulation of the intermediate products such as VFA and FAN. Results in Table 2 show that the VFAs and FAN did increase from 1228.1 mg Acetate L$^{-1}$ and 26.8 mg L$^{-1}$ to 3849.6 mg Acetate L$^{-1}$ and 35.1 mg L$^{-1}$, respectively, as a result of doubling the influent TS. The uncompromised rates of solids hydrolysis and methane production just revealed that these levels of intermediate product accumulation were not severe enough to impede the high-TS MAD performance and thus should be pursued in full-scale application for better use of the MAD volumetric capacity.

Effects of AD temperature on sludge hydrolysis

To understand the effects of AD temperature on the sludge hydrolysis, an MAD and a TAD were operated with an SRT of 15 days in parallel with all other parameters kept the same. Results in Table 2 show that the VSR has substantially increased from 44.1% in THP-MAD$_2$ to 51.2% in THP-TAD$_2$ as a result of the AD temperature increase from 35°C to 55°C, highlighting the essential role of AD temperature in governing the sludge hydrolysis rate even with THP applied. As a result of this microbial hydrolysis enhancement, the volumetric solids reduction rate has significantly increased for 31.5% in THP-TAD$_2$ over that of the THP-MAD$_2$ (Figure 2c); however, the volumetric methane production rate has dropped for 53.8% in the THP-TAD$_2$ over that in the THP-MAD$_2$ (Figure 2c). This sharp decline in the volumetric methanogenesis rate has to do with the inhibition from the intermediate-product accumulation. Table 2 shows that both the VFA-to-alkalinity ratio and FAN have substantially increased for 54.8% and 689.1% in THP-TAD$_2$ over THP-MAD$_2$, respectively. Obviously, this
FIGURE 3 Profiles of pH and volumetric methane production rates for systems under various experimental design described in Figure 1c, that is, (a, b) MAD; (c, d) THP-MAD$_1$; (e, f) THP-MAD$_2$; (g, h) THP-TAD$_1$; (i, j) THP-TAD$_2$; and (k, l) THP-TAD$_3$. Date after dash lines represents data under steady states as determined from T test.
intermediate product accumulation can be explained by the inability of methanogenesis to keep up with the pace of hydrolysis in THP-TAD$_2$. The fact that TAD has been used for municipal sludge stabilization for decades without the intermediate product accumulation problem implies that this out-of-the-pace between hydrolysis and methanogenesis is due to the THP integration (Figure 1a). A literature review in Table 3 shows that the volumetric methane production rates have been low in all previous THP-TAD integrations even though the VSR has been high, indicating that an integration of two high-rate processes such as THP and TAD has accelerated the hydrolysis rate to the extent that the methanogenesis cannot keep up with anymore. As a consequence, the VFAs and FAN of THP-TAD$_2$ have been dramatically accumulated to the levels of 5733.6 mg Acetate L$^{-1}$ and 276.9 mg L$^{-1}$, respectively (Table 2). Therefore, feeding 8% TS of THP-processed sludge to a TAD operated at a 15-day SRT is not a very good choice for methane production even though doing so can substantially improve the sludge hydrolysis performance in terms of VSR and volumetric solids reduction rate as compared with the THP-MAD$_2$ operated under the same conditions (Table 2 and Figure 2c).

Effects of SRTs on THP-TAD

Knowing the THP-TAD$_2$ operation at a 15-day SRT has already increased the hydrolysis rate to the extent that methanogenesis rate cannot keep up with anymore, the SRT was investigated as a single variable in this experiment to understand whether it can be manipulated to coordinate the paces between hydrolysis and methanogenesis. Theoretically, increasing SRT allows more methanogens to be enriched and thus offers higher methanogenesis rate. Meanwhile, increasing SRT should also enhance VSR for the longer digestion time and thus produce lower TS in the digester effluent. This prediction is in line with the experimental results measured in Table 2; that is, increasing the SRT of TAD from 7 to 15 and then to 25 days has significantly improved the volumetric methane production rates from 0.28 to 0.80 and then to 1.03 L L$^{-1}$ day$^{-1}$ as a result of the more methanogen retention with the SRT increase (Figure 2d). Likewise, the VSR also increased from 41.0, to 51.2, and then to 63.4% along with the SRT increase (Table 2). It is noteworthy that the volumetric solids reduction rate actually decreased along with this VSR increase, and such a VSR increase was proportional to the decrease of volumetric solids reduction rate (Table 2). This can be explained by the first-order microbial hydrolysis rate that has been recognized in AD (Batstone et al., 2002); that is, the solid hydrolysis rate is supposed to be proportional to the in situ
TS in the AD. Hence, a high VSR has attenuated the in situ TS to such a low level that the volumetric solids reduction rate proportional to it per the first-order reaction kinetics has also become low (Batstone et al., 2002).

It is noteworthy that the volumetric methane production rate in the THP-TAD$_2$ operated at a 15-day SRT was still significantly lower than that in the THP-MAD$_2$ operated at the same SRT despite the significantly higher volumetric hydrolysis achieved in the former (Figure 2c). Results in Table 2 show that the VFA-to-alkalinity ratio and FAN in the THP-TAD$_2$ were both substantially greater than those in the THP-MAD$_2$, indicating that the inhibitor accumulation might be the reason responsible for compromised volumetric methane production in THP-TAD$_2$. This inference is supported by the significantly improved volumetric methane production rate in the THP-TAD$_1$ operated at an SRT of 25 days because both the VFA level and the VFA-to-Alkalinity ratio have declined for 29.7% and 16.7% (Table 2) with the SRT increase as more time has been allowed for methanogens to convert more VFAs to methane gas. Yet, the volumetric methane production rate achieved at such a long SRT (25 days) in THP-TAD$_1$ still did not exceed that in the THP-MAD$_2$ operated at a much shorter SRT of 15 days. The ultimate inhibitory factor has to do with the FAN as it is an end product of AD and thus cannot be removed through methanogenesis like VFAs do. FAN inhibition levels to TAD were reported to vary from 45 to 297 mg L$^{-1}$ depending on the microbial communities and acclimation (Capson-Tojo et al., 2020; Rajagopal et al., 2013). The FAN level of 349.4 mg L$^{-1}$ measured in the THP-TAD$_1$ apparently has exceeded this inhibitory range as a result of the greatest VSR of 63.4% achieved (Table 2). This result just suggested that the FAN inhibition might be the ultimate bottleneck limiting the AD capacity when the rate limitation on the sludge hydrolysis is unblocked.

DISCUSSION

Judging from the horizontal comparison in Table 2 and Figure 2, the best setup for achieving maximum VSR, namely, 63%, is THP-TAD$_1$ operated at an SRT of 25 days, which is expected in that all three factors; that is, the high temperatures of both AD and THP and the longest SRT, for example, 25 days, have collectively contributed to the solid hydrolysis in this one combination. Meanwhile, the volumetric solids reduction rate of this setup was also comparable with that achieved in the THP-MAD$_2$ operated at an SRT of 15 days, which is the most common setup used across the world (Labatut & Pronto, 2018). The 16.3% lower volumetric methane production rate has to do with the 10 times FAN accumulation as a result of the 55°C used as well as the greatest VSR and pH values measured in the THP-TAD$_1$. This is because FAN with a concentration greater than 297 mg L$^{-1}$ has been shown inhibitory to methanogenesis (Capson-Tojo et al., 2020; Rajagopal et al., 2013). As mentioned above, FAN is an end product of AD that cannot be reduced by AD itself unless a separate TAN removal process is incorporated. Besides, FAN level is actually very sensitive to the AD temperature used. According to the ideal equilibrium equation (Emerson et al., 1975), an increase of AD temperature from 35°C to 55°C will increase the FAN level for three times even when the pH and TAN remain at the same level of 7 and 1000 mg L$^{-1}$, respectively. With this FAN inhibition in mind, it is not difficult to understand the methanogenesis rate retardation and, in turn, the elevated VFA accumulation (Figure 2d and Table 2) in face of the accelerated hydrolysis rates brought by THP and TAD. As a consequence, both the VFA concentration and the VFA-to-alkalinity ratio became higher in all THP-TAD than those in THP-MAD as a result of the methanogenesis inhibition (Table 2), causing a feedback inhibition loop between FAN and VFAs as described by Capson-Tojo et al. (2020). Given the exceptionally higher VSR and VFA production obtained in THP-TAD over THP-MAD, the THP-TAD setup might be more conducive to the applications that emphasize more on the solid removal or VFA recovery than on the methane production because the high temperatures of THP and TAD have improved the hydrolysis so well that the methanogenesis can no longer keep up with anymore.

According to the U.S. Environmental Protection Agency (USEPA) reports, out of the 1484 municipal wastewater treatment facilities that digest municipal sludge to produce biogas in the United States, only less than 10% commercially utilize biogas, leaving the rest just flaring the biogas into the atmosphere or merely combusting biogas in boilers (Naik-Dhungel, 2010). Meanwhile, VFAs are an important carbon substrate to assist mainstream enhanced biological phosphorus removal (EBPR) and biological nutrient removal (BNR) (Atasoy et al., 2018; Luo et al., 2019). Technically, VFAs accumulated in TAD effluent can be recovered and utilized through filtrate recirculation (Yesil et al., 2021). Many studies have shown that better EBPR performance was obtained using VFAs derived from the fermenter than dosing equivalent amounts of synthetic acetic acid (Atasoy et al., 2018; Luo et al., 2019). Meanwhile, 31.5% more solids can be further reduced in a unit reactor volume on a daily basis when using the configuration of THP-TAD at SRT of 15 days (THP-TAD$_2$) than THP-MAD$_2$ at the same SRT (Table 2). The FAN inhibitory problem might be addressable with the application of in situ ammonia recovery techniques currently under
development. Example technologies include in situ ammonia stripping using either biogas (Bi et al., 2020; Walker et al., 2011) or nitrogen (Yao et al., 2017) as stripping gas without pH or temperature modification. Palakodeti et al. (2021) and Zhang et al. (2020) have also reported that adding biochar into continuous or semi-continuous digesters can not only alleviate FAN inhibition but also enhance digestate fertilizer values. Shi et al. continuous digesters can not only alleviate FAN inhibition; project administration.

Yuepeng Sun Data curation; investigation.

Mary Strawn: Conceptualization; funding acquisition; project administration. Hari Santha: Conceptualization; project administration. Karen Pallansch: Conceptualization; funding acquisition; project administration. Allison Deines: Conceptualization; funding acquisition; project administration. Zhi-wu Wang: Conceptualization; funding acquisition; project administration.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

ACKNOWLEDGMENTS
The study was supported by the Center for Applied Water Research and Innovation.

ORCID
Jiefu Wang https://orcid.org/0000-0003-4426-2339
Zhi-Wu Wang https://orcid.org/0000-0002-3496-1884

REFERENCES
APHA. (2012). Standard Methods for the Examination of Water and Wastewater (22nd ed.). American Public Health Association.

Appels, L., Baeyens, J., Degrève, J., & Dewil, R. (2008). Principles and potential of the anaerobic digestion of waste activated sludge. Progress in Energy and Combustion Science, 34, 755–781.

Atasoy, M., Owusu-Agyeman, I., Plaza, E., & Cetecioğlu, Z. (2018). Bio based volatile fatty acid production and recovery from waste streams Current status and future challenges. Bioresource Technology, 268, 773–786.

Batstone, D. J., Keller, J., Angelidaki, I., Kaluzhnyi, S., Pavlostathis, S., Rozzi, A., Sanders, W., Siegrist, H., & Vavilin, V. (2002). The IWA anaerobic digestion model no 1 (ADM1). Water Science and Technology, 45, 65–73.

Bi, S., Qiao, W., Xiong, L., Mahdy, A., Wandera, S. M., Yin, D., & Dong, R. (2020). Improved high solid anaerobic digestion of chicken manure by moderate in situ ammonia stripping and its relation to metabolic pathway. Renewable Energy, 146, 2380–2389.

Capson-Tojo, G., Moscoviz, R., Astals, S., Robles, A., & Steyer, J.-P. (2020). Unraveling the literature chaos around free ammonia inhibition in anaerobic digestion. Renewable and Sustainable Energy Reviews, 117, 109487.

Chen, Z., Li, W., Qin, W., Sun, C., Wang, J., & Wen, X. (2020). Long term performance and microbial community characteristics of pilot scale anaerobic reactors for thermal hydrolyzed sludge digestion under mesophilic and thermophilic conditions. Science of the Total Environment, 720, 137566.

Chilakamarry, C. R., Sakinah, A. M., Zularisam, A., Sirohi, R., Khilji, I. A., Ahmad, N., & Pandey, A. (2022). Advances in solid state fermentation for bioconversion of agricultural wastes to value added products Opportunities and challenges. Bioresource Technology, 343, 126065.

Clement, M., Ferrer, I., del Mar Bauela, M., Artola, A., Vázquez, F., & Font, X. (2007). Effects of thermal and mechanical pretreatments of secondary sludge on biogas production under thermophilic conditions. Chemical Engineering Journal, 133, 335–342.

di Capua, F., Spasiano, D., Giordano, A., Adani, F., Fratino, U., Pirozzi, F., & Esposito, G. (2020). High solid anaerobic digestion of sewage sludge challenges and opportunities. Applied Energy, 278, 115608.

Emerson, K., Russo, R. C., Lund, R. E., & Thurston, R. V. (1975). Aqueous ammonia equilibrium calculations effect of pH and temperature. Journal of the Fisheries Board of Canada, 32, 2379–2383.
Ferrer, I., Serrano, E., Ponsa, S., Vazquez, F., & Font, X. (2009). Enhancement of thermophilic anaerobic sludge digestion by 70 C pre treatment energy considerations. *Journal of Residuals Science and Technology*, 6, 11–18.

Ge, H., Jensen, P. D., & Batstone, D. J. (2011). Relative kinetics of anaerobic digestion under thermophilic and mesophilic conditions. *Water Science and Technology*, 64, 484–485.

Gianico, A., Braguglia, C., Ceserini, R., & Mininni, G. (2013). Reduced temperature hydrolysis at 134 C before thermophilic anaerobic digestion of waste activated sludge at increasing organic load. *Bioresource Technology*, 143, 96–103.

Han, D., Lee, C.-Y., Chang, S. W., & Kim, D.-J. (2017). Enhanced methane production and wastewater sludge stabilization of a continuous full scale thermal pretreatment and thermophilic anaerobic digestion. *Bioresource Technology*, 245, 1162–1167.

Jain, S., Jain, S., Wolf, I. T., Lee, J., & Tong, Y. W. (2015). A comprehensive review on operating parameters and different pretreatment methodologies for anaerobic digestion of municipal solid waste. *Renewable and Sustainable Energy Reviews*, 52, 142–154.

Labatut, R. A., & Pronto, J. L. (2018). *Sustainable Food Waste to Energy Systems* (pp. 47–67). Elsevier.

Liu, W., Yang, H., Ye, J., Luo, J., Li, Y.-Y., & Liu, J. (2020). Short chain fatty acids recovery from sewage sludge via acidogenic fermentation as a carbon source for denitrification A review. *Bioresource Technology*, 311, 123446.

Lossie, U., & Pütz, P. (2008). Targeted control of biogas plants with the help of FOS TAC, *Practice Report. Hach Lange*.

Luo, K., Pang, Y., Yang, Q., Wang, D., Li, X., Lei, M., & Huang, Q. (2019). A critical review of volatile fatty acids produced from waste activated sludge Enhanced strategies and its applications. *Environmental Science and Pollution Research*, 26, 13984–13998.

Mei, R., Narihiro, T., Nobu, M. K., Kuroda, K., & Liu, W.-T. (2016). Evaluating digestion efficiency in full scale anaerobic digesters by identifying active microbial populations through the lens of microbial activity. *Scientific Reports*, 6, 1–10.

Mills, N., Pearce, P., Farrow, J., Thorpe, R., & Kirkby, N. (2014). Environmental & economic life cycle assessment of current & future sewage sludge to energy technologies. *Waste Management*, 34, 185–195.

Müller, J. (2000). Pretreatment processes for the recycling and reuse of sewage sludge. *Water Science and Technology*, 42, 167–174.

Naik-Dhunegel, N. (2010). The opportunities for and benefits of combined heat and power at wastewater treatment facilities. *Proceedings of the Water Environment Federation*, 2010, 557–566.

Nielsen, S. S. (2010). In S. S. Nielsen (Ed.), *Food Analysis Laboratory Manual* (pp. 47–53). Springer US. https://doi.org/10.1007/978-1-4419-1463-7_6

Palakodeti, A., Azman, S., Rossi, B., Dewil, R., & Appels, L. (2021). A critical review of ammonia recovery from anaerobic digestate of organic wastes via stripping. *Renewable and Sustainable Energy Reviews*, 143, 110903.

Pilli, S., Yan, S., Tyagi, R. D., & Surampalli, R. Y. (2015). Thermal pretreatment of sewage sludge to enhance anaerobic digestion: A review. *Critical Reviews in Environmental Science and Technology*, 45, 669–702.

Rajagopal, R., Massé, D. L., & Singh, G. (2013). A critical review on inhibition of anaerobic digestion process by excess ammonia. *Bioresource Technology*, 143, 632–641.

Shi, X., Zuo, J., Zhang, M., Wang, Y., Yu, H., & Li, B. (2019). Enhanced biogas production and in situ ammonia recovery from food waste using a gas membrane absorption anaerobic reactor. *Bioresource Technology*, 292, 121864.

Tian, H., Wang, X., Lim, E. Y., Lee, J. T., Ee, A. W., Zhang, J., & Tong, Y. W. (2021). Life cycle assessment of food waste to energy and resources Centralized and decentralized anaerobic digestion with different downstream biogas utilization. *Renewable and Sustainable Energy Reviews*, 150, 111489.

Walker, M., Iyer, K., Heaven, S., & Banks, C. (2011). Ammonia removal in anaerobic digestion by biogas stripping: An evaluation of process alternatives using a first order rate model based on experimental findings. *Chemical Engineering Journal*, 178, 138–145.

Wang, Z.-W., Ma, J., & Chen, S. (2011). Bipolar effects of settling time on active biomass retention in anaerobic sequencing batch reactors digesting flushed dairy manure. *Bioresource Technology*, 102, 697–702.

Xu, Y., Gong, H., & Dai, X. (2021). High solid anaerobic digestion of sewage sludge: Achievements and perspectives. *Frontiers of Environmental Science & Engineering*, 15, 1–18.

Yao, Y., Huang, Y., & Hong, F. (2016). The influence of sludge concentration on its thermophilic anaerobic digestion performance based on low temperature thermal hydrolysis pretreatment. *Procedia Environmental Sciences*, 31, 144–152.

Yao, Y., Yu, L., Ghogare, R., Duns Moor, A., Davaritouchaee, M., & Chen, S. (2017). Simultaneous ammonia stripping and anaerobic digestion for efficient thermophilic conversion of dairy manure at high solids concentration. *Energy*, 141, 179–188.

Yesil, H., Calli, B., & Tugtas, A. E. (2021). A hybrid dry fermentation and membrane contactor system: Enhanced volatile fatty acid (VFA) production and recovery from organic solid wastes. *Water Research*, 192, 116831.

Zhang, D., An, Z., Strawn, M., Broderick, T., Khunjar, W., & Wang, Z. W. (2021). Understanding the formation of recalcitrant dissolved organic nitrogen as a result of thermal hydrolysis and anaerobic digestion of municipal sludge. *Environmental Science: Water Research & Technology*, 7, 335–345.

Zhang, L., Li, F., Kuroki, A., Loh, K.-C., Wang, C.-H., Dai, Y., & Tong, Y. W. (2020). Methane yield enhancement of mesophilic and thermophilic anaerobic co digestion of algal biomass and food waste using algal biochar: Semi continuous operation and microbial community analysis. *Bioresource Technology*, 302, 122892.

Zhen, G., Lu, X., Kato, H., Zhao, Y., & Li, Y.-Y. (2017). Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: Current advances, full scale application and future perspectives. *Renewable and Sustainable Energy Reviews*, 69, 559–577.

How to cite this article: Wang, J., Sun, Y., Zhang, D., Broderick, T., Strawn, M., Santha, H., Pallansch, K., Deines, A., & Wang, Z.-W. (2022). Unblocking the rate-limiting step of the municipal sludge anaerobic digestion. *Water Environment Research*, 94(10), e10793. https://doi.org/10.1002/wer.10793