PYRIMIDINES AS POTENT CYTOTOXIC AND ANTI-INFLAMMATORY AGENTS

ISHWAR BHAT K, ABHISHEK KUMAR*

Department of Pharmaceutical Chemistry, NGSM Institute of Pharmaceutical Sciences, Nitte University, Paneer, Deralakatte, Mangalore, Karnataka, India. Email: abhi12bunty@gmail.com

Received: 20 January 2016, Revised and Accepted: 21 March 2017

INTRODUCTION

Pyrimidines are the most important six-membered heterocyclic compounds containing two nitrogen atoms. Pyrimidine occurs in living system in the form of nucleic acid and vitamins. As pyrimidine is a basic nucleus in DNA and RNA, it has been found to be associated with diverse biological activities. The molecule containing pyrimidine nucleus possess wide range of biological activities such as antimalarial [1], antibacterial [2], antifungal [3], anti-inflammatory [4], cytotoxic [5], and antitubercular [6] activity. Furthermore, the intermediates used chalcones are known for their anti-inflammatory [7], antifungal [8], antimalarial [9], and anti-inflammatory [10] activities. By considering the above facts, it was contemplated to synthesize a new series of pyrimidines (PM-PM). The final synthesized compounds have been screened for their in vitro anti-inflammatory and in vitro cytotoxic activity studies.

METHODS

Melting points were determined by capillary method and were uncorrected. The infrared (IR) spectra were recorded using Shimadzu Perkin Elmer-8201 PIR spectrometer using a thin film of potassium bromide pellet technique and frequencies are expressed in cm⁻¹. ¹H Nuclear magnetic resonance (NMR) spectra were recorded on Bruker Avance 11400 NMR spectrometer. All spectra were taken in CDCl₃ and dimethyl sulfoxide (DMSO). Chemical shift values are reported in ppm relative to tetramethylsilane (δ=0) as an internal standard. Mass spectra were recorded on JeolSX-102/DA-6000 mass spectrometer (6 kV, 10 Ma) as FAB gas. The purity of the synthesized compounds was checked on silica gel coated plates by using ethyl acetate:Chloroform (9:1) as a solvent and observed in ultraviolet light.

General procedure

Synthesis of 1-(4-nitrophenyl)-3-substituted-phenylprop-2-en-1-one [11]

A mixture of 4-nitrocetophenone (0.01 mol) and substituted aromatic aldehydes (0.01 mol) in ethanol (20 ml) were stirred for 24 hrs in the

MATTER

Chalcones [1-(4-nitrophenyl)-3-substituted-phenylprop-2-en-1-one] were synthesized from various substituted aldehydes with 4-nitrocetophenone and cyclized with urea and glacial acetic acid to give pyrimidine derivatives [4-(4-nitrophenyl)-6-substituted-phenylpyrimidin-2-ol].

Methods:

Methods: Synthesis of 4-(4-nitrophenyl)-6-substituted-phenylpyrimidin-2-ol (PM-PM) [12]

A mixture of substituted chalcones (0.01 mol) in 20 ml of ethanol/glacial acetic acid and urea (0.01 mol) in 20% NaOH was refluxed for 20 hrs. After completion of the reaction, the mixture was poured into crushed ice cold water, and recrystallized from ethanol. The purity of the compound was checked by TLC using chloroform:Ethyl acetate (1:9) as solvent.

Spectral data

4-(4-chlorophenyl)-6-(4-nitrophenyl)pyrimidin-2-ol (PM-PM)

IR (KBr)cm⁻¹: 1501(C=C str), 816(Ar, C-H bend), 3015(Ar, C-H str), 1669(C=N str), 3432(O-H str), 1335(C-N str), 732(C-Cl str); ¹H NMR (400 MHz, DMSO-d₆): 7.1-7.7 (m, 9H, Ar-H), 8.3 (s, 1H, OH); MS: m/z 328(M⁺).

4-(4-fluorophenyl)-6-(4-nitrophenyl)pyrimidin-2-ol (PM-PM)

IR (KBr)cm⁻¹: 1501(C=C str), 1351(C-N str), 1266(C-F str); ¹H NMR (400 MHz, DMSO-d₆): 7.1-7.7 (m, 9H, Ar-H), 8.3 (s, 1H, OH); MS: m/z 309(M⁺).

4-(4-hydroxyphenyl)-6-(4-nitrophenyl)pyrimidin-2-ol (PM-PM)

IR (KBr)cm⁻¹: 1501(C=C str), 865(Ar, C-H bend), 3010(Ar, C-H str), 1676(C=N str), 3400(O-H str), 1320(C-N str); ¹H NMR (400 MHz, DMSO-d₆): 7.1-7.6 (m, 9H, Ar-H), 8.1 (s, 1H, OH); MS: m/z 309(M⁺).

Anti-inflammatory activity

The synthesized compounds were screened for their anti-inflammatory activity using carrageenan-induced rat hind paw edema method [13]. All the experiments were carried out as per the rules and regulations...
of institutional animal ethics committee (Animal Ethics Committee, K.S. Hegde Medical Academy, Deralakatte, Mangalore - 575 018 Ref. No. KSHEMA/AEC/31/2010). Results obtained were expressed as mean ± SEM, and the student's t-test was used to determine the significance difference between the control group and rats treated with the test compounds. Anti-inflammatory activity of synthesized compounds was compared with standard drug diclofenac sodium 10 mg/kg body weight showing 64.5% inhibition of rat paw edema whereas tested compounds showed inhibition ranging from 31.52% to 60.39% after 120 min. The compounds PM₁, PM₂, PM₅, and PM₆ showed moderate anti-inflammatory activity compared to the standard drug diclofenac. The results are tabulated in Table 2.

Cytotoxic activity

All the test compounds were screened for cytotoxic activity against Ehrlich Ascites Carcinoma (EAC) cells. The tumor cells aspirated from the peritoneal cavity of tumor-bearing mice was washed thrice with normal saline and checked for viability using trypan blue exclusion method [14]. The cell suspension (1 million cells in 0.1 ml) was added to tubes containing various concentrations of the test compounds and volume was made up to 1 ml using phosphate buffered saline. Control tubes contained only cell suspension. The assay mixtures were incubated for 3 hrs, at 37°C, and then, percent of dead cells were evaluated by trypan blue exclusion method. Compounds PM₁, PM₂, PM₅, and PM₆ induced the greatest effect on EAC cells with an activity more than 60% at a concentration of 200 µg/ml. The results are summarized in Table 3.

RESULTS AND DISCUSSION

Anti-inflammatory activity

The in vivo anti-inflammatory activity of the synthesized compounds by carrageenan-induced rat hind paw edema method showed that compounds PM₁, PM₂, PM₅, and PM₆ exhibited significant activity. The presence of pyrimidine moiety with electron withdrawing groups

Compound code	R	Molecule weight	M.P°C	Physical state	% yield
PM₁	4-Cl	327	222-224	White crystals	67
PM₂	4-F	295	210-212	Brown crystals	70
PM₃	3-OH	309	231-233	White crystals	64
PM₄	4-CH₃	324	250-252	Brown crystals	78
PM₅	3-NO₂	304	240-242	White crystals	80
PM₆	4-CN	304	240-242	White crystals	80
such as chloro, fluoro, nitro, and cyano accounted for significant anti-inflammatory activity.

Cytotoxic activity

The test compounds were screened for their cytotoxic activity against EAC cells using trypan blue exclusion method. Compounds PM1, PM2, PM3, PM4, PM5, and PM6 induced significant effect on EAC cells with an activity more than 60% at a concentration of 200 µg/ml. The presence of pyrimidine moiety with substitution and group such as chloro, fluoro, nitro, and cyano has accounted for their remarkable cytotoxic activity.

CONCLUSION

Most of the synthesized compounds resulted in good yield, and most of them showed potent anti-inflammatory and cytotoxic activities.

ACKNOWLEDGMENT

The authors are thankful to Nitte University for providing the necessary facilities to carry out this work. The authors are grateful to Head, SAIF, Panjab University, Chandigarh, for providing spectroscopic data and Amala Cancer Research Centre, Thrissur, for providing cytotoxic activity facilities.

REFERENCES

1. Singh K, Kaur T. Pyrimidine-based antimalarials: Design strategies and antimalarial activity. Med Chem Commun 2016;7:749-68.
2. Bansal S, Chaudhary AN, Kothiyal P. Microwave assisted synthesis and antibacterial activity of pyrimidine derivatives. Ind J Pharm Sci 2013;5(1):346-48.
3. Dadhe R, Sharma PK, Verma PK. Pyrimidine containing furanose derivative having antifungal, antioxidant and cytotoxic activity. Org Biomol Chem 2011;9:7-12.
4. El-Gazzar AR, Hussein H, Hafez H. Synthesis and biological evaluation of thieno[2,3-d] pyrimidine derivatives for anti-inflammatory, analgesic and ulcerogenic activity. Acta Pharm 2014;64(7):3458-67.
5. Rostom SA, Ashour HM, El Razik HA. Synthesis and biological evaluation of some novel polysubstituted pyrimidine derivatives as potential antimalarial agents. Acta Pharm 2008;XIII:189-207.
6. Hussain MM, Bhat KI, Revanasiddappa BC. Synthesis and biological evaluation of some novel 2-mercapto pyrimidines. Ind J Pharm Pharm Sci 2013;5(1):346-48.
7. Chikhalia KH, Patel MJ, Dhaval BV. Design, synthesis and evaluation of novel quinolyl chalcones as antibacterial agents. ARKIVOC 2008;XIII:189-97.
8. Arora D, Jain DK. Chalcone derivatives as potential antifungal agents. Synthesis and antibacterial activity. J Adv Pharm Technol Res 2015;6(3):114-7.
9. Todigoppula N, Korthikunta V, Gupta S. Synthesis and biological evaluation of some novel polysubstituted pyrimidine derivatives as potential antimicrobial and anticancer agents. Arch Pharm 2009;342(1):34-5.
10. Hsieh HK, Tsao LT, Wang JP, Lin CN. Synthesis and evaluation of some novel 2-mercapto pyrimidines. Ind J Pharm Pharm Sci 2008;XIII:189-207.
11. Bhat KI, Kumar A, Nissar M, Kumar P. Synthesis, pharmacological and biological screening of some novel pyrimidine derivatives. Med Chem Commun 2013;5(2):471-3.
12. Bhat KI, Kumar A, Thara PV, Kumar P. Synthesis, characterization and biological activity studies of some substituted pyrimidine derivatives. Indian J Heterocycl Chem 2014;23:271-6.
13. Winter CA, Risley EA, Nuss GW. Carrageenan-induced edema in hind paw of the rats as an assay for anti-inflammatory drugs. Proc Soc Exp Biol Med 1962;111:544-7.