Control of acute dengue virus infection by natural killer cells

Caroline Petitdemange1,2,3, Nadia Wauquier1,4, Juliana Rey1, Baptiste Hervier1,2, Eric Leroy3 and Vincent Vieillard1,2,5*

INTRODUCTION

Dengue virus (DENV) is the most widespread arbovirus worldwide transmitted by mosquitoes of the Aedes genus and is responsible for major outbreaks leading to serious health and economical problems (1). Approximately 500,000 DENV cases progress to be a life-threatening disease each year causing up to 20,000 deaths (2). DENV is a member of the genus Flavivirus and is divided into four different serotypes (DENV1–DENV4). Early 1970, Halstead and Simasthien (3) suggested that primary infection with one serotype of DENV only confers short-term partial cross-protection against other serotypes. Furthermore, secondary heterologous infections contribute to the development of severe forms of dengue fever (DF) [dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS)] (4).

The clinical picture of primary DENV infection includes fever, headache, myalgia, arthralgia, and petechial rash. Patients rapidly develop high viremia for up to 6 days after the onset of fever. The rapid initiation of the hosts’ innate defense mechanisms might be a limiting factor in the development of DENV infection. In rare cases, patients may develop complications including plasma leakage and coagulation disorders, which may lead to a fatal outcome (5, 6). One of the most important questions in regards to dengue pathogenesis is the identity of the cells that play a crucial antiviral role during the innate immune response to DENV at the earliest stages of infection (7). Natural killer (NK) cells are a major component of the innate arm of the immune system. Although NK cells hold an early and central role early after number of viral infections, not only for viral containment but also for timely and efficient induction of adaptive responses, their role in the control of DENV infection is still poorly documented. The observation in the late 1970s that viral infections induce NK cell-mediated killing stimulated a frenzy of research focused on evaluating the role of these cells in defense against several viral infections and cancer. The clearest demonstration of this role derives from the growing number of cases of NK cell deficiency. Since the initial known case of a girl with multiple severe or disseminated herpesvirus infections, about 40 other unrelated cases have been described and were mainly associated with severe herpesvirus infections, and EBV- or HPV-related cancers (8). Major progress has been achieved since, in several important fields related to NK cells. NK cells represented a wonderful biological paradox in that they appeared fully competent to kill target cells and yet were clearly self-tolerant. As such, NK cells were “armed” but not dangerous. Scientists focused their attention on understanding how these potent killers were contained and controlled. We now appreciate that a precise balance of inhibitory and activating signals mainly regulates the functional outcome of these cells (9–11). A flood of information concerning multiple types of negative receptors on NK cells was gathered. Many of these receptors respond to stimulation by major histocompatibility complex (MHC) class-I molecules expressed on the surface of target cells and this is considered to be the predominant mechanism responsible for NK cell tolerance to self. These inhibitory NK receptors include ILT-2 and the CD94/NKG2A complex, which recognize...
Very early after infection, interferon-alpha (IFN-α) reduces DENV replication, type I IFN has little effect on DENV replication after viral replication has been established (23). Indeed, pretreatment of cultured cells with IFN-α then decreases DENV infection of monocytes. The importance of cell types in response to virus exposure. The infected pDCs could account for the efficacy of the type I IFNs is their ability to activate downstream immune responses to counteract viral spread by many pathogenic viruses (25). Recently, Gandini et al. (21) have shown that DENV2 efficiently activated IFN-α/β receptor knockout mice when administered DENV2 plasmid. This type I, IFN, is a crucial mediator of the antiviral response directly inhibiting viral replication and modulating downstream immune responses to counteract viral spread (18). Elevated IFN-α plasmatic levels are observed shortly after onset of symptoms in children and adult DENV-infected patients (19, 20). Recently, Gandini et al. (21) have shown that DENV2 efficiently activated IFN-α production by plasmacytoid dendritic cells (pDCs), which produced up to 1000-fold more IFN-α than other cell types in response to virus exposure. The infected pDCs could then decrease DENV infection of monococytes. The importance of the IFN-α response is also illustrated by the increased lethality of IFN-α/β receptor knockout mice when administered DENV2 by intraperitoneal injection (22). Although it was shown that the in vitro pretreatment of cultured cells with IFN-α/β dramatically reduces DENV replication, type I IFN has little effect on DENV replication after viral replication has been established (23). Indeed, DENV can reach high titers (<10^9 infectious doses per milliliter) in humans despite the induction of high levels of circulating IFN-α (19, 24). Therefore, it seems likely that DENV has evolved mechanisms to counteract the IFN response, a characteristic that is shared by many pathogenic viruses (25).

It has long been established that one of the main mechanisms accounting for the efficacy of the type I IFNs is their ability to activate NK functions (Figure 1); thus, they promote the accumulation and/or survival of proliferating NK cells by the STAT1-dependent induction of IL-15 secretion (26). This early activity of NK cells may be important for clearing primary DENV infection. In a sensitive mouse model, acute infection with DENV showed a rapid increase of NK cell levels (27). A significant increase in the frequency of NK cell circulation was also shown in patients who developed an acute DF (28). In addition, patients with a mild DF have elevated NK cell rates when compared to those with severe DF (29). Interestingly however, levels of circulating MIP-1β are higher in mild acute DF and are associated with higher NK cell frequencies (30).

To characterize the primary NK response to DENV infection in mice, the phenotype of NK cells in the spleen was assessed by flow cytometric analysis. Three days after infection, the DENV-infected mice had twice as many NK cells than the mock-infected mice, and more than 50% of these NK cells expressed the early activation marker CD69, although only 5–10% of NK cells in the mock-infected animals expressed CD69 (27). Concomitantly, NK cells from DENV-infected patients display simultaneously high levels of CD69, HLA-DR, and CD38 (28, 29). For example, a significant increase in the percentage of CD69+/−expressing NK cells was observed in DENV-infected patients at the early and acute phase of infection (days 1–5 with 29 vs. 13%), maintained at days 6–10 (24 vs. 18%), but decreased after 11 days (13 vs. 5%) (28).

Altogether, these observations support the concept that DENV infection induces the selection and proliferation of a subset of activated NK cells further reinforcing their potentially important role during the early stages of the disease.

NK CELL FUNCTION IN THE PROTECTION AGAINST DENV

Upon activation, NK cells may produce cytokines that favor the complete elimination of the disease and the infectious agent during the adaptive response, such as IFN-γ, TNF-α, G-CSF, and GM-CSF, as well as chemokines, such as MIP-1α, MIP-1β, and Rantes (31) (Figure 1). Numerous investigations have shown that DENV-infected patients presented significantly elevated levels of IFN-γ, G-CSF, and GM-CSF (20, 29, 32), whereas other reports suggest that TNF-α elevation could be associated with disease severity (33, 34). However, the results were obtained by measuring cytokine levels in sera collected from DENV-infected patients, and do not reveal which specific cells are activated and involved in their production. To date, the role played by NK cells in the production of these soluble factors is unknown. Deeper investigations will be necessary to precisely determine the implication of the immune-regulation by NK cells during the acute DENV infection.

NK CELL AND THEIR RECEPTORS DURING DENV INFECTION

One of the most prominent functions of NK cells is the capacity to lyse virus-infected cells. When the balance of inhibitory/activating signals is in favor of activation, the engagement of activating receptors on the surface of NK cells leads to directed exocytosis of granules containing perforin and granzymes, which in turn elicit the disruption of the target cell membrane and/or the activation of apoptosis pathways within the infected cell (11). It has been shown that activated NK cells are cytotoxic against DENV-infected cells (35).

Furthermore, a marker of cytotoxicity, the granule cytotoxic...
FIGURE 1 | Overview of the suggested NK cell features after acute and primary DENV infection.

T cell intracellular antigen TIA-1, as well as two adhesion molecules, CD44 and CD11a, both involved in NK cell migration to various tissues and NK cytotoxicity, have been found to be significantly elevated on NK cells collected from acutely infected patients (28).

Hershkovitz et al. (36) have demonstrated the existence of a direct protein–protein interaction between recombinant DENV soluble envelope E protein and NKp44 (but not NKp30 or NKp46) that could be involved in the triggering of cytolysis (Figure 1). Using West Nile virus (WNV) like particles (VLPs) and WNV-infected cells, they have shown that E–NKp44 interaction triggers the secretion of cytotoxic granules contained in NK cells, the lysis of target cells, and the increased production of IFN-γ suggesting that flavivirus E proteins activate NK cytotoxic activity through NKp44 engagement.

Overall our understanding of the mechanisms involved in the cytolysis of target DENV-infected cells by NK cells is in its infancy. The receptors and signaling pathways essential to this major function are yet to be clearly identified. Recent investigations focusing on the various target ligands involved in the cytotoxic response by Beltrán and Lopez-Verges, under the Research topic “Protective Immune Response to Dengue Virus Infection and Vaccines: perspectives from the field to the bench” may bring some insight as to these questions.

ACTIVATION OF NK CELLS BY ADCC RESPONSES DURING EARLY DENV INFECTION

Antibody-dependent cell-mediated cytotoxicity (ADCC) is another known mechanism by which NK cells recognize and lyse antibody-coated target cells, through the engagement of antibody binding to the Fc gamma receptor IIIA (CD16) (37). In an in vitro model, Kurane et al. (35) reported that human blood NK cells are cytotoxic against DENV-infected cells via direct cytolysis but also via ADCC (Figure 1). Indeed, PBMC collected from a DENV-infected patient successfully lysed DENV-infected cells that did not express MHC class-I molecules, and lysis of infected cells was significantly increased upon addition of anti-DENV1 and DENV2 monoclonal antibodies. The addition of sera from an individual without DENV antibodies did not lead to an increase in lysis of infected cells. More recently, García et al. (38) tested acute and convalescent patients’ sera for ADCC activity, differentiating mild and severe forms of DF. ADCC activity was observed with acute sera only in cases of DHF/DSS but not DF. However, using convalescent sera collected 1 year later, all samples induced ADCC activity. This suggests that the development of ADCC activity during the acute phase of the infection could be associated to the pathological manifestations of the severe syndrome and that the systematic development of ADCC activity after a primary infection, in convalescent patients could be associated with the development of severe forms during a subsequent heterologous DENV infection. However, other studies suggest a protective role for ADCC against DENV secondary infections. Indeed, higher ADCC activities have been associated with higher plasma neutralizing antibody levels and lower viral loads during secondary infection but solely if the patient was secondarily infected by DENV3 and not DENV2 (39).

Altogether, this data support a strong implication of ADCC after DENV infection, however, careful investigations are needed to determine its exact contribution both in the viral clearance during the initial acute phase of this infection and DENV pathogenesis in secondary infections.
DENV EVASION OF NK CELLS

Co-existence of viruses and their infected hosts imposes an evolutionary pressure on both the virus and the host’s immune system. In this work, we propose a model for DENV infection, which demonstrates the importance of NK cells in the control and/or the evolution of the disease. Future studies based on the depletion of NK cells in a relevant animal model for DENV infection, will be able to unravel this fascinating topic.

CONCLUSION

Overall, several lines of evidence converge to suggest that NK cells are activated early during an acute DENV infection, and produce major cytokines, such as IFN-γ, which participate in the control of the viral replication while promoting the development of an efficient adaptive immune response. In the future, it will be interesting to determine if and how DENV leaves an imprint on the NK receptor repertoire possibly favoring cells with a strong cytolytic potential, as previously shown, by us and other groups, with several other viruses, including chikungunya virus, which is yet another arbovirus (43). Numerous studies have also shown that DENV increases MHC class-I and adhesion molecule expression, allowing the virus to escape NK cell lysis. Whilst underlining the importance of NK cells in DENV infection, these observations must be interpreted with great caution. Due to the lack of extensive phenotypic and functional studies in DENV-infected patients, we cannot conclude in favor of a beneficial or a deleterious role of the NK cells in the control and/or the evolution of the disease. Future studies based on the depletion of NK cells in a relevant animal model for DENV infection, will be able to unravel this fascinating topic.

ACKNOWLEDGMENTS

This work was supported in part by grants from the Institut National de la Santé et de la Recherche Médicale (INSERM) and the Université Pierre et Marie Curie (Paris-6), France.

REFERENCES

1. Halstead SB. Dengue. *Lancet* (2007) 370:1644–52. doi:10.1016/S0140-6736(07)60792-8
2. Sam SS, Omar SF, Teoh BT, Abid-Janmi J, Abu-Bakar S. Review of dengue hemorrhagic fever: causes. *PLoS Negl Trop Dis* (2013) 7:e2194. doi:10.1371/journal.pntd.0002194
3. Hallsted SB, Simanisheen P. Observations related to the pathology of dengue hemorrhagic fever. *Ann N Y Acad Sci* (1970) 19:276–92.
4. Martina BE, Koraka P, Otterhaus AD. Dengue virus pathogenesis: an integrated view. *Clin Microbiol Rev* (2009) 22:564–81. doi:10.1128/CMR.00035-09
5. Wichmann O, Hongsiriwon S, Bowonwatansawong C, Chotivanich K, Sukthana Y, Pukrittayakamee S. Risk factors and clinical features associated with severe dengue infection in adults and children during the 2001 epidemic in Chonburi, Thailand. *Trop Med Int Health* (2004) 9:1022–9. doi:10.1111/j.1365-3156.2004.01295.x
6. Barnes WJ, Rosen L. Fatal hemorrhagic disease and shock associated with primary dengue infection on a Pacific Island. *Ann Trop Med Hyg* (1974) 4:495–506.
7. Schmidt AC. Response to dengue fever – the good, the bad, and the ugly! *N Engl J Med* (2010) 363:484–7. doi:10.1056/NEJMci1005994
8. Orange JS. Natural killer cell deficiency. *J Allergy Clin Immunol* (2015) 135:515–25. doi:10.1016/j.jaci.2015.07.020
9. Lanier LL. Up on the tightrope: natural killer cell activation and inhibition. *Nat Immunol* (2008) 9:495–502. doi:10.1038/ni.1581
10. Vivier E, Tomaselio E, Baratin M, Walzer T, Ugolini S. Functions of natural killer cells. *Nat Rev Immunol* (2008) 8:503–10. doi:10.1038/nri2158
11. Jost S, Alfeldt M. Control of human viral infections by natural killer cells. *Annu Rev Immunol* (2013) 31:163–94. doi:10.1146/annurev-immunol-032712-100001
12. Kulkarni S, Martin MP, Carrington M. The Yin and Yang of HLA and KIR in human disease. *Semin Immunol* (2008) 20:343–52. doi:10.1016/j.smim.2008.06.003
13. Ahlentiel G, Martin MP, Gao X, Carrington M, Rehermann B. Distinct KIR/HLA compound genotypes affect the kinetics of human antiviral natural killer cell responses. *J Clin Invest* (2008) 118:1017–26. doi:10.1172/JCI32400
14. Beltraume LM, Sell AM, Molterno RA, Clementino SL, Cardozo DM, Dalalio MM, et al. Influence of KIR genes and their HLA ligands in susceptibility to dengue in a population from southern Brazil. *Tissue Antigens* (2013) 82:397–404. doi:10.1111/tan.12256
15. Koch J, Steineke A, Watzl C, Mandelbøe O. Activating natural cytotoxicity receptors of natural killer cells in cancer and infection. *Trends Immunol* (2013) 34:182–91. doi:10.1016/j.it.2013.01.003
16. Raulet DH, Gasser S, Gowen BG, Deng W, Jung H. Regulation of ligands for the NR2G2 activating receptor. Antimicrob Agents Chemother (2013) 57:6143–50. doi:10.1128/AAC.01150-13
17. Bascheleier F, Vieillard V. The modulation of the cell-cycle: a sentinel to alert the NK Cells of dangers. Front Immunol (2013) 4:325. doi:10.3389/fimmu.2013.00325
18. Samuel CE. Antiviral actions of interferons. Clin Microbiol Rev (2001) 14:778–809. doi:10.1128/CMR.14.4.778-809.2001
19. Kurane I, Innis BL, Nimmanitya S, Nisalak A, Meager A, Ennis FA. High levels of interferon alpha in the sera of children with dengue virus infection. Am J Trop Med Hyg (1993) 48:222–9.
20. Bequeurt P, Wauquier N, Nikogne D, Ndjoyi-Mbiguino A, Padilla C, Souris M, et al. Acute dengue virus 2 infection in Gabonese patients is associated with an early innate immune response, including strong interferon alpha production. BMC Infect Dis (2010) 10:356. doi:10.1186/1471-2334-10-356
21. Gandini M, Gras C, Azeredo EL, Pinto LM, Smith N, Despres P, et al. Dengue virus activates membrane TRAIL relocalization and IFN-alpha production by human plasmacytoid dendritic cells in vitro and in vivo. PLoS Negl Trop Dis (2013) 7:e2257. doi:10.1371/journal.pntd.0002257
22. Johnson AJ, Roehrig JT. New mouse model for dengue virus vaccine testing. J Virol (1999) 73:783–6.
23. Jones M, Davidson A, Hibbert L, Crewenwald P, Schlak J, Ball S, et al. Dengue virus inhibits interferon alpha signaling by reducing STAT2 expression. J Virol (2005) 79:5414–20. doi:10.1128/JVI.79.9.5414-5420.2005
24. Sudiro TM, Zilka A, Hershkovitz O, Rosental B, Porgador A. Upregulation of MHC class I expression following dengue virus infection: the mechanism at the promoter level. Expert Rev Antivir Ther (2012) 10:285–9. doi:10.1586/er.12.7
25. Ye J, Zhu B, Fu ZF, Chen H, Cao S. Immune evasion strategies of flaviviruses. Vaccine (2013) 31:461–71. doi:10.1016/j.vaccine.2012.11.015
26. Hershkovitz O, Zilka A, Bar-Ilan A, Abutbul S, Davidson A, Mazzon M, et al. Dengue virus replicon expressing the nonstructural proteins suffices to enhance membrane expression of HLA class I and inhibit lysis by human NK cells. J Virol (2001) 75:8653–65. doi:10.1128/JVI.75.15.8653-65.2001
27. Kobayashi M, Daino M, Shimizu M, Tamura R, Utsunomiya K, Saitoh T, et al. Early CCL2 expression on peripheral blood lymphocytes from children with dengue hemorrhagic fever. J Infect Dis (1999) 180:1429–35. doi:10.1086/315072
28. Bozza FA, Cruz OG, Zagni SM, Azeredo EL, Nogueira RM, Assis EF, et al. Multiplex cytokine profile from dengue patients: MIP-1beta and IFN-gamma as predictive factors for severity. BMC Infect Dis (2008) 8:66. doi:10.1186/1471-2334-8-86
29. Rathakrishnan A, Wang SM, Hu Y, Khan AM, Ponnapalavanar S, Lum LC, et al. Cytokine expression profile of dengue patients at different phases of illness. PLoS One (2012) 7:e52215. doi:10.1371/journal.pone.0052215
30. Avila-Aguero ML, Avila-Aguero CR, Ulrich KM, Soria-Ortega F, Cordero-Ochoa A, Rivas NY. Systemic host inflammatory and coagulation response in the dengue virus primo-infection. Mucosal Immunol (2008) 5:297–307. doi:10.1007/s13237-010-0005-8
31. Restrepo BN, Ramirez RE, Arboleda M, Alvarez G, Ospina M, Diaz FL. Serum levels of cytokines in two ethnic groups with dengue virus infection. Am J Trop Med Hyg (2008) 79:267–73.
32.ACCEPTED MANUSCRIPT
33. Kurane I, Hebblewaite D, Brandt WE, Ennis FA. Lysis of dengue virus-infected cells by natural cell-mediated cytotoxicity and antibody-dependent cell-mediated cytotoxicity. J Virol (1984) 52:223–30.
34. Hershkovitz O, Rosental B, Rosenberg LA, Narvaez-Pacheco ME, Jivov S, Zilka A, et al. NKp44 receptor mediates interaction of the envelope glycoproteins from the West Nile and dengue viruses with NK cells. J Immunol (2009) 183:2610–21. doi:10.4049/jimmunol.0802806
35. Campbell KS, Hasegawa J. Natural killer cell biology: an update and future directions. J Allergy Clin Immunol (2013) 132:536–44. doi:10.1016/j.jaci.2013.07.006
36. García G, Arango M, Pérez AB, Fonte L, Sierra B, Rodríguez-Roche R, et al. Antibodies from patients with dengue viral infection mediate cellular cytotoxicity. J Clin Virol (2006) 37:53–7. doi:10.1016/j.jcv.2006.04.010
37. Laoprosapwatana K, Libarty DH, Endy TP, Nisalak A, Chunsuttiwat S, Ennis FA, et al. Antibody-dependent cellular cytotoxicity mediated by plasma obtained before secondary dengue virus infections: potential involvement in early control of viral replication. J Infect Dis (2007) 195:1108–16. doi:10.1086/512860
38. Orange JS, Fassett MS, Kooiman LA, Boysen JE, Strominger JL. Viral evasion of natural killer cells. Nat Immunol (2002) 3:1006–12. doi:10.1038/ni1002-1006
39. Alcamí A. The interaction of viruses with host immune defenses. Curr Opin Microbiol (2010) 13:501–2. doi:10.1016/j.mib.2010.07.001
40. Yossef R, Rosental B, Appel MY, Hershkovitz O, Porgador A. Upregulation of MHC class I expression following dengue virus infection: the mechanism at the promoter level. Expert Rev Antivir Ther (2012) 10:285–7. doi:10.1586/er.12.7
41. Ye J, Zhu B, Fu ZF, Chen H, Cao S. Immune evasion strategies of flaviviruses. Vaccine (2013) 31:461–71. doi:10.1016/j.vaccine.2012.11.015
42. Hershkovitz O, Zilka A, Bar-Ilan A, Abutbul S, Davidson A, Mazzon M, et al. Dengue virus replicon expressing the nonstructural proteins suffices to enhance membrane expression of HLA class I and inhibit lysis by human NK cells. J Virol (2001) 75:8653–65. doi:10.1128/JVI.75.15.8653-65.2001
43. Momburg F, Müllbacher A, Lobigs M. Modulation of transporter associated with antigen processing (TAP)-mediated peptide import into the endoplasmic reticulum by flavivirus infection. J Virol (2001) 75:5663–71. doi:10.1128/JVI.75.12.5663-5671.2001
44. Lobigs M, Lee E. Inefficient signalase cleavage promotes efficient nucleocapsid incorporation into budding flavivirus membranes. J Virol (2004) 78:178–86. doi:10.1128/JVI.78.1.178-186.2004
45. Pettidemange C, Bequeurt P, Wauquier N, Béziat V, Debré P, Leroy EM, et al. Viral infection in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 12 February 2014; accepted: 27 April 2014; published online: 13 May 2014.

Copyright © 2014 Pettidemange, Bequeurt, Wauquier, Roehrig, Leroy and Villard. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.