Role of concurrent chemoradiation on locally advanced unresectable adenoid cystic carcinoma

Hyerim Ha¹², Bhumsuk Keam¹³, Chan-Young Ock¹, Tae Min Kim¹³, Jin Ho Kim⁴, Eun-Jae Chung⁵, Seong Keun Kwon⁶, Soon-Hyun Ahn⁶, Hong-Gyun Wu⁴, Myung-Whun Sung⁵, and Dae Seog Heo¹³

¹Department of Internal Medicine, Seoul National University Hospital, Seoul; ²Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon; ³Cancer Research Institute, Seoul National University College of Medicine, Seoul; Departments of ⁴Radiation Oncology and ⁵Otorhinolaryngology, Seoul National University Hospital, Seoul, Korea

Received: March 25, 2019
Revised: July 2, 2019
Accepted: July 26, 2019

Correspondence to
Bhumsuk Keam, M.D.
Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea
Tel: +82-2-2072-7215
Fax: +82-2-2072-7379
E-mail: bhumsuk@snu.ac.kr
https://orcid.org/0000-0001-8196-4247

*Current affiliation:
Department of Internal Medicine, Inha University Hospital, Incheon, Korea

INTRODUCTION

Adenoid cystic carcinoma (ACC) is a rare malignant tumor that mainly occurs in salivary glands but can develop in various tissues of the body including the trachea, sinus, breast, and lung [1-3]. ACC constitutes 10% of salivary gland tumors and approximately 1% of head and neck tumors [4]. ACC progresses slowly but has a high rate of perineural invasion, local recurrence, and indolent distant metastasis [5,6].

The treatment of choice for ACC without distant metastasis is complete surgical excision with negative resection margin [7]. However, in locally advanced cases, ACC frequently invades the surrounding anatomy of the head and neck, and wide excision with sufficient margin is often difficult [6]. Patients with ACC respond...
well to radiotherapy, and radical radiation therapy (RT) has been applied in unresectable cases [8]. It is not clear whether radical RT alone improves survival outcomes or relieve symptoms in locally advanced ACC. Several cases have been reported with promising results from concurrent chemoradiation (CCRT) [9,10].

Cisplatin is well known for its role as a radiosensitizer for several malignancies, owing to its interference with DNA double-strand break repair [11,12]. Theoretically, radical CCRT may be more effective than radical RT alone, for local disease control in ACC. However, the effect of CCRT on ACC has not been fully established.

This study aimed to evaluate the efficacy and feasibility of CCRT in locally advanced unresectable ACC.

METHODS

Patient population
Medical records were reviewed retrospectively for patients who were diagnosed with locally advanced unresectable ACC and treated with CCRT at Seoul National University Hospital between 2013 and 2018. Diagnosis was confirmed pathologically. TNM stage of patients was established according to the 8th edition of the American Joint Committee on Cancer (AJCC). In brief, the AJCC 8th edition defines stage T3 as a tumor invading soft tissue and stage T4 as a tumor invading a nearby structure, such as the jaw bone, skull, skin, or nerves. Each case was presented for multidisciplinary evaluation before making recommendations for definitive therapy. Unresectable status was determined by the multidisciplinary team, comprising head and neck cancer experts from Seoul National University Hospital.

Adult patients aged 18 years or older with more than one measurable lesion according to the Response Evaluation Criteria for Solid Tumors (RECIST 1.1) [13], an Eastern Cooperative Oncology Group performance status (ECOG PS) score of 0 to 2, and adequate hematologic, hepatic, and renal function were included for analysis.

Treatment and analysis
CCRT consisted of conventional fractionated radiotherapy for the primary tumor ± regional lymph nodes, with concurrent intravenous cisplatin chemotherapy. Nine patients received RT using volumetric-modulated arc therapy. Only one patient received intensity-modulated radiotherapy with simultaneous integrated boost. Four patients received 21 to 33 fractionated doses of RT to only the primary tumor site. Six patients received 30 fractionated doses of RT to both the primary site and around the tumor structure. Details about dose and fractions are summarized in Table 1. Nine patients received 35 mg/m² of intravenous cisplatin for 6 cycles every week, and one patient received 100 mg/m² of cisplatin for 3 cycles every 3 weeks. Responses were evaluated according to RECIST 1.1, and toxicity was assessed according to National Cancer Institute Common Terminology Criteria for Adverse Events (NCI CTCAE v5.0).

Relapse-free survival (RFS) was defined as the time from the first day of CCRT to the date of relapse, disease progression, distant metastasis, or death. Median RFS, overall survival (OS), and median follow-up period were calculated using the Kaplan-Meier method.

Ethics
The study protocol was reviewed and approved by the Institutional Review Board of Seoul National University Hospital (No.: H-1812-059-993). All studies were conducted according to guidelines for biomedical research and Declaration of Helsinki. The requirement for informed consent from patients was waived because this study was retrospective.

RESULTS

Patient characteristics
Three patients were male and seven were female. Median age at the time of diagnosis was 55 years (range, 46.8 to 60.6). Seven patients were ineligible for resection because of bulky mass, perineural invasion, and inoperable location. Two patients declined surgery due to surgical morbidity. The remaining patient received surgical resection with positive margins, and the tumor was subsequently determined to be unresectable by the multidisciplinary team because further resection was impossible. Table 1 lists the reasons for unresectable status.

The primary tumor site was the parotid gland in three patients, the palate in two patients, and the sublingual salivary gland, buccal, maxillary sinus, external auditory tract, and trachea in the remaining patients. Only
Table 1. Detailed characteristics of the patients

Patient no.	Age, yr	Sex	Primary site	Stage	Radiation dose, Gy, primary tumor/surrounding/Fx	Toxicity	Best response to CCRT	Progression: systemic/local	Current state	Reason for non-surgical treatment
1	57	F	Parotid gland	T3No	67.5/0/30	Gr. 1 Dry mouth, Gr. 1 Pruritus, Gr. 1 Nausea	CR	No/No	NED	Decline surgery due to surgical morbidity
2	60	F	Parotid gland	T3No	72/0/30	Gr. 1 Salivary gland inflammation, Gr. 1 Dermatitis radiation, Gr. 1 Pruritus, Gr. 1 Nausea	CR	No/No	NED	Decline surgery due to surgical morbidity
3	46	M	Buccal cheek	T4aN0	44.4/0/21	Gr. 1 Dermatitis radiation	CR	Yes/Yes	AWD	Unresectable due to bulky mass
4	59	M	Sublingual	T2No	66/0/33	None	CR	Yes/No	NED after VATS metastasectomy	Resection margin positive
5	54	F	Palate	T4aN0	72/54/30	Gr. 1 Dry mouth, Gr. 1 Salivary duct inflammation	CR	No/No	NED	Unresectable due to bulky mass
6	47	F	Maxillary sinus	T4aN0	72/54/30	Gr. 3 Mucositis oral, Gr. 2 Pain, Gr. 1 Dermatitis radiation, Gr. 1 Nausea	CR	Yes/No	AWD	Unresectable due to bulky mass
7	50	F	EAC	T1No	72/54/30	Gr. 1 Anorexia	CR	No/No	NED	Inoperable location
8	49	F	Parotid gland	T4aN0	72/54/30	None	PR	No/No	AWD	Perineural invasion
9	58	F	Tongue	T4aN2	67.5/54/30	Gr. 3 Mucositis oral, Gr. 2 Pain	CR	Yes/No	NED after VATS metastasectomy	Perineural invasion
10	56	M	Palate	T4bN1	67.5/54/30	Gr. 1 Nausea	PR	No/No	AWD	Perineural invasion

Fx, fraction; CCRT, concurrent chemoradiotherapy; Gr, Grade; CR, complete remission; NED, no evidence of disease; AWD, alive with disease; VATS, video-assisted thoracoscopic surgery; EAC, external auditory canal; PR, partial response.
one patient had positive node involvement, and none showed distant metastasis. The median follow-up period was 35.7 months (range, 8.3 to 68.8).

Treatment outcomes
Patients received a median of 69.8 Gy (range, 44.5 to 72.0) of radiation. Four patients received radiation at the primary tumor site, and six patients received radiation at both the primary site and the surrounding structure. Eight patients achieved complete remission (CR), and two patients achieved partial remission (PR) (Fig. 1). Local recurrence was observed in one patient who received the lowest dose of radiation. Four patients developed lung metastasis after CCRT (Table 1). One patient received radiofrequency ablation, and two patients underwent video-assisted thoracoscopic surgery (VATS) for single lung metastasis. One patient with multiple lung metastases underwent systemic therapy with axitinib. Among four patients with metastasis, two showed progression of lung lesion without local progression of the primary tumor, and the two patients who underwent VATS retained no evidence of disease. All patients were alive. Median RFS was 34.5 months (95% confidence interval, 21.8 to not reached) (Fig. 2). Median OS was not reached (95% confidence interval, not reached to not reached).

Adverse events
The most common toxicities of CCRT with cisplatin were nausea (n = 4) and radiation dermatitis (n = 3). Dry mouth (xerostomia), pruritis, and salivary gland inflammation were reported in two patients, respectively. Two patients showed grade 3 oral mucositis (Table 2) [10,14,15]. All toxicities were tolerable.

DISCUSSION
In this study, locally advanced unresectable ACC patients receiving radical CCRT had a high CR rate of 80% with low local recurrence.

The primary treatment for ACC is complete surgical resection, but it is often difficult to perform surgery due to the invasion of the surrounding structures such as the nerve, skull base, and brain [16,17]. ACC of the trachea, nasopharynx, or maxillary sinus that are unable to undergo surgery have been treated with radiotherapy [18]. The effect of definitive RT for unresectable cases has been reported from several retrospective studies, with a response rate of approximately 40% and RFS of approximately 30 months [19-21]. However, it is difficult to obtain long-term remission in unresectable cases by RT alone [22]. There have been a small number of case reports regarding the effects of CCRT, indicating a tolerable local control rate for ACC [10,23-25]. Ten patients di-
agnosed with ACC received CCRT in our study. Among them, eight patients (80%) achieved CR, experiencing long-term locoregional control with no local progression or relapse, and the remaining patients showed PR. Our results are in line with those of previous reports [23-25], suggesting that CCRT could be more effective than radical RT alone. CCRT with cisplatin may be a good treatment option for patients with unresectable ACC.

ACC of the salivary gland is associated with an increased risk of a positive margin following resection, compared to adenocarcinoma, and is therefore associated with poor prognosis [26]. Although one study reported that surgery alone provided long-term survival rates comparable to those of surgery plus radiotherapy, others found that radiotherapy was effective in cases involving positive margins [27-29]. In our study, a patient receiving postoperative CCRT achieved CR, followed by systemic relapse but not local recurrence. CCRT can therefore be expected to affect local disease control following surgery.

Cisplatin is used as a radiosensitizer in CCRT for many cancers. However, CCRT with cisplatin often fails to proceed as planned due to toxicity [30,31]. Recently, platinum-based CCRT has been reported to be effective for nasopharyngeal cancer [32,33]. All patients in this study received cisplatin with radiotherapy. Nine patients were injected with cisplatin dose of 35 mg/m² in 6 cycles per week. One patient received high-dose cisplatin every 3 weeks. Patients experienced toxicities including dermatitis, xerostomia, nausea, and changes in taste, but most toxicities were tolerable at grade 1 or 2. CCRT with cisplatin is therefore effective with tolerable toxicity.

Our study has several limitations. This study was retrospective and analyzed a small number of just 10 cases; all cases were from a single center, and CCRT was not compared with radical radiotherapy. However, considering the rare incidence of ACC, a small number of studies will still be meaningful. No previous studies have analyzed the effect of CCRT with cisplatin in the same clinical setting, so our study will help select CCRT as a treatment option.

In conclusion, this study suggests that CCRT with cisplatin may be an effective treatment option with manageable toxicity for locally advanced unresectable ACC. Large-cohort prospective studies are needed to confirm efficacy, and a randomized trial to compare CCRT with radical RT alone is warranted.

KEY MESSAGE

1. Concurrent chemoradiotherapy (CCRT) with cisplatin provides a good local control rate with low recurrence in locally advanced unresectable adenoid cystic carcinoma (ACC).
2. CCRT with cisplatin has manageable toxicity in locally advanced unresectable ACC.

Conflict of interest

No potential conflict of interest relevant to this article was reported.

Acknowledgments

We thank the patients included in the current study. This

Study	No. of patients	Treatment	Response	Survival
Haddard et al. (2006) [14]	5	CCRT with carboplatin/paclitaxel	4 (80%) CR	3 yr OS 100%
			3 yr LC 100%	
Gomez et al. (2008) [15]	5	CCRT with cisplatin or carboplatin/paclitaxel	2 (40%) CR	No data
			2 (40%) local failure after 1.5 yr	
			1 (20%) systemic failure after 7 yr	
Sanmant et al. (2012) [10]	16	CCRT with cisplatin or carboplatin	8 (50%) CR	5 yr OS 87%
			7 (44%) PR	5 yr LRFS 61%
			2 (13%) SD	

ACC, adenoid cystic carcinoma; CCRT, concurrent chemoradiotherapy; OS, overall survival; LC, local control; CR, complete remission; PR, partial response; SD, stable disease; LRFS, local relapse free survival.
study was supported by a grant from the Korea Health Technology R&D Project “Strategic Center of Cell and Bio Therapy for Heart, Diabetes & Cancer” through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health and Welfare (MHW), Republic of Korea (grant number HI17C2085).

REFERENCES

1. Spiro RH. Salivary neoplasms: overview of a 35-year experience with 2,807 patients. Head Neck Surg 1986;8:177-184.
2. Leeming R, Jenkins M, Mendelsohn G. Adenoid cystic carcinoma of the breast. Arch Surg 1992;127:233-235.
3. Bennett AK, Mills SE, Wick MR. Adenoid cystic carcinoma of the lung. Pathol Case Rep 2004;4:253-258.
4. Spiro RH, Huvos AG, Strong EW. Adenoid cystic carcinoma of salivary origin. A clinicopathologic study of 242 cases. Am J Surg 1974;128:512-520.
5. Ju J, Li Y, Chai J, et al. The role of perineural invasion on head and neck adenoid cystic carcinoma prognosis: a systematic review and meta-analysis. Oral Surg Oral Med Oral Pathol Oral Radiol 2016;122:691-701.
6. Singh FM, Mak SY, Bonington SC. Patterns of spread of head and neck adenoid cystic carcinoma. Clin Radiol 2015;70:644-653.
7. Spiro RH, Huvos AG. Stage means more than grade in adenoid cystic carcinoma. Am J Surg 1992;164:623-628.
8. Mendenhall WM, Morris CG, Amdur RJ, Werning JW, Hinerman RW, Villaret DB. Radiotherapy alone or combined with surgery for adenoid cystic carcinoma of the head and neck. Head Neck 2004;26:154-162.
9. Maruya S, Namba A, Matsubara A, et al. Salivary gland carcinoma treated with concomitant chemoradiation with intraarterial cisplatin and docetaxel. Int J Clin Oncol 2006;11:403-406.
10. Samant S, van den Brekel MW, Kies MS, et al. Concurrent chemoradiation for adenoid cystic carcinoma of the head and neck. Head Neck 2012;34:1263-1268.
11. Groen HJ, Sleijfer S, Meijer C, et al. Carboplatin- and cisplatin-induced potentiation of moderate-dose radiation cytotoxicity in human lung cancer cell lines. Br J Cancer 1995;72:1406-1411.
12. Sears CR, Cooney SA, Chin-Sinex H, Mendonca MS, Turchi JJ. DNA damage response (DDR) pathway engagement in cisplatin radiosensitization of non-small cell lung cancer. DNA Repair (Amst) 2016;40:35-46.
13. Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 2009;45:228-247.
14. Haddad RI, Posner MR, Busse PM, et al. Chemoradiotherapy for adenoid cystic carcinoma: preliminary results of an organ sparing approach. Am J Clin Oncol 2006;29:153-157.
15. Gomez DR, Hoppe BS, Wolden SL, et al. Outcomes and prognostic variables in adenoid cystic carcinoma of the head and neck: a recent experience. Int J Radiat Oncol Biol Phys 2008;70:1369-1372.
16. Kokemueller H, Eckardt A, Brachvogel P, Hausamen JE. Adenoid cystic carcinoma of the head and neck: a 20 years experience. Int J Oral Maxillofac Surg 2004;33:25-31.
17. Ellington CL, Goodman M, Kono SA, et al. Adenoid cystic carcinoma of the head and neck: incidence and survival trends based on 1973-2007 Surveillance, Epidemiology, and End Results data. Cancer 2012;118:4444-4451.
18. Bhandari V, Ladia DD, Kausar M, Varma A. Definitive radiotherapy for inoperable adenoid cystic carcinoma of the trachea: a rare case report. Lung India 2017;34:73-75.
19. Bhattacharyya O, Holliday E, Kies MS, et al. Definitive proton radiation therapy and concurrent cisplatin for unresectable head and neck adenoid cystic carcinoma: a series of 9 cases and a critical review of the literature. Head Neck 2016;38(Suppl 1):E1472-E1480.
20. Douglas JG, Laramore GE, Austin-Seymour M, Koh W, Stelzer K, Griffin TW. Treatment of locally advanced adenoid cystic carcinoma of the head and neck with neutron radiotherapy. Int J Radiat Oncol Biol Phys 2000;46:551-557.
21. Cerda T, Sun XS, Vignot S, et al. A rationale for chemoradiation (vs radiotherapy) in salivary gland cancers? On behalf of the REFCOR (French rare head and neck cancer network). Crit Rev Oncol Hematol 2014;91:142-158.
22. Chopra S, Kamdar DP, Cohen DS, et al. Outcomes of nonsurgical management of locally advanced carcinomas of the sinonasal cavity. Laryngoscope 2017;127:855-861.
23. Allen AM, Rabin MS, Reilly JJ, Mentzer SJ. Unresectable adenoid cystic carcinoma of the trachea treated with chemoradiation. J Clin Oncol 2007;25:5521-5523.
24. Rosenberg L, Weissler M, Hayes DN, et al. Concurrent chemoradiotherapy for locoregionally advanced salivary gland malignancies. Head Neck 2012;34:873-876.
25. Kim KS, Wu HG, Sung MW. Radiotherapy as a first-line modality for tongue base adenoid cystic carcinoma: re-
port of 3 cases. Korean J Head Neck Oncol 2014;30:104-108.
26. Morse E, Fujiwara RJT, Judson B, Prasad ML, Mehra S. Positive surgical margins in parotid malignancies: Institutional variation and survival association. Laryngoscope 2019;129:129-137.
27. Li Q, Xu T, Gao JM, et al. Surgery alone provides long-term survival rates comparable to those of surgery plus postoperative radiotherapy for patients with adenoid cystic carcinoma of the palate. Oral Oncol 2011;47:170-173.
28. Dautruche A, Bolle S, Feuvret L, et al. Three-year results after radiotherapy for locally advanced sinonasal adenoid cystic carcinoma, using highly conformational radiotherapy techniques proton therapy and/or tomotherapy. Cancer Radiother 2018;22:411-416.
29. Ko YH, Lee MA, Hong YS, et al. Prognostic factors affecting the clinical outcome of adenoid cystic carcinoma of the head and neck. Jpn J Clin Oncol 2007;37:805-811.
30. Lee AW, Tung SY, Chan AT, et al. Preliminary results of a randomized study (NPC-9902 Trial) on therapeutic gain by concurrent chemotherapy and/or accelerated fractionation for locally advanced nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys 2006;66:142-151.
31. Lee AW, Lau WH, Tung SY, et al. Preliminary results of a randomized study on therapeutic gain by concurrent chemotherapy for regionally-advanced nasopharyngeal carcinoma: NPC-9901 Trial by the Hong Kong Nasopharyngeal Cancer Study Group. J Clin Oncol 2005;23:6966-6975.
32. Yu Y, Liang H, Lv X, et al. Platinum-based concurrent chemotherapy remains the optimal regimen for nasopharyngeal carcinoma: a large institutional-based cohort study from an endemic area. J Cancer Res Clin Oncol 2018;144:2231-2243.
33. Hashmi H, Maqbool A, Ahmed S, Ahmed A, Sheikh K, Ahmed A. Concurrent cisplatin-based chemoradiation in squamous cell carcinoma of cervix. J Coll Physicians Surg Pak 2016;26:302-305.