Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Review

Nonsurgical management of resectable oral cavity cancer in the wake of COVID-19: A rapid review and meta-analysis

David Fornera,b,1, Christopher W. Noelb,c,1, Vincent Wuc,1, Ambica Parmarb,d, Kelvin K.W. Chanb,d, John R. de Almeidab,c, Zain Husaine, Antoine Eskanderb,c,*

a Division of Otolaryngology – Head and Neck Surgery, Dalhousie University, Halifax, Canada
b Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Canada
c Department of Otolaryngology – Head and Neck Surgery, University of Toronto, Toronto, Canada
d Department of Medical Oncology, University of Toronto, Toronto, Canada
e Department of Radiation Oncology, University of Toronto, Toronto, Canada

ARTICLE INFO

Keywords:
Oral cavity
Squamous cell carcinoma
Radiotherapy
Chemo-radiotherapy
Immunotherapy
Outcomes
COVID-19
Chemotherapy

ABSTRACT

Objective: Surgery is the preferred treatment modality for oral squamous cell carcinoma (OSCC). However, due to limited resources, re-assessment of treatment paradigms in the wake of the Coronavirus Disease 2019 (COVID-19) pandemic is urgently required. In this rapid review, we described contemporary oncological outcomes for OSCC using non-surgical modalities.

Methods: A systematic literature search was conducted for articles published between January 1, 2010 and April 1, 2020 on MEDLINE and Cochrane CENTRAL. Studies were included if they contained patients with OSCC treated with either neoadjuvant, induction, or definitive radiotherapy, chemotherapy, immunotherapy, or combination thereof, and an outcome of overall survival.

Results: In total, 36 articles were included. Definitive radiotherapy or chemoradiotherapy were the focus of 18 articles and neoadjuvant chemotherapy or chemoradiotherapy were the focus of the other 18 articles. In early stage OSCC, definitive radiotherapy, with or without concurrent chemotherapy, was associated with a significantly increased hazard of death compared to definitive surgery (HR: 2.39, 95% CI: 1.56–3.67, I²: 63%). The hazard of death was non-significantly increased with definitive chemoradiotherapy in studies excluding early disease (HR: 1.98, 95% CI: 0.85–4.64, I²: 84%). Two recent randomized control trials have been conducted, demonstrating no survival advantage to neoadjuvant chemotherapy.

Conclusion: This review suggests that primary radiotherapy and chemoradiotherapy are inferior to surgical management for OSCC. Strategies for surgical delay warranting consideration are sparse, but may include several neoadjuvant regimens, recognizing these regimens may not offer a survival benefit over definitive surgery alone.

Introduction

The Coronavirus Disease 2019 (COVID-19) pandemic has placed significant strain on healthcare systems across the world. To increase the capacity of these systems, surgical cases, including oncological surgery, have been either delayed or cancelled across various jurisdictions [1,2]. As COVID-19 pressures mount, head and neck surgeons must adapt to meet healthcare system needs during this unprecedented time. With resource constraints intensifying and surgical waitlists becoming longer, it may become increasingly difficult to meet established targets for treatment initiation. Head and neck oncologists may need to evaluate non-standard management options and weigh the best available evidence.

In oral cavity squamous cell carcinoma (OSCC), surgery has remained first line therapy for decades, with the National Comprehensive Cancer Network (NCCN) recommending primary surgical management in both early and late stage disease [3]. Delays in cancer surgery may risk losing a window of opportunity for resection, potentially worsening both oncologic and functional outcomes [4–6]. As human resources, including nursing and critical care personnel, become less available during the pandemic, perioperative outcomes may worsen [7]. In the immediate postoperative period, nosocomial spread of COVID-19 is also
were screened by two reviewers (CN, DF) to determine eligibility. All studies were assessed in duplicate to assess for initial relevance. Full articles were independently screened by three reviewers (CN, DF, VW) to determine initial relevance. Studies that described a cohort of patients with surgically resectable OSCC were included if they contained a population of patients (≥18 years of age) with potentially resectable OSCC, with a treatment intervention of either neoadjuvant, induction, or definitive radiotherapy, chemoradiotherapy, immunotherapy, or combination thereof, and an outcome of overall survival. Studies involving non-OSCC head and neck cancer or included an exclusive cohort of patients with lip cancer, were excluded if they contained populations of patients with salivary gland cancer or included an exclusive cohort of patients with surgically resectable OSCC.

Methods

Search strategy

This study was informed by the Cochrane COVID-19 Rapid Review templates [17]. A literature search was conducted for articles published between January 1, 2010 and April 1, 2020 on MEDLINE and Cochrane CENTRAL. The search strategy contained head and neck cancer terms and terms related to OSCC, non-surgical treatment modalities, and oncological outcomes. Snowballing and reference review techniques were used, including evaluation of previously published reviews [18–22]. The full search strategy is outlined in Supplemental Figure S1.

Eligibility criteria

Inclusion and exclusion criteria were defined a priori and applied to identified publications. Studies were included if they contained a population of patients (≥18 years of age) with potentially resectable OSCC, with a treatment intervention of either neoadjuvant, induction, or definitive radiotherapy, chemoradiotherapy, immunotherapy, or combination thereof, and an outcome of overall survival. Studies involving non-OSCC head and neck cancer were considered eligible if OSCC-specific treatment and outcome details could be delineated. Induction therapy was considered to be treatment given before definitive non-surgical treatment, and neoadjuvant therapy was considered to be treatment given before definitive surgical treatment [23]. Publications were excluded if they contained populations of patients with salivary gland cancer or included an exclusive cohort of patients with lip cancer, basaloid squamous cell carcinoma (SCC) or verrucous SCC. Additionally, studies that described a cohort of patients with surgically unresectable disease, or those undergoing palliative therapy were also excluded. Treatments involving intra-arterial chemotherapy, brachytherapy, or photodynamic therapy were also excluded as these treatments would not be practical to administer in a pandemic setting, and would not eliminate the need for perioperative resources. Additionally, studies were excluded if they were non-English, abstract only, protocols, case-reports, case series of less than 10 patients, or studies with no primary data.

Review process and data extraction

Titles and abstracts were independently screened by three reviewers (CN, DF, VW) in duplicate to assess for initial relevance. Full articles were screened by two reviewers (CN, DF) to determine eligibility. All disagreements during the review process were resolved by consensus. Screening was facilitated using the Covidence systematic review software (Veritas Health Innovation, Australia).

Assessment of quality

Risk of study bias was assessed using Version 2 of the Cochrane risk-of-bias tool (RoB 2) for randomized trials and the Newcastle-Ottawa Scale (NOS) for observational studies by a single reviewer (CN). For the RoB 2 tool, studies were categorized as: low risk of bias, some concerns, or high risk of bias across 5 domains and assigned an overall risk of bias judgement [24,25]. The NOS encompasses 3 subscales, each of which is scored separately and has a different maximum score (selection: 4 stars, comparability: 2 stars, outcome: 3 stars) [25]. Higher scores represent higher-quality studies, with decreased amounts of potential bias. Studies are considered good quality if they score 3–4 on selection, 1–2 on comparability, and 2–3 on outcome; fair quality if 2–3 on selection, 1–2 on comparability, and 2–3 on outcome; and poor quality if 0–1 on selection or 0 on comparability or 1 on outcome.

Statistical analysis

Inter-rater agreement during title and abstract screening was assessed by percent agreement, and inter-rater agreement during full-text review was analyzed by Cohen’s kappa statistic [26]. In studies where overall survival was not directly reported in the body of the text, digitization of the Kaplan-Meier curves using the Digitized software (version 2.3, Germany), allowed for generation of summary survival statistics.

Pre-determined pooled analyses were performed. Meta-analysis was performed to examine pooled differences in the hazard of death between definitive radiotherapy, concurrent chemoradiotherapy (CCRT), and primary surgery. Studies which reported adjusted hazard ratios (HRs) underwent analysis. Standard errors were computed from the 95% confidence interval (CI) or p-value and log transformed HRs were used in the analysis [27]. Meta-analysis was performed using a random effects model and the generic inverse variance method; HRs and 95% CIs were reported. Heterogeneity was quantified using the I² test statistic [12]. Meta-analysis was performed on observational studies with two separate analyses; studies that included only early stage disease were analysed separately from studies that included only advanced disease or that included all stages. Meta-analysis was also used to provide pooled proportions of osteoradionecrosis (ORN) following definitive CCRT through a DerSimonian-Laird binary random effects model. Meta-analysis was completed using Review Manager (version 5.3, Denmark).

Results

Study selection

The search strategy yielded 2,261 non-duplicate articles (Figure 1). An additional eight studies were identified through snowballing and reference review techniques. After title and abstract screening, 80 studies underwent full text review. Agreement between three independent reviewers during title and abstract screening was 95.9% (2,176 / 2,269). During full text review, 38 articles were excluded (Figure 1). Inter-rater agreement of two independent reviewers during the full text screen was high (Cohen’s kappa = 0.713, percent agreement = 86.8%). Six studies were excluded during the data extraction phase (total excluded, n = 44) due to the inability to differentiate outcomes of unresectable disease (n = 4) or inability to differentiate disease-specific from overall survival (n = 2). Experts in the field ensured there were no missing studies (AP, KC, ZH, AE). Therefore, 36 studies were included in the review [28–61].
Study characteristics

Study characteristics are summarized in Table 1. Definitive radiotherapy or CCRT was investigated in 18 studies, of which one was a randomized controlled trial and the remainder were observational studies. Comparatively, induction or neoadjuvant chemotherapy, radiotherapy, or CCRT was also the focus of 18 articles, of which 4 studies were randomized controlled trials reporting on 3 different trials. The majority of studies provided either a comparison against primary surgery, such as in studies where the primary exposure of interest was definitive CCRT, or a comparison against no neoadjuvant treatment, such as in studies where the primary exposure of interest was neoadjuvant treatment (n = 24, 66.7%). Half of the studies presented multivariable adjusted analysis of overall survival (n = 18, 50.0%).

Risk of bias assessment

Observational cohort studies (Supplemental Table S1) and randomized controlled trials (Supplemental Table S2) underwent risk of bias assessment. Observational studies without a comparator arm were considered to be case series and thus no bias can exist. Overall, observational cohort studies were predominately low quality, primarily due to lack of adjusted analysis and insufficient detail on follow-up. Trials were generally of low risk of bias, except one [60], which was considered high risk due to insufficient information regarding the allocation concealment and randomization process, and some concern on how missing outcome data was handled.

Definitive radiotherapy/Concurrent chemoradiotherapy

Definitive radiotherapy or CCRT for OSCC was examined in 18 studies. Specific chemotherapy regimens varied substantially (Table 2). Among included studies there was only one randomized control trial, of which patients with OSCC (stage III-IV) were assigned to either upfront surgery or definitive CCRT [35]. The regimen used included cisplatin at a dose of 20 mg/m² and 5-fluorouracil at a dose of 1000 mg/m², as continuous intravenous infusions for 96 h on days 1 and 28 of the radiotherapy course. The primary tumor and upper neck received a
First Author	Year	Journal	Country	Design	Data Source	Comparator	Matched	N	Adjusted Analysis	Stages
Cannon	2017	Head & Neck	USA	Retrospective Cohort	SEER	Yes	No	5856	Yes	III-IV
Crombie	2012	Oral Oncology	Australia	Retrospective Cohort	Chart Review	No	No	54		
Ellis	2017	Otolaryngology Head & Neck Surgery	USA	Retrospective Cohort	NCDB	Yes	Yes	1912 (matched); 20779 (unmatched)	Yes	I-II
Fujiwara	2017	Oral Oncology	USA	Retrospective Cohort	National Cancer Registry Ireland (NCRI)	Yes	No	23,459	Yes	I-IV
Gogarty	2017	European Archives of Oto-Rhino-Laryngology	Ireland	Retrospective Cohort	Unspecified Cancer Database	Yes	No	397	Yes	I-II
Gore	2014	Head & Neck	Australia	Retrospective Cohort	Chart Review	Yes	No	104	Yes	I-II
Hauswald	2012	Acta Oncologica	Germany	Retrospective Cohort	Chart Review	Yes	No	66	No	I-IV
Iyer	2015	Cancer	Singapore	Randomized Controlled Trial	N/A	Yes	N/A	119	No	III-IV
Jenwitheesuk	2010	Journal of the Medical Association of Thailand	Thailand	Retrospective Cohort	Chart Review	Yes	No	107	No	I-IV
Kjems	2015	International Journal Radiation Oncology, Biology, Physics	Denmark	Retrospective Cohort	Chart Review	No	No	942 (100 OSCC)	No	I-IV
McDowell	2014	Oral Surgery, Oral Medicine, Oral Pathology, and Oral Radiology	Australia	Retrospective Cohort	Chart Review	Yes	No	31	Yes	T4
Pederson	2011	American Journal of Clinical Oncology	USA	Prospective Cohort	Chart Review	No	No	21	No	II-IV
Scher	2015	Oral Oncology	USA	Retrospective Cohort	Chart Review	No	No	73	No	I-IV
Snyder	2017	Head & Neck	USA	Retrospective Cohort	SEER	Yes	No	8274	Yes	I-II
Spirito	2017	Otolaryngology	USA	Retrospective Cohort	NCDB	Yes	Yes	2286 (matched); 690 (unmatched)	Yes	III-IV
Stenson	2010	The Laryngoscope	USA	Retrospective Cohort	Chart Review	No	No	138	No	III-IV
Studer	2012	Radiation Oncology	Switzerland	Retrospective Cohort	Chart Review	Yes	No	160	No	I-IV
Wang	2010	Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology	Taiwan	Retrospective Cohort	Chart Review	Yes	No	88	No	I-IV
Borsi	2014	Annals of Oncology	Italy	Randomized Controlled Trial	N/A	Yes	N/A	198	Yes	T2-4
Chinn	2014	JAMA Otolaryngology	USA	Prospective cohort	Chart Review	Yes	Yes	72	Yes	III-IV
Harada	2013	Cancer CHEMOTHERAPY AND PharMacoLogic	Japan	Non-Randomized Trial	N/A	No	No	39	No	III-IV
Hauswald	2012	Acta Oncologica	Germany	Retrospective Cohort	Chart Review	Yes	No	66	No	I-IV
Hirakawa	2017	Japanese Journal of Clinical Oncology	Japan	Retrospective Cohort	Chart Review	Yes	No	164	Yes	I-IV
Inhosowen	2017	Annals of Oncology	Germany	Non-Randomized Trial	N/A	No	No	59	Yes	I-IV
Irii	2012	European Archives of Oto-Rhino-Laryngology	Finland	Retrospective Cohort	Chart Review	No	No	10	Yes	I-IV
Kies	2012	Head & Neck	USA	Non-Randomized Trial	N/A	No	No	23	No	T2-3 N0-2
Kina	2016	Cancer CHEMOTHERAPY AND PharMacoLogic	Japan	Retrospective Cohort	Chart Review	Yes	No	117	Yes	I-II
Kirita	2012	International Journal of Oral & Maxillofacial Surgery	Japan	Prospective cohort	Chart Review	No	No	154	No	I-II
Kreppel	2013	Journal of Craniomaxillofacial Surgery	Germany	Retrospective Cohort	Chart Review	No	No	139	Yes	II-IV
Kreppel	2012	Oral Oncology	Germany	Retrospective Cohort	Chart Review	Yes	No	151	Yes	IV
Lyu	2014	Journal of Oral and Maxillofacial Surgery	China	Retrospective Cohort	Chart Review	No	No	22	No	III-IV
Macke	2011	Annals of Surgical Oncology	Germany	Retrospective Cohort	Chart Review	Yes	No	926	Yes	I-IV
Myers	2011	Otolaryngology Head & Neck Surgery	Finland	Retrospective Cohort	Chart Review	Yes	No	70	Yes	III-IV
Sadighi	2014	Acta Medica Iranica	Iran	Randomized Controlled Trial	N/A	Yes	No	24	No	III-IV
Zhong	2015	Oncotarget	China	Randomized Controlled Trial	N/A	Yes	No	256	Yes	I-IV
Zhong	2013	Journal of Clinical Oncology	China	Randomized Controlled Trial	N/A	Yes	No	256	Yes	I-IV

NCDB: National Cancer Database, SEER: Surveillance, Epidemiology, and End Results
Table 2
Survival Outcomes for Patients Undergoing Definitive Radiotherapy or Chemoradiotherapy for Oral Cavity Squamous Cell Carcinoma.

First Author	Stage	n	T (%)	N (%)	Treatment Modality	Radiation	Chemotherapy	Overall Survival (years, %)	
	1-2	3-4	0	1	2-3				
Cannon	x		5856	41	58	RT			
Crombie	x		54	–	–	CRT			
Ellis	x		20,779	100	0	RT			
Fujiwara	x		23,459	68	32	RT/CCRT		58.7, 37.0	
Gogarty	x		397	100	0	RT/CCRT			
Iyer	x		119	19	82	CRT			
Gore	x		104	35	36	CRT			
Hauswald	x		66	70	26	CRT/CCRT			
Jenwitheesuk	x		117	–	–	CT/RT			
Kjems	x		942	57	42	RT/CCRT			
McDowell	x		31	0	100	CCRT, CRT			
Pederson	x		21	24	76	CCRT, CT + CRT	IMRT	- 72-75, 1.5-2	

Median Range Dose per fraction

- Various:
 1. Cisplatin 100 mg/m² IV q21 days;
 2. Cisplatin 100 mg/m² IV, 5-FU 1000 mg/m² IV q21 days;
 3. Cisplatin 75 mg/m² IV, TPZ 290 mg/m² IV q21 days;
 4. Carbo 300 mg/m² IV, 5-FU 1000 mg/m² IV q28 days;
 5. CTX 400 mg/m² IV then 250 mg/m² IV q7 days

- Various:
 1. EBRT
 2. 3DC
 3. IMRT
 4. Other

- Various:
 1. EBRT
 2. 3DC
 3. IMRT

- Platinum-based, other

- Platinum-based, immunotherapy

- Cisplatin 40 mg/m² IV q7days

(continued on next page)
First Author	Stage	n	T (%)	N (%)	Treatment Modality	Radiation Technique	Dose (Gy)	Chemotherapy	Overall Survival (years, %)
Scher	x	73	21	80	RT/CCRT	Various:	70		8.24-73.1
			33	16		1. 2D		Various:	1. Cisplatin 100 mg/m² IV q21days × 2-3 cycles;
			51			2. 3DC			2. Cisplatin 100 mg/m² IV q21days x2-3 cycles, Other;
						3. IMRT			3. Carbo 70 mg/m² IV × 4 days
									4. Carbo 70 mg/m² IV, 5-FU 600 mg/m² IV × 4 days;
									5. Carbo 70 mg/m² IV, paclitaxel 50 mg/m² IV × 4 days;
									6. CTX 400 mg/m² then 250 mg/m² IV q7days
									7. CTX 400 mg/m² then 250 mg/m² IV, paclitaxel 50 mg./ m² IV qweeklyx7
Sowder	x	8274	100	0	0	RT*	–	–	–
Spiotto	x	6900	29	70	–	CCRT	–	–	–
Stenson	x	111	22	78	–	CCRT	Various:	– 60–75	1.5-2
Studer	x	160	–	–	–	RT/CCRT/CT + CCRT	IMRT –	69.6–70	2
Wang	x	88	41	59	78	CCRT	3DC –	68–74	1.8-2

- Overall survival for matched cohort
- Obtained from Licita et al.
- Obtained from digitization of Kaplan-Meier curves
- Not reported
- 2D = Conventional two-dimensional radiation; 3DC = Three-dimensional conformal radiation therapy; 5-FU = 5-fluorouracil; AUC = Area Under the Curve; Carbo = Carboplatin; CT = Chemotherapy; CTX = Cetuximab; CRT = chemoradiotherapy; EBRT = External Beam Radiation Therapy; FHX: 5-Fluorouracil, hydroxyurea, radiation; IMRT = Intensity-modulated radiation therapy; NOS = Not Otherwise Stated, RT = Radiotherapy; TPZ: Tirapazamine
- Obtained from SEER database which does not capture chemotherapy
- Stage 2-4
- Total study cohort, not just those receiving CRT/RT
radiation dose total of 66 Gy in 33 fractions over 6.5 weeks, whereas involved lymph nodes received at least 60 Gy. For the remaining observational studies, there was a wide variation in specific delivery and dosages of both chemotherapy and radiotherapy (Table 2).

All studies reported survival by year or provided Kaplan-Meier estimated survival curves (Table 2). The 5-year survival ranged from 0% to 76%. A subset of studies directly compared definitive radiotherapy or CCRT against primary surgery. Of these studies, eight performed adjusted analysis of the hazard of death. However, one study did not report the HR and therefore, seven studies were meta-analysed. Three studies restricted recruitment to early stage disease and were analysed separately from studies that included advanced disease or did not restrict participation. In early stage disease, definitive radiotherapy, with or without concurrent chemotherapy, was associated with a significantly increased hazard of death (Figure 2A, HR: 2.39, 95% CI: 1.56–3.67, I²: 63%).

In the four studies which excluded early disease, there was no statistically significant increased hazard of death associated with definitive CCRT (Figure 2B, HR: 1.98, 95% CI: 0.85–4.64, I²: 84%). Only a single study showed a decreased hazard of death with definitive CCRT compared to primary surgery [38].

Four studies, none of which had comparator arms, provided outcomes related to ORN. The proportion of patients experiencing ORN ranged between 6.8 and 18.4%, with a pooled proportion of 10.1% (95% CI: 5.5–14.7%, I²: 14.05%). Only a single study specifically reported the rate of neutropenia with definitive CCRT, in which the rate of febrile neutropenia was 19% and grade was not reported [39].

Neoadjuvant chemotherapy/Concurrent chemoradiotherapy

Seventeen studies investigated neoadjuvant regimens. Nine of these studies explored neoadjuvant radiotherapy or CCRT and 8 evaluated chemotherapy alone (Table 3). Among chemotherapy only studies, four reported on three different randomized control trials. Bossi et al. report the long-term results of individuals randomized to three cycles of cisplatin 100 mg/m² and fluorouracil 1000 mg/m² (120-h infusion administered every 21 days) compared to upfront surgery in stage T2–T4, N0–N2 [46]. Zhong et al. reported short- and long-term results of a phase III trial of patients receiving TPF (docetaxel, cisplatin, 5-fluorouracil) induction in stage III/IVa OSCC [61,62]. Sadighi et al. also reported trial results of a TPF induction protocol in advanced OSCC [60].

One study investigated induction chemotherapy [47]. Chinn and colleagues treated patients with induction cisplatin or carboplatin and fluorouracil. Tumor response was assessed at 3 weeks, and patients with a response of greater than 50% were treated with definitive CCRT. Patients with responses less than 50% were treated with definitive surgical resection. Of the 53% of patients who responded to the initial induction therapy, 30% had complete response after CCRT. Of the 70% who did not have complete response after CCRT, 14% were successfully salvaged with surgery. Overall, patients undergoing induction chemotherapy had a 2.5 times increased hazard of death compared to those undergoing definitive surgery, regardless of initial response status to induction chemotherapy.

For the 9 studies looking at neoadjuvant radiotherapy or CCRT the median radiation dose was 40 Gray. Typically, chemotherapy was administered concurrently, though induction protocols were also described.

Among all studies reporting neoadjuvant or induction regimens, the median length of the neoadjuvant/induction treatment period was 5.0 weeks (IQR 3.75 – 6.75 weeks, range 2 – 12 weeks). The length of time between conclusion of neoadjuvant or induction treatment to initiation of definitive treatment (either CCRT or surgery) was infrequently reported and varied between immediate and longer than 3 weeks. Few studies specifically reported the proportion of patients receiving neoadjuvant treatment who did not undergo surgery. Only one study reported deaths in this interval, of which the death was unrelated to the neoadjuvant treatment or cancer [62]. The majority of observational studies included only those patients who went on to have surgery.

Five studies reported rates of neutropenia, which ranged from 3.7% to 26.1% of varying grades [48–50,52,62]. Febrile neutropenia was specifically reported in three studies, ranging from 1.4% to 4.3% of varying grades [49,52,62].

Among all included studies, one study reported 1-year overall survival (47.0%), five studies reported 2-year overall survival (46.5–86.7%), two reported 3-year survival (42.0%, 83.8%), and 12 reported 5-year overall survival (23.0–90.0%). One study reported crude overall survival (48.0%) and one study reported 10-year survival (46.5%). Meta-analysis of induction CCRT was not performed as insufficient

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
\text{Study or Subgroup} & \text{Hazard Ratio IV, Random, 95% Cl} & \text{Hazard Ratio IV, Random, 95% Cl} \\
\hline
Ellis 2017 & 2.96 [2.64, 3.31] & 2.96 [2.64, 3.31] \\
Cegarty 2017 & 1.74 [1.13, 2.70] & 1.74 [1.13, 2.70] \\
Sowder 2017 & 2.29 [0.59, 8.96] & 2.29 [0.59, 8.96] \\
\hline
\text{Total (95% CI)} & 100.0% & 2.39 [1.56, 3.67] \\
\text{Heterogeneity: Tau}^2 = 0.08; \text{Chi}^2 = 5.41, \text{df} = 2 (P = 0.07); I^2 = 63% \\
\text{Test for overall effect: Z = 4.02 (P < 0.0001)} & & \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
\text{Study or Subgroup} & \text{Hazard Ratio IV, Random, 95% Cl} & \text{Hazard Ratio IV, Random, 95% Cl} \\
\hline
Fujiiwara 2017 & 1.74 [0.72, 4.20] & 1.74 [0.72, 4.20] \\
Gore 2017 & 10.00 [3.92, 25.52] & 10.00 [3.92, 25.52] \\
McDowell 2014 & 0.62 [0.23, 1.67] & 0.62 [0.23, 1.67] \\
Spickette 2017 & 1.52 [1.40, 1.63] & 1.52 [1.40, 1.63] \\
\hline
\text{Total (95% CI)} & 100.0% & 1.98 [0.84, 4.64] \\
\text{Heterogeneity: Tau}^2 = 0.60; \text{Chi}^2 = 18.79, \text{df} = 3 (P = 0.0003); I^2 = 84% \\
\text{Test for overall effect: Z = 1.57 (P = 0.12)} & & \\
\hline
\end{array}
\]

Fig. 2. Meta-analysis results for A) Early stage disease only and B) Late stage and all-stage disease. CI: confidence interval, SE: Standard error.
First Author	Stage	n	T (%)	N (%)	Neoadjuvant Modality	Radiation Technique	Dose (Gy)	Chemotherapy	Overall Survival (years, %)						
Bossi	x**	198	41	59	57	27	16	CT	none	none	none	Cisplatin 100 mg/m² IV, 5-FU 1000 mg/m² IV q21days × 3 cycles	55°		
Chinn	x**	72	24	76	26	22	51	CT	none	none	none	Various: Cisplatin NOS or Carboplatin, 5-FU NOS q21days × 1 cycle then CRT with: Cisplatin 100 mg/m² IV q21days × 3 cycles; 1. Carbo AUC 6 IV q21days × 3 cycles; S-1 50–100 mg PO 5 days/week × 4 weeks	47	42	32
Harada	x	39	26	74	33	28	38	CRT	–	40	40	2	Platinum agent; immunotherapy (n = 1)	83.8	78.9
Hirakawa	x	164	20	80	34	21	45	RT/CCRT	none	none	none	Cisplatin 80 mg/m² IV day 6, 5-FU 800 mg/m² IV days 1–5, q21days × 1 cycle	63.8		
Inhestern	x	54	43	57	9	4	87	CT	none	none	none	Dutaxel 30 mg/m² IV, Cisplatin 40 mg/m² IV, 5-FU 2000 mg/m² IV days 1 and 8, q21days up to 3 cycles	97.3 responders73.7 non-responders		
Ijima	x	10	20	80	60	10	30	RT/CCRT	–	–	60–65	Cisplatin 40 mg/m² IV q7days × 4–6 cycles	60		
Kies	x	23	53	43	43	–	–	CT	–	–	–	Paclitaxel 175 mg/m² IV, 100mg/day 1000 mg/m² IV days 1–3, Carbo AUC 6 IV q21days × 3 cycles	90		
Kina	x	117	100	0	0	0	0	CT	none	none	none	Met. Bleomycin 15 IV mg twice weekly, S-1 100 mg PO daily or UFT-E 450 mg PO TID × 3 weeks	83	79	
Kirita	x**	154	–	–	–	–	–	CCRT	–	–	–	Cisplatin 15 mg/m² or Carbo 70–100 mg/m² days 1–3 and peplomycin 5 mg/day or 5-FU 500–750 mg/day days 4–7, q21days × 2 cycles	45.5		
Kreppel 2013	x**	139	41	59	20	17	63	CRT	–	39.6	39.6	1.8	Carbo 60 mg/m²/day IV × 5 days	46.3	
Kreppel 2012	x	151	29	71	–	–	–	CCRT	–	39.6	39.6	1.8	Carbo 70 mg/m²/day IV × 5 days	67.2	
Lyu	x	22	9	91	18	59	23	CT + RT	–	–	–	Dutaxel 75 mg/m² IV, cisplatin 75 mg/m² IV, 5-FU	750 mg/m² IV days 1–5, q21days × 2 cycles		
Mucke	x	926	68	32	60	17	23	CRT	EBRT	20	–	2	Cisplatin 12.5 mg/m² IV × 5 days during first week of RT	85.3	
Myers	x	70	–	–	–	–	–	CT + RT/CCRT	–	68	68	1.2	Platinum agent/Taxane +/- 5-FU, CTX	31.1	
Sadighi	x	24	–	–	–	–	–	CT	none	none	none	Dutaxel 70–80 mg/m² IV Cisplatin 60 mg/m² IV, 5-FU	46.5°		
Zhong 2015	x	256	26	74	43	37	20	CT	none	none	none	Dutaxel 75 mg/m² IV, Cisplatin 75 mg/m² IV, 5-FU	61.1°		

** not reported. 2D = Conventional two-dimensional radiation; 3DC = Three-dimensional conformational radiation therapy; 5-FU = 5-fluorouracil, Carbo = Carboplatin, CT = Chemotherapy, CTX = Cetuximab, CRT = chemoradiotherapy; EBRT = External Beam Radiation Therapy, IMRT = Intensity-modulated radiation therapy, Met. = Metronomic, RT = Radiotherapy, S-1 = oral 5-FU, UFT-E = oral 5-FU

*overall survival for matched cohort

† obtained from SEER database which does not capture chemotherapy

** stage 2–4

*** total study cohort, not just those receiving CRT/RT

b obtained from Lktra et al.

c obtained from digitization of Kaplan-Meier curves
information could be gathered from studies purporting to report adjusted analysis. Additionally, a recent meta-regression has already been published combining the results of the Zhong and Bossi trials [21].

Neoadjuvant immunotherapy

No published studies were identified that reported final results of neoadjuvant immunotherapy trials. Published abstracts reporting preliminary results, as well as ongoing trials, were identified by reference review and snowballing techniques. One manuscript was retrieved as a non-peer reviewed pre-print. Table 4 summarizes ongoing immunotherapy trials that include the oral cavity, the majority of which include other sites within the head and neck. Therefore, this literature is not yet mature for review and the results of these trials are as of yet unknown.

To date, four trials have reported preliminary trial results through published abstracts. One trial was restricted to oral cavity cancer, while the remaining three included all head and neck sites. Preliminary results of the latter trials do not stratify results by site. Checkmate 358 is a larger trial that includes non-head and neck cancer. Patients receive 2 cycles of preoperative nivolumab. Twenty-nine patients with head and neck cancer were reported, with 48% experiencing a reduction in tumor size, with 10% of patients having reductions of 40% or more. Amongst a cohort of 28 head and neck cancer patients enrolled in NCT02641093, a trial in which patients receive neoadjuvant pembrolizumab, followed by surgery and adjuvant pembrolizumab and radiation therapy, 47% of patients experienced a pathologic response greater than 10% of which 68% had a major response (greater than 70%) and one patient had a complete response. Lastly, in nine oral cavity cancer patients enrolled in NCT03021993, where patients receive 3–4 cycles of nivolumab, 44% of patients experienced a reduction in tumor size of more than 30%.

Amongst preliminary reports, adverse effects appear infrequent.

In a non-peer reviewed pre-print report, results of NCT02296684 are available [63]. Thirty-six patients were enrolled to receive neoadjuvant pembrolizumab. Tumor response of more than 50% was shown in 22% of patients, and more than 10% in an additional 22% of patients. The one-year relapse rate was 16.7% amongst all-comers, and 0% in patients with low and intermediate risk pathology.

Discussion

The COVID-19 pandemic has placed significant strains on healthcare systems worldwide. Within head and neck oncology, temporary alteration to treatment paradigms may be required given limitations of resources due to the ongoing spread of COVID-19. Our review confirms the accepted notion that surgery remains the preferred treatment modality for OSCC. However, in the context of a pandemic, current standard of care may not be achievable within a preferred time frames, generally accepted as within one month [64]. Depending on regional variation in COVID-19 surge, some centres may be forced to use less than ideal treatments. It is therefore important both in terms of decision-making and patient counselling to have summarized data pertaining to these options.

This review reports on a contemporary repository of observational studies and randomized controlled trials that document survival outcomes for patients with surgically resectable OSCC undergoing non-surgical treatment. In some settings, primary CCRT offers near comparable survival outcomes, albeit with significant toxicity, most commonly and more specifically, ORN.

Definitive radiotherapy/Concurrent chemoradiotherapy

Primary surgical management of OSCC has been a mainstay of therapy for decades. Indeed, one of the included studies using recent National Cancer Data Base data determined that of more than 20,000 early oral cancers, surgery was the modality of choice in 95% of cases [30]. There have been two randomized trials attempting to compare surgery with primary radiotherapy. In 1998, Robertson et al. randomized individuals with a planned sample size of 350 patients, though the study was aborted after the first 30 patients showed inferior survival with definitive radiation [65]. Similarly, in 2015, Iyer et al. terminated their study early due to poor accrual [35]. However, this review does present evidence for primary radiation or CCRT through the assessment of observational studies of low to moderate risk of bias. The pooled hazard of death was assessed in those studies, which reported adjusted analysis, and revealed over a 100% increased instantaneous risk of death amongst early OSCC patients. In advanced disease, the increased hazard of death was non-significant, likely owing to individual studies within the pooled analysis being underpowered, and not a lack of true association.

Although not a primary outcome of this review, definitive CCRT was found to have a high rate of ORN, with pooled analysis suggesting over 10% of patients experience this complication. Previous studies have shown the risk of ORN to be both dose- and target volume-dependent, and as such, the oral cavity has been shown to have a more than four times risk of developing ORN compared to other sites [66,67]. Clinicians must balance the increased risk of mortality and morbidity associated with definitive CCRT, in light of improving radiotherapy

Trial	Neoadjuvant/Induction Regimen	Sites	Recruitment Status	Time From 1st Dose to Primary Treatment
NCT02296684	Pembrolizumab	Any	Recruiting	2–3 weeks
NCT02641093	Pembrolizumab	Any	Recruiting	1 week
NCT02919683	Nivolumab, Nivolumab + ipilimumab	OSCC	Active, Not Recruiting	2 weeks
NCT03021993	Nivolumab	OSCC	Recruiting	36–50 days
NCT02827838	Durvalumab	OSCC, OPCC	Recruiting	2 weeks + 3–17 days
NCT02488759	Nivolumab	Any	Active, Not Recruiting	–
NCT03174275	Carboplatin, Paclitaxel, Durvalumab	Any	Recruiting	8–14 weeks
NCT03700905	Nivolumab, Nivolumab + ipilimumab	Any	Recruiting	2 weeks
NCT03737968	Durvalumab, Durvalumab + Tremelimumab	Any	Not Yet Recruiting	4 weeks
NCT02997332	Durvalumab, Docetaxel, Cisplatin, 5-FU	Any	Recruiting	7 weeks
NCT02882308	Olaparib Vs. Cisplatin And Olaparib Vs. Olaparib + Durvalumab	Any	Recruitment Complete	23–29 days
NCT03708224	Atezolizumab, Atezolizumab + Emactuzumab	Any	Recruiting	3–6 weeks
NCT03003637	Nivolumab, Nivolumab + ipilimumab	Any	Recruiting	3 weeks
NCT03700905	Nivolumab	Any	Recruiting	2 weeks
NCT03721757	Nivolumab	Any	Not Yet Recruiting	2 weeks
NCT03247712	Nivolumab, Radiation	Any	Recruiting	2–6 weeks
NCT03342911	Nivolumab, Carboplatin, Paclitaxel	Any	Recruiting	6 weeks
NCT02777385	Pembrolizumab	Any	Recruiting	–

*Not reported
techniques, against pandemic associated threats.

Additionally, while primary CCRT has the advantage of potentially facilitating primarily outpatient management, it poses unique challenges in the COVID-19 setting [68]. Chemotherapy is immunosuppressive and radiotherapy requires visits to a radiation centre. Early reports have noted that patients with a history of cancer were more likely to acquire COVID-19, and that individuals who are immunocompromised or have medical comorbidities are at higher risks for intensive care unit admission, morbidity, and mortality secondary to COVID-19 [12,69]. Moreover, patients undergoing non-surgical regimens may present with symptoms that mirror COVID-19, including cough and sore throat which may then interrupt treatment and impact survival outcomes [70].

Neoadjuvant chemotherapy/Concurrent chemoradiotherapy

Neoadjuvant and induction chemotherapy have been studied in advanced head and neck cancers since the 1990s [71,72]. Over the past decade, two randomized control trials have examined the role of neoadjuvant chemotherapy in OSCC. Bossi, Licitra and colleagues reported on the early and long-term results of a randomized trial of 198 operable oral cancer patients (T2-T4) who were randomized to three cycles of cisplatin and 5-fluorouracil followed by surgery versus surgery alone [46,73]. The addition of chemotherapy failed to provide a survival benefit, though it resulted in reduced rates of adjuvant radiation (33% vs 46%) as well as a higher incidence of mandibular preservation (52% vs 31%). Zhong et al. conducted a similar trial, albeit with a different triple neoadjuvant chemotherapy regimen (docetaxel, cisplatin and 5-fluorouracil). This trial also failed to demonstrate an overall survival benefit, and was associated with grade 3 hematological toxicity in 6.6% of patients and grade 2 adverse events in over 70% of patients [61]. Marta et al. recently combined these studies in a meta-analysis. The pooled data of 451 patients failed to show any difference in overall survival [21]. A second meta-analysis of 27 randomized trials over a 40 year period also failed to identify any benefit [20].

While neoadjuvant chemotherapy may not have a demonstrated role in routine management of primary OSCC, there is a potential for it to provide symptom relief and even delay the need for surgery for a finite period of time. Indeed, there is even some evidence of benefit for neoadjuvant approach amongst responders [61]. In this systematic review, neoadjuvant regimens prior to surgery included both chemotherapy alone and CCRT. Specific treatment regimens were varied, resulting in an inability to adequately combine studies. Nevertheless, in the event where an institution has a clearly delineated target day to deliver surgical care, therapy delivered in the pre-surgical period could be considered as an option either for neoadjuvant intent, or simply as a bridging option until resource restrictions are loosened – the key difference being in specific dosing regimens delivered.

The avoidance of triple modality therapy through the use of induction chemotherapy has importance in both resource-constrained and resource-abundant settings. In patients who respond to initial induction chemotherapy, definitive CCRT would avoid and preserve the use of surgical treatment. However, only a single contemporary study was included in this review [47], which did not demonstrate survival benefit with the use of induction chemoselection. While over half of patients receiving induction chemoselection had an initial response, this strategy was associated with worse survival than definitive surgery with risk informed adjuvant treatment.

Neoadjuvant immunotherapy

Immunotherapy is governed by the principle that tumors can evade immune detection, and immunotherapies can activate immunologic effector mechanisms to kill cancer cells [74]. Integrating immunotherapeutics into upfront therapies has gained significant traction within the head and neck oncology community. While immunotherapy has shown encouraging results in the salvage setting [75,76], neoadjuvant and induction immunotherapy remains under investigation. Of the 18 identified studies, only a single trial has produced mature results, which remain to undergo formal peer-review. For the management of patients in extremely resource constrained settings, upfront immunotherapy may afford additional time for definitive treatment, though this is not directly supported by current literature. Despite the potential benefits, limitations must be considered. Immune-mediated toxicity is a concern, and the question of hyperprogression has been raised [77]. In addition, immunomodulation could have implications with regards to post-operative wound healing, potentially necessitating, instead of protecting against, health system utilization [20]. Lastly, neoadjuvant immunotherapy in head and neck oncology is in its early randomized trial years and is far from standard of care, and therefore may not be accessible at many centers. Many centers have closed non-essential randomized trials in the context of COVID-19. It should also be noted that the vast majority of these trials are industry sponsored due to the very expensive cost of these agents and therefore even if these agents prove efficacious, rigorous cost-effectiveness analyses will be required before uptake. Further, some of these trials are window of opportunity studies, and thus the immunotherapy administered is considered experimental and not necessarily considered a component of the planned treatment [78].

Risk of surgical therapy in the wake of COVID-19

Although findings from our study suggest superiority of oncological outcomes for OSCC managed surgically, clinicians must balance the risk to both patients and healthcare providers, as well as limitations of available resources, that surgery would impose during COVID-19. Surgical management may involve increased duration and time spent inside hospitals, during the pre-operative, operative, and post-operative periods, potentially increasing the risk of nosocomial infections. Additionally, intubation, tracheostomy, surgical manipulation of the upper aerodigestive tract, and post-operative care with suctioning of the oral cavity, are all considered aerosol generating medical procedures and known transmission routes for SARS-COV-2 [2,79-81]. However, for many OSCCs, particularly early stage cancers, the short-term risks of surgery may be outweighed by the collective risk of daily presentation to a radiation centre over the course of 7 weeks and the increased susceptibility to infection that is associated with CCRT. Furthermore, there has been rapid progression in protocols to allow for safer surgical care of the OSCC patient during COVID-19 including, appropriate use of personal protective equipment, self-isolation prior to surgery, and COVID-19 testing pre-operatively[2].

Limitations

The strengths of this review must be taken in context. Firstly, this was a rapid review of the literature. We did not pursue all elements of a formal systematic review given the evolving nature of the COVID-19 pandemic and need for timely evidence. Despite this, a number of formal systematic review methods were utilized, including the use of multiple reviewers and meta-analytical techniques. Reviews are inherently limited by the evidence quality available in the literature, and as randomized controlled trials were both few in number and high in risk of bias limitations in conclusions drawn from our findings must be noted [82]. However, this study does offer the most comprehensive review of the contemporary literature on the non-surgical management of oral cavity cancer.

Conclusion

How the COVID-19 pandemic affects treatment decisions and resource availability is likely to change as the pandemic unfolds. While head and neck surgeons should strive to provide standard of care
therapies throughout the pandemic, reduced access to the operating room and availability of critical care services for post-operative management may necessitate the use of treatment strategies outside of standards of care, particularly in regions with an inability to manage a surge. This review suggests that primary radiation and chemotherapy are inferior to surgical management for oral cavity cancer. Strategies for oncologically safe surgical delay warranting consideration are scarce but may include select neoadjuvant regimens. Our hope is that this systematic review and meta-analysis will shed light on the risks and benefits of contemporary non-surgical options for OSCC within the nuanced COVID-19 pandemic setting. This is particularly important given the expected second wave or surge of COVID-19, which may again put head and neck cancer oncologists in a resource constrained environment. In times of profound uncertainty, the risks and benefits of all strategies must be weighed in the context of patients, healthcare providers, and the healthcare system.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.oraloncology.2020.104849.

References

[1] Emanuel EJ, Persad G, Upshur R, et al. Fair allocation of scarce medical resources in the time of COVID-19. N Engl Med Soc 2020.
[2] Wu V, Noel CW, Forner D, Zhang JZ, Higgins KM, Erepekidjes DJ, Lee JM, Witterick JJ, Kim JJ, Waldron JN, Irish JC. Considerations for head and neck oncology practices during the coronavirus disease 2019 (COVID-19) pandemic; Wuhan and Toronto experience. Head Neck 2020.
[3] NCCN. Head and Neck Cancers. NCCN Clinical Practice Guidelines in Oncology Web site. https://oncology.com/sign/nccn/Head_and_Neck_Cancers.pdf. Updated February 15, 2018. Accessed March 2, 2020.
[4] Cannell DJ, Locher JL, Ronner JA. Diagnosis to treatment interval and control of locoregionally advanced head and neck cancer. Archives of Otolaryngology-Head & Neck Surgery. 2011;137(3):282–5.
[5] Schotte HW, Heutink F, Wellenstein DJ, et al. Impact of Time to Diagnosis and Treatment in Head and Neck Cancer: A Systematic Review. Otolaryngology-Head and Neck Surgery. 2020;162(4):446–57.
[6] Murphy CT, Galloway TJ, Handorf EA, et al. Survival impact of increasing time to treatment initiation for patients with head and neck cancer in the United States. J Clin Oncol 2016;34(21):2566–8.
[7] Fletcher N, Engelman D. Postoperative care: who should look after patients following surgery? Anaesthesia. 2020;75(5):5–9.
[8] Lei S, Jiang F, Su W, et al. Clinical characteristics and outcomes of patients undergoing surgeries during the incubation period of COVID-19 infection. 2020;E1ClinicalMedicine:100331. Accessed February 15, 2018. Accessed March 2, 2020.
[9] Chaves Aline Lauda Freitas, Castro Ana Ferreira, Marta Gustavo Nader, Junior D. Forner, et al. Differences in survival with surgery and postoperative radiotherapy compared with surgery and adjuvant radiotherapy for oral cavity squamous cell carcinoma. Head Neck Oncol 2020;107:104734. https://doi.org/10.1016/j.oraloncology.2020.104734.
[10] Garrity C, Conover CR. Cochrane Rapid Review (RR) Methods: A Look at Interim Recommendations (Part 2). 2020.
Cancer Chemother Pharmacol 2013;71(4):1059–64.

[Hirakawa H, Hanai N, Suzuki H, et al. Prognostic importance of pathological reaction to neoadjuvant chemotherapy followed by definitive surgery in advanced oral squamous cell carcinoma. Jpn J Clin Oncol 2017;47(1):1038–46.

[Inhestern J, Schmalenberg H, Dietz A, et al. A two-arm multicenter phase II trial of one cycle chemoselection split-dose docetaxel, cisplatin and 5-fluorouracil (TPF) induction chemotherapy before two cycles of split TPF followed by curative surgery combined with postoperative radiotherapy in patients with locally advanced oral and oropharyngeal squamous cell cancer (TISOC-1). Ann Oncol 2017;28(8):1917–22.

[Iriji M, Kiminami I, Aitsasalo K. Mandibular reconstruction using free bone flap after free bone flap after preoperative chemoradiation. Eur Arch Otorhinolaryngol 2012;269(5):1513–8.

[Kies MS, Boatright DH, Li G, et al. Phase II trial of induction chemotherapy followed by surgery for squamous cell carcinoma of the oral tongue in young adults. Head Neck 2012;34(9):1255–62.

[Kina S, Nakasone T, Kinjo T, Maruyama T, Kawano T, Arai K. Impact of metronomic neoadjuvant chemotherapy on early tongue cancer. Cancer Chemother Pharmacol 2016;78(4):833–40.

[Kirita T, Yamanaka Y, Inai Y, et al. Preoperative concurrent chemoradiotherapy for stages II–IV oral squamous cell carcinoma: A retrospective analysis and the future possibility of this treatment strategy. Int J Oral Maxillofac Surg 2012;41(4):421–8.

[Kreppel M, Eich H-T, Brüggenolte C, et al. Preoperative vs. postoperative radiochemotherapy in patients with N2 squamous cell carcinoma of the oral cavity. Oral Oncol 2012;48(10):1019–24.

[Kreppel M, Dreiseidler T, Rothamel D, et al. The role of clinical versus histopathological staging in patients with advanced oral squamous cell carcinoma treated with neoadjuvant radiochemotherapy followed by radical surgery. Journal of Cranio-Maxillofacial Surgery. 2013;41(1):22–7.

[Lyu J, Li C, Wu Y, Wang R, Ren G, Guo W. Sequential Therapy of Advanced Buccal Mucosa Squamous Cell Carcinoma: Three-Year Outcome. J Oral Maxillofac Surg 2014;72(3):506–10.

[Mücke T, Konen M, Wagenpfeil S, Kesting M, Wolff K-D, Hölzle F. Low-dose preoperative chemoradiotherapy compared with surgery alone with or without postoperative radiotherapy in patients with head and neck cancer. Ann Surg Oncol 2011;18(10):2739–47.

[Myers LL, Sumer BD, Truebion JM, et al. Impact of treatment sequence of multimodal therapy for advanced oral cavity cancer with mandible invasion. Onktologiregologie-Head and Neck Surgery. 2011;145(6):961–6.

[Sadighi S, Keyhani A, Harirchi I, et al. Neoadjuvant Chemotherapy for Locally Advanced Squamous Carcinoma of Oral Cavity: A Pilot Study. Acta Medica Iranica. 2015;380–386.

[Zhong L, Zhang C, Ren G, et al. Randomized phase III trial of induction chemotherapy with docetaxel, cisplatin, and fluorouracil followed by surgery versus up-front surgery in locally advanced resectable oral squamous cell carcinoma. J Clin Oncol 2013;31(6):744.

[Zhong L, Zhang C, Ren G, et al. Long-term results of a randomized phase III trial of TPF induction chemotherapy followed by surgery and radiation in locally advanced oral squamous cell carcinoma. Oncotarget. 2015;6(21):18707.

[Uppaluri. Neoadjuvant and Adjuvant Pembrolizumab in Resectable Locally Advanced, Human Papillomavirus-Unrelated Head and Neck Cancer: A Multicenter, Phase 2 Trial In. medRxiv2020.

[Trama A, Botta L, Foschi R, et al. Indicators for measuring integrated quality of care for head and neck cancers: the experience of the European project RARECAREnet. Front Oncol 2019;9:837.

[Robertson A, Souriau D, Paul J, et al. Early closure of a randomized trial: surgery and postoperative radiotherapy versus radiotherapy in the management of intra-oral tumours. Clinical Oncology. 1998;10(3):155–60.

[Huang SH. Oral cancer: Current role of radiotherapy and chemotherapy. Medicina oral, patología oral y cirugía bucal. 2013;18(2):e233.

[Caparotti F, Huang SH, Li I, et al. Osteoradionecrosis of the mandible in patients with oropharyngeal carcinoma treated with intensity-modulated radiotherapy. Cancer 2017;123(19):3691–700.

[Day AT, Sher DJ, Lee RC, et al. Head and neck oncology during the COVID-19 pandemic: Reconsidering traditional treatment paradigms in light of new surgical and other multimode risks. Oral Oncol 2020;104684.

[Xia Y, Jin R, Zhao J, Li W, Shen H. Risk of COVID-19 for cancer patients. Lancet Oncol 2020.

[Fesinmeyer MD, Mehta V, Blough D, Tock L, Ramsey SD. Effect of radiotherapy interruptions on survival in Medicare enrollees with local and regional head-and-neck cancer. International Journal of Radiation Oncology*Biology* Physics. 2010;78(3):675–81.

[Domence C, Hill G, Lefebvre J, et al. Randomized trial of neoadjuvant chemotherapy in oropharyngeal carcinoma. Br J Cancer 2000;83(12):1594–8.

[Paccagnella A, Mastromarco C, D’Amanzo P, Ghi MG. Induction chemotherapy before chemoradiotherapy in locally advanced head and neck cancer: the future? Oncologist. 2010;15.

[Licitra L, Grandi C, Guizzo M, et al. Primary chemotherapy in resectable oral cavity squamous cell cancer: a randomized controlled trial. J Clin Oncol 2005;23(21):327–33.

[Couzin-Frankel J. Cancer Immunotherapy. Science 2013;342(6165):1432–3. https://doi.org/10.1126/science.342.6165.1432.

[Cohen EE, Soulières D, Le Tourneau C, et al. Pembrolizumab versus methotrexate, docetaxel, or cetuximab for recurrent or metastatic head-and-neck squamous cell carcinoma (KEYNOTE-040): a randomised, open-label, phase 3 study. The Lancet. 2019;393(10167):156–67.

[Ferris RL, Blumenschein Jr G, Fayette J, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med 2016;375(19):1856–67.

[Salda-Bouzid E, Defauxchex C, Karabadjian A, et al. Hyperprogression during anti-PD-1/PD-L1 therapy in patients with recurrent and/or metastatic head and neck squamous cell carcinoma. Ann Oncol 2017;28(7):1655–11.

[Bernal MO, Bunting J, Khuda B, et al. Adverse effects of neoadjuvant chemotherapy in oropharyngeal carcinoma treated with intensity-modulated radiotherapy. Eur Arch Otorhinolaryngol 2013;270(6):2053–60.

[Bashir A, Khaliq A, Huq S, et al. Randomized controlled trial of neoadjuvant radiotherapy for head and neck cancer: the future? Oncologist. 2010;15.

[Admiration, a pat on the back, and need for extreme caution. Diabetes & Metabolic Syndrome: Clinical Research & Reviews 2020;14(3):255–6. https://doi.org/10.1016/j.dsx.2020.03.006.

[Noel CW, McMullen C, Yao C, et al. The fragility of statistically significant findings from randomized trials in head and neck surgery. The Laryngoscope. 2018;128(9):2994–100.