A COMBINATORIAL RECIPROCITY THEOREM FOR HYPERPLANE ARRANGEMENTS

CHRISTOS A. ATHANASIADIS

Abstract. Given a nonnegative integer m and a finite collection A of linear forms on \mathbb{Q}^d, the arrangement of affine hyperplanes in \mathbb{Q}^d defined by the equations $\alpha(x) = k$ for $\alpha \in A$ and integers $k \in [-m, m]$ is denoted by A^m. It is proved that the coefficients of the characteristic polynomial of A^m are quasi-polynomials in m and that they satisfy a simple combinatorial reciprocity law.

1. Introduction

Let V be a d-dimensional vector space over the field \mathbb{Q} of rational numbers and A be a finite collection of linear forms on V which spans the dual vector space V^*. We denote by A^m the essential arrangement of affine hyperplanes in V defined by the equations $\alpha(x) = k$ for $\alpha \in A$ and integers $k \in [-m, m]$ (we refer to [8,12] for background on hyperplane arrangements). Thus A^0 consists of the linear hyperplanes which are the kernels of the forms in A and A^m is a deformation of A^0, in the sense of [1,9].

The characteristic polynomial [8, Section 2.3] [12, Section 1.3] of A^m, denoted $\chi_A(q,m)$, is a fundamental combinatorial and topological invariant which can be expressed as

$$\chi_A(q,m) = \sum_{i=0}^{d} c_i(m) q^i.$$

We will be concerned with the behavior of $\chi_A(q,m)$ as a function of m. Let $\mathbb{N} := \{0,1,\ldots\}$ and recall that a function $f : \mathbb{N} \to \mathbb{R}$ is called a quasi-polynomial with period N if there exist polynomials $f_1,f_2,\ldots,f_N : \mathbb{N} \to \mathbb{R}$ such that $f(m) = f_i(m)$ for all $m \in \mathbb{N}$ with $m \equiv i \ (\text{mod} \ N)$. The degree of f is the maximum of the degrees of the f_i. Our main result is the following theorem.

Theorem 1.1. Under the previous assumptions on A, the coefficient $c_i(m)$ of q^i in $\chi_A(q,m)$ is a quasi-polynomial in m of degree at most $d-i$. Moreover, the degree of $c_0(m)$ is equal to d and

$$\chi_A(q,-m) = (-1)^d \chi_A(-q, m - 1).$$

In particular we have $\chi_A(q,-1) = (-1)^d \chi_A(-q)$, where $\chi_A(q)$ is the characteristic polynomial of A^0. Let $A^m_\mathbb{R}$ denote the arrangement of affine hyperplanes in the real d-dimensional vector space $V_\mathbb{R} = V \otimes_{\mathbb{Q}} \mathbb{R}$ defined by the same equations defining

\[\text{Date: October 16, 2006.} \]
\[2000 \text{ Mathematics Subject Classification. Primary 52C35; Secondary 05E99.} \]
the hyperplanes of A^m. Let $r_A(m) = (-1)^d \chi_A(-1, m)$ and $b_A(m) = (-1)^d \chi_A(1, m)$ so that, for $m \in \mathbb{N}$, $r_A(m)$ and $b_A(m)$ count the number of regions and bounded regions, respectively, into which V_R is dissected by the hyperplanes of A^m. \cite{22} [12, Section 2.2] \cite{13}.

Corollary 1.2. Under the previous assumptions on A, the function $r_A(m)$ is a quasi-polynomial in m of degree d and, for all positive integers m, $(-1)^d r_A(-m)$ is equal to the number $b_A(m-1)$ of bounded regions of $A^m_{V_R}$.

Theorem 1.1 and its corollary belong to a family of results demonstrating some kind of combinatorial reciprocity law; see \cite{10} for a systematic treatment of such phenomena. Not surprisingly, the proof given in Section 2 is a simple application of the main results of Ehrhart theory \cite{11} Section 4.6. More specifically, equation (2) will follow from the reciprocity theorem \cite{11} Theorem 4.6.26 for the Ehrhart quasi-polynomial of a rational polytope. An expression for the coefficient of the leading term m^d of either $c_0(m)$ or $r_A(m)$ is also derived in that section. Some examples, including the motivating example in which A_0 is the arrangement of reflecting hyperplanes of a Weyl group, and remarks are discussed in Section 3. In the remainder of this section we give some background on characteristic and Ehrhart (quasi-)polynomials needed in Section 2. We will denote by $\# S$ or $|S|$ the cardinality of a finite set S.

Arrangements of hyperplanes. Let V be a d-dimensional vector space over a field K. An arrangement of hyperplanes in V is a finite collection \mathcal{H} of affine subspaces of V of codimension one (we will allow this collection to be a multiset). The intersection poset of \mathcal{H} is the set $L_{\mathcal{H}} = \{ \cap F : F \subseteq \mathcal{H} \}$ of all intersections of subcollections of \mathcal{H}, partially ordered by reverse inclusion. It has a unique minimal element $\hat{0} = V$, corresponding to the subcollection $\mathcal{F} = \emptyset$. The characteristic polynomial of \mathcal{H} is defined by

$$\chi_{\mathcal{H}}(q) = \sum_{x \in L_{\mathcal{H}}} \mu(x) q^{\dim x}$$

where μ stands for the Möbius function on $L_{\mathcal{H}}$ defined by

$$\mu(x) = \begin{cases} 1, & \text{if } x = \hat{0} \\ -\sum_{y < x} \mu(y), & \text{otherwise.} \end{cases}$$

Equivalently \cite{8} Lemma 2.55] we have

$$\chi_{\mathcal{H}}(q) = \sum_{\mathcal{G} \subseteq \mathcal{H}} (-1)^{\# \mathcal{G}} q^{\dim(\cap \mathcal{G})}$$

where the sum is over all $\mathcal{G} \subseteq \mathcal{H}$ with $\cap \mathcal{G} \neq \emptyset$.

In the case $K = \mathbb{R}$, the connected components of the space obtained from V by removing the hyperplanes of \mathcal{H} are called regions of \mathcal{H}. A region is bounded if it is a bounded subset of V with respect to a usual Euclidean metric.

Ehrhart quasi-polynomials. A convex polytope $P \subseteq \mathbb{R}^n$ is said to be a rational or integral polytope if all its vertices have rational or integral coordinates, respectively. If P is rational and P^o is its relative interior then the functions defined for
nonnegative integers m by the formulas

\begin{align*}
i(P, m) &= \# (mP \cap \mathbb{Z}^n) \\
i(P, m) &= \# (mP^o \cap \mathbb{Z}^n)
\end{align*}

are quasi-polynomials in m of degree $d = \dim(P)$, related by the Ehrhart reciprocity theorem [11, Theorem 4.6.26]

\begin{equation}
i(P, -m) = (-1)^d \bar{i}(P, m).
\end{equation}

The function $i(P, m)$ is called the Ehrhart quasi-polynomial of P. The coefficient of the leading term m^d in either $i(P, m)$ or $\bar{i}(P, m)$ is a constant equal to the normalized d-dimensional volume of P (meaning the d-dimensional volume of P normalized with respect to the affine lattice $V_P \cap \mathbb{Z}^n$, where V_P is the affine span of P in \mathbb{R}^n). If P is an integral polytope then $i(P, m)$ is a polynomial in m of degree d, called the Ehrhart polynomial of P.

2. Proof of Theorem 1.1

In this section we prove Theorem 1.1 and Corollary 1.2 and derive a formula for the coefficient of the leading term m^d of $r_A(m)$. In what follows A is as in the beginning of Section 1. We use the notation $[a, b] = \{x \in \mathbb{R} : a \leq x \leq b\}$ and $[a, b]_\mathbb{Z} = [a, b] \cap \mathbb{Z}$ for $a, b \in \mathbb{Z}$ with $a \leq b$.

Proof of Theorem 1.1 and Corollary 1.2. Using formula (4) we get

\begin{equation}
\chi_A(q, m) = \sum_{G \subseteq A} (-1)^{\# G} q^{\dim(\cap G)}
\end{equation}

where the sum is over all $G \subseteq A^m$ with $\cap G \neq \emptyset$. Clearly for this to happen G must contain at most one hyperplane of the form $\alpha(x) = k$ for each $\alpha \in A$. In other words we must have $G = F_b$ for some $F \subseteq A$ and map $b : F \rightarrow [-m, m]_\mathbb{Z}$ sending α to b_α, where F_b consists of the hyperplanes $\alpha(x) = b_\alpha$ for $\alpha \in F$. Let us denote by $\dim F$ the dimension of the linear span of F in V^* and observe that $\dim(\cap F_b) = d - \dim F$ whenever $\cap F_b$ is nonempty. From the previous observations and (7) we get

\[
\chi_A(q, m) = \sum_{F \subseteq A} (-1)^{\dim F} \sum_{b : F \rightarrow [-m, m]_\mathbb{Z}, \cap F_b \neq \emptyset} (-1)^{\# F_b} q^{\dim(\cap F_b)}
\]

where the sum is over all $F \subseteq A^m$ with $\cap F \neq \emptyset$. Clearly for this to happen F must contain at most one hyperplane of the form $\alpha(x) = k$ for each $\alpha \in A$. In other words we must have $F = F_b$ for some $F \subseteq A$ and map $b : F \rightarrow [-m, m]_\mathbb{Z}$ sending α to b_α, where F_b consists of the hyperplanes $\alpha(x) = b_\alpha$ for $\alpha \in F$. Let us denote by $\dim F$ the dimension of the linear span of F in V^* and observe that $\dim(\cap F_b) = d - \dim F$ whenever $\cap F_b$ is nonempty. From the previous observations and (7) we get

\[
\chi_A(q, m) = \sum_{F \subseteq A} (-1)^{\dim F} \sum_{b : F \rightarrow [-m, m]_\mathbb{Z}, \cap F_b \neq \emptyset} (-1)^{\# F_b} q^{\dim(\cap F_b)}
\]

Let us write $F = \{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ and $b_i = b_{\alpha_i}$, so that b can be identified with a column vector in \mathbb{Q}^n. Then $\cap F_b$ is nonempty if and only if the linear system $\alpha_i(x) = b_i$, $1 \leq i \leq n$, has a solution in \mathbb{Q}^d or, equivalently, if and only if b lies in the image $\text{Im} T_F$ of the linear transformation $T_F : \mathbb{Q}^d \rightarrow \mathbb{Q}^n$ mapping $x \in \mathbb{Q}^d$ to the column vector in \mathbb{Q}^n with coordinates $\alpha_1(x), \alpha_2(x), \ldots, \alpha_n(x)$. It follows that
Equivalently we have
\[
\# \{ b : F \to [-m, m]_\mathbb{Z}, \cap F_b \neq \emptyset \} = \# (\text{Im}T_{\mathcal{F}} \cap [-m, m]_\mathbb{Z})^n
\]
\[
= \# \text{Im}T_{\mathcal{F}} \cap [-m, m]^n \cap \mathbb{Z}^n
\]
\[
= \# (m (\text{Im}T_{\mathcal{F}} \cap [-1, 1]^n) \cap \mathbb{Z}^n)
\]
\[
= \# (m P_{\mathcal{F}} \cap \mathbb{Z}^n)
\]
\[
i(P_{\mathcal{F}}, m)
\]
where \(P_{\mathcal{F}} = (\text{Im}T_{\mathcal{F}} \otimes_{\mathbb{Q}} \mathbb{R}) \cap [-1, 1]^n \), and hence that
\[
\chi_{\mathcal{A}}(q, m) = \sum_{\mathcal{F} \subseteq \mathcal{A}} (-1)^{\dim \mathcal{F}} q^{d - \dim \mathcal{F}} i(P_{\mathcal{F}}, m).
\]
Equivalently we have
\[
c_i(m) = \sum_{\dim \mathcal{F} = d - i} (-1)^{\dim \mathcal{F}} i(P_{\mathcal{F}}, m)
\]
for \(0 \leq i \leq d \), where the \(c_i(m) \) are as in (1). Clearly \(P_{\mathcal{F}} \) is a rational convex polytope of dimension \(\dim (\text{Im}T_{\mathcal{F}}) = \dim \mathcal{F} \) and hence \(i(P_{\mathcal{F}}, m) \) is a quasi-polynomial in \(m \) of degree \(\dim \mathcal{F} \). It follows from (2) that \(c_i(m) \) is a quasi-polynomial in \(m \) of degree at most \(d - i \) and that \(r_{\mathcal{A}}(m) = \sum_{i=0}^{d} (-1)^{d-i} c_i(m) \) is a quasi-polynomial in \(m \) of degree at most \(d \). Moreover we have \(r_{\mathcal{A}}(m) \geq (2m+2)^d \) for \(m \geq 0 \) since \(\mathcal{A} \) contains \(d \) linearly independent forms and the corresponding hyperplanes of \(\mathcal{A}^m \) dissect \(V_{\mathbb{R}} \) into \((2m+2)^d \) regions. It follows that the degree of \(r_{\mathcal{A}}(m) \) is no less than \(d \), which implies that the degrees of \(r_{\mathcal{A}}(m) \) and \(c_0(m) \) are, in fact, equal to \(d \).

It remains to prove the reciprocity relation (2). For \(\mathcal{F} \subseteq \mathcal{A} \) with \(\# \mathcal{F} = n \) let \(W_{\mathcal{F}} \) be the real linear subspace \(\text{Im}T_{\mathcal{F}} \otimes_{\mathbb{Q}} \mathbb{R} \) of \(\mathbb{R}^n \), so that \(P_{\mathcal{F}} = W_{\mathcal{F}} \cap [-1, 1]^n \). We have
\[
m P_{\mathcal{F}}^\circ \cap \mathbb{Z}^n = (W_{\mathcal{F}} \cap [-m, m]^n)^\circ \cap \mathbb{Z}^n
\]
\[
= W_{\mathcal{F}} \cap [-(m-1), m-1]^n \cap \mathbb{Z}^n
\]
\[
= (m-1) P_{\mathcal{F}} \cap \mathbb{Z}^n
\]
and hence \(i(P_{\mathcal{F}}, m) = i(P_{\mathcal{F}}, m-1) \). The Ehrhart reciprocity theorem (3) implies that
\[
i(P_{\mathcal{F}}, -m) = (-1)^{\dim \mathcal{F}} i(P_{\mathcal{F}}, m-1).
\]
Equation (2) follows from (3) and (10).

The following corollary is an immediate consequence of the case \(i = 0 \) of (9), the equation \(r_{\mathcal{A}}(m) = \sum_{i=0}^{d} (-1)^{d-i} c_i(m) \) and the fact that the degree of \(c_i(m) \) is less than \(d \) for \(1 \leq i \leq d \).

Corollary 2.1. The coefficient of the leading term \(m^d \) in \(r_{\mathcal{A}}(m) \) is equal to the expression
\[
\sum_{\substack{\mathcal{F} \subseteq \mathcal{A} \\ \dim \mathcal{F} = d}} (-1)^{\dim \mathcal{F} - d} \text{vol}_d(P_{\mathcal{F}}),
\]
where \(P_{\mathcal{F}} \) is as in the proof of Theorem 1.1 and \(\text{vol}_d(P_{\mathcal{F}}) \) is the normalized \(d \)-dimensional volume of \(P_{\mathcal{F}} \).
3. Examples and remarks

In this section we list a few examples, questions and remarks.

Example 3.1. If $V = \mathbb{Q}$ and A consists of two forms $\alpha_1, \alpha_2 : V \to \mathbb{Q}$ with $\alpha_1(x) = x$ and $\alpha_2(x) = 2x$ for $x \in V$ then A^m consists of the affine hyperplanes (points) in V defined by the equations $x = k$ and $x = k/2$ for $k \in [-m, m]$. One can check that

$$
\chi_A(q, m) = \begin{cases}
q - 3m - 1, & \text{if } m \text{ is even} \\
q - 3m - 2, & \text{if } m \text{ is odd}
\end{cases}
$$

and that (2) holds. Moreover we have

$$
r_A(m) = \begin{cases}
3m + 2, & \text{if } m \text{ is even} \\
3m + 3, & \text{if } m \text{ is odd}.
\end{cases}
$$

Note that $\text{vol}_d(P_F)$ takes the values 2, 2 and 1 when $F = \{\alpha_1\}, \{\alpha_2\}$ and $\{\alpha_1, \alpha_2\}$, respectively.

Example 3.2. If $V = \mathbb{Q}^d$ and A consists of the coordinate functions $\alpha_i(x) = x_i$ for $1 \leq i \leq d$ then A^m consists of the affine hyperplanes in V given by the equations $x_i = k$ with $1 \leq i \leq d$, $k \in [-m, m]$, and $\chi_A(q, m) = (q - 2m - 1)^d$, which is a polynomial in q and m satisfying (2).

Example 3.3. Let Φ be a finite, irreducible, crystallographic root system spanning the Euclidean space \mathbb{R}^d, endowed with the standard inner product $(\ , \)$ (we refer to [4, 5, 7] for background on root systems). Fix a positive system Φ^+ and let Q_{Φ} and W be the coroot lattice and Weyl group, respectively, corresponding to Φ. Let also A^m_Φ denote the mth generalized Catalan arrangement associated to Φ [1, 2, 9], consisting of the affine hyperplanes in \mathbb{R}^d defined by the equations $(\alpha, x) = k$ for $\alpha \in \Phi^+$ and $k \in [-m, m]$ (so that A^0_Φ is the real reflection arrangement associated to Φ). If V is the \mathbb{Q}-span of Q_{Φ} then there exists a finite collection A of linear forms on V (one for each root in Φ^+) such that, in the notation of Section 1, A^m_Φ coincides with A^m_Φ. In [2, Theorem 1.2] a uniform proof was given of the formula

$$
\chi_A(q, m) = \prod_{i=1}^{d} (q - mh - e_i)
$$

for the characteristic polynomial of A^m_Φ, where e_1, e_2, \ldots, e_d are the exponents and h is the Coxeter number of Φ. Thus the reciprocity law (2) in this case is equivalent to the well-known fact [5, Section V.6.2] [7, Lemma 3.16] that the numbers $h - e_i$ are a permutation of the e_i. As was already deduced in [2, Corollary 1.3], it follows from (11) that

$$
r_A(m) = \prod_{i=1}^{d} (mh + e_i + 1)
$$

and

$$
b_A(m) = \prod_{i=1}^{d} (mh + e_i - 1)
$$

are polynomials in m of degree d (a fact which was the main motivation behind this paper). Setting $N(\Phi, m) = \frac{1}{|W|} r_A(m)$ and $N^+(\Phi, m) = \frac{1}{|W|} b_A(m)$, as in [3, 6], our
Corollary 1.2 implies that

\[(12) \quad (-1)^d N(\Phi, -m) = N^+(\Phi, m - 1).\]

It was suggested in [4 Remark 12.5] that this equality, first observed in [6 (2.12)], may be an instance of Ehrhart reciprocity. This was confirmed in [3 Section 7] using an approach which is different from the one followed in this paper. Finally we note that Corollary 2.1 specializes to the curious identity

\[(13) \quad h^d = \sum_F (-1)^#F - d \, \text{vol}_d(P_F)\]

where in the sum on the right hand side \(F\) runs through all subsets \(\{\alpha_1, \alpha_2, \ldots, \alpha_n\}\) of \(\Phi^+\) spanning \(\mathbb{R}^d\), \(P_F\) is the intersection of the cube \([-1, 1]^n\) with the image of the linear transformation \(T_F: \mathbb{R}^d \to \mathbb{R}^n\) mapping \(x \in \mathbb{R}^d\) to the column vector in \(\mathbb{R}^n\) with coordinates \((\alpha_1, x), (\alpha_2, x), \ldots, (\alpha_n, x)\) and \(\text{vol}_d(P_F)\) is the normalized \(d\)-dimensional volume of \(P_F\). If \(\Phi\) has type \(A_d\) in the Cartan-Killing classification then \((13)\) translates to the equation

\[(14) \quad (d + 1)^d = \sum_G (-1)^{e(G) - d} \, \text{vol}_d(Q_G)\]

where in the sum on the right hand side \(G\) runs through all connected simple graphs on the vertex set \(\{1, 2, \ldots, d + 1\}\), \(e(G)\) is the number of edges of \(G\) and \(Q_G\) is the \(d\)-dimensional polytope in \(\mathbb{R}^d\) defined in the following way. Let \(T\) be a spanning tree of \(G\) with edges labeled in a one to one fashion with the variables \(x_1, x_2, \ldots, x_d\). For any edge \(e\) of \(G\) which is not an edge of \(T\) let \(R_e\) be the region of \(\mathbb{R}^d\) defined by the inequalities \(-1 \leq x_i + x_j \pm \cdots + x_k \leq 1\), where \(x_1, x_2, \ldots, x_k\) are the labels of the edges (other than \(e\)) of the fundamental cycle of the graph obtained from \(T\) by adding the edge \(e\). The polytope \(Q_G\) is the intersection of the cube \([-1, 1]^d\) and the regions \(R_e\).

Remark 3.4. It is well-known [12 Corollary 3.5] that the coefficients of the characteristic polynomial of a hyperplane arrangement strictly alternate in sign. As a consequence, in the notation of [11], we have \((-1)^{d-i} c_i(m) > 0\) for all \(m \in \mathbb{N}\) and \(0 \leq i \leq d\). We do not know of an example of a collection \(\mathcal{A}\) of forms for which a negative number appears among the coefficients of the quasi-polynomials \((-1)^{d-i} r_i(m)\).

Remark 3.5. If the matrix defined by the forms in \(\mathcal{A}\) with respect to some basis of \(V\) is integral and totally unimodular, meaning that all its minors are \(-1, 0\) or \(1\), then the polytopes \(P_F\) in the proof of Theorem 1.1 are integral and, as a consequence, the functions \(c_i(m)\) and \(r_i(m)\) are polynomials in \(m\). This assumption on \(\mathcal{A}\) is satisfied in the case of graphical arrangements, that is when \(\mathcal{A}\) consists of the forms \(x_i - x_j\) on \(Q^r\), where \(1 \leq i < j \leq r\), corresponding to the edges \(\{i, j\}\) of a simple graph \(G\) on the vertex set \(\{1, 2, \ldots, r\}\). The degree of the polynomial \(r_G(m) := r_{\mathcal{A}}(m)\) is equal to the dimension of the linear span of \(\mathcal{A}\), in other words to the rank of the cycle matroid of \(G\).

Remark 3.6. Let \(\mathcal{A}\) be finite collections of linear forms on a \(d\)-dimensional \(\mathbb{Q}\)-vector space \(V\) spanning \(V^*\). Using the notation of Section 1 let \(\mathcal{H}_m\) denote the union of \(\mathcal{A}_m^*\) with the linear arrangement \(\mathcal{H}_m^0\). It follows from Theorem 1.1 the Deletion-Restriction theorem [8 Theorem 2.56] and induction on the cardinality of \(\mathcal{H}\) that the function \(r(\mathcal{H}_m)\) is a quasi-polynomial in \(m\) of degree \(d\). Given a region
A RECIPROCITY THEOREM FOR ARRANGEMENTS

R of \mathcal{H}_0^R, let $r_R(m)$ denote the number of regions of \mathcal{H}_m which are contained in R, so that

$$r(\mathcal{H}_m) = \sum_R r_R(m)$$

where R runs through the set of all regions of \mathcal{H}_0^R. Is the function $r_R(m)$ always a quasi-polynomial in m?

REFERENCES

[1] C.A. Athanasiadis, Deformations of Coxeter hyperplane arrangements and their characteristic polynomials, in Arrangements – Tokyo 1998 (M. Falk and H. Terao, eds.), Adv. Stud. Pure Math. 27, Kinokuniya, Tokyo, 2000, pp. 1–26.
[2] C.A. Athanasiadis, Generalized Catalan numbers, Weyl groups and arrangements of hyperplanes, Bull. London Math. Soc. 36 (2004), 294–302.
[3] C.A. Athanasiadis and E. Tzanaki, On the enumeration of positive cells in generalized cluster complexes and Catalan hyperplane arrangements, J. Algebr. Comb. 23 (2006), 355–375; math.CO/0605685.
[4] A. Björner and F. Brenti, Combinatorics of Coxeter groups, Graduate Texts in Mathematics 231, Springer-Verlag, New York, 2005.
[5] N. Bourbaki, Lie Groups and Lie Algebras, Chapters 4-6, Springer-Verlag, Berlin, Heidelberg, New York, 2002.
[6] S. Fomin and N. Reading, Generalized cluster complexes and Coxeter combinatorics, Int. Math. Res. Not. 44 (2005), 2709–2757; math.CO/0505085.
[7] J.E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics 29, Cambridge University Press, Cambridge, England, 1990.
[8] P. Orlik and H. Terao, Arrangements of Hyperplanes, Grundlehren 300, Springer-Verlag, New York, NY, 1992.
[9] A. Postnikov and R.P. Stanley, Deformations of Coxeter hyperplane arrangements, J. Combin. Theory Series A 91 (2000), 544–597; math.CO/9712213.
[10] R.P. Stanley, Combinatorial reciprocity theorems, Adv. Math. 14 (1974), 194–253.
[11] R.P. Stanley, Enumerative Combinatorics, vol. 1, Wadsworth & Brooks/Cole, Pacific Grove, CA, 1986; second printing, Cambridge University Press, Cambridge, 1998.
[12] R.P. Stanley, An Introduction to Hyperplane Arrangements, in Geometric Combinatorics, IAS/Park City Mathematics Series (to appear).
[13] T. Zaslavsky, Facing up to arrangements: face-count formulas for partitions of space by hyperplanes, Mem. Amer. Math. Soc. vol. 1, no. 154, 1975.

DEPARTMENT OF MATHEMATICS (DIVISION OF ALGEBRA-GEOMETRY), UNIVERSITY OF ATHENS, PANEPISTIMIOPOULIS, 15784 ATHENS, GREECE
E-mail address: caath@math.uoa.gr