In Search for the Missing Link in APECED-like Conditions: Analysis of the AIRE Gene in a Series of 48 Patients

Alessandra Fierabracci 1,*, Eugenia Belcastro 1, Elena Carbone 1, Olivia Pagliarosi 1, Alessia Palma 2, Lucia Pacillo 3,4, Carmela Giancotta 5, Paola Zangari 6, Andrea Finocchi 3,6, Caterina Cancrini 3,6, Domenico Vittorio Delfino 7, Marco Cappa 8 and Corrado Betterle 9

1 Infectivology and Clinical Trials Research Department, Bambino Gesù Children’s Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), 00146 Rome, Italy; eugenia.belcastro@opbg.net (E.B.); elena.carbone@opbg.net (E.C.); olivia.pagliarosi@opbg.net (O.P.)
2 Research Laboratories, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; alessia.palma@opbg.net
3 Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; lucia.pacillo@opbg.net (L.P.); andrea.finocchi@opbg.net (A.F.); caterina.cancrini@opbg.net (C.C.)
4 PhD Program in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome “Tor Vergata”, 00133 Rome, Italy
5 Immunology and Vaccinology, DPUO, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; carmela.giancotta@opbg.net (C.G.); paola.zangari@opbg.net (P.Z.)
6 Chair of Pediatrics, Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
7 Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy; domenico.delfino@unipg.it
8 Endocrinology Unit, DPUO, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; marco.cappa@opbg.net
9 Endocrine Unit, Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy; corrado.betterle@unipd.it
* Correspondence: alessandra.fierabracci@opbg.net; Tel.: +39-06-6859-2656

Abstract: Autoimmune diseases are a heterogeneous group of disorders of the immune system. They can cluster in the same individual, revealing various preferential associations for polyendocrine autoimmune syndromes. Clinical observation, together with advances in genetics and the understanding of pathophysiological processes, has further highlighted that autoimmunity can be associated with immunodeficiency; autoimmunity may even be the first primary immunodeficiency manifestation. Analysis of susceptibility genes for the development of these complex phenotypes is a fundamental issue. In this manuscript, we revised the clinical and immunologic features and the presence of AIRE gene variations in a cohort of 48 patients affected by high polyautoimmunity complexity, i.e., APECED-like conditions, also including patients affected by primary immunodeficiency. Our results evidenced a significant association of the S278R polymorphism of the AIRE gene with APECED-like conditions, including both patients affected by autoimmunity and immunodeficiency and patients with polyautoimmunity compared to healthy controls. A trend of association was also observed with the IVS9+6 G>A polymorphism. The results of this genetic analysis emphasize the need to look for additional genetic determinants playing in concert with AIRE polymorphisms. This will help to improve the diagnostic workup and ensure a precision medicine approach to targeted therapies in APECED-like patients.

Keywords: autoimmunity; immunodeficiency; APECED-like conditions; AIRE gene polymorphisms; autoantibodies; precision medicine; candidate gene approach; whole-exome sequencing; diagnostic workup; targeted therapies

1. Introduction

Autoimmune diseases are a heterogeneous group of disorders of the immune system. Environmental factors, family history and/or genetic susceptibility underlie their etiopathogenesis [1]. These disorders are due to a loss of tolerance to self-proteins or autoantigens.
that can be organ specific or systemic [2]. Organ-specific autoimmune diseases are due to
target cell destruction determined by autoreactive T lymphocytes and can cluster in the
same individual revealing various preferential associations; this is the case of polyendocrine
autoimmune syndrome Type I (autoimmune polyendocrinopathy candidiasis ectodermal
dystrophy syndrome (APECED)), Type II and immune dysregulation, polyendocrinopathy,
enteropathy, X-linked (IPEX) syndrome [3]. Indeed, although phenotypically different and
confirmed by different diagnostic procedures, autoimmune disorders can share similar
immune and genetic defects, a phenomenon called ‘autoimmune tautology’ [2], i.e., the co-
ocurrence of polyautoimmunity or multiple autoimmune syndrome (MAS) and familiarity
for autoimmunity [4].

Clinical observation has further highlighted that autoimmunity can even share some
common characteristics and mechanisms with other conditions that initially were consid-
ered independent polar opposites. Indeed, this was suggested by the high prevalence of
autoimmune manifestations in primary immunodeficiencies (PID) and the observation that
autoimmunity may even be the first manifestation [5].

Identifying susceptibility genes for these complex phenotypes and unraveling their
putative effects in their etiopathogenesis is a relevant issue. Further increased awareness
and use of genetic screening of confirmatory functional studies, together with immunologi-
cal markers, can lead to a precision medicine workup for early specific diagnosis in highly
vulnerable patient categories [6].

Both purely autoimmune conditions and PIDs can exhibit defects in central and periph-
eral tolerance influenced by mutations in genes that regulate immunological tolerance [5].
In addition to human leukocyte antigen (HLA) haplotypes [7], several single-nucleotide
polymorphisms (SNPs) were discovered to underlie the pathogenesis of autoimmune phe-
notypes [8]. Examples of common susceptibility genes involved in immune regulation
include cytotoxic T lymphocyte-associated antigen 4 (CTLA4), which suppresses T-cell acti-
vation [9–11], forkhead box P3 (FOXP3), involved in the differentiation of T regulatory cells
(Tregs) [12,13], and the interleukin-2 receptor (IL-2R)α/CD25 gene, which affects the devel-
opment and function of Tregs [14]. Further, polymorphisms of the tumor necrosis factor
(TNF)-α gene, located on chromosome 6p21.3, increase the risk of association of insulin-
dependent diabetes mellitus (Type 1 diabetes, T1D) and autoimmune thyroid disease [15]
and the association of alopecia areata and vitiligo [16]. Among the others, the C1858T
polymorphism of the protein tyrosine phosphatase non-receptor type 22 (PTPN22) gene is
associated with several autoimmune diseases; this encodes for a more active phosphatase,
namely the Lyp variant R620W, which is a potent inhibitor of T-cell activation [17,18].

Regarding complex autoimmunity phenotypes, the APECED syndrome
(OMIM#240300) [19] is a rare autosomal recessive disease caused by mutations in the
autoimmune regulator (AIRE) gene [20,21]. The encoded AIRE protein is a transcription
factor with an important role in regulating the escape of autoreactive T cells from the
thymus in perinatal age and the development of Tregs [19,22]. Classic diagnostic criteria for
APECED is the presence of two of the following manifestations: chronic mucocutaneous
candidiasis (CMC), chronic hypoparathyroidism (CHP) and Addison’s disease (AD) [23].
Indeed, CMC is often the first clinical manifestation in APECED patients in which multiple
organ- and non-organ-specific autoimmune conditions may subsequently develop during
their lifetime [23]. Anti-interferon omega (IFNω) antibodies circulating at high titers are
serological hallmarks of the syndrome [24].

The presentation of self-antigens in the thymus that might favor the development of
certain organ-specific autoimmune disorders is also conceived to be influenced by genetic
variability in the AIRE locus and the presence of heterozygous loss-of-function mutations
of the AIRE gene [25,26]. In this regard, AIRE variants have indeed already been reported in the DNA of patients affected by organ-specific autoimmune disorders [27–46]. Of note
in parents of APECED patients harboring heterozygous AIRE mutations, immunological
dysregulation was detected in the peripheral blood by elevated levels of IgA and activated
T lymphocytes [28]. Furthermore, AIRE gene monoallelic mutations located in the first
plant homeodomain (PHD1) zinc finger with autosomal dominant inheritance were found associated with autoimmune diseases characterized by a later onset, milder phenotype and reduced penetrance; however, manifestations in these conditions did not satisfy the clinical diagnostic criteria for APECED [47]. A milder phenotype was reported in a ‘non-classical late onset’ APECED due to a dominant-negative monoallelic mutation (G228W) located in the SAND domain of the AIRE gene in an Italian family with high incidence of Hashimoto’s thyroiditis (HT) [48]. Instead, heterozygous recessive AIRE gene mutations may, although minimally, contribute to the occurrence of sporadic non-mendelian autoimmunity in the general population [49]. Of note, genome-wide association studies (GWAS) conducted in European cohorts of patients affected by pernicious anemia revealed rs74203920 missense variant leading to R471C substitution (p.Arg471Cys) in the second PHD (PHD2) of the AIRE gene among the identified risk loci [50]. Two independent signals rs74203920 and the intronic rs2075876 of the AIRE gene were also detected as significantly associated with Addison’s disease in the Swedish population. The last SNP was in linkage disequilibrium with SNP rs1800520 coding for the S278R variant [51].

In a preliminary investigation, we demonstrated the trend of increased association of AIRE gene variants, particularly the S278R polymorphism, in patients affected by autoimmune polyendocrinopathies than in healthy controls [46]. The association of the S278R AIRE polymorphism was also reported with other autoimmune conditions, including hepatitis, alopecia areata, systemic sclerosis associated with HT and sporadic AD [34–37,40–42].

In light of the foregoing, the present study aimed to analyze the AIRE gene in a different group of patients affected by even higher polyautoimmunity complexity compared to the previously published cohort [46]. The present screened APECED-like population included variable associations of endocrine and non-endocrine and even immune-dysregulatory conditions manifested as immunodeficiency symptoms/confirmed PIDs and allergies. We also estimated the frequency of the detected AIRE gene variants and discussed their putative involvement in the pathophysiological process leading to their clinical and immunological features.

2. Materials and Methods
2.1. Subjects
A total of 48 patients affected by APECED-like disease, including variable association of organ- and non-organ-specific autoimmune disorders and immunodeficiency-associated conditions (16 males, 32 females with age ranges at presentation between 1 and 15.42 years), were recruited from the University Department of Pediatrics (DPUO), at Bambino Gesù Children’s Hospital (OPBG) in Rome. The patients’ sera were assayed for insulin-dependent diabetes mellitus (Type 1 diabetes (T1D))-related autoantibodies (Abs), i.e., glutamic acid decarboxylase (GADA) (isoform 65), tyrosine phosphatase-related islet antigen 2 (IA2) and insulin (IAA) Abs, for anti-adrenal Abs by radioimmunoassay (RIA), for thyroid-related Abs, i.e., TSH-receptor Abs (TRAb immunoassay, Immulite TSI, Siemens Healthcare, Tarrytown, NY, USA), thyroglobulin (Tg), and thyroperoxidase (TPO) and for celiac-disease-related transglutaminase (TRG) Abs by chemiluminescence (ADVIA Centaur analyzer, Siemens Healthcare, Erlangen, Germany), gliadin, extractable nuclear antigen (ENA), endomyosial (EMA) Abs, anti-liver kidney microsomal (LKM) and parietal cells Abs (APCA) by indirect immunofluorescence (IFL). Non-organ-specific Abs anti-nuclear (ANA), anti-neutrophil cytoplasmic (ANCA), anti-double-stranded DNA (dsDNA), antireticulin (ARA), anti-mitochondrial (AMA) and anti-smooth muscle cell (ASMA) were also tested. IFN-ω Abs were assayed by RIA in collaboration with FIRS Laboratories RSR Ltd. (Cardiff, UK). Informed consent was obtained from all those who took part in the present study in accordance with the Declaration of Helsinki. The investigation was approved by the local Institutional Review Board (IRB) of Bambino Gesù Children’s Hospital (OPBG), which regulates human sample usage for experimental studies (Study Protocol No.: 1385_OPBG_2017). A control group included 84 healthy blood donors (44 females and 40 males) [46]. Controls were recruited from the OPBG Blood Transfusion Centre; they had
no history of autoimmunity and immunodeficiency and no autoantibodies were detected in their serum.

2.2. Molecular Studies

Genomic leukocyte DNA was extracted from whole blood samples of patients by the QIAmp DNA Blood Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer’s guidelines.

AIRE Gene Screening

All 14 exons and intronic regions of the AIRE gene were sequenced according to already described protocols (Genetic Analyzer 3500 Applied Biosystems HITACHI system, Thermo Fisher Scientific, Rodano, Italy) in the DNA of recruited patients [46].

2.3. Statistical Analysis

Differences in the number of subjects with S278R polymorphism or the IVS9+6 G>A intronic variation of the AIRE gene between patients and healthy controls were assessed by the χ^2 (chi-square) test on variances and the GraphPad Prism Software (version 7, San Diego, CA, USA). A value of $p < 0.05$ was considered significant.

3. Results

Clinical Phenotype and AIRE Gene Screening in APECED-Like Patients

The 48 APECED-like patients of the present series (Table 1) presented variable combinations of autoimmune manifestations both organ and non-organ specific, with a higher prevalence of T1D and autoimmune thyroid diseases, alopecia, vitiligo and Addison’s disease among the others (Figure 1A). Of note, Addison’s disease is one of the major symptoms of APECED, while T1D occurs as a rare manifestation of this syndrome [52]. Out of the total 48 patients, 15 patients (Patients 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 19 and 20) presented clinical manifestations traditionally associated with PID, including mucocutaneous candidiasis (n = 10) and recurrent infections (n = 6), and 7 of them were actually diagnosed with PID: combined immunodeficiency (n = 2, Patients 5 and 6), common variable immunodeficiency (n = 1, Patient 20) and selective IgA deficiency (SIgAd) (n = 4, Patients 3, 4, 8 and 12). Moreover, seven patients manifested allergies; one had hyper IgE, seven atopic dermatitis and two eczematous dermatitis. Of note, SIgAd patients, as already reported, presented peculiar autoimmune conditions, i.e., T1D (Patient 3), autoimmune thyroiditis (Patients 4 and 8) and vitiligo (Patients 4 and 8) and allergies (Patients 3 and 8) (Table 1) [53]. Patients with autoimmunity and immunodeficiency (Table 1) were tested for anti-IFNω Abs; these specificities are detected in over 90% of APECED patients [20]. The serum of one patient (Patient 11 of the present series) with polyallergy and hypereosinophilia was positive for anti-IFNω Abs. Of note, anti-IFNω Abs were also found positive in the serum of Patient 34 affected by central hypoadrenalism, HT, bronchiectasis and chronic inflammatory demyelinating polyneuropathy (CIDP).

Table 1. Clinical and immunological characteristics of APECED-like patients.

Patient	Gender	Age at Referral (Years)	Diseases	Auto Abs	AIRE Gene Pattern *
1	M	5.42	Multiple allergies (5), bronchiectasis (5), asthmatic bronchitis (5), hyper IgE (5), alopecia (10), CMC (10)	TgAbs, TPOAbs, IAA, IA2Abs, TRGAbs, ASCA neg; AMA, ASMA pos	het. S278R
Patient	Gender	Age at Referral (Years)	Diseases	Auto Abs	AIRE Gene Pattern *
---------	--------	-------------------------	----------	----------	-------------------
2	F	3.5	Cognitive retardation (1), CMC (3), arthralgia (3), congenital hypothyroidism (3), bronchiolitis (6), Behcet’s disease (11), very early onset inflammatory bowel disease (VEO-IBD)	TgAbs, TPOAbs, ANCA, ASCA, ENA, dsDNAAbs neg; ANA pos	het. S278R
3	M	6.19	Selective IgA deficiency (6), Crohn’s disease (6), arthralgia (7), T1D (9), pharmacological polyallergy (12)	IAA, IA2Abs, GADA, TRGAbs, anti-adrenal Abs, ANA, ANCA, dsDNAAbs neg	het. S278R
					het. R471C
					het. IVS9+6 G>A
4	M	3.7	Arthralgia (1), HT (4), recurrent fever episodes (4), selective IgA deficiency (4), vitiligo (5)	IAA, IA2Abs, GADA, TRGAbs, 21OHAbs, dsDNAAbs neg; TgAbs, TPOAbs, ANA pos	het. IVS9+6 G>A
5	F	5.91	Bronchopneumopathy (5), arthralgia (6), combined immunodeficiency (7), hepatopathy (7), mucociliary dyskinesia (7), eczematous dermatitis (11)	TgAbs, TPOAbs, ANCA, ASCA, neg; IAA, IA2Abs, GADA, ANA, dsDNAAbs pos	het. IVS9+6 G>A
6	M	3.57	Atopic dermatitis (3), combined immunodeficiency (4), CMC (4)	TgAbs, TPOAbs, IAA, IA2Abs, GADA, TRGAbs, dsDNAAbs neg; ANA, ENA, RoAbs, SCL70Abs, LaAbs, SMAbs, RNPAbs, JO1Abs pos	het. S278R
					het. IVS9+6 G>A
7	F	1.83	CMC (1), pseudohypoparathyroidism (4), psychomotor retardation (4), coordination disorder (5), congenital onychopathy (12), pityriasis capitis (12), subclinical HT (12)	TgAbs, TPOAbs, ANCA, dsDNAAbs, PM/Sc100 Abs neg; ANA pos	WT
8	M	7.83	Vitiligo (10), HT (10), inhalants allergy (10), selective IgA deficiency (12)	TRGAbs, anti-gliadin Abs, EMA, APCA, AMA, ANA, ANCA, ASCA, ENA, dsDNAAbs neg; TgAbs, TPOAbs pos	WT
9	M	4.29	Candidiasis, alopecia areata (4), subclinical HT (4) (familiarity for HT and T1D)	TgAbs, TPOAbs, IAA, IA2Abs, GADA, TRGAbs, APCA, ANA, ANCA, ENA neg	het. S278R
10	F	2.16	Childhood obesity (6), CMC (9), recurrent infections (9), T1D (9), preclinical hypoparathyroidism, het. MTHFR C677T homocysteine 9 mutation (9), leukopenia (10)	TgAbs, TPOAbs, anti-TSH-receptor Abs, TRGAbs, anti-gliadin Abs, ANA, anti-cardiolipin Abs, anti-beta2 glycoprotein Abs neg; IAA, GADA pos	WT
11	F	8.3	Tubulointerstitial nephritis (4), polyallergy (urticaria and food allergy) (9), chronic renal failure (10), frequent asthma episodes (9), bronchopneumopathy with pulmonary bronchiectasis, hypereosinophilia (9), chronic pancreatitis (10)	ANA, aPLAbs neg; ANCA, ASCA, MPOAbs, anti-cardiolipin Abs pos	WT
Patient	Gender	Age at Referral (Years)	Diseases	Auto Abs	AIRE Gene Pattern *
---------	--------	-------------------------	----------	----------	-------------------
12	F	10.99	Alopecia (few months), HT (9), CMC, bronchitis, asthma, urinary tract infections, food allergies, failure to thrive, hypogammaglobulinemia, eczema, vitiligo, chronic gastritis, morphea	TgAbs, TPOAbs neg	WT
13	M	11.18	Addison’s disease, frequent infections, HT	Diabetes-related Abs, anti-gliadin Abs neg; TgAbs, TPOAbs, 21OHAbs pos	het. S278R
14	M	11.18	CMC, HT, autoimmune pancytopenia	TgAbs, TPOAbs pos	WT
15	F	7.03	Alopecia (7), recurrent infections	TgAbs, TPOAbs, IAA, IA2Abs, GADA, anti-adrenal Abs, ENA, ASMA, ARA, APICA, ANCA, dsDNAAbs, LKMAbs, LC1Abs, anti-ribosome Abs neg; ANA pos	WT
16	F	10.51	HT (11), T1D (11), CMC	TPOAbs, IA2Abs, TRGAbs neg; TgAbs, IAA, GADA pos	WT
17	F	5.71	Turner syndrome, alopecia (3), HT, nail mycosis, cheilitis	TgAbs, TPOAbs pos	het. IVS9+6 G>A
18	M	2.8	Alopecia (3), recurrent respiratory infections, overweight (5)	TgAbs, TPOAbs, IAA, GADA, TRGAbs, APICA, anti-adrenal Abs, AMA, ANA, ARA, LC1Abs, LKMAds, anti-ribosome Abs neg; IA2Abs, ASMA, ENA pos	WT
19	F		CMC, HT, autoimmune hypophysitis	TgAbs, TPOAbs pos	WT
20	M	9.06	Alopecia (8), CVID (10), allergic rhinitis (10), onychodystrophy (12), palmar-plantar psoriasis (12), lactose intolerance (15) [54]	TgAbs, TPOAbs, IAA, IA2Abs, GADA, APICA, ANA, ASCA, ASMA, LKMAbs, dsDNAAbs, ENA, AMA, LC1Abs, anti-ribosome Abs, SCL70Abs neg	het. S250C
21	M	5.57	Hypoparathyroidism (12)	TgAbs, TPOAbs, IAA, IA2Abs, GADA, 21OHAbs pos	het. S278R het. IVS9+6 G>A
22	F	4.66	T1D (7)	TgAbs, IA2Abs, TRGAbs neg; GADA pos	het. S278R het. IVS9+6 G>A
23	M	2.31	T1D (2), linguistic retardation (2), celiac disease (21)	TgAbs, TPOAbs neg; TRGAbs pos	het. S278R het. IVS9+6 G>A
24	F	2.34	Congenital cataract, growth retardation (5), HT (5), autoimmune haemolytic anemia (7), juvenile idiopathic arthritis (9), A20 haploinsufficiency (16)	TgAbs, TPOAbs, GADA, ANA, ENA pos	het. S278R het. IVS9+6 G>A
Patient	Gender	Age at Referral (Years)	Diseases	Auto Abs	AIRE Gene Pattern *
---------	--------	-------------------------	----------	----------	-------------------
25	F	3.72	T1D, HT (21), vitiligo (21)	Anti-TSH-receptor Abs, IA2Abs, GADA, TRGAbs, anti-adrenal Abs neg; TgAbs, TPOAbs, IAA pos	het. S278R het. IVS9+6 G>A
26	F	4.81	T1D, Down’s syndrome, Basedow’s disease (32)	TgAbs, TPOAbs, TRGAbs, APCA, anti-adrenal Abs, AMA, ARA, LKMAbs, LC1Abs, anti-ribosome Abs neg; ASMA pos	het. S278R
27	F	11.25	HT, celiac disease	IAA, IA2Abs, GADA, TRGAbs neg; TgAbs, TPOAbs pos	het. S278R
28	F	12.43	Alopecia areata (5), parapsoriasis (12), HT (12), mycosis fungoides (13)	TgAbs, TPOAbs, TRGAbs, anti-adrenal Abs neg	het. S278R
29	M	8.41	Isolated hypoparathyroidism (8)	TgAbs, TPOAbs, TRGAbs, anti-adrenal Abs neg	het. S278R
30	F	5.78	Alopecia (6), onychodystrophy (13)	TgAbs, TPOAbs, IAA, IA2Abs, TRGAbs, APCA, anti-adrenal Abs, AMA, ASMA, ARA, LKMAbs, LC1Abs, anti-ribosome Abs neg; GADA, ANA pos	het. S278R
31	F	10.91	Primary hypoparathyroidism		het. S278R
32	M	10.08	Hypoparathyroidism		het. S278R
33	F		Addison’s disease, vitiligo		het. S278R het. IVS9+6 G>A
34	F	14.35	Central hypoadrenalism (15), HT (15), bronchiectasis (15), CIDP (21)	IAA, GADA, ANA, ANCA neg; TgAbs, TPOAbs pos	WT
35	F	1	Early menarche from ovarian cyst (9), alopecia (16), HT (17), subclinical hypoadrenalism (17)	TgAbs, TRGAbs, APCA, anti-adrenal Abs, AMA, ASMA, ARA, LKMAbs, LC1Abs, SLA/LPAbs, Sp100Abs, gp210Abs, anti-cardiolipin Abs neg; TPOAbs, ANA pos	het. S278R
36	F		Hypoparathyroidism, Addison’s disease, secondary ovarian failure		WT
37	F	1	Alopecia (3), HT (7)	TgAbs, IAA, IA2Abs, TRGAbs, APCA, anti-adrenal Abs, AMA, ASMA, ARA, LKMAbs, LC1Abs, anti-ribosome Abs, anti-cardiolipin Abs neg; TPOAbs, GADA, ANA pos	het. S278R
38	F	6.15	Alopecia (1), nail dystrophy, HT (5), allergic rhinitis (11), arthralgia (11), recurrent infections in pediatric age	IAA, GADA, TRGAbs, APCA, ANCA, ASMA, ARA, dsDNAAbs, LKMAbs, anti-ribosome Abs neg; TgAbs, TPOAbs, IA2Abs, ANA pos	het. IVS9+6 G>A
39	M	3.84	T1D, GH deficit, HT, autoimmune leukopenia	TRGAbs, anti-adrenal Abs neg; TgAbs, TPOAbs pos	het. IVS9+6 G>A
Patient	Gender	Age at Referral (Years)	Diseases	Auto Abs	AIRE Gene Pattern *
---------	--------	------------------------	----------	----------	-------------------
40	F	15.42	Addison’s disease, HT, celiac disease (4)	TgAbs, TPOAbs, IAA, IA2Abs, GADA, APCA, ANA, AMA, ASMA, LKMAbs, ARA, LC1Abs, anti-ribosome Abs neg; TRGAbs, anti-adrenal Abs pos	WT
41	M		alopecia, HT, celiac disease	IAA, IA2Abs, GADA, anti-adrenal Abs, dsDNAAbs, aPLAbs, anti-cardiolipin Abs neg; TgAbs, TPOAbs, TRGAbs, ANA, ANCA pos	het. S278R
42	F		Addison’s disease, HT, psoriasis	IAA, IA2Abs, GADA, TRGAbs, AMA, ASMA, ARA, LKMAbs, LC1Abs, anti-ribosome Abs neg; TgAbs, TPOAbs, APCA, anti-adrenal Abs pos	WT
43	F	7.97	Hypoadrenalism (8), hypothyroidism (10)	IAA, IA2Abs, GADA, TRGAbs, AMA, ASMA, ARA, LKMAbs, LC1Abs, anti-ribosome Abs neg; TgAbs, TPOAbs, APCA, anti-adrenal Abs pos	WT
44	F	5.64	Celiac disease (5), T1D (7), HT (7)	TgAbs, TRGAbs neg; TPOAbs, IAA, IA2Abs, GADA pos	WT
45	F	5.19	T1D (4), autoimmune hepatitis (5), HT (5)	TPOAbs, TRGAbs, APCA, ANA, AMA, ASMA, ARA, ANCA, LKMAbs, LC1Abs, anti-ribosome Abs neg; TgAbs pos	WT
46	F	1.8	T1D (2), celiac disease (3), autoimmune hepatitis (13)	TgAbs, TPOAbs, TRGAbs, APCA, ANA, AMA, ASMA, ARA, LKMAbs, LC1Abs, anti-ribosome Abs neg; IAA, IA2Abs, GADA pos	WT
47	F	11.71	Arthralgia (4), psoriasis (6), HT (9), T1D (9), gastritis (12)	TgAbs, TRGAbs, APCA, anti-adrenal Abs, dsDNAAbs, AMA, ASMA, ARA, ASCA, LKMAbs, LC1Abs, anti-ribosome Abs neg; TPOAbs, ANA, ANCA pos	WT
48	F	14.77	Addison’s disease, MERS	IAA, IA2Abs, GADA, APCA, ANA, ENA, AMA, ASMA, ARA, LKMAbs, LC1Abs, aPLAbs, anti-cardiolipin Abs, anti-ribosome Abs, anti-beta2 microglobulin Abs neg; TRGAbs, anti-adrenal Abs pos	het. S278R

* Mutations and polymorphisms; WT: Wild Type; het: heterozygous; NT: not tested; neg: negative; pos: positive; GH: growth hormone; MERS: mild encephalitis/encephalopathy with reversible splenial lesion. 21OHAbs: 21OH hydroxylase Abs; JO1Abs: histidyl-tRNA synthetase Abs; SCL70Abs: topoisomerase I Abs; SSA/Ro Abs: anti-Sjogren’s-syndrome-related antigen A Abs; SSB/LA Abs: anti-Sjogren’s-syndrome-related antigen B Abs; SMAbs: anti-Smith Abs; PM/Scl 100 Abs: polymyositis (PM)/Scl-100 Abs; RNPAbs: anti-U1 ribonucleoprotein Abs; ASCA: anti-Saccharomyces cerevisiae Abs; MPOAbs: anti-myeloperoxidase Abs; LC1Abs: liver cytosol Type 1 Abs; aPLAbs: anti-phospholipids Abs; SLA/LPAbs: antibodies against soluble liver antigen/liver-pancreas; Sp100Abs: anti-Sp100 Abs; gp210Abs: anti-glycoprotein-210 Abs. SNPs: single-nucleotide polymorphisms. In brackets, age of disease onset of symptoms is shown.
In this APECED-like series of patients, the heterozygous S278R (c.834 C>G, p.Ser278Arg, G961C, rs1800250, exon 7) polymorphism of the AIRE gene was detected in 23 out of 48 individuals (Table 1, Figure 1B). The intronic polymorphism IVS9+6 G>A (c.1095+6 G>A, G11107A, rs1800525, intron 9), previously reported in patients affected by autoimmune conditions, including in our own investigation on polyendocrinopathies [46], was detected in 13 patients of the present series. The heterozygous compound S278R/IVS9+6 G>A was reported in eight patients (Table 1). One patient (Patient 3, Table 1) presented in compound heterozygosity S278R/R471C (c.1411 C>T)/IVS9+6 G>A and one patient (Patient 20, Table 1) the S250C variant (c.748 A>T, p.Ser250Cys, rs141480813, exon 6) [54] (Figure 1B).

The difference in prevalence of the S278R polymorphism between the patient group and the healthy controls was statistically significant (Figure 2A). A trend of increase in the prevalence of the IVS9+6 G>A polymorphism between the patient group and the healthy controls was observed (Figure 2B). These data suggest the putative influence of AIRE gene polymorphisms in APECED-like conditions, which is particularly evident in Patient 3 (Table 1), where polymorphism S278R is present in compound heterozygosity with the known R471C AIRE mutation [30].

Figure 1. (A) Prevalence (%) of clinical manifestations and (B) prevalence of S278R, IVS9+6 G>A polymorphism, R471C mutation and S250C variant in the APECED-like patients.
with APECED-like conditions, including both patients affected by purely polyautoimmune conditions and patients affected by immune-dysregulatory manifestations/confirmed PID. In previous studies, a high frequency of certain polymorphisms of the AIRE gene, including S278R, were discovered in autoimmune patients including those with non-APECED autoimmunity; this is especially applied to CVID and CID.

In order to validate the influence of susceptibility genes in the pathogenesis of complex autoimmune phenotypes, in the present investigation, we searched for AIRE gene variants in a population of APECED-like patients. Seven patients were also diagnosed with PID, and in some of them, recurrent infections, CMC, failure to thrive and autoimmune could be listed as the warning signs of PID. A high presence of allergies was also reported in patients with associated autoimmunity and immunodeficiency [37]. The results of the present study evidenced a significant association of the S278R polymorphism of the AIRE gene with APECED-like conditions, including both patients affected by purely polyautoimmune disorders and patients affected by immune-dysregulatory manifestations/confirmed PID. This could be indicative of common molecular mechanisms that underlie the association of different autoimmune symptoms and even their association with immunodeficiency conditions. A trend of association was also observed with the IVS9+6 G>A polymorphism compared to the healthy controls (Figure 2B). Of note, the sera of two patients, Patients 11 and 34 in Table 1, tested positive for anti-IFN Abs, known to be typical of the APECED syndrome.

In light of the foregoing, we highlight the importance of analyzing known susceptibility genes in cohorts of patients. We corroborate the evidence that common AIRE polymorphisms may partially contribute to high complex polyautoimmunity phenotype predisposition in APECED-like patients. AIRE polymorphism identification may indeed act as a marker to emphasize the need to look for additional or novel genetic determinants playing in concert in causing polyautoimmunity and autoimmunity-immunodeficiency-associated conditions. Association studies based on the candidate gene approach and the recent advent of whole-exome sequencing will definitively help to elucidate the genetic underpinnings of the association of complex autoimmune manifestations and immunodeficiency in patients with APECED-like conditions.
risk factors responsible for these complex phenotypes. This will contribute to establishing an improved personalized diagnostic protocol and to ensure the development of targeted therapies in APECED-like conditions.

Author Contributions: Conceptualization, A.F. (Alessandra Fierabracci); Methodology, A.F. (Alessandra Fierabracci), A.P.; Validation, A.F. (Alessandra Fierabracci), E.B., E.C., A.P.; Formal analysis, A.F. (Alessandra Fierabracci), E.B., E.C.; Investigation, A.F. (Alessandra Fierabracci), A.F. (Andrea Finocchi), C.C., M.C., C.B.; Resources, A.F. (Alessandra Fierabracci), A.F. (Andrea Finocchi), C.C., M.C.; Data curation, A.F. (Alessandra Fierabracci), E.B., E.C., A.P., C.C., M.C., L.P., C.G., P.Z.; Writing-Original Draft Preparation, A.F. (Alessandra Fierabracci); Writing-Review & Editing, A.F. (Alessandra Fierabracci), E.B., E.C., O.P., D.V.D., C.B.; Visualization, E.B., E.C.; Supervision, A.F. (Alessandra Fierabracci), C.B.; Project Administration, A.F. (Alessandra Fierabracci); Funding Acquisition, A.F. (Alessandra Fierabracci). All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Italian Ministry of Health Ricerca Corrente RC2016 to A.F. (Alessandra Fierabracci).

Institutional Review Board Statement: The study was conducted in accordance with the Declaration of Helsinki and approved by the Institutional Review Board of Bambino Gesù Children’s Hospital, which regulates human sample usage for experimental studies (Study Protocol No.: 1385_OPBG_2017).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study. The Institutional Review Board approved the consent procedure.

Data Availability Statement: The original contributions presented in the study are included in the article. Further inquiries can be directed to the corresponding author.

Acknowledgments: We thank Gigliola Di Matteo (DPUO, OPBG and Chair of Pediatrics, Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy) for her critical review of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fierabracci, A.; Milillo, A.; Locatelli, F.; Fruci, D. The putative role of endoplasmic reticulum aminopeptidases in autoimmunity: Insights from genomic-wide association studies. *Autoimmun. Rev.* 2012, 12, 281–288. [CrossRef] [PubMed]
2. Amaya-Uribe, L.; Rojas, M.; Azizi, G.; Anaya, J.M.; Gershwin, M.E. Primary immunodeficiency and autoimmunity: A comprehensive review. *J. Autoimmun.* 2019, 99, 52–72. [CrossRef]
3. Husebye, E.S.; Anderson, M.S.; Kämpe, O. Autoimmune Polyendocrine Syndromes. *N. Engl. J. Med.* 2018, 379, 1132–1141. [CrossRef]
4. Betterle, C.; Sabbadini, C.; Scaroni, C.; Presotto, F. Autoimmune polyendocrine syndromes (APS) or multiple autoimmune syndromes (MAS) an overview. In *Polyendocrine Disorders and Endocrine Neoplastic Syndromes*; Colao, A.M., Jaffrain-Rea, M.L., Beckers, A., Eds.; Springer: Cham, Switzerland, 2019; pp. 1–50. [CrossRef]
5. Schmidt, R.E.; Grimbacher, B.; Witte, T. Autoimmunity and primary immunodeficiency: Two sides of the same coin? *Nat. Rev. Rheumatol.* 2017, 19, 7–18. [CrossRef]
6. Walter, E.J.; Ayala, I.A.; Milojevic, D. Autoimmunity as a continuum in primary immunodeficiency. *Curr. Opin. Pediatr.* 2019, 31, 851–862. [CrossRef]
7. Reits, E.; Neeffjes, J. HLA molecules in transplantation, autoimmunity and infection control: A comic book adventure. *HLA 2022, online ahead of print.* [CrossRef]
8. Tobón, G.J.; Pers, J.O.; Cañas, C.A.; Rojas-Villarraga, A.; Youinou, P.; Anaya, J.M. Are autoimmune diseases predictable? *Autoimmun. Rev.* 2012, 11, 259–266. [CrossRef]
9. Hosseini, A.; Gharibi, T.; Marofi, F.; Babaloo, Z.; Baradaran, B. CTLA-4: From mechanism to autoimmune therapy. *Int. Immunopharmacol.* 2020, 80, 106221. [CrossRef]
10. Gough, S.C.; Walker, L.S.; Sansom, D.M. CTLA4 gene polymorphism and autoimmunity. *Immunol. Rev.* 2005, 204, 102–115. [CrossRef]
11. Kailashiya, V.; Sharma, H.B.; Kailashiya, J. Role of CTLA4 A49G polymorphism in systemic lupus erythematosus and its geographical distribution. *J. Clin. Pathol.* 2019, 72, 659–662. [CrossRef]
12. Wing, J.B.; Tanaka, A.; Sakaguchi, S. Human FOXP3+ Regulatory T Cell Heterogeneity and Function in Autoimmunity and Cancer. *Immunity* 2019, 50, 302–316. [CrossRef]
13. Mailer, R.K.; Mailer, R.K. IPEX as a Consequence of Alternatively Spliced FOXP3. *Front. Pediatr.* 2020, 8, 594375. [CrossRef]
37. Tazi-Ahnini, R.; Cork, M.J.; Gawrro, D.J.; Birch, M.P.; Wengraf, D.; McDonagh, A.J.; Messenger, A.G. Role of the autoimmune regulator (AIRE) gene in alopecia areata: Strong association of a potentially functional AIRE polymorphism with alopecia universalis. Tissue Antigens 2002, 60, 489–495. [CrossRef] [PubMed]

38. Scott, H.S.; Heino, M.; Peterson, P.; Mittaz, L.; Lalioti, M.D.; Betterle, C.; Cohen, A.; Seri, M.; Lerone, M.; Romeo, G.; et al. Common mutations in autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy patients of different origins. Mol. Endocrinol. 1998, 12, 1112–1119. [CrossRef]

39. Fajzul-Ul-Haque, M.; Bin-Abbas, B.; Al-Abdullatif, A.; Abdullah Abalkhail, H.; Toulimat, M.; Al-Gazlan, S.; Almutawa, A.M.; Al-Sagheir, A.; Peltekova, I.; Al-Dayer, F. Novel and recurrent mutations in the AIRE gene of autoimmune polyendocrinopathy syndrome type 1 (APS1) patients. Clin. Genet. 2009, 76, 431–440. [CrossRef]

40. Pforr, J.; Blaumeiser, B.; Becker, T.; Freudenberg-Hua, Y.; Henneken, S.; Egelshoven, S.; Cuyt, I.; De Weert, J.; Lambert, J.; Kruse, R.; et al. Investigation of the p.Ser278Arg polymorphism of the autoimmune regulator (AIRE) gene in alopecia areata. Tissue Antigens. 2006, 68, 58–61. [CrossRef] [PubMed]

41. Ferrera, F.; Rizzi, M.; Sprecacenera, B.; Balestra, P.; Sessarego, M.; Di Carlo, A.; Filaci, G.; Gabrielli, A.; Ravazzolo, R.; Indiveri, F. AIRE gene polymorphisms in systemic sclerosis associated with autoimmune thyroiditis. Clin. Immunol. 2007, 122, 13–17. [CrossRef] [PubMed]

42. Vaidya, B.; Imrie, H.; Geatch, D.R.; Perros, P.; Ball, S.G.; Baylis, P.H.; Carr, D.; Hurel, S.J.; James, R.A.; Kelly, W.F. Association analysis of the cytotoxic T lymphocyte antigen-4 (CTLA-4) and autoimmune regulator-1 (AIRE-1) genes in sporadic autoimmune Addison's disease. J. Clin. Endocrinol. Metab. 2000, 85, 688–691. [CrossRef]

43. Nithiyananthan, R.; Heward, J.M.; Allahabadia, A.; Barnett, A.H.; Franklyn, J.A.; Gough, S.C. A heterozygous deletion of the autoimmune regulator (AIRE1) gene, autoimmune thyroid disease, and type 1 diabetes: No evidence for association. J. Clin. Endocrinol. Metab. 2000, 85, 1320–1322. [CrossRef] [PubMed]

44. Torok, H.P.; Tonench, L.; Glas, J.; Schiemann, U.; Wolwacznyz, C. No significant association between mutations in exons 6 and 8 of the autoimmune regulator (AIRE) gene and inflammatory bowel disease. Eur. J. Immunogenet. 2004, 31, 83–86. [CrossRef]

45. Turunen, J.A.; Wessman, M.; Forsblom, C.; Kilpikari, R.; Parkkonen, M.; Pöntynen, N.; Ilmarinen, T.; Ulmanen, I.; Peltonen, L.; Groop, P.H. Association analysis of the AIRE and insulin genes in Finnish type 1 diabetic patients. Immunogenetics 2006, 58, 331–338. [CrossRef]

46. Palma, A.; Gianchecchi, E.; Palombi, M.; Luciano, R.; Di Carlo, P.; Cinar, O.; Cappa, M.; Fierabracci, A. Analysis of the autoimmune regulator gene in patients with autoimmune non-APECED polyendocrinopathy. Genomics 2013, 102, 163–168. [CrossRef]

47. Oftedal, B.E.; Hellesen, A.; Eirichsen, M.M.; Bratland, E.; Vardi, A.; Perheentupa, J.; Kemp, E.H.; Fiskerstrand, T.; Viken, M.K.; Weetman, A.P.; et al. Dominant Mutations in the Autoimmune Regulator AIRE Are Associated with Common Organ-Specific Autoimmune Diseases. Immunity 2015, 42, 1185–1196. [CrossRef]

48. Cetani, F.; Barbegino, G.; Borsari, S.; Pardi, E.; Cianferotti, A.; Porta-Pardo, E.; Pujol-Borrell, R. AIRE genetic variants and predisposition to polygenic autoimmune disease: The case of Graves’ disease and a systematic literature review. Hum. Immunol. 2016, 77, 643–651. [CrossRef]

49. Lai, T.; Lepams, M.; Koe, M.; Abner, E.; Magi, R.; Estonian Biobank Research Team. Genome-wide association study identifies five risk loci for pernicious anemia. Nat. Commun. 2021, 12, 3761. [CrossRef]

50. Eriksson, D.; Royvik, E.C.; Aranda-Guillén, M.; Berger, A.H.; Landegren, N.; Artaza, H.; Hallgren, G.; Grytaas, M.A.; Ström, S.; Bratland, E.; et al. GWAS for autoimmune Addison’s disease identifies multiple risk loci and highlights AIRE in disease susceptibility. Nat. Commun. 2021, 12, 959. [CrossRef]

51. Fierabracci, A. Type 1 Diabetes in Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy Syndrome (APECED): A “Rare” Manifestation in a “Rare” Disease. Int. J. Mol. Sci. 2016, 17, 1106. [CrossRef] [PubMed]

52. Odineal, D.D.; Gershwin, M.E. The Epidemiology and Clinical Manifestations of Autoimmunity in Selective IgA Deficiency. Clin. Rev. Allergy Immunol. 2020, 58, 107–133. [CrossRef]

53. Bellacchio, E.; Palma, A.; Corrente, S.; Di Girolamo, F.; Kemp, H.E.; Di Matteo, G.; Comelli, L.; Carietti, R.; Casioli, S.; Cancrini, C.; et al. The possible implication of the S250C variant of the autoimmune regulator protein in a patient with autoimmunity and immunodeficiency: In silico analysis suggests a molecular pathogenic mechanism for the variant. Gene 2014, 549, 286–294. [CrossRef] [PubMed]

54. Picard, C.; Gaspar, H.B.; Al-Herz, W.; Bousfiha, A.; Casanova, J.L.; Chatila, T.; Crow, Y.J.; Cunningham-Rundles, C.; Ettioni, A.; Franco, J.L. International Union of Immunological Societies: 2017 Primary Immunodeficiency Diseases Committee Report on Inborn Errors of Immunity. J. Clin. Immunol. 2018, 38, 96–128. [CrossRef] [PubMed]

55. Tangye, S.G.; Al-Herz, W.; Aziz Bousfiha, A.; Cunningham-Rundles, C.; Franco, J.L.; Holland, S.M.; Klein, C.; Morio, T.; Oksenhendler, E.; Picard, C.; et al. The Ever-Increasing Array of Novel Inborn Errors of Immunity: An Interim Update by the IUIS Committee. J. Clin. Immunol. 2021, 41, 666–679. [CrossRef]

56. Ludvigsson, J.F.; Neovius, M.; Hammarström, L. Association between IgA deficiency & other autoimmune conditions: A population-based matched cohort study. J. Clin. Immunol. 2014, 34, 444–451. [CrossRef] [PubMed]