On certain sixth order difference equations

D. Nyirenda1 and M. Folly-Gbetoula1.

1 School of Mathematics, University of the Witwatersrand, Johannesburg, South Africa.

Abstract

We use the Lie group analysis method to investigate the invariance properties and the solutions of

\[x_{n+1} = \frac{x_{n-5}x_{n-3}}{x_{n-1}(a_n + b_n x_{n-5}x_{n-3})}. \]

We show that this equation has a two-dimensional Lie algebra and that its solutions can be presented in a unified manner. Besides presenting solutions of the recursive sequence above where \((a_n)\) and \((b_n)\) are sequences of real numbers, some specific cases are emphasized.

Key words: Difference equation; symmetry; reduction; group invariant solutions

1 Introduction

Difference equations are important in mathematical modeling, especially where discrete time evolving variables are concerned. They also occur when studying discrimination methods for differential equations. Countless results in the subject of difference equations have been recorded [1–7, 11]. For rational difference equations of order greater than two, the study can be quite challenging at the same time rewarding. Rewarding in the sense that such a study lays ground for the theory of global properties of difference equations (not necessarily rational) of higher-order.

In [10], Hydon developed an effective symmetry based algorithm to deal with the obtention of solutions of difference equations of any order. However, the calculation one deals with in this application to difference equations of order greater than one can become cumbersome. The method consists of finding a group of transformations that maps solutions onto themselves. Symmetry
method is a valuable tool and it has been used to solve several difference
equations [8, 9, 14, 15].
In this paper, our objective is to obtain the symmetry operators of
\[
x_{n+1} = \frac{x_{n-5}x_{n-3}}{x_{n-1}(a_n + b_n x_{n-5}x_{n-3})},
\]
where \((a_n)_{n=0}^\infty\) and \((b_n)_{n=0}^\infty\) are real sequences and to find its solutions by way of symmetries. Without loss of generality, we equivalently study the forward difference equation
\[
u_{n+6} = \frac{u_n u_{n+2}}{u_{n+4}(A_n + B_n u_n u_{n+2})}.
\]
We refer the interested reader to [10, 16] for a deeper knowledge of Lie analysis.

2 Definitions and Notation

In this section, we briefly present some definitions and notation (largely from Hydon in [10]) indispensable for the understanding of Lie symmetry analysis of difference equations.

Definition 2.1 Let \(G\) be a local group of transformations acting on a manifold \(M\). A subset \(S \subset M\) is called \(G\)-invariant, and \(G\) is called symmetry group of \(S\), if whenever \(x \in S\), and \(g \in G\) is such that \(g \cdot x\) is defined, then \(g \cdot x \in S\).

Definition 2.2 Let \(G\) be a connected group of transformations acting on a manifold \(M\). A smooth real-valued function \(V : M \to \mathbb{R}\) is an invariant function for \(G\) if and only if
\[X(V) = 0\]
for all \(x \in M\), and every infinitesimal generator \(X\) of \(G\).

Definition 2.3 A parameterized set of point transformations,
\[
\Gamma_\epsilon : x \mapsto \hat{x}(x; \epsilon),
\]
where \(x = x_i, i = 1, \ldots, p\) are continuous variables, is a one-parameter local Lie group of transformations if the following conditions are satisfied:
1. Γ_0 is the identity map if $\hat{x} = x$ when $\varepsilon = 0$

2. $\Gamma_a \Gamma_b = \Gamma_{a+b}$ for every a and b sufficiently close to 0

3. Each \hat{x}_i can be represented as a Taylor series (in a neighborhood of $\varepsilon = 0$ that is determined by x), and therefore

$$\hat{x}_i(x : \varepsilon) = x_i + \varepsilon \xi_i(x) + O(\varepsilon^2), \; i = 1, \ldots, p. \quad (4)$$

Assuming that the sixth-order difference equation has the form

$$u_{n+r} = \Psi(n, u_n, \ldots, u_{n+r-1}), \; n \in D \quad (5)$$

for some smooth function Ω and a regular domain $D \subset \mathbb{Z}$. To deduce the symmetry group of (5), we search for a one parameter Lie group of point transformations

$$\Gamma_{\varepsilon} : (n, u_n) \mapsto (n, u_n + \varepsilon Q(n, u_n)), \quad (6)$$

in which ε is the parameter and Q a continuous function, referred to as characteristic. Let

$$X = Q(n, u_n) \frac{\partial}{\partial u_n} + SQ(n, u_n) \frac{\partial}{\partial u_{n+1}} + \cdots + S^{r-1} Q(n, u_n) \frac{\partial}{\partial u_{n+r-1}} \quad (7)$$

be the corresponding ‘prolonged’ infinitesimal generator and $S : n \mapsto n + 1$ the shift operator. The linearized symmetry condition is given by

$$S^r Q - X \Psi = 0. \quad (8)$$

Upon knowledge of the characteristic Q, it is important to introduce the canonical coordinate

$$S_n = \int \frac{du_n}{Q(n, u_n)}, \quad (9)$$

a useful tool which allows one to obtain the invariant function of Γ_{ε}.

3 Main results

As earlier emphasized, our equation under study is

$$u_{n+6} = \Psi = \frac{u_n u_{n+2}}{u_{n+4}(A_n + B_n u_n u_{n+2})}. \quad (10)$$
Applying the criterion of invariance (8) to (10), we get

\[Q(n + 6, \Psi) + \frac{u_n u_{n+2} Q(n + 4, u_{n+4})}{u_{n+4}^2 (A_n + B_n u_{n+2})} - \frac{A_n u_{n+4} Q(n + 2, u_{n+2})}{u_{n+4} ((A_n + B_n u_{n+2})^2)} = 0. \]

(11)

In order to eliminate \(\Psi \) in (11), we invoke implicit differentiation with respect to \(u_n \) (regarding \(u_{n+4} \) as a function of \(u_n, u_{n+2} \) and \(\Psi \)) via the operator

\[L = \frac{\partial}{\partial u_n} + \left(\frac{\partial u_{n+4}}{\partial u_n} \right) \frac{\partial}{\partial u_{n+4}} = \frac{\partial}{\partial u_n} - \left(\frac{\Psi, u_n}{\Psi, u_{n+4}} \right) \frac{\partial}{\partial u_{n+4}}. \]

Note that \(f_x \) denotes the derivative with respect to \(x \). With some simplification, one gets

\[(A_n + B_n u_{n+2}) Q'(n + 4, u_{n+4}) - \frac{(A_n + B_n u_{n+2}) Q(n + 4, u_{n+4})}{u_{n+4}} \]
\[+ B_n u_n Q(n + 2, u_{n+2}) - (A_n + B_n u_{n+2}) Q'(n, u_n) \]
\[+ \left(2B_n u_{n+2} + \frac{A_n}{u_n} \right) Q(n, u_n) = 0. \]

(12)

Note that the symbol ‘ stands for the derivative with respect to the continuous variable. After twice differentiating (12) with respect to \(u_n \), keeping \(u_{n+2} \) and \(u_{n+4} \) fixed, we are led to the equation

\[-B_n u_n u_{n+2} Q''''(n, u_n) - A_n Q''''(n, u_n) + \frac{A_n}{u_n} Q'''(n, u_n) - \frac{2A_n}{u_n^2} Q'(n, u_n) \]
\[+ \frac{2A_n}{u_n^3} Q(n, u_n) = 0. \]

(13)

Note that the characteristic in (13) is not a function of \(u_{n+2} \) and so we split (13) up with respect to powers of \(u_{n+2} \) to get the system

1 : \(Q''''(n, u_n) - \frac{1}{u_n} Q''''(n, u_n) + \frac{2}{u_n^2} Q'(n, u_n) - \frac{2}{u_n^3} Q(n, u_n) = 0 \)

(14a)

\(u_{n+2} : Q''''(n, u_n) = 0. \)

(14b)
We find that the solution to (14) is

\[Q(n, u_n) = \alpha_n u_n^2 + \beta_n u_n \]

(15)

for some arbitrary functions \(\alpha_n \) and \(\beta_n \) that depend on \(n \). Substituting (15) and its shifts in (11), and then replacing the expression of \(u_{n+6} \) given in (10) in the resulting equation yields

\[B_n u_n^2 u_{n+2}^2 u_{n+4}^2 \alpha_{n+4} + B_n u_n^2 u_{n+2}^2 u_{n+4}(\beta_{n+4} + \beta_{n+3}) \]
\[- A_n u_n^2 u_{n+2} u_{n+4} \alpha_n - A_n u_n u_{n+2}^2 u_{n+4} \alpha_{n+2} + A_n u_n u_{n+2} u_{n+4}^2 \alpha_{n+4} \]
\[+ u_n^2 u_{n+2}^2 \alpha_{n+2} - A_n (\beta_n + \beta_{n+2} - \beta_{n+4} - \beta_{n+3}) = 0. \]

(16)

Equating all coefficients of all powers of shifts of \(u_n \) to zero and simplifying the resulting system, we get its reduced form

\[\alpha_n = 0, \]

(17)

\[\beta_n + \beta_{n+2} = 0. \]

(18)

The two independent solutions of the linear second-order difference equation (18) are given by

\[\beta_n = \beta^n \text{ and } \beta_n = \bar{\beta}^n, \]

(19)

where \(\beta = \exp\{i\pi/2\} \) and \(\bar{\beta} = -\exp\{i\pi/2\} \) is its complex conjugate. The characteristic functions are given by

\[Q_1(n, u_n) = \beta^n u_n \quad \text{and} \quad Q_2(n, u_n) = \bar{\beta}^n u_n, \]

(20)

and so the symmetry operators are

\[X_1 = \beta^n u_n \frac{\partial}{\partial u_n} + \beta^{n+1} u_{n+1} \frac{\partial}{\partial u_{n+1}} + \beta^{n+2} u_{n+2} \frac{\partial}{\partial u_{n+2}} + \beta^{n+3} u_{n+3} \frac{\partial}{\partial u_{n+3}} \]
\[+ \beta^{n+4} u_{n+4} \frac{\partial}{\partial u_{n+4}} + \beta^{n+5} u_{n+5} \frac{\partial}{\partial u_{n+5}}, \]

(21a)

\[X_2 = \bar{\beta}^n u_n \frac{\partial}{\partial u_n} + \bar{\beta}^{n+1} u_{n+1} \frac{\partial}{\partial u_{n+1}} + \bar{\beta}^{n+2} u_{n+2} \frac{\partial}{\partial u_{n+2}} + \bar{\beta}^{n+3} u_{n+3} \frac{\partial}{\partial u_{n+3}} \]
\[+ \bar{\beta}^{n+4} u_{n+4} \frac{\partial}{\partial u_{n+4}} + \bar{\beta}^{n+5} u_{n+5} \frac{\partial}{\partial u_{n+5}}. \]

(21b)
Using the canonical coordinate
\[S_n = \int \frac{du_n}{Q_1(n, u_n)} = \int \frac{du_n}{\beta^n u_n} = \frac{1}{\beta^n} \ln |u_n| \] (22)
and (18), we derive the invariant function \(\tilde{V}_n \) as follows:
\[\tilde{V}_n = S_n \beta^n + S_{n+2} \beta^{n+2}. \] (23)

Actually,
\[X_1(\tilde{V}_n) = \beta^n + \beta^{n+2} = 0 \] (24)
and
\[X_2(\tilde{V}_n) = \bar{\beta}^n + \bar{\beta}^{n+2} = 0. \] (25)

For the sake of convenience, we use
\[|V_n| = \exp \{-\tilde{V}_n\}, \] (26)
instead. In other words, \(V_n = \pm 1/(u_n u_{n+2}) \). Using (10) and (26), one can prove that
\[V_{n+4} = A_n V_n \pm B_n. \] (27)

From here, to obtain the solution of (10), we first employ (22) to get
\[|u_n| = \exp (\beta_n S_n). \] (28)

Secondly, we employ (23) to obtain
\[|u_n| = \exp \left(\beta^n c_1 + \bar{\beta}^n c_2 - \frac{1}{2} \sum_{k_1=0}^{n-1} \beta^n \bar{k}_k \tilde{V}_{k_1} - \frac{1}{2} \sum_{k_2=0}^{n-1} \bar{\beta}^n \beta^{k_2} \tilde{V}_{k_2} \right). \] (29)

Lastly, we use (26) to get
\[|u_n| = \exp \left(\beta^n c_1 + \bar{\beta}^n c_2 + \frac{1}{2} \sum_{k_1=0}^{n-1} \beta^n \bar{k}_k \ln |V_{k_1}| + \frac{1}{2} \sum_{k_2=0}^{n-1} \bar{\beta}^n \beta^{k_2} \ln |V_{k_2}| \right), \]
\[= \exp \left(\beta^n c_1 + \bar{\beta}^n c_2 + \sum_{k=0}^{n-1} \text{Re}[\gamma(n, k)] \ln |V_k| \right). \] (30a)
in which V_k satisfies (27) with $\gamma(n, k) = \beta^n \bar{\beta}^k$. Note that the constants c_1 and c_2 satisfy

$$c_1 + c_2 = \ln |u_0| \quad \text{and} \quad \beta(c_1 - c_2) = \ln |u_1|. \quad (30b)$$

It is worthwhile to mention that equations in (30) give the solutions of (2) in a unified manner.

On a further note, $\gamma(n, k) = \beta^n \bar{\beta}^k$ satisfies

$$\gamma(0, 1) = \bar{\beta}, \quad \gamma(1, 0) = \beta, \quad \gamma(n, n) = 1, \quad \gamma(n + 2, k) = -\gamma(n, k),$$

$$\gamma(n, k + 2) = -\gamma(n, k), \quad \gamma(4n, k) = \gamma(0, k), \quad \gamma(n, 4k) = \gamma(n, 0). \quad (31)$$

From u_n given in (30a) and properties (31), observe that

$$|u_{4n+j}| = \exp \left(H_j + \sum_{k=0}^{4n+j-1} \Re(\gamma(j, k)) \ln |V_k| \right), \quad (32)$$

$j = 0, 1, 2, 3$, in which

$$H_j = \beta^j c_1 + \bar{\beta}^j c_2.$$

For $j = 0$, we have,

$$|u_{4n}| = \exp(H_0 + \ln |V_0| - \ln |V_2| + \ldots + \ln |V_{4n-4}| - \ln |V_{4n-2}|)$$

$$= \exp(H_0) \prod_{s=0}^{n-1} \left| \frac{V_{4s}}{V_{4s+2}} \right|. \quad (33)$$

In order to deduce $\exp(H_0)$, we set $n = 0$ in (33) and note that $|u_0| = \exp(H_0)$.

It can be shown that there is no need for the absolute values via the utilization of the fact that

$$V_i = \frac{1}{u_i u_{i+2}}. \quad (34)$$

Thus

$$u_{4n} = u_0 \prod_{s=0}^{n-1} \frac{V_{4s}}{V_{4s+2}}.$$

Similarly, for $j = 0, 1, 2, 3$, we obtain

$$u_{4n+j} = u_j \prod_{s=0}^{n-1} \frac{V_{4s+j}}{V_{4s+j+2}}. \quad (35)$$
Nevertheless, from (27), using the plus sign we are led to
\[V_{4n+j} = V_j \left(\prod_{k_1=0}^{n-1} A_{4k_1+j} \right) + \sum_{l=0}^{n-1} \left(B_{4l+j} \prod_{k_2=l+1}^{n-1} A_{4k_2+j} \right), \] (36)
for \(j = 0, 1, 2, 3 \), where \(V_j = 1/(u_j u_{j+2}) \). Thus, using (35) and (36) with \(j = 0 \), we get
\[u_{4n} = u_0 \prod_{s=0}^{n-1} \frac{V_{4s}}{V_{4s+2}} \]
\[= u_0 \prod_{s=0}^{n-1} \frac{V_0 \left(\prod_{k_1=0}^{s-1} A_{4k_1} \right) + \sum_{l=0}^{s-1} \left(B_{4l} \prod_{k_2=l+1}^{s-1} A_{4k_2} \right)}{V_2 \left(\prod_{k_1=0}^{s-1} A_{4k_1+2} \right) + \sum_{l=0}^{s-1} \left(B_{4l+2} \prod_{k_2=l+1}^{s-1} A_{4k_2+2} \right)} \]
\[= u_0 \prod_{s=0}^{n-1} \frac{u_4 \left(\prod_{k_1=0}^{s-1} A_{4k_1+2} \right) + u_0 u_2 \sum_{l=0}^{s-1} \left(B_{4l+2} \prod_{k_2=l+1}^{s-1} A_{4k_2+2} \right)}{u_4 \left(\prod_{k_1=0}^{s-1} A_{4k_1+2} \right) + u_2 u_4 \sum_{l=0}^{s-1} \left(B_{4l+2} \prod_{k_2=l+1}^{s-1} A_{4k_2+2} \right)} \]
\[= u_0^{1-n} u_4^n \prod_{s=0}^{n-1} \frac{\left(\prod_{k_1=0}^{s-1} A_{4k_1+2} \right) + u_0 u_2 \sum_{l=0}^{s-1} \left(B_{4l+2} \prod_{k_2=l+1}^{s-1} A_{4k_2+2} \right)}{\left(\prod_{k_1=0}^{s-1} A_{4k_1+2} \right) + u_2 u_4 \sum_{l=0}^{s-1} \left(B_{4l+2} \prod_{k_2=l+1}^{s-1} A_{4k_2+2} \right)} \]. (37)

For \(j = 1 \), we have
\[u_{4n+1} = u_1 \prod_{s=0}^{n-1} \frac{V_{4s+1}}{V_{4s+3}} \]
\[= u_1^{1-n} u_5^n \prod_{s=0}^{n-1} \frac{\left(\prod_{k_1=0}^{s-1} A_{4k_1+3} \right) + u_1 u_3 \sum_{l=0}^{s-1} \left(B_{4l+3} \prod_{k_2=l+1}^{s-1} A_{4k_2+3} \right)}{\left(\prod_{k_1=0}^{s-1} A_{4k_1+3} \right) + u_3 u_5 \sum_{l=0}^{s-1} \left(B_{4l+3} \prod_{k_2=l+1}^{s-1} A_{4k_2+3} \right)} \]. (38)
For $j = 2$, we have

$$u_{4n+2} = u_2 \prod_{s=0}^{n-1} \prod_{k=0}^{s-1} \left[\frac{A_{4k_1+2}}{A_{4k+4}} \right] + u_2 u_4 \sum_{l=0}^{s-1} \left(B_{4l+2} \prod_{k=2}^{s-1} A_{4k_2+2} \right),$$

(39)

For $j = 3$, we get

$$u_{4n+3} = u_3 \prod_{s=0}^{n-1} \prod_{k=0}^{s-1} \left[\frac{A_{4k_1+3}}{A_{4k+5}} \right] + u_3 u_5 \sum_{l=0}^{s-1} \left(B_{4l+3} \prod_{k=2}^{s-1} A_{4k_2+3} \right),$$

(40)

Hence, our solution in terms of x_n is given by

$$x_{4n-5} = \frac{x_{n-1}^{x_{n-5}}} {x_{n-5}^{x_{n-5}}} \prod_{s=0}^{n-1} \prod_{k=0}^{s-1} \left[\frac{A_{4k_1+1}}{A_{4k+3}} \right] + x_{-5} x_{-3} \sum_{l=0}^{s-1} \left(b_{4l+1} \prod_{k=2}^{s-1} A_{4k_2+1} \right),$$

(41)

$$x_{4n-4} = \frac{x_{n}^{x_{n-1}}} {x_{n-1}^{x_{n-1}}} \prod_{s=0}^{n-1} \prod_{k=0}^{s-1} \left[\frac{A_{4k_1+1}}{A_{4k+3}} \right] + x_{-4} x_{-2} \sum_{l=0}^{s-1} \left(b_{4l+1} \prod_{k=2}^{s-1} A_{4k_2+1} \right),$$

(42)

$$x_{4n-3} = \frac{x_{n+5}^{x_{-3}}} {x_{n-1}^{x_{-3}}} \prod_{s=0}^{n-1} \prod_{k=0}^{s-1} \left[\frac{A_{4k_1+2}}{A_{4k+4}} \right] + x_{-3} x_{-1} \sum_{l=0}^{s-1} \left(b_{4l+2} \prod_{k=2}^{s-1} A_{4k_2+2} \right),$$

(43)

$$9$$
and

\[
x_{4n-2} = \frac{x_4^n x_{-2}}{x_0^n} \prod_{s=0}^{n-1} \left(\frac{s-1}{\prod_{k_1=0}^{s} a_{4k_1+3}} \right) + x^{-2} x_0 \sum_{l=0}^{s-1} \left(b_{4l+3} \prod_{k_2=l+1}^{s} a_{4k_2+3} \right)
\]

(44)

with the conditions for well definedness given by

\[
-x_{-5+j} x_{-3+j} \sum_{l=0}^{s-i} \left(b_{4l+j} \prod_{k_2=l+1}^{s-i} \prod_{k_1=0}^{s} a_{4k_1+j} \right) \neq \left(\prod_{k_1=0}^{s-i} \prod_{k_2=l+1}^{s} a_{4k_1+j} \right),
\]

(45)

for \(i = 0, j \in \{0, 1\}\); and \(i = 1, j \in \{2, 3\}\).

In the following sections, we let \(x_{-5} = c, x_{-4} = d, x_{-3} = e, x_{-2} = f, x_{-1} = g, x_0 = h\) and we specifically look at some special cases.

4 The case \(a_n\) and \(b_n\) are 1-periodic

Let \(a_n = a\) and \(b_n = b\), where \(a\) and \(b\) are non-zero constants.

4.1 Case: \(a \neq 1\)

We have

\[
x_{4n-5} = \frac{c^n}{a^n} \prod_{s=0}^{n-1} \frac{a^s + bce 1-a^s}{1-a^s}, \quad x_{4n-4} = \frac{d^n}{a^n} \prod_{s=0}^{n-1} \frac{a^s + bdf \frac{1-a^s}{1-a}}{1-a^s},
\]

\[
x_{4n-3} = \frac{e^n}{a^n} \prod_{s=0}^{n-1} \frac{a^s + beg 1-a^s}{1-a^s}, \quad x_{4n-2} = \frac{f^n}{a^n} \prod_{s=0}^{n-1} \frac{a^s + bfh \frac{1-a^s}{1-a}}{1-a^s}.
\]

Here, condition (45) becomes

\[
-x_{-5+j} x_{-3+j} b(1 - a^{s-i+1}) \neq (1 - a)a^{s-i+1},
\]

(46)

for \(i = 0, j \in \{0, 1\}\); and \(i = 1, j \in \{2, 3\}\).
4.1.1 Case: \(a = -1 \)

We have

\[
x_{4n-5} = \begin{cases}
 c^{1-n} g^n \left(\frac{-1 + bce}{-1 + beg} \right)^{\frac{n-1}{2}} & \text{if } n \text{ is odd}; \\
 c^{1-n} g^n \left(\frac{-1 + bce}{-1 + beg} \right)^{\frac{n-1}{2} + 1} & \text{if } n \text{ is even};
\end{cases}
\]

\[
x_{4n-4} = \begin{cases}
 d^{1-n} h^n \left(\frac{-1 + bdf}{-1 + bfh} \right)^{\frac{n-1}{2}} & \text{if } n \text{ is odd}; \\
 d^{1-n} h^n \left(\frac{-1 + bdf}{-1 + bfh} \right)^{\frac{n-1}{2} + 1} & \text{if } n \text{ is even};
\end{cases}
\]

\[
x_{4n-3} = \begin{cases}
 c^n g^{-n} e \left(\frac{-1 + bce}{-1 + bce} \right)^{\frac{n-1}{2} + 1} & \text{if } n \text{ is odd}; \\
 c^n g^{-n} e \left(\frac{-1 + bce}{-1 + bce} \right)^{\frac{n-1}{2}} & \text{if } n \text{ is even};
\end{cases}
\]

and

\[
x_{4n-2} = \begin{cases}
 d^n h^{-n} f \left(\frac{-1 + bfh}{-1 + bfh} \right)^{\frac{n-1}{2} + 1} & \text{if } n \text{ is odd}; \\
 d^n h^{-n} f \left(\frac{-1 + bfh}{-1 + bfh} \right)^{\frac{n-1}{2}} & \text{if } n \text{ is even};
\end{cases}
\]

Here, condition (4.5) simplifies to \(bx_{-5+j} x_{-3+j} \neq 1 \) for \(j = 0, 1, 2, 3 \).

4.2 Case: \(a = 1 \)

The solution is given by

\[
x_{4n-5} = \frac{g^n}{e^{n-1}} \prod_{s=0}^{n-1} \frac{1 + bce s}{1 + beg s}, \quad x_{4n-4} = \frac{h^n}{d^{n-1}} \prod_{s=0}^{n-1} \frac{1 + bdf s}{1 + bfh s}, \quad \]

\[
x_{4n-3} = \frac{c^n e}{g^n} \prod_{s=0}^{n-1} \frac{1 + beg s}{1 + bce (s + 1)}, \quad x_{4n-2} = \frac{d^n f}{h^n} \prod_{s=0}^{n-1} \frac{1 + bfhs}{1 + bds (s + 1)}. \]
Here, condition (45) simplifies to $-x_{-5+j}x_{-3+j}b(s - i + 1) \neq 1$ for $i = 0, j \in \{0, 1\}$; and $i = 1, j \in \{2, 3\}$.

5 The case a_n and b_n are 2-periodic

In this case, we have $\{a_n\}_{n=0}^\infty = a_0, a_1, a_0, a_1, \ldots$, and similarly $\{b_n\}_{n=0}^\infty = b_0, b_1, b_0, b_1, \ldots$ where $a_0 \neq a_1$, and $b_0 \neq b_1$. Then the solution is given by

$$x_{4n-5} = \frac{g^n}{c^{n-1}} \prod_{s=0}^{n-1} a_0^s + b_0 ce \sum_{l=0}^{s-1} a_0^l, \quad x_{4n-4} = \frac{h^n}{d^{n-1}} \prod_{s=0}^{n-1} a_1^s + b_1 df \sum_{l=0}^{s-1} a_1^l,$$

$$x_{4n-3} = \frac{e^n c}{g^n} \prod_{s=0}^{n-1} a_0^{s+1} + b_0 ce \sum_{l=0}^{s} a_0^l, \quad x_{4n-2} = \frac{d^n f}{h^n} \prod_{s=0}^{n-1} a_1^{s+1} + b_1 df \sum_{l=0}^{s} a_1^l.$$

Here, condition (45) simplifies to $-x_{-5+j}x_{-3+j}b_j \sum_{l=0}^{s-i} a_j^l \neq a_j^{s-i+1}$ for $i \in \{0, 1\}$ and $j \in \{0, 1\}$.

6 The case a_n, b_n are 4-periodic

We assume that $\{a_n\} = a_0, a_1, a_2, a_3, a_0, a_1, a_2, a_3, \ldots$ and $\{b_n\} = b_0, b_1, b_2, b_3, b_0, b_1, b_2, b_3, \ldots$. The solution is given by

$$x_{4n-5} = \frac{g^n}{c^{n-1}} \prod_{s=0}^{n-1} a_0^s + b_0 ce \sum_{l=0}^{s-1} a_0^l, \quad x_{4n-4} = \frac{h^n}{d^{n-1}} \prod_{s=0}^{n-1} a_1^s + b_1 df \sum_{l=0}^{s-1} a_1^l,$$

$$x_{4n-3} = \frac{e^n c}{g^n} \prod_{s=0}^{n-1} a_0^{s+1} + b_0 ce \sum_{l=0}^{s} a_0^l, \quad x_{4n-2} = \frac{d^n f}{h^n} \prod_{s=0}^{n-1} a_1^{s+1} + b_1 df \sum_{l=0}^{s} a_1^l.$$

12
Here, condition (45) simplifies to $-x_{-5+j}x_{-3+j}b_j \sum_{l=0}^{s-i} a_j^l \neq a_j^{s-i+1}$ for $i = 0, j \in \{0,1\}$; and $i = 1, j \in \{2,3\}$.

7 Conclusion

In this paper, non-trivial symmetries for difference equations of the form (2) were found. Consequently, the results were used to find formulas for the solutions of the equations (1). Specific cases of the solutions were also discussed.

References

[1] C. Cinar, On the positive solutions of the difference equation $x_{n+1} = ax_{n-1}/(1 + bx_nx_{n-1})$, Applied Mathematics and Computational, 156 (2004) 587-590.

[2] E. M. Elsayed, T.F. Ibrahim, Periodicity and solutions for some systems of nonlinear rational difference equations, Hacet. J. Math. Stat., 44:6 (2015), 1361–1390.

[3] Elsayed M. Elsayed, On the solution of some difference equation, European journal of pure and applied mathematics, 4:3 (2011) 287-303.

[4] E. M. Elsayed, On the difference equation, Int. J. Contemp. Math. Sciences, 3:33 (2008) 1657-1664.

[5] T. F. Ibrahim, M. A. El-Moneam, Global stability of a higher-order difference equation, Iran J. Sci. Technol. Trans. Sci., 41:1 (2017), 51–58.

[6] Ibrahim Yalcinkaya, On the global attractivity of positive solutions of a rational difference equation, Selcuk J. Appl. Math., 9:2 (2008) 3-8.

[7] T. F. Ibrahim, Solving a class of three-order max-type difference equations, Dyn. Cont. Discrete Impuls. Syst. Ser. A Math. Anal., 21 (2014), 333–342.

[8] M. Folly-Gbetoula and A.H. Kara, Symmetries, conservation laws, and 'integrability' of difference equations, Advances in Difference Equations, 2014, 2014.
[9] M. Folly-Gbetoula (2017), Symmetry, reductions and exact solutions of the difference equation $u_{n+2} = \frac{(au_n)}{1+bu_nu_{n+1}}$, Journal of Difference Equations and Applications, 23:6 (2017).

[10] P. E. Hydon, Difference Equations by Differential Equation Methods, Cambridge University Press (2014).

[11] A. Khaliq, E.M. Elsayed, The dynamics and solution of some difference equations, J. Nonlinear Sci. Appl., 9 (2016), 1052–1063.

[12] N. Joshi and P. Vassiliou, The existence of Lie Symmetries for First-Order Analytic Discrete Dynamical Systems, Journal of Mathematical Analysis and Applications 195 (1995), 872-887 (1995).

[13] D. Levi, L. Vinet and P. Winternitz, Lie group formalism for difference equations, J. Phys. A: Math. Gen. 30, 633-649 (1997).

[14] N. Mnguni, D. Nyirenda and M. Folly-Gbetoula, On solutions of some fifth-order difference equations, Far East Journal of Mathematical Sciences, 102:12 (2017) 3053-3065.

[15] D. Nyirenda and M. Folly-Gbetoula, Invariance analysis and exact solutions of some sixth-order difference equations, J. Nonlinear Sci. Appl., 10 (2017) 6262-6273.

[16] P. J. Olver, Applications of Lie Groups to Differential Equations, Second Edition, Springer, New York (1993).

[17] G. R. W. Quispel and R. Sahadevan, Lie symmetries and the integration of difference equations, Physics Letters A, 184 (1993) 64-70.