Complete Mitochondrial Genome of *Contracaecum* sp. (Nematoda: Ascarididae) from night herons in China

Yuan-Ping Deng1,*, Rong Li1, Hui-Mei Wang1, Guo-Hua Liu1 and Ya Tu2,*

1Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
2Beijing Wildlife Rescue and Rehabilitation Center, Beijing 101300, China
*E-mail: ghost978106510@163.com; tuya2000@126.com
This paper was edited by Erik C. Andersen.
Received for publication May 3, 2022.

Abstract

Contracaecum species are zooparasitic anisakid nematodes and occur in gastrointestinal tracts of vertebrate/invertebrate animals, including humans, causing gastrointestinal pain, diarrhea, and increasingly severe vomiting. Although the complete mitochondrial (mt) genome (mitogenome) of *Contracaecum* sp. isolated from night herons in Beijing has been reported, the detailed information about this mt sequence is still puzzling. In the present study, we described the detailed characteristics across the complete mt DNA of *Contracaecum* sp., which includes 36 genes consisting of 12 protein genes, 22 transfer RNAs (tRNAs), 2 ribosomal RNAs (rRNAs), and 2 noncoding regions (NCRs), and all genes have the same orientation of transcription. The AT content in the complete mitogenome of *Contracaecum* sp. was 72.2%, and it was the least value (66.7%) in the *cox1* gene but was the highest rate (84.1%) in NCRs. The highest nucleotide diversity (Pi) among the genus *Contracaecum* was *nad4* (0.190) and the least was *cox1* (0.125), which indicates that *nad4* might have the potential ability as useful markers to detect cryptic species in the genus *Contracaecum* or subspecies. Based on the maximum likelihood (ML) and Bayesian inference (BI) computational algorithms within subfamilies Ascaridoidea and Heterakoidea, the results supported that *Contracaecum* sp. was a new species and the family Ascaridiidae was paraphyletic. The complete mitogenome sequence of *Contracaecum* sp. supported a clear recognition of *Contracaecum* species and provided the potential existence of cryptic species in the genus *Contracaecum*. Our findings would better contribute to the surveillance, molecular epidemiology, and control of *Contracaecum*.

Keywords

AT content, *Contracaecum*, *Contracaecum* sp., mitochondrial genome, mitogenome

Contracaecum species are nematodes that parasitize throughout the world, causing severe pathogenic influences on vertebrate and invertebrate animals, including humans (Shamsi, 2019). They have an indirect life cycle: first intermediate hosts involve a wide range of invertebrates, including cephalopods, copepods, and crustaceans; and second intermediate hosts are various fishes; and piscivorous birds are definitive hosts, causing severe diseases in birds like hemorrhages, necrosis, and severe
ulcerative eosinophilic granulomas in intestinal tracts (Zhang et al., 2021). In Australia, the first anisakid nematode was detected in the human body coupled with gastrointestinal pain, diarrhea, and increasingly severe vomiting, although it was not identified at the species level (Shamsi and Butcher, 2011; Shamsi et al., 2019). Over the years, anisakidosis caused by *Contracaecum* was diagnosed mainly based on its morphological characteristics.

In the past decades, morphological features and molecular sequences of >100 *Contracaecum* species have been described (Shamsi et al., 2019; Zhang et al., 2021). However, it was challenging for nonexperts to distinguish and identify specific helminths based only on morphological features, especially for detecting cryptic species. Studies show that there are considerable differences between cryptic subspecies/species which are isolated from different hosts or geography (Shamsi et al., 2009; Mattiucci et al., 2014; Timi et al., 2014; Liu et al., 2016). The complete mitochondrial (mt) genome (mitogenome) has been evidenced as a useful molecular marker to identify and distinguish different/similar species between related taxa, even cryptic species, especially for *Contracaecum* (Mohandas et al., 2014). However, only three *Contracaecum* species published complete mitogenome sequences, *C. ogmorhini*, *C. osculatum*, and *C. rudolphii*, which made it difficult to detect new/cryptic species within the genus *Contracaecum*. Although the complete mitogenome of *Contracaecum* sp., which was collected from black night herons from Beijing, China, has been published (GenBank no. MN892395), the published sequence was not characterized and detailed features were not recorded, which caused inconvenience to use it.

Therefore, in the present study, we aim to (i) reassemble and annotate the complete mitogenome of *Contracaecum* sp., which was isolated from black herons in Beijing, China, and describe detailed information of this sequence; (ii) based on uploaded annotated sequences of Ascaridoidea and Heterakoidea species, conduct phylogenetic analyses to verify Zhang et al. (2021) hypothesis; and (iii) provide more detailed molecular features and new useful markers for detect cryptic species within genus *Contracaecum* for successive studies.

Materials and Methods

Parasites and molecular identification

Helminth specimens were obtained from the digestive tracts of gray and night herons in Beijing Zoo, China. The species were washed with ultrapure water and physiological saline solution, fixed in 75% ethanol, and stored at −40°C. The specimens were preliminarily identified as *Contracaecum* based on hosts and primary characteristic morphology (Zhang et al., 2021). For additional examination of molecules, the total genomic DNA was extracted using a QIAamp® DNA Micro Kit as per the manufacturer's instructions. Based on polymerase chain reaction (PCR) amplification of partial *cox1* (with primers JB3 – JB4.5) (Bowles et al., 1992; Bowles and McManus, 1994) and ITS (including ITS-1, 5.8S, and ITS-2) (with primers NC5 – NC2) (Newton et al., 1998; Chilton et al., 2001), the worms were recognized at the species level. The obtained ITS sequence was totally matched with published *Contracaecum* sp. (GenBank no. MW538933–36), and the partial *cox1* sequence showed 99.7% identity with *Porrocaecum reticulatum* (GenBank no. MF113244).

Sequencing, assembling, and annotation

The genomic DNA sample was fragmented to a size of 350 bp. The DNA libraries were sequenced using high-throughput sequencing (HTS) on an Illumina Hiseq 6000 platform (Novogene Co. Ltd., Tianjin, China), and 250-bp paired-end reads were generated. The raw data were obtained and recorded in FASTQ format. Then, the reads with low-quality bases (Phred quality <5) or uncertain reads with repetitive “N” bases were filtered to acquire clean data. The partial *cox1* sequence was used as the initial reference to assemble complete mt sequence of *Contracaecum* sp. using Geneious Prime 2022.0.1 (Kearse et al., 2012). The assembly was operated with the following parameters: (i) minimum overlap within the range of 150 bp to 200 bp; (ii) minimum overlap identity among 98% to 100%; and (iii) maximum gap of 5 bp. The assembled mitogenome was verified by long PCR with designed primers (Table S1 and Fig. S1 in Supplementary Materials). ORF Finder (https://www.ncbi.nlm.nih.gov/orffinder/) was used to identify the start/stop codons and boundaries of protein-coding genes (PCGs). Later, two ribosomal RNAs (rRNAs, rrL and rrS) were framed using Tandem repeats finder (Benson, 1999). The 12 protein genes were then further confirmed with previously published Ascarididae sequence (*Contracaecum osculatum*, GenBank no. JN786330). The tRNAscan-SE 2.0 (Chan et al., 2021) with a cutoff score of 1.0 and MITOs (Bernt et al., 2013) were applied to search 22 potential transfer RNAs (tRNAs).
Nucleotide variation in mtDNA genomes among Contracaecum spp.

Based on available mitogenome sequences of the genus Contracaecum in the NCBI, mt sequences were aligned using Clustal X1.83 to a single alignment dataset, including C. osculatum, C. rudolphii, C. ogmorhini, and Contracaecum sp. The nucleotide diversity of Contracaecum species was computed by DnaSP v5 using sliding windows (Librado and Rozas, 2009). The parameters of the sliding window were followed with 300-bp window length and a default 25-bp step site to calculate the nucleotide diversity (π). Each boundary of protein genes was identified due to mid-point position, and we then graphed nucleotide diversity for 12 protein genes from Contracaecum.

Phylogenetic analyses

A total of 41 mitogenomes of species from families Ascaridoidea and Heterakoidea were applied to analyze phylogeny with outgroups Enterobius vermicularis (GenBank accession no. EU281143) and Wellcomia siamensis (GenBank accession no. NC_016129) (Table S2 in Supplementary Material). Each amino acid sequence was aligned using a MAFFT computational algorithm (Katoh et al., 2019). The aligned sequences were then concatenated to a single alignment dataset. The ambiguous gaps in the alignment were excluded by Gblocks 0.91b with default parameters “less stringent” (Dereeper et al., 2008). Computational algorithm maximum likelihood (ML) (Guindon et al., 2010) was conducted to perform a phylogenetic tree with the best model “JTT+I+G+F” screened by ProtTest 3.4.2 (Darriba et al., 2011) and applied 1,000 replicates. Bayesian analysis was operated with MrBayes 3.2 (Ronquist et al., 2012), and “GTR + F + G” was selected as the most suitable model by ModelFinder in IQTree v.2.1.3 (Kalyaanamoorthy et al., 2017). Four Markov chains were progressed with 1,000,000 MCMC generations, with sampling analysis tree each 100 generations. The residual trees were calculated with Bayesian posterior probabilities (BPP), burning first 250 trees.

Results and Discussion

Mitogenome organization and composition

The clean data of Contracaecum sp. are nearly 2 GB with a total of 8,677,194 × 2 clean reads for further assembling. The circular mt genome of Contracaecum sp. (GenBank accession: ON149889) assembled was 14,082 bp in size, shorter than that Zhang et al. (2021) published, with 12 PCGs, 22 tRNAs, 2 rRNAs, and 2 noncoding regions (NCRs) (Table 1 and Fig. 1). A total of 36 genes were transcribed in the forward direction and gene arrangement was recognized as the typical GA3 pattern, which is mostly observed in the worms (Liu et al., 2013). Consistent with previous reports, there was an obvious bias of A + T bases (71.2%). A total of 10 intergenic regions were found among the complete mt genome of Contracaecum sp. ranging from 1 bp to 16 bp (Table 1). One short NCR (122 bp) was located between nad4 and cox1, and one long NCR (691 bp) was placed in tRNA-Ser2 and tRNA-Asn. The values of AT skew were negative from -0.475 (nad6) to -0.111 (NCRs), and inversely, the values of GC-skew were positive with scope 0.226 (nad4) to 0.674 (nad3), suggesting Ts and Gs were more frequently used in the genome.

Protein-coding genes

TTG was the most common initial codon in this study, followed by ATT. TTG was used as the start codon for nine genes (cox1-3, cytb, nad1-4, and nad6) (Table 1). The rest three PCGs (atp6, nad4L, and nad5) used ATT as the initial codon. Generally, TAG and TAA were common stop codons in metazoans (Hu et al., 2004). In this study, TAA was the most frequent termination among nad6, nad4L, nad4, cytb, and nad2. The genes nad1 and nad3 used TAG as their stop codon. The rest genes used incomplete stop codons T (cox1 and cox3) or TA (atp6, cox2 and nad5), respectively.

A total of 3,422 amino acids were translated by 12 PCGs. TTT (480) was the most common codon used in encoding Phe, followed by GGT (219), Val, TGG (216), Leu, and ATT (214, Ile). Leu (519) and Phe (499) were the most frequent amino acids, while Arg (34) was the least. There was a tendency of Gs and Ts in the same amino acid by comparing the relative synonymous codon usage (RSCU) (Table 2). The AT content of 12 protein genes ranged from 66.7% (cox1) to 78.9% (nad6) (Table 3). The values of AT skew ranged from −0.475 (nad6) to −0.373 (cox2), while the values of GC skew were 0.226 (nad4) to 0.674 (nad3), suggesting the bias of T and G bases.

Transfer RNA genes, rRNA genes, and non-coding region

The length of 22 tRNAs ranged from 51 bp (tRNA-Ser1) to 65 bp (tRNA-His). The typical structure of tRNA consisted of one acceptor stem, a dihydrouridine loop (D-loop), an anticodon loop, TYC loop, and related
Table 1. Organization of the complete mt genome of *Contracaecum* sp. from Beijing, China.

Gene/region	Strand	Positions	Size (bp)	Number of aa^a	Ini/Ter codons	Anticodons	In
tRNA-Asn (N)	H	1–60	60			GTT	0
tRNA-Tyr (Y)	H	61–116	56			GTA	0
nad¹	H	117–989	873	290	TTG/TAG	0	
atp6	H	993–1,591	599	199	ATT/TA	+3	
tRNA-Lys (K)	H	1,592–1,653	62			TTT	0
tRNA-Leu2 (L₂)	H	1,654–1,708	55			TAA	0
tRNA-Ser1 (S₁)	H	1,709–1,759	51			TCT	0
nad²	H	1,760–2,605	846	281	TTG/TAA	0	
tRNA-Ile (I)	H	2,619–2,678	60			GAT	+13
tRNA-Arg (R)	H	2,679–2,732	54			GCG	0
tRNA-Gln (Q)	H	2,733–2,787	55			TGG	0
tRNA-Phe (F)	H	2,788–2,846	59			GAA	0
Cytb	H	2,847–3,963	1,107	368	TTG/TAA	0	
tRNA-Leu1 (L₁)	H	3,961–4,017	57			TAG	+7
cox³	H	4,018–4,782	766	255	TTG/T	0	
tRNA-Thr (T)	H	4,783–4,843	60			TGT	0
nad⁴	H	4,844–6,073	1,230	409	TTG/TAA	0	
Intergenic region	H	6,074–6,195	122			0	
cox¹	H	6,196–7,771	1,576	525	TTG/T	0	
tRNA-Cys (C)	H	7,772–7,829	58			GCA	0
tRNA-Met (M)	H	7,831–7,890	60			CAT	+1
tRNA-Asp (D)	H	7,907–7,963	57			GTC	+16
tRNA-Gly (G)	H	7,965–8,021	57			TCC	+1
cox²	H	8,022–8,713	692	230	TTG/TA	0	
tRNA-His (H)	H	8,714–8,778	65			GTG	0
rrn^L	H	8,779–9,737	959			0	
nad³	H	9,738–10,073	336	111	TTG/TAG	0	
nad⁵	H	10,077–11,659	1,583	527	ATT/TA	+3	
tRNA-Ala (A)	H	11,660–11,716	57			TGC	0
tRNA-Pro (P)	H	11,724–11,780	57			TGG	+7
tRNA-Val (V)	H	11,781–11,837	57			TAC	0
nad⁶	H	11,838–12,272	435	144	TTG/TAA	0	
nad4^L	H	12,275–12,505	231	76	ATT/TA	+2	
tRNA-Trp (W)	H	12,506–12,563	58			TCA	0
tRNA-Glu (E)	H	12,565–12,624	60			TTC	+1

(Continued)
Table 1: Continued

Gene/region	Strand	Positions	Size (bp)	Number of aa\(^a\)	Ini/Ter codons	Anticodons	In
rrmS	H	12,625–13,335	711				0
tRNA-Ser2 (S\(_2\))	H	13,336–13,391	56	TGA			0
Noncoding region	H	13,392–14,082	691				0

\(^a\)Inferred length of aa sequence of 13 PCGs.

aa, amino acid; In, intergenic nucleotides; Ini/Ter codons, initiation and termination codons; PCGs, protein-coding genes; tRNA, transfer RNA

Figure 1: Organization of the complete mitochondrial genome sequence of *Contracaecum* sp. NCR, noncoding region.

arms fixing with them (Su *et al.*, 2020). However, the TyC loop was always replaced by a TV replacement loop in nematodes. In our study, 16 of 20 tRNAs (excluding tRNA-Ser1 and tRNA-Ser2) lacked a TYC loop, replaced by several nucleotide residues, which compromised the TV replacement loop (Hu *et al.*, 2004). The tRNA-His, tRNA-Ile, and tRNA-Met were observed in a relatively standard cloverleaf structure with a TYC loop, although the latter two (tRNA-Ile and tRNA-Met) lacked DHU stem. The tRNA-Ser1 and tRNA-Ser2 were similar to previous reports with one TYC-loop but lacked D-loop (Su *et al.*, 2020).

Ribosomal RNAs of *Contracaecum* sp. were fixed as a GA3 pattern. The *rrnL* was located between tRNA-His and *nad3* with a size of 959 bp, and the rrmS gene was located between tRNA-Glu and tRNA-Ser2 with a size of 711 bp (Table 1). The content of A + T for *rrnL* and *rrmS* was 75.6% and 70.6%, respectively. There were two NCRs among the mt genome of *Contracaecum* sp. One short
Table 2. Amino acid frequency of *Contracaecum* sp. mitochondrial PCGs.

Amino acid	Codon	Number	RSCU (%)	Amino acid	Codon	Number	RSCU (%)
Phe	TTT	480	1.92	Tyr	TAT	154	1.84
Phe	TTC	19	0.08	Tyr	TAC	13	0.16
Leu	TTA	199	2.3	Stop	TAA	5	1.43
Leu	TTG	216	2.5	Stop	TAG	2	0.57
Leu	CTT	76	0.88	His	CAT	54	1.86
Leu	CTC	2	0.02	His	CAC	4	0.14
Leu	CTA	10	0.12	Gln	CAA	20	0.98
Leu	CTG	16	0.18	Gln	CAG	21	1.02
Ile	ATT	214	1.92	Asn	AAT	100	1.79
Ile	ATC	9	0.08	Asn	AAC	12	0.21
Met	ATA	76	0.86	Lys	AAA	35	0.71
Met	ATG	101	1.14	Lys	AAG	63	1.29
Val	GTT	219	2.61	Asp	GAT	62	1.65
Val	GTC	13	0.16	Asp	GAC	13	0.35
Val	GTA	49	0.59	Glu	GAA	32	0.84
Val	GTG	54	0.64	Glu	GAG	44	1.16
Ser	TCT	139	3.08	Cys	TGT	53	1.96
Ser	TCC	6	0.13	Cys	TGC	1	0.04
Ser	TCA	14	0.31	Trp	TGA	21	0.57
Ser	TCG	5	0.11	Trp	TGG	53	1.43
Pro	CCT	66	3.11	Arg	CGT	33	3.88
Pro	CCC	7	0.33	Arg	CGC	1	0.12
Pro	CCA	9	0.42	Arg	CGA	0	0
Pro	CCG	3	0.14	Arg	CGG	0	0
Thr	ACT	89	3.24	Ser	AGT	121	2.68
Thr	ACC	6	0.22	Ser	AGC	2	0.04
Thr	ACA	9	0.33	Ser	AGA	36	0.8
Thr	ACG	6	0.22	Ser	AGG	38	0.84
Ala	GCT	72	2.5	Gly	GGT	112	2.22
Ala	GCC	24	0.83	Gly	GGC	21	0.42
Ala	GCA	11	0.38	Gly	GGA	23	0.46
Ala	GCG	8	0.28	Gly	GGG	46	0.91

Excluding abbreviated stop codons (TA and T).
Stop = stop codon.
PCGs, protein-coding genes; RSCU, relative synonymous codon usage.
region was placed in nad4 and cox1 with a length of 122 bp, and the long region was situated between tRNA-Ser2 and tRNA-Asn with a length of 691 bp.

Nucleotide variation of genus Contracaecum

Based on aligned nucleotide sequences among species *C. osculatum*, *C. rudolphii*, *C. ogmorhini*, and *Contracaecum* sp., nucleotide diversities (Pi) were calculated based on the sliding window. The values of Pi ranged from 0.124 to 0.181 by analyzing a window of 300 bp and a default step of 25 bp (Fig. 2). The most variable genes were cyt b (0.178), nad2 (0.181), nad4 (0.179), and nad6 (0.172), and the most conserved genes were cox1 (0.124) and cox2 (0.130) in *Contracaecum* (Fig. 2). Protein genes cox1 and cox2 seemed to be the most stable genes in *Contracaecum* nematodes with the least variation, which could be used as molecular markers to identify species from *Contracaecum*. Results also supported that nad2 and nad4 could act as alternative markers among nematodes isolated from different distributions.

Phylogenetic analyses

The present phylogenetic trees were constructed based on the 12 PCGs of 41 available mt genome sequences from the superfamilies Ascaridoidea and Heterakoidea (Table S2 in Supplementary Material). Two phylogenetic trees, both Bayesian inference (BI) and ML, had similar topologies, excluding species within the superfamily Heterakoidea. The topologies of ML and BI phylogenetic trees were highly similar to those of previous studies (Liu et al., 2016; Zhang et al., 2021; Zhao et al., 2021). *Contracaecum* sp. formed a branch with *Contracaecum* nematodes, indicating a closer relationship within the genus with strong support (Fig. 3); however, the long distance between *Contracaecum* sp. and the other three *Contracaecum* species (*C. osculatum*, *C. rudolphii*, and *C. ogmorhini*) was longer than the branch distance within other anisakid nematodes, which further indicated *Contracaecum* sp. was a novel species and verified the hypothesis of Zhang et al. (2021) proposed. According to the structure of phylogenetic trees, results supported that the superfamilies Ascaridoidea and Heterakoidea were monophyletic and evidenced families, including Ascarididae, Anisakidae, Heterocheiidae, Toxocaridae,

Table 3. Nucleotide composition and skews of *Contracaecum* sp. mitochondrial genome.

Gene	A	G	T	C	A + T (%)	AT-skew	GC-skew
atp6	22.0	22.0	49.1	6.9	71.1	-0.380	0.526
cox1	19.5	21.8	47.2	11.5	66.7	-0.416	0.307
cox2	21.2	22.1	46.5	10.1	67.7	-0.373	0.372
cox3	18.9	20.9	49.8	10.4	68.7	-0.449	0.333
cytb	19.7	22.0	47.6	10.7	67.3	-0.415	0.343
nad1	19.5	20.5	50.5	9.5	70.0	-0.444	0.364
nad2	20.7	18.2	54.6	6.5	75.3	-0.451	0.474
nad3	20.0	21.4	54.4	4.2	74.4	-0.464	0.674
nad4	21.4	17.0	50.9	10.7	72.3	-0.408	0.226
nad4L	22.9	17.3	55.0	4.8	77.9	-0.411	0.569
nad5	21.2	18.8	51.9	8.1	73.1	-0.420	0.398
nad6	20.7	13.3	58.2	7.8	78.9	-0.475	0.261
rrsS	30.2	19.7	40.4	9.7	70.6	-0.143	0.340
rmlL	27.3	17.5	48.3	6.9	75.6	-0.277	0.436
22 tRNA	31.5	18.7	40.8	9.0	72.3	-0.129	0.352
NCR	37.4	10.3	46.7	5.6	84.1	-0.111	0.290
Total	23.5	19.0	48.7	8.9	72.2	-0.350	0.364

NCR, noncoding region.
Figure 2: Sliding window analysis of the alignment of complete mtDNAs of available Contracaecum spp. The black line shows the value of nucleotide diversity π in a sliding window analysis of window size 300 bp with step size 25 bp, and the value is inserted at its mid-point. Gene boundaries are indicated with a variation ratio per gene.

Figure 3: Phylogenetic relationships of Contracaecum spp. with species from Ascaridoidea and Heterakoidea. Analysis trees based on amino acid sequences of 12 protein genes by complete mitochondrial genome using BI and ML with Enterobius vermicularis and Wellcomia siamensis as outgroups. BI, Bayesian inference; ML, maximum likelihood.
and Cucullanidae, were monophyletic, consistent with previous studies (Li et al., 2018; Zhao et al., 2021).

Within the superfamily Ascaridoidea, both BI and ML showed identical topologies. Among the family Ascarididae, the genera *Ascaris*, *Baylisascaris*, *Toxascaris*, and *Parascaris* had a closer relationship than *Ophidascaris*, which was similar to Zhou et al. (2021) reported. Based on morphological descriptions, the genus *Ophidascaris* was classified as a member of the superfamily Ascaridoidea (Pinto et al., 2010), and phylogenetic analyses suggested the genus *Ophidascaris* was more related to the family Ascaridae. However, the distance between the genus *Ophidascaris* and other Ascaridae genera was longer, suggesting there was systematic controversy in the Ascaridae. In the present study, the family Ascarididae was closely related to the family Anisakidae (Fig. 3), different from the previous study where the family Ascarididae was closely related to Toxocaridae (Zhou et al., 2021). In addition, results also supported the monophyly of all 5 families and all 11 genera within the superfamily Ascaridoidea with strong support (BPP = 1, BF > 70, Fig. 3), consistent with records (Liu et al., 2016; Zhao et al., 2018).

Liu et al. (2013) confirmed that *Ascaridia columbae* was more related to *Ascaridia* sp. than *A. galli*. The phylogenetic analyses in the present study also confirmed this. In ML analysis, the topology showed that *A. galli* was more related to *Heterakis* species with high statistical support (BF = 87), in line with Liu et al. (2016) studied. However, BI analysis presented a totally different topology from that of ML tree. *A. galli* formed a distinct branch from genera *Heterakis* and *Ascaridia* with strong support (BPP = 1), hypothesizing *A. galli* might be another genus. Results also showed the family Heterakidae was a sister taxon to Ascaridiidae, and phylogenetic analyses (BI and ML) suggested the family Ascaridiidae might be paraphyly.

Conclusion

In the present study, we annotated the complete mitogenome sequence of *Contracaecum* sp. isolated from night herons and described its characteristics. Based on available mitogenome sequences of *Contracaecum* species, we also calculated the nucleotide diversity, indicating *cox1* and *cox2* could be used as effective markers to distinguish and identify other *Contracaecum* species. Results also supported the hypothesis of Zhang et al. (2021) proposed that *Contracaecum* sp. was a novel species, and evidenced that families Heterakidae + Ascaridiidae were closely related and all genera and families (excluding genus *Ascaridia* and family Ascaridiidae) were monophyletic.

Author's Contributions

G-HL and Y-PD conceived and designed the study, and critically revised the manuscript. Y-T provided the sample worms and provided initial identification. Y-PD performed the experiments and analyzed the data. G-HL and Y-PD drafted the manuscript. R-L and H-MW helped in study design, study implementation, and manuscript preparation. All authors read and approved the final manuscript.

Conflict of Interest

None.

Financial Support

This study was supported by the Training Programme for Excellent Young Innovators of Changsha (Grant No. KQ2106044).

Ethical Standards

Not applicable.

References

Benson, G. 1999. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Research 27:573–580.

Benrnt, M., Donath, A., Jühling, F., Externbrink, F., Florentz, C., Fritzsch, G., Pütz, J., Middendorf, M., and Stadler, P. F. 2013. MITOS: Improved de novo metazoan mitochondrial genome annotation. Molecular and Biochemical Parasitology 69:313–319.

Bowles, J., Blair, D., and McManus, D. P. 1992. Genetic variants within the genus *Echinococcus* identified by mitochondrial DNA sequencing. Molecular and Biochemical Parasitology 54:165–173.

Bowles, J., and McManus, D. P. 1994. Genetic characterization of the Asian Taenia, a newly described taeniid cestode of humans. The American Journal of Tropical Medicine and Hygiene 50:33–44.

Chan, P. P., Lin, B. Y., Mak, A. J., and Lowe, T. M. 2021. tRNAscan-SE 2.0: Improved detection and functional classification of transfer RNA genes. Nucleic Acids Research 49:9077–9096.
Chilton, N. B., Newton, L. A., Beveridge, I., and Gasser, R. B. 2001. Evolutionary relationships of trichostrongyloid nematodes (Strongylida) inferred from ribosomal DNA sequence data. Molecular Phylogenetics and Evolution 19:367–386.

Darriba, D., Taboada, G. L., Doallo, R., and Posada, D. 2011. ProTest 3: Fast selection of best-fit models of protein evolution. Bioinformatics (Oxford, England) 27:1164–1165.

Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., Dufayard, J. F., Guindon, S., Lefort, V., Lescot, M., Claverie, J. M., and Gascuel, O. 2008. Phylogeny.fr: Robust phylogenetic analysis for the non-specialist. Nucleic Acids Research 36:W465–W469.

Guindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W., and Gascuel, O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Systems Biology 59:307–321.

Hu, M., Chilton, N. B., and Gasser, R. B. 2004. The mitochondrial genomics of parasitic nematodes of socio-economic importance: Recent progress, and implications for population genetics and systematics. Advances in Parasitology 56:133–212.

Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A., and Jermiin, L. S. 2017. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods 14:587–589.

Katoh, K., Rozewicki, J., and Yamada, K. D. 2019. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20:1160–1166.

Keane, M., Moir, R., Wilson, A., Stone-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., and Drummond, A. 2012. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics (Oxford, England) 28:1647–1649.

Li, L., Lü, L., Nadler, S. A., Gibson, D. I., Zhang, L. P., Chen, H. X., Zhao, W. T., and Guo, Y. N. 2018. Molecular phylogeny and dating reveal a terrestrial origin in the early carboniferous for ascaridoid nematodes. Systems Biology 67:888–900.

Librado, P., and Rozas, J. 2009. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics (Oxford, England) 25:1451–1452.

Liu, G. H., Nadler, S. A., Liu, S. S., Podolska, M., D'Amelio, S., Shao, R., Gasser, R. B., and Zhu, X. Q. 2016. Mitochondrial phylogenomics yields strongly supported hypotheses for ascaridomorph nematodes. Scientific Reports 6:39248.

Liu, G. H., Shao, R., Li, J. Y., Zhou, D. H., Li, H., and Zhu, X. Q. 2013. The complete mitochondrial genomes of three parasitic nematodes of birds: A unique gene order and insights into nematode phylogeny. BMC Genomics 14:414.

Mattucci, S., Cipriani, P., Webb, S. C., Paoletti, M., Marc, F., Bellisario, B., Gibson, D. I., and Nascetti, G. 2014. Genetic and morphological approaches distinguish the three sibling species of the Anisakis simplex species complex, with a species designation as Anisakis berlandii n. sp. for A. simplex sp. C (Nematoda: Anisakidae). Journal of Parasitology 100: 199–214.

Newton, L. A., Chilton, N. B., Beveridge, I., Hoste, H., Nansen, P., and Gasser, R. B. 1998. Genetic markers for strongylid nematodes of livestock defined by PCR-based restriction analysis of spacer rDNA. Acta Tropica 69:1–15.

Pinto, R. M., Pereira, L. C., Panizzutti, M. H. M., and Noronha, D. 2010. Nematode parasites of the neotropical rattlesnake, crotalus durissus linnaeus, 1758 (Ophidia, Viperidae) from Brazil: New records and general aspects. Neotropical Helminthology 4(2): 137–147.

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., and Huelsenbeck, J. P. 2012. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61:539–542.

Shamsi, S. 2019. Parasite loss or parasite gain?Story of Contracaecum nematodes in antipodean waters. Parasite Epidemiology and Control 4:e000087.

Shamsi, S., and Butcher, A. R. 2011. First report of human anisakidosis in Australia. The Medical Journal of Australia 194:199–200.

Shamsi, S., Norman, R., Gasser, R., and Beveridge, I. 2009. Genetic and morphological evidences for the existence of sibling species within Contracaecum rudophii (Hartwich, 1964) (Nematoda: Anisakidae) in Australia. Parasitology Research 105:529–538.

Shamsi, S., Stoddart, A., Smales, L., and Wassens, S. 2019. Occurrence of Contracaecum bancrofti larvae in fish in the Murray-Darling Basin. Journal of Helminthology 93:574–579.

Su, Z., Wilson, B., Kumar, P., and Dutta, A. 2020. Noncanonical roles of tRNAs: tRNA fragments and beyond. Annual Review of Genetics 54:47–69.

Timi, J. T., Paoletti, M., Cimmaruta, R., Lanfranchi, A. L., Alarcos, A. J., Garbin, L., George-Nascimento, M., Rodriguez, D. H., Giardino, G. V., and Mattucci, S. 2014. Molecular identification, morphological characterization and new insights into the ecology of larval Pseudoterranova cattani in fishes from the Argentine coast with its differentiation from the Antarctic species, P. decipiens sp. E (Nematoda: Anisakidae). Veterinary Parasitology 199:59–72.
Zhang, Q., Meng, M., Huang, C., Feng, S., Liu, J., Tang, Y., Fan, Y., Yuan, G., Han, S., Luo, J., Zhao, B., and He, H. 2021. Identification and genetic characterization of *Contracaecum* sp. (Nematoda: Anisakidae) from China. Integrative Zoology 16:929–938.

Zhao, Q., Abuzeid, A. M. I., He, L., Zhuang, T., Li, X., Liu, J., Zhu, S., Chen, X., and Li, G. 2021. The mitochondrial genome sequence analysis of *Ophidascaris baylisi* from the Burmese python (Python molurus bivittatus). Parasitology International 85:102434.

Zhao, J. H., Tu, G. J., Wu, X. B., and Li, C. P. 2018. Characterization of the complete mitochondrial genome of *Ortleppascaris sinensis* (Nematoda: Heterochilidae) and comparative mitogenomic analysis of eighteen Ascaridida nematodes. Journal of Helminthology 92:369–378.

Zhou, C. Y., Ma, J., Tang, Q. W., Zhu, X. Q., and Xu, Q. M. 2021. The mitogenome of *Ophidascaris wangii* isolated from snakes in China. Parasitology Research 120:1677–1686.
Figure S1: Polymerase chain reaction amplicons from the mitochondrial genome of *Contracaecum* sp. M: DL5,000 DNA marker; 1: Validation_01; 2: Validation_02; 3: Validation_03; 4: Validation_04.
Table S1. Primers used for assembly validation.

Name	Sequence (5’-3’)	Size (bp)
yeluF1	AGTTGTGAAGAAGGAGCAGTT	
yeluR1	CTAACATTGACCCTACCACACCT	3,564 bp
yeluF2	AGTTGTAGTCTAGCTGGTAG	
yeluR2	ACAGAGTAAACATCAGGGGAAT	3,900 bp
yeluF3	TTGGATTCTGTCGTTACT	
yeluR3	CAACTAAACATGCGCCCAACA	2,816 bp
yeluF4	TTGGTCAACAGATGGTGCTGGA	
yeluR4	AACTGCTCCTTCTTCAACAAG	3,757 bp

Table S2. Mitochondrial genome sequences of nematodes of superfamilies Ascaridoidea and Heterakoidea were sequenced completely before the present study and used for phylogenetic analysis.

Superfamily	Family	Species	Size (bp)	GenBank accession No.
Ascaridoidea	Anisakidae	Anisakis pegreffii	14,002	NC_034329
		Anisakis simplex	13,899	MK820679
		Contracaecum ogmorhini Canada	14,010	KU558727
		Contracaecum ogmorhini Australia	14,019	KU558725
		Contracaecum ogmorhini South Africa	14,012	KU558726
		Contracaecum osculatum	13,823	NC_024037
		Contracaecum rudolphii	14,022	NC_014870
		Pseudoterranova decipiens	13,962	NC_031645
		Pseudoterranova decipiens s.l.	13,965	KU558722
		Pseudoterranova krabbei	13,948	NC_031646
		Pseudoterranova bulbosa	13,957	KU558720
		Pseudoterranova cattani	13,950	KU558721
Ascaridae		Ascaris lumbricoides	14,281	NC_016198
		Ascaris lumbricoides China	14,303	HQ704900
		Ascaris ovis	14,288	NC_036666
		Ascaris suum	14,284	NC_001327
		Ascaris suum China	14,311	HQ704901
		Ascaris sp. Chimpanzee	14,268	KC839986
		Ascaris sp. gibbon	14,274	KC839987
		Baylisascaris ailuri	14,657	HQ671080
		Baylisascaris procyonis	14,781	NC_016200
		Baylisascaris schroederi	14,778	NC_015927
		Baylisascaris transfuga	14,898	NC_015924
		Ophidascaris baylisi	14,784	MW880927
		Ophidascaris sp.	14,660	MK106624
		Parascaris equorum	13,899	NC_036427

(Continued)
Complete mitochondrial genome of *Contracaecum* sp.: Deng et al.

Superfamily	Family	Species	Size (bp)	GenBank accession No.
		Parascaris univalens	13,920	NC_024884
		Toxascaris leonina	14,310	NC_023504
Heterocheilidae		*Orleppascaris sinensis*	13,828	NC_036669
Toxocaridae		*Toxocara canis*	14,322	NC_010690
		Toxocara canis Australia	14,163	EU730761
		Toxocara cati	14,029	NC_010773
		Toxocara malaysiensis	14,266	NC_010527
		Cucullanus robustus	13,972	NC_016128
Cucullanidae		*Ascaridia columbae*	13,931	NC_021643
	Ascaridiidae	*Ascaridia galli*	13,977	NC_021642
	Heterakoidea	*Ascaridia sp.*	13,862	JX624730
	Heterakidae	*Heterakis beramporia*	14,012	NC_029838
		Heterakis dispar	13,995	NC_042411
		Heterakis gallinarum	13,973	NC_029839
	Oxyuroidea	*Enterobius vermicularis*	14,010	EU281143
	Oxyuridae	*Wellcomia siamensis*	14,128	NC_016129