Introduction

Signal peptide peptidase (SPP), also known as minor histocompatibility antigen H13, is an aspartyl protease member of the intramembrane cleaving proteases family (I-CLiP), which specializes in the cleavage of signal peptides after their release by signal peptidase (SP) [1,2]. SPP and SPP-like (SPPL) proteins are evolutionarily conserved in H. sapiens, Rattus norvegicus, Oryza sativa japonica, B. subtilis, X. laevis, Macaca mulatta, D. rerio, D. melanogaster, C. elegans, S. pombe, A. thaliana, P. falciparum [3–6] and there exists a 96% amino acid homology between human and mouse SPP [7]. SPP localizes predominantly to the endoplasmic reticulum (ER) and can exist in different forms depending on glycosylation status [8]. Unlike other family members, SPP appears to achieve enzyme activity in the absence of protein cofactors [9,10]. SPP has been shown to play important roles in extracellular and intracellular signaling events such as cellular surveillance in MHC-I signal peptide processing [2] and has been linked to pathogenic conditions such as Alzheimer’s disease [11], certain cancers [12], and human cytomegalovirus, pestivirus, malaria and Hepatitis C infections [13–17].

HSV-1 infections are among the most frequent serious viral eye infections in the U.S. and are a major cause of viral-induced blindness [18–22]. HSV-1-induced corneal scarring (CS), also broadly referred to as herpes stromal keratitis (HSK), can lead to blindness; thus, HSV-1 is the leading cause of blindness due to an infectious agent in developed countries [21,23,24]. In addition to necrotizing HSK, ocular infection with HSV-1 can cause eye disease ranging in severity from blepharitis, conjunctivitis, and dendritic keratitis, to disciform stromal edema [22,23,25–28]. In the U.S. approximately 500,000 people suffer recurrent ocular HSV episodes annually, requiring doctor visits, medication and corneal transplants in severe cases. Although the HSV-1 gene(s) which are involved in eye disease are presently unknown, we have demonstrated previously that immunization of mice with glycoprotein K (gK), but not with any other known HSV-1 glycoprotein, significantly exacerbates CS and facial dermatitis following ocular HSV-1 infection [29–32]. This exacerbation of CS occurs independently of both the virus strain used for infection and the strain of mouse studied [31]. gK is encoded by the UL53 open reading frame and is a highly hydrophobic 338-amino-acid protein with a predicted molecular mass of 37-kDa [32–34]. Both gK from HSV-1 and HSV-2 are 338 amino acids long with approximately 84% amino acid homology [33,35,36]. Genome wide screenings in both HSV-1 [37] and HSV-2 [38] have shown that gK elicited CD8+ IFN-γ responses in mice and humans, respectively.

gK is an essential HSV-1 gene [32–34,39] and single amino acid changes within gK cause extensive virus-induced cell fusion [40–43]. Furthermore, gK is an important determinant of cytoplastic virion envelopment, since viruses lacking gK fail to efficiently acquire a cytoplasmic envelope resulting in a drastic defect in virion morphogenesis, egress and spread [44–47]. Deletion of gK results in the formation of extremely rare microscopic plaques indicating that gK is required for efficient binding of HSV-1 Glycoprotein K (gK) to Signal Peptide Peptidase (SPP) Is Required for Virus Infectivity

Sariah J. Allen¹, Kevin R. Mott¹, Yoshiharu Matsuura², Kohji Morishii³, Konstantin G. Kousoulas⁴, Homayon Ghiasi¹* ¹Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Los Angeles, California, United States of America, ²Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan, ³Department of Microbiology, Faculty of Medicine Yamanashi University, Yamanashi, Japan, ⁴Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America

Abstract

Glycoprotein K (gK) is a virion envelope protein of herpes simplex virus types 1 (HSV-1) and 2 (HSV-2), which plays important roles in virion entry, morphogenesis and egress. Two-hybrid and pull-down assays were utilized to demonstrate that gK and no other HSV-1 gene specifically binds to signal peptide peptidase (SPP), also known as minor histocompatibility antigen H13. SPP dominant negative mutants, shRNA against SPP significantly reduced HSV-1 replication in vitro. SPP also affected lysosomes and ER responses to HSV-1 infection. Thus, in this study we have shown for the first time that gK, despite its role in fusion and egress, is also involved in binding the cytoplasmic protein SPP. These results also suggest that SPP plays an important role in viral replication and possibly virus pathogenesis. This makes SPP unique in that its function appears to be required by the virus as no other protein can compensate its loss in terms of viral replication.

Citation: Allen SJ, Mott KR, Matsuura Y, Morishii K, Kousoulas KG, et al. (2014) Binding of HSV-1 Glycoprotein K (gK) to Signal Peptide Peptidase (SPP) Is Required for Virus Infectivity. PLoS ONE 9(1): e85360. doi:10.1371/journal.pone.0085360

Editor: Deepak Shukla, University of Illinois at Chicago, United States of America

Received November 4, 2013; Accepted January 20, 2014

Copyright: © 2014 Allen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by National Institutes of Health (NIH) grant 1 RO1 EY13615 to HG. KGK was supported by NIH AI43000 and NGMS P20 GM103458. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: ghiasih@CHS.org
virus replication [44,45,47,48], a concept that is supported by the
observation that gK-deficient virus can only be propagated on
complementing cells that express gK [44,45]. As gK is essential to
HSV-1 infectivity, we had previously analyzed its contribution to
CS using recombinant viruses (rather than deleting the gK gene)
with two extra copies of gK and found that similar to gK
immunization, this recombinant virus caused elevated levels of CS
in both mice and rabbits [49]. We have also shown that an
elevation of anti-gK antibody in individuals with a history of HSV-
1 recurrence is correlated with increased severity of eye disease
[50].

In this study we show for the first time that: 1) HSV-1 gK binds
to SPP and 2) SPP is required for virus infectivity. Despite the
seriousness of ocular herpes infection, no drug has been FDA
approved for prevention of ocular recurrences. Thus, blocking
SPP activity or binding to viral glycoproteins (such as gK) by
targeted therapeutics may represent a clinically effective and
expedient approach to the reduction of viral replication and the
resulting pathology.

Materials and Methods

Cells and viruses
Vero and HeLa cells were obtained from American type culture
collection (ATCC). RS (rabbit skin) cells [from Steven L Wechsler]
was described previously [51]. HeLa and Vero cells were grown in
DMEM media plus 10% fetal bovine serum (FBS), while RS cells
were grown in MEM media plus 5% FBS, while. Triple plaque-
purified HSV-1 strain McKrae was grown in RS cell monolayers
as described previously [32]. V5-tagged gK recombinant viruses in
KOS background (gKV5DI, gKV5DII, gKV5DIII, and
gKV5DIV) were grown as described previously [52].

Two hybrid system
We performed a bacterial two-hybrid using the BacterioMatch
Two-Hybrid System (Stratagene, La Jolla, CA) and a mouse brain
plasmid cDNA library (Stratagene). The bait plasmid pBT
expressing a λ repressor (λ-l)-fused gK protein and the target
plasmid pTRG expressing the α-subunit of RNA polymerase fused
to cDNA library-encoded proteins were used in the study. We used
an E.coli reporter strain containing the two reporter genes LacZ
and Carbencillin-resistance (Carb') under the control of the λ-l/α-
subunit of RNA polymerase. Additionally, the pBT plasmid, the
pTRG plasmid and the E.coli reporter strain contained the
chloroamphenicol (Cam'), tetracycline (Tet') and kanamycin
(Kan') resistance genes, respectively. To construct the pBT-gK,
a cDNA encoding gK was amplified by polymerase chain reaction
(PCR) using specific primers containing EcoRI/XhoI sites and
inserted into the corresponding sites in the pBT bait plasmid. The
mouse brain cDNA library was amplified, harvested and final
plasmid DNA (pTRG-cDNA mouse brain library) purification
conducted according to manufacturer’s protocol. The E.coli
reporter strain was transformed with pBT-gK and cDNA library
cloned into pTRG and transformants were selected on Carb +
Cam + Tet + Kan supplemented LB-Agar plates. The positive
putative colonies were further tested for Lac Z activity by replica
plating these clones onto X-gal indicator plates (Cam + Tet + Kan
+X-gal + β-galactosidase inhibitor LB-Agar) followed by screening
for the blue color indicative of Lac Z expression. The mouse brain
library plasmids were recovered from the positive colonies and the
inserted target cDNA was sequenced using pTRG plasmid-specific
primers as described in the manufacture’s protocols. NCBI-
BLAST analysis [53] was performed on collected sequences and
putative genes identified (Figure S1).

Construction and expression of c-myc-gK and HA-SPP
The gK and SPP constructs used in this study are shown in
Figures S2 and S3, respectively. In Figure S2, a schematic
diagram of full-length gK with an in-frame c-myc tag at the
carboxy terminus is shown. Figure S3 shows a schematic diagram
of full-length SPP with an in-frame HA tag and ER retention
signal also located at the carboxy terminus as we described
previously [16]. gK with c-myc tag was synthesized (GenScript,
Piscataway, NJ) and inserted into BamHI site of pcDNA3.1 and
sequences were verified with standard dyeoxy sequencing at the
UCLA Genotyping and Sequencing core. Amaxa nucleofector kit
R (Lonza, Allendale, NJ) was used to transfect 106 HeLa or Vero
cells with plasmid DNA cocktail containing both HA-SPP and c-
myc-gK in a ratio of 1:1 in accordance with manufacturer
instruction. Protein expression was monitored over 5 days using
Coomassie blue protein staining and Western blotting. Antibodies
against HA and c-myc (GenScript), were diluted according to
manufacturer instruction in the total Western HRP kit (Gen-
Script). Optimum c-myc-gK and HA-SPP expression and recovery
was determined to be 48–72 hr post-transfection.

Construction and expression of SPP shRNA constructs
shRNAs against SPP were created using the Knockout single
vector inducible RNAi system (Clontech, Mountain View, CA).
Briefly, SPP siRNA oligonucleotides were designed using siRNA-
designer (www.clontech.com). The shRNAs chosen correspond to
SPP nucleotide locations 409–430 (#5/6); 644–666 (#11/12);
1134–1157 (#19/20) and a scramble of #11/12. The four
shRNA were synthesized and ligated into pSingle-tTS-shRNA
(Invitrogen) via XhoI and MluI restriction sites and the sequence
was verified using standard dyeoxy sequencing. RS cells were
grown to 70% confluency on Lab-Tex chamber slides (BD Falcon,
San Jose, CA) and transfected with either SPP shRNA or scramble
shRNA using Lipofectamine-2000 (Invitrogen, Carlsbad, CA) for
8 hr followed by addition of plasmid inducer doxyxcline for 12 hr
prior to HSV-1 infection according to manufacturer instruction.
Cells were infected with 0.1 PFU of HSV-1 strain McKrae for 1 hr
at 37˚C, virus was then removed with three 1X PBS washes and
normal growth media + siRNA inducer replaced for 2, 4, 6, 8, 20
or 40 hr post-infection (PI). At each time point virus titer was
measured via standard plaque assay on RS cells as we described
previously [31]. Briefly, 100 µl aliquots of 10-fold serial dilutions
were placed on confluent monolayers of RS cells in 24-well plates,
incubated at 37˚C for 1 hr and overlaid with medium containing
1% methylcellulose. The plates were incubated at 37˚C for 3 days
and stained with 1% crystal violet, and the viral plaques were
counted.

Construction and expression of SPP dominant negative
mutants
We previously constructed two mutant forms of SPP in which
ezymatically critical Asparagine residues were mutated to
Alanine at positions 219 (D219A) and 265 (D265A) [16]. These
dominant negatives are also HA tagged with ER-retention signals
at the carboxy terminus in pcDNA3.1 vector as shown in Figure S3
and as we described previously [16]. RS cells were
grown to confluency in Lab-Tex chamber slides and transfected
with SPP-HA, D219A-HA or D265A-HA plasmids using
Lipofectamine-2000 (Invitrogen). Transfection was allowed to
proceed for 24 hr followed by infection with 0.1 PFU of HSV-1
strain McKrae as described above. Cells were grown for 12, 24 or
48 hr PI and HSV-1 titer measured by standard plaque assay on
RS cells as described above.
Immunoprecipitation (IP)

HeLa or Vero cells were transfected with c-myc-gK and HA-SPP as described above and were harvested at 48 hr post-transfection. Cells were lysed with lysis buffer included in the Classic IP Kit (Pierce, Rockford, IL) and 600 µg cellular extract was incubated with Dynabeads-G (Invitrogen) which were pre-bound to either HA, c-myc, irrelevant His-antibody (Invitrogen) or SPP (Abcam) antibody. Incubation proceeded for 1 hr at RT and beads were washed 5X with lysis buffer followed by kit-supplied elution buffer and finally SDS-PAGE analysis and Western blotting using the reverse antibodies that was used for IP.

Colocalization and virus detection by immunocytochemistry (ICC)

HeLa, Vero and RS cells were grown to confluency on Lab-tek chamber slides and infected with gK-V5-DII recombinant HSV-1 for 24 hr as we described previously [32]. Infected cells were fixed with 4% paraformaldehyde for 1 hr at 4°C followed by 20 minutes incubation in serum free protein block (Dako, Carpentrya, CA) at room temperature. Rabbit anti-SPP (Abcam) was diluted according to manufacturer instructions and incubated on slides overnight at 4°C. Slides were then washed and incubated with anti-V5-FTTC, anti-FTTC Alexa Fluor 488 and anti-rabbit Alexa Fluor 594 (Invitrogen) for 1 hr at RT. Washed slides were air dried and mounted with 4',6-diamidino-2-phenylindole (DAPI) prolong Gold (Invitrogen). The fluorophores were imaged in separate channels with a Zeiss ApoTome-equipped Axio Imager Z1 (Carl Zeiss Microimaging). For anti-HSV-1-gG-FTTC staining, RS or Vero cells were grown to confluency on chamber slides and transfected with shRNA construct or dominant negative construct as described above, followed by infection with 0.1 PFU/cell of McKrae for 24 hr. Fixative, blocking and mounting was the same as above except with anti-HSV-1-gG-FTTC antibody incubation at a 1:100 dilution overnight at 4°C (Genway, San Diego, CA). For organelle straining, RS cells were grown to confluency on chamber slides and transfected with shRNA as described above followed by infection with 0.1 PFU/cell of McKrae for 24 hr. Fixative, blocking and mounting was the same as above except with rabbit polyclonal antibodies (Abcam) against LAMP (ab24170), EEA1 (ab2900) or Calnexin (ab22595) diluted as above except with rabbit polyclonal antibodies (Abcam) against LAMP (ab24170), EEA1 (ab2900) or Calnexin (ab22595) diluted according to manufacturer instruction followed by anti-rabbit Alexa Fluor 594 secondary antibody at 1:200 dilution.

Fluorescent-activated cell sorting (FACS)

RS cells were transfected with SPP shRNA 11/12 as above followed by infection with 0.1 PFU/cell of HSV-1 strain McKrae for 24 hr or mock-infected. Infected or mock-infected cells were harvested via centrifugation and stained with annexin-V PE mAb (eBioscience, San Diego, CA). Stained cells were washed 2X with FACS buffer (1X PBS with 0.1% sodium azide), resuspended in 4% paraformaldehyde, and analyzed using a multicolor five-laser LSR II instrument (Applied Biosystems, Foster City, CA).

Gene expression analyses

qRT-PCR was performed as follows: at various times post infection, total RNA was extracted, and 1,000 ng of total RNA was reverse transcribed as we have described previously [54]. The differences in the expression levels of mRNAs were evaluated using custom-made TaqMan gene expression primers against ICP0, IκB, gB and gK with optimized primer and probe concentrations (Applied Biosystems). Primer probe sets consisted of two unlabeled PCR primers and the FAM™ dye-labeled TaqMan MGB probe formulated into a single mixture. Addition-ally, all cellular amplicons included an intron-exon junction to eliminate signal from genomic DNA contamination. The assays used in this study were as follows: 1) gB specific primers (forward, 5′-AACGGAGGGATCACATAG-3′; Reverse - 5′-CTGTTCGCTGATGACGATAAACG-3′; and Probe - 5′-FAM-CAGCCGGAAGTGACTACCC-3′). Amplicon Length = 72 bp; 2) ICP0 specific primers (forward, 5′-CGGACACG-GAACGTTGGTGA-3′; reverse, 5′-GGCCCGGCAACTG-3′; and probe, 5′-FAM-CCCCCATCCGAGCCCTG-3′). Amplicon length = 111 bp; 3) TK specific primers (forward, 5′-CAG-TAGCGTGGGCAATTCTCG-3′; reverse primer, 5′-CCTGCTGGGGACAAAA-3′; and probe 5′-FAM-CTCCAGGGGACTTC-3′). Amplicon length = 59 bp; and 4) gK specific primers (forward, 5′-GGCCACCTTACCCTTT-GAACATC-3′; reverse primer, 5′-GAGGGGCGG- TAATTTCTGTTAG-3′; and probe, 5′-FAM-GAGGCGG- CATGTATC-3′). Amplicon length = 82 bp. As an internal control, a set of GAPDH primers from Applied Biosystems (ASSAY ID. m999999.15_G1 – Amplicon Length = 107 bp) was used.

In some experiments the relative copy numbers for ICP-0, gB, and gK expressions were calculated using standard curves generated from the plasmids pGem-ICP0, pAc-gB1, and pAC-gK1, while in other experiments of ICP-0, tk, gB, and gK expressions were normalized to the levels present 1 hr after virus is first added to the cell monolayer (the adsorption period), a time is routinely taken as t = 0. In all experiments, GAPDH was used for normalization of transcripts. qRT-PCR was performed using an ABI ViiA7 sequence detection system (Applied Biosystems) in 384-well plates. The threshold cycle (CT) values, which represent the PCR cycles at which there is a noticeable increase in the reporter fluorescence above baseline, were determined using ViiA7 RUO software.

Results

HSV-1 gK binds to SPP

We hypothesized that gK might exert its previously demonstrated pathogenic functions via interactions with one or more cellular proteins. Briefly, we performed a two-hybrid screening assay using the BacterioMatch Two-Hybrid System (Stratagene, San Diego, CA). In this assay, gK was used as a bait to probe a mouse brain cDNA library to find cellular proteins that interact with gK. A total of 1×10^6 independent cDNA clones were screened and upon sequencing we observed a significant homology to all isoforms of SPP (Fig. S1) suggesting a possible interaction of gK and SPP.

To confirm the bacterial two-hybrid result of gK binding to SPP, we first used a pull-down approach. Cellular extracts from HeLa cells transiently expressing HA-SPP, c-myc-gK or both plasmids were immunoprecipitated using protein G beads bound to either anti-myc, anti-HA, or the irrelevant anti-His antibody. Immunoprecipitates were subjected to Western analysis to detect c-myc-gK (using c-myc Ab) or HA-SPP (using HA Ab). We created the tagged myc-gK plasmid as there is no commercially available antibody against gK. Furthermore, we have previously failed in attempts to make antibody against either full-length gK or gK peptide fragments in multiple hosts (mouse, rabbit and chicken). Figure 1A demonstrates pull-down of HA-SPP by anti-HA antibody, while Figure 1B demonstrates pull-down of c-myc-gK by anti-c-myc antibody demonstrating that both proteins can be individually immunoprecipitated using this system. Figures 1C and 1D demonstrate successful co-immunoprecipitation of HA-SPP and c-myc-gK in two cell lines. Figure 1G shows gK-SPP
interaction via both pull-down of c-myc-gK by anti-HA immuno-
precipitation and pull-down of HA-SPP by anti-c-myc immuno-
precipitation in HeLa cells. Neither HA-SPP nor c-myc-gK were
pulled down in untransfected HeLa cells (lane 1 in each figure), or
by irrelevant His-antibody (data not shown). Our HeLa cell co-
immunoprecipitation results were also confirmed in Vero cells
(Fig. 1D). These experiments confirm our two-hybrid analysis and
further suggest that gK can bind to SPP in vitro.

It is possible that SPP could bind to other HSV-1 proteins and
thus our result would not be an interaction specific to gK. To
address this possibility we performed an additional IP with RS cells
that had been infected with 0.1 and 1.0 PFU/cell of HSV-1 strain
McKrae to probe for interaction of other viral proteins with SPP.
At 24 hr PI, infected cells were subjected to IP using SPP antibody
or total anti-HSV-1 antibody with mock serum as a control. This
anti-HSV-1 antibody recognizes many HSV-1 genes including all
major HSV-1 glycoproteins (i.e., gB, gC, gD) but not gK. The
results demonstrate that the total anti-HSV-1 antibody was able to
pull down many HSV-1 proteins, but not SPP (not shown). In
addition, the IP against SPP was not able to pull down any HSV-1
reacting proteins (not shown). Taken together these data
demonstrate that gK is the only HSV-1 gene that binds to SPP
in vitro.

Virus-expressed gK colocalizes with cellular SPP in vitro

To explore if gK and cellular SPP co-localize within the HSV-1
infected cells, HeLa, Vero and RS cells were infected with four
different HSV-1 recombinant viruses expressing V5 in-frame in
each of the four proposed domains of gK (Figure 2) [52]. These
recombinant viruses differ in the placement of the V5 tag; DI and
DIV have V5 on the luminal side while DII and DIII have the tag
on the cytoplasmic side (Figure 2G). Cells were infected with each
virus individually and IHC was performed using antibodies against
SPP and V5 as described in Materials and Methods. We detected
strong colocalization between V5-gK and endogenous SPP with
DI (Figure 2A), DII (Figure 2B) and DIII (Figure 2C) infected
RS cells. In contrast, HeLa and Vero cells had the strongest
colocalization with only DII and DIII viruses (Figures 2B and
2C), while we observed minor colocalization with the DIV virus in

![Figure 1. Binding of gK to SPP in vitro](https://www.plosone.org/doi/figure/d10.1371/journal.pone.0085360.g001)
all cell lines tested (Figure 2D) and no colocalization in uninfected control cells (Figure 2E). The gK-SPP interaction in all cell lines infected with the 4 recombinant viruses are quantified and shown in Figure 2F. These results validate our immunoprecipitation results, since cellular SPP and HSV-1 expressed gK colocalize within the cell.

SPP shRNA reduces HSV-1 replication in vitro

It has been previously shown that small interfering RNA targeted to SPP reduced the production of infectious HCV particles [55]. To explore the possibility that a reduction in SPP production would effect HSV-1 replication, we constructed three shRNA plasmids against SPP as described in Materials and Methods. In a pilot experiment we tested the efficacy of these shRNA against HSV-1 replication in vitro, and determined that shRNA construct 11/12 was the most potent in reducing SPP expression in Vero, RS, and HeLa cell lines (Figure S4). We next tested this shRNA construct in RS cells to determine if SPP knockdown had any effect on HSV-1 viral replication. Cells were transfected with shRNA plasmid, followed by infection with 0.1 PFU of HSV-1 strain McKrae and HSV-1 titer was measured by standard plaque assays. After 8 hr PI the SPP shRNA plasmid began to significantly reduce viral replication in vitro when compared to scrambled SPP shRNA plasmid (Fig 3A). Thus, these results suggest that SPP is needed for efficient HSV-1 infectivity.

During the course of primary HSV-1 infection, gene expression is synchronized in a cascade fashion. Thus, to determine if the observed reduction in virus replication described above (Fig. 3A) affected different classes of HSV-1 gene expression, we investigated the effect of SPP inhibition on HSV-1 tk, gB, and gK expression at various times PI. RS cells were transfected with shRNA plasmids followed by infection with HSV-1 strain McKrae as described above. qRT-PCR was performed on total RNA isolated from transfected-infected RS cells and real time analysis performed. We detected significant reductions in expression of tk, gB, and gK from 2.5 to 20 hr in cells treated with SPP shRNA compared to cells treated with control scramble shRNA (Fig 3B). These results indicate that tk and gB expression is also impaired when SPP expression is blocked.

To confirm our titration and gene expression studies, we next performed ICC against HSV-1 during treatment with shRNA against SPP. RS cells were transfected and infected as above, and at 24 hr PI subjected to ICC using anti-HSV-1-gC antibody. We observed reduced staining for HSV-1 in SPP shRNA transfected RS cells compared to scramble shRNA control (Fig. 3C). We also observed a much more confluent monolayer in SPP shRNA transfected and infected cells indicating reduced cellular lysis as compared to SPP scramble shRNA transfected and infected cells. To demonstrate that the reduction in viral replication and gene expression was not due to higher apoptosis, we performed qRT-PCR on RS cells transfected with SPP shRNA and infected with HSV-1 and compared it to RS cells infected with HSV-1 alone.
and mock-treated control cells. We observed a significant reduction in apoptosis in the presence of the SPP shRNA plasmid compared to cells infected with HSV-1 alone (Figure S5). This suggests that shRNA against SPP is not increasing cell death and is actually protective of HSV-1 induced apoptosis. Taken together, our RNA interference studies suggest that SPP is required for efficient HSV-1 infectivity.

The effect of blocking SPP on intercellular transport properties of the HSV-1 in the ER, lysosomes and endosomes was evaluated in HSV-1 infected RS cells. RS cells were transfected with SPP shRNA or scramble shRNA followed by infection with HSV-1. Transfected-infected cells were monitored by immunofluorescence or immunocytochemistry for the effect of SPP shRNA on morphological properties of the ER, lysosomes and endosomes. We detected significant differences between infected cells in presence of SPP shRNA compared with cells transfected with scramble shRNA and infected which were similar to uninfected cells (Fig. 4A). Loss of SPP function resulted in the loss of discrete punctate structures representing the endosomes around the nuclear rim. RS cells were also infected with V5-tagged gK recombinant virus gKV5DIII. Double staining for V5-gK and ER is shown in Figure 4B, the arrow indicates a HSV-1 infected cell. Our results show that gK also localizes in the ER (yellow), which marks the primary site for a direct interaction between gK and SPP.

With regards to endosomes we did not detect differences between mock infected control and infected cells treated with SPP shRNA or scramble shRNA (Fig. 5). However, we detected striking difference in the lysosomes between mock infected control and infected cells treated with SPP shRNA compared with cells transfected with scramble shRNA and infected with HSV-1 (Fig. 5). In cells transfected with scramble shRNA and infected, lysosomes were less visible upon infection and mostly located around the nuclear rim and near the ER. Upon shRNA downregulation of SPP the lysosomal population becomes very similar to the uninfected cells. In this latter case the lysosomes were uniformly distributed in the cytoplasm. Thus, our results suggest that SPP regulates lysosomes and ER in response to HSV-1 infection.

Figure 3. Blocking HSV-1 replication in vitro by SPP shRNA. A) Viral Titer is reduced by SPP knockdown. RS cells were transfected for 24 hr with either SPP shRNA or scramble shRNA and infected with 0.1 PFU/cell of HSV-1 strain McKrae. Titeres were measured by standard plaque assays at 2.5, 5, 7.5, 10, 20 and 40 hr PI. Each point represents the mean ± SEM from 3 independent experiments per time point; B) HSV-1 gene expression is reduced by SPP knockdown. RS cells were transfected and infected as above. Transfected and infected cells were harvested 2, 4, 6, 8 and 20 hr PI; RNA extracted and cDNA synthesized. Expression of tk, gB and gK were measured using qRT-PCR and each point represents the mean ± SEM from 3 independent experiments; and C) HSV-1 protein expression is reduced by SPP knockdown. RS cells were transfected and infected as in A for 24 hr PI. Cells were stained with anti-HSV-1-gC-FITC (green) and costained with DAPI (blue). Photomicrographs are shown at 10X magnification. doi:10.1371/journal.pone.0085360.g003
In vitro replication

SPP dominant negative mutants reduce HSV-1 replication in vitro

Dominant negative mutants are a powerful tool for studying enzyme function as they complex with endogenous proteins, inactivating the wild-type cellular proteins within the same cell. The active site mutants, Asp219 (D219A) and Asp265 (D265A) (constructs shown in Fig. S3), in which the catalytic aspartate residues are mutated to alanine, have been shown to be dominant negative inhibitors of endogenous SPP activity [1,56]. These catalytic aspartates are highly conserved in all aspartic proteases and their mutation destroys proper coordination of a water molecule in the enzymatic active site, thereby destroying the acid-base reaction and rendering the mutants unable to catalyze their substrate. Importantly, these mutations do not affect substrate binding. To determine if the effect of these dominant negative mutants would confirm our shRNA results, RS cells were transfected with mammalian expression plasmids containing HA-tagged dominant negative SPP plasmids, D219A or D265A, followed by infection with 0.1 PFU of HSV-1 strain McKrae. The kinetics of virus replication were quantitated by determining the amount of infectious virus at various times PI using a standard plaque assay as described in Materials and Methods. Replication of HSV-1 in cells transfected with D219A or D265A was significantly lower than the control group at various times PI (Fig. 6A). In addition, D265A blocked virus replication more efficiently than D219A (Fig. 6A). These results are consistent with our shRNA results (Fig. 3, above) demonstrating that blocking SPP catalytic ability, but not substrate binding, significantly reduces HSV-1 virus replication in vitro.

To confirm our titration results with dominant negative mutants, we transfected and infected monolayers of RS and Vero cells as above and subjected them to ICC with anti-HSV-1-gC antibody. Representative photomicrographs of infected RS cells (Fig. 6B, top panels) and Vero cells (Fig. 6C, bottom panel) are shown. In both RS and Vero cells, the presence of D219A and D265A reduced the amount of HSV-1 positive cells compared with control groups (Fig. 6B and C). The positive cells per slide were quantitated and indicate that there is approximately a 10 fold reduction in HSV-1 signal in cells transfected with SPP dominant negative mutants compared to untreated control cells (Fig 6D). Collectively, these results confirm that reducing functional SPP impairs HSV-1 replication.

Discussion

Herein, we show for the first time that SPP is required for HSV-1 infectivity and that SPP specifically binds to gK. Similar to this study, it was previously shown that small interfering RNA targeted to SPP reduced the production of infectious HCV particles [55]. In this study by using SPP dominant negative constructs and SPP shRNA we have demonstrated that SPP is indeed essential for viral replication. gK has been shown to interact with both HSV-1 gB and UL20 [57,58]. However, our pull-down involving gK expressing plasmid rules out the possibility that the gK-SPP interaction is strictly dependent upon complexing with other viral proteins. Furthermore, our pull-down of HSV-1 infected RS cells using total HSV-1 antibody which does not recognize gK failed to precipitate SPP and vice versa.

The role of SPP in the context of HSV-1 infection has yet to be elucidated; however HSV-1 gK is a type III transmembrane protein which contains an N terminal signal sequence utilized for its insertion into the membrane [39,60]. HSV-1 gK has also been shown to traffic through both the trans-Golgi network (TGN) [52] and the rough endoplasmic reticulum (RER) [46]. To date, all identified SPP substrates are signal peptides which span the ER in a type II topology [2,61]. However, to our knowledge there is no study showing that SPP cannot catabolize type III membrane proteins. Type III membranes differ from type II in being multi-pass with the targeting signal sequence on the amino terminus. The location of the signal sequence within gK is essential as both deletion of the N terminus and N terminal cleavage via protease reduce HSV-1 virion entry [62]. Recent work suggests that despite
SPP having a catalytic preference for Type II membrane proteins, SPP is able to bind to many types of preproteins, signal peptides and misfolded proteins [63]. It is in this context that SPP is associated with quality control in the ER associated degradation (ERAD) pathway [17,64]. SPP is thought to function as a membrane protease liberating burdensome protein fragments from the membrane [65,66]. The fate of these released peptides can be degradation, however their role as signaling molecules is emerging [67,68]. Under these circumstances the possibility exists that SPP also serves to liberate bioactive fragments of viral proteins including those capable of inducing gene expression. This scenario could explain the negative effects on viral gene expression we observed when SPP was reduced via shRNA.

It has also been shown that over-expression of gK in gK-transformed cells collapses the Golgi apparatus into the ER thus inhibiting virion egress, glycoprotein transport, and virus-induced cell fusion [69]. Similarly in this study we also observed physiological signs of ER stress, such as ER aggregation, in cell lines over-expressing gK. The possibility remains that the increase in glycoprotein processing within the cell during the infectious period damages the ER adding to the immunopathology caused by the virus. The implications of ER stress are well documented in human diseases such as diabetes mellitus atherosclerosis, hypoxia, neoplasia and neurodegeneration [70,71]. In addition, ER stress has been demonstrated as causative in genetic and environmental models of retinal degeneration [72]. Cells have evolved highly conserved mechanisms to deal with ER stress through the unfolded protein response (UPR) whereby functional protein processing is restored or apoptosis is induced [71,73]. In fact, HSV-1 has counter-evolved processes to sense ER stress and downregulate the UPR to maintain ER homeostasis and prevent apoptosis [74,75].

In line with the ER stress and the gK-induced collapse of the Golgi apparatus [69], we have previously shown that a recombinant HSV-1 expressing two additional copies of gK induced severe corneal scarring and dermatitis in different strains of mice [49]. Furthermore, we previously demonstrated that immunization of mice with gK, but not with any of the other known HSV-1 glycoproteins, resulted in exacerbation of CS and herpetic dermatitis following ocular HSV-1 infection [29,30]. As our results clearly demonstrate the SPP and gK can bind and colocalize with one another the possibility remains that the gK interaction with SPP may be involved in the pathology of HSV-1 induced eye disease. Consequently, this gK-SPP interaction may be considered as a specific therapeutic target for the prevention of corneal infection in patients at risk and a reduction in the severity
of the CS in patients who have established infections thereby providing an effective treatment for those suffering from the devastating effects of HSK.

Conclusion

Glycoprotein K (gK) is a hydrophilic protein and is highly conserved between HSV-1 and HSV-2. Studies using insertion/ deletion mutants have shown the importance of the gK in virion morphogenesis and egress. We demonstrated previously that immunization of mice with gK, but not with any of the other HSV-1 glycoproteins, resulted in exacerbation of eye disease and herpetic dermatitis following ocular HSV-1 infection independent of mice or virus strain. We also have demonstrated that a recombinant HSV-1 expressing two extra copies of gK exacerbated eye disease in both mice and rabbit, suggesting that gK overexpression is pathogenic. In this study we have shown for the first time that: (1) HSV-1 gK binds to signal peptide peptidase (SPP); and (2) ShRNA against SPP and SPP dominant negative mutants reduced HSV-1 titers in vitro. Thus, blocking the interaction of gK with SPP using SPP shRNA should be considered as a potential alternative therapy in not only HSV-1, but other conditions whereby SPP processing is integral to pathogenesis.

Supporting Information

Figure S1 Results from bacterial-2-hybrid indicate SPP interacts with gK. A) BLAST results from a representative clone indicate strong consensus with all four isoforms of SPP. B) Representative sequence alignment of an isolated clone and SPP isoform 1. (PDF)

Figure S2 c-myc-gK construct used for gK-SPP binding. The structure of the wild-type gK molecule of 338 aa is shown with an in-frame insertion of c-myc sequence on C terminus. Positions of N-glycosylation sites are indicated at AA residues 48 and 58. gK construct was inserted into the BamHI site of plasmid pcDNA3.1. (PDF)

Figure S3 HA-SPP constructs used for gK-SPP binding and dominant negative transfection. The structure of the wt SPP molecule of 43.5 kDa is shown with an in-frame insertion of HA sequence and ER retention signal. Asp219 (D219A) and Asp265 (D265A) are SPP dominant negative mutants in which Asparagine (D) at aa positions 219 or 265 was mutated to Alanine (A) and inserted into plasmid pcDNA3.1. (PDF)

Figure S4 SPP knockdown by shRNA construct in different cell lines. Vero, HeLa and RS cells were grown to confluence and transfected with either SPP shRNA or scramble shRNA. After 24 hr, RNA was isolated from each cell line and qRT-PCR was performed as described in Materials and Methods. SPP expression in each cell line was normalized to the scramble SPP shRNA transfected control cells. Each point represents the mean ± SEM from 3 independent experiments. (PDF)

Figure S5 Cell vitality in presence of SPP shRNA. RS cells were transfected with SPP shRNA followed by infection with 0.1 PFU/cell of HSV-1 strain McKrae. Controls were uninfected cells and cells infected with HSV-1 without SPP shRNA. Cells were harvested 24 hr PI, stained with anti-Annexin-V antibody, and FACS analyses was performed as described in Materials and Methods. Shown is a graphical representation of the % of cells undergoing apoptosis in each group. (PDF)

Author Contributions

Conceived and designed the experiments: HG KRM SJA. Performed the experiments: HG KRM SJA. Analyzed the data: HG SJA. Contributed reagents/materials/analysis tools: YM KM KGK. Wrote the paper: SJA HG

References

1. Weihehoen A, Binns K, Lemberg MK, Ashman K, Martoglio B (2002) Identification of signal peptide peptidase, a presenilin-like aspartic protease. Science 296: 2215–2218.
2. Lemberg MK, Martoglio B (2002) Requirements for signal peptide peptidase-catalyzed intramembrane proteolysis. Mol Cell 10: 735–744.
3. Sun H, Liu J, Ding F, Wang X, Liu M, et al. (2006) Investigation of differentially expressed proteins in rat gastrocnemius muscle during denervation-reinnervation. J Muscle Res Cell Motil 27: 241–250.
4. Bolhuis A, Matzen A, Huyrykainen HL, Kortinnen VP, Meima R, et al. (1999) Signal peptide peptidase- and ClpP-like proteins of Bacillus subtilis required for efficient translocation and processing of secretory proteins. J Biol Chem 274: 24585–24592.
5. Yan G, Zhang G, Fang X, Zhang Y, Li C, et al. (2011) Genome sequencing and comparative analysis of two nonhuman primate animal models, the cynomolgus and Chinese rhesus macaques. Nat Biotechnol 29: 1019–1023.
6. Golde TE, Wolfe MS, Greenbaum DC (2009) Signal peptide peptidase- and ClpP-like proteins of Bacillus subtilis required for efficient translocation and processing of secretory proteins. J Biol Chem 274: 225–230.
7. Grigorenko AP, Moliaka YK, Korovaitseva GI, Rogaev EI (2002) Novel class of inflammatory drugs. Biochemistry 45: 8649–8656.
8. Heimann M, Roman-Sosa G, Martoglio B, Thiel HJ, Rumenapf T (2006) Core protein of hepatitis C virus is processed at the C terminus by signal peptide peptidase. J Virol 80: 1915–1921.
9. Li X, Chen H, Balamontes-Rosa N, Kun JF, Traore B, et al. (2009) Plasmodium falciparum signal peptide peptidase is a promising drug target against blood stage malaria. Biochem Biophys Res Commun 380: 454–459.
10. Li X, Chen H, Balamontes-Rosa N, Kun JF, Traore B, et al. (2009) Plasmodium falciparum signal peptide peptidase is a promising drug target against blood stage malaria. Biochem Biophys Res Commun 380: 454–459.
11. Loureiro J, Lilley BN, Spooner E, Noriega V, Tortorella D, et al. (2006) Signal peptide peptidase is required for dislocation from the endoplasmic reticulum. Nature 441: 894–897.
12. Taniguchi Y, Kim SH, Sudoa SS (2003) Presenilin-dependent “gamma-secretase” processing of deleted in colorectal cancer (DCC). J Biol Chem 278: 30425–30428.
13. Heimann M, Roman-Sosa G, Martoglio B, Thiel HJ, Rumenapf T (2006) Core protein of hepatitis C virus is processed at the C terminus by signal peptide peptidase. J Virol 80: 1915–1921.
14. Li X, Chen H, Balamontes-Rosa N, Kun JF, Traore B, et al. (2009) Plasmodium falciparum signal peptide peptidase is a promising drug target against blood stage malaria. Biochem Biophys Res Commun 380: 454–459.
15. McLaschen J, Lemberg MK, Hope G, Martoglio B (2009) Intramembrane proteolysis promotes trafficking of hepatitis C virus core protein to lipid droplets. Embo J 21: 3980–3988.
16. Okamoto K, Morishita K, Miyamura T, Matsura Y (2004) Intramembrane proteolysis and endoplasmic reticulum retention of hepatitis C virus core protein. J Virol 78: 6370–6380.
17. Loureiro J, Lilley BN, Spooner E, Noriega V, Tortorella D, et al. (2006) Signal peptide peptidase is required for dislocation from the endoplasmic reticulum. Nature 441: 894–897.
18. Barron BA, Gee L, Hauck WW, Kurimij N, Dawson CR, et al. (1994) Herpetic Eye Disease Study. A controlled trial of oral acyclovir for herpes simplex stromal keratitis. Ophthalmology 101: 1871–1882.
19. Liesegang TJ (1999) Classification of herpes simplex virus keratitis and anterior uveitis. Cornea 18: 127–143.
20. Liesegang TJ (2001) Herpes simplex virus epidemiology and ocular importance. Cornea 20: 1–13.
21. Liesegang TJ (1987) Ocular pathogenicity of herpes simplex virus. Curr Eye Res 6: 1–7.
22. Dawson CR (1984) Ocular herpes simplex virus infections. Cln Dermatol 2: 56–66.
49. Mott KR, Perng GC, Osorio Y, Kousoulas KG, Ghiasi H (2007) A
46. Hutchinson L, Roop-Beauchamp C, Johnson DC (1995) Herpes simplex virus
45. Hutchinson L, Johnson DC (1995) Herpes simplex virus glycoprotein K
44. Foster TP, Kousoulas KG (1999) Genetic analysis of the role of herpes simplex
43. Pogue-Geile KL, Spear PG (1987) The single base pair substitution responsible
42. Little SP, Schaffer PA (1981) Expression of the syncytial (syn) phenotype in
39. David AT, Baghian A, Foster TP, Chouljenko VN, Kousoulas KG (2008) The
37. St Leger AJ, Peters B, Sidney J, Sette A, Hendricks RL (2011) Defining the
35. McGeoch DJ, Cunningham C, McIntyre G, Dolan A (1991) Comparative
34. Hutchinson L, Goldsmith K, Snoddy D, Ghosh H, Graham FL, et al. (1992)
33. McGeoch DJ, Dalrymple MA, Davison AJ, Dolan A, Frame MC, et al. (1988)
32. Ghiasi H, Slanina S, Nesburn AB, Wechsler SL (1994) Characterization of
29. Ghiasi H, Bahri S, Nesburn AB, Wechsler SL (1995) Protection against herpes
26. Streilein JW, Dana MR, Ksander BR (1997) Immunity causing blindness: five
25. Binder PS (1984) A review of the treatment of ocular herpes simplex infections in
24. Dix RD (2002) Pathogenesis of herpes simplex ocular disease; Tasman W, and
23. Strojan P, Pawlowski M, Schaffner L,omp C, Schaffner L (1981) Expression of the syncytial (syn) phenotype in
22. Ghiasi H, Slanina S, Nesburn AB, Wechsler SL (1997) Nonneutralizing antibody against the glycoprotein K of herpes simplex virus type-1 exacerbates herpetic simplex virus type-1-induced corneal scarring in various virus-mouse strain combinations. Invest Ophthalmol Vis Sci 38: 1213–1221.
21. Ghiasi H, Slanina S, Nesburn AB, Wechsler SL (1994) Characterization of baculovirus-expressed herpes simplex virus type 1 glycoprotein K. J Virol 68: 2347–2354.
20. McGeogh DJ, Dalrymple MA, Davison AJ, Dolan A, Frame MC, et al. (1988) The complete DNA sequence of the long unique region in the genome of herpetic simplex virus type 1. J Gen Virol 69: 1531–1574.
17. Hutchinson L, Goldsmith K, Snoddy D, Ghosh H, Graham FL, et al. (1992) Identification and characterization of a novel herpes simplex virus glycoprotein, gK, involved in cell fusion. J Virol 66: 5605–5609.
15. McGeogh DJ, Cunningham C, McIntyre G, Dolan A (1991) Comparative sequence analysis of the long repeat regions and adjoining parts of the long unique regions in the genomes of herpes simplex viruses types 1 and 2. J Gen Virol 72: 3057–3073.
14. Dolan A, Jamieson FE, Cunningham C, Barnett RC, McGeogh DJ (1998) The genome sequence of herpes simplex virus type 2. J Virol 72: 2010–2021.
13. St Leger AJ, Peters B, Sidney J, Sette A, Hendricks RL (2011). Defining the herpes simplex virus-specific CD8+ T cell repertoire in C57BL/6 mice. J Immunol 186: 3927–3937.
12. Jambunathan N, Chowdhury S, Subramanian R, Chouljenko VN, Walker JD, et al. (2011) Site-specific proteolytic cleavage of the amino terminus of herpes simplex virus glycoprotein K on various particles inhibits virus entry. J Virol 85: 12910–12918.
11. Song B, Kapp K, Sinning I, Dobberstein B (2010) Signal peptide peptidase (SPP) assembles with substrates and misfolded membrane proteins into distinct oligomeric complexes. Biochem J 427: 523–534.
10. Dix RD (2002) Pathogenesis of herpes simplex ocular disease; Tasman W, and
9. Schenk D (2000) Alzheimer’s disease. A partner for proinsulin. Nature 407: 34–35.
8. Kopan R, Iyengar M (1997) Gamma-secretase: proteasome of the membrane? Nat Rev Mol Cell Biol 5: 499–504.
7. Weiklma A, Martoglio B, Meacool SL, High S (2004) A disassembled transmembrane domain of a polytopic protein associates with signal peptide peptides. Biochem J 380: 53–57.
6. Jambunathan N, Chowdhury S, Subramanian R, Chouljenko VN, Walker JD, et al. (2011) Site-specific proteolytic cleavage of the amino terminus of herpes simplex virus glycoprotein K on various particles inhibits virus entry. J Virol 85: 12910–12918.
5. Kroeger H, Messah C, Ahern K, Gee J, Joseph V, et al. (2012) Induction of endoplasmic reticulum stress by herpes simplex virus type-1-induced corneal scarring in various virus-mouse strain combinations. Invest Ophthalmol Vis Sci 36: 32%–1360.
4. Subramanian R, Martoglio B, Borkowiak J, et al. (2011) Intramembrane processing by signal peptide peptidase regulates the membrane localization of hepatitis C virus core protein and viral propagation. J Virol 85: 12910–12918.
3. Druga C, Sandres CR (2008) Substrate specificiﬁcity of gamma-secretase and other intramembrane proteases. Cell Mol Life Sci 65: 1311–1334.
2. Beel AJ, Sanders CR (2008) Substrate speciﬁcity of gamma-secretase and other intramembrane proteases. Cell Mol Life Sci 65: 1311–1334.
1. Jambunathan N, Chowdhury S, Subramanian R, Chouljenko VN, Walker JD, et al. (2011) Site-specific proteolytic cleavage of the amino terminus of herpes simplex virus glycoprotein K on various particles inhibits virus entry. J Virol 85: 12910–12918.

PLOS ONE | www.plosone.org 10 January 2014 | Volume 9 | Issue 1 | e85360