Biomarkers of Traumatic Brain Injury: Temporal Changes in Body Fluids

Harel Adrian, Kvist Mårten, Nuutinen Salla, and Välimaa Lasse

DOI: http://dx.doi.org/10.1523/ENEURO.0294-16.2016

Medicortex Finland Oy, Itäinen Pitkäkatu 4 B, 20520 Turku, Finland

Abstract

Traumatic brain injuries (TBIs) are caused by a hit to the head or a sudden acceleration/deceleration movement of the head. Mild TBIs (mTBIs) and concussions are difficult to diagnose. Imaging techniques often fail to find alterations in the brain, and computed tomography exposes the patient to radiation. Brain-specific biomolecules that are released upon cellular damage serve as another means of diagnosing TBI and assessing the severity of injury. These biomarkers can be detected from samples of body fluids using laboratory tests. Dozens of TBI biomarkers have been studied, and research related to them is increasing. We reviewed the recent literature and selected 12 biomarkers relevant to rapid and accurate diagnostics of TBI for further evaluation. The objective was especially to get a view of the temporal profiles of the biomarkers’ rise and decline after a TBI event. Most biomarkers are rapidly elevated after injury, and they serve as diagnostics tools for some days. Some biomarkers are elevated for months after injury, although the literature on long-term biomarkers is scarce. Clinical utilization of TBI biomarkers is still at a very early phase despite years of active research.

Key words: biomarker; diagnostics; TBI; traumatic brain injury

Introduction

Traumatic brain injury (TBI) is caused by a blow to the head, penetration of foreign objects through the skull, or sudden motions of the head. A recent systematic review reports that the overall incidence rate of TBI is 262 in 100,000, the mortality rate is 10.5 in 100,000 in Europe, and falls and road traffic accidents are the most common causes of TBI (Peeters et al., 2015). The statistics of the Centers for Disease Control and Prevention show that the overall incidence rate of TBI in the United States is 577 in 100,000 (total 1.7 million cases per year), and the mortality rate is 17.6 in 100,000 (>51,000 deaths per year; Faul...
et al., 2010). It is estimated, however, that the presented numbers probably underestimate the incidence of mild TBI (mTBI), and the data are confounded by the great variation in the definitions of TBI.

The pathophysiology of TBI varies considerably depending on the location of the injury, the type of injury, and its severity. A mild injury may just cause a feeling of discomfort, headache, dizziness, or transient unconsciousness, whereas moderate or severe injuries may lead to diffuse axonal injury, epidural or subdural hematomas, intracerebral bleedings, large destruction of the brain tissue, and even death (Pearn et al., 2016). Currently the diagnosis of TBI is made mainly based on a neurological examination of the patient and additionally using imaging radiology techniques such as computed tomography (CT) or magnetic resonance imaging (MRI). The Glasgow Coma Scale (GCS) assesses the severity of TBI on the basis of cognitive behavior (Teasdale and Jennet, 1974; Teasdale et al., 2014). A total score of 13–15 refers to mTBI, 9–12 to moderate TBI, and 3–8 to severe TBI (Faul and Coronado, 2015). Imaging techniques do not provide definitive means for the diagnostics of TBI, since they fail to find alterations in a large proportion of patients that have a mild to moderate injury (Hofman et al., 2001; Borg et al., 2004; Hughes et al., 2004; Belanger et al., 2007). One of the more advanced modes of MRI currently is diffusion tensor imaging (DT-MRI). It traces the direction of water molecules’ diffusion and uses computed parameters of diffusivity as measures of axonal integrity (Delouche et al., 2016). The technique allows for accurate 3D modeling of neural tracts (tractography) by means of computerized image analysis. DT-MRI is considered a promising tool for TBI diagnostics because of the ability to focus on axonal structures, but the literature regarding the detection of acute mTBI is somewhat inconsistent. For example, Arfanakis et al. (2002) and Inglese et al. (2005) reported significant alterations in diffusivity after mTBI in particular brain areas, implying diffuse axonal injury (DAI), whereas Ilvesmäki et al. (2014) concluded that acute mTBI is not associated with white matter change on DT-MRI. Another special modality of MRI is functional MRI (fMRI), which indicates the activation of various brain regions upon different stimuli or tasks. The imaging detects changes in cerebral blood flow and oxygen consumption based on different magnetic properties between oxyhemoglobin and deoxyhemoglobin. In the diagnostics of mTBI, fMRI may be a promising technology. It has shown functional alterations in the brain of concussed athletes who were asymptomatic in clinical assessment and neuropsychological testing (Slobounov et al., 2011), and subtle changes have been detected even 1 year after an injury (McAllister et al., 2006). However, the literature regarding the diagnostics of acute mTBI using fMRI is scarce (McDonald et al., 2012).

Biomarkers of a brain injury (Fig. 1) can be detected in the cerebrospinal fluid (CSF) and in the blood directly after TBI (Zetterberg and Blennow, 2015). The blood–brain barrier (BBB), which normally is almost impermeable, can lose its integrity upon brain injury and allow the permeation of molecules into the blood (Başkaya et al., 1997). Alternatively, they may be transported to the blood via the glymphatic system (Plog et al., 2015). Urine is sampled noninvasively and can be an appropriate sample source in decentralized field assay conditions. The route of biomarkers from the brain to urine is indirect and contains potential barriers and dilutive interfaces, yet markers of brain injury have been found in urine (Rodríguez-
Biomarkers of TBI in body fluids

S100β

S100β is one member of the calcium binding protein family S100, which was first isolated from the bovine brain in 1965 (Moore, 1965). A relationship between neurologic injury and S100β was discovered by Michetti et al. (1980). S100β is expressed in astrocytes and other neural cells, but also in some cells of nonneural origin (summarized by Donato et al. 2009). High S100β levels correlate with mortality and unfavorable prognosis (Mercier et al., 2013). However, S100β is not brain injury specific: its concentration increases in some other diseases and traumas (Anderson et al., 2001; Undén et al., 2005; Studer et al., 2015), as well as during intensive physical exercise (Stocchero et al., 2014). A later sampling (12–36 h after trauma) of S100β has shown enhanced prognostic value over early sampling (Thelin et al., 2013). Despite compromises in brain specificity, S100β has a good negative predictive value, and it is getting attention as a clinical marker to rule out a brain injury (Undén et al., 2013).

S100β kinetics

A study by Rodríguez-Rodríguez et al. (2012) showed a peak in serum <6 h after injury and thereafter a gradual decrease until the end of the follow-up period (96 h). Thelin et al. (2014) reported that a secondary peak (a new rise even as low as 0.05 µg/l) detected in serum ≥48 h after trauma strongly correlated with later pathological findings in CT and MRI. A comprehensive kinetic modeling by Ercole et al. (2016) confirms that a relatively sharp peak of S100β occurs in serum just 1 day after trauma (mean time to peak, 27.2 h). S100β has also been studied in urine. A study showed a peak at admission (≤6 h postinjury) and a subsequent decrease until 48 h, after which the concentration slightly increased until 96 h (Rodríguez-Rodríguez et al., 2012). Another study in urine (pediatric patients) showed that S100β peaked at a mean of 55.3 h after injury (Berger and Kochanek, 2006). The peak in serum appeared significantly earlier, at a mean of 14.6 h after injury. Overall, the concentration of S100β in the blood rises and peaks in some hours, but then it decreases quite rapidly, since the half-life of S100β in serum is only on the order of 1.5 h (Townend et al., 2006).

Gial fibrillary acidic protein

Gial fibrillary acidic protein (GFAP) is an intermediate filament protein that was reported for the first time in 1971 (Eng et al., 1971), and its relation to brain injuries was elucidated later in animal studies (Latov et al., 1979; Moore et al., 1987). GFAP is abundantly expressed in the cytoskeleton of astrocytes, although some expression in other types of cells has been discovered (Kasatkul and Shuangshoti, 1989). However, several studies confirm the high specificity of GFAP to brain injuries in comparison to other biomarkers such as S100β and neuron-specific enolase (Honda et al., 2010; Papa et al., 2014, 2016b). The concentration of GFAP in serum differs between patients that have a GCS value of 3–5 and 13–15, and thus, GFAP has diagnostic potential to discriminate between severe and mild cases of TBI (Lee et al., 2015). Acute GFAP levels correlate with the recovery and outcome of the patient (Mannix et al., 2014; Takala et al., 2016), although in mTBI cases, the predictive value was found to be weaker (Metting et al., 2012).

GFAP kinetics

One of the earliest studies (Missler et al., 1999) measuring GFAP in human blood reported that admission samples (3–16 h postinjury) showed increased levels of blood GFAP in 12 of 25 patients, with a mean concentration of 0.10 µg/l. Approximately 85% of the healthy controls were below the detection limit of 0.010 µg/l. In 24- and 48-h samples, GFAP was detectable in a smaller number of patients, and the levels were only slightly elevated. A more recent study (Lei et al., 2015), which followed the levels of GFAP for 0–5 days after the injury, reported that the peak was detected at admission (0.5–4 h). Žurek and Fedora (2012) monitored children that had TBI, and they also found the highest levels of GFAP in the admission samples drawn <12 h after injury. The GFAP levels were much higher in nonsurvivors compared with survivors; however, the temporal profiles were similar in both groups during the 6-day follow-up period. Papa et al. (2016a) monitored GFAP levels at short intervals in patients enrolled no more than 4 h after injury. They found that GFAP was detectable in serum within 1 h, and the peak appeared at 20 h in patients who had a mild or moderate TBI. Other studies have also confirmed that GFAP is detectable in serum as early as 1 h after the injury (Papa et al., 2014, 2015b).

Neuron-specific enolase

Enolases are enzymes that catalyze the conversion of 2-phosphoglycerate into phosphoenolpyruvate in the glycolysis pathway. Evidence on the existence of a brain-specific enolase came forth in the 1970s (Bock and...
Dissing, 1975; Rider and Taylor, 1975). Known as neuron-specific enolase (NSE), γ-enolase, or enolase 2, the neuron-specific isoenzyme consists of two γ-subunits (γγ) with a total molecular weight of 78 kDa. Increased levels of NSE in the serum of TBI patients were first observed in the early 1990s (Skogseid et al., 1992). A recent meta-analysis reports that high concentrations of NSE in serum is significantly associated with mortality and unfavorable outcome (Cheng et al., 2014). A risk related to the use of NSE is that the samples may be contaminated by enolases from hemolyzed red blood cells (Ramont et al., 2005), although improved accuracy can be obtained with a correction factor (Tolan et al., 2013). The presence and diagnostic value of NSE is not clear in mTBI and concussion, however, as a significant elevation of NSE in the serum was detected after kicks to the head in karate (Graham et al., 2015) but not in concussed ice hockey players (Shahim et al., 2014).

NSE kinetics

Herrmann et al. (2000) reported that the temporal profiles of NSE in serum differed significantly between groups with mTBI and moderate to severe TBI, but the concentration came down to the normal level in 25–48 h even in the severe TBI group. Further, in cases of DAI and intracranial pressure, the peak of NSE appeared on the third day. Žurek and Fedora (2012) also found different severity-dependent profiles in children; whereas the concentration of NSE gradually decreased after injury in survivors, nonsurvivors had increasing NSE concentrations during days 1 and 2. A recent study analyzed serum NSE levels for 5 d after severe TBI (Olivecrona et al., 2015). The initial NSE level (sampled on average 15 h postinjury) reached ~19 μg/l and gradually decreased to ~8 μg/l until day 5. The study also showed an association of NSE levels with intracranial pressure, cerebral perfusion pressure, and CT findings.

Ubiquitin C-terminal hydrolase-L1

Ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), also known as protein gene product 9.5 (PGP 9.5), is a 27-kDa enzyme abundant in the soma of neurons. UCH-L1 cleaves ubiquitin, a small regulatory protein involved in labeling proteins for metabolism, from the C terminus of its target proteins. UCH-L1 was discovered in the 1980s and constitutes some 1–5% of the brain’s total protein content (Doran et al., 1983; Wilkinson et al., 1989).

Active research on UCH-L1 in the context of TBI has emerged since the first decade of the 2000s (Siman et al., 2009; Papa et al., 2010). UCH-L1 has been shown to be a brain-specific biomarker, and its levels correlate with the severity of TBI and outcome (Mondello et al., 2012b; Takala et al., 2016). In mTBIs, the results are inconsistent; Papa et al. (2012) reported that serum UCH-L1 levels discriminate mTBIs from controls, whereas some studies were unable to show a sufficient discriminating power between patients with mTBI and noninjured controls (Berger et al., 2012; Puvenna et al., 2014). However, UCH-L1 was shown to outperform GFAP and S100β when the goal was to reduce CT scans in patients with mild to moderate TBI (Welch et al., 2016).

UCH-L1 kinetics

The concentration of UCH-L1 in serum rises within a few hours after injury, but the level also declines quite fast (Brophy et al., 2011; Mondello et al., 2012b). In cases of mild to moderate TBI, the concentration of UCH-L1 was shown to peak in 8 h after injury, which was earlier than the peak of GFAP (Papa et al., 2016a). The time window for the detection of UCH-L1 was short, but the authors discussed that the rapid rise of UCH-L1 enables the assaying of TBI in point-of-care settings at the accident site or in ambulances.

NF kinetics

The neuronal cytoskeleton is mainly composed of neurofilaments (NFs), which is one subcategory (Type IV) of intermediate filaments. The three main proteins (NF subunits) that compose neurofilaments are named according to their sizes: light (NF-L, 68–70 kDa), medium (NF-M, 145–160 kDa), and heavy (NF-H, 200–220 kDa). Neurofilaments are localized in the axon, and they regulate the structure and diameter of a neuron (Trojanowski et al., 1986). The phosphorylated form of the heavy subunit (p-NF-H) is specific to axons and can be detected in the blood with an immunoassay, thus being a potential biomarker of DAI (Shaw et al., 2005; Anderson et al., 2008). Gatson et al. (2014) reported that the level of p-NF-H was significantly increased in the serum of mTBI patients and clearly distinguished patients from noninjured controls. It was also shown that p-NF-H is a decent predictive marker of outcome in adult TBI patients (Shibahashi et al., 2016).

Myelin basic protein

Oligodendrocytes and Schwann cells produce the myelin sheath of the axons. The myelin sheath contains lipids and proteins, and the main protein component of the myelin sheath is myelin basic protein (MBP), which comprises ~30% of myelin’s protein content. Myelination is an age-dependent process, and thus the amount of myelin in the CNS varies between children and adults (Steinman, 1996; Paus et al., 2001). The relation of MBP to TBI was discovered in the late 1970s (Thomas et al., 1978). MBP has been found to correlate specifically with clinical outcome (Yamazaki et al., 1995; Berger et al., 2005).

MBP kinetics

MBP can be detected already 1.5–8.0 h after injury (Yamazaki et al., 1995), but MBP peaks somewhat slower than S100β and NSE (Berger et al., 2005, 2006). Serum MBP remains elevated for even up to 2 weeks (Thomas et al., 1978). The time course of MBP was
shown to be different in various types of TBI; in pediatric patients, serum MBP peaks later in inflicted TBI compared with noninflicted TBI (Berger et al., 2005, 2006). Specific temporal patterns thus may help in distinguishing brain injury induced by child abuse from accident-based brain injuries.

Spectrin breakdown products

Spectrin is a cytoskeletal protein that maintains cell membrane integrity and cytoskeleton structure (De Matheis and Morrow, 2000). Upon cellular injury, calpains and caspases cleave spectrin to spectrin breakdown products (SBDPs). Different SBDPs are present depending on the type of cell death and the enzymes involved in the process (Wang et al., 1998; Bükí et al., 2000). A relevant SBDP for brain injuries is calpain-derived N-terminal αII-spectrin fragment (SNFT), which can be readily detected in concussions, but also in a subset of orthopedic injuries (Siman et al., 2013, 2015).

SBDP kinetics

In concussed ice hockey players, the concentration of serum SNFT increased above the prior measured pre-season level 1 h after head injury. In persistent concussion (≥6 days), serum SNFT was increased as much as 2.5-fold above the baseline and stayed elevated from 1 h to 6 days. The average of the 12- to 36-h postinjury serum level showed the greatest accuracy in discriminating persistent concussions from milder concussions whose symptoms were alleviated within a few days (Siman et al., 2015).

Tau

Tau is one of the microtubule-associated proteins (MAPs) that were discovered in the 1970s (Weingarten et al., 1975; Witman et al., 1976). Tau is a 48- to 68-kDa protein that stabilizes microtubular assembly and is enriched in the axons of neurons, although it is not completely specific for the CNS (Goedert et al., 1989; Morris et al., 2011). Upon cellular injury and activation of proteases, tau is cleaved into fragments of 10–18 kDa and 30–50 kDa (cleaved tau or c-tau; Zemlan et al., 1999; Gabbita et al., 2005). In addition, injuries lead to the phosphorylation of tau, which in extreme cases results in the aggregation of hyperphosphorylated fragments (tau tangles) that are characteristic for neurodegenerative diseases such as Alzheimer’s disease and chronic traumatic encephalopathy (Šimić et al., 2016).

Clearly elevated levels of serum tau with reliable prognostic value have been reported after severe TBI (Liliang et al., 2010). In mTBI, serum tau levels were also increased, but the difference from the noninjured controls was not statistically significant (Bulut et al., 2006), and weaker prognostic values have been reported (Bazarian et al., 2006; Ma et al., 2008). However, new sensitive assay techniques have shown enhanced diagnostic performance for tau between injured and noninjured samples and an advantage for the use of tau in cases where many other biomarkers have failed to detect brain injury (Neselius et al., 2013; Shahim et al., 2014; Olivera et al., 2015; Rubenstein et al., 2015).

Amyloid β

Amyloid precursor protein is a cell surface receptor and a transmembrane precursor protein that is cleaved to various peptides, including amyloid β (Aβ), which is a 36- to 40-aa-long peptide abundant in amyloid plaques, characteristic of Alzheimer’s disease (Vivekanandan et al., 2011; Tharp and Sarkar, 2013). Abnormal concentrations or altered structure of Aβ is neurotoxic. Aβ plaques have been found in ~30% of TBI patients, and TBI is considered an independent risk factor for Alzheimer’s disease (Roberts et al., 1994; Tsitsopoulos and Marklund, 2013). Immunohistochemical staining has shown that the accumulation of amyloid precursor protein in injured axons and thus Aβ could be a biomarker of diffuse axonal injury (Johnson et al., 2016).

Amyloid β kinetics

Using an ultrasensitive digital ELISA, Mondello et al. (2014) found that Aβ42 rises in the plasma within the first day after injury, and the level remains quite steady for at least 6 d after injury. In contrast, one study reported no change in the plasma Aβ42 level during a follow-up of up to 11 days after severe TBI (Olsson et al., 2004).

Microtubule-associated protein 2

Microtubule-associated protein 2 (MAP2), like tau, belongs to the family of microtubule stabilizing proteins. MAP2 is abundant in nerve cells and is believed to be specific for neurons’ dendritic injuries (Garner et al., 1988). Elevated levels of MAP2 were detected in the serum of severe TBI patients at 6 months after injury (Mondello et al., 2012a). Survivors of TBI had higher levels of MAP2 than patients that had gone into a vegetative state. The authors concluded that a severe TBI results in a chronic release of MAP2, but it is also a marker of remodeling and indicates emergence into the higher level of consciousness for TBI patients.

MAP2 kinetics

MAP2 is a novel biomarker of TBI, and the above 6-month time point is the only temporal data on the presence of MAP2 in human blood; it suggests that MAP2 can indicate a past TBI event. In human CSF, MAP2 was found to be elevated within 6 h after injury, and the concentration remained quite stable for at least 24 h (Papa et al., 2015a).
Cytokines

Neuroinflammation is an essential part of the secondary injury cascade after TBI. Several proinflammatory cytokines and chemokines are upregulated, and they recruit immune cells into the CNS and promote astrogliosis (Hellewell et al., 2016). The CNS inflammatory response initiates already a few minutes after injury, and proinflammatory mediators are highly elevated in situ, whereas anti-inflammatory cytokines remain unchanged (Frugier et al., 2010). Tuttolomondo et al. (2014) reported that tumor necrosis factor (TNF-α), especially, plays an essential role in mediating an immune response in TBI and ischemic stroke. Interleukin (IL)-6 is considered an important central mediator in neuroinflammation; increased levels of IL-6 in serum have been found after acute cerebral ischemia and correlated with poor functional and neurological outcome (Fassbender et al., 1994). Also, elevated levels of a small chemokine in plasma, chemokine CC ligand-2 (formerly monocyte chemoattractant protein 1) correlated with the severity of TBI (Ho et al., 2012).

Cytokine kinetics

High levels of cytokines have been measured predominantly in the CSF, where they peak within the first days after injury and where the concentrations of several cytokines are typically higher than in the blood (Kossmann et al., 1997; Csuka et al., 1999; Maier et al., 2001). However, Santarsieri et al. (2015) found several inflammation markers in significantly higher concentrations in the serum than in the CSF. Similar kinetic trends as in the CSF have been detected in the serum, i.e., peaking within the first days, and also a mild secondary rise of IL-10 in the second week (Csuka et al., 1999; Hayakata et al., 2004). Elevated levels of several cytokines in serum were measured for >3 months after a TBI, which indicate the presence of chronic post-TBI inflammation (Kumar et al., 2015).

Autoantibodies

Autoantibodies against brain proteins have been known for some time; recently, they have gained interest in serving as diagnostic tools for CNS injury (Kobeissy and Moshourab, 2015). Disrupted BBB due to TBI permits the leakage of brain proteins and their breakdown products into the circulation, and in some cases, antibodies against these released self-antigens are generated (Raad et al., 2014). Autoantibodies remain in the blood quite a long time, and therefore they present a new class of biomarkers for a past TBI event and chronic sequelae.

Autoantibodies against GFAP and its breakdown products have been recently reported in the context of TBI. When the sera of severe TBI patients were screened using brain immunoblots, a significant increase in the amount of GFAP-specific antibodies was detected beginning at day 5 after TBI (Zhang et al., 2014). The concentrations of GFAP-specific autoantibodies were found to be significantly higher in TBI patients compared with healthy controls at 6 months after injury (Wang et al., 2016). In addition, autoantibodies against S100β were detected in the serum of football players during season (Marchi et al., 2013). The autoantibody levels correlated with the S100β levels measured shortly after each game. The players that were enrolled in the study had suffered regular repeated hits to the head but no concussion or TBI during the game. The authors concluded that even subconcussive hits disrupted the BBB and permitted the leakage of S100β into the blood and subsequent generation of autoantibodies.

Biomarkers of TBI in clinical laboratories

Of the biomarkers presented in this review, some are available (Table 1) in hospital laboratories, according to the laboratory manuals of large hospitals (Fimlab Laboratories Oy; Hospital District of Helsinki and Uusimaa; Hospital District of Southwest Finland; University of Eastern Finland, Brain Research Unit). Several laboratory assays respond to TBI and other abnormal conditions of CNS. However, S100β is the only one that has TBI as the main indication. The main indications of NSE are neuroblastoma and small cell lung cancer. Tau and Aβ are biomarkers of Alzheimer’s disease, and cytokines are general biomarkers of inflammation and sepsis. The Scandinavian Neurotrauma Committee has recommended the analysis of serum S100β of head trauma patients who have a mild injury (GCS 14–15) and can be sampled within 6 h after

Table 1. Laboratory tests for the biomarkers reviewed in this article that are available in hospital laboratories.

Biomarker	Sample	Method	Normal range	Range in TBI
S100β	Serum	IC	<0.11 μg/l	>0.11 μg/l
NSE	Serum	IC	From <17 to <25 μg/l, depending on age	>20 μg/l
P-tau	CSF	ELISA	<70 pg/ml	N/A
Tau	CSF	ELISA	<400 pg/ml	1684–8691 pg/ml
Aβ-42	CSF	ELISA	>500 pg/ml	<230 pg/ml
IL-6	Plasma	IC	<5.9 ng/l	N/A
IL-8	Plasma	IC	<62 ng/l	N/A
TNF-α	Serum	IC	<8.1 ng/l	N/A

The assays shown in the table respond to the head injuries and to the conditions of the central nervous system, but only S100β has TBI as the main indication. The data were collected from the laboratory manuals of large hospitals in September 2016. IC, immunochemiluminescence; ECL, electrochemiluminescence; Aβ-42, amyloid-beta-42 protein. aReference values defined in clinical laboratories. bBrandner et al. (2013). cMagoni et al. (2012). dFranz et al. (2003). eMondello et al. (2014).
injury (Undén et al., 2013). The concentration of 0.1 μg/l is considered the cutoff for a CT scan (see Discussion). The validation of these guidelines showed that approximately one third of CT scans for mild TBI cases can be avoided with little or no impact on patient outcome (Undén et al., 2015). Diagnostic kits for S100 are available from several manufacturers; however, clinical comparison of kits’ performance has shown that the results are not interchangeable between different suppliers’ assays (Müller et al., 2006; Hallén et al., 2008; Erickson and Grenache, 2011).

Nonclassic brain injury markers

The glymphatic system has been suggested to serve as a clearance pathway of interstitial fluid and solutes from the brain parenchyma, and also as a potential route of brain injury biomarkers from the brain to the blood (Iliff et al., 2012; Plog et al., 2015). Interestingly, the pathway itself is impaired after TBI as well. Iliff et al. (2014) found progressive impairment of CSF–interstitial fluid exchange within the glymphatic pathway 1–28 days after TBI. The dysfunction of the glymphatic system results in the accumulation of tau and Aβ, thus promoting the development of neurofibrillary pathology and neurodegeneration. It may be possible to assay the integrity of the glymphatic pathway in vivo by using appropriate contrast agents, and this might in the future serve as a highly sensitive novel indicator of brain injury.

Discussion

We reviewed recent research on TBI biomarkers with special focus on the time course of the markers in easily accessible body fluids relevant for rapid diagnostics. The usual approach in several studies is that the follow-up of the biomarkers starts upon the admission of the patient to the hospital and continues at various intervals for different periods of time, typically a few days to ∼1 week. The admission of the patient to the hospital and the time of the first sampling occurs some time after the accident; thus the first measures in the sequence represent a time point of a few hours after injury at the least. There are hardly any data on the very early kinetics of biomarkers in human subjects because of the lack of rapid tests useful for paramedics and ambulances. Several studies were made on patients who had sustained moderate to severe TBI. Concussions and mTBIs bear less cellular injuries, and the overall release of intracellular molecules is lower, making their measurement more demanding, especially in the blood, because of barriers and dilution, which happens when a molecule traverses from brain to the blood.

The time profiles of the biomarkers evidently represent different molecular origins and release mechanisms. Many biomarkers are released during the first burst upon cellular injury and the concomitantly triggered degradation processes. Those markers peak early, within a few hours, and then decline after the molecule-specific half-life in the blood. Neuroinflammation and the emergence of cytokines are somewhat slower processes, and therefore cytokines peak in <48 h. Autoantibodies against brain proteins rise slowly but stay elevated for a fairly long time. The temporal profiles and the relative levels presented in Figure 2 are approximate and must be read with consideration in the absence of uniform data collection and research methods. For example, the severity of TBI affects the peak heights and durations.

Awareness of the temporal profiles of the biomarkers is essential when defining and setting the most appropriate diagnostic time window for sampling after injury. Furthermore, integrated area under the time-curve as a diagnostic determinant, instead of just a single time point measurement, can give advanced diagnostic performance, as shown by Brophy et al. (2011). In addition, the

Figure 2. Kinetics of TBI biomarkers. Schematic representation shows the rise and decline of the TBI biomarkers for which representative kinetic data were available in serum or plasma. Separate long-term values (months to weeks) are included when possible.
trend between successive measurements indicates the progression of the injury. For example, a TBI patient who was originally considered a mild case showed continuous increase of NSE and S100β until the patient died at 76 h after admission. The mean values of those biomarkers, as calculated from all patients of the group in the study, showed descending trends, however (Herrmann et al., 2000). This is something that frequently remains undisclosed in several study reports; temporal profiles are shown as mean values of the patient cohort or mean values of patient categories (e.g., mild and severe trauma), although follow-up of individual trends would reveal some essential information that is hidden within the mean values.

Recently published Scandinavian guidelines (Undén et al., 2013, 2015) recommend for the first time to measure the biomarker S100β in the serum of patients who have sustained a mild head injury. The biomarker S100β should be assayed in cases where the GCS is 14 and no other risks are present, and when the GCS is 15 and the patient has a history of loss of consciousness and repeated vomiting. The guidelines recommend that the patients mentioned above are admitted to CT imaging only when the concentration of S100β is ≥0.10 µg/L. This approach reduces the number of CT scans by approximately one third and saves those patients from unnecessary exposure to radiation (Undén et al., 2015). The S100β assay has a good negative predictive value (Undén and Romner, 2010; Asadollahi et al., 2015), meaning that a negative value of S100β quite reliably rules out brain injury in any patient. Increased levels of S100β may originate from a brain injury, but also from lesions in some other tissues. This means that a positive value of S100β does not necessarily confirm the presence of a brain injury, especially in multitrauma patients (Sorci et al., 1999; Undén et al., 2013; Gebhardt et al., 2016; Wolf et al., 2016).

TBI, its consequences, and other brain traumas are admittedly gaining increasing awareness in society. The detection of these conditions, as well as the overall assaying of brain status and recovery after injury, is not unambiguous, however. Biomarkers that can be measured from body fluids in regular laboratory practice, or even in decentralized conditions, can supplement diagnosis or perhaps serve as a new means of definitive diagnosis for mild injuries. But, consensus and coherence among TBI biomarkers is still missing, and S100β is the only one that is gradually being implemented into clinical use. Some trends for the future can be seen, however, as diagnostic technologies develop and can detect smaller molecular quantities with higher resolving power. This can bring some current biomarkers into new light. Second, multiplexing—detection of several biomarkers in parallel in one assay—has been adapted in TBI biomarker study as well (Díaz-Arrastia et al., 2014; Di Battista et al., 2015). Furthermore, proteomic (and other “-omic”) approaches can discover new brain injury–related biomolecules which can be harnessed and validated in time into new diagnostic TBI biomarkers.

References

Anderson KJ, Scheff SW, Miller KM, Roberts KN, Gilmer LK, Yang C, Shaw G (2008) The phosphorylated axonal form of the neurofilament subunit NF-H (pNF-H) as a blood biomarker of traumatic brain injury. J Neurotrauma 25:1079–1085. CrossRef Medline

Anderson RE, Hansson LO, Nilsson O, Dijaï-Merzoug R, Settgren G (2001) High serum S100B levels for trauma patients without head injuries. Neurosurgery 48:1255–1258. 1260. Medline

Arfanakis K, Haughton VM, Carew JD, Rogers BP, Dempsey RJ, Meyerand ME (2002) Diffusion tensor MR imaging in diffuse axonal injury. AJNR Am J Neuroradiol 23:794–802. Medline

Asadollahi S, Heidari K, Taghizadeh M, Seidabadi AM, Jamshidian V, Vafeae A, Manoochehri M, Shojaee AH, Hatamabadi HR (2015) Brain injury: screening head computed tomography against mild traumatic brain injury; screening value of clinical findings and S100B protein levels. Brain Inj 30:172–178. CrossRef Medline

Başkaya MK, Rao AM, Dogan A, Donaldson D, Dempsey RJ (1997) The biphasic opening of the blood-brain barrier in the cortex and hippocampus after traumatic brain injury in rats. Neurosci Lett 226:33–36. Medline

Bazarian JJ, Zemlian FP, Mookerjeee S, Stigbrand T (2006) Serum S-100B and cleaved-tau are poor predictors of long-term outcome after mild traumatic brain injury. Brain Inj 20:759–765. CrossRef Medline

Belanger HG, Vanderploog RD, Curtiss G, Warden DL (2007) Recent neuroimaging techniques in mild traumatic brain injury. J Neurosurg 103:61–75. CrossRef Medline

Berger RP, Adelson PD, Pierce MC, Dulani T, Cassidy LD, Kochanek PM (2005) Serum neuron-specific enolase, S100B, and myelin basic protein concentrations after inflicted and noninflicted traumatic brain injury in children. J Neurosurg 103:61–68. CrossRef

Berger RP, Adelson PD, Richichi R, Kochanek PM (2006) Serum biomarkers after traumatic and hypoxic brain injuries: insight into the biochemical response of the pediatric brain to inflicted brain injury. Dev Neurosci 28:327–333. CrossRef Medline

Berger RP, Hayes RL, Richichi R, Beers SR, Wang KKW (2012) Serum concentrations of ubiquitin C-terminal hydrolase-L1 and α-spectrin breakdown product 145 kDa correlate with outcome after pediatric TBI. J Neurotrauma 29:162–167. CrossRef Medline

Berger RP, Kochanek PM (2006) Urinary S100B concentrations are increased after brain injury in children: a preliminary study. Pediatri Crit Care Med 7:557–561. CrossRef Medline

Bock E, Diising J (1979) Demonstration of enolase activity connected to the brain-specific protein 14.3.2. Scand J Immunol 14:31–36. CrossRef

Borg J, Holm L, Cassidy JD, Peloso PM, Carroll LJ, von Holst H, Ericson K, Collaborating Centre Task Force on Mild Traumatic Brain Injury WHO (2004) Diagnostic procedures in mild traumatic brain injury: results of the WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury. J Rehabil Med (43 Suppl):61–75. CrossRef

Brandner S, Thaler C, Buchfelder M, Kleindienst A (2013) Brain-derived protein concentrations in the cerebrospinal fluid: contribution of trauma resulting from ventricular drain insertion. J Neurotrauma 30:1205–1210. CrossRef Medline

Brophy GM, Mondello S, Papa L, Robicsek SA, Gabrielli A, Tepas J, Buki A, Robertson C, Tortella FC, Hayes RL, Wang KKW (2011) Biokinetic analysis of ubiquitin C-terminal hydrolase-L1 (UCH-L1) in severe traumatic brain injury patient biofluids. J Neurotrauma 28:861–870. CrossRef

Büki A, Okonkwo DO, Wang KK, Povlishock JT (2000) Cytochrome c release and caspase activation in traumatic axonal injury. J Neurosci 20:2825–2834. CrossRef

Bulut M, Koksal O, Dogan S, Bolca N, Ozguc H, Korfali E, Ilcol YO, Parklak M (2006) Tau protein as a blood marker of brain damage in mild traumatic brain injury: preliminary results. Adv Ther 23:12–22. Medline

Cheng F, Yuan Q, Yang J, Wang W, Liu H (2014) The prognostic value of serum neuron-specific enolase in traumatic brain injury:
systematic review and meta-analysis. PloS One 9:e106680. Cross-Ref Medline

Csuka E, Morgan-Kossmann MC, Lenzlinger PM, Joller H, Trenz O, Kossmann T (1999) IL-10 levels in cerebrospinal fluid and serum of patients with severe traumatic brain injury: relationship to IL-6, TNF-alpha, TGF-beta1 and blood-brain barrier function. J Neuroimmunol 101:211–221. CrossRef Medline

De Matteis MA, Morrow JS (2000) Sperm tethers and mesh in the biosynthetic pathway. J Cell Sci 113 (Pt 13):2331–2343. CrossRef Medline

Delouche A, Attié A, Heck O, Grand S, Kastler A, Lamalle L, Renard F, Krainik A (2016) Diffusion MRI: pitfalls, literature review and future directions of research in mild traumatic brain injury. Eur J Radiol 85:25–30. CrossRef Medline

Di Battista AP, Buonora JE, Rhind SG, Hutchison MG, Baker AJ, Rizoli SB, Diaz-Arrastia R, Mueller GP (2015) Blood biomarkers in moderate-to-severe traumatic brain injury: potential utility of a multi-marker approach in characterizing outcome. Front Neurol 6:110. CrossRef Medline

Diaz-Arrastia R, Wang KKW, Papa L, Sorani MD, Yue JK, Puccio AM, McPhaun PJ, Inoue T, Yuh EL, Lingmsa HF, Maas AIR, Valadaka AB, Okonkwo DO, Manley GT, GRACK-TBI Investigators (2014) Acute biomarkers of traumatic brain injury: relationship between plasma levels of ubiquitin C-terminal hydrolase-L1 and glial fibrillary acidic protein. J Neurotrauma 31:19–25. CrossRef Medline

Donato R, Sorci G, Razzoli F, Arcioni C, Bianchi R, Brozzi F, Tabaro C, Giambanco I (2009) S100B’s double life: intracellular regulator and extracellular signal. Biochim Biophys Acta 1793:1008–1022. CrossRef Medline

Doran JF, Jackson P, Kynch PA, Thompson RJ (1983) Isolation of PSP 9.5, a new human neuron-specific protein detected by high-resolution two-dimensional electrophoresis. J Neurochem 40:1542–1547. Medline

Eng LF, Vanderhaegen JJ, Bignami A, Gerstl B, Eng LF, Vanderhaegen JJ, Bignami A, Gerstl B (1971) An acidic protein isolated from fibrous astrocytes. Brain 28:351–354. Medline

Ercole A, Thelin EP, Holst A, Bellander BM, Nelson DW (2016) Kinetic modelling of serum S100B after traumatic brain injury, BMC Neurol 16:93. CrossRef Medline

Erickson JA, Grenache DG (2011) Comparison of three assays for quantifying S-100B in serum. Clin Chim Acta Int J Clin Chem 412:2122–2127. CrossRef Medline

Fassbender K, Rossoll S, Kammer T, Daffertshofer M, Wirth S, Dollman M, Hennerici M (1994) Proinflammatory cytokines in serum of patients with acute cerebral ischemia: kinetics of secretion and relation to the extent of brain damage and outcome of disease. J Neurol Sci 122:135–139. CrossRef Medline

Faul M, Coronado V (2015) Epidemiology of traumatic brain injury. Handb Clin Neurol 127:3–13. CrossRef Medline

Faul M, Xu L, Wald M, Coronado V (2010) Traumatic brain injury in the United States: emergency department visits, hospitalizations, and deaths 2002-2006. Atlanta, GA: Centers for Disease Control and Prevention

Finnpal Laboratories Oy (n.d.) Laboratory Manual. Available at: http://www.fimlab.fi/sivu.tmpl?sivu_id=32 (Accessed September 22, 2016).

Franz G, Beer R, Kampfi A, Engelhardt K, Schmutzhard E, Ulmer H, Deisenhammer F (2003) Amyloid beta 1-42 and tau in cerebrospinal fluid after severe traumatic brain injury. Neurology 60:1457–1461. Medline

Frugier T, Morgan-Kossmann MC, O’Reilly D, McLean CA (2010) In situ detection of inflammatory mediators in post mortem human brain tissue after traumatic injury. J Neurotrauma 27:497–507. CrossRef Medline

Gabrita SP, Scheff SW, Menard RM, Roberts K, Fugaccia I, Zemlan FP (2005) Cleaved-tau: a biomarker of neuronal damage after traumatic brain injury. J Neurotrauma 22:83–94. CrossRef Medline

Garner CC, Tucker RP, Matus A (1988) Selective localization of messenger RNA for cytoskeletal protein MAP2 in dendrites. Nature 336:674–677. CrossRef Medline

Gatson JW, Barillas J, Hynan LS, Diaz-Arrastia R, Wolf SE, Minei JP (2014) Detection of neurofilament-H in serum as a diagnostic tool to predict injury severity in patients who have suffered mild traumatic brain injury. J Neurosurg 121:1232–1238. CrossRef Medline

Gebhardt C, Lichtenberger R, Utikal J (2016) Biomarker value and pitfalls of serum S100B in the follow-up of high-risk melanoma patients. J Dtsch Dermatol 14:158–164. CrossRef Medline

Goedert M, Spillantini MJG, Jaksh R, Rutherford D, Crowther RA (1989) Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofilibrillary tangles of Alzheimer’s disease. Neuron 3:519–526. Medline

Graham MR, Pates J, Davies B, Cooper SM, Bhattacharya K, Evans PJ, Baker JS (2015) Should an increase in cerebral neurochemicals following head kicks in contact karate influence return to play?. Int J Immunopath Pharmacol 26:539–546. CrossRef Medline

Hallén L, Carlhed R, Karlsson M, Hallgren T, Bergenheim M (2008) A comparison of two different assays for determining S-100B in serum and urine. Clin Chem Lab Med 46:1025–1029. CrossRef Medline

Hayakata T, Shiozaki T, Tasaki O, Ikegawa H, Inoue Y, Toshiyuki F, Hosotubo H, Kieko F, Yamashita T, Tanaka H, Shimagu T, Sugimoto H (2004) Changes in CSF S100B and cytokine concentrations in early-phase severe traumatic brain injury. Shock (Augusta Ga) 22:102–107. CrossRef Medline

Hellewell S, Sampe BD, Morganti-Kossmann MC (2016) Therapies negating neuroinflammation after brain trauma. Brain Res 1640: 36–56. CrossRef Medline

Hoffmann MR, Jost S, Kutz S, Ebert AD, Kritz T, Wunderlich MT, Synowitz H (2000) Temporal profile of release of neurobiochemical markers of brain damage after traumatic brain injury is associated with intracranial pathology as demonstrated in cranial computerized tomography. J Neurotrauma 17:113–122. CrossRef Medline

Ho L, Zhao W, Dams-O’Connor K, Tang CY, Gordon W, Peskind ER, Yemul S, Haroutunian V, Pasinetti GM (2012) Elevated plasma MCP-1 concentration following traumatic brain injury as a potential “predisposition” factor associated with an increased risk for subsequent development of Alzheimer’s disease. J Alzheimer Dis 31:301–313. CrossRef Medline

Hofman PA, Staperst SZ, van Kroonenburgh MJ, Jolles J, de Krijuk J, Wilmink JT (2001) MR imaging, single-photon emission CT, and neurocognitive performance after mild traumatic brain injury. Am J Neuroradiol 22:441–449. Medline

Honda M, Tsuruta R, Kaneko T, Kasaoka S, Yagi T, Todani M, Fujita M, Izumi T, Maekawa T (2010) Serum glial fibrillary acidic protein is a highly specific biomarker for traumatic brain injury in humans compared with S-100B and neuron-specific enolase. J Trauma 69:10–109. CrossRef Medline

Hospital District of Helsinki and Uusima (n.d.) Laboratory Manual. Available at: www.huslab.fi/ohjekirja (Accessed September 22, 2016).

Hospital District of Southwest Finland (n.d.) Laboratory Manual. Available at: http://webohjekirja.mylabservices.fi/TYKS/ (Accessed September 22, 2016).

Hughes DG, Jackson A, Mason DL, Berry E, Hollis S, Yates DW (2004) Abnormalities on magnetic resonance imaging seen acutely following mild traumatic brain injury: correlation with neuropsychological tests and delayed recovery. Neuropsychology 46:550–558. CrossRef Medline

Iliff JJ, Chen MJ, Plog BA, Zeppenfeld DM, Soltero M, Yang L, Singh I, Deane R, Niedergaard M (2014) Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. J Neurosci 34:16180–16193. CrossRef Medline

Iliff JJ, Wang M, Liao Y, Plog BA, Peng W, Gunderson GA, Benveniste H, Yates GE, Deane R, Goldman SA, Nagelhus EA, Nedergaard M (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med 4:147ra111. CrossRef Medline
Ilvesmäki T, Luoto TM, Hakulinen U, Brander A, Ryymyn P, Eskola H, Iversen GL, Ohman J (2014) Acute mild traumatic brain injury is not associated with white matter change on diffusion tensor imaging. Brain J Neurol 137:1876–1882. CrossRef Medline

Inglese M, Makani S, Johnson G, Cohen BA, Silver JA, Gonen O, Grossman RI (2005) Diffuse axonal injury in mild traumatic brain injury: a diffusion tensor imaging study. J Neurosurg 103:298–303. CrossRef Medline

Jeter CB, Hergenroeder GW, Hylin MJ, Redell JB, Moore AN, Dash PK (2013) Biomarkers for the diagnosis and prognosis of mild traumatic brain injury/concussion. J Neurotrauma 30:657–670. CrossRef Medline

Johnson VE, Stewart W, Weber MT, Cullen DK, Siman R, Smith DH (2016) SNTF immunostaining reveals previously undetected axonal pathology in traumatic brain injury. Acta Neuropathol (Berl) 131:115–135. CrossRef

Kasantikul V, Shuangshoti S (1989) Positivity to glial fibrillary acidic protein in bone, cartilage, and chordoma. J Surg Oncol 41:22–26. Medline

Kobeissy F, Moshoubar RA (2015) Autoantibodies in CNS trauma and neuropsychiatric disorders: a new generation of biomarkers. In: Brain neuromath: molecular, neuropsychological, and rehabilitation aspects (Kobeissy FH, editor) Frontiers in Neuroengineering. Boca Raton, FL: CRC Press/Taylor & Francis. Available at: http://www.ncbi.nlm.nih.gov/books/NBK299208/. (Accessed August 19, 2016).

Kossmann T, Stahel PF, Lenzlinger PM, Siman R, Smith DH (2016) CrossRef

Kubler JR, Geddes JW (2016) Current status of fluid biomarkers in mild traumatic brain injury. Exp Neurol 275 Pt 3:334–352. CrossRef Medline

Kumar RG, Boles JA, Wagner AK (2015) Chronic inflammation after severe traumatic brain injury: characterization and associations with outcome at 6 and 12 months postinjury. J Head Trauma Rehabil 30:369–381. CrossRef Medline

Latov N, Nilaver G, Zimmerman EA, Johnson WG, Silverman AJ, Defendini R, Cote L (1979) Fibriul astrocytes proliferate in response to brain injury: a study combining immunoperoxidase technique for glial fibrillary acidic protein and radioautography of tritiated thymidine. Dev Biol 72:381–384. Medline

Lee JY, Lee CY, Kim HR, Lee C-H, Kim HW, Kim JH (2015) A role of serum-based neuronal and glial markers as potential predictors for distinguishing severity and related outcomes in traumatic brain injury. J Korean Neurosur Soc 58:93–100. CrossRef Medline

Lee J, Gao G, Feng J, Jin Y, Wang C, Mao Q, Jiang J (2015) Giall fibrillary acidic protein as a biomarker in severe traumatic brain injury patients: a prospective cohort study. Crit Care (Lond Engl) 19:362 CrossRef

Liliang P-C, Lian C-L, Weng H-C, Lu K, Wang K-W, Chen H-J, Chuang J-H (2010) Tau proteins in serum predict outcome after severe traumatic brain injury. J Surg Res 160:302–307. CrossRef Medline

Ma M, Lindsell CJ, Rosenberry CM, Shaw GJ, Zemlan FP (2008) Serum cleaved tau does not predict postconcussion syndrome after mild traumatic brain injury. Am J Emerg Med 26:763–768. CrossRef

Magnoni S, Esparza TJ, Conte V, Carbonara M, Carrabba G, Holtzman DM, Zipfel GJ, Stocchetti N, Brody DL (2012) Tau elevations in the brain extracellular space correlate with reduced amyloid-β levels and predict adverse clinical outcomes after severe traumatic brain injury. Brain J Neurol 135:1268–1280. CrossRef

Maier B, Schwertfeger K, Mautes A, Holanda M, Müller M, Steudel WI, Marzi I (2001) Differential release of interleukines 6, 8, and 10 in cerebrospinal fluid and plasma after traumatic brain injury. Shock (Augusta Ga) 15:421–426. Medline

Mannix R, Eisenberg M, Berry M, Meehan WP, Hayes RL (2014) Serum biomarkers predict acute symptom burden in children after concussion: a preliminary study. J Neurotrauma 31:1072–1075. CrossRef Medline

Marchi N, Bazarjan JJ, Puvenna V, Janigro M, Ghosh C, Zhong J, Zhu T, Blackman E, Stewart D, Ellis J, Butler R, Janigro D (2013) Consequences of repeated blood-brain barrier disruption in football players. PLoS One 8:e56805. CrossRef Medline

McAllister TW, Flashman LA, McDonald BC, Saykin AJ (2006) Mechanisms of working memory dysfunction after mild and moderate TBI: evidence from functional MRI and neurogenetics. J Neurotrauma 23:1450–1467. CrossRef Medline

McDonald BC, Saykin AJ, McAllister TW (2012) Functional MRI of mild traumatic brain injury (mTBI): progress and perspectives from the first decade of studies. Brain Imaging Behav 6:193–207. CrossRef Medline

Mercier E, Boutin A, Lauzier F, Fergusson DA, Simard J-F, Zarychanski R, Moore L, McIntyre LA, Archambault P, Lamontagne F, Légaré F, Redell JB, Nadeau L, Rousseau F, Turgeon AF (2013) Predictive value of S-100β protein for prognosis in patients with moderate and severe traumatic brain injury: systematic review and meta-analysis. BMJ 346:f1757 Medline

Metting Z, Wilczak N, Rodiger LA, Schaaf JM, van der Naalt J (2012) GFAP and S100B in the acute phase of mild traumatic brain injury. Neurology 78:1428–1433. CrossRef Medline

Missler U, Wiesmann M, Wittmann G, Magerkurth O, Hagenström H (1999) Measurement of glial fibrillary acidic protein in human blood: analytical method and preliminary clinical results. Clin Chem 45:138–141. Medline

Mondello S, Buki A, Barzo P, Randall J, Provuncan G, Hanlon D, Wilson D, Kobeissy F, Jeromin A (2014) CSF and plasma amyloid-β temporal profiles and relationships with neurological status and mortality after severe traumatic brain injury. Sci Rep 4:6446 CrossRef Medline

Mondello S, Gabrielli A, Catani S, D’ippolito M, Jeromin A, Ciaramella A, Bossù P, Schmid K, Tortella F, Wang KK, Hayes RL, Formisano R (2012a) Increased levels of serum MAP-2 at 6-months correlate with improved outcome in survivors of severe traumatic brain injury. Brain Inj 26:1629–1635. CrossRef Medline

Mondello S, Linnet A, Buki A, Robicsek S, Gabrielli A, Tepas J, Papa L, Brophy GM, Tortella F, Hayes RL, Wang KK (2012b) Clinical utility of serum levels of ubiquitin C-terminal hydrolase as a biomarker for severe traumatic brain injury. Neurosurgery 70:666–675. CrossRef Medline

Moore BW (1965) A soluble protein characteristic of the nervous system. Biochem Biophys Res Commun 19:739–744. Medline

Moore IE, Buontempo JM, Weller RO (1987) Response of fetal and neonatal rat brain to injury. Neuropathol Appl Neurobiol 13:219–228. Medline

Morris M, Maeda S, Vossel K, Mucke L (2011) The many faces of tau. Neuron 70:410–426. CrossRef Medline

Müller K, Elverland A, Rommer B, Waterloo K, Langbakk B, Undén J, Ingebrigtsen T (2006) Analysis of protein S-100B in serum: a methodological study. Clin Chem Lab Med 44:1111–1114. CrossRef Medline

Neselius S, Zetterberg H, Blennow K, Randall J, Wilson D, Marcusson J, Brisby H (2013) Olympic boxing is associated with elevated levels of the neuronal protein tau in plasma. Brain Inj 27:425–433. CrossRef Medline

Olivecrona Z, Bobinski L, Koskinen L-OD (2015) Association of ICP, CPP, CT findings and S-100B and NSE in severe traumatic head injury: a prospective cohort study. Crit Care (Lond Engl) 19:362 CrossRef

Olivecrona Z, Bobinski L, Koskinen L-OD (2015) Association of ICP, CPP, CT findings and S-100B and NSE in severe traumatic head injury: a prospective cohort study. Crit Care (Lond Engl) 19:362 CrossRef

Olivecrona Z, Bobinski L, Koskinen L-OD (2015) Association of ICP, CPP, CT findings and S-100B and NSE in severe traumatic head injury: a prospective cohort study. Crit Care (Lond Engl) 19:362 CrossRef

Olivecrona Z, Bobinski L, Koskinen L-OD (2015) Association of ICP, CPP, CT findings and S-100B and NSE in severe traumatic head injury: a prospective cohort study. Crit Care (Lond Engl) 19:362 CrossRef

Olivecrona Z, Bobinski L, Koskinen L-OD (2015) Association of ICP, CPP, CT findings and S-100B and NSE in severe traumatic head injury: a prospective cohort study. Crit Care (Lond Engl) 19:362 CrossRef

Olivecrona Z, Bobinski L, Koskinen L-OD (2015) Association of ICP, CPP, CT findings and S-100B and NSE in severe traumatic head injury: a prospective cohort study. Crit Care (Lond Engl) 19:362 CrossRef
Olivera A, Lejbman N, Jeromin A, French LM, Kim H-S, Cashion A, Mysiwiecz V, Díaz-Arrastia R, Gill J (2015) Peripheral total tau in military personnel who sustain traumatic brain injuries during deployment. JAMA Neurology 72:1109–1116. CrossRef Medline

Olsson A, Csaibok L, Ost M, Höglund K, Nyén K, Rosengren L, Nelligård B, Blennow K (2004) Marked increase of beta-amyloid(1-42) and amyloid precursor protein in ventriculocerebrospinal fluid after severe traumatic brain injury. J Neuro 251:870–876. CrossRef

Ottens AK, Stafflinger JE, Griffin HE, Kunz RD, Cifu DX, Niemeier JP (2014) Post-acute brain injury urinary signature: a new resource for molecular diagnostics. J Neurotrauma 31:782–788. CrossRef Medline

Papa L, Akinyi L, Liu MC, Pineda JA, Tepas JJ, Oli MW, Zheng W, Robinson G, Robicsek SA, Gabrielli A, Heaton SC, Hannay HJ, Demery JA, Brophy GM, Pagano S, Layon J, Robertson CS, Hayes RL, Wang KKW (2010) Ubiquitin C-terminal hydrolyase is a novel biomarker in humans for severe traumatic brain injury. Crit Care Med 38:138–144. CrossRef

Papa L, Brophy GM, Welch RD, Lewis LM, Braga CF, Tan CN, Ameli NJ, Lopez MA, Haesussler CA, Mendez Giordano DI, Silvestri S, Giordano P, Weber KD, Hill-Pryor C, Hack DC (2016a) Time course and diagnostic accuracy of glial and neuronal blood biomarkers GFAP and UCH-L1 in a large cohort of trauma patients with and without mild traumatic brain injury. JAMA Neurology 73:551–560. PubMed

Papa L, Lewis LM, Silvestri S, Falk JL, Giordano P, Brophy GM, Demery JA, Liu MC, Mo J, Akinyi L, Mondello S, Schmid K, Robertson CS, Tortella FC, Hayes RL, Wang KKW (2012) Serum levels of ubiquitin C-terminal hydrolyase distinguish mild traumatic brain injury from trauma controls and are elevated in mild and moderate traumatic brain injury patients with intracranial lesions and neurosurgical intervention. J Trauma Acute Care Surg 72:1335–1344. CrossRef

Papa L, Mittal MK, Ramirez J, Ramia M, Kirby S, Silvestri S, Giordano P, Weber K, Braga CF, Tan CN, Ameli NJ, Lopez M, Zonfrillo MR (2016b) In children and youth with mild and moderate traumatic brain injury GFAP out-performs S100β in detecting traumatic intracranial lesions on CT. J Neurotrauma 33:58–64. PubMed

Papa L, Robertson CS, Wang KKW, Brophy GM, Hannay HJ, Heaton S, Schmalfuß I, Gabrielli A, Hayes RL, Robicsek SA (2015a) Biomarkers improve clinical outcome predictors of mortality following non-penetrating severe traumatic brain injury. Neurocrit Care 22:52–64. PubMed

Papa L, Silvestri S, Brophy GM, Giordano P, Falk JL, Braga CF, Tan CN, Ameli NJ, Demery JA, Dixit NK, Mendes ME, Hayes RL, Wang KKW, Robertson CS (2014) GFAP out-performs S100β in detecting traumatic intracranial lesions on computed tomography in trauma patients with mild traumatic brain injury and those with extracranial lesions. J Neurotrauma 31:1815–1822. CrossRef

Papa L, Zonfrillo MR, Ramirez J, Silvestri S, Giordano P, Braga CF, Tan CN, Ameli NJ, Lopez M, Mittal MK (2015b) Performance of glial fibrillary acidic protein in detecting traumatic intracranial lesions on computed tomography in children and young with mild head trauma. Acad Emerg Med off 2:1274–1282. PubMed

Paus T, Collins DL, Evans AC, Leonard G, Pike B, Zijdenbos A (2001) Maturation of white matter in the human brain: a review of magnetic resonance studies. Brain Res Bull 54:255–266. Medline

Pearn ML, Niesman IR, Egawa J, Sawada A, Almenar-Queralt A, Papadakis JE, Gabrielli A, Heaton SC, Hannay HJ, Demery JA, Brophy GM, Layon J, Robertson CS, Hayes RL, Wang KKW (2010) Ubiquitin C-terminal hydrolyase is a novel biomarker in humans for severe traumatic brain injury. Crit Care Med 38:138–144. CrossRef

Plog BA, Dashnaw ML, Itomiti E, Peng W, Liao Y, Lou N, Deane R, Niedergaard M (2015) Biomarkers of traumatic injury are transported from brain to blood via the lymphatic system. J Neurosci 35:518–526. CrossRef Medline

Puvenna V, Brennan C, Shaw G, Yang C, Marchi N, Bazarain JJ, Merchant-Borna K, Janigro D (2014) Significance of ubiquitin carboxy-terminal hydrolyase L1 elevations in athletes after sub-concussive head hits. PloS One 9:e96296. CrossRef Medline

Raad M, NowRA, Chams N, Itani M, Talih F, Mondello S, Kobeiss F (2014) Autoantibodies in traumatic brain injury and central nervous system trauma. Neuroscience 281:C:16–23. CrossRef Medline

Ramont L, Thoannes H, Volondat A, Chastang F, Millet M-C, Maquart F-X (2005) Effects of hemolysis and storage condition on neuron-specific enolase (NSE) in cerebrospinal fluid and serum: implications in clinical practice. Clin Chem Lab Med 43:1215–1217. CrossRef Medline

Ridder CC, Taylor CB (1975) Evidence for a new form of enolase in rat brain. Biochem Biophys Res Commun 66:814–820. Medline

Roberts GW, Gentleman SM, Lynch A, Murray L, Landon M, Graham DI (1994) Beta amyloid protein deposition in the brain after severe head injury: implications for the pathogenesis of Alzheimer’s disease. J Neurol Neurosurg Psychiatr 57:419–425. Medline

Rodriguez-Rodriguez A, Egea-Guerrero JJ, León-Justel A, Gordillo-Escobar E, Revuelto-Rey J, Vilches-Arenas A, Carrillo-Vico A, Domínguez-Roldán JM, Murillo-Cabezas F, Guerrero JM (2012) Role of S100B protein in urine and serum as an early predictor of mortality after severe traumatic brain injury in adults. Clin Chim Acta 414:228–233. CrossRef

Rubenstein R, Chang B, Davies P, Wagner AK, Robertson CS, Wang KKW (2015) A novel, ultrasensitive assay for tau: potential for assessing traumatic brain injury in tissues and biofluids. J Neurotrauma 32:342–352. CrossRef

Saftaresi M, Kumar KG, Kochanek PM, Berga S, Wagner AK (2015) Variable neuroendocrine-immune dysfunction in individuals with unfavorable outcome after severe traumatic brain injury. Brain Behav Immun 45:15–27. CrossRef Medline

Shahim P, Tegner Y, Wilson DH, Randall J, Skillbäck T, Pazooki D, Kalberg B, Blennow K, Zetterberg H (2014) Blood biomarkers for brain injury in concussed professional ice hockey players. JAMA Neurol 71:684–692. CrossRef Medline

Shaw G, Yang C, Ellis R, Anderson K, Parker Mickie J, Scheff S, Pike B, Anderson DK, Howland DR (2005) Hyperphosphorylated neurofilament NF-H is a serum biomarker of axonal injury. Biochem Biophys Res Commun 336:1268–1277. CrossRef

Shibahashi K, Doi T, Tanaka S, Hoda H, Chikuda H, Sawada Y, Takasu Y, Chiba K, Nozaki T, Hamabe Y Ogata T (2016) The serum phosphorylated neurofilament heavy subunit as a predictive marker for outcome in adult patients after traumatic brain injury. J Neurotrauma 30:1826–1833. CrossRef

Siman R, Giovannone N, Hanten G, Wilde EA, McAuley SR, Hunter JV, Li X, Levin HS, Smith DH (2013) Evidence that the blood biomarker SNTF predicts brain imaging changes and persistent cognitive dysfunction in Mild TBI patients. Front Neurol 4:190. CrossRef Medline

Siman R, Shahim P, Tegner Y, Blennow K, Zetterberg H, Smith DH (2015) Serum SNTF increases in concussed professional ice hockey players and relates to the severity of postconcussion symptoms. J Neurotrauma 32:1294–1300. CrossRef Medline

Siman R, Toraskar N, Dang A, McNeil E, McGarvey M, Plaum J, Maloney E, Grady MS (2009) A panel of neuron-enriched proteins and diagnostic accuracy of glial and neuronal blood biomarkers GFAP and UCH-L1 in a large cohort of trauma patients with and without mild traumatic brain injury. JAMA Neurol 71:684–692. CrossRef Medline

Skogseid IM, Nordby HK, Urdal P, Paus T, Peeters W, van den Brande R, Polinder S, Brazinova A, Steyerberg EW, Lingsma HF, Maas AIR (2015) Epidemiology of traumatic brain injury in Europe. Acta Neurochir (Wien) 157:1683–1696. CrossRef Medline

Soksgaard IE, Nordby HK, Urdal P, Peeters W, Lilleaas F (1992) In–Vivo assessment of focal brain damage following head injury indicates brain damage. Acta Neurochir (Wien) 115:106–111. Medline

November/December 2016, 3(6) e0294-16.2016 eNeuro.org
Slobounov SM, Gay M, Zhang K, Johnson B, Pennell D, Sebastianelli W, Horovitz S, Hallett M (2011) Alteration of brain functional network at rest and in response to YMCA physical stress test in concussed athletes: RsFMRI study. Neuroimage 55:1716–1727. CrossRef Medline

Sorci G, Bianchi R, Giambanco I, Rambotti MG, Donato R (1999) Replicating myoblasts and fused myotubes express the calcium-regulated proteins S100A1 and S100B. Cell Calcium 25:93–106. CrossRef Medline

Steinman L (1996) Multiple sclerosis: a coordinated immunological attack against myelin in the central nervous system. Cell 85:299–302. Medline

Stocco CA, Oses JP, Cunha GS, Martins JB, Brum LM, Zimmer ER, Souza DO, Portela LA, Reischak-Oliveira A (2014) Serum S100B level increases after running but not cycling exercise. Appl Physiol Nutr Metab 39:340–344. CrossRef

Strathmann FG, Schulte S, Goerl K, Petron JD (2014) Blood-based biomarkers for traumatic brain injury: evaluation of research approaches, available methods and potential utility from the clinician and clinical laboratory perspectives. Clin Biochem 47:876–888. CrossRef Medline

Studer M, Goeggel Simonetti B, Heinzs T, Steinlin M, Leichtle A, Berger S, Joeris A (2015) Acute S100B in serum is associated with cognitive symptoms and memory performance 4 months after paediatric mild traumatic brain injury. Brain Inj 29:1667–1673. CrossRef Medline

Takala RS, Posti JP, Runtti H, Newcombe VF, Otutrim J, Katila AJ, Frantzen J, Ala-Seppälä H, Kyllönen A, Maanpää H-R, Tallus J, Hossain MI, Coles JP, Hutchinson P, van Gils M, Menon DK, Tenovuo O (2016) GFAP and UCH-L1 as outcome predictors in traumatic brain injury. World Neurosurg 87:8–20. CrossRef Medline

Teasdale G, Jennet B (1974) Assessment of coma and impaired consciousness. A practical scale. Lancet 304:81–84. CrossRef

Teasdale G, Maas A, Lecky F, Manley G, Tolan NV, Algeciras-Schimnich A, Singh RJ, Grebe RV, Glantz SB, Morrow JS (1998) Simultaneous degradation of alpha- and beta-spectrin-betaspectrin by caspase 3 (CPP32) in apoptotic cells. J Biol Chem 273:22490–22497. CrossRef

Vivekanand S, Brender JR, Lee SY, Ramamoorthy A (2011) A partially folded structure of amyloid-beta(1-40) in an aqueous environment. Biochem Biophys Res Commun 411:312–316. CrossRef Medline

Undén J, Romner B (2010) Can low serum levels of S100B predict normal CT findings after minor head injury in adults? An evidence-based review and meta-analysis. J Head Trauma Rehabil 25:228–240. CrossRef Medline

University of Eastern Finland, Brain Research Unit (n.d.) Alzheimer research. Available at: http://www2.uef.fi/en/alzheimer/markkeri-tutkimukset (Accessed September 22, 2016).

Vajtr D, Benada O, Linzer P, Sámal F, Springer D, Strejč P, Beran M, Průša R, Zima T (2012) Immunohistochemistry and serum values of S-100B, glial fibrillary acidic protein, and hyperphosphorylated neurofilaments in brain injuries. J Ev Purkyne 57:7–12.

Wang KK, Posmantur M, Giegengack I, Whitton M, Talanian RV, Glant SB, Morrow JS (1998) Simultaneous degradation of alpha-spectrin and beta-spectrin by caspase 3 (CPP32) in apoptotic cells. J Biol Chem 273:22490–22497. CrossRef

Welch JD, Ayaz SI, Lewis DM, Unten D, Chen JY, Miha VH, Saville B, Tyndall JA, Nash M, Buki A, Barzo P, Hack D, Tortella FC, Schmid K, Hayes RL, Vossough A, Swerduk ST, Bazaraj JJ (2016) Ability of serum glial fibrillary acidic protein, ubiquitin C-terminal hydrolase-L1, and S100B to differentiate normal and abnormal head computed tomography findings in patients with suspected mild or moderate traumatic brain injury. J Neurotrauma 33:1270–1277. CrossRef

Witman GB, Cleveland DW, Weingarten MD, Kirschen MW (1975) A protein factor essential for microtubule assembly. Proc Natl Acad Sci U S A 72:1858–1862. Medline

Wong MK, Yang Z, Yue JK, Zhang Z, Winkler A, Puccio AM, Diaz-Arrastia R, Lingsma HF, Yuh EL, Mukherjee P, Valadka AB, Gordon WA, Okonkwo DO, Manley GT, Cooper SR, Dams-O'Connor K, Hricik AJ, Inoue T, Maas AL, Menon DK, et al. (2016) Plasma anti-β glial fibrillary acidic protein autoantibody levels during the acute and chronic phases of traumatic brain injury: a transforming research and clinical knowledge in traumatic brain injury pilot study. J Neurotrauma 33:1270–1277. CrossRef

Wilkinson KD, Lee KM, Deshpande S, Duerksen-Hughes P, Boss JM, Pohl J (1989) The neuron-specific protein PGP 9.5 is a ubiquitin carboxyl-terminal hydrolase. Science 246:670–673. CrossRef

Witzman MB, Cleveland DW, Weingarten MD, Kirschen MW (1976) Tubulin requires tau for growth into microtubule initiating sites. Proc Natl Acad Sci U S A 73:4070–4074. Medline

Wolff H, Krall C, Pajenda G, Hajdu S, Widhalm H, Leitgeb J, Sarahrudi K (2016) Preliminary findings on biomarker levels from extracerebral sources in patients undergoing trauma surgery: potential implications for TBI outcome studies. Brain Inj 30:1220–1225. CrossRef Medline

Yamazaki Y, Yada K, Morii S, Kitahara T, Ohwada T (1995) Diagnostic significance of serum neuron-specific enolase and myelin basic protein assay in patients with acute head injury. Surg Neurol 43:267–271. Medline

November/December 2016, 3(6) e0294-16.2016 eNeuro.org
Yokobori S, Hosein K, Burks S, Sharma I, Gajavelli S, Bullock R (2013) Biomarkers for the clinical differential diagnosis in traumatic brain injury—a systematic review. CNS Neurosci Ther 19:556–565. CrossRef

Zemlan FP, Rosenberg WS, Luebbe PA, Campbell TA, Dean GE, Weiner NE, Cohen JA, Rudick RA, Woo D (1999) Quantification of axonal damage in traumatic brain injury: affinity purification and characterization of cerebrospinal fluid tau proteins. J Neurochem 72:741–750. Medline

Zetterberg H, Blennow K (2015) Fluid markers of traumatic brain injury. Mol Cell Neurosci 66:99–102. CrossRef Medline

Zetterberg H, Smith DH, Blennow K (2013) Biomarkers of mild traumatic brain injury in cerebrospinal fluid and blood. Nat Rev Neurol 9:201–210. CrossRef Medline

Zhang Z, et al. (2014) Human traumatic brain injury induces autoantibody response against glial fibrillary acidic protein and its breakdown products. PLoS One 9:e92698. CrossRef Medline

Żurek J, Fedora M (2012) The usefulness of S100B, NSE, GFAP, NF-H, secretagogin and Hsp70 as a predictive biomarker of outcome in children with traumatic brain injury. Acta Neurochir (Wien) 154:93–103.