Experimental investigation on the machinability characteristics in drilling of syntactic foams

Ashrith H S1,4, Jeevan T P2 and Mrityunjay Doddamani3
1Mechanical Engineering, Malnad College of Engineering, Hassan, India
2Mechanical Engineering, National Institute of Technology, Karnataka, Surathkal, India
4ashuhiriyal@gmail.com

Abstract. Syntactic foams (SFs) finds its application in automobiles, aircrafts and underwater vehicles. Drilling is most frequently used machining operation for assembly of these composite structures. In the present investigation, an effort is made to analyse the effect of cutting speed (C_s), feed rate (f_r), drill diameter (D) and filler content (F) on machinability characteristics in drilling glass microballoon (GMB) reinforced epoxy SFs. Machinability characteristics analyzed includes thrust force (T_f) and surface roughness (S_r). SFs are fabricated by dispersing 25, 35 and 45 vol.% of GMBs in epoxy resin. Experiments are carried out based on full factorial design (FFD) using TiAlN coated carbide drills. Experimental results show that T_f and S_r increases with increasing C_s. As f_r increases, T_f increases but decreases the S_r. Increasing GMB content significantly reduces the T_f and S_r of developed SFs.

1. Introduction
Lightweight materials synthesized by dispersing hollow microballoons in matrix material are called syntactic foams [1]. SFs are widely used for structural and buoyancy modules of submerged vehicle structures, where drilling holes is essential for installing various components. The quality of the drilled hole strongly depends on the input factors and their levels. Nearly 60% of composite parts are rejected due to poor hole quality which in turn substantially increasing the overall production cost [2].

Several researchers evaluated the effects of different input factors on drilling polymer composites. Studies have focused only on understanding the drilling process of fiber reinforced polymer composites (FRPC). Results shows that the increase in C_s, leads to increased T_f in drilling FRPC and the twist drills performed better than multifacet drills [3]. Basavarajappa et al. [4] analysed the influence of C_s and f_r on T_f, S_r, and specific cutting coefficient in drilling of FRPC with and without silicon carbide filler. Results indicate that f_r has a significant influence on T_f and S_r. A study on the impact of C_s, drill geometry and f_r on T_f, hole diameter and circularity error found that the optimum conditions were different in drilling of unreinforced and reinforced polyamides [5].

Even though a comprehensive literature on drilling of FRPC is available, drilling of syntactic foams is less explored, which is the focus of current study. In the current investigation an effort has been made to examine the influence of C_s, f_r, F and drill diameter (D) on T_f and S_r in drilling of GMB/epoxy SFs using CNC vertical machining center and using coated carbide twist drills.
2. Materials and methods

2.1. Constituent materials
Epoxy resin (LAPOX L-12) and hardener (K-6) obtained from Atul Ltd., India is used as resin. Hollow GMBs (SID-350 grade) procured from Trelleborg Offshore, USA are used as fillers.

2.2. Sample preparation
SFs are prepared by dispersing 25, 35 and 45 by vol.% of GMBs. GMBs are added to the resin matrix and stirred slowly until homogeneous slurry is formed. Hardener by 10 wt.% is then added to the slurry, which is then stirred for additional 5 minutes followed by a degassing period of 5 minutes prior to pouring to the molds (ϕ 35×16 mm). Silicone gel is smeared to the mould surfaces. Specimens are cured for 24 h at room temperature.

2.3. Experimentation
In the present investigation, \(T_f\) and \(S_r\) are chosen as responses. Input process parameters (\(C_s\), \(f_r\), \(F\) and \(D\)) and their levels are chosen based on previous investigations (Table 1). Overall 27 experiments with three trials are performed for each drill diameter based on FFD (Table 2).

Table 1. Input factors and levels
Parameters
Cutting speed (\(C_s\), m/min)
Feed (\(f_r\), mm/rev)
Filler content (\(F\), %)

Table 2. Experimental layout plan and measured value of responses
Exp. No.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
Drilling experiments are performed according to FFD with coated carbide twist drills (D_8 and D_{16}) fitted on a vertical CNC machining centre (MAX MILL PLUS+, MTAB, Chennai, India). Strain gauge type of dynamometer (Syscon Instruments Pvt. Ltd., India) is used to measure the T_f and S_r of hole is examined using Mitutoyo surftest (SJ 301, Japan). Input factors (I) and their levels (L) are coded together as I_L. For example, C_{s25} represents 25 m/min cutting speed.

3. Result and discussion

3.1. Analysis of thrust force

![Figure 1](image1.png)

Figure 1. Effect of (a) C_s and f_r, (b) F and C_s and (c) f_r and F on T_f for D_8.

![Figure 2](image2.png)

Figure 2. Effect of (a) C_s and f_r, (b) F and C_s and (c) f_r and F on T_f for D_{16}.

Experimentally measured values of T_f are presented in Table 2. The variation of T_f with C_s at different f_r, for D_8 and D_{16} are shown in Figure 1a and Figure 2a respectively. T_f increases with increasing cutting speed and feed. Increased tool wear at higher C_s might result in such an observation [3]. T_f as a function of F and C_s for D_8 and D_{16} are shown in Figure 1b and Figure 2b respectively. T_f decreases with increasing F, while increases with increasing C_s. Decrease in T_f is due to the increased brittle behaviour of the SFs and also the presence of void inside GMBs. Figure 1c and Figure 2c shows the increasing T_f with increasing f_r, while decreases with increasing F for D_8 and D_{16} respectively. As f_r increases resistance offered by the SFs increases leading to increased friction between tool and SFs resulting higher T_f [4, 6].
3.2. Analysis of surface roughness
Surface roughness increases with increasing cutting speed for both D_8 and D_{16} as shown in Figure 3a and Figure 4a respectively. Heat increases at the drill and SFs interface with increasing Cs leading to rough surface [7, 8].

![Figure 3a](image-url)

Figure 3a Effect of Cs and fr, (a) F and Cs and (c) fr and F on Sr for D_8.

![Figure 3b](image-url)

Figure 3b and **Figure 4b** shows decrease in Sr with increasing F, while increasing trend is observed with increasing Cs. Decrease in Sr with increasing F is owing to the burnishing and honing effect produced by abrasive fillers [4]. Additionally, lower T_f with increased F results in reduced Sr [7, 9]. The variation of Sr with fr and F for D_8 and D_{16} are shown in Figure 3c and Figure 4c respectively. Sr decrease with increasing F and fr. At higher fr, temperature decreases due to reduced contact time between tool and SFs leading to lower fr [8].

3.3. Influence of drill diameter on responses

![Figure 4a](image-url)

Figure 4a Effect of (a) Cs and fr, (b) F and Cs and (c) fr and F on Sr for D_{16}.

![Figure 4b](image-url)

![Figure 4c](image-url)

Figure 4b and **Figure 4c** shows decrease in Sr with increasing F, while increasing trend is observed with increasing Cs. Decrease in Sr with increasing F is owing to the burnishing and honing effect produced by abrasive fillers [4]. Additionally, lower T_f with increased F results in reduced Sr [7, 9]. The variation of Sr with fr and F for D_8 and D_{16} are shown in Figure 3c and Figure 4c respectively. Sr decrease with increasing F and fr. At higher fr, temperature decreases due to reduced contact time between tool and SFs leading to lower fr [8].

![Figure 5a](image-url)

![Figure 5b](image-url)

Figure 5 Influence of drill diameter on (a) T_f and (b) Sr at different filler content.
Figure 5a shows the effect of increasing D at different T_f on the T_f developed in drilling GMB/epoxy SFs. It is observed that the T_f increases by 2.5 times with increasing D from D_8 to D_{16}. As D increases, the contact area of the drilled hole increases leading to higher T_f [10, 11]. Increasing D from D_8 to D_{16} decreases the S_r of the drilled hole as shown in Figure 5b. S_r decreases by 17.84 and 26.88% with increasing D for F_{25} and F_{45} respectively. At any given C_s, D_{16} has a lower spindle speed than D_8 which results in lower S_r [7, 12].

From experimental investigation it is confirmed that GMB content strongly impacts machinability characteristics of SFs. Higher filler percentage is preferred in the SFs from drilling operations perspective, which is also beneficial for weight sensitive applications.

Conclusions

GMB/epoxy SFs are studied for drilling characteristics, such as T_f and S_r. C_s, f_r, and F are varied at different levels to measure the responses. The effect of each variable on machinability characteristics are analyzed and presented. The following conclusions are drawn based on the experimental investigation:

- Increase in C_s, f_r, and D increases T_f while decreasing trend is obtained with increasing GMB content.
- Minimum T_f is observed at a combination of $C_{25F_{10}D_8}$.
- S_r increases with increasing C_s but decreases with the increase in f_r, F and D.
- S_r is found to be minimum at a combination of $C_{25F_{10}D_{16}}$.
- Increasing GMB content from F_{25} to F_{45} reduces T_f and S_r by 20.92 and 3.92% respectively.
- SFs with high GMB content exhibits better machinability in terms of T_f and S_r.

References

[1] Gupta, N., Kishore, E. Woldesenbet, and S. Sankaran, Studies on compressive failure features in syntactic foam material. Journal of Materials Science, 2001. 36(18): p. 4485-4491.
[2] Capello, E., A. Langella, L. Nele, A. Paoletti, L. Santo, and V. Tagliaferri, Drilling polymeric matrix composites. Machining. Fundamentals and recent advances, 2008. 10: p. 167-194.
[3] Lin, S. and I. Chen, Drilling carbon fiber-reinforced composite material at high speed. Wear, 1996. 194(1-2): p. 156-162.
[4] Basavarajappa, S., A. Venkatesh, V. Gaitonde, and S. Karnik, Experimental investigations on some aspects of machinability in drilling of glass epoxy polymer composites. Journal of Thermoplastic Composite Materials, 2012. 25(3): p. 363-387.
[5] Rubio, J.C.C., L.J. da Silva, W. de Oliveira Leite, T.H. Panzera, S.L.M. Ribeiro Filho, and J.P. Davim, Investigations on the drilling process of unreinforced and reinforced polyamides using Taguchi method. Composites Part B: Engineering, 2013. 55: p. 338-344.
[6] Gaitonde, V., S. Karnik, F. Mata, and J.P. Davim, Study on some aspects of machinability in unreinforced and reinforced polyamides. Journal of Composite Materials, 2009. 43(7): p. 725-739.
[7] Gaitonde, V., S. Karnik, J.C. Rubio, A. Abrão, A.E. Correia, and J.P. Davim, Surface roughness analysis in high-speed drilling of unreinforced and reinforced polyamides. Journal of Composite Materials, 2012. 46(21): p. 2659-2673.
[8] Campos Rubio, J.C., A.M. Abrão, P. Eustaquio Faria, A.E. Correia, and J.P. Davim, Delamination in high speed drilling of carbon fiber reinforced plastic (CFRP). Journal of composite materials, 2008. 42(15): p. 1523-1532.
[9] Palanikumar, K., Experimental investigation and optimisation in drilling of GFRP composites. Measurement, 2011. 44(10): p. 2138-2148.
[10] El-Sonbaty, I., U. Khashaba, and T. Machaly, *Factors affecting the machinability of GFR/epoxy composites*. Composite structures, 2004. 63(3): p. 329-338.

[11] Rajamurugan, T., K. Shanmugam, and K. Palanikumar, *Analysis of delamination in drilling glass fiber reinforced polyester composites*. Materials & Design, 2013. 45: p. 80-87.

[12] Khashaba, U., I. El-Sonbaty, A. Selmy, and A. Megahed, *Machinability analysis in drilling woven GFR/epoxy composites: Part I–Effect of machining parameters*. Composites Part A: Applied Science and Manufacturing, 2010. 41(3): p. 391-400.