4-(3-Alkyl/benzyl-guanidino)benzenesulfonamides as selective carbonic anhydrase VII inhibitors

Morteza Abdoli a, Simone Giovannuzzi b, Claudiu T. Supuran b and Raivis Žalubovskis a,c

aFaculty of Materials Science and Applied Chemistry, Institute of Technology of Organic Chemistry, Riga Technical University, Riga, Latvia; bNeurofarba Department, Universita Degli Studi di Firenze, Florence, Italy; cLatvian Institute of Organic Synthesis, Riga, Latvia

ABSTRACT

The treatment of chronic neuropathic pain remains one of the most challenging of all neurological diseases and very much an art. There exists no consensus for the optimal management of this condition at the moment. Gaining inspiration from recent studies which pointed out the involvement of brain-associated carbonic anhydrase (CA, EC 4.2.1.1) isoform VII in the pathology of various neurodegenerative diseases, which highlighted the relationship between selective inhibition of this isozyme and relieve of neuropathic pain, herein we report the synthesis and CA VII inhibitory activity of novel 4-(3-alkyl/benzyl-guanidino)benzenesulfonamides. Ten benzyl-substituted and five alkyl-substituted 4-guanidinobenzenesulfonamide derivatives were obtained, some of which (7c, 7h, 7m and 7o) exhibited satisfactory selectivity towards CA VII over CA I and II, with K_i-s in the subnanomolar range and good selectivity indexes for inhibiting the target versus the off-target isoforms.

1. Introduction

As its name suggests, carbonic anhydrases (CAs, EC 4.2.1.1) are enzymes which catalyse the reversible hydration/dehydration of carbon dioxide (CO_2) to bicarbonate (HCO_3^-) and protons (H^+)1. These enzymes are constitutively produced in all tissues, organs and cells and comprise 15 different isoforms (CA I, II, III, VA, VB, VI, VII, VIII, IX, X, XI, XII, XIII, XIV and XV) in humans, according to their subcellular localisation2. There is increasing evidence that CAs play a key role in a variety of diseases, including edema, epilepsy, cancer, glaucoma, haemolytic anaemia, obesity, sterility and other disorders3. Hence, isoform-selective targeting hCAs is an important approach for discovery and development of selective, effective and safe novel drugs4.

Primary sulfonamides were discovered as CA inhibitors (CAIs) in the ‘40s of the last century, and majority of the drugs launched in the next decades (diuretics, antiepileptics, or antiglaucoma agents) belonged to this class of compounds or to their isosteres such as the sulfamates and sulfamides5–9. A major pitfall of the first generation of CAIs was their lack of isoform selectivity, keeping in mind that in humans are present at least 12 catalytically active and three acatalytic isoforms5–13. In last decade a discovery was made and the new generation of CAIs belonging to coumarins and sulfocoumarins and their bioisosteres showed significant isoform-selective inhibition profiles, as demonstrated in a number of studies14–32. This is principally due to the fact that these compounds possess a distinct inhibition mechanism compared to the sulfonamides, which coordinate to the zinc ion from the CA active site as anions5–13. Recently so-called tail approach also has proven to give considerable inhibition selectivity among CA isoforms in case of primary sulfonamides31,32. This approach was chosen also for this study.

Neuropathic pain is a neurological disorder caused by a lesion or disease affecting the peripheral or central nervous system33. Often, patients with chronic neuropathic pain experience severe and unrelenting pain; thus sometimes opioid analgesics are prescribed to relieve pain34. Anticonvulsant drugs acting at calcium channels (e.g. pregabalin and gabapentin) and antidepressant agents (e.g. duloxetine) are the first-line options for management of this pain35,36. However, their efficacies are not high, and also associated with several side effects. Therefore, undoubtedly there is an unmet medical need to discover a new pharmacological class for the treatment of neuropathic pain.

Although the mechanisms of neuropathic pain for big extend remain unclear, recent studies have highlighted the involvement of the brain-associated CA VII isoform in the pathology of this syndrome37. Thereby, isoform-selective CAVII inhibitors are recognised as promising agents for management of neuropathic pain. Needless to say that primary sulfonamides (R-SO_2NH_2) are the main class of CA inhibitors and logically utmost studies on the inhibition of CA VII are relying on the use of sulfonamide-based compounds38. Intriguingly, recent works by one of our groups indicated that the incorporation of guanidine moiety into sulfonamide-containing compounds resulting in CA inhibitors with enhanced efficiency and selectivity (Figure 1)39–41. Keeping these interesting facts in mind and in connection with our works on the field of CA inhibitors16,19,27,42, we decided to synthesis a series of novel 4-(3-alkyl/benzyl-guanidino)benzenesulfonamides and investigate their inhibitory activity against CA VII (Figure 2).
2. Experimental section

2.1. Chemistry

Reagents, starting materials and solvents were obtained from commercial sources and used as received. Thin-layer chromatography was performed on silica gel, spots were visualised with UV light (254 and 365 nm). NMR spectra were recorded on Bruker 300 spectrometer with chemical shifts values (δ) in ppm relative to TMS using the residual DMSO-d6 signal (1H 2.50; 13C 39.52). High-resolution mass spectra (HRMS) were recorded on a mass spectrometer with a Q-TOF micro mass analyser using the ESI technique.

2.2. Synthesis

2.2.1. 4-Thioureaobenzenesulfonamide (5)

To a solution of 4-aminobenzensulfonamide (30 g, 174.3 mmol) in 3.5 M HCl (180 ml), which was heated at 70 °C and cooled to room temperature, KSCN (16.94 g, 174.3 mmol) was added and the mixture was refluxed for 3 h. After cooling to room temperature, the reaction mixture was diluted with ice-cold water. Solids were collected by filtration, washed with water and air dried to afford 5 (12.1 g, 31%) as white powder.

1H NMR (300 MHz, DMSO-d6) δ = 7.32 (s, 2H), 7.69 (d, 2H, J = 8.6 Hz), 7.77 (d, 2H, J = 8.6 Hz), 10.02 (s, 1H) ppm 13C NMR (75 MHz, DMSO-d6) δ = 122.8, 127.3, 139.8, 143.9, 182.8 ppm MS (ESI) [M + H]+: m/z calcd for (C14H13N2O2S) 232.0.

2.2.2. Methyl (4-sulfamoylphenyl)carbamimidothioate (6)

To a solution of 4-thioureaobenzenesulfonamide (5) (10.0 g, 43.28 mmol) in DMF (100 ml), Mel (2.69 ml, 43.28 mmol) at room temperature was added and the mixture was heated at 40 °C for 2.5 h. After cooling to room temperature water (150 ml) was added and the mixture was extracted with EtOAc (3 × 50 ml). Organic layer was washed with aq. sat. NaHCO3 (2 × 50 ml) and aq. sat. NH4Cl (50 ml), and dried over Na2SO4. Solvent evaporation in vacuum afforded 6 (7.43 g, 70%) as white powder.

1H NMR (300 MHz, DMSO-d6) δ = 2.37 (s, 3H), 6.63 (s, 2H), 6.94 (s, 2H), 7.22 (s, 2H), 7.71 (d, 2H, J = 8.4 Hz) ppm 13C NMR (75 MHz, DMSO-d6) δ = 14.2, 122.8, 127.7, 138.0, 153.9, 157.0 ppm HRMS (ESI) [M + H]+: m/z calcd for (C8H12N3O2S2) 246.0371. Found 246.0372.

2.2.3. 4-(3-Benzyl-guanidino)benzenesulfonamide (7a)

To a solution of 6 (300 mg, 1.22 mmol) in DMSO (8 ml), benzylamine (1.066 ml, 9.76 mmol) was added and the reaction mixture was stirred in sealed tube at 130 °C for 2 h. After cooling to room temperature water (40 ml) was added and the mixture was extracted with EtOAc (3 × 20 ml). The organic phase was dried over Na2SO4 and the solvent was removed under reduced pressure. The residue was dissolved in iPrOH (5 ml) under gentle heating and product was precipitated by addition of hexanes (40 ml). Precipitate was collected by filtration and dried under vacuum to afford the 7a as white solids (187 mg, 50%) as white powder.

1H NMR (300 MHz, DMSO-d6 + D2O) δ = 4.39 (2H, s), 6.93 (d, 2H, J = 8.8 Hz), 7.29 (s, 1H), 7.37 (s, 4H), 7.65 (d, 2H, J = 8.8 Hz) ppm 13C NMR (75 MHz, DMSO-d6 + D2O) δ = 44.4, 123.1, 127.2, 127.3, 127.7, 128.7, 135.1, 140.7, 152.6, 154.9 ppm HRMS (ESI) [M + H]+: m/z calcd for (C14H17N4O2S) 305.1078. Found 305.1078.
2.2.4. 4-(3-(4-Methoxybenzyl)guanidino)benzenesulfonamide (7b)

To a solution of 6 (300 mg, 1.22 mmol) in DMSO (8 ml), (4-methoxyphenyl)methanamine (1.275 ml, 9.76 mmol) was added and the reaction mixture was stirred in sealed tube at 130 °C for 2 h. After cooling to room temperature water (40 ml) was added and mixture was extracted with EtOAc (3 × 20 ml). The organic phase was dried over Na2SO4. Solvent evaporation under reduced pressure afforded 7b (305 mg, 74%) as white powder.

1H NMR (300 MHz, DMSO-d6) δ = 3.74 (s, 3H), 4.30 (s, 2H), 6.90 (s, 2H), 6.93 (s, 2H), 7.29 (d, 2H, J = 8.4 Hz), 7.64 (d, 2H, J = 8.4 Hz) ppm. 13C NMR (75 MHz, DMSO-d6) δ = 44.7, 65.3, 114.9, 123.8, 128.1, 129.9, 133.5, 135.7, 153.5, 155.9, 159.4 ppm. HRMS (ESI) [M + H]+: m/z calc for (C15H19N4O3S) 335.1178. Found 335.1180.

2.2.5. 4-(3-(4-Fluorobenzyl)guanidino)benzenesulfonamide (7c)

To a solution of 6 (300 mg, 1.22 mmol) in DMSO (8 ml), (4-fluorophenyl)methanamine (1.110 ml, 9.76 mmol) was added and the reaction mixture was stirred in sealed tube at 130 °C for 2 h. After cooling to room temperature water (40 ml) was added and mixture was extracted with EtOAc (3 × 20 ml). The organic phase was dried over Na2SO4 and the solvent was removed under reduced pressure. The residue was dissolved in iPrOH (5 ml) under gentle warming and product was precipitated by addition of hexanes (40 ml). Precipitate was collected by filtration and dried in vacuum to afford 7c (354 mg, 90%) as white powder.

1H NMR (300 MHz, DMSO-d6) δ = 3.70 (s, 3H), 4.30 (s, 2H), 6.97 (s, 2H), 6.99 (s, 2H), 7.28 (d, 2H, J = 8.1 Hz), 7.63 (d, 2H, J = 8.1 Hz) ppm. 13C NMR (75 MHz, DMSO-d6) δ = 39.1, 116.2 (d, J = 21.0 Hz), 123.7, 125.5 (d, J = 3.2 Hz), 128.0 (d, J = 6.6 Hz), 128.2, 129.9 (d, J = 8.19 Hz), 130.7 (d, J = 4.6 Hz), 136.0, 153.1, 155.2, 160.3 (d, J = 242.4 Hz) ppm. HRMS (ESI) [M + H]+: m/z calc for (C14H16N4O2FS) 323.0978. Found 323.0986.

2.2.6. 4-(3-(3-Fluorobenzyl)guanidino)benzenesulfonamide (7d)

To a solution of 6 (300 mg, 1.22 mmol) in DMSO (8 ml), (3-fluorophenyl)methanamine (1.113 ml, 9.76 mmol) was added and the reaction mixture was stirred in sealed tube at 130 °C for 2 h. After cooling to room temperature water (40 ml) was added and mixture was extracted with EtOAc (3 × 20 ml). The organic phase was dried over Na2SO4 and the solvent was removed under reduced pressure. The residue was dissolved in iPrOH (5 ml) under gentle warming and product was precipitated by addition of hexanes (40 ml). Precipitate was collected by filtration and dried in vacuum to afford 7d (286 mg, 72%) as white powder.

1H NMR (300 MHz, DMSO-d6) δ = 4.42 (s, 2H), 6.93 (d, J = 6.9 Hz), 7.07–7.41 (m, 4H), 7.65 (d, J = 6.9 Hz) ppm. 13C NMR (75 MHz, DMSO-d6) δ = 40.6, 114.6 (d, J = 30.7 Hz), 114.9 (d, J = 30.7 Hz), 123.8, 124.4, 128.1, 131.4 (d, J = 8.1 Hz), 136.2, 144.8 (d, J = 6.9 Hz), 153.3, 155.0, 163.5 (d, J = 241.5 Hz) ppm. HRMS (ESI) [M + H]+: m/z calc for (C14H17N4O2FS) 319.1229. Found 319.1241.

2.2.7. 4-(3-(2-Fluorobenzyl)guanidino)benzenesulfonamide (7e)

To a solution of 6 (300 mg, 1.22 mmol) in DMSO (8 ml), (2-fluorophenyl)methanamine (1.110 ml, 9.76 mmol) was added and the reaction mixture was stirred in sealed tube at 130 °C for 2 h. After cooling to room temperature water (40 ml) was added and mixture was extracted with EtOAc (3 × 20 ml). The organic phase was dried over Na2SO4 and the solvent was removed under reduced pressure. The residue was dissolved in iPrOH (5 ml) under gentle warming and product was precipitated by addition of hexanes (40 ml). Precipitate was collected by filtration and dried in vacuum to afford 7e (193 mg, 49%) as white powder.

1H NMR (300 MHz, DMSO-d6) δ = 4.43 (s, 2H), 6.92 (d, 2H, J = 8.3 Hz), 7.127 (m, 4H), 7.64 (d, 2H, J = 8.33 Hz) ppm. 13C NMR (75 MHz, DMSO-d6) δ = 39.1, 116.2 (d, J = 21.0 Hz), 123.7, 125.5 (d, J = 3.2 Hz), 128.0 (d, J = 6.6 Hz), 128.2, 129.9 (d, J = 8.19 Hz), 130.7 (d, J = 4.6 Hz), 136.0, 153.1, 155.2, 160.3 (d, J = 242.4 Hz) ppm. HRMS (ESI) [M + H]+: m/z calc for (C14H16N4O2FS) 323.0978. Found 323.0992.

2.2.8. 4-(3-(3-Methylbenzyl)guanidino)benzenesulfonamide (7f)

To a solution of 6 (300 mg, 1.22 mmol) in DMSO (8 ml), m-tolylmethanamine (1.224 ml, 9.76 mmol) was added and the reaction mixture was stirred in sealed tube at 130 °C for 2 h. After cooling to room temperature water (40 ml) was added and mixture was extracted with EtOAc (3 × 20 ml). The organic phase was dried over Na2SO4 and the solvent was removed under reduced pressure. The residue was dissolved in iPrOH (5 ml) under gentle warming and product was precipitated by addition of hexanes (40 ml). Precipitate was collected by filtration and dried in vacuum to afford 7f (252 mg, 65%) as white powder.

1H NMR (300 MHz, DMSO-d6) δ = 2.33 (s, 3H), 4.36 (s, 2H), 6.94 (d, 2H, J = 7.6 Hz), 7.10–7.26 (m, 4H), 7.65 (d, 2H, J = 7.6 Hz) ppm. 13C NMR (75 MHz, DMSO-d6) δ = 22.3, 45.2, 123.8, 125.6, 128.0, 128.9, 131.3, 138.9, 141.3, 153.4, 155.4 ppm. HRMS (ESI) [M + H]+: m/z calc for (C14H15N4O2SF) 319.1229. Found 319.1241.

2.2.9. 4-(3-(2-Methylbenzyl)guanidino)benzenesulfonamide (7g)

To a solution of 6 (300 mg, 1.22 mmol) in DMSO (8 ml), o-tolylmethanamine (1.210 ml, 9.76 mmol) was added and the reaction mixture was stirred in sealed tube at 130 °C for 2 h. After cooling to room temperature water (40 ml) was added and mixture was extracted with EtOAc (3 × 20 ml). The organic phase was dried over Na2SO4 and the solvent was removed under reduced pressure. The residue was dissolved in iPrOH (5 ml) under gentle warming and product was precipitated by addition of hexanes (40 ml). Precipitate was collected by filtration and dried in vacuum to afford 7g (305 mg, 74%) as white powder.
pressure. The residue was dissolved in iPrOH (5 ml) under gentle warming and product was precipitated by addition of hexanes (40 ml). Precipitate was collected by filtration and dried in vacuum to afford 7g (315 mg, 81%) as white powder.

\[^1H \text{ NMR} (300 \text{ MHz}, \text{ DMSO-d}_6 + \text{D}_2\text{O}) \delta = 2.32 \text{ (s, 3H), 4.36 (s, 2H), 6.94 (d, 2H, J = 8.3 Hz), 7.16-7.33 (m, 4H), 7.65 (d, 2H, J = 8.3 Hz) ppm} \]

\[^13\text{C NMR} (75 \text{ MHz, DMSO-d}_6 + \text{D}_2\text{O}) \delta = 19.8, 43.5, 123.9, 127.1, 128.1, 128.8, 131.3, 136.1, 137.0, 139.0, 153.5, 155.3 \text{ ppm HRMS (ESI) [M+H]}^+: m/z \text{ calcd for (C}_{15}\text{H}_{19}\text{N}_4\text{O}_2\text{S)} 319.1229. \text{ Found 319.1227.} \]

2.2.10. 4-(3-(1-Phenylethyl)guanidino)benzenesulfonamide (7h)

To a solution of 6 (300 mg, 1.22 mmol) in DMSO (8 ml), 1-phenylethanamine (1.258 ml, 9.76 mmol) was added and the reaction mixture was stirred in sealed tube at 130 °C for 2 h. After cooling to room temperature water (40 ml) was added and mixture was extracted with EtOAc (3 × 20 ml). The organic phase was dried over Na₂SO₄ and the solvent was removed under reduced pressure. The residue was dissolved in iPrOH (5 ml) under gentle warming and product was precipitated by addition of hexanes (40 ml). The precipitate was collected by filtration and dried in vacuum to afford 7h (232 mg, 59%) as white powder.

\[^1H \text{ NMR} (300 \text{ MHz}, \text{ DMSO-d}_6 + \text{D}_2\text{O}) \delta = 1.41 \text{ (d, 3H, J = 5.9 Hz), 4.97 (q, 1H, J = 5.9 Hz), 6.85 (d, 2H, J = 7.6 Hz), 7.25 (s, 1H), 7.38 (app s, 4H), 7.62 (d, 2H, J = 7.6 Hz) ppm} \]

\[^13\text{C NMR} (75 \text{ MHz, DMSO-d}_6 + \text{D}_2\text{O}) \delta = 24.5, 50.7, 123.8, 127.2, 127.8, 128.1, 129.6, 135.9, 146.8, 152.7, 155.5 \text{ ppm HRMS (ESI) [M+H]}^+: m/z \text{ calcd for (C}_{21}\text{H}_{23}\text{N}_4\text{O}_3\text{S) 395.1542. Found 395.1553.} \]

2.2.11. 4-(3-Methyl-3-(3-methylbenzyl)guanidino)benzenesulfonamide (7i)

To a solution of 6 (300 mg, 1.22 mmol) in DMSO (8 ml), N-methyl-1-((m-tolyl)methanamine (1.466 ml, 9.76 mmol) was added and the reaction mixture was stirred in sealed tube at 130 °C for 2 h. After cooling to room temperature water (40 ml) was added and mixture was extracted with EtOAc (3 × 20 ml). The organic phase was dried over Na₂SO₄ and the solvent was removed under reduced pressure. The residual solid was washed with iPrOH (20 ml) and dried in vacuum to afford 7i (292 mg, 72%) as white powder.

\[^1H \text{ NMR} (300 \text{ MHz}, \text{ DMSO-d}_6 + \text{D}_2\text{O}) \delta = 2.33 \text{ (s, 3H), 2.88 (s, 3H), 4.59 (s, 2H), 6.90 (d, 2H, J = 8.4 Hz), 7.09-7.29 (m, 4H), 7.67 (d, 2H, J = 8.4 Hz) ppm} \]

\[^13\text{C NMR} (75 \text{ MHz, DMSO-d}_6 + \text{D}_2\text{O}) \delta = 22.4, 36.2, 53.2, 123.7, 125.6, 128.2, 128.8, 129.1, 129.6, 135.5, 138.8, 139.9, 154.5, 156.4 \text{ ppm HRMS (ESI) [M+H]}^+: m/z \text{ calcd for (C}_{16}\text{H}_{24}\text{N}_4\text{O}_2\text{S) 333.1385. Found 333.1395.} \]

2.2.12. 4-(3,3-Dibenzyl-guanidino)benzenesulfonamide (7j)

To a solution of 6 (300 mg, 1.22 mmol) in DMSO (8 ml), dibenzylamine (1.876 ml, 9.76 mmol) was added and the reaction mixture was stirred in sealed tube at 130 °C for 2 h. After cooling to room temperature water (40 ml) was added and mixture was extracted with EtOAc (3 × 20 ml). The organic phase was dried over Na₂SO₄ and the solvent was removed under reduced pressure. The residue was dissolved in iPrOH (5 ml) under gentle warming and product was precipitated by addition of hexanes (40 ml). The precipitate was collected by filtration and dried in vacuum to afford 7j (279 mg, 58%) as white powder.

\[^1H \text{ NMR} (300 \text{ MHz}, \text{ DMSO-d}_6 + \text{D}_2\text{O}) \delta = 4.58 \text{ (s, 4H), 6.91 (dd, 2H, J = 6.8, 1.6 Hz), 7.29-7.40 (m, 10H), 7.66 (dd, 2H, J = 6.8, 1.6 Hz) ppm} \]

\[^13\text{C NMR} (75 \text{ MHz, DMSO-d}_6 + \text{D}_2\text{O}) \delta = 50.7, 123.7, 128.2, 128.4, 129.7, 135.7, 139.7, 154.17, 156.06 \text{ ppm HRMS (ESI) [M+H]}^+: m/z \text{ calcd for (C}_{21}\text{H}_{18}\text{N}_4\text{O}_2\text{S) 395.1542. Found 395.1553.} \]

2.2.13. 4-(3-(2-Phenoxyethyl)guanidino)benzenesulfonamide (7k)

To a solution of 6 (300 mg, 1.22 mmol) in DMSO (8 ml), 2-phenoxyethanamine (1.277 ml, 9.76 mmol) was added and the reaction mixture was stirred in sealed tube at 130 °C for 6 h. After cooling to room temperature water (40 ml) was added and mixture was extracted with EtOAc (3 × 20 ml). The organic phase was dried over Na₂SO₄ and the solvent was removed under reduced pressure. The residue was dissolved in iPrOH (5 ml) under gentle warming and product was precipitated by addition of hexanes (40 ml). The precipitate was collected by filtration and dried under vacuum to afford 7k (118 mg, 29%) as orange powder.

\[^1H \text{ NMR} (300 \text{ MHz, DMSO-d}_6 + \text{D}_2\text{O}) \delta = 3.48-3.56 (m, 2H), 4.04-4.11 (m, 2H), 6.85-7.01 (m, 5H), 7.31 (q, 2H, J = 7.4 Hz), 7.65 (d, 2H, J = 8.4 Hz) ppm \]

\[^13\text{C NMR} (75 \text{ MHz, DMSO-d}_6 + \text{D}_2\text{O}) \delta = 41.2, 67.7, 115.6, 115.7, 121.9, 123.9, 128.1, 130.8, 136.2, 153.5, 159.7 \text{ ppm HRMS (ESI) [M+H]}^+: m/z \text{ calcd for (C}_{21}\text{H}_{23}\text{N}_4\text{O}_2\text{S) 335.1178. Found 335.1193.} \]

2.2.14. Synthesis of 4-(3-octylguanidino)benzenesulfonamide (7l)

To a solution of 6 (300 mg, 1.22 mmol) in DMSO (8 ml), octan-1-amine (1.613 ml, 9.76 mmol) was added and the reaction mixture was stirred in sealed tube at 130 °C for 2 h. After cooling to room temperature water (40 ml) was added and mixture was extracted with EtOAc (3 × 20 ml). The organic phase was dried over Na₂SO₄ and the solvent was removed under reduced pressure. The residue was dissolved in iPrOH (5 ml) under gentle warming and product was precipitated by addition of hexanes (40 ml). The precipitate was collected by filtration and dried in vacuum to afford 7l (338 mg, 85%) as white powder.
2.2.16. Synthesis of 4-(3-hexadecylguanidino)benzenesulfonamide (7m)

To a solution of 6 (300 mg, 1.22 mmol) in DMSO (8 ml), dodecan-1-amine (1.809 g, 9.76 mmol) was added and the reaction mixture was stirred in sealed tube at 130 °C for 2 h. After cooling to room temperature water (40 ml) was added and mixture was extracted with EtOAc (3 x 20 ml). The organic phase was dried over Na2SO4 and the solvent was removed under reduced pressure. The residue was dissolved in PrOH (5 ml) under gentle warming and the precipitate formed was collected by filtration and dried in vacuum to afford 7m (402 mg, 88%) as white powder.

1H NMR (300 MHz, DMSO-d6 + D2O) δ = 0.88 (t, 3H, J = 6.3 Hz), 1.15–1.27 (m, 18H), 1.47 (s, 2H), 3.14 (t, 2H, J = 8.1 Hz), 6.88 (d, 2H, J = 8.4 Hz) ppm 13C NMR (75 MHz, DMSO-d6 + D2O) δ = 15.3, 23.5, 27.8, 30.0, 30.1, 30.5, 32.6, 41.7, 124.0, 128.1, 135.3, 153.8, 156.1 ppm HRMS (ESI) [M + H]+: m/z calcld for (C19H35N4O2S) 383.2490. Found 383.2491.

2.2.17. 4-Benzyl-N-(4-sulfamoylphenyl)piperazine-1-carboximidamide (7o)

To a solution of 6 (300 mg, 1.22 mmol) in DMSO (8 ml), 1-benzylpiperazine (1.696 ml, 9.76 mmol) was added and the reaction mixture was stirred in sealed tube at 130 °C for 6 h. After cooling to room temperature water (40 ml) was added and the mixture was extracted with EtOAc (3 x 20 ml). The organic phase was dried over Na2SO4 and the solvent was removed under reduced pressure. The residual oily solid was washed with Et2O (20 ml) and dried under vacuum to afford 7o (402 mg, 88%) as white powder.

1H NMR (300 MHz, DMSO-d6 + D2O) δ = 2.41 (s, 4H), 3.38 (s, 4H), 3.52 (s, 2H), 6.86 (d, 2H, J = 8.3 Hz), 7.28-7.39 (m, 5H), 7.65 (d, 2H, J = 8.3 Hz) ppm 13C NMR (75 MHz, DMSO-d6 + D2O) δ = 36.9, 63.3, 123.7, 128.1, 128.2, 128.4, 130.2, 130.3, 135.9, 154.2, 154.6 ppm HRMS (ESI) [M + H]+: m/z calcld for (C18H28N4O2S) 374.1651. Found 374.1649.

2.3. CA inhibitory assay

An applied photophysics stopped-flow instrument has been used for assaying the CA-catalysed CO2 hydration activity. Phenol red (at a concentration of 0.2 mM) was used as indicator, working at the absorbance maximum of 557 nm, with 20 mM Hepes (pH 7.5) as buffer and 20 mM Na2SO4 (for maintaining constant the ionic strength), following the initial rates of the CA-catalysed CO2 hydration reaction for a period of 10–100 s. The CO2 concentrations ranged from 0.7 to 17 mM for the determination of the kinetic parameters and inhibition constants. For each inhibitor, at least six traces of the initial 5–10% of the reaction have been used for determining the initial velocity. The uncatalysed rates were determined in the same manner and subtracted from the total observed rates. Stock solutions of inhibitor (0.1 mM) were prepared in distilled-deionised water, and dilutions up to 0.01 mM
were done thereafter with the assay buffer. Inhibitor and enzyme solutions were preincubated together for 6 h at room temperature prior to assay in order to allow for the formation of the E-I complex. The inhibition constants were obtained by nonlinear least-squares methods using PRISM 3 and the Cheng-Prusoff equation, as reported earlier54–57, and represent the mean from at least three different determinations. All CA isoforms were recombinant ones obtained in-house as reported earlier54–57.

3. Results and discussion

3.1. Chemistry

Desired 4-(3-alkyl/benzyl-guanidino)benzenesulfonamides 7a–o were obtained in three step synthesis (Scheme 1). In the first step 4-aminobenzenesulfonamide (4) was reacted with KSCN under acidic conditions, thus obtaining intermediate-4-thioureido-benzenesulfonamide (5). In the intermediate 5 the reactive thiourea functionality was selectively converted into methyl carbamimido-thioate 6 through the treatment with methyl iodide in DMF in the absence of base or catalyst. In the subsequent reaction methyl carbamimido-thioate 6 was reacted various primary and secondary aliphatic and benzylic amines in DMF at elevated temperature, affording the desired 4-(3-alkyl/benzyl-guanidino)benzenesulfonamides 7 in satisfying to high yields ranging from 29% to 90%.

3.2. Carbonic anhydrase inhibition

The obtained series of 4-(3-alkyl/benzyl-guanidino)benzenesulfonamides 7a–o were investigated for their CA inhibitory properties by using a stopped-flow CO₂ hydrase assay43 and three human CA isoforms (hCA I, II and VII) known to be drug targets for neuro-logical conditions37,58–62 (Table 1).

As seen from data of Table 1, benzenesulfonamides 7a–o did not significantly inhibit the cytosolic isoforms hCA I, which is considered as being an off-target isoform in our study. The ubiquitous hCA II was significantly inhibited by many benzenesulfonamides 7 studied here. Compounds 7a–e, 7h and 7k had Kₐ ranging from 1.6 to 59.1 nM, in most cases being lower or comparable to those of the non-selective CA inhibitor acetazolamide (AAZ), which has a Kₐ of 12 nM. The rest of the derivatives 7 strongly inhibited CA II, with Kₐ values in the low nanomolar or subnanomolar range. Neuropathic pain associated CA VII was also effectively inhibited by most of the sulfonamides 7, even in subnanomolar range for compounds 7f, 7g, 7i and 7o. However, compounds 7c, 7h, 7m and 7n (nanomolar and subnanomolar inhibitors) also exhibited remarkable selectivity towards CA VII compared to the off-target isoforms CA I and CA II. The selectivity indexes for the inhibition of hCA VII over hCA I and II for the new compounds reported here are shown in Table 2.

It may be seen that all new compounds 7a–7o were highly selective for the inhibition of CA VII over CA I, with selectivity indexes in the range of 12.8 – 61300. On the other hand, only compounds 7c, 7h, 7m and 7o showed selectivity for inhibiting CA VII over CA II, with selectivity indexes of 1.66 – 8.72. Many of these new sulfonamides (e.g. 7d, 7e, 7g, 7i and 7j) were in fact highly hCA II selective inhibitors.

4. Conclusion

A series of novel 4-(3-alkyl/benzyl-guanidino)benzenesulfonamide derivatives with various long alkyl chains and functional groups on benzyl moieties through the direct catalyst-free desulfidative amination of easily accessible methyl (4-sulfamoylphenyl)carbamimido-thioate with respective primary and secondary amines were obtained. The new derivatives were assayed as inhibitors of the zinc metalloenzyme CA. Three pharmacologically relevant human (h) isoforms (CA I, CA II and CA VII) were investigated. No significant inhibition of hCA I was observed, whereas some of the new derivatives were effective, low nanomolar or even subnanomolar

Table 1. Inhibition data of human CA isoforms I, II and VII using AAZ as stand-and drug.

Compound	R₁	R₂	CA I (nM)	CA II (nM)	CA VII (nM)
7a	R₁	H	746.5	7.7	10.1
7b		H	698.7	17.7	25.1
7c		H	989.1	59.1	15.0
7d		H	781.7	1.6	60.7
7e		H	2988.8	3.2	44.9
7f		H	2932.2	0.3	0.9
7g		H	3163.0	0.07	0.4
7h		H	1319.0	9.6	1.1
7i		CH₃	1137.7	0.08	0.7
7j			5845.5	0.6	3.2
7k			4183.3	6.9	8.7
7l				729.8	0.9
7m				930.3	0.4
7n				2154.0	0.06
7o				3676.8	0.1

AAZ | – | – | 250.0 | 12.0 | 2.5 |

*Mean from three different assays, by a stopped-flow technique (errors were in the range of ±5–10% of the reported values).
Table 2. Selectivity indexes for hCA VII over hCA I and II inhibition with compounds 7a–7o and acetazolamide as standard inhibitor.

Compound	hCA VII/hCA I	hCA VII/hCA II
7a	73.9	0.76
7b	27.8	0.70
7c	65.9	3.94
7d	12.8	0.02
7e	66.5	0.07
7f	3257	0.33
7g	7907	0.17
7h	1199	8.72
7i	1625	0.11
7j	1826	0.18
7k	480	0.79
7l	331	0.41
7m	4651	2.00
7n	26,925	0.75
7o	61,300	1.66
AAZ	100	4.80

*Calculated as the ratio K_i(CA I or II)/K_i(CA VII).

hCA II and CA VII inhibitors. Four novel sulfonamide derivatives 7c, 7h, 7m and 7o having low nanomolar or subnanomolar K_i values and significant selectivity towards neuropathic pain related CA VII have a potential for further investigation as potential neuropathic pain attenuation agents.

Disclosure statement

No potential conflict of interest was reported by all author(s) except CTS. CT Supuran is Editor-in-Chief of the Journal of Enzyme Inhibition and Medicinal Chemistry. He was not involved in the assessment, peer review, or decision-making process of this paper. The authors have no relevant affiliations of financial involvement with any organisation or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

Funding

This work was supported by the European Regional Development Fund [ERDF, Project No. 1.1.1.2/VIAA/3/19/398]

ORCID

Morteza Abdoli http://orcid.org/0000-0003-1647-4262
Claudiu T. Supuran http://orcid.org/0000-0003-4262-0323
Raivis Zalubovskis http://orcid.org/0000-0002-9471-1342

References

1. (a) Supuran CT. Novel carbonic anhydrase inhibitors. Future Med Chem 2021;13:1568–7.
 (b) Supuran CT. Carbonic anhydrase activators. Future Med Chem 2018;10:561–73.
2. Supuran CT. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov 2008;7:168–81.
3. Supuran CT, Scozzafava A. Carbonic anhydrases as targets for medicinal chemistry. Bioorg Med Chem 2007;15:4336–50.
4. Supuran CT, Scozzafava A, Casini A. Carbonic anhydrase inhibitors. Med Res Rev 2003;23:146–89.
5. Supuran CT. Emerging role of carbonic anhydrase inhibitors. Clin Sci (Lond) 2021 May 28;135:1233–49.
6. Alterio V, Di Fiore A, D’Ambrosio K, et al. Multiple binding modes of inhibitors to carbonic anhydrases: how to design specific drugs targeting 15 different isoforms? Chem Rev 2012;112:4421–68.
7. Supuran CT. Structure and function of carbonic anhydrases. Biochem J 2016;473:2023–32.
8. Ivanova J, Balode A, Zalubovskis R, et al. S-Substituted-benzylsulfanyl-thiophene-2-sulfonamides with effective carbonic anhydrase inhibitory activity: solution and crystallographic investigations. Bioorg Med Chem 2017;25:857–63.
9. Alterio V, Tanc M, Ivanova J, et al. Supuran X-ray crystallographic and kinetic investigations of 6-sulfamoyl-saccharin as a carbonic anhydrase inhibitor. Org Biomol Chem 2015;13:4064–69.
10. Supuran CT. How many carbonic anhydrase inhibition mechanisms exist? J Enzyme Inhib Med Chem 2016;31:345–60.
11. Nocentini A, Supuran CT. Advances in the structural annotation of human carbonic anhydrases and impact on future drug discovery. Expert Opin Drug Discov 2019;14:1175–97.
12. Supuran CT. Advances in structure-based drug discovery of carbonic anhydrase inhibitors. Expert Opin Drug Discov 2017;12:61–88.
13. De Simone G, Supuran CT. (In)organic anions as carbonic anhydrase inhibitors. J Inorg Biochem 2012;111:179–29.
14. Pustenko A, Stepanovs D, Zalubovskis R, et al. 3H-1,2-benzoxathiepine 2,2-dioxides: a new class of isoform-selective carbonic anhydrase inhibitors. J Enzyme Inhib Med Chem 2017;32:767–75.
15. Pustenko A, Nocentini A, Balasova A, et al. Aryl derivatives of 3H-1,2-benzoxathiepine 2,2-dioxide as carbonic anhydrase inhibitors. J Enzyme Inhib Med Chem 2020;35:245–54.
16. Tars K, Vullo D, Kazaks A, et al. Sulfocoumarins (1,2-benzoxathiine-2,2-dioxides): a class of potent and isoform-selective inhibitors of tumor-associated carbonic anhydrases. J Med Chem 2013;56:293–300.
17. Tanc M, Carta F, Bozdag M, et al. 7-Substituted-sulfocoumarins are isoform-selective, potent carbonic anhydrase II inhibitors. Bioorg Med Chem 2013;21:4502–10.
18. Nocentini A, Ceruso M, Carta F, Supuran CT. 7-Aryl-triazolyl-substituted sulfocoumarins are potent, selective inhibitors of the tumor-associated carbonic anhydrase IX and XII. J Enzyme Inhib Med Chem 2016;31:1226–33.
19. Grandane A, Tanc M, Mannelli LDC, et al. 6-Substituted sulfocoumarins are selective carbonic anhydrase IX and XII inhibitors with significant cytotoxicity against colorectal cancer cells. J Med Chem 2015;58:3975–83.
20. Maresca A, Temperini C, Vu H, et al. Non-zinc mediated inhibition of carbonic anhydrases: coumarins are a new class of suicide inhibitors. J Am Chem Soc 2009;131:3057–62.
21. Maresca A, Temperini C, Pochet L, et al. Deciphering the mechanism of carbonic anhydrase inhibition with coumarins and thiocoumarins. J Med Chem 2010;53:335–44.
22. Temperini C, Innocenti A, Scozzafava A, et al. The coumarin-binding site in carbonic anhydrase accommodates structurally diverse inhibitors: the antiepileptic lacosamide as an example and lead molecule for novel classes of carbonic anhydrase inhibitors. J Med Chem 2010;53:850–4.
23. Touism N, Maresca A, McDonald PC, et al. Glycosyl coumarin carbonic anhydrase IX and XII inhibitors strongly attenuate...
the growth of primary breast tumors. J Med Chem 2011;54: 8271–7.

24. Zengin Kurt B, Sonmez F, Durdagi S, et al. Synthesis, biologic activity and multiscale molecular modeling studies for coumaryl-carboxamide derivatives as selective carbonic anhydrase IX inhibitors. J Enzyme Inhib Med Chem 2017;32: 1042–52.

25. Maresca A, Scozzafava A, Supuran C. 7,8-disubstituted but not 6,7-disubstituted coumarins selectively inhibit the transmembrane, tumor-associated carbonic anhydrase isoforms IX and XII over the cytosolic ones I and II in the low nanomolar/subnanomolar range. Bioorg Med Chem Lett 2010;20: 7255–8.

26. Maresca A, Supuran CT. Coumarins incorporating hydroxy and chloro-moieties selectively inhibit the transmembrane, tumor-associated carbonic anhydrase isoforms IX and XII over the cytosolic ones I and II. Bioorg Med Chem Lett 2010;20:4511–4.

27. Grandane A, Nocentini A, Domračeva I, et al. Development of oxathiinol(6,5-b)pyridine 2,2-dioxide derivatives as selective inhibitors of tumor-related carbonic anhydrases IX and XII. Eur J Med Chem 2020; 200:112300.

28. Grandane A, Nocentini A, Werner T, et al. Benzoxepinones: A new isoform-selective class of tumor associated carbonic anhydrase inhibitors. Bioorg Med Chem 2020;28:115496.

29. (a) Krasavin M, Sharonova T, Sharoyko V, et al. Combining carbonic anhydrase and thioredoxin reductase inhibitory motifs within a single molecule dramatically increases its cytotoxicity. J Enzyme Inhib Med Chem 2020;35:665–71. (b) Krasavin M, Zalubovskis R, Grandane A, et al. Sulfocoumarins as dual inhibitors of human carbonic anhydrase isoforms IX/ XII and of human thioredoxin reductase. J Enzyme Inhib Med Chem 2020;35:506–10.

30. (a) Podolski-RENić A, Dinić J, Stanković T, et al. Sulfocoumarins, specific carbonic anhydrase IX and XII inhibitors, interact with cancer multidrug resistant phenotype through pH regulation and reverse P-glycoprotein mediated resistance. Eur J Pharm Sci 2019;138:105012. (b) Pustenko A, Nocentini A, Balasova A, et al. 7-Acylamino-3H-1,2-benzoxathiepine 2,2-dioxides as new isoform-selective carbonic anhydrase IX and XII inhibitors. J Enzyme Inhib Med Chem 2020;35:650–6.

31. (a) Bonardi A, Bua S, Combs J, et al. The three-tails approach as a new strategy to improve selectivity of action of sulfonamide inhibitors against tumour-associated carbonic anhydrase IX and XII. J Enzyme Inhib Med Chem 2022;37: 930–39. (b) Swain B, Sahoo SK, Singh P, et al. Exploration of 2-phenylquinoline-4-carboxamide linked benzene sulfonamide derivatives as isoform selective inhibitors of transmembrane human carbonic anhydrases. Eur J Med Chem 2022; 234:114247.

32. (a) Banoglu E, Ercanlı T, Gür Maz T, et al. Series of thia diazoyl-benzensulfonamides incorporating an aromatic tail as isoform-selective, potent carbonic anhydrase II/XII inhibitors. ChemMedChem 2022;17:e202200056. (b) Tawfik HO, Petroeni A, Supuran CT, El-Hamamsy MH. Discovery of new carbonic anhydrase IX inhibitors as anticancer agents by toning the hydrophobic and hydrophilic rims of the active site to encounter the dual-tail approach. Eur J Med Chem 2022;232: 114190. (c) Giovannuzzi S, D’Ambrosio M, Luceri C, et al. Aromatic sulfonamides including a sulfonic acid tail: new membrane impermeant carbonic anhydrase inhibitors for targeting selectively the cancer-associated isoforms. Int J Mol Sci 2021;23:461.

33. Colloca L, Ludman T, Bouhassira D, et al. Neuropathic pain. Nat Rev Dis Primers 2017;3:1–19.

34. Murphy KL, Beetha JR, Fischer R. Neuropathic pain in multiple sclerosis – current therapeutic intervention and future treatment perspectives. Brisbane, Australia: Exon Publications; 2017:53–69.

35. Fornasari D. Pharmacotherapy for neuropathic pain: a review. Pain Ther 2017;6:25–33.

36. Bhuniya D, Kharul RK, Hajare A, et al. Discovery and evaluation of novel FAAH inhibitors in neuropathic pain model. Bioorg Med Chem Lett 2019;29:238–43.

37. Supuran CT. Carbonic anhydrase inhibition and the management of neuropathic pain. Expert Rev Neurother 2016;16: 961–8.

38. (a) Supuran CT. Carbonic anhydrase inhibitors. Bioorg Med Chem Lett 2010;20:3467–74. (b) Mishra CB, Tiwari M, Supuran CT. In the development of human carbonic anhydrase inhibitors and their pharmacological applications: Where are we today? Med Res Rev 2020;40: 2485–565.

39. Żołnowska B, Sławinski J, Pogorzelska A, et al. Carbonic anhydrase inhibitors. Synthesis, and molecular structure of novel series N-substituted N’-(2-arylmethylthio-4-chloro-5-methylbenzenesulfonyl)guanidines and their inhibition of human cytosolic isozymes I and II and the transmembrane tumor-associated isoforms IX and XII. Eur J Med Chem 2014;71:135–47.

40. Barresi E, Salerno S, Mariní AM, et al. Sulfonamides incorporating heteropelicyclic scaffolds show potent inhibitory action against carbonic anhydrase isoforms I, II, IX and XII. Bioorg Med Chem 2016;24:921–7.

41. Żołnowska B, Sławinski J, Szafański K, et al. Novel 2-(2-arylmethylthio-4-chloro-5-methylbenzenesulfonyl)-1-(1,3,5-triazin-2-ylamino)guanidine derivatives: Inhibition of human carbonic anhydrase cytosolic isozymes I and II and the transmembrane tumor-associated isoforms IX and XII, anticaner activity, and molecular modeling studies. Eur J Med Chem 2018;143:1931–41.

42. Leitans J, Kazaks A, Balode A, et al. Efficient expression and crystallization system of cancer-associated carbonic anhydrase isoform IX. J Med Chem 2015;58:9004–9.

43. Khalifah RG. The carbon dioxide hydration activity of carbonic anhydrase. I. Stop-flow kinetic studies on the native human isoenzymes B and C. J Biol Chem 1971;246:2561–73.

44. Vermelho AB, Da Silva Cardoso V, Ricci Junior E, et al. Nanoemulsions of sulfonamide carbonic anhydrase inhibitors strongly inhibit the growth of Trypanosoma cruzi. J Enzyme Inhib Med Chem 2018;33:139–46.

45. Nocentini A, Carta F, Tanc M, et al. Deciphering the mechanism of human carbonic anhydrases inhibition with sulfocoumarins: computational and experimental studies. Chemistry 2018;24:7840–4.

46. Angeli A, Carta F, Nocentini A, et al. Response to perspectives on the classical enzyme carbonic anhydrase and the search for inhibitors. Biophys J 2021;120:178–81.

47. Bua S, Bozdag M, Del Prete S, et al. Mono- and di-thiocarbamate inhibition studies of the δ-carbonic anhydrase TweCaδ from the marine diatom Thalassiosira weissflogii. J Enzyme Inhib Med Chem 2018;33:707–13.
56. (a) Pastorekova S, Casini A, Scozzafava A, et al. Carbonic anhydrase inhibitors: the first selective, membrane-impermeant inhibitors targeting the tumor-associated isozyme IX. Bioorg Med Chem Lett 2004;14:869–73. (b) Vullo D, Voipio J, Innocenti A, et al. Carbonic anhydrase inhibitors. Inhibition of the human cytosolic isozyme VII with aromatic and heterocyclic sulfonamides. Bioorg Med Chem Lett 2005;15:971–6. (c) Gieling RG, Babur M, Mammani L, et al. Antimetastatic effect of sulfamate carbonic anhydrase IX inhibitors in breast carcinoma xenografts. J Med Chem 2012;55:5591–600. (d) Carta F, Supuran CT, Scozzafava A. Sulfonamides and their isosters as carbonic anhydrase inhibitors. Future Med Chem 2014;6:1149–65. (e) Sarikaya SB, Gülçin I, Supuran CT. Carbonic anhydrase inhibitors: Inhibition of human erythrocyte isoforms I and II with a series of phenolic acids. Chem Biol Drug Des 2010 May;75:515–20. (f) Yıldırım A, Atmaca U, Keskin A, et al. N-Acylsulfonamides strongly inhibit human carbonic anhydrase isoenzymes I and II. Bioorg Med Chem 2015;23:2598–605. (g) Innocenti A, Gülçin I, Scozzafava A, Supuran CT. Carbonic anhydrase inhibitors. Antioxidant polyphenols effectively inhibit mammalian isoforms I-XV. Bioorg Med Chem Lett 2010;20:5050–3. (h) Di Cesare Mannelli L, Micheli L, Carta F, et al. Carbonic anhydrase inhibition for the management of cerebral ischemia: in vivo evaluation of sulfonamide and coumarin inhibitors. J Enzyme Inhib Med Chem 2016;31:894–99. (i) Dettori I, Fusco I, Bulli I, et al. Protective effects of carbonic anhydrase inhibition in brain ischaemia in vitro and in vivo models. J Enzyme Inhib Med Chem 2021;36:964–76. (j) Provensi G, Nocentini A, Passani MB, et al. Activation of carbonic anhydrase isoforms involved in modulation of emotional memory and cognitive disorders with histamine agonists, antagonists and derivatives. J Enzyme Inhib Med Chem 2021;36:719–26. (k) Blandina P, Provensi G, Passani MB, et al. Carbonic anhydrase modulation of emotional memory. Implications for the treatment of cognitive disorders. J Enzyme Inhib Med Chem 2020;35:1206–14. (l) Angeli A, Carta F, Nocentini A, et al. Carbonic anhydrase inhibitors targeting metabolism and tumor microenvironment. Metabolites 2020;10:412. (m) Nocentini A, Angeli A, Carta F, et al. Reconsidering anion inhibitors in the general context of drug design studies of modulators of activity of the classical enzyme carbonic anhydrase. J Enzyme Inhib Med Chem 2021;36:561–80. (n) Abdoli M, Angeli A, Bozdag M, et al. Synthesis and carbonic anhydrase I, II, VII, and IX inhibition studies with a series of benzodithiazole-5- and 6-sulfonamides. J Enzyme Inhib Med Chem 2017;32:1071–8. (o) Abdoli M, Bozdag M, Angeli A, et al. Benzamide-4-sulfonamides are effective human carbonic anhydrase i, ii, vii, and ix inhibitors. Metabolites 2018;8:37.