A rare variant in the MARVELD2 gene is associated with Chinese samples with ovarian endometriosis

Qiu-Yan Wan¹,²,³, Rong-Fang Liu¹,³, Yang Zou³, Yong Luo³, Jiang-Yan Zhou³, Ying-Hui Deng⁴, Xin Zeng³, Guo-Dong Gao³, Ou-Ping Huang¹,³,⁵,*

¹The College of Medicine, Nanchang University, 330006 Nanchang, Jiangxi, China
²Department of Gynecological Oncology, Jiangxi Cancer Hospital, 330029 Nanchang, Jiangxi, China
³Key Laboratory of Women’s Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal & Child Healthcare Hospital, 330006 Nanchang, Jiangxi, China
⁴Department of Pathology, Jiangxi Provincial Maternal & Child Healthcare Hospital, 330006 Nanchang, Jiangxi, China
⁵Department of Gynecology, Jiangxi Provincial Maternal & Child Healthcare Hospital, 330006 Nanchang, Jiangxi, China

*Correspondence: jxfbhop59@126.com (Ou-Ping Huang)

Abstract

Objectives: Endometriosis is a common gynecological disease affecting up to ~10% of women at reproductive age. Prior combined studies implied that MARVELD2 might be involved in the pathogenesis of certain malignancies. Here, 211 Han Chinese samples with ovarian endometriosis were analyzed for the presence of MARVELD2 mutations. Methods: We analyze the potential presence of MARVELD2 mutations by direct DNA sequencing. Results: A total of 7 variants, 5 missense and 2 synonymous variants, were identified in our 211 ovarian endometriosis samples with different frequencies. Among the 5 missense variant, a missense rare variant p.V198M (c.592G>A), was identified in 10 out of our 211 samples (4.74%). This rare variant was identified with extremely low frequency in 766 control samples from 766 Chinese women without endometriosis (0.13%, 1/766) and control samples in the public databases. The evolutionary conservation analysis results suggested that the MARVELD2 rare variant lead to highly conserved amino acid substitutions among 14 vertebrate species from Human to Snake. Furthermore, both the SIFT and Polyphen-2 programs predicted this rare variant to be ‘disease causing’. However, we failed to observe any statistical significance between the MARVELD2 rare variant and the available clinical data. Conclusions: We identified a potential pathogenic rare variant in the MARVELD2 gene in Chinese samples with ovarian endometriosis, indicating the MARVELD2 rare variant might play an active role in the pathogenesis of endometriosis.

Keywords: MARVELD2; rare variant; ovarian endometriosis; Han Chinese

1. Introduction

Endometriosis is a common gynecological disease, in spite of the subject of many scientific researches, the detailed molecular etiology remains still unclear [1]. Among which, the ‘Sampsons hypothesis’ is the most extensively admissive interpretation, which implies that endometriosis takes place owing to retrograde menstruation, where endometrial tissue passes through the fallopian tube into the peritoneal and pelvic cavity where it implants [2]. The implantation theory indicates the formation of endometriosis in the peritoneal cavity and ovary needs endometrial tissue or cells fulfilling a process of adhesion, invasion and proliferation [3].

Tricellulin, a major component of tight junctions, encoded by the MARVELD2 gene [4], was the first identified protein to be uniquely localized at the tri-epithelial junctions [5]. Prior studies have revealed that MARVELD2 mutations could cause nonsyndromic deafness, and these MARVELD2 mutations were shown to cause tricellulin defects and deletion, thereby affecting the adhesion and the tight junction function between epithelial cells [6-8]. Furthermore, dysregulated MARVELD2 expression was associated with patients’ prognosis in certain cancer types [9-11] and could promote cell migration [12]. Endometriosis is similar to cancer and exhibits enhanced invasion and migration [13-15]. This disorder is considered as a precancerous lesion and harbored a variety of mutations in certain oncogene and tumor suppressor genes [16-19]. A large-scale sequencing effort has revealed that epithelial cells harbored cancer-associated mutations promoting the pathogenesis of endometriosis [20]. In addition, increased expression of tricellulin could promote the invasions and metastasis of certain human tumor [21].

Prior studies have revealed that certain germline mutations, including single nucleotide polymorphism (SNP), played important roles in the pathogenesis of endometriosis via candidate gene or large-scale sequencing strategies [22,23]. In addition, somatic mutations in certain genes, were also shown to confer the risk of endometriosis [16-18,24]. Prior studies have found that dysregulated expression of MARVELD2 was associated with patients’ prognosis in certain cancer types [9-11] and could promote cell migra-
Table 1. The potential association of MARVELD2 rare variant with clinical data in 211 Chinese samples with ovarian endometriosis.

Features	Total sample	Wildtype (n = 201)	Mutation (n = 10)	p value
Age (years)	211	29.56 ± 7.33	31.5 ± 4.72	0.42
Age of menarche (years)	211	12.53 ± 1.49	13.2 ± 2.14	0.37
Hemoglobin (g/L)	211	122.35 ± 11.34	130.1 ± 4.23	0.16
TSH (mIU/mL)	211	2.12 ± 1.23	1.8 ± 1.18	0.12
FT3 (pg/mL)	211	3.15 ± 0.18	3.06 ± 0.26	0.09
FT4 (ng/dL)	211	1.31 ± 0.13	1.26 ± 0.19	0.08
AFP (ng/mL)	211	2.62 ± 1.36	3.11 ± 0.93	0.35
CEA (ng/mL)	211	1.03 ± 0.42	0.96 ± 0.26	0.22
CA125 (U/mL)	211	115.33 ± 166.23	103.25 ± 78.39	0.56
SCCA (ng/mL)	211	1.47 ± 0.56	1.52 ± 0.86	0.37
Whitebloodcellcount (×10⁹)	211	6.26 ± 2.12	6.12 ± 0.58	0.39
Lymphocyte cell count (×10⁹)	211	1.88 ± 0.63	1.46 ± 0.39	0.34
Eosinophil granulocyte (×10⁹)	211	0.15 ± 0.07	0.08 ± 0.06	0.55
Mononuclear cell count (×10⁹)	211	0.47 ± 0.07	0.42 ± 0.09	0.11
Neutrophil cell count (×10⁹)	211	3.88 ± 1.62	3.96 ± 1.22	0.77
Platelet (×10⁹)	211	201.38 ± 52.63	213.66 ± 45.38	0.45
Neutrophil cell proportion (%)	211	58.37 ± 7.66	65.38 ± 3.38	0.27

TSH, thyroid stimulating hormone; FT3, free triiodothyronine; FT4, free thyroxine; AFP, α-fetoprotein; CEA, carcinoembryonic antigen; CA125, cancer antigen 125; SCCA, squamous cell carcinoma antigen.

Table 2. The primer information for MARVELD2 gene (NM_001038603) amplification.

Gene	Exon	Annealing	PCR amplicon	Forward primers (5′→3′)	Reverse primers (5′→3′)
MARVELD2	2	56 °C	1260 bp	atcagcatcattgagaga	acatacacacacaaatgag
MARVELD2	3	52 °C	335 bp	atcaacctcttaaaattgag	ggtcttgaaattctggtctc
MARVELD2	4, 5	55 °C	706 bp	ccacctgatcttcttcctc	cttagattcagctgtcctc
MARVELD2	6	58 °C	339 bp	ttcagttggtttigagata	aatgcctacttetcctaggtt
MARVELD2	7	53 °C	286 bp	tgtagagagettaactgtac	tgtttccaaataagcgtta

2.2 Clinical data

The clinical data for the participating women with ovarian endometriosis was collected at the time of sampling, including age, age at menarche, the laboratorial data included serum hemoglobin, free triiodothyronine (FT3), free thyroxine (FT4), thyroid stimulating hormone (TSH), carcinoembryonic antigen (CEA), cancer antigen 125 (CA125), squamous cell carcinoma antigen (SCCA) and α-fetoprotein (AFP) were determined on day 3 of the menstrual cycle by radioimmunoassay, as described previously [17,18]. In addition, the number of white blood cells, lymphocytes, eosinophil granulocytes, neutrophil granulocytes, mononuclear cells, platelet, and neutrophil granulocyte proportion was analyzed by an automated hematology analyzer XN-3000 (Sysmex Corporation, Kobe, Japan) (Table 1), as described previously [17,18].

2.3 DNA extraction and mutation analysis

The genomic DNA was extracted from the peripheral blood of our samples. Omega Blood DNA kit (OMEGA Bio-tek Inc., Doraville, GA) was used to isolate the genomic DNA for our samples, as described previously [17]. The entire coding regions of the MARVELD2 gene...
2.4 Evolutionary conservation analysis of the rare variant of MARVELD2

We downloaded the MARVELD2 proteins from 14 vertebrate species from GenBank database (www.ncbi.nlm.nih.gov/gene), including Human (NP_001033692), Chimpanze (XP_003107454), Monkey (XP_001094419), Mouse (NP_001033691), Rat (NP_001102406), Cattle (XP_002696327), Dog (XP_019690741), Horse (XP_023474013), Pig (NP_001230877), Cat (XP_019690741), Tree shrew (XP_006169576), Chicken (XP_424965), Bat (XP_006762445) and Snake (XP_039176681). The conservation of the mutated MARVELD2 residue was analyzed with MEGA4 software (Tokyo, Japan) [27].

2.5 In silico analysis of the MARVELD2 rare variant

We used SIFT [28] and Polyphen-2 [29] online programs to predict the potential pathogenicity of these missense variants of MARVELD2. These programs could automatically assess this rare variant to be damaging or benign.

2.6 Statistical analysis

We used two-sided Student’s t-test and Mann-Whitney’s method to analyze the potential association of numerical and continuous variables between ovarian endometriosis samples with and without MARVELD2 mutations, respectively; Fisher’s exact test was used to analyze the allele frequency of MARVELD2 rare variant between the cases and controls; p value less than 0.05 was considered statistically significant. All statistical analyses were performed by the software SPSS 19.0 (SPSS, Inc., Chicago, IL, USA).

3. Results

3.1 Sample characteristics

The median age of the samples was 32 years (range, 20–52) and the median age at menarche was 14 years (range, 10–19). The detailed clinical data, including hemoglobin, FT3, FT4, TSH, CEA, CA125, SCCA, AFP, and blood cell counts, are summarized in Table 1.

3.2 MARVELD2 rare variant in ovarian endometriosis

A total of 7 variants, 5 missense and 2 synonymous variants, were identified in our 211 samples with ovarian endometriosis with different frequencies (Table 3). Among the 5 missense variant, a rare variant (rs201914751) p.V198M (c.592G>A), was identified with high frequency in our samples with ovarian endometriosis (10/211, 4.74%) (Fig. 1) (Table 3). This rare variant was found in 766 control samples from 766 Chinese women without endometriosis with extremely low frequency (0.13%, 1/766) (p < 0.01); furthermore, this rare variant existed in extremely low frequencies in control samples in the 1000 genome (www.ncbi.nlm.nih.gov/variation/tools/1000genomes) and EXAC (www.exac.broadinstitute.org) databases, which included 2504 and 60706 samples, respectively (p < 0.01) (Table 4). The average age and age of menarche of the 10 sample with MARVELD2 rare variant (p.V198M) was 31.5

Table 3. The identified variants of the MARVELD2 gene (NM_001038603) in our patients.

SNP	Amino acid/Nucleotide change	Frequency	SIFT prediction	Polyphen-2 prediction
rs1185246	p.T333I/c.98C>T	43.60% (92/211)	Tolerated	Benign
rs11458976	p.V62Y/c.186C>T	55.45% (117/211)	-	-
rs181575833	p. Pro102 Pro/c.306G>A	0.48% (1/211)	-	-
rs575942430	p.Y159C/c.476A>G	0.48% (1/211)	Tolerated	Benign
rs201914751	p.V198M/c.592G>A	4.74% (10/211)	Damaging	Damaging
rs771384203	p.G237A/c.710G>C	0.48% (1/211)	Tolerated	Benign
rs119893034	p.V489M/c.1465G>A	1.42% (3/211)	Tolerated	Benign

Table 4. The allele frequency comparison of MARVELD2 rare variant among our patients and control samples in the present study and public databases.

SNP	Case (N=211)	Normal control (N=766)	p value a	Allele frequency in EXAC	p value a	Allele frequency in 1000 genome	p value a
rs201914751	10/422	1/1532	2.36 × 10^-6	22/121412	2.2 × 10^-16	3/5008	2.31 × 10^-9

a p value, Fisher’s exact test.
and 13.2 years old, respectively.

Fig. 1. The representative sequencing electropherograms of MARVELD2 p.V198M (c.592G>A) mutation, the arrow refers to locations of the mutations. “OCB-176” was an endometriosis samples with MARVELD2 mutation, while “Control” was a control sample without MARVELD2 mutation.

3.3 In silico and Evolutionary conservation analyses of the MARVELD2 missense variants

Both the SIFT and Polyphen-2 programs were used to predict the potential pathogenicities of these variants, the predicted results showed that the p.V198M variant was ‘disease causing’; while other four variants were benign. The evolutionary conservation analysis result suggested that the MARVELD2 rare variant lead to highly conserved amino acid substitution from valine to methionine at the 198th codon (V198M), among the 14 vertebrate species from Human to Snake (Fig. 2).

3.4 Association between MARVELD2 rare variant and clinical data

The clinical data between the ovarian endometriosis samples with and without MARVELD2 rare variant (p.V198M) was analyzed, including patients’ age, age of menarche, FT3, FT4, TSH, hemoglobin, CA125, SCCA, AFP, CEA, white blood cell count, eosinophil granulocyte, lymphocyte cell count, neutrophil cell count, mononuclear cell count, platelet and neutrophil cell proportion. However, we failed to get any significant association between MARVELD2 rare variant and these clinical parameters (Table 1).

4. Discussion

MARVELD2, formerly referred to as TRIC-a, encodes tricellulin, a tricellular tight junction protein [4]. Tricellulin is mainly localized in tricellular cell contacts, while in bi-cellular tight junctions to a lesser extent [30]. To date, it’s deemed that tricellulin expression ubiquitously exists in epithelial junctions of tissues and organs throughout the body [6], as well as in ovarian epithelia [31].

Prior large-scale sequencing studies have revealed that common variants in certain genes played important role in the pathogenesis of endometriosis, including vascular endothelial growth factor receptor 2 (VEGFR2), mitogen-activated protein kinase kinase kinase 4 (MAP3K4), and Wnt family member 4 (WNT4) [32–34]. Recently, increasing evidences have suggested that rare variants also facilitate the initiation and development of endometriosis [35,36]. In the present study, we have screened a total of 211 Han Chinese samples with ovarian endometriosis for the presence of MARVELD2 mutations, via sequencing the whole coding region and the exon-intron boundaries of the MARVELD2 gene. Here, we identified a MARVELD2 missense rare variant, p.V198M (c.592G>A), in 10 out of 211 Han Chinese samples with ovarian endometriosis (4.74%), the frequency of this rare variant is significant higher than that either in the local control women without endometriosis or in the control samples in the 1000 genome and EXAC databases (p < 0.01). The evolutionary conservation anal-
ysis result showed that the MARVELD2 rare variant caused highly conserved amino acid substitution among 14 vertebrate species. Furthermore, the bioinformatic programs prediction result showed this rare variant might be damaging.

MARVELD2 mutations could cause nonsyndromic deafness [6–8] and the molecular mechanism involved in affecting the paracellular permeability, leading to a toxicity for cochlear hair cells [37]. Subsequent studies found that dysregulated expression of MARVELD2 could change the capacities of cell invasion and migration in diverse cancer types, including colorectal and gastric cancers, and the potential underlying molecular mechanism involved in actin and cytoskeletal reorganization, as well as epithelial-mesenchymal transitions (EMT) process [21,38]. As a pre-malignant condition, endometriosis usually exhibited with dysregulation of cell invasion and migration, we thus speculated that the MARVELD2 rare variant identified in the present study might play active role in the pathogenesis of endometriosis.

On the other hand, we failed to observe any positive association between the MARVELD2 rare variant and the available clinical data. Of note, our sample size of ovarian endometriosis was relatively small, we will continue to obtain additional samples in order to re-analyze the potential association.

5. Conclusions

We identified a relatively high frequency of MARVELD2 rare variant in our samples with ovarian endometriosis, indicating this rare variant might play positive role in the pathogenesis of this disease.

Author contributions

QW—investigation and manuscript preparation; RL—sample collection; YZ—investigation; YL—investigation; JZ—data analysis; YD—sample collection; XZ—data analysis; GG—sample collection; OH—methodology, manuscript revision.

Ethics approval and consent to participate

All subjects gave their informed consent for inclusion before they participated in the study. The study was conducted in accordance with the Declaration of Helsinki, and the protocol was approved by the Ethics Committee of Jiangxi Provincial Maternal and Child Health Hospital (approval number: JXSFYBJYY2020KJK015).

Acknowledgment

We thank the sample donors who participated in this study.

Funding

This project was supported by the National Natural Science Foundation of China [Grant No. 81771559 and 82160291].

Conflict of interest

The authors declare no conflict of interest.

References

[1] Gaetje R, Holtrich U, Engels K, Kissler S, Rody A, Karn T, et al. Differential expression of Claudins in human endometrium and endometriosis. Gynecological Endocrinology. 2008; 24: 442–449.
[2] Sampson JA. Metastatic or Embolic Endometriosis, due to the Menstrual Dissemination of Endometrial Tissue into the Venous Circulation. American Journal of Pathology. 1927; 3: 93–110.
[3] Young VJ, Brown JK, Saunders PTK, Horne AW. The role of the peritoneum in the pathogenesis of endometriosis. Human Reproduction Update. 2013; 19: 558–569.
[4] Nayak G, Lee SY, Yousaf R, Edelmann SE, Trincot C, Van Italie CM, et al. Tricellulin deficiency affects tight junction architecture and cochlear hair cells. Journal of Clinical Investigation. 2013; 123: 4036–4049.
[5] Ikenouchi J, Furuse M, Furuse K, Sasaki H, Tsukita S, Tsukita S. Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells. Journal of Cell Biology. 2005; 171: 939–945.
[6] Riazuddin S, Ahmed ZM, Fanning AS, Lagziel A, Kitajiri S, Ramzan K, et al. Tricellulin is a Tight-Junction Protein Necessary for Hearing. The American Journal of Human Genetics. 2006; 79: 1040–1051.
[7] Chishti MS, Bhatti A, Tamim S, Lee K, McDonald M, Leal SM, et al. Splice-site mutations in the TRIC gene underlie autosomal recessive nonsyndromic hearing impairment in Pakistani families. Journal of Human Genetics. 2008; 53: 101–105.
[8] Zheng J, Meng W, Zhang C, Liu H, Yao J, Wang H, et al. New SNP variants of MARVELD2 (DFNB49) associated with nonsyndromic hearing loss in Chinese population. Journal of Zhejiang University: Science B. 2019; 20: 164–169.
[9] Somorácz A, Korompay A, Törzsök P, Patonai A, Erdélyi-Belle B, Lotz G, et al. Tricellulin Expression and its Prognostic Significance in Primary Liver Carcinomas. Pathology Oncology Research. 2014; 20: 755–764.
[10] Kojima T, Sawada N. Regulation of tight junctions in human normal pancreatic duct epithelial cells and cancer cells. Annals of the New York Academy of Sciences. 2012; 1257: 85–92.
[11] Korompay A, Borka K, Lotz G, Somorácz A, Törzsök P, Erdélyi-Belle B, et al. Tricellulin expression in normal and neoplastic human pancreas. Histopathology. 2012; 60: E76–E86.
[12] Kyno T, Kyuno D, Kohno T, Konno T, Kikuchi S, Arimoto C, et al. Tricellular tight junction protein LSR/angulin-1 contributes to the epithelial barrier and malignancy in human pancreatic cancer cell line. Histochemistry and Cell Biology. 2020; 153: 5–16.
[13] Xu Z, Zhang L, Yu Q, Zhang Y, Yan L, Chen Z. The estrogen-regulated IncRNA H19/miR-216a-5p axis alters stromal cell invasion and migration via ACTA2 in endometriosis. Molecular Human Reproduction. 2019; 25: 550–561.
[14] Choi YS, Park JH, Yoon JK, Yoon JS, Kim JS, Lee JH, et al. Potential roles of aquaporin 9 in the pathogenesis of endometriosis. Molecular Human Reproduction. 2019; 25: 373–384.
[15] Liu J, Wang Y, Chen P, Ma Y, Wang S, Tian Y, et al. AC002454.1 and CDK6 synergistically promote endometrial cell migration and invasion in endometriosis. Reproduction. 2019; 157: 535–
Lac V, Verhoeft L, Aguirre-Hernandez R, Nazeran TM, Tessier-Cloutier B, Praetorius T, et al. Iatrogenic endometriosis harbors somatic cancer-driver mutations. Human Reproduction. 2019; 34: 69–78.

Zou Y, Zhou J, Guo J, Wang L, Luo Y, Zhang Z, et al. The presence of KRAS, PPP2R1a and ARID1a mutations in 101 Chinese samples with ovarian endometriosis. Mutation Research. 2018; 809: 1–5.

Zou Y, Zhou J, Wang F, Zhang ZY, Liu FY, Luo Y, et al. Analysis of CARD10 and CARD11 somatic mutations in patients with ovarian endometriosis. Oncology Letters. 2018; 16: 491–496.

Cao B, Zeng Y, Wu F, Liu J, Shuang Z, Xu X, et al. Novel TR-ERF1 mutations in Chinese patients with ovarian endometriosis. Molecular Medicine Reports. 2018; 17: 5435–5439.

Suda K, Nakaoka H, Yoshihara K, Ishiguro T, Tamura R, Mori Y, et al. Clonal expansion and diversification of cancer-associated mutations in endometriosis and normal endometrium. Cell Reports. 2018, 24: 1777–1789.

Zhang JX, Qin MB, Ye Z, Peng P, Li SM, Song Q, et al. Association of tricellulin expression with poor colorectal cancer prognosis and metastasis. Oncology Reports. 2020; 44: 2174–2184.

Angioni S, D’Alteirio MN, Coiana A, Anni F, Gessa S, Deiana D. Genetic Characterization of Endometriosis Patients: Review of the Literature and a Prospective Cohort Study on a Mediterranean Population. International Journal of Molecular Sciences. 2020; 21: 1765.

Deiana D, Gessa S, Anardu M, Danilidis A, Nappi L, D’Alterio MN, et al. Genetics of endometriosis: a comprehensive review. Gynecological Endocrinology. 2019; 35: 553–558.

Anglesio MS, Papadopoulos N, Ayhan A, Nazeran TM, Noé M, Horlings HM, et al. Cancer-Associated Mutations in Endometriosis without Cancer. New England Journal of Medicine. 2017; 376: 1835–1848.

Li X, Zhang Y, Zhao L, Wang L, Wu Z, Mei Q, et al. Whole-exome sequencing of endometriosis identifies frequent alterations in genes involved in cell adhesion and chromatin-remodeling complexes. Human Molecular Genetics. 2014; 23: 6008–6021.

Wang K, Li T, Xu C, Ding Y, Li W, Ding L. Claudin-7 downregulation induces metastasis and invasion in colorectal cancer via the promotion of epithelial-mesenchymal transition. Biochemical and Biophysical Research Communications. 2019; 508: 797–804.

Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution. 2007; 24: 1596–1599.

Choi Y, Chan AP. PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics. 2015; 31: 2745–2747.

Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nature Methods. 2010; 7: 248–249.

Krug SM, Amasheh S, Richter JF, Milatz S, Günzel D, Westphal JK, et al. Tricellulin Forms a Barrier to Macromolecules in Tricellular Tight Junctions without Affecting Ion Permeability. Molecular Biology of the Cell. 2009; 20: 3713–3724.

Raleigh DR, Marchiando AM, Zhang Y, Shen L, Sasaki H, Wang Y, et al. Tight junction-associated MARVEL proteins marvel3, tricellulin, and occludin have distinct but overlapping functions. Molecular Biology of the Cell. 2010; 21: 1200–1213.

Steinhorstsdottir V, Thorleifsson G, Aradottir K, Feenstra B, Sigurdsson A, Stefansdottir L, et al. Common variants upstream of KDR encoding VEGFR2 and in TTC39B associate with endometriosis. Nature Communications. 2016; 7: 12350.

Krug SM, Amasheh S, Richter JF, Milatz S, Günzel D, Westphal JK, et al. Tricellulin Forms a Barrier to Macromolecules in Tricellular Tight Junctions without Affecting Ion Permeability. Molecular Biology of the Cell. 2009; 20: 3713–3724.

Raleigh DR, Marchiando AM, Zhang Y, Shen L, Sasaki H, Wang Y, et al. Tight junction-associated MARVEL proteins marvel3, tricellulin, and occludin have distinct but overlapping functions. Molecular Biology of the Cell. 2010; 21: 1200–1213.

Steinhorstsdottir V, Thorleifsson G, Aradottir K, Feenstra B, Sigurdsson A, Stefansdottir L, et al. Common variants upstream of KDR encoding VEGFR2 and in TTC39B associate with endometriosis. Nature Communications. 2016; 7: 12350.

Uimari O, Rahmioglu N, Nyholt DR, Vincent K, Missmer SA, Becker C, et al. Genome-wide genetic analyses highlight mitogen-activated protein kinase (MAPK) signaling in the pathogenesis of endometriosis. Human Reproduction. 2017; 32: 780–793.

Masuda R, Senta S, Mizuuchi E, Yanagihara K, Yokozaki H. Negative regulation of the tight junction protein tricellulin by snail-induced epithelial-mesenchymal transition in gastric carcinoma cells. Pathobiology. 2010; 77: 106–113.