Polyphenols from the Mediterranean herb rosemary (Rosmarinus officinalis) for prostate cancer

Sakina M. Petiwala¹, Angela G. Puthenveetil² and Jeremy J. Johnson¹,²*,

¹ Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
² University of Illinois Cancer Center, Chicago, IL, USA

*Correspondence: Jeremy J. Johnson, Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Room 304, Chicago, IL, 60612, USA. e-mail: jjjohn@uic.edu

MEDITERRANEAN DIET AND PROSTATE CANCER

The Mediterranean diet is rich in fruits and vegetables and has been associated with a variety of health benefits including cancer prevention. One aspect of the diet that has not received enough attention is Mediterranean herbs. Specifically, rosemary and its polyphenolic diterpenes (carnosic acid and carnosol) are known to possess anti-oxidant activity that may be beneficial for cancer control. Herein, we describe the in vitro and in vivo studies carried out towards understanding the molecular mechanisms of carnosic acid and carnosol leading to inhibition of prostate cancer. The reported findings suggest that these polyphenols target multiple signaling pathways involved in cell cycle modulation and apoptosis. Further work is required to understand its potential for health promotion and potential drug discovery for prostate cancer chemoprevention.

Keywords: carnosol, carnosic acid, prostate cancer, rosemary extract, diterpene

The Mediterranean diet is rich in fruits and vegetables and has been associated with a variety of health benefits including cancer prevention. One aspect of the diet that has not received enough attention is Mediterranean herbs. Specifically, rosemary and its polyphenolic diterpenes (carnosic acid and carnosol) are known to possess anti-oxidant activity that may be beneficial for cancer control. Herein, we describe the in vitro and in vivo studies carried out towards understanding the molecular mechanisms of carnosic acid and carnosol leading to inhibition of prostate cancer. The reported findings suggest that these polyphenols target multiple signaling pathways involved in cell cycle modulation and apoptosis. Further work is required to understand its potential for health promotion and potential drug discovery for prostate cancer chemoprevention.

Polyphenols from the Mediterranean herb rosemary (Rosmarinus officinalis) for prostate cancer

Sakina M. Petiwala¹, Angela G. Puthenveetil² and Jeremy J. Johnson¹,²*,

¹ Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
² University of Illinois Cancer Center, Chicago, IL, USA

*Correspondence: Jeremy J. Johnson, Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Room 304, Chicago, IL, 60612, USA. e-mail: jjjohn@uic.edu

MEDITERRANEAN DIET AND PROSTATE CANCER

The Mediterranean diet is rich in fruits and vegetables and has been associated with a variety of health benefits including cancer prevention. One aspect of the diet that has not received enough attention is Mediterranean herbs. Specifically, rosemary and its polyphenolic diterpenes (carnosic acid and carnosol) are known to possess anti-oxidant activity that may be beneficial for cancer control. Herein, we describe the in vitro and in vivo studies carried out towards understanding the molecular mechanisms of carnosic acid and carnosol leading to inhibition of prostate cancer. The reported findings suggest that these polyphenols target multiple signaling pathways involved in cell cycle modulation and apoptosis. Further work is required to understand its potential for health promotion and potential drug discovery for prostate cancer chemoprevention.

Keywords: carnosol, carnosic acid, prostate cancer, rosemary extract, diterpene

The Mediterranean diet is rich in fruits and vegetables and has been associated with a variety of health benefits including cancer prevention. One aspect of the diet that has not received enough attention is Mediterranean herbs. Specifically, rosemary and its polyphenolic diterpenes (carnosic acid and carnosol) are known to possess anti-oxidant activity that may be beneficial for cancer control. Herein, we describe the in vitro and in vivo studies carried out towards understanding the molecular mechanisms of carnosic acid and carnosol leading to inhibition of prostate cancer. The reported findings suggest that these polyphenols target multiple signaling pathways involved in cell cycle modulation and apoptosis. Further work is required to understand its potential for health promotion and potential drug discovery for prostate cancer chemoprevention.

Polyphenols from the Mediterranean herb rosemary (Rosmarinus officinalis) for prostate cancer

Sakina M. Petiwala¹, Angela G. Puthenveetil² and Jeremy J. Johnson¹,²*,

¹ Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
² University of Illinois Cancer Center, Chicago, IL, USA

*Correspondence: Jeremy J. Johnson, Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Room 304, Chicago, IL, 60612, USA. e-mail: jjjohn@uic.edu

MEDITERRANEAN DIET AND PROSTATE CANCER

The Mediterranean diet is rich in fruits and vegetables and has been associated with a variety of health benefits including cancer prevention. One aspect of the diet that has not received enough attention is Mediterranean herbs. Specifically, rosemary and its polyphenolic diterpenes (carnosic acid and carnosol) are known to possess anti-oxidant activity that may be beneficial for cancer control. Herein, we describe the in vitro and in vivo studies carried out towards understanding the molecular mechanisms of carnosic acid and carnosol leading to inhibition of prostate cancer. The reported findings suggest that these polyphenols target multiple signaling pathways involved in cell cycle modulation and apoptosis. Further work is required to understand its potential for health promotion and potential drug discovery for prostate cancer chemoprevention.

Keywords: carnosol, carnosic acid, prostate cancer, rosemary extract, diterpene

The Mediterranean diet is rich in fruits and vegetables and has been associated with a variety of health benefits including cancer prevention. One aspect of the diet that has not received enough attention is Mediterranean herbs. Specifically, rosemary and its polyphenolic diterpenes (carnosic acid and carnosol) are known to possess anti-oxidant activity that may be beneficial for cancer control. Herein, we describe the in vitro and in vivo studies carried out towards understanding the molecular mechanisms of carnosic acid and carnosol leading to inhibition of prostate cancer. The reported findings suggest that these polyphenols target multiple signaling pathways involved in cell cycle modulation and apoptosis. Further work is required to understand its potential for health promotion and potential drug discovery for prostate cancer chemoprevention.
and still undergoing analysis including the treatment of different cancers.

Prostate cancer is an example of a potential use of rosemary for chemoprevention and tumor reduction. It is a good candidate for chemoprevention because it is typically diagnosed in men over the age of 50 suggesting that even a minimal delay in prostate cancer development through pharmacological or nutritional manipulation could greatly reduce the incidence of clinically detectable disease (Johnson et al., 2008). Prostate cancer has a long latency period and a tendency to metastasize via the blood stream (Joshua et al., 2008; Schroder et al., 2009; Siegel et al., 2011). Autopsy studies have shown that many young men in their 20s and 30s have developed pre-cancerous lesions (Talani et al., 1982). Prostate cancer is a proliferation of epithelial cells which are seen to have a chromosomal gain or loss mutation, leading to uncontrolled cell growth. It is a slow growing cancer that follows the same progression as many epithelial cancers from mild dysplasia to invasion of the basement membrane (Umar et al., 2012). There are three classifications with the first form being latent and benign, the second form being moderately progressive and the third form being rapidly progressive and extremely malignant (Waterhouse and Buenken, 1995). The latest statistics among males in the USA estimates about 240,890 new cancer cases and 33,720 mortalities due to prostate cancer alone in 2011 (Siegel et al., 2011).

ANTI-CANCER ACTIVITY OF CARNOSIC ACID TOWARDS PROSTATE CANCER

Carnosic acid, a natural diterpene, alone constitutes 1.5–2.5% of dried leaves of rosemary. Well-known as one of the most potent anti-oxidant agents of rosemary, carnosic acid also exhibits effective anti-cancer properties. It has significant growth inhibitory and cytotoxic properties in prostate cancer cell lines, DU-145 and PC3, decreasing the cell viability of the cell lines to 13 and 20%, respectively, when treated for 48 h at a concentration of 6.25 µg/ml (i.e., 18.8 µM; Yesil-Celiktas et al., 2010). Another study by Kar et al. (2012) also illustrates the anti-proliferative and cytotoxic properties of carnosic acid in a concentration and time-dependent manner in DU-145 and PC3 prostate cancer cell lines as determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. At a concentration of 80 µM (i.e., 26.6 µg/ml), carnosic acid resulted in >95 and 90% cell death in PC3 and DU-145 cells, respectively. The half maximal inhibitory concentration (IC50) value for PC3 cells was found to be 41.1 µM. Carnosic acid induced apoptosis as evidenced by DNA fragmentation, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining and Annexin V–PI flow cytometric analysis. At 80 µM, carnosic acid promoted apoptosis in PC3 cells with 36.1% apoptosis compared to 47.2% apoptosis in DU-145 cells (Kar et al., 2012). Carnosic acid also increased expression of the pro-apoptotic protein Bax and decreased the anti-apoptotic Bcl-2 protein leading to the release of cytochrome c from the mitochondria suggestive of a mitochondrial-dependent apoptosis. The modulation of caspases by carnosic acid appears to be cell-type dependent. Carnosic acid induces apoptosis through both pathways in PC3 cells as seen by the upregulation of caspases-8, -9, and -3 by 8.2-, 5.1-, and 10.1-fold after 36 h of treatment. Although expression of caspase-9 increased by 9.3-fold in DU-145 cells, no change in expression of caspase-8 was observed in these cells suggesting activation of only intrinsic mediated apoptotic pathway in androgen refractory DU-145 cell line. Furthermore, carnosic acid was also found to trigger apoptosis via inhibition of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway which in turn suppresses IκB kinase/nuclear factor kappa B (IKK/NF-κB) pathway in PC3 prostate cancer cells (Kar et al., 2012).

Besides prostate cancer, carnosic acid is also cytotoxic against various cancer cell lines derived from human leukemia, breast, lung, and liver malignant tissues (Yesil-Celiktas et al., 2010). Some in vitro studies have shown the anti-cancer activities of carnosic acid against human neuroblastoma IMR-32 cells (Tsai et al., 2011), colon adenocarcinoma Colo-205 cells (Visanji et al., 2006), and myeloid leukemia HL-60 cells (Steiner et al., 2001). A possible in vivo chemopreventive effect of carnosic acid has been described in golden Syrian hamsters against 7,12-dimethylbenz(a)anthracene (DMBA)-induced oral carcinogenesis (Manoharan et al., 2010). At an oral dose of 10 mg/kg body weight/day, carnosic acid almost completely prevented formation of oral carcinoma in hamster’s buccal mucosa compared to 100% tumor formation in control animals. Levels of phase I and phase II detoxification enzymes were found to increase and decrease in control hamsters, respectively, whereas levels of these biomarkers were restored to normal ranges in carcinogen-treated animals. Also, the level of anti-oxidant enzymes were reduced in control group compared to the treated group. These results suggest that inhibition of DMBA-induced oral cancer might be due to anti-oxidant effect and removal of the toxic metabolite of DMBA by carnosic acid (Manoharan et al., 2010).

ANTI-CANCER ACTIVITY OF CARNOSOL TOWARDS PROSTATE CANCER

Carnosol is an ortho-diphenolic diterpene with an abietane carbon skeleton that is the product of oxidative degradation of carnosic acid (Gajhede et al., 1990; Johnson, 2011). Together, carnosic acid and carnosol are responsible for nearly all of the anti-oxidant activity of rosemary. Carnosol has been reported to possess numerous pharmacological properties including anti-inflammatory, anti-oxidant, and anti-tumor activities.

However, the anti-tumorigenic effects of carnosol on prostate cancer have only recently been explored. Work in our laboratory has demonstrated the anti-proliferative properties of carnosol in a dose and time-dependent manner on PC3 cells with an observed IC50 value of 48.3, 39.2, and 34 µmol/l at 24, 48, and 72 h, respectively. Carnosol led to an induction of cell cycle arrest at G2 phase of the cell cycle in PC3 cells along with increase in expression levels of cell cycle regulatory proteins, p21 and p27, and a simultaneous decrease in protein levels of cyclin-A, -D1, and -D2 and cyclin-dependent kinase (cdk) proteins-2 and -6 (Johnson et al., 2008).

Our study further revealed how carnosol modulates multiple signaling pathways in a single cell line. Concomitant with cell cycle arrest, we also observed upregulation of Rex and downregulation of Bcl-2 and pro-caspase 8 suggesting occurrence of apoptosis upon treatment of carnosol in PC3 cells. Besides activating the intrinsic apoptotic pathway, carnosol also inhibited the
Aguilar, F., Autrup, H., Barlow, S., Cas-
et al., 2010). Using a time-resolved fluorescence resonance energy
(LNCaP and 22Rv1) as well as
PI3K/Akt inhibition, carnosol also activated the
phosphorylation sites Thr-308 and Ser-473, respectively. In addition to mTOR pro-
tein is upregulated in prostate cancer. Upon treatment of PC3 cells with carnosol we observed a dose-dependent decrease in phosphoph-
ylation of mTOR protein thereby leading to inhibition of prostate
cancer in vitro (Johnson et al., 2010).

Additionally, our in vivo studies have demonstrated that
carnosol when given orally at a dose of 30 mg/kg inhibits the growth of prostate cancer in athymic nude mice by 36% along with a 26% decrease in serum prostate-specific antigen (PSA) levels compared to untreated control animals (Johnson et al., 2010). This study also highlights a unique property of carnosol wherein its functions as a dual disruptor of both androgen receptor (AR) and estrogen receptor (ER) in vitro in prostate cancer cells (LNCaP and 22Rv1) as well as in vivo in nude mice (Johnson et al., 2010). Using a time-resolved fluorescence resonance energy
transfer (TR-FRET) assay we found that carnosol can bind to both AR and ERα and displays antagonist activity at both the recep-
tors without any agonistic properties associated with it. More than 35 agents have been evaluated as dual disruptors of AR and ERα, however, to the best of our knowledge, this is the first report of an agent that possesses solely antagonistic properties (Willkinson et al., 2008).

CONCLUSION

This review focuses on the Mediterranean herb, rosemary, its polyphenolic diterpenes (carnosic acid and carnosol) and their
role in chemoprevention of prostate cancer. Epidemiological studies suggest a reduced risk of cancer in patients consuming rose-
mary. Herein, we have described the mechanism by which carnosic acid and carnosol inhibits prostate cancer. Essentially both diter-
penes inhibit cancer by promoting apoptosis and inhibiting the
critical PI3K/Akt signaling pathway which is an important reg-
ulator of tumor cell survival. These findings warrant further
research to understand the potential of rosemary as a cancer chemopreventive agent in prostate cancer.

ACKNOWLEDGMENT

Aspects of this work was supported by the American Cancer Society RSG-CN3 - 122480 (to Jeremy J. Johnson).

REFERENCES

Agarwal, A., Armstrong-Piasecki, L., Basu, S., et al. (2008). Use of rosemary extracts as a food additive – scientific opinion of the panel on food additives, Rou-
setings, processing aids and materials in contact with food. EFSA J. 7, 221–29.
Aruscanu, G., H., Hillier, B., A., Ash, B., D., and LePimphachol, S., et al. (2013). Carnosol
and idoxuridine has synergistic activity of active rosemary constituents: carnosol and carnosic acid. Scien-
Garrood, M., and Gerngross, M., and Amat, R., and Cano, J., et al. (2012). Carnosic acid: a prom-
activating agent. Cancer Lett. 305, 1–7.
Johnson, J. J., Syed, D. N., Horen, C. B., Sah, Y., Adami, V. M., and Maitland, H. (2008). Carnosol, a
dated diterpene, displays growth-inhibitory effects in human prostate cancer PC3 cells leading to G2-
phase cell cycle arrest and targets the 5′-AMP-activated protein kinase (AMPK) pathway. Pharn.
Res. 25, 2125–2136.
Johnson, J. J., Syed, D. N., Sah, Y., Horen, C. B., Salom, M., Ridgway, L. A., et al. (2010). Disruption of androgen and estrogen receptor activity in prostate cancer by a novel dietary diterpene
carnosol implications for chemopre-
vention. Cancer Prev. Res. (Phila.) 3, 1112–123.
Joshi, A. M., Evans, A., Van De, B., Zielewski, M., Moke, A. K., Chin-
mann, A., et al. (2000). Prostate
tumor progression and beyond. Biochim.
Biophys. Acta 1578, 156–181.
Kar, S., Pal, S., Bhat, B. W., and Das,
P. K. (2012). Carnosic acid mod-
ulates Akt/ERK1/2-kappaB signaling by PI3K and induces intrinsic and extrinsic pathway mediated apoptosis in human prostate carcinoma PC-3 cells. Apoptosis 17, 735–747.
Keys, A., Meisner, A., Kuziemko, M. L., Aruscanu, C., Blackburn, H., Bruna,
R., et al. (1986). The diet and 15-
year death rate in the seven coun-
tries study. Am. J. Epidemiol. 124, 905–915.
Le, A. H., Liang, V. C., Lin, Shu, S. Y., Hsu, C. T., and Lin, J. K. (2002). Carnosol, an antimutant in rosemary, suppresses inducible nitric oxide synthase through down-
regulating nuclear factor-kappaB in mouse macrophages. Gynecologes 25, 983–991.
Macchiarini, D., G., Noto, V., Bale, G. O., Cola, A., Carina, M. P., Dalmauro, J. R., et al. (2012). Antitumorant-
like effect of urceolic acid isolated from Rosmarinus officinalis L. in mice for the treatment of the dopaminergic system. Pharn.
Res. 105, 214–211.
Manso, S., Vicario, M., B., Sal, S., Ricuart, N., Kamar, S., and Varela, V. (2010). Carnosic acid and a point diversifica-
tion agent against oral cancerino-
genesis. Chem. Biol. Interact. 188, 636–642.
Piscopo, S. (2009). The Mediterranean diet as a nutrition education, health promotion and disease prevention tool. Public Health Nutr. 12, 1648–
1655.
Powell, C., Green, C., Ver-
hoff, M., Rau, O., Teusch, L., Hermdorf, C., et al. (2004). Carnosic acid and carnosol potently inhibit human S-lipoproteinase and sup-
press pro-inflammatory responses of
stimulated human polymorphonu-
clear leukocytes. Biochem. Pharma-
oc. 76, 85–97.
Schneider, P. H., Huggins, J., Rosolli, M. J., Tamm, L., Vinoth Kumar, V., et al. (2006). Screening and prostate-cancer mortality in a ran-
domized European study. N. Engl. J.
Med. 356, 1328–1328.
Siegler, R., Wood, E., Brawley, O., and Jenal, A. (2011). Cancer statistics. 2011: the impact of eliminating socioeconomic and racial disparities on premature-cancer deaths. C A G en-
t J Clin Onc 41, 212–236.
Steiner, M., Prol, L., Gau, J., Levy,
J., Scarroni, T., and Donatelli, M. (2001). Carnosic acid inhibits pro-
feration and augments differentiation of human leukemia cells induced by 1,25-dihydroxyvitamin D3 and retinoic acid. J. Nutr. 141, 130–144.
Tsun, C. W., Lin, C. Y., Lin, H. H., and Chen, J. H. (2011). Carnosic acid, a rosemary phenolic com-
 pound, induces apoptosis through reactive oxygen species-mediated p38 activation in human neuroblastoma SH-SY-5Y cells. Neurochem. Res. 36, 1199–
1212.
Umar, A., Dunn, B. C., and Greenwald, P. (2012). Future directions in can-
cer prevention. Nat. Rev Cancer 12, 23–35.
Umar, A., Dunn, B. C., and Greenwald, P. (2012). Future directions in can-
cer prevention. Nat. Rev Cancer 12, 23–35.
Petiwala et al. Rosemary polyphenols for prostate cancer

carnosol and carnosic acid is associated with alteration of cyclin A and cyclin B1 levels. Cancer Lett. 237, 130–136.

Waterbor, J. W., and Bueschen, A. J. (1995). Prostate cancer screening (United States). Cancer Causes Control 6, 267–274.

Wilkinson, J. M., Hayes, S., Thompson, D., Whitney, P., and Bi, K. (2008). Compound profiling using a panel of steroid hormone receptor cell-based assays. J. Biomed. Sci. 15, 755–760.

Yatani, R., Chigusa, I., Akazaki, K., Steinermann, G. N., Walsh, R. A., and Corsa, P. (1982). Geographic pathology of latent prostate carcinoma. Int. J. Cancer 29, 611–618.

Yesil-Celiktas, O., Sevimli, C., Bedir, E., and Vardar-Sukan, F. (2010). Inhibitory effects of rosemary extracts, carnosic acid and rosmarinic acid on the growth of various human cancer cell lines. Plant Foods Hum. Nutr. 65, 158–163.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.