Nano Coat as an Effective Replacement for Bearing Liner

K.S.K. Mallik, K.V. Ramana

Abstract: This work highlights an experimental investigation on the surface roughness and hardness of a nano composite, which can replace the liner of a journal bearing. There is a possibility of rotation of bearing liner, due to inconsistent rotation of the journal about its geometrical axis. At the same time, the liner may have sliding action inside the bearing over a period of time. The said drawbacks can be eliminated by replacing the bearing liner by a nano coat. Babbit is the most widely used material for bearing liner. The Tin of Babbitt alloy has been replaced by cadmium due to its low cost and better mechanical and thermal properties. The results show that, Cadmium is offering better surface roughness and hardness in comparison with the Babbit.

Key words: Bearing liner, Babbitt, Cadmium, Mechanical Properties, Tin

I. INTRODUCTION

A bearing liner is the material which reduces the wear and frictional heat between the two contacting surfaces. Babbit, an alloy invented by Isaac Babbitt in 1839 exhibited superior bearing properties over other liner materials. The failure of liner can also be caused by a simultaneous and interrelated exhibition of fatigue and wear process that depend considerably on cohesive strength between the bush and the bearing and accumulation of defects on the contacting surfaces of the bush and the shaft. Good bearing design as observed by S.R. Hule et al. [1] includes three basic elements: understand the working atmosphere, designing for proper lubrication and selection of appropriate bearing material for the job. G. C. Pratt [2] reviewed the materials concerned sliding contact bearings which has its own peculiar property requirements. Nano powders production through a rolling-type planetary ball mill apparatus was disclosed by Chen S et al. [3]. Koring [4] in his work has presented a mechanism for improving the properties of bearing alloys and the environmental problems that has arisen. G.M. Xu et al. [5] have proposed AlSn, Pb₅Si₃, C₁₀₆₆₇C₁₇₇₇₇₇₇ as a bearing liner material with higher hardness, and the properties of bush material are greatly increased with uniform annealing at constant temperature. Kano et al. [6] have chosen normal temperature milling of different types of powder materials based on their ability of grinding. Z. Zongli et al. [7] in their work, considered the coatings of arc sprayed tin-based alloy. Mechanical properties of the coatings were tested, and an effective way to increase the tensile strength was mentioned. The results indicated that coating has a satisfactory performance under the condition of rubbing, which is better than that of cast babbit. S. C. Tjong [8] reviewed the manufacturing techniques and mechanical properties of the metal matrix composites reinforced with ceramic nanoparticles.

R. Casati and M. Vedani [9] reviewed the manufacturing methods used for the production of metal matrix Nanocomposites on large scale and the near future applications of the new class of composites. Hamdy A. S. [10] in his paper reported the research to develop environmental coatings and the problem aroused in designing high performance nano composite coatings. Tyona, M. D. et al. [11] reviewed the comprehensive theory of the spin coating technique. It highlights the fundamental principles and process parameters. K.S. K. Mallik and K. V. Ramana [12] carried out an experimentation to obtain nano particles through ball milling method and nano coating through spin coating technique and also tested the thermal properties of the nano coating[13-15].

II. EXPERIMENTAL METHODS

The basic metals of the suggested composite are Antimony, Copper, Lead and Cadmium obtained in micro size in acetate form.

A. Preparation of Nano particles

Ball milling method, in which a powder mixture is subjected to high energy collision to obtain nano particles [16-17], is performed on ball milling equipmentas shown in Figure. 1.

![Figure 1: Insmart systems planetary ball milling equipment](image-url)

The ball milling process specifications are mentioned in Table 1.

Ball Powder ratio	5:1
Speed	350 RPM
Diameter of the balls	6mm and 10mm
Weight of the balls	2 grams and 8 grams
Material of balls and vials	Tungsten carbide
Time	Run time = 4 Min, Off time = 1 Min; No Of cycles = 12 Total Run time = (On time + Off time)*no of cycles = (4+1)*12 = 60 Min

Table 1: Ball milling process specifications
Nano Coat as an Effective Replacement for Bearing Liner

The time (in hrs) for getting required size is 41, 52, 56, and 49 for antimony, copper, lead, and cadmium respectively. Through XRD and Scherrer equation the size of the powder is confirmed as 10nm.

B. Preparation of Nano coating

The four different compositions of considered nano composite powder are presented in Table 2.

Composition	% of Cadmium	% of Lead	% of Antimony	% of Copper
A	95	3	1	1
B	97	1	1	1
C	3	89	5	3
D	1	95	3	1

Table 2 Compositions considered

A solution of 1.0 gram of proposed nano powder, 5.0 ml of ethanol and 0.50 mg of pvp is obtained through mechanical stirring. The solution is applied on mild steel substrate, drop by drop using spin coating equipment shown in Figure 2 for obtaining nano coating. The spin speed and spin time of spin coating are 1500 rpm and 30 sec respectively. After annealing, the coating thickness is tested under metallurgical microscope and the coating thickness on an average is 60 microns.

III. EXPERIMENTAL STUDY

A. HARDNESS

Universal hardness tester is used to test the hardness of the coatings by conducting the test at various points in three directions on the specimen and the Brinell’s hardness number is calculated

S.No	A	B	C	D
1	170	140	142	110
2	140	130	130	120
3	142	135	135	130
Mean	150	135	136	120

Table 3 Surface Hardness values

B. SURFACE ROUGHNESS

The coated specimens are subjected to roughness test on TAYLOR HOBSON Surtronic S128 surface roughness testing equipment as given in Fig. 3 in different directions and the mean value is calculated.

S.No	A	B	C	D
1	0.75	1.5	2.2	2.4
2	0.85	1.5	2.0	2.0

Table 4 Surface roughness values
Table 1: Mean surface roughness of different coatings

Coating	Mean	1	1.8	1.9	2.2
Babbitt	0.78	1.6	2.03	2.2	2.33

Fig. 5 shows the variation between surface roughness and percentage composition

![Graph showing surface roughness vs percentage composition](image)

V. CONCLUSIONS

1. Cd95% coating exhibits better surface roughness of 0.78 when compared to other coatings.
2. The hardness of the sample Cd95%, 150 is higher than other coating samples

From the tested properties, it is clear that Cd95% is preferred over other coatings and also shows better properties when compared to Babbitt liner.

REFERENCES

1. S.R. Hule, D.S. Galhe, and C.L. Dhananjani: A Study on the hydrodynamic bearing materials and properties. International journal of advance research and innovative ideas in education, 2016, Vol-2, Issue-1, 607-613
2. G. C. Pratt: Materials for plain bearings. International Metallurgical Reviews, 1973, 18(2), 62-88
3. Chen, Shizhu, Junsheng Yang, and Bor Z. Jang. "High-energy planetary ball milling apparatus and method for the preparation of nanometer-sized powders." U.S. Patent 6,126,097, issued October 3, 2000.
4. R. Koring: Improved bearing alloy - A contribution toward environmental protection. Proceedings of the thirty second turbomachinery symposium, 2003, 85-90
5. G.M. Xu and S. HasaneAhammad. 2019. "Design and Analysis of a Heavy Vehicle Chassis by using E-Glass Epoxy & S-2 Glass Materials." International Journal of Recent Technology and Engineering 7 (6): 903-905. www.scopus.com.
6. Mallik, K. K., Kumar, G. N. S., Balasubramaniam, S., Swetha, D. A review on preparation and structural characterization studies of graphitic carbon nitride (2017) Journal of Advanced Research in Dynamical and Control Systems, 9 (Special Issue 14), pp. 1869-1880
7. Raj Kumar, A., G. N. S. Kumar, J. K. Chithanooori, K. S. K. Mallik, P. Srinivas, and S. HasaneAhammad, 2019. "Design and Analysis of a Heavy Vehicle Chassis by using E-Glass Epoxy & S-2 Glass Materials." International Journal of Recent Technology and Engineering 7 (6): 903-905. www.scopus.com.
8. Tyona, M. D. "A theoretical study on spin coating technique." Advances in materials Research 2, no. 4 (2013): 195-208.
9. K. S. K. Mallik and K.V. Ramana. “An innovative approach of nano coat as bearing liner – An Experimental Investigation”. International Journal of Mechanical and Production Engineering Research and Development, 8(6), 2018, 1093-1098
10. Kumar, G. N. S. and A. Srinath. 2018. "An Ergonomicalconditions of Pedestrians on Accelerating Moving Walkway: A People Mover System." International Journal of Mechanical and Production Engineering Research and Development 8 (Special Issue 7): 1376-1381, www.scopus.com.
11. Kano, Junya, Hiroshi Mio, and Fumio Saito. “Correlation of size reduction rate of inorganic materials with impact energy of balls in planetary ball milling.” U.S. Patent 6,528,189, issued March 18, 2003.
12. Hamdy, Abdel Salam. "Novel approaches in designing high performance nano and nano-composite coatings for industrial applications." International Journal of Nano manufacturing, 2014, 4, 65-83
13. Ma, Zhongli, D. Sihua, Z. Hongbin, L. Deyuan, S. Wenzhe, and Y. Chunqi: Microstructure and properties of arc sprayed tin-based babbitt coating. Transactions of the China welding institution, 2010
14. Babbitt liner. Other coatings and also shows better properties when compared to other coating samples
15. S.R. Hule, D.S. Galhe, and C.L. Dhananjani: A Study on the hydrodynamic bearing materials and properties. International journal of advance research and innovative ideas in education, 2016, Vol-2, Issue-1, 607-613
16. G. C. Pratt: Materials for plain bearings. International Metallurgical Reviews, 1973, 18(2), 62-88
17. Chen, Shizhu, Junsheng Yang, and Bor Z. Jang. "High-energy planetary ball milling apparatus and method for the preparation of nanometer-sized powders." U.S. Patent 6,126,097, issued October 3, 2000.
18. R. Koring: Improved bearing alloy - A contribution toward environmental protection. Proceedings of the thirty second turbomachinery symposium, 2003, 85-90
19. G.M. Xu and S. HasaneAhammad. 2019. "Design and Analysis of a Heavy Vehicle Chassis by using E-Glass Epoxy & S-2 Glass Materials." International Journal of Recent Technology and Engineering 7 (6): 903-905. www.scopus.com.

Figure 5 %Composition vs Surface roughness