1470. Linezolid for Treatment of Urinary Tract Infections Caused by Vancomycin-resistant Enterococci
Benjamin Pontefract, PharmD, BCPS; Karl Madaras-Kelly, PharmD, MPH; 1Boise VA Medical Center, Boise, Idaho; 2Idaho State University, Boise, Idaho
Session: 157. Urinary Tract Infections Friday, October 4, 2019: 12:15 PM

Background. Urinary tract infections (UTIs) caused by vancomycin-resistant enterococci (VRE) are difficult to manage due to lack of effective oral treatment options. Linezolid is an antibiotic with activity against VRE that is available orally, but only 30% of each dose is excreted in the urine. Data on the efficacy of linezolid in the treatment of UTI is limited. The purpose of this analysis was to assess the comparative efficacy of linezolid to other VRE-active antibiotics in the treatment of UTI.

Methods. A national retrospective cohort of inpatient veterans with a positive urine culture for VRE during years 2013 through 2018 was developed. Patient demographics, vital signs, urine symptoms, antibiotics prescribed, and 14-day post-treatment outcomes were collected. Patients without UTI symptoms, urine cultures with <10^5 cfu/mL (<10^5 CFU/mL for catheterized patients), or patients not treated with VRE-active antibiotics were excluded. Odds ratios were used to compare linezolid and non-linezolid antibiotics for 14-day VRE bacteriuria, UTI retreatment, and death endpoints.

Results. Of 3,846 urine cultures identified with VRE, 624 (16%) patients were eligible for evaluation of UTI symptoms. Of these, 92,624 (15%) met study criteria. The primary reason for exclusion was asymptomatic bacteriuria [339/532 (64%)]. Linezolid was prescribed in 54/92 (59%) of cases. Comparisons included penicillin's [12/92 (13%)], nitrofurantoin [11/92 (12%)], daptomycin [7/92 (8%)] and tetracyclines [6/92 (7%)] and others [2/92 (2%)].

Between linezolid and comparator groups, mean (+S.D.) patient age [70 (12) vs. 68 (13) years, P = 0.45] and Charlson Comorbidity Index [8.9 (3.1) vs. 8.3 (3.5), P = 0.39] were similar. Negative outcomes were uncommon: 7% VRE bacteriuria, 8% UTI re-treatment, 4% death. No difference in [OR] (+S.D.) between linezolid and comparators were observed. VRE bacteriuria the [0.3 (0.1, 1.9), P = 0.20], UTI retreatment [1.8 (0.3, 10.0), P = 0.49], death [1.4 (0.1, 16.1), P = 0.79].

Conclusion. Most patients with a VRE positive urine culture who received antibiotics met diagnostic criteria for UTI, and negative outcomes were uncommon. Linezolid and comparator regimens with VRE activity were effective for treating mild VRE UTI.

Disclosures. All authors: No reported disclosures.

1471. Medical Claims Analysis as a Tool to Evaluate Empiric and Targeted Antibiotic Therapy in UTIs
Wing Hui Ng, MS; Nuno T. Antunes, PhD; Shiram Veeramani, MS; David Holman, PhD; Decision Resources Group, Toronto, ON, Canada
Session: 157. Urinary Tract Infections Friday, October 4, 2019: 12:15 PM

Background. Empiric therapy is a mainstay of the inpatient management of urinary tract infections (UTIs), and the choice of empiric antibiotic is shaped by local epidemiology and patient risk factors and comorbidities. Pathogen identification and physician's assessment of clinical outcomes was very high at TOC and FUP visits during the study period; furthermore, a rate of resistance to TZP has been decreasing over the years.

Conclusion. Identifying antibiotic susceptibility patterns of ESBL-E is a useful guide for treatment strategy of UTI. This study showed that there are non-carbapenem options for the treatment of CA UTI UTI in children.

Disclosures. All authors: No reported disclosures.

1473. Structured Patient Interview in Complicated Urinary Tract Infections to Assess Clinical Outcomes vs. Investigator’s Evaluation in the APEKS-cUTI Study
Simon Portsmouth, MD; Kichihiro Toyoizumi, PhD; Tsutae Den Nagata, MD; Glen S. Tillotson, PhD; Roger Echols, MD; 3Shionogi Inc, Farming Park, New Jersey; 4Shionogi & Co., Ltd., Osaka, Osaka, Japan; 5UST Micro LLC, Henrico, Virginia; 6Infectious Disease Drug Development Consulting, LLC, Easton, Connecticut
Session: 157. Urinary Tract Infections Friday, October 4, 2019: 12:15 PM

Background. Based on the 2009 US FDA guidance, patient-reported outcome (PRO) measures are recommended in clinical study designs for certain indications to evaluate response to therapy from the patient’s perspective, and a PRO was recommended in the final completed urinary tract infection (UTI) guidance in 2014. Several PRO tools have been rigorously validated, but currently, no tool exists for evaluating cUTI. We included a “structured patient interview (SPI)” while conducting a randomized, double-blind, study (NCT02321800) investigating cefiderocol (CFDC) vs. imipenem–cilastatin (IPM/CS) in cUTI patients to support the physician’s assessment of clinical response.

Methods. Patients, who were fully alert and oriented, were interviewed at randomization, end of treatment, test of cure (TOC), and follow-up (FUP) by the same investigator who interviewed the patient; presence of absence of relevant symptoms pertinent to cUTI. Responses were graded as none, or if present, mild, moderate, or severe. Investigator assessment included objective measures of clinical outcome(s) and was performed independently from the patient-reported symptoms collected in the SPI. Changes in the patient’s responses were compared within the investigator’s assessment at randomization and at each study visit. A kappa correlation coefficient comparing the SPI and physician’s clinical assessment was calculated at each evaluation time point.

Results. Based on investigator assessment, 89.7% (226 out of 252 patients) in the CFDC arm and 87.4% (104 out of 119 patients) in the IPM/CS arm achieved clinical cure (adjusted treatment difference: 2.3%; 95% CI: –4.66; 9.44) at TOC. Based on the SPI responses, 89.7% (226 out of 252 patients) in the CFDC arm and 84.9% (101 out of 119 patients) in the IPM/CS arm achieved clinical cure (adjusted treatment difference: 4.96%; 95% CI: –2.48; 12.39) in favor of CFDC. The correlation between SPI evaluation and physician’s assessment of clinical outcomes was very high at TOC and FUP visits (Kappa coefficients: 0.820 to 0.766, respectively).

Conclusion. The strong correlation between patients’ reported symptoms collected in the SPI and investigator assessment showed that SPI responses could be a useful alternative measure of clinical outcomes in cUTI studies.

Disclosures. All authors: No reported disclosures.

1474. Epidemiology and Outcomes of Hospitalized Patients with Urinary Tract Infections (UTI) Due to Multidrug-Resistant Organisms (MDRO)
Frances J. Lahrman, DO; 2Margaret A. Olsen, PhD, MPH; 3Dustin St ETawley, MA; Jason P. Echols, MD; 4Jennie H. Kwon, DO, MSCI
1Washington University in St. Louis School of Medicine, St. Louis, Missouri; 2Washington University in St. Louis, Missouri; 3Washington University
Session: 157. Urinary Tract Infections Friday, October 4, 2019: 12:15 PM

Background. Childhood urinary tract infection (UTI) may cause increased morbidity and long-term clinical consequences. Extended-spectrum β-lactamase (ESBL) is produced by the members of the Enterobacteriaceae family, which are the primary infectious agents that cause UTI in children. Isolation of ESBL-producing Enterobacteriaceae (ESBL-E) typically occurred in healthcare facilities; however, the incidence of community-associated (CA) UTIs due to ESBL-E has increased world-wide. It has led to an increase in the use of carbapenems. In this study, we determine the characteristics of community-onset UTIs caused by ESBL-E in children to suggest non-carbapenem options for the treatment of childhood UTIs due to ESBL-E in order to preserve carbapenems.

Methods. A total of 2,157 isolates of ESBL-E were collected from children below 18 years old who were clinically certified UTI or urosepsis between January 2008 and August 2018 at tertiary university hospital in Korea. Their electronic medical records were retrospectively reviewed. Long-term healthcare facility stay within the preceding month and isolates recovered more than 72 hours after hospitalization were the criteria of healthcare-associated (HA) infection.

Results. The most common isolates were E. coli 1815 (84.2%) followed by K. pneumoniae 342 (15.8%), CA K. pneumoniae 1,513 of the 2,157 ESBL-E (70.1%). The prevalence of CA ESBL-E infection increased significantly from 68 cases in 2008 to 325 cases in 2017. Antibiotic susceptibility test showed highest sensitivity to imipenem, meropenem, and amikacin (>90%) followed by cefotaxin (82%), and pipercillin–tazobactam (TZP) (80%). CA E. coli showed higher sensitivity to amikacin and TZP compared with HA E. coli. CA K. pneumoniae showed much higher sensitivity to TZP compared with HA K. pneumoniae. Of total ESBL-E, the antimicrobial resistance rate to amoxicillinclavulanic acid such as amikacin and gentamicin showed full sensitivity by the study period; furthermore, a rate of resistance to TZP has been decreasing over the years.

Conclusion. Identifying antibiotic susceptibility patterns of ESBL-E is a useful guide for treatment strategy of UTI. This study showed that there are non-carbapenem options for the treatment of CA ESBL UTI in children.

Disclosures. All authors: No reported disclosures.