THE REPRESENTATIONS OF CYCLOTONIC BMW ALGEBRAS, II

HEBING RUI AND MEI SI

Abstract. In this paper, we go on Rui-Xu's work on cyclotomic Birman-Wenzl algebras $B_{r,n}$ in [19]. In particular, we use the representation theory of cellular algebras in [11] to classify the irreducible $B_{r,n}$-modules for all positive integers r and n. By constructing cell filtrations for all cell modules of $B_{r,n}$, we compute the discriminants associated to all cell modules for $B_{r,n}$. Via such discriminants together with induction and restriction functors given in section 5, we determine explicitly when $B_{r,n}$ is semisimple over a field. This generalizes our previous result on Birman-Wenzl algebras in [17].

1. Introduction

Let $B_{r,n}$ be the cyclotomic Birman-Wenzl algebras defined in [12]. Motivated by Ariki, Mathas and Rui’s work on cyclotomic Nazarov-Wenzl algebras [4], Rui and Xu [19] proved that $B_{r,n}$ is cellular over R for all positive odd integers r under the so-called u-admissible conditions (see the assumption 2.2). Moreover, they have classified the irreducible $B_{r,n}$-modules.

In this paper, we will prove that $B_{r,n}$ is cellular over R for all positive integers r under the u-admissible conditions. By using arguments in [19], we classify the irreducible $B_{r,n}$-modules over an arbitrary field. This completes the classification of irreducible $B_{r,n}$-modules over a field. We remark that Yu [20] first proved that $B_{r,n}$ is cellular over R under the similar conditions. However, she did assume that the parameter ω_0, which is given in Definition 2.1, is invertible when she proved that $B_{r,n}$ is cellular.

Given a cell module M of $B_{r,n}$. Following [17], we construct a $B_{r,n-1}$-filtration for M. Via it, we construct an R-basis for M, called JM-basis in the sense of [15]. This enables us to use standard arguments in [15] to construct an orthogonal basis for M under so called separate condition in the sense of [15]. The key is that the Gram determinants associated to M which are defined by the JM-basis and the previous orthogonal basis are the same. We will give a recursive formula to compute the later determinant.

Motivated by [9], we construct restriction functor F and induction functor G which set up a relationship between the category of $B_{r,n}$-modules and the category of $B_{r,n-2}$-modules. Via F and G together with certain explicit formulae on Gram determinants, we determine explicitly when $B_{r,n}$ is semisimple over a field.

We organize the paper as follows. In Section 2, we prove that $B_{r,n}$ is cellular over R for all positive integers r and n. We also classify the irreducible $B_{r,n}$-modules. In section 3, we construct the JM-basis and an orthogonal basis for each cell module of $B_{r,n}$. In section 4, we compute the discriminants associated to all cell modules of $B_{r,n}$. Restriction functor F and induction functor G will be constructed in section 5. In section 6, we determine explicitly when $B_{r,n}$ is semisimple over an arbitrary field.

Date: July 25, 2008.

The first author is supported in part by NSFC and NCET-05-0423.
2. The cyclotomic Birman-Wenzl algebras

Throughout the paper, we fix two positive integers \(r \) and \(n \). Let \(R \) be a commutative ring which contains the identity 1 and invertible elements \(q^{\pm 1}, u_1^{\pm 1}, \ldots, u_r^{\pm 1}, q^{\pm 1}, \delta^{\pm 1} \) such that \(\delta = q - q^{-1} \) and \(\omega_0 = 1 - \delta^{-1}(q - q^{-1}) \).

Definition 2.1. [12] The cyclotomic Birman-Wenzl algebra \(\mathcal{B}_{r,n} \) is the unital associative \(R \)-algebra generated by \(\{ T_i, E_i, X_j^{\pm 1} \mid 1 \leq i < n \text{ and } 1 \leq j \leq n \} \) subject to the following relations:

a) \(X_i X_i^{-1} = X_i^{-1} X_i = 1 \) for \(1 \leq i \leq n \).

b) (Kauffman skein relation) \(1 = T_i^2 - \delta T_i + \delta q E_i \), for \(1 \leq i < n \).

c) (braid relations)

 i) \(T_i T_j = T_j T_i \) if \(|i - j| > 1 \),

 ii) \(T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1} \), for \(1 \leq i < n - 1 \),

 iii) \(T_i X_j = X_j T_i \) if \(j \neq i, i + 1 \).

d) (Idempotent relations) \(E_i^2 = \omega_0 E_i \), for \(1 \leq i < n \).

e) (Commutation relations) \(X_i X_j = X_j X_i \), for \(1 \leq i, j \leq n \).

f) (Skein relations)

 i) \(T_i X_i - X_{i+1} T_i = \delta X_{i+1} (E_i - 1) \), for \(1 \leq i < n \),

 ii) \(X_i T_i - T_{i+1} X_i = \delta (E_i - 1) X_{i+1} \), for \(1 \leq i < n \).

g) (Anti–symmetry relations) \(E_i X_1 X_{j+1} = E_i X_{j+1} X_1 \), for \(1 \leq i < n \).

h) (Untwisting relations)

 i) \(E_{i+1} E_i E_{i+1} = E_{i+1} \), for \(1 \leq i < n - 2 \),

 ii) \(E_i E_{i+1} E_i = E_i \), for \(1 \leq i < n - 2 \).

i) (Untwisting relations)

 i) \(E_{i+1} E_i E_{i+1} = E_{i+1} \), for \(1 \leq i < n - 2 \),

 ii) \(E_i E_{i+1} E_i = E_i \), for \(1 \leq i < n - 2 \).

j) (Cyclotomic relation) \((X_1 - u_1)(X_1 - u_2) \cdots (X_1 - u_r) = 0 \)

For each \(x \in R \), let

\[
\gamma_r(x) = \begin{cases}
1, & \text{if } 2 \nmid r, \\
-x, & \text{if } 2 \mid r.
\end{cases}
\]

In the remainder of this paper, We use \(u \) (resp. \(\Omega \)) to denote \(\{u_1, u_2, \ldots, u_r\} \) (resp. \(\{\omega_a \mid a \in \mathbb{Z}\} \)). In order to show that \(\mathcal{B}_{r,n} \) is free over \(R \), Rui and Xu introduced the \(u \)-admissible conditions in [19] 3.15 as follows.

Assumption 2.2. \(\Omega \cup \{q\} \) is called **\(u \)-admissible** if

\[
q^{-1} = \alpha \prod_{\ell=1}^r u_\ell, \quad \text{and} \quad \omega_a = \sum_{j=1}^r u_j^a \gamma_j, \forall a \in \mathbb{Z}
\]

where

1. \(\gamma_i = \gamma_r(u_i) + \delta^{-1} q(u_i^2 - 1) \prod_{j \neq i \neq i} u_j \prod_{j \neq i} \frac{u_i u_j - u_i}{u_i - u_j} \).
2. \(\alpha \in \{1, -1\} \) if \(2 \nmid r \) and \(\alpha \in \{q^{-1}, -q\} \), otherwise.
3. \(\omega_0 = \delta^{-1} q(\prod_{\ell=1}^r u_\ell^2 - 1) + 1 - \frac{(-1)^{r+1}}{2} \alpha^{-1} q^{-1} \).

Note that there are infinite equalities in the definition of \(u \)-admissible conditions in Assumption 2.2. It has been proved in [19] 3.17 that \(\omega_j, \forall j \in \mathbb{Z} \), are determined by \(\omega_i \), \(0 \leq i \leq r - 1 \). Furthermore, all \(\omega_i \) are elements in \(\mathbb{Z}[u_1^{\pm 1}, \ldots, u_r^{\pm 1}, q^{\pm 1}, \delta^{\pm 1}] \) [19] 3.11. Therefore, \(\omega_i \in R \) for all \(i \in \mathbb{Z} \) if they are given in the Assumption 2.2.

In the remainder of this paper, unless otherwise stated, we always keep the Assumption 2.2 when we discuss \(\mathcal{B}_{r,n} \) over \(R \).
It has been proved in [19] that $\mathcal{B}_{r,n}$ is a free R-module with rank $r^n(2f-1)$! when r is odd. We will prove that $\mathcal{B}_{r,n}$ is cellular over R with rank $r^n(2f-1)$! when r is even. We start by recalling the definition of Ariki-Koike algebras in [2].

The Ariki-Koike algebra $\mathcal{H}_{r,n}(\mathfrak{u}) := \mathbb{H}_{r,n}$ is the unital associative R-algebra generated by y_1, \ldots, y_n and $g_1, g_2, \ldots, g_{n-1}$ subject to the following relations:

\begin{enumerate}
 \item \((g_i - q)(g_i + q^{-1}) = 0\), if \(1 \leq i \leq n - 1\),
 \item \(g_i g_j = g_j g_i\), if \(|i - j| > 1\),
 \item \(g_i g_{i+1} g_i = g_{i+1} g_i g_i\), for \(1 \leq i < n - 1\),
 \item \(g_i y_j = y_j g_i\), if \(j \neq i, i + 1\),
 \item \(y_i y_j = y_j y_i\), for \(1 \leq i, j \leq n\),
 \item \((y_i - u_1)(y_i - u_2) \cdots (y_i - u_r) = 0\).
\end{enumerate}

Let $\mathcal{E}_n = \mathcal{B}_{r,n}E_1\mathcal{B}_{r,n}$ be the two-sided ideal of $\mathcal{B}_{r,n}$ generated by E_1. It is proved in [19, 5.2] that $\mathcal{H}_{r,n} \cong \mathcal{B}_{r,n}/\mathcal{E}_n$. The corresponding R-algebraic isomorphism is determined by

\[\varepsilon_n : y_i \mapsto T_i + \mathcal{E}_n, \quad y_j \mapsto X_j + \mathcal{E}_n, \]

for \(1 \leq i < n\) and \(1 \leq j \leq n\).

Let \mathfrak{S}_n be the symmetric group on \(\{1, 2, \ldots, n\}\). Then \mathfrak{S}_n is generated by $s_i = (i, i+1)$, \(1 \leq i \leq n - 1\). If $w = s_{i_1} \cdots s_{i_k} \in \mathfrak{S}_n$ is a reduced expression of w, then we write $T_w = T_{i_1}T_{i_2} \cdots T_{i_k} \in \mathcal{B}_{r,n}$. It has been pointed out in [19] that T_w is independent of a reduced expression of w. We denote by

\[(2.3) \quad \mathbb{N}_r = \left\{ i \in \mathbb{Z} \mid -\left\lfloor \frac{r}{2} \right\rfloor + \frac{1}{2}(1 + (-1)^r) \leq i \leq \left\lfloor \frac{r}{2} \right\rfloor \right\}.
\]

Given a non-negative integer f with $f \leq \lfloor n/2 \rfloor$. Following [19, 5.5], we define

\[(2.4) \quad D_{f,n} = \left\{ s_{n-2f+1,i} s_{n-2f+2,j} \cdots s_{n-1,i} s_{n,j} \mid 1 \leq i < j \leq n, 1 \leq i_1 < j_1 \leq n-2k+2, 1 \leq k \leq f \right\},
\]

where

\[s_{i,j} = \begin{cases} s_{i-1}s_{i-2} \cdots s_j, & \text{if } i > j, \\ s_is_{i+1} \cdots s_{j-1}, & \text{if } i < j, \\ 1, & \text{if } i = j.\end{cases}\]

Let $\mathfrak{B}_f \subset \mathfrak{S}_n$ be the subgroup generated by $s_{n-2i+2}s_{n-2i+1}s_{n-2i+3}s_{n-2i+2}$, \(2 \leq i \leq f\), and s_{n-1}. Then $D_{f,n}$ is a right coset representatives for $\mathfrak{S}_{n-2f} \times \mathfrak{B}_f$ in \mathfrak{S}_n (see e.g. [19]).

For each $d = s_{n-2f+1,i} s_{n-2f+2,j} \cdots s_{n-1,i} s_{n,j} \in D_{f,n}$, let κ_d be the n-tuple (k_1, \ldots, k_n) such that $k_i \in \mathbb{N}_r$ and $k_i \neq 0$ only for $i = i_1, i_2, \ldots, i_f$. Note that κ_d may be equal to κ_e although $e \neq d$ for $e, d \in D_{f,n}$. We set $X^{\kappa_d} = \prod_{i=1}^{f} X_i^{\kappa_i}$. By Definition 2.1

\[(2.5) \quad T_{d}X^{\kappa_d} = T_{n-2f+1,i} s_{n-2f+2,j} \cdots T_{n-1,i} X_{i,j},
\]

where $T_{i,j} = T_{s_{i,j}}$. For convenience, let

\[(2.6) \quad \mathbb{N}_r^{f,n} = \{ \kappa_d \mid d \in D_{f,n} \}.
\]

Recall that a composition λ of m is a sequence of non-negative integers $(\lambda_1, \lambda_2, \ldots)$ such that $|\lambda| := \lambda_1 + \lambda_2 + \cdots = m$. λ is called a partition if $\lambda_i \geq \lambda_{i+1}$ for all positive integers i. Similarly, an r-partition (resp. r-composition) of m is an ordered r-tuple $\lambda = (\lambda^{(1)}, \ldots, \lambda^{(r)})$ of partitions (resp. compositions) $\lambda^{(s)}$, $1 \leq s \leq r$, such that $|\lambda| := |\lambda^{(1)}| + \cdots + |\lambda^{(r)}| = m$. In the remainder of this paper, we use multipartitions (resp. multicompositions) instead of r–partitions (resp. r-compositions). Let $\Lambda_+^r(m)$ (resp. $\Lambda_r(m)$) be the set of all multipartitions (resp. multicompositions) of m.

It is known that both $\Lambda^+_r(m)$ and $\Lambda_r(m)$ are posets with the dominance order \geq defined on them. We have $\lambda \leq \mu$ if
\[
\sum_{j=1}^{i-1} |\lambda^{(j)}| + \sum_{k=1}^{l} \lambda_k^{(j)} \leq \sum_{j=1}^{i-1} |\mu^{(j)}| + \sum_{k=1}^{l} \mu_k^{(j)}
\]
for $1 \leq i \leq r$ and $l \geq 0$. We write $\lambda < \mu$ if $\lambda \leq \mu$ and $\lambda \neq \mu$. Let
\[
\Lambda^+_{r,n} = \{ (k, \lambda) \mid 0 \leq k \leq \lfloor n/2 \rfloor, \lambda \in \Lambda^+_r(n-2k) \}.
\]
Then $\Lambda^+_{r,n}$ is a poset with \geq as the partial order on it. More explicitly, $(k, \lambda) \geq (\ell, \mu)$ for $(k, \lambda), (\ell, \mu) \in \Lambda^+_{r,n}$ if either $k > \ell$ in the usual sense or $k = \ell$ and $\lambda \geq \mu$. Here \geq is the dominance order defined on $\Lambda^+_r(n-2k)$.

The Young diagram $Y(\lambda)$ of a partition $\lambda = (\lambda_1, \lambda_2, \cdots)$ is a collection of boxes arranged in left-justified rows with λ_i boxes in the i-th row of $Y(\lambda)$. A λ-tableau t is obtained from $Y(\lambda)$ by inserting $\{1, \ldots, n\}$ into each box of $Y(\lambda)$ without repetition. If the entries in t increase from left to right in each row and from top to bottom in each column, then t is called a standard λ-tableau.

If $\lambda = (\lambda(1), \ldots, \lambda(n)) \in \Lambda^+_r(n)$, then the Young diagram $Y(\lambda)$ is an ordered Young diagrams $Y(\lambda(1)), \ldots, Y(\lambda(n))$. In this case, a λ-tableau t is (t_1, \ldots, t_r) where each $t_i, 1 \leq i \leq r$ is a $\lambda(i)$-tableau. If the entries in each t_i increase from left to right in each row and from top to bottom in each column, then t is called standard. Let $\mathcal{F}^{std}(\lambda)$ be the set of all standard λ-tableaux.

Suppose $\lambda \in \Lambda^+_r(n)$. It is well-known that $\mathcal{F}^{std}(\lambda)$ is a poset with dominance order \geq on it. For each $s \in \mathcal{F}^{std}(\lambda)$ and a positive integer $i \leq n$, let $s_{\downarrow i}$ be obtained from s by deleting all entries in s greater than i. Let s_i be the multipartition of i such that $s_{\downarrow i}$ is the s_i-tableau. Then $s \geq t$ if and only if $s_i \geq t_i$ for all $i, 1 \leq i \leq n$. Write $s \succ t$ if $s \geq t$ and $s \neq t$.

It is well-known that \mathfrak{S}_n acts on a λ-tableau by permuting its entries. Let t^λ be the λ-tableau obtained from $Y(\lambda)$ by adding $1, 2, \cdots, n$ from left to right along the rows of $Y(\lambda(1)), Y(\lambda(2))$, etc. For example, if $\lambda = ((3, 2), (2, 1), (1, 1)) \in \Lambda^+_3(10)$, then
\[
t^\lambda = \begin{array}{ccccccc}
1 & 2 & 3 & & & & \\
4 & 5 & & & & & \\
6 & 7 & & & & & \\
8 & & & & & & \\
9 & & & & & & \\
10 & & & & & & \\
\end{array}
\]

Let \mathfrak{S}_λ be the Young subgroup associated to the multipartition λ. Then \mathfrak{S}_λ is the row stabilizer of t^λ. Let $a_i = \sum_{j=1}^{i} |\lambda^{(j)}|$, $1 \leq i \leq r$ and $a_0 = 0$. For each λ-tableau t, there is a unique element, say $d(t) \in \mathfrak{S}_n$, such that $t = t^\lambda d(t)$. Suppose that $s, t \in \mathcal{F}^{std}(\lambda)$ where $\lambda \in \Lambda^+_r(n-2f)$ for some non-negative integer $f \leq \lfloor n/2 \rfloor$. It is defined in [19, 5.7] that
\[
M_{st} = T^r_{d(s)} \cdot \prod_{s=2}^{r} \prod_{i=1}^{a_{s-1}} (X_i - u_s) \sum_{w \in \mathfrak{S}_\lambda} q^{|w|} T_w \cdot T_d(t),
\]
where $*$ is the R-linear anti-involution on $\mathcal{B}_{r,n}$, which fixes T_i and X_j, $1 \leq i \leq n-1$ and $1 \leq j \leq n$. Note that
\[
m_{st} := \varepsilon_{n-2f}^{-1}(M_{st} + E_n)
\]
is the Murphy basis element for Ariki-Koike algebra $\mathcal{H}_{r,n-2f}$ in [2].

We define $M_{\lambda} = M_{t^\lambda t^\lambda}$ and $E^{f,n} = E_{n-1}E_{n-3} \cdots E_{n-2f+1}$ and $\mathcal{B}_{r,n} = \mathcal{B}_{r,n} E^{f,n} \mathcal{B}_{r,n}$ for each non-negative integer $f \leq \lfloor n/2 \rfloor$. Therefore, there is a filtration of two-sided ideals of $\mathcal{B}_{r,n}$ as follows:
\[
\mathcal{B}_{r,n} = \mathcal{B}_{r,n}^0 \supset \mathcal{B}_{r,n}^1 \supset \cdots \supset \mathcal{B}_{r,n}^{\lfloor n/2 \rfloor} \supset 0.
\]
Definition 2.10. Suppose that $0 \leq f \leq \left\lfloor \frac{n}{r} \right\rfloor$ and $\lambda \in \Lambda^+_{r}(n-2f)$. Define $\mathcal{B}_{r,n}^{(f,\lambda)}$ to be the two-sided ideal of $\mathcal{B}_{r,n}$ generated by $\mathcal{B}_{r,n}^{f+1}$ and S where

$$S = \{ E_{f,n}^{s,t} | s, t \in \mathcal{F}^{std}(\mu) \text{ and } \mu \in \Lambda^+_{r}(n-2f) \text{ with } \mu \geq \lambda \}. $$

We also define $\mathcal{B}_{r,n}^{(f,\lambda)} = \sum_{\mu \gg \lambda} \mathcal{B}_{r,n}^{(f,\mu)}$, where in the sum $\mu \in \Lambda^+_{r}(n-2f)$.

By Definition 2.11 there is a natural homomorphism from $\mathcal{B}_{r,m}$ to $\mathcal{B}_{r,n}$ for positive integers $m \leq n$. Let $\mathcal{B}_{r,m}$ be the image of $\mathcal{B}_{r,m}$ in $\mathcal{B}_{r,n}$. The following result, which plays the key role, has been proved by Yu without assuming that ω_0 is invertible [20].

Lemma 2.11. N is a right $\mathcal{B}_{r,n}$-module if N is the R-submodule generated by $\mathcal{B}_{r,n-2f}^{f,n} E_{f,n}^{s,t} X^{\kappa_d}$, for all $d \in D_{f,n}$ and $\kappa_d \in \mathbb{N}_{r,n}$.

Proposition 2.12. (cf. [19, 5.10]) Suppose that $s \in \mathcal{F}^{std}(\lambda)$. We define $\Delta_s(f,\lambda)$ to be the R-submodule of $\mathcal{B}_{r,n}^{(f,\lambda)} / \mathcal{B}_{r,n}^{(f,\lambda)}$ spanned by

$$\{ E_{f,n}^{s,t} M_{st} D_{f,n} X^{\kappa_d} + \mathcal{B}_{r,n}^{(f,\lambda)} | (t,d,\kappa_d) \in \delta(f,\lambda) \}, $$

where $\delta(f,\lambda) = \{(t,d,\kappa_d) | t \in \mathcal{F}^{std}(\lambda), d \in D_{f,n} \text{ and } \kappa_d \in \mathbb{N}_{r,n}^f \}$. Then $\Delta_s(f,\lambda)$ is a right $\mathcal{B}_{r,n}$-module.

Proof. By Lemma 2.11 $E_{f,n}^{s,t} M_{st} D_{f,n} X^{\kappa_d} + \mathcal{B}_{r,n}^{(f,\lambda)}$ can be written as an R-linear combination of elements $M_{st} \mathcal{B}_{r,n-2f}^{f,n} E_{f,n}^{s,t} X^{\kappa_d} + \mathcal{B}_{r,n}^{(f,\lambda)}$ for $e \in D_{f,n}$ and $\kappa_e \in \mathbb{N}_{r,n}^f$. By [19, 5.8d],

$$M_{st} \mathcal{B}_{r,n-2f}^{f,n} E_{f,n}^{s,t} X^{\kappa_e} + \mathcal{B}_{r,n}^{(f,\lambda)} = \Delta_s(f,\lambda), $$

where $\mathcal{B}_{r,n-2f}^{f,n}$ is given in (2.8). Finally, using Dipper-James-Mathas’s result on Murphy basis for Ariki-Koike algebras in [7] yields

$$M_{st} \mathcal{B}_{r,n-2f}^{f,n} E_{f,n}^{s,t} X^{\kappa_e} + \mathcal{B}_{r,n}^{(f,\lambda)} = \Delta_s(f,\lambda). $$

So, $\Delta_s(f,\lambda)$ is a right $\mathcal{B}_{r,n}$-module.

We recall the definition of cellular algebras in [11].

Definition 2.13. [11] Let R be a commutative ring and A an R-algebra. Fix a partially ordered set $\Lambda = (\Lambda, \geq)$ and for each $\lambda \in \Lambda$ let $T(\lambda)$ be a finite set. Finally, fix $C^\lambda_{st} \in A$ for all $\lambda \in \Lambda$ and $s, t \in T(\lambda)$.

Then the triple (Λ, T, C) is a cell datum for A if:

1. $\{ C^\lambda_{st} | \lambda \in \Lambda \text{ and } s, t \in T(\lambda) \}$ is an R-basis for A;
2. the R-linear map $*: A \rightarrow A$ determined by $(C^\lambda_{st})^* = C^\lambda_{ts}$, for all $\lambda \in \Lambda$ and all $s, t \in T(\lambda)$ is an anti-isomorphism of A;
3. for all $\lambda \in \Lambda$, $s \in T(\lambda)$ and $a \in A$ there exist scalars $r_{tu}(a) \in R$ such that

$$C^\lambda_{st} a = \sum_{u \in T(\lambda)} r_{tu}(a) C^\lambda_{su} \quad (mod \; A^{>\lambda}), $$

where $A^{>\lambda} = R$-span $\{ C^\mu_{uv} | \mu \gg \lambda \text{ and } u, v \in T(\mu) \}$. Furthermore, each scalar $r_{tu}(a)$ is independent of s. An algebra A is a cell algebra if it has a cell datum and in this case we call $\{ C^\lambda_{st} | s, t \in T(\lambda), \lambda \in \Lambda \}$ a cellular basis of A.

Theorem 2.14. Let $\mathcal{B}_{r,n}$ be the cyclotomic Birman–Wenzl algebras over R. Then

$$\mathcal{C} = \bigcup_{(f,\lambda) \in \Lambda^+_{r,n}} \{ C^{(f,\lambda)}_{(s,e,\kappa_e)}(t,d,\kappa_d) | (s,e,\kappa_e), (t,d,\kappa_d) \in \delta(f,\lambda) \}$$
is a cellular basis of $\mathcal{B}_{r,n}$ where
$$C^{(f,\lambda)}_{(s,\kappa_\alpha)(t,d,s_\beta)} = X^{s_\beta}T_x^*E^{f,n}M_{st}T_dX^{s_\alpha}.$$ The R-linear map $*$, which fixes $T_i, X_j, 1 \leq i \leq n-1$ and $1 \leq j \leq n$ is the required anti-involution. In particular, the rank of $\mathcal{B}_{r,n}$ is $r^n(2n-1))!!$.

Proof. This result can be proved by arguments in the proof of [19, 5.41]. We leave the details to the reader. The only difference is that we have to use Proposition 2.12 instead of [19, 5.10]. Finally, we remark that we use seminormal representations for $\mathcal{B}_{r,n}$ in the proof of [19, 5.41]. Such representations have been constructed in [19, 4.19] for all positive integers r.

Remark 2.15. Yu [20] has proved that $\mathcal{B}_{r,n}$ is cellular under the assumption that ω_0 is invertible. Finally, we remark that Theorem 2.14 for all odd positive integers r has been proved in [19, 5.41].

Let F be an arbitrary field, which contains the non-zero parameters q, u_1, \ldots, u_r and $q - q^{-1}$. Assume that $\Omega \cup \{q\} \subset F$ is u-admissible in the sense of the Assumption 2.2. We always keep this assumption when we consider $\mathcal{B}_{r,n}$ over F later on. Let $\mathcal{B}_{r,n,F}$ be the cyclotomic Birman–Wenzl algebra over F. By standard arguments, we have
$$\mathcal{B}_{r,n,F} \cong \mathcal{B}_{r,n} \otimes_R F.$$ In the remainder of this paper, we use $\mathcal{B}_{r,n}$ instead of $\mathcal{B}_{r,n,F}$ if there is no confusion.

By using Dipper-Mathas’s Morita equivalent theorem for Ariki-Koike algebras [8], we can assume $u_i = q^{k_i}, k_i \in \mathbb{Z}$ in the following theorem without loss of generality. See the remark in [4, p130].

Theorem 2.16. Let $\mathcal{B}_{r,n}$ be the cyclotomic Birman–Wenzl algebra over F.

(a) If n is odd, then the non-isomorphic irreducible $\mathcal{B}_{r,n}$-modules are indexed by (f, λ) where $0 \leq f \leq \lfloor \frac{n}{2} \rfloor$ and λ are u-Kleshchev multipartitions of $n - 2f$ in the sense of [3].

(b) Suppose that n is an even number.

(i) If $\omega_i \neq 0$ for some non-negative integers $i \leq r - 1$, then the non-isomorphic irreducible $\mathcal{B}_{r,n}$-modules are indexed by (f, λ) where $0 \leq f \leq \frac{n}{2}$ and λ are u-Kleshchev multipartitions of $n - 2f$.

(ii) If $\omega_i = 0$ for all non-negative integers $i \leq r - 1$, then the set of all pair-wise non-isomorphic irreducible $\mathcal{B}_{r,n}$-modules are indexed by (f, λ) where $0 \leq f < \frac{n}{2}$ and λ are u-Kleshchev multipartitions of $n - 2f$.

Proof. When r is odd, this is [19, 6.3]. In general, the result still follows from the arguments in [19, 6.6]. The reason why Rui and Xu had to assume that $2 \nmid r$ in [19, 6.6] is that they did not have Proposition 2.12 for $2 \nmid r$ in [19]. We leave the details to the reader.

We close this section by giving a criterion on $\mathcal{B}_{r,n}$ being quasi-hereditary in the sense of [6].

Corollary 2.17. Suppose that $\mathcal{B}_{r,n}$ is defined over the field F.

(a) Suppose that $\omega_i \neq 0$ for some $i, 0 \leq i \leq r - 1$. Then $\mathcal{B}_{r,n}$ is quasi-hereditary if and only if $o(q^2) > n$ and $|d| \geq n$ whenever $u_i u_j^{-1} - q^{2d} = 0$ and $d \in \mathbb{Z}$ with $1 \leq i \neq j \leq r$.

(b) Suppose that $\omega_i = 0$ for all $i, 0 \leq i \leq r - 1$. Then $\mathcal{B}_{r,n}$ is quasi-hereditary if and only if n is odd and $o(q^2) > n$ and $|d| \geq n$ whenever $u_i u_j^{-1} - q^{2d} = 0$ and $d \in \mathbb{Z}$ with $1 \leq i \neq j \leq r$.

Proof. Note that $\mathcal{B}_{r,n}$ is cellular. By [11, 3.10], $\mathcal{B}_{r,n}$ is quasi-hereditary if and only if the non-isomorphic irreducible $\mathcal{B}_{r,n}$-modules are indexed by $\Lambda_{r,n}$. So, the result follows from Theorem 2.16. In this case, the Ariki-Koike algebras $\mathcal{H}_{r,n-2f}$, $0 \leq f \leq \lfloor n/2 \rfloor$ are semisimple.
3. The JM-basis of \(\Delta(f, \lambda) \)

Throughout this section, we assume that \(\mathcal{B}_{n} \) is defined over a commutative \(R \). The main purpose of this section is to construct the JM-basis for \(\mathcal{B}_{n} \).

Lemma 3.1. Suppose that \(n \geq 2 \). We have \(E_{n-1}\mathcal{B}_{n}E_{n-1} = E_{n-1}\mathcal{B}_{n-2} \).

Proof. Since \(\mathcal{B}_{n-2}E_{n-1} = E_{n-1}\mathcal{B}_{n-2}E_{n-2}E_{n-1} \subset E_{n-1}\mathcal{B}_{n}E_{n-1} \), we need only to show the inverse inclusion.

By Lemma \(2.11 \) for \(f = 1 \), we need only prove that \(E_{n-1}hE_{n-1} \in \mathcal{B}_{n-2}E_{n-1} \) for \(h = T_{d}X^{ne}d \in D_{1,n} \). By Definition \(2.11(b)(c) \), we can assume \(X^{ne} = X^{k} \) for some \(k \in \mathbb{Z} \) without loss of generality.

Note that the Birman-Wenzl algebra \(\mathcal{B}_{1,n} \) is a subalgebra of \(\mathcal{B}_{n} \). The result for \(k = 0 \) follows from the corresponding result for \(\mathcal{B}_{1,n} \) in [5]. Assume that \(k \neq 0 \). We have \(i_{1} = n - 1 \) and \(j_{1} = n \) if \(d = s_{n-1,i_{1}}, s_{n,j_{1}} \). So, \(d = 1 \). By [19] 4.21, \(E_{n-1}X^{k}_{n-1}E_{n-1} = \omega^{(k)}_{n-1} \) for some \(\omega^{(k)}_{n-1} \in \mathcal{B}_{n-2} \). So, \(E_{n-1}\mathcal{B}_{n}E_{n-1} \subset E_{n-1}\mathcal{B}_{n-2} \).

Using Lemma 3.1 repeatedly yields the following result.

Corollary 3.2. \(E^{f,n}\mathcal{B}_{n}E^{f,n} = \mathcal{B}_{n-2f}E^{f,n} \), for all positive integers \(f \leq \left\lceil \frac{n}{2} \right\rceil \).

By Theorem 2.14 \(\mathcal{B}_{n} \) is cellular over the poset \(\Lambda_{n}^{+} \) in the sense of [11]. For each \((f, \lambda) \in \Lambda_{n}^{+} \), we have the cell module \(\Delta(f, \lambda) \) with respect to the cellular basis of \(\mathcal{B}_{n} \) given in Theorem 2.14. By definition, it is a right \(\mathcal{B}_{n} \)-module which is isomorphic to \(\Delta_{n}(f, \lambda) \) defined in Proposition 2.12. Later on, we will identify \(\Delta(f, \lambda) \) with \(\Delta_{n}(f, \lambda) \) for \(s = t^{\lambda} \). We are going to construct a \(\mathcal{B}_{n} \)-filtration of \(\Delta(f, \lambda) \) by using arguments in [18].

Let \(\sigma_{f} : \mathcal{B}_{n-2f} \longrightarrow \mathcal{B}^{f,n}_{n}/\mathcal{B}^{f+1,n}_{n} \) be the \(R \)-linear map defined by

\[
\sigma_{f}(h) = E^{f,n}_{n-2f}(h) + \mathcal{B}^{f+1,n}_{n},
\]

for all \(h \in \mathcal{B}_{n-2f}, 1 \leq f \leq \left\lceil \frac{n}{2} \right\rceil \). Here \(E^{f,n}_{n-2f} : \mathcal{B}_{n-2f} \rightarrow \mathcal{B}_{n-2f}/\mathcal{B}_{n-2f} \) is the algebraic isomorphism mentioned in section 2.

Given \(\lambda \in \Lambda_{n}^{+}(n) \) and \(\mu \in \Lambda_{r}(n) \). A \(\lambda \)-tableau \(S \) is of type \(\mu \) if it is obtained from \(Y(\lambda) \) by inserting the entries \((k, i) \) with \(i \geq 1 \) and \(1 \leq k \leq r \) such that the number of the entries in \(S \) which are equal to \((k, i) \) is \(\mu_{i}^{(k)} \).

For any \(s \in \mathcal{T}^{std}(\lambda) \), let \(\mu(s) \) be obtained from \(s \) by replacing each entry \(m \) in \(s \) by \((k, i) \) if \(m \) is in row \(i \) of the \(k \)-th component of \(t^{\mu} \). Then \(\mu(s) \) is a \(\lambda \)-tableau of type \(\mu \).

Given \((k, i) \) and \((\ell, j) \) in \(\{ 1, 2, \ldots, r \} \times \mathbb{N} \), we say that \((k, i) < (\ell, j) \) if either \(k < \ell \) or \(k = \ell \) and \(i < j \). In other words, \(< \) is the lexicographic order on \(\{ 1, 2, \ldots, r \} \times \mathbb{N} \).

Following [7], we say that \(S = (S^{(1)}, S^{(2)}, \ldots, S^{(f)}) \), a \(\lambda \)-tableau of type \(\mu \), is semi-standard if

\(a) \) the entries in each row of each component \(S^{(k)} \) of \(S \) increase weakly,

\(b) \) the entries in each column of each component \(S^{(k)} \) of \(S \) increase strictly,

\(c) \) for each positive integer \(k \leq r \) no entry in \(S^{(k)} \) is of form \((f, i) \) with \(\ell < k \).

Let \(\mathcal{T}^{ss}(\lambda, \mu) \) be the set of all semi-standard \(\lambda \)-tableaux of type \(\mu \). Given \(S \in \mathcal{T}^{ss}(\lambda, \mu) \) and \(t \in \mathcal{T}^{std}(\lambda) \). Motivated by [7], write

\[
M_{St} = \sum_{s \in \mathcal{T}^{ss}(\lambda)} M_{st}.
\]

Lemma 3.5. (cf. [18] 4.8, 4.11-4.13)
a) For any \(h \in \mathcal{B}_{r,n} \), we have
\[
E^{f,n}h \equiv \sum_{h_1 \in \mathcal{K}_{r,n-2f}} \sum_{d \in \mathcal{D}_{f,n}} \sum_{\kappa_d \in \mathcal{B}_{r,n}^{f,n}} \sigma_f(h_1)T_dX^{\kappa_d} \pmod{\mathcal{B}_{r,n}^{f+1,n}}.
\]

b) For each \(\mu \in \Lambda^+_r(n-2f) \), let \(L^\mu \) be the right \(\mathcal{B}_{r,n} \)-submodule of \(\mathcal{B}_{r,n}^{f,n}/\mathcal{B}_{r,n}^{f+1,n} \) generated by \(E^{f,n}M_\mu \pmod{\mathcal{B}_{r,n}^{f+1,n}} \). Then \(L^\mu \) is the free \(R \)-module generated by \(Y = \{ E^{f,n}M_{\mu}T_dX^{\kappa_d} \pmod{\mathcal{B}_{r,n}^{f+1,n}} \mid S \in \mathcal{Y}_{f}\rangle(\lambda, \mu), (t, d, \kappa_d) \in \delta(f, \lambda), \lambda \in \Lambda^+_r(n-2f) \} \).

c) Suppose that \((f, \lambda) \in \Lambda^+_r(n-2f) \) with \(f > 0 \). If \(s \in \mathcal{Y}_{f}^{\text{std}}(\mu) \) such that \(\mu \in \Lambda^+_r(n-2f+1) \) and \(\tau = s_{n-2f} \models \lambda \), then \(E^{f,n}T_{n-1,n-2f+1}T_{d(s)}M_\mu \in \mathcal{B}_{r,n}^{\text{p}(f, \lambda)} \).

d) Suppose that \((f, \lambda) \in \Lambda^+_r(n-2f) \) with \(f > 0 \) and \(h \in E^{f-1,n-1}M_\lambda \mathcal{B}_{r,n-1} \cap \mathcal{B}_{r,n-1}^{f+1,n} \).

Then
\[
E_{n-1}T_{n-1,n-2f+1}h \equiv \sum_{h_1 \in \mathcal{K}_{r,n-2f}} \sum_{d \in \mathcal{D}_{f,n-1}} \sum_{\kappa_d \in \mathcal{B}_{r,n}^{f,n-1}} E^{f,n}M_\lambda\varepsilon_{n-2f}(h_1)T_{n-2f,n}T_dX^{\kappa_d} \pmod{\mathcal{B}_{r,n}^{f+1,n}}.
\]

Proof. One can use arguments in the proof of [18, 4.8] together with Corollary 3.2 to verify (a). (b)-(d) can be proved by arguments in the proof of [18, 4.11-4.13].

Given two multipartitions \(\lambda \) and \(\mu \). We say that \(\mu \) is obtained from \(\lambda \) by adding a box (or node) and write \(\lambda \rightarrow \mu \) if there exists a pair \((s, i)\) such that \(\mu^{(s)}_i = \lambda^{(s)}_i + 1 \) and \(\mu^{(i)}_j = \lambda^{(i)}_j \) for \((t, j)\) \(\neq (s, i)\). In this case, we will also say that \(\lambda \) is obtained from \(\mu \) by removing a box (or node).

Definition 3.6. Suppose \(\lambda \in \Lambda^+_r(n-2f) \) with \(s \) removable nodes \(p_1, p_2, \ldots, p_s \) and \(m-s \) addable nodes \(p_{s+1}, p_{s+2}, \ldots, p_m \).

- Let \(\mu^{(s)}_i \in \Lambda^+_r(n-2f-1) \) be obtained from \(\lambda \) by removing the box \(p_i \) for \(1 \leq i \leq s \).
- Let \(\mu^{(i)}_j \in \Lambda^+_r(n-2f+1) \) be obtained from \(\lambda \) by adding the box \(p_j \) for \(s+1 \leq j \leq m \).

We identify \(\mu^{(s)}_i \) with \((f, \mu^{(s)}_i) \in \Lambda^+_{r,n-1} \) (resp. \((f-1, \mu^{(s)}_i) \in \Lambda^+_{r,n-1} \)) for \(1 \leq i \leq s \) (resp. \(s+1 \leq i \leq m \)). So, \(\mu^{(s)}_i \triangleright \mu^{(j)}_j \) for all \(i, j \) with \(1 \leq i \leq s \) and \(s+1 \leq j \leq m \). We arrange the nodes \(p_i, 1 \leq i \leq m \) such that
\[
\mu^{(s)}_i \triangleright \mu^{(j)}_j \quad \text{for all } i, 1 \leq i \leq m-1
\]
with respect to the partial order \(\trianglelefteq \) on \(\Lambda^+_{r,n-1} \).

For each \(\lambda = (\lambda^{(1)}, \lambda^{(2)}, \ldots, \lambda^{(r)}) \in \Lambda^+_r(n) \), let \([\lambda] = [a_1, a_2, \ldots, a_r] \) such that \(a_i = \sum_{j=1}^{i} |\lambda^{(j)}|, 1 \leq i \leq r \). Write \([\mu^{(s)}_i] = [b_1, b_2, \ldots, b_r] \) for \(s+1 \leq i \leq m \). We remark that \((t, k, l) \in Y(\lambda) \) is in the \(k \)-th row, \(t \)-th column of the \(t \)-th component of \(Y(\lambda) \). When \(1 \leq i \leq s \), \(\mu^{(s)}_i \) is obtained from \(\lambda \) by removing the box, say \(p_i = (t, k, \lambda^{(t)}_k) \). We define
\[
\left\{
\begin{array}{ll}
\alpha_{p_i} = a_{t-1} + \sum_{j=1}^{k} \lambda^{(j)}_j, & \text{if } 1 \leq i \leq s,
\beta_{p_i} = b_{t-1} + \sum_{j=1}^{s} \mu^{(s)}_i(i)_j, & \text{if } s+1 \leq i \leq m,
\end{array}
\right.
\]
and
\[
\nu^{(s)}_i = \left\{
\begin{array}{ll}
E^{f,n}M_{\lambda}T_{a_{p_i},n}, & \text{if } 1 \leq i \leq s,
E_{n-1}T_{n-1,b_{p_i}}E^{f-1,n-1}M_{\mu^{(s)}_i(i)}, & \text{if } s+1 \leq i \leq m.
\end{array}
\right.
\]
For each positive integer \(i \leq m\), define
\[
(3.10) \quad \delta(\lambda, i) = \{ (s, d, \kappa_d) \mid s \in \mathcal{F}^{sd}(\mu_\lambda(i)), d \in \mathcal{D}_{\ell,n-1}, \text{ and } \kappa_d \in \mathbb{N}_{r}^{\ell,n-1} \},
\]
where \(\ell = f\) (resp. \(\ell = f - 1\)) if \(1 \leq i \leq s\) (resp. \(s + 1 \leq i \leq m\)).

In the remainder of this section, we will keep our previous notation \(\mu_\lambda(i)\). In other words, \(\mu_\lambda(i)\) is obtained from \(\lambda\) by removing (resp. adding) the node \(p_i\) for \(1 \leq i \leq s\) (resp. \(s + 1 \leq i \leq m\)).

Theorem 3.11. For any \((f, \lambda) \in \Lambda^{+}_{r,n}\) with \(f \geq 0\), let \(S^{\varphi_{\mu}(i)}\) be the \(R\)-submodule of \(\Delta(f, \lambda)\) generated by \(\{ y_{\mu_{\lambda}(i)} T_{d(t)} T_{e} X^{e} \mid (t, d, \kappa_d) \in \delta(\lambda, i), 1 \leq j \leq i \}\). Then
\[
(0) \subseteq S^{\varphi_{\mu}(1)} \subseteq \cdots \subseteq S^{\varphi_{\mu}(m)} = \Delta(f, \lambda)
\]
is a \(S_{r,n-1}\) filtration of \(\Delta(f, \lambda)\). Further, we have the following \(S_{r,n-1}\)-isomorphism:
\[
\Delta(\ell, \mu_\lambda(i)) \cong S^{\varphi_{\mu}(i)} / S^{\varphi_{\mu}(i-1)}, \quad 1 \leq i \leq m.
\]

Proof. When \(f = 0\), each cell module \(\Delta(0, \lambda)\) can be considered as a cell module for \(S_{r,n}\). The result for \(f = 0\) has been given in [3]. In the remainder of the proof, we assume \(f > 0\).

Using arguments in the proof of [18] 4.9, 4.14], we can prove that all \(S^{\varphi_{\mu}(i)}, 1 \leq i \leq m\), are \(S_{r,n-1}\)-modules. Of course, we have to use Lemma 3.3 instead of [18] 4.8, 4.11-4.13]. So, \((0) \subseteq S^{\varphi_{\mu}(1)} \subseteq \cdots \subseteq S^{\varphi_{\mu}(m)}\) is a filtration of \(S_{r,n-1}\)-modules.

Let \(\phi_i : \Delta(\ell, \mu_\lambda(i)) \to S^{\varphi_{\mu}(i)} / S^{\varphi_{\mu}(i-1)}\) be the \(R\)-linear map sending
\[
E^{f,n} M_\lambda = E_{n-1} T_{n-1,n-2f+1} E^{f-1,n-1} M_\lambda T_{n-1,n-2f+1}^* = y^{\lambda}_{\varphi_{\mu}(m)} T_{n-1,n-2f+1}^* \in S^{\varphi_{\mu}(m)}.
\]
Since \(S^{\varphi_{\mu}(m)}\) is a right \(S_{r,n-1}\)-module, \(\Delta(f, \lambda) \subseteq S^{\varphi_{\mu}(m)}\). The inverse inclusion is trivial. This proves our claim. Counting the rank of \(\Delta(f, \lambda)\) forces each \(\phi_i\) to be an \(R\)-linear isomorphism. \(\square\)

We are going to recall the notion of \(n\)-updown tableaux in [4] in order to construct the JM-basis of \(S_{r,n}\).

Fix \((f, \lambda) \in \Lambda^{+}_{r,n}\). An \(n\)-updown \(\lambda\)-tableau, or more simply an updown \(\lambda\)-tableau, is a sequence \(\mathbf{t} = (t_0, t_1, t_2, \ldots, t_n)\) of multipartitions such that \(t_0 = 0\), \(t_n = \lambda\) and \(t_i\) is obtained from \(t_{i-1}\) by either adding or removing a box, for \(i = 1, \ldots, n\). Let \(\mathcal{F}^{ud}(\lambda)\) be the set of all \(n\)-updown \(\lambda\)-tableaux.

Given \(t \in \mathcal{F}^{ud}(\lambda)\) with \((f, \lambda) \in \Lambda^{+}_{r,n}\), define \(f_j \in \mathbb{N}\) by declaring that \(t_j \in \Lambda^{+}_{r,n}(j - 2f_j)\). So, \(0 \leq f_j \leq \frac{j}{2}\).

Motivated by [18], we define \(m_i = m_{\mathbf{t}_i} \in S_{r,n}\) inductively by declaring that \(m_0 = 1\) and
\begin{itemize}
 \item[a)] \(m_t = \sum_{a,s,k} a^{s,k} q^{a_s,k-1}T_{j,a} \prod_{j=1}^{a_s-k} (X_{j+1} - u_{j+1}) T_{a_j,a_{j+1}} T_{a_{s-k}} m_{t_{i-1}} \) if \(t_i = t_{i-1} \cup p\) with \(p = (s, k, \mu_k^{(s)})\) and \(a_{s-k} = a_{s-1} + \sum_{j=1}^{k} \mu_j^{(s)}\).
 \item[b)] \(m_{t_i} = E^{f,n} T_{n-1,b_i} m_{t_{i-1}} \) if \(t_i = t_{i-1} \cup p\) with \(p = (s, k, \mu_k^{(s)})\) and \(E^{f,n} T_{n-1,b_i} m_{t_{i-1}} = b_{s-1} + \sum_{j=1}^{k} \mu_j^{(s)}\).
\end{itemize}
where \(\mu = t_i \) and \(\nu = t_{i-1} \) with \([\mu] = [a_1, a_2, \ldots, a_r] \) and \([\nu] = [b_1, b_2, \ldots, b_r] \).

Now, we define \(b_i \) inductively such that

\[
m_1 \equiv E^{f,n}_b M_\lambda b_{n-1} \pmod {R_n(f,\lambda)}.
\]

We write \(m_\lambda \equiv E^{f,n}_b M_\lambda \). Suppose that \(t_{n-1} = \mu \), \([\lambda] = [a_1, a_2, \ldots, a_r] \) and \([\mu] = [b_1, b_2, \ldots, b_r] \). We have \(b_{0_0} = 1 \) and

\[
(3.12) \quad b_n = \begin{cases}
T_{a_k, b_{n-1}} & \text{if } t_n = t_{n-1} \cup \{(t, k, \lambda^{(i)})\}, \\
T_{n-1, b_{n-1} b_{n-1}} & \text{if } t_n = t_{n-1} \cup \{(t, k, \mu^{(i)})\}, \\
T_{n-1, b_{n-1}} \sum_{j=b_{n-1}+1}^{b_{n-1}+1} q^{b_{n-1}+j} T_{b_{n-1} b_{n-1}} & \text{if } t_n = t_{n-1} \cup \{(t, k, \mu^{(i)})\},
\end{cases}
\]

where \(s \neq r \) and

\[
h = \prod_{j=r}^{a_2+2} ((X_{b_j} - u_j) T_{b_{j-1}, b_{j-2}}) \times (X_{b_j} - u_j) T_{b_{j-1}, b_{j-2}} \sum_{j=b_{n-1}+1}^{b_{n-1}+1} q^{b_{n-1}+j} T_{b_{n-1} b_{n-1}}.
\]

We also use \(b_i \) instead of \(b_{n-1} \).

For any \(s, t \in T_n^{ud}(\lambda) \), we identify \(s_i \) (resp. \(t_i \)) with \((f_i, s_i) \) (resp. \((f_i, t_i) \)) where \((f_i, s_i), (f_i, t_i) \in \Lambda_{r,n}, \) \(i = 1, 2, \ldots, r, \lambda \). We write \(s \triangleright t \) if \(s_j > t_j \) and \(s_i = t_i \) for \(j + 1 \leq l \leq n \) and \(j \geq k \). We write \(s \triangleright t \) if there is a positive integer \(k \leq n - 1 \) such that \(s > t \). In \[18\], we have verified that \(s \triangleright v \) if \(s \triangleright t \) and \(t \triangleright v \). So, \(\triangleright \) can be refined to be a linear order on \(T_n^{ud}(\lambda) \).

There is a partial order \(\triangleright \) on \(T_n^{ud}(\lambda) \). More explicitly, we have \(s \triangleright t \) if \(s_i \triangleright t_i \), \(1 \leq i \leq n \). We write \(s \triangleright t \) if \(s \triangleright t \) and \(s \neq t \).

There is a unique element, say \(t^k_\lambda \in T_n^{ud}(\lambda) \), which is maximal with respect to \(\triangleright \). More explicitly, we have \(t^k_\lambda = (1, 2, \ldots, 1) \) for \(1 \leq i \leq f \) and \(t^k_\lambda = (1, 2, \ldots, 1) \) for \(1 \leq i \leq f \) and \(j = 2t - 1 \).

Let \(E_i = E_{i+1} \cdots E_{j-1} \) for \(i < j \). If \(i = j \), we set \(E_i = 1 \). When \(i > j \), we define \(E_i = E_{i-1} E_{i-2} \cdots E_j \). So,

\[
(3.13) \quad m_\lambda = E^{f,n}_b M_\lambda \prod_{i=1}^f E_{n-2(f-i)} (F_{i-1})^{-1} \prod_{j=2}^r \prod_{k=1}^f (X_{2k-1} - u_j).
\]

Suppose \(t \in T_n^{ud}(\lambda) \) with \((f, \lambda) \in \Lambda_{r,n}^+ \). Let

\[
(3.14) \quad c_t(k) = \begin{cases}
 u_s q^{2(j-i)} & \text{if } t_k = (s, i, j), \\
u_s^{-1} q^{-2(j-i)} & \text{if } t_{k-1} = (s, i, j),
\end{cases}
\]

and

\[
(3.15) \quad c_\lambda(p) = \begin{cases}
 u_s q^{2(j-i)} & \text{if } p = (s, i, j) \text{ is an addable node of } \lambda, \\
u_s^{-1} q^{-2(j-i)} & \text{if } p = (s, i, j) \text{ is a removable node of } \lambda.
\end{cases}
\]

In the remainder of this paper, unless otherwise stated, we always use \(m_t \) instead of \(m_t + R_n^{\triangleright}(f, \lambda) \in \Delta(f, \lambda) \).

\begin{proposition} \[3.16\]
\begin{enumerate}
\item \(\{ m_t \mid t \in T_n^{ud}(\lambda) \} \) is an \(R \)-basis of \(\Delta(f, \lambda) \) for any \((f, \lambda) \in \Lambda_{r,n}^+ \).
\item \(m_t (\prod_{i=1}^r X_i) = \prod_{k=1}^r c_t(k) m_t, \forall t \in T_n^{ud}(\lambda). \)
\end{enumerate}
\end{proposition}

\begin{proof}
\begin{enumerate}
\item \(m_t \) follows immediately from Theorem 3.11.
\item We consider \(R_n \) over the field of fraction of \(R_0 \) where \(R_0 = \mathbb{Z}[u_1^\pm, u_2^\pm, \ldots, u_r^\pm, q^\pm, (q - q^{-1})^{-1}] \). Note that we are assuming that \(u_1, u_2, \ldots, u_r, q \) are indeterminates.
\end{enumerate}
\end{proof}
\[\prod_{i=1}^{n} X_i \text{ acts on } \Delta(f, \lambda) \text{ as a scalar. This enables us to consider the special case } t = t^\lambda \text{ without loss of generality. By direct computation,} \]
\[m_{\lambda^i} X_i = \begin{cases} u^{(i-1)\lambda^i} m_{\lambda^i}, & \text{if } 1 \leq i \leq 2f, \\ c_{\lambda^i}(i)m_{\lambda^i}, & \text{if } 2f + 1 \leq i \leq n. \end{cases} \]

So, \(m_{\lambda}(\prod_{i=1}^{n} X_i) = \prod_{k=1}^{n} c_{\lambda^i}(k)m_{\lambda^i} \). By (a), \(m_{\lambda} \) is an \(R_0 \)-basis. So (b) holds over \(R_0 \). Finally, we use standard arguments on base change to get (b) over a commutative ring \(R \). \(\square \)

Theorem 3.17. (cf. [18, 5.12]) Let \(t \in \mathcal{T}_n^u(\lambda) \) with \((f, \lambda) \in \Lambda_{\pm}^+ \). For any \(k \), \(1 \leq k \leq n \), there are some \(u \in \mathcal{T}_n^u(\lambda) \) and \(a_u \in R \) such that
\[m_{\lambda}X_k = c_{\lambda}(k)m_t + \sum_{u \succ_t} a_u m_u. \]

Proof. Note that \(\prod_{k=1}^{n} c_{\lambda^i}(k) = \prod_{k=1}^{n} c_{\lambda^i}(k) \) for any \(t \in \mathcal{T}_n^u(\lambda) \). By Lemma 3.16(b), \(m_{\lambda} \prod_{k=1}^{n} X_k = \prod_{k=1}^{n} c_{\lambda^i}(k)m_{\lambda^i} \). We consider the action of \(\prod_{k=1}^{n} X_i \) on \(m_{\lambda} \). We use the \(R_{r,n-1} \)-filtration of \(\Delta(f, \lambda) \) in Theorem 3.11. By Lemma 3.16(b),
\[m_{\lambda} \prod_{j=1}^{n-1} X_j - \prod_{j=1}^{n-1} c_{\lambda^i}(j)m_{\lambda^i} \in S_{\pm}^{\lambda(i-1)} \]
where \(\mu_{\lambda}(j), 1 \leq j \leq m \) are defined in Theorem 3.11 with \(\mu_{\lambda}(i) = t_{n-1} \). Since \(S_{\pm}^{\lambda(i-1)} \) is a right \(R_{r,n-1} \)-module,
\[m_{\lambda}X_{\mu_{\lambda}(n)}^{-1} - m_{\lambda} = m_{\lambda} \prod_{j=1}^{n-1} c_{\lambda}^{-1}(j) \prod_{j=1}^{n-1} X_{j}^{-1} - m_{\lambda} \in S_{\pm}^{\lambda(i-1)}. \]

So, Theorem 3.17 holds for \(k = n \). When we deal with the case \(k = n - 1 \), we consider the filtration of \(R_{r,n-2} \)-submodules of \(S_{\pm}^{\lambda(i)/\lambda(i-1)} \). Note that \(S_{\pm}^{\lambda(i)/\lambda(i-1)} \cong \Delta(\ell, \mu_{\lambda}(i)) \) where \(\Delta(\ell, \mu_{\lambda}(i)) \) is the cell module for \(R_{r,n-1} \) with respect to \((\ell, \mu_{\lambda}(i)) \in \Lambda_{\pm}^+(n-1) \). By similar arguments as above we can verify the result for \(k = n - 2 \). Using these arguments repeatedly yields the required formula for general \(k \). \(\square \)

Standard arguments prove the following result (cf. [18, 2.7]).

Theorem 3.19. For each \(t, s \in \mathcal{T}_n^u(\lambda) \) with \((f, \lambda) \in \Lambda_{\pm}^+ \), let \(m_{st} = b_s^t m_{b_1} \), where \(* : R_{r,n} \to R_{r,n} \) is the \(R \)-linear anti-involution which fixes the generators \(T_i, X_j \) for \(1 \leq i \leq n-1 \) and \(1 \leq j \leq n \).

a) \(\mathcal{M} = \{ m_{st} | s, t \in \mathcal{T}_n^u(\lambda), (f, \lambda) \in \Lambda_{\pm}^+ \} \) is a cellular basis of \(R_{r,n} \) over \(R \).

b) \(m_{st}X_k = c_{\lambda}(k)m_{st} + \sum_{u \succ_t} a_u m_{su} \pmod{R_{r,n}^{\lambda}} \).

Remark 3.20. Note that \(\succ \) is a linear order on \(\mathcal{T}_n(\lambda) \). So, \(\mathcal{M} \) is a JM-basis and \(\{X_1, \ldots, X_n\} \) is a family of JM-element in the sense of [18, 2.4].

Given two partitions \(\lambda, \mu \), write \(\lambda \ominus \mu \) if either \(\lambda \subset \mu \) and \(\mu \setminus \lambda = p \) for some removable node \(p \) of \(\mu \) or \(\lambda \supset \mu \) and \(\lambda \setminus \mu = p \) for some removable node \(p \) of \(\lambda \).

Given an \(s \in \mathcal{T}_n^u(\lambda) \) and a positive integer \(k < n \), if \(s_k \ominus s_{k+1} \) and \(s_{k+1} \ominus s_k \) are in different rows and in different columns then we define, following [18], \(s_{sk} \) to be the updown \(\lambda \)-tableau
\[s_{sk} = (s_1, \cdots, s_{k-1}, t_k, s_{k+1}, \cdots, s_n) \]
where \(t_k \) is the multipartition which is uniquely determined by the conditions \(t_k \ominus s_{k+1} = t_{k-1} \ominus s_k \) and \(s_{k-1} \ominus t_k = s_k \ominus s_{k+1} \). If the nodes \(s_k \ominus s_{k-1} \) and \(s_{k+1} \ominus s_k \) are both in the same row, or both in the same column, then \(s_{sk} \) is not defined.
Lemma 3.21. (cf. [13, 5.13]) Suppose that $t \in \mathcal{F}_n^{\text{ud}}(\lambda)$ with $t_{i-2} \neq t_i$ and $t_{s_i-1} < t_i$.

a) If $t_{i-2} \subset t_{i-1} \subset t_i$, then $m_t T_{i-1} = m_{t_{s_i-1}} + \sum_{u \geq t_{s_i-1}} a_u m_u$ for some scalars $a_u \in R$.

b) If $t_{i-2} \supset t_{i-1} \subset t_i$ such that $(\tilde{p}, \ell) > (p, k)$ where $t_{i-2} \setminus t_{i-1} = (p, k, v^{(p)}_k)$, $t_i \setminus t_{i-1} = (\tilde{p}, \ell, \mu^{(\tilde{p})}_\ell)$, $t_{i-2} = \nu$ and $t_i = \mu$, then $m_{t_{i-1}} T_{i-1} = m_{t_{s_{i-1}}} + \sum_{u \geq t_{s_{i-1}}} a_u m_u$ for some scalars $a_u \in R$.

Proof. First, we assume $i = n$. One can prove (a) by verifying $m_{T_{n-1}} = m_{t_{s_{n-1}}}$ via (3.12). We leave the details to the reader.

In order to prove (b), write $t_{n-2} \setminus t_{n-1} = (p, k, v^{(p)}_k)$ and $t_n \setminus t_{n-1} = (\tilde{p}, \ell, \mu^{(\tilde{p})}_\ell)$. Let $a = a_{p-1} + \sum_{i=1}^{\ell} \lambda_i^{(\tilde{p})}$, $c = c_{p+1} + \sum_{i=1}^{k} v_i^{(p)}$. Since either $\tilde{p} > p$ or $\tilde{p} = p$ and $\ell > k$, we have $a \geq c$.

First, we assume $p < r$, then

$$m_1 = E^{f,n} M_{1,n} T_{n-2,c_{r-1}} A b_{n-2} + \mathcal{B}^{p,(f,\lambda)}_{r,n}$$

where

$$A = \prod_{j=r}^{p+2} (X_{c_{j-1}} - u_j) T_{c_{j-1},c_{j-2}} \times (X_{c_{p}} - u_{p+1}) T_{c_{p},c} \sum_{c=p,k-1} c q^{-j} T_{c_{j}}. \tag{3.22}$$

We prove (b) by induction on \tilde{p}.

If $\tilde{p} = r$, then $a \geq c_{r-1}$. It is routine to verify $m_{T_{n-1}} = m_{t_{s_{n-1}}}$.

If $\tilde{p} = r - 1$, then $c_{r-2} \leq a \leq c_{r-1}$. We have

$$m_{T_{n-1}} = E^{f,n} M_{\lambda} T_{n-1,c_{r-1}} + T_{a,c_{r-1}} \{ (X_{c_{r-1}+1} - u_r) T_{c_{r-1}+1,c_{r-2}} + \delta X_{c_{r-1}+1} E_{c_{r-1}} T_{c_{r-1},c_{r-2}} - \delta X_{c_{r-1}+1} E_{c_{r-1}+1} T_{c_{r-1},c_{r-2}} \} A \times T_{c_{r-1}+1,n-1} b_{n-2} \text{ (mod } \mathcal{B}^{p,(f,\lambda)}_{r,n}) \tag{3.23}$$

Since $T_{n-1,c_{r-1}+1} X_{c_{r-1}+1} T_{c_{r-1}+1,n-1} = X_{n-1}$, the third term on the right hand side of (3.23) is equal to

$$h := \delta \sum_{j=a_{p-1}+1}^{a} q^{-j} T_{j,a} T_{a,c} E^{f,n} M_{\lambda} b_{n-2} X_{n-1}$$

with $\nu = n-2$. Since we are assuming that $\nu \succ \lambda$, $h \in \mathcal{B}^{p,(f,\lambda)}_{r,n}$.

The first term on the right hand side of the above equality is equal to $m_{t_{s_{n-1}}}$.

One can verify it by arguments in the proof of [13, 5.13]. We leave the details to the reader.

Finally we consider the second term h_1 on the right hand side of (3.23).

Since $T_{a,c_{r-1}}, X_{c_{r-1}}^{-1} = X_{a}^{-1} T_{c_{r-1},a}$ and $E^{f,n} T_{n-1,c_{r-1}+1} E_{c_{r-1}} T_{c_{r-1},c_{r-1}+1,n-1} = E^{f,n} T_{c_{r-1},n} T_{n-2,c_{r-1}}, \delta^{-1} h_1$ is equal to

$$E^{f,n} M_{\lambda} X_{a}^{-1} T_{c_{r-1},a} T_{c_{r-1},n} T_{n-2,c_{r-1}} A b_{n-2} + \mathcal{B}^{p,(f,\lambda)}_{r,n}$$

$$= c_{\lambda}(a)^{-1} E^{f,n} M_{\lambda} \prod_{j=a_{r-1}}^{c_{r-1}-1} (T_j - \delta) T_{c_{r-1},n} T_{n-2,c_{r-1}} T_{c_{r-1},c_{r-2}} \times A b_{n-2} + \mathcal{B}^{p,(f,\lambda)}_{r,n}. \tag{3.24}$$

Note that $\prod_{j=a_{r-1}}^{c_{r-1}-1} (T_j - \delta) T_{c_{r-1},n}$ can be written as an R-linear combination of $T_{\ell,n} h$, with $a \leq \ell \leq c_{r-1}$ and $h \in \mathcal{B}_{r,\ell-1}$. So $\delta^{-1} c_{\lambda}(a) h_1$ can be written as an R-linear combination of the following elements

$$E^{f,n} M_{\lambda} T_{\ell,n} T_{n-2,c_{r-1}} T_{c_{r-1},c_{r-2}} A b_{n-2} + \mathcal{B}^{p,(f,\lambda)}_{r,n}. \tag{3.25}$$
Note that $M_{\lambda}T_w \equiv q^{\ell(w)}M_{\lambda} \pmod{(E_1)}$ if $w \in \mathfrak{S}_\lambda$. So, $M_{\lambda}T_{\ell,n-2f} \equiv q^kM_{\lambda}T_{b,n-2f} \pmod{(E_1)}$ for some integers k,b such that $v = t^k s_{b,n-2f}$ is a row standard tableau. Furthermore, since $b \geq \ell \geq a$, $v_{n-2f-1} \geq t_{n-1}$. If v is not standard, we use [14, 3.15] and [19, 5.8] to get

$$E^{f,n}M_{\lambda}T_{\ell,n-2f} = \sum_{s \in \mathcal{F}_{st}(\lambda), s \geq v} a_s E^{f,n}M_{\lambda}T_{d(s)} \pmod{\mathcal{B}_{r,n}^{f,(\alpha, \lambda)}}$$

for some scalars $a_s \in R$. We write $d(s) = sv_{n-2f}d(s')$ where s' is obtained from s by removing the entry $n - 2f$. Since $s \geq v$, $s' \in \mathcal{F}_{st}(\alpha)$ for $\alpha \in \Lambda_+^+(n - 2f - 1)$ with $\alpha \geq v_{n-2f-1} \geq t_{n-1} \geq (ts_{n-1})_{n-1}$. Therefore, h_1 can be written as an R-linear combination of the elements

$$E^{f,n}M_{\lambda}T_{v,n}T_{d(s')}T_{r-2,cr-1}T_{c_{r-1},cr-2}A b_{t_{n-2}}h \pmod{\mathcal{B}_{r,n}^{f,(\alpha, \lambda)}}$$

Note that $E^{f,n}M_{\lambda}T_{v,n} = y_\alpha$, and $\alpha = \mu_\lambda(i)$ for some $i, 1 \leq i \leq s$. So, the above element can be written as an R-linear combination of the elements in $\{m_s \mid s \in \mathcal{F}_{st}(\lambda), s_{n-1} \geq t_{n-1} \geq (ts_{n-1})_{n-1}\}$. In this case, $s \geq t_{s_{n-1}}$.

However, when $\tilde{p} < r - 1$, the first term is not equal to $m_{t_{s_{n-1}}}$. We will use it instead of $m_{t_{s_{n-1}}}T_{n-1}$ to get a similar equality for $i = c_{r-2}$. This will enable us to get three terms. If $\tilde{p} = r - 2$, we will be done since the first term must be $m_{t_{s_{n-1}}}$. The second and the third term can be written as an R-linear combination of m_u with $u \geq t_{s_{n-1}}$. In general, we have to repeat the above procedure to get the required formula. This completes the proof of our result under the assumption $p < r$.

Let $p = r$. Note that $a \geq c$. It is routine to check that

$$m_{t_{n-1}}T_{n-1} = m_{t_{s_{n-1}}} \pmod{\mathcal{B}_{r,n}^{f,(\alpha, \lambda)}}.$$

This completes the proof of the result for $i = n$. In general, we use Theorem 3.11 and the definition of \succ to reduce the result to the case for $i = n$. \qed

4. Recursive formulae for Gram determinants

In this section, we assume that $\mathcal{B}_{r,n}$ is defined over a field F such that the following assumptions hold.

Assumption 4.1. Assume that $\mathfrak{u} = (u_1, u_2, \cdots, u_r) \in F^r$ is generic in the sense that $|d| \geq 2n$ whenever there exists $d \in \mathbb{Z}$ such that either $u_i u_j^{\pm 1} = q^d 1_F$ and $i \neq j$, or $u_i = \pm q^d \cdot 1_F$. We will also assume $o(q^d) > n$.

Suppose that $s, t \in \mathcal{F}_{st}(\lambda)$. Under the Assumption 4.1, Rui and Xu have proved that $s = t$ if and only if $c_s(k) = c_t(k), 1 \leq k \leq n$ [19, 4.5]. So, Assumption 4.1 is the separate condition in the sense of [15, 2.8]. This enables us to use standard arguments in [15] to construct an orthogonal basis for $\Delta(f, \lambda)$ as follows.

For each positive integer $k \leq n$, let

$$R(k) = \{c_t(k) \mid t \in \mathcal{F}_{st}(\lambda)\}.$$

For $s, t \in \mathcal{F}_{st}(\lambda)$, let

a) $F_t = \prod_{k=1}^k F_{t,k}$,
b) $f_{st} = F_t m_{st} F_i$,
c) $f_s = m_s F_s \pmod{\mathcal{B}_{r,n}^{f,(\alpha, \lambda)}}$,

where

$$F_{t,k} = \prod_{r \in \mathcal{F}_{st}(\lambda)} \frac{X_k - r}{c_t(k) - r}. \tag{4.2}$$

The following results hold for a general class of cellular algebras which have JM-bases such that the separate condition holds [15, §3].
Lemma 4.3. Suppose that $t \in \mathcal{T}_n^u(\lambda)$ with $(f, \lambda) \in \Lambda_{r,n}^+$.

a) $f_t = m_t + \sum_{s \in \mathcal{T}_n^u(\lambda)} a_s m_s$, and $s \nrightarrow t$ if $a_s \neq 0$.
b) $m_t = f_t + \sum_{s \in \mathcal{T}_n^u(\lambda)} b_s f_s$, and $s \nrightarrow t$ if $b_s \neq 0$.
c) $f_t X_k = \alpha(k) f_t$, for any integer k, $1 \leq k \leq n$.
d) $f_t F_s = \delta_{s t} f_t$ for all $s \in \mathcal{T}_n^u(\mu)$ with $(\frac{n-|\mu|}{2}, \mu) \in \Lambda_{r,n}^+$.
e) $\{ f_t \mid t \in \mathcal{T}_n^u(\lambda) \}$ is a basis of $\Delta(f, \lambda)$.
f) The Gram determinants associated to $\Delta(f, \lambda)$ defined by $\{ f_t \mid t \in \mathcal{T}_n^u(\lambda) \}$ and the JM-basis in Proposition [4,10] are the same.
g) $\{ f_s \mid s, t \in \mathcal{T}_n^u(\lambda), (f, \lambda) \in \Lambda_{r,n}^+ \}$ is an F-basis of $\mathcal{B}_{r,n}$. Further, we have $f_s f_{st} = \delta_{us}(f_t, f_s) f_{st}$ where s, t, u, v are updown tableaux and $(\ , \)$ is the invariant bilinear form defined on the cell module $\Delta(f, \lambda)$.

By Lemma 4.3(f), we can compute the Gram determinant associated to $\Delta(f, \lambda)$ by computing each (f_t, f_t), for $t \in \mathcal{T}_n^u(\lambda)$.

Given two $s, t \in \mathcal{T}_n^u(\lambda)$ and a positive integer $k \leq n - 1$. We write $s \stackrel{k}{\sim} t$ if $s_j = t_j$ for $1 \leq j \leq n$ and $j \neq k$.

Definition 4.4. For any $s, t \in \mathcal{T}_n^u(\lambda)$ and a positive integer $k \leq n - 1$, define $T_{ns}(k), E_{ns}(k) \in F$ by declaring that

$$f_t T_k = \sum_{s \in \mathcal{T}_n^u(\lambda)} T_{ns}(k) f_s, \quad f_t E_k = \sum_{s \in \mathcal{T}_n^u(\lambda)} E_{ns}(k) f_s.$$

Standard arguments prove the following result (cf. [14, 6.8–6.9]).

Lemma 4.5. Suppose $t \in \mathcal{T}_n^u(\lambda)$ and $(f, \lambda) \in \Lambda_{r,n}^+$.

a) $s \stackrel{k}{\sim} t$ if either $T_{ns}(k) \neq 0$ or $E_{ns}(k) \neq 0$.
b) $f_t E_k = 0$ if $t_{k-1} \neq t_{k+1}$ for any $1 \leq k \leq n - 1$.
c) Assume $t_{k-1} \neq t_{k+1}$.

(i) If $t_k \oplus t_{k-1}$ and $t_k \oplus t_{k+1}$ are in the same row of a component, then $f_t T_k = q f_t$.

(ii) If $t_k \oplus t_{k-1}$ and $t_k \oplus t_{k+1}$ are in the same column of a component, then $f_t T_k = -q^{-1} f_t$.
d) Assume $t_{k-1} = t_{k+1}$.

(i) $f_t E_k = \sum_{s \sim t} E_{ns}(k) f_s$. Furthermore, $(f_s, f_t) E_{ns}(k) = (f_t, f_s) E_{ts}(k)$.

(ii) $f_t T_k = \sum_{s \sim t} T_{ns}(k) f_s$. Furthermore, $T_{ns}(k) = \delta_{c_s(k),c_t(k)} - T_{ns}(k-1)$.

Lemma 4.6. Suppose that $t \in \mathcal{T}_n^u(\lambda)$ with $t_{k-1} \neq t_{k+1}$ and $ts_k \in \mathcal{T}_n^u(\lambda)$. Then $f_t T_k = T_{t^p}(k) f_t + T_{t^p t}(k) f_{ts_k}$, with $T_{t^p}(k) = \frac{c_t(k) - c_t(k+1)}{c_t(k+1) - c_t(k)}$. Suppose one of the following conditions holds:

1. $t_{k-1} \subset t_k \subset t_{k+1}$,
2. $t_{k-1} \supset t_k \subset t_{k+1}$ such that $(\tilde{p}, l) > (p, i)$ where $t_{k-1} \setminus t_k = (p, i, \nu_i^{(p)})$ if $t_{k-1} \setminus t_k = (\tilde{p}, \ell, \mu_{\ell}^{(p)})$, $t_{k-1} = \nu$ and $t_{k+1} = \mu$.

Then

$$T_{t^p t}(k) = \begin{cases} 1 - \frac{c_t(k)}{c_t(k+1)} T_{t^p}(k), & \text{if } ts_k \nrightarrow t, \\ 1, & \text{if } ts_k \prec t. \end{cases}$$

Proof. By defining relation [2,11(f)],

$$f_t T_k X_k - f_t X_{k+1} T_k = \delta_{t_1} X_{k+1} (E_k - 1).$$

Since we are assuming that $t_{k-1} \neq t_{k+1}$, $s \in \{ t, ts_k \}$ if $s \nrightarrow t$. Comparing the coefficients of f_t on both sides of (4.7) and using Lemma 4.3(b) yields the formula for $T_{t^p}(k)$, as required.
First, we assume that \(t \triangleright ts_k \) and \(ts_{k-1} \subset t \subset tk+1 \). By Lemma 4.3(a),

\[
f_t = m_t + \sum_{u \triangleright t} a_u f_u
\]

for some scalars \(a_u \in F \).

By Lemma 3.21(a) and Lemma 4.3(b), \(m_tT_k = m_t + \sum_{u \triangleright ts_k} b_u f_u \) for some scalars \(b_u \in R \). We claim that \(f_{ts_k} \) cannot appear in the expressions of \(f_uT_k \) with non-zero coefficient. Otherwise, \(u \sim ts_k \), forcing \(u \in \{ t, ts_k \} \). This is a contradiction since \(ts_k \prec t \). By Lemma 4.3(b), the coefficient of \(f_{ts_k} \) in \(f_iT_k \) is 1.

Suppose that \(ts_{k-1} \supset t \subset tk+1 \). By Lemma 3.21(b),

\[
m_iT_k = m_{ts_k} + \sum_{u \triangleright ts_k} a_u m_u,
\]

for some scalars \(a_u \in F \). Using 2.1(b) to rewrite the above equality yields

\[
m_iT_k = m_{ts_k} + \sum_{u \triangleright ts_k} a_u m_u + \delta m_t - \delta m_t E_k.
\]

We use Lemma 4.3(b) to write the terms on the right hand side of the above equality as a linear combination of orthogonal basis elements. Since \(ts_k \prec t \), \(f_{ts_k} \) can not appear in the expression of \(\sum_{u \triangleright ts_k} a_u m_u + \delta m_t \).

We claim that \(f_{ts_k} \) can not appear in the expression of \(m_iE_k \). Otherwise, by Lemma 4.3(b), we write \(m_t = \sum_{u \triangleright t} a_u f_u \). Therefore, there is a \(v \) such that \(f_{ts_k} \) appears in the expression of \(f_vE_k \) with non-zero coefficient. So, \(v \sim ts_k \), forcing \(v \triangleright ts_{k-1} \neq v_{k+1} \). Thus \(f_vE_k = 0 \), a contradiction. This completes the proof of our claim. Therefore, the coefficient of \(f_{ts_k} \) in \(m_iT_k \) is 1.

Using Lemma 4.3(b) again, we write \(m_t = f_t + \sum_{u \triangleright t} a_u f_u \) for some scalars \(a_u \in F \). If \(f_{ts_k} \) appears in the expression of \(\sum_{u \triangleright t} a_u f_u T_k \), then \(f_{ts_k} \) must appear in the expression of \(f_u T_k \) for some \(u \). So, \(ts_k \sim u \), forcing \(u \in \{ t, ts_k \} \). This contradicts the fact \(u \triangleright t \). So, the coefficient of \(f_{ts_k} \) in \(f_iT_k \) is 1.

We have proved that

\[
(4.8) \quad f_iT_k = \frac{\delta c_t(k+1)}{c_t(k+1) - c_t(k)} f_t + f_{ts_k},
\]

if \(ts_k \prec t \) and one of conditions (1)-(2) holds. Multiplying \(T_k \) on both sides of (4.8) and using 2.1(b) yields

\[
(4.9) \quad f_{ts_k} T_k = f_t + \delta f_t T_k - \frac{\delta c_t(k+1)}{c_t(k+1) - c_t(k)} f_t T_k \delta f_i E_k.
\]

Note that \(ts_{k-1} \neq ts_k \). By Lemma 4.3(b), \(f_{ts_k} E_k = 0 \). Using (4.8) to simplify (4.9) and switching the role between \(ts_k \) and \(t \) yields the formula for \(f_{ts_k} (k \triangleright t) \) provided \(t_{s_k} > t \) together with one of conditions in (1)-(2) being true. \(\square \)

Note that \(\langle f_i T_k, f_{ts_k} \rangle = \langle f_t, f_{ts_k} T_k \rangle \). By Lemma 4.6 we have the following result immediately.

Corollary 4.10. Suppose \(t \in \mathcal{R}_n^u(\lambda) \) with \((f, \lambda) \in \Lambda_n^+ \) and \(t_{k-1} \neq t_{k+1} \). If \(ts_k \in \mathcal{R}_n^u(\lambda) \), \(ts_k \prec t \) and one of the conditions (1)-(2) in Lemma 4.6 holds, then

\[
\langle f_{ts_k}, f_{ts_k} \rangle = (1 - \frac{\delta^2 c_t(k)c_t(k+1)}{(c_t(k+1) - c_t(k))^2})\langle f_t, f_t \rangle.
\]
Let a be an integer. Let $[a]_q^2 = \frac{q^a - 1}{q^2 - 1}$. For any partition $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_k)$, let $[\lambda]_q^2 = [\lambda_1]_q^2[\lambda_2]_q^2 \cdots [\lambda_k]_q^2$. If $\lambda = (\lambda^{(1)}, \lambda^{(2)}, \ldots, \lambda^{(r)}) \in \Lambda^+_{r}(n)$, let $[\lambda]_{q^2} = [\lambda^{(1)}]_{q^2}[\lambda^{(2)}]_{q^2} \cdots [\lambda^{(r)}]_{q^2}$.\

Lemma 4.11. (cf. [18, 6.15]) Suppose that $(f, \lambda) \in \Lambda^+_{r,n_1}$ and $(f, \mu) \in \Lambda^+_{r,n_2}$. Let $[\lambda] = [a_1, a_2, \ldots, a_r]$ and $[\mu] = [b_1, b_2, \ldots, b_r]$. Then\n
\[
\langle f_\lambda, f_\lambda \rangle = [\lambda]_{q^2} \prod_{j=2}^{2} \prod_{k=1}^{a_{j-1}} (c_\lambda(k) - u_j),
\]
\[
\langle f_\mu, f_\mu \rangle = [\mu]_{q^2} \prod_{j=2}^{2} \prod_{k=1}^{b_{j-1}} (c_\mu(k) - u_j).
\]

Proof. This can be verified by arguments in the proof of [18, 6.11]. We leave the details to the reader.

Proposition 4.13. Suppose that $\lambda \in \Lambda^+_{r}(n-2f)$. Following [18], we define $\mathcal{A}(\lambda)$ (resp. $\mathcal{R}(\lambda)$) to be the set of all admissible (resp. removable) nodes of λ. Given a removable (resp. an admissible) node $p = (s, k, \lambda_k)$ (resp. (s, k, λ_k+1)) of λ, define\n
a) $\mathcal{R}(\lambda)^{<p} = \{(h, l, \lambda_l) \in \mathcal{R}(\lambda) \mid (h, l) > (s, k)\}$,\n
b) $\mathcal{A}(\lambda)^{<p} = \{(h, l, \lambda_l + 1) \in \mathcal{A}(\lambda) \mid (h, l) > (s, k)\}$,

c) $\mathcal{A}(\lambda)^{\geq p} = \{(h, l, \lambda_l) \in \mathcal{A}(\lambda) \mid (h, l) \leq (s, k)\} \cup \{(h, l, \lambda_l + 1) \in \mathcal{A}(\lambda) \mid (h, l) \leq (s, k)\}$.

Following [16], let $\bar{t} = (t_0, t_1, t_2, \ldots, t_{n-1})$ and $\bar{t} = (s_0, s_1, s_2, \ldots, s_{n-1}, t_n)$ with $t_{n-1} = \mu$ and $(s_0, s_1, s_2, \ldots, s_{n-1}) = t^a$ for any $t = (t_0, t_1, t_2, \ldots, t_n) \in \mathcal{F}^{ud}(\lambda)$. Standard arguments prove the following result (cf. [18, 6.15]).

Proposition 4.14. Assume that $t \in \mathcal{F}^{ud}(\lambda)$ with $(f, \lambda) \in \Lambda^+_{r,n}$. If $t_{n-1} = \mu$, then\n
\[
\langle f_t, f_t \rangle = \langle f_{t_1}, f_{t_1} \rangle \langle f_{t_2}, f_{t_2} \rangle.
\]

By Proposition 4.14 we can compute $\langle f_t, f_t \rangle$ recursively if we know how to compute $\langle f_{t_1}, f_{t_1} \rangle$. There are three cases which will be given in Propositions 4.15 and 4.18.

Proposition 4.15. Suppose that $t \in \mathcal{F}^{ud}(\lambda)$ with $(f, \lambda) \in \Lambda^+_{r,n}$. If $\bar{t} = t^a$ with $t_n = t_{n-1} \cup \{p\}$ and $p = (m, k, \lambda_k^{(m)})$, then\n
\[
\langle f_t, f_t \rangle = \frac{(-1)^{r-m} q^{2k}}{u_m(1-q^2)} \prod_{a \in \mathcal{A}(\lambda)^{<p}} (c_\lambda(a) - c_\lambda(p)^{-1}) \prod_{a \in \mathcal{R}(\lambda)^{<p}} (c_\lambda(a)^{-1} - c_\lambda(p)^{-1}).
\]

Proof. Let $\lambda = [a_1, a_2, \ldots, a_r]$ and $t = t^k s_{a,n}$ where $a = 2f + a_{m-1} + \sum_{j=1}^{k} \lambda_j^{(m)}$. Note that $t < t_{s_{a-1}} < \cdots < t_{s_{a,n}} = t^k$, and $t_n \subset t_{a+1} \subset \cdots \subset t_n$. Applying Corollary 4.10 on the pairs $\{t_{a,s_{a,j}}, t_{a,s_{a,j+1}}\}$, $a \leq j \leq n-1$, we have\n
\[
\langle f_t, f_t \rangle = \langle f_{t_1}, f_{t_1} \rangle \prod_{j=a+1}^{n} (1 - \delta^2 \frac{c_\lambda(j)c_\lambda(a)}{(c_\lambda(j) - c_\lambda(a))^2}).
\]

Simplifying (4.17) via the definition of $c_\lambda(j) a \leq j \leq n$ together with (4.12) yields (4.16).

Proposition 4.18. Suppose that $t \in \mathcal{F}^{ud}(\lambda)$ with $\lambda = \Lambda^+_{r,n}$. Let $\bar{t} = (s, \mu_j^{(s)})$ such that $\mu^{(j)} = \emptyset$ for all integers j, $s < j \leq r$ and $l(\mu_j^{(s)}) = k$, then\n
\[
\langle f_t, f_t \rangle = [\mu_j^{(s)}]_{q^2} E_t(n-1) \prod_{j=s+1}^{r} (u_j q^{2(\mu_j^{(s)} - k)} - u_j).
\]
Proof. We have

\[E^{f, n} T_{n-1, n-2f+1} X_n^{k} F_{n} F_{t, n-1} E_{n-1} \]

and

\[E^{f, n} T_{n-1, n-2f+1} X_n^{k} F_{n} F_{t, n-1} E_{n-1} \]

By [19] 4.27a and Definition 2.1, we can write \(E_{n-1} T_{n-2} X_n^{k} F_{n} F_{t, n-1} E_{n-1} \) as an \(R \)-linear combination of elements \(E_{n-1} g(X_1^\pm, \ldots, X_{n-2}^\pm) \) where \(g(X_1^\pm, \ldots, X_{n-2}^\pm) \) is a polynomial in variables \(X_1^\pm, \ldots, X_{n-2}^\pm \), which is in the center of \(\mathcal{B}_{r, n-2} \). Therefore,

\[
E^{f-1, n} T_{n-2f, n-2} E_{n-1} X_n^{k} F_{n} F_{t, n-1} E_{n-1} \\
= E^{f, n} T_{n-2f, n-2} X_n^{k} F_{n} F_{t, n-1} E_{n-1} \\
= X_n^{k} E_{n-1} \sum_{i=f}^{2} E_{n-2i+2, n-2i} T_{n-2f, n-2f} E_{n-1} T_{n-2, n-2f} (X_1^\pm, \ldots, X_{n-2}^\pm) \\
= E^{f, n} X_n^{k} F_{n} F_{t, n-1} E_{n-1}.
\]

Note that \(f_t = m_t F_t \). Here we use \(m_t \) instead of \(m_t \) (mod \(\mathcal{B}_{r, n}(f, \lambda) \)). By (3.12),

\[
f_t E_{n-1} = E_{n-1} T_{n-1, n-2f+1} m_t T_{n-2f+1, n-1} b_{n-2} F_{n} E_{n-1} \\
= M_k E^{f, n} T_{n-1, n-2f+1} \prod_{j=1}^{r} (X_n^{2f+1} - u_j) \\
\times \sum_{i=a_{j, k-1}+1}^{n-2f+1} q^{n-2f+1-i} T_{n-2f+1, i} T_{n-2f+1, n-1} E_{n-1} b_{n-2} F_{i, k} \\
= M_k E^{f, n} T_{n-1, n-2f+1} \prod_{j=1}^{r} (X_n^{2f+1} - u_j) \\
(1 + T_{n-2f} \sum_{i=a_{j, k-1}+1}^{n-2f} q^{n-2f+1-i} T_{n-2f, i} T_{n-2f+1, n-1} E_{n-1} b_{n-2} F_{i, k}).
\]
By [10, 4.21] and our two equalities in the beginning of the proof, we can find $\Phi_t, \Psi_\ell \in F[X_1^\pm, X_2^\pm, \ldots, X_{n-2}^\pm] \cap Z(\mathcal{B}_{r,n-2})$, $\ell \in \mathbb{Z}$ such that

$$f_t E_{n-1} = E^{f,n} M_\lambda(\Phi_t + \sum_\ell X_\ell^{-1} \Psi_\ell \sum_{i=a_{s,k-1}+1}^{n-2} q^{n-2f+1-i} T_{n-2f,i}) b_{t,n-2} \prod_{k=1}^{n-2} F_{t,k}. $$

More explicitly, Φ_t is defined by (4.20) as follows:

$$E_{n-1} \prod_{j=s+1}^r (X_1^{-1} - u_j) F_{t,n-1} F_{n-1} = \Phi_t E_{n-1}. $$

By (4.21), we have $f_t E_{n-1} = (\Phi_{t,\lambda} + q [\lambda_k^{(s)}] q^2 \Psi_{t,\lambda}) m_u$ where

$$\Psi_{t,\lambda} \sum_\ell \Psi_{\ell,\lambda} c_\lambda(n - 2f) \Phi_t = \Phi_t E_{n-1}. $$

We compute $\Phi_{t,\lambda}$ and $\Psi_{t,\lambda}$ as follows. By (4.22),

$$\Phi_{t,\lambda} f_t E_{n-1} = f_t E_{n-1} \prod_{j=s+1}^r (X_1^{-1} - u_j) F_{t,n-1} F_{n-1} E_{n-1}$$

$$= E_{tt} (n-1) \prod_{j=s+1}^r (c_1^{-1}(n) - u_j) f_t E_{n-1}. $$

When we get the last equation, we use the fact that $f_s F_{t,n-1} F_{t,n} = 0$ for all $s \in \mathcal{T}_n^{ad}(\lambda)$ with $s \sim t$ and $s \neq t$, which follows from Lemma 4.3(d). So,

$$\Phi_{t,\lambda} = E_{tt} (n-1) \prod_{j=s+1}^r (c_1^{-1}(n) - u_j). $$

Similarly, we can verify

$$\Psi_{t,\lambda} = q E_{tt} (n-1) \prod_{j=s+1}^r (c_1^{-1}(n) - u_j). $$

By (4.22), (4.23),

$$E_{tt} (n-1) = (1 + q^2 [\lambda_k^{(s)}] q^2) E_{tt} (n-1) \prod_{j=s+1}^r (c_1^{-1}(n) - u_j). $$

On the other hand, by similar arguments for $f_{t,\lambda} f_{tt}^\lambda$ in [19, 6.22] for cyclotomic Nazarov-Wenzl algebra, we can verify

$$f_{t,\lambda} f_{tt}^\lambda \equiv E_{uu} (n-1) (f_u, f_v) f_{t,\lambda} \mod \mathcal{B}_{r,n}^{(f,\lambda)},$$

where $u = (u_1, u_2, \cdots, u_{n-2}) \in \mathcal{T}_n^{ad}(\lambda)$. So, $E_{uu} (n-1) (f_u, f_v)$ Note that
In [19, 4.7], Rui and Xu introduced rational functions $W_k(y, s)$ in variable y for any $s \in \mathcal{B}_{n}^{ud}(\lambda)$ such that
\[f_s E_k \frac{y}{y - X_k} E_k = E_k W_k(y, s). \]
Suppose that $s = t$. By comparing the coefficient of f_u on both sides of the above equality, we have
\[E_{tu}(n - 1) E_{ut}(n - 1) = E_{tt}(n - 1) E_{uu}(n - 1). \]
Note that $\lbrack \mu_k^{(s)} \rbrack_{q^2} = 1 + q^2 \lbrack \mu_k^{(s)} \rbrack_{q^2}$ and $c_t(n) = u_s^{-1} q^{2(k - \mu_k^{(s)})}$. Therefore,
\[\frac{\langle f_t, f_t \rangle}{\langle f_{tu}, f_{tu} \rangle} = \frac{E_{tu}(n - 1)\langle f_u, f_u \rangle}{E_{tu}(n - 1)\langle f_{tu}, f_{tu} \rangle} = \frac{E_{tu}(n - 1)\langle f_u, f_u \rangle}{E_{uu}(n - 1)\langle f_{tu}, f_{tu} \rangle} = \frac{E_{uu}(n - 1)\langle f_{tu}, f_{tu} \rangle}{E_{uu}(n - 1)\langle f_{tu}, f_{tu} \rangle} = (1 + q^2 \lbrack \mu_k^{(s)} \rbrack_{q^2})^2 E_{tt}(n - 1) \prod_{j=s+1}^{r} (c_t^{-1}(n) - u_j)^2 \frac{\langle f_v, f_v \rangle}{\langle f_{tu}, f_{tu} \rangle}. \]
By Lemma 4.10, \(\frac{\langle f_s, f_s \rangle}{\langle f_{tu}, f_{tu} \rangle} = \lbrack \mu_k^{(s)} \rbrack_{q^2} \prod_{j=s+1}^{r} (u_s q^{2(\mu_k^{(s)} - k) - u_j})^{-1}. \) So,
\[\frac{\langle f_t, f_t \rangle}{\langle f_{tu}, f_{tu} \rangle} = \lbrack \mu_k^{(s)} \rbrack_{q^2} E_{tu}(n - 1) \prod_{j=s+1}^{r} (u_s q^{2(\mu_k^{(s)} - k) - u_j}). \]

\[\square \]

Proposition 4.24. Suppose that $\lambda = (\lambda^{(1)}, \lambda^{(2)}, \ldots, \lambda^{(s)}, \theta, \ldots, \theta) \in \Lambda^+(n - 2f)$ and $l(\lambda^{(s)}) = l$. Let $t \in \mathcal{B}_{n}^{ud}(\lambda)$ with $(f, \lambda) \in \Lambda^+_r$ such that $t = t^u$, and $t_{n-1} = t_n \cup \{ p \}$ with $p = (m, k, \mu^{(m)})$ and $(m, k) < (s, t)$. Let $\mu = [b_1, b_2, \ldots, b_r]$. We define $u = ts_{n, a+1}$ with $a = 2(f - 1) + b_{m-1} + \sum_{j=1}^{k} \mu_j^{(m)}$ and $v = (u_1, \ldots, u_{a+1})$. Then
\[\frac{\langle f_t, f_t \rangle}{\langle f_{uu}, f_{uu} \rangle} = \lbrack \mu_k^{(m)} \rbrack_{q^2} E_{uv}(u_m q^{-2k} - u_m^{-1} q^{-2(\mu_k^{(m)} - k)})^{-1} A \]
where $A = \prod_{j=m+1}^{r} \frac{(u_m q^{2(\mu_k^{(m)} - k)} - u_j)}{(u_j - u_m^{-1} q^{-2(\mu_k^{(m)} - k)})} \prod_{b \in \pi(\mu) < e} (c_{a}(b) - c_{a}(p)).$

Proof. We have $t < ts_{n-1} < \cdots < ts_{n, a+1} = u$, and $v = (u_1, u_2, \ldots, u_{a+1})$. Using Corollary 4.10 repeatedly yields
\[\frac{\langle f_t, f_t \rangle}{\langle f_{tu}, f_{tu} \rangle} = \lbrack \mu_k^{(s)} \rbrack_{q^2} \prod_{j=s+1}^{r} (u_m q^{2(\mu_k^{(m)} - k) - u_j}). \]
By Propositions 4.15 and 4.18 we have
\[\frac{\langle f_u, f_u \rangle}{\langle f_{tu}, f_{tu} \rangle} = E_{uv}(u_m q^{-2k} - u_m^{-1} q^{-2(\mu_k^{(m)} - k)})^{-1} A \]
Simplifying (4.27) via the definition of $c_{a}(j)$, $a + 1 \leq j \leq n$ together with (4.27) yields (4.25), as required.

Assume that $(f, \lambda) \in \Lambda^+_r$ and $(l, \mu) \in \Lambda^-_{r,n-1}$. Write $(l, \mu) \to (f, \lambda)$ if either $l = f$ and μ is obtained from λ by removing a removable node or $l = f - 1$ and μ is obtained from λ by adding an addable node. Assume that $\mathcal{B}_{r,n}$ is semisimple. By Theorem 3.11
\[\Delta(f, \lambda) \downarrow \equiv \bigoplus_{(l, \mu) \to (f, \lambda)} \Delta(l, \mu), \]
where $\Delta(f, \lambda) \downarrow$ is $\Delta(f, \lambda)$ considered as $\mathcal{B}_{r, n-1}$-module. We remark that (4.28) has been proved in [12] over \mathbb{C}.

Motivated by [16], we define $\gamma_{\lambda/\mu} \in F$ to be the scalar given by

$$\gamma_{\lambda/\mu} = \frac{(f_1, f_1)}{(f_{\iota'}, f_{\iota'})}$$

(4.29)

where $\iota \in \mathcal{T}_n^d(\lambda)$ with $\iota = \iota' \in \mathcal{T}_n^d(\mu)$. By [18] 5.1,

$$\text{rank} \Delta(f, \lambda) = \frac{r^2 r! n!(2f-1)!!}{(2f)! \prod_{r=1}^r (a_i - a_{i-1})!} \prod_{r=1}^r a_i! \prod_{(k, \ell) \in \lambda} h_k^{(\ell)},$$

(4.30)

where $(f, \lambda) \in \Lambda^+_{r, n}$ and $[\lambda] = [a_1, a_2, \ldots, a_r]$ and $h_k^{(\ell)} = \lambda_k^{(i)} + \lambda_{k+1}^{(i)} - k - \ell + 1$ is the hook length of (k, ℓ) in $\lambda^{(i)}$.

Standard arguments prove the following result (cf. [18] 6.38).

Theorem 4.31. Let $\mathcal{B}_{r, n}$ be over R where $R = \mathbb{Z}[u^\pm_1, \ldots, u^\pm_r, q^\pm, \delta^{-1}]$ satisfying the assumption [23]. Let $\det G_{f, \lambda}$ be the Gram determinant associated to the cell module $\Delta(f, \lambda)$ of $\mathcal{B}_{r, n}$. Then

$$\det G_{f, \lambda} = \prod_{(l, \mu) \in (f, \lambda)} \det G_{l, \mu} \cdot \gamma_{\lambda/\mu} \in R.$$

(4.32)

Furthermore, $\text{rank} \Delta(l, \mu)$ is given by (4.30) and each scalar $\gamma_{\lambda/\mu}$ can be computed explicitly by Proposition 4.17, Proposition 4.18 and Proposition 4.22.

We compute $E_{ss}(k)$ for any $s \in \mathcal{T}_n^d(\lambda)$ and $1 \leq k \leq n$. In section 4 of [19], Rui and Xu have constructed the seminormal representations $\Delta(\lambda)$ for $\mathcal{B}_{r, n}$ where $\lambda \in \Lambda^+_{r, n-2f}$. More explicitly, $\Delta(\lambda)$ has a basis $v_s, s \in \mathcal{T}_n^d(\lambda)$. By standard arguments (cf. [16] 3.16), one can verify that f_s constructed in the current section is equal to v_s up to a scalar. Therefore, $E_{ss}(k)$ can be computed by [19] 4.12-4.13.

We list such formulae as follows. Let $\varepsilon \in \{1, -1\}$.

If r is odd and $\vartheta^{-1} = \varepsilon \prod_{i=1}^r u_i$, then

$$E_{ss}(k) = \frac{1}{\vartheta c_s(k)} \left(\frac{c_s(k) - c_s(k)^{-1}}{\delta} + \varepsilon \prod_{\alpha} c_s(k) - c(\alpha)^{-1} \right),$$

where α run over all addable and removable nodes of s_{k-1} with $\alpha \neq s_k \setminus s_{k-1}$.

If r is even and $\vartheta^{-1} = -\varepsilon q^2 \prod_{i=1}^r u_i$, then

$$E_{ss}(k) = \frac{1}{\vartheta} \left(1 - \frac{q^{-2e}}{c_s(k)^2} \right) \prod_{\alpha} c_s(k) - c(\alpha)^{-1},$$

where α run over all addable and removable nodes of s_{k-1} with $\alpha \neq s_k \setminus s_{k-1}$.

By Propositions 4.14, 4.15, 4.18 and 4.22 together with (4.33)-(4.34), we have the following result immediately.

Corollary 4.35. Suppose that $(f, \lambda) \in \Lambda^+_{r, n}$. Let $[\lambda] = [a_1, a_2, \ldots, a_r]$ and $\varepsilon \in \{1, -1\}$. Then

$$\langle f_\lambda, f_\iota \rangle = \frac{[\lambda]!}{\vartheta \delta^2} A \prod_{j=2}^{a_j-1} \prod_{k=1}^{a_j} (c_{s_k}(k) - u_j) \prod_{j=2}^{r} (u_1 - u_j)^{\varepsilon} (u_1 - u_j)^{-1} \varepsilon,$$

where

$$A = \begin{cases} (u_1^{-1} + q^{-e})^{\varepsilon} (-u_1^{-1} + q^e)^{\varepsilon} & \text{if } 2 \nmid r \text{ and } \vartheta^{-1} = \varepsilon \prod_{i=1}^r u_i, \\ (u_1 + q^e)^{\varepsilon} (u_1 - q^e)^{\varepsilon} u_1^{-2} & \text{if } 2 \mid r \text{ and } \vartheta^{-1} = \varepsilon q^{-e} \prod_{i=1}^r u_i. \end{cases}$$
Given an multi-partition of λ. We denote μ by $\lambda \cup p$ (resp. λ/p) if $Y(\mu)$ is obtained from λ by adding (resp. removing) the addable (resp. removable) node p. Let $p = (i, j, k)$ be the node which is in the jth-row, kth column of ith component of $Y(\lambda)$. We define $p^+ = (i, j, k + 1)$ and $p^- = (i, j + 1, k)$.

In the remainder of this section, we assume that

$$R = \mathbb{Z}[u_1^\pm, u_2^\pm, \ldots, u_r^\pm, q^{\pm1}, \delta^{-1}]$$

such that the assumption 2.2 holds. Let R_1 be the multiplicative sub-semigroup of R generated by $1, u_i^\pm, q^\pm, \delta^\pm$ and $u_iu_j^{-1} - q^{2d}$ for integers i, j, d with $|d| < n$ and $1 \leq i, j \leq r$. Let F_1 be the field of fraction of R_1.

Theorem 4.36. Suppose $\lambda \in \Lambda^+_1(n-2)$. Let $r_{\lambda,p,\tilde{p}} = \dim \Delta(0, \lambda \cup p \cup \tilde{p})$ if $\lambda \cup p \cup \tilde{p}$ is an multipartition. If $2 \nmid r$ and $q^{-1} = \varepsilon \prod_{i=1}^n u_i$, we define

$$B = \prod_{\lambda \cup p \cup p^+ \in \Lambda^+_1(n)} (c_\lambda(p) - \varepsilon q^{-1})^{r_{\lambda,p,p^+}} \prod_{\lambda \cup p \cup p^- \in \Lambda^+_1(n)} (c_\lambda(p) + \varepsilon q)^{r_{\lambda,p,p^-}}.$$

Otherwise, we define

$$B = \begin{cases} \prod_{\lambda \cup p \cup p^- \in \Lambda^+_1(n)} (c_\lambda(p)^2 - q^{-2})^{r_{\lambda,p,p^-}}, & \text{if } 2 \nmid r, q^{-1} = q^{-1} \prod_{i=1}^n u_i, \\ \prod_{\lambda \cup p \cup p^+ \in \Lambda^+_1(n)} (c_\lambda(p)^2 - q^{-2})^{r_{\lambda,p,p^+}}, & \text{if } 2 \mid r, q^{-1} = -q \prod_{i=1}^n u_i. \end{cases}$$

Then there is an $A \in R_1$ such that

$$\det G_{1,\lambda} = AB \prod_{\tilde{p} \in \mathcal{A}(\lambda)} (c_\lambda(p)c_\lambda(\tilde{p}) - 1)^{\dim \Delta(0, \lambda \cup p \cup \tilde{p})}. \quad (4.37)$$

Proof. Suppose that there are s (resp. $m - s$) addable (resp. removable) nodes p_1, p_2, \ldots, p_s (resp. $p_{s+1}, p_{s+2}, \ldots, p_m$) in $Y(\lambda)$. Let

$$\mu[i] = \begin{cases} \lambda \cup p_i, & \text{if } 1 \leq i \leq s, \\ \lambda/p_i, & \text{if } s + 1 \leq i \leq m. \end{cases}$$

We need (4.38)–(4.39) which can be verified directly. Suppose $s + 1 \leq k \leq m$.

$$(p, p) \in \mathcal{A}(\mu[k]), p \neq \tilde{p})$$

$$\{(p, p) \mid p, \tilde{p} \in \mathcal{A}(\mu[k]), p \neq \tilde{p}\} \cup \{(p, p) \mid p \in \mathcal{A}(\mu[k])\} \cup \{(p, p) \mid p \in \mathcal{A}(\mu[k])\}$$

and

$$(p, p) \in \mathcal{A}(\mu[k]), 1 \leq i \leq s$$

$$\cup \bigcup_{k=s+1}^{n} \{(p, p) \mid p \in \mathcal{A}(\mu[k])\} \cup \bigcup_{k=s+1}^{n} \{(p, p) \mid p \in \mathcal{A}(\mu[k])\}.$$ (4.39)

Now, we prove the result by induction on n. It is routine to check (4.37) for the case $n = 2$. Suppose $n \geq 3$. By Theorem 4.31

$$\det G_{1,\lambda} = \prod_{i=1}^n \det G_{0,\mu[i]} \cdot \gamma_{\lambda/\mu[i]}^{\dim \Delta(0, \mu[i])} \prod_{j=s+1}^m \det G_{1,\mu[j]} \cdot \gamma_{\lambda/\mu[j]}^{\dim \Delta(1, \mu[j])}. \quad (4.40)$$

By Proposition 4.15 $\det G_{0,\mu[i]} \in R_1$ and $\gamma_{\mu[i]} \in F_1$ for $1 \leq i \leq s$ and $s + 1 \leq j \leq m$. Suppose $1 \leq i \leq s$. By Propositions 4.18, 4.22

$$\gamma_{\lambda/\mu[i]} = CD \prod_{1 \leq j \neq i \leq s} (c_\lambda(p_i)c_\lambda(p_j) - 1) \prod_{s+1 \leq k \leq m} (c_\lambda(p_i) - c_\lambda(p_k)) \quad (4.41)$$

where $C \in F_1$ and

$$D = \begin{cases} (c_\lambda(p_i) + \varepsilon q)(c_\lambda(p_i) - \varepsilon q^{-1}), & \text{if } 2 \nmid r, q^{-1} = \varepsilon \prod_{i=1}^n u_i, \\ (c_\lambda(p_i)^2 - q^{-2}), & \text{if } 2 \mid r, q^{-1} = q^{-1} \prod_{i=1}^n u_i. \end{cases}$$

By induction assumption, $\det G_{1,\mu[j]}$ can be computed by (4.37) if $s + 1 \leq j \leq m$. We rewrite the terms on the right hand side of (4.40) so as to get $(c_\lambda(p)c_\lambda(\tilde{p}) - 1)^{r_{\lambda,p,\tilde{p}}}$.
5. Induction and Restriction

In this section, we consider \(B_{r,n} \) over a field \(F \). Let \(B_{r,n} \)-mod be the category of right \(B_{r,n} \)-modules. We define two functors

\[
F_n : B_{r,n} \text{-mod} \to B_{r,n-2} \text{-mod}, \quad G_{n-2} : B_{r,n-2} \text{-mod} \to B_{r,n} \text{-mod}
\]

such that

\[
F_n(M) = ME_{n-1} \text{ and } G_{n-2}(N) = N \otimes E_{n-1} B_{r,n},
\]

for all right \(B_{r,n} \)-modules \(M \) and right \(B_{r,n-2} \)-modules \(N \). By Lemma 5.1, \(F_n \) and \(G_{n-2} \) are well-defined. For the simplification of notation, we will omit the subscripts of \(F_n \) and \(G_{n-2} \) later on.

Lemma 5.1. Suppose that \((f, \lambda) \in \Lambda_{r,n}^+ \) and \((\ell, \mu) \in \Lambda_{r,n+2}^+ \).

1. \(FG = 1 \).
2. \(G(\Delta(f, \lambda)) = \Delta(f + 1, \lambda) \).
3. \(F(\Delta(f, \lambda)) = \Delta(f - 1, \lambda) \).
4. As right \(B_{r,n} \)-modules, \(\text{Hom}_{B_{r,n+2}}(E_{n+1} B_{r,n+2}, \Delta(\ell, \mu)) \cong \Delta(\ell, \mu) E_n + 1 \).
5. \(\text{Hom}_{B_{r,n+2}}(\Delta(f, \lambda), \Delta(\ell, \mu)) \cong \text{Hom}_{B_{r,n}}(\Delta(f, \lambda), F(\Delta(\ell, \mu))) \text{ as } F\text{-modules.} \)

Proof. (a) follows from Lemma 3.1 immediately. By standard arguments, we define \(\psi : \Delta(f, \lambda) \otimes E_{n+1} B_{r,n+2} \to \Delta(f + 1, \lambda) \) such that

\[
\psi(E^{f,n} M_{\Delta} + B_{r,n}^{(f,\lambda)} \otimes E_{n+1} h) = E^{f+1,n+2} M_{\lambda} h + B_{r,n+2}^{(f+1,\lambda)}
\]

for \(h \in B_{r,n+2} \). Since \(E^{f+1,n+2} M_{\lambda} \) generates \(\Delta(f + 1, \lambda) \) as \(B_{r,n+2} \)-module, \(\psi \) is an epimorphism. Note that \(E^{f,n} = E^{f,n} E^{f,n-1} E^{f,n} \). We have

\[
\Delta(f, \lambda) \otimes E_{n+1} B_{r,n+2} = (M_{\lambda} E^{f,n} E_{n+1} E^{f,n} + B_{r,n}^{(f,\lambda)}) \otimes E^{f+1,n+2} B_{r,n+2}.
\]

By Lemma 5.8, \(E^{f+1,n+2} B_{r,n+2} \) can be written as \(F \)-linear combination of elements in \(B_{r,n-2} E^{f+1,n+2} T_d X^{\kappa_d} \) where \(d \in \mathbb{D}_{f+1,n+2} \) and \(\kappa_d \in \mathbb{N}^{f+1,n+2} \). By [13]

\[
(M_{\lambda} E^{f,n} E_{n+1} E^{f,n} + B_{r,n}^{(f,\lambda)}) \otimes B_{r,n+2} E^{f+1,n+2} = (M_{\lambda} E^{f,n} B_{r,n-2} + B_{r,n}^{(f,\lambda)}) \otimes E_{n+1}.
\]

Therefore, \(\text{dim}_F(\Delta(f, \lambda) \otimes E_{n+1} B_{r,n+2}) \leq \text{dim}_F(\Delta(f + 1, \lambda)) \). So, \(\psi \) is injective. This completes the proof of (b). (c) follows from (a)-(b), immediately.

We define the \(F \)-linear map \(\phi : \text{Hom}_{B_{r,n-2}}(E_{n+1} B_{r,n+2}, \Delta(\ell, \mu)) \to \Delta(\ell, \mu) E_{n+1} \) such that \(\phi(f) = f(E_{n+1}) \), for \(f \in \text{Hom}_{B_{r,n-2}}(E_{n+1} B_{r,n+2}, \Delta(\ell, \mu)). \) Note that \(f(E_{n+1}) \in \Delta(\ell, \mu) E_{n+1} \). So, \(\phi \) is an epimorphism. Note that any \(f \in \text{Hom}_{B_{r,n-2}}(E_{n+1} B_{r,n+2}, \Delta(\ell, \mu)) \) is determined uniquely by \(f(E_{n+1}) \). So, \(\phi \) is injective. This proves (d). Finally, (e) follows from adjoint associativity and (d).

Given two \(B_{r,n} \)-modules \(M, N \). Let \(\langle M, N \rangle_n = \text{dim}_F \text{ Hom}_{B_{r,n}}(M, N) \). By Lemma 5.1(e), we have the following result immediately.

Theorem 5.2. Given \((f, \lambda) \in \Lambda_{r,n+2}^+ \) and \((\ell, \mu) \in \Lambda_{r,n+2}^+ \) with \(f \geq 1 \). Then

\[
\langle \Delta(f, \lambda), \Delta(\ell, \mu) \rangle_{n+2} = \langle \Delta(f - 1, \lambda), \Delta(\ell - 1, \mu) \rangle_n.
\]
6. A CRITERION ON $\mathcal{B}_{r,n}$ BEING SEMISIMPLE

In this section, we consider $\mathcal{B}_{r,n}$ over a field F. The main purpose of this section is to give a necessary and sufficient condition for $\mathcal{B}_{r,n}$ being semisimple over F.

In Propositions 6.1-6.5 we assume $a(q^2) > n$ and $|d| \geq n$ whenever $u_i u_j^{-1} - q^{2d} = 0$ and $d \in \mathbb{Z}$. So, $\mathcal{B}_{r,n}$ is semisimple over F. By Theorem 4.3, we describe explicitly when $\det G_{1,\lambda} \neq 0$ for all $\lambda \in \Lambda_n$ where Λ_n is defined in Definition 6.4.

Proposition 6.1. $G_{1,\varnothing} \neq 0$ if and only if the following conditions hold:

- a) $u_i u_j - 1 \neq 0$ for all $1 \leq i \neq j \leq r$,
- b) $u_i \notin \{-\varepsilon q, \varepsilon q^{-1}\}$ if $2 \nmid r$ and $q^{-1} = \varepsilon \prod_{i=1}^{r} u_i$,
- c) $u_i \notin \{-q^r, q^r\}$ if $2 | r$ and $q^{-1} = \varepsilon q^{-e} \prod_{i=1}^{r} u_i$.

Proposition 6.2. Suppose that $n \geq 3$. Let $\lambda \in \Lambda_C^+(n-2)$ with $\lambda^{(m)} = (n-2)$ for some positive integer $m \leq r$. $\det G_{1,\lambda} \neq 0$ if and only if the following conditions hold:

- a) $u_m \notin \{q^{3-n}, -q^{3-n}\}$,
- b) $u_i u_m \notin \{q^{2n-4}, q^{-2}\}$, for all $1 \leq i \leq r$ and $i \neq m$,
- c) $u_i u_j \neq 1$ for all $m \notin \{i, j\}$ and $i \neq j$.
- d) $u_m \notin \{-\varepsilon q^3, q^{-3}, q\}$ and $u_i \notin \{-\varepsilon q, \varepsilon q^{-1}\}$ for all $i \neq m$ if $2 \nmid r$ and $q^{-1} = \varepsilon \prod_{j=1}^{r} u_j$,
- e) $u_m \notin \{-q^3, q^3\}$ and $u_i \notin \{q, -q\}$ for all $i \neq m$ if $2 | r$ and $q^{-1} = q^{-1} \prod_{j=1}^{r} u_j$,
- f) $u_m \notin \{-q^{3-2n}, -q^{3-2n}, -q\}$ and $u_i \notin \{q^{-1}, -q^{-1}\}$ if $2 | r$ and $q^{-1} = -q \prod_{j=1}^{r} u_j$.

Lemma 6.3. Suppose that $n \geq 3$. Let $\varepsilon = \pm 1$. Let $\lambda \in \Lambda_C^+(n-2)$ with $\lambda^{(m)} = (1^{n-2})$. $\det G_{1,\lambda} \neq 0$ if and only if the following conditions hold:

- a) $u_m \notin \{q^{n-3}, -q^{n-3}\}$,
- b) $u_i u_m \notin \{q^{2n-4}, q^{-2}\}$, for all $1 \leq i \leq r$ and $i \neq m$,
- c) $u_i u_j \neq 1$ for all $m \notin \{i, j\}$ and $i \neq j$.
- d) $u_m \notin \{-\varepsilon q^3, -q^{-3}, q^{3}, q^{-1}\}$ and $u_i \notin \{-\varepsilon q, \varepsilon q^{-1}\}$ for all $i \neq m$ if $2 \nmid r$ and $q^{-1} = \varepsilon \prod_{j=1}^{r} u_j$,
- e) $u_m \notin \{-q^{3}, q^{3}, q^{-3}, q^{-3}, -q^{-1}, -q^{-1}\}$ and $u_i \notin \{q, -q\}$ for all $i \neq m$ if $2 | r$ and $q^{-1} = q^{-1} \prod_{j=1}^{r} u_j$,
- f) $u_m \notin \{-q^3, q^{-3}\}$ and $u_i \notin \{q^{-1}, -q^{-1}\}$ if $2 | r$ and $q^{-1} = -q \prod_{j=1}^{r} u_j$.

Definition 6.4. Fix positive integers r and n. Let

$$\Lambda_n = \bigcup_{k=2}^{n} \{\lambda \in \Lambda_C^+(k-2) \mid \lambda^{(i)} \in \{(k-2), (1^{k-2})\} \text{ for some } 1 \leq i \leq r\}$$

Proposition 6.5. Suppose that $r \geq 2$ and $n \geq 2$.

- a) Assume $\det G_{1,\varnothing} \neq 0$. Then $\Pi_{\lambda \in \Lambda_n} \det G_{1,\lambda} \neq 0$ if and only if $\mathcal{B}_{r,n}$ is (split) semisimple over F.
- b) $\mathcal{B}_{r,n}$ is not semisimple over F if $\det G_{1,\varnothing} = 0$.

Proof. By Propositions 6.1-6.3, $\Pi_{\lambda \in \Lambda_n \setminus \Lambda_{n-1}} \det G_{1,\lambda} = 0$ if $\det G_{1,\varnothing} = 0$. This proves (b).

We are going to prove (a) by induction on n. When $n = 2$, there is nothing to prove. We assume $n \geq 3$ in the remainder of the proof.

In [11], Graham and Lehrer proved that a cellular algebra is (split) semisimple if and only if no Gram determinant associated to a cell module which is defined by a cellular basis is equal to zero. We use it frequently in the proof of this proposition.
(⇒) If \(\mathcal{R}_{r,n} \) is not semisimple, then \(\det G_{f, \lambda} = 0 \) for some \((f, \lambda) \in \Lambda^+ \). Under our assumption, \(\mathcal{H}_{r,n} \) is semisimple. Since each cell module \(\Delta(0, \mu/p^\lambda) \) for \(\mathcal{R}_{r,n} \) can be considered as the cell module of \(\mathcal{H}_{r,n} \) with respect to \(\lambda \), so, \(\det G_{0, \lambda} \neq 0 \) for all \(\lambda \in \Lambda^+ \). Therefore, we can assume that \(f > 1 \).

Take an irreducible module \(D^{f, \mu} \subset \text{Rad} \Delta(f, \lambda) \). By general theory about cellular algebras, we know that \(\ell \leq f \). When \(\ell > 1 \), we use Theorem 5.2 to get a non-zero \(\mathcal{R}_{r,n-2} \)-homomorphism from \(\Delta(\ell - 1, \mu) \) to \(\Delta(f - 1, \lambda) \). So, \(\mathcal{R}_{r,n-2} \) is not semisimple. This contradicts to our assumption since \(\Lambda^+ \) is semisimple. By Theorem 3.11, there is a \(\mathcal{R}_{r,n-1} \)-homomorphism from \(\Delta(0, \mu/p^\lambda) \) to \(\Delta(f, \lambda) \) where \(p \) is a removable node of \(\mu \) and \(\mu/p^\lambda \) is obtained from \(\mu \) by removing the removable node \(p \). Here we use classical branching rule for \(\Delta(0, \mu/p^\lambda) \) to \(\Delta(f, \lambda) \) and \(\mu/p^\lambda \) is a composition factor of \(\Delta(f, \lambda) \). Since we are assuming that \(f > 1 \), \(k \geq f - 1 > 0 \). So, \((0, \mu/p^\lambda) \neq (f, \lambda) \). Therefore, \(\mathcal{R}_{r,n-1} \) is not semisimple.

This contradicts our induction assumption again.

(⇐) By assumption, \(\det G_{1, \lambda} \neq 0 \) for all \(\lambda \in \Lambda_0 \setminus \Lambda_{n-1} \). Suppose that \(\det G_{1, \lambda} = 0 \) for \(\lambda \in \Lambda_{n-1} \). We can find an irreducible module \(D^{f, \mu} \subset \text{Rad} \Delta(1, \lambda) \). We have \(\ell = 0 \). Otherwise, since \(\ell \leq 1 \), we have \(\ell = 1 \). By Theorem 5.2, \(\lambda = \mu \), a contradiction.

If \(n - 2 - \lfloor \lambda \rfloor = 2a \) for some \(a \in \mathbb{N} \), we can use Theorem 5.2 to get a non-zero homomorphism from \(\Delta(a, \mu) \) to \(\Delta(1 + a, \lambda) \). So, \(\det G_{1+a, \lambda} = 0 \), forcing \(\mathcal{R}_{r,n} \) not being semisimple, a contradiction.

Suppose \(n - 2 - \lfloor \lambda \rfloor \) is odd. By Theorem 4.5, we can find a suitable multipartition, say \(\hat{\lambda} \) which is obtained from \(\lambda \) by adding an addable node, such that \(\det G_{1, \hat{\lambda}} = 0 \). First, we assume that \(\lambda \in \Lambda^+(k-2) \) with \(\lambda^{(m)} = k - 2 \) and \(k \leq n - 1 \) without loss of generality. By Proposition 6.2, either \(u_i \in \{ q^a, -q^b \} \) or \(u_i u_j = q^\ell \) for some \(1 \leq i \neq j \leq r \) and some integers \(a, b, c \). In the first case, we add a box on \(\lambda^{(j)} \) with \(j \neq i \). In the remainder case, we define \(\lambda^{(m)} = (k - 2, 1) \) (resp. \(\lambda^{(m)} = (k - 1, 1) \)) if \(u_i u_m = q^{2k - 2} \) (resp. otherwise).

In each case, \(\hat{\lambda} \in \Lambda^+(k-2) \) and \(\det G_{1, \hat{\lambda}} = 0 \). Since \(n - 2 - \lfloor \hat{\lambda} \rfloor \) is a non-negative even number, we get a contradiction by our previous arguments.

By similar arguments, we get a contradiction if we assume \(\lambda \in \Lambda^+(k-2) \). We leave the details to the reader.

For convenience, we define

\[
Q_{r, \varepsilon} = \begin{cases}
\{ -\varepsilon q, \varepsilon q^{-1} \}, & \text{if } 2 \nmid r, q^\varepsilon = \varepsilon \prod_{i=1}^r u_i, \\
\{ -q^\varepsilon, q^\varepsilon \}, & \text{if } 2 \mid r, q^\varepsilon = \varepsilon q^{-\varepsilon} \prod_{i=1}^r u_i,
\end{cases}
\]

and

\[
S_{r, \varepsilon} = \begin{cases}
\bigcup_{i=1}^n \{ \pm q^{3-k}, \pm q^{k-3}, \pm q^{3-2k}, \pm q^{2k-3} \}, & \text{if } 2 \nmid r, q^\varepsilon = \varepsilon \prod_{i=1}^r u_i, \\
\bigcup_{i=1}^n \{ \pm q^{3-k}, \pm q^{k-3}, \pm q^{3-2k}, \pm q^{2k-3} \}, & \text{if } 2 \mid r, q^\varepsilon = \varepsilon q^{-\varepsilon} \prod_{i=1}^r u_i.
\end{cases}
\]

Theorem 6.8. Let \(n \geq 2 \) and \(r \geq 2 \). Let \(\mathcal{R}_{r,n} \) be defined over the field \(F \) which contains non-zero \(u_i \), \(1 \leq i \leq r \), \(q, q - q^{-1} \) such that the assumption 2.2 holds.

a) If either \(u_i - u_j^{-1} = 0 \) for different positive integers \(i, j \leq r \) or \(u_i \in Q_{r, \varepsilon} \) for some positive integer \(i \leq r \), then \(\mathcal{R}_{r,n} \) is not semisimple.

b) Assume \(u_i - u_j^{-1} \neq 0 \) for all different positive integers \(i, j \leq r \) and \(u_i \notin Q_{r, \varepsilon} \) for all positive integers \(i \leq r \).
(1) $\mathcal{B}_{r,2}$ is semisimple if and only if $o(q^2) > 2$ and $|d| ≥ 2$ whenever $u_i u_j^{-1} = q^{2d}$ for any $1 ≤ i < j ≤ r$ and $d ∈ \mathbb{Z}$.

(2) Suppose $n ≥ 3$. Then $\mathcal{B}_{r,n}$ is semisimple if and only if
(a) $o(q^2) > n$,
(b) $|d| ≥ n$ whenever $u_i u_j^{-1} = q^{2d}$ for any $1 ≤ i < j ≤ r$ and $d ∈ \mathbb{Z}$,
(c) $u_i ∉ S_{r,g}$,
(d) $u_i u_j ∉ \bigcup_{k=3}^{n} \{q^{1-2k}, q^{2k-4}\}$ for all different positive integers $i, j ≤ r$.

Proof. Each cell module $\Delta(0, \lambda)$ for $\lambda ∈ \Lambda^+(n)$ can be considered as the cell module of $\mathcal{H}_{r,n}$. So, $\mathcal{B}_{r,n}$ is not semisimple over F if $\mathcal{H}_{r,n}$ is not semisimple. Therefore, we can assume $\mathcal{H}_{r,n}$ is semisimple when we discuss the semisimplicity of $\mathcal{B}_{r,n}$. Now, the result follows from Ariki’s result on $\mathcal{H}_{r,n}$ being semisimple in [1] together with Propositions 6.1–6.5.

When $r = 1$, Theorem 6.8 has been proved in [17, 5.9]. We remark that the notation r (resp. $ω$) in [17, 1.1] is the same as r^{-1} (resp. $δ$) in the current paper.

References

[1] S. Ariki, “On the semi-simplicity of the Hecke algebra of $(\mathbb{Z}/r\mathbb{Z}) \wr S_n$”, J. Algebra 169 (1994), 216–225.
[2] S. Ariki and K. Koike, “A Hecke algebra of $(\mathbb{Z}/r\mathbb{Z}) \wr S_n$ and construction of its irreducible representations”, Adv. Math. 106 (1994), 216–243.
[3] S. Ariki and A. Mathas, “The number of simple modules of the Hecke algebras of type $G(r, 1, n)$”, Math. Z. 233 (2000), 601–623.
[4] S. Ariki and A. Mathas, H. Rui, “Cyclotomic Nazarov-Wenzl algebras”, Nagoya Math. J., Special issue in honor of Prof. G. Lusztig’s sixty birthday. 182 (2006), 47–134.
[5] J. S. Birman and H. Wenzl, “Braids, link polynomials and a new algebra”, Trans. Amer. Math. Soc. 313 (1989), 249–273.
[6] E. Cline, B. Parshall and L.L. Scott, “Finite dimensional algebras and highest weight categories,”, J. Reine. Angew. Math. 391 (1988), 85-99.
[7] R. Dipper, G. James and A. Mathas, “Cyclotomic q-Schur algebras”, Math. Z. 229 (1999), 385–416.
[8] R. Dipper and A. Mathas, “Morita equivalences of Ariki–Koike algebras”, Math. Z. 240 (2002), 579–610.
[9] W. Doran IV, D. Wales and P. Hanlon, “On the semisimplicity of Brauer centralizer algebras”, J. Algebra 211 (1999), 647–685.
[10] F. M. Goodman and H. H. Mosley, “Cyclotomic Birman-Wenzl-Murakami Algebras, I: freeness and realization as tangle algebras”, arXiv:math.QA/0612064.
[11] J. J. Graham and G. I. Lehrer, “Cellular algebras”, Invent. Math. 123 (1996), 1–34.
[12] R. Häring-Oldenburg, “Cyclotomic Birman-Murakami-Wenzl algebras”, J. Pure Appl. Algebra 161 (2001), 113–144.
[13] G. James and A. Mathias, “The Jantzen sum formula for cyclotomic q-Schur algebras”, Trans. Amer. Math. Soc. 352 (2000), 5381–5404.
[14] A. Mathias, Hecke algebras and Schur algebras of the symmetric group, Univ. Lecture Notes, 15, Amer. Math. Soc., 1999.
[15] , “Seminormal forms and Gram determinants for cellular algebras”, J. Reine. Angew. Math., to appear.
[16] H. Rui and M. Si, “Discriminants of Brauer algebra”, Math. Zeit., 258 (2008), 925-944.
[17] , “Gram determinants and semisimple criteria for Birman-Murakami-Wenzl algebras”, J. Reine. Angew. Math., to appear.
[18] , “On the structure of cyclotomic Nazarov–Wenzl algebras”, J. Pure Appl. Algebra, 212, no. 10, (2008), 2209-2235.
[19] H. Rui and J. Xu, “The representations of cyclotomic BMW algebras”, Arxiv:0801.0465, 2007.
[20] Shona Yu, “The cyclotomic Birman-Murakami-Wenzl algebras”, Ph.D thesis, Sydney University, 2007.

H. Rui, Department of Mathematics, East China Normal University, 200241 Shanghai, P.R. China.
E-mail address: hbrui@math.ecnu.edu.cn

M. Si, Department of Mathematics, Shanghai Jiaotong University, 200240, Shanghai, P.R. China.
E-mail address: simeism@hotmail.com