Identification of cold-stress responsive proteins in *Anabasis aphylla* seedlings via the iTRAQ proteomics technique

Tingting Wang\(^a\), Chunxiu Ye\(^bc\), Mei Wang\(^a\) and Guangming Chu\(^a\)

\(^a\)Agricultural College, Shihezi University, Shihezi, Xinjiang, People’s Republic of China; \(^b\)Xinjiang Agricultural University, Urumqi, Xinjiang, People’s Republic of China; \(^c\)Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Xinjiang Production & Construction Group, Center for Molecular Agrobiotechnology and Breeding, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, Xinjiang, People’s Republic of China

ABSTRACT
Cold stress is one of the major environmental factors that affects plant growth, development, and species distributions. In order to study the molecular mechanism of cold-stress responses in *Anabasis aphylla* seedlings, we used the isobaric tags for relative and absolute quantification (iTRAQ) technique to identify differential protein expression under cold stress. In total, 211 differentially expressed proteins were identified, including 109 up-accumulated proteins and 102 down-accumulated proteins, these cold-stress response proteins were mainly identified as proteins involved in carbohydrate and energy metabolism, protein metabolism and translation, stress response, transcription-related, amino acid metabolism, signal transduction, and membrane and transport. GO and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses indicated that most of the proteins related to cold-stress response were involved in carbohydrate and energy metabolism, indicating *A. aphylla* seedlings adapted to cold conditions mainly through changes in energy metabolism pathways. Additionally, the correspondence between mRNA transcript levels and protein abundance levels for nine accumulated proteins were also tested by qRT-PCR, only one protein did not show consistent trends in mRNA and protein levels. These data clarify our current understandings of stress responses in seedlings of species such as *A. aphylla* and identify the molecular mechanisms of the cold-stress responses.

Introduction
Cold stress is a major abiotic factor that has noticeable effects on plant physiology and growth. It limits the geographical distribution and productivity of many wild plants and crops. Cold stress broadly influences the physiological and biochemical processes of plants, including photosynthesis (Hu et al. 2000), respiration (Xu 2007), oxygen and antioxidant enzymatic activity (Kang 2008), and water circulation (Sun 2011). In order to tolerate and adapt to adverse growth conditions, plants improve their cold resistance through the regulation of metabolic pathways. Plant responses to cold stress usually occur through changes in membrane composition, antioxidant components, and gene transcription rates under cold stress (Lukatkin 2002). Many genes that respond to cold stress have been documented in the model species *Arabidopsis thaliana* (Nordin et al. 1993; Welin et al. 1995; Medina et al. 1999). In recent years, proteomics combined with cold-resistant mutation analysis has significantly increased our understanding of signaling pathways and other important molecular mechanisms involved in cold acclimation (Chen et al. 2014; Janda et al. 2014). To date, proteomics has been used to analyze the cold resistance of a diverse array of plant species, including *Chorispora bungeana*, *Oryza sativa* (rice), *Musa nana* (dwarf banana), *Buchloe dactyloides*, and the desert woody plants *Ammodendron mongolicus* and *Populus euphratica* (Yue et al. 2009; Tan 2012; Zhou 2013; Chen 2015; Pang 2015; Zhou et al. 2016), through this body of research, many proteins associated with cold-stress responses have been identified.

The subshrub *Anabasis aphylla* belongs to the family Chenopodiaceae and is one of the main species found in the soil desert area of the Junggar Basin, where it has an important role in water and soil conservation throughout the diluvial fan and plain. Furthermore, it is a plant species with great value (Wang et al. 2015). In this area, snowmelt is a vital water source for *A. aphylla* seed germination, and it can regulate plant phenology and ecosystem nutrient cycling. Through a combination of field investigation and observations with a simulation experiment, we found that a large number of *A. aphylla* seeds germinated in snowmelt in the field, which is consistent with *Anabasis elatior* germination characteristics (Han et al. 2011). Shimono and Kudo (2005) also found *Puccinellia multivittata* seeds can germinate at 0°C and observed seeds that were buried in snow beds can emerge in the midst of freezing–thawing cycles. Thus, *A. aphylla* seeds clearly have the ability to germinate during snowmelt periods, and seedlings must therefore physiologically adapt to freezing conditions. This property has notable ecological significance for *A. aphylla* seeds and seedlings in coping with climatic fluctuations and unusually rapid warming in early spring.

Isobaric tags for relative and absolute quantification (iTRAQ) is a quantitative technique for analyzing cell metabolic changes. Many reports have used iTRAQ technology to identify and quantitatively analyze proteins. For example, Xie et al. (2016) successfully analyzed protein expression in tobacco leaves under drought stress. Wang (2013) identified differentially expressed proteins (DEPs) in *Lycium ruthenicum*...
through the iTRAQ technique and subjected them to gene ontology (GO) analysis, which revealed significant overrepresentations of DEPs among some biological functions. Additionally, Wang et al. (2016) applied the quantitative analysis of DEPs in maize leaves under cold stress using the iTRAQ technique. However, there have been no published reports focused on cold adaptation in *A. aphylla*, which highlights the need for research on not only the cold resistance of *A. aphylla*, but also the expression of genes and proteins that respond to cold stress. This study therefore used the quantitative protein technology iTRAQ to identify and characterize the molecular mechanism of cold-stress responses in *A. aphylla* seedlings.

Materials and methods

Plant materials and stress treatments

A. aphylla seeds were obtained from the southern edge of the Gurbantünggüt Desert in Xinjiang, China. All collected *A. aphylla* seeds were sterilized by soaking them in 10% H$_2$O$_2$ for 30 min, after which they were rinsed with distilled water. For the control treatment, the sterilized seeds were germinated on filter paper discs soaked with distilled water in Petri dishes at room temperature and a 16-h light/8-h dark photoperiod until seedlings were approximately 3 cm in length. For the cold treatment, 3-cm-long seedlings were kept in a −3°C growth chamber for 12 h each day for 1 week. For each treatment, 3-g seedlings were selected as samples and quickly frozen in liquid nitrogen individually and stored at −80°C for protein extraction for iTRAQ-based comparative proteomic analyses. Both treatments had two biological replicates.

Protein extraction

Protein extraction was conducted according to the procedure described by Isaacson et al. (2006) with some modifications. Each *A. aphylla* sample was individually ground into powder with liquid nitrogen. Then, 10 mL of cooled acetone containing 10% tricarboxylic acid (TCA) was added to 1 g of sample powder at −20°C for 1 h incubation. Samples were then centrifuged at 15,000 × g for 15 min at 4°C. The resulting pellet was collected, cooled acetone was again added at −20°C for another 1-h incubation, and the centrifugation and cooled acetone addition steps were then repeated again. After centrifugation at 15,000 × g for 15 min at 4°C again, the resulting pellet was collected, dried with a vacuum freeze dryer, and suspended in cold phenol extraction buffer, to which an equal volume of cold phenol extraction buffer was added. The mixture was maintained at 4°C for 30 min and then centrifuged at 5000 × g for 30 min, after which the upper phenolic phase was collected and an equal volume of phenol extraction buffer was added. Thereafter, five volumes of cold 0.1 M ammonium acetate in methanol was added to the collected phenol phase, and the mixture was stored at −20°C for 1-h incubation and then centrifuged for 30 min at 5000 × g at 4°C. Then two volumes (based on the volume of the last collected phenolic phase) of ice-cold methanol were used to wash the pellet, which was then mixed gently and centrifuged for 30 min at 5000 × g at 4°C; this step was then repeated two more times using acetone instead of methanol, and the sample was centrifuged for 30 min at 5000 × g at 4°C. The pellet was then dried, dissolved in lysis solution at 30°C for a 1-h incubation, and centrifuged at 15,000 × g for 15 min at room temperature. The supernatant was collected and centrifuged again. The resulting supernatant was the extracted protein solution. The concentrations of the protein extracts were determined using the bicinchoninic acid (BCA) method (Smith et al. 1985) and stored at −80°C before the subsequent iTRAQ analysis was conducted.

SDS-PAGE electrophoresis

For each replicate and treatment, 10-μg samples were subjected to electrophoresis in a 12% SDS-PAGE gel. The gel was visualized using Coomassie brilliant blue (CBB) stain according to Candiano’s protocol (Giovanni et al. 2004). The gels were fixed for 2 h, stained for 12 h, and washed prior to the spots of interest being excised. The stained gel was scanned using an Image Scanner (GE Healthcare, USA) at a resolution of 300 dots per inch.

Protein reduction, cysteine blocks, and digests

For each spot of interest identified by SDS-PAGE, five volumes of cold acetone were added to 100 μg of each protein sample, incubated at −20°C for 1 h, and centrifuged at 12,000 rpm for 15 min at 4°C, and the resulting pellet was collected and dried with a vacuum freeze dryer. To each pellet, 50 μL of dissolution buffer and 4 μL of reducing reagent were added. The solution was incubated at 60°C for 1 h, and 2 μL of cysteine-blocking reagents was added, followed by a 10-min incubation at room temperature. The protein solution was then cleaned using a 10 kDa ultrafiltration tube by centrifugation at 12,000 rpm for 20 min, and then 100 μL of dissolution buffer was added, followed by centrifugation at 12,000 rpm for 15 min; this step consisting of adding dissolution buffer and centrifugation was repeated three times. The column was then placed in a new tube, to which 50 μL of sequencing-grade trypsin (50 ng/μL) was added, and incubated at 37°C for 12 h. The samples were then centrifuged at 12,000 rpm for 20 min, and the peptide was collected. The filter columns were then transferred to new collection tubes and 50 μL of dissolution buffer was added, after which the two filter solutions were combined.

Protein labeling and MS analysis

Each vial of iTRAQ reagent was brought to room temperature, with centrifugal iTRAQ reagent at the bottom of each reagent tube. Then, 150 μL of ethanol was added to each room-temperature iTRAQ reagent vial, and 50 μL of each sample (containing 100 μg of peptide) was added to new individual tubes, to which iTRAQ reagent was added, followed by incubation at room temperature for 2 h, after which 100 μL of water was added to halt the labeling reaction. The cold-treated sample replicates were labeled with iTRAQ tags 115 and 116, while the untreated samples were labeled with tags 113 and 114. After labeling, the samples were mixed and centrifuged, and the supernatant was collected. Finally, the sample was dried in a vacuum freeze dryer for iTRAQ analysis.
2D-LC-MS/MS analysis

Reverse-phase high-performance liquid chromatography

Dried samples were re-suspended with 100 μL of buffer A. Reverse-phase high-performance liquid chromatography (RPLC) was conducted on the Agilent 1200 HPLC System (Agilent, Santa Clara, CA, USA) using an Agilent HPLC column (narrow-bore 2.1 × 150 mm, 5 μm) with detection at 215 and 280 nm. Separation was performed at 0.3 mL/min. The first segment was collected between 0 and 5 min, and each subsequent segment was collected within 4.5 min intervals between 6 and 45 min, with the last segment collected between 46 and 50 min, yielding a total of 10 segments. Each segment was dried in a vacuum freeze dryer before LC-MS/MS analysis.

RPLC-MS/MS analysis

A. aphylla samples were re-suspended with Nano-RPLC buffer A. Online Nano-RPLC was conducted on the Eksigent nanoLC-Ultra™ 2D System (AB SCIEX, Framingham, MA, USA). The samples were loaded onto a C18 nanoLC trap column (100 μm × 3 cm, C18, 3 μm, 150 Å) and washed with Nano-RPLC Buffer A (0.1% formic acid, 2% acetonitrile) at 2 μL/min for 10 min. An elution gradient of 5–35% acetonitrile (0.1% formic acid) over the course of a 70 min gradient was used on an analytical ChromXP C18 column (75 μm × 15 cm, C18, 3 μm 120 Å) with a spray tip. Data acquisition was performed with a Triple TOF 5600 System (AB SCIEX) with a Nanospray III source (AB SCIEX) and a pulled quartz tip as the emitter (New Objectives, Woburn, MA, USA). Data were acquired using an ion spray voltage of 2.5 kV, curtain gas at a pressure of 30 PSI, nebulizer gas at 5 PSI, and an interface heater temperature of 150°C. For information-dependent acquisition, survey scans were acquired in 250 ms, and as many as 35 product ion scans were collected if they exceeded a threshold of 150 counts per second with a 2+ to 5+ charge-state. The total cycle time was fixed at 2.5 s. A rolling collision energy setting was applied to all precursor ions for collision-induced dissociation. Dynamic exclusion was set for half of the peak width (18 s), and the precursor was then refreshed off the exclusion list.

Protein identification and quantification

Data were processed with Protein Pilot Software v. 5.0 (AB SCIEX) against a Haloxylon ammodendron database using the Paragon algorithm (Shilov et al. 2007). The experimental data from tandem mass spectrometry (MS) were used to match the theoretical data to identify proteins. The analysis was conducted using the National Center for Biotechnology Information (NCBI) FASTA database and UniProt protein database. Differentially accumulated proteins were classified according to GO (http://www.geneontology.org) and Kyoto Encyclopedia of Genes and Genomes (KEGG; http://www.genome.jp/kegg/ or http://www.kegg.jp/) categories to infer molecular functions, cellular components, biological processes, and significant pathways involved in response to cold stress.

Enzyme activity assays

The activities of superoxide dismutase (SOD) and peroxidase (POD) were assayed according to the procedure described by Wang and Huang (2015). Malate dehydrogenase (MDH) and glutathione peroxidase (GSH-Px) were measured according to the methods detailed by Zhu (1990) and Huang and Wu (1999), respectively.

qRT-PCR analysis

Total RNA was extracted from cold-treated and control A. aphylla seedlings using Trizol reagent (Takara, Shiga, Japan), and cDNA was reverse-transcribed using the TransStart Tip Green qPCR SuperMix (TransGen Biotech, Beijing, China). Gene-specific primers used for qRT-PCR, which were designed using primer3 according to the nucleic acid sequences obtained from the Haloxylon ammodendron database. The PCR reaction was carried out in a 10-μL reaction volume containing 5 μL of TransStart Tip Green qPCR SuperMix (TransGen Biotech), 1 μL of template, 0.25 μL of forward primer, 0.25 μL of reverse primer, and 3.5 μL of ddH2O with thermal cycling conditions of 94°C for 30 s, followed by 40 cycles of 94°C for 5 s, 60°C for 30 s, and 20°C for 10 s.

Results

Primary data analysis and protein identification

Mascot identified a total of 525,160 spectra generated by the iTRAQ experiment. Of these, 138,117 spectra matched known spectra, with 28,341 unique peptides, and 4145 proteins on the basis of the applied >0.05 (10%) cutoff (Figure 1). The distribution of the number of peptides defining each protein is shown in Figure 2. More than 75% of the proteins included at least two peptides. GO annotation and KEGG analyses were carried out to identify the roles of the differentially accumulated proteins, and the results are shown in Figure 3.
Identification of differentially accumulated protein species by iTRAQ

Protein species were selected according to two criteria: \(\geq 1.5 \times \) fold change and \(p \)-value < 0.05. Based on these criteria, 211 differentially accumulated proteins were identified in *A. aphylla* seedlings, 109 of which were up-accumulated and 102 were down-accumulated under cold-stress conditions (Table 1). The main biological functions for the 211 differentially proteins were carbohydrate and energy metabolism, protein metabolic process, stress response, transcription-related, amino acid metabolism, signal transduction, and membrane and transport. Among them, some proteins, such as fructose-bisphosphate protein, glyceraldehyde-3-phosphate dehydrogenase, pyruvate kinase, citrate synthase, MDH, glucose dehydrogenase (GDH), photosynthesis protein, adenylate kinase (AK), ribosomal protein, elongation factor, heat shock protein, enzyme scavenging system proteins, TOPLESS protein, acetolactate synthase, glycine decarboxylase, membrane protein, channel protein, and transporter protein, were determined to be involved in these biological processes (these proteins are further highlighted in the section ‘Discussion’). In addition, we found 26 proteins involved in unknown biological processes. Detailed information is shown in Figure 4.

Analysis of differentially expressed enzymes

Reactive oxygen species (ROS)-scavenging antioxidant mechanisms play an important role in maintaining suitable concentrations of ROS (Hasanuzzaman et al. 2012). To validate some of the DEPs, four enzymes involved in ROS scavenging and carbohydrate metabolism were selected for enzymatic activity analysis. The activities of SOD, MDH, and GSH-Px enzymes were increased by cold stress compared with the control treatment, though POD activity was decreased in the cold-stress treatment (Figure 5). These data corresponded with consistent trends in the iTRAQ results.

Transcriptional expression analysis by qRT-PCR

In order to elucidate the correlation in expression level between the mRNA and protein species, the expression levels...
of the transcripts corresponding to nine proteins were validated by qRT-PCR (Figure 6). The expression of eight transcripts was consistent with the abundance of the corresponding protein species including photosystem proteins, peroxiredoxin Q, and some ribosomal proteins (RPs). This indicated that the accumulation of these proteins is associated with mRNA transcript levels. However, the transcript expression assay for one of the proteins showed a trend that contrasted with the increased protein abundance, accordingly, this change in protein levels may have been caused by various posttranslational modifications such as glycosylation, protein phosphorylation, and ubiquitination under cold stress, rather than increased transcription.

Discussion

Carbohydrate and energy metabolism

Cold stress has a substantial effect on the abundance of proteins involved in carbohydrate and energy metabolism processes such as glycolysis, the TCA cycle, and the pentose phosphate pathway (PPP) in *A. aphylla* seedlings. In our study, the abundance of fructose-bisphosphate proteins (FBPs) was increased under cold stress. FBP aldolase is a key enzyme in glycolytic metabolism, and it catalyzes 1,6-fructose diphosphate into dihydroxyacetone phosphate and glyceraldehyde 3-phosphate. Excessive expression of FBP has been reported as a defense against abiotic stresses in *Arabidopsis* (Lu et al. 2012). Glyceraldehyde-3-phosphate dehydrogenase catalyzes glyceraldehyde 3-phosphate to 1,3-diphosphoglycerate. Pyruvate kinase catalyzes phosphoenolpyruvate and ADP into ATP and pyruvic acid. Glyceraldehyde-3-phosphate dehydrogenase and pyruvate kinase play important roles in the glycolysis pathways, and both of these two proteins were up-accumulated under cold stress. In other desert plants, namely *Populus euphratica* and *Ammopiptanthus mongolicus*, researchers also found that glyceraldehyde-3-phosphate dehydrogenase was up-accumulated, thus likely altering cold-stress resistant (Yue et al. 2009; Zhou et al. 2016), in agreement with our research.

Citrate synthase is an enzyme that controls the TCA cycle, in which it is the rate-limiting factor. In our results, the abundance of citrate synthase was down-accumulated under cold stress, which was consistent with a previous report on *Capsicum annuum* (Sánchez-Be et al. 2012). MDH catalyzes malic acid to oxaloacetate, after which oxaloacetate enters the TCA cycle, the abundance of this enzyme increased under cold stress in our data. Measured levels of MDH activity were also consistent with this result, indicating that the TCA cycle was inhibited in *A. aphylla* seedlings after cold-stress treatment.

Three proteins related to PPP were identified by the iTRAQ technique in our results: GDH, UTP-glucose-1-phosphate uridylyltransferase, and 6-phosphogluconolactonase. GDH is a key regulatory enzyme of the PPP, and its accumulation was enhanced under cold stress. However, both UTP-glucose-1-phosphate uridylyltransferase and 6-phosphogluconolactonase, which are involved in the PPP, were down-accumulated in our study. Differential protein accumulation of proteins involved in this metabolic pathway suggested that complicated regulation mechanisms respond to cold stress in *A. aphylla* seedlings.

Cold can also affect different aspects of photosynthesis significantly. Our proteomics results indicated that most of the proteins involved in photosynthesis were down-accumulated under cold stress. The down-accumulated proteins included the chloroplast chlorophyll A–B binding protein, photosystem II CP43 chlorophyll apoprotein, photosystem I protein D1, photosystem I P700 apoprotein A2 chain f, and the crystal structure of plant photosystem protein. Among these proteins, photosystem I P700 apoprotein A2 and photosystem II CP43 chlorophyll apoprotein reflected the overall trend observed in the qRT-PCR experiment. Chloroplast chlorophyll A–B binding protein was also differentially expressed in *Populus euphratica* (Yue et al. 2009). Similarly, an up-accumulated protein was identified in our data, namely oxygen-evolving enhancer protein I. This result disagreed with a previously conducted expression profile of this protein in maize (Wang et al. 2016). Accordingly, *A. aphylla* seedlings may physiologically adapt to cold stress, in part, through changes in photosynthesis.
Table 1. Differential protein species between chilling stress and control conditions in A. thaliana seedlings by iTRAQ.

Accession no.	% Cov	Peptides (95%)	Protein species name	Species	Foldchange	Up/down	
g	2265358407	56.7	20	Chloroplast chlorophyll A--B binding protein	Gossypium hirsutum	0.6161	↓
g	350538149	24.9	10	Chloroplast sedoheptulose-1,7-bisphosphatase	Solanum lycopersicum	0.6627	↓
g	910354439	33.6	26	Photosystem II CP43 chlorophyll apoprotein (chloroplast)	Haloxylon persicum	0.6049	↓
g	91208882	23	11	Photosystem II protein D1 (chloroplast)	Gossypium hirsutum	0.5868	↓
g	910354442	19.8	13	Photosystem I F700 apoprotein A2 (chloroplast)	Haloxylon persicum	0.6332	↓
g	829581677	31.8	7	Chain I, Crystal Structure Of Plant Photosystem I-hci Super-complex At 2.8 Angstrom Resolution		0.5961	↓
g	910354501	32.4	8	NADH-plastoquinone oxidoreductase subunit 7 (chloroplast)	Haloxylon persicum	0.6397	↓
g	700192360	41.9	16	Oxygen-evolving enhancer protein 1	Cucumis sativus	1.5090	↑
g	78191470	18.9	7	Fructokinase-like	Solanum tuberosum	0.4929	↓
g	533055962	24.9	5	Fructose-1,6-bisphosphatase	Solanum lycopersicum	0.1416	↓
g	460375513	27.9	17	Predicted: fructose-bisphosphate aldolase 1, chloroplastic-like	Solanum lycopersicum	1.5044	↑
g	460408038	28.2	11	Predicted: fructose-bisphosphate aldolase cytoplasmic isozyme-like	Solanum lycopersicum	2.6314	↑
g	831360236	16.4	2	Probable 6-phosphogluconolactonase 4, chloroplastic	Solanum lycopersicum	0.6450	↓
g	460409628	30.6	13	Predicted: UTP--glucose-1-phosphate uridylyltransferase isoform X1	Solanum lycopersicum	0.6437	↓
g	211906438	50.5	27	UDP-D-glucose dehydrogenase	Gossypium hirsutum	4.9353	↑
g	723754550	28.5	3	Predicted: NADH-ubiquinone oxidoreductase chain A	Solanum lycopersicum	2.6599	↓
g	743943692	20	9	Predicted: ATP synthase subunit gamma, mitochondrial-like	Populus euphratica	2.1312	↑
g	460366958	24.3	7	Predicted: citrate synthase, mitochondrial	Solanum lycopersicum	0.3959	↓
g	460380474	34.0	12	Predicted: malate dehydrogenase, chloroplastic-like	Solanum lycopersicum	1.5140	↑
g	460381200	32.8	6	Predicted: adenylate kinase 4	Solanum lycopersicum	1.7093	↓
g	460387035	28.1	5	Predicted: adenylate kinase 4	Solanum lycopersicum	3.294	↓
g	460402152	15.4	6	Predicted: pyruvate kinase, cytosolic isozyme	Solanum lycopersicum	1.5140	↑
g	806777632	54.4	30	Glycerolphosphate-3-phosphate dehydrogenase	Solanum lycopersicum	4.9353	↑
g	723658980	20.3	27	Predicted: pyruvate, phosphate diphosphatase	Solanum lycopersicum	0.6437	↓
g	778682516	13.7	7	Predicted: alanine aminotransferase 2-like isoform X2	Gossypium arboreum	1.5707	↑
g	728398895	14.8	7	Formate--tetrahydrofolate ligase	Solanum lycopersicum	0.3675	↓
g	460391381	54.9	17	Predicted: UDP-4-apiose/UDP-4-xylose synthase 2-like	Spinacia oleracea	1.7888	↓
g	778690463	15.9	7	Predicted: inositol-3-phosphate synthase-like	Spinacia oleracea	1.6143	↓
g	902222029	27	20	Hypothetical protein SOVF_064910	Spinacia oleracea	1.8624	↑
g	902217466	42.9	20	Hypothetical protein SOVF_07450	Spinacia oleracea	2.0868	↑
g	902173153	83.4	43	Hypothetical protein SOVF_16451	Spinacia oleracea	2.3710	↑
g	902168680	25.5	9	Hypothetical protein SOVF_086270	Spinacia oleracea	2.3710	↑
g	902226097	33.5	8	Hypothetical protein SOVF_053890	Spinacia oleracea	1.9612	↑
g	902208123	57.6	11	Hypothetical protein SOVF_094420	Spinacia oleracea	2.7722	↑
g	902207176	20.2	8	Hypothetical protein SOVF_111330	Spinacia oleracea	0.5582	↓
g	902166152	21.1	5	Hypothetical protein SOVF_174110	Spinacia oleracea	1.9808	↑
g	700205640	40.1	22	Hypothetical protein Csa_2G009470	Spinacia oleracea	0.6049	↓
g	902198413	28.6	13	Hypothetical protein SOVF_114690	Spinacia oleracea	1.8010	↑
g	902234721	18.5	8	Hypothetical protein SOVF_023640	Spinacia oleracea	0.5488	↓
g	902194849	26.3	8	Hypothetical protein SOVF_123870	Spinacia oleracea	1.8454	↑
g	902211363	17.2	3	Hypothetical protein SOVF_086270	Spinacia oleracea	1.7722	↓
g	902166551	19.2	3	Hypothetical protein SOVF_173630	Spinacia oleracea	1.5621	↓
g	902238389	8.3	5	Hypothetical protein SOVF_007440	Spinacia oleracea	0.5011	↓
g	902231300	12.6	3	Hypothetical protein SOVF_036130	Spinacia oleracea	0.5358	↓
g	902218113	9.3	7	Hypothetical protein SOVF_05180	Spinacia oleracea	1.5903	↓
g	902235043	28	9	Hypothetical protein SOVF_022510	Spinacia oleracea	0.5463	↓
g	902165738	12.8	3	Hypothetical protein SOVF_174610	Spinacia oleracea	0.5500	↓
g	700199184	27.9	8	Hypothetical protein Csa_4G07350	Cucumis sativus	0.6271	↓
g	700196117	55.7	84	Hypothetical protein Csa_5G14500	Cucumis sativus	1.7332	↑
Accession	Fold Change	ORF ID	Description	Species	Description	Fold Change	
-----------	-------------	--------	-------------	---------	-------------	-------------	
gi	902167268	14.5	2	Hypothetical protein SOVF_172700	Spinacia oleracea	0.5262	
gi	902153533	9.7	6	Hypothetical protein SOVF_187820	Spinacia oleracea	1.9776	
gi	902190453	10.6	2	Hypothetical protein SOVF_133530	Spinacia oleracea	1.5264	
gi	90223644	8.2	3	Hypothetical protein SOVF_014560	Spinacia oleracea	0.2360	
gi	902166108	5.6	2	Hypothetical protein SOVF_174150	Spinacia oleracea	0.4368	
gi	902239307	13	4	Hypothetical protein SOVF_005810	Spinacia oleracea	0.6687	
gi	700187952	22	8	Hypothetical protein Csa_7G007530	Cucumis sativus	0.3001	
gi	902184516	67.6	37	Hypothetical protein SOVF_145640	Spinacia oleracea	0.6646	
gi	902157669	45.4	12	Hypothetical protein SOVF_183590	Spinacia oleracea	0.3844	
gi	902239307	13	4	Hypothetical protein SOVF_005810	Spinacia oleracea	0.6687	
gi	902210014	67.9	65	Hypothetical protein SOVF_090250	Spinacia oleracea	0.6232	
gi	902190671	15.7	7	Hypothetical protein SOVF_133140	Spinacia oleracea	1.5264	
gi	902211963	13.1	3	Hypothetical protein SOVF_085120	Spinacia oleracea	3.9962	
gi	910354482	36.7	8	Ribosomal protein S3 (chloroplast)	Haloxylon persicum	0.5710	
gi	910354445	44.8	7	Ribosomal protein S4 (chloroplast)	Haloxylon persicum	0.6774	
gi	910354439	44.9	5	Ribosomal protein S2 (chloroplast)	Haloxylon persicum	0.4654	
gi	7366037	40.9	3	Ribosomal protein S16 (chloroplast)	Spinacia oleracea	0.4818	
gi	72863057	16.4	5	30S ribosomal 1, chloroplastic	Gossypium arboreum	1.7417	
gi	460413795	31.7	2	PREDICTED: 40S ribosomal protein S19-3	Solamun lycopersicum	0.3637	
gi	525314400	39.1	10	Phosphate carrier protein, mitochondrial-like	Spinacia oleracea	0.4241	
gi	460411113	46.6	58	PREDICTED: heat shock cognate 70 kDa protein	Solamun lycopersicum	1.7768	
gi	743929745	17.4	2	PREDICTED: 10 kDa chaperonin-like	Populus euphratica	0.6399	
gi	460410622	35.5	4	PREDICTED: SKP-like protein 1A	Solamun lycopersicum	0.3670	
gi	460379629	6.1	3	PREDICTED: fimbrin-1	Solamun lycopersicum	2.1824	
gi	460379690	20.9	3	PREDICTED: chaperonin CPN60-like 2, mitochondrial	Spinacia oleracea	0.4795	
gi	778714609	30.5	4	PREDICTED: outer envelope pore protein 16-2, chloroplastic	Cucumis sativus	0.5127	
gi	778717063	6.8	2	PREDICTED: dnaJ protein PSBPK homolog isoform X2	Cucumis sativus	1.8073	
gi	460359617	19.9	15	PREDICTED: 26S proteasome non-ATPase regulatory subunit 2 homolog A	Solamun lycopersicum	0.6516	
gi	460372323	17.6	7	PREDICTED: probable cytosolic oligopeptidase A	Solamun lycopersicum	1.5076	
gi	723724297	20.7	24	PREDICTED: puromycin-sensitive aminopeptidase isoform X2	Suaeda glauca	1.5293	
gi	756179878	47.9	11	Chloroplast M-type thiorodoxin	Suaeda glauca	1.5293	
gi	778657028	10.9	3	PREDICTED: H/ACA ribonucleoprotein complex subunit 4	Cucumis sativus	1.8074	
gi	74486738	58.6	61	Translation elongation factor 1A-6	Gossypium hirsutum	1.6367	
gi	460395616	52.5	64	PREDICTED: elongation factor 2	Solanum lycopersicum	0.4165	
gi	460383656	8.2	3	PREDICTED: dipeptidyl-peptidase 5-like	Solamun lycopersicum	0.5155	
gi	902237664	68.2	54	Hypothetical protein SOVF_011500	Spinacia oleracea	1.6078	
gi	902218823	28.1	15	Hypothetical protein SOVF_070690	Spinacia oleracea	1.6074	
gi	700197689	60.7	14	Hypothetical protein Csa_4G030610	Cucumis sativus	2.7070	
gi	902206403	52.2	17	Hypothetical protein SOVF_097960	Spinacia oleracea	1.6722	
gi	902221763	49.6	11	Hypothetical protein SOVF_065570	Spinacia oleracea	1.5391	
gi	902163232	45.2	18	Hypothetical protein SOVF_177720	Spinacia oleracea	1.5339	
gi	902231423	26.4	15	Hypothetical protein SOVF_035670	Spinacia oleracea	2.0865	
gi	902217054	33.2	5	Hypothetical protein SOVF_075470	Spinacia oleracea	1.8125	

(Continued)
Accession no.	% Cov	Peptides (95%)	Protein species name	Species	Foldchange	Up/down
gi	902207733	8.9	4	Hypothetical protein SOVF_095160	Spinacia oleracea	1.8806↑
gi	700188118	35.2	4	Hypothetical protein Csa_7G025720	Cucumis sativus	2.4145↑
gi	902160928	51.6	4	Hypothetical protein SOVF_180190	Spinacia oleracea	2.0238↑
gi	700198902	23.8	9	Hypothetical protein Csa_4G279880	Cucumis sativus	1.5371↑
gi	902198669	34.7	9	Hypothetical protein SOVF_114060	Spinacia oleracea	1.6494↑
gi	902210705	43.3	4	Hypothetical protein SOVF_088520	Spinacia oleracea	1.7384↑
gi	902218457	17.9	9	Hypothetical protein SOVF_074530	Spinacia oleracea	0.5710↓
gi	902188498	17.1	2	Hypothetical protein SOVF_137230	Spinacia oleracea	1.6494↑
gi	902178639	9.5	2	Hypothetical protein SOVF_155830	Spinacia oleracea	1.6346↑
gi	902219714	9.4	2	Hypothetical protein SOVF_070750	Spinacia oleracea	0.4679↓
gi	902233056	39.9	5	Hypothetical protein SOVF_026510	Spinacia oleracea	2.5890↑
gi	902186125	15.9	7	Hypothetical protein SOVF_142670	Spinacia oleracea	0.5169↓
gi	902153461	6.2	2	Hypothetical protein SOVF_020220	Spinacia oleracea	1.5826↑
gi	902235600	22.8	8	Hypothetical protein Csa_3G02720	Cucumis sativus	1.7376↑
gi	902205858	20.2	8	Hypothetical protein Csa_2G03320	Cucumis sativus	0.5763↓
gi	902194727	27.2	14	Hypothetical protein SOVF_124230, partial	Spinacia oleracea	0.3505↓
Stress response						
gi	363818265	42.7	13	Choline monooxygenase	Haloxylon persicum	1.7628↑
gi	378389258	45	19	Peroxisoradin Q	Haloxylon ammodendron	0.6320↓
gi	2832921	26.8	11	Stromal ascorbate peroxidase	Spinacia oleracea	0.5458↓
gi	9023174	33.6	3	Putative cytosolic copper/zinc superoxide dismutase	Spinacia oleracea	2.9112↑
gi	460403245	18	10	PREDICTED: 3-keaoyl-CoA thiolase 2, peroxisomal	Spinacia oleracea	2.2455↑
gi	946577364	15.4	5	Phosphoethanolamine N-methyltransferase	Spinacia oleracea	1.5452↑
gi	90309950	13.0	5	Putative Lysyl-tRNA synthetase	Spinacia oleracea	0.5348↓
gi	970414516	26.6	8	V-type proton ATPase subunit E	Spinacia oleracea	0.4779↓
gi	778683189	18.7	4	PREDICTED: acyl-coenzyme A oxidase 4, peroxisomal isoform X2	Spinacia oleracea	0.5169↓
gi	4004004	33.8	11	RecName: Full = Nucleoside diphosphate kinase 1; AltName: Full = NDKI; Short = NDPK I	Spinacia oleracea	1.6424↑
gi	823683802	38.2	18	S-adenosylylmethionine synthase	Spinacia oleracea	2.1122↑
gi	460369292	29.2	8	PREDICTED: ankyrin repeat domain-containing protein 2	Spinacia oleracea	1.6567↓
gi	756179888	16.3	3	Chloroplast ATP synthase delta	Spinacia oleracea	2.2545↑
gi	902117496	37.5	25	Hypothetical protein SOVF_204310	Spinacia oleracea	0.6232↓
gi	902153503	22.5	7	Hypothetical protein SOVF_187860	Spinacia oleracea	0.6315↓
gi	902190448	42	16	Hypothetical protein SOVF_133480	Spinacia oleracea	2.0035↑
gi	902228007	57.1	15	Hypothetical protein SOVF_047880	Spinacia oleracea	0.6533↓
gi	902235600	17.3	3	Hypothetical protein SOVF_020220	Spinacia oleracea	3.5609↑
gi	902126118	10.9	4	Hypothetical protein SOVF_027990	Spinacia oleracea	1.7124↑
gi	902233438	49.6	9	Hypothetical protein SOVF_028130	Spinacia oleracea	0.5900↓
gi	902117209	12.9	3	Hypothetical protein SOVF_044400	Spinacia oleracea	0.5090↓
gi	902161299	21.1	8	Hypothetical protein SOVF_179880, partial	Spinacia oleracea	0.3716↓
gi	902243479	14.5	11	Hypothetical protein SOVF_058270	Spinacia oleracea	0.6538↓
Transcription-related						
gi	778689635	14.1	10	PREDICTED: protein TOPLESS	Spinacia oleracea	0.6422↓
gi	73708372	11.2	3	PREDICTED: AP-1 complex subunit mu-2-like	Spinacia oleracea	3.0510↑
gi	743938334	15.7	5	PREDICTED: probable nucleolar protein S-1	Spinacia oleracea	0.5725↓
gi	902223049	26.7	34	Hypothetical protein SOVF_069380	Spinacia oleracea	1.6063↓
gi	902234483	19.8	3	Hypothetical protein SOVF_025500	Spinacia oleracea	0.5348↓
gi	902197770	24.1	6	Hypothetical protein SOVF_071080	Spinacia oleracea	2.1805↑
gi	902233479	12.2	2	Hypothetical protein SOVF_028180	Spinacia oleracea	0.6215↓
gi	902205013	4.1	3	Hypothetical protein SOVF_101730	Spinacia oleracea	0.6470↓
gi	Accession	Change	Fold Change	Description
gi	902217903	15.5	10	Hypothetical protein SOVF_075510 Spinacia oleracea 1.6525
gi	778076826	22	6	PREDICTED: glutamine synthetase leaf isozyme, chloroplastic Cucumis sativus 0.4869
gi	460377776	10	3	PREDICTED: acetylactate synthase 2, chloroplastic Solanum lycopersicum 1.5253
gi	987996456	54.1	54	S-methylthiohydroxypropionylglutamate--homocysteine methyltransferase Solanum lycopersicum 0.6030
gi	460365154	18.2	13	PREDICTED: glycine dehydrogenase (decarboxylating), mitochondrial Spinacia oleracea 0.6990
gi	902086777	27.2	4	Hypothetical protein SOVF_093740 Spinacia oleracea 0.6497
gi	902196828	63.9	58	PREDICTED: acetolactate synthase 2, chloroplastic Solanum lycopersicum 0.5654
gi	902335977	34.2	19	PREDICTED: 5-methyltetrahydropteroyltriglutamate--homocysteine methyltransferase Spinacia oleracea 0.6109
gi	902206670	19	5	Hypothetical protein SOVF_097520 Spinacia oleracea 0.6147
gi	778658964	13.8	2	PREDICTED: mitogen-activated protein kinase homolog NTF6 Cucumis sativus 2.1779
gi	902131771	38.2	27	Hypothetical protein SOVF_201000 Spinacia oleracea 2.0739
gi	902231507	44.3	8	PREDICTED: membrane steroid-binding protein 2-like Solanum lycopersicum 0.1022
gi	902165459	44.9	7	Hypothetical protein SOVF_174910 Spinacia oleracea 1.8507
gi	902231306	54.7	31	Hypothetical protein SOVF_036190 Spinacia oleracea 1.5205
gi	902209880	11.3	2	Hypothetical protein SOVF_090490 Spinacia oleracea 0.6636
gi	559148734	19.9	8	Mitochondrial dicarboxylate transporter Suaeda glauca 1.6533
gi	743925462	4	4	PREDICTED: probable manganese-transporting ATPase PDR2 Populus euphratica 1.6692
gi	460377193	2022	5	PREDICTED: membrane steroid-binding protein 2-like Solanum lycopersicum 0.1022
gi	700206882	17	4	Porin/voltage-dependent anion-selective channel protein Cucumis sativus 1.7059
gi	902189125	10.7	8	Hypothetical protein SOVF_136540 Spinacia oleracea 1.6223
gi	902221471	3.85	3	Hypothetical protein SOVF_063630 Spinacia oleracea 1.5831
gi	902208852	35.5	8	Hypothetical protein SOVF_113000 Spinacia oleracea 1.6194
gi	700192185	59.6	8	Hypothetical protein Csa_6G309960 Cucumis sativus 2.5402
gi	902086884	8.2	3	Hypothetical protein SOVF_093240 Spinacia oleracea 0.5742
gi	700193414	20.5	2	Hypothetical protein Csa_6G495720 Cucumis sativus 0.6549
gi	902225303	39.6	13	Hypothetical protein SOVF_056850 Spinacia oleracea 1.6194
gi	723713849	8.7	2	PREDICTED: uncharacterized protein LOC101254708 Solanum lycopersicum 0.5970
gi	902159441	16.2	10	Hypothetical protein SOVF_182050 isoform B Spinacia oleracea 0.6050
gi	902170106	40.1	14	Hypothetical protein SOVF_168790 Spinacia oleracea 1.5163
gi	902190159	61.7	46	Hypothetical protein SOVF_134140 Spinacia oleracea 1.6101
gi	902207477	18.1	10	Hypothetical protein SOVF_095650 Spinacia oleracea 0.6615
gi	902202643	50.6	41	Hypothetical protein SOVF_108460 Spinacia oleracea 1.6532
gi	902239096	38.3	9	Hypothetical protein SOVF_023050 Spinacia oleracea 0.6372
gi	902162950	44.3	6	Hypothetical protein SOVF_179690 isoform B Spinacia oleracea 0.6148
gi	902214849	13.2	4	Hypothetical protein SOVF_056100 Spinacia oleracea 2.1508
gi	902163135	10.4	4	Hypothetical protein SOVF_177920 isoform B Spinacia oleracea 0.5044
gi	902229215	64.3	18	Hypothetical protein SOVF_043360 isoform B Spinacia oleracea 2.0668
gi	902191568	20.1	7	Hypothetical protein SOVF_131100 Spinacia oleracea 0.6318
gi	902191383	13.7	9	Hypothetical protein SOVF_131100 isoform B Spinacia oleracea 0.5253
gi	902224967	9.8	5	Hypothetical protein SOVF_056920 isoform B, partial Spinacia oleracea 2.0251
gi	700208755	49.5	15	Hypothetical protein Csa_1G024830 Cucumis sativus 0.6292
gi	902212732	34.8	15	Hypothetical protein SOVF_083420 isoform B Spinacia oleracea 1.5671
gi	902183216	18.2	6	Hypothetical protein SOVF_147710 isoform B Spinacia oleracea 0.5439
gi	902180678	44.1	6	Hypothetical protein SOVF_134730 Spinacia oleracea 2.8363

(Continued)
AK plays a key role in maintaining the balance of cell energy. As a protein kinase, AK catalyzes AMP to ADP while an organism is at a low energy level. ADP is oxidized into ATP, which is the direct supplier of energy in organisms through oxidative phosphorylation, thereby ensuring the normal vital activities of organisms (Lai et al. 2001). As such, the accumulation of AK may affect the level of ADP or ATP. Two AK proteins in our results were up-accumulated, suggesting that *A. aphylla* seedlings resist cold stress by storing additional energy.

Most proteins related to catabolism were also up-accumulated, whereas most of the photosynthesis proteins were down-accumulated under cold stress, which is consistent with a previous report on *Chorispora bungeana* (Sun 2011). This may be a consequence of cold affecting the activity of various photosynthetic enzymes in the chloroplast, thus resulting in the degradation of many important photosynthetic proteins. In order to survive, plants need more energy to sustain their life activities through processes such as catabolism and in this way to adapt cold stress.

Protein metabolism

Proteins are involved in the regulation of various metabolic activities in organisms, including the processes of translation, digestion, folding, and degradation in plants (Reinbothe et al. 2010). We identified several proteins that are involved in protein metabolism using the iTRAQ data. We found eight DEPs related to protein synthesis, including six RPs and two elongation factors. RPs are essential for protein synthesis and have been revealed to play important roles in metabolism, cell division, and growth (Wang 2013). In our study, the abundance of five RPs decreased, while one increased. Among the RPs, the qRT-PCR validation results of ribosomal protein S2, ribosomal protein S3, and ribosomal protein S4 were consistent with the protein accumulation results. Several relevant studies have linked abundances of RPs to abiotic stress level. One previous study reported that some ribosomal protein expression levels decreased while other specific ribosomal components increased (Laura et al. 2011). Cheng et al. (2016) also showed some RPs related to protein processing were up- or down-accumulated under abiotic stress in two hemp varieties. Additionally, we found that the abundance of translation elongation factor 1A-6 was up-accumulated under cold stress. This elongation factor is an organelle protein that plays a central role in the elongation phase of protein synthesis. Conversely, the abundance of elongation factor 2 was down-accumulated under cold stress, indicating that the expression levels of different elongation factors respond differently to cold stress.

Heat shock proteins (HSPs) are ubiquitous protective proteins in plants. HSPs mainly act as a molecular chaperone to prevent protein denaturation and repair denatured proteins through binding with target proteins, which maintains the stability of plant internal environments. HSPs play a key role in plant development and stress-resistance processes (Li et al. 2016). In recent years, HSPs have been shown to increase dramatically in expression level under high temperatures, drought, peroxidation, and heavy metal stress (Wang et al. 2004). Under cold stress, the abundance of HSP70 was up-accumulated. Other proteins related to protein folding were also identified as differentially accumulated in our study, including 10 kDa chaperonin-like, chaperonin CPN60-like, cytosolic oligopeptidase A, and dnaJ protein.

Accession no.	% Cov	Peptides	Protein species name	Species	Foldchange	Up/down	
gi	902237140	8	4	Hypothetical protein SOVF_012280	Spinacia oleracea	1.6657	↑
gi	902095864	11.3	2	Hypothetical protein SOVF_209300	Spinacia oleracea	0.3167	↓
gi	902238083	28.2	4	Hypothetical protein SOVF_108900	Spinacia oleracea	0.6008	↓
gi	902138670	7.8	4	Hypothetical protein SOVF_010000	Spinacia oleracea	3.9875	↑
gi	902202339	31	6	Hypothetical protein SOVF_109340	Spinacia oleracea	1.6051	↑
gi	902194434	10.8	2	Hypothetical protein SOVF_124660	Spinacia oleracea	1.6639	↑
gi	902175112	12.4	2	Hypothetical protein SOVF_161780	Spinacia oleracea	1.5317	↑
gi	902228854	12.4	3	Hypothetical protein SOVF_044600	Spinacia oleracea	0.5333	↓
P58IPK homolog isoform X2. Among these proteins, dnaJ is an accessory protein that enables ATP enzyme activity of HSP70, thereby regulating its activity, and it has a variety of functions, including folding new proteins, endocytosis, polypeptide transport via cell organelles, adjustments to stress responses, and the pre-degradation of protein targeting (Cyr et al. 1994; Krzysztof et al. 2008). Oligopeptidase may be involved in the degradation of proteasome-generated peptides with salicylic acid (Moreau et al. 2013). These two proteins were up-accumulated under cold stress, suggesting that the process of protein degradation increases with protein metabolism.

Stress response

Cold stress can cause excess production of ROS, which are important signal molecules in plants; however, ROS can also cause irreversible damage in plant cells (Asada 1999). In order to relieve cellular damage caused by ROS, plants have developed ROS-scavenging systems that include enzymatic scavenging systems, such as SOD, ascorbate peroxidase (APX), GSH-Px, SAM, and POD.

SOD is an enzyme that eliminates the harmful substances produced by metabolic processes. APX is considered to be a key enzyme in the detoxification of hydrogen peroxide in
chloroplasts (Asada 1999). Under cold stress, the abundance of Cu/Zn SOD was increased, and this observation is consistent with the response of maize seedlings to cold stress in a previous study (Wang et al. 2016). APX showed overexpression in stressful conditions such as drought, cold, high salt, and heavy metal stress, enabling plant chloroplasts and mitochondria to resist stress caused by oxidative damage (Neilson et al. 2011). However, our results showed that the abundance of APX decreased under cold stress. Therefore, A. aphylla appears to resist cold through the accumulation of other antioxidant enzymes other than APX.

GSH-Px catalyzes glutathione into oxidized glutathione, enables the toxic peroxide reduction of nontoxic hydroxyl compounds, and promotes the decomposition of H2O2, thus protecting the structure and function of the cell membrane from interference and damage caused by peroxide (Nathalie et al. 1998). The increased abundance of GSH-Px under cold stress suggested that the protein helps cope with cold stress in A. aphylla seedlings. The GSH-Px enzyme activity assay also confirmed this finding.

POD is involved in respiration, photosynthesis, and the oxidation of auxin, its activity changes continuously in the process of plant growth and development (Zhao et al. 2013). In the present study, the POD isozyme levels decreased in response to cold stress, but the abundance of 3-ketoacyl-CoA thiolase 2, peroxisomal was increased. In previous studies, the abundance of POD increased under abiotic stress in wheat, barley, and cucumber, but decreased in creeping bentgrass (Peng et al. 2009; Witzel et al. 2009; Du et al. 2010; Xu et al. 2010). This suggested that the expression mechanism of peroxidase in plants under cold stress is complex.

S-adenosylmethionine synthase catalyzes methionine and ATP into SAM, and S-adenosylmethionine synthase 2 is also a methyl donor. It participates in the synthesis of ethylene, polyamine, and plant hormones, substances that are closely linked to plant stress responses (Cui et al. 2005). The abundance of S-adenosylmethionine synthase 2 was increased under cold stress. Consistent with this observation, a previous study reported that S-adenosylmethionine synthase 2 was up-accumulated by cold stress in hybrid rice seedlings (Yan et al. 2006). Accordingly, the accumulation of antioxidant proteins may dissipate excess excitation energy and thus protect plant against cold stress.

Transcription and signal transduction
The regulation of transcription has great significance in the responses of plants to biotic and abiotic stresses (Jiang et al. 2007). The protein TOPLESS is a transcriptional corepressor that can repress the expression of root-promoting genes in the top half of the embryo to allow proper differentiation of the shoot pole during the transition stage of embryogenesis, it is also involved in the cellular synthesis of RNA on a template of DNA (Wei et al. 2015). A previous study has also shown that TOPLESS protein expression is related to transcription and stress response (Ke et al. 2015). In our data, TOPLESS was down-accumulated under cold stress. In Arabidopsis, the nucleolar protein is relevant to rRNA modification, which is vital in the response to abiotic stress.
Amino acid metabolism and membrane transport

As amino acids are the basic units of proteins and precursors for all protein production, their metabolism and availability have significant effects on plant growth, photosynthesis, and stress resistance (Yang et al. 2013). The protein 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase catalyzes the transfer of a methyl group from 5-methyltetrahydrofolate to homocysteine resulting in methionine formation in 1-methionine biosynthesis (Ravanel et al. 2004). Glycine dehydrogenase is involved in the glycine catabolic process and is also one of the key components of the glycine cleavage system (Palmieri et al. 2010). An abundance of glycine decarboxylase may generate more glutathione, a major antioxidant and free-radical scavenger in plants (Nocentini et al. 2003). Manganese-transporting ATPase PDR2 mediates manganese transport into the endoplasmic reticulum, which is vital in pollen and root development through its impact on protein secretion and transport processes (Wang et al. 2008). Mitochondrial dicarboxylate transporter is an important transport protein in the inner membrane of chloroplasts. It catalyzes the exchange of dicarboxylic acids like malate and succinate for inorganic phosphate (Picault et al. 2002). These two transport proteins showed higher abundance in response to cold stress. They were induced in Arabidopsis thaliana and Ananas comosus (Kinoshita et al. 2011; Mirvat et al. 2016). As such, A. aphylla seedlings appear to adapt to the cold environment, in part, through alterations in their amino acid metabolism and membrane transport proteins.

Conclusion

A proteomics analysis using iTRAQ technology was performed to analyze differential protein accumulation under cold stress in A. aphylla seedlings. A total of 211 differentially accumulated proteins were identified between control and cold stress conditions seedlings, among which, 109 proteins were up-accumulated and 102 were down-accumulated. On the basis of GO and KEGG pathway enrichment analysis, we concluded that most of the proteins related to cold-stress response were involved in carbohydrate and energy metabolism, suggesting that A. aphylla seedlings primarily adapted to cold conditions through accumulations of proteins involved in energy metabolism pathways. In addition, proteins in some biological processes related to cold stress also had an effect on cold resistance of A. aphylla seedlings, including protein translation, transcriptional regulation, amino acid metabolism, signal transduction, and membrane transport. We also used qRT-PCR technique to confirm positive relationships in expression level between the mRNA transcript and protein species. These results showed that accumulation of a diversity of proteins overall, i.e. in eight out of nine assayed proteins, was associated with mRNA expression levels; however, posttranslational modifications were the likely explanation for decreased accumulation of one of the assayed proteins. Generally speaking, our analysis of differentially accumulated proteins in seedlings under cold stress elucidates the molecular mechanisms involved in cold tolerance in A. aphylla and other species.

Availability of data and material

The datasets supporting the conclusions of this article are available in the Gene Ontology (http://www.geneontology.org), Kyoto Encyclopedia of Genes and Genomes (http://www.genome.jp/kegg/ or http://www.kegg.jp/) and Uniprot (http://www.uniprot.org/).

Acknowledgements

Mei Wang, Guangming Chu, and Tingting Wang conceived and designed the experiments; Tingting Wang and Chunxiu Ye performed the experiments; Tingting Wang and Guangming Chu analyzed the data; Others contributed reagents/materials/analysis tools; Tingting Wang and Chunxiu Ye wrote the paper.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

The research was supported by the Program of the National Natural Science Foundation of China (31570595, 3160194) and Scientific Research Foundation of Shihezi University for Advanced Talents (RCZX201518).

References

Asada K. 1999. The water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons, Annu Rev Plant Physiol Plant Mol Biol. 50:601–639. doi:10.1146/annurev.arplant.50.1.601.

Chen J. 2015. Study on differentially expressed proteome in response to low temperature in alfalfa [PhD thesis]. Harbin (China): Harbin Normal University.
Chen JH, Tian QQ, Pang T, Jiang LB, Wu RL, Xia XL, Yin WL. 2014. Deep-sequence transcribing landscape of low temperature perception in a desert tree, Populus euphratica. BMC Genomics. 15:326. doi:10.1186/1471-2164-15-326.

Cheng X, Deng G, Su Y, Liu J, Yang Y, Du GH, Chen ZY, Liu FH. 2016. Protein mechanisms in response to NaCl-stress of salt-tolerant and salt-sensitive industrial hemp based on iTRAQ technology. Ind Crop Prod. 83:444–452. doi:10.1016/j.indcrop.2015.12.086.

Cui SX, Huang F, Wang J, Ma X, Cheng YS, Liu JY. 2005. A proteomic analysis of cold stress responses in rice seedlings. Proteomics. 5:3162–3172. doi:10.1002/pmic.200401148.

Cyr DM, Langer T, Douglas MG. 1994. DnaJ-like proteins: molecular chaperones and specific regulators of Hsp70. Trends Biochem Sci. 19:176–181. doi:10.1016/0968-0004(94)90281-X.

Du CX, Fan HF, Guo SR, Tezuka T, Li J. 2010. Proteomic analysis of cucumber seedling roots subjected to salt stress. Phytochemistry. 71:4530–4539. doi:10.1016/j.phytochem.2010.05.020.

Foyer CH, Noctor G. 2000. Tansey review No. 112: oxygen processing in photosynthesis: regulation and signalling. New Phytol. 146:359–388. doi:10.1046/j.1469-8137.2000.00667.x.

Giovanni C, Maurizio B, Luca M, Laura S, Gian MG, Barbara C, Paola O, Luciano Z, Pier GR. 2004. Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis. 25:1327–1333. doi:10.1002/elps.200305844.

Han JX, Wei Y, Yan C, An SZ. 2011. The vivipary characteristic of Anabasis elatior and its ecological adaptation. Acta Ecol Sin. 31:2662–2668.

Hasanuzzaman M, Hossain MA, Fujita M. 2012. Exogenous selenium pretreatment protects rapeseed seedlings from cadmium-induced oxidative stress by upregulating antioxidant defense and metallothionein expression. Biol Trace Elem Res. 149(2):248–261. doi:10.1007/s12011-012-9419-4.

Hu YH, Zhang QX, Wang KL, Zhang ZF. 2000. Ultrastructural changes of Chrysanthemum leaves exposed to low temperature. J Lajiyang Agric Coll. 17:38–43.

Huang AY, Wu ZL. 1999. Determination of glutathione peroxidase in photosynthesis: regulation and signalling. New Phytol. 146:359–388. doi:10.1046/j.1469-8137.2000.00667.x.

Li ZY, Long RC, Zhang TJ, Yang QC, Kang JM. 2016. Research progress on physiological indeces and differences in plant genes coding for acetolactate synthase, the target enzyme for herbicide. Physiol Plant. 85:1110–1117. doi:10.11104/pps.85.4.1110.

Lai QA, Hu JJ, Sun JR. 2001. Adenylate kinase and cellular apoptosis. Prog Biochem Biophys. 28:1–3.

Lazaro J, Dahe M, Thea W, Lindemann W, Sengupta-Gopalan C, Zhang JF. 2011. Identification of salt responsive genes using comparative microarray analysis in upland cotton (Gossypium hirsutum L.). Plant Sci 180:461–469. doi:10.1016/j.plantsci.2010.10.009.

Li ZY, Long RC, Zhang TJ, Yang QC, Kang JM. 2016. Research progress on plant heat shock protein. Biotechnol Bull. 32:7–13.

Lu W, Tang XL, Hao YQ, Xu R, Qi SD, Huang JG, Zheng CC, Wu CA. 2012. Identification and characterization of fructose 1,6-bisphosphate aldolase genes in Arabidopsis reveal a gene family with diverse responses to abiotic stresses. Gene. 503:65–74. doi:10.1016/j.gene.2012.04.042.

Lukatkin AS. 2002. Contribution of oxidative stress to the development of cold-induced damage to leaves of chilling-sensitive plants. 2: The activity of antioxidant enzymes during plant chilling. Russ J Plant Physiol. 49:782–788. doi:10.1023/A:1020965629243.

Mazur BJ, Chui CF, Smith JK. 1987. Isolation and characterization of plant genes coding for acetyl-Coa synthetase, the target enzyme for two classes of herbicides. Physiol Plant. 85:1110–1117. doi:10.11104/pps.85.4.1110.

Medina J, Bargues M, Terol J, Pérez-Alonso M, Salinas J. 1999. The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is accumulated by low temperature but not by asbscisic acid or dehydration. Plant Physiol. 119:463–470.

Mivrat R, Francesco S, Stefano M. 2016. Role of ion transporters in salinity resistance in plants. Environ Control Biol. 54:1–6. doi:10.2525/ebc.54.1.

Moreau M, Westlake T, Zampogna G, Popescu G, Tian M, Noutsos C, Popescu S. 2013. The Arabidopsis oleosipetidases TOP1 and TOP2 are salicylic acid targets that modulate SA-mediated signaling and the immune response. Plant J. 76:603–614. doi:10.1111/tjp.12320.

Nathalie D, Joel D, Nicole B. 1998. Molecular cloning and characterization of tomato cDNAs encoding glutathione peroxidase-like proteins. Eur J Biochem. 253:445–451. doi:10.1111/j.1432-1327.1998.2530445.x.

Neison KA, Mariann M, Haynes PA. 2011. Quantitative proteomic analysis of cold-responsive proteins in rice. Proteomics. 11:1696–1706. doi:10.1002/pmic.201000727.

Noctor G, Journan I, Foyer CH, Aris ACIM. 1999. Photosynthetic enzyme kinetics enhances glutathione accumulation in both the chloroplastic and cytosolic compartments. J Exp Bot. 50:1157–1167. doi:10.1093/jxb/50.335.1157.

Nordin K, Vahala T, Palva ET. 1993. Differential expression of two related, low-temperature-induced genes in Arabidopsis thaliana (L.) Heynh. Plant Mol Biol. 21:641–653. doi:10.1007/BF00014547.

Palmieri MC, Lindemayer C, Bawe, Steinhauser C, Durner J. 2010. Regulation of plant glycine decarboxylase by s-nitrosylation and glutathionylation. Physiol Plant. 152:1514–1528. doi:10.1111/j.1399-3054.2010.15259.

Pang SZ. 2015. Research on physiological indexes and differences in protein expression of banana seedling leaves under cold stress [master’s thesis]. Nanning (China): Guangxi University.

Pendle AF, Clark GP, Boon R, Lewandowska D, Lam YW, Andersen J, Mann L, Lamond AI, Brown JWS, Shaw PJ. 2004. Proteomic analysis of the Arabidopsis nuclease suggests novel nuclear functions. Mol Cell Biol. 16:260–269. doi:10.1128/MCB.0409-0791.

Peng ZY, Wang MC, Li F, Lv HJ, Li CL, Xia GM. 2009. A proteomic study of the response to salinity and drought stress in an intraspecific strain of bread wheat. Mol Cell Proteomics. 8:2676–2686. doi:10.1074/mcp.M900052-MCP206.

Picault N, Palmieri L, Pisanio I, Hodges M, Palmieri F. 2002. Identification of a novel transporter for dicarbonylates and tricarbonylates in plant mitochondria. bacterial expression, reconstitution, functional characterization, and tissue distribution. J Biol Chem. 277:24204–24211. doi:10.1074/jbc.M207020200.

Ravanel S, Block MA, Rippert P, Jabrin S, Curien G, Rebelle F, Douce R. 2000. Methionine metabolism in plants: chloroplasts are autonomous for de novo methionine synthesis and can import S-adenosylmethionine from the cytosol. J Biol Chem. 279:22548–22557. doi:10.1074/jbc.M313520200.

Reinbothe C, Pollmann S, Reinbothe S. 2010. Singlet oxygen signaling links photosynthesis to translation and plant growth. Plant Sci 151:499–506. doi:10.1016/j.plants.2010.05.011.

Sánchez-Be P, Egea I, Sánchez-Ballesta MT, Martínez-Madrid C, Fernández-García N, Romo-Ortega F, Olmos E, Estrella E, Bolarin M, Flores FB. 2012. Understanding the mechanisms of chilling injury in bell pepper fruits using the proteomic approach. J Proteomics. 75:5463–5478. doi:10.1016/j.jprot.2012.06.029.

Sasabe M, Soyano T, Takahashi Y, Sonobe S, Igarashi H, Itoh T, Hidaka M, Machida Y. 2006. Phosphorylation of NtMAP65-1 by a MAP kinase down-regulates its activity of microtubule bundling and stimulates progression of cytokinesis of tobacco cells. Genes Dev. 20:1004–1014. doi:10.1101/gad.1408106.
Shilov JV, Seymour SL, Patel AA, Loboda A, Tang W-H, Keating SP, Hunter CL, Nuwaysir LM, Schaeffer DA. 2007. The paragon algorithm, a next generation search engine that uses sequence temperature values and feature probabilities to identify peptides from tandem mass spectra. Mol Cell Proteomics. 6:1638–1655. doi:10.1074/mcp.T60050-MCP200.

Shimono Y, Kudo G. 2005. Comparisons of germination traits of alpine plants between fellfield and snowbed habitats. Ecol Res. 20:189–197. doi:10.1007/s11284-004-0031-8.

Smith PK, Krohn RJ, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goede NM, Olson BJ, Klenk DC. 1985. Measurement of protein using bicinchoninic acid. Anal Biochem. 150:76–85. doi:10.1016/0003-2697(85)90442-7.

Sun ZL. 2011. Differently proteomics research on Chorispora bungeana under low temperature [PhD thesis]. Lanzhou (China): Lanzhou University.

Tan LL. 2012. Transcriptome analysis of cold tolerance mechanisms of Chorispora bungeana [PhD thesis]. Lanzhou (China): Lanzhou University.

Wang YJ. 2013. iTRAQ-based proteomics analysis of Lycium ruthenicum Murr. with salt (NaCl) treatment [master’s thesis]. Lanzhou (China): Lanzhou University.

Wang XK, Huang JL. 2015. Principles and techniques of plant physiology and biochemistry experiment. Beijing: Higher Education Press.

Wang M, Li YY, Niu PX, Chu GM. 2015. Spatial pattern formation and intraspecific competition of Anabasis aphylla L. population in the diluvial fan of Junggar basin, NM China. Pak J Bot. 47:543–550.

Wang XY, Shan XH, Wu Y, Su SZ, Liu HK, Han JY, Xue CM, Yuan YP. 2016. iTRAQ-based quantitative proteomic analysis reveals new metabolic pathways responding to chilling stress in maize seedlings. J Proteomics. 146:14–24. doi:10.1016/j.jprot.2016.06.007.

Wang JG, Tan HZ, Li YH, Ma Y, Li ZM, Guddat LW. 2011. Chemical synthesis, in vitro acetohydroxyacid synthase (AHAS) inhibition, herbicidal activity, and computational studies of isatin derivatives. J Agri Food Chem. 59:9892–9900. doi:10.1021/jf2021607.

Wang WX, Vinocur B, Shoseyov O, Altman A. 2004. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci. 9:244–252. doi:10.1016/j.tplants.2004.03.006.

Wang Y, Zhang WZ, Song LF, Zou JJ, Su Z, Wu WH. 2008. Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis. Physiol Plant. 148:1201–1211. doi:10.1110/tp.108.126375.

Wei BY, Zhang JZ, Pang CX, Yu H, Guo DS, Jiang H, Ding MX, Chen ZY, Yao Q, Gu HY, et al. 2015. The molecular mechanism of sporocyste/nozzle in controlling Arabidopsis ovule development. Cell Res. 25:121–134. doi:10.1038/cr.2014.145.

Welin BV, Olson A, Palva ET. 1995. Structure and organization of two closely related low-temperature-induced dhn/lea/rab-like genes in Arabidopsis thaliana (L.) heynh. Plant Mol Biol. 29:391–395. doi:10.1007/BF00034362.

Witzel K, Weidner A, Surabhi GK, Börner A, Mock HP. 2009. Salt stress-induced alterations in the root proteome of barley genotypes with contrasting response towards salinity. J Exp Bot. 60:3545–3557. doi:10.1093/jxb/erp198.

Xie H, Yang DH, Yao H, Bai G, Zhang YH, Xiao BG. 2016. iTRAQ-based quantitative proteomic analysis reveals proteomic changes in leaves of cultivated tobacco (Nicotiana tabacum) in response to drought stress. Biochem Biophys Res Commun. 469:768–775. doi:10.1016/j.bbrc.2015.11.133.

Xu N. 2007. Effect of cold stress on physiological metabolism of Buxus sempervirens [PhD thesis]. Harbin (China): Northeast Forestry University.

Xu C, Sibicky T, Huang B. 2010. Protein profile analysis of salt-responsive proteins in leaves and roots in two cultivars of creeping bentgrass differing in salinity tolerance. Plant Cell Rep. 29:595–615. doi:10.1007/s00299-010-0847-3.

Yan SP, Zhang QY, Tang ZC, Su WA, Sun WN. 2006. Comparative proteomic analysis provides new insights into chilling stress responses in rice. Mol Cell Proteomics. 5:484–496. doi:10.1074/mcp.M500251-MCP200.

Yang LT, Qi YP, Lu YB, Guo P, Sang W, Feng H, Zhang HX, Chen LS. 2013. iTRAQ protein profile analysis of Citrus sinensis roots in response to long-term boron-deficiency. J Proteomics. 93:197–206. doi:10.1016/j.jprot.2013.04.025.

Yue N, Zheng CX, Bai X, Hao JQ. 2009. Proteomics analysis of heteromorphic leaves of Populus euphratica Oliv. China Biotechnol. 29:40–44.

Zhao Q, Zhang H, Wang T, Chen SX, Dai SL. 2013. Proteomics-based investigation of salt-responsive mechanisms in plant roots. J Proteomics. 82:230–253. doi:10.1016/j.jprot.2013.01.024.

Zhou XY, Peng SY, Zhou SF, Fu FL, Yu HQ, Li WC. 2016. Evaluation of internal reference genes for quantitative real-time PCR in Ammopiptanthusnanus. Nanning (China): Guilhaia.

Zhu GL. 1990. Plant physiology experiments. Beijing: Peking University Press.