Rickettsiae in Red Fox (Vulpes Vulpes), Marbled Polecat (Vormela Peregusna) and Their Ticks in Northwestern China

Gang Liu
Shihezi University

Shanshan Zhao
Shihezi University

Wenbo Tan
Shihezi University

Sándor Homok
University of Veterinary Medicine

Wumei Yuan
Shihezi University

Ligu Mi
Shihezi University

Suwen Wang
Shihezi University

Zhiqiang Liu
Xinjiang Academy of Animal Science

Yanyan Zhang
Xinjiang Academy of Agricultural and Reclamation Science

Wurelihazi Hazihan
Shihezi University

Xinli Gu
Shihezi University

Yuanzhi Wang (wangyuanzhi621@126.com)
Shihezi University

Short report

Keywords: Rickettsia, red fox, marbled polecat, ticks, northwestern China

DOI: https://doi.org/10.21203/rs.3.rs-127289/v1
Abstract

Background

Previously, twelve *Rickettsia* species were found in ticks, fleas, sheep keds (*Melophagus ovinus*), bats (common pipistrelle: *Pipistrellus pipistrellus*) and a tick-bitten patient in Xinjiang Uygur Autonomous Region (XUAR), northwestern China. Here we aimed to molecularly detect rickettsial agents in red fox (*Vulpes vulpes*), marbled polecats (*Vormela peregusna*) and their ticks.

Methods

During 2018-2019, 12 red foxes, 1 marbled polecats and their ticks were sampled in two counties and a city of Xinjiang Uygur Autonomous Region (northwestern China). The heart, liver, spleen, lung and kidney of these 13 carnivores were dissected, followed by DNA extraction. Hard ticks were identified both morphologically and molecularly. All samples were examined for the presence of rickettsiae by amplifying four genetic markers.

Results

A total of 26 adult ticks and 28 nymphs (38 *Ixodes canisuga*, nine *Ixodes kaiseri*, six *Haemaphysalis erinacei* and one *Dermacentor marginatus*) were collected from red foxes, and four *H. erinacei* ticks were removed from a marbled polecats. Analysis of cytochrome c oxidase subunit I (*COI*) gene sequences indicated that 2-32 nucleotides differed between *I. canisuga*, *I. kaiseri* and *H. erinacei* from northwestern China and Europe. *Rickettsia raoultii* was detected in three red foxes, *Candidatus* Rickettsia barbaraiae in a red fox, *Rickettsia sibirica* in a red fox and a marbled polecats, and *R. raoultii* in two tick species (*I. canisuga* and *D. marginatus*).

Conclusions

To the best of our knowledge, *I. canisuga* and *I. kaiseri* have not been previously reported from red foxes in China. The DNA of *R. sibirica* and *R. raoultii* was detected for the first time in organs of red foxes, and *R. sibirica* in organs of marbled polecats. This is also the first molecular evidence for the presence of *R. raoultii* in *I. canisuga*. Our findings add to the range of tick-borne pathogens in wildlife species and associated ticks in China.

Background

The red fox (*Vulpes vulpes*) is widely distributed throughout Europe, Asia, North Africa, and North America [1]. Its habitats highly overlap with those of other wildlife species, domestic animals and even humans [2]. Previously, red foxes were reported to harbor several vector-borne pathogens of veterinary-medical importance, such as tick-borne encephalitis virus [3], *Borrelia burgdorferi* [4], *Ehrlichia canis* [5], *Leishmania infantum* [6], *Hepatozoon canis* [7] and *Babesia vulpes* [8, 9]. Serological investigation of red foxes indicated that 50.3% had antigens of SFG rickettsiae, including *Rickettsia massiliae* and *Rickettsia*
conorii in Spain [10]. In addition, immuno-fluorescence assay showed that 1.9% of red foxes had antibodies to *Rickettsia typhi*, and 6.7% of them to *Rickettsiaslovaca* in Spain [4].

The geographical range of marbled polecat (*Vormela peregusna*) covers Central Asia, northwestern China and Europe [2]. Considering studies on its epidemiological role, seroconversion was detected in a marbled polecat to plague F1 antigen in Xinjiang Uygur Autonomous Region (XUAR), northwestern China. *Borrelia burgdorferi sensu lato* and *Babesia* sp. were molecularly identified in a marbled polecat in Romania and China, respectively [11, 12]. Furthermore, *Rickettsia raoultii* and *Candidatus* Rickettsia barbariae were molecularly identified in marbled polecats in XUAR [12].

In the temperate climate zone, hard ticks (Acari: Ixodidae) are regarded as the most important vectors of pathogens [13]. Among them, *Ixodes persulcatus, Ixodes ricinus, Ixodes hexagonus, Ixodes kaiseri, Ixodescanisuga, Dermacentor reticulatus, Dermacentor marginatus, Haemaphysalis punctata* and *Rhipicephalus sanguineus* were reported from red foxes [10, 14-16]. In Spain, *Rickettsia massiliae, Rickettsia aeschlimannii* and *Rickettsia slovaca* were detected in red fox ticks [10]. In addition, *Haemaphysalis erinacei* from marbled polecats contained the DNA of *Rickettsia raoultii* in China [17].

The aim of the present study was to investigate rickettsial agents in 12 red foxes, a marbled polecat and their ticks in China.

**Methods**

**Sample collection and species identification**

A total of 12 illegally hunted or road-killed red foxes and one naturally died marbled polecat were sampled in two counties and a city of XUAR during 2018-2019 (data shown in Additional file 1). The red foxes and the marbled polecat were morphologically identified by an experienced zoologist. The heart, liver, spleen, lung and kidney of all 13 carcasses were removed. Simultaneously, the entire body surface of each individual was checked for ticks, all of which were removed. The ticks were morphologically identified to the species level according to the standard taxonomic keys as previously described [18]. This was also confirmed by molecular and phylogenetic analyses based on two mitochondrial markers, the *16S rDNA* and the cytochrome *c* oxidase subunit I (*COI*) genes [16].

**Detection, sequencing and phylogenetic analysis of rickettsiae**

Genomic DNA was extracted from organs (heart, liver, spleen, lung and kidney) of wild carnivores, as well as from their ticks using the TIANamp Genomic DNA Kit (TIANGEN, Beijing, China). To investigate the presence of rickettsiae in ticks, four genetic markers were targeted, including the 17 kDa antigen (*17-kDa*), the citrate synthase (*gltA*), the outer membrane protein A (*ompA*) and the surface cell antigen 1 (*sca1*) genes. Two (the *gltA* and *ompA*) genes were used to detect rickettsiae in organs of wild carnivores [19]. The primers and PCR cycling conditions of this study are shown in Additional file 2. Each PCR assay included a negative control (distilled water instead of DNA template) and a positive control (containing
sequence-verified DNA of *R. massiliae* from *Rhipicephalus turanicus* ticks collected in XUAR) [20]. Purification and sequencing of the PCR products were performed as described before [21, 22]. Sequences were manually edited, aligned and compared to reference GenBank sequences by nucleotide BLASTn program (https://blast.ncbi.nlm.nih.gov). A phylogenetic tree was constructed using the Maximum-Likelihood method in MEGA 7.0 software [17].

### Results

#### Tick identification

A total of 26 adult ticks and 28 nymphs (38 *I. canisuga*, nine *I. kaiseri*, six *H. erinacei* and one *D. marginatus*) were collected from 12 red foxes, and four *H. erinacei* ticks were found on the marbled polecot. Morphological characteristics are shown in Supplementary Figure 1.

#### Molecular and phylogenetic analyses

Analysis of COI sequences revealed 2-32 nucleotide differences in case of *I. canisuga* (3-6 bp), *I. kaiseri* (2-7 bp) and *H. erinacei* (30-32 bp) between Europe and China. Phylogenetic analysis showed that i) *I. canisuga* in XUAR was in a basal position to eleven European haplotypes (“A to K”) [18] (Fig. 1A); ii) *I. kaiseri* from red foxes in XUAR was also in basal position to nine European haplotypes (“L to T”), and had identical sequence with conspecific ticks from long-tailed ground squirrels and Asian badgers [16, 19, 23] (Fig. 1B); iii) *H. erinacei* from red foxes and marbled polecot had identical sequences, and formed a distinct clade from those reported in Turkey, Italy and Romania (Fig. 1C); and iv) *D. marginatus* from red fox #2 had identical sequence with the off-host tick collected formerly in Altaw City, XUAR.

Red fox #3, #5 and #11 were positive for *R. raoultii*, and red fox #8 was positive for *Candidatus* R. barbariae. At the same time, red fox #12 and the marbled polecot were positive for *Rickettsia sibirica*. In addition, *R. raoultii* was detected in *I. canisuga* from red fox #11 (Manas County) and *D. marginatus* from red fox #2 (Nilka County). Nucleotide sequences of rickettsial agents were deposited in the GenBank database (MT890502-MT890525). Phylogenetic analyses are shown in Fig. 2 and Additional Figure 2.

### Discussion

Molecular studies on *I. canisuga* and *I. kaiseri* were mostly reported from Europe, where these tick species typically infest Eurasian badgers, red foxes, steppe polecats, raccoon dogs, common hedgehogs and domestic dogs. Among them, dogs and red foxes can also be co-infested with *I. canisuga* and *I. kaiseri* [16, 24]. In this study, *I. canisuga* and *I. kaiseri* were found on red foxes, as also confirmed by 16S rDNA gene sequences (GenBank: MT889694-MT889698 and MT889701-MT889705). To the best of our knowledge, *I. canisuga* and *I. kaiseri* have been discovered here for the first time on red foxes in China. Phylogenetic analysis of the COI gene showed that i) *I. canisuga* specimens collected from the same host species (red fox) are genetically different between China (MT890495-MT890498) and Germany (KY962044-KY962045), Croatia (KY962037-KY962040), Bosnia-Herzegovina (KY962016-KY962017),
Serbia (KY962030-KY962031), Romania (KY962025, KY962021-KY962023); ii) *I. kaiseri* from red foxes and long-tailed ground squirrels in XUAR had 100% identity, but clustered in a separate phylogenetic position compared to European ticks; and iii) *H. erinacei* infesting red fox and marble polecats in XUAR shared identical COI gene sequences (MT890493 and MT890494), but differed from those collected in Italy, Turkey and Romania (Fig. 1C). These findings support that the genetic diversity of *I. kaiseri, I. canisuga* and *H. erinacei* might reflect geographical distribution rather than host associations, consistently with Klompen et al [25].

Considering previous reports, *Rickettsia helvetica* was detected in the blood sample of a red fox in Switzerland [26]. In addition, *R. raoultii* and *Candidatus* Rickettsia barbariae were reported in a marbled polecats in Altaw City, XUAR [12]. Here, *R. raoultii* was detected for the first time in organs of red foxes, and *R. sibirica* in the lung and kidney of a marbled polecats and in the liver of a red fox. Moreover, the DNA of *R. raoultii* was shown to be present in *I. canisuga*. In our previous work, *R. raoultii* and *R. sibirica* were identified in several tick species [12, 17, 19, 27, 28], and *R. raoultii* was even found in organs/tissues of bats (*Pipistrellus pipistrellus*) and a tick-bitten patient [19, 29]. Based on the above findings, the epidemiological role of red foxes, marble polecats and their ticks in transmitting rickettsiae can be postulated. However, further studies (including transmission experiments) are necessary to eventually verify this. In addition, the scope of this work should be extended to more wildlife species from China and Central Asia.

**Conclusions**

To our knowledge, *I. canisuga* and *I. kaiseri* have not been previously identified from red foxes in China. The genetic diversity of *I. kaiseri*, *I. canisuga* and *H. erinacei* might be more related to geographical distribution than parasitized hosts. *Rickettsia raoultii* in *I. canisuga* and organs of red foxes, and *R. sibirica* in organs of a red fox and a marbled polecats are reported here for the first time. Our findings add to the range of tick-borne pathogens in wildlife species and associated ticks.

**Abbreviations**

COI: cytochrome *c* oxidase subunit I; ompA: outer membrane protein A; gltA: citrate synthase; 17-kDa: 17-kDa antigen; sca1: cell surface antigen 1; XUAR: Xinjiang Uygur Autonomous Region

**Declarations**

**Acknowledgements**

The authors thank the contributions by the staff at the School of Medicine and School of Animal Science and Technology, Shihezi University.

**Funding**
This work was supported by the National Key Research & Development Program of China (2018ZX10101002-007), National Natural Science Foundation of China (81960379 and 31960709), International Scientific and Technological Cooperation in Bingtuan (2020BC008) and International Cooperation Projects of and Xinjiang Uygur Autonomous Region (2020E01008).

Authors’ contributions

GL, SZ, WT and YW conceived and designed the study, and wrote the manuscript. WY, LM, SW, YZ, ZL, WH and XG performed the experiments, analyzed the data. SH contributed to study design and edited the manuscript. All authors read and approved the final manuscript.

Ethical approval and consent to participate

This study was approved by the Animal Ethics Committee of Shihezi University (Approval No. AECSU2015-11).

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

1Department of Basic Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, Uygur Autonomous Region, China. 2Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary. 3Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi, Xinjiang, Uygur Autonomous Region, China. 4State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Institute of Animal Husbandry and Veterinary, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, Xinjiang, Uygur Autonomous Region, China. 5Department of Veterinary Medicine, College of Animal & Science, Shihezi University, Shihezi, Xinjiang, Uygur Autonomous Region, China.

References

1. Wilson DE, Reeder DM. Mammal species of the world. A taxonomic and geographic reference. 3rd ed. Baltimore: Johns Hopkins University Press; 2005.
2. Hunter L, Barrett P. A field guide to the carnivores of the world. Bloomsbury Publishing; 2018.
3. Wurm R, Dobler G, Peters M, Kiessig ST. Serological investigations of red foxes (Vulpes vulpes L.) for determination of the spread of tick-borne encephalitis in Northrhine-Westphalia. J Vet Med B Infect Dis Vet Public Health. 2000;47:503-9.
4. Lledó L, Serrano JL, Isabel Gegúndez M, Giménez-Pardo C, Saz JV. Antibodies to *Rickettsia spp.* and *Borrelia burgdorferi* in Spanish Wild Red Foxes (*Vulpes vulpes*). J Wildl Dis. 2016;52:122-5.

5. Fishman Z, Gonen L, Harrus S, Strauss-Ayali D, King R, Baneth G. A serosurvey of *Hepatozoon canis* and *Ehrlichia canis* antibodies in wild red foxes (*Vulpes vulpes*) from Israel. Vet Parasitol. 2004;119:21-6.

6. Davoust B, Mary C, Marié JL. Detection of Leishmania in red foxes (*Vulpes vulpes*) from southeastern France using real-time quantitative PCR. J Wildl Dis. 2014;50:130-2.

7. Gabrielli S, Kumlien S, Calderini P, Brozzi A, Iori A, Cancrini G. The first report of *Hepatozoon canis* identified in *Vulpes vulpes* and ticks from Italy. Vector Borne Zoonotic Dis. 2010;10:855-9.

8. Checa R, López-Beceiro AM, Montoya A, Barrera JP, Ortega N, Gálvez R, et al. Babesia microti-like piroplasm (syn. *Babesia vulpes*) infection in red foxes (*Vulpes vulpes*) in NW Spain (Galicia) and its relationship with *Ixodes hexagonus*. Vet Parasitol. 2018;252:22-28.

9. Dezdek D, Vojta L, Curković S, Lipej Z, Mihaljević Z, Cvetnić Z, et al. Molecular detection of *Theileria annae* and *Hepatozoon canis* in foxes (*Vulpes vulpes*) in Croatia. Vet Parasitol. 2010;172:333-6.

10. Ortuño A, Sanfeliu I, Nogueras M, Pons I, López-Claessens S, Castellà J, et al. Detection of *Rickettsia massiliae/Bar29* and *Rickettsia conorii* in red foxes (*Vulpes vulpes*) and their *Rhipicephalus sanguineus* complex ticks. Ticks Tick Borne Dis. 2018;2:629.

11. Gherman CM, Sándor AD, Kalmár Z, Marinov M, Mihalca AD. First report of *Borrelia burgdorferi sensu lato* in two threatened carnivores: the marbled polecats, *Vormela peregusna* and the European mink, *Mustela lutreola* (Mammalia: Mustelidae). BMC Vet Res. 2012;8:137.

12. Liu XF, Yang MH, Liu GY, Zhao SS, Yuan WM, Xiao RH, et al. Molecular evidence of *Rickettsia raoultii*, "*Candidatus Rickettsia barbaraiae*" and a novel Babesia genotype in marbled polecats (*Vormela peregusna*) at the China-Kazakhstan border. Parasit Vectors. 2018;11:450.

13. Jongejan F, Uilenberg G. The global importance of ticks, 2004. Parasitology. 2004;129:3-14.

14. Isogai E, Isogai H, Kawabata H, Masuzawa T, Yanagihara Y, Kimura K, et al. Lyme disease spirochetes in a wild fox (*Vulpes vulpes schrencki*) and in ticks. J Wildl Dis. 1994;30:439-44.

15. Jemeršić L, Dežđek D, Brnić D, Prpić J, Janicki Z, Keros T, et al. Detection and genetic characterization of *tick-borne encephalitis virus* (TBEV) derived from ticks removed from red foxes (*Vulpes vulpes*) and isolated from spleen samples of red deer (*Cervus elaphus*) in Croatia. Ticks Tick Borne Dis. 2014;5:7-13.

16. Hornok S, Sándor AD, Beck R, Farkas R, Beati L, Kontschán J, et al. Contributions to the phylogeny of *Ixodes (Pholeoixodes) canisuga*, (*Ph.* kaiseri, i. (*Ph.*) hexagonus), and a simple pictorial key for the identification of their females. Parasit Vectors. 2017;10:545.

17. Guo LP, Mu LM, Xu J, Jiang SH, Wang AD, Chen CF, et al. *Rickettsia raoultii* in *Haemaphysalis erinacei* from marbled polecats, China-Kazakhstan border. Parasit Vectors. 2015;8:461.

18. Estrada-Peña A, Mihalca AD, Petney TN: Ticks of Europe and North Africa: A Guide to Species Identification. Springer Int; 2017.
19. Zhao S, Yang MH, Jiang MM, Yan B, Zhao SS, Yuan WM, et al. *Rickettsia raoultii* and *Rickettsia sibirica* in ticks from the long-tailed ground squirrel near the China-Kazakhstan border. Exp Appl Acarol. 2019;77:425-433.

20. Wei QQ, Guo LP, Wang AD, Mu LM, Zhang K, Chen CF, et al. The first detection of *Rickettsia aeschlimannii* and *Rickettsia massiliae* in *Rhipicephalus turanicus* ticks, in northwest China. Parasit Vectors. 2015;8:631.

21. Anstead CA, Chilton NB. A novel Rickettsia species detected in Vole Ticks (*Ixodes angustus*) from Western Canada. Appl Environ Microbiol. 2013;79:7583-9.

22. Anstead CA, Chilton NB. Detection of a novel Rickettsia (Alphaproteobacteria: Rickettsiales) in rotund ticks (*Ixodes kingi*) from Saskatchewan, Canada. Ticks Tick Borne Dis. 2013;4:202-6.

23. Sheng JL, Jiang MM, Yang MH, Bo XW, Zhao SS, Zhang YY, et al. Tick distribution in border regions of Northwestern China. Ticks Tick Borne Dis. 2019;10:665-9.

24. ZipcodeDev Team (2018). http://zipcodezoo.com/

25. Klompen JS, Black WC, Keirans JE, Oliver JH. Evolution of ticks. Annu Rev Entomol. 1996;41:141-61.

26. Hofmann-Lehmann R, Wagmann N, Meli ML, Riond B, Novacco M, Joekel D, et al. Detection of “*Candidatus Neoehrlichia mikurensis*” and other Anaplasmataceae and Rickettsiaceae in Canidae in Switzerland and Mediterranean countries. Schweiz Arch Tierheilkd. 2016;158:691-700.

27. Tian ZC, Liu GY, Shen H, Xie JR, Luo J, Tian MY. First report on the occurrence of *Rickettsia slovaca* and *Rickettsia raoultii* in *Dermacentor silvarum* in China. Parasit Vectors. 2012;5:19.

28. Spitalská E, Stefanidesová K, Kocianová E, Boldiš V. *Rickettsia slovaca* and *Rickettsia raoultii* in *Dermacentor marginatus* and *Dermacentor reticulatus* ticks from Slovak Republic. Exp Appl Acarol. 2012;57:189-97.

29. Dong ZH, Yang YC, Wang Q, Xie SS, Zhao SS, Tan WB, et al. A case with neurological abnormalities caused by *Rickettsia raoultii* in northwestern China. BMC Infect Dis. 2019; 19:796.

**Figures**
Figure 1

Phylogenetic tree based on COI sequences of ticks collected from 12 red foxes and a marble polecat in northwestern China. The evolutionary history was inferred using the Maximum Likelihood method (bootstrap replicates: 1000) with MEGA 7.0. New sequences obtained in this study are indicated by black triangles. A. Ixodes canisuga, B. Ixodes kaiseri, C. Haemaphysalis erinacei, and D. Dermacentor marginatus.
Figure 2

Phylogenetic tree of the ompA-gltA concatenated sequences of rickettsial agents in 12 red foxes and a marble polecat.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.
• Additionalfile1SH.docx
• Additionalfile2SH.doc
• GraphicalAbstract.tif
• SupplementaryFigure1SH.docx
• SupplementaryFigure2SH.docx