Deformability of Volume-Compressed Concrete Core of Concrete Filled Steel Tube Columns

A L Krishan¹, V I Rimshin² and E A Troshkina³

¹Department of Building Design and Constructions, Nosov Magnitogorsk State Technical University, 11 Uritsky, Magnitogorsk 455000, Russia
²Research Institute of Building Physics of Russian Academy of Architecture and Construction Sciences, 21 Lokomotivny pr., Moscow 127238, Russia
³Department of Construction Engineering, Nosov Magnitogorsk State Technical University, 11 Uritsky, Magnitogorsk 455000, Russia

E-mail: kris_al@mail.ru

Abstract. The application scale related to concrete filled steel tube columns is gradually expanding. Therefore, increasingly greater attention is given to their structural improvement. In particular, concrete filled steel tube columns can be manufactured with precompressed concrete core in order to improve the efficiency. However, known relationships used to calculate axial deformations of concrete filled steel tube structures are obtained empirically and unsuitable for precompressed elements. The formula for defining axial deformations of volume-compressed concrete core of concrete filled steel tube columns when achieving its strength is obtained in this study based on phenomenological approach. This formula allows carrying out accurate calculations when using structures both with precompressed and uncompressed concrete.

1. Introduction
Concrete filled steel tube columns (CFSTC) have good perspectives for expanding their practical application boundaries. They often resist high compressive forces resulting from external loads more effectively when compared to steel and reinforced concrete structures, providing remarkable material and financial resource savings [1-5]. Therefore, greater focus must be placed on the issues related to improving the structural concept of CFSTC and the methods of calculating their load-bearing capacity.

2. Relevance
Currently applied methods of calculating CFSTC load-bearing capacity have a number of significant disadvantages [6-10]. They are based on empirical relationships and, generally, have no way of considering any structural changes in CFSTC when they are improved. For example, transversely precompressed CFSTC are well known [11]. Precompression is achieved due to long-term pressing of concrete mix, which makes it possible to considerably increase the strength of the concrete core. This fact must be taken into account when performing calculations. For this purpose, more universal calculation methods relying on the main features of structural force resistance must be developed. The conducted analysis showed that the deformation model could serve as theoretical basis for such calculations [12]. Deformation calculations are based on material deformation diagrams. Once these diagrams can adequately represent the performance of structures, it becomes possible to describe their
stress strain behavior quite accurately at any stages of loading. The most complex challenge in this case is the analytical construction of the deformation diagram for volume-compressed concrete core of CFSTC, including the precompressed core. Since the actual concrete deformation diagram is curvilinear with ascending and descending sections, first of all it is necessary to pursue the more accurate calculation of its vertex coordinates. The problem of theoretical definition of volume-compressed concrete strength is successfully solved [13]. In this regard, the reliable determination of concrete core deformation at maximum stress is quite important.

3. Statement of the problem
Fairly large number of relationships was proposed to determine deformations of the concrete core of CFSTC ε_{cc1} at the vertex of its deformation diagram [14-19]. One of the most reliable formulas proposed in the study [20] following the results of computerized finite element analysis of force resistance of compressed CFST elements appears as follows:

$$
\varepsilon_{cc1} = \varepsilon_{c1} \cdot 0.94 \exp \left(3.9 \xi_p \right),
$$

where ε_{c1} is the deformation of uniaxially compressed concrete at the vertex of deformation diagram; ξ_p is the structural coefficient calculated using the following formula:

$$
\xi_p = \frac{f_y A_p}{f_c A + f_y A_p},
$$

where f_c is the strength of uniaxially compressed concrete; f_y is the yield strength of the steel shell; A and A_p are the cross-section areas of concrete core and steel shell.

The analysis of reported relationships testifies that they are all obtained based on the processing of experimental data. However, empirical formulas represent specific conditions of conducted research. For this reason, their application scope is limited. For precompressed CFSTC, as an example, their own empirical relationships need to be obtained.

The purpose of this study is to obtain a universal relationship for determining deformation at the vertex of the volume-compressed concrete deformation diagram. This relationship must take into account the basic principles of structural force resistance and ensure high accuracy of calculations when using both precompressed and uncompressed concrete.

4. Theoretical part
The formula for defining deformation ε_{cc1} at the vertex of the volume-compressed concrete deformation diagram can be obtained following the comparison between this diagram and the corresponding “$\sigma - \varepsilon$” curvilinear relationship for uniaxially compressed concrete (figure 1). When using pressed concrete, the coordinates f_{cp} and ε_{cp} of its deformation diagram vertex for uniaxial compression conditions are calculated first. According to the proposals made in the study [21], the following relationships are used for this purpose:

$$
f_{cp} = f_c (1 + 0.3 \alpha \sqrt{\rho});
$$

$$
\varepsilon_{cp} = 0.0012 + 0.00016 \sqrt{f_{cp}},
$$

where f_c is the compressive strength of original (unpressed) concrete; $\alpha \leq 1$ is the coefficient depending on concrete composition;
P is the value of effective compression pressure.

P and f_{cp} values are substituted in formulas (3) and (4) in MPa.

![Deformation curve](image)

Figure 1. Deformation curves for uniaxially compressed original concrete (1), pressed concrete (2) and volume-compressed (3) concrete core.

The study [11] shows that there is no pressure applied by the steel shell to the concrete core of CFST when the loading levels are low. In this case, equal tangent modulus of elasticity is assumed for curves 2 and 3 represented in figure 1, which is calculated using the following formula:

$$E_{cp} = \beta_c \left(56000 - 122000 \sqrt{f_{cp}} \right),$$

where β_c is the adjustment coefficient taking into account the influence of the coarse aggregate type [12] (for crushed stone concretes $\beta_c = 1$).

Total deformation ε_{cp} can be represented as the sum of elastic ε_{el} and plastic ε_{pl} components:

$$\varepsilon_{cp} = \varepsilon_{el} + \varepsilon_{pl}. \quad (6)$$

The elastic component represents a function of volume-compressed concrete strength f_{cp} and its tangent modulus of elasticity E_{cp}:

$$\varepsilon_{el} = f_{cp} / E_{cp}. \quad (7)$$

Apparently, the elastic components of total deformations for uniaxially and volume-compressed concrete depend on the corresponding strengths in direct proportion. It is logical to assume that the plastic deformation component of volume-compressed concrete ε_{pl} is associated with equivalent deformation of uniaxially compressed concrete ε_{pl}' based on the following relationship:

$$\varepsilon_{pl} = \varepsilon_{pl}' \left(\frac{f_{cp}}{f_{cp}'} \right)^m, \quad (8)$$

where the exponent of power $m > 1$.

Plastic deformation component ε_{pl} at the diagram vertex for uniaxially compressed concrete is determined from the following formula:

$$\varepsilon_{pl} = \varepsilon_{cp1} - \varepsilon_{el}.$$

(9)

Based on relationships (6), (7) and (9), we obtain the following formula:

$$\varepsilon_{cp} = \frac{f_{cp}}{E_{cp}} + \left(\varepsilon_{cp1} - \frac{f_{cp}}{E_{cp}} \right) \left(\frac{f_{cp}}{f_{cp}} \right)^m.$$

(10)

The performed statistical analysis showed that the value of $m \approx 2.5$ represented the best agreement with experimental data.

Strength of volume-compressed pressed concrete can be calculated using the formula obtained in the study [11]:

$$f_{cp} = f_{cp} \left\{ 1 + 0.5\sigma \bar{\sigma} + \frac{\bar{\sigma} - 2}{4} + \left[\frac{\bar{\sigma} - 2}{4} + B\sigma \right]^{1/2} \right\},$$

(11)

where $\bar{\sigma}$ is the relative value of radial stress in the concrete core in the limit state of CFSTC $\bar{\sigma} = \sigma_{cr} / f_{cp}$;

B is the experimentally determined material coefficient ($B = 10.4$ and 7.7 for heavyweight and fine-grained concrete, respectively).

The following formula for determining the relative value of radial stress is theoretically obtained:

$$\bar{\sigma} = 0.48\exp(-1.5/B)\xi^{0.8},$$

(12)

where ξ is the structural coefficient calculated using the formula:

$$\xi = \frac{f_{cp} A_p}{f_{cp} A}.$$

(13)

5. Comparison of theory with experiments

Experimental deformation values $\varepsilon_{exp}^{(1)}$ of short centrally compressed CFSTC are compared with calculated values $\varepsilon_{exp}^{(1)}$ and $\varepsilon_{exp}^{(10)}$ determined from formulas (1) and (10), as shown in the table 1. Steel shell diameter and wall thickness for laboratory samples are presented in table column $d \times \delta$.

Experimental data are assumed based on the results of the study [11].

The results of this comparison indicate that the accuracy obtained by calculating concrete core deformations using the formula (10) is perfectly acceptable for practical purposes. The average value of $\varepsilon_{exp} / \varepsilon_{exp}^{th}$ for 10 series of experimental samples (each series includes 3 samples) is 0.98. The mean square deviation σ equals 0.12, which should be accepted as a good result when comparing experimental and theoretical deformations. It should be noted that the proposed formulas were also used for samples without precompression assuming that $P = 0$. When using the formula (1), the comparison results are notably worse. For precompressed samples, the comparison result is unsatisfactory. However, even without taking precompressed samples into account, the average value of $\varepsilon_{exp} / \varepsilon_{exp}^{th}$ equals 0.94 when $\sigma = 0.26$.

Table 1. Comparison between calculated and experimental deformations of CFSTC concrete core.

№	Series	$d \times \delta$ (mm)	f_c (MPa)	P (MPa)	f_{yp} (MPa)	N_u (kN)	$\varepsilon_{exp} \times 10^5$	$\varepsilon_{exp} / \varepsilon_{(1)}$	$\varepsilon_{exp} / \varepsilon_{(10)}$
1	H1.0	150x1.5	23.4	0	295	950	810	1.21	1.04
2	H2.0	153x3	22.7	0	295	1473	1500	1.11	1.11
3	H3.0	159x6	25.1	0	295	2040	1700	0.67	1.04
4	H4.0	219x6	23.7	0	290	3020	1450	0.77	1.12
5	O1.3	150x1.5	23.4	3.0	295	1282	1900	3.64	1.05
6	O2.1	153x3	21.3	1.2	295	1200	2100	1.85	0.88
7	O2.2	153x3	25.1	1.8	295	1400	2450	2.54	1.06
8	O2.3	153x3	22.7	3.0	295	1410	2400	2.45	0.83
9	O3.3	159x6	25.1	2.9	295	2200	2600	1.38	0.80
10	O4.3	219x6	23.7	2.9	290	3288	2550	1.85	0.89

Average value

							σ			
							1.75	0.98	0.92	0.12

6. Conclusions

Based on phenomenological approach, formula for calculating axial deformations of volume-compressed concrete core of CFSTC when achieving its strength is obtained. This formula allows carrying out accurate calculations when using structures both with precompressed and uncompressed concrete.

References

[1] Chen B C 2008 New development of long span CFST arch bridges in China *Proc. Chinese-Croatian Joint Colloquium “Long Arch Bridges”* (Brijuni Islands) pp 357–67

[2] Han L-H and an Yufeng 2014 Performance of concrete-encased CFST stub columns under axial compression *J. of Constructional Steel Research* **93** 62–76

[3] Imran I and Pantazopoulou S 1996 Experimental study of plain concrete under triaxial stress *ACI Materials J.* **93(6)** 589–601

[4] Jayasooriya R, Thambiratnam D P and Perera N J 2014 Blast response and safety evaluation of a composite column for use as key element in structural systems *Engineering Structures* **61(1)** 31–43

[5] Shams M and Saadeghvaziri M A 1999 State of the art of concrete-filled steel tubular columns *ACI Structural J.* **94** 558–71

[6] Han L-H, Lam D and Nethercot D 2018 *Design Guide for Concrete-filled Double Skin Steel Tubular Structures* (CRC Press, Taylor & Francis Group) p 113

[7] Lam D and Gardner L 2008 Structural design of stainless steel concrete filled columns *Journal of Constructional Steel Research* **64(11)** 1275–82

[8] Lu X and Hsu C T 2007 Stress–strain relations of high-strength concrete under triaxial compression *J. Mater. Civil Eng.* **19(3)** 261–8

[9] Subramanian N 2011 Design of confinement reinforcement for RC columns *The Indian Concrete Journal* **85(6)** 1–9

[10] Tao Z, Uy B, Han L-H and He S H 2008 Design of concrete-filled steel tubular members according to the Australian Standard AS 5100 Model and calibration *Australian Journal of Structural Engineering* **8(3)** 197–214

[11] Krishan A L, Astafeva M A and Sabirov R R 2016 *Calculation and Construction of Concrete Filled Steel Tube Columns* (Saarbrucken, Deutschland: Palmarium Academic Publishing) p 261

[12] Krishan A L, Rimshin V I and Astafeva M A 2018 Deformability of a Volume-Compressed Concrete *IOP Conf. Series: Materials Science and Engineering* **463(2)** 022063
[13] Krishan A L, Astafeva M A and Chernyshova E P 2018 Strength calculation of short concrete-filled steel tube columns *International Journal of Concrete Structures and Materials* **84** 12

[14] Ahmadi M, Naderpour H and Kheyroddin A 2017 ANN model for predicting the compressive strength of circular steel-confined concrete *Int. Journal Civ. Eng.* **15**(2) 213–21

[15] Attard M M and Samani A K 2012 A stress–strain model for uniaxial and confined concrete under compression *Eng. Struct.* **41** 335–49

[16] Fattah A M 2012 *Behaviour of Concrete Columns under Various Confinement Effects* (Kanzas, USA: Kanzas State University) p 399

[17] Mander J B, Priestley M J N and Park R 1988 Theoretical stress-strain model for confined concrete *Journal of Structural Engineering* **114**(8) 1804–26

[18] Wang F and Han L-H 2018 Analytical behavior of special-shaped CFST stub columns under axial compression *Thin-Walled Structures* **129** 404–17

[19] Watson S, Zahn F A and Park R 1994 Confining Reinforcement for Concrete Columns *Journal of Structural Engineering* **120**(6) 1798–824

[20] Xiamuxi A and Hasegawa A 2012 A study on axial compressive behaviors of reinforced concrete filled tubular steel columns *Journal of Constructional Steel Research* **76** 144–54

[21] Krishan A L, Chernyshova E P and Sabirov R R 2018 The Bearing Capacity of the Pre-Compressed Concrete Filled Steel Tube Columns *Defect and Diffusion Forum* **382** 261-6

Acknowledgments
The article is written on the basis of the results of the research conducted by the RAASN No. 7.4.11.