Plasma relaxation and topological aspects in Hall magnetohydrodynamics

1-1-2012

Bhimsen K. Shivamoggi

University of Central Florida

Find similar works at: https://stars.library.ucf.edu/facultybib2010

University of Central Florida Libraries http://library.ucf.edu

Recommended Citation

Shivamoggi, Bhimsen K., "Plasma relaxation and topological aspects in Hall magnetohydrodynamics" (2012). Faculty Bibliography 2010s. 3297.
https://stars.library.ucf.edu/facultybib2010/3297

This Article is brought to you for free and open access by the Faculty Bibliography at STARS. It has been accepted for inclusion in Faculty Bibliography 2010s by an authorized administrator of STARS. For more information, please contact lee.dotson@ucf.edu.
Plasma relaxation and topological aspects in Hall magnetohydrodynamics

B. K. Shivamoggi

Citation: Physics of Plasmas 19, 072124 (2012); doi: 10.1063/1.4737093
View online: https://doi.org/10.1063/1.4737093
View Table of Contents: http://aip.scitation.org/toc/php/19/7
Published by the American Institute of Physics

Articles you may be interested in
The infinitesimal operator for the semigroup of the Frobenius-Perron operator from image sequence data: Vector fields and transport barriers from movies
Chaos: An Interdisciplinary Journal of Nonlinear Science 17, 023126 (2007); 10.1063/1.2742932

Relativity and mathematical tools: Waves in moving media
American Journal of Physics 75, 1134 (2007); 10.1119/1.2772281

The role of the density operator in the statistical description of quantum systems
American Journal of Physics 75, 1162 (2007); 10.1119/1.2785194

Using the thermal Gaussian approximation for the Boltzmann operator in semiclassical initial value time correlation functions
The Journal of Chemical Physics 125, 224104 (2006); 10.1063/1.2395941

Correlation and response functions with non-Markovian dissipation: A reduced Liouville-space theory
The Journal of Chemical Physics 122, 084115 (2005); 10.1063/1.1853353

Ground states of linear rotor chains via the density matrix renormalization group
The Journal of Chemical Physics 148, 134115 (2018); 10.1063/1.5024403
Plasma relaxation and topological aspects in Hall magnetohydrodynamics

B. K. Shivamoggi
University of Central Florida, Orlando, Florida 32816-1364, USA

(Received 22 May 2012; accepted 12 June 2012; published online 30 July 2012)

Parker’s formulation of isotopological plasma relaxation process in magnetohydrodynamics (MHD) is extended to Hall MHD. The torsion coefficient α in the Hall MHD Beltrami condition turns out now to be proportional to the potential vorticity. The Hall MHD Beltrami condition becomes equivalent to the potential vorticity conservation equation in two-dimensional (2D) hydrodynamics if the Hall MHD Lagrange multiplier β is taken to be proportional to the potential vorticity as well. The winding pattern of the magnetic field lines in Hall MHD then appears to evolve in the same way as potential vorticity lines in 2D hydrodynamics. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4737093]

I. INTRODUCTION

A significant class of exact solutions of the equations governing magnetohydrodynamics (MHD) emerges under the Beltrami condition—the local current density is proportional to the magnetic field—the force-free state (Lundquist and Lust and Schluter). These Beltrami solutions turned out to correlate well with real plasma behavior (Priest and Forbes and Schindler). Parker showed that, in certain plasma relaxation processes, the Beltrami condition is indeed equivalent to the vorticity conservation equation in two-dimensional (2D) hydrodynamics (and the Lagrange multiplier α turned out to be proportional to vorticity).

In a high-β plasma, on length scales in the range $d_i < \ell < d_e$, where d_e is the skin depth, $d_i \equiv c/\omega_{pi}$, $s = i, e$ (i and e referring to the ions and electrons, respectively), the electrons decouple from the ions. This results in an additional transport mechanism for the magnetic field via the Hall current (Sonnerup), which is the ion-inertia contribution in Ohm’s law. The Hall effect leads to the generation of whistler waves whose

- frequency lies between ion-cyclotron and electron-cyclotron frequencies ω_i and ω_e, respectively,
- phase velocity exceeds that of Alfvén waves for wavelengths parallel to the applied magnetic fields less than d_i.

Further, the decoupling of ions and electrons in a narrow region around the magnetic neutral point (where the ions become unmagnetized while the electrons remain magnetized) allows for rapid electron flows in the ion-dissipation region and hence a faster magnetic reconnection process in the Hall MHD regime (Mandt et al.).

The purpose of this paper is to extend the considerations of Parker to Hall MHD and investigate the evolution of the winding pattern of the magnetic field lines in Hall MHD.

II. BELTRAMI STATES IN HALL MHD

The Hall MHD equations (which were formulated by Lighthill following his far-sighted recognition of the importance of the Hall term in the generalized Ohm’s law) are (in usual notations)

$$\frac{\partial \mathbf{A}}{\partial t} = \nabla \times (\mathbf{v} \times \Omega),$$

$$\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} = -\frac{1}{\rho} \nabla p + \mathbf{f} + \frac{1}{\rho} \left(\nabla \times \frac{\mathbf{E}}{c} \right),$$

where ρ is the number density of ions (or electrons) and Ω is the generalized vorticity,

$$\Omega_i \equiv \omega_i + \omega_n, \quad \omega_i \equiv \nabla \times \mathbf{v}_i, \quad \omega_n \equiv \frac{e\mathbf{B}}{m_i c}.$$

Here, we have considered an incompressible, two-fluid, quasi-neutral plasma and have neglected the electron inertia.

Equations (1) and (2) have the Hamiltonian formulation (Shivamoggi),

$$H = \frac{1}{2} \int \left[\psi_i \cdot \Omega_i + \frac{1}{c} \mathbf{A} \cdot (\mathbf{J} - ne\mathbf{v}_i) \right] dV,$$

where

$$m_i n \mathbf{v}_i \equiv \nabla \times \psi_i$$

and V is the volume occupied by the plasma. Further, we have put $|\psi_i| = 0$ on the boundary ∂V and have rendered ψ_i unique by imposing the gauge condition,

$$\nabla \cdot \psi_i = 0.$$
The Hamilton equations are then

\[
\frac{\partial H}{\partial \Omega} \frac{\partial \Omega}{\partial \mathbf{A}} = \frac{\partial \Omega}{\partial \mathbf{A}} \frac{\partial H}{\partial \mathbf{A}},
\]

which are just Eqs. (1) and (2). Here, \(\frac{\partial H}{\partial \mathbf{q}} \) is the variational derivative.

The Casimir invariants for Hall MHD are solutions of the equations,

\[
J \left(\frac{\delta C}{\delta \Omega} \right) = \left(\begin{array}{c} 0 \\ \mathbf{B} \end{array} \right),
\]

It may be verified that two such solutions are

\[
\begin{pmatrix} \frac{\delta C_{(1)}}{\delta \Omega} \\ \frac{\delta C_{(1)}}{\delta \mathbf{A}} \end{pmatrix} = \begin{pmatrix} 0 \\ \mathbf{B} \end{pmatrix}
\]

or

\[
C_{(1)} = \int V \mathbf{A} \cdot \mathbf{B} \, dV
\]

as with classical MHD, and

\[
\begin{pmatrix} \frac{\delta C_{(2)}}{\delta \Omega} \\ \frac{\delta C_{(2)}}{\delta \mathbf{A}} \end{pmatrix} = \begin{pmatrix} \frac{e \mathbf{A}}{m_ic} + \mathbf{v}_i \\ \left(\frac{e}{m_ic} \right)^2 \mathbf{B} \end{pmatrix}
\]

or

\[
C_{(2)} = \int \left(\frac{e \mathbf{A}}{m_ic} + \mathbf{v}_i \right) \cdot \mathbf{\Omega}_i \, dV.
\]

\(C_{(1)} \) is the total magnetic helicity and \(C_{(2)} \) is the total generalized ion cross helicity.

A significant class of exact solutions of the Hall MHD Eqs. (1) and (2) emerges as the end result of the isotopological energy-lowering Beltrami process. Thus, minimization of \(H \), keeping \(C_{(1)} \) fixed, gives

\[
\frac{\delta H}{\delta \mathbf{A}} = \lambda_{(1)} \frac{\delta C_{(1)}}{\delta \mathbf{A}},
\]

or

\[
\frac{1}{c} (\mathbf{J} - ne \mathbf{v}_i) = \lambda_{(1)} \mathbf{B},
\]

which is the pseudo-force-free state.

On the other hand, minimization of \(H \), keeping \(C_{(2)} \) fixed, gives

\[
\frac{\delta H}{\delta \mathbf{A}} = \frac{\delta C_{(2)}}{\delta \mathbf{A}},
\]

or

\[
m_i n v_i = \lambda_{(2)} \Omega_i,
\]

which is the generalized Alfvénic state.

Combining Eqs. (15) and (17), we obtain for the Hall MHD Beltrami state (Turner),

\[
\frac{m_i n v_i}{e} \mathbf{\nabla} \times \mathbf{B} = \left(\frac{\lambda_{(1)}}{e} \frac{m_i}{e} \frac{e}{m_i c} \lambda_{(2)} \right) \mathbf{B} = \lambda_{(2)} \omega_i.
\]

III. PLASMA RELAXATION IN AN APPLIED UNIFORM MAGNETIC FIELD

Consider now, following Parker, a plasma in an applied magnetic field and confined between two infinite parallel plates \(z = 0 \) and \(L \). The field lines of an initially uniform magnetic field \(\mathbf{B}_0 = B_0 \mathbf{z} \), are wrapped around and intermixed by random turbulent motion of their footpoints on these planes. This interlaced magnetic field then relaxes isotopologically toward the lowest available energy state described by Eq. (18) written in the form,

\[
\mathbf{\nabla} \times \mathbf{B} = 2 \mathbf{B} + \beta \omega_i.
\]

The MHD Lagrange multiplier \(\alpha \) may be interpreted as the torsion coefficient while \(\beta \) is the Hall MHD Lagrange multiplier.

Suppose this process exhibits slow variations in the \(z \)-direction, characterized by the slow spatial scale

\[
\varepsilon \equiv c \zeta, \quad \varepsilon \ll 1.
\]

Let the magnetic field involved in this process be given by

\[
\mathbf{B} = (c B_0 b_x, \, c B_0 b_y, \, B_0 (1 + c b_z))
\]

and the Lagrange multipliers \(\alpha \) and \(\beta \) be given by

\[
\alpha = \epsilon a, \quad \beta = \epsilon b.
\]

Using Eqs. (20)–(22), Eq. (17) may be written as

\[
v_x = \sigma (c_1 c b_x + \alpha), \quad v_y = \sigma (c_1 c b_y + \alpha), \quad v_z = \sigma [c_1 (1 + c b_z) + \epsilon \omega_z].
\]

The out-of-plane (or toroidal) ion flow \((v_z = 0)\) is peculiar to Hall MHD. Here, \(\sigma \) and \(c_1 \) are appropriate constants. Equation (19) leads to

\[
\frac{\partial b_x}{\partial y} - \epsilon \frac{\partial b_x}{\partial \zeta} = c a b_x + c b \alpha_x, \quad (24a)
\]

\[
\epsilon \frac{\partial b_x}{\partial \zeta} - \frac{\partial b_x}{\partial x} = c b_y + c b \alpha_y, \quad (24b)
\]
\[
\frac{\partial b_x}{\partial x} - \frac{\partial b_y}{\partial y} = a(1 + \epsilon b_z) + \epsilon boz, \quad (24c)
\]
and the divergence-free condition on \(B \) leads to
\[
\frac{\partial b_x}{\partial x} + \frac{\partial b_y}{\partial y} + \epsilon \frac{\partial b_z}{\partial z} = 0. \quad (25)
\]
On the other hand, taking the divergence of Eq. (19), we obtain
\[
B \cdot \nabla \alpha + \omega_1 \cdot \nabla \beta = 0, \quad (26)
\]
which, on using Eqs. (20)–(22), leads to
\[
b_x \frac{\partial a}{\partial x} + b_y \frac{\partial a}{\partial y} + (1 + \epsilon b_z) \frac{\partial a}{\partial \xi} + \omega_r \frac{\partial b}{\partial x} + \omega_v \frac{\partial b}{\partial y} + \epsilon \omega_r \frac{\partial b}{\partial \zeta} = 0. \quad (27)
\]
Equations (24a) and (24b) imply
\[
b_z \sim O(\epsilon). \quad (28)
\]
Using Eq. (28), Eq. (25) leads to, to \(O(1) \)
\[
b_z = \frac{\partial \psi}{\partial y}, \quad b_y = -\frac{\partial \psi}{\partial x}. \quad (29)
\]
for some magnetic flux function \(\psi = \psi(x, y) \).
Using Eq. (29), we obtain from Eq. (23), to \(O(\epsilon) \)
\[
\frac{\partial v_x}{\partial y} = \sigma \left(c_1 \epsilon \frac{\partial^2 \psi}{\partial y^2} + \epsilon \frac{\partial^2 v_z}{\partial y^2} \right), \quad (30a)
\]
\[
\frac{\partial v_y}{\partial x} = \sigma \left(-c_1 \epsilon \frac{\partial^2 \psi}{\partial x^2} - \epsilon \frac{\partial^2 v_z}{\partial x^2} \right), \quad (30b)
\]
and hence
\[
\omega_z \equiv \frac{\partial v_y}{\partial x} - \frac{\partial v_x}{\partial y} = -\sigma \epsilon (c_1 \nabla^2 \psi + \nabla^2 v_z), \quad (31)
\]
where
\[
\nabla^2 \equiv \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}.
\]
Next, using Eq. (29), Eq. (24c) leads to, to \(O(1) \)
\[
a = -\nabla^2 \psi. \quad (32)
\]
Using Eq. , and putting
\[
\omega_z \equiv \epsilon \sigma c_1 \omega, \quad (33)
\]
Eq. (32) leads to
\[
a = q \equiv \omega + \frac{1}{\epsilon c_1} \nabla^2 v_z, \quad (34)
\]
 implying that the torsion coefficient \(\alpha \) is proportional to the potential vorticity \(q \) in Hall MHD.
On the other hand, using Eqs. (23) and (34), Eq. (27) leads to, to \(O(\epsilon) \)
\[
\epsilon \sigma c_1 \frac{\partial q}{\partial \xi} + v_x \frac{\partial q}{\partial x} + v_y \frac{\partial q}{\partial y} + \sigma [(q - c_1 b), v_z] = 0, \quad (35)
\]
where
\[
[f, g] \equiv \frac{\partial f}{\partial x} \frac{\partial g}{\partial y} - \frac{\partial f}{\partial y} \frac{\partial g}{\partial x}.
\]

If we take the Hall MHD Lagrange multiplier \(b \) also to be proportional to the potential vorticity \(q \), i.e.,
\[
b = \frac{1}{c_1} q, \quad (36)
\]
Eq. (35) becomes the potential vorticity conservation equation in 2D hydrodynamics (on identifying \(\xi \) with \(\tau \),
\[
\epsilon \sigma c_1 \frac{\partial q}{\partial \xi} + v_x \frac{\partial q}{\partial x} + v_y \frac{\partial q}{\partial y} = 0. \quad (37)
\]
Thus, the Beltrami condition (19) in Hall MHD becomes equivalent to the potential vorticity conservation equation in 2D hydrodynamics if the Hall MHD Lagrange multiplier \(\beta \) is taken to be proportional to the potential vorticity \(q \) as well. Equation (36) is sufficient but not necessary to obtain Eq. (37). Equation (34) then implies that the winding pattern of the magnetic field lines in Hall MHD evolves in the same way as potential vorticity lines in 2D hydrodynamics.

IV. DISCUSSION

In this paper, we have extended Parker’s formulation of isotopological plasma relaxation process in MHD to Hall MHD. The torsion coefficient \(\alpha \) in the Hall MHD Beltrami condition turns out now to be proportional to the potential vorticity. The Hall MHD Beltrami condition becomes equivalent to the potential vorticity conservation equation in 2D hydrodynamics if the Hall MHD Lagrange multiplier \(\beta \) is taken to be proportional to the potential vorticity as well. The winding pattern of the magnetic field lines in Hall MHD then appears to evolve in the same way as potential vorticity lines in 2D hydrodynamics. The analogy between a smooth, continuous magnetic field in Hall MHD and 2D hydrodynamics as in ordinary MHD (Parker \(\text{2} \)) implies that the current sheets seem to have the same role in the development of Hall MHD equilibria as they do in the MHD case.

ACKNOWLEDGMENTS

This work was a result of my participation at the International Astrophysics Forum, Alpbach, 2011. I am thankful to Professor Eugene Parker for helpful suggestions and giving me access to Ref. 7 prior to publication and Professors...
Manfred Leubner and Zoltan Voros for their hospitality.
I am thankful to the referee for his helpful remarks.

1S. Lundquist, Ark. Fys. 2, 361 (1950).
2R. Lust and A. Schluter, Z. Astrophys. 34, 263 (1954).
3E. R. Priest and T. Forbes, Magnetic Reconnection (Cambridge University Press, 2000).
4K. Schindler, Physics of Space Plasma Activity (Cambridge University Press, 2007).
5E. N. Parker, Geophys. Astrophys. Fluid Dyn. 34, 243 (1986).
6E. N. Parker, Conversations on Electric and Magnetic Fields in the Cosmos (Princeton University Press, 2007), Chap. 10.
7E. N. Parker, “Field line topology and rapid reconnection,” in International Astrophysics Forum, Alpbach, 2011.
8B. U. O. Sonnerup, in Solar System Plasma Physics, edited by L. J. Lanzerotti, C. F. Kennel, and E. N. Parker (North Holland, 1979), p. 45.
9M. E. Mandt, R. E. Denton, and J. F. Drake, Geophys. Res. Lett. 21, 73, doi: 10.1029/93GL03382 (1994).
10M. J. Lighthill, Philos. Trans. R. Soc. London, Ser. A 252, 397 (1960).
11B. K. Shivamoggi, Eur. Phys. J. D 64, 404 (2011).
12P. J. Olver, J. Math. Anal. Appl. 89, 233 (1982).
13L. Turner, IEEE Trans. Plasma Sci. PS-14, B49 (1986).