Anaphylatoxin Receptor C3AR1 Promotes Optic Nerve Degeneration in DBA/2J Mice

Jeffrey M Harder
Jackson Laboratory https://orcid.org/0000-0003-3832-3553

Pete Williams
Karolinska Institutet

Catherine Braine
Jackson Laboratory

Hongtian Yang
Jackson Laboratory

Jocelyn Thomas
The Jackson Laboratory

Nicole Foxworth
The Jackson Laboratory

Simon John
Columbia University Medical Center

Gareth Howell (✉ gareth.howell@jax.org)
https://orcid.org/0000-0003-0565-6474

Research

Keywords: glaucoma, complement, anaphylatoxin, microglia, monocytes, neurodegeneration

DOI: https://doi.org/10.21203/rs.3.rs-39367/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background

The risk of glaucoma increases significantly with age and exposure to elevated intraocular pressure, two factors linked with neuroinflammation. The complement cascade is a complex immune process with many bioactive end-products, including mediators of inflammation called anaphylatoxins. Complement cascade activation has been shown in glaucoma patients and models of glaucoma. However, the function of anaphylatoxin signaling in glaucoma is largely untested. Here, the C3AR1 anaphylatoxin receptor was genetically disrupted in DBA/2J mice, an ocular hypertensive model of glaucoma, to test its contribution to neurodegeneration.

Methods

A null allele of \textit{C3ar1} was backcrossed into DBA/2J mice. Development of iris disease, ocular hypertension, optic nerve degeneration, retinal ganglion cell activity, loss of RGCs, and myeloid cell infiltration in \textit{C3ar1} deficient and sufficient DBA/2J mice were compared across multiple ages. RNA sequencing was performed on microglia from primary culture to determine global effects of \textit{C3ar1} on microglia gene expression.

Results

Deficiency in \textit{C3ar1} lowered the risk of degeneration in ocular hypertensive mice without affecting intraocular pressure elevation at 10.5 months of age. Differences were found in the percentage of mice affected, but not in individual characteristics of disease progression. The protective effect of \textit{C3ar1} deficiency was then overcome by additional aging and ocular hypertensive injury. Microglia and other myeloid derived cells were the primary cells identified that express \textit{C3ar1}. In the absence of \textit{C3ar1}, microglial expression of genes associated with neuroinflammation and other immune functions were differentially expressed compared to WT. A network analysis of these data suggested that the IL10 signaling pathway is a major interaction partner of C3AR1 signaling in microglia.

Conclusions

C3AR1 was identified as a damaging neuroinflammatory factor. These data help suggest complement activation causes glaucomatous neurodegeneration through multiple mechanisms, including inflammation. Microglia and infiltrating myeloid cells expressed high levels of \textit{C3ar1} and are the primary candidates to mediate its effects. C3AR1 appeared to be a major regulator of microgliareactivity and neuroinflammatory function due to its interaction with IL10 signaling and other immune related pathways. Targeting myeloid-derived cells and anaphylatoxin signaling with therapies is expected to improve neuroprotective therapeutic strategies.

Introduction
Glaucoma is a common disease that damages the optic nerve and impairs vision (1). Risk for glaucoma is greatly increased after middle age and by exposure to elevated intraocular pressure (IOP). Elevated IOP and aging are associated with neuroinflammation, yet it remains unclear when and how neuroinflammation becomes damaging in glaucoma and how to intervene (2, 3). These questions underlie a need to develop a comprehensive understanding of inflammatory processes in glaucoma.

A major type of inflammatory response observed in glaucoma patients is activation of the complement cascade (4-6). The complement cascade is activated by three distinct pathways, the classical, alternative, and mannose-binding lectin pathways, which play a key role in responding to tissue damage and infection. The final product of the complement cascade, the membrane attack complex (MAC), has been identified in optic nerve tissue from ocular hypertensive patients. This suggests full activation of the complement cascade has occurred, including multiple steps that promote neuroinflammation. The major products of the complement cascade that promote neuroinflammation are the anaphylatoxins and the MAC (7, 8). The anaphylatoxins are polypeptides produced by the cleavage of complement components 3 and 5, and named C3a and C5a, respectively. C3a and C5a bind to cell surface receptors expressed on immune and non-immune cells to induce cytokine production and immune cell recruitment. The MAC is a complex formed on plasma membranes by complement components 5b, 6, 7, 8 and 9 as a result of opsonized antigens. Low levels of the MAC on target cells activate intracellular signaling pathways and high levels induce lysis. Sublytic levels of the MAC amplify inflammatory intracellular signaling pathways by activating the NFkB signaling and inflammasome pathways (9, 10). Due to the potentially damaging role of inflammation in glaucoma and other neurodegenerative disorders, the anaphylatoxins and the MAC are predicted to be useful targets for developing anti-inflammatory therapies (11, 12).

Research in animal models suggests that the complement cascade contributes to pathology in ocular hypertensive eyes (4, 13-20). This includes models of glaucoma like DBA/2J mice, who develop an ocular hypertensive disease in which the complement component 1q complex (C1q) or C5 exacerbates neuroinflammation, retinal ganglion cell loss and optic nerve degeneration (20-23). These data further support the need to determine the function of pro-inflammatory products of the complement cascade after an ocular hypertensive insult. To test the function of an anaphylatoxin in a chronic, age-related model of glaucoma, we backcrossed a null allele of the C3a receptor (C3ar1) into DBA/2J mice. C3AR1 is a G-protein coupled receptor expressed in cells in the nervous and immune systems (see review: (24)) and is implicated in neuropathology in several diseases (25-29). In DBA/2J mice, C3ar1-deficiency decreased the incidence of optic nerve damage and RGC loss at a time point consistent with the C3a anaphylatoxin promoting neurodegeneration.
Methods

Animals and husbandry. C.129S4-C3ar1tm1Cge/J(C3ar1) mice were obtained from The Jackson Laboratory (Bar Harbor, ME, USA; stock number 005712)(30). The C3ar1 null allele was backcrossed onto DBA/2J (D2) for 10 generations to generate the congenic strain D2.129S4(C)-C3ar1tm1Cge/Sj. Experimental cohorts of mice were produced by intercrossing heterozygous (C3ar1+/−) mice. Mice of both sexes were used, with approximately equal numbers for each age group and genotype. Mice were housed with a 14-hour-light/10-hour-dark cycle as previously described(31). All animals were treated according to the guidelines of the Association for Research in Vision and Ophthalmology for use of animals in research. The Animal Care and Use Committee of The Jackson Laboratory approved all experimental procedures.

Clinical assessment. Assessment of iris disease was performed using a slit-lamp biomicroscope as previously reported (32) and mice were assessed every two months beginning at 6 months of age. IOP was measured by the microneedle method while mice were under anesthesia (ketamine/xylazine) (33, 34). Mice were assessed every two months beginning at 8 months of age. Iris disease and IOP data were collected for at least 40 eyes of each age and genotype.

Optic nerve damage. Damaged axons stain darkly when treated with the sensitive chemical marker paraphenylenediamine (PPD)(35). We assessed optic nerve damage by staining cross-sections of the retro-orbital optic nerve with PPD. Two masked investigators assigned each optic nerve one of three damage levels: no or early (NOE; no readily detectible axon loss), moderate (MOD; less than 50% of axons damaged/lost), and severe (SEV; more than 50% of axons damaged/lost). This method of evaluating optic nerve damage has been carefully validated by counting axons(20, 36-39). Glaucomatous axon damage was assessed in 10.5 and 12-month-old C3ar1+/+ and C3ar1−/− mice (55 nerves for each age and genotype).

RGC soma loss. Eyes were fixed overnight in 4% paraformaldehyde. Retinas were dissected, flat-mounted, and Nissl-stained with cresyl violet as previously described(38). Images of 40x fields of the RGC layer were obtained using a Zeiss Axiolmager. To account for regional variation in RGC density, two 40x fields were counted in each retinal quadrant equidistant to the periphery. The counts in the eight fields were averaged to obtain a single count per eye. Eight eyes were counted per optic nerve damage level and genotype. It is important to note that the RGC layer consists of roughly 50% RGCs. This limits the extent of total neuron loss measured because only RGCs die in standard DBA/2J mice. Loss of RGCs by Nissl-staining correlates well with loss of RGCs by axon count in optic nerves with severe damage(20, 36-39).

Pattern electroretinography. PERG was performed as previously described (40). Briefly, mice were anaesthetized using ketamine / xylazine (34) and their body temperature was maintained at 37 °C. Eyes were stimulated asynchronously by contrast-reversal of gratings (0.05 cycles/degree, 100% contrast) generated on LED tablets. PERG signals were acquired using subcutaneous needles placed in the snout. Waveforms were determined using the average of three consecutive repetitions.
RNA isolation from cultured astrocytes and microglia. Primary mixed cortical cultures of microglia and astrocytes from three-day-old pups were generated and microglia were fluorescently labeled and sorted as previously described (17). In brief, seventeen days after plating, cultures were dissociated (HyClone Trypsin .25%; Thermoscientific) and resuspended in FACS buffer: HBSS (Gibco; Invitrogen 14025) supplemented with 2% BSA (Sigma-Aldrich, A7906) and containing 1U/ulSUPERaseIn™ RNase Inhibitor (Ambion; Life Technologies, AM2694). Cells were centrifuged at 1305g for 5 minutes and suspended in 50ul of fresh FACS buffer to wash. The cells were stained for 1 hour at 4°C with chicken anti-GFAP (Abcam, ab4674) to label astrocytes and rabbit anti-IBA1 (Wako, 016-20001) to label microglial cells. Cells were washed three times and incubated for 30 minutes at 4°C with secondary antibodies: donkey anti-rabbit 647 (Invitrogen, A31573) and goat anti-chicken 488 (Invitrogen, A11039). Samples were re-suspended in 200ul of FACS buffer and sorted on BD Biosciences LSR II SORP. Purified microglia were collected separately and stored in RLT Buffer (Qiagen, 79216) at -80°C. Total RNA was isolated (Qiagen, 74104) from purified samples from D2. C3ar1−/− and D2. C3ar1+/+ mice.

RNA-sequencing and analysis of differentially expressed (DE) genes. The steps taken to produce sequencing libraries have been previously reported (17). In brief, starting with 5ng of high quality RNA, sequencing libraries were constructed using Ovation RNA-Seq V2 and TruSeq DNA sample prep kit v2 kits. Libraries were sequenced on a HiSeq 2000 sequencer from Illumina. Reads with 70% of their bases having a base quality score ≥ 30 were retained for further analysis. Read alignment and expression estimation were performed using TopHat v 2.0.7 (41) and HTSeq(42)with default parameters against mouse genome (build-mm10). DE genes between groups were identified using edgeR (v 3.8.5) (43) following the removal of lowly expressed genes (counts per million < 1 in more than two samples). The DE gene set was analyzed using Ingenuity Pathway Analysis (IPA) software. Results for enrichment of IPA canonical pathways and upstream regulator terms are shown.

Myeloid-derived cell counting by flow cytometry

Mice were euthanized and eyes were immediately enucleated. Retinas, optic nerves, and spleens were dissected in ice-cold, filter sterilized HBSS (Gibco; 14175-095) and placed in HBSS with dispase (5 U/ml) (Stemcell Technologies), DNase I (2000 U/ml) (Worthington Biochemical) and SUPERase (1 U/μl) (ThermoFisher Scientific). The tissues were shaken at 350 rpm for 60 minutes at 37°C in an Eppendorf Thermomixer R and then titrated with a 200 ul pipette to dissociate cells. Cells were centrifuged at ~3000 g for 5 minutes and suspended in a new solution by titration. Ovomucoid trypsin inhibitors (10 mg/ml) were added to the 2% BSA in HBSS block solution to inhibit proteases. Samples were kept on ice and protected from light for blocking and antibody incubations. Primary antibody solution contained anti-Cd11b, anti-CD45, anti-Cd11c, and DAPI. Samples were blocked for 1 hour, incubated with primary antibodies in block solution for 2 hours, washed 3x, incubated in secondary antibodies for 1 hour, washed 3x and then suspended in block solution for flow cytometry on BD Biosciences LSR II SORP. Tissue collected from the spleen and processed the same was used to guide analysis of the myeloid cell populations.
Statistics. Comparisons of mean IOP levels, RGC layer neuron counts, PERG amplitudes, and myeloid cell population numbers were comparisons between $C3ar1^{-/-}$ and $C3ar1^{+/+}$ mice at each age shown and performed using Student’s t-tests. Each assay involved multiple comparisons and $P < 0.01$ was considered significant. Fisher’s exact test of independence was used to compare the number of nerves at each grade level at a specific age between $C3ar1^{-/-}$ and $C3ar1^{+/+}$ mice. $P < 0.01$ was considered significant. DE genes from RNA sequencing experiments were adjusted for multiple testing using FDR. Genes were considered to be differentially expressed between $C3ar1^{-/-}$ and $C3ar1^{+/+}$ at FDR < 0.01. Ingenuity pathway analysis software was used to assess enrichment of terms (canonical pathways and upstream regulators) by DE genes. Benjamin-Hochberg adjusted P-values < 0.05 were considered significant. The complete list of genes detected by RNA sequencing was used as the background gene list. Expression data and analyses are provided in Tables 1-3.

Results

$C3ar1$ deficient DBA/2J mice developed elevated intraocular pressure

DBA/2J mice inherit a depigmenting iris disease that leads to high IOP and glaucoma(32, 38). Immune cells that are likely to express $C3ar1$ contribute to iris damage and the development of ocular hypertension(44, 45). To determine whether $C3ar1$ deficiency affected iris disease or IOP elevation, eyes of $C3ar1^{-/-}$ mice and their $C3ar1^{+/+}$ littermates were examined regularly beginning at 6 months of age. No differences between genotypes were observed in the onset and progression of the iris disease (Figure 1A) or IOP elevation (Figure 1B). In $C3ar1$ deficient mice, high IOP sufficient to cause ocular hypertensive damage was observed, similar to standard DBA/2J mice(38).

$C3ar1$ promoted glaucomatous degeneration in D2 mice

The presence of optic nerve degeneration in an eye can be explicitly determined by identifying degenerating axons and scarred regions with axon loss in the optic nerve(Figure 2A) (20, 36-39). The percentage of eyes with optic nerve degeneration in $C3ar1^{-/-}$ and $C3ar1^{+/+}$ mice was compared at 10.5 and 12 months of age. At 10.5 months of age, significantly fewer eyes from $C3ar1^{-/-}$ mice had degeneration(Figure 2B) suggesting that $C3ar1$ deficiency decreased the risk of ocular hypertensive injury. By 12 months of age, $C3ar1$ deficient mice were no longer protected from glaucomatous degeneration(Figure 2B). Thus, $C3ar1$ was not the sole trigger for degeneration, but did promote optic nerve damage.

Eyes from $C3ar1^{-/-}$ mice with healthy optic nerves had a normal number of RGC layer neurons, suggesting that $C3ar1$ deficiency had not caused abnormal loss of RGCs or amacrine cells (Figure 2C,D). In eyes with optic nerve degeneration, the loss of RGC layer neurons was independent of $C3ar1$ genotype (Figure 2C,D). The observed loss of approximately half of RGC layer neurons is consistent with cell loss due to optic nerve injury, where the majority of RGCs die and amacrine cells are not affected(36, 39). These data indicate that $C3ar1^{-/-}$ mice had the same type of injury as standard D2 mice.
To investigate changes in RGC function in C3ar1−/− mice, pattern electroretinography was used. PERG amplitude is a sensitive measure of RGC activity and detects RGC dysfunction in ocular hypertensive DBA/2J mice (46, 47). PERG amplitude was recorded at 4 months of age, prior to the elevation of IOP, and 10 months of age, when lower amplitudes are expected due to ocular hypertension and not due to the degeneration that typically occurs at slightly older ages. C3ar1 deficiency had no effect on the average PERG amplitude in young mice. C3ar1−/− mice also had a similar decrease in PERG amplitude due to chronically elevated IOP as C3ar1+/+ mice. Thus, C3ar1 deficiency did not prevent changes in RGC activity associated with ocular hypertension (Figure 2C).

Ocular hypertension affects C3ar1 expression in the optic nerve head

In DBA/2J mice, observable injury occurs at the optic nerve head (ONH) prior to other regions of the optic nerve (36). At this same time point, the expression of C3ar1 increased in the ONH (2.0 to 3.4-fold; q<0.05), but not in the retina (1.0-fold; q=0.85) based on publicly available data (48). In the healthy brain it is well established that microglia primarily express C3ar1, with low or no expression in other cells (Figure 4A,B, (49-51)). In addition, higher levels of expression have been observed in subsets of microglia thought to mediate neuroinflammation, such as disease-associated microglia in 5xFAD mice, a widely-used mouse model of Alzheimer’s disease and Ccl3/Ccl4-positive microglia in aged and white matter-injured brain, as well as at embryonic and postnatal ages of development (Figure 4C, (52, 53)). This expression pattern is consistent with cell-type specific data from DBA/2J mice. ONH microglia and infiltrating monocytes express C3ar1 at high levels, while RGCs express C3ar1 at a lower level (Figure 4D, (54, 55)). Thus, C3ar1 deficiency in microglia and monocytes may affect their function or number in the ONH of ocular hypertensive eyes based on these expression data.

C3ar1 deficiency altered the inflammatory phenotype of cultured microglia.

To determine how C3ar1 deficiency may alter microglia function, RNA sequencing was performed on microglia sorted from primary co-cultures of postnatally-derived astrocytes and microglia. In culture, where gene expression is more uniform compared to DBA/2J mice, glial cells express many neuroinflammatory genes expressed in the optic nerve head of DBA/2J mice, including C3 (17). Microglia were identified by fluorescence-activated cell sorting as IBA1-positive and GFAP-negative cells (Figure 4A). The selected cells expressed high levels of genes associated with microglia and low levels of genes associated with astrocytes (Figure 4B). 408 genes were differentially expressed (DE) in microglia due to C3ar1 deficiency (Figure 4C; N=6, FDR<0.005).

The biological pathways most significantly enriched in DE genes included ‘role of pattern recognition receptors in recognition of bacteria and viruses’, ‘phagosome formation’, and ‘TREM1 signaling’ (Figure 5A). A network of the top 20 enriched pathways, with connections based on having more than five genes in common, suggested that most pathways were closely interrelated and relevant to neuroinflammation and immune cell recruitment (Figure 5B). Thus, the pathways altered by C3ar1 deficiency regulate homeostatic and pathological responses in microglia and other immune cells. Upstream regulators of DE
genes were analyzed to determine how C3ar1 deficiency may have this effect (Figure 5C). The most significantly enriched upstream regulators were ‘TCL1A’, ‘IL10’, and ‘LDLR’. The endogenous regulator that had the highest interconnectivity was the anti-inflammatory cytokine IL10 (Figure 5D). In addition, the predicted regulator associated with the most DE genes was dexamethasone, a corticosteroid that prevents inflammation. These data show that C3ar1 deficiency significantly altered the expression of inflammatory genes and signaling pathways in microglia.

C3ar1 deficiency altered myeloid cell populations in the optic nerve head.

In C3ar1 deficient DBA/2J mice, decreased anaphylatoxin signaling and other changes in inflammatory gene expression are likely to change the localization or reactivity of microglia and monocytes. To investigate this in DBA/2J mice, the population of myeloid-derived cells in the retina and the optic nerve head was assessed by flow cytometry at 10 months of age (Figure 6A). In the retina, no difference was observed between C3ar1+/+ and C3ar1−/− mice in the percentage of myeloid-derived cells, including CD45hi and Cd11c+ monocytes (Figure 6B). Thus, C3ar1 deficiency did not have a general effect on the number of these cells in neural tissue exposed to ocular hypertension. In contrast to the retina, the ONH is a very small region of tissue more sensitive to ocular hypertensive stress and a location where myeloid cells likely have beneficial and harmful effects at different stages of disease (20, 56); (54). In the ONH of C3ar1−/− mice the number of myeloid cells was more variable compared to in C3ar1+/+ mice (Figure 6C). These data suggest a role for C3ar1 in regulating myeloid cells in ONH under chronic ocular hypertensive stress.

Discussion

Interventions that target complement activation are being evaluated in many types of neurological injury and disease (reviewed in (57)). DBA/2J mice are a useful model for testing whether neurodegeneration caused by chronic ocular hypertension is prevented by targeting specific components of the complement cascade. DBA/2J mice have an inborn deficiency in C5 that prevents the formation of both C5a and the MAC (which requires C5b). Therefore, optic nerve damage in these mice is independent of C5, which has been shown to be detrimental if present (21). However, optic nerve damage is still dependent on C1q based on the protection against ocular hypertension observed in C1qa−/− mice (37). To determine how else C1q causes permanent damage and vision loss, there are a limited number of targets remaining to investigate, such as C3, C4, and receptors for C1q. Disrupting C3ar1 tested a function of C3 and the importance of anaphylatoxin signaling. In fact, in the absence of C5a, C3AR1 is the only anaphylatoxin receptor with a potential ligand in DBA/2J mice. C3ar1 deficiency decreased the percentage of mice with optic nerve damage at 10.5 months of age, providing evidence that anaphylatoxin signaling is a damaging form of neuroinflammation in a setting with elevated IOP.

Understanding why C3ar1 deficiency did not provide long-lasting protection requires understanding other damaging consequences of complement activation. Greater protection in DBA/2J mice has been achieved by disrupting C1qa (37) compared to C3ar1, suggesting that C1qa triggers multiple
damaging responses. A therapy targeting sites opsonized by C3b and C4b, achieved by expression of CR2-Crry in retinal ganglion cells, has produced results more similar to C1qa deficiency(14). Crry would be predicted to inhibit C3 convertase activity of the classical pathway (through C4b) and alternative pathway (through C3b)(58), severely limiting accumulation of both C3a and C3b in the treated DBA/2J mice. The results of treatment with CR2-Crry suggest that inhibition of C3a and C3b protects in an additive manner. DBA/2J mice that lack the C3b receptor CR3, by disruption of Itgam, are less vulnerable(54), but not protected as well as C1qa−/− and CR2-Crry treated mice. Thus, targeting C3ar1 and Itgam together may protect to a greater degree than targeting C3ar1 or Itgam alone and explain the effect of treatment with CR2-Crry or disrupting C1q.

Complement activation is primarily expected to guide a targeted immune cell response in DBA/2J mice, given that they lack C5. The microglial response to C1q and C3a enhances phagocytosis, promoting removal of neuronal blebs or dying neurons and limiting pro-inflammatory cytokine production(59-61). For C1q, this includes regulating dendritic and synaptic pruning during development and ocular hypertension in the retina (22, 62). C3ar1 has also been implicated in mediating synaptic plasticity(25) and phagocytosis by microglia (63) in cell culture and a mouse model relevant to Alzheimer’s disease. However, C3ar1 deficiency did not influence PERG readings that occur in conjunction with synapse loss and dendritic remodeling. It is possible that C3AR1 signaling does not strongly affect microglial phagocytosis or microglia-mediated synapse loss in an ocular hypertensive setting and that C3AR1 signaling likely has detrimental effects in glaucoma through a different mechanism.

The biological pathways affected by C3ar1 deficiency in cultured microglia were neuroinflammatory pathways as opposed to more general cellular processes. This is consistent with microglia being the primary resident immune cells responsive to C3a in the central nervous system. The IL10 pathway altered in C3ar1 deficient microglia is an anti-inflammatory signaling pathway. In addition, many genes associated with general microglial reactivity were upregulated. Disrupting C3ar1 may have increased anti-inflammatory signaling, prevented damaging inflammation, or both. C3a may also recruit monocytes that express C3ar1. A subclass of monocytes (CD11b-positive, CD45-hi, and Cd11c-positive) that express C3ar1 increase in number in tissue affected by ocular hypertension(20), but how they are recruited is not known. C3a may influence their recruitment based on flow cytometry data presented here, although this is unresolved. In some eyes from C3ar1−/− mice, the number of myeloid cells in the optic nerve head appeared to be increased as observed by flow cytometry. It is possible that myeloid cells have a protective role early in disease and that this increase helped prevent optic nerve damage. In this study, it was not feasible to thoroughly address these possibilities in more depth due to the spontaneous nature of IOP elevation, variability between eyes, and the unexpected increase in myeloid cell population variability in the ONH of C3ar1−/− mice. A larger study using DBA/2J mice or another model with chronic ocular hypertension could address how C3ar1 alters microglia and monocyte localization and function in this type of glaucoma. All of the hypotheses are consistent with the idea that targeting myeloid cells with therapy may improve disease outcomes in glaucoma.
In DBA/2J mice, ONH astrocytes express C3 (17), a marker associated with a neurotoxic phenotype in some conditions (64). However, C3 deficiency was shown to increase vulnerability of the optic nerve to ocular hypertensive damage (17). This is counterintuitive to harmful effects of C3a and C3b was suggested to implicate early protective responses by astrocytes in glaucoma. The role of C3 in neuroprotective and neurotoxic functions of astrocytes needs to be determined. Astrocytes in DBA/2J mice may be capable of both neuroprotective and neurotoxic function that depends on the activation of specific extracellular receptors. In this case, C3ar1 deficiency may protect by decreasing the extracellular signals produced by microglia and infiltrating monocytes, including C1Q, IL1A, and TNF (64), that trigger the neurotoxic response. Testing the function of C1q receptors and C3 in astrocytes in DBA/2J mice could better define the effects of complement activation and show whether astrocytes directly contribute to optic nerve degeneration.

Conclusion

Anaphylatoxin signaling through C3AR1 promoted neurodegenerative processes in a model of glaucoma with chronic ocular hypertension and neuroinflammation. C3ar1 deficiency caused changes to IL10 related signaling pathways in microglia, pathways predicted to have an important effect on microglia reactivity. In this regard, genetic and other factors that influence expression of C3ar1, C3, or other members of the complement cascade may predispose people to beneficial or damaging neuroinflammatory responses by affecting microglial or astrocytic reactivity. Targeting myeloid cells and anaphylatoxin signaling with therapies will likely be a beneficial addition to neuroprotective therapeutic strategies.

Abbreviations

C1q: complement component 1q complex

C3ar1: C3a receptor

DE: differentially expressed

IOP: intraocular pressure

IPA: Ingenuity Pathway Analysis software

NOE: no or early, no readily detectible axon loss

ONH: optic nerve head

MAC: membrane attack complex

MOD: moderate, less than 50% of axons damaged/lost,

PERG: Pattern electroretinography
PPD: paraphenylenediamine

SEV: severe, more than 50% of axons damaged/lost

Declarations

Ethics approval and consent to participate

All animals were treated according to the guidelines of the Association for Research in Vision and Ophthalmology for use of animals in research. The Animal Care and Use Committee of The Jackson Laboratory approved all experimental procedures.

Consent for publication

Not applicable.

Availability of data and materials

The datasets during and/or analysed during the current study available from the corresponding author on reasonable request.

Competing Interests

The authors declare that they have no competing interests.

Funding

This work was funded in part by EY011721 (SWMJ), EY021525 (GRH), the Barbara and Joseph Cohen Foundation, and the Partridge Foundation. GRH is the Diana Davis Spencer Foundation Chair for Glaucoma Research. SWMJ is an Investigator of HHMI.

Authors’ Contributions

SJ and GH conceived the study. JH, PW, CB, NF and JT performed experiments. JH and HY performed computational analyses. JH, PW, SJ and GH analyzed the data. JH wrote the manuscript that was edited by PW, SJ and GH. All authors approved the final version.

Acknowledgements

The authors wish to thank Mimi DeVries, Amy Bell, and Pete Finger for contributions to this work.

References

1. Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis.
2. Soto I, Howell GR. The complex role of neuroinflammation in glaucoma. Cold Spring Harb Perspect Med. 2014;4(8).

3. Tezel G, Wax MB. The immune system and glaucoma. Curr Opin Ophthalmol. 2004;15(2):80-4.

4. Kuehn MH, Kim CY, Ostojic J, Bellin M, Alward WL, Stone EM, et al. Retinal synthesis and deposition of complement components induced by ocular hypertension. Exp Eye Res. 2006;83(3):620-8.

5. Stasi K, Nagel D, Yang X, Wang RF, Ren L, Podos SM, et al. Complement component 1Q (C1Q) upregulation in retina of murine, primate, and human glaucomicous eyes. Invest Ophthalmol Vis Sci. 2006;47(3):1024-9.

6. Tezel G, Yang X, Luo C, Kain AD, Powell DW, Kuehn MH, et al. Oxidative stress and the regulation of complement activation in human glaucoma. Invest Ophthalmol Vis Sci. 2010;51(10):5071-82.

7. Morgan BP. The membrane attack complex as an inflammatory trigger. Immunobiology. 2016;221(6):747-51.

8. Peng Q, Li K, Sacks SH, Zhou W. The role of anaphylatoxins C3a and C5a in regulating innate and adaptive immune responses. Inflamm Allergy Drug Targets. 2009;8(3):236-46.

9. Triantafilou K, Hughes TR, Triantafilou M, Morgan BP. The complement membrane attack complex triggers intracellular Ca2+ fluxes leading to NLRP3 inflammasome activation. J Cell Sci. 2013;126(Pt 13):2903-13.

10. Laudisi F, Spreaco R, Evrard M, Hughes TR, Mandriani B, Kandasamy M, et al. Cutting edge: the NLRP3 inflammasome links complement-mediated inflammation and IL-1beta release. J Immunol. 2013;191(3):1006-10.

11. Hawksworth OA, Li XX, Coulthard LG, Wolvetang EJ, Woodruff TM. New concepts on the therapeutic control of complement anaphylatoxin receptors. Mol Immunol. 2017;89:36-43.

12. Xie CB, Jane-Wit D, Pober JS. Complement Membrane Attack Complex: New Roles, Mechanisms of Action, and Therapeutic Targets. Am J Pathol. 2020;190(6):1138-50.

13. Miyahara T, Kikuchi T, Akimoto M, Kurokawa T, Shibuki H, Yoshimura N. Gene microarray analysis of experimental glaucomatous retina from cynomologous monkey. Invest Ophthalmol Vis Sci. 2003;44(10):4347-56.

14. Bosco A, Anderson SR, Breen KT, Romero CO, Steele MR, Chiodo VA, et al. Complement C3-Targeted Gene Therapy Restricts Onset and Progression of Neurodegeneration in Chronic Mouse Glaucoma. Mol Ther. 2018;26(10):2379-96.

15. Jha P, Banda H, Tytarenko R, Bora PS, Bora NS. Complement mediated apoptosis leads to the loss of retinal ganglion cells in animal model of glaucoma. Mol Immunol. 2011;48(15-16):2151-8.

16. Reinehr S, Reinhard J, Gandej M, Gottschalk I, Stute G, Faissner A, et al. S100B immunization triggers NFkappaB and complement activation in an autoimmune glaucoma model. Sci Rep. 2018;8(1):9821.

17. Harder JM, Braine CE, Williams PA, Zhu X, MacNicoll KH, Sousa GL, et al. Early immune responses are independent of RGC dysfunction in glaucoma with complement component C3 being protective.
18. Kuehn MH, Kim CY, Jiang B, Dumitrescu AV, Kwon YH. Disruption of the complement cascade delays retinal ganglion cell death following retinal ischemia-reperfusion. Exp Eye Res. 2008;87(2):89-95.

19. Silverman SM, Kim BJ, Howell GR, Miller J, John SW, Wordinger RJ, et al. C1q propagates microglial activation and neurodegeneration in the visual axis following retinal ischemia/reperfusion injury. Mol Neurodegener. 2016;11:24.

20. Howell GR, Macalinao DG, Sousa GL, Walden M, Soto I, Kneeland SC, et al. Molecular clustering identifies complement and endothelin induction as early events in a mouse model of glaucoma. J Clin Invest. 2011;121(4):1429-44.

21. Howell GR, Soto I, Ryan M, Graham LC, Smith RS, John SW. Deficiency of complement component 5 ameliorates glaucoma in DBA/2J mice. J Neuroinflammation. 2013;10:76.

22. Williams PA, Tribble JR, Pepper KW, Cross SD, Morgan BP, Morgan JE, et al. Inhibition of the classical pathway of the complement cascade prevents early dendritic and synaptic degeneration in glaucoma. Mol Neurodegener. 2016;11:26.

23. Howell GR, MacNicoll KH, Braine CE, Soto I, Macalinao DG, Sousa GL, et al. Combinatorial targeting of early pathways profoundly inhibits neurodegeneration in a mouse model of glaucoma. Neurobiol Dis. 2014;71:44-52.

24. Klos A, Tenner AJ, Johswich KO, Ager RR, Reis ES, Kohl J. The role of the anaphylatoxins in health and disease. Mol Immunol. 2009;46(14):2753-66.

25. Litvinchuk A, Wan YW, Swartzlander DB, Chen F, Cole A, Propson NE, et al. Complement C3aR Inactivation Attenuates Tau Pathology and Reverses an Immune Network Deregulated in Tauopathy Models and Alzheimer's Disease. Neuron. 2018;100(6):1337-53 e5.

26. Lian H, Litvinchuk A, Chiang AC, Aithmitti N, Jankowsky JL, Zheng H. Astrocyte-Microglia Cross Talk through Complement Activation Modulates Amyloid Pathology in Mouse Models of Alzheimer's Disease. J Neurosci. 2016;36(2):577-89.

27. Lian H, Yang L, Cole A, Sun L, Chiang AC, Fowler SW, et al. NF kappaB-activated astroglial release of complement C3 compromises neuronal morphology and function associated with Alzheimer's disease. Neuron. 2015;85(1):101-15.

28. Jarlestedt K, Rousset CI, Stahlberg A, Sourkova H, Atkins AL, Thornton C, et al. Receptor for complement peptide C3a: a therapeutic target for neonatal hypoxic-ischemic brain injury. FASEB J. 2013;27(9):3797-804.

29. Boos L, Campbell IL, Ames R, Wetsel RA, Barnum SR. Deletion of the complement anaphylatoxin C3a receptor attenuates, whereas ectopic expression of C3a in the brain exacerbates, experimental autoimmune encephalomyelitis. J Immunol. 2004;173(7):4708-14.

30. Humbles AA, Lu B, Nilsson CA, Lilly C, Israel E, Fujiwara Y, et al. A role for the C3a anaphylatoxin receptor in the effector phase of asthma. Nature. 2000;406(6799):998-1001.

31. Smith RS, Zabaleta A, Kume T, Savinova OV, Kidson SH, Martin JE, et al. Haploinsufficiency of the transcription factors FOXC1 and FOXC2 results in aberrant ocular development. Hum Mol Genet.
32. John SW, Smith RS, Savinova OV, Hawes NL, Chang B, Turnbull D, et al. Essential iris atrophy, pigment dispersion, and glaucoma in DBA/2J mice. Invest Ophthalmol Vis Sci. 1998;39(6):951-62.

33. John SW, Hagaman JR, MacTaggart TE, Peng L, Smithes O. Intraocular pressure in inbred mouse strains. Invest Ophthalmol Vis Sci. 1997;38(1):249-53.

34. Savinova OV, Sugiyama F, Martin JE, Tomarev SI, Paigen BJ, Smith RS, et al. Intraocular pressure in genetically distinct mice: an update and strain survey. BMC Genet. 2001;2:12.

35. Smith RS ZA, Kume T, Savinova OV, Kidson SH et al. General and specific histopathology. In: RS S, editor. Systemic evaluation of the mouse eye. New York: CRC Press; 2002. p. 265-97.

36. Howell GR, Libby RT, Jakobs TC, Smith RS, Phalan FC, Barter JW, et al. Axons of retinal ganglion cells are insulted in the optic nerve early in DBA/2J glaucoma. J Cell Biol. 2007;179(7):1523-37.

37. Howell GR, Soto I, Zhu X, Ryan M, Macalinao DG, Sousa GL, et al. Radiation treatment inhibits monocyte entry into the optic nerve head and prevents neuronal damage in a mouse model of glaucoma. J Clin Invest. 2012;122(4):1246-61.

38. Libby RT, Anderson MG, Pang IH, Robinson ZH, Savinova OV, Cosma IM, et al. Inherited glaucoma in DBA/2J mice: pertinent disease features for studying the neurodegeneration. Vis Neurosci. 2005;22(5):637-48.

39. Libby RT, Li Y, Savinova OV, Barter J, Smith RS, Nickells RW, et al. Susceptibility to neurodegeneration in a glaucoma is modified by Bax gene dosage. PLoS Genet. 2005;1(1):17-26.

40. Chou TH, Bohorquez J, Toft-Nielsen J, Ozdamar O, Porciatti V. Robust mouse pattern electroretinograms derived simultaneously from each eye using a common snout electrode. Invest Ophthalmol Vis Sci. 2014;55(4):2469-75.

41. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14(4):R36.

42. Anders S, Pyl PT, Huber W. HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31(2):166-9.

43. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139-40.

44. Mo JS, Anderson MG, Gregory M, Smith RS, Savinova OV, Serreze DV, et al. By altering ocular immune privilege, bone marrow-derived cells pathogenically contribute to DBA/2J pigmentary glaucoma. J Exp Med. 2003;197(10):1335-44.

45. Anderson MG, Nair KS, Amonoo LA, Mehalow A, Trantow CM, Masli S, et al. GpnmbR150X allele must be present in bone marrow derived cells to mediate DBA/2J glaucoma. BMC Genet. 2008;9:30.

46. Porciatti V, Saleh M, Nagaraju M. The pattern electroretinogram as a tool to monitor progressive retinal ganglion cell dysfunction in the DBA/2J mouse model of glaucoma. Invest Ophthalmol Vis Sci. 2007;48(2):745-51.
47. Nagaraju M, Saleh M, Porciatti V. IOP-dependent retinal ganglion cell dysfunction in glaucomatous DBA/2J mice. Invest Ophthalmol Vis Sci. 2007;48(10):4573-9.

48. Howell GR, Walton DO, King BL, Libby RT, John SW. Datgan, a reusable software system for facile interrogation and visualization of complex transcription profiling data. BMC Genomics. 2011;12:429.

49. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci. 2014;34(36):11929-47.

50. Vanlandewijck M, He L, Mae MA, Andrae J, Ando K, Del Gaudio F, et al. A molecular atlas of cell types and zonation in the brain vasculature. Nature. 2018;554(7693):475-80.

51. He L, Vanlandewijck M, Mae MA, Andrae J, Ando K, Del Gaudio F, et al. Single-cell RNA sequencing of mouse brain and lung vascular and vessel-associated cell types. Sci Data. 2018;5:180160.

52. Hammond TR, Dufort C, Dissing-Olesen L, Giera S, Young A, Wysoker A, et al. Single-Cell RNA Sequencing of Microglia throughout the Mouse Lifespan and in the Injured Brain Reveals Complex Cell-State Changes. Immunity. 2019;50(1):253-71 e6.

53. Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, et al. A Unique Microglia Type Associated with Restricting Development of Alzheimer's Disease. Cell. 2017;169(7):1276-90 e17.

54. Williams PA, Braine CE, Kizhatil K, Foxworth NE, Tolman NG, Harder JM, et al. Inhibition of monocyte-like cell extravasation protects from neurodegeneration in DBA/2J glaucoma. Mol Neurodegener. 2019;14(1):6.

55. Tribble JR, Harder JM, Williams PA, John SWM. Ocular hypertension suppresses homeostatic gene expression in optic nerve head microglia of DBA/2 J mice. Mol Brain. 2020;13(1):81.

56. Williams PA, Braine CE, Foxworth NE, Cochran KE, John SWM. GlyCAM1 negatively regulates monocyte entry into the optic nerve head and contributes to radiation-based protection in glaucoma. J Neuroinflammation. 2017;14(1):93.

57. Carpanini SM, Torvell M, Morgan BP. Therapeutic Inhibition of the Complement System in Diseases of the Central Nervous System. Front Immunol. 2019;10:362.

58. Kim YU, Kinoshita T, Molina H, Hourcade D, Seya T, Wagner LM, et al. Mouse complement regulatory protein Crry/p65 uses the specific mechanisms of both human decay-accelerating factor and membrane cofactor protein. J Exp Med. 1995;181(1):151-9.

59. Fonseca MI, Chu SH, Hernandez MX, Fang MJ, Modarresi L, Selvan P, et al. Cell-specific deletion of C1qa identifies microglia as the dominant source of C1q in mouse brain. J Neuroinflammation. 2017;14(1):48.

60. Fraser DA, Pisalyaput K, Tenner AJ. C1q enhances microglial clearance of apoptotic neurons and neuronal blebs, and modulates subsequent inflammatory cytokine production. J Neurochem. 2010;112(3):733-43.

61. Colonna L, Parry GC, Panicker S, Elkon KB. Uncoupling complement C1s activation from C1q binding in apoptotic cell phagocytosis and immunosuppressive capacity. Clin Immunol. 2016;163:84-90.
62. Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, et al. The classical complement cascade mediates CNS synapse elimination. Cell. 2007;131(6):1164-78.

63. El Gaamouch F, Audrain M, Lin WJ, Beckmann N, Jiang C, Hariharan S, et al. VGF-derived peptide TLQP-21 modulates microglial function through C3aR1 signaling pathways and reduces neuropathology in 5xFAD mice. Mol Neurodegener. 2020;15(1):4.

64. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541(7638):481-7.

Figures

Figure 1

C3ar1 deficient DBA/2J mice developed iris disease and ocular hypertension. (A) Regular anterior eye exams were performed using broad beam and transillumination. The pattern of iris depigmentation observed was similar in C3ar1+/+(not shown) and C3ar1-/- mice (N=80). (B) Elevated IOP compared to young mice was observed in a small subset of mice at 8 months of age and became more prevalent in older mice. No significant difference in IOP was found in C3ar1-/- mice compared to C3ar1+/+ mice at any age (8 mos., N=80, P=0.44; 10 mos., N=80, P=0.23; 12 mos., N=80, P=0.19). Boxes define the 75th and 25th percentiles and their middle line indicates the median value. The diamonds define the 95% confidence interval and their middle line indicates the mean value.
Figure 2

Delayed optic nerve degeneration in C3ar1/-/- mice. (A) Degeneration in PPD-stained optic nerve cross-sections was evaluated based on the presence of axon loss, degenerating axons, and scarring. Examples of degenerating axons (arrow) and glial scarring (asterisk) are indicated. Optic nerve damage in each nerve was classified as ‘no or early’ (NOE), ‘moderate’ (MOD), and ‘severe’ (SEV; see Methods). Similar signs of degeneration were observed in C3ar1/-/- and C3ar1+/+ mice. (B) Distribution of optic nerve damage by genotype and age. At 10.5 months of age (mos.) a significantly lower percentage of eyes in C3ar1/-/- mice had identifiable glaucomatous degeneration (MOD or SEV damage level; N=110; P<0.0001). At 12 mos, there was no longer a difference in the incidence of optic nerve degeneration between genotypes (N=110; P=0.59). (C and D) As axonal and somal degeneration of RGCs can be uncoupled by some mutations(39), RGC layer cells were assessed in Nissl stained retinal flatmounts from mice with and without optic nerve degeneration (SEV and NOE, respectively). Genotype had no effect on RGC degeneration in relation to axon loss. The number of RGC layer cells in eyes with healthy optic nerves was similar in C3ar1/-/- and C3ar1+/+ mice. Loss of RGC layer cells in eyes with severe optic nerve damage was independent of C3ar1 genotype. (E) Mean PERG amplitudes were determined in the eyes of young (3
mos.), normotensive and older (10 mos.), ocular hypertensive mice. At 10 months of age, a majority of standard DBA/2J mice do not have significant optic nerve degeneration. C3ar1 deficiency had no influence on mean PERG amplitude at ages before or after they were affected by ocular hypertension. Boxes define the 75th and 25th percentiles and their middle line indicates the median value. Scale bars: 50 μm
Figure 3

Microglial expression of C3ar1 in healthy and inflammatory states. (A) Average data from single cell RNA sequencing of healthy brain tissue performed by the Betsholtz laboratory (50, 51) show little to no expression C3ar1 in cell types other than microglia. (B) Average data from single cell RNA sequencing of brain tissue performed by the Barres laboratory (49) show little to no expression C3ar1 in cell types other than microglia. (C) Single cell RNA sequencing data are shown from the laboratories of Amit† (53) and Stevens‡ (52). These studies defined sub-types or clusters of microglia based on differences in gene expression. The relative expression of C3ar1 in microglia was higher in microglia sub-types associated with macrophage-like activity or inflammation, which are shown here. (D) Expression of C3ar1 in RNA sequencing data from pooled cells of the indicated cell type sorted from retina or optic nerve tissue from 9 month old DBA/2J mice performed by the John laboratory (54, 55). Abbreviations - astrocytes (AC), disease associated microglia for 5xFAD mice (DAM), endothelial cells (EC), endothelial related cells (E), fibroblast-like (FB), microglia (MG), monocytes (Mono), neurons (N), oligodendrocytes (OL), OL progenitors (OPC), pericytes (PC), smooth muscle cells (SMC), and microglia subtype clusters from
Isolation and RNA sequencing of C3ar1−/− and C3ar1+/+ microglia from primary culture. (A) Cells from primary mixed glial cultures were sorted using FACS. A population of microglia was selected for sequencing from live cells (P1) based on high expression of IBA1 and low expression of GFAP (P2). Conversely, a population of astrocytes with high GFAP expression is indicated by P3. (B) The sequenced cells were enriched in microglia based on a high level of expression of microglia genes Cx3cr1 and Tmem119 and a low level of astrocyte genes Aldh1l1 and Gfap. (C) Changes in gene expression between C3ar1−/− and C3ar1+/+microglia visualized by MA plot. Points that represent the 408 differentially expressed genes (FDR < 0.005) are colored red.
Network analyses identified clusters of changes in neuroinflammation and IL10 signaling pathway gene expression. (A) Top 20 canonical pathways in IPA ranked by P value for enrichment in genes differentially expressed between C3ar1-/- and C3ar1+/+ microglia. (B) A network of canonical pathways was generated with edges representing that more than 5 genes were shared between two pathways. This network identified that the pathways shown in A had common biological function related to neuroinflammation (salmon) and immune cell activation (yellow). (C) Top 20 upstream regulators in IPA ranked by P value for enrichment in regulating genes differentially expressed between C3ar1-/- and C3ar1+/+ microglia. (D) A network of upstream regulators was generated with edges representing that more than 5 genes were shared between two upstream regulators. Only endogenous upstream regulators were included in the network. IL10 had the most connections to other upstream regulators (thick gray edges) and is a potential driver of changes associated with C3ar1 deficiency.
Figure 6

C3ar1 deficiency altered the population of myeloid-derived cells in the ONH in a subset of eyes. (A) Diagram of the gating strategy used in flow cytometry to identify sub-populations of myeloid-derived cells isolated from retina and optic nerve head tissue. (B) No gross difference in the population profile of these cells was observed in the retinas from ocular hypertensive C3ar1-/- and C3ar1+/+ mice. (C) The number of myeloid cells detected in optic nerve head tissue was more variable C3ar1-/- mice than in C3ar1+/+ mice.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- C3AR1papercoverletter.docx