Rhizobacteriome: Promising Candidate for Conferring Drought Tolerance in Crops

Vinod Kumar Yadav1,2, Meenu Raghav3, Sushil K. Sharma1,3* and Neeta Bhagat2*

1ICAR-National Bureau of Agriculturally Important Microorganisms (ICAR-NBAIM), Kushmaur, Maunath Bhanjan - 275 103, Uttar Pradesh, India. 2Amity Institute of Biotechnology, Amity University, Sector 125, Noida - 201 301, Uttar Pradesh, India. 3Present Address –ICAR-National Institute of Biotic Stress Management (ICAR-NIBSM), Baronda, Raipur - 493 225, Chhattisgarh, India.

Abstract

Drought is a global water shortage problem which poses challenge to crop productivity. Novel strategies are being tried to find out solution to sustain agriculture under drought conditions. Rhizobacteriome is an exclusive genetic material of bacteria resident to rhizosphere plays critical role to health and yield of plant. The interaction of rhizobacteriome with plant provides basis for protecting plants from various abiotic and biotic stresses. Plant growth promoting rhizobacteria (PGPR) are root-colonizing bacteria which produce array of enzymes and metabolites that assist plants to withstand harsh environmental conditions. Various formulations of rhizobacteria are being applied to enhance the tolerance or endurance to drought in crops which in turn increase crop productivity. This could be a one of the promising methods with wide potentiality to improve the growth and yield of crops under limited water resources and changing climatic conditions to ensure food security of the globe. In this review, we summarize (1) existing knowledge and understanding about the rhizobacteria, (2) their role in imparting tolerance to crops in drought conditions and (3) discuss future line of work in this frontier research area.

Keywords: Rhizobacteriome, bacteria-plant interactions, rhizosphere, drought stress, ACC deaminase, rhizobacteria

*Correspondence: nbhagat@amity.edu; sks_micro@rediffmail.com

(Received: August 14, 2019; accepted: January 14, 2020)
INTRODUCTION

Drought stress has increased tremendously in last few years affecting food security at global level. The drought stress duration is ranged as short, severe, extremely severe and prolonged that adversely affects the agricultural productivity\(^1\). Drought is the most destructive abiotic stress which may affect crops of 50% of the arable lands by 2050\(^2\). It is a serious issue in the context of agricultural sector as it reduces crop yield in regions with scanty rainfall in various parts of the world\(^1\). Presently, various effective practices like efficient water irrigation techniques, conventional and modern plant breeding methods, and production of drought-tolerant transgenic plants through genetic engineering can be adopted to address the problem of sustainable crop production in drought situations. However, such techniques or procedures or methods need sophisticated technical knowhow and are costly and labor intensive as they are arduous to implement. An alternative method for promoting plant growth under drought conditions is to manipulate plant growth promoting rhizobacteria (PGPR) that are found in the rhizosphere and endorhizosphere in plant root systems. PGPR induces plant growth by various direct or indirect mechanisms under normal, biotic or abiotic stress conditions\(^3\). Rhizosphere is the area where, interaction among soil, plants and microorganisms take place. The microorganisms present in the rhizosphere, compete for their survival. This competition is for the need of nutrients, water and space to develop their association with plant. The plant-microbes interactions lead to the improvement in growth and development of plants\(^4\). Diverse bacterial genera form the important component of soils facilitating various biotic activities like recycling nutrient of the soil ecosystem which is essential for sustainable crop yield\(^5,6\). PGPR mobilize different nutritive components in soil, produce plant growth regulators and inhibit phytopathogens\(^5\). They also improve quality of soil by bioremediation of the pollutants by facilitating uptake of heavy toxic metal and degradation of xenobiotic compounds including pesticides\(^7,8\). Agronomists and environmentalists adapting various biological methods for integrated plant nutrient management system\(^9,10\). Rigorous research has been undertaken globally on exploring rhizobacteria possessing novel characteristics like ability to detoxify heavy metals\(^11\), salinity tolerance\(^12\), biological control of phytopathogens and insects\(^13\) along with the plant growth promoting properties like, phytohormones production\(^14,15\), phosphate solubilization\(^16\), 1-aminocyclopropane-1-carboxylate\(^17\), hydrogen cyanide (HCN), and ammonia production\(^18\) nitrogenase activity\(^19\), siderophore\(^20\) production. Hence, diverse groups of symbiotic bacteria like Bradyrhizobium, Rhizobium, Mesorhizobium and non-symbiotic like Bacillus, Klebsiella, Pseudomonas, Azotobacter, Azomonas, Azospirillum have been used worldwide as biofertilizer for promoting growth and development of plants under abiotic stress\(^21,22\). Although no single mechanism of rhizobacteria –mediated plant growth promotion is completely understood, however PGPR show significant contribution to the improvement in crop production\(^23\). The potential of inoculated bacteria to survive, multiply to outnumber the native bacteria and other microflora, and colonize the rhizosphere is crucial for its successful application\(^22,24\) specifically in drought-affected soils. The bacteria that are not adapted to drought conditions will die out under these unfavorable growth conditions\(^24,25\). But, the drought-tolerant rhizobacteria are capable of thriving in new drought stressed soil in sufficient number to show plant growth promoting manifestations on plants\(^26,27\). The present review highlights past and current status of role of rhizobacteriome on plant growth promotion under drought conditions. Further, it will also emphasize mechanisms associated with in conferring drought tolerance in crops on application of rhizobacteria. **Rhizosphere and rhizobacteriome**

The term “rhizosphere” was first used by Hiltner\(^27\). Rhizosphere is multidimensional and dynamic region around root where significant plant-microbe interactions occur\(^28\). The root exudates alter the physicochemical properties of soil, which directly effects the multiplication of soil microorganisms\(^29\). These root exudates have ability to attract or repel microorganisms and promote symbiotic interactions which help in growth and development of plant\(^30\). PGPR are characterized by their capability to colonize the plant root surface, multiply, compete and survive to promote plant
growth31. PGPR are broadly categorized into two classes: 1) ePGPR (extracellular PGPR) which grow in the rhizospheric area or in between cells of root cortex, examples include \textit{Agrobacterium}, \textit{Azotobacter}, \textit{Erwinia}, \textit{Serratia}, \textit{Bacillus} etc. 2) iPGPR (intracellular PGPR) which grow inside root cells, examples include \textit{Azorhizobium}, \textit{Mesorhizobium}, \textit{Allorhizobium} etc34. The entire set of genetic material of the root associated bacteria is called “rhizobacteriome”.

The rhizosphere is hot spot for number of organisms which represent most complicated and dynamic ecosystems on the Earth32,33. Rhizosphere organisms consist of arthropods, archaea, viruses, algae, protozoa, nematodes, oomyctes, fungi and bacteria34. The rhizosphere exemplifies complicated food web which utilise various nutrients produced by plants. Rhizosphere is identified by presence of exudates, border cells, mucilage called as rhizodeposits. Rhizodeposits represent diverse microbial community and microbial activity on plant roots35. However, the organisms of rhizosphere are analysed for their beneficial impact on growth and development of plants including nitrogen fixing bacteria, protozoa, mycoparasitic fungi, biocontrol microorganisms, fungi and plant growth promoting bacteria (PGPR)/rhizobacteria. Some of organisms present in rhizosphere like nematodes, bacteria, oomyctes and pathogenic fungi, have adverse effects on growth of plants. Some human pathogens are also found in the rhizosphere36. Abiotic stresses have various impacts on rhizospheric bacteria. Total bacterial biomass decline under drought situations37 resource limitation but stable biomass has been observed in certain cases of soil bacteria in drought condition31 as repeated drought exposures make; bacteria to learn to survive38.

\textbf{Drought forces shift microbial composition in drought affected soil}19. An increased ratio of Gram-positive to Gram-negative bacteria has been observed during water stressed conditions40. Drought affected soil decreases members of Gram-negative phyla like Proteobacteria, Verrucomicrobia, and Bacteroidetes and increases members of Gram-positive phyla like Actinobacteria and Firmicutes41,42. Also, the total numbers of genes of microbes present in the drought striken rhizosphere are exceeding the numbers of genes in plant in that area. Variation in metatranscriptome and metagenomics profiling of microbial genes related to metabolism, signal transduction and other vital activities of dry and well aerated soil suggests that microbial genes might contribute to plant survival and drought tolerance43. Some important

\begin{table}[h]
\centering
\begin{tabular}{|l|l|l|l|l|}
\hline
S.No. & PGPR & Plant & Impact on plant & Reference & Year \\
\hline
1. & \textit{Azospirillum brasilense} & Tomato & Nitric oxide a signaling molecules and IAA pathway for induction of lateral and root hair growth & Molina-Favero \textit{et al.}51 & 2008 \\
2. & \textit{Azospirillum} sp. & Wheat & Enhanced lateral roots, root growth, increased water and nutrient uptake & Arzanesh \textit{et al.}51 & 2011 \\
3. & \textit{Pseudomonas putida}, \textit{Bacillus megaterium} & \textit{Trifolium repens} & Increased shoot and root mass & Marulanda \textit{et al.}57 & 2009 \\
4. & \textit{B. thuringiensis} & \textit{Lavandula dentate} & Increased levels of K-and proline, decreased glutathione reductase (GR) and ascorbate peroxidase (APX) & Armada \textit{et al.}55 & 2014 \\
5. & \textit{Rhizobium phaseoli} (MR-2) \textit{Mesorhizobium ciceri} (CR-30 and CR-39) and \textit{Rhizobium phaseoli} (MR-2) & Wheat & IAA from consortia improved growth, biomass and drought tolerance index & Hussain \textit{et al.}56 & 2014 \\
\hline
\end{tabular}
\caption{Role of bacterial IAA on plant growth under drought stress condition}
\end{table}
members of rhizobacteriome are *Acinetobacter*, *Achromobacter*, *Agrobacterium*, *Arthrobacter*, *Azotobacter*, *Azospirillum*, *Bacillus*, *Bradyrhizobium*, *Burkholderia*, *Enterobacter*, *Erwinia*, *Flavobacterium*, *Gluconacetobacter*, *Herbaspirillum*, *Klebsiella*, *Leclercia*, *Micrococcus*, *Paenibacillus*, *Phyllobacterium*, *Proteus*, *Pseudomonas*, *Raoultella*, *Rhizobium*, *Rhodococcus*, *Serratia*, *Variovorax* and *Xanthomonas*. These rhizospheric bacteria show profound impact on germination of seed, plant growth, seedling vigor, development, diseases, nutrition and productivity.

PGPR and their drought tolerance mechanisms

PGPR induce tolerance to drought stress in crops by production of phytohormones, producing volatile compounds, ACC deaminase, osmolyte and exopolysaccharides, and triggering antioxidant activities.

Role of rhizobacterial phytohormones in drought stress tolerance

In drought stress, there is reduced production of phytohormones which inhibit normal plant growth. PGPR are capable for producing phytohormones that help to sustain growth and division of plant cell under abiotic environmental stress. Phytohormones like indole-3-acetic acid (IAA), gibberellin (GA), cytokinin, abscisic acid and ethylene produced by rhizobacteriome become significant for promoting growth and development and helping plants to escape abiotic stress. These pose as important targets for engineering metabolic products for conferring drought tolerance to crop plants.

Inoculation with various IAA producing bacteria enhanced lateral roots and roots hairs formation along with overall root growth, thus effecting increased water and nutrient uptake in drought conditions. For example, IAA produced by *Azospirillum* increased plant ability to tolerate drought stress in maize and wheat, and by nitric oxide production in tomato. The simultaneous production of siderophores and auxins by *Streptomyces* increases the plant growth-promoting effects of auxins, which in turn enhances the phytoremediation potential of plants. *A. brasilense* Sp245 applied in wheat (*Triticum aestivum*) improved crop yield, micronutrients content, water content, water potential thus increased drought tolerance in plants. *A. brasilense* also triggers nitric oxide signaling in IAA pathway and thereby improved growth of lateral root and root hair in tomato under drought stress. *B. thuringiensis* improved nutritive value, physiological activities and metabolic activities of *Lavandula dentate* through IAA produced by the bacteria. *Rhizobium leguminosarum* (LR-30), *Mesorhizobium ciceri* (CR-30 and CR-39), and *Rhizobium phaseoli* inoculated in wheat improved crop. Inoculation of *Pseudomonas putida*, *Pseudomonas* sp. and *Bacillus megaterium* increased water content and shoot/root biomass in *Trifolium repens* under water stressed conditions. *Bacillus subtilis*, *B. cereus*, *Enterobacter cloacae*, *Pseudomonas koreensis*, and *P. fluorescens* promoted seed germination by IAA production and phosphate solubilization under drought like condition induced by different concentrations of polyethylene glycol (PEG 6000).

The capability of gibberellin producing bacteria to stimulate plant growth has also been well documented as it plays prominent role in various physiological processes. For example gibberellin produced by bacterial strains *B. macroides* CJ-29, *B. cereus* MJ-1, and *B. pumilus*...

Table 2. Role of rhizobacterial gibberellin on plant growth under drought stress condition

S.No.	PGPR	Plant	Impact on plant	Reference	Year
1	*P. putida* H-2-3	Soybean	Improved plant growth using gibberellins	Sang-SM et al.	2014b
2	*Azospirillum lipoferum*	Maize	Gibberellins increased ABA levels and alleviated drought stress	Cohen et al.	2009
3	*B. cereus* MJ-1, *B. macroides* CJ-29, and *B. pumilus* CJ-69	Pepper	Increased GA	Joo et al.	2005
CJ enhanced the growth of red pepper plants. Similarly, gibberelin producing \textit{P. putida} H-2–3, a increased growth of soybean plants in drought (Table 2). \textit{Azospirillum lipoferum} supported in mitigating activity of stress created by drought in plants of maize via yielding of ABA and gibberelin.

Under water deficit situation, biosynthesis of stress hormone i.e. ABA is triggered by dehydration conditions. The involvement of ABA has been observed in regulating water loss through controlling the closing of stomata and transduction pathways of stress signals. \textit{Arabidopsis} plants showed elevated levels of ABA when inoculated with \textit{A. brasilense} sp245. \textit{Phyllobacterium brassicaeearum} strain STM196 isolated from the rhizosphere of \textit{Brassica napus}, elevated ABA content leading to decreased leaf transpiration and enhanced osmotic stress tolerance in \textit{Arabidopsis} plants. Cytokinin producing \textit{Bacillus subtilis} enhanced ABA in shoots and increased the stomatal conductance conferring drought stress resistance in \textit{Platycladus orientalis} seedlings (Table 3).

Cytokinin producing bacterial strains like \textit{Pseudomonas} E2, \textit{Bacillus licheniformis} Am2 and \textit{Bacillus subtilis} BC1 reported to enhance cotyledon growth in cucumber. Inoculation of lettuce with cytokinin producing bacteria increased shoot cytokinins and also promoted the accumulation of shoot mass and shortened roots. Cytokinin producing \textit{B. subtilis} strain IB-21 stimulate rhizodeposition for rhizobacterial colonization in the wheat rhizosphere (Table 4).

ACC deaminase production by rhizobacteria

Ethylene, a ubiquitous hormone in plants, plays role in seed germination, leaf abscission, ripening of fruits, senescence of leaf, initiation and elongation of roots, rhizobia nodule formation etc. In drought stress, synthesis of ethylene increase by conversion of S-adenosylmethionine (SAM) into 1-aminocyclopentene-1-carboxylase (ACC), the precursor of ethylene, in presence of ACC synthase. PGPR act as sink of ACC by controlling ethylene formation using the ACC (1-aminocyclopentene-1-carboxylate) deaminase enzyme. These PGPR hydrolyse the ACC into ammonia and \alpha-ketobutyrate, and thereby stimulate the expulsion of ACC from the roots to the soil. Decreased ACC concentration in root further decreases the formation of endogenous ethylene preventing retardation in plant growth. Reducing ethylene-mediated inhibitory effects on plant growth and facilitate enhanced plant resistance to drought. \textit{Achromobacter picchaudii} ARU8 secretes ACC deaminase that degrades ACC to ammonia for nitrogen and energy supply and thus decreases ethylene production under water deficit condition. \textit{Pseudomonas fluorescens}, \textit{Enterobacter hormaechei}, and \textit{Pseudomonas migulae} are three ACC and EPS producing microbes which when inoculated in foxtail millet could promote seedling germination in drought condition. PGPR possessing ACC deaminase activity reduce toxicity of heavy metals, drought stress and other abiiotic stresses like extreme temperature, salinity and soil pH, besides, antagonism against phytopathogens. Dodd et al. (2005) studied effect of ACC deaminase producing \textit{Variovorax paradoxus} 5C-2 on pea plant physiological (\textit{Pisum sativum L.}) in water conditions. Consortium of \textit{Ochrobactrum pseudogrignonense} RJ12, \textit{Pseudomonas} sp. RJ15, and \textit{B. subtilis} RJ46 showed mitigation of drought

S.No.	PGPR	Plant	Impact on plant	Reference	Year
1.	\textit{Bacillus subtilis}	\textit{Platycladus orientalis}	Increased shoot ABA levels and increased the stomatal conductance	Liu et al.	2013
2.	\textit{Phyllobacterium brassicaeearum} STM 196	\textit{Arabidopsis thaliana}	Reduced leaf transpiration due to increase level of ABA	Arzanesh et al.	2013
3.	\textit{Azospirillum lipoferum}	Maize	Increased gibberellins and ABA levels	Cohen et al.	2009
stress in garden pea and black gram plants. *Leclercia adecarboxylata* and *Agrobacterium fabrum*, *Bacillus amyloliquifaciens* with higher ACC-deaminase and IAA production traits elevated nutrients uptake and high chlorophyll contents. *Pseudomonas fluorescens* DR7 having high ACC deaminase- and EPS-producing ability increased moisture content in soil and enhanced the root adhering soil and root growth in foxtail millet. Pot trials experiment showed that inoculation with ACC deaminase-producing bacterial strains of *Pseudomonas* (DPB13, DPB15, and DPB16) conferred vital improvement in growth of wheat plant in drought-stressed conditions. Similarly, *Bacillus licheniformis* K11 protected pepper and *Bacillus, Pseudomonas* and *Mesorhizobium ciceri* protected chickpea in drought stress. Volatile organic compounds (VOCs) producing rhizobacteria and drought stress tolerance

Under stress condition, plants produce volatiles which act as signal for development of systemic response or for priming within the plant or in neighboring plants. VOCs that are produced by diverse group of bacteria *Pseudomonas, Bacillus, Arthrobacter, Stenotrophomonas*, and *Serratia* increase growth of plants, inhibit fungal and bacterial pathogens and nematodes along with inducing systematic resistance in plants towards phytopathogens. Various VOCs produced by different species of microorganisms in soil include 11-decyldocosane, dotriacontane, 2,6,10-trimethyl, tetradecane, 1-chlorooctadecane, dodecane, benzene(1-methyl)nonadecyl),1-(N-phenylcarbamyl)-2-morpholinocyclohexene, decane, methyl, benzene, 2-(benzoyloxy) ethanamine and cyclohexane.

Gram-positive *Bacillus* spp. (GB03 and IN937a) and Gram-negative *E. cloacae* strain JM22 elicited growth promotion of *Arabidopsis* seedlings through VOCs production. Inoculated with *P. chlororaphis* O6 or exposed to 2,3-butandiol increased process of stomata closure and hence reduced loss of water in *Arabidopsis* plants thereby enhanced drought tolerance. High rate of photosynthesis correlated with reduced VOCs production, enhanced survival under drought stress in plants primed with *Bacillus thuringiensis* AZP2. This proved that inoculation with bacterial improved drought stress tolerance (Table 6).

Exopolysaccarides (EPS) producing rhizobacteria and drought tolerance

Many bacteria like *Pseudomonas* are capable of surviving in drought conditions due to development of exopolysaccharides (EPS). *Pseudomonas* sp. P45 produces EPS and protects sunflower plant from stress created by drought condition. EPS consist of high molecular weight polymer of monosaccharide residues and their derivatives. These are biodegradable polymers biosynthesized by various algae, plants and bacteria. Microbes produce EPS in capsular form and release it into the soil, the clay surface absorbs the EPS by Van der Waals force, hydrogen bonding, cation bridges or anionic absorption. This protective capsule provides soil, the capacity of holding water and drying water more slowly under drought condition and nutrients uptake by increasing the water potential around roots. Inoculating with EPS and catalase producing

Table 4. Role of cytokinin producing rhizobacteria on plant growth under drought stress condition

S.No.	PGPR	Plant	Impact on plant	Reference	Year
1.	*Bacillus subtilis*	Wheat	Stimulate rhizodeposition	Kudoyarova et al. 67	2014
	IB-21		Growth promotion	Raza and Faisal 68	2013
2.	*Micrococcus luteus*	Zea mays	Stomatal conductance	Liu et al. 64	2013
			Increased growth of plant	Arkhipova et al. 66	2007
3.	*Bacillus subtilis*	Platycladus orientalis		Hussain et al. 65	2011
		Lettuce	Increased spike length, tiller number and seeds weight		
Mesorhizobium ciceri (CR-30 and CR-39), Rhizobium leguminosarum (LR-30), and Rhizobium phaseoli (MR-2) increased root length, biomass and drought tolerant index in seedlings of wheat in presence of polyethylene glycol (PEG) 6000 induced drought. Priming of maize seeds with EPS-producing strains like Alcaligenes faecalis AF3, Proteus penneri Pp1 and Pseudomonas aeruginosa Pa2 increased root and shoot length, biomass of plants, and moisture content in soil. Under dehydrated conditions, sunflower showed increase in root tissue when inoculated with EPS-producing bacterial strain YAAF34. EPS play a pivotal role to maintain water potential, make sure obligate connection among rhizobacteria and roots in stress condition created by drought. Pseudomonas sp. strain P45 improved soil structure through EPS formation to protect sunflower seedlings from dehydration. Ghosh et al., (2019) observed four drought tolerant bacterial strains namely Pseudomonas aeruginosa PM389, P. aeruginosa ZNP1, Bacillus endophyticus 113 and B. tequilensis J12 were able to alleviate the detrimental effects of osmotic-stress induced in Arabidopsis thaliana by adding 25% PEG in agar medium. Rhizobium sp., Xanthomonas sp., Agrobacterium sp., Enterobacter cloacae, Bacillus drentensis, Azotobacter vinelandii and Rhizobium leguminosarum play significant function in improving fertility of soil thus sustain agriculture (Table 7).

Role of osmolytes on drought tolerance in plants

Under water deficit condition, plants secrete different forms of osmolytes such as sugar, betaine, proline, polyhydric alcohol or other amino acids or dehydrin (drought stress protein). PGPR also release osmolytes in drought stress condition.

S.No.	PGPR	Plant	Impact on plant	Reference	Year
1.	*Agrobacterium fabrum*, *Bacillus amyloliquefaciens*	Wheat	Increased grain yield and biomass	Zafar et al.	2019
2.	Leclercia decarboxylata and *A. fabrum*	Wheat	Elevated nutrients uptake and high chlorophyll contents	Danish et al.	2019
3.	*O. pseudogrignonensis* eR112, *Pseudomonas* sp. RJ15, and *B. subtilis* RJ46	Pea	Decreased ACC accumulation	Saika et al.	2018
4.	*Pseudomonas fluorescens*, *Enterobacter hormaechel*, *Pseudomonas migulae*	Foxtail millet	Improved seed germination and seedling growth	Niu et al.	2017
5.	*Pseudomonas fluorescens* DPB15 and *P. palliceriana* DPB16	Wheat	Enhanced root and shoot growth	Chandra et al.	2018
6.	*Variovorax paradoxus*	Pea	Reduction in ethylene production, increased growth, yield and efficiency of water use	Belimov et al.	2009
7.	*Pseudomonas fluorescens*	Pea	Enhanced water uptake and induced longer roots	Zahir et al.	2008
8.	*Variovorax paradoxus*	Pea	Increased yield, nitrogen content and number of seed	Dodd et al.	2005
9.	*Achromobacter piechaudii* *B. licheniformis*	Tomato and Pepper	Increased fresh and dry weight	Mayak et al.	2004
10.	*Bacillus* and *Pseudomonas* with *Mesorhizobium ciceris*	Chickpea	Increased expression of stress genes	Lim and Kim	2013
11.	*Bacillus* and *Pseudomonas* with *Mesorhizobium ciceris*	Chickpea	Increased concentration of proline, improved root and shoot, length, seed germination	Sharma et al.	2013
condition (Table 8). These osmolytes interact with those produced by plants and enhance growth of plants101. These secreted solutes trap water molecules which help in decreasing the hydric potential of cells. This kind of regulation is known as osmoregulation. These accumulated solutes increase membrane integrity and protein stability to counteract cellular damage. \textit{Bacillus} spp. effects osmoregulation by preventing electrolyte leakage and enhancing proline synthesis, sugars, free amino acids accumulation102. The function of the osmolytes is to prevent water molecules loss by reducing the cell water potential during drought period. Also, osmolytes help in protecting cellular damage by maintaining the integrity and stability of membranes and proteins in water scarce condition. PGPR consortia lessened the effect of drought stress in rice crop by accumulation of proline which improved the plant growth103.

Inoculation of \textit{B. thuringiensis} (Bt) in \textit{L. dentate} showed increased shoot proline content in water shortage conditions95. Similarly, phosphate solubilizing bacteria \textit{Bacillus polyoxymx} secreted excess proline in tomato plants to induce drought tolerance104. Sandhya \textit{et al.} (2010b)105 showed that priming cultivars of rice with consortia containing \textit{Pseudomonas jessenii} R62, \textit{Pseudomonas synxantha} R81 and \textit{Arthrobacter nitroguajacalicus} strain YB3 and YB5 increased plant growth in drought area. This consortium enhanced proline accumulation in plants by up regulating its biosynthetic pathway hence preserving cell water potential, stabilizing the cell membrane and protein during drought stress105. It has been reported that enhanced concentration of osmolytes like proline, betaine, glutamate, glycine and trehalose stimulated by \textit{Azospirillum} help plants to overcome osmotic stress106. Similarly, \textit{A. lipoferum} metabolic activities lead to accumulation of free amino acids and soluble sugars thus improving maize growth in drought107. \textit{Pseudomonas putida} GAP-P45 enhance plant biomass, relative water content and leaf water potential by stimulating accumulation of proline in maize plants in drought conditions97. \textit{Azospirillum} spp. z19 made maize seedling to tolerate drought stress to a higher level as compared to uninoculated plants due to higher proline levels108. Evidences of increased biosynthesis and accumulation of choline, a precursor of gibberellin (GB), showed increased biosynthesis in maize when inoculated with \textit{Klebsiella variicola} F2, \textit{P. fluorescens} YX2 and \textit{Raoutella plantocolica} YL2. This resulted in upgraded level GB thereby bettering leaf relative water content (RWC) and dry matter weight (DMW)109,110. Inoculating plants with PGPR increases existing concentrations of proline in maize plants by \textit{P. fluorescens} under drought stress111. \textit{Phaseolus vulgaris} plants inoculated with \textit{Rhizobium} showed improved metabolism of carbon and nitrogen and upregulation of trehalose-6-phosphate synthase gene112,113. \textit{Pseudomonas putida} GAP-P45 showed upgraded expression of polyamine biosynthetic genes (ADC, AIH, CPA, SPDS, SPMS and SAMDC) and polyamine levels in \textit{Arabidopsis thaliana} during drought stress114,98. Role of rhizobacteria on antioxidant defense system for induction of drought tolerance

During normal growth of plant, ROS is produced at low level. Stress condition results into overproduction of ROS which causes oxidative damage. ROS affects signalling, transport, metabolism and biosynthesis of auxin. It also interacts with phytohormones production process, for example, \textit{H}_{2}O_{2} causes ethylene production. In response to the stress condition, antioxidant

S.No.	PGPR	Plant	Impact on plant	Reference	Year
1.	\textit{Bacillus thuringiensis}	Wheat	Increased rate of photosynthesis and reduction in emission of volatiles	Timmusk et al.90	2014
2.	\textit{Pseudomonas chlororaphis}	\textit{Arabidopsis thaliana}	Prevent loss of water by stomatal closure	Cho et al.89	2008
3.	\textit{Bacillus} spp. (GB03) and (IN937a), \textit{Enterobacter cloacae} JM22	\textit{Arabidopsis thaliana}	Phenotypic improvement	Zhang et al.88	2010

Table 6. Role of rhizobacterial-VOCs on plant growth under drought stress condition
Table 7. Effect of rhizobacterial-EPS on plant growth under drought stress condition

S. PGPR No.	Plant	Impact on plant	Reference	Year
1.	*Pseudomonas aeruginosa* PM389, *P. aeruginosa* ZNP1, *Bacillus endophyticus* J13 and *B. tequilensis* J12	Arabidopsis thaliana Increased in IAA, cytokinin, gibberellins, and EPS secretion	Ghosh et al. [99]	2019
2.	*Proteus perneri*, *Pseudomonas aeruginosa*, *Alcaligenes faecalis*	Maize Enhanced protein, proline, sugar and relative water content	Naseem & Bano [93]	2014
3.	*R. leguminosarum*, *M. ciceri* and *R. phaseoli*	Wheat Promoted growth of plant, drought tolerance index and biomass	Hussain et al. [56]	2014
4.	*Bacillus thuringiensis*	Wheat Production of alginate resulted into drought tolerance	Timmusk et al. [80]	2014
5.	*Pseudomonas sp.*	Sunflower Enhanced plant biomass, RAS/RT ratio	Sandhya et al. [84]	2009
6.	*P. putida*	Maize Improved physiological response Enhanced ratio of RAS/RT (Root adhering soil per root tissue)	Vardhrajaul et al. [86]	2009
7.	*Rhizobium* sp. YAS34	Sunflower	Alami et al. [85]	2000

defense system is used by plants, in which plants produce various enzymatic and non-enzymatic antioxidants [115]. It has been observed that enzymatic activities lead to reduction of oxidative damage but at very high level of ROS, it can results into deleterious effects [116]. Thus, it is important to maintain balance between ROS production and annihilation of free radicals produced [117]. This can be done by using PGPR and their inoculation to plants shows higher survival rate by preventing oxidative damage than those which were not inoculated with PGPR.

Pseudomonas sp. is reported to improve catalase activity in drought stress condition in basil plants (*Ocimum basilicum* L.). Similarly, *Pseudomonas* sp., *Bacillus lentus* and *A. brasilense* consortium induce high activity of glutathione peroxidase and ascorbate peroxidase in *Ocimum basilicum* L. [118]. Consortium of PGPR containing *P. jessenii* R62, *P. synxantha* R81 and *A. nitroguajacolicus* strain YB3 and YB5 improved growth of plant along with inducing superoxide dismutase, catalase (CAT), peroxidase (PX), ascorbate peroxidase (APX) and lowering H2O2, malondialdehyde (MDA) in Sahbhagi (drought tolerance) and IR-64 (drought tolerant) rice crop [103]. *Pseudomonas* spp. namely *P. entomophila*, *P. stutzeri*, *P. putida*, *P. syringae* and *P. montelli* are responsible for reducing action of antioxidant enzymes significantly in maize under drought stress [97]. *Bacillus* species have also shown protection against drought stress by decreasing antioxidant enzymes APX and glutathione peroxidase (GPX) [96]. *B. thuringiensis* (Bt) improved growth via drought avoidance and reduction of glutathione reductase (GR) and ascorbate peroxidase (APX) activity in *Lavandula dentata* and *Salvia officinalis* in drought conditions [55]. *Streptomyces pactum* Act12 treatment in wheat increased osmoregulation and antioxidant efficiency of plants. *Bacillus pumilus* DH-11 and *B. firmus* 40 induced ROS-scavenging enzymes like ascorbate peroxidase and catalase in tomato plants. A remarkable increase in antioxidant enzymes like APX, SOD, and CAT was evident under drought stress in PGPR treated plants compared with non-treated plants [119,120]. Increased activity of CAT in green gram plants inoculated with *Pseudomonas fluorescens* Pf1 and *Bacillus subtilis* EPB was reported by Saravanakumar et al. (2011) [121]. Similarly, increased level of CAT production and drought tolerance has also been correlated in cucumber [96,98,123] and maize [96,98,123]. Up-regulation of expression of drought resistance-related genes like EXP2, EXP4, P5CS, SAMSI HSP17.8 and SnRK2 and accumulation of abscisic acid mitigated drought stress impact in wheat [124,119]. These experimental evidences proves that PGPR have significant role in increasing plant tolerance towards drought (Table 9).
Table 8. Effect of osmolytes of PGPR on plant growth in drought stress condition

S. No.	PGPR Plant Impact on plant Reference Year	Plant	Reference	Year	
1.	**Pseudomonas putida** GAP-P45 Enhanced polyamine biosynthetic genes	*Arabidopsis thaliana*	Sen et al.114	2018	
2.	**Azospirillum spp** AZ39 and AZ19 Increased proline	*Maize*	Ghosh et al.108	2017	
3.	**Bacillus polymyxa** Increased production of proline	*Lycopersicon esculentum*	Shintu and Jayaram106	2015	
4.	Consortia of *P. jessenii*, *P. synxantha* and *A. nitroguajasicus* Improved plant growth because of proline accumulation	*Oryza sativa*	Gusain et al.103	2015	
5.	**Klebsiella varicola**, *P. fluorescens* and *Raoultella planticola* Improved RWC in leaf due to gibberellin and choline accumulation	*Maize*	Gou et al.105	2015	
6.	**B. thuringiensis** Enhanced physiological, nutritional and metabolic activities	*Lavandula dentate*	Armada et al.56	2014	
7.	**Azospirillum lipoferum** Free amino acids and soluble sugars accumulation lead to improved growth of plant	*Maize*	Bano et al.107	2013	
8.	**P. fluorescens** Improved growth of plant due to increased proline and phytohormones content	*Maize*	Ansary et al.111	2012	
9.	**Pseudomonas putida** Improved RWC, leaf water potential	*Maize*	Sandhya et al.105	2010	
10.	**Bacillus subtilis** GB03 Increased glycine, betaine and choline content	*Arabidopsis*	Zhang et al.108	2010	
11.	**Azospirillum brasilense** Increased synthesis of trehalose	*Maize*	Rodriguez et al.106	2009	
12.	**Rhizobium etli** Increased synthesis of trehalose	*Phaseolus vulgaris*	Suarez et al.112	2008	
S. No.	PGPR	Plant	Impact on plant	Reference	Year
-------	---	----------------------	---	------------------------------------	------
1.	*Streptomyces pactum*	Wheat	ABA accumulation upregulation of drought resistant related genes	Li et al.119	2019
2.	*Pseudomonas* spp.	Wheat	Prevent oxidative damage	Chandra et al.55	2012
3.	*Pseudomonas putida* MTCC5279 (RA)	Chickpea	Reduced/controlled the expression of stress response gene, increased ROS scavenging (CAT, APX, GST)		2016
4.	*P. jessenii, P. syxantha, A. nitragujacolicus*	Rice	Enhanced growth of plants, induced SOD, CAT, POD, APX, reduced H$_2$O$_2$, MDA level	Gusain et al.103	2015
5.	*B. thuringiensis*	*Lavandula dentate* and *Salvia officinalis*	Enhanced growth of plant, reduced GR, APX activity	Armada et al.75	2014
6.	EPS producing bacteria	Maize	Reduced APX, CAT and GPX activity	Naseem and Bano94	2014
7.	*Pseudomonas* sp. GGRJ21	Mung beans	Enhanced CAT, POX and SOD activity	Sarma and Saikia123	2014
8.	*Bacillus* amyloliquefaciens S113 and *Azospirillum brasiliense* N040	Wheat	Increased fresh and dry weights, Antioxidant enzymes, enhanced of stress response genes APX1, SAMS1, and HSP17.8	Kasim et al.124	2013
9.	*Serratia* sp., *Bacillus* *cereus, B. subtilis*	Cucumber	Chlorophyll content increased, increased CAT	Wang et al.122	2012
10.	*Bacillus* sp.	Maize	Lower APX, GPX activity	Vardharajula et al.96	2011
11.	*Pseudomonas* sp., *Bacillus* *kentus, A. brasiliense, Pseudomonas* sp., *Pseudomonas* *fluorescens* strain Pf1 *Bacillus* *subtilis* EPB5, EPB22, and EPB 31	*Ocimum basilicum* L.	Enhanced activity of CAT enzyme, Enhanced GPA and APX activity	Heidari and Golpayegan118	2011
12.		Green gram	Stress-related enzymes	Saravana kumar et al.121	2011
Table 10. Stress responsive genes induction by rhizobacteria and molecular techniques involved in their analysis

S. No.	PGPR Plant	Technique involved	Impact on plant	Reference	Year
1.	Gluconobacter diazotrophicus, P. chlororaphis	Illumina sequencing	Activation of ABA dependent signal transduction of genes	Vargas et al.	2014
2.	P. chlororaphis	Microarray analysis	Up regulation of transcripts of jasmonic acid-marker genes, pdf1.2, and VSP1, salicylic acid regulated gene (PR-), ethylene response gene (ARE), stress related genes (APX1, APX2) up regulated gene (HFL1)	Cho et al.	2013
3.	B. amyloliquefaciens, A. brasilense	Real time PCR	Enhanced stress response genes (Cadm1, sthSP, CaPR-10, VA)	Kasim et al.	2013
4.	B. licheniformis	2D-PAGE, DD-PCR	Stress related genes (APX1, A. brasilense) up regulated gene (HSP 17.8, SAMS1)	Lim and Kim	2013

Molecular mechanism of drought stress tolerance induced by rhizobacteria

In water deficit conditions, gene induction forms two different types of proteins: functional proteins and regulatory proteins. Functional proteins include mRNA binding proteins, LEA proteins, water channel proteins, enzymes for osmolytes biosynthesis, proteases etc. They function directly in abiotic stresses. On the other hand, regulatory proteins include protein kinase, calmodulin binding protein, phosphatase and other transcription factors. These are involved in stress responsive genes expression and signal transduction. Hsps are heat shock proteins which inhibit misfolding of protein and are classified according to their molecular weight. LEA proteins are the proteins which accumulate during late embryonic phase in response to abiotic stress. Plants inoculated with PGPR helps in up regulation of stress tolerance inducing genes. Various molecular strategies have established the mechanism of microbes induced gene expression modulation for abiotic stress tolerance. The differential expression of multiple genes such as COX1 (regulates energy and carbohydrate metabolism), ERD15 (Early response to dehydration 15), PKDP (protein kinase), AP2-EREBP (stress responsive pathway), Hsp20, bZIP1 and COC1 (chaperones in ABA signalling) in Pseudomonas fluorescens treated rice was established. Similarly RAB18 (ABA-responsive gene), LbKTI, LbSKOR (encoding potassium channels) in Lycium barbarum, jasmonate MYC2 gene in chickpea, ADC, A1H, CPA, SPDS,SPMS and SAMDC (polyamine biosynthesis), ACO, ACS (ethylene biosynthesis), PR1 (SA regulated gene), pdf1.2 (IA marker genes) and VSP1 (ethylene-response gene) in Pseudomonas treated Arabidopsis plants were established for drought tolerance. Molecular networks of signal transduction genes are also involved in drought stress responses.

There are different molecular techniques which give huge amount of information about induced genes expressions and pathways during plant and rhizobacteria interactions. The techniques include high throughput whole genome gene expression such as microarrays, proteomics, RNA sequencing, 2D-PAGE, differential display. This helps in exploring physiological
functions of such genes and tolerance induced by PGPR134. Upregulation of EARLY RESPONSE TO DEHYDRATION 15 (ERD15) in Arabidopsis thaliana was seen when inoculated with Paenibacillus polymyxa B2 as investigated at transcriptional level135. Pepper plants when inoculated with Bacillus showed more than 1.5-folds increase in Cadhn, VA, sHSP and CaPR-1084. Inoculation of Bacillus amyloliquefaciens 5113 and A. brasilense NO40 alleviating the deleterious impact of drought stress in leaves of wheat by upregulation of stress response genes APX1, SAMS1, and HSP17.8. These upregulated genes enhanced plant ascorbate–glutathione redox cycle help in alleviating drought stress124. Bacterial priming of

\textit{Gluconacetobacter diazotrophicus} PAL5 stimulated the ABA-dependent signalling genes which confer tolerance to drought in sugarcane cv. SP70-1143 as studied by Illumina sequencing (HiSeq 2000 system)135,136 (Table 10). In \textit{Pseudomonas chlororaphis} colonized \textit{Arabidopsis thaliana} plants, upregulated but differential expression of jasmonic acid-marker genes, VSP1 and pdf-1.2, salicylic acid regulated gene, PR-1 and the ethylene-response gene, was observed137.

In the past several decades, researchers have been able develop many resistant varieties of plant species, but they have gained a very little success in development of drought tolerant crops using genetic engineering138. Monsanto introduced...
GM crop MON 87460, a maize (*Zea mays* L.), in 2009 which was drought stress tolerant. This crop increased production 5.5-folds from 50,000 ha in 2013 to 275,000 ha in 2014. Cold shock protein B (CSPB) inserted from *Bacillus subtilis* in MON 87460 expresses to imparted drought tolerance. In bacteria, cold shock proteins help in preserving normal cellular functions by stabilizing cellular RNA and enhancing gene expression under abiotic stress. Similarly, the translation of CSPB have been reported to enhance tolerance to abiotic stress in *Arabidopsis* and *rice*. Another important gene OsNLI-IF overexpressed by cold, heat, salt and drought stresses improved drought tolerance in transgenic tobacco plants. Argentina developed genetically modified soybean contains a gene from a naturally drought-resistant sunflower adapted to drought. Rhizospheric microbes not only support the growth of plants in limited water conditions but also reduce use of chemical fertilisers.

The rhizosphere research field is flooded with metagenomics and metabolomics data, establishing genes identity and their functional taxonomic relationships. Scientists are putting their research efforts on developing consortia of microbes and metabolites of microbial origin in the formulations that best suited for individual crops in stressed environment.

CONCLUSION

In this review, we have attempted to highlights the existing knowledge of plant-bacterial interactions in maintaining plant growth under drought stress. To overcome drought conditions, plants adapt various morphological, biochemical and physiological changes. Now, it has been established that members of the rhizospheric bacteria can alleviate abiotic stress of drought in plants. This can be a promising alternative to tedious and costly genetic engineering and plant breeding methods. This review establishes that various PGPR play significant role in inducing tolerance to drought stress in plants employing different mechanisms. The rhizobacterial induced drought stress tolerance in the plant is over and above the drought resistance genes either present or absent in the plant (Fig. 1).

Future Perspectives

Future research should be undertaken to increase crop yield, soil fertility and shelf life of products of PGPR. Drought stress is a severe environmental factor that limits agricultural productivity. Rhizobacteriome offer plethora of PGPR in imparting adaptation and tolerance to drought stresses and prove to be promising strategy to improve productivity in drought areas. The plant and rhizobacteria interaction changes plant as well as soil properties in drought conditions. Rhizobacterial stimulation of osmotic responses and induction of novel genes expression play a significant role in ensuring plant survival under drought stress conditions. The development of drought tolerant crop varieties through genetic engineering and plant breeding approaches is good option but it is a labor intensive, lengthy and costly affair. Alternately, rhizobacteria inoculation to mitigate drought stresses in plants is environment friendly and safe option for agriculture drought affected areas. Future research must focus on (1) identification and characterization of the novel abiotic stress-tolerant bacteria from unexplored niches, (2) discover novel bacteria with novel molecule or mechanism, (3) better formulation with appropriate delivery system and (4) perform rigorous field trial in order to select potential rhizobacterial candidate to combat drought stress.

ACKNOWLEDGEMENTS

Authors would like to express thanks to Amity University, Noida, Uttar Pradesh and ICAR-NBAIM, Maunath Bhanjan, Uttar Pradesh for support extended in writing this review.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.

FUNDING

None.

AUTHORS’ CONTRIBUTION

All authors have made substantial contribution to develop this manuscript.
DATA AVAILABILITY
All datasets generated or analyzed during this study are included in the manuscript.

ETHICS STATEMENT
This article does not contain any studies with human participants or animals performed by any of the authors.

REFERENCES
1. Lesk, C., Rowhani, P., and Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 2016; 529:84–87. doi: 10.1038/nature16467
2. Wang W, Vinocur B, & Altman A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 2003; 218:1–14. https://doi.org/10.1007/s00253-003-1105-S
3. Sandhya V, Ali SZ, Grover M, Kishore N, Venkateswarlu B. Pseudomonas sp. strain P45 protects sun flowers seedlings from drought stress through improved soil structure. J. Oilsseed Res., 2009a; 26: 600–601.
4. Govindasamy V, George P, Kumar M. et al. Multi-trait PGP rhizobacterial endophytes alleviate drought stress in a senescent genotype of sorghum [Sorghum bicolor (L.) Moench]. J. Biotech., 2020; 10(13). https://doi.org/10.1007/s13205-019-0021-4
5. Grover M, Ali SKZ, Sandhya V, Rasul A and Venkateswarlu B. Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J. Microbiol. Biotechnol., 2011; 27: 1231–1240. https://doi.org/10.1007/s11274-010-0572-7
6. Ahmad F, Ahmad I, Khan MS. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol. Res., 2008; 163(2): 173–181. https://doi.org/10.1016/j. micres.2006.04.001
7. Hayat R, Ali S, Amara U, Khalid R, Ahmed I. Soil beneficial bacteria and their role in plant growth promotion: a review. Ann. Microbiol., 2010; 60: 579–598. https://doi.org/10.1007/s11303-010-0117-1
8. Pii Y, Mimmo T, Tomasi N, Terzano R, Cesco S, Crecchio C. Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process: a review. Biol. Fertil. Soils, 2015; 51(4): 403–415. https://doi.org/10.1007/s00126-014-1924-8
9. Braud A, Jezquel K, Bazot S, Lebeau T. Enhanced phytoextraction of an agricultural Cr-, Hg- and Pb-contaminated soil by bioaugmentation with siderophore producing bacteria. Chemosphere, 2009; 74: 280–286. https://doi.org/10.1016/j. chemosphere.2008.09.013
10. Ahemad M. Implications of bacterial resistance against heavy metals in bioremediation: a review. IIOABJ., 2012; 3: 39–46.
11. Deikman J, Petracek M, Heard JE. Drought tolerance through biotechnology: improving translation from the laboratory to farmers’ fields. Curr. Opin Biotechnol., 2012; 23: 243–250. https://doi.org/10.1016/j.copbio.2011.11.003
12. Ahemad M, Kibret M. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. King Saud Univ. Sci., 2014; 26(1): 1–20. https://doi.org/10.1016/j.jsus.2013.05.001
13. Tank N, Saraf M. Salinity-resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants. J. Plant Interact.,2010; 5: 51–58. https://doi.org/10.1080/17429140903125848
14. Glick BR. Plant growth-promoting bacteria: Mechanisms and applications. Scientifica., 2012;15. https://doi.org/10.6064/2012/963401
15. Ullah A, Manghwar H, Shaban, M et al. Phytohormones enhanced drought tolerance in plants: A coping strategy. Environ Sci. Pollut. Res., 2018; 25:33103–33118. https://doi.org/10.1007/s11356-018-3364-5
16. Ghosh D, Gupta A, Mohapatra S. Dynamics of endogenous hormone regulation in plants by phytohormone secreting rhizobacteria under water-stress. Symbiosis, 2019; 77: 265–278. https://doi.org/10.1007/s13199-018-00589-w
17. Khan MS, Zaidi A, Ahemad M, Oves M, Wani PA. Plant growth promotion by phosphate solubilising fungi - Current perspective. Arch Agron Soil Sci., 2010; 56: 73–98. https://doi.org/10.1080/03650340902806469
18. Arshad M, Saleem, M, Hussain S. Perspectives of bacterial ACC deaminase in phytoremediation. Trends Biotechnol., 2007; 25: 356– 362. https://doi.org/10.1016/j.tibtech.2007.05.005
19. Anjum MA, Sajjad MR, Akhter N, Qureshi MA, Iqbal A, Rehman JA, Mahmud-ul-Hasan, Response of cotton to plant growth promoting rhizobacteria (PGPR) inoculation under different levels of nitrogen. J. Agric. Res., 2007; 45: 135–143.
20. Ali SKZ, Sandhya V, Rao LV, 2014. Isolation and characterization of drought-tolerant ACC deaminase and exopolysaccharide-producing fluorescent Pseudomonas sp. Ann. Microbiol., 2014; 64: 493–502. https://doi.org/10.1016/j.annmicr.2013.10.060-3
21. Burd GI, Dixon DG, Glick BR. Plant growth promoting bacteria that decrease heavy metal toxicity in plants. Can. J. Microbiol., 2000; 46: 237–245. https://doi.org/10.1139/w99-143
22. Bashan Y, de-Bashan LE, Prabhu SR, Hernandez JP. Advances in plant-growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil, 2014; 378: 1–33. https://doi.org/10.1007/s11104-013-1956-x
23. Nehra V, Choudhary M. A review on plant growth promoting rhizobacteria acting as bioinoculants and their biological approach towards the production of sustainable agriculture. J. Appl. Nat. Sci., 2015; 7(1): 540–556. https://doi.org/10.31018/jans.v7i1.642
24. Naylor D and Coleman-Derr D. Drought stress and root-associated bacterial communities. Front. Plant Sci., 2018; 8: 2223. https://doi.org/10.3389/fpls.2017.02223
25. Van Meeteren MJM, Tietema A, van Loon EE, Verstraten JM. Microbial dynamics and litter decomposition under a changed climate in a Dutch heathland. Appl. Soil Ecol., 2008; 38: 119–127. https://doi.org/10.1016/j.soil.2007.09.006
26. Yang J, Kloepper JW, Ryu CM, Rhizosphere bacteria help
plants tolerate abiotic stress. *Trends Plant Sci.*, 2009; **14:** 1–4. https://doi.org/10.1016/j.tplants.2008.10.004

27. Nardi S, Conchieri G, Pizziellillo D, Sturaro A, Rella R, Parvoli G. Soil organic matter mobilization by root exudates. *Chemosphere.*, 2000; **5:** 653–658. https://doi.org/10.1016/S0045-6535(99)00488-3

28. Hiltner L. UberneuerErfahrungen und Probleme auf dem Gebiete der Bodenkulturtechnologie und unterbesondererBerUcksichtigung der Grundung und Brache. *Arb. Deut. Landw. Gesell.*, 1904; **98:** 59–78.

29. Zhang Q, Saleem M and Wang C. Probiotic strain *Stenotrophomonas acidaminiphila* B11 reduces chlorothalonil toxicity to soil enzymes, microbial communities and plant roots. *AMB Exp.*, 2017; **7:** 227–235. https://doi.org/10.1186/s11368-017-0530-y

30. Dakora FD, Phillips DA. Root exudates as mediators of mineral acquisition in low-nutrient environments. *Plant Soil*, 2002; **245:** 35–47. https://doi.org/10.1023/A:1020809400075

31. Hartmann A, Rothballer M and M Schmid. Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. *Plant Soil*, 2008; **312:** 7–14. https://doi.org/10.1007/s11104-007-9514-z

32. Bonkowski M, Villenave C and Griffiths B. Rhizosphere fauna: the functional and structural diversity of intimate interactions of soil fauna with plant roots. *Plant Soil*, 2009; **321:** 213–233. https://doi.org/10.1007/s11104-009-0013-2

33. Buee M, De Boer W, Martin F, van Obberbeek L and Jurkевич E. The rhizosphere zoo: an overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors. *Plant Soil*, 2009; **321:** 189–212. https://doi.org/10.1007/s11104-009-9991-3

34. Bakker PA, Berendsen RL, Doornbos RF, Wintemans PC, Pieterse CM. The rhizosphere revisited: root microbiomes. *Front Plant Sci.*, 2013; **4:** 165-172. https://doi.org/10.3389/fpls.2013.00165

35. Doornbos RF, Van Loon LC, Bakker PAHM. Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. *Agron. Sustain. Dev.*, 2012; **32:** 227–243. https://doi.org/10.1007/s11353-011-0028-y

36. Raaijmakers J and Mazzola M. Diversity and natural functions of antibiotics produced by beneficial and pathogenic soil bacteria. *Ann. Rev. Phytopathol.*, 2012; **50:** 403-424. https://doi.org/10.1146/annurev-phyto-081211-172908

37. Hueso, S. Garcia C and Hernandez T. Severe drought conditions modify the microbial community structure, size and activity in amended and unamended soils. *Soil Biol. Biochem.*, 2012; **50:** 167–173. https://doi.org/10.1016/j.soilbio.2012.03.026

38. Bourke NJ, Wood TE, Baran R, Ye Z, Bowen BP, Lim H, et al. Belowground response to drought in a tropical forest soil. I. Changes in microbial functional potential and metabolism. *Front. Microbiol.*, 2016; **7:** 525-536. https://doi.org/10.3389/fmicb.2016.00525

39. Fuchsler L, Bahn M, Hasibeder R, Kienzl S, Fritz K, Schmitt M, et al. Drought history affects grassland plant and microbial carbon turnover during and after a subsequent drought event. *J. Ecol.*, 2016; **104:** 1453–1465. https://doi.org/10.1111/1365-2745.12593

40. Toth Z, Tancsic A, Kriszt B, Kroel-Dulay G, Onodj G and Hornung E. Extreme effects of drought on composition of the soil bacterial community and decomposition of plant tissue: bacterial community and plant tissue decomposition. *Eur. J. Soil Sci.*, 2017; **68:** 504–513. https://doi.org/10.1111/1365-2389.12429

41. Barnard RL, Osborne CA and Firestone MK. Responses of soil bacterial and fungal communities to extreme dessication and rewetting. *ISME J.*, 2013; **7:** 2229–2241. https://doi.org/10.1038/ismej.2013.104

42. Acosta-Martinez V, Cotton J, Gardner T, Moore-Kucera J, Zak J, Wester D, et al. Predominant bacterial and fungal assemblages in agricultural soils during a record drought/hot wave and linkages to enzyme activities of biogeochemical cycling. *Appl. Soil Eco.*, 2014; **84:** 69–82. https://doi.org/10.1016/j.apsoil.2014.06.005

43. Abdi El-Daim IA, Bejai S, Meijer J. *Bacillus velezensis* 5113 Induced metabolic and molecular reprogramming during abiotic stress tolerance in wheat. *Sci. Rep.*, 2019; **9:** 16282. https://doi.org/10.1038/s41598-019-52567-x

44. Rolli E, Marasco R, Viganò G, Ettoumi B, Mapelli F, Deangelis ML, et al. Improved plant resistance to drought is promoted by the root-associated microbiome as a water. *Environ Microbiol.*, 2015; **17(2):** 316-31. https://doi.org/10.1111/1462-2920.12439

45. Fahad S, Hussain S, Bano A, Saud S, Hassan S, Shan D, et al. Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. *Environ. Sci. Pollut. Res.*, 2015; **22:** 4907–4921. https://doi.org/10.1007/s11356-014-3754-2

46. Urano K, Maruyama K, Jikumaru Y, Kamiya Y, Yamaguchi -Shinozaki K and Shinozaki K. Analysis of plant hormone profiles in response to moderate dehydration stress. *Plant J.*, 2017; **90:** 17–36. https://doi.org/10.1111/tpj.13460

47. Tiwari S, Lata C, Chauhan PS, Nautyal CS. *Pseudomonas putida* attunes morphophysiological, biochemical and molecular responses in *Cicer arietinum* L. during drought stress and recovery. *Plant Physiol Biochem.*, 2016; **99:** 108–117. https://doi.org/10.1016/j.plaphy.2015.11.001

48. Wani PA, Khan MS. *Bacillus* species enhance growth parameters of chickpea (*Cicer arietinum* L.) in chromium stressed soils. *Food Chem. Toxicol.*, 2010; **48:** 3262–3267. https://doi.org/10.1016/j.fct.2010.08.035

49. Dimkpa C, Weinand T, Asch F. Plant–rhizobacteria interactions alleviate abiotic stress conditions. *Plant Cell Environ.*, 2009a; **32:** 1682–1694. https://doi.org/10.1111/j.1365-3040.2009.02028.x

50. Cohen AC, Travaglia CN, Bottini R, Piccoli PN. Participation of abscisic acid and gibberellins generated by endophytic *Azospirillum* in the alleviation of drought effects in maize. *Botanique.*, 2009; **87:** 455–462. https://doi.org/10.1139/B09-023

51. Arzamash MH, Alikhani HA, Khavazi K, Rahimian HA, Miransari M. *Wheat* (*Triticum aestivum* L.) growth enhancement by *Azospirillum* sp. under drought stress.
World J. Microbiol. Biotechnol., 2011; 27: 197–205. https://doi.org/10.1007/s11274-010-0444-1

52. Molina-Favero C, Creus CM, Simoncacci M, Puntarulo S, Lamattina L. Aerobic nitric oxide production by Azospirillum brasilense Sp245 and its influence on root architecture in tomato. Mol. Plant Microb. Interact., 2008; 2: 1001–1009. https://doi.org/10.1094/MPMI-21-7-1001

53. Dimkpa CO, Svatos A, Dabrowska P, Schmidt A, Boland W, Kothe E. Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp. Chemosphere. 2008; 74(1): 19–25. doi: 10.1016/j.chemosphere.2008.09.079

54. Creus CM, Sueldo RJ, Barassai CA. Water relations and yield in Azospirillum-inoculated wheat exposed to drought in the field. Can. J. Bot., 2004; 82: 273–281. https://doi.org/10.1139/j04-003

55. Armada E, Roldan A, Azcon R. Differential activity of autochthonous bacteria in controlling drought stress in native Lavandula and Salvia plants species under drought conditions in natural arid soil. Microb. Ecol., 2014; 67: 410–420. https://doi.org/10.1007/s00248-013-0326-9

56. Hussain MB, Zahir ZA, Asghar HN, Asgha M. Can catalase and exopolysaccharides producing rhizobia ameliorate drought stress in wheat?. Int. J. Agric. Biol., 2014; 16: 3-13.

57. Marulanda A, Barea J-M, Azcon R Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments: mechanisms related to bacterial effectiveness. J. Plant Growth Regul., 2009; 28: 115–124. https://doi.org/10.1007/s10990-009-0973-6

58. Omara AED and Elbagory M. Enhancement of plant growth and yield of wheat (Triticum aestivum L.) under drought conditions using plant-growth-promoting bacteria. Ann Rev Rev Biol, 2018; 28(6): 1-18. https://doi.org/10.1073/ARRB/2018/44181

59. Joo GJ, Kin YM, Kim JT, Rhee IK, Kim JH, Lee JI. Gibberellins-producing rhizobacteria increase endogenous gibberellins content and promote growth of red peppers. Microbiol., 2005; 43: 510–515.

60. Sang S-M, Radhakrishnan R, Khan al et al. Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiol. Biochem., 2014b; 84: 115–124. https://doi.org/10.1016/j.plaphy.2014.09.001

61. Kaushal M, Wani SP. Plant-growth-promoting rhizobacteria: drought stress alleviators to ameliorate crop production in drylands. Ann. Microbiol., 2015; 1–8. https://doi.org/10.1007/s13213-015-1112-3

62. Vishwakarma K, Upadhyay N, Kumar N, Yadav G, Singh J, Mishra RK, Kumar V, Verma R, Upadhyay RG, Pandey M, et al. Absciscic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Front Plant Sci., 2017; 8: 161. https://doi.org/10.3389/fpls.2017.00161

63. Bresson J, Varoquaux F, Bontpart T, Touraine B, Vile D. The PGPR strain Phyllobacterium brassicaeaeae STM196 induces a reductive delay and physiological changes that result in improved drought tolerance in Arabidopsis. New Phytol., 2013; 558–569. https://doi.org/10.1111/nph.12383

64. Liu F, Xing S, Ma H, Du Z, Ma B. Cytokinin producing, Plant growth promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings. Appl. Microbio. Biotechnol., 2013; 97:9155-9164. https://doi.org/10.1007/s00253-013-5193-6.

65. Hussain, A and Hasnain S. Cytokinin production by some bacteria: its impact on cell division in cucumber cotyledons. Afr. J. Microbiol. Res., 2009; 3: 704–712.

66. Arkhipova TN, Prinsen E, Veselov SU, Martinenko EV, Melentiev AI, Kudoyarova GR Cytokinin producing bacteria enhances plant growth in drying soil. Plant Soil, 2007; 292: 305–315. https://doi.org/10.1007/s11104-007-9233-5

67. Kudoyarova GR, Melentiev AI, Martinenko EV, Timergalina LN, Arkhipova TN, Shendel GV, et al. Cytokinin producing bacteria stimulate amino acid deposition by wheat roots. Plant Physiol. Biochem., 2014; 83: 285–291. https://doi.org/10.1016/j.plaphy.2014.08.015

68. Raza FA, Faisal M. Growth promotion of maize by desiccation tolerant Micrococcus luteus chp37 isolated from Cholistan desert, Pakistan. Aust. J. Crop Sci., 2013; 7(11): 1693-1698.

69. Soni R, Yadav SK, Rajput AS. ACC-deaminase producing rhizobacteria: prospects and application as stress busters for stressed agriculture. In: Panpatte D., Jhala Y., Shelat H., Vyas R. (eds) Microorganisms for Green Revolution., 2018; Springer, Singapore. https://doi.org/10.1007/978-981-10-7146-1_9

70. Glick BR. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol. Rev., 2014; 169(1): 30-39. https://doi.org/10.1016/j.micres.2013.09.009

71. Gupta S and Pandey S. Unravelling the biochemistry and genetics of ACC deaminase-An enzyme alleviating the biotic and abiotic stress in plants. Plant Gene, 2019; 18: 100175. https://doi.org/10.1016/j.pligen.2019.100175

72. Saleem AR, Brunetti C, Khalid A, Della Rocca G, Raio A, Emiliani G, et al. Drought response of Mucuna pruriens (L.) DC. inoculated with ACC deaminase and IAA producing rhizobacteria. PLoS ONE, 2018; 13(2): e0191218. https://doi.org/10.1371/journal.pone.0191218

73. Saikia J, Sarma R K, Dhandia R, Yadav A, Bharali R, Gupta V K, et al. Alleviation of drought stress in pulse crops with ACC deaminase producing rhizobacteria isolated from acidic soil of Northeast India. Sci. Rep., 2018; 8: 3560 (1-16). https://doi.org/10.1038/s41598-018-25174-5

74. Mayak S, Tiros T, Glick BR. Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol. Biochem., 2004; 42: 565–572. https://doi.org/10.1016/j.plaphy.2004.05.009

75. Niu X, Song L, Xiao Y, & Ge, W. Drought-tolerant plant growth-promoting rhizobacteria associated with foxtail millet in a semi-arid agroecosystem and their potential in alleviating drought stress. Front. Microbiol., 2017; 8:
76. Safari D, Jamali F, Nooryazdan HR, and Bayat F. Evaluation of ACC deaminase producing *Pseudomonas fluorescens* strains for their effects on seed germination and early growth of wheat under salt stress. *Aust. J. Crop Sci.*, 2018; 12: 413–421. https://doi.org/10.21475/ajcs.18.12.03.pn801

77. Dodd AA, Belimov WY, Sobeih VI, Safronova D, Griersen D, Davies WJ. Will modifying plant ethylene status improve plant productivity in water-limited environments? 2005.4th International Crop Science Congress.

78. Danish S, Zafar-ul-Hye M, Hussain M, Shaaban M, Nunez-Delgado A, Hussain S, Qayyum MF. Rhizobacteria with ACC-deaminase activity improve nutrient uptake, chlorophyll contents and early seedling growth of wheat under PEG-induced osmotic stress. *Intl. J. Agric. Biol.*, 2019; 21: 1212–1220.

79. Zafar-ul-Hye M, Danish S, Abbas M, Ahmad M, Munir TM. ACC deaminase producing PGPR *Bacillus amyloliquefaciens* and *Agrobacterium fabrum* along with biochar improve wheat productivity under drought stress. *Agronomy*, 2019; 9: 343. https://doi.org/10.3390/agronomy9070343.

80. Maxton A, Singh P, Masih SA. ACC deaminase-producing bacteria mediated drought and salt tolerance in *Capsicum annuum*. *J Plant Nutrit.*, 2018; 41(5): 574-583. https://doi.org/10.1080/01904167.2017.1392574

81. Chandra D, Srivastava R, Sharma AK. Influence of ACC deaminase-producing rhizobacteria in ameliorating drought stress. *Mol. Plant Microbe Interact.*, 2010; 23(8): 1097–1104. https://doi.org/10.1094/MPMI-23-8-1097

82. Belimov AA, Dodd IC, Hontzeas N, Theobald JC, Safi HR, Safronova VI, Davies WJ. Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling. *New Phytol.*, 2009; 181: 413–423. https://doi.org/10.1111/j.1469-8137.2008.02657.x

83. Zahir ZA, Munir A, Asghar HN, Shahroona, Arshad M. Effectiveness of rhizobacteria containing ACC-deaminase for growth promotion of peas (*P. sativum*) under drought conditions. *J. Microbiol. Biotechnol.*, 2008; 18: 958-963.

84. Lim JH, Kim SD. Induction of drought stress resistance by multi-functional PGPR *Bacillus licheniformis* K11 in pepper. *Plant Pathol.* J., 2013; 29: 201-208. https://doi.org/10.5432/PPJSI.02.2013.0021

85. Sharma P, KhannaV, KumarPI. Efficacy of aminocyclopropane-1-carboxylic acid (ACC)-deaminase-producing rhizobacteria in ameliorating water stress in chickpea under axenic conditions. *Afr. J. Microbiol. Res.*, 2013; 7: 5749-5757. https://doi.org/10.5897/AJMR2013.5918

86. Raza W, Yousaf S, Rajer FU. Plant growth promoting activity of volatile organic compounds produced by biocontrol strains. *Sci. Lett.*, 2016; 4(1): 40-43.

87. Kanchiswamy CN, Malnøy M, Maffei ME. Chemical diversity of microbial volatiles and their potential for plant growth and productivity. *Front. Plant Sci.*, 2015; 6: 151. https://doi.org/10.3389/fpls.2015.00151

88. Zhang H, Murzello C, Sun Y, Kim MS, Xie X, Jeter RM, Zak JC, Dowd SE, Pare PW. Choline and osmotic-stress tolerance induced in *Arabidopsis* by the soil microbe *Bacillus subtilis* (GB03). *Mol Plant Microbe Interact.*, 2010; 23(8): 1097–1104. https://doi.org/10.1094/MPMI-23-8-1097

89. Cho SM, Kang, B. R., Han, S. H., Anderson, A. J., Park, J.Y., Lee, Y.-H., Cho, B. H., Yang, K.Y., Ryu, C.-M. and Kim, Y.C. 2R,3R-butanol, a bacterial volatile produced by *Pseudomonas chlororaphis* O6, is involved in induction of systemic tolerance to drought in *Arabidopsis thaliana*. *Mol. Plant-Microbe Interact.*, 2008; 21:1067–1075. https://doi.org/10.1094/MPMI-21-8-1067

90. Timmusk S, Abd El-Daim, IA, Copolović I, Tanilas T, Kannaste A, Behers L, Niinemets U. Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. *PLoS One*, 2014; 9: e96086. https://doi.org/10.1371/journal.pone.0096086

91. Sandhya V, Ali SKZ, Grover M, Reddy G, Venkateswarlu B. Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing *Pseudomonas putida* strain GAP-P45. *Biol. Fertil. Soils*, 2009; 46: 17-26. https://doi.org/10.1007/s00374-009-0401-z

92. Pawar ST, Bhosale AA, GawadeTB, Nale TR. Isolation, screening and optimization of exo-polysaccharide producing bacterium from saline soil. *J. Microbiol. Biotechnol.*, 2016; 3(3): 24-31.

93. Naseem H, Bano A. Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize. *J. Plant Interact.*, 2014; 9: 689–701. https://doi.org/10.1080/17429145.2014.902125

94. Naseem H, Ahsan M, Shahid MA, Khan N. Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance. *J. Basic Microbiol.*, 2018, 58: 1009–1022. https://doi.org/10.1002/jobm.201800309

95. Alami Y, Champolivier L, Merrien A, Heulin T. The role of *Rhizobium* sp. rhizobacterium that produces exopolysaccharide in the aggregation of the rhizospherical soil of the sunflower: Effects on plant growth and resistance to hydric constraint. *OCL – Oleagineux Corps Gras Lipides*, 2000; 6: 524–528.

96. Vardharajula S, Zulfikar Ali S, Grover M et al., Drought-tolerant plant growth promoting *Bacillus* spp: effect on growth, osmolytes, and antioxidant status of maize under drought stress. *J. Plant Interact.*, 2011; 6: 1–14. https://doi.org/10.1080/17429145.2010.535178

97. Sandhya V, Ali SKZ, Grover M et al. Effect of plant growth promoting *Pseudomonas* spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. *Plant Growth Regul.*, 2010a; 62: 21–30. https://doi.org/10.1007/s10725-010-9479-4

98. Ghosh D, Gupta A & Mohapatra S. A comparative analysis of exopolysaccharide and phytohormone secretions by four drought-tolerant rhizobacterial strains and their impact on osmotic-stress mitigation in *Arabidopsis thaliana*. *World J. Microbiol. Biotechnol.*, 2018; 34(9): 2220-2230.
101. Close TJ, Dehydrins emergence of a biochemical role of a family of plant dehydration proteins. Physiol. Planta., 1996; 97: 795–803. https://doi.org/10.1034/j.1399-5811.1996.570422.x

102. Rahmani HA et al. Effect of Pseudomonas fluorescens on proline and phytohormonal status of maize (Zea mays L.) under water deficit stress. Ann.Biol.Res., 2012; 1054-1062.

103. Gusain YS, Singh US, Sharma AK. Bacterial mediated amelioration of drought stress in drought tolerant and susceptible cultivars of rice (Oryza sativa L.). Afr. J. Biotecnol., 2015; 14:764–773. https://doi.org/10.5897/AJB2015.14405

104. Shintu PV, Jayaram KM. Phosphate solubilising bacteria (Bacillus polymyxa)—An effective approach to mitigate drought in tomato (Lycopepercion esculentum Mill). Trop. Plant Res., 2015; 2: 17-2.

105. Sandhya V, Ali SZ, Venkateswarlu B et al. Effect of osmotic stress on plant growth promoting Pseudomonas spp. Arch. Microbiol., 2010b; 192: 867–876. https://doi.org/10.1007/s00203-010-0613-5

106. Rodriguez SJ, Suarez R, Caballero MJ, Ilturriaga G. Trehalose accumulation in Azospirillum brasilense improves drought tolerance and biomass in maize plants. FEBS Microbial. Lett., 2009; 296: 52-59. https://doi.org/10.1111/j.1574-6968.2009.01614.x

107. Bano Q, Ilyas N, Bano A, Zafar N, Akram A, F. Ul Hassan F. Effect of Azospirillum inoculation on maize (Zea mays L.) under drought stress. Pak. J. Bot., 2013; 45: 13-20.

108. Garcia JE, Maroniche G, Creus C et al. In vitro PGPR properties and osmotic tolerant of different Azospirillum native strains and their effects on growth of maize under drought stress. Microbiol. Res., 2017; 202: 21–29. https://doi.org/10.1016/j.micres.2017.04.007

109. Gou W, Tian L, Ruan Z, Zheng P, Chen F, Zhang L, Cui Z, Zheng P, Li Z, Gao M, Shi W, Zhang L, Liu J, Hu J. Accumulation of choline and glycinebetaine and drought stress tolerance induced in maize (Zea mays) by three plant growth promoting rhizobacteria (PGPR) strains. Pak. J. Bot., 2015; 47: 581-586.

110. Zhang G, Sun Y, Sheng H, Li H, and Liu X. Effects of the inoculations using bacteria producing ACC deaminase on ethylene metabolism and growth of wheat grown under different soil water contents. Plant Physiol. Biochem., 2018; 125: 178–184. https://doi.org/10.1016/j.plaphy.2018.02.005

111. Ansary HA, Rahmani MR, Ardakani F, Paknejad, D. Habibi, S. Mafakhari. Effect of Pseudomonas fluorescens on proline and phytohormonal status of maize (Zea mays L.) under water deficit stress. Annal. Biol. Res., 2012; 3: 1054-1062.

112. Cassan F, Maiale S, Masciarelli O, Vidal A, Luna V, Ruiz O. Cadaverine production by Azospirillum brasilense and its possible role in plant growth promotion and osmotic stress mitigation, Eur. J. Soil Biol., 2009; 45: 12-19. https://doi.org/10.1016/j.ejsoil.2008.08.003

113. Suarez R, Wong A, Ramirez M, Barraza A, OrozcoMdel C, Cevallos MA, et al. Improvement of drought tolerance and grain yield in common bean by over expressing trehalose-6-phosphate synthase in rhizobia. Mol. Plant Microb. Interact., 2008; 21: 958-966. https:// doi.org/10.1094/MPMI-21-7-0958

114. Sen S, Ghosh D, Mohapatra S. Modulation of polyamine biosynthesis in Arabidopsis thaliana by a drought mitigating Pseudomonas putida strain. Plant Physiol. Biochem., 2018; 129: 180–188. https://doi.org/10.1016/j.plaphy.2018.05.034

115. Ghosh D, Sen S, Mohapatra S. Drought-mitigating Pseudomonas putida gap-P45 modulates proline turnover and oxidative status in Arabidopsis thaliana under water stress. Ann. Microbiol., 2018; 68: 579–594. https://doi.org/10.1007/s13213-018-1366-7

116. Halliwell. Reactive species and antioxidants: Redox biology is a fundamental theme of aerobic life. Plant Physiol., 2006; 141(2): 312-322. https://doi.org/10.1104/pp.106.077073

117. Miller G, Susuki N, Ciftci-Yilmaz S, Mittler R. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ., 2010; 33: 453-467. https://doi.org/10.1111/j.1365-3040.2009.02041.x

118. Heidari M, Golpayegani A. Effects of water stress and inoculation with plant growth promoting rhizobacteria (PGPR) on antioxidant status and photosynthetic pigments in basil (Ocimum basilicum L.) J. Saudi. Soc. Agri. Sci., 2011; 11: 57–61. https://doi.org/10.1016/j.jssas.2011.09.001

119. Li H, Guo Q, Jing Y. et al. Application of Streptomyces pactum Act12 enhances drought resistance in wheat. J Plant Growth Regul., 2019; 1-11.

120. Gururani MA, Upadhyaya CP, Baskar V, Venkatesh J, Nookaraju A, Park SW. Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum through inducing changes in the expression of ROS scavenging enzymes and improved photosynthetic performance. J. Plant Growth Regul., 2013; 32: 245–258. https://doi.org/10.1007/s00344-012-9292-6

121. Saravanakumar D, Kavino M, Raguchander T, Subbian P, Samiyappan R. Plant growth promoting bacteria enhance water stress resistance in green gram plants. Acta Physiol. Plant. 2013; 33: 203–209. https://doi.org/10.1007/s11738-010-0539-1

122. Wang CJ, Yang W, Wang C, Gu C, Niu DD, Liu HX, et al. Induction of drought tolerance in cucumber plants through inducing changes in the expression of ROS scavenging enzymes and improved photosynthetic performance. J. Plant Growth Regul., 2013; 32: 245–258. https://doi.org/10.1007/s00344-012-9292-6

123. Sarma R, Saikia R. Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa GGR121. Plant Soil, 2014; 377: 111–126. https://doi.org/10.1007/s11104-013-1981-9
Abiotic stress responses and microbe-mediated mitigation in plants: targets, methods, and challenges. In: Kumar S., Barone P., Smith M. (eds) Transgenic Plants. Methods in Molecular Biology. 2019; 1864. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8778-8_22

S. P. Response of plants to water stress. Front. Plant Sci., 2016; 7: 1029. https://doi.org/10.3389/fpls.2016.01029

Kasual M. Microbes in cahoots with plants: MIST to hit the jackpot of agricultural productivity during drought. Int. J. Mol. Sci., 2019; 20(7): 1769. https://doi.org/10.3390/ijms20071769

Wang D, Pan Y, Zhao X, Zhu L, Fu B, Li Z. Genome-wide temporal-spatial gene expression profiling of drought responsiveness in rice. BMC Genomics, 2011; 16(12): 149-164. https://doi.org/10.1186/1471-2164-12-149

Oskabe Y, Oskabe K., Shinozaki K., Tran L.-S. P. Response of plants to water stress. Front. Plant Sci., 2014; 5: 86-93. https://doi.org/10.3389/fpls.2014.00086

Irkebiye O, Choudhary K, Gupta P, Pareek A, et al. Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front. Plant Sci., 2017; 8: 172-194. https://doi.org/10.3389/fpls.2017.00172

Paterson J, Jahanshah G, Li Y, Wang Q, Mehnaz S, Gross H. The contribution of genome mining strategies to the understanding of active principles of PGPR strains. FEMS Microbiol Ecol., 2017; 93: 1–31. https://doi.org/10.1093/femsec/flw249

Kandasamy S, Loganathan K, Muthuraj R, et al. Understanding the molecular basis of plant growth promotion: the role of Pseudomonas fluorescens on rice through protein profiling. Proteome Sci., 2009; 7: 47-55. https://doi.org/10.1186/1477-5956-7-47

Vargas L, Santa Brigida AB, Mota Filho, JP, de Carvalha TG, Rojas CA, et al. Drought tolerance conferred to sugarcane by association with Gluconacetobacter diazotrophicus: A transcriptomic view of hormone, Plos One, 2014; 9(12): e114744. https://doi.org/10.1371/journal.pone.0114744

Cho SM, Beom R, Yong K, Yang, C. Oung, K. Heol. Transcriptome analysis of induced systemic drought tolerance elicited by Pseudomonas chlororaphis O6 in Arabidopsis thaliana. Plant Pathol. J., 2013; 29: 209-220. https://doi.org/10.5423/PPJ.SI.07.2012.0103

Bakhsh A, Hussain T. Engineering crop plants against abiotic stress: current achievements and prospects. Emirates J Food Agr., 2015; 27: 24−39. https://doi.org/10.9755/ejfa.v27i1.17980

Davies JP, Christensen CA. Developing transgenic agronomic traits for crops: targets, methods, and challenges. In: Kumar S., Barone P., Smith M. (eds) Transgenic Plants. Methods in Molecular Biology. 2019; 1864. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8778-8_22

Sammons B, Whitsel J, Stork LG, Reeves W, Horak M. Characterization of drought-tolerant maize MON 87460 for use in environmental risk assessment. Crop Sci., 2014; 54: 719−729. https://doi.org/10.2135/cropsci2013.07.0452

Castiglioni P, Warner D, Bensen RJ, Anstrom DC, Harrison J, Stoecker M, Abad M, Kumar G, Salvador S, D’Ordine R. Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions. Plant Physiol., 2008; 147: 446−455. https://doi.org/10.1104/pp.108.118828

Deikman J, Petracek M, Heard JE. Drought tolerance through biotechnology: improving translation from the laboratory to farmers’ fields. Curr. Opin. Biotechnol., 2012; 23: 243−250. https://doi.org/10.1016/j.copbio.2011.11.003

Phuong ND, Tuteja N, Nghia PT, Hoi PX. Identification and characterization of a stress-inducible gene. OsNLI-IF enhancing drought tolerance in transgenic tobacco Curr. Sci., 2017; 109: 541−551.

Dessaux Y, Grandclement C, Faure D. Engineering the rhizosphere. Trends Plant Sci., 2016; 21: 266−278. https://doi.org/10.1016/j.tplants.2016.01.002