DETECTION OF A PARTICLE SHOWER AT THE GLASHOW RESONANCE WITH ICECUBE

PRESENTED BY ZAMIUL ALAM

Photo Credit: Sven Lidstrom, IceCube/NSF
WHAT IS GLASHOW RESONANCE?

Picture of Sheldon Glashow

https://www.nobelprize.org/prizes/physics/1979/glashow/biographical/
WHAT IS GLASHOW RESONANCE?

• The Glashow resonance describes the resonant formation of a W^- boson during the interaction of a high-energy electron antineutrino with an electron [1]
WHAT IS GLASHOW RESONANCE?

• The Glashow resonance describes the resonant formation of a W^- boson during the interaction of a high-energy electron antineutrino with an electron [1]

• Predicted by Sheldon Glashow in his 1960 paper ‘Resonant Scattering of Antineutrinos’

Picture of Sheldon Glashow

https://www.nobelprize.org/prizes/physics/1979/glashow/biographical/
WHAT IS GLASHOW RESONANCE?

• The Glashow resonance describes the resonant formation of a W^- boson during the interaction of a high-energy electron antineutrino with an electron [1]

• Predicted by Sheldon Glashow in his 1960 paper ‘Resonant Scattering of Antineutrinos’

1. Glashow, S. L. Resonant Scattering of Antineutrinos. Phys. Rev. 118, 316–317 (1960).
WHO IS SHELDON GLASHOW?
WHO IS SHELDON GLASHOW?

The Nobel Prize in Physics 1979 was awarded jointly to Sheldon Lee Glashow, Abdus Salam and Steven Weinberg "for their contributions to the theory of the unified weak and electromagnetic interaction between elementary particles, including, inter alia, the prediction of the weak neutral current."

https://www.nobelprize.org/prizes/physics/1979/summary/
BACK TO GLASHOW RESONANCE

Credit: IceCube Collaboration
\bar{\nu}_e + e^- \rightarrow W^- \rightarrow X

Credit: IceCube Collaboration
The cross-section becomes resonantly enhanced for a centre-of-mass energy $\sqrt{s} = M_W = 80.38$ GeV
\[\sigma(s) = 24\pi \Gamma_W^2 \cdot B_{W^{-}\rightarrow \bar{\nu}_e+e^-} \cdot \frac{s/M_W^2}{(s - M_W^2)^2 + \Gamma_W^2 M_W^2} \]
\[\sigma(s) = 24\pi\Gamma^2_w \cdot B_{W^- \to \bar{\nu}_e + e^-} \frac{s/M^2_w}{(s - M^2_w)^2 + \Gamma^2_w M^2_w} \]

\[\Gamma_w = 2.09 \text{ GeV is the } W^- \text{ decay width} \]
\[\sigma(s) = 24\pi\Gamma_W^2 \cdot B_{W^{-}\rightarrow \bar{\nu}_e + e^-} \frac{s/M_W^2}{(s - M_W^2)^2 + \Gamma_W^2 M_W^2} \]

\[\Gamma_W = 2.09 \text{ GeV is the } W^- \text{ decay width} \]

\[B_{W^{-}\rightarrow \bar{\nu}_e + e^-} = 11\% \text{ is the branching ratio [2]} \]
\[\sigma(s) = 24\pi \Gamma_W^2 \cdot B_{W^- \rightarrow \bar{\nu}_e + e^-} \frac{s/M_W^2}{(s - M_W^2)^2 + \Gamma_W^2 M_W^2} \]

\[\Gamma_W = 2.09 \text{ GeV is the } W^- \text{ decay width} \]

\[B_{W^- \rightarrow \bar{\nu}_e + e^-} = 11\% \text{ is the branching ratio [2]} \]

2. Barger, V. et al. Glashow resonance as a window into cosmic neutrino sources. Phys. Rev. D90, 121301. arXiv: 1407.3255 [astro-ph.HE] (2014)
\[\sigma(s) = 24\pi \Gamma^2_W \cdot B_{W^- \to \bar{\nu}_e + e^-} \frac{s/M^2_W}{(s - M^2_W)^2 + \Gamma^2_W M^2_W} \]
\[\sigma(s) = 24\pi \Gamma_W^2 \cdot B_{W^- \to \nu_e + e^-} \frac{s/M_{W}^{2}}{(s - M_{W}^{2})^2 + \Gamma_{W}^{2} M_{W}^{2}} \]

\(\sigma(s)\) is maximal when \(s = M_{W}^{2}\)
\[\sigma(s) = 24\pi \Gamma_W^2 \cdot B_{W^- \rightarrow \bar{\nu}_e + e^-} \frac{s/M_W^2}{(s - M_W^2)^2 + \Gamma_W^2 M_W^2} \]

\[\sigma(s) \text{ is maximal when } s = M_W^2 \]

In the electron rest frame, the resonance energy is \[E_R = \frac{M_W^2}{2m_e} = 6.32 \text{PeV} \]
\[\sigma(s) = 24\pi \Gamma_W^2 \cdot B_{W^+ \rightarrow \bar{\nu}_e + e^-} \frac{s/M_W^2}{(s - M_W^2)^2 + \Gamma_W^2 M_W^2} \]

\(\sigma(s) \) is maximal when \(s = M_W^2 \)

In the electron rest frame, the resonance energy is

\[E_R = \frac{M_W^2}{2m_e} = 6.32 \text{PeV} \]

Peta means \(10^{15} \)
GLASHOW RESONANCE

BACK TO GLASHOW RESONANCE

\[\sigma(s) = 24\pi\Gamma_W^2 \cdot B_{W^- \rightarrow \bar{\nu}_e + e^-} \frac{s/M_W^2}{(s - M_W^2)^2 + \Gamma_W^2 M_W^2} \]

\(\sigma(s) \) is maximal when \(s = M_W^2 \)

In the electron rest frame, the resonance energy is \(E_R = \frac{M_W^2}{2m_e} = 6.32 \text{PeV} \)

Peta means \(10^{15} \)

The resonance energy lies beyond terrestrial accelerators, but not astrophysical sources of neutrinos.
WHICH BRINGS US TO ICECUBE

Credit: Martin Wolf, IceCube/NSF
CHERENKOV RADIATION

https://www.nobelprize.org/prizes/physics/1958/cerenkov/biographical
CHERENKOV RADIATION

Named after the Soviet scientist Pavel Cherenkov.

https://www.nobelprize.org/prizes/physics/1958/cerenkov/biographical
Named after the Soviet scientist Pavel Cherenkov.

Cherenkov Radiation is electromagnetic radiation emitted when a charged particle (such as an electron) passes through a dielectric medium at a speed greater than the phase velocity (speed of propagation of a wavefront in a medium) of light in that medium. [3]

https://www.nobelprize.org/prizes/physics/1958/cerenkov/biographical
CHERENKOV RADIATION

Named after the Soviet scientist Pavel Cherenkov.

Cherenkov Radiation is electromagnetic radiation emitted when a charged particle (such as an electron) passes through a dielectric medium at a speed greater than the phase velocity (speed of propagation of a wavefront in a medium) of light in that medium. [3]

3. Jackson, John David (1999). Classical Electrodynamics (3rd ed.)

https://www.nobelprize.org/prizes/physics/1958/cerenkov/biographical
The IceCube Laboratory (ICL)

Credit: IceCube Collaboration
The IceCube Neutrino Observatory is a cubic-kilometer neutrino detector built into the ice at the South Pole.
The IceCube Neutrino Observatory is a cubic-kilometer neutrino detector built into the ice at the South Pole. Construction was completed on December 18, 2010, and commissioning was completed in 2011.
The IceCube Neutrino Observatory is a cubic-kilometer neutrino detector built into the ice at the South Pole. Construction was completed on December 18, 2010, and commissioning was completed in 2011. Its primary scientific objective has been the discovery of astrophysical neutrinos, which was achieved in 2013, and the identification and characterization of their sources.
ICECUBE DETECTION PRINCIPLE

The last DOM

Credit: Robert Schwarz, NSF
ICECUBE DETECTION PRINCIPLE

- IceCube instruments a cubic kilometer of Antarctic ice with 5160 DOMs (digital optical modules)
ICECUBE DETECTION PRINCIPLE

- IceCube instruments a cubic kilometer of Antarctic ice with 5160 DOMs (digital optical modules)

- Each DOM contains a single downward-facing photomultiplier tube (PMT).
ICECUBE DETECTION PRINCIPLE

- IceCube instruments a cubic kilometer of Antarctic ice with 5160 DOMs (digital optical modules).
- Each DOM contains a single downward-facing photomultiplier tube (PMT).
- The DOMs are placed on 86 strings that extend from 1450 m to 2450 m beneath the surface.

The last DOM

Credit: Robert Schwarz, NSF
ICECUBE DETECTION PRINCIPLE

• IceCube instruments a cubic kilometer of Antarctic ice with 5160 DOMs (digital optical modules).

• Each DOM contains a single downward-facing photomultiplier tube (PMT).

• The DOMs are placed on 86 strings that extend from 1450 m to 2450 m beneath the surface.

• Charged particles traveling above the group velocity of light in ice (velocity $v > 0.73c$) emit light, which is detectable by the PMTs.
ICECUBE DETECTION PRINCIPLE

- IceCube instruments a cubic kilometer of Antarctic ice with 5160 DOMs (digital optical modules).

- Each DOM contains a single downward-facing photomultiplier tube (PMT).

- The DOMs are placed on 86 strings that extend from 1450 m to 2450 m beneath the surface.

- Charged particles traveling above the group velocity of light in ice (velocity $v > 0.73c$) emit light, which is detectable by the PMTs.

- IceCube has a timing resolution of 2 ns.
DETECTION OF GLASHOW RESONANCE
A machine-learning-based algorithm was run to obtain a sample of PeV energy partially contained events (PEPEs).
A machine-learning-based algorithm was run to obtain a sample of PeV energy partially contained events (PEPEs).

Data from May 2012 to May 2017, corresponding to a total live-time of 4.6 years, were analyzed.
A machine-learning-based algorithm was run to obtain a sample of PeV energy partially contained events (PEPEs).

Data from May 2012 to May 2017, corresponding to a total live-time of 4.6 years, were analyzed.

One event was detected on 2016 December 8 at 01:47:59 UTC (Coordinated Universal Time) with visible energy greater than 4 PeV.
DETECTION OF GLASHOW RESONANCE

DETECTION OF GLASHOW RESONANCE
4 PeV is an energy threshold well below the resonance energy.
4 PeV is an energy threshold well below the resonance energy.

But accounting for systematic uncertainties in photon propagation due to the ice model—scattering and absorption lengths of light in the ice and the overall detector calibration, the visible energy of the event is 6.05 ± 0.72 PeV.
4 PeV is an energy threshold well below the resonance energy.

But accounting for systematic uncertainties in photon propagation due to the ice model—scattering and absorption lengths of light in the ice and the overall detector calibration, the visible energy of the event is 6.05 ± 0.72 PeV.

This is consistent with a 6.3 PeV W^- that decays hadronically.
DETECTION OF GLASHOW RESONANCE
The main shower was reconstructed by repeating Monte Carlo (MC) simulations under different parameters to find the best-fit energy, vertex and direction.
The main shower was reconstructed by repeating Monte Carlo (MC) simulations under different parameters to find the best-fit energy, vertex and direction.

After reconstruction, the three DOMs closest to the reconstructed vertex were found to have detected pulses earlier than is possible for photon traveling in ice at $v = 2.19 \times 10^8 ms^{-1}$.
The main shower was reconstructed by repeating Monte Carlo (MC) simulations under different parameters to find the best-fit energy, vertex and direction.

After reconstruction, the three DOMs closest to the reconstructed vertex were found to have detected pulses earlier than is possible for photon traveling in ice at $v = 2.19 \times 10^8 m s^{-1}$.

Such pulses can, however, be produced by muons created from meson decays in the hadronic shower, which travel close to the speed of light in vacuum.
a. Schematic of an escaping muon traveling at faster than the speed of light.
b. Event view, showing DOMs that triggered across IceCube at a later time.
c. Distributions of the deposited charge over time on DOM 54.
d. Distributions of the deposited charge over time on DOM 55.
The 90% contours from the cascade (red) and hybrid cascade+track (blue) directional reconstructions are shown in equatorial coordinates. The most-probable direction according to the hybrid reconstruction is shown as the purple star.
A second reconstruction using only the early pulses to fit a track hypothesis further improves and verifies the directional reconstruction of this event.

The 90% contours from the cascade (red) and hybrid cascade+track (blue) directional reconstructions are shown in equatorial coordinates. The most-probable direction according to the hybrid reconstruction is shown as the purple star.
DIRECTIONAL RECONSTRUCTION

- A second reconstruction using only the early pulses to fit a track hypothesis further improves and verifies the directional reconstruction of this event.

- This indicates that the muons and hadronic shower travel along the same general direction, as is expected from relativistic kinematics.

The 90% contours from the cascade (red) and hybrid cascade+track (blue) directional reconstructions are shown in equatorial coordinates. The most-probable direction according to the hybrid reconstruction is shown as the purple star.
DETECTION OF GLASHOW RESONANCE

NOT OF ATMOSPHERIC ORIGIN
The only possibility for a cosmic-ray-induced atmospheric muon to produce both a 6PeV cascade and early pulses, as in this event, is for it to reach IceCube at PeV energies and deposit nearly all its energy over a few meters.
The only possibility for a cosmic-ray-induced atmospheric muon to produce both a 6PeV cascade and early pulses, as in this event, is for it to reach IceCube at PeV energies and deposit nearly all its energy over a few meters.

By requiring that muons deposit a visible energy similar to that of the cascade over a short distance, but retain the energy allowed by early pulses, the background muon flux gives an expectation rate of 1.1×10^{-7} events in 4.6 years.
DETECTION OF GLASHOW RESONANCE

NOT OF ATMOSPHERIC ORIGIN
Similarly, the early pulse signature can be used to reject the atmospheric neutrino background hypothesis.
Similarly, the early pulse signature can be used to reject the atmospheric neutrino background hypothesis.

The expectation rate of atmospheric neutrinos passing the PEPE event selection with accompanying muon energy consistent with the observed early pulses is around 2×10^{-7} in 4.6 years.
Similarly, the early pulse signature can be used to reject the atmospheric neutrino background hypothesis.

The expectation rate of atmospheric neutrinos passing the PEPE event selection with accompanying muon energy consistent with the observed early pulses is around 2×10^{-7} in 4.6 years.

We conclude that the event is induced by an astrophysical neutrino and is not of atmospheric origin.
BACKGROUNDS
The major backgrounds to the Glashow resonance are charged-current (CC) interactions (mediated by the exchange of a virtual W^\pm) of electron (anti)neutrinos with nucleons.
The major backgrounds to the Glashow resonance are charged-current (CC) interactions (mediated by the exchange of a virtual W^\pm) of electron (anti)neutrinos with nucleons.

While the amount of early Cherenkov light is consistent with the leading muon energy expected from a hadronic shower at the Glashow resonance (6.3 PeV), it is an order of magnitude above that expected from a CC electron neutrino interaction at those energies.
Expected Monte Carlo (MC) event distributions in visible energy of hadrons from W^- decay (GR h., blue), the electron from W^- decay (GR e., orange), charged-current interactions (CC; red) and neutral-current interactions (NC; green) for a live-time of 4.6 years from the PEPE sample.
BACKGROUNDs
Neutral-current (NC) interactions (mediated by the exchange of a virtual Z^0) from all three flavors are a secondary background.
Neutral-current (NC) interactions (mediated by the exchange of a virtual Z^0) from all three flavors are a secondary background.

While an NC shower is purely hadronic, a much higher incoming neutrino energy is required. The steeply falling power-law flux of astrophysical neutrinos results in suppression of the NC background.
Expected Monte Carlo (MC) event distributions in visible energy of hadrons from W^- decay (GR h., blue), the electron from W^- decay (GR e., orange), charged-current interactions (CC; red) and neutral-current interactions (NC; green) for a live-time of 4.6 years from the PEPE sample.
CONCLUSION
CONCLUSION

- After a lot of skepticism, we can conclude that the event was indeed due to an astrophysical electron antineutrino.

Credit: Martin Wolf, IceCube/NSF
CONCLUSION

- After a lot of skepticism, we can conclude that the event was indeed due to an astrophysical electron antineutrino.

- Thus, it really was a particle shower at the Glashow Resonance.
FUTURE ENDEAVORS

Credit: IceCube/NSF
IceCube Gen2 is an experiment under design for the South Pole consisting of -
FUTURE ENDEAVORS

- IceCube Gen2 is an experiment under design for the South Pole consisting of -
- A high-energy in-ice array

Credit: IceCube/NSF
FUTURE ENDEAVERS

- IceCube Gen2 is an experiment under design for the South Pole consisting of -
 - A high-energy in-ice array
 - A surface air shower array with additional veto capabilities

Credit: IceCube/NSF
IceCube Gen2 is an experiment under design for the South Pole consisting of:

- A high-energy in-ice array
- A surface air shower array with additional veto capabilities
- A low-energy in-ice infill array (the Precision IceCube Next Generation Upgrade, or PINGU)
IceCube Gen2 is an experiment under design for the South Pole consisting of:

- A high-energy in-ice array
- A surface air shower array with additional veto capabilities
- A low-energy in-ice infill array (the Precision IceCube Next Generation Upgrade, or PINGU)
- And potentially a shallow sub-surface array of radio antennas

Credit: IceCube/NSF
ICECUBE COLABORATION

The IceCube Collaboration is made up of over 400 scientists from 53 institutions in 12 countries around the world.

Credit: IceCube Collaboration
THANKS TO THE ICECUBE COLLABORATION! AND THANK YOU!