INTRODUCTION

Switchgrass (Panicum virgatum L.) is a warm-season C₄ perennial grass species being evaluated as a lignocellulosic feedstock for bioethanol production because of its high biomass production on marginal lands (Mitchell, Vogel, & Uden, 2012; Moore et al., 2014; Schmer, Vogel, Mitchell, & Perrin, 2008). Lignocellulosic biomass is composed of complex structures of cellulose, hemicellulose, lignin, and other biochemical and structural components of cell wall. Because of its obligatory outcrossing nature, broad adaptation, and extensive genetic variation, both biomass production and cell wall composition traits could be improved for biofuel production.

Among the cell wall components, lignin has been found to be a major inhibitor of the conversion process of cellulosic...
ethanol from lignocellulosic feedstock (Dien et al., 2006; Vogel & Jung, 2001). Lignin is synthesized in the phenyl-propanoid biosynthetic pathway and is covalently linked with plant cell wall carbohydrates, thus making them less accessible for hydrolysis by fermentation enzymes for ethanol production. A RNAi-mediated downregulation of switchgrass caffeic acid O-methyltransferase gene (COMT), a key enzyme in the lignin biosynthesis pathway, resulted in ~38% increase in ethanol production due to the decrease in acid-soluble lignin content and syringyl to guaiacyl (S/G) lignin monomer ratio (Fu, Mielenz, et al., 2011). Increase in ethanol production has also been reported in COMT knockdown lines in switchgrass (Dumitrache et al., 2017). In a cinnamyl alcohol dehydrogenase (CAD) RNAi line, an increase in release of sugars, especially glucose, with a decrease in lignin content was observed (Saathoff, Sarath, Chow, Dien, & Tobias, 2011). Reduced lignin concentration and increased sugar content in a R2R3-MYB (PvMYB4) transcription factor knockout switchgrass line has been reported (Shen et al., 2012, 2013). Overexpressed MYB4 transgenic lines showed an increase in ethanol production (Dumitrache et al., 2017). Decreased lignin content and increased sugar content were reported due to overexpression of microRNA, miR156 (Fu et al., 2012).

Klason lignin (KL) is defined as the major lignin content of most biomass samples, which is the sum of acid-soluble lignin and acid detergent lignin (ADL). Estimates of KL are usually higher than ADL, and it is the more accurate lignin assessment method within forage plants (Hatfield, Jung, Ralph, Buxton, & Weimer, 1994; Jung, Varel, Weimer, & Ralph, 1999). In grasses, estimated value of KL is two to four times greater than ADL (Hatfield & Fukushima, 2005; Hatfield et al., 1994).

In addition to lignin, other cell wall constituents affecting the biochemical conversion of sugar to ethanol are sugar (SUG), glucose (GLC), xylose (XYL), hexose (HEX), hemicellulosic ethanol (HEXE), and cell wall ethanol conversion percentage (CWEP). Previous reports show that lignin is the major inhibitor to the release of glucose in switchgrass and sorghum (Dien et al., 2008; Xu et al., 2011). But the release of the pentose sugar, XYL, is not affected much by lignin. However, negative correlation of KL with XYL and positive correlations of GLC with HEX and XYL were reported (Schmer et al., 2012). Positive correlation of ethanol production with sugar and negative correlations with KL and XYL were reported in switchgrass (Vogel, Casler, & Dien, 2017).

Most of the research on lignocellulosic traits focused mainly on reducing lignin content and altering cell wall composition through transgenic approaches. Apart from the deregulation of the transgenic plants, the other bottleneck of developing transgenic switchgrass is that low lignin transgenic lines may not always exhibit normal growth and development under field conditions (Chen et al., 2010; Fu et al., 2012; Fu, Xiao, et al., 2011; Shen et al., 2012). For example, low root growth has been reported in MYB4 transgenic lines (Baxter et al., 2015). Thus, it can result in poor agronomic performance and low biomass yield. Exploitation of natural genetic variation in the species has been suggested for the genetic improvement of cell wall recalcitrance in switchgrass (Casler & Boe, 2003; Casler & Vogel, 1999). Genetic improvement of lignocellulose traits through exploring natural genetic variation in conventional breeding as well as genomic-assisted breeding programs has not been elucidated fully in switchgrass. Recently, nine genomic regions controlling sugar and 14 associated with lignin content were identified using simple sequence repeat (SSR) markers in a switchgrass biparental mapping population (Serba et al., 2016). In addition, several genes involved in carbohydrate metabolism, plant development and defense, and transcription factors were detected in the vicinity of these quantitative trait loci (QTL).

We initiated a project for the identification of molecular markers associated with lignin and other cell wall composition traits to improve biofuel production in switchgrass. With this objective, we performed QTL mapping for eight lignocellulosic traits: KL, SUG, GLC, XYL, HEX, ethanol (ETOH), HEXE, and CWEP. Here, we report putative candidate genes associated with the QTL in an inter-ecotype pseudo F1 testcross population. Manipulation of some of the new candidate genes might be beneficial for research communities for further improvement of biofuel conversion in switchgrass.

2 MATERIALS AND METHODS

In all, 349 pseudo-F1 testcross progenies of a switchgrass biparental cross, AP13 × VS16, were evaluated in Ardmore (Ard) and Burneyville (RR), OK, and at Athens, GA, during 2008–2011. The experiments were laid out in a R-256 honeycomb design (Fasoulas & Fasoulas, 1995) with four replications in Oklahoma locations and in a Randomized Complete Block Design at Athens, GA. Details of the experimental design, phenotypic data collection, subsampling, and biomass processing are as described in Serba et al. (2013, 2015). Biomass (includes leaves, stems, and panicles) was harvested every year either by hand or using a customized silage chopper (John Deere Forage Harvester C1200) after senescence. In general, all the plants senesced uniformly after the first killing frost in the fall. Total fresh biomass data were collected. Details on biomass harvesting and sampling can be obtained from Serba et al. (2016).

Sub-samples of biomass were collected at harvest, dried in forced-air ovens at 60°C and ground to a 1 mm particle size using Thomas Model 4 Wiley® mill (Thomas Scientific). Ground samples were scanned using a Foss Model DS 2500 near-infrared spectrometer (FOSS NIR Systems, Inc.). Forage
compositional analysis for biofuel traits was determined using the near-infrared spectroscopy (NIRS) prediction equation (Vogel et al., 2011). Trait values were calculated for KL, SUG, GLC, XYL, HEX, ETOH, HEXE, and CWEP. All these traits are considered important characteristics for the production of biofuel from switchgrass feedstock. ANOVA and correlation coefficients were calculated in SAS 9.5 using Proc GLM and Proc Corr procedures, respectively.

Quantitative trait loci mapping was performed in Windows QTL Cartographer v2.5 (Wang et al., 2012) considering the means as well as the best linear unbiased prediction (BLUP) values of the traits. We used the genetic linkage map generated from 8,757 haplotype SNP markers that was described in Ali et al. (2019). For this QTL analysis, 209 progenies that had at least 50% of the 8,757 markers were used. Identification and reporting of the QTL were done using the composite interval mapping approach (Zeng, 1994). Based on genome-wide 1,000 permutations, logarithm of odds thresholds of 2.5 was used to call for QTL. Stepwise regression method was used to measure additive genetic variation and phenotypic variation explained (PVE) for the peak marker of each QTL.

The physical map of switchgrass genome flanking 50 kb upstream and downstream of the major QTL peak markers was scanned, and annotated genes within the region were identified using switchgrass v4.1 annotation information (https://phytozome.jgi.doe.gov). Assignment of QTL positions on the linkage maps was performed using MapChart software (Voorrips, 2002) with box and whiskers calculated as width (cM) of QTL region at 1- and 2-LOD values down from peak LOD scores, respectively, as reported previously (Khanal, Navabi, & Lukens, 2015; Zhang et al., 2017).

3 | RESULTS

Analysis of variance showed significant variation among genotypes of the pseudo-F1 testcross population for KL, SUG, GLC, XYL, HEX, ETOH, HEXE, and CWEP (Table 1). In addition to the genotypic variation, there were significant genotype × environment interactions for the traits. Frequency distribution showed nearly normal distribution for all the traits in the population (Figure 1a–h). The parental and population mean data are presented in the frequency graph. Detailed year-location range and mean values are provided in Table S1. The ranges exceeded the average of one or both parents, suggesting that the progenies exhibited transgressive segregation. Significant positive correlations were observed among KL, SUG, GLC, XYL, HEX, and HEXE, with the Pearson’s correlation coefficient values ranging from 0.34 to 0.91 (Table 2). However, these traits showed negative correlations with both ETOH and CWEP. The correlation between ETOH and CWEP was positive and significant.
Since significant genotype × environmental interactions were observed, QTL analyses were performed on location-year wise. A total of 327 QTL were identified for all of the traits with a LOD threshold of ≥2.5. The highest 62 QTL were detected for GLC followed by SUG with 54 QTL. HEX showed the lowest number of QTL (30 QTL). The list of QTL for the traits are presented in Table S2. The highest number of QTL was mapped on chromosome 3K (34 QTL) while 7N had only five QTL (Table S3). Among different year-locations, Ard2011 showed the highest number of 38 QTL whereas UGA2009 exhibited the lowest of 24 QTL (Table S4).

A total of 182 major QTL that have at least 15% PVE were identified (Table 3). The PVE by individual QTL varied among the biofuel traits. Table 2 presents the Pearson correlation coefficients among biofuel traits.

Table 2: Pearson correlation coefficients among biofuel traits

	SUG	GLC	XYL	HEX	ETOH	HEXE	CWEP
KL	0.52***	0.43***	0.58***	0.42***	−0.59***	0.53***	−0.66***
SUG	0.36***	0.90***	0.78***	−0.08***	0.66***	−0.29***	
GLC	0.34***	0.50***	−0.59***	0.73***	−0.54***		
XYL	0.50***	−0.16***	0.40***	−0.25***			
HEX	−0.35***	0.91***	−0.70***				
ETOH	−0.46***	0.94***					
HEXE	−0.69***						

Abbreviations: CWEP, cell wall ethanol conversion percentage; ETOH, ethanol; GLC, glucose; HEX, hexose; HEXE, hexosoic ethanol; KL, klon lignin; SUG, sugar; XYL, xylose.

***Significant at .001 level of probability.

3.1 QTL analyses

Since significant genotype × environmental interactions were observed, QTL analyses were performed on location-year wise. A total of 327 QTL were identified for all of the traits with a LOD threshold of ≥2.5. The highest 62 QTL were detected for GLC followed by SUG with 54 QTL. HEX showed the lowest number of QTL (30 QTL). The list of QTL for the traits are presented in Table S2. The highest number of QTL was mapped on chromosome 3K (34 QTL) while 7N had only five QTL (Table S3). Among different year-locations, Ard2011 showed the highest number of 38 QTL whereas UGA2009 exhibited the lowest of 24 QTL (Table S4).

A total of 182 major QTL that have at least 15% PVE were identified (Table 3). The PVE by individual QTL varied among the biofuel traits. Table 2 presents the Pearson correlation coefficients among biofuel traits.
Table 3
List of major quantitative trait loci (QTL) for biofuel traits in different location-year, the linkage groups (LG) in which they reside, their map position, logarithm of odds (LOD) values, phenotypic variation explained (PVE), and additivity.

QTLs	LG	Map position	LOD	PVE (%)	Additivity	Location-year
Klason lignin (KL)						
KL_c1K_29444342	1K	69.7	6.2	28.7	−5.7	Ard2010
KL_c2N_81740623	2N	116.5	6.8	31.6	−9.8	RR2011
KL_c3K_64249098	3K	76.0	3.9	18.2	−5.5	Ard2008
KL_c3K_5336529	3K	11.8	3.3	15.3	−4.6	Ard2009
KL_c3K_63893961	3K	125.5	3.4	15.7	4.1	RR2010
KL_c3N_40156006	3N	66.4	3.4	15.7	4.1	UGA2011
KL_c4K_58214078	4K	112.3	3.3	15.0	3.5	UGA2009
KL_c4N_3690140	4N	11.5	5.0	23.3	7.3	Ard2009
KL_c5K_7090702	5K	16.7	3.4	15.8	5.4	RR2009
KL_c5K_32530791	5K	66.4	3.9	17.8	−4.7	UGA2011
KL_c5N_87016246	5N	29.8	6.2	28.5	−6.3	Ard2008
KL_c5N_16106658	5N	125.9	3.9	17.9	−5.8	RR2009
KL_c6K_25779801	6K	69.6	3.4	15.6	−2.9	UGA2010
KL_c8K_2634348	8K	130.2	3.4	15.7	−11.1	Ard2011
KL_c8K_28607920	8K	67.3	3.4	15.7	−3.0	UGA2010
KL_c9N_58033649	9N	52.4	3.8	17.4	−5.1	Ard2008
KL_c9N_71568809	9N	69.3	3.4	15.7	−11	Ard2011
KL_c9N_68712357	9N	69.4	2.9	13.6	−5.8	RR2011
Sugar (SUG)						
SUG_c1K_70605881	1K	104.6	3.7	17.1	−3.2	Ard2010
SUG_c1K_69962536	1K	103.7	3.6	16.4	−2.7	UGA2011
SUG_c1N_33777764	1N	101.8	4.5	20.7	6.1	Ard2011
SUG_c1N_70485736	1N	50.5	8.5	39.5	4.2	UGA2010
SUG_c1N_87225214	1N	21.6	4.9	22.5	2.6	UGA2010
SUG_c2N_67708073	2N	86.9	3.7	17.0	3.1	RR2010
SUG_c3K_61853733	3K	131.9	5.0	23.3	5.8	Ard2011
SUG_c3K_5471465	3K	11.3	5.7	26.1	4.7	RR2008
SUG_c3K_8731090	3K	24.1	4.6	21.0	4.5	RR2008
SUG_c3N_44891809	3N	31.7	4.2	19.6	4.3	Ard2009
SUG_c3N_5121717	3N	114.6	3.8	17.7	4.2	Ard2009
SUG_c3N_42172469	3N	45.2	3.4	16.0	4.4	RR2008
SUG_c4K_62881084	4K	116.7	4.3	19.8	−3.2	Ard2010
SUG_c4K_38666379	4K	37.5	4.0	18.7	3.8	RR2008
SUG_c4N_23134173	4N	78.4	5.1	23.3	−4.5	Ard2008
SUG_c4N_40031798	4N	70.3	4.7	21.9	−10	Ard2010
SUG_c4N_14172974	4N	33.2	3.5	16.2	−4.3	UGA2009
SUG_c4N_13961797	4N	36.5	4.8	22.6	−4.8	UGA2009
SUG_c4N_21726179	4N	65.9	5.4	26.1	−9.6	UGA2011
SUG_c4N_37135224	4N	87.6	5.1	23.5	9.0	UGA2011
SUG_c5K_8206736	5K	18.3	4.1	18.9	4.4	RR2009
SUG_c5K_8876804	5K	18.1	3.7	17.1	6.8	RR2011
SUG_c5N_5894337	5N	143.6	4.5	20.7	−4.3	Ard2008

Continues
Table 3 (Continued)

QTLs	LG	Map position	LOD	PVE (%)	Additivity	Location-year
SUG_c6K_3077929	6K	124.5	3.3	15.0	−3.6	Ard2008
SUG_c6K_3960149	6K	130.1	3.4	15.5	−4.4	Ard2011
SUG_c6N_79246605	6N	0.4	4.7	21.5	−3.5	Ard2010
SUG_c6N_68251553	6N	25.0	4.5	20.9	−3.8	RR2009
SUG_c7K_954267	7K	114.3	5.5	27.7	4.0	RR2010
SUG_c7N_43256280	7N	25.3	3.2	15.0	−3.7	RR2008
SUG_c9K_36370885	9K	86.8	3.8	17.6	3.9	RR2008
SUG_c9N_22434481	9N	21.8	4.0	18.7	2.3	UGA2010

Glucose (GLC)

QTLs	LG	Map position	LOD	PVE (%)	Additivity	Location-year
GLC_c1K_27650266	1K	46.7	5.5	25.8	2.0	RR2009
GLC_c1K_27280869	1K	47.9	3.6	16.7	1.0	UGA2010
GLC_c1K_71330793	1K	105.3	5.4	25.0	−1.7	UGA2011
GLC_c1N_92062361	1N	7.9	5.0	23.4	2.5	Ard2009
GLC_c1N_28589629	1N	96.0	4.7	21.8	−2.4	RR2009
GLC_c1N_47534846	1N	86.2	3.9	18.2	1.9	UGA2009
GLC_c1N_56759393	1N	67.2	4.8	21.9	1.2	UGA2010
GLC_c1N_47555984	1N	73.3	6.1	28.1	1.5	UGA2010
GLC_c1N_40040360	1N	78.9	4.3	19.7	−1.2	UGA2010
GLC_c2K_78199095	2K	15.7	3.9	18.2	−1.9	RR2008
GLC_c2N_18840550	2N	37.3	3.3	15.1	1.6	RR2010
GLC_c3K_25069895	3K	86.2	3.4	15.7	2.2	Ard2008
GLC_c3K_61853733	3K	131.9	4.5	20.8	2.2	Ard2011
GLC_c3K_8731090	3K	24.1	9.5	44.2	3.0	RR2008
GLC_c3K_53906753	3K	113.2	4.7	21.9	2.0	RR2008
GLC_c3K_63416708	3K	126.9	4.2	19.4	1.9	UGA2009
GLC_c3N_17111931	3N	99.8	5.4	24.9	2.0	RR2010
GLC_c4K_63459308	4K	114.3	4.2	19.1	2.3	Ard2008
GLC_c4K_17671670	4K	34.9	4.1	19.3	1.8	RR2010
GLC_c4N_4752833	4N	61.5	4.8	22.0	−2.5	Ard2008
GLC_c4N_4661447	4N	17.4	3.9	18.4	−1.7	RR2009
GLC_c4N_13961797	4N	36.5	4.0	18.5	−1.7	UGA2009
GLC_c4N_21726179	4N	65.9	3.9	18.0	−3.8	UGA2011
GLC_c4N_37135224	4N	87.6	3.3	15.5	3.7	UGA2011
GLC_c5K_99170440	5K	136.9	5.6	26.1	2.0	RR2008
GLC_c5K_76740204	5K	107.9	3.4	15.6	1.6	RR2010
GLC_c5N_19838685	5N	118.7	4.7	21.5	−2.3	Ard2008
GLC_c5N_5894337	5N	143.6	5.7	26.3	−2.6	Ard2008
GLC_c5N_19838685	5N	118.7	4.8	22.3	−2.1	Ard2010
GLC_c5N_5418106	5N	142.7	4.7	21.5	−2.0	Ard2010
GLC_c7K_3305721	7K	114.9	6.2	28.9	3.6	RR2010
GLC_c8K_66056535	8K	21.7	4.4	20.6	2.9	RR2011
GLC_c9K_2451423	9K	153.3	3.7	17.1	2.1	Ard2008
GLC_c9K_38335838	9K	83.3	4.6	21.2	1.9	RR2009
GLC_c9N_80402217	9N	88.1	3.4	15.8	2.0	Ard2011
QTLs	LG	Map position	LOD	PVE (%)	Additivity	Location-year
-----------------------	----	--------------	-----	---------	------------	---------------
GLC_c9N_66776415	9N	46.5	4.6	21.2	1.8	RR2009
GLC_c9N_120082774	9N	166.8	3.6	16.6	1.0	UGA2010
Xylose (XYL)						
XYL_c1N_70485736	1N	50.5	4.6	21.5	1.2	UGA2010
XYL_c2N_63190050	2N	87.1	5.2	24.1	1.5	RR2010
XYL_c3K_63938507	3K	127.0	4.8	22.4	2.9	Ard2011
XYL_c3K_5471465	3K	11.3	3.7	17.2	1.9	RR2008
XYL_c3K_24477451	3K	73.0	3.6	16.6	-1.0	UGA2010
XYL_c3N_44637567	3N	30.4	3.7	17.4	1.6	Ard2009
XYL_c3N_51470215	3N	13.1	8.1	37.7	2.0	UGA2011
XYL_c3N_38687046	3N	58.4	6.8	31.4	1.8	UGA2011
XYL_c4K_55490243	4K	99.3	6.4	29.5	3.3	UGA2009
XYL_c4N_15929900	4N	28.2	5.7	26.3	-1.9	Ard2008
XYL_c5K_7406411	5K	14.6	3.7	17.1	1.9	RR2011
XYL_c5N_19838685	5N	118.7	8.3	38.3	-2.4	Ard2008
XYL_c5N_27273078	5N	106.3	3.5	15.7	-1.0	Ard2010
XYL_c5N_19169752	5N	118.5	3.3	15.2	-1.8	RR2011
XYL_c5N_100136226	5N	6.3	5.6	26.4	-1.3	UGA2011
XYL_c6K_24162366	6K	54.7	3.4	15.6	-1.4	Ard2008
XYL_c6N_79246605	6N	0	5.5	25.2	-1.4	Ard2010
XYL_c6N_64575117	6N	30.9	3.3	15.4	-1.8	RR2011
XYL_c6N_14757270	6N	117.4	4.0	18.6	-1.0	UGA2010
XYL_c7K_29245308	7K	108.3	5.9	27.2	1.6	RR2010
XYL_c9K_2626976	9K	150.0	5.3	25.0	1.9	Ard2008
XYL_c9N_80402217	9N	88.1	3.6	16.9	1.7	Ard2011
Hexose (HEX)						
HEX_c1K_70605881	1K	104.6	5.7	26.3	-2.8	Ard2010
HEX_c1K_46137590	1K	59.9	4.5	20.9	-8.5	RR2011
HEX_c1K_72845994	1K	112.4	4.3	20.4	-2.7	UGA2009
HEX_c1N_8873822	1N	122.9	4.2	19.4	-2.7	RR2008
HEX_c2K_70256482	2K	22.3	3.6	16.4	3.4	Ard2009
HEX_c2K_67001546	2K	26.9	5.3	24.4	4.0	Ard2009
HEX_c2K_4401392	2K	143.6	4.7	21.4	-3.8	Ard2009
HEX_c2K_4198834	2K	143.7	3.5	16.1	-1.9	RR2009
HEX_c3K_2694829	3K	4.6	3.3	15.4	2.1	RR2009
HEX_c3K_36274700	3K	77.7	4.1	18.6	-2.4	RR2009
HEX_c3K_43115079	3K	74.2	3.9	18.2	3.0	UGA2009
HEX_c4N_53973685	4N	118.9	5.4	24.8	5.2	Ard2011
HEX_c4N_4354540	4N	13.5	4.8	21.9	5.3	RR2011
HEX_c5N_41697340	5N	60.6	3.9	18.3	-2.5	RR2008
HEX_c6N_54381304	6N	42.1	3.9	17.6	-7.0	UGA2011
HEX_c6N_60565874	6N	60.3	5.7	26.2	8.7	UGA2011
HEX_c7K_24369514	7K	103.9	4.0	18.5	2.7	Ard2008
HEX_c8K_15095869	8K	94.7	3.4	15.6	2.3	RR2009

(Continues)
QTLs	LG	Map position	LOD	PVE (%)	Additivity	Location-year
ETOH						
HEX_c8N_71424399	8N	113.2	3.3	15.0	2.1	Ard2010
ETOH_c1K_39581393	1K	59.4	3.5	16.1	1.8	Ard2008
ETOH_c1K_25241588	1K	39.1	3.9	18.2	1.4	Ard2010
ETOH_c1N_5178632	1N	145.7	3.5	16.4	1.5	Ard2009
ETOH_c2K_58251791	2K	38.2	3.8	17.5	1.7	Ard2009
ETOH_c2K_326829	2K	144.7	3.9	18.2	0.9	UGA2010
ETOH_c2N_53909517	2N	69.6	4.8	22.5	−1.7	Ard2011
ETOH_c3N_43208531	3N	46.3	6.2	28.6	−2.4	Ard2009
ETOH_c3N_24308461	3N	82.9	4.0	18.7	1.8	Ard2009
ETOH_c4K_54958957	4K	98.1	4.4	20.3	1.4	Ard2011
ETOH_c4N_24562749	4N	72.1	3.5	16.0	−1.8	RR2008
ETOH_c5K_98312795	5K	137.6	4.8	18.9	−1.4	RR2009
ETOH_c5N_12449798	5N	136.6	4.0	18.6	−1.2	Ard2010
ETOH_c5N_78407143	5N	45.1	3.4	15.5	1.2	RR2010
ETOH_c5N_55510479	5N	84.6	3.3	15.3	1.1	UGA2011
ETOH_c6K_10864352	6K	102.7	5.0	22.8	−1.9	Ard2008
ETOH_c7N_18968287	7N	40.5	3.4	15.8	−1.2	Ard2011
ETOH_c8K_5690040	8K	120.4	4.0	18.8	1.3	Ard2011
ETOH_c8K_8557314	8K	119.6	3.3	15.1	1.2	RR2010
ETOH_c9K_6960501	8K	113.6	6.5	29.8	1.4	UGA2009
ETOH_c9N_553950	9N	1.2	4.7	22.1	2.2	RR2008
Hexoic ethanol (HEXE)						
HEXE_c1K_72845094	1K	112.4	4.8	22.1	−1.3	Ard2010
HEXE_c1K_27650266	1K	46.7	4.8	22.1	1.9	RR2011
HEXE_c1K_77743627	1K	122.8	4.6	21.2	−1.4	UGA2009
HEXE_c1N_8062682	1N	123.4	5.0	23.0	−1.7	RR2008
HEXE_c2K_4198834	2K	143.7	6.9	31.7	−1.5	RR2009
HEXE_c2N_275689	2N	0.2	3.6	16.7	−0.9	UGA2010
HEXE_c3K_9635939	3K	28.2	5.7	26.5	−2.0	Ard2009
HEXE_c3K_11257833	3K	34	3.7	17.1	−1.8	Ard2010
HEXE_c4N_53973685	4N	118.9	4.6	21.4	2.5	Ard2011
HEXE_c4N_5466309	4N	18.3	3.5	16.3	1.5	RR2011
HEXE_c5N_41697340	5N	60.6	4.2	19.3	−1.4	RR2008
HEXE_c6K_21959904	6K	71.6	4.6	21	−1.8	UGA2011
HEXE_c6N_51056875	6N	75.5	4.9	22.7	4.7	UGA2011
HEXE_c7K_12522559	7K	98.2	4	15.6	2.3	Ard2008
HEXE_c7K_14356818	7K	103.4	3.6	16.4	1.3	Ard2008
HEXE_c8K_26397059	8K	77.3	4.6	21.2	2.0	UGA2009
HEXE_c9K_37611668	9K	98.4	4.9	22.7	2.0	Ard2008
Cell wall ethanol conversion percentage (CWEP)						
CWEP_c1K_39581393	1K	59.4	3.4	15.6	1.7	Ard2008
CWEP_c2K_326829	2K	144.7	5.1	23.7	0.8	UGA2010

(Continues)
from 15.0% to 31.6%. The additivity varied from −11.1 to 7.3. Out of these 182 major QTL, 18 were detected for KL. Among these, 13 QTL showed negative additive effects and five showed positive effects. QTL with negative additive effect are desirable for the improvement of switchgrass cell wall recalcitrance for biofuel conversion by reducing the lignin content. Among negative effect QTL, KL_c2N81740623, showed the highest PVE with a negative additive effect of −9.8.

In all, 31 major QTL were detected for SUG. The PVE ranged from 15.5% to 39.5%. QTL, SUG_c1N_70485736, showed the highest PVE (%) with an additive effect of 4.2 followed by SUG_c3K_5471465 (26.1% PVE, 4.7 additivity). The additivity of the QTL ranged from −10.0 to 9.0 with 17 and 14 QTL showing positive and negative effects, respectively.

QTL for GLC (n = 37) explained up to 44.22% PVE. The additive effects varied from −3.8 to 3.7. GLC_c3K_8731090 had the highest PVE followed by GLC_c7K_3305721 (28.87%) and GLC_c1N_47555984 (28.14%). All of these three QTL showed positive additive effects. In all, 24 of the QTL showed positive effects, whereas 13 showed negative effects. There were 22 QTL detected for XYL, and their PVE ranged from 15.2% to 38.3% and additive effect ranged from −2.4 to 3.3. Of these, 12 were positive and 10 were negative effect QTL. XYL_c3N_51470215 had the highest PVE among positive effect QTL.

In all, 19 major effect QTL were detected for HEX explained up to 26% of the phenotypic value, and additive effect ranging from −8.5 to 8.7. Among those, 12 QTL showed positive additive effects, of which HEX_c6N_60565874 showed 26.2% PVE and an additive effect of 8.7. In all, 21 QTL were mapped for ETOH with PVE ranging from 15.1% to 29.8%. The additive effect of the QTL ranged from −2.5 to 2.2; 13 were positive and eight were negative effect QTL. ETOH_c8K_6960501 was mapped with the highest LOD score (6.5), showing the highest (29.8%) PVE and an additive effect of 1.4.

In all, 17 main effect QTL were detected for HEXE with PVE up to 31.7%. Among positive effect QTL, HEXE_c9K_37611668 showed the highest PVE (22.7%) with an additive effect of 2.0 and LOD score of 4.9. The additivity varied from −2.0 to 4.7. Eight QTL showed positive, whereas nine showed negative additive effects. A total of 17 major QTL were identified for CWEP with PVE ranging from 15.1% to 27.7%. CWEP_c8K_8471907 showed the highest PVE with LOD value 6.0 and additivity of 1.8. CWEP_c6K_28896378 showed the highest additive effects of 3.3 with PVE of 26.92% and LOD of 5.8. The additivity ranged from −2.9 to 3.3 with 11 QTL exhibiting positive additive effects and six exhibiting negative additivity.

3.2 Co-localized and pleotropic QTL

Many of the aforementioned QTL for each of the biofuel traits were detected repeatedly in years and locations. These QTL either occupied the same location of the switchgrass genome or overlapped. In all, 54 (15.3%) repeat QTL were recorded for all of the traits (Table S2). GLC showed the highest number of repeat QTL (n = 13), whereas only two repeat QTL were observed in HEX and HEXE. A significant...
number of QTL (172 of 327 QTL or 52.6%) showed pleiotropic effects—the same QTL appeared for different traits (Table S5). GLC shared the highest number of pleiotropic QTL of 32, whereas ETOH trait showed the lowest number of pleiotropic QTL \((n = 17)\).

3.3 QTL from BLUP values

Quantitative trait loci analysis was performed from BLUP values, calculated across all of the locations and years, because we observed significant genotype × year, genotype × location, and genotype × year × location interactions. A total of 42 QTL were identified from all of the traits analyzed with LOD, PVE (%) and additivity varying from 2.5 to 6.7, 11.6 to 30.5, and –3.6 to 2.2, respectively (Table S6). In all, 18 of the BLUP QTL showed pleiotropic effects, but all of them had negative additive effects except HEX and HEXE, where positive additive effects were observed. In all, 13 of the 18 (72.22%) BLUP QTL for KL, SUG, GLC, and XYL were identified in location-year wise QTL mapping. However, only one of the eight BLUP QTL for HEX was present in location-year. None of the BLUP QTL for ETOH, HEXE, and CWEP re-appeared in location-year wise QTL.

3.4 Mapping and annotation of major QTL

We positioned 111 major QTL (10 for KL, 22 for SUG, 23 for GLC, 15 for XYL, 9 for HEX, 7 for HEXE, 15 for ETOH, and 10 for CWEP) throughout the switchgrass genome (Figure 2). QTL box and whiskers were calculated as width of QTL at 1 and 2 LOD values down from peak LOD scores, respectively. The highest number of major QTL (15) were mapped on linkage groups (LG) 5N followed by 12 QTL on LG 6N and eight QTL on LGs 1K, 3K, and 4N each. It is interesting to note that LG 5N harbors at least one major QTL for each of the cell wall components studied (Table S2). LG 6N harbored QTL for six of the eight traits. SUG, GLC, HEX, and HEXE QTL localized in a particular region of LG 1K. Seven QTL (three SUG, two GLC, one HEX, and one HEXE) overlapped themselves and spanned within 87–105 cM region of LG 1K (Figure 2).

A total of 936 annotated genes were co-localized with 103 QTL in the switchgrass genome for all the biofuel traits studied (Table S7). These QTL had at least one annotated gene. QTL GLC_c1K_71432572 (Ard2011) and HEXE_c4N_53973685 (Ard2011) had the highest number of annotated genes (27) followed by SUG_c1K_71440139 (UGA2011, 26 genes) and ETOH_c9N_553950 (RR2008, 24 genes). In all, 11 QTL had only one annotated gene.

We identified 45 candidate genes that are involved in lignin biosynthesis, carbohydrate metabolism, and other important biological and cellular functions (Table 4). Cinnamoyl-CoA reductase (CCR), polygalacturonate
QTL	Chromosome/LG	Switchgrass (Panicum virgatum) gene ID and annotation	mRNA start (DNA strand)	Gene ontology
KL_c2N81740623	Chr02N	Pavir.2NG448300.1: Polygalacturonate 4-alpha-	81708592 (−)	Transferase activity
		galacturonosyltransferase related (GAUT1)		
KL_c2N81740623	Chr02N	Pavir.2NG48400.1: Protein stay-green 1	81713437 (−)	Unknown
KL_c2N81740623	Chr02N	Pavir.2NG49200.1: MYB domain protein 42	81771394 (−)	Transcription regulator/nucleic acid
				binding
KL_c3K5336529	Chr03K	Pavir.3KG061800.1: Premnaspirodiene oxygenase/	5367904 (+)	Oxidation-reduction process/heme
		CYP71A20		binding
KL_c3K5336529	Chr03K	Pavir.3KG061000.1: Trehalose-6-phosphate synthase	5304269 (−)	Trehalose biosynthetic process/catalytic
				activity
KL_c3N_40156006	Chr03N	Pavir.3NG211100.1: Ent-kaurene synthase/	40172916 (+)	Metabolic process/terpene synthase
(UGA2011)		Terpenoid cyclases/Protein prenyl transferases		activity
KL_c4K63459308	Chr04K	Pavir.4KG371600.1: Cinnamoyl-CoA Reductase (CCR)	63508288 (−)	Lignin biosynthesis: oxidoreductase
(Ard2008)				activity
KL_c5N87016246	Chr05N	Pavir.5NG502500.1: Zinc finger cchc domain	87018711 (−)	Transcription regulator/metal ion
(Ard2008)		containing protein		binding
KL_c5N87016246	Chr05N	Pavir.5NG503000.1: Exostosin heparan sulfate	87059830 (−)	Unknown
(Ard2008)		glycosyltransferase related		
KL_c5N87016246	Chr05N	Pavir.5NG502600.1: X-box transcription factor	87032151 (+)	Transcription regulator/sequence-specific
(Ard2008)		related		DNA binding
KL_c5N8018409	Chr05N	Pavir.5NG066400.1: MYB family transcription factor	8025847 (+)	Transcription regulator/nucleic acid
(UGA2011)				binding
SUG_c1K_71440139	Chr01K	Pavir.1KG461400.1: 4-coumarate:CoA ligase 3 (4CL3)	71401075 (−)	Lignin biosynthesis: metabolic process/catalytic activity
UGA2011)				
SUG_c1K_69962536	Chr01K	Pavir.1KG446600.1: Dof domain zinc finger (zf-Dof)	69964613 (−)	Transcription regulator/DNA binding
(UGA2011)				
SUG_c1N_87225214	Chr01N	Pavir.1NG408000.1: Endo-1,4-beta-glucanase	87258569 (+)	Carbohydrate metabolic process/hydrolase
(UGA2010)				activity
SUG_c3K_8731090	Chr03K	Pavir.3KG095800.1: Regulator of chromosome condensation	8697475 (−)	Transcription regulator/metal ion
(RR2008)				binding
SUG_c5K_8876804	Chr05K	Pavir.5KG067900.1: UDP-glucosyl transferase 73C7	8856562 (−)	Metabolic process/transferase activity
(RR2011)				
SUG_c5K_8876804	Chr05K	Pavir.5KG068500.1: Zinc finger ccch domain-containing protein 14-related	8907135 (+)	Transcription regulator/metal ion binding
(RR2011)				
SUG_c6K_3077929	Chr06K	Pavir.6KG032000.1: LSD1 zinc finger (zf-LSD1)	3031985 (−)	Transcription regulator/nucleic acid
(Ard2008)				binding
SUG_c6N_78284056	Chr06N	Pavir.6NG352900.1: MYB domain protein 42	78334080 (−)	Transcription regulator/nucleic acid
(RR2011)				binding
SUG_c7K_954267	Chr07K	Pavir.7KG078500.1: Alcohol dehydrogenase related/cinnamyl alcohol dehydrogenase (CAD)	930087 (+)	Lignin biosynthesis: oxidoreductase
(RR2010)				activity
(Continues)				
QTL	Chromosome/LG	Switchgrass (*Panicum virgatum*) gene ID and annotation	mRNA start (DNA strand)	Gene ontology
--------------------	---------------	--	--------------------------	--
SUG_c7N43256280	Chr07N	Pavir.7NG172600.1: Myb/SANT-like DNA-binding domain (Myb_DNA-bind_3)	43239614 (+)	Transcription regulator/nucleic acid binding
SUG_c7N39444161	Chr07N	Pavir.7NG156700.1: alpha-amylose 2 related	39420208 (+)	Carbohydrate metabolic process/alpha-amylose activity
SUG_c9N22434481	Chr09N	Pavir.9NG219800.1: Ent-isokaurene C2-hydroxylase/CYP71B6	22430640 (−)	Oxidation-reduction process/heme binding
GLC_c1K71432572	Chr01K	Pavir.1KG461400.1:4-coumarate-CoA ligase 3 (4CL3)	71401075 (−)	Lignin biosynthesis: metabolic process/catalytic activity
GLC_c1K71432572	Chr01K	Pavir.1KG461000.1: Myb-like DNA-binding domain (Myb_DNA-binding)	71381571 (+)	Transcription regulator/nucleic acid binding
GLC_c1N92062361	Chr01N	Pavir.1NG515800.1: Myb/SANT-like DNA-binding domain (Myb_DNA-bind_3)	92028858 (+)	Transcription regulator/nucleic acid binding
GLC_c1N92062361	Chr01N	Pavir.1NG515700.1: Trehalose-6-phosphate synthase	92033997 (+)	Trehalose biosynthetic process/catalytic activity
GLC_c2K78199095	Chr02K	Pavir.2KG436500.1: Zinc finger, C3H4 type (RING finger; zf-C3H4)	78,210165 (+)	Transcription regulator/metal ion binding
GLC_c3K61853733	Chr03K	Pavir.3KG472400.1: PQQ oxidoreductase-related	61882383 (−)	Carbohydrate metabolic process/oxidoreductase activity
GLC_c3K8731090	Chr03K	Pavir.3KG095800.1: Regulator of chromosome condensation	8697475 (−)	Transcription regulator/metal ion binding
GLC_c3K8731090	Chr03K	Pavir.3KG096800.1: Transcriptional repressor protein yy	8760040 (+)	Transcription regulator/metal ion binding
GLC_c3K63416708	Chr03K	Pavir.3KG462500.1: Dimethylaniline monooxygenase/Flavin-binding monooxygenase family protein	63379765 (+)	Oxidation-reduction process/flavin adenine dinucleotide binding
GLC_c5K99170440	Chr05K	Pavir.5KG604100.1: MYND Zn-finger protein/hormone receptor interactor	99184201 (−)	Transcription regulator/metal ion binding
GLC_c5N1983885	Chr05N	Pavir.5NG152200.1: Isoflavone reductase homolog p3 related	19868724 (+)	Unknown
GLC_c5N1983885	Chr05N	Pavir.5NG152200.1: Isoflavone reductase homolog p3 related	19868724 (+)	Unknown
GLC_c5N1983885	Chr05N	Pavir.5NG152400.1: NAD dependent epimerase/dehydratase	19876431 (−)	Unknown
GLC_c5N1983885	Chr05N	Pavir.5NG152200.1: Isoflavone reductase homolog P3	19868724 (+)	Unknown
GLC_c9K2451423	Chr09K	Pavir.9NG030900.1: GRAS domain family (GRAS)	2434609 (−)	Transcription regulator/nucleic acid binding
XYL_c3N44637567	Chr03N	Pavir.3NG240700.1: Pectinesterase/ Pectin methylesterase/Plant invertase	44677734 (−)	Enzyme inhibitor activity

(Continues)
QTL	Chromosome/LG	Switchgrass (*Panicum virgatum*) gene ID and annotation	mRNA start (DNA strand)	Gene ontology
XYL_c3N_51470215 (UGA2011)	Chr03N	Pavir.3NG293400.1: Plant invertase/pectin methylesterase inhibitor (PMEI)	51508544 (−)	Enzyme inhibitor activity
XYL_c3N_51470215 (UGA2011)	Chr03N	Pavir.3NG293700.1: Helix-loop-helix DNA-binding domain (HLH)	51501873 (−)	Transcription regulator/protein dimerization activity
XYL_c3N_51470215 (UGA2011)	Chr03N	Pavir.3NG294600.1: WRKY DNA-binding domain (WRKY)	51433721 (−)	Transcription regulator/sequence-specific DNA binding
XYL_c3N_38687046 (UGA2011)	Chr03N	Pavir.3NG203200.1: GRAS domain family (GRAS)	38721928 (−)	Transcription regulator/nucleic acid binding
XYL_c4K_55490243 (UGA2009)	Chr04K	Pavir.4KG331200.1: Lysosomal acid lipase-related	55480463 (−)	Lipid metabolic process
XYL_c4N_15929900 (Ard2008)	Chr05N	Pavir.4NG094200.1: Transcription factor blhl83-related	15916576 (−)	Transcription regulator/protein dimerization activity
XYL_c5N_19838685 (Ard2008)	Chr05N	Pavir.5NG152200.1: Isoflavone reductase homolog p3 related	19868724 (+)	Unknown
XYL_c5N_19838685 (Ard2008)	Chr05N	Pavir.5NG152400.1: NAD-dependent epimerase/dehydratase	19873036 (+)	Coenzyme binding/catalytic activity
XYL_c5N_19169752 (RR2011)	Chr05N	Pavir.5NG144100.1: Exostosin family protein	19159499 (−)	Unknown
XYL_c9K_2626976 (Ard2008)	Chr09K	Pavir.9KG034700.1: Glycosyl hydrolase	2622445 (+)	Carbohydrate metabolic process/hydrolase activity
XYL_c9K_2626976 (Ard2008)	Chr09K	Pavir.9KG035500.1: Glucosyl/glucuronosyl transferases	2650185 (−)	Metabolic process/transferase activity
HEX_c1K_70605881 (Ard2010)	Chr01K	Pavir.1KG451600.1: Regulator of chromosome condensation (RCC1)/FYVE zinc finger	70621608 (+)	Transcription regulator/metal ion binding
HEX_c4N_53973685 (Ard2011)	Chr04N	Pavir.4NG317000.1: Glycosyltransferase family 64 protein EPC1	53946850 (+)	Glycosaminoglycan biosynthetic process
HEX_c4N_4354540 (RR2011)	Chr04N	Pavir.4NG041700.1: 1-D-deoxyxylulose 5-phosphate synthase like protein	4356061 (−)	Terpenoid biosynthetic process/catalytic activity
HEX_c7K_24369514 (Ard2008)	Chr07K	Pavir.7KG019300.1: Cellulase/Endoglucanase	24378494 (−)	Carbohydrate metabolic process/hydrolase activity
ETOH_c2K_58251791 (Ard2009)	Chr02K	Pavir.2KG289000.1: Myb/SANT-like DNA-binding domain (Myb_DNA-bind_3)	58245860 (−)	Transcription regulator/nucleic acid binding
ETOH_c2N_85909008 (RR2011)	Chr02N	Pavir.2NG472600.1: C2H2-type zinc finger (zf-C2H2_6)	85913440 (−)	Transcription regulator/zinc ion binding
ETOH_c4K_54958957 (Ard2011)	Chr04K	Pavir.4KG324200.1: BZIP transcription factor 60	54911300 (+)	Transcription regulator/sequence-specific DNA binding
ETOH_c5K_98312795 (RR2009)	Chr05K	Pavir.5KG594900.1: Phosphoglycerate mutase (2,3-diphosphoglycerate-dependent)	98339999 (+)	Glucose catabolic process/phosphoglycerate mutase activity
ETOH_c8K_8557314 (RR2010)	Chr08K	Pavir.8KG072100.1: Homeobox protein transcription factors	8544804 (+)	Transcription regulator/DNA binding

(Continues)
4-alpha-galacturonosyltransferase related (GAUT1), trehalose-6-phosphate synthase (TPS), and Protein stay-green 1 were found associated with KL QTL. Important genes associated with SUG QTL were 4-coumarate:CoA ligase 3 (4CL3), CAD, alpha-amylase 2, and endo-1,4-beta-glucanase. TPS and 4CL3 were also found to be associated with GLC QTL. Pectin methylesterase (PME)/plant invertase and PME inhibitor were associated with XYL QTL. Cellulase/endoglucanase was associated with HEX QTL. We also identified a number of different types of transcription factors for these traits.

4 | DISCUSSION

A pseudo-F1 testcross population was generated from a biparental crossing between two diverse switchgrass ecotypes: genotype AP13 from lowland ecotype (female parent) crossed to VS16 from upland ecotype (male parent). NIRS prediction equation was used to estimate compositional and biofuel traits from dry biomass at harvest. Biomass samples, collected from currently available cultivars and experimental strains belonging to both switchgrass ecotypes and produced under different management and harvesting systems, were
used for the development of the prediction equation (Vogel et al., 2011). The global H value of the NIRS equation is less than 3, which indicates reliability of the data (R. Mitchell, personal communication, March 12, 2020). We also compared the total crude protein predicted by the NIRS equation to that of the dry combustion method (Leco Co. CNH-600 elemental analyzer) used in a switchgrass population grown in the Noble Research Institute, LLC greenhouse, and obtained high correlations ($r^2 = .834$). All these suggested that the data developed in this study are fairly reliable.

The genotypes of this population showed significant variation and transgressive segregation for all of the biofuel traits studied. Both parents were very distinct in morphological and phenological traits (Casler & Jung, 1999; Hopkins, Vogel, Moore, Johnson, & Carlson, 1995; Serba et al., 2013, 2015). It is possible that favorable alleles from both parents combined into some hybrid progenies and made them better quality feedstock than either parents. Transgressive segregation indicates wider genetic variation and unique gene expression in the progenies compared to the parents, thus efforts can be made to select the most desirable progenies from the population.

Biofuel traits are highly variable and largely dependent on the environmental cues and developmental stages of the plants. Combined analysis of data showed significant genotype × environmental interactions for these traits. Significant genotype × environment interactions were reported for cellulose, hemicellulose, and ethanol yield among switchgrass genotypes (Hopkins et al., 1995; Schmer et al., 2012).

Quantitative trait loci analyses using location-year data, identified 327 QTL. Moreover, reappearance of 15.3% of the QTL across years for all of the traits suggested the stable expression of the QTL across environments. Existence of 72.22% BLUP QTL, especially for KL, SUG, GLC, and XYL, also provides evidence of the quality and reproducibility of the QTL mapping. More than half of the QTL exhibited pleiotropic effects among different traits. A number of pleiotropic effects QTL showed favorable additive effects, which implicate the possibility of simultaneous selection for reduced recalcitrant, especially reduced lignin content and increased sugar and bioethanol traits.

Conversion of ethanol largely depends on cell wall carbohydrates, lignin, and hydroxycinnamates. Cell wall components can be genetically modified using both conventional (Casler & Jung, 1999; Sarath et al., 2011; Vogel et al., 2013) and molecular breeding methods including genomic selection (Baxter et al., 2015; Cass et al., 2015; Lipka et al., 2014; Rancour, Hatfield, Marita, Rohr, & Schmitz, 2015; Saathoff et al., 2011; Vogel et al., 2017). KL was found negatively correlated with ethanol production, which was in agreement with the previous findings (Vogel et al., 2017). It is interesting to note that KL showed positive correlation with sugar traits. During QTL analysis of cell wall components in maize, Barrière, Méchin, Denoue, Bauland, and Laborde (2010) hypothesized that the biosynthesis of the lignin components, ADL, is partially independent, which can be a reason for the correlation of KL with the sugar. ADL was also correlated with cell wall digestibility and ethanol yields in genetically related switchgrass plants (Vogel et al., 2017).

Quantitative trait loci mapping in this population using SSR markers identified GLC QTL in LGs 3a (3K), 3b (3N), 4a (4K), 5a (5K), 7b (7N), and 9a (9N) and XYL QTL in 2b (2K), 3a (3K), and 5a (5K; Serba et al., 2016). These results are in agreement with the findings of this study. Moreover, we reported additional major QTL for GLC, XYL, or SUG traits in all of the LGs. Identification of additional QTL in this study might be due to the use of high-density linkage map with greater genome coverage. In the same study, lignin QTL were mapped in LGs 1K, 2K, 3K, 4N, 5N, 7K, 7N, 9N, and 9K. We detected major QTL for KL in LGs 2N, 3N, 4K, 5N, 6K, 8K, and 9N. Except LGs 5N and 9N, the KL QTL identified in this study reside in different LGs as compared to the lignin QTL of Serba et al. (2016). These discrepancies might be due to (a) Serba et al. used a low-density SSR map versus the high-density SNP map used in this study; and (b) different methods of lignin concentration measurement, that is, MBMS versus NIRS prediction equations.

We identified large number of QTL associated with biofuel traits compared to the previous studies especially on LG 5N, which harbored all of the studied eight biofuel traits and LG 6N, which possessed QTL for six of the eight traits. In a recent study of switchgrass biofuel traits, Ramstein et al. (2018) reported QTLs for carbon and ash content on LG 5N. Scanning the genes residing on LGs 5N and 6N, it is evident that a number of genes with known functions for lignin biosynthesis; cellulose, glucan, and xyloglucan metabolism; pectin modifications; and terpenoid synthesis and metabolism, are present on these two important switchgrass chromosomes. QTL for SUG, GLC, and HEX are positioned in one region of LG 1K. These important genomic regions and genes can be the target for future studies.

Annotation of the genes flanking the QTL peaks provided us information on the important genes that might be involved especially in lignin biosynthesis and in carbohydrate and sugar metabolism. Major genes in the monolignol biosynthesis pathway such as 4CL3, CAD, and CCR were co-localized with QTL for sugar, GLC, and KL traits. Downregulation or knocking-out of the 4CL1 (Xu et al., 2011) and CAD (Fu, Xiao, et al., 2011) showed decreased lignin and increased sugar content in switchgrass. 4CL2, CCR1, and MYB transcription factor genes were found associated with lignin QTL in maize (Barrière et al., 2010; Barrière, Méchin, Lefevre, & Maltese, 2012) and lignin and sugar traits in switchgrass (Serba et al., 2016). Downregulation of CCR genes resulted in 56% reduction in lignin content in poplar (Leple et al., 2007; Leple et al., 2012).
Analyses of a pseudo-F1 switchgrass population generated from a biparental cross, AP13 × VS16, showed wide genetic variations and exhibited transgressive segregation for a number of biofuel traits, namely, KL, SUG, GLC, XYL, HEX, HEXE, and CWEP. This study identified several new QTL for biofuel traits that were not reported previously. QTL analyses identified 111 genome-wide major QTL regions associated with these traits. More than 50% of the QTL showed pleiotropic results with desirable allelic effects. Annotation of genes flanking the QTL peak markers opens new avenues for manipulating important genes for lignin and carboxylate metabolism to improve the biofuel traits of switchgrass. Moreover, a number of candidate genes identified in this study falls outside of the gene list that has been targeted for manipulation through RNAi or genome editing technologies to improve switchgrass recalcitrance traits. The results suggest that the application of these QTL and associated markers in the genetic improvement of recalcitrance traits through MAS will improve the genetic gain for bioenergy traits in switchgrass breeding.

ACKNOWLEDGEMENTS
Sequencing of the mapping population, which was conducted by the Joint Genome Institute, is supported by the Office of Science of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. This work was supported by the United States Department of Energy (DOE), Office of Biological and Environmental Research (OBER) and conducted within DOE Bioenergy Science Center (BESC), and Center for Bioenergy Innovation (CBI) projects. BESC and CBI are U.S. DOE Bioenergy Research Centers supported by OBER in the DOE Office of Science. We are thankful to Amie Stearns and Courtney Leeper at Noble Research Institute, LLC for formatting figures and English language editing of the manuscript, respectively.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are partially available in the Supporting Information of this article and rest of the data are available from the corresponding author upon reasonable request.

ORCID
Malay C. Saha https://orcid.org/0000-0003-4442-2320

REFERENCES
Ali, S., Serba, D. D., Jenkins, J., Kwon, S., Schnutz, J., & Saha, M. C. (2019). High-density linkage map reveals QTL underlying growth traits in AP13×VS16 biparental population of switchgrass. GCB Bioenergy, 11, 672–690. https://doi.org/10.1111/gcbb.12592
Atmodjo, M. A., Sakuragi, Y., Zhu, X., Burrell, A. J., Mohanty, S. S., Atwood, J. A., … Mohnen, D. (2011). Galacturonosyltransferase (GAUT) 1 and GAUT7 are the core of a plant cell wall pectin biosynthetic homogalacturonan:galacturonosyltransferase complex. Proceedings of the National Academy of Sciences of the United States of America, 108, 20225–20230. https://doi.org/10.1073/pnas.1112816108
Barrière, Y., Méchin, V., Denoue, D., Bauland, C., & Laborde, J. (2010). QTL for yield, earliness, and cell wall quality traits in topcross experiments of the F838 × F286 early maize RIL progeny. Crop Science, 50, 1761–1772. https://doi.org/10.2135/crops ci2009.11.0671
Barrière, Y., Méchin, V., Lefevre, B., & Maltese, S. (2012). QTLs for agronomic and cell wall traits in a maize RIL progeny derived from a cross between an old Minnesota13 line and a modern inbred line. Theoretical and Applied Genetics, 125, 531–549. https://doi.org/10.1007/s00122-012-1851-5
Baxter, H. L., Poovaiah, C. R., Yee, K. L., Mazarei, M., Rodriguez, M., Thompson, O. A., … Stewart, C. N. (2015). Field evaluation of transgenic switchgrass plants overexpressing PvMYB4 for reduced biomass recalcitrance. BioEnergy Research, 8, 910–921. https://doi.org/10.1007/s12155-014-9570-1
Casler, M., & Boe, A. (2003). Cultivar × environment interactions in switchgrass. Crop Science, 43, 2226–2233. https://doi.org/10.2135/crops ci2003.2226
Casler, M. D., & Jung, H.-J.-G. (1999). Selection and evaluation of smooth bromegrass clones with divergent lignin or etherified
ferulic acid concentration. *Crop Science*, 39, 1866–1873. https://doi.org/10.2135/cropsci1999.3961866x

Casler, M., & Vogel, K. P. (1999). Accomplishments and impact from breeding for increased forage nutritional value. *Crop Science*, 39, 12–20. https://doi.org/10.2135/cropsci1999.00111833x0900100003x

Cass, C. L., Peraldi, A., Dowd, P. F., Mottiar, Y., Santoro, N., Karlen, S. D., … Bruno, L. C. (2015). Effects of phenylalanine ammonia lyase (PAL) knockdown on cell wall composition, biomass digestibility, and biotic and abiotic stress responses in Brachyphyllum. *Journal of Experimental Botany*, 66, 4317–4335. https://doi.org/10.1093/jxb/erv269

Chen, X., Equi, R., Baxter, H., Berk, K., Han, J., Agarwal, S., & Zale, J. (2010). A high-throughput transient gene expression system for switchgrass (*Panicum virgatum* L.) seedlings. *Biotechnology for Biofuels*, 3, 9. https://doi.org/10.1186/1754-6834-3-9

Dien, B. S., Jung, H.-J.-G., Vogel, K. P., Casler, M. D., Lamb, J. F. S., Iten, L., … Sarath, G. (2006). Chemical composition and response to dilute-acid pretreatment and enzymatic saccharification of alfalfa, reed canarygrass, and switchgrass. *Biomass and Bioenergy*, 30, 880–891. https://doi.org/10.1016/j.biombioe.2006.02.004

Dien, B. S., Sarath, G., Pedersen, J., Vogel, K. P., Jung, H. J. G., Sattler, S., … Cotta, M. A. (2008). Energy crops for ethanol: A processing perspective. In *Proceedings of the 5th International Crop Science Congress* (April 13–18, 2008), Jeju Island, Korea, pp. 1–5. Retrieved from https://www.intlcss.org/congress-proceedings/2008-papers

Dumitrache, A., Natzke, J., Rodriguez Jr., M., Yee, K. L., Thompson, O. A., Poovaiah, C. R., … Fu, C. (2017). Transgenic switchgrass (*Panicum virgatum L.*) targeted for reduced recalcitrance to bioconversion: A 2-year comparative analysis of field-grown lines modified for target gene or genetic element expression. *Plant Biotechnology Journal*, 15, 688–697. https://doi.org/10.1111/pbi.12666

Fasoulas, A., & Fasoulas, V. (1995). Honeycomb selection designs. *Plant Breeding Reviews*, 13, 87–139. https://doi.org/10.1007/978-0-78047-0650-059ch3

Fu, C., Mielenz, J. R., Xiao, X., Ge, Y., Hamilton, C. Y., Rodriguez, M., … Wang, Z.-Y. (2011). Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. *Proceedings of the National Academy of Sciences of the United States of America*, 108, 3803–3808. https://doi.org/10.1073/pnas.1100310108

Fu, C., Sunkar, R., Zhou, C., Shen, H., Zhang, J.-Y., Matts, J., … Wang, Z.-Y. (2012). Overexpression of miR156 in switchgrass (*Panicum virgatum L.*) results in various morphological alterations and leads to improved biomass production. *Plant Biotechnology Journal*, 10, 443–452. https://doi.org/10.1111/j.1467-7652.2011.00677.x

Fu, C., Xiao, X., Xi, Y., Ge, Y., Chen, F., Bouton, J., … Wang, Z. Y. (2011). Downregulation of cinnamoyl alcohol dehydrogenase (CAD) leads to improved saccharification efficiency in switchgrass. *BioEnergy Research*, 4, 153–164. https://doi.org/10.1007/s12153-010-9109-z

Gómez, L. D., Baud, S., Gilday, A., Li, Y., & Graham, I. A. (2006). Delayed embryo development in the ARABIDOPSIS Trehalose-6-Phosphate Synthase 1 mutant is associated with altered cell wall structure, decreased cell division and starch accumulation. *The Plant Journal*, 46, 69–84. https://doi.org/10.1111/j.1365-313x.2006.02662.x

Hatfield, R., & Fukushima, R. S. (2005). Can lignin be accurately measured? *Crop Science*, 45, 832–839. https://doi.org/10.2135/cropsci2004.0238

Hatfield, R. D., Jung, H. J. G., Ralph, J., Buxton, D. R., & Weimer, P. J. (1994). A comparison of the insoluble residues produced by the Klason lignin and acid detergent lignin procedures. *Journal of the Science of Food and Agriculture*, 65, 51–58. https://doi.org/10.1002/jsfa.2740650109

Hopkins, A. A., Vogel, K. P., Moore, K., Johnson, K., & Carlson, I. (1995). Genotypic variability and genotype × environment interactions among switchgrass accessions from the Midwestern USA. *Crop Science*, 35, 565–571. https://doi.org/10.2135/cropsci1995.00111833x00350020047x

Jung, H.-J.-G., Varel, V. H., Weimer, P. J., & Ralph, J. (1999). Accuracy of Klason lignin and acid detergent lignin methods as assessed by bomb calorimetry. *Journal of Agricultural and Food Chemistry*, 47, 2005–2008. https://doi.org/10.1021/jf981250q

Kauss, H., & Hassid, W. (1967). Enzymic introduction of the methyl ester groups of pectin. *Journal of Biological Chemistry*, 242, 3449–3453.

Khanal, R. A., Navabi, A., & Lukens, L. (2015). Linkage map construction and quantitative trait loci (QTL) mapping using intermated vs. selfed recombinant inbred maize line (Zea mays L.). *Journal of Plant Science*, 95, 1133–1144. https://doi.org/10.4141/cjps-2015-091

Leplé, J.-C., Dauwe, R., Morreel, K., Storme, V., Lapierre, C., Polit, B., … Boerjan, W. (2007). Downregulation of cinnamoyl-coenzyme A reductase in poplar: Multiple-level phenotyping reveals effects on cell wall polymer metabolism and structure. *The Plant Cell*, 19, 3669–3691. https://doi.org/10.1105/tpc.107.054148

Lipka, A. E., Lu, F., Cherney, J. H., Buckler, E. S., Casler, M. D., & Costich, D. E. (2014). Accelerating the switchgrass (*Panicum virgatum L.*) breeding cycle using genomic selection approaches. *PLoS One*, 9, e112227. https://doi.org/10.1371/journal.pone.0112227

Micheli, F. (2001). Pectin methyltransferases: Cell wall enzymes with important roles in plant physiology. *Trends in Plant Science*, 6, 414–419. https://doi.org/10.1016/S1360-1385(01)02045-3

Mitchell, R., Vogel, K. P., & Uden, D. R. (2012). The feasibility of switchgrass for biofuel production. *Biofuels*, 3, 47–59. https://doi.org/10.4115/bfs.11.153

Moore, K. E., Birrell, S., Brown, R. C., Casler, M. D., Eucken, J. H., Hanna, H. M., … Valencic, J. J. (2014). Midwest vision for sustainable fuel production. *Biofuels*, 5, 687–702. https://doi.org/10.1080/17597692015.1015312

Park, J.-J., Yoo, C. G., Flanagan, A., Pu, Y., Deb Nath, S., Ge, Y., … Wang, Z.-Y. (2017). Defined tetra-allelic gene disruption of the 4-coumarate:coenzyme A ligase 1 (Pv4CL1) gene by CRISPR/Cas9 in switchgrass results in lignin reduction and improved sugar release. *Biotechnology for Biofuels*, 10, 284. https://doi.org/10.1186/s13068-017-0972-0

Ralph, J., Kim, H., Lu, F., Grabber, J. H., Leplé, J.-C., Berrio-Sierra, J., … Lapierre, C. (2008). Identification of the structure and origin of a thioacidolysis marker compound for ferulic acid incorporation into angiosperm lignins (and an indicator for cinnamoyl CoA reductase deficiency). *The Plant Journal*, 53, 368–379. https://doi.org/10.1111/j.1365-313x.2007.03345.x

Ramstein, G. P., Evans, J., Nandetey, A., Saha, M. C., Brunner, E. C., Kaeppler, S. M., … Casler, M. D. (2018). Candidate variants for additive and interactive effects on bioenergy traits in switchgrass (*Panicum virgatum L.*) identified by genome-wide association analyses. *Plant Genome*, 11, 1–18. https://doi.org/10.3835/plantgenome2018.01.0002
Rancour, D. M., Hatfield, R. D., Marita, J. M., Rohr, N. A., & Schmitz, R. J. (2015). Cell wall composition and digestibility alterations in *Brachypodium distachyon* achieved through reduced expression of the UDP-arabinofuranosyl mutase. *Frontiers in Plant Science*, 6, 446. https://doi.org/10.3389/fpls.2015.00446

Roberts, K. (1990). Structures at the plant cell surface. *Current Opinion in Cell Biology*, 2, 920–928. https://doi.org/10.1016/0955-0674(90)90093-T

Saathoff, A. J., Sarath, G., Chow, E. K., Dier, B. S., & Tobias, C. M. (2011). Downregulation of cinnamyl-alcohol dehydrogenase in switchgrass by RNA silencing results in enhanced glucose release after cellulase treatment. *PLoS One*, 6, e16416. https://doi.org/10.1371/journal.pone.0016416

Sarah, G., Dier, B., Saathoff, A. J., Vogel, K. P., Mitchell, R. B., & Chen, H. (2011). Ethanol yields and cell wall properties in divergently bred switchgrass genotypes. *Bioresource Technology*, 102, 9579–9585. https://doi.org/10.1016/j.biortech.2011.07.086

Schmer, M. R., Vogel, K. P., Mitchell, R., Dier, B., Jung, H., & Casler, M. (2012). Temporal and spatial variation in switchgrass biomass composition and theoretical ethanol yield. *Agronomy Journal*, 104, 54–64. https://doi.org/10.2134/agronj2011.0195

Schmer, M. R., Vogel, K. P., Mitchell, R. B., & Perrin, R. K. (2008). Net energy of cellulose-rich ethanol from switchgrass. *Proceedings of the National Academy of Sciences of the United States of America*, 105, 464–469. https://doi.org/10.1073/pnas.0704767105

Serba, D. D., Daverdin, G., Bouton, J. H., Devos, K. M., Brummer, E. C., & Saha, M. C. (2015). Quantitative trait loci (QTL) underlying biomass yield and plant height in switchgrass. *BioEnergy Research*, 8, 307–324. https://doi.org/10.1007/s12155-014-9523-8

Serba, D. D., Sykes, R. W., Gjersing, E. L., Decker, S. R., Daverdin, G., Devos, K. M., Saha, M. C. (2016). Cell wall composition and underlying QTL in an F1 pseudo-testcross population of switchgrass. *BioEnergy Research*, 9, 836–850. https://doi.org/10.1007/s12155-016-9733-3

Serba, D., Wu, L., Daverdin, G., Bahri, B. A., Wang, X., Kilian, A., … Devos, K. M. (2013). Linkage maps of lowland and upland tetraploid switchgrass ecotypes. *BioEnergy Research*, 6, 953–965. https://doi.org/10.1007/s12155-013-9315-6

Shen, H., He, X., Poovaiah, C. R., Wuddineh, W. A., Ma, J., Mann, D. G. J., … Dixon, R. A. (2012). Functional characterization of the switchgrass (*Panicum virgatum*) R2R3-MYB transcription factor PvMYB4 for improvement of lignocellulosic feedstocks. *New Phytologist*, 193, 121–136. https://doi.org/10.1111/j.1469-8137.2011.03922.x

Shen, H., Poovaiah, C. R., Ziebell, A., Tschaplinski, T. J., Pattathil, S., Gjersing, E., … Dixon, R. A. (2013). Enhanced characteristics of genetically modified switchgrass (*Panicum virgatum*) for high biofuel production. *Biotechnology for Biofuels*, 6, 71. https://doi.org/10.1186/1754-6834-6-71

Tieman, D. M., Harriman, R. W., Ramamohan, G., & Handa, A. K. (1992). An antisense pectin methylesterase gene alters pectin chemistry and soluble solids in tomato fruit. *The Plant Cell*, 4, 667–679. https://doi.org/10.2307/3869525

Vogel, K. P., Casler, M. D., & Dier, B. S. (2017). Switchgrass biomass composition traits and their effects on its digestion by ruminants and bioconversion to ethanol. *Crop Science*, 57, 275–281. https://doi.org/10.2135/cropsci2016.07.0625

Vogel, K. P., Dier, B. S., Jung, H. G., Casler, M. D., Masterson, S. D., & Mitchell, R. B. (2011). Quantifying actual and theoretical ethanol yields for switchgrass strains using NIRS analyses. *BioEnergy Research*, 4, 96–110. https://doi.org/10.1007/s12155-010-9104-4

Vogel, K. P., & Jung, H.-J.-G. (2001). Genetic modification of herbaceous plants for feed and fuel. *Critical Reviews in Plant Sciences*, 20, 15–49. https://doi.org/10.1080/20013591099173

Vogel, K. P., Mitchell, R., Sarath, G., Jung, H., Dier, B., & Casler, M. (2013). Switchgrass biomass composition altered by six generations of divergent breeding for digestibility. *Crop Science*, 53, 853–862. https://doi.org/10.2135/cropsci2012.09.0542

Voorrips, R. (2002). MapChart: Software for the graphical presentation of linkage maps and QTLs. *Journal of Heredity*, 93, 77–78. https://doi.org/10.1093/jhered/93.1.77

Wang, S., Basten, C., & Zeng, Z. (2012). Windows QTL Cartographer 2.5. Raleigh, NC: Department of Statistics, North Carolina State University. Retrieved from http://statgen.ncsu.edu/qtlcart/WQTLCart.htm

Xu, B., Escamilla-Treviño, L. L., Sathitsuksanoh, N., Shen, Z., Shen, H., Percival Zhang, Y.-H., … Zhao, B. (2011). Silencing of 4-coumarate:CoA ligase A ligase in switchgrass leads to reduced lignin content and improved fermentable sugar yields for biofuel production. *New Phytologist*, 192, 611–625. https://doi.org/10.1111/j.1469-8137.2011.03830.x

Zeng, Z.-B. (1994). Precision mapping of quantitative trait loci. *Genetics*, 136, 1457–1468.

Zhang, X., Huang, C., Wu, D., Qiao, F., Li, W., Duan, L., … Yan, J. (2017). High-throughput phenotyping and QTL mapping reveals the genetic architecture of maize plant growth. *Plant Physiology*, 173, 1554–1564. https://doi.org/10.1104/pp.16.01516

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section.

How to cite this article: Ali S., Serba DD, Walker D, et al. Genome-wide quantitative trait loci detection for biofuel traits in switchgrass (*Panicum virgatum* L.). *GCB Bioenergy*. 2020;12:923–940. https://doi.org/10.1111/gcbb.12731