An dynamical-mean-field-theory investigation of specific heat and electronic structure of α and δ-plutonium

L. V. Pourovs'kii1, G. Kotliar2, M. I. Katsnelson3, and A. I. Lichtenstein4

1 Center de Physique Théorique, École Polytechnique, 91128 Palaiseau Cédex, France
2 Department of Physics and Astronomy and Center for Condensed Matter Theory, Rutgers University, Piscataway, New Jersey 08854-8019, USA
3 Institute for Molecules and Materials, Radboud University of Nijmegen, NL-6525 ED Nijmegen, The Netherlands
4 Institut für Theoretische Physik, Universität Hamburg, 20355 Hamburg, Germany

(Dated: October 6, 2017)

We have carried out a comparative study of the electronic specific heat and electronic structure of α and δ-plutonium using dynamical mean field theory (DMFT). We use the perturbative T-matrix and fluctuating exchange (T-matrix FLEX) as a quantum impurity solver. We considered two different physical pictures of plutonium. In the first, $5f^3+$, the perturbative treatment of electronic correlations has been carried out around the non-magnetic (LDA) Hamiltonian, which results in an f occupation around a bit above $n_f = 5$. In the second, $5f^6-$, plutonium is viewed as being close to an $5f^6$ configuration, and perturbation theory is carried out around the (LDA+U) starting point bit below $n_f = 6$. In the latter case the electronic specific heat coefficient γ attains a smaller value in γ-Pu than in α-Pu, in contradiction to experiment, while in the former our calculations reproduce the experimentally observed large increase of γ in δ-Pu as compared to the α phase. This enhancement of the electronic specific heat coefficient in δ-Pu is due to strong electronic correlations present in this phase, which cause a substantial increase of the electronic effective mass, and high density of states at E_F. The densities of states of α and δ-plutonium obtained starting from the open-shell configuration are also in good agreement with the experimental photoemission spectra.

PACS numbers:

I. INTRODUCTION

Plutonium metal is arguably the most complex elemental solid. It exhibits a large number of allotropes, and in all the phases its Pauli-like magnetic susceptibility and resistivity are an order of magnitude larger than for simple metals. The phase transitions between different phases are sometimes accompanied by very large discontinuities in volume 11.

There is a generalized suspicion that the origin of the unique properties of Pu must be connected to its unique position in the actinide series lying at the boundary between the early actinides where the f electrons are band-like and the late actinides where they are more localized and hence strongly correlated. However there is currently no consensus on the underlying electronic structure of Pu and the precise mechanism underlying the anomalous behavior of plutonium and the late actinides, and several efforts in developing realistic approaches to this class of problems is currently being pursued.

The traditional electronic structure techniques have been unable to account for the unusual properties of Pu. If one supposes itinerant nature of the Pu $5f$ electrons, volume of both the low-temperature α phase and that of the fcc high temperature δ phase can be described reasonably well 2. However, a significant spin polarization then results in the LSDA calculations $^{3, 4, 5, 6, 7}$, while a number experimental investigations have led to conclusion that Pu is non-magnetic (for review see 8).

The strongly localized limit for the $5f$ shell has been studied by means of the LDA+U technique $^{9, 10, 11, 12}$. Depending on the type of the "double-counting" correction employed and depending on the relative strength of the multiplets and the spin orbit coupling and the strength of the local Coulomb interaction between $5f$ electrons one obtains either strongly magnetic f^5 or a non-magnetic f^6 configurations for the localized f shell $^{10, 11}$. In the latter case one obtains the equilibrium volume of the δ-phase in good agreement with the experiment 10. That has led to conclusion that the ground state of δ-Pu should be essentially in the f^6 non-magnetic configuration, with the $5f$ shell being split due to the spin-orbit coupling into the completely filled $f^{5/2}$ and empty $f^{7/2}$ states, with the local Coulomb interaction U further increasing this splitting. Therefore one predicts the ground state of δ-Pu to be fairly similar to that of Am, though with substantially smaller degree of localization of the f electrons. Similar results have been obtained recently by Shick et. al. 13 by means of LDA+DMFT using Hubbard I as the impurity solver.

However, in this picture one expects to have almost no f-electrons in vicinity of the Fermi level, in sharp contradiction to the experimental PES 14, where the high peak attributed to f states is clearly observed at the Fermi level. That deficiency has been addressed in Ref. 13, where the dynamical fluctuations around f^6 ground state have been added by means of the dynamical mean-field theory (DMFT) 10 in conjunction with the perturbative treatment of the local quantum fluctuations.
by the fluctuating exchange and T-matrix technique (T-matrix FLEX) [17, 18, 19]. The dynamical fluctuations have not changed the f shell occupancy, however they led to essential modification of the density of states (DOS), producing a peak which now is closer to (but still separated by a finite energy from) the Fermi level, substantially improving the overall agreement between the theoretical DOS and experimental PES for δ-Pu.

Another school of thought, dating back to Johansson [20] suggests that in the solid, plutonium is close to an 5f5 configuration. These ideas were supported by the first LDA+DMFT computations in this material by by Savrasov et al. [21]. At the reasonable value of the Coulomb interaction U = 4 eV Savrasov et al. have obtained a double-minima shape of the total energy versus volume curve, with positions of the minima corresponding well to the experimental equilibrium volumes of the α and δ phases of Pu, respectively. The minima have been assigned to the itinerant and localized state of the 5f shell, thus the α → δ phase transition is due to the Mott localization of the Pu f electrons. The same explanation for the α → δ phase transition has been put forward by Katsnelson et al. [22]. The physical picture underlying this approach, is that the actinides provide a complex generalization of the localization-delocalization DMFT phase diagram obtained in simple model Hamiltonians [23], obtained by incorporating the realistic band structure, the realistic electronic structure of the f electrons, and most important, by relaxing the position of the atomic coordinates that were kept fixed in the model Hamiltonian approach. The LDA+DMFT DOS reported in Ref. [21] did not include realistic multiplets structure. Its recent incorporation has lead to rather good agreement with the experimental PES, and in addition has shown that the fully self consistent DMFT solution is non-magnetic [24], by allowing the possibility of ordered states. The ground state configuration of both the α and δ-Pu were found to be close to the "open-shell" 5f5 configuration, in the sense that the f occupation in the ground state is slightly bigger than n_f = 5.

At this point we have, within the Electronic Structure Method +DMFT framework, two rather different pictures of the ground state of Pu. In the "near 5f6" of Refs. [10, 11, 12] one has essentially the 5f6 "closed-shell" non-magnetic configuration, (resulting from a strongly interacting one body Hamiltonian obtained in LDA+U) with dynamical fluctuations reducing the f occupancy by inducing virtual fluctuations into the 5f5 manifold, (and all other f occupancies). Another approach of Ref. [21] can be described as starting from an f5 "open-shell" configuration, which is then screened by the spd conduction electrons, what results in a Kondo resonance being formed at the Fermi level. The one electron Hamiltonian in this case is obtained from the non-magnetic weakly correlated LDA. These two physical pictures are not orthogonal. In a solid the occupation is non integer, and the theory of the Anderson impurity model teaches us that at non integer occupancy the ground state of the model can be adiabatically continued from both the 5f5 and 5f6 limits. Calculations based on both physical pictures produce a ground state and density of states of δ-Pu in reasonable agreement to experiment. Still, these two pictures are substantially different in content, and in order to chose which of two approaches (and which one of the physical pictures) provides the best description of the actual plutonium it is necessary to further compare their predictions for other physical quantities sensitive to the electronic structure. The electronic specific heat coefficient γ is a convenient choice as it is directly linked to strength of the electronic correlations. Moreover, it has been measured in both α and δ-Pu, and the value of γ in the δ phase (43 and 64 mJ K−2 mol−1 in δ-Pu, stabilized by Ga and Al, respectively [8, 27]; in the range of 35-55 mJ K−2 mol−1 in the Pu92Am8 alloy [28]) is substantially larger than in α-Pu (17 mJ K−2 mol−1 [25]).

The specific heat is a measure of the number of degrees of freedom available to the system at a given temperature. It is much larger in the case of an open shell configuration screened by spd electrons, because the degrees of freedom of the f configuration are transferred to the low energy quasiparticle of the system. Hence, in the present work we compare and analyze predictions of the two picture (f5+ and f6−) implemented within LDA+DMFT regarding values the γ coefficient in the α and δ-Pu.

II. COMPUTATIONAL METHOD

We have employed the LDA+DMFT technique on the basis of the full-potential linear MT-orbitals method (FPLMTO) [27] and in conjunction with the spin-orbital T-matrix FLEX quantum impurity solver [19]. The details of our technique are described in Ref. [19]. We start with the LDA or LDA+U calculations of α and δ-Pu by means of the FPLMTO method. The calculations of the fcc δ−Pu phase were carried out at experimental lattice parameter (a = 4.64 Å, V = 25 Å3/at). The complex structure of the α phase has been mimicked by an orthorhombically distorted diamond structure (which has been proved to have almost the same DOS and total energy as the actual α-Pu structure [28]) at experimental atomic volume (a = 3.63 Å, b/a = 1.61, c/a = 2.09, V = 20 Å3/at). We have employed 242 and 150 k−points in the irreducible Brillouin zone for the cubic and orthorhombic structures, respectively. In both the LDA+U and LDA+DMFT we have taken the values of 3 and 0.55 eV for the pa-
rameters U and J of the local Coulomb interaction, respectively. In the LDA+U calculations we have employed the \"around mean-field\" expression for the double counting term \[10\].

The one-particle Hamiltonian $H_t(k)$ was obtained by Löwdin orthogonalization (using the square root of the overlap matrix) of the converged LDA or LDA+U calculations. Below we designate as LDA+FLEX or LDA+U+FLEX the cases where the LDA or LDA+U Hamiltonian, respectively, has been employed in the LDA+DMFT calculations in conjunction with the spin-orbit T-matrix FLEX quantum impurity solver. First, the local Green’s function is obtained by means of the Brillouin zone (BZ) integration

$$G(i\omega) = \sum_k [(i\omega + \mu)1 - H_t(k) - \Sigma^{dc}(i\omega)]^{-1} \quad (1)$$

where $\omega = (2n + 1)\pi T$ are the fermionic Matsubara frequencies for a given temperature T, μ is the chemical potential and $\Sigma^{dc}(i\omega)$ is the local self-energy with a \"double counting\" term subtracted, viewed as a functional of the local Greens function $G(i\omega)$ which is solved for self consistently $\Sigma = \Sigma_{imp} - E_{dc}$.

Then within the DMFT scheme the local self-energy is obtained by the solution of the many-body problem for a single quantum impurity coupled to an effective electronic \"bath\" through the Weiss field function \[16\]

$$G_{ff}^{-1}(i\omega) = G_{ff}^{-1}(i\omega) + \Sigma^{dc}(i\omega). \quad (2)$$

G_{ff} denotes the ff block of G in equation \[11\]. In the spin-orbit T-matrix FLEX quantum impurity solver the local self-energy is obtained as a sum of three contributions:

$$\Sigma = \Sigma^{(TH)} + \Sigma^{(TF)} + \Sigma^{(PH)}, \quad (3)$$

where $\Sigma^{(TH)}$ and $\Sigma^{(TF)}$ are the T-matrix \"Hartree\" and \"Fock\" contributions, respectively, $\Sigma^{(PH)}$ is the particle-hole contribution. $\Sigma^{(TH)}$ and $\Sigma^{(TF)}$ are obtained by substitution in the corresponding Hartree and Fock diagrams the bare Coulomb interaction with the frequency dependent T-matrix, the latter is given by summation of the ladder diagrams in the particle-particle channel. $\Sigma^{(PH)}$ is obtained by the RPA-type summation in the particle-hole channel with the bare vertex being substituted by static limit of the T-matrix \[18\], \[19\].

For the double counting term in the DMFT computations we have used the static limit of the self energy \[18\], \[29\] for the LDA Hamiltonian and the Hartree-Fock term for the LDA+U Hamiltonian \[19\]. The DMFT calculations have been carried out using the 512-points Matsubara frequencies corresponding to temperature 950 K. We carried out DMFT iterations until convergence in both the chemical potential μ and the local self-energy was achieved. Then the Padé approximant was used \[30\] for analytical continuation of the local self-energy to the real axis in order to obtain the DOS $n(E) = -1/\pi \text{Tr} \Im [G(E)]$. The electronic specific heat coefficient γ was computed as $\gamma = k_B^2 \text{Tr} [N(E_F)Z^{-1}]$, where $N(E_F)$ is the DOS matrix at the Fermi level (which for rather low temperature used here can be approximated to μ) and Z^{-1} is the quasiparticle residue matrix, $Z^{-1} = I - d\Im [\Sigma(E)]/dE|_{E=E_F}$. where I is the identity matrix, and Sigma is zero outside the f block. The average mass enhancement \overline{m} is defined by $\overline{m} = \text{Tr} [Z^{-1} N_f]/\text{Tr} [N_f]$, where N_f is the f spectral function matrix at the Fermi level.

III. RESULTS

The calculated total and partial f-states LDA and LDA+U DOS are presented in Fig.\[11\]. Already in the case of LDA one may clearly distinguish the filled $f^{5/2}$ and empty $f^{7/2}$ states on the DOS of δ-Pu. For α-Pu the separation between the $f^{5/2}$ and $f^{7/2}$ states is somewhat smeared out, as has been also observed in Ref. \[11\]. However, in both the α and δ phases there is still substantial density of the f-states at...
the Fermi level $N_f(E_F)$, therefore within LDA one obtains an "open-shell" configuration of the f-band. The LDA+U calculations of δ-Pu lead to familiar picture [14, 11, 15] of non-magnetic configuration with the filled $f^{5/2}$ and empty $f^{7/2}$ states, well separated in energy by value of U, negligible $N_f(E_F)$ and the f shell occupancy close to 6. In α-Pu substantial broadening and intermixing of the $f^{5/2}$ and $f^{7/2}$ states persist in the LDA+U, retaining appreciable $N_f(E_F)$.

The values of the electronic specific heat coefficient γ and effective mass m^* calculated within the LDA+FLEX and LDA+U+FLEX techniques are listed in Table I. One may notice, that moderate values of the effective mass m^* in the case of LDA+U+FLEX indicate rather weak correlations present in the system. In fact, the effective mass m^* in δ-Pu appears to be somewhat smaller than in α-Pu. Similarly, in LDA+U+FLEX the γ coefficient of specific heat in the δ phase is nearly two times smaller as compared to α-Pu, contrary to experimental measurements, which shows γ bigger than two times and sometimes almost three times larger in δ-Pu. Almost order of magnitude difference between experimental and theoretical γ in the case of δ-Pu means that in the "closed-shell" configuration of δ-Pu electronic correlations appear to be much weaker than one would expect on basis of experimental evidences. This should be contrasted with the LDA+FLEX calculations which predict effective mass in δ-Pu to be quite large (4.02) and somewhat larger, than in α-Pu. The LDA+FLEX technique also reproduce well experimental tendency of enhancement of the value of γ in the δ phase as compared to α-Pu. Actual values of γ obtained by means of the LDA+FLEX technique are rather close to experimental results in both the α and γ phases.

In Fig. 2 we display the self-energy $\Sigma_{mm}(i\omega)$ (for $m=-3$) computed on the Matsubara axis within the LDA+FLEX and LDA+U+FLEX techniques for α and δ-Pu. One may notice that $\Sigma_{\delta}(i\omega)$ obtained by LDA+U+FLEX is about four times smaller than one calculated within LDA+FLEX. That should be expected on the basis of already observed tendency for m^*. We stress again, that in both descriptions (LDA+FLEX and LDA+U+FLEX) we have a quasiparticle feature in the spectra. This feature, becomes the famous Kondo resonance as U increases.

However, the values of the many body renormalizations, namely the value of the slope of $\Im \Sigma(i\omega)$ obtained in the LDA+U+FLEX calculations of δ-Pu is relatively small and closer to the non interacting system (see Fig. 2) while the peak at E_F that is present in the LDA+FLEX DOS is closer to the Fermi level and more enhanced.

Finally in Fig. 3 we compare the α and δ-Pu DOS obtained within the "open-shell" LDA+FLEX approach to the experimental photoemission spectra, collected at a photon energy of 40.8 eV, where the band $6d$ and $5f$ cross section are nearly equal [14]. In order to produce the theoretical spectra we have multiplied the total DOS by the Fermi function, corresponding to experimental temperature of 80 K and

	Effective mass m^*	γ (mJ K$^{-2}$mol$^{-1}$)
LDA+FLEX	3.85	20.7
LDA+U+FLEX	2.22	15.6
Exper. [8, 25, 26]	17	43.64, 35.5

TABLE I: Effective mass m^* and the electronic specific heat coefficient γ.
normalized it to equal spectral weight between -4 and 0 eV for α and δ-Pu as was done in analysis of the experimental PES in Ref. [14]. In result one has very good agreement between experimental and theoretical PES in vicinity of the Fermi level. For lower energies below ~0.5 eV the agreement is less satisfactory, but there the d states should give appreciated contribution to PES, therefore the accurate evaluation of the corresponding 6d and 5f matrix elements may become necessary for a faithful representation of PES. Moreover, the multiplet effects in the 5f shell should be taken into account and these are beyond our simple T-matrix FLEX impurity solver.

In conclusion, we have carried out comparative analysis of the specific heat and electronic structure in α and δ-plutonium by means of the LDA+DMFT technique in conjunction with the perturbative T-matrix and fluctuating exchange quantum impurity solver. We have shown that by assuming the "closed" f^6 configuration of the Pu f shell one can not explain high value of the electronic specific heat coefficient γ in δ-Pu as well as substantial enhancement of γ in the δ phase as compared to α-Pu, even in the case when the dynamical fluctuations are properly taken into account. At the same time, by assuming rather the "open shell" configuration, which is closer to f^5 one may obtain the observed enhancement of γ in the δ phase and actual values of γ in rather good agreement with the experiment. The experimental PES is also well reproduced by the LDA+DMFT DOS in the "open shell" configuration. This suggests that the actual $[7]$ ground state of the f shell in Pu should be rather closer to the "open shell" f^5 configuration than f^6. This picture is consistent with the results of a series of EELS and XAS studies of Ref. [15] and in good agreement with the results of recent LDA+DMFT calculations, where more sophisticated solvers were used to access the strong correlation regime. The good agreement with respect to experiments achieved by our work suggest the possibility of exploring the paramagnetic state of inhomogeneous alloys and interfaces of actinides using DMFT LDA+FLEX. Notice in the context that simplified solvers such as the iterated perturbation theory was very useful for the study of the paramagnetic phase of the one band Hubbard model, but far worse in the description of magnetically ordered phases. For this reason we have not addressed in this paper the issue of magnetic long range order. This issue is very delicate, because as is well known in the context of the Anderson impurity model, approximate perturbative treatments that signal the onset of magnetism, can indicate the need to include explicitly Kondo screening rather than the occurrence of a magnetic instability.

ACKNOWLEDGMENTS

We would like to thank A. Georges for useful discussions. This work was funded by the NNSA SSAA program. LP acknowledges support from CNRS, ´Ecole Polytechnique and the E. U. "Psi-k f-electron" Network under contract HPRN-CT-2002-00295.

[1] F. A. Lander G.H., ed., Handbook on the Physics and Chemistry of the Actinides (North-Holland, Amsterdam, 1984).
[2] P. Söderlind, J. M. Wills, B. Johansson, and O. Eriksson, Phys. Rev. B 55, 1997 (1997).
[3] P. Söderlind, Europhys. Lett. 55, 525 (2001).
[4] A. L. Kutepov and S. G. Kutepova, J. Phys.: Condens. Matter 15, 2607 (2003).
[5] A. M. Niklasson, J. M. Wills, M. I. Katsnelson, I. A. Abrikosov, O. Eriksson, and B. Johansson, Phys. Rev. B 71, 094415 (2005).
[6] L. V. Pourovskii, A. V. Ruban, L. Vitos, H. Ebert, B. Johansson, and I. A. Abrikosov, Phys. Rev. B 71, 094415 (2005).
[7] I. V. Solovyev, A. I. Liechtenstein, V. A. Gubanov, V. P. Antropov, and O. K. Andersen, Phys. Rev. B 43, 14414 (1991).
[8] J. C. Lashley, A. Lawson, R. J. McQueeney, and G. H. Lander, Phys. Rev. B 72, 054416 (2005).
[9] S. Y. Savrasov and G. Kotliar, Phys. Rev. Lett. 84, 3670 (2000).
[10] A. B. Shick, V. Drchal, and L. Havela, Europhys. Lett. 69, 588 (2005).
[11] A. O. Shorikov, A. V. Lukoyanov, M. A. Korotin, and V. I. Anisimov, Phys. Rev. B 72, 024458 (2005).
[12] J. Bouchet, B. Siberchicot, F. Jollet, and A. Pasturel, J. Phys.: Condens. Matter 12, 1723 (2000).
[13] A. Shick, J. Kolorenc, L. Havela, V. Drchal, and T. Gouder, cond-mat/0610794 (2006).
[14] A. J. Arko, J. J. Joyce, L. Morales, J. Wills, J. Lashley, F. Wastin, and J. Rebizant, Phys. Rev. B 62, 1773 (2000).
[15] L. V. Pourovskii, M. I. Katsnelson, A. I. Lichtenstein, L. Havela, T. Gouder, F. Wastin, A. B. Shick, V. Drchal, and G. H. Lander, Europhys. Lett. 74 (2006).
[16] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).
[17] N. E. Bickers and D. J. Scalapino, Ann. Phys. 193, 206 (1989).
[18] M. I. Katsnelson and A. I. Lichtenstein, Eur. Phys. J. B 30, 9 (2002).
[19] L. V. Pourovskii, M. I. Katsnelson, and A. I. Lichtenstein, Phys. Rev. B 72, 115106 (2005).
[20] B. Johansson and A. Rosengren, Phys. Rev. B 11, 1367 (1975).
[21] S. Y. Savrasov, G. Kotliar, and E. Abrahams, Nature 410, 793 (2001).
[22] M. I. Katsnelson, I. V. Solovyev, and A. V. Trefilov, JETP Lett. 56, 572 (1992).
[23] G. Kotliar and D. Vollhardt, Physics Today 57, 53 (2004).
[24] J. Shim, K. Haule, and G. Kotliar, Electronic archive, xxx.lanl.gov, cond-mat/0611760 (2006).
[25] J. C. Lashley, J. Singleton, A. Migliori, J. B. Betts, R. A. Fisher, J. L. Smith, and R. J. McQueeney, Phys. Rev. Lett. 91, 205901 (2003).
[26] P. Javorsky, L. Havela, F. Wastin, E. Colineau, and D. Bouexiere, Phys. Rev. Lett. 96, 156404 (2006).
[27] S. Y. Savrasov, Phys. Rev. B 54, 16470 (1996).
[28] J. Bouchet, R. C. Albers, M. D. Jones, and G. Jomard, Phys. Rev. Lett. 92, 095503 (2004).
[29] A. I. Lichtenstein, M. I. Katsnelson, and G. Kotliar, Phys. Rev. Lett. 87, 067205 (2001).
[30] H. J. Vidberg and J. W. Serene, J. Low Temp. Phys 29, 179 (1977).
[31] J. G. Tobin, K. T. Moore, B. W. Chung, M. A. Wall, A. J. Schwartz, G. van der Laan, and A. L. Kuterov, Phys. Rev. B 72, 085109 (2005).