Probiotic microbes induce different responses from bovine bronchial alveolar lavage cells in vitro

CURRENT STATUS: ACCEPTED

Susan D. Eicher
USDA-ARS Livestock Behavior Research Unit

Carol Chitko-McKown ✉ carol.chitkomckown@ars.usda.gov
"USDA-ARS Plaines Area
Corresponding Author
ORCID: 0000-0002-7496-2988

Keith A. Bryan
Chr Hansen Holding A/S

DOI:
10.21203/rs.2.14843/v1

SUBJECT AREAS
Pulmonology Immunology

KEYWORDS
Probiotic; lung; bovine; phagocytosis; leukocyte
Abstract

Objective Probiotics are fed to improve enteric health, and they may also affect respiratory immunity through their exposure to the upper respiratory tract upon ingestion. However, their effect on the respiratory system is not known. Our aim was to determine how probiotics affect functions and markers of bronchoalveolar lung lavage cells (BAL) isolated from lungs of calves at slaughter. Results Treatments consisted of ten probiotic species and one control treatment. Probiotics and BAL were incubated 1:1 for 2 h at 37° C and 5% CO2. The cell surface markers measured included CD14, CD205, and CD18, and E. coli bioparticles were used to measure phagocytosis and oxidative burst. Differences were considered significant at $P \leq 0.05$ and were noted for percent cells fluorescing and mean fluorescence intensity for CD14 and CD205. Additionally, oxidative burst was different as measured by both percentage of cells fluorescing and mean fluorescence intensity, and phagocytosis differed among species as measured by mean fluorescence intensity. Overall, probiotic species differed in their ability to suppress or increase leukocyte function showing that probiotic bacteria differentially modulate BAL.

Background

Probiotics have been investigated for many health benefits, however little research has investigated their effects on the respiratory immune cells (1). Lungs were previously believed to be a sterile environment, but that has recently been revealed to not be the case in the upper respiratory tract (2). Others have shown a communication between the gut and respiratory immune mechanisms (3, 4, 5). Because most applications of probiotics are by an oral route, we hypothesized that some of the probiotic may be having an impact on the respiratory system as well as the intended enteric system (5, 6). As an initial step, our aim was to determine how bronchial alveolar lavage cells (BAL) responded
to 8 potential probiotic microbes and two synbiotics designed for livestock.

Methods

Lungs were recovered from 5 beef calves after slaughter and placed on ice for transport to the laboratory approximately 10 min away. The lungs were lavaged with 100 mL of warm (37º C) HBSS (Gibco, ThermoFischer). A minimum of 50 mL of lavage fluid was obtained with 2 washes. The lavage fluid was filtered over sterile gauze into a 50 mL sterile tube. The tubes were centrifuged at 1800 x g for 15 minutes at 4°C. Supernatants were discarded, and BAL were resuspended in 10 mL of cold sterile HBSS, then centrifuged a second time. Supernatants were discarded, and cells were resuspended in RPMI + glutamine at 10^6 cells/mL. The synbiotics (probiotics plus prebiotics) that were used for stimulation were US (a 3-strain lactobacillus probiotic, USDA-ARS), and Probios® synbiotic (Vets Plus, Inc., Menomonie, WI). Eight other single microbial potential probiotics were obtained from Chr. Hansen, Inc., including Lactobacillus animalis (LA-51), Propionibacterium freudenreichii (PF-24), Enterococcus faecium (CH-212), E. Faecium (SF-273), E. Faecium (M-74), Bifidobacterium animalis ssp lactis (BB-12), Bacillus subtilis (EB-15), and Bacillus amyloliquifaciens (ZM-16). Lavage cells and bacterial cells were incubated 1:1 for 2 h at 37° and 5 % CO₂ in RPMI + Glutamine One 15 mL polypropylene tube contained 1 mL of the 1 x10^6 cells/mL of BAL and 1 mL probiotic or synbiotic to deliver a 1:1 MOI , and one tube was left as cells only control with 1 mL media. Cells (500 µL) were then aliquoted into flow cytometry tubes (12 x 75 mm polypropylene, Falcon, Corning, NY). Three ml of the following antibodies were added to each of the tubes; medium (cells only); anti-bovine CD 14 (FITC, BioRad, Hercules, CA) and anti-bovine CD205 (RPE, BioRad); anti-bovine CD18 (Bov 2030, Washington State University, labeled with Alexa Flour 647), and opsonized E. coli bioparticles (Life Tech. Corp E2870 and
P35361). After a 1-h incubation at 37° in a shaking water bath, cells were washed twice with the addition of 1 mL of 1X HBSS, centrifuged at 3000 x g for 3 min. Fluorescence was determined using the BD Fortessa (Beckman Coulter, Brea, CA) with excitation set at 488 and 640 nm and emission were evaluated at 530 (FITC), 575 (PE), and 647 (Alexa Fluor 647). Data were collected for the total BAL population. Statistical analysis used the Mixed models analysis in SAS with probiotic treatment as the fixed effect. Mean separations were by Bonferroni testing.

Results

Cell counts determined that BAL were > 60% macrophages. Preliminary data were used to determine that a 1:1 ratio of the probiotic to leukocyte was appropriate for a good response. Differences were declared at $P \leq 0.05$. Mean fluorescence of phagocytosis of *E. coli* bioparticles was less for BB-12 and EB-15 than CNT, but percentage (%) of cells phagocytizing was not different (Figure 1a). Mean fluorescence of oxidative burst by M-74 was less than CH-212, BB-12, EB-15, PB, and US, but none were different than CNT. The percentage of cells with oxidative burst was greater for PF-24 than for LA-51, BB-12, ZM-16, PB, and CNT (Figure 1b). CD14 mean fluorescence was least for M-74 compared with all other microbes and CNT, but % of cells expressing CD14 was greatest on PF-24 and US compared with EB-15 and BB-12, but not CNT. CD-205 mean fluorescence was greatest for M-74 compared with LA-51, PF-24, CH-212, SF-273, CNT, and US. Percentage of cell expressing DC-205 and CD18 was not different from controls (Figure 2).

Discussion

Although there is increasing literature on probiotics and the intestinal microbiome, there are few studies on the effects of probiotics on respiratory immunity in cattle. Lima et al. (7) showed the changes in healthy and diseased calves’ upper respiratory tract
microbiome from 3 days of age to 35 days of age. Bosch et al. (8) suggested that imbalances of the upper respiratory tract microbiome may lead to invasion by and overgrowth by pathogenic bacteria. Homan et al. (1) determined that the microbiome of cattle on the day of arrival into a feedlot and after 60 were significantly different. Although Corbett et al. (9) noted that feeding probiotics did not reduced respiratory susceptibility in cattle, Adjei-Fremeh et al. (6) reported that feeding of probiotics induced global gene expression upregulation of genes associated with both innate and adaptive immunity. Cytokine and chemokines, TLRs, and stress-related signaling molecules that are related to the inflammatory response and to the maintenance of homeostasis were predominant. The cattle used in this study had undergone transport stress and movement into the abattoir prior to our samples. This could have resulted in cortisol release altering immune profiles and functions.

In this in vitro work we sought to determine whether probiotic microbes could stimulate markers important to immune functions of leukocytes obtained by lung lavage. We used CD14 as part of the LPS recognition molecule, CD18 as a marker of cell activation and adhesion, CD205 to determine the role of dendritic cells, and phagocytosis of E. coli bioparticles and the associated oxidative burst to determine phagocytic function. Most literature reports on Lactobacillus strains in disease prevention of pneumococcal infections (3) and Lactobacillus have been used to determine some of the mechanisms that reduce susceptibility in vitro (10). However, Bacillus subtilis delivered intranasally increased TLR expression in tonsils of pigs (11). Monocyte derived DCs were not affected in numbers or maturation by the soluble mediators of Lactobacillus rhamnosus, but their capacity to modulate T cell responses was enhanced (12). Additionally, Lactobacillus rhamnosus CLR 1505 modulated the TLR3-mediated immune response in the respiratory tract of mice (13). Lehtoranta et al. (14) reviewed some common probiotics’ effectiveness
in humans and mice. They concluded the variability in outcomes may be attributed to the strains of probiotic in use, bacterial dose, and matrices provided with the probiotics. The importance of TLR3 in viral inflammatory responses, and with pathology. Our data showed an increase in the number of cells expressing the CD205 dendritic cell marker for *Propionibacterium freudenreichii* (PF-24) compared to other probiotic microbes, but it was not statistically different than the control cells. *Lactobacillus animalis* (LA-51), *Bifidobacterium animalis* (BB-12) and *Bacillus amyloliquifaciens* (ZM-16), and the Probios product were less than the PF-24. In contrast, the mean fluorescence of CD205 was greatest for *E. faecium* (M-74) compared to controls, but *Lactobacillus* such as LA-51 and US (3 strains of *Lactobacillus*) were both less than M-74 and like controls. In concurrence with Forsythe’s (15) observation that microbes have effects on dendritic cell phenotype and function, our data show that dendritic cells are certainly playing a role in the ability of the leukocytes to modulate immunity. The increase in the percentage of cells with oxidative burst corresponds with the increase in percentage of cells expressing the DC marker. This would be a desirable characteristic of a probiotic affecting the respiratory tract.

The recognition of gram negative bacteria requires the expression of CD14 as part of the LPS recognition molecule. In the current *in vitro* study, only differences among the probiotic microbes was evident in the percentage of cells expressing CD14 molecules (no differences from control), but *E. faecium* (M-74) CD14 fluorescence was reduced compared to all other treatments and this corresponds to the decrease in oxidative burst of M-74 microbe stimulation.

Nasally delivered *L. lactis* NZ900 improved clearance of *S. pneumoniae*, possibly by a competitive exclusion mechanism (3) and by enhanced IgA and IgG in BAL fluid in mice. Marranzion et al. (16) demonstrated TNF-α concentration were not altered in BAL
compared with serum and intestinal fluid, but IFN-γ was increased by 2 or 3 strains of *Lactobacillus* compared to controls in BAL, both in *ex vivo* and *in vitro* experiments.

The oxidative burst of those 2 strains was also greater than controls (16). Cell counts of pathogenic *C. albicans* in lungs of infected mice showed a reduction with *L. casei* CRL431 and *L. rhamnosus* CRL1505 treatments. In contrast, our data show only suppressed fluorescence of phagocytic activity by *Bifidobacterium animalis* (BB-12) and *Bacillus subtilis* (EB-15) compared to controls, and no differences were evident in the number of cells that were phagocytizing. These microbes also decreased the percentage of CD14 expressing cells, demonstrating the importance of the CD14 molecule in phagocytosis of the *E. coli* bioparticles. We did see enhanced number of cells with oxidative burst by *Propionibacterium freudenreichii* (PF-24) compared to controls and to 4 other probiotic microbes. Oxidative burst fluorescence was not different from controls for any treatment, but differences among the treatments that had enhanced fluorescence (*E. faecium*, CH-212) and on with suppressed fluorescence (*E. faecium*, M-74) were evident. There are numerous differences in the approaches used in these 2 studies. Marranzino et al. (16) did much of their study *in vivo* in mice. Our work in contrast used harvested BAL and tested their responses *ex vivo*. CD14 changes in PF-24 were also reflected by enhanced number of cells with oxidative burst, and similarly the suppression of CD14 fluorescence by M-74 was reflected in reduced oxidative burst. It appears that there are many facets of the BAL interaction with various probiotic microbes that show the variation in whether their interaction will be favorable. BB-12 benefits for upper respiratory infections in humans were dependent on timing (17). Method of delivery and duration of supplementation have been cited as reasons for difference in the effectiveness of probiotic supplements on upper respiratory symptoms, some showed benefit in rate while others showed a reduction in duration or severity but not on incidence.
Because we used a static system, *in vitro*, we would not expect large shifts in cell population percentages such as in our phagocytosis data where little change was evident in the percentage of cells, but the mean expression showed some substantial differences. It is possible that effects *in vivo* may be more dramatic because of the increased chance to affect the cell population development.

Other benefits attributed to probiotics are increased expression of mucin genes and mucin secretion in intestines (18), and antimicrobial peptide producing cells, whether that is true for respiratory mucosal surfaces is not known. Additionally, many probiotics have mechanical actions that are antagonistic to pathogens (19).

Conclusions

PF-24 and M-74 were most immunomodulatory probiotic microbes compared with controls. M-74 appeared to suppress, and PF-24 to increase leukocyte functions, showing that probiotic bacteria differentially modulate BAL. Selection of an appropriate probiotic microbe is critical to efficacy and a useful outcome.

Limitations

N of 5
Performed *ex vivo*

Declarations

Ethics approval: no humans were used in these studies. Because the lungs were collected at the abbatoir, no animal use approval was required.

Consent for publication: not applicable.

Availability of data and materials: All data generated or analysed during this study are included in this published article.
Competing interests: CCM and SDE have no competing interests, KAB is employed by Chr. Hansen, Inc. which provided the probiotics used in this study.

Funding: Chr. Hansen, Inc., provided all of the microbes with the exception of US that is a product of the USDA-ARS. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture. USDA is an equal opportunity provider and employer.

Author Contributions: CCM, KAB, and SDE designed the experiment. SDE carried out the experiments. CCM, KAB, and SDE prepared the manuscript.

Acknowledgements: none.

References
1. Holman DB, McAllister TA, Topp E, Wright AD, Alexander TW. The nasopharyngeal microbiota of feedlot cattle that develop bovine respiratory disease. Vet Microbiol. 2015;180:90-95.
2. Osman R, Malmuthuge N, Gonzalez-Cano P, Griebel P. Development and function of the mucosal immune system in the upper respiratory tract of neonatal calves. Annu Re Anim Biosci. 2018;6:141-155.
3. Villena J, Oliveira MLS, Ferreira PCD, Salva S, Alvarez S. Lactic acid bacteria in the prevention of pnrumococcal respiratory infection: Future opportunities and challenges. International Immunopharmacology 2011;11:1633-1645.
4. McDermott AJ, Huffnagle GB. The microbiome and regulation of mucosal immunity. Immunology. 2013;142:24-31.
5. Wilson HL, Obradovic MR. Evidence for a common mucosal immune system in the pig.
6. Adjei-Fremah S, Ekwemalor K, Asiamah E K, Ismail H, Ibrahim S, Worku M. Effect of probiotic supplementation on growth and global gene expression in dairy cows. J Appl Anim Res. 2018;46:257-263.

7. Lima SF, Teixeira AGV, Higgins CH, Lima TS, Bicalho R C. The upper respiratory tract microbiome and its potential role in bovine respiratory disease and otitis media. Nature Scientific Reports. 2016;6:29050-29062.

8. Bosch A, Biesbroek G, Trzcinski K, Sanders EA, Bogaert D. Viral and bacterial interactions in the upper respiratory tract. PLoS Pathog. 2013;9:e1003057.

9. Corbett EM, Norby B, Halbert LW, Henderson ST, Grooms DL, Manning SD, Kaneene JB. Effect of feeding a direct-fed microbial on total and antimicrobial-resistant fecal coliform counts in preweaned dairy calves. AJVR. 2015;76:780-788.

10. Villena J, Chiba E, Yohsuke T, Salva S, Marranzion G, Kitazawa H, Alvarez S. Orally administered *Lactobacillus rhamnosus* modulates the respiratory immune response triggered by the viral pathogen-associated molecular pattern poly(I:C)). BMC Immunol. 2012;13:53-67.

11. Yang Y, Jing Y, Yang J, Yang Q. Effects of intranasal administration with *Bacillus subtilis* on immune cells in the nasal mucosa and tonsils of piglets. Ex Therap Med. 2018;15:5189-5198.

12. Ludwig IS, Broere F, Manurung S, Lambers TT, van der Zee R, van Eden W. *Lactobacillus rhamnosus* GG-Derived soluble mediators modulate adaptive immune cells. Front Immunol. 2018;9:1546-1551.

13. Kitazawa H, Villena J, Modulation of respiratory TLR3-anti-viral response by probiotic microorganisms: lessons learned from *Lactobacillus rhamnosus* CRL 1505. Front Immunol. 2014;5:1-15.
14. Lehtoranta L, Pitkäranta A, Korpela R. Probiotics in respiratory virus infections. Eur J Clin Microbiol Infect Dis. 2014;33:1289-1302.

15. Forsythe P. Probiotics and lung immune responses. An Am Thorac Soc. 2013;11:S33-S37.

16. Marranzino G, Villena J, Salva S, Alvarez S. Stimulation of macrophages by immunobiotic *Lactobacillus* strains: influence beyond the intestinal tract. Microbiol Immunol. 2012;56:771-781.

17. Meng H, Lee Y, Ba Z, Peng J, Lin J, Boyer AS, et al., Consumption of *Bifidobacterium animalis* subsp. *Lactis* BB-12 impacts upper respiratory tract infection and the function of NK and T cells in healthy adults. Mol Nutr Food Res. 2016;60:1161-1171.

18. Mack DR, Ahrne S, Hyde L, Wei S, Hollingsworth MA Extracellular MUC3 mucin secretion follows adherence of *Lactobacillus* strains to intestinal epithelial cells in vitro. Gut. 2003;52:827-833.

19. Popova M, Molimard P, Courau S, Crociani J, Dufour C, Le Vacon F, et al. Beneficial effects of probiotics in upper respiratory tract infections and their mechanical actions to antagonize pathogens. J Appl Microbiol. 2012;113:1305-1318.

Figures
Oxidative burst (Panel A) and phagocytosis (Panel B) by total lung lavage cells (BAL). a, b, c designate differences between means of the probiotic stimulants (P ≤ 0.05).

Figure 1
Figure 2

CD14 (Panel A), CD205 (Panel B), and CD18 (Panel C) expression of total lung lavage cells (BAL). The left panel of each cell marker is the percentage of cells expressing that marker and the right panel is the mean fluorescence for each marker. a, b, c designate differences between means of the probiotic stimulants (P ≤ 0.05).