CONTINUOUS FIELDS OF C*-ALGEBRAS OVER FINITE DIMENSIONAL SPACES

MARIUS DADARLAT

Purdue University
West Lafayette, IN, U.S.A.

Abstract. Let X be a finite dimensional compact metrizable space. We study a technique which employs semiprojectivity as a tool to produce approximations of $C(X)$-algebras by $C(X)$-subalgebras with controlled complexity. The following applications are given. All unital separable continuous fields of C*-algebras over X with fibers isomorphic to a fixed Cuntz algebra C_n, $n \in \{2, 3, ... \}$ are locally trivial. They are trivial if $n = 2$ or $n = \infty$. For $n \geq 3$ finite, such a field is trivial if and only if $(n-1)[1_A] = 0$ in $K_0(A)$, where A is the C*-algebra of continuous sections of the field. We give a complete list of the Kirchberg algebras D satisfying the UCT and having finitely generated K-theory groups for which every unital separable continuous field over X with fibers isomorphic to D is automatically locally trivial or trivial. In a more general context, we show that a separable unital continuous field over X with fibers isomorphic to a KK-semiprojective Kirchberg C*-algebra is trivial if and only if it satisfies a K-theoretical Fell type condition.

Contents

1. Introduction 1
2. $C(X)$-algebras 4
3. Semiprojectivity 8
4. Approximation of $C(X)$-algebras 13
5. Representing $C(X)$-algebras as inductive limits 18
6. When is a fibered product locally trivial 20
7. When is a $C(X)$-algebra locally trivial 23
References 30

1. Introduction

Gelfand’s characterization of commutative C*-algebras has suggested the problem of representing non-commutative C*-algebras as sections of bundles. By a result of Fell [15], if the primitive spectrum X of a separable C*-algebra A is Hausdorff, then A is isomorphic to the C*-algebra of continuous sections vanishing at infinity of a continuous field of simple C*-algebras over X. In particular A is a continuous $C(X)$-algebra in the sense of Kasparov [18]. This description is very

The author was partially supported by NSF grant #DMS-0500693.
satisfactory, since as explained in [4], the continuous fields of C*-algebras are in natural correspondence with the bundles of C*-algebras in the sense of topology. Nevertheless, only a tiny fraction of the continuous fields of C*-algebras correspond to locally trivial bundles.

In this paper we prove automatic and conditional local/global trivialization results for continuous fields of Kirchberg algebras. By a Kirchberg algebra we mean a purely infinite simple nuclear separable C*-algebra [24]. Notable examples include the simple Cuntz-Krieger algebras [5]. The following theorem illustrates our results.

Theorem 1.1. A separable unital C(X)-algebra A over a finite dimensional compact Hausdorff space X all of whose fibers are isomorphic to the same Cuntz algebra O_n, n \in \{2, 3, \ldots, \infty\}, is locally trivial. If n = 2 or n = \infty, then A \cong C(X) \otimes O_n. If 3 \leq n < \infty, then A is isomorphic to C(X) \otimes O_n if and only if \((n - 1)[1_A] = 0 \text{ in } K_0(A)\).

The case X = [0, 1] of Theorem 1.1 was proved in a joint paper with G. Elliott [10].

We parametrize the homotopy classes

\[[X, \text{Aut}(O_n)] \cong \begin{cases} K_1(C(X) \otimes O_n) & \text{if } 3 \leq n < \infty, \\ \{e\} & \text{if } n = 2, \infty, \end{cases} \]

(see Theorem 23) and hence classify the unital separable C(SX)-algebras A with fiber O_n over the suspension SX of a finite dimensional metrizable Hausdorff space X.

To put our results in perspective, let us recall that none of the general basic properties of a continuous field implies any kind of local triviality. An example of a continuous field of Kirchberg algebras over [0, 1] which is not locally trivial at any point even though all of its fibers are mutually isomorphic is exhibited in [10] Ex. 8.4. Examples of nonexact continuous fields with similar properties were found by S. Wassermann [37].

A separable C*-algebra D is KK-semiprojective if the functor KK(D, -) is continuous, see Sec. 5. The class of KK-semiprojective C*-algebras includes the nuclear semiprojective C*-algebras and also the C*-algebras which satisfy the Universal Coefficient Theorem in KK-theory (abbreviated UCT [31]) and whose K-theory groups are finitely generated. It is very interesting that the only obstruction to local or global triviality for a continuous field of Kirchberg algebras is of purely K-theoretical nature.

Theorem 1.2. Let A be a separable C*-algebra whose primitive spectrum X is compact Hausdorff and of finite dimension. Suppose that each primitive quotient A(x) of A is nuclear, purely infinite and stable. Then A is isomorphic to C(X) \otimes D for some KK-semiprojective stable Kirchberg algebra D if and only if there is \(\sigma \in KK(D, A)\) such that \(\sigma_x \in KK(D, A(x))^{-1}\) for all \(x \in X\). For any such \(\sigma\) there is an isomorphism of C(X)-algebras \(\Phi : C(X) \otimes D \to A\) such that \(KK(\Phi|_D) = \sigma\).

We have an entirely similar result covering the unital case: Theorem 28. The required existence of \(\sigma\) is a KK-theoretical analog of the classical condition of Fell that appears in the trivialization theorem of Dixmier and Douady [12] of continuous fields with fibers isomorphic to the compact operators. An important feature of our condition is that it is a priori much weaker than the condition that A is KK_{C(X)}-equivalent to C(X) \otimes D. In particular, we do not need to worry at all about the potentially hard issue of constructing elements in KK_{C(X)}(A, C(X) \otimes D). To illustrate this point, let us note that it is almost trivial to verify that the local existence of \(\sigma\) is automatic
for unital $C(X)$-algebras with fiber O_n and hence to derive Theorem 1.1. A C^*-algebra D has the automatic local triviality property if any separable $C(X)$-algebra over a finite dimensional compact Hausdorff space X all of whose fibers are isomorphic to D is locally trivial. A unital C^*-algebra D has the automatic local triviality property in the unital sense if any separable unital $C(X)$-algebra over a finite dimensional compact Hausdorff space X all of whose fibers are isomorphic to D is locally trivial. The automatic triviality property is defined similarly.

Theorem 1.3. (Automatic triviality) A separable continuous $C(X)$-algebra over a finite dimensional compact Hausdorff space X all of whose fibers are isomorphic to $O_2 \otimes K$ is isomorphic to $C(X) \otimes O_2 \otimes K$. The C^*-algebra $O_2 \otimes K$ is the only Kirchberg algebra satisfying the automatic local triviality property and hence the automatic triviality property.

Theorem 1.4. (Automatic local triviality in the unital sense) A unital KK-semiprojective Kirchberg algebra D has the automatic local triviality property in the unital sense if and only if all unital $*$-endomorphisms of D are KK-equivalences. In that case, if A is a separable unital $C(X)$-algebra over a finite dimensional compact Hausdorff space X all of whose fibers are isomorphic to D, then $A \cong C(X) \otimes D$ if and only if there is $\sigma \in KK(D, A)$ such that the induced homomorphism $K_0(\sigma) : K_0(D) \to K_0(A)$ maps $[1_D]$ to $[1_A]$.

It is natural to ask if there are other unital Kirchberg algebras besides the Cuntz algebras which have the automatic local triviality property in the unital sense. Consider the following list \mathcal{G} of pointed abelian groups:

(a) $(\{0\}, 0)$;
(b) (\mathbb{Z}, k) with $k > 0$;
(c) $(\mathbb{Z}/p^{s_1} \oplus \cdots \oplus \mathbb{Z}/p^{s_n}, p^{1} \oplus \cdots \oplus p^{n})$ where p is a prime, $n \geq 1$, $0 \leq s_i < e_i$ for $1 \leq i \leq n$ and $0 < s_{i+1} - s_i < e_{i+1} - e_i$ for $1 \leq i < n$. If $n = 1$ then $1 \leq e_i \leq \cdots \leq e_n$ are given and then there exists integers s_1, \ldots, s_n satisfying the conditions above if and only if $e_{i+1} - e_i > 2$ for each $1 \leq i \leq n$. If that is the case one can choose $s_i = i - 1$ for $1 \leq i \leq n$.

(d) $(G(p_1) \oplus \cdots \oplus G(p_m), g_1 \oplus \cdots \oplus g_m)$ where p_1, \ldots, p_m are distinct primes and each $(G(p_j), g_j)$ is a pointed group as in (c).

(e) $(\mathbb{Z} \oplus G(p_1) \oplus \cdots \oplus G(p_m), k \oplus g_1 \oplus \cdots \oplus g_m)$ where $(G(p_j), g_j)$ are as in (d). Moreover we require that $k > 0$ is divisible by $p_1^{s_{n(j)}+1} \cdots p_m^{s_{n(j)}+1}$ where $s_{n(j)}$ is defined as in (c) corresponding to the prime p_j.

Theorem 1.5. (Automatic local triviality in the unital sense – the UCT case) Let D be a unital Kirchberg algebra which satisfies the UCT and has finitely generated K-theory groups. (i) D has the automatic triviality property in the unital sense if and only if D is isomorphic to either O_2 or O_∞. (ii) D has the automatic local triviality property in the unital sense if and only if $K_1(D) = 0$ and $(K_0(D), [1_D])$ is isomorphic to one of the pointed groups from the list \mathcal{G}. (iii) If D is as in (ii), then a separable unital $C(X)$-algebra A over a finite dimensional compact Hausdorff space X all of whose fibers are isomorphic to D is trivial if and only if there exists a homomorphism of groups $K_0(D) \to K_0(A)$ which maps $[1_D]$ to $[1_A]$.

We use semiprojectivity (in various flavors) to approximate and represent continuous $C(X)$-algebras as inductive limits of fibered products of n locally trivial $C(X)$-subalgebras where $n \leq \dim(X) < \infty$. This clarifies the local structure of many $C(X)$-algebras (see Theorem 1.2 and...
gives a new understanding of the K-theory of separable continuous $C(X)$-algebras with arbitrary nuclear fibers.

A remarkable isomorphism result for separable nuclear strongly purely infinite stable C*-algebras was announced (with an outline of the proof) by Kirchberg in [20]: two such C*-algebras A and B with the same primitive spectrum X are isomorphic if and only if they are $KK_{C(X)}$-equivalent. This is always the case after tensoring with O_2. However the problem of recognizing when A and B are $KK_{C(X)}$-equivalent is open even for very simple spaces X such as the unit interval or non-Hausdorff spaces with more than two points.

The proof of Theorem 1.6 (one of our main results) generalizes and refines a technique that was pioneered for fields over zero dimensional spaces in joint work with Pasnicu [11] and for fields over non-Hausdorff spaces with more than two points.

The author is grateful to E. Blanchard, L. G. Brown and N. C. Phillips for useful discussions and comments.

2. $C(X)$-algebras

Let X be a locally compact Hausdorff space. A $C(X)$-algebra is a C*-algebra A endowed with a $*$-homomorphism θ from $C_0(X)$ to the center $ZM(A)$ of the multiplier algebra $M(A)$ of A such that $C_0(X)A$ is dense in A; see [18], [3]. We write fa rather than $\theta(f)a$ for $f \in C_0(X)$ and $a \in A$. If $Y \subseteq X$ is a closed set, we let $C_0(X,Y)$ denote the ideal of $C_0(X)$ consisting of functions vanishing on Y. Then $C_0(X,Y)A$ is a closed two-sided ideal of A (by Cohen factorization). The quotient of A by this ideal is a $C(X)$-algebra denoted by $A(Y)$ and is called the restriction of $A = A(X)$ to Y. The quotient map is denoted by $\pi_Y : A(X) \rightarrow A(Y)$. If Z is a closed subset of Y we have a natural restriction map $\pi_Z^Y : A(Y) \rightarrow A(Z)$ and $\pi_Z = \pi_Z^Y \circ \pi_Y$. If Y reduces to a point x, we write $A(x)$ for $A(\{x\})$ and π_x for $\pi(\{x\})$. The C*-algebra $A(x)$ is called the fiber of A at x. The image $\pi_x(a) \in A(x)$ of $a \in A$ is denoted by $a(x)$. A morphism of $C(X)$-algebras $\eta : A \rightarrow B$ induces a morphism $\eta_Y : A(Y) \rightarrow B(Y)$. If $A(x) \neq 0$ for x in a dense subset of X, then θ is injective. If X is compact, then $\theta(1) = 1_{M(A)}$. Let A be a C*-algebra, $a \in A$ and $\mathcal{F}, \mathcal{G} \subseteq A$. Throughout the paper we will assume that X is a compact Hausdorff space unless stated otherwise. If $\varepsilon > 0$, we write $a \in_{\varepsilon} \mathcal{F}$ if there is $b \in \mathcal{F}$ such that $\|a - b\| < \varepsilon$. Similarly, we write $\mathcal{F} \subseteq_{\varepsilon} \mathcal{G}$ if $a \in_{\varepsilon} \mathcal{G}$ for every $a \in \mathcal{F}$.

The following lemma collects some basic properties of $C(X)$-algebras.

Lemma 2.1. Let A be a $C(X)$-algebra and let $B \subseteq A$ be a $C(X)$-subalgebra. Let $\alpha \in A$ and let Y be a closed subset of X.

(i) The map $x \mapsto \|\pi_x(x)\|$ is upper semi-continuous.

(ii) $\|\pi_Y(a)\| = \max\{\|\pi_x(a)\| : x \in Y\}$

(iii) If $a(x) \in \pi_x(B)$ for all $x \in X$, then $a \in B$.

(iv) If $\delta > 0$ and $a(x) \in_{\delta} \pi_x(B)$ for all $x \in X$, then $a \in_{\delta} B$.

(v) The restriction of $\pi_x : A \rightarrow A(x)$ to B induces an isomorphism $B(x) \cong \pi_x(B)$ for all $x \in X$.

Proof. (i), (ii) are proved in [3] and (iii) follows from (iv). (iv): By assumption, for each \(x \in X \), there is \(b_x \in B \) such that \(\| \pi_x(a - b_x) \| < \delta \). Using (i) and (ii), we find a closed neighborhood \(U_x \) of \(x \) such that \(\| \pi_x(a - b_x) \| < \delta \). Since \(X \) is compact, there is a finite subcover \(\{ U_{x_i} \} \). Let \((\alpha_i) \) be a partition of unity subordinated to this cover. Setting \(b = \sum_i \alpha_i b_{x_i} \in B \), one checks immediately that \(\| \pi_x(a - b) \| \leq \sum_i \alpha_i \| \pi_x(a - b_{x_i}) \| < \delta \), for all \(x \in X \). Thus \(\| a - b \| < \delta \) by (ii). (v): If \(\epsilon : B \to A \) is the inclusion map, then \(\pi_x(B) \) coincides with the image of \(\epsilon_{\times} : B/C(X,x)B \to A/C(X,x)A \). Thus it suffices to check that \(\epsilon_{\times} \) is injective. If \(\epsilon_{\times}(b + C(X,x)B) = \pi_x(b) = 0 \) for some \(b \in B \), then \(b = fa \) for some \(f \in C(X,x) \) and some \(a \in A \). If \((f_{x}) \) is an approximate unit of \(C(X,x) \), then \(b = \lim_{n} f_{x}a = \lim_{n} f_{x}b \) and hence \(b \in C(X,x)B \). \(\square \)

A \(C(X) \)-algebra such that the map \(x \mapsto \| a(x) \| \) is continuous for all \(a \in A \) is called a continuous \(C(X) \)-algebra or a \(C^* \)-bundle \([3], [23], [4]\). A \(C^* \)-algebra \(A \) is a continuous \(C(X) \)-algebra if and only if \(A \) is the \(C^* \)-algebra of continuous sections of a continuous field of \(C^* \)-algebras over \(X \) in the sense of \([12\text{, Def. 10.3.1}]\), (see \([3], [4], [27]\)).

Lemma 2.2. Let \(A \) be a separable continuous \(C(X) \)-algebra over a locally compact Hausdorff space \(X \). If all the fibers of \(A \) are nonzero, then \(X \) has a countable basis of open sets. Thus the compact subspaces of \(X \) are metrizable.

Proof. Since \(A \) is separable, its primitive spectrum \(\text{Prim}(A) \) has a countable basis of open sets by \([12\text{, 3.3.4}]\). The continuous map \(\eta : \text{Prim}(A) \to X \) (induced by \(\theta : C_{0}(X) \to ZM(A) \cong C_{b}(\text{Prim}(A)) \)) is open since the \(C(X) \)-algebra \(A \) is continuous and surjective since \(A(x) \neq 0 \) for all \(x \in X \) (see \([3\text{, p. 388}]\) and \([27\text{, Prop. 2.1, Thm. 2.3}]\)). \(\square \)

Lemma 2.3. Let \(X \) be a compact metrizable space. A \(C(X) \)-algebra \(A \) all of whose fibers are nonzero and simple is continuous if and only if there is \(e \in A \) such that \(\| e(x) \| \geq 1 \) for all \(x \in X \).

Proof. By Lemma 2.2(i) it suffices to prove that \(\liminf_{n \to \infty} \| a(x_n) \| \geq \| a(x_0) \| \) for any \(a \in A \) and any sequence \((x_n) \) converging to \(x_0 \) in \(X \). Set \(D = A(x_0) \) and let \(e \) be as in the statement. Let \(\psi : D \to A \) be a set-theoretical lifting of id\(_D\) such that \(\| \psi(d) \| = \| d \| \) for all \(d \in D \). Then \(\lim_{n \to \infty} \| \pi_x \psi(a(x_0)) - a(x_0) \| = 0 \) for all \(a \in A \), by Lemma 2.1(i). By applying this to \(e \), since \(\| e(x_n) \| \geq 1 \), we see that \(\lim_{n \to \infty} \| \pi_x \psi(e(x_0)) \| \geq 1 \). Since \(D \) is a simple \(C^* \)-algebra, if \(\varphi_n : D \to B_n \) is a sequence of contractive maps such that \(\lim_{n \to \infty} \| \varphi_n(\lambda c + d) - \lambda \varphi_n(c) - \varphi_n(d) \| = 0 \), \(\lim_{n \to \infty} \| \varphi_n(cd) - \varphi_n(c)\varphi_n(d) \| = 0 \), \(\lim_{n \to \infty} \| \varphi_n(c^*) - \varphi_n(c)^* \| = 0 \), for all \(c, d \in D, \lambda \in \mathbb{C}, \) and \(\lim_{n \to \infty} \| \varphi_n(c) \| > 0 \) for some \(c \in D \), then \(\lim_{n \to \infty} \| \varphi_n(c) \| = \| c \| \) for all \(c \in D \). In particular this observation applies to \(\varphi_n = \pi_x \psi \) by Lemma 2.1(i). Therefore

\[
\liminf_{n \to \infty} \| a(x_n) \| \geq \liminf_{n \to \infty} \| \pi_x \psi(a(x_0)) - \pi_x \psi(a(x_0)) \| = \| a(x_0) \| .
\]

Conversely, if \(A \) is continuous, take \(e \) to be a large multiple of some full element of \(A \). \(\square \)

Let \(\eta : B \to A \) and \(\psi : E \to A \) be *-homomorphisms. The pullback of these maps is

\[
B \oplus_{\eta, \psi} E = \{ (b, e) \in B \oplus E : \eta(b) = \psi(e) \}.
\]

We are going to use pullbacks in the context of \(C(X) \)-algebras. Let \(X \) be a compact space and let \(Y, Z \) be closed subsets of \(X \) such that \(Y = Y \cup Z \). The following result is proved in \([12\text{, Prop. 10.1.13}]\) for continuous \(C(X) \)-algebras.

CONTINUOUS FIELDS OF C*-ALGEBRAS OVER FINITE DIMENSIONAL SPACES 5
Lemma 2.4. If A is a $C(X)$-algebra, then A is isomorphic to $A(Y) \oplus_{\pi_Y} A(Z)$, the pullback of the restriction maps $\pi_{Y \cap Z}^Y : A(Y) \to A(Y \cap Z)$ and $\pi_{Y \cap Z}^Z : A(Z) \to A(Y \cap Z)$.

Proof. By the universal property of pullbacks, the maps π_Y and π_Z induce a map $\eta : A \to A(Y) \oplus_{\pi_Y} A(Z)$, $\eta(a) = (\pi_Y(a), \pi_Z(a))$, which is injective by Lemma 2.1(ii). Thus it suffices to show that the range of η is dense. Let $b, c \in A$ be such that $\pi_{Y \cap Z}(b - c) = 0$ and let $\varepsilon > 0$. We shall find $a \in A$ such that $\|\eta(a) - (\pi_Y(b), \pi_Z(c))\| < \varepsilon$. By Lemma 2.1(i), there is an open neighborhood V of $Y \cap Z$ such that $\|\pi_x(b - c)\| < \varepsilon$ for all $x \in V$. Let $\{\lambda, \mu\}$ be a partition of unity on X subordinated to the open cover $\{Y \cup V, Z \cup V\}$. Then $a = \lambda b + \mu c$ is an element of A which has the desired property.

Let $B \subset A(Y)$ and $E \subset A(Z)$ be $C(X)$-subalgebras such that $\pi_{Y \cap Z}^Y(E) \subseteq \pi_{Y \cap Z}^Z(B)$. As an immediate consequence of Lemma 2.4, we see that the pullback $B \oplus_{\pi_Y \cap Z, \pi_Z} E$ is isomorphic to the $C(X)$-subalgebra $B \oplus_{Y \cap Z} E$ of A defined as $B \oplus_{Y \cap Z} E = \{a \in A : \pi_Y(a) \in B, \pi_Z(a) \in E\}$.

Lemma 2.5. The fibers of $B \oplus_{Y \cap Z} E$ are given by

$$\pi_x(B \oplus_{Y \cap Z} E) = \begin{cases} \pi_x(B), & \text{if } x \in X \setminus Z, \\ \pi_x(E), & \text{if } x \in Z, \end{cases}$$

and there is an exact sequence of C^*-algebras

$$0 \to \{b \in B : \pi_{Y \cap Z}(b) = 0\} \to B \oplus_{Y \cap Z} E \overset{\pi_Z}{\longrightarrow} E \to 0$$

Proof. Let $x \in X \setminus Z$. The inclusion $\pi_x(B \oplus_{Y \cap Z} E) \subseteq \pi_x(B)$ is obvious by definition. Given $b \in B$, let us choose $f \in C(X)$ vanishing on Z and such that $f(x) = 1$. Then $a = (fb, 0)$ is an element of A by Lemma 2.4. Moreover $a \in B \oplus_{Y \cap Z} E$ and $\pi_x(a) = \pi_x(b)$. We have $\pi_Z(B \oplus_{Y \cap Z} E) \subset E$, by definition. Conversely, given $e \in E$, let us observe that $\pi_{Y \cap Z}^Y(e) \in \pi_{Y \cap Z}^Y(B)$ (by assumption) and hence $\pi_{Y \cap Z}(e) = \pi_{Y \cap Z}(b)$ for some $b \in B$. Then $a = (b, e)$ is an element of A by Lemma 2.4 and $\pi_Z(a) = e$. This completes the proof for the first part of the lemma and also it shows that the map π_Z from the sequence (1) is surjective. Its kernel is identified using Lemma 2.1(iii).

Let X, Y, Z and A be as above. Let $\eta : B \to A(Y)$ be a $C(Y)$-linear $*$-monomorphism and let $\psi : E \to A(Z)$ be a $C(Z)$-linear $*$-monomorphism. Assume that

$$\pi_{Y \cap Z}^Y(\psi(E)) \subseteq \pi_{Y \cap Z}^Z(\eta(B)).$$

This gives a map $\gamma = \eta_{Y \cap Z}^{-1} \psi_{Y \cap Z} : E(Y \cap Z) \to B(Y \cap Z)$. To simplify notation we let π stand for both $\pi_{Y \cap Z}^Y$ and $\pi_{Y \cap Z}^Z$ in the following lemma.

Lemma 2.6. (a) There are isomorphisms of $C(X)$-algebras

$$B \oplus_{\pi, \eta, \psi} E \cong B \oplus_{\pi_Y, \pi_Z} E \cong \eta(B) \oplus_{Y \cap Z} \psi(E),$$

where the second isomorphism is given by the map $\chi : B \oplus_{\pi_Y, \pi_Z} E \to A$ induced by the pair (η, ψ). Its components χ_x can be identified with ψ_x for $x \in Z$ and with π_x for $x \in X \setminus Z$.

(b) Condition (2) is equivalent to $\psi(E) \subseteq \pi_Z(A \oplus_{Y \cap Z} \eta(B))$.

(c) If F is a finite subset of A such that $\pi_Y(F) \subset \eta(B)$ and $\pi_Z(F) \subset \psi(E)$, then $\pi_E(\eta(B) \oplus_{Y \cap Z} \psi(E)) = \chi(B \oplus_{\pi_Y, \pi_Z} E)$.

Proof. This is an immediate corollary of Lemmas 2.1, 2.4, 2.5. For illustration, let us verify (c). By assumption \(\pi_x(F) \subset \pi_x(\eta) \) for all \(x \in X \setminus Z \) and \(\pi_x(F) \subset \psi^\ast(\eta) \) for all \(z \in Z \). We deduce from Lemma 2.5 that \(\pi_x(F) \subset \pi_x(\eta(B) \oplus_{Y \cap Z} \psi(E)) \) for all \(x \in X \). Therefore \(F \subset \eta(B) \oplus_{Y \cap Z} \psi(E) \) by Lemma 2.1(iv). \(\square \)

Definition 2.7. Let \(C \) be a class of C*-algebras. A \(C(Z) \)-algebra \(E \) is called \(C \)-elementary if there is a finite partition of \(Z \) into closed subsets \(Z_1, \ldots, Z_r \) (\(r \geq 1 \)) and there exist C*-algebras \(D_1, \ldots, D_r \) in \(C \) such that \(E \cong \bigoplus_{i=1}^r C(Z_i) \otimes D_i \). The notion of category of a \(C(X) \)-algebra with respect to a class \(C \) is defined inductively: if \(A \) is \(C \)-elementary then \(\text{cat}_C(A) = 0 \); \(\text{cat}_C(A) \leq n \) if there are closed subsets \(Y \) and \(Z \) of \(X \) with \(Y = Z \) and there exist \(C(Y) \)-algebra \(B \) such that \(\text{cat}_C(B) \leq n - 1 \), a \(C \)-elementary \(C(Z) \)-algebra \(E \) and an \(\ast \)-monomorphism of \(C(Y \cap Z) \)-algebras \(\gamma : E(Y \cap Z) \to B(Y \cap Z) \) such that \(A \) is isomorphic to \(B \oplus_{\pi, \gamma} E \) where \(\pi \) is isomorphic to \(\pi(Y \cap Z) \).

By definition \(\text{cat}_C(A) = n \) if \(n \) is the smallest number with the property that \(\text{cat}_C(A) \leq n \). If no such \(n \) exists, then \(\text{cat}_C(A) = \infty \).

Definition 2.8. Let \(C \) be a class of C*-algebras and let \(A \) be a \(C(X) \)-algebra. An \(n \)-fibered \(C \)-monomorphism \((\psi_0, \ldots, \psi_n) \) into \(A \) consists of \((n + 1) \ast \)-monomorphisms of \(C(X) \)-algebras \(\psi_i : E_i \to A(Y_i) \), where \(Y_0, \ldots, Y_n \) is a closed cover of \(X \), each \(E_i \) is a \(C \)-elementary \(C(Y_i) \)-algebra and \(\pi \) in Definition 2.7 consists of stable Kirchberg algebras. I f \(\text{cat}_C(B) \leq n - 1 \), a \(C \)-elementary \(C(Z) \)-algebra \(E \) and an \(\ast \)-monomorphism of \(C(Y \cap Z) \)-algebras \(\gamma : E(Y \cap Z) \to B(Y \cap Z) \) such that \(A \) is isomorphic to \(B \oplus_{\pi, \gamma} E \).

Given an \(n \)-fibered morphism into \(A \) we have an associated continuous \(C(X) \)-algebra defined as the fibered product (or pullback) of the \(\ast \)-monomorphisms \(\psi_i \):

\[
A(\psi_0, \ldots, \psi_n) = \{(d_0, \ldots, d_n) : d_i \in E_i, \pi_{Y_0 \cap Y_i} \psi_i(d_i) = \pi_{Y_0 \cap Y_j} \psi_j(d_j) \text{ for all } i, j\}
\]

and an induced \(C(X) \)-monomorphism (defined by using Lemma 2.4)

\[
\eta = \eta(\psi_0, \ldots, \psi_n) : A(\psi_0, \ldots, \psi_n) \to A \subset \bigoplus_{i=0}^n A(Y_i),
\]

\[
\eta(d_0, \ldots, d_n) = (\psi_0(d_0), \ldots, \psi_n(d_n)).
\]

There are natural coordinate maps \(p_i : A(\psi_0, \ldots, \psi_n) \to E_i, p_i(d_0, \ldots, d_n) = d_i \). Let us set \(X_k = Y_k \cup \cdots \cup Y_n \). Then (\(\psi_k, \ldots, \psi_n \)) is an \((n - k) \)-fibered \(C \)-monomorphism into \(A(X_k) \). Let \(\eta_k : A(X_k)(\psi_k, \ldots, \psi_n) \to A(X_k) \) be the induced map and set \(B_k = A(X_k)(\psi_k, \ldots, \psi_n) \). Let us note that \(B_0 = A(\psi_0, \ldots, \psi_n) \) and that there are natural \(C(X_{k-1}) \)-isomorphisms

\[
B_{k-1} \cong B_k \oplus_{\pi \psi_k} E_{k-1} \cong B_k \oplus_{\pi, \gamma_k} E_{k-1}.
\]

where \(\pi \) stands for \(\pi_{X_k \cap Y_{k-1}} \) and \(\gamma_k : E_{k-1}(X_k \cap Y_{k-1}) \to B_k(X_k \cap Y_{k-1}) \) is defined by \((\gamma_k)_x = (\eta_k)^{-1}(\psi_k)_x \), for all \(x \in X_k \cap Y_{k-1} \). In particular, this decomposition shows that \(\text{cat}_C(A(\psi_0, \ldots, \psi_n)) \leq n \).

Lemma 2.9. Suppose that the class \(C \) from Definition 2.7 consists of stable Kirchberg algebras. If \(A \) is a \(C(X) \)-algebra over a compact metrizable space \(X \) such that \(\text{cat}_C(A) < \infty \), then \(A \) contains a full properly infinite projection and \(A \cong A \otimes O_\infty \otimes K \).
Proof. We prove this by induction on \(n = \text{cat}_C(A) \). The case \(n = 0 \) is immediate since \(D \cong D \otimes O_\infty \) for any Kirchberg algebra \(D \) \cite{19}. Let \(A = B \otimes_{\pi, \gamma} E \) where \(B, E \) and \(\gamma \) are as in Definition 2.7 with \(\text{cat}_C(B) = n - 1 \) and \(\text{cat}_C(E) = 0 \). Let us consider the exact sequence \(0 \to J \to A \to E \to 0 \), where \(J = \{ b \in B : \pi_{Y \cap Z}(b) = 0 \} \). Since \(J \) is an ideal of \(B \cong B \otimes O_\infty \otimes K \), \(J \) absorbs \(O_\infty \otimes K \) by \cite{22} Prop. 8.5. Since both \(E \) and \(J \) are stable and purely infinite, it follows that \(A \) is stable by \cite{30} Prop. 6.12 and purely infinite by \cite{22} Prop. 3.5. Since \(A \) has Hausdorff primitive spectrum, \(A \) is strongly purely infinite by \cite{3} Thm. 5.8]. It follows that \(A \cong A \otimes O_\infty \) by \cite{22} Thm. 9.1]. Finally \(A \) contains a full properly infinite projection since there is a full embedding of \(O_2 \) into \(A \) by \cite{3} Prop. 5.6]. \(\square \)

3. Semiprojectivity

In this section we study the notion of \(KK \)-semiprojectivity. The main result is Theorem 3.12. Let \(A \) and \(B \) be \(C^* \)-algebras. Two \(* \)-homomorphisms \(\varphi, \psi : A \to B \) are approximately unitarily equivalent, written \(\varphi \approx_u \psi \), if there is a sequence of unitaries \((u_n) \) in the \(C^* \)-algebra \(B^+ = B + C1 \) obtained by adjoining a unit to \(B \), such that \(\lim_{n \to \infty} \| u_n\varphi(a)u_n^* - \psi(a) \| = 0 \) for all \(a \in A \). We say that \(\varphi \) and \(\psi \) are asymptotically unitarily equivalent, written \(\varphi \approx_{au} \psi \), if there is a norm continuous unitary valued map \(t \mapsto u_t \in B^+ \), \(t \in [0,1) \), such that \(\lim_{t \to 1} \| u_t\varphi(a)u_t^* - \psi(a) \| = 0 \) for all \(a \in A \). A \(* \)-homomorphism \(\varphi : D \to A \) is full if \(\varphi(d) \) is not contained in any proper two-sided closed ideal of \(A \) if \(d \in D \) is nonzero.

We shall use several times Kirchberg’s Theorem \cite{28} Thm. 8.3.3 and the following theorem of Phillips \cite{25}.

Theorem 3.1. Let \(A \) and \(B \) be separable \(C^* \)-algebras such that \(A \) is simple and nuclear, \(B \cong B \otimes O_\infty \), and there exist full projections \(p \in A \) and \(q \in B \). For any \(\sigma \in KK(A,B) \) there is a full \(* \)-homomorphism \(\varphi : A \to B \) such that \(KK(\varphi) = \sigma \). If \(K_0(\sigma)[p] = [q] \), then \(\varphi(p) = q \). If \(\psi : A \to B \) is another \(* \)-homomorphism such that \(KK(\psi) = KK(\varphi) \) and \(\psi(p) = q \), then \(\varphi \approx_{au} \psi \) via a path of unitaries \(t \mapsto u_t \in U(qBq) \).

Theorem 3.1 does not appear in this form in \cite{28} but it is an immediate consequence of \cite{28} Thm. 4.1.1. Since \(pAp \otimes K \cong A \otimes K \) and \(qBq \otimes K \cong B \otimes K \) by \cite{3}, and \(qBq \otimes O_\infty \cong qBq \) by \cite{22} Prop. 8.5, it suffices to discuss the case when \(p \) and \(q \) are the units of \(A \) and \(B \). If \(\sigma \) is given, \cite{28} Thm. 4.1.1 yields a full \(* \)-homomorphism \(\varphi : A \to B \otimes K \) such that \(KK(\varphi) = \sigma \). Let \(e \in K \) be a rank-one projection and suppose that \(\varphi(1_A) = [1_B \otimes e] \) in \(K_0(B) \). Since both \(\varphi(1_A) \) and \(1_B \otimes e \) are full projections and \(B \cong B \otimes O_\infty \), it follows by \cite{28} Lemma 2.1.8] that \(u\varphi(1_A)u^* = 1_B \otimes e \) for some unitary in \((B \otimes K)^+ \). Replacing \(u \) by \(u \varphi u^* \) we can arrange that \(KK(\varphi) = \sigma \) and \(\varphi \) is unital. For the second part of the theorem let us note that any unital \(* \)-homomorphism \(\varphi : A \to B \) is full and if two unital \(* \)-homomorphisms \(\varphi, \psi : A \to B \) are asymptotically unitarily equivalent when regarded as maps into \(B \otimes K \), then \(\varphi \approx_{au} \psi \) when regarded as maps into \(B \), by an argument from the proof of \cite{28} Thm. 4.1.4].

A separable nonzero \(C^* \)-algebra \(D \) is semiprojective \cite{11} if for any separable \(C^* \)-algebra \(A \) and any increasing sequence of two-sided closed ideals \((J_n) \) of \(A \) with \(J = \bigcup_n J_n \), the natural map \(\lim_n \text{Hom}(D, A/J_n) \to \text{Hom}(D, A/J) \) (induced by \(\pi_n : A/J_n \to A/J \)) is surjective. If we weaken this condition and require only that the above map has dense range, where \(\text{Hom}(D, A/J) \) is given the point-norm topology, then \(D \) is called weakly semiprojective \cite{14}. These definitions do not
Examples 3.2. (Weakly semiprojective C*-algebras) Any finite dimensional C*-algebra is semiprojective. A Kirchberg algebra D satisfying the UCT and having finitely generated K-theory groups is weakly semiprojective by work of Neubüser [29], H. Lin [24] and Spielberg [32]. This also follows from Theorem 3.12 and Proposition 3.14 below. If in addition $K_1(D)$ is torsion free, then D is semiprojective as proved by Spielberg [33] who extended the foundational work of Blackadar [1] and Szymanski [34].

The following generalizations of two results of Loring [25] are used in section 5, see [10].

Proposition 3.3. Let D be a separable semiprojective C*-algebra. For any finite set $\mathcal{F} \subset D$ and any $\varepsilon > 0$, there exist a finite set $\mathcal{G} \subset D$ and $\delta > 0$ with the following property. Let $\pi : A \to B$ be a surjective $*$-homomorphism, and let $\varphi : D \to B$ and $\gamma : D \to A$ be $*$-homomorphisms such that $\|\pi\gamma(d) - \varphi(d)\| < \delta$ for all $d \in \mathcal{G}$. Then there is a $*$-homomorphism $\psi : D \to A$ such that $\pi\psi = \varphi$ and $\|\gamma(c) - \psi(c)\| < \varepsilon$ for all $c \in \mathcal{F}$.

Proposition 3.4. Let D be a separable semiprojective C*-algebra. For any finite set $\mathcal{F} \subset D$ and any $\varepsilon > 0$, there exist a finite set $\mathcal{G} \subset D$ and $\delta > 0$ with the following property. For any two $*$-homomorphisms $\varphi, \psi : D \to B$ such that $\|\varphi(d) - \psi(d)\| < \delta$ for all $d \in \mathcal{G}$, there is a homotopy $\Phi \in \text{Hom}(D, C[0,1] \otimes B)$ such that $\Phi_0 = \varphi$ to $\Phi_1 = \psi$ and $\|\varphi(c) - \Phi(t)(c)\| < \varepsilon$ for all $c \in \mathcal{F}$ and $t \in [0,1]$.

Definition 3.5. A separable C*-algebra D is KK-stable if there is a finite set $\mathcal{G} \subset D$ and there is $\delta > 0$ with the property that for any two $*$-homomorphisms $\varphi, \psi : D \to A$ such that $\|\varphi(a) - \psi(a)\| < \delta$ for all $a \in \mathcal{G}$, one has $KK(\varphi) = KK(\psi)$.

Corollary 3.6. Any semiprojective C*-algebra is weakly semiprojective and KK-stable.

Proof. This follows from Proposition 3.3.

Proposition 3.7. Let D be a separable weakly semiprojective C*-algebra. For any finite set $\mathcal{F} \subset D$ and any $\varepsilon > 0$ there exist a finite set $\mathcal{G} \subset D$ and $\delta > 0$ such that for any C*-algebras $B \subset A$ and any $*$-homomorphism $\varphi : D \to A$ with $\varphi(\mathcal{G}) \subset B$, there is a $*$-homomorphism $\psi : D \to B$ such that $\|\varphi(c) - \psi(c)\| < \varepsilon$ for all $c \in \mathcal{F}$. If in addition D is KK-stable, then we can choose \mathcal{G} and δ such that we also have $KK(\varphi) = KK(\psi)$.

Proof. This follows from [14 Thms. 3.1, 4.6]. Since the result is essential to us we include a short proof. Fix \mathcal{F} and ε. Let (\mathcal{G}_n) be an increasing sequence of finite subsets of D whose union is dense in D. If the statement is not true, then there are sequences of C*-algebras $C_n \subset A_n$ and $*$-homomorphisms $\varphi_n : D \to A_n$ satisfying $\varphi_n(\mathcal{G}_n) \subset_{1/n} C_n$ and with the property that for any $n \geq 1$ there is no $*$-homomorphism $\psi_n : D \to C_n$ such that $\|\varphi_n(c) - \psi_n(c)\| < \varepsilon$ for all $c \in \mathcal{F}$. Set $B_i = \prod_{n \geq i} A_n$ and $E_i = \prod_{n \geq i} C_n \subset B_i$. If $\nu_i : B_i \to B_{i+1}$ is the natural projection, then $\nu_i(E_i) = E_{i+1}$. Let us observe that if we define $\Phi_i : D \to B_i$ by $\Phi_i(d) = (\varphi_i(d), \varphi_{i+1}(d), \ldots)$, then the image of $\Phi = \lim_{i} \Phi_i : D \to \lim_{i} (B_i, \nu_i)$ is contained in $\lim_{i} (E_i, \nu_i)$. Since D is weakly semiprojective,
there is \(i \) and a \(*\)-homomorphism \(\Psi_i : D \to E_i \) of the form \(\Psi_i(d) = (\psi_i(d), \psi_{i+1}(d), \ldots) \) such that \(\|\Phi_i(c) - \Psi_i(c)\| < \varepsilon \) for all \(c \in F \). Therefore \(\|\varphi_i(c) - \psi_i(c)\| < \varepsilon \) for all \(c \in F \) which gives a contradiction. \(\square \)

It is useful to combine Propositions 3.7 and 3.3 in a single statement.

Proposition 3.8. Let \(D \) be a separable semiprojective C*-algebra. For any finite set \(F \subset D \) and any \(\varepsilon > 0 \), there exists a finite set \(G \subset D \) and \(\delta > 0 \) with the following property. Let \(\pi : A \to B \) be a surjective \(*\)-homomorphism which maps a C*-subalgebra \(A' \) of \(A \) onto a C*-subalgebra \(B' \) of \(B \). Let \(\varphi : D \to B' \) and \(\gamma : D \to A' \) be \(*\)-homomorphisms such that \(\gamma(G) \subset A' \) and \(\|\gamma(d) - \varphi(d)\| < \delta \) for all \(d \in G \). Then there is a \(*\)-homomorphism \(\psi : D \to A' \) such that \(\pi \psi = \varphi \) and \(\|\gamma(c) - \psi(c)\| < \varepsilon \) for all \(c \in F \).

Proof. Let \(G_L \) and \(\delta_L \) be given by Proposition 3.3 applied to the input data \(F \) and \(\varepsilon/2 \). We may assume that \(F \subset G_L \) and \(\varepsilon > \delta_L \). Next, let \(G_P \) and \(\delta_P \) be given by Proposition 3.7 applied to the input data \(G_L \) and \(\delta_L/2 \). We show now that \(G := G_L \cup G_P \) and \(\delta := \min\{\delta_P, \delta_L/2\} \) have the desired properties. We have \(\gamma(G_P) \subset A' \) since \(G_P \subset G \) and \(\delta \leq \delta_P \). By Proposition 3.7 there is a \(*\)-homomorphism \(\gamma' : D \to A' \) such that \(\|\gamma'(d) - \gamma(d)\| < \delta_L/2 \) for all \(d \in G_L \). Then, since \(G_L \subset G \) and \(\delta \leq \delta_L/2 \),

\[
\|\pi \gamma'(d) - \varphi(d)\| \leq \|\pi \gamma'(d) - \pi \gamma(d)\| + \|\pi \gamma(d) - \varphi(d)\| < \delta_L/2 + \delta \leq \delta_L
\]

for all \(d \in G_L \). Therefore we can invoke Proposition 3.3 to perturb \(\gamma' \) to a \(*\)-homomorphism \(\psi : D \to A' \) such that \(\pi \psi = \varphi \) and \(\|\gamma'(d) - \psi(d)\| < \varepsilon/2 \) for all \(d \in F \). Finally we observe that for \(d \in F \subset G_L \)

\[
\|\gamma(d) - \psi(d)\| \leq \|\gamma(d) - \gamma'(d)\| + \|\gamma'(d) - \psi(d)\| < \delta_L/2 + \varepsilon/2 < \varepsilon.
\]

\(\square \)

Definition 3.9. (a) A separable C*-algebra \(D \) is **KK-semiprojective** if for any separable C*-algebra \(A \) and any increasing sequence of two-sided closed ideals \((J_n) \) of \(A \) with \(J = \bigcup_n J_n \), the natural map \(\lim KK(D, A/J_n) \to KK(D, A/J) \) is surjective.

(b) We say that the functor \(KK(D, -) \) is **continuous** if for any inductive system \(B_1 \to B_2 \to \ldots \) of separable C*-algebras, the induced map \(\lim KK(D, B_n) \to KK(D, \lim B_n) \) is bijective.

Proposition 3.10. Any separable KK-semiprojective C*-algebra is KK-stable.

Proof. We shall prove the statement by contradiction. Let \(D \) be separable KK-semiprojective C*-algebra. Let \((G_n) \) be an increasing sequence of finite subsets of \(D \) whose union is dense in \(D \). If the statement is not true, then there are sequences of \(*\)-homomorphisms \(\varphi_n, \psi_n : D \to A_n \) such that \(\|\varphi_n(d) - \psi_n(d)\| < 1/n \) for all \(d \in G_n \) and yet \(KK(\varphi_n) \neq KK(\psi_n) \) for all \(n \geq 1 \). Set \(B_i \equiv \prod_{n \geq i} A_n \) and let \(\nu_i : B_i \to B_{i+1} \) be the natural projection. Let us define \(\Phi_i, \Psi_i : D \to B_i \) by \(\Phi_i(d) = (\varphi_1(d), \varphi_{i+1}(d), \ldots) \) and \(\Psi_i(d) = (\psi_1(d), \psi_{i+1}(d), \ldots) \), for all \(d \in D \). Let \(B_i' \) be the separable C*-subalgebra of \(B_i \) generated by the images of \(\Phi_i \) and \(\Psi_i \). Then \(\nu_i(B_i') = B_{i+1}' \) and one verifies immediately that \(\lim \Phi_i = \lim \Psi_i : D \to \lim (B_i', \nu_i) \). Since \(D \) is KK-semiprojective, we must have \(KK(\Phi_i) = KK(\Psi_i) \) for some \(i \) and hence \(KK(\varphi_n) = KK(\psi_n) \) for all \(n \geq i \). This gives a contradiction. \(\square \)
Proposition 3.11. A unital Kirchberg algebra D is KK-stable if and only if $D \otimes K$ is KK-stable. D is weakly semiprojective if and only if $D \otimes K$ is weakly semiprojective.

Proof. Since $KK(D, A) \cong KK(D, A \otimes K) \cong KK(D \otimes K, A \otimes K)$ the first part of the proposition is immediate. Suppose now that $D \otimes K$ is weakly semiprojective. Then D is weakly semiprojective as shown in the proof of [32, Thm. 2.2]. Conversely, assume that D is weakly semiprojective. It suffices to find $\alpha \in \text{Hom}(D \otimes K, D)$ and a sequence (β_n) in $\text{Hom}(D, D \otimes K)$ such that $\beta_n \alpha$ converges to $id_{D \otimes K}$ in the point-norm topology. Let s_i be the canonical generators of O_∞. If (e_{ij}) is a system of matrix units for K, then $\lambda(e_{ij}) = s_i s_j^*$ defines a $*$-homomorphism $K \rightarrow O_\infty$ such that $KK(\lambda) \in KK(K, O_\infty)^{-1}$. Therefore, by composing $id_D \otimes \lambda$ with some isomorphism $D \otimes O_\infty \cong D$ (given by [29, Thm. 7.6.6]) we obtain a $*$-monomorphism $\alpha : D \otimes K \rightarrow D$ which induces a KK-equivalence. Let $\beta : D \rightarrow D \otimes K$ be defined by $\beta(d) = d \otimes e_{11}$. Then $\beta \alpha \in \text{End}(D \otimes K)$ induces a KK-equivalence and hence after replacing β by $\theta \beta$ for some automorphism θ of $D \otimes K$, we may arrange that $KK(\beta \alpha) = KK(id_D)$. By Theorem 3.1, $\beta \alpha \approx_u id_{D \otimes K}$, so that there is a sequence of unitaries $u_n \in (D \otimes K)^+$ such that $u_n \beta \alpha (-) u_n^*$ converges to $id_{D \otimes K}$.

Theorem 3.12. For a separable C*-algebra D consider the following properties:

(i) D is KK-semiprojective.

(ii) The functor $KK(D, -)$ is continuous.

(iii) D is weakly semiprojective and KK-stable.

Then (i) \Leftrightarrow (ii). Moreover, (iii) \Rightarrow (i) if D is nuclear and (i) \Rightarrow (iii) if D is a Kirchberg algebra. Thus (i) \Leftrightarrow (ii) \Leftrightarrow (iii) for any Kirchberg algebra D.

Proof. The implication (ii) \Rightarrow (i) is obvious. (i) \Rightarrow (ii): Let $(B_n, \gamma_{n,m})$ be an inductive system with inductive limit B and let $\gamma_n : B_n \rightarrow B$ be the canonical maps. We have an induced map $\beta : \varinjlim KK(D, B_n) \rightarrow KK(D, B)$. First we show that β is surjective. The mapping telescope construction of L. G. Brown (as described in the proof of [1, Thm. 3.1]) produces an inductive system of C*-algebras $(T_n, \eta_{n,m})$ with inductive limit B such that each $\eta_{n,n+1}$ is surjective, and each canonical map $\eta_n : T_n \rightarrow B$ is homotopic to $\gamma_n \alpha_n$ for some $*$-homomorphism $\alpha_n : T_n \rightarrow B_n$. In particular $KK(\eta_n) = KK(\gamma_n)KK(\alpha_n)$. Let $x \in KK(D, B)$. By (i) there are n and $y \in KK(D, T_n)$ such that $KK(\eta_n)y = x$ and hence $KK(\gamma_n)KK(\alpha_n)y = x$. Thus $z = KK(\alpha_n)y \in KK(D, B_n)$ is a lifting of x. Let us show now that the map β is injective. Let x be an element in the kernel of the map $KK(D, B_n) \rightarrow KK(D, B)$. Consider the commutative diagram whose exact rows are portions of the Puppe sequence in KK-theory [2, Thm. 19.4.3] and with vertical maps induced by $\gamma_m : B_m \rightarrow B$, $m \geq n$.

$$
\begin{array}{ccc}
KK(D, C_{\gamma_n}) & \rightarrow & KK(D, B_n) \\
\downarrow & & \downarrow \\
KK(D, C_{\gamma_m}) & \rightarrow & KK(D, B_m)
\end{array}
$$

By exactness, x is the image of some element $y \in KK(D, C_{\gamma_m})$. Since $C_{\gamma_m} = \varinjlim C_{\gamma_{m,n}}$, the map $\varinjlim KK(D, C_{\gamma_{m,n}}) \rightarrow KK(D, C_{\gamma_m})$ is surjective by the first part of the proof. Therefore there is $m \geq n$ such that y lifts to some $z \in KK(D, C_{\gamma_m})$. The image of z in $KK(D, B_m)$ equals $KK(\gamma_m)x$ and vanishes by exactness of the bottom row.
(iii) ⇒ (i): Let A, (J_n) and J be as in Definition 3.9. Using the five-lemma and the split exact sequence $0 \to KK(D, A) \to KK(D, A^\ast) \to KK(D, \mathbb{C}) \to 0$, we reduce the proof to the case when A is unital. Let $x \in KK(D, A/J)$. Since the map $KK(D^+, A/J) \to KK(D, A/J)$ is surjective, x lifts to some element $x^+ \in KK(D^+, A/J)$. By [29, Thm. 8.3.3], since D^+ is nuclear, there is a $*$-homomorphism $\Phi : D^+ \to A/J \otimes \mathcal{O}_\infty \otimes K$ such that $KK(\Phi) = x^+$ and hence if set $\varphi = \Phi|_D$, then $KK(\varphi) = x$. Since D is weakly semiprojective, there are n and a $*$-homomorphism $\psi : D \to A/J_n \otimes \mathcal{O}_\infty \otimes K$ such that $\|\pi_n \psi(d) - \varphi(d)\| < \delta$ for all $d \in \mathcal{G}$, where \mathcal{G} and δ are as in the definition of KK-stability. Therefore $KK(\pi_n \psi) = KK(\varphi)$ and hence $KK(\varphi)$ is a lifting of x to $KK(D, A/J_n)$.

(i) ⇒ (iii): D is KK-stable by Proposition 3.10. It remains to show that D is weakly semi-projective. Since any nonunital Kirchberg algebra is isomorphic to the stabilization of a unital one (see [29, Prop. 4.1.3]) and since by Proposition 3.11 D is KK-semiprojective if and only if $D \otimes K$ is KK-semiprojective, we may assume that D is unital. Let A, (J_n), $\pi_{m,n} : A/J_m \to A/J_n (m \leq n)$ and $\pi_n : A/J_n \to A/J$ be as in the definition of weak semiprojectivity. By [1, Cor. 2.15], we may assume that A and the $*$-homomorphism $\varphi : D \to A$ (for which we want to construct an approximative lifting) are unital. In particular φ is injective since D is simple. Set $B = \varphi(D) < A/J$ and $B_n = \pi_n^{-1}(B) \subset A/J_n$. The corresponding maps $\pi_{m,n} : B_m \to B_n (m \leq n)$ and $\pi_n : B_n \to B$ are surjective and they induce an isomorphism $\lim\limits_{\to} (B_n, \pi_{n,n+1}) \cong B$.

Given $\varepsilon > 0$ and $\mathcal{F} \subset D$ (a finite set) we are going to produce an approximate lifting $\varphi_n : D \to B_n$ for φ. Since 1_B is a properly infinite projection, it follows by [1, Props. 2.18 and 2.23] that the unit 1_n of B_n is a properly infinite projection, for all sufficiently large n. Since D is KK-semiprojective, there exist m and an element $h \in KK(D, B_m)$ which lifts $KK(\varphi)$ such that $K_0(h)[1_D] = [1_m]$. By [29, Thm. 8.3.3], there is a full $*$-homomorphism $\eta : D \to B_m \otimes K$ such that $KK(\eta) = h$. By [29, Prop. 4.1.4], since both $\eta(1_D)$ and 1_m are full and properly infinite projections in $B_m \otimes K$, there is a partial isometry $w \in B_m \otimes K$ such that $w^*w = \eta(1_D)$ and $ww^* = 1_m$. Replacing η by $\eta(-)w^*$, we may assume that $\eta : D \to B_m$ is unital. Then $KK(\pi_m \eta) = KK(\pi_m)h = KK(\varphi)$. By Theorem 3.11 $\pi_m \eta \approx_{uh} \varphi$. Thus there is a unitary $u \in B$ such that $\|\pi_m \eta(d)u^* - \varphi(d)\| < \varepsilon$ for all $d \in \mathcal{F}$. Since $C(\mathbb{T})$ is semiprojective, there is $n \geq m$ such that u lifts to a unitary $u_n \in B_n$. Then $\varphi_n := u_n \pi_{m,n} \eta(-)u_n^*$ is a $*$-homomorphism from D to B_n such that $\|\pi_n \varphi_n(d) - \varphi(d)\| < \varepsilon$ for all $d \in \mathcal{F}$.

Corollary 3.13. Any separable nuclear semi-projective C^*-algebra is KK-semi-projective.

Proof. This is very similar to the proof of the implication (iii) ⇒ (i) of Theorem 3.12. Alternatively, the statement follows from Corollary 3.11 and Theorem 3.12. □

Blackadar has shown that a semi-projective Kirchberg algebra satisfying the UCT has finitely generated K-theory groups [29, Prop. 8.4.15]. A similar argument gives the following:

Proposition 3.14. Let D be a separable C^*-algebra satisfying the UCT. Then D is KK-semi-projective if and only if $K_*(D)$ is finitely generated.

Proof. If $K_*(D)$ is finitely generated, then D is KK-semi-projective by 3.11. Conversely, assume that D is KK-semi-projective. Since D satisfies the UCT, we infer that if $G = K_i(D)$ ($i = 0, 1$), then G is semi-projective in the category of countable abelian groups, in the sense that if $H_1 \to H_2 \to \cdots$ is an inductive system of countable abelian groups with inductive limit H, then the natural map
\[\text{lim} \text{ Hom}(G, H_n) \rightarrow \text{Hom}(G, H) \text{ is surjective. This implies that } G \text{ is finitely generated. Indeed, taking } H = G, \text{ we see that } \text{id}_G \text{ lifts to } \text{Hom}(G, H_n) \text{ for some finitely generated subgroup } H_n \text{ of } G \text{ and hence } G \text{ is a quotient of } H_n. \]

4. Approximation of \(C(X) \)-algebras

In this section we use weak semiprojectivity to approximate a continuous \(C(X) \)-algebra \(A \) by \(C(X) \)-subalgebras given by pullbacks of \(n \)-fibered monomorphisms into \(A \).

Lemma 4.1. Let \(D \) be a finite direct sum of simple \(C^* \)-algebras and let \(\varphi, \psi : D \rightarrow A \) be \(* \)-homomorphisms. Suppose that \(H \subset D \) contains a nonzero element from each simple direct summand of \(D \). If \(\| \psi(d) - \varphi(d) \| \leq \| d \| /2 \) for all \(d \in H \), then \(\varphi \) is injective if and only if \(\psi \) is injective.

Proof. Let \(\epsilon > 0 \) be given. By hypothesis there exist \(\{ a_1, \ldots, a_r \} \subset D \) and a \(* \)-monomorphism \(\iota : D \rightarrow A(x) \) such that \(\| \pi_x(a_i) - \iota(c_i) \| < \epsilon / 2 \) for all \(i = 1, \ldots, r \). Let \(U_n = \{ y \in X : d(x, y) \leq 1/n \} \). Choose a full element \(d_j \) in each direct summand of \(D \). Since \(D \) is weakly semiprojective, there is a \(* \)-homomorphism \(\varphi : D \rightarrow A(U_n) \) (for some \(n \)) such that \(\| \pi_x \sigma(c_i) - \iota(c_i) \| < \epsilon / 2 \) for all \(i = 1, \ldots, r \), and \(\| \pi_x \varphi(d_j) - \iota(d_j) \| \leq \| d_j \| /2 \) for all \(d_j \). Therefore

\[\| \pi_x \varphi(c_i) - \pi_x(a_i) \| \leq \| \pi_x \varphi(c_i) - \iota(c_i) \| + \| \pi_x(a_i) - \iota(c_i) \| < \epsilon / 2 + \epsilon / 2 = \epsilon \]

and \(\varphi \) is injective by Lemma 4.1. If \(\varphi_U \varphi \), after increasing \(n \) and setting \(U = U_n \), we have

\[\| \varphi_i(c_i) - \pi_U(a_i) \| = \| \pi_U \varphi_i(c_i) - a_i \| < \epsilon, \]

for all \(i = 1, \ldots, r \). This shows that \(\pi_U(F) \subset \varphi(D) \). If \(A \) is continuous, then after shrinking \(U \) we may arrange that \(\| \varphi \circ (d_j) \| \geq \| \varphi \circ (d_j) \| /2 \) for all \(d_j \) and all \(z \in U \). This implies that \(\varphi \) in injective for all \(z \in U \). \(\Box \)

Lemma 4.2. Let \(C \) be a class consisting of finite direct sums of separable simple weakly semiprojective \(C^* \)-algebras. Let \(X \) be a compact metrizable space and let \(A \) be a \(C(X) \)-algebra. Let \(F \subset A \) be a finite set, let \(\epsilon > 0 \) and suppose that \(A(x) \) admits an exhaustive sequence of \(C^* \)-algebras isomorphic to \(C^* \)-algebras in \(C \) for some \(x \in X \). Then there exist a compact neighborhood \(U \) of \(x \) and a \(* \)-homomorphism \(\varphi : D \rightarrow A(U) \) for some \(D \in C \) such that \(\pi_U(F) \subset \varphi(D) \). If \(A \) is a continuous \(C(X) \)-algebra, then we may arrange that \(\varphi \) is injective for all \(z \in U \).

Proof. Let \(F = \{ a_1, \ldots, a_r \} \) and \(\epsilon \) be given. By hypothesis there exist \(D \in C, \{ c_1, \ldots, c_r \} \subset D \) and a \(* \)-monomorphism \(\iota : D \rightarrow A(x) \) such that \(\| \pi_x(a_i) - \iota(c_i) \| < \epsilon / 2 \) for all \(i = 1, \ldots, r \). Set \(U_n = \{ y \in X : d(x, y) \leq 1/n \} \). Choose a full element \(d_j \) in each direct summand of \(D \). Since \(D \) is weakly semiprojective, there is a \(* \)-homomorphism \(\varphi : D \rightarrow A(U_n) \) (for some \(n \)) such that \(\| \pi_x \sigma(c_i) - \iota(c_i) \| < \epsilon / 2 \) for all \(i = 1, \ldots, r \), and \(\| \pi_x \varphi(d_j) - \iota(d_j) \| \leq \| d_j \| /2 \) for all \(d_j \). Therefore

\[\| \pi_x \varphi(c_i) - \pi_x(a_i) \| \leq \| \pi_x \varphi(c_i) - \iota(c_i) \| + \| \pi_x(a_i) - \iota(c_i) \| < \epsilon / 2 + \epsilon / 2 = \epsilon \]

and \(\varphi \) is injective by Lemma 4.1. By Lemma 2.1(i), after increasing \(n \) and setting \(U = U_n \), we have

\[\| \varphi(c_i) - \pi_U(a_i) \| = \| \pi_U \varphi(c_i) - a_i \| < \epsilon, \]

for all \(i = 1, \ldots, r \). This shows that \(\pi_U(F) \subset \varphi(D) \). If \(A \) is continuous, then after shrinking \(U \) we may arrange that \(\| \varphi \circ (d_j) \| \geq \| \varphi \circ (d_j) \| /2 \) for all \(d_j \) and all \(z \in U \). This implies that \(\varphi \) in injective for all \(z \in U \). \(\Box \)

Lemma 4.3. Let \(X \) be a compact metrizable space and let \(A \) be a separable continuous \(C(X) \)-algebra the fibers of which are stable Kirchberg algebras. Let \(F \subset A \) be a finite set and let \(\epsilon > 0 \). Suppose that there exist a KK-semiprojective stable Kirchberg algebra \(D \) and \(\sigma \in KK(D, A(x))^{-1} \) for some \(x \in X \). Then there exist a closed neighborhood \(U \) of \(x \) and a full \(* \)-homomorphism \(\psi : D \rightarrow A(U) \) such that \(KK(\psi) = \sigma_U \) and \(\pi_U(F) \subset \psi(D) \).
This shows that \(\pi \psi \). We extend \(f \) and hence such that \(\| \pi \psi(x) - \pi \psi_0(d) \| < \varepsilon \) for all \(d \in \mathcal{H} \) and \(KK(\pi \psi_0) = KK(\pi \psi) = \pi \sigma \). Since \(\lim_{m \to \infty} KK(D, A(U_m)) = KK(D, A(x)) \), we deduce that there is \(m \geq n \) such that \(KK(\pi U_m \psi_n) = \pi U_m \sigma U_m \). By increasing \(m \) we may arrange that \(\pi U_m (\mathcal{F}) \subset \pi \psi \psi_n(D) \) since we have seen that \(\pi U_m (\mathcal{F}) = \psi_0(\mathcal{H}) \subset \pi \psi \psi_n(D) \). We can arrange that \(\psi z \) is injective for all \(z \in U \) by reasoning as in the proof of Lemma 2.2. We conclude by setting \(U = U_m \) and \(\psi = \pi U_m \psi_n \).

The following lemma is useful for constructing fibered morphisms.

Lemma 4.4. Let \((D_j)_{j \in J} \) be a finite family consisting of finite direct sums of weakly semiprojective simple C*-algebras. Let \(\varepsilon > 0 \) and for each \(j \in J \) let \(\mathcal{H}_j \subset D_j \) be a finite set such that for each direct summand of \(D_j \) there is an element of \(\mathcal{H}_j \) of norm \(\geq \varepsilon \) which is contained and is full in that summand. Let \(G_j \subset D_j \) and \(\delta_j > 0 \) be given by Proposition 3.7 applied to \(D_j \), \(\mathcal{H}_j \) and \(\varepsilon/2 \). Let \(X \) be a compact metrizable space, let \((Z_j)_{j \in J} \) be disjoint nonempty closed subsets of \(X \) and let \(Y \) be a closed nonempty subset of \(X \) such that \(X = Y \cup (\cup_j Z_j) \). Let \(A \) be a continuous \(C(X) \)-algebra and let \(\mathcal{F} \) be a finite subset of \(A \). Let \(\eta : B(Y) \to A(Y) \) be a \(*\)-homomorphism of \(C(Y) \)-algebras and let \(\varphi_j : D_j \to A(Z_j) \) be \(*\)-homomorphisms such that \(\varphi_j x \) is injective for all \(x \in Z_j \) and \(j \in J \), and which satisfy the following conditions:

1. \(\pi Z_j(\mathcal{F}) \subset \varepsilon/2 \varphi_j(\mathcal{H}_j) \), for all \(j \in J \),
2. \(\pi(Y) \mathcal{F} \subset \varepsilon \eta(B) \),
3. \(\pi Y \cap Z_j \varphi_j(G_j) \subset \delta_j \pi Y \cap Z_j \eta(B) \), for all \(j \in J \).

Then, there are \(C(Z_j) \)-linear \(*\)-homomorphisms \(\psi_j : C(Z_j) \otimes D_j \to A(Z_j) \), satisfying

\[
\| \psi_j(c) - \psi_j(c) \| < \varepsilon/2, \quad \text{for all } c \in \mathcal{H}_j, \quad \text{and } j \in J,
\]

and such that if we set \(E = \bigoplus_j C(Z_j) \otimes D_j \), \(Z = \cup_j Z_j \), and \(\psi : E \to A(Z) = \bigoplus_j A(Z_j) \), \(\psi = \oplus_j \psi_j \), then \(\pi Z_j(\psi(E)) \subset \pi Y \cap Z_j \eta(B) \), \(\pi \mathcal{F} \subset \varepsilon \psi(E) \) and hence

\[
\mathcal{F} \subset \varepsilon \eta(B) \oplus Y \cap Z_j \psi(E) = \chi(B \oplus \pi \eta_0 \pi_0 E),
\]

where \(\chi \) is the isomorphism induced by the pair \((\eta, \psi) \). If we assume that each \(D_j \) is KK-stable, then we also have \(KK(\varphi_j) = KK(\psi_j|D_j) \) for all \(j \in J \).

Proof. Let \(\mathcal{F} = \{ a_1, \ldots, a_r \} \subset A \) be as in the statement. By (i), for each \(j \in J \) we find \(\{ c_1^{(j)}, \ldots, c_r^{(j)} \} \subset \mathcal{H}_j \) such that \(\| \varphi_j(c_i^{(j)}) - \pi Z_j(a_i) \| < \varepsilon/2 \) for all \(i \). Consider the \(C(X) \)-algebra \(A \oplus \varepsilon \eta(B) \subset A \). From (iii), Lemma 2.1(iv) and Lemma 2.5 we obtain

\[
\varphi_j(G_j) \subset \delta_j \pi Z_j(A \oplus \varepsilon \eta(B)).
\]

Applying Proposition 3.7 we perturb \(\varphi_j \) to a \(*\)-homomorphism \(\psi_j : D_j \to \pi Z_j(A \oplus \varepsilon \eta(B)) \) satisfying (i), and hence such that \(\| \varphi_j(c^{(j)}_i) - \pi Z_j(a_i) \| < \varepsilon/2 \), for all \(i \). Therefore

\[
\| \psi_j(c_i^{(j)}) - \pi Z_j(a_i) \| < \| \psi_j(c_i^{(j)}) - \varphi_j(c_i^{(j)}) \| + \| \varphi_j(c_i^{(j)}) - \pi Z_j(a_i) \| < \varepsilon.
\]

This shows that \(\pi Z_j(\mathcal{F}) \subset \varepsilon \psi_j(D_j) \). From (i) and Lemma 4.4 we obtain that each \(\psi_j x \) is injective. We extend \(\psi_j \) to a \(C(Z_j) \)-linear \(*\)-homomorphism \(\psi_j : C(Z_j) \otimes D_j \to \pi Z_j(A \oplus \varepsilon \eta(B)) \) and then we
Finally, from (ii), (7) and Lemma 2.6 (c) we get
\[\pi_Z(F) \subset \psi(E). \]
The property \(\psi(E) \subset (A \oplus Y \eta(B))(Z) \) is equivalent to \(\pi_{Y \cap Z}^Z(\psi(E)) \subseteq \pi_{Y \cap Z}^Y(\eta(B)) \) by Lemma 2.6(b).

Finally, from (ii), (7) and Lemma 2.6(c) we get \(F \subset \pi_Z(B) \oplus \pi_Z(E) \).

Let \(C \) be as in Lemma 4.2. Let \(A \) be a \(C(X) \)-algebra, let \(F \subset A \) be a finite set and let \(\varepsilon > 0 \).

An \((F, \varepsilon, C)\)-approximation of \(A \)

\[\alpha = \{ F, \varepsilon, \{ U_i, \varphi_i : D_i \to A(U_i), \mathcal{H}_i, \mathcal{G}_i, \delta_i \}_{i \in I} \}, \]
is a collection with the following properties: \(\{ U_i \}_{i \in I} \) is a finite family of closed subsets of \(X \), whose interiors cover \(X \) and \((D_i)_{i \in I} \) are \(C^* \)-algebras in \(C \); for each \(i \in I \), \(\varphi_i : D_i \to A(U_i) \) is a *-homomorphism such that \((\varphi_i)_x \) is injective for all \(x \in U_i \); \(\mathcal{H}_i \subset D_i \) is a finite set such that \(\pi_{U_i}(F) \subset \varepsilon / 2, \varphi_i(\mathcal{H}_i) \) and such that for each direct summand of \(D_i \) there is an element of \(\mathcal{H}_i \) of norm \(\geq \varepsilon \) which is contained and is full in that summand; the finite set \(\mathcal{G}_i \subset D_i \) and \(\delta_i > 0 \) are given by Proposition 3.7 applied to the weakly semiprojective \(C^* \)-algebra \(D_i \) for the input data \(\mathcal{H}_i \) and \(\varepsilon / 2 \); if \(D_i \) is \(KK \)-stable, then \(\mathcal{G}_i \) and \(\delta_i \) are chosen such that the second part of Proposition 3.7 also applies.

Lemma 4.5. Let \(A \) and \(C \) be as in Lemma 4.2. Suppose that each fiber of \(A \) admits an exhaustive sequence of \(C^* \)-algebras isomorphic to \(C^* \)-algebras in \(C \). Then for any finite subset \(F \) of \(A \) and any \(\varepsilon > 0 \) there is an \((F, \varepsilon, C)\)-approximation of \(A \). Moreover, if \(A \), \(D \) and \(\sigma \) are as in Lemma 4.3 and \(\sigma_\varepsilon \in KK(D, A(x))^{-1} \) for all \(x \in X \), then there is an \((F, \varepsilon, C)\)-approximation of \(A \) such that \(C = \{ D \} \) and \(KK(\varphi_i) = \sigma_{U_i} \), for all \(i \in I \).

Proof. Since \(X \) is compact, this is an immediate consequence of Lemmas 4.2, 4.3 and Proposition 3.7. \(\square \)

It is useful to consider the following operation of restriction. Suppose that \(Y \) is a closed subspace of \(X \) and let \((V_j)_{j \in J} \) be a finite family of closed subsets of \(Y \) which refines the family \((Y \cap U_i)_{i \in I} \) and such that the interiors of the \(V_j \)'s form a cover of \(Y \). Let \(\iota : J \to I \) be a map such that \(V_j \subseteq Y \cap U_{\iota(j)} \). Define

\[\iota^*(\alpha) = \{ \pi_Y(F), \varepsilon, \{ V_j, \pi_{V_j} \varphi_{\iota(j)} : D_{\iota(j)} \to A(V_j), \mathcal{H}_{\iota(j)}, \mathcal{G}_{\iota(j)}, \delta_{\iota(j)} \}_{j \in J} \}. \]

It is obvious that \(\iota^*(\alpha) \) is a \((\pi_Y(F), \varepsilon, C)\)-approximation of \(A(Y) \). The operation \(\alpha \mapsto \iota^*(\alpha) \) is useful even in the case \(X = Y \). Indeed, by applying this procedure we can refine the cover of \(X \) that appears in a given \((F, \varepsilon, C)\)-approximation of \(A \).

An \((F, \varepsilon, C)\)-approximation \(\alpha \) (as in (3)) is subordinated to an \((F', \varepsilon', C)\)-approximation, \(\alpha' = \{ F', \varepsilon', \{ U_{i'}, \varphi_{i'} : D_{i'} \to A(U_{i'}), \mathcal{H}_{i'}, \mathcal{G}_{i'}, \delta_{i'} \}_{i' \in I'} \}, \) written \(\alpha \prec \alpha' \), if

(i) \(F \subseteq F' \),

(ii) \(\varphi_{i}(\mathcal{G}_i) \subseteq \pi_{U_i}(F') \) for all \(i \in I \), and

(iii) \(\varepsilon' < \min \{ \{ \varepsilon_i \} \cup \{ \delta_i, i \in I \} \} \).

Let us note that, with notation as above, we have \(\iota^*(\alpha) \prec \iota^*(\alpha') \) whenever \(\alpha \prec \alpha' \).

The following theorem is the crucial technical result of our paper. It provides an approximation of continuous \(C(X) \)-algebras by subalgebras of category \(\leq \dim(X) \).
Theorem 4.6. Let \mathcal{C} be a class consisting of finite direct sums of weakly semiprojective simple C^*-algebras. Let X be a finite dimensional compact metrizable space and let A be a separable continuous $C(X)$-algebra the fibers of which admit exhaustive sequences of C^*-algebras isomorphic to C^*-algebras in \mathcal{C}. For any finite set $F \subset \mathcal{X}$, any $\varepsilon > 0$ there exist $n \leq \dim(X)$ and an n-fibered C-monomorphism (ψ_0, \ldots, ψ_n) into A which induces a $*$-monomorphism $\eta : A(\psi_0, \ldots, \psi_n) \to A$ such that $F \subset_{\varepsilon} \eta(A(\psi_0, \ldots, \psi_n))$.

Proof. By Lemma 4.5, for any finite set $F \subset A$ and any $\varepsilon > 0$ there is an $(\mathcal{F}, \varepsilon, \mathcal{C})$-approximation of A. Moreover, for any finite set $F \subset A$, any $\varepsilon > 0$ and any n, there is a sequence $\{\alpha_k : 0 \leq k \leq n\}$ of $(\mathcal{F}_k, \varepsilon, \mathcal{C})$-approximations of A such that $(\mathcal{F}_0, \varepsilon_0) = (\mathcal{F}, \varepsilon)$ and α_k is subordinated to α_{k+1}:

$$\alpha_0 \prec \alpha_1 \prec \cdots \prec \alpha_n.$$

Indeed, assume that α_k was constructed. Let us choose a finite set \mathcal{F}_{k+1} which contains \mathcal{F}_k and liftings to A of all the elements in $\bigcup_{i_k \in I_k} \varphi_{i_k}(\mathcal{G}_{i_k})$. This choice takes care of the above conditions (i) and (ii). Next we choose ε_{k+1} sufficiently small such that (iii) is satisfied. Let α_{k+1} be an $(\mathcal{F}_{k+1}, \varepsilon_{k+1}, \mathcal{C})$-approximation of A given by Lemma 4.5. Then obviously $\alpha_k \prec \alpha_{k+1}$. Fix a tower of approximations of A as above where $n = \dim(X)$.

By [4, Lemma 3.2], for every open cover \mathcal{V} of X there is a finite open cover \mathcal{U} which refines \mathcal{V} and such that the set \mathcal{U} can be partitioned into $n+1$ nonempty subsets consisting of elements with pairwise disjoint closures. Since we can refine simultaneously the covers that appear in a finite family $\{\alpha_k : 0 \leq k \leq n\}$ of approximations while preserving subordination, we may arrange not only that all α_k share the same cover $\{U_i\}_{i \in I}$, but moreover, that the cover $\{U_i\}_{i \in I}$ can be partitioned into $n+1$ subsets $\mathcal{U}_0, \ldots, \mathcal{U}_n$ consisting of mutually disjoint elements. For definiteness, let us write $\mathcal{U}_k = \{U_{i_k} : i_k \in I_k\}$. Now for each k we consider the closed subset of X

$$Y_k = \bigcup_{i_k \in I_k} U_{i_k},$$

the map $i_k : I_k \to I$ and the $(\pi_{Y_k}(\mathcal{F}_k), \varepsilon_k, \mathcal{C})$-approximation of $A(Y_k)$, induced by α_k, which is of the form

$$i_k^*(\alpha_k) = \{\pi_{Y_k}(\mathcal{F}_k), \varepsilon_k, \{U_{i_k}, \varphi_{i_k} : D_{i_k} \to A(U_{i_k}), \mathcal{H}_{i_k}, \mathcal{G}_{i_k}, \delta_{i_k}\}_{i_k \in I_k}\},$$

where each U_{i_k} is nonempty. We have

$$\pi_{U_{i_k}}(\mathcal{F}_k) \subset_{\varepsilon_k/2} \varphi_{i_k}(\mathcal{H}_{i_k}),$$

by construction. Since $\alpha_k \prec \alpha_{k+1}$ we obtain

$$\mathcal{F}_k \leq \mathcal{F}_{k+1},$$

$$\varphi_{i_k}(\mathcal{G}_{i_k}) \leq \pi_{U_{i_k}}(\mathcal{F}_{k+1}), \text{ for all } i_k \in I_k,$$

$$\varepsilon_{k+1} > \min(\{\varepsilon_k\} \cup \{\delta_{i_k} : i_k \in I_k\}).$$

Set $X_k = Y_k \cup \cdots \cup Y_n$ and $E_k = \oplus_{i_k} C(U_{i_k}) \otimes D_{i_k}$ for $0 \leq k \leq n$. We shall construct a sequence of $C(Y_k)$-linear $*$-monomorphisms, $\psi_k : E_k \to A(Y_k)$, $k = n, \ldots, 0$, such that (ψ_k, \ldots, ψ_n) is an $(n-k)$-fibered monomorphism into $A(X_k)$. Each map

$$\psi_k = \oplus_{i_k} \psi_{i_k} : E_k \to A(Y_k) = \oplus_{i_k} A(U_{i_k})$$

should
will have components $\psi_{i_k} : C(U_{i_k}) \otimes D_{i_k} \to A(U_{i_k})$ whose restrictions to D_{i_k} will be perturbations of $\varphi_{i_k} : D_{i_k} \to A(U_{i_k})$, $i_k \in I_k$. We shall construct the maps ψ_k by induction on decreasing k such that if $B_k = A(X_k)(\psi_k, \ldots, \psi_n)$ and $\eta_k : B_k \to A(X_k)$ is the map induced by the $(n-k)$-fibered monomorphism (ψ_k, \ldots, ψ_n), then

$$\pi_{X_{k+1} \cap U_{i_k}}(\psi_{i_k}(D_{i_k})) \subset \pi_{X_{k+1} \cap U_{i_k}}(\eta_{k+1}(B_{k+1})), \forall i_k \in I_k,$$

and

$$\pi_{X_k}(F_k) \subset \epsilon_k \eta_k(B_k).$$

Note that (13) is equivalent to

$$\pi_{X_{k+1} \cap \gamma_{I_k}}(\psi_k(E_k)) \subset \pi_{X_{k+1} \cap \gamma_{I_k}}(\eta_{k+1}(B_{k+1})).$$

For the first step of induction, $k = n$, we choose $\psi_n = \oplus_{i_k} \tilde{\varphi}_{i_k}$ where $\tilde{\varphi}_{i_k} : C(U_{i_k}) \otimes D_{i_k} \to A(U_{i_k})$ are $C(U_{i_k})$-linear extensions of the original φ_{i_k}. Then $B_n = E_n$ and $\eta_n = \psi_n$. Assume that $\psi_n, \ldots, \psi_{k+1}$ were constructed and that they have the desired properties. We shall construct now ψ_k. Condition (14) formulated for $k + 1$ becomes

$$\pi_{X_{k+1}}(F_{k+1}) \subset \epsilon_{k+1} \eta_{k+1}(B_{k+1}).$$

Since $\epsilon_{k+1} < \delta_{i_k}$, by using (11) and (16) we obtain

$$\pi_{X_{k+1} \cap U_{i_k}}(\varphi_{i_k}(G_{i_k})) \subset \delta_{i_k} \pi_{X_{k+1} \cap U_{i_k}}(\eta_{k+1}(B_{k+1})), \forall i_k \in I_k.$$

Since $F_k \subseteq F_{k+1}$ and $\epsilon_{k+1} < \epsilon_k$, condition (16) gives

$$\pi_{X_{k+1}}(F_k) \subset \epsilon_k \eta_{k+1}(B_{k+1}).$$

Conditions (9), (17) and (13) enable us to apply Lemma 4.4 and perturb $\tilde{\varphi}_{i_k}$ to a $*$-monomorphism $\psi_{i_k} : C(U_{i_k}) \otimes D_{i_k} \to A(U_{i_k})$ satisfying (13) and (14) and such that

$$KK(\psi_{i_k}|_{D_{i_k}}) = KK(\varphi_{i_k})$$

if the algebras in C are assumed to be KK-stable. We set $\psi_k = \oplus_{i_k} \psi_{i_k}$ and this completes the construction of (ψ_0, \ldots, ψ_n). Condition (14) for $k = 0$ gives $F \subset \epsilon \eta_0(B_0) = \eta(A(\psi_0, \ldots, \psi_n))$. Thus (ψ_0, \ldots, ψ_n) satisfies the conclusion of the theorem. Finally let us note that it can happen that $X_k = X$ for some $k > 0$. In this case $F \subset \epsilon A(\psi_k, \ldots, \psi_n)$ and for this reason we write $n \leq \dim(X)$ in the statement of the theorem.

Proposition 4.7. Let X be a finite dimensional compact metrizable space and let A be a separable continuous $C(X)$-algebra of which are stable Kirchberg algebras. Let D be a KK-semiprojective stable Kirchberg algebra and suppose that there exists $\sigma \in KK(D, A)$ such that $\sigma_x \in KK(D, A(\tau(x))^{-1}$ for all $x \in X$. For any finite subset F of A and any $\epsilon > 0$ there is an n-fibered C-monomorphism (ψ_0, \ldots, ψ_n) into A such that $n \leq \dim(X)$, $C = \{D\}$, and each component $\psi_i : C(Y_i) \otimes D \to A(Y_i)$ satisfies $KK(\psi_i) = \sigma_{Y_i}$, $i = 0, \ldots, n$. Moreover, if $\eta : A(\psi_0, \ldots, \psi_n) \to A$ is the induced $*$-monomorphism, then $F \subset \epsilon \eta(A(\psi_0, \ldots, \psi_n))$ and $KK(\eta_x)$ is a KK-equivalence for each $x \in X$. □
Proof. We repeat the proof of Theorem 4.6 while using only \((\mathcal{F}_i, \varepsilon_i, \{D_i\})\)-approximations of \(A\) provided by the second part of Lemma 4.5. The outcome will be an \(n\)-fibered \((D)\)-monomorphism \((\psi_0, \ldots, \psi_n)\) into \(A\) such that \(\mathcal{F} \subset \varepsilon \eta(A(\psi_0, \ldots, \psi_n))\). Moreover we can arrange that \(KK(\psi_i) = \sigma Y_i\) for all \(i = 0, \ldots, n\), by (19), since \(KK(\psi_{i_k}) = \sigma U_{i_k}\) by Lemma 4.5. If \(x \in X\), and \(i = \min\{k : x \in Y_k\}\), then \(\eta_x \equiv (\psi_i)_x\), and hence \(KK(\eta_x)\) is a KK-equivalence. □

Remark 4.8. Let us point out that we can strengthen the conclusion of Theorem 4.6 and Proposition 4.7 as follows. Fix a metric \(d\) for the topology of \(X\). Then we may arrange that there is a closed cover \(\{Y'_0, \ldots, Y'_n\}\) of \(X\) and a number \(\ell > 0\) such that \(\{x : d(x, Y'_i) \leq \ell\} \subset Y_i\) for \(i = 0, \ldots, n\). Indeed, when we choose the finite closed cover \(U = (U_i)_{i \in I}\) of \(X\) in the proof of Theorem 4.6 which may be partitioned into \(n + 1\) subsets \(U_0, \ldots, U_n\) consisting of mutually disjoints elements, as given by [4, Lemma 3.2], and which refines all the covers \(U(\alpha_0), \ldots, U(\alpha_n)\) corresponding to \(\alpha_0, \ldots, \alpha_n\), we may assume that \(U\) also refines the covers given by the interiors of the elements of \(U(\alpha_0), \ldots, U(\alpha_n)\). Since each \(U_i\) is compact and \(I\) is finite, there is \(\ell > 0\) such that if \(V_i = \{x : d(x, U_i) \leq \ell\}\), then the cover \(\mathcal{V} = (V_i)_{i \in I}\) still refines all of \(U(\alpha_0), \ldots, U(\alpha_n)\) and for each \(k = 0, \ldots, n\), the elements of \(\mathcal{V}_k = \{V_i : U_i \in U_k\}\), are still mutually disjoint. We shall use the cover \(\mathcal{V}\) rather than \(U\) in the proof of the two theorems and observe that \(Y'_k \stackrel{\text{def}}{=} \bigcup_{i_k \in I_k} U_{i_k} \subset \bigcup_{i_k \in I_k} V_{i_k} = Y_k\) has the desired property. Finally let us note that if we define \(\psi'_i : E(Y'_i) \to A(Y'_i)\) by \(\psi'_i = \pi Y'_i \psi_i\), then \((\psi'_0, \ldots, \psi'_n)\) is an \(n\)-fibered \(C\)-monomorphism into \(A\) which satisfies the conclusion of Theorem 4.6 and Proposition 4.7 since \(\pi Y'_i(\mathcal{F}) \subset \varepsilon \psi'_i(E_t)\) for all \(i = 0, \ldots, n\) and \(X = \bigcup_{i=1}^n Y'_i\).

5. Representing \(C(X)\)-algebras as inductive limits

We have seen that Theorem 4.6 yields exhaustive sequences for certain \(C(X)\)-algebras. In this section we show how to pass from an exhaustive sequence to a nested exhaustive sequence using semiprojectivity. The remainder of the paper does not depend on this section.

Proposition 5.1. Let \(X, A\) and \(\mathcal{C}\) be as in Theorem 4.6. Let \((\psi_0, \ldots, \psi_n)\) be an \(n\)-fibered \(C\)-monomorphism into \(A\) with components \(\psi_i : E_i \to A(Y_i)\). Let \(F_i \subset E_i, F \subset A(\psi_0, \ldots, \psi_n)\) be finite sets and let \(\varepsilon > 0\). Then there are finite sets \(G_i \subset F_i\) and \(\delta_i > 0\), \(i = 0, \ldots, n\), such that for any \(C(X)\)-subalgebra \(A' \subset A\) which satisfies \(\psi_i(G_i) \subset A(Y_i)\), \(i = 0, \ldots, n\), there is an \(n\)-fibered \(C\)-monomorphism \((\psi'_0, \ldots, \psi'_n)\) into \(A'\), with \(\psi'_i : E_i \to A'(Y'_i)\) and such that \((i)\) \(\|\psi'_i(a) - \psi_i(a)\| < \varepsilon\) for all \(a \in F_i\) and all \(i \in \{0, \ldots, n\}\), \((ii)\) \((\psi'_j)^{-1}(\psi_i)_x = (\psi_j)^{-1}(\psi_i)_x\) for all \(x \in Y_i \cap Y_j\) and \(0 \leq i \leq j \leq n\). Moreover \(A(\psi_0, \ldots, \psi_n) = A'(\psi'_0, \ldots, \psi'_n)\) and the maps \(\eta : A(\psi_0, \ldots, \psi_n) \to A\) and \(\eta' : A'(\psi'_0, \ldots, \psi'_n) \to A'\) induced by \((\psi_0, \ldots, \psi_n)\) and \((\psi'_0, \ldots, \psi'_n)\) satisfy \((iii)\) \(\|\eta(a) - \eta'(a)\| < \varepsilon\) for all \(a \in F\).

Proof. Let us observe that if we prove (i) and (ii) then (iii) will follow by enlarging the sets \(F_i\) so that \(p_i(F) \subset F_i\), where \(p_i : A(\psi_0, \ldots, \psi_n) \to E_i\) are the coordinate maps. We proceed now with the proof of (i) and (ii) by making some simplifications. We may assume that \(E_0 = C(Y_0) \otimes D_0\) with \(D_0 \in \mathcal{C}\) since the perturbations corresponding to disjoint closed sets can be done independently of each other. Without any loss of generality, we may assume that \(F_0 \subset D_0\) since we are working with morphisms on \(E_0\) which are \(C(Y_0)\)-linear. We also enlarge \(F_0\) so that for each direct summand \(C\) of \(D_0, F_0\) contains an element \(c\) which is full in \(C\) and such that \(\|c\| \geq 2\varepsilon\).

The proof is by induction on \(n\). If \(n = 0\) the statement follows from Proposition 5.2 and Lemma 4.1. Assume now that the statement is true for \(n - 1\). Let \(E_i, \psi_i, A', F_i, 1 \leq i \leq n\)
and ε be as in the statement. For $0 \leq i < j \leq n$ let $\eta_{j,i} : E_i(Y_i \cap Y_j) \to E_j(Y_i \cap Y_j)$ be the $*$-homomorphism of $(Y_i \cap Y_j)$-algebras defined fiberwise by $(\eta_{j,i})_x = (\psi_j)_x^{-1}(\psi_i)_x$.

Let G_0 and δ_0 be given by Proposition 4.5 applied to the C^*-algebra D_0 for the input data F_0 and ε. For each $1 \leq j \leq n$ choose a finite subset \mathcal{H}_j of E_j whose restriction to $Y_j \cap Y_0$ contains $\eta_{j,0}(G_0)$. Consider the sets $F_j := F_j \cup \mathcal{H}_j$, $1 \leq j \leq n$ and the number $\varepsilon' = \min\{\delta_0, \varepsilon\}$. Let G_1, \ldots, G_n and $\delta_1, \ldots, \delta_n$ be given by the inductive assumption for $n - 1$ applied to $A(X_1), A'(X_1), \psi_j, F_j$, $1 \leq j \leq n$ and ε', where $X_1 = Y_1 \cup \cdots \cup Y_n$.

We need to show that G_0, G_1, \ldots, G_n and $\delta_0, \delta_1, \ldots, \delta_n$ satisfy the statement. By the inductive step there exists an $(n - 1)$-fibered \mathcal{C}-monomorphism $(\psi'_1, \ldots, \psi'_n)$ into $A'(X_1)$ with components $\psi'_j : E_j \to A'(Y_j)$ such that

(a) $\|\psi_j(a) - \psi'_j(a)\| < \varepsilon'$ for all $a \in F_j \cup \mathcal{H}_j$ and all $1 \leq j \leq n$,

(b) $(\psi'_j)_x^{-1}(\psi_i)_x = (\psi_j)_x^{-1}(\psi'_j)_x$ for all $x \in Y_i \cap Y_j$ and $1 \leq i \leq j \leq n$.

The condition (b) enables to define a $*$-homomorphism $\varphi : E_0 \to A'(Y_0 \cap X_1)$ with fiber maps $\varphi_x = (\psi'_j)_x(\psi_j)_x^{-1}\psi_0)_x$ for $x \in Y_0 \cap Y_j$ and $1 \leq j \leq n$.

Let us observe that $\varphi_0 : E_0 \to A(Y_0)$ is an approximate lifting of φ. More precisely we have $\|\pi_{Y_0}(a) - \varphi(a)\| < \delta_0$ for all $a \in G_0$. Indeed, for $x \in Y_0 \cap Y_j$, $1 \leq j \leq n$ and $a \in G_0$ we have

$$\|(\psi'_j)_x(a(x)) - (\psi_j)_x(\pi_{Y_0}(a(x)))\| = \|(\psi'_j)_x(\psi_0)_x(a(x)) - (\psi_j)_x(\psi_0)_x(a(x))\| \leq \sup_{h \in \mathcal{H}_j} \|\psi_j(h) - \psi'_j(h)\| < \varepsilon' \leq \delta_0.$$

Since we also have $\psi_0(G_0) \subset A'(Y_0)$ by hypothesis, it follows from Proposition 4.8 that there exists $\varphi'_0 : D_0 \to A(Y_0)$ such that $\|\varphi'_0(a) - \varphi_0(a)\| < \varepsilon$ for all $a \in F_0$ and $\pi_{Y_0}^0 \circ \varphi'_0 = \varphi$. By Lemma 5.1 each $(\psi'_j)_x$ is injective since each $\psi_0)_x$ is injective. The $C(Y_0)$-linear extension of ψ'_0 to E_0 satisfies $(\psi'_j)_x^{-1}\psi_0)_x = (\psi'_j)_x^{-1}\psi'_0)_x$ for all $x \in Y_0 \cap Y_j$ and $1 \leq j \leq n$ and this completes the proof of (ii). Condition (i) follows from (b).

The following result gives an inductive limit representation for continuous $C(X)$-algebras whose fibers are inductive limits of finite direct sums of simple semiprojective C^*-algebras. For example the fibers can be arbitrary AF-algebras or Kirchberg algebras which satisfy the UCT and whose K_1-groups are torsion free. Indeed, by [29] Prop. 8.4.13, these algebras are isomorphic to inductive limits of sequences of Kirchberg algebras (D_n) with finitely generated K-theory groups and torsion free K_1-groups. The algebras D_n are semiprojective by [33].

Theorem 5.2. Let \mathcal{C} be a class consisting of finite direct sums of semiprojective simple C^*-algebras.

Let X be a finite dimensional compact metrizable space and let A be a separable continuous $C(X)$-algebra such that all its fibers admit exhaustive sequences consisting of C^*-algebras isomorphic to C^*-algebras in \mathcal{C}. Then A is isomorphic to the inductive limit of a sequence of continuous $C(X)$-algebras A_k such that $\dim(A_k) \leq \dim(X)$.

Proof. By Theorem 4.10 and Proposition 5.1 we find a sequence $(\psi^{(k)}_0, \ldots, \psi^{(k)}_n)$ of n-fibered \mathcal{C}-monomorphisms into A which induces $*$-monomorphisms $\eta^{(k)}_n : A_k = A(\psi^{(k)}_0, \ldots, \psi^{(k)}_n) \to A$ with the following properties. There is a sequence of finite sets $F_k \subset A_k$ and a sequence of $C(X)$-linear $*$-monomorphisms $\mu_k : A_k \to A_{k+1}$ such that

(i) $\|\eta^{(k+1)}_n(a) - \eta^{(k)}_n(a)\| < 2^{-k}$ for all $a \in F_k$ and all $k \geq 1$,

(ii) $\mu_k(F_k) \subset F_{k+1}$ for all $k \geq 1$,
Arguing as in the proof of [29, Prop. 2.3.2], one verifies that
\[
\varphi_k(a) = \lim_{j \to \infty} \eta^{(j)}(\mu_{j-1} \circ \cdots \circ \mu_k)(a)
\]
defines a sequence of \(\ast\)-monomorphisms \(\varphi_k : A_k \to A\) such that \(\varphi_{k+1}\mu_k = \varphi_k\) and the induced map \(\varphi : \lim_{\to k} (A_k, \mu_k) \to A\) is an isomorphism of \(C(X)\)-algebras. \(\Box\)

Remark 5.3. By similar arguments one proves a unital version of Theorem 5.2.

6. **When is a fibered product locally trivial**

For \(C^*\)-algebras \(A, B\) we endow the space \(\text{Hom}(A, B)\) of \(\ast\)-homomorphisms with the point-norm topology. If \(X\) is a compact Hausdorff space, then \(\text{Hom}(A, C(X) \otimes B)\) is homeomorphic to the space of continuous maps from \(X\) to \(\text{Hom}(A, B)\) endowed with the compact-open topology.

We shall identify a \(\ast\)-homomorphism \(\varphi \in \text{Hom}(A, C(X) \otimes B)\) with the corresponding continuous map \(X \to \text{Hom}(A, B), x \mapsto \varphi_x, \varphi_x(a) = \varphi(a)(x)\) for all \(x \in X\) and \(a \in A\). Let \(D\) be a \(C^*\)-algebra and let \(A\) be a \((C(X)\)-algebra. If \(\alpha : D \to A\) is a \(\ast\)-homomorphism, let us denote by \(\tilde{\alpha} : C(X) \otimes D \to A\) its (unique) \(C(X)\)-linear extension and write \(\tilde{\alpha} \in \text{Hom}_{C(X)}(C(X) \otimes D, A)\). For \(C^*\)-algebras \(D, B\) we shall make without further comment the following identifications

\[
\text{Hom}_{C(X)}(C(X) \otimes D, C(X) \otimes B) \equiv \text{Hom}(D, C(X) \otimes B) \equiv C(X, \text{Hom}(D, B)).
\]

For a \(C^*\)-algebra \(D\) we denote by \(\text{End}(D)\) the set of full (and unital if \(D\) is unital) \(\ast\)-endomorphisms of \(D\) and by \(\text{End}(D)^0\) the path component of \(\text{id}_D\) in \(\text{End}(D)\). Let us consider

\[
\text{End}(D)^* = \{ \gamma \in \text{End}(D) : KK(\gamma) \in KK(D, D)^{-1} \}.
\]

Proposition 6.1. Let \(X\) be a compact metrizable space and let \(D\) be a \(KK\)-semiprojective Kirchberg algebra. Let \(\alpha : D \to C(X) \otimes D\) be a full (and unital, if \(D\) is unital) \(\ast\)-homomorphism such that \(KK(\alpha_x) \in KK(D, D)^{-1}\) for all \(x \in X\). Then there is a full \(\ast\)-homomorphism \(\Phi : D \to C(X \times [0, 1]) \otimes D\) such that \(\Phi(x, 0) = \alpha_x\) and \(\Phi(x, t) \in \text{Aut}(D)\) for all \(x \in X\) and \(t \in (0, 1]\). Moreover, if \(\Phi_1 : D \to C(X) \otimes D\) is defined by \(\Phi_1(d)(x) = \Phi(x, 1)(d),\) for all \(d \in D\) and \(x \in X,\) then \(\alpha \approx_{uh} \Phi_1\).

Proof. Since \(X\) is a metrizable compact space, \(X\) is homeomorphic to the projective limit of a sequence of finite simplicial complexes \((X_i)\) by [13 Thm. 10.1, p.284]. Since \(D\) is \(KK\)-semiprojective, \(KK(D, \lim C(X_i) \otimes D) = KK(D, C(X) \otimes D)\) by Theorem 5.12. By Theorem 5.11 there is \(i\) and a full (and unital if \(D\) is unital) \(\ast\)-homomorphism \(\varphi : D \to C(X_i) \otimes D\) whose KK-class maps to \(KK(\alpha) \in KK(D, C(X) \otimes D)\). To summarize, we have found a finite simplicial complex \(Y,\) a continuous map \(h : X \to Y\) and a continuous map \(y \mapsto \varphi_y \in \text{End}(D),\) defined on \(Y,\) such that the full (and unital if \(D\) is unital) \(\ast\)-homomorphism \(h^* \varphi : D \to C(X) \otimes D\) corresponding to the continuous map \(x \mapsto \varphi_{h(x)}\) satisfies \(KK(h^* \varphi) = KK(\alpha)\). We may arrange that \(h(X)\) intersects all the path components of \(Y\) by dropping the path components which are not intersected. Since \(\alpha_x \in \text{End}(D)^*\) by hypothesis, and since \(KK(\alpha_x) = KK(\varphi_{h(x)})\), we infer that \(\varphi_y \in \text{End}(D)^*\) for all \(y \in Y\). We shall find a continuous map \(y \mapsto \psi_y \in \text{End}(D)^*\) defined on \(Y,\) such that the maps \(y \mapsto \psi_y \varphi_y\) and \(y \mapsto \varphi_y \psi_y\) are homotopic to the constant map \(i\) that takes \(Y\) to \(\text{id}_D\). It is clear that it suffices to deal separately with each path component of \(Y,\) so that for this part of the proof

we may assume that Y is connected. Fix a point $z \in Y$. By [29] Thm. 8.4.1 there is $\nu \in \text{Aut}(D)$ such that $KK(\nu^{-1}) = KK(\varphi_2)$ and hence $KK(\nu \varphi_2) = KK(\text{id}_D)$. By Theorem 3.1 there is a unitary $u \in M(D)$ such that $w_\varphi z(-)u^*$ is homotopic to id_D. Let us set $\theta = w\nu(-)u^* \in \text{Aut}(D)$ and observe that $\theta \varphi_z \in \text{End}(D)^0$. Since Y is path connected, it follows that the entire image of the map $y \mapsto \theta \varphi_y$ is contained in $\text{End}(D)^0$. Since $\text{End}(D)^0$ is a path connected H-space with unit element, it follows by [29] Thm. 2.4, p462 that the homotopy classes $[Y, \text{End}(D)^0]$ (with no condition on basepoints, since the action of the fundamental group $\pi_1(\text{End}(D)^0, \text{id}_D)$ is trivial by [29] 3.6, p166) form a group under the natural multiplication. Therefore we find $y \mapsto \psi_y^t \in \text{End}(D)^0$ such that $y \mapsto \psi_y^t \varphi_y$ and $y \mapsto \theta \varphi_y \psi_y^t$ are homotopic to ι. It follows that $y \mapsto \psi_y \overset{\text{def.}}{=} \psi_y^t \theta$ is the homotopic inverse of $y \mapsto \varphi_y$ in $[Y, \text{End}(D)^*]$. Composing with h we obtain that the maps $x \mapsto \varphi_{h(x)} \psi_{h(x)}$ and $x \mapsto \psi_{h(x)} \varphi_{h(x)}$ are homotopic to the constant map that takes X to id_D. By the homotopy invariance of KK-theory we obtain that

$$KK(\tilde{h}^* \varphi \cdot h^* \psi) = KK(\tilde{h}^* \psi \cdot h^* \varphi) = KK(\iota_D),$$

where $\tilde{h}^* \varphi$ and $\tilde{h}^* \psi$ denote the $C(X)$-linear extensions of the corresponding maps and $\iota_D : D \to C(X) \otimes D$ is defined by $\iota_D(d) = 1_{C(X)} \otimes d$ for all $d \in D$. Let us recall that $KK(h^* \varphi) = KK(\alpha)$ and hence $KK(\tilde{h}^* \varphi) = KK(\tilde{\alpha})$. If we set $\tilde{\Psi} = h^* \psi$, then

$$KK(\tilde{\alpha} \tilde{\Psi}) = KK(\tilde{\Psi} \alpha) = KK(\iota_D).$$

By Theorem 3.1 $\tilde{\alpha} \tilde{\Psi} \overset{\text{def.}}{=} \iota_D$ and $\tilde{\Psi} \alpha \overset{\text{def.}}{=} \iota_D$, and hence $\tilde{\alpha} \tilde{\Psi} \overset{\text{def.}}{=} \text{id}_{C(X) \otimes D}$ and $\tilde{\Psi} \tilde{\alpha} \overset{\text{def.}}{=} \text{id}_{C(X) \otimes D}$. By [29] Cor. 2.3.4, there is an isomorphism $\Gamma : C(X) \otimes D \to C(X) \otimes D$ such that $\Gamma \overset{\text{def.}}{=} \tilde{\alpha}$. In particular Γ is $C(X)$-linear and $\Gamma_x \in \text{Aut}(D)$ for all $x \in X$. Replacing Γ by $u \Gamma(\cdot)u^*$ for some unitary $u \in M(C(X) \otimes D)$ we can arrange that $\Gamma|_D$ is arbitrarily close to α. Therefore $KK(\Gamma|_D) = KK(\alpha)$ since D is KK-stable. By Theorem 3.1 there is a continuous map $(0, 1] \to U(M(C(X) \otimes D))$, $t \mapsto u_t$, with the property that

$$\lim_{t \to 0} \|u_t \Gamma(a)u_t^* - \alpha(a)\| = 0, \text{ for all } a \in D.$$

Therefore the equation

$$d(x,t) = \begin{cases} \alpha_x, & \text{if } t = 0, \\ u_t(x) \Gamma_x u_t(x)^*, & \text{if } t \in (0, 1], \end{cases}$$

defines a continuous map $\Phi : X \times [0, 1] \to \text{End}(D)^*$ which extends α and such that $\Phi(X \times (0, 1]) \subset \text{Aut}(D)$. Since α is homotopic to Φ_1, we have that $\alpha \overset{\text{ub.}}{=} \Phi_1$ by Theorem 3.1. \square

Proposition 6.2. Let X be a compact metrizable space and let D be a KK-semiprojective Kirchberg algebra. Let Y be a closed subset of X. Assume that a map $\gamma : Y \to \text{End}(D)^*$ extends to a continuous map $\alpha : X \to \text{End}(D)^*$. Then there is a continuous extension $\eta : X \to \text{End}(D)^*$ of γ, such that $\eta(X \setminus Y) \subset \text{Aut}(D)$.

Proof. Since the map $x \mapsto \alpha_x$ takes values in $\text{End}(D)^*$, by Proposition 6.1 there exists a continuous map $\Phi : X \times [0, 1] \to \text{End}(D)^*$ which extends α and such that $\Phi(X \times (0, 1]) \subset \text{Aut}(D)$. Let d be a metric for the topology of X such that $\text{diam}(X) \leq 1$. The equation $\eta(x) = \Phi(x, d(x, Y))$ defines a map on X that satisfies the conclusion of the proposition. \square
Lemma 6.3. Let X be a compact metrizable space and let D be a KK-semiprojective Kirchberg algebra. Let Y be a closed subset of X. Let $\alpha : Y \times [0,1] \cup X \times \{0\} \to \End(D)$ be a continuous map such that $\alpha(x,0) \in \End(D)^*$ for all $x \in X$. Suppose that there is an open set V in X which contains Y and such that α extends to a continuous map $\alpha_V : V \times [0,1] \cup X \times \{0\} \to \End(D)$. Then there is $\eta : X \times [0,1] \to \End(D)^*$ such that η extends α and $\eta(x,t) \in \Aut(D)$ for all $x \in X \setminus Y$ and $t \in (0,1]$.

Proof. By Proposition 6.2 it suffices to find a continuous map $\tilde{\alpha} : X \times [0,1] \to \End(D)^*$ which extends α. Fix a metric d for the topology of X and define $\lambda : X \to [0,1]$ by $\lambda(x) = d(x, X \setminus V)(d(x, X \setminus V) + d(x, Y))^{-1}$. Let us define $\tilde{\alpha} : X \times [0,1] \to \End(D)$ by $\tilde{\alpha}(x,t) = \alpha_V(x, \lambda(x)t)$ and observe that $\tilde{\alpha}$ extends α. Finally, since $\tilde{\alpha}(x,t)$ is homotopic to $\tilde{\alpha}(x,0) = \alpha(x,0)$, we conclude that the image of $\tilde{\alpha}$ in contained in $\End(D)^*$.

Proposition 6.4. Let X be a compact metrizable space and let D be a KK-semiprojective stable Kirchberg algebra. Let A be a separable $C(X)$-algebra which is locally isomorphic to $C(X) \otimes D$. Suppose that there is $\sigma \in KK(D,A)$ such that $\sigma_x \in KK(D,A(x))^{-1}$ for all $x \in X$. Then there is an isomorphism of $C(X)$-algebras $\psi : C(X) \otimes D \to A$ such that $KK(\psi|_D) = \sigma$.

Proof. Since X is compact and A is locally trivial it follows that $\text{cat}_D(A) < \infty$. By Lemma 2.3 $A \cong pAp \otimes \mathcal{O}_\infty \otimes K$ for some projection $p \in A$. By Theorem 5.1 there is a full $*$-homomorphism $\varphi : C(X) \to A$ such that $KK(\varphi) = \sigma$. We shall construct an isomorphism of $C(X)$-algebras $\psi : C(X) \otimes D \to A$ such that ψ is homotopic to $\tilde{\varphi}$, the $C(X)$-linear extension of φ. Moreover the homotopy $(H_t)_{t \in [0,1]}$ will have the property that $H(x, t) : D \to A(x)$ is an isomorphism for all $x \in X$ and $t > 0$. We prove this by induction on numbers n with the property that there are two closed covers of X, $W_1, ..., W_n$ and $Y_1, ..., Y_n$ such that Y_i contained in the interior of W_i and $A(W_i) \cong C(Y_i) \otimes D$ for $1 \leq i \leq n$. First we observe that the case $n = 1$ follows from Proposition 5.2. Let us now pass from $n - 1$ to n. Given two covers as above, there is yet another closed cover $V_1, ..., V_n$ of X such that V_i is a neighborhood of Y_i and W_i is a neighborhood of V_i for all $1 \leq i \leq n$. Set $Y = \cup_{i=1}^{n-1} Y_i$, $V = \cup_{i=1}^{n-1} V_i$ and $W = \cup_{i=1}^{n-1} W_i$. By the inductive hypothesis applied to $A(V)$, and the covers $V_1, ..., V_{n-1}$ and $W_1 \cap V_1, ..., W_{n-1} \cap V$ there is a homotopy $h : D \to A(V) \otimes C[0,1]$ such that $h(x,0) = \varphi_x$ and $h(x,t) : D \to A(x)$ is an isomorphism for all $(x,t) \in V \setminus (0,1]$. Fix a trivialization $\nu : A(Y_{n+1}) \to C(Y_{n+1}) \otimes D$. Define a continuous map $\alpha : (V \cap Y_{n+1}) \times [0,1] \cup Y_{n+1} \times \{0\} \to \End(D)$ by setting $\alpha(x,t) = \nu_x h(x,t)$ if $(x,t) \in (V \cap Y_{n+1}) \times [0,1]$ and $\alpha(x,0) = \nu_x \varphi_x$ if $x \in Y_{n+1}$. Since $V \cap Y_{n+1}$ is a neighborhood of $Y \cap Y_{n+1}$ in Y_{n+1} and since $\nu_x \varphi_x \in \End(D)^*$ for all $x \in Y_{n+1}$, by Lemma 6.3 there is a continuous map $\eta : Y_{n+1} \times [0,1] \to \End(D)^*$ which extends the restriction of α to $(Y \cap Y_{n+1}) \times [0,1] \cup Y_{n+1} \times \{0\}$. We conclude the construction of the desired homotopy by defining $H : D \to A(X) \otimes C[0,1]$ by $H(x,t) = h(x,t)$ for $(x,t) \in V \times [0,1]$ and $H(x,t) = \nu_x^{-1} \eta(x,t)$ for $(x,t) \in Y_{n+1} \times [0,1]$.

Lemma 6.5. Let D be a KK-semiprojective stable Kirchberg algebra. Let X be a compact metrizable space and Y, Z be closed subsets of X such that $X = Y \cup Z$. Suppose that $\gamma : D \to C(Y \cap Z) \otimes D$ is a full $*$-homomorphism which admits a lifting to a full $*$-homomorphism $\alpha : D \to C(Y) \otimes D$ such that $\alpha_x \in \End(D)^*$ for all $x \in Y$. Then the pullback $C(Y) \otimes D \oplus_{\pi_Y \cap \pi_Z, \gamma \pi_Y \cap \pi_Z} C(Z) \otimes D$ is isomorphic to $C(X) \otimes D$.

Proof. By Prop. 6.2 there is a \(\ast \)-homomorphism \(\eta : D \to C(Y) \otimes D \) such that \(\eta_x = \gamma_x \) for \(x \in Y \cap Z \) and such that \(\eta_x \in \text{Aut}(D) \) for \(x \in Y \setminus Z \). Using the short five lemma one checks immediately that the triplet \((\tilde{\eta}, \tilde{\gamma}, \text{id}_{C(Z) \otimes D}) \) defines a \(C(X) \)-linear isomorphism:

\[
C(X) \otimes D = C(Y) \otimes D \oplus \pi_{y \cap Z} \pi_{y \cap Z} C(Z) \otimes D \rightarrow C(Y) \otimes D \oplus \pi_{y \cap Z} \tilde{\eta} \pi_{y \cap Z} C(Z) \otimes D.
\]

\(\square \)

Lemma 6.6. Let \(D \) be a KK-semiprojective stable Kirchberg algebra. Let \(Y, Z \) and \(Z' \) be closed subsets of a compact metrizable space \(X \) such that \(Z' \) is a neighborhood of \(Z \) and \(X = Y \cup Z \). Let \(B \) be a \((Y) \)-algebra locally isomorphic to \(C(Y) \otimes D \) and let \(E \) be a \((Z') \)-algebra locally isomorphic to \(C(Z') \otimes D \). Let \(\alpha : E(Y \cap Z') \rightarrow B(Y \cap Z') \) be a \(\ast \)-monomorphism of \(C(Y \cap Z') \)-algebras such that \(KK(\alpha_x) \in KK(E(x), B(x))^{-1} \) for all \(x \in Y \cap Z' \). If \(\gamma = \alpha_{Y \cap Z} \), then \(B(Y) \oplus \pi_{y \cap Z} \gamma \pi_{y \cap Z} E(Z) \) is locally isomorphic to \(C(X) \otimes D \).

Proof. Since we are dealing with a local property, we may assume that \(B = C(Y) \otimes D \) and \(E = C(Z') \otimes D \). To simplify notation we let \(\pi \) stand for both \(\pi_{Y \cap Z} \) and \(\pi_{Z' \cap Z} \) in the sequel. Let us denote by \(H \) the \(C(X) \)-algebra \(C(Y) \otimes D \oplus \pi_{Y \cap Z} C(Z) \otimes D \). We must show that \(H \) is locally trivial. Let \(x \in X \). If \(x \notin Z \), then there is a closed neighborhood \(V \) of \(x \) which does not intersect \(Z \), and hence the restriction of \(H \) to \(V \) is isomorphic to \(C(V) \otimes D \), as it follows immediately from the definition of \(H \). It remains to consider the case when \(x \in Z \). Now \(Z' \) is a closed neighborhood of \(x \) in \(X \). The restriction of \(H \) to \(Z' \) is isomorphic to \(C(Y \cap Z') \otimes D \oplus \pi_{Y \cap Z} C(Z) \otimes D \). Since \(\gamma : Y \cap Z \rightarrow End(D)^{\ast} \) admits a continuous extension \(\alpha : Y \cap Z' \rightarrow End(D)^{\ast} \), it follows that \((H(Z')) \) is isomorphic to \(C(Z') \otimes D \) by Lemma 6.6. \(\square \)

Proposition 6.7. Let \(X, A, D \) and \(\sigma \) be as in Proposition 6.4. For any finite subset \(F \) of \(A \) and any \(\varepsilon > 0 \) there is a \(C(X) \)-algebra \(B \) which is locally isomorphic to \(C(X) \otimes D \) and there exists a \(C(X) \)-linear \(\ast \)-monomorphism \(\eta : B \rightarrow A \) such that \(F \subset \varepsilon(\eta(B)) \) and \(KK(\eta_x) \in KK(B(x), A(x))^{-1} \) for all \(x \in X \).

Proof. Let \(\psi_k : E_k = C(Y_k) \otimes D \rightarrow A(Y_k), k = 0, \ldots, n \) be as in the conclusion of Proposition 6.4. Strengthen as in Remark 1.8. Therefore we may assume that there is another \(n \)-fibered \(\{D\} \)-monomorphism \((\psi_0', \ldots, \psi_n') \) into \(B \) such that \(\psi_k : C(Y_k') \otimes D \rightarrow A(Y_k'), Y_k' \) is a closed neighborhood of \(Y_k \), and \(\pi_{Y_{k}} \psi_k \) extends to a \(\ast \)-monomorphism of \(X_k \)-algebras \(B_k, \eta_k \) and \(\gamma_k \) be as in Definition 2.24. \(B_0 \) and \(\eta_0 \) satisfy the conclusion of the proposition, except that we need to prove that \(B_0 \) is locally isomorphic to \(C(X) \otimes D \). We prove by induction on decreasing \(k \) that the \((X_k) \)-algebras \(B_k \) are locally trivial. Indeed \(B_n = C(X_n) \otimes D \) and assuming that \(B_k \) is locally trivial, it follows by Lemma 6.6 that \(B_{k-1} \) is locally trivial, since by 6.3

\[
B_{k-1} \cong B_k \oplus \pi_{\eta_k, \gamma_k^{-1}} E_{k-1} \cong B_k \oplus \pi_\pi \gamma_k E_{k-1}, \quad (\pi = \pi_{X_k \cap Y_{k-1}})
\]

and \(\gamma_k : E_{k-1}(X_k \cap Y_{k-1}) \rightarrow B_k(X_k \cap Y_{k-1}), (\gamma_k)_{x} = (\eta_k)^{-1}(\psi_{k-1})_{x} \), extends to a \(\ast \)-monomorphism \(\alpha : E_{k-1}(X_k \cap Y_{k-1}) \rightarrow B_k(X_k \cap Y_{k-1}), \alpha_x = (\eta_k)^{-1}(\psi_{k-1})_{x} \) and \(KK(\alpha_x) \) is a KK-equivalence since both \(KK((\eta_k)_{x}) \) and \(KK((\psi_{k-1})_{x}) \) are KK-equivalences. \(\square \)

7. When is a \(C(X) \)-algebra locally trivial

In this section we prove Theorems 1.1 - 1.5 and some of their consequences.

Proof of Theorem 1.2.
Proof. Let \(X \) denote the primitive spectrum of \(A \). Then \(A \) is a continuous \(C(X) \)-algebra and its fibers are stable Kirchberg algebras (see [5, 2.2.2]). Since \(A \) is separable, \(X \) is metrizable by Lemma 2.2. By Proposition 6.7, there is a sequence of \(C(X) \)-algebras \((A_k)_{k=1}^{\infty} \) locally isomorphic to \(C(X) \otimes D \) and a sequence of \(C(X) \)-linear \(* \)-monomorphisms \((\eta_k : A_k \to A)_{k=1}^{\infty}\), such that \(KK(\eta_k)_x \) is a KK-equivalence for each \(x \in X \) and \((\eta_k(A_k))_{k=1}^{\infty} \) is an exhaustive sequence of \(C(X) \)-subalgebras of \(A \). Since \(D \) is weakly semiprojective and KK-stable, after passing to a subsequence of \((A_k)\) if necessary, we find a sequence \((\sigma_k)_{k=1}^{\infty} \), \(\sigma_k \in KK(D, A_k) \) such that \(KK(\eta_k)_x \sigma_k = \sigma \) for all \(k \geq 1 \). Since both \(KK(\eta_k)_x \) and \(\sigma_x \) are KK-equivalences, we deduce that \((\sigma_k)_x \in KK(D, A_k(x))^{-1} \) for all \(x \in X \). By Proposition 6.4, for each \(k \geq 1 \) there is an isomorphism of \(C(X) \)-algebras \(\varphi_k : C(X) \otimes D \to A_k \) such that \(KK(\varphi_k) = \sigma_k \). Therefore if we set \(\theta_k = \eta_k \varphi_k \), then \(\theta_k \) is a \(C(X) \)-linear \(* \)-monomorphism from \(B \overset{def}{=} C(X) \otimes D \) to \(A \) such that \(KK(\theta_k) = \sigma \) and \((\theta_k(B))_{k=1}^{\infty} \) is an exhaustive sequence of \(C(X) \)-subalgebras of \(A \). Using again the weak semiprojectivity and the KK-stability of \(D \), and Lemma 4.1 after passing to a subsequence of \((\theta_k)_{k=1}^{\infty} \), we construct a sequence of finite sets \(F_k \subset B \) and a sequence of \(C(X) \)-linear \(* \)-monomorphisms \(\mu_k : B \to B \) such that

\[
\begin{align*}
(\text{i}) \quad & KK(\theta_{k+1} \mu_k) = KK(\theta_k) \quad \text{for all} \quad k \geq 1, \\
(\text{ii}) \quad & ||\theta_{k+1} \mu_k(a) - \theta_k(a)|| < 2^{-k} \quad \text{for all} \quad a \in F_k \quad \text{and} \quad k \geq 1, \\
(\text{iii}) \quad & \mu_k(F_k) \subset F_{k+1} \quad \text{for all} \quad k \geq 1, \\
(\text{iv}) \quad & \bigcup_{j=k+1}^{\infty} (\mu_{j-1} \circ \cdots \circ \mu_k)^{-1}(F_j) \quad \text{is dense in} \quad B \quad \text{and} \quad \bigcup_{j=k}^{\infty} \theta_j(F_j) \quad \text{is dense in} \quad A \quad \text{for all} \quad k \geq 1.
\end{align*}
\]

Arguing as in the proof of [28, Prop. 2.3.2], one verifies that

\[
\Delta_k(a) = \lim_{j \to \infty} \theta_j \circ (\mu_{j-1} \circ \cdots \circ \mu_k)(a)
\]

defines a sequence of \(* \)-monomorphisms \(\Delta_k : B \to A \) such that \(\Delta_{k+1} \mu_k = \Delta_k \) and the induced map \(\Delta : \lim_{\to k} (B, \mu_k) \to A \) is an isomorphism of \(C(X) \)-algebras. Let us show that \(\lim_{\to k} (B, \mu_k) \) is isomorphic to \(B \). To this purpose, in view of Elliott’s intertwining argument, it suffices to show that each map \(\mu_k \) is approximately unitarily equivalent to a \(C(X) \)-linear automorphism of \(B \). Since \(KK(\theta_k) = \sigma \), we deduce from (i) that \(KK((\mu_k)_x) = KK(\theta_k)_x \) for all \(x \in X \). By Proposition 6.4 this property implies that each map \(\mu_k \) is approximately unitarily equivalent to a \(C(X) \)-linear automorphism of \(B \). Therefore there is an isomorphism of \(C(X) \)-algebras \(\Delta : B \to A \). Let us show that we can arrange that \(KK(\Delta|_D) = \sigma \). By Theorem 5.1 there is a full \(* \)-homomorphism \(\alpha : D \to B \) such that \(KK(\alpha) = KK(\Delta)_x \sigma_x \). Since \(KK(\Delta)_x \sigma_x \in KK(D, D)^{-1} \), by Proposition 6.1 there is \(\Phi_i : D \to C(X) \otimes D \) such that \(\Phi_i \in Aut(C(X))(B) \) and \(KK(\Phi_i) = KK(\Delta)^{-1} \sigma_i \). Then \(\Phi = \Delta \Phi_1 : B \to A \) is an isomorphism such that \(KK(\Phi|_D) = KK(D, A(V))^{-1} \), for each \(v \in V \).

Dixmier and Douady [12] proved that a continuous field with fibers \(K \) over a finite dimensional locally compact Hausdorff space is locally trivial if and only if it verifies Fell’s condition, i.e. for each \(x_0 \in X \) there is a continuous section \(a \) of the field such that \(a(x) \) is a rank one projection for each \(x \) in a neighborhood of \(x_0 \). We have an analogous result:

Corollary 7.1. Let \(A \) be a separable \(C^* \)-algebra whose primitive spectrum \(X \) is Hausdorff and of finite dimension. Suppose that for each \(x \in X \), \(A(x) \) is KK-semiprojective, nuclear, purely infinite and stable. Then \(A \) is locally trivial if and only if for each \(x \in X \) there exist a closed neighborhood \(V \) of \(x \), a Kirchberg algebra \(D \) and \(\sigma \in KK(D, A(V)) \) such that \(\sigma_v \in KK(D, A(v)^{-1}) \) for each \(v \in V \).
Proof. One applies Theorem 1.2 for $D \otimes K$ and $A(V)$. \hfill \square

Proposition 7.2. Let ψ be a full endomorphism of a Kirchberg algebra D. If D is unital we assume that $\psi(1) = 1$ as well. Then the continuous $C[0, 1]$-algebra $E = \{ f \in C[0, 1] \otimes D : f(0) \in \psi(D) \}$ is locally trivial if and only if ψ is homotopic to an automorphism of D.

Proof. Suppose that E is trivial on some neighborhood of 0. Thus there is $s \in (0, 1]$ and an isomorphism $\theta : C[0, s] \otimes D \cong E[0, s]$. Since $E[0, s] \subset C[0, s] \otimes D$, there is a continuous path $\{(\theta_t)_{t \in [0, s]} : D \to E[0, s] \}$ such that $\theta_t \in \text{Aut}(D)$ for $0 < t \leq s$ and $\theta_0(D) = \psi(D)$. Set $\beta = \theta_0^{-1} \psi \in \text{Aut}(D)$. Then ψ is homotopic to an automorphism via the path $\{(\theta_t)_{t \in [0, s]} : D \to E[0, s] \}$. Conversely, if ψ is homotopic to an automorphism α, then by Theorem 4.4 there is a continuous path $\{(u_t)_{t \in (0, 1]} : D \to C[0, 1] \}$ of unitaries in D^+ such that $\lim_{t \to 0} \| \psi(d) - u_t \alpha(d) u_t^* \| = 0$ for all $d \in D$. The path $\{(u_t)_{t \in [0, 1]} : D \to C[0, 1] \}$ defined by $\theta_0 = \psi$ and $\theta_t = u_t \alpha u_t^*$ for $t \in (0, 1]$ induces a $C[0, 1]$-linear $*$-endomorphism of $C[0, 1] \otimes D$ which maps injectively $C[0, 1] \otimes D$ onto E. \hfill \square

Proof of Theorem 7.3.

Proof. For the first part we apply Theorem 1.2 for $D = \mathcal{O}_2 \otimes K$ and $\sigma = 0$. For the second part we assert that if D is a Kirchberg such that all continuous $C[0, 1]$-algebras with fibers isomorphic to D are locally trivial then D is stable and $KK(D, D) = 0$. Thus D is KK-equivalent to \mathcal{O}_2 and hence that $D \cong \mathcal{O}_2 \otimes K$ by [29] Thm. 8.4.1. The Kirchberg algebra D is either unital or stable [29] Prop. 4.1.3. Let $\psi : D \to D$ be a $*$-monomorphism such that $KK(D, \psi) = 0$ and such that $\psi(1_D) < 1_D$ if D is unital. By Proposition 7.2 ψ is homotopic to an automorphism of θ of D. Therefore D must be nonunital (and hence stable), since otherwise 1_D would be homotopic to its proper subprojection $\psi(1_D)$. Moreover $KK(\theta) = KK(D, \psi) = 0$ and hence $KK(D, D) = 0$ since θ is an automorphism. \hfill \square

We turn now to unital $C(X)$-algebras.

Theorem 7.3. Let A be a separable unital $C(X)$-algebra over a finite dimensional compact Hausdorff space X. Suppose that each fiber $A(x)$ is nuclear simple and purely infinite. Then A is isomorphic to $C(X) \otimes D$, for some KK-semiprojective unital Kirchberg algebra D, if and only if there is $\sigma \in KK(D, A)$ such that $K_0(\sigma)[1_D] = [1_A]$ and $\sigma_x \in KK(D, A(x))^{-1}$ for all $x \in X$. For any such σ there is an isomorphism of $C(X)$-algebras $\Phi : C(X) \otimes D \to A$ such that $KK(\Phi|_D) = \sigma$.

Proof. We verify the nontrivial implication. X is metrizable by Lemma 2.2. A is a continuous $C(X)$-algebra by Lemma 2.3. By Theorem 1.2 there is an isomorphism $\Phi : C(X) \otimes D \otimes K \to A \otimes K$ such that $KK(\Phi) = \sigma$. Since $K_0(\sigma)[1_D] = [1_A]$, and since $A \otimes K$ contains a full properly infinite projection, we may arrange that $\Phi(1_{C(X) \otimes D \otimes 1} \otimes 1_{11}) = 1_A \otimes \varepsilon_{11}$ after conjugating Φ by some unitary $u \in M(A \otimes K)$. Then $\varphi = \Phi|_{C(X) \otimes D \otimes 1}$ satisfies the conclusion of the theorem. \hfill \square

Proof of Theorem 7.4.

Proof. Let D be a KK-semiprojective unital Kirchberg algebra D such that every unital $*$-endomorphism of D is a KK-equivalence. Suppose that A is a separable unital $C(X)$-algebra over a finite dimensional compact Hausdorff space the fibers of which are isomorphic to D. We shall prove that A is locally trivial. By Theorem 7.3 it suffices to show that each point $x_0 \in X$ has a closed neighborhood
V for which there is \(\sigma \in KK(D, A(V)) \) such that \(K_0(\sigma)[1_D] = [1_{A(V)}] \) and \(\sigma_x \in KK(D, A(x))^{-1} \) for all \(x \in V \).

Let \((V_n)_{n=1}^\infty \) be a decreasing sequence of closed neighborhoods of \(x_0 \) whose intersection is \(\{x_0\} \). Then \(A(x_0) \cong \lim_{n \to \infty} A(V_n) \). By assumption, there is an isomorphism \(\eta : D \to A(x_0) \). Since \(D \) is KK-semiprojective, there is \(m \geq 1 \) such that \(KK(\eta) \) lifts to some \(\sigma \in KK(D, A(V_m)) \) such that \(K_0(\sigma)[1_D] = [1_{A(V_m)}] \). Let \(x \in V_m \). By assumption, there is an isomorphism \(\phi : A(x) \to D \).

The \(K_0 \)-morphism induced by \(KK(\phi)\sigma_x \) maps \([1_D] \) to itself. By Theorem 6.1 there is a unital \(\ast \)-homomorphism \(\psi : D \to A \) such that \(KK(\psi) = KK(\phi)\sigma_x \). By assumption we must have \(KK(\psi) \in KK(D, D)^{-1} \) and hence \(\sigma_x \in KK(D, A(x))^{-1} \) since \(\sigma \) is an isomorphism. Therefore \(A(V_m) \cong C(V_m) \otimes D \) by Theorem 7.4.

Conversely, let us assume that all separable unital continuous \(C[0,1] \)-algebras with fibers isomorphic to \(D \) are locally trivial. Let \(\psi \) be any unital \(\ast \)-endomorphism of \(D \). By Proposition 7.2 \(\psi \) is homotopic to an automorphism of \(D \) and hence \(KK(\psi) \) is invertible. \(\square \)

Proof of Theorem 7.4

Proof. Let \(A \) be as in Theorem 6.1 and let \(n \in \{2, 3, \ldots \} \cup \{\infty\} \). It is known that \(O_n \) satisfies the UCT. Moreover \(K_0(O_n) \) is generated by \(\{1_{O_n}\} \) and \(K_1(O_n) = 0 \). Therefore any unital \(\ast \)-endomorphism of \(O_n \) is a KK-equivalence. It follows that \(A \) is locally trivial by Theorem 1.4.

Suppose now that \(n = 2 \). Since \(KK(O_2, O_2) = KK(O_2, A) = 0 \), we may apply Theorem 1.4 with \(\sigma = 0 \) and obtain that \(A \cong C(X) \otimes O_2 \). Suppose now that \(n = \infty \). Let us define \(\theta : K_0(O_\infty) \to K_0(A) \) by \(\theta(\eta[1_{O_\infty}]) = k[1_A] \), \(k \in \mathbb{Z} \). Since \(O_\infty \) satisfies the UCT, \(\theta \) lifts to some element \(\sigma \in KK(O_\infty, A) \). By Theorem 1.4 it follows that \(A \cong C(X) \otimes O_\infty \). Finally let us consider the case \(n \in \{3, 4, \ldots \} \). Then \(K_0(O_n) = \mathbb{Z}/(n-1) \). Since \(O_n \) satisfies the UCT, the existence of an element \(\sigma \in KK(O_n, A) \) such that \(K_0(\sigma)[1_{O_n}] = [1_A] \) is equivalent to the existence of a morphism of groups \(\theta : \mathbb{Z}/(n-1) \to K_0(A) \) such that \(\theta(1) = [1_A] \). This is equivalent to requiring that \((n-1)[1_A] = 0 \). \(\square \)

As a corollary of Theorem 1.4 we have that \([X, Aut(O_\infty)] \) reduces to a point. The homotopy groups of the endomorphisms of the stable Cuntz-Krieger algebras were computed in [1]. Let \(v_1, \ldots, v_n \) be the canonical generators of \(O_n \), \(2 \leq n < \infty \).

Theorem 7.4. For any compact metrizable space \(X \) there is a bijection \([X, Aut(O_n)] \to K_1(C(X) \otimes O_n) \). The \(k \)-th homotopy group \(\pi_k(Aut(O_n)) \) is isomorphic to \(\mathbb{Z}/(n-1) \) if \(k \) is odd and it vanishes if \(k \) is even. In particular \(\pi_1(Aut(O_n)) \) is generated by the class of the canonical action of \(\mathbb{T} \) on \(O_n \), \(\lambda_z(v_i) = zv_i \).

Proof. Since \(O_n \) satisfies the UCT, we deduce that \(End(O_n)^* = End(O_n) \). An immediate application of Proposition 6.1 shows that the natural map \(Aut(O_n) \hookrightarrow End(O_n) \) induces an isomorphism of groups \([X, Aut(O_n)] \cong [X, End(O_n)] \). Let \(\iota : O_n \hookrightarrow C(X) \otimes O_n \) be defined by \(\iota(v_i) = 1_{C(X)} \otimes v_i \), \(i = 1, \ldots, n \). The map \(\psi \mapsto u(\psi) = \psi(v_1)u(v_1)^* + \cdots + \psi(v_n)u(v_n)^* \) is known to be a homeomorphism from \(Hom(O_n, C(X) \otimes O_n) \) to the unitary group of \(C(X) \otimes O_n \). Its inverse maps a unitary \(W \) to the \(\ast \)-homomorphism \(\psi \) uniquely defined by \(\psi(v_i) = Wv_i \), \(i = 1, \ldots, n \). Therefore

\[
[X, Aut(O_n)] \cong [X, End(O_n)] \cong \pi_0(U(C(X) \otimes O_n)) \cong K_1(C(X) \otimes O_n).
\]
The last isomorphism holds since $\pi_0(U(B)) \cong K_1(B)$ if $B \cong B \otimes O_\infty$, by \cite{28} Lemma 2.1.7. One verifies easily that if $\varphi \in \text{Hom}(O_n, C(X) \otimes O_n)$, then $u(\psi \varphi) = \psi(\varphi)(\psi)$ holds for all $\psi \in \text{Hom}(O_n, C(X) \otimes O_n)$. Therefore the bijection $\chi : [X, \text{End}(D)] \rightarrow K_1(C(X) \otimes O_n)$ is an isomorphism of groups whenever $K_1(\tilde{\psi}) = \text{id}$ for all $\psi \in \text{Hom}(O_n, C(X) \otimes O_n)$. Using the $C(X)$-linearity of $\tilde{\psi}$ one observes that this holds if the $n-1$ torsion of $K_0(C(X))$ reduces to $\{0\}$, since in that case the map $K_1(C(X)) \rightarrow K_1(C(X) \otimes O_n)$ is surjective by the Künneth formula.

Corollary 7.5. Let X be a finite dimensional compact metrizable space. The isomorphism classes of unital separable $C(SX)$-algebras with all fibers isomorphic to O_n are parameterized by $K_1(C(X) \otimes O_n)$.

Proof. This follows from Theorems 11.1 and 11.3 since the locally trivial principal H-bundles over $SX = X \times [0,1]/X \times \{0,1\}$ are parameterized by the homotopy classes $[X, H]$ if H is a path connected group \cite{17} Cor. 8.4]. Here we take $H = \text{Aut}(O_n)$. \hfill \square

Examples of nontrivial unital $C(X)$-algebras with fiber O_n over a $2m$-sphere arising from vector bundles were exhibited in \cite{36}, see also \cite{33}.

We need some preparation for the proof of Theorem 11.5. Let G be a group, let $g \in G$ and set $\text{End}(G, g) = \{\alpha \in \text{End}(G) : \alpha(g) = g\}$. The pair (G, g) is called weakly rigid if $\text{End}(G, g) \subset \text{Aut}(G)$ and rigid if $\text{End}(G, g) = \{\text{id}_G\}$.

Theorem 7.6. If G is a finitely generated abelian group, then (G, g) is weakly rigid if and only if (G, g) is isomorphic to one of the pointed groups from the list G of Theorem 11.3.

Proof. First we make a number of remarks.

1. (G, g) is weakly rigid if and only if $(G, \alpha(g))$ is weakly rigid for some (or any) $\alpha \in \text{Aut}(G)$. Indeed if $\beta \in \text{End}(G, g)$ then $\alpha \beta \alpha^{-1} \in \text{End}(G, \alpha(g))$.

2. By considering the zero endomorphism of G we see that if (G, g) is weakly rigid and $G \neq 0$ then $g \neq 0$.

3. If $(G \oplus H, g \oplus h)$ is weakly rigid, then so are (G, g) and (H, h).

4. Let us observe that (\mathbb{Z}^2, g) is not weakly rigid for any g. Indeed, if $g = (a, b) \neq 0$, then the matrix $\begin{pmatrix} 1 + b^2 & -ab \\ -ab & 1 + a^2 \end{pmatrix}$ defines an endomorphism α of \mathbb{Z}^2 such that $\alpha(g) = g$, but α is not invertible since $\det(\alpha) = 1 + a^2 + b^2 > 1$.

5. Let p be a prime and let $1 \leq e_1 \leq e_2$, $0 \leq s_1 < e_1$, $0 \leq s_2 < e_2$ be integers. If $(G, g) = (\mathbb{Z}/p^{e_1} \oplus \mathbb{Z}/p^{e_2}, p^{s_1} \oplus p^{s_2})$ is weakly rigid then $0 < s_2 - s_1 < e_2 - e_1$. Indeed if $s_1 \geq s_2$ then the matrix $\begin{pmatrix} 0 & p^{s_1-s_2} \\ p^{s_1-s_2} & 1 \end{pmatrix}$ induces a noninjective endomorphism of (G, g). Also if $s_1 < s_2$ and $s_2 - s_1 \geq e_2 - e_1$ then $p^{e_1}b = 0$ in \mathbb{Z}/p^{e_2}, where $b = p^{s_2-s_1}$ and so the matrix $\begin{pmatrix} 1 & 0 \\ 0 & b \end{pmatrix}$ induces a well-defined noninjective endomorphism of (G, g).

6. Let p be a prime and let $1 \leq k$, $0 \leq s < e$ be integers. Suppose that $(\mathbb{Z} \oplus \mathbb{Z}/p^e, k \oplus p^s)$ is weakly rigid. Then k is divisible by p^{s+1}. Indeed, seeking a contradiction suppose that k can be written as $k = p^tc$ where $0 \leq t \leq s$ and c are integers such that c is not divisible by p. Let d be
an integer such that $dc - 1$ is divisible by p^r. Then the matrix

\[
\begin{pmatrix}
1 & 0 \\
dp^s - t & 0
\end{pmatrix}
\]

induces a noninjective endomorphism of $(\mathbb{Z} \oplus \mathbb{Z}/p^r, k \oplus p^s)$.

Suppose now that (G, g) is weakly rigid. We shall show that (G, g) is isomorphic to one of the pointed groups from the list \mathcal{G}. Since G is abelian and finitely generated it decomposes as a direct sum of its primary components

\[(20) \quad G \cong \mathbb{Z}^r \oplus G(p_1) \oplus \cdots \oplus G(p_m)\]

where p_i are distinct prime numbers. Each primary component $G(p_i)$ is of the form

\[(21) \quad G(p_i) = \mathbb{Z}/p_i^{e_i+1} \oplus \cdots \oplus \mathbb{Z}/p_i^{e_i(n)}\]

where $1 \leq e_{i1} \leq \cdots \leq e_{in(i)}$ are positive integers. Corresponding to the decomposition we write the base point $g = g_0 \oplus g_1 \oplus \cdots \oplus g_m$ with $g_0 \in \mathbb{Z}^r$ and $g_i \in G(p_i)$ for $i \geq 1$. If g_{ij} is the component of g_i in \mathbb{Z}/p^{e_i}, then it follows from (1), (2) and (3) that we may assume that $g_{ij} = p^{s_{ij}}$ for some integer $0 \leq s_{ij} < e_{ij}$. Using (3) and (4) we deduce that $r = 1$ in (20) and that $g_0 = k \neq 0$ by (2). We may assume that $k \geq 1$ by (1). Then using (3) and (5) we deduce that for each $1 \leq i \leq m$, $0 < s_{ij+1} - s_{ij} < e_{ij+1} - e_{ij}$ for $1 \leq j < n(i)$. Finally, from (3) and (6) we see that k is divisible by the product $p_1^{s_{1n(1)}} \cdots p_m^{s_{mn(m)}}$. Therefore (G, g) is isomorphic to one of the pointed groups on the list \mathcal{G}.

Conversely, we shall prove that if (G, g) belongs to the list \mathcal{G} then (G, g) is weakly rigid. This is obvious if G is torsion free i.e. for $(\{0\}, 0)$ and (\mathbb{Z}, k) with $k \geq 1$.

Let us consider the case when G is a torsion group. Since

\[
\text{End}(G(p_1) \oplus \cdots \oplus G(p_m), g_1 \oplus \cdots \oplus g_m) \cong \bigoplus_{i=1}^m \text{End}(G(p_i), g_i)
\]

it suffices to assume that G is a p-group,

\[(G, g) = (\mathbb{Z}/p^{e_1} \oplus \cdots \oplus \mathbb{Z}/p^{e_n}, p^s \oplus \cdots \oplus p^s)\]

with $0 \leq s_i < e_i$ for $i = 1, \ldots, n$ and $0 < s_{i+1} - s_i < e_{i+1} - e_i$ for $1 \leq i < n$. For each $0 \leq i, j \leq n$ set $e_{ij} = \max\{e_i - e_j, 0\}$. It follows immediately that $s_i < e_{ij} + s_i$ for all $i \neq j$. Let $\alpha \in \text{End}(G, g)$. It is well-known that α is induced by a square matrix $A = [a_{ij}] \in M_n(\mathbb{Z})$ with the property that each entry a_{ij} is divisible by $p^{e_{ij}}$ and so $a_{ij} = p^{s_{ij}}b_{ij}$ for some $b_{ij} \in \mathbb{Z}$, see [10]. Since $\alpha(g) = g$, we have $\sum_{j=1}^n b_{ij}p^{e_{ij} + s_i} = p^s$ in \mathbb{Z}/p^{e_i} for all $0 \leq i \leq n$. Since $e_{ij} + s_i > s_i$ for $i \neq j$ and $e_i > s_i$ we see that $b_{ii} - 1$ must be divisible by p for all $1 \leq i \leq n$. Since $\det(A)$ is congruent to $b_{11} \cdots b_{nn}$ modulo p it follows that $\det(A)$ is not divisible by p and so $\alpha \in \text{Aut}(G)$ by [10].

Finally consider the case when $(G, g) = (\mathbb{Z} \oplus G(p_1) \oplus \cdots \oplus G(p_m), k \oplus g_1 \oplus \cdots \oplus g_m)$. If $\gamma \in \text{End}(G, g)$ then there exist $\alpha_i \in \text{End}(G(p_i), g_i)$ and $d_i \in G(p_i)$, $1 \leq i \leq n$, such that $\gamma(x_0 \oplus x_1 \oplus \cdots \oplus x_n) = x_0 \oplus (\alpha_1(x_1) + x_0d_1) \oplus \cdots \oplus (\alpha_m(x_m) + x_0d_m)$. Note that if each α_i is an automorphism then so is γ. Indeed, its inverse is $\gamma^{-1}(x_0 \oplus x_1 \oplus \cdots \oplus x_m) = x_0 \oplus (\alpha_1^{-1}(x_1) + x_0c_1) \oplus \cdots \oplus (\alpha_m(x_m)^{-1} + x_0c_m)$, where $c_i = -\alpha_i^{-1}(d_i)$. Therefore it suffices to consider the case $m = 1$, i.e.

\[(G, g) = (\mathbb{Z} \oplus \mathbb{Z}/p^{e_1} \oplus \cdots \oplus \mathbb{Z}/p^{e_n}, k \oplus p^{s_1} \oplus \cdots \oplus p^{s_n})\]

and (G, g) is on the list \mathcal{G} (e). In particular $k = p^{s_n + 1} \ell$ for some $\ell \in \mathbb{Z}$. Let $\gamma \in \text{End}(G, g)$. Then there exists $\alpha \in \text{End}(G(p))$ and $d \in G(p)$ such that $\gamma(x_0 \oplus x) = x_0 \oplus (\alpha(x) + x_0d)$. Just as above,
\(\alpha \) is induced by a square matrix \(A \in M_n(\mathbb{Z}) \) of the form \(A = [b_{ij} p^{s_{ij}}] \in M_n(\mathbb{Z}) \) with \(b_{ij} \in \mathbb{Z} \), \(e_{ij} = \max\{e_i - e_j, 0\} \). Since \(\gamma(g) = g \) we have that \(p^{s_{n+1} \ell d_i + \sum_{j=1}^n b_{ij} p^{s_{ij} + s_1} = p^{s_i} \) in \(\mathbb{Z}/p^s \) for all \(0 \leq i \leq n \), where the \(d_i \) are the components of \(d \). By reasoning as in the case when \(G \) was a torsion group considered above, since \(s_{n+1} > s_i \) for all \(1 \leq i \leq n \), \(e_i + s_j > s_i \) for all \(i \neq j \) and \(e_i > s_i \), it follows again that each \(b_{ii} - 1 \) is divisible by \(p \) and that the endomorphism \(\alpha \) of \(G(p) \) induced by the matrix \(A \) is an automorphism. We conclude that \(\gamma \) is an endomorphism.

Proof of Theorem 1.5

(i) By Theorem 1.4 both \(\mathcal{O}_2 \) and \(\mathcal{O}_\infty \) have the automatic triviality property. Conversely, suppose that \(D \) has the automatic triviality property, where \(D \) is a unital Kirchberg algebra satisfying the UCT and such that \(K_*(D) \) is finitely generated. We shall prove that \(D \) is isomorphic to either \(\mathcal{O}_2 \) or \(\mathcal{O}_\infty \).

Let \(Y \) be a finite connected CW-complex and let \(\iota : D \to C(Y) \otimes D \) be the map \(\iota(d) = 1 \otimes d \). Let \([D,C(Y) \otimes D]\) denote the homotopy classes of unital \(*\)-homomorphisms from \(D \) to \(C(Y) \otimes D \). By Theorem 3.1 the image of the map \(\Delta : [D,C(Y) \otimes D] \to KK(D,C(Y) \otimes D) \) defined by \([\varphi] \mapsto KK(\varphi) - KK(\iota) \) coincides with the kernel of the restriction morphism \(\rho : KK(D,C(Y) \otimes D) \to KK(C1_D,C(Y) \otimes D) \).

We claim that \(\ker \rho \) must vanish for all \(Y \). Let \(h \in \ker \rho \). Then there is a unital \(*\)-homomorphism \(\varphi : D \to C(Y) \otimes D \) such that \(\Delta[\varphi] = h \). By Theorem 1.4 each unital endomorphism of \(D \) induces a \(KK \)-equivalence. Therefore, by Proposition 3.1 there is a \(*\)-homomorphism \(\Phi : D \to (C(Y) \otimes D) \) such that \(\Phi_y \in \text{Aut}(D) \) for all \(y \in Y \) and \(KK(\Phi) = KK(\varphi) \). Therefore \(\Delta[\Phi] = KK(\Phi) - KK(\iota) = h \). By hypothesis, the Aut(\(D \))-principal bundle constructed over the suspension of \(Y \) with characteristic map \(y \mapsto \Phi_y \) is trivial. It follows then from [17, Thm. 8.2 p85] that this map is homotopic to the to the constant map \(Y \to \text{Aut}(D) \) which shrinks \(Y \) to id_\(D \). This implies that \(\Phi \) is homotopic to \(\iota \) and hence \(h = 0 \).

Let us now observe that \(\ker \rho \) contains subgroups isomorphic to \(\text{Hom}(K_1(D),K_1(D)) \) and \(\text{Ext}(K_0(D),K_0(D)) \) if \(Y = T \), since \(D \) satisfies the UCT. It follows that both these groups must vanish and so \(K_1(D) = 0 \) and \(K_0(D) \) is torsion free. On the other hand, \((K_0(D),[1_D]) \) is weakly rigid by the first part of the proof. Since \(K_0(D) \) is torsion free we deduce from Theorem 7.1 that either \(K_0(D) = 0 \) in which case \(D \cong \mathcal{O}_2 \) or that \((K_0(D),[1_D]) \cong (\mathbb{Z},k) \), \(k \geq 1 \), in which case \(D \cong M_k(\mathcal{O}_\infty) \) by the classification theorem of Kirchberg and Phillips.

To conclude the proof, it suffices to show that \(\ker \rho \neq 0 \) if \(D = M_k(\mathcal{O}_\infty), k \geq 2 \) and \(Y \) is the two-dimensional space obtained by attaching a disk to a circle by a degree-k map. Since \(K_0(C(Y) \otimes \mathcal{O}_\infty) \cong \mathbb{Z} \oplus \mathbb{Z}/k \) we can identify the map \(\rho \) with the map \(\mathbb{Z} \oplus \mathbb{Z}/k \to \mathbb{Z} \oplus \mathbb{Z}/k, x \mapsto kx \) and so \(\ker \rho \cong \mathbb{Z}/k \neq 0 \) if \(k \geq 2 \). \(\square \)
Added in proof. Some of the results from this paper are further developed in [9]. Theorem 1.2 was shown to hold for all stable Kirchberg algebras D. The assumption that X is finite dimensional is essential. Theorem 1.1. Theorem 1.5 (ii) extends as follows: O_2, O_∞, and $B \otimes O_\infty$, where B is a unital UHF algebra of infinite type, are the only unital Kirchberg algebras which satisfy the UCT and have the automatic triviality property.

References

[1] B. Blackadar. Shape theory for C*-algebras. *Math. Scand.*, 56(2):249–275, 1985.

[2] B. Blackadar. *K-theory for operator algebras*, volume 5 of *Mathematical Sciences Research Institute Publications*. Cambridge University Press, Cambridge, second edition, 1998.

[3] É. Blanchard. Déformations de C*-algèbres de Hopf. *Bull. Soc. Math. France*, 124(1):141–215, 1996.

[4] É. Blanchard and E. Kirchberg, Global Glimm halving for C*-bundles. *J. Oper. Theory*, 52:385–420, 2004.

[5] É. Blanchard and E. Kirchberg. Non-simple purely infinite C*-algebras: the Hausdorff case. *J. Funct. Anal.*, 207:461–513, 2004.

[6] L. G. Brown. Stable isomorphism of hereditary subalgebras of C*-algebras. *Pacific J. Math.*, 71:335–348, 1977.

[7] J. Cuntz. On the homotopy groups of the space of endomorphisms of a C*-algebra (with applications to topological Markov chains). In *Operator algebras and group representations, Vol. I (Neptun, 1980)*, volume 17 of *Monogr. Stud. Math.*, pages 124–137. Pitman, Boston, MA, 1984.

[8] J. Cuntz and W. Krieger. A class of C*-algebras and topological Markov chains. *Invent. Math.*, 56:251–268, 1980.

[9] M. Dadarlat. Fiberwise KK-equivalence of continuous fields of C*-algebras *Journal of K-Theory* 3(2): 205–219, 2009.

[10] M. Dadarlat and G. A. Elliott. One-parameter Continuous Fields of Kirchberg algebras. *Comm. Math. Phys.* 274(3): 795–819, 2007

[11] M. Dadarlat and C. Pasnicu. Continuous fields of Kirchberg C*-algebras. *J. Funct. Anal.*, 226:429–451, 2005.

[12] J. Dixmier. C*-algebras. North Holland, Amsterdam, 1982.

[13] S. Eilenberg and N. Steenrod. *Foundations of algebraic topology*. Princeton University Press, Princeton, New Jersey, 1952.

[14] S. Eilers and T. A. Loring. Computing contingencies for stable relations. *Internat. J. Math.*, 10(3):301–326, 1999.

[15] J. M. G. Fell. The structure of algebras of operator fields. *Acta Math.*, 106:233–280, 1961.

[16] C. J. Hillar and D. L. Rhea. Automorphisms of finite abelian groups. *Amer. Math. Monthly*, 114(10):917–923, 2007.

[17] D. Husemoller. *Fibre Bundles*. Number 20 in Graduate Texts in Mathematics. Springer Verlag, New York, 3rd edition, 1966, 1994.

[18] G. G. Kasparov. Equivariant KK-theory and the Novikov conjecture. *Invent. Math.*, 91(1):147–201, 1988.

[19] E. Kirchberg. The classification of purely infinite C*-algebras using Kasparov’s theory. preprint, 1994.

[20] E. Kirchberg. Das nicht-kommutative Michael-auswahlprinzip und die klasifikation nicht-einfacher algebren. In *C*-algebras, pages 92–141, Berlin, 2000. Springer. (Münster, 1999).

[21] E. Kirchberg and M. Rørdam. Non-simple purely infinite C*-algebras. *Amer. J. Math.*, 122(3):637–666, 2000.

[22] E. Kirchberg and M. Rørdam. Infinite non-simple C*-algebras: absorbing the Cuntz algebra O_∞. *Advances in Math.*, 167(2):195–264, 2002.

[23] E. Kirchberg and S. Wassermann. Operations on continuous bundles of C*-algebras. *Math. Ann.*, 303(4):677–697, 1995.

[24] H. Lin. Weak semiprojectivity in purely infinite C*-algebras. *Canad. J. Math.*, 59(2): 343–371, 2007.

[25] T. Loring. *Lifting Solutions to Perturbing Problems in C*-Algebras*, volume 8 of *Fields Institute Monographs*. Amer. Math. Soc., Providence, Rhode Island, 1997.

[26] B. Neubüser. *Semiautomativitität und Realisierungen von rein unendlichen C*-Algebren*. PhD thesis, Universität Münster, 2000. Preprintreihe des SFB 478 — Geometrische Strukturen in der Mathematik; Heft 118.

[27] M. Nilsen. C*-bundles and $C_0(X)$-algebras. *Indiana Univ. Math. J.*, 45(2):463–477, 1996.
[28] N. C. Phillips. A classification theorem for nuclear purely infinite simple C^\ast-algebras. Documenta Math., (5):49–114, 2000.

[29] M. Rørdam. Classification of nuclear, simple C^\ast-algebras, volume 126 of Encyclopaedia Math. Sci. Springer, Berlin, 2002.

[30] M. Rørdam. Stable C^\ast-algebras. In Operator algebras and applications, volume 38 of Adv. Stud. Pure Math., pages 177–199. Math. Soc. Japan, Tokyo, 2004.

[31] J. Rosenberg and C. Schochet. The K"unneth theorem and the universal coefficient theorem for Kasparov's generalized K-functor. Duke Math. J., 55(2):431–474, 1987.

[32] J. S. Spielberg. Weak semiprojectivity for purely infinite C^\ast-algebras. Canad. Math. Bull. 50(3): 460–468, 2007.

[33] J. S. Spielberg. Semiprojectivity for certain purely infinite C^\ast-algebras. Trans. Amer. Math. Soc., 361(6):2805–2830, 2009.

[34] W. Szymański. On semiprojectivity of C^\ast-algebras of directed graphs. Proc. Amer. Math. Soc., 130(5):1391–1399, 2002.

[35] E. Vasselli. The C^\ast-algebra of a vector bundle of fields of Cuntz algebras. J. Funct. Anal., 222(2):491–502, 2005.

[36] E. Vasselli. Bundles of C^\ast-algebras and the $KK(X;\cdot,\cdot)$-bifunctor. In C^\ast-algebras and elliptic theory, Trends Math., pages 313–327, Basel, 2006. Birkhäuser.

[37] S. Wassermann. Private communication.

[38] G. W. Whitehead. Elements of homotopy theory, volume 61 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1978.