Recombinase polymerase amplification assay for rapid detection of the root-knot nematode Meloidogyne enterolobii

Sergei A. SUBBOTIN *

Plant Pest Diagnostic Center, California Department of Food and Agriculture, 3294 Meadowview Road, Sacramento, CA 95832, USA

Received: 15 July 2018; revised: 23 August 2018
Accepted for publication: 23 August 2018; available online: 16 October 2018

Summary – Rapid diagnosis tools for detection of root-knot nematodes play an important role in the disease control and eradication programme. Recombinase polymerase amplification (RPA) assays were developed targeting the IGS rRNA gene of the pacara earpod tree root-knot nematode, Meloidogyne enterolobii. The RPA assays using TwistAmp® Basic and TwistAmp® exo kits allowed detection of M. enterolobii from gall tissues and crude nematode extracts of all stages of target species without a DNA extraction step. The results of real-time RPA assays using a real-time fluorescent detection of a series of crude nematode extracts showed reliable detection with sensitivity of 1/10 of a second-stage juvenile in a RPA reaction tube after 15-20 min. The RPA assay provides affordable, simple, fast and sensitive detection of M. enterolobii.

Keywords – diagnostics, exo probe, pacara earpod tree.

Nearly 100 valid species of root-knot nematodes have been described to date (Hunt & Handoo, 2009). They include agriculturally important species Meloidogyne incognita (Kofoid & White, 1919) Chitwood, 1949, M. javanica (Treub, 1885) Chitwood, 1949, M. arenaria (Neal, 1889) Chitwood, 1949, and M. hapla Chitwood, 1949, which are distributed worldwide in agricultural areas. The pacara earpod tree root-knot nematode, M. enterolobii Yang & Eisenback, 1983, is another agricultural pest but with more limited distribution. Meloidogyne enterolobii is a tropical or subtropical nematode and has a broad host range, including cultivated plants and weeds. It is now considered to be one of the most important root-knot nematode species as it displays wide virulence and can develop on crop genotypes carrying several root-knot nematode resistance genes in economically important crops, including tomato, soybean, cowpea and peppers, and has a higher pathogenicity and reproductive potential than either M. incognita or M. arenaria (Anonymous, 2014, 2016). In North America, M. enterolobii has been found in the USA in Florida (Brito et al., 2004), North Carolina (Ye et al., 2013), and in Mexico (Ramírez-Suárez et al., 2014).

Presently, M. enterolobii is considered under the highest A rating in California as a pest that has not been known to occur or is under official control in the State of California. This nematode has never been detected in regulatory samples collected during the California Department of Food and Agriculture’s (CDFA) nematode control and phytosanitary certification programmes or through statewide nematode surveys of host plants grown in agricultural production sites and nurseries in California. California has a suitable climate and hosts for M. enterolobii and, if introduced, the species is likely to become widespread (Chitambar, 2016).

The use of DNA analysis is now essential for accurate identification of root-knot nematodes at the species level. Several molecular techniques have been developed for identification of M. enterolobii, including sequencing of the IGS rRNA gene (Bloks et al., 1997), the intergeneric mitochondrial region between the COII and IRNA genes (Bloks et al., 2002; Brito et al., 2004), ITS rRNA (Brito et al., 2004).
Materials and methods

Nematode samples

Two isolates of *M. enterolobii* were obtained from Drs J. Brito (Division of Plant Industry, Florida Department of Agriculture and Consumer Services (FDACS), Gainesville, FL, USA) and P. Roberts (University of California Riverside (UCR), Riverside, CA, USA) for RPA assay development. Second-stage juveniles (J2) and males from root and soil samples were extracted using the centrifugal-flotation method (Coolen, 1979). The ITS and IGS rRNA genes were sequenced from each isolate to confirm its identity. DNA of several root-knot nematodes: *M. arabiﬁca* López & Salazar, 1989 (Costa Rica), *M. ethiopica* Whitehead, 1968 (Brazil), *M. himalayensis* Hirschmann, 1986 (Brazil), *M. izalcoensis* Carneiro, Almeida, Gomes & Hernández, 2005 (El Salvador), *M. moroccensis* Ramhah & Hirschmann, 1990 (Brazil), and *M. paranaensis* Carneiro, Carneiro, Abrantes, Santos & Almeida, 1996 (Brazil), provided by Dr Valerie Williamson (University of California Davis (UCD), Davis, CA, USA); *M. arenaria*, *M. floridensis* Handoo, Nyczepir, Esimenjaud, van der Beek, Castagnone-Sereno, Carta, Skantar & Higgins, 2004 and *M. javanica* (all from Florida, USA) provided by Dr J. Brito (FDACS); and *M. incognita* and *M. hapla* (all from California, USA) from the CDFA collection were also used in this study-for-speciﬁcity experiment. These nematode samples were previously identiﬁed by morphological and molecular methods (Pagan et al., 2015).

Eight DNA samples named here as ﬁeld samples and identiﬁed as positive for the presence of *M. enterolobii* were provided by Dr W. Ye (Agronomic Division of the North Carolina Department of Agriculture and Consumer Services (NCDA), Raleigh, NC, USA) from North Carolina and Dr J. Brito (FDACS) from Florida, USA. The nematode species from ﬁeld samples were identiﬁed by sequencing of the NAD5 barcode gene (Janssen et al., 2016), partial 28S rRNA gene (Tenente et al., 2004) or isozymes (Brito et al., 2008). These samples were used to evaluate and validate the practical application of RPA assay.

Free-living and plant-parasitic nematodes were extracted using the centrifugal–ﬂotation method from several ﬁeld samples collected in California, and their extracts were used as a background non-target DNA in an experiment of real-time RPA assays.

Nematode extracts

Two methods were used for destruction and homogenisation of nematodes. The ﬁrst method included cutting J2 or males using a dental stainless-steel needle into **15 μl** (samples with protease K) or **20 μl** (samples with crude nematode extract) distilled water on a glass slide under a binocular microscope. Cut nematodes in water were transferred into a 0.2 ml Eppendorf tube. In the experiment with extraction using protease K, **3 μl** of this enzyme (**600 μg ml**⁻¹) (Promega) and **2 μl** of **10X PCR buffer** (*Taq* PCR Core Kit, Qiagen) were added to each tube. The tubes were incubated at **55°C** (30 min) and **95°C** (10 min) consecutively. The second method included a homogenisation of different stages of nematodes in a Screw Cap
microtube (Sarstedt) with 250 μl of distilled water and a glass bead (5 mm) using a Mini BeadBeater (Biospec Product) (speed: 42; time: 1 min) (Fig. 1). Several different extracts in a total volume of 250 μl of water were prepared: i) five J2; ii) 50 J2; iii) single female; and iv) gall tissue with one or more females and egg masses. Different dilutions were prepared from nematode extracts for sensitivity assays. Crude extract of non-target and non-root-knot nematodes were obtained from homogenisation of several hundred soil free-living and plant parasitic nematodes in 250 μl of water.

RPA PRIMER DESIGN AND TESTING

A total of 15 RPA primers specific to *M. enterolobii* and universal to root-knot nematodes were manually designed based on species sequence polymorphisms in the IGS rRNA gene. Primers were synthesised by Integrated DNA Technologies. The primers were firstly screened in different combinations using the TwistAmp® Basic kit (TwistDx). Reactions were assembled according to the manufacturer’s instructions. The lyophilised reaction pellets were suspended in 29.5 μl of rehydration buffer, 2.4 μl of each forward and reverse primers (10 μM), 1 μl of DNA template obtained using the first method of nematode extraction and 12.2 μl of distilled water. For each sample, 2.5 μl of 280 mM magnesium acetate were added and mixed. Tubes were incubated at 37°C (4 min) in a MyBlock Mini Dry Bath (Benchmark Scientific) then inverted 8-10 times to mix, briefly centrifuged and returned to the incubator block (37°C, 56 min). Amplification products were purified with QIAquick PCR Purification Kit (Qiagen). Six μl of product were run in a 1% TAE-buffered agarose gel (100 V, 40 min) and visualised with ethidium bromide. Amplification products were directly sequenced by Quintara Biosciences using amplification primers.

REAL TIME RPA ASSAY

Three TwistAmp® exo probes were initially designed according to the manufacturer’s instructions. Probes were synthesised by Biosearch Technologies. Probes were tested in the same conditions as described below and only one probe was selected for the assay (Fig. 2) based on best amplification results. The real time detection of RPA
Fig. 2. The fragment of alignment of the IGS rRNA gene sequences for several root-knot nematodes, *Meloidogyne*, with the positions of RPA primers and probe used in the present study.

 assay products was accomplished using TwistAmp® exo kit (TwistDx). The reaction mixture for each RPA assay contained 2.1 μl of each forward and reverse primers (10 μM), 0.6 μl (10 μM) of exo probe, 1 or 5 μl template and water bringing the volume to 47.5 μl per sample. DNA templates were obtained using the first and second method of nematode extraction. Magnesium acetate solution provided with the kit in a volume of 2.5 μl was added to the lid of the tube and the lids were closed carefully. The tubes were briefly centrifuged to spin the magnesium acetate into the reaction mixture and initiate reactions simultaneously. The reaction tubes were incubated at 37°C for 4 min in a MyBlock Mini Dry Bath, then inverted vigorously 8-10 times to mix, and briefly centrifuged. The tubes were immediately placed in Applied Biosystems™ QuantStudio™ 6 Flex Real-Time PCR System to incubate at 39°C for 25-30 min (Fig. 1). The fluorescence signal was monitored in real-time, and measured every 20 s (cycle) using the FAM channel. Positive control with *M. enterolobii* and negative control without any nematode DNA were included in runs. Three replicates of each variant in at least two runs were performed for sensitivity and specificity experiments.

Results

RPA detection

Among several combinations of 15 primers, the forward species-specific primer for *M. enterolobii* paired with the reverse universal tropical root-knot nematode group RPA primer was found to be optimal (Table 1; Fig. 2) and used for the assay. These primers are modified versions of the primers proposed by Long et al. (2006) for conventional PCR. The primer set reliably and specifically amplified the target gene fragment of the IGS region. Using the TwistAmp® Basic kit, the RPA generated a strong band with ca 240 bp in length and a weak band with ca 500 bp in length on a gel (Fig. 3). The amplicon of ca 240 bp had a unique sequence for *M. enterolobii* that was confirmed by direct sequencing of this product. Sequence identity of a weak band was not identified. Non-specific weak bands were also observed for some samples with other root-knot nematode species (data not shown).

Real time RPA detection and sensitivity

In the results of analysis of experiment series, which included 25 runs containing positive controls and negative controls with water and non-target DNA, the threshold level for the reliable *M. enterolobii* detection was established as equal to 30 cycles (ΔRn = 10 min) and baseline to 500 000 (ΔRn) fluorescence level with the TwistAmp® exo kit using Applied Biosystems™ QuantStudio™ 6 Flex Real-Time PCR System. Samples that produced an exponential amplification curve above the threshold were }

Real time RPA assay of field samples

To evaluate and validate the practical application of the RPA assay, samples containing DNA of root-knot nematodes obtained from nematological field surveys in California, Florida and North Carolina, commercial samples shipped to the CDFA from Florida and other states, and control samples containing *M. enterolobii* DNA were tested. Two replicates were performed for this experiment.
Table 1. RPA primers and probe for amplification of *Meloidogyne enterolobii* DNA.

Primer or probe	Sequence (5′ → 3′)
Menter-RPA-F	GAT AAC TTT TGT GAA AGT GCC GCTG
Meloid-RPA-R	ACA TCA GTT CAG GCA GGA TCA ACC
Probe-Ment-exoIGS	TTA TTC TAA AAT TAT CAA TAT AAT CAA [FAM-dT]AT [THF]AA [BHQ1-dT]GA CAG CTT AAT TAC

FAM: fluorophore; THF: tetrahydrofuran; BHQ: quencher; C3: spacer block.

considered as positive for *M. enterolobii* and below the threshold were considered as negative. Detection of all nematode stages of *M. enterolobii* was confirmed with samples provided by FDACS and UCR using the TwistAmp® exo kit (Fig. 4A). The sensitivity of the assay was tested in variants with serial dilutions (1, 1:2, 1:10 and 1:100) of crude nematode extractions obtained from extracts with five J2 and 50 J2 per 250 μl of water. At least three replicates of each variant were included in runs. The reliable detection level of *M. enterolobii* for the samples was estimated as 1/10 of a J2 in a RPA reaction tube (Fig. 4B). The detection was confirmed in the presence of non-target background crude nematode extract (Fig. 4C). The assay allowed detecting a crude extract of one female per 250 μl of water in a sample or 1/50 of female in a RPA reaction tube (Fig. 4D). This method also detected nematodes in an extract from plant gall tissues containing up to single females with an egg-mass per 250 μl of water (Fig. 4D).

REAL-TIME RPA SPECIFICITY

The RPA assay was tested for specificity using DNA extracted from other related root-knot nematodes. These nematodes included: *M. arabicida*, *M. arenaria*, *M. ehiotopica*, *M. floridensis*, *M. hapla*, *M. hispanica*, *M. incognita*, *M. izalcoensis*, *M. javanica*, *M. morocciensis* and *M. paranaensis*. The experiment was repeated in two runs. The RPA showed high specificity to *M. enterolobii* only and no cross-reactions were observed against other root-knot nematode species (Fig. 4E).

REAL TIME RPA ASSAY OF FIELD SAMPLES

The assay was validated using eight DNA extracts from field samples from Florida and North Carolina containing *M. enterolobii* alone or in a mixture with other nematode species and 10 DNA extracts from field samples containing J2 of other non-target root-knot nematode species. The RPA assay with several runs showed strong signals for the presence of *M. enterolobii* in eight field samples with this nematode and signals below the threshold level in all samples in which DNA of this nematode was absent (Fig. 4F).

Discussion

In this study, an RPA method for the affordable, simple, fast and sensitive detection of *M. enterolobii* is developed and described. RPA assay was developed using Applied Biosystems™ QuantStudio™ 6 Flex Real-Time PCR. This method allows simultaneous analysis of samples in a 96-well plate. Currently, the cost of a RPA reaction is estimated to be in the range US$4.3-5.5 (Daher et al., 2016; Londoño et al., 2016), and this cost is higher than for PCR. However, the total price of detection for single samples by RPA may be comparable with PCR if lower labour costs due to the shorter time of RPA assay and an

![Fig. 3. RPA amplicon of the partial IGS rRNA gene on agarose gel. Lanes: M = 100 bp DNA marker (Promega); 1 = RPA amplicon obtained after 1 h at 37°C with Menter-RPA-F and Meloid-RPA-R primers using the TwistAmp® Basic kit.](image-url)
Fig. 4. RPA assays using a real-time fluorescent detection. A: Real-time amplification plot from one of the detection assay runs. Nematode extracts were obtained by two different methods from four *Meloidogyne enterolobii* samples; B: Real-time amplification plot from the sensitivity assay run with different diluted crude J2 extracts of *M. enterolobii*; C: Real-time amplification plot from one of the RPA assay runs with a crude extract of *M. enterolobii* and same amount of this extract plus background, non-target nematode extracts; D: Real-time amplification plot from the RPA assay with crude extracts of females and gall tissues; E: Real-time amplification plot from one of the specificity assay runs. DNA templates from several *Meloidogyne* species were used in this study; F: Real-time amplification plot from one of the RPA assay runs of field samples from Florida and North Carolina. The vertical line on a graph – fluorescence ΔRn. ΔRn is calculated at each cycle as DRn (cycle) = Rn (cycle) − Rn (baseline), where Rn = normalised reporter. The horizontal line on a graph = cycles, each cycle = 20 s.
exclusion of time-consuming DNA extraction procedure are considered.

The real-time RPA assay requires establishing the baseline value and threshold level for *M. enterolobii* detection. Because of the presence of a fluorescent background, a baseline for reliable detection of a target nematode had to be experimentally established. The threshold level in this study was estimated based on analysis of the fluorescent background of negative samples in 25 independent runs and fluorescent signals of positive samples. Two parameters correlating to the amount of template were considered: the onset time of detectable amplification and fluorescence intensity. In the Flex Real-Time PCR System, threshold cycle was estimated as 30 cycles (=10 min) and baseline value was equal to 500 000 (ΔRn) fluorescence level. These values may vary across other real-time PCR instruments.

RPA has good flexibility to be adapted to various detection systems. For example, instead of using a cost-effective heat block, portable fluorescence readers (ESE-Quant, Qiagen; Genie, OptiGene; T8-ISO, TwistDX; and others) can be used, which are simpler and less expensive than a real-time PCR machine and can be run on battery power for use in the field (James & Macdonald, 2015; Daher et al., 2016).

RPA has some important advantages over PCR methods, the first being that it uses crude nematode extract for the analysis instead of DNA extracts, which are required for PCR assays. The second advantage is that results are available in 15-20 min for RPA vs 1.5-3.0 h for PCR assays. The RPA assay has also some important advantages over other isothermal technique such as LAMP, because it uses shorter primers and a shorter run time than LAMP technology. Real-time RPA detection is performed with fluorescent probes in a closed-tube assay format, avoiding downstream cross-contamination, which is often problematic with LAMP (Daher et al., 2016). When comparing the practical applicability of RPA, PCR and LAMP techniques, RPA is the easiest to perform and the reagents are very stable.

Although the reliable detection limit of this RPA assay is comparable with those for conventional and real-time PCR (Braun-Kiewnick et al., 2016), there remains the capacity to improve this parameter by adjusting 250 μl of water to a smaller sample volume before destruction and homogenisation of nematodes, as well as by increasing the template amount in a RPA reaction mixture. Nevertheless, other improvements could be made to the technique. In the described approach, we tested crude nematode and plant gall extracts for RPA. Testing of nematode extracts directly from soil samples with quantification could be proposed as a future development of this method. However, detailed analysis of some possible factors and inhibitors influencing the efficiency of RPA should be carefully tested and considered. Thus, the RPA assays have great potential for being applied and implemented in testing programmes on root-knot nematodes in diagnostics laboratories, contributing a timely and reliable identification of these pests and thereby minimising the risk of their spread.

Acknowledgements

The author thanks Drs J. Brito (FDACS), W. Ye (NCD), P. Roberts (UCR) and V. Williamson (UCD) for providing root-knot nematode samples, P. Woods (CDFA) for assistance with Flex Real-Time PCR System, and Drs C. Blomquist (CDFA), J.J. Chitambar (CDFA) and anonymous reviewers for critical reading and correction of the manuscript. This work was supported by a FarmBill grant (16-8506-2005-CA).

References

Anonymous (2014). *Meloidogyne enterolobii*, Bulletin OEPP/EPPO Bulletin 44, 159-163. DOI: 10.1111/epb.12120

Anonymous (2016). *Meloidogyne enterolobii*, Bulletin OEPP/EPPO Bulletin 46, 190-201. DOI: 10.1111/epb.12293

Babu, B., Ochoa-Corona, F.M. & Paret, M.L. (2018). Recombinase polymerase amplification applied to plant virus detection and potential implications. *Analytical Biochemistry* 546, 72-77.

Blok, V.C., Phillips, M.S. & Fargette, M. (1997). Comparison of sequence differences in the intergenic region of the ribosomal cistron of *Meloidogyne mayaguensis* and the major tropical root-knot nematodes. *Journal of Nematology* 29, 16-22.

Blok, V.C., Wishart, J., Fargette, M., Berthier, K. & Phillips, M.S. (2002). Mitochondrial DNA differences distinguishing *Meloidogyne mayaguensis* from the major species of tropical root-knot nematodes. *Nematology* 4, 773-781. DOI: 10.1163/156854102760402559

Braun-Kiewnick, A., Viaene, N., Folcher, L., Ollivier, F., Anthonie, G., Niere, B., Sapp, M., van de Vossenberg, B., Toktay, H. & Kiewnick, S. (2016). Assessment of a new qPCR tool for the detection and identification of the root-knot nematode *Meloidogyne enterolobii* by an international test performance study. *European Journal of Plant Pathology* 144, 97-108. DOI: 10.1007/s10658-015-0754-0
Brito, J., Powers, T.O., Mullin, P.G., Inserra, R.N. & Dickson, D.W. (2004). Morphological and molecular characterisation of Meloidogyne mayaguensis isolates from Florida. Journal of Nematology 36, 232-240.

Brito, J.A., Kaur, R., Cetintas, R., Stanley, J.D., Mendes, M.L., McAvoy, E.J., Powers, T.O. & Dickson, D.W. (2008). Identification and isozyme characterization of Meloidogyne spp. infecting horticultural and agronomic crops, and weed plants in Florida. Nematology 10, 757-766. DOI: 10.1163/156854108785787253

Chitambar, J. (2016). Meloidogyne enterolobii Yang and Eisenback, 1983. http://blogs.cdfa.ca.gov/Section3162/?p=2376.

Cooelen, W.A. (1979). Methods for extraction of DNA genes (SSU & LSU rRNA) for specimen identification among quarantine root-knot nematodes (Meloidogyne spp.) and their close relatives. European Journal of Plant Pathology 140, 97-110. DOI: 10.1007/s10658-014-0446-1

Kiewnick, S., Jürg, E., Frey, J.E. & Braun-Kiewnick, A. (2015). Development and validation of LNA-based quantitative real-time PCR assays for detection and identification of the root-knot nematode Meloidogyne enterolobii in complex DNA backgrounds. Phytopathology 105, 1245-1249. DOI: 10.1094/PHYTO-12-14-0364-R

Lau, H.Y., Wang, Y.L., Wee, E.J.H., Botella, J.R. & Trau, M. (2016). Field demonstration of a multiplexed point-of-care diagnostic platform for plant pathogens. Analytical Chemistry 88, 8074-8081. DOI: 10.1021/acs.analchem.6b01551

Londoño, M.A., Harmon, C.L. & Polston, J.E. (2016). Evaluation of recombinase polymerase amplification for detection of begomoviruses by plant diagnostic clinics. Virology Journal 13, 48. DOI: 10.1186/s12985-016-0504-8

Long, H., Liu, H. & Xu, J.H. (2006). Development of a PCR diagnostic for the root-knot nematode Meloidogyne enterolobii. Acta Phytopathologica Sinica 36, 109-115.

Miles, T.D., Martin, F.N. & Coffey, M.D. (2015). Development of rapid isothermal amplification assays for detection of Phytophthora spp. in plant tissue. Phytopathology 105, 267-278. DOI: 10.1094/PHYTO-05-14-0134-R

Niu, J.H., Jian, H., Guo, Q.X., Chen, C.L., Wang, X.Y., Liu, Q. & Guo, Y.D. (2012). Evaluation of loop-mediated isothermal amplification (LAMP) assays based on SS rDNA-IGS2 regions for detecting Meloidogyne enterolobii. Plant Pathology 61, 809-819. DOI: 10.1111/j.1365-3059.2011.02562.x

Pagan, C., Coyne, D., Carneiro, R., Kariuki, G., Luambano, N., Affokpon, A. & Williamson, V.M. (2015). Mitochondrial haplotype-based identification of ethanol-preserved root-knot nematodes from Africa. Phytopathology 105, 350-357. DOI: 10.1094/PHYTO-08-14-0225-R

Piepenburg, O., Williams, C.H., Stemple, D.L. & Armes, N.A. (2006). DNA detection using recombination proteins. PLoS Biology 4, e204. DOI: 10.1371/journal.pbio.0040204

Ramírez-Suárez, A., Rosas-Hernández, L. & Alcasiro-Rangel, S. (2014). First report of the root-knot nematode Meloidogyne enterolobii parasitizing watermelon from Veracruz, Mexico. Plant Disease 98, 428. DOI: 10.1094/PDIS-06-13-0636-PDN

Tenente, G.C.M.V., De Ley, P., De Ley, I.T., Karssen, G. & Vanfleteren, J.R. (2004). Sequence analysis of the D2/D3 region of the large subunit rDNA from different Meloidogyne isolates. Nematropica 34, 1-12.

Tigano, M., de Siqueira, K., Castagnone-Sereno, P., Mulet, K., Queiroz, P., dos Santos, M., Teixeira, C., Almeida, M., Silva, J. & Carneiro, R. (2010). Genetic diversity of the root-knot nematode Meloidogyne enterolobii and development of a SCAR marker for this guava-damaging species. Plant Pathology 59, 1054-1061. DOI: 10.1111/j.1365-3059.2010.02350.x

Yang, B. & Eisenback, J.D. (1983). Meloidogyne enterolobii n. sp. (Meloidogyinidae), a root-knot nematode parasitizing pacara earpod tree in China. Journal of Nematology 15,
Ye, W.M., Koenning, S.R., Zhuo, K. & Liao, J.L. (2013). First report of *Meloidogyne enterolobii* on cotton and soybean in North Carolina, United States. *Plant Disease* 97, 1262. DOI: 10.1094/PDIS-03-13-0228-PDN