All-cause and in-hospital mortality after aspirin use in patients hospitalized with COVID-19: a systematic review and meta-analysis

Nischit Baral1,*, Joshua D. Mitchell2, Pramod K. Savarapu3, Maxwell Akanbi1, Bandana Acharya4, Soumya Kambalapalli1, Amith Seri5, Krishna P. Bashyal1, Arvind Kunadi1, Niranjan Ojha5, Annabelle Santos Volgman6, Tripti Gupta7 and Timir K. Paul8

1Department of Internal Medicine, McLaren Flint/Michigan State University, Flint, MI, USA
2Cardiovascular Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
3Department of Medicine, Ochsner Louisiana State University Health Shreveport-Monroe Medical Center, Monroe, LA, USA
4Department of Health Sciences, Western New England University, Springfield, MA, USA
5Department of Internal Medicine, Division of Cardiology, SUNY Upstate Medical University, NY, USA
6Division of Cardiology, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
7Department of Internal Medicine, Division of Cardiology, Vanderbilt University Medical Center, Nashville, TN, USA
8Department of Cardiovascular Sciences, University of Tennessee College of Medicine, Nashville, TN, USA

*Correspondence address. Department of Internal Medicine, McLaren Flint/Michigan State University, 401 S Ballenger Hwy, Flint, MI 48532, USA. Tel: 810-342-2000; Fax: (810) 342-5810; E-mail: baralnis@msu.edu

Abstract

Background: With the results of the largest randomized controlled trial (RECOVERY) and the most extensive retrospective cohort study on coronavirus disease 2019 (COVID-19) recently published, we performed a meta-analysis on the association of aspirin with mortality of COVID-19. We aimed to investigate the role of aspirin in COVID-19 hospitalizations.

Materials and Methods: We searched PubMed, EMBASE and Cochrane databases for studies from 1 January 2020 until 20 July 2022, that compared aspirin versus non-aspirin use in hospitalized COVID-19 patients. We excluded case reports, review articles and studies on non-hospitalized COVID-19 infections. We used the inverse variance method and random effects model to pool the individual studies.

Results: Ten observational studies and one randomized controlled trial met the criteria for inclusion. There were 136 695 total patients, of which 27 168 were in the aspirin group and 109 527 were in the non-aspirin group. Aspirin use was associated with a 14% decrease in all-cause mortality compared with non-aspirin use in patients hospitalized with COVID-19 [relative risk (RR) 0.86, confidence interval (95% CI) 0.76–0.97; \(P = 0.002; I^2 = 64\%\)]. Among subgroups of studies reporting in-hospital mortality in COVID-19 hospitalizations, aspirin use was associated with a 16% decrease in in-hospital mortality compared with non-aspirin use (RR 0.84, 95% CI 0.71–0.99; \(P = 0.007; I^2 = 64\%\)).

Conclusion: Our study shows that aspirin decreases in-hospital mortality in patients hospitalized with COVID-19. Further studies are needed to assess which COVID-19 patient populations benefit most, such as patients on aspirin for primary versus secondary prevention of atherosclerotic disease. In addition, significant bleeding also needs to be considered when assessing the risk–benefit of aspirin use.

Keywords: aspirin; all-cause mortality; in-hospital mortality; COVID-19; meta-analysis

Introduction

The novel coronavirus disease 2019 (COVID-19) since first reported in November 2019 has emerged into a pandemic and resulted in more than one million deaths in the USA alone as of 20 July 2022 [1]. Although most patients with COVID-19 have mild symptoms, the mortality rate for hospitalized patients remains high [1–5]. Since the emergence of COVID-19, systemic corticosteroids for 7–10 days in patients with severe and critical COVID-19 (requiring mechanical ventilation or oxygen support), with a conditional recommendation not to use corticosteroid therapy in patients with non-severe COVID-19 (not requiring respiratory support or oxygen), were provided by WHO in September 2020 [1, 6].

Due to severe inflammatory response and hypercoagulability, the risk of thromboembolic events in COVID-19 is reported to be higher when compared to other acute medical illnesses or viral respiratory infections and is associated with a worse prognosis [7]. Immune dysregulation with systemic inflammation (especially interleukin-6 along with complement activation) and thrombosis has been proposed for the pathogenesis of severe COVID-19 [8, 9]. With platelet activation and sequestration in critical illnesses, the benefits of antiplatelet therapy secondary to...
For the individual biases in the tool, the assessment of each bias is based on two parts—Support for Judgement and Review of authors’ judgement. The Support for judgement provides a summary of characteristics of the trial based on which the risk of each bias is determined and thus the transparency of the judgement is maintained. The second part of the tool involves assigning a judgement of high, low or unclear risk of material bias for each item [18]. The outcome of interest was all-cause mortality. We used the HR or OR or RR, depending on the studies, for the effect measure to generate the pooled risk ratio. We used adjusted HR or OR whenever they were reported. As mentioned in the previous studies, we directly incorporated HR as RR while creating the forest plot [19–21]. We have used the formula RR = OR/[(1-P0) + (P0 × OR)], to transform ORs into RRs. In the formula, P0 is the incidence of the outcome of interest in the non-exposed group [19–21]. To further calculate the upper and lower confidence interval (CI), we used the formula standard of error logarithmic (SElog) (RR) = SElog (OR) × log (RR)/log (OR) [19–21]. The analyses were performed using Review Manager 5.4 statistical software (Cochrane Collaboration, Oxford, UK) with an inverse variance method. We assessed the pooled RR and 95% CI using the random effect model. In studies like systematic review and meta-analysis, a treatment effect across various studies is investigated and the effects of treatments will not be the same across all populations [22]. This variation in the effectiveness of treatments is referred to as treatment effect heterogeneity. The I² statistic is used as a measure to assess the amount of treatment effect heterogeneity [22]. Sensitivity analysis was performed with the exclusion of individual studies to look for changes in the outcome. We used a statistical significance threshold of P < 0.05.

Results
Study selection
Figure 1 shows the PRISMA flow diagram of study selection and inclusion.

All studies reported all-cause mortality as in-hospital, in-hospital 28-day mortality, 30-day mortality, 60-day mortality or overall mortality. The included studies’ baseline characteristics are listed in Table 1.

Ten observational studies and one RCT met the criteria for inclusion. There were 136 695 total patients, of which 27 168 were in the aspirin group and 109 527 were in the non-aspirin group. Aspirin use was associated with a 14% decrease in all-cause mortality compared with non-aspirin use in patients hospitalized with COVID-19 (RR 0.86, 95% CI 0.76–0.97; P = 0.002, I² =64%) (Figure 2).

Among subgroups of studies reporting in-hospital mortality in COVID-19 hospitalizations, aspirin use was associated with a 16% decrease in in-hospital mortality compared with non-aspirin use (RR 0.84, 95% CI 0.71–0.99, P = 0.007, I² =64%). However, aspirin was not associated with a statistically significant decrease in mortality compared with non-aspirin in a subgroup of studies that included out-of-hospital mortality after hospitalization for COVID-19 (RR 0.56, 95% CI 0.22–1.41; P = 0.05, I² =67%).

Sensitivity analysis
The sensitivity analysis showed no change in statistical significance of ORs on aspirin’s role in preventing all-cause mortality in COVID-19 hospitalized patients with the exclusion of any individual studies. However, with the combined exclusion of Chow et al. [4], Aghajani et al. [25] and Meizlish et al. [13] studies, the OR was statistically non-significant. However, there was no change in the

Materials and methods
We included RCTs, quasi-experimental and retrospective cohort studies that reported hazard ratio (HR), odds ratio (OR) or relative risk (RR) of the effect of aspirin on all-cause mortality in patients hospitalized with COVID-19. We independently screened the manuscripts/full papers, abstracts or titles of the studies from the electronic search to identify all potentially eligible studies and extracted data from PubMed/MEDLINE, Web of Science, Embase and Google Scholar from 1 January 2020 until 20 July 2022, that fulfilled the eligibility criteria with no language restrictions, using the search terms (‘aspirin’ or ‘acetylsalicylic acid’) and (‘COVID-19’ or ‘Novel Corona Virus Disease 2019’ or ‘SARS COVID-19 Infection’ or ‘Coronavirus Disease 2019 Virus’ or ‘SARS-CoV-2 Infection’). The results from Google scholar are combined with the results of PubMed/MEDLINE because all Google scholar articles were accessed using Pubmed.gov.

Eligible studies compared the use of aspirin versus no aspirin in patients hospitalized with COVID-19 and reported all-cause mortality. We excluded case reports, case series, review articles and studies on non-hospitalized COVID-19 infections. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement for reporting systematic reviews as recommended by the Cochrane Collaboration was followed [16]. Search results were saved in EndNote version X9 (Developer: Clarivate analysis files). We extracted the data manually through a full-text review. Two reviewers (N.B. and P.S.) independently performed the title, abstract and full-text screening. Conflicts were resolved through consensus; if not, the third author (M.A.) resolved the dispute.

We used the Newcastle–Ottawa Scale to assess the quality of observational studies [17]. This scale assigns a maximum of nine points. We scored four for selecting and evaluating exposure, two for comparability and three for assessing the outcome. If a study receives a score of six or higher, then it is considered a high-quality publication with a low risk of bias [17]. The RCT was assessed for quality using the Cochrane risk of bias tool [18]. This tool covers six domains of bias: selection bias, performance bias, detection bias, attrition bias, reporting bias and other biases. The sensitivity analysis showed no change in statistical significance of ORs on aspirin’s role in preventing all-cause mortality in COVID-19 hospitalized patients with the exclusion of any individual studies. However, with the combined exclusion of Chow et al. [4], Aghajani et al. [25] and Meizlish et al. [13] studies, the OR was statistically non-significant. However, there was no change in the...
overall beneficial role of aspirin with the exclusion of other studies. We used the exclusion method of individual studies and calculated the pooled RR.

Publication bias and heterogeneity
The funnel plot in our meta-analysis shows asymmetry in the distribution of the included studies due to the high heterogeneity of the included studies. The blue dotted line represents the OR with 95% CI (Figure 3).

Quality of included studies
The quality of included observational studies is shown in Table 2, and the quality of included RCT is shown in Figure 4.

After using the Newcastle–Ottawa Scale, we found that all the included studies truly had aspirin as the exposure and were selected using appropriate definition of exposure in hospitalized COVID-19 patients [17]. The non-exposed were non-aspirin exposed group with COVID-19 hospitalization. The study also controlled for confounders and 7 of the 10 studies had follow-up long enough for the outcome to occur. All the included studies had scores more than or equal to six which prove that the study was of high quality.

Figure 4 depicts the assessment of the risk of bias in the RCT included in our study using the Cochrane risk of bias tool [18]. As mentioned in the Materials and methods section, the summary is colour coded with green representing a low risk of bias, yellow—unclear risk of bias (if insufficient detail is reported of what happened in the trial, the judgement will usually be an unclear risk of bias) and red—high risk of bias. Selection bias has two domains—random sequence generation and allocation concealment. These domains in the selection bias describe the methods implemented for randomization to produce comparable groups for the study and concealment of intervention allocation in the comparison groups. Performance bias describes the measures used for blinding the trial participants and researchers regarding the intervention participants received. Detection bias describes measures adopted to blind the outcomes assessment. Attrition bias describes the completeness of the outcome data including the reasons for attrition and exclusions from the analysis. Reporting bias states selective outcome reported in the trial, if any. Other biases illustrate any other important concerns that are not specified in the other domains of the risk of bias tool [18].

Discussion
Our study investigated the role of aspirin on all-cause mortality in COVID-19 hospitalizations, including a subgroup of the role of aspirin in in-hospital mortality of the recently published RECOVERY trial [3] and a large observational study by Chow et al. [11]. Our results show that hospitalized COVID-19 patients taking aspirin had lower all-cause mortality compared with those not taking aspirin. Notably, the RECOVERY trial did not demonstrate improvement in 28-day mortality with aspirin use in hospitalized COVID-19 patients; however, the proportion of patients discharged alive within 28 days was higher in patients who received aspirin (75% versus 74%, rate ratio: 1.06, 95% CI 1.02–1.10;
Table 1: Baseline characteristics of included studies

Study	Country	Design	No. of participants (aspirin/non-aspirin)	Mean age (years)	Study quality	Aspirin dose (mg)	Covariates adjusted	Outcome
Chow et al. [4]	USA	Retrospective	15/272/96-597	81/314	8	61	Age, sex, BMI, race, comorbidities, Propensity score matched on age, gender, comorbidities, ICU stay, race, and cardiovascular disease	In-hospital mortality
Yuan et al. [14]	China	Retrospective	52/123/150	150/31	7	171.2	Age, sex, comorbidities	In-hospital mortality
Liu et al. [12]	China	Case-control	3/19/319	81/314	8	54	Age, sex, race, and comorbidities	30- and 60-day mortality
Meizlish et al. [13]	USA	Retrospective	38/24/211	81/314	8	30	Age, sex, obesity, anticoagulation, ICU stay, race, and cardiovascular disease	In-hospital mortality
Chow et al. [11]	USA	Retrospective	15/272/96-597	81/314	8	63	Age, sex, race, and comorbidities	30-day mortality
RECOVERY [15]	USA	RCT	755/751-954	81/314	8	59.2	Age, sex, comorbidities	28-day mortality
Vahedian-Azimi et al. [23]	Iran	Cohort study	15/272/96-597	81/314	8	65	Age, sex, comorbidities	30-day mortality
Alamdari et al. [26]	Iran	Case-control	15/272/96-597	81/314	8	61.8	Age, sex, comorbidities	30-day mortality
Viecera et al. [27]	Italy	Retrospective	15/272/96-597	81/314	8	61.8	Age, sex, comorbidities	30-day mortality

BMI, body mass index; ICU, intensive care unit; NA, not applicable.

Our study's results on all-cause mortality in hospitalized COVID-19 patients align with the previous meta-analyses [32–35]; however, our study is unique in reporting both in-hospital mortality and overall mortality among these patients. Moreover, our study includes updated data with the inclusion of a recent large observational study by Chow et al. [11]. In an earlier study by Chow et al., of the 412 patients hospitalized with COVID-19, low-dose aspirin use was associated with decreased need for mechanical ventilation and intensive care unit admission as well as in-hospital mortality after multivariable adjustment [4]. Similarly, a single-centre study by Liu et al. showed that low-dose aspirin prevents embolic events in patients infected with COVID-19 while decreasing mortality [12]. The studies by Yuan et al. [14], Alamdari et al. [26], Formiga et al. [24] and Vahedian-Azimi et al. [23] were the observational studies in our meta-analysis that did not show improved all-cause mortality. Alamdari et al. [26] conducted a retrospective cross-sectional study with a higher risk of bias and lack of adjustment for potential confounders, which may have contributed to different results. Yuan et al. [14] investigated pre-hospitalization use of low-dose aspirin in COVID-19 patients with coronary artery disease. The group with pre-hospitalization use of aspirin who continued aspirin in the hospital may have thus been sicker than the non-aspirin cohort leading to higher in-hospital mortality. Moreover, the smaller sample size, differences in comorbidities and non-generalizable populations like Spanish, Italian and Iranian populations could have led to different outcomes [23–28].

Our study has several limitations. We had only one RCT; the remaining 10 were observational studies, with 1 cross-sectional study prone to unmeasured confounders. In most of the included studies, the severity of COVID-19 infection is not mentioned; however, all patients required hospitalization, meeting the criteria for moderate-to-severe COVID-19. We also did not report other outcomes like bleeding, which may occur with aspirin. With meta-analyses, there is always a concern for reporting biases such as selective outcome reporting.

Nonetheless, included studies used propensity scores to reduce confounding and selection bias, and we used adjusted HRs for accurate results from the included cohort studies. There was significant heterogeneity among the studies. Furthermore, patients taking aspirin in observational studies are generally more likely to have cardiovascular disease, which may place
them at higher risk of mortality, which may have reduced the mortality benefit seen in our study. Finally, the included studies were single-centre studies or registry data from China, Spain, Iran, Italy or the USA, except for the RECOVERY trial [3]. This limitation can affect the generalizability of the study to other ethnic groups.

Conclusion

Our study shows that aspirin decreases in-hospital mortality in patients hospitalized with COVID-19. Further studies are needed to assess which COVID-19 patient populations benefit most, such as patients on aspirin for primary versus secondary prevention of atherosclerotic disease. In addition, significant bleeding also needs to be considered when assessing the risk–benefit of aspirin use.

Disclosure statement

A.S.V.: consulting role in Sanofi (consulting), Pfizer (consulting), Merck (consulting), Janssen (consulting), Bristol Myers Squibb Foundation Diverse Clinical Investigator Career Development Program (DCICDP), National Advisory Committee (NAC), Novartis and NIH Clinical Trials, Apple Inc. stock. J.D.M. received research...
support from Longer Life Foundation, Children’s Discovery Institute, Abbott Laboratories and Myocardial Solutions. Modest consulting from Pfizer and BridgeBio, unrelated to the manuscript. N.B., P.K.S., M.A., B.A., S.K., A.S., K.P.B., A.K., N.O., T.K.P.: None.

Funding

None.

Conflict of interest statement. None of the authors have any direct or indirect conflict of interests to report, that might raise the question of bias in the work reported or the conclusions, implications or opinions stated, in the publication of this manuscript.

References

1. WHO. WHO Coronavirus (COVID-19) Dashboard webpage: WHO.int; 2022 [updated 20 July]. COVID-19 data tracker. https://covid19.who.int.

2. Fardman A, Zahger D, Orvin K et al. Acute myocardial infarction in the Covid-19 era: incidence, clinical characteristics and in-hospital outcomes-A multicenter registry. PloS One 2021;16:e0253524.

3. Recovery Collaborative Group. Aspirin in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet 2022;399:143–51.

4. Chow JH, Khanna AK, Kethireddy S et al. Aspirin use is associated with decreased mechanical ventilation, intensive care unit admission, and in-hospital mortality in hospitalized patients with coronavirus disease 2019. Anesth Analg 2021;132:930–41.

5. Statistics CNCfH. CDC–National Center for Health Statistics: COVID-19 Case Surveillance Public Use Data [Webpage]. CDC webpage: CDC.gov; 2022 [updated 20 July 2022]. CDC data. https://covid.cdc.gov/covid-data-tracker/#cases_deathsper100k (20 July 2022 date last accessed).

6. Horby P, Lim WS, Emberson JR et al.; RECOVERY Collaborative Group. Dexamethasone in hospitalized patients with Covid-19. N Engl J Med 2021;384:693–704.

7. Jiménez D, García-Sanchez A, Rali P et al. Incidence of VTE and bleeding among hospitalized patients with coronavirus disease
