Data Article

Data on association of the variation (rs1344706) in the ZNF804A gene with schizophrenia and its symptoms in the Russian population

T.V. Lezheiko a, b, D.V. Romanov a, b, N.Yu. Kolesina a, V.E. Golimbet a, *

a Mental Health Research Center, Moscow, Russia
b I.M. Sechenov First Moscow State Medical University, Russia

ARTICLE INFO

Article history:
Received 13 March 2019
Received in revised form 25 April 2019
Accepted 3 May 2019
Available online 9 May 2019

Keywords:
ZNF804A
Risk
Schizophrenia
PANSS
Negative symptoms

ABSTRACT

The polymorphism rs1344706 in the ZNF804A gene is one of the best-supported risk variants for schizophrenia. The association between ZNF804A rs1344706 and the disease was demonstrated in many studies but only few of them investigated large samples (above 2000 patients and controls). Data presented show the genotypic distribution of ZNF804A rs1344706 in 1265 patients with schizophrenia and 1051 healthy controls from the Russian population. Statistical analysis confirmed the association between rs1344706 and schizophrenia (p = 0.034). The frequency of the risk genotype AA was significantly higher in the group of patients compared to that in controls. In addition, the article provides the data on the severity of schizophrenia symptoms measured with the Positive and Negative Syndrome scale (PANSS) in 951 patients. The severity of symptoms was significantly higher in the carriers of the risk genotype AA compared to the AC genotype and the CC genotype.

© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Data

The dataset reports the frequencies of alleles and genotypes of ZNF804A rs1344706 determined in patients with schizophrenia and healthy people from the Russian population (Table 1). Table 2 describes demographic characteristics in carriers of different ZNF804A rs1344706 genotypes. Table 3 contains the data on clinical characteristics (age at disease onset and symptom scores) stratified by ZNF804A rs1344706 genotype. Table 4 shows the clinical characteristics of male and female patients with different ZNF804A rs1344706 genotypes. The distribution of genotypes is different for patients and controls (Chi-square = 6.71, df = 2, p = 0.034). The frequency of the risk genotype AA is higher in the group of patients compared to that in controls (p = 0.01). This finding is consistent with other studies [1,2]. There are no between-genotype differences in age and sex in both groups. ANOVA reveals the effect of sex on the age at disease onset and scores on PANSS positive, negative, general psychopathology subscales (p < 0.05) but not on the total PANSS score. Male patients have younger age at disease onset, lower positive symptom score and higher scores on negative and general psychopathological subscales. The main effect of the ZNF804A rs1344706 genotype on the scores on PANSS subscales and the total PANSS score is shown (p < 0.05). The severity of symptoms is higher in the carriers

Alleles and genotypes	Patients (1265)	Controls (1051)
Allele A, %	64	60
Allele C, %	36	40
Genotype AA, % (number of patients)	40.79 (516)	36.82 (387)
Genotype AC, % (number of patients)	46.17 (584)	46.81 (492)
Genotype CC, % (number of patients)	13.04 (165)	16.37 (172)
of the risk genotype AA compared to the AC genotype and the CC genotype. Results from other studies support this finding [3,4].

2. Experimental design, materials and methods

2.1. Sample collection and genomic DNA extraction

Schizophrenia sample was selected from patients admitted to psychiatric units of the Mental Health Research Center. The sample included 1265 people, 550 men, 715 women, mean age 34.8 (13.7) years. Healthy controls without a family history of mental diseases were enrolled from Moscow and Moscow region. The control group included 1051 people, 557 men, 494 women, mean age 30.5 (11.4) years. All participants were ethnically Russian. All of them provided the written informed consent for participation in the study. DNA from whole blood was extracted using the standard phenol-chloroform method.

2.2. DNA genotyping

Genotyping was performed using a PCR-RFLP assay [5]. The following primers were used: forward, 5’-AGTGACC TTGTTGAAATGG-3’ and reverse, 5’-TTTTCAGGTGAGGGATTG-3’. The amplified products were separated in the 8% polyacrylamide gel, stained and visualized under UV light. Genotype frequencies did not deviate from the Hardy-Weinberg equilibrium in both patients (Chi2 = 0; p < 0.05) and control subjects (Chi2 = 0.55; p < 0.05).

2.3. Phenotyping

The diagnosis of schizophrenia was made according to criteria of The International classification of Diseases 10th revision (ICD-10). Clinical symptoms were measured using the Positive and Negative

Variables, mean (SD)	AA (n = 389)	AC (n = 430)	CC (n = 132)	Total (n = 951)
Age at onset, years	23.8 (9.8)	24.0 (9.7)	23.6 (8.7)	23.8 (9.6)
PANSS (positive symptoms), score	24.1 (8.4)	24.1 (9.0)	21.7 (7.8)	23.7 (8.6)
PANSS (negative symptoms), score	23.1 (7.9)	21.3 (7.2)	21.7 (7.1)	22.1 (7.5)
PANSS (general psychopathological symptoms), score	40.3 (13.1)	37.9 (12.9)	37.8 (13.2)	38.9 (13.1)
PANSS (total) score	87.0 (21.9)	82.9 (20.5)	81.3 (22.1)	84.4 (21.4)
Syndromes Scale (PANSS) [6], a widespread instrument proven to be valid and suitable for evaluation of positive, negative and general psychopathological items. The PANSS interviews were conducted one week before the patient’s discharge from the hospital. Because sex-modulated association of ZNF804A with schizophrenia [7,8] was reported in earlier studies, we additionally considered clinical characteristics separately in men and women.

2.4. Statistical genetic analyses

Allele and genotype frequencies in cases and controls were compared using 2 chi-square contingency tables. ANCOVA with Bonferroni post-hoc test was used with PANSS score or age at onset as a dependent variable and genotype (AA vs AC vs CC) and sex as between-subject factors with age as a covariate.

Acknowledgments

This work was supported by RFBR grant N 19-07-01119.

Transparency document

Transparency document associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2019.103985.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.dib.2019.103985.

References

[1] M. Zhu, T. Liu, J. Zhang, S. Jia, W. Tang, Y. Luo, Association between rs1344706 of ZNF804A and schizophrenia: a meta-analysis, Genom. Proteom. Bioinform. 12 (2014) 292–296. https://doi.org/10.1016/j.gpb.2014.10.005.

[2] R. Sudesh, A. Thalamuthu, S. John, R. Thara, B. Mowry, A.K. Munirajan, Replication of GWAS Identified mirt-137 and its Target Gene Polymorphisms in Schizophrenia of South Indian Population and Meta-Analysis with Psychiatric Genomics Consortium vol. 199, Schizophrenia Research, 2018, pp. 189–194. https://doi.org/10.1016/j.schres.2018.03.028.
The schizophrenia risk gene ZNF804A influences the antipsychotic response of positive schizophrenia symptoms, Eur. Arch. Psychiatry Clin. Neurosci. 262 (3) (2012) 193–197. https://doi.org/10.1007/s00406-011-0235-1.

Associations between the schizophrenia susceptibility gene ZNF804A and clinical outcomes in psychosis, Transl. Psychiatry 5 (2015) e698. https://doi.org/10.1038/tp.2015.198.

A polymerase chain reaction–restriction fragment length polymorphism method for screening ZNF804A gene polymorphism (rs1344706) in patients with schizophrenia: a significant association, Genet. Test. Mol. Biomark. 16 (3) (2012) 157–161. https://doi.org/10.1089/gtmb.2011.0142.

The positive and negative syndrome scale (PANSS) for schizophrenia, Schizophr. Bull. 13 (1987) 261–276. https://doi.org/10.1093/schbul/13.2.261.

Evidence of sex-modulated association of ZNF804A with schizophrenia, Biol. Psychiatry 69 (2011) 914–917. https://doi.org/10.1016/j.biopsych.2011.01.003.

Genetic association of rs1344706 in ZNF804A with bipolar disorder and schizophrenia susceptibility in Chinese populations, Sci. Rep. 7 (2017) 41140. https://doi.org/10.1038/srep41140.