Prediction of outcome of non-small cell lung cancer patients treated with chemotherapy and bortezomib by time-course MALDI-TOF-MS serum peptide profiling

Johannes Voortman†1,2, Thang V Pham†1, Jaco C Knol1, Giuseppe Giaccone1,2 and Connie R Jimenez*1

Address: 1OncoProteomics Laboratory, Dept Medical Oncology, VUmc-Cancer Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands and 2Medical Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA

Email: Johannes Voortman - j.voortman@gmail.com; Thang V Pham - t.pham@vumc.nl; Jaco C Knol - j.knol@vumc.nl; Giuseppe Giaccone - giacconeg@mail.nih.gov; Connie R Jimenez* - c.jimenez@vumc.nl

* Corresponding author †Equal contributors

Abstract

Background: Only a minority of patients with advanced non-small cell lung cancer (NSCLC) benefit from chemotherapy. Serum peptide profiling of NSCLC patients was performed to investigate patterns associated with treatment outcome.

Using magnetic bead-assisted serum peptide capture coupled to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), serum peptide mass profiles of 27 NSCLC patients treated with cisplatin-gemcitabine chemotherapy and bortezomib were obtained. Support vector machine-based algorithms to predict clinical outcome were established based on differential pre-treatment peptide profiles and dynamic changes in peptide abundance during treatment.

Results: A 6-peptide ion signature distinguished with 82% accuracy, sensitivity and specificity patients with a relatively short vs. long progression-free survival (PFS) upon treatment. Prediction of long PFS was associated with longer overall survival. Inclusion of 7 peptide ions showing differential changes in abundance during treatment led to a 13-peptide ion signature with 86% accuracy at 100% sensitivity and 73% specificity. A 5-peptide ion signature could separate patients with a partial response vs. non-responders with 89% accuracy at 100% sensitivity and 83% specificity. Differential peptide profiles were also found when comparing the NSCLC serum profiles to those from cancer-free control subjects.

Conclusion: This study shows that serum peptidome profiling using MALDI-TOF-MS coupled to pattern diagnostics may aid in prediction of treatment outcome of advanced NSCLC patients treated with chemotherapy.
Background
Lung cancer is the most common cause of cancer-related death with an overall 5-year survival rate of 16% [1]. Non-small cell lung cancer (NSCLC) accounts for approximately 85% of lung carcinomas and is frequently diagnosed in an advanced stage [2]. First-line treatment of advanced NSCLC typically consists of platinum-based chemotherapy [3,4]. Only a minority of patients respond to this treatment, at the cost of substantial toxicity for all treated patients [5]. There is an urgent need for methods enabling outcome prediction in order to select patients likely to benefit from treatment.

The serum peptidome, that comprises peptides and proteins with a molecular weight of less than 10 kDa, represents a dynamic reflection of tissue function in health and disease [6]. Mass spectrometry (MS) is increasingly used to profile the serum peptidome [7-9]. Peaks in the serum peptide spectra correspond to peptide ions, with the amplitude of the peaks indicative of relative abundance [10]. Magnetic bead-assisted serum peptide capture coupled to matrix assisted laser desorption/ionization time-of-flight MS (MALDI-TOF-MS) is a serum peptide profiling strategy gaining in popularity compared to surface-enhanced laser desorption/ionization (SELDI)-based platforms due to superior resolution of MALDI instruments, the possibility to obtain structural (MS/MS) information of signature peptides and superior binding capacity of the magnetic beads compared to a flat SELDI-chip surface [11].

Here we report on a MALDI-TOF-MS dataset of serum samples from advanced NSCLC patients, who were treated with first-line chemotherapy, consisting of cisplatin and gemcitabine, as well as bortezomib, in a previously reported prospective clinical trial [12]. The efficacy of cisplatin-gemcitabine alone is limited, a partial tumor response being achieved in about one third of NSCLC patients and with a median progression free survival of four to five months [13]. Preclinical as well as initial clinical studies suggested combining cisplatin-gemcitabine with proteasome inhibitor bortezomib might enhance efficacy [14-17].

We hypothesized that specific serum peptidome patterns could predict clinical outcome of patients who underwent chemotherapy-based treatment. For this purpose, data analyses of serum peptide profiles were conducted. Our primary aim was to establish serum peptide signatures that could predict positive or negative clinical outcome upon treatment. Clinical endpoints used to establish these signatures were response to treatment according to the Response Evaluation Criteria in Solid Tumors (RECIST) criteria, as well as progression-free survival duration of treated patients. Furthermore, in a secondary analysis, we compared the serum peptide profiles of treated patients with those obtained from cancer-free control subjects in an initial attempt to establish cancer-specific serum peptide patterns.

Results
Pre-treatment serum peptide patterns of NSCLC patients
First, pre-treatment serum spectra of 27 NSCLC patients were determined. See Table 1 for patient characteristics. Six hundred eighty-two peaks could be distinguished. The intra-run and inter-run coefficients of variance were 16% and 18%, respectively.

Table 1: Patient characteristics

NSCLC patients (n = 27)	
Age, years	Median
	53
	Range
	35-67
Sex, n (%)	Male
	15 (55.6)
	Female
	12 (44.4)
Stage, n (%)	IIIB
	5 (18.5)
	IV
	22 (81.5)
Histology, n (%)	Squamous cell carcinoma
	6 (22.2)
	Adenocarcinoma
	12 (44.4)
	Adenosquamous cell carcinoma
	2 (7.4)
	Undifferentiated non-small cell carcinoma
	7 (25.9)
Karnofski performance status, n (%)	70
	4 (14.8)
	80
	10 (37.0)
	90
	8 (29.6)
	100
	5 (18.5)
Smoking history, n (%)	No
	1 (3.7)
	Current or former
	26 (96.3)
RECIST, n (%)	Partial response
	9 (33.3)
	Stable disease
	15 (55.6)
	Progressive disease
	3 (11.1)
Survival, days	Median progression-free survival
	152
	Median overall survival
	315

Time-course analysis
We first looked for peptides that exhibited significant changes in intensity level in three time points: (1) pre-treatment (preTx), (2) after two cycles of treatment (Post-2), and (3) at the end of treatment (EOT). Forty-four peaks were determined as significant (Table 2). The spectra overlay of the top 8 peaks is illustrated in Figure 1. Note that for example the peak at m/z 2567.3659 has a higher intensity at end of treatment (green) compared to pre-treatment (red) and the peak at m/z 1561.7288 has a lower intensity at end of treatment compared to pre-treatment.
Analysis of the clinical outcome: progression-free survival

The patients were divided into two subsets according to PFS duration. Of the 27 NSCLC patients, 11 patients with the shortest PFS were nominated as “short PFS” group (PFS ≤ 127 days), 11 patients with the longest PFS were nominated as “long PFS” group (PFS ≥ 178 days). Four patients with PFS duration around the median PFS (152 days) were excluded from the analysis. A fifth patient was excluded who had a partial response but died 36 days after start of treatment due to a cause not likely due to tumor progression [12].

Six differentially expressed peptides between the two groups were detected (see Figure 2A and Table 3). Median intensity of all six peptides was higher in the “short PFS” group compared to the “long PFS” group. This 6-peptide signature was used to retrospectively divide the total study population (n = 27) into a predicted “short PFS” group and a predicted “long PFS” group. Median PFS was significantly shorter at 120 days (95% CI 54-186 days) in patients predicted to have a short PFS vs. 191 days (95% CI 154-228 days) in patients predicted to have a long PFS (p-value: 0.036). Median overall survival (OS) of patients predicted to have short PFS vs. long PFS was 144 days.
In NSCLC patients, 44 peaks were significantly differential over the three time points: pre-treatment, after two cycles of treatment and end of treatment. Ordered by m/z value. Abbreviations: BK: bradykinin, FBP: fibrinopeptide B, FPA: fibrinopeptide A, Glu-FPB: Glu-1-fibrinopeptide B, P-FPA: phospho-fibrinopeptide A, C3f: complement C3 f, seAlb: serum albumen, CFXIIIA: coagulation factor XIIIA, ITIH4: inter-alpha-trypsin inhibitor heavy chain H4.

(95% CI 75-213 days) vs. 436 days (95% CI 292-580 days) (p-value: 0.036) (Figure 2B). For the OS analyses, two patients were censored at last known date to be alive.

When considering also Post-2 and EOT samples, we found seven differential peptides distinguishing the clinical groups (see Figure 2C and Table 4). These peptides do not overlap with peptides from the pre-treatment signature. Using the combined 13-peptide signature to classify the total study population, median PFS was significantly shorter at 120 days (95% CI 70-170 days) in patients predicted to have a short PFS vs. 199 days (95% CI 181-217 days) in patients predicted to have a long PFS (p-value: < 0.001). Median overall survival of patients predicted to have short vs. long PFS was 144 days (95% CI 96-192

Table 2: Comparison serum profiles time-course

m/z	p-value	peptide ID
904.4726	0.00054514	BK
1129.4849	0.0013845	FPB
1183.5995	0.0094174	
1201.5663	0.0045301	
1263.5958	0.0024011	FPA
1288.6006	0.0013845	
1347.5297	0.047967	
1350.6275	0.0013845	FPA
1389.6433	0.0013845	
1402.671	0.0089624	
1418.539	0.026155	
1432.644	0.039554	
1440.5407	0.011867	
1445.5828	0.0032159	
1447.6855	0.005355	
1450.4893	0.024048	
1456.5093	0.039554	
1458.4946	0.020271	
1460.6257	0.0022586	
1477.6539	0.010181	
1479.6646	0.005355	
1487.6226	0.0017206	
1491.6634	0.0074232	
1501.748	0.011	
1503.5994	0.0087051	
1507.6643	0.0024697	
1536.6906	0.0087051	FPA

Table 2: Comparison serum profiles time-course (Continued)

m/z	p-value	peptide ID
1552.669	0.003822	Glu-FBP
1561.7288	0.00048292	
1569.6823	0.0014303	
1573.7005	0.0022586	
1616.6366	0.013817	P-FPA
1630.6679	0.0022586	
1670.5947	0.011876	
1690.9254	0.03325	C3f
1777.9666	0.0087051	C3f
1865.0022	0.011	C3f
2494.1536	0.030814	
2567.3659	0.00032806	seAlb
2602.3048	0.019183	CFXIIIA
2743.4663	0.005355	
2747.4349	0.0014303	
2789.0914	0.037043	
3156.6207	0.020803	ITIH4
days) vs. 478 days (95% CI 203-753 days) (p-value: 0.002) (Figure 2D).

Finally, we carried out classification analysis using support vector machine. Using all 682 peptides, the LOOCV accuracy was very poor, at about 50%. When the six differential pre-treatment peptides were used, the LOOCV accuracy was 82% with both 82% sensitivity and 82% specificity. Selecting six different peptides randomly resulted in an average accuracy of 68% (10 runs). The LOOCV prediction accuracy improved when we used also the seven peptides that changed differently in intensity level over the three time points. Here, using the 13 peptides we could separate the two groups with a LOOCV accuracy of 86% at 100% sensitivity and 73% specificity (the average accuracy over 10 runs with random selection of 13 peptides was 71%).

Analysis of the clinical outcome: tumour response

To identify a signature associated with tumour response, we divided the patients into three groups according to tumour response following treatment: (1) partial response (PR), (2) stable disease (SD), (3) progressive disease (PD), as defined by RECIST [18]. Because there were only three patients with progressive disease, we created two groups: PR and SD/PD combined ("no PR"). The first group had 9 patients, and the second group consisted of 18 patients.

Comparing pre-treatment samples, we detected five differential peaks (see Figure 3A and Table 5). Of the five peptides, two were also present in the list of differential peaks comparing short PFS and long PFS (m/z = 2215.2849 and 2318.2202). The 5-peptide signature was used to retrospectively divide the total patient population in a PR vs. no PR group (n = 27). In the patient group classified as no PR, median PFS was significantly shorter at 125 days (95% CI 115-135 days) vs. 231 days (95% CI 117-345 days) in the group classified as PR (p-value 0.038). Median overall survival of patients predicted to have no PR was shorter, but not significantly, at 231 days (95% CI 36-426 days) vs. 613 days (95% CI 0-1253 days) for patients predicted to have a PR (p-value: 0.077) (Figure 3D).

Next we included also the Post-2 and EOT samples, resulting in five additional differential peptides (see Figure 3C and Table 6). Again, there was no overlap between these five peptides and the peptides found when using the pre-treatment samples only. However, of these five peptides, three peptides were also in the list of significant peptides when comparing short PFS and long PFS over the three time points (m/z = 1596.189, 1616.637 and 3215.194). The 10-peptide signature was used to retrospectively divide the total patient population in PR vs. no PR (n = 27). In the patient group classified as no PR, median PFS was 125 days (95% CI 91-159 days) vs. 231 days (95% CI 117-345 days) in the group classified as PR (p-value 0.038). Median overall survival of patients predicted to have no PR was shorter, but not significantly, at 231 days (95% CI 36-426 days) vs. 613 days (95% CI 0-1253 days) for patients predicted to have a PR (p-value: 0.077) (Figure 3D).

Classification analysis was performed using support vector machine with different combinations of features. The LOOCV accuracy was again poor when using all 682 peptides, at about 67%. When the five differential pre-treatment peptides were used, the LOOCV accuracy was 89% at 100% sensitivity and 83% specificity. The average accuracy over 10 runs was 74% using random feature selection for five peptides. The LOOCV prediction accuracy was reduced to 85%, at 100% sensitivity and 82% specificity, when we used also the five peptides that changed differently in intensity level over the three time points (Figure 4 provides an overview of the study and study results).

Peptide pattern discriminating NSCLC patients from cancer-free controls

Finally, in an exploratory additional analysis, we compared the serum peptide spectra of 13 cancer-free control subjects (median age: 38 years old; range: 27-58 years old) and the pre-treatment serum spectra of the 27 NSCLC patients included in this study. We performed a principal component analysis (PCA) analysis of the 40 profiles using all 682 peptides, see Figure 5A. While there is overlap between the two groups in the three dimensional plot, the healthy profiles (in red) are clustered at the bottom right region. Furthermore, we observed no indication of outliers in the dataset. Next we performed a supervised
analysis to identify peptides that were significantly differential in intensity between the two groups. For this purpose, the Mann-Whitney U test was carried out on each of the 682 peptides using all profiles. The peptides were selected based on the criteria outlined in Methods, resulting in 47 peptides. A heat map of the intensities of the 47 peptides is shown in Figure 5B (see also Table 7). Figure 5C shows the spectra overlay of the top 8 most discriminating peaks, all of which have a p-value < 0.0001. Note that for example the peak at m/z 1777.966 has a higher intensity in NSCLC patients (blue) compared cancer-free controls (red) and the peak at m/z 1039.6249 has a lower intensity in NSCLC patients. We carried out classification analysis using support vector machine. A grid search for parameters was employed to find the best model according to LOOCV. Using all 682 peptides, an LOOCV accuracy of 93% was achieved. When the 47 peptides selected by the Mann-Whitney U test were used, the LOOCV accuracy was 98% with 100% sensitivity and 96% specificity. To substantiate the result, we compared it to a random selection of peptides. Using the same model selection mechanism for support vector machine with 47 different peptides randomly selected the average accuracy over 10 runs was 90%.

In this secondary analysis, control subjects were unmatched for age and gender. We therefore also considered peptides that express differently in the two gender

Figure 2
Comparison serum profiles short PFS vs. long PFS. A, six peaks are differential between the two groups: short PFS (red) and long PFS (blue). Six randomly selected peaks. Each overlay contains spectra with normalized intensities. B, Kaplan-Meier (1) time to progression and (2) overall survival curve in NSCLC patients, by prediction of short or long PFS using the 6-peptide signature (intent-to-treat population, n = 27). C, median of the seven differential peaks comparing short PFS (red) and long PFS (blue) over the three time points: pre-treatment (PreTx), after two cycles of treatment (Post-2), and at end of treatment (EOT) (Y-axis: intensity). D, Kaplan-Meier (1) time to progression and (2) overall survival curve in NSCLC patients, by prediction of short or long PFS using the 13-peptide signature (intent-to-treat population, n = 27).
Table 4: Comparison time-course serum profiles short PFS vs. long PFS

m/z	p-value	peptide ID
3215.1939	0.0021001	
1616.6366	0.010132	P-FPA
1292.4157	0.013272	
1418.539	0.013272	
1596.189	0.022018	
1440.5407	0.043474	
1670.5947	0.044759	

Seven peaks were significantly differential comparing NSCLC patients with short progression-free survival and long progression-free survival, using three time points: pre-treatment, after two cycles of treatment and end of treatment. Ordered by p-value. Abbreviation: P-FPA: phospho-fibrinopeptide A.

Peptide identification

For structural identification of signature peptides by MS/MS, we performed an additional peptide capture on another aliquot of the sera used for profiling. Sera with highest intensity levels of signature ions were selected for MS/MS. For each eluate, a series of four spots was applied to a MALDI target plate, and candidate peaks were subjected to MS/MS in the sample spot(s) associated with the highest intensity for the pertinent peak. Seventeen peptides were positively identified by MALDI-TOF/TOF-based MS/MS analysis, see Table 8 as well as Tables 2, 4 and 6. See Figure 6 for an example of an annotated MS/MS spectrum. In agreement with results by Villanueva et al. in other tumor types, the serum peptide signatures mainly consisted of small sets of overlapping sequences, truncated in both ends in a ladder-like fashion. See Table 8 for truncation ladder examples of Fibrinopeptide alpha, Complement C3f, Complement C3 beta and Hemoglobin alpha.

Discussion

In this study, we investigated the use of serum peptide mass profiling by MALDI-TOF-MS coupled to bioinformatics pattern discovery to predict treatment outcome of advanced NSCLC patients treated with platinum-based therapy. Additionally, peptide patterns found in NSCLC patients were differential from those found in healthy volunteers.

To our knowledge we are the first to report on a serum peptide signature for response and survival prediction in NSCLC patients treated with cisplatin-based chemotherapy. For this study, serum samples were obtained not only pre-treatment, but also during treatment and after completion of treatment, whereas serum proteomics studies typically focus on pre-treatment samples only. In a study by Taguchi et al., a predictive MALDI-TOF-MS-based peptide algorithm for "good" or "poor" clinical outcome upon epidermal growth factor tyrosine kinase inhibitor (EGFR-TKI) therapy was established [20]. However, in this study none of the peptides corresponding to the classifying m/z features were identified.

In our study, for the short PFS versus long PFS classification, we achieved 82% accuracy with a 6-peptide-signature. A longer overall survival of the patients classified as "long PFS" and a shorter overall survival of the patients classified as "short PFS" was observed. Interestingly, performance of the signature was improved upon inclusion of 7 differential time-course peptides, the combined 13 peptide-ion signature achieving 86% accuracy. In this regard, it has been previously reported that histological response of locally advanced rectal cancer to radiochemotherapy could be predicted by SELDI-TOF-MS-based profiling and comparison of serum samples collected pre-treatment and during treatment [21].

For partial responders versus non-partial responders we achieved 89% accuracy with a 5-peptide signature. Inclusion of differential time-course peptides did not improve performance of this signature. Longer duration of progression-free survival was strongly associated with tumour response as seven out of eleven patients in our study with long PFS also had a partial tumour response upon treatment, compared to one out of eleven patients in the short PFS group. This suggests that the survival signature is pre-
dictive of therapy-outcome rather than prognostic. As the Kaplan-Meier analysis showed, prediction of response using the 5- or 10-peptide signatures was significantly associated with a longer median PFS of those patients, but this did not reach significance for overall survival.

In several MALDI serum peptide profiling studies involving other solid tumour types (bladder, breast, prostate, thyroid) by Villanueva et al., methodologically comparable to our study, the hypothesis was put forward that cancer-type specific changes in exopeptidase activities yield surrogate biomarkers, reflected in the differential abundance of cleavage products of common serum substrate proteins [19,22]. The changes in exopeptidase activity were superimposed on the proteolytic events of the complement degradation and ex vivo coagulation pathways and therefore serum-specific. Regulated peptides at m/z 1690.925, 1777.966 and 1865.002 correspond to those identified in our study at 1690.90, 1777.94 and 1864.95, respectively, previously identified by MALDI-TOF-TOF-based MS/MS analysis as Complement C3f. The peptide at 2209.093 corresponds to the one we detected at 2209.08, previously identified as HMW Kininogen [19].

We show that in NSCLC, the identified differential serum peptides changing in abundance over time and those distinguishing NSCLC patients from cancer-free control subjects consisted of truncated sequence clusters. The
Study flowchart. Serum profiling was performed in 27 NSCLC patients. "Feature list 1" represents total number of features before intensity and statistical filters. For each comparison, "Feature list 2" represents the number of differential peptide ions comparing pre-treatment sera (white filled circle), time-course sera (black filled circle) and pre-treatment plus time-course combined (grey filled circle). Accuracy (ac), sensitivity (sn) and specificity (sp) of algorithms are indicated. SVM: support vector machine; LOOCV: leave-one-out-cross validation; pts: patients.

Table 5: Comparison serum profiles PR vs. no PR

m/z	p-value
2215.2849	0.0083178
2009.0039	0.015663
2318.2202	0.032445
2378.1982	0.042583
900.4258	0.048584

Five peaks were significantly differential comparing NSCLC patients with a partial response versus patients with stable or progressive disease. None of the 5 peptides were positively identified. Ordered by p-value.

Table 6: Comparison time-course serum profiles PR vs. no PR

m/z	p-value	peptide ID
1616.6366	0.007392	P-FPA
1596.189	0.011159	
872.4325	0.018308	
3215.1939	0.028873	
1631.2111	0.040931	

Five peaks were significantly differential comparing NSCLC patients with a partial response versus patients with stable or progressive disease, using three time points: pre-treatment, after two cycles of treatment and end of treatment. Ordered by p-value. Abbreviation: P-FPA: phospho-fibrinopeptide A.
identified peptides were derived from naturally occurring serum peptides and protein precursors, and therefore not likely to be tumor-derived, thus supporting the exoprotease hypothesis. For the predictive algorithms, it is important to realize that these might be specific for the treatment combination of bortezomib, cisplatin and gemcitabine and may not apply to other treatment regimens. For this exploratory analysis, we did not perform a power calculation beforehand as we did not know the biological variation in our patient groups, nor the number of peaks we would measure as well as other variables. We only knew the technical variation. It was therefore our approach to collect as many samples as we could accommodate. It is crucial to validate and adjust the established signatures with an independent cohort in a sufficiently powered follow-up study. Additionally, since only one report excludes an age and gender bias for a cancer-specific serum peptide signature, it is advisable to include matched cancer-free control groups for the establishment of cancer-specific peptide patterns.

Conclusion

Ideally, serum peptide mass profiling can be used to identify the therapeutic agents to which the tumour is sensitive, enabling personalized medicine. The method employed here requires readily accessible, non-invasively obtainable patient samples, is high-throughput and cost-efficient, all together important requirements for a screening platform as well as routine clinical use. The biggest challenge might very well remain lack of reproducibility related to sample collection in the clinic. In particular, maintaining a constant and precise clotting time is often

Figure 5

Comparison serum profiles NSCLC vs. cancer-free controls. **A**, Principle Component Analysis (PCA) NSCLC vs. cancer-free control comparison. **B**, heat map of the 47 differential peaks. The peaks are ordered by median fold change between the two groups. **C**, spectra overlay of the 8 most differential peaks in the healthy (red) versus NSCLC (blue) comparison. Spectra overlay of the 8 peaks randomly selected out of the remaining 635 peptides.
difficult in clinical practice. Potentially, after initial discovery of classifying algorithms, functional proteomics tests will facilitate clinical implementation [23].

Methods

Patients and serum preparation

The training set included 27 patients with NSCLC who were treated with chemotherapy and bortezomib as well as 13 healthy volunteers [12]. All patients were treated with cisplatin 70 mg/m² day 1 and gemcitabine 1,000 mg/

Table 7: Comparison serum profiles NSCLC vs. cancer-free controls

m/z	p-value	peptide ID
1777.966	2.18E-06	C3f
1877.9926	9.96E-06	
1545.616	2.49E-05	
1690.9254	2.83E-05	C3f
1865.0022	2.83E-05	C3f
1039.6249	4.67E-05	
1361.7417	5.97E-05	
880.4127	7.62E-05	
1041.6349	0.00010908	
1955.9949	0.00013801	
1015.6267	0.00017407	
1087.5722	0.00017407	
1063.6231	0.00034269	
1092.5826	0.00034269	
2318.2202	0.00034269	
2536.2991	0.00034269	
2105.4972	0.00047573	
1396.5679	0.0005897	
2112.022	0.00072868	
987.5905	0.0013492	
1616.6366	0.0016465	P-FPA
2324.1475	0.0018167	C3 beta
2104.998	0.0022066	
2153.0655	0.0024291	
1450.4893	0.0026719	
2193.1036	0.0032253	C3 beta
898.4169	0.0035395	

47 peaks were significantly differential comparing NSCLC patients and healthy volunteers. Ordered by p-value. ** identified by Tempst et al. as high-molecular-weight kininogen [19]. Abbreviations: P-FPA: phospho-fibrinopetide A; C3 beta/f: complement C3 beta/f; Hb alpha: hemoglobin alpha; seAlb: serum albumen; ITIH4: inter-alpha-trypsin inhibitor heavy chain H4 **
m² days 1 and 8, every 21 days for up to 6 cycles. Fifteen patients were treated with bortezomib on days 1 and 8 of every cycle (ten patients at 1.0 mg/m² and five patients at 1.3 mg/m²). Twelve patients were treated with bortezomib on days 1, 4, 8, and 11 of every cycle (one patient at 0.7 mg/m² and eleven patients at 1.0 mg/m²). There was no indication of superior clinical activity of any schedule of bortezomib in combination with cisplatin and gemcitabine [12]. Blood samples were obtained in BD Vacutainer glass "red-top" tubes (Becton Dickinson, Franklin Lakes, NJ), allowed to clot for 1 hour, and then centrifuged at 1500 g for 10 minutes. Sera were stored in polypropylene cryovials (Nunc, Roskilde, Denmark) at -80°C. Studies were performed after obtaining patient consent and under protocols approved by the institutional review board.

Serum sample processing and mass spectrometry

Samples were processed in randomized order, along with control samples to check consistency in each experiment. Magnetic Dynabeads® RPC 18 (Invitrogen, San Diego, CA) were used for serum peptide capture using the KingFischer96 platform, as described previously [11].

Briefly, in a 96-well format, magnetic beads were washed and equilibrated twice in 200 µL 200 mM NaCl/0.1% TFA, transferred to a mix of 20 µL serum sample and 2 volumes of 0.2% n-octyl glucoside/0.5% TFA (premixed for 5 min), incubated for 2 min, washed thrice with 0.1% TFA, and eluted for 2 min with 40 µL 50% acetonitrile.

Processed samples (1.5 µL eluate) were mixed with 2 volumes α-cyano-4-hydroxycinnamic acid matrix (6.2 mg/ml in 56% acetonitrile, 36% methanol; Agilent, Santa Clara, CA) and 0.7 µL of this mix was spotted on a MALDI plate. A 4800 MALDI-TOF/TOF mass spectrometer (Applied Biosystems, Foster City, CA) was used to record with 5000 shots per spectrum (reflectron mode) serum peptide profiles in the mass range of m/z 800-4000 [11].

Internal calibration was used using a list of exact masses for fibrinogen α/fibrinopeptide A peptides as major components of serum samples. For MS/MS analysis, stepwise attempts of 5000 shots at a time generated spectra for identification by the Mascot search engine or manual identification. For Mascot searches, the SwissProt database (release 54.7) was used at a mass window of 10 ppm for MS and a 1-Da tolerance for MS/MS. Final scores were
obtained by narrowing down the window. For manual identification, spectra were compared with theoretical peptide fragments of reported candidate proteins [19]. Fragments having a predicted mass differing less than 10 ppm from the mass of any of the 87 significantly regulated peaks from our profiling study were identified using FindPept http://www.expasy.ch [19]. Fragmentation patterns were predicted using MS-Product http://prospector.ucsf.edu/prospector/mshome.htm, requiring that at least 3 prominent peaks in the experimental spectrum should match b or y ions from the theoretical table.

Signal processing

Spectra were pre-processed using MarkerView, version 1.2 (Applied Biosystems) with a mass tolerance of 200.0 ppm and minimum intensity at 100.0 units. Total signal intensity of all peptide peaks was used for normalization.

Statistical analysis

Feature selection was performed using the Mann-Whitney U test on each peptide detected in the pre-processing step. We used a common threshold of 5% for the p-value. As p-values were not adjusted for multiple testing, we took additional measures to guard against false discovery. To reduce differences due to noise, each peptide was subjected to intensity filtering, requiring that the median intensity of at least one group must be greater than 80 units and the fold change of the median intensities of the two groups must be greater than 1.5. For time course analysis of the three time points, we treated the problem as three binary comparisons. For each comparison, a paired, two-sided signed rank test was carried out. Each peptide was again subjected to intensity filtering. The results of the three comparisons were merged where the significance level of each peptide was the minimum of the three p-values. Similarly, we analyzed dynamic peptide profiles (time-course), using the group information, in order to identify peptides of which the intensity level changes differently between different clinical groups. Finally, support vector machine with the Gaussian kernel was used to construct classification models. A two dimensional grid search was carried out to set model parameters using the leave-one-out cross-validation (LOOCV) measure. Analogously to Villanueva et al. [19], we used a statistical test for feature selection. This procedure is based on class label, thus bias might be introduced. Nevertheless, this strategy was shown to be effective in previous studies [19,22]. Median duration of progression-free and overall survival was calculated using the Kaplan-Meier method; p-values according to the log-rank test (SPSS Statistics17.0, SPSS Inc., Chicago, IL).

List of abbreviations

CI: confidence interval; EOT: end of treatment; LOOCV: leave-one-out cross-validation; MALDI-TOF MS: matrix-assisted laser desorption/ionization time-of-flight mass spectrometry; MS: mass spectrometry; NSCLC: non-small cell lung cancer; OS: overall survival; PCA: principal com-

Peptide ID	m/z	Peptide residue location	Peptide amino acid sequence	Signature(s)
BK	904.4676	381-388	RPPGFSPF	Time course (44)
P-FPA	1616.6366	20-35	ADS*GEGDFLAEGGGVR	Time course (44); PFS (13); NSCLC vs. Healthy (47)
FPA	1536.6906	20-35	ADSGEGDFLAEGGGVR	Time course (44)
FPA	1350.6275	22-35	SGEFDFLAEGGGVR	Time course (44)
FPA	1263.5958	23-35	GEDFDFLAEGGGVR	Time course (44)
Glu-FPB	1552.669	31-44	EGVNDEEGFFSA	Time course (44)
FPA	1129.4849	34-43	NDNEEGFFSAR	Time course (44)
C3f	1865.0022	1304-1319	SKITHRIHVEASLL	Time course (44)
C3f	1777.966	1305-1319	SKITHRIHVEASLL	Time course (44)
C3f	1690.9254	1306-1319	SKITHRIHVEASLL	Time course (44)
C3 beta	2324.1475	23-42	SPMYIITPNILRLESEET	NSCLC vs. Healthy (47)
C3 beta	2193.1036	23-41	SPMYIITPNILRLESEET	NSCLC vs. Healthy (47)
Hb α	3473.7545	2-34	VLPADKTNVKAAGKVAHAGEYGEALERMF	NSCLC vs. Healthy (47)
Hb α	3326.6863	2-33	VLPADKTNVKAAGKVAHAGEYGEALER	NSCLC vs. Healthy (47)
seAlb	2567.3659	27-48	HKSEVHFKDGLGNFVKAL	Time course (44)
ITIH4	3156.6207	617-644	NVHSGSTFFKYYLQGAKIPKPEA5FS	Time course (44);
CFXIII A	2602.3048	43-67	AVVPNNSNAEDDLPTVLEDQGVPR	Time course (44)

Peptides were identified from the 44-peptide ion time course signature (”time course (44)”), the 13-peptide ion ”long PFS” vs. ”short PFS” signature (”PFS (13)”), the 10-peptide ion ”PR” vs. ”no PR” signature (”Response (10)”) and the 47-peptide ion NSCLC vs. Healthy comparison (”NSCLC vs. Healthy (47)”). Abbreviations: FPA: fibrinopeptide A; P-FPA: phospho-fibrinopeptide A (phosphorylation site indicated by *); FBP: fibrinopeptide B; Glu-FBP: Glu-1-Fibrinopeptide B; C3f: complement C3f; C3b: complement C3beta; Hb alpha: hemoglobin alpha; seAlb: serum albumen; ITIH4: inter-alpha-trypsin inhibitor heavy chain H4; CFXIII A: coagulation factor XlllA.
ponent analysis; PD: progressive disease; PFS: progression-free survival; PR: partial response; PreFx: pretreatment; RECIST: Response Evaluation Criteria in Solid Tumors; SD: stable disease; SELDI: surface-enhanced laser desorption/ionization.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
JV, TVP and JCK carried out experimental procedures and drafted manuscript. CRJ and GG conceived of the study, JV, TVP and JCK carried out experimental procedures and helped to draft the manuscript. All authors read and approved the final manuscript.

Acknowledgements
Drs Lyle Burton and Ron Bonner (Applied Biosystems/Sciex) are acknowledged for early access to new versions of MarkerView software. The VUmc-Cancer Center Amsterdam is acknowledged for support of CRJ, TVP and JCK and proteomics infrastructure. JV was supported by a Netherlands Organization of Scientific Research ZonMW-AGIKO stipend, grant 920-03-290.

References
1. Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics, 2007. CA Cancer J Clin 2007, 57:43-66.
2. Spiro A, Ettinger DS. Multidisciplinary Management of Lung Cancer. N Eng J Med 2004, 350:379-392.
3. Pfister DG, Johnson DH, Azzoli CG, Sause W, Smith TJ, Baker SJ, Olak J, Stover D, Strawn JR, Tunnisi AT, Somerfield MR, American Society of Clinical Oncology, American Society of Clinical Oncology Treatment of Unresectable Non-Small-Cell Lung Cancer Guideline: Update 2003. J Clin Oncol 2004, 22:330-353.
4. Shepherd FA. Current paradigms in first-line treatment of non-small-cell lung cancer. Oncology (Williston Park) 2004, 18:13-20.
5. Schiller JH, Harrington D, Belani CP, Langer C, Sandler A, Gatzke-Cleven K, Thermes C, von der Maase H, Gürer B, Blumenschein G, Jr., et al. Phase III trial of the European Organization for Research and Treatment of Cancer Lung Cancer Group—EORTC 89075. J Clin Oncol 2003, 21:3909-3917.
6. Mortensen MM. Schlieman MG, Virudachalam S, Bold RJ. Effects of the proteasome inhibitor bortezomib alone and in combination with chemotherapy in the A549 non-small-cell lung cancer cell line. Chemotherapy Pharmacol 2004, 5:343-353.
7. Davies AM, Lara PN Jr, Mack PC, Gandara DR. Incorporating bortezomib into the treatment of lung cancer. Clin Cancer Res 2007, 13:4647-51.
8. Ludwig H, Khayat D, Giaccione G, Facon T. Proteasome inhibition and its clinical prospects in the treatment of hematologic and solid malignancies. Cancer 2003, 104:1794-807.
9. Mortensen MM, Schlieman MG, Virudachalam S, Bold RJ. Effects of the proteasome inhibitor bortezomib alone and in combination with chemotherapy in the A549 non-small-cell lung cancer cell line. Chemotherapy Pharmacol 2004, 5:343-353.
10. Aebersold R, Mann M: New Guidelines to Evaluate the Response to Treatment in Solid Tumors. J Natl Cancer Inst 2000, 92:205-216.
11. Villanueva J, Martorella AJ, Lawlor K, Philip J, Fleisher M, Robbins RJ, Tempst P. Serum peptide patterns that distinguish metastatic thyroid carcinoma from cancer-free controls are unbiologic when gender and age are accounted for. Mol Cell Proteomics 2006, 5:1840-52.
12. Taguchi F, Solomon B, Gregorc V, Roder H, Gray R, Kasahara K, Nishio M, Brahmer J, Spreafico A, Ludovini V, Massion PP, Dzidziuszko R, Schiller J, Grigorieva I, Tspany P, Hunsucker SW, Caprioli R, Duncan MW, Hirsch FR, Bunl PA Jr, Carbone DP. Mass spectrometry to classify non-small-cell lung cancer patients for clinical outcome after treatment with epidermal growth factor receptor tyrosine kinase inhibitors: a multicohort cross-institutional study. J Natl Cancer Inst 2007, 99:838-46.
13. Smith FM, Gallagher WM, Fox E, Stephens RB, Rekheja P, Petricoin EF III, Liotta L, Kennedy MJ, Reynolds JV. Combination of SELDI-TOF-MS and data mining provides early-stage response prediction for rectal tumors undergoing multimodal neoadjuvant therapy. Ann Surg 2007, 245:259-266.
14. Villanueva J, Shaffer DR, Philip J, Chaparro CA, Erdjument-Bromage H, Olshen AB, Fleisher M, Liha J, Brogi E, Boyd J, Sanchez-Carbaya M, Holland EC, Cordon-Cardo C, Schiher H, Tempst P. Differential exoprotease activities confer tumor-specific serum peptide patterns. J Clin Invest 2006, 116:271-84.
15. Villanueva J, Nazarian A, Lawlor K, Yi SS, Robbins RJ, Tempst P. A sequence-specific exopeptidase activity test (SSEAT) for “functional” biomarker discovery. Mol Cell Proteomics 2008, 7:509-518.
16. Petricoin EF, Liotta LA. SELDI-TOF-based serum proteomic pattern diagnostics for early detection of cancer. Curr Opin Biotechnol 2004, 15:24-30.
17. Villanueva J, Philip J, DeNoyer L, Tempst P. Data analysis of assorted serum peptide profiles. Nat Protoc 2007, 2:588-602.
18. Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature 2003, 422:198-207.
19. Jimenez CR, El Filali Z, Knol JC, Hoeckman K, Kruyt FA, Giaccone G, Smits AB 2, Li KKW. Automated serum peptide profiling using novel magnetic C18 beads off-line coupled to MALDI-TOF-MS. Proteomics Clin Appl 2007, 1:598-604.
20. Voortman J, Smit EF, Honeywell R, Kuenen BC, Peters GJ, Velde H van de, et al.: A parallel dose-escalation study of weekly and twice-weekly bortezomib in combination with gemcitabine and cisplatin in the first-line treatment of patients with advanced solid tumors. Clin Cancer Res 2007, 13:3642-51.

Publish with BioMed Central and every scientist can read your work free of charge

"BioMed Central will be the most significant development for disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK

Your research papers will be:
- available free of charge to the entire biomedical community
- peer reviewed and published immediately upon acceptance
- cited in PubMed and archived on PubMed Central
- yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp