Paroxysmal eye–head movements in Glut1 deficiency syndrome

ABSTRACT

Objective: To describe a characteristic paroxysmal eye–head movement disorder that occurs in infants with Glut1 deficiency syndrome (Glut1 DS).

Methods: We retrospectively reviewed the medical charts of 101 patients with Glut1 DS to obtain clinical data about episodic abnormal eye movements and analyzed video recordings of 18 eye movement episodes from 10 patients.

Results: A documented history of paroxysmal abnormal eye movements was found in 32/101 patients (32%), and a detailed description was available in 18 patients, presented here. Episodes started before age 6 months in 15/18 patients (83%), and preceded the onset of seizures in 10/16 patients (63%) who experienced both types of episodes. Eye movement episodes resolved, with or without treatment, by 6 years of age in 7/8 patients with documented long-term course. Episodes were brief (usually <5 minutes). Video analysis revealed that the eye movements were rapid, multidirectional, and often accompanied by a head movement in the same direction. Eye movements were separated by clear intervals of fixation, usually ranging from 200 to 800 ms. The movements were consistent with eye–head gaze saccades.

Conclusions: Paroxysmal eye–head movements, for which we suggest the term aberrant gaze saccades, are an early symptom of Glut1 DS in infancy. Recognition of the episodes will facilitate prompt diagnosis of this treatable neurodevelopmental disorder.

GLOSSARY

Glut1 DS = Glut1 deficiency syndrome; KD = ketogenic diet; VOR = vestibulo-ocular reflex.
glucose transporter type 1 (SLC2A1).10 Heterozygous de novo mutations in SLC2A1 are detected in the majority of patients.6,8 Treatment of the nutrient deficiency is based on providing ketone bodies as an alternative brain fuel. Early diagnosis is crucial, since treatment with the ketogenic diet (KD) dramatically improves symptoms and may also improve the long-term outcome.11

Patients with Glut1 DS have paroxysmal abnormal eye movements,12–14 and eye movement abnormalities are the first neurologic event in 38% of patients.15 The eye movements have been tentatively called opsoclonus,16 but description and characterization of these events is, in fact, lacking. Based on the retrospective analysis of 101 patients with genetically confirmed Glut1 DS and video analysis of the eye movement episodes, we describe the characteristics of the paroxysmal abnormal eye movements in infants with Glut1 DS.

METHODS Video analysis. Home videos from 10 patients were independently reviewed by 2 pediatric neurologists (T.S.P., R.P.) and a pediatric neuro-ophthalmologist (S.A.K.) who generated a consensus description of eye movement findings. We then performed quantitative video analysis on a subset of videos to characterize the time course of eye movements. For this purpose, we selected 30- to 60-second excerpts from 4 episodes from 4 patients, in which the eyes and head were clearly visible in close-up, and used frame-by-frame analysis to manually mark the time of onset of each eye movement (video frame rate: 30 frames per second for 3 videos, 13 frames per second for 1 video).

Retrospective medical record review. Medical records of 101 patients with confirmed Glut1 DS who were evaluated at Columbia University Medical Center between 1989 and 2014 were screened for paroxysmal abnormal eye movements. For all patients who had experienced one or more paroxysmal eye movement events, the following data related to events were analyzed: (1) age at onset, (2) direction and alignment of eye movements, (3) velocity, (4) duration, (5) level of alertness, (6) associated head movements, (7) EEG correlation, (8) frequency, (9) time course, (10) age at resolution, (11) precipitating factors, and (12) relieving factors. Response to the KD or to antiepileptic medication was assessed when applicable.

Abnormal eye movements associated with loss of consciousness, apnea, head drop, or abnormal focal or generalized myoclonic, tonic, or clonic movements were excluded. Episodes described as eye flutter without further characterization were also excluded.

RESULTS Description of 3 representative cases. Patient 1. A 10-year-old boy developed episodes of unusual eye movements, associated with nodding head movements that appeared to follow the direction of the eyes, at age 1 month (video 1 at Neurology.org).

During the episodes, he was awake and at times responded by smiling, and at other times appeared upset. Episodes seemed to be precipitated by excitement and typically lasted 10–20 minutes. Rarely, episodes lasted up to 1 hour. A peak frequency of 10–15 episodes per month occurred at age 4–5 months. Episode frequency decreased towards the end of infancy and ceased by age 8 years.

The patient developed intractable epilepsy at age 3 months. His first seizures were myoclonic and atonic. At age 2 years, he developed absence seizures, and at age 3 years, generalized tonic seizures. He experienced other paroxysmal events including episodic choreoathetosis, limb dystonia associated with crying and drooling, and episodes of lethargy and generalized paralysis.

The patient was started on a KD at age 7 years. His seizures, paroxysmal neurologic events, motor and language skills, attention span, and mood all improved.

Brain MRI was normal and investigations for occult neuroblastoma were negative. Glut1 DS was diagnosed at age 10 years (table 1, patient 1). Examination at age 10 years revealed a head circumference at the 25th percentile, lower limb spasticity, and cerebellar dysfunction with dysarthria, limb dysmetria, and a mixed spastic-ataxic gait.

Patient 2. A 10-year-old-girl had her first episode of unusual eye movements at age 14 weeks. The 3-minute episode began with crossing of the eyes, followed by repeated eye movements with head turns. She then had 14 more episodes before age 15 months, each lasting 1–10 minutes with preserved alertness. Her mother described the episodes as follows: “it’s as if she’s watching something whiz past her. She doesn’t turn her head in a repetitive motion or have a pattern. It seems more like she’s turning her head to try to focus her eyes on something” (video 2). The episodes seemed to improve with feeding.

At age 16 months, the patient had 3 brief generalized tonic-clonic seizures, which responded to carbamazepine. The paroxysmal eye movements also subsided, although she had 7 further episodes, the last at age 23 months.

Due to the abnormal eye movements, at age 27 months the patient was investigated for a possible diagnosis of opsoclonus-myoclonus syndrome. Lumbar puncture demonstrated low CSF glucose. The diagnosis of Glut1 DS was subsequently confirmed by erythrocyte glucose uptake assay and SLC2A1 analysis (table 1, patient 2).

The KD was initiated at age 29 months. The patient had no further seizures and anticonvulsant therapy was discontinued at age 3.5 years. At age 10 years, she has mild ataxia and difficulties with motor coordination, learning, and attention.
Patient 3. A 6-year-old boy experienced, at age 4 months, an episode of abnormal eye movements that his parents likened to “someone following a fly.” He had further episodes approximately once per month during the first year of life. The episodes lasted less than 1 minute and occurred towards the end of the day when he was tired. As he became older, he complained of dizziness during the episodes without associated nausea, vomiting, or headaches. The events’ frequency gradually decreased, and at age 5 years he had his last episode. He never had clinical seizures. EEGs were normal on 2 occasions.

On examination at age 6 years, head circumference was between the 3rd and 10th percentiles. The patient was restless, distractible, and impulsive, but cooperative and able to follow simple instructions. He had lower limb spasticity and hypertonus, mild dysarthria, truncal ataxia, intention tremor, poor coordination, and difficulty carrying out complex motor tasks. The diagnosis of Glut1 deficiency was confirmed by the finding of low CSF glucose concentration, reduced erythrocyte glucose uptake, and SLC2A1 analysis (table 1, patient 3).

Video analysis. We reviewed home video examples of 18 individual episodes from 10 patients.

Table 1 Clinical characteristics of 18 patients with paroxysmal eye-head movements

| Patient | Sex | First symptom | Onset of eye movements, age, mo | Onset of seizures, age, mo | Age at diagnosis, mo | CSF glucose, mg/dL | CSF:serum glucose ratio | RBC 3-OMG uptake, % | SLC2A1 mutation type | Clinical severitya |
|---------|-----|---------------|---------------------------------|---------------------------|---------------------|-------------------|-----------------------|------------------|-------------------|------------------|
| 1       | M   | Eye movements | 1                              | 3                         | 86                  | 24                | 0.30                  | 70               | Missense          | Moderate         |
| 2       | F   | Eye movements | 3                              | 15                        | 27                  | 28                | 0.35                  | 66               | Missense          | Mild             |
| 3       | M   | Eye movements | 4                              | —                         | 78                  | 34                | 0.39                  | 43               | Missense          | Mild             |
| 4       | F   | Eye movements | 3                              | 7                         | 8                   | 27                | 0.34                  | 45               | Frameshift        | Mild             |
| 5       | F   | Eye movements | 2                              | 3.5                       | 3.5                 | 27                | 0.33                  | 43               | Missense          | Severe           |
| 6       | F   | Eye movements + seizures | 3                          | 3                         | 26                  | 32                | 0.43                  | 59               | Insertion         | Moderate         |
| 7       | M   | Eye movements | 2                              | —                         | 90                  | 35                | 0.40                  | 45               | Insertion         | Moderate         |
| 8       | M   | Eye movements | 6                              | 9                         | 45                  | 36                | 0.49                  | 59               | Missense          | Mild             |
| 9       | F   | Seizure       | 1.5                             | 0.5                       | 77                  | 37                | —                     | —                | Frameshift        | Moderate         |
| 10      | M   | Eye movements | <1                             | 8                         | 120                 | —                  | —                     | —                | Missense          | Moderate         |
| 11      | M   | Eye movements | 6                              | 13                        | 19                  | —                  | 38                    | Splice site —     |                  |
| 12      | M   | Eye movements | 3                              | 24                        | 96                  | 30                | 0.37                  | 50               | Missense          | Severe           |
| 13      | F   | Eye movements | 2                              | 18                        | 95                  | 32                | —                     | —                |                  |
| 14      | F   | Eye movements + seizures | 5                          | 5                         | 16                  | 26                | 0.30                  | 40               | Frameshift        | Moderate         |
| 15      | M   | Seizure       | 1.5                             | 1                         | 94                  | 37                | 0.38                  | 51               | Missense          | Moderate         |
| 16      | M   | Seizure       | 8                              | 4                         | 30                  | 31                | —                     | —                | Deletion          | Moderate         |
| 17      | F   | Eye movements + seizures | <1                         | <1                        | 30                  | 29                | 0.36                  | 56               | Frameshift        | Moderate         |
| 18      | F   | Eye movements | 3                              | 18                        | 41                  | 33                | 0.38                  | 59               | Splice site       | Severe           |

Abbreviation: RBC 3-OMG = red blood cell 3-O-methyl-glucose.

*a Clinical severity rating based on Columbia Neurologic Score.9

The episodes were characterized by frequent movements of the eyes and head. Several features were consistent across all patients. The eye movements were rapid, consistent with saccades, and were followed by epochs of fixation as if they were normal gaze shifts. Movements occurred in multiple directions, were clearly separated in time by intervening periods of fixation, and were often accompanied by a head movement in the same direction (figure 1, videos 1–3). In particular, we never observed 2 eye movements in immediate succession without a brief period of fixation between them.

Eye movements were usually conjugate, but in many episodes the eyes appeared intermittently dysconjugate. Dysconjugate gaze was characterized by convergence of either one or both eyes (video 2, segment 1), giving a temporary cross-eyed appearance.

In some cases, the head movements were large in amplitude and prominent (video 3), while in others, they were subtle. There was only 1 video (10 seconds in duration) in which we did not observe any head movements.

The patients were awake during the episodes in all cases. Responsiveness was difficult to judge in reliably very young infants, but older infants clearly demonstrated preserved consciousness and the ability to respond to their parents during the episode (video 2, segment 3).
Frame-by-frame video analysis of 4 individual patient episodes revealed the time course of movements in further detail. The timing of eye movements was irregular and there was a clear interval between saccades (figure 2A). For the vast majority of movements, the interval between saccades ranged from 200 to 800 ms. The pattern of distribution of intersaccadic intervals, with a peak at 400–500 ms, was markedly similar for all 4 patients (figure 2B).

Frame-by-frame analysis also demonstrated that initiation of the eye movements usually occurred first, followed by head turning in the same direction 30–60 ms later (figure 1, panels 5–6, 10–11). Fixation of eye gaze on an apparent target was often maintained during the head movement phase (suggesting active vestibulo-ocular reflex [VOR] during this phase of the movement). During larger amplitude head movements, eye position in the head remained constant during the head movement phase (suggesting VOR suppression) (video 3). These movement features are consistent with shifts of gaze.

Retrospective medical record review. Paroxysmal abnormal eye movements were documented in 32 of 101 patients (32%) with Glut1 DS. Words used by parents or doctors to describe the movements included, in decreasing order of frequency, the following: eye rolling (n = 11); strange, unusual, or funny (n = 5); chaotic (n = 4); opsoclonus (n = 4); searching, “like someone following a fly” or “like following an object visually” (n = 3); darting (n = 3); jerky or jumping (n = 3); uncontrollable (n = 2); oscillating (n = 2); repetitive (n = 2); roving (n = 1); triangular; and up and down eye movements (n = 1).

In 18/32 patients, the abnormal eye movements were described in the medical chart in sufficient detail to suggest the depiction of a consistent type of episode. Only episodes of these 18 patients are described further below (table 2).

The mean age at onset of eye movement episodes was 3.1 months (range, neonatal period to 8 months). The first episode occurred before age 6 months in 15 of 18 patients.

Eye movement speed was subjectively reported as rapid in 7 patients and slow in 2. Velocity was not reported in the remaining patients. Associated head movements were documented in 7 patients: head nodding in 2, head back and forth in 2, and head turning in 1. The parents of 2 patients specifically described the head turning in the direction of the eyes.

None of the patients lost consciousness during their episodes. In 3 patients there was a questionable alteration of alertness described as “relatively unresponsive,” “zoned out,” or “detached.”

Event duration was typically brief (<5 minutes in 9 patients and <1 minute in 4). One patient experienced rare episodes lasting up to 1 hour. Episode frequency was variable, ranging from 1 or 2 episodes in 2 patients to 10 episodes per day in 1 patient. Among patients for whom the long-term course of eye movement episodes was documented (n = 8), the episodes disappeared between 3 and 6 years of age in 7 patients, and were still present at age 8 years in 1 patient (table 2).

Potential precipitating factors reported by parents included fatigue, hunger, excitement, and being placed on the back. Feeding was reported to be a possible ameliorating factor in 1 patient.

In 5 patients, episodes were captured during continuous EEG monitoring and had no EEG correlate. In 6 further patients, an EEG was performed around the time of the occurrence of the abnormal eye movements. Epileptiform discharges were detected in only 1 patient, with no clinical correlate.
Improvement in eye movement episodes following initiation of the KD was documented in 2 patients. Episodes had resolved spontaneously prior to initiation of the diet in 3 patients, and in other cases, the response of these episodes to the diet was not specifically documented. Six patients were treated with antiepileptic medications: in 1 patient, the episodes improved, in 3 the response was unclear, and in 2 there was no benefit.

Sixteen patients in our cohort of 18 had seizures. Of those, 10 of 16 patients experienced eye movement episodes before their first seizure. The latency from onset of eye movements to first seizure ranged from 1 to 21 months (table 1) in those 10 patients.

**DISCUSSION** In this report, we describe characteristic, brief episodes of eye–head movements that occur in one-third of infants with Glut1 DS. These movements are rapid, multidirectional, and often accompanied by head movements in the same direction. The movements are always clearly separated in time by intervals typically ranging from 200 to 800 ms, corresponding to an average eye movement frequency of approximately 2 per second. These features are most consistent with saccadic eye–head gaze shifts, which are characterized by the presence of intersaccadic intervals, aligned direction of the eye and head movement, and optional presence of the head component. Paroxysmal eye–head gaze saccades of this type may be a specific feature of cerebral glucose insufficiency in infancy.

The eye movements of Glut1DS have been described as opsoclonus. However, unlike the eye movements that we observed, the eye movements of opsoclonus have no intermovement fixation interval, and are not associated with a same-direction head movement. The episodes we observed can also be distinguished from other eye movement disorders that may occur in infancy, including infantile nystagmus, ocular flutter, and spasmus nutans.

The pathophysiologic mechanism underlying paroxysmal eye–head gaze saccades in Glut1 DS is unknown. Gaze shifts normally serve the function of bringing an object of interest, detected in the peripheral visual field, to the fovea, where it can be seen in greater detail. In the mature nervous system, the control of gaze involves both active signals to drive the eyes and active signals to suppress eye movements and therefore facilitate fixation. Gaze shifts often involve both eye saccades and head movements. The signals for head and eye movements originate in the paramedian pontine reticular formation (for horizontal eye movements) and the mesencephalic reticular formation (for vertical eye movements). A network including the superior colliculus, the frontal eye field, and the posterior parietal cortex then specifies the target for a possible gaze shift and entrains the brainstem gaze mechanism. Simultaneously a hierarchy of areas suppresses eye movements: the nucleus of the dorsal raphe inhibits the brainstem saccade generators, the substantia nigra pars reticulata suppresses the superior colliculus, and neurons in the frontal eye field specify objects.
| Patient | Onset, mo | Eye movement description | Direction, alignment | Velocity | Head movement | Alert? | Duration, min | Frequency | Precipitant | Resolution/age, y | Response to KD | Response to AED |
|---------|-----------|--------------------------|---------------------|----------|---------------|--------|--------------|-----------|-------------|----------------|---------------|----------------|
| 1       | 1         | Uncontrollable, chaotic, “opsoclonus” | All | Rapid | Nodding, bobbing, following direction of eyes | Yes | 5–60 | 10–15/mo | Excitement | Yes/5 | NA | Unclear |
| 2       | 3         | As if watching something whiz past | All | Rapid | Head jerks, head turning | Yes | 1–10 | 1–2/mo | Preprandial, fatigue | Yes/2 | NR | Yes |
| 3       | 4         | Like following a fly | All | Rapid | No | Yes | <1 | 1/2 mo | Fatigue | Yes/6 | NA | NA |
| 4       | 3         | Darting, chaotic | Horizontal, dysconjugate | Rapid | Yes | Yes | 3–5 | 3/mo | NR | Yes/3 | Yes | NA |
| 5       | 2         | Triangular | All | NR | NR | Yes | NR | 1 episode | NR | NR | NA | NA |
| 6       | 3         | Darting | All | Rapid | NR | Yes | 1–2 | NR | NR | NR | NA | NA |
| 7       | 2         | Rolling | NR | NR | Yes | Yes | 1–4 | 1/d-wk | NR | NR | NA | NA |
| 8       | 6         | Chaotic, rolling | NR | Rapid | NR | Yes | <1 | 2 episodes | NR | NR | NA | NA |
| 9       | 1.5 | “Opsoclonus” | NR | NR | NR | Yes | NR | 1/1–2 mo | NR | Yes/3 | NA | NA |
| 10      | <1       | Chaotic | NR, conjugate | NR | NR | Yes | 1–3 | NR | NR | NR | NA | NA |
| 11      | 6         | Strange | NR, conjugate | Rapid | Yes | Yes | 2 | NR | NR | NR | NA | No |
| 12      | 3         | Jumping, “opsoclonus” | Horizontal, NR | Rapid, Slow | Back and forth | Yes | <1–5 | NR | Lying on back | NR | NA | Unclear |
| 13      | 2         | Repetitive | NR | NR | Yes | Yes | NR | 1/mo | NR | No* | NR | NR |
| 14      | 5         | Repetitive | Vertical | NR | NR | Relatively unresponsive | Yes | <1 | 1/mo | Preprandial, fatigue | Yes/2 | NA | NA |
| 15      | 1.5 | “Opsoclonus” | All | Slow | Nodding | Yes | 2–3 | 2/wk | Chocolate | NR | Yes | NA |
| 16      | 8         | Rolling, jerky | Horizontal | NR | NR | Yes | Brief | NR | Lying on back | Yes/4 | NA | NA |
| 17      | <1       | Like following a fly | NR, dysconjugate | NR | Back and forth | Zoned out | NR | NR | NR | NR | No |
| 18      | 3         | Rolling, like following an object visually | All | NR | NR | Detached | NR | NR | NR | NR | No |

Abbreviations: AED = antiepileptic drug; KD = ketogenic diet; NA = not applicable; NR = not reported.

*Episodes still occurring at age 8 years.
in the visual field that are inappropriate targets for saccades. Just like the aberrant spontaneous saccades in Glut1 DS, normal saccades are often dysconjugate when they involve shifts in vergence angle.

Our patients’ episodes were characterized by apparently involuntary repeated gaze saccades. Symptoms almost always emerged during the first 6 months of life, a time when the visual system is undergoing rapid maturation, and the ability to suppress reflexive saccades to visual stimuli develops. Because neurons in the dorsal raphe and the substantia nigra pars reticulata discharge at high rates except during eye movements, it is possible that their activity is compromised by the glucose deficiency of Glut1 DS, allowing the release of inappropriate saccades.

Insufficient energy supply to meet demand is one mechanism that has been postulated to underlie other paroxysmal events in Glut1 DS. Consistent with this hypothesis, eye movement episodes were precipitated by fatigue, excitement, or fasting, and responded favorably to the KD in some patients.

The possibility that these episodes represent a type of focal seizure that is not detectable by scalp EEG cannot be fully excluded, but is unlikely. Preserved alertness, absence of other typical clinical manifestations of seizures, and normal ictal EEG suggest that these events are nonepileptic. The majority of patients had coexisting epilepsy, which manifested at a similar age to the eye movement episodes in 10 patients (table 1). In 6 patients, the first seizure did not occur until 7–21 months after the onset of the eye movement episodes.

Eye movement episodes emerged before age 6 months in 83% of our patients. Among the 8 patients for whom the course of the episodes was known, events decreased in frequency by late infancy, and disappeared in all but one patient by age 8 years. Thus these episodes represent an age-dependent manifestation of the disease that is likely related to a specific stage of brain development. Other features of Glut1 DS also occur in an age-dependent manner: for example, seizures tend to be more prominent in infancy and childhood, and improve or even disappear by adulthood, while dystonia and other paroxysmal movement disorders tend to develop later in childhood or during adolescence.

Verbal description of the eye movement episodes by parents and doctors was highly variable. Some descriptions were strikingly vivid and accurate, but many were imprecise. For example, the movements were often described as eye rolling in the medical chart, but video review clearly demonstrated that the eye movements were rapid. Associated head movements (noddling, bobbing, or back and forth) were documented in only 50% of patients, but head movements were present in all but 1 of the 18 video episodes that we reviewed. This highlights the diagnostic challenge posed by rare and unusual symptoms for which there is not a recognized medical term.

The retrospective nature of our study has some limitations. For example, our finding of a 32% incidence of eye movement episodes in patients with Glut1 DS may be an underestimate, since patients were not systematically questioned about a history of these specific symptoms. Also, data about the episodes’ long-term outcome and response to treatment were not available for all patients, and these details warrant future clarification.

Brief paroxysmal episodes of eye and head movements, for which we propose the term aberrant gaze saccades, are a characteristic and early feature of Glut1 DS during infancy. Failure to meet energy demand is a likely pathophysiologic mechanism, but the precise underlying neuronal basis remains unknown. Since early diagnosis and prompt implementation of the KD is believed to improve the long-term prognosis of patients with Glut1 DS, it is vital that neurologists recognize these episodes as an early diagnostic clue to the disease.
5. Weber YG, Storch A, Wartke TV, et al. GLUT1 mutations are a cause of paroxysmal exertion-induced dyskinesias and induce hemolytic anemia by a cation leak. J Clin Invest 2008;118:2157–2168.

6. Leen WG, Klepper J, Verbeek MM, et al. Glucose transporter-1 deficiency syndrome: the expanding clinical and genetic spectrum of a treatable disorder. Brain 2010; 133:655–670.

7. Pearson TS, Akman C, Hinton VJ, Engelstad K, De Vivo DC. Phenotypic spectrum of glucose transporter type 1 deficiency syndrome (Glut1 DS). Curr Neurol Neurosci Rep 2013;13:342.

8. Wang D, Pascual JM, Yang H, et al. Glut-1 deficiency syndrome: clinical, genetic, and therapeutic aspects. Ann Neurol 2005;57:111–118.

9. Yang H, Wang D, Engelstad K, et al. Glut1 deficiency syndrome and erythrocyte glucose uptake assay. Ann Neurol 2011;70:996–1005.

10. Seidner G, Alvarez MG, Yeh JI, et al. GLUT-1 deficiency syndrome caused by haploinsufficiency of the blood-brain barrier hexose carrier. Nat Genet 1998;18:188–191.

11. Alter AS, Engelstad K, Hinton VJ, et al. Long-term clinical course of Glut1 deficiency syndrome. J Child Neurol 2015;30:160–169.

12. De Vivo DC, Leary L, Wang D. Glucose transporter 1 deficiency syndrome and other glycolytic defects. J Child Neurol 2002;17(suppl 3):S515–S523; discussion S524–15.

13. Friedman JR, Thide EA, Wang D, et al. Atypical GLUT1 deficiency with prominent movement disorder responsive to ketogenic diet. Mov Disord 2006;21:241–245.

14. Ito Y, Takahashi S, Kagitan-Shimono K, et al. Nationwide survey of glucose transporter-1 deficiency syndrome (GLUT1-DS) in Japan. Brain Dev 2015;37:780–789.

15. Akman CI, Yu J, Alter A, Engelstad K, De Vivo DC. Diagnosing glucose transporter 1 deficiency at initial Presentation facilitates early treatment. J Pediatr 2016;171:220–226.

16. Appavu B, Mangum T, Obeid M. Glucose transporter 1 deficiency: a treatable cause of opsoclonus and Epileptic myoclonus. Pediatr Neurol 2015;53:364–366.

17. Goldberg ME, Walker MF. The control of gaze. In: Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth AJ, Mack S, eds. Principles of Neural Science. New York: McGraw Hill; 2012:904–916.

18. Buttnreitter JA, Buttnreitter U. Neuroanatomy of the oculomotor system: the reticular formation. Rev Oculomot Res 1988;2:119–176.

19. Gandhi NJ, Kamani HA. Motor functions of the superior colliculus. Ann Rev Neurosci 2011;34:205–231.

20. Bruce CJ, Goldberg ME. Primate frontal eye fields: I: single neurons discharging before saccades. J Neurophysiol 1985; 53:603–635.

21. Bisley JW, Goldberg ME. Attention, intention, and priority in the parietal lobe. Annu Rev Neurosci 2010;33:1–21.

22. Bracewell RM, Mazzone P, Bash S, Andersen RA. Motor intention activity in the macaque’s lateral intraparietal area: II: changes of motor plan. J Neurophysiol 1996;76:1457–1464.

23. Buttnreitter JA, Cohen B, Pause M, Fries W. Raphe nucleus of the pons containing omnipause neurons of the oculomotor system in the monkey, and its homologue in man. J Comp Neurol 1988;267:307–321.

24. Hikosaka O, Wurtz RH. Visual and oculomotor functions of monkey substantia nigra pars reticulata: IV: relation of substantia nigra to superior colliculus. J Neurophysiol 1983;49:1285–1301.

25. Hasegawa RP, Peterson BW, Goldberg ME. Prefrontal neurons coding suppression of specific saccades. Neuron 2004;43:415–423.

26. Johnson MH. The inhibition of automatic saccades in early infancy. Dev Psychobiol 1995;28:281–291.

27. Leen WG, Taher M, Verbeek MM, Kamsteeg EJ, van de Warrenburg BP, Willemsen MA. GLUT1 deficiency syndrome into adulthood: a follow-up study. J Neurol 2014;261:589–599.
Paroxysmal eye–head movements in Glut1 deficiency syndrome
Toni S. Pearson, Roser Pons, Kristin Engelstad, et al.
Neurology 2017;88;1666-1673 Published Online before print March 24, 2017
DOI 10.1212/WNL.0000000000003867

This information is current as of March 24, 2017
| **Updated Information & Services** | including high resolution figures, can be found at: http://n.neurology.org/content/88/17/1666.full |
|-----------------------------------|---------------------------------------------------------------------------------------------------|
| **Supplementary Material**        | Supplementary material can be found at: http://n.neurology.org/content/suppl/2017/03/24/WNL.0000000000003867.DC1 |
| **References**                    | This article cites 26 articles, 1 of which you can access for free at: http://n.neurology.org/content/88/17/1666.full#ref-list-1 |
| **Citations**                     | This article has been cited by 1 HighWire-hosted articles: http://n.neurology.org/content/88/17/1666.full##otherarticles |
| **Subspecialty Collections**      | This article, along with others on similar topics, appears in the following collection(s): |
|                                  | All Epilepsy/Seizures http://n.neurology.org/cgi/collection/all_epilepsy_seizures |
|                                  | All Pediatric http://n.neurology.org/cgi/collection/all_pediatric |
|                                  | Developmental disorders http://n.neurology.org/cgi/collection/developmental_disorders |
|                                  | Metabolic disease (inherited) http://n.neurology.org/cgi/collection/metabolic_disease_inherited |
|                                  | Ocular motility http://n.neurology.org/cgi/collection/ocular_motility |
| **Permissions & Licensing**       | Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at: http://www.neurology.org/about/about_the_journal#permissions |
| **Reprints**                      | Information about ordering reprints can be found online: http://n.neurology.org/subscribers/advertise |