Gestational diabetes mellitus (GDM) is defined as glucose intolerance first detected during pregnancy. The prevalence of GDM has increased more than 30 per cent over the past two decades. As reported, the median prevalence of GDM globally ranges from 1.8 to 22.3 per cent. GDM is associated with short and long-term adverse outcomes of both mothers and their respective offsprings, and is a well-known risk factor for type 2 diabetes mellitus (T2DM) in the postpartum period.
for developing type 2 diabetes mellitus (T2DM) after delivery. The rates of T2DM diagnosis after GDM range from two to 70 per cent, from six weeks to 28 yr postpartum\(^4\). Increasing prevalence of GDM and T2DM and their related complications lead to huge healthcare and economic costs\(^4,5\).

In light of these risks and the opportunity for preventive intervention, women with GDM are advised to have oral glucose tolerance test (OGTT) assessed at 6-12 wk postpartum\(^6\). However, studies reported that postpartum screening rates range from 13 to 82 per cent varying across geography, ethnicity and practice patterns. and is underused\(^7-9\). Furthermore, while there are various barriers of postpartum diabetes screening patient compliance with diabetes screening recommendations are inadequate\(^10\). Systematic review and meta-analysis previously showed that women with a history of GDM have a sevenfold risk of being diagnosed as T2DM than those without although the results of this study were synthesized despite heterogenous differences\(^11\). In the present study the relative risks (RRs) among all selected studies were included and sensitivity and subgroup analyses were conducted to identify the sources of the heterogeneity. Moreover, risks of being diagnosed as T2DM vary widely\(^2\), and therefore the disparities of T2DM diagnosis after GDM in different demographic subgroups to help health providers focus on the high-risk patient were assessed.

Material & Methods

Literature search and inclusion criteria: Twenty studies were hand-searched from the previous systematic review\(^11\) and did an electronic search of MEDLINE and Embase from January 1, 2009 to July 31, 2019 and did not apply any restrictions. The search of the Cochrane Library was from inception to July 31, 2019, without restrictions. Search terms were a combination of ‘gestational diabetes mellitus’, ‘pregnancy diabetes mellitus’, ‘diabetes, gestational’, ‘type 2 diabetes mellitus’, ‘diabetes mellitus, type 2’ and ‘non-insulin dependent diabetes mellitus’. In addition to the electronic search, reference lists and citations of relevant reviews and articles were hand-searched.

Prospective and retrospective cohort studies (PCS and RCS) in which women were diagnosed with GDM and normal blood glucose were searched for. The outcome was the diagnosis of T2DM at six weeks or later after delivery. The criteria of GDM and T2DM were not restricted. Studies of women with pre-existing diabetes mellitus were excluded.

Methodological quality assessment: The quality of included studies was assessed by a standardized checklist based on the Newcastle–Ottawa Scale (NOS)\(^12\). The NOS is a star rating system (0-9 stars) used for observational studies. For cohort studies, the criteria cover three domains: selection of participants, between-group comparability and ascertainment of outcome. Each item can get one star in selection and outcome domains and two stars in comparability domain if appropriate methods were reported\(^12,13\). According to the final score, studies were classified as high (c7-9 stars), medium (5-6 stars) or low (0-4 stars) quality. Low quality (c7) study might reduce the credibility of results, so we excluded low quality studies in this meta-analysis.

Data abstraction: Participant and study characteristics and cumulative incidences of T2DM in the GDM and non-GDM groups were independently extracted by two authors using standardized tables. Disagreements were solved by discussion with the third author. If more than one report based on the same population was identified, the one with the most relevant and complete information was selected.

Statistical analysis: A Meta-analysis was carried out using Stata/MP (Version 14.0, StataCorp LLC, Texas, USA). Unadjusted, pooled relative risks (RRs) and 95 per cent confidence intervals (CIs) were calculated. Heterogeneity was assessed with Cochrane’s \(Q\) test and by calculating \(I^2\) values. High heterogeneity was defined by either \(P<0.10\) or \(F\geq60\) per cent, median heterogeneity was defined by either \(P<0.10\) or \(30\) per cent \(\leq F<60\) per cent and little or no heterogeneity was defined by either \(P>0.10\) or \(F<30\) per cent\(^14\). In cases of high heterogeneity, a random-effects model was used. Sensitivity analyses were conducted to identify the outliers by testing the outcome robustness after one study was removed. Subgroup analyses were performed to explore the sources of heterogeneity among studies by stratification according to mean maternal age, body mass index (BMI) at follow up, race/ethnicity, region, family history of diabetes mellitus, time interval of postpartum OGTT performed, GDM criteria, T2DM criteria and number of confounders matched. Begg’s test and Egger’s test were performed to investigate small sample bias and publication bias. A \(P<0.05\) was considered statistically significant.
Results

Selection of studies: In total, 1957 records were identified through electronic database searching, 30 additional publications were identified through reference lists and 20 publications were included from a previous systematic review. Altogether, 1809 titles and abstracts were screened after 198 duplicates were removed. Of 343 publications that were selected for full-text review, 304 were excluded for various reasons. Finally, 39 cohort studies involving 2,847,596 women were included in this meta-analysis. In these studies, 78,893 women were diagnosed as T2DM at six weeks or later after delivery (Fig. 1).

Characteristics of the studies: A total of 26 retrospective and 13 prospective cohort studies conducted in different countries were considered for this meta-analysis. The participants varied widely in maternal age, BMI, family history of diabetes mellitus, ethnicity, length of follow up and time interval of postpartum OGTT performed. Moreover, diagnostic criteria of GDM and T2DM varied by country as well.

In 15.4 per cent (6/39) of studies, the dropout rate was under 30 per cent. In 5.1 per cent (2/39) of studies, the dropout rate is between 30 and 60 per cent. In 38.5 per cent (15/39) of studies, none of the women dropped out. In 41.0 per cent (16/39) studies, the dropout rate was not recorded. In 76.9 per cent (30/39) of studies, women in two groups were matched by different confounders. In 23.1 per cent (9/39) of studies, confounders adjustment was not recorded (Table).

As per the NOS scores as shown in Fig. 2, 87 per cent (34/39) of studies included in this meta-analysis were of high quality, and 13 per cent (5/39) studies were of medium quality. The unadjusted RRs of women diagnosed as T2DM at six weeks or later after delivery ranged from 1.32 (95% CI, 0.46-3.37) to 47.25 (95% CI, 2.95-758.01), with a pooled unadjusted RR of 8.92 (95% CI, 7.84-10.14). The heterogeneity was defined as high with $P<0.01$, and $I^2=94.1$ per cent (Fig. 3). Sensitivity analyses were conducted by recalculating the pooled RRs with included studies removed one by one. The results indicated that the pooled RRs were
Table. Characteristics of 39 studies included in the meta-analysis

Author	Study type	Region	Race/ethnicity	Mean maternal age (yr; overall or GDM/non-GDM)	BMI at followup (kg/m²; overall or GDM/non-GDM)	Family history (GDM/non-GDM, %)	Time interval of postpartum OGTT performed	GDM criteria	T2DM criteria	Dropout rate (%)	Confounders matched			
Daly et al\(^{13}\), 2018	RCS	Europe	Other	33/33	Not recorded	Not recorded	Three years	Not recorded	Clinical codes	Not recorded	Age			
Shen et al\(^{16}\), 2018	PCS	Western Pacific	Asian	29.7/30.1	22.9/24.2	27.1/35.7	4.4 yr	WHO, 1999	ADA, 2018	Not recorded	Smoking exposure			
Herath et al\(^{16}\), 2017	RCS	South-East Asia	Other	31.7/27.7	Not recorded	Not recorded	One year	WHO, 1999	WHO, 1999	Not recorded	Ethnicity, education, family income per month, sex of infant, exclusive breastfeeding duration			
Ajala et al\(^{17}\), 2015	RCS	North America	Other	32.1/31.4	28.9/26.6	52.2/52.5	One year	CDA, 2008	Local	None	Age, ethnicity, BP, smoking exposure, amount of alcohol consumed and time of physical activity			
Cormier et al\(^{18}\), 2015	RCS	North America	Other	36.4/35.6	27.7/25.6	Not recorded	Three-four years	CDA, 2013	None	None	Age, parity, time to follow up after delivery			
Hakkarainen et al\(^{19}\), 2015	PCS	Europe	Non-Hispanic White	30.8	26.88/28.38	Not recorded	Not recorded	Local	ADA, 2011	Not recorded	Infant birth weight			
Pintaudi et al\(^{20}\), 2015	PCS	Europe	Hispanic	35.7	Not recorded	Not recorded	Not recorded	ADA, 2004	Local	Not recorded	Propensity score			
Author	Study type	Region	Race/ethnicity	Mean maternal age (yr; overall or GDM/non-GDM)	BMI at followup (kg/m²; overall or GDM/non-GDM)	Family history (GDM/non-GDM, %)	Time interval of postpartum OGTT performed	GDM criteria	T2DM criteria	Dropout rate (%)	Confounders matched			
---------------	------------	----------------	------------------	---	---	---------------------------------	--	-------------------------	---------------	-----------------	---			
Mai et al, 2014	RCS	Western Pacific	Asian	30.6/27.2	22.7/21.5	19.5/6.3	Six months	ADA, 2004	ADA, 2010	None	Family history, parity, length of follow up, DBP and hip circumference			
Barden et al, 2013	PCS	Western Pacific	Non-Hispanic White	32.9/32.6	Not recorded	60.70/53.4	Six months	Local	27.90	Not recorded	Ontario Diabetes Database			
Feig et al, 2013	RCS	North America	Other	28.8	Not recorded	Not recorded	5.4 yr	Local	Not recorded	Not recorded	Ontario Diabetes Database			
Hummel et al, 2013	RCS	Europe	Non-Hispanic White	Not recorded	Not recorded	Not recorded	Not recorded	German Diabetes Association, 2001	None	Not recorded	None			
Anderberg et al, 2012	RCS	Europe	Non-Hispanic White	Median 32	Not recorded	Not recorded	Not recorded	German Diabetes Association, 2011	Not recorded	None	Age, year of delivery and residence			
Mukerji et al, 2012	RCS	North America	Other	20-49	Not recorded	Not recorded	Not recorded	Ontario Ministry of Health and Long-Term Care, Registered Persons Database	None	Not recorded	Ontario Diabetes Database			
Author	Study type	Region	Race/ethnicity	Mean maternal age (yr; overall or non-GDM, GDM at followup)	BMI at followup (kg/m²; overall or non-GDM, GDM at followup)	Family history (GDM/non-GDM, %)	Time interval of postpartum OGTT performed	T2DM criteria	GDM criteria	Dropout rate (%)	Confounders matched	Followup details		
-----------------	------------	--------------------	----------------	---	---	--------------------------------	--	----------------	--------------	-----------------	---------------------	------------------		
Tam et al⁸⁴, 2012	PCS	Western Pacific	Asian Other	28.8/28.2	24.7/24.4	Not recorded	Not recorded	WHO, 1999	ADA, 2009	Not recorded	Age, parity, smoking, BMI, waist-hip ratio, fat, %, LDL, HDL, cholesterol, and metabolic syndrome	31.50		
Tehrani et al⁸³, 2012	RCS	Middle East Other	Other Other	33.6/33.7	30.0/29.8	Not recorded	Not recorded	WHO, 1998	ADA, 2004	Not recorded	Age, BMI, parity, family history, BP, blood glucose, cholesterol, and metabolic syndrome	None		
Wang et al⁸², 2012	PCS	North America Other	Other Other	26.8/24.3	Not recorded	Not recorded	Not recorded	ADA, 2004, or WHO, 1998	ADA, 2004	Not recorded	None	Postpartum DBP, current smoker and annual family income	46.7/26.8	
Akinci et al⁸¹, 2011	RCS	Europe Non-Hispanic White Other	Other	31.9/31.4	26.1/21.7	Not recorded	Not recorded	ADA, 2009	ADA, 2009	None	None	Age and length of followup	4.82	
Xiang et al⁸⁰, 2011	RCS	North America Other	Other Other	32.4/32.3	Not recorded	Not recorded	Not recorded	ADA, 2010	ADA, 2010	None	None	None	3.90	
Feig et al⁷⁹, 2008	RCS	North America Non-Hispanic White	Other	29.3	Not recorded	Not recorded	Not recorded	ADA, 2004, or WHO, 1998	ADA, 2004	None	None	None	Ontario Diabetes Institute for Health Information Database	Information
Author	Study type	Region	Race/ethnicity	Mean maternal age (yr; overall or GDM/non-GDM)	BMI at followup (kg/m²; overall or GDM/non-GDM)	Family history (GDM/non-GDM, %)	Time interval of postpartum OGTT performed	GDM criteria	T2DM criteria	Dropout rate (%)	Confounders matched			
-----------------------	------------	--------------	-----------------	---	---	---------------------------------	---	-------------------	----------------	-----------------	---			
Lee et al⁷, 2008	RCS	Western Pacific	Asian	33.6	23.5/22.5	36.5/11.9	Six weeks	NDDG, 1979	Local	Not recorded	Age, smoking exposure, hip circumference and DBP			
Madarász et al²⁸, 2008	RCS	Europe	Non-Hispanic White	33.1/30.0	Not recorded	Not recorded	Not recorded	WHO, 1999	WHO, 1999	Not recorded	Not recorded			
Vambergue et al²⁹, 2008	RCS	Europe	Other	27.0/28.8	Not recorded	Not recorded	Six years	Carpenter and Coustan	ADA, 1997	29	Pregnancy-induced hypertension and caesarean section			
Ferraz et al³⁰, 2007	PCS	South America	Hispanic	26.9/25.1	26.34/25.33	Not recorded	6.2 yr	WHO, 1999	WHO, 1999	None	BMI, BP and blood glucose at follow up			
Gunderson et al³⁰, 2007	PCS	North America	Other	18-30	24.45	Not recorded	5-20 yr	Obstetric Laboratory Reports	ADA, 1997	28	Age, smoking exposure and marital status			
Krishnaveni et al³⁰, 2007	PCS	South-East Asia	Other	19.6/33.1	25.5/23.5	57.1/27.2	Six months	Carpenter and Coustan	WHO, 1999	None	Parity, BMI at follow up, height, family history and waist-hip ratio			
Lee et al³⁰, 2007	RCS	Western Pacific	Other	30.7/30.5	Not recorded	16.7/24.0	Six weeks	Australian Diabetes in Pregnancy Society Guidelines	WHO, 1998	56.20	Height, parity and Infant birth weight			
Morimitsu et al³¹, 2007	PCS	South America	Other	32/27	29.6/24.4	Not recorded	Four-six months	ADA, 1997	ADA, 1997	Not recorded	Age, LDL and HDL			
Järvelä et al³¹, 2006	RCS	Europe	Non-Hispanic white	31.6/31.3	Not recorded	Not recorded	Not recorded	Finnish Diabetes Association	Medication for T2DM linked to database 13	Not recorded	Age, parity and date of delivery			
Author	Region	Race/ethnicity	Mean maternal age (yr)	BMI at followup (kg/m²)	Family history, subsequent pregnancies and BMI at followup	Confounders matched	T2DM criteria	Dropout rate (%)						
----------------	-------------	----------------	------------------------	-------------------------	---	--------------------	---------------	------------------						
Albareda et al.	Europe	Hispanic	30.7/30.4	24.5/24.8	Six weeks	None	WHO, 1998	Not recorded						
Aberg et al.	Europe	Hispanic	35.7	25.7/24.7	Not recorded	None	ADA, 2004	Not recorded						
Linné et al.	Europe	Non-Hispanic white	32.6/30.6	25.7/24.7	Not recorded	None	Local	Not recorded						
Bian et al.	Western Pacific	Asian	29	Not recorded	5-10 yr	None	NDDG, 1979	None						
Ko et al.	Europe	Asian	34.0/34.4	22.7/24.8	Not recorded	Local	WHO, 1985	None						
Osei et al.	North America	Black	31.3/36.0	34.27.0	Not recorded	Local	NDDG, 1979	None						
Damm et al.	Europe	Non-Hispanic white	30.1/26.7	21.0/23.1	Not recorded	Local	WHO, 1985	19.00						
not affected by the exclusion of any individual study (Fig. 4).

Subgroup analyses indicated that maternal characteristics and the time interval of postpartum OGTT performed was associated with the RR of T2DM onset after GDM. Older maternal age and family history of diabetes mellitus increased the risk of T2DM after GDM. The incidence of T2DM after GDM is the highest within the first year after delivery. The RR of diagnosing T2DM after GDM was lower when more confounders were matched (Fig. 5).

These results suggest that race/ethnicity, region, family history and time interval of postpartum OGTT performed could explain the reason behind the heterogeneity among studies. However, mean maternal age, BMI at follow up, GDM criteria, T2DM criteria and number of confounders matched could not explain the same.

Publications bias: No apparent asymmetry was observed in the Begg’s funnel plot (Fig. 6) and Egger’s publication bias plot (Fig. 7). Results of the Begg’s test ($P=0.200$) and Egger’s test ($P=0.380$) were not significant.

Discussion

This meta-analysis indicates that women with a history of GDM have near nine fold increased risk of being diagnosed as T2DM in the future compared with those without GDM. The magnitude of the association...
Study ID and RR (95% CI) with Weight

Study ID	RR (95% CI)	Weight (%)
Daly et al\(^{+}\), 2018	25.68 (21.55, 30.61)	7.40
Shen et al\(^{+}\), 2018	9.09 (4.26, 19.39)	2.16
Herath et al\(^{+}\), 2017	10.52 (6.20, 17.83)	3.52
Ajala et al\(^{+}\), 2015	2.95 (0.66, 13.18)	0.68
Cormier et al\(^{+}\), 2015	15.33 (2.14, 109.68)	0.41
Hakkarainen et al\(^{+}\), 2015	13.38 (4.21, 42.56)	1.08
Pintaudi et al\(^{+}\), 2015	18.12 (15.08, 21.76)	7.30
Mai et al\(^{+}\), 2014	16.54 (1.01, 270.64)	0.21
Barden et al\(^{+}\), 2013	19.82 (1.22, 323.18)	0.21
Feig et al\(^{+}\), 2013	10.49 (10.25, 10.73)	8.55
Hummel et al\(^{+}\), 2013	2.73 (0.16, 45.10)	0.21
Anderberg et al\(^{+}\), 2012	27.05 (15.54, 47.06)	3.32
Mokerji et al\(^{+}\), 2012	10.57 (10.32, 10.82)	8.55
Tam et al\(^{+}\), 2012	4.47 (1.62, 12.33)	1.36
Tehrani et al\(^{+}\), 2012	2.67 (1.02, 6.96)	1.49
Wang et al\(^{+}\), 2012	5.06 (4.54, 5.64)	8.08
Akinci et al\(^{+}\), 2011	20.20 (1.25, 326.92)	0.21
Ramezani et al\(^{+}\), 2011	3.20 (1.15, 8.92)	1.34
Xiang et al\(^{+}\), 2011	6.85 (6.36, 7.38)	8.33
Feig et al\(^{+}\), 2008	12.66 (12.15, 13.20)	8.50
Lee et al\(^{+}\), 2008	4.52 (2.83, 7.21)	4.03
Madaras et al\(^{+}\), 2008	24.93 (1.55, 400.47)	0.21
Vambahru et al\(^{+}\), 2008	19.94 (2.79, 142.47)	0.41
Ferraz et al\(^{+}\), 2007	1.32 (0.46, 3.77)	1.29
Gunderson et al\(^{+}\), 2007	3.87 (2.87, 5.23)	5.85
Krishnaveni et al\(^{+}\), 2007	22.70 (10.09, 51.10)	1.95
Lee et al\(^{+}\), 2007	3.62 (2.21, 5.94)	3.80
Morimitsu et al\(^{+}\), 2007	7.50 (0.47, 120.60)	0.21
Järvelä et al\(^{+}\), 2006	47.00 (2.86, 771.35)	0.21
Albareda et al\(^{+}\), 2003	9.07 (0.56, 145.64)	0.21
Aberg et al\(^{+}\), 2002	5.59 (0.77, 40.76)	0.40
Lim et al\(^{+}\), 2002	38.38 (2.33, 631.57)	0.21
Bian et al\(^{+}\), 2000	13.00 (1.80, 94.00)	0.40
Ko et al\(^{+}\), 1999	8.07 (3.79, 17.19)	2.17
Osei et al\(^{+}\), 1998	47.25 (2.95, 758.01)	0.21
Dam et al\(^{+}\), 1994	16.06 (1.00, 258.24)	0.21
Benjamin et al\(^{+}\), 1993	4.67 (1.43, 15.18)	1.05
Persson et al\(^{+}\), 1991	3.16 (0.18, 56.07)	0.20
O'Sullivan et al\(^{+}\), 1984	6.64 (4.19, 10.53)	4.09

NOTE: Weights are from random effects analysis

Fig. 3. Forest plot of the risk of women diagnosed as type 2 diabetes mellitus (DM) after gestational DM. X-axis is plotted in log scale. Solid squares and horizontal lines indicate relative ratios and 95 per cent confidence intervals. The diamond represents the pooled relative risk (RR).
Fig. 4. Sensitivity analysis of women diagnosed as type 2 DM after gestational DM. Three vertical lines indicate the pooled RR and 95 per cent CI of all studies. Circles and horizontal dashed lines indicate recalculated RRs and 95 per cent CIs.
Fig. 5.

Risk of women diagnosed as type 2 DM after gestational diabetes mellitus grouped by maternal characteristics, study characteristics and diagnostic criteria. The diamond represents the subtotal relative risk.

Subgroup	studies	RR (95% CI)	χ^2 for test of Heterogeneity (P value)	I^2(%)	ϕ^2
Maternal Age	8	7.65 (5.86, 9.97)	289.54 ($P<0.01$)	97.4	0.07
<30	20	8.91 (5.58, 12.92)	312.55 ($P<0.01$)	93.9	0.60
≥30	3	6.34 (2.59, 15.55)	43.19 ($P<0.01$)	95.4	0.48
Age range reported only	6	12.05 (8.31, 17.47)	3.64 ($P=0.60$)	0	0
Not similar	2	6.48 (4.11, 10.22)	0.38 ($P=0.54$)	0	0
BMI at follow up					
<25 kg/m²	10	7.22 (4.51, 11.55)	27.24 ($P<0.01$)	67.0	0.28
≥25 kg/m²	9	6.82 (2.73, 17.06)	21.35 ($P<0.01$)	62.5	1.07
Not recorded	20	10.21 (8.85, 11.77)	554.31 ($P<0.01$)	96.6	0.05
Race/Ethnicity					
non-Hispanic White	12	14.91 (10.84, 20.91)	12.78 ($P=0.31$)	13.9	0.04
Hispanic	3	5.93 (0.75, 46.92)	23.43 ($P<0.01$)	91.5	2.77
Asian	7	7.18 (5.08, 10.15)	7.90 ($P=0.25$)	24.1	0.05
Black	1	47.25 (2.945, 758.01)	0 ($P=0.01$)	0	2.77
Other	16	7.85 (6.66, 9.25)	47.75 ($P<0.01$)	96.8	0.05
Region					
Europe	14	21.24 (17.60, 25.59)	15.06 ($P=0.30$)	13.7	0.01
North America	11	7.81 (6.71, 9.10)	438.34 ($P<0.01$)	97.7	0.04
South America	2	2.02 (0.43, 9.39)	1.46 ($P=0.23$)	31.5	0.53
Western Pacific	8	5.47 (3.95, 7.56)	8.52 ($P=0.29$)	17.8	0.04
Middle East	2	2.90 (1.44, 5.85)	0.06 ($P=0.80$)	0	0
South-East Asia	2	14.58 (6.65, 31.97)	2.69 ($P=0.10$)	62.9	0.21
Family history					
<25%	2	4.10 (1.80, 9.33)	1.12 ($P=0.29$)	10.9	0.13
≥25%	7	5.21 (3.23, 8.41)	7.82 ($P=0.25$)	23.3	0.09
Not recorded	30	9.81 (6.56,11.23)	603.16 ($P<0.01$)	95.2	0.05
Time interval of postpartum OGTT performed					
At six wk	4	4.65 (3.34, 6.48)	3.28 ($P=0.35$)	8.6	0.01
≤1 yr	10	12.65 (12.14, 13.19)	7.21 ($P=0.62$)	0	0
>1 yr	9	8.08 (4.70,13.91)	166.59 ($P<0.01$)	95.2	0.44
Not recorded	16	8.70 (6.51,11.63)	348.86 ($P<0.01$)	95.7	0.16
GDM criteria					
WHO	7	5.00 (2.49, 10.02)	5.90 ($P=0.21$)	32.2	0.22
ADA	5	7.66 (2.66, 22.05)	180.43 ($P<0.01$)	97.8	1
NDDG	3	8.52 (2.40, 30.28)	3.81 ($P=0.15$)	47.0	0.65
Carpenter and Coustan	4	12.98 (5.24, 32.16)	10.01 ($P=0.02$)	70.0	0.48
Other	20	10.64 (9.38, 12.07)	153.34 ($P<0.01$)	88.3	0
T2DM criteria					
WHO	13	6.75 (4.32, 10.54)	29.67 ($P<0.01$)	59.6	0.30
ADA	11	5.60 (4.35, 7.21)	42.03 ($P<0.01$)	76.2	0.06
NDDG	2	10.75 (1.10, 105.31)	2.48 ($P=0.12$)	60.0	1.76
Other	13	13.30 (11.71, 15.10)	231.17 ($P<0.01$)	94.8	0.02
Number of confounders matched					
1-3	19	8.96 (6.01, 13.37)	437.89 ($P<0.01$)	95.9	0.47
4-6	8	8.16 (4.52,14.74)	17.61 ($P=0.01$)	60.3	0.34
≥7	3	4.55 (1.50, 12.95)	3.81 ($P=0.15$)	47.5	0.39
Not recorded	9	10.86 (9.90,11.92)	77.14 ($P<0.01$)	89.6	0.01
Overall	39	8.92 (7.84, 10.14)	645.47 ($P<0.01$)	94.1	0.05
between GDM and T2DM suggests that more frequent assessment and effective interventions targeting eligible women are needed. American Diabetes Association and other professional organizations recommend diabetes screening at 6-12 wk postpartum for women with GDM. Despite the emphasis of multiple guidelines, the postpartum screening compliance rates are still typically low. In addition, from the present study it was evident that within the first year after delivery, the progression of T2DM increased steeply. So, healthcare providers should emphasize the importance of continuity in treatment and healthcare and women with GDM should attend the follow up programmes earlier and conduct OGTT at 6-12 wk postpartum. Furthermore, later long-time screening strategies and optimal screening frequency may be needed further studies to explore.

Maternal age, BMI, race/ethnicity and family history are associated with the prevalence of GDM and T2DM. In this meta-analysis, the results of subgroup analyses corroborated that maternal age and family history of diabetes might be the risk factors for T2DM after GDM. Thus, older women or those with a family history should value antepartum counselling and postpartum diabetes screening more than other women with GDM.

It has been suggested previously that the prevalence of GDM varies with race/ethnicity, with Asians and Hispanics reported to have a higher GDM prevalence than non-Hispanic Whites and Blacks. In the present study it was observed that Blacks and non-Hispanic Whites had a higher RR of developing T2DM after GDM than Hispanics and Asians, which was consistent with a large multi-ethnic cohort study. Another study reported that Hispanics and Asians had the highest RR of T2DM after GDM, however, the sample size was small and CIs were wide. This inconsistency could be attributed to the sample size. Large multi-ethnic cohort studies are needed to verify that conjecture.

Besides race/ethnicity, regional disparity (geographic level) is an important influence factor of GDM prevalence. The Middle East and North Africa had the highest prevalence of GDM, followed by South-East Asia, Western Pacific, South America, Africa and North America, whereas Europe had the lowest prevalence. Despite the relatively high prevalence, no eligible studies from North Africa or Africa were identified in our search, and only two studies from South-East Asia were included. The subgroup analysis indicated that the RR of T2DM after GDM in Europe and South-East Asia was higher than other geographic regions. Although the GDM prevalence in Europe was the lowest, the RR of T2DM after GDM in Europe was the highest. Moreover, RRs in South America and Middle East were relatively low. Taken together, the RR of T2DM after GDM was not associated with GDM prevalence.

In this meta-analysis ($P<0.01$, $I^2=94.1\%$) high heterogeneity was noted similar to a previous study ($P<0.01$, $I^2=85\%$). In this meta-analysis, sensitivity analysis indicated that no individual study contributed to the heterogeneity and the subgroup analyses, indicated that maternal age, BMI at follow up, GDM and T2DM criteria, and number of confounders matched could not explain the heterogeneity. Nevertheless, race/ethnicity, region, family history and time interval of postpartum OGTT performed might have contributed to the
same. In subgroup analysis based on race/ethnicity, no significant evidence of heterogeneity was found in group ‘non-Hispanic White’ and ‘Asian’, but significant evidence of heterogeneity was found in group ‘Other’ and ‘Hispanic’. In group ‘Other’, most studies included mixed population and their racial/ethnic composition was different, which was considered the cause of the subgroup heterogeneity. In group ‘Hispanic’, two studies were carried out in Europe and one in South America; it was thus inferred that regional disparity might cause subgroup heterogeneity. In the results of subgroup analyses based on geographic regions, we only observed significant evidence of heterogeneity in the group ‘North America’. Such heterogeneity might be attributed to diversity in race/ethnicity, because the degree of diversification among population in North America was higher than that among the population of other geographic regions and most studies on this group included mixed population. In subgroup analysis based on family history, no heterogeneity was found in the group ‘<25 per cent’ and ‘>25 per cent’. In addition, in subgroup analysis based on time interval of postpartum OGTT performed, no heterogeneity was found in the groups ‘at six weeks’ and ‘<one year’ and high heterogeneity was seen in group ‘>one year’. Therefore, it was inferred that the family history of diabetes and time interval of postpartum OGTT performed might be the source of heterogeneity. Meanwhile, 76.9 per cent (30/39) studies did not record the family history information and 41.0 per cent (16/39) studies did not record the time interval of postpartum OGTT performed. Such absence of information might have caused a bias.

There were, however, two limitations in the present study. The RR was synthesized regardless of the huge variance in diagnostic criteria and screening protocol for GDM and T2DM. However, the diagnose criteria have been constantly changing over the last four decades. In 1997, the T2DM diagnosis threshold was reduced58. Moreover, recent studies using the new International Association of Diabetes and Pregnancy Study Group criteria show a higher prevalence of GDM58. Therefore, the inclusion of old studies might have caused the underestimation of the risk of having T2DM after GDM. Secondly, the main source of heterogeneity in this study could not be identified. Such heterogeneity in the present study might have been caused by the number of included studies and the differences in the participant characteristics.

In summary, the high risk of diagnosing T2DM after GDM suggests that healthcare providers need postpartum screening and follow up programmes, both of which are convenient and economic methods for early treatment of T2DM, thereby reducing the prematurity of cardiovascular, renal and retinal diseases59-62. Continuous assessment and effective interventions targeting eligible women are needed, in particular, older women with GDM or women with GDM and a family history of diabetes should value antepartum consulting and postpartum followup programmers more than other women with GDM only. Blacks and non-Hispanic Whites could receive more attention, and healthcare providers, especially those in Europe and South-East Asia, could pay more attention to preventive measures. Overall, it is concluded that the RR of diagnosing T2DM after GDM is not directly proportional to GDM prevalence among racial/ethnic groups or geographic regions. Whether the difference is due to lifestyle, genetics or environment needs to be investigated further.

Acknowledgment: We thank Li Li for statistical support.

Financial support & sponsorship: None.

Conflicts of Interest: None.

References
1. Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohrogge AW, Malanda B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract 2018; 138 : 271-81.
2. Rowland J, Wilson CA. The association between gestational diabetes and ASD and ADHD: a systematic review and meta-analysis. Sci Rep 2021; 11 : 5136.
3. Kim C, Newton KM, Knopp RH. Gestational diabetes and the incidence of type 2 diabetes: a systematic review. Diabetes Care 2002; 25 : 1862-8.
4. Cormier H, Vigneault J, Garneau V, Tchernof A, Vohl MC, Weinsagel SJ, et al. An explained variance-based genetic risk score associated with gestational diabetes antecedent and with progression to pre-diabetes and type 2 diabetes: A cohort study. BJOG 2015; 122 : 411-9.
5. Hakkarainen H, Huopio H, Cederberg H, Pääkkönen M, Voutilainen R, Heinonen S. Post-challenge glycaemia during pregnancy as a marker of future risk of type 2 diabetes: A prospective cohort study. Gynecol Endocrinol 2015; 31 : 573-7.
6. Marathe PH, Gao HX, Close KL. American Diabetes Association Standards of Medical Care in Diabetes 2017. J Diabetes 2017; 9 : 320-4.
7. Eggleston EM, LeCates RF, Zhang F, Wharam JF, Ross-Degnan D, Oken E. Variation in postpartum glycemic screening in women with a history of gestational diabetes mellitus. *Obstet Gynecol* 2016; 128 : 159-67.

8. Nouhjah S, Shahbazian H, Amoori N, Jahanfar S, Shahbazian N, Jahanshahi A, *et al.* Postpartum screening practices, progression to abnormal glucose tolerance and its related risk factors in Asian women with a known history of gestational diabetes: A systematic review and meta-analysis. *Diabetes Metab Syndr* 2017; 11 (Suppl 2) : S703-12.

9. Herrick CJ, Keller MR, Trolard AM, Cooper BP, Olsen MA, Colditz GA. Postpartum diabetes screening among low income women with gestational diabetes in Missouri 2010-2015. *BMC Public Health* 2019; 19 : 148.

10. Rosenbloom JI, Blanchard MH. Compliance with postpartum diabetes screening recommendations for patients with gestational diabetes. *J Womens Health (Larchmt)* 2018; 27 : 498-502.

11. Bellamy L, Casas JP, Hingorani AD, Williams D. Type 2 diabetes mellitus after gestational diabetes: A systematic review and meta-analysis. *Lancet* 2009; 373 : 1773-9.

12. Miao L, Song L, Sun SK, Wang ZG. Meta-analysis of open surgical repair versus hybrid arch repair for aortic arch aneurysm. *Interact Cardiovasc Thorac Surg* 2017; 24 : 34-40.

13. Jiang J, Tang Q, Feng J, Dai R, Wang Y, Yang Y, *et al.* Association between SLC01B1 −521T>C and −388A>G polymorphisms and risk of statin-induced adverse drug reactions: A meta-analysis. *Springerplus* 2016; 5 : 1368.

14. Chowdhury R, Sinha B, Sankar MJ, Taneja S, Bhandari N, Rollins N, *et al.* Breastfeeding and maternal health outcomes: A systematic review and meta-analysis. *Acta Paediatr* 2015; 104 : 96-113.

15. Daly B, Toulis KA, Thomas N, Gokhale K, Martin J, Webber J, *et al.* Increased risk of ischemic heart disease, hypertension, and type 2 diabetes in women with previous gestational diabetes mellitus, a target group in general practice for preventive interventions: A population-based cohort study. *PLoS Med* 2018; 15 : e1002488.

16. Herath H, Herath R, Wickremasinghe R. Gestational diabetes mellitus and risk of type 2 diabetes 10 years after the index pregnancy in Sri Lankan women - A community based retrospective cohort study. *PLoS One* 2017; 12 : e0179647.

17. Ajala O, Jensen LA, Ryan E, Chik C. Women with a history of gestational diabetes on long-term follow up have normal vascular function despite more dysglycemia, dyslipidemia and adiposity. *Diabetes Res Clin Pract* 2015; 110 : 309-14.

18. Mai C, Wang B, Wen J, Lin X, Niu J. Lipoprotein-associated phospholipase A2 and AGES are associated with cardiovascular risk factors in women with history of gestational diabetes mellitus. *Gynecol Endocrinol* 2014; 30 : 241-4.

19. Feig DS, Shah BR, Lipscombe LL, Wu CF, Ray JG, Lowe J, *et al.* Preeclampsia as a risk factor for diabetes: A population-based cohort study. *PLoS Med* 2013; 10 : e1001425.

20. Hummel S, Much D, Rossbauer M, Ziegler AG, Beyerlein A. Postpartum outcomes in women with gestational diabetes and their offspring: POGO study design and first-year results. *Rev Diabet Stud* 2013; 10 : 49-57.

21. Anderberg E, Carlsson KS, Berntorp K. Use of healthcare resources after gestational diabetes mellitus: A longitudinal case-control analysis. *Scand J Public Health* 2012; 40 : 385-90.

22. Mekerji G, Chiu M, Shah BR. Impact of gestational diabetes on the risk of diabetes following pregnancy among Chinese and South Asian women. *Diabetologia* 2012; 55 : 2148-53.

23. Tehrani FR, Hashemi S, Hashemina M, Azizi F. Follow-up of women with gestational diabetes in the Tehran Lipid and Glucose Study (TLGS): A population-based cohort study. *J Obstet Gynecol Res* 2012; 38 : 698-704.

24. Akinci B, Celtik A, Gene S, Yener S, Demir T, Secil M, *et al.* Evaluation of postpartum carbohydrate intolerance and cardiovascular risk factors in women with gestational diabetes. *Gynecol Endocrinol* 2011 ; 27 : 361-7.

25. Xiang AH, Li BH, Black MH, Sacks DA, Buchanan TA, Jacobsen SJ, *et al.* Racial and ethnic disparities in diabetes risk after gestational diabetes mellitus. *Diabetologia* 2011; 54 : 3016-21.

26. Feig DS, Zinman B, Wang X, Hux JE. Risk of development of diabetes mellitus after diagnosis of gestational diabetes. *CMAJ* 2008; 179 : 229-34.

27. Lee H, Jang HC, Park HK, Metzger BE, Cho NH. Prevalence of type 2 diabetes among women with a previous history of gestational diabetes mellitus. *Diabetes Res Clin Pract* 2008; 81 : 124-9.

28. Madarasz E, Tamás G, Tabák GA, Szalay J, Kerényi Z. Metabolic syndrome after pregnancy complicated with gestational diabetes: Four-year follow-up. *Orv Hetil* 2008; 149 : 831-8.

29. Vambergue A, Dognin C, Boulougue A, Réjou MC, Biausque S, Fontaine P. Increasing incidence of abnormal glucose tolerance for permanent type 1 and type 2 diabetes in fertile age: DIAGEST 2 study. *Diabet Med* 2008; 25 : 58-64.

30. Lee AJ, Hiscock RJ, Wein P, Walker SP, Permezel M. Gestational diabetes mellitus: Clinical predictors and long-term risk of developing type 2 diabetes: A retrospective cohort study using survival analysis. *Diabetes Care* 2007; 30 : 878-83.

31. Järvelä IY, Juutinen J, Koskela P, Hartikainen AL, Kulmala P, Knip M, *et al.* Gestational diabetes identifies women at risk for permanent type 1 and type 2 diabetes in fertile age: Predictive role of autoantibodies. *Diabetes Care* 2006; 29 : 607-12.

32. Aberg AE, Jönsson EK, Eskilsson I, Landin-Olsson M, Frid AH. Predictive factors of developing diabetes mellitus in women with gestational diabetes. *Acta Obstet Gynecol Scand* 2002; 81 : 11-6.

33. Linné Y, Barkeling B, Rössner S. Natural course of gestational diabetes mellitus: Long term follow up of women in the SPAWN study. *BJOG* 2002; 109 : 1227-31.

34. Bion X, Gao P, Xiong X, Xu H, Qian M, Liu S. Risk factors for development of diabetes mellitus in women with a history
of gestational diabetes mellitus. *Chin Med J (Engl)* 2000; 113 : 759-62.

35. Ko GT, Chan JC, Tsang LW, Li CY, Cockram CS. Glucose intolerance and other cardiovascular risk factors in Chinese women with a history of gestational diabetes mellitus. *Aust NZ J Obstet Gynaecol* 1999; 39 : 478-83.

36. Osei K, Gaillard TR, Schuster DP. History of gestational diabetes leads to distinct metabolic alterations in nondiabetic African-American women with a parental history of type 2 diabetes. *Diabetes Care* 1998; 21 : 1250-7.

37. Damm P, Kühl C, Buschard K, Jakobsen BK, Svejgaard A, Sodoyez-Goffaux F, *et al.* Prevalence and predictive value of islet cell antibodies and insulin autoantibodies in women with gestational diabetes. *Diabet Med* 1994; 11 : 558-63.

38. Benjamin E, Winters D, Mayfield J, Gohdes D. Diabetes in pregnancy in Zuni Indian women. Prevalence and subsequent development of clinical diabetes after gestational diabetes. *Diabetes Care* 1993; 16 : 1231-5.

39. Persson B, Hanson U, Hartling SG, Binder C. Follow-up of women with previous GDM. Insulin, C-peptide, and proinsulin responses to oral glucose load. *Diabetes* 1991; 40 (Suppl 2) : 136-41.

40. Shen Y, Wang P, Wang L, Zhang S, Liu H, Li W, *et al.* Gestational diabetes with diabetes and prediabetes risks: A large observational study. *Eur J Endocrinol* 2018; 179 : 51-8.

41. Pintaudi B, Lucisano G, Pellegrini F, D’Ettorre A, Lepore V, De Berardis G, *et al.* The long-term effects of stillbirth on women with and without gestational diabetes: A population-based cohort study. *Diabetologia* 2015; 58 : 67-74.

42. Barden A, Singh R, Walters B, Phillips M, Beilin LJ. A simple scoring method using cardiometabolic risk measurements in pregnancy to determine 10-year risk of type 2 diabetes in women with gestational diabetes. *Nutr Diabetes* 2013; 3 : e72.

43. Tam WH, Ma RC, Yang X, Ko GT, Lao TT, Chan MH, *et al.* Cardiometabolic risk in Chinese women with prior gestational diabetes: A 15-year follow-up study. *Gynecol Obstet Invest* 2012; 73 : 168-76.

44. Wang Y, Chen L, Horswell R, Xiao K, Besse J, Johnson J, *et al.* Racial differences in the association between gestational diabetes mellitus and risk of type 2 diabetes. *J Womens Health (Larchmt)* 2012; 21 : 628-33.

45. Ramezani TF, Hashemi S, Hasheminia M, Azifi F. Metabolic disorders in women with previous gestational diabetes mellitus, Tehran lipid and glucose study. *Iranian J Endocrinol Metabol* 2011; 13 : 339-45.

46. Ferraz TB, Motta RS, Ferraz CL, Capibaribe DM, Forti AC, Chacra AR. C-reactive protein and features of metabolic syndrome in Brazilian women with previous gestational diabetes. *Diabetes Res Clin Pract* 2007; 78 : 23-9.

47. Gunderson EP, Lewis CE, Tsai AL, Chiang V, Carnethon M, Quesenberry CP Jr, *et al.* A 20-year prospective study of childhood and incidence of diabetes in young women, controlling for glycemia before conception: The Coronary Artery Risk Development in Young Adults (CARDIA) Study. *Diabetes* 2007; 56 : 2990-6.

48. Krishnaveni GV, Hill JC, Veena SR, Geetha S, Jayakumar MN, Karat CL, *et al.* Gestational diabetes and the incidence of diabetes in the 5 years following the index pregnancy in South Indian women. *Diabetes Res Clin Pract* 2007; 78 : 398-404.

49. Morimitsu LK, Fusaro AS, Sanchez VH, Hagemann CC, Bertini AM, Dib SA. Fibrinolytic dysfunction after gestation is associated to components of insulin resistance and early type 2 diabetes in Latino women with previous gestational diabetes. *Diabetes Res Clin Pract* 2007; 78 : 340-8.

50. Albareda M, Caballero A, Badell G, Piquer S, Ortiz A, de Leiva A, *et al.* Diabetes and abnormal glucose tolerance in women with previous gestational diabetes. *Diabetes Care* 2003; 26 : 1199-205.

51. O’Sullivan JB. The Boston Gestational Diabetes Studies: Review and Perspectives. Carbohydrate metabolism in pregnancy and the newborn IV. London: Springer-Verlag Berlin Heidelberg; 1984. p. 287-94.

52. Standards of medical care in diabetes--2011. *Diabetes Care* 2011; 34 (Suppl 1) : S1-61.

53. Practice bulletin no. 137: Gestational diabetes mellitus. *Obstet Gynecol* 2013; 122 : 406-16.

54. Nielsen JH, Olesen CR, Kristiansen TM, Bak CK, Overgaard C. Reasons for women’s non-participation in follow-up screening after gestational diabetes. *Women Birth* 2015; 28 : e157-63.

55. Yarrington C, Zera C. Health systems approaches to diabetes screening and prevention in women with a history of gestational diabetes. *Curr Diab Rep* 2015; 15 : 114.

56. Heddersen M, Ehrlich S, Sridhar S, Darbinian J, Moore S, Ferrara A. Racial/ethnic disparities in the prevalence of gestational diabetes mellitus by BMI. *Diabetes Care* 2012; 35 : 1492-8.

57. Kim SY, Sappenfield W, Sharma AJ, Wilson HG, Bish CL, Salihu HM, *et al.* Racial/ethnic differences in the prevalence of gestational diabetes mellitus and maternal overweight and obesity, by nativity, Florida, 2004-2007. *Obesity (Silver Spring)* 2013; 21 : E33-40.

58. Noctor E, Dunne FP. Type 2 diabetes after gestational diabetes: The influence of changing diagnostic criteria. *World J Diabetes* 2015; 6 : 234-44.

59. Desmedt M, Vertiest S, Hellings J, Bergs J, Dessers E, Vankrunkelsven P, *et al.* Economic impact of integrated care models for patients with chronic diseases: A systematic review. *Value Health* 2016; 19 : 892-902.

60. Sullivan SD, Umans JG, Ratner R. Gestational diabetes: Implications for cardiovascular health. *Curr Diab Rep* 2012; 12 : 43-52.

61. Halimi JM, Joly D, Combe C, Choukroun G, Dussol B, Fauvel JP, *et al.* Blood pressure and proteinuria control remains a challenge in patients with type 2 diabetes mellitus and chronic kidney disease: Experience from the prospective observational ALICE-PROTECT study. *BMC Nephrol* 2016; 17 : 135.

62. Rami HE, Barham R, Sun JK, Silva PS. Evidence-based treatment of diabetic retinopathy. *Seminars Ophthalmol* 2016; 32 : 67-74.

For correspondence: Prof Anjiang Lei, No. 1416, Section 1, Chenglong Avenue, Jinjiang District, Chengdu 610 000, PR China
e-mail: hxleianjiang@163.com