Critical Sets in Bipartite Graphs

Vadim E. Levit
Department of computer Science and Mathematics
Ariel University Center of Samaria, Israel
levitv@ariel.ac.il

Eugen Mandrescu
Department of computer Science
Holon Institute of Technology, Israel
eugen@hit.ac.il

Abstract

Let $G = (V, E)$ be a graph. A set $S \subseteq V$ is independent if no two vertices from S are adjacent, and by $\text{Ind}(G) (\Omega(G))$ we mean the set of all (maximum) independent sets of G, while $\alpha(G) = |S|$ for $S \in \Omega(G)$ [6].

The neighborhood of $A \subseteq V$ is denoted by $N(A) = \{v \in V : N(v) \cap A \neq \emptyset\}$, where $N(v)$ is the neighborhood of the vertex v. The number $d(X) = |X| - |N(X)|$ is the difference of the set $X \subseteq V$, and $d_c(G) = \max\{d(I) : I \in \text{Ind}(G)\}$ is called the critical difference of G. A set X is critical if $d(X) = d_c(G)$ [4].

For a graph G we define $\ker(G) = \cap \{S : S$ is a critical independent set$\}$, while $\text{diadem}(G) = \cup \{S : S$ is a critical independent set$\}$.

For a bipartite graph $G = (A, B, E)$, with bipartition $\{A, B\}$, Ore [11] defined $\delta(X) = d(X)$ for every $X \subseteq A$, while $\delta_0(A) = \max\{\delta(X) : X \subseteq A\}$. Similarly is defined $\delta_0(B)$.

In this paper we prove that for every bipartite graph $G = (A, B, E)$ the following assertions hold:

- $d_*(G) = \delta_0(A) + \delta_0(B)$;
- $\ker(G) = \text{core}(G)$;
- $|\ker(G)| + |\text{diadem}(G)| = 2\alpha(G)$.

Keywords: maximum independent set, maximum matching, critical set, critical difference, Kőnig-Egerváry graph.

1 Introduction

Throughout this paper $G = (V, E)$ is a simple (i.e., a finite, undirected, loopless and without multiple edges) graph with vertex set $V = V(G)$ and edge set $E = E(G)$. If $X \subseteq V$, then $G[X]$ is the subgraph of G spanned by X. By $G - W$ we mean either the subgraph $G[V - W]$, if $W \subseteq V(G)$, or the partial subgraph $H = (V, E - W)$ of G, for
denote a bipartite graph having \(\{A, B\} \) as a bipartition and we assume that \(A \neq \emptyset \neq B \).

The neighborhood of a vertex \(v \in V \) is the set \(N(v) = \{w : w \in V \text{ and } vw \in E\} \), while the neighborhood of \(A \subseteq V \) is denoted by \(N(A) = N_G(A) = \{v \in V : N(v) \cap A \neq \emptyset\} \), and \(N[A] = N(A) \cup A \).

A matching is a set of non-incident edges of \(G \); a matching of maximum cardinality \(\mu(G) \) is a maximum matching, and a perfect matching is a matching covering all the vertices of \(G \). If \(M \) is a matching, then \(M(v) \) means the mate of the vertex \(v \) by \(M \), and \(M(X) = \{M(v) : v \in X\} \) for \(X \subseteq V(G) \).

A set \(S \subseteq V(G) \) is independent (or stable) if no two vertices from \(S \) are adjacent, and by \(\text{Ind}(G) \) we denote the set of all independent sets of \(G \). An independent set of maximum size will be referred to as a maximum independent set of \(G \), and the independence number of \(G \) is \(\alpha(G) = \max\{|S| : S \in \text{Ind}(G)\} \). Let \(\Omega(G) \) be the family of all maximum independent sets of \(G \), and \(\text{core}(G) = \cap\{S : S \in \Omega(G)\} \) \[6\].

Recall from \cite{14} the following definitions for a graph \(G = (V, E) \):

- \(d(X) = |X| - |N(X)| \), \(X \subseteq V \) is the difference of the set \(X \);
- \(d_c(G) = \max\{d(X) : X \subseteq V\} \) is the critical difference of \(G \);
- a set \(U \subseteq V \) is \(d \)-critical if \(d(U) = d_c(G) \);
- \(\text{id}_c(G) = \max\{d(I) : I \in \text{Ind}(G)\} \) is the critical independence difference of \(G \);
- if \(A \subseteq V \) is independent and \(d(A) = \text{id}_c(G) \), then \(A \) is critical independent.

For a graph \(G \) let us denote

\[
\text{ker}(G) = \cap\{S : S \subseteq V \text{ is a critical independent set}\}, \quad \text{diadem}(G) = \cup\{S : S \subseteq V \text{ is a critical independent set}\}.
\]

For instance, the graph \(G_1 \) from Figure 1 has \(X = \{x, y, z, u, v\} \) as a critical set, because \(N(X) = \{a, b, u, v\} \) and \(d(X) = 1 = d_c(G_1) \). In addition, let us notice that \(\text{ker}(G_1) = \{x, y\} \subseteq \text{core}(G_1) \), and \(\text{diadem}(G_1) = \{x, y, z\} \). The graph \(G_2 \) from Figure 1 has \(d_c(G_1) = d(\{v_1, v_2\}) = |\{v_1, v_2\}| - |N(\{v_1, v_2\})| = 1 \). It is easy to see that \(\text{core}(G_1) \) is a critical set, while \(\text{core}(G_2) \) is not a critical set, but \(\text{ker}(G_2) = \{v_1, v_2\} \subseteq \text{core}(G_2) \).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig.png}
\caption{core\((G_1) = \{x, y\}, \text{ while core}(G_2) = \{v_1, v_2, v_7, v_{11}\}.} \end{figure}

The following results will be used in the sequel.
Theorem 1.1 Let G be a graph. Then the following assertions are true:

(i) $\{d_c(G) = id_c(G)$.
(ii) $\{d_c(G)$ is a matching from $N(S)$ into S, for every critical independent set S.
(iii) $\{d_c(G)$ each bipartite graph enjoys this property [3], [4].
(iv) $\{d_c(G)$ the function d is supermodular, i.e.,
\[d(X \cup Y) + d(X \cap Y) \geq d(X) + d(Y) \text{ for every } X, Y \subseteq V(G); \]
(v) $\{d_c(G)$ if S_1, S_2 are d-critical sets, then $S_1 \cap S_2, S_1 \cup S_2$ are d-critical as well;
(vi) $\{d_c(G)$ there is a unique minimal d-critical set, namely, $\ker(G)$.
(vii) $\{d_c(G)$ the function d is supermodular, i.e.,
\[d(X \cup Y) + d(X \cap Y) \geq d(X) + d(Y) \text{ for every } X, Y \subseteq V(G); \]

If $\alpha(G) + \mu(G) = |V(G)|$, then G is called a König-Egerváry graph. [2], [13]. It is well-known that each bipartite graph enjoys this property [3], [4].

Theorem 1.2 If $G = (V, E)$ is a König-Egerváry graph, M is a maximum matching, and $S \in \Omega(G)$, then:
(i) $\{M$ matches $V - S$ into S, and $N(\text{core}(G))$ into $\text{core}(G)$;
(ii) $\{S$ is d-critical, and $d_c(G) = \alpha(G) - \mu(G) = |\text{core}(G)| - |N(\text{core}(G))|$.

Following Ore [11], [12], the number
\[\delta(X) = d(X) = |X| - |N(X)| \]
is called the deficiency of X, where $X \subseteq A$ or $X \subseteq B$ and $G = (A, B, E)$ is a bipartite graph. Let
\[\delta_0(A) = \max\{\delta(X) : X \subseteq A\}, \quad \delta_0(B) = \max\{\delta(Y) : Y \subseteq B\}. \]

A subset $X \subseteq A$ having $\delta(X) = \delta_0(A)$ is called A-critical, while $Y \subseteq B$ having $\delta(Y) = \delta_0(B)$ is called B-critical. For a bipartite graph $G = (A, B, E)$ let us denote $\ker_A(G) = \cap\{S : S \text{ is } A\text{-critical}\}$ and $\text{diadem}_A(G) = \cup\{S : S \text{ is } A\text{-critical}\}$. Similarly, $\ker_B(G) = \cap\{S : S \text{ is } B\text{-critical}\}$ and $\text{diadem}_B(G) = \cup\{S : S \text{ is } B\text{-critical}\}$.

It is convenient to define $d(\emptyset) = \delta(\emptyset) = 0$.

![G](image)

Figure 2: G is a bipartite graph without perfect matchings.

For instance, the graph $G = (A, B, E)$ from Figure 2 has: $X = \{a_1, a_2, a_3, a_4\}$ as an A-critical set, $\ker_A(G) = \{a_1, a_2\}$, $\text{diadem}_A(G) = \{a_i : i = 1, ..., 5\}$ and $\delta_0(A) = 1$, while $Y = \{b_i : i = 4, 5, 6, 7\}$ is a B-critical set, $\ker_B(G) = \{b_4, b_5, b_6\}$, $\text{diadem}_B(G) = \{b_i : i = 2, ..., 7\}$ and $\delta_0(B) = 2$.

3
Theorem 1.3 \cite{11} Let \(G = (A, B, E) \). Then the following are true:

(i) the function \(\delta \) is supermodular, i.e., \(\delta(X \cup Y) + \delta(X \cap Y) \geq \delta(X) + \delta(Y) \) for every \(X, Y \subseteq A \) (or \(X, Y \subseteq B \)).

(ii) there is a unique minimal \(A \)-critical set, namely, \(\ker_A(G) \), and there is a unique maximal \(A \)-critical set, namely, \(\text{diadem}_A(G) \); similarly, for \(\ker_B(G) \) and \(\text{diadem}_B(G) \);

(iii) \(\mu(G) = |A| - \delta_0(A) = |B| - \delta_0(B) \).

In this paper we define two new graph parameters, namely, \(\ker \) and \(\text{diadem} \). Further, we analyze their relationships with two other parameters, \(\text{core} \) and \(\text{corona} \), for bipartite graphs.

2 Preliminaries

Theorem 2.1 Let \(G = (A, B, E) \) be a bipartite graph. Then the following assertions are true:

(i) \(d_c(G) = \delta_0(A) + \delta_0(B) \);

(ii) \(\alpha(G) = |A| + \delta_0(B) = |B| + \delta_0(A) = \mu(G) + \delta_0(A) + \delta_0(B) = \mu(G) + d_c(G) \);

(iii) if \(X \) is an \(A \)-critical set and \(Y \) is a \(B \)-critical set, then \(X \cup Y \) is a \(d \)-critical set;

(iv) if \(Z \) is a \(d \)-critical independent set, then \(Z \cap A \) is an \(A \)-critical set and \(Z \cap B \) is a \(B \)-critical set;

(v) if \(X \) is either an \(A \)-critical set or a \(B \)-critical set, then there is a matching from \(N(X) \) into \(X \).

Proof. (i) By Theorems \cite{12},(iii) and \cite{11},(ii) we get
\[
d_c(G) = \alpha(G) - \mu(G) = |A| + |B| - 2\mu(G) = |A| + |B| - (|A| - \delta_0(A)) - (|B| - \delta_0(B)) = \delta_0(A) + \delta_0(B).
\]

(ii) Using Theorem \cite{12},(iii), we infer that
\[
\alpha(G) = |A \cup B| - \mu(G) = |A \cup B| - |A| + \delta_0(A) = |B| + \delta_0(A).
\]

Similarly, one can find \(\alpha(G) = |A| + \delta_0(B) \).

According to part (i), we obtain
\[
\mu(G) + d_c(G) = \mu(G) + \delta_0(A) + \delta_0(B) = |A| - \delta_0(A) + \delta_0(A) + \delta_0(B) = |A| + \delta_0(B) = \alpha(G).
\]

(iii) By supermodularity of the function \(d \) (Theorem \cite{12},(iv)) and part (i), we have
\[
d_c(G) \geq d(X \cup Y) = d(X \cup Y) + d(X \cap Y) \geq d(X) + d(Y) = \delta(X) + \delta(Y) = \delta_0(A) + \delta_0(B) = d_c(G).
\]

(iv) Since \(Z = (Z \cap A) \cup (Z \cap B) \) and \(N(Z \cap A) \cap (Z \cap B) = \emptyset = N(Z \cap B) \cap (Z \cap A) \), then
\[
d(Z \cap A) + d(Z \cap B) = |Z \cap A| - |N(Z \cap A)| - |Z \cap B| + |N(Z \cap B)| = |Z \cap A| + |Z \cap B| - |N(Z \cap A)| - |N(Z \cap B)| = |Z| - |N(Z)| = d(Z).
\]
Using the fact that $d(Z) = d_c(G) = \delta_0(A) + \delta_0(B)$, it follows that $d(Z \cap A) = \delta_0(A)$ and $d(Z \cap B) = \delta_0(B)$.

(v) Let X be an A-critical set. Suppose to the contrary that there is no matching from $N(X)$ into X. By Hall’s Theorem it means that there exists $U \subseteq N(X)$ such that $|N(U) \cap X| < |U|$. Consequently, we obtain

\[
\delta(X - N(U)) = |X - N(U)| - |N(X - N(U))| = |X| - |X \cap N(U)| - (|N(X)| - |U|) = |X| - |N(X)| + (|U| - |X \cap N(U)|) = \delta_0(A) + (|U| - |X \cap N(U)|) > \delta_0(A),
\]

which contradicts the fact that X is an A-critical set. ■

It is known that a bipartite graph G has a perfect matching if and only if $\alpha(G) = \mu(G)$. Hence using Theorem 2.1(ii), we deduce the following.

Corollary 2.2 \textbf{[11]} A bipartite graph $G = (A, B, E)$ has a perfect matching if and only if $\delta_0(A) = 0 = \delta_0(B)$.

Lemma 2.3 Let $G = (A, B, E)$ be a bipartite graph. If X is an A-critical set and Y is a B-critical set, then $|X \cap N(Y)| = |N(X) \cap Y|$. Moreover, there is a perfect matching between $X \cap N(Y)$ and $N(X) \cap Y$.

Proof. By Theorem 2.1(v), there is a matching M_1 from $N(X)$ into X, and a matching M_2 from $N(Y)$ into Y. For each $b \in N(X) \cap Y$, it follows that $M_1(b) \in N(b) \subseteq N(Y)$ and $M_1(b) \in X$. Hence $M_1(b) \in X \cap N(Y)$, which implies $M_1(N(X) \cap Y) \subseteq X \cap N(Y)$, and further

\[
|N(X) \cap Y| = |M_1(N(X) \cap Y)| \leq |X \cap N(Y)|.
\]

Similarly, we have

\[
|X \cap N(Y)| = |M_2(X \cap N(Y))| \leq |N(X) \cap Y|.
\]

Consequently, we deduce that $|X \cap N(Y)| = |N(X) \cap Y|$ and the restriction of M_1 to $N(X) \cap Y$ is a perfect matching from $N(X) \cap Y$ onto $X \cap N(Y)$. ■

Corollary 2.4 Let $G = (A, B, E)$ be a bipartite graph.

(i) \textbf{[12]} If $X = \ker_A(G)$ and Y is a B-critical set, then $X \cap N(Y) = N(X) \cap Y = \emptyset$;

(ii) \textbf{[13]} $\ker_A(G) \cap N(\ker_B(G)) = N(\ker_A(G)) \cap \ker_B(G) = \emptyset$.

Proof. (i) Assume, to the contrary, that $X \cap N(Y) \neq \emptyset$. By Lemma 2.3, we have $|X \cap N(Y)| = |N(X) \cap Y|$.

If $x \in X - X \cap N(Y)$ has $N(x) \cap Y \neq \emptyset$, then $x \in N(y) \subseteq N(Y)$, which is impossible. Hence $N(X - X \cap N(Y)) \subseteq N(X) - N(X) \cap Y$, and further, we get

\[
|X - X \cap N(Y)| - |N(X - X \cap N(Y))| \geq |X - X \cap N(Y)| - |N(X) - N(X) \cap Y| = |X| - |X \cap N(Y)| - |N(X)| = |N(X) \cap Y| = \delta(X) = \delta_0(A),
\]

and this contradicts the minimality of X.

(ii) It immediately follows from part (i), when $Y = \ker_B(G)$. ■
3 Ker and Core

Theorem 3.1 Let X be a critical independent set in a graph G. Then the following statements are equivalent:

(i) $X = \ker(G)$;

(ii) there is no set $Y \subseteq N(X)$, $Y \neq \emptyset$ such that $|N(Y) \cap X| = |Y|$;

(iii) for each $v \in X$ there exists a matching from $N(X)$ into $X - v$.

Proof. (i) \implies (ii) By Theorem 1.1, there is a matching, say M, from $N(\ker(G))$ into $\ker(G)$. Suppose, to the contrary, that there exists some non-empty set $Y \subseteq N(\ker(G))$ such that $|M(Y)| = |N(Y) \cap \ker(G)| = |Y|$. It contradicts the minimality of the set $\ker(G)$, because

$$d(\ker(G) - N(Y)) = d(\ker(G)),$$

while $\ker(G) - N(Y) \not\subseteq \ker(G)$.

(ii) \implies (i) Suppose $X - \ker(G) \neq \emptyset$. By Theorem 1.1, there is a matching, say M, from $N(X)$ into X. Since there are no edges connecting vertices from $\ker(G)$ with vertices of $N(X) - N(\ker(G))$, we obtain that $M(N(X) - N(\ker(G))) \subseteq X - \ker(G)$. Moreover, we have that $|N(X) - N(\ker(G))| = |X - \ker(G)|$, otherwise

$$|X| - |N(X)| = (|\ker(G)| - |N(\ker(G))|) + (|X - \ker(G)| - |N(X) - \ker(G)|) > (|\ker(G)| - |N(\ker(G))|) = d_e(G).$$

It means that the set $N(X) - N(\ker(G))$ contradicts the hypothesis of (ii), because

$$|N(X) - N(\ker(G))| = |X - \ker(G)| = |N(X) - \ker(G)) \cap X|.$$

Consequently, the assertion is true.

(ii) \implies (iii) By Theorem 1.1, there is a matching, say M, from $N(X)$ into X. Suppose, to the contrary, that there is no matching from $N(X)$ into $X - v$. By Hall’s Theorem, it implies the existence of a set $Y \subseteq N(X)$ such that $|N(Y) \cap X| = |Y|$, which contradicts the hypothesis of (ii).

(iii) \implies (ii) Suppose, to the contrary, there is a non-empty subset Y of $N(X)$ such that $|N(Y) \cap X| = |Y|$. Let $v \in N(Y) \cap X$. Hence, we get $|N(Y) \cap X - v| < |Y|$. Then, by Hall’s Theorem, it is impossible to find a matching from $N(X)$ into $X - v$, which contradicts the hypothesis of (iii). \qed

Lemma 3.2 If $G = (A, B, E)$ is a bipartite graph with a perfect matching, say M, $S \in \Omega(G)$, $X \in \text{Ind}(G)$, $X \subseteq V(G) - S$, and $G[X \cup M(X)]$ is connected, then

$$X^1 = X \cup M((N(X) \cap S) - M(X))$$

is an independent set, and $G[X^1 \cup M(X^1)]$ is connected.

Proof. Let us show that the set $M((N(X) \cap S) - M(X))$ is independent. Suppose, to the contrary, that there exist $v_1, v_2 \in M((N(X) \cap S) - M(X))$ such that $v_1v_2 \in E(G)$. Hence $M(v_1), M(v_2) \in (N(X) \cap S) - M(X)$.
If \(M(v_1) \) and \(M(v_2) \) have a common neighbor \(w \in X \), then \(\{v_1, v_2, M(v_2), w, M(v_1)\} \) spans \(C_5 \), which is forbidden for bipartite graphs.

Otherwise, let \(w_1, w_2 \in X \) be neighbors of \(M(v_1) \) and \(M(v_2) \), respectively. Since \(G[X \cup M(X)] \) is connected, there is a path with even number of edges connecting \(w_1 \) and \(w_2 \). Together with \(\{w_1, M(v_1), v_1, v_2, M(v_2), w_2\} \) this path produces a cycle of odd length in contradiction with the hypothesis on \(G \) being a bipartite graph.

To complete the proof of independence of the set

\[
X^1 = X \cup M((N(X) \cap S) - M(X))
\]

it is enough to demonstrate that there are no edges connecting vertices of \(X \) and \(M((N(X) \cap S) - M(X)) \).

![Figure 3: S ∈ Ω(G), Y = (N(X) ∩ S) − M(X) and X^1 = X ∪ M(Y).](image)

Assume, to the contrary, that there is \(vw \in E \), such that \(v \in M((N(X) \cap S) - M(X)) \) and \(w \in X \). Since \(M(v) \in (N(X) \cap S) - M(X) \) and \(G[X \cup M(X)] \) is connected, it follows that there exists a path with an odd number of edges connecting \(M(v) \) to \(w \).

This path together with the edges \(vw \) and \(vM(v) \) produces cycle of odd length, in contradiction with the bipartiteness of \(G \).

Finally, since \(G[X \cup M(X)] \) is connected, \(G[X^1 \cup M(X^1)] \) is connected as well, by definitions of set functions \(N \) and \(M \).

Theorem 1.1(vii) claims that \(\ker(G) \subseteq \text{core}(G) \) for every graph.

Theorem 3.3 If \(G \) is a bipartite graph, then \(\ker(G) = \text{core}(G) \).

Proof. The assertions are clearly true, whenever \(\text{core}(G) = \emptyset \), i.e., for \(G \) having a perfect matching. Assume that \(\text{core}(G) \neq \emptyset \).

Let \(S \in \Omega(G) \) and \(M \) be a maximum matching. By Theorem 1.2(i), \(M \) matches \(V(G) - S \) into \(S \), and \(N(\text{core}(G)) \) into \(\text{core}(G) \).

According to Theorem 1.1 it is sufficient to show that there is no set \(Z \subseteq N(\text{core}(G)) \), \(Z \neq \emptyset \), such that \(|N(Z) \cap \text{core}(G)| = |Z| \).

Suppose, to the contrary, that there exists a non-empty set \(Z \subseteq N(\text{core}(G)) \) such that \(|N(Z) \cap \text{core}(G)| = |Z| \). Let \(Z_0 \) be a minimal non-empty subset of \(N(\text{core}(G)) \) enjoying this equality.

Clearly, \(H = G[Z_0 \cup M(Z_0)] \) is bipartite, because it is a subgraph of a bipartite graph. Moreover, the restriction of \(M \) on \(H \) is a perfect matching.
Claim 1. Z_0 is independent.

Since H is a bipartite graph with a perfect matching it has two maximum independent sets at least. Hence there exists $W \in \Omega (H)$ different from $M (Z_0)$. Thus $W \cap Z_0 \neq \emptyset$. Therefore, $N (W \cap Z_0) \cap \text{core}(G) = M (W \cap Z_0)$. Consequently,

$$|N (W \cap Z_0) \cap \text{core}(G)| = |M (W \cap Z_0)| = |W \cap Z_0|.$$

Finally, $W \cap Z_0 = Z_0$, because Z_0 has been chosen as a minimal subset of $N (\text{core}(G))$ such that $|N (Z_0) \cap \text{core}(G)| = |Z_0|$. Since $|Z_0| = \alpha(H) = |W|$ we conclude with $W = Z_0$, which means, in particular, that Z_0 is independent.

Claim 2. H is a connected graph.

Otherwise, for any connected component of H, say \tilde{H}, the set $V(\tilde{H}) \cap Z_0$ contradicts the minimality property of Z_0.

Claim 3. $Z_0 \cup (\text{core}(G) - M (Z_0))$ is independent.

By Claim 1 Z_0 is independent. The equality $|N (Z_0) \cap \text{core}(G)| = |Z_0|$ implies $N (Z_0) \cap \text{core}(G) = M (Z_0)$, which means that there are no edges connecting Z_0 and $\text{core}(G) - M (Z_0)$. Consequently, $Z_0 \cup (\text{core}(G) - M (Z_0))$ is independent.

Claim 4. $Z_0 \cup (\text{core}(G) - M (Z_0))$ is included in a maximum independent set.

Let $Z_i = M ((N (Z_{i-1}) \cap S) - M (Z_{i-1}))$, $1 \leq i < \infty$. By Lemma 3.2 all the sets $Z^i = \bigcup_{0 \leq j \leq i} Z_j$, $1 \leq i < \infty$ are independent. Define

$$Z^\infty = \bigcup_{0 \leq i \leq \infty} Z_i,$$

which is, actually, the largest set in the sequence $\{Z^i, 1 \leq i < \infty\}$.

![Diagram](image)

Figure 4: $S \in \Omega(G)$, $Q = \text{core}(G) - M (Z_0)$, $Y_0 = M (Z_0)$, $Y_1 = (N (Z_0) - M (Z_0)) \cap S$, $Y_2 = \ldots$ and $Z_i = M (Y_i)$, $i = 1, 2, \ldots$.

The inclusion

$$Z_0 \cup (\text{core}(G) - M (Z_0)) \subseteq (S - M (Z^\infty)) \cup Z^\infty$$

is justified by the definition of Z^∞.

8
Since $|M(Z^\infty)| = |Z^\infty|$ we obtain $|(S - M(Z^\infty)) \cup Z^\infty| = |S|$. According to the definition of Z^∞ the set
$$(N(Z^\infty) \cap S) - M(Z^\infty)$$
is empty. In other words, the set $(S - M(Z^\infty)) \cup Z^\infty$ is independent. Therefore, we arrive at
$$(S - M(Z^\infty)) \cup Z^\infty \in \Omega(G).$$
Consequently, $(S - M(Z^\infty)) \cup Z^\infty$ is a desired enlargement of $Z_0 \cup (\text{core}(G) - M(Z_0))$.

Claim 5. $\text{core}(G) \cap ((S - M(Z^\infty)) \cup Z^\infty) = \text{core}(G) - M(Z_0)$.
The only part of $(S - M(Z^\infty)) \cup Z^\infty$ that interacts with $\text{core}(G)$ is the subset
$$Z_0 \cup (\text{core}(G) - M(Z_0)).$$
Hence we obtain
$$\text{core}(G) \cap ((S - M(Z^\infty)) \cup Z^\infty) =$$
$$= \text{core}(G) \cap (Z_0 \cup (\text{core}(G) - M(Z_0))) = \text{core}(G) - M(Z_0).$$
Since Z_0 is non-empty, by Claim 5 we arrive at the following contradiction
$$\text{core}(G) \nsubseteq (S - M(Z^\infty)) \cup Z^\infty \in \Omega(G).$$
Finally, we conclude with the fact there is no set $Z \subseteq N(\text{core}(G)), Z \neq \emptyset$ such that $|N(Z) \cap \text{core}(G)| = |Z|$, which, by Theorem 3.1, means that $\text{core}(G)$ and $\text{ker}(G)$ coincide. \blacksquare

Notice that there are non-bipartite graphs enjoying the equality $\text{ker}(G) = \text{core}(G)$; e.g., the graphs from Figure 5. Notice that only G_1 is a König–Egerváry graph.

![Figure 5: $\text{core}(G_1) = \text{ker}(G_1) = \{x, y\}$ and $\text{core}(G_2) = \text{ker}(G_2) = \{a, b\}$.](image)

There is a non-bipartite König-Egerváry graph G, such that $\text{ker}(G) \neq \text{core}(G)$. For instance, the graph G_1 from Figure 6 has $\text{ker}(G_1) = \{x, y\}$, while $\text{core}(G_1) = \{x, y, u, v\}$. The graph G_2 from Figure 6 has $\text{ker}(G_2) = \emptyset$, while $\text{core}(G_2) = \{w\}$.

![Figure 6: Both G_1 and G_2 are König-Egerváry graphs. Only G_2 has a perfect matching.](image)
4 Ker and Diadem

Proposition 4.1 If G is a König–Egerváry graph, then
$$N(\text{core}(G)) = \cap \{V(G) - S : S \in \{G\}\}, \text{ i.e., } N(\text{core}(G)) = V(G) - \text{corona}(G).$$

There is a non-König-Egerváry graph G with $V(G) = N(\text{core}(G)) \cup \text{corona}(G)$; e.g., the graph G from Figure 7.

Theorem 4.2 If G is a König–Egerváry graph, then

(i) $|\text{corona}(G)| + |\text{core}(G)| = 2\alpha(G)$;

(ii) $\text{diadem}(G) = \text{corona}(G)$, while $\text{diadem}(G) \subseteq \text{corona}(G)$ is true for every graph;

(iii) $|\text{ker}(G)| + |\text{diadem}(G)| \leq 2\alpha(G)$.

Proof. (i) Using Theorem 1.2 (ii) and Proposition 4.1 we infer that
$$|\text{corona}(G)| + |\text{core}(G)| = |\text{corona}(G)| + |N(\text{core}(G))| + |\text{core}(G)| - |N(\text{core}(G))| =$$
$$= |V(G)| + d_c(G) = \alpha(G) + \mu(G) + d_c(G) = 2\alpha(G).$$
as claimed.

(ii) Every $S \in \Omega(G)$ is d-critical, by Theorem 1.2 (ii). Further, Theorem 1.2 (ii) ensures that $\text{corona}(G) \subseteq \text{diadem}(G)$. On the other hand, each critical independent set is included in a maximum independent set, according to Theorem 1.1 (iii). Thus, we have $\text{diadem}(G) \subseteq \text{corona}(G)$. Consequently, the equality $\text{diadem}(G) = \text{corona}(G)$ holds.

(iii) It follows by combining parts (i), (ii) and Theorem 1.1 (vii). ■

Notice that the graph from Figure 7 has $|\text{corona}(G)| + |\text{core}(G)| = 13 > 12 = 2\alpha(G)$.

For a König–Egerváry graph with $|\text{ker}(G)| + |\text{diadem}(G)| < 2\alpha(G)$ see Figure 6.

Figure 7 shows that it is possible for a graph to have $\text{diadem}(G) \subset \text{corona}(G)$ and $\text{ker}(G) \subset \text{core}(G)$.

Figure 8: G_1 is a non-bipartite König–Egerváry graph, such that $\text{ker}(G_1) = \text{core}(G_1)$ and $\text{diadem}(G_1) = \text{corona}(G_1)$; G_2 is a non-König–Egerváry graph, such that $\text{ker}(G) = \text{core}(G) = \{x, y\}$; $\text{diadem}(G) \cup \{z, t, v, w\} = \text{corona}(G)$.

The combination of $\text{diadem}(G) \subset \text{corona}(G)$ and $\text{ker}(G) = \text{core}(G)$ is realized in Figure 8.

Now we are ready to describe both ker and diadem of a bipartite graph in terms of its bipartition.
Theorem 4.3 Let $G = (A, B, E)$ be a bipartite graph. Then the following assertions are true:

1. $\ker_{A}(G) \cup \ker_{B}(G) = \ker(G)$;
2. $|\ker(G)| + |\text{diadem}(G)| = 2\alpha(G)$;
3. $|\ker_{A}(G)| + |\text{diadem}_{B}(G)| = |\ker_{B}(G)| + |\text{diadem}_{A}(G)| = \alpha(G)$;
4. $\text{diadem}_{A}(G) \cup \text{diadem}_{B}(G) = \text{diadem}(G)$.

Proof. (i) By Theorem 2.1(iii), $\ker_{A}(G) \cup \ker_{B}(G)$ is d-critical in G. Moreover, $\ker_{A}(G) \cup \ker_{B}(G)$ is independent in accordance with Corollary 2.4. Assume that $\ker_{A}(G) \cup \ker_{B}(G)$ is not minimal. Hence the unique minimal d-critical set of G, say Z, is a proper subset of $\ker_{A}(G) \cup \ker_{B}(G)$, by Theorem 1.1(iv). According to Theorem 2.1(iv), $Z_{A} = Z \cap A$ is an A-critical set, which implies $\ker_{A}(G) \subseteq Z_{A}$, and similarly, $\ker_{B}(G) \subseteq Z_{B}$. Consequently, we get that $\ker_{A}(G) \cup \ker_{B}(G) \subseteq Z$, in contradiction with the fact that $\ker_{A}(G) \cup \ker_{B}(G) \neq Z \subseteq \ker_{A}(G) \cup \ker_{B}(G)$.

(ii), (iii), (iv) By Corollary 2.2 we have

$$|\ker_{A}(G)| - \delta_{0}(A) + |\text{diadem}_{B}(G)| = |N(\ker_{A}(G))| + |\text{diadem}_{B}(G)| \leq |B|.$$

Hence, according to Theorem 2.1(ii), it follows that

$$|\ker_{A}(G)| + |\text{diadem}_{B}(G)| \leq |B| + \delta_{0}(A) = \alpha(G).$$

Changing the roles of A and B, we obtain

$$|\ker_{B}(G)| + |\text{diadem}_{A}(G)| \leq \alpha(G).$$

By Theorem 2.1(iv), $\text{diadem}(G) \cap A$ is A-critical and $\text{diadem}(G) \cap B$ is B-critical. Hence $\text{diadem}(G) \cap A \subseteq \text{diadem}_{A}(G)$ and $\text{diadem}(G) \cap B \subseteq \text{diadem}_{B}(G)$. It implies both the inclusion $\text{diadem}(G) \subseteq \text{diadem}_{A}(G) \cup \text{diadem}_{B}(G)$, and the inequality

$$|\text{diadem}(G)| \leq |\text{diadem}_{A}(G)| + |\text{diadem}_{B}(G)|.$$

Combining Theorem 3.3, Theorem 4.2(ii) and part (i) with the above inequalities, we deduce

$$2\alpha(G) \geq |\ker_{A}(G)| + |\ker_{B}(G)| + |\text{diadem}_{A}(G)| + |\text{diadem}_{B}(G)| \geq$$

$$|\ker(G)| + |\text{diadem}(G)| = |\text{core}(G)| + |\text{corona}(G)| = 2\alpha(G).$$

Consequently, we infer that

$$|\text{diadem}_{A}(G)| + |\text{diadem}_{B}(G)| = |\text{diadem}(G)|,$$

$$|\ker(G)| + |\text{diadem}(G)| = 2\alpha(G),$$

$$|\ker_{A}(G)| + |\text{diadem}_{B}(G)| = |\ker_{B}(G)| + |\text{diadem}_{A}(G)| = \alpha(G).$$

Since $\text{diadem}(G) \subseteq \text{diadem}_{A}(G) \cup \text{diadem}_{B}(G)$ and $\text{diadem}_{A}(G) \cap \text{diadem}_{B}(G) = \emptyset$, we finally obtain that

$$\text{diadem}_{A}(G) \cup \text{diadem}_{B}(G) = \text{diadem}(G),$$

as claimed. ■
5 Conclusions

In this paper we focus on interconnections between \(\text{ker} \), \(\text{core} \), \(\text{diadem} \), and \(\text{corona} \) for König-Egerváry graphs, in general, and bipartite graphs, in particular.

In [9] we showed that \(2\alpha(G) \leq |\text{core}(G)| + |\text{corona}(G)| \) is true for every graph. By Theorem 4.2 (i), this equality is true whenever \(G \) is a König-Egerváry graph.

According to Theorem 1.1 (vii), \(\text{ker}(G) \subseteq \text{core}(G) \) for every graph. On the other hand, Theorem 1.1 (iii) implies the inclusion \(\text{diadem}(G) \subseteq \text{corona}(G) \). Hence

\[
|\text{ker}(G)| + |\text{diadem}(G)| \leq |\text{core}(G)| + |\text{corona}(G)|
\]

for each graph \(G \). These remarks together with Theorem 4.2 (iii) motivate the following.

Conjecture 5.1 \(|\text{ker}(G)| + |\text{diadem}(G)| \leq 2\alpha(G) \) is true for every graph \(G \).

When it is proved one can conclude that the following inequalities:

\[
|\text{ker}(G)| + |\text{diadem}(G)| \leq 2\alpha(G) \leq |\text{core}(G)| + |\text{corona}(G)|
\]

hold for every graph \(G \).

References

[1] S. Butenko, S. Trukhanov, *Using critical sets to solve the maximum independent set problem*, Operations Research Letters 35 (2007) 519-524.

[2] R. W. Deming, *Independence numbers of graphs - an extension of the König-Egerváry theorem*, Discrete Mathematics 27 (1979) 23-33.

[3] E. Egerváry, *On combinatorial properties of matrices*, Matematikai Lapok 38 (1931) 16-28.

[4] D. König, *Graphen und matrizen*, Matematikai Lapok 38 (1931) 116-119.

[5] C. E. Larson, *A note on critical independence reductions*, Bulletin of the Institute of Combinatorics and its Applications 5 (2007) 34-46.

[6] V. E. Levit, E. Mandrescu, *Combinatorial properties of the family of maximum stable sets of a graph*, Discrete Applied Mathematics 117 (2002) 149-161.

[7] V. E. Levit, E. Mandrescu, *On \(\alpha^+ \)-stable König-Egerváry graphs*, Discrete Mathematics 263 (2003) 179-190.

[8] V. E. Levit, E. Mandrescu, *Critical independent sets and König-Egerváry graphs*, Graphs and Combinatorics (2011) (accepted), arXiv:0906.4609v2 [math.CO], 8 pp.

[9] V. E. Levit, E. Mandrescu, *A set and collection lemma*, (2011) arXiv:1101.4564v1 [cs.DM], 6 pp.
[10] V. E. Levit, E. Mandrescu, *Vertices belonging to all critical independent sets of a graph*, (2011) arXiv:1102.0401v1 [cs.DM], 9 pp.

[11] O. Ore, *Graphs and matching theorems*, Duke Mathematical Journal *22* (1955) 625-639.

[12] O. Ore, *Theory of Graphs*, AMS Colloquium Publications *38* (1962) AMS.

[13] F. Sterboul, *A characterization of the graphs in which the transversal number equals the matching number*, Journal of Combinatorial Theory Series B *27* (1979) 228-229.

[14] C. Q. Zhang, *Finding critical independent sets and critical vertex subsets are polynomial problems*, SIAM Journal of Discrete Mathematics *3* (1990) 431-438.