The Relation of Compression Strength with Modulus of Rupture and UPV of Concrete Containing M-sand as Fine Aggregate (Article)

Nadimalla, A.\(^a\), Masjuki, S.A.\(^b\), Saad, S.A.\(^b\), Ali, M.\(^a\), Norhisham, S.\(^b\)

\(^a\)Department of Civil Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, Gombak, 53100, Malaysia
\(^b\)Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang, 43000, Malaysia

Abstract

The impact of manufactured sand (m-sand) as partially and fully replacement of fine aggregate in concrete has been experimentally investigated and discussed in this paper. Concrete grade 30 (30Mpa) were produced with different percentage of m-sand substitution ranging from 25%, 50%, 75% and 100% by volume were selected as concrete mix design in this project. The strength for different percentage of m-sand incorporation was measured by the destructive test which are compression strength test and modulus of rupture test and nondestructive test which is UPV test for curing ages of 90, 28 and 7 days. Furthermore, the highest compression strength of concrete and modulus of rupture was found on the 90th day containing a proportion of 75% of M-sand as a substitution for natural fine aggregate. A novel empirical equations 1 & 4 are proposed for the relation of compression strength with the modulus of rupture and UPV. © 2020 ASTES Publishers. All rights reserved.
This research received the financial support from the Ministry of Education, Malaysia (Ref: RACER/1/2019/TK06/UIAM/1).

References (12)

1. Rao, S.K., Sravana, P., Rao, T.C. (2016) *International Journal of Pavement Research and Technology*, 9 (4), pp. 289-301. Cited 29 times. doi: 10.1016/j.ijprt.2016.08.003

2. Akçaöğlu, S., Akçaöğlu, K., Atiş, C.D. (2013) *Composites Part B: Engineering*, 45 (1), pp. 721-726. Cited 62 times. doi: 10.1016/j.compositesb.2012.09.012

3. Yusuf, I.T., Jimoh, Y.A., Salami, W.A. (2016) *Alexandria Engineering Journal*, 55 (2), pp. 1553-1562. Cited 19 times. doi: 10.1016/j.aej.2016.04.008

4. Ismail, S., Hoe, K.W., Ramli, M. (2013) *Procedia - Social and Behavioral Sciences*, 101, pp. 100-109. Cited 23 times.

5. Sabarish, K.V., Paul, P., Mohammed Aslam Khan, M., Gowatham, S., Hariharan, R. (2018) *International Journal of Civil Engineering and Technology*, 9 (10), pp. 422-426. http://www.iaeme.com/MasterAdmin/UploadFolder/IJCIET_09_10_043/IJCIET_09_10_043.pdf
Ding, X., Li, C., Xu, Y., Li, F., Zhao, S. (2016) *Construction and Building Materials*, 108, pp. 67-73. Cited 33 times. doi: 10.1016/j.conbuildmat.2016.01.028

Shen, W., Liu, Y., Wang, Z., Cao, L., Wu, D., Wang, Y., Ji, X. (2018) *Construction and Building Materials*, 172, pp. 574-583. Cited 19 times. doi: 10.1016/j.conbuildmat.2018.03.139

Jadhav, P.A., Kulkarni, D.K. Effect of replacement of natural sand by manufactured sand on the properties of cement mortar (2013) *International Journal of Civil and Structural Engineering*, 3 (3), pp. 621-628. Cited 35 times.

Chauhan, S.L., Bondre, R.A. Partial replacement of sand by quarry dust in Concrete (2014) *International Journal of Scientific and Research Publications*, 5 (?), pp. 2250-3153. Cited 2 times.

Meisuh, B.K., Kankam, C.K., Buabin, T.K. Effect of quarry rock dust on the flexural strength of concrete (Open Access) (2018) *Case Studies in Construction Materials*, 8, pp. 16-22. Cited 15 times. http://www.journals.elsevier.com/case-studies-in-construction-materials/
doi: 10.1016/j.cscm.2017.12.002

Kala, T.F., Asha, P., Elavenil, S. Properties of concrete using manufactured sand as fine aggregate (2018) *International Journal of ChemTech Research*, 11, pp. 94-100. Cited 2 times.

Cheah, C.B., Lim, J.S., Ramli, M.B. The mechanical strength and durability properties of ternary blended cementitious composites containing granite quarry dust (GQD) as natural sand replacement (2019) *Construction and Building Materials*, 197, pp. 291-306. Cited 20 times. doi: 10.1016/j.conbuildmat.2018.11.194

Nadimalla, A.; Department of Civil Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, Gombak, Malaysia; email:altamashk1987@gmail.com
© Copyright 2020 Elsevier B.V., All rights reserved.
