The complete chloroplast genome of Grateloupia turuturu Yamada

Hongbin Han, Yan Li

ABSTRACT

In this study, we sequenced and annotated the complete chloroplast genome of *Grateloupia turuturu* Yamada (GenBank accession number: MN853877). The total length of the chloroplast genome is 188,547 bps, including 196 protein-encoding genes, 23 tRNA genes and 3 rRNA genes. The complete chloroplast genome of *G. turuturu* is 30.68% C+G, which is lower than that of A+T. The phylogenetic tree, which is based on core genes, shows that *G. turuturu* is clustered into the *Grateloupia* clade and has close genetic relationships with algae *Grateloupia filicina* and *Grateloupia taiwanensis*. These data will provide more information to understand the phylogenetic status of *G. turuturu*.

G. turuturu belongs to the phylum Rhodophyta, class Florideophyceae, order Halymeniales, family *Halymeniaceae*, and the genus *Grateloupia*. It mainly grows on rocks or in tide pools in the low tidal zone and is widely distributed along the coast of China, especially in the Yellow and Bohai Seas (Xia 2004). *G. turuturu* is rich in proteins, carbohydrates, vitamins and other minerals making it a subsidiary food (Simon-Colin et al. 2002; Hellio et al. 2004). In addition, *G. turuturu* could also be the raw material for agar or carrageenan (Shanmugam and Mody 2000; Fu et al. 2011). The shape of the chloroplast genome of *G. turuturu* was reconstructed using a combination of the Pacbio Sequel data and the Illumina HiSeq data via SPAdes v3.10.1 (Antipov et al. 2016).

The phylogenetic tree, *G. turuturu* is a double-stranded closed loop and has the GenBank accession number of MN853877. The complete chloroplast genome sequence of *G. turuturu* is 188,547 bps long with a C+G composition of 30.68%. The genome contains 196 protein-coding genes as well as a number of non-coding genes, including 26 tRNA genes and 3 rRNA genes (*rrn23, rrn16* and *rrn5*). All of the coding genes begin with ATG except for *psaF*, *psaL*, *infC*, *psbB*, *psaM*, *dnaK*, *psaA*, *psbA*, *psaL*, *psaF* and *rrn5*+ which begin with GTG. The termination codons for *accA, acsF, apcE, atpE, bas1, canA, ccs1, dnaK, dsbD, groEL, grx, ompR, petA, petF, petM, psaF, psaL, psaM, psbB, rps8, rps10, rps12, rps16, rps17, rps18, rps19, secA, trpA* and *ycf63* have termination codons of TGA. The rest 158 genes end with TAA.

To determine the phylogenetic position of *G. turuturu*, 24 other complete chloroplast genome sequences were obtained from the GenBank database. A phylogenetic tree was constructed based on core genes. Maximum likelihood (ML) methods were performed for the phylogenetic analysis using PhyML 3.0, and the bootstrap was 1000. The phylogenetic tree (Figure 1) shows that *G. turuturu* clustered into the *Grateloupia* clade and has close genetic relationships with algae *Grateloupia filicina* and *Grateloupia taiwanensis*.

CONTACT

Yan Li
liyan@fio.org.cn
First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China

© 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Disclosure statement

We declare that we have no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Funding

This work was financially supported by the National Key R&D Program of China [2019YFC1407902], National Natural Science Foundation of China [41876140/41606190]. The funders did not play a role in the study design, data collection and analysis, decision to publish, or manuscript preparation.

References

Antipov D, Korobeynikov A, McLean JS, Pevzner P. 2016. hybridSPAdes: an algorithm for hybrid assembly of short and long reads. Bioinformatics. 32(7):1009–1015.

Borgström E, Lundin S, Lundberg J. 2011. Large scale library generation for high throughput sequencing. PLoS One. 6:e19119.

Chen J, Guan R, Chang S, Du T, Zhang H, Xing H. 2011. Substoichiometrically different mitotypes coexist in mitochondrial genomes of Brassica napus L. PLoS One. 6(3):e17662.

Fu XT, Qin ZH, Xu JC, Gao X, Fang YC. 2011. Analysis and evaluation of nutritional quality of Grateloupia turuturu. Acta Nutrimenta Sinica. 33(2):199–201.

Fujiwara-Arasaki T, Mino N, Kuroda M. 1984. The protein value in human nutrition of edible marine algae in Japan. Hydrobiologia. 116(1):513–516.

Hellio C, Simon-Colin C, Clare A, Deslandes E. 2004. Isethionic acid and floridoside isolated from the red alga, Grateloupia turuturu Yamada, inhibit settlement of Balanus amphitrite Cyprid Larvae. Biofouling. 20(3):139–145.

Rui W, Cen YZ, Li YL, Wu QM, Zhang MY. 2006. Extraction, analysis of sulfated polysaccharides from Grateloupia turuturu Yamada and their antiviral activities. Chin J Marine Drugs. 25(2):12–16.

Shanmugam M, Mody KH. 2000. Heparinoid-active sulphated polysaccharides from marine algae as potential blood anticoagulant agents. Cur Sci. 79(12):1672–1683.

Figure 1. Maximum-likelihood (ML) tree based on the complete chloroplast genome sequences of 25 species. The numbers on the branches are bootstrap values.

[Diagram of the ML tree]
Simon-Colin C, Kervarec N, Pichon R, Bessieres MA, Deslandes E. 2002. Characterization of N-methyl-l-methionine sulfoxide and isethionic acid from the Red alga Grateloupia doryphora. Phycological Res. 50(2): 125–128.

Xia BM, 2004. Flora algarum marinarum sinicarum [A]. In: Tomus II Rhodophyta. Part V. ahrnfeltiales gigartinales rhodymeniales. Beijing: Science Press; p. 135–138.

Zhou LJ, Wang KL, Zhang JH, Cai CE, He PM. 2016a. Complete mitochondrial genome of Ulva prolifera, the dominant species of green macroalgal blooms in Yellow Sea, China. Mitochondr DNA B. 1(1): 76–78.

Zhou LJ, Wang LK, Zhang JH, Cai CE, He PM. 2016b. Complete mitochondrial genome of Ulva linza, one of the causal species of green macroalgal blooms in Yellow Sea, China. Mitochondr DNA B. 1(1):31–33.