Hepatoprotective and nephroprotective effects of *Trigonella foenum-graecum* L. (Fenugreek) seed extract against sodium nitrite toxicity in rats

Gözde ATİLA USLU¹,*, Hamit USLU², Yasemen ADALI³,⁴

ABSTRACT

Introduction: Feeding habits and environmental factors may rival genetic susceptibility as etiological factors related to various cancers. Humans are continuously exposed to many synthetic food additives, one of which is sodium nitrite (NaNO₂). There is a direct correlation between increases in consumption of nitrite-treated products and incidence of tissue damage, hepatotoxicity, nephrotoxicity and some types of cancer. The objective of this study was to investigate the protective effects of *Trigonella foenum-graecum* (TFG) on NaNO₂-induced hepatotoxicity and nephrotoxicity. Methods: Forty rats were randomly assigned (10 per group) to control (physiological saline solution), TFG (150 mg/kg/day), NaNO₂ (80 mg/kg/day), and NaNO₂+TFG (80 mg/kg/day + 150 mg/kg/day) groups. This group was offered TFG seed extract two hours before NaNO₂. At the end of three months, the rats were decapitated, and blood, kidney and liver tissues were removed. Results: Three months of oral administration of NaNO₂ increased serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), urea, creatinine, and pro-inflammatory cytokine levels in the liver and kidney tissues [except for liver Interleukin 1 alpha (IL-1α)] of rats. Serum AST, ALT, urea, creatinine, liver IL-6, and kidney tumor necrosis factor-α (TNF-α), IL-6, IL-1α levels significantly decreased in the NaNO₂+TFG group compared to the NaNO₂ group. Pathological examinations, it was determined show that exogenously administered TFG could alleviate the effects of NaNO₂ hepatotoxicity and nephrotoxicity. Conclusions: Our results suggest that exogenous TFG mitigates NaNO₂-administration induced hepatotoxicity and nephrotoxicity. TFG extract exerted antioxidant and anti-inflammatory effects, and played a significant role in preventing hepatic and renal damage induced by chronic NaNO₂ administration.

Key words: Hepatotoxicity, Nephrotoxicity, Pro-inflammatory cytokine, Sodium nitrite, Trigonella foenum-graecum

INTRODUCTION

Much research has been devoted to determining the relationship between diet and chronic diseases like diabetes, cancer, coronary heart disease, metabolic syndrome and osteoporosis. Humans are continuously exposed to many synthetic food additives, one of which is sodium nitrite (NaNO₂). NaNO₂ inhibits bacterial growth secondary to colour preservatives, improves flavour, and extends the shelf-life of meat and fish products.¹² Unfortunately, high levels of NaNO₂ intake may increase the risks of cancer, hepatotoxicity, nephrotoxicity, inflammation, oxidative stress, and tissue injury.³⁴ The toxic effects of NaNO₂ are due to the production of nitrosamines and nitroamides when nitrates react with amines and amides in food.⁵⁻⁷ The resulting nitrosamines and nitroamides also increase the production of free radicals.⁸ Intestinal bacteria with nitrite reductase activity may increase the production of nitric oxide (NO) from nitrites.⁹,¹⁰ Akhzari et al. (2019) reported that alanine aminotransferase (ALT), alkaline phosphatase (ALP), caspase-3 activities, malondialdehyde (MDA), TNF-α and transforming growth factor-β1 levels increased and reduced glutathione (GSH), glutathione reductase (GR) and glutathione peroxidase (GPx) levels decreased in rats treated with sodium nitrite.¹¹ Another study determined that NaNO₂ increased lipid peroxidation, MDA, NO levels, arginase activity but decreased activity of GSH and catalase (CAT) toxicity induced by sodium nitrite in rats.⁶ Also, Ansari et al. (2019) indicated that NaNO₂-induced oxidative stress causes a decrease in the activity of antioxidant defense system, brush border membrane and metabolic enzymes in kidneys.¹² There is a growing interest in the use of plant-derived agents for treating diseases and/or preventing chronic health conditions. *Trigonella foenum-graecum* L. (fenugreek or TFG) is an annual plant that belongs
to the Leguminosae family13. Its seeds and leaves are commonly used as a condiment and seasoning, and a wheat and maize flour supplement for bread-making. Additionally, TFG is a staple food in Asian and North African regions14 and is also used in traditional medicine owing to its antidiabetic, hypoglycaemic, antioxidant, hypolipidemic and immunomodulatory effects15,16. The most important phytochemicals isolated from TFG are saponins, trigonelline alkaloids, trigocoumarin, phosphates, potassium, proteins (4-hydroxyisoleucine), choline, vitamin C, beta-carotene, nicotinic acid, and folic acid15,17. TFG may mitigate the adverse effects of NaNO\textsubscript{2} administration. This study investigate the protective effects of TFG on NaNO\textsubscript{2}-induced hepatotoxicity and nephrotoxicity were investigated.

METHODS

Extraction of plant material

TFG seeds were purchased at a local herbal market. Mature fruits were collected between August and September and then sundried. After this process the seeds become yellow and light brown. Each seed is 4-6 mm long and 2-3 mm width. They are slightly rough, squared or rectangular and unevenly shaped. We pulverated 1000 g of the seeds into a fine powder and dissolved this powder into a mixture of ethyl alcohol and water (2:8) at a ratio of 1:5 (seed weight: solvent volume)18. The mixture was kept at room temperature in a shaking water bath for 2 days. It was filtered through filter paper, and the excess solvents were evaporated under pressure at 50\textdegree C. We obtained 9 g of the extract from 250 ml of macerated seeds.

Experimental design

We used 40 female Wistar Albino rats, aged around 2 months. The rats were divided equally into four groups (10 rats per group) for the experiments. The animals were maintained under standard conditions [temperatures (23±2\textdegree C), humidity (55±5\%) and 12 hrs light: 12 hrs dark cycle] and were fed standard laboratory chow (Moisture: 12.8\%; crude protein: 23.1\%; crude cellulose: 5\%; crude oil: 2.8\%; crude ash: 7.1\%; and sodium 0.60\%). The rats were allowed tap water ad libitum throughout the experiment. The animal protocol was accepted by the ethical committee for Animal Experiments at Kafkas University.

Control group (C): This group received oral physiological saline solution (300 μL/day).

Trigonella foenum-graecum group (TFG): This group received 150 mg/kg/day TFG seed extract dissolved in water.

Sodium nitrite group (NaNO\textsubscript{2}): This group received 80 mg/kg/day NaNO\textsubscript{2} dissolved in water.

Sodium nitrite + Trigonella foenum-graecum group (NaNO\textsubscript{2}+TFG): This group received 150 mg/kg/day TFG seed extract 60 minutes prior to 80 mg/kg/day NaNO\textsubscript{2}.

Rats were administered with NaNO\textsubscript{2}, TFG extract and physiological saline solution by oral gavage over three months. The dose and duration of NaNO\textsubscript{2} and TFG extract used in this study were in the range of those used in other studies, and of the same animal species19–21.

Biochemical analysis and Histopathological evaluations

At the end of the experiment, blood samples were collected under 0.4 ml/kg pentobarbital sodium anaesthesia via the intracardiac route. Blood samples were taken with a non-anticoagulant tube and then centrifuged at 1000xg for 15 min at 4\textdegree C to produce serum. The serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) (Mindray BS 120), urea and creatinine levels (Abbott Diagnostic–USA model) were measured using an autoanalyser. The rat livers and kidneys were removed quickly and cleaned with cold physiological saline solution. Pieces of the livers and kidneys were homogenised in a 10-fold volume of phosphate buffered saline. We used ELISA kits to determine pro-inflammatory cytokine (IL-6, IL-1\textalpha, TNF-\alpha) levels in tissue homogenates (Elabscience WuHan-P.R.C). Moreover, some tissues were fixed in 10% formalin and processed according to standard procedures. We cut 4-μm-thick paraffin sections, stained them with haematoxylin–eosin and evaluated the results using a light microscope.

Statistical analysis

We used a one-way ANOVA to determine whether there were significant differences among the groups. The Tukey multiple range test was used to detect significant pairwise differences between the groups. A value of p<0.05 was considered significant. All statistical tests were performed using SPSS 18.

RESULTS

We evaluated the hepatoprotective and nephroprotective effects of TFG seed extract by measuring the serum activities of ALT, AST, urea and creatinine. Rats administered NaNO\textsubscript{2} showed significant increases in serum ALT compared to the C and TFG groups (p<0.05). We found a significant increase in
the AST levels in the NaNO2 group relatively to the C and TFG groups (p<0.001). Moreover, there was a significant decrease in AST levels in the TFG group when compared to the C group (p<0.01). Administration of NaNO2 with TFG seed extract (NaNO2+TFG) significantly decreased serum AST and ALT levels compared to the NaNO2 group (p<0.001, p<0.05 respectively). A significant increase in urea levels were observed in the NaNO2 and NaNO2+TFG groups compared to the C and TFG groups (p<0.001, p<0.01 respectively). Serum urea levels were also significantly lower in the NaNO2+TFG group, compared to the NaNO2 group (p<0.05). Both the NaNO2 and NaNO2+TFG groups exhibited significantly higher serum creatinine levels compared to the C and TFG groups (p<0.001, p<0.05 respectively). Moreover, the serum creatinine levels were significantly decreased in the NaNO2+TFG group, as compared to the NaNO2 group (p<0.05) (Figure 1).

NaNO2 significantly increased liver TNF-α and IL-6 levels compared to the C and TFG groups (p<0.05, p<0.001 respectively), yet, did not affect the IL-1α. Chronic treatment with TFG+NaNO2 significantly decreased IL-6 in liver tissues of rats, compared with the NaNO2 group (p<0.01). However, IL-6 increased in TFG+NaNO2 group compared to C group (p<0.05) (Figure 2). NaNO2 administration increased kidney TNF-α, IL-6 and IL-1α levels when compared to the control group (p<0.05, p<0.001 and p<0.01 respectively). Our results showed that the TFG+NaNO2 group exhibited significantly decreased kidney TNF-α and IL-6 levels comparing to with the NaNO2 group (p<0.05) (Figure 3).

Histopathological examination revealed hepatocyte damage of variable prevalence and intensities in all NaNO2 group rats. Also, in the TFG+NaNO2 group, half of the rats had hepatocyte damage (Figure 4). In the C group, we observed mild congestion in only one kidney tissue sample. In the NaNO2 group, most of the cases had focal tubular epithelial damage, mild vascular congestion in one of these damaged cases and the least severe inter and intratubular haemorrhage in the damaged cases. There was one case of mild violent intratubular haemorrhage in the TFG group. In the TFG+NaNO2 group, mild severe vascular congestion and mild severe intermittent haemorrhage was detected in one of the cases with mild severe focal tubular epithelial damage in most of the cases (Figure 5). We therefore conclude that exogenously-administered TFG may alleviate the effects of NaNO2 hepatotoxicity and nephrotoxicity.

DISCUSSION

NaNO2 is an important food additive with antibacterial properties for pathogens such as *Cl. botulinum, Listeria monocytogenes, Escherichia coli* O157:H7 and *Salmonella*22–24. However, because high doses and chronic NaNO2 consumption increase the levels of carcinogenic N-nitrosamines, restricted dietary intake should be considered25,26. Prolonged oral administration of NaNO2 has been shown to result in widespread and moderate inflammation and damage in rats. Previous studies support our findings2,4,27. However, oral administration of TFG+NaNO2 significantly reduced hepatic and renal damage and inflammation compared to the NaNO2 group. TFG mitigates various toxicities, but there is no published literature on the effects of TFG extract on NaNO2 toxicity. This study presented an important step in this regard. TFG extract exerted positive effects on alcohol28, acrylamide29, and cyclophosphamide + buthionine-SR-sulfoximine30 toxicity in previous studies. The seeds also have hypoglycaemic31, anti-inflammatory32, antilucerogenic33, and antinociceptive34 effects. In another study, both hepatic and testicular dysfunction were found in male rats exposed to chronic cadmium, but the application of fenugreek seed powder was beneficial for these disorders35. Thirunavukarasu et al. (2003) found that aqueous extract of TFG may protect against damage to lipid peroxidation and liver and brain tissue damage36. Belaïd-Nouira et al. (2013) found that treatment with fenugreek seed powder normalises plasma markers and alleviates histopathological changes in cases with aluminium-induced kidney damage37.

Serum enzymes including AST, ALT, urea and creatinine are used to evaluate patients with hepatic and renal disorders. This enzymes activity increases in cases of liver and kidney damage38. NaNO2 reacts with amines in the stomach, producing nitrosamines that cause serious damage to the liver and kidneys39. NaNO2 administration can alter liver and kidney function, as evidenced by significant increases in AST, ALT, urea and creatinine, compared to group C. TFG seed extract lowers levels of key enzymes that characterise liver and kidney damage.

NaNO2 initiates peroxidative damage in cells and increases the activation of pro-inflammatory cytokines40. Therefore, pro-inflammatory cytokines may play an important role in the formation of liver and kidney damage. Al-Gayyar et al. (2014) found that NaNO2 increased levels of cardiac pro-inflammatory cytokines and decreased levels of anti-inflammatory cytokines1. Another study determined that NaNO2 caused renal toxicity and significantly increased oxidative stress, inflammation,
Figure 1: Effect of TFG extract on serum Urea (mg/dL) and Creatinine (mg/dL) levels, AST (U/L), ALT (U/L) mean±SD of animals in each group (n:10). a-b, a-e: p<0.01, a-c, c-e, e-ae: p<0.001, a-d, b-c, c-d: p<0.05.

Figure 2: Effect of TFG extract on liver proinflammatory cytokines (IL-6, IL-1α, TNF-α) levels (pg/mL), mean±SD of animals in each group. a-b: p<0.05, b-c: p<0.01, a-c, ab-c: p<0.001
and apoptosis markers. In the present study, we determined that NaNO$_2$ caused serious damage to liver and kidney tissues and led to significant increases in pro-inflammatory cytokine levels in these tissues. TFG seed extract reduced liver and kidney damage induced by NaNO$_2$, and reduced pro-inflammatory cytokine levels, especially in the kidneys. Previous studies showed that TFG seeds are a rich source of polyphenols. Polyphenols such as apigenin, kaempferol, quercetin, vitexin and tricine, were identified by HPLC. Also, sapogenins, diosgenin, 4-hydroxy-isoleucine, trigonelline, alkaloids, phosphate, potassium, copper, protein, choline, vitamin C, beta carotene, nicotinic acid and folic acid are active chemical components of TFG. Bin-Hafeez et al. (2013) reported that the immunostimulatory activity of TFG is mediated by the saponins, fibres and flavonoids it contains. The toxic effects of NaNO$_2$ are caused by the production of nitrosamines and nitrosamides, which are known to cause tissue damage due to inflammation and oxidative stress. In this study, TFG extract was found to cause significant decreases in liver and kidney damage markers and pro-inflammatory cytokine levels in NaNO$_2$-induced hepatotoxicity and nephrotoxicity. It is proposed that TFG performs hepato and nephroprotective effects with immunostimulatory factors found in previous studies.

CONCLUSIONS

In conclusion, chronic NaNO$_2$ consumption causes severe physiological and histopathological changes in liver and kidney tissues in rats. The TFG extract showed antioxidant and anti-inflammatory effects, and prevented hepatic and renal damage induced by chronic NaNO$_2$ administration.

ABBREVIATIONS

Abbreviation	Full Form
ALP	Alkaline phosphatase
ALT	Alanine aminotransferase
AST	Aspartate aminotransferase
CAT	Catalase
GPx	Glutathione peroxidase
GR	Glutathione reductase
GSH	Reduced glutathione
IL-1α	Interleukin 1 alpha
IL-6	Interleukin-6
MDA	Malondialdehyde
NO	Nitric oxide
TFG	Trigonella foenum-graecum
TNF-α	Tumor necrosis factor alpha

COMPETING INTERESTS

The authors declare no conflict of interest.

AUTHORS’ CONTRIBUTIONS

The design, experimental part and biochemical analysis of the study were carried out by Dr. Gözde ATİLA
USLU and Dr. Hamit USLU. The histopathological evaluations were performed by Dr. Yasemen ADALI. All the authors took equal roles in writing the research.

ACKNOWLEDGMENTS
This study was awarded the best oral presentation award in the field of veterinary medicine in the second international science symposium (science festival) held in Tbilisi / Georgia on 05-08 September 2017.

REFERENCES
1. Al-Gayyar MM, Youssef AA, Sherif IO, Shams ME, Abbas A. Protective effects of arjunolic acid against cardiac toxicity induced by oral sodium nitrite: effects on cytokine balance and apoptosis. Life Sci. 2014;111(1-2):18–26. 25064822. Available from: 10.1016/j.lfs.2014.07.002.
2. Salama MF, Abbas A, Darweish MM, El-Hawwary AA, Al-Gayyar MM. Hepatoprotective effects of cod liver oil against sodium nitrite toxicity in rats. Pharm Biol. 2013;51(11):1435–43. 23862714. Available from: 10.3109/13880209.2013.796564.
3. Alyoussef A, Al-Gayyar MM. Thymoquinone ameliorated elevated inflammatory cytokines in testicular tissue and sex hormones imbalance induced by oral chronic toxicity with sodium nitrite. Cytokine. 2016;83:64–74. 27038016. Available from: 10.1016/j.cyto.2016.03.018.
4. Al-Gayyar MM, Hassan HM, Alyoussef A, Abbas A, Darweish MM, El-Hawwary AA. Nigella sativa oil attenuates chronic nephrotoxicity induced by oral sodium nitrite: effects on tissue fibrosis and apoptosis. Redox Rep. 2016;21(2):50–60. 26221999.
5. Abdeen AM, El-Shayeb AF, Hassan HA, El-Agamy SA. The Protective Role of Garlic Oil Against the Histopathological and Histochemical Changes Induced by Sodium Nitrite Toxicity.
Biomedical Research and Therapy, 6(5):3142-3150

Figure 5: Tubular epithelial cell damage (white arrow) and intertubular bleeding areas (blue arrow), H & E 200x. a-b: p<0.01, b-c: p<0.05, a-c: p>0.05

6. El-Sheikh NM, Khalil FA. L-arginine and L-glutamine as immunonutrients and modulating agents for oxidative stress and toxicity induced by sodium nitrite in rats. Food Chem Toxicol. 2011;49(4):758–62. 2130833. Available from: 10.1016/j.fct.2010.11.039.

7. Tong M, Longato L, de la Monte SM. Early limited nitrosamine exposures exacerbate high fat diet-mediated type 2 diabetes and neurodegeneration. BMC Endocr Disord. 2010;10(1):4. 20302640. Available from: 10.1186/1472-6823-10-4.

8. Hassan HA, Yousef MI. Ameliorating effect of chicory (Cichorium intybus L.)-supplemented diet against nitrosamine precursors-induced liver injury and oxidative stress in male rats. Food Chem Toxicol. 2010;48(8-9):2163–9. 20478349. Available from: 10.1016/j.fct.2010.05.023.

9. Duncan C, Dougall H, Johnston P, Green S, Brogan R, Leifert C, et al. Chemical generation of nitric oxide in the mouth from the enterosalivary circulation of dietary nitrate. Nat Med. 1995;1(6):546–51. 7585121. Available from: 10.1038/nm0695-546.

10. El-Wakf AM, Hassan HA, Mahmoud AZ, Habza MN. Fenugreek potent activity against nitrate-induced diabetes in young and adult male rats. Cytotechnology. 2015;67(3):437–47. 24615531. Available from: 10.1007/s10616-014-9702-7.

11. Akhizari M, Shafee SM, Rashno S, Akmal M. Berberine Attenuated Oxidative Stress Induced by Sodium Nitrite in Rat Liver. Jundishapur J Nat Pharm Prod. 2019;14(1):e68532. Available from: 10.5812/jjntpp.68532.

12. Ansari FA, Khan AA, Mahmood R. Ameliorative effect of carnosine and N-acetylcysteine against sodium nitrite induced nephrotoxicity in rats. J Cell Biochem. 2018;120(5):7032–44. 30368897. Available from: 10.1002/jcb.27971.

13. Eidi A, Eidi M, Sokhteh M. Effect of fenugreek (Trigonella foenum-graecum L.) seeds on serum parameters in normal and streptozotocin-induced diabetic rats. Nutr Res. 2007;27(11):728–33. Available from: 10.1016/j.nutres.2007.09.006.

14. Xue WL, Li XS, Zhang J, Liu YH, Wang ZL, Zhang RJ. Effect of Trigonella foenum-graecum (fenugreek) extract on
blood glucose, blood lipid and hemorheological properties in streptozotocin-induced diabetic rats. Asia Pac J Clin Nutr. 2007;16(1):422–7. 17392143.

21. Bin-Hafez B, Haque R, Parvez S, Pandey S, Sayeed I, Raisuddin S. Immunomodulatory effects of fenugreek (Trigonella foenum graecum L.) extract in mice. Int Immunopharmacol. 2003;3(2):257–65. 12586606. Available from: 10.1016/S1676-5749(02)00292-8.

22. Renuka C, Ramesh N, Saravanan K. Evaluation of the anti-diabetic effect of Trigonella foenum graecum seed powder on alloxan induced diabetic albino rats. Int J Pharm Tech Res. 2009;1(4):1580–4.

23. Petit PR, Sauvaire YD, Hillaire-Buys DM, Leconte OM, Baisser A. Effect of Trigonella seed extract prevents ethanol-induced toxicity and apoptosis in Chang liver cells. Alcohol Alcohol. 2006;41(3):267–73. 16574673. Available from: 10.1093/alcalc/agl020.

24. Dairy C, Bhartiya CS, Bhatt AS, et al. Antioxidant potential of fenugreek (Trigonella foenum graecum) seeds and bitter melon (Momordica charantia) fruit. J Ethnopharmacol. 2002;81(3):393–7. 12127242. Available from: 10.1016/S0378-8749(02)00117-4.

25. Ward MH, Pan WH, Cheng YJ, Li FH, Brinton LA, Chen CJ, Kozisek F. Influence of nitrate levels in drinking water on urothelial cancer risk. Cancer Epidemiol Biomarkers Prev. 2006;15(1):175–80. 16024556. Available from: 10.1158/1055-9966.EPI-05-1387.

26. Milkowski A, Garg HK, Coughlin JR, Bryan NS. Nutritional roles of oxidative stress, proinflammatory cytokines, and DNA damage. Biochem Cell Biol. 2015;93(3):192–8. 25607344. Available from: 10.1139/bcb-2014-0122.

27. Bela Y, Hassan EA, El-Agmy SM, Gaur RL, Fernando A, Raj MH, Ouhtit S. In vivo evidence of hepato- and reno-protective effect of garlic oil against sodium nitrite-induced oxidative stress. Int J Mol Sci. 2009;10(3):603–9. 19305642. Available from: 10.7150/imanj.249.

28. Bela Y, Hassan EA, El-Agmy SM, Gaur RL, Fernando A, Raj MH, Ouhtit S. In vivo evidence of hepato- and reno-protective effect of garlic oil against sodium nitrite-induced oxidative stress. Int J Mol Sci. 2009;10(3):603–9. 19305642. Available from: 10.7150/imanj.249.

29. Choi SY, Chung MJ, Sung NJ. Volatile N-nitrosoamine inhibition after intake of Korean green tea and Maesil extracts with an amine-rich diet in subjects ingesting nitrate. Food Chem Toxicol. 2002;40(7):949–57. 12065217. Available from: 10.1016/S0278-6915(02)00205-X.

30. Shariatie M, Gharamanie R. Effect of Trigonella foenum graecum L. seeds on painful peripheral neuropathy in rats. J Ethnopharmacol. 2009;128X(95)00090-D.

31. Puri D, Prabhui KM, Murthy PS. Mechanism of action of a hypoglycemic principle isolated from fenugreek seeds. Indian J Physiol Pharmacol. 2002;46(4):457–62. 12683221.

32. Mándegary A, Pournamadi M, Sharififar F, Pourmourmohamadadi S, Fardarv S, Shoooli S. Alkaloid and flavonoid rich fractions of fenugreek seeds (Trigonella foenum-graecum L.) with antinociceptive and anti-inflammatory effects. Food Chem Toxicol. 2012;50(7):2503–7. 22542922. Available from: 10.1016/j.fct.2012.04.020.

33. Pettit PR, Sauvaire YD, Hillaire-Buys DM, Leconte OM, Baisser A. Effect of Trigonella seed extract prevents ethanol-induced toxicity and apoptosis in Chang liver cells. Alcohol Alcohol. 2006;41(3):267–73. 16574673. Available from: 10.1093/alcalc/agl020.

34. Randian RS, Anuradha CV, Viswanathan P. Gastroprotective effect of fenugreek seeds (Trigonella foenum graecum) on experimental gastric ulcer in rats. J Ethnopharmacol. 2002;81(3):393–7. 12127242. Available from: 10.1016/S0378-8749(02)00117-4.

35. Bin-Hafez B, Haque R, Pandey S, Sayeed I, Raisuddin S. Immunomodulatory effects of fenugreek (Trigonella foenum graecum) seeds on alloxan induced diabetic albino rats. Int J Pharm Tech Res. 2009;1(4):1580–4.

36. Ward MH, Pan WH, Cheng YJ, Li FH, Brinton LA, Chen CJ, Kozisek F. Influence of nitrate levels in drinking water on urothelial cancer risk. Cancer Epidemiol Biomarkers Prev. 2006;15(1):175–80. 16024556. Available from: 10.1158/1055-9966.EPI-05-1387.

37. Bela Y, Hassan EA, El-Agmy SM, Gaur RL, Fernando A, Raj MH, Ouhtit S. In vivo evidence of hepato- and reno-protective effect of garlic oil against sodium nitrite-induced oxidative stress. Int J Mol Sci. 2009;10(3):603–9. 19305642. Available from: 10.7150/imanj.249.

38. Hassan EA, El-Agmy SM, Gaur RL, Fernando A, Raj MH, Ouhtit S. In vivo evidence of hepato- and reno-protective effect of garlic oil against sodium nitrite-induced oxidative stress. Int J Mol Sci. 2009;10(3):603–9. 19305642. Available from: 10.7150/imanj.249.

39. Choi SY, Chung MJ, Sung NJ. Volatile N-nitrosoamine inhibition after intake of Korean green tea and Maesil extracts with an amine-rich diet in subjects ingesting nitrate. Food Chem Toxicol. 2002;40(7):949–57. 12065217. Available from: 10.1016/S0278-6915(02)00205-X.

40. Peppa V, Theocharis A, Stratos I, et al. Antimicrobial effect of acidified nitrite on gut pathogens: importance of dietary nitrate in host defense. Antimicrobial Agents Chemotherapy. 1996;40(6):1422–5. 8726013.

41. Minkowski A, Garg HK, Coughlin JR, Bryan NS. Nutritional roles of oxidative stress, proinflammatory cytokines, and DNA damage. Biochem Cell Biol. 2015;93(3):192–8. 25607344. Available from: 10.1139/bcb-2014-0122.

42. Bela Y, Hassan EA, El-Agmy SM, Gaur RL, Fernando A, Raj MH, Ouhtit S. In vivo evidence of hepato- and reno-protective effect of garlic oil against sodium nitrite-induced oxidative stress. Int J Mol Sci. 2009;10(3):603–9. 19305642. Available from: 10.7150/imanj.249.

43. Khalid A, Sabir H, Bhaumik SK, et al. Antioxidant and anti-inflammatory effects of fenugreek seeds (Trigonella foenum-graecum) with an amine-rich diet in subjects ingesting nitrate. Food Chem Toxicol. 2002;40(7):949–57. 12065217. Available from: 10.1016/S0278-6915(02)00205-X.

44. Hamadi SA. Effect of trigonelline and ethanol extract of Iraqi Fenugreek (Trigonella foenum-graecum) seeds and bitter melon (Momordica charantia) fruit. Food Chem. 2013;141(4):4295–302. 23993618. Available from: 10.1016/j.foodchem.2013.07.016.

45. Benayad Z, Gómez-Cordovés C, Es-Safi NE. Characterization of flavonoid glycosides from fenugreek (Trigonella foenum-graecum) crude seeds by HPLC-DAD-ESI/MS analysis. Int J Mol Sci. 2014;15(11):20668–85. 25393509. Available from: 10.3390/ijms15112668.

46. Yoshikawa M, Murakami T, Komatsu H, Murakami N, Yamauchi T. Aqueous extract of Trigonella foenum-graecum L. ameliorates additive urotoxicity of buthionine sulfoximine and cyclophosphamide in mice. Food Chem Toxicol. 2006;44(10):1744–50. 16828947. Available from: 10.1016/j.fct.2006.05.013.

47. Purdy R, Prabhui KM, Murthy PS. Mechanism of action of a hypoglycemic principle isolated from fenugreek seeds. Indian J Physiol Pharmacol. 2002;46(4):457–62. 12683221.

48. Randian RS, Anuradha CV, Viswanathan P. Gastroprotective effect of fenugreek seeds (Trigonella foenum graecum) on experimental gastric ulcer in rats. J Ethnopharmacol. 2002;81(3):393–7. 12127242. Available from: 10.1016/S0378-8749(02)00117-4.
hara J, Matsuda H. Medicinal foodstuffs. IV. Fenugreek seed. (1): structures of trigoneosides Ia, Ib, IIA, IIb, IIIa, and IIIb, new furostanol saponins from the seeds of Indian Trigonella foenum-graecum L. Chem Pharm Bull (Tokyo). 1997;45(1):81–7. 9023970. Available from: 10.1248/cpb.45.81.