Erythropoietin inhibits osteoblast function in myelodysplastic syndromes via the canonical Wnt pathway

Ekaterina Balaian,1,* Manja Wobus,1,* Heike Weidner,1 Ulrike Baschant,2,3 Maik Stiehler,4 Gerhard Ehninger,4 Martin Bornhäuser,1,5 Lorenz C Hofbauer,2,3,5 Martina Rauner2,3,** and Uwe Platzbecker1,3,5***

1Medical Clinic I, University Hospital Carl Gustav Carus Dresden; 2Medical Clinic III, University Hospital Carl Gustav Carus Dresden; 3Center for Healthy Aging, University Hospital Carl Gustav Carus Dresden; 4University Centre for Orthopaedics & Trauma Surgery and Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus Dresden and 5German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany

*EB and MW contributed equally to this work.
**MR and UP contributed equally to this work.

©2017 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2017.172726

Received: May 24, 2017.
Accepted: October 18, 2017.
Pre-published: October 27, 2017.
Correspondence: uwe.platzbecker@uniklinikum-dresden.de
Materials and methods

Culture of human bone marrow stromal cells

Cells were cultured in DMEM (Invitrogen) with 10% FCS (Invitrogen) and 1% penicillin/streptomycin (PAA) and were used in passages 1-5. To generate osteogenic cells, 70% confluent cells were switched to the medium supplemented with 100 µM ascorbate phosphate, 5 mM β-glycerol phosphate, and 10 nM dexamethasone (all from Sigma-Aldrich). In most experiments, differentiation medium has been applied for 10 days in order to determine the anabolic effect of Epo.

Alizarin red staining

Osteoblast cultures were fixed in 10% paraformaldehyde for 30 min and stained with 1% alizarin red S (pH 5.5, Sigma-Aldrich) for 20 min at room temperature. Excess dye was removed by repeatedly washing the plates with distilled water. The amount of incorporated calcium was eluted with 100 mM cetylpyridinium chloride (Sigma-Aldrich) for 10 min at room temperature. Aliquots were taken and measured photometrically at 540 nm in duplicates.

Primer sequences for RT-PCR

- **β-actin** forward: ccaaccgcgagaagatga, reverse: ccagaggcgtacagggtag;
- **ALP** forward: caaccctggggaggagac, reverse: gcattggttgtacgtcttg;
- **OPG** forward: gaagggcgctaccttgagat, reverse: gcaaactgtatttcgctctgg;
- **col1a1** forward: aaggtattgctggacagcgt, reverse: tgtttgccaggttcaccaga;
- **CCND1** forward: agagggcggagagaacaaac, reverse: agcgtgtgaggcggtagtag;
- **FOSL1** forward: accacaccctcccttaacctcc, reverse: cttgtgtgactggattat;
- **JUN** forward: agagcatgacccctgaacctg, reverse: cctgtgtggtggccctact;
- **FZD4** forward: ccaaggattccttcagctacag, reverse: ccaggattccttcagctacag;
- **EPOR** forward: tcctgacgctctcctcctcatc, reverse: gcgggaagttcccttgcggtagtag;

PCR conditions

PCR conditions were 95 °C for 10 min followed by 40 cycles with 95 °C for 10 s, 56 °C for 10 sec and 72 °C for 30 s. The melting curve as assessed in the following program: 60 °C for 1 min and 95 °C continuous. The results were calculated using the ΔΔCT method and are presented in x-fold increase relative to β-actin mRNA levels.
TCF/LEF-reporter assay

A TCF/LEF-reporter assay (Qiagen) was done using the murine myoblast C2C12 cell line, which is commonly used to study BMP and Wnt signaling. These cells were seeded at a concentration of 1.5×10^4 cells per well in 48-well plates and were cultured in DMEM-F12 medium with 10% fetal bovine serum, and transfected with the Signal TCF/LEF Reporter (CCS-018L) (Qiagen, Hilden, Germany) to assess the activation of the TCF/LCF Wnt promotor. Briefly, 123 ng/cm2 of the promotor construct was transfected using the FuGENE HD Transfection Reagent (Promega, Madison, WI, USA) according to the manufacturer's protocols. After 24 h, C2C12 cells were treated with Wnt3a-containing L-cell medium and Epo (10-500 IU/ml). Luciferase activity was assayed 24 h post treatment using the Dual Luciferase Reporter Assay kit (Promega) as instructed by the manufacturer.

Co-culture of CD34+ cells with primary human MSC

Primary MSC were plated at a density of 1–2 x 10^4/cm2 in DMEM with 10% FCS and pre-treated with Epo 50 IU/ml and/or LiCl 25 mM for seven days. Freshly isolated CD34+ cells were seeded on the confluent layer of primary MSC in CellGro SCGM medium (CellGenix, Freiberg, Germany) supplemented with 10% FCS, 10 ng/ml SCF (Biosource, Camarillo, CA, USA), 10 ng/ml FLT3-L (Miltenyi Biotec), and 10 ng/ml IL-3 (Biosource) at a density 1×10^4/cm2. CD34+ cells under stroma-free conditions (plasma treated polystyrene tissue plastic, PTP) were plated at the same density in the same medium. After seven days, the co-culture supernatant was gently mixed, and the non-adherent HSPC fraction was collected. The MSC layers were washed twice with phosphate-buffered saline to collect the remaining non-adherent cells. Cells were counted using a hemocytometer. The HSPC phenotype was analyzed using CD34-FITC (Miltenyi Biotec), CD38-PE (R&D Systems) as well as CD90-APC (eBioscience) antibodies at a FACS Calibur (BD).

Moreover, a 4 weeks cobblestone area forming-cell (CAF-C) assay was performed with or without pre-treatment of the MSC layer. Therefore, 1×10^3 magnetically isolated CD34+ cells were co-cultured using LTC-IC media (Stem Cell Technologies, Cologne, Germany) supplemented with 1×10^{-8} M Hydrocortisone (Sigma Aldrich, Munich, Germany). After 4 weeks cells were harvested and 1×10^5 cells were plated in enriched methylcellulose medium with recombinant cytokines (MethoCult H4435, Stem Cell Technology) to perform a colony forming unit (CFU) assay. After 2 weeks, colonies were counted and classified under a microscope.
Table S1

Patients' characteristics

Mean age [years], (range)	69 (51-90)
Gender: Male / Female	19 / 11
Diagnosis (WHO 2008)	
RCUD	1
RARS	2
RCMD	10
MDS RAEB-1	4
MDS RAEB-2	6
MDS RAEBt	1
CMML-1	3
CMML-2	2
AML	1
Cytogenetics	
Normal caryotype	16
Isolated del(5q)	5
Other*	7
No data	2
Therapy at bone marrow sampling	
No therapy	25
Azacythidine	2
Lenalidomide	1
Azacythidine plus Lenalidomide	1
Erythropoietin	1

* del(20q), -Y, trisomy 8, monosomy 7, trisomy 21, del(11q)
Gene expression analysis of Epo receptor (EPOR) using real-time polymerase chain reaction (PCR) in MSC from young and old healthy donors and MDS patients. *ns* – not significant vs. young healthy donors.
Gene expression analysis of target genes of canonical Wnt pathway \textit{JUN}, \textit{FOSL1} and \textit{CCND1} and a receptor of canonical Wnt pathway \textit{FZD4} using real-time polymerase chain reaction (PCR) in MSC from old healthy donors compared to MSC from MDS patients. N\geq3. *P<0.05, **P<0.01, ***P<0.001.
Table S2

Wnt RT-PCR array comparing old healthy MSC versus MDS MSC

Gene Symbol	Fold Change	p value	Gene Symbol	Fold Change	p value
AES	1.45	0.939499	LRF1	1.83	0.481211
APC	-1.74	0.507632	LRP5	1.48	0.42143
AXIN1	-1.1	0.616254	LRP6	1.44	0.364346
AXIN2	-1.08	0.985166	MAPK8	-1.75	0.695049
BCL9	1.2	0.883722	MMP7	-2.83	0.286548
BTRC	1.16	0.980036	MYC	-1.39	0.517012
CCND1	-4.39	0.331062	NFATC1	1.83	0.437689
CCND2	2.24	0.434063	NFKB1	-1.1	0.979433
CSNK1A1	-3.28	0.160823	NLK	-2.77	0.058
CSNK2A1	-1.09	0.6178	PITX2	3.04	0.160823
CTBP1	1.15	0.815141	PORCN	1.45	0.658716
CTNNB1	2.88	0.225734	PPARD	-1.38	0.210573
CTNNB1P1	-1.1	0.979433	PRICKLE1	1.12	0.491051
CXXC4	-1.1	0.979433	PYGO1	-1.1	0.76336
DAAM1	1.44	0.521413	RHOA	-1.38	0.566291
DAB2	1.15	0.825009	ROU	1.15	0.965801
DIXDC1	-1.08	0.827649	RUVBL1	1.15	0.720457
DKK1	-4.32	0.298738	SFRP1	1.45	0.442
DKK3	1.49	0.38337	SFRP4	4.79	0.28414
DVL1	1.14	0.96187	SOX17	-1.1	0.979433
DVL2	1.15	0.617804	TCF7	-2.82	0.134905
EP300	-1.1	0.837535	TCF7L1	-2.14	0.543132
FBXW11	1.45	0.92175	TLE1	-2.77	0.59791
FBXW4	1.85	0.560941	VANGL2	-1.07	0.99438
FG4	-1.1	0.979433	WIF1	-1.1	0.979433
FOSL1	-5.55	0.142565	WISP1	3.71	0.095112
FOXN1	-1.1	0.979433	WNT1	-1.1	0.979433
FRAT1	-1.1	0.979433	WNT10A	-1.1	0.979433
FRZB	-1.1	0.950729	WNT11	-1.1	0.979433
FZD1	2.97	0.309061	WNT16	-1.1	0.979433
FZD2	-1.75	0.570363	WNT2	-1.1	0.979433
FZD3	1.45	0.580445	WNT2B	-1.1	0.979433
FZD4	-4.49	0.199761	WNT3	-1.1	0.979433
FZD5	1.87	0.377975	WNT3A	-1.1	0.979433
FZD6	-1.7	0.521139	WNT4	-1.04	0.988171
FZD7	-1.7	0.424526	WNT5A	-2.13	0.425903
FZD8	1.15	0.904233	WNT5B	-2.68	0.42557
FZD9	-1.1	0.979433	WNT6	-1.1	0.979433
GSK3A	-1.39	0.726464	WNT7A	-1.1	0.979433
GSK3B	-1.1	0.963367	WNT7B	-1.1	0.979433
JUN	-0.08	0.046897	WNT8A	-1.1	0.979433
KREMEN1	1.15	0.542232	WNT9A	-1.08	0.984477
Table S3

Wnt RT-PCR array comparing control MDS-OB versus MDS-OB treated with 50IU/ml Epo

Gene Symbol	Fold Change	p value	Gene Symbol	Fold Change	p value
AES	2.43	0.304949	LEF1	1.2	0.888323
APC	3.06	0.621037	LRP5	-1.05	0.838012
AXIN1	-1.05	0.516011	LRP6	2.43	0.10382
AXIN2	-1.02	0.589588	MAPK8	1.21	0.797935
BCL9	-1.7	0.583195	MMP7	-3.34	0.190109
BTRC	-1.66	0.529272	MYC	-2.09	0.338621
CCND1	-6.64	0.227573	NFATC1	-1.32	0.495706
CCND2	-1.32	0.619024	NDK1	-1.64	0.663126
CSNK1A1	-2.65	0.232593	NLK	-1.05	0.915245
CSNK2A1	-1.03	0.566058	PITX2	-1.65	0.261395
CTBP1	-1.05	0.656213	PORCN	1.52	0.46961
CTNNB1	-1.33	0.647739	PPARD	1.21	0.725888
CTNNB1P1	-1.66	0.751085	PRICKLE1	1.19	0.826624
CXXC4	-1.66	0.393192	PYGO1	2.39	0.006422
DAAM1	-1.32	0.494376	RHOA	9.85	0.480058
DAB2	-1.65	0.430239	RHOU	1.61	0.41697
DIXDC1	-1.33	0.556827	RUVBL1	2.4	0.133194
DKK1	1.21	0.68962	SFRP1	1.19	0.623284
DKK3	1.52	0.331566	SFRP4	1.52	0.315566
DVL1	1.21	0.513332	SOX17	-1.66	0.393192
DVL2	1.2	0.738157	TCF7	1.2	0.899603
EP300	1.51	0.429128	TCF7L1	1.52	0.415797
FBXW11	-1.05	0.65117	TLE1	1.9	0.294725
FBXW4	-2.1	0.04423	VANGL2	-1.29	0.464344
FGF4	-1.66	0.393192	WIF1	-1.66	0.393192
FOSL1	1.91	0.188223	WISP1	1.92	0.596867
FOXN1	-1.66	0.393192	WNT1	-1.66	0.393192
FRAT1	1.23	0.534275	WNT10A	-1.66	0.393192
FRZB	-2.09	0.138903	WNT11	-1.66	0.393192
FZD1	-1.04	0.93904	WNT16	-1.66	0.393192
FZD2	2.39	0.113645	WNT2	-1.66	0.393192
FZD3	-1.05	0.89145	WNT2B	2.41	0.260037
FZD4	1.2	0.419314	WNT3	-1.33	0.434398
FZD5	1.2	0.996399	WNT3A	-1.66	0.393192
FZD6	-2.65	0.226772	WNT4	-1.3	0.485021
FZD7	-1.66	0.408788	WNT5A	1.92	0.10214
FZD8	-2.09	0.045485	WNT5B	-1.05	0.983899
FZD9	-1.66	0.393192	WNT6	-1.66	0.393192
GSK3A	-1.04	0.706973	WNT7A	-1.66	0.393192
GSK3B	12.45	0.031833	WNT7B	-1.66	0.393192
JUN	-1.32	0.48817	WNT8A	-1.66	0.393192
KREMEN1	-1.32	0.480324	WNT9A	-1.7	0.345276