Role of spleen tyrosine kinase in liver diseases

Dhadhang Wahyu Kurniawan, Gert Storm, Jai Prakash, Ruchi Bansal

Abstract

Spleen tyrosine kinase (SYK) is a non-receptor tyrosine kinase expressed in most hematopoietic cells and non-hematopoietic cells and play a crucial role in both immune and non-immune biological responses. SYK mediate diverse cellular responses via an immune-receptor tyrosine-based activation motifs (ITAMs)-dependent signalling pathways, ITAMs-independent and ITAMs-semi-independent signalling pathways. In liver, SYK expression has been observed in parenchymal (hepatocytes) and non-parenchymal cells (hepatic stellate cells and Kupffer cells), and found to be positively correlated with the disease severity. The implication of SYK pathway has been reported in different liver diseases including liver fibrosis, viral hepatitis, alcoholic liver disease, non-alcoholic steatohepatitis and hepatocellular carcinoma. Antagonism of SYK pathway using kinase inhibitors have shown to attenuate the progression of liver diseases thereby suggesting SYK as a highly promising therapeutic target. This review summarizes the current understanding of SYK and its therapeutic implication in liver diseases.

Key words: Spleen tyrosine kinase; Liver diseases; Inflammation; Targeted therapeutics; Spleen tyrosine kinase inhibitors

Core tip: Spleen tyrosine kinase has reported to be positively correlated with disease severity and has shown to play a crucial role in the pathogenesis of liver diseases. Therefore, specific targeting of spleen tyrosine kinase pathway using kinase inhibitors is...
SYK is a cytoplasmic non-receptor protein tyrosine kinase (PTK) that consists of two SYK homology 2 domains (SH2) and a C-terminal tyrosine kinase domain. These domains are interconnected by two linker regions: Interdomain A between the two SH2 domains and Interdomain B between the C-terminal SH2 domain and the kinase domain (Figure 1). SYK is a member of the Zeta-chain-associated protein kinase 70/SYK family of the PTKs, with the estimated molecular weight of 70 kDa[1-3]. SYK is highly expressed in hematopoietic cells including mast cells, neutrophils, macrophages, platelets, B cells and immature T cells, and is important in signal transduction in these cells[4-6]. In Immune cells, SYK mainly functions via interaction of its tandem SH2 domains with immunoreceptor tyrosine-based activation motifs (ITAMs). In mast cells, SYK mediates downstream signaling via high-affinity IgE receptors, FcεRI and in neutrophils, macrophages, monocytes and platelets downstream signalling is mediated via IgY receptors, FcγRIIa[7]. SYK plays a key role in signaling downstream of the B and T cell receptors, hence also exhibit an important role in early lymphocyte development[8-10]. Upon activation, SYK modulates downstream signaling events that drive inflammatory pathways of both the innate and adaptive immune systems[11]. Besides ITAM-dependent signalling pathway, SYK also mediates ITAM-independent signaling via integrins and C-type lectins. For instance, SYK induces β2 integrin-mediated respiratory burst, spreading, and site-directed migration of neutrophils towards inflammatory lesions[12].

The multifactorial role of SYK in the immune system has attracted attention in the past years. SYK is recognized as a potential target for the treatment of inflammatory diseases such as rheumatoid arthritis, asthma, allergic rhinitis, renal disorders, liver fibrosis and autoimmune diseases[13-15]. In particular, the prevention of activation of cells via immune complexes or antigen-triggered Fc receptor signaling and prevention of B cell receptor-mediated events are believed to have increasing therapeutic potential of SYK[16].

Besides hematopoietic cells, SYK has also been shown to be expressed in non-hematopoietic cells including fibroblasts, epithelial cells, hepatocytes, neuronal cells, and vascular endothelial cells[17-19]. Here, SYK has shown to be involved in signalling events leading to activation of mitogen activated protein kinase (MAPK) by G-protein-coupled receptors in hepatocytes[20-22]. Besides being implicated in hepatocytes, SYK is also expressed in hepatic macrophages, hepatic stellate cells (HSCs) and hepatic sinusoidal endothelial cells in liver[23]. However, studies investigating SYK signalling pathway in liver diseases are still limited. This review highlights and discusses the opportunities and challenges of SYK as a potential target for the treatment of liver diseases.

SPLAEN TYROSINE KINASE SIGNALLING MECHANISMS

Immunoreceptor signalling through SYK requires the SYK kinase activity as well as both SH2 domains[24]. The SYK kinase domain remain inactive during resting state but can be activated by interaction of both SH2 domains to dual phosphorylated ITAMs[25]. Phosphorylation of tyrosine residues within the linker regions (interdomain A or B) also results in kinase activation even in the absence of phosphorylated ITAM binding[26]. Binding of the SH2 domains of SYK to phosphorylated ITAMs is a critical step in SYK activation and downstream signalling[27]. SYK itself can catalyse the autophosphorylation of its linker tyrosine’s, leading to sustained SYK activation after a transient ITAM phosphorylation. In addition, SYK itself can phosphorylate ITAMs, suggesting the existence of a positive-feedback loop during initial ITAM-mediated SYK activation[28]. Tsang et al[29] showed that SYK can be fully triggered by phosphorylation or binding of its SH2 domains to the dual-phosphorylated immune-
Spleen tyrosine kinase contains tandem pair of spleen tyrosine kinase homology 2 which connected by interdomain A and separated by interdomain B from the catalytic (kinase) domain. SYK: Spleen tyrosine kinase; SH2: Spleen tyrosine kinase homology 2; ITAM: Immune-receptor tyrosine-based activation motifs.

SYK has been documented to play a critical role in the activation of HSCs and its upregulation is evidenced in hepatic fibrosis/cirrhosis in hepatitis B and C patients, alcoholic hepatitis as well as in NASH patients\(^{28,44}\). Upregulated SYK further aggravate fibrosis by augmenting trans-communication between hepatocytes and HSCs\(^{28}\). Blockage of SYK pathway using SYK inhibitors abrogated HSCs activation, thereby ameliorated liver fibrosis and hepatocellular carcinoma (HCC) development \(^{28}\). SYK has also shown to mediate its function via expression of transcription factors associated with HSCs activation (cAMP response element-binding protein, CBP; myeloblastosis proto-oncogene, MYB and myelocytomatosis proto-oncogene, MYC) and proliferation (MYC and cyclin D1, CCND1)\(^{28}\). Furthermore, two isoforms of SYK i.e., the full-length SYK (L) and an alternatively spliced SYK (S) have been suggested whereby SYK (L) but not SYK (S) found to play a major role in liver fibrosis while SYK (S) has been associated with increased tumorigenicity, HCC invasiveness and metastases\(^{28}\).

Interestingly, the crosstalk between SYK and Wnt (portamanteau of int and wg, wingless-related integration site) signalling pathways also mediates activation of HSCs and accumulation of immune cells at the site of fibrosis\(^{28}\). Wnt signalling has shown to be upregulated in activated HSCs and blockade of canonical Wnt pathway by adenoviral mediated transduction of Wnt antagonist (Dickkopf-1) or via selective inhibitors reinstates quiescent phase of HSCs in cultured cells\(^{45,46}\). In-depth investigation at a genetic level revealed overexpression of certain transcriptional factors (MYB, CBP and MYC) which plays a vital role in the activation of HSCs\(^{47,48}\). Notably, both the canonical Wnt pathway and SYK has shown to regulate the expression of MYC and CBP\(^{23,49}\) highlighting SYK-Wnt crosstalk during liver fibrogenesis. SYK has also shown to promote expression of several other target genes including Wnt in activated macrophages in a similar manner as in HSCs and this potential crosstalk between SYK and other signalling pathways warrants further investigation. Dissection of the trans-communication between signalling pathways is...
Figure 2 Basis of spleen tyrosine kinase activation. In the resting state, spleen tyrosine kinase is auto-inhibited, because of the binding of interdomain A and interdomain B to the kinase domain. This auto-inhibited conformation can be activated by binding of the two spleen tyrosine kinase homology 2 domains to dually phosphorylated immune-receptor tyrosine-based activation motifs or by phosphorylation of linker tyrosine’s in interdomain A or B. SH2: Spleen tyrosine kinase homology 2; ITAM: Immune-receptor tyrosine-based activation motifs.

SYK is the major signalling pathway and is also shown to be expressed in recruited macrophages, besides HSCs, in the hepatic fibrosis\cite{20,28}. Selective blocking of SYK or its deletion in macrophages has been correlated with the diminished activation of macrophages, which is indicated by a reduction in the expression of Fc gamma receptors, monocyte chemoattractant protein 1 (MCP-1), tumour necrosis factor α (TNF-α) and interleukin 6 (IL-6)\cite{5}. In summary, activation of HSCs under the influence of SYK signalling leads to the secretion of soluble factors in the form of cytokines and chemokines. These factors not only facilitate the recruitment of macrophages (and other immune cells) but also arbitrates their activation to further worsen the site of fibrosis.

SPLEEN TYROSINE KINASE IN VIRAL HEPATITIS

In the recent study, SYK expression was found to be highly induced in the liver tissues of HBV- and HCV-infected patients. Furthermore, markedly increased expression of SYK was observed in HCV-infected hepatocytes which in turn promoted reciprocal higher SYK expression in HSCs thereby inducing HSCs activation and disease development\cite{28,50}. Furthermore, the preliminary study analysing gene expression profiles in Egyptian HCC patients associated with HCV, showed that SYK is one of the most up-regulated gene out of 180 genes that were up-regulated\cite{51}.

HCV is also associated with B lymphocyte proliferative disorders, as evidenced by the binding of HCV to B-cell surface receptor CD81\cite{52}. CD81 (cluster of differentiation 81, also known as TAPA1), is identified as a target of an antibody that controlled B-cell proliferation. Engagement of CD81 with HCV\cite{53,54}, leads to ezrin and radixin phosphorylation through SYK activation\cite{55,56}. Ezrin and radixin are members of the ERM (ezrin, radixin, moesin) family of actin-binding proteins\cite{56}. Hence, ezrin-moesin-radixin proteins and SYK are important therapeutic host targets for the development of HCV treatment\cite{57}.

SYK is also an important regulator and therapeutic target against HCV infection in hepatocytes\cite{58}. SYK expression has been observed near the plasma membrane of hepatocytes in HCV-infected patients\cite{57,59}. HCV non-structural protein 5A has been shown to physically and directly interact with SYK hence promoting the malignant transformation of HCV-infected hepatocytes\cite{59}. These studies suggests that the strategies blocking SYK activation before HCV-CD81 interaction, and/or modulating HCV post-entry and trafficking within target cells involving SYK, F-actin, stable microtubules and EMR proteins provide novel opportunities for the development of anti-HCV therapies\cite{59}.
SPLEEN TYROSINE KINASE IN ALCOHOLIC LIVER DISEASE

The pathogenesis of alcoholic liver disease (ALD) is multifactorial involving many complex processes including ethanol-mediated liver injury, inflammation in response to the injury, and intestinal permeability and microbiome changes as depicted in Figure 3. Alcohol and its metabolites generate reactive oxygen species (ROS) and induce hepatocyte injury through mitochondrial damage and endoplasmic reticulum (ER) stress. Damaged hepatocytes release pro-inflammatory cytokines and chemokines resulting in the recruitment and activation of immune cells. Central cell types involved in ALD progression are macrophages that have an important role in inducing liver inflammation by stimulating infiltration of immune cells (including monocytes) and activation of Kupffer cells (KC, resident hepatic macrophages). The early communication of hepatocyte damage is mediated by KCs through damage-associated molecular patterns (DAMPs) released by dying hepatocytes or pathogen-associated molecular patterns (PAMPs) including lipopolysaccharides (LPS) via pattern recognition receptors (PRRs) such as Toll-like receptors (TLRs), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signalling and inflammasome activation. In ALD, resident and recruited macrophages in the liver are activated by TLR4 (Toll-like receptor 4) signalling pathway regulated by bacterial endotoxin (LPS) that is elevated in the portal and systemic circulation due to increased intestinal permeability after excessive alcohol intake. However, there are also other mechanisms that regulate macrophage activation, including hepatocyte injury and lipid accumulation, histone acetylation in ethanol-exposed macrophages and complement system. SYK also plays an important role in TLR4 signalling, and SYK phosphorylation in neutrophils and monocytes has been correlated with pro-inflammatory cytokine secretion including TNF-α and MCP-1. Interestingly, SYK phosphorylation has also been shown to be regulated by LPS/TLR adaptor molecules MyD88/IRAKM (IL-1R-associated kinase M)/minkle axis linking LPS-induced hepatocyte cell death with inflammation during ALD disease pathogenesis. Zhou et al has shown that damaged hepatocytes releases endogeneous mincle ligand spliceosome-associated protein 130 as a danger signal that together with LPS synergistically drives liver inflammation including inflammasome activation during ALD.

Several studies have documented the increased SYK expression and phosphorylation in the livers of alcoholic hepatitis (AH) patients. Interestingly, increased SYK phosphorylation was observed in ballooned hepatocytes with Mallory-Denk Bodies, co-localized with ubiquitinated proteins in the cytoplasm suggesting the critical role of SYK in hepatocytes during ER stress. SYK regulates hepatic cell death via TRAF family member associated NF-κB activator (TANK)-binding kinase 1/interferon (IFN) regulatory factor 3 (TBK1/IRF3) signaling. SYK has also been reported to play an important role in lipid accumulation, and treatment with SYK inhibitor prevented progressive steatosis by suppressing lipid biogenesis and increasing lipid metabolism in both in vitro cell culture and in vivo in ALD mouse models exhibiting moderate ASH and chronic alcohol drinking. SYK phosphorylation indicates SYK activation and is a prerequisite for its downstream modulatory function. In addition, total SYK and activated SYK expression was found to be significantly increased in the circulating blood monocytes, and PBMCs in AH/cirrhosis patients. Since SYK is closely involved in the pathogenesis of ALD, SYK inhibition could prevent and/or attenuate alcohol-induced liver inflammation, cell death, steatosis and subsequently fibrosis in various phases of ALD.

SPLEEN TYROSINE KINASE IN NON-ALCOHOLIC STEATOHEPATITIS

NASH is characterized by increasing accumulation of so-called toxic lipids in hepatocytes, that can develop into cirrhosis and primary liver cancer. NASH is the more severe and clinically significant form of NAFLD (non-alcoholic fatty liver disease), characterized by hepatic cell injury, steatosis together with inflammation, resulting into fibrosis signified by deposition of extracellular matrix mainly composed of collagen/fibrin fibrils. The progression of NASH is associated with a progressive build-up of danger signals particularly PRRs including TLRs, and nucleotide oligomerization domain-like receptors (NLRs) that engage multiple receptors during immune response. As also mentioned earlier, the interaction of LPS with TLR4 plays a major role in linking innate immunity with inflammatory response and the activation of KCs.
Figure 3 Role of spleen tyrosine kinase in alcoholic liver disease and non-alcoholic steatohepatitis pathogenesis. Excessive alcohol consumption and increased fat accumulation due to an increased fat biogenesis and reduced metabolism, causes hepatocellular injury that generates reactive oxygen species, release of pro-inflammatory cytokines and chemokines leading to activation of resident macrophages (Kupffer cells), and recruitment of circulating immune cells including neutrophils and monocytes. Overconsumption of alcohol also trigger the production of lipopolysaccharides due to increased intestinal permeability. Increased levels of pathogen-associated molecular patterns (Lipopolysaccharides) and damage-associated molecular patterns (released from dying hepatocytes) that in turn interacts with toll-like receptors e.g., toll-like receptor 4 resulting in the activation of spleen tyrosine kinase signaling pathway, NF-κB signaling pathway, and inflammasome activation. These processes develop into liver inflammation and fibrosis via increased infiltration and activation of immune cells and hepatic stellate cells, respectively. SYK: Spleen tyrosine kinase; LPS: Lipopolysaccharides; PAMPs: Pathogen-associated molecular patterns; DAMPs: Damage-associated molecular patterns; TLRs: Toll-like receptors; HSCs: Hepatic stellate cells; ROS: Reactive oxygen species.

Activated KCs produce inflammatory cytokines and chemokines such as IL-1β, IL-6, iNOS, FcyR1, and CCL2 that contribute to the recruitment of circulating monocytes and macrophages into the inflammed liver during NASD development mostly similar to ASH\(^{[90]}\). Activated KCs also secrete TNF superfamily ligands such as TNF-α and TNF-related apoptosis-inducing ligand, inducing apoptosis of adjacent hepatocytes and inflammation, and is crucial for triggering NASH development\(^{[81-83]}\) as shown in Figure 3.

Activated KCs instigates TLR4 and recruit an activated SYK, which is also expressed in HSCs, hepatocytes, and cholangiocytes\(^{[77,84-86]}\). SYK plays a role in IL1-induced chemokine release via association with TRAF-6 (TNF receptor activating factor 6), which is a shared molecule in multiple signalling pathways and is recruited through interactions of adaptor MyD88 and IRAK-1 (IL1 receptor-associated kinase 1) with TLR4\(^{[87-89]}\). Likewise, TLR4 transduces signals via the B-cell receptor (BCR) leading to activation of SYK, which is important for B-cell survival, proliferation\(^{[90]}\), and BCR-mediated immune response\(^{[91]}\). Lipid peroxidation products, derived from phospholipid oxidation are one of the sources of neo-antigens that are able to promote an adaptive immune response in NASH\(^{[92]}\). The involvement of T and B cells in the progression of NASH automatically implicate role of SYK in this process.

Recently, we have shown the positive correlation of SYK expression with the increasing NAS score (NAFLD activity score) in livers from NASH patients as compared to normal livers\(^{[44]}\). As aforementioned, the role of SYK in NASH is not only via PRR pathways, but also through NLR pathways. The role of several NLRs have been crucial in the formation of inflammasomes and the nomenclature of inflammasomes is hence based on the NLR\(^{[93]}\). SYK is required for NLRP3 (NLR protein 3) inflammasome activation\(^{[94]}\), that forms an IL-1β-processing inflammasome complex. Inflammasome activation has been shown to be associated with the late stages of NASH, and not in early steatosis in mice\(^{[94]}\). Inflammasome activation can be induced by free fatty acids and these free fatty acids can also induce apoptosis and the release of danger signals in hepatocytes\(^{[94,95]}\). Consequently, pharmacological
inhibition of NLRP3 inflammasome in vivo has been demonstrated to reduce liver inflammation, hepatocyte injury, and liver fibrosis in NASH[44,96].

SPLINE TYROSINE KINASE IN HEPATOCYTO CARCINOMA

Hepatocyte apoptosis and compensatory proliferation are the key drivers for HCC development, and SYK has been suggested to play a key role in HCC progression. In HCC, intestinal microbiota and TLR4 link inflammation and carcinogenesis in the chronically injured liver, and SYK regulate this link mediated via LPS-TLR4 interaction[97]. The intimate correlation between SYK methylation and loss-of-expression, together with the role of SYK methylation in gene silencing, indicates that epigenetic inactivation of SYK contributes to the progression of HCC[98] signifying SYK methylation and loss of SYK expression as predictors of poor overall survival in patients with HCC. Furthermore, methylation of SYK promoter was found to be inversely regulated in HCC cells. Restoring SYK expression in SYK-silenced HCC cell lines decreased hepatocellular growth, cell migration and invasion but increased cell adhesion[99,100]. On the other hand, checkpoint kinase 1 (CHK1) was found to be overexpressed and correlated with poor survival of HCC patients. CHK1 phosphorylate tumor suppressor SYK isoform, SYK (L) at Ser295 and induce its proteasomal degradation. However, non-phosphorylated mutant form of SYK (L) has been shown to suppress proliferation, colony formation, migration and tumor growth in HCC lines. Therefor, a strong inverse correlation between the expression levels of CHK1 and SYK (L) was observed in patients with HCC[99]. Interestingly, Hong et al[102] showed that another SYK isoform, SYK (S) promotes tumour growth, downregulates apoptosis, enhances metastasis and counteracts the opposing effects of SYK (L). These studies suggest that SYK (L) downregulation or SYK (S) upregulation are the strong predictors of poor clinical outcome in patients with HCC.

SMALL MOLECULES SPLINE TYROSINE KINASE INHIBITORS

Over the past decade, SYK signalling pathway has been recognized as a promising target for the therapeutic intervention in different diseases including autoimmune and inflammatory disorders, fibrotic diseases and tumour. However, specificity and selectivity remain the major concern for the development of drugs targeting ubiquitously expressed kinases. Hence, debate about the specificity of SYK inhibitors has been a major point of discussion and has still not reached an appropriate conclusion since the first SYK inhibitors entered into medicinal chemistry optimization[25,103,104]. Over the past few years, several SYK inhibitors have been designed while many are still in development, and the molecular structures of some of these SYK inhibitors are depicted in Figure 4. Several SYK inhibitors are been evaluated in preclinical and clinical studies in different diseases[103,105], as highlighted in Table 1[106-127].

Some of the above mentioned SYK inhibitors have been explored in liver diseases and are presented in Table 2. R406 has been shown to reduce SYK expression and phosphorylation in macrophages, and other hepatic cells and has been shown to ameliorate non-alcoholic and alcoholic steatohepatitis by inhibiting steatosis, inflammation and fibrosis suggesting multi-faceted effects of this highly selective SYK inhibitor[20,44]. GS-9973 is a new emerging, selective and potent inhibitor of SYK that was evaluated in activated HSCs and showed anti-fibrotic effects in rodent liver fibrosis models[29]. Very recently, two new inhibitors PRT062607 and Piceatannol have been investigated in myeloid cells to reveal their protective effect against liver fibrosis and hepatocarcinogenesis in vivo. Both inhibitors selectively blocked SYK phosphorylation, significantly reduced the infiltration of inflammatory cells and HSCs trans-differentiation, and inhibited malignant transformation in fibrotic livers[128].

Despite the encouraging results with SYK inhibitors, some issues remain unresolved e.g., their long-term safety has not yet been demonstrated. Moreover, due to the ubiquitous expression of SYK in different cells, concerns have been raised about the possibility of side-effects owing to the overall inhibition of the multiple cellular functions[2127]. A major challenge therefore is how to inhibit pathological processes without disrupting physiological cell functions[219]. Nanotechnology is an interesting and promising alternative to improve the efficacy and therapeutic effect of the SYK
Table 1 Summary of pre-clinical and clinical studies using spleen tyrosine kinase inhibitors

Compound	Medical condition	Description/effect	Ref
Fostamatinib	Ulcerative colitis	Suppression of TNFα, T cells and neutrophils	[106]
	Rheumatoid arthritis	Reduced inflammation and tissue damage, suppressed clinical arthritis, pannus formation and synovitis	[107,108]
	Chronic lymphocytic leukemia and Non-Hodgkin lymphoma	Disruption of BCR signaling inhibiting the proliferation and survival of malignant B cells	[109,110]
	Ischemia-reperfusion induced intestinal and lung damage	Impaired release of pro-inflammatory and coagulation mediators, reduced neutrophils, macrophages and platelet accumulations	[111]
	Glomerulonephritis	Reduced proteinuria, glomerular macrophage and CD8 cells, MCP-1 and IL-1β, and renal injury	[112]
Entospletinib	Chronic lymphocytic leukemia	Decreased inflammation and disruption of chemokine/cytokine circuits (BCR signaling)	[113-115]
	Diffuse large B-cell lymphoma	Disruption of BCR signaling inhibiting the proliferation and survival of malignant B cells	[114]
	Cherubisme (craniofacial disorder)	Ameliorates inflammation and bone destruction in the mouse model of cherubism	[117]
Cerdulatinib	Diffuse large B-cell lymphoma	Disruption of BCR signalling inhibiting the proliferation and survival of malignant B cells	[118,119]
R406 (tamatinib)	Imnunocomplexes mediated inflammation	Inhibits several critical modes of the inflammatory cascade	[122]
	Human platelets	Inhibition of activation of CLEC-2 (C-type lectin 2, platelet receptor), and platelet activation	[122]
	Chronic lymphocytic leukemia	Inhibition of constitutive and BCR-induced SYK activation, abrogation of CLL cell survival, migration, and paracrine signalling	[124]
	Leukemia	Reduced tyrosine phosphorylation and c-Myc expression, blockade of tumorigenic cells proliferation transformed by oncoproteins	[123]
	Megakaryocytic leukemia	Induced apoptosis, reduced cell proliferation and blockade of STAT5 signalling	[124]
	Glomerulonephritis	Downregulated MCP-1 production from mesangial cells and macrophages	[112]
Piceatannol	Oral squamous cell carcinoma	Inhibited tumour cell proliferation, induced of apoptosis, attenuated VEGF and MMP9 expression, and decreased metastases	[127]

TNF-α: Tumour necrosis factor α; BCR: B-cell receptor; MCP-1: Monocyte chemoattractant protein 1; SYK: Spleen tyrosine kinase; VEGF: Vascular endothelial growth factor.

Inhibitor. Using polymeric poly lactic-co-glycolic acid (PLGA) nanoparticles, we have demonstrated improved therapeutic effectivity of R406 in MCD-diet induced NASH[44]. In this study, we have shown that R406, when encapsulated in PLGA polymeric nanoparticles, reduced expression of total SYK and activation of pSYK in macrophages in vitro, and attenuated steatosis, inflammation and fibrosis in vivo in MCD-diet induced NASH mouse model[44].
Figure 4 Molecular structure of several spleen tyrosine kinase inhibitors. R406, GS-9973, PRT062070, and Piceatannol have been studied in liver diseases, while R788 and TAK-659 are being investigated in other diseases.

CONCLUSION

In this review, we have highlighted the implication of SYK signalling pathways in different diseases, more importantly in liver diseases. SYK plays a multifaceted role in liver diseases such as liver fibrosis, alcoholic liver disease, non-alcoholic steatohepatitis, viral hepatitis, and hepatocellular carcinoma. Furthermore, several SYK-related mechanisms have been understood in the past decade which led to the development of numerous small-molecule inhibitors that have been and are currently evaluated in vitro, in vivo in different animal models and in clinical trials in patients for different indications. These inhibitors have shown highly potent effects in the tested models and therefore is a promising therapeutic target that should be explored further in pre-clinical and clinical studies. To improve the therapeutic efficacy and clinical use of SYK inhibitors with improved safety profile and reduce the side effects, nanotechnology approaches, such as polymeric nanoparticles, liposomal-mediated delivery, or micelles, and finally organ (tumour)-targeted drug delivery could be explored.
Table 2 Spleen tyrosine kinase inhibitors implicated in liver diseases

Inhibitor	Mechanism of action	Therapeutic effect	Ref
R406	Blocking of Fc receptor signalling pathway, NF-κB signalling pathway and inflammasome activation	Reduced SYK expression and phosphorylation resulting in attenuated liver steatosis, inflammation and fibrosis in ASH and NASH murine models	[20,46]
GS-9973	Decreased expression of HSCs activation (CBP, MYB, MYC) and HSCs proliferation factors (MYC and CCND1)	Inhibition of HSCs proliferation and HSC activation resulting in amelioration of fibrosis and hepatocarcinogenesis	[28]
PRT062607 and piceatannol	Increased intra-tumoral p16, p53 and decreased expression of Bcl-xL and SMAD4. Decreased expression of genes regulating angiogenesis, apoptosis, cell cycle regulation and cellular senescence. Down-regulation of mTOR, IL-8 signalling and oxidative phosphorylation	Reduced HSCs differentiation and infiltration of inflammatory cells including T cells, B cells and myeloid cells, reduced oncogenic progression. Marked attenuation of toxin-induced liver fibrosis, associated hepatocellular injury, intra-hepatic inflammation and hepatocarcinogenesis	[120]

SYK: Spleen tyrosine kinase; NASH: Non-alcoholic steatohepatitis; ASH: Alcoholic steatohepatitis; HSCs: Hepatic stellate cells; IL-8: Interleukin-8.

REFERENCES

1. Lowell CA. Src-family and Syk kinases in activating and inhibitory pathways in innate immune cells: signaling cross talk. Cold Spring Harb Perspect Biol 2011; 3 [PMID: 21068150 DOI: 10.1101/cshperspect.a003252]
2. Riccaboni M, Bianchi I, Petrioli P. Spleen tyrosine kinases: biology, therapeutic targets and drugs. Drug Discov Today 2010; 15: 517-530 [PMID: 20535955 DOI: 10.1016/j.drudis.2010.05.001]
3. Pamuk ON, Tsokos GC. Spleen tyrosine kinase inhibition in the treatment of autoimmune, allergic and autoinflammatory diseases. Arthritis Res Ther 2010; 12: 222 [PMID: 21211067 DOI: 10.1186/ar3198]
4. Mócsai A, Ruland J, Tybulewicz VL. The SYK tyrosine kinase: a crucial player in diverse biological functions. Nat Rev Immunol 2010; 10: 387-402 [PMID: 20467425 DOI: 10.1038/nri2765]
5. Schweighoffer E, Nys J, Vanes L, Smithers N, Tybulewicz VLJ. TLR4 signals in B lymphocytes are transduced via the B cell antigen receptor and SYK. J Exp Med 2017; 214: 1269-1280 [PMID: 28356391 DOI: 10.1084/jem.20161117]
6. Turner M, Schweighoffer E, Colucci F, Di Santo JP, Tybulewicz VLJ. Tyrosine kinase SYK: essential functions for immune receptor signalling. Immunol Today 2000; 21: 148-154 [PMID: 10689303 DOI: 10.1067/s0167-5699(99)01574-1]
7. Bradshaw JM. The Src, Syk, and Tec family kinases: distinct types of molecular switches. Cell Signal 2010; 22: 1175-1184 [PMID: 20206686 DOI: 10.1016/j.cellsig.2010.03.001]
8. Cornall RJ, Cheng AM, Pawson T, Goodnow CC. Role of Syk in B-cell development and antigen-receptor signaling. Proc Natl Acad Sci USA 2000; 97: 1713-1718 [PMID: 10677523 DOI: 10.1073/pnas.97.4.1713]
9. Keller B, Stumpf I, Strohmeier V, Usadel S, Verhoeven E, Eibl E, Warnatz K. High SYK Expression Drives Constitutive Activation of CD21

hepatocarcinogenesis
hepatocellular injury, intra-hepatic
liver fibrosis, associated
hepatic stellate cells, reduced oncogenic progression.
Reduced SYK expression and phosphorylation resulting in attenuated liver steatosis, inflammation and fibrosis in ASH and NASH murine models

March 14, 2020 | Volume 26 | Issue 10 |
Chen KH, Hsu HH, Yang HY, Tian YC, Ko YC, Yang CW, Hung CC. Inhibition of spleen tyrosine kinase (syk) suppresses renal fibrosis through anti-inflammatory effects and down regulation of the MAPK-p38 pathway. Int J Biochem Cell Biol 2016; 74: 135-144 [PMID: 26948651 DOI: 10.1016/j.biocel.2016.03.001]

Bukong TN, Iacheta-Vellve A, Saha B, Ambade A, Satchishandran A, Gyongyosi B, Lowe P, Catalano D, Kodyś K, Szabu G. Inhibition of spleen tyrosine kinase activation ameliorates inflammation, cell death, and steatosis in alcoholic liver disease. Hepatology 2016; 64: 1057-1071 [PMID: 27302565 DOI: 10.1002/hep.28680]

Mcdado S, Tam FWK. Role of the Spleen Tyrosine Kinase Pathway in Driving Inflammation in IgA Nephropathy. Semin Nephrol 2018; 38: 496-503 [PMID: 30177021 DOI: 10.1016/j.semnephrol.2018.05.019]

Sanderson MP, Lau CW, Schnapp A, Chew CW. Syk: a novel target for treatment of inflammation in lung disease. Inflamm Allergy Drug Targets 2009; 8: 87-95 [PMID: 19350990]

Coffey G, DeGuzman F, Inagaki M, Pak Y, Delaney SM, Ives D, Betz A, Jia ZJ, Pandey A, Baker D, Hollenbach SJ, Phillips DR, Sinha U. Specific inhibition of spleen tyrosine kinase suppresses leukocyte immune function and inflammation in animal models of rheumatoid arthritis. J Pharmacol Exp Ther 2012; 340: 350-359 [PMID: 22940680 DOI: 10.1122/jpet.111318441]

Koyama Y, Brenner DA. Liver inflammation and fibrosis. Clin Invest 2017; 127: 55-64 [PMID: 28045404 DOI: 10.1172/JCI88881]

Singh R, Masuda ES, Payan DG. Discovery and development of spleen tyrosine kinase (SYK) inhibitors. J Med Chem 2012; 55: 3614-3643 [PMID: 22227123 DOI: 10.1021/jm201271b]

Yanagi S, Inatome R, Takano T, Yamamura H. Syk expression and novel function in a wide variety of tissues. Biochem Biophys Res Commun 2001; 288: 495-498 [PMID: 11676469 DOI: 10.1006/bbrc.2001.5788]

Tsuchida S, Yanagi S, Inatome R, Ding J, Herrmann P, Tsujimura T, Matsu N, Yamamura H. Purification of a 72-kDa protein-tyrosine kinase from rat liver and its identification as Syk: involvement of Syk in signaling events of hepatocytes. J Biochem 2000; 127: 321-327 [PMID: 10731700 DOI: 10.1093/oxfordjournals.jbchem.a022610]

Qu C, Zheng D, Li S, Liu Y, Lidojfsky A, Holmes JA, Chen J, He L, Wei L, Liao Y, Yuan H, Jin Q, Lin Z, Hu Q, Jiang Y, Tu M, Chen X, Li W, Lin W, Fuchs BC, Chung RT, Hong J. Tyrosine kinase SYK is a potential therapeutic target for liver fibrosis. Hepatology 2018; 68: 1125-1139 [PMID: 29537660 DOI: 10.1002/hep.29881]

Keshvara LM, Isaacson C, Harrison ML, Geahlen RL. Syk activation and dissociation from the B-cell antigen receptor is mediated by phosphorylation of tyrosine 130. J Biol Chem 1997; 272: 10377-10381 [PMID: 9099676 DOI: 10.1074/jbc.272.16.10377]

Zhang Y, Oh H, Burton RA, Burgner JW, Geahlen RL, Post CB. Tyr130 phosphorylation triggers Syk release from antigen receptor by long-distance conformational uncoupling. Proc Natl Acad Sci USA 2008; 105: 11760-11765 [PMID: 18689684 DOI: 10.1073/pnas.0708583105]

Gruczka RA, Füttner K, Chan AC, Waksman G. Thermodynamic study of the binding of the tandem-SH2 domain of the Syk kinase to a dually phosphorylated ITAM peptide: evidence for two conformers. Biochemistry 1999; 38: 5024-5033 [PMID: 10213669 DOI: 10.1021/bi982903f]

Rolli V, Gallwitz M, Wossning T, Flemming A, Schamel WW, Zürn C, Reth M. Amplification of B cell antigen receptor signaling by a Syk/ITAM positive feedback loop. Mol Cell 2002; 10: 1057-1069 [PMID: 12453414 DOI: 10.1016/s0959-440x(01)00739-6]

Tsang E, Giannetti AM, Shaw D, Dinh M, Tse JK, Gandhi S, Ho H, Wang S, Papp E, Bradshaw JM. Molecular mechanism of the Syk activation switch. J Biol Chem 2008; 283: 32050-32059 [PMID: 18818202 DOI: 10.1074/jbc.m805342000]

Kalathu Y, Hobeika E, Turchinovich G, Reth M. The kinase Syk as an adaptor controlling sustained calcium signalling and B-cell development. EMBO J 2008; 27: 1333-1344 [PMID: 18369315 DOI: 10.1038/emboj.2008.62]

Slomiany BL, Slomiany A. Helicobacter pylori LPS-induced gastric mucosal spleen tyrosine kinase (Syk) recruitment to TLR4 and activation occurs with the involvement of protein kinase C6. Inflammopharmacology 2018; 26: 805-815 [PMID: 29353412 DOI: 10.1007/s10787-017-0430-4]

Slomiany BL, Slomiany A. Syk: a new target for attenuation of Helicobacter pylori-induced gastric mucosal inflammatory responses. Inflammopharmacology 2019; 27: 203-211 [PMID: 30826719 DOI: 10.1007/s10787-019-00577-6]

Bataller R, Brenner DA. Liver fibrosis. J Clin Invest 2005; 115: 209-218 [PMID: 15690074 DOI: 10.1172/jci24282]

Parola M, Pinzani M. Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues. Mol Aspects Med 2019; 65: 37-55 [PMID: 30213667 DOI: 10.1016/j.mam.2018.09.002]

Asrani SK, Devarbhavi H, Eaton J, Kamath PS. Burden of liver diseases in the world. J Hepatol 2019; 70: 151-171 [PMID: 30266282 DOI: 10.1016/j.jhep.2018.09.014]

Schuppam D, Ashfaq-Khan M, Yang AT, Kim YO. Liver fibrosis: Direct antifibrotic agents and targeted therapies. Matrix Biol 2018; 68-69: 435-451 [PMID: 29656147 DOI: 10.1016/j.matbio.2018.04.006]

Gieseck RL, Wilson MS, Wyan TA. Type 2 immunity in tissue repair and fibrosis. Nat Rev Immunol 2018; 18: 62-76 [PMID: 28853443 DOI: 10.1038/nri.2017.90]

Tsuchida T, Friedman SL. Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol 2017; 14: 397-411 [PMID: 28487545 DOI: 10.1038/nrgastro.2017.38]

Nishikawa K, Osawa Y, Kimura K. Wnt/β-Catenin Signaling as a Potential Target for the Treatment of Liver Cirrhosis Using Antiﬁbrotic Drugs. Int J Mol Sci 2018; 19 [PMID: 30380992 DOI: 10.3390/ijms19101303]

Kurniawan DW, Jajoriya AK, Dhawan G, Mishra D, Argeni J, Bataller R, Storm G, Mishra DP, Prakash J, Bansal R. Therapeutic inhibition of spleen tyrosine kinase in inflammatory macrophages using PLGA nanoparticles for the treatment of non-alcoholic steatohepatitis. J Control Release 2018; 288: 227-238 [PMID: 30219279 DOI: 10.1016/j.jconrel.2018.09.004]

Cheng JH, She H, Han YP, Wang J, Xiong S, Asahina K, Tsukamoto H. Wnt antagonism inhibits hepatic stellate cell activation and liver fibrosis. Am J Physiol Gastrointest Liver Physiol 2008; 294: G39-G49 [PMID: 18006602 DOI: 10.1152/ajpgi.00263.2007]

Akkora B, Storm G, Bansal R. Inhibition of canonical WNT signaling pathway by β-catenin/CBP inhibitor ICG-001 ameliorates liver fibrosis in vivo through suppression of stromal CXCL12. Biochem
Biophys Acta Mol Basis Dis 2018; 1864: 804-818 [PMID: 29217140 DOI: 10.1016/j.bbadis.2017.12.001]

Wang X, Tang X, Gong X, Albanis E, Friedman SL, Mao Z. Regulation of hepatic stellate cell activation and growth by transcription factor myocyte enhancer factor 2. Gastroenterology 2004; 127: 1174-1188 [PMID: 15480993 DOI: 10.1053/j.gastro.2004.07.007]

Mann J, Mann DA. Transcriptional regulation of hepatic stellate cells. Adv Drug Deliv Rev 2009; 61: 497-512 [PMID: 19393271 DOI: 10.1016/j.addr.2009.03.011]

Takunaga Y, Osawa Y, Ohtsuki T, Hayashi Y, Yamaji K, Yamane D, Hara M, Munekata K, Tsukiyama-Kohara K, Hishima T, Kojima S, Kimura K, Kohara M. Selective inhibitor of WRB;catenin/CBP signaling ameliorates hepatitis C virus-induced liver fibrosis in mouse model. Sci Rep 2017; 7: 325 [PMID: 28336942 DOI: 10.1186/s41598-017-0028-2]

Aouar B, Kovarova D, Letard S, Font-Haro A, Florenint J, Weber J, Duranet D, Chaporet L, Plumas J, Tregbalavova K, Hejnar J, Nunez JA, olive D, Dubreuil P, Hirsch I, Stransa R. Dual Role of the Tyrosine Kinase Syk in Regulation of Toll-Like Receptor Signaling in Plasmacytoid Dendritic Cells. PLoS One 2016; 11: e0156063 [PMID: 27255042 DOI: 10.1371/journal.pone.0156063]

Zekri AR, Hafiez MM, Bahmassa AA, Hassan ZK, Mansour T, Kamal MM, Khaleed HM. Genetic profile of Egyptian hepatocellular-carcinoma associated with hepatitis C virus Genotype 4 by 15 K cDNA microarray: preliminary study. BMC Res Notes 2008; 1: 106 [PMID: 18959789 DOI: 10.1186/1756-0500-1-106]

Pileri F, Uematsu Y, Campagnoli S, Galli G, Falugi P, Petracca R, Weiner AJ, Houghton M, Rosa D, Grandi G, Aigrignani S. Binding of hepatitis C virus to CD81. Science 1998; 282: 938-941 [PMID: 9794763 DOI: 10.1126/science.282.5390.938]

Brazzoli M, Bianchi A, Filippini S, Weiner A, Zhu Q, Pizza M, Crootta S. CD81 is a central regulator of cellular events required for hepatitis C virus infection of human hepatocytes. J Virol 2008; 82: 8316-8329 [PMID: 18579606 DOI: 10.1128/JVI.00665-08]

Zhang J, Randall G, Higginbottom A, Monk P, Rice CM, McKeating JA. CD81 is required for hepatitis C virus glycoprotein-mediated viral infection. J Virol 2004; 78: 1448-1455 [PMID: 14722300 DOI: 10.1128/jvi.78.3.1448-1455.2004]

Bukog NK, Kody K, Szabo G. Human ezrin-moesin-radixin proteins modulate hepatitis C virus infection. Hepatology 2013; 58: 1569-1579 [PMID: 23703860 DOI: 10.1002/hep.26500]

Coffee GP, Rajaapaksa R, Liu R, Sharpe O, Kuo CC, Krauss SW, Sagi Y, Davis RE, Staudt LM, Sharman JP, Robinson WH, Levy S. Engagement of CD81 induces ezrin tyrosine phosphorylation and its cellular redistribution with filamentous actin. J Cell Sci 2009; 122: 3137-3144 [PMID: 19654214 DOI: 10.1242/jcs.045658]

Bukog NK, Kody K, Szabo G. A Novel Human Radixin Peptide Inhibits Hepatitis C Virus Infection at the Level of Cell Entry. Int J Pept Res Ther 2014; 20: 269-276 [PMID: 23579035 DOI: 10.1007/s00799-013-9390-8]

Inubushi S, Nagano-Fujii M, Kitisama K, Tanaka M, An C, Yokozaki H, Yamamuru H, Nuriya H, Kohara M, Sada K, Iotta H. Hepatitis C virus NS5A protein interacts with and negatively regulates the non-pressor protein tyrosine kinase Syk. J Gen Virol 2008; 89: 1231-1242 [PMID: 18420802 DOI: 10.1099/vir.0.83510-0]

Dunn W, Shah VH. Pathogenesis of Alcoholic Liver Disease. Clin Liver Dis 2016; 20: 445-456 [PMID: 27373608 DOI: 10.1016/j.cld.2016.02.004]

Gao B, Bataller R. Alcoholic liver disease: pathogenesis and new therapeutic targets. Gastroenterology 2011; 141: 1572-1585 [PMID: 21920463 DOI: 10.1053/j.gastro.2011.09.002]

Szabo G, Mandrekar P. A recent perspective on alcohol, immunity, and host defense. Alcohol Clin Exp Res 2009; 33: 220-232 [PMID: 19059793 DOI: 10.1111/j.1530-0277.2008.00842.x]

Stiekel F, Datz C, Hampe J, Bataller R. Pathobiology and Management of Alcoholic Liver Disease: Update 2016. Gut Liver 2017; 11: 173-188 [PMID: 28741070 DOI: 10.5009/gnl16477]

Petrasck J, Iraheta-Vellve A, Csak T, Sattischandran A, Kody K, Kurt-Jones EA, Fitzgerald KA, Szabo G. STING-IRF3 pathway links endoplasmic reticulum stress with hepatocyte apoptosis in early alcoholic liver disease. Proc Natl Acad Sci U S A 2013; 110: 16544-16549 [PMID: 24052526 DOI: 10.1073/pnas.1308331110]

Lieber CS. Alcoholic fatty liver: its pathogenesis and mechanism of progression to inflammation and fibrosis. Alcohol 2004; 34: 9-19 [PMID: 15670660 DOI: 10.1016/j.alcohol.2004.07.008]

Guo J, Friedman SL. Toll-like receptor 4 signaling in liver injury and hepatic fibrogenesis. Fibrogenesis Tissue Repair 2010; 3: 21 [PMID: 20964825 DOI: 10.1186/1755-1566-3-21]

Szabo G. Gut-liver axis in alcoholic liver disease. Gastroenterology 2015; 148: 30-36 [PMID: 25447847 DOI: 10.1053/j.gastro.2014.10.042]

Rob YS, Seki E. Toll-like receptors in alcoholic liver disease, non-alcoholic steatohepatitis and carcinogenesis. J Gastroenterol Hepatol 2013; 28 Suppl 1: 38-42 [PMID: 23855294 DOI: 10.1111/j.1440-1746.2012.06902.x]

Petrakse M, Mandrekar P, Szabo G. Toll-like receptors in the pathogenesis of alcoholic liver disease. Gastroenterol Res Pract 2010; 2010 [PMID: 20827314 DOI: 10.1155/2010/710381]

Miller VI, Choi SH, Wiesner P, Fox PL, Yamasaki S. Engagement of CD81 induces ezrin tyrosine phosphorylation and its cellular redistribution with filamentous actin. J Cell Sci 2009; 122: 3137-3144 [PMID: 19654214 DOI: 10.1242/jcs.045658]

Kohara M, Sada K, Hotta H. Hepatitis C virus NS5B non-receptor protein tyrosine kinase Syk. J Gen Virol 2008; 89: 1231-1242 [PMID: 18420802 DOI: 10.1099/vir.0.83510-0]
Hepatitis B viral infection is the most common cause of liver cirrhosis worldwide. While the antiviral treatments have been improved in recent years, the disease remains a significant public health challenge. The pathogenesis of HBV-induced liver disease is multifactorial, involving an interplay between viral and host factors. In this review, we will discuss the latest advances in the understanding of HBV-induced liver disease, particularly focusing on the role of host immune response and the potential therapeutic targets.

Host Immune Response

The immune response plays a crucial role in determining the outcome of HBV infection. Early studies demonstrated that the host immune response to HBV is predominantly T-cell mediated, with CD8+ cytotoxic T cells playing a central role in viral control. However, in chronic HBV infection, the host immune response becomes dysregulated, leading to persistent viral replication and liver damage. The dysregulation of the immune response is thought to be mediated by a variety of factors, including viral evasion strategies, immune checkpoint inhibitors, and the presence of viral antigenic peptides.

Targeted Therapies

The development of new therapeutic strategies for HBV-induced liver disease has been a major focus of research in recent years. Antiviral therapies are currently the mainstay of treatment for chronic HBV infection, with the goal of achieving sustained virological response (SVR). However, while SVR is associated with significant clinical benefit, many patients experience relapse or virological breakthrough, necessitating the development of new treatment strategies.

Conclusion

The pathogenesis of HBV-induced liver disease is a complex and multifaceted process, involving both viral and host factors. Future research should focus on understanding the underlying mechanisms of immune dysregulation and the development of new therapeutic strategies to target these pathways. By doing so, we may be able to improve outcomes for patients with chronic HBV infection and reduce the global burden of liver disease.
Zeng YX, Dai JL, Chung RT. Expression of variant isoforms of the tyrosine kinase SYK determines the prognosis of hepatocellular carcinoma. Cancer Res 2014; 74: 1845-56 [DOI: 10.1158/0008-5472.CAN-13-2104]

103 Liu D, Mamorska-Dyga A. SYK inhibitors in clinical development for hematological malignancies. J Hematol Oncol 2017; 10: 145 [PMID: 28754125 DOI: 10.1186/s13045-017-0512-1]

104 Thoma G, Veenstra S, Strang R, Blanz J, Vangrevelinghe E, Berghausen J, Lee CC, Zerwes HG. Orally bioavailable SYK inhibitors with activity in a rat PK/PD model. Bioorg Med Chem Lett 2015; 25: 4642-4647 [PMID: 26532862 DOI: 10.1016/j.bmcl.2015.08.037]

105 Lucas MC, Bhagirath N, Chiao E, Goldstein DM, Hermann JC, Hsu PY, Kirchner S, Kennedy-Smith JJ, Kuglhistor A, Lukacs C, Menke J, Niu L, Pallada F, Peng Y, Polonchuk L, Raikar A, Slade M, Sotz M, Xu D, Yadava P, Yee C, Zhou M, Liao C. Using osay to predict nonmutagenic, orally efficacious pyridazine amides as cell specific spleen tyrosine kinase inhibitors. J Med Chem 2014; 57: 2683-2691 [PMID: 25420947 DOI: 10.1021/jm401982c]

106 Can G, Ayvaz S, Can H, Demirtas S, Akcil H, Yilmaz B, Korkmaz U, Kurt M, Karaca T. The SYK Inhibitor Fostamatinib Decreases the Severity of Colon Micosal Damage in a Rodent Model of Colitis. J Crohns Colitis 2015; 9: 907-917 [PMID: 26116555 DOI: 10.1093/ectj/ffv114]

107 Weinblatt ME, Genovese MC, Ho M, Hollis S, Rossiak-Jedrzychowicz K, Kavanagh A, Millson DS, Leon G, Wang M, van der Heijde D. Effects of fostamatinib, an oral spleen tyrosine kinase inhibitor, in rheumatoid arthritis patients with an inadequate response to methotrexate: results from a phase III, multicenter, randomized, double-blind, placebo-controlled, parallel-group study. Arthritis Rheumatol 2014; 66: 3255-3264 [PMID: 25223724 DOI: 10.1002/art.38851/abstract]

108 Gomez-Puerta JA, Mocas I. Tyrosine kinase inhibitors for the treatment of rheumatoid arthritis. Curr Top Med Chem 2013; 13: 760-773 [PMID: 23574525 DOI: 10.2174/1567533X11313999994]

109 Suljagic M, Longo PG, Benardo S, Perlas E, Leon G, Laurenti L, Efremov DG. The SYK inhibitor fostamatinib disodium (R788) inhibits tumor growth in the Epu-TCL1 transgenic mouse model of CLL by blocking antigen-dependent B-cell receptor signaling. Blood 2010; 116: 4894-4905 [PMID: 20716772 DOI: 10.1182/blood-2010-03-271581]

110 Friedberg JW, Sharma J, Sweetenham J, Johnston PB, Vosse JM, Lacasce A, Schafer-Cutillio J, De Vos S, Sinha R, Leon JP, Cripe LD, Gregory SA, Sterba MP, Lowe AM, Levy R, Shipp MA. Inhibition of SYK with fostamatinib disodium has significant clinical activity in non-Hodgkin lymphoma and chronic lymphocytic leukemia. Blood 2010; 115: 2578-2585 [PMID: 19965662 DOI: 10.1182/blood-2009-08-236471]

111 Lapachak PH, Kannan L, Rani P, Pamuk ON, Ioannou A, Dalle Luca JJ, Pine P, Tsokos GC. Inhibition of SYK activity by R788 in platelets prevents remote lung tissue damage after mesenteric ischemia-reperfusion injury. Am J Physiol Gastrointest Liver Physiol 2012; 302: G1416-G1422 [PMID: 22492694 DOI: 10.1152/ajpgi.00826.2012]

112 Smith J, McGuid JP, Bhagil M, Chawanasunthornpairj R, Masuda A, Cook HT, Pase CD, Tam FW. A spleen tyrosine kinase inhibitor reduces the severity of established glomerulonephritis. J Am Soc Nephrol 2010; 21: 231-236 [PMID: 19959716 DOI: 10.1681/ASN.2009030263]

113 Burke RT, Meadows S, Loriaux MM, Currie KS, Mitchell SA, Maciejewski P, Clarke AS, Dipoaalo JA, Drucker BJ, Lamnntti BJ, Spurgeon SE. A potential therapeutic strategy for chronic lymphocytic leukaemia by combining Idelalisib and GS-9973, a novel spleen tyrosine kinase (Syk) inhibitor. Oncotarget 2014; 5: 908-915 [PMID: 24859719 DOI: 10.18632/oncotarget.1484]

114 Sharma J, Hawkins M, Kolibaba K, Boker M, Klein L, Wu J, Hu J, Abella S, Yasenchak C. An open-label phase 2 trial of entospletinib (GS-9973), a selective spleen tyrosine kinase inhibitor, in chronic lymphocytic leukemia. Blood 2015; 125: 2336-2343 [PMID: 25969191 DOI: 10.1182/blood-2014-05-599534]

115 Sharma J, Di Paolo J. Targeting B-cell receptor signaling kinases in chronic lymphocytic leukemia: the promise of entospletinib. Ther Adv Hematol 2016; 7: 157-170 [DOI: 10.1177/2040620716655342]

116 Burke JM, Shustov A, Issell J, Patel-Donnelly D, Yang J, Chen R, Ye W, Shi W, Assolune S, Sharma J. An Open-label, Phase II Trial of Entospletinib (GS-9973), a Selective Spleen Tyrosine Kinase Inhibitor, in Diffuse Large B-cell Lymphoma. Clin Lymphoma Myeloma Leuk 2018; 18: e327-e331 [PMID: 29334062 DOI: 10.1016/j.clml.2018.05.022]

117 Yoshimoto T, Hayashi T, Kondo T, Kittaka M, Reichenberger EJ, Ueki Y. Second-Generation SYK Inhibitor Entospletinib Ameliorates Fully Established Inflammation and Tumor Destruction in the Cherubism Mouse Model. J Bone Miner Res 2018; 33: 1513-1519 [PMID: 29669173 DOI: 10.1002/jbmr.3449]

118 Coffey G, Betz A, DeGuzman F, Pak Y, Inagaki M, Baker DC, Hollenbach SJ, Pandey A, Sinha U. The Syk inhibitor fostamatinib reduces immune complex-mediated inflammation. J Thromb Haemost 2009; 7: 1192-1199 [PMID: 19422460 DOI: 10.1111/j.1538-783X.2009.03451.x]
124 Quiroga MP, Balakrishnan K, Kurtova AV, Sivina M, Keating MJ, Wierda WG, Gandhi V, Burger JA. B-cell antigen receptor signaling enhances chronic lymphocytic leukemia cell migration and survival: specific targeting with a novel spleen tyrosine kinase inhibitor, R406. *Blood* 2009; **114**: 1029-1037 [PMID: 19491390 DOI: 10.1182/blood-2009-03-212837]

125 Wossning T, Herzog S, Köhler F, Meixlsperger S, Kalathu Y, Mittler G, Abe A, Fuchs U, Borkhardt A, Jumaa H. Deregulated Syk inhibits differentiation and induces growth factor-independent proliferation of pre-B cells. *J Exp Med* 2006; **203**: 2829-2840 [PMID: 17130299 DOI: 10.1084/jem.20060967]

126 Sprissler C, Belenki D, Maurer H, Assmann K, Pfeifer D, Klein C, Müller TA, Kessel S, Hülsdünker J, Alexandrovski J, Brummer T, Jumaa H, Dierks C. Depletion of STAT5 blocks TEL-SYK-induced APMF-type leukemia with myelofibrosis and myelodysplasia in mice. *Blood Cancer J* 2014; **4**: e240 [PMID: 25148222 DOI: 10.1038/bcj.2014.53]

127 Baloum M, Grossbard EB, Mant T, Lau DT. Pharmacokinetics of fostamatinib, a spleen tyrosine kinase (SYK) inhibitor, in healthy human subjects following single and multiple oral dosing in three phase I studies. *Br J Clin Pharmacol* 2013; **76**: 78-88 [PMID: 23190017 DOI: 10.1111/bcp.12048]

128 Torres-Hernandez A, Wang W, Nikiforov Y, Tejada K, Torres L, Kalabin A, Wu Y, Haq MIU, Khan MY, Zhao Z, Su W, Camargo J, Hundeyin M, Diskin B, Adam S, Rossi JAK, Kurz E, Aykut B, Shahdaloey SAA, Leinwand J, Miller G. Targeting SYK signaling in myeloid cells protects against liver fibrosis and hepatocarcinogenesis. *Oncogene* 2019; **38**: 4512-4526 [PMID: 30742098 DOI: 10.1038/s41388-019-0734-5]

129 Kyttaris VC, Tsokos GC. Syk kinase as a treatment target for therapy in autoimmune diseases. *Clin Immunol* 2007; **124**: 235-237 [PMID: 17662659 DOI: 10.1016/j.clim.2007.06.005]