Progress of Map-based Cloning of the Vf-resistance Gene and Functional Verification: Preliminary Results from Expression Studies in Transformed Apple

M. Barbieri, E. Belfanti, S. Tartarini, B.A. Vinatzer, and S. Sansavini
Dipartimento di Cultura Arboree (DCA), University of Bologna, Italy

E. Silfverberg-Dilworth, L. Gianfranceschi, D. Hermann, A. Patocchi, and C. Gessler
Plant Pathology, Institute of Plant Science, Swiss Federal Institute of Technology, ETH Zurich, Switzerland

Additional index words: Venturia inaequalis, Malus xdomestica, Vf-resistance gene cloning, genetic transformation, GM-apples

Host resistance against disease has been widely used in many crops with success. For more than 50 years, apple breeding programs in the United States, Europe, and elsewhere throughout the world have attempted to develop cultivars resistant to scab (Venturia inaequalis) via the introgression of major genes originating from wild Malus species. Indeed, today more than 100 cultivars have been released, most of which carry the Vf gene from Malus floribunda 821 and a few other resistance genes. Yet these accomplishments have not translated into commercial success, as growers have largely ignored the new varieties and continued to cultivate scab-susceptible varieties despite marketing campaigns, unsatisfactory fruit and storage quality, and the fact that the susceptibility of apple genotypes to scab for at least the life of an orchard is high. The optimal approach would be to employ an already successful cultivar and add resistance to it. It was thus a logical step to attempt to transfer resistance genes to the most widely grown and marketed, but scab-susceptible, apple cultivars. Some attempts in this direction have been reported using heterologous genes, i.e., not of the apple species itself, known for their antifungal resistance, the most noteworthy among these transformations being the endochitinase gene of Trichoderma (Aldwinckle et al., 2000). While the results achieved so far have been important, these experimental efforts are perhaps best viewed as preliminary steps towards a more complete and effective transformation with homologous genes, i.e., those of apple itself. Success in achieving a transformant cultivar to replace its original may best be approached if the transformant has no apple-foreign DNA and the probability of maintaining the durability of the resistance for at least the life of an orchard is high.

Malus xdomestica has a large array of resistance genes, although their effect is no longer effective as the pathogen population has adapted to an extent proportional to the selection pressure exerted by the various cultivars (Gessler, 1989; Koch et al., 2000; MacHardy et al., 2001). Even in ‘Golden Delicious’ a resistance gene (Vg) has been identified (Bénaouf and Parisi, 1997; Durel et al., 2000), but it is not effective in all areas because where this cultivar is popular, the pathogen population carries the corresponding virulence gene. It is thus reasonable to view Vf-transformation as a first step in a “gene therapy” aimed at correcting the susceptibility of apple genotypes to scab and restoring resistance to the plant. Clearly, the adaptation of the pathogen population will follow and new genes will have to be added. In other words, this approach attempts to achieve the same results as the decades-old traditional breeding programs but in a much shorter time, with the additional advantage of safeguarding the prized traits of the best cultivars while introducing resistance to Venturia.

The present paper summarizes a long series of molecular studies on apple, largely conducted as a joint effort by the DCA, University of Bologna, and the Phytopathology research group of the Swiss Federal Institute of Technology, Zurich (ETH). Section 1 is based on published literature and sections 2 to 5 provide preliminary results, as yet unpublished, and can be taken as indicating the current state of the art. The findings recorded to date are encouraging, although they are not yet final proof of identification of the Vf resistance gene.

1. Positional cloning of HcrVf candidate genes. Three RAPD markers associated with the Vf gene were found by Koller et al. (1994) and Tartarini (1996) and were transformed into more reliable PCR markers. Marker M18 was transformed into a CAPS marker (Gianfranceschi et al., 1996), while AM19 and AL07 were transformed into SCAR markers (Tartarini et al., 1999). M18 mapped to one side of the Vf locus and AM19 and AL07 to the other. Patocchi et al. (1999a) identified additional markers that mapped in physical mapping that the maximum distance between the markers M18 and AL07 was less than 870 kb. This meant it was feasible to cover the distance between these markers by chromosome walking using a large-insert DNA library. Vinatzer et al. (1998) constructed a BAC library of the scab-resistant cultivar Florina, heterozygous for the Vf gene. This library has an average insert size of 120 kb and consists of 36,000 clones, thus representing more than five times the haploid genome of apple and meaning that there is a greater than 99% chance of finding any apple gene in this library. A chromosome walk starting from two molecular markers (M18 and AM19) flanking Vf was performed using the apple BAC library. Nine steps of chromosome walking were necessary to identify the 13 BAC clones that span the region between the two markers. The size of the resulting “resistant” contig (contig in coupling with the Vf gene) is about 550 kb. A gap on the “susceptible” chromosome could not be closed, probably because no clones corresponding to this gap exist in the apple BAC library (Patocchi et al., 1999b).

Markers were then derived from the identified BAC clones and the possible location of the Vf gene was restricted to seven BAC clones covering 350 kb. Only five BAC clones were used for a minimum tiling path spanning the Vf region. These five BAC clones were then used to screen a cDNA library of ‘Florina’ leaves, the same variety used to construct the BAC library. Healthy and scab-infected leaves were used as starting material. More than 50 different cDNA clones hybridized to the five BAC clones (Vinatzer et al., 2001). Some of these cDNA clones had homology to the Cladosporium fulvum resistance genes of tomato and thus represented a class of candidate Vf genes. Hybridizing these cDNAs to the five BAC clones covering the Vf locus made it possible to identify several members of this class of homologues of the Cf-resistance genes. These genes were called HcrVf genes (homologues of C. fulvum resistance genes of the Vf region).

Sequencing of DNA fragments derived from the BAC clones and subsequent assembly of these sequences led to the identification of three open reading frames (ORFs), called HcrVf1, HcrVf2, and HcrVf3. The expression of HcrVf1 and HcrVf2 was determined to be constitutive in leaves by RT-PCR and the completeness of the respective ORFs was verified by 5’ RACE. Expression of HcrVf3 could not be demonstrated in leaves, making it an unlikely Vf gene candidate, although a very similar gene, HcrVf4, was found to be expressed in leaves. As the HcrVf1, HcrVf2, and HcrVf4 are expressed in leaves and cosegregate with the resistance, they were considered the candidate Vf genes. The presence of additional HcrVf genes at the Vf locus can be predicted from as yet unassembled sequence segments from the Vf/BAC clones with homology to the other HcrVf genes.

2. Construction of pCORF2. Sequences isolated in the Vf region were used to produce different constructs. In this paper we report...
preliminary data about a plasmid construct, suitable for *Agrobacterium*-mediated transformation of *HcrVf2*, which was developed using the binary vector pCAMBIA2301 (Gene Bank AF234316). The section of pCAMBIA2301 between the EcoRI and BstEII restriction sites, which contains a GUS gene, was removed and replaced by the complete ORF of *HcrVf2* and a CaMV35S promoter. The ORF of *HcrVf2* was PCR amplified using *Pfu Taq* Polymerase from BAC clone M18-5 and simultaneously ligated into pCAMBIA2301 with the CaMV35S promoter. The construct was transformed into *E. coli* and the resulting clone, pCORF2, was verified via sequencing.

Sequencing of pCORF2 revealed a base pair mutation at the five prime end of *HcrVf2*. The sixth base in the *HcrVf2* ORF, a guanine, is a cytosine in pCORF2. This alteration converts the amino acid coded from glutamic to aspartic acid. The side chain of both amino acids is positively charged and, hence, their interchange should have little effect on the structure or function of the protein. In addition, the mutation is in the signal peptide, which is not present in the mature protein. Therefore, despite this base pair mutation, pCORF2 was further transferred into *A. tumefaciens* EHA105 containing helper plasmid pCH32.

3. Transformation and regeneration. The transformation experiments were run at Bologna’s DCA in 2000–01 and produced thousands of explants (5200) infected by *A. tumefaciens* with plasmids carrying various constructs for *Venturia* resistance. Note, however, that only 1000 explants of ‘Gala’ were infected with the construct pCORF2 developed at Zurich’s ETH. The remaining explants were infected with *HcrVf4*, and the non-mutated *HcrVf2* constructs (data not shown); transformations with *HcrVf1* are under way. The transformation and regeneration processes required a number of complex phases that were backed up by years of fine-tuning the proper protocols. These steps can be briefly encapsulated in pre-conditioning, explant samplings, inoculum preparation, infection, decontamination, selection-regeneration, proliferation of regenerants, all involving tests of various treatment combinations to optimize the infection and regeneration processes. A detailed description of these protocols will be the focus of an upcoming publication.

Of the 1000 explants grown on selective medium for 15 months, 390 survived, producing callus and nearly 200 independent regenerations. Of the latter, 77 were isolated and transferred to proliferation media: 15 of these have been selected because they have lost their virulent aspect, started to proliferate and have become plantlets suitable for molecular assays and in vitro infection. The best results in terms of regeneration rate have been recorded using TN505 medium [sorbitol 30 g L\(^{-1}\); MS salts 4.3 g L\(^{-1}\); modified MS vitamins; miosostol 100 mg L\(^{-1}\); NAA 0.5 mg L\(^{-1}\); TDZ 5.1 mg L\(^{-1}\); phytagel 2.3 g L\(^{-1}\); pH 5.7. (E. Chevreau, personal communication)] in pre-conditioning and regeneration starting from leaf explants. Leaf explants regenerated faster than internode explants: 20% one month after co-culture enriched with kanamycin (50 g L\(^{-1}\)). While internode explants had a 10% regeneration rate after 6 months and regenerated better if kanamycin is added with a gradient (7 at 15 g L\(^{-1}\); 4 weeks at 30 mg L\(^{-1}\); then 50 mg L\(^{-1}\)) these regenerants were less vitreous and proliferated better than leaf regenerants.

4. Molecular assays. Validation of the effective transformation of the regenerated shoots was carried out via PCR assays designed to detect the *HcrVf2* and *nptII* transgenes using their specific primers (Vinatzer et al., 2001; Yao et al., 1995). While the *HcrVf2* specific markers (Fig. 1) yielded only one band of ~1050 bp in the negative control (nontransformed ‘Gala’), in the positive control (‘Enterprise’) there appeared a second band of the expected size for *HcrVf2* (~880 bp).

The molecular assays run to detect *HcrVf2* in 48 regenerants that developed most fully over the 15 months of infection showed that 87.5% had a profile analogous to that of the resistant cultivars. All these regenerants also showed the presence of the *nptII* gene. Of the six remaining regenerants negative for *HcrVf2*, four tested positive and two tested negative for *nptII*. The two best-growing independent regenerant lines L1 and L2 were selected for further analysis. Transcription of the introduced *HcrVf2* gene was confirmed by RT-PCR (OnestepRT-PCR kit, Qiagen, Germany), following manufacturer’s protocol.

5. In vitro scab-resistance tests. An early scab-resistance screening approach using young leaves from in vitro plantlets was developed (Silfverberg-Dilworth, unpublished data). One leaflet per plant was detached and kept for 2 d on water and agar and then inoculated with ~20–40 µL leaf *Venturia inaequalis* conidia in suspension (at least 150,000 conidia/mL), taken from ‘Golden Delicious’ and ‘Red Chief’ naturally infected in open field. After 4–5 d, the leaflets were cleared and stained with aniline blue. Fungal development was microscopically assessed in a blind evaluation by three independent readers. The following classification scheme was used:

- A) secondary expanding running hyphae, often star-shaped, going out from a central plate of primary stroma;
- B) absence of the typical running stroma hyphae, primary stroma as plate with a typical lobed structure;
- C) single hypha, clearly larger than a germination tube, extending straight out from the appressorium for 20–100 and more µm; hyphal borders at several sites clearly lobed;
- D) as stage C but with straight hyphal borders;
- E) no fungal development on appressoria and penetration peg.

Samples were first checked over the whole surface to enable immediate detection of the presence of development stage A. If no stage A was detected, conidia with appressorium were observed and counted until the most developed stage found more than once was determined. A maximum of 100 conidia were observed in stage E. A single observation, except for a stage A, was not considered.

Determining at which development stage of the pathogen the threshold line between resistance and susceptibility has to be drawn is unclear (either between A and B, or B and

Table 1. Results of scab in vitro inoculum on ‘Gala’ (susceptible and GM lines) and ‘Enterprise’ (Vf-resistant). Microscopic evaluation of scab infection led to the posting of two thresholds for resistance/susceptibility.

Threshold 1	Threshold 2	
Leaf no. classes = B+C+D+E	Leaf no. classes = A+B	
Susceptible classes = A	Susceptible classes = A+B	
Gala	8	7
Enterprise	+	+
GM-Gala line 1	+	+
GM-Gala line 2	+	+

Table 2. Statistical analysis of the inoculum results presented in Table 1 (chi-square test).

Degree of freedom	Threshold 1	Threshold 2
Total χ²	2	0.05 *
R² vs. T	1	0.42 **
S vs. R + T	1	0.02

*R² = resistant cultivar Enterprise; S = nontransformed ‘Gala’; T = ‘Gala’ *HcrVf2* transformed lines.

**Nonsignificant or significant at P ≤ 0.05 or 0.01, respectively.
C) and influences the results (see the two thresholds and their effects in Table 1). Of the 10 ‘Enterprise’ (resistant) samples, two were classified untypically as A and three as B. In the susceptible ‘Gala’, four of eight samples did not show infection stage A or B. Clearly, some individual samples did not classify as expected. Indeed, no matter what the threshold, some samples of the susceptible cultivar did not show any signs of stroma while some of the resistant control did. Nor did threshold have an effect on the outcome of the statistical analysis, which led to the same results (Table 2): scab resistance of the HcrVf2 transformant lines 1 and 2 did not differ from that of the resistant Enterprise while the susceptible Gala is clearly different from the resistant ones. These data indicate that the transformation with the HcrVf2 gene appears to increase scab resistance in the resulting transformed lines.

Additional samples (30% of all leaves assayed) are not reported as they could not be scored due to insufficient conidia numbers or the presence of secondary infections. It is evident that fine-tuning of the methodology is needed, especially in regard to certain biological parameters like stroma development.

CONCLUSIONS

The transformation of ‘Gala’ suggests that the candidate HcrVf2 gene is in all likelihood associated with scab resistance. Indeed, the pCORf2 construct containing HcrVf2 transferred via A. tumefaciens to leaf explants induced resistance to V. inaequalis in a sufficient enough number of leaves to prove the transfer of resistance. It is evident that definitive proof of transformation and acquired resistance to Venturia must come from in vivo artificial inocula of greenhouse plants and from Vf gene transfer to progeny.

We are not sure that HcrVf2 is the only or even the most effective gene for this purpose; it remains to be seen whether constructs carrying the original, non-mutated HcrVf2, HcrVf1 or HcrVf4 will perform better and whether resistance is due to a cluster of genes or only one major Vf gene. Each transgenic line must be phenotypically characterised to identify the one with the best resistance expression. It is also important to ascertain at the genotype level the number of transgene copies that have been integrated into the apple genome since plants homozygous for the Vf gene seem to be more resistant than the heterozygous ones (Gessler et al., 1997; Tartarini et al., 2000).

Literature Cited

Aldwinckle H.S., J.L. Norelli, J.P. Bolar, and G.E. Harman. 2000. Increased resistance to scab (Venturia inaequalis) of transgenic apple plants expressing chitinase from Trichoderma. IOBC–WPRS Bul., Vol. 23(12):119–121.

Bénaouf, G. and L. Parisi. 1997. Pathogenicity of Venturia inaequalis strains from Malus floribunda 821: Comparison with race 6 on apple clones. IOBC–WPRS Bul., Vol. 20(9):8–11.

Durel, C.-E., E. Van De Weg, J.S. Venisse, and L. Parisi. 2000. Localisation of a major gene for apple scab resistance on the European genetic map of the Prima X Fiesta cross. IOBC–WPRS Bul., Vol. 23 (12):245–248.

Gessler, C. 1989. Genetics of the interaction Venturia inaequalis—Malus: The conflict between theory and reality. In: C. Gessler, D.J. Butt, and B. Koller (eds.). Integrated control of pome fruit diseases II. OILB–WPRS Bul., XII(6):168–190.

Gessler, C., A. Patocchi, M. Kellerhals, and L. Gianfranceschi. 1997. Molecular markers applied to apple breeding and map-based cloning of resistance genes. OILB–WPRS Bul., Vol. 20:105–109.

Gianfranceschi, L., B. Koller, N. Seglias, M. Kellerhals, and C. Gessler. 1996. Molecular selection in apple for resistance to scab caused by Venturia inaequalis. Theor. Appl. Genet. 93:199–204.

Koch, T., M. Kellerhals, and C. Gessler. 2000. Virulence pattern of Venturia inaequalis field isolates and corresponding differential resistance in Malus xdomestica. J. Phytopathol. 148:357–364.

Koller, B., L. Gianfranceschi, N. Seglias, J. Mcdermott, and C. Gessler. 1994. DNA markers linked to Malus floribunda 821 scab resistance. Plant Mol. Biol. 26:597–602.

MacHardy, W., D.M. Gadoury, and C. Gessler. 2001. Parasitic and biological fitness of Venturia inaequalis: Relationship to disease management strategies. Plant Dis. 85(10): 1036–1051.

Patocchi, A., L. Gianfranceschi, and C. Gessler. 1999a. Towards the map-based cloning of Vf: Fine and physical mapping of the Vf region. Theor. Appl. Genet. 99:1012–1017.

Patocchi, A., B.A. Vinatzer, L. Gianfranceschi, S. Tartarini, H.B. Zhang, S. Sansavini, and C. Gessler. 1999b. Construction of a 550 kb BAC contig spanning the genomic region containing the apple scab resistance gene Vf. Mol. Gen. Genet. 262:884–891.

Tartarini S. 1996. RAPD markers linked to the Vf gene for scab resistance in apple. Theor. Appl. Genet. 92:803–810.

Tartarini, S., L. Gianfranceschi, S. Sansavini, and C. Gessler. 1999. Development of reliable PCR markers for the selection of the Vf gene conferring scab resistance in apple. Plant Breeding 118:183–186.

Tartarini, S., S. Sansavini, B.A. Vinatzer, F. Gennari, and C. Domizzi. 2000. Efficiency of marker assisted selection (MAS) for the Vf/scab resistance gene. Symp. Fruit Breeding and Genet.–Eucarpia, 6–10 Sept. 1999, Dresden, Germany. Acta Hort. 538, Vol. II:549–552.

Vinatzer, B.A., A. Patocchi, L. Gianfranceschi, S. Tartarini, H.B. Zhang, C. Gessler, and S. Sansavini. 2001. Apple contains receptor-like genes homologous to Cladosporium fulvum resistance gene family of tomato with a cluster of genes cosegregating with Vf apple scab resistance. MPMI 14:508–515.

Vinatzer, B.A., S. Sansavini, and H.B. Zhang. 1998. Construction and characterization of a bacterial artificial chromosome library of apple. Theor. Appl. Genet. 97:1183–1190.

Yao, J.L., D. Cohen, R. Atkinson, K. Richardson, and B. Morris. 1995. Regeneration of transgenic plants from the commercial apple cultivar Royal Gala. Plant Cell Rep. 14:407–412.