Inadequate Prosthetic Rehabilitation Caused by Fibrous and Bone Hyperplasia of Maxilla – Case Report

Bojan Gačić, Ljiljana Stojčev-Stajčić, Ana Djinić, Milena Kalanović, Branislav Ilić, Kristina Rebić
University of Belgrade, Faculty of Dental Medicine, Clinic of Oral Surgery, Belgrade, Serbia

SUMMARY
Normal bone healing after tooth extraction includes the following steps: blood clot forming, granulation, bone forming and final bone reorganization. In clinical settings connective tissue infiltration of extraction socket can result in fibrous scar formation rather than bone healing. Local and systemic factors seem to be major contributors to the occurrence of erratic socket healing. The aim of this case report was to describe oral-surgery treatment of a patient with inadequate bone and soft supportive tissue for prosthetic rehabilitation. Surgical procedure and recovery are presented, including final complete denture rehabilitation.

Keywords: fibrous hyperplasia; bone hyperplasia; compromised post-extraction healing; inadequate prosthetic rehabilitation

INTRODUCTION
Numerous experimental and clinical studies have investigated healing mechanisms of extraction socket. After tooth removal rapid establishment of blood coagulum occurs, followed by clot replacement with granulation tissue, osteoid and subsequently mature lamellar bone [1, 2]. In addition, other changes of extraction site develop during the first year after tooth extraction [3]. Less traumatic surgical approach, crown and root separation as well as meticulous wound debridement with removal of all granulation tissue are advised after tooth extraction in order to provide optimal conditions for bone healing during 12 weeks and final implant placement [4]. Nevertheless, in clinical settings connective tissue infiltration of extraction socket can occur resulting in fibrous scar formation rather than bone healing. Local and systemic factors seem to be major contributors to the occurrence of erratic socket healing [5]. More recent reports indicate that implant periapical lesions are triggered by remaining scar or granulomatous tissue at the recipient site as well as endodontic pathology of extracted tooth. Obviously optimal extraction socket healing is not always achieved [6, 7, 8].

On the other hand, inadequate dentures can cause a wide range of lesions in oral mucosa that could be prevented with follow-up and instructions how to maintain oral tissues healthy [9]. It has also been shown that complete denture wearers are more prone to pseudomembranous candidiasis, fibrous hyperplasia and stomatitis [10].

The aim of this study was to present surgical procedure of removing fibrous scar from post-extraction alveoli, which was the main complication to retention and stabilization of maxillary denture.

CASE REPORT
A 46-year-old female patient was referred to the Clinic of Oral Surgery by a prosthodontic specialist due to the patient’s complaint about poor retention and stability of maxillary complete denture. An oral surgery specialist performed clinical examination during the first visit. Uneven lateral segments of maxilla were revealed along with incorrect inter-jaw relationship due to soft tissue hyperplasia in the region of maxillary tuberoses (Figure 1). Orthopan tomography analysis showed bone hypertrophy in both maxillary tuberoses. Oral surgery procedure was recommended and scheduled.

Surgical procedure was performed in the second visit under local anesthesia using 4% Articaine hydrochloride with epinephrine hydrochloride 0.01 mg/ml (Septanest 1:100000, 4%). Elliptical incision was made bilaterally and hypertrophic fibrous tissue was removed (Figure 2). Then after, alveolar osteoplasty of the posterior maxillary regions was performed (Figure 3). According to the orthopan tomography, an exposure of sinus membrane on the left side was expected following bone removal. Diamond burs were used in order to prevent sinus membrane damage. The Schneiderian membrane was pushed caudally following the exposure (Figure 4). After hypertrophic bone removal, sutures were placed. There was no sinus membrane exposure on the right side, therefore sutures were placed immediately after bone removal (Figure 5). In the anterior maxillary region hypertrophic mucosa was removed (labium duplex), and frenectomy was performed (Figure 6). Penicillin 0,5 g three times a day, during the five days (Amoxicillin®, Galenika, Belgrade, Serbia) was prescribed after the surgery. The patient was discharged from the hospital the same day with a dietetic-hygienic
Figure 1. Preoperative situation in patient's mouth
Slika 1. Preoperaciono stanje u ustima pacijentkinje

Figure 2. Elliptical incision on the left side of maxilla
Slika 2. Elipsasta incizija u gornjoj vilici s leve strane

Figure 3. Alveolar osteoplasty of posterior maxillary region (left side) using a diamond bur
Slika 3. Uklanjanje koštanog tkiva dijamantskim borerom u gornjoj vilici s leve strane

Figure 4. Schneiderian membrane pushing caudally on the left side of maxilla
Slika 4. Potiskivanje sluzokože levog maksilarnog sinusa kaudalno

Figure 5. Surgical sutures placed in the posterior part of maxilla
Slika 5. Primarno ušivene rane u bočnim segmentima gornje vilice

Figure 6. Surgical sutures placed in the frontal part of maxilla
Slika 6. Primarno ušivene rane u frontalnoj regiji gornje vilice
regime recommendation. The follow-up examination was scheduled for one day after. During the third visit the first postoperative examination was performed. Local postoperative conditions were normal (Figure 7). The wound was rinsed with sterile saline and patient was discharged with scheduled visit two days after.

At the fourth visit, the surgical wound showed signs of healing and local conditions were within normal limits (Figure 8).

Seven days post-surgery sutures were removed. The wound healed with primary intention (Figure 9). The next follow-up examination was scheduled for one month after the surgery, following the prosthetic rehabilitation.

On the sixth visit, one month post-surgically, the patient had complete dentures (Figure 10). Intraoral examination showed good postoperative condition including optimal stability and retention of complete dentures (Figure 11).

DISCUSSION

Many authors have investigated biological processes involved in healing process of extraction socket. An animal study demonstrated that extraction socket healing involved a series of events including formation of a coagulum replaced by provisional connective tissue matrix first, and then by a woven bone while finally by a lamellar bone and bone marrow. Furthermore, in the process of healing, a hard tissue bridge is formed, i.e. cortical bone, which “closes” the socket [2]. Extraction socket healing in humans includes similar phases with major changes.
during the first year post-extraction and 50% reduction of alveolar ridge width during that period [1, 2, 3]. After monitoring healing process of extraction sockets during a 6-month period it was shown that provisional connective tissue has been consistently formed within the first weeks of healing, while the interval during which mineralized bone is laid down was less predictable [11]. Another study showed that approximately 5% of extraction sites featured erratic extraction socket healing. In this study, the term erratic healing was defined as healing of extraction sockets that resulted in soft tissue infiltration, most likely fibrous scar tissue, rather than bone formation even after meticulous debridement and healing interval that exceeded 12 weeks. The most unpredictable sites were sites where preexisting periodontal, endodontic, or combined periodontal-endodontic pathology was present. Erratic healing was more likely to occur in younger patients and patients with high blood pressure. Other systemic factors, such as gender, diabetes and smoking did not show positive correlation with erratic socket healing [5].

The patient described in the current study was in good general medical condition, however she had a history of chronic periodontal disease that progressed to terminal phase and caused multiple teeth extraction. Severe periodontal pathology may be the explanation for connective tissue infiltration and fibrous scar formation following teeth removal in this patient. Even though meticulous curettage of extraction socket is performed after tooth removal, an optimal bone healing might not occur. The surgeon should be prepared to deal with consequences of irregular healing in order to provide the patient a possibility for implant placement or prosthetic rehabilitation.

ACKNOWLEDGMENT

The authors acknowledge support of the Ministry of Education, Science and Technological Development of the Republic of Serbia, grant III41007.

REFERENCES

1. Amler NH. The time sequence of tissue regeneration in human extraction wounds. Oral Surg Oral Med Oral Pathol. 1969; 27:309-18.
2. Cardaropoli G, Araujo M, Lindhe J. Dynamics of bone tissue formation in tooth extraction sites – an experimental study in dogs. J Clin Periodontol. 2003; 30:809-18.
3. Schropp L, Wenzel A, Kostopoulos L, Karring T. Bone healing and soft tissue contour changes following single-tooth extraction: a clinical and radiographic 12-month prospective study. Int J Periodontics Restorative Dent. 2003; 23:313-23.
4. Hammerle CHF, Chen ST, Wilson TG. Consensus statements and recommended clinical procedures regarding the placement of implants in extraction sockets. Int J Oral Maxillofac Implants. 2004; 19:26-8.
5. Kim JH, Suin C, Min JH, Suh HY, Song EJ, Ku Y, et al. Extraction sockets: erratic healing impeding factors. J Clin Periodontology. 2014; 41:80-5.
6. Quirynen M, Vogels R, Alsaadi G, Naert I, Jacobs R, van Steenberghe D. Predisposing conditions for retrograde peri-implantitis, and treatment suggestions. Clin Oral Implants Res. 2005; 16:599-608.
7. Romanos GE, Froum S, Costa-Martins S, Meiriner S, Tarnow DP. Implant periapical lesions: etiology and treatment options. J Oral Implantol. 2011; 37:53-64.
8. Lefever D, Van Assche N, Temmerman A, Teughels W, Quirynen M. Aetiology, microbiology and therapy of periapical lesions around oral implants: a retrospective analysis. J Clin Periodontol. 2013; 40:296-302.
9. Coelho CMP, Sousa Y, Dare AMZ. Denture-related oral mucosal lesions in a Brazilian school of dentistry. J Oral Rehabil. 2004; 31:135-9.
10. Vallejo M, Diaz-Canel AIM, Martin JMG, Garcia MG. Risk factors for oral soft tissue lesions in an adult Spanish population. Community Dent Oral Epidemiol. 2002; 30:277-85.
11. Trombelli L, Farina R, Marzola A, Bozzi L, Liljenberg B, Lindhe J. Modeling and remodeling of human extraction sockets. J Clin Periodontol. 2008; 35:630-9.
Broj ne eksperimentalne i kliničke studije su ispitivale zarastanje ekstrakcionalnih alveola. Pokazano je da nakon vodenja zuba obično sleđe sleđe brzega organizacija koaguluma, stvaranje granulacionog tkiva, osteoida, a zatim i zrele lamelarne kosti [1, 2]. Klinički je utvrđeno da područje ekstrakcije zuba podleže najvećim promenama tokom prvih godina zuba [3]. Prilikom planiranja ugradnje implantata nakon ekstrakcije, savetuju se atraumatski hirurški rad, separacija zuba i korenova, kao i pažljiv debridman rane uz uklanjanje inflamiranih granulacionog tkiva, kako bi se obezbedili uslovi za neometano zarastanje costi tokom prvih 12 nedelja oporavka [4]. Međutim, klinički se neretko može sreći infiltracija ekstrakcione alveole vezivnim tkivom, uz formiranje fibroznog ožilja umesto novostvorene kosti. Lokalni i sistemički faktori, čini se, doprinose javljanju nepravilnog zarastanja ekstrakcione alveole [5]. Novija istraživanja takođe pokazuju da su implantatne peripatikalne lezije posledica zaostalog ožiljnog ili granulomatoznog tkiva u regiji implantacije, kao i endodontске patologije ekstrahovanog zuba; stoga se optimalno kostočarstvo alveole ne dešava uvek [6, 7, 8].

S druge strane, neodgovarajuće protetičke nadoknade mogu uzrokovati nastanak brojnih lezija oralne sluzokože, što se može sprečiti redovnim kontrolama radi očuvanja zdravlja oralne mukože [9]. Ranije istraživanje je pokazalo da nošenje totalnih zubnih proteza povećava incidenciju nastanka pseudomembranozne kandidijaze, fibroznih hiperplazije i stomatitisa [10].

Cilj ovog rada je bio da se predstavi hirurški postupak uklanjanja fibrozog ožilja iz postekstrakcione alveole koji je bio osnovna smetnja retencije i stabilizacije gornje totalne proteze.

PRIKAZ PACIJENTA

Žena stara 46 godina došla je na Kliniku za oralnu hirurgiju Stomatološkog fakulteta u Beogradu, prema uputu specijaliste stomatološke protetike zbog nemogućnosti nošenja gornje totalne zubne proteze. Tokom prve posete urađen je klinički pregled i dijagnostikovano je da je bočni segment leve i desne gornje vilice između, te da su međulipavi odnosi porememeni zbog fibrozne hiperplazije gingive u regiji tubera maksile (Slika 1). Analizom ortopantomografskog (OPT) snimka dijagnostikovano je da je kostoška hipertrofija maksilarnog tubera obostrano. Nakon pregleda i analize rendgenskog snimka pacijentkinji je zakazana hirurška intervencija.

Tokom druge posete obavljena je hirurška zahvatanje korekcije mkih i kostočnog tkiva. Nakon primene 8 ml lokalnog anestetičkog rastvora četvoroprocentnog artikaina s adrenalnom, učinjena je bilateralna elipsasta inicijalna, a potom uklonjeno hipertrofno fibrozno tkivo (Slika 2). Zatim je izvršena osteoplastika bočnih segmenta leve i desne maksile (Slika 3). Prilikom uklanjanja kostočnog tkiva bilo je očekivano, na osnovu analize OPT snimka, da će se te leane strane eksponirati sluzokoža maksilarnog sinus. Zbog toga su korišćeni dijamsanti njen i adhesiva membrana ostala netaknuta. Nakon ekspozicije membrana je potisnuta kaudalno (Slika 4). Potom je uklonjen ostatak hipertrofičnog kostočnog tkiva i rana primarno ušivena. Sa desne strane sluzokoža maksilarnog sinus nije bila eksponirana, tako da je nakon uklanjanja hipertrofičnog kostočnog tkiva rana primarno ušivena (Slika 5). U frontalnoj regiji gornje vilice uklonjena je hipertrofična mukoza (labium duplex), koja je nastala kao posledica nošenja neodgovarajuće totalne proteze, a potom je izvršena frenekтомija i uklonjen frenulum labii oris superioris. Rane su primarno ušivena (Slika 6). Nakon hirurške intervencije pacijentkinji je prepisana antibiotkska terapija – penicilin u dozi od 0.5 g na osam sati u trajanju od pet dana (Amoksinicilin®, Galenika, Beograd, Srbija), a preporeden higijensko-dijetetski režim, nakon čega je puštena kući. Kontrolni pregled je zakazan za 24 sata.

Tokom treće prosle posete obavljena je prva postoperaciona kontrola. Lokalni nalaz je bio normalan (Slika 7). Rana je isprana fiziološkim rastvorom. Pacijentkinji je naredna kontrola zakazana za dva dana.

Tokom četvrte posete, trećeg dana od hirurškog zahvata, postoperacioni tok je bio normalan, a hirurška rana u primarnom zarastanju isprana je fiziološkim rastvorom (Slika 8). Sljeđeća kontrola je zakazana sedmog dana postoperacionog dana.

Nakon sedam dana od hirurške intervencije uklonjeni su koni i izvršena je traka rane. Lokalni nalaz je bio normalan, rana je primarno zaresla (Slika 9) i pacijentkinja je puštena kući. Naredna kontrola zakazana je za mesec dana, po izradi protetičkih nadoknada.

Tokom šeste posete, mesec dana nakon hirurške intervencije, pacijentkinja je došla na kontrolni pregled s izrađenim novim
protetičkim nadoknadama (Slika 10). Intraoralnim pregledom utvrđeno je da su rane potpuno zarasle, kao i da su zubne nadoknade u ustima stabilne (Slika 11).

DISKUSIJA

Brojna istraživanja su se bavila ispitivanjem bioloških procesa uključenih u zarastanje ekstrakcioni alveola. Studija na životinjskom modelu je pokazala da zarastanje ekstrakcione alveole podrazumeva niz događaja, uključujući zamenu stvenog koagulum provizornim vezivno-tkivnim matriksom, potom nezreлим i, konačno, zreлим koštanim tkivom i koštanom srži. Uz to, tokom zarastanja se formira i čvrst most od kortikalnih kosti koji „zatvara“ alveolu [2]. Postekstrukciono zarastanje kod ljudi prolazi kroz slične faze, pri čemu se najveća promene dešavaju tokom prvih godinu dana, kad se i za 50% redukuje širina alveolarnog greben [1, 2, 3]. Cilj jednog od kliničkih istraživanja bilo je šestomesečno praćenje zarastanja ekstrakcioni alveola. Rezultati su pokazali da se privremeno vezivno tkivo pouzdana formira tokom prvih nedelja zarastanja, a da je teža prevideti interval tokom kojeg se stvara mineralizovano koštano tkivo [11]. Međutim, rezultati nedavno objavljene studije pokazuju da se na približno 5% područja ekstrakcija zuba javilo nepravilno zarastanje. U pomenutom istraživanju je nepravilno zarastanje definisano kao infiltracija postekstrukcione alveole mekim, po svoj prilici, ožiljnim vezivnim tkivom, pre nego novostvorenom kosti, uprkos temeljnom debridmanu rane i periodu zarastanja dužem od 12 sedmica. Najveći broj regija nepravilnog zarastanja bio je posledica parodontalne ili endodontalne patologije ekstrahovanih zuba, kao i udrugenih endoparodontalnih lezija. Nepravilno zarastanje je bilo verovatnije kod mladih pacijenata, kao i osoba s hipertenzijom. Drugi sistemski faktori, poput pola, dijabetesa i pušenja, nisu bili u pozitivnoj korlaciji s nepravilnim zarastanjem alveole [5].

Naša pacijentkinja je bila dobrog opštega zdravlja, međutim, imala je hroničnu parodontopatiju koja je napredovala do terminalnog stadijuma, te su stoga bile indikovane multiple ekstrakcije zuba. U ovom slučaju bi teška parodontalna patologija mogla biti objašnjenje za vezivno-tkivnu infiltraciju i ožiljno zarastanje alveola nakon vađenja zuba. Uprkos temeljnoj kiretaži ekstrakcione alveole nakon vađenja zuba, postoji mogućnost da se željeno koštano zarastanje ne dogodi. Hirurg bi trebao da bude spreman da se suoči s posledicama ovakvog nepravilnog zarastanja, kako bi pacijentu omogućio ugradnju implantata ili neki drugi vid protetičke rehabilitacije.

ZAHVALNICA

Autori zahvaljuju Ministarstvu prosvete, nauke i tehnološkog razvoja Republike Srbije na podršci u realizovanju rada u okviru projekta broj III41007.