Low RBM3 protein expression correlates with tumour progression and poor prognosis in malignant melanoma: An analysis of 215 cases from the Malmo Diet and Cancer Study

Ben Dror, Liv; Bergman, Julia; Nodin, Björn; Manjer, Jonas; Ponten, Fredrik; Uhlen, Mathias; Jirström, Karin

Published in: Journal of Translational Medicine

DOI: 10.1186/1479-5876-9-114

2011

Link to publication

Citation for published version (APA):
Ben Dror, L., Bergman, J., Nodin, B., Manjer, J., Ponten, F., Uhlen, M., & Jirström, K. (2011). Low RBM3 protein expression correlates with tumour progression and poor prognosis in malignant melanoma: An analysis of 215 cases from the Malmo Diet and Cancer Study. Journal of Translational Medicine, 9, [114].
https://doi.org/10.1186/1479-5876-9-114

Total number of authors: 7

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Low RBM3 protein expression correlates with tumour progression and poor prognosis in malignant melanoma: An analysis of 215 cases from the Malmö Diet and Cancer Study

Liv Jonsson¹, Julia Bergman¹, Björn Nodin¹, Jonas Manjer²,³, Fredrik Pontén⁴, Mathias Uhlén⁵,⁶ and Karin Jirström¹*

Abstract
Background: We have previously reported that expression of the RNA- and DNA-binding protein RBM3 is associated with a good prognosis in breast cancer and ovarian cancer. In this study, the prognostic value of immunohistochemical RBM3 expression was assessed in incident cases of malignant melanoma from a prospective population-based cohort study.

Methods: Until Dec 31st 2008, 264 incident cases of primary invasive melanoma had been registered in the Malmö Diet and Cancer Study. Histopathological and clinical information was obtained for available cases and tissue microarrays (TMAs) constructed from 226 (85.6%) suitable paraffin-embedded tumours and 31 metastases. RBM3 expression was analysed by immunohistochemistry on the TMAs and a subset of full-face sections. Chi-square and Mann-Whitney U tests were used for comparison of RBM3 expression and relevant clinicopathological characteristics. Kaplan Meier analysis and Cox proportional hazards modelling were used to assess the relationship between RBM3 and recurrence free survival (RFS) and overall survival (OS).

Results: RBM3 could be assessed in 215/226 (95.1%) of primary tumours and all metastases. Longitudinal analysis revealed that 16/31 (51.6%) of metastases lacked RBM3 expression, in contrast to the primary tumours in which RBM3 was absent in 3/215 (1.4%) cases and strongly expressed in 120/215 (55.8%) cases. Strong nuclear RBM3 expression in the primary tumour was significantly associated with favourable clinicopathological parameters; i.e. non-ulcerated tumours, lower depth of invasion, lower Clark level, less advanced clinical stage, low mitotic activity and non-nodular histological type, and a prolonged RFS (RR = 0.50; 95% CI = 0.27-0.91) and OS (RR = 0.36, 95%CI = 0.20-0.64). Multivariate analysis demonstrated that the beneficial prognostic value of RBM3 remained significant for OS (RR = 0.33; 95%CI = 0.18-0.61).

Conclusions: In line with previous in vitro data, we here show that RBM3 is down-regulated in metastatic melanoma and high nuclear RBM3 expression in the primary tumour is an independent marker of a prolonged OS. The potential utility of RBM3 in treatment stratification of patients with melanoma should be pursued in future studies.

Background
Malignant melanoma is an aggressive form of cancer with a variable clinical course even in patients with thin melanomas and localized disease [1-4]. Despite increasing insights into melanoma biology and the discovery of gene- and protein-signatures that supplement established prognostic clinicopathological parameters [5-7], no biomarkers have yet been incorporated into clinical protocols.

The RNA-binding motif protein 3, RBM3, was initially identified in a human fetal brain tissue cDNA library [8]. The RBM3 gene maps to Xp11.23 and encodes two alternatively spliced RNA transcripts. RBM3 transcripts have been found in various human tissues [8] and in vitro, RBM3 is one of the earliest proteins synthesized in response to cold shock [9]. RBM3 contains one RNA-
Incident malignant melanomas until Dec 31st 2008

Until end of follow-up 31 December 2008, 264 incident invasive malignant melanomas had been registered in the study population. Cases were identified from the Swedish Cancer Registry up until 31 Dec 2007, and from The Southern Swedish Regional Tumour Registry for the period of 1 Jan-31 Dec 2008. All tumours with available slides and/or paraffin blocks were histopathologically re-evaluated on haematoxylin and eosin stained slides whereby information on lymphocytic infiltration (none, mild, moderate or high), ulceration (absent or present), mitotic count and vascular invasion was obtained. Data on location, Clark level and Breslow depth of invasion was obtained from the clinical- and/or pathology records.

Information on recurrence (local, regional or distant) was obtained in 2010 from patient records and pathology reports. Information on vital status and cause of death was obtained from the Swedish Cause of Death Registry up until 31 Dec 2009.

Tissue microarray construction

Paraffin-embedded tumour specimens were collected from the archives of the pathology departments in the region of Skåne in Southern Sweden. Tumours with an insufficient amount of material were excluded. Areas representative of cancer were then marked on haematoxylin & eosin stained slides and TMAs constructed as previously described [23]. In brief, three 0.6 mm cores were taken from each tumour and mounted in a new recipient block using semi-automated arraying device (TMArrayer, Pathology Devices, Westminster, MD, USA). In addition, metastases (representing both regional and distant metastases in various organs) were sampled from 31 cases. Thin melanomas (< 1 mm) were subjected to TMA construction if the diameter was > 1 cm. To check for heterogeneity, IHC staining was also performed on additional full-face sections from 25 cases.

Immunohistochemistry and evaluation of RBM3 staining

For immunohistochemical analysis, 4 μm TMA-sections were automatically pre-treated using the PT-link system.
(DAKO, Glostrup, Denmark) and then stained in a Autostainer Plus (DAKO, Glostrup, Denmark) with the mouse monoclonal anti-RBM3 antibody (AAb030038; Atlas Antibodies AB, Stockholm, Sweden, diluted 1:5000). The specificity of the antibody has been validated previously [15].

As RBM3, when present, was expressed in > 75% of the cells, predominantly in the nuclei and in varying intensities, only the intensity of the staining was accounted for and denoted a score from 0 (negative), 1 (mild), 2 (moderate) and 3 (strong). The staining was evaluated by three independent observers (IJ, JB, and BN) who were blinded to clinical and outcome data. Scoring differences were discussed in order to reach consensus.

Statistical analysis
Chi-square and Mann-Whitney U tests were used for comparison of RBM3 expression and relevant clinicopathological characteristics. Recurrence was defined as local, regional or distant recurrence or death from malignant melanoma and risk of recurrent disease was referred to as recurrence free survival (RFS). Follow-up started at date of diagnosis and ended at recurrent disease, death, lost to follow-up (emigration) or last date of follow-up with regard to recurrent disease. No recurrences were recorded following the last date of follow-up regarding death, i.e. 31 Dec 2009. Overall survival (OS) was assessed by calculating the risk of death from all causes, overall mortality. Follow-up started at date of diagnosis and ended at death, emigration or 31 Dec 2009, whichever came first.

Kaplan-Meier analysis and log rank test were used to illustrate differences in RFS and OS. Cox regression proportional hazards models were used to estimate the impact of the investigated parameters on RFS and OS in both uni- and multivariate analysis. Some subjects had no information on one or several markers and missing values were coded as a separate category for categorical variables and as the mean of all observations for continuous variables. Missing values for categorical variables co-varied and the multivariate model did not converge due to many constant values. In order to avoid this, the multivariate analysis only included patients with information on RBM3. In addition, the patient with missing information on lymphocytic infiltration had to be excluded. Co-variates were entered into the multivariate analysis using backward selection were a p-value of 0.05 decided entry and a p-value of 0.20 was used for removal. RBM3 was included in all models irrespective of the backward selection procedure.

All tests were two sided. A p-value of 0.05 was considered significant. All statistical analyses were performed using SPSS version 17 (SPSS Inc, Chicago, IL).

REMARK criteria
A description of the fulfilment of REMARK [24] criteria for biomarker studies is provided in Additional file 1, Table S1.

Results
Distribution of clinicopathological parameters in the cohort
The distribution of patient- and tumour characteristics in the full cohort is shown in Table 1. In line with the relatively high median age of cases (69 years, range 44-85), the frequency of lentigo maligna melanomas was slightly higher (11.7%) than the average expected around 7% in Sweden [2]. The proportion of thinner melanomas (< 1 mm, Stages 1A-B) was also higher than expected (86.5% compared to ~55.1%) as well as the proportion of non-ulcerated tumours (14.1% compared to ~24.1%) [2].

Immunohistochemical expression of RBM3 in primary tumours and metastases
Of the 226 cases in the TMA cohort it was possible to evaluate the expression of RBM3 protein in 215 cases (95.1%). There was no obvious heterogeneity in the staining pattern between the tissue cores. There was an excellent concordance between RBM3 scores assessed on full-face sections and TMA cores (kappa-value 0.85). Examples of immunohistochemical staining are shown in Figure 1A-D and the staining distribution in primary tumours vs metastases in Figure 1E-F. Interestingly, and in line with previous in vitro data [20], RBM3 expression was strong in the majority of primary tumours, but weak or absent in the metastases (Figure 1E-F). Notably, similar associations were seen when comparing primary tumours and metastases in the 31 cases, for which both locations had been sampled (data not shown).

Association between RBM3 expression and clinicopathological parameters
As shown in Table 2, there was a strong association between low RBM3 expression and depth of invasion, Clark level, clinical stage, mitotic count, nodular vs non-nodular type and ulceration. However, localization, age, lymphocytic infiltration and melanoma type were not associated with RBM3 expression. In some cases with strong RBM3 expression, cytoplasmic staining was present in various intensities, but this did not add any prognostic value (data not shown).

Impact of high RBM3 expression on recurrence free survival and overall survival
Having demonstrated that RBM3 is associated with less advanced disease and favourable clinicopathological parameters, the relationship between RBM3 expression
and disease outcome was examined. For survival analysis, data were dichotomized into strong vs negative-moderate intensity for RBM3.

Kaplan Meier analysis of the evaluated cohort (n = 215) demonstrated that high expression of RBM3 was

Table 1 Patient and tumour characteristics in the full cohort (n = 264) (Continued)

Age	Mean	Median	Range											
Sex	Female	135 (51.1%)	Male	120 (48.9%)										
Location	Head and neck	17 (14.9%)	Extremities	111 (44.8%)										
	Dorsal thorax	65 (26.2%)	Frontal thorax	35 (14.1%)										
	Unknown	16												
Clark level	II	93 (37.7%)	III	103 (41.7%)	IV	44 (17.8%)	V	7 (2.8%)	Unknown	17				
Breslow (mm)	Mean	1.57	Median	0.71	Range	0.08-40.00								
Breslow AJCC categories	<= 1	158 (59.8%)	1-2	36 (13.6%)	2-4	40 (15.2%)	> 4	14 (5.3%)	Unknown	16				
Clinical Stage	1A	154 (74.4%)	1B	25 (12.1%)	2A	17 (8.2%)	2B	7 (3.4%)	3A	2 (1.0%)	4	2 (1.0%)	Unknown	57
Histological type	SSM	160 (64.5%)	NMM	53 (21.4%)	LMM	29 (11.7%)	Other	6 (2.4%)	Unknown	16				
Ulceration	Absent	214 (85.9%)	Present	35 (14.1%)	Unknown	16								
Mitotic count	< 1/mm²	131 (51.8)	>= 1/mm²	122 (46.2)										
Lymphocytic infiltration	None-mild	72 (29.0%)												
associated with a significantly prolonged RFS (p = 0.020) and OS (p < 0.001) (Figure 2). In Cox multivariate analysis, high RBM3 expression remained an independent prognostic parameter for OS but not RFS (Table 3).

In thin melanomas (< = 1 mm; n = 129) there was no significant association between RBM3 expression and RFS (data not shown) and a trend, however non-significant, towards a prolonged OS for tumours with high RBM3 expression (RR = 0.48; 95%CI = 0.18-1.24). In melanomas > 1 mm (n = 84), RBM3 was not associated with RFS (data not shown) but with a significantly improved OS (RR = 0.40; 95% CI = 0.19-0.85), which remained significant in multivariate analysis (RR = 0.29; 95% CI = 0.11-0.77). Notably, tumour thickness measured as a continuous variable did not remain significant in multivariate analysis. However, this was not altered when AJCC categories (< 1 mm, 1-2 mm, 2-4 mm and > 4 mm) were used instead or when clinical stage was excluded from the analysis (data not shown).

Information on tumour diameter was only available for 162 (61%) of the patients and therefore not included in the analyses. There was an inverse association between tumour diameter and RBM3 expression (p = 0.030) but not to depth of invasion (data not shown). There was no association between tumour diameter and survival (data not shown).

Discussion

This study provides a first description of the patient and tumour characteristics of incident cases of malignant melanoma in the prospective, population-based cohort Malmö Diet and Cancer Study, diagnosed until Dec 31st, 2008. In addition, it is demonstrated that the investigative biomarker RBM3 is down-regulated in metastatic deposits, associated with favourable histopathological parameters in primary melanomas and an independent predictor of a prolonged overall survival. In a translational context, these findings are quite in line with a

Table 2 Association between RBM3 expression and clinicopathological parameters

RBM3 staining intensity	0-2	3	p-value
n(%)	95 (44.2)	120 (55.8)	

Age

	Mean	(range)
Age	68.00	(47-83)

Gender

	Female	Male
Gender	45(47.4)	50(52.6)

Clark level

	II	III	IV-V	missing
II	21(22.3)	50(42.4)		
III	48(51.1)	46(39.0)		
IV-V	25(26.6)	22(18.6)		

Breslow(mm)

	Mean	(range)
Breslow(mm)	2.47	(0.08-40.00)

Ulceration

	No	Yes	missing
Ulceration	71(74.7)	24(25.3)	

Lymphocytic infiltrate

	0-1	2-3
Lymphocytic infiltrate	26(27.4)	69(72.6)

Clinical stage

	I	II-IV	missing
Clinical stage	54(76.1)	17(23.9)	

Vascular invasion

	No	Yes
Vascular invasion	87(91.6)	8(8.4)

Localization

	Head and neck	Extremities	Frontal thorax	Dorsal thorax
Localization	15(16.0)	40(42.6)	10(10.6)	29(30.9)

Type

	SSM, LMM, Other
Type	65(58.9)

Table 2 Association between RBM3 expression and clinicopathological parameters (Continued)

	NMM	30(31.6)	22(18.5)	missing	0	1
Mitotic count	< 1/mm²	34(35.8)	71(59.2)			
	> = 1/mm²	61(64.2)	49(40.8)			

*Significant at the 0.05 level
** Significant at the 0.01 level
§ Mann Whitney U test for comparison of means
SSM = Superficial spreading melanoma
NMM = Nodular malignant melanoma
LMM = Lentigo malignant melanoma

Jonsson et al. *Journal of Translational Medicine* 2011, 9:114 http://www.translational-medicine.com/content/9/1/114 Page 5 of 9
previous study, where RBM3 was demonstrated to be one of five down-regulated genes in an in vitro model of melanoma progression [20]. Moreover, as RBM3 has been demonstrated to be a good prognostic biomarker in several other cancer forms, e.g. breast cancer [14] and ovarian cancer [15], its clinical utility in stratification of melanoma patients should be validated in future studies.

According to current clinical guidelines in Sweden, sentinel node biopsy is performed in melanomas > 1 mm, but as an increase in thin melanomas (< 1 mm) seems to make up for most of the increasing incidence of malignant melanomas [25], there is an unmet need for prognostic biomarkers in this category [26]. In this study, RBM3 was not significantly associated with prognosis in thin (< 1 mm) melanomas but was an independent favourable prognostic factor for OS in melanomas > 1 mm. The reason for this remains unclear and further studies in larger patient cohorts are needed to determine the prognostic value of RBM3 in thin melanomas. However, the observation that RBM3 remained an independent factor for overall survival in the cohort as a whole, which represented tumours of less advanced clinical stages than in the average population [2], indicates its potential utility as a biomarker for prognostic stratification of patients with early-stage melanoma.

In the light of the above, a methodological aspect that needs further attention is the bias related to the use of the TMA technique in malignant melanoma biomarker studies, e.g. the technical difficulty in sampling small tumours. In this study, we attempted to sample melanomas < 0.5 mm if the diameter was > 10 mm, and in several cases, sampling was successful. The mean Breslow depth of invasion in the TMA cohort was only slightly higher than in the full cohort (1.66 mm compared to 1.57 mm). In addition, as determined by comparison with full-face sections for a subset of the tumours, RBM3 did not seem to display a heterogeneous expression pattern.

In this study we used a monoclonal antibody against RBM3, which was also used in our previous study on ovarian cancer [15]. In the first paper, describing the prognostic value of RBM3 in breast cancer, we used a polyclonal antibody generated within the HPA project [14]. Both antibodies have been extensively validated using siRNA techniques in breast cancer cell lines [14] and ovarian cancer cell lines [15] and similar results have been obtained regarding the staining distribution in various normal and cancerous tissues (data not shown). Although being a semi-quantitative method, IHC has several advantages since it allows for assessment of protein expression in different sub-cellular compartments, which might have important prognostic implications. In the case of RBM3, previous findings indicate that its nuclear rather than cytoplasmic localization is the most relevant parameter for prognostication [14,15], which is also demonstrated here for melanoma.

As the MDCS is a population-based cohort study, a potential selection bias compared to the general population must be taken into consideration [22]. Since all participants were > 40 years at study entry, the mean age among melanoma cases was higher than in the average population. Notably, since older melanoma patients often present with more advanced disease [27], the relatively low proportion of cases with advanced disease reported here is somewhat unexpected. This could in part be explained by the fact that data necessary for staging could not be obtained for all cases. Nevertheless, clinical stage, as well as the prognostic impact of other established clinicopathological characteristics fell out as expected, which validates the cohort as a platform for
Parameter	Univariate	Multivariate	Univariate	Multivariate			
	RR(95%CI)	RR(95%CI)	RR(95%CI)	RR(95%CI)			
Age							
Continuous	1.01(0.97-1.05)		1.09(1.04-1.13)		1.07(1.02-1.12)		
Gender							
Female	1.00		1.00		1.00		1.00
Male	1.51(0.85-2.69)		2.60(1.47-4.61)		2.37(1.22-4.57)		
Clark level							
II	1.00	1.00	1.00				
III	4.39(1.65-11.65)	1.93(0.51-7.26)	1.70(0.85-3.40)				
IV-V	9.99(3.76-26.55)	1.02(0.24-4.34)	3.04(1.49-6.22)				
Breslow							
Continuous	1.07(1.03-1.11)		1.07(1.03-1.12)				
Subtype							
SSM, LMM, Other	1.00		1.00		1.00		1.00
Nodular	5.63(3.15-10.08)		3.86(2.21-6.74)		2.32(1.20-4.94)		
Ulceration							
No	1.00		1.00		1.00		1.00
Yes	5.80(3.12-10.77)		6.29(3.46-11.45)		3.52(1.63-7.61)		
Lymphocytic infiltrate							
0-1	1.00		1.00		1.00		1.00
2-3	1.04(0.24-0.78)		0.46(0.26-0.79)		0.55(0.30-1.00)		
Clinical stage							
I	1.00		1.00		1.00		1.00
II-IV	15.02(6.39-35.30)	7.36(2.47-21.47)	6.48(3.05-13.73)				
Mitotic count							
< 1/mm²	1.00		1.00		1.00		1.00
≥ 1/mm²	7.99(3.56-17.80)	2.86(0.96-8.47)	1.26(1.19-1.34)				
Vascular invasion							
No	1.00		1.00		1.00		1.00
Yes	9.25(4.67-18.35)	3.40(1.60-7.20)	4.88(2.37-10.08)		3.81(1.62-8.97)		
RBM3 intensity							
0-2	1.00		1.00		1.00		1.00
3	0.50(0.27-0.91)	0.87(0.46-1.66)	0.36(0.20-0.64)		0.33(0.18-0.61)		

The number of cases in the multivariate analysis is equal to the number of cases evaluated for RBM3 expression (n = 215).
future studies of lifestyle and tumour biology in relation to melanoma risk and prognosis.

Given the previously demonstrated association between RBM3 and cisplatin sensitivity in ovarian cancer cell lines [15], the potential value of RBM3 as a predictor of response to platinum-based chemotherapy in patients with metastatic malignant melanoma could be of interest to investigate in future studies. However, in contrast to the situation in ovarian cancer, where RBM3 showed a consistent expression pattern in primary tumours and omental deposits [15], the data presented here, and previous in vitro data [20], show that RBM3 is down-regulated in the majority of metastatic melanomas. Hence, in the predictive setting in melanoma patients, thorough sampling and immunohistochemical analysis of metastatic deposits would be required in order to identify a comparatively small number of patients with RBM3 positive metastases.

Conclusions
We have demonstrated that the RNA- and DNA-binding protein RBM3 is an independent biomarker of a prolonged OS in patients with primary malignant melanoma and that RBM3 expression is lost during progression of the disease. The potential utility of RBM3 in risk stratification of patients with melanoma should be pursued in future studies.

Additional material

References

1. Gmotty PA, Elder DE, Fraiker DL, Bobtyl J, Sellers K, Elenitsas R, Ming ME, Schuchter L, Spitz FR, Zerweck BJ, Guerry D: Identification of high-risk patients among those diagnosed with thin cutaneous melanomas. J Clin Oncol 2007, 25:1129-1134.
2. Lindholm C, Andersson R, Dufmann M, Hansson J, Ingvar C, Moller T, Spelvin H, Stierner U, Wagenius G: Invasive cutaneous malignant melanoma in Sweden, 1990-1999. A prospective, population-based study of survival and prognostic factors. Cancer 2004, 101:2067-2078.
3. McKinnon JG, Yu XQ, McCarthy WH, Thompson JF: Prognosis for patients with thin cutaneous melanoma: long-term survival data from New South Wales Central Cancer Registry and the Sydney Melanoma Unit. Cancer 2003, 98:1229-1231.
4. Sundak V, Messina JL: Current status of biomarkers for melanoma metastasis. J Drugs 2006, 9:627-631.
5. Bittner M, Meltzer P, Chen Y, Jiang Y, Sefort E, Hendrix M, Radmacher M, Simon R, Yakhini Z, Ben-Dor A, Sampas N, Dougherty E, Wang E, Marincola F, Gooden C, Luenders J, Gatelfeter A, Pollack P, Carpent J, Gillanders E, Leja D, Dietrich K, Beadury C, Berens M, Alberts D, Sundak V: Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 2000, 406:536-540.
6. Winnepenninckx V, Lazar V, Michiels S, Dessen P, Stas M, Alonso SR, Avril MF, Ortiz Romero PL, Robert T, Balacescu O, Eggemont AM, Lenoir G, Sarasin A, Tursz T, van den Oord JJ, Spatz P: Gene expression profiling of primary cutaneous malignant melanoma and clinical outcome. J Natl Cancer Inst 2006, 98:472-482.
7. Jonsson G, Busch C, Knappskog S, Geisler J, Miletic H, Ringner M, Liliehaug JR, Berg A, Lonning PE: Gene expression profiling-based identification of molecular subtypes in stage IV melanomas with different clinical outcome. Clin Cancer Res 2008, 14:3356-3367.
8. Derry JM, Kerns JA, Francque U, RBM3, a novel human gene in Xp11.23 with a putative RNA-binding domain. Hum Mol Genet 1995, 4:2307-2311.
9. Danno S, Nishiyama H, Higashitsuji H, Yokoi H, Xue JH, Itoh K, Matsuda T, Fujita J: Increased transcript level of RBM3, a member of the glycine-rich RNA-binding protein family, in human cells in response to cold stress. Biochem Biophys Res Commun 1997, 236:804-807.
10. Leonart ME: A new generation of proto-oncogenes: cold-inducible RNA binding proteins. Biochim Biophys Acta 2005, 1745:44-52.
11. Uhlen M, Björling E, Agaton C, Szajguro CA, Amini B, Anders S, Andersson AC, Angelidou P, Asplund A, Asplund C, Berglund L, Bengtsson B, Brunder M, Caroian S, Dijkstra M, Ebbrecht E, Eriksson C, Fagerberg L, Falk R, Fall J, Forsberg M, Bjorklund MG, Gumbel K, Halmi A, Hallin L, Hamsten C, Hansson M, Hedmark M, Herkules G, Kampf C, Larsson K, Lindskog M, Lodewyckx W, Lund J, Lundeborg J, Magnusson K, Malm E, Nilsson P, Odlind J, Oksvold P, Olsson I, Oster O, Ottosson J, Paavilainen L, Persson A, Rimini R, Rockberg J, Runesov M, Sivertsson A, Skollemo A, Steen J, Stenwall M, Sterky F, Stromberg S, Sundberg M, Tegel H, Toufle S, Wahlund E, Walden A, Wang J, Wernerus H, Wester K, Wrethagen U, Xu LL, Hober S, Ponten F: A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteomics 2005, 4:1920-1932.
12. Björling E, Lindskog C, Oksvold P, Linne J, Kampf C, Hober S, Uhlen M, Ponten F: A web-based tool for in silico biomarker discovery based on tissue-specific protein profiles in normal and cancer tissues. Mol Cell Proteomics 2008, 7:825-844.
13. Ponten F, Jirstrom K, Uhlen M: The Human Protein Atlas--a tool for pathology. J Pathol 2008, 216:387-393.
14. Jogi A, Brennan DJ, Ryden L, Magnusson K, Ferno M, Stal O, Borgquist S, Uhlen M, Landberg G, Pahlman S, Jirstrom K: Nuclear expression of the RNA-binding protein RBM3 is associated with an improved clinical outcome in breast cancer. Mod Pathol 2009, 22:1564-1574.
15. Ehlen A, Brennan DJ, Nodin B, O’Connor DP, Eberhard J, Alvarado-Kristensen M, Jeffrey B, Manjer J, Brandstedt J, Uhlen M, Ponten F, Jirstrom K: Expression of the RNA-binding protein RBM3 is associated with...
with a favourable prognosis and cisplatin sensitivity in epithelial ovarian
cancer. J Transl Med 8:78.

16. Sureban SM, Ramalingam S, Natarajan G, May R, Subramaniam D,
Bishnupriya KS, Morrison AR, Deekhaaraya BK, Brackett DJ, Postier RG,
Houchein CW, Anant S. Translation regulatory factor RBM3 is a proto-
oncogene that prevents mitotic catastrophe. Oncogene 2008,
27:4544-4556.

17. Wellmann S, Luess M, Bruder E, Tornillo L, Zelmer A, Seeger K, Buhler C. The
RNA-binding protein RBM3 is required for cell proliferation and protects
against serum deprivation-induced cell death. Pediatr Res 67:35-41.

18. Martinez-Antias F, Agudo D, Pollan M, Gomez-Esquier F, Diaz-Gil G, Lucas R,
Schneider J. Positive correlation between the expression of X-
chromosome RBM genes (RBMX, RBM3, RBM10) and the proapoptotic
Bax gene in human breast cancer. J Cell Biochem 2006, 97:1275-1282.

19. Sutherland LC, Rintala-Maki ND, White RD, Motin CD. RNA binding motif
(RBM) proteins: a novel family of apoptosis modulators? J Cell Biochem
2005, 94:5-24.

20. Baldis A, Battista T, De Luca A, Santini D, Rossilli L, Bardi F, Natali PG,
Lombardi D, Picardo M, Felsani A, Pagli MG. Identification of genes down-
regulated during melanoma progression: a cDNA array study. Exp
Dermatol 2003, 12:213-218.

21. Berglund G, Elmstahl S, Janzon L, Larsson SA. The Malmo Diet and Cancer
Study. Design and feasibility. J Intern Med 1993, 233:45-51.

22. Manjer J, Carlsson S, Elmstahl S, Gullberg B, Janzon L, Lindstrom M,
Mattison I, Berglund G. The Malmo Diet and Cancer Study:
representativity, cancer incidence and mortality in participants and non-
participants. Eur J Cancer Prev 2001, 10:489-499.

23. Kononen J, Budendorf L, Kallioniemi A, Barlund M, Schraml P, Leighton S,
Thorst J, Mihatsch MJ, Sauter G, Kallioniemi OP. Tissue microarrays for
high-throughput molecular profiling of tumour specimens. Nat Med
1998, 4:844-847.

24. McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM:
Reporting recommendations for tumour marker prognostic studies. J
Clin Oncol 2005, 23:9067-9072.

25. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA
Cancer J Clin 2009, 59:225-249.

26. Gromoty PA, Guerry D. Prognostication in thin cutaneous melanomas.
Arch Pathol Lab Med 134:1758-1763.

27. Lasithiotakis KG, Leiter U, Eigentler T, Breuninger H, Metzler G, Meier F,
Garbe C. Improvement of overall survival of patients with cutaneous
melanoma in Germany, 1976-2001: which factors contributed? Cancer
2007, 109:1176-1182.

Cite this article as: Jonsson et al. Low RBM3 protein expression correlates with tumour progression and poor prognosis in malignant
melanoma: An analysis of 215 cases from the Malmo Diet and Cancer Study. Journal of Translational Medicine 2011 9:114.