Technology for the production of modifying additives for concrete and asphalt concrete

A S Sukhanov, A D Kolosov, V V Kondrat'ev and R V Kononenko

Irkutsk National Research Technical University, Lermontov Street, 83, Irkutsk, 664074, Russia

E-mail: kvv@istu.edu

Abstract. The article presents the results of the development of modifying additives for concretes and asphalt concrete, consisting of spherical SiO2 and fullerene, extracted from silicon production waste. The use of these additives can reduce the destruction of asphalt concrete pavements, increase water and frost resistance. The proposed technology is energy- and resource-saving, converting metallurgical production wastes into the class of "associated mineral raw materials" and improving the environmental situation in regions with the presence of metallurgical industries. The paper presents studies of the feedstock and characteristics of waste gases of silicon production, the characteristics of the main technological equipment for the production of modifiers, the instrumental - technological scheme of the production process, the chemical composition and quality indicators of the resulting spherical silicon dioxide. The order and relationship of the processes that make up the technology of the associated additives based on production of silicon have been determined. The economic effect of the use of these modifiers in asphalt concrete pavements is achieved by increasing the durability and increasing the turnaround time.

1. Introduction

One of the most common types of road surfaces is asphalt concrete. In recent years, the speed and traffic density of vehicles has increased. This leads to the destruction of asphalt concrete pavements and, as a result, to the need to make repairs earlier than the standard terms. One of the main reasons for the destruction of road surfaces is the insufficient water and frost resistance of asphalt concrete. However, one of the most effective ways is the use of modifying additives. In modified asphalt concrete, special compositions are used as a binder, including petroleum bitumen and a modifier. Modifiers are additives that change the physical and mechanical properties and structure of asphalt concrete in the right direction.

One of the variants of such modifiers is silicon dioxide [1-5], the other is carbon nanotubes and fullerene-like carbon [6-7]. Both of these components are contained in the dust of the gas purification plant of silicon production [8-11]. There are solutions for the automation of the technological process for the production of such modifiers. It is also worth noting the high importance of creating modifying additives specifically from production waste in order to improve the environmental situation [12].
2. Characteristics of raw materials, basic technological materials and equipment

The raw material for the associated production of modifying additives for concrete and asphalt concrete is dust from the gas cleaning system, waste gases from the ore-thermal furnace. The characteristics of waste gases from the production of silicon in an ore-thermal furnace are shown in Table 1.

Table 1. Characteristics of gases removed from ore-thermal furnaces.

P/p No.	Parameter name	Value
1	Power of ore thermal furnaces (RTP), MVA	16.5
2	Volumes of gases removed from the furnace umbrella, nm³/h	200 000
3	Temperature of gases removed from the furnace umbrella, °C	230-260 peak to 350
4	Volumes of gases removed from the taphole of the furnace, nm³/h	70 000
5	Temperature of gases removed from the taphole of the furnace, °C	60-80
6	Dust content of gases removed from the taphole of the furnace, g/nm³	0.697
7	Concentration of pollutants in gases at the outlet of the furnace compartment, g nm⁻³:	
	- of dust SiO₂	3.0
	- SO₂	0.042
	- NOₓ	0.04
	- CO	0.122
8	Chemical composition of dust, %:	
	- SiO₂	84.3
	- Fe₂O₃	0.6
	- Al₂O₃	1.0
	- CaO	2.1
	- C_free	12.0
9	Dispersed composition of dust, %:	
	- less than 30 microns	73
	- more than 30 microns	27
10	Physical properties of dust:	
	- bulk density, g/dm³	200
	- angle of repose, degrees static	72
	dynamic	52
	- abrasiveness	yes
	- explosion and fire hazard	no
	- wettability	97
	- specific electrical resistance (resistivity), Ohm·m	10¹¹

2.1. Characteristics of the main equipment

The equipment used in the associated production of modifying additives for concrete and asphalt concrete based on the dust of the gas cleaning system is shown in Table 2.
Table 2. The equipment used in the associated production of modifying additives for concrete and asphalt concrete based on the dust of the gas cleaning system in the production of silicon.

Pos.	Name	Destination
RH	Receiving hopper	Feeding the initial dust by the auger into the RP
WC1	Water capacity	Water storage and supply to RP
RP	Repulpator	Mixing of initial dust from PH with water from WC1
FM	Flotation machine	Flotation of nanotubes and deposition of SiO$_2$ nanoparticles
CF	Capacity of flotation reagents	Storage and supply of flotation reagents in FM
F1	Drum vacuum filter	Primary drying
B1	Rotary calcining bake 1	Calcining the chamber product from F1
R	Reactor	Washing of foam product from FM with hydrofluoric acid from AC
AC	Acid capacity	Storage and supply of hydrofluoric acid in R
WC2	Water capacity	Storage and supply of water to the power supply unit
F2	Drum vacuum filter	Separation of acid and foam after R
WT	Foam product washing tank	Washing the dried foam product
C	Coagulator	Thickening of solid phase
CT	Coagulant tank	Coagulant supply in C
F3	Drum vacuum filter	Drying of carbon product
B2	Bake	Calcining the carbon-containing product
FL1, FL2	Filling lines	Packaging products

2.2. Hardware-technological scheme

Figure 1. Technological scheme for the production of modifying additives for concrete and asphalt concrete based on dust from waste gases in the production of silicon.
The technological process must comply with the requirement:

- POT RM 016-2001 "Interindustry rules on labor protection (safety rules) when working in electrical installations."

Measures to ensure industrial fire safety and working conditions must comply with the legislative norms and requirements of the Russian Federation.

The equipment used must ensure the safety of work during operation and repair, comply with the requirements.

Table 3. Chemical composition and quality indicators of the nodular silicon dioxide of the modifying additive.

Indicator name	Indicator values	Method of measurement
Mass fraction,%:		
SiO₂	not less than 98	EN 196-2
CaO	no more than 0.3	EN 451-1
SO₃	-	EN 196-2
K₂O	no more than 0.3	EN 196-2
Na₂O	no more than 0.1	EN 196-2
Fe₂O₃	no more than 0.1	GOST 2642.5-97
Al₂O₃	no more than 0.3	GOST 2642.4-86
MgO	no more than 0.2	GOST 2642.8-97
P₂O₅	-	GOST 2642.10-86
Cl	-	EN 196-2
H₂O	no more than 0.3	GOST 2642.1-86
SiC	-	GOST 26564.1-85
C_free	-	GOST 2642.15-97
pH	7.5±0.5	GOST 2642
Mass fraction of losses on ignition at 950°C, %	no more than 0.8	EN 196-2
Surface area (by BET), m²/g	not less than 16	ISO 9277
Bulk density, kg/m³	to 360	GOST R 54246-2010

The developed technology:

- describes the technology for the production of modifying additives for concrete and asphalt concrete based on dust from waste gases in the production of silicon;
- establishes requirements for the quality of raw materials and materials used for the production of modifying additives from the waste gases of the ore-thermal furnace for silicon production;
- determines the order and interrelation of the processes that make up the technology of the associated production of modifying additives based on carbon in the production of silicon.

The developed technology contains provisions, the implementation of which is mandatory for all technological personnel of the workshop for the production of modifying additives for concrete and asphalt concrete. Additives produced using this technology can act as modifiers for concrete and asphalt concrete of highways.
References

[1] Ponomarev A, Steshenko D and Rassokhin A 2018 Development of technology for production of fire-resistant nanocomposite constructional rebar and structural elements based on it MATEC Web of Conferences 245 04001
[2] Svintsov A P, Galishnikova V V and Stashevskaya N A 2020 Dataset on the effect of nano-modified additives of concrete mixes technological properties for winter concreting Data in Brief 31 105756
[3] Galishnikova V V, Abdo Sh and Fawzy A M 2020 Influence of silica fume on the pervious concrete with different levels of recycled aggregates Magazine of Civil Engineering 93 71-82
[4] Kondratiev V V, Karlina A I, Guseva E A, Konstantinova M V, Gorovoy V O 2018 Structure of Enriched Ultradisperse Wastes of Silicon Production and Concretes Modified by them IOP Conference Series: Materials Science and Engineering 463(4) 042064
[5] Kondratiev V V, Karlina A I, Guseva E A, Konstantinova M V, Kleshnin A A 2018 Processing and Application of Ultra disperse Wastes of Silicon Production in Construction IOP Conference Series: Materials Science and Engineering 463(3) 032068
[6] Petrushenko I K 2018 DFT Calculations of Hydrogen Adsorption inside Single-Walled Carbon Nanotubes Advances in Materials Science and Engineering 2018 9876015
[7] Petrushenko I K and Petrushenko K B 2019 Physical adsorption of hydrogen molecules on single-walled carbon nanotubes and carbon-boron-nitrogen heteronanotubes: A comparative DFT study Vacuum 167 280-286
[8] Sivtsov A V, Yolkin K S, Kashlev I M and Karlina A I 2020 Processes in the Charge and Hearth Zones of Furnace Working Spaces and Problems in Controlling the Batch Dosing Mode during the Smelting of Industrial Silicon and High-Silicon Ferroalloys Metallurgist 64(5-6) 396-403
[9] Sivtsov A V, Elkin K S, Pankov V A and Karlina A I 2021 Specific Features of the Electric Mode of the Technological Process of Smelting of Commercial Silicon Metallurgist 64 923-930
[10] Yolkin K S, Yolkin D K, Nemarov A A, Sysoev I A and Karlina A I 2018 Conduct of reduction smelting of metallic silicon: Theory and practice IOP Conference Series: Materials Science and Engineering 411 012029
[11] Yolkin K S, Yolkin D K, Kolosov A D, Ivanov N A, Shtayger M G 2018 Technologies, which allow to reduce an impact of metal silicon production on the environment IOP Conference Series: Materials Science and Engineering 411(1) 012028
[12] Lobanov D A, Sheshukov O Y, Egiazaryan D K, Nekrasov I V, Ovchinnikova L A 2020 EAF and LF slag co-processing: Study for wasteless utilization AIP Conference Proceedings 2313 050019