Permanent draft genome sequence of *Desulfurococcus mobilis* type strain DSM 2161, a thermoacidophilic sulfur-reducing crenarchaeon isolated from acidic hot springs of Hveravellir, Iceland

Dwi Susanti¹, Eric F. Johnson², Alla Lapidus³,⁴, James Han⁵, T. B. K. Reddy⁵, Manoj Pilyá⁶, Natalia N. Ivanova⁵, Victor M. Markowitz⁶, Tanja Woyke⁵, Nikos C. Kyprides⁵,⁷ and Biswarup Mukhopadhyay¹,²,⁸*

Abstract

This report presents the permanent draft genome sequence of *Desulfurococcus mobilis* type strain DSM 2161, an obligate anaerobic hyperthermophilic crenarchaeon that was isolated from acidic hot springs in Hveravellir, Iceland. *D. mobilis* utilizes peptides as carbon and energy sources and reduces elemental sulfur to H₂S. A metabolic construction derived from the draft genome identified putative pathways for peptide degradation and sulfur respiration in this archaeon. Existence of several hydrogenase genes in the genome supported previous findings that H₂ is produced during the growth of *D. mobilis* in the absence of sulfur. Interestingly, genes encoding glucose transport and utilization systems also exist in the *D. mobilis* genome though this archaeon does not utilize carbohydrate for growth. The draft genome of *D. mobilis* provides an additional mean for comparative genomic analysis of desulfurococci. In addition, our analysis on the Average Nucleotide Identity between *D. mobilis* and *Desulfurococcus mucosus* suggested that these two desulfurococci are two different strains of the same species.

Keywords: *Desulfurococcus*, Sulfur-reducing crenarchaeon, Thermophile, Acidic hot spring

Introduction

Desulfurococcus mobilis type strain DSM 2161 was isolated from acidic hot springs in Hveravellir, Iceland [1]. This hyperthermophilic crenarchaeon utilizes casein and peptides present in yeast extract, and tryptic digest of casein as energy and carbon source [1]. In the presence of sulfur as electron acceptor, *D. mobilis* undergoes sulfur respiration generating H₂S and CO₂, whereas in the absence of sulfur it performs peptide oxidation coupled to hydrogen production for regeneration of electron carriers [1, 2]. Growth in the presence of sulfur yields five times more cell density compared to that without sulfur [1].

Among known desulfurococci, *D. mobilis* is a closer relative of *Desulfurococcus mucosus* which is also a peptide degrader [1, 3]. *D. mucosus* genome was sequenced in 2011 under the *Genomic Encyclopedia of Bacteria and Archaea* program [3]. In addition to *D. mobilis* and *D. mucosus*, three desulfurococci are known, and these are *Desulfurococcus fermentans* [4, 5], *Desulfurococcus amylolyticus* [6], and *Desulfurococcus kamchatkensis* [7]. All of these organisms degrade peptides. As far as other substrates for growth, starch is used only by *Desulfurococcus fermentans* and *Desulfurococcus amylolyticus* whereas sugars can be used by *Desulfurococcus fermentans* and *Desulfurococcus kamchatkensis*. The only cellulose degrading *Desulfurococcus* is *Desulfurococcus fermentans* [4, 5]. The *Desulfurococcus fermentans* and *Desulfurococcus kamchatkensis* genomes have been sequenced by the US Department of Energy
Joint Genome Institute and the Russian Academy of Sciences Centre “Bioengineering”, respectively [5, 7].

Almost all organisms that belong to the genus Desulfurocococcus are dependent on or stimulated by sulfur [1–3, 7]. Sulfur is used as a terminal electron acceptor. The only exception is Desulfurocococcus fermentans [4, 5] as elemental sulfur does not influence the growth of this organism and it is also the only Desulfurocococcus species for which the growth is not inhibited by the presence of hydrogen.

The draft genome sequence of D. mobilis together with the complete genome sequence of D. mucosus, Desulfurocococcus fermentans and Desulfurocococcus kampchatkensis could give insight into the finer differences between peptide, starch and cellulose metabolism systems of these closely related desulfurococci leading to the discoveries of new thermophilic enzymes and pathways. Similar inquiries could be made for their differences in elemental sulfur requirements as well as their responses to the presence of H₂ in their environment.

Organism Information
Classification and features
Desulfurocococcus mobilis belongs to the phylum Crenarchaeota and class of Thermoprotei. Within this class, three orders namely Desulfurococcales, Sulfolobales and Thermoproteales have been recognized. A phylogenetic tree based on 16S-ribosomal DNA sequences (Fig. 1) shows the position of D. mobilis relative to its neighbours. Desulfurocococcus mobilis is closely related to Desulfurocococcus mucosus. The value of ANI between Desulfurocococcus mobilis and Desulfurocococcus mucosus is 99.88. Such a high ANI value suggested that these organisms should be considered as two strains of the same species.

Desulfurocococcus mobilis is a Gram-negative spherical coccus, with diameter about 0.1-1 μm [1]. Unlike Desulfurocococcus mucosus, Desulfurocococcus mobilis is motile [1]. The latter possesses monopolar polytrichus flagella that form bundle of 12.5 nm diameter (Fig. 2). Classification and general features of Desulfurocococcus mobilis are shown in Table 1.

Fig. 1 A 16S ribosomal DNA sequence-based phylogenetic tree showing the position of Desulfurocococcus mobilis DSM 2161 (shown in bold) relative to other Desulfurocococcus species and other organisms from Sulfolobales and Thermoproteales orders. Alignment and trimming of genes encoding 16S rRNA (aligned size of 1112 bp) were performed by the use of Muscle 3.8.31 [33] and Gblocks 0.91, respectively. The tree was constructed using Maximum Likelihood method, dnaml, in the Phylip-3.696 package [34] and viewed by the use of FigTree (http://tree.bio.ed.ac.uk/), as previously described [35]. Type strains are indicated with the superscript T. NCBI accession numbers for genome sequence are presented within parenthesis. Methanocaldococcus jannaschii, a euryarchaeon (not shown), was used as an outgroup [36]. Number in each branch shows a percentage of bootstrap value from 100 replicates. The bar indicates 0.02 substitutions per nucleotide position.
Genomes OnLine Database (Table 2) [8]. DRAFT sequencing, initial gap closure and annotation were performed by the DOE Joint Genome Institute using state-of-the-art sequencing technology [9]. The draft genome was partly assembled and annotated in 2012 and was deposited in the Integrated Microbial Genome Data Management System [10] in 2012.

Growth conditions and genomic DNA preparation

D. mobilis type strain DSM 2161 (ATCC 35582) was obtained from the ATCC microbiology culture collections (ATCC, Manassas, VA) and was cultivated on ATCC Desulfurococcus medium (medium 1558) containing Tryptone and yeast extract as the carbon and energy sources, each at final concentration of 2 g/l. Elemental sulfur and Na$_2$S, at concentration of 5 g/l and 0.5 g/l, respectively, were added as electron acceptors and medium reductant.

Chromosomal DNA was isolated using a method as described previously [11]. Briefly, cell pellet of *D. mobilis* was resuspended in TE buffer (10 mM Tris–HCl, 1 mM EDTA, pH 8.0). Proteinase K, EDTA and Sodium dodecyl sulfate (SDS) were added to the suspension at the final concentrations of 100 μg/ml, 5 mM, and 0.5 %, respectively. The mixture was then incubated at 55 °C for one hour. An equal volume of a mixture containing phenol, chloroform, and isoamylalcohol (25:24:1, v/v/v) was added to the cell lysate and the resulting emulsion was centrifuged at 10,000 x g for 30 min. To the recovered aqueous layer containing DNA, an equal volume of a mixture of chloroform, and isoamylalcohol (24:1, v/v) was added and then the combination was centrifuged at 10,000 x g for 30 min. To the aqueous solution recovered from this step,

![An electron micrograph of Desulfurococcus mobilis type strain DSM 2161 showing unipolar polytrichus archaella. The picture has been reproduced from [1] with permission](image)

Table 1 Classification and general features of *Desulfurococcus mobilis* DSM 21611 [37]

MIGS ID	Property	Term	
	Classification	Domain Archaea	TAS [38]
	Phylum Crenarchaeota	TAS [38]	
	Class Thermoprotei	TAS [39]	
	Order Desulfurococcales	TAS [40]	
	Family Desulfurococaceae	TAS [1]	
	Genus Desulfurococcus	TAS [1]	
	Species Desulfurococcus mobilis	TAS [1]	
	Type strain DSM 2161/ATCC 35582	TAS [1]	
	Gram stain	Negative	TAS [1]
	Cell shape	Coccus	TAS [1]
	Motility	Motile	TAS [1]
	Sporulation	Not reported	
	Temperature range	55-97 °C	TAS [1]
	Optimum temperature	85 °C	TAS [1]
	pH range; Optimum	2.2-6.5; 5.5-6.0	TAS [1]
	Carbon source	Yeast extract, bactotryptone, a tryptic-digest of casein or casein	TAS [1]
	Energy source	Chemoorganotroph	TAS [1]
	Terminal electron receptor	Elemental sulfur (favored)	TAS [1]
	Habitat	Free living	TAS [1]
	Salinity	Not reported	
	Oxygen requirement	Anaerobic	TAS [1]
	Biotic relationship	Not reported	
	Pathogenicity	Non-pathogen	NAS
	Geographic location	Iceland	TAS [1]
	Sample collection time	1981	TAS [1]

1Evidence codes - TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from the Gene Ontology project [41]
sodium acetate-acetic acid buffer, pH 5.3 at a final concentration of 15 mM and an equal volume of isopropanol were added to precipitate chromosomal DNA. DNA was pelleted by centrifugation at 15,000 × g for 30 min and then washed with ice-cold 70 % ethanol for three times, air dried and suspended in TE buffer.

Genome sequencing and assembly

The draft genome of Desulfurococcus mobilis type strain DSM 2161 was generated at the DOE Joint genome Institute using the Illumina technology [12]. An Illumina standard shotgun library was constructed and sequenced using the Illumina platform which generated 17,620,486 reads of 150 bp. All general aspects of library construction and sequencing performed at the JGI can be found at JGI website. All raw Illumina sequence data was passed through DUK, a filtering program developed at JGI (Mingkun, L., Copeland, A. and Han, J., unpublished program), which removes known Illumina sequencing and library preparation artifacts. Following steps were then performed for assembly: (1) filtered Illumina reads were assembled using Velvet [13], (2) 1–3 kb simulated paired end reads were created from Velvet contigs using wgsim [14], (3) Illumina reads were assembled with simulated read pairs using Allpaths–LG [15, 16]. Parameters for assembly steps were: 1) Velvet (velveth: 63 –shortPaired and velvctg: –very clean yes –exportFiltered yes –min con- tig lgth 500 –scaffolding no –cov cutoff 10) 2) wgsim (–e 0 –i 100 –2 100 –r 0 –R 0 –X 0) 3) Allpaths–LG (PrepareAllpathsInputs: PHRED 64 = 1 PLOIDY = 1 FRAG COVERAGE = 125 JUMP COVERAGE = 25 LONG JUMP COV = 50, RunAllpathsLG: THREADS = 8

Genome Properties

The draft genome of Desulfurococcus mobilis consists of a 1,198,142 bp chromosome with 52.89 % GC content. It contains 1,277 protein coding genes, and 54 ribosomal RNA genes that encode 1, 2, 41, and 10 of 16S-, 23S-ribosomal RNA, tRNA and other RNAs, respectively. Tables 3 and 4 present genome statistics, and distribution of genes into COG categories, respectively.

Insights from the Genome Sequence

A metabolic construction derived from the draft genome indicates that a Pyrococcus furiosus-type peptide degradation pathway operates in Desulfurococcus mobilis [24]. Peptides likely enter the cell via peptide/amino acid transporters that are encoded by YWQDRAFT_00113, 00114, 00115, and 00118. Once inside the cell, peptides are catabolized into amino acids by peptidases. A total of 10 peptidases were identified in the draft genome of Desulfurococcus mobilis. An example is YWQDRAFT_00118. Once inside the cell, peptides are catabolized into amino acids by peptidases. A total of 10 peptidases were identified in the draft genome of Desulfurococcus mobilis.

In the presence of sulfur, electrons generated from peptide oxidation are transferred into sulfur via a sulfur reductase (YWQDRAFT_00031), a cytoplasmic protein
with high similarity to NADPH-dependent polysulfide reductase of *Desulfurococcus kamchatkensis* (ORF Dkam_0441) [7] and sulfide dehydrogenase of *Pyrococcus furiosus* that is composed of two subunits, A and B (ORF PF1327-28) [25]. This process generates H$_2$S and a proton motive force and the latter helps to synthesize ATP via ATPase (YWQDRAFT_00542).

Genome analysis also reveals genes encoding putative Ni-Fe hydrogenases that were found in three hydrogenase clusters (YWQDRAFT_01235-01241; 01256–64, 01282–01285; and 00877–00866). This finding explains previous observation that during growth in the absence of elemental sulfur *D. mobilis* produces hydrogen to dispose off electrons originating from peptide degradations [1, 2].

Similarly, enzymes for converting acetyl-CoA to glucose-6-phosphate via gluconeogenesis pathways and for glycogen synthesis were found. Key enzymes for gluconeogenesis were phosphoenolpyruvate synthase (YWQDRAFT_00160) and 1,6-fructosebisphosphatase (YWQDRAFT_00288). The ORF for a characteristic enzyme for glycogen synthesis, glycogen synthase (YWQDRAFT_00470), was also found.

Although *D. mobilis* does not use sugars as carbon source [1], genes for two sugar transporters (YWQDRAFT_00575-76) were found in the genome. Similarly, key enzymes of the modified Emden-Meyerhof pathway [26], namely glyceraldehyde-3-phosphate dehydrogenase/GAPOR (YWQDRAFT_00049 and 00586) that converts glyceraldehyde-3-phosphate into 3-phosphoglycerate and pyruvate kinase (YWQDRAFT_00285) that dephosphorylates phosphoenolpyruvate to form pyruvate were detected in the genome. The two GAPOR homologs show 38 % and 21 % identity with the same enzymes of *Methanococcus maripaludis* [27], while the pyruvate kinase is similar to that of *Thermoproteus tenax* showing 36 % of identity [28]. In accordance, we hypothesize that *D. mobilis* utilizes carbohydrates at least as co-substrates.

As expected, *D. mobilis* genome carries flaI (YWQDRAFT_00614) that encodes a type IV secretory pathway/VirB11 component, which would be involved in the biogenesis of archaeal flagellum (archaellum) [29–31]. However, genes encoding known archaeal and bacterial flagellins are absent in the draft genome [32]. Since the genome sequence of *D. mobilis* is at a draft stage and approximately 100 kb of genome sequence is missing, as estimated from the average size of other desulfurococci, it is possible that the flagella structural genes are located in the missing regions. Therefore, a complete genome sequence

Table 3 Genome statistics

Attribute	Value	% of total
Genome size (bp)	1,198,142	100.00
DNA coding (bp)	1,084,053	90.48
DNA G+C (bp)	633,652	52.89
DNA scaffolds	58	100.00
Total genes	1,331	100.00
Protein-coding genes	1,277	95.94
RNA genes	54	4.06
Pseudo genes	NA	NA
Genes in internal clusters	89	6.69
Genes with function prediction	970	72.88
Genes assigned to COGs	843	63.34
Genes with Pfam domains	948	71.22
Genes with signal peptides	10	0.75
Genes with transmembrane helices	218	16.38
CRISPR repeats	5	-

Table 4 Number of genes associated with general COG functional categories

Code	Value	%age	Description
J	176	13.78	Translation, ribosomal structure and biogenesis
A	1	0.08	RNA processing and modification
K	41	3.13	Transcription
L	40	3.6	Replication, recombination and repair
B	1	0.08	Chromatin structure and dynamics
D	7	0.47	Cell cycle control, cell division, and chromosome partitioning
V	18	0.55	Defense mechanisms
T	16	0.78	Signal transduction mechanisms
M	30	1.96	Cell wall/membrane biogenesis
N	4	0.31	Cell motility
U	9	0.78	Intracellular trafficking and secretion
O	43	3.21	Posttranslational modification, protein turnover, chaperones
C	76	6.03	Energy production and conversion
G	44	3.13	Carbohydrate transport and metabolism
E	62	4.86	Amino acid transport and metabolism
F	40	2.74	Nucleotide transport and metabolism
H	59	3.29	Coenzyme transport and metabolism
I	17	0.86	Lipid transport and metabolism
P	66	3.52	Inorganic ion transport and metabolism
Q	2	0.23	Secondary metabolites biosynthesis, transport and catabolism
R	102	10.73	General function prediction only
S	47	6.81	Function unknown
-	488	38.21	Not in COGs

The total is based on the total number of protein coding genes in the annotated genome.
of *D. mobilis* is needed to rule out the possibility of a novel flagella system in this organism.

Conclusions

This study presents the genome sequence and metabolic reconstruction of *Desulfurococcus mobilis* type strain DSM 2161. The genome revealed three hydrogenase clusters that are likely responsible for electron disposal during growth in the absence of sulfur. The presence of genes encoding sugar transporters and key enzymes of the Embden Meyerhoff pathway raises the possibility of sugar utilization in *D. mobilis*. The near 100 % value of Average Nucleotide Identity for this archaean and its close relative *D. mucosus* indicated that these organisms are very similar and reclassification of these two desulfurococci into two strains is suggested.

Abbreviations

TIGR: The Institute for Genome Research; Pfam: Protein family database; PRAM: Profils pour l’Identification Automatique du Météabolisme; KEGG: Kyoto Encyclopedia of Genes and Genomes; COGs: Clusters of Orthologous Groups of proteins; CSP: Community Sequencing Program; ANI: Average Nucleotide Identity.

Competing interests

None of the authors have any competing interests.

Authors’ contributions

DS and EFJ isolated genomic DNA. AL, JH, TBKR, MP, NNI, VMM, TW and NCK sequenced, assembled and annotated the genome. DS and BM analyzed the genome. DS, BM, AL and NCK wrote the manuscript. All authors read and approved the final manuscript.

Acknowledgments

This project has been supported by the Community Sequencing Program of the U.S. Department of Energy’s Joint Genome Institute. The sequencing, assembly and automated genome analysis work at the DOE-JGI was supported by the Office of Science of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. DS was supported by NASA Astrobiology: Exobiology and Evolutionary Biology grants NNG05GZ24G and NNX10AD90G to B.M. BM was supported in part by the Virginia Tech and the Agricultural Experiment Station Hatch Program (CRIS project VA-160021). The authors thank Jason R. Rodriguez for discussions on sulfur metabolism.

Author details

1. Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA.
2. Biocomplexity Institute, Virginia Tech, Blacksburg, VA 24061, USA.
3. Centre for Algorithmic Biotechnology, St. Petersburg State University, St. Petersburg, Russia.
4. Agricultural Microbiology Lab, St. Petersburg Academic University, St. Petersburg, Russia.
5. U.S. DOE Joint Genome Institute, Walnut Creek, California 94598, USA.
6. Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA.
7. Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
8. Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA.

Received: 6 August 2015 Accepted: 30 December 2015

Published online: 13 January 2016

References

1. Zillig W, Stetter KO, Prangishvili D, Schäfer W, Wunderl A, Nolan M, Lucas S, et al. *Desulfurococcaceae*, the Second Family of the Extremely Thermophilic, Anaerobic, Sulfur-Respiring Proteobacteria. Zentralblatt für Bakteriologie Mikrobiologie und Hygiene: I Abt Originale C: Allgemeine, angewandte und ökologische Mikrobiologie. 1982(2):304–17. doi:10.1007/BF02719571(82)80044-6.
2. Slobodin AI, Bonch-Osmolovskaya EA. Growth and formation of metabolic products by extremely thermophilic archaean of the genus *Desulfurococcus* in the presence and absence of elemental sulfur microbiology (English translation of Mikrobiologiya). Mikrobiologiya. 1994;63:352–4.
3. Wirth R, Cherkenov O, Held B, Lapidus A, Nolan M, Lucas S, et al. Complete genome sequence of Desulfurococcus mucosus type strain (07/11). Stand Genomic Sci. 2011;4(2):173–82. doi:10.4056/sigs.1644004. PubMed PMID: 21677854, PubMed Central PMCID: PMC3111991.
4. Perevalova AA, Svetlichny TV, Kublanov IV, Chernyh NA, Kostrikina NA, Tourova TP, et al. Desulfurococcus fermentans sp. nov., a novel hyperthermophilic archaean from a Kamchatka hot spring, and emended description of the genus *Desulfurococcus*. Int. J. Syst. Evol. Microbiol. 2005; 55(3):3195–9. doi:10.1099/ijs.0.63637-0. PubMed.
5. Susanti D, Johnson EF, Rodriguez JR, Anderson I, Perevalova AA, Kyrpides N, et al. Complete genome sequence of *Desulfurococcus fermentans*, a hyperthermophilic cellulosytic crenarchaeon isolated from a freshwater hot spring in Kamchatka, Russia. J. Bacteriol. 2012;194(20):5703–4. doi:10.1128/JB.01314-12. PubMed PMID: 23012283, PubMed Central PMCID: PMC3458677.
6. Tourova TP, Kuznetsov BB, Kalganova TV, Bonch-Osmolovskaya EA. Phylogenetic position of *Desulfurococcus amylolyticus*. Microbiology. 2000; 69(3):369–70. PubMed PMID: WOS:000087718300021.
7. Ravin NV, Mardanov AV, Beletsky AV, Kublanov IV, Kalganova TV, Lebedinski AV, et al. Complete genome sequence of the anaerobic, protein-degrading hyperthermophilic crenarchaeon *Desulfurococcus kamchatkenis*. J. Bacteriol. 2009;191(7):2371–9. doi:10.1128/JB.01525-08. PubMed PMID: 19114480, PubMed Central PMCID: PMC2655497.
8. Reddy TB, Thomas AD, Stamatis D, Bertsch J, Isbandi M, Jansson J, et al. The Genomes OnLine Database (GOLD) v. 5: a metadata management system based on a four level (metagenome project classification. Nucleic Acids Res. 2015;43(Database issue):D1099–106. doi:10.1093/nar/gku950. PubMed PMID: 25348402, PubMed Central PMCID: PMC4834801.
9. Mavromatis K, Land ML, Brettin TS, Quest DJ, Copeland A, Clum A, et al. The Fast Changing Landscape of Sequencing Technologies and Their Impact on Microbial Genomes and Annotation. PLoS One. 2012;7(12):e48687. doi:10.1371/journal.pone.0048687.
10. Markowitz VM, Chen IM, Palanippan K, Chu K, Szeto E, Grechkin Y, et al. IMG: the Integrated Microbial Genomes database and comparative analysis system. Nucleic Acids Res. 2012;40(Database issue):D115–22. doi:10.1093/nar/gkr1044. PubMed PMID: 22194640, PubMed Central PMCID: PMC2345086.
11. Anderson I, Ulrich LE, Lupa B, Susanti D, Porat I, Hooper SD, et al. Genomic Characterization of Methanomicrobiales Reveals Three Classes of Methanogens. PLoS One. 2009;4(6):e5797. doi:10.1371/journal.pone.0005797.
12. Bennett S. Solexa Ltd. Pharmacogenomics. 2004(5):433–8. doi:10.1517/14622416.5.4.433.
13. Zerbinio DR, Birney E. Velvet: Algorithms for de novo short read assembly using de Brujin graphs. Genome Res. 2008;18(5):821–9. doi:10.1101/gr.74492.107. PubMed PMID: WOS:000255504600014.
14. Li H. wgsim – Read simulator for next generation sequencing. doi: citeulike-article-id:8857492.
15. Butler J, MacCallum I, Kleber M, Shlyakhter IA, Belmonte MK, Lander ES, et al. ALLPATHS: De novo assembly of whole-genome shotgun microreads. Genome Res. 2008;18(5):810–20. doi:10.1101/gr.733708. PubMed PMID: WOS:000255304600013.
16. MacCallum I, Przybylski D, Greene S, Burton J, Shlyakhter I, Grinke A, et al. ALLPATHS LS: a small genomes assembled accurately and with high continuity from short paired reads. Genome Biology. 2009;10(10). doi:10.1186/Gb-2009-10-10-R03. PubMed PMID: WOS:000272272000005.
17. Mavromatis K, Ivanova NN, Chen IM, Saetz D, Markowitz VM, Kyrpides NC. The DOE-JGI Standard Operating Procedure for the Annotation of Microbial Genomes. Stand Genomic Sci. 2009;1(1):65–7. doi:10.4056/Sig.632. PubMed PMID: WOS:000207961300009.
18. Finn RD, Cates J, Eddy SR. HMmer web server: interactive sequence similarity searching. Nucleic Acids Res. 2011;39(29):W29–37. doi:10.1093/Nar/Gir367. PubMed PMID: WOS:000292235000006.
19. Lowe TM, Eddy SR. tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25(5):955–64. doi:10.1093/nar/25.5.955. PubMed PMID: WOS:1997WM300000005.
20. Nawrocki EP, Kolbe DL, Eddy SR. Infernal 1.0: inference of RNA alignments. Bioinformatics. 2009;25(10):1335–7. doi:10.1093/bioinformatics/btp157.

21. Markowitz VM, Mavromatis K, Ivanova NN, Chen IW, Chu K, Kyrpides NC. IMG ER: a system for microbial genome annotation expert review and curation. Bioinformatics. 2009;25(17):2271–8. doi:10.1093/bioinformatics/btp399. PubMed PMID: WOS:000269196000019.

22. Bland C, Ramsey TL, Sabree F, Lowe M, Brown K, Kyrpides NC, et al. CRISPR Recognition Tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats. BMC Bioinformatics. 2007;8. doi: 10.1186/1471-2105-8-209. PubMed PMID: WOS:000248130600001.

23. Edgar RC. PILER-CR: Fast and accurate identification of CRISPR repeats. BMC Bioinformatics. 2007;8. doi: 10.1186/1471-2105-8-18. PubMed PMID: WOS:000243920200001.

24. Adams MWW, Holden JF, Menon AL, Schütz GI, Grunden AM, Hou C, et al. Key Role for Sulfur in Peptide Metabolism and in Regulation of Three Hydrogenases in the Hyperthermophilic Archaeon Pyrococcus furiosus. J Bacteriol. 2001;183(2):1716–24. doi:10.1128/JB.183.2.716-724.2001.

25. Ma K, Adams MW. Sulfide dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus: a new multifunctional enzyme involved in the reduction of elemental sulfur. J Bacteriol. 1994;176(21):6509–17. PubMed PMID: 7961401. PubMed Central PMCID: PMC197004.

26. Siebers B, Schönheit P. Unusual pathways and enzymes of central carbohydrate metabolism in Archaea. Curr Opin Microbiol. 2005;8(6):645–50. doi:10.1016/j.mib.2005.10.014.

27. Park MO, Mizutani T, Jones PR. Glyceroldehyde-3-phosphate ferredoxin oxidoreductase from Methanococcus maripaludis. J Bacteriol. 2007;189(20):7281–9. doi:10.1128/JB.00828-07. PubMed PMID: 17704226. PubMed Central PMCID: PMC3448663.

28. Schramm A, Siebers B, Tjaden B, Brinkmann H, Hensel R. Pyruvate kinase of the hyperthermophilic crenarchaeote Thermoproteus tenax: Physiological role and phylogenetic aspects. J Bacteriol. 2001;183(7):2001–9. doi:10.1128/JB.183.7.2001-2009.2000. PubMed PMID: WOS:000085935100030.

29. Thomas NA, Jarrell KF. Characterization of flagella and flagellin proteins from the Methanogenic Archaea and Localization of Novel Flagellum Accessory Proteins. J Bacteriol. 2001;183(24):7154–64. doi:10.1128/JB.183.24.7154-7164.2001.

30. Thomas NA, Mueller S, Klein A, Jarrell KF. Mutants in flaI and flaIS of the archaeon Methanococcus voltae are deficient in flagellum assembly. Mol Microbiol. 2002;46(4):879–87. doi:10.1046/j.1365-2958.2002.02320.x.

31. Jarrell KF, Albers S-V. The archaellum: an old motility structure with a new role and phylogenetic aspects. J Bacteriol. 2000;182(7):2001–9. doi:10.1128/JB.182.7.2001-2009.2000. PubMed PMID: WOS:000085935100030.

32. Faguy DM, Bayley DP, Kostyukova AS, Thomas NA, Jarrell KF. Isolation and characterization of flagella and flagellin proteins from the Thermococci. J Bacteriol. 1994;176(21):6509–17. PubMed PMID: 7961401. PubMed Central PMCID: PMC197004.

33. Edgar RC. PILER-CR: Fast and accurate identification of CRISPR repeats. BMC Bioinformatics. 2007;8. doi: 10.1186/1471-2105-8-18. PubMed PMID: WOS:000243920200001.

34. Felsenstein J. PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Seattle: Department of Genome Sciences, University of Washington; 2005.

35. Susanti D, Mukhopadhyay B. An intertwined evolutionary history of the deeply branching and phototrophic Bacteria. 1. 2nd ed. New York: Springer-Verlag; 2001. p. 179–80.

36. Huber H, Stetter KO. Order II: Desulfurococcales. In: Garrity G, editor. Bergey’s Manual of Systematic Bacteriology. 1. 2nd ed. New York: Springer-Verlag; 2001. p. 179–80.

37. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25(1):25–9. doi:10.1038/75556. PubMed PMID: 10802651; PubMed Central PMCID: PMC3037419.

Submit your next manuscript to BioMed Central and we will help you at every step:

• We accept pre-submission inquiries.
• Our selector tool helps you to find the most relevant journal
• We provide round the clock customer support
• Convenient online submission
• Thorough peer review
• Inclusion in PubMed and all major indexing services
• Maximum visibility for your research

Submit your manuscript at www.biomedcentral.com/submit