Distribución granulométrica en subproductos de aserrío para su posible uso en pellets y briquetas

Granulometric distribution in timber byproducts for potential use in pellets and briquettes

Fermín Correa-Méndez1, Artemio Carrillo-Parra2, José Guadalupe Rutiaga-Quiñones3, Francisco Márquez-Montesino4, Humberto González-Rodríguez2, Enrique Jurado Ybarra2 y Fortunato Garza-Ocañas2

Resumen
Con el fin de dar mayor valor agregado a subproductos forestales a partir de la posible elaboración de pellets y briquetas, se analizó la distribución granulométrica en aserrín, corteza y viruta de Pinus leiophylla, P. montezumae y P. pseudostrobus, así como en la mezcla de corteza-madera de Quercus candicans, Q. laurina y Q. rugosa en Nuevo Parangaricutiro, Michoacán. La distribución del tamaño de partícula se determinó según las normas europeas, UNE-EN 15149-2 y UNE-EN 15149-1. Los resultados indicaron que para producir pellets podría utilizarse 76.91 % de las partículas de aserrín, 25.49 % de corteza, 16.89 % de viruta y 61.67 % de corteza-madera; en el caso de las briquetas, tienen potencial 49.60 % de la corteza, 56.29 % de la viruta y 0.77 % de corteza-madera. A nivel industrial, 58.67 % de los productos de aserradero, 66.82 % del Taller de Secundarios de la Comunidad (TSC) y 58.45 % del Taller de Secundarios Externo (TSE), son aptos para su utilización en pellets, mientras que 29.90 % de los provenientes de aserradero, 19.70 % del TSC y 28.14 % del TSE resultaron adecuados para su uso en briquetas. El tamaño de las partículas analizadas tuvo variación, aunque fue similar entre especies y en industrias de generación. La mayoría de las partículas de aserrín pueden ser aprovechadas para fabricar pellets y las de corteza, corteza-madera y viruta para elaborar briquetas.

Palabras clave: Aserrín, biocombustibles densificados, corteza, granulometría, partícula, viruta.

Abstract
The granulometric distributions of sawdust, bark, and shavings from Pinus leiophylla, P. montezumae and P. pseudostrobus and bark-wood mixture of Quercus candicans, Q. laurina and Q. rugosa were analyzed. To determine particle size distribution, the standard UNE-EN 15149-2 and the UNE-EN 15149-1 were used. The results showed that 76.91 % of sawdust particles, 25.49 % of bark, 16.89 % of shavings and 61.67 % of bark-sawdust could be used in the production of pellets. The percentages for the production of briquettes would be 49.60 % bark, 56.29 % shavings, and 0.77 % bark-wood. At an industrial level, 58.67 % of the sawmill byproducts, 66.82 % from Community Secondary Materials Shop (TSC) and 58.45 % from the External Secondary Materials Shop (TSE) are suitable for use in pellets, while 29.90 % of the sawmill byproducts, 19.70 % of those from the TSC and 28.14 % from those of the TSE were suitable for use in briquettes. The particle size of these products differed, but values were similar between species and in power generation industries. Most sawdust particles may be used to produce pellets, while those of the bark, bark-wood and shavings may be transformed into briquettes.

Key words: Sawdust, densified biofuels, bark, granulometry, particle, shavings.
Introduction

The byproducts generated in the industry of transformation and secondary processing of timber may amount to 20 to 60% of the raw materials (Antolín, 2006). 7,063 m³ are obtained each year in the municipal seat of Nuevo San Juan Parangaricutiro and in the Indigenous Community of Nuevo San Juan Parangaricutiro (CINSJP), both in the state of Michoacán (Table 1).

The byproducts of the sawmill industry are utilized locally, and their uses range from compost production to being a source of energy for resin boilers and brickworks furnaces. The high availability and relatively low prices favor the search for production projects aimed at generating bioenergy from the manufacture of various products. In order to recommend these, it is necessary to consider certain technical aspects related to their quality, including the improvement of industrial drying processes, trituration methods, and granulometric homogenization and densification; all of this in order to reduce the costs derived from the treatments. However, the point of departure for these characterizations is the determination of the particle size, which serves as a parameter to select the best pre-treatment system (Antolín, 2006).

The shape and dimensions of the fuel particles are usually significant factors in the choice of the types of furnaces and
La forma y las dimensiones de las partículas del combustible, son usualmente factores importantes en la elección de los tipos de hornos y suministro del material, ya que influyen en el transporte y en la eficiencia de la combustión; las partículas grandes requieren de equipos de alimentación más robustos y a menudo, más tiempo para lograr combustión completa (Obernberger y Thek, 2010).

La distribución de partículas permite separar fracciones con dimensiones específicas, la aplicación diferenciada de las mismas puede contribuir a mejorar la calidad de la biomasa como fuente de energía, de materiales compuestos y químicos (Silva et al., 2011).

Es fundamental conocer las dimensiones y la distribución granulométrica de las partículas en los subproductos maderables antes de iniciar procesos de densificación (Miranda et al., 2012). El tamaño de las partículas influye en la durabilidad mecánica de los pellets; las finas (<1 mm) presentan mayor durabilidad (resistencia a desmoronarse) e hidroscopicidad (capacidad de adsorber agua); las finas (<1 mm), por lo que las primeras experimentarán un grado de acondicionamiento superior (Kaliyan y Vance, 2009). Por otra parte, la inclusión de partículas grandes puede generar fisuras y posteriores rompimientos en los pellets (MacBain, 1966).

Con el fin de incrementar el conocimiento de los subproductos generados en la industria forestal para su posible uso en pellets y briquetas, en el presente estudio se determinó la distribución granulométrica en el aserrín, la corteza y la viruta generados de tres especies de Pinos, en un aserradero y en un taller de secundarios, así como en la mezcla de corteza-madera de tres especies de Quercus proveniente de una astilladora.

Materiales y Métodos

Especies y origen de los subproductos

El aserrín, la corteza y la viruta se analizaron a partir del material obtenido de Pinus leiophylla Schltdl. et Cham., P. montezumae Lamb. y P. pseudostrobus Lindl.; la mezcla de corteza-madera fueron de Quercus candidans Née, Q. laurina Humb. et Bonpl. y Q. rugosa Née. Todas se seleccionaron por ser las que tienen mayor aprovechamiento en el área forestal del municipio Nuevo Parangaricutiro, Michoacán.

Las muestras de aserrín, corteza y la mezcla corteza-madera se recolectaron en el aserradero y en el área de astillado de la CINSJP. El aserrín se obtuvo de la sierra principal, de 5” de ancho, calibre 17, ancho de diente de 1/8” (3.175 mm), motor de 60 caballos de potencia y velocidad de corte de 34 m s⁻¹; la corteza se tomó de la banda de salida del subproducto de la descortezadora por fricción con cabezal dentado, en donde las trazas son giradas pasan a través de rodillos; la mezcla de las trozas son giradas pasan a través de rodillos; la mezcla de la descortezadora por fricción con cabezal dentado, en donde la corteza se tomó de la banda de salida del subproducto obtenido de Pinus leiophylla Schltdl.

El aserrín, la corteza y la mezcla corteza-madera fueron de Quercus candidans Née, Q. laurina Humb. et Bonpl. y Q. rugosa Née. Todas se seleccionaron por ser las que tienen mayor aprovechamiento en el área forestal del municipio Nuevo Parangaricutiro, Michoacán.

Materials and Methods

Species and origin of the byproducts

The sawdust, bark and shavings of Pinus leiophylla Schltdl. et Cham., P. montezumae Lamb. and P. pseudostrobus Lindl. were analyzed; the bark-wood mixture was obtained from Quercus candidans Née, Q. laurina Humb. et. Bonpl. and Q. rugosa Née. They were all selected for being the most exploited species in the forest area of the municipality of Nuevo Parangaricutiro, Michoacán.

The sawdust samples, bark and bark-wood mixture were collected at the sawmill and in the shredding area of CINSJP. The sawdust was obtained from the main saw, which is 5” wide and whose caliber is 17, with a tooth width of 1/8” (3.175 mm), a 60 HP motor and a cutting speed of 34 m s⁻¹; the bark, ground by friction with a serrated head, was taken from the outgoing belt loaded with the byproduct of the bark peeler, in which the logs are rotated with rollers; the bark-wood mixture, from oak logs and branches, was obtained from a wood shredder (Precision American Corporation).

Furthermore, sawdust samples were obtained at the secondary materials shop of CINSJP (TSC) and at the external...
corteza-madera se consiguió de árboles de encinos, desde trozos hasta ramas grandes y pequeñas en una astilladora (Presicion American Corporation).

Además se trabajaron muestras de aserrín del taller de secundarios de la CINSJP (TSC) y del taller externo (TSE) “Tarimas López”, procedentes de una máquina con sierra cinta de 2” de ancho y 6.27’ de longitud, colocada sobre un volante de un metro de diámetro el cual se mueve por la acción de un motor de 15 caballos de potencia. Las virutas provinieron de la máquina molduradora instalada en el TSE accionada mediante un motor SIEMENS de 10 caballos de potencia.

Para reunir el material se observó tanto el grosor como la textura de la corteza para identificar la troza, previo al proceso de aserrado o descortezado, de acuerdo con la especie. Las muestras de los subproductos se tomaron al azar en el sitio en el que son vertidos por cada equipo durante un turno de trabajo; el volumen total para cada una fue de 0.02 m³, aproximadamente.

Distribución granulométrica

La clasificación por granulometría de las partículas se realizó por separado para dos grupos de partículas como se describen a continuación:

Aserrín. El porcentaje de partículas de aserrín del aserradero de la CINSJP y TSC fueron las capaces de pasar por un tamiz vibrante, según lo establece la norma UNE-EN-15149-2 (2011); los cinco tamices utilizados en esta prueba retuvieron partículas de los siguientes tamaños: a) >0.850 mm (malla 20); b) ≤ 0.850; y > 0.425 mm (malla 40); c) ≤ 0.425 y > 0.250 mm (malla 60); d) ≤ 0.250 y > 0.150 mm (malla 100); y e) ≤ 0.150 mm. Para efectos de control, los porcentajes retenidos se identificaron en el presente trabajo como: a) >0.850 mm, b) 0.425 mm, c) 0.250 mm, d) 0.150 mm, y e) ≤ 0.150 mm. El tamaño mínimo repetición fue de 50 g y se conformaron dos repeticiones.

Corteza, corteza-madera y viruta. Para la distribución granulométrica de cada tipo de partícula, se consideró lo que establece la norma UNE-EN-15149-1 (2011); se emplearon cinco tamices que permitieron el paso de partículas de los siguientes tamaños: a) > 100 mm; b) ≤ 10.0 y > 8.0 mm; c) ≤ 8.0 y > 6.5 mm; d) ≤ 6.5 y > 4.0 mm; y e) ≤ 4.0 mm; para efectos de control. Los porcentajes retenidos fueron identificados como: a) > 100 mm; b) 8.0 mm; c) 6.5 mm; d) 4.0 mm; y e) ≤ 4.0 mm, respectivamente. Según la norma anterior, el volumen mínimo utilizado para cada repetición fue de 8 L, con dos repeticiones.

Moisture content (MC)

The granulometric distribution was characterized by particles whose moisture content was less than 20 %, as determined by the standard UNE-EN14774-3 (2010).

Statistical analysis

This was performed in terms of the particle size groups of the byproducts: sawdust, bark, bark-wood and shavings. The variable sawdust was normalized with the transformation of the Inx, and the bark, with a . A univariate unbalanced ANOVA was applied, and Tukey tests were carried out to make multiple...
Comparisons of the means (Hayter, 1984). The comparative analysis of the byproducts of each species was performed using the test (Kruskal and Wallis, 1952), except for the shavings, for which a univariate ANOVA was performed. The type of origin was also assessed: sawmill, shredding, and community and external secondary materials shops, using the Kruskal-Wallis test for particle size in each industry (Kruskal and Wallis, 1952). The significance level in the tests was 95 %. The statistical analyses were processed with the Minitab Inc., version 16.2.1 (Minitab Inc., 2010).

Results and Discussion

Pinus spp. sawdust

The percentages of sawdust particles of each of the three pine species retained in the five sieves showed highly significant differences (Table 2, Figure 1). At species level, there were no statistical differences (Table 2). The percentage of particles included in the 0.250, 0.150 and ≤0.150 mm sieves was 37.18 %; these particles are known as wood dust, since they measure less than 0.315 mm (Obernberger and Thek, 2010). Approximately 76.91 % of the sawdust particles were found in the 0.250, 0.150 and ≤0.150 mm sieves. These values are within the limit indicated by Obernberger and Thek (2010), who, like Ortiz et al. (2003), point out that the adequate size for the use of these particles in pellet production is less than 5 mm. According to Turner’s recommendations (1995), good quality pellets can be made with 0.6 to 0.8 mm particles, and wood dust meets this specification. The interval suggested by Franke and Rey (2006) for durable pellets is 0.5 to 0.7 mm; this agrees with the size of the wood dust particles. These authors state that particles of over 1 mm act as breaking points in the pellets. 37.18 % of the sawdust particles were retained in the 0.250, 0.150 and ≤0.150 mm sieves and can be used to produce high-quality pellets (Turner, 1995) that are durable as...
Aproximadamente 76.91 % de las partículas de aserrín se concentraron en los tamices 0.425, 0.250, 0.150 y ≤ 0.150 mm. Estos valores se ubican del límite indicado por Obbernberger y Thek (2010) quienes señalan que las dimensiones adecuadas para producir pellets son menores a 5 mm, lo mismo mencionan Ortiz et al. (2003). De acuerdo con lo recomendado por Turner (1995), los pellets de buena calidad pueden elaborarse con partículas de 0.6 a 0.8 mm y el polvo de madera simple con esa especificación. El intervalo sugerido por Franke y Rey (2006) para pellets durables es de 0.5 a 0.7 mm, lo que concuerda con el tamaño de partículas del polvo de madera. Dichos autores consignan que las partículas mayores a 1 mm actúan como puntos de rompimiento en los pellets. Las partículas de aserrín retenidas en los tamices 0.250, 0.150 y ≤ 0.150 mm constituyeron 37.18 %, mismas que son factibles de usarse para obtener pellets de calidad (Turner, 1995) y durables (Franke y Rey, 2006). También es aconsejable una mezcla de partículas de diferentes tamaños, ya que ayuda a generar una unión fuerte entre partículas y no permite espacios (Grover y Mishra, 1996; MacBain, 1966; Payne, 1978).

En el tamiz > 0.850 mm se retuvo 23.09 % del aserrín, el cual es susceptible de utilizarse para producir pellets, y las partículas entre 5 y 10 mm deben ser destinadas para la elaboración de briquetas, ya que en esta industria se integran partículas de tamaño superior (Ortiz et al., 2003; Tripathi et al., 1998).

Corteza de Pinus spp.

El porcentaje de partículas de corteza de las tres especies de Pinus retenidas en los cinco tamices fueron estadísticamente diferentes (Cuadro 2, Figura 2). Por otra parte, no hubo diferencias significativas en el tamaño de partículas entre las especies (Cuadro 2). De las partículas de corteza del tamiz ≤ 4.0 mm, 25.49 % podrían ser aprovechadas para obtener pellets, el mayor número de partículas de corteza (46.18 %) correspondió al tamiz 6.5 mm. Las partículas de corteza procedentes de ambas fuentes presentaron grandes dimensiones (> 1 mm) y proporiones, lo cual coincide con Miranda et al. (2012), quienes consignan valores de 50.3 y 66 % de partículas superiores a 2 mm para corteza de pino y abeto, respectivamente.

Para elaborar briquetas es posible utilizar 49.60 % de las partículas de corteza de los tamices 6.5 mm (46.18 %) y 8 mm (3.42 %), ya que están dentro del intervalo de 6 a 8 mm que indican Tripathi et al. (1998), y son inferiores a 10 mm (Ortiz et al., 2003). También, se puede añadir 22.09 % de partículas con tamaño superior a 5 mm, que se retuvieron en el tamiz 4.0 mm (Ortiz et al., 2003).

Viruta de Pinus spp.

El porcentaje de partículas de viruta de Pinus que se retuvieron en los cinco tamices fueron estadísticamente diferentes (Cuadro 2, Figura 1). 49.60 % de las partículas de viruta de Pinus que se retuvieron en los cinco tamices fueron estadísticamente diferentes (Cuadro 2). 23.90 % of the sawdust was retained in the > 0.850 mm sieve; this sawdust can be used for producing pellets, and 5 and 10 mm particles must be destined to the manufacture of briquettes, an industry in which larger particles are used (Ortiz et al., 2003; Tripathi et al., 1998).

Pinus spp. bark

The percentage of particles of bark of the three Pinus species retained in the five sieves were statistically different (Table 2). On the other hand, there were no significant differences in particle size between the species (Table 2). 25.49 % of the bark particles of the ≤ 4.0 mm sieve could be used to manufacture pellets; the largest number of bark particles (46.18 %) were retained by the 6.5 mm sieve. The bark particles from the two sources showed a large size (> 1 mm) and large proportions, which agrees with the records of Miranda et al. (2012), whose values are 50.3 and 66 % of particles of more than 2 mm for pine and fir bark, respectively.

49.60 % of the bark particles of the 6.5 mm (46.18 %) and 8 mm (3.42 %) sieves can be utilized to make briquettes, since they are within the 6 to 8 mm interval indicated by Tripathi et al. (1998) and are smaller than 10 mm (Ortiz et al., 2003). Furthermore, 22.09 % particles of more than 55 mm retained in the 4.0 mm sieve can be added (Ortiz et al., 2003).

Pinus spp. shavings

The percentage of particles of Pinus shavings that were retained in the five sieves were statistically different (Table 2). However, there were no significant differences between the species (Table 2). Wood shavings are useful according to their...
Figura 2), entre las especies no se presentaron diferencias significativas (Cuadro 2). Las virutas de madera son útiles según el tamaño y la proporción, si superan las dimensiones requeridas para formar pellets, deberán ser molidas, las pequeñas que provienen de máquinas de ejecución rápida son pelletizadas sin necesidad de ser molidas, previamente (Obernberger y Thek, 2010).

Más de 50 % de las partículas de viruta quedaron retenidas en el tamiz 6.5 mm (Figura 2), lo que coincide con el intervalo de 5 a 12 mm que establecen Obernberger y Thek (2010). El porcentaje de virutas menores o iguales a 4 mm fue 16.89 % y son aptas para la elaboración de pellets. Se recomienda no usar partículas grandes porque la resistencia de los pellets se genera, principalmente, por las fuerzas físicas como los puentes sólidos, las fuerzas de atracción entre las partículas sólidas, uniones de enclavamiento o entrelazamiento mecánico, las fuerzas de adhesión y cohesión, las fuerzas interfaciales y la presión capilar; además de, la interacción mecánica de las partículas durante el proceso de densificación (Kaliyan y Vance, 2009).

De las partículas de viruta retenidas en el tamiz 6.5 mm, 56.29 % son adecuadas para producir briquetas, y se puede añadir 26.83 % de las partículas retenidas en el tamiz 4.0 mm y que correspondan a tamaños mayores a 5 mm.

Corteza-madera de Quercus spp.

Las partículas de corteza-madera de Quercus spp. (visually madera, en mayor cantidad) fueron retenidas en los cinco tamices y mostraron diferencias estadísticas (Cuadro 2; Figura 3). Entre las especies del género no hubo diferencias significativas (Cuadro 2). Se recomienda no usar partículas grandes porque la resistencia de los pellets se genera, principalmente, por las fuerzas físicas como los puentes sólidos, las fuerzas de atracción entre las partículas sólidas, uniones de enclavamiento o entrelazamiento mecánico, las fuerzas de adhesión y cohesión, las fuerzas interfaciales y la presión capilar; además de, la interacción mecánica de las partículas durante el proceso de densificación (Kaliyan y Vance, 2009).

A percentage above 50 % of the shavings particles were retained in the 6.5 mm sieve (Figure 2); this coincides with the interval of 5 to 12 mm established by Obernberger and Thek (2010). The percentage of shavings equal to or smaller than 4 mm was 16.89 %, and they are suitable for making pellets. The use large particles is not suggested because the resistance of the pellets is generated primarily by physical forces such as solid bridges, attraction forces between solid particles, interlocking or mechanical intertwining unions; adhesion and cohesion forces, interphase forces and capillary pressure, as well as the mechanical interaction of the particles during the densification process (Kaliyan and Vance, 2009).

Of the particles of shavings retained in the 6.5 mm sieve, 56.29 % are suitable for making briquettes, and 26.83 % of the particles that do not go through the 40 mm sieve and have a size of more than 5 mm can be added.

Quercus spp. bark-wood

The bark-wood of Quercus spp. (visually wood in a larger amount) were retained in the five sieves and showed statistical differences (Table 2, Figure 3). There were no significant differences between species of this genus.

Wood particles of more than 5 mm (obtained in a shredder) must be ground before they are densified in pellets. Obernberger and Thek (2010) report that the interval for wood chips to be suitable for direct use in pellet production is 2.8 to 63 mm, corresponding to 61.67 % of the bark-wood particles from the shredder and retained in a ≤ 40 mm sieve.
The production of large particles depends on the traction force of the wood, the flexibility of the material to be shredded, the feed rate, the number of revolutions per minute and the number and sharpness of the blades. This is common in the case of hard woods like Quercus spp; furthermore, certain species of this genus with high amounts of minerals (Correa et al., 2014) may influence size; Hakkila points out that this accounts for the increase in the proportion of large particles in poplar woods, because as the grinding time passes, the blades wear away. This effect may be observed in Figure 3, where the sieves show a larger amount of oak material than pine bark or shavings, even if obtained from other machines. On the other hand, the production of chips from logs always has a lower proportion of large particles, and therefore accepts more chips (Nati et al., 2010), as is the case with the Quercus spp. species analyzed in the present study.

According to the particle sizes quoted by Ortiz et al. (2003), theoretically it is possible to manufacture briquettes using 0.77 % of the bark-wood particles retained in 6.5 mm sieves and add 37.57 % of the material retained in the 4.0 mm sieve, which consists of particles equal to or larger than 5 mm.
Cuadro 3. Análisis estadístico del tamaño de partículas por tipo de industria.

Tipo de industria	H	gl	p
Aserradero	7.87	9	0.548
Taller de secundarios de la comunidad	14.04	9	0.121
Taller de secundarios externo	6.41	7	0.492

H = Prueba de Kruskal-Wallis; gl = Grados de libertad; p = Significancia

Table 3. Statistical analysis of particle size by type of industry.

Type of industry	H	gl	p
Sawmill	7.87	9	0.548
Community secondary materials shop	14.04	9	0.121
External secondary materials shop	6.41	7	0.492

H = Kruskal-Wallis test; gl = Degrees of freedom; p = Significance

En relación con la producción de briquetas y de acuerdo con las dimensiones de las partículas sugeridas por Tripathi et al. (1998) y Ortiz et al. (2003) es factible aprovechar 29.90 % de las partículas residuales derivadas del aserradero, las cuales quedan retenidas en los tamices 8.0 mm y 6.5 mm. Asimismo, 8.79 % de partículas retenidas en el tamiz 4.0 mm puede incluirse en la producción de briquetas, ya que corresponden a un tamaño mayor a 5 mm.

Taller de secundarios de la comunidad (TSC)

Los tamaños de partículas en el aserrín y corteza de Pinus spp. que se obtuvieron en el TSC no evidenciaron diferencias estadísticas significativas (Cuadro 3; Figura 5).

Figura 5. Distribución de tamaño de partículas en el taller de secundarios de la comunidad.
Figure 5. Particle size distribution at the community secondary materials shop.

66.82 % of the particles equal to or smaller than 4 mm with a potential for pellet manufacture were registered at the TSC; the highest percentage of this material (22.59 %) was gathered the 0.425 mm sieve. As for the particles-durability ratio in the pellets, Lee et al. (2013) used Larix kaempferi C. (larch) wood, which proved to be more durable when small particles were used.

For the production of briquettes with subproducts from TSC, 19.70 % of the particles in the 5 to 10 mm range are susceptible to be used, according to the sizes reported by Tripathi et al. (1998) and Ortiz et al. (2003). A part of the residual matter (13.3 %) contained in the 4.0 mm sieve may also be used for this purpose.

External secondary materials shop

Particles of Pinus spp. sawdust, bark and shavings had statistically similar sizes (Table 3, Figure 6).
En el TSC se registró 66.82 % de las partículas con tamaños menores o iguales a 4 mm, que tienen potencial para elaborar pellets; el porcentaje más alto de este material (22.59 %) se concentró en el tamiz 0.425 mm. En cuanto a la relación partículas-durabilidad en los pellets, Lee et al. (2013) utilizaron madera de Larix kaempferi C. (ARCE), la que fue más durable con partículas pequeñas.

Para la producción de briquetas con subproductos provenientes del TSC, 19.70 % de las partículas en el intervalo de 5 a 10 mm son susceptibles de aprovechamiento, según las dimensiones consignadas por Tripathi et al. (1998) y Ortiz et al. (2003). Una parte (13.3 %) del material residual contenido en el tamiz 4.0 mm, también podría emplearse para este fin.

Taller de secundarios externo

Las partículas de aserrín, corteza y viruta de Pinus spp. fueron de tamaños estadísticamente similares (Cuadro 3, Figura 6).

Alrededor de 58.45 % de las partículas residuales (menores o iguales a 5 mm) de este taller podrían utilizarse en la producción de pellets (Obernberger y Thek, 2010; Ortiz et al., 2003); para la obtención de briquetas, se ocuparía 28.41 % de los subproductos generados en el TSE que fueron retenidos en el tamiz 6.5 mm. Según las dimensiones de la materia prima para elaborar briquetas (Ortiz, et al., 2003; Tripathi, et al., 1998), también se agregaría un porcentaje de las partículas que se concentraron en el tamiz 4.0 mm y representaron 13.41 %.

Conclusiones

Existieron variaciones en la distribución granulométrica de las partículas de aserrín, la corteza y la mezcla corteza-madera. Las partículas que conforman el polvo de madera (incluido el aserrín) son adecuadas para producir pellets de buena calidad y alta durabilidad; aproximadamente tres cuartas partes de las partículas de aserrín son aptas para elaborar pellets; sin embargo, para que estas sean de buena calidad y tengan alta durabilidad, se estima que sólo la mitad de ellas pueden utilizarse.

Cerca de un cuarto de la corteza puede aprovecharse para la producción de pellets y la mitad para elaborar briquetas. En el caso de la viruta, una quinta parte se puede usar para elaborar pellets, y más de la mitad de las partículas de este subproducto en briquetas.

Más de la mitad de las partículas de corteza-madera es factible de incorporarse a la producción de pellets y, en teoría, la elaboración de briquetas con estas partículas quedaría reducida a 1 %.

Around 58.45 % of the residual particles (equal to or smaller than 5 mm) from this shop may be used to produce pellets (Obernberger and Thek, 2010; Ortiz et al., 2003); for the production of briquettes, 28.41 % of the byproducts generated at the TSE and retained by the 6.5 mm sieve may be used. According to the dimensions of the raw material for the manufacture of briquettes (Ortiz, et al., 2003; Tripathi, et al., 1998), a percentage of particles concentrated in the 4.0 mm sieve and amounting to 13.41 % should also be added.

Conclusions

There were variations in the granulometric distribution of sawdust, bark and bark-wood particles. The particles of wood dust (including sawdust) are suitable for producing good-quality and highly durable pellets; approximately three fourths of the sawdust particles are suitable for the manufacture of pellets; however, for these to be of good quality and high durability, it is estimated that only half of them can be used.

Nearly one fourth of the bark can be used for producing pellets, and half, for manufacturing briquettes. Only one fifth of the particles from the shavings can be used for making pellets, and more than one half of the particles of this byproduct can be utilized for manufacturing briquettes.

More than one half of the bark-wood particles may be incorporated into the manufacture of pellets, and, theoretically, the use of these particles for the production of briquettes would be reduced to 1 %.

At an industrial level, and with the same byproducts, more than half of the sawdust and bark particles from the sawmill can be used in pellets, and almost one third of the byproducts can be used as supplies for the production of briquettes.
A nivel industria y con los mismos subproductos, en el aserradero puede utilizarse más de la mitad de aserrín y corteza en pellets y abastecer la producción de briquetas con casi una tercera parte de los subproductos.

Arededor de tres cuartas partes del aserrín y la corteza del TSC es posible utilizarse en pellets y una quinta parte para elaborar briquetas.

El TSE tiene más de la mitad de sus partículas disponibles para pellets, adicionalmente, tiene posibilidades para suministrar podría suministrar aserrín, corteza y viruta en una tercera parte, para producir briquetas.

La distribución granulométrica de las partículas generadas en las diferentes industrias fue similar; finalmente, la mayor parte de las partículas de aserrín se podrían utilizar en la producción de pellets y las partículas de corteza, corteza-madera y viruta en la producción de briquetas.

Agradecimientos

Se agradece el apoyo otorgado por personal de la CINSP, del taller “Tarimas López”, del Departamento de Madera, Celulosa y Papel de la Universidad de Guadalajara, de la Universidad Michoacana de San Nicolás de Hidalgo (FITECMA), de la Universidad Autónoma de Nuevo León (Facultad de Ciencias Forestales), de la Universidad de Pinar del Río (CEETES-Cuba) y del CONACYT por el proyecto No. 166444.

Referencias

Antolin, G. 2006. La gestión y el aprovechamiento de los residuos en la industria de la madera. Maderas. Instituto Nacional de Tecnología Industrial. Buenos Aires, Argentina. Cuaderno Tecnología Núm. 2. 29 p.

Correa, F., A. Carrillo, J. G. Rutigliano, F. Márquez, H. González, E. Jurado y F. Garza. 2014. Contenido de Humedad y Sustancias Inorgánicas en Subproductos Maderables de Pino para su Uso en Pellets y Briquetas. Revista Chapingo Serie Ciencias Forestales y del Ambiente 2011:77-88.

Franke, M. y A. Rey. 2006. Pelleting quality. World Grain 2006. University of Georgia, Athens, GA, USA. Vol. 4. pp. 78-79.

Grover, P. and S. Mishra. 1996. Biomass briquetting: technology and practices. Regional Wood Energy Development Programme in Asia. Food and Agriculture Organization of the United Nations. Bangkok, Tailandia. Field Document 46. 43 p.

Hakki, P. 1984. Forest chips as fuel for heating plants in Finland. Finnish Forest Research Institute. Helsinki. Finlandia. Folio Forestal 586: 62 p.

Hayter, A. J. 1984. A Proof of the Conjecture that the Tukey-Kramer Multiple Comparisons Procedure is Conservative. The Annals of Statistics 12(1): 61-75.

Kaliyan, N. and M. R. Vance. 2009. Factors affecting strength and durability of densified biomass products. Biomass Bioenergy 33 (3): 337-359.

Kruskal, W. H. y W. A. Wallis. 1952. Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association 260 (4): 583-621.

Lee, S. M., B. J. Ahn, D. H. Choi, G. S. Han, H. S. Jeong, S. H. Ahn and I. Yang. 2013. Effects of densification variables on the durability of wood pellets fabricated with Larix kaempferi C. and Liriodendron tulipifera L. sawdust. Biomass and Bioenergy 48: 1-9.

It is possible to use approximately three fourths of the sawdust and bark particles from the TSC in pellets, and one fifth in briquettes.

More than one half of the particles from the TSE are available for the production of pellets; additionally, TSes can supply one third of sawdust, bark and shavings for the manufacture of briquettes.

The granulometric distribution of particles generated in the various industries was similar; eventually, most sawdust particles may be used in the production of pellets, and particles of bark, bark-wood and shavings can be utilized to produce briquettes.

Acknowledgments

The authors would like to express their gratitude to the staff of CONSP, of the “Tarimas López” workshop, of the Departamento de Madera, Celulosa y Papel of the Universidad de Guadalajara, of the “San Nicolás de Hidalgo” of the Universidad Michoacana (FITECMA), of the Universidad Autónoma de Nuevo León (Facultad de Ciencias Forestales), of the Universidad de Pinar del Río (CEETES-Cuba) and of CONACYT for Project No. 166444.

End of the English version
Norma Española - Normalización Europea 15149-2 (UNE-EN-15149-2). 2011. Biocombustibles sólidos. Métodos para la determinación de la distribución de tamaño de partícula. Parte 2: Método del tamiz vibrante con apertura de malla inferior o igual a 3,15 mm. Grupo 12. Asociación Española de Normalización y Certificación/ Comité Europeo de Normalización. 164. Biocombustibles sólidos. CONFEMADERA-AENOR. Madrid, España. 15 p.
Obernberger, I. and G. Thek. 2010. The Pellet Handbook. Bios Bioenergiesysteme GmbH. London, UK. 549 p.
Ortiz, L., A. Tejada, A. Vázquez y G. Piñeiro. 2003. Aprovechamiento de la Biomasa Forestal producida por la cadena monte-industria III: Producción de elementos densificados. Revista del Centro de Innovación y Servicios Tecnológicos de la Madera de Galicia CIS-Madera 11: 17-32.
Payne, J. 1978. Improving quality of pellet feeds. Milling Feed Fertilizers 162: 34-41.
Silva G. G. D., S. Guilbert and X. Rouau. 2011. Successive centrifugal grinding and sieving of wheat straw. Powder Technology 208 (2): 266-270.
Tripathi, A. K., P. V. R. Iyer and T. C. Kandpal. 1998. A techno-economic evaluation of biomass briquetting in India. Biomass and Bioenergy 14 (5-6): 479-488.
Turner, R. 1995. Bottomline in feed processing: achieving optimum pellet quality. Feed Management 46: 30-33.