Cross-country assessment of H-SAF snow products by Sentinel-2 imagery validated against in-situ observations and webcam photography

G. Piauzzi, Z. Akyürek, A. N. Arsla, S. Gabeliani, S. Kuter, S. Puca, B. Simsek, M. Takala, C. M. Tanis, A. Toniazzo,
The research has been conducted in the framework of the EUMETSAT HSAF Project, thanks to the collaboration among several partner institutes of the validation cluster of snow products.

- CIMA Research Foundation
- Finnish Meteorological Institute
- Middle East Technical University, Department of Civil Engineering
- Çankırı Karatekin University, Faculty of Forestry, Department of Forest Engineering
- Italian National Civil Protection Department

We are primarily grateful to the European Cooperation in Science and Technology (COST) ES1404 Harmosnow Action.
Goals

- Validate moderate-resolution H SAF products H10 – Snow detection (SN-OBS-1) and H12 – Effective snow cover (SN-OBS-3) using Sentinel-2

- High-resolution image of Sentinel-2 data are assumed as ground truth

- to guarantee the reliability of the validation analysis the accuracy of Sentinel-2 snow maps validated against in-situ snow measurements and webcam photography.

 three study areas are analyzed: Finland, Italian Alps, and Turkey
H10 – Snow detection (SN-OBS-1)

Daily operational product of **snow extent** generated from SEVIRI instrument on board MSG satellites, is derived for a multi-temporal analysis of SEVIRI 15-minutes images,

Consists of four different classes: snow, cloud, bare ground, water

Coverage: The H-SAF area [25-75°N lat, 25°W-45°E long]

Cycle: **Daily**

Resolution: 1 to 5 km

Dissemination: By dedicated lines to centres connected by GTS - By EUMETCast – by HSAF ftp

H12 - Effective snow cover (SN-OBS-3)

Daily operational product of **fractional snow cover** based on multi-channel analysis of the AVHRR on board NOAA and MetOp satellites.

Coverage: The H-SAF area [25-75°N lat, 25°W-45°E long]

Cycle: **Daily**

Resolution: 1 to 5 km

Dissemination: By dedicated lines to centres connected by GTS - By EUMETCast – by HSAF ftp
The "EUMETSAT Satellite Application Facility on Support to Operational Hydrology and Water Management (H SAF)" started on 2005 as part of the EUMETSAT SAF Network

http://hsaf.meteoam.it

H SAF objectives are:

• to provide satellite-derived products from existing and future satellites to satisfy the needs of operational hydrology. Products: precipitation - soil moisture - snow
• to perform independent validation of the usefulness of the products
• to assess the impact of the satellite products on hydrological applications.
High-resolution imagery provided by Multi-Spectral Imager (MSI) instruments (13 bands, no thermal band).

The Copernicus Sentinel-2 mission comprises a constellation of two polar-orbiting satellites placed in the same sun-synchronous orbit, phased at 180° to each other - Sentinel-2A (June 23rd 2015) and Sentinel-2B (March 7th 2017).
→ effective revisit time of 5 days at the equator (2-3 days at mid-latitude).

Depending on the spectral band, the spatial resolution varies from 10 m to 60 m → SCA 20 m
Sentinel-2

Sentinel-2 L1C data downloaded from the Copernicus Open Access Hub. L1C image product consists of a series of 100 km²-tiles (JPEG-2000 images).

MSI TOA reflectance images processed through Sen2Cor 2.5.5, last version of ESA Sentinel-2 Level-2A Prototype Processor. Sen2Cor L2A_SceneClass module used to generate Scene Classification (SCL) maps at a spatial resolution of 20 m.

Binary snow masks (presence/absence of snow cover) derived from Sentinel-2 SCL maps: bare-soil, water and vegetation pixels classified as no-snow pixels.
Sentinel-2

8 Sentinel-2 tiles selected over Finland, Italian Alps and Turkey.

Ancillary information on vegetation cover derived from ESA GlobCover 300-m map
- High-impact vegetation (V_1): evergreen forest
- Medium-impact vegetation (V_2): deciduous forest

Analysis period: winter seasons 2016/2017 and 2017/2018.

Cloud free scenes or scenes with minor cloud cover (lower than 20%) are analyzed.
Data collection

Missing images:
• H10 – Snow detection
 1 (2016/17) & 7 (2017/18)
• H12 - Effective snow cover
 7 (2016/17) & 16 (2017/18).

Test site	Snow season 2016/17	Snow season 2017/18
Finland	60	193
Italian Alps	133	198
Turkey	37	101

Analysis period: winter seasons 2016/2017 and 2017/2018.
Validation of Sentinel-2 snow maps

Turkey
- In situ measurements of snow depth

Italy and Finland
- Webcam images
Validation of Sentinel-2 snow maps in Turkey

Validation of 25 Sentinel-2 tiles against 286 in-situ snow depth observations during winter season 2017/18.

Daily snow depth measurements provided by 75 AWS of Turkish State Meteorological Service.

According to the in-situ measures, the presence of snow is detected whenever a threshold of 5 cm is exceeded.
Validation of Sentinel-2 snow maps in Turkey

Contingency table

Ground-based measures	SD ≥ 5 cm	SD < 5 cm
S-2 binary snow masks	201	17
	43	25

Contingency table results

	POD	FAR	POFD	ACC	CSI	HSS
Probability of detection: $POD = \frac{a}{(a + c)}$						
False alarm ratio: $FAR = \frac{b}{(a + b)}$						
Accuracy: $ACC = \frac{(a + d)}{(a + b + c + d)}$						

Significant consistency of satellite imagery, as evidenced by the highest number of hits and lower values of false alarms and misses
Validation of Sentinel-2 snow maps in Finland and Italy

Validation against in-situ webcam imagery, in terms of fractional snow cover (FSC).

Comparison of daily FSC value pairs derived from camera observations and Sentinel-2-based FSC maps (cloud cover lower than 50%).

For each webcam an AOI is identified for the comparison with Sentinel-2.

The FSC on the AOI by 4 experts through visual inspection.

4 webcams selected in Finland (MONIMET)
1 webcam selected over Italian Alps (Phenocam)

Camera name	No. of analyzed images
Torgnon	24
Sodankylä peatland	22
Sodankylä canopy	22
Lompolojankka peatland	23
Kenttärova canopy	23

633-pixels Sentinel-2 snow cover map

white: snow
brown: no-snow;
black: clouds and unclassified
red: camera location
Validation of Sentinel-2 snow maps in Finland and Italy

- RMSE 12%
- Tendency of S2 to over-estimation
- Scenes having the highest error are those affected by higher cloud cover fraction
- During the melting period (ground covered by meltwater and patchy snow cover) Sentinel-2 data are affected by overestimation in Lompolojankka.
Validation of H10 product by Sentinel-2

Validation performed individually over each Sentinel-2 tile.

Comparison performed at the coarser spatial resolution of the HSAF H10

For each H10 grid cell Sentinel-2-based FSC defined as the number of snow pixels versus the total number in the coarse cell (Sentinel-2-derived FSC map, Binary snow mask restored through 50%-thresholding of FSC)

Coarse resolution pixel with more than the 50% of Sentinel-2 pixels classified as cloud or unclassified are neglected.

Contingency table

Analyzed dataset	Reference dataset
Snow	Snow
	a
No snow	b
Snow	c
No snow	d

Probability of detection: \(POD = \frac{a}{a + c} \)

False alarm ratio: \(FAR = \frac{b}{a + b} \)

Accuracy: \(ACC = \frac{(a + d)}{(a + b + c + d)} \)
Validation of H10 product by Sentinel-2

- Generally accuracy greater than 0.8, except for tiles T32TNS and T33TPS over Italian Alps

- Strong impact of complex topography - higher performances over flat areas (Finland), rather than over mountainous regions (Italian Alps and Turkey)

- Vegetation cover results in a lesser impact than topographic factors → greater impact where the local topography is complex, due to overlapping effects.
Validation of H10 product by Sentinel-2

Assessment under different snow cover conditions - early winter (October, November), winter (December-March), melting period (April, May).

In early winter lower ACC and higher FAR in Finland due to frequent cloudiness.

Lower performances under conditions of patchy snow cover.

50%-thresholding of FSC derived from S-2 data mainly affect analysis during the transition periods.
Validation of H12 product by Sentinel-2

Validation performed individually over each Sentinel-2 tile.

Binary snow masks are derived from both H12 and Sentinel-2 SCL maps (unclassified and cloud-contaminated pixels neglected).

Comparison performed at the coarser spatial resolution of the HSAF H12.

For each H12 grid cell Sentinel-2-based FSC defined as the number of snow pixels versus the total number in the coarse cell → Sentinel-2-derived FSC map.

Cells with more than the 50% of Sentinel-2 pixels classified as cloud or unclassified are neglected.
Validation of H12 product by Sentinel-2

- RMSE scores are generally lower than 0.4.
- Complex topography in mountainous areas affects the consistency between H12 product and Sentinel-2 snow maps, especially over the Italian Alps.

- higher RMSE in winter (H12 overestimates respect to S2) especially in mountainous region.

Region	RMSE
Finland	0.15
Italian Alps	0.33
Turkey	0.21
Conclusions

About Sentinel-2
• Can be properly used for continuous validation of medium/coarse resolution satellite snow products, have a significant consistency with both ground-based snow measurements and in-situ webcam photography.
• Dense cloud cover can undermine the reliability of Sentinel-2 snow maps
• Patchy snow cover and melting period may lead to an overestimation of snow cover.

About H SAF snow products
• Are highly consistent with S-2 imagery with a higher agreement over flat areas than in mountainous regions
• Complex topography significantly hinders snow detection.
• Vegetation cover has less relevant impact on the consistency among remotely-sensed observations, even in presence of dense evergreen forest.
Thank you for your attention