Does birth season correlate with childhood stunting? An input for astrological nutrition

Melese Linger Endalifer1*, Gedefaw Diress2, Bedilu Linger Endalifer3, Birhanu Wagaye4 and Hunegnaw Almaw5

Abstract

Introduction: Chronic malnutrition is highly prevalent in Sub-Saharan Africa and a severe public health problem in Ethiopia. At country level in the past three decades, the prevalence of stunting is above 40%. Different researchs and intervention were implemented in the past but the progress is non-remarkable. Despite; the effect of birth season on childhood chronic malnutrition was not studied yet in Ethiopia.

Methods: This research was extracted from the 2016 demographic health survey of Ethiopia. The data was collected based on national and international scientific protocols. A total of 645 enumeration areas were selected for the national survey. The survey uses two stage stratified sampling technique to gather data from the sampling unit. After excluding non eligible children a total of 8855 participants were included for final analysis. Height and weight were measured based on the standards nutritional assessment procedure. SPSS version 20 was used to analyze the data. Descriptive statistics were used to present the data. Binary and multivariable logistic regression models were regressed to identify the potential predictors. A p-value of less than 0.05 with 95% CI were used to declare an association.

Result: The prevalence of stunting in Ethiopia was 38.7% (95% CI: 36.8, 40.6). Season of birth had a significant association with stunting. The odds of being stunted among children born in the spring season were decreased by 16% as compared to children born in the winter season.

Conclusion: Children born in the spring season were less likely to be stunted (the so called October effect). The clear scientific relation between the season of birth and child anthropometric indicator is not well understood. Nutritional interventions and policies are better to consider the birth season of the child.

Keywords: Season of birth, Spring, Stunting, Ethiopia

Background

Malnutrition is a global public health problem that affects the entire population. In the twenty-first century, the rates of under-nutrition and over-nutrition increased unpredictably. Unexpectedly developing countries suffered from a double burden of malnutrition the so-called “DBM” at an individual, household, and community level [1, 2].

Undernutrition is a major public health problem among adolescents, children under-five years, and pregnant and lactating women in developing countries due to the vicious pattern of the problem. Majorly the problem is highly prevalent in Sub-Saharan Africa [3–6].

Stunting is a form of chronic malnutrition in under-five children which is expressed in percent of median, Z-score, and percentiles. Based on the World Health Organization (WHO) cut-off value stunting is classified when the Z-score value is less than -2 [7].

*Correspondence: melselinger@gmail.com

1 Department of Human Nutrition, College of Health Science, Debre Markos University, Debre Markos, Ethiopia

Full list of author information is available at the end of the article
Globally: 21.3% of children under five years were stunted [3], of this 30% of them were in Sub-Saharan Africa. There is a little bit epidemiological reduction in the region [8, 9]. In the last two decades, there was observable stunting reduction in Ethiopia [10, 11]. Based on 2016, Ethiopia Demographic Health Survey (EDHS) report the prevalence of stunting was 38% and in the northern regions (highland areas) of Ethiopia (Tigray, Afar, and Amhara) stunting prevalence is above 40% which is greater than the national level [11].

The consequence of stunting is beyond the child’s health. It had social, economic, political, and health crises. Nationally Ethiopia costs about 16.5% of Gross Domestic Product per annum due to malnutrition [12]. Some of the health consequences of stunting are decreased intelligence ability and secondary malnutrition (late adulthood metabolic syndrome) [13].

Generally, the determinant factors and causes of stunting are interrelated and complex. It is a known fact that a bunch of researchers identified maternal, health-related, nutritional and sociodemographic factors [3–5, 8, 9, 13–49]. Even though a lot of research was conducted before in Ethiopia and worldwide the determinant factors explored and the methodology were almost similar. Surely, in Ethiopia, the effect of birth season on childhood malnutrition was not studied before. The government and different stakeholders put their effort to reduce malnutrition; although the progress is not satisfactory [50]. There is low energy and nutrient intake in the summer season due to temporal food insecurity (hunger) in Ethiopia [51]. To know the effect of season on the nutritional status of children the current type of study is fundamental.

As a result, we intend to assess the effect of the season of birth on stunting in Ethiopia nationally.

Materials and methods

Study setting and design

The 2016 EDHS was designed to provide up-to-date estimates of key demographic and health indicators in Ethiopia. The data was collected from nine regions and two city administrations every five years. A detailed description of the study design and methodology the 2016 is found elsewhere [52]. In brief; a stratified two-stage random sampling design was used to collect data from a nationally representative sample. In the first stage, a total of 645 Enumeration Areas (EA) (202 in urban areas and 443 in rural areas) were selected with probability proportional to EA size and with independent selection in each sampling stratum. In the second stage, a fixed number of 28 households per cluster were selected with an equal probability of systematic selection from the newly created household listing. A total of 10,752 children under the age of 5 years were eligible for length/height and weight measurements in the 2016 EDHS, who are born in the last 5 years before the survey. Weight measurements were obtained using light weight SECA scales with a digital screen designed and manufactured under the guidance of UNICEF. Height measurements were carried out using a Shorr measuring board. Children younger than 24 months were measured for height while lying down position, and older children were measured in standing position. Wealth index of households are given scores based on the number and kinds of consumer goods they own, ranging from a television to a bicycle or car, in addition to housing characteristics such as source of drinking water, toilet facilities, and flooring materials. These scores are derived using principal component analysis. We excluded children with missing data on the question related to the outcomes of interest and other covariates adjusted in the multivariable model. We include a total of 8855 children under-five years for final analyses (Fig. 1) [52].

Outcome of interest

The outcome of interest was stunting which was assessed by measuring the height/length and age of the children. The outcome variable was categorized as stunted and non-stunted. Stunting is classified based on WHO Z-Score value; children having a Z-Value < -2 are considered as stunted and all children having a Z-Value ≥ -2 was categorized as non-stunted [52].

Exposure variable

Season of birth classification was taken from Ethiopian Meteorological Data. In Ethiopia context, there are four major seasons; spring, winter, autumn, and summer. In each season three months were incorporated. In the spring (September, October, and November), winter (December, January, and February), autumn (March, April, and May), and summer (June, July, and August). Majorly all regions in Ethiopia get annual rains in the summer season (the wet season) (June, July and August). All other seasons are almost dry season [53].

Covariates

Based on the previous research findings, the following covariates were selected: cigarette smoking history of the mother, father’s education status, household wealth index, anemia level of the mother, women occupation type, residence, source of drinking water, type of toilet facility, mothers weight, mothers height, antenatal care visit history and birth interval.

Statistical analysis

SPSS version 20 was used to analyze the data. Descriptive statistics was used to present the study variables.
Principal component analysis was used to construct a household wealth index from the total assets in the household. Binary and multivariable logistic regression models were employed to determine the association between birth season and stunting. Crude odds ratios (COR) and Adjusted Odds Ratios (AOR) were presented with 95% confidence intervals. Each covariate was included in the multivariable logistic model regardless of their statistical significance in the binary logistic regression analysis. Finally, statistical significance was declared at p-value < 0.05 [54].

Result

The current study assessed the effect of birth season on chronic malnutrition among children under five years in Ethiopia. We included 8855 children under five years from EDHS 2016 dataset. Almost fifty percent (51%) of children under five years were male in sex and 89.1% of children resided in rural Ethiopia. Seventy-four percent of children's mothers had antenatal care visits and eighty-nine percent of children utilized unimproved toilet type (Table 1).

Prevalence of stunting in children under-five years

The prevalence of stunting among children under five years was 38.7% (1650) (95% CI: 36.8, 40.6) (Fig. 2). The birth season disaggregated prevalence of stunting was 25.2% in winter, 27.7% in spring, 25.7% in summer and 21.4% in autumn.

The association between birth season and stunting (Chronic malnutrition)

In the multivariable logistic regression model, twelve variables were included to control the confounding effect. The birth season had a significant association with stunting both in the binary and multivariable logistic regression model. The odds of being stunted among children born in the spring season were decreased by 16% as compared to children born in the winter season (Table 2).

Discussion

The current study assess the association between birth season and chronic malnutrition (Stunting) extracted from EDHS 2016. The study concluded that there is a significant correlation between birth season and stunting. This is the first study that explored the association between birth season and stunting at the national level in Ethiopia. Being born in the spring season reduced the occurrence of stunting as compared to children born in the winter season. The current finding is consistent with a study conducted in Ethiopia that assured the weight gain
Table 1
Sociodemographic and behavioral characteristics of study participants (*N* = 8855)

Category	Frequency	Percent (%)
Sex of child		
Male	4511	51
Female	4344	49
Residence		
Rural	7229	89.1
Urban	1626	19.9
Father educational level		
No education	5645	65.6
Primary	2283	27.3
Secondary	609	4.8
Higher education	318	3.3
Household wealth index		
Poor	4727	46.6
Middle	1274	11.5
Rich	2854	32.5
Anemia level of the mother		
Severe	140	1.4
Moderate	837	6.4
Mild	2019	22.1
Not anemic	5630	60.1
Mothers occupation type		
Not working	5189	57.2
Manual work	418	4.5
Professional	1133	19.3
Agricultural	1936	21.7
Antenatal care visit history		
No	2050	25.7
Yes	6791	74.2
Source of drinking water		
Improved	5291	55.4
Unimproved	3480	39.1
Not adejure resident	84	0.9
Household toilet type		
Improved	1481	9.7
Unimproved	7290	89.1
Not a adejure resident	84	1.2
Birth interval		
< 24 months	1660	18.8
24–47 months	3707	43.6
48 months and above	3488	39.6
Cigarette Smoking history of the mother		
No	8772	99.3
Yes	83	0.7

Table 2
Binary and multivariable logistic regression analysis of birth season and stunting in Ethiopia

Variable	Unadjusted	Adjusted
Stunting		
Birth Season		
Category	Unadjusted COR: 95% CI	Adjusted AOR: 95% CI
Winter	Ref	Ref
Spring	0.84 (0.7, 0.9)	0.84 (0.7, 0.9)
Summer	0.88 (0.7, 1.1)	0.87 (0.7, 1.1)
Autumn	0.93 (0.7, 1.2)	0.93 (0.7, 1.2)

Adjusted variables: Region, cigarette smoking history of mothers, father education status, Household wealth index, anemia level of the mothers, women occupation type, residence, source of drinking water, type of toilet facility, mothers weight, mothers height, antenatal care visit and birth interval
of an infant was high in the spring season [55]. Similarly infants born in the spring season had high velocities in length and weight catch up [56]. Another study conducted in Southwest Ethiopia among children briefly shown that the mean weight and height gain was high in spring season [41].

The birth season effect is not only in children anthropometry although it affects the blood cell profiles. As reported in a study conducted in China the hemoglobin concentration was higher in winter-born infants as compared to summer-born infants [57].

Another study conducted in India confirmed that the birth size of offspring depends on the maternal intake of nutrients and physical activities during pregnancy. Both nutrient intake and physical activities of the mother determine the size of the offspring positively or negatively. For example, maternal activity and nutrient intake are high during harvest season for women who are participated in agricultural activity. Additionally, they also reported a winter-born infants had low anthropometric indices as compared to summer-born infants [58]. High temperature during the intrauterine period and infancy downgrades the growth of an infant negatively and the consequences crossed to the adulthood period [59]. The birth season does not merely affect the nutritional status of the infant. It had also a significant effect on academic performance [60]. Some scholars correlate the season of birth with Vitamin D exposure [61]. Moreover; the temperature level at the time of birth season affects the infants’ anthropometry due to disruption of Vitamin D synthesis [62].

Further more birth season had a significant correlation with cardiovascular, mental, and neurovascular diseases [63, 64].

It is possible to conclude that birth season had a significant impact on children’s nutrition profiles based on the aforementioned literatures. The possible reason for the association between spring season and stunting is described as follows; In Ethiopia’s context the spring season (also known as harvest season) had a surplus production and availability of fruit and vegetables in the garden, the markets and on the table. Though this physical accessibility of fruit and vegetables increased the chance of consumption for the women at (pregnancy or lactating period). Most fruit and vegetables become fruitful in the spring season. As a result, the women will get an adequate amount of vitamins and minerals; which is crucial for the child’s growth and development. Seasonal hunger is common, in most of the country territory summer season is the worst (most households are food insecure) [65, 66].

Children born in hunger season are highly malnourished [67] and food insecure [68]. Empierically it is proved that stunting prevalence was varied in different season as reported from study conducted in Southern Ethiopia [65, 69]. A nationwide study conducted on daily energy intake and household dietary diversity score across months, speculate the energy intake and household dietary diversity score increased from September to March in rural Ethiopia [51]. This research clearly depicted the dietary intake up and downs across season in Ethiopia. Energy intake and household dietary diversity was inadequate in summer season (June to September).

Climate change is a big deal for global under nutrition especially the figure of undernourished people will increase in non determined folds in the future [70]. Thus climate change affect the nature trends of seasons. As the second point; women who gave birth in spring will get adequate rest to give care to the child; it is well known that the next consecutive six months after spring season were low workload in rural Ethiopia. Additionally, during the consecutive six months after spring is relatively Ethiopian households were food secured.

In new point of view; malnutrition and disease depend on the lunar cycle and astronomical body movement. Recently different scholars hypothesized that human health, nutrition and solar system are interwoven. So our solar system (the universe) affect our dietary habit and affect our nutritional status. Indeed day-night length was different across seasons; this probably affect the child physiology (growth and development). Actually this astrological effect is not well understood and it needs further investigation [71–73].

This research has a number of strengths but it has some limitation for example there is lack of researches in the area conducted before which made the discussion too difficult.

Conclusion

Children born in spring season were less likely to be stunted; the researcher arbitrary called October effect. The clear scientific relation between birth season and child anthropometry is not well understood. For future researcher conducting follow up study and assessing the effect of birth season on childhood nutritional status will be a big assignment.

Acknowledgements

Not Applicable

Authors' contributions

Melese Linger Endalifer: Conceived and design the study. Melese Linger Endalifer, Gedefaw Driess, Bedilu Linger Endalifer, Birhanu Wagaye and Hunegnaw Almaw: Extract, analyze the data, draft and approve the manuscript.
References

1. Dr Cesare M, Soric M, Bovet P, Miranda JJ, Bhutta Z, Stevens GA, et al. The epidemiological burden of obesity in childhood: a worldwide epidemic requiring urgent action. BMC Med. 2019;17(1):212.

2. Popkin BM, Corvalan C, Grummer-Strawn LM. Dynamics of the double burden of malnutrition and the changing nutrition reality. Lancet. 2020;395(10217):65–74.

3. Vaivada T, Akseer N, Akseer S, Somaskandan A, Stefopulos M, Bhutta ZA. Stunting in childhood: an overview of global burden, trends, determinants, and drivers of decline. Am J Clin Nutr. 2020;112(Supplement_2):777S-91S.

4. Li Z, Kim R, Vollmer S, Subramanian SV. Factors Associated With Child Stunting, Wasting, and Underweight in 35 Low- and Middle-Income Countries. JAMA Netw Open. 2020;3(4):e203386.

5. Baye K, Laflou A, Chitraveke S. Socio-economic inequalities in child stunting reduction in Sub-Saharan Africa. Nutrients. 2020;12(1):253. https://doi.org/10.3390/nu12010253. PMID: 31963768; PMCID: PMC7019538.

6. Kt R, et al. Nutritional status and its associated factors among school adolescent girls in Adamas City, Central Ethiopia. J Nutr Food Sci. 2016;6:1–8.

7. WHO Multicentre Growth Reference Study Group. WHO Child Growth Standards based on length/height, weight and age. Acta Paediatr Suppl. 2006;450:76–85. https://doi.org/10.1111/j.1651-2227.2006.tb03789.x. PMID: 16817681.

8. Yaya S, Oладимоji O, Odusina EK, Bishwajit G. Household structure, material characteristics and children’s stunting in sub-Saharan Africa: evidence from 35 countries. Int Health. 2020;12:105. https://doi.org/10.1093/inthealth/ihz105. Epub ahead of print. PMID: 31927593.

9. Roediger R, Hendrixson DT, Manary MJ. A roadmap to reduce stunting. Am J Clin Nutr. 2020;112(Supplement_2):775S-6S.

10. Central Statistical Agency [Ethiopia], ICF International. Ethiopia Demographic and Health Survey 2016. Addis Ababa, Ethiopia, and Rockville, Maryland: CSA and ICF; 2016.

11. African Union Commission, NEPAD Planning and Coordinating Agency, UN Economic Commission for Africa, UN World Food Programme. The Cost of Hunger in Africa: Social and Economic Impact of Child Undernutrition in Egypt, Ethiopia, Swaziland and Uganda. Addis Ababa: UNECA; 2014.

12. Woldehanna T, Behrmann JR, Araya MW. The effect of early childhood stunting on children’s cognitive achievements: Evidence from young lives Ethiopia. Ethio J Health Dev. 2017;31(2):75–84.

13. Deshmukh PR, Sinha N, Dongre AR. Social determinants of stunting in rural area of Wardha, Central India. Med J Armed Forces India. 2013;69(3):213–7.

14. Taish H, Akseer N, Gебreyesus SH, Attaullahjan A, Brar S, Confreda E, et al. Drivers of stunting reduction in Ethiopia: a country case study. Am J Clin Nutr. 2020;112(Supplement_2):875S-935.

15. Tasic H, Akseer N, Gebreyesus SH, Attaullahjan A, Brar S, Confreda E, et al. Stunting in infancy, pubertal trajectories and adult body composition: The Birth to Twenty Plus cohort, South Africa. Eur J Clin Nutr. 2020;112(Supplement_2):875S-935.

16. Simelane MS, Chemhaka GB, Zvane E. A multilevel analysis of individual, household and community level factors on stunting among children aged 6–59 months in Eswatini: A secondary analysis of the Eswatini 2010 and 2014 Multiple Indicator Cluster Surveys. PLoS One. 2020;15(10):e0241548.

17. Nahar B, Hossain M, Mahfuz M, Islam MM, Hossain MI, Murray-Kolb LE, et al. Early childhood development and stunting: Findings from the MAL-ED birth cohort study in Bangladesh. Maternal Child Nutr. 2020;16(1):e12864.

18. Mengesha HG, Vatanparast H, Feng C, Petrucca P. Modeling the predictors of stunting in Ethiopia: analysis of 2016 Ethiopian demographic health survey data (EDHS). BMC Nutr. 2020;6:52.

19. Locks LM, Patel A, Katz E, Simmons E, Hoberd P. Seasonal trends and maternal characteristics as predictors of maternal undernutrition and low birthweight in Eastern Maharashtra, India. Maternal Child Nutr. 2021;17(2):e13087. https://doi.org/10.1111/mcn.13087.

20. Islam MS, Zafar Ullah AN, Mainani S, Imam MA, Hasan MI. Determinants of stunting during the first 1,000 days of life in Bangladesh: A review. Food Sci Nutr. 2020;8(9):4685–95.

21. Hallu BA, Bogale GG, Beyene J. Spatial heterogeneity and factors influencing stunting and severe stunting among under-5 children in Ethiopia: spatial and multilevel analysis. Sci Rep. 2020;10(1):16427.

22. Fatima S, Manzoor I, Jaya AM, Arif S, Qayyum S. Stunting and associated factors in children of less than five years: A hospital-based study. Pak J Med Sci. 2020;36(3):581–9.

23. Chowdhury TR, Chakrabarty S, Rakib M, Afrin S, Saltmarsh S, Winn S. Factors associated with stunting and wasting in children under 2 years in Bangladesh. Heliyon. 2020;6(9):e04849.

24. Chidumwa G, Said-Mohamed R, Niyati LH, Mpondi F, Chikwore T, Piroreschi A, et al. Stunting in infancy, pubertal trajectories and adult body composition: The Birth to Twenty Plus cohort, South Africa. Eur J Clin Nutr. 2021;75(1):189–97. https://doi.org/10.1038/s41430-020-00716-1.

25. Brar S, Akseer N, Sall M, Conway K, Diouf I, Everett K, et al. Drivers of stunting reduction in Senegal: a country case study. Am J Clin Nutr. 2020;112(Supplement_2):860S-74S.

26. Bogale B, Gutema BT, Chishya Y. Prevalence of Stunting and Its Associated Factors among Children of 6–59 Months in Arba Minch Health and Demographic Surveillance Site (HDSS), Southern Ethiopia. A Community-Based Cross-Sectional Study. J Environ Public Health. 2020;2020:9520973.

27. Binagwaho A, Rukundo A, Powers S, Donahoe KB, Agboniyteyi M, Ngabo R, et al. Epidemiological burden of obesity in childhood: a worldwide epidemic requiring urgent action. BMC Med. 2019;17(1):212.

28. Deshmukh PR, Sinha N, Dongre AR. Social determinants of stunting in Ethiopia: analysis of 2016 Ethiopian demographic health survey data (EDHS). BMC Nutr. 2020;6:52.

29. Mimah R, et al. Trends in burden and risk factors associated with childhood stunting and severe stunting in children of less than five years: A hospital-based study. Pak J Med Sci. 2020;36(3):581–9.

30. Nepali S, Simkhada P, Davies I. Trends and inequalities in stunting in Nepal: a secondary data analysis of four Nepal demographic health surveys from 2001 to 2016. BMC Nutr. 2019;5:19.
31. Mohammed SH, Muhammad F, Pakzad R, Alizadeh S. Socioeconomic inequity in stunting among under-5 children in Ethiopia: a decomposi-
tion analysis. BMC Res Notes. 2019;12(1):184.
32. Getaneh Z, Melku M, Geta M, Melak T, Hunegnaw MT. Prevalence and
determinants of stunting and wasting among public primary school chil-
dren in Gondar town, northwest, Ethiopia. BMC Pediatr. 2019;19(1):207.
33. Gebre TU, Tesfamichael YA, Bitow MT, Assefa NE, Abady GG, Mengesha
MB, et al. Stunting and associated factors among under-five children in
Wukro town, Tigray region, Ethiopia: a cross sectional study. BMC Res
Notes. 2019;12(1):504.
34. FantayGebru K, MelkonnenHaileselassie W, HaftomTemesgen A, Omer-
Seid A, Afework MB. Determinants of stunting among under-five children in
Ethiopia: a multilevel mixed-effects analysis of 2016 Ethiopian demo-
graphic and health survey data. BMC Pediatr. 2019;19(1):176.
35. Dake SK, Solomon FB, Babe TM, Tekle HA, Tufa EG. Predictors of stunting
among children 6–59 months of age in Sodo Zuria District, South Ethio-
pia: a community based cross-sectional study. BMC Nutr. 2019;5:23.
36. Coop MW, Brown ME, Hochrainer-Stigler S, Pfug G, McCullum L, Fritz S,
et al. Mapping the effects of drought on child stunting. Proc Natl Acad Sci
U S A. 2011;108(51):20719–24.
37. Beal T, Le DT, Trinh TH, Burra DD, Huynh T, Duong TT, et al. Child stunting is
associated with child, maternal, and environmental factors in Vietnam.
Matern Child Nutr. 2019;15(4):e12626.
38. Baye K. Prioritizing the Scale-Up of Evidence-Based Nutrition and Health
Interventions to Accelerate Stunting Reduction in Ethiopia. Nutrients.
2019;11(12):3065. https://doi.org/10.3390/nu11123065. PMCID: 3188817;
PMCID: PMC6950157.
39. Adhikari RP, Shrestha ML, Acharya A, Upadhyah N. Determinants of
stunting among children aged 0–59 months in Nepal: findings from Nepal
Demographic and health survey, 2006, 2011, and 2016. BMC Nutr.
2019;5:37.
40. Gebereselassie SB, Abebe SM, Melsew YA, Mutuku SM, Wassie MM. Preva-
lence of stunting and its associated factors among children 6–59 months of
age in Libo-Kemekem district, Northwest Ethiopia. A community based
cross sectional study. PLoS ONE. 2018;13(5):e0195361.
41. Fentahun N, Belachew T, Coates J, et al. Seasonality and determinants of
child growth velocity and growth deficit in rural southwest Ethiopia. BMC
Pediatr. 2018;18:20. https://doi.org/10.1186/s12887-018-0986-1.
42. Abebew S, Gebrebiemnich B, Murungan R, Assefa M, Adnew YM. Stunting
and Its Determinants among Children Aged 6–59 Months in Northern
Ethiopia: A Cross-Sectional Study. J Nutr Metab. 2018;2018:1078480.
43. Woodruft BA, Withr JP, Bailes A, Matj J, Timmer A, Rohner F. Determi-
nants of stunting reduction in Ethiopia 2000–2011. Matern Child Nutr.
2017;13(2):e12307. https://doi.org/10.1111/mcn.12307. Epub 2016 May
10. PMID: 27161654; PMCID: PMC5686086.
44. Tariku A, Biks GA, Derso T, Wassie MM, Abebe SM. Stunting and its
determinant factors among children aged 6–59 months in Ethiopia. Ital J
Pediatr. 2017;43(1):112.
45. Rakotomahana H, Gates GE, Hildebrand D, Stoecker BJ. Determinants of
stunting in children under 5 years in Madagascar: Maternal Child Nutr.
2017;13(4):e12409. https://doi.org/10.1111/mcn.12409.
46. Batiro B, Demissie T, Hallij U, Anjulo AA. Determinants of stunting
among children aged 6–59 months at Kindo Didaye woreda, Wolaita
Zone, Southern Ethiopia: Unmatched case control study. PLoS One.
2017;12(3):e0181906.
47. Akombo BJ, Agbo KE, Hall JJ, Mecorn D, Asstel-Burt T, Renzaho AM. Stunt-
ing and severe stunting among children under-5 years in Nigeria: A
multilevel analysis. BMC Pediatr. 2017;17(1):15.
48. Dewey KG. Reducing stunting by improving maternal, infant and young
child nutrition in regions such as South Asia: evidence, challenges and
opportunities. Matern Child Nutr. 2016;12(Suppl 1):27–38.
49. de Onis M, Branca F. Childhood stunting: a global perspective. Matern
Child Nutr. 2016;12(Suppl 1):12–26.
50. Feldman L, Tubach F, Jularid JM, Hindert D, Ducrocq G, Sorbets E, et al. Impact of
diabetes mellitus and metabolic syndrome on acute and chronic
on-clopidogrel platelet reactivity in patients with stable coronary
artery disease undergoing drug-eluting stent placement. Am Heart J.
2014;168(6):940–7 e7.
51. Hirschon K, Taffesse AS, Woruk HI. Seasonality and household diets in
Ethiopia. Public Health Nutr. 2016;19(10):1723–30.
52. EDHS Ethiopia Demographic and Health Survey 2016. Addis Ababa,
Ethiopia, and Rockville, Maryland, USA: CSA and ICF. 2016. Report No.:
1471–2458 Contract No.: 1.
53. Fazzini M, Bisce C, Billi P. The Climate of Ethiopia. 2015.
54. Croft, N, T, Marshall AM, Allen CK, et al. 2018. Guide to DHS Statistics.
Rockville, Maryland, USA; ICF, 2018.
55. Asfaw M, Tessema F. Patterns of birth weight at a community level in
Southwest Ethiopia. Ethiop J Health Sci. 2004;14(1).
56. McGrath JJ, Saha S, Lieberman DB, Buka S. Season of birth is associated
with anthropometric and neurocognitive outcomes during infancy
and childhood in a general population birth cohort. Schizophr Res.
2006;81(1):91–100.
57. Bai Y, Shang G, Wang L, Sun Y, Osborn A, Rozelle S. The relationship
between birth season and early childhood development: Evidence from
northwest rural China. PLoS ONE. 2018;13(1):e0205281.
58. Rao S, Kanade AN, Yajnik CS, Fall CH. Seasonality in maternal intake and
activity influence offspring’s birth size among rural Indian mothers—Pune
Maternal Nutrition Study. Int J Epidemiol. 2000;29(4):1094–103.
59. Iesen A, Rossin-Slater M, Walker R. Relationship between season of birth,
temperature exposure, and later life wellbeing. Proc Natl Acad Sci U S A.
2017;114(51):13447–52.
60. Crawford C, Dearden L, Meghir C. When You Are Born Matters: The Impact
of Date of Birth on Educational Outcomes in England. 2010.
61. Day FR, Forouhi NG, Ong KY, Perry JR. Season of birth is associated with
birth weight, perinatal mortality, adult body size and educational attain-
ment: a UK Biobank study. Helyon. 2015;1(2):e00031.
62. Strand LB, Barnett AG, Tong S. The influence of season and ambient tem-
perature on birth outcomes: a review of the epidemiological literature.
Environ Res. 2011;111(3):451–62.
63. Lonigo A, Casuccio A, Paris L, Antable T, Cillino S, Uva MG, et al. Associa-
tion of neonovascular age-related macular degeneration with month and
season of birth in Italy. Aging (Albany NY). 2016;9(1):133–41.
64. Poltavskiy E, Spence JD, Kim J, Bang H. Birth Month and Cardiovascular
Disease Risk Association: Is meaningfulness in the eye of the beholder?
Online J Public Health Inform. 2016;8(2):e186.
65. Belayneh M, Loha E, Lindtjorn B. Seasonal Variation of Household Food
Security and Household Dietary Diversity on Wasting and Stunting
among Young Children in A Drought Prone Area in South Ethiopia: A
Cohort Study. Ecol Food Nutr. 2021;60(1):44–69.
66. Anna Ferro-Luzzi , Saul S. Morris , Samson Taffesse , Tsegaye Demisse,
Maurizio D’Amato. Seasonal Undernutrition in Rural Ethiopia Magni-
tude, Correlates, and Functional Significance: International Food Policy
Research Institute 2001.
67. Nonterah EA, Welaga P, Welaga P, Cillino S, Uva MG, et al. Associa-
tion of the effects of drought on child stunting. Proc Natl Acad Sci
2014;168(6):940-7 e7.
68. Eileen Nauman. MEDICAL ASTROLOGY. Cottonwood, Arizona1993.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.