Quasi-energy function for diffeomorphisms with wild separatrices

V. Grines∗ F. Laudenbach† O. Pochinka‡

October 23, 2008

Abstract

According to Pixton [8] there are Morse-Smale diffeomorphisms of S^3 which have no energy function, that is a Lyapunov function whose critical points are all periodic points of the diffeomorphism. We introduce the concept of quasi-energy function for a Morse-Smale diffeomorphism as a Lyapunov function with the least number of critical points and construct a quasi-energy function for any diffeomorphism from some class of Morse-Smale diffeomorphisms on S^3.

Mathematics Subject Classification: 37B25, 37D15, 57M30.
Keywords: Morse-Smale diffeomorphism, Lyapunov function, Morse theory.

First and third authors thank grant RFBR No 08-01-00547 of Russian Academy for partial financial support.

1 Formulation of results

According to [3], given a closed smooth n-manifold M^n and a Morse function $\varphi : M^n \to \mathbb{R}$ is called a Morse-Lyapunov function for Morse-Smale diffeomorphism $f : M^n \to M^n$ if:

1) $\varphi(f(x)) < \varphi(x)$ if $x \notin \text{Per}(f)$ and $\varphi(f(x)) = \varphi(x)$ if $x \in \text{Per}(f)$, where $\text{Per}(f)$ is the set of periodic points of f;

2) any point $p \in \text{Per}(f)$ is a non-degenerate maximum of $\varphi|_{W^u(p)}$ and a non-degenerate minimum of $\varphi|_{W^s(p)}$.

Definition 1.1 Given a Morse-Smale diffeomorphism $f : M^n \to M^n$, a function $\varphi : M^n \to \mathbb{R}$ is a quasi-energy function for f if φ is a Morse-Lyapunov function for f and has the least possible number of critical points among all Morse-Lyapunov functions for f.

∗N. Novgorod State University, Gagarina 23, N. Novgorod, 603950 Russia, grines@vmk.unn.ru.
†Laboratoire de mathématiques Jean Leray, UMR 6629 du CNRS, Faculté des Sciences et Techniques, Université de Nantes, 2, rue de la Houssinière, F-44322 Nantes cedex 3, France, francois.laudenbach@univ-nantes.fr.
‡N. Novgorod State University, Gagarina 23, N. Novgorod, 603950 Russia, olga-pochinka@yandex.ru.
In this paper we consider the class G_4 of Morse-Smale diffeomorphisms $f : S^3 \to S^3$ whose nonwandering set consists of exactly four fixed points: one source α, one saddle σ and two sinks ω_1 and ω_2. It follows from [3] (theorem 2.3), that the closure of each connected component (separatrix) of the one-dimensional manifold $W^u(\sigma) \setminus \sigma$ is homeomorphic to a segment which consists of this separatrix and two points: σ and some sink. Denote by ℓ_1, ℓ_2 the one-dimensional separatrices containing the respective sinks ω_1, ω_2 in their closures. According to [2], $\ell_i, i = 1, 2$ is everywhere smooth except, maybe, at ω_i. So the topological embedding of ℓ_i may be complicated in a neighborhood of the sink.

According to [1], ℓ_i is called tame (or tamely embedded) if there is a homeomorphism $\psi_i : W^s(\omega_i) \to \mathbb{R}^n$ such that $\psi_i(\omega_i) = O$, where O is the origin and $\psi_i(\ell_i \setminus \sigma)$ is a ray starting from O. In the opposite case ℓ_i is called wild. It follows from a criterion in [1] that the tameness of ℓ_i is equivalent to the existence of a smooth 3-ball B_i around ω_i in any neighborhood of ω_i such that $\ell_i \cap \partial B_i$ consists of exactly one point. Using lemma 4.1 from [3] it is possible to make this criterion more precise in our dynamical setting: ℓ_i is tame if and only if there is 3-ball B_{ω_i} such that $\omega_i \in f(B_{\omega_i}) \subset \text{int} B_{\omega_i} \subset W^s(\omega_i)$ and $\ell_i \cap \partial B_{\omega_i}$ consists of exactly one point.

It was proved in [3] that, for every diffeomorphism $f \in G_4$, at least one separatrix (ℓ_1 say) is tame. It was also shown that the topological classification of diffeomorphisms from G_4 is reduced to the embedding classifications of the separatrices ℓ_2; hence there are infinitely many diffeomorphisms from G_4 which are not topologically conjugate.

To characterize a type of embedding of ℓ_2 we introduce some special Heegaard splitting of S^3. Let us recall that a three-dimensional orientable manifold is a handlebody of genus $g \geq 0$ if it is obtained from a 3-ball by an orientation reversing identification of g pairs of pairwise disjoint 2-discs in its boundary. The boundary of such a handlebody is an orientable surface of genus g.

Let $P^+ \subset S^3$ be a handlebody of genus g such that $P^- = S^3 \setminus \text{int} P^+$ is a handlebody (necessarily of the same genus as P^+). Then the pair (P^+, P^-) is a Heegaard splitting of genus g of S^3 with Heegaard surface $S = \partial P^+ = \partial P^-.$

Definition 1.2 A Heegaard splitting (P^+, P^-) of S^3 is said to be adapted to $f \in G_4$, or f-adapted, if:

- $a)$ $W^u(\sigma) \subset f(P^+) \subset \text{int} P^+$;
- $b)$ $W^s(\sigma)$ intersects ∂P^+ transversally and $W^s(\sigma) \cap P^+$ consists of a unique 2-disc.

An f-adapted Heegaard splitting $S^3 = P^+ \cup P^-$ is said to be minimal if its genus is minimal among all f-adapted splittings.

For each integer $k \geq 0$ we denote by $G_{4,k}$ the set of diffeomorphisms $f \in G_4$ for which the minimal f-adapted Heegaard splitting has genus k. It is easily seen that, for each $f \in G_{4,0}, \ell_2$ is tame and, according to [3], f possesses an energy function. Conversely any diffeomorphism in $G_{4,k}$, $k > 0$, has no energy function (see [3]). Figure 1 shows the phase portrait of a diffeomorphism $G_{4,1}$. The main result of this paper is the following.

Theorem 1 Every quasi-energy function for a diffeomorphism $f \in G_{4,1}$ has exactly six critical points.
2 Recollection of Morse theory

According to Milnor ([6], section 3), we use the following definitions.

A compact \((n + 1)\)-dimensional cobordism is a triad \((W, L_0, L_1)\) where \(L_0\) and \(L_1\) are closed manifolds of dimension \(n\) and \(W\) is a compact \((n + 1)\)-dimensional manifold whose boundary consists of the disjoint union \(L_0 \cup L_1\). It is an elementary cobordism when it possesses a Morse function \(\varphi : W \to [0, 1]\) with only one critical point and such that \(\varphi^{-1}(i) = L_i\) for \(i = 0, 1\). When the index of the unique critical point is \(r\), one speaks of an elementary cobordism of index \(r\).

In this situation, \(L_1\) is obtained from \(L_0\) by a surgery of index \(r\), that is: there is an embedding \(h : S^{r-1} \times D^{n-r+1} \to L_0\) such that \(L_1\) is diffeomorphic to the manifold obtained from \(L_0\) by removing the interior of the image of \(h\) and gluing \(D^r \times S^{n-r}\), or

\[
L_1 \cong D^r \times S^{n-r} \bigcup_{h|_{pr-1 \times S^{n-r}}} L_0 \setminus \text{int} (h(S^{r-1} \times D^{n-r+1})) .
\]

Conversely, the following statement holds (see [6], Theorem 3.12):

Statement 2.1 If \(L_1\) is obtained from \(L_0\) by a surgery of index \(r\), then there exists an elementary cobordism \((W, L_0, L_1)\) of index \(r\).

On figure 3 it is seen a surgery of index 1 from the 2-sphere to the 2-torus with some level sets of a Morse function on the corresponding elementary cobordism.

Finally, we recall the weak Morse inequalities (see [5], Theorem 5.2).
Statement 2.2 Let M^n be a closed manifold, $\varphi : M^n \to \mathbb{R}$ be a Morse function, C_q be the number of critical points of index q and $\beta_q(M^n)$ be the q-th Betti number of the manifold M^n. Then $\beta_q(M^n) \leq C_q$ and the Euler characteristic $\chi(M^n) \equiv \sum_{q=0}^{n} (-1)^q \beta_q(M^n)$ equals $\sum_{q=0}^{n} (-1)^q C_q$.

3 Proof of Theorem [1]

Let f be a Morse-Smale diffeomorphism of the 3-sphere belonging to $G_{4,1}$. As the number of critical points of any Morse function on a closed 3-manifold is even (it follows from statement 2.2) and greater than four (as $\text{Per}(f) \subset \text{Cr}(\varphi)$ and ℓ_2 is wild) then, for proving theorem 1, it is enough to construct a Lyapunov function with six critical points.

3.1 Auxiliary statements

For the proof of the following statements 3.1 and 3.2 we refer to [3], lemma 2.2 and lemma 4.2.

Statement 3.1 Let p be a fixed point of a Morse-Smale diffeomorphism $f : M^n \to M^n$ such that $\dim W^u(p) = q$. Then, in some neighborhood U_p of p, there exist local coordinates x_1, \ldots, x_n vanishing at p and an energy function $\varphi_p : U_p \to \mathbb{R}$ such that

$$
\varphi_p(x_1, \ldots, x_n) = q - x_1^2 - \ldots - x_q^2 + x_{q+1}^2 + \ldots + x_n^2
$$

and $(TW^u(p) \cap U_p) \subset Ox_1 \ldots x_q$, $(TW^s(p) \cap U_p) \subset Ox_{q+1} \ldots x_n$.
Statement 3.2 Let \(\omega \) be a fixed sink of a Morse-Smale diffeomorphism \(f : M^3 \to M^3 \) and \(B_\omega \) be a 3-ball with boundary \(S_\omega \) such that \(\omega \in f(B_\omega) \subset \text{int} \ B_\omega \subset W^s(\omega) \). Then there exists an energy function \(\varphi_{B_\omega} : B_\omega \to \mathbb{R} \) for \(f \) having \(S_\omega \) as a level set.

Lemma 3.3 Let \(\omega \) be a fixed sink of a Morse-Smale diffeomorphism \(f : M^3 \to M^3 \) and \(Q_\omega \) be a solid torus such that \(\omega \in f(Q_\omega) \subset \text{int} \ Q_\omega \subset W^s(\omega) \). Then there exists a 3-ball \(B_\omega \) such that \(f(Q_\omega) \subset B_\omega \subset \text{int} \ Q_\omega \).

Proof: Let \(D_0 \) be a meridian disk in \(Q_\omega \) such that \(\omega \notin D_0 \). As \(Q_\omega \subset W^s(\omega) \) there is an integer \(N \) such that \(f^n(Q_\omega) \cap D_0 = \emptyset \) for every \(n > N \). We may also assume that \(D_0 \) is transversal to \(G = \bigcup_{n \in \mathbb{Z}} f^n(\partial Q_\omega) \), and hence \(G \cap \text{int} \ D_0 \) consists of a finite family \(C_{D_0} \) of intersection curves. Each intersection curve \(c \in C_{D_0} \) belongs to \(f^k(\partial Q_\omega) \) for some integer \(k \in \{1, \ldots, N\} \). There are two cases: (1) \(c \) bounds a disk on \(f^k(\partial Q_\omega) \); (2) \(c \) does not bound a disk on \(f^k(\partial Q_\omega) \). Let us decompose \(C_{D_0} \) as union of two pairwise disjoint parts \(C^1_{D_0} \) and \(C^2_{D_0} \) consisting of curves with property (1) or (2), accordingly.

Let us show that there is a meridian disk \(D_1 \) in \(Q_\omega \) such that \(D_1 \) is transversal to \(G \) and \(G \cap \text{int} \ D_1 \) consists of family \(C_{D_1} = C^2_{D_0} \) of intersection curves. If \(C^1_{D_0} = \emptyset \) then \(D_1 = D_0 \). In the opposite case for any curve \(c \in C^1_{D_0} \) denote by \(d_c \) the disk on \(f^k(\partial Q_\omega) \) such that \(\partial d_c = c \). Notice that \(d_c \) does not contain a curve from the family \(C^2_{D_0} \). Then there is \(c \in C_{D_1} \) which is innermost on \(f^k(\partial Q_\omega) \) in the sense that the interior of \(d_c \) contains no intersection curves from \(C_{D_0} \). For such a curve \(c \) denote \(e_c \) the disk on \(D_0 \) such that \(\partial e_c = c \). As \(\text{int} \ Q_\omega \setminus D_0 \) is an open 3-ball then \(e_c \cup d_c \) bounds a unique 3-ball \(b_c \subset \text{int} \ Q_\omega \). Set \(D'_c = (D_0 \setminus e_c) \cup d_c \). There is a smooth approximation \(D_c \) of \(D'_c \) such that \(D_c \) is a meridian disk on \(Q_\omega \). \(D_c \) is transversal to \(G \). Moreover \(G \cap \text{int} \ D_c \) consists of a family \(C_{D_c} \) of intersection curves having less elements than \(C_{D_0} \); indeed, \(d_c \) disappeared and also all curves from \(C_{D_0} \) lying in \(\text{int} \ e_c \). We will repeat this process until getting a meridian disk \(D_1 \) with the required property.

Now let \(c \in C_{D_1} \), \(c \in f^k(\partial Q_\omega) \). Denote \(e_c \) the disk that \(c \) bounds in \(D_1 \). Let us choose \(c \) innermost in \(D_1 \) in the sense that the interior of \(e_c \) contains no intersection curves from \(C_{D_1} \). There are two cases: (a) \(e_c \subset f^k(Q_\omega) \) and (b) \(\text{int} \ e_c \cap f^k(Q_\omega) = \emptyset \).

In case (a) \(e_c \) is a meridian disk of \(f^k(Q_\omega) \) and \(D = f^{-k}(e_c) \) is a meridian disks in \(Q_\omega \) such that \(f(Q_\omega) \cap D = \emptyset \). Indeed, by construction \(\text{int} \ e_c \cap G = \emptyset \), hence \(\text{int} \ D \cap G = \emptyset \). Thus we can find the required 3-ball \(B_\omega \) inside \(\text{int} \ Q_\omega \setminus D_1 \).

In case (b) there is a tubular neighborhood \(V(e_c) \subset \text{int} \ Q_\omega \) of the disk \(e_c \) such that \(G \cap \text{int} \ V(e_c) = \emptyset \) and \(B_\omega = f^k(Q_\omega) \cup V(e_c) \) is 3-ball. Then \(f^k(Q_\omega) \subset B_k \subset \text{int} \ f^{k-1}(Q_\omega) \). Thus \(B_\omega = f^{1-k}(B_k) \) is the required 3-ball.

3.2 Construction of a quasi-energy function for a diffeomorphism \(f \in G_{4,1} \)

As a similar construction was done in section 4.3 of [3], we only give a sketch of it below.

1. Construct an energy function \(\varphi_p : U_p \to \mathbb{R} \) near each fixed point \(p \) of \(f \) as in statement 3.1.
2. By definition of the class $G_{4,1}$, for each $f \in G_{4,1}$ there is a solid torus P^+ belonging to a Heegaard splitting (P^+, P^-) of S^3 and such that:

a) $\overline{W^u(\sigma)} \subset f(P^+) \subset \text{int } P^+$;

b) $W^s(\sigma)$ intersects ∂P^+ transversally and $W^s(\sigma) \cap P^+$ consists of a unique 2-disk.

As $S^3 \setminus \overline{W^s(\sigma)}$ is the disjoint union $W^s(\omega_1) \cup W^s(\omega_2)$, then by property b), the disk $P^+ \cap W^s(\sigma)$ is separating in P^+. Moreover there exists a neighborhood of $P^+ \cap W^s(\sigma)$, such that after removing it from P^+ we get a 3-ball P_{ω_1} and solid torus P_{ω_2} with the following properties for each $i = 1, 2$:

i) $\omega_i \in f(P_{\omega_i}) \subset \text{int } P_{\omega_i} \subset W^s(\omega_i)$;

ii) ∂P_{ω_i} is a Heegaard surface and $\ell_i \cap \partial P_{\omega_i}$ consists of exactly one point.

Due to the λ-lemma\(^1\) (see, for example,[7]), replacing P_{ω_i} by $f^{-n}(P_{\omega_i})$ for some $n > 0$ if necessary, we may assume that ∂P_{ω_i} is transversal to the regular part of the critical level set $C := \varphi^{-1}_\sigma(1)$ of the function φ_σ and the intersections $C \cap \partial P_{\omega_i}$ consist of exactly one circle. For $\varepsilon \in (0, \frac{1}{2})$ define H^+_ε as the closure of $\{x \in U_\sigma \mid x \notin (P_{\omega_1} \cup P_{\omega_2}), \varphi_\sigma(x) \leq 1 + \varepsilon\}$ and set $P^+_{\varepsilon} = P_{\omega_1} \cup P_{\omega_2} \cup H^+_\varepsilon$. In the same way as in [8] it is possible to choose $\varepsilon > 0$ such that ∂P_{ω_i} intersects transversally each level set with value in $[1 - \varepsilon, 1 + \varepsilon]$; this intersection consists of one circle. Taking a smoothing Q^+ of P^+_{ε} we have $f(Q^+) \subset \text{int } Q^+$ and $\Sigma := \partial Q^+$ is a Heegaard surface of genus 1. Let Q^- be the closure of $S^3 \setminus \text{int } Q^+$ (see

\(^1\)The λ-lemma claims that $f^{-n}(S_{\omega_i}) \cap U_\sigma$ tends to $\{x_1 = 0\} \cap U_\sigma$ in the C^1 topology when n goes to $+\infty$.}
3. For each \(i = 1, 2 \), let \(\hat{P}_{\omega_i} \) be a handlebody of genus \(i - 1 \) such that \(f(P_{\omega_i}) \subset \hat{P}_{\omega_i} \subset \text{int } P_{\omega_i} \), \(\partial \hat{P}_{\omega_i} \) intersects transversally each level set with value in \([1 - \varepsilon, 1 + \varepsilon]\) along one circle and \(P_{\omega_i} \setminus \text{int } \hat{P}_{\omega_i} \) is diffeomorphic to \(\partial P_{\omega_i} \times [0, 1] \). Define \(d_i \) as the closure of \(\{ x \in U_\sigma \mid x \in (W^s(\omega_i)) \setminus \hat{P}_{\omega_i}, \varphi_\sigma(x) = 1 - \varepsilon \} \). By construction \(d_i \) is a disk whose boundary curve bounds a disk \(D_i \) in \(\partial \hat{P}_{\omega_i} \). We form \(S_i \) by removing the interior of \(D_i \) from \(\partial \hat{P}_{\omega_i} \) and gluing the \(d_i \). Denote \(P(S_i) \) the handlebody of genus \(i - 1 \) bounded by \(S_i \) and containing \(\omega_i \). As in [3] it is possible to choose \(\varepsilon \) such that \(f(P(S_i)) \subset \text{int } P(S_i) \).

Let \(K \) be the domain between \(\partial Q^+ \) and \(S_1 \cup S_2 \). We introduce \(T^+ \), the closure of \(\{ x \in S^3 \mid x \notin (P_{\omega_1} \cup P_{\omega_2}), 1 - \varepsilon \leq \varphi_\sigma(x) \leq 1 + \varepsilon \} \); observe \(T^+ \subset U_\sigma \). We define a function \(\varphi_\kappa : K \to \mathbb{R} \) whose value is \(1 + \varepsilon \) on \(\partial Q^+ \), \(1 - \varepsilon \) on \(S_1 \cup S_2 \), coinciding with \(\varphi_\sigma \) on \(K \cap T^+ \) and without critical points outside \(T^+ \). This last condition is easy to satisfy as the domain in question is a product cobordism. In a similar way to [3], section 4.3, one can check that \(\varphi_\kappa \) is a Morse-Lyapunov function.

4. As \(P(S_1) \) is a 3-ball such that \(\omega_1 \in f(P(S_1)) \subset \text{int } P(S_1) \subset W^s(\omega_1) \), then by statement 3.3 there is an energy function \(\varphi_{P(S_1)} : P(S_1) \to \mathbb{R} \) for \(f \) with \(S_1 \) as a level set with value \(1 - \varepsilon \).

5. As \(P(S_2) \) is a solid torus such that \(\omega_2 \in f(P(S_2)) \subset \text{int } P(S_2) \subset W^s(\omega_2) \), then according to lemma 3.3 there is a 3-ball \(B_{\omega_2} \) such that \(f(P(S_2)) \subset B_{\omega_2} \subset \text{int } P(S_2) \). As in the previous item, there is an energy function \(\varphi_{B_{\omega_2}} : B_{\omega_2} \to \mathbb{R} \) for \(f \) with \(\partial B_{\omega_2} \) as a level set with value \(\frac{1}{2} \).

6. As \(P(S_2) \) is a solid torus, it is obtained from a 3-ball by an orientation reversing identification of a pair of disjoint 2-discs in its boundary; hence the solid torus is the union of a 3-ball and an elementary cobordism of index 1. Since, up to isotopy, there is only one 3-ball in the interior of a solid torus, then \((W_{\omega_2}, \partial B_{\omega_2}, S_2) \) is an elementary cobordism of index 1, where \(W_{\omega_2} = P(S_2) \setminus \text{int } B_{\omega_2} \). Hence \(W_{\omega_2} \) possesses a Morse function \(\varphi_{W_{\omega_2}} \) with only one critical point of index 1 and such that \(\varphi_{W_{\omega_2}}(\partial B_{\omega_2}) = \frac{1}{2}, \varphi_{W_{\omega_2}}(S_2) = 1 - \varepsilon \).

7. Define the smooth function \(\varphi^+ : Q^+ \to \mathbb{R} \) by the formula

\[
\varphi^+(x) = \begin{cases}
\varphi_\kappa(x), & x \in K; \\
\varphi_{P(S_1)}(x), & x \in P(S_1); \\
\varphi_{B_{\omega_2}}(x), & x \in B_{\omega_2}; \\
\varphi_{W_{\omega_2}}(x), & x \in W_{\omega_2}.
\end{cases}
\]

Then \(\varphi^+ \) is a Morse-Lyapunov function for \(f|_{Q^+} \) with one additional critical point.

8. By the construction \(Q^- \) is a solid torus such that \(\alpha \in f^{-1}(Q^-) \subset \text{int } Q^- \subset W^u(\alpha) \). Since \(\alpha \) is a sink for \(f^{-1} \) then, as in item 4, there is a 3-ball \(B_\alpha \) such that \(f^{-1}(Q^-) \subset B_\alpha \subset \text{int } Q^- \) and an energy function \(\varphi_{B_\alpha} : B_\alpha \to \mathbb{R} \) for \(f^{-1} \) with \(\partial B_\alpha \) as a level set of value \(\frac{1}{2} \).
9. Similarly to item 5, ∂Q^- is obtained from ∂B_α by a surgery of index 1. Therefore $(W_\alpha, \partial Q^-, \partial B_\alpha)$ is an elementary cobordism of index 1, where $W_\alpha = Q^- \setminus \text{int } B_\alpha$. Hence, W_α possesses a Morse function φ_{w_α} with only one critical point of index 1. We may choose $\varphi_{w_\alpha}(\partial B_\alpha) = \frac{1}{2}$, $\varphi_{w_\alpha}(\partial Q^-) = 2 - \varepsilon$.

10. Define the smooth function $\varphi^- : Q^- \to \mathbb{R}$ by the formula

$$
\varphi^-(x) = \begin{cases}
3 - \varphi_{B_\alpha}(x), & x \in \varphi_{B_\alpha}; \\
3 - \varphi_{W_\alpha}(x), & x \in \varphi_{W_\alpha}.
\end{cases}
$$

Then φ^- is a Morse-Lyapunov function for $f|_{Q^-}$ with one additional critical point.

11. The function $\varphi : S^3 \to \mathbb{R}$ defined by $\varphi|_{Q^+} = \varphi^+$ and $\varphi|_{Q^-} = \varphi^-$ is the required Morse-Lyapunov function for the diffeomorphism f with exactly six critical points.

References

[1] E. Artin, R. Fox, *Some wild cells and spheres in three-dimensional space*, Annals of Math. (1948) 49, 979-990.

[2] Ch. Bonatti, V. Grines, *Knots as topological invariant for gradient-like diffeomorphisms of the sphere S^3*, Journal of Dynamical and Control Systems (2000) 6, 579-602.

[3] V. Grines, F. Laudenbach, O. Pochinka, *Self-indexing energy function for Morse-Smale diffeomorphisms on 3-manifolds*, submitted to published.

[4] O.G. Harrold, H.C. Griffith, E.E. Posey, *A characterization of tame curves in three-space*, Trans. Amer. Math. Soc. (1955) 79, 12-34.

[5] J. Milnor, *Morse theory*, Princeton University Press, 1963.

[6] J. Milnor, *Lectures on the h-cobordism Theorem*, Princeton University Press, 1965.

[7] J. Palis, *On Morse-Smale dynamical systems*, Topology (1969) 8, 385-404.

[8] D. Pixton, *Wild unstable manifolds*, Topology (1977) 16, 167-172.

[9] S. Smale, *Differentiable dynamical systems*, Bull. Amer. Math. Soc. (1967) 73, 747-817.