Abstract

We present a way to implement term rewriting on a GPU. We do this by letting the GPU repeatedly
perform a massively parallel evaluation of all subterms. We find that if the term rewrite systems
exhibit sufficient internal parallelism, GPU rewriting substantially outperforms the CPU. Since
we expect that our implementation can be further optimized, and because in any case GPUs will
become much more powerful in the future, this suggests that GPUs are an interesting platform for
term rewriting. As term rewriting can be viewed as a universal programming language, this also
opens a route towards programming GPUs by term rewriting, especially for irregular computations.

1 Introduction

Graphics Processing Units (GPUs) increase in computational power much faster than the
classical CPUs. GPUs are optimized for the highly parallel and regular computations that
occur in graphics processing, but they become more and more interesting for general purpose
computations (for instance, see [3, 6, 22]). It is not without reason that modern super
computers have large banks of graphical processors installed in them [10, 24]. GPU designers
realize this and make GPUs increasingly suitable for irregular computations. For instance,
they have added improved caches and atomic operations.

This raises the question to what extent the GPU can be used for more irregular computa-
tional tasks. The main limitation is that a highly parallel algorithm is needed to fully utilize
the power of the GPU. For irregular problems it is the programmer’s task to recognize the
regularities in problems over irregular data structures such as graphs.

The evaluation of term rewriting systems (TRSs), is an irregular problem that is interesting
for the formal methods community. For example term rewriting increases the expressiveness
of models in the area of model checking [4] and the performance of term rewriting is a long-standing and important objective [8]. We recall that a term rewriting system that enjoys the Church-Rosser property is parallel in nature, in a sense that rewriting can take place at any point in the system and the order in which it takes place does not influence the outcome. This suggests a very simple model for parallel evaluation. Every processor can independently work on its own section of the system and do its evaluation there. In this paper, we investigate whether and under which conditions term rewriting systems can be evaluated effectively on GPUs. We experimented with different compilation schemes from rewrite systems to GPU code and present here one where all processors evaluate all subterms in parallel. This has as drawback that terms that cannot be evaluated still require processing time. Terms can become discarded when being evaluated, and therefore garbage collection is required. All processors are also involved in this.

An earlier approach to inherently evaluate a program in parallel was done in the eighties. The Church-Rosser property for pure functional programs sparked interest from researchers, and the availability of cheap microprocessors made it possible to assemble multiple processors to work on the evaluation of one single functional program. Jones et al. proposed GRIP, a parallel reduction machine design to execute functional programs on multiple microprocessors that communicate using an on-chip bus [19]. At the same time Barendregt et al. proposed the Dutch Parallel Reduction Machine project, that follows a largely similar architecture of many microprocessors communicating over a shared memory bus [2]. Although technically feasible, the impact of these projects was limited, as the number of available processors was too small and the communication overhead too severe to become a serious contender of sequential programming. GPUs offer a different infrastructure, with in the order of a thousand fold more processors and highly integrated on chip communication. Therefore, GPUs are a new and possibly better candidate for parallel evaluation of TRSs.

Besides their use in the formal methods community, a term rewriting system is also a simple, yet universal mechanism for computation [20]. A question that follows is whether this model for computation can be used to express programs for GPUs more easily.

Current approaches for GPU programming are to make a program at a highly abstract level and transform it in a stepwise fashion to an optimal GPU program [13]. Other approaches are to extend languages with notation for array processing tasks that can be sparked off to the GPU. Examples in the functional programming world are Accelerate [10], an embedded array processing language for Haskell, and Futhark [11], a data parallel language which generates code for CUDA. While Futhark and Accelerate make it easier to use the power of the GPU, both approaches are tailored to highly regular problems. Implementing irregular problems over more complicated data structures remains challenging and requires the programmer to translate the problem to the regular structures provided in the language as seen in, for example, [12].

We designed experiments and compared GPU rewriting with CPU rewriting of the same terms. We find that our implementation manages to employ 80% of the bandwidth of the GPU for random accesses. For rewriting, random accesses are the performance bottleneck, and therefore our implementation uses the GPU quite well. For intrinsically parallel rewrite tasks, the GPU outperforms a CPU with up to a factor 10. The experiments also show that if the number of subterms that can be evaluated in parallel is reduced, rewriting slows down quite dramatically. This is due to the fact that individual GPU processors are much slower than a CPU processor and GPU cycles are spent on non-reducible terms.

This leads us to the following conclusion. Term rewriting on a GPU certainly has potential. Although our implementation performs close to random access peak bandwidth, this does not
mean that performance cannot be improved. It does mean that future optimizations need to focus on increasing regularity in the implementation, especially in memory access patterns, for example by grouping together similar terms, or techniques such as kernel unrolling in combination with organizing terms such that subterms are close to the parent terms as proposed by Nasre et al. [17]. Furthermore, we expect that GPUs quickly become faster, in particular for applications with random accesses.

However, we also observe that when the degree of parallelism in a term is reduced, it is better to let the CPU do the work. This calls for a hybrid approach where it is dynamically decided whether a term is to be evaluated on the CPU or on the GPU depending on the number of subterms that need to be rewritten. This is future work. We also see that designing inherently parallel rewriting systems is an important skill that we must learn to master.

Although much work lies ahead of us, we conclude that using GPUs to solve term rewriting processes is promising. It allows for abstract programming independent of the hardware details of GPUs, and it offers the potential of evaluating appropriate rewrite systems at least one order, and in the future orders of magnitude faster than a CPU.

Related to this work is the work of Nasre et al. [18] where parallel graph mutation and rewriting programs for both GPUs and CPUs are studied. In particular they study Delaunay mesh refinement (DMR) and points-to-analysis (PTA). PTA is related to term rewriting in a sense that nodes do simple rule based computations, but it is different in the sense that no new nodes are created. In DMR new nodes and edges are created but the calculations are done in a very different manner. The term rewriting in this work can be seen as a special case of graph rewriting, where every symbol is seen as a node and the subterms as the edges.

2 Preliminaries

We introduce term rewriting, what it means to apply rewrite rules, and an overview of the CUDA GPU computing model.

Term rewrite systems

A Term Rewrite System (TRS) is a set of rules. Each rule is a pair of terms, namely a left hand side and a right hand side. Given an arbitrary term t and a TRS R, rewriting means to replace occurrences in t of the left hand side of a rule in R by the corresponding right hand side, and then repeating the process on the result.

Terms are constructed from a set of variables V and a set of function symbols F. A function symbol is applied to a predefined number of arguments or subterms. We refer to this number as the \textit{arity} of the function symbol, and denote the arity of a function symbol f by $\text{ar}(f)$. If $\text{ar}(f) = 0$, we say f is a \textit{constant}. Together, the sets V and F constitute the \textit{signature} $\Sigma = (F, V)$ of a TRS. The set of terms T_Σ over a signature Σ is inductively defined as the smallest set satisfying:

- If $t \in V$, then $t \in T_\Sigma$;
- If $f \in F$, and $t_i \in T_\Sigma$ for $1 \leq i \leq \text{ar}(f)$, then $f(t_1, \ldots, t_{\text{ar}(f)}) \in T_\Sigma$.

With $\text{sub}_i(t)$, we refer to the i-th subterm of term t. The \textit{head symbol} of a term t is defined as $\text{hs}(f(t_1, \ldots, t_k)) = f$. If $t \in V$, $\text{hs}(t)$ is undefined. With $\text{Var}(t)$, we refer to the set of variables occurring in term t. It is defined as follows:

$$\text{Var}(t) = \begin{cases} \{t\} & \text{if } t \in V; \\ \bigcup_{1 \leq i \leq \text{ar}(t)} \text{Var}(t_i) & \text{if } t = f(t_1, \ldots, t_{\text{ar}(f)}). \end{cases}$$
Term Rewriting on GPUs

Listing 1	A TRS for merge sort in a binary tree of lists			
sort	List = Nil()	Cons(Nat, List)	Sort(List)	...;
var	X : Nat; Y : Nat; L : List; M : List;			
eqn	Merge(Nil(), M) = M;			
	Merge(L, Nil()) = L;			
	Merge(Cons(X, L), Cons(Y, M)) = Merge2(Lt(X,Y), X, L, Y, M);			
	Merge2(True(), X, L, Y, M) = Cons(X, Merge(L, Cons(Y, M)));			
	Merge2(False(), X, L, Y, M) = Cons(Y, Merge(Cons(X, L), M));			
input	Node(Leaf(Sort(...))), Leaf(Sort(...)), ...;			

Definition 1 (Term rewrite system). A TRS R over a signature $Σ$ is a set of pairs of terms, i.e., $R ⊆ T_Σ × T_Σ$. Each pair $(l, r) ∈ R$ is called a rule, and is typically denoted by $l → r$. Each rule $(l, r) ∈ R$ satisfies two properties: (1) $l, r ∈ V$, and (2) $Var(r) ⊆ Var(l)$.

Besides the two properties for each rule $(l, r) ∈ R$ stated in Definition 1, we assume that each variable $v ∈ V$ occurs at most once in l. A TRS with rules not satisfying this assumption can be rewritten to one that does not contain such rules. Given a rule $l → r$, we refer to l as the left-hand-side (LHS) and to r as the right-hand-side (RHS).

Definition 2 (substitution). For a TRS R over a signature $Σ = (F, V)$, a substitution $σ : V → T_Σ$ maps variables to terms. We write $σt$ for a substitution $σ$ applied to a term $t ∈ T_Σ$, defined as $σ(t)$ if $t ∈ V$, and $f(t_1σ, ..., t_{ar(f)}σ)$ if $t = f(t_1, ..., t_{ar(f)})$.

Substitutions allow for a match between a term t and rule $l → r$. A rule $l → r$ is said to match t if a substitution $σ$ exists such that $lσ = t$. If such a $σ$ exists, then we say that t reduces to $rσ$. A match $lσ$ of a rewrite rule $l → r$ is also called a redex.

A term t is in normal form, denoted by $nf(t)$, iff its subterms are in normal form and there is no rule $(l, r) ∈ R$ and substitution $σ$ such that $t = lσ$.

As an example, Listing 1 presents a simplified version of a merge sort rewrite system with an input tree of depth 2 consisting of empty lists (Nil). After the sort keyword, a list is given of all function symbols. After the keyword eqn, rewrite rules are given in the form LHS = RHS. The set of variables is given as a list after the var keyword. The input section defines the input term. In this example, all rewrite rules for functions on (Peano) numbers and Booleans are omitted, such as the less than (Lt) rule for natural numbers and the Even and Odd rules for lists, which create lists consisting of all elements at even and odd positions in the given list, respectively. The potential for parallel rewriting is implicit and can be seen, for instance, in the Sort2 rule. The two arguments of Merge in the RHS of Sort2 can be evaluated in parallel. Note that Nil(), Zero() and $S(Nat)$ are in normal form, but other terms may not be. The complete TRS is given in Appendix A.

A TRS is terminating iff there are no infinite reductions possible. For instance, the rule $f(a) → f(f(a))$ leads to an infinite reduction. In general, determining whether a given TRS is terminating is an undecidable problem [14].

The computation of a term in a terminating TRS is the repeated application of rewrite rules until the term is in normal form. Such a computation is also called a derivation. Note that the result of a derivation may be non-deterministically produced. Consider, for example,
A derivation procedure for term t, and a rewrite procedure for head symbol f

```plaintext
procedure derive ($t$, $R$):
    while $\neg nf(t)$ do
        for $i \in \{1, \ldots, ar(t)\}$ do
            if $\neg nf(sub_i(t))$ then
                derive ($sub_i(t)$);
        $t \leftarrow rewrite_{hs}(t, R)$

procedure rewrite ($f$, $t$, $R$):
    $rewritten \leftarrow false$
    for $(l \rightarrow r) \in \{(l, r) \in R \mid hs(l) = f\}$ do
        if $\exists \sigma : V \rightarrow T \Sigma . l \sigma = t$ then
            $t \leftarrow r \sigma$; $rewritten \leftarrow true$; break
    if $\neg rewritten$ then $nf(t) \leftarrow true$
    return $t$
```

the rewrite rule $r = (f(f(x)) \rightarrow a)$ and the term $t = f(f(a))$. Applying r on t may result in either the normal form a or $f(a)$, depending on the chosen reduction. To make rewriting deterministic, a rewrite strategy is needed. We focus on the inner-most strategy, which gives priority to selecting redexes that do not contain other redexes. In the example, this means that the LHS of r is matched on the inner $f(f(a))$ of t, leading to $f(a)$.

Algorithmically, (inner-most) rewriting is typically performed using recursion. Such an algorithm is presented in Listing 2. As long as a term t is not in normal form (line 2), it is first checked whether all its subterms are in normal form (lines 3-4). For each subterm not in normal form, `derive` is called recursively (line 5), by which the inner-most rewriting strategy is achieved. If the subterms are checked sequentially from left to right, we have left-most inner-most rewriting. A parallel rewriter may check the subterms in parallel, since inner-most redexes do not contain other redexes. Once all subterms are in normal form, the procedure `rewrite_{hs}(t)` is called (line 6).

For each head symbol of the TRS, we have a dedicated rewrite procedure. The structure of these procedures is also given in Listing 2. The variable `rewritten` is used to keep track of whether a rewrite step has been performed (line 9). For each rewrite rule (l, r) with $hs(l) = f$, it is checked whether a match between l and t exists, and if so, $l \rightarrow r$ is applied on t (lines 10-12). If no rewrite rule was applicable, it is concluded that t is in normal form (line 13).

GPU basics

In this paper, we focus on NVIDIA GPU architectures and the Compute Unified Device Architecture (CUDA) interface. However, our algorithms can be straightforwardly applied to any GPU architecture with a high degree of hardware multithreading and the SIMT (Single Instruction Multiple Threads) model.

CUDA is NVIDIA's interface to program GPUs. It extends the C++ programming language. CUDA includes special declarations to explicitly place variables in the various types of memory (see Figure 1), predefined keywords to refer to the IDs of individual threads and blocks of threads, synchronisation statements, a run time API for memory management, and statements to define and launch GPU functions, known as kernels. In this section we give a brief overview of CUDA. More details can be found in, for instance, [5].

A GPU contains a set of streaming multiprocessors (SMs), and each of those contains a set of streaming processors (SPs), see Figure 1. The NVIDIA TURING TITAN RTX, which we used for our experiments, has 72 SMs, each having 64 SPs, which is in total 4608 SPs.

A CUDA program consists of a host program running on the CPU and a collection of CUDA kernels. Kernels describe the parallel parts of the program and are launched from the host to be executed many times in parallel by different threads on the GPU. It is required to
specify the number of threads on a kernel launch and all threads execute the same kernel. Conceptually, each thread is executed by an SP. In general, GPU threads are grouped in blocks of a predefined size, usually a power of two. A block of threads is assigned to a multiprocessor.

Threads have access to different kinds of memory. Each thread has a number of on-chip registers to store thread-local data. It allow fast access. All the threads have access to the global memory which is large (on the Titan RTX it is 24 GB), but slow, since it is off-chip. The host has read and write access to the global memory, which allows this memory to be used to provide the input for, and read the output of, a kernel execution.

Threads are executed using the SIMT model. This means that each thread is executed independently with its own instruction address and local state (stored in its registers), but execution is organised in groups of 32 threads, called warps. The threads in a warp execute instructions in lock-step, i.e. they share a program counter. If the memory accesses of threads in a warp can be grouped together physically, i.e. if the accesses are coalesced, then the data can be obtained using a single fetch, which greatly improves the bandwidth compared to fetching physically separate data.

3 A GPU algorithm for term rewriting

In this section, we address how a GPU can perform inner-most term rewriting to get the terms of a given TRS in normal form. Due to the different strengths and weaknesses of GPUs compared to CPUs, this poses two main challenges:

1. On a GPU, many threads (in the order of thousands) should be able to contribute to the computation;
2. GPUs are not very suitable for recursive algorithms. It is strongly advised to avoid recursion because each thread maintains its own stack requiring a large amount of stack space that needs to be allocated in slow global memory.

We decided to develop a so-called topology-driven algorithm [17], as opposed to a data-driven one. Unlike for CPUs, topology-driven algorithms are often developed for GPUs, in particular for irregular programs with complex data structures such as trees and graphs. In a topology-driven GPU algorithm, each GPU thread is assigned a particular data element, such as a graph node, and all threads repeatedly apply the same operator on their respective element. This is done until a fix-point has been reached, i.e., no thread can transform its element anymore using the operator. In many iterations of the computation, it is expected that the majority of threads will not be able to apply the operator, but on a GPU this is counterbalanced by the fact that many threads are running, making it relatively fast to check all elements in each iteration. In contrast, in a data-driven algorithm, typically used for CPUs, the elements that need processing are repeatedly collected in a queue before the operator is applied on them. Although this avoids checking all elements repeatedly, on a
GPU, having thousands of threads together maintaining such a queue is typically a major source for memory contention.

In our algorithm, each thread is assigned a term, or more specifically a location where a term may be stored. As derivations are applied on a TRS, new terms may be created and some terms may be deleted. The algorithm needs to account for the number of terms dynamically changing between iterations.

First, we discuss how TRSs are represented on a GPU. Typically, GPU data structures, such as matrices and graphs, are array-based, and we also store a TRS in a collection of arrays. Each term is associated with a unique index \(i \), and each of its attributes can be retrieved by accessing the \(i \)-th element of one of the arrays. This encourages coalesced memory access for improved bandwidth: when all threads need to retrieve the head symbol of their term, for instance, they will access consecutive elements of the array that stores head symbols. We introduce the following GPU data structures that reside in global memory:

- Boolean arrays \(\text{nf} \) and \(\text{nf}_\text{read} \) keep track of which terms are in normal form, the first is used for writing and the second for reading;
- Integer variable \(\text{n} \) provides the current number of terms;
- Array \(\text{hss} \) stores the head symbols of all the terms;
- Constant \(\text{maxarity} \) refers to the highest arity among the function symbols in \(F \);
- Arrays \(\text{arg}_0, \ldots, \text{arg}_{\text{maxarity}-1} \) store the indices of the subterms of each term. Index 0 is never used. If \(\text{arg}_j[i] = 0 \), for some \(0 \leq j < \text{maxarity} - 1 \), then the term stored at index \(i \) has arity \(j - 1 \), and all elements \(\text{arg}_j[i], \ldots, \text{arg}_{\text{maxarity}-1}[i] \) should be ignored.
- Boolean flag \(\text{done} \) indicates whether more rewriting iterations are needed;
- Integer arrays \(\text{refcounts}, \text{refcounts}_\text{read} \) are used to write and read the number of references to each term, respectively. When a term is not referenced, it can be deleted.

Since GPUs have relatively little memory, some form of garbage collection is necessary to be able to reuse memory occupied by deleted terms. For this reason, we have the following additional data structures:

- Boolean flag \(\text{garbage}\text{_collecting} \) indicates whether garbage collecting is needed;
- Integer array \(\text{free_indices} \) stores indices that can be reused for new terms;
- Integer variables \(\text{next_free_begin}, \text{next_free_end} \) provide indices to remove elements from the front of \(\text{free_indices} \) and add elements at the end, respectively;
- Integer variable \(\text{next_fresh} \) provides a new index, greater than the largest index currently occupied by a term in the term arrays. There, a new term can be inserted.

Listing 3 presents the main loop of the algorithm, which is executed by the CPU. In it, two GPU kernels are repeatedly called until a fix-point has been reached, indicated by \(\text{done} \). To keep track of the progress, there are CPU counterparts of several variables, labeled with the ‘h’ prefix. Copying data between CPU and GPU memory is represented by \(\leftarrow \).

While the rewriting is not finished (line 2), the GPU \(\text{done} \) flag is set to \text{false} (line 3), after which the number of thread blocks is determined. As the number of threads should be equal to the current number of terms, \(n \) is divided by the preset number of threads per block (\text{blockSize}). After that, \(\text{refcounts} \) is copied to \(\text{refcounts_read} \), and \(\text{nf} \) to \(\text{nf_read} \). The reading and writing of the reference counters and normal form state is separated by the use of two arrays, to avoid newly created terms already being rewritten before they have been completely stored in memory. The \text{derive} kernel is then launched for the selected number of blocks (line 7). This kernel, shown in Listing 4, is discussed later. In the kernel, the GPU threads perform one rewrite iteration. Then, at lines 8-12, \(n \) is updated in case the number
of terms has increased. The next\(_{\text{fresh}}\) variable is used to count the number of new terms placed at fresh indices, i.e., indices larger than \(n\) when derive was launched.

Finally, with garbage\(_{\text{collecting}}\), it is monitored whether some indices of deleted terms need to be gathered in the free\(_{\text{indices}}\) list. This gathering is done by the collect\(_{\text{free_indices}}\) kernel: if a thread detects that the reference counter of its term is 0, it decrements the counters of the subterms and the index to the term is added to the free\(_{\text{indices}}\) list. Atomic memory accesses are used to synchronise this. Notice that free\(_{\text{indices}}\) is in device memory and no unnecessary data is transferred back and forth between host and device.

In Listing 4, the GPU derive kernel is described. When the kernel is launched for numBlocks\(\times\)blockSize threads, each of those threads executes the kernel to process its term. The global ID of each thread is tid. Some threads may not actually have a term to look at (if \(n\) is not divisible by blockSize), therefore they first check whether there is a corresponding term (line 2). If so, the value of the reference counter for the term is read (line 3), and if it is non-zero, a check for rewriting is required. Rewriting is needed if the term is not in normal form (line 5) and if all its subterms are in normal form. The latter condition is briefly referred to at line 7. To avoid repetitive checking of subterms in each execution of the derive kernel, every thread keeps track of the last subterm it checked in the previous
iteration. If rewriting is required, the suitable rewrite function is called, depending on the head symbol of the term (lines 8-12). If no function is applicable, the term is in normal form (line 11). Finally, done is set to false to indicate that another rewrite iteration is required. Alternatively, if the reference counter is 0, the garbage_collecting flag is set. This causes the collect_free_indices kernel to be launched after the derive kernel (see Listing 3).

Given a TRS, the rewrite functions are automatically generated by a code generator we developed, to directly encode the rewriting in CUDA code. Listing 5 provides example code for the rewrite rule Plus(Zero, X) → X, which expresses that adding 0 to some number X results in X. Applicability of this rule is checked by the rewrite function, which may also involve other rules for terms with head symbol Plus. First, to check applicability, the head symbol of the first subterm is retrieved, and with it, the index to the second subterm is retrieved (line 5). The rewriting procedure should ensure that the term at position tid is replaced by X. When constructing terms, sharing of subterms is applied whenever possible. For instance, if a term F(X,X) needs to be created, the index to X would be used twice in the new term, to make sure both subterm entries point to the same term in physical memory. When rewriting the term itself, however, as in the example, we have to copy the attributes of X to the location tid of the various arrays, to ensure that all terms referencing term tid are correctly updated.

This copying of terms is done by first copying the head symbol (lines 6-7), and then the indices of the subterms, which is done at line 8 by the function copy_term_args: it copies the number of subterms relevant for a term with the given head symbol, and increments the reference counters of those subterms. Next, the reference counters of Zero and X are atomically decremented (since the term Plus(Zero, X) is removed) (lines 9-10), and we know that the resulting term is in normal form, since X is in normal form (line 11).
Table 1: Comparison of the CPU and GPU.

Type	Year	Name	Mem (GB)	BW aligned (GiB/s)	BW random (GiB/s)
CPU	2017	Intel Core i5-7600	32	25.7	0.607
GPU	2018	NVIDIA Titan RTX	24	555	22.8

Finally, we show how new indices are retrieved whenever a new term needs to be created. In the example of Listing 5, this is not needed, as the RHS of the rule has no new subterms, but for a rule such as $\text{Plus}(S(0), X) \rightarrow S(X)$, with S representing the successor function (i.e., $S(0)$ represents 1) a new term $S(X)$ needs to be created, with its only subterm entry pointing to the term referenced by the second subterm entry of the LHS.

Listing 6 shows how we retrieve a new index. Due to garbage collection, a number of indices may be available in the first n entries of the input arrays which are currently used. These are stored in the \texttt{free_indices} array, from index \texttt{next_free_begin} to index \texttt{next_free_end}. If this array is not empty (line 5), \texttt{next_free_begin} is atomically incremented to claim the next index in the \texttt{free_indices} array (line 6). If this increment was not performed too late (other threads have not since claimed all available indices), the index is stored in \texttt{new_id} (lines 7-9). Otherwise, a new index must be added at the end of the current list of terms. The variable \texttt{next_fresh} is used for this purpose: \texttt{next_fresh} + n can be used as a new index, and \texttt{next_fresh} needs to be incremented for use by another thread.

4 Evaluation

In this section we provide insight into the performance of the GPU rewriter. We do this in two ways: We compare our GPU rewriter with a sequential recursive left-most inner-most rewriter for the CPU (1) and (2) we analyze to what extent we make good use of the GPU resources. Because CPUs and GPUs differ widely in architecture, it is often subject of debate whether a comparison is fair [15]. We therefore include the second way of evaluating.

Table 1 shows a comparison of the used CPU and GPU. CPUs are optimized for latency: finish the program as soon as possible. To achieve this, they have deep cache hierarchies, deep execution pipelines and dedicated logic for branch prediction and extracting parallelism from a serial instruction stream. In contrast, GPUs are optimized for throughput: process as many elements per time unit as possible. For GPUs, parallelism is explicit, one instruction is issued for multiple threads, and the architecture is specifically designed to hide memory latency times by scheduling new warps immediately after a memory access. The differences between architectures are highlighted by the last two columns that show that the bandwidth of the GPU for aligned access is vastly superior to that of the CPU. Even the bandwidth for random accesses on the GPU almost reaches the bandwidth for aligned accesses on the CPU.

We measure the performance of the CPU and GPU rewriter in \textit{rewritten terms per second}. Given a TRS, both the GPU and the CPU rewriter are generated by a Python 2.7 script. The script uses TextX [7] and Jinja 2.11 to parse a TRS and generate a \texttt{rewrite}$_f$ function for every rewritable head symbol f in the TRS. The code generated for the GPU rewriter is CUDA C++ with CUDA platform 10.1. For the CPU rewriter the code generated is in C++. The same \texttt{rewrite}$_f$ functions are used, and thus the rewrite rules are exactly the same and the CPU and GPU implementations rewrite exactly the same number of terms.

We evaluate the GPU rewriter with a TRS for sorting one or more lists of Peano numbers.

\footnote{https://jinja.palletsprojects.com}
Figure 2 Merge sort of 50 elements on the GPU.

Table 2 Performance of the rewrite systems.

Application	CPU rewritten terms/s	GPU rewritten terms/s	Speedup
Merge sort 50	97×10^6	74×10^4	0.76×10^{-4}
Tree merge sort 23.5	113×10^6	387×10^6	3.34
Transformation tree 22	26.5×10^6	3.12×10^9	11.7

with merge sort (see the example in Section 2) and with a TRS that transforms a large number of terms. These TRSs accentuate the capabilities of the GPU and the CPU. Merge sort is a divide-and-conquer algorithm amenable to parallelism, but splitting up and combining lists are highly sequential operations.

Figure 2 shows a merge sort performed on a single list of 50 elements. The width of a red box (too small for Fig. 2(a), see the zoomed in version in Fig. 2(b)) represents the time of a GPU rewrite step (the derive statement on line 7 in Listing 3) whereas the height represents how many terms are rewritten in parallel in this rewrite step. The figure shows that there are long tails of a low degree of parallelism before and after a brief peak of parallelism. Given Amdahl’s law that states that speedup is severely limited with a low degree of parallelism [1], it is clear that merge sort on single lists is not parallel enough for GPUs.

The performance of the GPU of 74×10^4 terms/s versus the CPU 97×10^6 terms/s highlights a different issue, namely Gustafson’s Law [9]: To overcome the overhead of using a highly parallel machine, we need a large problem with a high degree of parallelism to highlight the capabilities of the GPU. In order to benchmark this potential, we use the merge sort TRS applied on multiple lists: The Tree merge sort is given by a binary tree with a list of numbers at every leaf. All these lists are sorted concurrently using the same merge sort as in the previous example. The parallelism is exponential w.r.t. the depth of the tree.

Table 2 shows that the GPU outperforms the CPU more than a factor of three for a binary tree of 23 levels deep of merge sorts of lists of 5 numbers, which translates to sorting approximately 8 million lists. Finally, to understand the true potential of the GPU, we designed the Transformation tree benchmark that expands a binary tree to 22 levels deep (so 4 million leaves) where each leaf is rewritten 26 times. On this benchmark, the GPU rewriter is more than a factor 10 faster than the CPU rewriter, achieving 3.12 billion rewrites per second on average over the complete execution time, but sustaining around 6 billion rewrites per second for half of the execution time (the rest is setting/breaking down the tree).

To understand the performance better we focus on the more realistic Tree merge sort benchmark. Figure 3 shows several graphs for the execution with which we can analyze the performance. Figure 3(a) shows that this rewrite system shows a high degree of parallelism.

2 See Appendix A for a detailed description of the two TRSs.
Table 3 Performance the tree merge sort in terms of bandwidth.

Application	BW random (GiB/s)	BW aligned (GiB/s)	
Tree merge sort	23	18.1	95.7

The bottom two figures highlight to what extent we use the capabilities of the GPU. Usually, the performance of a GPU is measured in GFLOPS, floating point operations per second, for compute intensive applications or GiB/s for data intensive applications. Since term rewriting is a symbolic manipulation that does not involve any arithmetic, it is data intensive. From Table 1, we have seen that the maximum bandwidth our GPU can achieve is 555 GiB/s for aligned accesses and 22.8 GiB/s for random accesses. Since term rewriting is an irregular problem with a high degree of random access (to subterms that can be anywhere in memory), we focus on the bandwidth for random accesses. Table 3 shows that the overall random access bandwidth of the GPU implementation reaches 18.1 GiB/s which is close to the benchmarked bandwidth. In addition, the aligned bandwidth of 95.7 GiB/s confirms that term rewriting is indeed an irregular problem and that aligned bandwidth is less of a bottleneck. The bottom two graphs in Figure 3 show the measured bandwidth over time.

Although we are close to the random access bandwidth of the GPU, this does not mean that we have reached the limits of term rewriting on GPUs. It does mean however, that to achieve higher performance with term rewriting on GPUs, it is necessary to introduce more regularity into the implementation, reducing the random memory accesses. It also means that other often used strategies to improve graph algorithm, like reducing branch divergence will probably not yield significant performance increase. In addition, the results we present clearly show the different capabilities of GPUs and CPUs. An interesting direction for future work is to create a hybrid rewrite implementation that can switch to a GPU implementation when a high degree of parallelism is available.
References

1. G. M. Amdahl. Validity of the single processor approach to achieving large scale computing capabilities. In *Proceedings of the April 18-20, 1967, Spring Joint Computer Conference*, AFIPS ’67 (Spring), pages 483–485, New York, NY, USA, 1967. Association for Computing Machinery. doi:10.1145/1465482.1465560

2. H.P. Barendregt, M.C.J.D. van Eckelen, M.J. Plasmeijer, P.H. Hartel, L.O. Hertzberger, and W.G. Vree. The Dutch parallel reduction machine project. *Future Generation Comp. Syst.*, 3(4):261–270, 1987. doi:10.1016/0167-739X(87)90030-6

3. D. Bošnački, M.R. Odenbrett, A.J. Wijs, W.P.A. Lijtenberg, and P.A.J. Hilbers. Efficient reconstruction of biological networks via transitive reduction on general purpose graphics processors. *BMC Bioinformatics*, 13(281), 2012. doi:10.1186/1471-2105-13-281

4. O. Bunte, J. F. Groote, J. J. A. Keiren, M. Laveaux, T. Neele, E. P. de Vink, W. Wesselink, A. J. Wijs, and T. A. C. Willemse. The mCRL2 toolset for analysing concurrent systems - improvements in expressivity and usability. In Tomás Vojnar and Lijun Zhang, editors, *Tools and Algorithms for the Construction and Analysis of Systems - 25th International Conference, TACAS 2019, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2019, Prague, Czech Republic, April 6-11, 2019, Proceedings, Part II*, volume 11428 of *Lecture Notes in Computer Science*, pages 21–39. Springer, 2019. doi:10.1007/978-3-030-17465-1_2

5. J. Cheng and M. Grossman. *Professional CUDA C Programming*. John Wiley and Sons Ltd., 2014.

6. A. Davidson, S. Baxter, M. Garland, and J. D. Owens. Work-efficient parallel GPU methods for single-source shortest paths. In *Proceedings of the 28th International Parallel and Distributed Processing Symposium (IPDPS 2014)*, pages 349–359. IEEE, 2014. doi:10.1109/IPDPS.2014.45

7. I. Dejanović, R. Vaderna, G. Milosavljević, and Ž. Vuković. TextX: A Python tool for Domain-Specific Languages implementation. *Knowledge-Based Systems*, 115:1–4, 2017. doi:10.1016/j.knosys.2016.10.023

8. Francisco Durán and Hubert Garavel. The rewrite engines competitions: A RECtrospective. In *International Conference on Tools and Algorithms for the Construction and Analysis of Systems*, pages 93–100. Springer, 2019.

9. J. L. Gustafson. Reevaluating Amdahl’s law. *Commun. ACM*, 31(5):532–533, May 1988. doi:10.1145/42411.42415

10. S. Heldens, P. Hijma, B. Van Werkhoven, J. Maassen, A. S. Z. Belloum, and R. V. Van Nieuwpoort. The landscape of exascale research: A data-driven literature analysis. *ACM Comput. Surv.*, 53(2), March 2020. URL: https://doi.org/10.1145/3372390 doi:10.1145/3372390

11. T. Henriksen, N. G. W. Serup, M. Elsman, F. Henglein, and C. E. Oancea. Futhark: Purely Functional GPU-programming with Nested Parallelism and In-place Array Updates. In *Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation*, PLDI 2017, pages 556–571, New York, NY, USA, 2017. ACM. URL: http://doi.acm.org/10.1145/3062341.3062354 doi:10.1145/3062341.3062354

12. Troels Henriksen, Martin Elsman, and Cosmin E Oancea. Modular acceleration: tricky cases of functional high-performance computing. In *Proceedings of the 7th ACM SIGPLAN International Workshop on Functional High-Performance Computing*, pages 10–21, 2018.

13. P. Hijma, R. V. Nieuwpoort, C. J. H. Jacobs, and H. E. Bal. Stepwise-refinement for performance: A methodology for many-core programming. *Concurr. Comput.: Pract. Exp.*, 27(17):4515–4554, December 2015. URL: https://doi.org/10.1002/cpe.3416 doi:10.1002/cpe.3416

14. G. Huet and D. Lankford. On the Uniform Halting Problem for Term Rewriting Systems. *Rapport de Recherche No 283, 1978, IRIA*, March 1978.

15. V. W. Lee, P. Hammarlund, R. Singhal, P. Dubey, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen, N. Satish, M. Smelyanskiy, and S. Chennupaty. Debunking the 100X GPU
A TRSs used as benchmarks

TRS for Tree merge sort of multiple lists

Listing 7 gives the concrete TRS description used in our benchmarks of the merge sorting on lists. Natural numbers, lists and trees are given by the inductive types `Nat`, `List`, and `Tree`, respectively. The Booleans are given by the two constant functions `True()` and `False()`, and the two functions on natural numbers, `Lt` and `Gt`, evaluate like the less than and greater than function, respectively.

The functions `Even(L)` and `Odd(L)` with `L` a subterm of type `List` will evaluate to a `List` that contains only the even and odd elements of `L`, respectively.

The essential functions that perform the merge sort are `Merge`, `Merge2` and `Sort`, `Sort2`. The `Merge` function evaluates to a term representing the sorted merged list of the two subterms. The `Sort` function represents the implementation of merge sort and splits the list subterm until it consists of at most one term. The `Sort2` function is where the parallelism of merge sort can be observed. In the RHS of this rule the two subterms of `Merge`, consisting of the recursive call of `Sort` can be evaluated in parallel for both the even and odd partition of the list `L`.

To the basic TRS for merge sorting a list, we have added a tree data structure, to support input terms consisting of multiple lists. The TRS rewrites all the `Sort` terms in the leaves of a given tree of lists in parallel. While a list of lists would result in a sequential evaluation of the lists, a tree structure allows parallel evaluation.
Listing 7 TRS for mergesort on multiple lists

sort Nat = struct Zero() | S(Nat) | Len(List);
Bool = struct True() | False() | Lt(Nat, Nat) | Gt(Nat, Nat);
List = struct Nil() | Cons(Nat, List) | Merge(List, List) | Even(List) |
 | Odd(List) | Sort(List) | Sort2(Bool, List);
Tree = struct Leaf(List) | Node(Tree, Tree);

var X : Nat; Y : Nat; B : Bool; L : List; M : List;

eqn
 Len(Nil()) = Zero();
 Len(Cons(X, L)) = S(Len(L));
 Merge(Nil(), M) = M;
 Merge(L, Nil()) = L;
 Merge(Cons(X, L), Cons(Y, M)) = Merge2(Lt(X, Y), X, L, Y, M);
 Merge2(True(), X, L, Y, M) = Cons(X, Merge(L, Cons(Y, M)));
 Merge2(False(), X, L, Y, M) = Cons(Y, Merge(Cons(X, L), M));
 Sort(L) = Sort2(Gt(Len(L), S(Zero())), L);
 Sort2(False(), L) = L;
 Sort2(True(), L) = Merge(Sort(Even(L)), Sort(Odd(L)));
 Even(Nil()) = Nil();
 Even(Cons(X, L)) = Cons(X, Odd(L));
 Odd(Nil()) = Nil();
 Odd(Cons(X, L)) = Even(L);
 Gt(Zero(), Zero()) = False();
 Gt(Zero(), S(Y)) = False();
 Gt(S(X), Zero()) = True();
 Gt(S(X), S(Y)) = Gt(X, Y);
 Lt(Zero(), Zero()) = False();
 Lt(Zero(), S(Y)) = True();
 Lt(S(X), Zero()) = False();
 Lt(S(X), S(Y)) = Lt(X, Y);

Input Node(Node(Leaf(Sort(Cons(S(Zero()))))), Leaf(Sort(...))), Node(...));

TRS for Transformation tree

Listing 8 gives the TRS which is constructed to showcase massive parallelism. The Tree type consists of nodes and leaves in the form of symbols A through Z and End. A tree of depth N with A’s in the leaves is generated by rewriting the term Expand(N). The symbol A is rewritten to a B and this is rewritten again until End is reached. This is done for all leaves, and can be done in one single massively parallel rewrite step.

The two rules Expand and Expand2 are technically the same function but are used to prevent the subterms from being equal. If the subterms where equal the tree generated would have only a single term representing the leaves, due to sharing, and there would be no parallelism left.

Listing 8 Transformation tree of depth 22

sort Nat = struct Zero() | Suc(Nat);
 Tree = struct A() | B() | ... | Z() | End() |
 Node(Tree, Tree) | Expand(Nat) | Expand2(Nat);

var T : Tree;
P : Tree;
X : Nat;

eqn Expand(Zero()) = A();
Expand(S(X)) = Node(Expand(X), Expand2(X));
Expand2(Zero()) = A();
Expand2(S(X)) = Node(Expand(X), Expand2(X));
A() = B();
B() = C();
C() = D();
D() = E();
...
Z() = End();

Input Expand(Suc(Suc(Suc(...Suc(
Zero()
)...))));