Chronic Kidney Disease in Cameroon: A scoping review

Jerry Brown Aseneh (jbaseneh@gmail.com)
Department of Health Research, Health Education and Research Organisation (HERO), Buea, Cameroon
https://orcid.org/0000-0002-2895-6245

Ben-Lawrence A. Kemah
Department of Health Research, Health Education and Research Organisation (HERO), Buea, Cameroon

Stephane Mabouna
Department of Health Research, Health Education and Research Organisation (HERO), Buea, Cameroon

Njang Mbeng Emmanuel
Department of Health Research, Health Education and Research Organisation (HERO), Buea, Cameroon

Domin Sone Majunda Ekane
Department of Health Research, Health Education and Research Organisation (HERO), Buea, Cameroon

Valirie Ndip Agbor
Department of Health Research, Health Education and Research Organisation (HERO), Buea, Cameroon

Systematic Review

Keywords: Chronic kidney disease, End Stage Renal Disease, Cameroon

DOI: https://doi.org/10.21203/rs.3.rs-33238/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Objectives

This scoping review sought to summarize available data on the prevalence, associated factors, etiology, comorbidities, treatment, cost, and mortality of chronic kidney disease (CKD) in Cameroon.

Methods

We searched PubMed, Scopus and African Journals Online from database inception to 31 March, 2020 to identify all studies published on the prevalence, associated factors, etiology, comorbidities, treatment, cost and mortality of CKD in Cameroon.

Results

Thirty studies were included. The population prevalence of CKD varied from 3-14.1% and 10.0%-14.2% in rural and urban areas, respectively. The prevalence of CKD in patients with hypertension, diabetes mellitus, and human immunodeficiency virus was 12.4-50.0%, 18.5%, and 3.0-47.2%, respectively. Hypertension (22.3-59.1%), chronic glomerulonephritis (15.8-56.2%), and diabetes mellitus (15.8-56.2%) were the most common causes of CKD. The cause was unknown in 13.5-17.0% of the cases. Advanced age, hypertension, diabetes mellitus, and obesity were frequent associated factors. Hemodialysis was the main treatment modality in patients with End Stage Renal Disease (ESRD). The monthly cost of management of non-dialyzed CKD was 163 US dollars. The one-year mortality rate of ESRD was 26.8-38.6%.

Conclusion

Chronic kidney disease affects about one in ten adults in the general population in Cameroon. Patients with hypertension, diabetes mellitus, and human immunodeficiency virus bear the greatest burden of CKD in Cameroon. Advanced age, hypertension, diabetes mellitus, and obesity are major factors associated with CKD. Chronic kidney disease in Cameroon is associated with high morbidity and mortality and huge economic cost on the patient.

Introduction

Chronic Kidney Disease (CKD) is an abnormality in kidney structure or function assessed using a matrix of variables including glomerular filtration rate (GFR), thresholds of albuminuria and duration of injury [1]. The global prevalence of CKD in 2015 was estimated at 13.4% [2], with a prevalence as high as 36.1% amongst high-risk populations [3]. Chronic kidney disease poses a serious threat to global health due to its high morbidity and mortality rate [4]. According to the 2015 Global Burden of Disease Study, CKD was the 12th common cause of mortality, accounting for about 1.1 million deaths worldwide [5]. Mortality due to CKD increased by 31.7% over the past decade to represent one of the fastest growing causes of death.
worldwide [5]. Chronic kidney disease is the 17th leading cause of global disability-adjusted life years (DALYs) lost to disease [5].

Chronic kidney disease disproportionately affects low-income and middle-income countries (LMICs) with a prevalence 15% higher than that in high-income countries [3]. In addition to poorly controlled diabetes mellitus and hypertension, infection, and herbal and environmental toxins play an important role in the epidemiology of CKD in these settings [6]. Chronic kidney disease is both a cause and consequence of non-communicable diseases (NCDs) [7,8]. The burden of CKD in LMICs is worsened by limited accessibility to and affordability of renal replacement therapy (RRT) [9]. The number of people requiring RRT worldwide is projected to increase from 3.3 million to 5.4 million people by 2030 with most of this increase in developing countries [10].

High-risk groups for CKD include persons living with hypertension, diabetes mellitus, overweight, obesity [11,12] and human immune deficiency virus (HIV) [13] as well as the elderly. A meta-analysis conducted in 2018 estimated the pooled prevalence of CKD stages 1-5 and 3-5 in the general African population at 15.8% and 4.6%, respectively [13]. Among high-risk populations, the prevalence of CKD stage 1-5 and 3-5 were 32.3% and 13.3%, respectively [13]. Moreover, the prevalence of CKD was about four times higher in Sub-Sahara Africa compared to North Africa. A large-scale population-based study of about 8000 participants aged 40-60 years from six communities in sub-Saharan Africa revealed an age-standardized prevalence of CKD of 2.4% [14]. By 2030, it is estimated that over 70% of people with end-stage kidney disease will be living in developing countries like countries in sub-Saharan Africa [15]. This is due to the rising prevalence of diabetes mellitus, hypertension, obesity, and HIV [16].

The prevalence of CKD in adult Cameroonianians is estimated between 11% and 14.2% [11,17]. The prevalence of hypertension (31%) [18], diabetes mellitus (6%) [19], and obesity (15%) [20] are high with a prevalence of HIV of 4% [21]. Dialysis was introduced in Cameroon in the early 1980s and included both peritoneal and hemodialysis, although for over two decades now hemodialysis has been the only available modality of RRT [22].

This review sought to assess the burden of CKD in Cameroon. Specifically, we summarized data on the prevalence, incidence, risk factors, treatment, cost of treatment, and outcome of patients with CKD in Cameroon. Furthermore, we described economic and comorbidities of patients with CKD, and to identify research gaps.

Methods

This scoping review was conducted according to the approach proposed by Arksey and O'Malley [23].

Literature search

PubMed, Scopus and African Journals Online were searched without language restriction to retrieve all publications on the prevalence, the incidence, comorbidity, risk factors, treatment, economic burden and
outcome (length of hospital stay and mortality rate) of CKD in Cameroon from database inception to May 31, 2019. Table 1 depicts the search strategy for PubMed which was adapted to suit other databases. The reference list of full text articles was searched to identify articles which may have been missed during the search.

Selection of studies for the review

Cross-sectional, cohort, case-control studies and systematic reviews that reported relevant data on CKD in Cameroon were considered for inclusion. For this review, CKD was defined as estimated glomerular filtration rate < 60mL/min/1.73m2 using either the Modification of Diet in Renal Disease (MDRD) study equation, the Cockcroft-Gault (CG) formula, or the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equations or proteinuria > 1+ (or albuminuria > 300mg/g) or patients with known CKD on RRT [17]. Letters, commentaries, case reports, and case series with less than 30 participants were excluded. For duplicate publications, we considered the most comprehensive, recent and/or with the largest sample size.

Two authors independently screened abstracts and citations retrieved from the online search and assessed the full texts of the relevant citations for inclusion in the review, Figure 1. Disagreements during the study selection process were resolved through consensus, or arbitration by a third review author, in case a consensus could not be reached.

Data charting

Relevant data were extracted with the aid of pre-structured abstraction sheets. We abstracted the following information from eligible articles: the surname of the first author of the article, publication year, study design and population studied, study setting (community-based or hospital-based). Study area (rural or urban), percentage of males included in the study, mean or median age of the participants, sample size, measure used to assess kidney damage or function and if these measures were reassessed after three months of measurement, prevalence, comorbidity, treatment rate, median duration of hospital stay and mortality rate of CKD.

Table 1. Search Strategy
Results

In total, 122 records from bibliographic searches. After screening titles and abstracts, 44 full text papers were assessed for eligibility and 29 studies [11,17,24–32,32–49] were retained.

Prevalence of CKD in Cameroon

Table 2 summarizes the studies that reported on the prevalence of CKD in Cameroon. The prevalence of CKD was reported in 11 studies in Cameroon [11,17,24–32]. All studies were cross-sectional studies, 4 (36.4%) were community-based, and 2 (18.2%) were conducted in rural areas. The average age of the participants ranged from 35-61 years.

Overall, the prevalence of CKD in the general population ranged from 10.0-14.2%, [11,17,31]. The prevalence of CKD ranged from 3.4-14.1% and 10.0-14.2% in the general population in rural [17,26] and urban areas [17,31], respectively.

The prevalence of CKD among patients with hypertension ranged from 12.4-52.1% [27,28,30], Table 2. Thirty percent of hypertensive patients on treatment in a community-based study were diagnosed with CKD [27], and 12.4% in treatment naïve patients [28]. One study reported a prevalence of CKD of 18.5% among patients with type 2 diabetes mellitus [25]. Two studies evaluated the prevalence of CKD among persons living with HIV/AIDS (PLWHA). The prevalence of CKD in PLWHA ranged from 3.0-47.2% [24,32].

The prevalence of CKD among sugarcane plantation workers was 3.4% [26]. The prevalence of CKD among first-degree family relatives of persons living with CKD on hemodialysis was 15.9% [29].

Factors associated with CKD
Table 3 depicts the factors associated with CKD. Advanced age [11,26–28,30,32], female sex [27,29], obesity/adiposity [27,30,50], hyperuricemia/gout [27,30,31], longer duration of HIV [32], CD4 count less than 200 cells/mL [32], hyperkalemia [28], dyslipidemia [28,30], hypertension, diabetes mellitus [11,30,50], smoking [30,50], consumption of alcohol [30,50] and herbal medication [50], self-medication [30] were associated with increased odds of CKD.

Table 2: Prevalence of CKD in Cameroon
First Author	Year of publication	Study Design	Study Setting	Study Area	Disease Specific Population	Mean Age (in years)	Male (%)	Sample Size	Measure of Kidney Damage or Function	Prevalence of CKD
Kaze [24]	2013	Cross-sectional	Hospital-based	Urban	HAAR T-naïve PLWH A	35.0	32.0%	104	eGFR < 60 based on MDR D and CG or at least 1+ proteinuria	3%
Kaze [17]	2015	Cross-sectional	Community-based	Urban	General adult population	36.5	48.7%	119	eGFR < 60 based on MDR D, CG and CKD-EPI or albuminuria > 30mg/g	10.9%
Kaze [17]	2015	Cross-sectional	Community-based	Rural	General adult population	51	39.7%	320	eGFR < 60 based on MDR D, CG and CKD-EPI or albuminuria > 30mg/g	14.1%
Kaze [11]	2015	Cross-sectional	Community-based	Urban	General adult population	45.3	53.4%	500	eGFR < 60 based on MDR D, CG and	10.0, 11.0 and 14.2% using CKD-EPI,
Study	Year	Study Type	Setting	Population Characteristics	eGFR < 60 (%) Based on MDR D	MDR D and CG, Respectively (% gn				
---------------	------	--------------	---------------	--	-----------------------------	---------------------------------				
Feteh [25]	2016	Cross-sectional	Hospital-based	Patients with type 2 diabetes mellitus	56.5	53.1%				
			Urban			636	18.5%			
Kaze [30]	2016	Cross-sectional	Hospital-based	Hypertensive adult	60.9	36.6%				
			Urban			336	49.7% and 50.0% and 52.1%			
Kamdem [28]	2017	Cross-sectional	Hospital-based	newly diagnosed and untreated hypertensive patients	51.0	49.1%				
			Urban			839	12.4%			
Hama dou [27]	2017	Cross-sectional	Hospital-based	Hypertensive patients	54.2	33%				
			Urban			400	32.3%			
Ekiti [26]	2018	Cross-sectional	Rural Sugar cane		39.0	75%				
						204	3.4%			
Study	Year	Design	Setting	Population Description	eGFR < 60 based on:	eGFR < 60 based on:	Prevalence	N		
---------------	------	-----------------	--------------------------	---	---------------------	---------------------	-------------	-------		
Halle [32]	2018	Cross-sectional	Hospital-based	PLWH attending HIV day clinic	CKD-EPI or at least 1+ proteinuria	CKD-EPI or at least 1+ proteinuria	26.7%	709		
Kaze [31]	2019	Cross-sectional	Community-based	General adult population	CKD-EPI or albuminuria > 30mg/g	CKD-EPI or at least 1+ proteinuria	48.7%	433		
Temgoua [29]	2019	Cross-sectional	Hospital-based	First-degree family relatives of HDP	MDR or at least 1+ proteinuria or diagnosis by a Nephrologist	MDR or at least 1+ proteinuria	28.0%	82		

NR; Not Reported, NA; Not Available; HIV: Human immunodeficiency virus; AIDS: Acquired immune deficiency syndrome; HAART: Highly active antiretroviral therapy; PLWHA: Persons living with HIV/AIDS,
OR: odds ratio, CI: confidence interval, GFR: Glomerular Filtration Rate; HDP: Hemodialysis patients; MDRD: Modification of Diet in Renal Disease; CG: Cockcroft-Gault; CKD-EPI: Chronic Kidney Disease Epidemiology

Table 3: Factors associated factors of chronic kidney disease in Cameroon
First Author	Year of publication	Study Design	Study Setting	Disease specific population	Mean Age (in years)	Sample Size	Associated Factors (adjusted Odds Ratio; 95% Confidence Interval)
Kaze [17]	2015	Cross-sectional	Community-based	General adult population	47.0	439	History of hypertension (aOR: 3.95; 95% CI, 2.09-7.46),
							History of diabetes mellitus (aOR: 6.64; 95% CI: 2.63-16.75)
							Elevated systolic blood pressure (aOR: 1.01; 95% CI, 1.00-1.02)
Kaze [11]	2015	Cross-sectional	Community-based	General adult population	45.3	500	Advanced age (aOR: 1.09; 95% CI, 1.07-1.12),
							Known hypertension (aOR: 2.40; 95% CI, 1.19-4.82)
							Existing diabetes mellitus (aOR: 3.36; 95% CI, 1.02-11.07),
							Overweight/obesity (aOR:
Study	Year	Study Design	Setting	Population Description	Mean Age	N	Odds Ratio (95% CI)
---------------	------	-----------------------------	--------------	---	----------	-----	---------------------
Kaze [30]	2016	Cross-sectional Hospital-based Hypertensive adult	60.9	336	Advance d age (aOR: 1.05; 95% CI, 1.02-1.07) Raised systolic blood pressure (aOR: 1.01; 95% CI, 1.00-1.02)		
Hamadou [27]	2017	Cross-sectional Hospital-based Hypertensive patients	54.2	400	Age > 50 years (aOR: 1.75; 95% CI: 1.06-2.89), Females (aOR: 2.21; 95% CI: 1.29-3.78), obesity (aOR: 1.58; 95% CI: 1.36-1.95), hyperuricemia (aOR: 3.67; 95% CI: 1.78-7.58)		
Kamdem [28]	2017	Cross-sectional Hospital-based newly diagnosed and untreated hypertensive patients	51.0	839	Age=55 years (aOR: 5.29; 95% CI, 3.33-8.42), obesity (aOR: 0.15; 95% CI, 0.10-0.26)		
Study	Year	Study Design	Setting	Population Description	Mean Age (SD)	Sample Size	Associated Risk Factors
--------	------	-----------------------	------------------	-------------------------	---------------	-------------	---
Ekiti	2018	Cross-sectional	Community-based	Sugarcane plantation workers	39.0	204	Age ≥ 40 years (aOR: 1.33; 95% CI, 1.03-1.72)
Halle	2018	Cross-sectional	Hospital-based	PLWHA attending HIV day clinic	37.1	709	Age > 35 years (aOR: 1.04; 95% CI: 1.02 to 1.06), longer duration of HIV (aOR: 2.60; 95% CI: 1.53 to 3.95), history of Hepatitis B (aOR: 3.04; 95% CI: 1.08 to 8.54), CD4 count less than 200 cells/mL (aOR: 3.64; 95% CI: 2.55 to 5.21)
Kaze	2019	Cross-sectional	Community-based	General adult population	45.0	433	Increased systolic blood pressure (aOR: 1.02; 95% CI, 1.00-1.04) per mmHg higher SBP), hyperglycemia (aOR: 3.04; 95% CI, 1.32-7.07)
HIV: Human immunodeficiency virus; AIDS: Acquired immune deficiency syndrome; HAART: Highly active antiretroviral therapy; PLWHA: Persons living with HIV/AIDS, aOR: adjusted odds ratio, CI: confidence interval, GFR: Glomerular Filtration Rate, CKD-EPI: Chronic Kidney Disease Epidemiology; SBP: systolic blood pressure

Etiologies of chronic kidney disease in Cameroon

Eight studies reported on the etiologies of CKD in Cameroon, Table 4. Overall, hypertension (22.3-59.1%), chronic glomerulonephritis (15.8-56.2%), diabetes mellitus (7.3-24.0%) and HIV (6.6-11.5%) were the main etiological factors of CKD. The etiology was unknown in 13.5%-17.0% of cases [35–42]. Halle et al. 2016 reported hypertension (30.9%), glomerulonephritis (15.8%), diabetes mellitus (15.9%) and HIV (6.6%) as the major etiologies of CKD in a chart review of 863 medical records [37]. About 14.7% of the etiologies of CKD was unknown. In a prospective study of 661 patients, the major etiologies of CKD were hypertension (28.3%), chronic glomerulonephritis (17.5%), diabetes mellitus (13.9%), HIV (6.7%) [39].

Table 4: Etiology of CKD in Cameroon
First author	Year of publication	Study area	Study Design	Study setting	Study population	Mean age (in years)	Male (%)	Sample size	Etiologies
Halle [35]	2014	Urban	Cross-sectional	Hospital-based	Patients on maintenance hemodialysis	49.4	66.4	113	Hypertension (25.6%), Chronic glomerulonephritis (20.6%), diabetes mellitus (17.4%)
Kaze [36]	2014	Urban	Cross-sectional	Hospital-based	Patients on maintenance hemodialysis	52.7	64.0	45	Hypertension (29%), Chronic glomerulonephritis (24%), Diabetes mellitus (24%)
Halle [37]	2015	Urban	Retrospective cohort	Hospital-based	Patients with ESRD	47.4	66.0	863	Hypertension (30.9%), glomerulonephritis (15.8%), diabetes mellitus (15.9%), HIV (6.6%), unknown
Study	Year	Setting	Design	Cohort	Type of patients	Number	Age	Follow-up	Conditions
-------	------	---------	--------	--------	-----------------	--------	-----	-----------	------------
Kaze	2015	Urban	Retrospective cohort	Hospital-based	Patients admitted in the nephrology unit	44.8	60.0	225	Chronic glomerulonephritis (25.9%), hypertension (22.3%), diabetes mellitus (20.1%)
Halle	2016	Urban	Prospective cohort	Hospital-based	Patients on maintenance hemodialysis	46.3	66.0	661	Hypertension (28.3%), chronic glomerulonephritis (17.5%), diabetes mellitus (13.9%), hypertension and diabetes (7.3%), HIV (6.7%), unknown (16.9%)
Halle	2016	Urban	Cross-sectional	Hospital-based	Maintenance hemodialysis	51	66.0	97	Chronic glomerulonephritis (25.8%)
hritis (20.6%)

Diabetes mellitus (17.5%)

Location	Year	Setting	Study Type	Patients	Age Mean	Age SD	Population Size
Luma [41]	2017	Semi-urban	Cross-sectional	Hospital-based	48	65.4	104
Moor [42]	2017	Urban	Cross-sectional	Hospital-based	55	75.0	44

NR; Not Reported, ESRD; End stage renal disease

Major comorbidities in CKD patients in Cameroon
Thirteen studies discussed the comorbidities of CKD in Cameroon, Table 5. Ten or more of these studies reported hypertension and diabetes mellitus as major comorbidities of CKD. Also, viral infections such as HIV, Hepatitis B and Hepatitis C infections in were also important comorbidities associated with CKD. Furthermore, hyperuricemia, obesity, previous cardiovascular events, malnutrition, anemia, smoking, and alcohol use were major comorbidities.

Table 5: Major comorbidities in Chronic Kidney Disease patients in Cameroon
First author	Year of publication	Study area	Study population	Mean age (in years)	Sample size	Comorbidities
Halle [43]	2009	Urban	Patients with CKD	50.1	140	Hypertension (62.1%); diabetes mellitus (25.0%); gout (7.1%); HIV (6.4%)
Halle [35]	2014	Urban	ESRD patients on dialysis	49.4	113	Mid-arm muscle circumference (23.9%); heart failure (22.1%); diabetes mellitus (20.3%); HIV (4.4%)
Kaze [36]	2014	Urban	Patients on maintenance hemodialysis	52.7	45	Hypertension (95.6%); anemia (42%); left ventricular hypertrophy (60%); valvular heart disease (51.1%); heart failure (33.3%); dyslipidemia (33.3%); diabetes mellitus (24%); tobacco use (22.2%); obesity (4%)
Kaze [38]	2015	Urban	Patients with CKD	44.8	139	Hypertension (81.3%); diabetes mellitus (32.2%); tobacco use (15.1%);
Study	Year	Location	Diagnostic Category	Hemodialysis Rate	Hypertension Rate	Hypertension Risk Factors
---------------	------	---------------	---------------------	-------------------	------------------	--------------------------
Mbouembo [44]	2016	Semi-urban	ESRD	45.0	35	Anemia (Females [100%]; Males [92%])
Halle [40]	2016	Urban	Maintenance hemodialysis	51.0	97	Hypertension (25.8%); Diabetes mellitus (17.5%); HCV (20.6%); HIV (8.2%); HBV (6.2%)
Kouotou [45]	2016	Urban	Hemodialyzed patients	48.6	112	Hypertension (66.1%); Diabetes mellitus (25.9%); HCV (26.8%)
Hamadou [27]	2017	Urban	Patients diagnosed with CKD	54.2	400	Anemia (44.5%), Obesity (39.75%), Diabetes mellitus (32%); hyperuricemia (10.75%); tobacco use (0.8%)
Moor [42]	2017	Urban	Patients on maintenance hemodialysis	55.0	44	Hypertension (59.1%); Diabetes mellitus (11.4%); alcohol use (11.4%); tobacco use (4.5%)
Luma [41]	2017	Semi-urban	Patients on maintenance hemodialysis	48.0	104	Hypertension (84.6%); HCV (19.2%); HIV (13.5%); HBV (10.6%)
Lemogoum	2018	Urban	Patients	52.0	150	Hypertension
with CKD

	Year	Area	Status	Category	Number	Diagnosis
Doualla [47]	2018	Urban	Non-dialysed	CKD patients	55.8	Hypertension (87.4%); Diabetes mellitus (34.0%); gout (21.4%); HIV (12.6%)
Halle [34]	2019	Urban	Patients with CKD		53.1	Hypertension (70.77%); diabetes mellitus (41.54%); HIV (8.5%); gout (6.9%)

CKD = Chronic kidney disease; ESRD = End-stage renal disease; CRF = Chronic renal failure; HIV = Human immunodeficiency syndrome; HBV = Hepatitis B; HCV = Hepatitis C

Treatment of CKD in Cameroon

Most of the CKD patients required hospitalization and eventual dialysis. However, the hospitalization rate was 42.2% in patients referred late and 33.6% of these late referrals were proposed emergency dialysis [43]. Emergency unplanned dialysis on a temporary catheter was required in 88.3% of 863 adult patients with CKD [37].

Cost of CKD management in Cameroon

Data on CKD’s economic burden is scarce in Cameroon. In a one-month retrospective cost analysis of non-dialysis CKD patients in Yaoundé, Cameroon; the total cost for management of CKD was 163 USD
with direct medical cost accounting for 86.4% of this and only 1.4% of the 69 participants (median monthly salary of 162 USD) had full health insurance coverage [33].

Mortality of CKD in Cameroon

The mortality rate of CKD in Cameroon ranged between 26.8% and 58.0% during a period of 1 to 10 years of follow up, Table 6 [39,48,49]. An audit of 661 medical records reported a 10-year mortality rate of 44.9% [39]. The highest mortality rate of 58.0% was reported in a 15 months’ prospective study in 197 ESRD patients. Furthermore, the one-year mortality rate of hemodialyzed patients in a retrospective study was 29.8% [49]

Table 6: Mortality of CKD in Cameroon

First author, publication year	Study area	Study Design	Study setting	Study population	Median age	Sample size	Mortality rate
Halle 2016 [41]	Urban	Retrospective cohort	Hospital-based	ESRD patients on hemodialysis	46.3	661	12-month mortality = 26.8%
							10-year mortality = 44.9%
Fouda 2017 [48]	Urban	Prospective cohort	Hospital-based	ESRD patients on dialysis	48.0	197	15-month mortality = 58.0%
Halle 2018 [43]	Urban	Retrospective cohort	Hospital-based	PLHIV with ESRD on hemodialysis	46.0	57	12-month mortality = 38.6%

NR; Not Reported, ESRD; End stage renal disease, PLHIV; People living with Human Immunodeficiency Virus

Discussion

This scoping review systematically summarizes data on the prevalence, associated factors, etiology, comorbidities, treatment and its cost, and mortality of CKD in Cameroon. The prevalence of CKD was high, ranging from about 1 in every 10 people in the general population to about 1 in every 2 persons in high-risk groups. Hypertension, diabetes mellitus and chronic glomerulonephritis were the most common causes of CKD, while the cause was unknown in a significant proportion of patients. Hypertension,
diabetes mellitus, obesity, advanced age and female gender were some factors associated with developing CKD in Cameroon. The treatment of these patients was mainly management of comorbidities, progression factors and hemodialysis in those with ESRD. Despite these treatment measures, mortality from CKD remains high with a 1-year mortality rate of more than 25% among hemodialyzed patients. However, treatment costs proved quite prohibitive to the access of these treatments.

The prevalence of CKD was reported in both the general population and in high-risk populations (persons with hypertension, diabetes mellitus, obesity, and HIV) applying various estimators of GFR. The prevalence in the general population ranged from 10% to 14.2% which is similar to the overall prevalence of 15.8% in the African adult population [13]. In rural areas, the prevalence was higher compared to urban areas which in keeping with Stanifer et al [15]. This can be attributed to the low awareness of CKD risk factors such as consumption of nephrotoxic herbal concoctions and alcohol in rural settings. In the high-risk population, the prevalence of CKD was higher and this was convergent with the findings of Kaze et al. [13]. Furthermore, in hospital-based studies which dwelled on these high-risk individuals, the prevalence was also seen to be higher than in community-based studies.

About a third to half of patients with hypertension in Cameroon had CKD [27] which varied from that which Bahrey et al. reported (about 1 in 5 hypertensives) in Ethiopia [51]. This discrepancy can be attributed to the difference in study population as the latter study was performed in North Africa. Newly diagnosed hypertensives in Cameroon had a prevalence of CKD of 12.4% which was much lower when compared to their counterparts (cohort of hypertensives with and without treatment) which ranged between 32.3% and 52.1%. Compared to patients with hypertension and who are on treatment, those newly diagnosed with hypertension are more likely to have had the disease for a relatively shorter time, and hence experience a lesser burden of the disease on the kidneys. The prevalence of CKD in PLWHA was 3%, comparable to that of PLWHA in another West African setting [52]. In a systematic review in Africa, the prevalence of CKD among diabetics varied between 11% and 83.7% [53], a range which includes the 18.7% in type 2 diabetics in our setting. The duration of diagnosis and comorbidities played a significant role on the prevalence of CKD among patients with diabetes mellitus.

Advanced age and hypertension were strong predictors of CKD in Cameroon and similar in other Africa settings [14,54]. Overweight and diabetes were independent associated factors which is in line with a study in Ethiopia [51]. Kaze et al. [50] reported history of diabetes mellitus as a strong associated factor to CKD which was convergent to the findings of Bahrey et al. [51]. Female sex was also an associated factor of CKD and this was comparable to findings in a study in Uganda [55]. Although hypertension and diabetes mellitus were notable associated factors, these were also identified as main etiological factors along with chronic glomerulonephritis and HIV. However, in some cases no etiological factor was identified.

The most common comorbidities were hypertension, diabetes mellitus, anemia, obesity, and cardiac diseases. Fraser et al. [56] put forth hypertension, diabetes mellitus, anemia and ischemic heart disease as comorbidities. Cardiovascular and bone diseases are established comorbidities. Furthermore,
cardiovascular diseases were twice more common in CKD patients and advances at twice the rate [57]. Additionally, hyperuricemia was identified in non-dialyzed CKD patients followed in referral centers and as a factor of progression of CKD [47]. Bruggeman et al. [58] discussed the mechanism of viral replication in CKD patients, implying viral infections as a comorbid condition in CKD. The seroprevalence of HIV, hepatitis B surface antigen and hepatitis C virus was reported to be high in hemodialysis centers in Cameroon as well [40,41].

The growing burden of CKD is paralleled by the need to curtail those who end up in ESRD requiring renal replacement therapy (RRT). Effective and practical therapies for CKD remain a challenge even in developed countries [59]. Little is known about the cost of management of CKD in Cameroon. Though it is estimated that these patients have to pay about US$ 12 per dialysis session and this is in addition to the cost for the management of comorbidities [22]. Ngeugoue et al. [33] reviewed this cost and despite government 95% subsidization of hemodialysis, the management of CKD and eventually ESRD remains costly and unaffordable for most patients especially in populations with limited health insurance. In the USA, the cost of medical care of CKD patients even doubled when there were comorbid conditions [60]. As such there is an enormous economic burden in the management of these patients in low-income settings with treatment centers essentially hemodialysis centers located sparingly in urban areas. Consequently, there is a high mortality rate among those with ESRD.

Over a quarter of patients starting hemodialysis die within the first year with about half within the first 6 months and those with co-existing hypertension and diabetes mellitus conveyed the poorest prognosis. Late presentation of CKD and affordability are were cited as major drivers of high early mortality [39]. Slowing CKD’s progression to ESRD is hampered significantly in our setting by late presentation of CKD which reflect in the high rate of unplanned dialysis. In much developed settings, there are prompt referral strategies to nephrologists and quick management of complications/comorbidities of CKD [61]. With the demonstrated high level of morbidity and mortality associated with CKD in Cameroon; instituting a screening program and national CKD registry, improving the availability, accessibility, and affordability of dialysis care in Cameroon is crucial.

The prevalence of CKD reported by studies with a single time-point assessment of kidney function or damage is likely to lead to errors in estimating of the true value. Since serum creatinine has a high inter-person variability, a single time point measurement will lead to random misclassification of participants as cases or non-cases. This error is worse in small studies. Having a large enough sample size with control measurement of serum creatinine levels after three months is important to account for this random error by regression to the mean. The fact that the formulae used to estimate glomerular filtration rate have not be validated in the African population further complicates efforts to estimate the incidence and prevalence of CKD in this population. In addition, limited financial and human resources are major barriers to ascertain the diagnosis of CKD in epidemiological studies, especially in Cameroon. There was substantial degree of heterogeneity across in participants of studies included in this review. Studies reporting on the causes of CKD were cross-sectional which prevented the researcher from establishing temporality. Therefore, it is impossible to know if, for example, hypertension labelled as a cause is rather
a consequence of CKD. These limitations highlight the need for collaborative efforts to better understand the epidemiological profile of CKD in Cameroon.

Conclusion

Chronic kidney disease represents a significant cause of morbidity and mortality in Cameroon. The prevalence of CKD was highest among patients with hypertension, diabetes mellitus, and HIV. The main causes include hypertension, diabetes mellitus, chronic glomerulonephritis, HIV and unknown in some cases. Most of these patients present late to the hospitals and require hemodialysis. Financial constraint is the main reason why most do not undergo dialysis despite state subsidies. The mortality rate of patients with ESRD on maintenance hemodialysis is high. Potential actions to curb this mortality could include sensitization of health practitioners to improve early referrals to nephrologist, increasing the availability of treatment centers and encourage health insurance to cover some of the cost of care.

Research Perspective

There is limited data on the incidence and prevalence of CKD in the general population. Factors associated with CKD has been generated mostly from cross sectional studies with possibility of reverse causation. There is a need for population-based cohort studies to assess the incidence and risk factors of CKD in Cameroon. A less costly approach to assess the risk factors of CKD would be to conduct a case-control study using population-based controls. In addition, more research is needed to assess the mortality rate of CKD and its predictors in patients with ESRD. Studies evaluating the economic burden of CKD in Cameroon. Creation of a national registry for CKD patients may help foster research in CKD in Cameroon and improve on its management and survival rate.

Abbreviations

Abbreviation	Description
CKD	Chronic Kidney Disease
DALYs	Disability-adjusted life years
ESRD	End Stage Renal Disease
GFR	Glomerular Filtration Rate
HDP	Hemodialysis patient
HAART	Highly active anti-retroviral therapy
NCD	Non-communicable disease
PLWHA	People living with HIV/AIDS
RRT	Renal Replacement Therapy
Declarations

Ethics approval and consent to participate: Not applicable

Consent for publication: Not applicable

Availability of data and materials: Available data can be obtained by contacting the corresponding author.

Competing interests: The authors declare that they have no competing interests

Funding: The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Authors’ contributions: VNA conceived the study. VNA did the literature search. JBA, SM and VNA selected studies. JBA and SM collected data. JBA and VNA summarized and interpreted the data. JBA and VNA drafted the manuscript. JBA, SM, NME, DSME, BAK and VNA revised the manuscript. All authors read and approved the final manuscript. VNA is the guarantor of this manuscript.

References

1. Glassock RJ, Warnock DG, Delanaye P. The global burden of chronic kidney disease: estimates, variability and pitfalls. Nat Rev Nephrol. 2017;13(2):104–14.

2. Hill NR, Fatoba ST, Oke JL, Hirst JA, O’Callaghan CA, Lasserson DS, Hobbs FDR. Global Prevalence of Chronic Kidney Disease - A Systematic Review and Meta-Analysis. PloS One. 2016;11(7):e0158765.

3. Chronic kidney disease and cardiovascular risk in six regions of the world (ISN-KDDC): a cross-sectional study - ScienceDirect [Internet]. [cited 2019 May 9]. Available from: https://www.sciencedirect.com/science/article/pii/S2214109X16000711

4. Coresh J. Update on the Burden of CKD. J Am Soc Nephrol. 2017;28(4):1020–2.

5. GBD 2015 Mortality and Causes of Death Collaborators. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Lond Engl. 2016;388(10053):1459–544.

6. Jha V, Garcia-Garcia G, Iseki K, Li Z, Naicker S, Plattner B, Saran R, Wang AY-M, Yang C-W. Chronic kidney disease: global dimension and perspectives. Lancet Lond Engl. 2013;388(10053):1459–544.

7. Neuen BL, Chadban SJ, Demaio AR, Johnson DW, Perkovic V. Chronic kidney disease and the global NCDs agenda. BMJ Glob Health. 2017;2(2):e000380.

8. Tonelli M, Agarwal S, Cass A, Garcia GG, Jha V, Naicker S, Wang H, Yang C-W, O’Donoghue D. How to advocate for the inclusion of chronic kidney disease in a national noncommunicable chronic disease program. Kidney Int. 2014;85(6):1269–74.
9. Liyanage T, Ninomiya T, Jha V, Neal B, Patrice HM, Okpechi I, Zhao M, Lv J, Garg AX, Knight J, Rodgers A, Gallagher M, Kotwal S, Cass A, Perkovic V. Worldwide access to treatment for end-stage kidney disease: a systematic review. Lancet Lond Engl. 2015;385(9981):1975–82.

10. Bamgboye EL. The challenges of ESRD care in developing economies: sub-Saharan African opportunities for significant improvement. Clin Nephrol. 2016 Supplement;86 (2016)(13):18–22.

11. Kaze FF, Halle M-P, Mopa HT, Ashuntantang G, Fouda H, Ngogang J, Kengne A-P. Prevalence and risk factors of chronic kidney disease in urban adult Cameroonian according to three common estimators of the glomerular filtration rate: a cross-sectional study. BMC Nephrol. 2015;16:96.

12. Herrington WG, Smith M, Bankhead C, Matsushita K, Stevens S, Holt T, Hobbs FDR, Coresh J, Woodward M. Body-mass index and risk of advanced chronic kidney disease: Prospective analyses from a primary care cohort of 1.4 million adults in England. PLOS ONE. 2017;12(3):e0173515.

13. Kaze AD, Ilori T, Jaar BG, Echouffo-Tcheugui JB. Burden of chronic kidney disease on the African continent: a systematic review and meta-analysis. BMC Nephrol. 2018;19(1):125.

14. George JA, Brandenburg J-T, Fabian J, Crowther NJ, Agongo G, Alberts M, Ali S, Asiki G, Boua PR, Gómez-Olivé FX, Mashinya F, Micklesfield L, Mohamed SF, Mukomana F, Norris SA, Oduro AR, Soo C, Sorgho H, Wade A, Naicker S, Ramsay M. Kidney damage and associated risk factors in rural and urban sub-Saharan Africa (AWI-Gen): a cross-sectional population study. Lancet Glob Health. 2019;7(12):e1632–43.

15. Stanifer JW, Jing B, Tolan S, Helmke N, Mukerjee R, Naicker S, Patel U. The epidemiology of chronic kidney disease in sub-Saharan Africa: a systematic review and meta-analysis. Lancet Glob Health. 2014;2(3):e174-181.

16. Matsha TE, Erasmus RT. Chronic kidney disease in sub-Saharan Africa. Lancet Glob Health. 2019;7(12):e1587–8.

17. Kaze FF, Meto DT, Halle M-P, Ngogang J, Kengne A-P. Prevalence and determinants of chronic kidney disease in rural and urban Cameroonian: a cross-sectional study. BMC Nephrol. 2015;16:117.

18. Kuate Defo B, Mbanya JC, Kingue S, Tardif J-C, Choukem SP, Perreault S, Fournier P, Ekundayo O, Potvin L, D'Antono B, Emami E, Cote R, Aubin M-J, Bouchard M, Khairy P, Rey E, Richard L, Zarowsky C, Mamuya WM, Mbanya D, Sauvé S, Ndom P, Silva RB da, Assah F, Roy I, Dubois C-A. Blood pressure and burden of hypertension in Cameroon, a microcosm of Africa. J Hypertens. 2019;37(11):2190–9.

19. Bigna JJ, Nansseu JR, Katte J-C, Noubiap JJ. Prevalence of prediabetes and diabetes mellitus among adults residing in Cameroon: A systematic review and meta-analysis. Diabetes Res Clin Pract. 2018;137:109–18.

20. Nansseu JR, Noubiap JJ, Bigna JJ. Epidemiology of Overweight and Obesity in Adults Living in Cameroon: A Systematic Review and Meta-Analysis. Obes Silver Spring Md. 2019;27(10):1682–92.

21. UNAIDS. HIV in Cameroon [Internet]. [cited 2020 May 26]. Available from: https://www.unaids.org/en/regionscountries/countries/cameroon
22. Kaze FF, Kengne AP, Choukem SP, Dzudie A, Halle MP, Dehayem MY, Ashuntantang G. Dialysis in Cameroon. Am J Kidney Dis. 2008;51(6):1072–4.

23. Arsksey, O'Malley. Methodological Framework. 2005.

24. Folefack Kaze F, Kengne A-P, Pefura Yone EW, Ndamefemben NS, Ashuntantang G. Renal function, urinalysis abnormalities and correlates among HIV-infected Cameroonian naive to antiretroviral therapy. Saudi J Kidney Dis Transplant Off Publ Saudi Cent Organ Transplant Saudi Arab. 2013;24(6):1291–7.

25. Feteh VF, Choukem S-P, Kengne A-P, Nebongo DN, Ngowe-Ngowe M. Anemia in type 2 diabetic patients and kidney function in a tertiary care sub-Saharan African hospital: a cross-sectional study. BMC Nephrol [Internet]. 2016 Mar 19 [cited 2020 Feb 6];17. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4799843/

26. Ekiti ME, Zambo J-B, Assah FK, Agbor VN, Kekay K, Ashuntantang G. Chronic kidney disease in sugarcane workers in Cameroon: a cross-sectional study. BMC Nephrol [Internet]. 2018 Jan 15 [cited 2020 Feb 6];19. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5769452/

27. Hamadou B, Boombhi J, Kamdem F, Fitame A, Amougou SN, Mfeukeu LK, Nganou CN, Menanga A, Ashuntantang G. Prevalence and correlates of chronic kidney disease in a group of patients with hypertension in the Savanah zone of Cameroon: a cross-sectional study in Sub-Saharan Africa. Cardiovasc Diagn Ther. 2017;7(6):581–8.

28. Prevalence and risk factors of chronic kidney disease in newly diagnosed and untreated hypertensive patients in cameroon: A cross-sectional study Kamdem F, Lekpa FK, Doualla MS, Nouga YN, Sontsa OD, Temfack E, Kingue S - Saudi J Kidney Dis Transpl [Internet]. [cited 2020 Feb 6]. Available from: http://www.sjkdt.org/article.asp?issn=1319-2442;year=2017;volume=28;issue=5;spage=1144;epage=1149;aulast=Kamdem

29. Temgoua M, Ashuntantang G, Essi MJ, Tochie JN, Oumarou M, Abongwa AF, Mbonda A, Kingue S. Prevalence and Risk Factors for Chronic Kidney Disease in Family Relatives of a Cameroonian Population of Hemodialysis Patients: A Cross-Sectional Study. Hosp Pract Res. 2019;4(1):12–7.

30. Kaze FF, Kengne A-P, Magatsing CT, Halle MP, Yiagnigni E, Ngu KB. Prevalence and Determinants of Chronic Kidney Disease Among Hypertensive Cameroonians According to Three Common Estimators of the Glomerular Filtration Rate. J Clin Hypertens Greenwich Conn. 2016;18(5):408–14.

31. Prevalence and determinants of chronic kidney disease in urban adults’ populations of northern Cameroon: a cross-sectional study. 2019 Aug 15 [cited 2020 May 9]; Available from: https://www.researchsquare.com/article/rs-3746/v1

32. Patrice HM, Moussa O, Francois KF, Yacouba M, Hugo MNB, Henry LN. Prevalence and Associated Factors of Chronic Kidney Disease Among Patients Infected With Human Immunodeficiency Virus in Cameroon. Iran J Kidney Dis. 2018;12(5):268–74.

33. Ngeugoue FT, Njoumemi Z, Kaze FF. Monthly direct and indirect costs of management of CKD 3 – 5 non-dialysis patients in an out-of-pocket expenditure system: The Case of Yaoundé. Clin Nephrol
34. Marie Patrice H, Joiven N, Hermine F, Jean Yves B, Folefack François K, Enow Gloria A. Factors associated with late presentation of patients with chronic kidney disease in nephrology consultation in Cameroon-a descriptive cross-sectional study. Ren Fail. 2019;41(1):384–92.

35. Halle MP, Zebaze PN, Mbofung CM, Kaze F, Mbiatat H, Ashuntantang G, Kenge AP. Nutritional status of patients on maintenance hemodialysis in urban sub-Saharan Africa: evidence from Cameroon. J Nephrol. 2014;27(5):545–53.

36. Kaze FF, Kenge A-P, Djalloh AMA, Ashuntantang G, Halle MP, Menanga AP, Kingue S. Pattern and correlates of cardiac lesions in a group of sub-Saharan African patients on maintenance hemodialysis. Pan Afr Med J [Internet]. 2014 07 [cited 2020 Feb 9];17(3). Available from: https://www.panafrican-med-journal.com/content/article/17/3/full/

37. Epidemiological profile of patients with end stage renal disease in a referral hospital in Cameroon | BMC Nephrology | Full Text [Internet]. [cited 2020 Feb 10]. Available from: https://bmcnephrol.biomedcentral.com/articles/10.1186/s12882-015-0044-2

38. Kaze FF, Ekokobe FE, Halle MP, Fouda H, Menanga AP, Ashuntantang G. The clinical pattern of renal diseases in the nephrology in-patient unit of the Yaounde General Hospital in Cameroon: a five-year audit. Pan Afr Med J. 2015;21:205.

39. Halle MP, Ashuntantang G, Kaze FF, Takongue C, Kenge A-P. Fatal outcomes among patients on maintenance haemodialysis in sub-Saharan Africa: a 10-year audit from the Douala General Hospital in Cameroon. BMC Nephrol. 2016 03;17(1):165.

40. Halle M-P, Choukem S-P, Kaze FF, Ashuntantang G, Tchamago V, Mboue-Djieka Y, Temfack E, Luma HN. Hepatitis B, Hepatitis C, and Human Immune deficiency Virus Seroconversion Positivity Rates and Their Potential Risk Factors Among Patients on Maintenance Hemodialysis in Cameroon. Iran J Kidney Dis. 2016;10(5):304–9.

41. Luma HN, Halle MP, Eloumou SAFB, Azingala F, Kamdem F, Donfack-Sontsa O, Ashuntantang G. Seroprevalence of human immunodeficiency virus, hepatitis B and C viruses among haemodialysis patients in two newly opened centres in Cameroon. Pan Afr Med J. 2017;27:235.

42. Ama Moor VJ, Nansseu JRN, Azingni DBT, Kaze FF. Assessment of the 10-year risk of cardiovascular disease among a group of patients on maintenance hemodialysis: A cross-sectional study from Cameroon. JRSM Cardiovasc Dis. 2017;6:2048004017705273.

43. Halle MPE, Kenge AP, Ashuntantang G. Referral of patients with kidney impairment for specialist care in a developing country of sub-Saharan Africa. Ren Fail. 2009;31(5):341–8.

44. Pancha Mbouemboue O, Danbe OD, Tangyi Tamanji M, Ngoufack JO. Frequency of Specific Cardiovascular Disease Risk Factors among Cameroonian Patients on Dialysis: The Cases of Anaemia, Inflammation, Phosphate, and Calcium. Cardiol Res Pract. 2016;2016:5031927.

45. Kouotou EA, Folefack FK, Tatsa JT, Sieleunou I, Njingang JRN, Ashuntantang G, Bissek A-CZ-K. Profil épidémio-clinique des atteintes dermatologiques chez le noir Africain en hémodialyse chronique. Pan...
46. Lemogoum D, Halle MP, Mboule RD, Van de Borne P, Bika Lele EC, Kamdem F, Doualla MS, Luma H, Hermans MP, Van Bortel L. Arterial stiffness in black African ancestry patients with chronic kidney disease living in Cameroon. Cardiovasc Diagn Ther. 2018;8(4):450–9.

47. Doualla M, Halle MP, Moutchia J, Tegang S, Ashuntantang G. Determinants of hyperuricemia in non-dialysed chronic kidney disease patients in three hospitals in Cameroon. BMC Nephrol. 2018 09;19(1):169.

48. Fouda H, Ashuntantang G, Kaze F, Halle M-P. La survie en hémodialyse chronique au Cameroun. Pan Afr Med J [Internet]. 2017 [cited 2020 Feb 10];26. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5409996/

49. Halle MP, Edjomo AM, Fouda H, Djantio H, Essomba N, Ashuntantang GE. Survival of HIV infected patients on maintenance hemodialysis in Cameroon: a comparative study. BMC Nephrol. 2018;19(1):166.

50. Kaze FF, Meto DT, Halle M-P, Ngogang J, Kengne A-P. Prevalence and determinants of chronic kidney disease in rural and urban Cameroonian: a cross-sectional study. BMC Nephrol. 2015;16:117.

51. Bahrey D, Gebremedhn G, Mariye T, Girmay A, Aberhe W, Hika A, Teklay G, Tasew H, Zeru T, Gerensea H, Demoz GT. Prevalence and associated factors of chronic kidney disease among adult hypertensive patients in Tigray teaching hospitals: a cross-sectional study. BMC Res Notes. 2019;12(1):562.

52. Kaboré NF, Poda A, Zoungrana J, Da O, Ciaffi L, Semdé A, Yaméogo I, Sawadogo AB, Delaporte E, Meda N, Limou S, Cournil A. Chronic kidney disease and HIV in the era of antiretroviral treatment: findings from a 10-year cohort study in a west African setting. BMC Nephrol. 2019;20(1):155.

53. Noubiap JJN, Naidoo J, Kengne AP. Diabetic nephropathy in Africa: A systematic review. World J Diabetes. 2015;6(5):759–73.

54. Mwenda V. Prevalence and factors associated with chronic kidney disease among medical inpatients at the Kenyatta National Hospital, Kenya, 2018: a cross-sectional study. Pan Afr Med J [Internet]. 2019 [cited 2020 Apr 13]; Available from: https://pesquisa.bvsalud.org/gim/resource/en/afr-200909

55. Kalyesubula R, Nankabirwa JI, Ssinabulya I, Siddharthan T, Kayima J, Nakibuuka J, Salata RA, Mondo C, Kamya MR, Hricik D. Kidney disease in Uganda: a community based study. BMC Nephrol. 2017;18(1):116.

56. Fraser SDS, Roderick PJ, May CR, McIntyre N, McIntyre C, Fluck RJ, Shardlow A, Taal MW. The burden of comorbidity in people with chronic kidney disease stage 3: a cohort study. BMC Nephrol. 2015;16(1):193.

57. Collins AJ, Li S, Gilbertson DT, Liu J, Chen S-C, Herzog CA. Chronic kidney disease and cardiovascular disease in the Medicare population: Management of comorbidities in kidney disease in the 21st century: Anemia and bone disease. Kidney Int. 2003;64:S24–31.
58. Bruggeman LA. Viral Subversion Mechanisms in Chronic Kidney Disease Pathogenesis. Clin J Am Soc Nephrol. 2007;2(Supplement 1):S13–9.

59. Turner JM, Bauer C, Abramowitz MK, Melamed ML, Hostetter TH. Treatment of chronic kidney disease. Kidney Int. 2012;81(4):351–62.

60. Smith DH. Cost of Medical Care for Chronic Kidney Disease and Comorbidity among Enrollees in a Large HMO Population. J Am Soc Nephrol. 2004;15(5):1300–6.

61. Chen TK, Knicely DH, Grams ME. Chronic Kidney Disease Diagnosis and Management: A Review. JAMA. 2019;322(13):1294–304.

Figures
Figure 1

Flow diagram for study screening, selection and inclusion