Azole-resistant *Aspergillus fumigatus* isolates carrying TR$_{34}$/L98H mutations in Taiwan

Chi-Jung Wu,1,2 Hsuan-Chen Wang,1 Jen-Chieh Lee,1 Hsiu-Jung Lo,1 Ching-Tzu Dai,3 Pei-Hsin Chou,1 Wen-Chien Ko2 and Yee-Chun Chen1,3

1National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan, 2Department of Internal Medicine, National Cheng Kung University Hospital and Medical College, Tainan, Taiwan and 3Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan

Summary

Cumulative evidence described the emergence and geographical expansion of azole-resistant *A. fumigatus* associated with azole treatment failure. To investigate the status of azole resistance in *A. fumigatus* in Taiwan, we studied 38 *A. fumigatus* clinical isolates cultivated from 31 patients at two teaching hospitals from 2011 to 2014. Three isolates obtained from respiratory samples of two azole-naïve patients with pulmonary aspergillosis were found to display multi-azole resistance and cross resistance to agricultural azole fungicides, and all carried TR$_{34}$/L98H mutations in *cyp51A* gene. The prevalence rates of azole resistance were 7.9% and 6.5% based on isolates and patients respectively. A phylogenetic analysis suggested genetic diversity of the TR$_{34}$/L98H isolates in Taiwan, including a unique genotype distinct from strains outside Taiwan. The result underlines the emergence of such isolates in Taiwan as well, emphasising the importance of further surveillance for azole-resistant *A. fumigatus* and implementation of strategies that prevent fungicide-driven resistance selection.

Key words: Azole resistance, *Aspergillus fumigatus*, Taiwan, TR$_{34}$/L98H, azole fungicide.

Introduction

Aspergillus fumigatus is the leading pathogen causing invasive mould diseases in humans, and voriconazole and other triazole antifungals, the competitive inhibitor of cyp51A, are the recommended primary therapies for aspergillosis in international guidelines and in Taiwan.$^{1-3}$ So far, cumulative evidence described the emergence and geographical expansion of azole-resistant *A. fumigatus* associated with voriconazole treatment failure.$^{4-7}$ Cyp51A-related mutations are the principal resistance mechanisms recognised in azole-resistant *A. fumigatus*.4 Multiple amino acid substitutions in the *cyp51A gene* have been described to be associated with azole resistance that emerged duringazole treatment, while a resistance mechanism consisting a 34-bp tandem repeat in the promotor region of *cyp51A* in combination of a substitution at codon 98 (TR$_{34}$/L98H) has been linked to the agricultural use of azole fungicides in Europe.5,7,8 A recent report also demonstrated the TR$_{34}$/L98H resistance mechanism in *A. fumigatus* isolates from China and India, two highly populated countries in Asia.9

Taiwan is a subtropical island country situated in Eastern Asia, where clinical azole-resistant *A. fumigatus* isolates have been reported in 200310 though the molecular mechanisms contributing to azole resistance have not been delineated. Considering the potential of geographic migration of resistant isolates and to investigate the current status of azole resistance in *A. fumigatus* in Taiwan, we examined clinical isolates from two teaching hospitals and described the genetic relationship between resistant isolates and global strains.
Material and methods

Patients and isolates

Thirty eight clinical A. fumigatus isolates cultivated from 31 patients at National Cheng-Kung University Hospital located in southern Taiwan and National Taiwan University Hospital located in northern Taiwan during 2011–2014 were studied, retrospectively. The strain identification was based on the morphological characteristics and the sequence analysis of the internal transcribed spacer region, β-tubulin and the calmodulin gene, as previously described. Clinical data of patients with isolation of non-wild-type A. fumigatus were reviewed.

In vitro antifungal susceptibility testing

Of all A. fumigatus isolates, the minimal inhibitory concentrations (MICs) of medical azoles (itraconazole, voriconazole and posaconazole) were determined using the Sensititre YeastOne broth microdilution system (YO10, Trek Diagnostic Systems, Ltd., East Grimstead, U.K.)12,11 and MICs of azole fungicides [tebuconazole and penconazole (Chem Service, Inc., Pennsylvania, USA)] were determined using the Clinical Laboratory Standard Institute (CLSI) M38-A2 broth microdilution method.14 An isolate with an itraconazole, voriconazole or posaconazole MIC of ≥1, ≥1, or ≥0.5 mg/L determined by the YeastOne plate respectively was re-examined for MICs of itraconazole, voriconazole, posaconazole and amphotericin B (all Sigma-Aldrich, Saint Louis, MO, USA) using the CLSI method.14 Based on CLSI-proposed epidemiological cut-off values, an isolate with an itraconazole, voriconazole or posaconazole MIC of >1, >1 or >0.5 mg/L was considered ‘non-wild-type’ and also described as ‘resistant’ herein.15

Mutation analysis

Non-wild-type A. fumigatus isolates were selected for further detection of cyp51A mutations. Of the selected isolates, the full sequences of cyp51A gene along with the promotor regions were amplified with previously described PCR primers and conditions16 and the amplified products were sequenced with Applied Biosystems sequencer (ABI 3130, Foster City, CA, USA). The DNA sequences of the non-wild-type A. fumigatus strains were compared with the wild-type susceptible A. fumigatus reference strain (GenBank AF338659).

Microsatellite genotyping

The genotypic relationship in non-wild-type strains and wild-type strains in this study and strains from other countries were investigated using microsatellite genotyping method, which was based on an cluster analysis of nine short tandem repeat loci of A. fumigatus.17 A. fumigatus BCRC 32836 (i.e. CBS 487.65) was included as a reference strain and allelic ladders were introduced for interlaboratory standardization of the genotyping assay.17,18 The repeat numbers of nine markers of all isolates were repeated thrice. The strains from outside Taiwan for comparison were from the following countries: India (clinical susceptible [n = 2] and resistant [1]; environmental susceptible [1]), Iran (environmental susceptible [1] and resistant [1]), France (clinical resistant [1]), China (clinical resistant [4]), Australia (clinical resistant [2]), Germany (clinical resistant [1]), the Netherlands (clinical resistant[2]; environmental susceptible [1] and resistant [2]) and Kuwait (clinical resistant [1]).19–21 The dendrogram based on the Unweighted Pair Group Method with Arithmetic mean (UPGMA) algorithm was generated using the BioNumerics v6.0 software (Applied Maths, Sint-Martens-Latem, Belgium).

Results

Among the 38 isolates, three isolates (A31, B44 and B51) obtained from two azole-naïve patients displayed multi-azole resistance, that is. simultaneous resistance to itraconazole, voriconazole and posaconazole, and higher MICs of tebuconazole and penconazole (≥16 mg/L) (Table 1). The prevalence rates of azole resistance were 7.9% and 6.5% based on isolates and patients respectively. TR14/L98H mutations in cyp51A gene were present in all three isolates, but not in the remaining 35 azole-susceptible isolates. Additional substitutions at S297T and F495I were detected in strains B44 and B51.

Strain A31 was obtained from bronchoalveolar lavage of a patient residing in southern Taiwan who had lung cancer and underwent lobectomy 5 weeks ago. Proven invasive pulmonary aspergillosis was diagnosed based on the histopathological examination of the bronchoscopic biopsy according to the criteria of the European Organization for Research and Treatment of Cancer/Mycoses Study Group.22 The patient was treated with posaconazole and voriconazole sequentially, and died of progressive pneumonia with bacterial co-infection. Strains B44 and B51 were obtained 2 days apart from sputum of a 66-year-old...
Patient, sex/age(y)	Isolate	Sample type	Underlying diseases	Aspergillus diseases	Treatment	Outcome	cyp51A mutations	Minimum inhibitory concentrations, mg/L					
							cyp51A	ITZ	VCZ	POS	AMB	TRZ	PEN
Azole-resistant isolates, n = 3							mutations						
1, M/59	A31	BAL	Lung cancer	IPA, proven	PSC, VOR	Died	TR34/L98H	>16	4	1	0.5	32	>32
2, F/66	B44	sputum	Chronic hepatitis C, cirrhosis of liver, diabetes without control and adrenal insufficiency	IPA¹	VOR, AMB	Died	TR34/L98H	>16 (>16²)	2 (1²)	1 (0.5³)	0.5	16	>32
	B51	Sputum					TR34/L98H	>16 (>16²)	2 (1²)	1 (0.5³)	0.5	16	>32
Azole-susceptible isolates, n = 35							ND	0.06	0.25	0.03	1/2	2/2	

The minimum inhibitory concentrations (MICs) of medical azoles and azole fungicides were determined using the Clinical Laboratory Standard Institute broth microdilution method and the Sensititre YeastOne system.

¹This patient could not be classified according to the EORTC/MSG consensus definitions.
²The MICs were determined with the Sensititre YeastOne system.
³MIC₅₀/₉₀ [MIC range].

AMB, amphotericin B; BAL, bronchoalveolar lavage; IPA, invasive pulmonary aspergillosis; ITZ, itraconazole; ND, not detected; PEN, penconazole; POS, posaconazole; VCZ, voriconazole; TBZ, tebuconazole; PEN, penconazole.
woman with multiple underlying diseases residing in northern Taiwan (Table 1). She was transferred from a regional hospital due to progressive shortness of breath and productive cough in the past 3 weeks and sudden onset of high fever despite antibacterial therapy. Computed tomography of the chest showed multiple nodular lesions over bilateral lungs. The patient died 1 week after admission despite voriconazole and amphotericin B initiated based on one positive serum galactomannan antigen assay (0.788) and no other identifiable aetiology.

The results of microsatellite genotyping showed that strain A31 was closely related to the azole-resistant TR34/L98H isolates from Australia, the Netherlands, Iran and India, while strains B44 and B51 clustered with wild-type clinical isolates in this study but not with strains from outside Taiwan (Fig. 1).

Discussion

In the present study, we reported an azole resistance rate of 6.5% in clinical *A. fumigatus* isolates and TR34/L98H mutations as the responsible resistant mechanism. Further phylogenetic analysis demonstrated genetic diversity of TR34/L98H isolates in Taiwan, which might come from overseas (strain A31) or result from the evolution of local strains (strains B44 and B51). Currently, the global prevalence of azole resistance in *Aspergillus* appears to be 3–6% and TR34/L98H mutation is the most frequently reported resistance mechanism.4 TR34/L98H *A. fumigatus* isolates have been isolated from many azole-naïve patients, exhibited resistance to both medical azoles and azole fungicides, as seen in our cases, and was presumed to be associated with environmental use of azole fungicides.5,7 So far, environmental or clinical TR34/L98H *A. fumigatus* isolates have been reported from many European countries, Tanzania, Kuwait, Iran, India, China and Australia.5,9,19–21,23,24 Molecular epidemiology studies indicated that TR34/L98H isolates might have a common ancestor and have subsequently migrated widely through airborne conidia and ascospores, as observed across Europe, or may be an adaptive recombinant progeny that developed locally, as observed in India where a unique genotype distinct from the Chinese, Middle East and

![Figure 1](image_url)

Figure 1 Genotypic relationship in *Aspergillus fumigatus* clinical isolates from Taiwan, including 3 azole-resistant strains (A31, B44, and B51), and published clinical and environmental isolates from other countries determined by microsatellite genotyping.
European TR_{34}/L98H strains was identified. Our results added to the speculation that resistance due to TR_{34}/L98H mutation among the *A. fumigatus* strains across Asia might have evolved from separate local strains.

The widespread application ofazole fungicides and their persistence in the environment are significant selective forces for the emergence and spread of azole-resistant *A. fumigatus*. From a global perspective, the western European and the Asia-Pacific regions account for 61% of the global market share of agricultural fungicides. Among five azole fungicides (difenoconazole, tebuconazole, propiconazole, epoxiconazole and bromuconazole) with a very similar structure to medical azoles and the highest potential to select for the TR_{34}/L98H genotype, the former four agents (49,705 kg sold in 2013) and penconazole (152 kg in 2013) have been widely used in Taiwan for at least 10 years. Our previous study found genetic clustering of *Candida tropicalis* isolates exhibiting reduced susceptibility to both fluconazole andazole fungicides recovered from epidemiologically unrelated patients and environmental samples. Together with the identification of TR_{34}/L98H isolates fromazole-naive patients and the presence of a unique genotype distinct from other countries, these observations raised the concern that TR_{34}/L98H *A. fumigatus* isolates might have already existed in the environment in Taiwan. On the other hand, no TR_{34}/L98H mutation was detected in 1,026 clinical *A. fumigatus* isolates from the United States, and the observed low azole-resistance rate has been postulated to be related to the difference in the extent of *A. fumigatus* exposure to azole fungicides.

The spectrum of patients at risk of invasive pulmonary aspergillosis has expanded in recent years because of an increase in patient population without haematological disorders, as our two patients. Resistance threatens the outcome of patients with azole-resistant invasive aspergillosis with a reported case-fatality rate of 88%. Without antifungal susceptibility testing result for therapeutic guidance, clinical condition of our first case deteriorated on azole therapy. Facing the worldwide emergence ofazole-resistant *A. fumigatus* and substantial geographical variation in the prevalence of resistance, it is important to consider local drug resistance rate to devise local guidelines. Furthermore, in areas where resistant isolates are prevalent, antifungal susceptibility testing should be undertaken routinely for all clinically relevant *A. fumigatus* isolates to guide antifungal therapy.

In conclusion, this study constitutes the first report of TR_{34}/L98H azole-resistant *A. fumigatus* isolates in Taiwan which was in line with the emergence of such isolates in Asian countries. In the era of increasingazole resistance, systematic and periodic surveillance of antifungal resistance in environmental and clinical *A. fumigatus* strains are important. In addition, agricultural fungicide usage strategies contributing to a lower resistance selection pressure should be investigated.

Acknowledgments

This work was supported by research grants from the National Health Research Institutes, Taiwan (IV-101-PP-10, IV-102-PP-09, IV-103-PP-09, IV-102-PP-33 and IV-103-PP-33). We thank Jacques F. Meis for providing invaluable suggestions, Hung-Mo Chen, Jau-Yn Wan, and Li-Fang Chen for their laboratory assistance, and Huan Lai for preparing figure artwork.

References

1. Bryth CC, Gilroy NM, Gay SD et al. Consensus guidelines for the treatment of invasive mould infections in haematological malignancy and haemopoietic stem cell transplantation, 2014. *Intern Med J* 2014; 44: 1333–49.
2. Infectious Diseases Society of Taiwan, Hematology Society of Taiwan, Taiwan Society of Pulmonary and Critical Care Medicine, Medical Foundation in Memory of Dr Deh-Lin Cheng, Foundation of Professor Wei-Chuan Hsieh for Infectious Diseases Research and Education, CY Lee’s Research Foundation for Pediatric Infectious Diseases and Vaccines. Guidelines for the use of antifungal agents in patients with invasive fungal infections in Taiwan - revised 2009. *J Microbiol Immunol* 2010; 43: 258–63.
3. Walsh TJ, Aarnio EJ, Denning DW et al. Treatment of aspergillosis: clinical practice guidelines of the Infectious Diseases Society of America. *Clin Infect Dis* 2008; 46: 127–60.
4. Arendrup MC. Update on antifungal resistance in *Aspergillus* and *Candida*. *Clin Microbiol Infect* 2014; 20(Suppl): 42–8.
5. Chowdhary A, Kathuria S, Xu JP, Mei JF. Emergence of azole-resistant *Aspergillus fumigatus* strains due to agricultural azole use creates an increasing threat to human health. *PLoS Pathog* 2013; 9: e1003633.
6. Van der Linden JW, Snelders E, Kampinga GA et al. Clinical implications of azole resistance in *Aspergillus fumigatus*, the Netherlands, 2007–2009. *Emerg Infect Dis* 2011; 17: 1846–54.
7. Verweij PE, Snelders E, Kema GH, Mellado E, Meltchers WJ. Azole resistance in *Aspergillus fumigatus*: a side-effect of environmental fungicide use? *Lancet Infect Dis* 2009; 9: 789–95.
8. Snelders E, Camps SM, Karawajczyk A et al. Triazole fungicides can induce cross-resistance to medical triazoles in *Aspergillus fumigatus*. *PLoS ONE* 2012; 7: e51801.
9. Chowdhary A, Kathuria S, Hagen F, Mei JF. Prevalence and mechanism of triazole resistance in *Aspergillus fumigatus* in a referral chest hospital in Delhi, India and an update of the situation in Asia. *Front Microbiol* 2015; 6: 428.
10. Hsueh PR, Lau YJ, Chuang YC et al. Antifungal susceptibilities of clinical isolates of Candida species, *Cryptococcus neoformans*, and *Aspergillus* species from Taiwan: surveillance of multicenter antimicrobial resistance in Taiwan program data from 2003. *Antimicrob Agents Chemother* 2005; 49: 512–7.
Polyphasic taxonomy of Aspergillus section Fumigati and its teleomorph Neosartorya. Stud Mycol 2007; 59: 147–203.

Patel R, Mendrick C, Knapp CC, Grist R, McNicholas PM. Clinical evaluation of the Sensititre YeastOne plate for testing susceptibility of filamentous fungi to posaconazole. J Clin Microbiol 2007; 45: 2000–1.

Castro C, Serrano MC, Flores B, Espejo-Ingroff A, Martin-Manuel E. Comparison of the Sensititre YeastOne colorimetric antifungal panel with a modified NCCLS M38-A method to determine the activity of voriconazole against clinical isolates of Aspergillus spp. J Clin Microbiol 2004; 42: 4358–60.

CLSI. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi: Approved Standard-Second Edition. CLSI document M38-A2. Wayne, PA: Clinical and Laboratory Standards Institute; 2008.

Lass-Florl C. Susceptibility testing in aspergillosis: an overview. J Infect 2007; 54: 446–50.

Snelders E, Karawajczyk A, Schallenaar G, Verweij PE, Melchers WJ. Azole resistance profile of amino acid changes in Aspergillus fumigatus cyp51A based on protein homology modeling. Antimicrob Agents Chemother 2010; 54: 2425–30.

De Valk HA, Meis JF, Curb JM, Muehlethaler K, Mouton JW, Klaassen CHW. Use of a novel panel of nine short tandem repeats for clonal expansion and epidemiology of environmental multiple-triazole-resistant Aspergillus fumigatus. J Antimicrob Chemother 2012; 67: 307–13.

De Valk HA, Meis JF, Bretagne S et al. Interlaboratory reproducibility of a microsatellite-based typing assay for Aspergillus fumigatus through the use of allelic ladders: proof of concept. Clin Microbiol Infect 2009; 15: 180–7.

Kidd SE, Goeman E, Meis JF, Slavin MA, Verweij PE. Multi-triazole-resistant Aspergillus fumigatus infections in Australia. Mycoses 2015; 58: 350–5.

Badali H, Vaezi A, Haghani F et al. Environmental study of azole-resistant Aspergillus fumigatus with TR44/L98H mutations in the cyp51A gene in Iran. Mycoses 2013; 56: 659–63.

Chowdhary A, Kathuria S, Xu J et al. Clonal expansion and emergence of environmental multiple-triazole-resistant Aspergillus fumigatus strains carrying the TR44/L98H mutations in the cyp51A gene in India. PLoS ONE 2012; 7: e52871.

De Paauw B, Walsh TJ, Donnelly JP et al. Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clin Infect Dis 2008; 46: 1813–21.

Chowdhary A, Sharma C, van den Boom M et al. Multi-azole-resistant Aspergillus fumigatus in the environment in Tanzania. J Antimicrob Chemother 2014; 69: 2979–83.

Lockhart SR, Fraze JP, Etienne KA, Pfaller MA, Diekema DJ, Balajee SA. Azole resistance in Aspergillus fumigatus isolates from the ARTESMIS global surveillance study is primarily due to the TR44/L98H mutation in the cyp51A gene. Antimicrob Agents Chemother 2011; 55: 4465–8.

Stensvold CRJL, Arendrup MC. Azole-resistant invasive aspergillosis: relationship to agriculture. Curr Fungal Infect Rep 2012; 6: 178–91.

Taiwan Crop Protection Industry Association. Domestic manufacturers production & sale of pesticides in 2013. Taiwan Crop Protection Industry Association, Taipei, Taiwan, Republic of China. [In Chinese]

Yang YL, Lin CC, Chang TP et al. Comparison of human and soil Candida tropicalis isolates with reduced susceptibility to fluconazole. PLoS ONE 2012; 7: e34609.

Pham CD, Reiss E, Hagen F, Meis JF, Lockhart SR. Passive surveillance for azole-resistant Aspergillus fumigatus, United States, 2011-2013. Emerg Infect Dis 2014; 20: 1498–503.

Guinea J, Padilla C, Escobino P et al. Evaluation of MycAssay (TM) Aspergillus for diagnosis of invasive pulmonary aspergillosis in patients without hematological cancer. PLoS ONE 2013; 8: e61345.

Denning DW, Bowyer P. Voriconazole resistance in Aspergillus fumigatus: should we be concerned? J Clin Infect Dis 2013; 57: 521–3.