NON-RATIONALITY OF THE \mathfrak{S}_6-SYMMETRIC QUARTIC THREEFOLDS

ARNAUD BEAUVILLE

Pour Alberto, à l’occasion de son 70e anniversaire

ABSTRACT. We prove that the quartic hypersurfaces defined by $\sum x_i = t \sum x_i^4 - (\sum x_i^2)^2 = 0$ in \mathbb{P}^5 are not rational for $t \neq 0, 2, 4, 6, \frac{10}{7}$.

1. INTRODUCTION

Let V be the standard representation of \mathfrak{S}_6 (that is, V is the hyperplane $\sum x_i = 0$ in \mathbb{C}^6, with \mathfrak{S}_6 acting by permutation of the basis vectors). The quartic hypersurfaces in $\mathbb{P}(V) (\cong \mathbb{P}^4)$ invariant under \mathfrak{S}_6 form the pencil

$$X_t : t \sum x_i^4 - (\sum x_i^2)^2 = 0, \quad t \in \mathbb{P}^1.$$

This pencil contains two classical quartic hypersurfaces, the Burkhardt quartic X_2 and the Igusa quartic X_4 (see for instance [H]); they are both rational.

For $t \neq 0, 2, 4, 6$ and $\frac{10}{7}$, the quartic X_t has exactly 30 nodes; the set of nodes \mathcal{N} is the orbit under \mathfrak{S}_6 of $(1, 1, \rho, \rho, \rho^2, \rho^2)$, with $\rho = e^{2\pi i/3}$ ([vdG], §4). We will prove:

Theorem. For $t \neq 0, 2, 4, 6, \frac{10}{7}$, X_t is not rational.

The method is that of [B]: we show that the intermediate Jacobian of a desingularization of X_t is 5-dimensional and that the action of \mathfrak{S}_6 on its tangent space at 0 is irreducible. From this one sees easily that this intermediate Jacobian cannot be a Jacobian or a product of Jacobians, hence X_t is not rational by the Clemens-Griffiths criterion. We do not know whether X_t is unirational.

I am indebted to A. Bondal and Y. Prokhorov for suggesting the problem, to A. Dimca for explaining to me how to compute explicitly the defect of a nodal hypersurface, and to I. Cheltsov for pointing out the rationality of $X_{\frac{10}{7}}$.

2. THE ACTION OF \mathfrak{S}_6 ON $T_0(JX)$

We fix $t \neq 0, 2, 4, 6, \frac{10}{7}$, and denote by X the desingularization of X_t obtained by blowing up the nodes. The main ingredient of the proof is the fact that the action of \mathfrak{S}_6 on JX is non-trivial. To prove this we consider the action of \mathfrak{S}_6 on the tangent space $T_0(JX)$, which is by definition $H^2(X, \Omega^1_X)$.

Lemma 1. Let C be the space of cubic forms on $\mathbb{P}(V)$ vanishing along \mathcal{N}. We have an isomorphism of \mathfrak{S}_6-modules $C \cong V \oplus H^2(X, \Omega^1_X)$.

Proof : The proof is essentially contained in [C]; we explain how to adapt the arguments there to our situation. Let $b : P \to \mathbb{P}(V)$ be the blowing-up of $\mathbb{P}(V)$ along \mathcal{N}. The threefold X is the strict transform of X_t in P. The exact sequence

$$0 \to N^1_{X/P} \to \Omega^1_{P|X} \to \Omega^1_X \to 0$$
gives rise to an exact sequence

\[0 \rightarrow H^2(X, \Omega^1_X) \rightarrow H^3(X, N^*_X / P) \rightarrow H^3(X, \Omega^1_{P|X}) \rightarrow 0 \]

([C], proof of Theorem 1), which is \mathcal{G}_6-equivariant. We will compute the two last terms.

The exact sequence

\[0 \rightarrow \Omega^1_P(-X) \rightarrow \Omega^1_P \rightarrow \Omega^1_{P|X} \rightarrow 0 \]

provides an isomorphism $H^3(X, \Omega^1_{P|X}) \cong H^4(P, \Omega^1_P(-X))$, and the latter space is isomorphic to $H^4(\mathbb{P}(V), \Omega^1_{\mathbb{P}(V)}(-4))$ ([C], proof of Lemma 3). By Serre duality $H^4(\mathbb{P}(V), \Omega^1_{\mathbb{P}(V)}(-4))$ is dual to $H^0(\mathbb{P}(V), T_{\mathbb{P}(V)}(-1)) \cong V$. Thus the \mathcal{G}_6-module $H^3(X, \Omega^1_{P|X})$ is isomorphic to V^*, hence also to V.

Similarly the exact sequence $0 \rightarrow \mathcal{O}_P(-2X) \rightarrow \mathcal{O}_P(-X) \rightarrow N^*_X / P \rightarrow 0$ and the vanishing of $H^4(P, \mathcal{O}_P(-X))$ ([C], Corollary 2) provide an isomorphism of $H^3(X, N^*_X / P)$ onto $H^4(P, \mathcal{O}_P(-2X))$, which is naturally isomorphic to the dual of C ([C], proof of Proposition 2). The lemma follows.

Lemma 2. The dimension of C is 10.

Proof: Recall that the defect of X_t is the difference between the dimension of C and its expected dimension, namely:

\[\text{def}(X_t) := \dim C - (\dim H^0(\mathbb{P}(V), \mathcal{O}_{\mathbb{P}(V)}(3)) - \# N). \]

Thus our assertion is equivalent to $\text{def}(X_t) = 5$.

To compute this defect we use the formula of [D-S], Theorem 1.5. Let $F = 0$ be an equation of X_t in \mathbb{P}^4; let $R := \mathbb{C}[X_0, \ldots, X_4] / (F'_0, \ldots, F'_4)$ be the Jacobian ring of F, and let R^{2m} be the Jacobian ring of a smooth quartic hypersurface in \mathbb{P}^4. The formula is

\[\text{def}(X_t) = \dim R_7 - \dim R^{2m}_7. \]

In our case we have $\dim R^{2m}_7 = \dim R^{2m}_4 = 35 - 5 = 30$; a simple computation with Singular (for instance) gives $\dim R_7 = 35$. This implies the lemma.

Proposition. The \mathcal{G}_6-module $H^2(X, \Omega^1_X)$ is isomorphic to V.

Proof: Consider the homomorphisms a and b of \mathbb{C}^6 into $H^0(\mathbb{P}(V), \mathcal{O}_{\mathbb{P}(V)}(3))$ given by $a(e_i) = x_i^3$, $b(e_i) = x_i \sum x_j^2$. They are both \mathcal{G}_6-equivariant and map V into C; the subspaces $a(V)$ and $b(V)$ of C do not coincide, so we have $a(V) \cap b(V) = 0$. By Lemma 2 this implies $C = a(V) \oplus b(V)$, so $H^2(X, \Omega^1_X)$ is isomorphic to V by Lemma 1.

Remark. Suppose $t = 2, 6$ or $\frac{10}{7}$. Then the singular locus of X_t is $\mathcal{N} \cup \mathcal{N}'$, where \mathcal{N}' is the \mathcal{G}_6-orbit of the point $(1, -1, 0, 0, 0, 0)$ for $t = 2$, $(1, -1, 1, -1, 1, -1)$ for $t = 6$, $(-5, 1, 1, 1, 1, 1)$ for $t = \frac{10}{7}$. Since $x_1^3 - x_0^3$ does not vanish on \mathcal{N}', the space of cubics vanishing along $\mathcal{N} \cup \mathcal{N}'$ is strictly contained in C. By Lemma 1 it contains a copy of V, hence it is isomorphic to V; therefore $H^2(X, \Omega^1_X)$ and $\mathcal{J}X$ are zero in these cases. We have already mentioned that X_2 and X_4 are rational. The quartic $X_{\frac{10}{7}}$ is rational: it is the image of the anticanonical map of \mathbb{P}^3 blown up along 6 lines which are permuted by \mathcal{G}_6 (see [C-S], proof of Lemma 4.5, and the references given there). We do not know whether this is the case for X_6.
3. PROOF OF THE THEOREM

To prove that X is not rational, we apply the Clemens-Griffiths criterion ([C-G], Cor. 3.26): it suffices to prove that JX is not a Jacobian or a product of Jacobians.

Suppose $JX \cong JC$ for some curve C of genus 5. By the Proposition S_6 embeds into the group of automorphisms of JC preserving the principal polarization; by the Torelli theorem this group is isomorphic to $\text{Aut}(C)$ if C is hyperelliptic and $\text{Aut}(C) \times \mathbb{Z}/2$ otherwise. Thus we find $\# \text{Aut}(C) \geq \tfrac{1}{2}6! = 360$. But this contradicts the Hurwitz bound $\# \text{Aut}(C) \leq 84(5 - 1) = 336$.

Now suppose that JX is isomorphic to a product of Jacobians $J_1 \times \ldots \times J_p$, with $p \geq 2$. Recall that such a decomposition is unique up to the order of the factors: it corresponds to the decomposition of the Theta divisor into irreducible components ([C-G], Cor. 3.23). Thus the group S_6 permutes the factors J_i, and therefore acts on $[1,p]$; by the Proposition this action must be transitive. But we have $p \leq \dim JX = 5$, so this is impossible. ■

REFERENCES

[B] A. Beauville : Non-rationality of the symmetric sextic Fano threefold. Geometry and Arithmetic, pp. 57-60; EMS Congress Reports (2012).

[C] S. Cynk : Defect of a nodal hypersurface. Manuscripta Math. 104 (2001), no. 3, 325-331.

[C-G] H. Clemens, P. Griffiths : The intermediate Jacobian of the cubic threefold. Ann. of Math. (2) 95 (1972), 281-356.

[C-S] I. Cheltsov, C. Shramov : Five embeddings of one simple group. Preprint arXiv:0910.1783. Trans. Amer. Math. Soc., to appear.

[D-S] A. Dimca, G. Sticlaru : Koszul complexes and pole order filtrations. Preprint arXiv:1108.3976. Proc. Edinburgh Math. Soc., to appear.

[H] B. Hunt : The geometry of some special arithmetic quotients. Lecture Notes in Mathematics 1637. Springer-Verlag, Berlin, 1996.

[vdG] G. van der Geer : On the geometry of a Siegel modular threefold. Math. Ann. 260 (1982), no. 3, 317-350.