Epidemiological Analysis of Extended-Spectrum Beta-Lactamase-Producing Bacterial Infections in Adult Live Donor Liver Transplant Patients

Ajeet Singh, Deepak Govil, Usha Krishan Baveja¹, Anand Gupta², Neha Tandon³, Shrikanth Srinivasan, Sachin Gupta, Sweta J. Patel, Sanjiv Saigal⁴, Arvinder Singh Soin⁵

Institute of Critical Care and Anesthesiology, Medanta The Medicity, ¹Department of Pathology and Laboratory Medicine, Medanta The Medicity, ²Institute of Digestive and Hepatobiliary Sciences, Medanta The Medicity, ³Institute of Liver Transplantation and Regenerative Medicine, Medanta The Medicity, Gurgaon, Haryana, ²Transplant Critical Care, Saroj Super Specialty Hospital, New Delhi, India, ⁴Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA

Abstract

Introduction: Bacterial infections are a leading cause of morbidity and mortality in patients receiving solid-organ transplants. Extended-spectrum beta-lactamases (ESBL) pathogens are the most important pathogenic bacteria infecting these patients. **Aim:** This study aims to evaluate for the incidence and characteristics of ESBL-positive organism, to look for the clinical outcomes in ESBL-positive infected cases, and to evaluate and draft the antibiotic policy in posttransplant patients during the first 28 days posttransplant. **Materials and Methods:** This is a retrospective data analysis of liver transplant recipients infected with ESBL culture-positive infections. All the culture sites such as blood, urine, and endotracheal tube aspirates were screened for the first ESBL infection they had and noted. This data were collected till day 28 posttransplant. The antibiotic susceptibility pattern and the most common organism were also noted. **Results:** A total of 484 patients was screened and 116 patients had ESBL-positive cultures. Out of these, 54 patients had infections and 62 patients were ESBL colonizers. The primary infection site was abdominal fluid (40.7%), with *Klebsiella* accounting for most of the ESBL infections. Colistin was the most sensitive antibiotic followed by tigecycline. The overall mortality was 11.4% and 31 out of 54 ESBL-infected patients died. **Conclusions:** Infections with ESBL-producing organism in liver transplant recipients has a high mortality and very limited therapeutic options.

Keywords: Extended-spectrum beta-lactamases, *Klebsiella*, liver transplant recipients

Introduction

Bacterial infections are a leading cause of morbidity and mortality in patients receiving solid-organ transplants.[¹-³] Liver transplantation is a standard lifesaving procedure for the treatment of many acute and chronic end-stage liver diseases. Although infections can occur at any time after transplantation,[⁴] their incidence is highest during the 1st postoperative month.[²,³]

Bacteria such as *Klebsiella pneumoniae*, *Escherichia coli*, *Acinetobacter baumannii*, *Pseudomonas aeruginosa*, *Proteus mirabilis*, and related species are some of the most important pathogenic bacteria causing infection in transplant patients. It has been reported that these organisms had acquired a transmissible form of drug resistance conferred by-extended-spectrum beta-lactamases or (ESBLs). ESBLs are especially dangerous because they are plasmid/transposon associated, and the plasmids/transposons may be exchanged among a variety of bacterial species, thus adding to development and spreading of resistance in various species of organisms.[⁵,⁶]

More than 50 studies (describing in total >3000 patients) have been published in peer-reviewed medical literature utilizing molecular typing methods in the study of the epidemiology

Address for correspondence: Dr. Deepak Govil, Institute of Critical Care and Anesthesiology, Medanta The Medicity, Sector 38, Gurgaon - 122 001, Haryana, India. E-mail: drdeepak_govil@yahoo.co.in

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

How to cite this article: Singh A, Govil D, Baveja UK, Gupta A, Tandon N, Srinivasan S, et al. Epidemiological analysis of extended-spectrum beta-lactamase-producing bacterial infections in adult live donor liver transplant patients. Indian J Crit Care Med 2018;22:290-6.
of nosocomial infections with ESBL-producing organisms. The main reason of treatment failure of ESBL-producing organisms is development of multidrug resistance (MDR). They often remain susceptible only to carbapenems and these agents remain the drugs of choice for treatment of infection in case of suspected and susceptible culture-positive cases. With growing resistance against carbapenems and other classes of antibiotics, the antibiotic arsenal against these ESBL-producing organisms has been further compromised.

This study presents the retrospective analysis of culture-positive liver transplant patients that will help us in providing information regarding incidence of infection, possible source of infection, organisms causing infections, their sensitivity patterns, and expected mortality in infected population to formulate a consensus on the appropriate use of empiric and directed antibiotic therapy that can effectively curtail infection in these patients.

Materials and Methods

This retrospective analysis of cases of live donor liver transplant patients was conducted at a multispecialty tertiary care hospital situated at Gurgaon, Haryana, India. All the adult live donor liver transplant recipients in 2 years were studied. Patients showing signs of infection with culture positivity for ESBL-producing organism were included in the study. Data of patients were collected till 28 days posttransplant surgery.

Main objectives of this study were to evaluate for the incidence and characteristics of ESBL-positive organism, to look for the clinical outcomes in ESBL-positive infected cases, and to evaluate and draft the antibiotic policy in posttransplant patients during the first 28 days posttransplant. Patient’s data was screened and Age, Sex, type of microorganism, Site of Infection, antibiotic susceptibility pattern, history of previous hospitalization, antibiotics used as a part of empiric and directed antimicrobial therapy were recorded. First positive culture was registered as index infection and source recorded as primary source. If the same patient was positive for some additional organism, it was registered as secondary infection and source recorded as secondary source of infection.

All the cultures including blood, urine, drain fluid, and endotracheal tube aspirate were sent for first 5 days posttransplant and repeated as and when required. Blood culture was done using the BacTAlert™ 3D system, identification and susceptibility pattern of culture flashing positive was done on automated VITEK 2™ system using appropriate ID and antibiotic susceptibility testing cards. In case of cultures other than blood, conventional methods of culture were used. Species identification and sensitivity pattern were always done using VITEK 2 system. A total of 484 patients were included in the study, 146 of which were culture negative during the whole period of 28 days. Patients that developed culture positivity after the follow-up period of 29 days were 119 in number and thus excluded. A total of remaining 219 were culture-positive cases, of whom 103 patients were positive for non-ESBL-producing organisms with 45 being colonizers and 58 were infected. ESBL-producing organisms were positive in a total of 116 patients, out of these 116 patients 54 were infected and 62 showed no signs of infection [Figure 1].

Statistical methods

The analysis included profiling of patients on different demographic, source of infection, organism types, antibiotic susceptibility patterns, and mechanism of resistance. Cross tables were generated between types of organism and source of infection (primary and secondary). Mortality and survival details have been presented for each of the four different ESBL groups. Chi-square test was used for testing of significance of associations. Quantitative data relating to Intensive Care Unit (ICU) stay and model for end-stage liver disease (MELD) score have been presented in terms of means and standard deviation. Student’s t-test was used for comparison of quantitative outcome parameters. P < 0.05 is considered statistically significant. SPSS software Version 23.0 was used for statistical analysis.

Results

Extended-spectrum beta-lactamases-producing organisms

Among the 54 patients (40 males and 14 females) in whom cultures were positive for ESBL-producing organisms, the youngest patient was 23-year-old female and oldest was 67-year-old female. As shown in Table 1, more male patients were affected than female patients.

Primary infection

The primary source of infection was abdominal fluid (40.7%) followed by sputum (27.7%), blood (24.07%), and urine (7.4%) [Table 2].

Among all the ESBL-producing organisms, *Klebsiella* spp. accounted for a maximum number of cases (51.85%) followed by *Pseudomonas* spp. (24.07%), *Acinetobacter* spp. (12.96%), and *E. coli* (11.11%) [Table 3].

![Figure 1: Summary of patient inclusion](image-url)
Antibiotic susceptibility patterns

Culture sensitivity pattern of Klebsiella spp. showed that this ESBL-producing organism had resistance to carbapenems, other beta-lactams, quinolones, and tetracycline [Table 4]. ESBL Klebsiella was sensitive to colistin in almost all the cases. Sensitivity of Klebsiella was relatively preserved for amikacin (17/28) and tigecycline (8/28). Pseudomonas spp. was reported in 14 cases; 12 were sensitive to colistin and 2 were pan resistant. Sensitivity for carbapenems was 3/14 and 2/14 for piperacillin and tazobactam.

E. coli was reported in six cases. E. coli was sensitive to amikacin in 4/6 cases, to gentamicin in 3/6 cases, to imipenem and meropenem in 3/6 cases, to tigecycline 5/6 cases, and was sensitive to colistin in all the cases.

Acinetobacter spp. was positive in five cases, all of which were sensitive to colistin and tigecycline and was resistant to all other class of drugs including carbapenems.

Secondary infection

A total of 17 patients developed secondary infection. Source of infection in maximum number of cases was abdomen (52.9%) followed by blood (23.5%), sputum (17.6%), and urine (5.8%) [Table 5].

Klebsiella (52.9%) was predominant in cases of secondary infection followed by Pseudomonas spp. (23.5%) and Acinetobacter spp. (23.5%) [Table 6].

In case of secondary infection, Klebsiella was sensitive to colistin in all the cases followed by tigecycline (5/9), amikacin (3/9), and meropenem (1/9) cases. Pseudomonas spp. was sensitive to colistin in all cases, was relatively sensitive to aminoglycosides (amikacin 3/5, gentamicin 3/5, and tobramycin 2/5 cases), ciprofloxacin 3/5 cases, and was resistant to other class of drugs.

Acinetobacter spp. was reported in five cases. Out of them three were sensitive to both Colistin and Tigecycline, one was sensitive to Colistin only and one case was pan resistant Acinetobacter spp. [Table 7a].

While evaluating for mechanism of resistance beta-lactamases production, impermeability and efflux pumps were the
predominant factors. Impermeability was associated in almost all the cases in both primary and secondary infections.

Table 5: Secondary source of infection

Source of infection	Number of patients (%)
Abdominal fluid	9 (52.9)
Blood	4 (23.5)
Sputum	3 (17.6)
Urine	1 (5.8)
Total	17 (100)

Table 6: Secondary source organisms

Organism	Total, n (%)
Klebsiella	9 (52.9)
Pseudomonas spp.	4 (23.5)
Escherichia coli	0
Acinetobacter spp.	4 (23.5)
Total	17 (100)

Table 7a: Antibiotic susceptibility patterns

	Klebsiella	Pseudomonas spp.	Escherichia coli	Acinetobacter spp.
Amikacin	03	3	0	0
Ampicillin	0	0	0	0
Ampicillin/sulbactam	0	1	0	0
Aztreonam	0	0	0	0
Cefazolin	0	0	0	0
Ceftriazone	0	1	0	0
Ciprofloxacin	0	3	0	0
Tetracyclin	0	1	0	0
Cefepime	0	2	0	0
Ertapenem	0	0	0	0
Gentamicin	0	3	0	0
Imipenem	0	1	0	0
Meropenem	1	1	0	0
Moxifloxacin	0	0	0	0
Piperacillin/tazobactam	0	1	0	0
Tigecycline	5	0	0	3
Tobramycin	0	02	0	0
Trimethoprim/sulfamethoxazole	0	0	0	0
Cefoperazone/sulbactam	0	1	0	0
Colistin	9	5	0	4
Levofloxacin	0	1	0	0

Table 7b: Mechanism of resistance

Organism	Primary source	Secondary source						
	Beta-lactamases	Carbenemases	Impermeability	Efflux pump	Beta-lactamases	Carbenemases	Impermeability	Efflux pump
Klebsiella	28	28	28	3	9	9	9	0
Acinetobacter spp.	7	0	7	2	4	4	4	0
Escherichia coli	4	4	4	0	0	0	0	0
Pseudomonas spp.	12	2	12	4	5	5	5	4
Table 9 shows mortality in ESBL-producing organisms was highest in *Acinetobacter* spp. in primary and *Klebsiella* in secondary infections. Other organisms that followed were *Pseudomonas* spp., *Klebsiella*, and *E. coli* in primary while *Pseudomonas* spp. and *Acinetobacter* spp. in secondary infection.

Nonextended-spectrum beta-lactamases organisms

Of all the 58 patients infected with non-ESBL organisms, majority were isolated from blood (43%) followed by abdominal fluid (36.2%), sputum (10.34%), urine (5.1%), pus (3.4%), and throat swab (1%) [Table 10].

Organisms isolated in majority of the cases were *Staphylococcus* species (39.6%) (three were *Staphylococcus aureus* out of which one was methicillin-resistant *S. aureus* [MRSA]). The second most common infection was with *Candida* which was isolated in 25.86% of the cases positive for non-ESBL cases. Other organisms that followed were *Enterococcus* (18.9%), *Stenotrophomonas maltophilia* (6.8%), *Salmonella paratyphi* (3.4%), *Sphingomonas paucimobilis* (1.7%), *Burkholderia cepacia* (1.7%), and *Streptococcus* (1.7%). Of all non-ESBL infections, highest number of patients died of *Candida* infection (20%) and *Staphylococcus* infections (17.39%) [Table 11].

MELD scores were higher and statistically significant for ESBL infection but were not statistically significant when compared to patients who were culture negative.

Patients with ESBL infections have longer duration of ICU stay. Longest ICU stay being 28 days and shortest being 2 days [Table 12].

Discussion

Bacterial infections are a leading cause of morbidity and mortality in liver transplant patients and incidence of infection is highest during the 1st postoperative month.[2-4] Factors including severity of underlying illness at the time of transplant, other comorbidities, persisting infections, colonization, breaches in mucocutaneous barrier resulting from surgery, immunosuppression, volume of blood products transfused, biliary-enteric anastomosis, hepatic artery thrombosis, graft dysfunction, and *Cytomegalovirus* infection make a patient more prone to infections, and thus increase ICU stay and postoperative mortality.[2,8-16]

Emergence of MDR pathogens has made the treatment challenging and in turn has increased mortality in posttransplant patients following infection.[17-24] Bacteremia has been the main cause of morbidity and mortality during the 1st month.[8] Primary and secondary sources of infection at our center in majority of cases were abdominal fluid followed by sputum, blood, and urine.

In contrast to Western countries where the incidence of Gram-positive infections is highest, majority of infections in our study were caused by Gram-negative bacteria followed by Gram-positive bacteria and fungi. Among Gram-negative bacteria, majority were ESBL-producing organisms. Mortality among patients infected with ESBL-producing organisms was higher as compared to those not infected and those infected with non-ESBL-producing organisms. Mortality among those with colonization only and noninfected patients was comparable, which was contrary to the findings of Giannella *et al.* probably because no culture-positive patients were taken for transplant surgery.[25] ESBL-producing *Klebsiella* accounted for highest number of culture-positive infections in both primary and secondary infections with very high mortality, *Klebsiella* was followed by *Pseudomonas* spp., *Acinetobacter* spp., and *E. coli*.[26,27] In non-ESBL culture-positive cases, major source was blood followed by ascitic fluid, sputum,
Singh, et al.: Extended-spectrum β-lactamase-producing bacterial infections

urine, throat swabs, and pus. *Staphylococcus* accounted for highest number of cases with a high mortality rate of 17.39% (three *Staphylococcus aureus* cases out of which two were MRSA). *Candida* infections were a close second with a mortality rate of 20%. Other infections included *Enterococcus*, *Streptococcus*, *Stenotrophomonas*, *Sphingomonas*, *B. cepacia*, and *Salmonella paratyphi*. ESBL-positive infections (57.4%) caused significantly high mortality as compared to noninfected patients and patients infected with non-ESBL-producing organisms. Patients infected with ESBL-producing organisms had longer ICU stay and had higher mortality. Patients with higher MELD score were more prone to infections with ESBL-producing organisms but was not statistically significant when compared to noninfected patients, Similar findings have been reported in numerous number of studies done earlier.[14,27,28]

Culture sensitivity pattern showed ESBL organisms to have developed resistance to carbapenems where beta-lactams, fluoroquinolones, aminoglycosides, and tetracycline but were sensitive to colistin in almost all the cases. Two cases of MDR *Acinetobacter* spp. resistant to all including colistin were reported.

Mode of resistance for carbapenems and other classes of antibiotics in ESBL-producing Gram-negative organisms is generally because of production of ESBLs, carbepenemases, impermeability of outer membrane, and overexpression of efflux pumps. In our study, mode of resistance to carbapenems is due to the production of carbepenemases. Impermeability of outer membrane was present in almost all carbapenemase-producing bacteria. Impaired penetration to antibiotics and development of efflux pump has resulted in resistance to wide range of antibiotic. *Pseudomonas* spp. was found to have developed overexpression of efflux pump in addition to impermeability in 42% of the cases. All the patients with efflux pump were resistant to all classes of antibiotics except colistin.

Conclusions

Infection is the major cause of mortality and morbidity after liver transplantation and in turn adds to the cost of treatment. Pertaining to the above culture sensitivity patterns and mode of resistance, empirical therapy with carbapenems/beta-lactamase inhibitors does not sound foolproof. The high mortality observed with these infections reflects very limited therapeutic options.

Financial support and sponsorship

Nil.

Table 11: Nonextended-spectrum beta-lactamases organisms infection
Organism

Candida spp.
Enterococcus
Staphylococcus spp.
Streptococcus spp.
Stenotrophomonas maltophilia
Sphingomonas paucimobilis
Burkholderia cepacia
Salmonella paratyphi
Total

ESBL: Extended-spectrum beta-lactamases

Table 12: ICU stay and MELD score in ESBL vs non ESBL groups
Case

ICU stay
MELD score

Comparison

Comparison	**ICU stay**	**MELD score**
Group 1 versus Group 2	0.0001*	0.538
Group 1 versus Group 3	0.0001*	0.022*
Group 1 versus Group 4	0.0001*	0.009*
Group 1 versus Group 5	0.0001*	0.123
Group 2 versus Group 3	0.287	0.048*
Group 2 versus Group 4	0.583	0.014*
Group 2 versus Group 5	0.138	0.349
Group 3 versus Group 4	0.536	0.672
Group 3 versus Group 5	0.918	0.233
Group 4 versus Group 5	0.437	0.131

P-value significant *P*-0.05. MELD: Model for end-stage liver disease; ICU: Intensive Care Unit; *Statistically significant
Conflicts of interest
There are no conflicts of interest.

REFERENCES
1. Snyder JJ, Israni AK, Peng Y, Zhang L, Simon TA, Kasiske BL, et al. Rates of first infection following kidney transplant in the United States. Kidney Int 2009;75:317-26.
2. Losada I, Cuervas-Mons V, Millán I, Dámaso D. Early infection in liver transplant recipients: Incidence, severity, risk factors and antibiotic sensitivity of bacterial isolates. Enferm Infec Microbiol Clin 2002;20:422-30.
3. Kusne S, Dummer JS, Singh N, Iwatsuki S, Makowka L, Esquivel C, et al. Infections after liver transplantation. An analysis of 101 consecutive cases. Medicine (Baltimore) 1988;67:132-43.
4. Aberg F, Mäkisalo H, Höckerstedt K, Isoniemi H. Infectious complications more than 1 year after liver transplantation: A 3-decade nationwide experience. Am J Transplant 2011;11:287-95.
5. Du B, Long Y, Liu H, Chen D, Liu D, Xu Y, et al. Extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae bloodstream infection: Risk factors and clinical outcome. Intensive Care Med 2002;28:1718-23.
6. Paterson DL, Bonomo RA. Extended-spectrum beta-lactamases: A clinical update. Clin Microbiol Rev 2005;18:657-86.
7. Winters HA, Parbhoo RK, Schafer JJ, Goff DA. Extended-spectrum beta-lactamase-producing bacterial infections in adult solid organ transplant recipients. Ann Pharmacother 2011;45:309-16.
8. Avkan-Oguz V, Ozkardesler S, Unek T, Ozbilgin M, Akan M, Firuzan E, et al. Risk factors for early bacterial infections in liver transplantation. Transplant Proc 2013;45:993-7.
9. Freire MP, Soares Oshiro IC, Bonazzi PR, Guimarães T, Ramos Figueira ER, Bacchella T, et al. Surgical site infections in liver transplant recipients in the model for end-stage liver disease era: An analysis of the epidemiology, risk factors, and outcomes. Liver Transpl 2013;19:1011-9.
10. Li C, Wen TF, Mi K, Wang C, Yan LN, Li B, et al. Analysis of infections in the first 3-month after being living donor liver transplantation. World J Gastroenterol 2012;18:1975-80.
11. Nafady-Hego H, Elgendy H, Moghazy WE, Fukuda K, Uemoto S. Pattern of bacterial and fungal infections in the first 3 months after pediatric living donor liver transplantation: An 11-year single-center experience. Liver Transpl 2011;17:976-84.
12. Iida T, Kaido T, Yagi S, Yoshizawa A, Hata K, Mizumoto M, et al. Posttransplant bacteremia in adult living donor liver transplant recipients. Liver Transpl 2010;16:1379-85.
13. Reid GE, Grim SA, Sankary H, Benedetti E, Oberholzer J, Clark NM, et al. Early intra-abdominal infections associated with orthotopic liver transplantation. Transplantation 2009;87:1706-11.
14. Hashimoto M, Sugawara Y, Tamura S, Kaneko J, Matsu Y, Kokudo N, et al. Pseudomonas aeruginosa infection after living-donor liver transplantation in adults. Transp Infect Dis 2009;11:11-9.
15. Asensio A, Ramos A, Cuervas-Mons V, Cordero E, Sánchez-Turrion V, Blanes M, et al. Effect of antibiotic prophylaxis on the risk of surgical site infection in orthotopic liver transplant. Liver Transpl 2008;14:799-805.
16. Said A, Safdar N, Lucey MR, Kechtche SJ, D’Alessandro A, Musat A, et al. Infected bilomas in liver transplant recipients, incidence, risk factors and implications for prevention. Am J Transplant 2004;4:574-82.
17. Kalpoe JS, Sonnenberg E, Factor SH, del Rio Martin J, Schiano T, Patel G, et al. Mortality associated with carbapenem-resistant Klebsiella pneumoniae infections in liver transplant recipients. Liver Transpl 2012;18:468-74.
18. Shields RK, Clancy CJ, Gillis LM, Kwak EJ, Silveira FP, Massih RC, et al. Epidemiology, clinical characteristics and outcomes of extensively drug-resistant Acinetobacter baumannii infections among solid organ transplant recipients. PLoS One 2012;7:e52349.
19. Gearhart M, Martin J, Rudich S, Thomas M, Wetzel D, Solomkin J, et al. Consequences of vancomycin-resistant Enterococcus in liver transplant recipients: A matched control study. Clin Transplant 2005;19:711-6.
20. Orloff SL, Busch AM, Olyaei AJ, Corless CL, Benner KG, Flora KD, et al. Vancomycin-resistant Enterococcus in liver transplant patients. Am J Surg 1999;177:418-22.
21. Newell KA, Millis JM, Arnow PM, Bruce DS, Woodle ES, Cronin DC, et al. Incidence and outcome of infection by vancomycin-resistant enterococcus following orthotopic liver transplantation. Transplantation 1998;65:439-42.
22. de Gouvea EF, Martins IS, Halpern M, Ferreira AL, Basto ST, Gonçalves RT, et al. The influence of carbapenem resistance on mortality in solid organ transplant recipients with Acinetobacter baumannii infection. BMC Infect Dis 2012;12:351.
23. Shi SH, Kong HS, Jia CK, Zhang WJ, Xu J, Wang WL, et al. Risk factors for pneumonia caused by multidrug-resistant gram-negative bacilli among liver recipients. Clio Transplant 2010;24:758-65.
24. Kim YJ, Yoon JH, Kim SI, Hong KW, Kim JI, Choi JY, et al. High mortality associated with Acinetobacter species infection in liver transplant patients. Transplant Proc 2011;43:2397-9.
25. Giannella M, Bartoletti M, Morelli MC, Tedeschi S, Cristini F, Tumietto F, et al. Risk factors for infection with carbapenem-resistant Klebsiella pneumoniae after liver transplantation: The importance of pre- and posttransplant colonization. Am J Transplant 2015;15:1708-15.
26. Porwal R, Gopalakrishnan R, Rajesh NJ, Ramasubramanian V. Carbapenem resistant gram-negative bacteremia in an Indian intensive care unit: A review of the clinical profile and treatment outcome of 50 patients. Indian J Crit Care Med 2014;18:750-3.
27. Bergamasco MD, Barroso Barbosa M, de Oliveira Garcia D, Cipullo R, Moreira JC, Baia C, et al. Infection with Klebsiella pneumoniae carbapenemase (KPC)-producing K. Pneumoniae in solid organ transplantation. Transpl Infect Dis 2012;14:198-205.
28. Mouloudi E, Massa E, Papadopoulos S, Iosifidis E, Roilides I, Theodoridou T, et al. Bloodstream infections caused by carbapenemase-producing Klebsiella pneumoniae among intensive care unit patients after orthotopic liver transplantation: Risk factors for infection and impact of resistance on outcomes. Transplant Proc 2014;46:3216-8.