Long Isoforms of NRF1 Contribute to Arsenic-Induced Antioxidant Response in Human Keratinocytes

Rui Zhao,1,2 Yongyong Hou,2,3 Peng Xue,2,3 Courtney G. Woods,2 Jingqi Fu,2,3 Bo Feng,4 Dawei Guan,1 Guifan Sun,3 Jefferson Y. Chan,9 Michael P. Waalkes,6 Melvin E. Andersen,2 and Jingbo Pi2

1School of Forensic Medicine, China Medical University, Shenyang, China; 2Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina, USA; 3School of Public Health, and 4First Clinical College, China Medical University, Shenyang, China; 5Department of Laboratory Medicine and Pathology, University of California–Irvine, Irvine, California, USA; 6National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA

BACKGROUND: Human exposure to inorganic arsenic (iAs), a potent oxidative stressor, causes various dermal disorders, including hyperkeratosis and skin cancer. Nuclear factor–erythroid 2–related factor 1 (NRF1, also called NFE2L1) plays a critical role in regulating the expression of many antioxidant response element (ARE)-dependent genes.

OBJECTIVES: We investigated the role of NRF1 in arsenic-induced antioxidant response and cytotoxicity in human keratinocytes.

RESULTS: In cultured human keratinocyte HaCaT cells, inorganic arsenite (iAs3+) enhanced the protein accumulation of long isoforms (120–140 kDa) of NRF1 in a dose- and time-dependent fashion. These isoforms accumulated mainly in the nuclei of HaCaT cells. Selective deficiency of NRF1 by lentiviral short-hairpin RNAs in HaCaT cells [NRF1-knockdown (KD)] led to decreased expression of γ-glutamate cysteine ligase catalytic subunit (GCLC) and regulatory subunit (GCLM) and a reduced level of intracellular glutathione. In response to acute iAs3+ exposure, induction of some ARE-dependent genes, including NAD(P)H:quinone oxidoreductase 1 (NQO1), GCLC, and GCLM, was significantly attenuated in NRF1-KD cells. However, the iAs3+-induced expression of heme oxygenase 1 (HMOX-1) was unaltered by silencing NRF1, suggesting that HMOX-1 is not regulated by NRF1. In addition, the lack of NRF1 in HaCaT cells did not disturb iAs3+-induced NRF2 accumulation but noticeably decreased Kelch-like ECH-associated protein 1 (KEAP1) levels under basal and iAs3+-exposed conditions, suggesting a potential interaction between NRF1 and KEAP1. Consistent with the critical role of NRF1 in the transcriptional regulation of some ARE-bearing genes, knockdown of NRF1 significantly increased iAs3+-induced cytotoxicity and apoptosis.

CONCLUSIONS: Here, we demonstrate for the first time that long isoforms of NRF1 contribute to arsenic-induced antioxidant response in human keratinocytes and protect the cells from acute arsenic cytotoxicity.

KEY WORDS: apoptosis, arsenic, cytotoxicity, KEAP1, keratinocyte, NRF1, NRF2, oxidative stress.

Environmental Health Perspectives 119:56–62 (2011). doi:10.1289/ehp.1002304 [Online 30 August 2010]
is a key player in the cellular adaptive response to inorganic arsenite (iAs3+)-induced oxidative stress. In contrast, the role of NRF1 in arsenic-induced antioxidant response and cytotoxicity has not been established. In the present study, we examined the distinctive roles of NRF1 in iAs3+-induced antioxidant response, cytotoxicity, and apoptosis, as well as the interplay between NRF1 and NRF2, in response to iAs3+ exposure, using HaCaT cells, a human keratinocyte cell line that models the skin as a target of iAs3+. In this study, we found direct evidence that iAs3+ activates both the NRF1- and NRF2-mediated antioxidant responses, which protects the cells from acute arsenic cytotoxicity. This indicates for the first time that NRF1 is a novel target of iAs3+ exposure. The results of this study provide important insights into the initial molecular response to iAs3+ in the target cells of arsenic toxicity and carcinogenicity.

Materials and Methods

Reagents and cell culture. We purchased sodium arsenite, sulforaphane (SNF), and tert-butyldihydroquinone (tBHQ) from Sigma Chemical Co. (St. Louis, MO, USA) and tunicamycin (TU), thapsigargin (TG), and brefeldin A (BFA) from Calbiochem (San Diego, CA, USA). HaCaT cells, a spontaneously immortalized human epithelial cell line developed by Boukamp et al. (1988) were obtained from N.E. Fusening, German Cancer Research Center, Heidelberg, Germany. The cells were cultured in Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine serum, 100 U penicillin/mL, and 100 µg streptomycin/mL, as previously described (Pi et al. 2003). Culture media were maintained at 37°C in a humidified 5% CO\textsubscript{2} atmosphere. Culture media, fetal bovine serum, and supplements were purchased from Invitrogen (Carlsbad, CA, USA). The stock solutions of chemicals used in the current study were prepared in culture medium or 0.5% dimethyl sulfoxide (DMSO) in medium (vehicle).

Lentiviral-based short-hairpin RNA (shRNA) transduction. We obtained MISSION shRNA lentiviral particles from Sigma. Lentiviral transduction of HaCaT cells with particles for shRNAs targeting NRF1 (SHVRS-NM_003204) or scrambled non-target negative control (sh-Scr; SHC002V) was performed as described previously (Woods et al. 2009). The cells were maintained in containing 10 µg/mL puromycin.

Quantitative real-time reverse-transcriptase polymerase chain reaction (RT–PCR) analysis. Total RNA was isolated with TRIzol (Invitrogen) and then subjected to cleanup using the RNase-Free DNase Set and RNeasy Mini Kit (Qiagen, Valencia, CA, USA). Quantitative real-time RT-PCR was performed as described previously (Woods et al. 2009). The primers [NRF1 (GenBank accession no. NM_003204 (National Center for Biotechnology Information. 2010)], HMOX1 (heme oxygenase 1; NM_002133), NQO1 (NM_000903), SRX (sulfiredoxin 1; NM_00725), GCLC (γ-glutamate cysteine ligase catalytic subunit; NM_001498), and GCLM (γ-glutamate cysteine ligase regulatory subunit; NM_002061), described in Supplemental Material, Table 1 (doi:10.1289/ehp.1002304) were designed using Primer Express 3 (Applied Biosystems, Carlsbad, CA, USA) and synthesized by MWG-Biotech Inc. (High Point, NC, USA). Real-time fluorescence detection was carried out using an ABI PRISM 7900 Sequence Detector (Applied Biosystems).

Western blot analysis. Isolation of cell fractions and Western blotting were performed as described previously (Pi et al. 2003; Woods et al. 2009). Briefly, whole-cell lysates (50 µg protein) were separated on 4–12% Tris-glycine gels. Antibodies for NRF1 (H-285) (sc-13031; 1:500), NRF2 (sc-13032; 1:500), and Kelch-like ECH-associated protein 1 (KEAP1; sc-15246; 1:500) were from Santa Cruz Biotechnology Inc. (Santa Cruz, CA, USA). Antibodies for GRP78/BIP (glucose-regulated protein, 78 kDa/binding immunoglobulin protein; no. 3177; 1:1,000) and CHOP (CCAAT/enhancer-binding protein homologous protein; no. 3177; 1:1,000), both down-regulated in the acute phase of oxidative stress, were purchased from Cell Signaling Technology, Inc. (Danvers, MA, USA). Antibodies for lamin A (L1293; 1:2,500), β-actin (A1978; 1:2,000), and α-tubulin (T5168; 1:2,000) were purchased from Sigma. Antibody for GCLC (RB-1697; 1:800) was obtained from Lab Vision (Fremont, CA, USA).

Chromatin immunoprecipitation assay. We performed ChIP analyses using the EZ ChIP kit (Upstate Biotechnology, Temecula, CA, USA) according to the manufacturer’s protocol. PCR amplification was carried out for 40 cycles with 5 µL of sample DNA solution, and PCR products were separated on 3% agarose gels in Tris–acetate–EDTA buffer. Two primers were used to amplify the segment flanking an active ARE site on NAD(P)H:quinone oxidoreductase 1 (NQO1) promoter with forward primer 5’-attacgccgaggggca-3’ and reverse primer 5’-ggatctgcgctggcgca-3’, which generate a 206-bp product.

Acute cytotoxicity assay. A minimum of five replicates of 10,000 cells/well were plated in 96-well plates and allowed to adhere to the plate for 24 hr, at which time the medium was removed and replaced with fresh serum-free medium containing arsenic compounds. Cells were then incubated for an additional 24 hr, and cell viability was determined using the CellTiter Non-Radioactive Cell-Proliferation Assay Kit with MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) (Promega, Madison, WI, USA). Measurements are expressed as a percentage of the untreated control of corresponding cells. The LC\textsubscript{50} (concentration lethal to 50% of cells) values were determined from analysis of the log-linear phase of the curves.

Determination of apoptosis by flow cytometry. Cells were seeded in a six-well plate and grown to approximately 80% confluence. After 20 hr of iAs exposure, the floating and attached cells were harvested for apoptosis analysis. We detected phosphatidylserine on the outer leaflet of apoptotic cells using the TACS Annexin V-FITC (fluorescein isothiocyanate) Apoptosis Detection Kit (Trevengen, Gaithersburg, MD, USA) as described previously (Pi et al. 2005). For each sample, 10,000 cells were examined by flow cytometry (Becton Dickinson FACSVantage: BD Biosciences, San Jose, CA, USA). We determined the percentage of apoptotic cells by statistical analysis of the various dot plots using CellQuest software (BD Biosciences).

ARE reporter assay. We obtained Cignal Lentivirus ARE reporter, which expresses a luciferase gene driven by multiple ARE (TCACATGCATCAGAAAATT) repeats, from SABiosciences (Frederick, MD, USA). Lentiviral transduction of HaCaT cells was performed as described previously (Woods et al. 2009). Cells were grown to approximately 90% confluency and subcultured in medium containing 1.0 µg/mL puromycin. The luciferase activity was measured by Luciferase Reporter Assay System (Promega) according to the manufacturer’s protocol. The luciferase activity was normalized to cell viability that was determined using the Non-Radioactive Cell-Proliferation Assay Kit (Promega).

Statistical analyses. We performed all statistical analyses using GraphPad Prism, version 5 (GraphPad Software, San Diego, CA, USA), with p < 0.05 taken as significant. More specific indices of statistical significance are indicated in individual figure legends. Data are expressed as mean ± SE. For comparisons among groups, we performed one-way analysis of variance with Bonferroni post hoc testing.

Results

iAs3+ increases nuclear NRF1 accumulation. Based on the Ensembl database (Wellcome Trust Sanger Institute/European Bioinformatics Institute 2010), the human NRF1 gene contains six exons, transcribes three splice variants, and translates into three proteins, NRF1-1, NRF1-2, and NRF1-3, with 742, 772, and 791 amino acids, respectively [see Supplemental Material, Table 2 (doi:10.1289/ehp.1002304)]. The predicted molecular weights (MWs) of NRF1-1, NRF1-2, and NRF1-3 are 81.5, 84.7, and 86.9 kDa, respectively. However, our immunoblots (Figure 1), using an antibody developed against an epitope.
corresponding to amino acids 191–475 mapping near the N-terminus of human NRF1, showed that multiple bands with apparent MWs approximately 120–140 kDa were dramatically diminished by knockdown (KD) of NRF1 using lentiviral shRNA targeting human NRF1 in HaCaT cells (NRF1-KD), suggesting that these immunoreactive bands represent endogenous human NRF1. Interestingly, these NRF1 protein bands significantly increased in response to iAs3+ but only marginally responded to tBHQ and SFN exposure. In addition, in response to iAs3+ treatment, a 78-kDa protein exhibited a pattern similar to that of the bands at 120–140 kDa (Figure 1). However, this protein was not detectable in nuclear fractions (data not shown), suggesting that this protein, if it represents an isoform of NRF1, is not associated with NRF1 transcriptional activity. Although we also observed multiple bands between 22 and 78 kDa on the blot, these bands lack correspondence to the antibody used for Western blot analysis. A 65-kDa isoform of mouse NRF1 has previously been identified and shown to potentially function as a dominant negative inhibitor of ARE-mediated transcription (Wang et al. 2007).

To investigate the involvement of NRF1 in iAs3+-induced antioxidant response in human keratinocytes, we measured the dose response and time course of iAs3+-induced NRF1 accumulation. As shown in Figure 2A, exposure to iAs3+ resulted in NRF1 protein accumulation in HaCaT cells in a time- and dose-dependent fashion that reached a peak at 6 hr. Consistent with our previous study (Pi et al. 2003), the same iAs3+ treatment also concomitantly induced NRF2 protein accumulation in a pattern similar to that of NRF1 (Figure 2A). Because nuclear accumulation is essential for a nuclear factor’s transcriptional activity, we determined the levels of NRF1 and NRF2 in subcellular fractions after iAs3+ exposure. We detected iAs3+-induced NRF1 and NRF2 mainly in nuclear fractions (Figure 2B), suggesting that NRF1 functions as a transcription factor, as does NRF2, in response to iAs3+ exposure. To determine the transcriptional activity of NRF1 and NRF2, we assessed the activity of the Cignal Lenti ARE reporter, which is designed to monitor the activity of the antioxidant response signal transduction pathway in cultured cells. HaCaT cells stably transduced with the ARE reporter showed a dose- and time-dependent induction of luciferase activity after tBHQ and SFN treatment, confirming that the cells are responsive to ARE activation (Figure 2C; see also Supplemental Material, Figure 1 (doi:10.1289/ehp.1002304)). Consistent with the finding that iAs3+ strongly induced nuclear accumulation of both NRF1 and NRF2 (Figure 2A,B)
but tBHQ and SFN are weak inducers of NRF1 (Figures 1 and 2B), we found iAs³⁺ to be a more potent activator for the ARE reporter than tBHQ and SFN (Figure 2C; see also Supplemental Material, Figure 1). To further confirm that NRF1 can bind to ARE, we performed a ChIP assay targeting an active ARE site on NQO1 promoter (Dhakshinamoorthy and Jaiswal 2000). As shown in Figure 2D, acute iAs³⁺ exposure increased the binding of NRF1 with the ARE site of NQO1 in the ER and that ER stressors, including TU, BFA, and TG, have been found to affect the concentration used [see Supplemental Material, Figure 3E], confirming that NRF1 is a glycosylated protein sequestered in the ER, and that ER stressors, including TU, BFA, and TG, have been found to affect the concentration used [see Supplemental Material, Figure 3E], confirming that NRF1 is a glycosylated protein sequestered in the ER.

Effect of ER stressors on NRF1 protein modification. Previous studies have reported that NRF1 is a glycosylated protein sequestered in the ER and that ER stressors, including TU, BFA, and TG, have been found to affect the glycosylation status of recombinant human or murine NRF1 (Wang and Chan 2006; Zhang et al. 2009b). To study whether endogenous human NRF1 is regulated by the same mechanism, we investigated the effect of ER stressors on the migration of iAs³⁺-induced NRF1 using SDS-PAGE. As shown in Figure 3A, treatment of HaCaT cells with TU, an inhibitor of N-linked protein glycosylation (Shang et al. 2002), resulted in a faster migration of iAs³⁺-induced NRF1 proteins. In contrast, BFA, which blocks protein transport from the ER to Golgi (Li et al. 2006), led to accumulation of slower-migrating forms of NRF1, whereas TG, which blocks ER uptake of calcium by inhibiting sarcoplasmic/endoplasmic Ca²⁺-ATPase (Thastrup et al. 1990), did not affect NRF1 migration but slightly decreased iAs³⁺-induced NRF1 accumulation. To evaluate the effects of NRF1 modification by ER stressors on its transcriptional activity, we assessed nuclear NRF1 accumulation and ARE-reporter activity in HaCaT cells exposed to iAs³⁺ with TU, BFA, or TG. We observed the 120–140 kDa forms in iAs³⁺-induced faster-migrating forms of NRF1 (120–140 kDa) induced by BFA (Figure 3B), suggesting that these forms may retain transcriptional activity. In contrast, we detected the slower migrating NRF1 induced by BFA mostly in cytosolic fractions (Figure 3C). Although TU + iAs³⁺-induced faster-migrating forms of NRF1 were detectable in nuclear fractions, the levels of these forms were much lower than those of the 120–140 kDa forms in nuclear fractions induced by iAs³⁺ alone or by TG + iAs³⁺ (Figure 3B). Consistent with the findings in immunoblots, all three ER stressors, which induced ER stress response at the concentrations used [see Supplemental Material, Figure 2 (doi:10.1289/ehp.1002304)], significantly reduced basal and iAs³⁺-induced ARE-reporter activity (Figure 3D).

Because NRF2 is another important transcription factor for ARE activation (Pi et al. 2003), we determined the effect of ER stressors on NRF2 expression. In contrast to the varied effects on NRF1, the three ER stressors had no obvious effect on NRF2 migration on SDS-PAGE (Figure 3A–C), suggesting that no protein modification occurred in NRF2. However, TU and BFA slightly enhanced basal NRF2 protein level, whereas TG decreased it (Figure 3A). Under iAs³⁺-exposed conditions, TU and TG obviously reduced NRF2 levels in whole-cell lysates and nuclear fractions, whereas BFA had little effect (Figure 3B).

Involvement of NRF1 in iAs³⁺-induced antioxidant response. To study the role of NRF1 in iAs³⁺-induced antioxidant response and cytotoxicity, we performed lentiviral shRNA-mediated knockdown of NRF1 in HaCaT cells, using five shRNAs against NRF1 for transduction [see Supplemental Material, Table 3 and Figure 3 (doi:10.1289/ehp.1002304)]. One of the constructs (sh-NRF1-5) markedly silenced NRF1 expression compared with Scr (sh-Scr), whereas the other four constructs had a moderate silencing effect. Because the level of NRF1 protein is barely detectable in untreated cells and even in tBHQ- or SFN-challenged cells (Figure 1), the efficiency of knockdown by sh-NRF1-5 (sh-NRF1-KD cells) was confirmed by notably diminished induction of NRF1 caused by iAs³⁺ exposure (Figure 1; see also Supplemental Material, Figure 3B). Furthermore, the expression of NRF1 downstream targets GCLC and GCLM were attenuated (see Supplemental Material, Figure 3C,D), indicating that NRF1 activity is suppressed in NRF1-KD cells. Along with the reduction of GCLC and GCLM, the intracellular GSH level was significantly reduced by silence of NRF1 (see Supplemental Material, Figure 3E), confirming that NRF1 is critical in regulation of GSH synthesis.

To define the molecular basis for how NRF1 is involved in cellular oxidative defense against acute iAs³⁺ toxicity, NRF1-KD and Scr cells were acutely exposed to iAs³⁺; we then determined the inducible expression of ARE-dependent genes, including HMOX1, NQO1, SRX, GCLC, GCLM, and NRF1, at mRNA (Figure 4) and protein levels (see Figure 4). NRF1 regulates some ARE-dependent genes induced by iAs³⁺ in HaCaT cells. (A) Time course of ARE-dependent gene expression induced by 10 μM iAs³⁺. (B) Dose response of iAs³⁺-induced ARE-dependent gene expression; cells were exposed to vehicle (medium) or iAs³⁺ for 6 hr. The number in parentheses after each gene name is the Ct (cross threshold) value of that gene in Scr cells.
Supplemental Material, Figure 3 (doi:10.1289/ehp.1002304). In Scr cells, iAs³⁺ dose- and time-dependently increased NRF1 protein levels (Figure 5) and enhanced the mRNA levels of ARE-dependent genes (Figure 4). Knockdown of NRF1 substantially decreased NRF1 accumulation (Figure 5) and the expression of NQO1, GCLC, and GCLM under basal and iAs³⁺-exposed conditions (Figure 4). Interestingly, induction of HMOX1 caused by iAs³⁺ did not depend on NRF1 (Figure 4).

A previous study (Leung et al. 2003) revealed that NRF1 and NRF2 have overlapping roles in regulating basal expression of ARE-dependent genes. Thus, we studied the cross talk of NRF1 with NRF2, as well as with KEAP1, a well-known negative regulator of NRF2 transcriptional activity (Hayes and McMahon 2009). As shown in Figure 5, silencing of NRF1 in HaCaT cells did not disturb iAs³⁺-induced NRF2 accumulation. However, lack of NRF1 decreased protein levels of KEAP1 under basal and iAs³⁺-challenged conditions, although KEAP1 was not affected by iAs³⁺ treatment.

iAs³⁺-induced cytotoxicity and apoptosis in NRF1-deficient HaCaT cells. To investigate the roles of NRF1 in iAs³⁺-induced cytotoxicity, we measured the acute (24 hr) effect of iAs³⁺ on cell metabolic integrity in NRF1-KD cells. Selective deficiency of NRF1 in HaCaTs significantly enhanced the sensitivity to iAs³⁺ toxicity (Figure 6A). The LC₅₀ value (mean ± SE) was 28.62 ± 3.06 µM in NRF1-KD cells, whereas it was 35.99 ± 2.11 µM in Scr cells. To further substantiate these findings, we measured iAs³⁺-induced apoptosis and necrosis using flow cytometry with Annexin V-FITC and propidium iodide double staining. Consistent with the results of cytotoxicity, the knockdown of NRF1 in HaCaT cells significantly enhanced the sensitivity to iAs³⁺-induced apoptosis [Figure 6B; see also Supplemental Material, Figure 4 (doi:10.1289/ehp.1002304)].

Discussion

NRF1 is a ubiquitously expressed transcription factor that occurs in a wide range of tissues (Biswas and Chan 2010; Luna et al. 1994). Skin is a major target organ for the chronic toxic and carcinogenic effects of iAs³⁺ (Yoshida et al. 2004). Our previous studies revealed that chronic induction of ARE-dependent genes may be linked to acquired apoptotic resistance and malignant transformation of keratinocytes following iAs³⁺ exposure, whereas NRF2 has been recognized as a key transcription factor in iAs³⁺-induced antioxidant response (Pi et al. 2003, 2007, 2008).

The present study provides the first demonstration that long iAs³⁺ (120–140 kDa) of NRF1 also contribute to iAs³⁺-induced antioxidant response in human keratinocytes and suggests that activation of NRF1 is potentially involved in chronic dermal arsenic toxicity.

Hyperkeratosis and cancer are the most common human skin disorders caused by chronic iAs exposure (IARC 1987; Pi et al. 2000; Wong et al. 1998; Yoshida et al. 2004). However, the underlying mechanism is unclear. It has been reported that disruption of Keap1 in mice leads to skin hyperkeratosis, most likely because of constitutive activation of NRF2 and aberrant expression of some ARE-dependent cytokeratins (Itoh et al. 2003). In humans, increased expression of ARE-dependent genes, resulting from mutations in Keap1 and/or NRF2, has been linked to a malignant phenotype in the lung and other organs (Kwak and Kensler 2009, Padmanabhan et al. 2006; Shibata et al. 2008a, 2008b; Singh et al. 2006; Stacy et al. 2005).

Given the importance of NRF1 (Figure 4) and NRF2 (Pi et al. 2003) in regulating the expression of ARE-dependent genes induced by iAs³⁺, it is highly possible that NRF1 and/or NRF2 activation plays a pathogenic role in skin disorders chronically induced by arsenic exposure, including carcinogenesis, although additional research is required to confirm this.

Apoptosis normally functions to control the integrity of cell populations by eliminating aberrant clones, whereas failure of apoptosis likely is a key contributor to tumor initiation and progression, as well as drug resistance in skin cancer and cancer in general (Guzman et al. 2003; Hanahan and Weinberg 2000). Thus, an acquired, generalized apoptotic resistance is an important event in the process of arsenic-induced malignant transformation (Pi et al. 2008). Our previous data indicated that HaCaT cells chronically treated with iAs³⁺ show a generalized resistance to apoptosis and malignant transformation, which may be associated with enhanced basal NRF2 activity (Pi et al. 2005, 2008). Here, for the first time we report that NRF1 also contributes to iAs³⁺-induced ARE-dependent gene expression and protects cells from acute arsenic toxicity, suggesting that NRF1 may be another key transcription factor in arsenic carcinogenesis. However, whether NRF1 activation is involved in acquired apoptotic resistance in malignant transformation induced by chronic iAs³⁺ exposure needs further study.

It has been predicted that human NRF1 gene may transcribe at least four different transcripts with alternative first exons, differential splicing, and alternative polyadenylation (Biswas and Chan 2010). In addition to the long isoforms as we observed in HaCaT cells, a 65-kDa isoform of mouse NRF1 has been identified and shown to potentially function.
as a dominant negative inhibitor of ARE-mediated transcription (Wang et al. 2007). Although we observed two bands close to 65 kDa on Western blots in the present study (Figure 1), neither corresponded to NRF1 silencing or were altered by iAs3+ exposure, suggesting that they may represent nonspecific binding of the antibody used for analysis. This discrepancy, which could be due to differences in cell types, treatment, and antibodies used for immunoblotting, needs further study.

Previous studies have suggested that NRF1 is sequestered in ER and that oxidative stress activates NRF1 by permitting accumulation into the nucleus (Biswas and Chan 2010). The ER is a central organelle as the place of lipid synthesis, protein folding, and protein maturation (Baneggi et al. 2007). As a major intracellular calcium storage compartment, the ER also plays a critical role in maintenance of intracellular calcium homeostasis (Li et al. 2006). ER stress (conditions interfering with the function of ER) can be induced by accumulation of unfolded proteins and excessive protein traf- fic (Baneggi et al. 2007; Li et al. 2006). ER stress could also be elicited in the cell culture system by pharmacological agents, including TUA, BFA, and TG, through distinct molecular mechanisms (Li et al. 2006; Shang et al. 2002; Thastrup et al. 1990). Consistent with previous studies using recombinant human or murine NRF1 (Wang and Chan 2006; Zhang et al. 2009b), treatment of HaCaT cells with TU, an inhibitor of N-linked protein glycosylation (Shang et al. 2002), resulted in faster migration of NRF1 isoforms on SDS-PAGE, suggesting that long isoforms of endogenous human NRF1 are glycosylated proteins. In contrast, BFA, which blocks protein transport from ER to Golgi (Li et al. 2006), led to accumulation of slower migrating NRF1 proteins, suggesting that NRF1 may be further glycosylated in ER if its transportation to Golgi is blocked. TG, which blocks ER uptake of calcium by inhibiting sarcoplasmic/endoplasmic Ca2+-ATPase (Thastrup et al. 1990), slightly decreased iAs3+-induced NRF1 accumulation but did not affect migration on SDS-PAGE. The finding that ER stressors TUA, BFA, and TG affect NRF1 migration on SDS-PAGE differently suggest that ER stress may not be a common mechanism for NRF1 modification. Although ER is an important organelle for NRF1 post- translational modification and may be involved in NRF1-mediated antioxidant response, the molecular basis for how ER participates in NRF1 activation needs further investigation.

Biswas and Chan (2010) have reported that NRF1 and NRF2 have overlapping roles in regulating basal expression of ARE-dependent genes. In the present study we found that basal and inducible expression of some ARE-driven genes, such as GCCL, GCLM, and NQO1, are highly dependent on NRF1. However, the induction of HMOX1 by high concentrations of iAs3+ was independent of NRF1, suggesting that HMOX1 is not regulated by NRF1. It should be noted that NRF1/NRF2-independent mechanisms for iAs3+-induced expression of GCLC and GCLM have been demonstrated in murine hepatocytes and mouse embryonic fibroblasts (Thompson et al. 2009). This inconstistency with the present study suggests that forms of human and mouse NRF1 behave differently or, more likely, reflects differences between the cell types evaluated in in vitro assays. As with NRF2, NRF1 has been postulated to interact with KEAP1 (Biswas and Chan 2010), although the biological significance of this reaction is poorly characterized. In the present study, lack of NRF1 in HaCaT cells did not disturb iAs3+-induced NRF2 accumulation but noticeably decreased KEAP1 protein levels under basal and iAs3+ exposed conditions, suggesting a potential interaction between NRF1 and KEAP1. If KEAP1 could serve as a negative regulator of NRF1, decreased KEAP1 expression caused by NRF1 silencing may represent a compensation mechanism to maintain the overall cellular ARE activity. However, this hypothesis needs further investigation.

In the present study, we found convincing evidence that NRF1 is involved in the regulation of the ARE gene battery induced by iAs3+ and contributes to the resistance against iAs3+-induced cytotoxicity and apoptosis. Importantly, we demonstrated arsensic activation of NRF1 in a human skin cell line, implicating an NRF1-mediated oxidative stress response cascade as an important event in a potential target cell of arsenic carcinogenesis. Given the potential importance of oxidative stress in arsenic dermal toxicity and carcinogenicity, as well as the critical role of NRF1 in the defense against oxidative damage, our findings provide an important insight into the mechanism of chronic arsenic dermal toxicity.

References

Aono Y, Nagayawa T, Itoh K, Li B, Yoshida H, Kumaga Y, et al. 2003. Activation of Nrf2 and accumulation of ubiquitinated A170 by arsenic in osteoblasts. Biochem Biophys Res Commun 306:271–277.

Baneggi G, Baumeister P, Benedetti A, Dong D, Fu Y, Lee AS, et al. 2007. Endoplasmic reticulum stress. Ann NY Acad Sci 1113:58–71.

Biswas M, Chan JY. 2010. Role of Nrf1 in antioxidant response element-mediated gene expression and beyond. Toxicol Appl Pharmacol 244:16–20.

Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Thastrup E, Arnauld A, et al. 2007. Mad dogs, Englishmen and apoptosis: the role of cell death in UV-induced skin cancer. Apoptosis 8:315–325.

Chan K, Kan YW. 1999. NRF1 is essential for protection against acute pulmonary injury in mice. Proc Natl Acad Sci USA 96:12731–12736.

Chenais B, Deruja A, Massieh W, Red-Horse K, Bellingard V, Fisher SJ, et al. 2005. Functional and placental expres- sion analysis of the human NRF1 transcription factor. Mol Endocrinol 19:125–137.

Daga A, Gourley TS, Holm TM, Hang HH, Shivdasani RA, Ahmed R, et al. 2004. Complexity of CNC transcription factors as revealed by gene targeting of the Nrf3 locus. Mol Cell Biol 24:3286–3294.

Dhakshinamorthy S, Jaiswal AK. 2000. Small Maf (MafF and MafK) proteins negatively regulate antioxidant response element-mediated expression and antioxidant induction of the NAD(P)H:quinone oxidoreductase1 gene. J Biol Chem 275:40349–40351.

Du Y, Villeneuve NF, Wang XJ, Sun Z, Chen W, Li J, et al. 2008. Glutathione confers protection against arsenic-induced toxic- ity through activation of the Nrf2-mediated defensive response. Environ Health Perspect 116:1154–1161.

Fu J, Woods CG, Yehuda-Shani M, Zhang Q, Wang W, Collins S, et al. 2010. Low level arsenic impairs glucose- stimulated insulin secretion in pancreatic beta-cells: involvement of cellular adaptive response to oxidative stress. Environ Health Perspect 118:600–604.

Guzman E, Langowski JL, Oen-Schaub L. 2003. Mad dogs, Englishmen and apoptosis: the role of cell death in UV-induced skin cancer. Apoptosis. 2003:125–325.

Hanahan D, Weinberg RA. 2000. The hallmarks of cancer. Cell 100:57–70.

Hayes JD, McMahon M. 2009. NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer. Trends Biochem Sci 34:176–188.

IARC (International Agency for Research on Cancer). 1987. Arsenic and arsenic compounds. IARC Monogr Eval Carcinog Risk Humu(s) 71:100–106.

Ishikawa T, Nakaba-Pakula S, Katsura K, Shi, T, O’Connor T, Yamamoto M. 2003. Keap1 regulates both cytoplasmic- nuclear shuttling and degradation of Nrf2 in response to electrophiles. Genes Cells 8:379–391.

Kobayashi A, Ito E, Toki K, Kagome T, Takahashi S, Igashiki K, et al. 1998. Molecular cloning and functional characterization of a new cap ‘n cotter family transcription factor Nrf3. J Biol Chem 274:6483–6450.

Kojima C, Ramirez DC, Tokar EJ, Himeno S, Drobna Z, Stybly M, et al. 2009. Requirement of arsensic biomodulation for oxygenative DNA damage. J Natl Cancer Inst 101:1670–1681.

Kuwak MK, Kessler TW. 2009. Targeting NRF2 signaling for cancer chemoprevention. Toxicol Appl Pharmacol 234:68–78.

Kwong M, Kan YW, Chan JY. 1999. The CNC basic leucine zipper factor, Nrf1, is essential for cell survival in response to oxidative stress-inducing agents. Role for Nrf1 in gamma- cell and gene expression in mouse fibroblasts. J Biol Chem 274:37491–37498.

Leung L, Kwong M, Hou S, Lee C, Chan JY. 2003. Deficiency of the Nrf1 and Nrf2 transcription factors results in early embryonic lethality and severe oxidative stress. J Biol Chem 278:48621–48627.

Li J, Lee B, Lee AS. 2006. Endoplasmic reticulum stress-induced apoptosis: multiple pathways and activation of p33-up-regulator modulated apoptosis (PUMA) and NOXA by p53. J Biol Chem 281:7290–7270.

Luna L, Johnsen A, Skartlien AH, Pedequor T, Curz-Carel C, Padr H, et al. 1994. Molecular cloning of a putative novel human bZIP transcription factor on chromosome 17q22. Genomics 22:553–582.

Matohashi H, O’Connor T, Katsuda F, Engel J, Yamamoto M. 2002. Integration and diversity of the regulatory network composed of Maf and CNC families of transcription factors. Gene 294:1–12.

National Center for Biotechnology Information. 2010. GenBank Overview. Available: http://www.ncbi.nlm.nih.gov/genbank/ [accessed 30 November 2010].

Neub Z, Chevillard D, Deruja A, Blank V. 2007. Endoplasmic reticulum association and N-linked glycosylation of the human Nrf3 transcription factor. FEBS Lett 581:5401–5406.

Padmanabhan B, Tong KJ, Ohita T, Nakamura Y, Scharlock M, Ohtani M, et al. 2008. Structural basis for defects of Keap1 activity provoked by its point mutations in lung cancer. Mol Cell 21:689–700.

Pi J, Bai Y, Reece JM, Williams J, Liu D, Freeman ML, et al. 2007. Molecular mechanism of human Nrf2 activation and
degradation: role of sequential phosphorylation by protein kinase CK2. Free Radic Biol Med 42:1797–1806.

Pi J, Diwan BA, Sun Y, Liu J, Qu W, He Y, et al. 2008. Arsenic-induced malignant transformation of human keratinocytes: involvement of Nrf2. Free Radic Biol Med 45:651–658.

Pi J, He Y, Botmer C, Huang J, Liu J, Zhou T, et al. 2005. Low level, long-term inorganic arsenite exposure causes generalized resistance to apoptosis in cultured human keratinocytes: potential role in skin co-carcinogenesis. Int J Cancer 116:20–26.

Pi, J., Kumagai Y, Sun G, Yamauchi H, Yoshida T, Iso H, et al. 2000. Decreased serum concentrations of nitric oxide metabolites among Chinese in an endemic area of chronic arsenic poisoning in Inner Mongolia. Free Radic Biol Med 28:1137–1142.

Pi, J., Qu W, Reece JM, Kumagai Y, Waalkes MP. 2003. Transcription factor Nrf2 activation by inorganic arsenic in cultured keratinocytes: involvement of hydrogen peroxide. Exp Cell Res 290:234–245.

Pi J, Yamauchi H, Kumagai Y, Sun G, Yoshida T, Akawa H, et al. 2002. Evidence for induction of oxidative stress caused by chronic exposure of Chinese residents to arsenic contaminated in drinking water. Environ Health Perspect 110:331–336.

Piao F, Ma N, Hiraku Y, Murata M, Dikawa S, Cheng F, et al. 2005. Oxidative DNA damage in relation to neurotoxicity in the brain of mice exposed to arsenic at environmentally relevant levels. J Occup Health 47:445–449.

Ramos-Gomez M, Kwok MK, Dolan PM, Itoh K, Yamamoto M, Talalay P, et al. 2001. Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in nrf2 transcription factor-deficient mice. Proc Natl Acad Sci USA 98:3410–3415.

Shibata T, Kokubu A, Gotoh M, Ojima H, Ohta T, Yamamoto M, et al. 2008a. Genetic alteration of Keap1 confers constitutive Nrf2 activation and resistance to chemotherapeutics in gallbladder cancer. Gastroenterology 135:1598–1606.

Shibata T, Ohta T, Tong KJ, Kokubu A, Ogawa R, Tsut A, et al. 2008b. Cancer related mutations in Nrf2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy. Proc Natl Acad Sci USA 105:13568–13573.

Singh A, Misra V, Thimmulappa RK, Lee H, Ames S, Hoque MO, et al. 2006. Dysfunctional KEAP1-NRF2 interaction in non-small-cell lung cancer. PLoS Med 3:e420; doi:10.1371/journal.pmed.0030420 [Online 3 October 2006].

Stacy DR, Ely K, Massion PP, Yarbrough WD, Hallahan DE, Sekhar KR, et al. 2006. Increased expression of nuclear factor E2 p45-related factor 2 (NRF2) in head and neck squamous cell carcinomas. Head Neck 28:813–818.

Thastrup O, Cullen PJ, Drobak BK, Hanley MR, Dawson AP. 1990. Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2+-ATPase. Proc Natl Acad Sci USA 87:2466–2470.

Venugopal R, Jaiswal AK. 1998. Nrf2 and Nrf1 in association with Jun proteins regulate antioxidant response element-mediated expression and coordinated induction of genes encoding detoxifying enzymes. Oncogene 17:3145–3156.

Wang W, Chan JY. 2008. Nrf1 is targeted to the endoplasmic reticulum membrane by an N-terminal transmembrane domain. Inhibition of nuclear translocation and transacting function. J Biol Chem 283:19676–19687.

Wang W, Kwok AM, Chan JY. 2007. The p65 isoform of Nrf1 is a dominant negative inhibitor of ARE-mediated transcription. J Biol Chem 282:24670–24678.

Wellcome Trust Sanger Institute/European Bioinformatics Institute. 2010. Ensembl. Available: http://www.ensembl.org/index.html [accessed 30 November 2010].

Wong SS, Tan KC, Goh CL. 1998. Cutaneous manifestations of chronic arsenicism: review of seventeen cases. J Am Acad Dermatol 38:178–185.

Woods CG, Fu J, Xue P, Hoo Y, Pluta LJ, Yang L, et al. 2009. Dose-dependent transitions in Nrf2-mediated adaptive response and related stress responses to hypochlorous acid in mouse macrophages. Toxicol Appl Pharmacol 238:27–36.

Xu Z, Chen L, Leung Y, Yen TS, Lee C, Chan JY. 2005. Liver-specific inactivation of the Nrf1 gene in adult mouse leads to nonalcoholic steatohepatitis and hepatic neoplasia. Proc Natl Acad Sci USA 102:4120–4125.

Yamauchi H, Aminaka Y, Yoshida K, Sun G, Pi J, Waalkes MP. 2004. Evaluation of DNA damage in patients with arsenic poisoning: urinary 8-hydroxydeoxyguanosine. Toxicol Appl Pharmacol 198:281–296.

Yoshida T, Yamauchi H, Fan Sun G. 2004. Chronic health effects in people exposed to arsenic via the drinking water: dose-response relationships in review. Toxicol Appl Pharmacol 198:243–252.

Zhang Y, Kobayashi A, Yamamoto M, Hayes JD. 2009a. The Nrf3 transcription factor is a membrane-bound glycoprotein targeted to the endoplasmic reticulum through its N-terminal homology box 1 sequence. J Biol Chem 284:3195–3210.

Zhang Y, Lucocq J, Hayes JD. 2009b. The Nrf1 CNC/ZIP protein is a nuclear envelope-bound transcription factor that is activated by 1-buty1 hydroquinone but not by endoplasmic reticulum stressors. Biochem J 418:283–310.

Zhao et al.