Estudo comparativo da inibição da proliferação de fibroblastos in vitro na conjuntiva utilizando mitomicina C e ciclofosfamida

Comparative study of inhibition of fibroblasts proliferation in vitro in the conjunctiva using mitomycin and ciclophosphamide

Resumo

Objetivo: Avaliar a inibição da proliferação de fibroblastos in vitro das conjuntivas obtidas através de exérese de pterígios de pacientes utilizando mitomicina C (MMC) e ciclofosfamida (CF). Métodos: Os pterígios foram retirados de 7 pacientes e submetidos a cultivo celular. Após o cultivo, 3 fragmentos de dimensões iguais deste material foram colhidos de áreas adjacentes do pterígio removido de cada paciente. Eles foram randomicamente selecionados de tal forma que: um fragmento de cada paciente foi exposto: ao meio de cultura (grupo controle), a MMC e a CF por igual período de tempo nas concentrações de 0,4 mg/ml e 10 mg/ml respectivamente. Após este período realizou-se a contagem celular de fibroblastos destes 3 grupos. Cada grupo continha 7 fragmentos. Resultados: Com a utlilização da MMC tivemos uma taxa de 95% da inibição da proliferação dos fibroblastos, enquanto com a CF 100%. Conclusões: Ambas as drogas apresentaram elevada taxa da inibição da proliferação de fibroblastos, porém a CF apresentou inibição maior que a MMC. Descritores: Proliferação de fibroblastos Cicatrização; Mitomicina; Ciclofosfamida; Trabeculectomia; Pterígio; Cultura celular; Drogas antimitóticas

ABSTRACT

Objective: To evaluate the inhibition of fibroblast proliferation in vitro of conjunctiva obtained by excision of pterygium from patients using mitomycin (MMC) and cyclophosphamide (CF). Methods: Pterygiums were removed from 7 patients and subjected to cell culture. After cell cultivation, 3 fragments of equal dimensions of these tissues were collected from adjacent areas of each patient removed pterygium. They were randomly selected in such a way that one fragment of each patient was exposed to: the culture medium (group control), to MMC and to CF for an equal period of time at concentrations of 0,4 mg/dl and 10 mg/dl respectively. After this period, the fibroblast cell count of these groups were performed. Each group had seven fragments. Results: With the use of MMC we had a 95% rate of inhibition of fibroblast proliferation, while with CF 100%. Conclusion: Both drugs showed a high rate of inhibition of fibroblast proliferation, but CF showed greater inhibition than MMC. Keywords: Fibroblasts proliferation; Healing; Mitomycin; Cyclophosphamide; Trabeculectomy; Pterygium; Cell culture; Anti-mitotics drugs

1Programa de Pós-Graduação, Universidade de São Paulo, São Paulo, SP, Brasil.
2Hospital e Maternidade Marieta Konder Bornhausen de Iatajai, Itajaí, SC, Brasil.
3Centro Oftalmológico do Oeste do Pará, Santarém, PA, Brasil.
4Provisão Hospital de Olhos de Maringá, Maringá, PR, Brasil.
5Hospital Universitário de Maringá, Maringá, PR, Brasil.
6Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil.
7Centro de Oftalmologia Tadeu Cvintal, São Paulo, SP, Brasil.
8Departamento de Oftalmologia, Universidade de São Paulo, São Paulo, SP, Brasil.

Rev Bras Oftalmol. 2021; 80 (1): 8-11

Os autores declararam não haver conflito de interesses

Recebido para publicação em 24/4/2020 - Aceito para publicação em 1/11/2020.
INTRODUÇÃO

A modulação da atividade dos fibroblastos na cicatrização conjuntival de cirurgias tem o potencial de melhorar os resultados após cirurgias conjuntivais, como exérese de pterígio, cirurgias fistulizantes para tratamento de glaucoma e para vários distúrbios oculares, incluindo: penfigoide cicatricial e ceratoconjuntivite vernal.\(^{(1,2)}\)

O cenário clínico em que a cicatrização tem sido mais investigado é na cirurgia de pterígio e na cirurgia filtrante para o glaucoma, a trabeculectomia (TREC).\(^{(3,4)}\)

O sucesso destas cirurgias dependem, em parte, da modulação da produção dos fibroblastos. No caso do pterígio para diminuir a chance de recidiva, e no caso de cirurgias fistulizantes, diminuir a cicatrização do local da bolha, permitindo a drenagem do humor aquoso da câmara anterior (CA) para o espaço subconjuntival. Esse processo resulta na formação de uma bolha de filtração. A falha na cirurgia de glaucoma geralmente resulta de uma cicatrização excessiva que fecha a fistula; e os fibroblastos desempenham papel significativo nesse processo.\(^{(5,6)}\)

A principal causa do insucesso na TREC é a cicatrização que ocorre a nível subconjuntival e tenoniano na área da fistula. Neste processo existem dois fatores a serem levados em consideração: a vascularização necessária para o aporte de oxigênio e nutrientes importantes para a formação da cicatriz, e a migração e proliferação de fibroblastos tenonianos que sintetizam colágeno e fazem a contração do tecido cicatricial.\(^{(7)}\)

O 5-Fluouracil (5-FU) e a mitomicina C (MMC) são drogas antiproliferativas poderosas e eficazes que já são utilizados há anos para melhorar o sucesso da TREC, porém essas substâncias não estão isentas de efeitos colaterais, como a toxicidade corneana, hipotonia, formação de bolhas císticas e avasculares, blebites e endofalmites.\(^{(8,9)}\)

Além da MMC e do 5-FU, vários outros agentes foram propostos para diminuir a cicatrização episcleral após a TREC, apenas alguns foram avaliados em ensaios clínicos e nenhum se tornou bem aceito ou amplamente utilizado.\(^{(10)}\)

Tendo em vista as complicações resultantes da utilização destas substâncias, resolvemos testar a capacidade de inibição da proliferação de fibroblastos da ciclofosfamida (CF). A CF é uma droga antimitótica, antiproliferativa e antineoplásica largamente utilizada em tratamento de neoplasias. Ela já é descrita como um agente promissor em estudos in vivo e in vitro como agente de modulação da atividade dos fibroblastos na cicatrização.\(^{(11)}\)

Métodos

Pacientes:

Retiramos pterígiros de 7 pacientes (3 homens e 4 mulheres), com idade entre 30 e 60 anos, após consentimento informado pela técnica de esclera nua. Todos os pterígiros eram primários sem nenhuma doença ocular associada. Os pacientes não faziam uso de drogas immunsupressora local ou sistêmica.

Cultura de células epiteliais do pterígio

O protocolo para o cultivo celular foi realizado por Almodin e colaboradores (2013)\(^{(12)}\) e baseado em Kria et al (1998). Brevemente, o tecido epitelial de pterígio foi retirado, lavado, fragmentado e dividido em três grupos: controle (sem medicação), mitomicina C e ciclofosfamida. Os fragmentos foram cultivados em meio Eagle (GIBCO, Grand Island, NY, USA) suplementado com 10% de soro fetal bovino (Nutricell, Campinas, SP, Brasil), antibióticos e incubados 37º em atmosfera contendo 5% de CO\(_2\).

Testando o efeito das drogas sobre as células

Quando houve a formação da primeira camada de células, estas foram incubadas em solução de tripsina 0,25% (GIBCO, Grand Island, NY, USA) por 1 minuto, à temperatura ambiente. Depois da tripsinização as células foram lavadas e ressuspensas para contagem. As células eram então adicionadas às placas contendo 1 ml de meio Eagle com 10% de soro fetal bovino a uma densidade de 1x104 células/ml para serem subcultivadas. Após 5 dias de crescimento, as drogas foram adicionadas às placas que estavam sob cultivo nas seguintes concentrações: CF (Baxter Oncology Gmbh, Frankfurt, Alemanha), 500mg/m² ou 10 mg/ml e MMC (Bristol-Myers Squib Brasil S.A, Santo Amaro, SP, Brazil), 20mg/m² ou 0,4 mg/ml. As drogas foram diluídas em meio Eagle com 10% de soro e mantidas na estufa 12 horas antes da utilização para estabilização do PH. Imediatamente após as drogas serem adicionadas às células, as placas retornaram à incubadora. As células foram observadas ao microscópio invertido de contraste de fase após 24 hs da exposição às drogas, para avaliar a proliferação celular. Após, foi determinada a viabilidade celular pelo teste de exclusão do corante azul de trypan 0,1% (Ophthalmos, Jabaquara, SP, Brasil). Células viáveis são impermeáveis a este corante, uma vez que sua penetração na célula indica a perda da integridade de sua membrana.Todo o meio de cultura de cada placa, contendo as drogas foi retirado e colocado em tubos. A placa foi lavada várias vezes para que nenhuma célula permanecesse no fundo, o que foi comprovado pela observação ao microscópio. Ao tubo foi adicionado meio de cultura Eagle com 10% de soro para lavagem das células, pela centrifugação por 5 minutos. O sobrenadante foi retirado e 100 µl de meio de cultura foi adicionado ao tubo. O azul de trypan (0,4%) foi adicionado às células a um volume 1:1 e incubou-se 5 minutos à temperatura ambiente. Após esse tempo foi realizada avaliação quantitativa da citotoxicidade pela contagem das células coradas e não coradas em câmara de Makler para determinação do índice de viabilidade:

Viabilidade em % = \[\frac{(total\ de\ células - células\ coradas) \times 100}{total\ de\ células} \]

Foi realizado controle negativo quando nenhuma droga foi adicionada (Figura 1). Os experimentos foram repetidos 3 vezes.

Figura 1: Cultura controle – MO 400x
RESULTADOS

Nas placas em que houve a utilização da MMC e da CF observou-se extensa inibição da proliferação celular nas primeiras 24 horas em relação a placa controle. Observou-se que as células se desprendiam da placa com MMC em quase a totalidade da extensão. Quando a ciclofosfamida foi utilizada, efeito semelhante foi observado. As placas de controle mantiveram-se com a totalidade de células aderidas ao fundo. Quando a coloração com azul de Trypan 0,1% foi realizada, observou-se que 100% das células que foram submetidas à CF estavam coradas (Figura 2), ou seja, o teste de viabilidade foi zero após 24 horas de exposição à droga, enquanto 95% das células submetidas à MMC apresentavam-se com coloração (Figura 3), apresentando um teste de viabilidade de 5%.

DISCUSSÃO

O pterígio é uma doença caracterizada pelo crescimento de tecido conjuntival subconjuntival fibrótico e hipertrofia do epitélio conjuntival suprajacente. Como a recorrência desse não parece estar associada com exposição à luz ultravioleta e sim devido a um acelerador da proliferação fibroblástica. O pterígio é uma doença caracterizada pelo crescimento de tecido conjuntival subconjuntival fibrótico e hipertrofia do epitélio conjuntival suprajacente. Uma alternativa terapêutica que pudesse também inibir a proliferação de fibroblastos durante a cirurgia fistulizante. A CF é uma droga antimitótica, antiproliferativa e antineoplásica largamente utilizada em tratamento de neoplasias. Ela já foi descrita como um agente promissor em estudos in vivo e in vitro como agente antifibrótico. Ela é escolhida por não ser vesicante, pois acreditamos que os efeitos indesejados da MMC sobre o olho sejam principalmente devido à droga ter esse efeito. As drogas vesicantes são aquelas que provocam irritação severa com formação de vesículas e destruição tecidual quando infiltradas fora do vaso sanguíneo e podem ocasionar necrose.

Os resultados da MMC em inibir a proliferação dos fibroblastos de pterígio em nossos experimentos, já eram esperados, porém a CF também se apresentou bastante eficaz. A ação inibitória da CF sobre a proliferação fibroblástica in vitro sugere que ela possa ser usada para melhorar a modulação cicatricial em cirurgias. A CF é um éster fosfamídico cíclico da mecloretamina, que causa o impedimento da divisão celular primariamente por ligação cruzada de cordões de DNA. Ela foi utilizada numa dosagem maior que a MMC, pois as concentrações usadas para a MMC neste trabalho já são as utilizadas em oftalmologia e a concentração da CF já são as utilizadas para o tratamento de neoplasias.

A CF é uma droga que talvez possa ser usada como terapia adjuvante em substituição a MMC em cirurgias que precisamos ter uma inibição da proliferação de fibroblastos, como na exérese de pterígio ou outras cirurgias na região conjuntival, como na TREC por exemplo. Contudo, há necessidade de estudos em animais e em humanos, e em outras cirurgias diferentes das realizadas neste estudo para se verificar a eficácia e segurança da aplicação desta droga.

CONCLUSÃO

A cultura de células submetidas à ação da CF mostrou uma maior taxa da inibição da proliferação dos fibroblastos, 100%, enquanto, a sob ação da MMC detectou 95%.

A CF oferece a vantagem de não ter ação vicariante, ou seja, não induz formação de vesículas e degradação tecidual podendo ser manuseada com menor índice hipotético de ofensa escleral e complicações.

REFERÊNCIAS

1. Zada M, Pattamatta U, White A. Modulation of Fibroblasts in Conjunctival Wound Healing. Ophthalmology. 2018;125(2):179–92.
2. Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006;90(3):262–7.
3. Roat MI, Sossi G, Lo CY, Thoft RA. Hyperproliferation of conjunctival fibroblasts from patients with cicatricial pemphigoid. Arch Ophthalmol. 1989;107(7):1064–7.
4. Martín Giral E, Rivera Zori M, Perucho Martínez S, Toledano Fernández N. Estudio comparativo sobre eficacia y seguridad de bevacizumab frente a mitomicina C como adyuvantes a trabeculectomía. Arch Soc Esp Oftalmol. 2015;90(2):63–8.
5. Fontana H, Nouri-Mahdavi K, Lumba J, Ralli M, Caprioli J. Trabece- sclecomy with mitomycin C: outcomes and risk factors for failure in phakic open-angle glaucoma. Ophthalmology. 2006;113(6):930–6.
6. Singh RP, Goldberg I, Mohsin M. The efficacy and safety of intraoperative and/or postoperative 5-fluorouracil in trabeculectomy and phacotrabeculectomy. Clin Exp Ophthalmol. 2001;29(5):296–302.
7. Heuer DK, Parrish RK 2nd, Gressel MG, Hodapp E, Desjardins DC, Skuta GL, et al. 5-Fluorouracil and glaucoma filtering surgery. III. Intermediate follow-up of a pilot study. Ophthalmology. 1986;93(12):1537–46.
8. Holló G. Wound Healing and Glaucoma Surgery: Modulating the Scarring Process with Conventional Antimetabolites and New Molecules. Dev Ophthalmol. 2017;59:80–9.
9. Kim KW, Park SH, Kim JC. Fibroblast biology in pterygia. Exp Eye Res. 2016;142:32–9.
10. Potério MB, Alves MR, Cardillo JA, José NK. An improved surgical technique for pterygium excision with intraoperative application of mitomycin-C. Ophthalmic Surg Lasers. 1998;29(8):685–7.
11. Verrecchia F, Wang Y, Vija L, Farge D. Evidence of an antifibrotic effect of immunosuppressive drugs: applications in the treatment of systemic sclerosis. Expert Rev Clin Immunol. 2009;5(1):35-43.
12. Almodin J, Almodin F, Almodin E, et al. Efeitos de algumas drogas sobre a proliferação de fibroblastos de pterígio primário in vitro. Rev Bras Oftalmol. 2013;72(2):110–8.
13. Haik GM, Ellis GS, Nowell JF. The management of pterygia, with special reference to surgery combined with beta irradiation. Trans Am Acad Ophthalmol Otolaryngol. 1962;66:776–84.
14. Perobille JF. Effects of anticancer drugs in reproductive parameters of juvenile male animals and role of protective agents. Anticancer Agents Med Chem. 2017;9(9):17–9.

Autor correspondente:
Juliana Almodin
Rua Silva jardim, 359
Cep 97013-010, Maringá, PR, Brasil.
E-mail: juliana_almodin@hotmail.com
Tel: 44 99804 8510

Rev Bras Oftalmol. 2021; 80 (1): 8-11