CONSTRUCTION, EXPRESSION AND PURIFICATION OF RECOMBINANT PRE-MATURE PEPTIDE OF PLANTARICIN F FROM Lactobacillus plantarum S34 IN ESCHERICHIA COLI

Kusdianawati¹, Apon Zaenal Mustopa², Suharsono³, Bugi Ratno Budiarto⁴, Fatimah⁵ and Hasim Danuri⁶

¹School of Biotechnology, Bogor Agricultural University
Jalan Raya Darmaga, Kampus IPB Darmaga, Bogor 16680, West Java, Indonesia
²Research Center for Biotechnology, Indonesian Institute of Sciences
Jalan Raya Bogor km 46, Cibinong 16911, Bogor, Indonesia
³Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development
Jalan Tentara Pelajar No. 3A, Bogor 16111, Indonesia
⁴Department of Biochemistry, Bogor Agricultural University
Jalan Agatis Kampus IPB Darmaga Bogor 16680, Indonesia
*Corresponding author: azmustopa@yahoo.com

Submitted 9 September 2014; Revised 12 March 2015; Accepted 16 March 2015

ABSTRACT

Plantaricin is one of bacteriocins that have the potential to be used as food preservative. Plantaricin is safe for human consumption because it can be easily degraded by proteolytic enzymes. The objective of this study was to express and purify recombinant pre-mature peptide of plantaricin F from Lactobacillus plantarum S34 in Escherichia coli. Plantaricin gene-specific primer was used to obtain pln F structural gene amplicon from L. plantarum S34. This amplicon was cloned in pET32a vector and expressed in E. coli BL21 (DE3) pLysS. Pre-mature plantaricin F peptide was expressed as Histagged-fusion protein and separated by Co²⁺-chelating affinity chromatography. L. plantarum S34-derived pre-mature plantaricin F peptide fused with thioredoxin-(His)₆tag had successfully been expressed in E. coli BL21 (DE3) pLysS using pET32a as an expression vector. The fused recombinant pln F as pre-mature state expressed had a molecular mass of ~24 kDa, meanwhile the fused recombinant that contained only the leader peptide of pln F appeared as ~20 kDa based on SDS-PAGE separations. The optimal production of fused recombinant pln F as soluble fraction was obtained when culture condition was added with 0.5 mM of IPTG and incubated at 22°C for 5 hours (OD~1). Furthermore, the expression of fused recombinant pln F as its pre-mature peptide pointed out that the pln F leader peptide could be proteolytically cleaved by a system in heterologous cells. Overall, heterologous pln F production as pre-mature peptide fused with thioredoxin-(His)₆tag had been well established. From this research, we expect plantaricin F can be expressed and purified in E. coli.

[Keywords: Plantaricine, recombinant pln F, leader peptide, mature peptide, pET32a vector]
INTRODUCTION

Lactic acid bacteria (LAB), a group of gram-positive bacteria, have received special attention to date because of their ability to produce bacteriocins that can be applied as a natural preservative agent (da-Silva et al. 2014). The usages of LAB and their metabolic products as anti-food contaminations were due to the GRAS (Generally Regarded as Safe) state received (Zacharof and Lovitt 2012). Furthermore, LAB have been isolated from various kinds of traditional Indonesian fermented foods such as shrimp paste ágarasiê fermented fish and meat ábekasamâ and soy mash áempeô habitated with Tetragenococcus halophilus, Tetragenococcus muricatus, and Lactobacillus plantarum (Roling et al. 1996; Kobayashi et al. 2003; Candra et al. 2007; Mustopa et al. 2010).

Class IIb bacteriocins produced by LAB are mostly applied in food to prevent microbial contamination due to their strong antibacterial activity (Abee et al. 1995; Cleveland et al. 2000). These unique peptides have a conserved N-terminal, named GxxG motifs in its mature peptide form (Fimland et al. 2008). These are such as plantaricins EF (PlnEF) and plantaricins JK (PlnJK) that belong to a large group of small, heat-stable, cationic, non-antibiotic peptides (Pal and Sheela 2014) and produced by different strains of L. plantarum (Anderssen et al. 1998).

The conventional procedures to collect native plantaricin peptides directly from L. plantarum using ammonium sulphate precipitation followed by chromatography-based purifications have recently been established with excellent biological activity and high in protein purity obtained (Atrih et al. 2001; Gong et al. 2010; Hata et al. 2010; Zhu et al. 2014). However, the procedures are hard to be applied to produce native plantaricins directly isolated from natural producers with high yield (Tiwari and Srivastava 2008).

These conventional methods if applied in industrial process for large scale production would be contraproducive because of time consuming, laborious process, high cost and difficulty in the purification steps (Li and O’Sullivan 2002). To overcome the constraints, efforts had been done for example to heterologously produce plantaricins in quite different cells, such as Escherichia coli (Fang et al. 2010) that offer more rapid, high yield and economical production of recombinant proteins (Sivashanmugam et al. 2009).

Contrary with another type of class II bacteriocins such as lactation, enterocin, mesentericin, nisin, divercin and sakacin which had been well established expressed heterologously in any type of cells (Richard et al. 2004; Fimland et al. 2008; Rogne et al. 2009; Basanta et al. 2010; Fang et al. 2010; Borrero et al. 2012). In attempt to increase the yield of bacteriocin peptides, their heterologous expression in procaryotic species have been widely studied (Richard et al. 2004; Kloke et al. 2005). But until now, little study is known to report heterologous expression of plantaricin especially in the form of their pre-mature peptide state (Finland et al. 2008; Fang et al. 2010). The objective of this study was to express and purify recombinant pre-mature peptide of plantaricin F from L. plantarum S34 in E. coli.

MATERIALS AND METHODS

Construction of Recombinant Vector

A plantaricin F gene isolated from bekasam-derived L. plantarum S34 was subcloned into pGEM-T (pGEM-T-pln EF) then the pln F gene was amplified from pGEM-T-pln F by PCR using a primer pair 5’-GACTGGGATCCATGAAAAATTTCTAGTTT-3’ as sense primer and 5’-GATCAAGCTTCTATCCGTGGATGAATCC TCTA TCCGTGGA T-3’ as anti-sense primer. The primers contained upstream BamHI and downstream HindIII restriction site (underlined nucleotides). To prevent protein fusion between the recombinant pln F with C-terminal His tag protein, strong stop codons TGA were incorporated at 3-end of the anti-sense primer. All DNA manipulations were carried out according to the procedures described by Sambrook et al. (2001). PCR profile was 94°C, 1 minute of denaturation; 63°C, 1 minute of annealing; extension 72°C for 30 seconds and repeated for 35 cycles. The PCR product and vector pET32 a (Novagen) were cut with BamHI and HindIII enzymes. After purification with a Qiagen® PCR purification kit (Qiagen, ICI Americas Inc), the digested pln F gene and vector were ligated using T4 DNA ligase (Takara) and the ligation mixtures were transformed into competent E. coli BL21 (DE3) pLysS (Novagen). Recombinant plasmid-containing bacteria were initially selected on LB agar with ampicillin (100 µg mL⁻¹) then the recombinant bacteria growth on the selection medium was subjected to PCR colony using the same primer as described above. The recombinant pET32a-pln F from PCR colony test was sequenced to confirm the inserted pln F gene nucleotide sequence.
Expression of Recombinant pln F in *E. coli*

The expression method previous study (Li et al. 2010). Recombinant plasmid that had been constructed was sub-cloned into competent *E. coli* BL21 (DE3) pLysS. The recombinant bacteria were cultured in 200 ml LB broth containing ampicillin (100 μg mL⁻¹) with shaken at 150 rpm at 37°C. When OD₆₀₀ reached 0.4, cultures were induced by IPTG (Isopropylβ-D-1-thiogalactopyranoside). To optimize recombinant expression, three conditions were applied, i.e. (1) IPTG inducer concentrations (0.1, 0.5, and 1 mm); (2) induction times (1, 2, 3, 4, and 5 hours); and (3) induction temperatures (22°C, 25°C, and 37°C). Furthermore, the optimized condition was used to produce and purify recombinant pln F from *E.coli* BL21 (DE3) pLysS.

Five hours after IPTG induction, recombinant bacteria were harvested by centrifugation at 8000 g, 4°C for 10 minutes. The pellets from recombinant bacteria were resuspended with lysis buffer pH 8 containing 20 mM Tris-HCl, 500 mM NaCl and 20 mM imidazole directed to sonication (0.5 cycles of 30 outputs, 15 s pulse on and 60 s pulse off). The lysate was then centrifuged at 18,000 g, 4°C for 30 minutes. After that, the supernatant was collected and the pellet was resuspended in the same lysis buffer. Pellet and supernatant fractions were separated using 12% SDS polyacrylamide gel electrophoresis (SDS PAGE).

Purification of Recombinant pln F

The purification method was done according to a previous study by Utama et al. (2000) and Li et al. (2010) with modification. Supernatant fraction was resuspended with resin Co³⁺ (TALON) and bound on a rotator for 3 hours at 4°C. After that, the sample was centrifuged at 7000 g, 4°C for 7 minutes. The resulting supernatant was discarded, and the resin was resuspended in wash buffer (Tris HCl 20 mM pH 8, 500 mM NaCl, 60 mM imidazole). Subsequently, the supernatant was centrifuged at 7000 g, 4°C for 5 minutes. The washing process was repeated two times. The resin was then resuspended with elution buffer (Tris HCl 20 mM pH 8, 500 mM NaCl, 250 mM imidazole) and bound on a rotator at 4°C for 12 hours. Subsequently, the fraction was centrifuged at 7000 g, 4°C for 5 minutes. The supernatant was taken and then dialyzed using dialyzed buffer (500 mM Tris HCl, pH 8,10 mM CaCl₂, 1% Tween-20 (v/v)).

RESULTS AND DISCUSSION

Expression of Recombinant pln F in *E. coli*

pET32a containing Trx-plnF fusion protein for the expression was shown in Figure 1. A pre-mature pln F fragment containing *Bam*HI and *Hind*III restriction sites with 159 bp in size was obtained by PCR amplification (Fig. 1a). Then the PCR product was sub-cloned into the pET32a expression vector, and the insertion was confirmed by double digestion using *Bam*HI and *Hind*III restriction enzymes. Recombinant DNA sequence inserted was verified by DNA sequencing.

We had constructed and expressed pln F which consisted of leader and mature peptide (Fig. 1b) as protein fusion with thioredoxin-(His)₆tag at N-terminus in *E.coli* with a high degree of solubility as seen in the soluble fraction of supernatant obtained from lysed-recombinant *E.coli*. Finland et al. (2008) had produced recombinant mature pln F fused to a fusion partner protein called GB1 using pGEV2 with 1 mM IPTG for induction, but the recombinant protein obtained was forming inclusion body. This contrary result with our study indicated that the difference in fusion partner protein, vector expression and IPTG used would impact on the degree of solubility of recombinant pln F produced. Interestingly, because of recombinant pln F in our study expressed as pre-mature peptide, we predicted that the leader peptide itself may also have function as a guide to chaperon like-protein on translocation machinery thus helping proper folding of pln F (Mathiesen et al. 2008).

SDS-PAGE

This method was used to determine whether recombinant pln F was expressed or not. The fractions from expression and purification of recombinant pln F were collected, then the mixture was dissolved with loading buffer (50 mm Tris HCl, pH 6.8, 2% SDS, 10% glycerol, 1% mercapto ethanol, 12.5 M EDTA, 0.02% Bromophenol blue, H₂O). The gel was then stained with coomassie blue staining solution overnight distained with staining buffer for 30 minutes, three times. The gel picture was then taken using a digital scanner (Canon MP258, Canon).
After heat shock treatment to deliver pET32a-pln F into the *E. coli* BL21 (DE3) pLysS, the targeted recombinant protein of pln F appeared as two dominant bands. The first band was ±24 kDa which composed of recombinant pre-mature peptide of pln F and thioredoxin-(His)$_{6}$tag fusion protein and the second band was ±20 kDa contained only leader peptide. The fusion protein indicated that some of mature peptides of pln F have been proteolytically cleaved from its pre-mature state by a system in *E. coli* (Fig. 2a) and those two protein bands were not appeared in recombinant *E. coli* which was only transformed by pET32a(+) with no insert of pre-mature pln F gene. Expression of recombinant protein fused with partner protein such thioredoxin-(His)$_{6}$tag would give several advantages compared to the unfused recombinant protein. As described by Cao *et al.* (2005), Khow and Suntrarachun (2012), and Tao *et al.* (2014), those benefits included (1) helping to increase solubility and proper folding of recombinant protein expressed, (2) protecting them from being degraded by intracellular protease and (3) simplifying the purification of recombinant protein.

![Fig. 1.](image1)

Fig. 1. (a) Results of PCR amplification of pln F gene. M is 100 bp DNA ladder marker (bp), lane 1 is pre-mature pln F gene construction of pET32a-pln F; (b) fragment with size of about 159 bp inserted into BamHI and HindIII sites of pET32a vector; (c) nucleotide and amino acid sequence of fused recombinant pln F, the blue colour is thioredoxin-(His)$_{6}$tag fusion partner protein followed with S-Tag and enterokinase cleavage site (1-165 aa), the red colour is leader peptide of pln F (166-183 aa), the green color is mature peptide of pln F (184-217 aa), the asterix is stop codon.

![Fig. 2.](image2)

Fig. 2. Result of SDS-PAGE separations of the recombinant pln F; (a) expression of recombinant pln F at 37°C with 0.5 mM IPTG, lane 1 was supernatant fraction from lysed-recombinant *E. coli*; line 2 was an elution fraction from TALON-treated supernatant fraction, (b) the effect of different temperatures on recombinant pln F expression; lane 1, 2 and 3 were supernatant of lysed-recombinant *E. coli* incubated at 37°C, 25°C and 22°C, respectively; lanes 2, 4 and 6 were elution fraction of TALON-treated supernatant of lysed-recombinant *E. coli* incubated at 37°C, 25°C and 22°C, respectively; lane 7 was supernatant of *E. coli* contained pET32 vector with no insert pln F gene. Blue and red squares were two dominant bands represented the fused recombinant pln F with or without its mature peptide. M was peptide molecular weight marker.
To obtain maximum production of recombinant pln F we tested different values of temperature incubation, IPTG concentration and incubation time. As shown in Figure 2 the recombinant pln F expression was temperature dependent with a protein level reached maximum value at 22°C (Fig. 2b, lane 6). For IPTG optimization, the yield of recombinant pln F protein was highest when 0.5 mM IPTG was added into the medium (Fig. 3a, lane 5). Meanwhile, 5 hours culture of recombinant E. coli containing pET32a-pln F at 22°C after 0.5 mM IPTG addition gave the best protein recombinant expression as pointed out in Figure 3b. The optimum condition obtained (induction temperature was 22°C, induction time was 5 hours, and IPTG concentration was 0.5 mM) then applied for production and purification of fused recombinant pln F.

In attempt to obtain the optimum production of recombinant pre-mature pln F, here we also had optimized critical parameters that contribute directly to the successfulness of protein expression in E. coli such as induction temperature, induction time and IPTG concentration addition (Sambrook and Russell 2001; Sivashanmugam et al. 2009). As we expected, the induction temperature where recombinant pln F was produced by recombinant E. coli had a prominent effect on protein expression yield and solubility. Induction in 37°C resulted in very thin recombinant protein band on SDS-PAGE result, meanwhile lowering the induction temperature to 22°C (IPTG was 0.5 mM and induction time was 5 hours) resulted in a thicker recombinant protein band. Recombinant mature pln F obtained from Fimland et al. (2008) was produced as inclusion body due to inappropriate induction temperature applied (37°C). Another study conducted by Rogne et al. (2009) also obtained similar result for recombinant pln J and K collected from 37°C incubated-recombinant E. coli. Tao et al. (2014) stated that lowering the induction temperature during IPTG added-medium culturing would help to increase solubility of recombinant protein expressed as much as ±80%, although it would also impact directly on the capability of recombinant cells to proliferate of being slow down compared to high temperature (Chen et al. 2012). Construction and heterologous expression of mature pln F had well been established by other authors with excellent results (Fimland et al. 2008; Fang et al. 2010), yet no information was provided related to its heterologous expression as pre-mature peptide of pln F until today. We assumed that the expression of pln F as its pre-mature state, if any, would give essential information regarding biological function of homologous leader peptide in heterologous cells. For examples some leader peptides had been proven being acting as a molecular guide in properly directing of pre-mature peptides to the secretory machinery system, the process is called
protein maturation and secretion (Belkum et al. 1997; Mathiesen et al. 2008).

As explained above, pre-mature peptide of pln F had been successfully constructed in pET32a vector and expressed in E. coli BL21 (DE3) pLysS. The functionality of leader sequence within premature recombinant pln F had a size ± 20 kDa bellowed from fused pre-mature of recombinant pln F band (Fig. 3a). We predicted this additional protein band was a union of thioredoxin-(His)_6tag fusion partner protein with S-tag and enterokinase cleavage site (total size was 18.15 kDa) followed by leader peptide sequence (size was 1.98 kDa) without recombinant mature of pln F. We predict that recombinant mature pln F may be secreted from intracellular part of the E. coli into the culture medium. According to Ennahar et al. (1996) and Kelly et al. (1996), the function of leader sequences of bacteriocins was not only as an inhibitor of antibacterial activity of the bacteriocins against their producer host cells, but also provided a recognition signal to the ABC transporter in maturation and secretion processes. The incomplete proteolytic digestion of a fused recombinant pre-mature peptide of pln F in our study indicated the lack of recognition of pre-peptide of bacteriocin by domain of ABC transporter in heterologous cells (Belkum et al.1997).

Purified Recombinant pln F

To purify the recombinant pln F, the soluble fraction in each case was subjected to Co^{2+} affinity column purification. The bound proteins were eluted in 200 mM of imidazole. At this optimum concentration of imidazole, the purity of target protein could be recovered significantly. As shown in Fig. 4 the fused recombinant pln F had been purified, in two forms of dominant protein bands, from the supernatant of intracellular part of lysed cells although some of unspecific bands were also co-purified in our procedure. This result highlighted that both forms of fused recombinant pln F had succeeded to be purified using this method.

Pre-mature plantaricin F peptide fused with 6× histidine theriodoxin has been successfully expressed and purified in E. coli BL21 (DE3) pLysS by using pET32a as an expression vector. In this study, the expression and purification of recombinant pln F in E. coli BL21 (DE3) pLysS was investigated. The expressed recombinant pln F has a molecular mass of 24 kDa when separated on SDS-PAGE. The recombinant pln F produced was temperature dependent and the level of recombinant plnF production could be enhanced when the host was induced by 0.5 mM IPTG and 25°C incubation and reached optimal at 22°C incubation.

CONCLUSION

Recombinant pre-mature pln F peptide was successfully expressed in Escherichia coli BL21 (DE3) pLysS by using pET32a as an expression vector. The optimum condition of expression was 0.5 mM of IPTG for 5 hours at 22°C. This recombinant peptide was successfully purified from E. coli cell.

ACKNOWLEDGEMENTS

This research was financially supported by KKP3N program from Indonesian Agency for Agricultural Research and Development of 2014 fiscal year and the facilities were supported by Biotechnology Research Center Indonesian Institute of Sciences (LIPI), ICABIOGRAD, and Department of Biotechnology, Bogor Agricultural University.
REFERENCES

Abee, T., E.L. Kro and C. Hill. 1995. Bacteriocins: modes of action and potentials in food preservation and control of food poisoning. Int. J. Food. Microbiol. 28: 169-185.

Andersen, E.L., D.B. Diep, I.F. Nes, V.G.H. Eijssink and J.N. Meyer. 1998. Antagonistic activity of Lactobacillus plantarum C11: two new two-peptide bacteriocins, plantaricin EF and JK, and the induction factor plantaricin A. Appl. Environ. Microbiol. 64: 2269-2272.

Atrih, A., N. Rekhif, A.J.G. Moir, A. Lebrihi and G. Lefebvre. 2001. Mode of action, purification and amino acid sequence of plantaricin C19, an anti-Listeria bacteriocin produced by Lactobacillus plantarum C19. Int. J. Food. Microbiol. 68: 93-104.

Basanta, A., C. Herranz, J. Gutierrez, R. Criado, P.E. Hernandez and L.M. Cintas. 2010. Use of the yeast Pichia pastoris as an expression host for secretion of enterocin L50, a leaderless two-peptide (L50A and L50B) bacteriocin from Enterococcus faecium L50. Appl. Environ. Microbiol. 76: 3314-3324.

Belkum, M.J.V., W.W. Randy and E.S. Michael. 1997. Double-glycine-type leader peptides direct secretion of bacteriocins by ABC transporters: colicin V secretion in Lactococcus lactis. Mol. Microbiol. 23: 1293-1301.

Borrero, J., G. Kunze, J.J. Jimenez, E. Boer, L. Gutiez, C. Herranz, L.M. Cintas and E.P. Hernandez. 2012. Cloning production and functional expression of the bacteriocin enterocin A, produced by Enterococcus faecium T136, by the yeast, Pichia pastoris, Klyveromyces lactis, Hansenula polymorpha and Arxula adeninivorans. Appl. Environ. Microbiol. 78: 5956-5961.

Candra, J.I., W. Zahiruddin and Desnair. 2007. Isolation and characterization of lactic acid bacteria from bandeng (Chanos chanos) bekasam. Aquatic Prod. Technol. Bull. 10: 1424.

Cao, W., Y. Zhou, Y. Ma, Q. Luo and D. Wei. 2005. Expression and purification of antimicrobial peptide adenoregulin with C-amidated terminus in Escherichia coli. Protein Expr. Purif. 40: 404-410.

Chen, H., F. Tian, S. Li, Y. Xie, H. Zhang and W. Chen. 2012. Cloning and heterologous expression of a bacteriocin sakacin P from Lactobacillus sakei in Escherichia coli. Appl. Microbiol. Biotechnol. 94: 1061-1068.

Cleveland, J., T.J. Montville, I.F. Nes and M.L. Chikindas. 2000. Bacteriocins: safe, natural antimicrobials for food preservation. Int. J. Food. Microbiol. 71: 1-20.

da-Silva, S.S., V. Michele, M.D.G. Jose and P.D.S.O. Ricardo. 2014. Overview of Lactobacillus plantarum as a promising bacteriocin producer among lactic acid bacteria. Food. Res. Int. 64: 527-536.

Ennahar, G., A.A. El-Essawy, M. Uyttendaele and J. Debevere. 1996. Antibacterial activity of Lactobacillus plantarum UG1 isolated from dry sausage: characterization, production and bactericidal action of plantaricin UG1. Int. J. Food. Microbiol. 30: 180-215.

Fang, Y., Y. Zhan-qiao and Z. Ri-jun. 2010. Heterologous expression of plantaricin genes pln E and pln F in E. coli. J. China Anim. Husb. Vet. Med. 37: 55-59.

Finland, P.R., F. Gunnar, N. Jon and E. Per. 2008. Three-dimensional structure of the two peptides that constitute the two-peptide bacteriocin plantaricin EF. J. Biochem. Biophys. Acta. 1784: 1711-1719.

Gong, H.S., X.C. Meng and H. Wang. 2010. Plantaricin MG active against Gram-negative bacteria produced by Lactobacillus plantarum KLDS1.0391 isolated from f’jiaoke’d, a traditional fermented cream from China. Food Control. 21: 89-96.

Hata, T., T. Rie and O. Sadahiro. 2010. Isolation and characterization of plantaricin ASM1: A new bacteriocin produced by Lactobacillus plantarum A-1. Int. J. Food. Microbiol. 137: 94-99.

Kelly, W.J., R.V. Asmundson and C.M. Huang. 1996. Isolation and characterization of bacteriocin-producing lactic acid bacteria from ready-to-eat food products. Int. J. Food. Microbiol. 33: 209-218.

Khoo, O. and S. Suntrarachun. 2012. Strategies for production of active eukaryotic proteins in bacterial expression system. Asian J. Pac. Trop. Biomed. 2: 159-162.

Klocke, M., K. Mundt, F. Idler, S. Jung and J.E. Bachausen. 2005. Heterologous expression of enterocin A, a bacteriocin from Enterococcus faecium, fused to a cellulose-binding domain in Escherichia coli results in a functional protein with inhibitory activity against Listeria. Appl. Microbiol. Biotechnol. 67: 532-538.

Kobayashi, T., M. Kajiwara, M. Wahyuni, T. Kitakado, N.H. Sato, C. Imada and E. Watanabe. 2003. Isolation and characterization of halophilic lactic acid bacteria isolated from flerasisi shrimp paste: A traditional fermented seafood product in Indonesia. J. Gen. Appl. Microbiol. 49: 279-286.

Li, H. and D.J. O’Sullivan. 2002. Heterologous expression of the Lactococcus lactis bacteriocin, nisin, in a dairy Enterococcus strain. Appl. Environ. Microbiol. 68: 3392-3400.

Li, C., H.M. Bleccke, V. Paulsen, T. Haug and K. Stensvag. 2010. Powerful work horses for antimicrobial peptide expression and characterization. Bioeng. Bugs. 1: 217-220.

Mathiesen, G., A. Sveen, J.C. Piard, L. Axellson and V.G.H. Eijssink. 2008. Heterologous protein secretion by Lactobacillus plantarum using homologous signal peptides. J. Appl. Microbiol. 105: 215-226.

Mustopa, A.Z., R. Balia, W.S. Putranto, M. Ridwan and M. Solehudin. 2010. Screening of lactic acid bacteria isolated from beef briskasm to produce bacteriocins to inhibit pathogenic bacteria. Proceedings of the National Seminar, Faculty of Animal Husbandry, Padjadjaran University, 2: 679-685.

Pal, G and S. Sheela. 2014. Cloning and heterologous expression of plnE, -F, -J and -K genes derived from soil metagename and purification of active plantaricin peptides. Appl. Microbiol. Biotechnol. 98: 1441-1447.

Richard, C., D. Drider, K. Elmorjani, D. Marion and H. Prevost. 2004. Heterologous expression and purification of active ddiverin V41, a class IIA bacteriocin encoded by a synthetic gene in Escherichia coli. J Bacteriol. 186: 4276-4284.

Rogne, P., C. Haugen, G. Finland, J. Nissen-Meyer and P.E. Kristiansen. 2009. Three-dimensional structure of the two-peptide bacteriocin plantaricin JK. Peptides 30: 1613-1621.

Roling, W.F.M. and H.W. Verstevel. 1996. Characterization of Tetragenococcus halophilus populations in Indonesian soy mash (kecap) fermentation. Appl. Environ. Microbiol. 62: 1203-1207.

Sambrook, J., E.F. Fritsch and T. Maniatis. 2001. Molecular Cloning: A laboratory manual. Cold Spring Harbor Laboratory. Cold Spring Harbor, New York.

Sambrook, J. and D. Russell. 2001. Molecular cloning: A laboratory manual, 3rd ed. Cold Spring Harbor Laboratory Press, New York.

Sivashanmugam, A., M. Victoria, C. Chunxian, Z. Yonghong, W. Jianjun and L. Qianqian. 2009. Practical protocols for production of very high yields of recombinant proteins using Escherichia coli. Protein Sci. 18: 936-948.
Tao, Y., M.Z. Dong and W. Ya. 2014. Expression, purification and antibacterial activity of the channel catfish hagemin mature peptide. Protein Expr. Purif. 94: 73-78.

Tiwari, S.K. and S. Srivastava. 2008. Purification and characterization of plantaricin LR14: A novel bacteriocin produced by Lactobacillus plantarum LR/14. Appl. Microbiol. Biotechnol. 79: 759-767.

Utama, A., S. Hiroyuki, M. Shigeru, H. Futoshi, M. Kouichi, I. Akira, H. Masahiro, T. Kazuhiro and M. Tatsuo. 2000. Identification and characterization of the RNA helicase activity of Japanese encephalitis virus NS3 protein. FEBS Lett. 465: 74-78.

Zacharof, M.P. and R.W. Lovitt. 2012. Bacteriocins produced by lactic acid bacteria. APCBEE Procedia. 2: 50-56.

Zhu, X., Z. Yizhen, S. Yalian and G. Qing. 2014. Purification and characterisation of plantaricin ZJ008, a novel bacteriocin against Staphylococcus spp. from Lactobacillus plantarum ZJ008. J. Food. Chem. 165: 216-223.