Effects of regionally applied heating on the respiration of wild type and transgenic soybean (*Glycine max*) plants grown under ambient and elevated CO$_2$ environments

Chukwuma Collins Ogbaga
Department of Biological Sciences, Nile University of Nigeria, Abuja, Nigeria.

Received 7 November, 2016; Accepted 30 December, 2016

Nocturnal dark respiration (R$_n$) in wild type and transgenic soybean plants grown at SoyFACE research facility, Illinois, USA under ambient and elevated CO$_2$ conditions was examined in this study. Transgenic plants were transformed to overexpress a key Calvin cycle enzyme sedoheptulose-1,7-bisphosphatase (SBP) which is thought to improve yield in the field by at least 11%. Heating was applied using infrared heaters mounted 1.2 m above the plants in the field during the growing season of 2015 summer and R$_n$ measurements taken for wild type and SBP overexpressors at ambient and elevated CO$_2$ plots from V4 to R6 developmental stages. The objective was to study the effects of elevated CO$_2$ of approximately 585 μmol mol$^{-1}$ and +3.5 increase in temperature on wildtype and transgenic SBP plants. Measurements were recorded at growth and constant temperature for both varieties. Experimental plants were transferred to a controlled growth chamber at V4 and R6 developmental stages and the temperature responses examined from 15 to 40°C. Specific leaf area (SLA) and its relations to R$_n$ were also determined. Results indicate that SLA decreased significantly relative to control in the wild type and transgenic soybean plants by R6. Differential responses of R$_n$ to ambient and elevated CO$_2$ treatments were observed in both plants. In addition, results indicate that R$_n$ declined generally in both varieties under elevated temperature. Lower R$_n$ was attributed to temperature acclimation.

Key words: Dark respiration, soybean, ambient CO$_2$, elevated CO$_2$, transgenic plant, sedoheptulose-1,7-bisphosphatase (SBP), heating, acclimation.

INTRODUCTION

With changing environmental conditions due to global warming, plants experience variations in photosynthesis. These variations can be short-term or long-term and affect metabolic processes. In the future, the effects of
global warming may become more pronounced due to the continuous rise in greenhouse gases (Meehl et al., 2005). Additionally, the dominant anthropogenic greenhouse gas, atmospheric CO$_2$ concentrations is expected to rise to 600 ppm by 2050 (IPCC, 2013). The average surface temperature is also projected to increase by 5°C by the end of the 21st century (IPCC, 2013). Compared to the response at current ambient CO$_2$ concentrations (400 ppm, aCO$_2$), elevated CO$_2$ particularly in combination with high temperature has profound effects on the growth and physiology of plants and can lead to abiotic conditions such as drought and ultimately low crop yield (Xu et al., 2015).

Respiration is necessary for the maintenance of biosynthesis and cellular functions (Atkin et al., 2006). These ensure that the energy needed for plant growth and survival during abiotic stresses is available. Respiration lowers the production of harmful reactive oxygen species from these stresses and also contributes to carbon allocation. As a result, the photosynthetic activity in particular, sucrose synthesis is influenced by respiration. In addition, the xanthophyll and glutathione protective cycles are regulated by respiration with ascorbate produced. These ensure that the plant is equipped with strong defense mechanisms against the deleterious effects of abiotic and biotic stresses such as pathogen attack (Atkin et al., 2005).

Transgenic approaches are increasingly being used to improve crop yields for more sustainable food production. For these approaches to be successful, it is pertinent to understand the physiology and cellular function of the plant of interest. The physiology of soybean is well known and understood. Photosynthetic regulation studied in the plant revealed that temperature and elevated CO$_2$ affect its photosynthesis and yield (Hay, 2012; Rosenthal et al., 2011; Ruiz-Vera et al., 2013). Specifically it was shown that, photosynthesis is limited by ribulose-1,5-bisphosphate (RuBP) regeneration (Zhu et al., 2007; Rosenthal et al., 2011). Theoretically, if photosynthesis is limited by RuBP generation as a result of rise in CO$_2$ and temperature, attempt to transgenically modify the Calvin cycle in other to increase the rates of RuBP regeneration, should improve photosynthesis (Bernacchi et al., 2003). Recently, a key enzyme involved in RuBP regeneration in the Calvin Cycle Sedoheptulose-1,7-bisphosphatase (SBP) was shown to influence photosynthesis as CO$_2$ rises (Zhu et al., 2007). There is evidence that, overexpression of the enzyme increases the yield of tobacco and soybean in the field (Hay, 2012; Rosenthal et al., 2011). However, respiration in these transgenic species has not been explored in relation to changes in growth CO$_2$.

Elevated atmospheric CO$_2$ is believed to potentially increase temperature thereby increasing respiration (Lewis et al., 1999). Plant respiration is thought to contribute up to 65% of atmospheric CO$_2$, with the remaining generated from soil respiration (Atkin et al., 2005). The focus of the research presented here is however on leaf respiration.

Respiration is therefore largely affected by temperature. The relationship between plant respiration and temperature response is an exponential curve that involves a constant Q$_{10}$, that is a proportional change in temperature with 10°C variation (Atkin et al., 2005). In addition, plants can acclimate to temperature upon long-term exposure. This result is in the adjustment of the carbon respired and changes in rate of photosynthesis. This effect termed thermal acclimation, is fully or partly reversible when optimal growth conditions return (Bunce, 2007). From literature, some of the causes of acclimation to temperature include; availability of carbohydrates, nitrogen, decrease in stomatal resistance and evaporative cooling (Baker et al., 1992; Clark and Menary, 1980; Evans and Poorter, 2001; Song et al., 2014; Wolf et al., 1990).

Although many papers have considered leaf respiration in different species, thereby conflicting reports. Respiration has been reported to increase, decrease or remain unchanged in response to various abiotic stresses (Gifford, 1995; Gonzalez-Meler et al., 1996; Leakey et al., 2009b; Lewis et al., 1999; Ziska and Bunce, 1998). Despite the huge literature available, no work has been done to compare the dark respiration of a wild type plant with a transgenic one grown in the field. In particular, there is need to understand the effects of elevated CO$_2$ and temperature on the dark respiration of field grown plants. Moreover, Specific Leaf Area (SLA) measures leaf area per dry weight which is used to determine resource allocation vis-a-viz respiratory substrates (Reich et al., 1998; Xu et al., 2015). A lower SLA has been interpreted to mean greater allocation of biomass to structural rather than to metabolic components of the leaf (Reich et al., 1998).

The current research presented here focused on dark respiration in relation to SLA, elevated CO$_2$ and temperature in a wild type soybean plant and transgenic species which have been modified to express SBP. The objective was to study the effects of elevated CO$_2$ of approximately 585 μmol mol$^{-1}$ and +3.5 increase in temperature on wild type and transgenic SBP plants. These plants were grown in the field at ambient and elevated CO$_2$ and respiration measured at night (nocturnal respiration). Responses were examined in some experiments in combination with continuous heating, in order to provide a clearer view of the physiological impacts of elevated temperature, which is projected to occur with global change.

MATERIALS AND METHODS

Description of the plant varieties, field site, heating equipment and sample collection

Wild type (Thorne variety) and SBP soybean (Glycine max) plants were grown in the field at SoyFACE, Savoy, IL, USA (Ruiz-Vera et
al., 2013). They were grown during 2015 summer growing season at different plots separated into: 1) control (ambient CO₂ that is approximately 400 μmol mol⁻¹ CO₂ and ambient temperature that is day time temperature); 2) elevated temperature (eT) that is ambient CO₂ and +3.5°C in temperature; 3) elevated CO₂ (eC) that is approximately 585 μmol mol⁻¹ CO₂ and ambient temperature), and 4) combined elevated temperature and elevated CO₂ (eT + eC) that is approximately 585 μmol mol⁻¹ CO₂ and +3.5°C in temperature).

Each experiment consists of a randomized complete block design. Heaters were turned on at the beginning of the growing season for eT and eT+eC treatments. Continuous heating was imposed using infrared (IR) heating technology. Each heated plots contained six infrared heaters mounted 1.2 m above canopy level and positioned 45° angle towards the plot. Heater outputs were regulated using a custom built industrial dimmer system and controlled using a data logger (CR1000 Micro logger, Campbell Scientific) to maintain a 3.5°C temperature increase, relative to ambient temperature for 24 h throughout the growing season. Full description of the infrared heaters, dimmers and radiometers is given in Ruiz-Vera et al. (2013). Elevated temperature and CO₂ were maintained from sunrise to sunset and applied from emergence to the time plants were harvested. On sample collection days, between DOY 188 to 238, youngest fully expanded soybean leaves were excised for 1 h into sunset with a blade, transferred into Eppendorf tubes filled with distilled water and sealed with parafilm. Measurements were made between 10 pm and 4 am.

Description of experiments

Experiment 1

To investigate the effects of CO₂ on Rn at different growth stages, leaves were collected at 33 days (DOY-188), 41 days (DOY-196), 61 days (DOY-216) and 83 days (DOY-238) after planting. At the time of collection, plants were at V4, V5, R1 and R6 stages of development.

Before starting the experiment, Rn was examined preliminarily on intact and detached leaves in the field and growth chamber. It was observed that Rn values were unaffected for several hours. However, values were different during the daytime on darkened leaves. Thus, measurements for this experiment were made between 10 pm and 4 am. Leaves collected in the field were kept in a dark box. The leaves were subsequently moved to a growth chamber (Environmental Growth Chambers, Chagrin Falls, Ohio, USA) in the laboratory. The growth chamber was darkened and programmed to match the minimum daytime conditions of temperature and humidity. Temperature was also adjusted according to the experimental plan. Leaf punches (12 mm) were collected at each CO₂ and temperature growing condition for the calculation of SLA. For this, leaves were oven-dried to a constant weight at 70°C and SLA calculated as leaf area, divided by dry weight. Respiration rates measured as net CO₂ efflux in the dark were determined by placing the leaves in a 6x2 Licor 6400 (Nebraska, USA) black-tape covered cuvette. Leaves were positioned in such a way that the cuvette was completely filled. To investigate acclimation of respiration to elevated CO₂, leaves collected from ambient temperature that is day time temperature and ambient CO₂ grown plants, grown in approximately 400 μmol mol⁻¹ CO₂ plot were measured at ambient and elevated CO₂ under ambient temperature (set using the growth chamber). Leaves collected from elevated CO₂ that is approximately 585 μmol mol⁻¹ CO₂ and ambient temperature grown plants were measured at elevated and ambient CO₂ under ambient temperature (set using the growth chamber).

Leaves collected from elevated CO₂ and elevated temperature that is +3.5°C in temperature grown plants were measured at ambient and elevated CO₂ conditions under elevated temperature (set using the growth chamber). A flow rate of 300 mmol s⁻¹ in the Licor 6400 chamber was used for this experiment. After allowing the Licor machine to stabilize for approximately 5 min, four biological replicates were measured for each treatment.

To investigate thermal acclimation to temperature, nocturnal temperature response curves (from 15 to 40°C; heating rate of 1°C min⁻¹) were measured using Licor 6400 on leaves from plants grown at 1) ambient temperature that is day time temperature and ambient CO₂ which is approximately 400 μmol mol⁻¹ CO₂, 2) elevated temperature that is +3.5°C in temperature, and 3) combined elevated temperature and elevated CO₂ that is +3.5°C in temperature and approximately 585 μmol mol⁻¹ CO₂. Leaves collected from ambient CO₂ plots (at control or elevated temperature) were measured at ambient CO₂, whereas those collected from elevated CO₂ plots (control or elevated temperature) were measured at elevated CO₂. After allowing the Licor machine to stabilize for approximately 5 min, three biological replicates were measured for each treatment.

Statistical analysis

Data were analyzed using a mixed - model ANOVA obtained with Kenward-Roger method in SAS System 9.3 (SAS institute). Student t tests were used to compare treatments and means taking into consideration the differences of least square means. Statistical significance was estimated at P ≤ 0.05. Comprehensive details of the statistical analysis can be found in Supplementary Table 1.
RESULTS AND DISCUSSION

To determine if different growth conditions - eT, eC and eT+eC lead to greater allocation of biomass rather than metabolism (Reich et al., 1998) in soybean grown in the field, specific leaf area (SLA, leaf area per unit dry matter) was measured. The control and eT grown plants had similar SLA in the four developmental stages measured for wild type and SBP varieties. For the SBP variety, SLA for the three treatments was higher on V4, V5 and R1 but dropped significantly on R6 (P<0.05) (Figure 1). For wild type, the drop on R6 for the three treatments was significant relative to the treatments on V5. The drop in SLA at R6 could represent a preferential allocation of biomass over metabolism in both varieties (Reich et al., 1998). SLA in eC and eT+eC grown plants was lower, relative to those grown in control and eT for the wild type and SBP varieties at V4. SLA for the treatments at V5 matched the previous V4 data in the wildtype variety. However, for eC grown plants, SLA values were similar at R1 in the wild type and transgenic SBP varieties. SLA measures the leaf area per dry weight of leaf tissues at a particular time. The relationship between SLA and dark respiration showed differential responses at growth and measurement temperatures in both varieties (Figure 2). Thus, suggesting that overall, there was a balance between biomass allocation and metabolism (respiratory substrates) in the plants.

To determine if SLA correlated with dark respiration (Rn) at various developmental stages at growth and measurement temperatures, plants were examined at V4, V5, R1 and R6 developmental stages. There were differential effects of Rn at the various growth and measurement stages in both varieties. Dark respiration (Rd) did not differ significantly in the wild type plants at growth and measurement temperatures on V4. In contrast, in SBP plants, Rd was lower for all the conditions at same measurement temperature on V4 and V5 relative to control (P<0.05) (Figure 3). Rn in SBP plants grown and measured at eC and eT+eC, did not decrease significantly relative to control at R1 and R6, respectively (Figure 3). For both varieties, Rd was overall lowest and differed markedly from control in eT and eT+eC grown plants from V5 to R6 in both growth and measurement temperatures (Figure 3). A number of studies have shown that elevated CO₂ stimulates Rd (Leakey et al., 2009a; Leakey et al., 2009b). Other studies showed approximately 14 to 18% reduction when plants were grown in elevated CO₂ relative to ambient CO₂ (Drake et al., 1999; Hamilton et al., 2003). It was hypothesized in this study that growth in elevated temperature will improve respiration in both varieties. Contrary to this hypothesis, this did not occur instead there was overall loss of Rn in both varieties from V5 to R6 (Figure 3). This is consistent with the idea that Rn decrease is general and low stimulation of respiratory substrates occurred under the measured conditions in both the wild type and SBPase plants (Reich et al., 1998; Xu et al., 2015; Ziska and Bunce, 1998). It should also be noted that the CO₂ effects can be artifacts and the lack of biochemical data particularly carbohydrates data limits the interpretation of the data.

Figure 1. Specific leaf area of wild type (A) and transgenic SBP (B) soybean plants grown at control, elevated CO₂, elevated temperature (eT) and a combination of elevated temperature and CO₂ (eT+eC).
Plants grown at eT and eT+eC consistently had the lowest Rn values as shown in Figure 3. To understand if the low values were due to thermal acclimation, a temperature response experiment was performed when plants were at V4 and R6 stages of development. eT grown plants had a lower Rd with increasing temperature in the two varieties at V4. Compared with eT grown plants, Rn tended to increase when plants were grown at eT+eC at V4 in wild type but not markedly in the transgenic SBP (Figure 4). At R6, a similar response was observed in the wild type where growth in eT+eC resulted in an increase in Rn with increasing temperature. However, there was a less marked decrease when plants were grown at eT for SBP (Figure 4). Thus, the temperature response of dark respiration in the wild type and transgenic SBP plants suggests that there was acclimation to eT at V4 and R6 growth stages in both plants but less so in the transgenic SBP at R6 (Figure 4). With acclimation, low Rn in response to eT might not necessarily indicate more carbon loss as foliar respiration has been reported to contrast with whole plant total nonstructural carbohydrates in response to eT (Zha et al., 2001; Duan et al., 2013). There is also no evidence that respiration directly correlates with substrate availability after long-term exposure to a particular temperature (Bunce, 2007).

Conclusion

Elevated CO₂ did not stimulate nocturnal dark respiration in the wild type and transgenic SBP soybean plants studied. This suggests that unlike photorespiration, an increase in carbon dioxide may not always induce higher dark respiration in the field. Elevated temperature did not also induce higher dark respiration in both varieties. Instead, a lower dark respiration was generally observed at growth temperature with increasing temperature and this was attributed to temperature acclimation.

Conflict of interest

The author has not declared any conflict of interests.

ACKNOWLEDGEMENT

This research was supported in part by an appointment to the Agricultural Research Service (ARS) Research Participation Program administered by the Oak Ridge Institute for Science and Education (ORISE) through an interagency agreement between the U.S. Department of Energy (DOE) and the U.S. Department of Agriculture.
Figure 3. Nocturnal dark respiration (Rn) of wild type and transgenic SBP soybean plants measured at growth and measurement temperatures at control, elevated CO₂ (eC), elevated temperature (eT) and a combination of elevated temperature and CO₂ (eT+eC).

mT= measurement temperature.
Figure 4. Nocturnal dark respiration (Rn) temperature response curves of wild type and transgenic SBP soybean plants measured at same temperature at control, elevated CO₂, elevated temperature (eT) and a combination of elevated temperature and CO₂ (eT+eC).

REFERENCES

Atkin O, Loveys B, Atkinson L, Pons T (2006). Phenotypic plasticity and growth temperature: understanding interspecific variability. J. Exp. Bot. 57:267-281.

Atkin OK, Bruhn D, Hurry VM, Tjoelker MG (2005). Evans Review No. 2: The hot and the cold: unravelling the variable response of plant respiration to temperature. Funct. Plant Biol. 32:87-105.

Baker J, Laugel F, Boote K, Allen L (1992). Effects of daytime carbon dioxide concentration on dark respiration in rice. Plant Cell Environ. 15:231-239.

Bernacchi C, Pimentel C, Long S (2003). In vivo temperature response functions of parameters required to model RuBP-limited photosynthesis. Plant Cell Environ. 26:1419-1430.

Bunce JA (2007) Direct and acclimatory responses of dark respiration and translocation to temperature. Ann. Bot. 100:67-73.

Clark R, Menary R (1980). Environmental effects on peppermint (Mentha piperita L.). II. Effects of temperature on photosynthesis, plant respiration and dark respiration in peppermint with reference to oil composition. Funct. Plant Biol. 7:693-697.

Drake B, Azcon-Bieto J, Berry J, Bunce J, Dijkstra P, Farrar J, Gifford R, Gonzalez-Meler MA, Koch G, Lambers H (1999). Does elevated atmospheric CO₂ concentration inhibit mitochondrial respiration in green plants? Plant Cell Environ. 22:649-657.

Duan H, Amthor JS, Duursma RA, O’Grady AP, Choat B, Tissue DT (2013). Carbon dynamics of eucalypt seedlings exposed to progressive drought in elevated [CO₂] and elevated temperature. Tree Physiol. tpt061.

Evans J, Poorter H (2001). Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant Cell Environ. 24:755-767.

Gifford R (1995). Whole plant respiration and photosynthesis of wheat under increased CO₂ concentration and temperature: long-term vs. short-term distinctions for modelling. Glob. Change Biol. 1:385-396.

Gonzalez-Meler MA, Ribas-Carbó M, Siedow JN, Drake BG (1996). Direct inhibition of plant mitochondrial respiration by elevated CO₂. Plant Physiol. 112:1349-1355.

Hamilton JG, Thomas RB, DeLucia, EH (2001). Direct and indirect effects of elevated CO₂ on leaf respiration in a forest ecosystem. Plant Cell Environ. 24:975-982.

Hay W (2012). Engineering cyanobacterial genes into glycine max (soybean) leads to increased photosynthesis and productivity. In. Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana. pp. 1-123.

IPCC (2013). Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change.

Leakey AD, Ainsworth EA, Bernacchi CJ, Rogers A, Long SP, Ort DR (2009a). Elevated CO₂ effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J. Exp. Bot. 60(10):2859-2876.
Leakey AD, Xu F, Gillespie KM, McGrath JM, Ainsworth EA, Ort DR (2009b). Genomic basis for stimulated respiration by plants growing under elevated carbon dioxide. Proc. Natl. Acad. Sci. U.S.A. 106:3597-3602.
Lewis J, Olszyk D, Tingey D (1999). Seasonal patterns of photosynthetic light response in Douglas-fir seedlings subjected to elevated atmospheric CO2 and temperature. Tree Physiol. 19:243-252.
Meehl GA, Washington WM, Collins WD, Arblaster JM, Hu A, Buja LE, Strand WG, Teng H (2005). How much more global warming and sea level rise? Science 307:1769-1772.
Reich PB, Walters MB, Ellsworth DS, Vose JM, Volin JC, Gresham C, Bowman WD (1998). Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups. Oecologia 114:471-482.
Rosenthal DM, Locke AM, Khozaei M, Raines CA, Long SP, Ort DR (2011). Over-expressing the C3 photosynthesis cycle enzyme Sedoheptulose-1-7 Bisphosphatase improves photosynthetic carbon gain and yield under fully open air CO2 fumigation (FACE). BMC Plant Biol. 11:123.
Ruiz-Vera UM, Siebers M, Gray SB, Drag DW, Rosenthal DM, Bernacchi CJ (2013). Global warming can negate the expected CO2 stimulation in photosynthesis and productivity for soybean grown in the Midwestern United States. Plant Physiol. 162:410-423.
Song Y, Yu J, Huang B (2014). Elevated CO2-mitigation of high temperature stress associated with maintenance of positive carbon balance and carbohydrate accumulation in Kentucky bluegrass. PloS One 9:e89725.
Wolf S, Olesinski A, Rudich J, Marani A (1990). Effect of high temperature on photosynthesis in potatoes. Ann. Bot. 65:179-185.
Xu Z, Jiang Y, Zhou G (2015). Response and adaptation of photosynthesis, respiration, and antioxidant systems to elevated CO2 with environmental stress in plants. Front Plant Sci. 6.
Zha T, Ryyppö A, Wang K-Y, Kellomäki S (2001). Effects of elevated carbon dioxide concentration and temperature on needle growth, respiration and carbohydrate status in field-grown Scots pines during the needle expansion period. Tree Physiol. 21:1279-1287.
Zhu X-G, de Sturler E, Long SP (2007). Optimizing the Distribution of Resources between Enzymes of Carbon Metabolism Can Dramatically Increase Photosynthetic Rate: A Numerical Simulation Using an Evolutionary Algorithm. Plant Physiol. 145:513-526.
Ziska LH, Bunce JA (1998). The influence of increasing growth temperature and CO2 concentration on the ratio of respiration to photosynthesis in soybean seedlings. Glob. Change Biol. 4:637-643.
Supplementary Table 1. Differences of Least Squares Means.

Effect	Trt	Var	DOY	_Trt_	Var	DOY	Estimate	Standard Error	DF	t Value	Pr >	t	
DOY*Trt*Var	control	SBP	188	control	wt	188	0.5088	0.2403	224	2.12	0.0353		
DOY*Trt*Var	control	SBP	188	eC	SBP	188	0.475	0.2403	224	1.98	0.0493		
DOY*Trt*Var	control	SBP	188	eC	wt	188	0.4675	0.2403	224	1.95	0.0529		
DOY*Trt*Var	control	SBP	188	eT	SBP	188	0.5475	0.2403	224	2.28	0.0236		
DOY*Trt*Var	control	SBP	188	eT	wt	188	0.6	0.2403	224	2.5	0.0132		
DOY*Trt*Var	control	SBP	188	eT*eC	SBP	188	0.4875	0.2403	224	2.03	0.0436		
DOY*Trt*Var	control	SBP	188	eT*eC	wt	188	0.5463	0.2403	224	2.27	0.0239		
DOY*Trt*Var	control	SBP	188	control	SBP	196	-0.1587	0.2403	224	-0.66	0.5095		
DOY*Trt*Var	control	SBP	188	eC	SBP	196	0.535	0.2403	224	2.23	0.027		
DOY*Trt*Var	control	SBP	188	eC	wt	196	0.7	0.2403	224	2.91	0.0039		
DOY*Trt*Var	control	SBP	188	eT	SBP	196	0.4613	0.2403	224	1.92	0.0562		
DOY*Trt*Var	control	SBP	188	eT	wt	196	0.7838	0.2403	224	3.26	0.0013		
DOY*Trt*Var	control	SBP	188	eT*eC	SBP	196	0.8712	0.2403	224	3.63	0.0004		
DOY*Trt*Var	control	SBP	188	eT*eC	wt	196	0.7775	0.2403	224	3.24	0.0014		
DOY*Trt*Var	control	SBP	188	control	SBP	216	0.18	0.2403	224	0.75	0.4545		
DOY*Trt*Var	control	SBP	188	control	wt	216	0.0425	0.2403	224	0.18	0.8598		
DOY*Trt*Var	control	SBP	188	eC	SBP	216	-0.1537	0.2403	224	-0.64	0.5229		
DOY*Trt*Var	control	SBP	188	eC	wt	216	-0.0913	0.2403	224	-0.38	0.7045		
DOY*Trt*Var	control	SBP	188	eT	SBP	216	0.6088	0.2403	224	2.53	0.012		
DOY*Trt*Var	control	SBP	188	eT	wt	216	0.665	0.2403	224	2.77	0.0061		
DOY*Trt*Var	control	SBP	188	eT*eC	SBP	216	0.5437	0.2403	224	2.26	0.0246		
DOY*Trt*Var	control	SBP	188	eT*eC	wt	216	0.7938	0.2403	224	3.3	0.0011		
DOY*Trt*Var	control	SBP	188	control	SBP	238	0.00875	0.2403	224	0.04	0.971		
DOY*Trt*Var	control	SBP	188	control	wt	238	-0.0463	0.2403	224	-0.19	0.8475		
DOY*Trt*Var	control	SBP	188	eC	SBP	238	0.2875	0.2403	224	1.2	0.2327		
DOY*Trt*Var	control	SBP	188	eC	wt	238	0.3875	0.2403	224	1.61	0.1082		
DOY*Trt*Var	control	SBP	188	eT	SBP	238	0.8736	0.2403	224	3.64	0.0003		
DOY*Trt*Var	control	SBP	188	eT	wt	238	0.8113	0.2403	224	3.38	0.0009		
DOY*Trt*Var	control	SBP	188	eT*eC	SBP	238	0.4825	0.2403	224	2.01	0.0458		
DOY*Trt*Var	control	SBP	188	eT*eC	wt	238	0.5337	0.2403	224	2.22	0.0273		
DOY*Trt*Var	control	wt	188	eC	SBP	188	-0.0338	0.2403	224	-0.14	0.8884		
DOY*Trt*Var	control	wt	188	eC	wt	188	-0.0413	0.2403	224	-0.17	0.8638		
DOY*Trt*Var	control	wt	188	eT	SBP	188	0.03875	0.2403	224	0.16	0.872		
DOY*Trt*Var	control	wt	188	eT	wt	188	0.09125	0.2403	224	0.38	0.7045		
DOY*Trt*Var	control	wt	188	eT*eC	SBP	188	-0.0213	0.2403	224	-0.09	0.9296		
Supplementary Table 1. Contd.

DOY*Trt*Var	control	wt 188 eT+eC wt 188	0.0375	0.2403	224	0.16	0.8761
DOY*Trt*Var	control	wt 188 control SBP 196	-0.6675	0.2403	224	-2.78	0.0059
DOY*Trt*Var	control	wt 188 control wt 196	-0.6625	0.2403	224	-2.76	0.0063
DOY*Trt*Var	control	wt 188 eC SBP 196	0.02625	0.2403	224	0.11	0.9131
DOY*Trt*Var	control	wt 188 eC wt 196	0.1913	0.2403	224	0.8	0.4269
DOY*Trt*Var	control	wt 188 eT SBP 196	-0.0475	0.2403	224	-0.2	0.8435
DOY*Trt*Var	control	wt 188 eT wt 196	0.275	0.2403	224	1.14	0.2536
DOY*Trt*Var	control	wt 188 eT+eC SBP 196	0.3625	0.2403	224	1.51	0.1328
DOY*Trt*Var	control	wt 188 eT+eC wt 196	0.2688	0.2403	224	1.12	0.2645
DOY*Trt*Var	control	wt 188 control SBP 216	-0.3288	0.2403	224	-1.37	0.1726
DOY*Trt*Var	control	wt 188 control wt 216	-0.4662	0.2403	224	-1.94	0.0536
DOY*Trt*Var	control	wt 188 eC SBP 216	-0.6625	0.2403	224	-2.76	0.0063
DOY*Trt*Var	control	wt 188 eC wt 216	-0.6	0.2403	224	-2.5	0.0132
DOY*Trt*Var	control	wt 188 eT SBP 216	0.1	0.2403	224	0.42	0.6777
DOY*Trt*Var	control	wt 188 eT wt 216	0.1563	0.2403	224	0.65	0.5162
DOY*Trt*Var	control	wt 188 eT+eC SBP 216	0.035	0.2403	224	0.15	0.8843
DOY*Trt*Var	control	wt 188 eT+eC wt 216	0.285	0.2403	224	1.19	0.2368
DOY*Trt*Var	control	wt 188 control SBP 238	-0.5	0.2403	224	-2.08	0.0386
DOY*Trt*Var	control	wt 188 control wt 238	-0.555	0.2403	224	-2.31	0.0218
DOY*Trt*Var	control	wt 188 eC SBP 238	-0.2213	0.2403	224	-0.92	0.3581
DOY*Trt*Var	control	wt 188 eC wt 238	-0.1212	0.2403	224	-0.5	0.6143
DOY*Trt*Var	control	wt 188 eT SBP 238	0.3649	0.2403	224	1.52	0.1303
DOY*Trt*Var	control	wt 188 eT wt 238	0.3025	0.2403	224	1.26	0.2093
DOY*Trt*Var	control	wt 188 eT+eC SBP 238	-0.0263	0.2403	224	-0.11	0.9131
DOY*Trt*Var	control	wt 188 eT+eC wt 238	0.025	0.2403	224	0.1	0.9172
DOY*Trt*Var	eC SBP 188 eC wt 188	-0.0075	0.2403	224	-0.03	0.9751	
DOY*Trt*Var	eC SBP 188 eT SBP 188	0.0725	0.2403	224	0.3	0.7631	
DOY*Trt*Var	eC SBP 188 eT wt 188	0.125	0.2403	224	0.52	0.6034	
DOY*Trt*Var	eC SBP 188 eT+eC SBP 188	0.0125	0.2403	224	0.05	0.9586	
DOY*Trt*Var	eC SBP 188 eT+eC wt 188	0.07125	0.2403	224	0.3	0.7671	
DOY*Trt*Var	eC SBP 188 control SBP 196	-0.6338	0.2403	224	-2.64	0.0089	
DOY*Trt*Var	eC SBP 188 control wt 196	-0.6287	0.2403	224	-2.62	0.0095	
DOY*Trt*Var	eC SBP 188 eC SBP 196	0.06	0.2403	224	0.25	0.803	
DOY*Trt*Var	eC SBP 188 eC wt 196	0.225	0.2403	224	0.94	0.35	
DOY*Trt*Var	eC SBP 188 eT SBP 196	-0.0138	0.2403	224	-0.06	0.9544	
DOY*Trt*Var	eC SBP 188 eT wt 196	0.3088	0.2403	224	1.29	0.2001	
DOY*Trt*Var	eC SBP 188 eT+eC SBP 196	0.3962	0.2403	224	1.65	0.1005	
Supplementary Table 1. Contd.

DOY*Trt*Var	eC	SBP	188	eT+eC	wt	196	0.3025	0.2403	224	1.26	0.2093
DOY*Trt*Var	eC	SBP	188	control	SBP	216	-0.295	0.2403	224	-1.23	0.2208
DOY*Trt*Var	eC	SBP	188	control	wt	216	-0.4325	0.2403	224	-1.8	0.0732
DOY*Trt*Var	eC	SBP	188	eC	SBP	216	-0.6287	0.2403	224	-2.62	0.0095
DOY*Trt*Var	eC	SBP	188	eC	wt	216	-0.5667	0.2403	224	-2.36	0.0193
DOY*Trt*Var	eC	SBP	188	eT	SBP	216	0.1338	0.2403	224	0.56	0.5783
DOY*Trt*Var	eC	SBP	188	eC	wt	216	0.19	0.2403	224	0.79	0.4299
DOY*Trt*Var	eC	SBP	188	eT+eC	SBP	216	0.06875	0.2403	224	0.29	0.775
DOY*Trt*Var	eC	SBP	188	eT+eC	wt	216	0.3188	0.2403	224	1.33	0.186
DOY*Trt*Var	eC	SBP	188	control	SBP	238	-0.4663	0.2403	224	-1.94	0.0536
DOY*Trt*Var	eC	SBP	188	control	wt	238	-0.5212	0.2403	224	-2.17	0.0311
DOY*Trt*Var	eC	SBP	188	eC	SBP	238	-0.1875	0.2403	224	-0.78	0.436
DOY*Trt*Var	eC	SBP	188	eC	wt	238	-0.0875	0.2403	224	-0.36	0.7161
DOY*Trt*Var	eC	SBP	188	eT	SBP	238	0.3986	0.2403	224	1.66	0.0985
DOY*Trt*Var	eC	SBP	188	eT	wt	238	0.3363	0.2403	224	1.4	0.163
DOY*Trt*Var	eC	SBP	188	eT+eC	SBP	238	0.0075	0.2403	224	0.03	0.9751
DOY*Trt*Var	eC	SBP	188	eT+eC	wt	238	0.05875	0.2403	224	0.24	0.8071
DOY*Trt*Var	eC	wt	188	eT	SBP	188	0.08	0.2403	224	0.33	0.7395
DOY*Trt*Var	eC	wt	188	eT	wt	188	0.1325	0.2403	224	0.55	0.5819
DOY*Trt*Var	eC	wt	188	eT+eC	SBP	188	0.02	0.2403	224	0.08	0.9337
DOY*Trt*Var	eC	wt	188	eT+eC	wt	188	0.0785	0.2403	224	0.33	0.7434
DOY*Trt*Var	eC	wt	188	control	SBP	196	-0.6263	0.2403	224	-2.61	0.0098
DOY*Trt*Var	eC	wt	188	control	wt	196	-0.6212	0.2403	224	-2.59	0.0104
DOY*Trt*Var	eC	wt	188	eC	SBP	196	0.0675	0.2403	224	0.28	0.779
DOY*Trt*Var	eC	wt	188	eC	wt	196	0.2325	0.2403	224	0.97	0.3342
DOY*Trt*Var	eC	wt	188	eT	SBP	196	-0.0063	0.2403	224	-0.03	0.9793
DOY*Trt*Var	eC	wt	188	eT	wt	196	0.3163	0.2403	224	1.32	0.1894
DOY*Trt*Var	eC	wt	188	eT+eC	SBP	196	0.4037	0.2403	224	1.68	0.0943
DOY*Trt*Var	eC	wt	188	eT+eC	wt	196	0.31	0.2403	224	1.29	0.1983
DOY*Trt*Var	eC	wt	188	control	SBP	216	-0.2875	0.2403	224	-1.2	0.2327
DOY*Trt*Var	eC	wt	188	control	wt	216	-0.425	0.2403	224	-1.77	0.0783
DOY*Trt*Var	eC	wt	188	eC	SBP	216	-0.6213	0.2403	224	-2.59	0.0104
DOY*Trt*Var	eC	wt	188	eC	wt	216	-0.5588	0.2403	224	-2.33	0.0209
DOY*Trt*Var	eC	wt	188	eT	SBP	216	0.1413	0.2403	224	0.59	0.5572
DOY*Trt*Var	eC	wt	188	eT	wt	216	0.1975	0.2403	224	0.82	0.4119
DOY*Trt*Var	eC	wt	188	eT+eC	SBP	216	0.07625	0.2403	224	0.32	0.7513
DOY*Trt*Var	eC	wt	188	eT+eC	wt	216	0.3263	0.2403	224	1.36	0.1759
Supplementary Table 1. Contd.

| DOY*Trt*Var | Substrate | y | 188 | Control | Trt | 238 | -0.4588 | 0.2403 | 224 | -1.91 | 0.0575 | 0.0336 | 0.4545 | 0.7395 | 0.0924 | 0.1539 | 0.9503 | 0.783 | 0.8272 | 0.803 | 0.9959 | 0.0036 | 0.0393 | 0.5263 | 0.72 | 0.3265 | 0.1792 | 0.3395 | 0.0387 | 0.0039 | 0.0084 | 0.799 | 0.6253 | 0.9876 | 0.3065 | 0.0259 | 0.0142 | 0.2804 | 0.5061 | 0.176 | 0.2735 | 0.787 | 0.9544 | 0.8401 | 0.8232 |
Supplementary Table 1. Contd.

DOY*Trt*Var	Var	wt	188	control	SBP	196	-0.7588	0.2403	224	-3.16	0.0018
DOY*Trt*Var	eT	wt	188	control	wt	196	-0.7538	0.2403	224	-3.14	0.0019
DOY*Trt*Var	eT	wt	188	eC	SBP	196	-0.065	0.2403	224	-0.27	0.787
DOY*Trt*Var	eT	wt	188	eC	wt	196	0.1	0.2403	224	0.42	0.6777
DOY*Trt*Var	eT	wt	188	eT	SBP	196	-0.1387	0.2403	224	-0.58	0.5642
DOY*Trt*Var	eT	wt	188	eT	wt	196	0.1838	0.2403	224	0.76	0.4452
DOY*Trt*Var	eT	wt	188	eT+C	SBP	196	0.2712	0.2403	224	1.13	0.2601
DOY*Trt*Var	eT	wt	188	eT+C	wt	196	0.1775	0.2403	224	0.74	0.4608
DOY*Trt*Var	eT	wt	188	control	SBP	216	-0.42	0.2403	224	-1.75	0.0818
DOY*Trt*Var	eT	wt	188	control	wt	216	-0.5575	0.2403	224	-2.32	0.0212
DOY*Trt*Var	eT	wt	188	eC	SBP	216	-0.7538	0.2403	224	-3.14	0.0019
DOY*Trt*Var	eT	wt	188	eC	wt	216	-0.6913	0.2403	224	-2.88	0.0044
DOY*Trt*Var	eT	wt	188	eT	SBP	216	0.00875	0.2403	224	0.04	0.971
DOY*Trt*Var	eT	wt	188	eT	wt	216	0.065	0.2403	224	0.27	0.787
DOY*Trt*Var	eT	wt	188	eT+C	SBP	216	-0.0563	0.2403	224	-0.23	0.8151
DOY*Trt*Var	eT	wt	188	eT+C	wt	216	0.1938	0.2403	224	0.81	0.4209
DOY*Trt*Var	eT	wt	188	control	SBP	238	-0.5913	0.2403	224	-2.46	0.0146
DOY*Trt*Var	eT	wt	188	control	wt	238	-0.6462	0.2403	224	-2.69	0.0077
DOY*Trt*Var	eT	wt	188	eC	SBP	238	-0.3125	0.2403	224	-1.3	0.1947
DOY*Trt*Var	eT	wt	188	eC	wt	238	-0.2125	0.2403	224	-0.88	0.3774
DOY*Trt*Var	eT	wt	188	eT	SBP	238	0.2736	0.2403	224	1.14	0.256
DOY*Trt*Var	eT	wt	188	eT	wt	238	0.2113	0.2403	224	0.88	0.3802
DOY*Trt*Var	eT	wt	188	eT+C	SBP	238	-0.1175	0.2403	224	-0.49	0.6253
DOY*Trt*Var	eT	wt	188	eT+C	wt	238	-0.0663	0.2403	224	-0.28	0.783
DOY*Trt*Var	eT+C	SBP	188	eT+C	wt	188	0.05875	0.2403	224	0.24	0.8071
DOY*Trt*Var	eT+C	SBP	188	control	SBP	196	-0.6462	0.2403	224	-2.69	0.0077
DOY*Trt*Var	eT+C	SBP	188	control	wt	196	-0.6412	0.2403	224	-2.67	0.0082
DOY*Trt*Var	eT+C	SBP	188	eC	SBP	196	0.0475	0.2403	224	0.2	0.8435
DOY*Trt*Var	eT+C	SBP	188	eC	wt	196	0.2125	0.2403	224	0.88	0.3774
DOY*Trt*Var	eT+C	SBP	188	eT	SBP	196	-0.0263	0.2403	224	-0.11	0.9131
DOY*Trt*Var	eT+C	SBP	188	eT	wt	196	0.2963	0.2403	224	1.23	0.2189
DOY*Trt*Var	eT+C	SBP	188	eT+C	SBP	196	0.3838	0.2403	224	1.6	0.1116
DOY*Trt*Var	eT+C	SBP	188	eT+C	wt	196	0.29	0.2403	224	1.21	0.2287
DOY*Trt*Var	eT+C	SBP	188	control	SBP	216	-0.3075	0.2403	224	-1.28	0.2019
DOY*Trt*Var	eT+C	SBP	188	control	wt	216	-0.445	0.2403	224	-1.85	0.0653
DOY*Trt*Var	eT+C	SBP	188	eC	SBP	216	-0.6412	0.2403	224	-2.67	0.0082
DOY*Trt*Var	eT+C	SBP	188	eC	wt	216	-0.5787	0.2403	224	-2.41	0.0168
Supplementary Table 1. Contd.

DOY*Trt*Var	eT+eC	SBP	188 eT	SBP	216	0.1213	0.2403	224	0.5	0.6143
DOY*Trt*Var	eT+eC	SBP	188 eT	wt	216	0.1775	0.2403	224	0.74	0.4608
DOY*Trt*Var	eT+eC	SBP	188 eT+eC	SBP	216	0.05625	0.2403	224	0.23	0.8151
DOY*Trt*Var	eT+eC	SBP	188 eT+eC	wt	216	0.3063	0.2403	224	1.27	0.2038
DOY*Trt*Var	eT+eC	SBP	188 control	SBP	238	-0.4788	0.2403	224	-1.99	0.0475
DOY*Trt*Var	eT+eC	SBP	188 control	wt	238	-0.5337	0.2403	224	-2.22	0.0273
DOY*Trt*Var	eT+eC	SBP	188 eC	SBP	238	-0.2	0.2403	224	-0.83	0.4061
DOY*Trt*Var	eT+eC	SBP	188 eC	wt	238	-0.1	0.2403	224	-0.42	0.6777
DOY*Trt*Var	eT+eC	SBP	188 eT	SBP	238	0.3861	0.2403	224	1.61	0.1094
DOY*Trt*Var	eT+eC	SBP	188 eT	wt	238	0.3238	0.2403	224	1.35	0.1792
DOY*Trt*Var	eT+eC	SBP	188 eT+eC	SBP	238	-0.005	0.2403	224	-0.02	0.9834
DOY*Trt*Var	eT+eC	SBP	188 eT+eC	wt	238	0.04625	0.2403	224	0.19	0.8475
DOY*Trt*Var	eT+eC	SBP	188 eC	SBP	196	-0.705	0.2403	224	-2.93	0.0037
DOY*Trt*Var	eT+eC	SBP	188 eC	wt	238	-0.113	0.2403	224	-0.05	0.9627
DOY*Trt*Var	eT+eC	SBP	188 eC	wt	238	0.1537	0.2403	224	0.64	0.5229
DOY*Trt*Var	eT+eC	SBP	188 eT	SBP	196	-0.085	0.2403	224	-0.35	0.7238
DOY*Trt*Var	eT+eC	SBP	188 eT	wt	238	0.2375	0.2403	224	0.99	0.324
DOY*Trt*Var	eT+eC	SBP	188 eT+eC	SBP	196	0.325	0.2403	224	1.35	0.1775
DOY*Trt*Var	eT+eC	SBP	188 eT+eC	wt	196	0.2312	0.2403	224	0.96	0.3368
DOY*Trt*Var	eT+eC	SBP	188 control	SBP	216	-0.3663	0.2403	224	-1.52	0.1288
DOY*Trt*Var	eT+eC	SBP	188 control	wt	216	-0.5038	0.2403	224	-2.1	0.0371
DOY*Trt*Var	eT+eC	SBP	188 eC	SBP	216	-0.7	0.2403	224	-2.91	0.0039
DOY*Trt*Var	eT+eC	SBP	188 eC	wt	216	-0.6375	0.2403	224	-2.65	0.0085
DOY*Trt*Var	eT+eC	SBP	188 eT	SBP	216	0.0625	0.2403	224	0.26	0.795
DOY*Trt*Var	eT+eC	SBP	188 eT	wt	216	0.1187	0.2403	224	0.49	0.6216
DOY*Trt*Var	eT+eC	SBP	188 eT+eC	SBP	216	-0.0025	0.2403	224	-0.01	0.9917
DOY*Trt*Var	eT+eC	SBP	188 eT+eC	wt	216	0.2475	0.2403	224	1.03	0.3041
DOY*Trt*Var	eT+eC	SBP	188 control	SBP	238	-0.5375	0.2403	224	-2.24	0.0263
DOY*Trt*Var	eT+eC	SBP	188 control	wt	238	-0.5925	0.2403	224	-2.47	0.0144
DOY*Trt*Var	eT+eC	SBP	188 eC	SBP	238	-0.2588	0.2403	224	-1.08	0.2827
DOY*Trt*Var	eT+eC	SBP	188 eC	wt	238	-0.1587	0.2403	224	-0.66	0.5095
DOY*Trt*Var	eT+eC	SBP	188 eT	SBP	238	0.3274	0.2403	224	1.36	0.1744
DOY*Trt*Var	eT+eC	SBP	188 eT	wt	238	0.265	0.2403	224	1.1	0.2712
DOY*Trt*Var	eT+eC	SBP	188 eT+eC	SBP	238	-0.0638	0.2403	224	-0.27	0.791
DOY*Trt*Var	eT+eC	SBP	188 eT+eC	wt	238	-0.0125	0.2403	224	-0.05	0.9586
Supplementary Table 1. Contd.

DOY*Trt*Var	control	SBP 196	control	wt 196	0.005	0.2403	224	0.02	0.9834
DOY*Trt*Var	control	SBP 196	eC SBP 196	0.6938	0.2403	224	2.89	0.0043	
DOY*Trt*Var	control	SBP 196	eC wt 196	0.8588	0.2403	224	3.57	0.0004	
DOY*Trt*Var	control	SBP 196	eT SBP 196	0.62	0.2403	224	2.58	0.0105	
DOY*Trt*Var	control	SBP 196	eT wt 196	0.9425	0.2403	224	3.92	0.0001	
DOY*Trt*Var	control	SBP 196	eT+eC SBP 196	1.03	0.2403	224	4.29	<.0001	
DOY*Trt*Var	control	SBP 196	eT+eC wt 196	0.9363	0.2403	224	3.9	0.0001	
DOY*Trt*Var	control	SBP 196	control SBP 216	0.3388	0.2403	224	1.41	0.16	
DOY*Trt*Var	control	SBP 196	control wt 216	0.2013	0.2403	224	0.84	0.4031	
DOY*Trt*Var	control	SBP 196	eC SBP 196	0.005	0.2403	224	0.02	0.9834	
DOY*Trt*Var	control	SBP 196	eC wt 216	0.0675	0.2403	224	0.28	0.779	
DOY*Trt*Var	control	SBP 196	eT SBP 216	0.7675	0.2403	224	3.19	0.0016	
DOY*Trt*Var	control	SBP 196	eT wt 216	0.8238	0.2403	224	3.43	0.0007	
DOY*Trt*Var	control	SBP 196	eT+eC SBP 216	0.7025	0.2403	224	2.92	0.0003	
DOY*Trt*Var	control	SBP 196	eT+eC wt 216	0.9525	0.2403	224	3.96	<.0001	
DOY*Trt*Var	control	SBP 196	control SBP 238	0.1675	0.2403	224	0.7	0.4864	
DOY*Trt*Var	control	SBP 196	control wt 238	0.1125	0.2403	224	0.47	0.6401	
DOY*Trt*Var	control	SBP 196	eC SBP 238	0.4462	0.2403	224	1.86	0.0646	
DOY*Trt*Var	control	SBP 196	eC wt 238	0.5463	0.2403	224	2.27	0.0239	
DOY*Trt*Var	control	SBP 196	eT SBP 238	1.0324	0.2403	224	4.3	<.0001	
DOY*Trt*Var	control	SBP 196	eT wt 238	0.97	0.2403	224	4.04	<.0001	
DOY*Trt*Var	control	SBP 196	eT+eC SBP 238	0.6412	0.2403	224	2.67	0.0082	
DOY*Trt*Var	control	SBP 196	eT+eC wt 238	0.6925	0.2403	224	2.88	0.0043	
DOY*Trt*Var	control	wt 196	eC SBP 196	0.6887	0.2403	224	2.87	0.0045	
DOY*Trt*Var	control	wt 196	eC wt 196	0.8538	0.2403	224	3.55	0.0005	
DOY*Trt*Var	control	wt 196	eT SBP 196	0.615	0.2403	224	2.56	0.0111	
DOY*Trt*Var	control	wt 196	eT wt 196	0.9375	0.2403	224	3.9	0.0001	
DOY*Trt*Var	control	wt 196	eT+eC SBP 196	1.025	0.2403	224	4.27	<.0001	
DOY*Trt*Var	control	wt 196	eT+eC wt 196	0.9313	0.2403	224	3.88	0.0001	
DOY*Trt*Var	control	wt 196	control SBP 216	0.3337	0.2403	224	1.39	0.1662	
DOY*Trt*Var	control	wt 196	control wt 216	0.1963	0.2403	224	0.82	0.4149	
DOY*Trt*Var	control	wt 196	eC SBP 216	0.0625	0.2403	224	0.26	0.795	
DOY*Trt*Var	control	wt 196	eT SBP 216	0.7625	0.2403	224	3.17	0.0017	
DOY*Trt*Var	control	wt 196	eT wt 216	0.8188	0.2403	224	3.41	0.0008	
DOY*Trt*Var	control	wt 196	eT+eC SBP 216	0.6975	0.2403	224	2.9	0.0041	
DOY*Trt*Var	control	wt 196	eT+eC wt 216	0.9475	0.2403	224	3.94	0.0001	
Supplementary Table 1. Contd.

Treatment	DOY	Var	wt	SBP	t	P			
control	196	control	238	0.1625	0.2403	224	0.68	0.4995	
control	196	control	238	0.1075	0.2403	224	0.45	0.655	
control	196	eC	238	0.4412	0.2403	224	1.84	0.0676	
control	196	eT	238	0.5413	0.2403	224	2.25	0.0252	
control	196	eT+eC	238	1.0274	0.2403	224	4.28	<.0001	
control	196	eT+eC	238	0.965	0.2403	224	4.02	<.0001	
eC	SBP	196	eC	238	0.6362	0.2403	224	2.65	0.0087
eC	SBP	196	eT	238	0.6075	0.2403	224	2.36	0.0046
eC	SBP	196	eT+eC	238	0.4075	0.2403	224	2.06	0.0106
eC	SBP	196	eT+eC	238	0.2075	0.2403	224	1.05	0.0216
eC	SBP	196	eT+eC	238	0.1075	0.2403	224	0.55	0.0046
eC	SBP	196	eT+eC	238	0.0075	0.2403	224	0.25	0.0046
Supplementary Table 1. Contd.

DOY*Trt*Var	Var	wt	DOY	SBP	EC wt	eT wt	tSBP	tEC wt	tET wt	EC SBP	eT SBP	tET SBP	eT+eC SBP	tET+tEC SBP	eT+eC wt	eT+eC wt	tET+eC SBP	tET+eC wt
eC	196	eT	216	-0.0913	0.2403	224	-0.38	0.7045										
eC	196	eT	216	-0.035	0.2403	224	-0.65	0.5162										
eC	196	eT	216	0.09375	0.2403	224	-2.88	0.0044										
eC	196	eT	238	-0.7462	0.2403	224	-3.11	0.0021										
eC	196	eT	238	-0.4125	0.2403	224	-1.72	0.0874										
eC	196	eT	238	-0.3125	0.2403	224	-1.3	0.1947										
eC	196	eT	238	0.1736	0.2403	224	0.72	0.4707										
eC	196	eT	238	0.1113	0.2403	224	0.46	0.6438										
eC	196	eT	238	-0.2175	0.2403	224	-0.91	0.3663										
eC	196	eT	238	-0.1663	0.2403	224	-0.69	0.4897										
eC	196	eT	196	0.3225	0.2403	224	1.34	0.1809										
eC	196	eT	196	0.4	0.2403	224	1.71	0.0893										
eC	196	eT	196	0.3163	0.2403	224	1.32	0.1894										
eC	196	eT	196	-0.2813	0.2403	224	-1.17	0.243										
eC	196	eT	196	-0.4187	0.2403	224	-1.74	0.0827										
eC	196	eT	216	-0.615	0.2403	224	-2.56	0.0111										
eC	196	eT	216	-0.5525	0.2403	224	-2.3	0.0224										
eC	196	eT	216	0.1475	0.2403	224	0.61	0.5399										
eC	196	eT	216	0.2038	0.2403	224	0.85	0.3973										
eC	196	eT	216	0.0825	0.2403	224	0.34	0.7316										
eC	196	eT	216	0.3325	0.2403	224	1.38	0.1678										
eC	196	eT	216	-0.4525	0.2403	224	-1.88	0.061										
eC	196	eT	216	-0.5075	0.2403	224	-2.11	0.0358										
eC	196	eT	238	-0.1738	0.2403	224	-0.72	0.4703										
eC	196	eT	238	-0.0738	0.2403	224	-0.31	0.7592										
eC	196	eT	238	0.4124	0.2403	224	1.72	0.0875										
eC	196	eT	238	0.35	0.2403	224	1.46	0.1466										
eC	196	eT	238	0.02125	0.2403	224	0.09	0.9296										
eC	196	eT	238	0.0725	0.2403	224	0.3	0.7631										
eC	196	eT	196	0.0875	0.2403	224	0.36	0.7161										
eC	196	eT	196	-0.0063	0.2403	224	-0.03	0.9793										
eC	196	eT	216	-0.6038	0.2403	224	-2.51	0.0127										
eC	196	eT	216	-0.7412	0.2403	224	-3.09	0.0023										
eC	196	eT	216	-0.9375	0.2403	224	-3.9	0.0001										
eC	196	eT	216	-0.875	0.2403	224	-3.64	0.0003										
Supplementary Table 1. Contd.

DOY*Trt*Var	eT	wt	196	eT	SBP	216	-0.175	0.2403	224	-0.73	0.4672
DOY*Trt*Var	eT	wt	196	eT	wt	216	-0.1188	0.2403	224	-0.49	0.6216
DOY*Trt*Var	eT	wt	196	eT+eC	SBP	216	-0.24	0.2403	224	-1	0.3189
DOY*Trt*Var	eT	wt	196	eT+eC	wt	216	0.01	0.2403	224	0.04	0.9668
DOY*Trt*Var	eT	wt	196	control	SBP	238	-0.775	0.2403	224	-3.23	0.0014
DOY*Trt*Var	eT	wt	196	control	wt	238	-0.83	0.2403	224	-3.45	0.0007
DOY*Trt*Var	eT	wt	196	eC	SBP	238	-0.4963	0.2403	224	-2.07	0.04
DOY*Trt*Var	eT	wt	196	eC	wt	238	-0.3962	0.2403	224	-1.65	0.1005
DOY*Trt*Var	eT	wt	196	eT	SBP	238	0.08987	0.2403	224	0.37	0.7087
DOY*Trt*Var	eT	wt	196	eT	wt	238	0.0275	0.2403	224	0.11	0.909
DOY*Trt*Var	eT	wt	196	eT+eC	SBP	238	-0.3013	0.2403	224	-1.25	0.2112
DOY*Trt*Var	eT	wt	196	eT+eC	wt	238	-0.25	0.2403	224	-1.04	0.2992
DOY*Trt*Var	eT+eC	SBP	196	eT+eC	wt	196	-0.0938	0.2403	224	-0.39	0.6968
DOY*Trt*Var	eT+eC	SBP	196	control	SBP	216	-0.6912	0.2403	224	-2.88	0.0044
DOY*Trt*Var	eT+eC	SBP	196	control	wt	216	-0.8287	0.2403	224	-3.45	0.0007
DOY*Trt*Var	eT+eC	SBP	196	eC	SBP	216	-1.025	0.2403	224	-4.27	<.0001
DOY*Trt*Var	eT+eC	SBP	196	eC	wt	216	-0.9625	0.2403	224	-4.01	<.0001
DOY*Trt*Var	eT+eC	SBP	196	eT	SBP	216	-0.2625	0.2403	224	-1.09	0.2758
DOY*Trt*Var	eT+eC	SBP	196	eT	wt	216	-0.2062	0.2403	224	-0.86	0.3916
DOY*Trt*Var	eT+eC	SBP	196	eT+eC	SBP	216	-0.3275	0.2403	224	-1.36	0.1742
DOY*Trt*Var	eT+eC	SBP	196	eT+eC	wt	216	-0.0775	0.2403	224	-0.32	0.7473
DOY*Trt*Var	eT+eC	SBP	196	control	SBP	238	-0.8625	0.2403	224	-3.59	0.0004
DOY*Trt*Var	eT+eC	SBP	196	control	wt	238	-0.9175	0.2403	224	-3.82	0.0002
DOY*Trt*Var	eT+eC	SBP	196	eC	SBP	238	-0.5838	0.2403	224	-2.43	0.0159
DOY*Trt*Var	eT+eC	SBP	196	eC	wt	238	-0.4837	0.2403	224	-2.01	0.0453
DOY*Trt*Var	eT+eC	SBP	196	eT	SBP	238	0.00238	0.2403	224	0.01	0.9921
DOY*Trt*Var	eT+eC	SBP	196	eT	wt	238	-0.06	0.2403	224	-0.25	0.803
DOY*Trt*Var	eT+eC	SBP	196	eT+eC	SBP	238	-0.3888	0.2403	224	-1.62	0.1071
DOY*Trt*Var	eT+eC	SBP	196	eT+eC	wt	238	-0.3375	0.2403	224	-1.4	0.1615
DOY*Trt*Var	eT+eC	wt	196	control	SBP	216	-0.5975	0.2403	224	-2.49	0.0136
DOY*Trt*Var	eT+eC	wt	196	control	wt	216	-0.735	0.2403	224	-3.06	0.0025
DOY*Trt*Var	eT+eC	wt	196	eC	SBP	216	-0.9313	0.2403	224	-3.88	0.0001
DOY*Trt*Var	eT+eC	wt	196	eC	wt	216	-0.8688	0.2403	224	-3.62	0.0004
DOY*Trt*Var	eT+eC	wt	196	eT	SBP	216	-0.1688	0.2403	224	-0.7	0.4832
DOY*Trt*Var	eT+eC	wt	196	eT	wt	216	-0.1125	0.2403	224	-0.47	0.6401
DOY*Trt*Var	eT+eC	wt	196	eT+eC	SBP	216	-0.2338	0.2403	224	-0.97	0.3317
DOY*Trt*Var	eT+eC	wt	196	eT+eC	wt	216	0.01625	0.2403	224	0.07	0.9461
Supplementary Table 1. Contd.

DOY*Trt*Var	eT+eC	wt	196	control	SBP	238	-0.7688	0.2403	224	-3.2	0.0016
DOY*Trt*Var	eT+eC	wt	196	control	wt	238	-0.8237	0.2403	224	-3.43	0.0007
DOY*Trt*Var	eT+eC	wt	196	eC	SBP	238	-0.49	0.2403	224	-2.04	0.0426
DOY*Trt*Var	eT+eC	wt	196	eC	wt	238	-0.39	0.2403	224	-1.62	0.106
DOY*Trt*Var	eT+eC	wt	196	eT	SBP	238	0.09612	0.2403	224	0.4	0.6895
DOY*Trt*Var	eT+eC	wt	196	eT	wt	238	0.03375	0.2403	224	0.14	0.8884
DOY*Trt*Var	eT+eC	wt	196	eT+eC	SBP	238	-0.295	0.2403	224	-1.23	0.2208
DOY*Trt*Var	eT+eC	wt	196	eT+eC	wt	238	-0.2438	0.2403	224	-1.01	0.3114
DOY*Trt*Var	control SBP	216	control	wt	216	-0.1375	0.2403	224	-0.57	0.5677	
DOY*Trt*Var	control SBP	216	eC	SBP	216	-0.3337	0.2403	224	-1.39	0.1662	
DOY*Trt*Var	control SBP	216	eC	wt	216	-0.2712	0.2403	224	-1.13	0.2601	
DOY*Trt*Var	control SBP	216	eT	SBP	216	0.4288	0.2403	224	1.78	0.0757	
DOY*Trt*Var	control SBP	216	eT	wt	216	0.485	0.2403	224	2.02	0.0447	
DOY*Trt*Var	control SBP	216	eT+eC	SBP	216	0.3637	0.2403	224	1.51	0.1314	
DOY*Trt*Var	control SBP	216	eT+eC	wt	216	0.6138	0.2403	224	2.55	0.0113	
DOY*Trt*Var	control SBP	216	control SBP	216	-0.1713	0.2403	224	-0.71	0.4767		
DOY*Trt*Var	control SBP	216	control SBP	wt	216	-0.2262	0.2403	224	-0.94	0.3474	
DOY*Trt*Var	control SBP	216	eC	SBP	216	0.1075	0.2403	224	0.45	0.655	
DOY*Trt*Var	control SBP	216	eC	wt	216	0.2075	0.2403	224	0.86	0.3887	
DOY*Trt*Var	control SBP	216	eT	SBP	216	0.6936	0.2403	224	2.89	0.0043	
DOY*Trt*Var	control SBP	216	eT	wt	216	0.6313	0.2403	224	2.63	0.0092	
DOY*Trt*Var	control SBP	216	eT+eC	SBP	216	0.3025	0.2403	224	1.26	0.2093	
DOY*Trt*Var	control SBP	216	eT+eC	wt	216	0.3537	0.2403	224	1.47	0.1423	
DOY*Trt*Var	control wt	216	eC	SBP	216	-0.1963	0.2403	224	-0.82	0.4149	
DOY*Trt*Var	control wt	216	eC	wt	216	-0.1338	0.2403	224	-0.56	0.5783	
DOY*Trt*Var	control wt	216	eT	SBP	216	0.5662	0.2403	224	2.36	0.0193	
DOY*Trt*Var	control wt	216	eT	wt	216	0.6225	0.2403	224	2.59	0.0102	
DOY*Trt*Var	control wt	216	eT+eC	SBP	216	0.5012	0.2403	224	2.09	0.0381	
DOY*Trt*Var	control wt	216	eT+eC	wt	216	0.7513	0.2403	224	3.13	0.002	
DOY*Trt*Var	control wt	216	control SBP	216	-0.0338	0.2403	224	-0.14	0.8884		
DOY*Trt*Var	control wt	216	control SBP	wt	216	-0.0888	0.2403	224	-0.37	0.7122	
DOY*Trt*Var	control wt	216	eC	SBP	216	0.245	0.2403	224	1.02	0.309	
DOY*Trt*Var	control wt	216	eC	wt	216	0.345	0.2403	224	1.44	0.1524	
DOY*Trt*Var	control wt	216	eT	SBP	216	0.8311	0.2403	224	3.46	0.0006	
DOY*Trt*Var	control wt	216	eT	wt	216	0.7688	0.2403	224	3.2	0.0016	
DOY*Trt*Var	control wt	216	eT+eC	SBP	216	0.44	0.2403	224	1.83	0.0684	
DOY*Trt*Var	control wt	216	eT+eC	wt	216	0.4912	0.2403	224	2.04	0.0421	
Supplementary Table 1. Contd.

DOY*Trt*Var	eC	SBP	216	eC	wt	216	0.0625	0.2403	224	0.26	0.795
DOY*Trt*Var	eC	SBP	216	eT	SBP	216	0.7625	0.2403	224	3.17	0.0017
DOY*Trt*Var	eC	SBP	216	eT	wt	216	0.8188	0.2403	224	3.41	0.0008
DOY*Trt*Var	eC	SBP	216	eT+eC	SBP	216	0.6975	0.2403	224	2.9	0.0041
DOY*Trt*Var	eC	SBP	216	eT+eC	wt	216	0.9475	0.2403	224	3.94	0.0001
DOY*Trt*Var	eC	SBP	216	control	SBP	238	0.1625	0.2403	224	0.68	0.4995
DOY*Trt*Var	eC	SBP	216	control	wt	238	0.1075	0.2403	224	0.45	0.655
DOY*Trt*Var	eC	SBP	216	eC	SBP	238	0.4412	0.2403	224	1.84	0.0676
DOY*Trt*Var	eC	SBP	216	eC	wt	238	0.5413	0.2403	224	2.25	0.0252
DOY*Trt*Var	eC	SBP	216	eT	SBP	238	1.0274	0.2403	224	4.28	<0.001
DOY*Trt*Var	eC	SBP	216	eT	wt	238	0.965	0.2403	224	4.02	<0.001
DOY*Trt*Var	eC	SBP	216	eT+eC	SBP	238	0.6362	0.2403	224	2.65	0.0087
DOY*Trt*Var	eC	SBP	216	eT+eC	wt	238	0.6875	0.2403	224	2.86	0.0046
DOY*Trt*Var	eC	wt	216	eT	SBP	216	0.7	0.2403	224	2.91	0.0039
DOY*Trt*Var	eC	wt	216	eT	wt	216	0.7563	0.2403	224	3.15	0.0019
DOY*Trt*Var	eC	wt	216	eT+eC	SBP	216	0.635	0.2403	224	2.64	0.0088
DOY*Trt*Var	eC	wt	216	eT+eC	wt	216	0.885	0.2403	224	3.68	0.0003
DOY*Trt*Var	eC	wt	216	control	SBP	238	0.1	0.2403	224	0.42	0.6777
DOY*Trt*Var	eC	wt	216	control	wt	238	0.045	0.2403	224	0.19	0.8516
DOY*Trt*Var	eC	wt	216	eC	SBP	238	0.3787	0.2403	224	1.58	0.1163
DOY*Trt*Var	eC	wt	216	eC	wt	238	0.4788	0.2403	224	1.99	0.0475
DOY*Trt*Var	eC	wt	216	eT	SBP	238	0.9649	0.2403	224	4.02	<0.001
DOY*Trt*Var	eC	wt	216	eT	wt	238	0.9025	0.2403	224	3.76	0.0002
DOY*Trt*Var	eC	wt	216	eT+eC	SBP	238	0.5737	0.2403	224	2.39	0.0178
DOY*Trt*Var	eC	wt	216	eT+eC	wt	238	0.625	0.2403	224	2.6	0.0099
DOY*Trt*Var	eT	SBP	216	eT	wt	216	0.05625	0.2403	224	0.23	0.8151
DOY*Trt*Var	eT	SBP	216	eT+eC	SBP	216	-0.065	0.2403	224	-0.27	0.787
DOY*Trt*Var	eT	SBP	216	eT+eC	wt	216	0.185	0.2403	224	0.77	0.4421
DOY*Trt*Var	eT	SBP	216	control	SBP	238	-0.6	0.2403	224	-2.5	0.0132
DOY*Trt*Var	eT	SBP	216	control	wt	238	-0.655	0.2403	224	-2.73	0.0069
DOY*Trt*Var	eT	SBP	216	eC	SBP	238	-0.3213	0.2403	224	-1.34	0.1826
DOY*Trt*Var	eT	SBP	216	eC	wt	238	-0.2212	0.2403	224	-0.92	0.3581
DOY*Trt*Var	eT	SBP	216	eT	SBP	238	0.2649	0.2403	224	1.1	0.2715
DOY*Trt*Var	eT	SBP	216	eT	wt	238	0.2025	0.2403	224	0.84	0.4002
DOY*Trt*Var	eT	SBP	216	eT+eC	SBP	238	-0.1263	0.2403	224	-0.53	0.5998
DOY*Trt*Var	eT	SBP	216	eT+eC	wt	238	-0.075	0.2403	224	-0.31	0.7552
DOY*Trt*Var	eT	wt	216	eT+eC	SBP	216	-0.1213	0.2403	224	-0.5	0.6143
Supplementary Table 1. Contd.

DOY*Trt*Var	Var	wt	216	eT+eC	wt	216	t	216	0.1288	0.2403	224	0.54	0.5926
eT	control	SBP	238	-0.6563	0.2403	224	-2.73	0.0068					
eT	control	wt	238	-0.7112	0.2403	224	-2.96	0.0034					
eT	eC	SBP	238	-0.3775	0.2403	224	-1.57	0.1176					
eT	eC	wt	238	-0.2775	0.2403	224	-1.15	0.2493					
eT	eT	SBP	238	0.2086	0.2403	224	0.87	0.3862					
eT	eT	wt	238	0.1463	0.2403	224	0.61	0.5433					
eT	eT+eC	SBP	238	-0.1825	0.2403	224	-0.76	0.4483					
eT	eT+eC	wt	238	-0.1313	0.2403	224	-0.55	0.5854					
eT+eC	SBP	wt	216	0.25	0.2403	224	1.04	0.2992					
eT+eC	SBP	control	SBP	238	-0.535	0.2403	224	-2.23	0.027				
eT+eC	SBP	control	wt	238	-0.59	0.2403	224	-2.46	0.0148				
eT+eC	SBP	eC	238	-0.2563	0.2403	224	-1.07	0.2873					
eT+eC	SBP	eC	238	-0.1562	0.2403	224	-0.65	0.5162					
eT+eC	SBP	eT	238	0.3299	0.2403	224	1.37	0.1711					
eT+eC	SBP	eT	238	0.2675	0.2403	224	1.11	0.2668					
eT+eC	SBP	eT+eC	SBP	238	-0.0613	0.2403	224	-0.25	0.799				
eT+eC	SBP	eT+eC	wt	238	-0.01	0.2403	224	-0.04	0.9668				
eT+eC	wt	control	SBP	238	-0.785	0.2403	224	-3.27	0.0013				
eT+eC	wt	control	wt	238	-0.84	0.2403	224	-3.5	0.0006				
eT+eC	wt	eC	238	-0.5063	0.2403	224	-2.11	0.0362					
eT+eC	wt	eC	238	-0.4062	0.2403	224	-1.69	0.0923					
eT+eC	wt	eT	238	0.07987	0.2403	224	0.33	0.7399					
eT+eC	wt	eT	238	0.0175	0.2403	224	0.07	0.942					
eT+eC	wt	eT+eC	SBP	238	-0.3113	0.2403	224	-1.3	0.1965				
eT+eC	wt	eT+eC	wt	238	-0.06	0.2403	224	-1.08	0.2804				
control	SBP	control	wt	238	-0.055	0.2403	224	-0.23	0.8191				
control	SBP	eC	238	0.2788	0.2403	224	1.16	0.2472					
control	SBP	eC	238	0.3788	0.2403	224	1.58	0.1163					
control	SBP	eT	238	0.8649	0.2403	224	3.6	0.0004					
control	SBP	eT	238	0.8025	0.2403	224	3.34	0.001					
control	SBP	eT+eC	SBP	238	0.4737	0.2403	224	1.97	0.0499				
control	SBP	eT+eC	wt	238	0.525	0.2403	224	2.19	0.0299				
control	eC	SBP	238	0.3337	0.2403	224	1.39	0.1662					
control	eC	wt	238	0.4337	0.2403	224	1.81	0.0724					
control	eT	SBP	238	0.9199	0.2403	224	3.83	0.0002					
control	eT	wt	238	0.8575	0.2403	224	3.57	0.0004					
Supplementary Table 1. Contd.

DOY*Trt*Var	control	wt 238	eT+eC	SBP	238	0.5287	0.2403	224	2.2	0.0288
DOY*Trt*Var	control	wt 238	eT+eC	wt	238	0.58	0.2403	224	2.41	0.0166
DOY*Trt*Var	eC	SBP 238	eC	wt	238	0.1	0.2403	224	0.42	0.6777
DOY*Trt*Var	eC	SBP 238	eT	SBP	238	0.5861	0.2403	224	2.44	0.0155
DOY*Trt*Var	eC	SBP 238	eT	wt	238	0.5238	0.2403	224	2.18	0.0303
DOY*Trt*Var	eC	SBP 238	eT+eC	SBP	238	0.195	0.2403	224	0.81	0.4179
DOY*Trt*Var	eC	wt 238	eT	SBP	238	0.4861	0.2403	224	2.02	0.0442
DOY*Trt*Var	eC	wt 238	eT	wt	238	0.4237	0.2403	224	1.76	0.0792
DOY*Trt*Var	eC	wt 238	eT+eC	SBP	238	0.095	0.2403	224	0.4	0.6929
DOY*Trt*Var	eC	wt 238	eT+eC	wt	238	0.1462	0.2403	224	0.61	0.5433
DOY*Trt*Var	eT	SBP 238	eT	wt	238	-0.0624	0.2403	224	-0.26	0.7954
DOY*Trt*Var	eT	SBP 238	eT+eC	SBP	238	-0.3911	0.2403	224	-1.63	0.105
DOY*Trt*Var	eT	SBP 238	eT+eC	wt	238	-0.3399	0.2403	224	-1.41	0.1586
DOY*Trt*Var	eT	wt 238	eT+eC	SBP	238	-0.3288	0.2403	224	-1.37	0.1726
DOY*Trt*Var	eT	wt 238	eT+eC	wt	238	-0.2775	0.2403	224	-1.15	0.2493
DOY*Trt*Var	eT+eC	SBP 238	eT+eC	wt	238	0.05125	0.2403	224	0.21	0.8313