ORIGINAL ARTICLE

RNF213 gene mutation in circulating tumor DNA detected by targeted next-generation sequencing in the assisted discrimination of early-stage lung cancer from pulmonary nodules

Ning Jiang¹,², Jie Zhou³, Wenhao Zhang³, Peichao Li³, Yu Liu⁴, Hubo Shi⁵, Chengke Zhang¹,², Yunshan Wang⁶, Chengjun Zhou⁷, Chuanliang Peng¹,², Weiquan Zhang¹,², Yingtao Hao¹,², Qifeng Sun⁸, Yuliang Li⁹,¹⁰ & Xiaogang Zhao¹,²

1 Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, China
2 Key Laboratory of Chest Cancer, Shandong University, Jinan, China
3 Cheeloo College of Medicine, Shandong University, Jinan, China
4 Department of Thoracic Surgery, The 960th Hospital of People’s Liberation Army of China, Jinan, China
5 Department of Thoracic Surgery, Shandong Provincial Chest Hospital, Jinan, China
6 Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China
7 Pathology Department, The Second Hospital of Shandong University, Jinan, China
8 Department of Thoracic Surgery, Shandong Provincial Hospital, Jinan, China
9 Department of Interventional Medicine, The Second Hospital of Shandong University, Jinan, China
10 Interventional Oncology Institute, Shandong University, Jinan, China

Keywords
Circulating tumor DNA (ctDNA); early diagnosis; lung cancer; RNF213 gene; targeted next generation sequencing (NGS).

Correspondence
Yuliang Li, Department of Interventional Medicine, The Second Hospital of Shandong University, Jinan, China.
Tel: +86 531 8587 5462
Email: lyl.pro@sdu.edu.cn

Xiaogang Zhao, Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, China.
Tel: +86 531 8587 5552
Email: zhaoxiaogang@sdu.edu.cn

Received: 27 September 2020; Accepted: 28 October 2020.
doi: 10.1111/1759-7714.13741

Thoracic Cancer 12 (2021) 181–193

© 2020 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: To distinguish early-stage lung cancer from benign disease in pulmonary nodules, especially lesions with ground-glass opacity (GGO), we assessed gene mutations of ctDNA in peripheral blood using targeted next-generation sequencing (NGS).

Methods: Single pulmonary nodule patients without mediastinal lymph nodes and symptoms that were hard to diagnose by chest CT and lung cancer biomarker measurement in multiple medical centers were enrolled into the study. All patients accepted minimally invasive surgery but refused preoperative biopsy. Gene mutations in preoperative blood samples were detected by targeted NGS. Mutations with significant differences between lung tumors and benign lesions, as grouped by postoperative pathology, were screened. Protein expression was determined by immunohistochemistry. Highly expressed genes were selected as biomarkers to verify the mutations in peripheral blood.

Results: In the training set, the RNF213, KMT2D, CSMD3 and LRP1B genes were mutated more frequently in early-stage lung cancer (27 cases) than in benign nodules (15 cases) ($P < 0.05$). High expression of the RNF213 gene in lung cancers and low expression in benign diseases were seen by immunohistochemistry. The RNF213 gene was mutated in 25% of lung cancer samples in the validation set of 28 samples and showed high specificity (100%). In GGO patients, RNF213 was mutated more frequently in early-stage lung cancer compared to benign diseases ($P < 0.05$).

Conclusions: RNF213 gene mutations were observed more frequently in early-stage lung cancer, but not in benign nodules. Mutation of the RNF213 gene in peripheral blood may be a high specificity biomarker for the assisted early diagnosis of lung cancer in pulmonary nodules.
Key points

Significant findings of the study: In peripheral venous blood and tumor tissue, RNF213 gene mutated more frequently in lung cancer than benign pulmonary nodules.

What this study adds: Detection mutation of the RNF213 gene in peripheral blood may be a high specificity method for the assisted early diagnosis of lung cancer in pulmonary nodules.

Introduction

Lung cancer remains a life-threatening malignancy with the highest morbidity and mortality of any cancer across the world. The five-year survival of lung cancer patients is still low, despite the use of molecular diagnosis and targeted therapy. Early diagnosis and treatment are effective ways to improve the survival of lung cancer patients. Using low-dose computed tomography (LDCT) in screening can reduce lung cancer-related mortality, and smaller pulmonary nodules may be found at an early stage. However, the diagnosis may be difficult in some cases with atypical CT imaging, and traditional biomarkers such as carcinoembryonic antigen (CEA), neuron-specific enolase (NSE) and cytokeratin 19 (CYFRA-211) might not be positive early on. Aspiration biopsy or surgery may be needed in most patients to confirm whether the nodules are malignant or benign.

The ideal diagnostic method should be simple, less traumatic, and easy to obtain and have a high positive rate. Circulating cell-free DNA (cfDNA) is a fragment of DNA released through cell apoptosis that widely exists in blood, cerebrospinal fluid, urine and saliva. As cfDNA can also be released by tumor cells through apoptosis and necrosis, this DNA is also called circulating tumor DNA (ctDNA). Liquid biopsy of the blood for ctDNA detection is important in the diagnosis, monitoring and prognosis of the tumor.

The patient’s ctDNA is meaningful to better understand the disease. ctDNA reflects the somatic genetic features of the primary tumor. It can be detected in the peripheral blood of patients with advanced cancers and can be used for monitoring therapeutic effects. The content of plasma ctDNA accounts for 0.01% of cfDNA. Studies have indicated that the concentration of ctDNA in the plasma increases with stage, probably because of the increasing tumor burden. Very low levels of detectable ctDNA in plasma and unknown mutations have limited the potential application in the diagnosis of early-stage lung cancer.

With the increasing sensitivity of next-generation sequencing (NGS), low concentrations of ctDNA in blood can be detected. At present, ctDNA of advanced-stage lung cancer has been studied in blood to monitor therapeutic effects. Few studies have studied early-stage lung cancer by detecting tumor DNA in tissue or identifying mutations in ctDNA in lung cancer patients, and this has been done in a limited number of genes. Some lung cancer-related genes, such as EGFR, ALK, and KRAS, are usually used for targeted NGS in early-stage lung cancer. Only a few genes from the panel are used for targeted NGS. In addition, healthy or benign-nodule individuals need to be used as the control group. To date, no study has addressed whether ctDNA can be detected in benign pulmonary nodules or whether there are differences in ctDNA in undiagnosed pulmonary nodules, including early-stage lung cancer and benign disease.

Here, we study ctDNA through targeted NGS in pulmonary nodules that could not be clearly diagnosed by chest CT. A panel of 560 tumor-related hot-spot genes was used to evaluate the targeted sequencing of plasma ctDNA in malignant and benign pulmonary nodules. We aimed to identify discrepant ctDNAs in the two groups to guide early diagnosis in lung cancer.

Methods

Patients

Patients with single pulmonary nodules were diagnosed in 2017–2018 and enrolled in the study at the Second Hospital of Shandong University, Shandong Provincial Chest Hospital and the 960th Hospital of the People’s Liberation Army of China. Lung cancer or benign disease could not be confirmed by chest CT. The largest diameter of the lesion was less than 4 cm, and there was no involvement of mediastinal lymph nodes on CT imaging. The cTNM stage was less than cT2aN0M0 (stage I, TNM staging manual eighth edition) if the lesion was considered to be lung cancer. In terms of preoperative routine examination, there were no metastatic lesions and no patients with any other oncological history. Lung cancer-related biomarkers, such as CEA, NSE and CYFRA-211, could not assist with a definitive diagnosis in patients. All patients refused biopsy
or it was difficult to obtain tissues for histological diagnosis. All patients accepted minimally invasive thoracoscopic surgery.

Study design

A training set was established. In accordance with the uniform diagnostic criteria, inclusion criteria and exclusion criteria, 42 of 58 registered patients met the standard and passed the blood sample test. Plasma and leukocytes in the blood sample were separated, and DNA in leukocytes was used as a self-control to exclude germline mutations. Qualified paired plasma and leukocyte samples were sequenced by targeted NGS with a panel of 560 tumor-related hotspot mutant genes. Mutated ctDNA was analyzed in lung cancer and benign disease according to histopathological results. We selected significantly different ctDNAs in the lung cancer group compared to the benign disease control group. Immunohistochemical staining was performed in formalin-fixed, paraffin-embedded (FFPE) tissue samples of these patients to analyze the expression of the selected ctDNAs. Finally, high expression of the selected ctDNAs in lung cancer was confirmed. A validation set including unknown pathological pulmonary nodules was established and sequenced by the same panel NGS to test the selected ctDNA mutations.

Blood sample preparation

Peripheral blood (10 mL) was sampled one to three days before the operation. Blood samples in EDTA tubes were centrifuged for 10 minutes at 1600 g at 4°C, and white blood cells were collected and stored. The supernatants from these samples were further centrifuged at 16000 g for 10 minutes at 4°C, and plasma was collected and stored at −80°C until use. White blood cell DNA was isolated using the DNA Isolation Kit for Mammalian Blood (Roche), and cfDNA was isolated using the QIAamp Circulating Nucleic Acid Kit (QIAGEN) according to the manufacturer’s protocol. A total of 100–300 ng cfDNA was acquired from 1 mL plasma.

Genomic DNA preparation and targeted sequencing

The quality of genomic DNA in terms of degradation and contamination was monitored on a 1% agarose gel, and the concentration was measured using a Qubit DNA Assay Kit in Qubit 2.0 Fluorometer (Life Technologies, Carlsbad, CA, USA).

We designed probes on the website of Agilent for particular genes according to the design instructions to cover the target gene regions. Briefly, 180–280 bp fragments were produced from fragmentation carried out by a hydrodynamic shearing system (Covaris, Woburn, Massachusetts, USA). Extracted DNA was then amplified by ligation-mediated PCR (LM-PCR), purified, and hybridized to the probe for enrichment. Nonhybridized fragments were subsequently washed out. Both captured and noncaptured LM-PCR products were subjected to real-time PCR to estimate the magnitude of enrichment. High-throughput sequencing was carried out at the average 1000x sequence depth when each captured library was loaded on an Illumina HiSeq 4000 platform (Illumina, San Diego, California, USA). Each captured library was sequenced independently to ensure that each sample met the desired average fold coverage.

Sequence data quality control

The original fluorescence image files obtained from the HiSeq platform were transformed to short reads (raw data) by base calling and recorded in FASTQ format, which contained sequence information and corresponding sequencing quality information. Clean reads were acquired by excluding reads containing adapter contamination and low-quality/unrecognizable nucleotides. Downstream bioinformatic analyses were based on these clean data. At the same time, the total read number, sequencing error rate, percentage of reads with average quality >20, percentage of reads with average quality >30, and GC content distribution were calculated.

Read mapping and somatic genetic alteration detection

Valid sequencing data were mapped to the reference human genome (UCSC hg19) by Burrows-Wheeler Aligner (BWA) software to obtain the original mapping results, stored in BAM format. Then, SAM tools and Picard (http://broadinstitute.github.io/picard/) were used to sort BAM files and perform duplicate marking, local realignment, and base quality recalibration to generate a final BAM file for computing the sequence coverage and depth. MuTect and Strelka software were used for calling somatic single-nucleotide variations (SNVs) and small insertions and deletions (InDels) from paired tumor/normal samples. In addition to default filters, polymorphisms of somatic SNVs and InDels referenced in the 1000 Genomes Project or Exome Aggregation Consortium (ExAC) with a minor allele frequency over 1% were removed. Subsequently, VCF (variant call format) data were annotated by ANNOVAR software.

Thoracic Cancer 12 (2021) 181–193 © 2020 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.
Immunohistochemical (IHC) analysis

Immunohistochemical (IHC) analysis was performed on 5 μm thick sections derived from formalin-fixed and paraffin-embedded lung cancer and benign disease tissue samples. In brief, all the slides were dewaxed with xylene and a graded ethanol series, antigen was repaired in citrate buffer (Beyotime Institute of Biotechnology, Haimen, China), nonspecific binding was blocked with 1.5% goat serum (Beyotime Institute of Biotechnology, Shanghai, China), and the slides were then incubated with the primary antibodies at 4°C overnight. Primary antibodies against KMT2D (Cat No. 27266-1-AP) and RNF213 (Cat No. 21028-1-AP) were obtained from Proteintech Group (Wuhan, Hubei, China). Primary antibodies against LRP-1B (Cat No. NBP2-49582) and CSMD3 (Cat No. NBP1-86371) were purchased from Novus Biologicals (Centennial, CO, USA). The slides were then washed and stained with the secondary antibody (goat anti-rabbit IgG H&L (HRP), cat. No. ab205718; Abcam) and DAB, counterstained with hematoxylin, dehydrated and mounted. The results were evaluated independently by two independent pathologists.

Membranous or cytoplasmatic staining for KMT2D, RNF213, LRP-1B and CSMD3 was defined as positive. The staining intensity and extent of the staining area were graded according to a semiquantitative scoring system. Staining intensity was characterized as follows: 0, none; 1, weak; 2, intermediate; and 3, strong. The extent of staining was defined as 0, none; 1, <1/100; 2, 1/100 to 1/10; 3, 1/10 to 1/3; 4, 1/3 to 2/3; and 5, >2/3 of cells expressing the respective lesions.24 The final total score was achieved by adding the scores of intensity and extent and ranged from 0 to 8. Scores of 0 were defined as “−,” scores of 2–4 were defined as “+,” scores of 5–6 were defined as “++” and scores of 7–8 were defined as “+++.” Low expression was defined as scores of 0–4 (“−”and “+”), and high expression was defined as scores of 5–8 (“++”and “+++”).

Statistical analysis

BWA, Samblaster and Sambamba software were used to compare the sequenced data with the reference genome. MuTect software was used to search for somatic single-nucleotide variation (SNV) mutations. Strelka software was used to search for somatic insertions-deletions (InDels). ANNOVAR software was used to annotate the structure and function of the detected variations. Lung cancer and benign disease were divided into two groups. Data are presented as mean and standard error of mean (mean ± SEM). Categorical data were analyzed using Pearson’s chi-square test or Fisher’s exact test, and continuous data were analyzed by Student’s t-test or one-way ANOVA. Analyses were performed using SPSS Statistics version 23 (IBM Corp). A two-tailed P-value <0.05 was considered to be statistically significant.

Results

Patient general characteristics

In the training set, a total of 42 pairs of qualified samples were sequenced after rejecting contaminated genome and unqualified samples, including samples of patients diagnosed with stage III lung cancer according to postoperative pathology. The patients’ general characteristics are shown in Table 1.

There were 27 lung cancer and 15 benign disease patients in the training set, including 18 male and nine female patients in the lung cancer group and 10 male and five female patients in the benign disease group. Tumor and stage II lung cancer patients were 22 (52.4%) and five (11.9%), respectively. There were 22 lung cancer patients (52.4%) and 12 benign disease patients (28.6%) in the group with a diameter less than 3 cm, while those with a diameter of 3 to 4 cm were five (11.9%) and three (7.1%). There was no significant difference (P > 0.05) in the general characteristics between the two groups, including sex, smoking history and tumor size.

The pathological type of lung cancer included adenocarcinoma (18, 42.9%), squamous carcinoma (7, 16.7%) and other types (2, 4.8%), which were large cell and sarcomatoid carcinomas. The histology of most lung cancer patients was adenocarcinoma. In benign lung disease, the postoperative pathological types were tuberculosis (3, 7.1%), inflammatory pseudotumor (9, 21.4%), hamartoma (2, 4.8%) and sclerosing hemangioma (1, 2.4%). The numbers of stage IA, IB, IIA and IIB lung cancer were eight (19.0%), 14 (33.3%), 0 (0%) and five (11.9%), respectively. There was no significant difference in any general data (P > 0.05) except age.

Biomarker detection

Blood biomarkers, including CEA, NSE and CYFRA-211, were detected before surgery. In the training set, the average values of these biomarkers were 2.45 ± 0.30, 18.44 ± 2.72, and 3.14 ± 1.10 ng/mL in lung cancer and 1.89 ± 0.22, 18.73 ± 1.80, and 1.73 ± 0.21 ng/mL in benign disease, respectively, and there were no significant differences (P > 0.05 for each comparison) in the two groups. In the validation set, the average values of these biomarkers were 2.75 ± 0.35, 13.93 ± 1.06, 2.19 ± 0.22 ng/mL in lung cancer and 1.72 ± 0.36, 15.46 ± 1.63, 2.18 ± 0.29 ng/mL in the
benign disease groups, and there were no significant differences ($P > 0.05$) between the two groups.

Positive staining of the biomarkers was judged according to the range of clinical reference values. In the training set, there were 3/27 and 0/15 CEA-positive, 6/27 and 6/15 NSE-positive, and 2/27 and 0/15 CYFRA-211-positive patients, respectively, in the lung cancer and benign disease groups ($P > 0.05$ for all three biomarkers). In the validation set, there were 1/20 and 0/8 CEA-positive, 4/20 and 1/8 NSE-positive, and 3/20 and 1/8 CYFRA-211-positive patients, respectively, in the lung cancer and benign disease groups ($P > 0.05$ for all three biomarkers) (Table 2).

Cell-free DNA detected

Cell-free DNA (cfDNA) was detected in all 42 samples in the training set. The concentrations of cfDNA in the lung cancer group and benign disease group were 0.2–3.04 ng/μL and 0.21–1.25 ng/μL, respectively, and the average concentrations were 0.53 ± 0.13 ng/μL and 0.54 ± 0.07 ng/μL, respectively. The differences were not significant between the two groups ($P > 0.05$).

Somatic mutation analysis

The number of mutated genes by targeted sequencing was 246 in the lung cancer and benign disease groups in the training set. There was a total of 522 somatic mutations in the two groups, including 374 somatic mutations detected in the lung cancer group and 148 mutations in the benign disease group (Fig 1).

Most of the mutations were single-nucleotide variations (SNVs). In the lung cancer group, there were 348 non-synonymous mutations, including 347 missense mutations and only one deletion mutation (InDel), out of all 374 somatic mutations. In the benign disease group, there were 136 non-synonymous mutations (missense mutations) in all 148 somatic mutations. The average numbers of somatic mutations were 13.85 ± 1.40 and 9.87 ± 1.10 in the two groups, respectively, and the missense mutations were 12.89 ± 1.35 and 9.07 ± 0.99, respectively. The differences were not significant between the two groups ($P > 0.05$) (Fig 1).

Analyzing the number of missense mutations against the general characteristics of the two groups, including the patients’ sex, age, smoking history, tumor size, pathology, stage and N1 station lymphatic metastasis, there were no statistically significant correlations ($P > 0.05$) (Fig 2).

Table 1 Patients’ characteristics in training set

	Lung cancer No. (%)	Benign disease No. (%)	P-value
Number	27 (64.3%)	15 (35.7%)	1.000
Gender			
Male	18 (42.9%)	10 (23.8%)	
Female	9 (21.4%)	5 (11.9%)	
Age	44–73	33–72	0.001
Smoking			0.611
Smoker	13 (31.0%)	6 (14.3%)	
Nonsmoker	14 (33.3%)	9 (21.4%)	
Tumor size			1.000
≤3 cm	22 (52.4%)	12 (28.6%)	
3 cm<T<4 cm	5 (11.9%)	3 (7.1%)	
Pathology			
Ad	18 (42.9%)	Tuberculosis	3 (7.1%)
SC	7 (16.7%)	Inflammation	9 (21.4%)
Others	2 (4.8%)	Hamartoma	2 (4.8%)
SH		SH	1 (2.4%)
Stage			
IA	8 (19.0%)		
IB	14 (33.3%)		
IIA	0 (0%)		
IIB	5 (11.9%)		

†Ad, adenocarcinoma; Others, large cell carcinoma, sarcomatoid carcinoma; SC, squamous carcinoma; SH, sclerosing hemangioma; T, tumor.

Table 2 Positive biomarkers of two groups in the training and validation sets

Biomarker	Training set	Validation set	P-value	Training set	Validation set	P-value
	LC	BD	P-value	LC	BD	P-value
CEA	3/27	0/15	0.541	1/20	0/8	1.000
NSE	6/27	6/15	0.222	4/20	1/8	1.000
CYFRA-211	2/27	0/15	0.530	3/20	1/8	1.000

BD, benign disease; LC, lung cancer.
ctDNA detected by targeted NGS

The 42 sequenced samples were divided into lung cancer and benign disease groups according to postoperative pathology. There were 27 samples in the lung cancer group and 15 samples in the benign disease control group. Somatic mutations were detected in both groups. In total, 246 gene mutations were detected in the training set (Fig 3). The number of somatic mutations (c) and missense mutations (d) in the two groups, and there were no significant differences between lung cancer and benign disease (P > 0.05). (a) Missense mutation (92.78%), (b) Nonsense mutation (6.95%), (c) Deletion (0.27%); (b) Missense mutation (91.89%), (d) Nonsense mutation (8.11%)

Immunohistochemical results

In the training set, the RNF213, LRPIB, KMT2D and CSMD3 genes had statistically significant differences in the sequenced data in lung cancer compared to benign disease. The GDNF gene was mutated in seven lung cancer samples and one benign disease sample. There were fewer than five mutations of other genes detected in either of the two groups. There were no significant differences in these gene mutation rates between the two groups (P > 0.05).

Figure 1 Mutations in the training set. (a) In the lung cancer group, 92.78% of mutations were missense mutations, 6.95% of mutations were nonsense mutations, and 0.27% of mutations were deletions. (b) In the benign lung disease group, 91.89% of mutations were missense mutations, and 8.11% of mutations were nonsense mutations. The number of somatic mutations (c) and missense mutations (d) in the two groups, and there were no significant differences between lung cancer and benign disease (P > 0.05). (a) Missense mutation (92.78%), (b) Nonsense mutation (6.95%), (c) Deletion (0.27%); (b) Missense mutation (91.89%), (d) Nonsense mutation (8.11%)
to detect the expression of RNF213, LRP1B, KMT2D and CSMD3. IHC was not carried out in one sample (B23) because the tissue was too small. After staining, photography and evaluation, we chose representative illustrations of the expression of RNF213, KMT2D, CSMD3 and LRP1B (Fig 4). High and low expression levels of the four genes are summarized in Fig 4. High expression of RNF213, KMT2D and CSMD3 was observed in lung cancer tissues, and low expression of these genes was observed in benign disease tissues. There were significant differences in their levels between the two groups ($P < 0.05$), especially RNF213 ($P < 0.005$). Low expression of LRP1B was observed in 26 lung cancer tissues and in 14 benign disease tissues. One of the lung cancer samples was highly expressed. This result was not significant ($P > 0.05$).

Validation set results

There were 28 pulmonary nodule patients enrolled in the validation set without a definite diagnosis through chest CT. The largest diameter of the lesion was less than 3 cm on CT imaging in each case. Malignant or benign nodules could not be confirmed by CT imaging or biomarkers. Blood samples were submitted to targeted sequencing using the same method. The number of the test genes RNF213, KMT2D, CSMD3 and LRP1B detected in lung cancer samples was five, five, three and two, respectively. A total of 20 samples were confirmed to be lung cancer and eight samples were benign nodules on postoperative pathology. The RNF213 gene was mutated in 25% of lung cancer patients. KMT2D, CSMD3 and LRP1B were mutated in 15%, 10% and 10% of lung cancer patients, but KMT2D and CSMD3 were mutated in 25% and 12.5% of benign diseases (Fig 5).

Analysis of GGO and all samples

We analyzed all sequenced data of the 70 samples (42 training set samples and 28 verification set samples). RNF213 gene mutated in 12 lung cancer (25.5%) and 0 benign
Figure 3 Heat map of somatic SNVs in the lung cancer and benign disease groups of the training set. The most frequently mutated gene was WHSC1. There were 10 and eight samples mutated, respectively, in the two groups ($P > 0.05$). RNF213, KMT2D, CSMD3 and LRP1B were more frequently mutated in lung cancer than benign disease ($P < 0.05$). The genes mutated in fewer than three patients are not listed in the heat map (all data are shown in Supporting Information). Mutation type: (◻) Missense mutation, (◼) Nonsense mutation, (◼) Splice site, (◼) Del. Gender: (♂) Male, (♀) Female. Age: (◻) 20–30, (◼) 31–40, (◼) 41–50, (◻) 51–60, (◼) 61–70, (◻) 70+. Smoke: (◻) Smoke, (◼) No smoke. Pathology: (◻) Adenocarcinoma, (◼) Squamous-cell carcinoma, (◼) Other NSCLC, (◻) Tuberculosis, (◻) Inflammation, (◻) Hamartoma, (◼) Sclerosing angioma. Stage: (◻) IA stage, (◼) IB stage, (◻) II A stage, (◼) II B stage, (◻) Benign. Tumor size: (◆) Tumor ≤3 cm, (◻) 3 cm < Tumor ≤4 cm. N1: (◆) –, (◼) +
disease samples. RNF213 gene mutated more frequently in lung cancer than benign diseases ($P = 0.006$, two-tailed). In addition, there were 55 patients diagnosed with GGO on chest CT, including 36 with early-stage lung cancer and 19 with benign disease. We detected RNF213 gene mutations in 10 (10/36, 27.8%) lung cancer samples and no samples in the benign disease group ($P < 0.05$). All of these somatic mutations were missense mutations. The specificity of the RNF213 gene mutation was 100% in the diagnosis of GGO, and its sensitivity was 27.8%.

Discussion

Early diagnosis and treatment are effective means to improve the survival rate of patients with early stage lung cancer. Small lung lesions can be found on chest CT, which
is the most common and valid examination modality in
the diagnosis or screening of lung cancer.25,26 Recently,
early detection or screening with low-dose computed
tomography (LDCT) by the National Lung Screening Trial
(NLST) and other studies has been shown to improve sur-
vival and reduce lung cancer-specific mortality.27,28

Some lesions are easy to diagnose as lung cancer on CT,
and some lesions are difficult to identify as lung cancer or
benign disease, especially when the pulmonary nodule is
small or imaging features are not typical.29 For example, a
ground-glass opacity (GGO) or ground-glass nodule
(GGN) is usually adenocarcinoma in situ (AIS), minimally
invasive adenocarcinoma (MIA) or atypical adenomatous
hyperplasia (AAH).30 The higher false positive and false
negative rate using traditional biomarkers such as
carcinoembryonic antigen (CEA), neuron-specific enolase
(NSE) and cytokeratin 19 (CYFRA-211) make the diagno-
sis more difficult.31,32 These biomarkers are useless in the
early diagnosis of lung cancer. Aspiration biopsy may be
needed to confirm that the nodule is a malignancy or
benign disease. However, bleeding, pneumothorax, pain
and possible diversion restrict its use in early diagnosis.

An ideal diagnostic method should be simple, conve-
nient, safe, and efficient. Using liquid biopsies to detect cir-
culating biomarkers such as circulating tumor cells
(CTCs), circulating tumor DNA (ctDNA) and exosomes
may offer a relatively simple method to analyze early-stage
tumors.33 Detecting ctDNA in peripheral blood is used
more commonly, while CTCs are less commonly detected
in early-stage tumors.

Circulating cell-free DNA, a fragment of DNA that is
released through cell apoptosis, widely exists in extracellular
fluid, such as blood, cerebrospinal fluid, urine and saliva.45 The cfDNA of healthy people comes mainly from
metabolism and cell apoptosis, including bone marrow
cells, lymphocytes, and normal tissue cells.34 For patients
with tumors, the cfDNA fragments of tumor cells, known
as circulating tumor DNA (ctDNA), are also released into
peripheral blood through apoptosis and necrosis of tumor
cells.6,7 Plasma ctDNA, which is a fragment of approxi-
mately 150–200 bp35 containing genetic information about
the tumor, is of great significance for the diagnosis, treat-
ment and monitoring of the disease.

Circulating tumor DNA is used to monitor the therapeu-
tic effects and make prognostic predictions in the treat-
ment of malignancies because of the ctDNA levels in
advanced-stage tumors.36 The level of the detected ctDNA
increase correlates with malignant progression.37,13 The
low levels of ctDNA in early-stage tumors make detection
difficult. Early diagnosis can provide tremendous benefits
for the treatment of patients with malignant tumors.13,38
With the development of sequencing technology, low levels
of ctDNA could be detected in blood more easily and accu-
rately. More and more studies have applied this technology
to investigate early-stage tumors.

In the present study, we investigated ctDNA in early-
stage lung cancer and comparable benign disease diag-
nosed by chest CT. First, cfDNA was detected in all benign
lung disease samples, as reported previously in other solid
tumors.39–41 However, these studies did not consider the
stage of malignancy compared to benign disease. The level
of cfDNA in malignancy is related to the tumor burden, as
measured by such indices as tumor size, T stage and TNM
stage.42 Our data indicated that the level of cfDNA in
early-stage lung cancer was not significantly different from
that of benign disease (0.53 \(\pm\) 0.13 ng/\(\mu\)L and
0.54 \(\pm\) 0.07 ng/\(\mu\)L, respectively; \(P > 0.05\)). This result may
be related to the low tumor burden in early-stage lung can-
cer, indicating that early-stage lung cancers release low
levels of cfDNA into the blood stream, similarly to benign
lung disease. Cell apoptosis and necrosis from benign
tumors or diseases also cause cfDNA to increase.

Elevated cfDNA concentrations alone do not fully dis-
Stinguish between lung cancer and benign disease. In our
study, targeted NGS was implemented to detect ctDNA in
these DNA samples. The panel used for NGS covered all
known mutated genes in malignant tumors to investigate mutations in early-stage lung cancer. We found that the number of mutations was not related to sex, age, smoking history, tumor size, stage or pathology in the two groups. Some genes were mutated more frequently in lung cancer and others in benign disease. In the training set, RNF213, KMT2D, CSMD3 and LRP1B were mutated more frequently in early-stage lung cancer than in benign disease. A total of 25.9% of lung cancer patients showed RNF213 gene mutations, and no lung cancer was observed in benign disease patients. The RNF213 gene had a high specificity in distinguishing lung cancer from benign disease.

To clarify the protein expression of these four genes in tissues, we conducted immunohistochemistry of lung cancer tissues. RNF213, KMT2D and CSMD3 genes showed higher expression than in benign disease samples, especially RNF213. This differential expression between the two groups may be due to the changes in amino acids caused by the genetic changes.

Finally, a verification experiment was carried out to study the assisted diagnostic value of these four genes. NGS was also used in the validation set as in the training set. The RNF213 gene was mutated in 25% of lung cancer patients and was not mutated in benign diseases, but KMT2D, CSMD3 and LRP1B were mutated less in both groups. The same high specificity of the RNF213 gene mutation was shown in the validation set.

Considering the difference of RNF213 gene was not statistically significant in the validation set probably due to the small number of samples, we analyzed all 70 samples of the study to confirm those which were statistically significant. There were 47 lung cancer and 23 benign disease in all samples. RNF213 gene mutated in 12 lung cancer (25.5%) and 0 benign disease samples. In all 70 samples of our study, RNF213 gene mutated more frequently in lung cancer than benign diseases ($P = 0.006$, two-tailed). Theoretically, increasing the sample size of the validation set probably due to the changes in amino acids caused by the genetic changes.

In conclusion, the concentration of cfDNA is not a good biomarker for the assisted diagnosis of early-stage lung cancer and benign lung diseases. RNF213 gene mutation in ctDNA may be used for the molecular diagnosis of malignant and benign lung nodules. It has a high specificity of 100% in the assisted diagnosis of lung cancer compared to benign lung disease in pulmonary nodules. The results of our study may be useful for the assisted early diagnosis of lung cancer. The effect of KMT2D, CSMD3 and LRP1B should be further confirmed in more samples.

The shortcoming of this study is the small sample size, the reason for which is lack of research funding. In the training set, five patients which were considered clinical stage I lung cancer due to chest CT were upgraded to stage IIB because the N1 station lymph node was positive. A larger scale randomized controlled trial is needed to verify this finding in the future. In addition, the underlying mechanisms of the RNF213 gene in the development of lung cancer requires further study.

Acknowledgments

This study was supported in part by the Key Research and Development Program of Shandong Province (Grant No. 2016ZDJS07A15, 2017G006028, 2017GSF22107). The authors would like to thank Wenjuan Wang (The Second Hospital of Shandong University) for advice during preparation of this manuscript.

Disclosure

The authors declare no competing interests.

References

1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin 2013; 63 (1): 11–30.
2. Richards TB, Henley SJ, Puckett MC et al. Lung cancer survival in the United States by race and stage (2001-2009): Findings from the CONCORD-2 study. Cancer 2017; 123 (Suppl 24)): 5079–99.
3. Torre LA, Siegel RL, Jemal A. Lung cancer statistics. Adv Exp Med Biol 2016; 893: 1–19.
4 Wang Y, Springer S, Mulvey CL et al. Detection of somatic mutations and HPV in the saliva and plasma of patients with head and neck squamous cell carcinomas. Sci Transl Med 2015; 7 (293): 293ra104.

5 De Mattos-Arruda L, Mayor R, Ng CKY et al. Cerebrospinal fluid-derived circulating tumour DNA better represents the genomic alterations of brain tumours than plasma. Nat Commun 2015; 6: 8839.

6 Jahr S, Hentze H, Englisch S et al. DNA fragments in the blood plasma of cancer patients: Quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res 2001; 61 (4): 1659–65.

7 El Messaoudi S, Rolet F, Mouliere F, Thierry AR. Circulating cell free DNA: Preanalytical considerations. Clin Chim Acta 2013; 424: 222–30.

8 Pi C, Zhang MF, Peng XX, Zhang YC, Xu CR, Zhou Q. Liquid biopsy in non-small cell lung cancer: A key role in the future of personalized medicine? Expert Rev Mol Diagn 2017; 17 (12): 1089–96.

9 Schwarzenbach H, Hoon DS, Pantel K. Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 2011; 11 (6): 426–37.

10 Murtaza M, Dawson SJ, Tsui DW et al. Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 2013; 497 (7447): 108–12.

11 Gevensleben H, Garcia-Murillas I, Graeser MK et al. Noninvasive detection of HER2 amplification with plasma DNA digital PCR. Clin Cancer Res 2013; 19 (12): 3276–84.

12 Diehl F, Li M, Dressman D et al. Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc Natl Acad Sci U S A 2005; 102 (45): 16368–73.

13 Bettegowda C, Sausen M, Leary RJ et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 2014; 6 (224): 224ra24.

14 Newman AM, Bratman SV, To J et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med 2014; 20 (5): 548–54.

15 Chen KZ, Lou F, Yang F et al. Circulating tumor DNA detection in early-stage non-small cell lung cancer patients by targeted sequencing. Sci Rep 2016; 6: 31985.

16 Guo N, Lou F, Ma Y et al. Circulating tumor DNA detection in lung cancer patients before and after surgery. Sci Rep 2016; 6: 33519.

17 Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 2010; 26 (5): 589–95.

18 Li H, Handsaker B, Wysoker A et al. The sequence alignment/map format and SAMtools. Bioinformatics 2009; 25 (16): 2078–9.

19 Cibulskis K, Lawrence MS, Carter SL et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol 2013; 31 (3): 213–9.

20 Saunders CT, Wong WS, Swamy S, Becq J, Murray LJ, Cheetham RK. Strelka: Accurate somatic small-variant calling from sequenced tumor–normal sample pairs. Bioinformatics 2012; 28 (14): 1811–7.

21 1000 Genomes Project Consortium, Abecasis GR, Auton A et al. An integrated map of genetic variation from 1,092 human genomes. Nature 2012; 491 (7422): 56–65.

22 Lek M, Karczewski KJ, Minikel EV et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 2016; 536 (7616): 285–91.

23 Wang K, Li M, Hakonarson H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 2010; 38 (16): e164.

24 Kawai H, Ishii A, Washiyama K et al. Estrogen receptor alpha and beta are prognostic factors in non-small cell lung cancer. Clin Cancer Res 2005; 11 (14): 5084–9.

25 Latimer KM, Mott TF. Lung cancer: diagnosis, treatment principles, and screening. Am Fam Physician 2015; 91 (4): 250–6.

26 Tanoue LT. Lung cancer screening. Curr Opin Pulm Med 2016; 22 (4): 327–35.

27 National Lung Screening Trial Research Team, Aberle DR, Berg CD et al. The National Lung Screening Trial: Overview and study design. Radiology 2011; 258 (1): 243–53.

28 Pastorino U, Silva M, Sestini S et al. Prolonged lung cancer screening reduced 10-year mortality in the MILD trial. Ann Oncol 2019; 30 (7): 1162–9.

29 Lee CT. What do we know about ground-glass opacity nodules in the lung? Transl Lung Cancer Res 2015; 4 (5): 656–9.

30 Travis WD, Brambilla E, Noguchi M et al. International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol 2011; 6 (2): 244–85.

31 Wang B, He YJ, Tian YX, Yang RN, Zhu YR, Qu JH. Clinical utility of haptoglobin in combination with CEA, NSE and CYFRA21-1 for diagnosis of lung cancer. Asian Pac J Cancer Prev 2014; 15 (22): 9611–4.

32 Wang P, Piao Y, Zhang X, Li W, Hao X. The concentration of CYFRA 21-1, NSE and CEA in cerebro-spinal fluid can be useful indicators for diagnosis of meningeval carcinomatosis of lung cancer. Cancer Biomark 2013; 13 (2): 123–30.

33 Pantel K, Alix-Panabières C. Real-time liquid biopsy in cancer patients: Fact or fiction? Cancer Res 2013; 73 (21): 6384–8.

34 Atamanyuk J, Kopecky C, Skoupy S, Säemann MD, Weichhart T. Apoptotic cell-free DNA promotes inflammation in haemodialysis patients. Nephrol Dial Transplant 2012; 27 (3): 902–5.

35 Põõs O, Biró O, Szemes T, Nagy B. Circulating cell-free nucleic acids: Characteristics and applications. Eur J Hum Genet 2018; 26 (7): 937–45.
36 Stewart CM, Tsui DWY. Circulating cell-free DNA for non-invasive cancer management. *Cancer Genet* 2018; **228-229**: 169–79.

37 Rumiao E, Boldrin E, Malacrida S et al. Detection of genetic alterations in cfDNA as a possible strategy to monitor the neoplastic progression of Barrett’s esophagus. *Transl Res* 2017; **190**: 16–24.e1.

38 Tie J, Kinde I, Wang Y et al. Circulating tumor DNA as an early marker of therapeutic response in patients with metastatic colorectal cancer. *Ann Oncol* 2015; **26** (8): 1715–22.

39 Shapiro B, Chakrabarty M, Cohn EM, Leon SA. Determination of circulating DNA levels in patients with benign or malignant gastrointestinal disease. *Cancer* 1983; **51** (11): 2116–20.

40 Qiu YW, Shen XJ, Jin CJ, Cao XJ, Ju SQ. Value of the concentration and integrity of serum cell-free DNA for the clinical diagnosis of esophageal carcinoma. *Zhonghua Zhong Liu Za Zhi* 2018; **40** (12): 905–10.

41 Ponti G, Maccaferri M, Micali S et al. Seminal cell free DNA concentration levels discriminate between prostate cancer and benign prostatic hyperplasia. *Anticancer Res* 2018; **38** (9): 5121–5.

42 Kim K, Shin DG, Park MK et al. Circulating cell-free DNA as a promising biomarker in patients with gastric cancer: Diagnostic validity and significant reduction of cfDNA after surgical resection. *Ann Surg Treat Res* 2014; **86** (3): 136–42.

43 Liu W, Morito D, Takashima S et al. Identification of RNF213 as a susceptibility gene for moyamoya disease and its possible role in vascular development. *PLOS One* 2011; **6** (7): e22542.

44 Er TK, Su YF, Wu CC et al. Targeted next-generation sequencing for molecular diagnosis of endometriosis-associated ovarian cancer. *J Mol Med (Berl)* 2016; **94** (7): 835–47.

45 Ge S, Li B, Li Y et al. Genomic alterations in advanced gastric cancer endoscopic biopsy samples using targeted next-generation sequencing. *Am J Cancer Res* 2017; **7** (7): 1540–53.

46 Li X, Xu W, Kang W et al. Genomic analysis of liver cancer unveils novel driver genes and distinct prognostic features. *Theranostics* 2018; **8** (6): 1740–51.

47 Banh RS, Iorio C, Marcotte R et al. PTP1B controls non-mitochondrial oxygen consumption by regulating RNF213 to promote tumour survival during hypoxia. *Nat Cell Biol* 2016; **18** (7): 803–13.

Supporting Information

Additional Supporting Information may be found in the online version of this article at the publisher’s website:

Figure S1 Heat map of somatic SNVs in the lung cancer and benign disease groups of the training set. Somatic mutations were detected by targeted NGS in lung cancer and benign disease.

Table S2 Somatic mutations of training set.

Table S3 Somatic mutations of validation set.

Table S4 Mutation sites of significant genes in lung cancer.