Introduction

Hospital-acquired infections (HAIs) are infectious diseases an individual experiences 48 hours post-hospitalization, 3 days following hospital discharge, or 30 days after a surgery. Therefore, the patients have not have the infection before hospitalization nor has the patient been in the latent period of the disease (1, 2). HAIs often develop through contaminated medical equipment at the surgical site or through antibiotic-resistant pathogens. These infections are not limited to the patient, but also affect hospital specialists and staff. According to the recent reports, only 20% of nosocomial infections are preventable (3). The World Health Organization (WHO) has identified nosocomial infections as a major cause of disability and death among patients (7). The actual rate of HAIs varies from 5-10% among modern health centers in developed countries and up to 25% in developing countries, which is about 2-20 times higher among developing
countries compared to developed countries. This rate has been reported to be 1.9 to 25 percent in Iran (9) which is mostly due to surgery site infections (58.2%), pneumonia (26.4%) and urinary tract infections (8.8%) (10), respectively.

In this review, we will discuss the most important pathogens responsible for nosocomial infections as well as multidrug-resistant (MDR) pathogens as a major threat around the world.

Materials and Methods

PubMed, Medline, Cochran library, WHO, Iranmedex and PsycINFO databases were searched for articles related to different aspects of nosocomial infections and bacterial resistance, published during 1980 and 2018. An evaluation regarding the association between nosocomial infections and bacterial resistance with the use of antibiotics were carried out in March 2017.

Research on nosocomial infections was conducted in two steps. The first step was to examine the aspects and issues related to nosocomial infection, and the second step was to investigate the relationship between bacterial resistance and challenges. To gather information on nosocomial infections and bacterial resistance, the following keywords were searched: resistant bacteria, nosocomial infections, antibiotics, multidrug-resistant drugs, Healthcare, Pathogens.

Out of a total of 182 articles found following the key word search, 28 articles were relevant, in terms of subject and content, and were therefore included in this article.

Important causes of nosocomial infections

About 90% of nosocomial infections are caused by bacteria. Bacteria that commonly cause nosocomial infections include *Staphylococcus* spp. especially *S. aureus*, *Streptococcus* spp., *Bacillus cereus*, *Acinetobacter* spp., *enterococcus* spp., *Pseudomononas aeruginosa*, *Escherichia coli*, *Proteus mirabilis*, *Salmonella* spp., *Serratia marcescens* and *Klebsiella pneumonia*, among which *E. coli*, *S. aureus*, *enterococcus* spp. and *P. aeruginosa* are the most common causes of nosocomial infections (7, 8, 13).

In hematologic infections (BSI), coagulase negative *Staphylococci* are common and are isolated almost twice as much as *S. aureus* among patients with BSI (13, 17).

Enterococcus spp. have been repeatedly isolated from surgical site and bloodstream infections, but is rarely found in the respiratory tract. *P. aeruginosa* has been isolated from one-tenth of all infections and is found equally in all areas prone to nosocomial infections with the exception of blood stream (13). Viruses cause only 5% of nosocomial infections and are more common among infants and children. There are possibilities of transmitting nosocomial infections caused by viruses, including hepatitis B and C viruses (via dialysis, injection, endoscopy), respiratory syncytial virus (RSV), rotavirus, and enterovirus (through hand-to-mouth and mouth-to-mouth contact) in the hospital (19, 20).

Some parasites are easily transmitted between children and adults. Many fungi and parasites are opportunistic organisms that cause infections during long-term treatment with antibiotics. Environmental contamination caused by organisms that spread through the air, such as *Aspergillus* spp., is a concern during hospital construction (13, 21).

The importance and impact of using antibiotics in nosocomial infections

In developing countries, drugs such as antibiotics are easily available in pharmacies (12) and the overuse of a wide range of antibiotics in the hospital environment has led to the emergence of MDR microorganisms which cause fatal nosocomial infections and are difficult to treat (13, 22).

The most important MDR bacteria causing nosocomial infections include *E. faecium*, *S. aureus*, *K. pneumoniae*, *A. baumannii*, *P. aeruginosa*, and *Enterobacter* species, which are classified as ESKAPE.

In addition, in 2017, WHO published a list of the most important bacterial species and the antibiotics against which these bacteria are resistant (Table 1). This group of pathogens is responsible for most MDR nosocomial infections (12, 25).
Figure 1. The most common site of nosocomial infections

Table 1. The most threatening bacterial species/families of bacteria and the antibiotics against which the bacteria are resistant (21)

Antibiotics	Bacteria
Carbapenem	A. baumannii
Carbapenem	P. aeruginosa
Carbapenem	Enterobacter Species
Vancomycin	E. faecium
Methicillin-Vancomycin	S. aureus
Clarithromycin	H. pylori
Fluoroquinolones	Campylobacter Species
Fluoroquinolones	Salmonella spp.
-Fluoroquinolones	Neisseria gonorrhoeae
Penicillin	Streptococcus pneumonia
Ampicillin	Hemophilus Influenza
Fluoroquinolones	Shigella Spp.

MDR bacteria that cause nosocomial infections are able to spread and multiply rapidly not only in health care centers but around the world (12). In Europe, over four years (2014-2011), a significant increase in the mean rate of E. coli resistance to third-generation cephalosporins (from 9.6 to 12%), K. pneumonia to carbapenems (from 6.6 to 7.3%), P. aeruginosa to carbapenems (from 16.8 to 18.3%) and Enterococci resistance to vancomycin (from 6.2 to 7.9%) was observed. In Iran, a study found that 73.8% of the E. coli isolates were resistant to nalidixic acid, 54.3% to Sulfamethoxazol and 54.3% to Liproflloxacin (46).

In order to maintain the efficiency of antibiotics, many hospitals reserve certain antibiotics such as vancomycin and imipenem, only for cases in which other antibiotics have proven ineffective. The problem with this policy is the delay in the use of effective antibiotics in urgent cases. In addition, the limited use of these antibiotics has led to a decline in motivation and ultimately to defect in pharmaceutical industries due to poor investment returns. In fact, the lack of new antibiotics on the market increases the problem of antibiotic resistance (12).

Since the countdown to the emergence of resistance against the newly made antibiotics starts as soon as they are introduced to the clinical settings, the development of new antibiotics is not the ultimate solution to the antibiotic crisis. It is clear that antibiotic resistance is not a one-dimensional problem, and in addition to the sustainable development of new antibiotics, other strategies, including effective vaccines and faster and more sensitive diagnosis, can reduce the emergence of resistance to the new antibiotics (12, 23).

Methicillin-resistant *Staphylococcus aureus* (MRSA)

S. aureus is a gram-positive bacterial strain and one of the most dangerous bacterial pathogens that can cause nosocomial infections worldwide.

According to the latest research, most *S. aureus* isolates have been resistant to the antibiotics Cefoxitin, Azithromycin, Cefotaxime, Tetracycline, Gentamycin, Chloramphenicol and Liproflloxacin (Figure 2).
Since resistance to anti-MSRA antibiotics occurs through bacterial mutations, resistance to linezolide and glycoprotein antibiotics has recently become a major concern (27, 31).

Vancomycin resistant Enterococci (VRE)

Enterococci are the second leading cause of nosocomial infections worldwide and the leading cause of infections in the United States (20-30% of infections).

According to a report by the World Health Network, these pathogens cause about 12 percent of all nosocomial infections and kill 1,300 people a year (36). About 35.5% of enterococci are resistant to vancomycin which is created by the synthesis of a modified cell wall precursor that does not bind to glycopeptide antibiotics. This process occurs by the acquisition of a plasmid-dependent gene cluster (mostly vanAog and vanB genes) (36, 37). These may be transferred from enterococci to MSRA and, therefore, further complicate the treatment process of nosocomial infections.

Enterococcus species are less likely to cause nosocomial infections compared to S. aureus. Two of the most important species of Enterococci include E. faecalis and E. faecium. VRE nosocomial infections are mostly caused by E. faecium. Resistant isolates of this species usually possess the resistance genes VanA, VanB, VanD, VanN and VanM, and epidemiological studies have shown that VanA and VanB are the most common types, abundance of which is increasing (Figure 4 and Table 2) (35, 37, 39).
Multidrug-Resistant *Klebsiella pneumoniae* (MDR-KP)

K. pneumoniae is a gram-negative bacillus found in a variety of environments, including the human body, gastrointestinal tract, skin, and nasopharynx. Due to the specific pathogenic properties of *K. pneumoniae*, including capsule production, antibiotic resistance, and biofilm formation, the nosocomial infections caused by this species are typically chronic and difficult to treat.

In recent years, MDR-KP strains have emerged due to the overuse of various antibiotics to treat nosocomial infections caused by this pathogen. MDR-KP is resistant to a wide range of antibiotics, including ampicillin and cephalosporins, which have previously been shown to be effective in treating *K. pneumoniae* isolates. The global prevalence of MDR-KP strains has become a global threat and concern due to its prevalence in hospitals and community (41, 51). Unfortunately, the optimal options for treating MDR-KP infection have not yet been identified (44, 45). Currently, a combination of colistin, phosphomycin, tigecycline, and aminoglycosides, although associated with adverse outcomes, is widely used. Recently, WHO has warned that if appropriate solutions are not adopted to prevent the development of MDR-KP, current antibiotics would completely lose their effect fail to treat these infections (55, 56).

Multidrug-resistant *Acinetobacter baumannii* (MR-AB)

A. baumannii, a gram-negative aerobic bacterium, is another important pathogen causing nosocomial infection. ICU is known as the main center for infections caused by *A. baumannii*, however, several studies have shown that it is possible for this specie to spread it to other areas in the hospital. This pathogen is responsible for about 2-10% of infections caused by all gram-negative bacteria in European and American countries (59-57).

The constant presence of *A. baumannii* in different parts of the hospital has caused this pathogen to be in constant contact with antibiotics. Such environmental conditions has imposed pressure on the selection and emergence of colonies with antibiotic resistance characteristics. Over time, the emergence if strains that are resistant to 3 or more antibiotic classes, including carbapenems which once were the treatment option of *A. baumanii* isolates, has increased (61). Due to the increasing resistance of this pathogen against carbapenems and colistin, as the last lines of treatment, therapeutic options are very limited and in some cases do not exist (61, 65).

Multidrug-resistant *Pseudomonas aeruginosa* (MDRPA)

P. aeruginosa is another gram-negative and aerobic bacterium which is known to be one of the leading causes of nosocomial infections, accounting for 10% of all nosocomial infections (63, 64).

Resistance rates to imipenem, quinolones, and third-generation cephalosporins have increased among *P. aeruginosa* isolates by 15, 9, and 20 percent, respectively (67).

Of great concern is the results of a recent study showing a significant increase in the rate of MDRPA from 2007 to 2014 (Figure 5).
Conclusion

Studies evaluated in this review reported an important role of antibiotic resistance in imposing therapeutic challenges and mortality among infected patients. Studies have described this factor as a global threat associated with the increase in nosocomial infections among patients. Improper use of a wide range of antibiotics against pathogens responsible for nosocomial infections has led to the emergence of MDR isolates that cause fatal nosocomial infections and are difficult to treat. Therefore, nosocomial infections are still uncontrollable during antibiotic era.

Although the production of new antibiotics are needed to treat nosocomial infections, this alone cannot be a solution to overcome the problem of MDR nosocomial infections. Therefore, some scheduled programs are needed to prevent the improper use of antibiotics and the occurrence of antibiotic resistance in the hospital settings.

Acknowledgements

The authors thank all those who helped them writing this article.

Conflicts of Interest

Authors declared no conflict of interests.
10. Darvishpoor K, Rezaei Marah MR. Prevalence of nosocomial infections and microbial causes in Torbat heydariyeh feidy educational and clinical hospital in 2012 and 2013. Iran J Med Microbiol. 2016; 10 (1): 93-6.

11. Weber S, Hoglard M, Reinheimer C, Wielchais TA, Kempf VAJ, Kessel J, et al. Bloodstream infections with vancomycin-resistant enterococci are associated with a decreased survival in patients with hematological diseases. Ann Hematol. 2019;98(3):763-73. [DOI:10.1007/s00277-019-03607-2] [PMID]

12. Medina E, Pieper DH. Tackling threats and future prospects of multidrug-resistant bacteria. InHow to Overcome the Antibiotic Crisis 2016 (pp. 3-33). Springer, Cham. [DOI:10.1007/978-3-319-46240-9_2] [PMID]

13. Berekat W, Hemalatha K, Getenet B, Wondwossen T, Solomon A, Zeynudin A, Kannan S. Update on bacterial nosocomial infections. Eur Rev Med Pharmacol Sci. 2012 Aug 1;16(8):1039-44.

14. Hormoz SF, Vasei N, Aminifar M, Darvishi M, Saeedi AA. Antibiotic resistance in patients suffering from nosocomial infections in Besat Hospital. Euro J Translation Mediol. 2018 Jul 10;28(3). [DOI:10.4081/ejtm.2018.7594] [PMID] [PMCID]

15. Farzianpour F, Bakhtiar A, Mosaveh SH, Akbarzadeh A. The most important species of nosocomial infection and the most important wards susceptible to nosocomial infection. Iran J Public Health. 2014:1016-7.

16. Fatj J, Khalel A, Alkhan NY, Taghipour A, Amel JSI, Honaramand M, et al. Prevalence of Nosocomial Infection in Different Wards of Ghaem Hospital, Mashhad. Avicenna J Clin Microbiol Infect. 2017;4(2):e40297. [DOI:10.5812/ajcmi.40297]

17. De Kraker ME, Davey PG, Grundmann H; BURDEN study group. Mortality and hospital stay associated with resistant Staphylococcus aureus and Escherichia coli bacteremia: estimating the burden of antibiotic resistance in Europe. PLoS Med. 2011;8(10):e1001104. [DOI:10.1371/journal.pmed.1001104] [PMID] [PMCID]

18. Lanyoor M, Frazad S. Evaluation of nosocomial infections in one of hospitals of Qom. Iran J Med Microbiol. 2011; 5 (3): 7-17

19. Wright SA, Beluch VM. Selected nosocomial viral infections. Heart & lung: the journal of critical care. 2015;40(4),277-83.

20. Rubin LG, Kohn N, Nullet S, Hill M. Reduction in rate of nosocomial respiratory virus infections in a children's hospital associated with enhanced isolation precautions. Infect Control Hosp Epidemiol. 2018;39(2):152-6. [DOI:10.1017/ice.2017.282] [PMID] [PMCID]

21. Cavaleheiro M, Teixeira MC. Candida Biofilms: Threats, Challenges, and Promising Strategies. Front Med (Lausanne). 2018;5:188-91. [PMID]

22. Morens DM, Fauci AS. Emerging infectious diseases: threats to human health and global stability. PLoS pathogens 2013;9(7):e1003467. [DOI:10.1371/journal.ppat.1003467] [PMID] [PMCID]

23. Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. P.T. 2015;40(4),277-83.

24. World Health Organization. WHO publishes list of bacteria for which new antibiotics are urgently needed. World Health Organization, Geneva, Switzerland. 2017.

25. Tatarelli P, Mikuleka M. Multidrug-resistant bacteria in hematology patients: emerging threats. Future microbiol. 2016;11(6):767-80. [DOI:10.2217/fmb-2015-0014] [PMID]

26. Garoy EY, Gebreab YB, Achila OO, Tekeste DG, Kesete R, Ghirmay R, et al. Methicillin-Resistant Staphylococcus aureus (MRSA): Prevalence and Antimicrobial Sensitivity Pattern among Patients-A Multicenter Study in Asmara, Eritrea. Can J Infect Dis Med Microbiol. 2019;2019:8321834. [DOI:10.1016/j.medmicro.2019.09.017] [PMID] [PMCID]

27. Nagendra Prasad HS, Karthik CS, Manukumar HM, Mallesha L, Mallu P. New approach to address antibiotic resistance: Miss loading of functional membrane microdomains (FMM) of methicillin-resistant Staphylococcus aureus (MRSA). Microb Pathog. 2019;127:106-15. [DOI:10.1016/j.micpath.2018.11.038] [PMID]

28. Zetola N, Francis JS, Nuemberger EL, Bishai WR. Community-acquired meticillin-resistant Staphylococcus aureus: an emerging threat. Lancet Infect Dis. 2005;5(5):275-86. [DOI:10.1016/S1473-3099(05)70112-4] [PMID]

29. Islam T, Kubra K, Hassan Chowdhury MM. Prevalence of Methicillin-Resistant Staphylococcus aureus in Hospitals in Chittagong, Bangladesh: A Threat of Nosocomial Infection. J Microsc Ultrastruct. 2018;6(4):188-91. [DOI:10.4103/jmaujmau.jmau.2018.19.103517] [PMID] [PMCID]

30. Klein E, Smith DL, Laxminarayan R. Hospitalizations and deaths caused by methicillin-resistant Staphylococcus aureus, United States, 1999-2005. Emerg Infect Dis. 2007;13(12):1840-6. [DOI:10.3201/eid1312.070629] [PMID] [PMCID]

31. Gordon RJ, Lowy FD. Pathogenesis of methicillin-resistant Staphylococcus aureus infection. Clin Infect Dis. 2008;46 Suppl 5(Suppl 5):S350-S359. [DOI:10.1086/533591] [PMID] [PMCID]

32. Puchter L, Chaberny IF, Schwab F, Vonberg RP, Bange FC, Ebadi E. Economic burden of nosocomial infections caused by vancomycin-resistant enterococci. Antimicrob Resist Infect Control. 2018;7:1. [DOI:10.1186/s13756-017-0291-7] [PMID] [PMCID]

33. Mulvey MR, Simor AE. Antimicrobial resistance in hospitals: how concerned should we be?. Cmaj. 2009;180(4):408-15. [DOI:10.1503/cmaj.082035] [PMID]

34. Khan HA, Ahmad A, Mehtboob R. Nosocomial infections and their control strategies. Asian Pac J Trop Biomed. 2015;5(7):509-14. [DOI:10.1016/j.apjtb.2015.05.001]

35. Yang J, Yuan Y, Tang M, Liu L, Yang K, Liu J. Phenotypic and genetic characteristics of vancomycin-resistant Enterococcus faecium. Microb Pathog. 2019;128:131-5. [DOI:10.1016/j.micpath.2018.12.046] [PMID]

36. Jackson SS, Harris AD, Magder LS, Stafford KA, Johnson JK, Miller LG, et al. Bacterial burden is associated with increased transmission to health care workers from patients colonized with vancomycin-resistant Enterococcus. Am J Infect Control. 2019;47(1):13-7. [DOI:10.1016/j.ajic.2018.07.011] [PMID] [PMCID]

37. Hammerum AM, Baig S, Kamil Y, Roer L, Pleholt M, Gumpert H, et al. Emergence of vanA Enterococcus faecium in Denmark, 2005-15. J Antimicrob Chemother. 2017;72(8):2184-90. [DOI:10.1093/jac/dkw138] [PMID]
38. Bournon N, Fines-Guyon M, Thiolet JM, Maugat S, Coignard B, Leclercq R, et al. Changing trends in vancomycin-resistant enterococci in French hospitals, 2001-08. J Antimicrob Chemother. 2011;66(4):713-21. [DOI:10.1093/jac/dkq252] [PMID] [PMCID]

39. Remschmidt C, Schröder C, Behnke M, Gastrimper M, Gefters C, Kramer TS. Continuous increase of vancomycin resistance in enterococci causing nosocomial infections in Germany - 10 years of surveillance. Antimicrob Resist Control Infect. 2018;7:54. [DOI:10.1186/s13756-018-0303-x] [PMID] [PMCID]

40. Bueti N, Wassiliew N, Rion V, Senn L, Gardiol C, Widmer A, et al. Emergence of vancomycin-resistant enterococci in Switzerland: a nation-wide survey. Antimicrob Res Control Infect. 2019;5(9):16. [DOI:10.1186/s13756-019-0466-x] [PMID] [PMCID]

41. Ostria-Hernandez ML, Juárez-de la Rosa KC, Arzate-Barbosa P, Lara-Hernández A, Sakai F, Antonio Ibarra J, et al. Nosocomial, Multidrug-Resistant Klebsiella pneumoniae Strains Isolated from Mexico City Produce Robust Biofilms on Abiotic Surfaces but Not on Human Lung Cells. Microb Drug Resist. 2018;24(4):422-33. [DOI:10.1098/mdr.2017.0073] [PMID] [PMCID]

42. Azmi, Leila, et al. "Multi-drug resistant Pseudomonas aeruginosa and Klebsiella pneumoniae circulation in a burn hospital, Tehran, Iran." GMS hygiene and infection control. (2019). 14.

43. Hashemirazadeh, Zahra, et al. "Characterization of SCCmec, spa types and Multi Drug Resistant of methicillin-resistant Staphylococcus aureus isolates among inpatients and outpatients in a referral hospital in Shiraz, Iran." BMC research notes 12.1 (2019): 614. [DOI:10.1186/s13104-019-4627-j] [PMID] [PMCID]

44. Ahmadi, Eiham, et al. "Prevalence of and risk factors for methicillin-resistant Staphylococcus aureus nasal carriage in the West of Iran: a population-based cross-sectional study." BMC infectious diseases 19.1 (2019): 899. [DOI:10.1186/s12879-019-4567-1] [PMID] [PMCID]

45. Bispo, Paulo JM, et al. "The Challenge of Antibiotic Resistance in Cornelian Infection." Foundations of Cornelian Disease. Springer, Cham, 2020. 277-88. [DOI:10.1007/978-3-030-25335-6_29]

46. Fallah, Fatemeh, Soha Parhiz, and Leila Azimi. "Distribution and antibiotic resistance pattern of bacteria isolated from patients with community-acquired urinary tract infections in Iran: a cross-sectional study." International Journal of Health Studies. (2019). 4.2: 27-36.

47. Porhommammad, Ali, et al. "Global prevalence of colistin resistance in clinical isolates of Acinetobacter baumannii: A systematic review and meta-analysis." Microbial pathogenesis 139 (2020): 103887. [DOI:10.1016/j.micpath.2019.103887] [PMID] [PMCID]

48. Oikonomou, O., et al. "Rapid dissemination of colistin and carbapenem resistant Acinetobacter baumannii in Central Greece: mechanisms of resistance, molecular identification and epidemiological data." BMC infectious diseases 15.1 (2015): 559. [DOI:10.1186/s12879-015-1297-a] [PMID] [PMCID]

49. Junnila Jenna, Hirvioja Tiina, Ritana Esa, Auranen, Kari et al, Changing epidemiology of methicillin-resistant Staphylococcus aureus in a low endemicity area-new challenges for MRSA control. Eur J Clin Microbiol Infect Dis. 2020.4(5).352-9.

50. Magill SS, Edwards JR, Bamberg W, Beldavs ZG, Dumyati G, Kainer MA, et al. Emerging infections program healthcare-associated infections surveillance survey. Antimicrob Resist Infect Control. 2019;8(1):16. [DOI:10.1186/s12941-017-0191-3] [PMID] [PMCID]

51. Hashemizadeh, Zahra, et al. "Characterization of SCCmec, spa types and Multi Drug Resistant of methicillin-resistant Staphylococcus aureus." BMC infectious diseases 15.1 (2015): 559. [DOI:10.1186/s12879-015-1297-a] [PMID] [PMCID]

52. Tambarello M, Trecarichi EM, De Rosa FG, Giannella M, Giacobbe DR, Bassetti M, et al. Infections caused by KPC-producing Klebsiella pneumoniae: differences in therapy and mortality in a multicentre study–authors’ response. J Antimicrob Chemother. 2015;70(7):2133-43. [DOI:10.1093/jac/dkv200] [PMID] [PMCID]

53. Xu L, Sun X, Ma X. Systematic review and meta-analysis of mortality of patients infected with carbapenem-resistant Klebsiella pneumoniae. Ann Clin Microbiol Antimicrob. 2017;16(1):18. [DOI:10.1186/s12941-017-0191-3] [PMID] [PMCID]

54. Bassetti M, Righi E, Camelutti A, Graziano E, Russo A. Multidrug-resistant Klebsiella pneumoniae: challenges for treatment, prevention and infection control. Expert Rev Ant Infect Ther. 2018;16(10):749-61. [DOI:10.1080/14787221.2018.1522249] [PMID] [PMCID]

55. Sekarwar AS, Batra HV. Challenge to healthcare: Multidrug resistance in Klebsiella pneumoniae. In 2011 International Conference on Food Engineering and Biotechnology IPCBEE. 2011;9:130-4.

56. Sikarwar AS, Batra HV. Challenge to healthcare: Multidrug resistance in Klebsiella pneumoniae. In 2011 International Conference on Food Engineering and Biotechnology IPCBEE. 2011;9:130-4.

57. Garnacho-Montoro J, Timst JF, Managing Acinetobacter baumannii infections. Curr Opin Infect Dis. 2019;32(1):69-76. [DOI:10.1097/QCO.0000000000000518] [PMID] [PMCID]

58. Richet H, Fournier PE. Nosocomial infections caused by Acinetobacter baumannii a major threat worldwide. Infect Control Hosp Epidemiol. 2006;27(7):645-6. [DOI:10.1086/505900] [PMID]

59. Almaghrabi MK, Joseph MRP, Asasy MM, Hamid ME. Multidrug-Resistant Acinetobacter baumannii: An Emerging Health Threat in Aseer Region, Kingdom of Saudi Arabia. Can J Infect Dis Med Microbiol. 2018;2018:9182747. [DOI:10.1155/2018/9182747] [PMID] [PMCID]

60. González-Villóra AM, Valverde-Garduño V. Antibiotic-Resistant Acinetobacter baumannii Increasing Success Remains a Challenge as a Nosocomial Pathogen. J Pathog. 2016;2015:7318075. [DOI:10.1155/2016/7318075] [PMID] [PMCID]

61. Munier AL, Bardin L, Legrand M, Rousseau C, Lafaurie M, Donay JL, et al. Incidence, risk factors and outcome of multi-drug resistant Acinetobacter baumannii nosocomial infections during an outbreak in a burn unit. Int J Infect Dis. 2019;79:178-84. [DOI:10.1016/j.ijid.2018.11.371] [PMID] [PMCID]

62. Antunes LC, Vieira P, Towner KJ. Acinetobacter baumannii: evolution of a global pathogen. Pathog Dis. 2014;71(3):292-301. [DOI:10.1111/2049-632X.12125] [PMID] [PMCID]

63. Willems S, Kampmeier S, Blatz S, Kossow A, Köck R, Kipp F, et al. Whole-genome sequencing elucidates epidemiology of nosocomial clusters of Acinetobacter baumannii. J Clin Microbiol. 2016;54(9):2391-4. [DOI:10.1128/JCM.00721-16] [PMID] [PMCID]
Nosocomial infections are infections which are a result of treatment in a hospital or a healthcare service unit, but secondary to the patient's original condition. Infections are considered nosocomial if they first appear 48 hours or more after hospital admission or within 30 days after discharge. Nosocomial comes from the Greek word nosokomeion (νοσοκόμειον) meaning hospital (nosos = disease, komeo = to take care of). This type of infection is also known as a hospital-acquired infection. The most common nosocomial infections are of the urinary tract, and various pneumonias. Nosocomial infections kill more Americans each year than AIDS and breast cancer combined. Keeping your medical gas systems operating properly isn't the only threat to patient safety. It is about time that these formerly Hospital Acquired Infection or Hospital Associated Infections were seriously attacked. In recent years, these infections have killed 100,000 people who were patients mostly of hospitals; but with the changes in healthcare delivery, also infected rehab and even surgery centers. 1.7 million infections have been identified in a year. Nosocomial infections kill more Americans each year than AIDS and breast cancer combined. So the counter attack was begun to save life.

Add your comments about this article: Your username or Email: Your Name or Email

Add Comments

Send email to the article author

Submit

Related Websites
- SPC: Health Ministry
- SPC: Science Ministry
- American Society for Microbiology
- ESCMID
- Microbiology Society

COPE
- SPC: Health Ministry
- SPC: Science Ministry
- American Society for Microbiology
- ESCMID
- Microbiology Society

Vote

© 2020 All Rights Reserved | Iranian Journal of Medical Microbiology
Designed & Developed by : Yektaweb | Publisher: Farname Inc