Reconstruction the Formation History of the Milky Way with Gaia, APOGEE
The RAVE Survey

- Spectroscopic high latitude survey of the MW (9 < I < 13)
- Gaia spectral range and resolution: Ca triplet region (8400-8800Å), $R_{\text{eff}}=7500$
- 6dF at the 1.2m UKST in Australia
 - 100-120 fibres
 - 38 sqdeg FoV
- Scheduled operation:
 - 4/2003 – 4/2013
 - 7 nights per lunation up to 8/2005
 - 25 nights per lunation since 8/2005
- 518 387 spectra for 451 738 stars
The Sixth Data Release of the Radial Velocity Experiment (RAVE) – I: Survey Description, Spectra and Radial Velocities

Matthias Steinmetz, Galavaty, Harry Enke, Tomaz Zwitter, Guillaume Gudel, Paul J. McMillan, Georges Kordopatis, Marica Valentini, Cristina Chiappini, Luca Casagrande, Jennifer Wijne, Borja Anicol, Olivier Bieremay, Albrecht Bijaio, James Binney, Donna Burton, Paul Cass, Patrick de Laverny, Kersi Fridgert, Kenneth Freeman, Jon P. Fullbright, Brad K. Gibson, Gerard Gilmore, Eva K. Grebel, Amira Helmi, Andrea Kunder, Ulisse Munari, Julio F. Navarro, Quentin Parker, Gregory R. Ruchti, Alejandro Recio-Blanco, Warren Reid, G. M. Searleb, Alessandro Siviero, Andreas Serra, Mildred Stearnab, Fred Watson, Mary E. Williams, Rosennbry F. G. Wyse, Friedrich Andersen, Teresa Anzoa, Daniela Birkb, Josh Bland-Hawthorn, Diego Bossinb, Rafael A. Garcia, Ismael Carrillob, William J. Chaplin, Yvonne Elsworth, Benoit Famaey, Orielp Gerhard, Paul Jofre, Andrea Just, Savita Mathur, Andrea Miglo, Ivan Minchew, Giacomo Monari, Benoit Mosser, Andreas Ritter, Thaise S. Rodrigues, Ralph-Dieter Scholz, Sanjib Shara, and Ksenia Syoliatina

(THE RAVE collaboration)

1Leibniz-Institut für Astrophysik Potsdam (AIP). An der Sternwarte 16, 14482 Potsdam, Germany
2University of Ljubljana, Faculty of Mathematics and Physics, Jadranska 19, SI-1000 Ljubljana, Slovenia
3Lund Observatory, Department of Astronomy and Theoretical Physics, Lund University, Box 43, 22100 Lund, Sweden
4Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, France
5Research School of Astronomy & Astrophysics, The Australian National University, Canberra, Australia
6The Johns Hopkins University, Department of Physics and Astronomy, 3400 North Charles Street, Baltimore, MD 21218, USA
7Department of Astronomy, University of Virginia, Charlottesville, VA, 22904, USA
8Observatoire astronomique de Strasbourg, Université de Strasbourg, CNRS, 11 rue de l’Université, F-67000 Strasbourg, France
9Rudolf Peierls Centre for Theoretical Physics, Oxford University, Parks Road, Oxford, OX1 3PU, UK
10Australasian Astronomical Observatory, Siding Spring, Coonabarabran NSW 2357, Australia
11University of Southern Queensland (USQ), West Street Toowoomba Qld 4350 Australia
12E.A. Milne Centre for Astrophysics, University of Hull, Hull, HU6 7RX, United Kingdom
13Institute of Astronomy, Cambridge, UK
14Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Münchfostcr 12-14, 69120 Heidelberg, Germany
15Kapteyn, Astronomical Institute, University of Groningen, P.O. Box 800, 9700 AV Groningen, The Netherlands
16Sand Martin’s University, 5000 Abbey Way SE, Lacey, WA, 98503, USA
17INAF Astronomical Observatory of Padova, 35122 Asiago (VI), Italy
18Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada V8P5C2.
19CYM Physics Building, The University of Hong Kong, Pokfulam, Hong Kong SAR, PRC

Corresponding author: Matthias Steinmetz
matthias.steinmetz@uni-hamburg.de
high S/N cool dwarf
high S/N warm dwarf
high S/N hot dwarf
high S/N red clump star
high S/N giant star
moderately high S/N giant
low S/N giant
emission line cool dwarf
very cool star with molecular bands.

Steinmetz et al, 2020a, submitted
T_{eff}	$\log g$	S/N
4872 K	4.58	92
5607 K	4.08	81
9440 K	4.07	83
4815 K	2.44	79
4592 K	0.36	110
6475 K	1.84	51
4522 K	2.01	29
3925 K	4.30	48
3675 K	3.84	112

Graph:
- **Axes:**
 - Teff_BDASP vs. logg_BDASP
 - Wavelength (Å) vs. Wavelength (Å)
- **Colors:**
 - Peculiar
 - Cold
 - Binary
 - Carbon
 - Continuum
 - Emission
 - Hot
 - Normal
 - Wavelength

Steinmetz et al., 2020a, submitted
Steinmetz et al, 2020b, in prep.
Steinmetz et al, 2020b, in prep.
actual R, z

Steinmetz et al., 2020b
submitted
orbital R_m, z_{max}

Steinmetz et al, 2020b
submitted
deep learning with convoluted neural networks

- RAVE (R=7500), APOGEE DR16 (R=22500) have about 5000 stars in common

- train RAVE spectra using a convoluted neutral network (CNN) on APOGEE parameters

- if successful, can be serve as a prototype for:
 - Gaia RVS will provide $O(10^8)$ spectra of resolution and S/N similar to RAVE
 - train Gaia RVS on WEAVE/4MOST parameters

- proper coverage of the parameter space is essential!

Guglion et al, 2020, in preparation
Summary and Conclusion

• 6th data release of the RAVE survey
 ■ spectra + error spectra
 ■ repeat observations
 ■ stellar parameters using the reverse distance pipeline BDASP + Gaia priors
 ■ new abundance pipeline GAUGUIN
 ■ updated astroseismic giant sample (based on ~490 K2 stars)

• RAVE = „Milli Gaia-RVS“

• Convoluted neural network RAVE+APOGEE demonstrates the power of combining medium-low resolution with high-resolution survey
 ■ Gaia + 4MOST/WEAVE: detailed abundances for O(10^8) spectra
 ■ good coverage of parameter space essential