Cellular-resolution in vivo tomography in turbid tissue through digital aberration correction

EN BO1+, XIN GE1+, YUEMEI LUO1, XUAN WU1, SI CHEN1, HAITAO LIANG1, SHUFEN CHEN1, XIAOJUN YU3, PING SHUM1, JIANHUA MO4, NANGUANG CHEN5, LINBO LIU1,2,,*

1 School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798
2 School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459
3 Northwestern Polytechnical University, School of Automation, Xi’an, Shaanxi, China, 710072
4 Soochow University, School of Electronics and Information Engineering, Shizi Street 1, Suzhou, China, 215006
5 Department of Biomedical Engineering, National University of Singapore, Singapore, 117583
*Corresponding author: liulinbo@ntu.edu.sg
*These authors contribute equally to this work

Noninvasive tomographic imaging of cellular processes in vivo may provide valuable cytological and histological information for disease diagnosis. However, such strategies are usually hampered by optical aberrations caused by the imaging system and tissue turbidity. State-of-the-art aberration correction methods require that the light signal be phase stable over the full-field data acquisition period, which is difficult to maintain during dynamic cellular processes in vivo. Here we show that any optical aberrations in the path length difference (OPD) domain can be corrected without the phase stability requirement based on maximum intensity assumption. Specifically, we demonstrate a novel optical tomographic technique, termed amplitude division aperture synthesis optical coherence tomography (ADAS-OCT), which corrects aberrations induced by turbid tissues by physical aperture synthesis and simultaneously data acquisition from sub-apertures. Even with just two sub-apertures, ADAS-OCT enabled in vivo visualization of red blood cells in human labial mucosa. We further demonstrated that adding sub-apertures could significantly scale up the aberration correction capability. This technology has the potential to impact a number of clinical areas where noninvasive examinations are preferred, such as blood count and cancers detection.

1. INTRODUCTION

Imaging pathophysiological processes at the cellular level is critical for understanding and diagnosis of human diseases, which is routinely realized through cytological or histological examinations following biopsies in clinical settings. Because biopsy is associated with sampling errors and complications due to its invasive and destructive nature, it is not suitable for screening a large population or imaging over a large tissue area. Moreover, cytology and histology procedures are time consuming which may result in delayed diagnosis. Tomographic imaging modalities are the mainstay of noninvasive diagnostic tools, including ultrasound imaging [1], computed tomography [2], magnetic resonance imaging [3] and positron emission tomography [4]. Although these existing tools have fundamentally changed clinical practice and basic research, cellular-level cytological and histological information is still not available in tomograms in vivo due to the limited spatial resolution.

Optical tomography techniques are capable of achieving cellular-level spatial resolution in thin tissue sections or semi-transparent tissues [5-7]. However, imaging through thicker (>300 µm) tissues in vivo is still highly challenging because the spatial resolution is degraded by optical aberrations, which can be roughly classified into system aberrations and sample-induced aberrations. System aberrations are generally inherent effects arising due to the focusing optics, such as defocus and inevitable imperfections in the optics used in endoscopic applications [8, 9]. Sample-induced aberrations in turbid tissues generally vary spatially and temporally. They must be corrected before clear images of cells can be obtained in vivo.

The straightforward way to correct these aberrations is by using hardware-based adaptive optics (HAO), which measures the wavefront distortion and cancels it by modulating the incident light wavefront. With an HAO correction, a set of correction parameters is valid only over a sufficiently small volume and over a sufficiently short period of time during which the sample-induced aberrations are constant. Consequently, it is time consuming to screen a large tissue volume [10, 11]. From a practical point of view, the system complexity and cost also impede its applications.

In OCT, optical aberrations result not only from the suboptimal coupling of signals at the detection pinhole but also interferometric wavefront distortions, which compromise both the coherence gating and the transverse focusing. Fortunately, the optical aberrations are recorded as the interferometric wavefront distortions that are detected optoelectronically, which opens up the possibility of correcting the aberrations digitally. Wide-field computational techniques, such as sub-aperture correlation [12, 13], computational adaptive optics [14-16], and model-based methods [17-19] have been developed to overcome the above-mentioned system complexity and
speed issue with HAO. However, these techniques usually require high phase stability over the full-field acquisitions, which is challenging for imaging dynamic cellular processes in vivo, especially in endoscopic scenarios.

To overcome the limitation in phase stability, synthetic aperture OCT has been developed and demonstrated to be effective in digitally correcting the spherical aberration of the focusing optics [20]. However, it divides the aperture central-symmetrically by wavefront [20] or sequentially by time [21, 22] so that it is not possible to correct the sample-induced aberrations. In this study, we report a novel technique, ADAS-OCT, which corrects both the sample-induced aberrations and spherical aberrations without any phase stability requirement. We show that ADAS-OCT can deliver clear images of rapidly moving blood cells by restoring the spatial resolution degraded by the aberrations caused by the human mucosa in vivo.

2. METHODS

A. Working principle of aberration correction in ADAS-OCT

In typical point-scanning confocal optics, when the wavefront of the optical beam is distorted by aberrations, destructive interferences may occur at the detection pinhole, resulting in a broadened three-dimensional (3D) point-spread function (PSF) with a lower peak intensity compared with the diffraction-limited PSF (Fig. 1). Assuming the full aperture can be segmented into a number of sub-apertures, the aberrations in the optical path difference (OPD) domain can be digitally corrected if the OPD of light rays encircled in each sub-aperture can be recorded separately in the electrical signals. In spectral-domain OCT (SD-OCT), recording of the OPD is achieved by interference between the sample light with the reference light as governed by the following simplified formulation:

$$ I(k) = 2S(k)\int_{-\infty}^{\infty} \sqrt{I_r(k)I_s(k)} \cos(2kz)dz $$

(1)

where $I(k)$ is the spectral interference signal detected by the spectrometer, $S(k)$ is the spectral distribution of the light source and will be omitted in the following derivations, $I_r(k)$ and $I_s(k)$ are the electric field reflectivity from the reference arm and the sample arm at the depth of z, respectively. In the sample arm, one can synthesize the aperture of the objective lens by dividing the illumination beam by its amplitude and displace them evenly along the radial direction (Fig. 1). In the pupil plane, each beamlet creates a sub-aperture with distinct center spatial frequency, which defines both an illumination light path and a detection light path. The OPD of each distinct round-trip path can be shifted by a fixed length using an optical path encoder (Fig. 1) so that the corresponding interferometric signals do not overlap with each other in the OPD domain. In such an ADAS-OCT system, the m-th ($m = 1, 2, ..., 2n-1$ represents the round-trip path number) depth-encoded cross-correlation term is given by the expression

$$ I_m(k) = \sqrt{I_r(k)I_s(k)} \left[\exp(i2kz_m) + C.C. \right] $$

(2)

where C.C. stands for complex conjugate. Fourier transform (\mathcal{F}) of these cross-correlation terms give the standard SD-OCT images obtained through individual paths

$$ I_{SD-OCT,m}(z) = \mathcal{F} \left[I_m(k) \right] $$

(3)

Correction of aberrations in the OPD domain can be simply achieved by eliminating the phase delay α_m of m-th cross-correlation term I_m with regard to I_r. Assuming that the aberration free condition is met when the local intensity of coherently summed image reaches its maximum, the problem is equal to finding α_m which is the best estimate of α_m so that the local intensity $\max \left\{ I(z) \right\}$ reaches its maximum, where $I(z) = \sum_{m=1}^{2n-1} \mathcal{F} \left[I_m(k) \cdot \exp(i\alpha_m) \right]$ is the coherent summation of the Fourier transform of the cross-correlation terms denoted by Eq. (2). $[z, z']$ is the depth range with $1 \leq z \leq z' \leq N$, and N is the length of Fourier transformation. Then the resultant aberration corrected A-line is given by

$$ i_{ADAS}(z) = \sum_{m=1}^{2n-1} \mathcal{F} \left[I_m(k) \cdot \exp(i\alpha_m^{\text{coh}}) \right] $$

(4)

While the interferometric signals from the local scatterer ($z' - z = 10$ coherence length) are coherently summed, those from the out-of-focus scatterers are suppressed due to OPD mismatches between light paths through different sub-apertures. Thus, this digital aberration correction mechanism can restore both the spatial resolution and the peak signal intensity degraded by aberrations. To produce the aberration-uncorrected control A-line, we incoherently summed the Fourier transform of the cross-correlation terms denoted in Eq. (2) so that $i(z) = \sum_{m=1}^{2n-1} \mathcal{F} \left[I_m(k) \cdot \exp(i\alpha_m) \right]$, and then found the optimal phase value for α_m so that global intensity

$$ \max \left\{ I(z) \right\} $$

(5)

reaches its maximum value. Therefore, the aberration-uncorrected control A-line is given by,

$$ i_{\text{Control}}(z) = \sum_{m=1}^{2n-1} \mathcal{F} \left[I_m(k) \cdot \exp(i\alpha_m^{\text{coh}}) \right] $$

B. ADAS-OCT imaging system

We developed an ADAS-OCT system on an SD-OCT platform (Fig. S1). Specifically, we created two sub-apertures using a birefringent beam displacer (Fig. 2b and Table S1), with which we obtained three cross-correlation terms with the aid of a quarter-wave plate (Fig. 2c): $I_1(k)$,
$I_x(k)$, and $I_z(k)$ are from the oo-path, the oe/ee-path, and the ee-path, respectively (Fig. 2d). By adding a second birefringent beam displacer (Fig. 2e, Fig. S2 and Table S2), we were able to create three sub-apertures and adjust the displacement between them, with which we could tailor the aberration correction performance.

A light source with a spectral bandwidth of 180 nm centered at 800 nm was used to achieve an axial resolution of 1.50 μm in water (refractive index = 1.33). Meanwhile, the effective numerical aperture of the focusing optics of the SD-OCT platform was set to 0.13 (1% power level) to achieve a transverse resolution of 2.75 μm (full width at half maximum, FWHM) and a depth of focus of 30 μm (confocal parameter). This spatial resolution allowed us to clearly visualize cellular structures under the aberration-free condition. Details of the system construction and signal transduction are provided in the Supplement 1.

![Fig. 2. Schematic of the sample arm optics of ADAS-OCT. (a) Sample arm optics with a beam displacer and a quarter-wave plate, where the red beam is the combination of the o- and e-beams, the green beam is the e-beam, and the blue beam is the o-beam. SMF: single-mode fiber; L1: collimating lens; CBD: calcite beam displacer; OA: optical axis of the CBD (in plane of paper); PS: principle section; d: length of the CBD; Δx: separated distance of the o- and e-beams, perpendicular to the direction of propagation; ϕ: angle of separation of the e-beam in the CBD; φ: angle between the slow axis and OA of the CBD; θ: angle between the fast axis and OA of the CBD; E_s, E_e: transverse and vertical electric field, respectively. (c) Each of the displaced beams was circularly polarized on the round trip to maximize the coupling back to the fiber pinhole. (d) The four round-trip optical paths taken by the light. (e) The number of sub-apertures can be scaled up through the use of cascading beam displacers, where the yellow beam is the combination of the oo- and ee-beams.](image)

3. RESULTS

A. Correction of sample-induced aberrations ex vivo

To demonstrate the ability to correct sample-induced aberrations, we first imaged a simplified tissue phantom that consisted of a collection of polystyrene microparticles with a mean diameter of 6 μm and that were uniformly suspended in agarose gel. We focused the sample light to the upper half of the phantom through a chicken breast tissue with thickness of 289 μm in air (Fig. 3a), resulting in broadened transverse and axial profiles of the particles in the control image (Fig. 3c, e, g) compared with a representative image obtained without the tissue on the phantom (Fig. 3b). In the aberration corrected image, both the transverse and axial profiles of the microparticles were significantly restored (Fig. 3d, f, h). For quantitative comparison, the FWHM values showed a mean improvement of 24.1% and 16.0% in the transverse and axial directions, respectively (Fig. 3i and Fig. 3j). In addition, a mean improvement in the peak intensity of 53.7% was obtained in favor of the signal-to-noise ratio (Fig. 3k). The image contrast and clarity of the chicken breast tissue were also significantly improved (boxes in Fig. 3c, d).

Fig. 3. Correction of sample-induced aberrations. (a) Photograph of the tissue phantom. CB: chicken breast. (b) An image of microparticles acquired without chicken breast tissue. (c) A representative control image. This was obtained using Eq. (4) with $[z, z']$ being the full depth range. The red dashed line indicates the focal plane. (d) The corresponding aberration corrected image. (e), (g) Six-fold magnified view of two insets in (c) show blurred microparticles. (f), (h) The corrected images corresponding to (e) and (g), respectively. The transverse and axial profiles are shown at the top and on the right of panels (e)-(h), respectively. The profiles in (e) & (g) are normalized to the peak values in (f) and (h), respectively. (i) and (j) The FWHM of the transverse and axial profiles of the particles in the control image (SD-OCT w/o CB, blue circle). (k) The FWHM of the transverse and axial profiles of the particles in the control image (ADAS-green rectangle) with respect to the control image (Control-red triangle). The image contrast and clarity of the chicken breast tissue were also significantly improved (boxes in Fig. 3c, d).

B. Correction of sample-induced aberration in vivo

To further demonstrate the potential clinical utility of our adaptive optics platform, we imaged chicken breast tissue in vivo. In this setting, we first acquired a OCT image (SD-OCT w/o CB, blue circle) and the control OCT image (green rectangle) with respect to the control OCT image (Control-red triangle).

Note: The diagrams and images are placeholders and should be replaced with actual graphics.
 aberration correction significantly enhanced the peak signal intensity of RBCs as compared with the control image (Fig. 4f), which contributed to the visibility of RBCs. In one of the other images, we could recover signals of RBCs even when one or both reflection signals were lost due to aberrations (Figs. S3 and S4).

C. Scalable imaging performance

The performance of the ADAS-OCT technique can be enhanced by scaling up the number of sub-apertures and increasing the displacement between them. Using the dual beam displacer setup (Fig. 2e and Fig. S2), we obtained three equally displaced sub-apertures: oo, ee, and oe/oe. The displacement between the centers of the sub-apertures \(\Delta x \) was adjusted in terms of \(R \) by rotating the second displacer (\(R = 1.3 \) mm is the radius of the illumination beam measured at the 1% power level).

This scalability was demonstrated by correcting defocus, which is the simplest aberration but represents a general problem in microscopy and endoscopy. As before, we used the tissue phantom consisting of 6-µm-diameter microparticles suspended in agarose gel. At a sample location 250 µm above the focal plane, the mean transverse FWHM of the particles was degraded to 24.1 µm, 25.6 µm, and 27.1 µm in the control images (Fig. 5a-c and red line in j).

For the group of two sub-apertures (oo and ee), the transverse FWHM was found to improve by 9.1% (for displacement between sub-apertures, \(\Delta x = 0.2R \)), 25.8% (for \(\Delta x = 1R \)) and 57.2% (for \(\Delta x = 1.8R \)) (Fig. 5d-f and green line in j). Larger displacement results in better correction also held true in the group of three sub-apertures (oo, ee, and oe/oe) (Fig. 5g-j and blue line in j). In the largest displacement of 1.8R between the oo sub-aperture and the ee sub-aperture, the mean transverse FWHM was 9.2 µm with three sub-apertures, which was 69.4% better than that of the control image data (Fig. 5i), while the mean transverse FWHM was 11.6 µm with two sub-apertures. It is suggested that the number of sub-apertures is related to the improvement of the transverse FWHM.

Fig. 4. Correction of sample-induced aberration in humans in vivo. (a) A representative control image. This was obtained using Eq. (4) with \([z, \zeta]\) being the full depth range. (b) Corresponding aberration-corrected image. (c) Three-fold magnified view of the blood vessel in the control image (green dashed box in a)). (d) Four-fold magnified view of the corresponding aberration-corrected image (blue dashed box in b)). (f) Ratio of the peak pixel (signal) intensity of the aberration-corrected RBC image to that of the control image. Upper and lower denote the upper and lower boundaries of cells, respectively. EP: epithelium; LP: lamina propria. Transverse and vertical scale bars: 100 µm.

Fig. 5. Improving the transverse performance of the defocus correction by increasing the number of sub-apertures. (a-e) Control images of microparticles located 250 µm above the focal plane. The transverse resolution did not vary significantly with sub-aperture displacement in the control images. (d-f) Corresponding aberration-corrected images using two sub-apertures: oo and ee. (g-j) Corresponding aberration-corrected images using three sub-apertures: oo, ee, and oe/oe. Insets: Illustrations of sub-apertures. (j) Comparison of the transverse FWHM of the microparticles on going from the control image (a) to the corrected image with two sub-apertures (d) to the corrected image with three sub-apertures (g). (k) Comparison of the transverse FWHM of the microparticles on going from the control image (b) to the corrected image with two sub-apertures (e) to the corrected image with three sub-apertures (h). (l) Comparison of the transverse FWHM of the microparticles on going from the control image (c) to the corrected image with two sub-apertures (f) to the corrected image with three sub-apertures (i). Mean transverse FWHMs of each plot are RBCs are ideal image phantoms due to their characteristic axial scattering profiles and spatial sparsity in blood vessels. According to our previous observations in zebrafish larvae, a typical OCT image of an RBC consists of two coherence-length limited reflection signals from the upper and lower boundaries of the cell’s biconcave disk [23]. Under the aberration free condition, RBCs should be easily identified in OCT images since the platelets and white blood cells are much fewer and present very different scattering characteristics [24, 25]. We imaged the labial mucosa of human volunteers with the focal region aligned to the lamina propria. The optical thickness (refractive index = 1.33) was approximately 300 µm from the surface of the stratified squamous epithelium to the RBCs in focus. In a representative aberration-corrected ADAS-OCT image (Fig. 4b, d), we could clearly identify six pairs of reflectance signals, presumably six RBCs (Fig. 4e). In contrast, in the corresponding control image (Fig. 4a, c), RBCs numbered 4–6 could not be readily recognized due to aberrations. It is obvious that
that can accommodate larger constraints could be further mitigated by employing a tethered capsule birefringence, such as yttrium orthovanadate (YVO₄). Space Barratt’s esophagus and specialized intestinal metaplasia in the outcomes by capturing the cellular hallmarks of the precancerous ADA focally and heterogeneously distributed over a large mucosal area, video endoscopy and random biopsy procedures if the lesions are internal organs. Potential clinical benefits may include the early endomicroscope USA). This probe diameter should be compatible with the instrument 2 mm and a rigid length of 21.2 mm, based classical fibe practice by incorporating a beam displacer and a polarizer into a tubular organs. An ADAS mechanisms such as line correction methods have to rely on special scanning field scanning or time domain lat OCT could potentially improve screening and diagnostic 3D OCT is inherently insensitive to motion aberration phase stability issue encountered by existing computational OCT system. The diameter and rigid length of OCT is based on the same depth-priority point-scanning mechanism as the most of current endoscopic and intracranial OCT systems, so that it can be potentially developed into an endoscopic technology that performs high-speed circumferential and helical scanning. In contrast, to maintain phase stability high enough to guarantee coherent aperture synthesis, existing computational-based aberration-correction methods have to rely on special scanning mechanisms such as line-field scanning or time-domain lateral priority scanning, which are not suitable for endoscopic applications in tubular organs. An ADAS-OCT endoscopic probe could be realized in practice by incorporating a beam displacer and a polarizer into a classical fiber-optic design [30] (Fig. S5). Using a calcite beam displacer, the two-beam separation angle could be 2.2° with a probe diameter of 2 mm and a rigid length of 21.2 mm, based on optical simulation results using Zemax software (Zemax, LLC, Kirkland, Washington, USA). This probe diameter should be compatible with the instrument channel of a standard video endoscope [31] or in a tethered capsule endomicroscope [30, 32].

Once developed, such an ADAS-OCT endoscope may enable tomographic diagnosis of mucosal abnormalities at the cellular basis in internal organs. Potential clinical benefits may include the early detection of intraepithelial neoplasia and metaplasia in the gastrointestinal tract. Such early detection can be missed by standard video endoscopy and random biopsy procedures if the lesions are focally and heterogeneously distributed over a large mucosal area, leading to a lack of morphological features at the mucosal surface. ADAS-OCT could potentially improve screening and diagnostic outcomes by capturing the cellular hallmarks of the precancerous lesions invisible to standard-of-care tools, such as goblet cells in Barrett's esophagus and specialized intestinal metaplasia in the stomach.

Looking towards the goal of tomographic diagnosis at the cellular level, future efforts will focus on the development of a clinically viable endomicroscopic ADAS-OCT system. The diameter and rigid length of the probe may be further reduced by using materials with larger birefringence, such as yttrium orthovanadate (YVO₄). Space constraints could be further mitigated by employing a tethered capsule that can accommodate larger-diameter optics. The ranging depth of the spectrometer could be extended through the use of spectral combination [23], linearization [33], and circular interferometric ranging [34].

Funding. This research was supported by National Research Foundation Singapore (NRF-CRP13-2014-05), Ministry of Education Singapore (MOE2013-T2-2-107 & RG 83/18 (2018-T1-001-144)), National Medical Research Council Singapore (NMRC/CBGR/0036/2013), NTU-AIT-MUV program in advanced biomedical imaging (NAM/15005), National Natural Science Foundation of China (No. 81401451 & No. 61705184), Natural Science Foundation of the Jiangsu Province (No. BK20140365) and Natural Science Basic Research Plan in Shaanxi Province of China (No. 2018Q6014).

See Supplement 1 for supporting content.

REFERENCES

1. A. Fenster, D. B. Downey, and H. N. Cardinal, "Three-dimensional ultrasound imaging," Physics in medicine & biology 46, R67 (2001).
2. J. Hsieh, "Computed tomography: principles, design, artifacts, and recent advances," in SPIE Bellingham, WA, (2009).
3. W. Rooney, "MRI: from picture to proton," Health Physics 85, 504-505 (2003).
4. D. L. Bailey, D. W. Townsend, P. E. Valk, and M. N. Maisey, Positron emission tomography (Springer, 2005).
5. V. Ntziachristos, "Going deeper than microscopy: the optical imaging frontier in biology," Nature methods 7, 603 (2010).
6. J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, "Optical projection tomography as a tool for 3D microscopy and gene expression studies," Science 296, 541-545 (2002).
7. R. M. Power and J. Huisken, "A guide to light-sheet fluorescence microscopy for multiscale imaging," Nature methods 14, 360 (2017).
8. B. Hermann, E. Fernández, A. Unterhuber, H. Satmmann, A. Fercher, W. Drexlkr, P. Prieto, and P. Artal, "Adaptive-optics ultrahigh-resolution optical coherence tomography," Optics letters 29, 2142-2144 (2004).
9. W. A. Benalcazar, W. Jung, and S. A. Boppart, "Aberration characterization for the optimal design of high-resolution endoscopic optical coherence tomography catheters," Optics letters 37, 1100-1102 (2012).
10. R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, "Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging," Optics express 13, 8532-8546 (2005).
11. J. Jang, J. Lim, H. Yu, H. Choi, J. Ha, J.-H. Park, W.-Y. Oh, W. Jang, S. Lee, and Y. Park, "Complex waveform shaping for optimal depth-selective focusing in optical coherence tomography," Optics express 21, 2890-2802 (2013).
12. L. Ginner, A. Kumar, D. Fechtig, L. M. Wurster, M. Salas, M. Pircher and R. A. Leitgeb, "Noniterative digital aberration correction for cellular resolution retinal optical coherence tomography in vivo," Optica 4, 924-931 (2017).
13. D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfaffle, C. Winter, and G. Hüttmann, "Aberration-free volumetric high-speed imaging of in vivo retina," Scientific reports 6, 35209 (2016).
14. S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, "Computational adaptive optics for broadband optical interferometric tomography of biological tissue," Proceedings of the National Academy of Sciences 109, 7175-7180 (2012).
15. N. D. Shemonski, F. A. South, Y.-Z. Liu, S. G. Adie, P. S. Carney, and S. A. Boppart, "Computational high-resolution optical imaging of the living human retina," Nature photonics 9, 440 (2015).
16. A. Ahmad, N. D. Shemonski, S. G. Adie, H.-S. Kim, W.-M. W. Hwu, P. S. Carney, and S. A. Boppart, "Real-time in vivo computed
optical interferometric tomography," Nature photonics 7, 444 (2013).

17. Y. Yasuno, J.-i. Sugisaka, Y. Sando, Y. Nakamura, S. Makita, M. Itoh, and T. Yatagai, "Non-iterative numerical method for laterally superresolving Fourier domain optical coherence tomography," Optics express 14, 1006-1020 (2006).

18. A. Kumar, W. Drexler, and R. A. Leitgeb, "Numerical focusing methods for full field OCT: a comparison based on a common signal model," Optics express 22, 16061-16078 (2014).

19. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, "Interferometric synthetic aperture microscopy," Nature Physics 3, 129 (2007).

20. J. Mo, M. de Groot, and J. F. de Boer, "Focus-extension by depth-encoded synthetic aperture in Optical Coherence Tomography," Optics express 21, 10048-10061 (2013).

21. E. Bo, Y. Luo, S. Chen, X. Liu, N. Wang, X. Ge, X. Wang, S. Chen, S. Chen, and J. Li, "Depth-of-focus extension in optical coherence tomography via multiple aperture synthesis," Optica 4, 701-706 (2017).

22. E. Bo, X. Ge, L. Wang, X. Wu, Y. Luo, S. Chen, H. Liang, G. Ni, and X. Yu, "Multiple aperture synthetic optical coherence tomography for biological tissue imaging," Optics express 26, 772-780 (2018).

23. D. Cui, X. Liu, J. Zhang, X. Yu, S. Ding, Y. Luo, J. Gu, P. Shum, and L. Liu, "Dual spectrometer system with spectral compounding for 1-µm optical coherence tomography in vivo," Optics Letters 39, 6727-6730 (2014).

24. L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, "Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography," Nature medicine 17, 1010 (2011).

25. K. K. Chu, M. E. Kusk, L. Liu, A. Som, J. M. Yonker, H. Leung, D. Cui, J. Ryu, A. D. Eaton, and G. J. Tearney, "Illuminating dynamic neutrophil trans-epithelial migration with micro-optical coherence tomography," Scientific Reports 7, 45789 (2017).

26. S. Meites, "Skin-puncture and blood-collecting technique for infants: update and problems," Clinical Chemistry 34, 1890-1894 (1988).

27. V. S. Shah, A. Taddio, S. Bennett, and B. D. Speidel, "Neonatal pain response to heel stick vs venepuncture for routine blood sampling," Archives of Disease in Childhood-Fetal and Neonatal Edition 77, F143-F144 (1997).

28. I. Chirivella, B. Bermejo, A. Insa, A. Perez-Fidalgo, A. Magro, S. Rosello, E. Garcia-Garre, P. Martin, A. Bosch, and A. Lluch, "Impact of chemotherapy dose-related factors on survival in breast cancer patients treated with adjuvant anthracycline-based chemotherapy," Journal of Clinical Oncology 24, 668-668 (2006).

29. A. R. Clamp, W. D. J. Ryder, S. Bhattacharya, R. Pettengell, and J. A. Radford, "Patterns of mortality after prolonged follow-up of a randomised controlled trial using granulocyte colony-stimulating factor to maintain chemotherapy dose intensity in non-Hodgkin's lymphoma," British journal of cancer 99, 253 (2008).

30. M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, "Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure," Nature medicine 19, 238-240 (2013).

31. M. J. Gora, M. J. Suter, G. J. Tearney, and X. Li, "Endoscopic optical coherence tomography: technologies and clinical applications," Biomed. Opt. Express 8, 2405-2444 (2017).

32. K. Liang, G. Traverso, H.-C. Lee, O. O. Ahsen, Z. Wang, B. Potsaid, M. Giacomelli, V. Jayaraman, R. Barman, A. Cable, H. Mashimo, R. Langer, and J. G. Fujimoto, "Ultrahigh speed en face OCT capsule for endoscopic imaging," Biomed. Opt. Express 6, 1146-1163 (2015).

33. G. Lan and G. Li, "Design of a k-space spectrometer for ultra-broad waveband spectral domain optical coherence tomography," Scientific Reports 7, 42353 (2017).

34. M. Siddiqui, A. S. Nam, S. Tzovburun, N. Lippok, C. Blatter, and B. J. Vakoc, "High-speed optical coherence tomography by circular interferometric ranging," Nature photonics 12, 111 (2018).

Supplement 1

1. The ADAS-OCT imaging system

ADAS-OCT assumes the basic set-up using in SD-OCT, with broadband light delivered to the input port of a Michelson interferometer and the spectral interference signals detected using a spectrometer (Fig. S1). A supercontinuum light source (SuperK Extreme OCT, NKT Photonics A/C, Birkerod, Denmark) provided illumination with a bandwidth of 180 nm centered at 800 nm through a single-mode fiber (780 HP, Nufern, USA). The input light was collimated by a lens L1 (AC050-010-B-ML, Thorlabs, Newton, NJ, USA) and split into the reference arm and sample arm by a 50:50 beam splitter BS (BS011, Thorlabs, Newton, NJ, USA). The light in the reference arm was focused by a lens L2 (M Plan Apo NIR 20X, Mitutoyo, Takatsu-ku, Kawasaki, JP) onto the reference mirror M. The light in the sample arm was guided by a pair of galvanometer mirrors (GVS002, Thorlabs, Newton, NJ, USA) to an objective lens L3 (M Plan Apo NIR 20X, Mitutoyo, Takatsu-ku, Kawasaki, JP). The light backscattered or reflected from both arms was coupled by a lens L4 (AC050-010-B-ML, Thorlabs, Newton, NJ, USA) into an SMF (780 HP, Nufern, USA) connected to the spectrometer. The spectrometer consisted of a 1500 lines/mm diffraction grating (PGK-1500, Ibsen Photonics, Farum, Denmark), a camera lens (Canon EF 85 mm, f/1.2, Tokyo, JP), and a 4096-pixel linear camera (AVIVA EM4, e2V, Chelmsford, UK). This spectrometer provided a ranging depth of 1.87 mm (6-dB roll-off) (Fig. S6). The detected interference signal was digitized at 12-bit resolution and transferred to a computer via an image acquisition board (KBIN-PCIE-CL4-F, Bitflow, Woburn, MA, USA). Image acquisition and galvanometer mirror scanning were digitally synchronized. Dispersion correction [1] and a discrete Fourier transform were performed on each axial line (A-line) to obtain the axial depth profile of the tissue.

The core of our ADAS-OCT system was a custom-designed CBD (see Table. S1 for details of the design) and a QWP (AQWP05M-980, Thorlabs, Newton, NJ, USA) at the infinite space of the sample arm, which together served as the amplitude beam splitter and the optical path encoder (Fig. 2b, c). The collimated beam from the light source was split into doubly-refracted beams – the ordinary beam (o-beam) and the extraordinary beam (e-beam) – due to the anisotropic refractive index of the CBD (Fig. 2b). For clarity, we defined the sub-aperture corresponding to the ordinary ray illumination as the o-sub-aperture and the sub-aperture corresponding to the extraordinary ray illumination as the e-sub-aperture. The two beams were laterally displaced by Δx and axially shifted by Δz in the OPD with respect to the reference light. Backscattered resulting in four round-trip paths of the detected light (oo, oe, oe, and oo-paths; Fig. 2d).
It should be noted that the \(oe \)- and \(eo \)-paths share the same OPD with respect to the reference light, such that three interference signals from a scatterer were encoded in the depth domain. The number of sub-apertures was increased from two to three by adding another beam displacer (Fig. 2e and Fig. S2; see Table. S2 for details of the design). In addition, a linear polarizer LP (LPNIRE-100-B, Thorlabs, Newton, NJ, USA) was placed in the reference arm for polarization management.

![Fig. S2. Rotation of CBD2 generates maximum aperture separation. SMF: single-mode fiber; L1-2: optical lenses; CBD1-2: calcite beam displacer; OA1-2: optical axis of CBD1-2 (in plane of paper).](image)

2. Sample preparation and visualization

Tissue phantoms were fabricated by mixing agarose solution (No. PC0701-100 g, Vivantis, Oceanside, CA, USA) with polystyrene microparticles (No. 64090-15, nominal diameter 6 \(\mu \)m, Polysciences Inc, Warrington, PA, USA). This mixture was stored in a vial and placed in an ultrasonic bath for ten minutes to remove residual clusters. The sample (10 g) was poured into a cell culture dish, cured for 30 minutes at 100 °C and then cured for 24 hours at room temperature before being put to use in imaging experiments.

Fresh chicken breast tissues were obtained from a local wet market on the day of slaughter. Muscular tissue was dissected after gross inspection and was sliced into sub-millimeter-thick pieces. The sample was covered by wet gauze (phosphate-buffered saline solution) to prevent dehydration before the imaging experiment.

Human labial mucosa was imaged using an air spacer mounted onto a fused silica window, which was used to maintain the working distance between the objective lens and the labial mucosa of the human subject. During image acquisition, the lower labial mucosa was in gentle contact with a polyethylene (PE) film that covered the fused silica window. Images were acquired at 20 frames/second with 1024 axial scans/second, and each image session was completed within 30 seconds. Written consent was obtained from 2 volunteers (Subject #1, male, aged 32 with no pathological changes in labial mucosa; Subject #2, male, aged 29 with no pathological changes in labial mucosa) before the experiment. The study was approved by the Institutional Review Board at Nanyang Technological University (IRB-2016-10-015).

All data processing and image visualizations were implemented using MATLAB (MathWorks, Natick, MA, USA) and Imagej software (https://imagej.nih.gov/ij/).

3. Amplitude division and round-trip beam paths

In the CBD shown in Fig. 2a and Fig. S1, the separation angle between the \(o \)- and \(e \)-beams is \(\phi = 265^\circ \) according to the design parameters given in Table. S1. The corresponding beam displacement \(\Delta x \) is given by

\[
\Delta x = d \cdot \tan \phi
\]

where \(\phi = \theta - \varphi \), \(\tan \theta / \tan \varphi = n_o^2 / n_e^2 \), \(n_o = 1.65 \) and \(n_e = 1.49 \) are the refractive index of CBD for the \(o \)- and \(e \)-beams according to the refractive index sphere. The thickness of the CBD was \(d = 10.5 \text{ mm} \); therefore \(\Delta x = 0.49 \text{ mm} \). These two laterally-displaced beams resulted in two divided sub-apertures in the pupil plane of the objective lens L2. The polarization axis of the QWP was 45° with respect to the linear polarization direction of the \(o \)- and \(e \)-beams. The round-trip optical path consisting of a combination of the ordinary-illumination path and the ordinary-detection path is termed the \(oo \)-path; the path consisting of a combination of the extraordinary-illumination path and extraordinary-detection path is termed the \(ee \)-path; the path consisting of a combination of the ordinary-illumination path and extraordinary-detection path is called the \(oe \)-path; and the path consisting of a combination of the extraordinary-illumination path and the ordinary-detection path is termed the \(oe \)-path.

Here, we define the single-trip OPD caused by the CBD between the \(o \)- and \(e \)-beams as \(\Delta z \), which is given by

\[
\Delta z = d \cdot [n_e / \cos(\phi) - n_o] \tag{2}
\]

Based on the current CBD design, \(\Delta z = 619 \mu \text{m} \) in water. Thus the round-trip CBD-induced OPD of the \(oo \)-path is 2 \(\Delta z \) longer than that of the \(oo \)-path, while the round-trip CBD-induced OPD of the \(ee \)-path and \(ee \)-path is 3 \(\Delta z \) longer than that of the \(oo \)-path. This made it possible to encode the interferometric signals from the four paths in the OPD domain.

![Fig. S3. One of the other representative images of RBCs in vivo. (a-c) 10th (m=1-3) uncorrected images (a-c) from the \(oo \)-path, \(oe/ee \)-path, and the \(ee \)-path, respectively. (d) The control image \((z, z')\) being the full depth range). In all the uncorrected images and the aberration-corrected image, the three RBCs (green arrows) were not clearly identifiable due to the lack of characteristic 'two reflection signals'. (e) Aberration corrected image, where the characteristic 'two reflection signals' are clearly visible. Transverse and vertical scale bars: 100 \(\mu \)m.](image)
Fig. S4. Another one of the other representative images of RBCs in vivo. (a-c) m-th \((m=1-3)\) uncorrected images (a-c) from the oo-path, oe/eo-path, and the ee-path, respectively. (d) The control image ([1, z, z] being the full depth range). In all the uncorrected images and the aberration-corrected image, the three RBCs (green arrows) were not clearly identifiable due to the lack of characteristic ‘two reflection signals’. (e) Aberration corrected image, where the characteristic ‘two reflection signals’ are clearly visible. Transverse and vertical scale bars: 100 µm.

Table S1 Design parameters of the calcite beam displacer in Fig. 2a and Fig. S1.

Parameters	Values
Dimensions	8 mm × 8 mm
Thickness \(d\)	10.5 mm
Optical axis angle \(\varphi\)	71.1°
Anti-reflection (AR) coating	AR / AR @700-1000 nm
Wavefront distortion	< 1/2 \(\lambda\)
Coating surface 1	R < 0.5% @700-1000 nm
Coating surface 2	R < 0.5% @700-1000 nm
Surface quality	20-10 scratch-dig

Table S2 Design parameters of the calcite beam displacer in Fig. 2e and Fig. S2.

Parameters	Values
Dimensions	8 mm × 8 mm
Thickness \(d\)	12 mm
Optical axis angle \(\varphi\)	45°
Anti-reflection (AR) coating	AR / AR @700-1000 nm
Wavefront distortion	< 1/2 \(\lambda\)
Coating surface 1	R < 0.5% @700-1000 nm
Coating surface 2	R < 0.5% @700-1000 nm
Surface quality	20-10 scratch-dig

References

1. X. Liu, S. Chen, D. Cui, X. Yu, and L. Liu, "Spectral estimation optical coherence tomography for axial super-resolution," Opt Express 23, 26521-26532 (2015).