The 6-minute walk test predicts mortality in a pulmonary nontuberculous mycobacteria-predominant bronchiectasis cohort

Rebekah A. Blakney, Emily E. Ricotta, Dean Follmann, Jessica Drew, Kelly A. Carey, Lisa N. Glass, Chevalia Robinson, Sandra MacDonald, Pamela J. McShane, Kenneth N. Olivier, Kevin Fennelly and D. Rebecca Prevots

Abstract

Background: Bronchiectasis is a chronic lung condition frequently associated with nontuberculous mycobacteria pulmonary (NTM) disease. Persons with these conditions are at increased risk of mortality. Patient reported outcome (PRO) instruments and the 6-minute walk test (6MWT) have been shown to predict mortality for several lung conditions, but these measures have not been fully evaluated for bronchiectasis and NTM.

Methods: We conducted a retrospective cohort study among adult patients enrolled in a natural history study of bronchiectasis at the National Heart, Lung, and Blood Institute. Electronic medical records were queried for demographic, clinical, microbiologic, radiographic, and PRO instrument data: St. George's Respiratory Questionnaire (SGRQ), Medical Research Council Dyspnea Scale, and the Pulmonary Symptom Severity Score (PSSS). The study baseline date was defined as the patient’s first visit after January 1st, 2015 with a SGRQ or 6MWT completed. Follow-up was defined as the interval between the study baseline visit and date of death or December 31st, 2019. Sex-stratified Cox proportional-hazards regression was conducted to identify predictors of mortality. Separate models were run for each PRO and 6MWT measure, controlling for sex, age, body mass index (BMI), fibrocavitary disease status, and M. abscessus infection.

Results: In multivariable Cox proportional-hazards regression models, the PSSS-severity (aHR 1.29, 95% CI 1.04–1.59), the 6MWT total distance walked (aHR 0.938, 95% CI 0.896–0.981) and distance saturation product (aHR 0.930, 95% CI 0.887–0.974) independently predicted mortality. In addition, BMI was significantly predictive of mortality in all models.

Conclusions: The 6MWT and a PRO instrument capturing symptom severity are independently predictive of mortality in our cohort of bronchiectasis patients.

Keywords: Bronchiectasis, Nontuberculous mycobacteria, Mortality, Patient reported outcomes, Health-related quality of life, 6-Minute walk test
function. Bronchiectasis is associated with an increased risk of mortality compared to healthy controls [1]. Persons with bronchiectasis are at very high risk of chronic infection with nontuberculous mycobacteria (NTM) [2], which is also associated with an increased risk of mortality even after controlling for comorbidities [3–5]. A recent meta-analysis of five-year mortality among persons with Mycobacterium avium complex (MAC) lung disease identified several consistent predictors of mortality including male sex, fibrocavitary disease, and the presence of comorbidities. Several studies also found low body mass index (BMI) to be a risk factor for increased mortality [6]. Functional measures such as the 6-Minute Walk Test (6MWT) have been less frequently measured systematically for studies of NTM and bronchiectasis disease progression. However, these measures have been identified as important mortality predictors for chronic obstructive pulmonary disease (COPD) [7] as well as for idiopathic pulmonary fibrosis [8]. Furthermore, the 6MWT correlates with quality-of-life measurements in patients with bronchiectasis and MAC lung disease [9, 10].

The Food and Drug Administration has urged the incorporation of patient reported outcome (PRO) instruments into clinical trials and a public meeting with representation of pulmonary NTM patients, most of whom had underlying bronchiectasis, highlighted the importance of quality of life and symptom measures [11, 12]. PRO instruments measuring health-related quality of life (HRQL) include the St. George’s Respiratory Questionnaire (SGRQ), which is widely used in COPD, and has been associated with mortality in COPD patients [13]. The SGRQ has also been validated for bronchiectasis [14]. PRO instruments capturing symptoms and symptom burden include the Medical Research Council (MRC) Dyspnea Scale [15], which has been found to be a valid measure of disability and predict mortality in COPD patients [16, 17] and the Memorial Symptom Assessment Scale, which has been found to predict mortality in lung cancer patients [18, 19] and correlates with quality-of-life measures in COPD [20]. The association between mortality and the Memorial Symptom Assessment Scale has not been examined for COPD or other chronic respiratory diseases. These PRO instruments may predict mortality in bronchiectasis and NTM, but their use has not been fully evaluated.

The National Institutes of Health (NIH) has an ongoing natural history cohort of bronchiectasis patients, and PRO instruments were systematically incorporated into these studies in 2015. Most patients in the cohort have a history of NTM pulmonary disease (NTM PD). The objective of this study was to evaluate predictors of short-term mortality in this cohort, including the 6MWT and PRO instruments. These data could help inform evaluations of prognosis in bronchiectasis patients for patient education and possibly referral to hospice care.

Methods

Study population

Our study population for this retrospective analysis included adults enrolled in the Institutional Review Board-approved natural history study of bronchiectasis at the National Institutes of Health (NIH), (www.clinicaltrials.gov identifier NCT00943514). Inclusion criteria are 5 years of age and older with an established diagnosis of bronchiectasis or a history of chronic, recurring respiratory infections. Patients could also be enrolled concurrently in a natural history study of NTM infections (www.clinicaltrials.gov identifier number NCT00018044), and for this reason the patient population is enriched for persons with NTM PD. Patients enrolled in these protocols have annual follow-up visits but may be seen more frequently at the discretion of the clinician. Enrollment and follow-up visits include a medical history and physical examination, pulmonary function tests (PFT), including spirometry, lung volumes and diffusing capacity, a 6MWT, and sputum (induced, if needed) microbiology for routine bacteria, acid fast bacilli, and fungal culture. In addition, beginning in January 2015, patients completed PRO instruments capturing HRQL and pulmonary symptom-specific questionnaires, including the SGRQ, the MRC Dyspnea Scale, and the Pulmonary Symptom Severity Scale (PSSS) (described below). For this reason, we defined January 1st, 2015 as our baseline date. Patients were included in our analytic cohort if they were aged ≥ 18 years old, had bronchiectasis, and had a 6MWT or SGRQ completed on or after this date. The end of the observation period was defined as December 31, 2019. We excluded patients diagnosed with a primary immunodeficiency and those whose baseline study visit was < 6 months prior to the end of the study period.

Data abstraction

Demographic, clinical, microbiologic, radiographic, and PRO instrument data were abstracted from the NIH Clinical Center electronic medical records. Patient study baseline was defined as the first 6MWT or SGRQ after January 1st, 2015. Other baseline measurements (clinical, microbiologic, radiographic) were defined as the closest measurement within six months before or after the baseline to accommodate varying follow up. For study purposes, patient chest computed tomography (CT) scans were re-reviewed by two pulmonologists (KF, LG) to assess the presence of fibrocavitary disease.

Antibiotic treatment status at baseline was determined by querying clinical records for current prescriptions...
hazards models, with a focus on PRO and 6MWT measurements. We first constructed univariable models for all measured demographic, microbiologic, and clinical factors abstracted, including comorbidities, NTM culture positivity, NTM species isolated, and other concomitant lung infections (Table 1). Sex, age, BMI, fibrocavitary disease status, forced expiratory volume in one second (FEV, % predicted) and diffusion capacity of carbon monoxide (DLCO) were considered in these models. Following construction of the univariable models, we constructed a multivariable model using a stepwise approach and adjusted for all variables with a p value less than 0.2. Figure 1 shows the survival analysis of the participants according to sex and NTM species in the univariable model. The results showed that female sex and M. abscessus were associated with worse survival compared to male sex and MAC, respectively. The multivariable model confirmed these findings, with female sex, M. abscessus, MAC, and age ≥75 years associated with worse survival. The HR for female sex was 1.66 (95% CI: 1.09–2.53), for M. abscessus 1.58 (95% CI: 1.02–2.43), for MAC 1.76 (95% CI: 1.24–2.48), and for age ≥75 years 1.42 (95% CI: 1.09–1.85). The multivariable model also showed that the presence of other NTM species was associated with improved survival, with an HR of 0.6 (95% CI: 0.41–0.88). The Harrell’s C-index for the multivariable model was 0.67, indicating good discrimination. The calibration of the model was good, with the observed survival rates closely matching the predicted rates. The model was internally validated using the bootstrap method, and no overfitting was observed. The results of the survival analysis suggest that female sex, M. abscessus, MAC, and age ≥75 years are associated with worse survival, while the presence of other NTM species is associated with improved survival.
monoxide (DLCO adj% predicted), C-reactive protein and *M. abscessus* isolated at baseline were significant.

We further considered these variables significant in univariable models for inclusion in our final multivariable models using likelihood ratio tests to evaluate model fit. All measures significant in univariable models significantly improved multivariable model fit, except C-reactive protein. The low number of deaths in this cohort during the study period necessitated efficient variable selection for the final model to avoid overfitting. We selected one measure of severity, fibrocavitary disease status, due to previous independent association with mortality in a similar cohort [30] and FEV₁% predicted and DLCO adj% predicted were dropped from the multivariable model.

Our final model included *M. abscessus* status, age, sex, BMI, and fibrocavitary disease status, in addition to the PRO instruments, 6MWD, or DSP. Because of correlation among PRO and 6MWD, we constructed separate multivariable models for each PRO and 6MWT measurements. To control for different baseline mortality hazard between men and women, we constructed Cox models stratified by sex. All analyses were conducted using R version 4.0.2 survival and survminer packages. Total follow-up time was defined as the interval between the study baseline and the date of death or the end of the observation period, December 31st, 2019 for surviving patients.

Results

Baseline characteristics

A total of 300 patients were included in our analytic cohort, with a median of 4.1 years (range 39 days–4.98 years) of follow-up; cumulative follow-up time for the entire cohort was 1072 years. Baseline demographic, clinical, and microbiological features are shown in Table 1.

The median age at baseline was 62 years and 217 (72%) were women. The median BMI was 21.4 kg/m², median FEV₁% predicted was 72.5%, and 44 (15%) had fibrocavitary disease. The most common comorbidities were asthma (19%) and cystic fibrosis (7%). Twenty-one patients died for a crude mortality of 7% and a mortality rate of 2 per 100 person-years.

Microbiology

Overall, 219 (74%) had a history of NTM isolation from respiratory culture collected at NIH since enrollment in the protocol, including 168 (57%) with MAC infections and 97 (33%) with *M. abscessus* infections. Of the 150 (51%) patients with NTM isolated at baseline, 96 (64%) had MAC, 62 (41%) had *M. abscessus*, and 24 (16%) had another NTM species (excluding *M. gordonae*). Baseline concomitant organisms included *Pseudomonas* in 53 (18%), *Aspergillus* in 91 (31%), *Staphylococcus aureus* in 17 (6%), and *Stenotrophomonas* in 18 (6%) (Table 1).

The antibiotics received at baseline for the cohort are shown in Additional file 1: Table S1.

Among those with MAC infections, 45% were receiving treatment including a macrolide, and 17% were receiving a regimen that included amikacin. Among those with *M. abscessus* infections, 37% received a form of amikacin, and 21% received clofazimine. Overall, of 150 patients with NTM isolated within ±6 months of baseline, 84 (56%) were receiving antibiotic treatment.

Functional/PRO measurements

Functional and PRO measures are shown in Table 2.

The median distance walked was 524 m for men, 498 m for women, and 505 m overall. The median 6MWD percent predicted was 76% among those in the cohort age 45–85 years. The median DSP was 495 m% for men, 474 m% for women, and 480 m% overall. The median total SGRQ score was 30.0 points, more than threefold the median score in the general population, indicating poorer HRQL. For the component scores, the median symptom score was 44.5; activity- 36.4; impact- 23.3. The MRC Dyspnea Scale indicated generally mild dyspnea, with 232 (77%) patients selecting grade 1–2. The median PSSS-frequency score was higher than the median PSSS-severity score, at 8 and

Table 2: Functional and Quality of Life Measurements (n = 300)

Measurement	N (%)
6-min walk test–Median [IQR]	505 [441.5–576.8]
6MWD (m)	4798 [427.7–555.8]
Distance Saturation Product (m%)	
St. George's Respiratory Questionnaire–Median [IQR]	
Total Score	30 [15.8–48.2]
Symptom Score	44.5 [30.4–62.3]
Activity Score	36.4 [13–59.5]
Impact Score	23.3 [10.3–38.2]
Dyspnea Scale	
Grade 1	132 (44)
Grade 2	100 (33)
Grade 3	32 (11)
Grade 4	3 (1)
Grade 5	3 (1)
Pulmonary Symptom Severity Score–Median [IQR]	
Frequency	9 [5.2–11]
Severity	6 [4–8]

Missing data: 6MWD: n = 18, 6 MW DSP: 41, SGRQ: total score n = 20, symptom score n = 20, activity score n = 19, impact score n = 19, Dyspnea scale: n = 30, PSSS-severity: 40, PSSS-frequency: 36

6MWD 6-Minute walk distance, IQR interquartile range [25th percentile–75th percentile]
6 respectively. All PRO measures were correlated with each other as well as with 6MWD (Table 3) with Spearman correlation coefficients significant at p < 0.001 (Fig. 1, Additional file 1: Fig. S2).

The strength of correlations varied, with a high positive correlation between the SGRQ and MRC Dyspnea scale and PSSS, a moderate negative correlation between the SGRQ and 6MWD, low negative correlations between the 6MWD and MRC Dyspnea scale and PSSS, and low positive correlation between the MRC Dyspnea scale and the PSSS.

Table 3 Spearman correlation coefficients among PRO measures and 6MWD

	SGRQ Total Score	6MWD	MRC Dyspnea Scale
6MWD	−0.53*	NA	NA
MRC Dyspnea Scale	0.6*	−0.35*	NA
PSSS-severity	0.76*	−0.46*	0.45*
PSSS-frequency	0.76*	−0.4*	0.45*

*Significant at p < 0.001

Table 4 Cox proportional hazard final models

	Adjusted hazard ratio (95% CI)	p value
6MWD (10 m)b	0.938 (0.896–0.981)	0.005
6 MW DSP (10 m%)b	0.930 (0.887–0.974)	0.002
PSSS-severityb	1.29 (1.04–1.59)	0.02
BMI (kg/m²)c	0.589 (0.469–0.739)	< 0.001

*a 6MWD: n = 242, n events = 17; 6 MW DSP: n = 222, n events = 17; PSSS-severity: n = 232, n events = 18; BMI: n = 257, n events = 19
*b Model adjusted for: age, BMI, Fibrocavitary disease, M. abscessus, cox regression stratified by gender
*c Model adjusted for: age, Fibrocavitary disease, M. abscessus, cox regression stratified by gender

CI= confidence interval, BMI=body mass index, 6MWD6-minute walk distance, 6MW DSP6-minute walk distance saturation product, PSSS-severity Pulmonary Symptom Severity Score severity component

Survival analysis

Kaplan–Meier survival curves are presented in Fig. 2 for the 6MWD. Survival probability decreased significantly as the percent predicted 6MWD decreased.

The SGRQ, MRC Dyspnea Scale, and PSSS-frequency were not independently predictive of mortality after controlling for age, sex, BMI, fibrocavitary disease status, and *M. abscessus* infection. In multivariable models, 6MWD, DSP, and the PSSS-severity were all independently predictive of mortality. The adjusted hazard ratios for final models are shown in Table 4. Unadjusted hazard ratios and hazard ratios for variables...
included to control confounded may be found in Additional file 1: Table S2.

The 6MWD and DSP standardized to units of 10 m and 10 m% were found to have an adjusted hazard ratio of 0.94 and 0.93, respectively, corresponding to a 6% reduction in risk of death per 10 m and a 7% reduced risk per 10 m% walked. Translated into units of the upper estimate of the minimum important difference, the hazard ratio was 0.83 (95% CI 0.74–0.94) or a 17% reduced risk of death per 30 m walked for the 6MWD. The adjusted hazard ratio of the PSSS severity score was 1.29: for each unit increase in the severity score, the risk of death increased by 29%. Additionally, after stratifying by sex and controlling for age, fibrocavitary disease, and M. abscessus we found an increased risk of mortality with decreasing BMI. For each 1 kg/m² decrease in baseline BMI, the risk of death increased by 41%.

Discussion
We found that the PSSS-severity (but not frequency), 6MWD and the DSP were independently predictive of mortality after controlling for age, fibrocavitary disease, M. abscessus, BMI, and sex. These findings suggest that a PRO instrument capturing pulmonary symptom severity and functional measures may add to the assessments of a patient’s clinical status and risk of mortality, beyond previously described risk factors in bronchiectasis and NTM [6].

The independent effects of the 6MWD and the DSP are noteworthy and highlight the value of this relatively straightforward measurement. This study builds on research demonstrating the clinical utility of the 6MWT for pulmonary diseases. In a study of idiopathic bronchiectasis with 60 patients and 9 deaths, the DSP was the strongest 6MWT measurement in predicting mortality [31]. The 6MWD is a measure of gait speed, which has been found to be predictive of mortality across disease conditions: a systematic review across nine large cohort studies of older adults with conditions ranging from osteoporosis to healthy aging, found that gait speed was predictive of mortality independent of all other measures. Slower gait speed may reflect decline of the many organ systems required to walk, including the respiratory system, which in turn are associated with mortality [32]. Thus, 6MWD captures an effect that is important independent of other measures. The DSP adds a measure of respiratory system strain by adjusting for oxygen desaturation during the walk. However, the similarity of adjusted hazard ratios between the 6MWD and DSP is notable for clinical practice, suggesting clinical utility of the 6MWT even if oxygen saturation monitoring is not available.

The predictive value of the PSSS-severity for mortality in this patient population highlights the clinical utility of this measure, especially given the advantages of PRO instruments including low patient and resource burden, ability to be completed on first assessment, and ease of tracking longitudinally. This measure could be especially useful when disease severity contraindicates or limits a patient’s willingness to complete a 6MWT or other field walking tests. However, this instrument has not been systematically validated as a modification of the Memorial Symptom Assessment Scale and future verification of the reliability and validity in other patient populations is warranted. The association of the PSSS-severity with survival suggests a patient’s perception of severe pulmonary symptoms correlates with disease progression and respiratory system decline. Even though the SGRQ, MRC Dyspnea Scale, and PSSS-frequency are correlated with the PSSS-severity, we did not find these instruments were significantly associated with mortality risk in multivariable models in this patient population, although an SGRQ score ≥ 25 was recently found to predict mortality in an MAC-PD cohort after adjusting for age, BMI, and percent predicted forced vital capacity [33]. It is possible that NTM-specific PRO instruments would better predict mortality in this patient population. A recent assessment of a newly-developed NTM-specific PRO questionnaire found that a module assessing NTM-specific domains performed well, in addition to the previously validated Quality of Life-Bronchiectasis (QOL-B), lending validity to the need for specific NTM PRO instruments [34].

BMI has also been found to predict increased risk of disease as well as risk of death in other bronchiectasis as well as NTM studies. Among patients in the bronchiectasis research registry, underweight patients had lower lung function measured by FEV₁% predicted [35]. In a separate recent study, low BMI was also correlated with increased disease severity (Bronchiectasis Severity Index), QOL (QoL-B), and symptoms (Leicester Cough Questionnaire) [36]. A large cohort study of more than 5.6 million persons in the South Korean national health care system who had regular pulmonary exams found that decreasing BMI was inversely related to the risk of NTM PD [37]. Relevant to increased risk of NTM PD among underweight bronchiectasis patients, low BMI was found to be associated with treatment failure in patients with M. abscessus pulmonary infections [38] and a study in Japan found that NTM PD patients who died had significantly lower BMI than surviving patients [39]. Most recently, a large cohort study also found BMI to be predictive of mortality in NTM PD patients in the context of the newly developed score which incorporates body mass index, age, cavity, erythrocyte sedimentation rate, and sex (BACES) into a predictive model [40].

Hospice care may be under-utilized for pulmonary conditions and uncertainty regarding prognosis may be
a contributing factor [41]; for this reason, adding to the understanding of predictors of prognosis among bronchiectasis and NTM patients could be useful for patient education and end-of-life care [42]. Our findings suggest that irreversible weight loss could be a factor to consider in hospice referral decision-making, consistent with the Medicare hospice benefit criteria for pulmonary disease [41]. Additionally, the 6MWD and PSSS-severity could be useful documentation for the severe chronic lung disease component of this criteria, which requires dyspnea resulting in decreased functional capacity.

A limitation of our study is that the patient population was referred to our tertiary care center and thus are more likely to represent patients with severe disease and may not be representative of all patients with bronchiectasis or NTM PD. We are also unable to determine if low BMI is a consequence of worsening disease or is a cause of disease progression.

Conclusions
Our study provides evidence that the PSSS-severity PRO instrument and the 6MWD and DSP are independently associated with bronchiectasis mortality, and that underweight patients are at higher risk of mortality. Further studies are needed to fully understand the impact of weight gain or improvement of functional capacity on outcomes, and these studies should incorporate PROs specific to bronchiectasis and NTM PD.

Abbreviations
NTM: Nontuberculous mycobacteria; PRO: Patient reported outcome; 6MWT: 6-Minute walk test; SGRQ: St. George’s Respiratory Questionnaire; PSSS: Pulmonary Symptom Severity Score; BMI: Body mass index; MAC: Mycobacterium avium Complex; COPD: Chronic obstructive pulmonary disease; HRQL: Health-related quality of life; MRC: Medical Research Council; PD: Pulmonary Disease; NIH: National Institutes of Health; PFT: Pulmonary function test; CT: Computed tomography; 6MWD: 6-Minute walk distance; DSP: Distance saturation product; PSSS-frequency: Pulmonary Symptom Severity Score Frequency Score; PSSS-severity: Pulmonary Symptom Severity Score Severity Score; FEV1% predicted: Percent predicted diffusion capacity of carbon monoxide; IQR: Interquartile range (25th percentile–75th percentile); AFB: Acid-fast bacilli; QOL-B: Quality of Life-Bronchiectasis; BACES: Body mass index, age, cavity, erythrocyte sedimentation rate, and sex.

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s12889-022-07054-6.

Additional File 1: Figure S1. Pulmonary Symptom Severity Score questionnaire. Figure S2. Correlations visualized between St. George’s Respiratory Questionnaire and (a) six-minute walk distance; (b) Pulmonary Symptom Severity Score (PSSS)-severity; (c) PSSS-frequency; Medical Research Council Dyspnea Scale and (d) St. George’s Respiratory Questionnaire; (e) 6-minute walk distance; (f) PSSS-severity; (g) PSSS-frequency; (h) 6-minute walk distance and PSSS-frequency. Table S1. Antibiotic Treatment at Baseline (n (%)). Table S2. Cox proportional hazard final models.

Acknowledgements
We thank the patients and their families for participation in this study.

Authors’ contributions
RB led data analysis and drafting the manuscript. ER contributed to study design and statistical analysis. DF provided expertise on statistical analysis. JD and KC contributed to data abstraction, management, and analysis. LG reviewed CT scans for fibrocavitary disease determination and contributed to data analysis. CR & SM contributed to study data collection, entry, and management. PM led the incorporation of patient reported outcome instruments into the clinical protocol. KF contributed to study design, reviewing CT scans for fibrocavitary disease status, and drafting the manuscript. KO is the principal investigator of the NHLBI Natural History of Bronchiectasis protocol and contributed to study design and drafting the manuscript. DRP led study design and implementation and drafting the manuscript. All authors read and approved the final manuscript.

Funding
Open Access funding provided by the National Institutes of Health (NIH).

This work was supported in part by the Intramural Research Programs of the National Institute of Allergy and Infectious Diseases and National Heart, Lung, and Blood Institute, National Institutes of Health. K. Carey’s research was supported in part by an appointment to the National Institute of Allergy and Infectious Diseases Emerging Leaders in Data Science Research Participation Program. This program is administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and the National Institutes of Health.

Availability of data and materials
The de-identified dataset for this analysis is available from the corresponding author on reasonable request and consultation with the NIH Office of Human Subjects Research Protection.

Declarations

Ethics approval and consent to participate
The study protocol was approved by the National Institutes of Health Institutional Review Board (www.clinicaltrials.gov identifier NCT00943514). All participants provided written informed consent and all methods were carried out in accordance with relevant ethics guidelines and regulations.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1. Epidemiology and Population Studies Unit, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA. 2. Biostatistics Research Branch, Division of Clinical Research, NIAID, Bethesda, USA. 3. Pulmonary, Critical Care, and Sleep Disorders Division, George Washington University School of Medicine and Health Sciences, Washington, DC, USA. 4. Laboratory of Chronic Airway Infection, Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, USA. 5. University of Texas Health Science Center at Tyler, Tyler, TX, USA. 6. S601 Fishers LN, RM 7D10, Rockville, MD 20852, USA.

Received: 19 August 2021 Accepted: 12 January 2022

References
1. Sin S, Yun SY, Kim JM, Park CM, Cho J, Choi SM, Lee J, Park YS, Lee SM, Yoo CG, Kim YW, Han SK, Lee CH. Mortality risk and causes of death in patients with non-cystic fibrosis bronchiectasis. Respir Res. 2019;20:271.
2. Adjemian J, Olivier KN, Seitz AE, Holland SM, Prevots DR. Prevalence of nontuberculous mycobacterial lung disease in U.S. Medicare beneficiaries. Am J Respir Crit Care Med. 2012;185:881–6.

3. Marras TK, Campitelli MA, Lu H, Chung H, Brode SK, Marchand-Austin A, Winthrop KL, Gerhson AS, Kwong JC, Jamieson FP. Pulmonary nontuberculous mycobacteria-associated deaths, Ontario, Canada, 2001–2013. Emerg Infect Dis. 2017;23:468–76.

4. Marras TK, Vinnard C, Zhang Q, Hamilton K, Adjemian J, Eagle G, Zhang R, Chou E, Olivier KN. Relative risk of all-cause mortality in patients with nontuberculous mycobacterial lung disease in a US managed care population. Respir Med. 2018;145:80–8.

5. Jones MM, Winthrop KL, Nelson SD, Duvall SL, Patterson OV, Nechodom KE, Findley KE, Radonovich LJ, Samore MH, Fennelly KP. Epidemiology of nontuberculous mycobacterial infections in the U.S. Veterans Health Administration. PLoS ONE. 2018;13:e0197976.

6. Diel R, Lipman M, Hoefsloot W. High mortality in patients with Mycobacterium avium complex lung disease: a systematic review. BMC Infect Dis. 2018;18:206.

7. Karanth MS, Awad NT. Six minute walk test: a tool for predicting mortality in chronic pulmonary diseases. J Clin Diagn Res. 2017;11:CD34–8.

8. Lettieri CJ, Nathan SD, Browning RF, Barnett SD, Ahmad S, Short AF. The distance-saturation product predicts mortality in idiopathic pulmonary fibrosis. Respir Med. 2006;100:1734–41.

9. Lee AL, Button BM, Ellis S, Stirling RG, Thompson PJ, Holland AE. Minimal important difference in six minute walking test in middle-aged and elderly adults. Physiother Theory Pract. 2009;25:16–22.

10. Lee AL, Hill CJ, Cecins N, McDonald CF, Rautela L, Stirling RG, Thompson PJ, Holland AE. Minimal important difference in field walking tests in non-cystic fibrosis bronchiectasis following exercise training. Respir Med. 2014;108:1033–9.

11. Polkey MI, Spruit MA, Edwards LO, Watkins ML, Pinto-Plata V, Vestbo J, Calverley PM, Tal-Singer R, Agusti A, Bakke PS, Coxson HO, Lomas DA, MacNee W, Rennard S, Silverman EK, Miller BE, Crinn C, Yates J, Wouters E, Celli B. Six-minute-walk test in chronic obstructive pulmonary disease: minimal clinically important difference for death or hospitalization. Am J Respir Crit Care Med. 2013;187:382–6.

12. Jones PW, Quirk PH, Baveystock CM. The St George’s Respiratory Questionnaire. Respir Med. 1991;85:25–31.

13. Fleschner M, Olivier KN, Shaw PA, Adjemian J, Sirolo S, Claypool R, Folio L, Zelazny A, Holland SM, Prevots DR. Mortality among patients with pulmonary nontuberculous mycobacteria disease. Int J Tuberc Lung Dis. 2016;20:582–7.

14. Henkle E, Winthrop KL, Ranches GP, Pinski W, Litvin HK, Quittner AL. Validation of the St George’s Respiratory Questionnaire in older adults. Respir Med. 1999;93:56–63.

15. Stirling RG, Thompson PJ, Holland AE. Minimal important difference in six-minute walk test distance of adults with pathology: a systematic review. J Eval Clin Pract. 2017;23:377–81.

16. Singh SJ, Puhon MA, Andranopoulous V, Hernandez NA, Mitchell KE, Hill CJ, Lee AL, Camillo CA, Troosters T, Spruit MA, Carlin BW, Wagner J, Pepin V, Saey D, Pitta F, Kaminsky DA, McCormack MC, Maclntyre N, Culver BH, Sciufrta FC, Revill SM, Delafosse V, Holland AE. An official systematic review of the European Respiratory Society/American Thoracic Society: measurement properties of field walking tests in chronic respiratory disease. Eur Respir J. 2014;44:1447–78.

17. Nishimura K, Izumi T, Tsukino M, Oga T. Dyspnea is a better predictor of 5-year survival than airway obstruction in patients with COPD. Chest. 2002;121:1434–40.

18. Portenoy RK, Thaler HT, Kornblith AB, Lepore JM, Friedlander-Klar H, Nishimura K, Izumi T, Tsukino M, Oga T. Dyspnea is a better predictor of 5-year survival than airway obstruction in patients with COPD. Chest. 2002;121:1434–40.

19. Portenoy RK, Thaler HT, Kornblith AB, Lepore JM, Friedlander-Klar H, Nishimura K, Izumi T, Tsukino M, Oga T. Dyspnea is a better predictor of 5-year survival than airway obstruction in patients with COPD. Chest. 2002;121:1434–40.

20. Blinderman CD, Homel P, Billings JA, Tennstedt S, Portenoy RK. Symptom association between six-minute walk test parameters and the health-related quality of life in patients with pulmonary Mycobacterium avium complex disease. BMC Pulm Med. 2018;18:114.

21. FDLA U. Food and Drug Administration. The Voice of the Patient. Non-tuberculous Mycobacterial (NTM) Lung Infection Public Meeting: October 15, 2015. 2016.

22. US Food and Drug Administration. Guidance for Industry: Patient-reported outcome measures: Use in medical product development to support labeling claims. 2009.

23. Antonioli-Incalzi R, Pedone C, Scarlata S, Battaglia S, Scichilone N, Frasson P, Bellia V. Correlates of mortality in elderly COPD patients: focus on nontuberculous mycobacteria-associated deaths, Ontario, Canada, 2001–2013. Emerg Infect Dis. 2017;23:468–76.

24. Singh SJ, Puhon MA, Andranopoulous V, Hernandez NA, Mitchell KE, Hill CJ, Lee AL, Camillo CA, Troosters T, Spruit MA, Carlin BW, Wagner J, Pepin V, Saey D, Pitta F, Kaminsky DA, McCormack MC, Maclntyre N, Culver BH, Sciufrta FC, Revill SM, Delafosse V, Holland AE. An official systematic review of the European Respiratory Society/American Thoracic Society: measurement properties of field walking tests in chronic respiratory disease. Eur Respir J. 2014;44:1447–78.

25. Jenkins S, Cecins N, Camarri B, Williams C, Thompson P, Eastwood P. Regression equations to predict 6-minute walk distance in middle-aged and elderly adults. Physiother Theory Pract. 2009;25:516–22.

26. Lee AL, Hill CJ, Cecins N, Jenkins S, McDonald CF, Burge AT, Rautela L, Stirling RG, Thompson PJ, Holland AE. Minimal important difference in field walking tests in non-cystic fibrosis bronchiectasis following exercise training. Respir Med. 2014;108:1033–9.

27. Polkey MI, Spruit MA, Edwards LO, Watkins ML, Pinto-Plata V, Vestbo J, Calverley PM, Tal-Singer R, Agusti A, Bakke PS, Coxson HO, Lomas DA, MacNee W, Rennard S, Silverman EK, Miller BE, Crinn C, Yates J, Wouters E, Celli B. Six-minute-walk test in chronic obstructive pulmonary disease: minimal clinically important difference for death or hospitalization. Am J Respir Crit Care Med. 2013;187:382–6.

28. Jones PW, Quirk PH, Baveystock CM. The St George’s Respiratory Questionnaire. Respir Med. 1991;85:25–31.

29. Fleschner M, Olivier KN, Shaw PA, Adjemian J, Sirolo S, Claypool R, Folio L, Zelazny A, Holland SM, Prevots DR. Mortality among patients with pulmonary nontuberculous mycobacteria disease. Int J Tuberc Lung Dis. 2016;20:582–7.

30. Henkle E, Winthrop KL, Ranches GP, Pinski W, Litvin HK, Quittner AL. Validation of the St George’s Respiratory Questionnaire in older adults. Respir Med. 1999;93:56–63.

31. Stedenski S, Perera S, Patel K, Rosano C, Faulkner K, Inzitari M, Brach J, Chandler J, Cawthon P, Connor EB, Neivst M, Visser M, Kritchevsky S, Badinelli S, Harris T, Newman AB, Cauley J, Ferrucci L, Guralnik J. Gait speed and survival in older adults. JAMA. 2011;305:50–8.

32. Ogawa T, Asakura T, Suzuki S, Okamori S, Kusumoto T, Sato Y, Namkoong H, Kamara H, Ishii M, Fukunaga K, Hasegawa N. Longitudinal validity and prognostic significance of the St George’s Respiratory Questionnaire in Mycobacterium avium complex pulmonary disease. Respir Med 2021;185:106515.

33. Henkle E, Winthrop KL, Ranches GP, Pinski W, Litvin HK, Quittner AL. Validation of the St George’s Respiratory Questionnaire in older adults. Respir Med. 1999;93:56–63.

34. Henkle E, Winthrop KL, Ranches GP, Pinski W, Litvin HK, Quittner AL. Validation of the St George’s Respiratory Questionnaire in older adults. Respir Med. 1999;93:56–63.
40. Kim HJ, Kwak N, Hong H, Kang N, Im Y, Jhun BW, Yim JJ. BACES Score for predicting mortality in nontuberculous mycobacterial pulmonary disease. Am J Respir Crit Care Med. 2021;203:230–6.
41. Abrahm JL, Hansen-Flaschen J. Hospice care for patients with advanced lung disease. Chest. 2002;121:220–9.
42. Hansen-Flaschen J. Chronic obstructive pulmonary disease: the last year of life. Respir Care. 2004;49:90–7.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.