Supplementary Material for the paper

“Pairwise likelihood inference for nested hidden Markov chain models for multilevel longitudinal data”

by Francesco Bartolucci and Monia Lupparelli

In the Supplementary Material we collect Table S-1 and Table S-2 related to the order of complexity of the algorithm for computing the manifest distribution and the pairwise likelihood discussed in Sections 4.2 and 5.1. We also include Tables S-3, S-4, S-5, S-6, S-7, and S-8 showing the results of the simulation study described in Section 6. Finally, we represent simulated trajectories from the estimated latent processes, at individual and cluster-level, in Figures S-1 and S-2.
Table S-1: Order of the numerical complexity required to compute the manifest distribution in (6) by recursion (2) for different values of k_1, k_2, n_h, and T.

k_1	k_2	$n_h = 5$	$n_h = 10$	$n_h = 20$	$n_h = 5$	$n_h = 10$	$n_h = 20$
1	1	25	50	100	50	100	200
1	2	100	200	400	200	400	800
1	3	225	450	900	450	900	1800
1	4	400	800	1600	800	1600	3200
1	5	625	1250	2500	1250	2500	5000
2	1	800	1600	3200	51200	102400	204800
2	2	3200	6400	12800	204800	409600	819200
2	3	7200	14400	28800	460800	921600	1843200
2	4	12800	25600	51200	819200	1638400	3276800
2	5	20000	40000	80000	1280000	2560000	5120000
3	1	6075	12150	24300	2952450	5904900	11809800
3	2	24300	48600	97200	11809800	23619600	47239200
3	3	54675	109350	218700	26572050	53144100	106288200
3	4	97200	194400	388800	47239200	94478400	188956800
3	5	151875	303750	607500	73811250	147622500	295245000
4	1	25600	51200	102400	52428800	104857600	209715200
4	2	102400	204800	409600	209715200	419430400	838860800
4	3	230400	460800	921600	471859200	943718400	1887436800
4	4	409600	819200	1638400	838860800	1677721600	3355443200
4	5	640000	1280000	2560000	1310720000	2621440000	52428800000
5	1	78125	156250	312500	488281250	976562500	1953125000
5	2	312500	625000	1250000	1953125000	3906250000	7812500000
5	3	703125	1406250	2812500	4394531250	8789062500	17578125000
5	4	1250000	2500000	5000000	7812500000	15625000000	31250000000
5	5	1953125	3906250	7812500	12207031250	24414062500	48828125000
Table S-2: Order of the numerical complexity required to compute the pairwise manifest probability (12) for all units in the same cluster h and different values of k_1, k_2, n_h, and T.

k_1	k_2	$n_h = 5$	$n_h = 10$	$n_h = 20$	$T = 5$	$n_h = 5$	$n_h = 10$	$n_h = 20$	$T = 10$
1	1	50	225	950	100	450	1900		
1	2	800	3600	15200	1600	7200	30400		
1	3	4050	18225	76950	8100	36450	153900		
1	4	12800	57600	243200	25600	115200	486400		
1	5	31250	140625	593750	62500	281250	1187500		
2	1	200	900	3800	400	1800	7600		
2	2	3200	14400	60800	6400	2880	121600		
2	3	16200	72900	307800	32400	145800	615600		
2	4	51200	230400	972800	102400	460800	1945600		
2	5	125000	562500	2375000	2500000	1125000	4750000		
3	1	450	2025	8550	900	4050	17100		
3	2	7200	32400	136800	14400	64800	273600		
3	3	36450	164025	692550	72900	328050	1385100		
3	4	115200	518400	2188800	230400	1036800	4377600		
3	5	281250	1265625	5343750	562500	2531250	10687500		
4	1	800	3600	15200	1600	7200	30400		
4	2	12800	57600	243200	25600	115200	486400		
4	3	64800	291600	1231200	129600	583200	2462400		
4	4	204800	921600	3891200	409600	1843200	7782400		
4	5	500000	2250000	9500000	1000000	4500000	19000000		
5	1	1250	5625	23750	2500	11250	47500		
5	2	20000	90000	380000	40000	180000	760000		
5	3	101250	455625	1923750	202500	911250	3847500		
5	4	320000	1440000	6080000	640000	2880000	12160000		
5	5	781250	3515625	14843750	1562500	7031250	29687500		
Table S-3: Simulation results for $k_1 = k_2 = 2$ and $T = 5$.

true value	ρ_1	ρ_2	τ_1	τ_2	δ_0	δ_1	δ_2	α_2	β_2
	-2.197	-2.197	-2.197	-2.197	-2.000	1.000	-1.000	2.000	2.000

unweighted pairwise likelihood

$H = 200, U(1; 10)$	bias	sd	rmse	mean-se
bias	-0.070	0.371	0.380	0.404
sd	-0.027	0.416	2.185	1.314
rmse	-0.496	2.118	2.325	1.444
mean-se	0.096	0.080	0.083	0.081

$H = 200, U(1; 20)$	bias	sd	rmse	mean-se
bias	-0.031	0.282	0.285	0.294
sd	-0.015	0.252	0.253	0.291
rmse	-0.047	0.518	0.544	0.563
mean-se	-0.054	0.318	0.324	0.314

$H = 400, U(1; 10)$	bias	sd	rmse	mean-se
bias	-0.020	0.235	0.237	0.257
sd	-0.027	0.540	0.554	0.653
rmse	-0.161	0.284	0.285	0.295
mean-se	-0.005	0.053	0.053	0.051

$H = 400, U(1; 20)$	bias	sd	rmse	mean-se
bias	-0.009	0.192	0.193	0.197
sd	-0.081	0.324	0.335	0.358
rmse	-0.041	0.179	0.181	0.197
mean-se	0.020	0.031	0.032	0.036

weighted pairwise likelihood

$H = 200, U(1; 10)$	bias	sd	rmse	mean-se
bias	-0.052	0.358	0.364	0.380
sd	-0.056	1.378	1.412	1.439
rmse	-0.291	1.559	1.593	1.643
mean-se	-0.116	0.417	0.435	0.447

$H = 200, U(1; 20)$	bias	sd	rmse	mean-se
bias	-0.036	0.259	0.263	0.262
sd	-0.009	0.509	0.513	0.518
rmse	-0.031	0.482	0.485	0.489
mean-se	-0.003	0.284	0.287	0.288

$H = 400, U(1; 10)$	bias	sd	rmse	mean-se
bias	-0.015	0.223	0.225	0.240
sd	-0.025	0.581	0.601	0.604
rmse	-0.142	0.482	0.485	0.496
mean-se	-0.098	0.284	0.287	0.290

$H = 400, U(1; 20)$	bias	sd	rmse	mean-se
bias	-0.004	0.180	0.181	0.178
sd	-0.019	0.330	0.341	0.332
rmse	-0.079	0.305	0.310	0.330
mean-se	-0.048	0.174	0.176	0.186

full likelihood

$H = 200, U(1; 10)$	bias	sd	rmse	mean-se
bias	-0.029	0.290	0.293	0.290
sd	-0.022	0.824	0.835	0.835
rmse	-0.110	0.325	0.359	0.359
mean-se	-0.060	0.064	0.066	0.066

$H = 200, U(1; 20)$	bias	sd	rmse	mean-se
bias	-0.011	0.213	0.214	0.206
sd	0.001	0.380	0.383	0.383
rmse	0.026	0.389	0.392	0.392
mean-se	0.022	0.380	0.383	0.383

$H = 400, U(1; 10)$	bias	sd	rmse	mean-se
bias	-0.003	0.172	0.173	0.174
sd	-0.016	0.382	0.389	0.392
rmse	-0.065	0.366	0.372	0.372
mean-se	-0.005	0.190	0.191	0.191

$H = 400, U(1; 20)$	bias	sd	rmse	mean-se
bias	-0.001	0.136	0.137	0.147
sd	-0.001	0.282	0.288	0.288
rmse	-0.047	0.274	0.278	0.278
Table S-4: Simulation results for $k_1 = 2$ and $k_2 = 3$ and $T = 5$.

$H = 200, U(1; 10)$	$H = 400, U(1; 10)$	$H = 200, U(1; 20)$	$H = 400, U(1; 20)$	$H = 200, U(1; 10)$	$H = 400, U(1; 10)$
true value	-2.197 -2.197 -2.079 -2.079 -3.000	1.000 -1.000 2.000 2.000 4.000			
unweighted pairwise likelihood					
bias	0.000 -0.039 0.416 0.887 0.384 -0.597 0.070 -0.072 0.192 0.416 1.039				
sd	0.472 0.451 1.667 3.010 1.709 1.126 0.121 0.137 0.288 1.118 1.928				
rmse	0.475 0.454 1.726 3.153 1.760 1.279 0.140 0.156 0.347 1.198 2.198				
mean-se	0.485 0.502 0.749 1.181 0.645 0.995 0.115 0.116 0.293 0.993 1.457				
weighted pairwise likelihood					
bias	-0.036 -0.001 0.098 0.445 0.084 -0.216 0.017 -0.023 0.051 0.230 0.257				
sd	0.339 0.346 0.451 2.163 0.824 1.057 0.068 0.082 0.171 1.077 1.093				
rmse	0.343 0.347 0.464 2.219 0.833 1.084 0.071 0.086 0.180 1.107 1.128				
mean-se	0.355 0.349 0.512 0.770 0.967 0.738 0.070 0.071 0.166 0.708 0.951				
full likelihood					
bias	-0.051 -0.016 0.053 0.329 0.079 0.031 0.064 0.068 0.047 0.174 0.186				
sd	0.315 0.333 0.537 1.492 0.544 0.640 0.063 0.068 0.159 0.569 0.699				
rmse	0.319 0.335 0.555 1.531 0.548 0.663 0.066 0.072 0.167 0.595 0.727				
mean-se	0.336 0.339 0.530 0.836 0.555 0.625 0.068 0.086 0.158 0.650 0.822				

$p_k = 1$, $\tau = 5$, $\delta = 0$ and $\alpha = 5$, $\beta = 3$.

Table S-4: Simulation results for $k_1 = 2$ and $k_2 = 3$ and $T = 5$.

$H = 200, U(1; 10)$	$H = 400, U(1; 10)$	$H = 200, U(1; 20)$	$H = 400, U(1; 20)$
true value	-2.197 -2.197 -2.079 -2.079 -3.000	1.000 -1.000 2.000 2.000 4.000	
unweighted pairwise likelihood			
bias	0.001 0.005 0.108 0.164 0.166 -0.262 0.036 -0.036 0.085 0.362 0.424		
sd	0.288 0.312 0.637 0.761 0.854 0.739 0.089 0.095 0.208 1.485 0.814		
rmse	0.289 0.314 0.649 0.782 0.874 0.788 0.096 0.102 0.226 1.536 0.922		
weighted pairwise likelihood			
bias	-0.016 -0.014 0.018 0.023 0.002 -0.042 0.006 -0.010 0.008 0.018 0.091		
sd	0.241 0.242 0.333 0.451 0.368 0.318 0.056 0.061 0.123 0.246 0.388		
rmse	0.242 0.243 0.336 0.454 0.370 0.323 0.057 0.062 0.124 0.248 0.400		
full likelihood			
bias	-0.009 -0.006 0.063 0.075 0.039 -0.073 0.018 -0.013 0.026 0.044 0.147		
sd	0.228 0.227 0.346 0.407 0.434 0.395 0.056 0.055 0.128 0.340 0.489		
rmse	0.229 0.228 0.353 0.416 0.438 0.403 0.059 0.057 0.132 0.344 0.513		

$p_k = 2$, $\tau = 20$, $\delta = 0$ and $\alpha = 5$, $\beta = 3$.

Table S-4: Simulation results for $k_1 = 2$ and $k_2 = 3$ and $T = 5$.

$H = 200, U(1; 10)$	$H = 400, U(1; 10)$	$H = 200, U(1; 20)$	$H = 400, U(1; 20)$
true value	-2.197 -2.197 -2.079 -2.079 -3.000	1.000 -1.000 2.000 2.000 4.000	
unweighted pairwise likelihood			
bias	-0.001 -0.003 0.005 -0.012 0.004 -0.032 -0.002 -0.002 -0.005 0.033 0.053		
sd	0.152 0.176 0.216 0.281 0.190 0.223 0.039 0.035 0.069 0.169 0.294		
rmse	0.152 0.176 0.216 0.281 0.190 0.225 0.039 0.035 0.069 0.172 0.299		
Table S-5: Simulation results for \(k_1 = 3 \) and \(k_2 = 2 \) and \(T = 5 \).

\(\rho_1 \)	\(\rho_2 \)	\(\rho_3 \)	\(\tau_1 \)	\(\tau_2 \)	\(\delta_0 \)	\(\delta_1 \)	\(\delta_2 \)	\(\alpha_1 \)	\(\alpha_2 \)	\(\alpha_3 \)	\(\beta_2 \)	
true value	-2.079	-2.890	-2.079	-2.197	-2.197	-3.000	1.000	-1.000	2.000	4.000	2.000	
\(H = 200, U(1; 10) \)												
bias	0.100	0.027	0.034	-0.370	-0.355	-0.288	0.029	-0.025	0.103	0.221	0.318	
sd	0.476	0.427	0.460	1.991	1.980	0.760	0.113	0.116	0.366	0.536	0.550	
rmse	0.488	0.430	0.463	2.035	2.022	0.816	0.117	0.120	0.382	0.582	0.637	
mean-se	0.548	0.531	0.454	1.168	1.231	0.884	0.095	0.096	0.417	0.626	0.558	
\(H = 200, U(1; 20) \)												
bias	0.012	0.018	0.021	-0.170	-0.116	-0.073	0.017	-0.018	0.041	0.083	0.136	
sd	0.338	0.322	0.309	1.179	1.167	0.441	0.061	0.056	0.219	0.339	0.308	
rmse	0.340	0.325	0.311	1.197	1.179	0.449	0.064	0.059	0.224	0.350	0.338	
mean-se	0.366	0.332	0.359	0.887	0.851	0.508	0.065	0.065	0.252	0.366	0.357	
\(H = 400, U(1; 10) \)												
bias	0.043	-0.017	0.003	-0.237	-0.224	-0.081	0.010	-0.008	0.041	0.069	0.099	
sd	0.314	0.305	0.303	0.951	0.970	0.436	0.055	0.057	0.215	0.349	0.254	
rmse	0.319	0.307	0.305	0.985	1.000	0.445	0.056	0.058	0.220	0.357	0.274	
mean-se	0.371	0.302	0.338	0.804	0.802	0.450	0.057	0.057	0.231	0.337	0.302	
\(H = 400, U(1; 20) \)												
bias	0.051	0.003	0.012	-0.108	-0.067	-0.034	-0.003	-0.003	0.015	0.047	0.053	
sd	0.226	0.187	0.234	0.416	0.399	0.278	0.038	0.039	0.137	0.199	0.185	
rmse	0.232	0.188	0.235	0.432	0.406	0.281	0.038	0.039	0.139	0.205	0.193	
mean-se	0.239	0.212	0.290	0.458	0.458	0.289	0.040	0.040	0.152	0.252	0.200	
\(H = 200, U(1; 10) \)												
bias	0.099	0.013	0.010	-0.130	-0.084	-0.074	0.013	-0.017	0.038	0.075	0.114	
sd	0.296	0.296	0.280	0.954	0.953	0.396	0.054	0.055	0.204	0.332	0.268	
rmse	0.297	0.297	0.281	0.968	0.962	0.405	0.056	0.057	0.208	0.342	0.293	
mean-se	0.348	0.311	0.327	0.854	0.859	0.451	0.055	0.055	0.221	0.328	0.290	
\(H = 200, U(1; 20) \)												
bias	0.052	-0.006	0.004	-0.144	-0.084	-0.068	0.011	-0.008	0.037	0.071	0.106	
sd	0.294	0.272	0.290	0.516	0.534	0.428	0.049	0.050	0.215	0.327	0.329	
rmse	0.300	0.274	0.291	0.539	0.543	0.436	0.050	0.051	0.219	0.336	0.263	
mean-se	0.297	0.304	0.290	0.625	0.616	0.432	0.052	0.052	0.234	0.345	0.293	
\(H = 400, U(1; 10) \)												
bias	0.043	-0.004	0.011	-0.099	-0.062	-0.019	-0.003	-0.001	0.003	0.040	0.039	
sd	0.210	0.179	0.213	0.397	0.382	0.266	0.036	0.036	0.128	0.191	0.178	
rmse	0.215	0.180	0.214	0.411	0.389	0.268	0.036	0.036	0.129	0.196	0.183	
mean-se	0.213	0.192	0.207	0.421	0.423	0.271	0.037	0.037	0.142	0.215	0.185	

unweighted pairwise likelihood

weighted pairwise likelihood
Table S-6: Simulation results for $k_1 = k_2 = 2$ and $T = 10$.

true value	p_1	p_2	r_1	r_2	d_0	d_1	d_2	a_2	b_2
	-2.197	-2.197	-2.197	-2.197	-2.000	1.000	-1.000	2.000	2.000

H = 200, U(1; 10)	bias	sd	rmse	mean-se
unweighted pairwise likelihood	-0.001	0.207	0.208	0.239
sd	0.014	0.223	0.224	0.243
rmse	-0.024	0.354	0.356	0.298
mean-se	-0.056	0.315	0.317	0.310

H = 200, U(1; 20)	bias	sd	rmse	mean-se
weighted pairwise likelihood	-0.031	0.198	0.201	0.199
sd	-0.012	0.229	0.231	0.243
rmse	-0.016	0.195	0.196	0.248
mean-se	-0.018	0.197	0.198	0.241

H = 400, U(1; 10)	bias	sd	rmse	mean-se
unweighted pairwise likelihood	-0.020	0.155	0.157	0.166
sd	-0.028	0.168	0.171	0.165
rmse	-0.051	0.194	0.202	0.211
mean-se	-0.004	0.193	0.194	0.202

H = 400, U(1; 20)	bias	sd	rmse	mean-se
weighted pairwise likelihood	-0.003	0.143	0.144	0.138
sd	-0.011	0.141	0.142	0.138
rmse	-0.013	0.141	0.141	0.141
mean-se	-0.015	0.145	0.143	0.140

H = 200, U(1; 10)	bias	sd	rmse	mean-se
unweighted pairwise likelihood	-0.006	0.198	0.199	0.218
sd	-0.014	0.328	0.330	0.279
rmse	-0.004	0.307	0.308	0.291
mean-se	-0.050	0.221	0.228	0.214

H = 200, U(1; 20)	bias	sd	rmse	mean-se
weighted pairwise likelihood	-0.027	0.169	0.172	0.177
sd	-0.011	0.180	0.183	0.178
rmse	-0.026	0.193	0.194	0.189
mean-se	-0.009	0.148	0.149	0.190

H = 400, U(1; 10)	bias	sd	rmse	mean-se
unweighted pairwise likelihood	-0.030	0.143	0.147	0.151
sd	-0.030	0.155	0.158	0.151
rmse	-0.052	0.178	0.186	0.199
mean-se	0.000	0.140	0.189	0.190

H = 400, U(1; 20)	bias	sd	rmse	mean-se
weighted pairwise likelihood	-0.003	0.126	0.127	0.123
sd	-0.016	0.122	0.124	0.123
rmse	-0.007	0.135	0.136	0.133
mean-se	-0.012	0.145	0.146	0.131
Table S-7: Simulation results for $k_1 = 2$ and $k_2 = 3$ and $T = 10$.

	ρ_1	ρ_2	τ_1	τ_2	τ_3	δ_0	δ_1	δ_2	α_2	β_2	β_3
true value	-2.197	-2.197	-2.079	-2.079	-2.079	-3.000	1.000	-1.000	2.000	2.000	4.000

Unweighted pairwise likelihood

	$H = 200$, $U(1; 10)$	$H = 200$, $U(1; 20)$	$H = 400$, $U(1; 10)$	$H = 400$, $U(1; 20)$
bias	0.002 0.023 0.067 0.015 -0.002 -0.136 0.007 0.005 0.039 0.091 0.197	-0.043 -0.002 0.032 -0.019 -0.017 -0.055 0.001 -0.002 0.010 0.045 0.104	-0.044 -0.033 0.021 -0.003 0.005 -0.091 0.001 -0.008 0.023 0.081 0.129	0.002 -0.011 -0.008 0.016 0.033 -0.006 0.001 0.000 0.006 0.012 0.036
sd	0.279 0.258 0.415 0.386 0.419 0.511 0.059 0.056 0.132 0.360 0.487	0.253 0.244 0.255 0.340 0.264 0.329 0.034 0.039 0.084 0.245 0.328	0.187 0.210 0.247 0.339 0.264 0.341 0.038 0.041 0.087 0.274 0.392	0.166 0.153 0.199 0.256 0.177 0.243 0.028 0.028 0.064 0.158 0.265
rmse	0.280 0.260 0.422 0.388 0.421 0.532 0.060 0.056 0.138 0.373 0.527	0.258 0.246 0.258 0.342 0.266 0.335 0.034 0.039 0.085 0.251 0.346	0.193 0.214 0.249 0.341 0.265 0.355 0.038 0.042 0.090 0.287 0.414	0.167 0.154 0.200 0.258 0.181 0.245 0.028 0.028 0.064 0.159 0.269
mean-se	0.303 0.306 0.357 0.513 0.350 0.492 0.058 0.057 0.142 0.401 0.604	0.235 0.236 0.262 0.334 0.245 0.333 0.040 0.040 0.094 0.260 0.379	0.211 0.208 0.256 0.300 0.230 0.289 0.040 0.040 0.093 0.259 0.383	0.160 0.162 0.179 0.230 0.184 0.229 0.028 0.028 0.063 0.169 0.259

Weighted pairwise likelihood

bias	0.002 0.023 0.067 0.015 -0.002 -0.136 0.007 0.005 0.039 0.091 0.197	-0.043 -0.002 0.032 -0.019 -0.017 -0.055 0.001 -0.002 0.010 0.045 0.104	-0.044 -0.033 0.021 -0.003 0.005 -0.091 0.001 -0.008 0.023 0.081 0.129	0.002 -0.011 -0.008 0.016 0.033 -0.006 0.001 0.000 0.006 0.012 0.036
sd	0.279 0.258 0.415 0.386 0.419 0.511 0.059 0.056 0.132 0.360 0.487	0.253 0.244 0.255 0.340 0.264 0.329 0.034 0.039 0.084 0.245 0.328	0.187 0.210 0.247 0.339 0.264 0.341 0.038 0.041 0.087 0.274 0.392	0.166 0.153 0.199 0.256 0.177 0.243 0.028 0.028 0.064 0.158 0.265
rmse	0.280 0.260 0.422 0.388 0.421 0.532 0.060 0.056 0.138 0.373 0.527	0.258 0.246 0.258 0.342 0.266 0.335 0.034 0.039 0.085 0.251 0.346	0.193 0.214 0.249 0.341 0.265 0.355 0.038 0.042 0.090 0.287 0.414	0.167 0.154 0.200 0.258 0.181 0.245 0.028 0.028 0.064 0.159 0.269
mean-se	0.303 0.306 0.357 0.513 0.350 0.492 0.058 0.057 0.142 0.401 0.604	0.235 0.236 0.262 0.334 0.245 0.333 0.040 0.040 0.094 0.260 0.379	0.211 0.208 0.256 0.300 0.230 0.289 0.040 0.040 0.093 0.259 0.383	0.160 0.162 0.179 0.230 0.184 0.229 0.028 0.028 0.063 0.169 0.259

8
Table S-8: Simulation results for $k_1 = 3$ and $k_2 = 2$ and $T = 10$.

\(H = 200, \ U(1; 10) \)	\(H = 200, \ U(1; 20) \)	\(H = 400, \ U(1; 10) \)	\(H = 400, \ U(1; 20) \)	\(H = 200, \ U(1; 10) \)	\(H = 200, \ U(1; 20) \)	\(H = 400, \ U(1; 10) \)	\(H = 400, \ U(1; 20) \)			
true value	\(-2.079\)	\(-2.079\)	\(-2.197\)	\(-2.197\)	\(-3.000\)	\(1.000\)	\(-1.000\)	\(2.000\)	\(4.000\)	\(2.000\)

unweighted pairwise likelihood

\(H = 200, \ U(1; 10) \)	\(H = 200, \ U(1; 20) \)	\(H = 400, \ U(1; 10) \)	\(H = 400, \ U(1; 20) \)	
bias	\(0.024\)	\(0.007\)	\(-0.012\)	\(0.007\)
sd	\(0.226\)	\(0.170\)	\(0.171\)	\(0.171\)
rmse	\(0.229\)	\(0.209\)	\(0.210\)	\(0.220\)
mean-se	\(0.241\)	\(0.210\)	\(0.220\)	\(0.210\)

weighted pairwise likelihood

\(H = 200, \ U(1; 10) \)	\(H = 200, \ U(1; 20) \)	\(H = 400, \ U(1; 10) \)	\(H = 400, \ U(1; 20) \)	
bias	\(0.026\)	\(0.002\)	\(-0.008\)	\(-0.008\)
sd	\(0.192\)	\(0.193\)	\(0.157\)	\(0.157\)
rmse	\(0.194\)	\(0.194\)	\(0.194\)	\(0.194\)
mean-se	\(0.225\)	\(0.192\)	\(0.192\)	\(0.192\)
Figure S-1: Representation of 1,000 trajectories randomly generated from the estimated distribution of the cluster-level latent process; values are randomly perturbed in order to avoid overlapping and make the trajectories distinguishable.

Figure S-2: Representation of 1,000 trajectories randomly generated from the estimated distribution of the individual-level latent process; values are randomly perturbed in order to avoid overlapping and make the trajectories distinguishable.