Properties of the Discrete Pulse Transform for Multi-Dimensional Arrays

Roumen Anguelov and Inger Fabris-Rotelli
Department of Mathematics and Applied Mathematics
University of Pretoria
roumen.anguelov@up.ac.za
inger.fabris-rotelli@up.ac.za

ISBN: 978-1-86854-785-2

Technical Report 2010/01
1 Introduction

This report presents properties of the Discrete Pulse Transform on multi-dimensional arrays introduced earlier in [1]. The main result given here in Lemma 2.1 is also formulated in [4, Lemma 21]. However, the proof, being too technical, was omitted there and hence it appears in full in this publication.

2 The Lemma

The lemma which follows deals with two technical aspects of the Discrete Pulse Transform of a function $f \in \mathcal{A}(\mathbb{Z}^d)$ (where $\mathcal{A}(\mathbb{Z}^d)$ denotes a vector lattice). The first is that the Discrete Pulse representation of a function f, given by

$$ f = \sum_{n=1}^{N} D_n(f), $$

can be written as the sum of individual pulses of each resolution layer $D_n(f)$. The second result in the lemma below indicates a form of linearity for the nonlinear LULU operators.

Lemma 2.1

Let $f \in \mathcal{A}(\mathbb{Z}^d)$, supp($f$) < ∞, be such that f does not have local minimum sets or local maximum sets of size smaller than n, for some $n \in \mathbb{N}$. Then we have the following two results.

a) \hspace{1cm} (id - P_n)f = \sum_{i=1}^{\gamma^- (n)} \phi_{ni} + \sum_{j=1}^{\gamma^+ (n)} \varphi_{nj},

where $V_{ni} = \text{supp}(\phi_{ni}), i = 1, 2, ..., \gamma^-(n)$, are local minimum sets of f of size n, $W_{nj} = \text{supp}(\varphi_{nj}), j = 1, 2, ..., \gamma^+(n)$, are local maximum sets of f of size n, ϕ_{ni} and φ_{nj} are negative and positive discrete pulses respectively, and we also have that

- $V_{ni} \cap V_{nj} = \emptyset$ and $\text{adj}(V_{ni}) \cap V_{nj} = \emptyset$, $i, j = 1, ..., \gamma^-(n), i \neq j$, (2)
- $W_{ni} \cap W_{nj} = \emptyset$ and $\text{adj}(W_{ni}) \cap W_{nj} = \emptyset$, $i, j = 1, ..., \gamma^+(n), i \neq j$, (3)
- $V_{ni} \cap W_{nj} = \emptyset$ $i = 1, ..., \gamma^-(n)$, $j = 1, ..., \gamma^+(n)$. (4)

b) For every fully trend preserving operator A

$$ U_n(id - AU_n) = U_n - AU_n, $$
$$ L_n(id - AL_n) = L_n - AL_n. $$
Proof.

a) Let \(V_{n1}, V_{n2}, ..., V_{n\gamma^-(n)} \) be all local minimum sets of size \(n \) of the function \(f \). Since \(f \) does not have local minimum sets of size smaller than \(n \), then \(f \) is a constant on each of these sets, by [4, Theorem 14]. Hence, the sets are disjoint, that is \(V_{ni} \cap V_{nj} = \emptyset, \ i \neq j \). Moreover, we also have

\[
\text{adj}(V_{ni}) \cap V_{nj} = \emptyset, \ i, j = 1, ..., \gamma^-(n).
\] (5)

Indeed, let \(x \in \text{adj}(V_{ni}) \cap V_{nj} \). Then there exists \(y \in V_{ni} \) such that \((x, y) \in r\). Hence \(y \in V_{ni} \cap \text{adj}(V_{nj}) \). From the local minimality of the sets \(V_{ni} \) and \(V_{nj} \) we obtain respectively \(f(y) < f(x) \) and \(f(x) < f(y) \), which is clearly a contradiction. For every \(i = 1, ..., \gamma^-(n) \) denote by \(y_{ni} \) the point in \(\text{adj}(V_{ni}) \) such that

\[
f(y_{ni}) = \min_{y \in \text{adj}(V_{ni})} f(y).
\] (6)

Then we have

\[
U_n f(x) = \begin{cases}
 f(y_{ni}) & \text{if } x \in V_{ni}, \ i = 1, ..., \gamma^-(n) \\
 f(x) & \text{otherwise (by [4, Theorem 9])}
\end{cases}
\]

Therefore

\[
(id - U_n) f = \sum_{i=1}^{\gamma^-(n)} \phi_{ni}
\] (7)

where \(\phi_{ni} \) is a discrete pulse with support \(V_{ni} \) and negative value (down pulse).

Let \(W_{n1}, W_{n2}, ..., W_{n\gamma^+(n)} \) be all local maximum sets of size \(n \) of the function \(U_n f \). By [4, Theorem 12(b)] every local maximum set of \(U_n f \) contains a local maximum set of \(f \). Since \(f \) does not have local maximum sets of size smaller than \(n \), this means that the sets \(W_{nj}, \ j = 1, ..., \gamma^+(n) \), are all local maximum sets of \(f \) and \(f \) is constant on each of them. Similarly to the local minimum sets of \(f \) considered above we have \(W_{ni} \cap W_{nj} = \emptyset, \ i \neq j \), and \(\text{adj}(W_{ni}) \cap W_{nj} = \emptyset, \ i, j = 1, ..., \gamma^+(n) \). Moreover, since \(U_n(f) \) is constant on any of the sets \(V_{ni} \cup \{y_{ni}\}, \ i = 1, ..., \gamma^-(n) \), see [4, Theorem 14], we also have

\[
(V_{ni} \cup \{y_{ni}\}) \cap W_{nj} = \emptyset, \ i = 1, ..., \gamma^-(n), \ j = 1, ..., \gamma^+(n),
\] (8)

which implies [4].

Further we have

\[
L_n U_n f(x) = \begin{cases}
 U_n f(z_{nj}) & \text{if } x \in W_{nj}, \ j = 1, ..., \gamma^+(n) \\
 U_n f(x) & \text{otherwise}
\end{cases}
\]

where \(z_{nj} \in \text{adj}(W_{nj}), \ j = 1, ..., \gamma^+(n) \), are such that \(U_n f(z_{nj}) = \max_{z \in \text{adj}(W_{nj})} U_n f(z) \). Hence

\[
(id - L_n) U_n f = \sum_{j=1}^{\gamma^+(n)} \varphi_{nj}
\] (9)
where \(\varphi_{nj} \) is a discrete pulse with support \(W_{nj} \) and positive value (up pulse). Thus we have shown that

\[
(id - P_n)f = (id - U_n)f + (id - L_n)U_nf = \sum_{i=1}^{\gamma^-(n)} \phi_{ni} + \sum_{j=1}^{\gamma^+(n)} \varphi_{nj}.
\]

b) Let the function \(f \in A(\mathbb{Z}^d) \) be such that it does not have any local minimum or local maximum sets of size less than \(n \). Denote \(g = (id - AU_n)(f) \). We have

\[
g = (id - AU_n)(f) = (id - U_n)(f) + ((id - A)U_n)(f).
\]

As in a) we have that (7) holds, that is we have

\[
(id - U_n)(f) = \sum_{i=1}^{\gamma^-(n)} \phi_{ni},
\]

where the sets \(V_{ni} = \text{supp}(\phi_{ni}), i = 1, ..., \gamma^-(n) \), are all the local minimum sets of \(f \) of size \(n \) and satisfy (2). Therefore

\[
g = \sum_{i=1}^{\gamma^-(n)} \phi_{ni} + ((id - A)U_n)(f).
\]

Furthermore,

\[
U_n(f)(x) = \begin{cases}
 f(x) & \text{if } x \in \mathbb{Z}^d \setminus \bigcup_{i=1}^{\gamma^-(n)} V_{ni} \\
 v_i & \text{if } x \in V_{ni} \cup \{y_{ni}\}, i = 1, ..., \gamma^-(n),
\end{cases}
\]

where \(v_i = f(y_{ni}) = \min_{y \in \text{adj}(V_{ni})} f(y) \). Using that \(A \) is fully trend preserving, for every \(i = 1, ..., \gamma^-(n) \) there exists \(w_i \) such that \(((id - A)U_n)(f)(x) = w_i, x \in V_{ni} \cup \{y_{ni}\} \). Moreover, using that every adjacent point has a neighbor in \(V_{ni} \) we have that \(\min_{y \in \text{adj}(V_{ni})} ((id - A)U_n)(f)(y) = w_i \). Considering that the value of the pulse \(\phi_{ni} \) is negative, we obtain through the representation (12) that \(V_{ni}, i = 1, ..., \gamma^-(n), \) are local minimum sets of \(g \).

Next we show that \(g \) does not have any other local minimum sets of size \(n \) or less. Indeed, assume that \(V_0 \) is a local minimum set of \(g \) such that \(\text{card}(V_0) \leq n \). Since \(V_0 \cup \text{adj}(V_0) \subset \mathbb{Z}^d \setminus \bigcup_{i=1}^{\gamma^-(n)} V_{ni} \) it follows from (12) that \(V_0 \) is a local minimum set of \(((id - A)U_n)(f) \). Then using that \((id - A) \) is neighbor trend preserving and using [4, Theorem 17] we obtain that there exists a local minimum set \(W_0 \) of \(U_n(f) \) such that \(W_0 \subseteq V_0 \). Then applying again [4, Theorem 17] or [4, Theorem 12] we obtain that there exists a local minimum set \(\tilde{W}_0 \) of \(f \) such that \(\tilde{W}_0 \subseteq W_0 \subseteq V_0 \). This inclusion implies that \(\text{card}(\tilde{W}_0) \leq n \). Given that \(f \) does not have local minimum sets of size
less than \(n \) we have \(\text{card}(\tilde{W}_0) = n \), that is \(\tilde{W}_0 \) is one of the sets \(V_{ni} \) - a contradiction. Therefore, \(V_{ni}, i = 1, ..., \gamma^{-}(n) \), are all the local minimum sets of \(g \) of size \(n \) or less. Then using again (7) we have

\[
(id - U_n)(g) = \sum_{i=1}^{\gamma^{-}(n)} \phi_{ni}
\]

(13)

Using (11) and (13) we obtain

\[
(id - U_n)(g) = (id - U_n)(f)
\]

Therefore

\[
(U_n(id - AU_n))(f) = U_n(g) = g - (id - U_n)(f)
\]

\[
= (id - AU_n)(f) - (id - U_n)(f)
\]

\[
= (U_n - AU_n)(f).
\]

This proves the first identity. The second one is proved in a similar manner. □

References

[1] R Anguelov and I N Plaskitt (now Fabris-Rotelli), A Class of LULU Operators on Multidimensional arrays, University of Pretoria, Tech. Rep. UPWT2007/22, 2008, URL=http://arxiv.org/abs/0712.2923.

[2] R Anguelov and I N Fabris-Rotelli, Discrete Pulse Transform of Images, Proceedings of ICISP 2008: International Conference on Image and Signal Processing, Cherbourg-Octeville, Normandy, France, 1-3 July 2008, Lecture Notes in Computer Science, 5099 (2008) 1-9.

[3] I Fabris-Rotelli and S J van der Walt, The Discrete Pulse Transform in Two Dimensions, Proceedings of the Twentieth Annual Symposium of the Pattern Recognition Association of South Africa, 30 November 1 December 2009 Stellenbosch, South Africa.

[4] R Anguelov and I N Fabris-Rotelli, LULU Operators and Discrete Pulse Transform for Multi-dimensional Arrays, IEEE Transactions on Image Processing, to appear, 2010.