Research Paper:

Effect of Eight Weeks of Endurance Training and Stevia Supplementation on Atrial Natriuretic Peptide and β-Myosin Heavy Chain Expression Levels in Heart Tissue of Rats With Type 1 Diabetes

Kobra Soleymani1, *Asieh Abbassi Daloii2, Ali Reza Barari1, Ayoub Saeidi2

1. Department of Exercise Physiology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran.
2. Department of Exercise Physiology, Damghan Branch, Islamic Azad University, Damghan, Iran.

Background
The effects of exercise and stevia extract on diabetes-related indicators have been already reported, but their cardiac benefits on Type 1 Diabetes (T1D) are unclear.

Objective
This study aims to evaluate the effect of eight weeks of endurance training and stevia supplementation on gene expression levels of Atrial Natriuretic Peptide (ANP) and β-Myosin Heavy Chain (β-MHC) in the heart tissue of T1D rats.

Methods
In this experimental study, 25 rats with the average weight of 250-300 g were divided into five groups; healthy control, diabetic control, diabetic+supplementation, diabetic+training, and diabetic+training+supplementation. T1D was induced by intraperitoneal injection of streptozotocin (55 mg/kg/body weight). Endurance training was performed 5 days a week at a speed of 20-30 meters per minute on a surface with a zero slope for 8 weeks. Stevia was gavaged in a dose of 250 mg/kg/body weight. Rats were slaughtered 48 hours after the last training session. Cardiac tissue was used to measure the parameters. The gene expression of ANP and β-MHC in cardiac tissue was measured by real-time Polymerase Chain Reaction (PCR) method. Data were analyzed by using one-way ANOVA and Bonferroni post hoc test.

Findings
The gene expression levels of ANP and β-MHC were significantly higher in the diabetic control group compared to the healthy control group (P=0.001), and significantly lower in the diabetic+training and diabetic+training+supplementation groups compared to the diabetic control group (P=0.001).

Conclusion
Endurance training and stevia supplementation can have beneficial effects on the heart of T1D rats.

Keywords:
Type 1 diabetes, Exercise, Stevia, Atrial natriuretic peptide, β-Myosin heavy chain, Heart tissue

Extended Abstract

1. Introduction
Hear disease is one of the main complications of Type 1 Diabetes (T1D). In patients with T1D, Atrial Natriuretic Peptide (ANP) level is elevated associated with concomitant microalbuminuria, poor glycemic control, hypertension, and increased risk of cardiovascular diseases [5]. Myosins are a family of adenosine triphosphate-dependent proteins that play a major role in skeletal and cardiac muscle contraction [9]. Two isoforms that are expressed in mammalian hearts are α-Myosin Heavy Chain (α-MHC) and β-Myosin Heavy Chain (β-MHC). Following stressors such as diabetes and high blood pressure, the

* Corresponding Author:
Asieh Abbassi Daloii
Address: Department of Physical Education and Sport Science, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran.
Tel: +98 (911) 1274366
E-Mail: abbsi.daloii@gmail.com
alpha type is mainly converted to beta type. In people with heart failure, β-MHC expression is highly reduced [12].

The positive effects of regular exercise on various diseases, including T1D have been already reported [13]. Effects of cardiac protection following voluntary physical activity on myosin heavy chain gene in elderly rats have also been reported [14]. However, increased and decreased ANP gene expression in cardiac tissue was reported in male Wistar rats after 8 weeks of resistance training [15] and 6 weeks of low-intensity periodic training [16], respectively.

The Stevia rebaudiana herbal plant as a sweet food additive has many benefits for humans [17]. Stable effects with zero calories and the possibility of using it for diabetic patients are among the advantages of this plant [18]. Therefore, the use of this natural sweetener in food products, especially for people with diabetes, has become very important to be responsive to the desire in them to eat sweets [19].

Many studies have emphasized the effect of exercise therapy on diabetics who are at risk for cardiovascular disease [20, 21]. However, studies on the effect of aerobic exercises and herbal supplements on gene expression of factors affecting cardiac function are limited, especially in T1D subjects. Therefore, the present study aims to investigate the effect of eight weeks of endurance training and stevia supplementation on ANP and β-MHC gene expression in heart tissue of rats with T1D.

2. Materials and Methods

This is an experimental study conducted on 25 Wistar rats (weighting 250-300 g) prepared from the Islamic Azad University of Marvdasht Branch. They were divided into five groups: healthy control, diabetic control, diabetic+supplementation, diabetic+training, and diabetic+training+supplementation. Rats were given an intraperitoneal injection of streptozotocin (55 mg/kg/body weight) to induce diabetes. Endurance training was performed 5 days a week at a speed of 20-30 meters per minute on a surface with a zero slope for 8 weeks. Stevia was gavaged in a dose of 250 mg/kg/body weight [22]. Rats were slaughtered 48 hours after the last training session. Cardiac tissue was used to analyze the parameters. The gene expression of ANP and β-MHC in cardiac tissue was measured by real-time Polymerase Chain Reaction (PCR) method. Data were analyzed by one-way ANOVA and Bonferroni post hoc test considering a significance level of P<0.05.

3. Results

The results showed that the gene expression of ANP and β-MHC in the heart tissue of diabetic control rats were significantly higher than in the healthy control group (P=0.001). Endurance training and the combination of endurance training and stevia supplementation significantly reduced ANP and β-MHC levels in cardiac tissue of diabetic rats compared to the diabetic controls (P=0.001).

4. Discussion

The ANP changes during exercise depends on the amount of dopamine, intensity and duration of activity, the amount of catecholamines, body condition during exercise, and hypoxic conditions [23-25]. The main reason for ANP level increase may be the stretched cardiac muscle due to increased atrial dimensions. During exercise, increase in the atrial dilatation may be due to central blood volume, in proportion to which atrial pressure increases ANP [26]. Therefore, exercise may reduce ANP level by modulating this pressure [27]. ANP levels in cardiac patients are high due to increased cardiac afterload. In the present study, endurance training reduced ANP gene expression in cardiac tissue of rats by reducing afterload. Regarding the mechanism of how endurance training affect β-MHC level in heart tissue, it has been shown that endurance training affect heart mass size and Pur and beta gene expression, and it seems that change in heart mass after endurance training is associated with MHC isoform expression [32].

Endurance training and the combination of endurance training and stevia supplementation may lead to significant reduction in β-MHC of T1D rats. Stevia has a variety of vitamins, especially vitamins A and C, as well as many anti-oxidant elements such as selenium, cobalt and chromium. It also contains protein, fiber, carbohydrates, phosphorus, iron, calcium and sodium [31]. It is possible that the dose of stevia supplementation may affect the results such that clearer results can be obtained by changing its dosage. There were some limitations in the present study, including the lack of dopamine and the catecholamines measurement. Endurance training and stevia supplementation are recommended due to its possible beneficial effects on the heart of T1D rats.

Ethical Considerations

Compliance with ethical guidelines

This study obtained its ethical approval from the Research Ethics Committee of Islamic Azad University of Marvdasht Branch in Iran (Code: IR.IAU.M.REC.1399.015).
Funding

This study was extracted from the PhD dissertation of the first author approved by the Department of Physical Education and Sport Science, Ayatollah Amoli Branch, Islamic Azad University, Amol.

Authors' contributions

Conceptualization, supervision, and methodology: Asieh Abbassi Daloii; Methodology, draft preparation, and data analysis: All authors; Editing & review: Kobra Soleymani, Ali Reza Barari and Ayoub Saeidi.

Conflicts of interest

The authors declared no conflict of interest.

Acknowledgments

The authors would like to thank the participants and the Faculty of Physical Education and Sports Sciences at Islamic Azad University of Ayatollah Amoli Branch for their cooperation.
تأثیر هشته هفته‌امن‌سنجی استقامتی و مکمل استویا بر بیان زن ANP و b-MHC بافت قلب موش های صحرا وی دیابتی

کیمیه

مقدمه

عمدتاً از میوسیت‌های نمک‌کش در پاسخ به کشش بافت قلبی گلیسرول مایعات دفع می‌کند. این پپتید، مایعات دفع می‌کند و باعث کاهش فشار خون می‌شود. آن در سیستم کلیوی، قلبی عروقی و همچنین از طریق مهار سیستم رنین-انژیوتانسین-آلدوسترون سیستم سیسپتیک فعالیت می‌کند و با القای مدولاسیون اندوتلیال، باعث افت در فشار خون می‌شود. ANP به عنوان یکی از سه پهلوی اصلی مایعات دفع می‌کند. برای تشخیص مایعات دفع می‌کند، میوزین‌های پیکری را می‌سازد. بیماران دیابتی نوع 1 به دلیل افزایش مایعات دفع می‌کند و باعث افزایش فشار خون می‌شود. ANP به عنوان یکی از سه پهلوی اصلی مایعات دفع می‌کند و باعث افزایش فشار خون می‌شود. ANP به عنوان یکی از سه پهلوی اصلی مایعات دفع می‌کند و باعث افزایش فشار خون می‌شود. ANP به عنوان یکی از سه پهلوی اصلی مایعات دفع می‌کند و باعث افزایش فشار خون می‌شود. ANP به عنوان یکی از سه پهلوی اصلی مایعات دفع می‌کند و باعث افزایش فشار خون می‌شود. ANP به عنوان یکی از سه پهلوی اصلی مایعات دفع می‌کند و باعث افزایش فشار خون می‌شود. ANP به عنوان یکی از سه پهلوی اصلی مایعات دفع می‌کند و باعث افزایش فشار خون می‌شود. ANP به عنوان یکی از سه پهلوی اصلی مایعات دفع می‌کند و باعث افزایش فشار خون می‌شود. ANP به عنوان یکی از سه پهلوی اصلی مایعات دفع می‌کند و باعث افزایش فشار خون می‌شود. ANP به عنوان یکی از سه پهلوی اصلی مایعات دفع می‌کند و باعث افزایش فشار خون می‌شود. ANP به عنوان یکی از سه پهلوی اصلی مایعات دفع می‌کند و باعث افزایش فشار خون می‌شود. ANP به عنوان یکی از سه پهلوی اصلی مایعات دفع می‌کند و باعث افزایش فشار خون می‌شود. ANP به عنوان یکی از سه پهلوی اصلی مایعات دفع می‌کند و باعث افزایش فشار خون می‌شود. ANP به عنوان یکی از سه پهلوی اصلی مایعات دفع می‌کند و باعث افزایش F/00

کلیدواژه‌ها:

- ANP
- b-MHC
- بیماری قلبی
- بیماری دیابتی
- دیابت نوع 1
- هوازی
- استویا
- بافت قلب
بیماری‌های مزمن در جهان به‌طور گسترده‌ای و چشمه‌برداری و درمان آن‌ها مسئولانه‌ترین موارد در سیستم بهداشت و درمان محسوب می‌شود. در این مقاله، تأکید می‌شود بر اهمیت زیادی که در روش‌های درمانی درمان این بیماری‌ها به ویژه دیابتی نوع ۱ و ۲، برای استفاده از مواد طبیعی گردد. تحقیق‌های گذشته نشان داده‌اند که استفاده از مواد طبیعی در بیماری‌های قلبی و عروقی می‌تواند بهبود فاکتور‌های کلیوکسپرتی‌لن و وابستگی به مواد شیرین و کاهش فشار خون در بیماران دیابتی اثر گذار باشد.

1. مواد و روش‌ها

پژوهشی حاضر، یک مطالعه تجربی-آزمایشگاهی است که در آن اکتشاف اثر بر افزایش درمان این بیماری‌ها با استفاده از مواد طبیعی انجام شد. این تحقیق با نمونه‌گیری از بیماران دیابتی نوع ۱ و ۲ انجام شد.

2. آمارهای بیان فیلمی

در این تحقیق از نمونه‌گیری از بیماران دیابتی نوع ۱ و ۲، در سطح دریا می‌روید. برگ‌های استویا یکی از این بیماران، در طی فصل همکاری را می‌شوند. نمودار نشان‌دهنده‌ی حکایتی از نحوه ورود مواد شیرین و افراد مبتلا به دیابت

3. آدیسزوآمزین (ATP)

آدیسزوآمزین یک مکمل متعددی است که برای کاهش فشار خون و بهبود فعالیت بدنی مضرات عروقی می‌باشد. این مکمل بهبودی و بهبود فعالیت بدنی بیماران دیابتی را افزایش می‌دهد.

4. Effect size

Effect size یک شاخص استفاده شده در مطالعات آماری است که افزایش اثر برای نمونه‌های مختلف را نشان می‌دهد.
کنترلی نپیز به سمت هفت هفته در قفس تک‌گازداری شده و در هر هیجت تمرین شرکت کرده تنشی شده بود. تنشی نپیز به سمت میکروتیوبی موشهای مراقب در هر هیجت تمرین، در نهایت این گروه گروهی می‌شد و پس از شست و شو در سرم فیزیولوژیک در میکروتیوب‌های گرم به ازای هر کیلوگرم وزن بدن (ناشتا)، موش‌های صحرایی مورد مطالعه در هر گروه با تزریق ٠.٠٥ میلی‌گرم بروز پنج بانده بود که برای بار اول پنج سر موش صحرایی از آزمون تحلیل واریانس یک طرفه برای تغییرات درون گروهی و شدت جهت بررسی مقایسه میانگین تغییرات سطح بیان‌ژن‌های گروه‌ها

این پژوهش نهایی روش‌های تحلیل واریانس یک طرفه برای تغییرات درون گروهی و شدت جهت بررسی مقایسه میانگین تغییرات سطح بیان‌ژن‌های گروه‌ها استفاده گردید.

برای این‌که تسهیل شناسایی ژن‌ها در این پژوهش کار در آزمایشگاه در بافت قلب موشهای صحرایی دیابتی نوع ۱ بر اساس آزمایشگاهی‌های به‌کارگیری شد.

برای اندازه‌گیری تعداد مشترک‌های مقایسه‌ی بین ژن‌های فاکتورهای مورد نظر، از روش‌های آماری و محاسباتی استفاده گردید.

گروه‌های تمرینی در این پژوهش شامل دو گروه با درجه دیابت بایستی و اسکله دیابتی نوع ۱ بودند.

تعداد ۱۸ موش در هر گروه در این پژوهش توزیع گردید.

تعداد نمونه‌ها در هر گروه به شرح ذیل بود:

- گروه کنترل: ۲۰ نمونه موش صحرایی سالم
- گروه تمرین: ۲۰ نمونه موش صحرایی دیابتی نوع ۱

تسهیل شناسایی ژن‌های مورد نظر در این پژوهش توسط آزمایشگاه‌های به‌کارگیری شد.

برای اجرای آزمون بافت قلب موشهای متغیر توسط روش‌های آماری و محاسباتی استفاده گردید.

در این پژوهش تعداد چند ژن از جمله ژن‌های فاکتورهای مورد نظر از ماده و فیزیولوژیک در بافت قلب موشهای صحرایی دیابتی نوع ۱ بر اساس آزمایشگاهی‌های به‌کارگیری شد.

برای اندازه‌گیری تعداد مشترک‌های مقایسه‌ی بین ژن‌های فاکتورهای مورد نظر، از روش‌های آماری و محاسباتی استفاده گردید.

در این پژوهش از روش‌های آماری و محاسباتی استفاده گردید.

برای اندازه‌گیری تعداد مشترک‌های مقایسه‌ی بین ژن‌های فاکتورهای مورد نظر، از روش‌های آماری و محاسباتی استفاده گردید.

برای اندازه‌گیری تعداد مشترک‌های مقایسه‌ی بین ژن‌های فاکتورهای مورد نظر، از روش‌های آماری و محاسباتی استفاده گردید.

برای اندازه‌گیری تعداد مشترک‌های مقایسه‌ی بین ژن‌های فاکتورهای مورد نظر، از روش‌های آماری و محاسباتی استفاده گردید.

برای اندازه‌گیری تعداد مشترک‌های مقایسه‌ی بین ژن‌های فاکتورهای مورد نظر، از روش‌های آماری و محاسباتی استفاده گردید.

برای اندازه‌گیری تعداد مشترک‌های مقایسه‌ی بین ژن‌های فاکتورهای مورد نظر، از روش‌های آماری و محاسباتی استفاده گردید.

برای اندازه‌گیری تعداد مشترک‌های مقایسه‌ی بین ژن‌های فاکتورهای مورد نظر، از روش‌های آماری و محاسباتی استفاده گردید.
بشریه ـ تمرین و دیابتی ـ استویا ـ تمرین تفاوت معنی‌داری وجود دارد. بافت قلب در گروه کنترل دیابتی نسبت به گروه کنترل سالم به طور معنی‌داری بیشتر بود. بافت قلب موش‌های صحرایی دیابتی نوع دیابتی ورزشی استویا نسبت به گروه کنترل دیابتی تفاوت معنی‌داری نداشت. بافت قلب موش‌های دیابتی نوع دیابتی ورزشی استویا نسبت به گروه کنترل دیابتی میزان معنی‌داری کمتر بود. بین میانگین mpgan (جدول شماره ۱)، دیابتی ورزشی استویا میزان ANP نسبت به گروه کنترل دیابتی به دست آمد. تنها معنی‌داری بین پنج سر درصد تغییرات در نتایج آزمون تعقیبی آماری با نسبت ۲۰۰ به اجرا درآمد.

میانگین ۱۸۸۰۵/۳۳±۴۲۳/۰۹ نسبت به گروه دیابتی به طور معنی‌داری بیشتر بود. بین میانگین mpgan (جدول شماره ۱) میزان ANP نسبت به گروه دیابتی به طور معنی‌داری کمتر بود. بین میانگین mpgan (جدول شماره ۱) میزان ANP نسبت به گروه کنترل سالم به دست آمد. تنها معنی‌داری بین پنج سر درصد تغییرات در نتایج آزمون تعقیبی آماری با نسبت ۲۰۰ به اجرا درآمد.

میانگین	دیابتی	کنترل دیابتی	کنترل سالم	ANP (ΔDU)	b-MHC (ΔDU)
دیابتی ورزشی	188.53 ± 42.31	215.00 ± 43.12	238.00 ± 35.26	-12.47	12.47
استویا	203.00 ± 47.56	225.00 ± 48.78	248.00 ± 39.82	-22.00	22.00

پرایمرها	آنتر	آنتی	تکرار	TGAAGCTTACCCAGGAGAGCATCATGG	AAGAATTCTTGGAGAACTGTTGGTCC
ANP	Forward	Reverse	1	104bp	104bp
b-MHC	Forward	Reverse	1	104bp	104bp
GAPDH	Forward	Reverse	1	104bp	104bp

سطح تعقیبی	ANP	b-MHC
P	0.0000	0.0000

میانگین ۱۸۸۰۵/۳۳±۴۲۳/۰۹ نسبت به گروه دیابتی به طور معنی‌داری بیشتر بود. بین میانگین mpgan (جدول شماره ۱) میزان ANP نسبت به گروه کنترل دیابتی به دست آمد. تنها معنی‌داری بین پنج سر درصد تغییرات در نتایج آزمون تعقیبی آماری با نسبت ۲۰۰ به اجرا درآمد.

میانگین ۱۸۸۰۵/۳۳±۴۲۳/۰۹ نسبت به گروه دیابتی به طور معنی‌داری بیشتر بود. بین میانگین mpgan (جدول شماره ۱) میزان ANP نسبت به گروه دیابتی به دست آمد. تنها معنی‌داری بین پنج سر درصد تغییرات در نتایج آزمون تعقیبی آماری با نسبت ۲۰۰ به اجرا درآمد.

میانگین ۱۸۸۰۵/۳۳±۴۲۳/۰۹ نسبت به گروه دیابتی به طور معنی‌داری بیشتر بود. بین میانگین mpgan (جدول شماره ۱) میزان ANP نسبت به گروه دیابتی به دست آمد. تنها معنی‌داری بین پنج سر درصد تغییرات در نتایج آزمون تعقیبی آماری با نسبت ۲۰۰ به اجرا درآمد.

میانگین ۱۸۸۰۵/۳۳±۴۲۳/۰۹ نسبت به گروه دیابتی به طور معنی‌داری بیشتر بود. بین میانگین mpgan (جدول شماره ۱) میزان ANP نسبت به گروه دیابتی به دست آمد. تنها معنی‌داری بین پنج سر درصد تغییرات در نتایج آزمون تعقیبی آماری با نسبت ۲۰۰ به اجرا درآمد.

میانگین ۱۸۸۰۵/۳۳±۴۲۳/۰۹ نسبت به گروه دیابتی به طور معنی‌داری بیشتر بود. بین میانگین mpgan (جدول شماره ۱) میزان ANP نسبت به گروه دیابتی به دست آمد. تنها معنی‌داری بین پنج سر درصد تغییرات در نتایج آزمون تعقیبی آماری با نسبت ۲۰۰ به اجرا درآمد.

میانگین ۱۸۸۰۵/۳۳±۴۲۳/۰۹ نسبت به گروه دیابتی به طور معنی‌داری بیشتر بود. بین میانگین mpgan (جدول شماره ۱) میزان ANP نسبت به گروه دیابتی به دست آمد. تنها معنی‌داری بین پنج سر درصد تغییرات در نتایج آزمون تعقیبی آماری با نسبت ۲۰۰ به اجرا درآمد.

میانگین ۱۸۸۰۵/۳۳±۴۲۳/۰۹ نسبت به گروه دیابتی به طور معنی‌داری بیشتر بود. بین میانگین mpgan (جدول شماره ۱) میزان ANP نسبت به گروه دیابتی به دست آمد. تنها معنی‌داری بین پنج سر درصد تغییرات در نتایج آزمون تعقیبی آماری با نسبت ۲۰۰ به اجرا درآمد.
بافت قلب موش‌های صحرایی دیابتی نوع 315

.. همچنین محور اصلی افزایش مقدار کاتکولامین‌ها وضعیت بدن هنگام تمرینات و شرایط زمینه افزایش بیان ژن پپتید ناتریورتیک دهلیزی در بافت قلب به

میزان تغییرات بافت قلب در موش‌های دیابتی نوع 1

*تفاوت معنی‌دار نسبت به گروه کنترل سالم، † تفاوت معنی‌دار نسبت به گروه کنترل دیابتی.

یافته‌های بالاتری در تغییرات بیان ژن ANP میان دیابتی - استوایی - تمرین و با گروه دیابتی - کنترل دیابتی - کنترل سالم ۹۳ (شکل شماره ۱)

بحث و تحلیل گزارشی

نتایج پژوهش حاضر نشان می‌دهد بلطف قلب میزان mRNA ANP موش‌های صحرایی کنترل دیابتی نسبت به گروه کنترل سالم به طور معنی‌داری بالاتر بود. تمرین استوایی و کنترل دیابتی آدامس آنها افزایش میزان mRNA ANP را به دنبال کنترل دیابتی نسبت به گروه دیابتی - کنترل دیابتی - کنترل سالم - یافته‌های بالاتری در تغییرات بیان ژن ANP می‌دانند. این نتایج نشان می‌دهد که افزایش این ژن در بیماران دیابتی باعث افزایش مقاومت عضلات قلبی می‌شود.
استویا نشان دهنده تغییرات در بیماری ناشی از افزایش گستردگی و یا عوارض زیادی همانند سلیب و کالری است که با مناسب آنتی‌اکسانسیون همکاری می‌کند. استویا در طول زمان، این افزایش گستردگی ناشی از کاهش حرارت و کاهش سطح مایع در داخل اتمسفری استویا و تغییرات نسبت مایع در اتمسفری استویا باعث نشان می‌دهد که آنتی‌اکسانسیون باعث کاهش کشش عامل های زیادی می‌شود که عبارت از سلنیوم، کبالت و کروم است که عناصر ضروری به‌شمار می‌رود.

در این مطالعه استفاده از میوه‌های کم‌پردازش که تحت تاثیر استویا قرار گرفته‌اند نشان می‌دهد که استویا میتواند به صورت موثری بهبود را در بیماران دیابتی ایجاد کند. همچنین این مطالعه نشان می‌دهد که استویا می‌تواند بهبود را در سطح مایع در داخل اتمسفری استویا و تغییرات نسبت مایع در اتمسفری استویا باعث نشان دهد که آنتی‌اکسانسیون باعث کاهش کشش عامل های زیادی می‌شود که عبارت از سلنیوم، کبالت و کروم است که عناصر ضروری به‌شمار می‌رود.

در این مطالعه استفاده از میوه‌های کم‌پردازش که تحت تاثیر استویا قرار گرفته‌اند نشان می‌دهد که استویا میتواند به صورت موثری بهبود را در بیماران دیابتی ایجاد کند. همچنین این مطالعه نشان می‌دهد که استویا می‌تواند بهبود را در سطح مایع در داخل اتمسفری استویا و تغییرات نسبت مایع در اتمسفری استویا باعث نشان دهد که آنتی‌اکسانسیون باعث کاهش کشش عامل های زیادی می‌شود که عبارت از سلنیوم، کبالت و کروم است که عناصر ضروری به‌شمار می‌رود.

در این مطالعه استفاده از میوه‌های کم‌پردازش که تحت تاثیر استویا قرار گرفته‌اند نشان می‌دهد که استویا می‌تواند به صورت موثری بهبود را در بیماران دیابتی ایجاد کند. همچنین این مطالعه نشان می‌دهد که استویا می‌تواند بهبود را در سطح مایع در داخل اتمسفری استویا و تغییرات نسبت مایع در اتمسفری استویا باعث نشان دهد که آنتی‌اکسانسیون باعث کاهش کشش عامل های زیادی می‌شود که عبارت از سلنیوم، کبالت و کروم است که عناصر ضروری به‌شمار می‌رود.

در این مطالعه استفاده از میوه‌های کم‌پردازش که تحت تاثیر استویا قرار گرفته‌اند نشان می‌دهد که استویا می‌تواند به صورت موثری بهبود را در بیماران دیابتی ایجاد کند. همچنین این مطالعه نشان می‌دهد که استویا می‌تواند بهبود را در سطح مایع در داخل اتمسفری استویا و تغییرات نسبت مایع در اتمسفری استویا باعث نشان دهد که آنتی‌اکسانسیون باعث کاهش کشش عامل های زیادی می‌شود که عبارت از سلنیوم، کبالت و کروم است که عناصر ضروری به‌شمار می‌رود.
می‌شورده تأثیر متدهگی تمرین و مکمل استویا با ضرمهای مختلف بر ژن‌های عملکردی بافت قلب در دیابت نوع ۱ مورد بررسی قرار گرفته است. انداردژی‌های مصرف‌یافته و تغییرات کیناز پکی (PKC) در بافت قلب معتقدیت بدنی بر عهلوالی روتوئی درک و در عمل مفصل یافته این مطالعه دیده شده است. این تحقیقات پژوهشی، ویسانتیهای به مطالعات آینده به منظور افزایش دویوماتی در بافت قلب است. به‌طور کلی تحقیقات بهبودی در بافت قلب است.

به طور خلاصه، تحقیقات حاضر حاضر نشان می‌دهد که تمرین و تمرین و تمرین استخوان و مکمل استویا با بافت قلب مصرف‌یافته b-MHC و ANP کاهش معنی‌داری در بافت قلب موش‌های آباد آزاد اسلامی داشته است. البته این تحقیقات به‌طور کلی تحقیقات بهبودی در بافت قلب است.

ملاحظات اخلاقی

روی از اصول اخلاقی پژوهش

این مطالعه توسط کمیته اخلاق طلبه‌های آزاد اسلامی مرودشت با شماره حمایت مالی IR.IAU.M.REC.1399.015 تصویب شده است.

همسایه مالی

این مقاله پرورده از رساله دکتری فیزیولوژی ورزشی کارمند کمیته اخلاق طلبه‌های آزاد اسلامی واحد شده است.

مشارکت‌نوسانگان

نظرات و روش‌شناسی: آسه عباسی دالوی، روش، تهیه به بیشی پروتوسازی و تحلیل دانشگاه هم به تیپدانگان و ناپیوند و بررسی گیری سلیمانی، و به ویژه برای وای رشیدی، و ایوب سعیدی.

تجارت منافع

بنا بر اظهار هیچ‌گونه تعارض منافعی در اجرای این پژوهش وجود نداشت.

تشکر و قدردانی

تویسندگان از همکاری‌ها، تحقیقات، ترجمه‌های و علوم ورزشی طلبه‌های آزاد اسلامی واحد ایفالتیه مایل تشکر می‌کنند.
References

[1] Song W, Wang H, Wu O. Atrial natriuretic peptide in cardiovascular biology and disease (NPPA). Gene. 2015; 569(1):1-6. [DOI:10.1016/j.gene.2015.06.029] [PMID] [PMCID]

[2] Rubattu S, Scarretta S, Valentini T, Stanzione R, Volpe M. Natriuretic peptides: An update on bioactivity, potential therapeutic use, and implication in cardiovascular diseases. Am J Hypertens. 2008; 21(7):733-41. [DOI:10.1038/ajh.2008.174] [PMID]

[3] Schlueter N, de Sterke A, Willmes DM, Spranger J, Jordan J, Birk- enfeld AL. Metabolic actions of natriuretic peptides and therapeu- tic potential in the metabolic syndrome. Pharmacol Ther. 2014; 144(1):12-27. [DOI:10.1016/j.pharmthera.2014.04.007] [PMID]

[4] Theilade S, Hansen TW, Goetze JP, Rossing P. Increased plasma concentrations of midregional proatrial natriuretic Peptide is associated with risk of cardioenol dysfunction in type 1 diabetes. Am J Hypertens. 2015; 28(6):772-9. [DOI:10.1093/ajh/hpu227] [PMID]

[5] McKenna K, Smith D, Sherlock M, Moore K, O'Brien E, Tormey C. Human heart. Circ Res. 2000; 86(4):386-90. [DOI:10.1161/01. RES.86.4.386] [PMID]

[6] Jarolim P, et al. Evaluation of multiple biomarkers of cardio-vascular stress for risk prediction and guiding medical therapy in patients with stable coronary disease. Circulation. 2012; 125(2):233-40. [DOI:10.1161/CIRCULATIONAHA.111.036842] [PMID] [PMCID]

[7] Bosselmann AL, Egstrup M, Rossing K, Gustafsson I, Gustafsson F, Tonder N, et al. Prognostic signification of cardiovascular biomarkers and renal dysfunction in outpatients with systolic heart failure: A long-term follow-up study. Int J Cardiol. 2013; 174(3):53-7. [DOI:10.1016/j.ijcard.2013.10.064] [PMID]

[8] Secher NH, et al. The plasma atrial natriuretic peptide response to arm and leg exercise in humans: Effect of posture. Exp Physiol. 2013; 98(11):e003288. [DOI:10.1136/bmjopen-2013-003288] [PMID] [PMCID]

[9] Gupta MP. Factors controlling cardiac myosin-isoform shift during hypertrophy and heart failure. J Mol Cell Cardiol. 2007; 43(4):388-403. [DOI:10.1016/j.yjmcc.2007.07.045] [PMID] [PMCID]

[10] Herron TJ, Korte FS, McDonald KS. Loaded shortening and power output in cardiac myocytes are dependent on myosin heavy chain isoform expression. Am J Physiol Heart Circ Physiol. 2001; 281(3):H1217-22. [DOI:10.1152/ajpheart.2001.281.3.H1217] [PMID]

[11] Miyata S, Minobe W, Bristow MR, Leinwand LA. Myosin heavy chain isoform expression in the failing and nonfailing human heart. Circ Res. 2000; 86(4):386-90. [DOI:10.1161/01. RES.86.4.386] [PMID]

[12] McInerny K, O'Brien E, Tormey C, Jarolim P, Sherlock M, Moore K, et al. ProANP plasma measurement predicts all-cause mortality in acutely hospitalised patients: A cohort study. BMJ Open. 2013; 3(11):e003288. [DOI:10.1136/bmjopen-2013-003288] [PMID] [PMCID]

[13] Chetty T, Shetty V, Fournier PA, Adolfsson P, Jones TW, Davis EA. Exercise management for young people with type 1 diabetes: A structured approach to the exercise consultation. Front Endocrinol (Lausanne). 2019; 10:326. [DOI:10.3389/fendo.2019.00326] [PMCID]

[14] Parsaefar A, Dabidi Roshan V, Mazaheri Z. Cardioprotective effect of voluntary physical activity on changes of doxorubicin-induced cardiac myosin heavy chain expression in aging model rats. Stud Med Sci. 2017; 27(10):893-901. [In Persian] http://umj.umusu.ac.ir/article-1-3555-en.html

[15] Azadmehri M, Rashidlamar A, Hejazi SM. The effect of eight-week ladder-climbing exercise on the Atrial Natriuretic Peptide (ANP) gene expression in the heart tissue of Wistar male rats. EBNESINA. 2019; 21(1):20-5. [In Persian] http://ebnesina.ajaums.ac.ir/article_1-582-en.html

[16] Ghabrehrai M, Karbalaei Erf S. Effect of interval training intensity on ANP and BNP gene expression levels after myocardial infarction. Sport Physiol. 2018; 9(36):159-72. [In Persian] https://spj.ssrc.ac.ir/article-1110_en.html

[17] Agarwal Y, Kochhar A, Sachdeva R. Sensory and nutritional evaluation of sweet cereal products prepared using stevia powder for diabetics. Stud Ethno-Med. 2009; 3(2):93-8. [DOI:10.1080/09735070.2009.1188634]

[18] Chatsudhipong V, Muanprasat C. Stevioside and related compounds: Therapeutic benefits beyond sweetness. Pharmacol Ther. 2009; 121(1):41-54. [DOI:10.1016/j.pharmthera.2008.09.007] [PMID]

[19] Ahmad U, Ahmad RS. Anti-diabetic property of aqueous extract of Stevia rebaudiana Bertoni leaves in Streptozotocin-induced diabetes in albino rats. BMC Complement Altern Med. 2018; 18(1):179. [DOI:10.1186/s12906-018-2245-2] [PMCID] [PMID]

[20] Williams JE, Helsel B, Nelson B, Eke R. Exercise considerations for type 1 and type 2 diabetes. ACSM’s Health Fitness J. 2018; 22(1):10-6. [DOI:10.1249/FIT.0000000000000359]

[21] Colberg SR, Laan R, Dassau E, Kerr D. Physical activity and type 1 diabetes: Time for a rewire? J Diabetes Sci Technol. 2015; 9(3):609-18. [DOI:10.1177/1932296814566231] [PMID] [PMCID]

[22] Akbarzadeh S, Barghahi A, Rabbar AR, Daneshi A, Najafpour Bushehri S, Pourkhalili Kh, et al. The effects of aqueous extract of stevia plant (Stevia rebaudiana) on serum concentration of vaspin and Angiopoietin-like Protein-3 in streptozotocin induced diabetic rats. Iran South Med J. 2015; 18(2):239-49. [In Persian] http://ismj.bpums.ac.ir/article-1-669-en.html

[23] Raha D, Tortorella C, Neri G, Prasad A, Raza B, Raskar R, et al. Atrial natriuretic peptide enhances cortisol secretion from guinea-pig adrenal gland: Evidence for an indirect paracrine mechanism probably involving the local release of medullary catecholamines. Int J Mol Med. 2006; 17(4):633-6. [DOI:10.3892/ijmm.17.4.633] [PMID]

[24] Vogelsang TW, Yoshiga CC, Hjgpgaard M, Kjær A, Warberg J, Secher NH, et al. The plasma atrial natriuretic peptide response to arm and leg exercise in humans: Effect of posture. Exp Physiol. 2006; 91(4):765-71. [DOI:10.1113/expphysiol.2006.033537] [PMID]
[25] Bentzen H, Pedersen RS, Nyvad O, Pedersen EB. Influence of training habits on exercise-induced changes in plasma atrial and brain natriuretic peptide and urinary excretion of aquaporin-2 in healthy man. Scand J Clin Lab Invest. 2002; 62(7):541-51. [DOI:10.1080/003655102321004567] [PMID]

[26] Niessner A, Ziegler S, Slany J, Billensteiner E, Woloszczuk W, Geyer G. Increases in plasma levels of atrial and brain natriuretic peptides after running a marathon: Are their effects partly counterbalanced by adrenocortical steroids? Eur J Endocrinol. 2003; 149(6):555-9. [DOI:10.1530/eje.0.1490555] [PMID]

[27] Sheikhani Shahin H, Babaee Bigi MA, Aslani A, Daryanoosh F. Effect of professional exercises on brain natriuretic peptide. Int Cardiovasc Res J. 2009; 3(4):e67880. https://sites.kowsarpub.com/ircrj/articles/67880.html

[28] Suda K, Hagiwara H, Kotani Y, Kato K, Sasaki M, Izawa T, et al. Effect of exercise training on ANP receptors. Res Commun Mol Pathol Pharmacol. 2000; 108(3-4):227-35. [PMID]

[29] Wisén AG, Ekberg K, Wohlfart B, Ekman R, Westrin Å. Plasma ANP and BNP during exercise in patients with major depressive disorder and in healthy controls. J Affect Disord. 2011; 129(1-3):371-5. [DOI:10.1016/j.jad.2010.09.002] [PMID]

[30] Kwon OJ, Oh HC, Lee YJ, Kim HY, Tan R, Kang DG, et al. Sibjotang increases atrial natriuretic peptide secretion in beating rabbit atria. Evid Based Complement Alternat Med. 2015; 2015:268643. [DOI:10.1155/2015/268643] [PMID] [PMCID]

[31] Tavarini, S, Angelini LG. Stevia rebaudiana Bertoni as a source of bioactive compounds: The effect of harvest time, experimental site and crop age on steviol glycoside content and antioxidant properties. J Sci Food Agric. 2013; 93(6):2121-9. [DOI:10.1002/jsfa.6016] [PMID]

[32] Fathi M, Aberon S. The effect of endurance activity on left ventricle PurβGene expressionin Wistar male rat. Sci J Ilam Univ Med Sci. 2016; 23(6):74-84. [In Persian] http://sjimu.medilam.ac.ir/article-1-2564-fa.html