The Role of Pirfenidone in the Treatment of Interstitial Pneumonia With Autoimmune Features

Tao Chen
Tongji University Affiliated Shanghai Pulmonary Hospital

Qiu-Hong Li
Tongji university affiliated Shanghai Pulmonary Hospital

Yuan Zhang
Tongji University Affiliated Shanghai Pulmonary Hospital

Cheng-Sheng Yin
Tongji University Affiliated Shanghai Pulmonary Hospital

Dong Weng
Tongji University Affiliated Shanghai Pulmonary Hospital

Ying Zhou
tongji university affiliated Shanghai Pulmonary Hospital

Yang Hu
Tongji University Affiliated Shanghai Pulmonary Hospital

Jing-Yun Shi
Tongji University Affiliated Shanghai Pulmonary Hospital

Ya-Nan Chen
Tongji University Affiliated Shanghai Pulmonary Hospital

Shuang Ye
Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital

Xiao-Dong Wang
Shanghai Jiaotong University Affiliated Renji hospital

Chun-Yan Wu
Tongji University Affiliated Shanghai Pulmonary Hospital

Yan Huang
Tongji University Affiliated Shanghai Pulmonary Hospital

Ai-Hong Zhang
Tongji University School of Medicine

Huiping Li (✉ liw2013@126.com)
Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China https://orcid.org/0000-0002-6998-9828
Abstract

Rationale: No approved pharmacotherapies are available for patients with interstitial pneumonia with autoimmune features (IPAF).

Objective: In the present work, we aimed to evaluate the efficacy and safety of pirfenidone for the treatment of IPAF.

Methods: A retrospective cohort study consisting of patients who met diagnostic criteria for IPAF was performed after a multidisciplinary review, and the patients receiving pirfenidone were compared with those in the non-pirfenidone group. The baseline data and diagnostic characteristics of patients were assessed. Pulmonary function and prednisone dose were analyzed by a mix-effects model.

Results: A total of 184 patients, who met the diagnostic criteria of IPAF, were divided into two groups: pirfenidone group (n=81) and non-pirfenidone group (n=103). Patients in the pirfenidone group had a lower forced vital capacity (FVC%, \(P < 0.001 \)) and a lower diffusion capacity for carbon monoxide (DLCO%, \(P = 0.003 \)). The pirfenidone group exhibited a greater increase of FVC% at 6 (\(P = 0.003 \)), 12 (\(P = 0.013 \)), and 24 (\(P = 0.003 \)) months. After adjustment for sex, age, UIP pattern, baseline FVC% and DLCO%, patients in the pirfenidone group continued to show a greater improvement in FVC% (\(\chi^2 (1) = 4.59, P = 0.032 \)). Subgroup analysis identified superior therapeutic effects of pirfenidone in patients with dosage > 600 mg/day (\(P = 0.010 \)) and medication course > 12 months (\(P = 0.007 \)). Besides, the pirfenidone group had a lower prednisone dose than the non-pirfenidone group after 12 months of treatment (\(P = 0.002 \)). Moreover, 17 patients (19.32%) experienced side effects after taking pirfenidone, including one case of anaphylactic shock.

Conclusions: Pirfenidone (600-1,800 mg/day) might help improve FVC, with an acceptable safety and tolerability profile in IPAF patients.

Introduction

As a heterogeneous collection of uncommon disorders, interstitial lung disease (ILD) is characterized by interstitial fibrosis and progressive decline in lung function. A significant proportion of ILD patients demonstrate clinical features suggestive of a connective tissue disease (CTD) but fail to meet established CTD diagnostic criteria. Interstitial pneumonia with autoimmune features (IPAF) is used to label these patients according to a European Respiratory Society/American Thoracic Society research statement [1-2]. This new classification system combines clinical, serological, and morphological domains, with an IPAF diagnosis requiring at least two of the three domains. Importantly, IPAF criteria are not diagnostic but standards for classification, which are used to interpret study findings and compare results between studies [3].

The majority of IPAF patients are females, with a mean age of 56.9-67.9 years [4-9]. Moreover, 5-12% of IPAF patients may develop to definite CTD-ILD [1, 5]. The most prevalent patterns in the three domains are
Raynaud’s phenomenon and inflammatory arthritis or polyarticular morning stiffness >60 min for the clinical domain, non-specific interstitial pneumonia (NSIP) for the morphological domain, and antinuclear antibody (ANA) and rheumatoid factor (RF) for the serological domain. The prognosis of IPAF is superior to idiopathic pulmonary fibrosis (IPF) but worse than CTD-ILD [6-9]. Usual interstitial pneumonia (UIP) pattern independently predicts poor survival in IPAF [7-10].

As IPAF patients do not have defined CTD, treatment may be similar to CTD-ILD for some IPAF patients [1]. The INBUILD study has shown that nintedanib is beneficial to progressive fibrosing ILD from a variety of CTDs [11]. Besides, nintedanib can slow down the annual rate of FVC decline in patients with systemic sclerosis-associated ILD [12]. On the other hand, pirfenidone also shows the potential treatment effects for IPAF. A multi-center clinical trial has demonstrated that pirfenidone can prevent the decline of FVC in patients with progressive fibrosing unclassifiable ILD (PF-ILD) [13], including IPAF patients. Li T et al. have reported that pirfenidone can improve the prognosis of patients with amyopathic dermatomyositis [14]. Taken together, we postulated that pirfenidone was associated with the improvement of pulmonary function in IPAF patients. To verify such a hypothesis, we explored the efficacy and safety of pirfenidone capsules for the treatment of IPAF, and it was registered in the Chinese Clinical Trial Registry (ChiCTR-IPR-17010813).

Patients And Methods

1. **Screening process of patients**

A total of 1,070 ILD patients diagnosed at Shanghai Pulmonary Hospital (Shanghai, China) from January 2014 to January 2019 were enrolled in this cohort. The screening process is illustrated in Figure 1. Finally, 242 patients met the diagnostic criteria of IPAF [2]. Among these patients, there were 172 cases with UCTD-ILD, and 70 cases were diagnosed with idiopathic interstitial pneumonia (IIP), including four with biopsy-proven cryptogenic organic pneumonia (COP), eight with IPF, and 58 with unclassifiable IIP. Exclusion criteria were set as follows: (1) patients without follow-up data (n=30); (2) patients with other complications (n=15 including any active infection, heart or hepatic or renal impairment); (3) the duration of pirfenidone treatment was less than 3 months (n = 7); and (4) the follow-up interval was more than 40 months (n = 6). This study was approved by the Ethics Committee of Shanghai Pulmonary Hospital (Approval No. K17-H1).

2. **Data collection**

Clinical data were collected from patient-visit records, including demographic characteristics, body mass index (BMI), smoking history, RFs and autoantibodies (ANA, anti-CCP, anti-double-stranded DNA, anti-SSA, anti-SSB, anti-RNP, anti-smith, anti-Scl-70, anti-tRNA synthetase), arterial oxygen saturation, and pulmonary function test (PFT). Medication history included glucocorticoids, immunosuppressive agents, and pirfenidone (dosage and duration of therapy). Baseline data were recorded at the time when the patient started pirfenidone or corticoid therapy (allowable range was 0-3 months to permit the inclusion
of patients). The time table began with the time of baseline for all analyses. PFT was recorded at baseline and after 3 months of pirfenidone treatment, and then it was performed every 6 months as clinically indicated.

3. Pirfenidone treatment

Patients with the following situations were recommended to pirfenidone treatment: 1) patients exhibited more than 10% fibrosis on high-resolution computed tomography (HRCT); 2) patients had a more than 5% absolute decline in percent predicted FVC within the previous 6 months. All the patients started the pirfenidone therapy with a dose of 600 mg/day, and such a dose was increased to 1,800 mg/day in 6 months unless the patients experienced serious side effects. The final dose (1,800 mg/day) was decided based on the clinical trial of pirfenidone\[15\]. A severe side effect was defined as an event that caused an inability to work or perform daily activity.

4. Treatment of prednisone and immunosuppressants

The dose of prednisone was adjusted according to disease severity and body weight. A sufficient dose of prednisone was administered at the beginning, and then it was gradually reduced. Unless the patients experienced an exacerbation, the dose of prednisone would be maintained at a relatively low level. All the immunosuppressants were administered by rheumatologists.

5. Diagnostic criteria

The final diagnosis was made by a multidisciplinary discussion (MTD) (three experienced pulmonologists, two rheumatologists, two chest radiologists, and two pathologists). The diagnosis of ILD was made according to the diagnostic criteria described previously\[16, 17\]. Diagnosis of IPAF was made based on the evaluation of three diagnostic domains (clinical, serological, and morphological domains)\[2\]. The morphological domain referred to HRCT or in combination with pathological results when lung biopsies were performed. All patients with CTD-ILD or UCTD-ILD were confirmed by rheumatologists. The diagnostic criteria for CTD in this study followed the recommendations by the American Rheumatism Association and the American College of Rheumatology\[18-23\]. UCTD was defined as patients who showed systemic autoimmune features but did not meet definite classification criteria\[1\].

6. Chest HRCT evaluation

HRCT patterns were blindly reviewed and interpreted by two dedicated chest radiologists. HRCT diagnosis referred to proposed criteria for IPAF by ERS/ATS guidelines\[2\], including NSIP, organic pneumonia (OP), NSIP in combination with OP, and UIP (Figure S1). NSIP pattern was defined as basal predominant reticular abnormalities with traction bronchiectasis, which was frequently associated with ground-glass attenuation. OP pattern was defined as bilateral patchy areas of consolidation with a subpleural and lower lung zone predominance or peri-bronchovascular distribution. NSIP in combination with OP was defined as basal predominant consolidation, which was associated with features of fibrosis. UIP pattern
was defined as basal and subpleural predominant honeycombing opacities associated with traction bronchiectasis. No lymphoid interstitial pneumonia (LIP) HRCT pattern was found in this cohort.

7. Data processing

Continuous variables were presented as mean (standard deviation) and compared by two-tailed Student's \(t \)-test. Categorized variables were expressed as frequency (percentage) and compared using the Chi-square test or Wilcoxon rank-sum test. All analyses were performed using GraphPad Prism 6 and SPSS 24 software (IBM, Armonk, NY, USA).

The PFT results were recorded at baseline and follow-up visits. The differences between the follow-up value and baseline value were calculated (change = follow-up value - baseline value), and then the changes in FVC absolute value, FVC\%, and DLCO\% were compared using a mixed-effects model. Fixed effects included gender, age, UIP pattern, baseline FVC\%, and DLCO\%. The mixed-effects model has been proved reliable in other retrospective studies\cite{24-26}. The prednisone doses were compared by the same method. These analyses were carried out by R software.

Results

1. Baseline characteristics of patients

Table 1 shows that 184 patients were finally included in the analysis, including 81 (44.0%) patients in the pirfenidone group, and 103 (56.0%) patients in the non-pirfenidone group. The mean age of the cohort was 59.4 years old, 54.3% were females, and 53 (28.8%) patients had a history of smoking. There were no differences in gender, smoking history and UIP pattern. However, both FVC\% and DLCO\% were lower in the pirfenidone group compared with the non-pirfenidone group (FVC\%, \(P < 0.001 \); DLCO\%, \(P = 0.003 \)). As for the treatment, the baseline data of glucocorticoid and immunosuppressant treatment were not different between the two groups. Generally speaking, 151 (82.1%) patients received oral glucocorticoid, and 13 (7.1%) patients received immunosuppressants. The duration of prednisone treatment was 2.25-40 months, with an average of 28.8 months. The mean duration of pirfenidone treatment was 14.4 months, and the dose of pirfenidone ranged from 600 to 1,800 mg/day, with an average of 1,492 mg/day.

2. Diagnostic characteristics of IPAF patients

Table 2 shows the diagnostic characteristics. Overall, 66 (35.9%) patients met the diagnostic criteria of IPAF using a combination of serological and morphological domains, 53 (28.8%) patients met the diagnostic criteria of IPAF using clinical and morphological domains, 34 (18.5%) patients met the diagnostic criteria of IPAF using clinical and serological domains, and 31 (16.8%) patients met the diagnostic criteria of IPAF using all the three domains.

A breakdown of features into each IPAF domain showed that the most common clinical findings were Raynaud's phenomenon (49, 26.6%) and inflammatory arthritis or polyarticular morning joint stiffness
lasting ≥60 min (45, 24.5%). Moreover, 131 patients had positive serum autoantibody (71.2%), and 51 cases had two or more positive antibodies. An ANA ≥ 1:320 (or nucleolar or centromere pattern of any titer) was the most common serological finding (81, 44.0%). Within the morphological domain (150, 81.5%), the NSIP pattern by HRCT was found in 62.0% (114) of patients, while the OP pattern was found in 14.1% (26) patients. There were no differences in the diagnostic characteristics between the pirfenidone group and the non-pirfenidone group.

3. Changes in pulmonary function

The changes in FVC% (Figure 2A) and DLCO% (Figure 2B) between the two groups were compared at the time points of 3, 6, 12, 18, and 24 months. After 12 months of treatment, FVC% in the pirfenidone group was increased by 10.44%, while such value was decreased by 1.18% in the non-pirfenidone group (P=0.013). Besides, a greater increase of FVC% was observed in the pirfenidone group after 6 (P=0.003) and 24 months (P=0.003). A greater improvement of DLCO% was also observed in the pirfenidone group after 6 months (P=0.043).

Considering the potential confounders, we estimated the changes of FVC% (Figure 2C) and DLCO% (Figure 2D) using a mixed-effects model. After adjustment for sex, age, UIP pattern, baseline FVC%, and DLCO%, patients in the pirfenidone group continued to show a greater improvement in FVC% [1.49%, 95% CI (0.14%, 2.84%)] compared with the non-pirfenidone group (χ² (1) =4.59, P=0.032). However, no difference was observed in the change of DLCO% (χ² (1) =0.49, P=0.48). In conclusion, pirfenidone was associated with the improvement of FVC% in IPAF patients.

4. Subgroup analysis of the pulmonary function

To further explore the effect of pirfenidone in different subgroups, subgroup analysis was performed. Table 3 shows the average annual change in FVC absolute value. The volume of FVC (liters) was increased by 0.0390 L/year in the pirfenidone group, while such value was decreased by 0.0769 L/year in the non-pirfenidone group (P=0.038). The association between pirfenidone use and greater improvement in FVC showed a qualitatively same trend in patients with FVC < 70% (P=0.021), with pirfenidone > 600 mg/day (P=0.010), and with total medication time > 12 months (P=0.007). Moreover, pirfenidone also showed superior effects in patients diagnosed by morphological and serological domains (P=0.033). Consequently, pirfenidone treatment had superior effects on FVC improvement when dose>600 mg/day and treatment time>12 months.

5. IPAF patients can reduce the dose of prednisone after 12 months

In our cohort, the prednisone dose ranged from 2.5 to 50 mg/day, with an average of 14.4 mg/day. The total dose (Figure 3A) and daily dose (Figure 3B) had no difference between the two groups when assessing the full duration of 40 months. However, when we separated the period into the initial 12 months and the remaining 12-40 months, both the total dose and daily dose of prednisone were significantly lower in the pirfenidone group (total dose, P=0.012; daily dose, P=0.032) during 12-40
months. After adjustment for potential confounders (sex, age, UIP pattern, baseline FVC%, and baseline DLCO%) in the mixed-effects model, patients in the pirfenidone group continued to show a reduced dose of prednisone by 6.27 mg per day (Figure 3C, D, E $\chi^2(1) = 9.8385, P=0.002$, pirfenidone $n=34$, non-pirfenidone $n=27$).

6. Side effects of pirfenidone

In the present study, 17 (19.32%) patients had side effects after taking pirfenidone (Figure 4A) with seven (7.95%) cases of severe side effects (one case of anaphylactic shock, one case of arthritis, one case of liver injury, one case of photosensitivity, and three cases of skin rash) who stopped the medication. Skin rash (10.23%) and liver injury (5.68%) were the most common side effects, which were similar to those of IPF patients [12]. Moreover, 14 (14/17, 82.35%) patients experienced side effects at the initial dose (600 mg), and three (17.65%) patients experienced side effects after the dose of pirfenidone was increased (Figure 4B).

Discussion

Several clinical trials have confirmed the efficacy of pirfenidone in IPF, demonstrating that pirfenidone can delay the decline of FVC and increase the progression-free survival rates [15,27-28]. However, no study has explored the effects of pirfenidone in IPAF patients. Our observational study identified that the use of pirfenidone was associated with the improvement of FVC and the reduction of prednisone dose. The strengths of the study included the longitudinal data of PFT and prednisone dosage throughout 40 months as well as subgroup analyses of lung function.

The pathological features of IPAF are autoimmune inflammatory exudation and interstitial fibrosis. Therefore, the treatment for IPAF would cover both of the two sides. Wiertz et al. [29] have reported that IPAF patients may benefit from cyclophosphamide treatment. Besides, McCoy et al. [30] have shown that mycophenolate therapy can attenuate disease progression in IPAF patients. Nevertheless, all these published studies are designed to explore the effect of immunosuppressive therapy. No studies have yet explored the effect of anti-fibrosis treatment in IPAF patients. In the present study, we, for the first time, reported that the anti-fibrosis treatment of pirfenidone could improve the pulmonary function of IPAF patients.

The average dosage of pirfenidone was 1,492 mg/day, suggesting that the dosage of pirfenidone for IPAF was not necessarily as high as that for IPF. Reasons might be as follows: 1) IPAF patients are relatively younger than IPF patients, as the mean age is 57-68 for IPAF [4-9] and 68-79 for IPF [17,27-28] at diagnosis; 2) IPAF patients have more inflammatory exudative lesions on chest CT scans (i.e. NSIP and OP); 3) pirfenidone is mostly prescribed in combination with glucocorticoids; and 4) effective dose for East-Asian patients may be lower than Caucasian. In a phase-III clinical trial in Japan [28], the effective dose of pirfenidone is 1,800 mg/day or 1,200 mg/day for IPF patients, which is lower than that in clinical trials (CAPACITY and ASCEND) in Caucasians (2,400 mg/day) [27,28]. Besides, we began with a low dose...
(600 mg/day) for the following considerations. 1) We observed that a low dose could achieve a certain
effect on IPAF patients. 2) Low dose could help prevent side effects. 3) There is a heavier financial
burden for some patients in China if they take a high dose of pirfenidone. The duration of pirfenidone
treatment was similar between our study and the IPF clinical trials\cite{15,27,28}. Both indicated that the
change of FVC was noted when the medication course was longer than 12 months.

The overall incidence of side effects was lower (19.32\%) in the present study compared with other IPF
clinical trials\cite{27,28}. Only 10.23\% of the patients had skin rash in our study, while such proportion is 28.1-
32\% in other IPF clinical trials\cite{27,28}, which could be explained by the lower dose of pirfenidone (average
1,492 mg/day) in our study. The side effects of pirfenidone were dose-related in this study. Three (3.4\%)
patients experienced skin rash and liver damage when the pirfenidone dose was increased. These results
further demonstrated the benefits of lower-dose pirfenidone for IPAF patients.

Corticosteroids are widely used in IPAF patients. In the present study, the steroid dose was significantly
reduced when pirfenidone was used for initial steroid-sparing therapy. Specifically, the dose of prednisone
was reduced by 6.27 mg per day in the pirfenidone group after 12 months of pirfenidone treatment.
Consistent with this, J. A. Huapaya et al. have reported the use of immunosuppressants (azathioprine
and mycophenolate) in 110 patients with myositis-related ILD (M-ILD) is associated with the reduction of
prednisone dose\cite{31}. The reduction of prednisone dose prevents the side effects of corticoids, therefore
improving the medication compliance and treatment outcomes in IPAF patients.

Our study has several limitations. First, the study is limited to reporting associations, but unable to
identify causal relationships due to the retrospective, single-center, and observational nature. Second,
patients were not randomized to pirfenidone treatment. Therefore, pirfenidone exposure might cause an
indication bias. Patients receiving pirfenidone were more likely to have a progressive fibrosing ILD.
However, the subgroup analysis identified the same effect of pirfenidone in patients with FVC%<70\%.
Besides, limited follow-up of subjects over time might lead to misleading estimates of beneficial drug
effects. Nevertheless, the follow-up bias could be weakened by adding the time interval as a random
effect into the mixed-effects model. Last, although the analysis was adjusted by the mixed-effects model,
system differences in the cohorts could not be ignored. Therefore, our current findings need to be
confirmed by prospective studies. However, multi-center clinical trials cannot be accomplished in a short
time. Therefore, in the meantime, our study might help provide suggestions for therapy in IPAF patients.

Conclusions

Collectively, our findings indicated that low-dose pirfenidone (1,492 mg/day) might help improve FVC
with an acceptable safety and tolerability profile in IPAF patients.

Abbreviations
BMI = body mass index; COP = cryptogenic organic pneumonia; CTD-ILD = Connective tissue disease-associated ILD; DLCO = diffusion capacity of the lung for carbon monoxide; FVC = Forced vital capacity; HRCT = high-resolution computed tomography; IIP = idiopathic interstitial pneumonia; ILD = Interstitial lung disease; IPAF = Interstitial pneumonia with autoimmune features; IPF = idiopathic pulmonary fibrosis; MTD = multidisciplinary discussion; NSIP = Non-specific interstitial pneumonia;

Declarations

Ethics approval and consent to participate

This study was approved by the Ethics Committee of Shanghai Pulmonary Hospital (Approval No. K17-H1). Informed consent was obtained from all patients before enrollment in this study.

Consent for publication

Not applicable.

Availability of data and materials

All data generated or analyzed during this study are included in this article.

Competing interests

The authors declare that they have no competing interests.

Funding

This study was financially supported by the National Natural Science Foundation of China (Grant Nos. 81730002, 81670055, 81670056, 91442103, 81500052, and 81570057), Ministry of Science and Technology of the People's Republic of China (Grant Nos. 2016YFC1100200 and 2016YFC1100204), National Science Foundation of Shanghai (18ZR143400) and Shanghai Family Planning Commission Health Industry Clinical Research Project (Grant No. 20184Y0084).

Authors’ Contributions

HPL, TC, QHL, and YZ participated in the conception, hypothesis, and design of the study. TC, CSY, and QHL collected data. TC, and YZ carried out the statistical analyses. All authors contributed to interpretation of the data. TC and HPL drafted the manuscript, and all authors made critical revisions. All authors studied and approved the final version of the manuscript.

Acknowledgements

Not applicable.
References

1. Yang Hu, Liu-Sheng Wang, Yaru Wei, Shan-Shan Du, Yu-Kui Du, Xian He, Nan Li, Ying Zhou, Qiu-Hong Li, Yi-Liang Su, Fen Zhang, Li Shen, Dong Weng, Kevin K. Brown and Hui-Ping Li. Clinical characteristics of connective tissue disease-associated interstitial lung disease in 1044 Chinese patients. Chest, 2016, 149(1):201-208

2. Fischer A, Antoniou KM, Brown KK, Cadranel J, Corte TJ, du Bois RM, Lee JS, Leslie KO, Lynch DA, Matteson EL, Mosca M, Noth I, Richeldi L, Strek ME, Swigris JJ, Wells AU, West SG, Collard HR, Cottin V, CTD-ILD EATFoUFo. An official European Respiratory Society/American Thoracic Society research statement: interstitial pneumonia with autoimmune features. The European respiratory journal 2015: 46(4): 976-987.

3. Aggarwal R, Ringold S, Khanna D, Neogi T, Johnson SR, Miller A, Brunner HI, Ogawa R, Felson D, Ogdie A, Aletaha D, Feldman BM. Distinctions between diagnostic and classification criteria? Arthritis care & research 2015: 67(7): 891-897.

4. Dai J, Wang L, Yan X, Li H, Zhou K, He J, Meng F, Xu S, Liang G, Cai H. Clinical features, risk factors, and outcomes of patients with interstitial pneumonia with autoimmune features: a population-based study. Clinical rheumatology 2018: 37(8): 2125-2132.

5. Ito Y, Arita M, Kumagai S, Takei R, Noyama M, Tokioka F, Nishimura K, Koyama T, Notohara K, Ishida T. Serological and morphological prognostic factors in patients with interstitial pneumonia with autoimmune features. BMC pulmonary medicine 2017: 17(1): 111.

6. Kelly BT, Moua T. Overlap of interstitial pneumonia with autoimmune features with undifferentiated connective tissue disease and contribution of UIP to mortality. Respirology 2018: 23(6): 600-605.

7. Chartrand S, Swigris JJ, Stanchev L, Lee JS, Brown KK, Fischer A. Clinical features and natural history of interstitial pneumonia with autoimmune features: A single center experience. Respiratory medicine 2016: 119: 150-154.

8. Yoshimura K, Kono M, Enomoto Y, Nishimoto K, Oyama Y, Yasui H, Hozumi H, Karayama M, Suzuki Y, Furushashi K, Enomoto N, Fujisawa T, Nakamura Y, Inui N, Sumikawa H, Johkoh T, Colby TV, Sugimura H, Suda T. Distinctive characteristics and prognostic significance of interstitial pneumonia with autoimmune features in patients with chronic fibrosing interstitial pneumonia. Respiratory medicine 2018: 137: 167-175.

9. Oldham JM, Adegunsoye A, Valenzi E, Lee C, Witt L, Chen L, Husain AN, Montner S, Chung JH, Cottin V, Fischer A, Noth I, Vij R, Strek ME. Characterisation of patients with interstitial pneumonia with autoimmune features. The European respiratory journal 2016: 47(6): 1767-1775.

10. Chung JH, Montner SM, Adegunsoye A, Lee C, Oldham JM, Husain AN, MacMahon H, Noth I, Vij R, Strek ME. CT Findings, Radiologic-Pathologic Correlation, and Imaging Predictors of Survival for Patients With Interstitial Pneumonia With Autoimmune Features. AJR American journal of roentgenology 2017: 208(6): 1229-1236.
11. Flaherty KR, Wells AU, Cottin V, Devaraj A, Walsh SLF, Inoue Y, Richeldi L, Kolb M, Tetzlaff K, Stowasser S, Coeck C, Clerisme-Beaty E, Rosenstock B, Quaresma M, Haefuel T, Goeldner RG, Schlenker-Herceg R, Brown KK, Investigators IT. Nintedanib in Progressive Fibrosing Interstitial Lung Diseases. The New England journal of medicine 2019: 381(18): 1718-1727.

12. Distler O, Highland KB, Gahlemann M, Azuma A, Fischer A, Mayes MD, Raghu G, Sauter W, Girard M, Alves M, Clerisme-Beaty E, Stowasser S, Tetzlaff K, Kuwana M, Maher TM, Investigators ST. Nintedanib for Systemic Sclerosis-Associated Interstitial Lung Disease. The New England journal of medicine 2019: 380(26): 2518-2528.

13. Maher TM, Corte TJ, Fischer A, Kreuter M, Lederer DJ, Molina-Molina M, Axmann J, Kirchgaessler KU, Samara K, Gilberg F, Cottin V. Pirfenidone in patients with unclassifiable progressive fibrosing interstitial lung disease: a double-blind, randomised, placebo-controlled, phase 2 trial. The Lancet Respiratory medicine 2020: 8(2): 147-157.

14. Li T, Guo L, Chen Z, Gu L, Sun F, Tan X, Chen S, Wang X, Ye S. Pirfenidone in patients with rapidly progressive interstitial lung disease associated with clinically amyopathic dermatomyositis. Scientific reports 2016: 6: 33226.

15. Taniguchi H, Ebina M, Kondoh Y, Ogura T, Azuma A, Suga M, Taguchi Y, Takahashi H, Nakata K, Sato A, Takeuchi M, Raghu G, Kudoh S, Nukiwa T, Pirfenidone Clinical Study Group in J. Pirfenidone in idiopathic pulmonary fibrosis. The European respiratory journal 2010: 35(4): 821-829.

16. Travis WD, Costabel U, Hansell DM, King TE, Jr., Lynch DA, Nicholson AG, Ryerson CJ, Ryu JH, Selman M, Wells AU, Behr J, Bouros D, Brown KK, Colby TV, Collard HR, Cordeiro CR, Cottin V, Crestani B, Drent M, Dudden RF, Egan J, Flaherty K, Hogaboam C, Inoue Y, Johkoh T, Kim DS, Kitaichi M, Loyd J, Martinez FJ, Myers J, Protzko S, Raghu G, Richeldi L, Sverzellati N, Swigris J, Valeyre D, Pneumonias AECoII. An official American Thoracic Society/European Respiratory Society statement: Update of the international multidisciplinary classification of the idiopathic interstitial pneumonias. American journal of respiratory and critical care medicine 2013: 188(6): 733-748.

17. Raghu G, Collard HR, Egan JJ, Martinez FJ, Behr J, Brown KK, Colby TV, Cordier JF, Flaherty KR, Lasky JA, Lynch DA, Ryu JH, Swigris JJ, Wells AU, Ancochea J, Bouros D, Carvalho C, Costabel U, Ebina M, Hansell DM, Johkoh T, Kim DS, King TE, Jr., Kondoh Y, Myers J, Muller NL, Nicholson AG, Richeldi L, Selman M, Dudden RF, Griss BS, Protzko SL, Schunemann HJ, Fibrosis AEJACoIP. An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. American journal of respiratory and critical care medicine 2011: 183(6): 788-824.

18. Sharp GC, Irvin WS, Tan EM, Gould RG, Holman HR. Mixed connective tissue disease—an apparently distinct rheumatic disease syndrome associated with a specific antibody to an extractable nuclear antigen (ENA). The American journal of medicine 1972: 52(2): 148-159.

19. Bohan A, Peter JB. Polymyositis and dermatomyositis (first of two parts). The New England journal of medicine 1975: 292(7): 344-347.
20. Preliminary criteria for the classification of systemic sclerosis (scleroderma). Subcommittee for scleroderma criteria of the American Rheumatism Association Diagnostic and Therapeutic Criteria Committee. Arthritis and rheumatism 1980: 23(5): 581-590.

21. Tan EM, Cohen AS, Fries JF, Masi AT, McShane DJ, Rothfield NF, Schaller JG, Talal N, Winchester RJ. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis and rheumatism 1982: 25(11): 1271-1277.

22. Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS, Healey LA, Kaplan SR, Liang MH, Luthra HS, et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis and rheumatism 1988: 31(3): 315-324.

23. Vitali C, Bombardieri S, Moutsopoulos HM, Coll J, Gerli R, Hatron PY, Kater L, Konttinen YT, Manthorpe R, Meyer O, Mosca M, Ostuni P, Pellerito RA, Pennec Y, Porter SR, Richards A, Sauvezie B, Schiodt M, Scuito M, Shoefeld Y, Skopouli FN, Smolen JS, Soromenho F, Tishler M, Wattiaux MJ, et al. Assessment of the European classification criteria for Sjogren's syndrome in a series of clinically defined cases: results of a prospective multicentre study. The European Study Group on Diagnostic Criteria for Sjogren's Syndrome. Annals of the rheumatic diseases 1996: 55(2): 116-121.

24. Kreuter M, Wuyts W, Renzoni E, Koschel D, Maher TM, Kolb M, Weycker D, Spagnolo P, Kirchgaessler KU, Herth FJ, Costabel U. Antacid therapy and disease outcomes in idiopathic pulmonary fibrosis: a pooled analysis. The Lancet Respiratory medicine 2016: 4(5): 381-389.

25. Strand MJ, Sprunger D, Cosgrove GP, Fernandez-Perez ER, Frankel SK, Huie TJ, Olson AL, Solomon J, Brown KK, Swigris JJ. Pulmonary function and survival in idiopathic vs secondary usual interstitial pneumonia. Chest 2014: 146(3): 775-785.

26. Mao B, Yang JW, Lu HW, Xu JF. Asthma and bronchiectasis exacerbation. The European respiratory journal 2016: 47(6): 1680-1686.

27. King TE, Jr., Bradford WZ, Castro-Bernardini S, Fagan EA, Glaspole I, Glassberg MK, Gorina E, Hopkins PM, Kardatzke D, Lancaster L, Lederer DJ, Nathan SD, Pereira CA, Sahn SA, Sussman R, Swigris JJ, Noble PW, Group AS. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. The New England journal of medicine 2014: 370(22): 2083-2092.

28. Noble PW, Albera C, Bradford WZ, Costabel U, Glassberg MK, Kardatzke D, King TE, Jr., Lancaster L, Sahn SA, Szwarcberg J, Valeyre D, du Bois RM, Group CS. Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): two randomised trials. Lancet 2011: 377(9779): 1760-1769.

29. Wiertz IA, van Moorsel CHM, Vorselaars ADM, Quanjel MJR, Grutters JC. Cyclophosphamide in steroid refractory unclassifiable idiopathic interstitial pneumonia and interstitial pneumonia with autoimmune features (IPAF). The European respiratory journal 2018: 51(4).

30. McCoy SS, Mukadam Z, Meyer KC, Kanne JP, Meyer CA, Martin MD, Sampene E, Aesif SW, Rice LN, Bartels CM. Mycophenolate therapy in interstitial pneumonia with autoimmune features: a cohort study. Therapeutics and clinical risk management 2018: 14: 2171-2181.

31. Huapaya JA, Silhan L, Pinal-Fernandez I, Casal-Dominguez M, Johnson C, Albayda J, Paik JJ, Sanyal A, Mammen AL, Christopher-Stine L, Danoff SK. Long-Term Treatment With Azathioprine and
Table 1. Baseline characteristics of patients.

Characteristics	Total	Pirfenidone	Non-pirfenidone	P-value
	N=184	N=81	N=103	
Age (year)	59.4±9.5	58.0±10.3	60.5±8.7	0.077
Female, n (%)	100(54.3)	49(60.5)	51(49.5)	0.176
BMI	24.8±2.9	25.0±3.1	24.7±2.8	0.521
Smoking status				
Ever, n (%)	53(28.8)	20(24.7)	33(32.0)	0.326
Current, n (%)	30(16.3)	9(11.1)	21(20.4)	0.109
Observation periods(months)	15.0±11.4	14.6±10.3	15.4±12.4	0.649
Pulmonary function				
FVC (Liters)	2.00±0.67	1.86±0.67	2.10±0.65	0.013*
FVC, %predicted	64.7±16.6	59.7±15.8	68.6±16.3	<0.001*
DLCO, %predicted	59.3±18.7	54.3±17.9	63.0±18.6	0.003*
PaO₂	83.0±17.9	81.4±1.9	84.3±1.7	0.266
SaO₂ %	95.5±4.0	95.5±2.5	95.6±4.8	0.881
UIP pattern on CT	57(31.0)	21(25.9)	36(33.3)	0.337
Treatment				
Corticosteroids n (%)	151(82.1)	69(85.2)	82(79.6)	0.342
Maximal dose of prednisone(mg/day)	31.9±1.3	33.2±1.2	30.9±1.4	0.198
Time for prednisone (months)	28.8±5.6	29.7±4.3	28.1±6.2	0.438
Immunosuppressant n (%)	13(7.1)	7(8.6)	6(5.8)	0.459

Abbreviations: BMI, body mass index; FVC, forced vital capacity; DLCO, carbon monoxide diffusing capacity. * P<0.05
Table 2. Proportion of each domain of IPAF
Subjects	Total n (%)	Pirfenidone n (%)	Non-pirfenidone n (%)	P value
Clinical and serological	34(18.5)	11(13.6)	23(22.3)	0.180
Clinical and morphological	53(28.8)	25(30.9)	28(27.2)	0.625
Serological and morphological	66(35.9)	31(38.3)	35(34.0)	0.547
All three domains	31(16.8)	14(17.3)	17(16.5)	1.000
Clinical domain	118(64.1)	50(61.7)	68(66.0)	0.643
Mechanical hands	14(7.6)	5(6.0)	9(8.7)	0.472
Distal digital tip ulceration	3(1.6)	1(1.2)	2(1.9)	0.684
Inflammatory arthritis or polyarticular morning joint stiffness≥ 60min	45(24.5)	20(24.7)	25(24.3)	0.948
Palmer telangiectasia	8(4.3)	5(6.0)	3(2.9)	0.307
Raynaund's phenomenon	49(26.6)	23(28.4)	26(25.2)	0.737
Unexplained digital edema	7(3.8)	3(3.7)	4(3.9)	0.950
Gottron's sign	2(1.1)	1(1.2)	1(1.0)	0.864
Serological domain※	131(71.2)	56(69.1)	75(72.8)	0.625
Antinuclear antibody ♯	81(44.0)	38(46.9)	43(41.7)	0.550
Rheumatoid factor ≥2 upper limit normal	49(26.6)	17(21.0)	32(31.1)	0.125
Anti-cyclic citrullinated peptide (CCP)	1(0.5)	1(1.2)	0(0)	0.258
Anti-double stranded DNA	6(3.3)	2(2.5)	4(3.9)	0.592
Anti-SSA	27(14.7)	14(17.3)	13(12.6)	0.375
Anti-SSB	15(8.2)	8(9.9)	7(6.8)	0.448
Anti-ribonucleoprotein (RNP)	3(1.6)	2(2.5)	1(1.0)	0.426
Anti-smith	11(6.0)	5(6.2)	6(5.8)	0.921
------------------------	--------	--------	--------	-------
Anti-topoisomerase (Scl-70)	4(2.2)	3(3.7)	1(1.0)	0.207
Anti-tRNA synthetase	17(9.2)	7(8.6)	10(9.7)	0.804
Morphological domain	150(81.5)	70(86.4)	80(77.7)	0.180
NSIP	114(62.0)	51(63.0)	63(61.2)	0.879
OP	26(14.1)	13(16.0)	13(12.6)	0.508
NSIP+OP	10(5.4)	6(7.4)	4(3.9)	0.295

Morphological domain is referred to the HRCT. Abbreviations: NSIP, non-specific interstitial pneumonia; OP, organizing pneumonia. ※, , , ☢ respectively represent one, two, three or four different kinds of auto-antibodies are positive with the patients. # ANA ≥ 1:320 titer, diffuse, speckled, homogeneous patterns or a. ANA nucleolar pattern (any titer) or b. ANA centromere pattern (any titer). * P<0.05

Table 3. Analysis of change in Forced Vital Capacity(liters) Outcome#
	Pirfenidone	Non-pirfenidone	Pirfenidone vs Non-pirfenidone
	Estimated FVC change in 1 year (95%)	Estimated FVC change in 1 year (95%)	P value
n	n		
Total	81	103	0.038*
(-0.0545,0.1326)	(-0.1250,-0.0288)		
FVC%<70%	58	56	0.021*
(-0.0541,0.1935)	(-0.1416,0.0269)		
FVC%>70%	23	47	0.745
(-0.1550,0.0483)	(-0.1550,-0.0453)		
Pirfenidone=600mg	33	103	0.125
(-0.1379,0.040)	(-0.1307,-0.0390)		
Pirfenidone>600mg	48	103	0.010*
(-0.0440,0.2942)	(-0.1307,-0.0390)		
Time≤12 month	37	103	0.224
(-0.1435,0.2307)	(-0.1307,-0.0390)		
Time>12 month	44	103	0.007*
(-0.0388,0.2307)	(-0.1307,-0.0390)		
M+C+S△	14	17	0.407
(-0.0959,0.2183)	(-0.3340,0.0003)		
C+S	11	23	0.149
(-0.3643,-0.0270)	(-0.1711,-0.0637)		
M+C	25	28	0.246
(-0.0471,0.4621)	(-0.1747,0.1646)		
M+S	31	35	0.033*
(-0.1368,0.1826)	(-0.0673,0.0684)		

FVC%- forced vital capacity% predicted. #Adjusted for age, sex, baseline forced vital capacity% predicted and baseline carbon monoxide diffusing capacity% predicted. ♦Grouped by the time of pirfenidone
therapy. △Grouped according to the diagnostic domain. M-morphological domain, C-clinical domain, S-serological domain. * $P<0.05$