Emerging role of microRNAs in lipid metabolism

Zhihong Yanga,b, Tyler Cappelloa, Li Wanga,b,c,*

aDepartment of Physiology and Neurobiology, and the Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
bVeterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
cDepartment of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, CT 06520, USA

Received 1 December 2014; received in revised form 24 December 2014; accepted 4 January 2015

KEY WORDS
Lipid metabolism; microRNAs; Nuclear receptors

Abstract microRNAs (miRNAs or miRs) are small non-coding RNAs that are involved in post-transcriptional regulation of their target genes in a sequence-specific manner. Emerging evidence demonstrates that miRNAs are critical regulators of lipid synthesis, fatty acid oxidation and lipoprotein formation and secretion. Dysregulation of miRNAs disrupts gene regulatory network, leading to metabolic syndrome and its related diseases. In this review, we introduced epigenetic and transcriptional regulation of miRNAs expression. We emphasized on several representative miRNAs that are functionally involved into lipid metabolism, including miR-33/33n, miR122, miR27a/b, miR378/378n, miR-34a and miR-21.

Abbreviations: ABCA1, adenosine triphosphate-binding cassette transporter A1; ABCG1, adenosine triphosphate-binding cassette transporter G1; Ago2, argonaute 2; AMPK\textalpha, AMP-activated protein kinase \textalpha; ApoA1, apolipoprotein A1; ATP8B1, aminophospholipid transporter, class I, type 8B, member 1; BDL, bile-duct ligation; CPT1A, carnitine palmitoyltransferase 1A; CRAT, carnitine O-acetyltransferase; CYP26, cytochrome P450 family 26; CYP3A4, cytochrome P450 family 3 subfamily A polypeptide 4; ERR\gamma, estrogen-related receptor gamma; FABP7, fatty acid-binding protein 7; FASN, fatty acid synthase; FGF21, fibroblast growth factor 21; FGFR1, fibroblast growth factor receptor 1; FXR, farnesoid X receptor; GABPA, GA binding protein transcription factor alpha subunit; GPC6, glypican 6; HADHB, hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase trifunctional protein, beta subunit; HCC, hepatocellular carcinoma; HCV, hepatitis C virus; HMGCR, 3-hydroxy-3-methylglutaryl-coenzyme A reductase; HMGCS1, 3-hydroxy-3-methylglutaryl-coenzyme A synthase 1; HNE, 4-hydroxynonenal; IGF1R, insulin-like growth factor 1 receptor; IGFBP3, insulin-like growth factor binding protein 3; INSIG1, insulin induced gene 1; LIPET, lipase hormone-sensitive; LNA, locked nucleic acids; LNPs, lipid-based nanoparticles; LPS, lipopolysaccharide; MEDI3, mediator complex subunit 13; MHV68, murine \gamma-herpesvirus 68; miRNAs or miRs, microRNAs; MTTP, microsomal TG transfer protein; NR1D1/REV-ERB\textalpha, transcriptional repressor nuclear receptor subfamily 1 group D member 1; NRs, nuclear receptors; PCK1, phosphoenolpyruvate carboxykinase 1; PDCD4, programmed cell death 4; PGC-1, peroxisone proliferator-activated receptor gamma coactivator; PLIN1, perilipin 1; PNA, peptide nucleic acid; PNPLA2, patatin-like phospholipase domain containing 2; PPARY, peroxisone proliferator-activated receptor gamma; pre-miRNAs, precursor-miRNAs; pri-miRNAs, primary-miRNAs; RTL1, retrotransposon-like 1; RXR\alpha, retinoid X receptor alpha; SHP, small heterodimer partner; SIRT1, sirtuin 1; SIRT6, sirtuin 6; TG, triglyceride; TLR4, toll-like receptor 4

*Corresponding author at: Department of Physiology and Neurobiology, and the Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA. Tel.: +1 860 486-0857.
E-mail address: li.wang@uconn.edu (Li Wang).

Peer review under responsibility of Institute of Materia Medica, Chinese Academy of Medical Sciences and Chinese Pharmaceutical Association.

2211-3835 © 2015 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. Open access under CC BY-NC-ND license.
http://dx.doi.org/10.1016/j.apsb.2015.01.002
1. Introduction

Gene regulation networks are the representation of multiple levels within a cell\(^1\). They provide a global view intended to help understand how relationships between molecules dictate cellular behavior. The recent advances in molecular biology and cutting-edge technologies reveal the emerging role of miRNAs in major physiological and pathological processes. miRNAs are small non-coding RNAs involving in post-transcriptional regulation of gene expression by binding to the 3′-UTRs of the target mRNAs. Many miRNA targets are key regulators of lipid metabolism and disease in the liver, suggesting the functional involvement of miRNAs in this process. In this review, we provide new insight into the specific role of miRNAs in lipid metabolism.

2. microRNA regulation network

miRNAs are promising therapeutic strategies for metabolic diseases such as diabetes and atherosclerosis. They are modular components of complex gene regulatory networks, and can be involved in lipid homeostasis. A comprehensive understanding of miRNA regulation network is urgently needed. In this section, we review several key miRNA regulatory mechanisms, which provide new insights into the study of miRNA biogenesis, since their identification would aid the understanding of regulatory networks in which miRNAs play a crucial role\(^1\).

2.1. Epigenetic control of microRNA expression

Epigenetics is the study of heritable changes in gene expression that do not involve changes in the DNA sequence\(^2\). MiRNAs are encoded in intergenic regions of the genome and are transcribed by RNA polymerase II. Their expression can be regulated by DNA methylation, histone methylation, and other epigenetic modifications\(^3\). In this section, we will discuss the role of epigenetic modifications in the regulation of miRNA expression.

3. miRNA regulation of lipid metabolism

Lipid metabolism was reviewed in great detail elsewhere\(^4\). Dyslipidemia is strongly associated with metabolic syndrome, relatively little is known and published about the regulation of miRNA genes themselves. Based on the location in the genome, miRNA promoters are classified into three different conditions: 1) if miRNAs are embedded within introns or exons of host genes, they can share the same transcriptional control; 2) the embedded miRNAs also can have their own promoters; 3) if miRNAs are located in the intergenic regions, they will only be regulated by their own promoters\(^1\). miR-127 is located in the intron of retrotransposon-like 1 (Rtl1), an imprinted mouse retrotransposon-like gene\(^5\). It is co-regulated by the Rtl1 promoter, but is also under the control of its own promoter. The miR-127 gene overlaps with the miR-433 gene in a compact genomic space\(^6\). Their expression regulation involves epigenetic modification via DNA methylation and histone modification\(^7\). The miR-127 promoter represents an example of the complicated miRNAs transcriptional and epigenetic regulation\(^8\). The nature of miRNA promoter elements remains one of the most interesting, open problems in the study of miRNA biogenesis, since their identification would aid the understanding of regulatory networks in which miRNAs play a crucial role\(^9\).

3.1. Transcriptional control of microRNA expression by nuclear receptors

Nuclear receptors (NRs) are ligand-activated transcription factors that regulate the expression of target genes by binding to the promoters\(^10\). Members of the nuclear receptor superfamily have been proved as dominant regulators in lipid metabolism. Numerous NRs regulate miRNAs transcription, including farnesoid X receptor (FXR) and small heterodimer partner (SHP)\(^11\). miR-29a promoter activity was significantly increased by FXR through a likely FXR-responsive element\(^12\). FXR plays a key role in homeostasis of cholesterol and bile acids, indicating the involvement of miR-29a in such processes. A recent study by Roderburg et al.\(^13\) showed that all three members of the miR-29a family (a, b and c) were significantly down-regulated in mouse liver in both CCl\(_4\) and common bile-duct ligation (BDL) models. miR-199a-3p was also reported to be repressed by FXR\(^14\).

SHP is another important nuclear receptor to maintain cholesterol and bile acid homeostasis by inhibiting the conversion of cholesterol to bile acids. A microarray profiling revealed 21 upregulated miRNAs clustered on chromosome 12, including miR-433 and miR-127, in Shp\(^\sim\) mice\(^15\). Further study identified CREB, which controls hepatic lipid metabolism by repression of peroxisome proliferator-activated receptor gamma (PPAR\(\gamma\)) and induction of peroxisome proliferator-activated receptor gamma coactivator (PGC-1), is one of the targets of miR-433\(^16\). In addition, miR-433 expression is altered in the adipose tissue of patients with non-alcoholic fatty liver disease\(^17\).
miR-122

miR-122 is not only well known as the first identified miRNA to regulate lipid metabolism, but also the liver-enriched and liver-specific miRNA. miR-122-deletion in whole body or specifically in the liver showed a marked decrease in total serum cholesterol and triglyceride (TG) levels. Anti-miR-122 therapy resulted in a significant reduction (25%–30%) of circulating cholesterol levels. A set of cholesterol biosynthesis genes was downregulated by an indirect mechanism, including 3-hydroxy-3-methylglutaryl-coenzyme A synthase 1 (HMGC S1), 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), and microsomal TG transfer protein (MTTP). The identification of SWI/SNF related matrix associated actin dependent regulator of chromatin subfamily d member 1 (Smard1) or reducing cholesterol ef-1 group D member 1 (NR1D1/REV-ERBα) in liver, most metabolic pathways are under the circadian control. Both lipid and cholesterol metabolism are well known for their daytime-dependent regulation, similar to many other hepatic functions that require coordination of food intake with nutrient-procession and energy homeostasis. The molecular mechanism of miR-122 could represent a novel way of regulation of the circadian rhythm and hepatic metabolism.

In addition, miR-122 is involved in several hepatic disorders, as down-regulation of miR-122 is often associated with hepatocellular carcinoma (HCC), and miR-122 is found to bind to two sites in the 5’-UTR of the hepatitis C virus (HCV) genome and enhance its translation and replication.

3.3. miR-27a/27b

Retinoic X receptor alpha (RXRa) plays a central role in adipogenesis through forming a heterodimer with PPARγ and other nuclear receptors. Both miR-27a and miR-27b are demonstrated to target RXRa and regulate fat metabolism. Furthermore, PPARγ is a target of miR-27b and ABCA1 a target of miR-27a. Due to their sharing of the same seed region between miR-27a and miR-27b, it is reasonable to predict that both miRNAs could target PPARγ and ABCA1. Overexpression of miR-27a accelerates adipolysis by releasing more glycerol and free fatty acids in the adipocytes and represses lipid storage in cells. In addition, miR-27a inhibits the expression of many lipid metabolic genes, including fatty acid synthase (FASN), SREBP-1, and PPARγ. miR-27a and miR-27b are embedded in the PGC-1β gene and counterbalance the metabolic actions of PGC-1β. A reduction of adipocyte size in miR-378/378* knockout mice indicates that both miRNAs are required for efficient hypertrophy and lipid uptake in white adipocytes. Several targets of miR-378/378* are found, including carmine O-acetyltransferase (CRAT), mediator complex subunit 13 (MED13), estrogen-related receptor gamma (ERRγ), GA binding protein transcription factor alpha subunit (GABPA), insulin-like growth factor 1 receptor (IGF1R), and ABCG1. miR-378 is also downregulated in 4-hydroxynonenal (HNE), one of several lipid oxidation products, treated cells. In addition, C/EBPα and C/EBPβ positively increase miR-378/378* transcriptional activity. Furthermore, inhibition of miR-378 attenuates lipolysis and reduces the expression of lipase hormone-sensitive (LIPE), perilipin 1 (PLIN1) and patatin-like phospholipase domain containing 2 (PNPLA2), a set of genes encoding key lipolytic regulators.

3.4. miR-34a

miR-34a has multiple roles in the regulation of cell cycle, apoptosis, differentiation and migration because of its expressional control by p53. However, its induction by FXR raised the possibility of a new role of miR-34a in lipid metabolism. Sirtuin1 (SIRT1) was identified as one of the targets of miR-34a.
Hepatic overexpression of miR-34a increased acetylation of PGC-1α. On the other hand, miR-34a negatively regulates RXRα through binding to its 3′-UTR and decreases the induction of cytochrome P450 family 26 (CYP26) and cytochrome P450 family 3 subfamily A polypeptide 4 (CYP3A4). Moreover, through targeting fibroblast growth factor receptor 1 (FGFR1), miR-34a contributes to attenuating fibroblast growth factor 21 (FGF21) signaling in obese mice. The expression of miR-34a was elevated in obesity, indicating its potential role in inhibiting fat browning and weight loss.

3.6. miR-21

The expression of miR-21 was decreased in liver from high-fat diet-fed mice compared to chow fed mice. Overexpression of miR-21 markedly blocked stearic acid (SA) induced intracellular lipid accumulation by targeting fatty acid-binding protein 7 (FABP7). In miR-21 knockout mice, a group of lipid metabolic genes was changed compared with wild-type mice. PPARα and insulin-like growth factor binding protein 3 (IGFBP3) were also targeted directly by miR-21. Further studies showed that miR-21 targeted programmed cell death 4 (PDCD4) to regulate lipid accumulation through the toll-like receptor 4 (TLR4) and NF-κB pathway in lipopolysaccharide (LPS)-stimulated macrophages.

Additional miRNAs were also shown to regulate lipid metabolism. miR-758, miR-26, and miR-106b all targeted ABCA1. miR-370 targeted CPT1A and miR-24 targeted insulin induced gene 1 (INSIG1). Altogether these findings suggest that miRNAs play important roles in regulating lipid and lipoprotein homeostasis, which is summarized in Fig. 1.

4. Therapeutic potential of microRNAs

Although miRNAs represent a new class of potential targets for therapeutic intervention, there are obstacles to their clinical application, such as poor efficiency for cellular uptake. Lipofection of an antisense oligonucleotide based on a locked nucleic acids (LNA)/2′-O-methylene mixmer or electroporation of a peptide nucleic acid (PNA) oligomer is effective at blocking miR-122 activity, highlighting the use of miRNA in future therapeutic application. A non-covalent peptide-based strategy was used for efficient delivery of miR-122 mimic or inhibitor, which appeared to be effective to alter cholesterol levels without cytotoxicity. The recently emerged lipid-based nanoparticles (LNPs) and LNP-DP1 provide more alternate ways for delivering siRNA and miRNA in vitro and in vivo.

5. Conclusion and perspectives

A key role of miRNAs in lipoprotein and lipid metabolism is emerging. Because multiple genes can be targeted by one miRNA and one gene may be targeted by a group of miRNAs, the mRNA and miRNA regulatory network remains complicated. Recent evidence suggests that circulating extracellular miRNAs can also be biologically active in intercellular communication. Future research works that integrate proteomics, systems biology and high-throughput technologies will help to develop better therapeutic strategies that target miRNAs.

Acknowledgments

This work is supported by National Institutes of Health (Nos. R01 DK080440 and AHA 13GRNT14700043), and VA Merit Award I101BX002634 to Li Wang.

References

1. Yang ZH, Wang L. Regulation of microRNA expression and function by nuclear receptor signaling. Cell Biosci 2011;1:31.
2. Yang JS, Lai EC. Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol Cell 2011;43:892–903.
23. Herzig S, Hedrick S, Morantte I, Koo SH, Galimi F, Montminy M.
22. Zhang Y, Yang Z, Whitby R, Wang L. Regulation of miR-200c by
21. Yang Z, Zhang Y, Wang L. A feedback inhibition between
miRNAs in lipid metabolism
149
15. Song G, Zhang Y, Wang L. microRNA-206 targets notch3, activates
metabolism and cancer.
13. Song G, Wang L. A conserved gene structure and expression
12. Song G, Wang L. miR-433 and miR-127 arise from independent
miRNA biogenesis pathway that requires Ago catalysis.
18. Roderburg C, Urban GW, Bettermann K, Vucur M, Zimmermann H,
3. Guo L, Lu ZH. The fate of miRNA
6. Cifuentes D, Xue HL, Taylor DW, Patnode H, Mishima Y, Chelou
8. Yang Z, Wang H, Jiang Y, Hartnett ME. VEGFA activates erythro-
7. Wang H, Smith GW, Yang Z, Jiang Y, McCloskey M, Greenberg K,
9. Cui XS, Zhang DX, Ko YG, Kim NH. Aberrant epigenetic repro-
36. Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P. Modulation
34. Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P. Modulation
32. Sacco J, Adeli K. microRNAs: emerging roles in lipid and lipoprotein
39. Rayner KJ, Suárez Y, Dávalos A, Parathath S, Fitzgerald ML,
31. Hsu SH, Wang B, Kota J, Yu J, Costinean S, Kutay H, et al. Essential
miR-33 contributes to the regulation of cholesterol
30. Szabo G, Bala S. microRNAs in liver disease.
25. Lavoie JM, Gauthier MS. Regulation of fat metabolism in the liver:
link to non-alcoholic hepatic steatosis and impact of physical exercise.
24. Goedeke L, Vales-Lara FM, Fenstermaker M, Cirera-Salinas D,
22. Horie T, Ono K, Horiguchi M, Nishida F, Nakamura T, Nishihara K, et al. Integration of microRNA miR-33 in hepatic circadian
21. Goedeke L, Salerno A, Ramírez CM, Guo L, Allen RM, Yin X, et al. A regulatory role for microRNA 33” in controlling lipid metabolism gene expression. Mol Cell Biol 2013:33:2339–52.
20. Goedeke L, Salerno A, Ramírez CM, Guo L, Allen RM, Yin X, et al. Long-term therapeutic silencing of miR-33 increases circulating triglyceride levels and hepatic lipid accumulation in mice. EMBO Mol Med 2014:6:1133–41.
19. Allen RM, Marquart TJ, Jesse JJ, Baldán A. Control of very low-density lipoprotein secretion by N-ethylmaleimide-sensitive factor and
18. Goedeke L, Vales-Lara FM, Fenstermaker M, Cirera-Salinas D, Chamarro-Jorganes A, Ramírez CM, et al. A regulatory role for microRNA 33” in controlling lipid metabolism gene expression. Mol Cell Biol 2013:33:2339–52.
17. Rayner RJ, Vales-Lara FM, Fenstermaker M, Cirera-Salinas D, Chamarro-Jorganes A, Ramírez CM, et al. A regulatory role for microRNA 33” in controlling lipid metabolism gene expression. Mol Cell Biol 2013:33:2339–52.
16. Horie T, Nishihara K, Horiguchi M, Nishida F, Nakamura T, Nishihara K, et al. Integration of microRNA miR-33 in hepatic circadian
15. Horie T, Ono K, Horiguchi M, Nishida F, Nakamura T, Nishihara K, et al. Integration of microRNA miR-33 in hepatic circadian
14. Horie T, Ono K, Horiguchi M, Nishida F, Nakamura T, Nishihara K, et al. Integration of microRNA miR-33 in hepatic circadian
13. Horie T, Ono K, Horiguchi M, Nishida F, Nakamura T, Nishihara K, et al. Integration of microRNA miR-33 in hepatic circadian
12. Horie T, Ono K, Horiguchi M, Nishida F, Nakamura T, Nishihara K, et al. Integration of microRNA miR-33 in hepatic circadian
11. Horie T, Ono K, Horiguchi M, Nishida F, Nakamura T, Nishihara K, et al. Integration of microRNA miR-33 in hepatic circadian
10. Horie T, Ono K, Horiguchi M, Nishida F, Nakamura T, Nishihara K, et al. Integration of microRNA miR-33 in hepatic circadian
9. Horie T, Ono K, Horiguchi M, Nishida F, Nakamura T, Nishihara K, et al. Integration of microRNA miR-33 in hepatic circadian
8. Horie T, Ono K, Horiguchi M, Nishida F, Nakamura T, Nishihara K, et al. Integration of microRNA miR-33 in hepatic circadian
7. Horie T, Ono K, Horiguchi M, Nishida F, Nakamura T, Nishihara K, et al. Integration of microRNA miR-33 in hepatic circadian
6. Horie T, Ono K, Horiguchi M, Nishida F, Nakamura T, Nishihara K, et al. Integration of microRNA miR-33 in hepatic circadian
5. Horie T, Ono K, Horiguchi M, Nishida F, Nakamura T, Nishihara K, et al. Integration of microRNA miR-33 in hepatic circadian
4. Horie T, Ono K, Horiguchi M, Nishida F, Nakamura T, Nishihara K, et al. Integration of microRNA miR-33 in hepatic circadian
3. Horie T, Ono K, Horiguchi M, Nishida F, Nakamura T, Nishihara K, et al. Integration of microRNA miR-33 in hepatic circadian
2. Horie T, Ono K, Horiguchi M, Nishida F, Nakamura T, Nishihara K, et al. Integration of microRNA miR-33 in hepatic circadian
1. Horie T, Ono K, Horiguchi M, Nishida F, Nakamura T, Nishihara K, et al. Integration of microRNA miR-33 in hepatic circadian
47. Ji J, Zhang J, Huang G, Qian J, Wang X, Mei S. Over-expressed
46. Ji J, Zhang J, Huang G, Qian J, Wang X, Mei S. Over-expressed
45. Ji J, Zhang J, Huang G, Qian J, Wang X, Mei S. Over-expressed
44. Ji J, Zhang J, Huang G, Qian J, Wang X, Mei S. Over-expressed
43. Goedeke L, Vales-Lara FM, Fenstermaker M, Cirera-Salinas D,
42. Goedeke L, Vales-Lara FM, Fenstermaker M, Cirera-Salinas D,
41. Goedeke L, Vales-Lara FM, Fenstermaker M, Cirera-Salinas D,
40. Goedeke L, Vales-Lara FM, Fenstermaker M, Cirera-Salinas D,
39. Goedeke L, Vales-Lara FM, Fenstermaker M, Cirera-Salinas D,
38. Goedeke L, Vales-Lara FM, Fenstermaker M, Cirera-Salinas D,
37. Goedeke L, Vales-Lara FM, Fenstermaker M, Cirera-Salinas D,
36. Goedeke L, Vales-Lara FM, Fenstermaker M, Cirera-Salinas D,
35. Goedeke L, Vales-Lara FM, Fenstermaker M, Cirera-Salinas D,
34. Goedeke L, Vales-Lara FM, Fenstermaker M, Cirera-Salinas D,
33. Goedeke L, Vales-Lara FM, Fenstermaker M, Cirera-Salinas D,
32. Goedeke L, Vales-Lara FM, Fenstermaker M, Cirera-Salinas D,
31. Goedeke L, Vales-Lara FM, Fenstermaker M, Cirera-Salinas D,
30. Goedeke L, Vales-Lara FM, Fenstermaker M, Cirera-Salinas D,
29. Goedeke L, Vales-Lara FM, Fenstermaker M, Cirera-Salinas D,
28. Goedeke L, Vales-Lara FM, Fenstermaker M, Cirera-Salinas D,
27. Goedeke L, Vales-Lara FM, Fenstermaker M, Cirera-Salinas D,
26. Goedeke L, Vales-Lara FM, Fenstermaker M, Cirera-Salinas D,
25. Goedeke L, Vales-Lara FM, Fenstermaker M, Cirera-Salinas D,
24. Goedeke L, Vales-Lara FM, Fenstermaker M, Cirera-Salinas D,
23. Goedeke L, Vales-Lara FM, Fenstermaker M, Cirera-Salinas D,
22. Goedeke L, Vales-Lara FM, Fenstermaker M, Cirera-Salinas D,
21. Goedeke L, Vales-Lara FM, Fenstermaker M, Cirera-Salinas D,
20. Goedeke L, Vales-Lara FM, Fenstermaker M, Cirera-Salinas D,
19. Goedeke L, Vales-Lara FM, Fenstermaker M, Cirera-Salinas D,
18. Goedeke L, Vales-Lara FM, Fenstermaker M, Cirera-Salinas D,
17. Goedeke L, Vales-Lara FM, Fenstermaker M, Cirera-Salinas D,
16. Goedeke L, Vales-Lara FM, Fenstermaker M, Cirera-Salinas D,
15. Goedeke L, Vales-Lara FM, Fenstermaker M, Cirera-Salinas D,
14. Goedeke L, Vales-Lara FM, Fenstermaker M, Cirera-Salinas D,
13. Goedeke L, Vales-Lara FM, Fenstermaker M, Cirera-Salinas D,
12. Goedeke L, Vales-Lara FM, Fenstermaker M, Cirera-Salinas D,
11. Goedeke L, Vales-Lara FM, Fenstermaker M, Cirera-Salinas D,
10. Goedeke L, Vales-Lara FM, Fenstermaker M, Cirera-Salinas D,
9. Goedeke L, Vales-Lara FM, Fenstermaker M, Cirera-Salinas D,
8. Goedeke L, Vales-Lara FM, Fenstermaker M, Cirera-Salinas D,
7. Goedeke L, Vales-Lara FM, Fenstermaker M, Cirera-Salinas D,
6. Goedeke L, Vales-Lara FM, Fenstermaker M, Cirera-Salinas D,
5. Goedeke L, Vales-Lara FM, Fenstermaker M, Cirera-Salinas D,
4. Goedeke L, Vales-Lara FM, Fenstermaker M, Cirera-Salinas D,
3. Goedeke L, Vales-Lara FM, Fenstermaker M, Cirera-Salinas D,
2. Goedeke L, Vales-Lara FM, Fenstermaker M, Cirera-Salinas D,
1. Goedeke L, Vales-Lara FM, Fenstermaker M, Cirera-Salinas D,
Jennewein C, von Knethen A, Schmid T, Brune B. microRNA-27b contributes to lipopolysaccharide-mediated peroxisome proliferator-activated receptor γ (PPARγ) mRNA destabilization. *J Biol Chem* 2010;**285**:11846–53.

Wang T, Li M, Guan J, Li P, Wang H, Guo Y, et al. microRNAs miR-27a and miR-143 regulate porcine adipocyte lipid metabolism. *Int J Mol Sci* 2011;**12**:7950–9.

Shirasaki T, Honda M, Shimakami T, Horii Y, Yamashita T, Sakai Y, et al. microRNA-27a regulates lipid metabolism and inhibits hepatitis C virus replication in human hepatoma cells. *J Virol* 2013;**87**:5270–86.

Carrer M, Liu N, Grueter CE, Williams AH, Frisard MI, Hulver MW, et al. Control of mitochondrial metabolism and systemic energy homeostasis by microRNAs 378 and 378*. *Proc Natl Acad Sci USA* 2012;**109**:15330–5.

Eichner LJ, Perry MC, Dufour CR, Bertos N, Park M, St-Pierre J, et al. miR-378 mediates metabolic shift in breast cancer cells via the PGC-1α/ERRγ transcriptional pathway. *Cell Metab* 2010;**12**:352–61.

Knezevic I, Patel A, Sundaresan NR, Gupta MP, Solaro RJ, Nagalingam RS, et al. A novel cardiomyocyte-enriched microRNA, miR-378, targets insulin-like growth factor 1 receptor: implications in postnatal cardiac remodeling and cell survival. *J Biol Chem* 2012;**287**:12913–26.

Wang D, Yan X, Xia M, Yang Y, Li D, Li X, et al. Coenzyme Q10 promotes macrophage cholesterol efflux by regulation of the activator protein-1/miR-378/ATP-binding cassette transporter G1-signaling pathway. *Arterioscler Thromb Vasc Biol* 2014;**34**:1860–70.

Pizzimenti S, Ferracini M, Sabbioni S, Toaldo C, Pettiazzoni P, Dianzani MU, et al. microRNA expression changes during human leukemic HL-60 cell differentiation induced by 4-hydroxy-2-nonenal, a product of lipid peroxidation. *Free Radic Biol Med* 2009;**46**:282–8.

Gerin I, Bommer GT, McCoin CS, Sousa KM, Krishnan V, MacDougald OA. Roles for miRNA-378/378* in adipocyte gene expression and lipogenesis. *Am J Physiol Endocrinol Metab* 2010;**299**:E198–206.

John E, Wienecke-Baldacchino A, Liivrand M, Heinäniemi M, Carlberg C, Sinkkonen L. Dataset integration identifies transcriptional regulation of microRNA genes by PPARα in differentiating mouse 3T3-L1 adipocytes. *Nucleic Acids Res* 2012;**40**:4446–60.

Kulyté A, Lorente-Cebrián S, Gao H, Mejheart N, Agustsson T, Arner P, et al. microRNA profiling links miR-378 to enhanced adipocyte lipolysis in human cancer cachexia. *Am J Physiol Endocrinol Metab* 2014;**306**:E267–74.

Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N, et al. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. *Mol Cell* 2007;**26**:731–43.

Chen F, Hu SJ. Effect of microRNA-34a in cell cycle, differentiation, and apoptosis: a review. *J Biochem Mol Toxicol* 2012;**26**:79–86.

Lee J, Padyhe A, Sharma A, Song G, Miao J, Mo YY, et al. A pathway involving farnesoid X receptor and small heterodimer partner positively regulates hepatic sirtuin 1 levels via microRNA-34a inhibition. *J Biol Chem* 2010;**285**:12604–11.

Choi SE, Fu T, Seok S, Kim DH, Yu E, Lee KW, et al. Elevated microRNA-34a in adipose reduces NAD+ levels and SIRT1 activity by directly targeting NAMPT. *Aging Cell* 2013;**12**:1062–72.

Oda Y, Nakajima M, Tsuchiyama K, Takamiya M, Aoki Y, Fukumi T, et al. Retinoid X receptor α in human liver is regulated by miR-34a. *Biochem Pharmacol* 2014;**90**:179–87.

Fu T, Seok S, Choi S, Huang Z, Suino-Powell K, Xu HE, et al. microRNA-34a inhibits beige and brown fat formation in part by suppressing adipocyte fibroblast growth factor 21 signaling and SIRT1 function. *Mol Cell Biol* 2014;**34**:4130–42.

Ahn J, Lee H, Jung CH, Ha T. Lycopene inhibits hepatic steatosis via microRNA-21-induced downregulation of fatty acid-binding protein 7 in mice fed a high-fat diet. *Mol Nutr Food Res* 2012;**56**:1665–74.

Chau BN, Xin C, Hartner J, Ren S, Castano AP, Linn G, et al. microRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways. *Sci Transl Med* 2012;**4**:121ra18.

Kida K, Nakajima K, Mohri T, Oda Y, Takagi S, Fukumi T, et al. PPARα is regulated by miR-21 and miR-27b in human liver. *Pharm Res* 2011;**28**:2467–76.

Feng J, Li AT, Deng JY, Yang YH, Dang LL, Ye YP, et al. miR-21 attenuates lipopolysaccharide-induced lipid accumulation and inflammatory response: potential role in cerebrovascular disease. *Lipids Health Dis* 2014;**13**:27.

Fabani MM, Gait MJ. miR-122 targeting with LNA/2'-O-methyl oligonucleotide mixmers, peptide nucleic acids (PNA), and PNA-peptide conjugates. *RNA* 2008;**14**:336–46.

Wang L, Tang W, Yan S, Zhou L, Shen T, Huang X, et al. Efficient delivery of miR-122 to regulate cholesterol metabolism using a non-covalent peptide-based strategy. *Mol Med Rep* 2013;**8**:1472–8.

Wang X, Yu B, Ren W, Mo X, Zhou C, He H, et al. Enhanced hepatic delivery of siRNA and microRNA using oleic acid based lipid nanoparticle formulations. *J Control Release* 2013;**172**:690–8.

Boon RA, Vickers KC. Inter cellular transport of microRNAs. *Arterioscler Thromb Vasc Biol* 2013;**33**:186–92.