A Single Point Mutation Controls the Rate of Interconversion Between the g^+ and g^- Rotamers of the Histidine 189 χ_2 Angle That Activates Bacterial Enzyme I for Catalysis

Jeffrey A. Purslow1, Jolene N. Thimmesch1, Valeria Sivo2, Trang T. Nguyen1, Balabhadra Khatriwada1, Rochelle R. Doutas1 and Vincenzo Venditti1,3*

1Department of Chemistry, Iowa State University, Ames, IA, United States, 2Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università Degli Studi Della Campania, Caserta, Italy, 3Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States

Enzyme I (EI) of the bacterial phosphotransferase system (PTS) is the first protein in the bacterial phosphotransferase system (PTS), a signal transduction pathway that controls multiple cellular functions including sugar uptake, catabolic gene expression, interactions between carbon and nitrogen metabolisms, chemotaxis, biofilm formation, and virulence, via phosphorylation-dependent protein-protein interactions (Postma

INTRODUCTION

Enzyme I (EI) is the first protein in the bacterial phosphotransferase system (PTS), a signal transduction pathway that controls multiple cellular functions including sugar uptake, catabolic gene expression, interactions between carbon and nitrogen metabolisms, chemotaxis, biofilm formation, and virulence, via phosphorylation-dependent protein-protein interactions (Postma
et al., 1993; Clore and Venditti, 2013). The phosphorylation state of EI dictates the phosphorylation state of all other downstream components of the PTS (Deutscher et al., 2014) and malfunction of EI has been linked to reduced growth-rate and attenuated virulence in several bacterial species (Edelstein et al., 1999; Jones et al., 2000; Lau et al., 2001; Kok et al., 2003). Given its central role in controlling bacterial metabolism, EI has been proposed as a target for antimicrobial design (Kok et al., 2003; Huang et al., 2013; Nguyen and Venditti, 2020) or for metabolic engineering efforts aimed at developing more efficient systems for microbial production of chemicals from biomass feedstocks (Doucette et al., 2011; Venditti et al., 2013).

In addition to its relevance for pharmaceutical and biotech applications, EI is an ideal model system for investigating the interplay between ligand binding, post-translational modifications, and conformational dynamics that determine the activity of complex multidomain proteins. Indeed, EI is a 128 kDa dimeric enzyme (Chauvin and Brand, 1996) whose activity depends on the synergistic action of at least four conformational equilibria that results in a series of large intradomain, interdomain, and intersubunit structural rearrangements modulated by substrate binding and two subsequent protein phosphorylation steps (from the substrate to EI and from EI to HPr, the second protein of the PTS) (Figure 1A). The N-terminal phosphoryl-transfer domain (EIN, residues 1–249) contains the phosphorylation site (His189) and the binding site for the phosphocarrier protein, HPr. The C-terminal domain (EIC, residues 261–575) is responsible for dimerization and contains the binding site for the substrate phosphoenolpyruvate (PEP) and the small molecule regulator α-ketoglutarate (αKG) (Chauvin and Brand, 1996; Venditti et al., 2013). A long helical linker connects the EIN and EIC domains. In the absence of substrate, EI adopts an open conformation in which the EIN domains of the two monomeric subunits are more than 60 Å apart (Schwieters et al., 2010). Binding of PEP induces a transition to the catalytically competent closed form of EI (Venditti et al., 2015a; Venditti et al., 2015b). In the closed structure, the EI domains of the two monomeric subunits are in direct contact and the active site residue, His189, is inserted in the catalytic pocket on EIC (Figure 1A) (Teplyakov et al., 2006).

In recent years, we have published several studies revealing that progressive quenching of the intradomain EIC dynamics is an important source of functional regulation that can be exploited to design allosteric inhibitors of EI. In particular, by using high-pressure NMR we have shown that dimerization of EI promotes substrate binding by providing structural stabilization to the EIC catalytic pocket (Nguyen et al., 2021). Coupling NMR relaxation experiments with Small Angle X-ray Scattering, we showed that binding of PEP results in further quenching of μs-ms dynamics at the EIC catalytic loops that triggers the open-to-close interdomain rearrangement and activates EI for catalysis (Venditti et al., 2015b). Finally, by combining NMR with Molecular Dynamics (MD) simulations, we noticed that residual conformational heterogeneity at the EIC active site in the activated enzyme-substrate complex determines the enzymatic turnover (Dotas et al., 2020) and that perturbing conformational dynamics at the active site loops is an effective strategy to inhibit the phosphoryl-transfer reaction (Nguyen and Venditti 2020).

Despite the wealth of knowledge we possess about the coupling between EIC conformational flexibility and enzymatic activity, very little is known about if and how EIN conformational
dynamics impact the function of the enzyme. Indeed, while a comparison of the experimental atomic-resolution structures of EI indicates that the open-to-close conformational change is coupled to a rigid body reorientation of the α subdomain relative to the α/β subdomain of EIN (commonly referred to as state A-to-state B equilibrium, Figure 1B) and that protein phosphorylation shifts the χ2 angle of His189 from the g+ to g− rotameric state (Figure 1C), it is not clear if these conformational equilibria are active in isolated EIN and if their external perturbation can impact turnover. Addressing these questions will advance our understanding of how synergistic couplings among intradomain, interdomain, and intersubunit conformational equilibria affect the function of a multidomain oligomeric protein such as EI, and will provide new perspectives toward the development of EI inhibitors that act on the EIN domain.

Here we investigate the structure and dynamics of isolated EIN in its native and phosphorylated forms by solution NMR spectroscopy. While we do not detect evidence of an active state A/state B equilibrium, relaxation dispersion experiments indicate that the conformational exchange between the g+ and g− rotameric states of His189 is active in the isolated EIN and modulated by protein phosphorylation. Furthermore, we engineered EIN constructs with modulated thermostability and conformational flexibility by hybridizing EIN from mesophilic and thermophilic organisms. Biophysical characterization of the wild-type and hybrid EIN constructs indicates that the rotameric equilibrium is slower in the thermophilic enzyme than in the mesophilic protein and that a single serine to alanine mutation is responsible for the increased activation energy in the thermophilic species. Finally, we performed functional characterization of the wild-type mesophilic and thermophilic EI, as well as of EI constructs that incorporate the hybridizing mutations. Our data show that, although the His189 rotameric equilibrium is required for the correct functioning of EI, the rate of the phosphoryl transfer reaction is independent on the kinetics of the conformational change, indicating that the g+ to g− transition is not the rate limiting step for catalysis.

MATERIALS AND METHODS

Protein Expression and Purification

E. coli and T. tengcongensis EI, EIN, and HPr were expressed and purified as previously reported (Suh et al., 2008; Venditti and Clore, 2012; Dotas and Venditti, 2019). Single point mutations were introduced using the QuikChange site-directed mutagenesis.

Thermal Stability and Circular Dichroism

Thermal-induced unfolding of EIN was investigated in a 1 mm, 400 µl, quartz cuvette sample cell using a Jasco J-710 spectropolarimeter. Samples were prepared in H2O at a protein concentration of ~0.5 mg/ml. Ellipticity (θ222nm) at the 222 nm wavelength was monitored over a 1°C/min temperature gradient ranging from 35 to 75°C and 65–95°C for mesophilic and thermophilic EIN, respectively. The melting temperature (Tm) was calculated as the maximum value of the derivative of θ222nm with respect to temperature.

Nuclear Magnetic Resonance Spectroscopy

NMR samples were prepared in 20 mM Tris-HCl buffer (pH 7.4), 100 mM NaCl, 4 mM MgCl2, 1 mM ethylenediaminetetraacetic acid (EDTA), 2 mM dithiothreitol (DTT), and 90% H2O/10% D2O (v/v). For protein phosphorylation, samples were incubated for 1 h at 37°C with <1 μM of mesophilic EI (eEI) or thermophilic EI (tEI), <1 μM of mesophilic HPr (eHPr) or thermophilic HPr (tHPr), and ~30 mM of PEP prior to acquisition. Completion of phosphorylation reactions were confirmed by the disappearance of the NMR peaks of the unphosphorylated species from the 1H-15N TROSY spectrum of the proteins. The protein concentration, in subunits, was ~1 mM for all NMR experiments, unless stated otherwise.

NMR spectra were acquired on Bruker 800, 700, and 600 MHz spectrometers equipped with z-shielded gradient triple resonance cryoprobes. Spectra were processed using NMRPipe (Delaglio et al., 1995) and analyzed using NMRFAM-SPARKY (Lee et al., 2015). 1H-15N TROSY (transverse relaxation-optimized spectroscopy) (Pervushin et al., 1998) and methyl-TROSY (Tugarinov et al., 2003) experiments were acquired using previously described pulse schemes. Resonance assignments of the 1H-15N TROSY spectra for eEIN and tEIN were transferred from previous reports (BMRB accession codes 4,106 and 27,833, respectively) (Garrett et al., 1999; Dotas and Venditti, 2019). Resonance assignments of the 1H-15N TROSY spectra for phosphorylated eEIN (eEIN-P) was kindly provided by Drs. Clore and Suh (Suh et al., 2008). Sequential 1H-13N/15C backbone assignments of phosphorylated tEIN (tEIN-P) were achieved using TROSY versions of conventional 3D triple resonance correlation experiments [HNCOC, HN(CO)CA, and HN(CO)CACB] (Clore and Gronenborn, 1998). Assignment of the 1H-13Cmethyl correlations of tEIN-P was performed using out and back experiments (Tugarinov et al., 2014). NMR resonance assignments for tEIN-P were deposited on the BioMagResBank (Ulrich et al., 2008) (accession code 50386).

The weighted combined 1H/15N chemical shift perturbations (ΔH/ΔN) resulting on the 1H-15N TROSY spectra of EIN from phosphorylation of His189 were calculated using the following equation (Mulder et al., 1999):

$$\Delta_{H/N} = \sqrt{(\Delta_{H} W_H)^2 + (\Delta_{N} W_N)^2}$$

where $W_H (=1)$ and $W_N (=0.154)$ are the weighting factors for the 1H and 15N amide chemical shifts and Δ_{H} and Δ_{N} symbolize the 1H and 15N chemical shift differences in ppm between the unphosphorylated and phosphorylated states. 15N-R1 and R1p experiments were recorded at 40°C and a 1H frequency of 800 MHz, utilizing heat-compensating pulse schemes with a TROSY readout (Lakomek et al., 2012). A recycle delay of 1.5 s was used for both R1 and R1p.
experiments, with the spin-lock field (ω_1) for the R_{1p} experiments set to 1 kHz. Relaxation delay durations were 0, 120, 280, 440, 640, 800, 1,040, and 1,200 ms for R_1 and 0.2, 4.2, 7.2, 15, 23.4, 32.4, 42, 52.2, and 60 ms for R_{1p}, respectively. R_1 and R_{1p} values were determined by fitting time-dependent exponential restoration of peak intensities at increasing relaxation delays. R_2 values were extracted from the measured R_1 and R_{1p} values. Global rotational correlation times (τ_c) were estimated from the mean R_1 and R_2 values, excluding residues displaying enhanced local dynamics on the ps-ns timescale, using the following equation (Kay et al., 1989):

$$\tau_c \approx \frac{1}{4\pi N} \left(\frac{R_2}{R_1} - 7 \right)$$

where N is the 15N resonance frequency in Hz, and R_1 and R_2 are the average determined values of the 15N relaxation rates.

15N and 13Cmethyl relaxation dispersion (RD) experiments were conducted at 5, 10, 15, and 20°C using a well-established protocol (Singh et al., 2021). In brief, a pulse sequence that measures the exchange contribution for the TROSY component of the 15N magnetization (Loria et al., 1999) and a pulse scheme for 13C single-quantum CPMG (Carr-Purcell-Meiboom-Gill) RD described by Kay and co-workers (Lundström et al., 2007) were employed. Off-resonance effects and pulse imperfections were minimized using a four-pulse phase scheme (Yip and Zuiderweg, 2004). CPMG RD experiments were performed at a 1H frequency of 800 and 600 MHz with fixed relaxation delays (T_{relax}) of 60 and 30 ms, for 15N and 13Cmethyl experiments, respectively. Different numbers of refocusing pulses were implemented to produce effective CPMG fields (ν_{CPMG}) varying from 50 to 1,000 Hz (Mulder et al., 2001). Experimental errors on the transverse relaxation rates (R_2) were estimated from the noise level estimated with the NMRFAM-SPARKY software. The resulting RD curves acquired at multiple temperatures and magnetic fields were globally fit to a two-site exchange model using the Carver-Richard equation (Carver and Richards, 1972), as described by Dotas et al. (2020).

Backbone amide 2D$^\text{NH}$ residual dipolar couplings (RDCs) were measured at 40°C by taking the difference in 1J$^\text{NH}$ scalar couplings in isotropic and alignment media. Phage pf1 (16 mg/ml; ASLA Biotech) was the employed alignment media and the 1J$^\text{NH}$ couplings were measured using the RDCs by TROSY pulse scheme (Fitzkee and Bax, 2010). Xplor-NIH (Schwieters et al., 2003) was used to compute singular value decomposition (SVD) analysis of the RDC values.

Enzyme Kinetic Assays

cEI, cEI$_{S191A}$, tEI, and tEI$_{A191S}$ were investigated for their ability to catalyze the transfer of the phosphoryl group from PEP to HPr. Assays were performed on a Bruker 700 MHz spectrometer at 25°C using 1H-1NH Selective Optimized Flip Angle Short Transient (SOFAST) NMR experiments (Schanda et al., 2005), using a protocol previously described (Nguyen et al., 2018). The reaction buffer was 20 mM Tris–HCl buffer (pH 7.4), 100 mM NaCl, 4 mM MgCl$_2$, 1 mM ethylenediaminetetraacetic acid (EDTA), 2 mM dithiothreitol (DTT), and 90% H$_2$O/10% D$_2$O (v/v). The reaction volume was 500 µl. All enzymatic assays were run at fixed concentrations of enzyme (~0.005 µM), HPr (600 µM), and PEP (1 mM). The initial velocities (v_0) for the phosphor transfer reactions were determined by plotting the concentration of unphosphorylated HPr determined by the 1H-1N cross-peak intensities, as described by Nguyen et al. (2018) vs. time (Figure 5D). All assays were performed in triplicates to estimate the experimental error.

Mass Spectrometry

A binary ACQUITY UPLC H-Class system coupled with Synapt G2-Si HDMS system (Waters, Milford, MA) and electrospray ionization (ESI) source was used to determine the intact masses of phosphorylated and non-phosphorylated tEIN. Starting samples were prepared by diluting 10 µl of the NMR samples of phosphorylated and non-phosphorylated tEIN with HPLC grade H$_2$O to final concentration of 2 µM. 1 µl of each sample was injected in the mass spectrometer.

UPLC separations were performed using a Restek Ultra C4 column (5 um 50 mm x 1 mm) with a flow rate of 0.4 ml/min. Solvents used were 0.1% formic acid in HPLC grade H$_2$O (solvent A) and 0.1% formic acid in acetonitrile (solvent B, mobile phase). The gradient used started with an initial condition of 5% B for 1 min, followed by a 7 min gradient of 5–100% solvent B. This was held for 4 min before dropping back to the initial 5% buffer B in 1 min and held for the remainder of the run (total 20 min).

The eluant from the UPLC was introduced to the Waters Synapt G2-Si HDMS with TOF mass analyzer using a Waters Lockspray Source (300–5,000 Da mass range). Finally, the intact mass was determined by deconvolution of mass spectra using the MassLynx 4.2 software.

RESULTS

In this contribution, we investigate the structure and conformational dynamics of native and phosphorylated EIN from two organisms: a mesophilic bacterium (Escherichia coli) and a thermophilic organism (Thermoanaerobacter tengcongensis). The two proteins are referred to as cEIN and tEIN in the unphosphorylated state, and cEIN-P and tEIN-P in the phosphorylated state throughout the manuscript, respectively. Further, we examined the effect of two single-point mutations, Ser191→Ala191 within cEIN and Ala191→Ser191 within tEIN, on protein structure and dynamics. These mutants are denoted cEIN$_{S191A}$ and tEIN$_{A191S}$, respectively. Similar notations are used for HPr and the full-length EIN and HPr$_{S191A}$ and HPr$_{A191S}$.

The full-length cEIN and tEIN share similar sequence (overall identity = 54% and active site identity = 100%) (Supplementary Figure 1) and 3D structure (Oberholzer et al., 2005; Teplyakov et al., 2006; Navdaeva et al., 2011; Evangelidis et al., 2018), but have been shown to be optimally active at 37 and 65°C, respectively, (Navdaeva et al., 2011). The sequence identity of isolated cEIN and tEIN is 48% (Supplementary Figure 1).
Effect of Phosphorylation on the Structure of EIN

Previous structural investigations on eEIN have shown that phosphorylation does not affect the conformation of the eEIN backbone, but results in a transition of the χ^2 angle of His^{189} from the g^+ to the g^- rotameric state. Such conformational change breaks the hydrogen bond between the Nε_2 atom of His^{189} and the hydroxyl group of Thr^{188} and grants the inbound phosphoryl group access to the Nε_2 atom (Garrett et al., 1999; Suh et al., 2008).

Here, the effect of phosphorylation at the His^{189} position on the structure of tEIN has been evaluated by NMR chemical shift perturbations and backbone amide residual dipolar coupling (1DNH RDC) data. tEIN-P samples were prepared by adding...
catalytic amounts (<1 μM) of tEi and tHP, and a large excess (~30 mM) of PEP directly to an NMR tube containing ~1 mM of 15N-labeled tEIN. The phosphor transfer reaction is slow on the chemical shift time scale, and distinct NMR peaks are observed for tEIN and tEIN-P (Figure 2D). Therefore, completion of the phosphorylation reaction was determined by disappearance of the NMR peaks of the unphosphorylated species from the 1H–15N TROSY spectrum of the protein. In addition, small aliquots (~10 µl) of the NMR sample were taken before and after addition of EI, and analyzed by Liquid Chromatography with tandem mass spectrometry (LC-MS-MS). The data indicate that the tEIN mass increases by 80 Da upon incubation with EI, tHP, and PEP (Figure 2A), which is consistent with the addition of a single phosphoryl group.

NMR resonance assignments for tEIN have been previously reported (BMRB code: 27833) (Dotas and Venditti, 2019). Assignments for tEIN-P were performed using conventional triple resonance correlation experiments (see “Materials and Methods”) and deposited in the BioMagResBank (BMRB code: 50386). 1H–15N chemical shift perturbations (ΔH/N) induced by phosphorylation in the 1H–15N TROSY spectrum of tEIN are plotted against residue index in Figure 2B and displayed as a gradient on the protein structure in Figure 2C. Significant (>0.3 ppm) ΔH/N values are observed exclusively in the vicinity of the phosphorylation site on the α/β subdomain and are presumably a result of electronic effects that arise from the presence of the phosphoryl group as well as ring current effects from the change in the χ2 angle of His189 to accommodate the phosphoryl group at the Ne2 position. Such hypothesis is supported by the excellent agreement between the secondary Ca chemical shifts measured for phosphorylated and unphosphorylated tEIN (Figure 2E), which demonstrates that no transition in backbone conformation occurs upon phosphorylation. Further insight into the effect of phosphorylation on the structure of EIN was obtained by the analysis of 1D NH RDC data measured for tEIN and tEIN-P aligned in a dilute liquid crystalline medium of phage pf1. RDCs of fixed bond vectors, such as the backbone N–H bond vector, are dependent on the orientation of the bond vectors relative to the alignment tensor and thus provide a very sensitive indicator of changes in relative domain orientations (Tjandra and Bax, 1997; Venditti et al., 2016). Singular value decomposition (SVD) fitting of the experimental RDCs measured for tEIN and tEIN-P to the coordinates of the solution structure of unphosphorylated tEIN (PDB code: 5WOY) (Evangelidis et al., 2018) yields R-factors (Clore and Garrett, 1999) of 27.5 and 28.0%, respectively, indicating good agreement between experimental and back-calculated data (Figure 2F). Consequently, one can conclude that the relative orientation of the α and α/β subdomains remains unperturbed by phosphorylation.

In summary, consistent with structural investigations performed previously on eEIN (Suh et al., 2008), the solution NMR data presented in this section indicate that phosphorylation of tEIN results in a localized transition of the rotameric state of the His189 side chain and does not propagate into larger conformational rearrangements that involve the backbone of the protein.

Effect of Phosphorylation on the ps-ns Dynamics

ps-ns timescale dynamics were investigated for eEIN, eEIN-P, tEIN, and tEIN-P using NMR relaxation experiments. NMR samples of eEIN-P were produced as described previously (Suh et al., 2008). Residue-specific 15N-R1 and 15N-R2 values were obtained at 800 MHz and 40°C by acquisition of TROSY-detected R1 and R1p experiments (Lakomek et al., 2012) on
uniformly 15N-labeled protein. 15N-R2/R1 ratios are graphed as a function of residue index in Figure 3A and depicted as a gradient on the solution structure of rEIN in Figure 3B. For globular diamagnetic proteins, global tumbling is the only significant contribution to 15N relaxation and the R_2/R_1 values are expected to be constant throughout the amino acid sequence and proportional to the rotational correlation time (τ_c) (Kay et al., 1989). Therefore, residues that produce lower than average R_2/R_1 values likely undergo additional local motion on the ps-ns timescale that decrease the effective correlation time experienced by the N-H bond. Analysis of the NMR relaxation data in Figure 3A indicates that rEIN, eEIN, rEIN-P, tEIN, and eEIN-P tumble with a $\tau_c \sim 11$ ns, which is consistent with the theoretical τ_c calculated for a globular protein of the EIN size (~ 11 ns). Notably, several regions of the protein exhibit lower than average R_2/R_1 values, suggesting the presence of local backbone dynamics on the ps-ns timescale. These regions cluster into the unstructured linkers connecting the α and αβ subdomains (linker 1: residues 19–32; linker 2: residues 143–156) and at the C-terminal end of EIN (Figure 3B). However, phosphorylation of His189 elicits no observable change in the distribution of the R_2/R_1 values, indicating that the phosphoryl transfer reaction does not affect the ps-ns timescale dynamics of EIN (Figure 3A).

Effect of Phosphorylation on the μs-ms Dynamics

μs-ms timescale dynamics in eEIN, eEIN-P, rEIN, and tEIN-P were investigated by 15N and 13Cmethyl Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion (RD) spectroscopy (Mittermaier and Kay 2006). Experiments were acquired on U-(H$_2$O/15N)/Ile (d$_1$)-13CH$_3$/Val, Leu-(13CH$_3$/12C$_2$H$_3$)-labeled samples at two different static fields (600 and 800 MHz) and four different temperatures (5, 10, 15, and 20°C). Simultaneous investigation of RD profiles measured at multiple temperatures returns a comprehensive characterization of the kinetics and thermodynamics of conformational exchange processes between species with distinct chemical shifts occurring on a timescale ranging from ~ 0.1 to ~ 10 ms, by providing enthalpy (ΔH), entropy (ΔS), activation enthalpy ($\Delta' H$), and activation entropy ($\Delta' S$) for the conformational equilibrium (Purslow et al., 2018).

Exchange contributions toward the transverse relaxation rates ($R_{2\omega}$) are plotted against residue index in Figure 4A. Large
<5 s$^{-1}$) R_{ex} values were detected for amino acids that cluster in the vicinity of the active site His189 on the α/β subdomain of εEIN (Figures 4A,B). In particular, Asp167, Ala169, Lys172 localize on the partially structured helix that is in direct contact with His189, while Ile199 is located at the C-terminal end of the short helix that comprises the phosphorylation site. Contrarily, eEIN revealed no significant R_{ex} values (Figure 4A), suggesting the observed dynamics in εEIN may be too fast to be detected by CPMG within its mesophilic analogue. Interestingly, all the 15N and 13C methyl RD curves measured at multiple temperatures and static magnetic fields for Asp167, Ala169, Lys172, and Ile199 within εEIN could be fit simultaneously to a model describing the interconversion between two conformational states (Figure 4C; Supplementary Figure 2). In this global fitting procedure, the activation (Δ^G) and standard (ΔG) free energy of the conformational equilibrium were optimized as global parameters, whereas the 15N and 13C chemical shift differences between the two conformational states ($\Delta \omega_N$ and $\Delta \omega_C$, respectively) were treated as peak-specific and temperature independent parameters. The exchange rate (k_{ex}) and the fractional population of the minor conformational state (p_{β}) were calculated at each temperature from the fitted values of Δ^G and ΔG using the general form of the Eyring and reaction isotherm equations, respectively. This fitting procedure reduces the number of optimized parameters from 28 (k_{ex}, p_{β}, and $\Delta \omega$ for five NMR peaks at four experimental temperatures) to 7 (Δ^G, ΔG, and $\Delta \omega$ for five NMR peaks), and it is justified if the heat capacity of activation remains constant over the experimental temperature range (5–20°C) (Nguyen et al., 2017). For completeness, it should be noted that the intrinsic 15N and 13C methyl transverse relaxation rates were also optimized as peak-specific parameters, therefore increasing the overall number of fitted parameters. Also, in order to improve convergence of the fitting algorithm, the $\Delta \omega_N$ parameters were restrained to be larger than 1 ppm. Recently we have used a similar fitting protocol to model the temperature dependence of the μs-ms dynamics in the E1C domain of the enzyme (Dotas et al., 2020).

A summary of the optimized parameters is reported in Table 1. Examples of the global fit are provided in Figure 4C. Curves for all the analyzed RD profiles are provided in Supplementary Figure 2. The optimized Δ^G is 50,228 ± 227 J mol$^{-1}$, which translates into exchange rate constants (sum of forward and backward rate constants, k_{ex} and k_{ba}, respectively) of 2,117 ± 236, 3,162 ± 347, 4,660 ± 503, and 6,780 ± 719 s$^{-1}$ at 5, 10, 15, and 20°C, respectively. The optimized ΔG is 5,601 ± 330 J mol$^{-1}$, resulting in p_{β} values of 8.0 ± 0.4, 8.4 ± 0.4, 8.7 ± 0.4, and 9.0 ± 0.4% at 5, 10, 15, and 20°C, respectively (Table 1). k_{ex} and k_{ba} were calculated from the values of k_{ex} and p_{β}, and their temperature dependence was modeled using the van’t Hoff and Eyring equations to obtain ΔH and ΔS, and Δ^G of the εEIN conformational equilibrium (Table 1). From the analysis of the kinetic, thermodynamic, and NMR parameters obtained by the RD study at multiple temperatures it is apparent that 1) εEIN is in equilibrium between two conformational states, 2) the relative thermodynamic stability of the two states is dictated by enthalpic contributions to the free energy (Table 1), and 3) the 15N and 13C chemical shift differences between the two conformational states correlates with the change in 15N and 13C chemical shift (ΔN and ΔC, respectively) induced by phosphorylation of εEIN (Figure 4D). These findings suggest that the μs-ms dynamics detected in εEIN by RD experiments report on the equilibrium between the g^g and g^r rotameric states of His199 that breaks the hydrogen bond between the Thr168 and His189 side-chains and makes the Ne2 atom accessible to the incoming phosphoryl group. Consistent with this hypothesis, the fitted value for ΔH (6 kJ mol$^{-1}$) is comparable with the reported energies for the weak intramolecular hydrogen bonds involving the hydroxyl group on Ser or Thr side-chains (∼7 kJ mol$^{-1}$) (Pace et al., 2014a; Pace et al., 2014b).

To further test this model, the effect of phosphorylation on the μs-ms dynamics of εEIN was investigated at 10°C by acquisition of RD experiments on εEIN-P. εEIN-P was
prepared enzymatically as described above. However, in this case, eEI, fHPr, and excess PEP were purified out of the final NMR sample by anion exchange chromatography. This additional purification step is required to remove any possible complex between eEI and other molecules in the sample that, even at very dilute concentrations (<1% of the total eEI concentration), might cause artifacts in the observed RD profiles (Singh et al., 2021). Since phosphorylated histidine is a labile post-translational modification that decays over the time, the phosphorylation state of the purified eEI-P sample was checked by ^{1}H-^{15}N TROSY before and after acquisition of the RD experiments at 10°C. Both NMR spectra show no sign of unphosphorylated eEI cross-peaks, confirming that eEI remained fully phosphorylated during NMR data acquisition.

As expected, the RD data measured for eEI-P at 800 MHz shows that phosphorylation completely suppresses μ-ms dynamics within eEI (Figures 4A,C). Indeed, addition of the bulky phosphoryl group at the N2 position hampers formation of the Thr168His189 hydrogen bond and locks the side-chain of His189 in the g^* rotameric state (Figure 1C). It is worth reiterating that no R_{ex} value larger than 5 s$^{-1}$ was measured for eEI and, as expected, phosphorylation of eEI resulted in no observable change in the R_{ex} distribution (Figure 4A). Being that the experimental structures of phosphorylated and unphosphorylated eEI indicate that the protein must undergo the His189 rotameric transition to accommodate the phosphoryl group (Figure 1C), our data suggests the g^*/g^* exchange in eEI is faster than in eEI and, therefore, not detected by RD experiments.

Engineering eEI/eEI Hybrids With Modulated Conformational Dynamics

We have recently shown that hybridizing proteins from mesophilic and thermophilic bacteria is an effective strategy to produce active enzymes with modulated conformational dynamics and biological function (Dotas et al., 2020). Indeed, by merging the scaffold of EIC from *T. tengcongensis* with the active site loops of the *E. coli* enzyme we engineered a hybrid EIC variant that displays the thermal stability of the thermophilic protein and the high active site flexibility and low-temperature activity of the mesophilic enzyme. In contrast, implanting the active site loops from *T. tengcongensis* EIC onto the scaffold of *E. coli* EIC resulted in a construct that is more rigid and less active than the mesophilic enzyme (Dotas et al., 2020). Here, eEI/eEI hybrids are engineered to investigate the relationship between the kinetics of the His189 rotameric equilibrium and turnover number. Comparison of the experimental atomic-resolution structures shows that the N-terminal end of a-helix 6 (which comprises the His189) in eEI is two residues longer than in eEI (Figure 5A). Alignment of the amino acid sequences reveals a single Ser191Ala mutation within a-helix 6 moving from the mesophilic to the thermophilic construct (Figure 5B; Supplementary Figure 1). As alanine residues are known to promote helix formation in proteins (Panja et al., 2015), we hypothesize that the Ser191Ala mutation provides structural stabilization to a-helix six and is responsible for the slower rotameric equilibrium observed for His189 in eEI. To test this hypothesis, we investigated the structure, dynamics, and thermal stability of eEIS191A and eEIA191S by solution NMR and circular dichroism (CD).

Although a comparison of the ^{1}H-^{15}N TROSY spectra measured for the wild type and mutant proteins shows that mutations at the 191 position provides minimal perturbations to the NMR spectra and, therefore, to the solution fold of EIN (Supplementary Figure 3), the temperature-induced unfolding data acquired by CD reveal that the introduced mutations result in sizable and opposing effects on the thermostability of eEI and eEI (Figure 5C). In particular, melting temperatures (T_m) of 54.0, 56.5, 82.0, and 88.0°C were determined for eEI, eEIS191A, eEIA191S and eEI from the first derivative of the unfolding sigmoidal curves, respectively. This pattern of T_m values confirms that introducing an Ala residue at position 191 increases the thermal stability of eEI, while the Ala191Ser mutation results in destabilization of eEI.

Analysis of the ^{15}N-R-Ω vs. residue plots reveals a similar pattern for the wild type and mutant proteins, indicating that the introduced mutations do not affect the ps-ns dynamics in native and phosphorylated EIN (Figure 3A). On the other hand, mutations of residue 191 generate observable changes in the μ-ms timescale dynamics of the protein. Indeed, no NMR peak with $R_{ex} > 5$ s$^{-1}$ is detected in the NMR spectra of eEIA191S (Figure 4A), which is consistent with the hypothesis that Ala191Ser mutation in eEI speeds up the rotameric equilibrium of His189. In contrast, the Ser191Ala mutation in eEI introduces $R_{ex} > 5$ s$^{-1}$ at three ^{1}H-^{15}N TROSY correlations. Although we were able to confidently assign only one of these three NMR signals, we ascribe the appearance of exchange induced effects on the spectra of eEIS191A to the rotameric equilibrium of His189 for the following reasons: 1) The assigned NMR correlation with $R_{ex} > 5$ s$^{-1}$ (Thr169) localizes in the same region observed to experience exchange contributions to R_2 in eEI (Figure 4A), 2) Global fitting of the RD profiles acquired for the three NMR signals at multiple temperatures and static fields (Supplementary Figure 4) produces kinetic and thermodynamic parameters that are similar to the ones obtained for the His189 rotameric equilibrium in eEI (Table 1), and 3) Phosphorylation of eEIS191A results in a complete quenching of μ-ms dynamics (Figure 4A).

Overall, the NMR and CD data reported above support the hypothesis that the identity of the residue at position 191 controls helix 6 stability and the dynamics of the g^*/g^* equilibrium of His189. To test the dependency of the EI biological function on the kinetics of the His189 rotameric transition, the Ser191Ala and Ala191Ser mutations were incorporated into the full-length eEI and fEI, respectively. Then, the ability of eEI, eEIS191A, fEI, and fEIA191S to transfer the phosphoryl group from PEP to HPr was investigated at 25°C by ^{1}H-^{15}N SOFAST-TROSY spectra, as recently described (Nguyen et al., 2018). As expected, the data indicate that at room temperature eEI catalyzes the phosphoryl transfer reaction ∼10 times faster than fEI (Figure 5D). Interestingly, the Ser191Ala and Ala191Ser mutations produce no detectable changes in the activity of eEI and fEI, respectively (Figure 5D), indicating that the conformational transition from the g^* to g^* rotameric state of His189 is not rate limiting for catalysis.

DISCUSSION

Protein conformational transitions are fundamental to signaling, enzyme catalysis, and assembly of cellular...
structures. Yet, our understanding of how the interconversion among different folded structures affects function continues to lag. One technical challenge limiting our ability to interrogate the dynamics/function relationship is the lack of universal and straightforward strategies to selectively perturb conformational equilibria in complex biomolecular systems. Here, we have shown that it is possible to perturb protein conformational dynamics without dramatically affecting their thermal stability by hybridizing the amino acid sequence of a mesophilic and a thermophilic analogue. In particular, we have investigated the structure and dynamics of the N-terminal domain of EI from a mesophilic (eEI) and a thermophilic (tEI) bacterium. We found that the two proteins adopt the same fold and undergo a rotameric equilibrium at the His189 side chain that exposes the phosphorylation site to react with the EI substrate, PEP (Figure 1C). Interestingly, CPMG RD experiments revealed that the rotameric transition in tEI occurs on a slower time scale than in eEI (Figure 4A). By comparing the primary structures of the mesophilic and thermophilic proteins (Figures 5A,B) we identified a single point mutation in eEI (Ser191<Ala) and tEI (Ala191<Ser) that swaps the observed kinetics for this conformational change, with the eEI<Ala<Ser mutant exchanging between the rotameric states of His189 at a rate similar to the one measured for the wild type rEIC, and the tEI<Ala<Ser mutant undergoing the same rotameric equilibrium on a faster time scale, comparable to wild type eEI (Figure 4, Table 1). Intriguingly, we have recently used the same mesophilic/thermophilic hybridization strategy described here to engineer constructs of the C-terminal domain of EI (EIC) with modulated active site dynamics (Dotas et al., 2020). In contrast to the EIN case that allows for a single-point hybridizing mutation, design of the EIC hybrids required swapping of the entire active site (composed of three catalytic loops) between mesophilic and thermophilic species. Nonetheless, as for the EIN case presented here, the engineering effort resulted in production of two enzymatically active hybrids with mixed properties: One hybrid displayed the high thermal stability of the thermophilic enzyme and the increased active site flexibility and low-temperature activity of the mesophilic analogue; The second hybrid showed the low thermal stability of the mesophilic enzyme and the rigid active site and low activity at room temperature of the thermophilic protein (Dotas et al., 2020). Therefore, hybridizing homologue proteins from mesophilic and thermophilic bacteria is emerging as a powerful tool in biophysics by providing a straightforward approach to produce functional proteins with modulated internal flexibility.

In addition of serving as a demonstration of the mesophilic/thermophilic hybridization strategy for protein design, the EIN constructs engineered here allowed us to investigate the relationship between enzymatic turnover and the kinetics of the His189 rotameric equilibrium. Indeed, by introducing the hybridizing mutations at position 191 into the sequence of the full-length enzyme we have demonstrated that increasing the rate of the $g^+ \rightarrow g^-$ transition of the His189 χ_2 angle does not affect turnover for the phosphoryl transfer reaction catalyzed by rEI (Figure 4, Figure 5). Similarly, increasing the activation energy for the His189 rotameric transition in eEI by introducing an Ala residue at position 191 does not affect its enzymatic activity (Figure 4, Figure 5). These results indicate that the His189 conformational change is not rate limiting for catalysis and, therefore, regulation of the EI activity cannot be achieved by slight perturbations of the His189 conformational dynamics.

Finally, it is important to highlight that the data reported in this manuscript show no evidence for an active state A/state B equilibrium in the isolated EIN. This observation implies that the latter equilibrium is either on a timescale that is not compatible with RD experiments (i.e., outside the μs-ms regime) or completely inactive in the isolated EIN domain. Considering that in the full-length dimeric EI transition to state B is required to avoid steric overlap between the EIN and EIC domains, and that state B is structurally stabilized by intersubunit EIN-EIN interactions (Figure 1A), we deduce that state B is inaccessible by the isolated EIN domain investigated here. In any case, our data indicate that the His189 $g^+ \rightarrow g^-$ transition that exposes the EI phosphorylation site to PEP (Figure 1C) is decoupled from the EIN state A/state B equilibrium and is not triggered by transition of the full-length enzyme to the catalytically active close Conformation (Figure 1A).

DATA AVAILABILITY STATEMENT

The names of the repository/repositories and accession number(s) can be found below: BioMagResBank. Accession number: 50386

AUTHOR CONTRIBUTIONS

JP, JT, and VV designed the research; JP, JT, VS, TN, RD, and BK, performed the experiments; JP, JT, VS, BK, and VV analyzed the data; JP and VV wrote the article.

FUNDING

This work was supported by funds from NIGMS R35GM133488 and from the Roy J. Carver Charitable Trust to VV

ACKNOWLEDGMENTS

We thank Marius Clore and Jeong-Yong Suh for providing the resonance assignments of phosphorylated eEI.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmolb.2021.699203/full#supplementary-material
in13C-Labeled Proteins. J. Am. Chem. Soc. 120, 6394–6400. doi:10.1021/ja98074z

Postma, P. W., Lengeler, J. W., and Jacobson, G. R. (1993). Phosphoenolpyruvate:carbohydrate phosphotransferase Systems of Bacteria. Microbiol. Rev. 57 (3), 543–594. doi:10.1128/mnrr.57.3.543-594.1993

Purslow, J. A., Nguyen, T. T., Egner, T. K., Dotas, R. R., Khatiwada, B., and Venditti, V. (2018). Active Site Breathing of Human Alkbh5 Revealed by Solution NMR and Accelerated Molecular Dynamics. Biophysical J. 115 (10), 1895–1905. doi:10.1016/j.bpj.2018.10.004

Schanda, P., Kupče, E., and Brütscher, B. (2005). SOFAST-HMQC Experiments for Recording Two-Dimensional Deteriorization Correlation Spectra of Proteins within a Few Seconds. J. Biomol. NMR 33 (4), 199–211. doi:10.1007/s10858-005-4425-x

Schwieters, C. D., Kuszewski, J. I., Tjandra, N., and Marius Clore, G. (2003). The Xplor-NIH NMR Molecular Structure Determination Package. J. Magn. Reson. 160 (1), 65–73. doi:10.1016/s1090-7807(02)00014-9

Schwieters, C. D., Suh, J.-Y., Grishaev, A., Ghirlando, R., Takayama, Y., and Clore, G. M. (2010). Solution Structure of the 128 kDa Enzyme I Dimer from Escherichia Coli and its 146 kDa Complex with HPr Using Residual Dipolar Couplings and Small- and Wide-Angle X-ray Scattering. J. Am. Chem. Soc. 132 (37), 13026–13045. doi:10.1021/ja105485b

Singh, A., Purslow, J. A., and Venditti, v. (2021). 13N CPMG Relaxation Dispersion for the Investigation of Protein Conformational Dynamics on the µs-ms Timescale. J. Vis. Exp. e62395. doi:10.3791/62395

Suh, J.-Y., Cai, M., and Clore, G. M. (2008). Impact of Phosphorylation on Structure and Thermodynamics of the Interaction between the N-Terminal Domain of Enzyme I and the Histidine Phosphocarrier Protein of the Bacterial Phosphotransferase System. J. Biol. Chem. 283 (27), 18980–18989. doi:10.1074/jbc.m802211200

Teplyakov, A., Lim, K., Zhu, P.-P., Kapadia, G., Chen, C. C. H., Schwartz, J., et al. (2006). Structure of Phosphorylated Enzyme I, the Phosphoenolpyruvate-sugar Phosphotransferase System Sugar Translocation Signal Protein. Proc. Natl. Acad. Sci. U.S.A. 103 (44), 16218–16223. doi:10.1073/pnas.0607587103

Tjandra, N., and Bas, A. (1997). Direct Measurement of Distances and Angles in Biomolecules by NMR in a Dilute Liquid Crystalline Medium. Science 278 (5340), 1111–1114. doi:10.1126/science.278.5340.1111

Tugarinov, V., Hwang, P. M., Ollersenhaw, J. E., and Kay, L. E. (2003). Cross-Correlated Relaxation Enhanced 1H–13C NMR Spectroscopy of Methyl Groups in Very High Molecular Weight Proteins and Protein Complexes. J. Am. Chem. Soc. 125 (34), 10420–10428. doi:10.1021/ja030153x

Tugarinov, V., Venditti, V., and Marius Clore, G. (2014). A NMR experiment for Simultaneous Correlations of Valine and Leucine/isoleucine Methylys with Carbonyl Chemical Shifts in Proteins. J. Biomol. NMR 58 (1), 1–8. doi:10.1007/s10858-013-9803-1

Ulrich, E. L., Akutsu, H., Doreleijers, J. F., Harano, Y., Ioannidis, Y. E., Lin, J., et al. (2008). BioMagResBank. Nucleic Acids Res. 36 (Database issue), D402–D408. doi:10.1093/nar/gkm957

Venditti, V., Tugarinov, V., Schwieters, C. D., Grishaev, A., and Clore, G. M. (2015b). Large Interdomain Rearrangement Triggered by Suppression of Micro- to Millisecond Dynamics in Bacterial Enzyme I. Nat. Commun. 6 (1), 5960. doi:10.1038/ncomms6960

Venditti, V., and Clore, G. M. (2012). Conformational Selection and Substrate Binding Regulate the Monomer/Dimer Equilibrium of the C-Terminal Domain of Escherichia coli Enzyme I. J. Biol. Chem. 287 (32), 26989–26998. doi:10.1074/jbc.m112.382291

Venditti, V., Egner, T. K., and Clore, G. M. (2016). Hybrid Approaches to Structural Characterization of Conformational Ensembles of Complex Macromolecular Systems Combining NMR Residual Dipolar Couplings and Solution X-ray Scattering. Chem. Rev. 116 (11), 6305–6322. doi:10.1021/acs.chemrev.5b00592

Venditti, V., Ghirlando, R., and Clore, G. M. (2013). Structural Basis for Enzyme I Inhibition by α-Ketoglutarate. ACS Chem. Biol. 8 (6), 1232–1240. doi:10.1021/ cb40027q

Venditti, V., Schwieters, C. D., Grishaev, A., and Clore, G. M. (2015a). Dynamic Equilibrium between Closed and Partially Closed States of the Bacterial Enzyme I Unveiled by Solution NMR and X-ray Scattering. Proc. Natl. Acad. Sci. USA 112 (37), 11565–11570. doi:10.1073/pnas.1515366112

Yip, G. N. B., and Zuiderweg, E. R. P. (2004). A Phase Cycle Scheme that Significantly Suppresses Offset-dependent Artifacts in the R2-CPMG 15N Relaxation experiment. J. Magn. Reson. 171 (1), 25–36. doi:10.1016/j.jmr.2004.06.021

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Purslow, Thimmesch, Sivo, Nguyen, Khatiwada, Dotas and Venditti. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.