Topological phase transition in magnon bands in a honeycomb ferromagnet driven by sublattice symmetry breaking

Hongsoek Kim and Se Kwon Kim
Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea

Ferromagnetic honeycomb systems are known to exhibit a magnonic topological phase under the existence of the next-nearest neighbor Dzyaloshinskii-Moriya interaction (DMI). Motivated by the recent progress in the sublattice-specific control of magnetic anisotropy, we study the topological phase of magnon bands of honeycomb ferromagnetic monolayer and bilayer with the sublattice symmetry breaking due to the different anisotropy energy in the presence of the DMI. We show that there is a topological phase transition between the topological magnon insulator and the topologically trivial magnon phase driven by the change of the relative size of the DMI and the anisotropy differences between the sublattices. The magnon thermal Hall conductivity is proposed as an experimental probe of the magnon topology.

I. INTRODUCTION

A topological order of many-body systems has been a subject of intense investigation in modern condensed matter physics since the discovery of the quantum Hall state [1]. The quantum Hall state exhibits the Hall conductivity quantized in integer ratio when the external field is applied to the two-dimensional electron gas, the origin of which is identified as a topological invariant by the Thouless-Kohmoto-Nightingale-den Nijs (TKNN) formula [2]. Later, a novel topological phase called a topological insulator has been suggested and discovered in monolayer graphene and HgTe quantum well [3, 4], which is different from the quantum Hall state in that it can exist in the presence of the time reversal symmetry. These studies of topological properties of two-dimensional electron systems have been expanded to the studies about multilayer materials. It has been found that manipulation of topological property of electronic system is possible by the stacking [5–7], distance between layers [8–13] or the stacked angle [14, 15].

By extension from the electron system which is fermionic, recently there has been much attention to the topological order in bosonic systems. Specifically in ordered magnets, a topological magnon insulator has been studied as a bosonic analog of the topological insulator. In the honeycomb lattice with Dzyaloshinskii-Moriya interaction (DMI) [16, 17], the realization of topological magnon insulator has been studied theoretically [18–23] and probed experimentally [24, 25]. The topological magnon insulator states have been also identified in many other systems e.g. with magnets with the Kitaev interaction [26, 27], magnon-magnon interaction [28], photinduced state [29], and magnetostatic interaction [29, 30]. Experimentally probing a topological magnon insulator with the Hall effect is infeasible because magnons carry no electrical charge. As an alternative probe accessible through transport measurements, the thermal Hall effect in the magnetic system is theoretically suggested [32, 33] and observed in the experiment [34].

To utilize the topological effects of many-body systems for practical application it is desirable to be able to tune their topological properties. In particular, magnetic systems allow us to change the magnetic properties by several means such as electric [35, 36], acoustic [37], and optical means [38]. We are interested in the effects of the inversion symmetry breaking in the honeycomb lattice magnet which can be induced by breaking sublattice symmetry. Multilayer CrI$_3$ shows varying interlayer coupling by the different stacking states [39], and interlayer coupling can cause sublattice symmetry breaking and affect the sublattice-specific magnetic property [40]. Also, the method of sublattice symmetry breaking by controlling anisotropy energy in van der Waals heterostructure of CrI$_3$ and transition metal dichalcogenides (TMDs) has been suggested [41].

Previously it has been shown that both DMI and sublattice symmetry breaking can induce a magnon bandgap at high symmetry points. However, the topological property of the magnon bands with both effects involved has not been studied yet. In this work, we study a topological phase transition in a honeycomb lattice ferromagnet by tuning the parameters related to DMI and anisotropy energy. Our paper is organized as follows. We discuss the magnon band structure of the monolayer system in Sec. II and the bilayer system in Sec. III. We investigate the thermal transport property of both the monolayer and the bilayer in Sec. IV and conclude with a summary in Sec. V.

II. MONOLAYER

In this section, we investigate the effect of sublattice symmetry breaking and the DMI on the magnon bands of a ferromagnetic honeycomb lattice monolayer.

A. Magnon Bands

Our system is the ferromagnetic honeycomb lattice monolayer with the DMI and easy-axis anisotropy. We first write a magnetic Hamiltonian of the system as [20]...
of generality, we assume H coupling to external field K clockwise (counter-clockwise) hopping from i to j.

The nearest-neighbor DMI can exist if the out-of-plane electric field or in-plane magnetic field is applied, but it is not present in our system because the midpoint between neighboring A and B site is the inversion center [17]. The next-nearest-neighbor (NNN) DMI with coefficients D_A and D_B can exist for A and B sublattices, respectively, and the DMI vector is in the out-of-plane direction which we denote by \mathbf{z}. The NNN DMI between different sublattices can be distinct as the sublattice symmetry of our system is broken [13]. The sign $\nu_{ij} = 1$ (-1) indicates clockwise (counter-clockwise) hopping from i to j. Two terms with K_A and K_B are easy-axis anisotropy energy depending on the sublattice [11]. The last term is the coupling to external field H in the \mathbf{z} direction. Without loss of generality, we assume $H > 0$. A schematic diagram of our system is shown in Fig. 1(a).

We consider a small deviation of the spins from the ground state uniformly aligned in \mathbf{z} direction. To this end, we adopt the linear spin-wave approximation. Application of the Holstein-Primakoff transformation [14] $S_{i,\gamma}^+ = S_{i,\gamma}^x + i S_{i,\gamma}^y = (2S - n_{i,\gamma})^{1/2}b_{i,\gamma}$, $S_{i,\gamma}^- = (S_{i,\gamma}^+)^\dagger$, $S_{i,\gamma}^z = S - n_{i,\gamma}$ with $n_{i,\gamma} = b_{i,\gamma}^\dagger b_{i,\gamma}$ yields the following effective magnon Hamiltonian

$$H_m = (3JS + H) \sum_{i,\gamma} b_{i,\gamma}^\dagger b_{i,\gamma}$$

$$- JS \sum_{(ij)} b_{i,\gamma}^\dagger b_{j,\gamma} + b_{j,\gamma} + h.c.)$$

$$+ 2S \sum_{i,\gamma} D_\gamma b_{i,\gamma}^\dagger b_{i,\gamma}$$

$$- S \sum_{(ij);\gamma} D_\gamma (\nu_{ij} b_{i,\gamma}^\dagger b_{j,\gamma} + h.c.),$$

up to quadratic order in the magnon operators, where $b_{i,\gamma}^\dagger$ is a magnon creation operator on site i of sublattice $\gamma = A, B$ and $b_{i,\gamma}$ is the corresponding magnon annihilation operator. The first term is the on-site energy from Heisenberg interaction and external field coupling; the second term is from the nearest neighbor Heisenberg interaction energy; the third and fourth terms are on-site anisotropy energy and next-nearest-neighbor hopping by the DMI.

By defining a two-component spinor operator $\Psi_k = (b_{A,k}; b_{B,k})^T$, we can write the momentum space representation of the magnon Hamiltonian as

$$H_m = \Psi_k^\dagger \begin{pmatrix} (3JS + H + (K_A + K_B)S) & + (D_A - D_B)S \sum_j \sin(k \cdot \beta_j) \cdot \mathbf{1} + h(k) \cdot \tau \end{pmatrix} \Psi_k,$$

where τ is a vector of Pauli matrices that represents the sublattice degrees of freedom and

$$h(k) = \begin{pmatrix} -JS \sum_j \cos(k \cdot \alpha_j) \\ JS \sum_j \sin(k \cdot \alpha_j) \\ \Delta_K S + 2DS \sum_j \sin(k \cdot \beta_j) \end{pmatrix},$$

where $\Delta_K = K_A - K_B$ is the anisotropy difference between sublattices, and $D = (D_A + D_B)/2$ is an average value of the DMI coefficients. We denote the distances between nearest and next-nearest neighbor as d and $a = \sqrt{3}d$, and α_j, β_j are NN and NNN vectors defined in Fig. 1(a). The topology of the system is related to the k dependence of the eigenstates, and it is determined by the term $\propto h(k) \cdot \tau$ in the Hamiltonian that intertwines the two components of the spinor. By diagonalizing the Hamiltonian, we obtain the dispersion of the upper (lower) band $E_{m^+} (E_{m^-})$ as

$$E_{m^\pm} = 3JS + H + (K_A + K_B)S$$

$$+ (D_A - D_B) \sum_j \sin(k \cdot \beta_j) \pm |h(k)|.$$
The energy difference between the upper band and the lower band at two high-symmetry points $\mathbf{K} = (4\pi/3a, 0, 0)$ and $\mathbf{K}' = (2\pi/3a, 2\pi/\sqrt{3}a)$ are given by $|\Delta_{K} + 3\sqrt{3}D|S$ and $|\Delta_{K} - 3\sqrt{3}D|S$ respectively. Therefore the gap on $\mathbf{K}(\mathbf{K}')$ will close at $\Delta_{K} = -3\sqrt{3}D(3\sqrt{3}D)$ and becomes finite otherwise. In Fig. 2 (a)-(d), the band is plotted for four different cases that will be explained shortly by calculating the magnon band in a quasi-one-dimensional geometry where a periodic boundary condition is given in \mathbf{x} direction and zigzag termination and 30 unit cells in \mathbf{y} direction. The Berry curvature of upper(+) and the lower(−) band can be calculated according to the formula $\Omega_{m}^{\pm} = \mp \mathbf{n} \cdot \left(\partial_{k_{x}} \mathbf{n} \times \partial_{k_{y}} \mathbf{n} \right)$ where \mathbf{n} is the unit vector along \mathbf{h} [45]. The corresponding Chern number of the upper(+) and lower(−) band is evaluated as $C^{\pm} = (1/2\pi) \int_{B.Z} d^{2}k \Omega_{m}^{\pm} = \pm 1$ [40]. The Chern number of the upper band is plotted as a function of Δ_{K} and D in Fig. 2(b).

When there is no DMI and only the sublattice symmetry breaking exists ($D = 0$, $\Delta_{K} \neq 0$), the system is shown to be in a topologically trivial phase analogous to an ordinary electronic insulator with no topology, having the trivial Berry curvature with $C = 0$ for both upper and lower bands [41]. On the other hand, if there is DMI only and no sublattice symmetry breaking ($D \neq 0$, $\Delta_{K} = 0$), it has been known that the system becomes a topological insulator having a gapped band with edge modes, possessing the nontrivial Berry curvature with $C = 1$ and $C = -1$ for the two bands [20, 21] [Fig. 2(a,e)]. If both D and Δ_{K} are nonzero, the state of the system changes depending on the relative size of D and Δ_{K}.

For $0 < \Delta_{K} < 3\sqrt{3}D$, the gap is decreased at \mathbf{K}' compared to the $\Delta_{K} = 0$ case shown in Fig. 2(a) and increased at \mathbf{K} as shown in Fig. 2(b), while keeping an edge mode connecting the two bulk bands. When Δ_{K} becomes larger than the critical value given by $3\sqrt{3}D$, we can see that after the band touching the edge mode disappeared and the gap became finite again in Fig. 2(c). The sign of the Berry curvature at \mathbf{K}' flips before and after the band touching [Fig. 2(f,g)], and the Chern number of each band becomes trivial for Δ_{K} larger than $3\sqrt{3}D$ [Fig. 2(b)]. The same sign changes of Berry curvature from positive to negative and the gap reopening occur on \mathbf{K} as Δ_{K} decreases below $3 - \sqrt{3}D$. Different
DMIs per sublattices ($D_A \neq D_B$) give a small tilt to the band structure but does not affect the band topology as shown in Fig. 2(d,h). These are our first main results: the magnon dispersion in Eq. (5), and the topological phase diagram [Fig. 1(b)] determined by \bar{D} and Δ_K. Our results indicate that the topological phase of the honeycomb ferromagnet can be manipulated by tuning the relative size of the difference of the anisotropy energy between sublattices parametrized by Δ_K and the average DMI parametrized by \bar{D}.

B. Magnonic Dirac Equation

We can investigate the contribution of DMI and broken sublattice symmetry to the bandgap with an effective mass model as applied to the electronic topological insulator [3]. By expanding the momentum space Hamiltonian [Eq. (3)] in the vicinity of K and K' in terms of q defined by $k = K(K') + q$ with $|q|d \ll 1$, we can write the effective mass Hamiltonian for magnons as

$$H_{\pm} = \Psi^\dagger \left[\frac{3}{2} JS(q_x \sigma_x - q_y \sigma_y \tau_z) + \Delta_K S\sigma_z + 3\sqrt{3}\bar{D}S\tau_z \right] \Psi,$$

where σ_α are Pauli matrices acting on sublattices, and $\tau_z = \pm 1$ indicates states at the $K(K')$ points. In the absence of both Δ_K and \bar{D}, the magnon band possesses a gapless Dirac-like spectrum around K and K' points [47]. The coefficient in front of the σ_z proportional to Δ_K can be interpreted as a Semenoff-type mass [48] that has the same sign on K and K'. The coefficient proportional to \bar{D} in $\sigma_z \tau_z$ term that changes sign between the K and K' points is referred to as the Haldane mass [49]. These two mass terms proportional to σ_z or $\sigma_z \tau_z$ contribute to opening a gap. By diagonalizing above we obtain

$$\varepsilon_{\pm} = \pm \sqrt{(\Delta_K \pm 3\sqrt{3}\bar{D})^2 S^2 + (9/2)J^2 S^2 q^2},$$

with which we can check the gap closing condition $\Delta_K = \pm 3\sqrt{3}\bar{D}$ agrees with Eq. (6) from Sec. II A.

III. BILAYER

We extend the discussion from the previous section on the monolayer case to the bilayer case. Consider an AB-stacked bilayer system consisting of two identical honeycomb ferromagnetic monolayers [39]. A schematic diagram of our system is shown in Fig. 3(a). Two layers are antiferromagnetically coupled, and therefore spins of each layer will be aligned to the opposite directions (\hat{z} and $-\hat{z}$) in the ground state [39, 50]. The Hamiltonian can be written in three parts $H_{\text{m,bilayer}} = H_1 + H_2 + H_{12}$, where

FIG. 3. (a) Schematic diagram of an AB-stacked bilayer honeycomb lattice. The dark dotted line indicates interlayer coupling. The band structure (b,c) and the Berry curvature (f,g) of the bilayer system in two different values of anisotropy, $\Delta_K = 0.3J < \Delta_K^c$ (b,d,f) and $\Delta_K = 0.6J > \Delta_K^c$ (c,e,g) when the bands touch at $\Delta_K^c \approx 3\sqrt{3}\bar{D} - 0.5J_{12}$. The Chern numbers of the four bands are denoted on the corresponding lines. Close-up figures of boxed area in (b) and (c) are shown in (d) and (e) with the spin direction of each band shown. (f,g) Sign of the Berry curvature on K' flips at the band touching point between (f) and (g). Here we set $\hbar = k_B = J = 1$ and $J_{12} = 0.2J$, $D = 0.1J$ for the calculation.
Here, H_1 and H_2 are the intralayer Hamiltonian for lower (1) and upper (2) layer. Since two layers are AB-stacked, effects of anisotropy appear oppositely between the layer, i.e. $K_{1,A} = K_{2,B}, K_{1,B} = K_{2,A}$. The second term of H_1 and H_2 are the NN DMIIs with the in-plane DM vectors D_{ij}, which can be present from the symmetry considerations due to the AB-stacking of the bilayer and the resultant broken inversion symmetry but does not contribute to the magnon band in our calculations performed below. The last term in the Hamiltonian H_{12} is the interlayer coupling term, $J_{12} > 0$ is the interlayer antiferromagnetic exchange coupling, and (i,j) is the interlayer nearest neighbor. To study the magnon-band topology in the bilayer system below, we assume that the DMI parameters are the same on each sublattice $D = D_A = D_B$ because the difference between the sublattices has no significant effect on the topological properties of magnon bands as shown for the monolayer case above. By applying the Holstein-Primakoff transformation to $H_{m,bilayer}$ and defining the momentum space operators $b_{k,\gamma}$ where $\gamma = 1A, 1B, 2A, 2B$ indicates layer(1,2) and sublattice(A,B), we can write down the momentum space Hamiltonian similar to the previous section:

$$H(k) = \psi_k^\dagger \begin{pmatrix} A(k) & B \\ B & A(k) \end{pmatrix} \psi_k,$$

where $A(k)$ and B are certain 4×4 matrices. See the Appendix [A] for the definition of these matrices. Here, $\psi_k = (\phi_k, \phi_k^T)$ with $\phi_k = (b_{k,1A}, b_{k,1B}, b_{k,2A}, b_{k,2B})$.

We obtain four bands from the numerical diagonalization, two for each layer. By tuning the value of Δ_K we can change the gaps between two bands from the same layer. The magnon bands in the bilayer system reacts to the increase of Δ_K in a similar way to the monolayer case; gaps decrease to zero as Δ_K increase to a critical value and increase again after the critical point. The critical value of Δ_K at which the band gap closes is shifted from the monolayer case $3\sqrt{3}D$ by the interlayer coupling J_{12} as it effectively serves as an easy-axis anisotropy albeit from a different origin.

The Berry curvature is calculated numerically using the formula $\Omega_n(k) = -2Im \sum_{m \neq n} \langle (u_{nk})_\beta (u_{nk})_\gamma H (u_{nk})_\beta (u_{nk})_\gamma / |\epsilon_n(k) - \epsilon_m(k)|^2 \rangle$ where $|u_{nk}|$ is the eigenvector obtained from the diagonalization. Before and after the band closing, the Berry curvature of each band shows a sign change at the boundary of the Brillouin zone [Fig. 4(b,g)], and Chern numbers of each band change from $+1$ and -1 to zeros [Fig. 4(b,c)]. This confirms that the topological phase transition through tuning parameters Δ_K and D occurs also in the bilayer system.

IV. THERMAL HALL EFFECT

The effects of the DMI and the broken sublattice symmetry on a magnon band can be probed by the thermal Hall conductivity κ^{xy} which is defined by $\partial J^{xy}_Q /\partial T$ parametrizing a transverse heat current induced by a temperature gradient, both in monolayer and bilayer cases. To calculate the thermal Hall conductivity we use a formula $\kappa^{xy} = -(2k_B^2H/V) \sum_{n,k \in BZ} \Omega_n(k)c_2(\rho_n)$ derived in Ref. [29], where $c_2(\rho) = (1 + \rho)(\log(1 + \rho)^2 - (\log \rho)^2 - 2L_2(-\rho))$, L_2 is the polylogarithmic function, $\rho_n = [\exp(\beta E_n) - 1]^{-1}$ is the Bose-Einstein distribution function with $\beta = k_BT$, and V is the sample area. The results of the calculation for the monolayer and the bilayer are shown in Fig. [4] and Fig. [5] respectively. In the numerical calculation, we set $h = k_B = J = 1$ and used value of $D_A = D_B = 0.1J$. Constant value $H = 0.3J$ of the external field is used in calculating the effects of temperature and Δ_K ([a] of Fig. 4 and Fig. 5).

As it can be seen from the calculated Chern numbers, anisotropy energy difference Δ_K competes with the DMI effect, and large Δ_K reduces the accumulative
up even when the system has a time-reversal symmetry. system because spin wave generated from each layer add external magnetic field is not necessary in the bilayer present in our system. For the spin Nernst effect, the spin Nernst effect \([51, 52]\) is also expected to be In addition to the aforementioned thermal Hall effect, as

\[
\kappa_{xy} = \frac{1}{3} H_{\perp} (1 - \frac{d}{2}) \kappa_{y} \Delta K
\]

\(\Delta K = 0\) and \(\Delta K = 1\) and used value of \(J_{12}^\perp = 0.2 J\) for both calculation, and \(H = 0.1 J\) for \(a\).

\[
\kappa_{xy} = 0 \quad \text{and} \quad \Delta K = 0
\]

\[
\kappa_{xy} = 0.3 J \quad \Delta K = 0.6 J
\]

\[
\kappa_{xy} = 0.3 J \quad \Delta K = 0.6 J
\]

\[
\text{FIG. 5. Thermal Hall conductivity } \kappa_{xy} \text{ of the bilayer honeycomb magnet. (a) Anisotropy difference } \Delta K \text{ decreases size of the conductivity. The thermal Hall conductivity is larger in higher temperatures due to the larger number of thermal magnons. Note that the thermal Hall conductivity is not symmetric under the sign change of } \Delta K, \text{ which is due to the interlayer coupling that serve as an effective sublattice-dependent easy-axis anisotropy for magnons. (b) Two monolayers have opposite spin ground state and react to the external field oppositely. The thermal Hall conductivity vanishes without out-of-plane magnetic field that breaks time-reversal symmetry and increases as the strength of the magnetic field increases. In the calculation we set } \hbar = k_B = J = 1 \text{ and used value of } D_A = 0.1 J, J_{12} = 0.2 J \text{ for both calculation, and } H = 0.1 J \text{ for } \text{a}.\]

\[
\Delta K = 0.6 J
\]

\[
\Delta K = 0
\]

\[
\Delta K = 0 \quad \Delta K = 1
\]

\[
\text{ACKNOWLEDGMENTS}
\]

This work was supported by Brain Pool Plus Program through the National Research Foundation of Korea funded by the Ministry of Science and ICT (NRF-2020H1D3A2A0309291), by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (NRF-2021R1C1C1006273), and by the National Research Foundation of Korea funded by the Korea Government via the SRC Center for Quantum Coherence in Condensed Matter (NRF-2016R1A5A1008184).

\[
\text{Appendix A: Magnon Hamiltonian in the honeycomb bilayer}
\]

By applying the Holstein-Primakoff transformation to \(H_{\text{m,bilayer}} = H_1 + H_2 + H_{12}\), where \(H_1\), \(H_2\), and \(H_{12}\) are defined in Eq. \[8\], Eq. \[9\], and Eq. \[10\], respectively, and defining the momentum space operators \(b_{k,\gamma}\) where \(\gamma = 1A, 1B, 2A, 2B\) indicates layer(1,2) and sublattice(A,B), we can write down the momentum space Hamiltonian for the magnons in the bilayer honeycomb system:

\[
H(k) = \psi_k^\dagger \left(\begin{array}{cc} A(k) & B \\ B & A(k) \end{array} \right) \psi_k,
\]

\(A(k)\) and \(B\) are \(4 \times 4\) matrices.
\[\mathcal{A}(k) = \begin{pmatrix} v_j + v_H + v_K + v_{12} & 0 & \frac{1}{2} \hbar \cdot \tau \\ 0 & v_j + v_H + v_K & 0 \\ 0 & 0 & v_j - v_H + v_K + v_{12} \end{pmatrix} + \frac{1}{2} \hbar \cdot \tau, \]
\text{where } v_j = \frac{3JS}{2}, v_K = (K_A + K_B)S/2, v_H = H S/2, v_{12} = J_{12} S/2,
\[\mathcal{B} = \begin{pmatrix} 0 & 0 & 0 & v_{12} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ v_{12} & 0 & 0 & 0 \end{pmatrix}, \]

This Hamiltonian can be diagonalized with Colpa’s method \[53\], using a para-unitary transformation to bosonic operators \(\chi_k = \mathfrak{T} \psi_k \). The transformation matrix \(\mathfrak{T} \) satisfies \(\mathfrak{T} \mathfrak{T}^\dagger = \mathfrak{T} \), where \(\mathfrak{T} = \text{diag}(I_{4 \times 4}, -I_{4 \times 4}) \). Denoting the matrix part as \(\mathcal{O} \), the Hamiltonian is diagonalized as

\[H = \psi_k^\dagger \mathcal{O} \psi_k = \psi_k^\dagger (\mathfrak{T})^{-1} \mathcal{O} \mathfrak{T}^{-1} \psi_k = \chi_k^\dagger \chi_k, \]
and the diagonal matrix \(\mathcal{E} \) has a form of \(\mathcal{E} = (\mathfrak{T})^{-1} \mathcal{O} \mathfrak{T}^{-1} = \hbar \text{diag}(\omega_1, \omega_4, \omega_1, \omega_4). \)

[1] K. v. Klitzing, G. Dorda, and M. Pepper, New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance, Phys. Rev. Lett. 45, 494 (1980)
[2] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Quantized Hall Conductance in a Two-Dimensional Periodic Potential, Physical Review Letters 49, 405 (1982)
[3] C. L. Kane and E. J. Mele, Quantum Spin Hall Effect in Graphene, Phys. Rev. Lett. 95, 226801 (2005)
[4] B. A. Bernevig and S.-C. Zhang, Quantum Spin Hall Effect, Phys. Rev. Lett. 96, 106802 (2006)
[5] A. A. Avetisyan, B. Partoens, and F. M. Peeters, Stacking order dependent electric field tuning of the band gap in graphene multilayers, Phys. Rev. B 81, 115432 (2010)
[6] C.-Y. Lin, J.-Y. Wu, Y.-H. Chiu, C.-P. Chang, and M.-F. Lin, Stacking-dependent magnetoelectric properties in multilayer graphene, Phys. Rev. B 90, 205434 (2014)
[7] M. Aoki and H. Amiawashi, Dependence of band structures on stacking and field in layered graphene, Solid State Commun. 142, 123 (2007)
[8] T. Olita, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, Controlling the Electronic Structure of Bilayer Graphene, Science 313, 951 (2006)
[9] E. McCann and V. I. Fal’ko, Landau-Level Degeneracy and Quantum Hall Effect in a Graphite Bilayer, Phys. Rev. Lett. 96, 086805 (2006)
[10] H. Min, B. Sahu, S. K. Banerjee, and A. H. MacDonald, Ab initio theory of gate induced gaps in graphene bilayers, Phys. Rev. B 75, 155115 (2007)
[11] E. McCann and M. Koshino, The electronic properties of bilayer graphene, Rep. Prog. Phys. 76, 056503 (2013)
[12] L. Ju, Z. Shi, N. Nair, Y. Lv, C. Jin, J. Velasco, C. Ojeda-Aristizabal, H. A. Bechtel, M. C. Martin, A. Zettl, J. Analytis, and F. Wang, Topological valley transport at bilayer graphene domain walls, Nature 520, 650 (2015)
[13] F. Munoz, H. P. O. Collado, G. Usaj, J. O. Sofo, and C. A. Balseiro, Bilayer graphene under pressure: Electron-hole symmetry breaking, valley Hall effect, and Landau levels, Phys. Rev. B 93, 235443 (2016)
[14] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Unconventional superconductivity in magic-angle graphene superlattices, Nature 556, 43 (2018)
[15] Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y. Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, R. C. Ashoori, and P. Jarillo-Herrero, Correlated insulator behaviour at half-filling in magic-angle graphene superlattices, Nature 556, 80 (2018)
[16] I. Dzyaloshinsky, A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics, J. Phys. Chem. Solids 4, 241 (1958)
[17] T. Moriya, Anisotropic Superexchange Interaction and Weak Ferromagnetism, Phys. Rev. 120, 91 (1960)
[18] L. Zhang, J. Ren, J.-S. Wang, and B. Li, Topological magnon insulator in insulating ferromagnet, Phys. Rev. B 87, 144410 (2013).
[19] A. Mook, J. Henk, and I. Mertig, Edge states in topological magnon insulators, Phys. Rev. B 90, 024412 (2014).
[20] S. K. Kim, H. Ochoa, R. Zarzuela, and Y. Tserkovnyak, Realization of the Haldane-Kane-Mele Model in a System of Localized Spins, Phys. Rev. Lett. 117, 227201 (2016).
[21] S. A. Owerre, Topological honeycomb magnon Hall effect: A calculation of thermal Hall conductivity of magnetic spin excitations, J. Appl. Phys. 120, 043903 (2016).
[22] A. Rückriegel, A. Brataas, and R. A. Duine, Bulk and edge spin transport in topological magnon insulators, Phys. Rev. B 97, 081106 (2018).
[23] K. H. Lee, S. B. Chung, K. Park, and J.-G. Park, Magnonic quantum spin Hall state in the zigzag and stripe phases of the anti-ferromagnetic honeycomb lattice, Phys. Rev. B 97, 180401 (2018).
[24] L. Chen, J.-H. Chung, B. Gao, T. Chen, M. B. Stone, A. I. Kolesnikov, Q. Huang, and P. Dai, Topological Spin Excitations in Honeycomb Ferromagnet CrI3, Phys. Rev. X 8, 041028 (2018).
[25] Z. Cai, S. Bao, Z.-L. Gu, Y.-P. Gao, Z. Ma, Y. Shangguan, W. Si, Z.-Y. Dong, W. Wang, Y. Wu, D. Lin, J. Wang, K. Ran, S. Li, D. Adroja, X. Xi, S.-L. Yu, X. Wu, J.-X. Li, and J. Wen, Topological magnon insulator spin excitations in the two-dimensional ferromagnet CrBr3, Physical Review B 104, 1020402 (2021).
[26] D. G. Joshi, Topological excitations in the ferromagnetic Kitaev-Heisenberg model, Phys. Rev. B 98, 060405 (2018).
[27] P. A. McClarty, X.-Y. Dong, M. Gohlke, J. G. Rau, R. Matsumoto, and S. Murakami, Rotational motion of Dirac Magnons in Honeycomb Ferromagnets, Phys. Rev. B 98, 060404 (2018).
[28] Y.-S. Lu, J.-L. Li, and C.-T. Wu, Topological Phase Transitions of Dirac Magnons in Honeycomb Ferromagnets, Phys. Rev. Lett. 127, 217202 (2021).
[29] R. Matsumoto and S. Murakami, Rotational motion of magnons and the thermal Hall effect, Phys. Rev. B 84, 184406 (2011).
[30] R. Shindou, R. Matsumoto, S. Murakami, and J. ichiro Ohe, Topological chiral magnonic edge mode in a magnonic crystal, Phys. Rev. B 87, 174427 (2013).
[31] X. S. Wang and X. R. Wang, Topological magnonics, Journal of Applied Physics 129, 151501 (2021).
[32] S. Onoda, N. Sugimoto, and N. Nagaosa, Quantum transport anomaly of anomalous electric, thermoelectric, and thermal Hall effects in ferromagnets, Phys. Rev. B 77, 165103 (2008).
[33] H. Katsura, N. Nagaosa, and P. A. Lee, Theory of the thermal Hall effect in quantum magnets, Phys. Rev. Lett. 104, 066403 (2010).
[34] Y. Onose, T. Ideue, H. Katsura, Y. Shiomi, N. Nagaosa, and Y. Tokura, Observation of the Magnon Hall Effect, Science 329, 297 (2010).
[35] B. Huang, G. Clark, D. R. Klein, D. MacNeill, E. Navarro-Moratalla, K. L. Seyler, N. Wilson, M. A. McGuire, D. H. Cobden, D. Xiao, W. Yao, P. Jarillo-Herrero, and X. Xu, Electrical control of 2D magnetism in bilayer CrI3, Nat. Nanotechnol. 13, 544 (2018).
[36] K. S. Burch, D. Mandrus, and J.-G. Park, Magnetism in two-dimensional van der Waals materials, Nature 563, 47 (2018).
[37] G. Go, S. K. Kim, and K.-J. Lee, Topological Magnon-Phonon Hybrid Excitations in Two-Dimensional Ferromagnets with Tunable Chern Numbers, Physical Review Letters 123, 237207 (2019).
[38] Y. Otani, M. Shiraishi, A. Oiwa, E. Saitoh, and S. Murakami, Spin conversion on the nanoscale, Nature Physics 13, 829 (2017).
[39] N. Sivadas, S. Okamoto, X. Xu, C. J. Fennie, and D. Xiao, Stacking-Dependent Magnetism in Bilayer CrI3, Nano Lett. 18, 7658 (2018).
[40] L. Chen, J.-H. Chung, M. B. Stone, A. I. Kolesnikov, B. Winn, V. O. Garlea, D. L. Abernathy, B. Gao, M. Augustine, J. E. Santos, and P. Dai, Magnetic Field Effect on Topological Spin Excitations in CrI3, Phys. Rev. X 11, 031047 (2021).
[41] R. Hidalgo-Sacoto, R. I. Gonzalez, E. E. Vogel, S. Al-kende, J. D. Mella, C. Cardenas, R. E. Troncoso, and F. Munoz, Magnon valley Hall effect in CrI3-based van der Waals heterostructures, Phys. Rev. B 101, 205425 (2020).
[42] A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81, 109 (2009).
[43] D. Blowmick and P. Sengupta, Antichiral edge states in Heisenberg ferromagnet on a honeycomb lattice, Physical Review B 101, 195433 (2020).
[44] T. Holstein and H. Primakoff, Field Dependence of the Intrinsic Domain Magnetization of a Ferromagnet, Phys. Rev. 58, 1098 (1940).
[45] D. Xiao, M.-C. Chang, and Q. Niu, Berry phase effects on electronic properties, Reviews of Modern Physics 82, 1959 (2010).
[46] X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Topological field theory of time-reversal invariant insulators, Physical Review B 78, 195424 (2008).
[47] J. Fransson, A. M. Black-Schaffer, and A. V. Balatsky, Spin torque and Nernst effects in Dzyaloshinskii-Moriya ferromagnets, Phys. Rev. B 97, 144412 (2018).
[48] F. D. M. Haldane, Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the "Parity Anomaly", Phys. Rev. Lett. 61, 2015 (1988).
[49] L. C. Ortmanns, G. E. W. Bauer, and Y. M. Blanter, Magnon dispersion in bilayers of two-dimensional ferromagnets, Phys. Rev. B 103, 155430 (2021).
[50] X. S. Wang and X. R. Wang, Anomalous magnon Nernst effect of topological magnonic materials, J. Phys. D: Appl. Phys. 51, 194001 (2018).
[51] A. A. Kovalev and V. Zyuzin, Spin torque and Nernst effects in Dzyaloshinskii-Moriya ferromagnets, Phys. Rev. B 93, 161106 (2016).
[52] J. Colpa, Diagonalization of the quadratic boson hamiltonian, Physica A 93, 327 (1978).