Gluon propagator and confinement scenario in Coulomb gauge

Attilio Cucchieria and Daniel Zwanzigerb

aIFSC São Paulo University, C.P. 369 CEP 13560-970, São Carlos (SP), Brazil
bPhysics Department, New York University, New York, NY 10003, USA

We present numerical results in SU(2) lattice gauge theory for the instantaneous part of the gluon propagator in Coulomb gauge $D_{44,\text{inst}} = V_{\text{coul}}(R) \delta(t)$. Data are taken on lattice volumes 24^4 and 28^4 for 7 values of β in the interval $2.2 \leq \beta \leq 2.8$. The data are confronted with the confinement scenario in Coulomb gauge. They are consistent with a linearly rising color-Coulomb potential $V_{\text{coul}}(R)$.

1. CONFINEMENT SCENARIO IN COULOMB GAUGE

A particularly simple confinement scenario \cite{1} is available in the minimal Coulomb gauge. It attributes confinement of color to the long range of the color-Coulomb potential $V_{\text{coul}}(R)$. This quantity is the instantaneous part of the 4-4 component of the gluon propagator, $D_{\mu\nu}(x) \equiv \langle gA_{\mu}(x) gA_{\nu}(0) \rangle$, namely $D_{44}(x,t) = V_{\text{coul}}(|x|) \delta(t) + P(x,t)$. The vacuum polarization term $P(x,t)$ is less singular than $\delta(t)$ at $t = 0$. Since A_4 couples universally to color charge, the long range of $V_{\text{coul}}(R)$ suffices to confine all color charge. It was conjectured that it is linearly rising at large R, $V_{\text{coul}}(R) \sim -\sigma_{\text{coul}} R$. If an external quark-antiquark pair is present, the physical potential $V_W(R)$ between them may be extracted from a Wilson loop. The color-Coulomb potential contributes the term $-CV_{\text{coul}}(R)$ directly to the Wilson loop, where $C = (N^2 - 1)/(2N)$ in SU(N) gauge theory with external quarks in the fundamental representation. The minus sign occurs because the antiquark has opposite charge to the quark. The vacuum-polarization term is screening, and one expects that $V_W(R)$ is bounded above by this term asymptotically at large R, $V_W(R) \leq -CV_{\text{coul}}(R)$. If $V_W(R)$ is also linearly rising, $V_W(R) \sim \sigma R$, where σ is the conventional string tension, we get $\sigma \leq C\sigma_{\text{coul}}$. If dynamical quarks are present, the string “breaks” at some radius R_b, and the conventional asymptotic string tension vanishes, $\sigma = 0$. String-breaking is easily explained in the Coulomb-gauge confinement scenario if $V_{\text{coul}}(R)$ is linearly rising even in the presence of dynamical quarks, as was also conjectured \cite{1}. For, if so, it is energetically preferable to polarize a pair of sea quarks from the vacuum.

Here we report the confrontation of this scenario with the numerical data for $V_{\text{coul}}(R)$ for the case of pure gluodynamics.

1.1. Relation of V_{coul} to α_s

We may identify $V_{\text{coul}}(R)$ with the phenomenological potential that is the starting point for QCD bound state calculations \cite{2}. The identification of a phenomenological potential with the instantaneous part of the gluon propagator, a fundamental quantity in the gauge theory, is possible because, remarkably, $V_{\text{coul}}(R)$ is a renormalization-group invariant, and thus scheme-independent, so it is independent of the cut-off Λ and of the renormalization mass μ.

This follows from the non-renormalization of gA_4, as expressed by the identity $g_{(0)} A_4^{(0)} = g_{(r)} A_4^{(r)}$, where 0 and r refer to unrenormalized and renormalized quantities in the Coulomb gauge \cite{3}. This identity has no direct analog in a Lorentz-covariant gauge. Because of the scheme-independence of $V_{\text{coul}}(R)$, its Fourier transform $\tilde{V}_{\text{coul}}(k)$ provides a scheme-independent definition for the running coupling constant of QCD,
Table 1
Values of fitting parameters from formula (1).

β	A	B	A	W^2	χ^2/dof
2.2	7.38 ± 0.35	8.15 ± 15.58	8.83 ± 19.34	9.91 ± 19.01	0.81
2.3	5.81 ± 0.30	24.57 ± 83.41	32.57 ± 52.59	17.26 ± 27.18	0.72
2.4	6.60 ± 0.64	6.72 ± 10.15	7.70 ± 15.90	3.99 ± 6.03	0.20
2.5	7.45 ± 0.47	6.00 ± 2.65	6.16 ± 2.58	3.06 ± 1.26	0.05
2.6	8.23 ± 1.48	8.61 ± 1.68	4.53 ± 1.93	3.84 ± 0.34	0.07
2.7	11.30 ± 0.81	7.73 ± 0.47	6.87 ± 0.67	3.64 ± 0.15	0.07
2.8	8.18 ± 2.85	10.38 ± 0.46	5.58 ± 0.08	0.06 ± 0.05	0.19

$k^2\tilde{V}(k) = x_0 g_{\text{coul}}^2(|k|)$, and of $\alpha_s \equiv \frac{g^2(k/\Lambda_{\text{coul}})}{4\pi}$. Here $x_0 = \frac{12N_c}{12N_c - 2n_f}$ and Λ_{coul} is a finite QCD mass scale.

2. NUMERICAL STUDY OF V_{coul}

2.1. Method

We have previously studied 4 both space- and time-components of the gluon propagator, $D_{ij}(k)$ and $D_{44}(k) = \tilde{V}_{\text{coul}}(k)$ at equal time, at $\beta = 2.2$, on various lattice volumes, 14^4 to 30^4, in the minimal Coulomb gauge. This gauge is achieved numerically by (i) maximizing $\sum_{x, i=1}^{N} \text{Tr} U_{x, i}$ with respect to all local gauge transformations $g(x)$, where the sum is on all horizontal or spatial links, and then (ii) maximizing $\sum_x \text{Tr} U_{x, 4}$ with respect to all x-independent but x_4-dependent gauge transformations $g(x_4)$ where the sum is on all vertical or time-like links. This makes the 3-vector potential A_i, for $i = 1, 2, 3$ transverse, $\partial_t A_i = 0$, so $A_i = A_i^\tau$.

In this gauge, the horizontal link variables $U_{x, i}$, for $i = 1, 2, 3$ are as close to the identity as possible, but the vertical variables $U_{x, 4}$ are much further from the identity. Not surprisingly, we found that, whereas $D_{ij}^0(k)$ gave values that could be reasonably extrapolated to the continuum, this was not true for $D_{44}(k)$. In order to remedy this, in the present study we extended our investigation of $D_{44}(k)$ to $\beta = 2.2, 2.3, \ldots, 2.8$, on lattice volumes 24^4 and 28^4. We have also determined $V_{\text{coul}}(R)$ numerically by 2 quite different methods. Method I relies on the standard formula $D_{44}(x, t) = V_{\text{coul}}(|x|) \delta(t) + P(x, t)$. Method II relies on the lattice analog of the continuum formula that is obtained 3 by integrating out A_4, namely, $V(|x - y|) = \langle (M^{-1}(-\nabla^2)M^{-1})|_{x, y} \rangle$. Here $M(A) = -\nabla \cdot D(A)$ is the 3-dimensional Faddeev-Popov operator, and $D(A) = \nabla + \nabla \times \Lambda$ is the gauge-covariant derivative. Method II requires numerically inverting the lattice Faddeev-Popov matrix to obtain $M^{-1}(A)_{x, y}$, but it has the advantage that $D_{44}(k)$ is expressed entirely in terms of the spatial link variables $U_{x, i}$ for $i = 1, 2, 3$, that are close to the identity. Moreover, method II involves only the horizontal link variables that lie within a single time slice, so it is independent of the gauge fixing (ii) on vertical links. Thus it measures a truly instantaneous quantity. We found that method I did not exhibit scaling in the above range of β, and we report here only the result of method II.

2.2. Results

For each β we have 100 configurations on volume $V = 24^4$ and 50 configurations on volume $V = 28^4$. Runs have been done on the PC clusters at the Physics Department of New York University and at the IFSC of São Paulo University.

In figure 1 we plotted the results for $\beta = 2.2, 2.5,$ and 2.8 respectively. The horizontal axis measures $k^2 = 4a^{-2} \sin^2(n\pi/L)$, for $L = 24, 28$, rescaled to physical units by setting the physical string tension equal to $\sigma = (0.44\text{GeV})^2$ and using Table 3 of 3, so the lattice spacing at $\beta = 2.2, \ldots, 2.8$ is (in GeV^{-1}) $a = 1.066, 0.839, 0.605, 0.433, 0.309, 0.231, 0.165$, respectively. The vertical axis measures $|k|^2\tilde{V}_{\text{coul}}(k)$ in phys-
ical units, so string tension may be read off from the vertical intercept (see below). Finite-volume artifacts are clearly visible at low momentum. To control these, in our fits we have dropped those low-momentum points for which appreciably different values are obtained at volumes 24^4 and 28^4 and, for the fit, we used only data points obtained at $V = 28^4$.

A simple parametrization of $\tilde{V}_{\text{coul}}(R)$ would be $-\tilde{V}_{\text{coul}}(R) = \sigma_{\text{coul}} R - c/R$, which has the Fourier transform $\tilde{V}_{\text{coul}}(k) = 8\pi \sigma_{\text{coul}} / |k|^4 + 4\pi c / |k|^2$. We have used the fitting formulas

$$|k|^4 \tilde{V}_{\text{coul}}(k) = A + \frac{Bk^2}{W^2 + \ln(1 + k^2/A^2)}$$

(1)

$$|k|^4 \tilde{V}_{\text{coul}}(k) = A + Bk^2$$

(2)

$$|k|^6 \tilde{V}_{\text{coul}}(k) = A|k|^6 + Bk^2.$$

(3)

Fit (1) has the asymptotic behavior at large k, consistent with the 1-loop β-function. We report in Table 1 the values of the parameters from fit (1).

The most striking feature of the data is the finite intercepts A. This is consistent with a finite string tension $\sigma_{\text{coul}} = A/(8\pi)$. It scales rather nicely, varying from $A = 7.38 \pm 0.35$ GeV2 at $\beta = 2.2$ to $A = 8.18 \pm 2.85$ GeV2 at $\beta = 2.8$, but with considerable variation in between. From the lowest and highest values, $A = 5.8$ and $A = 11.3$, we get respectively $\sigma_{\text{coul}} = (0.48\text{GeV})^2$ and $\sigma_{\text{coul}} = (0.67\text{GeV})^2$. The inequality $\sigma \leq (3/4)\sigma_{\text{coul}}$ for SU(2), with $\sigma = (0.44\text{GeV})^2$, reads for these values: $0.44 \leq 0.42(2)$ and $0.44 \leq 0.58(3)$. We appear to be at or near saturation.

REFERENCES

1. D. Zwanziger, Nucl. Phys. B518 (1998) 237.
2. A. Szczepaniak et al., Phys. Rev. Lett. 76 (1996) 2011; D. G. Robertson et al., Phys. Rev. D59 (1999) 074019; A. Szczepaniak and E. S. Swanson, hep-ph/0107078.
3. A. Cucchieri and D. Zwanziger, Phys. Rev. D65 (2001) 014002.
4. A. Cucchieri and D. Zwanziger, Phys. Rev. D65 (2001) 014001; Phys. Letts. B524 (2002) 123.
5. J. Fingberg et al., Nucl. Phys. B392 (1993) 493.

Figure 1. Fit of $|k|^4 \tilde{V}_{\text{coul}}(k)$ using eq. (1). Data are for lattice volumes $V = 24^4$ (×) and $V = 28^4$ (∗) and $\beta = 2.2, 2.5$ and 2.8 from top to bottom.