SHARP AND PRINCIPAL ELEMENTS
IN EFFECT ALGEBRAS

G. BIŃCZAK¹ AND J. KALETA²

Abstract. In this paper we characterize the effect algebras whose sharp and principal elements coincide. We also give examples of two non-isomorphic effect algebras having the same universum, partial order and orthosupplementation.

1. Introduction

Effect algebras have been introduced by Foulis and Bennett in 1994 (see [5]) for the study of foundations of quantum mechanics (see [4]). Independently, Chovanec and Kôpka introduced an essentially equivalent structure called D-poset (see [9]). Another equivalent structure was introduced by Giuntini and Greuling in [6].

The most important example of an effect algebra is \((E(H), 0, I, \oplus)\), where \(H\) is a Hilbert space and \(E(H)\) consists of all self-adjoint operators \(A\) on \(H\) such that \(0 \leq A \leq I\). For \(A, B \in E(H)\), \(A \oplus B\) is defined if and only if \(A + B \leq I\) and then \(A \oplus B = A + B\). Elements of \(E(H)\) are called effects and they play an important role in the theory of quantum measurements ([2], [3]).

A quantum effect may be treated as two-valued (it means 0 or 1) quantum measurement that may be unsharp (fuzzy). If there exist some pairs of effects \(a, b\) which possess an orthosum \(a \oplus b\) then this orthosum correspond to a parallel measurement of two effects.

In this paper we solved the following Open Problem: Characterize the effect algebras whose sharp and principal elements coincide (see [8]). So far it was known (see Theorem 3.16 in [1]) that if effect algebra \(E\) is lattice-ordered then \(e \in E\) is principal iff \(e \wedge e' = 0\). It also was known that in every effect algebra any principal element is sharp (see Lemma 3.3 in [7]).

Definition 1.1. In [5] an effect algebra is defined to be an algebraic system \((E, 0, 1, \oplus)\) consisting of a set \(E\), two special elements \(0, 1 \in E\)

Key words and phrases. effect algebras, sharp elements, principal elements, isomorphism of effect algebras, totally symmetric quasigroups.

¹ Key words and phrases. effect algebras, sharp elements, principal elements, isomorphism of effect algebras, totally symmetric quasigroups.
called the zero and the unit, and a partially defined binary operation \(\oplus \) on \(E \) that satisfies the following conditions for all \(p, q, r \in E \):

1. [Commutative Law] If \(p \oplus q \) is defined, then \(q \oplus p \) is defined and \(p \oplus q = q \oplus p \).
2. [Associative Law] If \(q \oplus r \) is defined and \(p \oplus (q \oplus r) \) is defined, then \(p \oplus q \) is defined, \((p \oplus q) \oplus r \) is defined, and \(p \oplus (q \oplus r) = (p \oplus q) \oplus r \).
3. [Orthosupplementation Law] For every \(p \in E \) there exists a unique \(q \in E \) such that \(p \oplus q \) is defined and \(p \oplus q = 1 \).
4. [Zero-unit Law] If \(1 \oplus p \) is defined, then \(p = 0 \).

For simplicity, we often refer to \(E \), rather than to \((E, 0, 1, \oplus)\), as being an effect algebra.

If \(p, q \in E \), we say that \(p \) and \(q \) are orthogonal and write \(p \perp q \) iff \(p \oplus q \) is defined in \(E \). If \(p, q \in E \) and \(p \oplus q = 1 \), we call \(q \) the orthosupplement of \(p \) and write \(p' = q \).

It is shown in [5] that the relation \(\leq \) defined for \(p, q \in E \) by \(p \leq q \) iff \(\exists r \in E \) with \(p \oplus r = q \) holds for all \(p \in E \). It is also shown that the mapping \(p \mapsto p' \) is an order-reversing involution and that \(q \perp p \) iff \(q \leq p' \). Furthermore, \(E \) satisfies the following cancellation law: If \(p \oplus q \leq r \oplus q \), then \(p \leq r \).

An element \(a \in E \) is sharp if the greatest lower bound of the set \(\{a, a'\} \) equals \(0 \) (i.e. \(a \land a' = 0 \)). We denote the set of sharp elements of \(E \) by \(S_E \).

An element \(a \in E \) is said to be principal iff for all \(p, q \in E \), \(p \perp q \) and \(p, q \leq a \Rightarrow p \oplus q \leq a \). We denote the set of principal elements of \(E \) by \(P_E \).

Definition 1.2. For effect algebras \(E_1, E_2 \) a mapping \(\phi: E_1 \to E_2 \) is said to be an isomorphism if \(\phi \) is a bijection, \(a \perp b \iff \phi(a) \perp \phi(b) \), \(\phi(1) = 1 \) and \(\phi(a \oplus b) = \phi(a) \oplus \phi(b) \).

Let us observe that if \(\phi: E_1 \to E_2 \) is an isomorphism then \(\phi(0) = 0 \), because \(\phi(0) \oplus 0 = \phi(0) = \phi(0 \oplus 0) = \phi(0) \oplus \phi(0) \) so by cancellation law \(0 = \phi(0) \).

Definition 1.3. A quasigroup \((Q, \cdot)\) consists of a non-empty set \(Q \) equipped with a one binary operation \(\cdot \) such that if any two of \(a, b, c \) are given elements of a quasigroup, \(ab = c \) determines the third uniquely as an element of the quasigroup.

Moreover if \(a \cdot b = c \iff c \cdot a = b \) then \(Q \) is called semisymmetric (see [10]). Commutative semisymmetric quasigroups are called totally symmetric (see [11]).
2. Main Theorem

Theorem 2.1. [7, Theorem 3.5] If $p, q \in E$, $p \perp q$, and $p \lor q$ exists in E, then $p \land q$ exists in E, $p \land q \leq (p \lor q)' \leq (p \land q)'$ and $p \lor q = (p \land q) \oplus (p \lor q)$.

Theorem 2.2. Let $(E, 0, 1, \oplus)$ be an effect algebra. Then

$$P_E = \{x \in E: x \in S_E \text{ and } \forall t \in E t \leq x \Rightarrow t \lor x' \text{ exists in } E\}$$

Proof. Suppose that $x \in P_E$ then $x \in S_E$ (see Lemma 3.3 in [7]).

Let $t \in E$ and $t \leq x$ hence $t \perp x'$. We show that $t \lor x'$ is the join of t and x'.

Obviously $t \leq t \lor x'$ and $x' \leq t \lor x'$. Suppose that $u \in E$, $t \leq u$ and $x' \leq u$ then

$$t \perp u'$$

(3)

and

$$u' \leq x \Rightarrow t \leq x.$$

(4)

Now (3) and (4) implies $t \lor u' \leq x$ since $x \in P_E$. Hence $x' \perp (t \lor u')$ and by associativity $x' \perp t$ and $(x' \lor t) \perp t$ thus $t \lor x' \leq u$ so $t \lor x'$ is the smallest upper bound of the set $\{t, x'\}$ thus $t \lor x' = t \lor x'$.

Suppose that $x \in S_E$ and

$$\forall t \in E t \leq x \Rightarrow t \lor x' \text{ exists in } E.$$

(8)

We show that $x \in P_E$.

If $u, s \in E$, $u \leq x$, $s \leq x$ and $u \perp s$ then

$$u \land x' = 0$$

(5)

because: if $y \leq x'$ and $y \leq u \leq x$ then $y = 0$ since $x \land x' = 0$.

Moreover $u \leq x$ so $u \lor x'$ exists by (8). By **Theorem 2.1**

$$u \lor x' = (u \land x') \lor (u \lor x')$$

(6)

We show that

$$u' \land x = (u \lor x')'$$

(7)

We show that $(u \lor x')'$ is a lower bound of the set $\{u', x\}$: $u \leq u \lor x' \Rightarrow u' \geq (u \lor x')'$ and $x' \leq u \lor x' \Rightarrow x \geq (u \lor x')'$.

If v is a lower bound of $\{u', x\}$ then $u' \geq v$, $x \geq v$ then $u \leq v'$ and $x' \leq v'$ then $u \lor x' \leq v'$ and $(u \lor x')' \geq v$ and it implies that $(u \lor x')'$ is the greatest lower bound of the set $\{u', x\}$ so (7) is satisfied.

Moreover $s \leq u'$ (since $u \perp s$) and $s \leq x$ so $s \leq u' \land x$. Hence by (6) and (7) we have

$$s \leq u' \land x = (u \lor x')' = (u \lor x')'$$
so \(s \perp (u \oplus x') \) and by associativity \(s \oplus u \perp x' \) hence \(s \oplus u \leq x \) and \(x \in P_E \). \hfill \Box

In the following theorem we prove that in every effect algebra \(E \) sharp and principal elements coincide if and only if there exists in \(E \) join of every two orthogonal elements such that one of them is sharp.

Theorem 2.3. Let \((E, 0, 1, \oplus)\) be an effect algebra. Then \(S_E = P_E \) if and only if
\[
\forall t, x \in E \quad (t \perp x' \text{ and } x \wedge x' = 0) \Rightarrow t \lor x' \text{ exists in } E \quad (1)
\]

Proof. Suppose that \(S_E = P_E \). We show that (1) is satisfied.

Let \(x, t \in E, t \perp x' \) and \(x \wedge x' = 0 \). Then \(t \leq x, x \in P_E \) and by Theorem 2.2 we know that \(t \lor x' \) exists in \(E \).

Suppose that condition (1) is fullfilled. Obviously \(P_E \subseteq S_E \) (see Lemma 3.3 in [7]).

Now our task is to show that \(S_E \subseteq P_E \). Let \(x \in S_E \). If \(t \in E, t \leq x \) then \(t \perp x' \) and by condition (1) \(t \lor x' \) exists in \(E \) hence \(x \in P_E \) by Theorem 2.2. Thus \(S_E \subseteq P_E \). \hfill \Box

Let us observe that by Theorem 2.2 principal elements in an effect algebra are determined by partial order \(\leq \) and orthosupplementation \(' \). We will see that there exist effect algebras \(E_1 = (E, 0, 1, \oplus_1) \) and \(E_2 = (E, 0, 1, \oplus_2) \) such that orthosupplementation \(' \) in \(E_1 \) and orthosupplementation \(' \) in \(E_2 \) are equal and also the same is true for partial order \(\leq \), but \(E_1 \) and \(E_2 \) are not isomorphic.

Definition 2.4. Let \((Q, \cdot)\) be a totally symmetric quasigroup.

We define \(E(Q, \cdot) := ((Q \times \{0\}) \cup (Q \times \{1\}) \cup \{0\} \cup \{1\}, 0, 1, \oplus) \) where
- \((q_1, 0) \oplus (q_2, 0) = (q_1 \cdot q_2, 1)\) for all \(q_1, q_2 \in Q \),
- \((q, 0) \oplus (q, 1) = (q, 1) \oplus (q, 0) = 1\) for all \(q \in Q \),
- \(0 \oplus x = x \ominus 0 = x\) for all \(x \in (Q \times \{0\}) \cup (Q \times \{1\}) \cup \{0\} \cup \{1\} \).

In remaining cases orthosum \(x \oplus y \) is not defined.

Theorem 2.5. If \((Q, \cdot)\) is a totally symmetric quasigroup then \(E(Q, \cdot) \) is an effect algebra.

Proof. The Commutative Law and Zero-unit Law are obvious. If \(q \in Q \) then there exists a unique element \(x = (q, 1) \) such that \((q, 0) \oplus x = 1\) so \((q, 0)' = (q, 1)\). Similarly \((q, 1)' = (q, 0)\) so the Orthosupplementation Law is satisfied.
It remains to show that the Associative Law is also fulfilled. Let $x, y, z \in (Q \times \{0\}) \cup (Q \times \{1\}) \cup \{0\} \cup \{1\}$. If $x = 0$ or $y = 0$, or $z = 0$ then the Associative Law is true. If $y \oplus z$ is defined and $x \oplus (y \oplus z)$ is defined and $x, y, z \neq 0$ then $x, y, z \in Q \times \{0\}$, so there exist $p, q, r \in Q$ such that $x = (p, 0)$, $y = (q, 0)$, $z = (r, 0)$, so $(q, 0) \oplus (r, 0)$ is defined and $(p, 0) \oplus ((q, 0) \oplus (r, 0))$ is defined, then $(p, 0) \oplus (q \cdot r, 1)$ is defined so $q \cdot r = p$ hence $p \cdot q = r$ thus $(p \cdot q, 1) \oplus (r, 0)$ is defined so $((p, 0) \oplus (q, 0)) \oplus (r, 0)$ is defined and $(p, 0) \oplus ((q, 0) \oplus (r, 0)) = ((p, 0) \oplus (q, 0)) \oplus (r, 0) = 1$. Therefore $(x \oplus y) \oplus z$ is defined and $x \oplus (y \oplus z) = (x \oplus y) \oplus z = 1$. □

Example 2.6. Let $Q = \{1, 2, 3\}$ and

\oplus_1	1	2	3	\oplus_2	1	2	3
1	1	3	2	1	1	2	1
2	3	2	1	2	1	3	2
3	2	1	3	3	3	2	1

then $E(Q, \cdot_1)$ and (Q, \cdot_2) are totally symmetric quasigroups (see Example 2 and 3 in [11]). Then by Theorem 2.5 $E(Q, \cdot_1)$ and $E(Q, \cdot_2)$ are effect algebras with the following \oplus tables. In this tables we do not include 0 and 1, since they have trivial sums and a dash means that the corresponding \oplus is not defined:

\oplus_1	a_1	a_2	a_3	a'_1	a'_2	a'_3
a_1	a_1	a_3	a_2	1	1	1
a_2	a_3	a_2	a_1	1	1	1
a_3	a_2	a_3	a_1	1	1	1
a'_1	1	1	1	1	1	1
a'_2	1	1	1	1	1	1
a'_3	1	1	1	1	1	1

\oplus_2	a_1	a_2	a_3	a'_1	a'_2	a'_3
a_1	a_2	a_3	1	1	1	1
a_2	a_1	a_3	1	1	1	1
a_3	a_2	a_1	1	1	1	1
a'_1	1	1	1	1	1	1
a'_2	1	1	1	1	1	1
a'_3	1	1	1	1	1	1

where $a_i = (i, 0)$ and $a'_i = (i, 1)$ for $i = 1, 2, 3$. In effect algebras $E(Q, \cdot_1)$ and $E(Q, \cdot_2)$ partial order \le is the same: a_1, a_2, a_3 are minimal nonzero elements, a'_1, a'_2, a'_3 are maximal elements not equal to 1,
moreover $a_i \leq a'_j$ for all $i, j \in \{1, 2, 3\}$. Obviously orthosupplementation $'$ is the same in both effect algebras mentioned above. But $E(Q, \cdot_1)$ and $E(Q, \cdot_2)$ are not isomorphic:

Suppose that a mapping $\phi: (Q \times \{0\}) \cup (Q \times \{1\}) \cup \{0\} \cup \{1\} \rightarrow (Q \times \{0\}) \cup (Q \times \{1\}) \cup \{0\} \cup \{1\}$ is an isomorphism of $E(Q, \cdot_1)$ onto $E(Q, \cdot_2)$. Then

$$\phi(a_1) \oplus_2 \phi(a_1) = \phi(a_1 \oplus_1 a_1) = \phi(a_1) = \phi(a_1) \oplus_2 0$$

so $\phi(a_1) = 0$, but $\phi(0) = 0$ hence $a_1 = 0$ and we obtain a contradiction.
REFERENCES

[1] Bennett M. K., Foulis D. J. Phi-Symmetric Effect Algebras, Foundations of Physics. 25, No. 12, 1995, 1699-1722.
[2] Bush P., Lahti P.J., Mittelstadt P. The Quantum Theory of Measurement Lecture Notes in Phys. New Ser. m2, Springer-Verlag, Berlin, 1991
[3] Bush P., Grabowski M., Lahti P.J Operational Quantum Physics, Springer-Verlag, Berlin, 1995
[4] Dvurečenskij A., Pulmannová New Trends in Quantum Structures, Kluwer Academic Publ./Ister Science, Dordrecht-Boston-London/Bratislava, 2000.
[5] Foulis D. J., Bennett M. K. Effect Algebras and Unsharp quantum Logics, Foundations of Physics. 24, No. 10, 1994, 1331-1351.
[6] Giuntini R., Grueuling H., Toward a formal language for unsharp properties, Found. Phys, 19, 1994, 769-780.
[7] Greechie R. J.,Foulis D. J., Pulmannová S. The center of an effect algebra, Order 12, 91-106, 1995.
[8] Gudder S. Examples, Problems, and Results in Effect Algebras, International Journal of Theoretical Physics, 35, 2365-2375, 1996.
[9] Kôpka F., Chovanec F., D-posets, Math. Slovaca, 44, 1994, 21-34.
[10] Smith J. D. H., Homotopy and semisymmetry of quasigroups, alg. Univ., 38 , 1997, 175-184.
[11] Etherington I. M. H., Quasigroups and cubic curves, Proceedings of the Edinburgh Mathematical Society (Series 2), Volume 14, Issue 04, December 1965, 273-291.

1 Faculty of Mathematics and Information Sciences, Warsaw University of Technology, 00-662 Warsaw, Poland

2 Department of Applied Mathematics, Warsaw University of Agriculture, 02-787 Warsaw, Poland

E-mail address: 1 binczak@mini.pw.edu.pl, 2 joanna.kaleta@sggw.pl