Effects of testosterone undecanoate on performance during multi-stressor military operations: A trial protocol for the Optimizing Performance for Soldiers II study

Alyssa N. Varanoske, Melissa N. Harris, Callie Hebert, Emily E. Howard, Neil M. Johannsen, Steven B. Heymsfield, Frank L. Greenway, Lee M. Margolis, Harris R. Lieberman, David D. Church, Arny A. Ferrando, Jennifer C. Rood, Stefan M. Pasiakos

ABSTRACT

Background: Previously, young males administered 200 mg/week of testosterone enanthate during 28 days of energy deficit (EDef) gained lean mass and lost less total mass than controls (Optimizing Performance for Soldiers I study, OPS I). Despite that benefit, physical performance deteriorated similarly in both groups. However, some experimental limitations may have precluded detection of performance benefits, as performance measurements employed lacked military relevance, and the EDef employed did not elicit the magnitude of stress typically experienced by soldiers conducting operations. Additionally, the testosterone administered required weekly injections, elicited supra-physiological concentrations, and marked suppression of endogenous testosterone upon cessation. Therefore, this follow-on study will address those limitations and examine testosterone's efficacy for preserving soldier performance during strenuous operations.

Methods: In OPS II, 32 males will participate in a randomized, placebo-controlled, double-blind trial. After baseline testing, participants will be administered either testosterone undecanoate (750 mg) or placebo before completing four consecutive, 5-day cycles simulating a multi-stressor, sustained military operation (SUSOPS). SUSOPS will consist of two low-stress days (1000 kcal/day exercise-induced EDef; 8 h/night sleep), followed by three high-stress days (3000 kcal/day and 4 h/night). A 23-day recovery period will follow SUSOPS. Military relevant physical performance is the primary outcome. Secondary outcomes include 4-compartment body composition, muscle and whole-body protein turnover, intramuscular mechanisms, biochemistries, and cognitive function/mood.

Conclusions: OPS II will determine if testosterone undecanoate safely enhances performance, while attenuating muscle and total mass loss, without impairing cognitive function, during and in recovery from SUSOPS.

Trial Registration: ClinicalTrials.gov Identifier: NCT04120363.

Abbreviations: BIA, bioelectrical impedance analysis; D₂O, deuterium; DXA, dual-energy x-ray absorptiometry; DSMB, data and safety monitoring board; ECW, extracellular water; EDef, energy deficit; EIEE, exercise-induced energy expenditure; FBR, fractional breakdown rate; FFM, fat-free mass; FSR, fractional synthetic rate; HR, heart rate; HRR, heart rate reserve; ICW, intracellular water; ID, identification; IRB, Institutional Review Board; MRE, Meal; Ready-to-Eat, OPS I; Optimizing Performance for Soldiers Trial I, OPS II; Optimizing Performance for Soldiers Trial II, PAR-Q+; Physical Activity Readiness Questionnaire+, PB; protein breakdown, PBRC; Pennington Biomedical Research Center, PLA; placebo experimental group, PS; protein synthesis, Q; whole-body nitrogen flux, RER; respiratory exchange ratio, RM; repetition maximum, RNA; ribonucleic acid, RPE; ratings of perceived exertion, SUSOPS; sustained, multi-stressor military operations; TBW, total body water; TDEE, total daily energy expenditure; TDE, total daily energy intake; TEST, testosterone experimental group; VO₂max, maximal cardiorespiratory fitness; VO₂peak, peak oxygen uptake; WBGT, wet bulb globe temperature.

* Corresponding author. 10 General Greene Ave, Bldg. 42, Natick, MA, 01760, USA.

E-mail address: stefan.m.pasiakos.civ@mail.mil (S.M. Pasiakos).

https://doi.org/10.1016/j.conctc.2021.100819

Received 28 December 2020; Received in revised form 15 June 2021; Accepted 2 July 2021

Available online 3 July 2021

2451-8654/© 2021 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The collective stress of high physical activity, sleep deprivation, and energy deficit (EDef) (i.e., failing to match total daily dietary energy intake [TDEI] with total daily energy expenditure [TDEEI]) during strenuous military training and operations can impair physical performance [1–4]. Performance decrements may be attributable, in part, to the suppressive effects of stress on the hypothalamic pituitary gonadal axis and endogenous testosterone synthesis [5,6]. Pharmacologic restoration of euonadal testosterone concentrations may be an effective strategy to attenuate physiological decline and degraded performance during sustained, multi-stressor military operations (SUSOPS).

Recently, the Optimizing Performance for Soldiers (OPS) I study, a multi-institutional collaborative project, evaluated the physiological efficacy of supplemental testosterone during EDef [7–11]. OPS I was a 3-phase, randomized, double-blind, placebo-controlled trial involving 50 physically-active young males. Phase 1 was a 14-day, free-living, weight-maintaining diet phase. Phase 2 was a 28-day live-in, 55% exercise- and diet-induced EDef with (intervention group) or without (control group) exogenous testosterone (200 mg/week testosterone enanthate). Phase 3 was a 14-day recovery period [7]. The primary findings from OPS I were that participants receiving weekly intramuscular injections of testosterone gained lean mass and lost less total mass compared to controls, without an increased incidence of adverse events or negative cardiometabolic health biomarkers [8]. The change in total testosterone concentrations during the EDef was strongly correlated with changes in lean mass. Additionally, those given testosterone fully recovered their body mass and were 2.8 kg heavier at the end of the recovery period than controls, due entirely to gains in lean mass. However, despite differences in lean mass loss, lower-body muscular strength and endurance declined similarly between groups [8].

Several experimental limitations in OPS I preclude definitive conclusions to suggest testosterone therapy for military personnel conducting strenuous SUOPS. First, the testosterone formulation required weekly injections, which are not practical for military operations conducted in austere locations. Further, the dose administered (200 mg of testosterone enanthate) produced testosterone concentrations exceeding the normal physiological range, followed by a precipitous decline upon cessation and prolonged hypogonadal state in recovery. Additionally, the inability to induce a hypogonadal state and lean mass loss in control participants suggests the magnitude and type of stress imposed by the EDef in OPS I was far less than the physiological stress typically endured during real-world training and combat operations (high physical activity, sleep deprivation, and EDef). Most importantly, the use of isometric and isokinetic dynamometry to measure performance were insuffiently sensitive to demonstrate militarily relevant benefits of testosterone on physical performance, despite gains in lean mass [7,8].

There are several alternatives to testosterone enanthate, including transdermal/nasal gels, patches, and buccal/bio-adhesive tablets. However, while these formulations are non-invasive and can be self-administered, they require daily applications (transdermal and nasal gels) and carry added risks, including skin-to-skin transfer (transdermal gels) and gum/nasal-related adverse events (buccal/bio-adhesive tablets, nasal gels) [12]. Long-acting formulations that require infrequent administration by clinicians may be a viable alternative to testosterone enanthate. A single intramuscular injection of testosterone undecanoate can maintain testosterone concentrations within the normal physiological range for 8–10 weeks [13] with considerably less clinical or logistical burden. Further, following cessation of testosterone undecanoate administration, testosterone concentrations decline gradually, which reduces the likelihood of becoming hypogonadal. This dosing regimen may be logistically feasible for military personnel vulnerable to muscle loss and performance decline while conducting strenuous operations as part of their annual training and deployment cycle. Thus, the OPS II study will address these limitations and test the hypothesis that a single dose of long-acting testosterone undecanoate (750 mg) will safely and steadily maintain normal testosterone concentrations and enhance military relevant measures of physical performance during, and in recovery from, a simulated, multi-stressor SUSOPS.

2. Materials and methods

2.1. Study design and setting

This 3-phase, interventional study will use a parallel, randomized, placebo-controlled, double-blind design to test whether testosterone undecanoate administration is effective at preventing the decline in physical and physiological outcomes typically experienced during multi-stressor SUSOPS. All participant testing will occur at a single site (Pennington Biomedical Research Center; PBRC) in Baton Rouge, LA. The Institutional Review Board (IRB) of PBRC (protocol 2019–017) and the US Army Human Research Protections Office (Fort Detrick, Frederick, MD, USA) approved the study protocol and trial documents, including the consent form. The study protocol follows the recommendations of the Standard Protocol Items: Recommendations for Interventional Trials guidance for clinical trials [14,15]. The ClinicalTrials.gov identifier is NCT04120363.

2.2. Eligibility criteria and determination

Participants will be eligible for the trial if they meet the following criteria: male, aged 18–35 years old, healthy and physically active, meets age-specific U.S. Army body composition standards according to Army Regulation 600–9 [16], and has normal testosterone concentrations (300–1000 ng/dL). The eligibility criteria was designed to recruit volunteers with characteristics that most closely reflect the characteristics of actual Soldiers. Previous published papers from our laboratory, including the OPS I study (which provided the rationale for the current study), have used similar exclusion criteria; the descriptive characteristics of participants recruited for the OPS I study [8] were comparable to those reported in our previous published studies in Soldiers [17–19]. While recruiting actual Soldiers with previous military experience would increase the practical applicability of the current intervention, the time commitment and requirements of this study (e.g., a ~2-month leave period under highly-controlled laboratory conditions) would make recruiting active-duty Soldiers highly unlikely and unrealistic. Thus, the findings of this highly-controlled laboratory study in recreationally-active males will help provide preliminary information on whether a similar intervention should be evaluated in future field studies in Soldiers. A detailed list of inclusion and exclusion criteria is presented in Table 1.

2.3. Recruitment

This study will use a multi-stage screening process to recruit participants. Potential participants will undergo a web and/or telephone screen to determine eligibility based on inclusion/exclusion criteria. Individuals who meet the criteria will be invited to attend the first of two screening visits. During the first visit, the study consent form will be reviewed and signed, and height, body mass, blood pressure, and heart rate (HR) will be measured. Participants who do not meet the height/body mass criteria will have eligibility assessed by neck and waist circumference measurements to estimate percent body fat according to Army Regulation 600–9 [16]. Participants also will complete a Physical Activity Readiness Questionnaire (PAR-Q+) [20], a medical history questionnaire, and a cardiovascular disease risk assessment. Dieticians will meet with potential participants to discuss eating habits and dietary requirements for the study. Participants who maintain eligibility will be provided with an accelerometer (Actigraph wGT3X-BT, Pensacola, FL, USA) and will be scheduled for a second screening visit one week later. The accelerometer will be worn daily to assess physical activity, and participants will be required to fill out a daily physical activity log. After
data. Resting metabolic rate will be measured by indirect calorimetry expenditure (EIEE) will be assessed from accelerometer and PAR-Q 2.4.2. Dietary intake determination 2.4.1. Study overview Study participants will undergo a 3-phase, 50-day study, consisting of 7 days of baseline testing and diet acclimation (Phase 1, days 1–7), 20 days of simulated SUSOPS (Phase 2, days 8–27), and 23 days of recovery (Phase 3, days 28–50) (Fig. 1). On day 8, after completing baseline testing and diet acclimation (Phase 1), participants will be randomized to receive either a single intramuscular injection of testosterone undecanoate (TEST; 750 mg, standard pharmaceutical dose [12]) or an iso-volumetric placebo (PLA, sesame oil solution). The 20-day SUSOPS (Phase 2) will be highly controlled (live in the inpatient unit at PBRC), and consist of four consecutive cycles of undulating stress, starting with 2 days of ‘low’ stress, followed by 3 days of ‘high’ stress. After completing Phase 2, participants will be released from PBRC, resume their habitual physical activity routines, and will be provided a controlled diet to consume, to assess physiological, endocrine, and cognitive recovery from SUSOPS (Phase 3). 2.4.2. Dietary intake determination Participant physical activity patterns and exercise-induced energy expenditure (EIEE) will be assessed from accelerometer and PAR-Q+ data. Resting metabolic rate will be measured by indirect calorimetry using a Deltatrac II Metabolic Cart (Sensormedics, Yorba Linda, CA, USA) with a ventilated hood. The 3-day food records and resting metabolic rate measurements will be used to calculate individual TDEI. Throughout all phases, participants will consume the same amount of total energy, and the macronutrient distribution will be fixed (approximately 15%, 55%, and 30% total energy from protein, carbohydrate, and fat, respectively). The macronutrient distribution of these diets is based on the composition of the Meal, Ready-to-Eat (MRE), a US combat ration and the primary food source for Phase 2. For Phases 1 and 3, dieters will develop individualized menus consisting of breakfast, lunch, dinner, snacks, and energy-containing beverages. During these phases, breakfast meals will be consumed at PBRC under supervision and all other meals and energy-containing beverages will be provided for consumption offsite. Dietary compliance will be verified daily by assessing foods/beverages remaining in returned coolers and using questionnaires that allow participants to list any deviations from the diet. The energy content of the Phase 1 diet will be sufficient to maintain body mass within ±2%. Participants will be weighed daily in each phase. TDEI will be adjusted incrementally (±200 kcal every 3 days) in Phase 1 as needed to achieve energy balance. Participants will be instructed to maintain pre-study activity levels and EIEE during Phases 1 and 3. Activity will be verified using a wrist-worn accelerometer and physical activity records. During Phase 2, food will consist of approximately two MREs per day (menu 39; Ameriqual, Evansville, IN, USA) with the amount of energy and distribution of macronutrients the same as during Phase 1. Registered dieters will develop individualized MRE-based menus. All meals will be eaten and monitored on the inpatient unit in Phase 2. Calorie-free seasonings, including hot sauce, will be allowed. A sample daily menu for Phases 1, 2, and 3 is provided in Table 2. Water will be consumed ad libitum during all phases, but daily fluid intake will be recorded during Phase 2 to ensure proper hydration. Participants will also be allowed three energy-free approved beverages (i.e., energy-free sports drinks or sodas) per day during Phase 2, in addition to those provided as part of the diet. Hydration status will be tracked daily for safety via visual inspection of urine color. Participants will be weighed and wear a wrist-worn accelerometer daily throughout Phase 2.

Table 1

Inclusion Criteria	Exclusion Criteria
Males aged 18–35 years	Musculoskeletal injuries that compromise exercise capability
Ability to understand verbal or written instructions/testing materials in English	Diagnosed cardiometabolic disorders (i.e., hypertension, hyperlipidemia, kidney disease, diabetes, etc.)
Physically active (expends, on average, at least 300 kcal/day through structured aerobic and strength-training activities, as determined by accelerometer and review of a physical activity log)	Allergies or intolerance to foods or vegetarian practices
Not taking any prescription medications and/or willing to refrain from all medication use prior to and throughout the entire study period, unless provided/approved by the study physician	History of complications with lidocaine
Willing to refrain from alcohol, smoking, e-cigarettes or use of any nicotine product, caffeine, and dietary supplement use throughout the entire study period	Anabolic steroid, human growth hormone, or nutritional testosterone precursor-like supplement use within the past 6 months
At the discretion of the study physician, wash-out period for medications, supplements, and over the counter medications is ≥ 1.4 weeks	Will not refrain from smoking (any nicotine product), alcohol, caffeine, or any other dietary supplement during the study
Wash-out period for caffeine and alcohol is ≥ 7 days	Adults unable to consent
Willing to live on the PBRC inpatient unit for 20 consecutive days	Females
Meets age-specific US Army body composition standards according to Army Regulation 600-9 [16], which includes estimates of percent body fat based on height, body mass, and circumference measures (neck and waist)	Prisoners
Total testosterone concentration is within the normal physiological range for males (300–1000 ng/dL)	Sedentary or engages in insufficient quantities of physical activity per week (aerobic and/or resistance training as determined by accelerometer and review of a physical activity log)

Diabetes, etc.

Prostate-specific antigen
2.4.3. SUSOPS

The 20-day SUSOPS (Phase 2) will consist of four consecutive cycles of undulating stress, starting with 2 days of ‘low’ stress followed by 3 days of ‘high’ stress. Low and high stress days will entail low and high militarily relevant EIEE, adequate and restricted sleep (8 h/night vs. 4 h/ day). Since TDEI remains the same as during Phase 1, the increase in EIEE will produce EDef of approximately 1000 kcal/day and 3000 kcal/day, respectively (Table 9). This level of EDef was selected based on a recent meta-regression of field studies conducted in military environments, indicating that a total EDef of ~43,380 kcal over 20 days will result in meaningful reductions in body mass and physical performance [2].

Varied low-, moderate-, and intermittent high-intensity endurance and muscle loading-type exercise will be performed to simulate physical activity typically observed during strenuous, SUSOPS [21], and increase participants’ EIEE to approximately 1000 kcal/day and 3000 kcal/day above their Phase 1 EIEE. This will generate an energy expenditure of approximately 3700 kcal/day on low days and 5700 kcal/day on high days (based on an estimated mean Phase 1 TDEE of 2700 kcal/day; exact values will differ based on actual Phase 1 TDEE). The increase in TDEE from physical activity will be achieved by performing multiple exercise sessions daily, each session lasting 1–5 h, using a variety of endurance and muscle loading modalities that mimic movements and activities common during military operations. Steady-state load carriage (i.e., marching with a weighted backpack) endurance-type exercise will be the primary exercise modality (~30% of total body mass carried) and will account for approximately 50% of daily EIEE prescription. Other activities will include walking and hiking without a weighted backpack, jogging, running, cycling, elliptical, field-based operational activities, calisthenics, stretching, and yoga which will completed in the laboratory using exercise equipment and in modified military training grounds on the PBRC campus. The operational activities will include Army Physical Readiness-type training such as load carries, ladder runs, jump roping, battle ropes, tire flips/pulls, sled drags/pulls, sandpit digging, and others. EIEE will be determined for each participant and activity using the Compendium of Physical Activities [22] or the participant’s body mass and exercise duration/distance/intensity according to published equations [23,24]. Individualized participant spreadsheets embedded with formulas to meet target energy expenditures per will be created to accurately document EIEE. The exercise intensity and modalities will be programmed to limit the risk of developing an overuse or acute injury by alternating exercise sessions between low-intensity weight-bearing modes and moderate-to high-intensity non-weight-bearing exercise while maintaining the prescribed low and high EDef. HR (Zephyr Bioharness™, Zephyr Technology Corporation, Annapolis, MD, USA) will be tracked and recorded throughout all exercise sessions to evaluate exercise intensity (percent HR reserve [HRRI] based on the resting HR from the screening visit and the maximum HR obtained via the maximal cardiorespiratory fitness test in Phase 1. While there is not a specified HR range for exercises, most exercises will likely elicit HR within 40–90% of HRRI.

Outdoor exercise sessions will be reserved for earlier and later sessions in the day (weather permitting) to avoid extreme weather conditions. The wet bulb globe temperature (WBGT) index, which combines ambient temperature, sunlight, humidity, and wind speed, will be used to ensure participant safety (Exttech HT30 Heat Stress WBGT Meter, Filr Systems Inc., Nashua, NH, USA). Participants will not be allowed to exercise outdoors if WBGT readings are above 32.2 °C (89.9 °F). Staff will restrict outdoor exercise time based on the WBGT during that session and will suggest adequate fluid consumption for corresponding WBGT ranges. If weather does not permit scheduled outdoor activities, most exercises can be completed indoors.
3. Outcome measures

3.1. Primary outcomes

Military relevant measures of physical performance will serve as the primary study outcomes. A battery of performance tests, consisting of cycle test, treadmill maximal cardiorespiratory fitness test (VO2max), and timed weighted backpack march will be completed during each phase (days 4–5, 25–26; 46–47) (Table 4). Participants will be familiarized with the test battery in each phase prior to actual testing (days 1, 23, 44). The order and timing of the tests will be standardized (i.e., strength/power → anaerobic capacity → aerobic capacity). A snack will be provided at least an hour before performance testing (energy: 300 kcal; protein: 11.1 g; carbohydrates: 42.6 g; fat: 9.9 g). A warm-up will be completed before initiating testing, consisting of cycle ergometry for 5 min at a self-selected pace, 10 body-weight walking lunge, 10 dynamic walking hamstring stretches, 10 dynamic walking quadriceps stretches, 10 squat jumps, 10 arm circles, 10 arm sways, and 3 × 10 m jogs. A description of all physical performance tests is provided in Table 4.

3.2. Secondary outcomes

Secondary endpoints include body composition, whole-body and muscle protein turnover and their associated intracellular mechanisms, endocrine-, metabolic-, and safety-related biomarkers, as well as measures of cognitive function.

Anthropometrics and Body Composition. Height will be measured using a stadiometer (Harpenden Stadiometer, Holtain Company, UK) during screening visit 1 to the nearest 0.1 cm. Semi-nude body mass will be measured in duplicate after an overnight fast and morning void using a scale (GSE Inc. Model 450, GSE Scale Systems, Novi, MI, USA) to the nearest 0.1 kg. Body composition (fat, lean soft tissue, bone mineral, total body water [TBW], extracellular water [ECW], and intracellular water [ICW]), circumferences, and volume (3D optical scans, Fit3D, 3D Size Stream system Proscanner version 4.x [Fit3D, San Mateo, CA, USA], Size Stream SS20 [Size Stream, Cary, NC, USA]) will be measured after an overnight fast, proper hydration, and morning void once at the end of each phase (days 7, 28, and 49). Hydration status will be evaluated using an analysis of urine specific gravity (CLINITELYK 500, Siemens Healthcare Diagnostics, Malvern, PA, USA) prior to body composition analyses.

Table 2	Sample daily menu items and macronutrient breakdown in each phase of the study.	Table 2											
Phases 1 and 3	Phase 1	Phase 1											
Food Item	Mass (g)	PRO (g)	CHO (g)	FAT (g)	Kcal	MRE Food Item	Mass (g)	PRO (g)	CHO (g)	FAT (g)	Kcal		
Breakfast	93	6.6	73.0	0.9	332	Breakfast	34.4	3.3	21.3	1.3	111		
Corn grits, Quaker, white, instant, dry	24	0.2	0.0	19.2	172	Peanut butter, smooth	34	7.8	8.8	16.6	216		
Butter, salted	27	5.3	0.0	1.4	34	Jam, strawberry	42	0.1	28.6	0.0	115		
Canadian bacon, Sysco	55	6.0	0.0	0.0	30	Tortilla, plain	48	3.4	29.0	4.0	162		
Egg whites, Wholesome Farms, raw	316	2.1	34.1	0.2	142	Breakfast total	14.7	87.6	22.0	604			
Orange juice, concentrate, unsweetened	165	5.6	8.2	0.1	56	Morning snack	45	3.8	30.1	8.7	214		
Milk, skim	25.8	115.3	22.1	766	Carbohydrate-fortified beverage	29	0.0	28.1	0.1	113			
Breakfast total	34.3	84.7	32.7	753	Lunch	3.8	58.2	8.8	327				
Pita bread, Sam’s Choice, whole wheat	93	8.7	37.8	2.9	203	Lunch	310	25.1	37.2	13.6	366		
Turkey breast, Block & Barrel, sliced	70	12.5	1.3	1.3	63	Cornbread	74	3.5	41.5	10.7	272		
Lettuce, romaine, raw	28	0.3	0.9	0.1	5	Lunch total	28.5	78.7	24.4	637			
Tomato, raw	25	0.2	1.0	0.1	5	Dinner	326	46.6	22.8	15.3	415		
Mayonnaise, Sysco, regular	22.3	0.0	0.0	18.0	162	Beef strips in savory tomato-based sauce	203	2.3	24.2	5.5	157		
Cheese, Swiss	29	7.8	1.6	8.1	110	Potatoes, mashed, garlic	203	2.3	24.2	5.5	157		
Pretzel, Rold Gold	53	4.7	42.3	2.3	206	Dried fruit, cranberries	36	0.1	23.2	0.2	95		
Lunch total	34.3	84.7	32.7	753	Dried fruit, cranberries	36	0.1	23.2	0.2	95			
Snack	36	0.1	7.8	2.0	51	Cheese spread, cheddar, plain	22	2.7	1.7	9.1	89		
Raisins, seedless	26	2.6	15.1	0.6	131	Peppermint candy rings	15	0.0	14.5	0.0	56		
Crackers, Cheez-It, regular	11	0.5	7.8	2.0	51	Dinner total	51.8	86.3	30.2	812			
M & M candies, milk chocolate	29	2.6	23.1	1.3	113	Evening snack	36	0.1	23.2	0.2	95		
Pretzel, Rold Gold	6.8	76.2	10.0	408	BBQ corn nuggets, bar	23	1.5	15.8	4.6	109			
Snack total	29	0.2	28.1	0.1	113	Carbohydrate-fortified beverage	29	0.0	28.1	0.1	113		
Dinner	95	19.7	0.6	6.8	146	Day total	100.4	378.1	90.2	2699			
Chicken breast, sage lemon	170	4.8	39.6	1.0	193	14.9%	55.0%	30.0%	101.2	382.7	90.1	2700	
Rice, Uncle Ben’s, Long Grain & Wild Rice Garden blend	157	1.7	9.3	0.5	43	14.9%	55.0%	30.0%	194	61.2	15.0%	55.0%	30.1%
Vegetable mix, Sysco	66	0.6	22.8	0.1	88	Day total	100.4	378.1	90.2	2699			
Body composition will be established using a 4-compartment model calculated from dual-energy x-ray absorptiometry (DXA) Hologic DXA, Discovery A, Hologic, Marlborough, MA, USA) and bioelectrical impedance analysis (BIA) Impedimed SFB7, Carlsbad, CA, USA; InBody S10, Cerritos, CA, USA; Jawon Cozy 930, Seoul, Korea; or similar) [40]. Multi-compartment methods (2, 3, and 4-compartment) and BIA will be used to calculate total body fat, fat-free mass (FFM), protein, hydration (TBW/FFM), and fluid distribution (ECW/ICW). Appendicular lean soft tissue mass will be used to calculate total body fat, fat-free mass (FFM), protein, hydration (TBW/FFM), and fluid distribution (ECW/ICW). Appendicular lean soft tissue mass as measured by DXA will be used as a proxy for total body skeletal muscle mass [25].

TBW will also be measured by deuterium (D2O; Cambridge Isotope Laboratories Inc., Tewksbury, MA, USA, Sigma-Aldrich, St. Louis, MO, USA) dilution once in each phase (days 7, 28, 49). Participants will provide a pre-dose urine sample and will then be orally dosed with D2O every 4 h will be used to determine TBW, as previously described [26].

Muscle and whole-body protein turnover. Muscle and whole-body protein turnover (protein synthesis [PS], protein breakdown [PB], and net protein balance) will be measured following an overnight fast at the end of each phase (days 7, 28, 49) by using the minimally-invasive pulse bolus stable isotope tracer injection technique [13] and the end-product method [29]. One intravenous catheter will be placed into a forearm vein on each arm, which will be used for blood sampling and bolus stable isotope administration. A blood sample will be drawn to establish background amino acid enrichment before the tracer injections. At the start of the 60-min tracer study (0 min; Fig. 1), a bolus injection of ²H₅ phenylalanine (35 μmol/kg) will be administered [30]. At the same time, participants will consume a single oral dose of ¹⁵N alanine (333 μmol/kg), and their urine will be collected for the next 24 h. A bolus injection of ¹³C phenylalanine (35 μmol/kg) will be administered 30 min after the first bolus was administered. Venous blood samples will be obtained in 5-min intervals for the first 40 min, except at the 25-min mark, and at 10-min intervals for the remaining 20 min (10 total blood samples over ~60 min). Two muscle biopsies of the vastus lateralis will be obtained under local anesthesia (2% lidocaine with 0.5% bupivacaine) with a 5 mm Bergstrom needle and manual suction [31, 32]. Approximately 250 mg of muscle tissue will be collected during each biopsy from the same incision at the 10-min and 60-minute mark. Muscle samples will be snap frozen in liquid nitrogen and stored at −80 °C. Blood samples will be centrifuged, and serum will be stored at −80 °C. Muscle, blood, and urine samples will be analyzed for isotope enrichments using gas and liquid chromatography mass spectrometry [13].

Mixed-muscle fractional synthesis rate (FSR) will be calculated using the formula:

$$ FSR = \frac{E_M(t_f) - E_M(t_i)}{\int_{t_i}^{t_f} E_M(t) \, dt} $$

where $E_M(t)$ is the enrichment of bound phenylalanine enrichment at time t and $E_M(t)$ is the enrichment of free phenylalanine at time t [13].

Mixed-muscle fractional breakdown rate (FBR) will be calculated using the formula:

$$ FBR = \frac{E_M(t_f) - E_M(t_i)}{\int_{t_i}^{t_f} E_M(t) \, dt} 	imes \frac{Q_M}{T_M} $$

where $E_M(t)$ and $E_M(t)$ are the arterialized and muscle free phenylalanine enrichments at time t and Q_M/T_M is the ratio of free to bound phenylalanine in muscle [13]. Net muscle protein balance will be calculated as the difference between FSR and FBR.

Whole-body nitrogen flux (Q, g N/24 h) will be determined using urinary urea enrichment according to Fern et al. [33]. Whole-body PS and PB will be calculated according to Stein et al. [34]:

$$ Q = PS + NEX \quad \text{and} \quad Q = PB + NIN $$
Table 4
Description of physical performance tests.

Test	Performance Metric(s)	Description of Test	Outcome Variables	Rest Time Following Test	Days Assessed
Vertical Jump	Lower-body power	Participants will stand with heels flat on the ground and dominant side closest to the Vertec (Jump USA, Sunnyvale, CA, USA). They will reach up as high as possible to determine vertical reach. A Tendo unit (Tendo Sports Machines, Trenchin, Slovak Republic) will be attached to the participant’s waist during the assessment. The Tendo unit consists of a transducer that measures velocity defined as linear displacement over time. The participant will jump from a standing position by flexing both knees and hips rapidly to move downward, and then extend their knees and hips rapidly while swinging up their dominant arm to touch the highest possible vane on the Vertec. Participants will complete three jumps, allowing for 60–90 s rest between each jump.	Jump height, average power, partial average power, peak power, average velocity, peak velocity, peak force	5 min	Phase 1: 4
					Phase 2: 25
					Phase 3: 46
3-Repetition Maximum	Lower- and upper-body muscular strength; lower-body muscular power	A trap bar deadlift will be performed in accordance with the US Army Combat Fitness Test [39]. A Tendo unit will be attached to one end of the bar to measure bar velocity and power. Participants will begin by completing three warm-up sets (8–10 repetitions at −50% 1-RM, 1 min rest; 6–8 repetitions at −65% of 1-RM, 2 min rest; 4–6 repetitions at −75–80% of 1-RM, 3 min rest). The bar will then be loaded with −85–90% of estimated 1-RM. Loads will be determined using a prediction equation based off of 5-RM deadlift completed during the familiarization session (5-RM/0.87 = 1-RM) [40]. Participants will stand in the middle of the trap bar with their feet about shoulder width apart. The participant will bend at the knees and hips, reach down and grasp the center of the handles. Arms should be positioned fully extended, back flat, head in a neutral position, head and eyes to the front or slightly upward, shins almost perpendicular to the ground, and heels in contact with the ground. The participant will stand up and lift the bar by extending the hips and knees until in an upright stance. They will pause slightly at the top of the movement, and the test administrator will signal to the participant that the concentric portion of the movement is complete. By flexing the hips and knees slowly, the participant will lower the bar to the ground, maintaining a neutral spine. The weight plates must touch the ground but may not bounce. If the participant fails to complete three continuous repetitions under control, they will retest at a lower weight. If they successfully complete three repetitions, additional weight may be added, and they will retest after at least 3 min of rest. A true 3-RM should be achieved after 3–5 attempts.	3-RM weight; for each repetition: average power, partial average power, peak power, average velocity, peak velocity, peak force	10 min	Phase 1: 4
					Phase 2: 25
					Phase 3: 46
Wingate Anaerobic Cycle	Anaerobic capacity	Participants will be positioned on an electronically-braked cycle ergometer (Excalibur Sport, Lode, The Netherlands). Seat height will be adjusted so that the knee is almost in full extension (approximately 5–10° of knee flexion) when the pedal is positioned at the lowest point. Participants will grasp the handlebars and remain seated for the entire test. They will begin by pedalling for 5 min at 50 W, maintaining a cadence between 60 and 90 RPM. Thirty seconds before the test, the participant will increase their cadence to 90 RPM. Once the test begins, a fixed resistance will be added to the bike and the participant will begin to pedal maximally for 30 s, trying to maintain the cadence throughout the test. The fixed resistance will be determined from body mass, cycle cadence, and a torque factor determined off the participant’s performance during the familiarization test. The cycle settings and fixed	Torque, peak power, time to peak power, mean power, rate of fatigue, fatigue slope, total work	60 min	Phase 1: 4
					Phase 2: 25
					Phase 3: 46

(continued on next page)
Table 4 (continued)

Test	Performance Metric(s)	Description of Test	Outcome Variables	Rest Time Following Test	Days Assessed		
Treadmill Maximal Cardiorespiratory Fitness Test (VO₂peak)	Aerobic capacity	Peak oxygen uptake (VO₂peak) will be measured using a graded exercise test and an indirect open circuit respiratory system (ParvoMedics TrueOne 2400, East Sandy, UT, USA) on a treadmill (Track Master TMX425CP, Full Vision, Inc., Newton, KS, USA). The test will be performed at ambient indoor temperature (20–22 °C) and humidity conditions (30–80%). Participants will be fit with a mouthpiece, headgear, nose clip, and heart rate (HR) monitor. Participants will begin by completing a 5-min warm-up on the treadmill. Then, participants will run for 4 min at a pace predetermined during familiarization at a 0% grade. At 4 min, the grade will be increased to 2%, followed by an additional 2% every 2 min thereafter until volitional exhaustion. Verbal encouragement will be given. HR and ratings of perceived exertion (RPE) 6–20 Borg scale) [≥1] will be recorded during each stage. VO₂peak criteria in Phase 1 will include a plateau in VO₂ with an increase in work rate; maximum respiratory exchange rate (RER) ≥ 1.10; maximum HR no less than 10 bpm below age-predicted maximum (220-age); RPE of ≥19. Due to the intervention in Phase 2, it is unlikely that all subjects will achieve a maximal response; thus, O₂ uptake data obtained from tests will be referred to as VO₂peak, or the highest recorded O₂ consumption. The maximum HR obtained during VO2max test during Phase 1 will be used as a reference point to determine workloads and intensities for the exercise bouts during Phase 2.	VO₂peak, RPE, HR, maximal HR, RER	N/A	Phase 1: 4	Phase 2: 25	Phase 3: 46
Timed Weighted Backpack March	Aerobic endurance	Load carriage is an essential aerobic-based military task. Soldiers are expected to carry a standard fighting load of 31.3 kg (68.9 lbs) and move at a rate of 4 km/h (2.5 miles/hour) in an ideal situation. Participants will be fit with a 31.3 kg weighted backpack and will be required to march a 4 km (2.5 miles) course as fast as possible. On command, they will start the test, and a stopwatch will be used to record the time to reach each 0.5-mile increment until the full course has been completed. The participant will be instructed to finish the course in the quickest time possible while walking or running. The participant will not be permitted to listen to music, and no verbal encouragement will be given during the test.	Time to complete each 0.5 mile	N/A	Phase 1: 5	Phase 2: 26	Phase 3: 47

\[PB = Q - N_{EX} \] and \[PS = Q - N_{EN} \]

where \(N_{EX} \) is urinary urea nitrogen excretion and \(N_{EN} \) is dietary nitrogen intake during the 24-h urine collection period. Net whole-body protein balance will be calculated as the difference between whole-body PS and PB.

Molecular Signaling Studies. A sample of muscle collected at each time point will be used to explore potential mechanisms by which testosterone regulates muscle mass and the metabolic response to the simulated operational stress. To assess these signaling pathways, a global gene array analysis using Illumina next-generation sequencing (Illumina Inc., San Diego, CA, USA) will be used. Total ribonucleic acid (RNA) will be isolated from muscle using the Trizol/ethanol precipitation. Quantity and quality of RNA will be assessed using a Nanodrop ND-1000 spectrophotometer (Nanodrop, Wilmington, DE, USA). Total RNA (500 ng) will be used to construct sequencing libraries. Samples will be amplified using index-tagged primers to facilitate multiplexing. Image analysis and base calling will be performed using the Illumina pipeline. Genes will be defined as differentially expressed when \(\Delta \geq 1.5 \)-fold compared with baseline values and a value of \(p < 0.05 \).

Following RNA-Sequencing, identified target pathways will be further assessed using Western blot. Briefly, muscle will be homogenized in ice buffer (1:10 wt/volume) and centrifuged for 15 min at 10,000 × g at 4 °C. Protein concentration of supernatant (lysate) will be determined. Muscle lysates will be solubilized in Laemml buffer, with equal amounts of total protein (15 µg) separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis using precast Tris-hydrochloric acid gels (Bio-Rad, Hercules, CA, USA). Proteins will be transferred to polyvinylidene fluoride membranes and exposed to commercially available primary antibodies at 4 °C overnight. Labeling will be performed using secondary antibody (anti-rabbit IgG conjugate with horseradish peroxidase; Cell Signaling Technology), and
chemiluminescent reagent will be applied (Super Signal, West Pico Kit; Pierce Biotechnology, Rockford, IL, USA). Blots will be quantified using a phosphoimager (Chemidoc XRS; Bio-Rad, Hercules, CA, USA) and Image Lab software (Bio-Rad, Hercules, CA, USA). To confirm equal protein loading per well, a normalizing protein will be assessed.

Finally, microRNA regulating identified pathways by RNA-sequencing will also be assessed as a potential mechanism contributing to testosterone and EDE-induced alterations in muscle mass and metabolism. Equal amounts of total RNA will be synthesized into complementary deoxyribonucleic acid for analysis using a TaqMan® microRNA reverse transcription kit (Applied Biosystems, Foster City, CA, USA). Individual probes or microarrays will be used to assess changes in microRNA expression.

Endocrine, Metabolic, and Safety Biomarkers. Blood samples will be collected after an overnight fast on several occasions throughout the study to assess endocrine function (days 1, 7, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 29, 32, 34, 44, 49). Blood samples will be centrifuged, and serum and plasma will be stored at −80 °C. All blood samples will be analyzed for total testosterone, free testosterone (determined by calculation [35]), luteinizing hormone, follicle-stimulating hormone, sex hormone binding globulin, insulin-like growth factor-1, growth hormone, estradiol, insulin, cortisol, glucagon, interleukin-6, and catecholamines (epinephrine, norepinephrine), according to manufacturer’s instructions. Blood samples collected at the beginning/end of each phase (days 1, 7, 28, 49) will also be analyzed for metabolic and safety parameters, including free-fatty acids, glucose, glyceral, lactate, β-hydroxybutyrate, prostate specific antigen, creatinine, triglycerides, total cholesterol, high-density lipoproteins, low-density lipoproteins (determined by calculation [36]), potassium, uric acid, albumin, calcium, magnesium, iron, creatine phosphokinase, alanine aminotransferase, alkaline phosphatase, and complete blood count with differential. If a participant’s testosterone concentrations are not within normal reference range (300–1000 ng/dL) at the end of the study, a blood sample will be obtained by venipuncture and analyzed for testosterone concentration every 90 days until levels have returned to within normal reference range to assure full recovery of endogenous testosterone production.

Cognitive Function, Personality, Mood, and Sleep. A battery of cognitive performance tests and questionnaires will be administered to assess cognition, personality, mood, and sleep habits (Table 5). Assessments will be conducted on a personal computer. Daily spontaneous motor activity, sleep, and circadian rhythms will be assessed throughout the study using an actigraph (Readiband™, Fatigue Science, Honolulu, HI, USA). The wrist-worn Readiband™ has been validated in comparison to polysomnography and shows concordance of 90% or greater in terms of sleep-scoring accuracy [37]. The Readiband™ will be worn continuously (24 h/day) on the dominant wrist during each phase. Sleep will not be restricted during Phases 1 or 3. During Phase 2, participants will be allowed 8 h of sleep between 2000–0400 on low stress days and 4 h of sleep between 0000 and 0400 on high stress days (Table 3). Sleep outside these defined periods will not be permitted.

Table 5

Test Description of cognitive function, personality, mood, and sleep tests.	Days Assessed	
Cognitive Function		
Balloon Analogue Risk Task	Phase 1: 2, 4, 6 Phase 2: 12, 14, 17, 22, 27	Phase 3: 32, 38
Scanning Visual Vigilance Task	Phase 1: 2, 4, 6 Phase 2: 12, 14, 17, 22, 27	Phase 3: 32, 38
Psychomotor Vigilance [44]	Phase 1: 2, 4, 6 Phase 2: 12, 14, 17, 22, 27	Phase 3: 32, 38
Match to Sample [45]	Phase 1: 2, 4, 6 Phase 2: 12, 14, 17, 22, 27	Phase 3: 32, 38
N-Back Test [46]	Phase 1: 2, 4, 6 Phase 2: 12, 14, 17, 22, 27	Phase 3: 32, 38
Mood and Personality		
Provoked Aggression [47]	Phase 1: 6	Phase 2: 27
Phase 3: 32, 38		
Buss-Perry Aggression Questionnaire [48]	Phase 1: 2, 4, 6 Phase 2: 12, 14, 17, 22, 27	Phase 3: 32, 38
Evaluation of Risks Scale [49]	Phase 1: 2, 4, 6 Phase 2: 12, 14, 17, 22, 27	Phase 3: 32, 38
Profile of Mood States Questionnaire [50]	Phase 1: 2, 4, 6 Phase 2: 12, 14, 17, 22, 27	Phase 3: 32, 38
Sleep		
Modified Pittsburgh Sleep Quality Index [51]	Daily	
Sleep Monitoring (Actigraphy)	Daily	
3.3. Treatment allocation, randomization, and blinding

Following Phase 1 testing, participants will be randomized to receive either a single intramuscular injection of testosterone undecanoate (TEST; 750 mg, standard pharmaceutical dose [12]) or an iso-volumetric placebo (PLA, sesame oil solution) on the morning of day 8 after checking into the in-patient unit at PBRC and before initiating the 20 day SUSOPS. A randomization scheme will be determined using a block design (n = 4) and age stratification (<29 years or ≥29 years) in a 1:1 (TEST:PLA) ratio. Randomization will be done by a biostatistician with no direct study affiliation, and the randomization schedule will be given to the pharmacist, who will have no direct contact with participants. Treatment administration will be performed by a physician assistant, nurse practitioner, or nurse who will not be aware of treatment assignments. Participants and all study personnel will be blinded to treatment group. The code will be kept as a locked electronic file on a secure server by the pharmacist until study completion or there is a need to break the code for safety of the participant.

3.4. Sample size estimation

Physical performance is the primary study endpoint for this study. The intended total EDef during the 20-day SUSOPS will be ~43,380 kcal, which, based on a previous meta-regression of data generated from military field studies, should elicit a ~9% reduction in total body mass and ~7% decline in lower-body physical performance [2]. Based on the results from OPS I [8], we expect body mass loss in TEST to be ~50% less and ~7% decline in lower-body physical performance [2]. Based on the military field studies, should elicit a ~9% reduction in total body mass kcal, which, based on a previous meta-regression of data generated from 3.5. Statistical analysis

Statistical analysis will be performed using two sample Student’s t-tests. Primary analysis of physical performance, body composition, muscle and whole-body protein homeostasis, endocrine, metabolic, and safety biomarkers, and cognitive function will be performed using a mixed-effect linear model. Treatment (TEST and PLA), phase (Phase 1, Phase 2, and Phase 3), phase-by-treatment interaction, age, and pre-study values will be considered fixed effects covariates in the model. The random effect will include an unstructured covariance matrix to account for the correlation within participants over time. Least squares means from the model will be used to estimate interaction effects. Familywise error rate will be adjusted using the Bonferroni correction when appropriate. All analyses will be considered 2-tailed, with α = 0.05 considered statistically significant.

3.6. Data management and monitoring

Study participants will be assigned unique subject identification (ID) numbers. Study subject ID numbers will be used on all data collection instruments, including questionnaires, data collection forms, biological specimen tubes, and computer records. All forms will be kept under lock and key, or password-protected if computerized, and under the control of the principal investigator and project manager. Most data are automatically uploaded from the instruments that measure the endpoint. All self-report inventories and questionnaires will be completed in REDCap (Vanderbilt University, Nashville, TN, USA) via surveys [38]. Data will be exported from REDCap for analysis. A master list linking the participants’ names and ID numbers will be kept in a password-protected computer file with access restricted to the principal investigator and study navigator. All data are entered into an integrated and automated data management system that has been validated and undergoes quality assurance by the PBRC Research Computing Core. All data are backed up daily. Biological samples that are moved off-site for analysis will not contain any personally identifiable information and will be labeled with only the unique subject ID numbers. Staff at these sites will not have access to the master list at any time.

This study will use a data and safety monitoring board (DSMB) and Safety Officer. The DSMB will receive quarterly reports via email. One or more meetings each year may be conducted if deemed appropriate by the DSMB chair. Prior to the start of recruitment, the DSMB will give formal approval of the study protocol and informed consent. There is more than minimal risk for participating in this trial, and any adverse events will also be monitored. The Safety Officer, in conjunction with the study investigators, will alert the IRB and DSMB if a larger than reasonably expected injury rate occurs in either of the treatment groups. Adverse events will be reported to the principal investigator, project manager, chair of the PBRC IRB, chair of the study DSMB, and Safety Officer throughout the trial. Examples of adverse events include but are not limited to: a clinically significant laboratory or clinical test result at follow up assessments, an event that results in 3 consecutive missed exercise sessions, an event that requires a visit to a physician because it alters participant’s ability to exercise, an event that occurs as a result of a study procedure which is not listed in the risks section of the informed consent. Serious adverse events include: death, a life-threatening event, severe illness including worsening of a pre-existing condition, injury or accidents, an inpatient hospitalization, surgical procedure, or a treatment, a permanent disability or incapacity, a clinically significant abnormal laboratory or diagnostic test result, or any other event that, in opinion of the principal investigator or study physician, might have resulted in a serious adverse event if medical intervention had not been initiated. An adverse event or experience is defined as any health-related unfavorable or unintended medical occurrence that happens after randomization.

In accordance with the Declaration of Helsinki, participants have the right to withdraw from the program at any time for any reason. The investigator also has the right to withdraw participants from the program treatments in the event of intercurrent illness, adverse experience, treatment failure, protocol violation, or other reasons. Should a participant decide to withdraw, all efforts will be made to complete and report follow-up observations as thoroughly as possible.

4. Ethical considerations

Written informed consent will be obtained from all study participants. Any protocol modifications will be conveyed to investigators, the IRB, and trial registries, regulators, and participants. Recruitment for this study is ongoing; it commenced in September 2019 and is expected to conclude in July 2021.

All participants are assured of their confidentiality both verbally and in the informed consent form. The clinical facilities are limited to the staff of the institution and participants, which is enforced through stringent security measures. Medical records are stored in locked areas. Access to these areas is limited to the clinical staff, director of the facilities, and the onsite principal investigator. Participants’ medical records are filed according to ID numbers, but lab reports also contain participant names as a mandatory criteria for lab certification. All forms on the chart display the ID number. Electronic data storage is similarly restricted with only the principal investigator and authorized persons having access to databases containing confidential clinical records, i.e., those containing name or other identifying information.
If requested, participants will be provided a summary results sheet at the completion of the study. The summary results will include body composition and physical performance tests, and available lab work results. The study results will be disseminated at national and international conferences and published in peer-reviewed journals.

5. Conclusions

The OPS II trial aims to determine whether a single dose of long-acting testosterone undecanoate (750 mg) safely and steadily maintains normal testosterone concentrations and enhances military relevant measures of performance, while attenuating muscle and total mass loss, without impairing cognitive function, during, and in recovery from a simulated, multi-stressor SUSOPS.

Author contributions

Alyssa N. Varanoske: methodology, investigation, visualization, writing – original draft, writing – review and editing; Melissa N. Harris: methodology, software, validation, investigation, resources, data curation, project administration; Callie Hebert: methodology, software, validation, investigation, resources, data curation, project administration; Emily E. Howard: investigation; Neil M. Johannsen: methodology, software, validation, resources; Steven B. Heymsfield: conceptualization, methodology, investigation, resources, supervision; Frank L. Greenway: conceptualization, methodology; Harris R. Lieberman: conceptualization, methodology; David D. Church: methodology, investigation, data curation; Amy A. Ferrando: conceptualization, methodology, validation, resources, supervision, funding acquisition; Jennifer C. Rood: conceptualization, methodology, resources, data curation, writing – review and editing, supervision, funding acquisition; Stefano M. Pasiakos: conceptualization, methodology, resources, supervision, funding acquisition, writing – original draft, writing – review and editing. All authors read and approved the final version of the manuscript.

Funding

This research reported is supported by the US Army Medical Research and Development Command, Military Operational Medicine Research Program. Supported in part by an appointment to the U.S. Army Research Institute of Environmental Medicine administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the US Department of Energy and the US Army Medical Research and Development Command. The funding sources have no role in the study design; collection, analysis, and interpretation of data; in writing the report; and in the decision to submit this article for publication.

Declaration of competing interest

The authors declare that they have no competing interests. The opinions or assertions contained herein are the private views of the authors and are not to be construed as official or as reflecting the views of the Army or the Department of Defense. Any citations of commercial organizations and trade names in this report do not constitute an official Department of the Army endorsement of approval of the products or services of these organizations.

References

[1] K.E. Friedl, R.J. Moore, R.W. Hoyt, L.J. Marchitelli, L.E. Martinez-Lopez, E.W. Askew, Endocrine markers of semistarvation in healthy lean men in a multistressor environment, J. Appl. Physiol. 88 (5) (2000) 1820–1830.
[2] N.E. Murphy, C.T. Carrigan, J. Philip Karl, S.M. Pasiakos, L.M. Margolis, Threshold of energy deficit and lower-body performance declines in military personnel: a meta-regression, Sports Med. 48 (9) (2018) 2169–2179.
[3] B.C. Nindi, B.R. Barnes, J.A. Alemany, P.N. Frykman, R.L. Shippee, K.E. Friedl, Physiological consequences of u.s. Army ranger training, Med. Sci. Sports Exerc. 39 (8) (2007) 1380–1387.
[4] B.C. Nindi, K.E. Friedl, P.N. Frykman, L.J. Marchitelli, R.L. Shippee, J.F. Patton, Physical performance and metabolic recovery among lean, healthy men following a prolonged energy deficit, Int. J. Sports Med. 18 (5) (1997) 317–324.
[5] J.S. Finkelstein, E.W. Yu, S.A. Burnett-Bowie, Gonadotropins and body composition, strength, and sexual function in men, N. Engl. J. Med. 369 (25) (2013) 2457.
[6] B.C. Trumble, E. Brindle, M. Kupash, K.A. O’Connor, Responsiveness of the reproductive axis to a single missed evening meal in young adult males, Am. J. Hum. Biol. 22 (6) (2010) 775–781.
[7] S.M. Pasiakos, C.E. Berryman, J.P. Karl, H.R. Lieberman, J.S. Orr, L.M. Margolis, J.A. Caldwell, A.J. Young, M.A. Montano, W.J. Evans, O. T. Carmichael, K.M. Gadde, M. Harris, J.C. Rood, Physiological and psychological effects of testosterone during severe energy deficit and recovery: a study protocol for a randomized, placebo-controlled trial for optimizing performance for soldiers (ops), Contemp. Clin. Trials 58 (2017) 47–57.
[8] S.M. Pasiakos, C.E. Berryman, J.P. Karl, H.R. Lieberman, J.S. Orr, L.M. Margolis, J.A. Caldwell, A.J. Young, M.A. Montano, W.J. Evans, O. Varianatin, O. T. Carmichael, K.M. Gadde, N.M. Johannsen, R.A. Beyl, M.N. Harris, J.C. Rood, Effects of testosterone supplementation on body composition and lower body muscle function during severe exercise- and diet-induced energy deficit: a proof-of-concept, single centre, randomised, double-blind, controlled trial, ElioMedicine 46 (2019) 411–422.
[9] S.H. Hennig, C.E. Berryman, M.N. Harris, J.P. Karl, J.R. Lieberman, J. P. McClung, J.C. Rood, S.M. Pasiakos, Testosterone administration during energy deficit suppresses hepaticin and increases iron availability for erythropoiesis, J. Clin. Endocrinol. Metab. 105 (4) (2020).
[10] E.L. Howard, L.M. Margolis, C.E. Berryman, H.R. Lieberman, J.P. Karl, A.J. Young, M.A. Montano, W.J. Evans, N.R. Rodriguez, N.M. Johannsen, K.M. Gadde, M. Harris, J.N. Harris, J.C. Rood, S.M. Pasiakos, Testosterone supplementation upregulates androgen receptor expression and translational capacity during severe energy deficit, Am. J. Physiol. Endocrinol. Metab. 318 (2020) E679–E688.
[11] J.P. Karl, C.E. Berryman, M.N. Harris, H.R. Lieberman, K.M. Gadde, J.C. Rood, S. M. Pasiakos, Effects of testosterone supplementation on ghrelin and appetite during and after severe energy deficit in healthy men, J Endocr Soc 4 (4) (2020) 2109–2124.
[12] S. Hainin, J.P. Brito, C.E. Berryman, F.J. Haynes, H.N. Huid, A.M. Massamento, J. J. Snyder, R.S. Swerdloff, F.C. Wu, M.A. Yalasams, Testosterone therapy in men with hypogonadism: an endocrine society clinical practice guideline, J. Clin. Endocrinol. Metab. 103 (5) (2018) 1715–1744.
[13] X.J. Zhang, D.L. Chinkes, E.T. Wolfe, Measurement of muscle fractional synthesis and breakdown rates from a pulse tracer injection, Am. J. Physiol. Endocrinol. Metab. 283 (4) (2002) E753–E764.
[14] A.W. Chan, J.M. Tetzlaff, D.G. Altman, A. Laupacis, P.C. Gotzsche, K. Kréze-Jeric, A. Hrobiarttson, H. Mann, K. Dickerisen, J.A. Berlin, C.J. Dore, W.R. Parulekar, W. S. Summerkill, T. Groves, K.F. Schulz, H.C. Fox, W.W. Rockhold, D. Rennie, D. Moher, Spirit 2013 statement: defining standard protocol items for clinical trials, Ann. Intern. Med. 158 (3) (2013) 200–207.
[15] A.W. Chan, J.M. Tetzlaff, P.C. Gotzsche, D.G. Altman, H. Mann, J.A. Berlin, K. Dickerisen, A. Hrobiarttson, K.F. Schulz, W.R. Parulekar, K. Kréze-Jeric, A. Laupacis, D. Moher, Spirit 2013 explanation and elaboration: guidance for protocols of clinical trials, BMJ 346 (2013), e7025.
[16] The army body composition program, army regulation 600-9, in: D.o.A.T Headquaters, Navy, and Air Force, 2013, Washington, DC.
[17] C.E. Berryman, A.J. Young, J.P. Karl, R.W. Kenefick, L.M. Margolis, R.E. Cole, J. W. Carbone, H.R. Lieberman, S.M. Pasiakos, Negative energy balance during 21 d at high altitude decreases fat-free mass regardless of dietary protein intake: a randomized controlled trial, Faseb J. 32 (2) (2018) 894–905.
[18] S.P. Hennig, J.P. McClung, A. Hatch-McChenney, J.T. Allen, M.A. Wilson, C. T. Carrigan, N.E. Murphy, H.K. Treien, S. Martin, J.A. Gwin, J.P. Karl, L. M. Margolis, S.M. Pasiakos, Energy deficit increases hepaticin and exacerbates declines in dietary iron absorption following strenuous physical activity: a randomized-controlled cross-over trial, Am. J. Clin. Nutr. 113 (2) (2021) 359–369.
[19] S.M. Pasiakos, J.P. Karl, L.J. Lutz, N.E. Murphy, L.M. Margolis, J.C. Rood, S. J. Cable, K.W. Williams, A.J. Young, J.P. McClung, Cardiometabolic risk in us army recruits and the effects of basic combat training, PloS One 7 (2) (2012), e31222.
[20] D.E.R. Warburton, V.K. Jamnik, S.S.D. Bredin, N. Gledhill, The physical activity readiness questionnaire for Exercise Testing and Prescription, tenth ed. ed., Wolters Kluwer, Philadelphia, PA, 2007.
[21] B.E. Ainsworth, W.L. Haskell, S.D. Herrman, N. Meckes, D.R. Bassett Jr., C. Tudor-Locke, J.L. Greer, J. Vezina, M.C. Whit-Glover, A.S. Leon, 2011 compendium of physical activities: a second update of codes and met values, Med. Sci. Sports Exerc. 43 (8) (2011) 1575–1581.
[22] B.S. Heshka, D. Gallagher, D.P. Kotler, L. Mayer, J. Albu, W. Shen, P.U. Freda, S.B. Heisefield, Intramuscular adipose tissue-free skeletal muscle mass: estimation
