What Are the Oxidizing Intermediates in the Fenton and Fenton-like Reactions? A Perspective †

Dan Meyerstein 1,2

1 Chemical Sciences Department, The Radical Research Center and The Schlesinger Family Center for Compact Accelerators, Radiation Sources and Applications, Ariel University, Ariel 4070000, Israel; dam@ariel.ac.il
2 Chemistry Department, Ben-Gurion University, Beer-Sheva 8410501, Israel
† This perspective is dedicated in honor of Professor Dov Lichtenberg on his 80th birthday.

Abstract: The Fenton and Fenton-like reactions are of major importance due to their role as a source of oxidative stress in all living systems and due to their use in advanced oxidation technologies. For many years, there has been a debate whether the reaction of Fe II (H2O)6 2+ with H2O2 yields OH • radicals or Fe IV = Oaq. It is now known that this reaction proceeds via the formation of the intermediate complex (H2O)6Fe III (O2H) + / (H2O)6Fe III (O2H)2 + that decomposes to form either OH • radicals or Fe IV = Oaq, depending on the pH of the medium. The intermediate complex might also directly oxidize a substrate present in the medium. In the presence of Fe III aq, the complex Fe III (OOH) aq is formed. This complex reacts via Fe II (H2O)6 2+ + Fe III (OOH) aq → Fe IV = Oaq + Fe III aq. In the presence of ligands, the process often observed is Ln(H2O)5–nFe III (O2H) → Ln + + L + 1− + Fe III aq. Thus, in the presence of small concentrations of HCO3 − i.e., in biological systems and in advanced oxidation processes—the oxidizing radical formed is CO3 2−. It is evident that, in the presence of other transition metal complexes and/or other ligands, other radicals might be formed. In complexes of the type Ln(H2O)5–nM in–II (O2H +), the peroxide might oxidize the ligand L without oxidizing the central cation M. OH • radicals are evidently not often formed in Fenton or Fenton-like reactions.

Keywords: OH •; Fe IV = Oaq; CO3 2−; pH effect; reactive oxidizing species

1. General Remarks

In 1894, Mr. Fenton reported that Fe II (H2O)6 2+ catalyzes the oxidation of tartaric acid by H2O2 [1]. No mechanism of this process was suggested by Mr. Fenton. Since then, the reaction Fe II (H2O)6 2+ + H2O2 has been called the Fenton reaction and the reactions M nL m + ROOR’—where M is either Fe or another low-valent transition metal, L is either H2O or another ligand, and R and R’ are either H or another substituent—are called Fenton-like reactions.

The Fenton and Fenton-like reactions are of major importance due to two reasons:
1. They are considered to be the major source of oxidative stress in all living systems.
2. They are used in the advanced oxidation technologies/processes that are of major importance in the environmental removal of pollutants.

Due to this prominence, a search in SciFinder for Fenton in 2021 results in 3286 references. The first mechanisms of the Fenton reaction were suggested in 1932 by two groups in parallel. Bray and Gorin [2] suggested that the mechanism is:

Fe II (H2O)6 2+ + H2O2 → Fe IV = O2+ aq

(1)

whereas Haber and Weiss [3,4] suggested that the mechanism of the Fenton reaction is:

Fe II (H2O)6 2+ + H2O2 → Fe III (H2O)6 3+ + OH • + OH −

(2)
The debate whether the oxidizing intermediate formed in the Fenton reaction is Fe$^{IV} = O^{2+}_{aq}$ or OH* has lasted for many decades. Thus, even as recently as this year, it has been suggested that reaction (1) is the correct mechanism, at least in neutral solutions [5], and that (2) is the only process even at pH 5 [6].

The difficulty in differentiating between the two mechanisms stems from the fact that both OH* radicals and Fe$^{IV} = O^{2+}_{aq}$ react with organic substrates, usually by abstracting a hydrogen atom, and often form the same, or similar, radicals. Using EPR to quantify the relative yields of the radicals formed in order to decide whether their sources are OH* radicals often fails due to their different lifetimes [7]. This difficulty was overcome by measuring the final products formed when a mixture of two alcohols is present. This technique requires that the low-valent metal cation initiating the Fenton-like reaction has a fast ligand exchange rate, i.e., it does not fit Fe$^{II} (H_2O)_6^{2+}$. Using this technique, it was shown that the reaction Cr$^{II} (H_2O)_6^{2+} + H_2O_2$ proceeds via a mechanism analogous to reaction (2), whereas the reaction Cu$^{I}_{aq}^+ + H_2O_2$ does not yield OH* radicals or Cu$^{III}_{aq}$ [8].

Furthermore, thermodynamic arguments [8] and kinetic arguments using the Marcus theory [9] indicate that the Fenton and Fenton-like reactions do not proceed via the outer sphere mechanism. Therefore, an inner sphere mechanism was proposed [8,9]:

$$ML_m^{n^+} + H_2O_2 \rightleftharpoons \{L_{m-1}M(H_2O_2)^{n^+} + L\}/\{L_{m-1}M(HO_2)^{(n-1)^+} + L + H^+\}$$

(3)

For simplicity, it will be assumed in that the complex formed is $L_{m-1}M(H_2O_2)^{n^+}$. Reaction (3) might be followed by a variety of routes, e.g., [8,9]:

$$\rightarrow ML_m^{(n+1)^+} + OH^* + OH^-$$

(4a)

$$L_mM(H_2O_2)^{n^+} \rightarrow ML_m^{(n+2)^+} + 2OH^-$$

(4b)

$$RH \rightarrow ML_m^{(n+1)^+} + R^* + OH^- + H_2O$$

(4c)

$$R=R \rightarrow ML_m^{(n+1)^+} + HOR-R^* + OH^-$$

(4d)

Naturally, $L_{m-1}M(H_2O_2)^{n^+}$ might also directly oxidize different substrates, e.g., inorganic reducing agents.

It was later discovered that when the central cation M has a too high redox potential, e.g., Co(II) [10], or cannot be oxidized, e.g.: AlIII, GaIII, InIII, ScIII, YIII, LaIII, BeII, ZnII, and CdII [11–13], the binding of two or more peroxides to the central cation might lead to the formation of OH* radicals via disproportionation of the peroxides without involving oxidation of the central cation [10–13]:

$$M^{n_{aq}} + kH_2O_2 \rightleftharpoons M^{n}(HO_2^-)_{k-1}(H_2O_2)_{aq} + (k-1)H^+ \quad (k = 2 \text{ or } 3)$$

(5)

$$M^{n}(HO_2^-)_{k-1}(H_2O_2)_{aq} \rightarrow M^{n}(HO_2^*)(HO_2^-)_{k-2}(OH^-)_{aq} + OH^*$$

(6)

The observation that ligated H$_2$O$_2$ can oxidize a second ligated peroxide suggests that it might also oxidize other ligands. This was tested theoretically, by DFT [14], and experimentally for the oxidation of a carbonate ligated to CoII [15], thus proving this possibility.

2. The Fenton Reaction Is (Fe(H$_2$O)$_6^{2+} + H_2O_2$)

Efforts to determine whether the reaction Fe(H$_2$O)$_6^{2+} + H_2O_2$ forms OH* radicals via following the formation of the DMPO-OH* adduct by EPR failed, as it was shown that even mild oxidants, e.g., Fe$^{III}_{aq}$ oxidize DMPO via [16]:

$$DMPO + Ox \rightarrow DMPO^{**} + Red$$

(7)
Antioxidants 2022, 11, 1368

DMPO$^{•+}$ + H$_2$O $→$ DMPOH$^{•}$ + OH$^-$ (8)

The rate constant of the Fenton reaction in acidic media is $k(\text{Fe(H}_2\text{O}_2)_6^{2+} + \text{H}_2\text{O}_2) \sim 50$ M$^{-1}$s$^{-1}$. The measured rate constants depend on the pH and on the ratio [H$_2$O$_2$/[Fe(H$_2$O)$_6^{2+}$]; the latter dependencies mainly stem from the observation that in the presence of excess H$_2$O$_2$ reactions (9) [17] and (10) [17,18] contribute to the observed rate constants [17].

$$\text{Fe}^{III}_{\text{aq}} + \text{H}_2\text{O}_2 ⇌ \text{Fe}^{III}(\text{HO}_2) + \text{H}^+ \quad (k_0 = 69$ M$^{-1}$s$^{-1} \quad k_{-9} = 0.11$ s$^{-1}$ at pH 2.0) (9)$$

$$\text{Fe(H}_2\text{O}_6^{2+} + \text{Fe}^{III}(\text{HO}_2) → \text{Fe}^{III}_{\text{aq}} + [\text{Fe}^{III}_{\text{aq}} + \text{OH}^*]/[\text{Fe}^{IV} = \text{O}_{\text{aq}}] \quad (10)$$

$$K_{10} = 7.7 \cdot 10^5$ M$^{-1}$s$^{-1}$ at pH 1.0

The nature of the products of reaction (10) were later determined [19] to be $\text{Fe}^{III}_{\text{aq}} + \text{Fe}^{IV} = \text{O}_{\text{aq}}$; thus, clearly in acidic solutions when [H$_2$O$_2$/[Fe(H$_2$O)$_6^{2+}$] > 1, a mixture of OH* radicals and Fe$^{IV} = \text{O}_{\text{aq}}$ is formed.

Next, Bakac et al. developed a new procedure to differentiate between OH* radicals and Fe$^{IV} = \text{O}_{\text{aq}}$ based on the different final products formed in the reactions of OH* radicals and Fe$^{IV} = \text{O}_{\text{aq}}$ with DMSO, (CH$_3$)$_2$SO [20]. This technique can only be used for iron. Using this technique, it was proved that, in acidic solutions, OH* radicals are formed by the Fenton reaction, whereas in neutral solutions, where pH > 6, the product is Fe$^{IV} = \text{O}_{\text{aq}}$ [20]. This proves that the Fenton reaction under physiological conditions does not form OH* radicals: However, this statement is not correct for the acidic organelles, e.g., lysosomes [21] and some peroxisomes [22]. This conclusion is correct for reactions of Fe(H$_2$O)$_6^{2+}$, but not for all Fenton-like reactions of Fe$^{II} \text{H}_2\text{O}_2$, as seen below.

Recently, it was shown that the Fenton reaction is dramatically accelerated in the presence of low concentrations of bicarbonate well below those present in living cells [19]. The oxidizing transient formed under these conditions is the carbonate anion radical, CO$_3^{•−}$ [19]. CO$_3^{•−}$ is a strong oxidizing agent, E^0(CO$_3^{•−}$/CO$_3^{2−}) = 1.57$ V vs. NHE [23] and is evidently somewhat stronger in neutral media. CO$_3^{•−}$ is still a considerably weaker oxidizing agent than OH* radicals and is, therefore, more selective as a ROS [24,25]. The reactions occurring were proposed to be [19]:

$$\text{Fe(H}_2\text{O}_6^{2+} + \text{H}_2\text{O}_2 ⇒ (H}_2\text{O}_3\text{Fe(O}_2\text{H})^+/(H}_2\text{O}_3\text{Fe(O}_2\text{H})^+ + \text{H}_3\text{O}^+) \quad (11)$$

$$\text{(H}_2\text{O}_3\text{Fe(O}_2\text{H})^+/(H}_2\text{O}_3\text{Fe(O}_2\text{H})^+ + \text{H}_2\text{O}_3^− → \text{Fe}^{III}_{\text{aq}} + \text{CO}_3^{•−}) \quad (12)$$

$$\text{Fe(H}_2\text{O}_6^{2+} + \text{H}_2\text{O}_3^− ⇒ (H}_2\text{O}_3\text{Fe(CO}_3)^+ + \text{H}_3\text{O}^+ + 2\text{H}_2\text{O} \quad (11a)$$

$$\text{(H}_2\text{O}_3\text{Fe(CO}_3)^+ + \text{H}_2\text{O}_2 → \text{Fe}^{III}_{\text{aq}} + \text{CO}_3^{•−}) \quad (12a)$$

Recent unpublished results [26] suggest that reaction (12) likely proceeds via:

$$\text{(H}_2\text{O}_3\text{Fe(O}_2\text{H})^+/(H}_2\text{O}_3\text{Fe(O}_2\text{H})^+ + \text{H}_2\text{O}_3^− → (CO}_3\text{Fe}^{IV}_{\text{aq}} \quad (13)$$

and reaction (12a) likely proceeds via:

$$\text{(H}_2\text{O}_3\text{Fe(CO}_3)^+ + \text{H}_2\text{O}_2 → (CO}_3\text{Fe}^{IV}_{\text{aq}} \quad (13a)$$

The (CO$_3$)Fe$^{IV}_{\text{aq}}$ thus formed might decompose via:

$$\text{(CO}_3\text{Fe}^{IV}_{\text{aq}} \quad (14)$$

$$\rightarrow \text{Fe}^{III}_{\text{aq}} + \text{CO}_3^{•−} \quad (14a)$$

$$\text{Substrate} \quad \rightarrow \text{Fe}^{III}_{\text{aq}} + \text{oxidized-substrate} + \text{H}_2\text{O}_3^− \quad (14b)$$
The competition between reactions (14a) and (14b) depends on the substrate. Thus, for DMSO $k_{14a} >> k_{14b}$, but for PMSO (phenyl-methyl-sulfoxide) $k_{14a}^{-1}k_{14b}$.

3. Fenton-like Reactions Involving FeIIIL$_m$

Two types of Fenton-like reactions have to be considered.

When ligands, L, different from H$_2$O are ligated to The FeII central cation, the effect of HCO$_3^-$ on the mechanism, discussed above, can be included herein. It should be noted that the technique to distinguish between OH$^\bullet$ radicals and FeIV=O$_{aq}$ developed by Bakac et al. [20], cannot always be applied here because the mechanism of the reaction LFeIV=O with DMSO is not known. The mechanism of the reactions of FeIIIL$_m$ with H$_2$O$_2$ for the following ligands was studied.

- L = PO$_4^{3-}$ /HPO$_4^{2-}$ [20]. The results suggest that the Fenton reaction in the presence of phosphate in neutral solutions yields OH$^\bullet$ radicals and not (PO$_4^{3-}$)$_m$FeIV=O$_{aq}$ [20].
- L = edta [22]. The reaction FeII (edta)$^{2-}$ + H$_2$O$_2$ was studied at pH > 5.5 using the technique developed by Masarwa et al. [8]. The results indicate that OH$^\bullet$ radicals are the product of this reaction [27].
- L = nta, nta = N(CH$_2$CO$_2^-$)$_2$ [28]. The reaction FeII (nta)$^{2-}$ + H$_2$O$_2$ was studied. Surprisingly, though edta and nta are very similar ligands, the results differ considerably. The results suggest that the major product of the FeII (nta)$^{2-}$ + H$_2$O$_2$ is a (nta)FeIV=O$_{aq}$ complex [28]. The yields of the final products are pH dependent [28].
- L = citrate [29]. The results of the reaction FeII (citrate)$^{2-}$ with H$_2$O$_2$ was studied. This reaction is of importance because FeIII (citrate) is a major component of the non-transferrin iron mobile pool [30]. The results indicate that the reaction FeII (citrate)$^{2-}$ + H$_2$O$_2$ in neutral solutions does not yield OH$^\bullet$ radicals. The results do not answer the question whether a FeIV (citrate)$_{aq}$ species is a transient formed by this reaction. When low concentration of HCO$_3^-$ are added to this system, the kinetics and final products are changed dramatically, indicating that the CO$_3^{2-}$ radical anion is a major product of the reaction under these conditions [29].

The results presented in this section indicate that the mechanism of the Fenton-like reactions of FeIIIL$_m$ complex dramatically depend on the nature of the ligand. Therefore, one cannot assume that FeII complexes with analogous ligands react via the same mechanism.

When different peroxides are used as oxidants in the Fenton-like reaction, such as in biological systems, the most important peroxides are the ROOH compounds, where R is an alkyl. The ROOH peroxides are formed in biological systems, mainly in lipids, via the chain reaction [30,31]:

$$\text{RH} + \text{Ox} \rightarrow R^\bullet + \text{Ox-H}/(\text{Ox}^- + \text{H}^+) \quad (\text{Ox} = \text{OH}^\bullet, R^\bullet, \text{Fe}^{IV}=\text{O}_{aq} \text{ etc.}) \quad (15)$$

$$R^\bullet + O_2^\bullet \rightarrow RO_2 \quad (16)$$

$$\text{RH} + RO_2^\bullet \rightarrow RO_2H + R^\bullet \quad (17)$$

Therefore, the mechanism of the reaction (CH$_3$)$_3$COOH + Fe(H$_2$O)$_6^{2+}$ was studied. The results indicate that in this system FeIV = O$_{aq}$ is also formed in neutral solutions in the absence of bicarbonate. In the presence of low concentrations of bicarbonate, CO$_3^{2-}$ radical anions are the product of this Fenton-like reaction [32].

The S$_2$O$_8^{2-}$ and HSO$_3^-$ peroxides are of major importance in advanced oxidation technologies [33–36]. Therefore, the mechanisms of the reactions Fe(H$_2$O)$_6^{2+}$ + HSO$_3^-$ /S$_2$O$_8^{2-}$ were studied. The results indicate that in acidic media, SO$_4^{2-}$ radical anions are the active oxidizing species formed, in neutral solutions, FeIV=O$_{aq}$ is formed, and in the presence of low concentrations of bicarbonate, CO$_3^{2-}$ is the oxidizing intermediate formed [26].

4. Other Fenton-like Reactions

Fenton-like reactions are reported for most low-valent transition metals and even for cations that are not involved in redox processes [11–13]. Herein, only Fenton-like reactions
involving CuI \cite{37} and ZnII \cite{38–41} that are of biological importance and CoII, due to its role in advanced oxidation technologies \cite{15}, are discussed.

The reaction of CuI with H\textsubscript{2}O\textsubscript{2} was long thought to yield OH* radicals \cite{42}, but it was later shown that the active oxidizing agent is CuI(H\textsubscript{2}O\textsubscript{2}) \cite{8} or Cu\textsuperscript{II\textsubscript{aq}} \cite{43}. It was also proposed that the reaction of CuI with S\textsubscript{2}O\textsubscript{8}2– yields Cu\textsuperscript{III\textsubscript{aq}} \cite{44}. Conversely, it was proposed that the reactions of CuII with HSO\textsubscript{5}– and S\textsubscript{2}O\textsubscript{8}2– yield Cu\textsuperscript{III\textsubscript{aq}} and SO\textsubscript{4}2– \cite{45}.

Surprisingly, Zn\textsuperscript{2+\textsubscript{aq}} and Zn\textsuperscript{II\textsubscript{aq}} complexes were shown to be involved in the formation of reactive oxygen species (see references \cite{38–41} for example.). However, no chemical mechanism initiating this process was forwarded. One possible mechanism is that suggested by Shul’pin et al. \cite{13}. According to this mechanism, the reactions involved are:

\begin{align*}
\text{Zn}^{2+\textsubscript{aq}} + \text{H}_2\text{O}_2 & \rightleftharpoons \text{Zn}^{II}(\text{O}_2\text{H}^-)\text{aq} + \text{H}^+ \quad (18) \\
\text{Zn}^{II}(\text{O}_2\text{H}^-)\text{aq} + \text{H}_2\text{O}_2 & \rightleftharpoons \text{Zn}^{II}(\text{O}_2\text{H}^-)(\text{H}_2\text{O}_2)\text{aq} \quad (19) \\
\text{Zn}^{II}(\text{O}_2\text{H}^-)(\text{H}_2\text{O}_2)\text{aq} & \rightarrow \text{Zn}^{2+\textsubscript{aq}} + \text{OH}^\cdot + \text{HO}_2^\cdot + \text{OH}^- \quad (20)
\end{align*}

As the steady state concentration of H\textsubscript{2}O\textsubscript{2} in biological media is very low, the probability that two H\textsubscript{2}O\textsubscript{2} will bind to the same Zn\textsuperscript{2+\textsubscript{aq}} is low. Therefore, it is tempting to propose that the process leading to the formation of reactive oxygen species catalyzed by Zn\textsuperscript{2+\textsubscript{aq}} is:

\begin{align*}
\text{Zn}^{2+\textsubscript{aq}} + \text{HCO}_3^- & \rightleftharpoons \text{Zn}^{II}(\text{HCO}_3^-)\text{aq} \quad (21) \\
\text{Zn}^{II}(\text{HCO}_3^-)\text{aq} + \text{H}_2\text{O}_2 & \rightleftharpoons \text{Zn}^{II}(\text{HCO}_3^-)(\text{H}_2\text{O}_2)\text{aq} \quad (22) \\
\text{Zn}^{II}(\text{HCO}_3^-)(\text{H}_2\text{O}_2)\text{aq} & \rightarrow \text{Zn}^{2+\textsubscript{aq}} + \text{OH}^\cdot + \text{CO}_3^\cdot - + \text{H}_2\text{O} \quad (23)
\end{align*}

These two plausible mechanisms must be studied experimentally to prove one or both of them.

The reaction Co(H\textsubscript{2}O\textsubscript{6})\textsuperscript{2+\textsubscript{aq}} + H\textsubscript{2}O\textsubscript{2} to yield OH* radicals is endothermic due to the high redox potential of the CoIII/II couple \cite{10}. However, it was shown that the following reactions replace the simple Fenton-like reaction \cite{14}:

\begin{align*}
\text{Co}(\text{H}_2\text{O})\textsuperscript{6+\textsubscript{aq}} + 3\text{H}_2\text{O}_2 & \rightleftharpoons (\text{H}_2\text{O})\text{Co}^{II}(\text{H}_2\text{O}_2^-)\text{aq}\textsubscript{2}(\text{H}_2\text{O}_2) \quad (24) \\
(\text{H}_2\text{O})\text{Co}^{II}(\text{H}_2\text{O}_2^-)\text{aq}\textsubscript{2}(\text{H}_2\text{O}_2) & \rightarrow (\text{H}_2\text{O})\text{Co}^{II}(\text{H}_2\text{O}_2^-)(\text{H}_2\text{O}_2^+)(\text{OH}^-) + \text{OH}^\cdot \quad (25)
\end{align*}

In the presence of bicarbonate, the complex cyclic-(CO\textsubscript{4})CoII(H\textsubscript{2}O\textsubscript{2})\textsubscript{2}(H\textsubscript{2}O) is formed. This complex decomposes via \cite{15}:

\begin{equation}
\text{cyclic-(CO}_4\text{Co}^{II}(\text{H}_2\text{O}_2^-)\text{aq}\textsubscript{2}(\text{H}_2\text{O}) \rightarrow (\text{H}_2\text{O})\text{Co}^{II}(\text{H}_2\text{O}_2^+)(\text{OH}^-)_2 + \text{CO}_3^\cdot - \quad (26)
\end{equation}

The reaction of HSO\textsubscript{5}– with Co(H\textsubscript{2}O\textsubscript{6})\textsuperscript{2+\textsubscript{aq}} and with CoII(P\textsubscript{2}O\textsubscript{7})(H\textsubscript{2}O\textsubscript{2})2– require more than one peroxymonosulfate to form radicals \cite{46}.

Finally, it should be pointed out that it is likely that ligands other than carbonate, with the proper redox potential, might also be oxidized directly by peroxides \cite{14}.

5. Heterogeneous Fenton-like Processes

A variety of heterogeneous catalysts react with H\textsubscript{2}O\textsubscript{2} in Fenton-like processes. Thus, ZnO-nanoparticles induce the formation of reactive oxygen species in biological systems. However, this is attributed to the dissolved Zn\textsuperscript{2+\textsubscript{aq}} ions \cite{39} and is, therefore, not truly heterogeneous.

The most important heterogeneous catalysts of Fenton-like processes have iron atoms/cations as the active participants, e.g., zero-valent iron \cite{47}, MgFe\textsubscript{2}O\textsubscript{4} (e.g., Fe\textsubscript{3}O\textsubscript{4} \cite{48} and MgFe\textsubscript{2}O\textsubscript{4} \cite{49}), and LaFeO\textsubscript{3} \cite{50}. These systems are used in advanced oxidation processes and not in biological ones. Therefore, their mechanisms are not discussed herein.
6. Concluding Remarks

The major conclusions of this perspective are:

I. The reaction Fe\(^{II}\)(H\(_2\)O\(_6\))\(^{2+}\) + H\(_2\)O\(_2\) yields OH\(^*\) radicals as the active oxidizing agent in acidic solutions when [Fe\(^{II}\)(H\(_2\)O\(_6\))\(^{2+}\)] > [H\(_2\)O\(_2\)], a mixture of OH\(^*\) radicals and Fe\(^{IV}\)=O\(_{aq}\) in acidic solutions when [Fe\(^{II}\)(H\(_2\)O\(_6\))\(^{2+}\)] < [H\(_2\)O\(_2\)], Fe\(^{IV}\)=O\(_{aq}\) in neutral solutions, and CO\(_3\)^{−} in solutions containing even low concentration of HCO\(_3\)^{−}, i.e., under physiological conditions.

II. It is important to note that mechanisms of the reactions H\(_2\)O\(_2\) + Fe\(^{II}\)L\(_m\)(H\(_2\)O\(_n\))\(_k\), where L are ligands different than water, depend dramatically on the properties of L. Thus, one must study the mechanism for each ligand separately.

III. The study of the mechanisms of Fenton-like reactions with other peroxides requires separate studies.

IV. The mechanisms of Fenton-like reactions of other low-valent metal cations differ from each other and thus require separate studies.

Therefore, it must be concluded that the mechanism of each Fenton-like reaction should be studied before concluding which oxidizing transient is formed in that reaction.

Funding: This study was supported in part by a grant from the Pazy Foundation.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: I am indebted to all my co-workers cited in this manuscript.

Conflicts of Interest: The author declare no conflict of interest.

References

1. Fenton, H.J.H. Oxidation of tartaric acid in presence of iron. J. Chem. Soc. Trans. 1894, 65, 899–910. [CrossRef]
2. Bray, W.C.; Gorin, M.H. Ferryl ion, a compound of tetravalent Iron. J. Am. Chem. Soc. 1932, 54, 2124–2125. [CrossRef]
3. Haber, F.; Weiss, J. Uber die Katalyse des Hydroperoxydes. Naturwiss 1932, 51, 948–950. [CrossRef]
4. Haber, F.; Weiss, J. The catalytic decomposition of hydrogenperoxide by iron salts. Proc. Roy. Soc. 1934, A147, 332–351.
5. Wang, Z.; Qiu, W.; Pang, S.; Guo, Q.; Guan, C.; Jiang, J. Aqueous Iron(IV) Oxo Complex: An Emerging Powerful Reactive Oxidant Formed by Iron(II)-Based Advanced Oxidation Processes for Oxidative Water Treatment. Environ. Sci. Technol. 2022, 56, 1492–1509. [CrossRef]
6. Gladich, I.; Chen, S.; Yang, H.; Boucly, A.; Winter, B.; van Bokhoven, J.A.; Ammann, M.; Artiglia, L. The Reactions of Organic Radicals Formed in the Process? J. Phys. Chem. A 2013, 117, 13096–13099. [CrossRef]
7. Czapski, G.; Samuni, A.; Meisel, D. The Reactions of Organic Radicals Formed by Some “Fenton-Like” Reagents. J. Phys. Chem. 1971, 75, 3271–3280. [CrossRef]
8. Masarwa, M.; Cohen, H.; Meyerstein, D.; Hickman, D.L.; Bakac, A.; Espenson, J.H. Reactions of low Valent Transiton Metal Complexes with Hydrogen-Peroxide. Are they “Fenton Like” or not? I. The case of Cu\(^{aq+}\) and Cr\(^{aq2+}\). J. Amer. Chem. Soc. 1988, 110, 4293–4297. [CrossRef]
9. Goldstein, S.; Czapski, G.; Meyerstein, D. The Fenton Reagent, Free Radicals. Biol. Med. 1993, 15, 435–445.
10. Burg, A.; Shusterman, I.; Kornweit, H.; Meyerstein, D. Three H\(_2\)O\(_2\) molecules are involved in the “Fenton-like” reaction between Co(H\(_2\)O\(_6\))\(^{2+}\) and H\(_2\)O\(_2\). Dalton Trans. 2014, 43, 9111–9115. [CrossRef]
11. Kuznetsov, M.L.; Kozlov, Y.N.; Mandelli, D.; Pombeiro, A.J.L.; Shul’pin, G.B. Mechanism of Al\(^{3+}\)-Catalyzed Oxidations of Hydrocarbons: Dramatic Activation of H\(_2\)O\(_2\) toward OO Homolysis in Complex [Al(H\(_2\)O)\(_4\)(OOH)(H\(_2\)O\(_2\))]\(^{2+}\) Explains the Formation of HO\(^*\) Radicals. Inorg. Chem. 2011, 50, 3996–4005. [CrossRef] [PubMed]
12. Novikov, A.S.; Kuznetsov, M.L.; Pombeiro, A.J.L.; Bokach, N.A.; Shul’pin, G.B. Generation of HO\(^*\) radical from hydrogen peroxide catalyzed by aqua complexes of the group iii metals [M(H\(_2\)O\(_6\))\(^{3+}\)] (M = Ga, In, Sc, Y, or La): A theoretical study. ACS Catal. 2013, 3, 1195–1208. [CrossRef]
13. MKuznetsov, I.; Teixeira, F.A.; Bokach, N.A.; Pombeiro, A.J.L.; Shul’pin, G.B. Radical decomposition of hydrogen peroxide catalyzed by aqua complexes [M(H\(_2\)O\(_6\))\(^{3+}\)] (M = Be, Zn, Cd). J. Catal. 2014, 313, 135–148. [CrossRef]
14. Kornweit, H.; Burg, A.; Meyerstein, D. Plausible Mechanisms of the Fenton-Like Reactions, M = Fe(II) and Co(II), in the Presence of RCO\(_2\)⁻ Substrates: Are OH\(^*\) Radicals Formed in the Process? J. Phys Chem. A 2015, 119, 4200–4206. [CrossRef]
15. Burg, A.; Shamir, D.; Shusterman, I.; Kornweit, H.; Meyerstein, D. The role of carbonate as a catalyst of Fenton-like reactions in AOP processes: CO\(_3\)⁻ as the active intermediate. Chem. Commun. 2014, 50, 13096–13099. [CrossRef]
16. Eberson, L. Formation of hydroxyl spin adducts via nucleophilic addition to 5,5-dimethyl-1-pyrroline N-oxide (DMPO). Acta Chim. Scand. 1999, 53, 584–593. [CrossRef]
17. Rachmilovich-Calis, S.; Masarwa, A.; Meyerstein, N.; Meyerstein, D.; van Eldik, R. New Mechanistic Aspects of the Fenton Reaction. Chem. A Eur. J. 2009, 15, 8303–8309. [CrossRef]
18. Mansano-Weiss, C.; Cohen, H.; Meyerstein, D. Reactions of peroxyl radicals with Fe(OH)₆³⁺. J. Inorg. Biochem. 2002, 91, 199–204. [CrossRef]
19. Illés, E.; Mizrahi, A.; Marks, V.; Meyerstein, D. Carbonate-radical-anions, and not hydroxyl radicals, are the products of the Fenton reaction in neutral solutions containing bicarbonate. Free Radic. Biol. Med. 2019, 131, 1–6. [CrossRef]
20. Bataineh, H.; Pestovsky, O.; Bakac, A. pH-induced mechanistic changeover from hydroxyl radicals to iron(iv) in the Fenton reaction. Chem. Sci. 2012, 3, 1594–1599. [CrossRef]
21. Chen, J.W.; Chen, C.M.; Chang, C.C. A fluorescent pH probe for acidic organelles in living cells. Org. Biomol. Chem. 2017, 15, 7936–7943. [CrossRef] [PubMed]
22. Rottensteine, H.; Theodoulou, F.L. The ins and outs of peroxisomes: Co-ordination of membrane transport and peroxisomal metabolism. Biochim. Biophys. Acta 2006, 1763, 1527–1540. [CrossRef] [PubMed]
23. Armstrong, D.A.; Huie, R.E.; Koppenol, W.H.; Lymar, S.V.; Merényi, G.; Neta, P.; Rusic, B.; Stanbury, D.M.; Steenken, S.; Wardman, P. Standard electrode potentials involving radicals in aqueous solution: Inorganic radicals (IUPAC Technical Report) Pure. Appl. Chem. 2015, 87, 1139–1150. [CrossRef]
24. Patra, S.G.; Mizrahi, A.; Meyerstein, D. The role of carbonate in catalytic oxidations. Acc. Chem. Res. 2020, 53, 2189–2200. [CrossRef] [PubMed]
25. Fleming, A.M.; Burrows, C.J. Chemistry of ROS-mediated oxidation to the guanine base in DNA and its biological consequences. Int. J. Radiol. Biol. 2021, 98, 452–460. [CrossRef]
26. Vijay, A.K.; Marks, V.; Mizrahi, A.; Wen, Y.; Ma, X.; Sharma, V.K.; Meyerstein, D. Reaction of FeIIaq with Peroxymonosulfate and Peroxydisulfate in Presence of Bicarbonate: Formation of FeVaq and Carbonate Radical Anions. submitted for publication.
27. Luzzatto, E.; Cohen, H.; Stockheim, C.; Wieghardt, K.; Meyerstein, D. Reactions of Low Valent Transition Metal Complexes with CO2 and O2: A revisitation from a redox chemistry perspective. J. Inorg. Biochem. 2020, 206, 111018. [CrossRef]
28. Bammolker, H.; Cohen, H.; Meyerstein, D. Reactions of low Valent Transition Metal Complexes with Hydrogen Peroxide. Are they “Fenton-like” or Not? 4. The Case of Fe(II)L, L = EDTA; HEDTA and TCMA. Free Radic. Res. 1995, 23, 453–463. [CrossRef]
29. Grootveld, M.; Bell, J.D.; Halliwell, B.; Aruoma, O.I.; Bomford, A.; Sadler, P.J. Nontransferrin-bound iron in plasma or serum from patients with idiopathic hemochromatosis. Characterization by high performance carbon chromatography and nuclear magnetic resonance spectroscopy. J. Biol. Chem. 1989, 264, 4417–4422. [CrossRef]
30. Repetto, M.; Semprine, J.; Boveris, A. Lipid Peroxidation: Chemical Mechanism, Biological Implications and Analytical Determination. In Lipid Peroxidation; Catala, A., Ed.; IntechOpen: Rijeka, Croatia, 2012. [CrossRef]
31. Vijay, A.K.; Marks, V.; Mizrahi, A.; Cohen, H.; Meyerstein, D. A new insight into biological processes: The role of bicarbonate on the kinetics and mechanism of the Fenton-like systems with organic peroxide. to be published.
32. Li, J.; Yang, L.; Lai, B.; Liu, C.; He, Y.; Yao, G.; Li, N. Recent progress on heterogeneous Fe-based materials induced persulfate activation for organics removal. Chem. Eng. J. 2021, 414, 128674. [CrossRef]
33. Liu, J.; Peng, C.; Shi, X. Preparation, characterization, and applications of Fe-based catalysts in advanced oxidation processes for organics removal: A review. Environ. Pollut. 2022, 293, 118565. [CrossRef] [PubMed]
34. Ahmed, N.; Vione, D.; Rivoira, L.; Carena, L.; Castiglioni, M.; Bruzzoniti, M.C. A review on the degradation of pollutants by fenton-like systems based on zero-valent iron and persulfate: Effects of reduction potentials, pH, and anions occurring in waste waters. Molecules 2021, 26, 4584. [CrossRef]
35. Dong, J.; Xu, W.; Liu, S.; Du, L.; Chen, Q.; Yang, T.; Gong, Y.; Li, M.; Tan, X.; Liu, Y. Recent advances in applications of nonradical oxidation in water treatment: Mechanisms, catalysts and environmental effects. J. Clean. Prod. 2021, 321, 128781. [CrossRef]
36. Winterbourn, C.C. The Biological Chemistry of Hydrogen Peroxide. Methods Enzymol. 2013, 528, 3–25. [PubMed]
37. Hübner, C.; Haase, H. Interactions of zinc- and redox-signaling pathways. Redox Biol. 2021, 41, 101916. [CrossRef]
38. Song, W.; Zhang, J.; Guo, J.; Zhang, J.; Ding, F.; Li, L.; Sun, Z. Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles. Tox. Lett. 2010, 199, 389–397. [CrossRef] [PubMed]
39. Lopes-Pires, M.E.; Ahmed, N.S.; Vara, D.; Gibbins, J.M.; Pula, G.; Pugh, N. Zinc regulates reactive oxygen species generation in platelets. Platelets 2020, 32, 368–377. [CrossRef]
40. Abebe, B.; Zereffa, E.A.; Tadesse, A.; Murthy, H.C.A. A Review on Enhancing the Antibacterial Activity of ZnO: Mechanisms and Microscopic Investigation. Nanoscale Res. Lett. 2020, 15, 190. [CrossRef]
41. Halliwell, B.; Gutteridge, J.M.C. Role of free radicals and catalytic metal ions in human disease: An overview. Methods Enzymol. 1990, 186, 1–85.
42. Pham, A.N.; Xing, G.; Miller, C.J.; Waite, T.D. Fenton-like copper redox chemistry revisited: Hydrogen peroxide and superoxide mediation of copper-catalyzed oxidant production. J. Catal. 2013, 301, 54–64. [CrossRef]
44. Li, C.; Goetz, V.; Chiron, S. Peroxydisulfate activation process on copper oxide: Cu(III) as the predominant selective intermediate oxidant for phenol and waterborne antibiotics removal. *J. Environ. Chem. Eng.* 2021, 9, 105145. [CrossRef]
45. Wang, L.; Fu, Y.; Li, Q.; Wang, Z. EPR Evidence for Mechanistic Diversity of Cu(II)/Peroxygen Oxidation Systems by Tracing the Origin of DMPO Spin Adducts. *Environ. Sci. Technol.* 2022, 56, 8796–8806. [CrossRef] [PubMed]
46. Shamir, D.; Meyerstein, D.; Katsaran, D.; Pochtarenko, L.; Yardeni, G.; Burg, A.; Albo, Y.; Kornweitz, H.; Zilbermann, I. Mechanisms of Reaction Between Co(II) Complexes and Peroxymonosulfate. *Eur. J. Inorg. Chem.* 2022, e202100646. [CrossRef]
47. Wu, Y.; Guan, C.Y.; Griswold, N.; Hsu, L.Y.; Fang, X.; Hu, A.; Hu, Z.Q.; Yu, C.P. Zero-valent iron-based technologies for removal of heavy metal(loid)s and organic pollutants from the aquatic environment: Recent advances and perspectives. *J. Clean. Prod.* 2020, 277, 123478. [CrossRef]
48. Li, X.; Li, J.; Shi, W.; Bao, J.; Yang, X. A Fenton-Like Nanocatalyst Based on Easily Separated Magnetic Nanorings for Oxidation and Degradation of Dye Pollutant. *Materials* 2020, 13, 332. [CrossRef] [PubMed]
49. Ivanetsa, A.; Roshchinaa, M.; Srivastavab, V.; Proxorovicha, V.; Dontsovac, T.; Nahirniakc, S.; Pankovd, V.; Hosseini-Bandegharaeie, A.; Trang, H.N.; Sillanpää, M. Effect of metal ions adsorption on the efficiency of methylene blue degradation onto MgFe$_2$O$_4$ as Fenton-like catalysts. *Colloids Surf.* 2019, 571, 17–26. [CrossRef]
50. Bresler, K.; Shamir, D.; Shamish, Z.; Meyerstein, D.; Burg, A. FeIV=O$_{aq}$ is the active oxidizing intermediate formed in the Heterogeneous Fenton Like Reaction of H$_2$O$_2$ with LaFeO$_3$. submitted for publication.