Spinal Hemangioblastomas: Analysis of Surgical Outcome and Prognostic Factors

Alberto Feletti (alberto.feletti@gmail.com)
NOCSAE Modena Hospital
https://orcid.org/0000-0001-6285-3648

Alessandro Boaro
NOCSAE Modena Hospital

Davide Giampiccolo
NOCSAE Modena Hospital

Giorgio Casoli
University of Modena and Reggio Emilia

Fabio Moscolo
NOCSAE Modena Hospital

Massimiliano Ferrara
Veneto Institute of Oncology, IOV-IRCCS

Francesco Sala
NOCSAE Modena Hospital

Giacomo Pavesi
University of Modena and Reggio Emilia

Research Article

Keywords: hemangioblastoma, spinal cord, VHL, intramedullary, IONM, outcome

Posted Date: August 6th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-768124/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Version of Record: A version of this preprint was published at Neurosurgical Review on November 25th, 2021. See the published version at https://doi.org/10.1007/s10143-021-01696-x.
Abstract

Background. The prognostic factors for surgically removed spinal hemangioblastomas, the impact of VHL disease on outcome, and the role of intraoperative neuromonitoring are still not completely clear. The aim of this study was to review our experience with spinal hemangioblastomas in order to assess potential predictors of neurological outcome after surgery.

Methods. All cases of spinal hemangioblastomas removed at two Italian academic institutions from 1985 to 2020 were reviewed. Data about clinical presentation and symptoms duration, diagnosis of VHL, surgical approach, use of IONM, duration of hospital stay, follow up, McCormick grade before and after surgery were extracted.

Results. Sixty-one patients (31 F, 30 M) underwent 69 surgeries to remove 74 spinal hemangioblastomas (37 cervical, 32 thoracic, 5 lumbar). Improvement was found in 32.3% of cases, neurological condition remained stable in 51.6% of cases, and deteriorated in 16.1% of patients.

A worsening trend in VHL patients and an improvement trend in non-VHL patients were detected, despite the lack of statistical significance. Laminotomy and use of IONM were found to be associated with better outcome, although no association was found between surgery without IOM and worse outcome.

Conclusion. In most cases, patients affected by spinal hemangioblastomas can expect a good long-term outcome. In our experience, laminotomy seems to be associated with better outcome compared to laminectomy. While its absence is not associated with worse outcome, IONM seems to be associated with a better neurological outcome. Our study suggests that the more impaired the preoperative neurological condition, the worse the outcome.

Introduction

Hemangioblastomas (HBs) of the central nervous system are histologically benign entities that can present with symptoms due to mass effect and compression of neural structures, especially in the presence of associated edema, cyst or syrinx. They are relatively uncommon, accounting for 2-6% of all spinal cord tumors and 2-15% of intramedullary tumors [1, 6, 13, 16, 18, 28]. They are sporadic in 70-80% of cases, while 20-30% of them are associated to von Hippel-Lindau (VHL) disease [9]. More than 50% have accompanying syringomyelia [3]. To date, only case reports and small series are available in the literature, with just a few large series having been published so far. Moreover, despite biologically identical, sporadic and syndromic HBs pose specific issues in terms of decision of proper surgical timing and follow up. Therefore, the optimal management strategy especially related to surgery timing, prognostic factors, and surgical outcome is still controversial. Similarly, surgery with the aid of intraoperative neurophysiological monitoring (IONM) may be favored but its impact is debated.

In this report we review our experience with 74 spinal HBs removed during 69 procedures in 61 patients (24 of them affected by VHL disease) and provide a thorough review of the pertinent literature. We focused especially on the assessment of potential predictors of neurological outcome after surgery.

Methods

We reviewed all cases of spinal hemangioblastomas surgically removed at two Italian academic institutions from January 1985 to October 2020. Data about clinical presentation and symptoms duration, diagnosis of VHL, presence of cyst or syrinx, surgical approach, use of IONM, duration of hospital stay, follow up, McCormick grade before and after surgery were extracted. All patients signed an informed consent before surgery, approved by the Ethical Board of both Institutions.

Clinical evaluation and medical history

The modified McCormick scale was used to evaluate the neurological status before surgery, after surgery, at discharge and at follow up. It was possible to retrieve specific onset symptoms for 44 patients.

Imaging evaluation

We reviewed all available preoperative and postoperative contrast-enhanced T1-weighted MRI in order to assess tumor location (cervical, thoracic, lumbar), presence of associated cyst or syrinx, extent of resection, and tumor residual or recurrence.

Surgical procedures

Surgery was performed as described elsewhere and commonly accepted [10]. After laminectomy or laminotomy, the feeding arteries were coagulated first, and the tumor-pial margin was progressively dissected to expose the tumor (Figure 1). The major draining veins were the last vessels to be sacrificed, finally resecting the tumor en bloc. In selected, more recent cases indocyanine green video-angiography (ICG-VA) was
used during surgery to better distinguish between feeding arteries and draining veins, and to confirm complete resection with absence of residual tumor at the end of the procedure[4]. No patient underwent preoperative embolization or radiosurgery.

Intraoperative Neurophysiological Monitoring (IONM)

The anesthesia protocol applied was Total Intravenous Anesthesia (TIVA). More precisely, a continuous infusion of Propofol (100-150 µg/kg/min) and Fentanyl (1µg/kg/min) was used, avoiding bolus.

Muscle MEPs were elicited by Transcranial Electrical Stimulation (TES) via corkscrew-like electrodes (Ambu® Neuroline Corkscrew, Ambu, Copenhagen, Denmark) from the scalp. Short trains of 5 to 8 square-wave stimuli of 60-200 mA intensity, 0.5 ms duration, and interstimulus interval (ISI) of 4 ms were applied at a repetition rate up to 2 Hz through electrodes placed at C3-C4 scalp sites for upper limb muscles and C1-C2 for the lower limbs, according to the 10/20 EEG system[12]. To allow for monitoring producing less intense muscle twitching, sometimes a Cz-Fz (leg muscles) or a C1-C2 montage (hand muscles) was preferred. Muscle responses were recorded via needle electrodes (Ambu® Neuroline Subdermal, Ambu, Copenhagen, Denmark) inserted in contralateral upper extremities (abductor pollicis brevis (APB), extensor digitorum longus (EXT) and biceps brachii (Biceps) and lower extremities (tibialis anterior (TA) and abductor hallucis (AHB)). Somatosensory evoked potentials (SEPs) were evoked at the level of the median and the tibial nerve (20-40 mA, 0.2-0.3 ms duration, 4.3 Hz repetition) and recorded at the scalp via corkscrew electrodes inserted in the scalp at C1'/C2' (legs) and C3'/C4'. To conclude, D-wave monitoring was performed by applying a single TES stimulus with the same montages for muscle MEPs, to record from the epidural or subdural space of the spinal cord caudal to the tumor. Signals were amplified 10.000 times and the bandwidth was filtered 1.5 to 1700 Hz. Baseline D-waves were recorded after exposing the spinal cord. IONM systems used were an Axon Sentinel-4 (AXON Systems, Inc, Hauppage, NY, USA) or an ISIS-IOM (Inomed Medizintechnik GmbH, Emmendingen, Germany).

Literature review

We searched PubMed for previously published articles, with the terms “hemangioblastoma”, “spinal”, “spinal cord”, “intramedullary” used in “AND” and “OR” combinations. Inclusion criteria were the following: 1) studies describing patients who were operated for the removal of spinal HBs, 2) studies reporting more than 1 patient, 3) English language. Exclusion criteria were: 1) case reports, 2) mixed series where no clear data about HBs could be extracted, 3) cases published before year 2000.

Statistical analysis

We performed a statistical analysis to evaluate and identify potential predictors of neurological outcome. Categorical factors were summarized using frequencies and percentages, while continuous variables were summarized using means and standard deviations. Chi square test and Student t test were implemented for the univariate analysis, and results were considered significant for p values < 0.05 in the contest of two-tailed test. The neurological status at follow up defined by the McCormick score was the outcome variable of choice. Data were analyzed in the context of two different scenarios in which the outcome variable was dichotomized: the first aimed at assessing predictors of clinical improvement, the second at assessing predictors of either clinical stability or improvement. In the first scenario, patients were classified as having an optimal outcome if they had McCormick score of 1 and remained stable, or if they had McCormick score of 2 to 4 and improved of at least 1 point. Patients were classified as having a suboptimal outcome if a decline of one or more points was recorded on the McCormick scale or no improvement with preoperative McCormick score of 2 to 4[27]. In the second scenario, patients were classified as having an optimal outcome if they had McCormick score of 1 and remained stable or if they had McCormick score of 2 to 4 and either improved or remained stable. Patients were classified as having poor outcome if a decline of one or more points was evidenced at follow up on the McCormick scale. Factors that presented p < 0.1 in the univariate analysis were included in a multivariate logistic regression model. All statistical analysis were performed by using SPSS Windows version 26.0.

Results

Patient population

From January 1985 through October 2020, 61 patients (30 F, 30 M) underwent 69 surgeries to remove 74 spinal hemangioblastomas (37 cervical, 32 thoracic, 5 lumbar). The average age at surgery was 35 years (range 2-74 years). Based on the different time and surgeons, we divided the series into two groups: patients operated in the period 1985-2000 (historical group) and those operated in the period 2000-2020 (recent group).

Clinical and radiological features

Motor impairment was most commonly encountered (19 cases), followed by sphincter deficit (18), pain (16), and sensory impairment (11). Symptoms started on average two years before diagnosis (20.5 months, range 0-240 months). In the historical group, symptoms lasted on
average 28.8 months (range 0-240), in the recent group they lasted just more than one year (15.1 months, range 0-103 months). In 24 patients (39%) a diagnosis of VHL was made by molecular analysis. An associated cyst or syringe was found in 24 and 30 cases, respectively. Demographic data of patients, tumor characteristics, preoperative and postoperative McCormick grade are summarized in Table 1.

Surgery and resection
In 42 cases a laminectomy was performed, while laminotomy was preferred in 27 cases. In 25/69 cases (36%) intraoperative neurophysiological monitoring was used. In 4 patients affected by VHL disease, more than 1 HB was resected in a single operation (2 thoracic, 1 cervical + 1 thoracic, 2 cervical, 3 cervical, respectively). Patients were discharged after a mean period of 21 days (range 4-105 days); however, the “recent group” presented a significantly lower hospital stay compared to the “historical group” (average 13.7 vs 34.1 days, p < 0.001). Overall, 5 cases of relapse and 9 cases of residual tumor were registered.

Literature review
A thorough review of the literature after year 2000 identified 55 articles with a total of 1199 patients (622 males, 463 females; mean age 38.7 years) and 1432 HBs. Overall, 551 patients were affected by VHL disease. Cervical (45.6%) and thoracic (43.8%) were the most frequent locations. Use of IONM was reported in 18 studies (in 1 study only SEPs were used; in 1 study IONM was used only during positioning (Table 2).

Follow up and outcome
McCormick grading was available in all cases (69) in the preoperative setting, 43 patients in the immediate postoperative evaluation, 68 patients at discharge. Seven patients were lost at follow up, therefore recent follow up examinations were available for 62 patients. Patients were followed up for an average of 46 months (range 1-228 months). In the early postoperative period, improvement was found in 2.3% of cases, neurological condition remained stable in 67.4% of cases, and deteriorated in 30.2% of patients. At discharge, improvement was found in 4.4% of cases, neurological condition remained stable in 85.3% of cases, and deteriorated in 10.3% of patients. At the last follow up, improvement was found in 32.3% of cases, neurological condition remained stable in 51.6% of cases, and deteriorated in 16.1% of patients.

There was no statistical difference between change in McCormick score before and after surgery between VHL and non-VHL patients (p = 0.17). However, comparing the mean values of McCormick changes, there is a worsening trend in VHL patients (mean difference +0.06) and an improvement trend in non-VHL patients (mean difference -0.23).

When considering the first scenario, the univariate analysis showed a significant association between type of surgical approach and outcome, where laminotomy favors optimal outcome (p = 0.03, OR 5.0, 95% CI 1.6 – 16.7). Similarly, surgery with IONM favors optimal outcome (p = 0.017, OR 5.23, 95% CI 1.42 -21.7). Having a preoperative McCormick score of I or II, although not significant, showed a trend towards association to better outcome (p = 0.08) (Table 3).

No association was found between outcome and age, gender, VHL diagnosis, symptoms duration, presence of cyst or syringe, and HB location.

Even though the difference was close to significance (p = 0.06), optimal and suboptimal groups did not present a significant difference in pre-operative McCormick score. A significant difference was however found in the post-op McCormick score (p= 0.016, 2.92 VS 1.93), mean difference of -0.9 (95% CI -1.7 - -0.19), at discharge (p < 0.009, 2.67 VS 1.83), mean difference of -0.8 (95% CI -1.4 - -0.2) and at follow up (p < 0.001, 1.34 VS 3.05), mean difference -1.7 (95% CI -2.14 - -1.2).

Univariate analysis in the second scenario confirmed a significant association between type of surgical approach and outcome, where laminectomy correlated with a poorer outcome (p = 0.02) (Table 3). No association was found between surgery without IONM and worse outcome (p = 0.094).

In the multivariate analysis for both scenarios, surgical approach was the only variable that retained significance (respectively p = 0.01 and p = 0.019). In the first scenario, preoperative McCormick score almost reached statistical significance (p = 0.056). In the second scenario the presence of syringe almost reached statistical significance (p = 0.083).

Discussion
HBs are not commonly encountered by neurosurgeons, however they are not rare, accounting for 2% to 15% of primary intramedullary spinal cord tumors in reported series. The reported male-to female ratio is 1.6:1 to 5.5:1 [13]. Similar to the literature data, the majority of the HBs in our patients occurred in the cervical and dorsal spinal cord. A reason for this may be the predominant distribution of embryonic precursor cells in these areas of the spinal cord [11, 21, 22]. Overall, onset symptoms in our series recapitulate those commonly reported in other studies: sensory and motor deficits, pain, urinary dysfunction, and occasionally bulbar symptoms.
It is well known that the postoperative neurological outcome typically correlates with the preoperative functional status in patients with intramedullary tumors, and HBs are not an exception [14, 23]. Also large tumors, and those ventrally located have been associated with a worse neurological outcome [11], possibly because of a more ventral location of corticospinal fibers.

Postoperatively, 50% to 80% of patients experience a worsening of their neurological status [13]. However, these deficits are usually transient, and patients recover to the baseline after some weeks/months. Almost one third of our patients experienced postoperative neurological worsening. Nonetheless, consistent with the reported trend, just 1 patient did not recover to the baseline at last follow up. Assessing the neurological status at the last follow up is therefore more interesting and reliable than the immediate postoperative outcome.

HBs outcome and preoperative neurological status

The importance of the neurological condition at admission has been already shown to have an impact on the final outcome [19, 23]. Although our study failed to find a clear statistical significance, our data confirm that preoperative McCormick score of I or II tend to be associated with a better outcome, compared to those patients presenting with more severely impaired neurological condition. This is particularly important in case of VHL-associated HBs. In these patients it is certainly wise to wait until spinal HB becomes symptomatic before indicating surgical removal in order to avoid unnecessary operations, but not too long in order to guarantee the best neurological outcome to the patient. There is a strong association between VHL disease and HBs, and especially spinal HBs. About one third of patients with spinal HBs are affected by VHL disease, and up to 40% of VHL-related CNS HBs develop in the spinal cord [9, 20]. The management of HBs in VHL patients can be challenging, due to the presence not only of other tumor types as pheochromocytoma, but also of multiple HBs. In 3 of our VHL-affected patients, 2 spinal HBs were resected in a single operation, and in one patient 3 spinal HBs were removed during the same surgery. These patients were admitted with severe neurological status (McCormick 3 and 4), and had a McCormick 3 at the last follow-up, confirming that the multifocality of VHL lesions can severely impact on postoperative outcome.

HBs and surgical approach

The association of surgical approach with neurological outcome in spinal surgery has been debated for a long time. Our study showed that laminotomy is significantly associated with a better outcome compared to laminectomy, both in univariate and multivariate logistic regression models. This is in contrast with some studies, which failed to show any correlation between surgical approach and neurological outcome [15]. It is not easy to find a reason to interpret this result. However, we assessed outcome using McCormick scale that is a functional scale, not a grading of neurological motor or sensory functions per se. Therefore, while motor and sensitive functions depend mainly on the preservation of neural pathways, mobility and functional independence can be affected also by other factors such as paraspinal muscles and osteoligamentous conditions. We hypothesize that laminotomy may guarantee a better preservation of osteoligamentous and muscular connections, thus facilitating postoperative improvement.

HBs and IONM

The use of IONM is still considered controversial. Since HBs have normally a clear border separating them from the spinal cord, monitoring is considered by some authors not useful to increase safety in surgical resection [13]. However, in the last 20 years the use of IONM during the resection of spinal HBs has become more and more common, with an increasing number of authors showing the importance of such method also in HBs removal, both for surgical strategy and for prognostic reasons [4, 6, 22, 25, 27, 15, 26].

In our results, the use of IONM was associated with optimal outcome. There are a number of reasons which may support this result, which is in line with previous literature [26]. In our clinical setting, it is common practice to abandon surgery if D-wave amplitude decreases over 50% and does not recover with corrective measures such as irrigation, papaverine and hypetension, as it has been shown to predict persistent motor deficit [19]. Another benefit may have been related to MEP monitoring. Although SEPs are generally considered useful for spinal cord preservation in scoliosis surgery, MEPs are more reliable in monitoring corticospinal tract function, particularly in the short term [8]. Even if they do not appear to be correlated with long-term outcome, they may provide timely information of initial damage to part of the motor system since a decrease of MEPs during surgery normally anticipates a reduction in D-wave amplitude. This may be very useful to modify surgical strategy and timing accordingly. A decrease of MEPs amplitudes might suggest the need of making a pause during pial dissection, or at least move to a different side of the tumor, irrigating the spinal cord with warm saline solution to allow amplitudes to recover. This strategy might potentially be beneficial to the spinal cord, which is stressed not only by tumor compression but also by the even cautious microsurgical maneuvers. In any case, it is worth noting that the univariate analysis of our data in the second scenario revealed that the absence of IONM is not associated with a poorer outcome. However, although it is not possible to say that the absence of IONM increases the odds for a poor outcome, our analysis shows that their use may increase the chances for a postoperative improvement of neurological function in the long-term follow up.

VHL vs Sporadic HBs
We showed that surgery offers high chances to improve neurological condition or at least to avoid further deterioration due to the HB. Our data suggest that VHL-patients may have a poorer outcome compared to those with sporadic HBs. This is in contrast with some published series [2, 25], but in line with others [29, 31][30], and further research is certainly needed to clarify this issue. However, we expect poorer long-term outcome in VHL patients to be due to disease progression and cumulative functional morbidity rather than the single surgical operation per se, as the growth of multiple HBs may multiply the risk of preoperative neurological deficits and related sequelae from cumulative surgeries, as already pointed out in other studies.

Limitations

Our study has several limitations. First, there are limitations due to the study design, which is retrospective. Second, neurological outcome was not consistently available for all patients due to losses at follow up. Third, this series is composed by patients who were operated during a long-spanned time period, when different surgical tools and devices were available. Moreover, this series includes patients treated in two different Institutions, with a possible bias due to potentially different surgical strategies.

Conclusions

Spinal hemangioblastomas are uncommon, though not rare, benign vascular tumors. Surgery can be curative if no remnants are left. Laminotomy seems to be associated with better outcome compared to laminectomy. While its absence is not associated with worse outcome, IONM seems to be associated with a better neurological outcome. Our study suggests that the more impaired the preoperative neurological condition, the worse the outcome. This finding should prompt neurosurgeons to balance very carefully the timing for surgery, especially in case of VHL-affected patients.

Declarations

Funding. Not applicable.

Conflict of interest. The authors declare no conflict of interest.

Availability of data and material. The corresponding author has full access to all data and material.

Code availability. Not applicable.

Authors’ contributions. Alberto Feletti: conception and design of the work, analysis and interpretation of data, draft of the work, approval of the final version. Alessandro Boaro: analysis and interpretation of data, draft of the work, approval of the final version. Davide Giampiccolo: acquisition and interpretation of data, draft of the work, approval of the final version. Giorgio Casoli: acquisition of data, approval of the final version. Fabio Mosco: acquisition of data, approval of the final version. Massimiliano Ferrara: acquisition of data, approval of the final version. Francesco Sala: design of the work, interpretation of data, critical revision, approval of the final version. Giacomo Pavesi: design of the work, interpretation of data, critical revision, approval of the final version.

Ethics approval. As this is a retrospective study, no approval was required by the Institutional Ethics Board.

Consent to participate. Consent to participate was not required because of the retrospective nature of the study, and because patients cannot be identified.

Consent for publication. Consent for publication was not required because of the retrospective nature of the study, and because patients cannot be identified.

Disclosures: the authors have nothing to disclose

References

1. Balériaux DL (1999) Spinal cord tumors. Eur Radiol 9:1252–1258. doi: 10.1007/s003300050831
2. Biondi A, Ricciardi GK, Faillot T, Capelle L, Van Effenterre R, Chiras J (2005) Hemangioblastomas of the lower spinal region: report of four cases with preoperative embolization and review of the literature. AJNR Am J Neuroradiol 26:936–945
3. Boström A, Hans F-J, Reinacher PC, Kring T, Bürgel U, Gilbarch JM, Reinges MHT (2008) Intramedullary hemangioblastomas: timing of surgery, microsurgical technique and follow-up in 23 patients. Eur Spine J 17:882–886. doi: 10.1007/s00586-008-0658-1
4. Boström A, Kanther N-C, Grote A, Boström J (2014) Management and outcome in adult intramedullary spinal cord tumours: a 20-year single institution experience. BMC Res Notes 7:908. doi: 10.1186/1756-0500-7-908
5. Chang H, Li J, Wang P, Lu X, Li B (2020) Microsurgical treatment of cervical spinal hemangioblastoma. Neurochirurgie 66:56–60. doi: 10.1016/j.neuchi.2019.11.005

6. Clark AJ, Lu DC, Richardson RM, Tihan T, Parsa AT, Chou D, Barbaro NM, Kunwar S, Weinstein PR, Lawton MT, Berger MS, McDermott MW (2010) Surgical technique of temporary arterial occlusion in the operative management of spinal hemangioblastomas. World Neurosurg 74:200–205. doi: 10.1016/j.wneu.2010.03.016

7. Conway JE, Chou D, Clatterbuck RE, Brem H, Long DM, Rigamonti D (2001) Hemangioblastomas of the central nervous system in von Hippel-Lindau syndrome and sporadic disease. Neurosurgery 48:55–62; discussion 62-63. doi: 10.1097/00006123-200101000-00009

8. Das JM, Kesavapisharady K, Sadasivam S, Nair SN (2017) Microsurgical Treatment of Sporadic and von Hippel-Lindau Disease Associated Spinal Hemangioblastomas: A Single-Institution Experience. Asian Spine J 11:548–555. doi: 10.4184/ajsp.2017.11.4.548

9. Deng X, Wang K, Wu L, Yang C, Yang T, Zhao L, Yang J, Wang G, Fang J, Xu Y (2014) Intraspinal hemangioblastomas: analysis of 92 cases in a single institution: clinical article. J Neurosurg Spine 21:260–269. doi: 10.3171/2014.1.SPINE13866

10. Dwarkanath S, Sharma BS, Mahapatra AK (2008) Intraspinal hemangioblastoma: analysis of 22 cases. J Clin Neurosci 15:1366–1369. doi: 10.1016/j.jocn.2007.04.014

11. Escott EJ, Kleinschmidt-DeMasters BK, Brega K, Lillehei KO (2004) Proximal nerve root spinal hemangioblastomas: presentation of three cases, MR appearance, and literature review. Surg Neurol 61:262–273; discussion 273. doi: 10.1016/S0090-3019(03)00399-9

12. Gläsker S, Berlis A, Pagenstecher A, Vougioukas VI, Van Velthoven V (2005) Characterization of hemangioblastomas of spinal nerves. Neurosurgery 56:503–509; discussion 503-509. doi: 10.1227/01.neu.0000153909.70381.c8

13. Gläsker S, Van Velthoven V (2005) Risk of hemorrhage in hemangioblastomas of the central nervous system. Neurosurgery 57:71–76; discussion 71-76. doi: 10.1227/01.neu.0000163250.71951.18

14. Hao S, Li D, Ma G, Yang J, Wang G (2013) Application of intraoperative indocyanine green videoangiography for resection of spinal cord hemangioblastoma: advantages and limitations. J Clin Neurosci 20:1269–1275. doi: 10.1016/j.jocn.2012.12.008

15. Harati A, Satopää A, Mahler L, Billon-Grand R, Elsharkawy A, Niemelä M, Hemesniemi J (2012) Early microsurgical treatment for spinal hemangioblastomas improves outcome in patients with von Hippel-Lindau disease. Surg Neurol Int 3:6. doi: 10.4103/2152-7806.92170

16. Hojo M, Arakawa Y, Funaki T, Yoshida K, Kikuchi T, Takagi Y, Araki Y, Ishii A, Kunieda T, Takahashi JC, Miyamoto S (2014) Usefulness of tumor blood flow imaging by intraoperative indocyanine green videoangiography in hemangioblastoma surgery. World Neurosurg 82:e495-501. doi: 10.1016/j.wneu.2013.02.009

17. Huang J-S, Chang C-J, Jeng C-M (2003) Surgical management of hemangioblastomas of the spinal cord. J Formos Med Assoc 102:868–875

18. Imagama S, Ito Z, Ando K, Kobayashi K, Hida T, Ito K, Ishikawa Y, Tsushima M, Matsumoto A, Nakashima H, Wakao N, Sakai Y, Matsuyama Y, Ishiguro N (2017) Rapid Worsening of Symptoms and High Cell Proliferative Activity in Intra- and Extramedullary Spinal Hemangioblastoma: A Need for Earlier Surgery. Global Spine J 7:6–13. doi: 10.1055/s-0036-1580612

19. Joaquim AF, Ghizoni E, Santos MJ dos, Valadares MGC, Silva FS da, Tedeschi H (2015) Intramedullary hemangioblastomas: surgical results in 16 patients. FOC 39:E18. doi: 10.3171/2015.5.FOCUS15171

20. Kanno H, Yamamoto I, Nishikawa R, Matsutani M, Wakabayashi T, Yoshida J, Shitara N, Yamasaki I, Shiu T, Clinical VHL Research Group in Japan (2009) Spinal cord hemangioblastomas in von Hippel-Lindau disease. Spinal Cord 47:447–452. doi: 10.1038/sc.2008.151

21. Kim D-G, Son Y-R, Park Y-S, Hyun S-J, Kim K-J, Jahng T-A, Kim H-J, Park KS (2016) Differences in Multimodality Intraoperative Neurophysiological Monitoring Changes Between Spinal Intramedullary Ependymoma and Hemangioblastoma. J Clin Neurophysiol 33:120–126. doi: 10.1097/WNP.0000000000000247

22. Kim TY, Yoon DH, Shin HC, Kim KN, Yi S, Oh JK, Ha Y (2012) Spinal cord hemangioblastomas in von hippel-lindau disease: management of asymptomatic and symptomatic tumors. Yonsei Med J 53:1073–1080. doi: 10.3349/ymj.2012.53.6.1073

23. Kothbauer KF, Steiert C, Gläsker S, Klingler J-H (2019) Minimally invasive resection of spinal hemangioblastoma: feasibility and clinical results in 16 patients. FOC 39:E18. doi: 10.3171/2015.5.FOCUS15171

24. Krüger MT, Steiert C, Gläsker S, Klingler J-H (2019) Minimally invasive resection of spinal hemangioblastoma: feasibility and clinical results in a series of 18 patients. J Neurosurg Spine 1–10. doi: 10.3171/2019.5.SPINE1975

25. Lee DK, Choe WJ, Chung CK, Kim HJ (2003) Spinal cord hemangioblastoma: surgical strategy and clinical outcome. J Neurooncol 61:27–34. doi: 10.1023/a:1021297622944

26. Li X, Wang J, Niu J, Hong J, Feng Y (2016) Diagnosis and microsurgical treatment of spinal hemangioblastoma. Neurol Sci 37:899–906. doi: 10.1007/s10072-016-2508-y

27. Liu A, Jain A, Sankey EW, Jallos GM, Bettegowda C (2016) Sporadic intramedullary hemangioblastoma of the spine: a single institutional review of 21 cases. Neurol Res 38:205–209. doi: 10.1179/1743132815Y.0000000097
28. Lonser RR, Glenn GM, Walther M, Chew EY, Libutti SK, Linehan WM, Oldfield EH (2003) von Hippel-Lindau disease. The Lancet 361:2059–2067. doi: 10.1016/S0140-6736(03)13643-4

29. Lonser RR, Oldfield EH (2005) Microsurgical resection of spinal cord hemangioblastomas. Neurosurgery 57:372–376; discussion 372-376. doi: 10.1227/01.neu.0000176849.76663.e4

30. Lonser RR, Weil RJ, Wanebo JE, DeVroom HL, Oldfield EH (2003) Surgical management of spinal cord hemangioblastomas in patients with von Hippel-Lindau disease. J Neurosurg 98:106–116. doi: 10.3171/jns.2003.98.1.0106

31. MacDonald DB (2002) Safety of intraoperative transcranial electrical stimulation motor evoked potential monitoring. J Clin Neurophysiol 19:416–429. doi: 10.1097/00004691-200210000-00005

32. Malis LI (2002) Atraumatic bloodless removal of intramedullary hemangioblastomas of the spinal cord. J Neurosurg 97:1–6. doi: 10.1037/102.2.001

33. Mandigo CE, Ogden AT, Angevine PD, McCormick PC (2009) Operative management of spinal hemangioblastoma. Neurosurgery 65:1166–1177. doi: 10.1227/01.neu.0000359306.74674.C4

34. McCormick PC, Torres R, Post KD, Stein BM (1990) Intramedullary ependymoma of the spinal cord. J Neurosurg 72:523–532. doi: 10.3171/spi.1990.72.4.0523

35. Neumann HP, Eggert HR, Scheremet R, Schumacher M, Wahklaw AK, Hettmansperger U, Riegler P, Schollmeyer P (1992) Central nervous system lesions in von Hippel-Lindau syndrome. J Neurol Neurosurg Psychiatry 55:898–901. doi: 10.1037/a.1006403500801

36. Neumann HP, Eggert HR, Scheremet R, Schumacher M, Wahklaw AK, Hettmansperger U, Riegler P, Schollmeyer P (1992) Central nervous system lesions in von Hippel-Lindau syndrome. J Neurol Neurosurg Psychiatry 55:898–901. doi: 10.1136/jnnp.55.10.898

37. Ortega-Martínez M, Cabezudo JM, Fernández-Portales I, Pineda-Palomino M, Rodríguez-Sánchez JA, Bernal-García LM (2007) Multiple filum terminale hemangioblastomas symptomatic during pregnancy. Case report. J Neurosurgery Spine 42:436–440. doi: 10.3340/jkns.2007.42.6.436

38. Pietilä TA, Stendel R, Schilling A, Krznaric I, Brock M (2000) Surgical treatment of spinal hemangioblastomas. Acta Neurochir (Wien) 142:221–227. doi: 10.1007/2012.52.3.221

39. Pluta RM, Iuliano B, DeVroom HL, Nguyen T, Oldfield EH (2003) Comparison of anterior and posterior surgical approaches in the treatment of ventral spinal hemangioblastomas in patients with von Hippel-Lindau disease. J Neurosurg 98:117–124. doi: 10.3171/jns.2003.98.1.0117
51. Prokopienko M, Kunert P, Podgórska A, Marchel A (2016) Surgical treatment of sporadic and von Hippel-Lindau syndrome-associated intramedullary hemangioblastomas. Neurol Neurochir Pol 50:349–355. doi: 10.1016/j.pjnns.2016.06.003

52. Richards O, Goacher E, Pal D, Tyagi A, Chumas P, Derham C (2020) Intramedullary spinal cord tumours - a single Centre, 10-year review of clinical and pathological outcomes. Br J Neurosurg 1–4. doi: 10.1080/02688697.2020.1765973

53. Roonprapunt C, Silvera VM, Setton A, Freed D, Epstein FJ, Jallo GI (2001) Surgical management of isolated hemangioblastomas of the spinal cord. Neurosurgery 49:321–327; discussion 327-328. doi: 10.1097/00006123-200108000-00012

54. Sadashivam S, Abraham M, Kesavapisharady K, Nair SN (2020) Long-term outcome and prognostic factors of intramedullary spinal hemangioblastomas. Neurosurg Rev 43:169−175. doi: 10.1007/s10143-018-1025-2

55. Sala F, Palandri G, Basso E, Lanteri P, Deletis V, Faccoli F, Bricolo A (2006) Motor evoked potential monitoring improves outcome after surgery for intramedullary spinal cord tumors: a historical control study. Neurosurgery 58:1129−1143; discussion 1129-1143. doi: 10.1227/01.NEU.0000215948.97195.58

56. Samuel N, Tetreault L, Santaguida C, Nater A, Moayeri N, Massicotte EM, Fehlings MG (2016) Clinical and pathological outcomes after resection of intramedullary spinal cord tumors: a single-institution case series. Neurosurg Focus 41:E8. doi: 10.3171/2016.5.FOCUS16147

57. Serban D, Exergian F (2013) Intramedullary hemangioblastoma - local experience of a tertiary clinic. Chirurgia (Bucur) 108:325−330

58. Shin DA, Kim SH, Kim KN, Shin HC, Yoon DH (2008) Surgical management of spinal cord haemangioblastoma. Acta Neurochir (Wien) 150:215−220; discussion 220. doi: 10.1007/s00701-008-1396-6

59. Shiller S, Szelenyi A, Herlitz L, Tonn JC, Zausinger S (2017) Spinal cord hemangioblastomas: significance of intraoperative neurophysiological monitoring for resection and long-term outcome. J Neurosurg Spine 26:483−493. doi: 10.3171/2016.8.SPINE16595

60. Sun Hİ, Özduman K, Usseli Mİ, Özgen S, Pamir MN (2014) Sporadic spinal hemangioblastomas can be effectively treated by microsurgery alone. World Neurosurg 82:836−847. doi: 10.1016/j.wneu.2014.05.024

61. Takai K, Taniguchi M, Takahashi H, Usui M, Saito N (2010) Comparative analysis of spinal hemangioblastomas in sporadic disease and Von Hippel-Lindau syndrome. Neurol Med Chir (Tokyo) 50:560−567. doi: 10.2176/nmc.50.560

62. Van Velthoven V, Reinacher PC, Klisch J, Neumann HPH, Gläsker S (2003) Treatment of intramedullary hemangioblastomas, with special attention to von Hippel-Lindau disease. Neurosurgery 53:1306−1313; discussion 1313-1314. doi: 10.1227/01.neu.0000093497.81390.29

63. Vergauwen E, Steiert C, Krüger MT, Jilg C, Zschiedrich S, Klingler J-H, Van Velthoven V, Gläsker S (2020) Cumulative surgical morbidity in patients with multiple cerebellar and medullary hemangioblastomas. Cln Neurol Neurosurg 197:106111. doi: 10.1016/j.clineuro.2020.106111

64. Vougioukas VI, Gläsker S, Hubbe U, Berlis A, Omran H, Neumann HPH, Van Velthoven V (2006) Surgical treatment of hemangioblastomas of the central nervous system in pediatric patients. Childs Nerv Syst 22:1149−1153. doi: 10.1007/s00381-005-0018-y

65. Wang C (2008) Spinal hemangioblastoma: report on 68 cases. Neurol Res 30:603−609. doi: 10.1179/174313208X319044

66. Wang Q, Cheng J, Zhang S, Ju Y, Liu W, Hui X (2020) Central nervous system hemangioblastomas in the elderly (over 65 years): Clinical characteristics and outcome analysis. Cln Neurol Neurosurg 189:105622. doi: 10.1016/j.clineuro.2019.105622

67. Westwick HJ, Giguère J-F, Shamji MF (2016) Incidence and Prognosis of Spinal Hemangioblastoma: A Surveillance Epidemiology and End Results Study. Neuroepidemiology 46:14−23. doi: 10.1159/000441147

68. Xu Q, Bao W, Pang L (2002) Diagnosis and treatment of intramedullary hemangioblastoma of cervical spinal cord. Chin Med J (Engl) 115:1010−1013

69. Yasuda T, Hasegawa T, Yamato Y, Kobayashi S, Togawa D, Banno T, Arima H, Oe S, Matsuyma Y (2016) Relationship between Spinal Hemangioblastoma Location and Age. Asian Spine J 10:309−313. doi: 10.4184/asj.2016.10.2.309

70. Yousef A, Rutkowski MJ, Yalcin CE, Eren OC, Caliskan I, Tihan T (2019) Sporadic and Von-Hippel Lindau disease-associated spinal hemangioblastomas: institutional experience on their similarities and differences. J Neurooncol 143:547−552. doi: 10.1007/s11060-019-03189-w

Tables

Due to technical limitations, table 1 is only available as a download in the Supplemental Files section.

Table 2. Spinal hemangioblastomas: review of the literature since year 2000. Series with more than 1 case were included.
Author	Period	Patients	Tumors	VHL	Mean Age	Sex	Level	IOM	Outcome	Follow up	McCormick
Pietilä et al., 2000	1995-1999	15	30	13	27	1M, 14F	SEPs	6 improved, 17 stable	20 mos	No	
Conway et al., 2001	1973-1999	10	7					No		No	
Roonprapunt et al., 2001	1995-1999	19	19	0	32	13M, 6F	13C, 6T	Yes	13 improved, 6 stable	50 mos	No
Malis, 2002	1967-1990	19	19	0	14C, 5T	Only during positioning	All recovered or improved	Minimum 8 years	No		
Xu et al., 2002		21						2 improved	20 improved, 1 deteriorated		
Pai & Krishna, 2003		2	2	26	2M	1T, 1L	No	2 predicted, 9.5 mos		No	
Lee et al., 2003	1986-2000	14	16	6	37.2	11M, 3F	8C, 7T, 1L	No	8 improved, 3 stable, 3 deteriorated	47 mos	No
Huang et al., 2003	1993-2003	10	5	33	3M, 7F			4 improved	4 improved, 6 stable	3 mos	Yes
Van Velthoven et al., 2003	1991-2001	22	22	18	38	14M, 14F	14C, 7T, 1L	Yes	28.6% improved, 71.4% stable	31 mos	Yes
Lonser et al., 2003	1988-1997	44	86	44	34	26M, 18F	44C, 33T, 9L	No	9% deteriorated	44 mos	Yes
Pluta et al., 2003		8	9	8	34	6M, 2F	5C, 4T	3 stable, 5 deteriorated	3 stable, 5 deteriorated	6 mos	
Escott et al., 2004		3	3	0	59	3M	1C, 2L	No	2 improved, 1 stable		No
Glasker et al., 2005		6	6	3	44	3M, 3F	1C, 3T, 2L	No	5 improved, 1 stable		No
Glasker & Van Velthoven, 2005		5	5	2	46	5F	3C, 2T	No	14 years		No
Biondi et al., 2005		4	4	1	43	2M, 2F	4L	No	4 improved, 3 years		No
Vougioukas et al., 2006		5	5	5	13.6	2C, 3T	Yes	5 stable			No
Na et al., 2007	1994-2006	9	9	5	37.8	4M, 5F	5C, 4T	No	3 improved, 6 stable	22.4 mos	Yes
Boström et al., 2008	1990-2005	23		8		10C, 15T, 2L	No	5 improved, 18 stable	27 mos	Yes	
Dwarkanath et al., 2008	1992-2006	22	22	35.9	13M, 9F	15C, 1CT, 6T	No	20 improved or stable, 2 deteriorated	4.6 years	No	
Shin et al., 2008	1991-2005	20	24	2	49.4	12M, 8F	C8, T12, L4	No	7 improved, 14 stable, 3 deteriorated	5.6 years	No
Pavesi et al., 2000-2008		7	19	7		7C, 6T,	No	4 improved	36.7 mos	No	
Year	Range	N	M	F	Average	HBs	No. of Cervical Lesions	Outcome	Follow-Up	Conclusion	
----------	-------	----	----	----	---------	-----	-------------------------	---------	-----------	------------	
2008	2000-2002	48	74	48	33.5	21M,27F	30C,40T,4L	No	83% improved or stable, 17% deteriorated	6.5 years	Yes
Wang, 2008	1991-2002	68	90	20	36.6	44M,24F	50C,32T,8L	No	Better outcome for single lesions and cervical location compared to multiple HBs and thoracic location	No	
Mandigo et al., 2009	2002-2007	15	18	2	43	7M,8F	3C,13T,2L	Often	1 improved, 12 stable, 2 deteriorated	35 mos	yes
Parker et al., 2009	1985-2002	34	34	25	41	15M,19F	28C,25T,7L	No	11 improved, 17 stable, 6 deteriorated	60 mos	Yes
Mehta et al., 2010	1984-2008	108	218	108	33	57M,51F	102C,96T,20L	No	6 improved, 86 stable, 16 deteriorated	7 years	Yes
Takai et al., 2010	1988-2008	35	18	39	25M,10F	22C,17T,13L	No	3 improved, 16 stable, 11 deteriorated	70 mos	yes	
Clark et al., 2010	1995-2008	20	33	11	49	13M,7F	19C,9T,5L	Yes	5 improved, 13 stable, 2 deteriorated	19 weeks	Yes
Kim et al., 2012	1999-2009	12	24	12	42.3	9M,3F	6C,14T,4L	Yes	8 stable, 4 deteriorated	49.3 mos	Yes
Park et al., 2012	2003-2012	16	30	4	45.2	12M,4F	12C,14T,2L	No	3 improved, 9 stable, 4 deteriorated	90 mos	Yes
Harati et al., 2012	1997-2011	17	20	11	43	10M,7F	13C,5T,2L	No	4 improved, 13 stable	57mos	Yes
Hao et al., 2013	2011	7	7	2	34	6M,1F	4C,3T	Yes	7 stable	yes	
Serban & Exergian, 2013	2003-2009	5	5	2	40	2C,3T	No	4 stable, 1 deteriorated	No		
Sun et al., 2014	23 years	14	15	0	41.5	8M,6F	9C,3T,1L	No	53.3% improved, 33.3% stable, 13.3% deteriorated	4 years	No
Boström et al., 2014	1987-2007	5	5					Yes	1 improved, 3 stable, 1 deteriorated	55 mos	Yes
Hojo et al., 2014	2007-2011	3	3	51	2M,1F	1T,2L	No	No			
Deng et al., 2014	2007-2011	92	116	32	33	58M,33F	58C,49T,9L	No	38 improved, 40 stable, 14 deteriorated	50 mos	yes
Study	Year Range	Sample Size	Follow-up	Outcome	Follow-up	Outcome					
-------------------------------	------------	-------------	-----------	---------	-----------	---------					
Joaquim et al., 2015	2000-2014	16 16 7 34	Yes (7)	2 improved, 13 stable, 1 deteriorated	48 mos	Yes					
Li et al., 2016	2008-2013	25 25 16 37	No	100% McCormick I or II	21 mos	Yes					
Liu et al., 2016	1996-2014	21 23 0 45	Yes (16)	9 improved, 12 long-term dysfunction	17 mos						
Westwick et al., 2016	2000-2010	133 133 48	62M, 71F								
Kim et al., 2016	2009-2014	6 6 35	5M, 1F		6 improved, 6 stable	5 years	Yes				
Prokopienko et al., 2016	2016	12 12 6 34	5M, 7F	Yes	Probability of good outcome: 79% if preop McCormick grade I and II, 22% if preop grade III, IV, V	10 years	Yes				
Yasuda et al., 2016	2010-2013	11 11 1	8M, 3F	Yes	88.2% improved or stable	7.9 years	Yes				
Siller et al., 2017	2000-2013	24 27 7	12M, 12F	Yes	11 good functional outcome	5 years	Yes				
Imagama et al., 2017	1993-2013	28 28 6	17M, 11F	Yes							
Das et al., 2017	2000-2013	14 15 7	6M, 8F	No	11 improved, 3 stable	6-48 mos	Yes				
Nemeiko et al., 2019	2010-2015	4 39 3M	4C								
Yousef et al., 2019	1997-2016	42 20 44	31M, 11F	38 improved	20.9 mos	No					
Krüger et al., 2019	2010-2018	18 19 16	12M, 12F	Yes	17 improved or stable, 1 deteriorated						
Sadashivam et al., 2020	2001-2014	15 23 8	7M, 8F	80% favorable	5 years	Yes					
Wang et al., 2020	2008-2018	3									
Chang et al., 2020	2005-2015	11 11 0	8M, 3F	No	8 improved, 3 stable	6-48 mos	Yes				
Richards et al., 2020	2008-2017	6 6 2									
Vergauwen et al., 2020	1996-2013	26 82 26	17M, 9F	Yes							
Present study	1985-2020	60 68 24 35	30M, 30F	Yes (25)	20 improved, 32 stable, 10 deteriorated	46 mos	Yes				
Table 3. Univariate analysis of outcome predictors in scenarios 1 and 2.

variable	Scenario 1	Scenario 2		
	rate of optimal outcome (%)	p value	rate of optimal outcome (%)	p value
Gender	0.06	NS		
M	78.6	82.1		
F	55.9	85.3		
VHL	NS	NS		
yes	58.1	80.6		
no	69.2	84.6		
Location	NS	NS		
cervical	60.7	85.7		
dorsal	73.3	86.7		
lumbar	60	60		
Laminotomy	0.009	0.02		
yes	84.6	96.2		
no	52.8	75		
IOM	0.008	0.09		
yes	87.5	91.7		
no	50	72.1		
Cyst	NS	NS		
yes	65.2	91.3		
no	65.6	78.1		
Syringe	NS	0.008		
yes	70.4	96.3		
no	54.5	68.2		
McCormick pre	0.086	NS		
≤2	72.7	81.8		
>2	50	88.9		

VHL: von Hippel Lindau disease; IOM: intraoperative monitoring; NS: not significant.

Figures
Figure 1

A) T1-weighted contrast-enhanced sagittal MRI showing the presence of a dorsal hemangioblastoma. B) Intraoperative view of arachnoid dissection. C) Evidence of the nodule and some feeders and draining veins. D) Arterial feeders are coagulated and sectioned on the ventrolateral side of the hemangioblastoma. E) Dissection of the pial layer separating the tumor from spinal cord.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Table1.docx