PROPOSAL: A library to propagate leptons and high energy photons

Jean-Marco Alameddine, Maximilian Sackel, Jan Soedingrekso, Alexander Sandrock

October 9, 2020

Technische Universität Dortmund
What is PROPOSAL?

- PROPOSAL: Software library to propagate high-energy leptons and photons
- Written in C++11, callable from Python as well
 - Try: `pip install proposal`
- Easy-to-use, but still very customizable for different applications
- Actively maintained
 - Visit our GitHub: https://github.com/tudo-astroparticlephysics/PROPOSAL

J. Alameddine | October 9, 2020
PROPOSAL originally specialized on μ and τ propagation.

Recently, γ propagation and an improved treatment of e^-/e^+ has been added.

Selection of different parametrizations for each process:
- Several up-to-date parametrizations available
- Including effects such as LPM
- Rare processes can be included
- Easy to implement new parametrizations
Next to energy losses, PROPOSAL can simulate...

- Multiple scattering effects
- Particle decays
- Creation of secondary particles

Scattering of muons in ice after 100 m, $E_f = 10^7$ MeV
Interaction are characterized by their relative energy loss ν.

PROPOSAL differentiates continuous energy losses and stochastic energy losses:

\[\nu < \nu_{\text{cut}} \quad \text{continuous} \]
\[\nu > \nu_{\text{cut}} \quad \text{stochastic} \]

with

\[\nu_{\text{cut}} = \min \left[\frac{e_{\text{cut}}}{E}, \nu'_{\text{cut}}\right] \]

→ Vary values for e_{cut} and ν'_{cut} to adjust precision.

Stochastic losses of 10^7 muons with $E_i = 10^7$ MeV in 100 m of ice.
(Simplified) PROPOSAL propagation algorithm

Initial energy E_i

Sample energy E_f where next stochastic loss occurs

Calculate distance until next stochastic loss

Sampling stochastic loss

Repeat until fatal interaction, decay, $E < e_{\text{low}}$ or $d = d_{\text{max}}$
(Simplified) PROPOSAL propagation algorithm

- **Initial energy** E_i
- Sample energy E_f where next stochastic loss occurs
- Calculate distance until next stochastic loss
- Sampling stochastic loss
- Repeat until fatal interaction, decay, $E < e_{\text{low}}$ or $d = d_{\text{max}}$

Energy integral

$$\int_{E_i}^{E_f} \frac{\sigma(E)}{-f(E)} \cdot dE = -\log(\xi)$$

- $\sigma(E) = \sigma_{\text{total, stochastic}}$
- $f(E) = \left. \frac{dE}{dx} \right|_{\text{cont}} \propto E \int_{v_{\text{min}}}^{v_{\text{cut}}} v \frac{d\sigma}{dv} dv$
- $\xi \in [0, 1)$

Stochastic losses are all energy losses with a fractional energy loss $v > v_{\text{cut}}$.¹
(Simplified) PROPOSAL propagation algorithm

Initial energy E_i

Sample energy E_f where next stochastic loss occurs

Calculate distance until next stochastic loss

Sampling stochastic loss

Repeat until fatal interaction, decay, $E < e_{\text{low}}$ or $d = d_{\text{max}}$

Displacement integral

$$x_f = x_i - \int_{E_i}^{E_f} \frac{dE}{f(E)}$$

$$f(E) = \left. \frac{dE}{dx} \right|_{\text{cont.}} \propto E \int_{v_{\text{min}}}^{v_{\text{cut}}} v \frac{d\sigma}{dv} dv$$
(Simplified) PROPOSAL propagation algorithm

1. **Initial energy** E_i
2. Sample energy E_f where next stochastic loss occurs
3. Calculate distance until next stochastic loss
4. Sampling stochastic loss
5. Repeat until fatal interaction, decay, $E < e_{low}$ or $d = d_{max}$

Stochastic loss

$$\frac{1}{\sigma_{total}} \int_{v_{cut}}^{v} \frac{d\sigma}{dv} = \xi$$

- $\xi \in [0, 1)$
(Simplified) PROPOSAL propagation algorithm

1. **Initial energy** E_i
2. Sample energy E_f where next stochastic loss occurs
3. Calculate distance until next stochastic loss
4. Sampling stochastic loss
5. Repeat until fatal interaction, decay, $E < e_{\text{low}}$ or $d = d_{\text{max}}$
Interpolation

- Many integrals need to be calculated during propagation
 - Usage of interpolation tables to decrease runtime
 - Both cross section integrals (left) and integrals necessary for propagation steps (right) are interpolated

$$\int \frac{d\sigma}{d\nu} d\nu$$

$$\int \nu \frac{d\sigma}{d\nu} d\nu$$

$$\int_{E_i}^{E_f} \frac{\sigma(E)}{-f(E)} \cdot dE = -\log(\xi)$$

$$x_f = x_i - \int_{E_i}^{E_f} \frac{dE}{f(E)}$$
Minimal PROPOSAL code example

C++ Code

```cpp
// read properties from config file
prop Propagator(MuMinusDef(), "config.json");

// define initial state
Vector3D position(0, 0, 0);
Vector3D direction(0, 0, 1);
auto energy = 1e8.f; // MeV
init_state DynamicData(position, direction, energy);

vector<double> energies;

for(int i = 0; i < 1e5; i++) {
    auto track = prop.Propagate(init_state, 1e5); // cm
    double E_final = track.back().GetEnergy();
    energies.push_back(E_final);
}
```

json file

```
"global": {
    "cuts": {
        "e_cut": INF,
        "v_cut": 0.05,
        "cont_rand": false
    }
},

"sectors": [
    {
        "medium": "ice",
        "geometries": [
            {
                "shape": "sphere",
                "origin": [0, 0, 0],
                "outer_radius": 6374134000000
            }
        ]
    }
]
```

Usage of PROPOSAL
Continuous randomization

Simulating muons with identical initial energies causes a peak in the energy distribution

→ All particles with zero stochastic losses will have the same final energy

Final energies of 10^5 muons with $E_i = 10^8$ MeV propagated through 1 km of ice

Frequency

- $v_{\text{cut}} = 0.05$
- Simulating muons with identical initial energies causes a peak in the energy distribution
- All particles with zero stochastic losses will have the same final energy
Continuous randomization

- Simulating muons with identical initial energies causes a peak in the energy distribution
 - All particles with zero stochastic losses will have the same final energy
- PROPOSAL provides the feature continuous randomization
 - This adds random fluctuations to the continuous losses
IceCube Neutrino Observatory

- PROPOSAL used in IceCube simulation chain
 - Interested in energy losses along a particle track, provided by the PROPOSAL propagator
 - Energy losses are further processed by other tools to simulate Cherenkov photons

- Adjustable precision important for all large-scale detectors
 - High precision inside detector (small v_{cut})
 - High performance in front of detector (higher v_{cut} with continuous randomization)

Credit: IceCube Collaboration
- Up to CORSIKA7: Electromagnetic shower component simulated by EGS4
- CORSIKA 8: Inclusion of PROPOSAL as an EM shower model (see CORSIKA GitLab)
- CORSIKA is interested in single propagation steps for e^+, e^- and γ
 → Modular structure of PROPOSAL allows to extract individual components of the propagation routine
IceCube
South Pole Neutrino Observatory

NuRadioMC

CORSIKA 8
Future developments

- Neutrino propagation in PROPOSAL
 - Can be used for tau regeneration studies
- Stochastic deflections
 - Deflections may occur in (very) stochastic interactions (especially for bremsstrahlung and photonuclear interactions)
 - Can be used to examine the influences, e.g. on direction reconstructions
- Backward Monte Carlo simulations [1705.05636]
 - Can be used to increase statistics for relevant event signatures
Current developments

- Current developments on GitHub branch `restructure_parametrization`
 - Several improvements, both internally as well as for users
 - Preparations for inclusion in CORSIKA 8
 - Will be merged soon with our master branch

- If you are interested in using PROPOSAL ...
 ...use `pip install proposal` to try it out
 ...look at our GitHub page for more information
 ...contact us directly! jean-marco.alameddine@udo.edu