Case Report

Spontaneous Thrombosis and Stabilization of a Dissecting PCA Aneurysm in a Child

Vikas Bhatia, Arushi Gahlot Saini1, Rajeev Chauhan2

Department of Radiodiagnosis and Imaging, 1Pediatrics, 2Anaesthesia and Intensive care, Postgraduate Institute of Medical Education and Research, Chandigarh, India

ABSTRACT

Spontaneously dissecting posterior cerebral artery (PCA) aneurysm in the pediatric age group is a rare entity. We discuss a child with a resolution of the aneurysm due to spontaneous thrombosis in the PCA.

KEYWORDS: Dissecting aneurysm, PCA, thrombosis

INTRODUCTION

Pediatric intracranial aneurysms are rare and constitute 2–6% of all aneurysms. These are characterized by a male preponderance, predilection for the carotid artery bifurcation and posterior circulation, a higher incidence of large aneurysms, and a higher incidence of spontaneous thrombosis as compared with adults. Most pediatric aneurysms have predisposing factors such as infection, tumor, dissection, or trauma. The PCA aneurysms are uncommon and are seen in 0.8–1.4% of all aneurysms. Only one-tenth of these aneurysms are seen in the pediatric population. Arterial dissection is the most frequent cause of stroke in the posterior circulation in children. An intracranial dissection is seen in nearly 4% cases and is commonly related to preceding head trauma. PCA aneurysm with spontaneous intracranial dissection is anecdotally reported in children. We discuss a case with spontaneous thrombosis of such an aneurysm and its probable mechanism.

CASE

A seven-year-old girl presented with an acute, severe headache for the past four days, which was associated with intermittent, projectile vomiting. There was no alteration in sensorium, visual disturbance, seizures, fever, neck stiffness, behavioral changes, photophobia, focal motor deficit, cranial nerve palsy, or diplopia. Past and family history was unremarkable. Her general and detailed neurological examination was normal. A clinical diagnosis of an acute, severe secondary headache secondary to an underlying arteriovenous malformation or aneurysm was considered. A noncontrast computed tomography scan showed a small bleed in the right perimesencephalic cistern. Diagnostic cerebral angiography showed a contrast-filled outpouching [Figure 1A] with irregular walls [Figure 1B] and proximal small segmental stenosis, at the right PCA-P3 segment. This confirmed the diagnosis of a dissecting aneurysm in the PCA. The patient was taken up for endovascular PCA occlusion after 72 h, and selective right vertebral artery injection was administered. There was nonfilling of the aneurysm and the right PCA distal to the neck of the aneurysm [Figure 2]. A probable spontaneous thrombosis of the aneurysm and PCA was considered, and the patient was managed conservatively. She remained well in follow-up till one year.

DISCUSSION

Intracranial arterial dissection is difficult to diagnose on routine imaging. The angiographic appearance of an aneurysm with the parent vessel stenosis, and stagnation of the contrast is the hallmark of a dissecting aneurysm. Head trauma is the leading cause of intracranial dissecting

Address for correspondence: Dr. Vikas Bhatia, Department of Radiology and Imaging, Postgraduate Institute of Medical Education and Research, Chandigarh, India. E-mail: drvikasbhatia@gmail.com

How to cite this article: Bhatia V, Saini AG, Chauhan R. Spontaneous thrombosis and stabilization of a dissecting PCA aneurysm in a child. J Pediatr Neurosci 2021;16:341-3.
aneurysms in children, and a spontaneous dissection is unusual.[7,8] The natural history of intracranial dissections is not exactly clear. These may remain stable and progressively decrease in size, thrombose, or catastrophically lead to massive bleeds and death. Spontaneous thrombosis is reported in 1–2% of pediatric aneurysms.[4] It is seen in upto 38% cases of large or giant aneurysms and is usually seen with associated parent vessel thrombosis.[9] The proposed mechanisms include a high aneurysm sac volume to neck size ratio, presence of proximal parent artery stenosis, progression of dissection leading to proximal artery occlusion, or enlarging aneurysm compression over parent artery.[7,10] The role of contrast media used for diagnostic angiography has also been proposed, possibly due to activation of coagulation or the thrombosis mechanism.[11,12] In our case, possibly the high sac to neck ratio and the presence of low intraneurysmal flow due to proximal stenosis or progression of dissection may, in isolation or together, have caused spontaneous thrombosis of the aneurysm and the parent artery distal to the aneurysm. Thus, endovascular management in the form of PCA occlusion was not carried out and spontaneous occlusion of the PCA did not result in any neurological deficit. This was most likely due to gradual thrombosis leading to the development of collateral flow to the involved PCA territory. A review of prior large studies showing spontaneous thrombosis of pediatric dissecting aneurysms is shown in Table 1. Neurological deficit ranging from 0% to 17% has been previously reported for PCA occlusion.[13]

Table 1: Studies with pediatric cases showing spontaneous thrombosis of dissecting aneurysms.[14–18]

Study	Age/ sex	Presentation	Location	size	Follow up	Outcome
Yi-Sen Zhang et al., 2016	13/ M	Asymptomatic	PICA	8 × 3 mm	4 years	Good
	18/ F	Headache	VA/ BA junction	28 × 12 mm	2 years	Good
Päivi Koroknay-Páli, 2013	3 patients	Not mentioned	Not mentioned	Not mentioned	30 years	Good
Jiantao Liang, 2009	9 years/ F	Asymptomatic	RICA bifurcation	Large (10–25 mm)	1–2 years	Good
Dittapong Songsaeng, 2009	11 years/ M	Subarachnoid bleed	Acom	<10 mm	1–2 years	Good
	8 years/ F	Headache	Right MCA	25 × 18 mm	1 year	Good
	1.5 years/ F	Hemiplegia	Left MCA	10 mm	4 years	Stable
	10 months/M	Subarachnoid bleed	Left MCA	17 × 17 mm	4 weeks	Good
	2 years/ F	Headache	Left MCA	19 × 8 mm	2 months	Good
	1 year/ M	Vomiting	Right P2 PCA	19 × 14 mm	4 days	Good
	2 years/ M	Subarachnoid bleed	Basilar artery	25 × 15 mm	6 months	Good
	6 years/ M	Headache	Basilar artery	20 × 14 mm	3 months	Good
	12 years/ M	Focal deficit	Basilar artery	13 × 1 2 mm	3 months	Good
Lasjuanis, 2005	2 years/ M	Right hemiparesis	Basilar tip	N/A	N/A	Good
	1 year/ F	Headache	ICA	N/A	N/A	Good
	5 months	SAH	ICA	N/A	N/A	Good
	5 years/ F	Headache	Basilar	N/A	N/A	Good
	8 years/ F	Headache	MCA	N/A	1 year	Good
Conclusion

Spontaneous arterial dissecting aneurysms in posterior circulation are uncommon. These have a dynamic natural history with variable and unpredictable outcomes. Spontaneous thrombosis of aneurysms has been seen; however, this outcome is highly unpredictable and, thus, requires a close interval follow-up and early management.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

1. McDonald PJ, Wallace MC. Pediatric intracranial aneurysms. In: Leroux P, Winn HR, Newell D, editors. Management of Cerebral Aneurysms. Philadelphia: Saunders; 2003. pp. 357-362.
2. Huang J, McGirt M, Gailloud P, Tamargo R. Intracranial aneurysms in the pediatric population: Case series and literature review. Surg Neurol 2005;63:424-33.
3. Fullerton HJ, Johnston SC, Smith WS. Arterial dissection and stroke in children. Neurology 2001;57:1155-60.
4. Lasjaunias P, Wuppalapati S, Alvarez H, Rodesch G, Ozanne A. Intracranial aneurysms in children aged under 15 years: Review of 59 consecutive children with 75 aneurysms. Childs Nerv Syst 2005;21:437-50.
5. Laughlin S, Terbrugge KG, Willinsky RA, Armstrong DC, Montanera WJ, Humphreys RP. Endovascular management of paediatric intracranial aneurysms. Interv Neuroradiol 1997;3:205-14.
6. Nakatomi H, Nagata K, Kawamoto S, Shiokawa Y. Ruptured dissecting aneurysm as a cause of subarachnoid hemorrhage of unverified etiology. Stroke 1997;28:1278-82.
7. Vilela P, Goulão A. Paediatric dissecting posterior cerebral aneurysms: Report of two cases and review of the literature. Neuroradiology 2006;48:541-8.
8. Allison JW, Davis JC, Sato Y, James CA, Haque SS, Angtuoac EI, et al. Intracranial aneurysms in infants and children. Pediatr Radiol 1998;28:223-9.
9. Maeda K, Usui M, Tsutsuki K, Iijima A. Spontaneous occlusion of a giant basilar tip aneurysm and a basilar artery due to the dissection of both structures: Case report. Surg Neurol 1997;48:606-9.
10. Black S, German W. Observations on the relationship between the volume and the size of the orifice of the experimental aneurysms. J Neurosurg 1960;17:984-90.
11. Krapf H, Schoning M, Petersen D, Kuker W. Complete asymptomatic thrombosis and resorption of a congenital giant intracranial aneurysm. J Neurosurg 2002;97:184-9.
12. Warschewske G, Benndorf G, Lehmann T, Lanksch W. Spontaneous occlusion of a giant aneurysm within 4 weeks: Documented by angiography. Interv Neuroradiol 1999;5:327.
13. Taylor CL, Kopitnik TA Jr, Samson DS, Purdy PD. Treatment and outcome in 30 patients with posterior cerebral artery aneurysms. J Neurosurg 2003;99:15-22.
14. Zhang YS, Wang S, Wang Y, et al. Treatment for spontaneous intracranial dissecting aneurysms in childhood: A retrospective study of 26 cases. Front Neurol 2016;7:224.
15. Koroknay-Pal P, Niemela M, Lehto H, Kivisaari R, Numminen J, Laakso A, et al. De novo and recurrent aneurysms in pediatric patients with cerebral aneurysms. Stroke 2013;44:1436-9.
16. Liang J, Bao Y, Zhang H, Wrede KH, Zhi X, Li M, et al. The clinical features and treatment of pediatric intracranial aneurysm. Childs Nerv Syst 2009;25:317-24.
17. Songsaeng D, Srivatanakul K, Toulgoat F, Saliou G, Ozanne A, Lasjaunias P. Repair process in spontaneous intradural dissecting aneurysms in children: Report of eight patients and review of the literature. Childs Nerv Syst 2009;25:55-62.
18. Lasjaunias P, Wuppalapati S, Alvarez H, Rodesch G, Ozanne A. Intracranial aneurysms in children aged under 15 years: Review of 59 consecutive children with 75 aneurysms. Childs Nerv Syst 2005;21:437-50.