Contribution of environmental forcings to US runoff changes for the period 1950-2010

Whitney Forbes1,2,*, Jiafu Mao2,4,*, Mingzhou Jin1,*, Shih-Chieh Kao2, Wenting Fu3, Xiaoying Shi2, Daniel M. Riccuito2, Peter E. Thornton2, Aurélien Ribes3, Yutao Wang3, Shilong Piao5,7,8, Tianbao Zhao9, Christopher R. Schwalm0,11, Forrest M. Hoffman12, Joshua B. Fisher13, Akihiko Ito14, Ben Poulter15, Yuanyuan Fang16, Hanqin Tian17, Atul K. Jain18, and Daniel Hayes19

1 Department of Industrial and Systems Engineering, University of Tennessee, Knoxville, TN, USA
2 Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA
3 Jackson School of Geosciences, the University of Texas, Austin, TX, USA
4 Centre National de Recherches Météorologiques, Météo-France/CNRS, 42 Avenue Gaspard Coriolis, 31057 Toulouse, France
5 Fudan Tyndall Center, Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
6 Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
7 Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085, China
8 CAS Center for Excellence in Tibetan Plateau Earth Science, Beijing 100085, China
9 Key Laboratory of Regional Climate-Environment Research for East Asia, Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), Beijing, China
10 Woods Hole Research Center, Falmouth, MA 02540, USA
11 Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ 86011, USA
12 Computer Science and Mathematics Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
13 Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
14 Center for Global Environmental Research, National Institute for Environmental Studies (NIES), Onogawa 16-2, Tsukuba, Ibaraki 305-8506, Japan
15 NASA Goddard Space Flight Center, Biospheric Sciences Lab., Greenbelt, MD 20771
16 Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, USA
17 International Center for Climate and Global Change Research and School of Forestry and Wildlife Science, Auburn University, Auburn, AL, USA
18 Department of Atmospheric Sciences, University of Illinois, Urbana, IL 61801, USA
19 School of Forest Resources, University of Maine, Orono, ME 04459, USA

* Corresponding authors:
Correspondence to Jiafu Mao (maoj@ornl.gov) or Mingzhou Jin (jin@utk.edu)
** These authors contributed equally to this work.
Submitted to Environmental Research Letters.

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).
Figure S1(a). Comparison between WaterWatch stations and station from Dai’s dataset (Dai et al., 2009). There are 59 stations in total.

Figure S1(b). Comparison between WaterWatch stations and station from Dai’s dataset (Dai et al., 2009). There are 57 stations in total (59 minus the two high leverage points from figure S1(a)).
MsTMIP Model	Meteorological Variables Used
CLM4/CLM4VIC	Surface Air Temperature, Precipitation, Incoming Longwave Radiation, Incoming Shortwave Radiation, Specific Humidity, Surface Pressure, and Wind Speed
ISAM	Surface Air Temperature, Precipitation, Incoming Longwave Radiation, Incoming Solar Radiation, Specific Humidity, Surface Pressure, and Wind Speed
LPJ-wsl	Surface Air Temperature, Precipitation, Incoming Longwave Radiation, and Incoming Shortwave Radiation
VISIT	Surface Air Temperature, Precipitation, Incoming Longwave Radiation, Incoming Shortwave Radiation, Specific Humidity, and Wind Speed
TEM6	Surface Air Temperature, Precipitation, and Incoming Shortwave Radiation

Table S1. Meteorological Data Used by Each MsTMIP Model.
	Eastern	Northern	Southern	Western	US
	0.891	0.917	0.904	0.899	0.921
	(0.72, 0.576,	(0.759, 0.683,	(0.736, 0.586,	(0.885, 0.832,	(0.751, 0.704,
	0.889, 0.86,	0.841, 0.832,	0.925, 0.799,	0.906, 0.797,	0.852, 0.875,
	0.65, 0.905)	0.829, 0.784)	0.671, 0.858)	0.865, 0.877)	0.718, 0.922)

	DJF				
	0.848	0.8	0.913	0.896	0.87
	(0.619, 0.648,	(0.656, 0.471,	(0.762, 0.693,	(0.892, 0.878,	(0.728, 0.746,
	0.914, 0.653,	0.843, 0.389,	0.92, 0.806,	0.914, 0.748,	0.901, 0.684,
	0.638, 0.781)	0.649, 0.466)	0.674, 0.852)	0.903, 0.822)	0.683, 0.78)

	MAM				
	0.878	0.878	0.910	0.887	0.916
	(0.732, 0.513,	(0.717, 0.685,	(0.671, 0.62,	(0.826, 0.831,	(0.76, 0.665,
	0.916, 0.781,	0.822, 0.78,	0.914, 0.858,	0.875, 0.823,	0.899, 0.841,
	0.741, 0.892)	0.671, 0.779)	0.674, 0.9)	0.797, 0.82)	0.812, 0.913)

	JJA				
	0.859	0.9	0.754	0.739	0.789
	(0.764, 0.622,	(0.611, 0.67,	(0.552, 0.452,	(0.613, 0.444,	(0.551, 0.555,
	0.87, 0.724,	0.84, 0.703,	0.786, 0.612,	0.35, 0.738,	0.644, 0.644,
	0.731, 0.76)	0.783, 0.576)	0.638, 0.442)	0.272, 0.637)	0.701, 0.713)

	SON				
	0.891	0.897	0.752	0.863	0.891
	(0.788, 0.706,	(0.761, 0.768,	(0.711, 0.496,	(0.853, 0.673,	(0.802, 0.67,
	0.885, 0.774,	0.857, 0.75,	0.769, 0.673,	0.819, 0.743,	0.844, 0.765,
	0.554, 0.837)	0.782, 0.807)	0.708, 0.644)	0.759, 0.812)	0.542, 0.827)

Table S2. R-Squared for Each Season Using WaterWatch and ALL. Results are for the model ensemble mean and the values shown in parenthesis correspond to the values for the individual models (CLM4, CLM4VIC, ISAM, LPJ-wsl, VISIT, TEM6).
Figure S2. Spatial Patterns of Trends and Dominant Forcings using Pre-whitened 5-year Means from WaterWatch and MsTMIP Multi-Model Ensemble Mean (MME) Forcings. (a-f) WaterWatch and MsTMIP MME pre-whitened 5-year mean runoff trends for 1950-2010, (mm/yr)/5 years with dots representing grid cells with significant trends ($\alpha = 0.05$, Mann-Kendall). The ‘zyp’ R package function based on Zhang (1999) was used to obtain the pre-whitened 5-year means and their corresponding Theil-Sen trends and Mann-Kendall Significance (Kendall, 1975; Mann, 1945; Sen, 1968; Theil, 1950). (g) Dominant forcing when the trend values of CLMT, CO2, NDEP, and LULCC are compared to ALL. Lighter (darker) colors represent negative (positive) trends whereas white grid cells show spaces where the sign of the trends for the forcings disagreed with the ALL forcing. (h) Same as (g), but CLMT is not included.
Figure S3. SYNMAP Vegetation Type Trend using Theil-Sen (Sen, 1968; Theil, 1950). Trends are for the percent plant functional type of each cell for (a) trees and (b) crops.
Figure S4. Dominant Season. The dominant season is the season that has the largest trend which has the same sign as the trend for ALL. White grid cells show locations where the sign of the trends for the seasons disagreed with the ALL forcing.
Figure S5. Spatial Pattern of Trends for DJF Runoff from WaterWatch and MsTMIP Multi-Model Ensemble Mean (MME) Forcings and Dominant Forcings. (a-f) WaterWatch and MsTMIP MME DJF runoff trends for 1950-2010, mm/yr² with dots representing grid cells with significant trends ($\alpha = 0.05$, Mann-Kendall). (g) Dominant forcing when the trend values of CLMT, CO2, NDEP, and LULCC are compared to ALL. Lighter (darker) colors represent negative (positive) trends whereas white grid cells show spaces where the sign of the trends for the forcings disagreed with the ALL forcing. (h) Same as (g), but CLMT is not included.
Figure S6. Spatial Pattern of Trends for MAM Runoff from WaterWatch and MsTMIP Multi-Model Ensemble Mean (MME) Forcings and Dominant Forcings. (a-f) WaterWatch and MsTMIP MME MAM runoff trends for 1950-2010, mm/yr2 with dots representing grid cells with significant trends ($\alpha = 0.05$, Mann-Kendall). (g) Dominant forcing when the trend values of CLMT, CO2, NDEP, and LULCC are compared to ALL. Lighter (darker) colors represent negative (positive) trends whereas white grid cells show spaces where the sign of the trends for the forcings disagreed with the ALL forcing. (h) Same as (g), but CLMT is not included.
Figure S7. Spatial Pattern of Trends for JJA Runoff from WaterWatch and MsTMIP Multi-Model Ensemble Mean (MME) Forcings and Dominant Forcings. (a-f) WaterWatch and MsTMIP MME JJA runoff trends for 1950-2010, mm/yr² with dots representing grid cells with significant trends (α = 0.05, Mann-Kendall). (g) Dominant forcing when the trend values of CLMT, CO2, NDEP, and LULCC are compared to ALL. Lighter (darker) colors represent negative (positive) trends whereas white grid cells show spaces where the sign of the trends for the forcings disagreed with the ALL forcing. (h) Same as (g), but CLMT is not included.
Figure S8. Spatial Pattern of Trends for SON Runoff from WaterWatch and MsTMIP Multi-Model Ensemble Mean (MME) Forcings and Dominant Forcings. (a-f) WaterWatch and MsTMIP MME SON runoff trends for 1950-2010, mm/yr² with dots representing grid cells with significant trends ($\alpha = 0.05$, Mann-Kendall). (g) Dominant forcing when the trend values of CLMT, CO2, NDEP, and LULCC are compared to ALL. Lighter (darker) colors represent negative (positive) trends whereas white grid cells show spaces where the sign of the trends for the forcings disagreed with the ALL forcing. (h) Same as (g), but CLMT is not included.
S9(a). Root Mean Square Difference (RMSD) Values between WaterWatch and ALL Annual Totals. The RMSD values were normalized by the RMSD value corresponding to approximately the 99th percentile of values. The 99th percentile was chosen rather than the maximum due to extreme values.

Figure S9(b). DJF RMSD. This figure is the same as figure S9(a) but instead of annual totals, the DJF season was used to determine the RMSD values.
Figure S9(c). MAM RMSD. This figure is the same as figure S9(a) but instead of annual totals, the MAM season was used to determine the RMSD values.

Figure S9(d). JJA RMSD. This figure is the same as figure S9(a) but instead of annual totals, the JJA season was used to determine the RMSD values.
Figure S9(e). SON RMSD. This figure is the same as figure S9(a) but instead of annual totals, the SON season was used to determine the RMSD values.
Figure S10. Regional Trends of Annual Total Values for the MsTMIP MME (black bars) and Each Individual Model. Each black bar denotes the beginning of a region. The regions are ordered as follows: east, north, south, west, and US as a whole. The orders of the individual models are:

Category	Models
ALL	CLM4, CLM4VIC, ISAM, LPJ-wsl, VISIT, TEM6
CLMT	CLM4, CLM4VIC, ISAM, LPJ-wsl, VISIT, TEM6
CO2	CLM4, CLM4VIC, ISAM, LPJ-wsl, VISIT, TEM6
NDEP	CLM4, CLM4VIC, TEM6
LULCC	CLM4, CLM4VIC, ISAM, LPJ-wsl, TEM6
Figure S11(a). Spatial Distributions of D&A Scaling Factors for DJF. The D&A methodology was applied to each grid cell. Not detected (purple) denotes a scaling factor whose corresponding 95% confidence interval was less than zero or included zero. If the 95% confidence interval was greater than zero but did not include one, the forcing was detected (yellow). A positive confidence interval was labeled as attributed (pink) if it included one.

Figure 11(b). Same as figure S11(a) but for MAM.
Figure 11(c). Same as figure S11(a) but for JJA.

Figure 11(d). Same as figure S11(a) but for SON.
Figure S12(a). Autocorrelation Plot of the Residuals from the Regression using Northern Annual Totals. Blue lines represent the bounds for white noise.

Figure S12(b). Autocorrelation Plot of the Residuals from the Regression using Southern MAM.
Figure S12(c). Autocorrelation Plot of the Residuals from the Regression using Northern JJA.

Figure S12(d). Autocorrelation Plot of the Residuals from the Regression using US JJA.
Figure S12(e). Autocorrelation Plot of the Residuals from the Regression using Northern SON.
Figure S13. Scaling Factor Estimates (black asterisks) and Corresponding 95% Confidence Intervals for Annual Totals (a) and Seasonal Means (b-e) Using the MME of CLM4, CLM4VIC, and TEM6. Dashed lines denote the values 0 and 1. Thick gray lines separate the results into different regions. A red asterisk in the bottom left corner for a region denotes where the residuals were autocorrelated.
Figure S14. Scaling factor estimates (asterisk) and corresponding 95% confidence intervals for 5-year means of the annual totals (a) and seasonal means (b-e). Dashed lines denote the values 0 and 1. Thick gray lines separate the results into different regions. Red asterisk in the bottom left corner for a region denotes where the residuals were autocorrelated.
Figure S15(a-e). CRU-NCEP vs PRISM Annual Precipitation for Each Region and the US CONUS Over the Period 1950 – 2010. Included within each figure is the 1950 – 2010 time series, mean value for the time period, Theil-Sen trend estimate, and Mann-Kendall Significance (Kendall, 1975; Mann, 1945; Sen, 1968; Theil, 1950). A significant trend is denoted by red dots on the trend line.
References

Dai A, Qian T, Trenberth K E and Milliman J D 2009 Changes in Continental Freshwater Discharge from 1948 to 2004. *J. Climate* **22** 2773-92 doi:10.1175/2008JCLI2592.1

Kendall M G 1975 Rank correlation methods. Griffin, London

Mann H B 1945 Nonparametric tests against trend. *Econometrica* **13** 245–59

Sen P K 1968 Estimates of the regression coefficient based on Kendall’s Tau. *J. Am. Stat. Assoc.* **63** 1379–89 doi:10.1080/01621459.1968.10480934

Theil H 1950 A rank-invariant method of linear and polynomial regression analysis, 3; confidence regions for the parameters of polynomial regression equations. *Proceedings KNAW*

Zhang X and Zwiers F W 2004 Comment on “Applicability of prewhitening to eliminate the influence of serial correlation on the Mann-Kendall test” by Sheng Yue and Chun Yuan Wang. *Water Resources Research* **40** W03805 doi:10.1029/2003WR002073