Does it Ping or Pong? Auditory and tactile classification of materials by bouncing events

YURI DE PRA and FEDERICO FONTANA, University of Udine
HANNA JÄRVELÄINEN and STEFANO PAPETTI, Zurich University of the Arts
MICHELE SIMONATO, Electrolux Professional S.p.A.

Two experiments studied the role of impact sounds and vibrations in classification of materials. The task consisted in feeling on an actuated surface as well as listening through headphones to the recorded feedback of a ping-pong ball hitting three flat objects respectively made of wood, plastic and metal, and then identifying their material. In Experiment 1, sounds and vibrations were recorded by keeping the objects in mechanical isolation. In Experiment 2, recordings were taken while the same objects stood on a table, causing their resonances to fade faster due to mechanical coupling with the support. A control experiment, where participants listened to and touched the real objects in mechanical isolation, showed high accuracy of classification from either sounds (90% correct) or vibrations (67% correct). Classification of reproduced bounces in Experiment 1 and 2 was less precise. In both experiments the main effect of material was statistically significant, conversely the main effect of modality (auditory or tactile) was significant only in the control. Identification of plastic and especially metal was less accurate in Experiment 2, suggesting that participants when possible classified materials by longer resonance tails. Audio-tactile summation of classification accuracy was found, suggesting that multisensory integration influences the perception of materials. Such results have prospective application to the non-visual design of virtual buttons, object of our current research.

CCS Concepts: • Human-centered computing → Empirical studies in HCI; Haptic devices; Touch screens; Auditory feedback.

Additional Key Words and Phrases: material classification, auditory feedback, tactile feedback, multisensory integration, virtual buttons

ACM Reference Format:
Yuri De Pra, Federico Fontana, Hanna Järveläinen, Stefano Papetti, and Michele Simonato. 2020. Does it Ping or Pong? Auditory and tactile classification of materials by bouncing events. ACM Transactions on Applied Perception.

1 INTRODUCTION
Humans initially identify everyday materials from their visual aspect. Visual identification is often refined through touch [7], by analyzing tactile surface properties such as roughness [2] and temperature [29]. This analysis postulates a material to be fully characterized by its superficial appearance.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

ACM Transactions on Applied Perception.
Inner material properties can be actively explored using touch and hearing, as when an indentation or a tap unveil the hardness of an object. Point-wise tapping in particular generates impulsive audio-tactile feedback whose role goes beyond aesthetics [41], giving rise to cross-modal cues which are difficult to disambiguate [17]. Classification of material, size and shape from impulsive auditory feedback has been successfully performed by listeners identifying synthetic stimuli reproducing strikes on suspended plates [20, 36, 54] and clamped bars [34, 39]—see also Giordano and Avanzini [19] for a comprehensive review of related work. In fact, the simulation of objects vibrating in mechanical isolation enables fine control of their oscillatory modes through the amplitude, frequency and decay parameters of each mode. Depending on their setting, these parameters link the physical properties of an object to its auditory perception by means of fundamental cues such as decay, pitch and timbre. Experiments aiming at applying materials sound synthesis to auditory displays and interfaces [18] have suggested that everyday materials are first roughly classified into distinct groups (e.g., metals) depending on decay. Once grouped, further categorization may be based on characteristic (“material”) frequencies [20]. The latter association was shown to become especially important when the stimuli are short (i.e., less than about 400 ms), as decay cues in this case become difficult to perceive [38].

Classification of materials by impulsive tactile feedback has been researched too, albeit less systematically. Most of the works deal with direct or mediated finger tapping especially in view of applications to robotic sensing and material augmentation. Kim and Kesavadas [33] parameterized a contact model to reproduce different materials, by acquiring temporal patterns of force from participants tapping on steel, aluminum, wood, and rubber surfaces during an identification task. Hachisu et al. designed a stick that, when tapped, cancels its own body’s response and then renders haptic sensations of aluminum, wood and rubber by synthesizing a damped sinusoid with characteristic amplitude, decay and frequency parameters [23]. Both works reported successful recognition of the proposed materials, with possible support from sound in the former. The latter was later applied to touchscreen augmentation on a tablet displaying playable percussion instrument boards made of wood and metal [22]. An exception comes from Higashi’s systematic research on tactile perception of hardness [28], resulting in intensity curves [25] and mechanical parameter ranges [26] of equal hardness perception, as well as in a psycho-physical map linking materials to perceived stiffness in response to a tap [27].

Our study considers both the auditory and tactile sensory channels, in an effort to assess their individual contribution while forming a multi-sensory material category. In fact, only a minority of the literature about the influence of hearing on touch [6, 50, 51, 59] during material classification [21, 31] considers impulsive feedback. Cases in this minority include the marble-hand illusion, which affects hardness perception as subjects whose hands are gently hammered feel their own hand to become as much harder and heavier as the contact sound does [48]. Another illusion makes use of audio-tactile impact asynchrony [37], leading to softer reproductions of finger-tapped materials if delays larger than about 20 ms between the auditory and tactile stimulus are introduced.

For our study we recorded the auditory and tactile responses to an impulsive excitation from three flat objects made of different materials, first taken in mechanical isolation and then resting on a table. Then we reproduced such recorded sounds and vibrations, either separately or together, respectively through headphones and on a hard glass plate actuated by a vibrotactile transducer. The tactile display avoided surface texture rendering technologies [11, 60]. For its simplicity and low cost [10], this setup is ideal for testing the audio-tactile feedback of virtual buttons on touchscreens specific for operating large catering appliances, goal of this research. Coherently with this goal, temperature cues that could further characterize the materials were removed from the experiments.

In this specific application context the haptic literature provides further useful knowledge, although not referring directly to material classification. Several virtual buttons have been tested based on different actuation technologies, with a focus on their tactile properties. Park et al. tuned the signal parameters of dual-mode actuators to magnify significant tactile attributes of perceived quality such as hardness, distinctiveness and clarity [43]. Kaaresoja et al. found accurate latency thresholds, concluding that the quality of a virtual button is preserved once tactile feedback latency is kept between 5 and 50 ms, and auditory feedback latency between 20
and 70 ms [32]. Bresciani et al. highlighted the importance of multimodal integration for this research, by showing that auditory sequences of beeps modulate the tactile perception of sequences of taps simultaneously delivered to the index fingertip [5]. Our tests can be considered preliminary to an experiment using virtual buttons, as we maximised the control of the perception through the design of a passive task. In fact, active exploration through tapping is known to introduce considerable variance in impact speed and pressure of the finger, both within and among subjects [33], with consequent loss of control of the stimulus intensity.

Only one, to our knowledge, study in human factors by Smith et al. indirectly links material classification to virtual buttons by proving that abstract auditory feedback can be more difficult to learn and retain than environmental sounds [49]. In parallel, Koskinen et al. confirmed that tactile feedback improves the usability of virtual buttons, however the satisfaction of the experience is subjective and includes cases of users who prefer sharp and strong vibrations only when auditory feedback is absent, in practice making the design of audio-tactile buttons not an easy task [35]. The decision to minimize abstraction of the audio-tactile feedback in our research hence followed from the results of Smith and Koskinen, and led to the study presented here.

2 EXPERIMENTS

Two experiments used stimuli recorded from single impacts on three flat objects made respectively of wood, plastic, and metal. The experiments differed in the main resonance decay times, as a consequence of recording sounds and vibrations either with suspended objects (Experiment 1), or more realistically with the same objects resting on a table (Experiment 2). Furthermore, a control test was set up using real impact events on the same materials when they were in mechanical isolation, i.e., in the same condition as when the sound and vibrations for Experiment 1 were recorded. The purpose of the control test was to set a reference baseline on the human ability to classify materials based on our objects’ audio-tactile feedback.

The general hypothesis was that participants are able to classify wood, plastic and metal by impulsive auditory, tactile, and finally audio-tactile feedback from flat objects made of those materials.

Part of Experiment 2 was previously presented at a conference [9]. In accordance with studies by other authors [20, 33], its results suggested profitable use of the decay time as a cue for classifying materials. For this reason, about three months later we performed Experiment 1 along with the control test. Together, they set a more solid basis for a general discussion about material classification based on impulsive audio-tactile feedback.

2.1 Setup

Wood, metal, and plastic materials were selected as they respond rigidly to impacts (i.e. with spectral energy concentrating in the high frequency range), thus enabling realistic tactile reproduction on a glass surface offering just vibratory feedback, rather than kinesthetic cues that are linked to soft materials [23].

Control test. Three flat objects were built out of fir wood, hard plastic, and steel. They were U-shaped by bending or carving, allowing for a hand or an accelerometer to find sufficient room in the resulting cavity underneath (see Fig. 1). All objects were sized 160×160×45 mm. Two circular patches having a diameter of about 4 cm, made of thin adhesive film were attached at the same location on both sides of the surfaces. Both (i.e., the patch on the reverse side for Experiment 1 and the patch on the top side for Experiment 2) offered a uniform surface spot where participants put their fingers. In this way subjects could not use surface properties to identify materials. On the opposite side, these spots marked the impact point of the ball. Thanks to their low mass, thinness, and firm adhesion to the objects, they introduced almost imperceptible changes in the impact sounds and vibrations.

Experiments 1 and 2. A flat object was built by mounting a 3 mm-thick borosilicate glass plate on a metal frame suspended by means of rubber strips, and then coupling the frame with a wooden structure as shown in Fig. 2.
2.2 Stimuli

A ping-pong ball was used to excite the materials, for it has a light yet rigid structure, giving rise to neat impact events characterized by small energy in the low frequency range. Tests were also made with metal, rubber, and wooden balls of different size and weight, however they produced impacts whose energy at low frequency fell outside the range of the small, low-power actuator that we required for vibration reproduction in Experiment 1 and 2.

Control test. The ball was dropped on the three objects. The intensities of the stimuli were equalized across materials by dropping the ball from varying heights: 30 cm for wood, 80 cm for plastic, and 40 cm for metal. A marked rod was placed near the cardboard support, helping the experimenter to release the ball correctly during the experiment.

Mechanical decoupling was realized by putting the objects upside-down on a support made of foam and cardboard sized 200×240×60 mm, shown in Fig. 3(center). The support also forced participants to touch the surface only in correspondence of the adhesive tape, as in Fig. 3(right).

The temperature of the objects was stabilized at approximately 30°C, by keeping them under a halogen lamp starting ten minutes before and throughout the experiment when not in use.
An inspection of the temporal signals immediately after the bounce showed the presence of a low-frequency component identical in all cases, evident consequence of the response of the support. On top of this component, fading transients with a peak occurring within the first 100 ms were clearly visible. After removing the component in low frequency, such peaks showed a relative amplitude of approximately 0.30 mm for wood, 0.14 mm for plastic and 0.08 mm for metal. Decreasing peak values are compatible with the implemented intensity equalization, as the corresponding materials produced different decays as explained below.

Experiments 1 and 2. These experiments made use of reproduced audio and tactile stimuli: sound and vibration samples were recorded from a single ball hit on each surface. The objects were either turned upside-down and suspended as in Fig. 3(center), producing samples for use in Experiment 1, or resting on a table (see Fig. 6) for Experiment 2.

Sounds were recorded with an Audio-Technica AT4050 condenser microphone placed 40 cm away from the bouncing point. Vibrations were recorded by attaching a Wilcoxon 736 accelerometer in correspondence of the adhesive film. Both devices were connected to a RME Babyface Pro audio interface—the accelerometer through its companion pre-amplifier.

Auditory stimuli were played back through a pair of Beyerdynamic DT 770 PRO closed-back headphones. Tactile stimuli were reproduced by a Dayton Audio 32-mm balanced vibrotactile transducer, attached at the top side of the glass plate. Bimodal stimuli were provided by playing back auditory and tactile stimuli at the same time. In this case the auditory signal was delayed by 1.14 ms, corresponding to the time needed for airborne sound to travel from the impact to the listening point.

Spectrograms of the audio recordings made for both experiments are shown in Fig. 4. They show differences below 30 Hz, consequence of the different support employed, which were however inaudible. A closer look to the audible band reveals that the stimuli in Experiment 1 were about 0.1 s longer, with a strong resonance in metal at about 3 kHz lasting about 0.9 s.

Figure 5 shows spectrograms of the recorded vibrations in the top and middle rows, unveiling differences similar to what found for audio. Furthermore, metal in low coupling conditions generates long-lasting vibrations at about 20 and 250 Hz, that were not efficiently radiated across the air.

Spectrograms of the vibrations after reproduction on the glass plate during Experiment 2 are also shown, in the bottom row of Fig. 5. They were acquired by placing the accelerometer in correspondence of the presentation point of the plate—see Fig. 2. A comparison between these and the original vibrations in Experiment 2 (middle row) discloses some unavoidable differences affecting the tactile stimuli during reproduction. In fact, the limited admittance of glass at low frequencies and the frequency cutoff of the actuator progressively attenuate frequencies
below 200 Hz. Moreover, the denser modal distribution of the glass causes the resonances at higher frequencies to fragment into subgroups gathering two or three original vibration modes together. Table 1 summarizes the characteristics of the stimuli used in Experiments 1 and 2, and in the control test.

Experiment	Stimuli	Setup	Coupling	Resonance decays
control	live	cardboard support	low	slow
1	recorded	cardboard support	low	slow
2	recorded	on the table	normal	normal

2.3 Participants
Participants were recruited among students at the University of Udine and employees of Electrolux Professional SpA. They participated on a voluntary basis and were not paid. Their auditory and tactile acuity was informally
Fig. 5. Vibration spectrograms in Experiment 1 (top row) and 2 (middle row). Vibrations reproduced on the glass plate in Experiment 2 (bottom row).

tested by asking participants to close their eyes, then localize a sound source nearby, and finally identify the materials used in the experiment by touching the respective object outside the adhesive tape.

Control test. Sixty participants, aged between 19 and 52 (M=24.3; SD=6.7), took the control experiment.

Experiments 1 and 2. Twenty-five subjects between 23 and 61 years old (M=32.1; SD=10.1) participated in Experiment 1, and twenty-seven (21-54 years old; M=29.0; SD=6.8) in Experiment 2. Eight subjects participated in both experiments. Roughly one third of the participants were females.

2.4 Design and Procedure
In all experiments, the design consisted of two within-subjects factors: Material and Modality. Material was either Wood, Plastic, or Metal. Modality was either unimodal Auditory, unimodal Tactile, or Bimodal audio-tactile. The factors were crossed and each factor combination was repeated six times, resulting in $6 \times 3 \times 3 = 54$ trials. Trials were organized in blocks according to Modality. Both unimodal conditions were presented before the Bimodal condition, and the order of Auditory and Tactile conditions was balanced among participants. Within each block, six repetitions of each Material were presented in random order. The experiment lasted about 10 minutes.
The task was to classify and report the material by saying its name. Responses were noted by the experimenter and audio-recorded for later reference. Participants were blindfolded during the control test. In all experiments, during unimodal Tactile trials they received pink noise through headphones to mask unwanted auditory feedback.

Prior to each experiment, participants familiarized with the real audio-tactile events by listening to the impact sounds while keeping one or two fingers of the dominant hand on the adhesive spot (see Fig. 6) until they felt they could confidently recognize the respective materials through those cues.

Fig. 6. Familiarization in Experiment 2.

Control test. A trial consisted in the experimenter dropping a ball on one of the objects from the prescribed height. In Tactile and Audio-Tactile trials, participants placed one or two fingers below the object through the cardboard support, as during familiarization (Fig. 3(right)). The other two objects were in turn kept under the halogen lamp to avoid changes of their temperature during the session.

Experiments 1 and 2. A trial consisted in playing back a recorded impact event, presented through headphones and/or the actuated glass plate as shown in Fig. 2.

3 RESULTS

3.1 Control test

Table 2 reports the confusion matrix for the Auditory, Tactile and Bimodal modalities. Each diagonal contains the total proportion of correct responses in bold symbols, while the other cells report false responses. Columns labeled ‘None’ report missing responses. Figure 7 presents a boxplot of individual proportions correct for Modality (Auditory, Tactile, Bimodal) and Material (Wood, Plastic, Metal).

Concerning unimodal conditions, Wood and Plastic were classified much better in the Auditory than Tactile condition, whereas Metal was classified well in both conditions. In the Bimodal condition, performance was nearly perfect across materials. Hence differences in performance were analysed only between the two unimodal conditions as follows. We undertook a non-parametric analysis due to considerable ceiling effects in the data. A Friedman test [16] was conducted, revealing significant differences in Material (Q=92.25, p<0.001). Three pairwise comparisons using the Wilcoxon Rank-sum test [24] highlighted that Metal differed significantly from Plastic and Wood in the Tactile condition (Wood-Metal: Z=5.5, Bonferroni-corrected p<.01; Plastic-Metal: Z=3.6, p<.01). Concerning Modality, the pairwise comparisons highlighted significant differences between Auditory and Tactile for all materials (Z=5.2, p=.01). Finally, a Wilcoxon Rank-sum test confirmed that presentation order (Auditory then Tactile or Tactile then Auditory) did not result in significant differences for either Auditory (Z=.43, p>.05) or Tactile (Z=.7, p>.05) identification scores.
Table 2. Control test: confusion matrix for each condition.

Condition	Auditory		Tactile		Bimodal								
	Response	→ Wood	Plastic	Metal	None	Wood	Plastic	Metal	None	Wood	Plastic	Metal	None
Wood	Wood	90.0%	9.4%	.6%	0%	66.9%	26.7%	6.4%	0%	99.7%	.3%	0%	
Plastic	Plastic	6.4%	90.3%	2.8%	.5%	21.7%	74.7%	3.6%	0%	0%	96.7%	3.3%	
Metal	Metal	.3%	2.8%	96.4%	.5%	2.5%	6.4%	90.8%	.3%	0%	2%	98.0%	

![Fig. 7. Control test: Boxplot of proportions correct for all condition combinations.](image)

3.2 Experiment 1

Table 3 reports the confusion matrices in the same fashion as Table 2. Figure 8 shows a boxplot of individual proportions correct. Compared to both unimodal conditions, the results suggest that performance was better in the Bimodal condition.

Again, the score distributions deviate from normal due to a ceiling effect, hence a Friedman test was used. A significant main effect of Modality was detected (Q=37.8, p<.01). Three pairwise comparisons were performed between modalities using the Wilcoxon Rank-sum test. Significant differences were detected between Auditory-Bimodal (Z=-2.7, Bonferroni-corrected p<.01) and Tactile-Bimodal (Z=-5.4, p<.01).

A more detailed inspection of the two unimodal conditions shows higher median scores for Auditory than Tactile. In the Auditory condition, Metal was classified especially well. A Friedman test, considering each factor combination as one of six conditions of a combination factor, revealed significant differences (Q=21.8, p<.01).
Table 3. Experiment 1: confusion matrix for each condition.

Condition	Auditory	Tactile	Bimodal					
	Wood	Plastic	Metal	None	Wood	Plastic	Metal	None
Wood	79.3%	20.0%	0%	.7%	62.7%	20.0%	16.6%	.7%
Plastic	24.0%	72.7%	3.3%	0%	23.3%	63.4%	13.3%	0%
Metal	1.3%	2.0%	96.7%	0%	22.7%	11.3%	66.0%	0%

Fig. 8. Experiment 1: Boxplot of proportions correct for all condition combinations.

pairwise comparisons were performed. Three comparisons between materials in the Auditory modality revealed that Metal significantly differed from Plastic and Wood (AuditoryWood-AuditoryMetal: Z=4.3, Bonferroni-corrected p<.01; AuditoryPlastic-AuditoryMetal: Z=3.4, p<.01). Further three comparisons were performed for each Material between the Auditory and Tactile modalities. A significant difference was detected only for Metal (MetalAuditory-MetalTactile: Z=3.5, p<.01).

3.3 Experiment 2
Table 4 reports the confusion matrices in the same fashion as Table 3. Performance is now generally lower and in some cases close to chance performance. Most participants performed above chance; however, two participants failed in both unimodal conditions and additional two in one unimodal condition. Metal was
Table 4. Experiment 2: confusion matrix for each condition.

Condition	Auditory	Tactile	Bimodal						
	Response→	Wood	Plastic	Metal	None	Wood	Plastic	Metal	None
Wood	75.9%	16.1%	6.8%	1.2%	67.9%	13.0%	17.9%	1.2%	87.0%
Plastic	11.7%	62.4%	24.7%	1.2%	17.9%	53.1%	27.8%	1.2%	7.4%
Metal	20.4%	29.0%	50.0%	.6%	13.0%	36.8%	49.4%	1.8%	5.5%

frequently misclassified: 36.8% of Metal trials were classified as Plastic in the Tactile condition and 29.0% in the Auditory condition. Wood and Plastic were classified better than Metal, especially from Auditory cues.

Figure 9 reports a boxplot and means with SE of proportions correct for the same conditions as in Fig. 8. Again, performance was better in the Bimodal condition than in the unimodal conditions. A non-parametric Friedman test detected a significant main effect of Modality (Q=25.0, p<.01). Pairwise comparisons were performed using the Wilcoxon Rank-sum test, revealing significant differences between Auditory-Bimodal (Z=-2.5, p=.03 Bonferroni-corrected) and Tactile-Bimodal (Z=-3.7, p<.01).

Fig. 9. Experiment 2: Mean proportions correct with SE bars (Unimodal) and boxplots (Bimodal) for all condition combinations.

Particularly for the unimodal conditions, scores were lower than in Experiment 1. Tests on the unimodal distributions with the D’Agostino method confirmed no significant deviation from normality for all factors [8], concluding that ceiling effects were not present. Even though some skewness was found in the combination (Auditory, Wood), a parametric analysis could be undertaken.
A two-way repeated-measures ANOVA was performed using Greenhouse-Geisser correction for insphericity. A significant main effect of Material was detected ($F(1.61,41.9)=16.3, p \leq .001$), whereas neither the main effect of Modality ($p=.09$) nor the interaction of Modality and Material ($p=.563$) was significant. The mean results for Materials were: Wood ($M=.72, SD=.033$), Plastic ($M=.58, SD=.033$) and Metal ($M=.50, SD=.04$). Their respective 95% confidence intervals result in a partial overlap between Plastic (.51–.64) and Metal (.42–.57), while Wood is outside their combined range (.65–.78).

4 DISCUSSION
Figs. 7, 8 and 9 show that in all tests auditory cues were more effective than tactile cues for material classification. This is not surprising, since hearing discriminates cues of frequency better than touch [55]. In the control test, however, Metal was classified almost equally well in both modalities. The most plausible explanation for this exception is that participants efficiently discriminated the longer decay of the metallic object vibrations from both sensory channels. This conclusion is consistent with previous findings, concluding that cues of damping/decay times are fundamental during material identification by hearing [20] and also by touch [28].

Further support to the above conclusion comes from Experiment 1 where participants, compared to the control test, were less precise in the Auditory modality when listening to Wood and Plastic, but once again almost infallible when listening to Metal. In fact, the auditory confusion matrix in Table 3 disperses the data around the diagonal limited to the sub-matrix reporting for Wood and Plastic. Headphone listening introduces spectral (hence timbral) changes, and internalizes sound sources especially if using closed-back headsets [56]. The use of such devices in our experiments hence altered the auditory recognition process, and disrupted the localization process [40]. The consequent distortion of the ecology that listeners had previously experienced during familiarization with the bouncing event may have caused larger error rates in the Auditory modality. Notably, such artifacts are less relevant for sounds made of few oscillatory components, where pitch instead of timbre cues prevail [52]. Hence, after the onset listeners might have been able to isolate the long-lasting resonance at about 3 kHz (above in Fig. 4) equally well for both real and reproduced metal sounds.

A similar motivation may explain the performance drop while recognizing Metal through the Tactile modality in Experiment 1. In fact, an inspection of the bottom row in Fig. 5 shows that the reproduction over glass progressively attenuates the resonances from 200 Hz down, and alters those above this frequency. For this reason, participants might have lost both high-[4] and low-frequency tactile pitch cues [3] visible in the top row in Fig. 5, which had been acquired during familiarization. Losing the former could have had consequences in identifying the metallic object. In parallel, the generally disappearing spectral energy below 200 Hz might have been responsible for a proportional performance decay of participants in identifying all materials through touch from reproduced vibrations during Experiment 1.

In Experiment 2, participants still performed above chance in both the Auditory and Tactile modalities; however, performance was generally lower than in Experiment 1. Wood essentially confirmed the scores of Experiment 1, while Plastic and especially Metal did not. This performance decay finds an explanation in the spectrograms of Fig. 4 and 5 relative to this experiment (bottom rows). According to them, both channels ceased to provide the characteristic resonances acquired by subjects during familiarization, and suggest that during the task sounds and vibrations were perceived to have different timbre and no that distinct pitch that was still present in Experiment 1. The Auditory classification of Metal suffered particularly from this situation, scoring down until about 50%. This caused in its turn a general increase of the auditory confusion, as the expected resonant timbre of Metal and Plastic disappeared in favor of a muffled, unpitched sound inducing participants to occasionally swap the two materials, or classify them indistinctly as Wood.

The above considerations find even more solid ground with the Tactile modality. Indeed, a comparison between the mid and bottom rows of Fig. 5 respectively suggests that, during familiarization, these participants
received characteristic low-frequency content and resonance modes; yet later, during the experimental tasks with reproduced stimuli, most of the energy below 200 Hz was not present, nor could the original resonances be retrieved from the spectral clusters in the tactile band [55] of the reproduced vibrations. Analogously to Experiment 1, the spectral distortion progressively got worse while moving from Wood to Plastic and finally Metal, with potentially proportional effects in the material identification.

The first general conclusion hence is that participants identified Metal from resonances with longer decays, when available. Then, they relied on less robust timbre and pitch cues which were present in the onset of all stimuli. This conclusion echoes the results obtained by Giordano et al. using auditory feedback [20]; additionally, it suggests that participants made proficient use of longer resonances also in the tactile modality, as Higashi found while investigating tactile hardness perception [28]. Wood and plastic in any case had to be classified based on spectral cues, with little or no support from temporal information: in this respect, our results are aligned with existing research on tactile recognition of musical timbre [46].

In both experiments the classification based on Bimodal stimuli was better. Especially in Experiment 1, it seems that the synergistic reproduction of audio and tactile cues was able to restore the information existing in the unimodal cues when they were experienced directly from the objects. More surprisingly, the same synergy was present also in Experiment 2 in which the sensory channels were further distorted. The logical conclusion is that participants were supported in their classification in the Bimodal condition by some form of cross-modal summation of tactile and auditory cues of material.

Sensory integration is known to optimize perceptual acuity [12]. In particular, interactions between such two channels have been reported by several authors [15], with effects depending on the spectral characteristics and temporal relationships between auditory and tactile stimuli. Even if such interactions do not necessarily lead to constructive effects [58], synchronous audio-tactile presentations of matching frequencies have been shown to improve event detection also in presence of broadband auditory noise [57].

Constructive audio-tactile summation of particular interest to our experiment was reported by Shurmann [47]. Participants performed a loudness-matching task with and without touching a bar vibrating coherently with sound. Vibrations were discovered to amplify the perception of auditory stimuli especially when their loudness was low. Further results have highlighted that the frequencies responsible for this effect range between 200 and 400 Hz [1]. In line with that and some previously cited experiments, our participants in the Bimodal condition might have detected audio-tactile cues reporting of resonance modes (be they equal in frequency or consonant [13, 42]) that conversely had disappeared or were perceptually masked in the unimodal stimuli. Their detection, hence, could have improved the classification performance. In this respect, literature from the musical haptics field provides intriguing, but not always robust evidences of multisensory perception of frequency cues [14, 30, 45].

4.1 Incongruent stimuli

The above considerations on audio-tactile synergy during material classification are even more interesting if considering responses to six incongruent bimodal stimuli, obtained by combining sounds and vibrations generated from different materials. Such stimuli were prepared with the recorded short-decay responses, as in Experiment 2. Immediately after the completion of a session in Experiment 2, we asked the participant to classify the same three Materials from four randomized repetitions of incongruent stimuli, for a total of $4 \times 6 = 24$ additional trials.

Table 5 reports how Materials were classified. The histogram in Fig. 10 illustrates the distribution of consistent classifications across Bimodal stimuli resulting from the 3 congruent and 6 incongruent audio-tactile combinations. For each combination, classifications were considered as consistent if reiterated in more than two (that is, half of the) repetitions irrespective of the identified material. Only the so defined consistent responses are represented in the histogram of Fig. 10. Consequently, shorter bars reflect lower consistency and thus greater confusion during classification.
Table 5. Material classification from incongruent stimuli.

Stimulus	Response		
		Auditory	Tactile
Wood	Plastic	63.0%	32.4%
	Plastic	58.3%	22.2%
Plastic	Wood	30.6%	48.1%
	Metal	6.5%	37.0%
Metal	Wood	46.3%	25.9%
	Plastic	13.0%	45.3%

Fig. 10. Distribution of consistent classifications from congruent and incongruent bimodal stimuli.

As the incongruent results can not be compared to the congruent cases, the histogram can be interpreted only qualitatively. In spite of this, Fig. 10 suggests some interesting considerations. Congruent stimuli supported the Auditory classification of the unique Material they represented, and furthermore such classifications were mostly reliable. As reliability gradually decreases while moving to the right of the figure, consistent classifications started to occur for incongruent stimuli too, again led by the auditory channel. However, the tactile channel prevailed in the last three (on average least reliable) consistent classifications.
We speculate that tactile feedback, in the limits of its ability to convey timbre, became progressively more important as the auditory channel, in front of incongruent materials, left its leading role while remaining supportive to cross-modal perception. This conclusion finds partial confirmation from experiments demonstrating that simultaneous presentation of sound and vibrations can lower tactile intensity thresholds [44] as well as enhance tactile intensity perception [53]. Concerning material classification, holding the conditions of Experiment 2 in which Metal could not be identified anymore by longer resonances, Wood established the most robust classification also when incongruent stimuli were presented: Wood was generally identified whenever it was present in at least one channel, whereas it was not identified when it was not present in either channel. The present conclusions, however, represent only a starting point and ought to be quantitatively confirmed by further tests.

5 CONCLUSION

The described experiments investigated the relationships and interactions existing between the auditory and tactile channels when humans are engaged in a material classification task, based on impulsive feedback from flat objects built with those materials. Our findings suggest that, while both channels are able to perform this task correctly based on real feedback, the reproduction of recorded sounds and vibrations on a touchscreen-like display deteriorates the performance especially if the material’s distinctive resonances are damped (e.g. because the display rests on a table). These experiments hence provide a baseline for the design of virtual buttons taking natural interaction into consideration. Our conclusions do not contradict previously accepted results, showing that few decaying resonance modes are sufficient to characterize the sounds and vibrations of a button: they indeed suggest that simple audio-tactile feedback can be contextualized to reflect material properties, through proper resonance tuning and the design of suitable broad-band onsets. In fact, the design of feedback containing subtle cues of material would be effective only if relying on technologies able to reproduce them with great accuracy. On the other hand, further research is needed to understand exactly the audio-tactile interactions that take place when humans classify impulsive feedback coming from everyday materials.

ACKNOWLEDGMENTS

This research was partially supported by PRID project SMARTLAND and by UNIUD plan PSA, both funded by the University of Udine, and by project HAPTEEV (Haptic technology and evaluation for digital musical interfaces 2018-2022) funded by the Swiss National Science Foundation. Yuri De Pra’s Ph.D. is funded with a scholarship of The Research Hub by Electrolux Professional SpA. We would like to thank Andrea Boato for preparing the samples in Fig. 1, used for the experiments.

REFERENCES

[1] Banu Abdikadirova, Evagoras Xydas, and Nurgeldy Praliyev. 2019. Effect of Frequency Level on Vibro-tactile Sound Detection. In Proceedings of the 3rd International Conference on Human Computer Interaction Theory and Applications. https://doi.org/10.5220/0007347100970102
[2] Elisabeth Baumgartner, Christiane B. Wiebel, and Karl R. Gegenfurtner. 2013. Visual and haptic representations of material properties. Multisensory research 26, 5 (2013), 429–455.
[3] Sliman J. Bensmaia and Mark Hollins. 2000. Complex tactile waveform discrimination. The Journal of the Acoustical Society of America 108, 3 (2000), 1236–1245.
[4] Sliman J. Bensmaia, Mark Hollins, and Jeffrey Yau. 2005. Vibrotactile intensity and frequency information in the Pacinian system: A psychophysical model. Perception & Psychophysics 67, 5 (01 Jul 2005), 828–841. https://doi.org/10.3758/BF03193536
[5] Jean-Pierre Bresciani, Marc O. Ernst, Knut Drewing, Guillaume Bouyer, Vincent Maury, and Abderrahmane Kheddar. 2005. Feeling what you hear: auditory signals can modulate tactile tap perception. Experimental Brain Research 162, 2 (01 Apr 2005), 172–180. https://doi.org/10.1007/s00221-004-2128-2
[6] Umberto Castiello, Bruno L. Giordano, Chiara Begliomini, Caterina Ansuini, and Massimo Grassi. 2010. When Ears Drive Hands: The Influence of Contact Sound on Reaching to Grasp. Plos ONE 5, 8 (08 2010), 1–9. https://doi.org/10.1371/journal.pone.0012240
111:16 • De Pra, Fontana et al.

[7] Jessica D. Ndengue, Ilaria Cesini, Jenny Faucheux, Eric Chatelet, Hassan Zahouani, David Delafosse, and Francesco Massi. 2017. Tactile Perception and Friction-Induced Vibrations: Discrimination of Similarly Patterned Wood-Like Surfaces. *IEEE Trans. on Haptics* 10, 3 (July 2017), 409–417. https://doi.org/10.1109/TOH.2016.2643662

[8] Ralph B. D’Agostino. 1971. An omnibus test of normality for moderate and large size samples. *Biometrika* 58, 2 (1971), 341–348. https://doi.org/10.1093/biomet/58.2.341

[9] Yuri De Pra, Federico Fontana, Hanna Jarveliaien, Stefano Papetti, Michele Simonato, and Riccardo Furlanetto. 2019. Auditory and tactile recognition of resonant material vibrations in a passive task of bouncing perception. In *International Workshop on Haptic and Audio Interaction Design-HAID2019*.

[10] Derek DiFilippo and Dinesh K. Pai. 2005. The AHI: An Audio and Haptic Interface for Contact Interactions. In *ACM SIGGRAPH 2005 Courses*. ACM, New York, NY, USA, Article 164. https://doi.org/10.1145/1198555.1198614

[11] Pierre Dupont, Vincent Hayward, Brian Armstrong, and Friedhelm Altpeter. 2002. Single state elastoplastic friction models. *IEEE Trans. on Automation Control* 47, 5 (May 2002), 787–792. https://doi.org/10.1109/TAC.2002.1000274

[12] Marc O. Ernst and Martin S. Banks. 2002. Humans integrate visual and haptic information in a statistically optimal fashion. *Nature* 415, 6870 (2002), 429–433.

[13] Federico Fontana, Ivan Camponogara, Paola Cesari, Matteo Vallicella, and Marco Bussolente. 2016. An Exploration on Whole-Body and Foot-Based Vibrotactile Sensitivity to Melodic Consonance. In *Proceedings of the 13th Sound and Music Computing Conference (SMC2016)*, Hamburg, Germany, 143–150. Available at http://smcnetwork.org/node/2009.

[14] Federico Fontana, Stefano Papetti, Hanna Jarveliaien, and Federico Avanzini. 2017. Detection of keyboard vibrations and effects on perceived piano quality. *The Journal of the Acoustical Society of America* 142, 5 (2017), 2953–2967.

[15] John J. Foxe. 2009. Multisensory Integration: Frequency Tuning of Audio-Tactile Integration. *Current Biology* 19, 9 (2009), R373 – R375. https://doi.org/10.1016/j.cub.2009.03.029

[16] Milton Friedman. 1937. The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance. *J. Amer. Statist. Assoc.* 32, 200 (1937), 675–701. https://doi.org/10.1080/01621459.1937.10503522

[17] WaKo Fujisaki, Midori Tokita, and Kenji Kariya. 2015. Perception of the material properties of wood based on vision, audition, and touch. *Vision Research* 109 (2015), 185 – 200. https://doi.org/10.1016/j.visres.2014.11.020

[18] William W. Gaver. 1993. Synthesizing Auditory Icons. In *Proceedings of the INTERACT ’93 and CHI ’93 Conference on Human Factors in Computing Systems (CHI ’93)*, ACM, New York, NY, USA, 228–235. https://doi.org/10.1145/169059.169184

[19] Bruno L. Giordano and Federico Avanzini. 2014. *Perception and Synthesis of Sound-Generating Materials*. Springer London, London, 49–84. https://doi.org/10.1007/978-1-4471-6333-0_4

[20] Bruno L. Giordano and Stephen McAdams. 2006. Material identification of real impact sounds: Effects of size variation in steel, glass, wood, and plexiglass plates. *The Journal of the Acoustical Society of America* 119, 2 (2006), 1171–1181. https://doi.org/10.1121/1.2149839

[21] Steve Guest, Caroline Catmur, Donna Lloyd, and Charles Spence. 2002. Audiotactile interactions in roughness perception. *Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale* 146 (10 2002), 161–71. https://doi.org/10.1007/s00221-002-1164-z

[22] Taku Hachisu, Michi Sato, Shogo Fukushima, and Hiroyuki Kajimoto. 2011. HaCHIStick: simulating haptic sensation on tablet pc for musical instruments application. In *Proceedings of the 24th annual ACM symposium adjunct on User interface software and technology*. ACM, 73–74.

[23] Taku Hachisu, Michi Sato, Shogo Fukushima, and Hiroyuki Kajimoto. 2012. Augmentation of material property by modulating vibration resulting from tapping. In *International Conference on Human Haptic Sensing and Touch Enabled Computer Applications*. Springer, 173–180.

[24] Thomas P. Hettmansperger and Joseph W. McKean. 2010. *Robust nonparametric statistical methods*. CRC Press.

[25] Kosuke Higashi, Shogo Okamoto, Hikaru Nagano, Masashi Konyo, and Yoji Yamada. 2017. Vibration-based rendering of virtual hardness: Frequency characteristics of perception. In *Proceedings of the 6th Global Conference on Consumer Electronics (GCCE)*, 1–2. https://doi.org/10.1109/GCCE.2017.8229246

[26] Kosuke Higashi, Shogo Okamoto, Hikaru Nagano, and Yoji Yamada. 2015. Effects of Mechanical Parameters on Hardness Experienced by Damped Natural Vibration Stimulation. In *IEEE International Conference on Systems, Man, and Cybernetics*. 1539–1544. https://doi.org/10.1109/SMC.2015.272

[27] Kosuke Higashi, Shogo Okamoto, Hikaru Nagano, Yoji Yamada, and Masashi Konyo. 2017. Hardness perception by tapping: Effect of dynamic stiffness of objects. In *World Haptics Conference (WHC2017)*, 37–41. https://doi.org/10.1109/WHC.2017.7989853

[28] Kosuke Higashi, Shogo Okamoto, and Yoji Yamada. 2016. What is the Hardness Perceived by Tapping?. In *Haptics: Perception, Devices, Control, and Applications*, Fernando Bello, Hiroyuki Kajimoto, and Yon Visell (Eds.). Springer International Publishing, Cham, 3–12.

[29] Hsin-Ni Ho and Lynette A. Jones. 2007. Development and Evaluation of a Thermal Display for Material Identification and Discrimination. *ACM Trans. Appl. Percept.* 4, 2, Article 13 (July 2007). https://doi.org/10.1145/1265957.1265962

[30] Juan Huang, Darik Gamble, Kristine Sarnlertsophon, Xiaojin Wang, and Steven Hsiao. 2012. Feeling Music: Integration of Auditory and Tactile Inputs in Musical Meter Perception. *PloS ONE* 7, 10 (2012), 1–11. https://doi.org/10.1371/journal.pone.0048496

[31] Veikko Joussimäki and Riiutta Hari. 1998. Parchment-skin illusion: sound-biased touch. *Current biology* 8, 6 (1998), R190–R191.
Does it Ping or Pong? Auditory and tactile classification of materials by bouncing events

[32] Topi Kaaresoja, Stephen Brewster, and Vuokko Lantzi. 2014. Towards the Temporally Perfect Virtual Button: Touch-Feedback Simultaneity and Perceived Quality in Mobile Touchscreen Press Interactions. ACM Trans. Appl. Percept. 11, 2, Article 9 (June 2014), 25 pages. https://doi.org/10.1145/2611387

[33] Young-Seok Kim and Thenkurussi Kesavadas. 2006. Material Property Recognition by Active Tapping for Fingertip Digitizing. In Proceedings of the 14th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. 133–139. https://doi.org/10.1109/HAPTIC.2006.162701

[34] Roberta L. Klatchky, Dinesh K. Pai, and Eric P. Krotkov. 2000. Perception of material from contact sounds. Presence: Teleoperators & Virtual Environments 9, 4 (2000), 399–410.

[35] Emilia Koskine, Topi Kaaresoja, and Pauli Laitinen. 2008. Feel-good Touch: Finding the Most Pleasant Tactile Feedback for a Mobile Touch Screen Button. In Proceedings of the 10th International Conference on Multimodal Interfaces (ICMI ’08). ACM, New York, NY, USA, 297–304. https://doi.org/10.1145/1452392.1452453

[36] Andrew J. Kunkler-Peck and Michael T. Turvey. 2000. Hearing shape. Journal of Experimental psychology: human perception and performance 26, 1 (2000), 279.

[37] Daniel J. Levitin, Karen MacLean, Max Mathews, Lenny Chu, and Eric Jensen. 2000. The perception of cross-modal simultaneity (or “the Greenwich Observatory Problem”) revisited. In AIP Conference Proceedings, Vol. 517. AIP, 323–329.

[38] Robert A. Lutfi and Emmi L. Oh. 1997. Auditory discrimination of material changes in a struck-clamped bar. The Journal of the Acoustical Society of America 102, 6 (1997), 3647–3656. https://doi.org/10.1121/1.420151 arXiv:https://doi.org/10.1121/1.420151

[39] Robert A. Lutfi and Christophe N.J. Stoelinga. 2010. Sensory constraints on auditory identification of the material and geometric properties of struck bars. The Journal of the Acoustical Society of America 127, 1 (2010), 350–360.

[40] Philippe P. Maeder, Reto A. Meuli, Michela Adriani, Anne Bellmann, Eleonora Fornari, Jean-Philippe Thiran, Antoine Pittet, and Stéphanie Clarke. 2001. Distinct Pathways Involved in Sound Recognition and Localization: A Human fMRI Study. NeurOnImage 14, 4 (2001), 802 – 816. https://doi.org/10.1016/S1016-1951(01)00088-X

[41] Rodrigo Martin, Michael Weimann, and Matthias B. Hullin. 2018. A Study of Material Sonification in Touchscreen Devices. In Proceedings of the 2018 ACM International Conference on Interactive Surfaces and Spaces. ACM, 305–310.

[42] Ryuta Okazaki, Taku Hachisu, Michi Sato, Shogo Fukushima, Vincent Hayward, and Hiroyuki Kajimoto. 2013. Judged Consonance of Tactile and Auditory Frequencies. In World Haptics Conference (WHC2013). 663–666. https://doi.org/10.1109/WHC.2013.6548487

[43] Gunhyuk Park, Seungmoon Choi, Kyunghun Hwang, Sunwook Kim, Jaecheon Sa, and Moonchae Jung. 2011. Tactile Effect Design and Evaluation for Virtual Buttons on a Mobile Device Touchscreen. In Proceedings of the 13th International Conference on Human Computer Interaction with Mobile Devices and Services (MobileHCI ’11). ACM, New York, NY, USA, 11–20. https://doi.org/10.1145/2037373.2037376

[44] Tony Ro, Johan Han, Naif E. Yasar, Caitlin Elmore, and Michael S. Beauchamp. 2009. Sound enhances touch perception. Experimental Brain Research 195, 1 (01 May 2009), 135–145. https://doi.org/10.1007/s00221-009-1759-8

[45] Marco Romagnoli, Federico Fontana, and Ratna Sarkar. 2011. Vibrotactile recognition by Western and Indian Population Groups of Traditional Musical Scales Played with the Harmonium. In Haptic and Audio Interaction Design, Eric W. Cooper, Victor V. Kryssanov, Hitoshi Ogawa, and Stephen Brewster (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 91–100.

[46] Frank A. Russo, Paolo Ammirante, and Deborah L. Fels. 2006. Vibrotactile discrimination of musical timbre. Journal of Experimental Psychology: Human Perception and Performance 32, 4 (2002), 822.

[47] Martin Schürmann, Gina Caetano, Veikko Jousmäki, and Riitta Hari. 2004. Hands help hearing: facilitatory audiotactile interaction at low sound-intensity levels. The Journal of the Acoustical Society of America 115, 2 (2004), 830–832.

[48] Irene Senna, Angelo Maravita, Nadia Bolognini, and Cesare V. Paris. 2014. The Marble-Hand Illusion. Plos ONE 9, 3 (2014). https://doi.org/10.1371/journal.pone.0102211

[49] Topi Kaaresoja, Stephen Brewster, and Vuokko Lantzi. 2014. Towards the Temporally Perfect Virtual Button: Touch-Feedback Simultaneity and Perceived Quality in Mobile Touchscreen Press Interactions. ACM Trans. Appl. Percept. 11, 2, Article 9 (June 2014), 25 pages. https://doi.org/10.1145/2611387

[50] Stéphanie Clarke. 2001. Distinct Pathways Involved in Sound Recognition and Localization: A Human fMRI Study. NeurOnImage 14, 4 (2001), 802 – 816. https://doi.org/10.1016/S1016-1951(01)00088-X

[51] Sean E. Smith, Karen L. Stephon, and Simon P. Parker. 2004. Auditory warnings in the military cockpit: A preliminary evaluation of potential sound types. Technical Report. Defense Technical Information Center, Fort Belvoir, Virginia.

[52] Salvador Soto-Faraco and Gustavo Deco. 2009. Auditory and tactile classification of materials by bouncing events. Behavioural Brain Research 196, 2 (2009), 145 – 154. https://doi.org/10.1016/j.bbr.2008.09.018

[53] Salvador Soto-Faraco and Gustavo Deco. 2009. Multisensory contributions to the perception of vibrotactile events. Behavioural Brain Research 196, 2 (2009), 145 – 154. https://doi.org/10.1016/j.bbr.2008.09.018

[54] Simon Tucker and Guy J. Brown. 2002. Investigating the perception of the size, shape and material of damped and free vibrating plates. Journal of Experimental Psychology: Human Perception and Performance 28, 4 (2002), 822.

[55] Ya-Yeh Tsai and Su-Ling Yeh. 2013. Freezing effect in tactile perception: Sound facilitates tactile identification by enhancing intensity but not duration. Journal of Experimental Psychology: Human Perception and Performance 39, 4 (2013), 925.

[56] Ronald T. Verrillo. 1992. Vibration sensation in humans. Music Perception: An Interdisciplinary Journal 9, 3 (1992), 281–302.

[57] Michael Vorländer. 2000. Auditory load on the ear caused by headphones. The Journal of the Acoustical Society of America 107, 4 (2000), 2082–2088.

ACM Transactions on Applied Perception, .

https://doi.org/10.1145/2738964.2738976
[57] E. Courtenay Wilson, Charlotte M. Reed, and Louis D. Braida. 2009. Integration of auditory and vibrotactile stimuli: effects of phase and
stimulus-onset asynchrony. The Journal of the Acoustical Society of America 126, 4 (2009), 1960–1974.
[58] Jeffrey M. Yau, Jonathon B. Olenczak, John F. Dammann, and Sliman J. Bensmaia. 2009. Temporal Frequency Channels Are Linked
across Audition and Touch. Current Biology 19, 7 (2009), 561 – 566. https://doi.org/10.1016/j.cub.2009.02.013
[59] Massimiliano Zampini and Charles Spence. 2004. The role of auditory cues in modulating the perceived crispness and staleness of
potato chips. Journal of Sensory Studies 19, 5 (2004), 347–363.
[60] Lu Zhao, Yue Liu, Zhuoluo Ma, and Yongtian Wang. 2019. Design and Evaluation of a Texture Rendering Method for Electrostatic
Tactile Display. In Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems (CHI EA ’19). ACM, New York,
NY, USA, Article LBW2314, 6 pages. https://doi.org/10.1145/3290607.3312778