Avoiding small subgraphs in Achlioptas processes

Po-Shen Loh
Princeton University

Joint work with Michael Krivelevich and Benny Sudakov
Erdős-Rényi random graph $G(n, p)$: each of $\binom{n}{2}$ edges appears independently with probability p.

Definition

Monotone property: closed under edge addition.
Definition

Erdős-Rényi random graph $G(n, p)$: each of $\binom{n}{2}$ edges appears independently with probability p.

Natural question

For what range of p does $G(n, p)$ typically satisfy a certain property? e.g.:
- containment of a triangle?
- containment of a “giant component”?
(say with 1% of the vertices)
Definition

Erdős-Rényi random graph $G(n, p)$: each of $\binom{n}{2}$ edges appears independently with probability p.

Natural question

For what range of p does $G(n, p)$ typically satisfy a certain property? e.g.:
- containment of a triangle?
- containment of a “giant component”? (say with 1% of the vertices)

Definition

Monotone property: closed under edge addition.
Every monotone property Q has a threshold $p^*(n)$, i.e. as $n \to \infty$:

$$\mathbb{P}[G(n, p(n)) \text{ satisfies } Q] \to \begin{cases}
0 & \text{ when } p(n) \ll p^*(n) \\
1 & \text{ when } p(n) \gg p^*(n)
\end{cases}$$
Bollobás-Thomason, 1987:

Every monotone property Q has a threshold $p^*(n)$, i.e. as $n \to \infty$:

$$\mathbb{P}[G(n, p(n)) \text{ satisfies } Q] \to \begin{cases} 0 & \text{when } p(n) \ll p^*(n) \\ 1 & \text{when } p(n) \gg p^*(n) \end{cases}$$

Proof sketch: The key observation is that $G(n, 30p)$ contains the union of 30 independent copies of $G(n, p)$.

So if $p(n)$ is such that $\mathbb{P}[G(n, p) \text{ satisfies } Q] = 0.1$, monotonicity gives us:

$$\mathbb{P}[G(n, 30p) \text{ satisfies } Q] \geq 1 - 0.9^{30} > 0.9.$$
Threshold phenomena

Bollobás-Thomason, 1987:

Every monotone property Q has a threshold $p^*(n)$, i.e. as $n \to \infty$:

$$\mathbb{P}[G(n, p(n)) \text{ satisfies } Q] \to \begin{cases} 0 & \text{when } p(n) \ll p^*(n) \\ 1 & \text{when } p(n) \gg p^*(n) \end{cases}$$

Threshold for containment of triangle

Simple first-moment calculation:

$$\mathbb{E}[\#K_3 \text{ in } G(n, p)] = 3! \binom{n}{3} p^3 \sim n^3 p^3$$

Thus, when $p \ll n^{-1}$, we have $\mathbb{P}[G(n, p) \text{ contains triangle}] \to 0$.

When $p \gg n^{-1}$, we do have $\mathbb{E}[\#K_3] \to \infty$, but this is insufficient in general. However, it can be shown that n^{-1} is the threshold.
Definition

Erdős-Rényi random graph $G(n, M)$: uniformly sampled from all n-vertex graphs with exactly M edges.
Definition

Erdős-Rényi random graph $G(n, M)$: uniformly sampled from all n-vertex graphs with exactly M edges.

Many thresholds from $G(n, p)$ transfer over to $G(n, M)$ because

$$
\#\text{edges in } G(n, p) \sim \text{Bin} \left[\binom{n}{2}, p \right]
$$

which is tightly concentrated around $M \approx \frac{n^2 p}{2}$.
Definition

Erdős-Rényi random graph $G(n, M)$: uniformly sampled from all n-vertex graphs with exactly M edges.

Many thresholds from $G(n, p)$ transfer over to $G(n, M)$ because

$$\#\text{edges in } G(n, p) \sim \text{Bin} \left[\binom{n}{2}, p \right]$$

which is tightly concentrated around $M \approx \frac{n^2 p}{2}$.

Equivalent definition of $G(n, M)$

- Sample a random permutation of the $\binom{n}{2}$ potential edges.
- Then, keep the first M edges of the permutation.
Classical result

- Each of n balls is randomly distributed into one of n bins.
- Then w.h.p., the highest occupancy is $\sim \frac{\log n}{\log \log n}$.
Classical result

- Each of n balls is randomly distributed into one of n bins.
- Then whp, the highest occupancy is $\sim \frac{\log n}{\log \log n}$.

Application to hashing character strings:
Consider the Perl hash function from \{character strings\} to, say, \{0, 1, \ldots, 999\}:

$$h(\text{adam}) := 1 + 4 \cdot 33 + 1 \cdot 33^2 + 13 \cdot 33^3 \mod 1000.$$

This can be used to implement a fast lookup table with 1000 bins. Given a record associated with a person’s name N, we store it in the bin labeled $h(N)$.

Worst-case running time is proportional to the highest occupancy.
Classical result

- Each of n balls is randomly distributed into one of n bins.
- Then \textbf{whp}, the highest occupancy is $\sim \frac{\log n}{\log \log n}$.

Azar-Broder-Karlin-Upfal, 1994

- Suppose balls come sequentially, and each receives \textbf{two} independent random options for bins.
- For each ball, you choose one of the options in a deterministic, on-line fashion.
Classical result

- Each of n balls is randomly distributed into one of n bins.
- Then \textit{whp}, the highest occupancy is $\sim \frac{\log n}{\log \log n}$.

Azar-Broder-Karlin-Upfal, 1994

- Suppose balls come sequentially, and each receives \textbf{two} independent random options for bins.
- For each ball, you choose one of the options in a deterministic, on-line fashion.
- Then, there is a strategy for which \textit{whp}, the highest occupancy is only $\sim \log \log n$.
Classical result

- Each of n balls is randomly distributed into one of n bins.
- Then *whp*, the highest occupancy is $\sim \frac{\log n}{\log \log n}$.

Azar-Broder-Karlin-Upfal, 1994

- Suppose balls come sequentially, and each receives two independent random options for bins.
- For each ball, you choose one of the options in a deterministic, on-line fashion.
- Then, there is a strategy for which *whp*, the highest occupancy is only $\sim \log \log n$.
- In fact, strategy is simple: pick lesser-occupied bin.
- This is also the optimal strategy.
Achlioptas process

Question (of Dimitris Achlioptas)

Can the power of two random choices substantially delay the appearance of the giant component in the random graph?

Recall the equivalent definition of $G(n, M)$: keep the first M edges in a random permutation of all edges.
Achlioptas process

Question (of Dimitris Achlioptas)

Can the power of two random choices substantially delay the appearance of the giant component in the random graph?

Recall the equivalent definition of $G(n, M)$: keep the first M edges in a random permutation of all edges.

Definition

- An *Achlioptas process* consists of sequential rounds.
- Each round, you receive **two** independent random choices of potential edges, and select one with in a deterministic, on-line fashion.
Can the power of two random choices substantially delay the appearance of the giant component in the random graph?

Recall the equivalent definition of \(G(n, M) \): keep the first \(M \) edges in a random permutation of all edges.

Definition

- An Achlioptas process consists of sequential rounds.
- Each round, you receive **two** independent random choices of potential edges, and select one with in a deterministic, on-line fashion.

Remark: if the strategy is to pick the first edge in each pair, then this gives \(G(n, M) \) after \(M \) rounds.
Erdős-Rényi, 1960

- If $M(n) = cn$ for any $c < \frac{1}{2}$, then \textbf{whp} all connected components of $G(n, M)$ are of size $O(\log n)$.
- If $M(n) = cn$ for any $c > \frac{1}{2}$, then \textbf{whp} $G(n, M)$ has a “giant” component of size $\Omega(n)$.
Delaying the giant

Erdős-Rényi, 1960

- If \(M(n) = cn \) for any \(c < \frac{1}{2} \), then \textit{whp} all connected components of \(G(n, M) \) are of size \(O(\log n) \).
- If \(M(n) = cn \) for any \(c > \frac{1}{2} \), then \textit{whp} \(G(n, M) \) has a “giant” component of size \(\Omega(n) \).

Series of papers, by Bohman, Frieze, Spencer, and Wormald . . .

Current best results

- (Spencer-Wormald) There is a strategy that can last for \(0.829n \) rounds while all components are \(O(\log n) \) \textit{whp}.
- (Bohman-Frieze-Wormald) Regardless of the choice of strategy, \textit{whp} the first \(0.964n \) rounds will offer a sequence of choices that cause the strategy to create a component of size \(\Omega(n) \).
First problem in Erdős-Rényi paper . . .

Small subgraph problem

What is the threshold for $G(n, p)$ containing a given graph H?

Simple first-moment calculation:

$$E[#H in G(n, p)] = \frac{v(H)!}{n^{v(H)}} p^{e(H)} \sim n^{v(H)} p^{e(H)}$$

So if $p \ll \frac{n - v(H)}{e(H)}$, then whp $G(n, p)$ does not contain H.

But:

if $H' \subseteq H$ and $-v(H) < -v(H')$, then $G(n, p)$ still has no H for $n - v(H)/e(H) \ll p \ll n - v(H')/e(H')$.

Definition

A graph H is balanced if the quantity $-v(H') e(H')$ is maximized by $H' = H$, for subgraphs $H' \subseteq H$.
Small subgraph problem

What is the threshold for \(G(n, p) \) containing a given graph \(H \)?

Simple first-moment calculation:

\[
\mathbb{E}[\#H \text{ in } G(n, p)] = \nu(H)! \binom{n}{\nu(H)} p^{e(H)} \sim n^{\nu(H)} p^{e(H)}
\]

So if \(p \ll n^{-\nu(H)/e(H)} \), then \textbf{whp} \(G(n, p) \) does not contain \(H \).
First problem in Erdős-Rényi paper . . .

Small subgraph problem

What is the threshold for \(G(n, p) \) containing a given graph \(H \)?

Simple first-moment calculation:

\[
\mathbb{E}[\#H \text{ in } G(n, p)] = v(H)! \binom{n}{v(H)} p^{e(H)} \sim n^{v(H)} p^{e(H)}
\]

So if \(p \ll n^{-v(H)/e(H)} \), then \textbf{whp} \(G(n, p) \) does not contain \(H \).

\textbf{But}: if \(H' \subseteq H \) and \(-\frac{v(H)}{e(H)} < -\frac{v(H')}{e(H')} \), then \(G(n, p) \) still has no \(H \) for

\[
n^{-v(H)/e(H)} \ll p \ll n^{-v(H')/e(H')}.
\]
Small subgraph problem

What is the threshold for $G(n, p)$ containing a given graph H?

Simple first-moment calculation:

$$\mathbb{E}[\#H \text{ in } G(n, p)] = v(H)! \binom{n}{v(H)} p^{e(H)} \sim n^{v(H)} p^{e(H)}$$

So if $p \ll n^{-v(H)/e(H)}$, then whp $G(n, p)$ does not contain H.

But: if $H' \subseteq H$ and $-\frac{v(H)}{e(H)} < -\frac{v(H')}{e(H')}$, then $G(n, p)$ still has no H for

$$n^{-\frac{v(H)}{e(H)}} \ll p \ll n^{-\frac{v(H')}{e(H')}}.$$

Definition

A graph H is *balanced* if the quantity $-\frac{v(H')}{e(H')}$ is maximized by $H' = H$, for subgraphs $H' \subseteq H$.
For any given graph H, its threshold of appearance in $G(n, M)$ is $M \sim n^{2 + m(H)}$, where

$$m(H) = \max \left\{ -\frac{\nu(H')}{e(H')} : H' \subseteq H \right\}.$$
Avoiding small subgraphs

Bollobás, 1981

For any given graph H, its threshold of appearance in $G(n, M)$ is $M \sim n^{2+m(H)}$, where

$$m(H) = \max \left\{ -\frac{\nu(H')}{e(H')} : H' \subseteq H \right\}.$$

Krivelevich-L.-Sudakov, 2007

Suppose that H is a cycle, clique, or complete bipartite graph $K_{t,t}$. Then there is an explicit constant $\delta > 0$ such that:

- There is a strategy that can avoid creating a copy of H for any $M \ll n^{2+m(H)+\delta}$ rounds \textit{whp}.
Avoiding small subgraphs

Bollobás, 1981

For any given graph H, its threshold of appearance in $G(n, M)$ is $M \sim n^{2+m(H)}$, where

$$m(H) = \max \left\{ -\frac{\nu(H')}{e(H')} : H' \subseteq H \right\}.$$

Krivelevich-L.-Sudakov, 2007

Suppose that H is a cycle, clique, or complete bipartite graph $K_{t,t}$. Then there is an explicit constant $\delta > 0$ such that:

- There is a strategy that can avoid creating a copy of H for any $M \ll n^{2+m(H)+\delta}$ rounds \textbf{whp}.
- On the other hand, if $M \gg n^{2+m(H)+\delta}$, then any strategy will create a copy of H within the first M rounds \textbf{whp}.
Avoiding small subgraphs

Bollobás, 1981

For any given graph H, its threshold of appearance in $G(n, M)$ is $M \sim n^{2+m(H)}$, where

$$m(H) = \max \left\{ -\frac{\nu(H')}{e(H')} : H' \subseteq H \right\}.$$

Krivelevich-L.-Sudakov, 2007

Suppose that H is a cycle, clique, or complete bipartite graph $K_{t,t}$. Then there is an explicit constant $\delta > 0$ such that:

- There is a strategy that can avoid creating a copy of H for any $M \ll n^{2+m(H)+\delta}$ rounds whp.
- On the other hand, if $M \gg n^{2+m(H)+\delta}$, then any strategy will create a copy of H within the first M rounds whp.
Avoiding small subgraphs

Bollobás, 1981

For any given graph H, its threshold of appearance in $G(n, M)$ is $M \sim n^{2+m(H)}$, where

$$m(H) = \max \left\{ -\frac{v(H')}{e(H')} : H' \subseteq H \right\}.$$

Krivelevich-L.-Sudakov, 2007

Suppose that H is a cycle, clique, or complete bipartite graph $K_{t,t}$. Then there is an explicit constant $\delta > 0$ such that:

- There is a strategy that can avoid creating a copy of H for any $M \ll n^{2+m(H)+\delta}$ rounds \textbf{whp}.
- On the other hand, if $M \gg n^{2+m(H)+\delta}$, then any strategy will create a copy of H within the first M rounds \textbf{whp}.
Avoiding small subgraphs

Bollobás, 1981

For any given graph H, its threshold of appearance in $G(n, M)$ is $M \sim n^{2+m(H)}$, where

$$m(H) = \max \left\{ -\frac{\nu(H')}{e(H')} : H' \subseteq H \right\}.$$

Krivelevich-L.-Sudakov, 2007

Suppose that H is a cycle, clique, or complete bipartite graph $K_{t,t}$. Then there is an explicit constant $\delta > 0$ such that:

- There is a strategy that can avoid creating a copy of H for any $M \ll n^{2+m(H)+\delta}$ rounds whp.
- On the other hand, if $M \gg n^{2+m(H)+\delta}$, then any strategy will create a copy of H within the first M rounds whp.
Avoiding small subgraphs

Bollobás, 1981

For any given graph H, its threshold of appearance in $G(n, M)$ is $M \sim n^{2+m(H)}$, where

$$m(H) = \max \left\{ -\frac{v(H')}{e(H')} : H' \subseteq H \right\}.$$

Krivelevich-L.-Sudakov, 2007

Suppose that H is a cycle, clique, or complete bipartite graph $K_{t,t}$. Then there is an explicit constant $\delta > 0$ such that:

- There is a strategy that can avoid creating a copy of H for any $M \ll n^{2+m(H)+\delta}$ rounds whp.
- On the other hand, if $M \gg n^{2+m(H)+\delta}$, then any strategy will create a copy of H within the first M rounds whp.
Avoiding small subgraphs

Bollobás, 1981

For any given graph H, its threshold of appearance in $G(n, M)$ is $M \sim n^{2+m(H)}$, where

$$m(H) = \max \left\{ -\frac{\nu(H')}{\epsilon(H')} : H' \subseteq H \right\}.$$

Krivelevich-L.-Sudakov, 2007

Suppose that H is a cycle, clique, or complete bipartite graph $K_{t,t}$. Then there is an explicit constant $\delta > 0$ such that:

- There is a strategy that can avoid creating a copy of H for any $M \ll n^{2+m(H)+\delta}$ rounds whp.
- On the other hand, if $M \gg n^{2+m(H)+\delta}$, then any strategy will create a copy of H within the first M rounds whp.
Avoiding small subgraphs

Bollobás, 1981

For any given graph H, its threshold of appearance in $G(n, M)$ is

$$M \sim n^{2+m(H)},$$

where

$$m(H) = \max \left\{ -\frac{v(H')}{e(H')} : H' \subseteq H \right\}.$$

Krivelevich-L.-Sudakov, 2007

Suppose that H is a cycle, clique, or complete bipartite graph $K_{t,t}$. Then there is an explicit constant $\delta > 0$ such that:

- There is a strategy that can avoid creating a copy of H for any $M \ll n^{2+m(H)+\delta}$ rounds \(\text{whp}\).
- On the other hand, if $M \gg n^{2+m(H)+\delta}$, then any strategy will create a copy of H within the first M rounds \(\text{whp}\).
Avoiding small subgraphs

Bollobás, 1981

For any given graph H, its threshold of appearance in $G(n, M)$ is $M \sim n^{2+m(H)}$, where

$$m(H) = \max\{ -v(H') : H' \subseteq H \}.$$

Krivelevich-L.-Sudakov, 2007

Suppose that H is a cycle, clique, or complete bipartite graph $K_{t,t}$. Then there is an explicit constant $\delta > 0$ such that:

- There is a strategy that can avoid creating a copy of H for any $M \ll n^{2+m(H)+\delta}$ rounds \textit{whp}.
- On the other hand, if $M \gg n^{2+m(H)+\delta}$, then any strategy will create a copy of H within the first M rounds \textit{whp}.
Avoiding small subgraphs

Bollobás, 1981
For any given graph H, its threshold of appearance in $G(n, M)$ is $M \sim n^{2+m(H)}$, where

Krivelevich-L.-Sudakov, 2007
Suppose that H is a cycle, clique, or complete bipartite graph $K_{t,t}$. Then there is an explicit constant $\delta > 0$ such that:

- There is a strategy that can avoid creating a copy of H for any $M \ll n^{2+m(H)+\delta}$ rounds whp.
- On the other hand, if $M \gg n^{2+m(H)+\delta}$, then any strategy will create a copy of H within the first M rounds whp.
Avoiding small subgraphs

Bollobás, 1981

For any given graph H, its threshold of appearance in $G(n,M)$ is $M \sim n^{2+m(H)}$, where

Krivelevich-L.-Sudakov, 2007

Suppose that H is a cycle, clique, or complete bipartite graph $K_{t,t}$. Then there is an explicit constant $\delta > 0$ such that:

- There is a strategy that can avoid creating a copy of H for any $M \ll n^{2+m(H)+\delta}$ rounds whp.
- On the other hand, if $M \gg n^{2+m(H)+\delta}$, then any strategy will create a copy of H within the first M rounds whp.
Avoiding small subgraphs

Bollobás, 1981

For any given graph H, its threshold of appearance in $G(n, M)$ is $M \sim n^{2+m(H)}$, where $m(H) = \max \{ -v(H') \cdot e(H') : H' \subseteq H \}$.

Krivelevich-L.-Sudakov, 2007

Suppose that H is a cycle, clique, or complete bipartite graph $K_{t,t}$. Then there is an explicit constant $\delta > 0$ such that:

- There is a strategy that can avoid creating a copy of H for any $M \ll n^{2+m(H)+\delta}$ rounds \textit{whp}.
- On the other hand, if $M \gg n^{2+m(H)+\delta}$, then any strategy will create a copy of H within the first M rounds \textit{whp}.
Avoiding small subgraphs

Bollobás, 1981

For any given graph H, its threshold of appearance in $G(n, M)$ is

$$M \sim n^{2 + m(H)}$$

Krivelevich-L.-Sudakov, 2007

Suppose that H is a cycle, clique, or complete bipartite graph $K_{t,t}$. Then there is an explicit constant $\delta > 0$ such that:

- There is a strategy that can avoid creating a copy of H for any $M \ll n^{2 + m(H) + \delta}$ rounds whp.
- On the other hand, if $M \gg n^{2 + m(H) + \delta}$, then any strategy will create a copy of H within the first M rounds whp.
Avoiding small subgraphs

Bollobás, 1981

For any given graph H, its threshold of appearance in $G(n, M)$ is

$$M \sim n^2 + m(H),$$

where $m(H) = \max \{-v(H'), e(H') : H' \subseteq H\}$.

Krivelevich-L.-Sudakov, 2007

Suppose that H is a cycle, clique, or complete bipartite graph $K_{t,t}$. Then there is an explicit constant $\delta > 0$ such that:

- There is a strategy that can avoid creating a copy of H for any $M \ll n^2 + m(H) + \delta$ rounds whp.
- On the other hand, if $M \gg n^2 + m(H) + \delta$, then any strategy will create a copy of H within the first M rounds whp.
Avoiding small subgraphs

Bollobás, 1981

For any given graph H, its threshold of appearance in $G(n, M)$ is

$$M \sim n^2 + m(H),$$

where $m(H) = \max \{ -v(H'), e(H') : H' \subseteq H \}$.

Krivelevich-L.-Sudakov, 2007

Suppose that H is a cycle, clique, or complete bipartite graph $K_{t,t}$. Then there is an explicit constant $\delta > 0$ such that:

- There is a strategy that can avoid creating a copy of H for any $M \ll n^{2+m(H)+\delta}$ rounds whp.
- On the other hand, if $M \gg n^{2+m(H)+\delta}$, then any strategy will create a copy of H within the first M rounds whp.
Krivelevich-L.-Sudakov, 2007

Suppose that H is a cycle, clique, or complete bipartite graph $K_{t,t}$. Then there is an explicit constant $\delta > 0$ such that:

- There is a strategy that can avoid creating a copy of H for any $M \ll n^{2+\max(H)}+\delta$ rounds whp.
- On the other hand, if $M \gg n^{2+m(H)}+\delta$, then any strategy will create a copy of H within the first M rounds whp.
Avoiding small subgraphs

Bollobás, 1981

For any given graph H, its threshold of appearance in $G(n,M)$ is

$$M \sim n^{2+m(H)},$$

where $m(H) = \max \{ -v(H'), e(H') : H' \subseteq H \}.$

Krivelevich-L.-Sudakov, 2007

Suppose that H is a cycle, clique, or complete bipartite graph $K_{t,t}$. Then there is an explicit constant $\delta > 0$ such that:

- There is a strategy that can avoid creating a copy of H for any $M \ll n^{2+m(H)+\delta}$ rounds $\text{whp}.$

- On the other hand, if $M \gg n^{2+m(H)+\delta}$, then any strategy will create a copy of H within the first M rounds $\text{whp}.$
Avoiding small subgraphs

Bollobás, 1981

For any given graph H, its threshold of appearance in $G(n, M)$ is

$$M \sim n^{2} + m(H),$$

where $m(H) = \max \{ -\nu(H'), e(H') : H' \subseteq H \}$.

Krivelevich-L.-Sudakov, 2007

Suppose that H is a cycle, clique, or complete bipartite graph $K_{t,t}$. Then there is an explicit constant $\delta > 0$ such that:

- There is a strategy that can avoid creating a copy of H for any $M \ll n^{2} + m(H) + \delta$ rounds \textit{whp}.
- On the other hand, if $M \gg n^{2} + m(H) + \delta$, then any strategy will create a copy of H within the first M rounds \textit{whp}.

Remarks:

- There is no first-moment calculation to guess the bound. The first hurdle is to decide what to prove!
- Even the threshold existence does not follow from some general argument.
To avoid K_3:

- If there is a choice that does not create K_3, pick it.
- Otherwise, forced loss.

In general: for a given H to avoid, there is a parameter s for which the strategy considers precursors of H up to s steps back.

For both K_t and K_t', the dependence of s on t is magically explicit.

$s + 1 = \lfloor \log_2 (t + 1) \rfloor$.
Avoidance strategy

To avoid K_3:
- If there is a choice that does not create K_3, pick it.
- Otherwise, forced loss.

To avoid K_4:
- If there is a choice that does not create $K_4 \setminus e$, pick it.
- Otherwise, if there is a choice that does not create K_4, pick it.
- Otherwise, forced loss.

In general: for a given H to avoid, there is a parameter s for which the strategy considers precursors of H up to s steps back.
Avoidance strategy

To avoid \(K_3 \):
- If there is a choice that does not create \(K_3 \), pick it.
- Otherwise, forced loss.

To avoid \(K_4 \):
- If there is a choice that does not create \(K_4 \setminus e \), pick it.
- Otherwise, if there is a choice that does not create \(K_4 \), pick it.
- Otherwise, forced loss.

In general: for a given \(H \) to avoid, there is a parameter \(s \) for which the strategy considers precursors of \(H \) up to \(s \) steps back.

For both \(K_t \) and \(K_{t,t} \), the dependence of \(s \) on \(t \) is magically explicit.
Avoidance strategy

To avoid K_3:
- If there is a choice that does not create K_3, pick it.
- Otherwise, forced loss.

To avoid K_4:
- If there is a choice that does not create $K_4 \setminus e$, pick it.
- Otherwise, if there is a choice that does not create K_4, pick it.
- Otherwise, forced loss.

In general: for a given H to avoid, there is a parameter s for which the strategy considers precursors of H up to s steps back.

For both K_t and $K_{t,t}$, the dependence of s on t is magically explicit.
Avoidance strategy

To avoid K_3:
- If there is a choice that does not create K_3, pick it.
- Otherwise, forced loss.

To avoid K_4:
- If there is a choice that does not create $K_4 \setminus e$, pick it.
- Otherwise, if there is a choice that does not create K_4, pick it.
- Otherwise, forced loss.

In general: for a given H to avoid, there is a parameter s for which the strategy considers precursors of H up to s steps back.

For both K_t and $K_{t,t}$, the dependence of s on t is magically explicit:

$$s + 1 = \lfloor \log_2(t + 1) \rfloor.$$
Fix a strategy. Then the graph G_m after m rounds has some distribution. We sandwich G_m between two known objects.
Fix a strategy. Then the graph G_m after m rounds has some distribution. We sandwich G_m between two known objects.

- $G_m \subset G(n, 2m)$, which is itself in $G(n, 4p)$ whp.
Fix a strategy. Then the graph G_m after m rounds has some distribution. We sandwich G_m between two known objects.

- $G_m \subset G(n, 2m)$, which is itself in $G(n, 4p)$ whp.
- We use extremal results (based on $e(G_m) = m$) to find “dangerous” structures in G_m.

Classical theorems

For n-vertex graphs with $\binom{n}{2} p$ edges:

- (Kővári-Sós-Turán) The number of copies of $K_{s,t}$ is $\gtrsim n^{s+t} p^{st}$.
- (Erdős-Simonovits) The number of copies of P_t is $\gtrsim n^t p^{t-1}$.
Let $M \ll n^{6/5}$. We show that \textbf{whp}, our strategy will avoid K_3 for M rounds. Let $p = M/\binom{n}{2} \ll n^{-4/5}$.
Let $M \ll n^{6/5}$. We show that whp, our strategy will avoid K_3 for M rounds. Let $p = M/(\binom{n}{2}) \ll n^{-4/5}$.

- Even in G_M, the number of copies of $K_3 \setminus e$ is $\lesssim n^3 p^2$ whp.
Avoiding K_3: Lower bound

Let $M \ll n^{6/5}$. We show that whp, our strategy will avoid K_3 for M rounds. Let $p = M/\binom{n}{2} \ll n^{-4/5}$.

- Even in G_M, the number of copies of $K_3 \setminus e$ is $\lesssim n^3 p^2$ whp.
- Then, the probability of creating a copy of K_3 in M rounds is:

$$
\mathbb{P} \lesssim M \cdot \left(\frac{n^3 p^2}{n^2} \right)^2 \\
\sim \left(n^2 p \right) \left(\frac{n^3 p^2}{n^2} \right)^2 \\
= n^4 p^5 \\
= o(1).
$$
Let $M \gg n^{6/5}$. We show that \textbf{whp}, any strategy will make K_3 within $2M$ rounds. Let $p = M/(\binom{n}{2}) \gg n^{-4/5}$.
Avoiding K_3: upper bound

Let $M \gg n^{6/5}$. We show that \textbf{whp}, any strategy will make K_3 within $2M$ rounds. Let $p = M/\binom{n}{2} \gg n^{-4/5}$.

- By extremal combinatorics, G_M has $\gtrsim n^3 p^2$ copies of $K_3 \setminus e$; also, \textbf{whp} there are $\lesssim 1$ of these sitting on each vertex pair.
Let $M \gg n^{6/5}$. We show that \textbf{whp}, any strategy will make K_3 within $2M$ rounds. Let $p = M/(\binom{n}{2}) \gg n^{-4/5}$.

- By extremal combinatorics, G_M has $\gtrsim n^3 p^2$ copies of $K_3 \setminus e$; also, \textbf{whp} there are $\lesssim 1$ of these sitting on each vertex pair.
- Then, probability that each of turns $M \ldots 2M$ do not have both choices closing K_3 is:

\[
P \leq \left(1 - \Omega \left(\frac{n^3 p^2}{n^2}\right)^2\right)^M
\]
\[
\leq \exp\left\{-\Omega \left(M \cdot \frac{n^6 p^4}{n^4}\right)\right\}
\]
\[
= o(1).
\]
Let \(M \ll n^{6/5} \). We show that \textbf{whp}, our strategy will avoid \(K_3 \) for \(M \) rounds. Let \(p = M/(\binom{n}{2}) \ll n^{-4/5} \).

- Even in \(G_M \), the number of copies of \(K_3 \setminus e \) is \(\lesssim n^3 p^2 \) \textbf{whp}.
- Then, the probability of creating a copy of \(K_3 \) in \(M \) rounds is:

\[
P \lesssim M \cdot \left(\frac{n^3 p^2}{n^2} \right)^2 = o(1).
\]
Let $M \ll n^{28/19}$. We show that whp, our strategy will avoid K_4 for M rounds. Let $p = M/(\binom{n}{2}) \ll n^{-28/19}$.

- Even in G_M, the number of copies of $K_4 \setminus e$ is $\leq n^6 p^9$ whp.
- Then, the probability of creating a copy of K_4 in M rounds is:

$$P \lesssim M \cdot \left(\frac{n^6 p^9}{n^2} \right)^2$$

$$= o(1).$$
Let $M \ll n^{28/19}$. We show that whp, our strategy will avoid K_4 for M rounds. Let $p = M/\binom{n}{2} \ll n^{-28/19}$.

- Even in G_M, the number of copies of $K_4 \setminus e$ is $\lesssim n^6 p^9$ whp.
- Then, the probability of creating a copy of K_4 in M rounds is:

 $$
P \lesssim M \cdot \left(\frac{n^6 p^9}{n^2}\right)^2 \lesssim M \cdot o(1).$$
Let $M \ll n^{28/19}$. We show that whp, our strategy will avoid K_4 for M rounds. Let $p = M/(\binom{n}{2}) \ll n^{-28/19}$.

- Even in G_M, the number of copies of $K_4 \setminus e$ is $\lesssim n^6 p^9$ whp.
- Then, the probability of creating a copy of K_4 in M rounds is:

$$P \lesssim M \cdot \left(\frac{n^6 p^9}{n^2}\right)^2 = o(1).$$
Let $M \ll n^{28/19}$. We show that \textbf{whp}, our strategy will avoid K_4 for M rounds. Let $p = M/(\binom{n}{2}) \ll n^{-28/19}$.

- Even in G_M, the number of copies of $K_4 \setminus e$ is $\lesssim n^6 p^9$ \textbf{whp}.
- Then, the probability of creating a copy of K_4 in M rounds is:

\[
P \lesssim M \cdot \left(\frac{n^6 p^9}{n^2}\right)^2 = o(1).
\]
Let $M \ll n^{28/19}$. We show that whp, our strategy will avoid K_4 for M rounds. Let $p = M/(\binom{n}{2}) \ll n^{-28/19}$.

- Even in G_M, the number of copies of $K_4 \setminus e$ is $\lesssim n^6 p^9$ whp.
- Then, the probability of creating a copy of K_4 in M rounds is:

\[
\mathbb{P} \lesssim M \cdot \left(\frac{n^6 p^9}{n^2} \right)^2 = o(1).
\]
Avoiding K_4: lower bound

Let $M \ll n^{28/19}$. We show that whp, our strategy will avoid K_4 for M rounds. Let $p = M/\binom{n}{2} \ll n^{-28/19}$.

- Even in G_M, the number of copies of $K_4 \setminus e$ is $\lesssim n^6p^9$ whp.
- Then, the probability of creating a copy of K_4 in M rounds is:

$$
P \lesssim M \cdot \left(\frac{n^6p^9}{n^2} \right)^2$$

$$= o(1).$$
Avoiding K_4: lower bound

Let $M \ll n^{28/19}$. We show that whp, our strategy will avoid K_4 for M rounds. Let $p = M/\binom{n}{2} \ll n^{-28/19}$.

- Even in G_M, the number of copies of $K_4 \setminus e$ is $\lesssim n^6 p^9$ whp.
- Then, the probability of creating a copy of K_4 in M rounds is:

$$P \ll M \cdot \left(\frac{n^6 p^9}{n^2}\right)^2 = o(1).$$
Avoiding K_4: lower bound

Let $M \ll n^{28/19}$. We show that whp, our strategy will avoid K_4 for M rounds. Let $p = M/(\binom{n}{2}) \ll n^{-28/19}$.

- Even in G_M, the number of copies of $K_4 \setminus e$ is $\lesssim n^6 p^9$ whp.
- Then, the probability of creating a copy of K_4 in M rounds is:

$$
\Pr \lesssim M \cdot \left(\frac{n^6 p^9}{n^2} \right)^2 = o(1).
$$
Let $M \ll n^{28/19}$. We show that \textbf{whp}, our strategy will avoid K_4 for M rounds. Let $p = M / \binom{n}{2} \ll n^{-28/19}$.

- Even in G_M, the number of copies of $K_4 \setminus e$ is $\lesssim n^6 p^9$ \textbf{whp}.
- Then, the probability of creating a copy of K_4 in M rounds is:

$$P \lesssim M \cdot \left(\frac{n^6 p^9}{n^2} \right)^2$$

$$= o(1).$$
Let $M \ll n^{28/19}$. We show that whp, our strategy will avoid K_4 for M rounds. Let $p = M/(\binom{n}{2}) \ll n^{-28/19}$.

- Even in G_M, the number of copies of $K_4 \setminus e$ is $\lesssim n^6 p^9$ whp.
- Then, the probability of creating a copy of K_4 in M rounds is:

 $$\mathbb{P} \lesssim M \cdot \left(\frac{n^6 p^9}{n^2}\right)^2 = o(1).$$
Let $M \ll n^{28/19}$. We show that \textbf{whp}, our strategy will avoid K_4 for M rounds. Let $p = M/\binom{n}{2} \ll n^{-28/19}$.

- Even in G_M, the number of copies of $K_4 \setminus e$ is $\lesssim n^6 p^9 \textbf{whp}$.
- Then, the probability of creating a copy of K_4 in M rounds is:

$$
\mathbb{P} \lesssim M \cdot \left(\frac{n^6 p^9}{n^2} \right)^2 = o(1).
$$
Let $M \ll n^{28/19}$. We show that \textit{whp}, our strategy will avoid K_4 for M rounds. Let $p = M / \binom{n}{2} \ll n^{-28/19}$.

- Even in G_M, the number of copies of $K_4 \setminus 2e$ is $\lesssim n^4 p^4$ \textit{whp}; also, \textit{whp} there are $\lesssim 1$ of these sitting on each vertex pair.
- Even in G_M, the number of copies of $K_4 \setminus e$ is $\lesssim n^6 p^9$ \textit{whp}.
- Then, the probability of creating a copy of K_4 in M rounds is:

\[
P \lesssim M \cdot \left(\frac{n^6 p^9}{n^2} \right)^2 = o(1).
\]
Let $M \gg n^{6/5}$. We show that \textbf{whp}, any strategy will make K_3 within $2M$ rounds. Let $p = M/(\binom{n}{2}) \gg n^{-4/5}$.

- By extremal combinatorics, G_M has $\gtrsim n^3 p^2$ copies of $K_3 \setminus e$; also, \textbf{whp} each pair extends $\lesssim 1$ of these into K_3.
- Then, probability that each of turns $M \ldots 2M$ do not have both choices closing K_3 is:

$$P \leq \left(1 - \Omega \left(\frac{n^3 p^2}{n^2}\right)^2\right)^M = o(1).$$
Avoiding K_4: upper bound

Let $M \gg n^{28/19}$. We show that \textbf{whp}, any strategy will make K_4 within $4M$ rounds. Let $p = M/(\binom{n}{2}) \gg n^{-10/19}$.

- By extremal combinatorics, G_M has $\gtrsim n^4 p^3$ copies of P_4; also, \textbf{whp} each pair extends $\lesssim n^2 p^3$ of these into C_4.
- Then, probability that each of turns $3M \ldots 4M$ do not have both choices closing K_4 is:

\[
P \leq \left(1 - \Omega \left(\frac{n^6 p^9}{n^2}\right)^2\right)^M = o(1).
\]
Avoiding K_4: upper bound

Let $M \gg n^{28/19}$. We show that \textbf{whp}, any strategy will make K_4 within $4M$ rounds. Let $p = M/\binom{n}{2} \gg n^{-10/19}$.

- By extremal combinatorics, G_M has $\gtrsim n^4 p^3$ copies of P_4; also, \textbf{whp} each pair extends $\lesssim n^2 p^3$ of these into C_4.
- Then, probability that each of turns $3M \ldots 4M$ do not have both choices closing K_4 is:

$$
P \leq \left(1 - \Omega \left(\frac{n^6 p^9}{n^2} \right)^2 \right)^M = o(1).
$$
Let $M \gg n^{28/19}$. We show that whp, any strategy will make K_4 within $4M$ rounds. Let $p = M/\binom{n}{2} \gg n^{-10/19}$.

- By extremal combinatorics, G_M has $\gtrsim n^4 p^3$ copies of P_4; also, whp each pair extends $\lesssim n^2 p^3$ of these into C_4.

- Then, probability that each of turns $3M \ldots 4M$ do not have both choices closing K_4 is:

\[
P \leq \left(1 - \Omega \left(\frac{n^6 p^9}{n^2}\right)^2\right)^M = o(1).
\]
Let $M \gg n^{28/19}$. We show that \textbf{whp}, any strategy will make K_4 within $4M$ rounds. Let $p = M/\binom{n}{2} \gg n^{-10/19}$.

- By extremal combinatorics, G_M has $\gtrsim n^4 p^3$ copies of P_4; also, \textbf{whp} each pair extends $\preccurlyeq n^2 p^3$ of these into C_4.

- Then, probability that each of turns $3M \ldots 4M$ do not have both choices closing K_4 is:

$$
\mathbb{P} \leq \left(1 - \Omega \left(\frac{n^6 p^9}{n^2} \right)^2 \right)^M \\
= o(1).
$$
Let $M \gg n^{28/19}$. We show that whp, any strategy will make K_4 within $4M$ rounds. Let $p = M/\binom{n}{2} \gg n^{-10/19}$.

- By extremal combinatorics, G_M has $\gtrsim n^4 p^3$ copies of P_4; also, whp each pair extends $\lesssim n^2 p^3$ of these into C_4.

- Then, probability that each of turns $3M \ldots 4M$ do not have both choices closing K_4 is:

\[
\mathbb{P} \leq \left(1 - \Omega \left(\frac{n^6 p^9}{n^2}\right)^2\right)^M = o(1).
\]
Let $M \gg n^{28/19}$. We show that whp, any strategy will make K_4 within $4M$ rounds. Let $p = M/\binom{n}{2} \gg n^{-10/19}$.

- By extremal combinatorics, G_M has $\gtrsim n^4 p^3$ copies of P_4; also, whp each pair extends $\lesssim n^2 p^3$ of these into C_4.

- Then, probability that each of turns $3M \ldots 4M$ do not have both choices closing K_4 is:

\[
P \leq \left(1 - \Omega \left(\frac{n^6 p^9}{n^2}\right)^2\right)^M = o(1).\]
Let $M \gg n^{28/19}$. We show that whp, any strategy will make K_4 within $4M$ rounds. Let $p = M/\binom{n}{2} \gg n^{-10/19}$.

- By extremal combinatorics, G_M has $\gg n^4 p^3$ copies of P_4; also, whp each pair extends $\ll n^2 p^3$ of these into C_4.

- Then, probability that each of turns $3M \ldots 4M$ do not have both choices closing K_4 is:

$$
\mathbb{P} \leq \left(1 - \Omega \left(\frac{n^6 p^9}{n^2}\right)^2\right)^M = o(1).
$$
Let $M \gg n^{28/19}$. We show that \textbf{whp}, any strategy will make K_4 within $4M$ rounds. Let $p = M/(\binom{n}{2}) \gg n^{-10/19}$.

- By extremal combinatorics, G_M has $\gtrsim n^4 p^3$ copies of P_4; also, \textbf{whp} each pair extends $\lesssim n^2 p^3$ of these into C_4.

- Then, probability that each of turns $3M \ldots 4M$ do not have both choices closing K_4 is:

$$P \leq \left(1 - \Omega \left(\frac{n^6 p^9}{n^2}\right)^2\right)^M$$

$$= o(1).$$
Avoiding K_4: upper bound

Let $M \gg n^{28/19}$. We show that whp, any strategy will make K_4 within $4M$ rounds. Let $p = M/\binom{n}{2} \gg n^{-10/19}$.

- By extremal combinatorics, G_M has $\gtrsim n^4p^3$ copies of P_4; also, whp each pair extends $\lesssim n^2p^3$ of these into C_4.

- Then, probability that each of turns $3M \ldots 4M$ do not have both choices closing K_4 is:

$$
\mathbb{P} \leq \left(1 - \Omega\left(\frac{n^6p^9}{n^2}\right)^2\right)^M
= o(1).
$$
Let $M \gg n^{28/19}$. We show that \textbf{whp}, any strategy will make K_4 within $4M$ rounds. Let $p = M/(\binom{n}{2}) \gg n^{-10/19}$.

- By extremal combinatorics, G_M has $\gtrsim n^4 p^3$ copies of P_4; also, \textbf{whp} each pair extends $\lesssim n^2 p^3$ of these into C_4.

- Then, probability that each of turns $3M \ldots 4M$ do not have both choices closing K_4 is:

\[
\mathbb{P} \leq \left(1 - \Omega \left(\frac{n^6 p^9}{n^2} \right)^2 \right)^M = o(1).
\]
Let $M \gg n^{28/19}$. We show that whp, any strategy will make K_4 within $4M$ rounds. Let $p = M/\binom{n}{2} \gg n^{-10/19}$.

- By extremal combinatorics, G_M has $\gtrsim n^4 p^3$ copies of P_4; also, whp each pair extends $\lesssim n^2 p^3$ of these into C_4.

- Then, probability that each of turns $3M \ldots 4M$ do not have both choices closing K_4 is:

$$P \leq \left(1 - \Omega \left(\frac{n^6 p^9}{n^2}\right)^2\right)^M$$

$$= o(1).$$
Avoiding K_4: upper bound

Let $M \gg n^{28/19}$. We show that whp, any strategy will make K_4 within $4M$ rounds. Let $p = M/\binom{n}{2} \gg n^{-10/19}$.

- By extremal combinatorics, G_M has $\gtrsim n^4 p^3$ copies of P_4; also, whp each pair extends $\lesssim n^2 p^3$ of these into C_4.

- whp, G_{2M} has $\gtrsim n^4 p^4$ copies of C_4; also, whp each pair extends $\lesssim 1$ of these into $K_4 \setminus e$.

- whp, G_{3M} has $\gtrsim n^6 p^9$ copies of $K_4 \setminus e$; also, whp each pair extends $\lesssim 1$ of these into K_4.

- Then, probability that each of turns $3M \ldots 4M$ do not have both choices closing K_4 is:

$$
\mathbb{P} \leq \left(1 - \Omega \left(\frac{n^6 p^9}{n^2} \right)^2 \right)^M
= o(1).
$$
Concluding remarks

- We found precise thresholds for avoiding C_t, K_t, and $K_{t,t}$ in the Achlioptas process.
- Limitation of our method was reliance on balancedness.
- We conjecture that for general graphs, our simple strategies are still optimal.
Concluding remarks

- We found precise thresholds for avoiding C_t, K_t, and $K_{t,t}$ in the Achlioptas process.
- Limitation of our method was reliance on balancedness.
- We conjecture that for general graphs, our simple strategies are still optimal.
- Off-line case is still open. An off-line strategy can avoid K_3 for $n^{4/3} \gg n^{6/5}$ rounds: if one edge in a pair is not part of any triangles, pick it.

Only can fail if some triangle has all 3 partner edges also in some triangle.

$$\mathbb{P}[\text{failure}] \lesssim (n^3 p^3) \left(\frac{n^3 p^3}{n^2 p} \right)^3 = n^6 p^9$$