Prolate-Spherical Shape Coexistence at N=28 in 44S

C. Force, S. Grévy, L. Gaudefroy, O. Sorlin, L. Caceres, F. Rotaru, J. Mrazek, N.L. Achouri, J.C. Angélique, F. Azaiez, et al.

To cite this version:

C. Force, S. Grévy, L. Gaudefroy, O. Sorlin, L. Caceres, et al.. Prolate-Spherical Shape Coexistence at N=28 in 44S. Physical Review Letters, 2010, 105, pp.102501. 10.1103/PhysRevLett.105.102501.
in2p3-00506598
Prolate-Spherical Shape Coexistence at N=28 in 44S

C. Force,1 S. Grévy,1 L. Gaudefroy,2 O. Sorlin,1 J. Caceres,1 F. Rotaru,3 J. Mrazek,4 N. L. Achouri,5 J. C. Angélique,5 F. Azaiez,6 B. Bastin,5 R. Borcea,3 A. Buta,5 J. M. Dangas,2 Z. Dlouhy,4 Zs. Dombrádi,7 F. De Oliveira,1 F. Negoita,3 Y. Penionzhkevich,8 M. G. Saint-Laurent,1 D. Sohler,7 M. Stanoiu,1 I. Stefan,1 C. Stodel,1 and F. Nowacki9

1Grand Accélérateur National d’Ions Lourds (GANIL), CEA/DSM-CNRS/IN2P3, Caen, France
2CEA,DAM,DIF, F-91297 Arpajon, France
3Institute of Atomic Physics, IFIN-HH, Bucharest-Magurele, P.O. Box MG6, Romania
4Nuclear Physics Institute, AS CR, CZ-25068 Rez, Czech Republic
5LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, Caen, France
6IPNO, Université Paris-Sud 11, CNRS/IN2P3, Orsay, France
7Institute of nuclear Research, H-4001 Debrecen, Pf.51, Hungary
8FLNR, JINR, 141980 Dubna, Moscow region, Russia
9IPHC, CNRS/IN2P3 and Université de Strasbourg, F-67037 Strasbourg Cedex 2, France

(Dated: July 28, 2010)

The structure of 44S has been studied using delayed γ and electron spectroscopy at GANIL. The decay rates of the 0+\rightarrow 2$^+$ isomeric state to the 2$^+$ and 0$^+$ states have been measured for the first time, leading to a reduced transition probability $\rho(E0 : 0^+_g\rightarrow0^+_i) = 8.4(26)$ e$^{-}$fm4 and a monopole strength $\rho(E2 : 2^+_g\rightarrow0^+_i) = 8.7(17)$ e$^{-}$. Comparisons to shell model calculations point towards prolate-spherical shape coexistence and a phenomenological two level mixing model is used to extract a weak mixing between the two configurations.

PACS numbers: 23.20.Lv, 25.70.Mn; 27.40.+z, 29.30.Kv

'Magic' nuclei exhibit large gaps between the occupied and valence orbits. They are cornerstones of the nuclear structure, being used (i) to test our understanding of the nuclear forces which form these gaps and (ii) to model more complicated systems having many valence nucleons. While nuclei having 8 and 20 protons (or neutrons) can be reproduced by modeling the atomic nucleus with an harmonic oscillator potential, a spin-orbit interaction must be added to describe heavier magic nuclei. This spin-orbit interaction strongly binds nucleons having their angular momenta ℓ aligned with their intrinsic spin value s, denoted as ℓ_s. This leads throughout the chart of nuclei to regular sequence of orbits ℓ_s, $(\ell_s-2)_s$, $(\ell_s-1)_s$, with the so-called large spin-orbit gaps 14, 28, 50, 82 and 126 between the lowered ℓ_s orbit ($\ell=2$, 3, 4, 5 and 6) and the others. Generally, in particular to the stability, these gaps are large enough to prevent excitations between occupied and valence orbits and these magic nuclei are spherical. However, as the orbits forming the gap are separated by two units of angular momentum, quadrupole excitations are likely to develop if for some reason the shell gap is reduced. In this hypothesis, the development of quadrupole excitations jeopardizes the rigidity of the spherical gap and conduct the nucleus to deform. Consequently the doubly magic nuclei which have proton and neutron spin-orbit shell closures could become vulnerable to quadrupole excitations, as both protons and neutrons could act coherently to deform the nucleus. So far the prototypical deformed nucleus composed of such a double spin-orbit shell-closure is 48Si. At N=28 a gradual development of deformation occurs between the spherical doubly magic 44Ca and the deformed 48Si. In between these two extremes, i.e. in 44S, competition between spherical and deformed shapes is expected to be present leading to shape coexistence. Depending on the strength of the quadrupole correlations induced by the cross shell excitations either the spherical normal configuration, or the deformed one, becomes the ground state while the other configuration forms a low lying 0$^+$ state. Therefore the discovery and characterization of this 0$^+$ state in 44S represent crucial information for understanding the evolution of N=28 shell gap. The non spherical nature of the 44S ground state was suggested by its short β half-life and weak neutron-delayed emission probability by the low energy of the 2^+_g state (1297(18) keV), and the enhanced reduced transition probability $B(E2 : 2^+_g\rightarrow0^+_i)$ of 63(18) e$^{-}$. However the 2^+_i and B(E2) values are intermediate between a rigid rotor and a spherical nucleus. It suggests a possible mixing of spherical and deformed shapes which can be deduced by studying the properties of the 0^+_g isomer at 1365(1) keV observed in 44Ca. Already the study of a 7/2$^-$ isomer in 44S has shed light on shape coexistence in the N=28 region. Other cases of shape coexistence around shell closures have been reported in 40Ca and 44Si.

The present letter reports on the determination of the monopole strength $\rho(E0 : 0^+_g\rightarrow0^+_i)$ and the reduced transition probability $B(E2 : 2^+_g\rightarrow0^+_i)$ in 44S, extracted from the measurement of the half-life and the branching ratio between the E0 and E2 decay of the isomeric
The decay of the 0^+_2, state. These pieces of information were obtained by
using combined γ and electron delayed-spectroscopy and are used to
demonstrate the shape coexistence in 44S.

The experiment was carried out at the Grand Accélérateur National d’Ions Lourds (GANIL) facility. A
primary beam of 48Ca at 60A-MeV (1–2µA) impinging onto a 138 mg/cm2 Be target to produce neutron-rich
fragments. They were separated by the Lise3 spectrometer [12] using an achromatic 100 mg/cm2 Be degrader.
The magnetic rigidity was set to optimize the transmission of the 44S nuclei, produced at a rate of 200 sec$^{-1}$,
with a momentum acceptance of ±1.45%. Fragments were identified on an event by event basis by means of
their energy loss and magnetic rigidity ($B\rho$) values. The $B\rho$ was obtained from the position of the fragments at
the dispersive focal plane given by a multi-wire proportional chamber (CAVIAR) [3]. The selected nuclei were
implanted in a 125 µm kapton foil tilted at 20 degrees with respect to the beam axis. Before the foil, a stack of
Si detectors, including a position-sensitive one, was used to adjust the implantation depth and to reconstruct the
position of the ions in a plane perpendicular to the beam axis. A thick Si detector located downstream of the
implantation foil was used as veto. The γ-rays were measured by two clover Ge detectors of the
EXOGAM array located on the side of the implantation foil, at a distance of 25 mm to the beam axis. The use of a parallel beam optics along
2 meters length enables to derive the ion implantation profile on the kapton foil from the position-sensitive Si
detector. This ion profile, the geometry of the detectors and that of the chamber were used as ingredients
in a GEANT4 simulation to derive the electron (e^-_γ) and γ (ϵ_γ) efficiencies. The simulated efficiencies compare well with the ones obtained with calibrated sources of
207Bi and 152Eu placed in calibration runs at 6 different positions on the implantation foil. Using these comparisons, $\epsilon_{\gamma} = 0.05(4)$% and $\epsilon_{e^-} = 13.3(56)$% were adopted for a gamma-ray of 1329 keV and an electron of 1362.5 keV, respectively [14]. The decay of the 0^+_2 to the ground-state (E0) proceeds through the emission of an internal conversion electron (IC) and by internal pair formation (IPF). The electron spectrum, following the implantation of a 44S nucleus, is shown in Fig. 4. A single peak is observed at 1362.5(10) keV corresponding to an excitation energy of 1365(1) keV for the 0^+_2 state, after having corrected for the binding energy of the K electrons in the 44S nucleus. The integral of the peak is $I_{\epsilon_{IC}}(E0) = 148(8) \times 10^3$. The low energy part of the spectrum is well accounted for by the pair formation (IPF) mechanism in which electrons and positrons share an energy of 1365–2(5) keV. The fit of the electron time distribution (insert of Fig. 4) leads to an half-life of 2.619(26) µsec, which agrees with the value of 2.3(5) µsec reported in [15].

The decay of the 0^+_2 to the ground-state (E0) proceeds through the emission of an internal conversion electron (IC) and by internal pair formation (IPF). The electron spectrum, following the implantation of a 44S nucleus, is shown in Fig. 4. A single peak is observed at 1362.5(10) keV corresponding to an excitation energy of 1365(1) keV for the 0^+_2 state, after having corrected for the binding energy of the K electrons in the 44S nucleus. The integral of the peak is $I_{\epsilon_{IC}}(E0) = 148(8) \times 10^3$. The low energy part of the spectrum is well accounted for by the pair formation (IPF) mechanism in which electrons and positrons share an energy of 1365–2(5) keV. The fit of the electron time distribution (insert of Fig. 4) leads to an half-life of 2.619(26) µsec, which agrees with the value of 2.3(5) µsec reported in [15].

The decay of the 0^+_2 to the ground-state (E0) proceeds through the emission of an internal conversion electron (IC) and by internal pair formation (IPF). The electron spectrum, following the implantation of a 44S nucleus, is shown in Fig. 4. A single peak is observed at 1362.5(10) keV corresponding to an excitation energy of 1365(1) keV for the 0^+_2 state, after having corrected for the binding energy of the K electrons in the 44S nucleus. The integral of the peak is $I_{\epsilon_{IC}}(E0) = 148(8) \times 10^3$. The low energy part of the spectrum is well accounted for by the pair formation (IPF) mechanism in which electrons and positrons share an energy of 1365–2(5) keV. The fit of the electron time distribution (insert of Fig. 4) leads to an half-life of 2.619(26) µsec, which agrees with the value of 2.3(5) µsec reported in [15].

\[
R = \frac{\lambda(E2)}{\lambda(E0)} = \frac{I_{\gamma}(E2)}{I_{\epsilon_{IC}}(E0)} \frac{1 + \alpha_{conv}(2^+_1 \rightarrow 0^+_1)}{1 + \frac{\Gamma_{2^+_1 \rightarrow 0^+_1}}{\Gamma_{2^+_1 \rightarrow 0^+_0}}} \tag{1}
\]

In this expression, the electronic factors for pair formation and internal conversion have been extrapolated
for a nucleus with $A=44$ from Ref. [5, 7, 16] to be $\Omega_{IPF} = 1.495 \times 10^7sec^{-1}$ and $\Omega_{IC} = 1.1125 \times 10^8sec^{-1}$, respectively. A value of 3.6.10$^{-9}$ has been taken for the conversion coefficient $\alpha_{conv}(2^+_1 \rightarrow 0^+_1)$ [15]. Using the experimental values of electron $I_{\epsilon_{IC}}(E0)$ and γ-ray $I_{\gamma}(E2)$ yields derived above, the resulting branching ratio is $R=0.163(13)$. The $\rho^2(E0 : 0^+_2 \rightarrow 0^+_1)$ and $B(E2 : 2^+_1 \rightarrow 0^+_2)$

![FIG. 1: Electron energy spectrum obtained from the Si(Li) detectors following the implantation of 44S nuclei. The peak at 1362.5(1.0) keV corresponds to the $0^+_2 \rightarrow 0^+_1$ E0 transition. The low energy part is due to pair creation. Insert: Time distribution of the 1362.5 keV electron transition from which a half-life of 2.619(26) µsec is extracted.](image-url)
values are obtained using the following equations:
\[\rho^2(E0) = \frac{\ln(2)}{T_{1/2}(0^+_2)(1 + R)(\Omega_{IFP} + \Omega_{IC})} \] (2)
\[B(E2) = \frac{5.65 \times 10^{-10}}{5E^2_{2}T_{1/2}(1 + \frac{1}{4})(1 + \alpha_{conv}(0^+_2 \rightarrow 2^+_1))} \] (3)

Using the measured branching ratio R, the half-life value T_{1/2}(0^+_2) and \(\alpha_{conv}(0^+_2 \rightarrow 2^+_1) = 10.94(1) \) extrapolated from Ref. 13, the monopole strength \(\rho^2(E0 : 0^+_2 \rightarrow 0^+_1) \) and the reduced transition probability \(B(E2 : 2^+_1 \rightarrow 0^+_2) \) have been determined to be 8.7(7) \times 10^{-3} and 8.4(26) \text{e}^2 \text{fm}^4, respectively.

The values of \(E(0^+_1) = 1365(1) \text{ keV} \) and \(\rho^2(E0) = 8.7(7) \times 10^{-3} \) are the smallest measured in this mass region, pointing to a weak mixing between the \(0^+_1 \) ground state and the \(0^+_2 \) isomer and therefore to shape coexistence. In case of a large mixing, these states would repel each other to exhibit a large energy spacing and a larger \(\rho^2(E0) \) value. To obtain further understanding on the nature of the shape coexistence, data are compared to shell model calculations.

Shell model (SM) calculations have been performed for \({}^{44}\text{Si} \) using the ANTOINE code [18] and the up-to-date SDPF-U interaction that accounts remarkably well for nuclear structure in this mass region [19]. The full \(sd \) (\(fp \)) valence space has been considered for protons (neutrons) using standard effective charges \(e_p = 1.35 \) e (\(e_n = 0.35 \) e).

The results gathered in Table 1 show a good agreement with the experimental values, the only exception is a somewhat larger calculated B(E2 : \(2^+_1 \rightarrow 0^+_2 \)) value than measured. Nevertheless, both experiment and calculation agree with the fact that the \(2^+_1 \) state connects much strongly with the \(0^+_1 \) state than with the \(0^+_2 \) one. Indeed, the experimental B(E2 : \(2^+_1 \rightarrow 0^+_1 \))/B(E2 : \(2^+_1 \rightarrow 0^+_2 \)) ratio is 7.5 whereas the calculated one is 3.2. Calculated excited states connected to these two \(0^+ \) states are presented in Fig. 3 with their intrinsic quadrupole moments \(Q_0 \). For sake of clarity only the states of present interest are shown in this picture. Remarkable is the presence of \(2^+_1, 4^+_2 \) and \(6^+_3 \) states on top of the \(0^+_1 \) ground state connected by large B(E2) values. These states present equal \(Q_0 \) values of about 60 \text{e} \text{fm}^2. These two features characterize the presence of a rotational band from an axially deformed nucleus with \(\beta \approx 0.25 \). The \(2^+_1 \) state at 2.14 MeV has a smaller intrinsic quadrupole moment \(Q_0 = -0.3 \text{e} \text{fm}^2 \) compatible with a spherical shape. A candidate for the \(2^+_2 \) state is proposed at 2335(39) keV by placing the previously reported 988 keV transition [23] on top of the \(0^+_2 \) or \(2^+_1 \) state. Hence SM calculations suggest a prolate-spherical shape coexistence in \({}^{44}\text{Si} \).

Determined analysis of the components contributing to the total energy of the \(0^+ \) states has been performed in order to deepen our understanding on the evolution of the collectivity from \({}^{36}\text{Ca} \) to \({}^{48}\text{Si} \). Within the SM framework, the total Hamiltonian can be separated into its monopole (i.e. spherical mean-field contribution) and multipole (i.e. correlations mainly of pairing and quadrupole type) parts [14]. As can be seen from the values reported in Fig. 4 correlations strongly increase from the dou-

Table 1: Experimental and shell model values for the excitation energies, in MeV, and reduced transition probabilities B(E2), in \text{e}^2 \text{fm}^4, of \({}^{44}\text{S} \).

E/B(E2)	\(2^+_1 \)	\(0^+_2 \)	\(2^+_2 \)	\(2^+_1 \rightarrow 0^+_1 \)	\(2^+_1 \rightarrow 0^+_2 \)
exp.	1.329(1)	1.365(1)	2.335(39)	63(18)	8.4(26)
SM	1.172	1.137	2.140	75	19

Fig. 2: Part of the delayed gamma energy spectrum following the implantation of \({}^{34}\text{Si} \) nuclei. Peaks from the \(\beta \) decay of \({}^{34}\text{K} \) (1158 keV) and \({}^{60}\text{Co} \) (1173 and 1332.5 keV) are identified, the latter overlapping with the 1329 keV \(2^+_1 \rightarrow 0^+_1 \) transition of \({}^{44}\text{S} \). The deconvolution of this doublet is shown in the insert.

Fig. 3: \({}^{44}\text{S} \) level scheme calculated within the present SM approach (left), compared with available experimental data (right). E2 transition probabilities (in \text{e}^2 \text{fm}^4) are reported on top of black arrows and intrinsic quadrupole moments (in \text{e} \text{fm}^2) are shown in light gray on the right side of calculated levels. The ground state of the nucleus is head of a rotational band (\(\beta \approx 0.25 \)) and coexists with the rather spherical low-lying \(0^+_2 \) isomer. Calculated values of the N=28 gap and correlation energies (in MeV) are given for even-even N=28 isotones.
bly magic ^{48}Ca (≈ 2 MeV) down to the exotic deformed ^{42}Si (≈ 18 MeV), while the size of the N=28 shell gap gets slightly reduced. This increase of correlations is favored on one hand by neutron quadrupole excitations across the N=28 gap between the $f_{7/2}$ and $p_{3/2}$ orbits, and on the other hand, by the degeneracy of proton $s_{1/2}$ and $d_{3/2}$ orbits and excitations from the $d_{5/2}$ shell. In both cases, quadrupole correlations are favored by the fact that occupied and valence states are separated by two units of angular momentum. Without considering multipole contributions to the 0$^+$ state in ^{42}Si which is predicted to coexist with a prolate 0$^+$ state at 1293 keV.

The shell model calculation uses an Harmonic Oscillator basis for the description of the atomic nucleus. From the definition of the E0 operator, the calculated E0 transition between states of the same harmonic oscillator shells, as for protons in the sd shells and neutron in the fp shells, is strictly zero. Therefore, in order to shed light on the amount of mixing between the 0$^+_1$ and 0$^+_2$ states, it follows that $\langle 0^+_1 | E_0 | 0^+_2 \rangle = 0$. Therefore, the experimental monopole transition probability $B(E_2: 2^+_1 \rightarrow 0^+_1) = 8.7(7) \times 10^{-3}$ and the reduced transition probability $B(E_2: 2^+_1 \rightarrow 0^+_2) = 8.4(26) e^2 fm^4$ in the ^{40}Ca nucleus. Using these values, the earlier measured $B(E2: 2^+_1 \rightarrow 0^+_1)$, shell model calculations and a two level mixing model, it is found that ^{44}S exhibit a shape coexistence between a prolate ground state ($\beta = 0.25(36)$, and from the shell model calculations, $\beta = 0.25$). Altogether these values again point towards a deformed-spherical shape coexistence in ^{44}S.

To summarize, electron and γ delayed-spectroscopies have been used to determine the monopole strength $\rho(0^+_1 \rightarrow 0^+_2) = 8.7(7) \times 10^{-3}$ and the reduced transition probability $B(E2: 2^+_1 \rightarrow 0^+_1) = 8.4(26) e^2 fm^4$ in the ^{44}S nucleus. Using these values, the earlier measured $B(E2: 2^+_1 \rightarrow 0^+_1)$, shell model calculations and a two level mixing model, it is found that ^{44}S exhibit a shape coexistence between a prolate ground state ($\beta = 0.25$) and a rather spherical 0$^+_2$ state. This establishes how the onset of collectivity progressively develops between the spherical ^{40}Ca and the deformed ^{44}S nuclei. This study completes uniquely the understanding of the shell-breaking mechanism at the spin-orbit closed-shell N=28, which is as well of importance for the evolution of other shell gaps having the same origin.

We are grateful to the GANIL staff and the LISE team for support. We acknowledge P. Van Isaker for fruitful discussions. This work was supported by CNCSIS-UEFISCSU, proj. numb. PNII-IDEI 933/2007, Academy of Sciences of Czech Rep. and by the European Community through OTKA K68801.

[1] B. Bastin et al., Phys. Rev. Lett. 99, 022503 (2007)
[2] T. R. Werner et al., Nucl. Phys. A597, 327 (1996); P.-G. Reinhardt et al., Phys. Rev. C60, 014316 (1999); G.A. Lalazissis et al., Phys. Rev. C 60 (1999) 014310 ; R. Rodriguez-Guzman et al., Phys. Rev. C65, 024304 (2002)
[3] S. Pérus, M. Girod, and J.F. Berger, Eur. Phys. J. A 9, 35 (2000)
[4] E. Caurier, F. Nowacki and A. Poves, Nucl. Phys. A742, 14 (2004)
[5] F. Sarazin et al., Phys. Rev. Lett. 84, 5062 (2000)
[6] L. Gaufroy et al., Phys. Rev. Lett. 102, 092501 (2009)
[7] O. Sorlin et al, Phys. Rev. C47, 2941 (1993)
[8] T. Glasmacher et al., Phys. Lett. B395, 163 (1997)
[9] S. Grévy et al., Eur. J. Phys. A 25, s01-111 (2005)
[10] S. Shimoura et al., Phys. Lett. B560, 31 (2003); S. Shimoura et al., Phys. Lett. B654, 67 (2007)
[11] W. Schwerdtfeger et al., Phys. Rev. Lett. 103, 012501 (2009)
[12] R. Anne et al., Nucl. Instr. and Meth. A257, 215 (1987)
[13] L. Perrot et al., 11th Int. Conf. on Heavy Ion Accelerator Technology, Venice, Italy, 2009.
[14] http://tel.archives-ouvertes.fr/docs/00/43/01/25/PDF/Manuscrit_These_final.pdf
[15] A. Passoa and T. Salonen, report JYFL RR-2/86 (1986)
[16] E. L. Church and J. Weneser, Phys. Rev. 103, 1035 (1956)
[17] D. H. Wilkinson et al, Nucl. Phys. A133, 1 (1969)
[18] I. M. Band et al., At. Data Nucl. Data Tables 18, 433 (1976)
[19] E. Caurier et al., Rev. Mod. Phys. 77, 427 (2005)
[20] F. Nowacki and A. Poves, Phys. Rev. C79, 014310 (2009)
[21] D. Sohier et al, Phys. Rev. C66, 054302 (2002)
[22] M. Dufour and A. F. Ziker, Phys. Rev. C 54, 1641 (1996).
[23] L. Gaufroy et al, Phys. Rev. Lett. 99, 092502 (2007).
[24] L. A. Riley et al., Phys. Rev. C78, 011303(2008)
[25] L. Gaudefroy, Phys. Rev. C81, 064329 (2010).
[26] M. De Rydt et al, Phys. Rev. C81, 034308 (2010).
[27] H. Mach et al., Phys. Lett. B230, 21(1989)
[28] J. L. Wood et al., Nucl. Phys. A 651, 323(1999)