Design of the Compact Processing Module for the ATLAS Tile Calorimeter

Fernando Carrió Argos
Instituto de Física Corpuscular (CSIC-UV)
on behalf of the ATLAS Tile Calorimeter System

October 16th 2020

Work supported by the Spanish Ministry of Science and the European Regional Development Funds - RTI2018-094270-B-I00
OUTLINE

• INTRODUCTION
 – TILE CALORIMETER
 – PHASE II UPGRADE

• COMPACT PROCESSING MODULE
 – HARDWARE AND PCB LAYOUT
 – CLOCK AND READOUT ARCHITECTURE
 – SIGNAL INTEGRITY AND CLOCK DISTRIBUTION TESTS

• SUMMARY
ATLAS Tile Calorimeter

- Segmented calorimeter made of steel plates and plastic scintillator tiles covering the most central region of the ATLAS experiment.

- Measures energies of hadrons, jets, \(\tau \)-leptons and \(E_{T}^{\text{miss}} \).

- 4 partitions: EBA, LBA, LBC, EBC.

- Each partition has 64 modules:
 - One drawer hosts up to 48 PMTs.
 - Electronics is located in extractable “drawers” at the outermost part of the module.

- Light produced by a charged particle passing through the plastic scintillating tiles is read out via wavelength shifting fibers to PhotoMultiplier Tubes (PMTs) inside the drawer.

- Around 10,000 readout channels.
TileCal Phase II Upgrade

- Large Hadron Collider plans to increase the instantaneous luminosity by a factor 5-7 around 2027 → High Luminosity-LHC

- Phase-II Upgrade: New readout strategy
 - On-detector electronics will transmit full digital data to the off-electronics at the LHC frequency → **40 Tbps to read out the entire detector and ~6,000 optical fibres**
 - Buffer pipelines are moved to off-detector electronics
 - Redundancy in data links and power distribution → improve system reliability
Phase II on-detector electronics

- The Phase II module is composed of 4 mini-drawers (up to 48 PMTs). Each mini-drawer has 2 independent read out sections for redundant cell readout
 - 12 PMTs + 12 front-end boards reading out 6 TileCal cells
 - 1 × MainBoard: operation of the front-end boards
 - 1 × DaughterBoard: data high speed link with the off-detector electronics
 - 1 × High Voltage distribution board
 - 2 × Low Voltage Power Supply bricks: low voltage power distribution, one for each independent side → 8 bricks form a Low Voltage Power Supply (LVPS).
Phase II off-detector electronics

- **The Tile PreProcessor is the core element of the off-detector electronics**
 - Data processing and handling from on-detector electronics
 - Provides clocks and configuration for the TileCal modules
 - Interface with the ATLAS trigger and readout systems (FELIX)

- **32 TilePPr boards in 4 ATCA shelves:** ATCA carrier + 4 **Compact Processing Modules**
- **32 TileTDAQ-I:** Interfaces with L0Calo, Global, L0Muon and FELIX system

F. Carrió - IEEE Real Time Conference 2020
Compact Processing Module - Overview

- **Single AMC board** with full-size form factor
 - 32 channels through **8 Samtec Firefly modules**
 - 14 channels through AMC connector
 - Kintex KU085 for proto(v1), KU115 for final design

- **High bandwidth readout system**
 - Up to **400 Gbps** via optics
 - Up to **175 Gbps** via electrical backplane
PCB layout design

- Total of 14 layers → 1.6 mm thickness
 - 8 layers for PWR/GND, 6 layers for signals
 - ISOLA FR408HR ($\varepsilon_r = 3.68$, $\tan \delta = 0.0092$)

- High-speed layout design and optimization
 - Suppression of impedance discontinuities: Differential vias, connections, DC-blocking caps
 - Skew compensation to mitigate differential to common mode conversion

- IR voltage drop simulation on power rails
On-detector Readout and Operation

- High-speed interface with on-detector electronics - DaughterBoard
 - 32 links@4.8/9.6 Gbps, GigaBit Transceiver (GBT) protocol
 - Operation and readout of 2 TileCal modules per CPM → 8 mini-drawers
 - Up to 96 PMT channels with two gains
 - Configuration, TTC and LHC clock distribution
 - Data buffering of 10 µs per channel and gain

F. Carrió - IEEE Real Time Conference 2020
Trigger and DAQ path

- High-speed interface with ATLAS trigger system and FELIX
 - FULL mode protocol → 8B/10B encoding, 9.6 Gbps
 - Real-time energy reconstruction to TDAQi @40 MHz
 - 4 FULL mode links@9.6 Gbps
 - Transmission of Level-0/1 trigger selected events to FELIX @1 MHz
 - 1 FULL mode link@9.6 Gbps
Detector Control System and configuration

- The Artix 7 FPGA controls and monitors all on-board peripherals
 - Clock unit & power system configuration
 - On-board monitoring
 - V/I monitoring, temperature sensors, optical modules, clocks
 - Receives on-detector monitoring data through Kintex UltraScale FPGA
 - Monitors phase drifts in the distributed LHC clock using the DDMTD circuit

- Communication with TDAQ and DCS systems through the ATCA carrier board

![Diagram of the Detector Control System](image-url)
Signal integrity measurements

- Samtec Firefly modules @ 4.8 Gbps & 9.6 Gbps
 - Keysight DCA-X86100D sampling oscilloscope
 - Acceptable jitter values measured with PRBS-31 data pattern

- Bit Error Rate tests
 - Test bench with two CPMs, local clocks and 1.5-meter fibers
 - 32 links at 9.6 Gbps with PRBS31 pattern during one week
 - Total BER better than $1.6 \cdot 10^{-17}$ for a confidence level of 95%

\[
\begin{align*}
\text{Eye Width} & \quad 191.84 \text{ ps} \\
\text{Eye Height} & \quad 73.15\% \\
\end{align*}
\]

\[
\begin{align*}
\text{Eye Width} & \quad 85.92 \text{ ps} \\
\text{Eye Height} & \quad 87.10\% \\
\end{align*}
\]

\[
\begin{align*}
\text{RJ(rms)} & \quad 1.94 \text{ ps} \\
\text{DJ (δ-δ)} & \quad 2.40 \text{ ps} \\
\text{TJ (10^{-12})} & \quad 28.84 \text{ ps} \\
\end{align*}
\]

\[
\begin{align*}
\text{RJ(rms)} & \quad 1.84 \text{ ps} \\
\text{DJ (δ-δ)} & \quad 5.85 \text{ ps} \\
\text{TJ (10^{-12})} & \quad 30.96 \text{ ps} \\
\end{align*}
\]
Clock distribution qualifications

- Measure the quality of the distributed clock by the Daughterboard GBTx chips
 - Sampling clocks distributed to the MainBoard ADCs
 - Clocks driving the Multi Gigabit Transceivers in the Daughterboard FPGAs (Kintex UltraScale)

- Measurements done with an Anritsu MS2840A signal analyzer
 - Higher phase noise values than Xilinx recommends for GTH clocks → Additional TX jitter
 - Stable communication with DaughterBoard v5 was demonstrated using e-link

Si5345
120/240 MHz
si5345 + si570

e-link

Phase shifting
Summary

• New conditions imposed by HL-LHC requires a complete redesign of the TileCal on-detector and off-detector electronics

• Off-detector electronics for the Phase II Upgrade
 – 32 ATCA carrier and 128 Compact Processing Modules to read out TileCal
 – Total bandwidth of 40 Tbps between on-detector and off-detector

• Each Compact Processing Module
 – Clock distribution, readout and control of up to 2 TileCal modules
 – Triggered detector data transmission to FELIX
 – Reconstructed cell energy transmission to trigger system for trigger decision

• First prototypes are being validated
 – Single AMC board with full-size form factor
 ▪ Kintex UltraScale, Artix-7 and 8 Samtec Firefly modules
 – Good signal integrity performance
 – Low noise clock distributed to on-detector electronics
THANK YOU FOR YOUR ATTENTION!