Generic slow relaxation in a stochastic sandpile

R. Dickman(*)

Departamento de Física, ICEx, Universidade Federal de Minas Gerais
Caixa Postal 702, 30161-970 Belo Horizonte, Minas Gerais, Brazil

(Received 26 September 2002; accepted in final form 14 November 2002)

PACS. 05.40.-a – Fluctuation phenomena, random processes, noise, and Brownian motion.
PACS. 05.65.+b – Self-organized systems.
PACS. 64.70.Pf – Glass transitions.

Abstract. – Simulations of a stochastic fixed-energy sandpile in one and two dimensions reveal slow relaxation of the order parameter, even far from the critical point. The decay of the activity is best described by a stretched-exponential form. The persistence probability (for a site not to have toppled up to time t) also exhibits stretched-exponential relaxation. The results suggest a connection between sandpile models and structural glasses.

Sandpile models have attracted much interest in recent years, as paradigms of scale invariance in the apparent absence of tuning parameters [1–4], and as intriguing examples of absorbing-state phase transitions [5–11]. Most studies of sandpiles have focused on the scale-invariant stationary state under slow driving [3, 12], or on scaling properties in the vicinity of the absorbing-state transition [13–17]. Relatively little attention has been given to the dynamic properties of sandpiles away from the critical point.

A central feature of sandpile models is the presence of a conserved field, the density of particles. This field couples to the activity density, which is the order parameter. In the absence of such a conservation law, DP is generic for absorbing-state phase transitions [18,19]. Mohanty and Dhar have recently shown that for sandpiles in which sites with an above-critical height have a nonzero probability to remain inactive instead of toppling, the critical behavior again belongs to the DP class [20]. In the model studied here, however, such sites are obliged to topple, and the critical behavior is expected to fall in a universality class distinct from that of directed percolation (DP) [13]. Relaxation of the order parameter to its quasi-stationary value in a sandpile at the critical density is best characterized as a power law [9], but with certain anomalies in the one-dimensional case [10]. Besides having an effect on the critical behavior, it is reasonable to expect the conservation law to modify relaxation properties away from the critical point as well.

In simple models exhibiting an absorbing-state phase transition, such as the contact process [21], relaxation to the stationary state is expected to be monotonic and exponential, away from the critical point [22]. The simulation results reported below show that in sandpiles, off-critical relaxation is considerably slower, following a stretched-exponential or, in certain cases,
algebraic decay. Stretched-exponential functions have been reported for avalanche size distributions in experiments on sand and rice piles [23,24], and in granular avalanche models [25], but not, to my knowledge, in the context of sandpile relaxation dynamics.

I study a variant of Manna’s sandpile [26], defined on a lattice of L^d sites (in d dimensions), with periodic boundaries. The configuration is specified by the number of particles $z_i = 0, 1, 2, \ldots$ at each site; sites with $z_i \geq 2$ are said to be active. A Markovian dynamics is defined by the toppling rate, which is unity for all active sites, and zero for sites with $z_i < 2$. When a site i topples, it sends two particles to adjacent sites ($z_i \rightarrow z_i - 2$); the particles move independently to randomly chosen nearest neighbors j and j' ($j, j' \in \{i+1, i-1\}$ in the one-dimensional case). Thus $j = j'$ with probability $1/2d$. The dynamics conserves the number of particles, N, which is fixed by the initial configuration.

The system evolves via a sequential dynamics: the next site to topple is chosen at random from a list of active sites; the time increment associated with a toppling is $\Delta t = 1/N_A$, where N_A is the number of active sites just prior to the event. Initial configurations are generated by distributing ζL^d particles randomly over the lattice, yielding an initial distribution that is spatially homogeneous and uncorrelated. Previous studies confirm the existence of a continuous phase transition from an absorbing to an active phase at a particle density $\zeta_c = 0.94885$ in one dimension [10], and 0.71695 in $2d$ [9]. For $\zeta < \zeta_c$, the stationary value of the order parameter (the density of active sites) is zero.

I begin with the simplest case, relaxation of the order parameter ρ in one dimension, for $\zeta < \zeta_c$. For $\zeta = 0.5$, far below the critical value, the pattern of relaxation is essentially the same for systems of 1000 or more sites. Figure 1 shows that $\rho(t)$ (obtained from averages over 5×10^5 realizations of a system of 5000 sites) is well described by a stretched exponential, $\rho(t) \sim \exp[-(t/t_0)^\beta]$ with $\beta = 0.45$ (t_0 represents a characteristic timescale for relaxation). In this and subsequent analyses, the exponent β is determined using the criterion of zero curvature, in the asymptotic region of the graph of $\ln[\rho(t) - \bar{\rho}]$ vs. t^β ($\bar{\rho}$ is the asymptotic activity density, which is of course zero for $\zeta < \zeta_c$). A rough estimate of the uncertainty in β values is ± 0.02.

Next, I examine the relaxation for $\zeta = 0.9$, much nearer the critical point. There are now considerable finite-size effects and much larger systems (up to 10^5 sites) are required to observe the asymptotic behavior. For small systems $\rho(t)$ appears to decay faster than a stretched expo-
Fig. 2 – Relaxation of the order parameter in the one-dimensional sandpile, \(\zeta = 1 \), \(L = 2 \times 10^4 \). Inset: log-log plot of the excess \(\Delta \rho = \rho(t) - \bar{\rho} \).

Fig. 2

In the supercritical regime, the relaxation of the order parameter to its stationary value \(\bar{\rho} \) is nonmonotonic. \(\rho(t) \) decays rapidly at first, attaining a minimum at time \(t^* \), and then slowly approaches the stationary value from below. For \(\zeta = 1 \), I find \(\bar{\rho} = 0.118222(8) \), with \(\Delta \rho \equiv \bar{\rho} - \rho(t) \) decaying asymptotically as a power law, \(\sim t^{-0.54} \) (see fig. 2). The initial decay is again well described by a stretched exponential, with an exponent \(\beta = 0.28 \). For somewhat higher densities (\(\zeta = 1.2 \) and 1.3), the asymptotic approach to \(\bar{\rho} \) (from below) is again via a power law, with an exponent of 0.5–0.52.

The characteristic times \(t_0 \) and \(t^* \) diverge at the critical point \(\zeta_c \). In the supercritical regime, studies in the range \(\zeta = 0.96–1.3 \) yield \(t^* \sim (\zeta - \zeta_c)^{-\nu|} \) with \(\nu| = 2.45(3) \), in agreement with previous estimates [16]. In the subcritical case, the data are less clear but \(t_0 \) again appears to diverge with an exponent \(\sim 2.6(2) \). A systematic study of characteristic times, which promises to be a useful means for estimating the critical exponent \(\nu| \), is deferred to future work.

I also studied a variant of the stochastic sandpile introduced in ref. [17], in which the toppling rate at a site with \(z \) particles is \(z(z-1) \). (In this case \(\zeta_c = 0.9493(2) \).) For \(p = 1/2 \), the decay to \(\rho = 0 \) is described with high precision by a stretched exponential with \(\beta = 0.475(25) \).

In the supercritical regime the approach to the stationary value is nonmonotonic, similar to that observed above. Unlike the constant-rate model, however, the relaxation is well described by an expression consisting of two stretched exponentials:

\[
\rho(t) = \bar{\rho} + A_1 \exp \left[-\lambda_1 t^{1/2} \right] - A_2 \exp \left[-\lambda_2 t^{1/2} \right],
\]

with \(A_1, A_2, \lambda_1, \) and \(\lambda_2 \) all positive constants (\(A_1 \gg A_2, \) and \(\lambda_1 \gg \lambda_2 \)).

Slow relaxation appears to be robust under changes in the toppling rate. Of equal interest is the nature of relaxation in two or more dimensions. At a density of \(\zeta = 0.5 \) (well below \(\zeta_c = 0.71695(5) \)), studies using lattices of \(L^2 \) sites, with \(L = 40, 80, \) and 160, reveal that the order parameter decays as a stretched exponential, but with an exponent \(\beta = 0.81 \). Nearer the critical point (\(\zeta = 0.7 \)), finite-size effects are prominent, as was found in the one-dimensional
Fig. 3 – Relaxation of the order parameter in the two-dimensional sandpile, $\zeta = 0.7$, $L = 1280$. Inset: $\ln|\Delta \rho|$ vs. $\ln t$ for $\zeta = 0.75$; points: simulation; solid curve: fit using two stretched exponentials as described in text.

case. Studies using system sizes L of up to 1280 again confirm stretched-exponential decay with $\beta = 0.81$, as shown in fig. 3.

The relaxation above the critical density (in a system of size $L = 160$ at $\zeta = 0.75$; $\bar{\rho} = 0.04995$) is nonmonotonic, as in one dimension. The excess density is again well described by the difference between two stretched exponentials, as in eq. (1), but in this case the exponent β associated with the early decay is about 0.4, while the long-time approach to $\bar{\rho}$ (from below) is characterized by an exponent of 0.8 (see fig. 3, inset).

As we have seen, relaxation of the order parameter in the stochastic sandpile is characterized by stretched-exponential (or, in some cases, power law) functions. Recently, O’Donoghue and Bray [27] demonstrated stretched-exponential decay of the persistence probability, i.e., that a given site has never been visited by a diffusing particle, in certain one-dimensional reaction/diffusion processes. This suggests a study of persistence in the sandpile. In fact, since a site that is initially below threshold for toppling must be visited by another diffusing particle or particles before it can topple, persistence seems particularly relevant to sandpile relaxation dynamics. (Studies of dynamic critical exponents for persistence in conserved lattices gases, which are closely related to sandpiles, were reported by Lübeck [28]; here, however, we focus on the dynamics away from the critical point.)

In studying persistence in a sandpile, it appears useful to group sites according to their initial occupation number z. Let $p(t; z)$ denote the persistence probability of sites whose initial height is z. For $z = 0$ or 1, I define $p(t; z)$ as the probability that a site has not toppled up to time t. For $z > 2$, however, such a definition is not very interesting, since (in the constant-rate model) the probability not to have toppled up to time t is simply e^{-t}. For $z \geq 2$, therefore, $p(t; z)$ is defined as the probability not to have toppled a second time. I study the one-dimensional fixed-rate model with particle densities $\zeta = 0.5$, 0.9, and 1, as above.

For $\zeta < \zeta_c$, all activity ceases after a finite time, so that the persistence probability approaches a nonzero value $\bar{\rho}(z)$ at long times. For $\zeta = 0.5$, the asymptotic relaxation of $p(t; z)$ to $\bar{\rho}(z)$ again follows a stretched exponential; the best estimates for the exponent β are 0.42 for $z = 0$ and $\beta = 0.39$ for $z = 1$, 2 and 3. For $\zeta = 0.9$, a study using $L = 10^4$ yielded $\beta \simeq 0.44$, 0.47, 0.49, and 0.41 for $z = 0$, 1, 2, and 3, respectively. Finally, for $\zeta = 1$, the
Fig. 4 – Persistence probabilities $p(t; z)$ for $z = 0, 1, 2,$ and 3 (upper to lower) in the one-dimensional model with $\zeta = 1$. Inset: a similar plot for $\zeta = 0.9$.

Asymptotic decay of the persistence probability (studied on a ring of 2×10^4 sites) follows a stretched exponential with β values of $0.42, 0.41, 0.38, \text{ and } 0.45$ for the various z values. The persistence probabilities for $\zeta = 0.9$ and $\zeta = 1$ are shown in fig. 4. (In all of these studies, the exponents for $z = 2$ and 3 are less certain, due to poorer statistics, and to the fact that stretched-exponential behavior sets in later than for $z = 0$ or 1. I find no clear trend in the estimated exponent value, either with z or with ζ.) The foregoing results can be summarized as indicating that in one dimension, the asymptotic relaxation of the persistence probability $p(t; z)$ follows a stretched exponential with an exponent β of about 0.42.

The simulation results indicate that the relaxation of the order parameter and of the persistence probability, in a stochastic sandpile away from its critical point, generically exhibits stretched-exponential scaling. The exponent β generally takes values in the neighborhood of 0.4 in the one-dimensional case, while in two dimensions (for which only order-parameter relaxation was studied) the value is about 0.8. A simple argument, analogous to one devised for disordered spin systems [29–31], affords a qualitative understanding of stretched-exponential relaxation for $\zeta < \zeta_c$ as a consequence of rare fluctuations in the initial configuration [32]. At long times, the activity will be due to initially supercritical regions; the probability of such a region, of size ℓ, should decay exponentially for large ℓ, as $P(\ell) \sim e^{-a\ell^z}$. The activity in such a region is expected to decay exponentially, with a characteristic time that grows $\sim \ell^z$ near the critical point; thus $\rho(t, \ell) \sim \exp\left[-b\ell^z/\ell^z\right]$. (Here a and b are positive constants, while z is the dynamical critical exponent.) Summing over ℓ, one finds $\rho(t) \sim \exp\left[-ct^d/(d+2)\right]$. Inserting $z = 1.5(1)$ for the one-dimensional case [15] yields $\beta = 0.40(3)$, in good agreement with simulation results. In two dimensions, however, using $z = 1.57(2)$, one finds $\beta = 0.56(1)$, well below the exponent found in simulations. The observation of power law relaxation for $\zeta > \zeta_c$ may be related to the fact that in the diluted Ising model, above the precolation threshold, the magnetization decays as a power law for $T < T_c$ [29].

The observation of stretched-exponential relaxation suggests a connection with glassy dynamics. Superficially, the sandpile model bears little similarity to a dense fluid, but the two problems are related at a more abstract level. (For simplicity, I frame the analogy in terms of a hard-sphere fluid, in which the relevant variable is pressure not temperature.) In dense fluids, not all the empty space is available for particle movement, leading to a highly cooperative
dynamics [33,34]. Some larger grouping of “voids” is required for relaxation on scales beyond that of the local cage. Similarly, in a sandpile not all particles are available for movement (and relaxation): only those with companions in the same cell are mobile. These observations suggest a parallel between particles in the sandpile and parcels of unoccupied space in a dense fluid. The dynamic arrest in the fluid corresponds to the absorbing-state phase transition in the sandpile. The associated order parameter —mobile free volume in the fluid— vanishes in the absorbing phase. (The total unoccupied volume is of course conserved, but the fraction that is mobile or “active” is not.) From this vantage, the liquid-glass transition corresponds to a dynamical transition, akin to DP, off free volume, as opposed to the static percolation transition suggested some time ago by Cohen and Grest [35]. While the sandpile models studied to date seem too simplistic to capture the dynamics of a dense fluid near the glassy state, the results of the present study suggest that it would be worthwhile pursuing this analogy by developing somewhat more realistic particle models, and studying diffusion and the response to external driving, in the hope of gaining further insight into real glasses.

I thank K. Christensen, D. Dhar and F. F. Araujo for helpful discussions. This work was supported by CNPq, CAPES, and FAPEMIG, Brazil.

REFERENCES

[1] Bak P., Tang C. and Wiesenfeld K., Phys. Rev. Lett., 59 (1987) 381; Phys. Rev. A, 38 (1988) 364.
[2] Grinstein G., in Scale Invariance, Interfaces and Nonequilibrium Dynamics, NATO ASI Ser. B, edited by McKane A. et al., Vol. 344 (Plenum Press, New York) 1995.
[3] Dhar D., Physica A, 263 (1999) 4, and references therein.
[4] Dickman R., Muñoz M. A., Vespignani A. and Zapperi S., Braz. J. Phys., 30 (2000) 27; cond-mat/9910454 Preprint, 1999.
[5] Muñoz M. A. et al., in Proceedings of the 6th Granada Seminar on Computational Physics, edited by Marro J. and Garrido P. L. (American Institute of Physics, New York) 2001; cond-mat/0011447 Preprint, 2000.
[6] Tang C. and Bak P., Phys. Rev. Lett., 60 (1988) 2347.
[7] Vespignani A. and Zapperi S., Phys. Rev. Lett., 78 (1997) 4793; Phys. Rev. E, 57 (1998) 6345.
[8] Montakhab A. and Carlson J. M., Phys. Rev. E, 58 (1998) 5608.
[9] Vespignani A. et al., Phys. Rev. E, 62 (2000) 4564.
[10] Dickman R. et al., Phys. Rev. E, 64 (2001) 056104.
[11] Lübeck S., Phys. Rev. E, 64 (2001) 016123; Eur. Phys. J. B, 26 (2002) 75.
[12] Priezzhev V. B., J. Stat. Phys., 74 (1994) 955; Ivashkevich E. V., J. Phys. A, 27 (1994) 3643; Ivashkevich E. V., Ktitarev D. V. and Priezzhev V. B., Physica A, 209 (1994) 347.
[13] Rossi M., Pastor-Satorras R. and Vespignani A., Phys. Rev. Lett., 85 (2000) 1803.
[14] Priezzhev V. B. et al., Phys. Rev. Lett., 87 (2001) 084301.
[15] Dickman R., Tomé T. and De Oliveira M. J., Phys. Rev. E, 66 (2002) 016111.
[16] Dickman R., Phys. Rev. E, 66 (2002) 036122.
[17] Dickman R. and Vidigal R., J. Phys. A, 35 (2002) 7269.
[18] Janssen H. K., Z. Phys., 42 (1981) 141; 58 (1985) 311.
[19] Grassberger P., Z. Phys. B, 47 (1982) 465.
[20] Mohanty P. K. and Dhar D., Phys. Rev. Lett., 89 (2002) 104303.
[21] Marro J. and Dickman R., Nonequilibrium Phase Transitions in Lattice Models (Cambridge University Press, Cambridge) 1999.
[22] Liggett T. M., *Interacting Particle Systems* (Springer-Verlag, New York) 1985.

[23] Jeager H. M., Liu C. and Nagel S. R., *Phys. Rev. Lett.*, **27** (1989) 40.

[24] Frette V. *et al.*, *Nature*, **397** (1996) 49.

[25] Head D. A. and Rodgers G. J., *J. Phys. A*, **32** (1999) 1387.

[26] Manna S. S., *J. Stat. Phys.*, **59** (1990) 509; *J. Phys. A*, **24** (1991) L363.

[27] O’Donoghue S. J. and Bray A. J., *Phys. Rev. E*, **64** (2001) 041105.

[28] Lübeck S. and Misra A., *Eur. Phys. J. B*, **26** (2002) 75.

[29] Dhar D., in *Stochastic Processes: Formalism and Applications*, edited by Agarwal G. S. and Datagupta S., *Lect. Notes Phys.*, Vol. **184** (Springer, Berlin) 1983.

[30] Bray A. J., *Phys. Rev. Lett.*, **59** (1987) 586; **60** (1988) 720.

[31] Randeria M., Sethna J. P. and Palmer R. G., *Phys. Rev. Lett.*, **54** (1985) 1321.

[32] I am indebted to Deepak Dhar for suggesting this approach.

[33] Poole P. H., Donati C. and Glotzer S. C., *Physica A*, **261** (1998) 51.

[34] Doliwa B. and Heuer A., *Phys. Rev. E*, **61** (2000) 6898.

[35] Cohen M. H. and Grest G. S., *Phys. Rev. B*, **20** (1979) 1077.