Abstract

We propose a novel method for inducing monolingual semantic hierarchies and sense clusters from numerous foreign-language-to-English bilingual dictionaries. The method exploits patterns of non-transitivity in translations across multiple languages. No complex or hierarchical structure is assumed or used in the input dictionaries: each is initially parsed into the "lowest common denominator" form, which is to say, a list of pairs of the form (foreign word, English word). We then propose a monolingual synonymy measure derived from this aggregate resource, which is used to derive multilingually-motivated sense hierarchies for monolingual English words, with potential applications in word sense classification, lexicography and statistical machine translation.

1 Introduction

In this work we consider a learning resource comprising over 80 foreign-language-to-English bilingual dictionaries, collected by downloading electronic dictionaries from the Internet and also scanning and running optical character recognition (OCR) software on paper dictionaries. Such a diverse parallel lexical data set has not, to our knowledge, previously been assembled and examined in its aggregate form as a lexical semantics training resource. We show that this aggregate data set admits of some surprising applications, including discovery of synonymy relationships between words and automatic induction of high-quality hierarchical word sense clusterings for English.

We perform and describe several experiments deriving synonyms and sense groupings from the aggregate bilingual dictionary, and subsequently suggest some possible applications for the results.

Finally, we propose that sense taxonomies of the kind introduced here, being of different provenance from those produced explicitly by lexicographers or using unsupervised corpus-driven methods, have significant value because they add diversity to the set of available resources.

2 Resources

First we collected, from Internet sources and via scanning and running OCR on print dictionaries, 82 dictionaries between English and a total of 44 distinct foreign languages from a variety of language families.

Over 213K distinct English word types were present in a total of 5.5M bilingual dictionary entries, for an average of 26 and a median of 3 foreign entries per English word. Roughly 15K English words had at least 100 foreign entries; over 64K had at least 10 entries.

No complex or hierarchical structure was assumed or used in our input dictionaries. Each was initially parsed into the "lowest common denominator" form. This consisted of a list of pairs of the form (foreign word, English word). Because bilingual dictionary structure varies widely, and even the availability and compatibility of part-of-speech tags for entries is uncertain, we made the decision to compile the aggregate resource only with data that could be extracted from every individual dictionary into a universally compatible format. The unique pairs extracted from each dictionary were then converted to 4-tuples of the form:

<foreign language, dictionary name, foreign word, English word>

before being inserted into the final, combined dictionary data set.

3 A Synonymy Relation

We began by using the above-described data set to obtain a synonymy relation between English words.

In general, in a paper bilingual dictionary, each for-
eign word can be associated with a list of English words which are possible translations; in our reduced format each entry lists a single foreign word and single possible English translation, though taking a union of all English translations for a particular foreign word recreates this list.

We use the notion of coentry to build the synonymy relation between English words. The per-entry coentry count $C_{per-entry}(e_1, e_2)$ for two English words e_1 and e_2 is simply the number of times e_1 and e_2 both appear as the translation of the same foreign word (over all foreign words, dictionaries and languages). The per-dictionary coentry count $C_{per-dict}(e_1, e_2)$ ignores the number of individual coentries within a particular dictionary and merely counts as 1 any number of coentries inside a particular dictionary. Finally, per-language coentry count $C_{per-lang}(e_1, e_2)$ counts as 1 any number of coentries for e_1 and e_2 for a particular language. Thus, for the following snippet from the database:

Eng. Wd.	Foreign Wd.	Foreign Language	Dict. ID
hit	schlagen	GERMAN	ger.dict1
pound	schlagen	GERMAN	ger.dict1
hit	schlag	GERMAN	ger.dict1
pound	schlager	GERMAN	ger.dict1
hit	battere	ITAL	ital.dict1
pound	batterie	ITAL	ital.dict1

C_{per-entry}(hit, pound) = 4, while C_{per-dict}(hit, pound) = 3, since the two individual coentries in ger.dict1 are only counted once. $C_{per-lang}(hit, pound) = 2$; hit and pound are coentries in the Italian and German languages. We found the more conservative per-dictionary and per-language counts to be a useful device, given that some dictionary creators appear sometimes to copy and paste identical synonym sets in a fairly indiscriminate fashion, spurious inflating the $C_{per-entry}(e_1, e_2)$ counts.

Our algorithm for identifying synonyms was simple: we sorted all pairs of English words by decreasing $C_{per-dict}(e_1, e_2)$ and, after inspection of the resulting list, cut it off at a per-dictionary and per-language count threshold1 yielding qualitatively strong results. For all word pairs e_1, e_2 above threshold, we say the symmetric synonymy relation $S(e_1, e_2)$ holds. The following tables provide a clarifying example showing how synonymy can be inferred from multiple bilingual dictionaries in a way which is impossible with a single such dictionary (because of idiosyncratic foreign language polysemy).

Lang.	Dict. ID	Foreign Wd.	English Translations
GERMAN	ger.dict1	absetzen	deposit drop deduct sell
GERMAN	ger.dict1	ablagerung	deposit sediment settlement

The above table, listing the various coentry counts for “deposit”, demonstrates the empirical motivation in the aggregate dictionary for the synonymy relationship between deposit and sediment, while the aggregate evidence of synonymy between deposit and sell is weak, limited to 2 languages, and is most likely the result of a word polysemy restricted to a few Germanic languages.

4 Different Senses: Asymmetries of Synonymy Relations

After constructing the empirically derived synonymy relation S described in the previous section, we observed that one can draw conclusions from the topology of the graph of S relationships (edges) among words (vertices).

Specifically, consider the case of three words e_1, e_2, e_3 for which $S(e_1, e_2)$ and $S(e_1, e_3)$ hold, but $S(e_2, e_3)$ does not. Figure 1 illustrates this situation with an example from data ($e_1 = \text{“fair”}$), and more examples are listed in Table 1. As Figure 1 suggests and inspection of the random extracts presented in Table 1 will confirm, this topology can be interpreted as indicating that e_2 and e_3 exemplify differing senses of e_1.

We decided to investigate and apply it with more generality. This will be discussed in the next section.

5 Inducing Sense Taxonomies: Clustering with Synonym Similarity

With the goal of using the aggregate bilingual dictionary to induce interesting and useful sense distinctions of English words, we investigated the following strategy.
For each target word W_t in English having a sufficiently high dictionary occurrence count to allow interesting results, a list of likely synonym words W_s was induced by the method described in Section 3. Additionally, we generated a list of all words W_c having nonzero $C_{per-dict}(W_s, W_c)$.

The synonym words W_s – the sense exemplars for target words W_t – were clustered based on vectors of coentry counts $C_{per-dict}(W_s, W_c)$. This restriction on vector dimension to only words that have nonzero co-entries with the target word helps to exclude distinctions such as coentries of W_s corresponding to a sense which doesn’t overlap with W_t. The example given in the following table shows an excerpt of the vectors for synonyms of strike. The hit synonym overlaps strike in the beat/bang/knock sense. Restricting the vector dimension as described will help prevent noise from hit’s common

$syn_1(W)$	W	$syn_2(W)$
quiet	still	yet
desire	want	lack
delicate	tender	offer
conceal	hide	skin
nice	kind	sort
assault	charge	load
filter	strain	stretch
flow	run	manage
cloth	fabric	structure
blond	fair	just
foundation	base	ignoble
deny	decline	fall
hurl	cast	mould
bright	clear	open
harm	wrong	incorrect
crackle	crack	tissue
impeach	charge	load
enthusiastic	keen	sharp
coarse	rough	difficult
fling	cast	form
firm	fast	speedy
fashion	mold	mildew
incline	lean	meagre
arouse	raise	increase
digit	figure	shape
dye	paint	picture
spot	stain	tincture
shape	cast	toss
claim	call	shout
earth	ground	groundwork
associate	fellow	guy
arrest	stop	plug

$C_{per-dict}(W_s, W_c)$ is low (0). Extracted from a list sorted by descending $C_{per-dict}(W_s, W_c)$, such that $C_{per-dict}(W_s, W_c)$ is high, whereas $C_{per-dict}(W_s, W_c)$ is low (0). Table 1 illustrates the clarity with which major sense distinctions are reflected in the aggregate dictionary. The induced clustering for strike (tree as well as flat cluster boundaries) is presented in Figure 4.

attack	bang	hit	knock	walkout	find
attack	-	4	18	7	0
bang	-	38	43	2	0
hit	-	44	2	29	0
knock	-	2	0	2	-
walkout	-	0	0	0	-
find	-	-	-	-	-

Table 1: A representative sampling of high-confidence sense distinctions derived via unbalanced synonymy relationships among three words, W and two of its synonyms $syn_1(W)$ & $syn_2(W)$, such that $C_{per-dict}(W, syn_1(W))$ and $C_{per-dict}(W, syn_2(W))$ are high, whereas $C_{per-dict}(syn_1(W), syn_2(W))$ is low (0). Excerpts from a list sorted by descending $C_{per-dict}(W, syn_1(W))$.

We used the CLUTO clustering toolkit (Karypis, 2002) to induce a hierarchical agglomerative clustering on the vectors for W_s. Example results for vital and strike are in Figures 3 and 4 respectively. Figure 4 also includes a listing of some foreign words associated with particular clusters.

![Figure 3: Induced sense hierarchy for the word “vital”](image)

6 Related Work

There is a distinguished history of research extracting lexical semantic relationships from bilingual dictionaries (Copestake et al., 1995; Chen and Chang, 1998). There is also a longstanding goal of mapping translations and senses in multiple languages in a linked ontology structure (Resnik and Yarowsky, 1997; Risk, 1989; Vossen, 1998). The recent work of Ploux and Ji (2003) has some similarities to the techniques presented here in that it considers topological properties of the graph of synonymy relationships between words. The current paper can be distinguished on a number of dimensions, including our much greater range of participating languages, and the fundamental algorithmic linkage between multilingual translation distributions and monolingual synonymy clusters.

2For our experiments, English words occurring in at least 15 distinct source dictionaries were considered.

3Again, the threshold for synonyms was 10 and 5 respectively for per-dictionary and per-language coentry counts.

4In both “vital” and “strike” examples, the rendered hierarchical clusterings were pruned (automatically) in order to fit in this paper.
7 Analysis and Conclusions

This is the first presentation of a novel method for the induction of word sense inventories, which makes use of aggregate information from a large collection of bilingual dictionaries.

One possible application of the induced sense inventories presented here is as an aid to manual construction of monolingual dictionaries or thesauri, motivated by translation distinctions across numerous world languages. While the desired granularity of sense distinction will vary according to the requirements of taste and differing applications, treating our output as a proposal to be assessed and manually modified would be a valuable labor-saving tool for lexicographers.

Another application of this work is a supplemental resource for statistical machine translation (SMT). It is possible, as shown graphically in Figure 4, to recover the foreign words associated with a cluster (not just a single word). Given that the clusters provide a more complete coverage of English word types for a given sense than the English side of a particular bilingual dictionary, clusters could be used to unify bitext co-occurrence counts of foreign words with English senses in a way that typical bilingual dictionaries cannot. Unifying counts in this way would be a useful way of reducing data sparsity in SMT training.

Finally, evaluation of induced sense taxonomies is always problematic. First of all, there is no agreed “correct” way to classify the possible senses of a particular word. To some degree this is because human experts disagree on particular judgments of classification, though a larger issue, as pointed out in Resnik and Yarowsky 1997, is that what constitutes an appropriate set of sense distinctions for a word is, emphatically, a function of the task at hand. The sense-distinction requirements of English-to-French machine translation differ from those of English-to-Arabic machine translation (due to differing degrees of parallel polysemy across the language pairs), and both differ from those of English dictionary construction.

We believe that the translingually-motivated word-sense taxonomies developed here will prove useful for the a variety of tasks including those mentioned above. The fact that they are derived from a novel resource, not constructed explicitly by humans or derived in fully unsupervised fashion from text corpora, makes them worthy of study and incorporation in future lexicographic, machine translation, and word sense disambiguation efforts.

References

J. Chen and J. Chang. 1998. Topical Clustering of MRD Senses Based on Information Retrieval Techniques. *Computational Linguistic*, 29(2):61-95.

A. Copestake, E. Briscoe, P. Vossen, A. Ageno, I. Castellan, F. Ribas, G. Rigau, H. Rodriguez and A. Samiotou. 1995. Acquisition of Lexical Translation Relations from MRDs. *Machine Translation: Special Issue on the Lexicon*, 9(3):33-69.

G. Karypis. 2002. CLUTO: A Clustering Toolkit. *Tech Report 02-017, Dept. of Computer Science, University of Minnesota*. Available at http://www.cs.umn.edu/~cluto

S. Ploux and H. Ji. 2003. A Model for Matching Semantic Maps Between Languages (French/English, English/French). *Computational Linguistics*, 29(2):155-178.

P. Resnik and D. Yarowsky. 1997. A Perspective on Word Sense Disambiguation Methods and Their Evaluation. In *Proceedings of SIGLEX-1997*, pp. 79-86.

O. Risk. 1989. Sense Disambiguation of Word Translations in Bilingual Dictionaries: Trying to Solve The Mapping Problem Automatically. *RC 14666*, IBM T.J. Watson Research Center. Yorktown Heights.

P. Vossen (ed.). 1998. *EUROWORDNET: A Multilingual Database with Lexical Semantic Networks*. Kluwer Academic Publishers. Dordrecht, The Netherlands.