Research Article

Enterprise Human Resource Management Model by Artificial Intelligence Digital Technology

Yu Jiaping

School of Public Policy and Administration, Nanchang University, Nanchang 330031, Jiangxi, China

Correspondence should be addressed to Yu Jiaping; 7102119025@email.ncu.edu.cn

Received 11 May 2022; Revised 16 June 2022; Accepted 11 July 2022; Published 28 November 2022

Academic Editor: Rahim Khan

Copyright © 2022 Yu Jiaping. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Artificial intelligence (AI) is a potentially transformative force that is likely to change the role of management and organizational practices. AI is revolutionizing corporate decision-making and changing management structures. The visible effects of AI can be observed in key competencies and corporate processes such as knowledge management, as well as consumer outcomes including service quality perceptions and satisfaction. This study aims to optimize the human resource management (HRM) process, reduce the workload of human resource managers, and improve work efficiency. Based on AI digitization technology, a salary prediction model (SPM) is designed using a backpropagation neural network (BPNN), and the Nesterov and Adaptive Moment Estimation (Nadam) algorithms are integrated to optimize the model. Next, the content information of the resumes are used to predict the hiring salary of the candidates and validate the model. Results show that compared with other optimization algorithms, the final predicted result score of the Nadam optimization algorithm is 0.75%, and the training period is 186 s, providing the best optimization effect and the fastest convergence speed. Moreover, the BPNN-based SPM optimized by Nadam has good performance in the learning process and the accuracy rate can reach 79.4%, which verifies the validity of the SPM. The outcomes of this study can provide a reference for HRM systems based on data mining technology.

1. Introduction

With the advent of AI technology, a new generation of labor, such as human intelligence or artificial intelligence, has emerged as a critical factor for businesses to survive and evolve in a changing environment. AI is an interdisciplinary study that attempts to replicate human skills and cognitive behavior. AI is increasingly being applied to company management decision-making, assisting managers in their repetitive and monotonous everyday tasks [1]. It provides sophisticated database and analytical tools, allowing managers to move away from routine tasks and focus on more important tasks. In enterprises, HRM includes a set of human resource policies as well as the organizational functions that go along with them. These functions include the formulation of corporate human resource strategies, employee recruitment and selection, training and development, performance management, employee relationship management, and employee safety and health management [2]. AI technologies can provide higher economic benefits to the process of HRM. Improving the efficiency of human resource management through the use of AI technology has become a major trend in the future growth of human resource management. How to realize enterprise HRM through digital technology has become an inevitable problem for enterprises and human resource managers [3].

Big data and AI technologies have brought new growth points to the recruitment of talents in the digital information age, constantly updating and iterating, optimizing the organizational structure, and rationally allocating talents [4, 5]. If the HRM of the enterprise cannot be kept up with the pace of enterprise development in time to meet the new strategic goals of the enterprise, it will be difficult to obtain development benefits and technical convenience [6]. In practice, it remains on the problems of low screening efficiency, poor job matching ability, and technology outflow in traditional recruitment [7, 8]. Scholars propose to use data mining to reduce the amount of data that needs to be processed. Data mining is mining massive data using various techniques and statistical methods to obtain more useful information.
Zhang [9] presented an ensemble classifier decision tree technique based on a single decision tree algorithm to evaluate HRM data. The content-based recommendation technique and the collaborative filtering recommendation method were compared to the suggested ensemble classifier decision tree algorithm. With precision and recall rates of 35.2% and 41.6%, respectively, the data mining recommendation approach may deliver the best results. One of the most important techniques for adopting data mining is machine learning. There are many applications of machine learning in the field of HRM, involving data extraction and data prediction. Wei and Jin [10] applied machine learning technology to the HRM system. According to the dimension selection of the prediction method, they established a combination model composed of the optimized Grey Model (GM) and Back Propagation Neural Network (BPNN) model and studied an entity as an example. The results show that the combined model has certain practical effects. Zhu [11] used machine learning technology to manage and analyze human resource data in modern enterprises. Machine learning technology realized the function of the human resources system, reduced the business volume of human resources, and improved the efficiency and management level of human resources [12]. According to Tambe et al. [13], AI deployments in HRM issues such as staffing and selection are becoming gradually prevalent and have drastically reduced the time and cost of carrying out these functions. According to Ryken [14], some of the key HRM areas that have already been transformed by AI, include time-consuming and labor-intensive tasks in recruiting, such as reading a large number of CVs, sorting them out, and identifying the best candidates in a fraction of the time, and identifying which employees require what type of training. Jarrahi [15] reported that AI is revolutionizing organizational decision-making and changing management approaches. The tangible effects of AI may be seen in key competencies and corporate processes such as knowledge management, as well as consumer outcomes such as service quality perceptions and satisfaction. Not only in established nations but also in emerging economies, such effects have been found.

Currently, data is in a state of explosive growth. The rapid growth of data collected by businesses has outstripped the processing capabilities of traditional HRM systems, rendering them incapable of data management and data analysis. To improve the practicability of the HRM system based on AI digital technology, this study establishes a BPNN-based salary prediction model (SPM). The model is optimized to use candidate resume information to predict a candidate’s contracted salary. These results can provide a reference for HRM systems based on data mining technology. Furthermore, the BPNN-based SPM improved by Nadam performs well in the learning process, with an accuracy rate of 79.4%, which proves the validity of the SPM.

2. Materials and Methods

2.1. HRM Model. A pattern refers to the standard form of things or the standards and patterns that allow people to follow their specifications. The HRM model refers to a basic model of HRM activities established by a certain organization or manager group in the long-term practice, which is a comprehensive overview of HRM objectives, management processes, management methods, content, and other elements. This model is recognized and followed by people [16]. HRM model is divided into HRM performance appraisal, position analysis, payment distribution (3P) model, human resource personality management, position management, performance management, payment management (4P) model, and human resource perception, placement, professional, and preservation (5P) mode.

2.1.1. 3P Model of HRM. There are three main points in the core chain of the 3P model of HRM: (i) Based on the job analysis, the job responsibilities of employees are divided. (ii) Based on the job responsibilities of employees, performance appraisal indicators and programs are carried out. (iii) Based on the results of the performance appraisal, the distribution standards of salary, benefits, and bonuses are clarified [17]. The 3P management model takes job analysis as the starting point, the performance appraisal system as the center, and the salary distribution system as a result. The three are closely linked. The 3P model of HRM is shown in Figure 1.

In Figure 1, there are some deficiencies in the 3P management model of human resources: (i) Enterprises ignore the impact of HRM on the rapid development of employees, enterprise innovation, and development strategies. (ii) Enterprises take work as the basis and look for people who are suitable for them according to the needs of the work. People and positions are two indispensable basic points of an enterprise, which will inevitably ignore the core strategic asset of people. (iii) The relationship between HRM and enterprise development strategy is not considered. The 3P model only links the HRM modules horizontally and simply and does not use the enterprise strategy module to integrate HRM highly. According to the requirements of development in the new era, HRM must achieve horizontal matching between different modules on the one hand and vertical matching with corporate strategies on the other hand.

2.1.2. 4P Model of HRM. The 4P model of HRM is developed on the 3P model. Its core is “one center, two basic points, and four major matches”. A center is that HRM must be carried out with the enterprise strategy as the center. The two basic points refer to the two points of “people” and “posts”. The four major matches are based on one center and two basic points to achieve the perfect match between people, between people and positions, between positions and positions, and between people and enterprises [18]. The 4P model of HRM is shown in Figure 2.

In Figure 2, the 4P model of HRM thinking includes postmanagement, performance management, compensation management, and quality management. Among them,
postmanagement is a series of activities such as setting, analyzing, describing, and evaluating for each post in the enterprises [19]. Quality management is a process of evaluating the quality of employees by constructing a quality model based on corporate strategy, organizational structure, and jobs and applying the results to quality improvement. Performance management means the establishment of a closed management loop of performance planning and expectations, performance implementation and support, performance appraisal and evaluation, performance feedback and development, and feedback and development of employees' work performance. Compensation management emphasizes sharing of success and strategic orientation, which raises compensation to the height of corporate strategy.

2.1.3. 5P Model of HRM. The 5P model of HRM includes five basic tasks: Perception, Pick, Placement, Professional, and Preservation, as shown in Figure 3. Among them, Perception is that the company divides parts according to business needs and functions, and based on compiling a job description, it finds the most suitable employees for the position. Pick means that enterprises need to recruit and select talents and use scientific talent evaluation methods to select the most suitable talents [20]. Placement refers to knowing people and doing their jobs well and providing promotion channels for employees. Professional means to improve the quality of employees by cultivating talents, which is embodied in training employees to master new knowledge and new technologies. Preservation is to establish a scientific and reasonable salary incentive mechanism and performance appraisal mechanism to prevent brain drain. The 5P model of HRM consists of five systems including quality assessment and job analysis system, recruitment and selection system, configuration and use system, training, and development system, and assessment and salary system [20].

2.2. Salary Prediction Demand Analysis. In traditional recruitment, resumes are generally screened manually, and whether the applicant meets the requirements is determined according to the applicant's age, education, work experience, etc. This method requires candidates to have good judgment, and there may be some human errors [21]. Each position has a certain salary range, but in the end, it is often determined by the contract management department, and there are many artificial and subjective factors [22]. In the process of HRM, only qualitative analysis can be carried out, there is not enough data to support the influence of subjective factors, and there is a lack of objective evaluation standards [23]. Many factors affect resume screening and salary determination. To add some objective evaluation factors to them, the candidate's resume information is used to establish a predictive model so that the contracted salary of the candidate can be predicted. The forecast salary can provide a basic salary standard and adjust according to the relevant salary situation. Salary forecasting is a complex calculation process. Since a candidate's resume is used to predict salary, it is also related to the completeness of the resume's information. Therefore, the quality of the extracted features has a great impact on the model. The data characteristics used in salary prediction are shown in Figure 4.
2.3. BP Neural Network (BPNN). The BPNN is mainly based on error backpropagation learning, and the weights and thresholds of the network are continuously adjusted and corrected through the backpropagation process [24]. The essence of BPNN is to realize the mapping function from input to output, making it suitable for solving various complex internal problems and realizing any complex nonlinear mapping. The structure of BPNN is shown in Figure 5. The network consists of an input layer, a hidden layer, and an output layer. Among them, the hidden layer contains many layers. Inside BPNN, the neurons of each layer exist independently. There are only unidirectional connections between adjacent neurons in two layers. The input signal is passed to the hidden layer through the input layer, processed by the function of the hidden layer, and then the data is passed to the output layer. The function transforms the data of the output layer to get the final output result.

![Figure 5: Structure of BPNN.](image)

2.4. SPM Based on BP Neural Network

2.4.1. Topological Structure of the Network. The salary forecast is a multi-input single-output mapping. According to the format of the data in the demand analysis, the number of neurons in the input layer of the network is 14 and the number of neurons in the output layer is 1. There is no definite calculation method for the number of neurons in the hidden layer, as shown as follows:

\[n_h = \sqrt{n_i + n_o + k}, \]

where \(n_h \) represents the number of neurons in the hidden layer, \(n_i \) is the number of output layer nodes, \(n_o \) represents the number of output nodes, and \(k \) is a constant between 1 and 10. BPNN is used for repeated training. Finally, the number of neurons in the hidden layer is set to 15.

2.4.2. Activation Function. Theoretically, the activation function can be linear or nonlinear, but when it is uncertain whether it is a linear problem, a nonlinear activation function is more practical. Currently, the sigmoid function is one of the most widely used activation functions, which is computed as

\[f(x) = \frac{1}{1 + e^{-x}}, \]

where \(e \) is a natural constant. The output of the sigmoid function is compressed within \((0, 1)\), and the sigmoid function has the characteristics of differentiability and saturated nonlinearity, so it can enhance the nonlinear mapping ability of BPNN.

![Figure 4: Data characteristics of SPM.](image)
2.4.3. **Parameter Initial Value.** Whether the model training result can reach the maximum value and converge mainly depends on the initial value of the parameters. When the initial connection weights are accumulated, the state value of each neuron is close to 0, which can ensure that it is not easy to fall on the flat area. At this point, the initial situation is better. However, neurons in the same layer cannot share the same weights during initialization. This results in the same outputs and gradients appearing at the time of computation and eventually performing the same updates, which remain unchanged. When the connection weight is a small random number, it is easy to meet the above requirements [25]. Therefore, when the parameters are initialized, the connection weights usually take a relatively small random number to obtain the best convergence speed.

2.4.4. **Loss Function.** The loss function is mainly used to measure the error between the predicted value of the network and the actual value and is the criterion for judging the convergence of the training learning model. The most used loss function in regression prediction is the quadratic mean-square-error function $$E$$, as given as

$$E = \frac{1}{2}(y - z)^2,$$

where $$y = (y_0, y_1, \cdots, y_k)$$ is the target vector and $$z = (z_0, z_1, \cdots, z_k)$$ is the output vector. A BPNN-based SPM is established. The training process of the model is shown in Figure 6.

2.5. **Optimization of the SPM.** The standard BPNN has a simple structure and strong learning ability, but it also has some shortcomings, such as slow convergence speed. The search based on gradient descent is easy to fall into the local minimum value of the parameter space. Therefore, in practical use, BPNN needs to be optimized [26]. BPNN uses the gradient descent method in the backpropagation update, but the iteration speed is slow, and the effect is not ideal. Therefore, additional momentum and adaptive learning rate are combined to optimize gradient descent using a hybrid optimization approach. Among them, Adaptive Moment Estimation (Adam) and the combination of Nesterov and Adaptive Moment Estimation (Nadam) are commonly used as hybrid methods.

Adam is a hybrid optimization algorithm obtained by adding a bias correction term and a momentum term to the additional momentum. Its update amount is given as

$$\Delta \theta_t = -\frac{\eta}{\sqrt{v_t} + \varepsilon} m_t,$$

where $$m_t$$ is the additional momentum part, $$v_t$$ is the adaptive learning rate part, $$\eta$$ shows the learning rate, and $$\varepsilon$$ is the smoothing factor to avoid a 0 denominator. The additional momentum part $$m_t$$ and the adaptive learning rate part $$v_t$$ are calculated as given in Equations (5) and (6), respectively:

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t,$$

$$v_t(i,i) = \beta_2 v_{t-1}(i,i) + (1 - \beta_2) g_t^2(i),$$

where $$\beta_1$$ and $$\beta_2$$ represent attenuation factors, $$g_t^2(i)$$ is the squared gradient of the $$i$$-th parameter in the $$t$$-th iteration, $$g_t$$ represents the gradient of the parameter, and $$v_t(i,i)$$ denotes the expected value of the squared gradient of the $$i$$-th iteration. The calculation result will tend to be 0. Therefore, the deviation formula is used to correct the coefficients. The deviation is shown in Equations (7) and (8), respectively:

\begin{align*}
\end{align*}
3. Results and Discussion

3.1. Performance Comparison of Various Optimization Methods. The training effects of Adam and Nadam optimization algorithms are compared with those of Stochastic Gradient Descent (SGD), Nesterov Accelerated Gradient (NAG), Adaptive gradient (Adagrad), and Root-Mean-Square Prop (RMSProp). The comparison results of the convergence speed of various optimization methods are shown in Figure 7.

In Figure 7, in terms of convergence speed, compared with SGD, NAG, Adagrad, and RMSProp optimization algorithms, the hybrid optimization algorithms Adam and Nadam have better update stability. The algorithm also has a faster convergence speed and better performance. Overall, the Nadam hybrid optimization algorithm converges faster than the Adam hybrid optimization algorithm. The training effects of these optimization algorithms are compared to better compare the performance among various optimization algorithms, as shown in Figure 8.

In Figure 8, compared with the SGD, NAG, Adagrad, and RMSProp optimization algorithms, the hybrid optimization algorithms Adam and Nadam have the largest final prediction score and the shortest training period. Among them, the final prediction score of the Adam optimization algorithm is 0.7502, and the training period is 192 s. The final predicted result score of the Nadam optimization algorithm is 0.7504, and the training period is 186 s. The optimization effect of Nadam is the best, and the convergence speed is also the fastest. It is reasonable that the Nadam algorithm can be used to optimize the BPNN-based SPM.

3.2. Performance Analysis of the Optimized SPM. The performance of the optimized BPNN-based SPM hybrid algorithm is compared with other machine learning regression algorithms. Each algorithm performed ten experiments and the best test score are recorded as shown in Figure 9.

In Figure 9, the BPNN-based SPM optimized by Nadam’s hybrid algorithm is compared with other algorithms. The score on the training set is 0.77, and the score on the test set is 0.76, which is very close. This shows that the BPNN-based SPM optimized by the Nadam hybrid algorithm has better performance.

The prediction fitting effect of the BPNN-based SPM after the optimization of the Nadam hybrid algorithm is shown in Figure 10.

In Figure 10, it is obvious that the BPNN-based SPM after Nadam optimization has a better fitting effect. During model training, the salary data is normalized and denormalized, which may cause some errors in the calculation. This error is within the controllable range and has little impact on the result of the model. This confirms that the BPNN-based SPM optimized by Nadam has good numerical range. It is necessary to perform anti-normalization processing to restore the normalized range data to the original data range.

2.6. Experimental Parameters and Data Preprocessing.

The salary prediction adopted a three-layer BPNN model. The number of neurons in its input, hidden, and output layers is 14, 15, and 1, respectively. The activation function used is a sigmoid function and the error function is the quadratic mean squared error. The hybrid optimization method Nadam is used to update the network parameters. The experimental data of the SPM used is the relevant data of the positions extracted from all the data in the database. The content information of the resume is used to predict the hiring salary of the candidate. The evaluation method adopted in this experiment is the retention method. The data set with sample size 1100 is divided into subsets of 1000 and 100 samples, where the subset of size 1000 is used as the training set, and 100 is used as the test set respectively.

Since the feature values of the training data set are all numerical values, the information extracted from the resume or the information obtained from the database is all text. Some information is not complete enough. Therefore, the preprocessing operation is performed to convert the textual information into numerical data. Some of the features in the raw dataset for salary forecasting are non-numeric data. Therefore, numeric conversion preprocessing is used to convert non-numeric data to numeric data. The value range of some features is too large, which may cause numerical problems during training. Therefore, the data is normalized, as follows:

\[
x' = \frac{x - x_{\text{min}}}{x_{\text{max}} - x_{\text{min}}}
\]

where \(x_{\text{max}}\) represents the maximum value and \(x_{\text{min}}\) is the minimum value in the dataset. In addition, in the SPM, the final prediction result is not within the normalized range. It is necessary to perform anti-normalization processing to restore the normalized range data to the original data range.
Figure 7: Comparison of convergence speeds of optimization methods.

Figure 8: Training results of various optimization algorithms.

Figure 9: Comparison of salary regression forecasting algorithms.
performance in the learning process and prediction results, and the accuracy rate can reach 79.4%. The results verify the validity of the salary prediction model, so it has certain practicability and reference value.

4. Conclusion

In the current digital information age, big data and AI technologies have opened up new opportunities for talent recruiting. Traditional HRM systems, on the other hand, are unable to adequately evaluate data relationships or anticipate future development based on current data. In this study, a BPNN-based SPM is developed to improve the practicability of the HRM system. The hybrid optimization algorithm Nadam is used to optimize the model and the BPNN-based SPM is evaluated through experimental simulation. Results showed that the BPNN-based SPM optimized by the Nadam hybrid algorithm has a high score of 0.7732 on the training set and 0.7730 on the test set compared with other algorithms, which are very close. In addition, the BPNN-based SPM optimized by the Nadam hybrid algorithm has better performance in the learning process and prediction results. Therefore, the results have certain practicality and reference value. There are also some limitations associated with the present study. The proposed model is relatively simple, and the data feature engineering is not perfect. In future work, the sample data features will be further enlarged and the function of the model will be further enhanced to improve the accuracy of the model.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The author declares that there are no conflicts of interest.

References

[1] F. Iodice, M. Romoli, B. Giometto et al., “Stroke and digital technology: a wake-up call from COVID-19 pandemic,” *Neurological Sciences*, vol. 42, no. 3, pp. 805–809, 2021.

[2] M. Vuorre, A. Orben, and A. K. Przybylski, “There is no evidence that associations between adolescents’ digital technology engagement and mental health problems have increased,” *Clinical Psychological Science*, vol. 9, no. 5, pp. 823–835, 2021.

[3] B. N. Luo, T. Sun, C. H. V. Lin, D. Luo, G. Qin, and J. Pan, “The human resource architecture model: a twenty-year review and future research directions,” *International Journal of Human Resource Management*, vol. 32, no. 2, pp. 241–278, 2021.

[4] N. H. Tien, R. J. S. Jose, S. E. Ullah, and S. Muhammad, “Development of human resource management activities in Vietnamese private companies,” *Turkish Journal of Computer and Mathematics Education (TURCOMAT)*, vol. 12, no. 14, pp. 4391–4401, 2021.

[5] J. Meijerink, M. Booms, A. Keegan, and J. Marler, “Algorithmic human resource management: Synthesizing developments and cross-disciplinary insights on digital HRM,” *Taylor & Francis*, vol. 32, pp. 2545–2562, 2021.

[6] C. Zhao, F. L. Cooke, and Z. Wang, “Human resource management in China: what are the key issues confronting organizations and how can research help?” *Asia Pacific Journal of Human Resources*, vol. 59, no. 3, pp. 357–373, 2021.

[7] S. Kim, Y. Wang, and C. Boon, “Sixty years of research on technology and human resource management: looking back and looking forward,” *Human Resource Management*, vol. 60, no. 1, pp. 229–247, 2021.

[8] M. Saxena, T. Bagga, and S. Gupta, “Fearless path for human resource personnel’s through analytics: a study of recent tools and techniques of human resource analytics and its implication,” *International Journal of Information Technology*, vol. 13, no. 4, pp. 1649–1657, 2021.

[9] A. Zhang, “Influence of data mining technology in information analysis of human resource management on macroscopic economic management,” *PLoS One*, vol. 16, no. 5, p. e0251483, 2021.

[10] G. Wei and Y. Jin, “Human resource management model based on three-layer BP neural network and machine
learning." *Journal of Intelligent and Fuzzy Systems*, vol. 40, no. 2, pp. 2289–2300, 2021.

[11] H. Zhu, "Research on human resource recommendation algorithm based on machine learning." *Scientific Programming*, vol. 2021, pp. 2021–2110.

[12] Y. Gong, M. Zhao, Q. Wang, and Z. Lv, "Design and interactive performance of human resource management system based on artificial intelligence," *PLoS One*, vol. 17, no. 1, p. e0262398, 2022.

[13] P. Tambe, P. Cappelli, and V. Yakubovich, "Artificial intelligence in human resources management: challenges and a path forward," *California Management Review*, vol. 61, no. 4, pp. 15–42, 2019.

[14] E. Rykun, "Artificial intelligence in HR management – what can we expect?" 2019, https://thebossmagazine.com/ai-hr-management.

[15] M. H. Jarrahi, "Artificial intelligence and the future of work: human-AI symbiosis in organizational decision making," *Business Horizons*, vol. 61, no. 4, pp. 577–586, 2018.

[16] S. A. Boehm, H. Schröder, and M. Bal, "Age-related human resource management policies and practices: antecedents, outcomes, and conceptualizations," *Work, Aging and Retirement*, vol. 7, no. 4, pp. 257–272, 2021.

[17] C. Boon, D. N. Den Hartog, and D. P. Lepak, "A systematic review of human resource management systems and their measurement," *Journal of Management*, vol. 45, no. 6, pp. 2498–2537, 2019.

[18] S. M. Noble, L. L. Foster, and S. B. Craig, "The procedural and interpersonal justice of automated application and resume screening," *International Journal of Selection and Assessment*, vol. 29, no. 2, pp. 139–153, 2021.

[19] S. Arora and N. Kumari, "Recruitment search engines for screening resumes through AI by using boolean search functions," *Journal of Asian Development*, vol. 7, no. 2, pp. 16–26, 2021.

[20] E. Derous, H. H. D. Nguyen, and A. M. Ryan, "Reducing ethnic discrimination in resume-screening: a test of two training interventions," *European Journal of Work & Organizational Psychology*, vol. 30, no. 2, pp. 225–239, 2021.

[21] S. Song, X. Xiong, X. Wu, and Z. Xue, "Modeling the SOFC by BP neural network algorithm," *International Journal of Hydrogen Energy*, vol. 46, no. 38, pp. 20065–20077, 2021.

[22] Y. g. Zhang, J. Tang, R.-p. Liao et al., "Application of an enhanced BP neural network model with water cycle algorithm on landslide prediction," *Stochastic Environmental Research and Risk Assessment*, vol. 35, no. 6, pp. 1273–1291, 2021.

[23] J. X. Han, M. Y. Ma, and K. Wang, "Product modeling design based on genetic algorithm and BP neural network," *Neural Computing & Applications*, vol. 33, no. 9, pp. 4111–4117, 2021.

[24] H. Zhu, H. Wang, and X. Zhang, "Synergy evaluation model of container multimodal transport based on BP neural network," *Neural Computing & Applications*, vol. 33, no. 9, pp. 4087–4095, 2021.

[25] T. Hussain, N. Iqbal, H. F. Maqbool, M. Khan, M. I. Awad, and A. A. Dehghani-Sanjii, "Intent based recognition of walking and ramp activities for amputee using sEMG based lower limb prostheses," *Biocybernetics and Biomedical Engineering*, vol. 40, no. 3, pp. 1110–1123, 2020.

[26] K. S. Kim and Y. S. Choi, "Hyadamc: a new adam-based hybrid optimization algorithm for convolution neural networks," *Sensors*, vol. 21, no. 12, p. 4054, 2021.

[27] H. Attouch, Z. Chbani, and H. Riahi, "Rate of convergence of the Nesterov accelerated gradient method in the subcritical case α ≤ 3," *ESAIM: Control, Optimisation and Calculus of Variations*, vol. 25, p. 2, 2019.