Kentaro Mitsui

Quotient singularities of products of two curves

Article à paraître, mis en ligne le 15 décembre 2021, 42 p.

© Association des Annales de l’institut Fourier, 2021,
Certains droits réservés.

Cet article est mis à disposition selon les termes de la licence
Creative Commons attribution – pas de modification 3.0 France.
http://creativecommons.org/licenses/by-nd/3.0/fr/
QUOTIENT SINGULARITIES OF PRODUCTS OF TWO CURVES

by Kentaro MITSUI (*)

Abstract. — We give a method to resolve a quotient surface singularity which arises as the quotient of a product action of a finite group on two curves. In the characteristic zero case, the singularity is resolved by means of a continued fraction, which is known as the Hirzebruch–Jung desingularization. We develop the method in the positive characteristic case where the square of the characteristic does not divide the order of the group.

Résumé. — Nous donnons une méthode pour résoudre une singularité quotient de surface qui se présente comme le quotient d’une action produit d’un groupe fini sur deux courbes. En caractéristique nulle, la singularité est résolue au moyen d’une fraction continue (désingularisation de Hirzebruch–Jung). Nous développons la méthode dans le cas de la caractéristique strictement positive où le carré de la caractéristique ne divise pas l’ordre du groupe.

1. Introduction

We give a method to resolve a quotient surface singularity which arises as the quotient of a product action of a finite group on two curves. In the characteristic zero case, the singularity is resolved by means of a continued fraction, which is known as the Hirzebruch–Jung desingularization ([5], [7], [3, §10.2]). The intersection matrix of the exceptional locus is determined by this continued fraction, which gives formulas for invariants associated with the singularity. Nevertheless, few results are known in the positive characteristic case where the characteristic divides the order of the group (see [10, 1.4] for the history) while the existence of a desingularization of
a two-dimensional excellent scheme is known ([2], [9]). In this paper, we
give an explicit desingularization and calculate the intersection matrix and
invariants by means of plural continued fractions in the case where the
square of the characteristic does not divide the order of the group. Our
result generalizes those in [6] and [10] as explained below. A special case
of our result answers the question on the intersection matrix in [10, §1]. In
the following, we explain our result by comparing it with the characteristic
zero case or more generally the tame quotient case.

Let \(k \) be an algebraically closed field of characteristic \(p \geq 0 \) and \(G \) be a
finite group of order \(\#G \). Assume that \(G \) faithfully acts on the complete
discrete valuation ring \(k[[x_i]] \) over \(k \) for any \(i \in \{1, 2\} \). Put \(R := k[[x_1, x_2]] \)
and \(X := \text{Spec} \, R \). Take the quotient

\[
q: X \longrightarrow Y := X/G
\]

of \(X \) by the product action of \(G \). The singularity of \(Y \) may be resolved by
a proper birational morphism \(h: \hat{Y} \to Y \). By \(E_h \) we denote the exceptional
locus of \(h \) with reduced structure. The desingularization \(h \) of \(Y \) is called
good (resp. minimal good) if any singularity of \(E_h \) is a node, and any
irreducible component of \(E_h \) is regular (resp. \(h \) is minimal among all good
desingularizations, i.e., \(h \) is good, and, if \(h = h' \circ h'' \), and \(h' \) is a good
desingularization, then \(h'' \) is an isomorphism). Let \(\Omega_h \) be an intersection
matrix of \(E_h \). Put

\[
\delta := |\det \Omega_h|,
\]

which does not depend on the choice of \(h \) whenever \(h \) is good (Proposition 5.5). By \(Z \) we denote the fundamental cycle of \(h \) (Section 6). The fundamental genus \(p_f \) (resp. the geometric genus \(p_g \)) of the singularity
of \(Y \) is defined as the arithmetic genus of \(Z \) (resp. the dimension of \(R^1 h_* \mathcal{O}_Y \)
over \(k \)). The singularity of \(Y \) is said to be rational if \(p_g = 0 \), which is
equivalent to the condition \(p_f = 0 \) [1, Theorem 3].

In the case \(p \nmid \#G \), the Hirzebruch–Jung desingularization of \(Y \) is min-
imal good whose exceptional locus is a chain of the projective lines. More-
over, the equalities \(\delta = \#G \) and \(p_f = p_g = 0 \) hold. In particular, the
singularity of \(Y \) is rational.

Assume that \(p > 0 \) and \(p \nmid \#G \). Note that \(G \) has the unique \(p \)-Sylow
subgroup \(H \). Although \(H \) has a normal subgroup of order \(p \), few results are
known even in the simplest case \(H \cong \mathbb{Z}/p\mathbb{Z} \). In the following, we assume
that \(H \cong \mathbb{Z}/p\mathbb{Z} \). Our main theorems give a minimal good desingularization
of \(Y \) whose exceptional locus is a star-shaped tree of the projective lines
(Theorem 3.4; its proof is given in Section 4) and the intersection matrix of

\[\text{ANNALES DE L'INSTITUT FOURIER}\]
the exceptional locus by means of three continued fractions (Theorem 3.6; its proof is given in Section 5). As a corollary, we calculate \(\delta \) (Theorem 1.2; its proof is given in Section 5) and give algorithms to obtain \(Z \) (Section 6), \(p_f \) (Section 6), and \(p_g \) (Sections 7–8).

Take a generator \(\sigma \) of \(H \). For \(i \in \{1, 2\} \), we denote the maximal ideal of \(k[x_i] \) by \(m_i \), take the valuation \(v_i \) of \(k[x_i] \) with \(v_i(k[x_i] \setminus \{0\}) = \mathbb{Z}_{\geq 0} \), and put

\[
\alpha_i := v_i(\sigma x_i - x_i) - 1, \quad d := \gcd(\alpha_1, \alpha_2), \quad \text{and} \quad a_i := \frac{\alpha_i}{d}.
\]

Note that \(\alpha_i \in \mathbb{Z}_{\geq 1} \) since the action of \(G \) on \(k[x_i] \) is faithful, and the multiplicative identity is the unique \(p \)-th root of unity in \(k \). The definition of \(\alpha_i \) does not depend on the choice of the generator \(\sigma \) of \(H \) or the uniformizer \(x_i \) of \(k[x_i] \) since \(m_i^{\alpha_i+1} \) is generated by \(\{\tau x - x \mid \tau \in H, x \in m_i\} \). Since \(\dim_k m_i/m_i^2 = 1 \), we identify \(\text{Aut}_k(m_i/m_i^2) \) with \(k^\times \). Then the action of \(G \) on \(m_i/m_i^2 \) induces a character \(\rho_i : G \to k^\times \). Put

\[
m := \#(G/H), \quad n := \text{ord} \rho_1^{a_1} \rho_2^{a_2}, \quad \text{and} \quad d' := \frac{d}{n}.
\]

Note that \(d' \in \mathbb{Z} \) (Lemma 3.1).

Example 1.1. Assume that \(p \geq 3 \), \(G = \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \), and \(k[x_i] \) is the extension of \(k[y_i] \) defined as \(k[y_i][x_i]/(P_i) \) for any \(i \in \{1, 2\} \), where

\[
P_i := x_i^p - y_i^{p-1}x_i - y_i.
\]

Put \(\sigma := (1, 0) \in G \) and \(\tau := (0, 1) \in G \). Suppose that the equality

\[
(\sigma x_i, \sigma y_i, \tau x_i, \tau y_i) = (x_i + y_i, y_i, -x_i, -y_i)
\]

holds for any \(i \in \{1, 2\} \). Then \(H \cong \mathbb{Z}/p\mathbb{Z} \), \(G/H \cong \mathbb{Z}/2\mathbb{Z} \), \((\alpha_1, \alpha_2) = (p-1, p-1) \), \((a_1, a_2) = (1, 1) \), and \((m, n, d, d') = (2, 1, p-1, p-1) \). Put

\[
\Phi := \{(1, 1), (1, 2), (2, 2)\}, \quad y_{i,j} := y_i y_j \quad \text{for} \quad (i, j) \in \Phi,
\]

and

\[
y := x_1 y_2 - x_2 y_1.
\]

Then \(\{y_{i,j}\}_{(i,j) \in \Phi} \cup \{y\} \subset R^G \), and the equalities

\[
\left(\frac{x_1}{y_1} - \frac{x_2}{y_2} \right)^p \left(\frac{x_1}{y_1} - \frac{x_2}{y_2} \right) - \left(y_1^{1-p} - y_2^{1-p} \right) = \frac{P_1}{y_1^p} - \frac{P_2}{y_2^p} = 0
\]

hold in \(k(x_1, x_2) \). By multiplying both sides by \(y_{1,2}^p \), we obtain the equality

\[
y^p - y_{1,2}^{p-1} y + y_{1,2} \left(y_1^{p-1} - y_2^{p-1} \right) = 0
\]
in R. Put

$$U := k[[Y_{1,1}, Y_{2,2}]], \quad T := U[[Y_{1,2}]]/(Q), \quad \text{and} \quad S := T[[Y]]/(P),$$

where

$$Q := Y_{1,2}^2 - Y_{1,1}Y_{2,2} \quad \text{and} \quad P := Y^p - Y_{1,2}^{p-1}Y + Y_{1,2}\left(Y_{1,1}^{p-1} - Y_{2,2}^{p-1}\right).$$

Then T (resp. S) is a Cohen–Macaulay local ring of dimension two whose singular locus is defined by the maximal ideal, which implies that T (resp. S) is a normal integral domain by Serre’s criterion for normality. We regard S as a subring of R by the injective k-algebra homomorphism $S \to R$, $Y \mapsto y$, $Y_{i,j} \mapsto y_{i,j}$ for $(i,j) \in \Phi$. Then $U \subset T \subset S \subset R$ are finite extensions of normal integral domains. For an extension A'/A of integral domains, we denote the degree of the extension of their fields of fractions by $[A': A]$. Then the equalities $[R : U] = 4p^2$, $[R : R^G] = 2p$, and $[T : U] = 2$ give the equality $[R^G : T] = p$. Thus, since $S \neq T$, the equality $[R^G : S] = 1$ holds, which implies that $R^G = S$. As a result, we obtain the isomorphism

$$R^G \cong k[[Y, Y_{1,1}, Y_{1,2}, Y_{2,2}]]/(P, Q).$$

The explicit description of R^G is complicated even in the case of the above simple action. We explain how to overcome this difficulty after stating our theorems on the invariants. We obtain a simple formula for δ:

Theorem 1.2. — The equality $\delta = p^d + 1 + m$ holds.

Although the formula for p_f is complicated in general (Corollary 6.1), the formula may be simplified in the case $G \cong \mathbb{Z}/p\mathbb{Z}$:

Theorem 1.3. — Assume that $G \cong \mathbb{Z}/p\mathbb{Z}$. Then the equality

$$p_f = \frac{(p - 1)(\min\{\alpha_1, \alpha_2\} - 1)}{2}$$

holds. In particular, the singularity of Y is rational if and only if $\alpha_1 = 1$ or $\alpha_2 = 1$.

In contrast to δ and p_f, the formula for p_g is complicated even in the case $G \cong \mathbb{Z}/p\mathbb{Z}$ (Theorem 8.7). Nevertheless, the formula may be simplified in some special cases:

Theorem 1.4. — Assume that $G \cong \mathbb{Z}/p\mathbb{Z}$, $\alpha_1 = \alpha_2$, and $\alpha_1 \mid (p - 1)$.

Put $\alpha \coloneqq \alpha_1$. Then the equality

$$p_g = \sum_{i=1}^{p-1}\left\lfloor \frac{\alpha}{p} \right\rfloor^2 - \frac{(p - 1)(\alpha + 1)(\alpha + 2)}{6}$$

holds.
When $G \cong \mathbb{Z}/p\mathbb{Z}$, our result in the local setting generalizes the previously known results in the global setting in the case $\alpha_1 = 1$ or $\alpha_2 = 1$ [10] and in the case $\alpha_1 = \alpha_2 = p - 1$ [6]. Our approach is different from those in [10] and [6]. The former [10] applies the Néron model of the Jacobian of a curve. The intersection matrix of the exceptional locus is calculated under certain conditions of the global geometry which are essentially used. The latter [6] uses an explicit defining equation of the invariant ring of the action on the product of two curves.

Let us briefly explain our method. We first take a proper birational morphism $\tilde{X} \to X$ induced by a subdivision $\tilde{\Delta}_0$ of a toric fan so that the action of G on X may be lifted to that on \tilde{X}. Next, we take the quotient $\tilde{Y} := \tilde{X}/G$. The point is that all singularities of \tilde{Y} are toric if we appropriately choose $\tilde{\Delta}_0$. We may determine the fans of the toric singularities of \tilde{Y}. The Hirzebruch–Jung desingularizations of these toric singularities give a minimal good desingularization of Y. We finally remark that, in other different situations, it has been observed that an appropriate blowing-up with a lifting of a group action may reduce a serious singularity to milder ones, e.g., Kirwan’s partial desingularization of the quotient of a reductive group action on a complex projective variety. However, the blowing-up is non-singular in contrast to \tilde{X}, which is singular whenever $\alpha_1 \neq \alpha_2$ (Remark 3.3). Our method may be regarded as a new variant.

2. Notation and Convention

Let $(B_i)_{i=1}^r$ be a sequence of integers greater than one. We denote the Hirzebruch–Jung continued fraction

$$B_1 - \frac{1}{B_2 - \frac{1}{\ddots - \frac{1}{B_r}}}$$

by $[B_i]_{i=1}^r = [B_1, \ldots, B_r]$ [3, §10.2]. Put $B := [B_i]_{i=1}^r$. Then $B \in \mathbb{Q}_{>1}$. Conversely, any rational number greater than one can be uniquely expressed as a Hirzebruch–Jung continued fraction. There exists a unique $(M_0, M_1) \in \mathbb{Z}_{>0}^2$ such that $B = M_0/M_1$ and $\gcd(M_0, M_1) = 1$. For $i \in \mathbb{Z}$ satisfying $1 \leq i \leq r$, we put

$$M_{i+1} := M_i B_i - M_{i-1}. \quad (2.1)$$
Note that $M_i/M_{i+1} = [B_j]_{j=i+1}^r$ for any $i \in \mathbb{Z}$ satisfying $0 \leq i \leq r - 1$, $M_r = 1$, and $M_{r+1} = 0$. The $(r + 2)$-tuple

$$(M_i)_{i=0}^{r+1} = (M_0, M_1, \ldots, M_r, M_{r+1})$$

is called the vector associated with B, and the $r \times r$ matrix

$$
\Omega := \begin{pmatrix}
-B_1 & 1 & & & & 0 \\
1 & -B_2 & 1 & & & \\
& 1 & -B_3 & \ddots & & \\
& & \ddots & \ddots & 1 & \\
0 & & & \ddots & 1 & -B_{r-1} \\
& & & & 1 & -B_r
\end{pmatrix}
$$

is called the matrix associated with B. Note that $\det \Omega = (-1)^r M_0$.

Let W be a regular k-scheme of dimension two. Take divisors D and D' on W. Assume that D' is effective, and the support of D' is proper over k. We define the intersection number of D and D' by $D \cdot D' := \chi(O_W(D)|_{D'}) - \chi(O_{D'})$. The definition may be \mathbb{Q}-linearly extended to the case where D and D' are \mathbb{Q}-divisors, and the support of D' is proper over k [8, 13.1.b]. Note that $D \cdot D' = D' \cdot D$ whenever the supports of both D and D' are proper over k [8, 13.1.d]. We denote the self-intersection number $D \cdot D$ of D by D^2.

We denote the number of the elements of a finite set S by $\#S$.

3. Main Theorems

In this section, we state our main theorems. Their proofs are given in Sections 4–5. We use the notation introduced in Section 1. Assume that $p > 0$ and $H \cong \mathbb{Z}/p\mathbb{Z}$. Put

$$m' := \frac{m}{n}.$$

Lemma 3.1. The rational numbers m' and d' are integers.

Proof. The equalities $\text{ord} \rho_1 = \text{ord} \rho_2 = m$ show that $m' \in \mathbb{Z}$. Take $\tau \in G$ (resp. $u \in \mathbb{Z}$) so that the image of τ under the quotient homomorphism $G \to G/H$ is a generator of G/H (resp. the equality $\tau^{-1} \sigma \tau = \sigma^u$ holds). Since $\sigma \tau = \tau \sigma^u$, the equality $p_i(\tau) = u p_i(\tau)^{\alpha_i+1}$ holds for any $i \in \{1, 2\}$. Thus, the equality $\rho_1^{\alpha_1} = \rho_2^{\alpha_2}$ holds, which concludes that $d' \in \mathbb{Z}$. \qed
For $i \in \{1, 2\}$, we put
\begin{equation}
y_i := \prod_{\tau \in H} \tau x_i.
\end{equation}
Then $k[[x_i]]^H = k[y_i]$.

Lemma 3.2. — The integer α_i is coprime to p for any $i \in \{1, 2\}$.

Proof. — Choose $i \in \{1, 2\}$. Put
\begin{equation}
F(T) = T^p + \sum_{j=0}^{p-1} F_j T^j := \prod_{j=0}^{p-1} (T - \sigma^j x_i) \in k[y_i][T]
\end{equation}
and
\begin{equation}
J := \{ j \in \mathbb{Z} \mid 0 \leq j < p - 2, F_{j+1} \neq 0 \}.
\end{equation}
Since $v_i(k[y_i]\setminus\{0\}) = p\mathbb{Z}_{\geq 0}$, the integers $(v_i(F_{j+1}+j))_{j \in J}$ are different from each other. Thus, by taking the valuations of both sides of the equalities
\begin{equation}
\sum_{j \in J} (j+1) F_{j+1} x_i^j = \frac{dF}{dT}(x_i) = \prod_{j=1}^{p-1} (x_i - \sigma^j x_i),
\end{equation}
we conclude that there exists $j \in J$ such that $v_i(F_{j+1}+j) = (p-1)(\alpha_i + 1)$, which implies that $p - 1 \neq (p-1)\alpha_i + 1 \mod p$. Therefore, the integer α_i is coprime to p. \qed

Since $p \nmid da_1 a_2$ (Lemma 3.2), there exists a unique $e \in \mathbb{Z}$ such that
\begin{equation}
p \mid eda_1 a_2 + 1 \quad \text{and} \quad 0 < e < p.
\end{equation}

We simply call an N-dimensional cone in \mathbb{R}^2 an N-cone. We define vectors $(v_i)_{i=0}^3$ on \mathbb{R}^2, lattices $(\Gamma_i)_{i=0}^3$ of \mathbb{R}^2, and 2-cones $(\Sigma_i)_{i=0}^3$ in the following way (Figure 3.1):
\begin{equation}
\begin{align*}
v_0 & := (a_2, a_1); & v_1 & := (1, 0); & v_2 & := (0, 1); & v_3 & := (1, e); \\
\Gamma_0 & := Zv_1 + Zv_2; & \Gamma_3 & := Zm'v_1 + Zpv_2; \\
\Gamma_1 & := \{(l_1, l_2) \in \Gamma_0 \mid l_1 \in p\mathbb{Z}, \rho_1^{l_2} = \rho_2^{l_1} \}; \\
\Gamma_2 & := \{(l_1, l_2) \in \Gamma_0 \mid l_2 \in p\mathbb{Z}, \rho_1^{l_2} = \rho_2^{l_1} \}; \\
\Sigma_0 & := \mathbb{R}_{\geq 0} v_1 + \mathbb{R}_{\geq 0} v_2; & \Sigma_1 & := \mathbb{R}_{\geq 0} v_0 + \mathbb{R}_{\geq 0} v_1; \\
\Sigma_2 & := \mathbb{R}_{\geq 0} v_0 + \mathbb{R}_{\geq 0} v_2; & \Sigma_3 & := \mathbb{R}_{\geq 0} v_2 + \mathbb{R}_{\geq 0} v_3.
\end{align*}
\end{equation}

By Δ_0 we denote the fan induced by the 2-cone Σ_0. We define a fan $\tilde{\Delta}_0$ as the subdivision of Δ_0 by the 1-cone $\mathbb{R}_{\geq 0} v_0$. The subdivision $\tilde{\Delta}_0$ of Δ_0 induces a proper birational morphism
\begin{equation}
\phi: \tilde{X} \longrightarrow \mathbb{A}_k^2 = \text{Spec } k[\chi_1, \chi_2]
\end{equation}
Remark 3.3. — The following statements are equivalent [3, 3.1.19.a]:

1. \widetilde{X} is regular;
2. \widetilde{X} is smooth over k;
3. $\widetilde{\Delta}_0$ is smooth [3, 3.1.18.a];
4. $a_1 = a_2$;
5. $\alpha_1 = \alpha_2$.

If the above equivalent statements hold, then any of ϕ and f is a blowing-up at the origin [3, 3.3.12]. In the general case, the morphism f is a blowing-up along the ideal generated by the monomials \(\{ x_1^{l_1} x_2^{l_2} \mid a_1 l_2 + a_2 l_1 \geq a_1 a_2 \} \) in x_1 and x_2 [3, 7.1.13, 7.1.9.b, and 11.3.1]. In particular, the definition
of \(f \) does not depend on the choice of the uniformizer \(x_i \) of \(k[[x_i]] \) for any \(i \in \{1, 2\} \).

The action of \(G \) on \(X \) uniquely lifts to that on \(\tilde{X} \) since \(\tau x/x \in R^\times \) for any \(\tau \in G \) and any monomial \(x \) in \(x_1 \) and \(x_2 \). Take the quotient \(\tilde{q} : \tilde{X} \rightarrow \tilde{Y} \) of \(\tilde{X} \) by \(G \) and the unique morphism \(g : \tilde{Y} \rightarrow Y \) satisfying \(g \circ \tilde{q} = q \circ f \) (1.1).

By \(E_f \) we denote the exceptional locus of \(f \) with reduced structure. Put \(\tilde{E} := \tilde{q}(E_f) \). By \(D \) (resp. \(D_2 \)) we denote the divisor on \(X \) defined by \(x \) (resp. \(x_2 \)). For \(i \in \{1, 2\} \), we take the strict transform \(\tilde{D}_i \) of \(D_i \) via \(f \) and put \(Q_i := \tilde{E} \setminus \tilde{q}(\tilde{D}_i) \). Put

\[
I := \{1, 2, 3\}, \quad I_3 := \{i \in \mathbb{Z} \mid 3 \leq i \leq d' + 2\}, \quad \text{and} \quad I_{\text{all}} := I \cup I_3.
\]

For \(i \in I \), by \(Z_i \) we denote the completion of the toric singularity associated with \(\Sigma_i \) in \(\Gamma_i \otimes \mathbb{R} \) [3, 1.2.18].

Theorem 3.4. — The following statements hold.

1. All singular points of \(\tilde{Y} \) are contained in \(\tilde{E} \), and the number of these singular points is equal to \(d' + 2 \). Both \(Q_1 \) and \(Q_2 \) are singular points of \(\tilde{Y} \). By \((Q_i)_{i \in I_{\text{all}}} \) we denote the singular points of \(\tilde{Y} \). The completion of the singularity at \(Q_1 \) (resp. \(Q_2 \), resp. \(Q_i \) for any \(i \in I_3 \)) is isomorphic to \(Z_1 \) (resp. \(Z_2 \), resp. \(Z_3 \)).

2. Take the Hirzebruch–Jung desingularizations \(\tilde{h} : \tilde{Y} \rightarrow \tilde{Y} \) of the singularities of \(\tilde{Y} \). Put \(h := g \circ \tilde{h} \). We denote the exceptional locus of \(h \) (resp. the preimage of \(Q_i \) under \(\tilde{h} \) for \(i \in I_{\text{all}} \)) with reduced structure by \(E_h \) (resp. \(E_i \)) and the strict transform of \(\tilde{E} \) via \(\tilde{h} \) by \(E_0 \). Then \(E_h \) is a union of the projective lines any of whose singularities is a node and whose dual graph is a star-shaped tree with central node (resp. \(d' + 2 \) branches) corresponding to \(E_0 \) (resp. \((E_i)_{i \in I_{\text{all}}} \)).

3. The desingularization \(h : \tilde{Y} \rightarrow Y \) of \(Y \) is minimal good.

4. For \(i \in \{1, 2\} \), by \(\tilde{D}_i \) we denote the strict transform of \(q(D_i) \) via \(h \). Then the equality \(\tilde{D}_i \cdot E_h = 1 \) holds, and the irreducible component of \(E_h \) intersecting with \(\tilde{D}_i \) corresponds to the end of the branch corresponding to \(E_i \).

We obtain the following diagram with commutative triangle and square:

\[
\begin{array}{cccc}
\tilde{Y} & \overset{\tilde{h}}{\longrightarrow} & \tilde{Y} & \overset{\tilde{q}}{\longrightarrow} & \tilde{X} \\
\downarrow{\scriptscriptstyle h} & & \downarrow{\scriptscriptstyle g} & & \downarrow{\scriptscriptstyle f} \\
Y & \overset{q}{\longleftarrow} & X.
\end{array}
\]
For $i \in I_{\text{all}}$, we denote the irreducible components of E_i starting from the irreducible component intersecting with E_0 by

$$ (3.9) \quad (E_{i,j})_{j=1}^{\nu_i} $$

(Figure 3.2). By Ω_h we denote the intersection matrix of E_h with respect to the ordered basis E_0 followed by $(E_{i,j})_{i,j}$ with dictionary order.

\[\text{Figure 3.2. The dual graph of } E_h \cup \hat{D}_1 \cup \hat{D}_2 \]

Put

$$ (3.10) \quad \nu := \frac{eda_1 a_2 + 1}{p} \in \mathbb{Z} $$

(3.3). Since $\gcd(a_1, a_2) = 1$ (1.3), the sequence of \mathbb{Z}-modules and homomorphisms

$$ 0 \longrightarrow \mathbb{Z} \overset{\nu_1}{\longrightarrow} \mathbb{Z}^2 \overset{\nu_2}{\longrightarrow} \mathbb{Z} \longrightarrow 0 $$

is exact, where $\nu_1(l_0) = l_0(a_2, -a_1)$ and $\nu_2(l_1, l_2) = a_1 l_1 + a_2 l_2$. Thus, there exists a unique $(b_1, b_2, c_1, c_2) \in \mathbb{Z}^4$ such that

$$ (3.11) \quad \nu_2(b_2, b_1) = \nu_2(c_2, c_1) = \nu, \quad 0 < b_2 \leq a_2, \quad \text{and} \quad 0 < c_1 \leq a_1. $$

Since $(b_2 - c_2, b_1 - c_1) \in \text{Ker} \nu_2$, there exists a unique $n_0 \in \mathbb{Z}$ such that

$$ (3.12) \quad \nu_1(n_0) = (b_2 - c_2, b_1 - c_1). $$

Lemma 3.5. — Take $i \in \{1, 2\}$ and $(l_1, l_2) \in \Gamma_0$. Assume that $l_i \in p\mathbb{Z}$. Then there exists a minimum $n' \in \mathbb{Z}$ such that

$$ pn'v_0 + m'(l_1, l_2) \in \Gamma_i \cap \Sigma_0. $$

Moreover, the following holds:

$$ p(n' - n)v_0 + m'(l_1, l_2) \in \Gamma_i \setminus \Sigma_0. $$

Proof. — The equalities $\ord \rho_1 = \ord \rho_2 = m = m'n$ (3.1) show that $\ord \rho_1^{m'l_2} \rho_2^{-m'l_1} \mid n$. Thus, since $v_0 = (a_2, a_1)$ (3.4) and $\ord \rho_1^{p_{a_1}} \rho_2^{-p_{a_2}} = n$ (1.4), there exists $n' \in \mathbb{Z}$ such that

$$ (3.13) \quad pn'v_0 + m'(l_1, l_2) \in \Gamma_i. $$
Since \(pn v_0 \in \Gamma_1 \cap \Gamma_2 \), any element of \(n' + n \mathbb{Z} \) satisfies (3.13). Thus, the lemma follows from the fact that \(v_0 \) is contained in the interior of \(\Sigma_0 \). \(\square \)

Put
\[
(3.14) \quad v'_1 := (pb_2, eda_1 - pb_1) \quad \text{and} \quad v'_2 := (eda_2 - pc_2, pc_1).
\]
These vectors appear in the definition of defining functions of \(E_f \) (Lemma 4.3(1)). For each \(i \in \{1, 2\} \), Lemma 3.5 implies that there exists a minimum \(n_i \in \mathbb{Z} \) such that
\[
(3.15) \quad pn_i v_0 + m' v'_i \in \Gamma_i \cap \Sigma_0.
\]
These vectors appear as a part of the data of the subdivisions of the fans corresponding to the Hirzebruch–Jung desingularizations \(\tilde{h} \) (Section 5). We define
\[
(3.17) \quad e' := \left\lceil \frac{m' e}{p} \right\rceil, \quad b_0 := \frac{m'n_0 + n_1 + n_2 + e'd'}{n},
\]
and
\[
(3.18) \quad (m_1, m_2, m_3, k_1, k_2, k_3) := (pna_1, pna_2, p, b_1, c_1, c_2) = pn_2 v_0 + m' v'_2.
\]

For \(i \in I \), by \(\Omega_i \) we denote the \(r_i \times r_i \) matrix associated with \(m_i/k_i \) (Section 2), where \(\gcd(m_i, k_i) = 1 \) and \(0 < k_i < m_i \) (Lemma 5.1(4)). By \(\Theta_i \) we denote the \(1 \times r_i \) matrix whose first entry is the unique non-zero entry and equal to one.

Theorem 3.6. — The equalities \(s_1 = r_1 \), \(s_2 = r_2 \), \(s_i = r_3 \) for any \(i \in I_3 \) (see (3.9) for \((s_i)_{i \in I_{all}} \)), and
\[
\Omega_h = \begin{pmatrix}
-b_0 & \Theta_1 & \Theta_2 & \Theta_3 & \cdots & \Theta_3 \\
\t Theta_1 & \Omega_1 \\
\t Theta_2 & \Omega_2 \\
\t Theta_3 & \Omega_3 \\
\vdots & \ddots & \ddots & \ddots \\
\t Theta_3 & 0 & \cdots & \Omega_3
\end{pmatrix}
\]
hold, where the number of each \(\Theta_3 \), \(\t Theta_3 \), and \(\Omega_3 \) is equal to \(d' \). Put
\[
r_{tot} := 1 + r_1 + r_2 + d'r_3.
\]
Then the number of the irreducible components of \(E_h \) is equal to \(r_{tot} \), and the equality
\[
\det \Omega_h = (-1)^{r_{tot}} p^{d'+1} m
\]

TOME 0 (0), FASCICULE 0
holds.

Corollary 3.7. — Assume that \(\gcd(\alpha_1, \alpha_2) = 1 \). Then \(d = d' = 1 \) ((1.3)–(1.4) and \(\delta = p^2m \) (1.2)).

Note that the following equalities and inequalities hold (3.11):

\[
(3.19) \quad 0 < \frac{eda_1 - pb_1}{pb_2} = \frac{a_1}{a_2} - \frac{1}{pa_2b_2} < \frac{a_1}{b_2}; \\
(3.20) \quad 0 < \frac{eda_2 - pc_2}{pc_1} = \frac{a_2}{a_1} - \frac{1}{pa_1c_1} < \frac{a_2}{c_1}.
\]

Corollary 3.8. — Assume that \(G \cong \mathbb{Z}/p\mathbb{Z} \). Then \(m = m' = n = \) \(\text{ord} \rho_1 = \text{ord} \rho_2 = 1 \) ((1.4) and (3.1)), \(d = d' = 1 \) ((3.17) and (3.3)), \(\Gamma_1 = \mathbb{Z}p\nu_1 + \mathbb{Z}\nu_2 \), and \(\Gamma_2 = \Gamma_3 = \mathbb{Z}\nu_1 + \mathbb{Z}p\nu_2 \). In particular, we conclude that \(\nu'_1 \in \Gamma_1 \) and \(\nu'_2 \in \Gamma_2 \) (3.14), which implies that \((n_0, n_1, n_2) = ((c_1 - b_1)/a_1, 0, 0) \) (3.12) and (3.15)) since \(0 < eda_1 - pb_1 < pa_1 \) (3.19) and \(0 < eda_2 - pc_2 < pa_2 \) (3.20). Thus, we obtain the equalities \((b_1, \tilde{b}_2, \tilde{c}_1, \tilde{c}_2) = (eda_1 - pb_1, b_2, c_1, eda_2 - pc_2) \) (3.16), \((m_1, m_2, m_3, k_1, k_2, k_3) = (pa_1, pa_2, p, eda_1 - pb_1, eda_2 - pc_2, p - e) \) (3.18), \(E_0^2 = ((b_1 - c_1)/a_1) - d \) (3.17), and \(\delta = p^{d+1} \) (1.2).

Example 3.9. — Although \(E_{i,j}^2 \leq -2 \) for any \((i, j) \), the equality \(E_0^2 = -1 \) can hold. Assume that \(G \cong \mathbb{Z}/p\mathbb{Z} \) and \((\alpha_1, \alpha_2) = (p + 1, 2p + 1) \). Then \((d, e, a_1, a_2, b_1, b_2, c_1, c_2) = (1, p - 1, p + 1, 2p + 1, 1, 2p - 3, 1, 2p - 3) \) ((1.3), (3.3), and (3.11)), which implies that \(E_0^2 = -1 \) (Corollary 3.8).

Corollary 3.10. — Assume that \(\alpha_1 = \alpha_2 \) and \(\alpha_1 \mid (p - 1) \). Put \(\alpha := \alpha_1 \). Then \((d, e, a_1, a_2, b_1, b_2, c_1, c_2) = (\alpha, (p - 1)/\alpha, 1, 1, 0, 1, 1, 0) \) (1.3), (3.3), and (3.11)).

1. Assume that \(G \cong \mathbb{Z}/p\mathbb{Z} \). Then \(E_0^2 = -\alpha - 1 \) and \(\delta = p^{\alpha + 1} \) (Corollary 3.8). In particular, if \(\alpha = 1 \) (resp. \(p - 1 \)), then \(E_0^2 = -2 \) (resp. \(-p \)) and \(\delta = p^2 \) (resp. \(p^p \)).

2. Assume that \(m = p - 1 \) and \(n = 1 \). Then \(m' = p - 1 \) (3.1), \(d' = \alpha = 1 \) (1.4), \(e' = e \) (3.17) and (3.3)), \((n_0, n_1, n_2) = (1, 2 - p, 2 - p) \) (3.12) and (3.15)), \((\tilde{b}_1, \tilde{b}_2, \tilde{c}_1, \tilde{c}_2) = (1, 1, 1, 1) \) (3.16), \((m_1, m_2, m_3, k_1, k_2, k_3) = (p, p, p, 1, 1, e) \) (3.18), \(E_0^2 = -2 \) (3.17), and \(\delta = p^{\alpha + 1}(p - 1) \) (1.2).

4. Singularities

We use the notation introduced in Section 3. For each \(i \in \{1, 2\} \), the valuation \(v_i \) and the action of \(G \) on \(k[[x_i]] \) uniquely extend to those on
Then \(k((x_i))^H = k((y_i)) \) (3.2). Put

\[
K_i := \bigoplus_{j \in \mathbb{Z}_{>0} \setminus p\mathbb{Z}_{>0}} k \cdot y_i^j \subset k[y_i^{-1}] \subset k((y_i)).
\]

Lemma 4.1. — For any \(i \in \{1, 2\} \), there exists a unique \(z_i \in K_i \) satisfying the following condition: there exists \(t_i \in k((x_i)) \) such that \(t_i^p - t_i = z_i \) and \(\sigma t_i = t_i + 1 \). In particular, the \(k((y_i)) \)-algebra homomorphism

\[
k((y_i))[T]/(T^p - T - z_i) \longrightarrow k((x_i)), \quad T \mapsto t_i
\]

is bijective.

Proof. — Choose \(i \in \{1, 2\} \). Put \(K := k((y_i)) \). Choose a separable closure \(K_{\text{sep}} \) of \(k((x_i)) \). Put \(G_K := \text{Gal}(K_{\text{sep}}/K) \). We define an endomorphism \(\varphi \) of the additive group \(K_{\text{sep}} \) by \(x \mapsto x^p - x \). The exact sequence of \(G_K \)-modules and \(G_K \)-equivariant homomorphisms

\[
0 \longrightarrow \mathbb{F}_p \longrightarrow K_{\text{sep}} \overset{\varphi}{\longrightarrow} K_{\text{sep}} \longrightarrow 0
\]

induces \(K/\varphi(K) \cong H^1(K, \mathbb{F}_p) = \text{Hom}(G_K, \mathbb{F}_p) \). We denote the composite of the quotient homomorphism \(K \to K/\varphi(K) \) and this isomorphism by \(\psi: K \to \text{Hom}(G_K, \mathbb{F}_p) \). Take \(z \in K \). Choose \(t \in K_{\text{sep}} \) so that \(t^p - t = z \). Then \(\psi(z)(\tau) = \tau(t) - t \in \mathbb{F}_p \) for any \(\tau \in G_K \), and the Galois extension corresponding to \(\text{Hom}(\mathbb{F}_p, \mathbb{F}_p) \) is equal to \(K(t) \subset K_{\text{sep}} \). Note that \(\varphi(a y_i^n) = a^p y_i^{pn} - a y_i^n \) for any \((a, n) \in k \times \mathbb{Z} \), which implies that \(k[[y_i]] \subset \varphi(K) \). Thus, the restriction of \(\psi \) to \(K_i \) is bijective. Therefore, there exists a unique \(z_i \in K_i \) such that \(\psi(z_i) \) is equal to the composite of the quotient homomorphism \(G_K \to \text{Gal}(k((x_i))/K) \) and the isomorphism \(\text{Gal}(k((x_i))/K) \to \mathbb{F}_p, \sigma \mapsto 1 \), which concludes the proof.

Lemma 4.2. — For any \(i \in \{1, 2\} \), there exists a uniformizer \(\tilde{x}_i \) of \(k[[x_i]] \) such that \(\sigma(\tilde{x}_i)^{-\alpha_i} = (\tilde{x}_i)^{-\alpha_i} + 1 \) in \(k((x_i)) \).

Proof. — Choose \(i \in \{1, 2\} \). Take \(z_i \) and \(t_i \) given by Lemma 4.1. Then \(p \not\mid v_i(t_i) \) since \(v_i(z_i) \in p\mathbb{Z}_{>0} \setminus p^2\mathbb{Z}_{>0} \). Thus, we may take \((a, b) \in \mathbb{Z}^2 \) satisfying \(av_i(t_i) + bp = 1 \). Put \(\tilde{x}_i := t_i^a y_i^b \). Then \(p \not\mid a \) and \(v_i(\tilde{x}_i) = 1 \), which gives the equalities

\[
-v_i(t_i) = v_i(\tilde{x}_i) - v_i(t_i) = v_i(\sigma \tilde{x}_i - \tilde{x}_i) - 1 = \alpha_i.
\]

Thus, since \(p \not\mid \alpha_i \) (Lemma 3.2), there exists a uniformizer \(\tilde{x}_i \) of \(k[[x_i]] \) such that \((\tilde{x}_i)^{\alpha_i} = t_i^{-1} \), which concludes the proof.

By Lemma 4.2 and Remark 3.3, we may assume that the equality

\[
(4.1) \quad \sigma x_i^{-\alpha_i} = x_i^{-\alpha_i} + 1
\]
holds in \(k((x_i)) \) for any \(i \in \{1, 2\} \) after replacing the uniformizer \(x_i \) of \(k[[x_i]] \).

For \(i \in \{0, 1, 2, 3\} \), we denote the dual lattice of \(\Sigma_i \) by \(\Sigma_i^\vee \) and the dual cone of \(\Sigma_i \) by \(\Sigma_i^\vee \). The toric variety \(\tilde{X} \) (3.5) has an affine covering \((\tilde{U}_1, \tilde{U}_2)\), where \(\tilde{U}_i := \text{Spec} \ k[\Sigma_i^\vee \cap \Gamma_i^0] \) for \(i \in \{1, 2\} \). The base changes of \(\tilde{U}_1 \) and \(\tilde{U}_2 \) via \(\iota \) (3.6) give an affine covering \((\tilde{U}_1, \tilde{U}_2)\) of \(\tilde{X} \) (3.7).

Let us show Statements (1) and (2). The following equalities hold ((3.11) and (3.14)):

\[
\begin{align*}
\det (v_0) & = \det \begin{pmatrix} a_2 & a_1 \\ pb_2 & eda_1 - pb_1 \end{pmatrix} = -1; \\
\det (v_0') & = \det \begin{pmatrix} a_2 & a_1 \\ eda_2 - pc_2 & pc_1 \end{pmatrix} = 1.
\end{align*}
\]

Thus, the following holds:

\[
Zv_0 + Zv_1' = Zv_0 + Zv_2' = \Gamma_0; \quad v_1' \in \Sigma_1; \quad v_2' \in \Sigma_2.
\]

We define 2-cones in the following way (Figure 4.1):

\[
\Sigma_1' := \mathbb{R}_{\geq 0}v_0 + \mathbb{R}_{\geq 0}v_1' \subset \Sigma_1; \quad \Sigma_2' := \mathbb{R}_{\geq 0}v_0 + \mathbb{R}_{\geq 0}v_2' \subset \Sigma_2.
\]

For \(i \in \{1, 2\} \), we denote the dual cone of \(\Sigma_i' \) by \((\Sigma_i')^\vee \). By \(E_\phi \) we denote the exceptional locus of \(\phi: \tilde{X} \to \mathbb{A}^2_k \) (3.5) with reduced structure. Take the Hirzebruch–Jung desingularizations \(\tilde{\phi}: X' \to \tilde{X} \) of the toric blowing-up of \(\tilde{X} \) by the 1-cones \(\mathbb{R}_{\geq 0}v_1' \) and \(\mathbb{R}_{\geq 0}v_2' \) [3, §10.2]. Then the strict transform of \(E_\phi \) via \(\tilde{\phi} \) corresponds to the 1-cone \(\mathbb{R}_{\geq 0}v_0 \) [3, 3.2.6 and 3.3.21], which
Thus, Statements (1) and (2) hold. Let us show Statement (3). We have $X' \to \tilde{X}$ and two affine open subsets (U'_1, U'_2) of X' satisfying the following conditions:

(a) \tilde{f} induces isomorphisms $U'_1 \cap U'_2 \simeq \tilde{U}_0$ and $E'_f \cap U'_1 \simeq E_f \cap \tilde{U}_i$ for each $i \in \{1, 2\}$, where E'_f is the strict transform of E_f via \tilde{f};
(b) $x'_1|_{U'_1}$ (resp. $x'_2|_{U'_2}$) is a defining function of $E'_f \cap U'_1$ (resp. $E'_f \cap U'_2$);
(c) $x'_0|_{E'_f \cap U'_1}$ (resp. $(x'_0)^{-1}|_{E'_f \cap U'_2}$) is a parameter of $E'_f \cap U'_1$ (resp. $E'_f \cap U'_2$);
(d) $x'_0|_{U'_1}$ (resp. $(x'_0)^{-1}|_{U'_2}$) is a defining function of $D'_1 \cap U'_1$ (resp. $D'_2 \cap U'_2$), where D'_1 (resp. D'_2) is the preimage of \tilde{D}_1 (resp. \tilde{D}_2) under \tilde{f} with reduced structure.

Thus, Statements (1) and (2) hold. Let us show Statement (3). We have only to show the case $x = x_i$ for $i \in \{1, 2\}$. The equality $\tau x_i = \rho_i(\tau x_i)$ holds in m_i/m_i^2, where x_i is the image of x_i under the quotient homomorphism $m_i \to m_i/m_i^2$. Thus, the rational function $\tau x_i/x_i$ on X is a nowhere-zero regular function on X whose value at $D_1 \cap D_2$ is equal to $\rho_i(\tau)$. Since $f(E_f) = D_1 \cap D_2$, Statement (3) holds.

Although Lemma 4.3(1) gives two defining functions of $E_f \cap \tilde{U}_0$, we use only x'_1 in the following. Choose $c \in k \cup \{\infty\}$. Put

$$x_{(c)} := \begin{cases} x'_0 - c & \text{if } c \in k, \\ (x'_0)^{-1} & \text{otherwise}. \end{cases}$$

We introduce the following notation:

$\tilde{P}_{(c)}$: the closed point on E_f defined by $x_{(c)} = 0$;
$\tilde{Q}_{(c)}$: the closed point $\tilde{q}(\tilde{P}_{(c)})$ on \tilde{E};
\(\tilde{R}_{(c)} \): the completion of \(\mathcal{O}_{\tilde{X}, \tilde{P}_{(c)}} \) with respect to the maximal ideal;

\(E_{f,(c)} \): the base change of \(E_f \) via the morphism \(\text{Spec} \tilde{R}_{(c)} \to \tilde{X} \);

\(G_{(c)} \): the stabilizer subgroup of the action of \(G \) at \(\tilde{P}_{(c)} \);

\(N_{(c)} \): the order of \(G_{(c)} \);

\(G' \): the preimage of \(n\mathbb{Z}/m\mathbb{Z} \) under the quotient homomorphism \(G \to G/H \cong \mathbb{Z}/m\mathbb{Z} \) (1.4).

Then the equality

\[
(4.5) \quad (G_{(c)}, N_{(c)}) = \begin{cases} (G, pm) & \text{if } c \in \{0, \infty\}, \\ (G', pm') & \text{otherwise (3.1)} \end{cases}
\]

holds. If \(c \notin \{0, \infty\} \), then \(E_{f,(c)} \) is the spectrum of the complete discrete valuation ring \(\tilde{R}_{(c)}/(x'_1) \) with uniformizer \(x_{(c)}|E_{f,(c)} \), and the action of \(G_{(c)} \) on \(E_{f,(c)} \) is trivial (Lemma 4.3). Put

\[
C := \{ \zeta \in k \mid c^d = 1 \}, \quad \tilde{S}_{(c)} := (\tilde{R}_{(c)})^H, \quad \text{and} \quad \tilde{T}_{(c)} := (\tilde{R}_{(c)})^{G_{(c)}}.
\]

Then \(\mathcal{O}_{Y, \tilde{Q}_{(c)}} \subset \tilde{T}_{(c)} \subset \tilde{S}_{(c)} \subset \tilde{R}_{(c)} \) are extensions of normal integral domains. In the following, we study \(\tilde{T}_{(c)} \), which is a completion of \(\mathcal{O}_{Y, \tilde{Q}_{(c)}} \) with respect to the maximal ideal. For an extension \(A'/A \) of integral domains, we denote the degree of the extension of their fields of fractions by \([A'/A] \). Then the equalities

\[
(4.6) \quad [\tilde{R}_{(c)} : \tilde{S}_{(c)}] = p \quad \text{and} \quad [\tilde{R}_{(c)} : \tilde{T}_{(c)}] = N_{(c)}
\]

hold. We define elements of \(k([(x_1, x_2)]^H) \) by

\[
y_{(c)} := \prod_{\tau \in H} \tau x_{(c)}, \quad y'_1 := \prod_{\tau \in H} \tau x'_1, \quad z := x_1^{-\alpha_1} - x_2^{-\alpha_2}
\]

(4.1), and

\[
z' := y_1^{b_1} y_2^{b_2} z^c
\]

((3.2), (3.3), and (3.11)). Then \(y_{(c)} \in \tilde{S}_{(c)}, y'_1/(x'_1)^p \in (\tilde{R}_{(c)})^\times \), and

\[
x_{i_1}^{\alpha_1} z = \begin{cases} 1 - (x_0')^d \in (\tilde{R}_{(c)})^\times & \text{if } i = 1 \text{ and } c \notin C \cup \{\infty\}, \\ (x_0')^{-d} - 1 \in (\tilde{R}_{(c)})^\times & \text{if } i = 2 \text{ and } c \notin C \cup \{0\}. \end{cases}
\]

If \(c \in C \), then \(x_{i_1}^{\alpha_1} z/x_{(c)} \in (\tilde{R}_{(c)})^\times \), which implies that \(y_{(c)}/x_{p} \in (\tilde{R}_{(c)})^\times \).

If \(c \in C \) (resp. \(c \notin C \cup \{\infty\} \), resp. \(c \notin C \cup \{0\} \)), then \(z'/(x_{(c)} x'_1) \in (\tilde{R}_{(c)})^\times \) (resp. \(z'/x'_1 \in (\tilde{R}_{(c)})^\times \), resp. \(z'/(x_{(c)} x'_1)^d x'_1 \in (\tilde{R}_{(c)})^\times \)). In each case of (4.7), we may take \(\tilde{x}_{i_1} \in \tilde{R}_{(c)} \) so that \((\tilde{x}_{i_1})^{\alpha_1} = z^{-1} \) since \(p \not\mid \alpha_i \) (Lemma 3.2). Then \(\tilde{x}_{i_1}/x_{(c)} \in (\tilde{R}_{(c)})^\times \) and \(\tilde{x}_{i_1} \in \tilde{S}_{(c)} \) since \((\tilde{x}_{i_1})^{\alpha_i} \in \tilde{S}_{(c)} \) and \(\#H = p \).
Definition 4.4. — For each $i \in \{1, 2\}$, the character $\rho_i : G \to k^\times$ factors through the quotient homomorphism $G \to G/H$ and induces a character $\tilde{\rho}_i : G/H \to k^\times$ since $\text{Ker} \, \rho_i = H$. Put $\tilde{\rho} := (\tilde{\rho}_1)^{pb_1 - eda_1} (\tilde{\rho}_2)^{pb_2}$.

Take $x \in \tilde{S}(c) \setminus \{0\}$. We consider one of the following cases:

1. $c \in \{0, \infty\}$ and $\tau x/x \in (\tilde{S}(c))^\times$ for any $\tau \in G/H$;
2. $c \notin \{0, \infty\}$.

Then we define the linearization of x by

$$Lx := \sum_{\tau \in G(c)/H} \zeta_{\tau}^{-1} \tau x,$$

where ζ_{τ} in Case (1) (resp. Case (2)) is the image of $\tau x/x$ in the residue field k of $\tilde{S}(c)$ (resp. $\tilde{\rho}(\tau)^l$ for the unique $l \in \mathbb{Z}_{\geq 0}$ satisfying $x/(x_1')^l \in \tilde{R}(c)$ and $(x/(x_1')^l)|_{E_{f,c}} \neq 0$).

Remark 4.5. — The equality $\text{ord} \tilde{\rho} | G'/H = m'$ holds ((1.4), (3.1), and (4.2)). The map $G(c)/H \to k^\times$, $\tau \mapsto \zeta_{\tau}$ is a character, the equality $\tau(Lx) = \zeta_{\tau} Lx$ holds for any $\tau \in G(c)/H$, and the following statements hold: in Case (1), $(Lx)/x \in (\tilde{S}(c))^\times$; in Case (2), $(Lx)/(x')^l \in \tilde{R}(c)$ and $(Lx)/(x_1')^l|_{E_{f,c}} = m'(x/(x_1')^l)|_{E_{f,c}}$ (Lemma 4.3).

Proposition 4.6. — Assume that $c \notin C \cup \{0, \infty\}$. Then the equality $\tilde{T}(c) = k[[Lx(y(c)) (Lz')^{m'}]$ holds. In particular, the ring $\tilde{T}(c)$ is regular, and $Lx(y(c))$ (resp. $(Lz')^{m'}$) is a parameter (resp. a defining function) of \tilde{E} at $\tilde{Q}(c)$.

Proof. — Put $y_1(c) := Lz' \in \tilde{S}(c)$. Since $y_1(c)/x_1 \in (\tilde{R}(c))^\times$, the equalities

$$\tilde{R}(c) = k[[x(c), x_1']] = k[[x(c), y_1(c)]]$$

hold (Lemma 4.3). Put

$$z_0(c) := Ly(c) \in \tilde{T}(c) \quad \text{and} \quad S(c) := k[[z_0(c), y_1(c)]] \subset \tilde{S}(c).$$

Then $S(c) \subset \tilde{S}(c) \subset \tilde{R}(c)$ are finite extensions of normal integral domains since the $S(c)/(y_1(c))$-module $\tilde{R}(c)/(y_1(c))$ is generated by $\{x_i\}_{i=0}^{p-1}$. Thus, since the equalities

$$[\tilde{R}(c) : S(c)] = p = [\tilde{S}(c)]$$

hold (4.6), the equality $S(c) = \tilde{S}(c)$ holds. Put

$$z_1(c) := y''_1(c) \in \tilde{T}(c) \quad \text{and} \quad T(c) := k[[z_0(c), z_1(c)]] \subset \tilde{T}(c).$$

Then $T(c) \subset \tilde{T}(c) \subset \tilde{S}(c)$ are finite extensions of normal integral domains since the $T(c)$-module $\tilde{S}(c)$ is generated by $\{y''_1(c)\}_{i=0}^{m'-1}$. Thus, since the
equalities
\[[\tilde{S}(c) : T(c)] = m' = [\tilde{S}(c) : \tilde{T}(c)] \]
hold (4.6), the equality \(T(c) = \tilde{T}(c) \) holds. Since \(x(c) \) (resp. \(x_1' \)) is a parameter (resp. a defining function) of \(E_f \) at \(\tilde{P}(c) \) (Lemma 4.3), the regular function \(z_0(c) \) (resp. \(z_1(c) \)) is a parameter (resp. a defining function) of \(\tilde{E} \) at \(\tilde{Q}(c) \).

Assume that \(c \in C \cup \{0, \infty\} \). Put
\[
\begin{align*}
 j &:= \begin{cases}
 1 & \text{if } c = 0, \\
 2 & \text{if } c = \infty, \\
 3 & \text{otherwise},
 \end{cases} \\
 (w_1, w_2) &:= \begin{cases}
 (v_1, \frac{1}{p} v_2) & \text{if } c = 0, \\
 (\frac{1}{p} v_1, v_2) & \text{otherwise},
 \end{cases}
\end{align*}
\]
and
\[
\Lambda_j := \mathbb{Z}w_1 + \mathbb{Z}w_2.
\]
We denote the dual lattice of \(\Lambda_j \) by \(\Lambda^\vee_j \) and the dual of the basis \((v_1, v_2)\) (resp. \((w_1, w_2)\)) by \((v_1^\vee, v_2^\vee)\) (resp. \((w_1^\vee, w_2^\vee)\)). We define \(v_0^\vee \in \Gamma_0^\vee \) and \(w_0^\vee \in \Lambda_0^\vee \) in the following way:

(4.8)

\[
\begin{align*}
v_0^\vee := \begin{cases}
 a_1 v_1^\vee - a_2 v_2^\vee & \text{if } c = 0, \\
 -a_1 v_1^\vee + a_2 v_2^\vee & \text{if } c = \infty, \\
 -ev_1^\vee + v_2^\vee & \text{otherwise};
 \end{cases} \\
w_0^\vee := \begin{cases}
 pa_1 w_1^\vee - a_2 w_2^\vee & \text{if } c = 0, \\
 -a_1 w_1^\vee + pa_2 w_2^\vee & \text{if } c = \infty, \\
 -ew_1^\vee + pw_2^\vee & \text{otherwise}.
 \end{cases}
\end{align*}
\]

Then the equality

(4.9)

\[
\begin{align*}
(w_0^\vee, w_1^\vee, w_2^\vee) &= \begin{cases}
 (pv_0^\vee, v_1^\vee, pv_2^\vee) & \text{if } c = 0, \\
 (pv_0^\vee, pv_1^\vee, v_2^\vee) & \text{otherwise}
 \end{cases}
\end{align*}
\]
holds. We define submonoids of \(\Gamma_0^\vee \) by

\[
B_R := \sum_{i=0}^{2} \mathbb{Z}_{\geq 0} v_i^\vee \quad \text{and} \quad B_S := \sum_{i=0}^{2} \mathbb{Z}_{\geq 0} w_i^\vee.
\]

Put
\[
(x_1(c), x_2(c), y_1(c), y_2(c)) := \begin{cases}
 (x_1, x_2, L\tilde{x}_1(0), L y_2) & \text{if } c = 0, \\
 (x_1, x_2, L y_1, L\tilde{x}_2(\infty)) & \text{if } c = \infty.
 \end{cases}
\]

If \(c \in C \), then we put
\[
z(c) := (y(c) y_1')^\nu (z')^{-d_1 a_2}, \quad \tilde{x}(c) := (L z(c))(x_1')^{d_1 a_2 - \nu},
\]
\[(x_1(c), x_2(c), y_1(c), y_2(c)) := (\tilde{x}(c), (\tilde{x}(c))^e x_1, (Lz(c))^p(Ly_1)^{da_1 a_2 - p\nu}, (Lz(c))^e (Ly_1)^{1-e\nu})\]

(3.10), where \(z(c)/(x(c)(x_1)^{p\nu-da_1 a_2}) \in (\tilde{R}(c))^x, \tilde{x}(c) \in \tilde{R}(c), \) and \(\tilde{x}(c)|_{E_f(c)}\) is a uniformizer of \(\tilde{R}(c)/(x_1).\) Put

\[(4.10) \quad x_0(c) := x_1^l(c)x_2^l(c) \quad \text{(resp. } y_0(c) := y_1^l(c)y_2^l(c))\],

where \(v_0^\vee = l_1 v_1^\vee + l_2 v_2^\vee\) (resp. \(w_0^\vee = l_1 w_1^\vee + l_2 w_2^\vee\) (4.8). Note that the equality

\[(4.11) \quad (x_0(c), x_1(c), x_2(c)) = \begin{cases} (x(c), x_1, x_2) & \text{if } c \in \{0, \infty\}, \\ (x_1^l, \tilde{x}(c), (\tilde{x}(c))^e x_1^l) & \text{otherwise} \end{cases}
\]

holds, and \(y_i(c)/x_i^l(c) \in (\tilde{R}(c))^x\) for any \(i \in \{0, 1, 2\},\) where \(w_i^\vee = l_i v_i^\vee\) (4.9). Thus, we conclude that \(x_i(c) \in \tilde{R}(c)\) and \(y_i(c) \in \tilde{S}(c)\) for any \(i \in \{0, 1, 2\}.\) Put

\[
R(c) := k[x_0(c), x_1(c), x_2(c)] \subset \tilde{R}(c) \quad \text{and} \quad S(c) := k[y_0(c), y_1(c), y_2(c)] \subset \tilde{S}(c).
\]

For a commutative monoid \(B,\) by \(k[B]\) we denote the completion of the monoid ring \(k[B]\) with respect to the ideal generated by \(B \setminus \{0\}.

Lemma 4.7. — Take the following \(k\)-algebra homomorphisms:

- \(p_R: k[X_0, X_1, X_2] \rightarrow k[B_R],\) \(X_i \mapsto v_i^\vee\) for \(i \in \{0, 1, 2\};\)
- \(p_S: k[Y_0, Y_1, Y_2] \rightarrow k[B_S],\) \(Y_i \mapsto w_i^\vee\) for \(i \in \{0, 1, 2\};\)
- \(\phi_R: k[X_0, X_1, X_2] \rightarrow R(c),\) \(X_i \mapsto x_i(c)\) for \(i \in \{0, 1, 2\};\)
- \(\phi_S: k[Y_0, Y_1, Y_2] \rightarrow S(c),\) \(Y_i \mapsto y_i(c)\) for \(i \in \{0, 1, 2\}.
\]

Then \(\phi_R\) (resp. \(\phi_S\)) factors through \(p_R\) (resp. \(p_S\)) and induces a \(k\)-algebra homomorphism \(\tilde{\phi}_R: k[B_R] \rightarrow R(c)\) (resp. \(\tilde{\phi}_S: k[B_S] \rightarrow S(c).\) Moreover, the homomorphisms \(\tilde{\phi}_R\) and \(\tilde{\phi}_S\) are bijective.

Proof. — The equalities \(\phi_R(b_R) = 0\) and \(\phi_S(b_S) = 0\) hold (4.10), where

\[
(b_R, b_S) := \begin{cases} (X_1^{a_1} - X_0 X_2^{a_2}, Y_1^{p a_1} - Y_0 Y_2^{p a_2}) & \text{if } c = 0, \\ (X_0 X_1^{a_1} - X_2^{a_2}, Y_0 Y_1^{a_1} - Y_2^{p a_2}) & \text{if } c = \infty, \\ (X_0 X_1^{e} - X_2, Y_0 Y_1^{e} - Y_2^{p}) & \text{otherwise}. \end{cases}
\]

Thus, the equalities \(\text{Ker } p_R = (b_R)\) and \(\text{Ker } p_S = (b_S)\) (4.8) prove the first statement. Since \(\tilde{\phi}_R\) and \(\tilde{\phi}_S\) are surjective homomorphisms between Noetherian local integral domains of same dimension, they are bijective. \(\square\)
Take the normalization $\tilde{R}(c)$ (resp. $\tilde{S}(c)$) of $R(c)$ (resp. $S(c)$).

Lemma 4.8. — The following statements hold.

1. The k-algebra $\tilde{R}(c)$ (resp. $\tilde{S}(c)$) is isomorphic to $k[\Sigma_j^\vee \cap \Gamma_0^\vee]$ (resp. $k[\Sigma_j^\vee \cap \Lambda_j^\vee]$), where $x_i(c)$ (resp. $y_i(c)$) maps to v_i^\vee (resp. w_i^\vee) for $i \in \{0, 1, 2\}$.

2. The equalities $\tilde{R}(c) = \tilde{R}(c)$ and $\tilde{S}(c) = \tilde{S}(c)$ hold.

Proof. — By Lemma 4.7, we identify $R(c)$ (resp. $S(c)$) with $k[B_R]$ (resp. $k[B_S]$), where $x_i(c)$ (resp. $y_i(c)$) is identified with v_i^\vee (resp. w_i^\vee) for $i \in \{0, 1, 2\}$. Put

$$B_R := \Sigma_j^\vee \cap \Gamma_0^\vee \quad \text{and} \quad B_S := \Sigma_j^\vee \cap \Lambda_j^\vee.$$

Since B_R (resp. B_S) is the saturation of the commutative monoid B_R (resp. B_S), the k-algebra $k[B_R]$ (resp. $k[B_S]$) is the normalization of $k[B_R]$ (resp. $k[B_S]$) [3, 1.3.8], which implies that $k[B_R]$ (resp. $k[B_S]$) is the normalization of $k[B_R]$ (resp. $k[B_S]$). Thus, the equalities $\tilde{R}(c) = k[B_R]$ and $\tilde{S}(c) = k[B_S]$ hold, which proves Statement (1). Therefore, since $k[B_R] = \tilde{R}(c)$ (4.11), the equality $\tilde{R}(c) = \tilde{R}(c)$ holds. Note that $\tilde{S}(c) \subset \tilde{R}(c)$ are finite extensions of normal integral domains since the equality $\tilde{R}_R = \bigcup(v^\vee + B_S)$ holds, where v^\vee runs through the finite set

$$\{l_1v_1^\vee + l_2v_2^\vee \in \tilde{B} \mid \max\{|l_1|, |l_2|\} < p \max\{a_1, a_2, e\}\}.$$

Thus, since the equalities

$$[\tilde{R}(c) : \tilde{S}(c)] = [\Gamma_0^\vee : \Lambda_j^\vee] = [\Lambda_j: \Gamma_0] = p = [\tilde{R}(c) : \tilde{S}(c)]$$

hold (4.6), the equality $\tilde{S}(c) = \tilde{S}(c)$ holds, which proves Statement (2). \qed

Lemma 4.9. — The equality

$$\Gamma_j^\vee = \begin{cases} N_{(c)}^{-1}\{l_1w_1^\vee + l_2w_2^\vee \in \Lambda_j^\vee \mid \rho_1^{l_1} \rho_2^{l_2} = 1\} & \text{if } c = 0, \\ N_{(c)}^{-1}\{l_1w_1^\vee + l_2w_2^\vee \in \Lambda_j^\vee \mid \rho_1^{l_1} \rho_2^{l_2} = 1\} & \text{if } c = \infty, \\ N_{(c)}^{-1}\{l_1w_1^\vee + l_2w_2^\vee \in \Lambda_j^\vee \mid l_2 \in m'Z\} & \text{otherwise} \end{cases}$$

holds (4.5). In particular, the equality $\mathbb{R}_{\geq 0}w_i^\vee \cap \Gamma_j^\vee = \mathbb{Z}_{\geq 0}N_{(c)}^{-1}lw_i^\vee$ holds, where

$$l := \begin{cases} n & \text{if } c \in \{0, \infty\} \text{ and } i = 0, \\ m & \text{if } c \in \{0, \infty\} \text{ and } i \in \{1, 2\}, \\ m' & \text{if } c \in C \text{ and } i \in \{0, 2\}, \\ 1 & \text{if } c \in C \text{ and } i = 1. \end{cases}$$
Proof. — Take $e_1 \in \mathbb{Z}$ (resp. $e_2 \in \mathbb{Z}$) satisfying $\rho_1^{e_1} = \rho_2^{e_2}$ (resp. $\rho_1^{e_1} = \rho_2^{e_2}$). Then the equality

$$
\Gamma_j = \begin{cases}
Zpmv_1 + Zmv_2 + Z(pv_1 + e_1v_2) & \text{if } c = 0, \\
Zmv_1 + Zpmv_2 + Z(e_2v_1 + pv_2) & \text{if } c = \infty, \\
Zm'v_1 + Zpv_2 & \text{otherwise}
\end{cases}
$$

holds, which gives the equality

$$
N_{(c)}^{-1} \Gamma_j = \begin{cases}
Zw_1 + Zw_2 + Z\frac{1}{m}(w_1 + e_1w_2) & \text{if } c = 0, \\
Zw_1 + Zw_2 + Z\frac{1}{m}(e_2w_1 + w_2) & \text{if } c = \infty, \\
Zw_1 + Z\frac{1}{m'}w_2 & \text{otherwise}.
\end{cases}
$$

Thus, the equalities

$$
N_{(c)} \Gamma_j = (N_{(c)}^{-1} \Gamma_j)^\vee = \begin{cases}
Zmw_1^\vee + Zmw_2^\vee + Z(e_1w_1^\vee - w_2^\vee) & \text{if } c = 0, \\
Zmw_1^\vee + Zmw_2^\vee + Z(w_1^\vee - e_2w_2^\vee) & \text{if } c = \infty, \\
Zw_1^\vee + Zm'w_2^\vee & \text{otherwise}
\end{cases}
$$

hold, which concludes the proof. □

Proposition 4.10. — The k-algebra $\tilde{T}_{(c)}$ is isomorphic to $k[\Sigma_j^\vee \cap \Gamma_j^\vee]$, where $y_{1(c)}^{l_1}y_{2(c)}^{l_2}$ maps to w^\vee for any $w^\vee = N_{(c)}^{-1}(l_1w_1^\vee + l_2w_2^\vee) \in \Sigma_j^\vee \cap \Gamma_j^\vee$ (4.5).

Proof. — By multiplying Γ_j^\vee by $N_{(c)}$, we have only to show that the k-algebra $\tilde{T}_{(c)}$ is isomorphic to $k[\Sigma_j^\vee \cap N_{(c)}\Gamma_j^\vee]$, where $y_{1(c)}^{l_1}y_{2(c)}^{l_2}$ maps to w^\vee for any $w^\vee = l_1w_1^\vee + l_2w_2^\vee \in \Sigma_j^\vee \cap N_{(c)}\Gamma_j^\vee$. Put

$$
\mathcal{B}_S := \Sigma_j^\vee \cap \Lambda_j^\vee, \quad \mathcal{B}_T := \Sigma_j^\vee \cap N_{(c)}\Gamma_j^\vee, \quad \text{and} \quad \mathcal{T}_{(c)} := k[\mathcal{B}_T].
$$

By Lemma 4.8, we identify $\tilde{S}_{(c)}$ with $k[\mathcal{B}_S]$, where $y_{i(c)}$ is identified with w_i^\vee for $i \in \{0, 1, 2\}$. Since $N_{(c)}\Lambda_j \subset \Gamma_j$, we conclude that $\mathcal{B}_T \subset \mathcal{B}_S$. Thus, we may regard $\mathcal{T}_{(c)}$ as a subring of $\tilde{S}_{(c)}$. Note that $\mathcal{T}_{(c)} \subset \mathcal{T}_{(c)} \subset \mathcal{S}_{(c)}$ are finite extensions of normal integral domains (Lemma 4.9) since the equality $\mathcal{B}_S = \bigcup (w^\vee + \mathcal{B}_T)$ holds, where w^\vee runs through the finite set

$$\{l_1w_1^\vee + l_2w_2^\vee \in \mathcal{B}_S \mid \max\{|l_1|, |l_2|\} < N_{(c)} \max\{a_1, a_2\}\}.
$$

Thus, since the equalities

$$
[\tilde{S}_{(c)} : \mathcal{T}_{(c)}] = [\Lambda_j^\vee : N_{(c)}\Gamma_j^\vee] = \frac{N_{(c)}^2}{[\Gamma_j^\vee : \Lambda_j^\vee]} = \frac{N_{(c)}^2}{[\Lambda_j : \Gamma_0][\Gamma_0 : \Gamma_j]} = \frac{N_{(c)}}{p} = [\tilde{S}_{(c)} : \tilde{T}_{(c)}]
$$

hold (4.6), the equality $\tilde{T}_c = \tilde{T}_c$ holds, which concludes the proof. □

Proof of Theorem 3.4. — Lemma 4.3 shows that the action of G on E_f induces a faithful action of G/G' (resp. $\mathbb{Z}/n\mathbb{Z}$) on E_f (resp. \mathbb{P}^1_k) with fixed locus $\{\tilde{P}_0, \tilde{P}_\infty\}$. Moreover, the equalities $Q_1 = \tilde{Q}_0$ and $Q_2 = \tilde{Q}_\infty$ hold. Thus, Propositions 4.6 and 4.10 show the following. For any $i \in \{1, 2\}$, the scheme \tilde{Y} has a singularity at Z_i whose completion is isomorphic to Z_i. The other singularities are contained in \tilde{E}, their number is equal to d', and any of their completions is isomorphic to Z_3. Therefore, Statement (1) holds. For $c \in C \cup \{0, \infty\}$, we denote the preimage of \tilde{Q}_c under \tilde{h} with reduced structure by E_c. Since $y_{0(c)}/x_0(c) \in (\tilde{R}_c)^\times$ for any $c \in \{0, \infty\}$ (resp. $y_{1(c)}/(\tilde{x}_c)^p \in (\tilde{R}_c)^\times$ for any $c \in C$), Proposition 4.10 and Lemma 4.9 show that $y_{0(c)}$ (resp. $y_{1(c)}$) is a parameter of E_0 and a defining function of E_c at the closed point $E_0 \cap E_c$ for any $c \in \{0, \infty\}$ (resp. $c \in C$), which proves Statement (2). In particular, the desingularization h of Y is good. Moreover, since the desingularization \tilde{h} of \tilde{Y} is minimal good, and E_0 intersects with more than two irreducible components $\{E_{i,1}\}_{i=1}^{d'+2}$ of E_h, the desingularization h of Y is minimal good, which proves Statement (3). Since $y_{1(\infty)}/x_1 \in (\tilde{R}_\infty)^\times$ (resp. $y_{2(0)}/x_2 \in (\tilde{R}_0)^\times$), Proposition 4.10 and Lemma 4.9 show that $y_{1(\infty)}$ (resp. $y_{2(0)}$) is a parameter of \tilde{D}_2 (resp. \tilde{D}_1) and a defining function of E_h at the closed point $\tilde{D}_2 \cap E_h$ (resp. $\tilde{D}_1 \cap E_h$), which proves Statement (4). □

5. Intersection Matrix

We use the notation introduced in Section 4. Recall that $(v_i, \Gamma_i, \Sigma_i)_{i=1}^3$ (resp. $(m_i, k_i)_{i \in I}$) is introduced in (3.4) (resp. (3.18)). Put

$$\hat{v}_i := \begin{cases} (p\hat{b}_2, \hat{b}_1) = pm_1v_0 + m'v'_1 & \text{for } i = 1 \quad (3.16), \\ (\hat{c}_2, p\hat{c}_1) = pm_2v_0 + m'v'_2 & \text{for } i = 2 \quad (3.16), \\ (m', pe') & \text{for } i = 3 \quad ((3.1) \text{ and } (3.17)). \end{cases}$$

Lemma 5.1. — The following holds:

1. $\mathbb{Z}\hat{v}_1 + \mathbb{Z}pv_0 = \Gamma_1$, $\mathbb{Z}\hat{v}_2 + \mathbb{Z}pv_0 = \Gamma_2$, and $\mathbb{Z}\hat{v}_3 + \mathbb{Z}pv_2 = \Gamma_3$;
2. $\hat{v}_i \in \Sigma_i$ for any $i \in I$;
3. $m_3\hat{v}_3 - k_3pv_2 = pmv_3$ for any $i \in \{1, 2\}$ and $m_3\hat{v}_3 - k_3pv_2 = pmv_3$;
4. gcd$(m_i, k_i) = 1$ and $0 < k_i < m_i$ for any $i \in I$.

Annales de l’Institut Fourier
Proof. — We denote the left hand side in (1) by Γ'_i in each case $i \in I$. Note that the following equalities hold (4.2–4.3):

\begin{align}
\det(v_0 \hat{v}_1) &= m' \det(v_0 v_1) = -m'; & \det(v_0 \hat{v}_2) &= m' \det(v_0 v_2) = m'; \\
\det(v_2 \hat{v}_3) &= \det \begin{pmatrix} 0 & 1 \\ m' & pe' \end{pmatrix} = -m'; \\
\det(v_3 \hat{v}_3) &= \det \begin{pmatrix} 1 & e \\ m' & pe' \end{pmatrix} = pe' - m' e.
\end{align}

Equalities (5.1)–(5.2) give the following equalities:

\begin{align}
[\Gamma_0 : \Gamma'_1] &= pmn' = pm = [\Gamma_0 : \Gamma_1]; \\
[\Gamma_0 : \Gamma'_2] &= pmn' = pm = [\Gamma_0 : \Gamma_2]; \\
[\Gamma_0 : \Gamma'_3] &= pmn' = [\Gamma_0 : \Gamma_3].
\end{align}

Thus, since $\Gamma'_i \subset \Gamma_i$, the equality $\Gamma'_i = \Gamma_i$ holds for any $i \in I$, which proves (1). Since $m' > 0$, Equalities (5.1) show that $\hat{v}_i \in \Sigma_i$ for any $i \in \{1, 2\}$. Since $p \not| m' e \ (3.3)$ and $e' = \lceil m' e/p \rceil \ (3.17)$, the inequalities (5.4)

\[0 < pe' - m' e < p\]

hold. In particular, Equalities (5.3) show that $\hat{v}_3 \in \Sigma_3$, which concludes the proof of (2). Equalities (5.1) show (3). Thus, Lemma 3.5, Inequalities (5.4), and (1)–(3) show (4). □

For $c \in k \cup \{\infty\}$, by $Q(c)$ we denote the closed point $E_0 \cap (\tilde{h})^{-1}(\tilde{Q}(c))$ on \tilde{Y}. By E_0 we denote the exceptional locus of \tilde{h} with reduced structure. Put

\[
(\tilde{y}_1(c), \tilde{y}_2(c)) := \begin{cases}
(y^n_{0(0)}, y^n_{1(0)} y^n_{2(0)}) & \text{for } c = 0, \\
(y^n_{0(\infty)}, y^n_{1(\infty)} y^n_{2(\infty)}) & \text{for } c = \infty, \\
(y^m_{1(c)}, y^m_{1(c)} y^m_{2(c)}) & \text{for } c \in C.
\end{cases}
\]

Proposition 4.10 and Lemmas 4.9 and 5.1(1)–(2) show the following:

Lemma 5.2. — For any $c \in C \cup \{0, \infty\}$, the rational function $\tilde{y}_1(c)$ (resp. $\tilde{y}_2(c)$) is regular and defines E_0 (resp. E_0) at $Q(c)$.

Lemma 5.3. — The equality $E_0^2 = -b_0$ holds (3.17).

Proof. — We define an element of $k((x_1, x_2))^G$ by

\[
\tilde{z} := \prod_{\tau \in G/G'} \tau \left(\sum_{\tau' \in G'/H} \tilde{p}(\tau')^{-1} \tau' z' \right)^{m'}
\]

TOME 0 (0), FASCICULE 0
(Definition 4.4). For any \(c \in k \setminus (C \cup \{0\}) \), Proposition 4.6 implies that \(\tilde{z} \) is a defining function of \(n\tilde{E} \) at \(\tilde{Q}_c \), which implies that \(\tilde{z} \) is a defining function of \(nE_0 \) at \(Q_c \) since the restriction \(\tilde{Y} \setminus E_{\tilde{h}} \to \tilde{Y} \setminus \{ Q_i \}_{i \in I_{\text{all}}} \) of \(\tilde{h} \) is an isomorphism (Theorem 3.4(2)). Note that the following holds:

\[
\left\{ \frac{\hat{y}_1(0)}{(x_0')^{pm}} - \frac{\hat{y}_2(0)}{x_1^b x_2^{pb_2}}, \frac{\hat{z}}{(x_1')^m} \right\} \subset (\tilde{R}(0))^x;
\]

\[
\left\{ \frac{\hat{y}_1(\infty)}{(x_0')^{-pm}} - \frac{\hat{y}_2(\infty)}{x_1^{pc_1} x_2^{-\epsilon_2}}, \frac{\hat{z}}{(x_1')^m} \right\} \subset (\tilde{R}(\infty))^x;
\]

\[
\left\{ \frac{\hat{y}_1(c)}{(\tilde{x}_1(c))^{p}}, \frac{\hat{y}_2(c)}{(\tilde{x}_1(c))^{m-e-\epsilon c'(x_1')^m}}, \frac{(\hat{y}_1(c))^{ne} (\hat{y}_2(c))^n}{(\tilde{x}_1(c))^{me}(x_1')^m} \right\} \subset (\tilde{R}(c))^x;
\]

where

\[
\frac{(\hat{y}_1(c))^{ne} (\hat{y}_2(c))^n (x_1')^{-m})|_{E_f,c}, \frac{(\hat{z}(x_1')^{-m})|_{E_f,c}}{(\tilde{x}_1(c))^{me}|_{E_f,c}} \right\} \subset (\tilde{R}(c)/(x_1'))^x
\]

for any \(c \in C \). The equality \(n\tilde{v}_i = pnn_i v_0 + mv'_i \) holds for any \(i \in \{1, 2\} \). Thus, since \(v'_1 + v'_2 = (ed + pm) v_0 \) ((3.12) and (3.14)), the equality \(n\tilde{v}_2 = (pnn'_2 + med) v_0 - mv'_2 \) holds, where \(n'_2 := m'n_0 + n_2 \). Therefore, we conclude that

\[
\frac{\hat{z}}{(\hat{y}_1(0))^{n_1}(\hat{y}_2(0))^n} \in (\tilde{R}(0))^x, \quad \frac{\hat{z}}{(\hat{y}_1(\infty))^{n_2}(\hat{y}_2(\infty))^n} \in (\tilde{R}(\infty))^x,
\]

and

\[
\frac{(\hat{z}(x_1')^{-m})|_{E_f,c}}{(\hat{y}_1(c))^{ne} (\hat{y}_2(c))^n (x_1')^{-m})|_{E_f,c}} \in (\tilde{R}(c)/(x_1'))^x
\]

for any \(c \in C \). Thus, Lemma 5.2 implies that there exist an open neighborhood \(U \) of \(E_0 \) in \(\tilde{Y} \) and a divisor \(D_U \) on \(U \) such that the intersection of the supports of \(D_U \) and \(E_0 \) is contained in \(\{ Q_c \}_{c \in C} \), \(D_U|_{E_0} = 0 \), and \(\tilde{z}_U \in H^0(U, L) \), where \(\tilde{z}_U := \tilde{z}|_U \) and \(L := O_U(D_U - nE_0) \). Put \(T := (L/\tilde{z}_U O_U)|_{E_0} \). Since \(\#\{ Q_c \}_{c \in C} = d' \) (1.4), the equalities

\[
h^0(T) = n_1 + n'_2 + ne'd' = m'n_0 + n_1 + n_2 + ne'd'
\]

hold. Therefore, the equalities

\[
-nE_0^2 = (D_U - nE_0) \cdot E_0 = \deg L|_{E_0} = h^0(T)
\]

conclude the proof.
Put
\[(d_1, d_2, d_3) := (1, 1, d')\]
(1.4), where \(d_i\) is equal to the number of the singular points of \(\tilde{Y}\) corresponding to \(Z_i\) in Theorem 3.4(1) for any \(i \in I\).

Lemma 5.4. — The equality
\[
\left(b_0 - \sum_{i \in I} \frac{d_i k_i}{m_i}\right) p n a_1 a_2 = m'
\]
holds \((1.3)–(1.4), (3.1), (3.17)–(3.18), \text{and} \ (5.5))\).

Proof. — The following equalities hold:
\[
b_0 p n a_1 a_2 = p m' a_2 (c_1 - b_1) + p(n_1 + n_2) a_1 a_2 + p e' d a_1 a_2;
\]
\[
\left(\sum_{i \in I} \frac{d_i k_i}{m_i}\right) p n a_1 a_2 = b_1 a_2 + \tilde{c}_2 a_1 + (p e' - m' e) d a_1 a_2
\]
\[
= -p m' (a_2 b_1 + a_1 c_2) + p(n_1 + n_2) a_1 a_2
\]
\[
+ (p e' + m' e) d a_1 a_2.
\]
By subtracting the second from the first, we obtain the equalities
\[
\left(b_0 - \sum_{i \in I} \frac{d_i k_i}{m_i}\right) p n a_1 a_2 = p m' (a_1 c_2 + a_2 c_1) - m' e d a_1 a_2 = m',
\]
which concludes the proof. \(\square\)

Proof of Theorem 3.6. — Let us show the first statement. Theorem 3.4(2) shows that \(h\) is a good desingularization, and the dual graph of \(E_h\) is a star-shaped tree with central node (resp. \(d' + 2\) branches) corresponding to \(E_0\) (resp. the exceptional loci \((E_i)_{l \in I_{all}}\) of the Hirzebruch–Jung desingularizations). Take \(l \in I_{all}\). Put \(i := \min\{l, 3\}\). Proposition 4.10 and Lemma 5.1 show that the intersection matrix of \(E_l\) with respect to the ordered basis \((E_l, j)_{j=1}^{s_l}\) is equal to \(\Omega_i \ [3, 10.2.3 \text{ and } 10.4.4]\), which is the \(r_i \times r_i\) matrix associated with \(m_i/k_i\) (Section 2). In particular, the equality \(s_l = r_i\) holds. Moreover, Lemma 5.3 gives the equality \(E_0^2 = -b_0\), which concludes the proof of the first statement.

Let us show the last equality. By \(\Omega'_i\) we denote the submatrix of \(\Omega_i\) formed by deleting the first row and the first column. By \(I'\) we denote the multiset consisting of \(d_i\) copies of \(i\) for \(i \in I\). Then the equality
\[
\det \Omega_h = -b_0 \prod_{i \in I'} \det \Omega_i - \sum_{i' \in I'} \det \Omega'_i \prod_{i \in I' \setminus \{i'\}} \det \Omega_i
\]
holds. Since the equalities
\[\det \Omega_i = (-1)^{r_i} m_i \quad \text{and} \quad \det \Omega'_i = (-1)^{r'_i} k_i \]
hold for any \(i \in I \) (Section 2), the equality
\[\det \Omega_h = (-1)^{r_{\text{tot}}} \left(b_0 - \sum_{i \in I} \frac{d_i k_i}{m_i} \right) m_1 m_2 m_3' \]
holds. Thus, since \((m_1, m_2, m_3) = (pm_1a_1, pm_2a_2, p)\) (3.18), Lemma 5.4 concludes the proof.

Proof of Theorem 1.2. — By taking the absolute values of both sides of the equality
\[\det \Omega_h = (-1)^{r_{\text{tot}}} p^{d' + 1} m \]
(Theorem 3.6), we obtain the desired equality \(\delta = p^{d' + 1} m \).

Finally, we show that \(\delta \) does not depend on the choice of a good desingularization.

Proposition 5.5. — Let \(X_0 \) be the spectrum of an excellent normal local ring of dimension two with algebraically closed residue field. For \(i \in \{1, 2\} \), let \(f_i: X_i \to X_0 \) be a good desingularization of \(X_0 \). By \(E_{f_i} \) we denote the exceptional locus of \(f_i \) with reduced structure. Let \(\Omega_{f_i} \) be an intersection matrix of \(E_{f_i} \) (with respect to an ordered basis of the irreducible components of \(E_{f_i} \)). Then the equality \(|\det \Omega_{f_1}| = |\det \Omega_{f_2}| \) holds.

Proof. — The good desingularizations \(f_1 \) and \(f_2 \) of \(X_0 \) are dominated by a good desingularization of \(X_0 \) via proper birational morphisms, each of which is a finite succession of blowing-ups at closed points. Thus, we may assume that \(f_2 = f_1 \circ f_3 \), and \(f_3 \) is a blowing-up at a closed point \(P \) on \(X_1 \). Let \(A \) be an \(r \times r \) intersection matrix of the irreducible components of \(E_{f_1} \) that do not contain \(P \). By \(s \) we denote the number of the irreducible components of \(E_{f_1} \) that contain \(P \). Since the absolute value of the determinant of an intersection matrix does not depend on the choice of an ordered basis of the irreducible components, we may assume that the equalities
\[\Omega_{f_1} = \begin{pmatrix} A & B \\ t B & C \end{pmatrix} \quad \text{and} \quad \Omega_{f_2} = \begin{pmatrix} A & B & 0 \\ t B & C' & D \\ 0 & t D & -1 \end{pmatrix} \]
hold, where \(B \) is an \(r \times s \) matrix, \(C \) and \(C' \) are \(s \times s \) matrices, \(D \) is an \(s \times 1 \) matrix, and all entries of \(C - C' \) and \(D \) are equal to one. Thus, the equality \(\det \Omega_{f_2} = -\det \Omega_{f_1} \) holds, which concludes the proof.
6. Fundamental Cycle

We use the notation introduced in Section 3. By Div_h^+ we denote the set of positive divisors on \hat{Y} whose supports are contained in E_h. The fundamental cycle Z of h is the minimum divisor in

$$\{ D \in \text{Div}_h^+ \mid \forall D' \in \text{Div}_h^+, \ D \cdot D' \leq 0 \},$$

which always exists [1, p. 132]. We may write

$$Z = \lambda_0 E_0 + \sum_{i \in I_{\text{aff}}} \frac{u}{s_i} \sum_{j=1}^{s_i} \lambda_{i,j} E_{i,j},$$

where $\lambda_0 \in \mathbb{Z}_{\geq 0}$ and $\lambda_{i,j} \in \mathbb{Z}_{\geq 0}$. Since Z is minimum, the equality

$$(\lambda_{i,j})_{j=1}^{s_i} = (\lambda_{i',j})_{j=1}^{s_i}$$

holds for any $(i, i') \in I_3^2$ (Theorem 3.6). Thus, in the following, we study λ_0 and $(\lambda_{i,j})_{j=1}^{s_i}$ for $i \in I$. Recall that the actions of G on $k[[x_1]]$ and $k[[x_2]]$ determine the integers a_1, a_2, m, n, b_0, and $(m_i, k_i, d_i)_{i \in I}$ ((1.3)–(1.4), (3.17)–(3.18), and (5.5)). For $u \in \mathbb{Z}$, we put

$$\kappa_u := ub_0 - \sum_{i \in I} d_i \left\lfloor \frac{uk_i}{m_i} \right\rfloor.$$

Then Lemma 5.4 gives the equality

$$\kappa_u = \frac{um}{pm^2a_1a_2} - \sum_{i \in I} d_i \left\langle \frac{uk_i}{m_i} \right\rangle,$$

where $\langle x \rangle := \lfloor x \rfloor - x$ for $x \in \mathbb{R}$. Since $E_0 \cong \mathbb{P}^1_k$ (Theorem 3.4(2)), we may calculate Z and p_f by means of the formulas for a desingularization with star-shaped dual graph whose branches are induced by the Hirzebruch–Jung desingularizations [12, §3]:

Corollary 6.1. — For $i \in I$, we denote the vector associated with m_i/k_i by $(v_{i,j})_{j=0}^{r_i+1}$ (Section 2) and put $\lambda_{i,0} := \lambda_0$. Then the equalities

$$\lambda_0 = \min\{ u \in \mathbb{Z} \mid u \geq 1 \text{ and } \kappa_u \geq 0 \} \quad \text{and} \quad \lambda_{i,j} = \left\lfloor \frac{\lambda_{i,j-1}v_{i,j}}{v_{i,j-1}} \right\rfloor$$

hold for any $(i, j) \in I \times \mathbb{Z}$ satisfying $1 \leq j \leq r_i$. Moreover, the equalities

$$p_f = - (\lambda_0 - 1) \left(\frac{\lambda_0 b_0}{2} + 1 \right) + \sum_{i \in I} d_i \sum_{u=1}^{\lambda_0-1} \left\lfloor \frac{uk_i}{m_i} \right\rfloor$$

$$= - (\lambda_0 - 1) \left(\frac{\lambda_0 m}{2pm^2a_1a_2} + 1 \right) + \sum_{i \in I} d_i \sum_{u=1}^{\lambda_0-1} \left\langle \frac{uk_i}{m_i} \right\rangle$$

hold.
Proof. — The first two equalities follow from Theorem 3.6 and [12, §3, pp. 282–283]. Take a closed point \(P \) on \(E_0 \). Since \(E_0 \cong \mathbb{P}^1_k \) (Theorem 3.4(2)), Theorem 3.6 gives the equality \(p_f = \sum_{u=1}^{\lambda_0-1} h^1(\mathcal{O}_{E_0}(\kappa_u P)) \) [12, 3.1]. Since \(\lambda_0-1 \) holds, which concludes the proof.

Example 6.2. — Assume that \(\alpha_1 = \alpha_2 = m = p - 1 \) and \(n = 1 \). Then \(d' = p - 1, (m, k_i) = (p, 1) \) for any \(i \in I \), and \(b_0 = 2 \) (Corollary 3.10), which implies that \(\kappa_u = 2u - (p + 1)\lfloor u/p \rfloor \). If \(p = 2 \) (resp. \(p > 2 \)), then \(\kappa_1 = -1 \) and \(\kappa_2 = 1 \) (resp. \(\kappa_u = 2u - (p + 1) \leq -2 \) for any \(u \in \mathbb{Z} \) satisfying \(1 \leq u \leq (p - 1)/2 \) and \(\kappa_{(p+1)/2} = 0 \)). Thus, the equalities

\[
\lambda_0 = \left\lfloor \frac{p+1}{2} \right\rfloor \quad \text{and} \quad p_f = (\lambda_0 - 1)(p - \lambda_0) = \left(\left\lfloor \frac{p+1}{2} \right\rfloor - 1 \right) \left(p - \left\lfloor \frac{p+1}{2} \right\rfloor \right)
\]

hold. In particular, the singularity of \(Y \) is rational if and only if \(p = 2 \).

Put \(\lambda_i := \lambda_{i,1} \) for \(i \in I \). Let us estimate the quotient \(\lambda_i/\lambda_0 \).

Lemma 6.3. — The following inequalities hold:

(6.2) \[\frac{\lambda_i}{\lambda_0} \geq \frac{k_i}{m_i} \quad \text{for any } i \in I; \]
(6.3) \[\sum_{i \in I} d_i \left(\frac{\lambda_i}{\lambda_0} - \frac{k_i}{m_i} \right) \leq \frac{m}{pn^2a_1a_2}; \]
(6.4) \[-\frac{m}{pn^2a_1a_2} \leq \frac{\lambda_1}{\lambda_0} - \frac{\tilde{b}_2}{na_2} \leq 0; \]
(6.5) \[-\frac{m}{pn^2a_1a_2} \leq \frac{\lambda_2}{\lambda_0} - \frac{\tilde{c}_1}{na_1} \leq 0. \]

Moreover, the following statements hold:

(1) the inequality in (6.2) is an equality for \(i \in I \) if and only if \(m_i \) divides \(\lambda_0 \);
(2) the last inequality in (6.4) (resp. (6.5)) is an equality if and only if the inequality in (6.2) is an equality for any \(i \in \{2,3\} \) (resp. \(\{1,3\} \));
(3) if the equivalent statements in (2) hold, then the first inequality in (6.5) (resp. (6.4)) is an equality.

Proof. — Since \(\lambda_0 \geq 1 \) and \(\lambda_i = \lfloor \lambda_0 k_i/m_i \rfloor \) for any \(i \in I \) (Corollary 6.1), the equality

\[\frac{\lambda_i}{\lambda_0} - \frac{k_i}{m_i} = \frac{1}{\lambda_0} \left(\frac{\lambda_0 k_i}{m_i} \right) \]
holds, which proves (6.2) and (1). Since \(\kappa_{\lambda_0} \geq 0 \) (Corollary 6.1), the inequality
\[
\sum_{i \in I} \frac{d_i}{\lambda_0} \left\langle \frac{\lambda_0 k_i}{m_i} \right\rangle \leq \frac{m}{pn^2 a_1 a_2}
\]
holds (6.1), which proves (6.3). In particular, the inequalities
\[
0 \leq \frac{\lambda_i}{\lambda_0} - \frac{k_i}{m_i} \leq \frac{m}{pn^2 d_i a_1 a_2}
\]
hold for any \(i \in I \). Thus, the equalities
\[
\frac{k_1}{m_1} + \frac{m}{pn^2 a_1 a_2} = \frac{\hat{b}_2}{na_1} \quad \text{and} \quad \frac{k_2}{m_2} + \frac{m}{pn^2 a_1 a_2} = \frac{\hat{c}_1}{na_1}
\]
((3.11), (3.16), and (3.18)) show the other statements. \(\Box \)

Theorem 6.4. — Assume that \(G \cong \mathbb{Z}/p\mathbb{Z} \). Then the following equality holds:
\[
(\lambda_0, \lambda_1, \lambda_2, \lambda_3) =
\begin{cases}
(p a_1, eda_1 - pb_1, pc_1, (p - e) a_1) & \text{if } a_1 < a_2, \\
(p a_2, pb_2, eda_2 - pc_2, (p - e) a_2) & \text{if } a_1 > a_2, \\
(p, p - 1, p - 1, p - e) & \text{otherwise.}
\end{cases}
\]

Remark that \(a_1 = a_2 = 1 \) if \(a_1 = a_2 \) (1.3).

Proof. — By \((\lambda'_0, \lambda'_1, \lambda'_2, \lambda'_3)\) we denote the right hand side. We use Corollary 3.8. The equality
\[
\kappa_u = \frac{u}{pa_1 a_2} - \left\langle \frac{u(eda_1 - pb_1)}{pa_1} \right\rangle - \left\langle \frac{u(eda_2 - pc_2)}{pa_2} \right\rangle - d \left\langle \frac{u(p - e)}{p} \right\rangle
\]
holds (6.1). If \(a_1 = a_2 \), then \(\kappa_{\lambda'_0} = 1 \). Since the equalities
\[
\frac{u(eda_1 - pb_1)}{pa_1} = \frac{u(pa_1 b_1 - 1)}{pa_1 a_2} \quad \text{and} \quad \frac{u(eda_2 - pc_2)}{pa_2} = \frac{u(p a_2 c_1 - 1)}{pa_1 a_2}
\]
hold (3.11), the equality \(\kappa_{\lambda'_0} = 0 \) holds if \(a_1 \neq a_2 \). Thus, since \(\kappa_{\lambda'_0} \geq 0 \), the inequality \(\lambda_0 \leq \lambda_0' \) holds. Lemma 6.3(3) implies that either \(\lambda_1/\lambda_0 \neq b_2/a_2 \) or \(\lambda_2/\lambda_0 \neq c_1/a_1 \) holds. In the former case (resp. the latter case), the inequality \(\lambda_0 \geq pa_1 \) (resp. \(\lambda_0 \geq pa_2 \)) holds (6.4) (resp. (6.5)). Since \(\lambda'_0 = p \min\{a_1, a_2\} \), we obtain the inequality \(\lambda_0 \geq \lambda'_0 \). Thus, the equality \(\lambda_0 = \lambda'_0 \) holds. Therefore, the equality \(\lambda_i = \lambda'_i \) for any \(i \in I \) follows from Lemma 6.3(1)–(2). \(\Box \)
Lemma 6.5. — Take \((a, b, c) \in \mathbb{Z}_{\geq 1} \times \mathbb{Z}_{\geq 1} \times \mathbb{Z}\). Assume that \(\gcd(b, c) = 1\).

Then the equalities
\[
\sum_{u=0}^{ab-1} \left\langle \frac{uc}{b} \right\rangle = \frac{a(b - 1)}{2} \quad \text{and} \quad \sum_{u=0}^{ab-1} \left\lceil \frac{uc}{b} \right\rceil = \frac{a(abc + b - c - 1)}{2}
\]
hold.

Proof. — Since \((uc)_{u=u_0}^{u_0+b-1}\) is a complete system of representatives of \(\mathbb{Z}/b\mathbb{Z}\) in \(\mathbb{Z}\) for any \(u_0 \in \mathbb{Z}\), the equalities
\[
\sum_{u=0}^{ab-1} \left\langle \frac{uc}{b} \right\rangle = a \sum_{u=0}^{b-1} \frac{u}{b} = \frac{a(b - 1)}{2}
\]
hold. Thus, the equalities
\[
\sum_{u=0}^{ab-1} \left\lceil \frac{uc}{b} \right\rceil = \sum_{u=0}^{ab-1} \left(\left\langle \frac{uc}{b} \right\rangle + \left\lceil \frac{uc}{b} \right\rceil \right) = \frac{a(abc + b - c - 1)}{2}
\]
hold. □

Proof of Theorem 1.3. — We may assume that \(a_1 \leq a_2\). Theorem 6.4 gives the equality \(\lambda_0 = pa_1\). Since the equalities
\[
\frac{k_2}{m_2} = \frac{eda_2 - pc_2}{pa_2} = \frac{c_1}{a_1} - \frac{1}{pa_1 a_2}
\]
hold (3.20), the equality
\[
\left\langle \frac{uk_2}{m_2} \right\rangle = \left\langle \frac{uc_1}{a_1} \right\rangle + \frac{u}{pa_1 a_2}
\]
holds for any \(u \in \mathbb{Z}\) satisfying \(0 < u < pa_1\). Thus, Corollary 6.1 and Lemma 6.5 give the equalities
\[
p_f = -(pa_1 - 1) \left(\frac{1}{2a_2} + 1 \right) + \sum_{u=1}^{pa_1-1} \left(\left\langle \frac{uk_1}{pa_1} \right\rangle + \left\langle \frac{uc_1}{a_1} \right\rangle + \frac{u}{pa_1 a_2} + d \left\langle \frac{uk_3}{p} \right\rangle \right) = -\frac{pa_1 - 1}{2a_2} - (pa_1 - 1) + \frac{pa_1 - 1}{2} + \frac{p(a_1 - 1)}{2} + \frac{pa_1 - 1}{2a_2} + \frac{(p - 1)\alpha_1}{2} = \frac{(p - 1)(\alpha_1 - 1)}{2},
\]
which concludes the proof. □
7. Canonical Divisor

We use the notation introduced in Section 3. A canonical divisor K_h of h is a \mathbb{Q}-divisor on \tilde{Y} satisfying the following conditions:

1. the support of K_h is contained in E_h;
2. for any integral exceptional divisor E of h, the adjunction formula $K_h \cdot E + E^2 = -2$ holds.

Note that the right hand side -2 is equal to the degree of a canonical divisor of E ($\sim \mathbb{P}_k^1$). By Condition (1), we may write $K_h = \mu_0 E_0 + \sum_{i \in I} \sum_{j=1}^{s_i} \mu_{i,j} E_{i,j}$, where $\mu_0 \in \mathbb{Q}$ and $\mu_{i,j} \in \mathbb{Q}$. In this section, we show the unique existence of K_h and calculate K_h and K_h^2.

Lemma 7.1. — Let M and K be integers satisfying $\gcd(M, K) = 1$ and $0 < K < M$. Take the Hirzebruch–Jung continued fraction $[B_j]_{j=1}^{r}$ of M/K (Section 2) and the unique $K' \in \mathbb{Z}$ satisfying $M \mid KK' - 1$ and $0 < K' < M$. We denote the vector associated with M/K (resp. M/K') by V (resp. V') (Section 2) and the vector whose entries are the reverse of the entries of V' by W:

$$V = (M, K, \ldots, 1, 0) \quad \text{and} \quad W = (0, 1, \ldots, K', M).$$

Then $\{V, W\}$ is a basis of the kernel of the \mathbb{Q}-homomorphism

$$L: \mathbb{Q}^{r+2} \rightarrow \mathbb{Q}^r, \quad (A_j)_{j=0}^{r+1} \mapsto (A_{j-1} - A_j B_j + A_{j+1})_{j=1}^{r}.$$

Take $\mu \in \mathbb{Q}$. Then there exists a unique $U = (U_j)_{j=0}^{r+1} \in \mathbb{Q}^{r+2}$ such that $L(U) = (B_j - 2)_{j=1}^{r}$ and $(U_0, U_{r+1}) = (\mu, 0)$. Moreover, the equalities

$$U = \frac{\mu + 1}{M} V + \frac{1}{M} W + U'$$

$$= \left(\mu, \frac{(\mu + 1)K + 1}{M} - 1, \ldots, \frac{\mu + 1 + K'}{M} - 1, 0 \right)$$

hold, where $U' := (-1)_{j=0}^{r+1} \in \mathbb{Q}^{r+2}$.

Proof. — By the definition of the entries of V and V' (2.1) and the equality $M/K' = [B_{r+1-j}]_{j=1}^{r}$ [3, 10.2.6], we conclude that $\{V, W\} \subset \text{Ker} L$. Thus, since V and W are linearly independent over \mathbb{Q}, and the equality $\dim_{\mathbb{Q}} \text{Ker} L = 2$ holds, the set $\{V, W\}$ is a basis of $\text{Ker} L$. Take $U = (U_j)_{j=0}^{r+1} \in \mathbb{Q}^{r+2}$. Since $L(U') = (B_j - 2)_{j=1}^{r}$, the following statements are equivalent:
(1) \(L(U) = (B_j - 2)_{j=1}^r \);
(2) \(U - U' \in \text{Ker } L \);
(3) there exists a unique \((a, b) \in \mathbb{Q}^2\) such that \(U = aV + bW + U' \).

Assume that the above equivalent statements hold. Then \((U_0, U_{r+1}) = (aM - 1, bM - 1)\). Thus, the equality \((U_0, U_{r+1}) = (\mu, 0)\) holds if and only if \((a, b) = ((\mu + 1)/M, 1/M)\), which concludes the proof. \(\square\)

Definition 7.2. — We use the notation introduced in Lemma 7.1. By \(U(\mu, M, K) \) we denote the vector \((U_j)_{j=1}^r \in \mathbb{Q}^r\) formed by deleting the first and last entries of the unique \(U = (U_j)_{j=0}^{r+1} \in \mathbb{Q}^{r+2} \) satisfying \(L(U) = (B_j - 2)_{j=1}^r \) and \((U_0, U_{r+1}) = (\mu, 0)\).

Theorem 7.3. — There exists a unique canonical divisor of \(h \). Moreover, the equalities

\[
\mu_0 = \frac{a_1 + a_2 - (p - 1)d_1a_2}{m'} - 1
\]

((1.3) and (3.1)) and

\[
(\mu_{l,j})_{j=1}^{n_l} = U(\mu_0, m_i, k_i)
\]

(3.18) hold for any \(l \in I_{\text{all}} \), where \(i := \min\{l, 3\} \).

Proof. — Take the Hirzebruch–Jung continued fraction \([b_{i,j}]_{j=1}^{n_l}\) of \(m_i/k_i \) for \(i \in I \). Put \(\mu_{l,0} := \mu_0 \) and \(\mu_{l,s_l+1} := 0 \) for \(l \in I_{\text{all}} \). Condition (2) on \(K_h \) for \(E_{l,j} \) is satisfied if and only if the equality

\[
\mu_{l,j-1} - \mu_{l,j}b_{i,j} + \mu_{l,j+1} = b_{i,j} - 2
\]

holds, where \(i := \min\{l, 3\} \) (Theorem 3.6). Thus, Condition (2) on \(K_h \) for all \(E_{l,j} \) is satisfied if and only if Equality (7.1) holds for any \(l \in I_{\text{all}} \) (Lemma 7.1). If these equivalent statements hold, then the equality

\[
\mu_{l,1} = \frac{(\mu_0 + 1)k_i + 1}{m_i} - 1
\]

holds for any \(l \in I_{\text{all}} \) (Lemma 7.1), which gives the equalities

\[
\sum_{l \in I_{\text{all}}} \mu_{l,1} = \sum_{i \in I} d_i\mu_{i,1} = -2 - d' + \sum_{i \in I} \left((\mu_0 + 1)\frac{d_ki}{m_i} + \frac{d_i}{m_i} \right)
\]

(5.5). Condition (2) on \(K_h \) for \(E_0 \) is satisfied if and only if the equality

\[-(\mu_0 + 1)b_0 + \sum_{l \in I_{\text{all}}} \mu_{l,1} = -2
\]
holds (Theorem 3.6). Thus, Condition (2) on K_h is satisfied if and only if Equality (7.1) holds for any $l \in I_{\text{all}}$, and the rational number μ_0 is a solution of the equation

$$(\mu_0 + 1)\left(b_0 - \sum_{i \in I} \frac{d_i k_i}{m_i}\right) = -d' + \sum_{i \in I} \frac{d_i}{m_i}.$$

Lemma 5.4 gives a unique solution of this equation

$$\mu_0 = \frac{pna_1a_2}{m'}\left(-d' + \frac{1}{pna_1} + \frac{1}{pna_2} + \frac{d'}{p}\right) - 1 = a_1 + a_2 - (p - 1)\frac{d_1a_2}{m'} - 1,$$

which concludes the proof.

Lemma 7.4. — We use the notation introduced in Lemma 7.1. Then the equality

$$\sum_{j=1}^{r} U_j(B_j - 2) = U_0 + 2 - \frac{(U_0 + 1)(K + 1) + K' + 1}{M} + \sum_{j=1}^{r}(2 - B_j)$$

holds.

Proof. — Lemma 7.1 gives the following equalities for any $j \in \mathbb{Z}$ satisfying $1 \leq j \leq r$:

$$-U_{j-1} + U_j B_j - U_{j+1} = 2 - B_j; \quad U_{r+1} = 0;$$

$$\frac{(U_0 + 1)(K + 1) + K' + 1}{M} - 2 = U_1 + U_r.$$

By adding both sides, we obtain the desired equality.

Theorem 7.5. — We use the notation introduced in Theorem 7.3. For $i \in I$, we take the Hirzebruch–Jung continued fraction $[b_{i,j}]_{j=1}^{r_i}$ of m_i/k_i and the unique $k'_i \in \mathbb{Z}$ satisfying $m_i \mid k_i k'_i - 1$ and $0 < k'_i < m_i$. Then the equalities

$$K_h^2 = \mu_0(b_0 - 2) + \sum_{i \in I} d_i \sum_{j=1}^{r_i} \mu_{i,j}(b_{i,j} - 2)$$

$$= \mu_0(b_0 - 2) + (d' + 2)(\mu_0 + 2)$$

$$+ \sum_{i \in I} d_i \left(-\frac{(\mu_0 + 1)(k_i + 1) + k'_i + 1}{m_i} + \sum_{j=1}^{r_i}(2 - b_{i,j})\right)$$

hold ((3.17) and (5.5)).
Proof. — Since $K_h \cdot E = -E^2 - 2$ for any integral exceptional divisor E of h, the first equality follows from Theorem 3.6. Since $(\mu_{i,j})_{i=1}^n = U(\mu_0, m_i, k_i)$ for any $i \in I$, the last equality follows from Lemma 7.4. □

8. Geometric Genus

We use the notation introduced in Section 3. The geometric genus p_g of the singularity of Y is most difficult to compute. The difficulty derives from that of the calculation of the dimension of the differential forms on the product of two curves invariant under the product action of G (Lemma 8.3). In this section, we calculate p_g in the case $G \cong \mathbb{Z}/p\mathbb{Z}$ by generalizing the method in [6].

Lemma 8.1. — Let α be a positive integer coprime to p and z be a rational function on \mathbb{P}^1_k. Assume that z is regular on $\mathbb{P}^1_k \setminus \{0\}$, and the order of the pole of z at 0 is equal to α. We denote the normal model of the equation $T^p - T = z$ by $\pi: C \to \mathbb{P}^1_k$ and the pull-back of the coordinate function of $\mathbb{A}^1_k = \mathbb{P}^1_k \setminus \{\infty\}$ via π by y. Choose a rational function x on C satisfying $x^p - x = z$. For $(i,j) \in \mathbb{Z}^2$, we put
\[\omega_{i,j} := x^{i-1}y^{j-1}dy. \]

Put $O := \pi^{-1}(0)$, where π is totally ramified. For a non-zero rational differential form ω on C, by $v_O(\omega)$ we denote the order of the zero of ω at O, which is negative if ω has a pole at O. Then the equality
\[v_O(\omega_{i,j}) = (p - i)\alpha - jp - 1 \]
holds. In particular, if $v_O(\omega_{i,j}) = v_O(\omega_{i',j'})$ and $|i - i'| \leq p - 1$, then $(i,j) = (i',j')$.

Proof. — Since $x^p - x = z$, the equality $v_O(dx) = v_O(y^{-\alpha-1}dy)$ holds, and the order of the zero of x^{-1} (resp. y) at O is equal to α (resp. p). Thus, the equalities
\[v_O(dx) = -\alpha - 1 \quad \text{and} \quad v_O(dy) = p(\alpha + 1) + v_O(dx) = (p - 1)(\alpha + 1) \]
hold. Since $\omega_{i,j} = (x^{-1})^{1-i}y^{-j-1}dy$, the equality $v_O(\omega_{i,j}) = (p - i)\alpha - jp - 1$ holds. Therefore, since $p \nmid \alpha$, the last statement holds. □

We denote the genus of a proper smooth k-curve W by $g(W)$.

Annales de l'Institut Fourier
Lemma 8.2. — We use the notation introduced in Lemma 8.1. By G_{π} we denote the Galois group of π, which is isomorphic to $\mathbb{Z}/p\mathbb{Z}$. By V_C we denote the k-vector space $H^0(C, \Omega^1_C)$ with G_{π}-module structure. Put

$$\Phi_\alpha := \left\{ (i, j) \in \mathbb{Z}^2 \mid 1 \leq i \leq p-1 \text{ and } 1 \leq j \leq \left\lfloor \frac{(p-i)\alpha}{p} \right\rfloor - 1 \right\}.$$

Then $\omega_{i,j} \in V_C$ for any $(i, j) \in \Phi_\alpha$. Put $J := \{ j \mid (1, j) \in \Phi_\alpha \}$. For $j \in J$, by $V_{C,j}$ we denote the k-subspace of V_C generated by $\{ \omega_{i,j} \mid (i, j) \in \Phi_\alpha \}$.

Then the following statements hold.

(1) For any $i \in \mathbb{Z}$ satisfying $1 \leq i \leq p-1$, the equality

$$\# \{ j \mid \dim_k V_{C,j} \geq i \} = \left\lfloor \frac{(p-i)\alpha}{p} \right\rfloor - 1$$

holds.

(2) The rational differential form $\omega_{1,1} (= y^{-2} dy)$ on C is regular and nowhere-zero on $C \setminus \{O\}$. In particular, the equality $2g(C) - 2 = v_O(\omega_{1,1})$ holds.

(3) The equalities

$$g(C) = \frac{(p-1)(\alpha - 1)}{2} = \# \Phi_\alpha$$

hold.

(4) The family $(\omega_{i,j})_{(i,j) \in \Phi_\alpha}$ is a basis of V_C, and the inclusions $V_{C,j} \to V_C$ for all $j \in J$ induce an isomorphism

$$V_C \cong \bigoplus_{j \in J} V_{C,j}.$$

(5) For any $j \in J$, the G_{π}-module $V_{C,j}$ is indecomposable, and the G_{π}-invariant k-subspace $V_{C,j}^{G_{\pi}}$ is generated by $\omega_{1,j}$.

Proof. — The inequalities

$$\frac{(p-i)\alpha - 1}{p} \geq \left\lfloor \frac{(p-i)\alpha}{p} \right\rfloor - 1 \geq j$$

hold for any $(i, j) \in \Phi_\alpha$ since $p \nmid \alpha$ and $1 \leq i \leq p-1$. Thus, since the equalities

$$v_O(\omega_{i,j}) = (p-i)\alpha - jp - 1 = p\left(\frac{(p-i)\alpha - 1}{p} - j \right)$$

hold for any $(i, j) \in \Phi_\alpha$ (Lemma 8.1), the integers $(v_O(\omega_{i,j}))_{(i,j) \in \Phi_\alpha}$ are non-negative and different from each other (Lemma 8.1). Thus, since x, y^{-1}, and $y^{-2} dy$ are regular on $C \setminus \{O\}$, we conclude that $\omega_{i,j} \in V_C$ for any
$(i,j) \in \Phi_\alpha$, and the elements of $(\omega_{i,j})_{(i,j) \in \Phi_\alpha}$ are linearly independent. In particular, for any $i \in \mathbb{Z}$ satisfying $1 \leq i \leq p - 1$, the equalities

$$\# \{ j \mid \dim_k V_{C,j} \geq i \} = \# \{ j \mid (i,j) \in \Phi_\alpha \} = \frac{(p - i)\alpha}{p} - 1$$

hold, which proves Statement (1). Since the restriction $C \setminus \{O\} \to \mathbb{P}^1_k \setminus \{0\}$ of π is étale, and $\omega_{1,1}$ is equal to the pull-back via π of a rational differential form on \mathbb{P}^1_k that is regular and nowhere-zero on $\mathbb{P}^1_k \setminus \{0\}$, Statement (2) holds. Thus, Lemma 8.1 gives the first equality of Statement (3). Lemma 6.5 gives the equalities

$$\# \Phi_\alpha = \sum_{i=1}^{p-1} \left(\left\lfloor \frac{(p - i)\alpha}{p} \right\rfloor - 1 \right) = \frac{(p - 1)(\alpha + 1)}{2} - (p - 1) = \frac{(p - 1)(\alpha - 1)}{2},$$

which concludes the proof of Statement (3). Since $\dim_k V_C = g(C)$, Statement (4) follows from Statement (3). Take a generator σ_π of G_π so that $\sigma_\pi(x) = x + 1$. For any $(i,j) \in \Phi_\alpha$, the equalities

$$\sigma_\pi(\omega_{i,j}) = (x + 1)^{i-1}y^{-j-1}dy = \sum_{i' = 1}^{i} \left(i - i' \right) \omega_{i',j}$$

hold, which proves Statement (5).

Assume that $G \cong \mathbb{Z}/p\mathbb{Z}$. Lemma 4.1 shows that, for each $i \in \{1, 2\}$, we may take $z_i \in k[y_i^{-1}]$ so that the completion of the normal model $\pi_i: C_i \to \mathbb{P}^1_k$ of the equation $T^p - T = z_i$ at 0 induces the extension $k[y_i]/k[y_i]$. Then the action of G on $\text{Spec} k[x_i]$ extends to that on C_i with fixed locus $\{O_i\}$, where $O_i := \pi_i^{-1}(0)$. Moreover, the action of G on $\text{Spec} k[x_1, x_2]$ extends to the product action of G on $C_1 \times C_2$ with fixed locus $\{O_1 \times O_2\}$.

In order to simplify the notation, we use the same notation in the global case as in the local case. Put $X := C_1 \times C_2$. Take the quotient $q: X \to Y := X/G$ of X by G. Then Y is a normal surface, which implies that Y is Cohen–Macaulay. By ω_X (resp. ω_Y) we denote the dualizing sheaf of X (resp. Y). Put $X' := X \setminus \{O_1 \times O_2\}$ and $Y' := q(X')$.

Lemma 8.3. — The equality

$$h^0(\omega_Y) = \sum_{i=1}^{p-1} \left\lfloor \frac{ia_1}{p} \right\rfloor \left\lfloor \frac{ia_2}{p} \right\rfloor - \frac{(p - 1)(a_1 + a_2)}{2}$$

holds.
Proof. — The diagram
\[
\begin{array}{ccc}
H^0(Y, \omega_Y) & \longrightarrow & H^0(Y', \omega_Y|_{Y'}) \\
\downarrow & & \downarrow \\
H^0(X, \omega_X)^G & \longrightarrow & H^0(X', \omega_X|_{X'})^G
\end{array}
\]
is commutative, where the horizontal arrows are induced by the restrictions, and the vertical arrows are induced by the pull-back via \(q\). Since both \(X\) and \(Y\) are normal surfaces, the dualizing sheaves \(\omega_X\) and \(\omega_Y\) are reflexive. Thus, the horizontal arrows in the above diagram are bijective. Since the restriction \(X' \to Y'\) of \(q\) is étale, the right vertical arrow is bijective. Therefore, the equality \(h^0(\omega_Y) = \dim_k H^0(X, \omega_X)^G\) holds. For \(i \in \{1, 2\}\), we take the decomposition \(H^0(C_i, \Omega_{C_i}) = \bigoplus_{j \in J_i} V_{C_{1,j}}\) given by Lemma 8.2(4). Then the equality
\[
\dim_k H^0(X, \omega_X)^G = \sum_{(j_1,j_2) \in J_1 \times J_2} \min\{\dim_k V_{C_{1,j_1}}, \dim_k V_{C_{2,j_2}}\}
\]
holds (see the second paragraph of the proof of [6, 2.4]). Since the right hand side is equal to
\[
\sum_{i=1}^{p-1} \# \{j_1 \mid \dim_k V_{C_{1,j_1}} \geq i\} \cdot \# \{j_2 \mid \dim_k V_{C_{2,j_2}} \geq i\},
\]
Lemma 8.2(1) gives the equality
\[
h^0(\omega_Y) = \sum_{i=1}^{p-1} \left(\left\lfloor \frac{i \alpha_1}{p} \right\rfloor - 1\right) \left(\left\lfloor \frac{i \alpha_2}{p} \right\rfloor - 1\right).
\]
Thus, Lemma 6.5 concludes the proof. \(\square\)

Theorem 3.4 gives a desingularization of \(Y\). We use the same notation in the global case as in the local case (3.8).

Lemma 8.4. — The equality \(h^1(\mathcal{O}_Y) = 0\) holds.

Proof. — Since \(\tilde{Y}\) has only rational singularities, the equality \(h^1(\mathcal{O}_{\tilde{Y}}) = h^1(\mathcal{O}_Y)\) holds. Thus, we have only to show that \(h^1(\mathcal{O}_{\tilde{Y}}) = 0\). Put \(F'_X := (C_1 \times \mathcal{O}_2) \cup (\mathcal{O}_1 \times C_2) \subset X\). Take the normalization \(F_X\) of \(F'_X\) and the normalization \(F'_X\) (resp. \(F_{\tilde{Y}}\)) of the strict transform of \(F'_X\) (resp. \(q(F'_X)\))
via f (resp. g). Then we obtain the diagram with commutative squares

\[
\begin{array}{ccc}
\tilde{Y} & \xleftarrow{\tilde{q}} & \tilde{X} \\
F_{\tilde{Y}} & \xleftarrow{\tilde{q}_F} & F_{\tilde{X}} \\
\end{array}
\xrightarrow{f} \begin{array}{ccc}
X & \xrightarrow{f} & X \\
F_X & \xrightarrow{f_F} & F_X \\
\end{array}
\]

where \tilde{q}_F (resp. f_F) is induced by \tilde{q} (resp. f), and the vertical arrows are the projections. The above diagram induces a diagram with commutative squares

\[
\begin{array}{ccc}
H^1(\tilde{Y}, \mathcal{O}_{\tilde{Y}}) & \longrightarrow & H^1(\tilde{X}, \mathcal{O}_{\tilde{X}}) \\
\downarrow & & \downarrow \\
H^1(F_{\tilde{Y}}, \mathcal{O}_{F_{\tilde{Y}}}) & \longrightarrow & H^1(F_{\tilde{X}}, \mathcal{O}_{F_{\tilde{X}}})
\end{array}
\xleftarrow{H^1(X, \mathcal{O}_X)}
\]

Since $f_F: F_{\tilde{X}} \cong F_X (\cong C_1 \cup C_2)$, the right lower arrow is bijective. Since X is regular, the right upper arrow is bijective. Since $X = C_1 \times C_2$, the right vertical arrow is bijective. Thus, the middle arrow is bijective. Since $F_{\tilde{Y}} \cong \mathbb{P}^1_k \cup \mathbb{P}^1_k$, the equality $H^1(F_{\tilde{Y}}, \mathcal{O}_{F_{\tilde{Y}}}) = 0$ holds. Therefore, the lemma follows from the fact that the left upper arrow is injective [6, 4.2].

We denote the topological Euler characteristic of a proper curve or a proper smooth surface W over a separably closed field by $e(W)$. Recall that the number of the irreducible components of E_h is equal to r_{tot} (Theorem 3.6).

Lemma 8.5. — The equality

\[
e(\tilde{Y}) = (p - 1)(\alpha_1 - 1)(\alpha_2 - 1) + r_{\text{tot}} + 4
\]

holds.

Proof. — The first projection $X = C_1 \times C_2 \to C_1$ induces a morphism $\tilde{Y} \to \mathbb{P}^1_k$. Take the generic point η (resp. θ) of \mathbb{P}^1_k (resp. C_1) and a geometric generic point η of C_1, where the composite $\eta \to \theta \to \eta$ is induced by a separable closure of the function field of \mathbb{P}^1_k with Galois group G_η. For $\xi \in \{0, \eta, \theta, \eta\}$, we put $\tilde{Y}_\xi := \tilde{Y} \times_{\mathbb{P}^1_k} \xi$. Since Pic$\tilde{Y}$ is finitely generated (Lemma 8.4), and the homomorphism Pic$\tilde{Y} \to$ Pic\tilde{Y}_η induced by the first projection $\tilde{Y}_\eta = \tilde{Y} \times_{\mathbb{P}^1_k} \eta \to \tilde{Y}$ is surjective, the group Pic\tilde{Y}_η is finitely generated. Note that Pic$\tilde{Y}_\eta \cong$ Pic$\tilde{Y}_{\eta/\eta}(\eta)$ since the Leray spectral sequence for the second projection $\tilde{Y}_\eta = \tilde{Y} \times_{\mathbb{P}^1_k} \eta \to \eta$ and $\mathbb{G}_m, \tilde{Y}_\eta$ induces an exact
sequence of commutative groups and homomorphisms
\[0 \longrightarrow \text{Pic} \eta \longrightarrow \text{Pic} \hat{Y}_\eta \longrightarrow \text{Pic} \hat{Y}_{\eta/\eta(\eta)} \longrightarrow \text{Br} \eta, \]

$\text{Pic} \eta = 0$ by Hilbert’s theorem 90, and $\text{Br} \eta = 0$ by Tsen’s theorem. Thus, we may take a prime number l different from p so that $\text{Pic} \hat{Y}_{\eta/\eta(\eta)}[l] = 0$, where we denote the l-torsion subgroup of a commutative group P by $P[l]$. We define a G_η-module by $M := H^1(\hat{Y}_\eta, \mu_l \hat{Y}_\eta)$. Since $\hat{Y}_\theta \cong C_2 \times \text{Spec } k \theta$ over θ, the equality $\dim_{\mathbb{F}_l} M = 2g(C_2)$ holds, and the action of G_η on M induces that of G. The Kummer sequence
\[1 \longrightarrow \mu_l \hat{Y}_\eta \longrightarrow \mathbb{G}_m \hat{Y}_\eta \longrightarrow \mathbb{G}_m \hat{Y}_\eta \longrightarrow 1 \]
induces a G_η-equivariant isomorphism $M \cong \text{Pic} \hat{Y}_{\eta/\eta(\eta)}[l]$, which implies that $M^G \cong \text{Pic} \hat{Y}_{\eta/\eta(\eta)}[l] = 0$. Therefore, Serre’s measure of wild ramification of M at $0 \in \mathbb{P}^1_k$ [11, §I, p. 3] is given by
\[\delta_0 := \sum_{i \geq 1} \frac{1}{[G : G_i]} \dim_{\mathbb{F}_l} M/M^{G_i} = 2g(C_2)\alpha_1, \]

where the i-th ramification group of θ/η is given by
\[G_i := \{ \tau \in G \mid \nu_1(\tau x_1 - x_1) \geq i + 1 \} = \begin{cases} G & \text{if } i \leq \alpha_1, \\ 1 & \text{otherwise.} \end{cases} \]

The reduction of \hat{Y}_0 is a union of the $r_{\text{tot}} + 1$ projective lines any of whose singularities is a node and whose dual graph is a tree (Theorem 3.4(2) and (4)), which implies that the equality $e(\hat{Y}_0) = r_{\text{tot}} + 2$ holds. Since $\hat{Y}_\eta \cong C_2 \times \text{Spec } k \eta$ over η, the equalities $e(\hat{Y}_\eta) = e(C_2) = 2g(C_2)$ hold. Thus, Dolgachev’s formula [4, Theorem 1.1] gives the equalities
\[e(\hat{Y}) = e(\hat{Y}_\eta) e(\mathbb{P}^1_k) + e(\hat{Y}_0) - e(\hat{Y}_\eta) + \delta_0 = 2(\alpha_1 - 1)g(C_2) + r_{\text{tot}} + 4. \]

Therefore, Lemma 8.2(3) concludes the proof. \qed

Take the canonical divisor
\[K_h = \mu_0 E_0 + \sum_{i=1}^{d+2} \sum_{j=1}^{s_i} \mu_{i,j} E_{i,j} \]
of h (Theorem 7.3). For $i \in \{1, 2\}$, by y_i (resp. F_i) we denote the pull-back of the coordinate function of $\mathbb{A}^1_k = \mathbb{P}^1_k \setminus \{ \infty \}$ (resp. the prime divisor on \mathbb{P}^1_k with support $0 \in \mathbb{P}^1_k$) via the morphism $\hat{Y} \to \mathbb{P}^1_k$ induced by the i-th projection $X = C_1 \times C_2 \to C_i$. By $K_{\hat{Y}}$ we denote the canonical divisor of \hat{Y} defined by the rational differential form $y_1^{-2}dy_1 \wedge y_2^{-2}dy_2$ on \hat{Y}.
Proposition 8.6. — The following equalities hold:

\[K_{\hat{Y}} = K_h + \frac{2g(C_1) - 2}{p} F_1 + \frac{2g(C_2) - 2}{p} F_2 \]

\[= K_h + \frac{(p - 1)(\alpha_1 + 1) - 2}{p} F_1 + \left(\frac{(p - 1)(\alpha_2 + 1) - 2}{p} \right) F_2; \]

\[K_{\hat{Y}}^2 = K_h^2 + \frac{2(p - 1)^2(\alpha_1 + 1)(\alpha_2 + 1)}{p} - 4(p - 1)(\alpha_1 + \alpha_2) + 8. \]

Proof. — By \(F \) we denote the right hand side of the first equality minus \(K_h \). Since the restriction \(X' \to Y' \) of \(q \) (resp. \(h^{-1}(Y') \to Y' \) of \(h \)) is étale (resp. an isomorphism), Lemma 8.2(2) shows that the support of \(K_{\hat{Y}} - F \) is contained in the exceptional locus of \(h \). For any integral exceptional divisor \(E \) of \(h \), the adjunction formula gives the equalities

\[(K_{\hat{Y}} - F) \cdot E = K_{\hat{Y}} \cdot E = -E^2 - 2 = K_h \cdot E \]

since \(F_i \cdot E = 0 \) for any \(i \in \{1, 2\} \). Thus, the first equality follows from the uniqueness of \(K_h \) (Theorem 7.3). The second equality follows from Lemma 8.2(3). Therefore, the last equality follows from the equalities \(F_1 \cdot F_2 = p \) and \(K_h \cdot F_i = F_i \cdot F_i = 0 \) for any \(i \in \{1, 2\} \). □

Theorem 8.7. — Assume that \(G \cong \mathbb{Z}/p\mathbb{Z} \). Then the equality

\[p_g = \sum_{i=1}^{p-1} \frac{\lceil i\alpha_1 \rceil}{p} \frac{\lceil i\alpha_2 \rceil}{p} - \frac{(p - 1)(3p - 2)(\alpha_1 + 1)(\alpha_2 + 1)}{12p} - \frac{K_h^2 + r_{\text{tot}}}{12} \]

holds.

Remark 8.8. — The last term of the above equality is determined by \(\alpha_1 \) and \(\alpha_2 \) (Theorems 7.5 and 3.6 and Corollary 3.8).

Proof. — Since \(h^1(\mathcal{O}_{\hat{Y}}) = 0 \) (Lemma 8.4), the Leray spectral sequence for \(h: \hat{Y} \to Y \) and \(\mathcal{O}_{\hat{Y}} \) and the Grothendieck duality give the equalities

\[p_g = h^2(\mathcal{O}_{\hat{Y}}) - h^2(\mathcal{O}_{\hat{Y}}) = h^0(\omega_Y) - \chi(\mathcal{O}_{\hat{Y}}) + 1, \]

respectively. Thus, since \(12\chi(\mathcal{O}_{\hat{Y}}) = K_{\hat{Y}}^2 + e(\hat{Y}) \) by Noether’s formula, Lemmas 8.3 and 8.5 and Proposition 8.6 give the equalities

\[p_g = h^0(\omega_Y) - \frac{K_{\hat{Y}}^2 + e(\hat{Y})}{12} + 1 = \sum_{i=1}^{p-1} \frac{\lceil i\alpha_1 \rceil}{p} \frac{\lceil i\alpha_2 \rceil}{p} - \frac{S}{12p} - \frac{K_h^2 + r_{\text{tot}}}{12}, \]
where
\[
S := 6p(p - 1)(\alpha_1 + \alpha_2) + 2(p - 1)^2(\alpha_1 + 1)(\alpha_2 + 1) - 4p(p - 1)(\alpha_1 + \alpha_2) + 8p + p(p - 1)(\alpha_1 - 1)(\alpha_2 - 1) + 4p - 12p = (p - 1)(3p - 2)(\alpha_1 + 1)(\alpha_2 + 1),
\]
which concludes the proof.

Proof of Theorem 1.4. — We use the notation introduced in Theorems 7.3 and 7.5. Corollaries 3.8 and 3.10 give the equalities
\[
m = m', \quad d = d', \quad (d, e, a_1, a_2) = (\alpha, (p - 1)/\alpha, 1, 1), \quad (m_1, m_2, m_3, k_1, k_2, k_3) = (1, 1, \alpha), \quad (k_1', k_2', k_3') = (p - 1, p - 1, \alpha), \quad \text{and} \quad b_0 = \alpha + 1.
\]
Thus, the equalities \((d_1, d_2, d_3) = (1, 1, \alpha), \quad (k_1', k_2', k_3') = (p - 1, p - 1, \alpha), \quad \text{and} \quad \mu_0 = 1 - (p - 1)\alpha\) hold. Since
\[
p/(p - 1) = [2, \ldots, 2] \quad (p - 1 \text{ copies of } 2) \quad \text{and} \quad p/(p - e) = [2, \ldots, 2, e + 1] \quad (\alpha - 1 \text{ copies of } 2 \text{ followed by } e + 1),
\]
the equalities
\[
r_{\text{tot}} = 1 + 2(p - 1) + \alpha^2 \quad \text{and} \quad \sum_{i \in I} d_i \sum_{j=1}^{r_i} (2 - b_{i,j}) = \alpha - p + 1
\]
hold. Thus, Theorem 7.5 gives the equalities
\[
K_h^2 = \mu_0(b_0 - 2) + (\alpha + 2)(\mu_0 + 2) + \alpha - p + 1
\]
\[
- 2 \cdot \frac{\mu_0 + 1}{p} (p - 1)(\alpha - p + 1) + \alpha + 1
\]
\[
= \frac{(p - 1)(-p\alpha^2 + \alpha^2 + 4\alpha + 2) - \alpha^2 - p^2}{p},
\]
which gives the equality
\[
K_h^2 + r_{\text{tot}} = \frac{(p - 1)(\alpha + 1)(-p\alpha + 2\alpha + p + 2)}{p}.
\]
Therefore, Theorem 8.7 concludes the proof.

Acknowledgment

The author thanks the referee for helpful comments.

BIBLIOGRAPHY

[1] M. Artin, “On isolated rational singularities of surfaces”, Am. J. Math. 88 (1966), no. 1, p. 129-136.
[2] V. Cossart, U. Jannsen & S. Saito, “Canonical embedded and non-embedded resolution of singularities for excellent two-dimensional schemes”, https://arxiv.org/abs/0905.2191, 2013.

[3] D. A. Cox, J. B. Little & H. K. Schenck, Toric varieties, Graduate Studies in Mathematics, vol. 124, American Mathematical Society, 2011, xxiv+841 pages.

[4] I. V. Dolgachev, “The Euler characteristic of a family of algebraic varieties”, Mat. Sb., N. Ser. 89(131) (1972), no. 2(10), p. 297-312, 351.

[5] F. Hirzebruch, “Über vierdimensionale Riemannsche Flächen mehrdeutiger analytischer Funktionen von zwei komplexen Veränderlichen”, Math. Ann. 126 (1953), p. 1-22.

[6] H. Ito & S. Schröer, “Wildly ramified actions and surfaces of general type arising from Artin–Schreier curves”, in Geometry and Arithmetic, EMS Series of Congress Reports, European Mathematical Society, 2012, p. 213-241.

[7] H. W. E. Jung, “Darstellung der Funktionen eines algebraischen Körpers zweier unabhängigen Veränderlichen x, y in der Umgebung einer Stelle x = a, y = b”, J. für Math. 133 (1908), p. 289-314.

[8] J. Lipman, “Rational singularities, with applications to algebraic surfaces and unique factorization”, Publ. Math., Inst. Hautes Étud. Sci. 36 (1969), p. 195-279.

[9] ———, “Desingularization of two-dimensional schemes”, Ann. Math. 107 (1978), no. 1, p. 151-207.

[10] D. Lorenzini, “Wild quotients of products of curves”, Eur. J. Math. 4 (2018), no. 2, p. 525-554.

[11] A. P. Ogg, “Elliptic curves and wild ramification”, Am. J. Math. 89 (1967), no. 1, p. 1-21.

[12] T. Tomaru, “On Gorenstein surface singularities with fundamental genus \(p_f \geq 2 \) which satisfy some minimality conditions”, Pac. J. Math. 170 (1995), no. 1, p. 271-295.