Second-harmonic generation in etchless lithium niobate nanophotonic waveguides with bound states in the continuum

Fan Ye, Yue Yu, Xiang Xi, and Xiankai Sun

Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
*Corresponding author: xksun@cuhk.edu.hk

Abstract: We experimentally demonstrated second-harmonic generation from telecom to near-visible wavelengths on an etchless lithium niobate platform by using a photonic bound state in the continuum for the second-harmonic mode. © 2022 The Author(s)

1. Introduction
Recently, it was proposed and demonstrated that photonic bound states in the continuum (BICs) can exist in a low-refractive-index waveguide on a high-refractive-index substrate [1, 2]. Light in such a BIC mode is confined transversely to the region of high-refractive-index substrate below the low-refractive-index waveguide and is guided longitudinally along the low-refractive-index waveguide. The destructive interference among various loss channels leads to forbidden energy dissipation in the BIC-based waveguide, resulting in theoretically zero propagation loss. Under this mechanism, low-loss waveguides and high-Q microcavities were experimentally demonstrated and photonic integrated circuits were realized without the need for etching the substrate [2].

Lithium niobate is arguably the most popular nonlinear optical material because of its large $\chi^{(2)}$ nonlinear coefficients and wide transparency window (350 nm to 5 µm). To date, nonlinear optical processes have been realized on integrated lithium niobate platforms by lithographic patterning and dry etching of the lithium niobate thin film [3, 4]. Here, we report experimental demonstration of efficient second-harmonic generation on a lithium niobate integrated platform which does not need etching of lithium niobate [5]. By fabricating a polymer waveguide with carefully chosen dimensions on a lithium-niobate-on-insulator substrate, we obtained modal phase matching between the orthogonally polarized fundamental and second-harmonic modes, both with low propagation loss, at the telecom and near-visible wavelengths respectively, where the second-harmonic mode is a TM-polarized BIC.

2. Designing BIC waveguide for second-harmonic generation

Fig. 1. (a) Cross-sectional illustration of the waveguide structure. (b), (c) Electric field (E) profiles of the TE$_{00}$ mode at pump wavelength (b) and the TM$_{00}$ mode at second-harmonic wavelength (c). (d) Propagation loss of the TM$_{00}$ mode as a function of the waveguide width w and wavelength λ. (e) Required waveguide width w for achieving the BIC (green dash-dotted line) and phase-matching (purple solid line) conditions. (f), (g) Simulated propagation loss and effective refractive index of the TE$_{00}$ mode and TM$_{00}$ mode at the respective wavelengths as a function of the waveguide width w, with the waveguide thickness of $t = 600$ nm (f) and $t = 450$ nm (g). (h) Optical microscope image of an entire fabricated device consisting of a 5-mm-long nonlinear waveguide, grating couplers, and directional couplers. (i) Optical microscope image of a fabricated control device for loss calibration consisting of only grating couplers and directional couplers. (j), (k) False-color scanning electron microscope images of a grating coupler for the second-harmonic light and a part of the directional coupler (k).
Figure 1a illustrates the cross-sectional structure of the device for second-harmonic generation. Figures 1b and 1c depict the electric field (E) profiles of the TE$_{00}$ mode at the pump wavelength $\lambda_{\text{pump}} = 1559.4$ nm and of the TM$_{20}$ mode at the second-harmonic wavelength $\lambda_{\text{SH}} = 779.7$ nm, respectively, simulated with a finite-element method. It is important to obtain low propagation loss in both the TE$_{00}$ and TM$_{20}$ modes to achieve high efficiency for the second-harmonic generation. Figure 1d shows the simulated propagation loss of the TM$_{20}$ mode in a straight waveguide as a function of the waveguide width w and wavelength λ, with the waveguide thickness t fixed at 600 nm. The BIC point is where the TM$_{20}$ mode has zero propagation loss, and the phase-matching point is where the effective refractive indices of the two modes are equal. Figure 1e plots the required waveguide widths for achieving the BIC and phase-matching conditions as a function of the waveguide thickness t. The BIC and phase-matching condition can be achieved simultaneously in a waveguide with $w = 2.48$ μm and $t = 600$ nm.

3. Device fabrication and characterization

Figure 1f shows an entire fabricated device consisting of a long main waveguide for second-harmonic generation, grating couplers for coupling light between the on-chip waveguides and optical fibers (Fig. 1j), and directional couplers (Fig. 1k). Two pairs of grating couplers are used for input/output coupling of light at the fundamental and second-harmonic wavelengths separately. Figure 1i shows a fabricated control device for loss calibration consisting of only grating couplers and directional couplers.

Figure 2a shows the measured normalized spectrum of second-harmonic conversion efficiency from a fabricated device. The maximal on-chip second-harmonic conversion efficiency measured at the BIC point is 0.175% W$^{-1}$ cm$^{-2}$, which agrees well with the theoretical value (0.20% W$^{-1}$ cm$^{-2}$) when taking into consideration the measured propagation loss of the waveguide at both fundamental and second-harmonic wavelengths. Figure 2b plots the peak second-harmonic power as a function of the pump power coupled into the on-chip waveguides, which shows an approximately quadratic power dependence of the second-harmonic power on the input pump power. Figure 2c shows the measured normalized second-harmonic conversion efficiency of the waveguides as a function of the waveguide width w. It is clear that the maximum is reached for the waveguides with the optimal waveguide width $w = 2.48$ μm at the BIC point. As the device structures deviate from the optimal design for the BIC, the second-harmonic generation efficiency drops dramatically.

![Fig. 2. (a) Measured (orange circles) and theoretical (blue line) normalized spectra of second-harmonic conversion efficiency of a fabricated device. (b) Measured (orange dots) and fitted (blue line) second-harmonic power as a function of the pump power in the device. (c) Measured second-harmonic conversion efficiency as a function of the waveguide width w.](image)

Acknowledgment

This work was supported by the Research Grants Council of Hong Kong (No. 14208717, 14206318, 14209519).

References

[1] C. L. Zou et al., Guiding light through optical bound states in the continuum for ultrahigh-Q microresonators. Laser & Photon. Rev. 9, 114-119 (2015).
[2] Z. Yu et al., Photonic integrated circuits with bound states in the continuum. Optica 6, 1342–1348 (2019).
[3] R. Luo, Y. He, H. Liang, M. Li, Q. Lin, Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide. Optica 5, 1006–1011 (2018).
[4] C. Wang et al., Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides. Optica 5, 1438–1441 (2018).
[5] F. Ye, Y. Yu, X. Xi, X. Sun, Second-harmonic generation in etchless lithium niobate nanophotonic waveguides with bound states in the continuum. Laser & Photon. Rev., (accepted) (2021).