Time 2 Do More Quality Enhancement Research Initiative (T2DM QUERI): Patient age, ethnicity, medical history and risk factor profile, but not drug insurance coverage, predict successful attainment of glycemic targets

Running Title: Predictors for A1C improvement

HWEE TEOH, PHD1 MANOELA F. B. BRAGA, MD, MSC7 AMPARO CASANOVA, MD, PHD6 DENIS DROUIN, MD8 SHAUN G. GOODMAN, MD, MSC3,5,8 STEWART B. HARRIS, MD9 ANATOLY LANGER, MD, MSC3,5,6 MARY K. TAN, BSC6 EHUD UR, MB10 ANDREW T. YAN, MD3,5,6 BERNARD ZINMAN, MD4,5 LAWRENCE A. LEITER, MD2,5 ON BEHALF OF THE T2DM QUERI INVESTIGATORS*

* A list of participating T2DM QUERI Investigators may be found in the Appendix

From the Divisions of ¹Cardiac Surgery, ²Endocrinology & Metabolism and ³Cardiology, Keenan Research Centre in the Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, ON; the ⁴Leadership Sinai Centre for Diabetes and the Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON; the ⁵Department of Medicine, University of Toronto, Toronto, ON; the ⁶Canadian Heart Research Centre, Toronto, ON; the ⁷Division Endocrinology & Metabolism, McMaster University, Hamilton, ON, the ⁸Continuing Professional Development Centre, Université Laval, Québec City, QC; the ⁹Center for Studies in Family Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON; the ¹⁰Division of Endocrinology & Metabolism, University of British Columbia, Vancouver, BC.

Corresponding author:
Dr. Lawrence A. Leiter
E-mail address: leiterl@smh.ca

Submitted 8 March and accepted 27 August 2010.

Additional information for this article can be found in an online appendix at http://care.diabetesjournals.org

This is an uncopyedited electronic version of an article accepted for publication in Diabetes Care. The American Diabetes Association, publisher of Diabetes Care, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes Care in print and online at http://care.diabetesjournals.org.
Predictors for A1C improvement

Objective– To identify factors, in patients with Type 2 diabetes and glycated haemoglobin (A1C)>7.0%, associated with A1C≤7.0% attainment.

Research design and methods– Prospective registry of 5280 Canadian patients in primary care settings enrolled in a 12-months glycemic pharmacotherapy optimization strategy based on national guidelines.

Results– At close out, median A1C was 7.1% (versus 7.8% at baseline) with 48% of subjects achieving A1C≤7.0% (P<0.0001). Older patients of Asian or black origins, those with longer diabetes duration, lower baseline A1C, BMI, LDL-C and BP, and those on angiotensin receptor blockers and a lower number of antihyperglycemic agents, were more likely to achieve A1C≤7.0% at some point during the study (all P<0.0235). Access to private versus public drug coverage did not impact on glycemic target realization.

Conclusions– Patient demography, cardiometabolic health and ongoing pharmacotherapy, but not access to private drug insurance coverage, contribute to the care gap in Type 2 diabetes.

Treatment gaps in achieving A1C targets persist (1, 2). Our goal was to identify, in a Type 2 diabetes patient registry, factors that contribute to attaining the 2003 Canadian Diabetes Association (CDA) clinical practice guidelines (3) recommended A1C target of ≤7.0%.

RESEARCH DESIGN AND METHODS

The "Time 2 Do More (T2DM)" protocol underwent ethics approval. Physicians were educated on the 2003 CDA guidelines which focussed on A1C≤7.0%, FPG≤7.0mmol/l, LDL-C≤2.5mmol/l, TC:HDL-C <4.0 and blood pressure (BP)≤130/80mmHg.

The final 5280 insulin-naive patients, enrolled from 378 primary care practices across 9 Canadian provinces between March 2006 and September 2007, had A1C>7.0% and a clinical diagnosis of Type 2 diabetes. Participation was voluntary and written informed consent mandatory. Protocol sub-classification into Private (unencumbered access to any antihyperglycemic agent (AHA)) or Public (access only to AHA approved by provincial formulary programs) insurance groups was met by 4797 patients (376 sites, 9 provinces).

Physicians monitored and directed therapies based on their best clinical judgement. The protocol neither mandated the frequency or timing of clinical visits, nor dictated the specific medications or doses to be prescribed. Subjects not at A1C target at follow-up were encouraged to have their antihyperglycemic treatment intensified. Detailed feedback provided after Visit-2 allowed physicians to identify those not at target and/or not receiving guideline-recommended treatments.

Laboratory values were obtained as part of routine clinical care.

A GEE model was fitted to assess association between increase in number of prescribed AHA at each visit and changes in A1C target achievement. Model selection was based on the Quasi-likelihood under the Independence model Criterion (4). The final model was utilized to assess association between drug insurance coverage and changes in target achievement.

RESULTS

The cohort was 58.2% men and 74.9% Caucasian. Median age, baseline A1C, LDL-C and BP were 60 years, 7.8%, 2.3mmol/l and 130/80mmHg respectively. Median duration of diabetes was 6 years with 18%, 5.5% and 4.8% of the cohort respectively reporting prior coronary artery, peripheral vascular and cerebrovascular disease events. Sequential declines in A1C (median 7.1% at close out; P<0.0001) paralleled progressive increases in A1C≤7.0% attainments.
Predictors for A1C improvement

Of the 3122 patients who had A1C measured at all 4 visits, 35.9% did not achieve A1C ≤ 7.0% at any time during the study. Median FPG, lipid levels and BP improved temporally as did the percentages of patients optimally managed (Online Table 1).

Patients on multiple AHAs increased while those on monotherapy decreased during the study (Online Table 2). After adjusting for age and the covariates that were significant in the multivariable model, the number of AHAs prescribed at each previous visit remained significantly associated with target achievement during the study (Table 1). Older patients of Asian origin or blacks, those with longer diabetes duration, lower baseline A1C, BMI, LDL-C or BP, and patients on angiotensin receptor blockers (ARBs) and with lower number of AHAs prescribed, were more likely to achieve A1C target at some period during the study (all P<0.0235). Differential access to drug insurance coverage was not associated with changes in glycemic target achievement in univariate (P=0.64) and multivariable (P=0.24) analyses.

DISCUSSION
In this physician practice optimization strategy focused on optimizing AHA regimens, <50% of the patients recorded A1C≤7.0% 12-months after entering the study. Multivariable analysis revealed that A1C≤7.0% was associated with age, ethnicity, baseline A1C, BMI, LDL-C or BP, and use of ARBs and number of AHAs.

While the predictive values of demography and cardiometabolic health on A1C improvements were not unexpected, the suboptimal success in A1C realization is intriguing since a quarter of the patients were already or subsequently placed on ≥3 AHAs at baseline. Clinical inertia (5, 6), in the form of delayed insulin introduction, was likely contributory. At the time of the study, although there was evidence that tight glycemic control can ameliorate microvascular complications (7, 8), there were no similar data for macrovascular risk which may have factored into physician decision making. The paradox that patients on a lower number of AHAs were more likely to achieve A1C target probably stemmed from patients with “more severe” diabetes being more likely to be prescribed multiple AHAs.

Our finding that private insurance-enabled unencumbered access to any AHA did not impact on A1C≤7.0% achievement must be interpreted cautiously since at the time of this study, thiazolidinediones were the only major class of AHAs not covered by the majority of Canadian provincial formularies. Notably, patients with public only coverage were less likely than those with private insurance to be on thiazolidinediones at the beginning of the study but this discrepancy was no longer evident after Visit-2.

This study has several limitations. An element of physician selection bias is likely since a quarter of the patients at baseline were either already on or placed on ≥3 AHAs. Although only 59% of the patients had complete data for all four visits, study participation may have triggered improvements. Neither lifestyle modifications and social support systems nor co-management by a specialist were documented. Information on AHA prescriptions and therapeutic profiles were drawn from CRFs versus pharmacy records.

Our study nonetheless has notable strengths. The data were from a large cohort and included both genders of various ethnicities with differential drug insurance coverage. The longitudinal registry design resembles a “real world” setting without the typical clinical trial selection bias. Our study was initiated and completed before the results of the major outcome trials that have fuelled the controversies of how intensive glycemic lowering impacts on severe hypoglycemia and cardiovascular events (9-12) were published and thus may serve as a useful benchmark for future comparisons of how practice patterns may evolve.

In conclusion, in a large Canadian cohort of Type 2 diabetes patients not
meeting glycemic targets, nearly 50% achieved the guidelines-recommended A1Cs≤7.0% target after 12-months in a physician-based practice optimization strategy. Success in realizing target A1C was associated with patient age, ethnicity, baseline A1C, LDL-C, BP, duration of diabetes, number of AHAs prescribed and use of ARBs but not type of drug insurance coverage.

Author contributions. H.T. wrote the manuscript, researched the data, contributed to discussion, reviewed/edited the manuscript. M.F.B.B. contributed to discussion, reviewed/edited the manuscript. A.C. researched the data, contributed to discussion, reviewed/edited the manuscript. D.D. reviewed/edited the manuscript. S.G.G. designed the protocol, researched the data, contributed to discussion, reviewed/edited the manuscript. S.B.H. reviewed/edited the manuscript. A.L. designed the protocol, researched the data, contributed to discussion, reviewed/edited the manuscript. M.K.T. researched the data, contributed to discussion, reviewed/edited the manuscript. E.U. reviewed/edited the manuscript. A.T.Y. researched the data, contributed to discussion, reviewed/edited the manuscript. B.Z. reviewed/edited the manuscript. L.A.L. designed the protocol, wrote the manuscript, researched the data, contributed to discussion, reviewed/edited the manuscript.

ACKNOWLEDGEMENTS
We would like to acknowledge Drs. Keith G. Dawson, Hertzel C. Gerstein, Vincent Woo and Jean-François Yale for making valuable contributions to this paper. The Time to Do More project was conceived, designed, and coordinated by the Canadian Heart Research Centre (CHRC), a federally-incorporated, not-for-profit, academic research organization. GlaxoSmithKline Canada supported this study and had no role in the collection, management, analysis or interpretation of the data; in the preparation, review or approval of the manuscript; in the decision of submitting the manuscript for publication or the target journal.

Disclosures. Denis Drouin has received research grant support and/or speaker/consulting honoraria from Altana, Astra-Zeneca, Biovail, Bristol Myers Squibb, Boehringer-Ingelheim, GlaxoSmithKline, Merck, Novartis, Pfizer, sanofi-aventis, Servier, Solvay Pharmaceuticals and Unilever. Shaun G Goodman has received research grant support and/or speaker/consulting honoraria from Astra-Zeneca, Bayer, Bristol Myers Squibb, Eli Lilly, GlaxoSmithKline, Hoffman La Roche, Johnson & Johnson, Merck, sanofi-aventis, and Pfizer. Stewart B Harris has received research grant support and/or speaker/consulting honoraria from Astra-Zenica, Bristol Myers Squibb, Eli Lilly, GlaxoSmithKline, Hoffman La Roche, Merck, NovoNordisk and sanofi-aventis. Anatoly Langer has received research grant support and/or speaker/consulting honoraria from Astra-Zeneca, GlaxoSmithKline, Merck, Pfizer and sanofi-aventis. Ehud Ur has received research grant support and/or speaker/consulting honoraria from GlaxoSmithKline, Merck, Novartis, NovoNordisk and sanofi-aventis. Andrew Yan has received speaker/consulting honoraria from sanofi-aventis and Bristol Myers Squibb. Lawrence A Leiter has received research grant support and/or speaker/consulting honoraria from Astra-Zeneca, Bristol Myers Squibb, Eli Lilly, GlaxoSmithKline, Hoffman La Roche, Merck, Novartis, NovoNordisk, Pfizer, Sanofi-aventis and Servier. No other potential conflicts of interest relevant to this article were reported.

REFERENCES
1. Braga M, Casanova A, Teoh H, Dawson KC, Gerstein HC, Fitchett DH, Harris SB, Honos G, McFarlane PA, Steele A, Ur E, Yale JF, Langer A, Goodman SG, Leiter LA:
Treatment gaps in the management of cardiovascular risk factors in patients with type 2 diabetes in Canada. *Can J Cardiol* 26: 297-302, 2010
2. Resnick HE, Foster GL, Bardsley J, Ratner RE: Achievement of American Diabetes Association clinical practice recommendations among U.S. adults with diabetes, 1999-2002: the National Health and Nutrition Examination Survey. *Diabetes Care* 29: 531-537, 2006
3. Canadian Diabetes Association Clinical Practice Guidelines Expert Committee. Clinical Practice Guidelines for the Prevention and Management of Diabetes in Canada. In: *Can J Diabetes*: Canadian Diabetes Association, 2003, p. S1-152.
4. Pan W: Akaike’s information criterion in generalized estimating equations. *Biometrics* 57: 120-125, 2001
5. Shah BR, Hux JE, Laupacis A, Zinman B, van Walraven C: Clinical inertia in response to inadequate glycemic control: do specialists differ from primary care physicians? *Diabetes Care* 28: 600-606, 2005
6. Ziemer DC, Miller CD, Rhee MK, Doyle JP, Watkins C, Jr., Cook CB, Gallina DL, El-Kebbi IM, Barnes CS, Dunbar VG, Branch WT, Jr., Phillips LS: Clinical inertia contributes to poor diabetes control in a primary care setting. *Diabetes Educ* 31: 564-571, 2005
7. Nathan DM, Cleary PA, Backlund JY, Genuth SM, Lachin JM, Orchard TJ, Raskin P, Zinman B: Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. *N Engl J Med* 353: 2643-2653, 2005
8. Stratton IM, Adler AI, Neil HA, Matthews DR, Manley SE, Cull CA, Hadden D, Turner RC, Holman RR: Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. *BMJ* 321: 405-412, 2000
9. Gerstein HC, Miller ME, Byington RP, Goff DC, Jr., Bigger JT, Buse JB, Cushman WC, Genuth S, Ismail-Beigi F, Grimm RH, Jr., Probstfield JL, Simons-Morton DG, Friedewald WT: Effects of intensive glucose lowering in type 2 diabetes. *N Engl J Med* 358: 2545-2559, 2008
10. Patel A, MacMahon S, Chalmers J, Neal B, Billot L, Woodward M, Marre M, Cooper M, Glasziou P, Grobbee D, Hamet P, Harrap S, Heller S, Liu L, Mancia G, Mogensen CE, Pan C, Poulter N, Rodgers A, Williams B, Bompoint S, de Galan BE, Joshi R, Travert F: Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. *N Engl J Med* 358: 2560-2572, 2008
11. Turnbull FM, Abraira C, Anderson RJ, Byington RP, Chalmers JP, Duckworth WC, Evans GW, Gerstein HC, Holman RR, Moritz TE, Neal BC, Ninomiya T, Patel AA, Paul SK, Travert F, Woodward M: Intensive glucose control and macrovascular outcomes in type 2 diabetes. *Diabetologia* 52: 2288-2298, 2009
12. Duckworth W, Abraira C, Moritz T, Reda D, Emanuele N, Reaven PD, Zieve FJ, Marks J, Davis SN, Hayward R, Warren SR, Goldman S, McCarren M, Vitek ME, Henderson WG, Huang GD: Glucose control and vascular complications in veterans with type 2 diabetes. *N Engl J Med* 360: 129-139, 2009
Table 1 – Factors associated with temporal changes in A1C ≤7.0% achievement

Demographic	Unadjusted OR (95% CI)	P value	Adjusted OR (95% CI)	P value
Men vs. Women	0.996 (0.992, 1.076)	0.93		
Age (per 5 years higher)	1.029 (1.012, 1.045)	0.0006	1.024 (1.003, 1.046)	0.0235
Ethnicity (Caucasian as reference)				
East and South-East Asian	0.764 (0.667, 0.874)	<0.0001	0.715 (0.606, 0.842)	<0.0001
South Asian	0.592 (0.500, 0.701)	<0.0001	0.641 (0.528, 0.779)	<0.0001
Black	0.651 (0.519, 0.816)	0.0002	0.71 (0.548, 0.920)	0.0095
Aboriginal Canadian native/Inuit	0.699 (0.517, 0.945)	0.02	0.867 (0.604, 1.244)	0.44
Others	0.945 (0.710, 1.260)	0.701	0.903 (0.657, 1.241)	0.53
Unknown	0.670 (0.512, 0.876)	0.0035	0.651 (0.464, 0.913)	0.0129
Insurance coverage (Private vs. Public)	0.979 (0.895, 1.070)	0.64		

Clinical variables	Unadjusted OR (95% CI)	P value	Adjusted OR (95% CI)	P value
Baseline A1C (per 1% lower)	1.368 (1.301, 1.438)	<0.0001	1.344 (1.273, 1.419)	<0.0001
LDL cholesterol (per 1mmol/l lower)*	1.412 (1.340, 1.487)	<0.0001	1.349 (1.275, 1.427)	<0.0001
Systolic blood pressure (per 10mmHg lower)*	1.121 (1.093, 1.151)	<0.0001	1.101 (1.063, 1.140)	<0.0001
Diastolic blood pressure (per 10mmHg lower)*	1.202 (1.154, 1.251)	<0.0001	1.09 (1.031, 1.153)	0.0024
Baseline BMI (per 5kg/m² lower)	1.041 (1.013, 1.071)	0.0044	1.044 (1.008, 1.081)	0.0158

Medical history	Unadjusted OR (95% CI)	P value	Adjusted OR (95% CI)	P value
Duration of type 2 diabetes mellitus (per 5 years lower)	1.239 (1.193, 1.287)	<0.0001	1.451 (1.375, 1.532)	<0.0001
Smoker (No vs. Yes)	1.071 (0.948, 1.210)	0.27		
Exercise vs. Sedentary lifestyle	1.033 (0.956, 1.115)	0.41		
Family history of diabetes mellitus (No vs. Yes)	1.086 (1.007, 1.172)	0.033		

Pharmacotherapy	Unadjusted OR (95% CI)	P value	Adjusted OR (95% CI)	P value
Number of AHAs (per unit lower)*	1.176 (1.129, 1.224)	<0.0001	1.326 (1.256, 1.399)	<0.0001
Statin (Yes vs. No)	1.223 (1.112, 1.344)	<0.0001		
Angiotensin converting enzyme inhibitor (Yes vs. No)	1.052 (0.976, 1.135)	0.19		
Angiotensin receptor blocker (Yes vs. No)*	1.241 (1.145, 1.346)	<0.0001	1.246 (1.133, 1.370)	<0.0001
Beta blocker (Yes vs. No)	1.090 (0.993, 1.198)	0.072		

*Time-dependent variables