EINSTEIN HERMITIAN METRICS OF NON NEGATIVE SECTIONAL CURVATURE

EZIO DE ARAUJO COSTA

Abstract

In this paper we will prove that if M is a compact simply connected Hermitian Einstein 4-manifold with non negative sectional curvature then M is isometric to complex projective space \mathbb{CP}^2 with the Fubini-Study metric or M is isometric to a product of two two-spheres $S^2 \times S^2$, with theirs canonical metrics.

1. Introduction

Let $M = M^4$ be a 4-manifold. A Riemannian metric g on M is called Einstein if M has constant Ricci curvature and called Hermitian if $g(J\cdot, J\cdot) = g(\cdot, \cdot)$ for a complex structure J on M. In [5], C. LeBrun proved the following

Theorem 1. (LeBrun)- Let $(M = M^4, g, J)$ be a compact connected complex surface with metric g and complex structure J. If g is Einstein and Hermitian with respect to J then only one of the following holds:

1. g is Kaehler-Einstein with positive Ricci curvature.
2. M is isometric to $\mathbb{CP}^2 \# \mathbb{CP}^2$ and g is the Page metric.
3. M is isometric to $\mathbb{CP}^2 \# \mathbb{CP}^2$ and g is the Chen-LeBrun-Weber metric.

Using the previous theorem, C. Koca proved in [4] the following:

Theorem 2. (Koca)-Let $(M = M^4, g, J)$ be a compact complex surface with metric g and complex structure J. If g is Einstein and Hermitian with respect to J and g has positive sectional curvature then M is isometric to complex projective space \mathbb{CP}^2 with the Fubini-Study metric metric.

Now, consider M a compact simply connected Kaehler-Einstein 4-manifold with non negative sectional curvature. In this case, M. Berger proved in [1], that M is isometric to complex projective space \mathbb{CP}^2 with the Fubini-Study metric or isometric to a product of two spheres $S^2 \times S^2$, with theirs canonical metrics.

In the next two sections we will prove that the Page metric and the Chen-LeBrun-Weber metrics no has non negative sectional curvature. This will conclude the proof our main result:

Theorem 3. Let $(M = M^4, g, J)$ be a compact simply connected complex surface with metric g and complex structure J. If g is Einstein and Hermitian with respect to J and g has non negative sectional curvature then M is isometric to complex projective space \mathbb{CP}^2 with the Fubini-Study metric or M is isometric to a product of two spheres $S^2 \times S^2$, with theirs canonical metrics.
2. Page metric

The Page metric (see [6]) lives in connected sum $\mathbb{CP}^2 \# \mathbb{CP}^2$, where \mathbb{CP}^2 is the complex projective space \mathbb{CP}^2 with opposite orientation. In [4], C. Koca showed that the Page metric has non negative sectional curvature using a computer program like Maple. In this section we will prove this result using a different argument. For this consider the page metric g as in Koca [4]:

$$g = W^2(x)dx^2 + g^2(x)(\sigma^2_1 + \sigma^2_2) + \frac{D^2}{W(x)}\sigma^2_3$$

where $x \in (-1, 1)$,

$$W(x) = \sqrt{\frac{1 - a^2x^2}{3 - a^2 - a^2(1 + a^2)x^2}(1 - x^2)},$$

$$g(x) = \frac{2}{\sqrt{3 + 6a^2 - a^4}}\sqrt{1 - a^2x^2},$$

$$D = \frac{2}{3+a^2}$$

and a is the unique positive root of equation $f(x) = x^4 + 4x^3 - 6x^2 + 12x - 3 = 0$. Notice that $a < 1$, since that $f(0) = -3$ and $f(1) = 8$.

In accord with Koca, there exists a two-plane where the sectional curvature satisfies

$$K_{01} = 2\left[\frac{gW'}{gW^3} - \frac{g''W}{gW^3}\right].$$

Then we have

$$K_{01} = -\frac{2}{gW}F',$$

where

$$F = \frac{g'}{W}.$$

Claim: There exist $c \in [0, 1)$ such that $F'(c) > 0$.

Proof of Claim:

Notice that $g' = -Ax(1 - a^2x^2)^{-1/2}$, where $A = \frac{2a}{\sqrt{3+6a^2-a^4}} > 0$. Moreover,

$$F = -Ax\sqrt{3 - a^2 - a^2(1 + a^2)x^2}(1 - x^2)(1 - a^2x^2)^{-1},$$

where $1 - a^2x^2 > 0$. Assumes that $F'(x) \leq 0$ for all $x \in [0, 1)$.

Then F is a increasing function in $[0,1)$ and follows of this that $F(y) \leq F(x) \leq F(0) = 0$, for all $y > x \in [0, 1)$. Since that F is continuo in $[0,1]$, we have that $0 = F(1) \leq F(x) \leq 0$, for all $x \in [0, 1)$. So $F = 0$ in $[0,1)$ (contradiction)

This proves that there exists points where $K_{01} < 0$.
3. Chen-LeBrun-Weber metric

In [2], Chen, LeBrun and Weber proved that \(M = \mathbb{CP}^2 \# 2 \mathbb{CP}^2 \) admits an Hermitian non-Kaehler Einstein metric \(g \). In particular, there exists a Kaehler metric \(h \) on \(M \) of positive scalar curvature \(s \) such that \(g = s^2 h \). Now consider \(W^+_h \) and \(W^+_g \) the self-dual Weyl part of the Weyl tensor \(W \) of the respective metrics \(h \) and \(g \). Since that \(h \) and \(g \) are conformally related we have \(W^+_g = \frac{1}{s^2} W^+_h \). On the other hand, the self-dual tensor \(W^+_h \) of the Kaehler metric \(h \) has exactly two different eigenvalues and so \(W^+_g \) has also two different eigenvalues. By Proposition 4 of Derdzinski [3], \(M \) admits an non trivial Killing vector field with respect to metric \(g \). Assumes that \(M \) has non negative sectional curvature with respect to metric \(g \). Then \(M \) is a compact simply connected 4-manifold with non negative sectional curvature and with a non trivial Killing vector field. By Theorem 1 of Searle and Yang in [7], we have that the Euler characteristic of \(M \) satisfies \(\chi(M) \leq 4 \) which contradicts the fact of that \(\chi(\mathbb{CP}^2 \# 2 \mathbb{CP}^2) = 5 \).

References

[1] Berger, M. Les varietes Kaehlerienes compacts d’Einstein de dimension quatre a courbure positive. Tensor. 13(1963) 71-74.
[2] Chen, X. LeBrun, C. and Weber B. On Conformally Kahler Einstein Manifolds. Journ. Amer. math. Soc. 21(2008) 1137-1168.
[3] Derdzinsky, A. Self-dual Kaehler manifolds and Einstein manifolds of dimension four. Comp. Math. 49(1983) 405-433.
[4] Koca, C. Einstein Hermitian Metrics of Positive Sectional Curvature. arXiv:1112.4181v1 [math.DG] 18 Dec 2011.
[5] LeBrun, C. On Einstein Hermitian 4-manifold. arXiv : 1010.0238v1 [math.DG] 10 Oct 2010.
[6] Page, D. A compact rotating gravitational instanton. Phys. Lett. B, 79 (1979) 235-238.
[7] Searle, C. and Yang, D. On the topology of nonnegatively curved simply connected 4-manifolds with continuous symmetry. Duke Math. J., 74(1994), 547-556.

Author’s address:
Mathematics Department, Federal University of Bahia,
zipcode: 40170110- Salvador -Bahia-Brazil
Author’s email
ezio@ufba.br