ON THE EXPECTATION OF THE FIRST EXIT TIME OF A NONNEGATIVE MARKOV PROCESS STARTED AT A QUASISTATIONARY DISTRIBUTION

By Moshe Pollak

Hebrew University of Jerusalem

AND

By Alexander G. Tartakovsky

University of Southern California

Let \(\{M_n\}_{n \geq 0} \) be a nonnegative Markov process with stationary transition probabilities. The quasistationary distributions referred to in this note are of the form

\[Q_A(x) = \lim_{n \to \infty} P(M_n \leq x | M_0 \leq A, M_1 \leq A, \ldots, M_n \leq A). \]

Suppose that \(M_0 \) has distribution \(Q_A \) and define

\[T_{QA}^A = \min\{n | M_n > A, n \geq 1\}, \]

the first time when \(M_n \) exceeds \(A \). We provide sufficient conditions for \(\mathbb{E} T_{QA}^A \) to be an increasing function of \(A \).

1. Introduction. Quasistationary distributions come up naturally in the context of first-exit times of Markov processes. Of special interest — in particular in statistical applications — is the case of a nonnegative Markov chain, where the first time that the process exceeds a fixed level signals that some action is to be taken. The quasistationary distribution is the distribution of the state of the process if a long time has passed and yet no crossover has occurred.

Various topics pertaining to quasistationary distributions are existence, calculation, simulation, etc. For an extensive bibliography see Pollett (2008).

*This work was supported by the U.S. Army Research Office MURI grant W911NF-06-1-0094 and by the U.S. National Science Foundation grant CCF-0830419 at the University of Southern California. The work of Moshe Pollak was also supported by a grant from the Israel Science Foundation and by the Marcy Bogen Chair of Statistics at the Hebrew University of Jerusalem.

†Corresponding author.

AMS 2000 subject classifications: Primary 60J05; 60J20; 60F25; secondary 62L10; 62L15; 60G40

Keywords and phrases: Markov Process, Stationary Distribution, Quasistationary Distribution, First Exit Time, Changepoint Problems
The topic addressed in this note deals with a certain aspect of the quasistationary distribution Q_A as a function of A. Pollak and Siegmund (1986) have shown, under certain conditions, that if a stationary distribution Q exists, then $Q_A \to Q$ as $A \to \infty$. Here we study the behavior of the expected time of the first exceedance of A by a Markov process started at Q_A, as a function of A. Specifically, we provide conditions under which it is increasing. Our interest stems from a result in changepoint detection theory, where a certain Markov chain that calls for a declaration that a change has taken place when a level A has been exceeded has certain asymptotic optimality properties if started at the quasistationary distribution Q_A (cf. Pollak, 1985; Tartakovsky et al., 2010).

2. Results and Examples. Let (Ω, \mathcal{F}, P) be a probability space, and let $\{M_n\}_{n=0}^\infty$ be an irreducible Markov process defined on this space taking values in $\mathcal{M} \subseteq [0, \infty)$ and having stationary transition probabilities $\rho(t, x) = P(M_{n+1} \leq x | M_n = t)$.

Let $T_A = \min\{n | M_n > A; n \geq 0\}$, and assume that:

(C1) The quasistationary distribution $Q_A(x) = \lim_{n \to \infty} P(M_n \leq x | T_A > n)$ exists for all $A > A_0 \geq 0$ (for some $A_0 < \infty$) and satisfies $Q_A(0) = 0$.
(C2) $\rho(s, x)$ is nonincreasing in s for all fixed $x \in \mathcal{M}$.
(C3) $\rho(ts, tx)$ is nondecreasing in t for all fixed $s, x \in \mathcal{M}$.
(C4) $\rho(s, x)/\rho(s, A)$ is nonincreasing in s for all fixed $x \in \mathcal{M}, x \leq A$.
(C5) $\rho(ts, tx)/\rho(ts, tA)$ is nondecreasing in t for all fixed $s, x \in \mathcal{M}, x \leq A$.

Now regard the case where M_0 has distribution Q_A and define

$$T_A^{Q_A} = \min\{n | M_n > A; n \geq 1; M_0 \sim Q_A\}.$$

Theorem. Let the conditions (C1)-(C5) be satisfied. Then

(i) $Q_{yA}(yx) \geq Q_A(x)$ for all $y \geq 1$ and all fixed $x \in \mathcal{M}, x \leq A$;

(ii) $ET_A^{Q_A} \leq ET_{yA}^{Q_A}$ for all $y \geq 1$.

Before proving the theorem, we provide examples that show that although the conditions (C1)-(C5) are restrictive, nevertheless they are satisfied in a number of interesting cases.

Suppose $\{M_n\}_{n \geq 0}$ obeys a recursion of the form

$$M_{n+1} = \varphi(M_n) \cdot \Lambda_{n+1}, \quad n = 0, 1, \ldots,$$

where
Expectation of the First Exit Time

(D1) \(\{ \Lambda_i \}_{i \geq 1} \) are iid positive and continuous random variables;
(D2) the distribution function \(F \) of \(\Lambda_i \) satisfies
\[
\frac{F(tx)}{F(tA)} \text{ increases in } t \text{ for fixed } x \in \mathcal{M}, x \leq A;
\]
(D3) \(\varphi(t) \) is continuous, positive and nondecreasing in \(t \);
(D4) \(t/\varphi(t) \) is nondecreasing in \(t \);
(D5) \(\varphi \) and \(F \) are such that \(P(\lim_{n \to \infty} M_n = 0) = 0 \).

In this example,
\[\rho(s, x) = F \left(\frac{x}{\varphi(s)} \right).\]

Under these conditions, Theorem III.10.1 of Harris (1963) can be applied to obtain existence of a quasistationary distribution. The conditions (D1)–(D5) are easily seen to imply the conditions (C1)–(C5).

Condition (D2) is satisfied, for example, if the distribution function of \(\log(\Lambda_1) \) is concave. Many “popular” Markov processes fit this model, some of which we now outline.

(I) The exponentially weighted moving average (EWMA) processes:
\[
Y_{n+1} = \alpha Y_n + \xi_{n+1}, \quad n \geq 0,
\]
where \(0 \leq \alpha < 1 \) and \(\{ \xi_i \} \) are iid random variables. Define \(M_n = e^{Y_n} \), \(\Lambda_n = e^{\xi_n} \). Here \(\varphi(t) = t^\alpha \).

(II) Let \(a > 0 \) and \(\varphi(t) = t + a \), so that \(M_{n+1} = (M_n + a)\Lambda_{n+1} \). When \(a = 1 \) and \(\Lambda_{n+1} \) is a likelihood ratio \(\Lambda_{n+1} = f_1(X_{n+1})/f_0(X_{n+1}) \) where \(X_i \) are iid), \(\{ M_n \}_{n \geq 0} \) is a sequence of Shiryaev-Roberts statistics for detecting a change in distribution of \(X_i \), from density \(f_0 \) to \(f_1 \). The standard Shiryaev-Roberts procedure calls for setting \(M_0 = 0 \), specifying a threshold \(A \) and declaring at \(T_A = \min \{ n | M_n > A \} \) that a change took place. A procedure \(T^Q_A \) that starts at a random point \(M_0 \sim Q_A \) has asymptotic optimality properties (cf. Moustakides et al., 2010; Pollak, 1985; Tartakovsky et al., 2010). Another setting is where \(r_i \) is the return on (one unit of) investment in the \(i \)th period and \(\Lambda_i = 1 + r_i \), so that an investment of \(m \) units at the beginning of the \(i \)th period will be worth \(m\Lambda_i \) at its end. If one invests \(a \) units at the beginning of the first period, reinvests the \(a\Lambda_i \) units and adds another \(a \) units at the beginning of the second period, and continues this way (i.e., always reinvesting and adding \(a \) units at every period), then the process
\[M_{n+1} = \varphi(M_n)\Lambda_{n+1} \] with \(\varphi(t) = t + a \) describes the scheme.

(III) The random walk reflected from the zero barrier:

\[Y_0 = 0, \quad Y_{n+1} = (Y_n + Z_{n+1})^+, \quad n = 0, 1, \ldots, \]

where \(\{Z_i\} \) are iid, \(P(Z_i < 0) > 0 \). Note that on the positive half plane the trajectory of the reflected random walk \(\{Y_n\}_{n \geq 0} \) is identical to the trajectory of the Markov process \(\{Y^*_n\}_{n \geq 0} \) given by the recursion

\[Y^*_0 = 0, \quad Y^*_{n+1} = (Y^*_n)^+ + Z_{n+1}, \quad n = 0, 1, \ldots \]

Therefore, if \(\log A > 0 \) one may operate with \(Y^*_n \) instead of \(Y_n \) and all conclusions will be the same. Define

\[M_n = e^{Y^*_n} \quad \text{and} \quad \Lambda_i = e^{Z_i}, \]

so that

\[M_{n+1} = \max(M_n, 1)\Lambda_{n+1}, \quad n \geq 0. \]

Here \(\varphi(t) = \max(1, t) \). This process describes a broad class of single-channel queuing systems (see, e.g., Borovkov, 1976). This setting can also be applied to the Cusum scheme for detecting a change in distribution, when \(Z_i = \log[f_1(X_i)/f_0(X_i)] \) and \(X_i, f_0 \) and \(f_1 \) are as in (II).

Proof of Theorem. Let \(\{U_n\}_{n \geq 0} \) be a Markov process with stationary transition probabilities

\[P(U_{n+1} \leq x|U_n = t) = \frac{\rho(t, x)}{\rho(t, A)}, \quad x \leq A, \]

where \(A > 0 \) is fixed and \(U_0 \) has an arbitrary distribution (possibly degenerate) on \([0, A]\). Let \(y > 1 \) and define \(W_n = yU_n \).

Let \(\{V_n\}_{n \geq 0} \) be a Markov process with \(V_0 = W_0 = yU_0 \), having stationary transition probabilities

\[P(V_{n+1} \leq x|V_n = t) = \frac{\rho(t, x)}{\rho(t, yA)}, \quad x \leq yA. \]

Clearly, the stationary distribution of \(\{V_n\} \) is \(Q_{yA}(x) \) and that of \(\{W_n\} \) is \(Q_A(x/y) \).

Since

\[P(V_1 \leq x|V_0) = \frac{\rho(V_0, x)}{\rho(V_0, yA)} \geq \frac{\rho \left(\frac{1}{y}V_0, \frac{1}{y}x \right)}{\rho \left(\frac{1}{y}V_0, A \right)} \]

\[= P \left(U_1 \leq \frac{1}{y}x|U_0 = \frac{1}{y}V_0 \right) = P(W_1 \leq x|W_0 = V_0), \]

\[\implies P(V_1 \leq x|V_0) \leq \frac{\rho(V_0, x)}{\rho(V_0, yA)} \]
it follows that \(V_1 \preceq W_1 \) (stochastically smaller). Therefore, one can construct a sample space on which \(U_0, U_1, V_0, V_1, W_0, W_1 \) are all defined and such that \(V_1 \geq W_1 \) a.s. Write \(V_1 = s, W_1 = t \) where \(s \leq t \leq yA, s, t \in \mathcal{M} \). Now

\[
P(V_2 \leq x|V_1 = s) = \frac{\rho(s, x)}{\rho(s, yA)} \geq \frac{\rho(t, x)}{\rho(t, yA)} \geq \frac{\rho \left(\frac{1}{y} t, \frac{1}{y} x \right)}{\rho \left(\frac{1}{y} t, A \right)} \geq P(U_2 \leq \frac{1}{y} x|U_1 = \frac{1}{y} t) = P(W_2 \leq x|W_1 = t),
\]

so that \(V_2 \preceq W_2 \), and one can construct a sample space on which \(U_0, U_1, U_2, V_0, V_1, V_2, W_0, W_1, W_2 \) are all defined and \(V_0 = W_0, V_1 \geq W_1, V_2 \leq W_2 \) a.s.

Continuing this inductively, one obtains a sample space on which \(\{U_n\}, \{V_n\}, \{W_n\} \) are all defined and \(V_n \leq W_n \) a.s. for all \(n \geq 0 \). Consequently, \(\lim_{n \to \infty} P(V_n > x) \leq \lim_{n \to \infty} P(W_n > x) \), i.e., \(Q_{yA}(yA) \geq Q_A(x) \), accounting for (i).

To prove (ii), note that both first exit times \(T_A^Q \) and \(T_{yA}^Q \) are geometrically distributed random variables, so that

\[
E T_A^Q = \frac{1}{1 - \int_0^A \rho(s, A) \, dQ_A(s)}
\]

and

\[
E T_{yA}^Q = \frac{1}{1 - \int_0^{yA} \rho(s, yA) \, dQ_{yA}(s)}.
\]

Hence, it suffices to show that

\[
\int_0^{yA} \rho(s, yA) \, dQ_{yA}(s) \geq \int_0^A \rho(s, A) \, dQ_A(s) \quad \text{for } y \geq 1.
\]
Note that $\rho(ds, t) \leq 0$. Therefore, integrating by parts yields
\[
\int_0^{y_A} \rho(s, y_A) dQ_{y_A}(s) = \rho(s, y_A)Q_{y_A}(s)
\]
\[
\left. \right|_{0}^{y_A} - \int_0^{y_A} Q_{y_A}(s)\rho(ds, y_A)
\]
\[
= \rho(y_A, y_A) - \int_0^{y_A} Q_{y_A}(s)\rho(ds, y_A) \quad \text{(since $Q_{y_A}(0) = 0$ by (C1))}
\]
\[
\geq \rho(y_A, y_A) - \int_0^{y_A} Q_{y_A}(s/y)\rho(ds, y_A) \quad \text{(by (i))}
\]
\[
= \rho(yt, yA)Q_A(t)\bigg|_{0}^{A} - \int_0^{A} Q_A(t)\rho(d(yt), yA)
\]
\[
= \int_0^{A} \rho(yt, yA) dQ_A(t)
\]
\[
\geq \int_0^{A} \rho(t, A) dQ_A(t) \quad \text{(by condition (C3))},
\]
which completes the proof. \hfill \Box

REFERENCES

BOROVKOV, A.A. (1976). *Stochastic Processes in Queuing Theory*. Springer-Verlag, New York.

HARRIS, T.E. (1963). *The Theory of Branching Processes*. Springer Verlag, Berlin. MR0163361

MOUSTAKIDES, G.V., POLUNCHENKO, A.S., and TARTAKOVSKY, A.G. (2010). A numerical approach to performance analysis of quickest change-point detection procedures. *Statistica Sinica*, in press.

POLLAK, M. (1985). Optimal detection of a change in distribution. *Ann. Statist*. 13 206–227. MR0773162

POLLAK, M. AND SIEGMUND, D. (1986). Convergence of quasistationary to stationary distributions for stochastically monotone Markov processes. *J. Appl. Prob.* 23 215–220. MR0826924

POLLETT, P.K. (2008). Quasi-stationary distributions: a bibliography. www.maths.uq.edu.au/~pkp/papers/qstds/qstds.pdf

TARTAKOVSKY, A.G., POLLAK, M., and POLUNCHENKO, A.S. (2010). Third-order asymptotic optimality of the generalized Shiryaev-Roberts change-point detection procedures. *Bernoulli*, submitted.

M. POLLAK
Hebrew University of Jerusalem
Department of Statistics
Mount Scopus, Jerusalem, 91905, Israel
E-mail: msmp@mscc.huji.ac.il

A. G. TARTAKOVSKY
University of Southern California
Department of Mathematics
3620 S. Vermont Ave, KAP-416E
Los Angeles, CA 90089-2532, USA
E-mail: tartakov@usc.edu