A retrospective evaluation of critically ill patients infected with H1N1 influenza A virus in Bursa, Turkey, during the 2009–2010 pandemic

Kelebek Girgin Nermin1, Iscimen Remzi1, Akogul Zeynep1, Gimen Ilker1, Oner Torlar Meltem2, Ozkaya Guven1, Kahveci Ferda1, Alakan Halis2

1. Uludag University, School of Medicine, Department of Anaesthesiology and Reanimation
2. Uludag University, School of Medicine, Department of Microbiology and Infectious Disease
3. Uludag University, School of Medicine, Department of Biostatistics

Abstract
Background: H1N1 influenza A virus infections were first reported in April 2009 and spread rapidly, resulting in mortality worldwide. The aim of this study was to evaluate patients with H1N1 infection treated in the intensive care unit (ICU) in Bursa, Turkey.

Methods: Demographic characteristics, clinical features, and outcome relating to H1N1 infection were retrospectively analysed in patients treated in the ICU.

Results: Twenty-three cases of H1N1 infection were treated in the ICU. The mean age of patients was 37 years; 17–82. Fifteen patients were female (65.2%). The mean Acute Physiology and Chronic Health Evaluation (APACHE II) score was 19 range: 5–39. The most common symptoms were dyspnea (73.9%), fever (69.6%), and cough (60.9%). Mechanical ventilation was required for all patients. Oseltamivir and antibiotics were administered to all patients. Six (26.1%) patients died. APACHE II scores were higher in the deceased 28.5 range: 16–39 vs. 14 range: 5–28 in survivors; p < 0.013.

Conclusion: When compared to the literature, the demographic, epidemiological, and clinical characteristics were similar in the cases we encountered. The mortality rate was high despite the use of appropriate treatment. We believe that the high mortality is related to higher APACHE II scores. The H1N1 virus should be considered in community acquired pneumonia, especially in younger patients presenting with severe pneumonia.

Key words: pandemic influenza, H1N1 infection, critically ill patient, intensive care unit

DOI: http://dx.doi.org/10.4314/ahs.v15i2.7

Introduction
In 2009, millions of people worldwide were affected by the rapid person-to-person spread of the H1N1 influenza A virus. In June 2009, the World Health Organisation (WHO) declared a level 6 warning for this new influenza pandemic. The H1N1 virus spread aggressively in Turkey during October 2009–January 2010, reaching a peak during November 2009 as the first critically ill patient was admitted to our ICU on the 12th of November 2009, and then admitted to our ICU on the 15th of November 2009 as the first critically ill patient with respiratory failure due to H1N1 infection. Uludag University Hospital is the only tertiary care centre established by the government in Bursa, and is also the major reference centre for the southern Marmara region. Bursa is the fourth largest city in Turkey, with a population of approximately 2 million residents.

As the first pandemic of the 21st century, this infection primarily affected those with underlying respiratory and cardiac disease, children, young adults, and pregnant women. Although early symptoms similar to seasonal influenza were observed, cases of H1N1 infection progressed to viral pneumonia, respiratory failure, hypoxia, and organ failure resulting in death. Some cases were treated in the ICU, and mortality was reported to be 5%–50%.

This retrospective study describes the demographic characteristics, clinical features, and outcome of adult patients with severe H1N1 virus infection who were treated in the ICU for respiratory failure from November 2009 to February 2010.

Methods
The study was approved by the Hospital Ethics Committee. A retrospective analysis of patients diagnosed with H1N1 influenza A infection who were treated in the ICU of Uludag University Hospital in Bursa, Turkey, during November 2009 to February 2010 was carried out.

Features of the ICU and the hospital
The ICU of Uludag University Hospital’s Anaesthesiology Department is a 19-bed mixed (surgical and medical) unit that cares exclusively for adult patients. There are a total of 6 doctors (3 senior consultants and 3 anaesthesiology residents) caring for the patients. Additionally, a senior consultant from the Infectious Diseases Department examines the patients on a daily basis. Admission to the unit is based on many indications, including acute respiratory failure requiring invasive/non-invasive mechanical ventilation, which is relevant to this study.

Patients and assessment
Data related to the epidemiology of the cases and the treatment process were considered. A record was made of age, gender, presence of co-morbidity, pregnancy or childbirth within the previous 28 days, initial symptoms, and time from reporting of the initial symptoms to admittance to the ICU and evaluation of APACHE II scores. Individuals with a body mass index (BMI) of 30–40 were classified as obese, whereas those with a BMI >40 were considered as morbidly obese.

An examination was made of the pulmonary radiographic findings collected during each patient’s ICU stay; PaO2/FiO2 ratios, laboratory parameters (leucocytes, thrombocytes, urea, creatinine, aspartate aminotransaminase, alanine aminotransaminase), treatments applied during hospitalisation (invasive mechanical ventilation [IMV], non-invasive mechanical ventilation [NIMV], antiviral therapy, antibiotic therapy and corticosteroids), virological validation results, duration of ICU stay, and mortality were evaluated.

Statistical analysis
Statistical analysis was carried out using SPSS 13.0 (Statistical Package for Social Sciences). The conformity of the variables to normal distribution was examined using the Shapiro–Wilks test. Continuous and discrete variables were expressed as median values (minimum-maximum). The Mann–Whitney U, Pearson Chi-Square, and Fisher exact chi-square tests were used in the comparison of variables between groups. Categorical variables were expressed numerically and as percentages. The risk factors affecting mortality were analysed with logistic regression analysis. A value of p < 0.05 was accepted as statistically significant.

Results
During the study period, 23 patients with a diagnosis of H1N1 infection were treated in the ICU. All patients who were suspected to have contracted H1N1 were admitted to the ICU based on the WHO case definitions. A respiratory sample was obtained for virological validation from all patients, and polymerase chain reaction testing was performed. The mean age of the patients was 37 years (17–82 years). Fifteen patients were female (65.2%) and 8 were male (34.8%). There were 4 pregnant women and 1 post-partum patient. The 4 pregnant women gave birth by Caesarean section during the treatment period. Twelve (52.2%) patients were admitted directly to the ICU from the emergency room, 6 (26.1%) from the hospital clinic, and 5 (21.7%) were transferred from surrounding hospitals. The demographic characteristics and co-morbidities of the cases are summarised in Table 1.

The 2 most frequent symptoms were dyspnoea (73.9%)...
and fever (60.6%) (Table 1). The time period from the onset of symptoms to ICU admittance was a mean of 5 days (1–21 days). In 14 cases of radiologically confirmed pneumonia, the mean PaO2/FiO2 ratio was 64.5 (46.5–198). There was no statistically significant difference between the surviving patients and the deceased patients in terms of pulmonary radiographic findings, mean PaO2/FiO2 ratios, and laboratory parameters (Table 2).

No bacterial agents known to cause pneumonia were found in the routine cultures from endotracheal aspirate samples. All patients received oseltamivir (150–300 mg/day for 10 days) and antibiotherapy. In addition, 10 (43.5%) patients received corticosteroids (Table 3). The mean duration of stay in the ICU was 14 days (4–16 days). The other 5 (21.7%) patients were supported with NIMV only (Table 3).

No patients died during the admission period, and 17 patients were discharged from the ICU. The non-survivors included 4 with underlying chronic conditions (1 diabetes, 1 hypertension, 1 cardiopathy, and 1 cerebrovascular disease). All cases (n=23) of influenza A (H1N1) virus were hospitalized and treated in the ICU. Of these, 17 patients were considered survivors and 6 patients were classified as nonsurvivors. (Table 3).

Table 1. Demographic characteristics and co-morbidities of the patients with influenza A (H1N1) virus

Variable	(n=23)
Age, median (range)	37 (17-82)
Female sex (n) (%)	15 (65.2)
APACHE II score, median (range)	19 (5-39)
BMI, median (range)	26.9 (13-42)
Comorbidity (n)	
Asthma	2
Diabetes	1
Hypertension	1
Congestive heart failure	1
Alzheimer Disease	1
Malignancy	1
Cerebral palsy	1
Sleep apnea syndrome	1
Morbid obesity	1
Pregnancy+postpartum	4+1
Signs and symptoms* (n) (%)	
Dyspnea	17 (73.9)
Fever	16 (69.6)
Cough	14 (60.9)
Myalgia	5 (21.7)
Sore throat	3 (13)
Rhinorrhea	2 (8.7)
Skin eruption	1 (4.3)
Nausea/vomiting	1 (4.3)
Subconjunctival hemorrhage	1 (4.3)
Days from onset of symptoms to ICU admission, median (range)	5 (1-21)
ICU length of stay, median (range)	14 (4-119)
ICU mortality, (n) (%)	6 (26.1)

Table 2. Radiographic findings, oxygenation and laboratory data of the patients with influenza A (H1N1) virus

Radiographic findings	All Cases (n=23)	Survivors (n=17)	Nonsurvivors (n=6)	P value
No infiltration (n) (%)	9 (%39.1)	8	1	
Unilateral infiltration (n) (%)	10 (%43.5)	6	4	0.480
Bilateral infiltration (n) (%)	4 (%17.4)	3	1	
Oxygenation PaO2/FiO2, median (range)	64.5 (46.5–198)	66.5 (46.5–198)	60.6 (51-90.2)	0.431

Laboratory data	median (range)
WBC count (K/µL)	8400 (630-20800)
Platelet count (K/µL)	222669 (156000-548000)
Urea (mg/dl)	25 (9-151)
Creatinine (mg/dl)	0.8 (0.5-2.9)
AST (IU)	43 (14-767)
ALT (IU)	24 (10-453)

WBC: White blood cell. AST: Aspartate aminotransferase, ALT: Alanine aminotransferase.
Table 3: Characteristics of treatments of the patients with influenza A (H1N1) virus

Characteristic	All Cases (n=23)	Survivors (n=17)	Nonsurvivors (n=6)	P value
NIMV (n) (%)	12 (52.2)	7 (41.2)	5 (83.3)	0.155
IMV (n) (%)	6 (26.1)	6 (35.3)	0 (0)	0.144
NIMV+IMV (n) (%)	5 (21.7)	4 (23.5)	1 (16.7)	1.000
Duration of IMV (day), median (range)	10 (0-119)	6 (0-43)	16.5 (3-119)	0.135
Duration of NIMV (day), median (range)	0 (0-5)	1 (0-5)	0 (0-3)	0.177
Days from onset of symptoms to first oseltamivir dose, median (range)	4 (1-22)	4 (1-22)	4 (2-6)	0.562
Days from onset of symptoms to first antibiotic dose, median (range)	5 (1-22)	6 (1-22)	4 (2-6)	0.431
Duration of antibiotic use, median (range)	5 (1-22)	6 (1-22)	4 (2-6)	0.431
Days from onset of symptoms to steroid median (range)	0 (0-23)	0 (0-23)	5 (0-8)	0.431

NIMV: Invasive mechanical ventilation
NIMV: Noninvasive mechanical ventilation
were discharged with medication. None of the obese patients died.

No statistically significant difference was observed in terms of demographic and laboratory data between those who received corticosteroids and those who did not. Corticosteroid use also had no effect on survival.

When risk factors affecting mortality were examined with logistic regression analysis, co-morbidity was found to be a factor that influenced patient mortality (p = 1.000). The variables of the APACHE II score (p = 0.009), laboratory values (leucocytes, p = 0.007; thrombocytes, p = 0.007; urea, p = 0.009; creatinine, p = 1.000; aspartate aminotransferase, p = 0.995; alanine aminotransferase, p = 0.998), pulmonary radiograph findings (p = 0.994), steroid use (p = 0.997), and the length of ICU stay (p = 0.998) were not found to be significant (logistic model significance, p = 0.009).

Discussion

We conducted a retrospective study of cases with severe H1N1 influenza virus infection who were treated in the ICU for respiratory failure from November 2009 to February 2010. We aimed to describe the demographic characteristics, clinical features, and outcome of adult patients with this condition.

The cases examined in this study represent a population affected by a pandemic. Patients infected with pandemic H1N1 influenza A virus were determined to be of a younger age than patients infected with the seasonal influenza virus. It has been suggested that patients >60 years of age may be immune to the H1N1 virus or previous infection with influenza virus which has similar antigenic structures[9,14]. Nin et al. reported that only 9% of patients diagnosed with H1N1 infection and admitted to the ICU were >65 years of age. Other studies that have reported the patient age to be 27–44 years support this finding[10,11,14,15]. Our data also confirmed that the majority of patients infected with H1N1 were young adults.

The majority of the patients with H1N1 infection had a risk factor such as a co-morbidity or were pregnant[11,17,18]. In the current study, 60.9% of cases had an accompanying risk factor, which is a similar finding in previously mentioned studies. In addition to chronic disease and immunosuppression, the risk of H1N1 influenza infection increases during pregnancy[13,19,20]. In a study of pregnant women with serious influenza infection in Australia, the relative risks of H1N1 infection were 3.19 (95% CI: 1.12–9.55) during hospitalisation. There were no significant findings related to the pulmonary radiograph screens of the remaining patients (39.1%) during hospitalisation.

The use of neuroaminidase inhibitors is recommended in cases of proven or suspected H1N1 infection[9]. A study by Louie et al. reported starting antiviral treatment within 48 hours of the onset of symptoms. Poppel et al. reported the use of oseltamivir in 70.8% and Darwood et al. in 74% of cases. Oseltamivir was used in all cases in the current study. This was because of the outbreak reaching our country later than other countries and the availability of results from published medical articles relating to the effectiveness of this antiviral agent. While the duration from the onset of symptoms to starting treatment was reported as 1.5 days by Louie et al.[10], this period was 4 days in the current study. This delay may be due to late presentation at the hospital by patients following the onset of symptoms. In addition to antiviral therapy, antibiotherapy has been widely applied to cases of H1N1 infection[11,12,13]. Jain et al. determined that 79% of patients presenting at the hospital received antibiotherapy and of these patients, 70% used more than one antibiotic. In that study, it was reported that 3 days passed from the onset of symptoms to presentation at a hospital. Kumar et al. reported a rate of 98.8% for antibiotherapy in cases treated for H1N1 infection in the ICU, with a period of 5 days from the onset of symptoms to admittance to ICU.

In the current study, as the period from the onset of symptoms to admittance was determined to be 5 days, antibiotherapy was applied to all cases to cover all typical and atypical pneumonia agents.

The use of corticosteroids for the treatment of critical cases with H1N1 infection in the ICU has come into practice[21,22,23]. In cases of respiratory impairment associated with serious H1N1 infection, corticosteroid use has been reported as 51%–69%[2,3]. While some researchers have administered corticosteroids to patients with co-morbidities such as chronic obstructive pulmonary disease and asthma[7], others have administered corticosteroids in the early stages of infection to all patients admitted to the ICU with H1N1 infection[10]. It has been suggested that the early stage administration of corticosteroids has not improved prognosis[24] and has even increased the risk of superinfection[25]. In the current study, a dosage of 1 mg/kg of methylprednisolone was administered to 10 (43.5%) patients, and the use of corticosteroids was determined to have had no effect on mortality.

Limitation

Firstly, the study was conducted retrospectively. Secondly, because the patients examined in the studies were limited to those in our centre only, the sample size was small, and this could affect the conclusions drawn from the study.

Conclusion

When compared to reports in the literature, the demographic, epidemiological, and clinical characteristics of the patients in those studies were similar to the patients in our study. Patient mortality was high despite the use of appropriate antiviral and antibiotic treatment. We believe that the high mortality rate may be related to the higher APACHE II scores during admission to the ICU, and to the delayed antiviral treatment and mechanical...
ventilation support due to late admission to hospital. The pandemic influenza A H1N1 virus should be considered in the differentiation of community-acquired pneumonia, especially in younger patients presenting with severe pneumonia and who need mechanical ventilation.

References

1. Centers for Disease Control and Prevention. Swine influenza A (H1N1) infection in two children-Southern California, March-April 2009. MMWR Morb Mortal Wkly Rep 2009;58:400-402.
2. Poeppl W, Helf M, Hecker H et al. Clinical aspects of 2009 pandemic influenza A (H1N1) virus infection in Austria. Infection 2011;39(4):341-352.
3. World Health Organization (WHO). Pandemic (H1N1) 2009 Influenza. Clinical Advisory Committee of the WHO Consultation on Clinical Management with Severe Pneumonia. WHO/EN/CDC/NovelInfluenzaA/H1N1/2009/WHO/2009/25-Sep.pdf.
4. World Health Organization (WHO). Turkey reports first cases of influenza A (H1N1). http://www.euro.who.int/en/home/sections/news/news?root_node_11561
5. World Health Organization (WHO). Pandemic (H1N1) 2009. http://www.who.int/csr/disease/swineflu/en/index.html
6. Webb SA, Pettilä V, Seppelt I et al. The ANZIC Influenza Investigators. Critical care services and 2009 pandemic influenza A (H1N1) virus infection. N Engl J Med 2010;362(21):1708-1719.
7. Webb SA, Pettilä V, Seppelt I et al. The ANZIC Influenza Investigators. Critical care services and 2009 H1N1 influenza in Australia and New Zealand. N Engl J Med 2009;361(20):1925-1934.
8. Dominguez-Cherit G, Lapinsky SE, Macias AE et al. Critically Ill patients with 2009 influenza A(H1N1) in Mexico. JAMA 2009;302(17):1880-1887.
9. Kumar A, Zarzanyans R, Pinto R et al. Critically ill patients with 2009 influenza A(H1N1) infection in Canada. JAMA 2009;302(17):1872-1879.
10. Nin N, Soto L, Hurtado J et al. Clinical characteristics and outcomes of patients with 2009 influenza A(H1N1) virus infection with respiratory failure requiring mechanical ventilation. J Crit Care 2011;26(2):186-192.
11. Mckie A, Danisuevičiūtė I, Vanagaite N et al. Hospitalized adult patients with 2009 pandemic influenza A (H1N1) in Kaunas, Lithuania. Medicina (Kau- nas) 2011;47(1):11-18.
12. Mady A, Ramadan OS, Yousef A, Mandourah Y, Amr AA, Kherallah M. Clinical experience with severe 2009 H1N1 influenza in the intensive care unit at King Saud Medical City, Saudi Arabia. J Infect Public Health 2012;5(1):52-56.
13. Borgatta B, Pérez M, Rello J et al; pH1N1 GTE/SEMICYUC. Elevation of creatine kinase is associated with worse outcomes in 2009 pH1N1 influenza A infection. Intensive Care Med 2012;38(7):1152-1161.
14. World Health Organization (WHO). Infection prevention and control in health care for confirmed or suspected cases of pandemic (H1N1) 2009 and influenza-like illnesses. http://www.who.int/csr/resources/publications/swineInfluenza_infectioncontrolpdf
15. Jain S, Kamimoto I, Bramley AM et al. Hospitalized patients with 2009 H1N1 influenza in the United States, April-June 2009. N Engl J Med 2009;361(20):1935-1944.
16. Louie JK, Acosta M, Winter K et al. Factors associated with death or hospitalization due to pandemic 2009 influenza A (H1N1) infection in California. JAMA 2009;302(17):1896-1902.
17. Liu J, Zhang RF, Lu HZ et al. Sixty-two severe cases of seasonal and pandemic influenza A (H1N1) virulent strains associated with death or hospitalization in China. J Med Virol 2009;81(12):1912-1921.
18. Jamieson DJ, Honein MA, Rasmussen SA et al. Novel Swine-Origin Influenza A (H1N1) Virus Investigation Team. Pneumonia and respiratory failure from swine-origin influenza A (H1N1) virus in humans. N Engl J Med 2009;361(7):680-689.
19. Maraví-Poma E, Martin-Loeches I, Regidor E et al. Grupo Español de Trabajo de Gripe Grave A (SEMI CYUC). Severe 2009 A/H1N1v influenza A infection. Intensive Care Med 2010;36(1):27-34.
20. Mady A, Ramadan OS, Yousef A, Mandourah Y, Amr AA, Kherallah M. Clinical experience with severe 2009 H1N1 influenza in the intensive care unit at King Saud Medical City, Saudi Arabia. J Infect Public Health 2012;5(1):52-56.
21. Louie JK, Jean C, Acosta M, Samuel MC, Matyas BT, Schechter R. A review of adult mortality due to 2009 pandemic (H1N1) influenza A in California. PLoS One 2011;6(4):e18221.
22. Salazar LA, Salazar LA, Salazar LA et al. Influenza A (H1N1) 2009 influenza in the USA. J Infect Public Health 2011;4(1):11-18.
23. Van Kerkhove MD, Vandemaele KA, Shinde V et al. WHO Working Group for Risk Factors for Severe H1N1pdm Infection. Risk factors for severe outcomes following 2009 influenza A (H1N1) infection: a global pooled analysis. PLoS Med 2011;8(7):e1000453.