A simple method of intraoperative intubation tube change

Jin Yong Cho, Hyeon Min Kim, Jae Young Ryu
Department of Oral and Maxillofacial Surgery, Gachon University Gil Medical Center, Incheon, Korea

Abstract (J Korean Assoc Oral Maxillofac Surg 2014;40:250-252)

Nasotracheal intubation should be performed in patients with jaw fractures because maxillomandibular fixation is required. However, when there are concomitant fractures of the nose and facial bones, an intubation tube positioned at the nose makes it difficult to perform an intricate surgery. In order to overcome these problems, a variety of ways to change the position of the tube have been introduced. We describe a simple technique of switching the tube from a nasal to oral position, which was easily executed in a patient with concomitant nasal and mandibular fractures, accompanied by a literature review.

Key words: Airway management, Intubation, Jaw fractures

[paper submitted 2014. 6. 2 / revised 2014. 7. 8 / accepted 2014. 7. 17]

I. Introduction

Airway maintenance through naso-endotracheal intubation enables a surgeon to perform a successful surgery and avoid tube interference in patients requiring maxillo-mandibular fixation. However, if a patient is undergoing simultaneous nasal and oral surgery, nasal intubation can be an impediment in performing an accurate and esthetically successful procedure. Typically, naso-endotracheal intubation has been considered inappropriate in orthognathic surgery with rhinoplasty or concomitant fracture of the jaw and/or nasal bone.

In order to overcome this problem, Werther et al.1 contrived an effective way to convert nasal intubation to oral intubation without extubation. Submental intubation was described in 19862 as an alternative method to avoid tracheostomy and allow free intraoperative access to dental occlusion and to the nasal bone in severe maxillofacial trauma patients. Retromolar intubation3 is another method involving placement of a flexible armored tube in the retromolar area. Other options to manage the airway while maintaining an adequate arrangement for surgery include removing and replacing the tube, delaying the operation, and tracheostomy.

We describe a simple technique of switching the tube from a nasal to oral position, first introduced by Werther et al.1, which was easily executed in a patient with concomitant nasal and mandibular fractures.

II. Case Report

In the presented case, an ordinary nasal intubation was conducted by an anesthesiologist, and an adequate reduction of facial fractures with maxillomandibular fixation was completed. The fracture site was fixed with a plate and screws to stabilize the fractured segments. Before completion of the oral surgery, mobility between bony pieces during mouth opening was assessed. Because a considerable amount of mouth opening was needed to switch from the nasal tube to the oral tube, it was important to stably fix the fractures. All of the drapes around the patient’s head were removed to ensure proper visualization and prepare for an emergency if the airway was compromised. The patient was then hyperoxegenated through the nasal tube.(Fig. 1)

To prevent migration of the tube or accidental extubation, the tube was grasped firmly at the level of the tongue base using a long hemostat. After removal of the tube connector, the nasal tube was cut just outside of the naris.(Fig. 2) Then, the tube connector was assessed to ensure that it could be
possible without interference of the tube.

III. Discussion

Changing the intubation tube to the oral position from a nasal position is a very unusual situation and should be executed by oral and maxillofacial surgeons performing simultaneous maxillomandibular fixation and nasal surgery. To facilitate accuracy of dental occlusion and perform proper nasal surgery, a variety of ways to change the position of the tube have been introduced.

The traditional method is to remove the nasal endotracheal tube and reinsert it via the oral cavity. However, there is a risk of aspiration due to bleeding in the nasal and/or oral cavity during reintubation; thus, most anesthesiologists desire to avoid this method.

The alternative routes for maintaining an airway during an operation are tracheotomy and submental intubation. These
methods require additional surgery to form a space to insert the tube and can lead to complications including bleeding, injury to adjacent structures, emphysema, pneumothorax or pneumomediastinum, blockage or displacement of the cannula, tracheitis, cellulitis, tracheal stenosis, tracheoesophageal fistula, and major scarring. Goldenberg et al. reported that incidences of complications in tracheotomies range between 5% and 40%, with the agreed risk approximated at 15%. Lee et al. mentioned that the complications of submental intubation included salivary fistula, submental tunnel contamination or infection, hemorrhage and submental scarring.

Retromolar intubation was first introduced as a useful method for intubation in Pierre-Robin children by Bonfils. It is an effective method that does not interfere with the occlusion due to creation of a space in the retromolar site. Nevertheless, the problem with retromolar intubation is that the intubation tube is positioned in the operation field, and additional surgery, such as removal of the bone or extraction of the third molar, is necessary. If sufficient space is not secured, there is a risk of imprecise occlusion.

We have been utilizing the explained method of converting from a nasal to an oral endotracheal tube in patients with nasal and jaw fractures and have produced desirable results. The tube switching method introduced in this paper is noninvasive and technically simple. The time required for the tube switching is approximately 30 seconds. However, in a situation where a nasal endotracheal tube is not likely to be used, such as with an accompanied cranial base fracture, other methods for keeping the airway open during surgery should be considered.

Although there have not been any reported complications with our tube switching method, some problems are possible. If the surgeon does not grasp the intubation tube firmly on the oral side, the intubation tube could migrate during the push and pull motion. With less careful manipulation, a portion of the tube could also be torn. Lastly, it is necessary to keep the nasal and oral cavities clean before the tube change to reduce the possibility of aspiration due to excessive secretion or bleeding.

Tracheal tubes are composed of polyvinyl chloride (PVC), nylon, polytetrafluoroethylene, or silicone rubber. PVC tubes offer several advantages over other types of tubes and are therefore the most commonly used. There is a difference in the flexibility of PVC tubes depending on the type used. The proposed technique is recommended for use with a soft and flexible PVC tube.

Conflict of Interest

No potential conflict of interest relevant to this article was reported.

References

1. Werther JR, Richardson G, McIlwain MR. Nasal tube switch: converting from a nasal to an oral endotracheal tube without extubation. J Oral Maxillofac Surg 1994;52:994-6.
2. Hernández Altemir F. The submental route for endotracheal intubation. A new technique. J Maxillofac Surg 1986;14:64-5.
3. Martinez-Lage JL, Eslava JM, Cebrecos AI, Marcos O. Retromolar intubation. J Oral Maxillofac Surg 1998;56:302-5.
4. Lima SM Jr, Asprino L, Moreira RW, de Moraes M. A retrospective analysis of submental intubation in maxillofacial trauma patients. J Oral Maxillofac Surg 2011;69:2001-5.
5. Goldenberg D, Ari EG, Golz A, Danino J, Netzer A, Joachims HZ. Tracheotomy complications: a retrospective study of 1130 cases. Otolaryngol Head Neck Surg 2000;123:495-500.
6. Lee SS, Huang SH, Wu SH, Sun IF, Chu KS, Lai CS, et al. A review of intraoperative airway management for midface facial bone fracture patients. Ann Plast Surg 2009;63:162-6.
7. Bonfils P. Difficult intubation in Pierre-Robin children, a new method: the retromolar route. Anaesthetist 1983;32:363-7.
8. Arora S, Rattan V, Bhardwaj N. An evaluation of the retromolar space for oral tracheal tube placement for maxillofacial surgery in children. Anesth Analg 2006;103:1122-5.
9. Kirby RR, Gravenstein N, Lobato EB, Gravenstein JS. Airway devices and their application. In: Kirby RR, et al., eds. Clinical anesthesia practice. 2nd ed. Philadelphia: W. B. Saunders; 2002:303-28.