Association between the Medication Adherence and Treatment Satisfaction among Patients with Type 2 Diabetes in Guangdong Province, China

Zhiheng Zhou1,2,* , Zhijie Huang2, Baoxin Chen1, Chanjiao Zheng3 and Wenru Chen1
1Shenzhen Futian Hospital for prevention and treatment of Chronic Disease, Shenzhen, China
2Guangzhou Huali science and technology vocational college, Guangzhou, China
3Department of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
*Corresponding author

Abstract—Objective: To analyze the association between medication adherence and treatment satisfaction of the patients with type 2 diabetes at community health service center in China. Methods: 4,560 community T2DM patients were selected by cross-sectional study. We collected the patients’ data including the socio-demographic, medication knowledge, medication adherence and treatment satisfaction of T2DM. Results: Among the 4,560 T2DM patients, less a half of patients had good medication adherence. The satisfaction scores in the Effectiveness(62.3 ± 7.1), Side Effects(81.1 ± 10.5), Conveniences(63.7 ± 10.7), and Global Satisfaction domains(70.3 ±6.7) were low. There are positive correlation between adherence and overall treatment satisfaction score. We found that the main impact factors of medication adherence to antidiabetic therapy including educational level, income, duration of DM, pattern of antidiabetic treatment, presence of complication, number of medications, treatment satisfaction using logistic regression analysis. Conclusions: The T2DM patients’ medication adherence and treatment satisfaction at community health service center of China are not good. Low satisfaction is an important factor to disease the community type 2 diabetes patients’ medication adherence.

Keywords—diabetes mellitus; satisfaction; medication adherence

I. INTRODUCTION

Diabetes is a worldwide chronic disease with high blood glucose level for a prolonged time and with high morbidity and mortality1. Most European countries have formulated evidence-based guidelines to control those chronic diseases2,3. However, the effect is unsatisfactory4,5. Medications adherence (MA) is an important aspect of health care quality. Adherence is the obedience of the patient to the doctor’s advice6. However, medication nonadherence is common among type 2 diabetes (T2DM) patients7 which lead to poor prognosis and higher costs to the health care system8,9. Studies showed that the treatment satisfaction(TS) deeply affect the patient’s decision making of health10. Low treatment satisfaction was reported in chronic diseases patients China. Over one-half of chronic illness patients has been found to end up medication-related decisions even they did have medical advice10,11. Currently, there were many some studies about the assessment of adherence and treatment satisfaction, but only limited studies to research on the association between drug adherence and satisfaction of T2DM patients treated in primary care12,13,14,15.

A community health care services network has been built by China since 1997. The General practitioner was hoped to train as “gate-keeper” for primary care16. However, the management effect of diabetes mellitus in community health care services network is not satisfactory. In this study, we investigated the status of MA and TS, and analyze the association between MA and TS among the type 2 diabetes patients at community health service center(CHSC) of Guangdong province, China.

II. METHODS

A. Participants

22 CHSCs in Guangdong Province, China were selected from July to October in 2018. No less than 200 diabetes mellitus patients were selected in each CHSC survey and the total number of patients enrolled in this study was 4560. All respondents were type 2 diabetics patients who had been in community hospitals for more than one year. All patients were aged 20 years and over, were diagnosed with T2DM at least one year. They were treated for diabetes mellitus by anti-diabetes medications. All of the patients selected in this study were given verbal consent, and the personal information involved in the study was not opened.

B. Data Collection

A questionnaires was designed and used to collect the patients’ data. The questionnaire included: socio-demographic data, clinical related data, medical knowledge, medication adherence and treatment satisfaction.

C. Medication Knowledge

All the patients were assessed the medication knowledge by a medication knowledge questionnaire, which concluded five specific items. Each correct answer in the questions was score of “1,” and “5” is the total score.

D. Medication Adherence

We used a validated questionnaire (MCQ)17 to measure
the patients’ medication adherence. The MCQ was developed from Morisky self-reporting scale18. The total score of MCQ form 27 items means adherence, which was the evaluation criterion of medication adherence for each patient in this study. The scores may range from 7 to 2818, 19, 20.

E. Treatment Satisfaction

The Treatment Satisfaction Questionnaire for Medication (TSQM 1.4) (China version) was used to measure the patients’ TS in this study. The scores range from 0 to 100 in TSQM1.4,21,22.

F. Data collection Procedure

All the patients in this study, were 4,560 patients, response rate of 98.7% by face-to-face interviews. Quality control was carried out before data analysis.

G. Statistical Analysis

SPSS 19.0 software (Version19.0) was used in our statistical analysis. t test or analysis, chi-square test, person correlative analysis, and multiple logistic regression model was used in our study.

III. RESULTS

A. Participants’ Characteristics

4,560 T2DM patients (2,389 women and 2,171 men) were 4000 completed the all questionnaires. They were 62.3±8.7 years old (21 to 84 years old). The patients’ education levels is not high, one third among them only had primary and below education level.

The average disease duration of theT2DM patients is 5–27 years. More than one third patients was obesity. There were 3.9 medications should be eaten by the patients. All the baseline data were showed in Table 1.

Variables	Sample	Variables	Sample
Age[SD]	62.3±8.7	Duration of DM (years) -n(%)	1984(43.5)
sex -n(%)	2171(47.6)	≤5	1632(35.8)
female	2389(52.4)	5-10	944(20.7)
Education level -n(%)		>10	
Illiteracy and semi -illiteracy	433(9.5)	≤25.0	1341(29.4)
Primary	1113(24.4)	25.0-29.9	1578(34.6)
Secondary	2212(48.5)	>30.0	1641(36.0)
University	802(17.6)		
Marital status -n(%)		Pattern of antidiabetic treatment-n(%)	3803(83.4)
Unmarried	137(3.7)	OHA	757(16.6)
married	3588(85.1)	Insulin+/- OHA	
Divorced	237(5.2)	Presence of complication-n(%)	1970(43.2)
Widowed	274(6.0)	Yes	2590(56.8)
Income ¥/month -n(%)		Total number of medication-n(%)	315(6.9)
Less than ¥ 2000	1259(27.6)	1	1195(26.2)
2000-4000 ¥	1951(42.8)	2	1829(40.1)
More than ¥ 4000	1350(29.6)	3	1221(26.8)
		>3	

B. Medication Adherence

The MCQ score was presented in Tables 2 and 3. There were 2595 (56.9%) patients were non adherent. Forgetting to take medication was the main reason, while 26.5% of patients’ s knowledge score is more than 80%(Table 4), which demonstrates that most diabetic patients had a incorrect usage of the medication.

There were significant difference in medication adherence score at different educational level, income, marital status, presence of complication, duration of T2DM, antidiabetic treatment, medications number (p<0.05). High educational level patients had better medication adherence. The MA score in this study increased with the income level. MA score decreased with the BMI, and medications number. The patients receiving insulin therapy had lower medication adherence score(p<0.05).

Questions	Mean ± SD	Questions	Mean ± SD
Questions1	3.03 ± 0.53	Questions5	3.62 ± 0.39
Questions2	3.29 ± 0.62	Questions6	3.68 ± 0.36
Questions3	3.48 ± 0.41	Questions7	3.58 ± 0.42
Questions4	3.42 ± 0.61	Mean total score	24.10 ± 2.53
C. The Relationship between the TS and MA

Positive correlation was found between the global satisfaction and different domains: Side Effects, Effectiveness. As Fig.1A showed the patients with good medication adherence had higher satisfaction scores than that of nonadherence patients. ($p<0.001$).

The patients with complication had lower global TS scores comparing with those without complication(Fig.1B). Positive correlation was found between them.

TABLE III. T2DM PATIENTS’ MCQ SCORE AND MA STATUS(N = 4,560)

Total score(28 points)	N	%
28 (100%)	898	19.7
27 (> 95%)	1067	23.4
23–26 (80%–95%)	1810	39.7
18–22 (60%–80%)	752	16.5
18 (< 60%)	33	0.7

Note: Nonadherence:26 and below; adherence:27 and higher.

TABLE IV. THE ASSOCIATED WITH ADHERENCE AND NONADHERENCE AMONG T2DM PATIENTS

Characteristic	Nonadherent n (%)	Adherent n (%)	χ^2-value	P-value
sex -n(%)				
male	1211(55.8)	960(44.2)	2.147	0.143
female	1384(57.9)	1005(42.1)		
Education level -n(%)				
Illiteracy and semi- illiteracy	278(64.3)	155(35.7)	27.014	0.000
Primary	682(61.3)	431(38.7)		
Secondary	1206(54.5)	1006(45.5)		
University	429(53.5)	373(46.5)		
Marital status -n(%)				
Unmarried	77(35.7)	60(43.5)	33.965	0.000
married	2177(38.7)	1703(43.9)		
Divorced	138(54.5)	1006(45.5)		
Widowed	203(54.5)	71(25.9)		
Income £/month -n(%)				
Less than £2000	791(62.8)	468(37.2)	37.516	0.000
2000-4000£	1116(57.2)	835(42.8)		
More than £4000	688(50.9)	662(49.1)		
Body mass index, kg/m² -n(%)			1.017	0.602
< 25.0	748(55.8)	593(44.2)		
25.0-29.9	903(57.2)	675(42.8)		
> 30.0	944(57.5)	697(42.5)		
Duration of DM (years) -n(%)			133.785	0.000
< 5	982(49.5)	1002(50.5)		
5-10	932(57.1)	700(42.9)		
> 10	681(72.1)	263(27.9)		
Medication knowledge score(%)			84.203	0.000
< 60	1104(65.2)	589(34.8)		
60-80	901(54.3)	758(45.7)		
> 80	590(48.8)	618(51.2)		
Presence of complication-n(%)			67.360	0.000
Yes	1082(64.8)	587(35.2)		
No	1513(52.3)	1378(47.7)		
Pattern of antidiabetic treatment-n(%)			127.344	0.000
OHA	1867(52.5)	1689(47.5)		
Insulin+/− OHA	727(72.5)	276(27.5)		
Number of medications -n(%)			9.837	0.020
1	166(52.6)	149(47.4)		
2	650(54.4)	545(45.6)		
3	1048(57.3)	781(42.7)		
> 3	731(59.9)	490(40.1)		
D. Logistic Regression for Factors Predicting Medication Adherence in T2DM Patients

There were 10 factors (age, sex, education level, income, BMI, etc.) affecting medication adherence were analyzed by multiple logistic regression, finally. There were 7 factors (education, income, duration of DM, pattern of antidiabetic treatment, presence of complication, number of medications, global treatment satisfaction) were identified (Table 5).

TABLE V. MULTIPLE LOGISTIC REGRESSION ANALYSIS OF MEDICATION ADHERENCE

Items	B	S.E.	Wald	P	OR	(95%C.I for OR)
Duration of DM	-0.841	0.094	71.621	0.000	0.473	0.324-0.614
Number of medications	-0.459	0.082	30.568	0.000	0.628	0.531-0.741
Pattern of antidiabetic treatment	-0.266	0.287	7.084	0.004	0.697	0.638-0.921
Presence of complication	-0.208	0.034	37.980	0.000	0.812	0.760-0.868
Educational level	0.255	0.034	42.381	0.000	1.489	1.201-1.967
Income	0.672	0.341	4.869	0.024	1.989	1.091-3.143
Global treatment satisfaction	0.694	0.214	10.957	0.000	2.173	1.521-3.415

IV. DISCUSSION AND CONCLUSIONS

A. Discussion

The key components of self-management for patients with diabetes are MA and TS. In China, the research on MA and TS are limited. Therefore, our study aim to explore the relationship between MA and TS in TYPE 2 diabetes patients treated at CHSC, China, and make out management strategies for diabetes, to improve the effect of community diabetes management23-24. It is a meaningful step for CHSC staffs to determine patients’ adherence and treatment satisfaction to antidiabetic medications in community health service center25. Base on this, they can In-depth review of the patient's situation, and develop targeted chronic disease management strategies to improve the management of diabetes26,27,28.

In our study, only 43.1% patients was observed medication adherence only at community health service center in Guangdong. This result demonstrates that community T2DM patients lack of attention to their own health, and effective and scalable diabetes management methods should be implemented to improve the management effects for the community T2DM patients.

In our study, only 43.1% patients was observed medication adherence only at community health service center in Guangdong. This result demonstrates that community T2DM patients lack of attention to their own health, and effective and scalable diabetes management methods should be implemented to improve the management effects for the community T2DM patients.

Previous studies showed that many factors (age, financial difficulties, ethnicity, social support) were the risk factors of indiabetes29-31. In this study, We used multiple regression to explore the effect factors of MA, and found that there were 7 main factors predicting non-adherence in community patients with T2DM, which is an interesting findings. This implies that effective health management need to be implemented for community T2DM patients in China.

B. Conclusion

The T2DM patients’ medication adherence and treatment satisfaction at CHSC of Guangdong, China are unsatisfactory. Low TS is an important barrier for medication adherence among patients with T2DM.

ACKNOWLEDGMENT

This work was supported by the Research Project of Health and family planning commission of Shenzhen municipality (No.SZGW2018006) and Project of Health and family planning bureau of Futian Shenzhen (No.FTWS2018003, FTWS2018072).

Conflict of interest statement: None declared.

REFERENCES

[1] Liu E, Hsueh L, Kim H, Vidovich M. Global geographical variation in
Patient characteristics in percutaneous coronary intervention clinical trials: A systematic review and meta-analysis. Am Heart J. 2018,195:39-49.

[2] Drewa A, Zorena K. Prevention of overweight and obesity in children and adolescents in European countries. Pediatr Endocrinol Diabetes Metab. 2017;23(3):152-158.

[3] Schernthaner G, Lehmann R, Prázný M, et al. Translating recent results from the Cardiovascular Outcomes Trials into clinical practice: recommendations from the Central and Eastern European Diabetes Expert Group (CCEEDEG). Cardiovasc Diabetol. 2017, 16(1):137. doi: 10.1186/s12933-017-0622-7.

[4] Leung AA, Padwal RS. Blood Pressure-Lowering Targets in Patients With...
Dendup T, Feng X, Clingan S, Astell-Burt T. Environmental Risk Factors for Developing Type 2 Diabetes Mellitus: A Systematic Review. Int J Environ Res Public Health. 2018 Jan 5; 15(1). pii: E78. doi: 10.3390/ijerph15010078.

[6] World Health Organization. Adherence to long term therapies, time for action. Geneva: World Health Organization. 2003; 221.

Macedo MML, Cortez DN, Santos JCD. Adherence to self-care practices and empowerment of people with diabetes mellitus: a randomized clinical trial. Rev Esc Enferm USP. 2017 Dec; 18;51:e03278. doi: 10.1590/S1980-220X2016050303278.

Adisa R, Olajide OO, Fakeye TO. Social Support, Treatment Adherence and Outcome among Hypertensive and Type 2 Diabetes Patients in Ambulatory Care Settings in southwestern Nigeria. Ghana Med J. 2017 Jun;51(2):64-77.

Lee WC, Balu S, Cobden D, et al. Prevalence and economic consequences of medication adherence in diabetes: a systematic literature review. Manag Care Interface 2006; 19: 31–41.

Boels AM1, Vos RC1, Hermans TGT. What determines treatment satisfaction of patients with type 2 diabetes on insulin therapy? An observational study in eight European countries.BMJ Open. 2017 Jul 11;7(7):e016180. doi: 10.1136/bmjopen-2017-016180.

Alcubierre N, Martínez-Alonso M, Valls J, et al. Relationship of the adherence to the Mediterranean diet with health-related quality of life and treatment satisfaction in patients with type 2 diabetes mellitus: a post-hoc analysis of a cross-sectional study. Health Qual Life Outcomes. 2016, 14:69. doi: 10.1186/s12955-016-0473-z.

Lee WC, Balu S, Cobden D, et al. A literature review to explore the link between treatment satisfaction and adherence, compliance, and persistence. Patient Prefer Adherence 2012; 6:39–48.

Hutchins VL, Zhang B, Fleurence RL, et al. A systematic review of adherence, treatment satisfaction and costs, in fixed-dose combination regimens in type 2 diabetes. Curr Med Res Opin 2011; 27(6):1157-68.

MingNan Chien, YenLing Chen, YiJen Hung, et al. Glycemic control and adherence to basal insulin therapy in Taiwanese patients with type 2 diabetes mellitus. J Diabetes Investig. 2016 Nov; 7(6): 881-888.

Lotta W, Billie P, Ulf R, et al. Impact of symptomatic hypoglycemia on medication adherence, patient satisfaction with treatment, and glycemic control in patients with type 2 diabetes. Patient Preference and Adherence 2014; 8:593–601.

Xi Li, Jiapeng Lu, Shuang Hu, et al. The primary health-care system in China. Lancet.390(10122):2584-2594.

Nur S A, Azhana R, Farida I, et al. Medication adherence in patients with type 2 diabetes mellitus treated at primary health clinics in Malaysia. Patient Preference and Adherence 2013; 7: 525–530.

Södergård B, Halvarsson M, Tully P, et al. Adherence to treatment in Swedish HIV-infected patients. J Clin Pharm Ther 2006; 31(6):605–616.

Hinton PR, Brownlow C, McMurray I, et al. SPSS Explained. East Sussex, UK: Routledge Inc 2004.

Rausch JR, Hood KK, Delamater A, et al. Changes in treatment adherence and glycemic control during the transition to adolescence in type 1 diabetes. Diabetes Care 2012; 35(6):1219–1224.

Berhe DF1, Taxis K, Haaijer-Ruskamp FM, et al. Impact of adverse drug events and treatment satisfaction on patient adherence with antihypertensive medication - a study in ambulatory patients. Br J Clin Pharmacol. 2017 , 83(9):2107-2117.

Fernández O, Duran E, Ayuso T, et al. Treatment satisfaction with injectable disease-modifying therapies in patients with relapsing-remitting multiple sclerosis (the STICK study). PLoS One. 2017, 12(10):e0185766. doi: 10.1371/journal.pone.0185766. eCollection 2017.

Alcubierre N, Martínez-Alonso M, Valls J, et al. Relationship of the adherence to the Mediterranean diet with health-related quality of life and treatment satisfaction in patients with type 2 diabetes mellitus: a post-hoc analysis of a cross-sectional study. Health Qual Life Outcomes. 2016,14:69. doi: 10.1186/s12955-016-0473-z.

Inzucchi SE, Bergenstal RM, Buse JB, et al. Management of hyperglycemia in type 2 diabetes: a patient-centered approach. Diabetologia 2012; 55:1577–1596.

Bakar ZA, Fahmi ML, Khan TM. Patient satisfaction and medication adherence assessment amongst patients at the diabetes medication therapy adherence clinic. Diabetes Metab Syndr. 2016,10(2 Suppl 1):S139-43.

Aguiar EJ, Morgan PJ, Collins CE. Process Evaluation of the Type 2 Diabetes Mellitus PULSE Program Randomized Controlled Trial: Recruitment, Engagement, and Overall Satisfaction. Am J Mens Health. 2017, 11(4):1055-1068.

[26] American Diabetes Association. Standards of medical care in diabetes-2012. Diabetes Care 2012; 35 Suppl 1:S1–S63.

Alifiant SD1, Worawatputtapong P, Schulling-Veninga CC, et al. Pharmacy-based predictors of non-persistence and non-adherence to statin treatment among patients on oral diabetes medication in the Netherlands. Curr Med Res Opin. 2018 Jan 2;1-17. doi: 10.1080/03007995.2017.1417242.

Vidal Florc M, Jansà Morató M, Galindo Rubio M, et al. Factors associated to adherence to blood glucose self-monitoring in patients with diabetes treated with insulin. The dapa study. Endocrinol Diabetes Nutr. 2017 Dec 14. pii: S2530-0164(17)30249-5.

Ali MI, Alemu T, Sada. BMC Res Notes. Medication adherence and its associated factors among diabetic patients at Zewditu Memorial Hospital, Addis Ababa, Ethiopia. 2017, 10(1): 676. doi: 10.1186/s13104-017-3025-7.

Luis-E G, Mari`a A`lvarez, Tatiana D, et al. Adherence to Therapies in Patients with Type 2 Diabetes. Diabetes Ther 2013; 4:175–194.