Combined inhibition of EZH2 and histone deacetylases as a potential epigenetic therapy for non-small-cell lung cancer cells

Taichi Takashina, Ichiro Kinoshita, Junko Kikuchi, Yasushi Shimizu, Jun Sakakibara-Konishi, Satoshi Oizumi, Masaharu Nishimura and Hirotoshi Dosaka-Akita

Key words
3-Deazaneplanocin A, EZH2, lung cancer, polycomb-group protein, vorinostat (suberoylanilide hydroxamic acid)

Correspondence
Ichiro Kinoshita, Department of Medical Oncology, Hokkaido University Graduate School of Medicine, North 15, West 7, Kita-ku, Sapporo 060-8638, Japan.
Tel: +81-11-706-5551; Fax: +81-11-706-5077; E-mail: kinoshii@med.hokudai.ac.jp

Funding Information
Japan Society for the Promotion of Science.

Received December 4, 2015; Revised April 2, 2016; Accepted April 18, 2016

Cancer Sci 107 (2016) 955–962
doi: 10.1111/cas.12957

Recent discoveries have revealed that human cancer involves aberrant epigenetic alterations. We and others have previously shown that the histone methyltransferase EZH2, the catalytic subunit of polycomb repressive complex 2 (PRC2), is frequently overexpressed in non-small-cell lung cancer (NSCLC) and that an EZH2 inhibitor, 3-deazaneplanocin A, inhibits the proliferation of NSCLC cells. Transcriptional silencing by EZH2 was recently shown to be required for the activity of histone deacetylases (HDACs) that interact with another PRC2 protein, EED. To develop a more effective epigenetic therapy for NSCLC, we determined the effects of co-treatment with 3-deazaneplanocin A and the HDAC inhibitor vorinostat (SAHA) in NSCLC cells. The co-treatment synergistically suppressed the proliferation of all tested NSCLC cell lines, regardless of their epidermal growth factor receptor (EGFR) status. The synergistic effect was associated with slightly decreased histone H3 lysine 27 trimethylation, modestly increased histone acetylation, and the depletion of EZH2 and other PRC2 proteins. The co-treatment resulted in an accumulation of p27Kip1, decrease in cyclin A, and increased apoptotic fraction in an additive/synergistic manner. Interestingly, the co-treatment strongly suppressed EGFR signaling, not only in EGFR-wild-type NSCLC cells, but also in EGFR-mutant cells, mainly through dephosphorylation of EGFR. Furthermore, the co-treatment suppressed the in vivo tumor growth of EGFR-mutant, EGFR-tyrosine kinase-resistant H1975 cells more effectively than did each agent alone, without visible toxicity. These results suggest that the combined pharmacological targeting of EZH2 and HDACs may provide more effective epigenetic therapeutics for NSCLC.

Lung cancer is the leading cause of cancer-related deaths worldwide, with a poor prognosis for patients with advanced-stage disease who are treated with traditional cytotoxic chemotherapeutics. Although the recent development of oncogene-directed drugs including EGFR–TKIs has significantly improved NSCLC treatment, it has been limited to a minority of patients with a targetable mutation and almost inevitably results in drug resistance, relapse, and mortality. Recent discoveries have shown that human cancer involves not only genetic changes, but also aberrant epigenetic alterations, leading to the successful development of epigenetic therapies in some hematologic malignancies as single drugs. In NSCLC, however, several preclinical and clinical studies have indicated that the effects of single epigenetic drugs are modest and that the development of new approaches such as combination therapies, will be necessary.

Enhancer of zeste homolog 2 (EZH2), the catalytic subunit of polycomb repressive complex 2 (PRC2), is among the potential epigenetic therapeutic targets for NSCLCs. EZH2, which acts as a histone lysine methyltransferase, mediates trimethylation of lysine 27 on histone H3 (H3K27me3) to silence PRC2 target genes involved in lineage differentiation. Accumulating evidence shows that EZH2 has a role in regulating the malignant transformation and biological aggressiveness of several human malignancies. We and others have found that NSCLCs frequently overexpress EZH2 and that the high EZH2 expression is correlated with poor prognosis. 3-Deazaneplanocin A, originally identified as an S-adenosyl-L-homocysteine hydrolase inhibitor, downregulates PRC2 proteins including EZH2 and inhibits PRC2 activity. We have reported that DZNep inhibits NSCLC cell proliferation through inhibition of PRC2 as has also been shown in other types of cancer cells.

Histone deacetylases are promising epigenetic targets that catalyze the removal of acetyl groups from lysine residues in histones, leading to chromatin condensation and the transcriptional repression of target genes, including tumor suppressor genes. Overexpression of class I HDACs, especially HDAC1, is noted in several human cancers, indicating their aberrant epigenetic activity is associated with cancer development. Vorinostat (SAHA), which inhibits class I and II HDACs, is the...
first HDAC inhibitor approved for use in patients with cancer, specifically for the treatment of cutaneous T-cell lymphoma.\(^{(8,30)}\) In lung cancer, SAHA has significant antitumor activity in vitro,\(^{(8,31)}\) whereas a phase II clinical trial of SAHA for patients with relapsed NSCLC found that over half of the patients experienced stable disease, but no objective tumor response was observed.\(^{(32)}\)

Recent studies have indicated that EZH2 interacts with class I HDACs, HDAC 1 and 2, through another PRC2 protein, EED.\(^{(10,33,34)}\) and that transcriptional repression by EZH2 requires the activity of the HDACs.\(^{(10,33)}\) Moreover, HDAC inhibitors have also been shown to downregulate PRC2 proteins.\(^{(35)}\) These findings suggest that the concurrent inhibition of these epigenetic silencing enzymes, using agents like DZNep and SAHA, have synergistic antitumor effects, which has recently been shown in hematological malignancies.\(^{(22,36)}\) However, no studies have investigated the effects of such combination therapy in lung cancer.

Herein, we showed for the first time that the combined inhibition of EZH2 and HDAC has a synergistic antiproliferative effect in NSCLC cells. The effect was associated with depletion of EZH2 and other PRC2 proteins, accumulation of p27kip1, reduction of cyclin A, and induction of apoptosis. Surprisingly, a strong suppression of EGFR signaling was observed not only in EGFR-wild-type cells, but also in EGFR-mutant cells, mediated by dephosphorylation of EGFR. Furthermore, the co-treatment suppressed the in vivo tumor growth of EGFR-mutant, EGFR-TKI-resistant H1975 cells more effectively than did each agent alone.

Materials and Methods

Cell lines and reagents. Four human NSCLC cell lines, NCI-H1299 (H1299), NCI-H1975 (H1975), A549 (ATCC, Manassas, VA, USA), and PC-3 (Japan Cancer Research Resources Bank, Tokyo, Japan), were cultured in RPMI-1640 medium (Invitrogen, Life Technologies, Carlsbad, CA, USA) supplemented with 10% (v/v) FBS and 0.03% (w/v) glucose at 37°C in an atmosphere of 5% CO2. The PC-3 cell line used in the study is not a prostate cancer cell line, but an NSCLC cell line with an EGFR mutation (a deletion of exon 19).\(^{(37)}\)

3-Deazaneplanocin A and SAHA were purchased from Funakoshi (Tokyo, Japan), and Cayman Chemical Company (Ann Arbor, MI, USA), respectively.

Cell proliferation assay. Cells were seeded at 500–3000 cells/well in 96-well plates in normal growth medium and kept at 37°C for 24 h. Then the cells were treated for 72 h with DZNep (0.05–0.8 μM) and SAHA (0.5–8 μM) at a fixed ratio (1:10), and with DZNep (0.025–0.4 μM) and SAHA (0.5–8 μM) at a fixed ratio (1:20). Cell growth was measured using an MTT-based assay (CellTiter 96 non-radioactive cell proliferation assay; Promega, Madison, WI, USA). The nature of the drug interaction was analyzed using the CI according to Chou and Talalay’s method.\(^{(38)}\) A CI <0.90 indicates synergism, a CI between 0.90 and 1.10 indicates an additive effect, and a CI >1.10 indicates antagonism. Data analysis was carried out using the commercially available software, CalcuSyn (Biosoft, Oxford, UK).

Analysis of apoptosis. Cells were stained with a FITC-conjugated annexin V and PI, using the Annexin V-FITC Apoptosis Detection kit (Calbiochem, Darmstadt, Germany) according to the manufacturer’s instructions. Briefly, cells were treated with trypsin, subjected to centrifugation at 1000g for 5 min, washed once with ice-cold PBS, and then resuspended in 500 μL binding buffer. Thereafter, 1.1 μL annexin V–FITC and 10 μL PI were added to the cell suspensions, and the components were mixed for 15 min in the dark. The percentage of apoptotic cells was measured using a FACScan flow cytometer (BD Biosciences, Franklin Lakes, NJ, USA). Data analysis was carried out using CellQuest version 3.1 (BD Biosciences).

Western biot analysis. Cell lysates derived from each NSCLC cell line were prepared by disrupting the cells in radioimmune precipitation assay buffer (150 mM NaCl, 1% [v/v] Triton X-100, 1% [w/v] deoxycholate, 0.1% [w/v] SDS, and 10 mM Tris [pH 7.4]), supplemented with 100 μg/mL leupeptin, 100 μg/mL aprotinin, and 10 mM PMSF. The cell lysates were subjected to sonication and then centrifugation to remove debris. The concentration of protein in each lysate sample was determined using the Bio-Rad Protein Assay kit (Bio-Rad Laboratories, Hercules, CA, USA). Samples containing equal amounts of protein were loaded onto gels, and the proteins in each sample were separated in 12% or 15% SDS gels; separated proteins were transferred to nitrocellulose membranes (Amersham Biosciences, St. Albans, UK), and the membranes were incubated with the following antibodies: anti-EZH2 (clone 11; BD Transduction Laboratories, BD Biosciences, San Jose, CA, USA), anti-SUZ12 (clone 3C1.2; Millipore, Billerica, MA, USA), tri-methyl-histone H3 Ly.27 (07-449; Millipore), anti-EEDE (90-774; Millipore), cyclin A (H-432; Santa Cruz Biotechnology, Santa Cruz, CA, USA), anti-p27Kip1 (clone 57; BD Transduction Laboratories), acetyl-lysine histone H3 antibody sampler kit (acetyl-histone H3 [Lys 9, 14, 18, 27, and 56] and total histone H3; Cell Signaling Technology, Danvers, MA, USA), anti-cleaved PARP (Asp217; Cell Signaling Technology), anti-EGFR (clone D38B1; Cell Signaling Technology), anti-phospho-EGFR (Tyr1068) (clone D7A5; Cell Signaling Technology), anti-AKT (clone C67E7; Cell Signaling Technology), anti-phospho AKT (Ser473) (clone D9E; Cell Signaling Technology), anti-ERK1/2 (clone 137F5; Cell Signaling Technology), anti-phospho ERK1/2 (Thr202/Thr204) (clone D13.14.4E; Cell Signaling Technology), anti-NKD-1 (A-21; Santa Cruz Biotechnology), anti-PPP2R2B (Aviva Systems Biology, San Diego, CA, USA), anti-β-catenin (clone 14; BD Transduction Laboratories), anti-cyclin D1 (C-20; Santa Cruz Biotechnology), and anti-actin (A-2066; Sigma-Aldrich Co., St. Louis, MO, USA) antibodies. Primary antibodies were detected using anti-rabbit or anti-mouse secondary antibodies conjugated with HRP (NA934V and NA931V, respectively; Amersham Biosciences, Amersham, UK). Membranes were washed with TBST six times (5 min each wash) and secondary antibodies were visualized using enhanced chemiluminescence reagent (Amersham).

Subcutaneous xenograft models. Female BALB/cA-Cjcl-nu/nu mice, aged 5–6 weeks, were obtained from CLEA Japan (Tokyo, Japan). H1975 cells (5 x 10^6 cells/mouse) were s.c. implanted into the flanks of mice. When the average tumor volume reached approximately 50–100 mm^3, the following treatments were given to cohorts of five mice for each treatment: vehicle alone (5% [v/v] DMSO); 4 mg/kg DZNep; 40 mg/kg SAHA; or 4 mg/kg DZNep plus 40 mg/kg SAHA. These drugs were given twice per week i.p. for 6 weeks. Tumor volume was calculated using the equation 1/2 (length x width^2). All animal experiments complied with the Hokkaido University (Sapporo, Japan) Regulations on Animal Experimentation (approval no. 19-46).

Statistical analysis. Statistical significance between two groups was determined by unpaired two-sided Student’s t-test.
For comparisons among multiple groups, statistical significance was determined by one-way ANOVA with Tukey’s multiple comparison test. The level of significance was set at $P < 0.05$. All tests were carried out using SRS software (version 18.0; IBM, Chicago, IL, USA).

Results

Combined treatment synergistically inhibited NSCLC cell proliferation. We first investigated whether SAHA alone inhibited cell growth in four NSCLC cell lines differing in their EGFR gene status: H1299 (wild-type EGFR), H1975 (L858R and T790M substitutions), A549 (wild-type), and PC-3 (exon 19 deletion). The MTT assays showed that SAHA caused dose-dependent inhibition of NSCLC cell proliferation with IC$_{50}$ ranging from 1.50 to 2.61 μM (Fig. 1). Comparison with the results of our previous study, in which we reported that the IC$_{50}$ values of DZNep were 0.08–0.24 μM in these cells, (20) shows that the IC$_{50}$ value of SAHA was almost 10 times as large as that of DZNep.

Next, we examined the combined effects of DZNep and SAHA on the four NSCLC cell lines. Combination index plot analysis using DZNep and SAHA at fixed concentration ratios of 1:10 and 1:20 indicated that co-treatment with DZNep and SAHA inhibited cell proliferation synergistically at most concentrations, especially those around the IC$_{50}$ concentration of each drug, in all four of the cell lines, as indicated by the combination indices of <0.9 (Fig. 2). The combined treatment inhibited H1975 cell proliferation more effectively than the other cell lines.

Combined treatment depleted PRC2 proteins and decreased histone methylation and acetylation more effectively than single treatment. We examined the effects of combined treatment with DZNep and SAHA on PRC2 proteins (EZH2, SUZ12, and EED) and other associated proteins by Western blot analysis. Both DZNep and HDAC inhibitors are known to deplete the expression of PRC2 proteins. (19,35) The combination of DZNep and SAHA reduced the expression of EZH2 and SUZ12, whereas EED was mostly regulated by SAHA alone (Fig. 3a). The co-treatment also resulted in a slight decrease of H3K27me3, accumulation of p27kip, and decrease in cyclin A expression. Depending on sites of acetylation and cells, the co-treatment resulted in modest acetylation of lysine residues of histone H3 (Fig. 3b).

Combined treatment induced more apoptosis than single treatment. We determined the effects of combined treatment on apoptosis in the four NSCLC cell lines. Flow cytometry analysis using annexin V and PI showed that the apoptotic fraction was induced more by DZNep and SAHA co-treatment than by each agent alone (Fig. 4a). These effects were remarkable in EGFR-mutant H1975 and PC-3 cells, whose apoptotic fraction exceeded 20%. The combined treatment increased cleaved PARP and cleaved caspase-3 in all four cell lines, compared with treatment with each agent alone (Fig. 4b).

Combined treatment suppressed the EGFR signaling pathway in both EGFR-wild-type and EGFR-mutant NSCLC cells. The remarkable induction of apoptosis in EGFR-mutant H1975 and PC-3 cells prompted us to investigate the effects of co-treatment on EGFR signaling. Western blot analysis revealed that the co-treatment slightly reduced EGFR expression. Interestingly, co-treatment strongly suppressed EGFR phosphorylation, not only in EGFR-wild-type H1299 and A549 cells, but also in EGFR-mutant H1975 and PC-3 cells, which had abundant basal phosphorylated EGFR protein (Fig. 5). The phosphorylation of AKT and ERK1/2, which are downstream molecules of EGFR, was also reduced by the combined treatment.

Inhibition of EZH2, in cooperation with HDAC inhibition, has been shown to decrease EGFR expression by suppressing β-catenin, a transcriptional activator of EGFR, by inducing multiple endogenous Wnt/β-catenin signaling antagonists, including NKD1 and PPP2R2B, which are direct epigenetic targets of EZH2. (39) The combined treatment increased NKD1
protein expression in all NSCLC cell lines and increased the expression of PPP2R2B in H1975 cells only (Fig. 6a). The co-treatment reduced the expression of β-catenin only in H1975 cells, and reduced the expression of cyclin D1, a downstream target of β-catenin, in H1975, A549, and PC-3 cells (Fig. 6b).

Fig. 2. Combined therapy with 3-deazaneplanocin A (DZNep) and suberoylanilide hydroxamic acid (SAHA) synergistically inhibited non-small-cell lung cancer cell (NSCLC) proliferation. (a) Four human NSCLC cell lines were treated with DZNep (dose range, 0.05–0.8 μM) and SAHA (dose range, 0.5–8 μM) at a fixed ratio of 1:10 for 72 h and subjected to MTT-based assay. (b) Four human NSCLC cell lines were treated with DZNep (dose range, 0.025–0.4 μM) and SAHA (dose range, 0.5–8 μM) at a fixed ratio of 1:20 for 72 h and subjected to MTT-based assay. Combination index (CI) values were determined using the commercially available software, CalcuSyn. Data are representative of three independent experiments. Similar results were obtained in all three independent experiments.

Fig. 3. Combined therapy with 3-deazaneplanocin A (DZNep) (D) and suberoylanilide hydroxamic acid (SAHA) (S) depleted PRC2 proteins and decreased the histone methylation and acetylation levels more effectively than did individual treatment, in non-small-cell lung cancer cells. Cells were treated with 0.2 μM DZNep and/or 2 μM SAHA for 72 h. Total cell lysates were then harvested and subjected to Western blot analysis. (a) Representative Western blots of EZH2, SUZ12, EED, trimethylation of lysine 27 on histone H3 (H3K27me3), cyclin A, p27Kip1, and actin from three independent experiments are shown. Actin levels in the lysates served as the loading control (C). Similar results were obtained in all three independent experiments. (b) Representative Western blots of acetylation of lysine (Lys) 9, 14, 18, 27, and 56 of histone H3 and total histone H3 from three independent experiments are shown. Total histone H3 levels in the lysates served as the loading control. Similar results were obtained in all three independent experiments.

Combined treatment inhibited *in vivo* tumor growth of H1975 xenografts. We examined the therapeutic effect of combined treatment with DZNep and SAHA on xenografts of H1975 cells transplanted into nude mice. As shown in Figure 7(a), both DZNep and SAHA significantly suppressed the *in vivo*
tumor growth of H1975 cells compared with control. Co-treatment with DZNep and SAHA showed significantly greater inhibition of tumor growth than did each agent alone. Neither individual agent nor co-treatment caused significant weight loss or other physical signs of toxicity in the mice (Fig. 7b). Western blot analysis revealed that combined treatment
Discussion

To develop an epigenetic therapy for NSCLC with higher effectiveness than existing treatments, we determined the effect of co-treatment with an EZH2 inhibitor (DZNep) and an HDAC inhibitor (SAHA) in NSCLC cells. The present study showed, for the first time, that the combined inhibition of EZH2 and HDACs had synergistic antiproliferative effects in NSCLC, consistent with previous results investigating other types of cancer. The effect was associated with a slight decrease of H3K27me3, modest increase of multiple sites of histone acetylation, depletion of EZH2 and other PRC2 proteins, accumulation of p27kip1, and reduction of cyclin A. Flow cytometry analysis has indicated the additive/synergistic induction of apoptosis by DZNep and SAHA, consistent with studies on other types of cancer. Because PRC2 also requires interaction with HDACs to execute its function, (42,43) because PRC2 also requires interaction with HDACs to execute its function, EZH2 inhibition is not known to suppress Wnt/b-catenin signaling, including NKD1 and PPP2R2B-mediated suppression of b-catenin, a transcriptional activator of EGFR, by inducing multiple endogenous Wnt/b-catenin signaling antagonists, including NKD1 and PPP2R2B in hepatocellular carcinoma. Our data suggest that NKD1- and PPP2R2B-mediated suppression of b-catenin is not the main mechanism of the decreased EGFR expression by DZNep and SAHA in NSCLC cells, although it may have some involvement for H1975 cells. Nonetheless, these results suggest that the combined treatment with DZNep and SAHA effectively suppress EGFR signaling, mainly through on gallbladder cancer indicated that the antitumor effect of SAHA was dependent on a decrease in EZH2 expression. In that study, SAHA inhibited the proliferation of carcinoma cells, which express EZH2 and HDACs 1 and 2, but did not affect that of normal epithelial cells, which have almost no EZH2 expression but substantial HDAC 1 and 2 expression. Depletion of PRC2 proteins by DZNep has been shown to occur due to protein degradation. The protein levels of each PRC2 member is, in part, dependent on the presence of the other subunits, and each individual protein is unstable outside of a functional PRC2 complex. Because PRC2 also requires interaction with HDACs to execute its function, the co-treatment suppressed PRC2 proteins following HDAC inhibition by SAHA might also be related to protein instability.

The suppression of EGFR signaling may be involved in the growth-suppressive effect of EZH2 and HDAC inhibition in NSCLC cells in vitro and in vivo. It is intriguing that the strong dephosphorylation of EGFR was observed even in EGFR-mutant cells on both conditions. Histone deacetylase inhibition has been shown to decrease phosphorylation and expression of EGFR in both EGFR-wild-type and EGFR-mutant NSCLC cells, although the underlying mechanism remains unclear. EZH2 inhibition is not known to suppress phosphorylation of EGFR, but it has been shown to decrease EGFR expression by suppressing b-catenin, a transcriptional activator of EGFR, by inducing multiple endogenous Wnt/b-catenin signaling antagonists, including NKD1 and PPP2R2B in hepatocellular carcinoma. Our data suggest that NKD1- and PPP2R2B-mediated suppression of b-catenin is not the main mechanism of the decreased EGFR expression by DZNep and SAHA in NSCLC cells, although it may have some involvement for H1975 cells. Nonetheless, these results suggest that the combined treatment with DZNep and SAHA effectively suppress EGFR signaling, mainly through.

reduced the expression of EZH2 and H3K27me3 in H1975 xenografts (Fig. 7c). Additionally, the co-treatment markedly reduced phosphorylation of EGFR, AKT, and ERK1/2.
The reduction of phosphorylated EGFR by the combined treatment may induce apoptosis in EGFR-mutant lung cancer cells more effectively than in EGFR-wild-type cells.

Owing to high basal phosphorylation of EGFR, NSCLC with EGFR mutations, including that with T790M EGFR-TKI-resistant mutation, may be a good candidate subgroup for combined epigenetic therapy by DZNep and SAHA. The importance of the strategy including EZH2 inhibition for EGFR-mutant NSCLC is also underscored by the recent discovery that EZH2 inhibition sensitizes EGFR-mutant NSCLC cells to topoisomerase II inhibitors (47).

In conclusion, the results suggest that DZNep and SAHA have a synergistic growth-suppressive effect and induce substantial apoptosis in NSCLC cells, including EGFR-mutant, EGFR–TKI-resistant cells, through inhibition of the EGFR signaling pathway in vitro and in vivo. Combined pharmacological targeting of EZH2 and HDAC may provide more effective epigenetic therapeutics for NSCLC.

References

1. Herbst RS, Heymach JV, Lippman SM. Lung cancer. N Engl J Med 2008; 359: 1367–80.
2. Maemondo M, Inoue A, Kobayashi K et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med 2010; 362: 2380–8.
3. Mitsudomi T, Morita S, Yatabe Y et al. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol 2010; 11(2): 121–8.
4. Pao W, Miller VA, Politi KA et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2005; 2(3): e73.
5. Yano S, Wang W, Li Q et al. Hepatocyte growth factor induces gefitinib resistance of lung adenocarcinoma with epidermal growth factor receptoractivating mutations. Cancer Res 2008; 68: 9479–87.
6. Waldmann T, Schneider R. Targeting histone modifications—epigenetics in cancer. Curr Opin Cell Biol 2013; 25(2): 184–9.
7. Duvic M, Talpur R, Ni X et al. Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood 2007; 109(1): 31–9.
8. Huffman K, Martinez ED. Pre-clinical studies of epigenetic therapies targeting histone modifiers in lung cancer. Front Oncol 2013; 3: 235.
9. Sparrman A, van Lohuizen M. Polycomb silencers control cell fate, development and cancer. Nature 2002; 419: 624–9.
10. Varambally S, Dhonakeran SM, Zhou M et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 2002; 419: 624–9.
11. Kleer CG, Cao Q, Varambally S et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci USA 2003; 100: 11606–11.
12. Bachmann IM, Halvorsen OJ, Collett K et al. EZH2 expression is associated with high proliferation rate and aggressive tumor subgroups in cutaneous melanoma and cancers of the endometrium, prostate, and breast. J Clin Oncol 2006; 24: 268–73.
13. Matsukawa Y, Somba S, Kato H, Ito A, Yanagihara K, Yokozaki H. Expression of the enhancer of zeste homolog 2 is correlated with poor prognosis in human gastric cancer. Cancer Sci 2006; 97: 484–91.
14. Wagener N, Macher-Goeppinger S, Pritsch M et al. Enhancer of zeste homolog 2 (EZH2) expression is an independent prognostic factor in renal cell carcinoma. BMC Cancer 2010; 10: 524.
15. Kikuchi J, Kinoshita I, Shimizu Y et al. Distinctive expression of the polycomb group proteins Bmi1 polycomb ring finger oncogene and enhancer of zeste homolog 2 in nonsmall cell lung cancers and their clinical and clinicopathologic significance. Cancer 2010; 116: 3015–24.
16. Huqun, Ishikawa R, Zhang J et al. Enhancer of zeste homolog 2 is a novel prognostic biomarker in non-small cell lung cancer. Cancer 2012; 118: 599–606.
17. Behrens C, Solis LM, Lin H et al. EZH2 protein expression associates with the early pathogenesis, tumor progression, and prognosis of non-small cell lung carcinoma. Clin Cancer Res 2013; 19: 6556–65.
18. Glazer RI, Hartman KD, Knodet MC et al. 3-Deazaneplanocin: a new and potent inhibitor of S-adenosylhomocysteine hydrolase and its effects on human promyelocytic leukemia cell line HL-60. Biochem Biophys Res Commun 1996; 235: 688–94.
19. Tan J, Yang X, Zhuang L et al. Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev 2007; 21: 1050–63.
20. Kikuchi J, Takashina T, Kinoshita I et al. Epigenetic therapy with 3-deazaneplanocin A, an inhibitor of the histone methyltransferase EZH2, inhibits growth of non-small cell lung cancer cells. Lung Cancer 2012; 78(2): 138–43.
21. Jiang X, Tan J, Li J et al. DACT3 is an epigenetic regulator of Wnt/beta-catenin signaling in colorectal cancer and is a therapeutic target of histone deacetylase inhibitors. Clin Cancer Res 2010; 16: 529–41.
22. Finkus W, Wang Y, Seekum A et al. Combined epigenetic therapy with the histone methyltransferase EZH2 inhibitor 3-deazaneplanocin A and the histone deacetylase inhibitor panobinostat against human AML cells. Blood 2009; 114: 2733–43.
23. Miranda TB, Cortez CC, Yoo CB et al. DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation. Mol Cancer Ther 2009; 8: 1579–88.
24. Suva ML, Riggi N, Janiszewska M et al. EZH2 is essential for glioblastoma cancer stem cell maintenance. Cancer Res 2009; 69: 9211–8.
25. Crea F, Hurt EM, Mathews LA et al. Pharmacologic disruption of Polycomb Repressive Complex 2 inhibits tumorigenicity and tumor progression in prostate cancer. Mol Cancer 2011; 10: 40.
26. Kemp CD, Rao M, Xi S et al. Polycomb repressor complex-2 is a novel target for mesothelioma therapy. Clin Cancer Res 2012; 18(1): 77–90.
27. Marks PA, Richon VM, Miller T, Kelly WK. Histone deacetylase inhibitors. Adv Cancer Res 2004; 91: 157–68.
28 Sasaki H, Moriyama S, Nakashima Y et al. Histone deacetylase 1 mRNA expression in lung cancer. Lung Cancer 2004; 46(2): 171–8.

29 Minamiya Y, Ono T, Saito H et al. Expression of histone deacetylase 1 correlates with a poor prognosis in patients with adenocarcinoma of the lung. Lung Cancer 2011; 74: 300–4.

30 Mann BS, Johnson JR, Cohen MH, Justice R, Pazdur R. FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist 2007; 12: 1247–52.

31 Miyanaga A, Gemma A, Noro R et al. Antitumor activity of histone deacetylase inhibitors in non-small cell lung cancer cells: development of a molecular predictive model. Mol Cancer Ther 2008; 7: 1923–30.

32 Traynor AM, Dubey S, Eickhoff JC et al. Vorinostat (NSC# 701852) in patients with relapsed non-small cell lung cancer: a Wisconsin Oncology Network phase II study. J Thorac Oncol 2009; 4: 522–6.

33 van der Vlag J, Otte AP. Transcriptional repression mediated by the human polycomb-group protein EED involves histone deacetylation. Nat Genet 1999; 23: 474–8.

34 Cao R, Zhang Y. SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. Mol Cell 2004; 15(1): 57–67.

35 Fiskus W, Pranpat M, Balasis M et al. Histone deacetylase inhibitors deplete enhancer of zeste 2 and associated polycomb repressive complex 2 proteins in human acute leukemia cells. Mol Cancer Ther 2006; 5: 3096–104.

36 Fiskus W, Rao R, Balusu R et al. Superior efficacy of a combined epigenetic therapy against human mantle cell lymphoma cells. Clin Cancer Res 2012; 18: 6227–38.

37 Nagai Y, Miyazawa H, Huqun et al. Genetic heterogeneity of the epidermal growth factor receptor in non-small cell lung cancer cell lines revealed by a rapid and sensitive detection system, the peptide nucleic acid-locked nucleic acid PCR clamp. Cancer Res 2005; 65: 7276–82.

38 Chou TC, Talalay P. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 1984; 22: 27–55.

39 Cheng AS, Lau SS, Chen Y et al. EZH2-mediated concordant repression of Wnt antagonists promotes beta-catenin-dependent hepatocarcinogenesis. Cancer Res 2011; 71: 4028–39.

40 Yamaguchi J, Sasaki M, Sato Y et al. Histone deacetylase inhibitor (SAHA) and repression of EZH2 synergistically inhibit proliferation of gallbladder carcinoma. Cancer Sci 2010; 101: 355–62.

41 Hayden A, Johnson PW, Packham G, Crabbe SJ. S-adenosylhomocysteine hydrolase inhibition by 3-deazaneplanocin A analogues induces anti-cancer effects in breast cancer cell lines and synergy with both histone deacetylase and HER2 inhibition. Breast Cancer Res Treat 2011; 127(1): 109–19.

42 Montgomery ND, Yee D, Chen A et al. The murine polycomb group protein Eed is required for global histone H3 lysine-27 methylation. Curr Biol 2005; 15: 942–7.

43 Pasini D, Bracken AP, Jensen MR, Lazzaroni Denchi E, Helin K. Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. EMBO J 2004; 23: 4061–71.

44 Chen MC, Chen CH, Wang JC et al. The HDAC inhibitor, MPT0E028, enhances erlotinib-induced cell death in EGFR-TKI-resistant NSCLC cells. Cell Death Dis 2013; 4: e810.

45 Soria JC, Mok TS, Cappuzzo F, Jame PA. EGFR-mutated oncogene-addicted non-small cell lung cancer. Cancer Treat Rev 2012; 38: 416–30.

46 Yun CH, Mengwasser KE, Toms AV et al. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc Natl Acad Sci USA 2008; 105: 2070–5.

47 Fillmore CM, Xu C, Desai PT et al. EZH2 inhibition sensitizes BRG1 and EGFR mutant lung tumours to TopoII inhibitors. Nature 2015; 520: 239–42.