Supporting Information:

Chemical constituents from the bark of *Garcinia oblongifolia*

Yutong Han†, Xingyu Li‡, Chaonan Yuan¹, Ronghui Gu¹, Edward J. Kennelly¹,³, Chunlin Long¹,⁴,⁵*

¹College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.

²College of Science, Yunnan Agricultural University, Yunnan 650203, China.

³Department of Biological Sciences, Lehman College, City University of New York, Bronx, NY 10468, USA.

⁴Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing 100081, China.

⁵Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.

†The authors Yutong Han and Xingyu Li contributed equally to the work.

*Corresponding Author: Chunlin Long, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China. e-mail: long@mail.kib.ac.cn, or long.chunlin@muc.edu.cn.
Supporting Information of Chemical Constituents from the Bark of *Garcinia oblongifolia*

Content

Figure S1. The HRESIMS spectrum of 1, 3, 8-trihydroxy-6', 6'-dimethylpyrano (2', 3': 5, 6) xanthone. (5) ... 4

Figure S2. The 13C NMR and DEPT spectrum (200 MHz, MeOD) of 1, 3, 8-trihydroxy-6', 6'-dimethylpyrano (2', 3': 5, 6) xanthone. (5) .. 5

Figure S3. The 1H NMR spectrum (800 MHz, MeOD) of 1, 3, 8-trihydroxy-6', 6'-dimethylpyrano (2', 3': 5, 6) xanthone. (5) .. 5

Figure S4. The HSQC spectrum of 1, 3, 8-trihydroxy-6', 6'-dimethylpyrano (2', 3': 5, 6) xanthone (5) ... 6

Figure S5. The HMBC spectrum of 1, 3, 8-trihydroxy-6', 6'-dimethylpyrano (2', 3': 5, 6) xanthone (5) ... 6

Figure S6. The COSY spectrum of 1, 3, 8-trihydroxy-6', 6'-dimethylpyrano (2', 3': 5, 6) xanthone (5) ... 7

Figure S7. The ROESY spectrum of 1, 3, 8-trihydroxy-6', 6'-dimethylpyrano (2', 3': 5, 6) xanthone (5) ... 7

Figure S8. The 13C NMR and DEPT spectrum (200 MHz, MeOD) of 1,2,5-Trihydroxy-6-methoxyxanthone (1) .. 8

Figure S9. The 1H NMR spectrum (800 MHz, MeOD) of 1,2,5-Trihydroxy-6-methoxyxanthone (1) .. 8

Figure S10. The 13C NMR and DEPT spectrum (200 MHz, MeOD) of 1,3,6,7-tetrahydroxy-2,5-bis(3-methylbut-2-enyl)xanthen-9-one (2) .. 9

Figure S11. The 1H NMR spectrum (800 MHz, MeOD) of 1,3,6,7-tetrahydroxy-2,5-bis(3-methylbut-2-enyl)xanthen-9-one (2) .. 9

Figure S12. The 13C NMR and DEPT spectrum (200 MHz, MeOD) of xanthone V1 (3) .. 10

Figure S13. The 1H NMR spectrum (800 MHz, MeOD) of xanthone V1 (3) .. 10

Figure S14. The 13C NMR and DEPT spectrum (200 MHz, MeOD) of isojacareubin (4) .. 11

Figure S15. The 1H NMR spectrum (800 MHz, MeOD) of isojacareubin (4) .. 11

Figure S16. The 13C NMR and DEPT spectrum (200 MHz, MeOD) of methyl protocatechuate. (6) .. 12

Figure S17. The 1H NMR spectrum (800 MHz, MeOD) of methyl protocatechuate. (6) .. 12

Figure S18. The 13C NMR and DEPT spectrum (125 MHz, MeOD) of isoxanthochymol (7) .. 13

Figure S19. The 1H NMR spectrum (500 MHz, MeOD) of isoxanthochymol (7) .. 13

Figure S20. The HRESIMS spectrum of 1, 3, 8-trihydroxy-6', 6'-dimethylpyrano (2', 3': 5, 6) euxanthone (8) .. 14

Figure S21. The 13C NMR and DEPT spectrum (200 MHz, MeOD) of euxanthone (8) .. 15

Figure S22. The 1H NMR spectrum (800 MHz, MeOD) of euxanthone (8) .. 15

Figure S23. The 13C NMR spectrum (200 MHz, MeOD) of protocatechuic acid (9) .. 16
Figure S24. The 1H NMR spectrum (800 MHz, MeOD) of protocatechuic acid (9) 16
Figure S1. The HRESIMS spectrum of 1, 3, 8-trihydroxy-6', 6'-dimethylpyrano (2', 3': 5, 6) xanthone. (5)
Figure S2. The 13C NMR and DEPT spectrum (200 MHz, MeOD) of 1, 3, 8-trihydroxy-6', 6'-dimethylpyraño (2', 3': 5, 6) xanthone. (5)

Figure S3. The 1H NMR spectrum (800 MHz, MeOD) of 1, 3, 8-trihydroxy-6', 6'-dimethylpyraño (2', 3': 5, 6) xanthone. (5)
Figure S4. The HSQC spectrum of 1, 3, 8-trihydroxy-6', 6'-dimethylpyrano (2', 3': 5, 6) xanthone (5).

Figure S5. The HMBC spectrum of 1, 3, 8-trihydroxy-6', 6'-dimethylpyrano (2', 3': 5, 6) xanthone (5).
Figure S6. The COSY spectrum of 1, 3, 8-trihydroxy-6', 6'-dimethylpyrano (2', 3': 5, 6) xanthone (5).

Figure S7. The ROESY spectrum of 1, 3, 8-trihydroxy-6', 6'-dimethylpyrano (2', 3': 5, 6) xanthone (5).
Figure S8. The 13C NMR and DEPT spectrum (200 MHz, MeOD) of 1,2,5-Trihydroxy-6-methoxyxanthone (1)

Figure S9. The 1H NMR spectrum (800 MHz, MeOD) of 1,2,5-Trihydroxy-6-methoxyxanthone (1)
Figure S10. The 13C NMR and DEPT spectrum (200 MHz, MeOD) of 1,3,6,7-tetrahydroxy-2,5-bis(3-methylbut-2-enyl)xanthen-9-one (2)

Figure S11. The 1H NMR spectrum (800 MHz, MeOD) of 1,3,6,7-tetrahydroxy-2,5-bis(3-methylbut-2-enyl)xanthen-9-one (2)
Figure S12. The 13C NMR and DEPT spectrum (200 MHz, MeOD) of xanthone V1 (3)

Figure S13. The 1H NMR spectrum (800 MHz, MeOD) of xanthone V1 (3)
Supporting Information of Chemical Constituents from the Bark of *Garcinia oblongifolia*

Figure S14. The 13C NMR and DEPT spectrum (200 MHz, MeOD) of isojacareubin (4)

Figure S15. The 1H NMR spectrum (800 MHz, MeOD) of isojacareubin (4)
Figure S16. The 13C NMR and DEPT spectrum (200 MHz, MeOD) of methyl protocatechuate. (6)

Figure S17. The 1H NMR spectrum (800 MHz, MeOD) of methyl protocatechuate. (6)
Supporting Information of Chemical Constituents from the Bark of *Garcinia oblongifolia*

Figure S18. The 13C NMR and DEPT spectrum (125 MHz, MeOD) of isoxanthochymol (7)

Figure S19. The 1H NMR spectrum (500 MHz, MeOD) of isoxanthochymol (7)
Supporting Information of Chemical Constituents from the Bark of *Garcinia oblongifolia*

Figure S20. The HRESIMS spectrum of 1, 3, 8-trihydroxy-6', 6'-dimethylpyrano (2', 3': 5, 6) euxanthone (8)

Qualitative Analysis Report

Data Filename	171102ESIA27.d
Sample Type	Sample
Instrument Name	Agilent G6230 TOF MS
Acq Method	ESI/m
IRM Calibration Status	Success
Comment	
Sample Group	Info.
Acquisition SW	6200 series TOF/6900 series
Version	Q-TOF B.05.01 (B0.23.2)

User Spectra

![Image of HRESIMS spectrum](image)

Peak List

m/z	Intensity
107.061	1
123.992	1
141.019	1
148.055	1
162.078	1
179.090	1
187.091	1
203.099	1
229.0497	1

Formula Calculator Element Limits

Element	Min	Max
C	0	200
H	0	480
O	0	10

Formula Calculator Results

Formula	Calculated Mass	Mz	Diff. (Da)	Diff. (ppm)	DBF
C13 H9 O4	229.0501	229.0497	0.4	1.7	9.5

--- End Of Report ---
Figure S21. The 13C NMR and DEPT spectrum (200 MHz, MeOD) of euxanthone (8)

Figure S22. The 1H NMR spectrum (800 MHz, MeOD) of euxanthone (8)
Supporting Information of Chemical Constituents from the Bark of *Garcinia oblongifolia*

Figure S23. The 13C NMR spectrum (200 MHz, MeOD) of protocatechuic acid (9)

Figure S24. The 1H NMR spectrum (800 MHz, MeOD) of protocatechuic acid (9)