Distributed Prescribed Finite Time Consensus Scheme for Economic Dispatch of Smart Grids with the Valve Point Effect

Yingjiang Zhou, Shigao Zhu, and Qian Chen

1College of Automation and College of Artificial Intelligence, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
2Jiangsu Engineering Lab for IOT Intelligent Robots (IOTRobot), Nanjing 210023, China

Correspondence should be addressed to Yingjiang Zhou; zhouyj@njupt.edu.cn

1.Introduction

In the recent years, the research about the ED problem has attracted tremendous attentions, which is particularly important in the smart grid. The aim of the ED problem is to find the optimization of the minimum total generation cost. When there are certain practical constraints, the aim of the ED problem is to find the optimal outputs to minimum total generation cost while meeting the power demand. The traditional ways of solving the ED problem (e.g., genetic algorithm [1, 2], particle swarm optimization [3–6], and multiobjective collective decision optimization algorithm [7]) are centralized methods.

Recently, many research results focus on the distributed approach to resolve the ED problem [8–17], where the generation units only get the neighbor’s information. The low communication cost, easy implementation and maintenance, and strong robustness against communication uncertainties are the benefits of distributed ED algorithms [8]. Many pioneering work about distributed ED were pointed in [8–10], but these results are not fully distributed. The fully distributed ED algorithms were first proposed in [11], where the distributed consensus methods in multiagent systems (MASs) have been used. When there exist unknown communication uncertainties, the ED problem is developed by using the adaptive consensus-based robust strategy [12]. For sparse communication networks and time delay, a distributed scheme is provided based on consensus strategy [13]. In order to reduce the amount of communication of the smart grids, the event-triggered control solution was devised to achieve the distributed reactive power sharing control [14–16]. In the smart grids, the second-order consensus methods have been used to solve the ED problem [17]. Considering the complex networks with the reaction diffusion terms and the probabilistic Boolean networks, the synchronization and stabilization methods were investigated in [18–20], and we will focus on the ED algorithms in these kinds of networks.

The rate of convergence is a key factor of solving the ED problem [21–25], and fast convergence rate and strong robustness are the advantages of the finite time method [26, 27]. Considering the ED problem of generation, the distributed finite-step iterative strategy is arranged [21]. If the topology is jointly connected, distributed finite time ED
The direct path from the node i_1 to node i_m is $(i_1, i_2, (i_2, i_3), \ldots, (i_{m-1}, i_m)$. If one node in a directed graph at least has a directed path to another node, the graph contains a directed spanning tree. If each node has a directed path to all other nodes in a directed graph, the directed graph is said to be strongly connected. If all the nodes satisfy $a_{im}(i) = \sum_{j=1}^{N} a_{ij} = d_{out}(i) = \sum_{j=1}^{N} a_{ji}$, $i, j = 1, \ldots, n$ and the in-degree is equal to the out-degree, then the direct graph is said to be a balance graph.

Define an undirected mirror graph $G = \{V, E, A\}$, which has the same nodes V as G. The set of edges is $E \subseteq V \times V$, and the weighted symmetric adjacency matrix is $A = [\tilde{a}_{ij}]$, where

$$\tilde{a}_{ij} = \frac{a_{ij} + a_{ji}}{2} \geq 0. \quad (1)$$

2.2. Problem Statement. Suppose the MASs consist of n agents. Also, we can describe the dynamics of the agent as follows:

$$\dot{x}_i = u_i, \quad (2)$$

where u_i is the control inputs, $i = 1, \ldots, n$.

Definition 1. The MASs (2) is said to reach consensus in prescribed finite time, if for any preselected time $T > 0$ such that $\lim_{t \to T} x_i = x_j$ and for all $t \geq T, \ x_i = x_j, \ i, j \in \{1, \ldots, n\}$.

Lemma 1 (see [10]). For the irreducible Laplacian matrix L, the algebraic connectivity $a(L) > 0$, where $a(L) = \min_{x \in \mathbb{R}^n, x \neq 0} x^T L x / x^T x$, with $L = \Xi L + L^T \Xi / 2$, $\Xi = (\xi_1, \xi_2, \ldots, \xi_n) > 0$, $\Xi = \text{diag}(\xi_1, \xi_2, \ldots, \xi_n)$, $\sum_{i=1}^{n} \xi_i = 1$, and $\xi^T L = 0$.

In this paper, the ED problem with and without the valve point effect is considered. Suppose there are n generating units. The cost function of each generator is as follows:

$$C_i(P_i) = a_i P_i^2 + b_i P_i + c_i + d_i |\sin(e_i (P_i^{\text{min}} - P_i))|, \quad (3)$$

where $C_i(P_i)$ is the cost of the i-th generator, P_i is the real power generation of the i-th unit, P_i^{min} is the lower bound of the generation capacity, and a_i, b_i, c_i, d_i, and e_i are the positive cost function coefficients. $d_i |\sin(e_i (P_i^{\text{min}} - P_i))|$ is the valve point effect. If $d_i = 0$, it means that the valve point effect is not exist.

Our research objective is to minimize the total cost of n power generation systems in the case of power demand and supply balance.

The optimization problem can be summarized as follows:

$$\min \sum_{i=1}^{n} C_i(P_i). \quad (4)$$

Subjecting to the power balance constraint,

$$\sum_{i=1}^{n} P_i = P_D, \quad (5)$$

where P_D is the total load of the power system.
3. Main Theoretical Results

3.1. Optimization by Consensus without the Valve Point Effect.
In this section, the distributed control method is devised to solve the optimization problem without the valve point effect.

Definition 2. The incremental cost of each generator i without valve point effect is defined as $IC_i = \partial C_i(P_i)/\partial P_i = r_i P_i + b_i$, where $r_i = 2a_i$. The Lagrange multiplier algorithm is applied to solve the optimization problem.

$$L(P_i, \lambda) = \sum_{i=1}^{n} C_i(P_i) + \lambda \left(P_D - \sum_{i=1}^{n} P_i \right)$$

$$= \sum_{i=1}^{n} \left(a_i P_i^2 + b_i P_i + c_i \right) + \lambda \left(P_D - \sum_{i=1}^{n} P_i \right),$$

(6)

where λ is the Lagrange multiplier.

The minimum value of (6) can be obtained by differentiating the abovementioned equation.

$$\frac{\partial L}{\partial P_i} = \frac{\partial C_i(P_i)}{\partial P_i} - \lambda = r_i P_i + b_i - \lambda = 0.$$

(7)

So, $\sum_{i=1}^{n} P_i = P_D$. We have

$$\lambda = r_i P_i + b_i.$$

(8)

We define $y_i(t) = \lambda_i = r_i P_i + b_i$. Then, a distributed prescribed finite time protocol is designed for the optimization problem.

$$y_i(t) = cr_i k(t) \sum_{j=1}^{n} \bar{a}_{ij} (y_j(t) - y_i(t)) = -cr_i k(t) \sum_{j=1}^{n} \bar{L}_{ij} y_j(t).$$

(9)

With initial conditions $y_i(0) = r_i P_i(0) + b_i$, the following equation is satisfied:

$$\sum_{i=1}^{n} P_i(0) = P_D.$$

(10)

$$k(t) = k_1 + k_2/(T - t)$$

(11)

$$z^* (t) = -\frac{c k(t)}{r} \sum_{m=1}^{n} \sum_{j=1}^{n} \bar{L}_{mj} y_j(t) = 0 = -\frac{1}{r} \sum_{m=1}^{n} P_m(t).$$

(12)

This means

$$\sum_{m=1}^{n} P_m(t) = \sum_{m=1}^{n} P_m(0) = P_D.$$

(13)

From (12), we know the total output power of all the generators is a constant value, which means the balance between the demand and supply of powers is always true.

Then, we will prove the prescribed finite time consensus for the incremental cost of each generator.

We define $\delta_i = y_i - y^*$ as the error states between the average value and the i-th generator, $\delta = (\delta_1, \ldots, \delta_n)^T$. It is easy to see that $\sum_{k=1}^{n} \delta_k = 0$ and $\sum_{k=1}^{n} \delta_k \delta_k = 0$. So, we can get the error system:

$$\delta_i(t) = cr_i k(t) \sum_{j=1}^{n} \bar{a}_{ij} (\delta_j(t) - \delta_i(t)) = -cr_i k(t) \sum_{j=1}^{n} \bar{L}_{ij} \delta_j(t).$$

(14)

We choose the following Lyapunov function:

$$V(t) = \sum_{i=1}^{n} \frac{\delta_i^T \delta_i}{r_i}.$$

(15)

By using Lemma 1, the derivative of $V(t)$ can be described as

$$\dot{V}(t) = 2 \sum_{i=1}^{n} \frac{\delta_i^T \delta_i}{r_i} = -2ck(t) \sum_{i=1}^{n} \sum_{j=1}^{n} \delta_i^T L_{ij} \delta_j = -2ck(t) \delta^T L \delta$$

$$\leq -ck(t) a(\Xi^{-1} \bar{L}) \delta^T \Xi \delta \leq -ck(t) a(\Xi^{-1} \bar{L}) V(t).$$

(16)

As $k(t) = k_1 + k_2/(T - t) - t \text{sign}[1 + \text{sign}(T - t)]$, we will prove the result in two intervals $[0, T)$ and $[T, \infty)$.

For $t \in [0, T)$, $k(t) = k_1 + k_2/(T - t)$. We have

$$\dot{V}(t) \leq -ck_1 a(\Xi^{-1} \bar{L}) V = -ck_1 a(\Xi^{-1} \bar{L}) V$$

$$-ck_2 \frac{k_2}{T - t} a(\Xi^{-1} \bar{L}) V.$$

(17)

We define $z = (T - t)^{-\frac{k_2}{2k_1}}$, $t \in [0, T)$. Then, $\dot{z} = k_2/2 (T - t)^{-\frac{k_2}{2k_1} - 1}$, $\bar{z} \bar{z} = k_2/2 (T - t)$. As $c \geq 1/a(\Xi^{-1} \bar{L}) > 0$, we have

$$\dot{V}(t) \leq -k_1 V(t) - \frac{k_2}{T - t} V(t) = -k_1 V(t) - 2\frac{z \dot{z}}{z} V(t).$$

Then,

$$\dot{z}^2 V(t) \leq -k_1 z^2 V(t) - 2\frac{\dot{z}}{z} V(t).$$

(18)

So,
\[
\frac{d(z^2 V(t))}{dt} = z^2 \dot{V}(t) + 2z \ddot{V}(t) \leq -k_1 z^2 V(t). \tag{19}
\]

Then,
\[
z^2 V(t) \leq \exp^{-k_1 t} z(0)^2 V(0), \tag{20}
\]
\[
V(t) \leq \frac{z^2 \exp^{-k_1 t} z(0)^2 V(0)}{(T - t)^2} \exp^{-k_1 T} V(0). \tag{21}
\]

From (21), we know \(\lim_{t \to T^-} V(t) = 0\). For \(t \in [T, \infty)\), \(k(t) = k_1\). We have
\[
V(t) \leq -ck_1 a(E^{-1}T)V < 0. \tag{22}
\]

It means \(V\) will not rise anymore. So, \(\forall t \geq T, V(t) = V(T) \equiv 0\).

The prescribed finite time optimization problem without the valve point effect has been proved. The proof is completed.

Remark 1: the prescribed finite time fully distributed method is designed for solving the ED problem in Theorem 1. The result here is a fully distributed result, and it is different from the centralized algorithms.

Remark 2: note that the graph in Theorem 1 is a directed strongly connected balance graph, and it is an improvement over an undirected graph. The result here can also be used for any undirected connected graph. In the future work, we will focus on other directed graphs.

Remark 3: the prescribed finite time result has two advantages compared with the finite time result. Firstly, the convergence time can be preassigned as needed by the designer, as we know that the convergence time of the finite time result is connected with the initial condition. Secondly, the controller in the prescribed finite time result is continuous, while the controller in the finite time result is discontinuous. The continuous controller can make the system state change smoothly.

3.2. Valve Point Effect. In this section, the valve point effect is introduced. In the interval \([0, \pi]\), the piecewise linearization is employed. The effect of the valve point effect on the cost function is the type of the sine-wave function, as in Figure 1(a). The active real power generated can be obtained from the derivative of the sine-wave function, as in Figure 1(b). As the function in Figure 1(b) is periodic, the piecewise linearization is introduced to approximate the sine-wave function, as in Figure 1(c) [42].

Taking the derivative of formula (3),
\[
\frac{dC_i(P_i)}{d(P_i)} = 2a_i P_i + b_i + d_i e_i \cos(\text{mod}(e_i(P_i^{\text{min}} - P_i), \pi)), \tag{23}
\]

where \text{mod} means the MOD function.

The piecewise linearization with different slopes is introduced:
\[
d_i e_i \cos(\text{mod}(e_i(P_i^{\text{min}} - P_i), \pi)) = g_i(P_i - q_i(\frac{\pi}{e_i}) + k_i, \tag{24}
\]

where \(g_i\) and \(k_i\) are constants and \(q_i = [(P_i - P_i^{\text{min}})/\pi/e_i]\) is an integer number of intervals. From (23) and (24),
\[
\frac{dC_i(P_i)}{d(P_i)} = 2a_i P_i + b_i + g_i(P_i - q_i(\frac{\pi}{e_i}) + k_i
\]

\[
= (2a_i + g_i)P_i - g_i q_i(\frac{\pi}{e_i}) + b_i + k_i. \tag{25}
\]

3.3. Optimization by Consensus with the Valve Point Effect. Next, the distributed control approach is devised for solving the optimization problem with the valve point effect.

Definition 3. We define the incremental cost of each generator \(i\) as \(IC_i = \frac{\partial C_i(P_i)}{\partial P_i} = \tau_i P_i + \eta_i\), where \(\tau_i = 2a_i + g_i\) and \(\eta_i = -g_i q_i(\pi/e_i) + b_i + k_i, i = 1, 2, \ldots, n\).

The Lagrange multiplier algorithm is used to solve the optimization problem with the valve point effect.

\[
L(P, \lambda) = \sum_{i=1}^{n} C_i(P_i) + \lambda \left(P_D - \sum_{i=1}^{n} P_i \right)
\]

\[
= \sum_{i=1}^{n} a_i P_i^2 + b_i P_i + c_i + d_i \sin(e_i(P_i^{\text{min}} - P_i)) \right) + \lambda \left(P_D - \sum_{i=1}^{n} P_i \right). \tag{26}
\]

The minimum value of (26) can be obtained by differentiating equation (26).
\[
\frac{\partial L}{\partial P_i} = \frac{\partial C_i(P_i)}{\partial P_i} - \lambda = \tau_i P_i + \eta_i - \lambda = 0. \tag{27}
\]

So, \(\sum_{i=1}^{n} P_i = P_D\). We have
\[
\lambda = \tau_i P_i + \eta_i. \tag{28}
\]

We define \(x_i(t) = \lambda_i = \tau_i P_i + \eta_i, i = 1, 2, \ldots, n\). Then, a distributed prescribed finite time protocol is designed for the optimization problem.
\[
\dot{x}_i(t) = c_i r_i(t) \sum_{j=1}^{n} a_{ij}(x_j(t) - x_i(t)) = -c_i r_i(t) \sum_{j=1}^{n} T_{ij} x_j(t). \tag{29}
\]

With initial conditions \(x_i(0) = \tau_i P_i(0) + \eta_i\), the following equation is satisfied:
\[
\sum_{i=1}^{n} P_i(0) = P_D. \tag{30}
\]
3.4. Optimization by Consensus with the Power Generation Constraints. Next, considering the power generation constraints of the generation-demand constraint, we need to further revise the distributed algorithms (9)-(10) to solve the ED problem.

The following three steps are derived to solve the constraints problem:

Step 1: by using the algorithm (9)-(10) in Theorem 1, we can get the optimal incremental cost \(\lambda^* \) and the optimal power generation value \(P_i^* \).

Step 2: from Step 1, we get \(P_i^* \). We check to see whether \(P_i^* \) is in the interval \([P_{i,\text{min}}, P_{i,\text{max}}] \). If \(P_i^* > P_{i,\text{max}} \), let \(P_i^* = P_{i,\text{max}} \). If \(P_i^* < P_{i,\text{min}} \), let \(P_i^* = P_{i,\text{min}} \).

We define \(\Omega_p \) as the generation units whose optimal values of power generation are \(P_i^* = P_{i,\text{max}} \) or \(P_i^* = P_{i,\text{min}} \). Two auxiliary variables \(\tilde{x}_i \), \(\tilde{y}_i \) are introduced, and the initialize condition are

\[
\tilde{x}_i = \begin{cases}
\frac{\lambda^* - b_i}{2a_i} - P_i^*, & i \in \Omega_p, \\
0, & i \notin \Omega_p,
\end{cases}
\]

\[
\tilde{y}_i = \begin{cases}
\frac{1}{2a_i}, & i \notin \Omega_p, \\
0, & i \in \Omega_p.
\end{cases}
\]

The distributed average algorithms are introduced:

\[
\dot{\tilde{x}}_i(t) = c_r k(t) \sum_{j=1}^{n} a_{ij} (\tilde{x}_j(t) - \tilde{x}_i(t)),
\]

\[
\dot{\tilde{y}}_i(t) = c_r k(t) \sum_{j=1}^{n} a_{ij} (\tilde{y}_j(t) - \tilde{y}_i(t)).
\]

Corollary 1. If the topological graph is a strongly connected direct balance graph, the distributed prescribed finite time algorithms (32) and (33) can solve the optimization problem with the power generation constraints in the preselected finite time \(T_1 \), i.e.,

\[
\lim_{t \to T_1} \tilde{x}_i(t) = \sum_{i=1}^{n} \xi_i \tilde{x}_i(0) = \sum_{i \in \Omega_p} \xi_i \left(\frac{\lambda^* - b_i}{2a_i} - P_i^* \right),
\]

\[
\lim_{t \to T_1} \tilde{y}_i(t) = \sum_{i=1}^{n} \xi_i \tilde{y}_i(0) = \sum_{i \in \Omega_p} \xi_i \frac{\lambda^* - b_i}{2a_i}.
\]

Proof. When we set \(a_i = 0.5 \), it is easy to get the results (34) and (35), and the proof is similar to the proof in Theorem 1. From (34) and (35), each generation unit obtains the average values of \(\tilde{x}_i^* \) and \(\tilde{y}_i^* \). We can get the new incremental cost \(\lambda^{**} \) as follows:

\[
\lambda^{**} = \lambda^* + \frac{\tilde{x}_i^*}{\tilde{y}_i^*}.
\]

The new optimal value \(P_i^{**} \) can be obtained by

\[
P_i^{**} = \begin{cases}
\lambda^{**} - b_i, & i \notin \Omega_p, \\
P_{i,\text{min}} \text{ or } P_{i,\text{max}}, & i \in \Omega_p
\end{cases}
\]

Step 3: check to see whether \(P_i^{**} \) is in the interval \([P_{i,\text{min}}, P_{i,\text{max}}] \). If \(P_i^{**} \) is not in the interval, set \(\lambda^* = \lambda^{**} \) and repeat Step 2. Otherwise, \(P_i^{**} \) is the final value. \(\square \)
4. Numerical Examples

In this section, in order to verify the effectiveness of prescribed finite time algorithm for the ED problem of smart grids with the valve point effect, three numerical examples are listed, prescribed finite time optimization by consensus, prescribed finite time optimization by consensus with power generation constraints of generation units, and prescribed finite time optimization by consensus with the valve point effect. In this paper, a simulation model with 5 generators is selected, and the communication topology of the generator model can be seen in Figure 2.

The topology is balance directed, the adjacent matrix of the graph can be written as

\[
A = \begin{bmatrix}
0 & 2 & 0 & 0 & 6 \\
4 & 0 & 3 & 0 & 3 \\
0 & 3 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 \\
4 & 5 & 0 & 2 & 0
\end{bmatrix}
\]

Laplacian matrix of the MASs is

\[
L = \begin{bmatrix}
8 & -2 & 0 & 0 & -6 \\
-4 & 10 & -3 & 0 & -3 \\
-3 & 3 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & -2 \\
-4 & -5 & 0 & -2 & 11
\end{bmatrix}
\]

The mirror diagram can be further obtained as

\[
\tilde{A} = \begin{bmatrix}
0 & 3 & 0 & 0 & 5 \\
3 & 0 & 3 & 0 & 4 \\
0 & 0 & 0 & 0 & 2 \\
5 & 4 & 0 & 2 & 0
\end{bmatrix}, \quad \text{and the Laplacian matrix of mirror diagram is}
\]

\[
\tilde{L} = \begin{bmatrix}
8 & -3 & 0 & 0 & -5 \\
-3 & 10 & -3 & 0 & -4 \\
-3 & 3 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & -2 \\
-5 & -4 & 0 & -2 & 11
\end{bmatrix}
\]

For \(k(t) = k_1 + k_2/T - t \text{sign}[1 + \text{sign}(T - t)] \), select \(k_1 = 1, k_2 = 2, c = 2 \) in equation (9). Set \(a_1 = 0.096, a_2 = 0.072, a_3 = 0.105, a_4 = 0.082, a_5 = 0.103, b_1 = 1.22, b_2 = 1.41, b_3 = 1.53, b_4 = 1.02, b_5 = 1.50, c_1 = 51, c_2 = 31, c_3 = 78, c_4 = 42, \) and \(c_5 = 81 \). The original values of \(\lambda_i(0) \) are

\[
\begin{align*}
G_1: & \quad 4 \quad 6 \\
G_2: & \quad 2 \quad 3 \\
G_3: & \quad 5 \\
G_4: & \quad 1 \\
G_5: & \quad 4
\end{align*}
\]

Figure 2: The topology graph of the generator model.

Figure 3: The incremental cost of generator \(\lambda_i \).

![Figure 3: The incremental cost of generator \(\lambda_i \).](image)

![Figure 4: Total power demand of the generator.](image)

![Figure 5: The output power of generator \(P_i \).](image)
and $\lambda_5(0) = 22.01$.

4.1. Prescribed Finite Time Optimization by Consensus. In this section, distributed ED algorithm (9) in a directed topology is used to solve the optimization problem without considering power generation constraints.

The convergence time can be set as 1 s. Figure 3 shows the incremental cost of the generator λ_i, and the stable consensus $\lambda^* = 17.38$ after 1 s. We can see that the generator power demand is about 447.34 MW from Figure 4, which satisfies the balance condition of power demand. It can be seen from Figure 5 that the optimal values of the generator power output are $P_1 = 84.16$ MW, $P_2 = 110.89$ MW, $P_3 = 75.47$ MW, $P_4 = 99.74$ MW, and $P_5 = 77.08$ MW.

4.2. Prescribed Finite Time Optimization by Consensus with Power Generation Constraints. Power generation constraints of generator units are taken into account in this simulation. The maximum values of each generator constraints are $P_{1H} = 200$, $P_{2H} = 190$, $P_{3H} = 180$, $P_{4H} = 120$, and $P_{5H} = 180$. The minimum power of each generators are $P_{1L} = 60$, $P_{2L} = 40$, $P_{3L} = 50$, $P_{4L} = 30$, and $P_{5L} = 20$. The initial condition of the two auxiliary variables are $\tilde{x}_1(0) = 0$, $\tilde{x}_2(0) = 0$, $\tilde{x}_3(0) = 0$, $\tilde{x}_4(0) = 0$, $\tilde{x}_5(0) = 10$, $\tilde{y}_1(0) = 5.21$, $\tilde{y}_2(0) = 6.94$, $\tilde{y}_3(0) = 4.76$, $\tilde{y}_4(0) = 0.10$, and $\tilde{y}_5(0) = 4.65$. The convergence time is selected as 5 s. The incremental cost of the generator is $\lambda^* = 17.03$, as in Figure 6. According to
and (34), \(\bar{x}_i^* = 1.74 \) in Figure 7 and \(\bar{y}_j^* = 4.35 \) in Figure 8 reach consensus in 5s. From (37), we can get the final incremental cost \(\lambda^* = 17.43 \). It can be seen from Figure 9 that the total generator demand is 437.67 MW, which satisfies the balance condition of power demand. From Figure 10, we found that each \(P_i \) will reach a value in prescribed finite time, that is, \(P_1^{**} = 82.35 \) MW, \(P_2^{**} = 108.48 \) MW, \(P_3^{**} = 73.81 \) MW, \(P_4^{**} = 97.63 \) MW, and \(P_5^{**} = 75.40 \) MW.

4.3. Prescribed Finite Time Consensus with the Valve Point Effect.

According to (23), \(d_1 = 0.45, \ d_2 = 0.6, \ d_3 = 0.32, \ d_4 = 0.26, \ d_5 = 0.33, \ e_1 = 0.041, \ e_2 = 0.036, \ e_3 = 0.028, \)
\(e_4 = 0.052, \) and \(e_5 = 0.031 \) are selected in this paper. In line with formula (28), we can set the convergence time as 1s. The incremental cost of the generator with the valve point effect is \(\lambda^* = 17.24 \), as shown in Figure 11. The total power requirement is 474.79 MW, as in Figure 12, which meets the balance of power demand and supply. From Figure 13, it is found that all \(P_i \) can reach consensus in prescribed finite time, where the steady states are \(P_1 = 91.22 \) MW, \(P_2 = 124.10 \) MW, \(P_3 = 77.28 \) MW, \(P_4 = 103.14 \) MW, and \(P_5 = 79.05 \) MW.

5. Conclusions

This paper has solved the distributed prescribed finite time optimization ED problem with and without the valve point effect. The relationship between the consensus and
optimization problem of ED has been derived, and we can easily transform the optimization problem into a consensus problem. For both an undirected network and balance directed network, the prescribed finite time consensus schemes for ED of smart grids have been investigated. We found that if there exist constraints of generation units, the prescribed finite time optimization ED problem can also be solved.

Data Availability

The authors pledge to provide all the codes and the data underlying the findings of the study.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Acknowledgments

The authors would like to thank the National Natural Science Foundation of China (grant nos. 61603196 and 61873326) for supporting this research work.

References

[1] A. Bakirtzis, V. Petridis, and S. Kazarlis, “Genetic algorithm solution to the economic dispatch problem,” IEEE Proceedings-Generation, Transmission and Distribution, vol. 141, pp. 377–382, 2002.

[2] P. Chen and H. Chang, “Large-scale economic dispatch by genetic algorithm,” IEEE Transactions on Power Systems, vol. 10, no. 4, pp. 1919–1926, 1995.

[3] Z.-L. Gaing, “Particle swarm optimization to solving the economic dispatch considering the generator constraints,” IEEE Transactions on Power Systems, vol. 18, no. 3, pp. 1187–1195, 2003.

[4] J. Park, Y. Jeong, J. Shin, and K. Lee, “An improved particle swarm optimization for nonconvex economic dispatch problems,” IEEE Transactions on Power Systems, vol. 25, no. 1, pp. 156–166, 2010.

[5] J.-B. Park, K.-S. Lee, J.-R. Shin, and K. Y. Lee, “A particle swarm optimization for economic dispatch with nonsmooth cost functions,” IEEE Transactions on Power Systems, vol. 20, no. 1, pp. 34–42, 2005.

[6] F. Yao, Z. Y. Dong, K. Meng, Z. Xu, H. H.-C. Iu, and K. P. Wong, “Quantum-inspired particle swarm optimization for power system operations considering wind power uncertainty and carbon tax in Australia,” IEEE Transactions on Industrial Informatics, vol. 8, no. 4, pp. 880–888, 2012.

[7] X. Xu, Z. Hu, Q. Su, and Z. Xiong, “Multiobjective collective decision optimization algorithm for economic emission dispatch problem,” Complexity, vol. 2018, Article ID 1027193, 20 pages, 2018.

[8] Z. Zhang and M. Chow, “Convergence analysis of the incremental cost consensus algorithm under different communication network topologies in a smart grid,” IEEE Transactions on Power Systems, vol. 27, no. 4, pp. 761–1768, 2012.

[9] Z. Zhang and M. Chow, “Decentralizing the economic dispatch problem using a two-level incremental cost consensus algorithm in a smart grid environment,” in Proceedings of the IEEE 2011 North American Power Symposium, Boston, MA, USA, August 2011.

[10] Z. Zhang and M. Chow, “The influence of time delays on decentralized economic dispatch by using incremental cost consensus algorithm,” in Control and Optimization Methods for Electric Smart Grids, Power Electronics and Power Systems, A. Chakrabortty and M. D. Ilic, Eds., pp. 313–326, Springer Science Business Media, Berlin, Germany, 2012.

[11] W. Yu, C. Li, X. Yu, G. Wen, and J. Lü, “Distributed consensus strategy for economic power dispatch in a smart grid,” in Proceedings of the 10th Asian Control Conference, Sabah, Malaysia, June 2015.

[12] G. Wen, X. Yu, Z.-W. Liu, and W. Yu, “Adaptive consensus-based robust strategy for economic dispatch of smart grids subject to communication uncertainties,” IEEE Transactions on Industrial Informatics, vol. 14, no. 6, pp. 2484–2496, 2018.

[13] G. Chen and Z. Zhao, “Delay effects on consensus-based distributed economic dispatch algorithm in microgrid,” IEEE Transactions on Power Systems, vol. 33, no. 1, pp. 602–612, 2018.

[14] Y. Fan, G. Hu, and M. Egerstedt, “Distributed reactive power sharing control for microgrids with event-triggered communication,” IEEE Transactions on Control Systems Technology, vol. 25, no. 1, pp. 118–128, 2017.

[15] G. Chen, Z. Li, and Z. Zhao, “Event-triggered optimal active power control in islanded microgrid with variable demand and time-varying communication topology,” IEEE Transactions on Smart Grid, vol. 10, no. 4, pp. 4015–4025, 2019.

[16] C. Li, X. Yu, W. Yu, T. Huang, and Z.-W. Liu, “Distributed event-triggered scheme for economic dispatch in smart grids,” IEEE Transactions on Industrial Informatics, vol. 12, no. 5, pp. 1775–1785, 2016.

[17] X. He, D. W. C. Ho, T. Huang, J. Yu, H. Abu-Rub, and C. Li, “Second-order continuous-time algorithms for economic power dispatch in smart grids,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 48, no. 9, pp. 1482–1492, 2018.

[18] C. Huang, Z. Zhang, H. Lam, and S. Tsai, “Synchronization analysis for nonlinear complex networks with reaction-diffusion terms using fuzzy-model-based approach,” IEEE Transactions on Fuzzy Systems, vol. 2020, Article ID 2974143, 13 pages, 2020.

[19] C. Huang, J. Lu, G. Zhai, J. Cao, G. Lu, and M. Perc, “Stability and stabilization in probability of probabilistic boolean networks,” IEEE Transactions on Neural Networks and Learning Systems, vol. 2020, Article ID 2978345, 11 pages, 2020.

[20] C. Huang, J. Lu, D. W. C. Ho, G. Zhai, and J. Cao, “Stabilization of probabilistic boolean networks via pinning control strategy,” Information Sciences, vol. 510, pp. 205–217, 2020.

[21] G. Chen, Z. Zhao, and Z. Li, “Distributed finite-step iterative algorithm for economic dispatch of generation,” IEEE Transactions on Industrial Informatics, vol. 14, no. 12, pp. 5221–5232, 2018.

[22] G. Chen and Z. Li, “Consensus based distributed finite-time economic dispatch in smart grid with jointly connected topology,” in Proceedings of the 29th Chinese Control and Decision Conference, Chongqing, China, May 2017.

[23] G. Chen, J. Ren, and E. Feng, “Distributed finite-time economic dispatch of a network of energy resources,” IEEE Transactions on Smart Grid, vol. 8, no. 2, pp. 822–832, 2017.

[24] Y. Song, Y. Wang, J. Holloway, and M. Krstic, “Time-varying feedback for regulation of normal-form nonlinear systems in
prescribed finite time,” *Automatica*, vol. 83, pp. 243–251, 2017.

[25] H. Xiang, G. Chen, and Z. Zhao, “A distributed algorithm for economic dispatch in prescribed time,” *IFAC-PapersOnLine*, vol. 52, no. 24, pp. 184–189, 2019.

[26] X. Li, D. W. C. Ho, and J. Cao, “Finite-time stability and settling-time estimation of nonlinear impulsive systems,” *Automatica*, vol. 99, pp. 361–368, 2019.

[27] G. Mei, X. Wu, D. Ning, and J.-A. Lu, “Finite-time stabilization of complex dynamical networks via optimal control,” *Complexity*, vol. 21, no. S1, pp. 417–425, 2016.

[28] H. Yang, P. Yang, and C. Huang, “Evolutionary programming based economic dispatch for units with nonsmooth fuel cost functions,” *IEEE Transactions on Power Systems*, vol. 11, no. 1, pp. 112–118, 1996.

[29] N. Sinha, R. Chakrabarti, and P. Chattopadhyay, “Evolutionary programming techniques for economic load dispatch,” *IEEE Transactions on Evolutionary Computation*, vol. 7, no. 1, pp. 822–832, 2003.

[30] D. Walters and G. Sheble, “Genetic algorithm solution of economic dispatch with valve point loading,” *IEEE Transactions on Power Systems*, vol. 8, no. 3, pp. 184–189, 1993.

[31] S. Ling, H. Lam, F. Leung, and Y. Lee, “Improved genetic algorithm for economic load dispatch with valve-point loadings,” in *Proceedings of the 29th Annual Conference of the IEEE Industrial Electronics Society*, Roanoke, VA, USA, November 2003.

[32] D. He, F. Wang, and Z. Mao, “A hybrid genetic algorithm approach based on differential evolution for economic dispatch with valve-point effect,” *International Journal of Electrical Power & Energy Systems*, vol. 30, no. 1, pp. 31–38, 2008.

[33] C.-L. Chiang, “Improved genetic algorithm for power economic dispatch of units with valve-point effects and multiple fuels,” *IEEE Transactions on Power Systems*, vol. 20, no. 4, pp. 1690–1699, 2005.

[34] T. Victorie and A. Jeyakumar, “Hybrid PSO-SQP for economic dispatch with valve-point effect,” *Electric Power Systems Research*, vol. 71, no. 1, pp. 51–59, 2004.

[35] X. Chen, B. Xu, and W. Du, “An improved particle swarm optimization with biogeography-based learning strategy for economic dispatch problems,” *Complexity*, vol. 2018, Article ID 7289674, 15 pages, 2018.

[36] S. Hemamalini and S. P. Simon, “Maclaurin series-based Lagrangian method for economic dispatch with valve-point effect,” *IET Generation, Transmission & Distribution*, vol. 34, no. 3, pp. 2093–2102, 2019.

[37] T. Nguyen, N. Quynh, and L. Dai, “Improved Firefly Algorithm: a novel method for optimal operation of thermal generating units,” *Complexity*, vol. 2018, Article ID 7267593, 23 pages, 2018.

[38] Y. Elsheakh, S. Zou, Z. Ma, and B. Zhang, “Decentralised gradient projection method for economic dispatch problem with valve point effect,” *IET Generation Transmission & Distribution*, vol. 34, no. 3, pp. 3844–3851, 2018.