Understanding the penguin amplitude in $B \to \phi K$ decays

S. Mishima
Department of Physics, Nagoya University, Nagoya 464-8602, Japan

Abstract

We calculate branching ratios for pure penguin decay modes, $B \to \phi K$ decays using perturbative QCD approach. Our results of branching ratios are consistent with the experimental data and larger than those obtained from the naive factorization assumption and the QCD-improved factorization approach. This is due to a dynamical penguin enhancement in perturbative QCD approach.

PACS index : 13.25.Hw, 11.10.Hi, 12.38.Bx

1 Introduction

Recently the branching ratios of $B \to \phi K$ decays have been measured by the BaBar [1], BELLE [2] and CLEO [3] collaborations. There is an interesting problem related a penguin contribution to decay amplitudes [4]. A naive estimate of the loop diagram leads to $P/T \sim \alpha_s/(12\pi) \log(m_t^2/m_c^2) \sim O(0.01)$ where P is a penguin amplitude and T is a tree amplitude. But experimental data for $\text{Br}(B \to K\pi)$ and $\text{Br}(B \to \pi\pi)$ leads to $P/T \sim O(0.1)$. Therefore, there must be a dynamical enhancement of the penguin amplitude. This problem is studied by Keum, Li and Sanda using perturbative QCD (PQCD) approach [5]. $B \to \phi K$ modes are important understanding penguin dynamics, because these modes are dominated by penguins. Here we report our study of $B \to \phi K$ decays using PQCD.

PQCD method for inclusive decays was developed by many authors over many years, and this formalism has been successful. Recently, PQCD has been applied to exclusive B meson decays, $B \to K\pi$ [5], $\pi\pi$ [6], $\pi\rho$, $\pi\omega$ [7], KK [8] and $K\eta^{(')}$ [9]. PQCD approach is based on the three scale factorization theorem [10], [11]. For example, $B \to K$ transition form factor can be written as

$$F_{BK} \sim \int [dx][db] C_i(t) \Phi_K(x_2,b_2) H(t) \Phi_B(x_1,b_1) \exp \left[-\sum_{j=1,2} \int_{1/b_j}^t \frac{d\bar{\mu}}{\bar{\mu}} \gamma_\phi(\alpha_s(\bar{\mu})) \right],$$

(1)

where x_1 and x_2 are momentum fractions of partons, b_1 and b_2 are conjugate variables of parton transverse momenta k_{1T} and k_{2T}, and γ_ϕ is the anomalous dimension of mesons. The hard part $H(t)$ can be calculated perturbatively. $C_i(t)$ is the Wilson coefficient corresponding to the four-quark operator causing $B \to K$ transition. The scale t is given explicitly in terms of x_1, x_2, b_1, b_2 and M_B, and it is of $O(\sqrt{\Lambda M_B})$. Here $\Lambda = M_B - m_b$, where M_B and m_b are B meson mass and b quark mass, respectively. It is important to note that in PQCD, the scale of the Wilson coefficient t can reach below $M_B/2$. In the factorization assumption [12], this scale is fixed at $M_B/2$. The Wilson coefficient for a penguin operator increases as the scale evolves down. This explains the enhancement of the penguin amplitude in PQCD compared to the amplitude obtained by the factorization assumption.

1 e-mail: mishima@eken.phys.nagoya-u.ac.jp
In this method, we can calculate not only factorizable amplitudes but also nonfactorizable and annihilation amplitudes. In case of $B \to \phi K$ decays, the factorizable amplitudes which can be written in terms of form factors F_{BK} and $F_{\phi K}$ are shown in Fig. 1(a)-(d). The nonfactorizable amplitudes are shown in Fig. 2(a)-(d). Ellipses denote meson wave functions in these figures. For illustration purposes, we show the hard part of the nonfactorizable diagram as the dashed box in Fig. 2(a). The parameters in meson wave functions are calculated from the light-cone QCD sum rules, and the theoretical uncertainty of the parameters is about 30%. The hard part depends on the particular processes, but it is calculable. The wave functions contain non-perturbative dynamics and are not calculable, but once it is known, it can be used for other decay processes.

In this paper, we calculate branching ratios for $B \to \phi K$ modes using PQCD approach. The detail is discussed in Ref. [13]. We predict the branching ratios for $B \to \phi K$ decays, and our predictions agree with the current experimental data and are larger than the values obtained from the naive factorization assumption (FA) and the QCD-improved factorization (QCDF) [14], [15].

![Figure 1: Feynman diagrams contributing to factorizable amplitudes for $B \to \phi K$](image1)

![Figure 2: Feynman diagrams contributing to nonfactorizable amplitudes for $B \to \phi K$](image2)

2 $B \to \phi K$ Amplitudes

We consider B meson to be at rest. In the light-cone coordinate, the B meson momentum P_1, the K meson momentum P_2 and the ϕ meson momentum P_3 are taken to be

$$P_1 = \frac{M_B}{\sqrt{2}}(1, 1, 0_T), \quad P_2 = \frac{M_B}{\sqrt{2}}(1 - r_\phi^2, 0, 0_T), \quad P_3 = \frac{M_B}{\sqrt{2}}(r_\phi^2, 1, 0_T),$$

where $r_\phi = M_\phi/M_B$, and the K meson mass is neglected. The momentum of the spectator quark in the B meson is written as k_1. Since the hard part is independent of k_1^+, the $\delta(k_1^+)$ function appears after
integrating over its conjugate spacial variable. Therefore, \(k_1 \) has only the minus component \(k_1^- \) and small transverse components \(k_{1T} \). \(k_1^- \) is given as \(k_1^- = x_1 P_1^- \), where \(x_1 \) is a momentum fraction. The quarks in the \(K \) meson have plus components \(x_2 P_2^+ \) and \((1 - x_2)P_2^- \), and the small transverse components \(k_{2T} \) and \(-k_{2T} \), respectively. The quarks in the \(\phi \) meson have the minus components \(x_3 P_3^- \) and \((1 - x_3)P_3^+ \), and the small transverse components \(k_{3T} \) and \(-k_{3T} \), respectively. The \(\phi \) meson longitudinal polarization vector \(\epsilon_\phi \) and two transverse polarization vector \(\epsilon_\phi T \) are given by \(\epsilon_\phi = (1/\sqrt{2r_\phi})(-r_\phi^2, 1, 0_T) \) and \(\epsilon_\phi T = (0, 0, 1_T) \).

The \(B \) meson wave function for incoming state and the \(K \) and \(\phi \) meson wave functions for outgoing state with up to twist-3 terms are written as

\[
\Phi^{(in)}_{B, \alpha \beta, ij} = \frac{i \delta_{ij}}{\sqrt{2N_c}} \int d\lambda d^2 p_k k_{1T} e^{-i(x_1 P_1^- z_1^- - k_{1T} x_T)} \left[(P_1 + MB) \gamma_5 \phi_B(x_1, k_{1T}) \right]_{\alpha \beta},
\]

(3)

\[
\Phi^{(out)}_{K, \alpha \beta, ij} = \frac{-i \delta_{ij}}{\sqrt{2N_c}} \int_0^1 dx_2 e^{ix_2 P_2^- z_2^-} \gamma_5 \left[P_2 \phi_K^A(x_2) + m_0 K \phi_K^P(x_2) + m_0 K (\not{k} - 1) \phi_K^T(x_2) \right]_{\alpha \beta},
\]

(4)

\[
\Phi^{(out)}_{\phi, \alpha \beta, ij} = \frac{\delta_{ij}}{\sqrt{2N_c}} \int_0^1 dx_3 e^{ix_3 P_3^- z_3^-} \left[M_\phi f_\phi \phi(x_3) + f_\phi P_3 \phi_\phi(x_3) + M_\phi \phi_\phi(x_3) \right]_{\alpha \beta},
\]

(5)

where \(i \) and \(j \) is color indices, and \(\alpha \) and \(\beta \) are Dirac indices. \(m_0 K \) is related to the chiral symmetry breaking scale, \(m_0 K = M_K^2/(m_d + m_s) \). \(v \) and \(n \) are defined as \(v^\mu = P_2^\mu / P_2^+ \) and \(n^\mu = z_2^- / z_2^+ = (0, 1, 0_T) \).

We neglect the terms which are proportional to the transverse polarization vector \(\epsilon_\phi T \), because these terms drop out from our calculation kinematically. The explicit form of these wave functions will be shown in Sec. 3.

Widths of \(B \to \phi K \) decays can be expressed as

\[
\Gamma = \frac{G_F^2}{32 \pi M_B} |A|^2.
\]

(6)

The decay amplitudes, \(A \), and \(\bar{A} \), corresponding to \(B^0 \to \phi K^0 \), and \(B^0 \to \phi K^0 \), respectively, are written as

\[
A = f_\phi V_{ts} V_{tb} F_e^P + V_{ts} V_{tb} M_e^P + f_B V_{ts} V_{tb} F_a^P + V_{ts} V_{tb} M_a^P,
\]

(7)

\[
\bar{A} = f_\phi V_{ts} V_{tb} F_e^P + V_{ts} V_{tb} M_e^P + f_B V_{ts} V_{tb} F_a^P + V_{ts} V_{tb} M_a^P,
\]

(8)

where \(F_e \) is the amplitude for factorizable diagrams which are considered in FA. \(F_a \) and \(M \) are the annihilation factorizable and the nonfactorizable diagrams which are neglected in FA. The indices, \(e \), and \(a \), denote the tree topology, and annihilation topology, respectively. The index \(P \) denotes the contribution from diagrams with a penguin operator. The decay amplitudes, \(A^+ \), and \(A^- \), corresponding to \(B^+ \to \phi K^+ \), and \(B^- \to \phi K^- \), respectively, are written as

\[
A^+ = f_\phi V_{ts} V_{tb} F_e^P + V_{ts} V_{tb} M_e^P + f_B V_{ts} V_{tb} F_a^P + V_{ts} V_{tb} M_a^P - f_B V_{us} V_{ub} F_T^P - V_{us} V_{ub} M_T^P,
\]

(9)

\[
A^- = f_\phi V_{ts} V_{tb} F_e^P + V_{ts} V_{tb} M_e^P + f_B V_{ts} V_{tb} F_a^P + V_{ts} V_{tb} M_a^P - f_B V_{us} V_{ub} F_T^P - V_{us} V_{ub} M_T^P,
\]

(10)

where the index \(T \) denotes tree contributions. Since the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements for the tree amplitudes are much smaller than for the penguin amplitudes, the tree contributions are very small.

The factorizable diagrams are given as Fig. 1(a) and Fig. 1(b). The factorizable penguin amplitude, \(F_e^P \), which comes from Fig. 1(a) and Fig. 1(b) is written as

\[
F_e^P = 8 \pi C_F M_B^3 \int_0^1 dx_1 dx_2 \int_0^\infty b_1 b_1 b_2 b_2 \phi_B(x_1, b_1)
\]

\[
\times \left\{ [(1 + x_2) \phi_K^A(x_2) + r_K (1 - 2x_2) (\phi_K^P(x_2) + \phi_K^T(x_2))] E_c(t_1^{(1)}) N_i \right\} h_e(x_1, x_2, b_1, b_2)
\]

\[3\]
\[+2r_K \phi_K^P(x_2) E_c(t_c^{(2)}) N_1 \{ x_1(1-x_1) \}^c h_c(x_2, x_1, b_1) \]

(11)

where \(N_1 \{ x(1-x) \}^c \) is the factor for the threshold resummation \([14]\). We use \(N_1 = 1.775 \) and \(c = 0.3 \) \([7]\). The evolution factors are defined by \(E_c(t) = \alpha_c(t) \alpha_c(t) \exp[-S_B(t) - S_K(t)] \) where \(\exp[-S_i(t)] \) is the factor for the \(k_T \) resummation \([18], [19]\). The explicit forms of the factor \(S_i(t) \) are given, for example, in Ref. \([8]\). The hard scales \(t_c^{(1)} \) and \(t_c^{(2)} \), which are the scales in hard process, are given by \(t_c^{(1)} = \max(\sqrt{2}M_B, 1/b_1, 1/b_2) \) and \(t_c^{(2)} = \max(\sqrt{2}M_B, 1/b_1, 1/b_2) \). The Wilson coefficient is given by

\[
a_c(t) = \frac{C_4}{N_c} + C_4 + \frac{C_7}{N_c} + C_9 + \frac{C_{10}}{N_c} + \frac{C_9}{N_c} - \frac{1}{2} \left(C_7 + \frac{C_8}{N_c} + C_9 + \frac{C_{10}}{N_c} + \frac{C_5}{N_c} \right).
\]

(12)

The hard function, which is the Fourier transformation of the virtual quark propagator and the hard gluon propagator, is given by

\[
h_c(x_1, x_2, b_1, b_2) = K_0(\sqrt{2}x_1M_Bb_1) \theta(b_1 - b_2)K_0(\sqrt{2}x_2M_Bb_1)I_0(\sqrt{2}x_2M_Bb_2) + (b_1 \leftrightarrow b_2).
\]

(13)

The factorizable annihilation diagrams shown in Fig. 1(c) and Fig. 1(d), and the nonfactorizable diagrams shown in Fig. 2(a)-(d) can be also calculated in the same way as \(F_c^P \).

3 Numerical Results

We use the model of the \(B \) meson wave function written as

\[
\phi_B(x, b) = N_B x^2(1-x)^2 \exp \left[-\frac{1}{2} \left(\frac{xM_B}{\omega_B} \right)^2 - \frac{\omega_B^2 b^2}{2x} \right] ,
\]

(14)

where \(\omega_B = 0.40 \text{ GeV} \) \([20]\). \(N_B \) is determined by normalization condition given by

\[
\int_0^1 dx \phi_B(x, b = 0) = \frac{f_B}{2\sqrt{2N_c}}.
\]

(15)

The \(K \) meson wave functions are given as

\[
\phi_K^A(x) = \frac{f_K}{2\sqrt{2N_c}} 6x(1-x) \left[1 + 3a_1(1-2x) + \frac{3}{2}a_2 \{ 5(1-2x)^2 - 1 \} \right] ,
\]

(16)

\[
\phi_K^P(x) = \frac{f_K}{2\sqrt{2N_c}} \left[1 + \frac{1}{2} \left(30\eta_3 - \frac{5}{2} \rho_K^2 \right) \{ 3(1-2x)^2 - 1 \} - \frac{1}{8} \left(3\eta_3 \omega_3 + \frac{27}{20} \rho_K^2 + \frac{81}{10} \rho_K a_2 \right) \{ 3 - 30(1-2x)^2 + 35(1-2x)^4 \} \right] ,
\]

\[
\phi_K^T(x) = \frac{f_K}{2\sqrt{2N_c}} (1-2x) \left[1 + 6 \left(5\eta_3 - \frac{3}{2} \eta_3 \omega_3 - \frac{3}{20} \rho_K^2 - \frac{3}{5} \rho_K a_2 \right)(1-10x + 10x^2) \right] ,
\]

(17)

(18)

where \(\rho_K = (m_d + m_s)/M_K \) \([21], [22]\). The parameters of these wave functions are given as \(a_1 = 0.17, a_2 = 0.20, \eta_3 = 0.015 \) and \(\omega_3 = -3.0 \) where the renormalization scale is 1 GeV.

The \(\phi \) meson wave functions are given as

\[
\phi_{\phi}(x) = \frac{f_\phi}{2\sqrt{2N_c}} 6x(1-x) ,
\]

(19)

\[
\phi_{\phi}^1(x) = \frac{f_\phi}{2\sqrt{2N_c}} \left[3(1-2x)^2 + \frac{35}{4} \zeta_3^T \{ 3 - 30(1-2x)^2 + 35(1-2x)^4 \} + \frac{3}{2} \left(1 - (1-2x) \log \frac{1-x}{x} \right) \right] ,
\]

\[
\phi_{\phi}^2(x) = \frac{f_\phi}{2\sqrt{2N_c}} \left[(1-2x) \left(6 + 9\delta_+ + 140\zeta_3^T - 1400\zeta_3^T x + 1400\zeta_3^T x^2 \right) + 3\delta_+ \log \frac{x}{1-x} \right] ,
\]

(20)

(21)
where $\zeta_+^T = 0.024$ and $\delta_+ = 0.46$ [23]. We have found that the final results are insensitive to the values chosen for ζ_+^T and δ_+.

We use the Wolfenstein parameters for the CKM matrix elements $A = 0.819$, $\lambda = 0.2196$, $R_0 \equiv \sqrt{\rho^2 + \eta^2} = 0.38$ [24], and choose the angle $\phi_3 = \pi/2$ [3]. We have found that the final results are quite insensitive to the values of ϕ_3. For the values of meson masses, we use $M_B = 5.28$ GeV, $M_K = 0.49$ GeV and $M_\phi = 1.02$ GeV. In addition, for the values of meson decay constants, we use $f_B = 190$ MeV, $f_K = 160$ MeV, $f_\phi = 237$ MeV and $f_\phi^T = 215$ MeV. The B meson life times are given as $\tau_B = 1.55 \times 10^{-12}$ sec and $\tau_{B\pm} = 1.65 \times 10^{-12}$ sec. And we use $\Lambda_{QCD}^{(4)} = 0.250$ GeV and $m_{0K} = 1.70$ GeV [3].

We show the numerical results of each amplitude for $B^0 \to \phi K^0$ and $B^\pm \to \phi K^\pm$ decays in Tab.3. The factorizable penguin amplitude F_a^P gives a dominant contribution to $B \to \phi K$ decays. The factorizable annihilation amplitude F_a^e generates a large strong phase. In $B^\pm \to \phi K^\pm$ modes, there are contributions from $f_B F_a^T$ and M_T^T. These tree amplitudes contribute only a few percent to the whole amplitude, since the CKM matrix elements related to the tree amplitudes are very small. In order to isolate the trivial uncertainty from f_B, f_K and f_ϕ, we express our prediction for $B \to \phi K$ as

$$\text{Br}(B^0 \to \phi K^0) = \left| \frac{f_B f_K f_\phi}{190 \text{ MeV} \times 160 \text{ MeV} \times 237 \text{ MeV}} \right|^2 \times (9.43 \times 10^{-6}) \right) , \quad (22)$$

$$\text{Br}(B^\pm \to \phi K^\pm) = \left| \frac{f_B f_K f_\phi}{190 \text{ MeV} \times 160 \text{ MeV} \times 237 \text{ MeV}} \right|^2 \times (10.1 \times 10^{-6}) . \quad (23)$$

We found that our result is insensitive to f_ϕ/f_ϕ. For example, 10% variation of f_ϕ/f_ϕ leads to less than 1% variation in our final result. The current experimental values are summarized in Tab.3. The values which are predicted in PQCD are consistent with the current experimental data. However, our branching ratios have the theoretical error from the $O(\alpha^2)$ corrections, the higher twist corrections, and the error of input parameters. Large uncertainties come from the meson decay constants, the shape parameter ω_B, and m_{0K}. These parameters are fixed from the other modes ($B \to K\pi$, $D\pi$, etc.). We try to vary ω_B from 0.36 GeV to 0.44 GeV, then we obtain Br($B^\pm \to \phi K^\pm$) = (7.54 ± 13.9) × 10^{-6}. Next, we set $\omega_B = 0.40$ and try to vary m_{0K} from 1.40 GeV to 1.80 GeV, then we obtain Br($B^\pm \to \phi K^\pm$) = (6.65 ± 11.4) × 10^{-6}. Now, we consider the ratio of the branching ratio for the $B^0 \to \phi K^0$ decay to the one for the $B^+ \to \phi K^+$ decay. The theoretical uncertainties from various parameters are small, since the parameters in the numerator cancel out those in the denominator. The difference between the two branching ratios come in principle from B meson life times, tree and electroweak penguin contributions in annihilation amplitudes. We found that the tree and electroweak penguin amplitudes in the annihilation diagrams are negligible. Tree amplitudes are suppressed by two factors. First, they are annihilation processes which are suppressed by helicity. Second, they are multiplied by small CKM matrix elements. We predict that this ratio is

$$\frac{\text{Br}(B^0 \to \phi K^0)}{\text{Br}(B^+ \to \phi K^+)} = 0.95 , \quad (24)$$

where the theoretical uncertainties from m_{0K} and ω_B are less than 1%. The ratio is essentially given by the life time difference. The experimental value of this ratio from BELLE [2] is Br($B^0 \to \phi K^0$)/Br($B^+ \to \phi K^+$) = 0.82^{+0.39}_{-0.32} ± 0.10.

In FA, the branching ratio is very sensitive to the effective number of colors N^{eff}_c. If we set $N^{eff}_c=3$, then the branching ratio is about 4.5×10^{-6} where the scale of the Wilson coefficient is taken to $M_B/2$ and F^{BK} is 0.38 from the BSW model. In QCDF, branching ratios for $B \to \phi K$ decays are predicted as Br($B^0 \to \phi K^0$) = $(4.0_{-2.9}^{+3.0}) \times 10^{-6}$ and Br($B^+ \to \phi K^-$) = $(4.3_{-1.4}^{+3.0}) \times 10^{-6}$ including the annihilation diagram [13]. Our predicted values are larger than these results. This is due to the enhancement of the
Wilson coefficient for the penguin amplitude as explained in Sec. 1. In PQCD approach, the scale of the Wilson coefficients, which is equal to the hard scale t, can reach lower values than $M_B/2$.

4 Summary

In this paper, we calculate $B^0 \to \phi K^0$ and $B^\pm \to \phi K^\pm$ decays in PQCD approach. Our predicted branching ratios agree with the current experimental data and are larger than the values obtained by FA and QCDF. Because the Wilson coefficients for penguin operators are enhanced dynamically in PQCD.

Note added:

After this work has been completed, we become aware of a similar calculation by Chen, Keum and Li [25]. Our results are in agreement.

Acknowledgment

The topic of this research was suggested by Professor A.I. Sanda. The author thanks his PQCD group members: Y.Y. Keum, E. Kou, T. Kurimoto, H-n. Li, T. Morozumi, R. Sinha, K. Ukai for useful discussions. The author thanks JSPS for partial support. The work was supported in part by Grant-in Aid for Special Project Research (Physics of CP violation); Grant-in Aid for Scientific Research from the Ministry of Education, Science and Culture of Japan.

References

[1] G. Cavoto on behalf of the BaBar Collaboration, hep-ex/0105018.
[2] A. Bozek for the BELLE Collaboration, talk presented at the International Europhysics Conference on High Energy Physics, Budapest, HUNGARY, July 12-18, 2001.
[3] CLEO Collaboration, Phys. Rev. Lett. 86 (2001) 3718.
[4] For example, see I.I. Bigi and A.I. Sanda, CP Violation (2000, Cambridge).
[5] Y.Y. Keum, H-n. Li and A.I. Sanda, Phys. Lett. B 504 (2001) 6; Phys. Rev. D 63 (2001) 054008.
[6] C.D. Lü, K. Ukai, and M.Z. Yang, Phys. Rev. D 63 (2001) 074009;
[7] C.D. Lü and M.Z. Yang, hep-ph/0011238.
[8] C.H. Chen and H-n. Li, Phys. Rev. D 63 (2001) 014003.
[9] E. Kou and A.I. Sanda, hep-ph/0106159.
[10] C.H. Chang and H-n. Li, Phys. Rev. D 55 (1997) 5577.
[11] T.W. Yeh and H-n. Li, Phys. Rev. D 56 (1997) 1615.
[12] M. Bauer, B. Stech and M. Wirbel, Z. Phys. C 34, 103 (1987); Z. Phys. C 29 (1985) 637.
[13] S. Mishima, hep-ph/0107163.
[14] X.G. He, J.P. Ma and C.Y. Wu, Phys. Rev. D 63 (2001) 094004.
Table 1: Contribution to $B^0 \to \phi K^0$ and $B^\pm \to \phi K^\pm$ decays from each amplitude

	$B^0 \to \phi K^0$	$B^\pm \to \phi K^\pm$
$f_\phi F_\phi^P$	-1.03×10^{-1}	-1.03×10^{-1}
$f_B F_a^P$	$6.45 \times 10^{-3} + i 4.28 \times 10^{-2}$	$6.17 \times 10^{-3} + i 4.20 \times 10^{-2}$
M_a^P	$5.24 \times 10^{-3} - i 3.61 \times 10^{-3}$	$5.24 \times 10^{-3} - i 3.61 \times 10^{-3}$
M_ϕ^P	$-8.03 \times 10^{-4} - i 1.73 \times 10^{-3}$	$-6.56 \times 10^{-4} - i 7.22 \times 10^{-4}$
$f_B F_a^T$	$-1.11 \times 10^{-1} - i 3.75 \times 10^{-2}$	$1.60 \times 10^{-2} + i 2.77 \times 10^{-2}$
M_a^T	$1.60 \times 10^{-2} + i 2.77 \times 10^{-2}$	$1.60 \times 10^{-2} + i 2.77 \times 10^{-2}$

Table 2: The experimental data of $B \to \phi K$ branching ratios from BaBar[1], BELLE[2] and CLEO[3]

	$B^0 \to \phi K^0$ Br	$B^\pm \to \phi K^\pm$ Br
BaBar	$(8.1^{+3.1}_{-2.5} \pm 0.8) \times 10^{-6}$	$(7.7^{+1.6}_{-1.4} \pm 0.8) \times 10^{-6}$
BELLE	$(8.7^{+3.8}_{-3.0} \pm 1.5) \times 10^{-6}$	$(10.6^{+2.1}_{-1.9} \pm 2.2) \times 10^{-6}$
CLEO	$< 12.3 \times 10^{-6}$	$(5.5^{+2.1}_{-1.8} \pm 0.6) \times 10^{-6}$