Assignment of 82 Known Genes and Gene Clusters on the Genome of the Unicellular Cyanobacterium *Synechocystis* sp. Strain PCC6803

Hirokazu KOTANI,1,* Ayako TANAKA,1 Takakazu KANEKO,1 Shusei SATO,1 Masahiro SUGIURA,2 and Satoshi TABATA1

Kazusa DNA Research Institute, Yanauchino, Kisarazu, Chiba 292, Japan1 and Center for Gene Research, Nagoya University, Furukawa, Nagoya 464-01, Japan2

(Received 12 June 1995)

Abstract

We have previously constructed the physical map of a cyanobacterium, *Synechocystis* sp. strain PCC6803 on the basis of restriction and linking clone analysis. Since a total of 82 genes and gene clusters have been isolated from this strain, most of which are involved in oxygenic photosynthesis, portions of their sequences were amplified by the PCR method and assigned on the physical map of the genome by hybridization with restriction fragments, ordered clones, which were obtained from cosmid and A libraries, and long PCR-products. An exception was the gene *psbG2* which was mapped on an extra-chromosomal unit of 45 kb. Since genetic maps of some of genes assigned above, especially those for photosynthesis, have been reported for two other cyanobacterial strains, *Anabaena* sp. PCC7120 and *Synechococcus* sp. PCC7002, gene organizations were compared among the three strains. However, no significant correlation was observed, suggesting that rearrangement of genes occurred in the respective strains during or after establishment of the species.

Key words: *Synechocystis* PCC6803; Genome map; Ordered clones

For understanding of the entire genetic system involved in oxygenic photosynthesis as well as that carried by a single organism which was born a very ancient age, we have started the sequencing project of the entire genome of a unicellular cyanobacterium, *Synechocystis* sp. strain PCC6803. As the first step of the project, we constructed a physical map of the genome by restriction analysis using *Asc*I, *Mlu*I and *Spl*I, and confirmed the map by isolation of linking cosmid clones which covered the restriction sites.1 The estimated genome size was 3.6 Mb. A total of 82 genes and gene clusters, most of which are involved in photosynthesis, have been isolated from this strain and characterized at the sequence level. In this paper, we assigned these genes on the physical map of the genome, and compared their organization with those of two other cyanobacterial strains, *Anabaena* sp. PCC71202 and *Synechococcus* sp. PCC7002,3 in which the genetic maps of some of genes assigned in this study have already been reported.

For precise mapping of genes and gene clusters on the genome, we constructed a more detailed physical map by isolation of overlapping clones from cosmid and A libraries of the genome. Since most cosmid clones carrying *Synechocystis* DNA were stably maintained in *Escherichia coli* cells, approximately 1,100 clones from a cosmid library with an average insert size of 40 kb1 were first sorted by cross-hybridization, and the resulting contigs were located on the map by hybridization with restriction fragments. About 90% of the genome could be covered with 127 cosmid clones (Fig. 1). The gap regions are now being filled using a A library which was constructed by cloning of fractionated 15–20 kb *Sau3AI* fragments of the genome into A-*DASH* vector (Stratagene, USA), and also by the long PCR products. So far, more than 90% of the entire genome have been covered by cosmid and A clones and long PCR products (Figs. 1 and 2).

As the sequence information of 82 genes and gene clusters4–7 which are listed in Table 1 is available, we designed a set of primer pairs about 20 bp in length for each gene or gene cluster, and the resulting probes were hybridized to Southern blots of *Asc*I, *Mlu*I and *Spl*I digests of the genome and to membranes dotted with ordered clones. The results obtained are summarized in Fig. 1, in which the circular genome was shown linearized at the *Asc*I site connecting *Asc*I-F and *Asc*I-E fragments (0/100 position), and under the linear map, restriction maps for *Asc*I, *Mlu*I and *Spl*I, regions covered by respective clones, and name of genes or gene clusters are shown. All the genes examined except one were successfully localized on the map.
Table 1. List of the genes and gene clusters used for mapping.

Genes and Gene clusters	Function	Map position (min)	Accession b)	References
psbA3	psbA3 gene for D1 protein of photosystem II (QB binding protein)	0-0.5	X56000	5,6
psaD	subunit II of photosystem I	3-4	J04195	7
dfr	resistance to the herbicide difunone	3-4	X72586	unpublished
ndhB	subunit-2 of NADH-dehydrogenase (inorganic carbon transport)	4-4.5	D90288	8
rnpB	RNase P RNA subunit	4-4.5	X65707	9
orf184	putative membrane protein	4-4.5	Z27404	unpublished
ccmM-N	required for construction of carboxysome	6-7		c)
atpI-H-G-F-D-A-C	F0F1 ATP synthase I operon	7	X58128, Y07532	10,11
ndhD2	subunit IV of NADH dehydrogenase	8	U14130	unpublished
ccmA	carboxysome formation	9	D26444	12
apeA-B-C	allophycocyanin and linker proteins	12.5-13	M77135	13
gltB	ferredoxin-glutamate synthase	13.5-14	X580485	unpublished
trxA	thioredoxin	13.5-14	X580486	unpublished
psbE,F	cytochrome 5559 alpha and beta subunits in photosystem II	15.5-17.5	X06988, M33897	14,15
psbK	small component of photosystem II	15.5-17.5	M74841	16,65
cozB-A-C	subunit I, II, III of cytochrome c oxidase (aa3 type)	22-23	X53746	17,69
groEL	second groEL like gene	24-26	D12677	18
rpoB-C	RNA polymerase β, β' subunit	24-26	D12677	18
petJ	cytochrome c553	24-26	L25252	19,72
rpsS	ribosomal protein L19	26-27	X72697	20
trnW	tryptophan-specific tRNA	26-27	X72697	66
nusG	antiterminator	26-27	X72697	20,67
aroC	chorismate synthetase	26-27	X73005	20,67
rplK-A-J-L	ribosomal protein (L11,1,10,12)	26-27	X73005	20,67
psaA-B	psaA and psaB genes for P700 apoprotein of photosystem II	26.5-28.5	X58825	21
psbN-H	low molecular mass component and 9 kDa thylakoid phoshoprotein of photosystem II	32	X17687, X58532	22
petC-A	rieske iron-sulfur protein and apocytocrome f of cytochrome b6-f complex	32	X58532	22
iclG	inorganic carbon and glucose metabolism	33-34	X75568	23
psbD-C	CP-43 chlorophyll a-binding protein	38-39	M21538	24,74
purT	glycaminide ribonucleotide transformylase	38-39	L36958	unpublished
dnaA	DNA synthesis (initiation)	38-39	L36958	unpublished
pds	phytoene desaturase and herbicide norfluron resistance	39-40	X62574	25
psy	phytoene synthetase	39-40	X69172	26
rne	glutamate-specific transfer RNA	39-40	M32099	27
pmaI	P-type ATPase (homology of eukaryotic Ca$^{++}$ ATPase)	43	X71022	28
Table 1. Continued.

Genes and Gene clusters	Function	Map position (min)	Accession	References
ndhH	subunit of NADH dehydrogenase	43.5	X60650	29
fla	flavodoxin gene	43.5	L25881	30
isiA	iron-stress chlorophyll-binding protein	43.5	L26530	unpublished
ntcA	control gene of nitrogen metabolism	44—45	X71607	31
atpB-E	FOF1 ATP synthase, atpB atpE for ATPase subunits beta and epsilon	47—48	X58129	10
ndhL	inorganic carbon transport gene (ictA)	48—48.5	M73833	32
psaF-J	subunits of photosystem I	48.5	L20938, M74801	33
murF	UDP-N-acetylmuramoylalanyl-D-glutamyl-l,2-D-amino-pimelate-D-alanyl-D-alanine ligase	49—50	X62437	unpublished
desA	fatty acid desaturase	~49—50	X53508	34,71
rplU	5OS ribosomal protein L9	49—50	D10716	35
cysM	C553 like cytochrome	49—50	D10716	35
psbA2	psbA2 gene for D1 protein of photosystem II (QB binding protein)	51—52	X13547	5,6
ndhC-K-J	subunits of NADH dehydrogenase	52.5—53.5	X17439	36
psbG	subunit subunit of photosystem II	52.5—53.5	X17439	36
psaE	8-kDa subunit III of photosystem I	55—55.5	J05079	37
prk	phosphoribulokinase	57—57.5	M77134	38
aroA	5-enolpyruvylshikimate-3-phosphate synthase	58—58.5	X75325	39,70
psbO	manganese-stabilizing polypeptide of photosystem II	58—58.5	X07986	70,73
trnQ	glutamine-specific transfer RNA	58—58.5	X60715	70
glnN	glutamine synthetase	59—59.5	X76719	40
petK	low potential cytochrome c	59—59.5	U07021	41
des6	delta6 fatty acid desaturase	59—59.5	L11421	42
psaC2	iron-sulfur protein of photosystem I	63.5—64	X65170	43
ndhD	NAD(P)H-plastoquinone oxidoreductase	63.5—64	X65170	43
dnaK	dnaK-like	64—65	M57518	44
psbl	low molecular mass I polypeptide of photosystem II	65—66	e*	5
zfp	putative zinc finger protein	66—66.5	S77740	45
tgr	glucose transporter	66.5—67	X16472	46
sbaA-cysT	sulfate transport operon	67—67.5	X67911	47
hemA	glutamyl-tRNA reductase (SYCHEMA, M84218)	67—67.5	X65963	48,49
glcP	glucose transport	67—67.5	X15988	unpublished
petD	subunit IV of cytochrome b6/f complex	68	X68522	50
rrnA	ribosomal RNA operon	68.5	#1	
ctpA	carboxy-terminal processing protease	69.5	L25250	51
rbcL-S	large and small subunits of ribulose bis-cocarboxylase	69.5	X65960	52
Table 1. Continued.

Genes and Gene clusters	Function	Map position (min)	Accession	References
petE	plastocyanin gene	70-70.5	X54105	53
cpn60	chaperonine protein	70-70.5	M57517	54
psbB	CP-47 protein of photosystem II	77-78	M17109	55
bioF	8-amino-7-oxononanoate synthase	77.5-79.5	U10482	unpublished
trnF M (end)	formylmethionine-specific transfer RNA (putative endonuclease)	77.5-79.5	U10482	unpublished
ndhF	subunit of NADH dehydrogenase	79-80	f^)	
des9	delta9 fatty acid desaturase	78.5-79	D16547	56
trpB	tryptophan synthase beta subunit	90-90.5	L14596	57
ndhA-I-G-E	NAD(P)H-plastoquinone oxidoreductase	91-91.5	X62517	43
rrnB	ribosomal RNA operon	93		
fusB	fus-like protein (elongation factor G)	93-93.5	X65159	58
ilvC	acetohydroxyacid isomeroreductase	93-93.5	L03713	59
frzC	chlorophyll biosynthesis; nitrogenase.	95.5-96	D10474	60
stpA	establishment of salt tolerance	95-95.5	X75566	unpublished
psaI	subunit of photosystem I	96.5-97	L24773	unpublished
psaL	subunit of photosystem I	96.5-97	L11649	61
ssp	ADP-glucose pyrophosphorylase	98-98.5	M83556	62
psbA1	psbA1 gene for D1 protein of photosystem II (QB binding protein)	98.5-99	Y00885	63,68
petC2	new Rieske Fe-S protein	99-99.5	L16885	unpublished
psbG2	subunit of NAD(P)H dehydrogenase	pSYSG	X17559	64

^a^ Each gene and gene cluster indicated is separated by solid lines. ^b^ Accession numbers of GenEMBL. ^c^ Personal communications from c) Ogawa, T., d) Kawarabayashi, H., e) Ikeuchi, M., f) Steinmüller, K. ^d^ Our preliminary sequence data.

For comparison of the gene organization with those of two other cyanobacterial strains, the gene locations are also illustrated on a circular map (Fig. 2). As the I-Ceu I cleavage site specific for the rrn operon76 was identified at two sites, 68.5' and 93', these sites were designated for rrnA and rrnB, respectively. This has been confirmed by sequence analysis of these regions (to be published). Since the presence of two rrn operons has also been reported for two other cyanobacterial strains, the positions of genes and gene clusters relative to the two rrn operons were compared. However, no significant correlation was observed among the three strains. The result implies that rearrangement of genes occurred in the respective strains during or after establishment of the species. In this connection, it should be noted that we have detected an IS element in the course of sequencing the genome (to be published).

The probe for psbG2,64 the second gene for subunits of NAD(P)H dehydrogenase, and cosmid clones carrying this gene were not hybridized to any restriction fragments generated by Asc I, Mlu I and Spl I, and to cosmid clones assigned to the genome. It is therefore likely that this gene is present on a plasmid, in accordance with the observation of Steinmüller and Bogorad.77 To confirm this, the insert was generated from a psbG2-carrying cosmid clone (CSO208), and PCR amplification was carried out using the sequences from both ends. As a consequence, a product of about 0.5 kb (LA215-216) was obtained, indicating that the gene was located on a 45-kb plasmid, named pSYSG, which was different from the two extra-chromosomal units previously identified, pSYSM (125 kb) and pSYSA (110 kb).

Acknowledgments: We are grateful to S. Sasamoto and T. Hosouchi for their technical assistance. We also thank Drs. C. J. Arntzen, J. Barber, L. Bogorad, M. Ikeuchi, N. Murata, N. Nelson, T. Ogawa, H. Kawarabayashi and K. Steinmüller for providing clones for gene mapping, and Drs. K. Ishikawa and N. Nomura for the preparation of the dotted membranes of cosmid clones.

References
1. Kotani, H., Kaneko, T., Matsubayashi, T., Sato, S.,
Figure 1. A detailed physical map of the *Synechocystis* sp. PCC6803 genome. The physical map was constructed by allocation of overlapping cosmid, λ clones, and long PCR products on the restriction map, and assignment of 82 genes and gene clusters on the map by hybridization with PCR products of the genes. The circular genome was opened at the *AscI* site connecting *AscI*-F and *AscI*-E fragments (0/100 position), and indicated by thick lines on which the map positions from the 0 point are shown by a centesimal scale. The length of each line presents 500 kb. Three thin lines under the bars represent restriction maps for *AscI*, *MluI* and *SplI*. Under the maps, the regions covered by respective cosmid clones (CS), λ clones (λ) and long PCR products (LA). Location of genes and gene clusters are indicated by thick bar. Separately, three extra-chromosomal units one of which contains *psbG2* are indicated.
Figure 2. The gene map of the *Synechocystis* sp. PCC6803 genome. Eighty-two genes and gene clusters assigned are indicated on the circular map of the genome. Restriction maps for *Asc* I, *Mlu* I and *Spl* I which are indicated on the red, blue and yellow circles and the *I-Ceu* I sites indicated by arrows were taken from ref. 1. Inner thick circles with 8 gaps are the regions covered by cosmid and λ clones and by PCR products. Among the assigned genes, those related to oxygenic photosynthesis are shown by green letters. The three small circles below the map represent extra-chromosomal units.

Sugiura, M., and Tabata, S. 1994, A physical map of the genome of a unicellular Cyanobacterium *Synechocystis* sp. strain PCC6803, DNA Res., 1, 303–307.

2. Bancroft, I., Wolk, C. P., and Oren, E. V. 1989, Physical and genetic maps of the genome of the heterocyst-forming cyanobacterium *Anabaena* sp. strain PCC 7120, *J. Bacteriol.*, 171, 5940–5948.

3. Chen, X. and Widger, W. R. 1993, Physical genome map of the unicellular cyanobacterium *Synechococcus* sp. strain PCC 7002, *J. Bacteriol.*, 175, 5106–5116.

4. Grigorieva, G. and Shestakov, S. 1982, Transformation in the cyanobacterium *Synechocystis* 6803, *FEMS Microbiol. Lett.*, 13, 367–370.

5. Ravnikar, P. D., Deb, R., Sevinick, J., Søaaert, P., and McIntosh, L. 1989, Nucleotide sequence of a second *psbA* gene from the unicellular cyanobacterium *Synechocystis* 6803, *Nucl. Acids Res.*, 17, 3991–3991.

6. Metz, J., Nixon, P., and Diner, B. 1990, Nucleotide sequence of the PSBA3 gene from the cyanobacterium *Synechocystis* PCC 6803, *Nucl. Acids Res.*, 18, 6715–6715.

7. Reilly, P., Hulmes, J. D., Pan, Y.-C. E., and Nelson, N. 1988, Molecular cloning and sequencing of the *psaD* gene encoding subunit II of photosystem I from the cyanobacterium, *Synechocystis* sp. PCC 6803, *J. Biol. Chem.*, 263, 17658–17662.

8. Ogawa, T. 1991, A gene homologous to the subunit-2 gene of NADH dehydrogenase is essential to inorganic carbon transport of *Synechocystis* PCC6803, *Proc. Natl. Acad. Sci. USA.*, 88, 4275–4279.

9. Vioque, A. 1992, Analysis of the gene encoding the RNA subunit of ribonuclease P from cyanobacteria. *Nucl.
10. Lill, H. and Nelson, N. 1991, The atp1 and atp2 operons of the cyanobacterium, *Synechocystis* sp. PCC 6803, *Plant Mol. Biol.*, 17, 641–652.

11. Werner, S., Schumann, J., and Strotmann, H. 1990, The primary structure of the gamma-subunit of the ATPase from *Synechocystis* sp. PCC 6803, *FEBS Lett.*, 261, 204–208.

12. Ogawa, T., Marco, E., and Orus, I. M. 1994, A gene (ccmA) required for carboxysome formation in the cyanobacterium *Synechocystis* sp. strain PCC6803, *J. Bacteriol.*, 176, 2374–2378.

13. Su, X., Goodman, P., and Bogorad, L. 1992, Excitation energy transfer from phycoerythrin to chlorophyll in an apcA-defective mutant of *Synechocystis* sp. PCC 6803, *J. Biol. Chem.*, 267, 22944–22950.

14. Pakrasi, H. B., Williams, J. G. K., and Arntzen, C. J. 1994, Targeted mutagenesis of the psbE and psbF genes blocks photosynthetic electron transport: Evidence for a functional role of cytochrome B559 in photosystem II, *EMBOJ.*, 7, 325–332.

15. Pakrasi, H. B., Nyhus, K. J., and Granok, H. 1990, Targeted deletion mutagenesis of the beta subunit of Cytochrome B559 protein destabilizes the reaction center of photosystem II, *Z. Naturforsch. C. Biosci.*, 45, 423–429.

16. Ikeuchi, M., Eggers, B., Shen, G., Webber, A., Yu, J., Hirano, A., Inoue, Y., and Vermanas, W. 1991, Cloning of the psbK gene from *Synechocystis* sp. PCC 6803 and characterization of photosystem II immutants lacking PSI-K, *J. Biol. Chem.*, 266, 11111–11115.

17. Angel, D., Schmutterer, G., and Peschek, G. A. 1994, The gene encoding cytochrome-c oxidase subunit I from *Synechocystis* PCC6803, *Gene*, 138, 127–132.

18. Lehel, C., Los, D. A., Wada, H., Gyorgyev, J., Horvath, I., Kovacs, E., Murata, N., and Vigh, L. 1993, A second groEL-like gene, organized in a groESL operon is present in the genome of *Synechocystis* sp. PCC 6803, *J. Biol. Chem.*, 268, 1799–1804.

19. Diaz, A., Navarro, F., Hervae, M., Navarro, J. A., Chaves, S., Fiorencio, F. J., and De la Rosa, M. A. 1994, Cloning and correct expression in E. coli of the petJ gene encoding cytochrome-c oxidase subunit I from Synechocystis sp. strain PCC 6803, *FEBS Lett.*, 347, 173–177.

20. Schmidt, J., Bubunenko, M., and Subramanian, A. R. 1993, A novel operon organization involving the genes for chorismate synthase (aromatic biosynthesis pathway) and ribosomal GTPase center proteins (L11, L1, L10, L12: rplKAJL) in cyanobacterium *Synechocystis* PCC 6803, *J. Biol. Chem.*, 268, 27447–27457.

21. Smart, L. B. and McIntosh, L. 1991, Expression of photosynthesis genes in the cyanobacterium *Synechocystis* sp. PCC 6803: psaA-psaB and psaA transcripts accumulate in dark-grown cells, *Plant Mol. Biol.*, 17, 959–971.

22. Mayes, S. R. and Barber, J. 1991, Primary structure of the psbN-psbH-petC-petA gene cluster of the cyanobacterium *Synechocystis* PCC 6803, *Plant Mol. Biol.*, 17, 289–293.

23. Beuf, L., Bedu, S., Durand, M. C., and Joset, F. 1994, A protein involved in co-ordinated regulation of inorganic carbon and glucose metabolisms in the facultative photoautotrophic cyanobacterium *Synechocystis* PCC6803, *Plant Mol. Biol.*, 25, 855–864.

24. Hisholm, D. and Williams, J. G. 1988, Nucleotide sequence of psbC, the gene encoding the CP-43 chlorophyll a-binding protein of Photosystem II, in the cyanobacterium *Synechocystis* sp. PCC 6803, *Plant Mol. Biol.*, 10, 293–301.

25. Martinez-Perez, I. M. and Vioque, A. 1992, Nucleotide sequence of the phytene desaturase gene from *Synechocystis* sp. PCC 6803 and characterization of a new mutation which confers resistance to the herbicide norflurazon, *Plant Mol. Biol.*, 18, 981–983.

26. Martinez, F. I., Hernandez, G. B., Sandmann, G., and Vioque, A. 1994, Cloning and expression in Escherichia coli of the gene coding for phytoene synthase from the cyanobacterium *Synechocystis* sp. PCC 6803, *Biochem. Biophys. Acta.*, 1218, 145–152.

27. O’Neill, G. P. and Soell, D. 1990, Expression of the *Synechocystis* sp. strain PCC 6803 tRNA-Glu gene provides tRNA for protein and chlorophyll biosynthesis, *J. Bacteriol.*, 172, 6363–6371.

28. Geisler, M., Richter, J., and Schumann, J. 1993, Molecular cloning of a P-type ATPase gene from the cyanobacterium *Synechocystis* sp. PCC 6803. Homology to eukaryotic Ca(2+)-ATPases, *J. Mol. Biol.*, 234, 1284–1289.

29. Steinmüller, K. 1992, Nucleotide sequence and expression of the ndhH gene of the cyanobacterium *Synechocystis* sp. PCC6803, *Plant Mol. Biol.*, 18, 135–137.

30. Poncelet, M. G. M., Cassier-Chauvat, C. J. S., and Chauvat, P. R. L. 1994, Sequence of the flavodoxin gene from *Synechocystis* PCC6803, *Gene*, 145, 153–154.

31. Frias, J. E., Merida, A., Herrero, A., Martin-Nieto, J. M., and Flores, E. 1993, General distribution of the nitrogen control gene ntcA in cyanobacteria, *J. Bacteriol.*, 175, 5710–5713.

32. Ogawa, T. 1991, Cloning and inactivation of a gene essential to inorganic carbon transport of *Synechocystis* PCC6803, *Plant Physiol.*, 96, 280–284.

33. Chitnis, P. R., Purvis, D., and Nelson, N. 1991, Molecular cloning and targeted mutagenesis of the gene psaF encoding subunit III of photosystem I from the cyanobacterium *Synechocystis* sp. PCC 6803, *J. Biol. Chem.*, 266, 20146–20151.

34. Wada, H., Gombos, Z., and Murata, N. 1990, Enhancement of chilling tolerance of a cyanobacterium by genetic manipulation of fatty acid desaturation, *Nature*, 347, 200–203.

35. Malakhov, M. P., Wada, H., Los, D. A., Sakamoto, T., and Murata, N. 1993, Structure of a cyanobacterial gene encoding the 50S ribosomal protein L9, *Plant Mol. Biol.*, 21, 913–918.

36. Steinmüller, K., Ley, A. C., Steinmetz, A. A., Sayre, R. T., and Bogorad, L. 1989, Characterisation of the ndhC-psbG-ORF157/159 operon of maize plastid DNA and of the cyanobacterium *Synechocystis* sp. PCC6803, *Mol. Gen. Genet.*, 218, 60–69.

37. Chittiris, P. R., Reilly, P. A., Miedel, M. C., and Nelson, N. 1989, Structure and targeted mutagenesis of the gene encoding 8-kDa subunit of photosystem I from the cyanobacterium *Synechocystis* sp. PCC 6803, *J. Biol. Chem.*, 264, 18374–18380.
phosphoribulokinase of *Synechocystis* PCC 6803 renders the mutant light-sensitive, *J. Biol. Chem.*, **266**, 23698–23705.

39. Chiesa, M. D., Meyes, S. R., Maskell, D. J., Nixon, P. J., and Barber, J. 1994, An arnA homologue from *Synechocystis* sp. PCC6803, *Genes*, **144**, 145–146.

40. Reyes, J. C. and Florencio, F. J. 1994, A new type of glutamine synthetase in cyanobacteria. The protein encoded by the glmN gene supports nitrogen assimilation in *Synechocystis* sp. strain PCC 6803, *J. Bacteriol.*, **176**, 1260–1267.

41. Kang, C., Chitnis, P. R., Smith, S., and Krogmann, D. W. 1994, Cloning and sequence analysis of the gene encoding the low potential cytochrome c of *Synechocystis* PCC6803, *FEBS Lett.*, **344**, 5–9.

42. Reddy, A. S., Nuccio, M. L., Gross, L. M., and Thomas, T. L. 1993, Isolation of a (cap)deltasup6-desaturase gene from the cyanobacterium *Synechocystis* sp. strain PCC 6803 by gain-of-function expression in *Anabaena* sp. strain PCC7120, *Plant Mol. Biol.*, **22**, 293–300.

43. Ellersick, U. and Steinmüller, K. 1992, Cloning and transcription analysis of the ndhA/L/G/E genes cluster and the ndhD gene of the cyanobacterium *Synechocystis* sp. PCC6803, *Plant Mol. Biol.*, **20**, 1097–1110.

44. Chitnis, P. R. and Nelson, N. 1991, Molecular cloning of the genes encoding two chaperone proteins of the Cyanobacterium *Synechocystis* sp. PCC 6803, *J. Biol. Chem.*, **266**, 58–65.

45. Ogura, Y., Yoshida, T., Nakamura, Y., Takemura, M., Oda, K., and Ohyaama, K. 1991, Gene encoding a putative zinc finger protein in *Synechocystis PCC6803*, *Agric. Biol. Chem.*, **55**, 2259–2264.

46. Schmetterer, G. R. 1990, Sequence conservation among the glucose transporter from the cyanobacterium *Synechocystis* sp. PCC 6803 and mammalian glucose transporters, *Plant Mol. Biol.*, **14**, 697–706.

47. Kohn, C. and Schumann, J. 1993, Nucleotide sequence and homology of two genes of the sulfate transport operon from the cyanobacterium *synechocystis* sp. PCC 6803, *Plant Mol. Biol.*, **21**, 409–412.

48. Grimm, B. 1992, Identification of a hemA gene from *Synechocystis* by complementation of an *E. coli* hemA mutant, *Hereditas*, **117**, 195–197.

49. Verkamp, E., Jahn, M., Jahn, D., Kumar, A. M., and Thomas, T. L. 1994, Glutamyl-tRNA reductase from *E. coli*, *Synechocystis* sp. strain PCC 6803, *J. Bacteriol.*, **176**, 8275–8280.

50. Osiewacz, H. D. 1992, Construction of insertion mutants of *Synechocystis* sp. PCC 6803: evidence for an essential function of subunit IV of the cytochrome b-6/f complex, *Arch. Microbiol.*, **157**, 336–342.

51. Shestakov, S., Anbudurai, P. R., and Pakrasi, H. B. 1994, Molecular cloning and characterization of the ctpA gene encoding a carboxy-terminal processing protease: Analysis of a spontaneous photosystem II-deficient mutant strain of the cyanobacterium, *Synechocystis* sp. PCC 6803, *J. Biol. Chem.*, In press.

52. Amichay, D., Levitz, R., and Gurevitz, M. 1993, Construction of a *Synechocystis* PCC6803 mutant suitable for the study of variant hexadecameric ribulose bisphosphate carboxylase/oxygenase enzymes, *Plant Mol. Biol.*, **23**, 465–476.

53. Briggs, L. M., Pecoraro, V. L., and McIntosh, L. 1990, Copper-induced expression, cloning and regulatory studies of the plastocyanin gene from the cyanobacterium *Synechocystis* sp. PCC 6803, *Plant Mol. Biol.*, **15**, 633–642.

54. Chitnis, P. R. and Nelson, N. 1991, Molecular cloning of the genes encoding two chaperone proteins of the Cyanobacterium *Synechocystis* sp. PCC 6803, *J. Biol. Chem.*, **266**, 58–65.

55. Vermaas, W. F., Williams, J. G., and Arntzen, C. J. 1987, Sequencing and modification of pbpB, the gene encoding the CP-47 protein of photosystem II, in the cyanobacterium *Synechocystis* 6803, *Plant Mol. Biol.*, **8**, 317–326.

56. Sakamoto, T., Wada, H., Nishida, I., Ohmori, M., and Murata, N. 1994, D-9-acetyl-lipid desaturases of cyanobacteria. Molecular cloning and substrate specificities in terms of fatty acids, sn-positions, and polar head groups, *J. Biol. Chem.*, **269**, 25576–25580.

57. Zhao, G.-P., Somerville, R. L., and Chitnis, P. R. 1994, Cloning and structural characterization of the trpB gene of *Synechocystis PCC6803*, *Plant Physiol.*, **104**, 461–466.

58. Welch, P. L., Johnson, D. R., Zhang, Y., and Breitenberger, C. A. 1994, *Synechocystis* sp. PCC6803 fubB gene, located outside of the str operon, encodes a polypeptide related to protein synthesis factor EF-G, *Plant Mol. Biol.*, **25**, 735–738.

59. Rieble, S. and Beale, S. I. 1992, Structure and expression of a cyanobacterial ilvC gene encoding acetohydroxyacid isomerase reductase, *J. Bacteriol.*, **174**, 7910–7918.

60. Ogura, Y., Takemura, M., Oda, K., Ohta, E., Yamato, K., Fukuwaha, H., and Ohyaama, K. 1992, Cloning and nucleotide sequence of a frxC-ORF469 gene cluster of *Synechocystis PCC6803*: Conservation with liverwort chloroplast frxC-ORF462 and nif operon, *Biosci. Biotech. Biochem.*, **56**, 788–793.

61. Chitnis, V. P., Xu, Q., Yu, L., Golbeck, J. H., Nakamoto, K., Xie, D. L., and Chitnis, P. R. 1993, Targeted inactivation of the gene psaL encoding a subunit of photosystem I of the cyanobacterium *Synechocystis* sp. PCC 6803, *J. Biol. Chem.*, **268**, 11678–11684.

62. Iglesias, A. A., Kakefuda, G., and Preiss, J. 1992, Involvement of arginine residue in the allosteric activation and inhibition of *Synechocystis PCC6803* ACP-glucose pyrophosphorylase, *J. Protein Chem.*, **11**, 119–128.

63. Osiewacz, H. D. and McIntosh, L. 1987, Nucleotide sequence of a member of the psaB multigene family from the unicellular cyanobacterium *Synechocystis* 6803, *Nucl. Acids Res.*, **15**, 10585–10585.

64. Meyes, S. R., Cook, K. M., and Barber, J. 1990, Nucleotide sequence of the second psbG gene in *Synechocystis* 6803. Possible implications for psbG function as a NAD(P)H dehydrogenase subunit gene, *FEBS Lett.*, **262**, 49–54.

65. Zhang, Z. H., Meyes, S. R., and Barber, J. 1990, Nucleotide sequence of the psbK gene of the cyanobacterium *Synechocystis* 6803, *Nucl. Acids Res.*, **18**, 1284–1284.

66. Schmidt, J. and Subramanian, A. R. 1993, Sequence of the cyanobacterial trnA-W in *Synechocystis* PCC 6803.
requirement of 3' CCA attachment to the acceptor stem, *Nucl. Acids Res.*, 21, 2519-2519.

67. Sibold, C. and Subramanian, A. R. 1990, Cloning and characterization of the genes for ribosomal proteins L10 and L12 from *Synechocystis* sp. PCC 6803: Comparison of gene clustering pattern and protein sequence homology between cyanobacteria and chloroplasts, *Biochim. Biophys. Acta.*, 1050, 61-68.

68. Mohamed, A., Eriksson, J., Osiewacz, H. D., and Jansson, C. 1993, Differential expression of the psbA genes in the cyanobacterium *Synechocystis* 6803, *Mol. Gen. Genet.*, 238, 161-168.

69. Alge, D. and Peschek, G. A. 1993, Identification and characterization of the ctaC (coxB) gene as part of an operon encoding subunits I, II, and III of the cytochrome c oxidase (cytochrome aa3) in the cyanobacterium *Synechocystis* PCC 6803, *Biochem. Biophys. Res. Commun.*, 191, 9-17.

70. Mayes, S. R. Dalla Chiesa, M., Zhang, Z., and Barber, J. 1993. The genes aroA and trnQ are located upstream of psbO in the chromosome of *Synechocystis* 6803, *FEBS Lett.*, 325, 255-261.

71. Sakamoto, T., Wada, H., Nishida, I., Ohmori, M., and Murata, N. 1994, Identification of conserved domains in the DELTA.12 desaturases of cyanobacteria, *Plant Mol. Biol.*, 24, 643-650.

72. Zhang, L., Pakrasi, H. B., and Whitmarsh, J. 1994, Photoautotrophic growth of the cyanobacterium *Synechocystis* sp. PCC 6803 in the absence of cytochrome c553 and plastocyanin, *J. Biol. Chem.*, 269, 5036-5042.

73. Philbrick, J. B. and Zilinskas, B. A. 1988, Cloning, nucleotide sequence and mutational analysis of the gene encoding the photosystem II manganese-stabilizing polypeptide of *Synechocystis* 6803, *Mol. Gen. Genet.*, 212, 418-425.

74. Dzelzkalns, V. A. and Bogorad, L. 1988, Molecular analysis of a mutant defective in photosynthetic oxygen evolution and isolation of a complementing clone by a novel screening procedure, *EMBO J.*, 7, 333-338.

75. Xu, M., Kathe, S. D., Goodlich-Blair, H., Nierzwicki-Bauer, S. A., and Shub, D. A. 1990, Bacterial origin of a Chloroplast intron: conserved self-splicing group I introns in cyanobacteria, *Science.*, 250, 1566-1570.

76. Liu, S. L., Hessel, A., and Sanderson, K. E. 1993, The Xba I-Bln I-I-Ceu I genomic cleavage map of *Salmonella enteritidis* shows an inversion relative to *Salmonella typhimurium* LT2, *Mol. Microbiol.*, 10, 655-664.

77. Steinmüller, K. and Bogorad, L. 1990, Identification of a psbG-homologous gene in *Synechocystis* sp. PCC6803. In Baltzschefsky, M. (ed.) Current Research in Photosynthesis, Kluwer, Dordrecht, Netherlands, Vol. III, 12557-12560.