Design and Analysis of a Novel Compliant Mechanism with RPR Degrees of Freedom

Shuang Zhang
Beijing University of Technology

Jing-Fang Liu (jiu@bjut.edu.cn)
Beijing University of Technology https://orcid.org/0000-0002-9213-1950

Hua-Feng Ding
China University of Geosciences (Wuhan)

Original Article

Keywords: Compliant mechanism, RPR degrees of freedom, Motion/force transfer characteristic, Mechanical model, Optimization

Posted Date: July 6th, 2020

DOI: https://doi.org/10.21203/rs.3.rs-39324/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Title page

Design and Analysis of a Novel Compliant Mechanism with RPR Degrees of Freedom

Shuang Zhang, born in 1991, is currently a PhD candidate in mechanical engineering from Beijing University of Technology, Beijing, China. He received his bachelor degree from Beijing University of Technology, China, in 2017. His research interests include compliant mechanisms, and parallel mechanisms.
E-mail: Zhangs@emails.bjut.edu.cn

Jing-Fang Liu, born in 1985, is currently an associate professor at Beijing University of Technology, Beijing, China. She received her doctor degree in mechanical engineering from Yanshan University, Qinhuangdao, Hebei, China, in 2011.

Hua-Feng Ding, born in 1977, is currently a professor at Beijing University of Technology, Beijing, China. He received the first Ph.D. degrees in mechanical engineering from Yanshan University, Qinhuangdao, Hebei, in 2007, and the second Ph.D. degree in mechanical engineering from the University of Duisburg-Essen, Essen, Germany, in 2015.
E-mail: dhf@ysu.edu.cn

Corresponding author: Jing-Fang Liu E-mail: jfliu@bjut.edu.cn
ORIGINAL ARTICLE

Design and Analysis of a Novel Compliant Mechanism with RPR Degrees of Freedom
Shuang Zhang\(^1\) • Jing-Fang Liu\(^{1,2}\) • Hua-Feng Ding\(^{1,3}\)

Abstract: Magnetic drive pump has gotten great achievement. A novel compliant mechanism with RPR degrees of freedom (DOF) is proposed where R and P represent rotation and translation DOFs, respectively. The proposed compliant mechanism is obtained from dimension synthesizing a 2-RPU-UPR rigid parallel mechanism with the method of optimization of motion/force transfer characteristic, where R, P and U represent rotation, translation and universal pairs, respectively. Firstly, inverse kinematics and Jacobian matrix are analyzed for the dimensional synthesis. Then, output transmission indexes of branches in the parallel mechanism are given. Dimensional synthesis is completed based on the normalized design parameter. And optimization of flexure joints based on constrained energy is carried out. Afterwards, the novel compliant mechanism is obtained by direct replacing method. Mechanical model of the compliant mechanism including static stiffness and input stiffness is built based on the pseudo-rigid body model method and virtual work principle for its future application. Finally, FEA simulation by Ansys Workbench is carried out to verify DOF, effectiveness of the dimension synthesis, and compliant model. Optimization of motion/force transfer characteristic is first applied for the design of compliant mechanisms to suppress drift of rotation axis in the paper.

Keywords: Compliant mechanism; RPR degrees of freedom; Motion/force transfer characteristic; Mechanical model; Optimization

1 Introduction

With the excellent characteristics of no backlash, no nonlinear friction and facilitated manufacture, compliant parallel mechanisms (CPMs) possess potential ability in micro or nano scales precision operations [1-3]. Micro-positioning CPMs with two rotations and one translation (2R1T) are widely applied in the state-of-art precision positioning stages where moving platform’s posture can be changeable, such as micro-component manufacture and assembly, biological cell manipulation, optical fibers alignment, scanning probe microscopes, and so on [4-9].

The design method of compliant mechanism is always a hot topic in mechanism science. In the past few decades, some effective design methods have been proposed, such as FACT method [10-11], screw theory method [12] and topological optimization method [13-14], et, al. Flexure hinge-based compliant parallel mechanisms are widely used due to structural similarity to rigid parallel mechanisms, which can be considered as mechanisms in which the rigid joint is replaced by the flexible joint in rigid parallel mechanisms [15-17]. For this reason, direct replacing method [18], which obtains compliant mechanisms by replacing rigid hinges with flexible hinges, is the most popular design method. With the help of existing design methods, a large number of 2R1T compliant mechanisms have been designed for various uses up to now. He [4] presented a novel type compact single mirror laser scanner based on 3-PRS compliant mechanism which is actuated by the permanent magnetic suspension. Kim [5] designed and modeled a precision micro-stage based on the well-known tripod parallel configuration for active micro-vibration control. Park and Lee [6] proposed a piezoelectric-driven tilt mirror for fast laser scanner. Kim [7] developed a nano-precision 2R1T vertical positioning stage which can compensate for the deformation caused by gravity. Lee [8] proposed a 3-DOF out-of-plane nano-positioning stage using a compact bridge-type displacement amplifier. Hao [9] also proposed a 2R1T compliant mechanism based on the constrained-based design method. Most of the existing researches for design of 2R1T compliant mechanism concentrate on designing of one with high natural frequency or with large stroke.
However, there are rarely studies on rotational characteristics of 2R1T compliant mechanisms especially parasitic motion. The error caused by parasitic motion seriously hinders practical applications of the compliant mechanism. It is necessary to eliminate or suppress the parasitic motion of 2R1T compliant mechanisms. Li [19] classifies 2R1T parallel mechanisms into four categories which are PU, P*U*, UP and RPR according to kinematic characteristics. PU and UP type 2R1T parallel mechanisms possess determined axis of movement and rotation due to constrained chain PU and UP, respectively [20-23]. These two types of parallel mechanisms are not suitable for miniaturization because of its complicated structure due to the additional constraint chains. P*U* type 2R1T parallel mechanisms have two rotation and one translational time-varying axis which are difficult to be acquired [24-25]. In contrast, RPR type 2R1T parallel mechanisms have two vertical continuous rotation axes relative to the fixed coordinate, which are known. One of them is fixed to the fixed platform; the other one is close to the moving platform, and its position and direction changes in motion [26-27]. At the same time, this type of mechanisms has relatively simple structure. At present, the existing 2R1T CPMs fall into P*U* type, of which center point of the moving platform could translate not only along X direction but also along X and Y directions. This phenomenon belongs to parasitic motion. The rotation axis is expected to be as continuous as possible in the working position for facilitate control, especially for micro and nano mechanisms.

In addition, the linear micro-actuation such as piezoelectric actuator is the most popular actuator in CPMs. In the linear elastic deformation problem, axis drift of CPMs with rotation DOF actuated by force mainly lies on the linear deformation caused by actuated force. And the essential function of the mechanism is to transfer the input force and motion to the output to forms desired motion. Motion/force transfer characteristic reflects the essential function [28-29]. As to rigid parallel mechanisms, motion/force transfer characteristic reflects transfer ability from input motion to output motion which can be used in singular discrimination. A good motion/force transfer characteristic reflects most of input energy is transferred to the output's desired motion. On the contrary, a bad transfer characteristic reflects that input energy is consumed in the undesired deformation of linkages. Undesired deformation of flexure joints is the main source of parasitic motion. For this reason, optimization based on motion/force transfer characteristic is applied to minimize axis drift of a RPR flexure hinge-based compliant mechanism, which is obtained by direct replacement method of 2RPU-UPR rigid parallel mechanism in the paper.

The remainder of this paper is organized as follows. Dimension synthesis of the rigid RPR mechanism is carried out in Section 2. Subsequently, the RPR compliant mechanism is obtained by direct replacement and optimization of flexure joints in Section 3. Mechanical model of the compliant mechanism is built based on the pseudo-rigid body model method and virtual work principle in Section 4. In section 5, validation of DoF, effectiveness of the dimension synthesis and mechanical model by FEA simulation is presented. Finally, conclusions are given.

2 DIMENSION SYNTHESIS OF THE RIGID RPR MECHANISM

The rigid 2-RPU-UPR mechanism [26], selected as the The rigid 2-RPU-UPR mechanism [26], selected as the rigid RPR model, is bilaterally symmetrical in initial pose, and its moving and fixed platforms are isosceles right triangles which are parallel to each other, as shown in Fig. 1. A fixed frame o-xyz and a moving frame o’-x’y’z’ are established at the centers of the fixed and moving platforms, respectively. The axes x, x’ point to A, B, meanwhile the axes z, z’ are perpendicular to the fixed and moving platforms, respectively. In RPU branch, one of the axes of U pair is parallel to that of R pair’s, and the other axis is collinear with x’ axis. The UPR branch is obtained by turning the RPU branch upside down, and its R pair is parallel to x’ axis. The DoFs of the mechanism are a rotation around oA, a translation along oo’ and a rotation around BB.

Motion/force transmission characteristic of a mechanism can be divided into two parts: input transmission performance and output transmission performance. The input transmission performance represents the efficiency of
power transmitted from the actuated joints to the limbs, while the output transmission performance represents the efficiency of power transmitted from the limbs to the moving platform. The input transmission index of the RPR mechanism is always one. Because of its good input transfer characteristics, the rigid mechanism is selected in the paper. And the output transmission index is

$$\eta_i = \frac{|S_\alpha \circ S_n|}{|S_\alpha \circ S_n|_{\text{max}}}$$ (1)

where S_α and S_n denotes the output twist and the transmission wrench of the ith branch chain, respectively. $|S_\alpha \circ S_n|_{\text{max}}$ is presuming efficiency of power, which is referred to in [28]. As a matter of experience, the output transmission index of branch chain A_iB_i is equal to 1 when the branch chain A_iB_i is perpendicular to the moving platform. So only the case that the sizes of moving platform and fixed platform are same is considered in the paper, as thus the output transmission index of branch chain A_iB_i is optimal. The main parameters are shown in Fig. 2, where r_1 represents distance from the origin of moving coordinate system to the moving pair B_1, r_2 represents distance from the origin of fixed coordinate system to the moving pair A_1, and P represents distance between the origins of two coordinate systems. In the following, inverse kinematic and Jacobian matrix of the 2-RPU-UPR rigid mechanism are analyzed preparing for the dimensional synthesis.

![Figure 2](image.png)

Figure 2 Schematic of main parameters

2.1 Inverse kinematics analysis

Pose of the moving platform can be depicted as

$$\theta = \begin{bmatrix} c\theta & s\theta \alpha & s\theta \alpha \\ 0 & c\alpha & -s\alpha \\ -s\theta & c\theta \alpha & c\theta \alpha \end{bmatrix}$$ (2)

where θ and α are the rotation angles of the moving platform around the y axis and x' axis, respectively. Suppose that the length of oo' is P, the coordinate of o' in the fixed frame is $(Ps\theta' 0 Pc\alpha)^T$. The coordinates of $B_i (i = 1, 2, 3)$ in the moving frame are

$$B_i' = (r_1 0 0)^T$$

where

$$B_1' = (0 r_2 0)^T$$

$$B_3' = (-r_1 0 0)^T$$

And the coordinates of B_i in the fixed frame can be depicted as

$$B_i = RB_i' + oo'$$ (4)

The coordinates of A_i in the fixed frame can be depicted as

$$A_i = (r_1 0 0)^T$$

$$A_i = (0 r_2 0)^T$$

$$A_i = (-r_1 0 0)^T$$ (5)

According to the relationship

$$|A_iB_i| = l_i$$ (6)

The inverse kinematics solution of the mechanism can be obtained

2.2 Analysis of Jacobian matrix

In this section, Jacobian matrix of the rigid RPR mechanism is analyzed based on screw theory. Four subspaces of the 2-RPU-UPR parallel mechanism are obtained by using the method in [30], and are listed in appendix A.

The velocity of moving platform can be expressed as

$$\dot{S}V = J\dot{\theta}(i = 1, 2, 3)$$ (7)
where
\[
S_1 = \begin{bmatrix}
0 & -c\theta & 0 \\
1 & 0 & 0 \\
0 & s\theta & 0 \\
px\theta & 0 & s\theta \\
0 & 0 & 0 \\
-pc\theta & 0 & c\theta
\end{bmatrix}
\]
\[
J_i = \begin{bmatrix}
J_{i,1} \\
J_{i,2}
\end{bmatrix}
\]
\[
J_{i,1} = \begin{bmatrix}
S_{w,i,1} \\
S_{w,i,2}
\end{bmatrix}
\]
\[
J_{i,2} = \begin{bmatrix}
S_{w,i,1} \\
L \\
S_{w,i,2}
\end{bmatrix}
\]
\[
V = \begin{bmatrix}
\delta\theta \\
\delta\alpha \\
\delta p
\end{bmatrix}
\]
\[
\Delta = \begin{bmatrix}
\theta_{w,3} \\
E_{w,3} \\
\theta_{w,3}
\end{bmatrix}
\]
\[
T_{1,2} = \begin{bmatrix}
a_1 \\
a_2 \\
a_3
\end{bmatrix}
\]
\[
T_{2,3} = \begin{bmatrix}
a_1 \\
a_2 \\
a_3
\end{bmatrix}
\]
\[
T_{3,2} = \begin{bmatrix}
a_1 \\
a_2 \\
a_3
\end{bmatrix}
\]

\[
J_a = \begin{bmatrix}
S_{w,u,1,2}^T \Delta S_1 \\
S_{w,u,2,3}^T \Delta S_2 \\
S_{w,u,3,2}^T \Delta S_3
\end{bmatrix}
\]
\[
J_b = \begin{bmatrix}
S_{w,u,1,2}^T \Delta S_{w,u,1,2} \\
S_{w,u,2,3}^T \Delta S_{w,u,2,3} \\
S_{w,u,3,2}^T \Delta S_{w,u,3,2}
\end{bmatrix}
\]

Furthermore, the following equations can be obtained

\[
JV = \phi_a
\]
\[
V = G\phi_e
\]

\[
G = J^{-1}
\]

Substitute Eq. (22) into Eq. (17)

\[
\phi_e = G_{a,j} \phi_e
\]

By combining the Eq. (25) of each branch and removing the row vectors corresponding to wrench subspace of actuation and twist subspace of restrictions, the relationship between the velocities of actuators and other kinematics joint is obtained

\[
\phi_a = \begin{bmatrix}
\phi_{a,1} \\
\phi_{a,2} \\
\phi_{a,3}
\end{bmatrix}
\]

\[
\phi_e = \begin{bmatrix}
\theta_{w,3} \\
E_{w,3} \\
\theta_{w,3}
\end{bmatrix}
\]

\[
2.3 \text{ Optimization of motion/force transfer performance}
\]

It is also found that the motion/force transfer performance
of parallel mechanisms in the initial symmetrical pose is better than that in other pose. And motion range of compliant mechanisms is microscopic. Therefore, the motion/force transfer performance in the initial position is used to evaluate the performance of the RPR mechanism in the paper.

2.3.1 Motion/Force Transmission Analysis

Due to the symmetrical topological structure in initial position, branch chain A_iB_i and A_iB_i possess the same output transmission index. Furthermore, the output transmission index of branch chain A_iB_i is equal to one. Stated thus, only output transmission index of branch chain A_iB_i or A_iB_i needs to be considered. In the paper, the output transmission index of branch chain A_iB_i is taken into consideration. For convenience, the screw is represented by the row vector in this section.

In initial position, after locking driven joints of the branch chains A_iB_i and A_iB_i, their twist systems are

\[
\begin{align*}
0 & 1 0 \quad oA_i^T \times (0 1 0) \\
0 & 1 0 \quad oB_i^T \times (0 1 0) \\
1 & 0 0 \quad oB_i^T \times (1 0 0)
\end{align*}
\]

(27)

\[
\begin{align*}
0 & 1 0 \quad oA_i^T \times (0 1 0) \\
1 & 0 0 \quad oA_i^T \times (1 0 0) \\
1 & 0 0 \quad oB_i^T \times (1 0 0)
\end{align*}
\]

(28)

And the constrained wrench system can be obtained by taking reciprocal product on the above twist systems

\[
\begin{align*}
H_1 &= (0 0 0 0 0 1) \\
H_2 &= (0 1 0 oB_i^T \times (0 1 0)) \\
H_3 &= (0 0 1 oB_i^T \times (0 0 1)) \\
H_4 &= (1 0 0 oA_i^T \times (1 0 0)) \\
H_5 &= (0 0 1 oA_i^T \times (0 0 1))
\end{align*}
\]

(29)

The output twist is obtained by solving Eq. (30)

\[
\begin{align*}
S_o &= (s \quad s_o) \\
S_o o H_1 &= 0 \\
|s| &= 1
\end{align*}
\]

(30)

The unit transmission wrench of branch chain A_iB_i is

\[
S_r = (0 0 1 oA_i^T \times (0 1 0))
\]

(31)

And the output transmission index can be solved by

\[
\eta = \frac{|S_r o S_o|}{|S_r o S_o|_{\text{max}}}
\]

(32)

The presuming efficiency of power $|S_r o S_o|_{\text{max}}$ of the RPR mechanism is equal to the distance from B_i to S_o. [28].

Figure 3 The parameter design space (a) spatial parameter design space (b) plan parameter design space

2.3.2 Optimization of Design Parameters

In the paper, the RPR mechanism has three design parameters r_1, r_2 and P. And they are normalized as

\[
D = \frac{r_1 + r_2 + P}{3}
\]

(33)

\[
l_1 = \frac{r_1}{D}, \quad l_2 = \frac{r_2}{D}, \quad l_3 = \frac{P}{D}
\]

(34)
where D is a normalized factor. l_1, l_2, and l_3 are non-dimensional and normalized parameters.

Considering the actual application, branch lengths and the radius of the platform are not desirable too long or too short. In the paper, the radius of the platform is constrained between one-half to twice the length of the branch. Therefore, the three normalized parameters should satisfy

$$\begin{align*}
0 < l_1, l_2, l_3 &< 3 \\
l_1 + l_2 + l_3 & = 3 \\
\frac{1}{2} l_i & \leq l_i \leq 2 l_i
\end{align*}$$

The parameter design space can be depicted as shown in Fig. 3. The shaded area shown in Fig. 3(a) is the set of all possible points. For convenience, the reasonable parameter area can be transformed into a triangle plane, as shown in Fig. 3(b). The relationship between the parameters in spatial space and those in plan space can be depicted as

$$\begin{align*}
\begin{cases}
s = l_2 \\
t = \frac{l_1 - l_3}{\sqrt{3}}
\end{cases}
\end{align*}$$

By taking Eqs. (33) - (36) into Eq. (32), the distribution of the output transmission index can be obtained, as shown in Fig. 4.

The optimal regions can be found from Fig. 4 and it is redly marked. The point

\[\begin{align*}
s &= 1.5 \\
t &= 0
\end{align*} \quad (37) \]

is selected out and expresses the non-dimensional and normalized parameters are

$$\begin{align*}
l_1 &= 0.75 \\
l_2 &= 1.5 \\
l_3 &= 0.75
\end{align*}$$

According to the actual situation and ensure a compact structure consideration, design parameters of

$$\begin{align*}
r_1 &= 40mm \\
r_2 &= 80mm \\
P &= 40mm
\end{align*}$$

are determined temporarily.

\section*{3 Design of the compliant RPR mechanism}

Direct replacing method is used for compliant mechanism in the paper. The key for rapidity and effectiveness of the method is to replace rigid kinematic pairs in the rigid RPR
counterpart with suitable flexible joints. Two kinds of commonly used U compliant joints and R compliant joints are used to replace corresponding rigid kinematics pairs, as shown in Fig. 5.

3.1 Optimization of flexible joints

It is assumed that linkages connecting flexure joints of the RPR compliant mechanism are ideal rigid bodies, and all deformation occurs on flexible joints. The branch chain of the compliant parallel mechanism can be regarded as a cantilever beam with one end fixed, the other end subjected to loads applied by moving platform and actuated force. According to statics theory of the rigid parallel mechanism, the load applied by moving platform can be divided into three parts including constrained wrench, actuated force and another force which makes the major deformation of flexible joints. Undesired motions are constrained by constrained wrenches of the branch. The smaller the deformation of a branch coursed by constrained wrenched is, the better its restraint ability is. Therefore, the optimization of flexible hinge is carried out by taking the sum of twice the energy caused by unit constrained wrenches as the objective function. The objective function of the jth compliant joint can be defined as

$$\text{Minimize } f = \sum S^T C_j S$$ \hspace{1cm} (40)

where C_j is the compliant matrix of the jth compliant joint, and S^r denotes a constrained wrench or an actuated wrench. Using energy as an optimization index can overcome the inconsistency of the dimensionality of translational and rotational compliances.

Flexibility models of the U compliant joint and the R compliant joint are given in [31] and [32]. For convenience, in order to remove the coupling between the force and the moment, the origins of the fixed coordinate systems of the compliant matrices in Fig. 5 are moved to the structural centers of the compliant joints. The matrices of the U compliant joint and the R compliant joint can be expressed as

$$C_U = \begin{bmatrix} cu_{rs} & cu_{ry} & cu_{rz} \\ cu_{ry} & cu_{ry} & cu_{rz} \\ cu_{rz} & cu_{rz} & cu_{rz} \end{bmatrix}$$ \hspace{1cm} (41)

$$C_R = \begin{bmatrix} cr_{rs} & cr_{ry} & cr_{rz} \\ cr_{ry} & cr_{ry} & cr_{rz} \\ cr_{rz} & cr_{rz} & cr_{rz} \end{bmatrix}$$ \hspace{1cm} (42)

After removing the actuated joint, the branch chains RPU and UPR possess the same structure and constraint wrenches. Therefore, it is only needed to optimize the flexible hinge of any branch in the RPR compliant mechanism.

As to the R joint, the objective function in Eq. (40) can be depicted as

$$\text{minimize } f = cr_{rs}^2 + cr_{ry}^2 + |A, B, c|^T cr_{rz}^2 + cr_{rz}^2$$ \hspace{1cm} (43)

As to the U joint, the objective function in Eq. (40) can be depicted as

$$\text{minimize } f = cu_{rs}^2 + cu_{ry}^2 + cu_{rz}^2$$ \hspace{1cm} (44)

Other criteria are used as constraints. The movement range of the end platform of the compliant mechanism is tiny. Normally, when the rotation range of the flexible hinge is relatively large, design demand of the stroke of the compliant mechanism is fulfilled. Herein, the rotation angle should be more than ± 2 degrees and the constraint on the rotation angle can be expressed as

$$\theta_{min} \geq \theta_{des}$$ \hspace{1cm} (45)

where SF is the safety factor, and σ_f is the yield strength.

Manufacturability and volume of the compliant joint are also two important factors. In order to avoid difficulty machining or over size of the compliant joint, the volume is constrained to within $12\text{mm} \times 12\text{mm} \times 12\text{mm}$, and the thinnest part is not less than 0.3mm. GlobalSearch Function in MATLAB optimization toolbox is used to perform the optimization design. And optimization results are listed in Table. 1.

Table 1 Optimization results of the flexure joints
R Pair
U Pair
3.2 Actuated joint and Motion Amplification Mechanism

The traditional bridge-type amplification mechanism is used as P pair in the paper. According to the overall parameters of the RPR compliant mechanism obtained by dimension synthesis, the structure of the motion amplification mechanism is designed to be as compact as possible, and the amplification ratio is about 10. Draw lessons from the design method of the traditional bridge-type amplification mechanism in [33-34], and structure of the motion amplifier used in the paper is shown in Fig. 6.

The motion amplifier in each branch chain is placed as close as to the base in order to relatively low inertia in motion. The structure of the whole RPR compliant mechanism is decided as to now. And sketch of the whole RPR compliant mechanism is shown in Fig. 7.

The pseudo-rigid body model method and virtual work principle are used to establish statics model of the RPR compliant mechanism. Firstly, the motion amplifier is analyzed. The main part of the motion amplifier is the flexible leaf joint. And the leaf joint can be regarded as a pseudo rigid body model composed of a rotating pair and a translating pair perpendicular to the flexible leaf, as shown in Fig. 8.

In consideration of the force and moment balance at the equilibrium state, the following equation can be obtained

\[f_2 l_2 = f_1 l_1 + 2m, \]

(46)

From the geometric relationship of one quarter of the motion amplifier, we can obtain

\[
\begin{aligned}
 d_i &= l_i \Delta \alpha \\
 d_i &= l_i \Delta \alpha - 2 \Delta l_i \\
 \Delta \alpha &= m_i c_i \\
 \Delta l &= f_i c_i
\end{aligned}
\]

(47)

Substitute Eq. (47) and Eq. (48) into Eq. (46), and take the equations of the three branch chains into matrix expressions

\[
\begin{bmatrix}
 D_{in} &= A_{1i} F_{in} - A_{12} F_{out} \\
 D_{out} &= A_{2i} F_{in} - A_{22} F_{out}
\end{bmatrix}
\]

(49)

where

\[
\begin{aligned}
 A_{1i} &= \text{diag}\left(\frac{l_1 c_i}{4}, \frac{l_1 c_i}{4}, \frac{l_1 c_i}{4}\right) \\
 A_{12} &= \text{diag}\left(\frac{l_2 c_i}{4}, \frac{l_2 c_i}{4}, \frac{l_2 c_i}{4}\right) \\
 A_{2i} &= \text{diag}\left(\frac{l_i c_i}{4}, \frac{l_i c_i}{4}, \frac{l_i c_i}{4}\right)
\end{aligned}
\]

(50)

(51)

(52)
Secondly, a pseudo-rigid body model is built where motion amplifiers are replaced by three virtual actuated joints with output forces

\[F_{in} = (f_{in-1}, f_{in-2}, f_{in-3})^T \] (54)

and output displacement

\[D_{in} = (d_{in-1}, d_{in-2}, d_{in-3})^T \] (55)

Apply the virtual work principle to the whole mechanism,

\[F_{out}^T D_{out} = D_{in}^T K_{in} D_{in} \] (60)

where

\[D_{in} = \begin{bmatrix} \delta \theta_1 & \delta \theta_2 & L \delta \theta_3 \end{bmatrix} \] (61)

\[K_{in} = \begin{bmatrix} k_{ij}^1 & k_{ij}^2 & 0 \\ k_{ij}^2 & k_{ij}^3 & 0 \\ 0 & 0 & k_{ij}^4 \end{bmatrix} \] (62)

\[K_j \] is the stiffness matrix, of which diagonal elements are composed the stiffness of major degree of freedom of the passive joint in each branch.

Substitute Eq. (26) into Eq. (60), the relationship between \(F_{out} \) and \(D_{out} \) can be obtained

\[F_{out} = K_{in} D_{out} \] (63)

where

\[K'_{in} = G_j^T K_{in} G_j \] (64)

From Eq. (22), Eq. (49), and Eq. (63), we can obtain

\[D = C F_{in} \] (65)

\[D_{in} = C_{in} F_{in} \] (66)

where

\[C = G (E + A_{2i} K')^{-1} A_{2i} \] (67)

\[C_{in} = A_{1i} - A_{1i} K'(E + A_{2i} K')^{-1} A_{2i} \] (68)

\(C \) is the compliant matrix of the whole mechanism. \(C_{in} \) is input compliant matrix of the whole mechanism.

5 Model validation with FEA

The DoF, effectiveness of the dimension synthesis, compliant model of the RPR compliant mechanism are verified by FEA with ANSYS Workbench. A 3D virtual model is built which material is assigned as Al-7075 alloy.

5.1 Validation of DoF and effectiveness of the dimension synthesis

\[K'_{in} = G_j^T K_{in} G_j \] (64)

\[D = C F_{in} \] (65)

\[D_{in} = C_{in} F_{in} \] (66)

\[C = G (E + A_{2i} K')^{-1} A_{2i} \] (67)

\[C_{in} = A_{1i} - A_{1i} K'(E + A_{2i} K')^{-1} A_{2i} \] (68)

\(C \) is the compliant matrix of the whole mechanism. \(C_{in} \) is input compliant matrix of the whole mechanism.

5 Model validation with FEA

The DoF, effectiveness of the dimension synthesis, compliant model of the RPR compliant mechanism are verified by FEA with ANSYS Workbench. A 3D virtual model is built which material is assigned as Al-7075 alloy.

5.1 Validation of DoF and effectiveness of the dimension synthesis

\[K'_{in} = G_j^T K_{in} G_j \] (64)

\[D = C F_{in} \] (65)

\[D_{in} = C_{in} F_{in} \] (66)

\[C = G (E + A_{2i} K')^{-1} A_{2i} \] (67)

\[C_{in} = A_{1i} - A_{1i} K'(E + A_{2i} K')^{-1} A_{2i} \] (68)

\(C \) is the compliant matrix of the whole mechanism. \(C_{in} \) is input compliant matrix of the whole mechanism.

The DoF, effectiveness of the dimension synthesis, compliant model of the RPR compliant mechanism are verified by FEA with ANSYS Workbench. A 3D virtual model is built which material is assigned as Al-7075 alloy.

5.1 Validation of DoF and effectiveness of the dimension synthesis

\[K'_{in} = G_j^T K_{in} G_j \] (64)

\[D = C F_{in} \] (65)

\[D_{in} = C_{in} F_{in} \] (66)

\[C = G (E + A_{2i} K')^{-1} A_{2i} \] (67)

\[C_{in} = A_{1i} - A_{1i} K'(E + A_{2i} K')^{-1} A_{2i} \] (68)

\(C \) is the compliant matrix of the whole mechanism. \(C_{in} \) is input compliant matrix of the whole mechanism.

5 Model validation with FEA

The DoF, effectiveness of the dimension synthesis, compliant model of the RPR compliant mechanism are verified by FEA with ANSYS Workbench. A 3D virtual model is built which material is assigned as Al-7075 alloy.

5.1 Validation of DoF and effectiveness of the dimension synthesis

\[K'_{in} = G_j^T K_{in} G_j \] (64)

\[D = C F_{in} \] (65)

\[D_{in} = C_{in} F_{in} \] (66)

\[C = G (E + A_{2i} K')^{-1} A_{2i} \] (67)

\[C_{in} = A_{1i} - A_{1i} K'(E + A_{2i} K')^{-1} A_{2i} \] (68)

\(C \) is the compliant matrix of the whole mechanism. \(C_{in} \) is input compliant matrix of the whole mechanism.

5 Model validation with FEA

The DoF, effectiveness of the dimension synthesis, compliant model of the RPR compliant mechanism are verified by FEA with ANSYS Workbench. A 3D virtual model is built which material is assigned as Al-7075 alloy.

5.1 Validation of DoF and effectiveness of the dimension synthesis

\[K'_{in} = G_j^T K_{in} G_j \] (64)

\[D = C F_{in} \] (65)

\[D_{in} = C_{in} F_{in} \] (66)

\[C = G (E + A_{2i} K')^{-1} A_{2i} \] (67)

\[C_{in} = A_{1i} - A_{1i} K'(E + A_{2i} K')^{-1} A_{2i} \] (68)

\(C \) is the compliant matrix of the whole mechanism. \(C_{in} \) is input compliant matrix of the whole mechanism.
The first columns in the above matrices are displacement twists of moving platform actuated by branch chain A_B. The second columns are displacement twists of moving platform actuated by branch chain A_B. And the third columns are the displacement twists of the moving platform actuated by branch chain A_B. The matrix obtained by the theoretical calculation represented output twists of RPR rigid parallel mechanism. Compare the two matrices, we can find that the matrix obtained by simulation is almost identical to the one obtained by theoretical calculation. Because the compliant mechanism is usually free from or subject to small external forces in practical application, only the situation that end platform is not applied the external force is taken into consideration in the paper. In this case, the degree of freedom of the compliant mechanism can be reflected by the movement of the end platform caused by the actuator. Identity of the matrices shows that the proposed compliant mechanism has desired degree of freedom (RPR DoFs).

Then, two comparative design parameters corresponding to relative bad motion/force transfer performance are selected from Fig. 4. And they are used to prove effectiveness of the dimensional synthesis. As same as validation of DoF, motion amplifiers are replaced by three rigid translational joints. And $10\mu m$ is applied to each rigid translational joint, successively. Displacement twists of moving platform obtained by theoretical calculation and simulation are listed.
Compare the three matrices in Eqs. (75)-(77), we can find that the linear displacements of the optimized mechanism are smaller than those of the comparison groups. But the angular displacement around z-axis of the optimized mechanism is larger than these of the comparison groups. The comparisons indicate that the dimension synthesis is relatively effective but not perfect. It is insufficiently that only motion/force transfer performance is taken into consideration. In addition to the coupling of force and moment, the main causes of error should include insufficient restraint capacity. The essence of constraint is to resist the deformation of branch in the constraint direction. While optimizing the motion/force transfer performance, the ability of branch constraints should be also considered. The optimization of constraint performance will be studied in our future work.

5.2 Validation of the mechanical model

A unit force is applied to the two input ends of the three motion amplifiers, successively, the stage deformations along the three working directions are obtained by the FEA simulation. Due to the linear deformation, the elements of compliant matrix of the RPR mechanism are equal to the values of the stage displacements along the three working directions. And the stage displacements are given in Eq. (78).

\[
\begin{bmatrix}
0 & 5.43 \times 10^{-9} & 0 \\
0 & -9.78 \times 10^{-9} & -2.65 \times 10^{-7} \\
2.8 \times 10^{-7} & -3.1432 \times 10^{-4} & 0 \\
-5.672 \times 10^{-4} & 1.5078 \times 10^{-7} & -5.685 \times 10^{-4} \\
0 & 5.9403 \times 10^{-4} & 0
\end{bmatrix}
\] (77)

From Eq. (79), the compliance model obtained by theoretical calculation is relatively close to the one obtained by the FEA model with most of the errors lower than 16%, which illustrates the theoretical calculation is correct.

Similarly to the above process, a unit force is applied to the two input ends of the three motion amplifiers, successively, and deformations of corresponding motion amplifiers are obtained by the FEA simulation. The obtained values of the deformations are equal to elements of the input stiffness matrix. The input stiffness matrix obtained by FEA simulation and theoretical calculation are listed in Eq. (81) and Eq. (82), respectively. In addition, the errors between the corresponding elements constitute a matrix, as shown in Eq. (83).

\[
\begin{bmatrix}
1.5653 \times 10^{-7} & 0 & 0 \\
0 & 1.0218 \times 10^{-7} & 0 \\
0 & 0 & 1.5073 \times 10^{-7}
\end{bmatrix}
\] (81)

\[
\begin{bmatrix}
1.4083 \times 10^{-7} & 0 & 0 \\
0 & 1.2084 \times 10^{-7} & 0 \\
0 & 0 & 1.4083 \times 10^{-7}
\end{bmatrix}
\] (82)

\[
\begin{bmatrix}
10.0\% & 0 & 0 \\
0 & 18.3\% & 0 \\
0 & 0 & 6.6\%
\end{bmatrix}
\] (83)

From Eq. (83), we can find that the maximum margin is 18.3% which is relative high, but acceptable. The error is mainly caused by undesired deformation of the motion amplifier. The motion amplifier is regarded as planar mechanism which ignores out-of-plane deformation. But it’s prone to out-of-plane deformation in application of spatial mechanisms.

\[
\begin{bmatrix}
8.4 & 0 & 0 \\
0 & 9.5 & 0 \\
0 & 0 & 8.4
\end{bmatrix}
\] (84)

Finally, amplify ratios are obtained by the FEA simulation, and are listed in the following matrix. From Eq. (84), the amplify ratio meets the design requirement which requires the amplify ratio is equal to about 10.
6 Conclusion

This paper presents the design and analysis of a novel 2R1T compliant mechanism which possesses RPR degree of freedom by direct replacing method. The moving platform has two rotation axes relative to the fixed coordinate, which are always vertical. One of the two axes is located at the fixed platform; the other is close to the moving platform, and the position and direction both change in motion. Draw on the experience of dimension synthesis method for rigid parallel mechanisms, the optimization of motion/force transfer characteristics is applied for the design of the RPR compliant mechanism. Based on the analysis of kinematic and Jacobian matrix, the optimization index is obtained. Non-dimensional and normalized parameters of the mechanism are used for dimension synthesis. Then, optimization for the compliant joint is carried and undesired deformations of flexure joints caused by constrained wrenches are minimized. Afterwards, mechanical modeling is built for future application based on the pseudo-rigid body model method and virtual work principle. The DoF, effectiveness of the dimension synthesis, compliant model of the RPR compliant mechanism are verified by FEA simulation. The validation illustrates that the compliant mechanism has RPR degree of freedom. From comparisons of three design parameter cases, it is found that partial undesired motion is effectively suppressed for the optimal design parameter. The dimension synthesis method used in the paper is applied to the compliant parallel mechanism with rotation degree of freedom which is relatively effective. In the future work, dimension synthesis method for the compliant parallel mechanism with rotation degree of freedom will be improved to reduce parasitic motion.

7 Declaration

Funding
Supported by National Natural Science Foundation of China (Grant No. 51975007)

Availability of data and materials
The datasets supporting the conclusions of this article are included within the article.

Competing interests
The authors declare no competing financial interests.

Consent for publication
Not applicable

Ethics approval and consent to participate
Not applicable

References

[1] B J Yi, G Chung, H Na, et al., Design and experiment of a 3-DOF parallel micro-mechanism utilizing flexure hinges. IEEE Transaction on Robotics and Automation 2003;19(4):604-612
[2] C Werner, P Rosielle, M Steinbuch. Design of a long stroke translation stage for AFM. International Journal of Machine Tools & Manufacture 2010; 50(2):183-190
[3] K B Choi, D H Kim. Monolithic parallel linear compliant mechanism for two axes ultra-precision linear motion. The Review of scientific instruments 2006;77(6): 065106-1-065106-7
[4] N He, W Jia, M Gong, et al. Design and mechanism analysis of a novel type compact single mirror laser scanner. Sensors and Actuators A-Physical 2006; 125(2):482-485
[5] H S Kim, Y M Cho. Design and modeling of a novel 3-DOF precision micro-stage. Mechatronics 2009; 19(5):598-608
[6] J H Park1, H S Lee. Design of a piezoelectric-driven tilt mirror for a fast laser scanner. Japanese journal of applied physics 2012;51(9):1-14
[7] H Kim, J Kim, D Ahn, et al. Development of a nano-precision 3-DOF vertical positioning system with a flexure hinge. IEEE Transactions on Nanotechnology 2013;12(2):234-245
[8] H J Lee, H C Kim, H Y Kim, et al. Optimal design and experiment of a three-axis out-of-plane nano positioning stage using a new compact bridge-type displacement amplifier. The Review of scientific instruments 2013;84(11):115103
[9] G B Hao, X He. Designing a monolithic tip-tilt-piston flexure manipulator. Archives of Civil & Mechanical Engineering 2017;17(4):871-879
[10] J B Hopkins, M L Culpepper. Synthesis of multi-degree of freedom parallel flexure system concepts via Freedom and Constraint Topology (FACT)—Part I: Principles. Precision Engineering 2010;34(2):259-270
[11] J B Hopkins, M L Culpepper. Synthesis of multi-degree of freedom parallel flexure system concepts via Freedom and Constraint Topology (FACT)—Part II: Practice. Precision Engineering 2010;34(2):271-278
[12] J Yu, S Li, H J Su, and Culpepper ML. Screw theory based methodology for the deterministic type synthesis of flexure mechanisms. Journal of Mechanisms and Robotics 2011;3(3):031008
[13] G Ananthasuresh, S Kota, Y Gianchandani. A methodical approach to the design of compliant micro mechanisms. Solid-state sensor and actuator workshop. Hilton Head Island, SC, 1994, pp. 189-192.
[14] M Jin, X Zhang. A new topology optimization method for planar compliant parallel mechanisms. Mechanism and Machine Theory 2016;69(5):42-58
[15] Y K Yong, T F Lu. Kinetostatic modeling of 3-RRR compliant micro-motion stages with flexure hinges. Mechanism and Machine Theory 2009;44(6):1156-1175
[16] Y Li, Q Xu. A totally decoupled piezoelectric XYZ flexure parallel micropositioning stage for micro/nanomanipulation. IEEE Transactions on Automation science and Engineering 2011;8(2):265-279
[17] Y Li, Q Xu. Design and optimization of an XYZ parallel
micromanipulator with flexure hinges. Journal of Intelligent and Robotic Systems 2009;55(4): 77-402

[18] Z. Gao, D. Zhang. Design, analysis and fabrication of a multidimensional acceleration sensor based on fully decoupled compliant parallel mechanism. Sensors and Actuators A-Physical 2010;163(1):418-427

[19] Q. C. Li, X. X. Chai, Q. H. Chen. Review on 2R1T 3-DOF parallel mechanisms. Chinese Science Bulletin 2017;62(14):1507-1519

[20] F. Xie, J. X. Liu, J. Wang. A 3-DOF parallel manufacturing module and its kinematic optimization. Robotics and Computer Integrated Manufacturing 2012;28(8):334-343

[21] F. Xie, J. X. Liu, Li T. A comparison study on the orientation capability and parasitic motions of two novel articulated tool heads with parallel kinematics. Advances in Mechanical Engineering 2013;5:249103

[22] X. Kong, C. M. Gosselin. Type synthesis of three-dof up-equivalent parallel manipulators using a virtual-chain approach. Advances in Robot Kinematics, Netherlands: Springer, 2006, p. 123-132.

[23] T. Huang, M. Li, X. Zhao, et al. Conceptual design and dimensional synthesis for a 3-DOF module of the TriVariant-a novel 5-DOF reconfigurable hybrid robot. IEEE Transactions on Robotics 2005;21(1):449-456

[24] K. H. Hunt. Structural kinematics of in-parallel-actuated robot-arms. Journal of Mechanical Design 1983;105:705-712

[25] T. Huang, H. Liu. Parallel mechanism having two rotational and one translational degrees of freedom. Patent 7793564, USA 2010.

[26] Q. C. Li, Q. H. Chen, et al. Three degree of freedom parallel mechanism with two vertical staggered axes. Patent, CN202292114U, Chinese 2010.

[27] Q. C. Li, J. M. Hervé. Type synthesis of 3-DOF RPR-equivalent parallel mechanisms. IEEE Transaction on Robotics 2014;30:1333-1343

[28] J. Wang, C. Wu, X. J. Liu. Performance evaluation of parallel manipulators: Motion/force transmissibility and its index. Mechanism and Machine Theory 2010;45(10):1462-1476

[29] X. J. Liu, J. Wang. A new methodology for optimal kinematic design of parallel mechanisms. Mechanism and Machine Theory 2007;42(9):1210-1224, 2007.

[30] T. Huang, H. T. Liu, D. G. Cherwynd. Generalized Jacobian analysis of lower mobility manipulators. Mechanism and Machine Theory 2011;46(5):831-844

[31] G. Palmieri, M. C. Palpacelli, M. Callegari. Study of a fully compliant U-joint designed for minirobotics applications. Journal of Mechanical Design 2012;134(12):1-9

[32] G. Chen, X. Liu, Y. Du. Elliptical-arc-fillet flexure hinges: toward a generalized model for commonly used flexure hinges. Journal of Mechanical Design 2011;133(8):081002

[33] P. B. Liu, P. Yan. A new model analysis approach for bridge-type amplifiers supporting nano-stage design. Mechanism and Machine Theory 2016:99(5):176–18.

[34] K. Qian, Y. Xiang, C. Fang, et al. Analysis of the displacement amplification ratio of bridge-type mechanism. Mechanism and Machine Theory 2015;87(5):45-56.

Biographical notes

Shuang Zhang, born in 1991, is currently a PhD candidate in mechanical engineering from Beijing University of Technology, Beijing, China. He received his bachelor degree from Beijing University of Technology, China, in 2017. His research interests include compliant mechanisms, and parallel mechanisms. E-mail: Zhangs@emails.bjut.edu.cn

Jing-Fang Liu, born in 1985, is currently an associate professor at Beijing University of Technology, Beijing, China. She received her doctor degree in mechanical engineering from Yanshan University, Qinhuangdao, Hebei, China, in 2011.

Hua-Feng Ding, born in 1977, is currently a professor at Beijing University of Technology, Beijing, China. He received the first Ph.D. degrees in mechanical engineering from Yanshan University, Qinhuangdao, Hebei, in 2007, and the second Ph.D. degree in mechanical engineering from the University of Duisburg-Essen, Essen, Germany, in 2015. E-mail: dhf@ysu.edu.cn

Appendix

In the following screw group, the number of the subscript indicates its corresponding branch. The bases of the branch permitted twist subspaces:

\[
S_{w,1,1} = (0 \ 1 \ 0 \ o'A_1^T \times (0 \ 1 \ 0))^T \\
S_{w,1,2} = (0 \ 0 \ 0 \ A_{B_1}^T)^T \\
S_{w,1,3} = (0 \ 1 \ 0 \ o'B_1^T \times (0 \ 1 \ 0))^T \\
S_{w,1,4} = (c\theta \ 0 \ -s\theta \ o'B_1^T \times (c\theta \ 0 \ -s\theta))^T \\
S_{w,2,1} = (0 \ 1 \ 0 \ o'A_2^T \times (0 \ 1 \ 0))^T \\
S_{w,2,2} = (c\theta \ 0 \ -s\theta \ o'A_2^T \times (c\theta \ 0 \ -s\theta))^T \\
S_{w,2,3} = (0 \ 0 \ 0 \ A_{B_2}^T)^T \\
S_{w,2,4} = (c\theta \ 0 \ -s\theta \ o'B_2^T \times (c\theta \ 0 \ -s\theta))^T \\
S_{w,3,1} = (0 \ 1 \ 0 \ o'A_3^T \times (0 \ 1 \ 0))^T \\
S_{w,3,2} = (0 \ 0 \ 0 \ A_{B_3}^T)^T \\
S_{w,3,3} = (0 \ 1 \ 0 \ o'B_3^T \times (0 \ 1 \ 0))^T \\
S_{w,3,4} = (c\theta \ 0 \ -s\theta \ o'B_3^T \times (c\theta \ 0 \ -s\theta))^T
\]

The bases of the branch constrained wrench subspaces:

\[
S_{w,1,1} = (0 \ 0 \ 0 \ B_{B}^T \times (0 \ 1 \ 0))^T \\
S_{w,1,2} = (0 \ 1 \ 0 \ o'B_1^T \times (0 \ 1 \ 0))^T \\
S_{w,2,1} = (0 \ 0 \ 0 \ -s\theta \ 0 \ -c\theta)^T \\
S_{w,2,2} = (c\theta \ 0 \ -s\theta \ o'A_2^T \times (c\theta \ 0 \ -s\theta))^T
\]
\[
\begin{align*}
S_{we,1,1} &=
\begin{bmatrix}
0 & 0 & 0
\end{bmatrix}B_1^T \times \begin{bmatrix}
0 & 1 & 0
\end{bmatrix}^T \\
S_{we,3,1} &=
\begin{bmatrix}
0 & 0 & 0
\end{bmatrix}B_3^T \times \begin{bmatrix}
0 & 1 & 0
\end{bmatrix}^T
\end{align*}
\]

The bases of the branch actuated wrench subspaces:
\[
\begin{align*}
S_{wu,1,1} &= \begin{bmatrix}
A_1B_1^T \times (0 & 1 & 0)
\end{bmatrix}^T \\
S_{wu,1,2} &= \begin{bmatrix}
A_1B_1^T \times A_1B_1^T
\end{bmatrix}^T \\
S_{wu,1,3} &= \begin{bmatrix}
0\theta & 0 & -s\theta
\end{bmatrix} \times \begin{bmatrix}
c\theta & 0 & -s\theta
\end{bmatrix}^T \\
S_{wu,1,4} &= \begin{bmatrix}
0 & 0 & c\theta & 0 & -s\theta
\end{bmatrix}^T
\end{align*}
\]

\[
\begin{align*}
S_{wu,2,1} &= \begin{bmatrix}
0 & 0 & 0 & 1 & 0
\end{bmatrix}^T \\
S_{wu,2,2} &= \begin{bmatrix}
0 & 1 & 0 & 0 & 1 & 0
\end{bmatrix}^T \\
S_{wu,2,3} &= \begin{bmatrix}
A_2B_2^T \times A_2B_2^T
\end{bmatrix}^T \\
S_{wu,2,4} &= \begin{bmatrix}
0 & 1 & 0 & 0 & 1 & 0
\end{bmatrix}^T
\end{align*}
\]

The bases of the branch constrained twist subspaces:
\[
\begin{align*}
S_{wc,1,1} &= \begin{bmatrix}
A_1B_1^T \times (0 & 1 & 0)
\end{bmatrix}^T \\
S_{wc,1,2} &= \begin{bmatrix}
A_1B_1^T \times A_1B_1^T
\end{bmatrix}^T \\
S_{wc,1,3} &= \begin{bmatrix}
0\theta & 0 & -s\theta
\end{bmatrix} \times \begin{bmatrix}
c\theta & 0 & -s\theta
\end{bmatrix}^T \\
S_{wc,1,4} &= \begin{bmatrix}
0 & 0 & 0 & c\theta & 0 & -s\theta
\end{bmatrix}^T
\end{align*}
\]

\[
\begin{align*}
S_{wc,2,1} &= \begin{bmatrix}
A_2B_2^T \times (0 & 1 & 0)
\end{bmatrix}^T \\
S_{wc,2,2} &= \begin{bmatrix}
A_2B_2^T \times A_2B_2^T
\end{bmatrix}^T \\
S_{wc,2,3} &= \begin{bmatrix}
0\theta & 0 & -s\theta
\end{bmatrix} \times \begin{bmatrix}
c\theta & 0 & -s\theta
\end{bmatrix}^T \\
S_{wc,2,4} &= \begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}^T
\end{align*}
\]
Figures

Figure 1
Sketch of the rigid RPR mechanism

Figure 2
Schematic of main parameters
Figure 3

The parameter design space (a) spatial parameter design space (b) plan parameter design space
Figure 4

Distribution of output transmission index
Figure 5
U compliant joint and R compliant joint
Figure 6

Sketch of the motion amplifier

Figure 7

The obtained RPR compliant mechanism
Figure 8

A flexible leaf joint and its simplified model.

Figure 9

The RPR compliant mechanism for FEA simulation