Promyelocytic Leukemia Is a Direct Inhibitor of SAPK2/p38 Mitogen-activated Protein Kinase*

Received for publication, July 1, 2004
Published, JBC Papers in Press, July 23, 2004, DOI 10.1074/jbc.M407369200

Jinwook Shin‡, Boyoun Park‡, Sunglim Cho‡, Sunray Lee‡, Youngkyun Kim‡, Seong-Ok Lee‡, Kwangmin Cho‡, Sungwook Lee‡, Bong-Suk Jin‡, Jin-Hyun Ahn‡, Eui-Ju Choi‡, and Kwangseog Ahn‡‡

From the ‡College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea and the §Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea

The promyelocytic leukemia gene (PML) encodes a growth/tumor suppressor protein that is essential for the induction of apoptosis in response to various apoptotic signals. The mechanism by which PML plays a role in the regulation of cell death is still unknown. In the current study, we demonstrate that PML negatively regulated the SAPK2/p38 signaling pathway by sequestering p38 from its upstream kinases, MKK3, MKK4, and MKK6, whereas PML did not affect the SAPK1/c-Jun NH₂-terminal kinase pathway. PML associated with p38 both in vitro and in vivo and the carboxyl terminus of PML mediated the interaction. In contrast to other studies of PML and PML-nuclear bodies (NB), our study shows that the formation of PML-NBs was not required for PML to suppress p38 activity because PML was still able to bind and inhibit p38 activity under the conditions in which PML-NBs were disrupted. In addition, we show that the promotion of Fas-induced cell death by PML correlated with the extent of p38 inhibition by PML, suggesting that PML might regulate apoptosis through manipulating SAPK2/p38 pathways. Our findings define a novel function of PML as a negative regulator of p38 kinase and provide further understanding on the mechanism of how PML induces multiple pathways of apoptosis.

In nearly all cases of acute promyelocytic leukemia, the promyelocytic leukemia gene (PML) is involved in t(15;17) chromosomal translocation with the retinoic acid receptor α gene (1–3). The PML-retinoic acid receptor gene (1–3) is encoded as a result of translocation, is thought to function as a dominant-negative factor of normal PML (4–7). PML is associated with tumor suppression, transcriptional regulation, and genomic stability (8–10). PML, a phosphoprotein associated with the nuclear matrix, is localized in the discrete, punctate nuclear structures known as PML nuclear bodies (PML-NBs), or PML oncogenic domains (11, 12). These PML nuclear bodies are critical for PML to function and are disrupted in acute promyelocytic leukemia cells. PML-NBs function as the nuclear depots (13) and they recruit many cellular components, for example, Sp100 (14), Daxx (15), p53 (16), BLM (8), and cAMP-response element-binding protein (17).

Evidence that PML plays a key role in multiple stress- and DNA damage-induced apoptotic pathways is accumulating. PML-negative cells are resistant to apoptotic stimuli, including γ-irradiation, Fas, tumor necrosis factor α (TNF-α), ceramide, and interferon (18). Consistent with this notion, the expression or distribution of PML is subject to regulation by various stimuli, such as interferon (19, 20), viral infection (21–23), heat shock (14), γ-irradiation (24), and ultraviolet (UV) irradiation (25). However, the molecular mechanisms by which PML exerts its proapoptotic activity remain to be investigated.

Extracellular environmental stimuli are transmitted to the nucleus through mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathways and stress-activated protein kinase (SAPK) pathways (26–28). The MAPK/ERK pathway consists of MAPK/ERK and upstream kinases, such as ERK kinase 1 (MEK1) and Raf-1 (26, 29). The two major subfamilies of SAPKs include the SAPK1/c-Jun NH₂-terminal kinase (JNK) pathway, which consists of JNK and upstream kinases such as MAPK kinase 4 (MKK4) and MKK7; and the SAPK2/p38 pathway, which consists of p38 and upstream kinases, such as MKK3, MKK4, and MKK6 (26, 30). The JNK pathway can be stimulated by various stresses, including genotoxic stresses, and it can then activate and phosphorylate c-Jun or other transcription factors (31, 32). Similarly to the activation of JNK, the activation of p38 can be mediated by various stresses, including UV irradiation, osmotic shock, TNF-α, Fas, and proinflammatory stimuli, and it can then activate and phosphorylate downstream kinases or transcription factors such as ATF2 (27, 30, 33). In this report, we investigated whether the proapoptotic activities of PML involve the SAPK signaling pathways. We show that PML associates with p38 at the endogenous levels and that PML suppresses the activity of the p38 kinase. Our data also suggest that the inhibitory effect of PML on the SAPK2/p38 pathway may account for the mechanism by which PML enhances Fas-mediated apoptosis.

EXPERIMENTAL PROCEDURES

Antibodies—The following antibodies (Abs) were used: mouse monoclonal anti-FLAG antibody (Sigma); mouse monoclonal anti-hemagglu-
tatin (HA) Ab (12CA5, Roche Applied Science); rabbit polyclonal anti-HA, rabbit polyclonal anti-glutathione S-transferase (GST), goat polyclonal anti-p38 and mouse monoclonal anti-PML (PG-M3) Abs (Santa Cruz Biotechnology, Santa Cruz, CA); mouse monoclonal anti-Myc and rabbit polyclonal anti-p38 Ab (Cell Signaling Technology, Inc.); and mouse anti-Fas Ab (CH-11, Upstate Biotechnology, Inc., Lake Placid, NY). Mouse monoclonal anti-PML Ab (5E10) (34) was a kind gift from Ron van Driel (Universiteit van Amsterdam, The Netherlands). Rabbit polyclonal anti-PML (PML-C) and mouse monoclonal anti-I-E1 Abs were raised as previously described (22).

Mammalian Expression Plasmids and Reagents—The following plasmids were generously provided: pCMX-PML (a 560-amino acid, PML VI isoform) (3, 35) from Ronald M. Evans (Salk Institute, San Diego, CA); pCDNA3 vector from H. Ichijo (University of Tokyo, Japan); pcDNA3-HA-MKK3 from J. Woodgett (Ontario Cancer Institute, Toronto, Canada); pEBG-GST-MKK4 from L. I. Zou (Harvard Medical School, Boston, MA); pcDNA3-HA-JNK and pcDNA3-HA-MKK6 from R. J. Davis (University of Massachusetts Medical School, MA); and pCDNA3-FLAG-p38 and pcDNA3-HA-p38 from R. J. Ulevitch (The Scripps Research Institute, La Jolla, CA). pHA287 (1-267, PML-C), pHA289 (229-560, PML-ΔN), pHA291 (CS8P89 → SS8R89 and Δ281-304, PML-ΔM), pGHE23-5 (CS8P89 → SS8R89, PML-CP > SR), and pRL74-E1 were previously described (22). The pGEK-4T-PML expression plasmid, which expresses GST-tagged PML (560 amino acids) in bacteria, was constructed by subcloning the EcoRI-flanked PML fragment into the EcoRI cloning site of pGEX-4T (Amersham Biosciences). SB203580 (Calbiochem) and 4′,6-diamidino-2-phenylindole (Sigma) were purchased.

Transfections and Stable Cell Lines—Human embryonic kidney (HEK) 293 and HeLa cells were cultured as an adherent monolayer in a Dulbecco’s modified Eagle’s medium (Invitrogen) that was supplemented with 10% fetal bovine serum (HyClone, Logan, UT), 50 units/ml penicillin, 50 μg/ml streptomycin, and 2 μg/ml kanamycin. Cells were transfected either with the GeneSHUTTLE-40 transfection reagent (moleculardx) or pCMX-PML (5E10).—Cells were fixed with 3.7% formaldehyde and permeabilized with 0.1% Triton X-100. Immunofluorescence and Confocal Microscopy—Immunofluorescence and confocal microscopy were performed as previously described (22). The intact cells were treated with the specific p38 inhibitors SB203580 in the appropriate concentration for 20 min and then were exposed by Fas-activating anti-Fas Ab (CH-11, 100 ng/ml). After 16 h, the cells were harvested and analyzed by propidium iodide (PI) exclusion followed by flow cytometry (FACScan, BD Biosciences). In the transient transfection system, green fluorescence protein (GFP)-expressing vectors were cotransfected with target-encoding vectors for the recognition of transfected cells.

RESULTS

PML Suppresses the SAPK2/p38 Signaling Pathway—Cellular responses to a wide diversity of stimuli are mediated by MAPK and SAPK signaling pathways. The expression and function of PML are subject to the control of various stimuli but the involvement of PML in the SAPK signaling pathway remains unknown. To test whether PML affects SAPK signaling pathways, we cotransfected PML and either JNK or p38 into HEK293 cells. JNK and p38 were stimulated by UV irradiation (90 J/m²), and kinase activity was measured by in vitro immunocomplex kinase assays. Interestingly, the kinase activity of p38 was reduced by 3-fold in cells transfected with PML (Fig. 1A), whereas the expression of PML did not significantly influence the activity of JNK (Fig. 1B). The reduction of p38 activity by PML is not because of a decrease in the level of the expressed p38, because comparable amounts of p38 were expressed in each transfectant as shown by immunoblotting (Fig. 1A, bottom). Similar results were obtained in the experiments where p38 was stimulated by treatment of Fas-activating Ab (α-Fas) (Fig. 1C) or by the transient transfection of apoptosis signal-regulating kinase 1 (ASK1) (Fig. 1D). An overexpression of PML blocked both the Fas- and ASK1-induced p38 activation. These results suggest that PML might be broadly involved in the SAPK2/p38 signaling pathway in response to various stresses.

To confirm these results, we used HEK293 cells that were stably expressing PML (293-PML) in a similar analysis. Immunostaining with the anti-PML antibody (5E10) displayed distinct PML-NBs in 293-PML (Fig. 2A), confirming an expression of significant levels of ectopic PML. A weak staining pattern, at the bottom of PML-NBs, was observed (Fig. 2B, B). A strong staining pattern was observed (Fig. 2B, B). The washed bead-bound 35S-labeled proteins were separated by SDS-PAGE and quantified with the Fuji BAS 2500 Phosphorimager.

Immunofluorescence and Confocal Microscopy—Transfected cells were fixed with 3.7% formaldehyde and permeabilized with 0.1% Triton X-100 followed by incubation with appropriate primary antibodies for 1 h. Bound antibodies were labeled with fluorescein isocyanate- or Texas Red-conjugated secondary antibodies (Jackson ImmunoResearch Laboratories, West Grove, PA) for 1 h and then visualized by MRC-1024 (Bio-Rad) confocal microscopy.

Immunoprecipitation and GST Pull-down Assays—For immunoprecipitation, cells were lysed in binding buffer C (20 mM HEPES, pH 7.4, 100 mM NaCl, 0.5% Triton X-100, 1 mM phenylmethylsulfonyl fluoride, 2 μg/ml leupeptin, and 2 μg/ml aprotinin) and then centrifuged at 10,000 × g for 30 min at 4 °C. The supernatants were preclarified by the incubation with protein G-Sepharose. After the added beads with nonspecific binding proteins were removed, the lysates were immunoprecipitated with the appropriate antibodies and protein G-Sepharose. The immunoprecipitates were separated by SDS-PAGE, analyzed by immunoblot assay, and visualized with SuperSignal West Pico Chemiluminescence Substrate (Pierce). For pull-down assays, 0.5 μg of the labeled PML was generated by using the in vitro transcription and translation system (Promega, Madison, WI). GST and GST-fused p38 or JNK, immobilized by glutathione-Sepharose beads (Amersham Biosciences), were incubated with in vitro translated [35S]methionine-la-
We examined whether PML could physically interact with p38. We observed that only PG-M3 but not the 5E10 anti-PML antibody was able to immunoprecipitate PML (data not shown). The PG-M3 anti-PML antibody coimmunoprecipitated the p38 protein (Fig. 4A), demonstrating that the two proteins physically associate in vivo. In a reverse experiment, however, the anti-p38 antibody was unable to coimmunoprecipitate PML, suggesting that the anti-p38 antibody might disrupt or not recognize the complex.

To examine the PML-p38 interaction further, we prepared the [35S]methionine-labeled PML protein by in vitro transcription and translation and then mixed labeled PML with GST, recombinant GST-fused p38, or JNK protein (Fig. 4B, bottom panels). A distinct [35S]-labeled PML protein band was retained with GST-p38 but was not present for both the control GST and GST-JNK in the GST pull-down analysis (Fig. 4B, upper panel). Although we cannot formally rule out the possibility that the interaction might be mediated through unknown molecules in transcription and translation lysates, the result reflects a specific interaction of PML with p38. Next, to elucidate the binding region of PML with p38, we used three truncated mutants lacking a COOH-terminal (1–267, PML-H9004C), NH2-terminal (224–560, PML-H9004N), or middle region (282–303 in the coiled-coil region and C88P89/H11022S88R89 in the RING finger, PML-H9004M) of PML. The [35S]methionine-labeled PML mutants were incubated with GST-fused p38-conjugated beads. The PML-H9004C mutant was not bound to GST-fused p38 (Fig. 4C), indicating that the COOH-terminal region of PML is critical for binding p38. These results suggest that PML might exert its negative regulation of p38 kinase activity by a direct interaction with p38.

*PML Inhibits Phosphorylation of p38 Mediated by MKK4 and MKK6—*Because our findings thus far suggested that PML suppresses the activation of p38 through direct binding to p38, we further investigated whether PML inhibition of the p38

![Fig. 1](https://example.com/fig1.png)

Fig. 1. PML suppresses the SAPK2/p38 pathway. HEK293 cells were transiently cotransfected with the combination of FLAG-p38, HA-JNK, PML, and Myc-ASK1 as indicated. For activation of p38, the cells were stimulated by exposure to UV irradiation (90 J/m2) followed by incubation for a further 1 h (A and B) or were treated with Fas-activating anti-Fas Ab (CH-11, 2 μg/ml) for 20 min (C). The kinase activities of lysates were determined by an immunocomplex KA. Band intensities obtained from three independent experiments were quantitated and shown as error bar graphs (mean ± S.D.). IP and IB denote immunoprecipitation and immunoblot, respectively.
phosphorylation is mediated by its upstream kinases, such as MKK6 or MKK4. We expressed HA-MKK6 or the GST-MKK4 fusion proteins in the HEK293 cells and induced activation by UV irradiation. After isolating active MKK6 and MKK4 immunoprecipitates with anti-HA or anti-GST Abs, we used the immunoprecipitates for an in vitro immunocomplex kinase assay with GST-p38 as the substrate. In the absence of GST-PML, activated MKK6 showed robust phosphorylation of p38 (Fig. 5A, top panel, second lane). However, in the presence of GST-PML, the extent of p38 phosphorylation was reduced, in a dose-dependent manner, to the amount of GST-PML. Likewise, the ability of MKK4 to phosphorylate p38 was also reduced in an inverse proportion to the dose of GST-PML (Fig. 5B, top panel). The possibility that the GST portion could contribute to the inhibition of kinase activity was ruled out by KA using the control GST (Fig. 5, A and B, bottom panels). These data demonstrate that PML interferes with the phosphorylation of p38 mediated by its upstream kinases.

Formation of PML-NBs Is Not Essential for PML to Suppress p38—The function of PML is linked with PML-NBs, where many cellular proteins are recruited. Therefore, we determined whether the organization of PML-NBs is required for the negative regulation of p38 kinase activity by PML. To address this question, we used to our advantage the facts that the human cytomegalovirus immediate-early protein IE1 disrupts PML-NBs through direct interaction with PML and that the point mutant of PML (C88P89 > S88R89, PML-CP > SR) fails to form PML-NBs because of the mutation at the RING finger domain (22, 23). In agreement with previous findings, both the IE1 and PML-CP > SR mutant disrupted the formation of PML-NBs (Fig. 6A, f, i, and l). Accordingly, we did not observe the nuclear punctate staining of p38 in the presence of IE1 or PML-CP > SR (Fig. 6A, j and m). More importantly, even in the absence of PML-NB formation, PML was still capable of binding p38 (Fig. 6B, top panel, compare third and fourth lanes). Moreover, despite the disorganization of PML-NBs, PML-CP > SR could suppress the p38 kinase activity as efficiently as the wild-type PML (Fig. 6C). We thus concluded that direct interaction is the major determinant for PML to suppress p38 kinase activity and that the formation of PML-NBs is not required for the action of PML.

PML Promotes Fas-induced Cell Death via Suppression of p38—PML down-regulated the p38 activity in the Fas- and ASK1-signaling pathways (Fig. 1, C and D). This finding prompted us to investigate the physiological effect of PML on the SAPK2/p38 signaling pathway in respect to Fas-mediated cell death. To examine the function of p38 in the Fas-induced death pathway, we used the specific p38 inhibitor SB203580, which competes with ATP for the same site on p38 (36). HEK293 and HeLa cells were treated with SB203580 at the indicated concentrations (Fig. 7, A and B, respectively). After a 20-min incubation, the cells were further incubated with or without Fas-activating anti-Fas Ab for 16 h, then stained with PI and compared with the fluorescence intensity of crude cells as a negative control. The number of PI-stained cells (M1) increased in both cell lines in proportion to the dose of SB203580 (Fig. 7), which suggests that p38 plays a role in the inhibition of Fas-induced cell death. A treatment with SB203580 alone had little influence on cell death (Fig. 7, A and B, lane 2, respectively). To test the effect of PML on the p38 signaling pathway in respect to Fas-mediated cell death, we analyzed Fas-induced cytotoxicity in 293-Neo and 293-PML cells (Fig. 8A). PML promoted Fas-mediated cell death to a similar extent as the treatment of p38 inhibitor (compare lanes 3 and 5). The relationship between the increase in PML protein levels and the regulation of Fas-mediated cell death through the inhibition of p38 was further confirmed in HeLa cells (Fig. 8B). Next, we tested whether two PML mutants with incompetence for either p38 binding or PML-NBs formation could affect the cell viability under conditions of Fas activation. In HEK293 cells, the GFP-expressing vector as a marker was cotransfected with cDNA encoding PML-wild, PML-CP, or PML-CP > SR. After 36 h, we treated transfectants with Fas-activating Abs and SB203580 as indicated, and examined the percentage of GFP- and PI-positive cells by flow cytometry (Fig. 8C). In agreement with the above data, Fas-induced cytotoxicity was augmented by SB203580 and the wild-type PML (Fig. 8C, lanes 3 and 4), and was more enhanced by SB203580 together with the wild-type PML (Fig. 8C, compare lanes 3 and 7) in the presence of the PML RING finger mutant (PML-CP > SR) that disrupts PML-NBs but is
able to suppress p38 activity (Fig. 6C). Interestingly, the expression of the PML-ΔC mutant, which is incapable of binding p38 (Fig. 4C), did not affect the Fas-mediated apoptosis (Fig. 8C, compare lanes 2 and 6). Taken together, these data suggest that PML might play a key role in promoting Fas-induced cell death via the suppression of the p38 kinase activity.

DISCUSSION

PML, initially identified as a tumor suppressor, plays an essential role in the induction of apoptosis by diverse stimuli. PML negative mice and cells are protected from these apoptotic signals (18). Furthermore, an overexpression of PML in various cell lines also induces cell death (37–39). The mechanisms by which PML exerts its proapoptotic effects remain unknown. PML is induced upon treatment with interferon, which is produced by cells in response to various biological stresses (19). Diverse biological stresses trigger the SAPKs. SAPKs are likely signaling participants in apoptosis. Therefore, the possible link between PML-induced apoptosis and the SAPK pathway has been inferred. Our data demonstrate that PML recruits p38 within the PML-NBs through physical interaction by which PML negatively regulates the SAPK2/p38 signaling pathway. In contrast, PML did not affect JNK, another SAPK family member, showing the specificity of PML to the SAPK2/p38 signaling pathway.

The p38 protein localizes to both the cytoplasm and the nucleus. It translocates between the cytosol and the nucleus in response to various stimuli (33, 40, 41) and the nucleus is a target for the signal transduction of p38 kinase (33). In agreement with previous reports, our data show that p38 is indeed localized to both the cytosol and the nucleus. Interestingly, upon overexpression of PML, the p38 protein was recruited into the PML-NBs in various cell lines including HeLa (data not shown) and HEK293 (Fig. 6A, c–e). The subcellular localization of p38 in PML-NBs has been previously implicated.
tionation by fast protein liquid chromatography revealed that p38 is found in 500–700-kDa subnuclear complexes that co-migrate with PML (42). Noteworthy, the p38 activator MKK3 co-migrates within these complexes. In this study, we demonstrated that PML binds p38 at the endogenous levels (Fig. 4A). The amount of p38 coimmunoprecipitated with PML was relat-

Fig. 4. PML physically binds p38 through its COOH terminus. A, HeLa cells were lysed and the in vivo interactions between PML and p38 were assessed by coimmunoprecipitation using the indicated Abs. Immunopellets were visualized by immunoblot analysis with the anti-p38 antibody. B, the in vitro translated [35S]methionine-labeled PML polypeptides were mixed with the bacterially expressed control GST, GST-p38, and GST-JNK and immobilized onto glutathione-Sepharose beads for 2 h. The bead-bound proteins were separated by SDS-PAGE, and the 35S-labeled PML proteins were visualized by autoradiography. The presence of GST and GST-fused proteins were confirmed by Coomassie Blue staining (bottom panels). C, 35S-labeled PML mutant proteins were prepared and incubated with GST-fused p38 beads for 2 h. Bead-bound proteins were visualized by autoradiography. IB, immunoblot.

Fig. 5. PML interferes with phosphorylation and activation of p38 catalyzed by MKK6 or MKK4. HEK293 cells were transfected with the plasmid expressing HA-MKK6 (A) or GST-MKK4 (B). The cells were exposed to UV irradiation (90 J/m²), incubated for a further 30 min, and then lysed. Aliquots of the lysates of UV-irradiated cells were analyzed by immunocomplex KA in the presence of variable amounts of either the recombinant GST-fused PML or the control GST epitope. The total amount of added proteins was unified by the compensation of bovine serum albumin. IB, immunoblot.
tively small compared with the total amount of p38. Taking into account the fact that the majority of p38 is still found in the cytosol even upon the expression of PML (data not shown), the association of p38 with PML might be a nuclear event. The proteins that form complexes in PML-NBs are classified by permanent and transient groups (13), and PML-NBs are dynamic macromolecular structures in which the contents are altered in response to diverse stimuli. Several apoptotic regulators have been identified in PML-NBs, and their proper localization in PML-NBs was found to be essential for their functions (43–46). In fact, all functionally different residents of PML-NBs execute their biological functions only in the context of PML-NBs, underscoring the importance of PML-NBs. In contrast to the current understanding of PML and PML-NBs, our data show that the formation of PML-NBs is not necessary for PML to suppress p38 activity because PML could still bind and inhibit p38 activity even when the formation of PML-NBs was disrupted with either HCMV IE1 or the RING finger mutant of PML (Fig. 6). Furthermore, PML could inhibit the action of MKK4 and MKK6 on the phosphorylation of p38 in vitro (Fig. 5). These results support the notion that the physical binding of PML to p38 in the nucleus is a major determinant for suppressing p38 activity. The physiological importance of p38 localization in PML-NBs is not immediately clear. Given that p38 has the intrinsic ability to associate with PML, colocalization of p38 with PML within the PML-NBs might only be the consequence of a higher concentration of p38 associated with overexpressed PML, accounting for visibility in PML-NBs in

Fig. 6. Nuclear dispersed PML is able to bind and suppress p38 activity. HEK293 cells were transiently transfected with the combinations of plasmids as indicated. The transfected cells were analyzed by immunostaining (A), coimmunoprecipitation (B), and immunocomplex KA (C). A, cells were stained with the indicated Abs: mouse anti-HA, mouse anti-IE1, and rabbit anti-PML (PML-C) Abs. Bound primary Abs were double-labeled with Texas Red-conjugated anti-rabbit and fluorescein isothiocyanate-conjugated anti-mouse secondary Abs, and stained cells were visualized via MRC-1024 confocal microscopy. B, cell lysates were immunoprecipitated with the PG-M3 Ab, and the immunopellets were resolved by SDS-PAGE followed by immunoblotting with anti-FLAG Ab. Aliquots of cell lysates were also analyzed by immunoblot to confirm the expression of transfected plasmids (bottom panels). C, cell lysates were analyzed by immunocomplex KA.
comparison to visibility in the rest of the nucleus. Recruitment of a particular protein into PML-NBs does not necessarily signify the functional activation of that protein. This notion is exemplified by the fact that an increased concentration of polymerase II in PML-NBs does not increase the amount of RNA found in PML-NBs (47, 48). To date, and to the best of our knowledge, our study is the first indication that PML is able to regulate a biological function irrespective of the context of PML-NBs.

The role of the SAPK2/p38 signaling pathway in apoptosis is still controversial. The activation of p38 in vivo selectively induces apoptosis of CD8-positive but not CD4-positive T cells (49). The inhibition of p38 delays neutrophil apoptosis (50), whereas transient inhibition of p38 favors neutrophil apoptosis (51). The activation of p38 regulates cell survival in response to TNF-α (52). In contrast, PML potentiates cell death in TNF-α-resistant U2OS cells (53). These observations reflect the complication that the role of the SAPK2/p38 signaling pathway in regulating apoptosis could vary depending on cell type and signal quality. Because of these equivocal behaviors of p38 activities, the effect of the chemical inhibitors has been used as a hallmark for the function of p38. Diverse stimuli including UV radiation, Fas, and ASK1, activate the JNK/p38 cascade and trigger apoptosis (27, 54–56). We showed that PML negatively regulates p38 kinase activity in UV, Fas, ASK1 signalings (Fig. 1) and that the promotion of Fas-induced cell death by PML correlates with the extent of p38 inhibition by PML. The insensitivity of cells bearing resistance to Fas-induced cell death could be reversed in HEK293 and HeLa cells under conditions in which the activity of p38 is directly suppressed by SB203580 or PML (Fig. 8, A and B). Taken together, our data suggest that PML might indeed regulate apoptosis through manipulating the SAPK2/p38 pathway.

A recent study by Wu et al. (53) showed that the ectopic expression of PML enhances TNF-α-induced cell death by inhibiting the NF-κB survival pathway. This study demonstrated that PML IV represses the NF-κB pathway by recruiting the NF-κB subunit, RelA/p65, to the PML-NBs, and interferes with the binding of NK-κB to its enhancer. This study further describes that the COOH terminus of PML IV (amino acids 556–633) is indispensable for inhibiting NF-κB. It has also been shown that PML might be involved in p53-dependent apoptosis (57, 58). PML IV physically interacts with p53 in the PML-NBs and acts as a transcriptional co-activator with p53. Like the inhibitory action in the NF-κB survival pathway, the COOH terminus of PML IV is also required for interactions with p53 and the relocalization of p53 to the PML-NBs (57). The PML gene contains nine exons and generates many alternatively spliced transcripts, yielding a variety of PML isoforms that contain a common NH2-terminal region but differ in their COOH-terminal sequences (35). Particular PML isoforms can mediate apoptosis by specific mechanisms (35), reflecting that PML splice variants might evolve to respond to diverse signals. Throughout our study, we used the PML VI isoform (560 amino acids) that lacks the COOH-terminal region of PML IV, and thus it is unlikely that the mechanisms by which PML accelerates Fas-mediated cell death involves the inhibition of the NF-κB survival pathway and induction of the p53-dependent apoptotic pathway. Daxx, as another factor in PML-NBs, has been known to participate in the apoptotic pathway via direct interaction to PML VI, and its localization in PML-NBs is required for apoptotic functions (59–61). In contrast, the PML mutant that failed to form PML-NBs did still bind and suppress p38 activity (Fig. 6), and exerted the physiological effect that was lower than PML-wild but still drew level with the p38 inhibitor (Fig. 8C). These data give a clue that certain PML-NBs partners, including Daxx, could participate in PML-mediated apoptosis although PML might also have its own
capability. PML exhibited synergy with SB203580 to potentiate sensitivity to Fas-mediated cell death in our experimental conditions (Fig. 8C), which suggests that inhibition of the SAPK2/p38 pathway could increase the apoptotic function of other factors in PML-NBs such as the inhibition of Daxx by downstream Hsp27 (62, 63). Alternatively, the synergistic action of SB203580 and PML might be a reflection that these chemical and cellular inhibitors target different steps of the SAPK2/p38 pathway, for instance, competition with ATP and sequestration from upstream kinases, respectively. Our novel finding that PML, as a natural inhibitor for p38, plays a role in stress signaling cascades, can contribute to a further understanding of the role of PML in apoptosis.

Acknowledgments—We thank Drs. R. van Driel, R. Evans, J. Woodgett, L. Zou, R. Davis, H. Ichijo, and R. Ulevitch for providing valuable reagents.

Fig. 8. Inhibition of p38 by PML promotes Fas-induced cell death. A and B, HeLa cells were transfected with GFP plus mock or PML-encoding vectors. 293-Neo, 293-PML (A), and HeLa transfectants (B) were treated with Fas activating anti-Fas Abs in the presence or absence of SB203580 (20 μM), and then analyzed for PI exclusion. C, indicated cDNA was cotransfected with GFP-vector into HEK293 cells. Transfectants were treated with anti-Fas Abs in the presence or absence of SB203580 (20 μM), and then analyzed for the GFP- and PI-double positive cells by flow cytometry. Error bar graphs represent the mean ± S.D. of death percentage from three independent experiments.

REFERENCES
1. de The, H., Lavau, C., Marchio, A., Chomienne, C., Degos, L., and Dejean, A. (1991) Cell 66, 675–684
2. Borrow, J., Goddard, A. D., Sheer, D., and Solomon, E. (1990) Science 249, 1577–1580
3. Kakizuka, A., Miller, W. H., Jr., Umessou, K., Warrell, R. P., Jr, Frankel, S. R., Marty, V. V., Dmitrovsky, E., and Evans, R. M. (1991) Cell 66, 663–674
4. He, L. Z., Tribioli, C., Rivi, R., Peruzzi, D., Pelosi, P. G., Soares, V., Cattoretti, G., and Pandolfi, P. P. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 5302–5307
5. Dyck, J. A., Maul, G. G., Miller, W. H., Jr., Chen, J. D., Kakizuka, A., and Evans, R. M. (1994) Cell 76, 333–343
6. Koken, M. H., Puvion-Dutilleul, P., Guillemin, M. C., Viron, A., Linares-Cruz, G., Stuurman, N., de Jong, L., Stroobants, C., Calvo, F., Chomienne, C., Degos, L., Puvion, E., and de The, H. (1994) EMBO J. 13, 1073–1083
7. Weiss, K., Rambaud, S., Lavau, C., Jansen, J., Carvalho, T., Carmo-Fonseca, M., Lamond, A., and Dejean, A. (1994) Cell 76, 345–356
8. Zhong, S., Hu, P., Ye, T. Z., Stan, R., Ellis, N. A., and Pandolfi, P. P. (1999) Oncogene 18, 7941–7947
9. Zhong, S., Salomon, P., and Pandolfi, P. P. (2000) Nat. Cell Biol. 2, E85–E90
10. Salomon, P., and Pandolfi, P. P. (2002) Cell 108, 165–170
11. Seeler, J. S., and Dejean, A. (1999) Curr. Opin. Genet. Dev. 9, 362–367
Promyelocytic Leukemia Is a Direct Inhibitor of SAPK2/p38 Mitogen-activated Protein Kinase

Jinwook Shin, Boyoun Park, Sunglim Cho, Sunray Lee, Youngkyun Kim, Seong-Ok Lee, Kwangmin Cho, Sungwook Lee, Bong-Suk Jin, Jin-Hyun Ahn, Eui-Ju Choi and Kwangseog Ahn

J. Biol. Chem. 2004, 279:40994-41003.
doi: 10.1074/jbc.M407369200 originally published online July 23, 2004

Access the most updated version of this article at doi: 10.1074/jbc.M407369200

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 63 references, 26 of which can be accessed free at http://www.jbc.org/content/279/39/40994.full.html#ref-list-1