PbS - Nanoparticles Embedded in Polymer Matrix: Preparation and Characterization

P. K. Singh¹*, S. K. Tomar², B. Bhattacharya¹

¹Material Research Laboratory, Department of Physics, School of Engineering & Technology, Sharda University, G. Noida, 201306, India
²IET, JK Lakshmipat University, Jaipur, Rajasthan, India

Abstract Formation of nano-sized PbS in PEO – polymer matrix at room temperature is being reported. SEM showed the particle size distribution while TEM affirmed the formation of nano particulates of PbS. The size distribution was further supported by UV/VIS absorption of the colloid. At room temperature a wide variation in the size of the particles was observed depend on sulfuration and salt concentration. The detailed characterization of these nano - PbS doped in polymer electrolyte are also discussed.

Keywords PbS Nanoparticles, Polymer Electrolytes, SEM, TEM

1. Introduction

Small inorganic semiconductor crystallites in the form of colloids have attracted researchers due to their very interesting properties[1]. The experimental verification of the transformation between molecular and bulk properties in small aggregates is being highly persuaded. Large number of studies has been reported so far on the formation of nano crystallites of semiconductors in zeolite and polymer matrix as well[2-5]. The various properties of nano-crystals has become the topic of both theoretical[6,7] and experimental interest[8-12]. In most of the studies, nano-crystalline semiconductors belonging to the II-VI group have been taken up while the studies related to IV-VI are rather scanty. PbS is an important member of this family. It is one of the earliest materials studied for its interesting photoconductive properties which has been exploited by many researchers[13]. The basic problem associated with colloidal semiconductors like CdS, PbS is that the lifetime of the photogenerated electron/hole pair is very short. Therefore, for fast electron transfer reactions, a very high concentration of reagents is required. However, such high concentrations destabilize the colloid. In order to prevent such a stability problem, dispersion of colloids into polymer matrix is a novel alternative. Keeping this thing in mind we have doped the nano-PbS particles into an ion conducting polymeric matrix. The polymer electrolyte chosen for the present study is PEO:NH₄I (80:20) which is predominantly a proton conducting polymer electrolyte[14,15] and maintain good ionic conductivity and mechanical stability.

2. Experimental

To prepare polymeric membranes dispersed with semiconductor, Pure PEO (Mol. wt. 6x10⁵, Aldrich) was dissolved in dehydrated methanol to which stoichiometric ratio of anhydrous NH₄I (purity, Aldrich) was added to give PEO:NH₄I weight ratio as 80:20. This solution was thoroughly stirred at 400°C for 5 hours for complete complexation. After that we added a dilute solution of lead acetate to it drop by drop. As soon as the drop falls, H₂S was bubbled through the viscous solution (at 30 ml./min.) for 2-3 minutes which resulted in the formation of PbS. A fresh Pb-acetate drop was added and sulfuration was done as above. This continued till the desired weight ratio of Pb-acetate gets added. The bubbling rate (sulfuration) was controlled by flowmeter. Colloidal particles of PbS was formed in PEO-matrix by following reaction

\[\text{Pb(CH₃COO)₂} + \text{H₂S} \rightarrow \text{PbS} + 2 \text{CH₃COOH} \]

The desired weight percent of Pb-acetate salt (1, 5, 10 wt%) and bubbling rate of H₂S (30, 60, 120 ml/min.) were varied to obtain the different films. This PbS-dispersed polymer electrolyte viscous solution was poured into petri dishes for solution casting into film form. After drying it in room ambient for several days, the film were finally dried under vacuum to eliminate all traces of solvent. These nano-PbS embedded in polymer matrix were characterized with JEOL JSM-5800 LV scanning electron microscope, PHILLIPS TEM instrument (Model EM-CM 12). The band gap of the dispersed PbS was evaluated by UV/visible absorption spectra using Hitachi (model U-3400) spectrophotometer. For calculation of the energy band gap the equation, as given below, was employed...
αhυ = A(hυ\ -\ E_g)^n
where hυ denotes the energy of the incoming photon in electron volt, α is the absorption coefficient of the material, Eg is the energy band gap, A is a constant and the exponent n is 1/2 for direct band gap materials[16].

3. Results and Discussions

To confirm the presence/formation of lead sulfide we have recorded the XRD diffraction patterns of PbS doped polymer films. The known prominent peaks of bulk PbS are at 2θ=26.1 and 30.3. Unfortunately, near these angles some PEO-peaks are also present and it is difficult to distinguish. Hence, we carried out XRD measurement at a slow scan rate. A typical XRD pattern in the range 2θ=24-32° is shown in figure 1 for films containing 5 and 10 wt% of PbS. The results of an approximate deconvolution of these peaks into peaks assigned either to PEO or PbS are also shown in figure 1. The dominant particle sizes determined from this data using Scherrer formula[17] are lies between 10-15 nm. The SEM photographs of different (PEO:NH4I)+PbS films with different composition and sulfuration are given in figure 2. It was obvious from the comparison of figures 2 a and 2 b that more was the amount of Pb-acetate in the starting solution, bigger aggregated PbS gets dispersed.

Further the bubbling rate of H2S which controls the rate of sulfuration resulting in the formation of PbS. When bubbling rate was 30ml/min., particles of small size are observed (figure 2a). When we increase the bubbling rate (120ml/min.) larger particulates of PbS are observed (figure 2c). From these micrographs we can conclude that for obtaining small particles we must keep low salt concentration and low sulfuration rate. It was also clear that the dispersed PbS particles changes with the amount of salt Pb(CH3COO)2 in the polymeric solution and bubbling rate of H2S. Our SEM could see only larger particles (less than 10 micron) and hence TEM study was used to evaluate the exact particle size of PbS crystallites/clusters, particularly of those which had nm-size. The TEM micrograph of a typical (PEO:NH4I)+5 wt% PbS film at 60ml/min. are shown in figure 3. There was an obvious size distribution in micrograph showing small (3-5nm) as well as large particle/clusters (30-50nm) of PbS. Interestingly these PbS nanoparticles are well interconnected forming a channel which probably assisted in the transportation of ionic conduction. The small particles (nano-size) play an important role in the “size quantization effect” and hence change in the absorption spectra of the polymer film as discussed in the later section.

It is reported that the band gap of a specific material does not only depend on its structure but the size also has a controlling factor. Once the particle reaches nano-meter size, quantum effects come into play and the effective band gap increases[18-20]. The experimental determination of band gap of PbS from the optical absorption presented some problems. The band gap for bulk PbS is ~ 0.37 to 0.42 eV which puts the absorption edge in the wavelength region ~ 3300-2800 nm, but in this region the interference from strong H2O bonds introduced ambiguity. If the particle size of PbS decreases (≤ 5 nm) the band gap may change to 1.2 eV to 3.5 eV (visible/UV region). For reconfirmation of nano size distribution, we have recorded the absorption spectra of PbS-doped polymer in the visible region (800-450 nm.). The UV/visible absorption spectra of a typical PEO:NH4I+1 wt% PbS film at 120 ml/min. is shown in figure 4. It was obvious that the absorption was continuously increasing in the 800-450 nm. region. Based on this absorption spectra we
have evaluated the band gap (E_g) from the intercept on $h\nu$ axis of $(\alpha h\nu)^2$ Vs $h\nu$ plot shown in figure 5. It may, however, be noted that there is no sudden change in absorbance because of simultaneous presence of particles of all sizes (and hence different values of E_g). More then one intercept on $h\nu$ axis (and hence different values of E_g) are clearly seen in figure 5. The band gap evaluated varies from 1.9 eV to 2.2 eV reconfirms the formation of nano particulates which was supported by TEM study.

![Figure 4. The absorption spectra of PEO:NH4I+1 wt% PbS polymer electrolyte film prepared at 120 ml/min](image)

Figure 4. The absorption spectra of PEO:NH4I+1 wt% PbS polymer electrolyte film prepared at 120 ml/min

Wagner’s polarization method was used to measure the ionic & electronic transference number of (PEO:NH4I)+PbS polymeric membranes using formula.

$$t_{ion} = (1 - t_e) = \frac{i_T - i_f}{i_T}$$

where t_{ion} is the ionic transference number, i_T is the initial total current (due to ion + electron) and i_f is the final saturation current due to the electrons only. The current Vs time plots are shown in figure 6 for different samples of (PEO:NH4I)+x PbS (x = 1, 5, 10 wt%) prepared at H2S bubbling rate of 120 ml/min. along with the data for pure PEO:NH4I (x = 0) film. Similar curves were obtained for samples prepared at 30 and 60 ml/min. bubbling rate. The calculated values of ionic transference number (t_{ion}) are listed in table 1. It is well know that if the material is purely ionic in nature the ionic transference number t_{ion}~1. From this table it is clear that our PbS-doped polymer films was mixed (ionic + electronic) conductor in nature and nearly 20 % electronic conductivity could be introduced. The a.c. measurement of electrical conductivity is done (figure not shown here) to avoid polarization in the solid electrolytes. Here we have used the well known impedance spectroscopic technique to evaluate the true bulk conductivity. The values of total conductivity (σ_T); ionic conductivity ($\sigma_1 = \sigma_{ion \cdot \sigma_e}$); electronic conductivity ($\sigma_e = t_e \cdot \sigma_T$) and t_{ion} are calculated using above said formulas.

![Figure 5. The $(\alpha h\nu)^2$ Vs $h\nu$ plot of PEO:NH4I+1 wt% PbS polymer electrolyte film prepared at 120 ml/min](image)

Figure 5. The $(\alpha h\nu)^2$ Vs $h\nu$ plot of PEO:NH4I+1 wt% PbS polymer electrolyte film prepared at 120 ml/min

![Figure 6. Polarization curves showing the current variation with time for different PEO:NH4I polymer electrolytes with (a) no PbS (b) 1 wt % PbS (c) 5 wt% PbS (d) 10 wt% PbS. at 120 ml/min. bubbling rate.](image)

Table 1. Calculated values of t_{ion} for (PEO:NH4I)+PbS polymer films using Wagner’s polarization method

Composition (wt% of Pb salt)	t_{ion} at 120 ml/min.	t_{ion} at 60 ml/min.	t_{ion} at 30 ml/min.
1	0.90	0.93	0.95
5	0.86	0.88	0.90
10	0.80	0.85	0.88

Some important observations based on electrical characterization are summarized below
(i) The increase in σ_T is not only due to the increased σ_e but there is, as well, a substantial increase in σ_1 due to interface effect present in the ionic composite systems.
(ii) The maximum σ_e is for the film prepared at “high” bubbling rates as expected since such a condition gives a low band gap PbS (bigger particulates).
(iii) The σ_1 is higher for films at “low” bubbling rates. This can be explained on the basis of well known size effect in ion conducting composites where the interface area is responsible for providing the ion conduction path and which increases as the particle size decreases.

4. Conclusions

Hence, we have successfully prepared the PbS nano particles in the PEO - polymer electrolyte matrix using chemical sulfuration method. A size distribution of particles was observed in XRD/SEM which were supported by UV/VIS
optical absorption spectra and TEM micrographs. Low salt concentration and bubbling rate was found to be suitable for the formation of smaller (nano) particulates of PbS. Further we have shown that the doping of semiconductor could be a novel approach to modify the electrical properties of polymer electrolytes.

ACKNOWLEDGEMENTS

This work is supported by DST project (SR/S 2/CMP-0065/2010) government of India.

REFERENCES

[1] Henglien A., 1989, Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles, Chem. Rev., 89, 1861-1873

[2] Ramsden J J, and M. Grätzel. M, 1984, Photoluminescence of small cadmium sulphide particles, J. Chem. Soc., Faraday. Trans., 80, 919-933

[3] Radhakrishnan. S, 1994, Polymer induced crystallization III. PEO-CdCl2 and in situ formation of PEO-CdS composite, J. Crystal Growth, 141, 437-442

[4] Braun P V, Osenar P, and Stupp S I, 1996, Semiconducting superlattices templated by molecular assemblies, Nature, 380, 325-328

[5] Nanda K K and Sahu S N, 2001, One-dimensional quantum confinement in electrodeposited PbS nanocrystalline semiconductors, Adv. Mater., 13, 280-283

[6] Steigerwald M L, Brus L E, 1990, Semiconductor Crystallites: A Class of Large Molecules, Acc. Chem. Res., 23, 183-188

[7] Lippens P E, and Lannoo M, 1989, Calculation of the band gap for small CdS and ZnS crystallites, Phys. Rev. B, 39, 10935-10942

[8] Lu X, Zhao Y, Wang C, 2005, Fabrication of PbS Nanoparticles in Polymer-Fiber Matrices by Electrospinning, Adv. Mater., 17, 2485-2488

[9] Luccio T D, Laera A M, Tapfer L, Kempter S, Kraus R, and Nickel B, 2006, Controlled nucleation and growth of CdS nanoparticles in a polymer matrix, J. Phys. Chem. B, 110, 12603-12609

[10] Arachchige I U and Brock S L, 2007, Highly Luminescent Quantum-Dot Monoliths, J. Am. Chem. Soc., 129, 1840-1841

[11] Maity R, Maiti U N, Mitra M K, Chattopadhyay K K, 2006, Synthesis and optical characterization of polymer-capped nanocrystalline ZnS thin films by chemical process, Physica E, 33, 104-109

[12] Watt A A R, Blake D, Warner J H, Thomsen E L, Tavenner E L, Dunlop H R and Meredith P, 2005, Lead sulfide nanocrystal: conducting polymer solar cells, J. Phys. D: Appl. Phys., 38, 2006-2012

[13] Brinkman W.F., Haggan D.E., Troutman W.W., 1997, A history of the invention of the transistor and where it will lead us, IEEE Journal of Solid - State Circuits, 32, 1858-1865

[14] Maurya K K, Srivastava N, Hashmi S A, Chandra S, 1992, Proton conducting polymer electrolyte: II poly ethylene oxide + NH4I system, J. Mater. Sci., 27, 6357-6364

[15] Chandra A, Singh P K, Chandra S, 2002, Semiconductor-dispersed polymer electrolyte composites, Solid State Ionics, 154-155, 15-20

[16] Sze S M 1969 Physics of Semiconductor Devices (New York: Wiley Interscience)

[17] Stokes, A.R. and Wilson, A.J.C., 1944, A method of calculating the integral breadths of Debye-Scherrer lines: generalization to non-cubic crystals, Mathematical Proceedings of the Cambridge Philosophical Society, 40, 197-198

[18] Denton R, Muhlschlegal B and Scalapino D J, 1973, Thermodynamic Properties of Electrons in Small Metal Particles, Phys. Rev. B, 7, 3589-3607

[19] Arutyunyan V.A.,Araramyan K.S. and Petroyan G.S., 2004, Quantum confined stark effect and electroabsorption in semiconductor spherical layers, Semiconductors, 38, 335-339

[20] Brus L E, 1983, Simple Model for the Ionization Potential, Electron Affinity, and Aqueous Redox Potentials of Small Semiconductor Crystallites, J. Chem. Phys., 79, 5566-5571