Associação entre achados eletromiográficos e mortalidade na unidade de terapia intensiva em pacientes com síndrome do desconforto respiratório agudo mecanicamente ventilados sob sedação profunda

Association between electromyographical findings and intensive care unit mortality among mechanically ventilated acute respiratory distress syndrome patients under profound sedation

INTRODUÇÃO

A miopatia da doença crítica (MDC) e a polineuropatia da doença crítica (PDC) são as principais causas de fraqueza muscular na unidade de terapia intensiva (UTI), e ambas se associam com a sepse. (1,2) Estima-se que cerca de 50% dos pacientes com sepse ou síndrome do desconforto respiratório agudo (SDRA) desenvolvam fraqueza adquirida na UTI (ICUAW - ICU-acquired...
weakness), que se associa a permanências prolongadas na UTI e no hospital, tempo prolongado de ventilação mecânica (VM), maior mortalidade na UTI e no hospital e despesas com a hospitalização, e aumento da mortalidade após alta da UTI.

O diagnóstico de ICUAW baseia-se primariamente na avaliação clínica da força, com uso de ferramentas, como a escala Medical Research Council. Entretanto, o diagnóstico com base na clínica exige que o paciente esteja desperto e cooperativo, o que impede a avaliação de 22 a 33% dos pacientes. Por outro lado, o diagnóstico de MDC e PDC é feito por estudos eletrofisiológicos, sendo relativamente independente do nível de consciência e cooperação do paciente. A triagem eletromiográfica, que inclui quantificação dos potenciais de ação muscular composto (PAMC) e dos potenciais de ação de nervos sensitivos (PANS), pode servir como ferramenta diagnóstica alternativa na disfunção neuromuscular em pacientes sépticos que se encontram profundamente sedados ou têm outras limitações que prejudicam a avaliação clínica. Lamentavelmente, poucos estudos avaliaram a associação entre achados eletrofisiológicos de MDC e PDC e mortalidade neste subgrupo específico de pacientes.

Assim, o objetivo do presente estudo foi avaliar se os achados eletromiográficos de MDC ou PDC podem predispor a mortalidade na UTI entre pacientes com SDRA moderada ou grave mantidos sob sedação profunda.

MÉTODOS

Este estudo prospectivo de coorte foi conduzido em um período de 7 meses na UTI clínico-cirúrgica do Complexo Hospitalar Santa Casa de Misericórdia, em Porto Alegre (RS). O comitê de ética local aprovou o estudo, tendo sido obtida a assinatura de um Termo de Consentimento Livre e Esclarecido por uma pessoa legalmente autorizada.

Incluíram-se, consecutivamente, pacientes com 18 ou mais anos de idade, com necessidade de sedação profunda (gradação segundo a escala de agitação e sedação de Richmond - RASS ≤ -4) em razão de SDRA moderada a grave (pressão parcial de oxigênio/fração inspirada de oxigênio – PaO₂/FiO₂ < 200) secundária à sepse e sob VM por 7 ou mais dias.

Os critérios de exclusão foram: distúrbios neuromusculares prévios, obesidade mórbida (índice de massa corporal superior a 40kg/m²), diabetes mellitus ou câncer, distúrbios dos membros inferiores que impedissem a condução do estudo e da eletromiografia (por exemplo, fraturas, amputação e presença de aparelhos gessados), morte cerebral, RASS > -4, admissão à UTI por condições neurológicas e recusa de consentimento.

Conduziram-se estudos eletromiográficos nos membros em todos os pacientes entre o sétimo e o décimo dia de VM. Os exames eletromiográficos completos conduzidos nos pacientes consistiram de estudos convencionais de condução em nervos motores (nervos mediano e fibular comum) e sensitivos (nervos mediano e sural). Registram-se PANS dos nervos mediano e sural. A condução nervosa sensorial do mediano foi registrada de forma antidrônica com eletrodos em anel nas articulações interfalângicas proximal (−) e distal (−) do terceiro dedo e estimulação na superfície volar do punho, 2 a 3cm proximal à crista distal. Para o nervo sural, os eletrodos de registro foram colocados imediatamente na região posteroinferior do maléolo lateral (−) e 2 a 3cm distalmente junto à região lateral do dorso do pé (+); o nervo foi estimulado de forma antidrônica junto à superfície posterior da perna (panturrilha), ligeiramente lateral à linha média e cerca de 10 a 12cm do eletrodo ativo (−). Registram-se os PAMC do abdutor curto do polegar e do extensor curto dos dedos, a partir de eletrodos colocados sobre o tendão muscular (−) e tendão (+), com estimulação do nervo mediano na superfície volar do punho, 2 a 3cm proximal à crista, e no cotovelo acima do pulso braquial, com o cátodo na crista volar e do nervo fibular comum no tornozelo, 7 a 8cm dos eletrodos de registro, e abaixo da cabeça da fíbula (abaixo do joelho). Utilizou-se a estimulação incremental dos nervos, até que se obtivessem as melhores amplitudes de PANS ou PAMC. Caso a história clínica e o exame físico sugerissem compressão do nervo mediano no carpo, ou em caso do estudo de condução sensitiva do mediano ser anormal, substituía-se o nervo mediano pelo nervo ulnar. A eletromiografia foi registrada com eletrodos coaxiais de agulha nos músculos tibial anterior, quadríceps femoral, abdutor curto do polegar e deltoide. Em alguns pacientes, estudaram-se músculos adicionais.

A temperatura superficial foi mantida em 33ºC para os estudos de condução neural, com auxílio de almofadas térmicas quando necessário. Os estudos de condução neural foram considerados anormais se a amplitude de PAMC ou PANS de pelo menos dois nervos ou dois membros estivesse reduzida abaixo de dois desvios padrão do limite inferior do normal.

A distinção entre neuropatia da doença crítica e MDC baseou-se nos fatores a seguir: condução neural (amplitude de PANS reduzida da PDC, e amplitude de PANS normal na MDC), eletromiografia com agulhas (PDC: potenciais...
da unidade motora grandes e polifásicos, e recrutamento diminuído; MDC: potenciais da unidade motora pequenos e polifásicos, e recrutamento precoce), e estimulação direta de músculos (normal na PDC e ausente ou reduzida na MDC).

O tratamento dos pacientes, inclusive a correção eletrolítica (sódio, potássio, magnésio e fósforo) e o controle glicêmico, foi realizado em conformidade com os padrões aceitos. O uso endovenoso de insulina, de preferência com bomba, foi iniciado, caso os níveis de glicose excedessem 200mg/dL, com um nível alvo abaixo de 160mg/dL. A equipe da unidade de terapia intensiva se encarregou dos controles hemodinâmico, ventilatório e diálise.

Tanto intensivistas quanto neurofisiologistas clínicos não tinham conhecimento dos diagnósticos dos colegas. Todos os registros eletromiográficos realizados pela equipe de neurofisiologia do hospital foram reexaminados por um médico especialista, para avaliação da qualidade.

Os dados colhidos incluíram idade, sexo, doenças prévias, causa da admissão, escore segundo o sistema Acute Physiologic and Chronic Health Evaluation (APACHE)-II, assim como mortalidade por todas as causas. Colheram-se também informações sobre o uso de vasopressores (norepinefrina) e a necessidade de utilização de diálise, assim como o escor segundo o sistema Sequential Organ Failure Assessment (SOFA) no dia sete de VM.

Expressamos as variáveis contínuas como mediana ± desvio padrão, ou porcentagem. Avaliamos os efeitos da mortalidade com uso de curvas de Kaplan-Meier e o log-rank test. Utilizou-se valor de p < 0,05 para definir diferença estatisticamente significante. A análise estatística foi conduzida com utilização do programa STATA versão 12 (StataCorp LP, College Station, Texas, USA).

RESULTADOS

Foram inscritos 17 pacientes durante os 7 meses de desenvolvimento do estudo (Figura 1). As características dos pacientes são apresentadas na tabela 1. Oito pacientes (47%) eram do sexo masculino, a média de idade foi de 63,5 ± 16,1 anos, e a mediana do APACHE-II foi de 21,9 ± 5,7. Por ocasião da avaliação eletromiográfica (entre o 7° e o 10° dias de VM), 9 pacientes (53%) ainda estavam em uso de vasopressor, e 10 pacientes (58%) necessitaram de diálise.

Os sinais eletromiográficos de MDC ou PDC ocorreram em nove pacientes (53%). A taxa geral de mortalidade na UTI foi de 53% (nove pacientes). A mortalidade na UTI foi mais alta nos pacientes com diagnóstico eletromiográficos de MDC ou PDC do que entre aqueles com estudos eletromiográficos normais (77,7% versus 12,5%, respectivamente; log-rank p = 0,02) (Figura 2). A tabela 2 compara os dados de severidade por desfecho da UTI.

![Figura 1 - Inscrição de pacientes. VM - ventilação mecânica; UTI - unidade de terapia intensiva; SDRA - síndrome do desconforto respiratório agudo; SGB - síndrome de Guillain-Barré; ELA - esclerose lateral amiotrófica.](image-url)
Tabela 1 - Características basais dos pacientes

Número dos pacientes	Sexo	Idade	Local da sepse	APACHE II	Doença progressa	No 7º dia de VM	Desfecho na UTI	Achados eletrofisiológicos nos músculos periféricos		
1	Feminino	76	Pulmonar	22	DAC	7	Sim	Sim	Óbito	MDC
2	Feminino	66	Pulmonar	18	Asma	6	Sim	Sim	Óbito	PDC + MDC
3	Feminino	73	Pulmonar	19	Não	5	Sim	Sim	Óbito	POC
4	Masculino	41	Renal	11	Não	Não	Não	Não	Vivo	MDC
5	Feminino	33	Abdominal	21	Não	5	Sim	Não	Não	PDC + MDC
6	Feminino	41	Abdominal	20	Não	6	Sim	Não	Vivo	Normal
7	Feminino	72	Pulmonar	25	DPOC	7	Não	Não	Não	MDC
8	Feminino	63	Renal	30	DAC	7	Sim	Não	Não	POC
9	Feminino	64	Pulmonar	19	DPOC	7	Sim	Não	Não	Normal
10	Masculino	73	Abdominal	20	DPOC	7	Sim	Sim	Óbito	POC
11	Masculino	57	Abdominal	18	Não	5	Não	Não	Não	Normal
12	Masculino	66	Renal	22	Alcoolismo, DPOC	4	Sim	Sim	Vivo	Normal
13	Feminino	76	Abdominal	22	DPOC	7	Não	Sim	Óbito	Normal
14	Masculino	70	Cerebral	17	Alcoolismo, DAC	6	Não	Não	Não	PDC + MDC
15	Masculino	65	Renal	20	Não	6	Sim	Sim	Vivo	Normal
16	Masculino	62	Pulmonar	22	DAC	5	Não	Não	Não	Normal
17	Masculino	52	Abdominal	17	Não	5	Sim	Sim	Vivo	Normal

APACHE II - Acute Physiologic and Chronic Health Evaluation; VM - ventilação mecânica; SOFA - Sequential Organ Failure Assessment; UTI - unidade de terapia intensiva; DAC - doença arterial coronária; MDC - miopatia da doença crítica; PDC - polineuropatia da doença crítica; DPOC - doença pulmonar obstrutiva crônica.

DISCUSSÃO

Nossos achados sugerem que sinais eletromiográficos de MDC ou neuropatia da doença crítica entre o sétimo e o décimo dias de VM podem se associar com mortalidade em pacientes com SDRA moderada a grave (PaO₂/FiO₂ < 200) mantidos sob sedação profunda.

A ocorrência de ICUAW varia substancialmente, dependendo do método diagnóstico utilizado, do momento da avaliação e do tipo de população em estudo. (4,16-18) É digno de nota que focalizar-se exclusivamente no diagnóstico com base clínica pode privar elevada proporção dos pacientes para os quais não é viável uma avaliação clínica da força (por exemplo, pacientes com necessidade de sedação profunda em razão de ventilação instável, distúrbios hemodinâmicos, ou condições neurológicas, ou os incapazes de colaborar em razão de disfunção cerebral aguda ou comprometimento cognitivo prévio) de um indicador apropriado de desfechos piores. Além disto, a sedação é frequentemente utilizada nos cuidados de pacientes mecânica-ventilados, e é crescente o reconhecimento de que o controle de tais aspectos não ventilatórios do cuidado influencia nos desfechos. Recente metanálise(19) demonstrou relacionamento significante entre a profundidade da sedação inicial e desfechos clínicos. Sedação inicial leve associou-se com diminuição da mortalidade.
hospitalar, da duração da VM e do tempo de permanência na UTI, em comparação com sedação inicial profunda. Com relação aos pacientes no presente estudo, em casos de SDRA moderada a grave, pode ser necessário utilizar sedação profunda. Tais pacientes apresentam risco de ICUAW, sendo de suma importância ter um método para avaliação da ocorrência de ICUAW. É interessante que o uso de achados eletromiográficos relacionados à MDC ou à PDC neste subgrupo de pacientes, nos quais não é possível um diagnóstico clínico de ICUAW, pode melhorar a implantação precoce de estratégias voltadas à mitigação de complicações relacionadas à disfunção muscular, como mobilização precoce, desmame personalizado da VM, minimização da exposição a corticosteroides e bloqueadores neuromusculares, e traqueostomia precoce.\(^{20-22}\) Futuros estudos podem focalizar-se na falta de estratégias personalizadas de reabilitação guiadas pela avaliação eletromiográfica de desfechos relevantes, como tempo de permanência sob VM e na UTI.

Nossos achados relativos à associação entre MDC e PDC e mortalidade mais alta são coerentes com estudos previos. Khan et al.\(^{23}\) conduziram estudos eletromiográficos em 48 pacientes com sepse grave e identificaram que condução neural anormal dentro de 72 horas após admissão à UTI predisse mortalidade hospitalar (55\% versus 0%; \(p < 0,001\)). O desfecho desses pacientes se associou com duração prolongada da VM e mais dias de permanência no hospital e na UTI. O estudo de Garnacho-Montero et al.\(^{24}\) realizado com 64 pacientes críticos sépticos demonstrou que a duração do período de desmame foi significativamente maior nos pacientes com MDC ou PDC do que no grupo que não tinham estes diagnósticos (mediana 15 dias versus 2 dias, respectivamente; \(p < 0,001\)). A análise múltipla de regressão logística indicou que PDC foi o único fator independente de risco associado com falha no desmame (\(odds ratio: 15,4\); intervalo de confiança de 95\% - 4,55 - 52,3; \(p < 0,001\)). Em nosso estudo, escolheu-se o período de 7 a 10 dias para diagnóstico de MDC e PDC com base em estudos prévios. Por exemplo, Latronico et al.,\(^{25}\) em estudo prospectivo e multicêntrico, realizaram estudos eletromiográficos diários em pacientes admitidos à UTI e demonstraram que sinais eletrofisiológicos de MDC ou PDC estavam presentes em 30,4\% (IC95\% 21,9\% - 40,4\%) dos pacientes, com tempo mediano desde a admissão à UTI até a ocorrência de MDC ou PDC de 6 dias (IC95\%: 5,0 - 9,0).

Os pontos fortes de nosso estudo são:
- Avaliação de pacientes com SDRA moderada a grave: os mecanismos fisiopatológicos que levam à falta do desmame e à alta taxa de mortalidade neste grupo podem ser complexos e dependem de diversos fatores, com etiologias potencialmente reversíveis para falta no desmame, inclusive carga respiratória e/ou cardíaca, competência neuromuscular (central e periférica), anormalidades neuromusculares da doença crítica, fatores neuropsicológicos e distúrbios endócrinos. Além disto, a dependência no desmame da VM é um marco da doença crítica crônica e preditor independente de mortalidade.\(^{26}\)
- Inclusão de pacientes mecanicamente ventilados sob sedação profunda: o exame neurológico é, em geral, pouco confiável em pacientes sob ventilação mecânica em razão de encefalopatia, sedação ou da condição crítica do paciente, podendo ser necessários estudos eletrofisiológicos abrangentes dos nervos periféricos para estabelecer o diagnóstico e o prognóstico de pacientes com doença crítica neste contexto.\(^{17}\)

Nossos estudos têm também importantes limitações como o pequeno número de pacientes, o que limitou o uso de ajustes para covariáveis, e isto pode ter resultado em mensuração imprecisa do risco. Além disto, o tamanho pequeno da amostra limita a generalização dos achados de nosso estudo. Também estiveram ausentes dados relativos a covariáveis importantes, como biópsia muscular, variáveis da VM e biomarcadores. Não se registrou avaliação da sequência de contração muscular, para comparar ventilação espontânea e suporte em pacientes despertos. Por fim, não se registraram outros desfechos importantes, que poderiam reforçar a conexão entre MDC/PDC e mortalidade.

CONCLUSÃO

Os sinais eletromiográficos de miopatia ou polineuropatia da doença crítica podem se associar com mortalidade na unidade de terapia intensiva em pacientes com síndrome do desconforto respiratório agudo moderada a grave.

AGRADECIMENTOS

Estamos em dívida com todos os pacientes e seus familiares, por sua participação neste estudo. Somos grato à enfermagem da unidade de terapia intensiva, assim como à equipe médica, pelo excelente cuidado dos pacientes.
ABSTRACT

Objective: To evaluate whether electromyographical findings could predict intensive care unit mortality among mechanically ventilated septic patients under profound sedation.

Methods: A prospective cohort study that consecutively enrolled moderate-severe acute respiratory distress syndrome (partial pressure of oxygen/fraction of inspired oxygen < 200) patients who were ≥ 18 years of age, dependent on mechanical ventilation for ≥ 7 days, and under profound sedation (Richmond Agitation Sedation Scale ≤ -4) was conducted. Electromyographic studies of the limbs were performed in all patients between the 7th and the 10th day of mechanical ventilation. Sensory nerve action potentials were recorded from the median (abductor pollicis brevis muscle) and common peroneal (extensor digitorum brevis muscle) nerves.

Results: Seventeen patients were enrolled during the seven months of the study. Nine patients (53%) had electromyographic signs of critical illness myopathy or neuropathy. The risk of death during the intensive care unit stay was increased in patients with electromyographical signs of critical illness myopathy or neuropathy in comparison to those without these diagnostics (77.7% versus 12.5%, log-rank p = 0.02).

Conclusion: Electromyographical signs of critical illness myopathy or neuropathy between the 7th and the 10th day of mechanical ventilation may be associated with intensive care unit mortality among moderate-severe acute respiratory distress syndrome patients under profound sedation, in whom clinical strength assessment is not possible.

Keywords: Critical illness; Polyneuropathies; Prognosis; Mortality; Electromyography; Respiratory distress syndrome; Respiration, artificial; Sedation; Intensive care units

REFERÊNCIAS

1. Kan J, Harrison TB, Rich MM, Moss M. Early development of critical illness myopathy and neuropathy in patients with severe sepsis. Neurology. 2006;67(8):1421-5.

2. Stevens RD, Dowdy DW, Michaels RK, Mendez-Tellez PA, Pronovost PJ, Needham DM. Neuromuscular dysfunction acquired in critical illness: a systematic review. Intensive Care Med. 2007;33(11):1876-91.

3. Hermans G, Van den Berghe G. Clinical review: intensive care unit acquired weakness. Crit Care. 2015;19:274.

4. De Jonghe B, Sharshar T, Lefaucheur JP, Authier FJ, Durand-Zaleski I, Boussarsar M, Cerf C, Renaud E, Mesrati F, Carlet J, Raphaël JC, Outin H, Bastuji-Garin S, Groupe de Réfexion et d’Etude des Neuromyopathies en Réanimation. Paresis acquired in the intensive care unit: a prospective multicenter study. JAMA. 2002;288(22):2859-67.

5. De Jonghe B, Bastuji-Garin S, Sharshar T, Outin H, Brochard L. Does ICU-acquired paresis lengthen weaning from mechanical ventilation? Intensive Care Med. 2004;30(6):1111-27.

6. Ali NA, O’Brien JM Jr, Hoffmann SP, Phillips G, Garland A, Finley JC, Almoosa K, Hejali R, Wolf KM, Lemeshow S, Connors AF Jr, Marsh CB, Midwest Critical Care Consortium. Acquired weakness, handgrip strength, and mortality in critically ill patients. Am J Respir Crit Care Med. 2008;178(3):261-8.

7. Supinski GS, Callahan LA. Diaphragmatic weakness in mechanically ventilated critically ill patients. Crit Care. 2013;17(3):R120.

8. TEAM Study Investigators, Hodgson C, Bellomo R, Berney S, Bailey M, Buhr H, Denehy L, et al. Early mobilization and recovery in mechanically ventilated patients in the ICU: a bi-national, multi-centre, prospective cohort study. Crit Care. 2015;19:81.

9. Hermans G, Van Mechelen H, Bruyninckx F, Vanhullebusch T, Clerckx B, Meerseeman P, et al. Predictive value for weakness and 1-year mortality of screening electrophysiology tests in the ICU. Intensive Care Med. 2015;41(12):2138-48.

10. Wiesle L, Detting-Ihnenfeldt DS, Verhamme C, Nollet F, van Schaik IN, Schultz MJ, et al. Impact of ICU-acquired weakness on post-ICU physical functioning: a follow-up study. Crit Care. 2015;19:196.

11. Fan E, Cheek F, Chilan L, Gosselink R, Hart N, Herridge MS, Hopkins RO, Hough CL, Kress JP, Latronico N, Moss M, Needham DM, Rich MM, Stevens RD, Wilson KC, Winkelman C, Zochodne DW, Ali NA; ATS Committee on ICU-acquired Weakness in Adults; American Thoracic Society. An official American Thoracic Society Clinical Practice Guideline: the diagnosis of intensive care unit-acquired weakness in adults. Am J Respir Crit Care Med. 2014;190(12):1437-46.

12. Sharshar T, Bastuji-Garin S, Stevens RD, Durand MC, Malissin I, Rodriguez P, Cerf C, Outin H, De Jonghe B; Groupe de Réflexion et d’Etude des Neuromyopathies en Réanimation. Presence and severity of intensive care unit-acquired weakness at time of awakening are associated with increased intensive care unit and hospital mortality. Crit Care Med. 2008;37(12):3047-53.

13. Hermans G, Van Mechelen H, Clerckx B, Vanhullebusch T, Mesotten D, Wilmier A, et al. Acute outcomes and 1-year mortality of intensive care unit-acquired weakness. A cohort study and propensity-matched analysis. Am J Respir Crit Care Med. 2014;190(4):410-20.

14. Ferguson ND, Fan E, Camporota L, Antonelli M, Anzueto A, Beale R, et al. The Berlin definition of ARDS: an expanded rationale, justification, and supplementary material. Intensive Care Med. 2012;38(10):1573-82.

15. Callahan LA, Supinski GS. Hyperglycemia-induced diaphragm weakness is mediated by oxidative stress. Crit Care. 2014;18(3):R88.

16. Garnacho-Montero J, Madrazo-Osuna J, García-Garmendia JL, Ortiz-Leyba C, Jiménez-Jiménez FJ, Barrero-Almodóvar A, et al. Critical illness polyneuropathy: risk factors and clinical consequences. A cohort study in septic patients. Intensive Care Med. 2001;27(8):1288-96.

17. Dhand UK. Clinical approach to the weak patient in the intensive care unit. Respir Care. 2006;51(9):1024-40; discussion 1040-1.

18. Santos PD, Teixeira C, Savi A, Maccari JG, Neres FS, Machado AS, et al. The critical illness polyneuropathy in septic patients with prolonged weaning from mechanical ventilation: is the diaphragm also affected? A pilot study. Respir Care. 2012;57(10):1594-601.

19. Stephens RJ, Dettmer MR, Roberts BW, Abiodunpepey E, Fowler SA, Kollef MH, et al. Practice patterns and outcomes associated with early sedation depth in mechanically ventilated patients: a systematic review and meta-analysis. Crit Care Med. 2018;46(3):471-9.
20. Hodgson CL, Tipping CJ. Physiotherapy management of intensive care unit-acquired weakness. J Physiother. 2017;63(1):4-10.
21. Branson RD. Modes to facilitate ventilator weaning. Respir Care. 2012;57(10):1635-48.
22. Hosokawa K, Nishimura M, Egi M, Vincent JL. Timing of tracheotomy in ICU patients: a systematic review of randomized controlled trials. Crit Care. 2015;19:424.
23. Khan J, Burnham EL, Moss M. Acquired weakness in the ICU: critical illness myopathy and polyneuropathy. Minerva Anestesiol. 2006;72(6):401-6.
24. Garnacho-Montero J, Amaya-Villar R, García-Garmendia JL, Madrazo-Osuna J, Ortíz-Leyba C. Effect of critical illness polyneuropathy on the withdrawal from mechanical ventilation and the length of stay in septic patients. Crit Care Med. 2005;33(2):349-54.
25. Latronico N, Bertolini G, Guarneri B, Botteri M, Peli E, Andreoletti S, et al. Simplified electrophysiological evaluation of peripheral nerves in critically ill patients: the Italian multi-centre CRIMYNE study. Crit Care. 2007;11(1):R11.
26. Mira JC, Gentile LF, Mathias BJ, Efron PA, Brakenridge SC, Mohr AM, et al. Sepsis pathophysiology, chronic critical illness, and persistent inflammation-immunosuppression and catabolism syndrome. Crit Care Med. 2017;45(2):253-62.