PARTIAL REPLACEMENT OF FINE AGGREGATE BY USING GLASS POWDER

Sathyakumar Natarajan (1), Nagavishwanath Ravichandran(2), Nafeez Ahamed Shathik Basha(2), Naveen Ponnusamy (2)

1 Assistant Professor, Department of Civil Engineering, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India – 638401
2 Under Graduate Students, Department of Civil Engineering, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India – 638401

Email ID: sathyakumarn@bitsathy.ac.in

Abstract By increasing commercial buildings, the wastes from industries are being accumulated to larger being extent to disposal on environmental surroundings. From this by product of glass is also one of the by products in their industries, due to this recycling of glass by the replacement of fine aggregate in the construction field. The use of glass powder in the concrete mixer we can reduce the land filling (disposal) on environment regions. By eliminating the fine aggregate can be preserve our soil resources, energy and pollution should be controlled. The use of glass powder due to this replacement method cam be attain greater strength, resistance to chemicals and electrical insulator. These test (Compressive strength, split tensile strength) are achieved to be evaluated.

I. INTRODUCTION

Development industry is one of the quickest rising enterprises. Concrete is one of the most generally utilized materials in building development. Concrete is produced using a blend of four fundamental crude materials specifically concrete, fine total, coarse total and water. It is obvious by analyzing the overall structure of solid blends, that bits of crude material utilized in cement can be supplanted with reused material.

During late years mindfulness is expanded with respect to ecological contamination because of household and mechanical waste. Contamination control board is shaped to manage natural corruption because of mechanical waste. A colossal amount of waste glass is produced all around the globe. In India, 0.7% of absolute urban waste produced contains glass. Solid industry is probably the biggest shopper of common assets because of which maintainability of solid industry is under danger.

So as to make solid industry manageable, the utilization of waste materials instead of normal assets is perhaps the best methodologies. The utilization of waterway sand as fine total prompts misuse of common assets. On the off chance that fine total is supplanted by squander glass by explicit rate and in explicit size range, it will diminish fine total substance and along these lines lessening the evil impacts of waterway digging. The measure of waste glass created has continuously expanded over the ongoing years and a large portion of the glass is being dumped into landfill locales. The land filling of waste
glass is bothersome on the grounds that it is non-biodegradable making condition less cordial. In this venture, fine total is mostly supplanted by squander glass powder as 10%, 20% and 30% by weight of cement.

II. SCOPE AND OBJECTIVE

Inside the ongoing years, there has been developing interest for sustainable quality resources. among those benefits, side-effects squanders are the gradable wellspring of inexhaustible force. Glass is a completely recyclable material that can be reused in close circle again and again. This is especially valid for glass bottles which on normal have a reusing rate fluctuating from half to 80% to glass reusing, noteworthy measures of crude materials are spared and characteristic assets are saved. The goal of this task is to locate the compressive quality, part elasticity to assess the utility of glass powder as fractional substitution of fine total in concrete. The expansion in quality of glass powder concrete than the regular cement.

III. METHODOLOGY

Component Materials

These substances for concrete components have been:

- Portland Pozzolana cement(PPC)
- Fine aggregate
- Coarse aggregate
- Glass powder
- Water

Cement

The Portland pozzolana concrete is to be utilized in this blend. It changed into secured from a solitary source and spared as with regards to May be IS 4032 – 1977. Care has been taken to ensure that the concrete of equivalent association and indistinguishable evaluation is utilized all through the examination. The concrete thusly obtained transformed into tried for physical properties agreeing with the IS: 1489-1991

Coarse and fine Aggregate

The top notch blend utilized was locally accessible m-sand with none natural contaminations and adjusting to IS: 383 – 1970 [methods of physical tests for pressure driven cement]. The coarse blend chosen transformed into normally round in structure, very much evaluated and littler in generally size than that utilized for customary cement. the size of coarse blend utilized in self-compacting concrete transformed into between 10mm to 16mm. The totals were analyzed for their necessities comprising of degree, fineness modulus, special gravity and mass thickness as per IS: 2386 – 1963
Water

Water utilized for mixing and restoring was consumable water, which diverted into liberated from any amounts of oils, acids, soluble bases, sugar, salts and natural substances or different materials that might be harmful to concrete or metal affirming to IS:3025-1964 part22, component 23 and IS: 456 – 2000 [Code of activity for plain and reinforced concrete]. The pH cost is to not, at this point be under 6. The solids present have been inside as far as possible as with regards to provision 5.4 of May be: IS 456 – 2000.

Glass

The extents of solid blend (GP substitution of 10 – 30% diminishing by weight of sand) including the control blend were set up with water to cover proportion of 0.5. The remarkable gravity of GP changed into discovered to be not as much as that of sand. special gravity of glass powder is 2.71 adjusting to BS 6262.

Table 1 – Test Results

Test on concrete	Compressive strength of cylinder (N/mm²)	Split tensile strength of cylinder (N/mm²)
7-day strength (N/mm²)	22.5	3.39
28-day strength (N/mm²)	32.85	3.91

Cube Test:

Tests with 0%, 10% and 15% supplanting of sand with glass powder had been casted. The 3D squares had been given a role as per the method indicated in IS 516:1959 and IS 456:2000. The intensity of three examples were analyzed at 7 and 28 days utilizing pressure evaluating device. The compressive vitality esteems have been in examination with that of traditional solid blend of M25. Following the blend structure exact in IS: 10262 (1982), examples have been casted.
Cylinder Test Results

Split tensile strength of cylinder test results

The cylinders were casted as in step with the design blend specified in IS: 10262 (1982). The acquired results are proven in fig.3. The 28-day split tensile strength of cylinder of the manage sample turned into received as 2.65 N/mm², despite the fact that the energy has reduced with growth in % of glass powder, all of the four replacements of sand with glass powder are extra than the 28-day compressive strength of manipulate pattern. The maximum strength turned into obtained for 30% substitute that is 3.91N/mm².

IV. CONCLUSION

The 7-day compressive quality of dice with the entirety of the 4 rates of option in contrast to the vitality prerequisite. The 28-day compressive quality of 30% option of sand with glass powder was found not exactly the normal, worn out quality of a control example. The 28-day compressive intensity of chamber transformed into acquired top notch for the entirety of the four prospects of supplanting of sand with glass powder. The compressive quality of cement containing 30% glass powder at 28 days is 32.85 N/mm² though the split – elasticity is 3.91 N/mm². The compressive quality and split – rigidity of solid examples increment with increment in glass powder content. From the perceptions, it is realized
that the quality of cement by glass powder progressively increments and achieves an ideal incentive by 30% replacement. It tends to be presumed that fine total substitution by 30% is obvious. The functionality of the solid additionally increments when the glass powder content increments. Making solid utilizing waste materials spares vitality and save essential assets and it is inferred that the more material was reused, the less assets were devoured which prompts a safe and sustainable domain.

V. REFERENCES

1. Dr. Abdelmaseeh Bakos Keryou,(2014) “Effect of Using Windows Waste Glass as Coarse Aggregate on some Properties of Concrete”, Engineering and Technology Journal, Volume 32, Part (A), No. 6
2. M. Adaway & Y. Wang,(2015) “Recycled glass as a partial replacement for fine aggregate in structural concrete – Effects on compressive strength”, Electronic Journal of Structural Engineering, 14(1)
3. C. Meyer, N. Egosi and C. Andela,(march 2001) “Concrete with WasteGlass as Aggrgate”, International Symposium Concrete Technology Unit of ASCE and University of Dundel
4. Gunaalan Vasudevan and Seri Ganis Kanapathy pillay, (2013)“Performance of using Waste Glass Powder in Concrete as Replacement of Cement”.American Journals of Engineering research”, Volume 02, Issue 12
5. M. Iqbal Malik, Muzafar Bashir, Sajad Ahmad, Tabish Tariq, UmarChowdhary,(nov 2013) “Study of Concrete Involving Use of Waste Glass as Partial Replacement of Fine Aggregates”, IOSR Journal of Engineering,
6. Volume T. Phani Madhavi, V. Sampathkumar and P. Gunasekaran, “Partial Replacement of Cement and Fine Aggregate by using Fly Ash and Glass Aggregate”, International Journal of Research in Engineering and Technology, eISSN 2319 – 1163
7. Rakesh Sakale, Sourbh Jain and Seema Singh,(2015) “Experimental Investigation on Strength of Glass Powder Replacement by Cement in Concrete with Different Dosages”, International Journal of Advancened Research in Computer Science and Software Engineering, Volume 5, Issue 12, December
8. M. S. Shetty, Concrete Technology, Theory and Practice ,Veena V Bhat and N. Bhavanishankar Rao,(oct 2014) “Influence of Glass Powder on the Properties of Concrete”, International Journal of Engineering Trends and Technology, Volume 16, Number 5, October
9. Dr. M.Vijaya Sekhar Reddy, P.Sumalatha, M.Madhuri and K.Ashalatha,(july 2013) “Incorporation of Waste Glass Powder as PartialReplacement of Fine Aggregate in Cement Concrete”, International Journal of Scientific & Engineering Research, Volume 6, Issue 12, December-2015 Number 3, Issue 7