Influence of Coco Peat Powder on The Solar Still Productivity: An Exergo-Economic Study

Saksham Sharma¹, Rishabh Rathor¹, Harshit Gautam¹, Kirti Katiyar¹, Chinmay Gunawat¹ and Pankaj Dumka¹

¹Department of Mechanical Engineering, Jaypee University of Engineering and Technology, Guna, India
E-mail: p.dumka.ipec@gmail.com

Abstract. Experimental and theoretical impact of the coco peat powder on the performance of conventional solar still (CSS) compared to MSS has been reported. Dunkle model was used in this experiment as the mathematical model. With the help of this model variation of partial pressure, internal heat transfer coefficients, yield, internal efficiency, and exergy efficiency has been evaluated. The average partial pressure for MSS is 94.19% higher than CSS in the experiment of 13 h. Use of coco peat powder the value of h_{ev} and h_{rw} were 9.63% and 2.53% respectively were recorded higher than the CSS. There was a rise of 30.89% of distillate output from the MSS when compared to CSS. It seems that the use of coco peat powder has enhanced the exergy efficiency by 28.14% of MSS when compared with CSS.

Keywords. Desalination; Conventional solar still; Coco peat powder; Energy analysis; Exergo-Economic analysis

1. Introduction
In the present scenario, the requirement of potable/fresh water is surging continuously. To meet the growing demand, groundwater has been intensively exploited. With increasing demand and decreasing per person accessibility of fresh water the problem of scarcity of water is faced globally, to serve the need of the growing population various efforts were made to develop the sustainable and economical ways of extracting fresh water from salty/dirty water. The conventional solar still (CSS) is one of the ways to transform salty water into fresh water. This device runs on solar energy which is a renewable source of energy. It is a passive, low-cost, and simple desalination device that has less running cost as compared to another method. The major drawback is that it's less efficient, productive, and requires a large surface area as compared to a conventional desalination system [1–4]. Basin water mass, area of evaporating surface, solar radiation, ambient temperature, and effective temperature difference between water and inner condensing cover are the pertinent parameters on which the performance of solar still depends [5–7]. Geometric dimension and temperature difference are in control due to the geometry provided to the still, rest parameter are not in human control. An extensive review on different active and passive solar still designs has been reported by Kabeel et al. [6]. To understand the impact of solar still characteristic length on its distillate output a detailed study has been reported by Ayoub et al. [8] and Jamil & Akhtar [9]. Dumka and Mishra [10] have studied the impact of varying salt concentration on the heat transfer characteristics of CSS. To understand the economic behaviour of different stills, Mukherjee and Tiwari [11] have developed and reported an economic model. Panchal [12] have reviewed the performance of CSS augmented with materials capable of storing energy (thermal). In a theoretical and experimental endeavour, Dumka and Mishra [13] have reported a substantial increase in the distillate output of CSS augmented with plastic balls which are in an envelope of jute cover. A comparative energetic and exergetic analysis of CSS and earth stills have been reported by Dumka and Mishra [14,15]. A CSS augmented with encapsulated salt to increase its thermal storage capability has been reported by Harris Samuel et al. [16]. Mayank et al. [17] have reported the optimization of solar distillation in distiller yield. Dumka and Mishra [18] have proposed a multiple regression analysis based model to forecast the theoretical yield of CSS.
From the above literature it has been observed that, the factors on which the performance of CSS strongly depends are: characteristic length, water surface area, heat capacity of water, and differential temperature between condensing-evaporating surfaces. In this experimental and theoretical study, coco peat powder was mix in the water to improve the productivity. The focus points on this research are as follows:

- To verify the cost and yield of CSS and MSS when augmented with coco peat powder.
- To experiment exergo-economics analysis of CSS and MSS.

2. Experimental setup

Two similar CSS are designed and fabricated from FRP having a thickness of 5 mm. The wall heights of CSS on higher and lower sides are 0.48 and 0.2 m, respectively. The solar stills were covered with a glass condensing cover (4 mm) having a 15.6° inclination with the ground. A 1 m×1 m×0.1 m GI tray was kept in both the stills to carry brackish/salty water. One of the CSS is augmented with the coco peat in the basin (MSS) whereas, the other is kept as such for comparison. The diagrammatic representation of CSS and CSS augmented with coco peat powder are shown in Figure 1 and Figure 2, respectively. The coco peat powder will serve three purposes:

- Increases the water surface area via capillary action
- Thin film evaporation
- Heat localization

To record water, glass, and ambient temperatures K 7/32-2C-TEF have been used. For the recording of these temperatures DTC324A-2 has been deployed. The intensity of solar radiations has been recorded with the help of a solar power meter (TM-207). A graduated glass cylinder has been used to measure distillate. For 40 kg basin water mass, the experiments were performed for a continuous 13 h i.e. from 9:00 h in the morning till 21:00 h at night. Hourly observations made during the experiments are:

- Outer and inner glass, basin water, and ambient temperatures
- Solar radiation
- Yield

Instrument	Accuracy (a)	Range	Standard Uncertainty (u)
Solar Power meter	±10 W/m²	0 - 1999 W/m²	5.77 W/m²
Thermocouple	±0.1°C	-100 - 500°C	0.06°C
Graduated Cylinder	±1 ml	0 - 250 ml	0.6 ml

In the observations, Type B [20] uncertainty has been considered with an assumption of uniform data distribution. Eq. 1 has been used to evaluate standard uncertainty:

\[u = \frac{a}{\sqrt{3}} \] (1)
The value of \(u, a \), and range of instruments are listed in Table 1.

3. Theory
From water to glass the rate of convective heat transfer can be evaluated as [10]:

\[
\dot{q} = h_{cw} \times (T_w - T_{ci})
\]

In the case of CSS, due to natural convection the Grashof number (Gr) tells the regime of flow.

The functional relationship among \(Nu, Gr, \) and \(Pr \) is \(Nu = C(Gr \times Pr)^n \). The moist air properties were deduced by using the Tsilingris [21] thermo-physical property relations. The quasi-thermal model proposed by Dunkle [22] has been used to evaluate \(h_{cw} \).

Knowing \(h_{cw} \), value of \(h_{ew} \) can be evaluated.

\[
h_{ew} = 0.016273 \times h_{cw} \times \frac{(P_w-P_{ci})}{(T_w-T_{ci})}
\]

The theoretical yield is evaluated as [23]:

\[
m_{ew} = \frac{h_{ew} \times A_s \times (T_w - T_{ci}) \times 3600}{l}
\]

The radiative heat transfer coefficient within the still can be calculated as [24]:

\[
h_{rw} = e_{eff} \times \sigma \times [(T_w + 273.15)^2 + (T_{ci} + 273.15)^2] \times [T_w + T_{ci} + 546.2]
\]

The \(\dot{q}_{1w} \) and \(h_{1w} \) from evaporating to condensing surface are obtained as:

\[
\dot{q}_1 = \dot{q}_{cw} + \dot{q}_{ew} + \dot{q}_{rw}, h_{1w} = h_{cw} + h_{ew} + h_{rw}
\]

Most influencing heat transfer mode within the still can be known by fractions of energy which are as follows:

\[
F_{ew} = \frac{q_{ew}}{q_1}; F_{cw} = \frac{q_{cw}}{q_1}; F_{rw} = \frac{q_{rw}}{q_1}
\]

The instantaneous efficiency (thermal) of solar still can be written as [25]:

\[
\eta_i = \frac{m_{ew} L}{I(t) A_S}
\]

Exergy efficiency is calculated using the given mathematical formula i.e. [14,26]:

\[
\eta_{Ex} = \frac{\dot{E}_{ex}^{\text{evap}}}{\dot{E}_{x,m}}
\]

where,

\[
\dot{E}_{ex}^{\text{evap}} = A_s \times h_{ew} \times \left(1 - \frac{T_a+273}{T_w+273}\right)
\]

\[
\dot{E}_{x,m} = A_s \times I(t) \times \left[1 - \frac{4}{3} \times \frac{T_a+273}{T_w+273} + \frac{1}{3} \times \left(\frac{T_a+273}{T_w+273}\right)^4\right]
\]

For the cost analysis the CRF and SFF are been obtained using the following equations [27,28]:

\[
\text{CRF} = \frac{(i+(i+1)^n)^{n-1}}{(i+1)^{n-1}}
\]

\[
\text{SFF} = \frac{l}{(i+1)^{n-1}}
\]

Here is \(n \) and \(i \) are taken as 15 year and 12% respectively. After calculating CRF and SFF the value of ASV, AC and CPL (cost per litre) are been calculated.

\[
FAc = \text{CRF} \times P
\]

\[
\text{ASV} = \text{SFF} \times S
\]

\[
AC = FAc + AMC - ASV
\]

\[
\text{CPL} = AC / AY
\]

4. Results and discussions
Figure 3 shows the variation of \(I \) with respect to time. At the beginning, its value was recorded as 610 W/m² which gradually increases to a peak value of 1000 W/m² by 13:00 h. By 20:00 h it becomes zero and remains same thereafter. The variation of \(T_w, T_{ci}, \) and \(T_a \) for CSS and MSS as a function of time is shown in Figure 4. In CSS, the \(T_{ci} \) is higher than \(T_w \) till 12:00 h due to large heat capacity of water in
CSS. Then T_w increases and maintains it lead till the end of experiment. Till 16:00 h the water temperature in MSS is more than CSS due to heat localization and thin water film. Thereafter, it reduces due to low solar radiations and release of stored energy by water in CSS. The maximum value of T_w and T_{ci} for CSS and MSS are 66.9°C & 58°C and 70.4°C & 60°C, respectively.

![Figure 3: Variation of I as a function of time](image1)

![Figure 4: Temperature variations as a function of time](image2)

![Figure 5. Variation of h_{ew} as a function of time](image3)

The variation of h_{ew} from water to glass as a function of time for stills is graphed in Figure 5. Use of coco peat powder results in the improvement of h_{ew} of MSS by 9.63% than that of CSS. Variation of h_{ew} from water to glass as a function time is shown in Figure 6. In CSS, the value of h_{ew} initially decreases till 11:00 h due to the reduction in ΔT. Evaluated value of h_{rw} as a function of time for both
CSS and MSS have been graphed in Figure 7. It has been observed that the mean value of h_{rw} of MSS is higher by 2.53% than CSS.

The variation of h_{1w} vs. time is shown in Figure 8. It is clear for the Figure 9 that the strongest mode of energy transfer from water to glass is h_{ew} followed by h_{rw} and the least contribution is that of h_{ew}. Hence, the nature of h_{1w} has been almost similar to that of h_{ew} (Figure 5). Figure 10
represents how the yield from CSS and MSS varies with time. The cumulative yield obtained from MSS was 30.89% more than that obtained from CSS.

Figure 9: Variation of energy fractions as function of time

Figure 10: Distillate output variation as a function of time

Figure 11: Internal efficiency variation as a function of time

Figure 11 shows how η_i varies with time for both MSS and CSS. Data till 17:00 h has been shown as after this time the value of I decreases at a much higher rate than the yield which will results in non-
practical results. The use of coco peat powder has remarkably increased the mean value of η_i for MSS over CSS by 4.23%.

![Variation of exergy efficiency as a function of time](image)

Figure 12: Variation of exergy efficiency as a function of time

Table 2. Installation cost and salvage value of different components of CSS and MSS (in Rs.).

Component	CSS	MSS	S
FRP Solar Still	6000	6000	600
Glass	500	500	0
Putty	100	100	0
Bubble wrap	100	100	0
Cloth	-	50	0
Coco peat powder	-	150	0
Total Cost	**6750**	**6850**	

Table 3. Values of different cost and factors for CSS and MSS.

	CSS	MSS
CRF	0.1468	0.1468
SFF	0.0268	0.0268
FAC	983.7224 Rs.	1005.7 Rs.
ASV	16.0945 Rs.	16.0945 Rs.
AMC	147.5584 Rs.	150.8619 Rs.
AC	1115.2 Rs.	1140.5 Rs.
AY	878.1	1150.1
CPL	**1.27 Rs./l**	**1.00 Rs./l**

The variation of η_{EX} for CSS and MSS vs time is shown Figure 12. The use of coco peat powder has increased η_{EX} of MSS by 28.14% in contrast to CSS. With the help of Table 2 and Table 3 one can see that the use of coco peat has reduced the per litre cost of distillate by 21.26% in comparison to CSS.

5. **Conclusions**

- Productivity of MSS is 30.89% more than its CSS counterpart.
Coco peat powder has remarkably increased the water and glass temperature difference between MSS as compared to CSS.

For total heat transfer coefficient h_{1w} played a vital role. Use of coco peat powder in the still improved h_{1w} of MSS by 9.63% compared to CSS.

The use of coco peat powder has reduced the CPL of distillate from MSS by 21.126% as compared to CSS. Hence, the coco peat powder in CSS can boost its distillate output and can make it more efficient and economic.

References
[1] Tiwari G N and Madhuri 1987 Effect of water depth on daily yield of the still Desalination 61 67–75
[2] Chauhan R, Sharma S, Pachauri R, Dumka P and Mishra D R 2020 Experimental and theoretical evaluation of thermophysical properties for moist air within solar still by using different algorithms of artificial neural network J. Energy Storage 30 101408
[3] Sharshir S W, Yang N, Peng G and Kabeel A E 2016 Factors affecting solar stills productivity and improvement techniques: A detailed review Appl. Therm. Eng. 100 267–84
[4] Kabeel A E, Muthu Manokar A, Sathyamurthy R, Prince Winston D, El-Agouz S A and Chamkha A J 2018 A Review on Different Design Modifications Employed in Inclined Solar Still for Enhancing the Productivity J. Sol. Energy Eng. 141 031007
[5] Tiwari G N and Tiwari A K 2008 Solar Distillation Practice for Water Desalination Systems (New Delhi, India: Anamaya)
[6] Kabeel A E and El-Agouz S A 2011 Review of researches and developments on solar stills Desalination 276 1–12
[7] Das D, Bordoloi U, Kalita P, Boehm R F and Kamble A D 2020 Solar still distillate enhancement techniques and recent developments Groundw. Sustain. Dev. 10 100360
[8] Ayoub G M and Malaeb L 2012 Developments in solar still desalination systems: A critical review Crit. Rev. Environ. Sci. Technol. 42 2078–112
[9] Jamil B and Akhtar N 2017 Effect of specific height on the performance of a single slope solar still: An experimental study Desalination 414 73–88
[10] Dumka P, Kushwah Y, Sharma A and Mishra D R 2019 Comparative analysis and experimental evaluation of single slope solar still augmented with permanent magnets and conventional solar still Desalination 459 34–45
[11] Mukherjee K and Tiwari G N 1986 Economic analyses of various designs of conventional solar stills Energy Convers. Manag. 26 155–7
[12] Panchal H N 2016 Use of thermal energy storage materials for enhancement in distillate output of solar still: A review Renew. Sustain. Energy Rev. 61 86–96
[13] Dumka P, Chauhan R and Mishra D R 2020 Experimental and theoretical evaluation of a conventional solar still augmented with jute covered plastic balls J. Energy Storage 32 101874
[14] Dumka P and Mishra D R 2018 Experimental investigation of modified single slope solar still integrated with earth (I) & (II):Energy and exergy analysis Energy 160 1144–57
[15] Dumka P and Mishra D R 2018 Energy and exergy analysis of conventional and modified solar still integrated with sand bed earth: Study of heat and mass transfer Desalination 437 15–25
[16] Samuel D G H, Nagarajan P K, Sathyamurthy R, El-Agouz S A, Kannan E, Harris Samuel D G, Nagarajan P K, Sathyamurthy R, El-Agouz S A and Kannan E 2016 Improving the yield of fresh water in conventional solar still using low cost energy storage material Energy Convers. Manag. 112 125–34
[17] Sharma M, Tiwari A K and Mishra D R 2016 A review on desalination of water using single slope passive solar still Int. J. Dev. Res. 06 10002–12
[18] Dumka P and Mishra D R 2020 An estimation of the distillate output from a CSS based on multivariable regression analysis Int. J. Ambient Energy 0 1–6
[19] Dumka P, Sharma A, Kushwah Y, Raghav A S and Mishra D R 2019 Performance evaluation of single slope solar still augmented with sand-filled cotton bags J. Energy Storage 25 10088
[20] Moffat R J 1985 Using uncertainty analysis in the planning of an experiment J. Fluids Eng. Trans. ASME 107 173–8
[21] Tsilingiris P T 2007 The influence of binary mixture thermophysical properties in the analysis of heat and mass transfer processes in solar distillation systems Sol. Energy 81 1482–91
[22] Dunkle R V 1961 Solar water distillation: the roof type still and a multiple effect diffusion still International Developments in Heat Transfer, ASME, Proc. International Heat Transfer, Part V, University of Colorado, pp 895–902
[23] Dumka P and Mishra D R 2020 Comparative experimental evaluation of conventional solar still (CSS) and CSS augmented with wax filled metallic finned-cups FME Trans. 48 482–95
[24] Sharma M, Tiwari A K, Dumka P and Mishra, Dhananjay R 2018 Performance evaluation of long still for the utilization of industrial hot waste water J. Energy Storage 20 485–91
[25] Dumka P and Mishra D R 2019 Influence of salt concentration on the performance characteristics of passive solar still Int. J. Ambient Energy
[26] Kabeel A E, El-Agouz S A and Sathyamurthy R 2018 Exergy Analysis of Single Slope Solar Still With Low Cost Energy Storage Material Twenty-first Int. Water Technol. Conf. IWTC21 28–30
[27] Kabeel A E, Hamed A M and El-Agouz S A 2010 Cost analysis of different solar still configurations Energy 35 2901–8
[28] Dumka P, Jain A and Mishra D R 2020 Energy, exergy, and economic analysis of single slope conventional solar still augmented with an ultrasonic fogger and a cotton cloth J. Energy Storage 30

Nomenclatures

A_s basin water area (m2)
c_p specific heat at constant pressure (J/kg-K)
C constant
D characteristic length of solar still (m)
F_{12} view factor
F_{cw} convective energy fraction
F_{ew} evaporative energy fraction
F_{rw} radiative energy fraction
G acceleration due to gravity (m/s2)
Gr Grashof Number
h_{cw} convective heat transfer coefficient from water to glass (W/m2-K)
h_{ew} evaporative heat transfer coefficient from water to glass (W/m2-K)
h_{tw} total heat transfer coefficient
$I(t)$ incident solar radiation on inclined cover surface (W/m2)
L latent heat of vaporization (J/kg)
m_{ew} distillate output (kg/m2-h)
N Constant
Nu Nusselt Number
P_{ci} saturated vapor pressure on inner glass surface (Pa)
P_{w} saturated vapor pressure on water surface (Pa)
Pr Prandtl Number
q_{cw} convective heat transfer rate from water to glass (W/m2)
T_a ambient temperature (°C)
T_{ci} inner glass cover temperature (°C)
Temperature of water surface (°C)
Standard uncertainty

Abbreviations

- **AC**: annual cost (Rs.)
- **AMC**: annual maintenance cost (Rs.)
- **ASV**: annual salvage value (Rs.)
- **AY**: annual yield (l)
- **CSS**: conventional solar still
- **CPL**: cost per litre (Rs./l)
- **CRF**: capital recovery factor
- **FRP**: fibre reinforced plastic
- **FAC**: first annual cost (Rs.)
- **Rs.**: Indian national rupee (1=69.69 Rs.)
- **MSS**: modified solar still
- **S**: salvage value (Rs.)
- **SFF**: sinking fund factor