Joint Cuts and Matching of Partitions in One Graph

Tianshu Yu¹, Junchi Yan²³, Jieyi Zhao⁴, Baoxin Li¹

¹Arizona State Univ. ²Shanghai Jiao Tong University ³IBM Research ⁴Univ. of Texas at Houston

{tianshuy,baoxin.li}@asu.edu, yanjunchi@sjtu.edu.cn (correspondence), jieyi.zhao@uth.tmc.edu

Abstract

As two fundamental problems, graph cuts and graph matching have been intensively investigated over the decades, resulting in vast literature in these two topics respectively. However the way of jointly applying and solving graph cuts and matching receives few attention. In this paper, we first formalize the problem of simultaneously cutting a graph into two partitions i.e. graph cuts and establishing their correspondence i.e. graph matching. Then we develop an optimization algorithm by updating matching and cutting alternatively, provided with theoretical analysis. The efficacy of our algorithm is verified on both synthetic dataset and real-world images containing similar regions or structures.

1. Introduction

Over the past few decades, exploration on graphs has brought remarkable advances for computer vision. Images often have strong structural correlation and are modeled as connected graphs with nodes and edges. While nodes correspond to specific feature points, edges reveal the spatial relation or interaction between neighboring nodes. In this sense, graph is capable of encoding the local and global structural information, and is a natural representation of visual input. We consider two important tasks associated with graph structure: graph cuts (GC) and graph matching (GM). Applications of these tasks can be found in stereo [25], video synthesis [17], image segmentation [22] (for graph cut/partition) and object categorization [9], action recognition [34], and feature matching [26], etc.

Graph cuts. As the name suggests, is a task to cut one graph into two or more partitions, so as to aggregate the nodes with higher similarities and separate the ones without. Conventionally, the edges is associated with flow weights measuring the transportation capacity between end nodes. Thus cutting the graph can be casted as finding a collection of edges, whose end nodes form a bipartite separation such that the overall transportation on these edges is minimized. For computer vision, pixels and their neighboring relation are often regarded as nodes and edges, respectively. In this fashion, graph cuts is equivalent to grouping the pixels into two clusters taking into account their appearance and adjacency properties. With different weights or transportation measurements, various objectives are proposed.

Graph matching. It aims to find correspondence among (sub-)graphs. Both unary and second-order (or higher-order) affinity are considered. Since graph matching typically involves structural information beyond unary/point-wise similarity, it is in general robust against noise and local ambiguities. However, compared with linear assignment with polynomial-time global optimum solvers such as the Hungarian method [20], graph matching in general involves quadratic assignment which is the known NP-hard.

This paper is motivated primarily by the interest of exploring how the above two key tasks on graphs may be jointly considered so as to attain certain optimality not possible with each task considered independently. In particular, there are real applications of image segmentation where graph cut alone would have difficulty, while graph matching seems to be a natural part of the problem, and hence a joint approach is called for.

Fig. 1 illustrates the key potential benefits of such a joint approach (more explanations in the caption): (balanced) graph cuts [1] fails to produce correct partition for the image containing two swans, even though the size balance between the partition is considered. This can be explained by the fact that GC encourages the clustered points (also called local connectivity in this paper) to be assigned to the same partition¹. On the other hand, if we enforce existing graph matching solvers such as reweighed random walk (RRWM) [6] or our proposed IBGP (a side product of our main method, see more details in Sect. 4) with a brute-force modification to make its input compatible with only one input graph, the result would be completely meaningless.

We draw important observation from the above example: In many scenarios, separating identical/similar objects in an image requires a new mechanism to assign two correspondence nodes (e.g., those similar in appearance and

¹We follow a traditional setting by using the point distance as the cut cost whereby the goal is to minimize the overall cut cost.
local structure) into two different partitions. This conflicts with the general assumption of graph cut whereby similar nodes should be grouped into the same partition. Importantly, we posit that such a misalignment can be to some extent alleviated by adopting graph matching as it encourages similar nodes to be assigned into separate partitions by finding their correspondence. In general, by combining cut and matching, one task may be facilitated through the extra information/constraint provided by the other (e.g., nearby nodes shall be with the same group while two nodes with similar local structure should be with different partitions), and thus algorithms may be developed to achieve cut and matching alternately in reaching a balanced optima. This inspires us to take a joint approach to achieve the best of the two worlds. To our best knowledge, this is a new problem that has not been addressed.

Contribution This paper makes two-fold contributions: 1) a novel model for jointly incorporating and solving graph cuts and graph matching in a unified framework; 2) a novel approach for the joint cut and matching problem whose key component is an effective optimization algorithm named Iterative Bregman Gradient Projection (IBGP). IBGP is theoretically ensured to find a stationary solution. One side-product of IBGP is its simplified version that can be adapted as a new approach for standard two-graph matching.

2. Related Work

Graph partitions and cuts Graph partition and cuts have been a long-standing research topic. The general idea is to obtain high similarity among nodes within partition and low across partitions. The minimum weight k-cut problem aims to divide the graph into k disjoint non-empty partitions such that the cut metric is minimized, with no balance constraint enforced. As shown in [12], this problem can be solved optimally in $O(n^{2k})$ when k is given. Without knowing k, the problem becomes NP-complete. When the (roughly) equal size constraint is involved, early work have proved it is NP-complete. Extended theoretical study is presented in [1]. To limit the scope, we focus in this paper on two-cut partition and forgo a more generalized treatment of (relaxed) k-cut problem for future study.

Apart from the above general theoretical studies, more efficient algorithms are devised in practice. To the computer vision community, graph cut based approaches are popular due to their empirically observed promising performance as well as solid theoretical foundations [16].

Graph matching Graph matching is mostly considered in the two-graph setting. As the problem can in general be formulated by quadratic assignment which is NP-hard, approximate solvers [11, 19, 6, 24] are devised with empirical success. A line of work [21, 32, 31, 4, 23] moves from the two-graph setting to a collection of graphs. While all these work assume each graph is known and focus on finding the node correspondences among graphs. There are also end-to-end approaches [7, 8] on joint node detection (in their respective candidate sets) and matching in an iterative fashion. However, none of these work involves graph partition as they still assume the two graphs are separate in advance. Another orthogonal area is graph structure learning [3, 5] whereby the edge weights on each separate graph is learned to improve the matching accuracy. Readers are referred to [33] for a comprehensive survey.

Though there have been a large amount of literature on graph cuts and graph matching, we are unable to identify any prior work for combing the both lines of research.

3. Problem Formulation

Notations Lower-case bold x and upper-case bold X represent a vector and a matrix, respectively. Lower-case letter such as n corresponds to scalar. Specifically x_i and X_{ij} returns the scalar values of i-th element of x and element (i, j) of X, respectively. Calligraphic letters \mathcal{G} and \mathcal{E} represent set of nodes and edges. \mathbb{R} and \mathbb{S}^+ denote the real-number domain and n-th order non-negative symmetric matrices. Function $K = \text{diag}(x)$ spans a vector into a matrix such that $K_{ij} = x_i$ if $i = j$, and $K_{ij} = 0$ otherwise. Denote I and O (0) the identity matrix and all-zeros matrix (vector), respectively. $[,]_+$ is the element-wise ramp function, which keeps the input if it is positive, and 0 otherwise.

Preliminaries on graph cuts Consider graph \mathcal{G} associated with weight matrix $W \in \mathbb{R}^{n \times n}$, where n is the number of nodes in the graph and W_{ij} corresponds to the weight

Figure 1. Comparison of the proposed CutMatch v.s. graph cut and graph matching on image with two swans:

- **a)** ground truth matching and partition;
- **b)** graph cuts which aims to minimize the overall cut loss (here defined as node distance) tends to group nearby nodes into the same partition (two heads are close to each other);
- **c)** (modified) graph matching focuses on find similar nodes based the appearance and local structural similarity while gets completely wrong matchings when the partition is unknown;
- **d)** CutMatch combines the best of the two by considering both local closeness and overall correspondences and thus produce the best results for similar object partition from a single image;
- **e)** Green (red) dashed lines refer to the matchings that agree (disagree) with the ground-truth. Zoom in for better view.
Graph cuts amounts to finding binary partition \(\{ P_1 \} \cup \{ P_2 \} = \mathcal{N} \) and \(P_1 \cap P_2 = \emptyset \), such that the energy \(\sum_{(i,j) \in \mathcal{E}} W_{ij} \) is minimized. By introducing variable \(y \in \{-1, 1\}^n \) as indication vector, such that \(y_i = -1 \) if \(i \in P_1 \) and \(y_i = 1 \) for \(i \in P_2 \), this problem can be casted as minimizing \(\sum_{i,j} W_{ij}(y_i - y_j)^2 \). This energy function encourages the node pair \((i, j) \) belonging to the same partition if the corresponding edge weight is large.

Optimizing this energy is NP-hard. Hence continuous relaxation is often adopted by letting \(y \in [-1, 1]^n \). A popular reformulation of this problem in the context of spectral theory is \(y^T L^g y = \sum_{i,j} W_{ij}(y_i - y_j)^2 \), where \(L^g = D - W \) and \(D = \text{diag} (\sum_i W_{ii}) \). Here \(L^g \) is conventionally called graph Laplacian in terms of weight \(W \). This reformulation yields the following problem:

\[
\min_y y^T L^g y \quad \text{s.t.} \quad \|y\|_2 = 1
\]

where the imposed normalization \(\|y\|_2^2 = 1 \) is encoded into the objective by dividing the denominator \(y^T y \). Graph cuts based methods such as Ratio Cut [30] and NCut (normalized cut) [22] are popular solvers to this problem, which are devised based on the Rayleigh-Ritz theorem [27].

Adapting standard graph matching to one input graph setting Standard, namely conventional graph matching (GM) usually involves two given graphs for establishing their node correspondence. In this paper, we consider a more challenging case aiming to find matching between two implicit partitions with equal size \(m \) from a whole graph of size \(n = 2m^2 \). Consider a graph \(\mathcal{G} = (\mathcal{N}, \mathcal{E}) \) with \(n = 2m \) nodes, where \(\mathcal{N} \) and \(\mathcal{E} \) are the nodes and edges, respectively. We establish the node-to-node correspondences within this graph using a matrix \(X \in \{0, 1\}^{n \times n} \), where \(X_{ij} = 1 \) implies there is a matching between node \(i \) and \(j \), and \(X_{ij} = 0 \) otherwise. We set \(X_{ii} = 0 \) by eliminating the matching feasibility between a node \(i \) and itself. Given matrix \(A \in \mathbb{R}^{n^2 \times n^2} \) encoding the first (on diagonal) and second order (off diagonal) affinity, graph matching can be formulated as finding binary solution to maximize the overall score \(\text{vec}(X)^T A \text{vec}(X) \) [33], where \(\text{vec}(X) \) is the vectorized replica of \(X \). This problem, however, is notoriously NP-hard with combinatorial complexity. In line with standard graph matching methods, we relax \(X \) into the continuous interval \([0, 1]\) and derive the following model:

\[
\max_X \text{vec}(X)^T A \text{vec}(X) \quad \text{s.t.} \quad \sum_i X_{ij} = 1, \sum_j X_{ij} = 1^T, X_{ii} = 0, X \in \mathbb{S}_+^n \tag{2}
\]

where \(1 \) is a vector with all 1 values. The first two constraints, ensuring \(X \) to be doubly stochastic, indicate one-to-one matching in line with the widely used (relaxed) formulation for two-graph matching [6].

In fact, matching two partitions from one input graph is more challenging compared with standard two-graph matching: i) there are additional constraints i.e. \(X_{ii} = 0 \), \(X \in \mathbb{S}_+^n \) as the model seeks the matching between two partitions from a single input graph; ii) the involved variables in Eq. 2 for single graph’s partition matching are of larger size. In fact, when the two partitions are given for standard two-graph matching, the affinity matrix and matching matrix become \(A_{\text{standard}} \in \mathbb{R}^{m^2 \times m^2} \) and \(X_{\text{standard}} \in \{0, 1\}^{m \times m} \) for \(n = 2m \). Hence the new problem cannot be addressed by existing graph matching solvers e.g. [11, 6, 19].

Joint cuts and partition matching in one graph Our model aims to unify cut and matching, to cut a graph into two components and establish their correspondence simultaneously. As discussed in Section 1 our method is based on the observation that both closeness (for graph cuts) and correspondence (for graph matching), no matter measured by appearance or local structure, shall be considered to find meaningful partitions in particular scenarios, e.g. finding identical objects/structures from an input image. Specifically we assume if \(X_{ij} \) is large for matching, then partition \(y_i \neq y_j \) is more likely to be true. Similar to the graph cuts objective form, the above discussion can be quantified by \(\sum_{i,j} X_{ij}(y_i - y_j)^2 \). Moreover the doubly stochastic property guarantees that \(\sum_i X_{ij} = 1 \) is constant during iterative optimization. Note while graph cuts seeks a minimizer, this term is to be maximized. Hence we must have the Laplacian of matching \(I - X \), and the coupled energy measuring how much a matching and partition agree with each other becomes:

\[
y^T (I - X) y \tag{3}
\]

In summary, adding up Eq. (1), (2), (3) and letting \(x = \text{vec}(X) \) for short, we have the joint objective:

\[
\max_{x, y} x^T A x - \lambda_1 y^T L^g y + \lambda_2 y^T (I - X) y \tag{4}
\]

s.t. \(\sum_i X_{ij} = 1, \sum_j X_{ij} = 1^T, X_{ii} = 0, X \in \mathbb{S}_+^n, \|y\|_2^2 = 1 \)

where \(\lambda_1 \) and \(\lambda_2 \) balance the cut energy and strength of coupling, respectively. Denote \(X \) the set of variables satisfying the four constraints in Eq. (4). Though Normalized Cut [22] can produce more balanced partitions, it is not suitable in our case. This is because Laplacian \(\lambda_2 (I - X) - \lambda_1 L^g \) is not necessarily positive semidefinite. Thus the normalization matrix may have negative diagonal elements.

4. Proposed Solver

We devise an optimization procedure which involves updating graph cuts and matching alternatively.
Initialization There are two variables for initialization: X^{init} and y^{init}. ii) For initial cut y^{init}, it is obtained by performing Rayleigh Quotient over the graph Laplacian; ii) For initial matching X^{init}, firstly we employ on-the-shelf graph matching solver e.g. Reweighted Random Walk Matching (RRWM) [6] to obtain the raw matching $X^{\text{raw}} \in \{0,1\}^{n \times n}$ with respect to the affinity matrix $A \in \mathbb{R}^{n^2 \times n^2}$, then the symmetry constraint is fulfilled by averaging X^{raw} with its transpose: $X^{\text{raw}} = \frac{X^{\text{raw}} + X^{\text{raw}}^T}{2}$. As the obtained initial matching may violate the constraint $X^{\text{raw}}_{ij} = 0$ which indicates a convex set, we draw inspiration from the Bregmanian Bi-Stochastication algorithm [28] and devise a modified version to obtain X^{init} satisfying $X^{\text{init}}_{ij} = 0$. This version involves projections onto doubly stochastic set and $X^{\text{init}}_{ij} = 0$ alternately. The convexity of both constraint sets assures the global optimality. The modified projection algorithm denoted by $\mathcal{P}_\mathcal{X}(\cdot)$ is depicted in Algorithm 1. The projection is performed regarding with Euclidian distance. We show how to update y, X alternatively until converge.

Update cuts y Given current matching X^{cur}, by peeling off the terms involving y from Eq. (4), we have:

$$ \max_y y^T \{\lambda_2(I - X^{\text{cur}}) - \lambda_1(D - W)\} y \quad (5) $$

Optimizing this objective is straightforward. Firstly the graph Laplacian, which is the second term within the curly braces, is positive semidefinite by its definition. For the first term in the curly braces, we notice that as X^{cur} is a doubly stochastic matrix with the largest eigenvalue no larger than 1, then $I - X^{\text{cur}}$ must also be positive semidefinite. Thus solving y yields to calculate the eigenvector corresponding to the largest non-zero algebraic eigenvalue.

Update matching X One natural idea on updating matching X is to employ a multiplication-based graph matching solver [6, 11, 15]. However, this is not suitable for our case. This fact is caused by the difficulty to encode the matching solver \mathcal{S} is an ascending gradient without considering constraint set \mathcal{X}.

Given X^{prev} obtained in previous iteration, using gradient ∇E can not guarantee the updated X^{cur} lying in the feasible convex set \mathcal{X}. To address this issue, we develop an objective to find an optimal updating direction:

$$ \min_{\mathcal{X}} \| \nabla X - \nabla E \|_F $$

s.t. $\nabla X = 0, \nabla X = \nabla X^T$, $\nabla X_{ii} = 0$

$$ X^{\text{prev}} + \epsilon \nabla X_{ij} \geq 0, X^{\text{prev}} + \epsilon \nabla X_{ij} \leq 1 \quad (7) $$

where ∇X is the optimal update direction starting from X^{prev}, and $\epsilon > 0$ is a pre-defined step length. The convex objective $\min_{\mathcal{X}} \| \nabla X - \nabla E \|_F$ is to find an optimal ascending direction within the feasible set, which is defined by the constraints in Eq. (7) claiming the updated $X^{\text{cur}} = X^{\text{prev}} + \epsilon \nabla X$ still falling into \mathcal{X}. The verification of this claim is trivial. To obtain the solution to Eq. (7), we perform Dykstra Algorithm [10], whereby we first split the
By denoting V Taking the partial derivative with respect to constraint C, we get $\frac{\partial V}{\partial C}$. If we integrate with non-convex optimization frameworks e.g. convex-concave relaxation [35] and path following [29]. We leave this to our future work. The following proposition guarantees the convergence of the update strategy.

Proposition 1. The optimal solution ∇X^{opt} to Eq. (7) must be a non-decreasing direction.

Proof. As objective 7 is convex, the global optima is reachable. First note that matrix O is in the feasible set of 7 as $0 \leq X^{prev}_{ij} \leq 1$. Thus if an optimal solution V is with $\text{Tr}(V^T\nabla E) < 0$, we must have $\|V - \nabla E\|^2_F = \text{Tr}(V^T V) - 2\text{Tr}(V^T \nabla E) + \text{Tr}(\nabla E^T \nabla E) > 0 + 0 + \text{Tr}(\nabla E^T \nabla E) = \|O - \nabla E\|^2_F$. Then V cannot be optimal. This implies that for any optimal ∇X^{opt} we have $\text{Tr}(\nabla E^T \nabla X^{opt}) \geq 0$, thus ∇X^{opt} must be a non-decreasing direction. QED.

We then consider the partial objective involving C_2:

$$\min_V \|V - U\|^2_F \quad \text{s.t.} \ V_{ii} = 0, \ V_{ij}^{prev} + \epsilon \nabla X_{ij} \geq 0, \ V_{ij}^{prev} + \epsilon \nabla X_{ij} \leq 1$$

We call the above algorithm **Iterative Bregman Gradient Projection (IBGP)** as depicted in Algorithm 2. IBGP can easily adapt to standard graph matching problem (with or without linear part) by removing constraint $\nabla X_{ij} = 0$ and $\nabla X = \nabla X^T$ from Eq. (7) – fortunately the corresponding update rule is still as Eq. (13). Also IBGP can be integrated with non-convex optimization frameworks e.g. convex-concave relaxation [35] and path following [29]. We leave this to our future work. The following proposition guarantees the convergence of the update strategy.

Proposition 1. The optimal solution ∇X^{opt} to Eq. (7) must be a non-decreasing direction.

Proof. As objective 7 is convex, the global optima is reachable. First note that matrix O is in the feasible set of 7 as $0 \leq X^{prev}_{ij} \leq 1$. Thus if an optimal solution V is with $\text{Tr}(V^T \nabla E) < 0$, we must have $\|V - \nabla E\|^2_F = \text{Tr}(V^T V) - 2\text{Tr}(V^T \nabla E) + \text{Tr}(\nabla E^T \nabla E) > 0 + 0 + \text{Tr}(\nabla E^T \nabla E) = \|O - \nabla E\|^2_F$. Then V cannot be optimal. This implies that for any optimal ∇X^{opt} we have $\text{Tr}(\nabla E^T \nabla X^{opt}) \geq 0$, thus ∇X^{opt} must be a non-decreasing direction. QED.

We summarize **Initialization**, **Update cut** and **Update matching** in Algorithm 3 which is termed as **CutMatch**.

Discretization We apply Hungarian method [2] over X to calculate the discrete solution to graph matching subproblem. To obtain the discrete solution to partition, we simply refer to the sign of each element in y. Rather than more complicated ways of discretization, we adopt this easier strategy as we observe that the aforementioned discretization methods yield high performance in experiments.

Convergence By the four constraints in Eq. (4), X lies in a closed convex set. Similarly, under the latter three constraints, y is in a closed ellipsoid with dimension at most $m - 1$, which is also convex. Hence objective in Eq. (4) should be the upper bounded. The updating rule in Algorithm 3, on the other hand, ensures that the energy E is non-decreasing at each iteration. Though it is possible that optimal X and y oscillate, it is not empirically observed.
Specifically, we first generate partition density tests. Though IBGP is relatively sensitive to outlier, outlier points. IBGP performs competitively compared to each partition, there are including noise, randomly displacement and feature permutation. For each partition, we first generate partition P_1 and translate it to obtain partition P_2, while the translation retains overlapping γ measuring the horizontal distance between the most left point of P_2 and the most right point of P_1. We further add level σ Gaussian noise to partition P_2. Having obtained the nodes, we perform Delaunay triangulation [13] to obtain the edges. For an element \((ia : jb)\) in affinity matrix (for Graph Matching) A, we calculate it as $A_{ia,jb} = \exp(-(d_{ij} - d_{ab})^2/\delta_1)$, where d_{ij} is the Euclidean distance between node i and j. For each corresponding node pair i and j in P_1 and P_2, respectively, we assign a randomly generated 128-D feature $f_i = f_j$ (to simulate SIFT feature) from normal distribution and further add level μ of Gaussian noise to f_j. ρ level of random permutation is also performed to disturb the order of the features in the whole graph. For any node $i \in P_1 \cup P_2$, we denote its 2-D location l_i. Thus similarity matrix (for Graph Cuts) $W_{ij} = \exp(-||f_i - f_j||^2/\delta_2) + \exp(-||l_i - l_j||^2/\delta_3)$ and we set $\delta_1 = 0.5, \delta_2 = 5, \delta_3 = 0.5$ in all tests.

Evaluation metrics We calculate the average Accuracy for both graph cut and graph matching. For graph cut, Accuracy represents the portion of correctly clustered nodes w.r.t. the sum of all nodes. As the final output of cuts is a sign function, thus given a ground-truth label vector $C \in \{-1, 1\}^{2n}$ and an output label vector $C_{cut} \in \{-1, 1\}^{2n}$, we calculate as $\text{Accuracy} = \max\{\text{number of } C = C_{cut}, \text{number of } C \neq C_{cut}\}/2n$. For graph matching, Accuracy corresponds to the portion of correctly matched nodes w.r.t. the sum of all nodes. The metric is also adopted in real-image test in Section 5.3. Note in the graph cuts experiments, the minimal Accuracy is 0.5.

Results We evaluate the performance of CutMatch by varying γ, σ, μ and ρ. For each value of parameters, we ran-
calculate the SIFT feature of each node. The same strategy
the landmarks. The union of the edges in the three triangu-
three images are also salient partial deformation, e.g. in the second and the third
row (for deformable human body), CutMatch reaches sig-
ificant matching performance compared to vanilla IBGP
for graph matching. However, when disturbance is severe
as in the last row (more large transformation), the match-
ing will mostly fail. In either case, the performance of raw
IBGP matching is extremely low.

domly generate 80 graphs and calculate the average cuts and
matching accuracy. Figure 3 shows the statistical results,
and the first and second columns correspond to the matching
and the cuts accuracy, respectively. We also present the
performance with three pairs of λ_1 and λ_2 values: (200, 50),
(150, 30) and (100, 20). Specifically, Fig. 1 shows an ex-
ample with combined disturbance, where $\gamma = 0.2, \sigma = 0.1,
\mu = 0.3$ and $\rho = 0.1$. Figure 3 presents the raw ac-
curacy by vanilla matching: RRWM, IPFP and IBGP, to-
gether with the raw cuts accuracy with vanilla spectral graph
cuts [22]. One can observe that, with the joint objective,
CutMatch significantly outperforms vanilla cuts and matching
algorithms. As well as the performance enhancement,
CutMatch is also robust to all kinds of disturbances. We
also found that matching nodes (RRWM, IPFP and IBGP)
within one graph is extremely sensitive to the initial X. The
CutMatch approach, however, is capable of correlating the
starting points of cuts and matching alternatively in each it-
eration. In all the experiments, we observe that 5 iterations
are sufficient to yield satisfactory performance.

5.3. Joint cut and matching on real images

Dataset We collect 15 images from internet containing
two similar objects with the same category (see supplemental
material for the dataset). For each image, we manually
select 10 to 20 landmark nodes and establish the ground-
truth correspondences. To obtain the connectivity, we first
apply Delaunay triangulation on each partition, and then all
the landmarks. The union of the edges in the three triangu-
lations is regarded as the baseline connectivity. We further
calculate the SIFT feature of each node. The same strategy
on generating affinity A and similarity W is applied. For
generating matrix W, we set $\lambda_2 = 2 \times 10^5$ and $\lambda_3 = 100$,
which is to balance the un-normalized SIFT features. Be-
cause we observe that sometimes the deformation contained
in real images is so large and arbitrary that local connectiv-
ity obtained from triangulation changes drastically, we test
the performance under varying edge sampling rate η, where
$\eta = 1$ and $\eta = 0$ correspond to fully connected and base-
line graphs, respectively. As we believe that real images
already contain natural contaminations (e.g., noises, deforma-
tion and outliers), we don’t add extra degradations in this
experiment as in section 5.2. This dataset will be published.

Results To this end, we randomly generate edges corre-
sponding to varying edge density from 0 to 0.2 with step 0.02.
For each density value other than 0, 10 graphs are
generated to avoid the bias, and the average performance
is calculated regarding all the graphs. Fig. 4 demonstrates
the cuts and matching results. IBGP, RRWM and raw cuts
are selected one again for comparison. As CutMatch shows
its parametric stability in synthetic test, we fix parame-
ters $\lambda_1 = 200$ and $\lambda_2 = 50$. We also let $\delta_1 = 150
and $\delta_2 = 400,000$ to generate affinity and flow in proper
range. As can be seen from Fig. 4, though the task on
real images is challenging, CutMatch is superior to all the
selected counterparts in terms of cuts and matching accu-
racy. In general, matching partitions is relatively more dif-
cult than cuts, thus needs more concentration in our future
work. Fig. 5 shows some results on real-world images. The
cuts performance is observed to be enhanced by using Cut-
Match. When the connectivity is stable, e.g. in the first
row (for rigid bike), the matching with CutMatch is reliable
and very close to the ground-truth. When objects contain
salient partial deformation, e.g. in the second and the third
row (for deformable human body), CutMatch matches sig-
ificant matching performance compared to vanilla IBGP
for graph matching. However, when disturbance is severe
as in the last row (more large transformation), the match-
ing will mostly fail. In either case, the performance of raw
IBGP matching is extremely low.
6. Conclusion and Future Work

This paper formulates and presents a solver to the joint graph cuts and matching problem on a single input graph, to better account for both the closeness and correspondences in the presence of two similar/identical objects appearing in one image. Despite the illustrated potential of CutMatch, there is space for future work: i) CutMatch can possibly trap into a local optima. This issue can be possibly addressed with annealing strategies; ii) the large amount of variables and gradient-based update scheme involved in MatchCut makes it currently not scalable for dealing with dense correspondences. While we empirically observe that CutMatch tends to deliver highly sparse solution X, hence we believe MatchCut can be accelerated especially considering affinity A is also sparse; iii) the generalized case: cut graph into k partitions and establish their correspondence which requires a nontrivial solver to explore.

Acknowledgement

The work was supported in part by a grant from ONR and by NSFC 61602176. Any opinions and views expressed in this material are those of the author(s) and do not necessarily reflect the view of ONR. Part of the work was done when Junchi Yan was with IBM Research.
References

[1] K. Andreev and H. Räcke. Balanced graph partitioning. In Proceedings of the sixteenth annual ACM symposium on Parallelism in algorithms and architectures, pages 120–124, 2004. 1, 2

[2] D. Bruff. The assignment problem and the hungarian method. Notes for Math, 20:29–47, 2005. 5

[3] T. Caetano, J. McAuley, L. Cheng, Q. Le, and A. J. Smola. Learning graph matching. TPAMI, 31(6):1048–1058, 2009. 2

[4] Y. Chen, G. Leonidas, and Q. Huang. Matching partially similar objects via matrix completion. In IJCAI, 2014. 2

[5] M. Cho, K. Alahari, and J. Ponce. Learning graphs to match. In ICCV, 2013. 2

[6] M. Cho, J. Lee, and K. Lee. Reweighted random walks for graph matching. ECCV, pages 492–505, 2010. 1, 2, 3, 4, 6, 8

[7] M. Cho and K. M. Lee. Progressive graph matching: Making a move of graphs via probabilistic voting. In CVPR, 2012. 2

[8] T. Collins, P. Mesejo, and A. Bartoli. An analysis of errors in graph-based keypoint matching and proposed solutions. In ECCV, 2014. 2

[9] O. Duchenne, A. Joulin, and J. Ponce. A graph-matching kernel for object categorization. In ICCV, 2011. 1

[10] R. L. Dykstra. An algorithm for restricted least squares regression. Journal of the American Statistical Association, 78(384):837–842, 1983. 4

[11] S. Gold and A. Rangarajan. A graduated assignment algorithm for graph matching. TPAMI, 18(4):377–388, 1996. 2, 3, 4, 6

[12] O. Goldschmidt and D. S. Hochbaum. A polynomial algorithm for the k-cut problem for fixed k. Mathematics of operations research, 19(1):24–37, 1994. 2

[13] L. Guibas and J. Stolfi. Primitives for the manipulation of general subdivisions and the computation of voronoi. ACM transactions on graphics (TOG), 4(2):74–123, 1985. 6

[14] W. W. Hager. Updating the inverse of a matrix. SIAM review, 31(2):221–239, 1989. 5

[15] B. Jiang, J. Tang, C. Ding, Y. Gong, and B. Luo. Graph matching via multiplicative update algorithm. In NIPS, pages 3190–3198, 2017. 4

[16] V. Kolmogorov and R. Zabin. What energy functions can be minimized via graph cuts? TPAMI, 26(2):147–159, 2004. 2

[17] V. Kwatra, A. Schödl, I. Essa, G. Turk, and A. Bobick. Graphcut textures: image and video synthesis using graph cuts. In ACM Transactions on Graphics (ToG), volume 22, pages 277–286, 2003. 1

[18] M. Leordeanu and M. Hebert. A spectral technique for correspondence problems using pairwise constraints. In ICCV, volume 2, pages 1482–1489, 2005. 6

[19] M. Leordeanu, M. Hebert, and R. Sukthankar. An integer projected fixed point method for graph matching and map inference. In NIPS, pages 1114–1122, 2009. 2, 3, 6, 8

[20] J. Munkres. Algorithms for the assignment and transportation problems. Journal of the Society for Industrial & Applied Mathematics, 5(1):32–38, 1957. 1

[21] D. Pachauri, R. Kondor, and S. Vikas. Solving the multi-way matching problem by permutation synchronization. In NIPS, 2013. 2

[22] J. Shi and J. Malik. Normalized cuts and image segmentation. TPAMI, 22(8):888–905, 2000. 1, 3, 7, 8

[23] X. Shi, H. Ling, W. Hu, J. Xing, and Y. Zhang. Tensor power iteration for multi-graph matching. In CVPR, 2016. 2

[24] P. Swoboda, C. Rother, H. A. Alhaija, D. Kainmüller, and B. Savchynskyy. A study of lagrangean decompositions and dual ascent solvers for graph matching. In CVPR, volume 5, 2017. 2

[25] M. F. Tappen and W. T. Freeman. Comparison of graph cuts with belief propagation for stereo, using identical mrf parameters. In ICCV, volume 2, pages 900–906, 2003. 1

[26] L. Torresani, V. Kolmogorov, and C. Rother. Feature correspondence via graph matching: Models and global optimization. In ECCV. 2008. 1

[27] L. N. Trefethen and D. Bau, III. Numerical linear algebra. In p. 254. ISBN 978-0-89871-957-4. SIAM, 1997. 3

[28] F. Wang, P. Li, and A. C. Konig. Learning a bi-stochastic data similarity matrix. In ICDM, pages 551–560, 2010. 4

[29] T. Wang, H. Ling, C. Lang, and J. Wu. Branching path following for graph matching. In ECCV, pages 508–523, 2016. 5

[30] Y.-C. Wei and C.-K. Cheng. Towards efficient hierarchical designs by ratio cut partitioning. In Computer-Aided Design, 1989. ICCAD-89. Digest of Technical Papers., IEEE International Conference on, pages 298–301, 1989. 3

[31] J. Yan, Y. Li, W. Liu, H. Zha, X. Yang, and S. Chu. Graduated consistency-regularized optimization for multi-graph matching. In ECCV, 2014. 2

[32] J. Yan, Y. Tian, H. Zha, X. Yang, Y. Zhang, and S. Chu. Joint optimization for consistent multiple graph matching. In ICCV, 2013. 2

[33] J. Yan, X. Yin, W. Lin, C. Deng, H. Zha, and X. Yang. A short survey of recent advances in graph matching. In ICMR, 2016. 2, 3

[34] B. Yao and F. Li. Action recognition with exemplar based 2.5 d graph matching. In ECCV, 2012. 1

[35] F. Zhou and F. De la Torre. Factorized graph matching. In CVPR, pages 127–134, 2012. 5