NY-ESO-1-Specific Circulating CD4⁺ T Cells in Ovarian Cancer Patients Are Prevalently TH1 Type Cells Undetectable in the CD25⁺FOXP3⁺ Treg Compartment

Nassima Redjimi¹, Karine Duperrier-Amouriaux¹, Isabelle Raimbaud¹, Immanuel Luescher², Danijel Dojcinovic², Jean-Marc Classe³, Dominique Berton-Rigaud⁴, Jean-Sébastien Freneh⁴, Emmanuelle Bourbouloux⁴, Danila Valmori¹,², Maha Ayyoub¹,²

¹ Institut National de la Santé et de la Recherche Médicale, Unité 892, CLCC René Gauducheau, Saint Herblain, France, ² Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Epalinges, Switzerland, ³ Department of Surgery, CLCC René Gauducheau, Saint Herblain, France, ⁴ Department of Medical Oncology, CLCC René Gauducheau, Saint Herblain, France, ⁵ Faculty of Medicine, University of Nantes, Nantes, France

Abstract

Spontaneous CD4⁺ T-cell responses to the tumor-specific antigen NY-ESO-1 (ESO) are frequently found in patients with epithelial ovarian cancer (EOC). If these responses are of effector or/and Treg type, however, has remained unclear. Here, we have used functional approaches together with recently developed MHC class II/ESO tetramers to assess the frequency, phenotype and function of ESO-specific cells in circulating lymphocytes from EOC patients. We found that circulating ESO-specific CD4⁺ T cells in EOC patients are prevalent but not associated with spontaneous immune response to the antigen. The detection of Treg in cancer patients may impair their responsiveness. Therefore, low frequency and advanced differentiation stage, however, may limit their efficacy, that may be boosted by immunogenic ESO vaccines.

Introduction

CD4⁺ T-cell subsets play important and potentially opposite roles in tumor immunosurveillance [1,2]. Type I helper (TH1) T cells, secreting the signature cytokine IFN-γ, favor the development of CD8⁺ cytolytic effectors (CTLs), and mediate efficient anti-tumor responses. In contrast, regulatory/suppressor T cells (Treg), characterized by high expression of the IL-2R α-chain (CD25) and of the lineage-specific transcription factor FOXP3, have been reported to present in increased proportions in cancer patients as compared to healthy individuals [3,4,5,6,7]. Treg, that fail to secrete IFN-γ or IL-2, have been shown to be present in increased proportions in cancer patients as compared to healthy individuals [8,9]. Because the antigen specificity of Treg is largely unknown, it is unclear if the ability of Treg to inhibit anti-tumor responses is related or not to the presence/prevalence among them of tumor-antigen specific CD4⁺ T cells.

NY-ESO-1 (ESO), a tumor-specific antigen of the cancer/testis group frequently expressed in human tumors of different histological types, including ovarian cancers, but not in normal somatic tissues [10,11], is a candidate for the development of generic anticancer vaccines [12]. ESO is highly immunogenic and elicits spontaneous humoral, CD4⁺ and CD8⁺ T-cell responses in patients bearing antigen-expressing tumors [13,14,15]. In addition, ESO-specific antibody, CD4⁺ and CD8⁺ T-cell responses can be induced through immunization with ESO-based vaccines [16]. We have previously identified immunodominant regions recognized by ESO-specific CD4⁺ and CD8⁺ T cells [16] and have generated soluble fluorescent MHC class I and II/ESO peptide tetramers allowing the direct detection, phenotyping and isolation of ESO-specific T cells [17,18]. Using MHC class II/ESO peptide tetramers to assess specific CD4⁺ T cells in patients immunized with a recombinant ESO protein administered with Montanide™ ISA 51 and GpG 7909, we have shown that vaccine-induced ESO-specific CD4⁺ T cells are prevalently TH1 type cells, are detected ex vivo among memory (CD45RA⁻) cells, include both central memory (CCR7⁺) and effector memory (CCR7⁻) populations and do not include significant proportions of Treg [16,17,18]. Recent studies, however, have suggested that, in contrast to ESO-specific CD4⁺ T cells primed through vaccination, ESO-specific CD4⁺ T cells in patients with spontaneous immune responses may contain significant proportions of Treg [19] and that elevated proportions of circulating Treg in cancer patients may impair their responsiveness.
to ESO vaccines [20]. To address these concerns, in this study, we have used functional approaches, together with MHC class II/ESO peptide tetramers to assess ESO-specific cells among conventional and Treg CD4+ T-cell subsets in circulating lymphocytes of epithelial ovarian cancer (EOC) patients with detectable spontaneous immune responses to ESO.

Results

Assessment of memory conventional CD25+ and regulatory CD25+FOXP3+ CD4+ T-cell subsets in circulating lymphocytes of healthy donors and EOC patients

Among memory CD4+ T cells several subsets can be distinguished based on the expression of CD25 and CD127. Whereas conventional CD4+ T cells are CD25+CD127+, Treg are CD25+CD127− and FOXP3+ (Figure 1A). A third population, CD25+CD127−, contains recently activated and IL-10-producing CD4+ T cells [21]. Whereas CD25+CD127− cells are the majority of circulating memory CD4+ T cells, Treg and CD25+CD127− populations are present in much lower and roughly equivalent proportions, representing each about 5%. Because previous reports have indicated that Treg populations can be increased in circulating lymphocytes from cancer patients as compared to healthy individuals, we compared the proportion of CD4+ T-cell subsets in circulating lymphocytes of EOC patients to healthy donors. We failed, however, to detect any significant differences in the proportion of circulating Treg in patients as compared to healthy donors (Figure 1B). Similarly, the proportion of CD25+CD127+CD4+ T cells did not significantly differ between patients and healthy donors. To further characterize CD4+ T-cell subsets in circulating lymphocytes from EOC patients, we isolated them ex vivo, by flow cytometry cell sorting, stimulated them in vitro and assessed the cultures 12 days later for their capacity to secrete different cytokines. As expected, in both healthy donors and patients, CD25+ populations contained significantly higher proportions of cells secreting IFN-γ as compared to Treg (Figure 2). CD127+ populations contained higher proportions of IFN-γ-secreting cells than CD127− populations. Interestingly, as compared to healthy donors, CD25+CD127− populations from cancer patients contained higher proportions of IFN-γ-secreting cells. In contrast, the proportion of IL-17- or IL-10-secreting cells was not significantly different between healthy donors and patients for any of the populations.

ESO-specific circulating CD4+ T cells from EOC patients with spontaneous immune responses are found in CD25+CD127+ and CD25+CD127− populations but not in CD25+CD127+FOXP3−Treg and secrete IFN-γ but not IL-17 or IL-10

According to previous studies, about 40% of ovarian tumors express ESO and about 30% of EOC patients bearing ESO-expressing tumors develop specific spontaneous antibody (Ab) responses [22]. We assessed Ab responses to ESO in a cohort of 110 EOC patients (Table 1) in the patients’ sera by ELISA as described [14]. We detected significant Ab responses to ESO in 8 (7%) of the patients (Figure 3A) at titers varying between 1:500 and 1:50000 (Figure 3B). Patients with detectable ESO Ab presented with high grade (II, III) tumors at stage III or IV and with serious histology (Table 1). For 6 patients, PBMC were available for analysis. To assess ESO-specific cells within defined circulating memory CD4+ T-cell subsets of these patients, we isolated them ex vivo by flow cytometry cell sorting, and stimulated them with a pool of long overlapping peptides spanning the ESO sequence, as described [16]. Twelve days later, we stimulated aliquots of the cultures with the ESO peptide pool and assessed specific cytokine production by intracellular staining. We detected significant proportions of cells producing IFN-γ in response to ESO in cultures from circulating CD25+CD127+ and CD25+CD127− CD4+ T-cell populations, but not from Treg (Figure 4A and 4B). In contrast, we found only low proportions of cells secreting IL-10 or IL-17 in response to ESO in any of the populations. Together, these results indicated that the large majority of circulating ESO-specific CD4+ T cells in these patients were Th1 type IFN-γ-secreting cells, CD25+, both CD127+ and CD127−, and were not detectable in CD25+FOXP3−Treg.

Assessment of ESO-specific T cells in CD4+ subsets using MHC class II/ESO peptide tetramers

One caveat of the experimental setting used above was that, whereas ESO-specific cells were detected based on their capacity to specifically secrete IFN-γ in response to ESO, Treg secreted little IFN-γ even upon stimulation with PMA/ionomycin (Figure 2). To overcome the limitations imposed by the detection of ESO-specific CD4+ T cells based on functional assays, we have recently developed soluble fluorescent MHC class II tetramers that incorporate an immunodominant epitope from ESO, corresponding to peptide 119–143 [17,18]. We have shown that MHC class

Figure 1. Phenotypic assessment of memory conventional and regulatory CD4+ T-cell subsets in circulating lymphocytes of healthy donors and EOC patients. A. CD4+ T cells were stained with anti-FOXP3, -CD25, -CD45RA and CD127 antibodies and analyzed by flow cytometry. Expression of CD25 and CD127 defines 3 populations of memory (CD45RA+) CD4+ T cells: conventional CD25+CD127+ and CD25+CD127− and Treg CD25+CD127− (left dot plot, numbers correspond to the proportion of each subset among memory CD4+ T cells), histograms show the expression of FOXP3 in the defined memory CD4+ T-cell subsets. B. The proportion of conventional CD25+CD127+ and CD25+CD127− and Treg CD25+CD127− subsets, defined in A, among memory CD4+ T cells of healthy donors (HD, n = 27) and patients (P, n = 18).

doi:10.1371/journal.pone.0022845.g001
II/ESO119-143 tetramers stain ESO-specific CD4+ T cells in circulating lymphocytes of patients immunized with an ESO recombinant vaccine with high efficiency and specificity, allowing their direct visualization among polyspecific CD4+ T-cell cultures. Because 4 patients with spontaneous immune responses to ESO expressed MHC class II alleles for which the suitable tetramers were available (DR52b and DR4), we assessed ESO-specific T cells in these cultures by tetramer staining (Figure 4C and 4D). We detected significant proportions of ESO tetramer+ cells in cultures from CD25−CD127+ populations from all patients as well as in those from the CD25−CD127− populations (in 3 patients at significantly increased frequency as compared to the CD25−CD127+ fractions). However, in all cases, we failed to detect significant proportions of tetramers’ cells in Treg cultures. In addition to CD25−CD127+FOXP3+Treg, suppressive CD4+ T cells have also been described in some studies among other populations [21]. To assess if, regardless of their phenotype, ESO-specific CD4+ T cells displayed suppressive functions, we isolated them from the cultures by tetramer- or IFN-γ-guided cell sorting and assessed them functionally in a suppression assay as described [23,24]. As expected, FOXP3+Treg populations simultaneously assessed as internal controls efficiently suppressed the growth of responder cells. In contrast, ESO-specific cells isolated from both CD25−CD127− and CD25−CD127+ cultures were FOXP3− and were not suppressive (Figure 5).

Ex vivo assessment of ESO-specific circulating CD4+ T cells using MHC class II/ESO tetramers

To confirm the distribution of ESO-specific cells in CD4+ T-cell subsets in patients with spontaneous immune responses and further assess their proportions and phenotype, we stained total circulating CD4+ T cells from DR52b+ patients ex vivo with ESO tetramers in combination with mAb directed against markers that characterize distinct differentiation stages of CD4+ T cells. As shown previously [17], ESO tetramer+ cells were not detectable in CD4+ T cells from healthy donors. In contrast, they were clearly

Figure 2. Functional assessment of memory conventional and regulatory CD4+ T-cell subsets in circulating lymphocytes of healthy donors and EOC patients. Ex vivo-sorted memory conventional, CD25−CD127+ and CD25−CD127−, and Treg, CD25+CD127+, populations from healthy donors (HD, n = 12) and patients (P, n = 12) were stimulated in vitro and day 12 cultures were assessed for IFN-γ, IL-10 and IL-17 production, following stimulation with PMA and ionomycin, in a 4-h intracellular cytokine secretion assay and analyzed by flow cytometry. Dot plots for one donor are shown in A and data for all healthy donors and patients are summarized in B. Statistical analyses were performed using a standard two-tailed t-test. doi:10.1371/journal.pone.0022845.g002
detected *ex vivo* in circulating memory CD4+ T cells from the patients (Figure 6A). Tetramer+ cells in circulating CD4+ T cells from the patients were uniformly CD25+ and were found among both CD127+ and CD127− populations, but were not detectable among CD25+CD127− Treg (Figure 6B). Thus, similar to what we have previously observed in patients immunized with a recombinant ESO vaccine, direct *ex vivo* staining with ESO tetramers confirmed the lack of significant proportions of ESO-specific CD4+ T cells in circulating Treg of patients with spontaneous immunological responses to the antigen. The frequency of circulating ESO tetramer+ cells in the patients with spontaneous responses, was, in average, of 1:25000, five folds lower than that found in vaccinated patients (Figure 6A) [17]. However, ESO tetramer+ cells in patients with spontaneous responses contained lower proportions of CD127− cells as compared to those of vaccinated patients (Figure 6B). In addition, in contrast to the latter, which contained, in average, roughly comparable proportions of CCR7+ and CCR7− cells, as well as a large majority of CD27+ cells, ESO tetramer+ cells in patients with spontaneous responses were mostly CCR7− and contained increased proportions of CD27− cells, consistent with a more differentiated phenotype (Figure 6C). Finally, to exclude the possibility that the selection of ESO Ab+ patients may have selected for patients with low or absent ESO-specific Treg, we assessed *ex vivo* CD4+ T cells from ESO Ab− DR52b+ patients (n = 23). However, we failed to detect significant levels of ESO tetramer+ in these patients (data not shown).

Discussion

Strong immune responses to cancerous tissues are potentially able to prevent disease progression. Because these responses, often directed not exclusively against tumor-specific antigens, but also against differentiation or other self-antigens, have the potential to considerably damage normal tissues, robust immunoregulatory networks are in place [25]. In particular, CD4+CD25+FOXP3+ Treg, involved in maintaining tissue homeostasis and self-tolerance, are believed to play a major role in dampening anticancer immunity. Previous studies have reported increased proportions of Treg in the circulation of at least part of patients with solid tumors [8,9] as well as accumulation of CD25+FOXP3+ Treg at tumor sites [8,26], particularly at advanced stages of disease, and have established a correlation between their frequency and clinical outcomes [3]. On the base of these findings, approaches for eliminating Treg have been designed, and are already being assessed in clinical settings, although they are linked with the risk of unleashing auto-reactivity [27,28,29].

In this study, we have addressed the presence and distribution of CD4+ T cells specific for the tumor antigen ESO, of the cancer/testis group [10,30,31], within circulating CD4+ T-cell subsets of EOC patients. We used a combination of functional approaches and MHC class II tetramers incorporating an immunodominant peptide, ESO119–143, that we have recently developed [17,18]. We found no significant differences in the proportion of Treg among circulating lymphocytes of EOC patients as compared with healthy donors. Similarly, we found no significant increase in the proportion of total circulating CD4+ CD25+ CD127− T cells, a population that contains recently activated CD4+ T cells, consistent with a more differentiated phenotype (Figure 6C). Finally, to exclude the possibility that the selection of ESO Ab+ patients may have selected for patients with low or absent ESO-specific Treg, we assessed *ex vivo* CD4+ T cells from ESO Ab− DR52b+ patients (n = 23). However, we failed to detect significant levels of ESO tetramer+ in these patients (data not shown).
By assessing ESO-specific responses in circulating CD4+ T-cell subsets from EOC patients with spontaneous immune responses, sorted ex vivo and stimulated in vitro with a pool of long overlapping peptides spanning the full length ESO sequence, we detected significant proportions of cells producing IFN-γ in response to ESO, but no IL-10- or IL-17-secreting cells, indicating that the majority of ESO-specific CD4+ T cells were T H1 effectors. Because this study specifically addressed TH1 cells and Treg in EOC, we limited the analysis to the most relevant cytokines, namely IFN-γ, IL-10 and IL-17. It will however be of interest, in future studies, to address the production of additional cytokines such as IL-4 or IL-13, by ESO-specific CD4+ T cells. In line with the conclusion that ESO-specific CD4+ T cells isolated from the cultures are effector cells, they did not exhibit significant suppressive functions. In addition, we did not detect ESO-specific cells in circulating Treg of patients with spontaneous immune responses to the antigen by staining, with MHC class II/ESO tetramers, of defined conventional and Treg CD4+ T-cell subpopulations isolated ex vivo by flow cytometry cell sorting, as well as by direct ex vivo staining with tetramers. At variance with our data, previous studies have reported the isolation of ESO-specific CD4+ T cells with suppressive functions from circulating lymphocytes of patients with advanced melanoma [19,33]. Thus, whereas our data do not exclude the existence of ESO-specific Treg, they imply that the latter are not commonly found in circulating CD4+ T cells from EOC patients. It is also noteworthy that, consistent with our

Figure 4. Assessment of ESO-specific cells in circulating memory CD4+ T-cell subsets of EOC patients. Memory conventional, CD25+CD127- and CD25-CD127+, and Treg, CD25+CD127+, populations were sorted ex vivo from CD4+ T cells of ESO Ab+ patients and stimulated in vitro with a pool of long overlapping peptides spanning the full length ESO sequence. A and B. Day 12 cultures were assessed for IFN-γ, IL-10 and IL-17 production in a 4-h intracellular cytokine staining assay following stimulation in the absence or presence of the ESO peptide pool. Dot plots for one patient are shown in A and data obtained for all patients are summarized in B, C and D. Day 12 cultures were stained with DR52b/ESO119–143 (NA017, NA093 and NA097) or DR4/ESO119–143 tetramers and anti-CD4 mAb and analyzed by flow cytometry. Dot plots for one patient are shown in C and data for all patients are summarized in D.

doi:10.1371/journal.pone.0022845.g004
results, studies in mouse models have examined the presence of Treg in antigen-specific T cells with tetramers and failed to detect tetramer-binding Treg [34,35].

Using MHC class II/ESO119-143 tetramers ex vivo, we could directly compare ESO-specific CD4+ T cells spontaneously arising in patients, with those induced through vaccination with a recombinant ESO protein (rESO) administered with Montanide™ and CpG [16]. It is noteworthy that until the recent development of MHC class II/peptide tetramers, it has been difficult to assess antigen-specific CD4+ T cells ex vivo due to their generally low frequency. This is indeed the first report characterizing CD4+ T cells specific for a cancer/testis antigen in cancer patients with spontaneous immune responses ex vivo.

We found that the frequency of CD4+ T cells specific for ESO was significantly lower in patients with spontaneous immune responses as compared to that found in vaccinated patients. In addition, the phenotype of naturally-arising ESO tetramer+ cells was more differentiated, as compared to their vaccine-induced counterparts, containing increased proportions of CCR7+ and CD27+ cells. Previous studies exploring the correlation between the quality of memory CD4+ T-cell responses elicited by pathogens or vaccines and their phenotype, have suggested that a protective memory response should include not only effectors (CCR7+) but memory Treg (MTreg), isolated ex vivo from healthy individuals, were stained with FOXP3-specific mAb and analyzed by flow cytometry. Numbers in dot plots correspond to the mean fluorescence intensity (MFI) of FOXP3 staining. B. The suppressive activity of ESO-specific and control polyclonal populations was assessed by co-culture with CFSE-labeled conventional CD4+ T cells, at a responders-suppressor ratio of 1:1, in the presence of irradiated monocytes and PHA. Dot plots show the CFSE-dilution profile in the absence of test population (left) and in the presence of the indicated test populations. Numbers in histograms correspond the percentage of undivided cells. Results corresponding to the calculated% suppression are shown for all tested populations.

doi:10.1371/journal.pone.0022845.g005

Using MHC class II/ESO119-143 tetramers ex vivo, we could directly compare ESO-specific CD4+ T cells spontaneously arising in patients, with those induced through vaccination with a recombinant ESO protein (rESO) administered with Montanide™ and CpG [16]. It is noteworthy that until the recent development of MHC class II/peptide tetramers, it has been difficult to assess antigen-specific CD4+ T cells ex vivo due to their generally low frequency. This is indeed the first report characterizing CD4+ T cells specific for a cancer/testis antigen in cancer patients with spontaneous immune responses ex vivo. We found that the frequency of CD4+ T cells specific for ESO was significantly lower in patients with spontaneous immune responses as compared to that found in vaccinated patients. In addition, the phenotype of naturally-arising ESO tetramer+ cells was more differentiated, as compared to their vaccine-induced counterparts, containing increased proportions of CCR7+ and CD27+ cells. Previous studies exploring the correlation between the quality of memory CD4+ T-cell responses elicited by pathogens or vaccines and their phenotype, have suggested that a protective memory response should include not only effectors (CCR7+) but memory Treg (MTreg), isolated ex vivo from healthy individuals, were stained with FOXP3-specific mAb and analyzed by flow cytometry. Numbers in dot plots correspond to the mean fluorescence intensity (MFI) of FOXP3 staining. B. The suppressive activity of ESO-specific and control polyclonal populations was assessed by co-culture with CFSE-labeled conventional CD4+ T cells, at a responders-suppressor ratio of 1:1, in the presence of irradiated monocytes and PHA. Dot plots show the CFSE-dilution profile in the absence of test population (left) and in the presence of the indicated test populations. Numbers in histograms correspond the percentage of undivided cells. Results corresponding to the calculated% suppression are shown for all tested populations.

Based on this concept, our results suggest that ESO-specific CD4+ T cells induced through immunization of cancer patients with the rESO vaccine are likely to be not only quantitatively but also qualitatively superior to those arising during spontaneous immune responses, which further encourages the use of ESO-based vaccines in patients bearing ESO-expressing tumors.

Together, these results underline the potential of MHC class II/ESO tetramers for the unambiguous detection, quantification and phenotyping of ESO-specific CD4+ T cells, not only following vaccination, but also for assessing the immune responses that naturally arise in patients bearing antigen-expressing tumors. The further application of this approach for the characterization of CD4+ T cells specific for ESO and other tumor antigens in the circulation and at tumor sites of cancer patients, both along the natural course of the disease and during therapy, will likely contribute to significantly further our understanding of their roles and contribution in immunity to cancer.

Materials and Methods

Patient and healthy donor samples and assessment of ESO-specific antibody responses

Sera and peripheral blood mononuclear cells (PBMC) were collected from EOC patients seen at CLCC René Gauducheau and from healthy individuals upon written informed consent and
Figure 6. *Ex vivo* assessment of ESO-specific CD4+ T cells using DR52b/ESO tetramers. CD4+ T cells from DR52b+ healthy donors (HD) and patients were stained *ex vivo* with DR52b/ESO119–143 tetramers and mAb specific for CD45RA, CD25, CD127, CCR7 and CD27 and analyzed by flow cytometry. A. Dot plots for one HD and one EOC patient are shown. Numbers in dot plots correspond to the percentage of tetramer+ cells among CD45RA− memory cells. Data for all EOC patients with spontaneous immune responses to ESO (S) are shown in comparison to the frequency (mean ± SD) of ESO tetramer+ cells in post-vaccine samples from patients having received a recombinant ESO vaccine (V) [17]. B. Dot plots show the expression of CD25 and CD127 in total memory cells and in tetramer+ cells of one EOC patient. Data corresponding to the proportion of conventional, CD25− CD127+ and CD25− CD127−, and Treg, CD25+ CD127−, populations within tetramer+ cells for all EOC patients (S) are summarized and compared to the proportion (mean ± SD) of these populations in vaccine-induced tetramer+ cells (V). C. Dot plots show the expression of CCR7 and CD27 in total memory cells and in tetramer+ cells of one EOC patient. Data corresponding to the proportion of CCR7+, CCR7+ CD27+ and CCR7− CD27− populations within tetramer+ cells for all EOC patients (S) are summarized and compared to the proportion (mean ± SD) of these populations in vaccine-induced tetramer+ cells (V). Statistical analyses were performed using a standard two-tailed t-test.

doi:10.1371/journal.pone.0022845.g006
Ex vivo phenotypic assessment of CD4+ T-cell subsets and flow cytometry cell sorting

CD4+ T cells were enriched by positive selection from PBMC of healthy individuals and EOC patients by magnetic cell sorting (Miltenyi Biotec), stained with monoclonal antibodies (mAb) specific for CD4 (BD Biosciences), CD8 (BD Biosciences), CD45RA (BD Biosciences), CD25 (Beckman Coulter), CD127 (eBioscience) and FOXP3 (eBioscience), as indicated, and analyzed by flow cytometry using an LSRII (BD Biosciences). For ex vivo flow cytometry cell sorting, enriched CD4+ T cells were stained with anti-CD4, -CD8, -CD45RA, -CD25 and -CD127 mAb. After gating on CD4+ cells stained with anti-CD4, -CD8, -CD45RA, -CD25 and -CD127 mAb. After gating on CD4+CD8+CD45RA− lymphocytes, cells were separated into memory CD25+CD127+CD4+ and CD25+CD127− Treg populations to high purity (≥97%) using a FACS Aria (BD Biosciences).

In vitro stimulation and functional assessment of CD4+ T-cell subsets

Total CD4+ T cells or ex vivo sorted memory conventional and Treg CD4+ T-cell populations were stimulated in vitro with either a pool of long overlapping peptides covering the ESO sequence [16] or with anti-CD2/3/29-coated microbeads (Miltenyi Biotec) in the presence of irradiated autologous APC and were cultured in the presence of recombinant human IL-2 (Chiron). Day 12 to 14 presence of irradiated autologous APC and were cultured in the pool of long overlapping peptides covering the ESO sequence [16] and PMA (100 ng/mL, Sigma Aldrich) using mAb specific for IFN-γ production. T-cell cultures were incubated with tetramers either the ESO peptide pool or PMA (100 ng/mL, Sigma Aldrich) and ionomycin (1 μg/mL, Sigma Aldrich), as indicated, and analyzed by flow cytometry (LSRII).

MHC class II/ESO peptide tetramer staining

Fluorescent HLA-DR52b/and HLA-DR4/ESO 119–143 tetramers were generated as previously described [17,18]. ESO-stimulated CD4+ T-cell cultures were incubated with tetramers at a final concentration of 3 μg/mL for 1 h at 37 °C and then stained with CD4-specific mAb and analyzed by flow cytometry (LSRII). For ex vivo enumeration and phenotyping of specific cells, total CD4+ T cells enriched from PBMC by magnetic cell sorting were rested overnight, incubated with tetrarmers (3 μg/mL) for 2 h at 37 °C and then stained with the indicated mAb and analyzed by flow cytometry (LSRII).

Isolation of ESO-specific polyclonal populations and assessment of suppressive function

ESO-specific T cells were isolated from peptide-stimulated cultures by IFN-γ secretion assay (Miltenyi Biotec) or tetramer-guided flow cytometry cell sorting and expanded by stimulation with PHA and irradiated allogeneic PBMC in the presence of IL-2, as previously described [16,17]. The specificity of the obtained polyclonal cultures was assessed by tetramer staining or by intracellular IFN-γ staining following restimulation with ESO peptides and FOXP3 expression was assessed by staining with specific mAb. The suppressive activity of ESO-specific polyclonal cultures was assessed by co-culture of CFSE-labeled responder conventional CD4+ T cells with or without test populations in the presence of irradiated monocytes, enriched by positive selection from PBMC by magnetic cell sorting (Miltenyi Biotec), and PHA, as previously described [23,24]. Growth of responder cells was assessed by flow cytometry analysis of CFSE dilution in day 4 to 6 cultures. The growth (100-% undivided cells) of the wells with suppressor cells (experimental group) was compared with that of the wells without suppressors (control). The percentage of suppression was determined as follows: 100 – [(growth of experimental group/growth of control) × 100].

Acknowledgments

We are grateful to Drs. G. Ritter and L.J. Old for providing the recombinant NY-ESO-1 protein and for helpful advice.

Author Contributions

Conceived and designed the experiments: DV MA. Performed the experiments: NR KD-A IR DD. Analyzed the data: NR IL DD DV. Wrote the paper: DV MA.

References

1. Kennedy R, Celis E (2008) Multiple roles for CD4+ T cells in anti-tumor immune responses. Immunol Rev 222: 129–141.
2. Muranski P, Restifo NP (2009) Adoptive immunotherapy of cancer using CD4+ T cells. Curr Opin Immunol 21: 200–208.
3. Curiel TJ, Coskous G, Zou L, Alvarez X, Cheng P, et al. (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10: 942–949.
4. Sato E, Olson SH, Ablin A, Bandy B, Nirshkawa H, et al. (2005) Intraperitoneal CD4+ tumor-infiltrating lymphocytes and a high CD4+regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci U S A 102: 18538–18543.
5. Hiraoka N, Onozato K, Kosuge T, Hirohashi S (2006) Prevalence of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma. Clin Cancer Res 12: 4523–4534.
6. Gao Q, Qin SJ, Fan J, Zhou J, Wang XY, et al. (2007) Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol 25: 2568–2593.
7. Kobayashi N, Hiraoka N, Yamagami W, Ojima H, Kanai Y, et al. (2007) FOXP3+ regulatory T cells increase the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin Cancer Res 13: 3093–3102.
8. Woo EY, Yeh H, Chu CS, Schlienger K, Carroll RG, et al. (2002) Cutting edge: FOXP3 expression is associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci U S A 102: 18538–18543.
9. Liyanage UK, Moore TT, Joo HG, Tanaka Y, Herrmann V, et al. (2002) Regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation. J Immunol 168: 4272–4276.
10. Chen YT, Sasan MJ, Sahin U, Tureci O, Gure AO, et al. (1997) A tetanus antigen aberrantly expressed in human cancers detected by autologous antibody screening. Proc Natl Acad Sci U S A 94: 1914–1918.
11. Valmori D, Dutout V, Leandri D, Rinaldi D, Pintet M, et al. (2000) Naturally occurring HLA-A2 restricted CD8+ T cell response to the cancer testis antigen NY-ESO-1 in melanoma patients. Cancer Res 60: 4499–4506.
12. Cheever MA, Allison JP, Ferris AS, Fenn OJ, Hastings BM, et al. (2009) The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res 15: 5323–5337.
13. Jager E, Chen YT, Driebout JW, Karbach J, Ringhoff M, et al. (1998) Simultaneous humoral and cellular immune response against cancer-testis antigen NY-ESO-1: definition of human histocompatibility leukocyte antigen (HLA)-A2 binding peptide epitopes. J Exp Med 176: 265–270.
14. Valmori D, Soulémanin NE, Hesdorffer CS, Ritter G, Old LJ, et al. (2005) Identification of B cell epitopes recognized by antibodies specific for the tumor antigen NY-ESO-1 in cancer patients with spontaneous immune responses. Clin Immunol 117: 24–30.
15. Ayyoub M, Soulémanin NE, Godefroy E, Scotto L, Hesdorffer CS, et al. (2006) A phenotype based approach for the immune monitoring of NY-ESO-1 specific CD4+ T cell responses in cancer patients. Clin Immunol 118: 138–194.
16. Valmori D, Soulémanin NE, Tesello V, Bhaureoj N, Adams S, et al. (2007) Vaccination with NY-ESO-1 protein and CpG in Montanide induces integrated antibody/T cell responses and CD8 T cells through cross-priming. Proc Natl Acad Sci U S A 104: 8947–8952.
17. Ayyoub M, Dojcinovic D, Pignon P, Rainbaud I, Schmidt J, et al. (2010) Monitoring of NY-ESO-1 specific CD4+ T cells using molecularly defined MHC class II/His-tag-peptide tetramers. Proc Natl Acad Sci U S A 107: 7437–7442.

18. Ayyoub M, Pignon P, Dojcinovic D, Rainbaud I, Old LJ, et al. (2010) Assessment of vaccine-induced CD4+ T cell responses to the 119-143 immunodominant region of the tumor-specific antigen NY-ESO-1 using DRB1*0101 tetramers. Clin Cancer Res 16: 4607–4615.

19. Fourcade J, Sun Z, Kudela P, Janjic B, Kirkwood JM, et al. (2010) Human tumor antigen-specific helper and regulatory T cells share common epitope specificity but exhibit distinct T cell repertoire. J Immunol 184: 6709–6718.

20. Nicholaou T, Ebert LM, Davis ID, McArthur GA, Jackson H, et al. (2009) Regulatory T-cell-mediated attenuation of T-cell responses to the NY-ESO-1 ISCOMATRIX vaccine in patients with advanced malignant melanoma. Clin Cancer Res 15: 6076–6083.

21. Haringer B, Lozza L, Steckel B, Geginat J (2009) Identification and characterization of IL-10/IFN-gamma-producing effector-like T cells with regulatory function in human blood. J Exp Med 208: 1009–1017.

22. Odunsi K, Jungbluth AA, Stockert E, Qian F, Gnjatic S, et al. (2003) NY-ESO-1 and LAGE-1 cancer-testis antigens are potential targets for immunotherapy in epithelial ovarian cancer. Cancer Res 63: 6076–6083.

23. Valmori D, Merlo A, Souleimian NE, Hesdorffer CS, Ayyoub M (2005) A peripheral circulating compartment of natural naive CD4 Tregs. J Clin Invest 115: 1953–1962.

24. Valmori D, Raffin C, Rainbaud I, Ayyoub M (2010) Human ROR-1+TH17 cells preferentially differentiate from naive FOXP3+Treg in the presence of lineage-specific polarizing factors. Proc Natl Acad Sci U S A 107: 19402–19407.

25. Mougiakakos D, Choudhury A, Lladser A, Kiessling R, Johansson CC (2010) Regulatory T cells in cancer. Adv Cancer Res 107: 57–117.

26. Woo EY, Chu CS, Goletz TJ, Schilirg K, Yeh H, et al. (2001) Regulatory CD4+CD25+ T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res 61: 4766–4772.

27. Maker AV, Phan GQ, Attia P, Yang JC, Sherry RM, et al. (2005) Tumor regression and autoimmunity in patients treated with cytotoxic T lymphocyte-associated antigen 4 blockade and interleukin 2: a phase I/II study. Ann Surg Oncol 12: 1005–1016.