Constraining hadronization mechanisms with $\Lambda_c^+ / D^0$ production ratios in Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

ALICE Collaboration

Abstract

The production of prompt $\Lambda_c^+$ baryons at midrapidity ($|y| < 0.5$) was measured in central (0–10%) and mid-central (30–50%) Pb–Pb collisions at the center-of-mass energy per nucleon–nucleon pair $\sqrt{s_{NN}} = 5.02$ TeV with the ALICE detector. The results are more precise, more differential in centrality, and reach much lower transverse momentum ($p_T = 1$ GeV/c) with respect to previous measurements performed by the ALICE, STAR, and CMS Collaborations in nucleus–nucleus collisions, allowing for an extrapolation down to $p_T = 0$. The $p_T$-differential $\Lambda_c^+ / D^0$ ratio is enhanced with respect to the pp measurement for $4 < p_T < 8$ GeV/c by 3.7 standard deviations ($\sigma$), while the $p_T$-integrated ratios are compatible within $1\sigma$. The observed trend is similar to that observed in the strange sector for the $\Lambda / K^0_S$ ratio. Model calculations including coalescence or statistical hadronization for charm-hadron formation are compared with the data.
1 Introduction

Heavy-ion collisions at LHC energies produce a phase of strongly-interacting matter, known as the quark–gluon plasma (QGP), in which quarks and gluons are deconfined [1]. The existing measurements indicate that the QGP behaves as a strongly-coupled low-viscosity liquid-like system [2]. Heavy quarks, produced at the start of the collision, experience the full evolution of the system and constitute a unique probe of the QGP properties [3]. The hadronization of heavy quarks into open heavy-flavor hadrons is expected to be influenced by the presence of a deconfined medium. Theoretical calculations that include modified hadronization via quark coalescence or via a resonance recombination approach [4, 5] predict a significant enhancement of the $\Lambda^+_c/D^0$ yield ratio in heavy-ion collisions compared to the expected ratio in pp collisions. In addition, the collective radial expansion of the system determines a flow-velocity profile common to all thermalized particles, that could increase the $\Lambda^+_c$ production relative to the $D^0$ meson.

The $\Lambda^+_c$ production in Pb–Pb collisions measured by the CMS Collaboration at 5.02 TeV [16] and by the LHCb Collaboration at 7 TeV [15] showed that in a hadronic collision, even at relatively small multiplicities, charm-quark hadronization proceeds differently than in $e^+e^-$ collisions. The $p_T$-dependence of the $\Lambda^+_c/D^0$ ratio evolves with multiplicity and the maximum of the ratio increases for the higher multiplicity intervals, while the $p_T$-integrated $\Lambda^+_c/D^0$ ratios do not show a significant dependence on multiplicity up to $12 < p_T < 30$ GeV/c. The values of the $\Lambda^+_c/D^0$ ratio measured at forward rapidity by the LHCb Collaboration are smaller than those at midrapidity, indicating a non-negligible rapidity dependence.

A recent measurement performed by ALICE in intervals of charged-particle multiplicity $dN_{ch}/d\eta$ in pp collisions at $\sqrt{s} = 13$ TeV [32] showed that in a hadronic collision, even at relatively small multiplicities, charm-quark hadronization proceeds differently than in $e^+e^-$ collisions. The $p_T$-dependence of the $\Lambda^+_c/D^0$ ratio evolves with multiplicity and the maximum of the ratio increases for the higher multiplicity intervals, while the $p_T$-integrated $\Lambda^+_c/D^0$ ratios do not show a significant dependence on multiplicity up to $\langle dN_{ch}/d\eta \rangle \approx 40$. Whether the $p_T$-differential $\Lambda^+_c/D^0$ ratio keeps evolving with multiplicity up to the typical multiplicities of Pb–Pb collisions, and whether an overall $p_T$-integrated enhancement of $\Lambda^+_c$ production relative to the $D^0$ meson is present at higher multiplicities, as proposed by coalescence models including light diquark states [4, 5, 9], are open questions and fundamental to the understanding of charm-quark hadronization.

The $\Lambda^+_c$ production in nucleus–nucleus collisions was measured for the first time at the LHC by ALICE in Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV in the 0–80% centrality interval for $6 < p_T < 12$ GeV/c [33]. The $\Lambda^+_c/D^0$ ratio was found to be close to unity, larger than the corresponding ratio measured in pp collisions, and well described by calculations including hadronization via coalescence mechanisms [7, 8]. The $\Lambda^+_c/D^0$ ratio measured in the interval $3 < p_T < 6$ GeV/c by the STAR Collaboration in Au–Au collisions at $\sqrt{s_{NN}} = 200$ GeV [34] shows an increasing trend towards more central collisions and is also described by model calculations including hadronization via coalescence [14, 7, 8, 35–37]. Considering together the values calculated by STAR in 10–80% Au–Au collisions and by ALICE in pp and p–Pb collisions [11, 32] a possible increase of the $p_T$-integrated $\Lambda^+_c/D^0$ ratio at high multiplicity is neither excluded nor confirmed. The CMS measurement in Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV [15], performed in the interval $10 < p_T < 20$ GeV/c, is consistent with the pp result within uncertainties as well as with predictions considering only string fragmentation [29], suggesting that coalescence has no significant effect in this $p_T$ range. The production of $\Lambda^+_c$ baryons was also measured in p–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV by the ALICE and LHCb Collaborations [11, 12, 38]. The current measurements...
Λ^+_c production in Pb–Pb collisions at √s_{NN} = 5.02 TeV

do, however, not allow to draw conclusions on the role of different cold-nuclear matter effects and the possible presence of hot-medium effects. Recently, LHCb also measured the Λ^+_c/D^0 ratio in peripheral (65–90%) Pb–Pb collisions at √s_{NN} = 5.02 TeV, which was observed to be consistent with the LHCb ratio in p–Pb collisions [39].

In this letter, the measurement of the p_T-differential production yields of prompt Λ^+_c baryons in central (0–10%) and mid-central (30–50%) collisions using the 2018 Pb–Pb at √s_{NN} = 5.02 TeV are reported down to p_T = 1 GeV/c. The results are more precise and more differential in p_T and centrality with respect to previous measurements [15, 33, 34]. The Λ^+_c/D^0 yield ratios and the nuclear modification factor R_{AA}, which is defined as the ratio of the production yield in Pb–Pb collisions and the cross section in pp collisions scaled by the average nuclear overlap function ⟨T_{AA}⟩ (proportional to the number of nucleon–nucleon collisions), are reported as function of p_T and compared with theoretical predictions. The p_T-integrated Λ^+_c production yield and Λ^+_c/D^0 ratio, extrapolated to p_T = 0, are also presented for the first time in Pb–Pb collisions.

2 Experimental apparatus and data sample

The ALICE apparatus is described in detail in [40, 41]. The data were collected using triggers based on the signal in the V0 detectors [42]. A minimum bias trigger, which required coincident signals in both detecting components of the V0 detector along the beam axis on opposite sides of the interaction point, was exploited. In addition, and differently with respect to the previous Pb–Pb data taking period at the ALICE detector using the GEANT3 package [48]. The conditions of all the ALICE detectors in the first time in Pb–Pb collisions.

The Monte Carlo (MC) simulations utilized in this analysis were obtained using the HIJING 1.36 event generator [46] to simulate Pb–Pb collisions at √s_{NN} = 5.02 TeV. In each simulated event, Λ^+_c signals were added by injecting Λ^0 or bbar pairs generated with the PYTHIA 8.243 event generator [23] with the Monash tune [47]. The Λ^+_c baryons were forced to decay into the hadronic decay channel of interest, Λ^+_c → pK^0_S followed by K^0_S → π^+π^−, using PYTHIA. All generated particles were transported through the ALICE detector using the GEANT3 package [48]. The conditions of all the ALICE detectors in terms of active channels, gain, noise level, and alignment, and their evolution with time during the data taking, were taken into account in the simulations.

3 Data analysis

The Λ^+_c baryon and its charge conjugate were reconstructed by exploiting the topology of the hadronic decay channel Λ^+_c → pK^0_S (branching ratio BR = 1.59 ± 0.08%), followed by the subsequent decay K^0_S → π^+π^− (BR = 69.20 ± 0.05%) [28]. Charged-particle tracks used to define the Λ^+_c candidates are reconstructed using the Inner Tracking System (ITS) [49] and the Time Projection Chamber (TPC) [50], located in a solenoid magnet that provides a 0.5 T field parallel to the beam direction. The Λ^+_c → pK^0_S candidates combine a proton-candidate track with a K^0_S-meson candidate, reconstructed in the K^0_S → π^+π^− decay channel. Only proton (pion) tracks with |η| < 0.8, p_T > 0.4 (0.1) GeV/c, at least 70 out of 159 associated crossed TPC pad rows, a ratio of crossed rows to findable clusters in the TPC larger than
0.8, at least 50 clusters in the TPC available for particle identification (PID), and a $\chi^2$/ndf < 1.25 in the TPC (where ndf is the number of degrees of freedom involved in the track fit procedure) were considered for the analysis. Moreover, a minimum number of two hits (out of six) in the ITS, with at least one in the inner two layers, were required for the proton track. The selection of tracks with $|\eta| < 0.8$ limits the $\Lambda_c^+$ acceptance in rapidity. For this reason a fiducial acceptance selection was applied on the rapidity of the $\Lambda_c^+$ candidates, $|y_{\text{lab}}| < y_{\text{fid}}(p_T)$, where $y_{\text{fid}}$ increases from 0.6 to 0.8 in $1 < p_T < 5$ GeV$/c$, and $y_{\text{fid}} = 0.8$ for $p_T > 5$ GeV$/c$.

Unlike the previous analysis based on linear selections [33], the $\Lambda_c^+$-candidate selection was performed using multivariate techniques based on the Boosted Decision Tree (BDT) algorithm provided by the XGBoost package [51]. Before the training, loose kinematic and topological selections were applied to the $K_S^0$-meson candidate together with the particle identification of the proton-candidate track. The PID was performed using the specific ionization energy loss $dE/dx$ in the TPC gas and the time of flight from the interaction point to the Time-Of-Flight (TOF) detector [52, 53]. The BDT training was performed considering as signal candidates prompt (not coming from beauty-hadron decays) $\Lambda_c^+$ decays from MC simulations. Background candidates were taken from the sidebands of the invariant mass distribution in data (defined to be outside a 80 MeV$/c^2$ window around the $\Lambda_c^+$ mass value reported by the PDG [28]).

The variables that were most important in the training were the PID-related variables of the proton-candidate track, the displacement of the proton-candidate track from the primary vertex, the distance between the $K_S^0$-meson decay vertex and the primary vertex, and the cosine of the pointing angle between the $K_S^0$-meson candidate line of flight and its reconstructed momentum vector. Independent BDTs were trained for the different $p_T$ and centrality intervals.

The selection on the BDT output was tuned in each $p_T$ interval to maximize the expected statistical significance, which is estimated using i) the expected signal obtained from FONLL calculations [54, 55] scaled by the corresponding $(T_{AA})$ [45] and multiplied by the BDT selection efficiency and ii) the expected background estimated from an invariant mass sideband fit using a fraction of the data.

After applying selections on the BDT output, the yields of $\Lambda_c^+$ baryons were extracted in each $p_T$ interval via binned maximum-likelihood fits to the candidate invariant mass distributions. The fitting function consisted of a Gaussian term to estimate the signal and a second-, third-, or fourth-order polynomial function (depending on the $p_T$ interval) to estimate the background. The default background fitting function was chosen after dedicated studies to obtain a good description of the invariant mass distribution in the sidebands. The other functions were considered for evaluating the systematic uncertainty.

The raw-yield extraction is challenging, especially at low $p_T$ with signal-to-background ratios below one per mille and relative statistical uncertainties on the extracted raw yield varying between 15–35%, as presented in Appendix A. Given the critical signal extraction due to the low signal-to-background ratios, the width of the Gaussian term for the signal was fixed to the value obtained from simulations. It was verified that the widths from the simulation were consistent within uncertainties to those extracted from fits to data without constraints on the width of the Gaussian (with a relative uncertainty of 1–2% in simulation and 20–30% in data). In addition, the stability of the signal extraction was further verified by i) fitting purely background candidates from simulations and ii) by repeating the fit after subtracting a background component estimated with an event-mixing technique. For the latter, the events were grouped in pools based on the primary-vertex position along $z$ and the estimated centrality. For the first study, none of the invariant mass fits allowed to extract a signal in the $\Lambda_c^+$ invariant mass region. For the second study, fits to the background-subtracted invariant mass distributions resulted in compatible $\Lambda_c^+$ raw yields to the ones extracted from the default fits.
The corrected yields of prompt $\Lambda_c^+$ baryons were obtained in each centrality interval as

$$\left. \frac{dN_{\Lambda_c^+}}{dp_T} \right|_{|y|<0.5} = \frac{f_{\text{prompt}} \times \frac{1}{2} N_{\Lambda_c^+}^{\text{raw}}}{\Delta p_T \times c_{\Delta y} \times (A \times \varepsilon)_{\text{prompt}} \times \text{BR} \times N_{\text{ev}}}.$$  \hspace{1cm} (1)

The raw yield values $N_{\Lambda_c^+}^{\text{raw}}$, extracted in a given $p_T$ interval of width $\Delta p_T$, were divided by a factor two and multiplied by the prompt fraction $f_{\text{prompt}}$ to obtain the charge-averaged yields of prompt $\Lambda_c^+$. Furthermore, they were divided by $c_{\Delta y} \times (A \times \varepsilon)$, enclosing the rapidity coverage and the acceptance-times-efficiency, by the BR of the decay channel, and by the number of analyzed events $N_{\text{ev}}$.

The $(A \times \varepsilon)$ correction was determined from MC simulations, using samples not employed in the BDT training. The generated $p_T$ spectrum used to calculate the efficiencies was reweighted to reproduce the shape obtained from the $D^0$ measurement $[55]$ multiplied by $\Lambda_c^+/D^0$ calculations from the TAMU model $[8]$ in 0–10% and 30–50% Pb–Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV. The $(A \times \varepsilon)$ increases from 1% (3%) at low $p_T$ to about 12% (16%) at high $p_T$ for central (mid-central) collisions. The correction factor for the rapidity acceptance, $c_{\Delta y}$, was computed as the ratio between the generated $\Lambda_c^+$-baryon yield in $\Delta y = 2|y_{\text{fid}}(p_T)|$ and that in $|y| < 0.5$ using the reweighted $p_T$ shape and the rapidity distribution from PYTHIA 8 simulations $[23]$. It was verified in $[56]$ that for D mesons the calculation of $c_{\Delta y}$ is only weakly sensitive to the rapidity distribution used for its calculation.

The $f_{\text{prompt}}$ fraction of the reconstructed signal was estimated using a similar strategy as described in $[33]$. In particular, the beauty-hadron production cross section was estimated with FONLL calculations $[54, 55]$, the fraction of beauty quarks that fragment into $\Lambda_c^+$ was estimated from the $\Lambda_c^+/B^0(B^+)$ ratio measured by LHCb in pp collisions at $\sqrt{s} = 13$ TeV $[57]$ following the same strategy as used in $[11]$, and the kinematics of the decay of beauty hadrons $H_b \rightarrow \Lambda_c^+ + X$ simulated with PYTHIA 8 $[23]$. The branching ratios were taken as implemented in PYTHIA 8.243, corresponding to approximately 82% for $\Lambda_c^+$ baryons and 2% for either $B^0$, $B^+$, and $B_s^+$ mesons. In addition, the $f_{\text{prompt}}$ fraction is modified to account for the nuclear modification factor of $\Lambda_c^+$ baryons from beauty-hadron decays. The central correction is chosen such that $R_{\text{AA}}^{\text{non-prompt}} = 2 \times R_{\text{AA}}^{\text{prompt}}$ as predicted by the “Catania” theoretical calculation $[4]$. The resulting $f_{\text{prompt}}$ fraction was found to be about 0.97 at low $p_T$ and about 0.81 at high $p_T$.

The systematic uncertainties of the $\Lambda_c^+$ corrected yields include contributions from i) the extraction of the raw yield, ii) the tracking efficiency, iii) the $\Lambda_c^+$ selection efficiency, iv) the MC generated $p_T$ spectra, v) the statistical uncertainty of the efficiency, and vi) the subtraction of feed-down $\Lambda_c^+$ baryons from b-hadron decays. The estimated values of these systematic uncertainties are summarized for representative $p_T$ intervals in Table 1. In addition, a global systematic uncertainty due to the centrality interval definition (2% for mid-central, negligible for central) $[56]$ and the branching ratio (5.5%) $[28]$ was assigned. For the $R_{\text{AA}}$ observable, the uncertainty of the pp cross section normalization uncertainty (2.1%) $[11]$ and of the average nuclear overlap function (0.7% for central, 1.6% for mid-central) $[45]$ are included in the global normalization uncertainty.

The systematic uncertainty of the raw-yield extraction was estimated by repeating the invariant mass fits varying the lower and upper limits of the fit range, the functional form of the background fit function, and considering the Gaussian width (mean) as a free (fixed) parameter in the fit. In order to test the sensitivity to the line shape of the signal, a bin-counting method was used, in which the signal yield was obtained by integrating the invariant-mass distribution after subtracting the background estimated from the sideband fit, as well as by studying the signal shape in the MC simulations using multiple stacked Gaussian functions rather than a single one. The procedure to estimate the systematic uncertainty of the track-reconstruction efficiency includes variations of the track-quality selection criteria for all decay tracks and studies on the probability to match TPC tracks to the ITS clusters in data and simulation for the proton-candidate track. The latter comparison was performed after weighting the relative abundances of
Table 1: Relative systematic uncertainties of the prompt Λ_c^+ -baryon corrected yield in Pb–Pb collisions for central and mid-central events in representative p_T intervals.

| Centrality interval | 0–10% | 30–50% |
|---------------------|--------|--------|
| p_T (GeV/c)         | 4–6    | 1–2    |
|                     | 12–24  | 6–8    |
| Yield extraction    | 11%    | 14%    |
|                     | 17%    | 12%    |
| Tracking efficiency | 10%    | 8%     |
|                     | 9%     | 8%     |
| Selection efficiency| 8%     | 7%     |
|                     | 8%     | 7%     |
| Prompt fraction     | +8%    | +4%    |
|                     | −6%    | −3%    |
|                     | +13%   | +12%   |
|                     | −13%   | −8%    |
| MC p_T shape        | 2%     | 2%     |
|                     | negl.  | 1%     |
| Centrality limits   | < 0.1% | 2%     |
| Branching ratio     |        | 5.5%   |
| Total syst. unc.    | +20%   | +21%   |
|                     | −19%   | −21%   |
|                     | +25%   | +21%   |
|                     | −25%   | −19%   |

primary and secondary particles in simulation to those in data [33]. The systematic uncertainty of the Λ_c^+ selection efficiency was estimated by repeating the analysis with different selections on the BDT output, resulting in up to 50% lower and 20–50% higher efficiency values. Possible systematic effects due to the loose PID selection, applied prior to the BDT one, were investigated by comparing the PID-selection efficiencies in data and in simulations and found to be negligible. Both the tracking- and PID-efficiency studies were performed using pure samples of pions (from K_0^0 decays) and protons (from Λ decays). An additional contribution derives from the p_T spectra of Λ_c^+ generated in the simulation, which was estimated by using the Λ_c^+ /D^0 predictions of the Catania model [7] and the SHMc [10] instead of the TAMU prediction [8] in the p_T-shape reweighting procedure, as well as by an iterative method using a parametrization of the measured p_T-differential production yields. Finally, the systematic uncertainty of the feed-down subtraction was estimated by varying the FONLL parameters as prescribed in [55] and the function describing the Λ_c^0 fragmentation fraction within the quoted experimental uncertainty as reported in [11], as well by varying the hypothesis on R^{non-prompt}_{AA}. For the latter, an interval 1/3 ≤ R^{non-prompt}_{AA}/R^{prompt}_{AA} < 3 was considered, wider with respect to that used for non-strange D mesons [56] to cover possible yet unmeasured differences between the modification of charm- and beauty-baryon production in Pb–Pb collisions with respect to the one in pp collisions.

The sources of systematic uncertainty considered in this analysis are assumed to be uncorrelated among each other and the total systematic uncertainty in each p_T and centrality interval is calculated as the quadratic sum of the individual uncertainties. For the Λ_c^+ /D^0 ratio, the Λ_c^+ and D^0 uncertainties were considered as uncorrelated except for the tracking efficiency and the feed-down contribution, which are assumed correlated and thus partially cancel in the ratio, and the systematic uncertainty of the centrality interval definition, which fully cancels. For the R_{AA}, the pp and Pb–Pb uncertainties were considered as uncorrelated except for the branching ratio uncertainty and the feed-down contribution, which both partially cancel out (the former because the pp measurement considers additional decay modes). Finally, in case of the p_T-integrated Λ_c^+ /D^0 ratio, there is a correlation between the extrapolation uncertainty of the Λ_c^+ baryon and the measured uncertainties of the Λ_c^+ and D^0 hadrons. To treat this correlation, the extrapolation uncertainty is divided into a correlated part (estimated as the extrapolation uncertainty when considering only the shape predicted by TAMU) and an uncorrelated part (the total extrapolation uncertainty subtracting the correlated part) with respect to the measured uncertainties. The uncorrelated part is summed in quadrature with the measured uncertainties, while the correlated part is added linearly.
$\Lambda^+_c$ production in Pb–Pb collisions at $\sqrt{S_{\text{NN}}} = 5.02$ TeV

ALICE Collaboration

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Left: $p_T$-differential production yields of prompt $\Lambda^+_c$ in central (0–10%) and mid-central (30–50%) Pb–Pb collisions at $\sqrt{S_{\text{NN}}} = 5.02$ TeV compared to the pp reference \cite{11} scaled by the $\langle T_{AA}\rangle$ of the corresponding centrality interval \cite{45}. Right: $\Lambda^+_c/D^0$ ratio in central and mid-central Pb–Pb collisions at $\sqrt{S_{\text{NN}}} = 5.02$ TeV compared with the results obtained from pp collisions \cite{11}.
}
\end{figure}

4 Results

The $p_T$-differential production yields of prompt $\Lambda^+_c$ baryons are shown in Fig. 1 (left panel). The statistical and total systematic uncertainties are shown as uncertainty bars and boxes, respectively, for all figures. The results are compared with the pp reference cross section \cite{11} multiplied by the corresponding $\langle T_{AA}\rangle$ \cite{45}, i.e. the denominator of the $R_{AA}$ observable that is discussed later. In the right panel of Fig. 1 the ratio of the production yields of $\Lambda^+_c$ baryons to that of $D^0$ mesons, measured in the same centrality intervals \cite{56}, are presented together with the pp measurement at the same collision energy \cite{11}. The ratios increase from pp to mid-central and central Pb–Pb collisions for $4 < p_T < 8$ GeV/$c$ with a significance of 2.0 and 3.7 standard deviations, respectively. This trend is qualitatively similar to what is observed for the $p/\pi$ \cite{58} and $\Lambda/K^0$ \cite{59} ratios, which both show a distinct peak at intermediate $p_T$ that increases in magnitude (by about a factor 2 for mid-central and a factor 3 for central Pb–Pb collisions with respect to minimum-bias pp collisions) and shifts to higher $p_T$ values (from about 2 GeV/$c$ in pp to 4 GeV/$c$ in central Pb–Pb collisions) with increasing multiplicity. The central and mid-central $\Lambda^+_c/D^0$ ratios in $12 < p_T < 24$ GeV/$c$ are compatible with the measurement by CMS in 0–100% Pb–Pb collisions in $p_T > 10$ GeV/$c$ region \cite{15}. The central $\Lambda^+_c/D^0$ ratio in $6 < p_T < 8$ GeV/$c$ is in agreement with the previous measurement of ALICE in the 0–80% centrality interval \cite{33}. For $p_T > 4$ GeV/$c$, the ratio measured in central collisions resembles in magnitude and $p_T$ trend the one reported by STAR in $2.5 < p_T < 8$ GeV/$c$ in 10–80% Au–Au collisions at $\sqrt{S_{\text{NN}}} = 200$ GeV \cite{34}. Note that the large centrality classes of the previous measurements are dominated by the production in the most central events (given the scaling of the $\Lambda^+_c$ yields with $N_{\text{coll}} \times R_{AA}$), hence they are compared to the measurement in 0–10%.

The nuclear modification factor $R_{AA}$ of prompt $\Lambda^+_c$ is compared with the $R_{AA}$ of prompt $D^+_c$ mesons \cite{60} and the average $R_{AA}$ of prompt $D^0$, $D^+$, and $D^{*+}$ mesons \cite{56} in Fig. 2 for the 0–10% and 30–50% centrality intervals. The $p_T$-differential $\Lambda^+_c$ cross section in pp collisions at $\sqrt{s} = 5.02$ TeV in the $1 < p_T < 12$ GeV/$c$ interval from \cite{11} was used as the pp reference. In the interval $12 < p_T < 24$ GeV/$c$, the $\Lambda^+_c$ and $D^0$ measurements at $\sqrt{s} = 5.02$ and 13 TeV \cite{14, 61} were exploited, assuming no $\sqrt{s}$ dependence for the $\Lambda^+_c/D^0$ ratio as observed within uncertainties in $1 < p_T < 12$ GeV/$c$ \cite{14}. The total uncertainty of the pp reference in the $12 < p_T < 24$ GeV/$c$ interval is 23%, combining in quadrature the measured statistical and systematic uncertainties on the $\Lambda^+_c/D^0$ ratio at $\sqrt{s} = 13$ TeV and $D^0$ cross section at $\sqrt{s} = 5.02$ TeV.
Λ^+_c production in Pb–Pb collisions at √s_{NN} = 5.02 TeV

ALICE Collaboration

Figure 2: Nuclear modification factor R_{AA} of prompt Λ^+_c baryons in central (0–10%; left) and mid-central (30–50%; right) Pb–Pb collisions at √s_{NN} = 5.02 TeV, compared with the R_{AA} of prompt D^+_c [60] and the average of prompt non-strange D mesons [56]. The normalization uncertainties are shown as boxes around unity.

The suppression of all charm-meson (baryon) species from p_T ≥ 3 (6) GeV/c is understood as being primarily due to the interaction of charm quarks with the quark–gluon plasma, which modifies their momentum spectra, as discussed extensively for the non-strange D mesons in [56]. In central collisions in the region 4 < p_T < 8 GeV/c, there is a hint of a hierarchy R_{AA}(D) < R_{AA}(D^+_c) < R_{AA}(Λ^+_c). In mid-central collisions, this hierarchy is less pronounced. In the p_T ≥ 10 GeV/c region, where the hadronization is expected to occur mainly via fragmentation, the R_{AA} of the various charm-hadron species are compatible within uncertainties.

Figure 3 compares the p_T-differential Λ^+_c/D^0 ratios with different theoretical predictions: Catania [7], TAMU [8], and the GSI–Heidelberg statistical hadronization model (SHMc) [10]. The predictions of Catania and TAMU for pp collisions [30, 31] are also compared with the existing measurement in pp collisions [11]. The Catania model [7, 30] assumes that a QGP is formed in both pp and Pb–Pb collisions. In Pb–Pb collisions heavy-quark transport is implemented via the Boltzmann equation, and in both pp and Pb–Pb collisions hadronization occurs either via coalescence, implemented through the Wigner formalism, or via fragmentation in case the quarks do not undergo coalescence. The TAMU model [8] describes charm-quark transport in an expanding medium with the Langevin equation and hadronization proceeds primarily via coalescence, implemented with a Resonance Recombination Model (RRM) [62]. Left-over charm quarks not undergoing coalescence are hadronized via fragmentation. In pp collisions, the charm-hadron abundances are instead determined with a statistical hadronization approach [31]. In both collision systems the underlying charm-baryon spectrum includes unobserved excited states predicted by the Relativistic Quark Model (RQM) [63] and lattice QCD [31]. Finally, for the SHMc predictions [10], which include only charm mesons and baryons established experimentally, the charm-hadron p_T spectra are modeled within a core-corona approach. The core contribution represents the central region of the colliding nuclei where charm quarks achieve local thermal equilibrium in a hydrodynamically expanding QGP. The charm-hadron spectra in the corona contribution are, instead, parameterized from measurements in pp collisions. The p_T-spectra modification due to resonance decays is computed using the FastReso package [64]. The theoretical uncertainty bands shown in Fig. 3 derive from: an assumed range of branching ratios (50–100%) for the decays of the RQM-augmented excited states into Λ^+_c for the TAMU model; the variation of about 10% of the Wigner function widths in the Catania calculations; and mainly the uncertainties on the pp spectra fits in the SHMc predictions at high p_T.

8
The SHMc describes the $\Lambda_c^+ / D^0$ ratio in mid-central collisions, but underpredicts the ratio in $4 < p_T < 8$ GeV/$c$ in central collisions by about 2.5$\sigma$ of the combined statistical, systematic, and theoretical uncertainties. The prediction of the Catania model in central collisions underestimates the $\Lambda_c^+ / D^0$ ratio at intermediate $p_T$, although the deviation is at maximum 2.5$\sigma$. The TAMU predictions reproduce the magnitude and shape of the $\Lambda_c^+ / D^0$ ratios. While both these fragmentation plus coalescence model calculations are able to describe the $\Lambda_c^+ / D^0$ ratio in Au–Au collisions at $\sqrt{s_{NN}} = 200$ GeV in the 10–80% centrality interval [34], the TAMU model better reproduces the data in central Pb–Pb collisions. A pure coalescence scenario from an older version of the Catania model was reproducing better the previous ALICE measurement in 0–80% Pb–Pb collisions [33]. The Catania and TAMU predictions also describe both the magnitude and $p_T$ shape of the measured $\Lambda_c^+ / D^0$ ratio in pp collisions. Instead, at forward rapidity, the TAMU model predicts a systematically higher $\Lambda_c^+ / D^0$ ratio than measured by LHCb in 65–90% Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV [39].

The $\Lambda_c^+$ production yield for $p_T > 0$ was estimated by summing up the measured $p_T$-differential yields and the extrapolated $\Lambda_c^+$ yield for $p_T < 1$ GeV/$c$. The $\Lambda_c^+$ yield in $0 < p_T < 1$ GeV/$c$ was obtained as the product of the $\Lambda_c^+ / D^0$ ratio value estimated by interpolating the ratio in the measured $p_T$ interval with model expectations and the measured D$^0$ yield [54]. The interpolation procedure was performed using the shape predicted by TAMU [3], Catania [7] (not available for 30–50%), SHMc [10], and blast-wave [65] calculations, leaving the normalization as a free parameter. The shape from TAMU was chosen as the central value based on the $\chi^2$/ndf values, while the difference between the obtained yields was considered in the systematic uncertainty due to the extrapolation. The results for the prompt $\Lambda_c^+$ production yields per unit of rapidity in $|y| < 0.5$ are $dN/dy = 3.27 \pm 0.42$ (stat) $\pm 0.45$ (syst) $\pm 0.16$ (BR) $^{+0.29}_{-0.27}$ (extr) for central collisions and $dN/dy = 0.70 \pm 0.09$ (stat) $\pm 0.09$ (syst) $\pm 0.04$ (BR) $^{+0.07}_{-0.05}$ (extr) for mid-central collisions, where the visible yield is about 81% of the total for both centrality classes. The SHMc [10] predicts lower values, $dN/dy = 1.55 \pm 0.23$ and $dN/dy = 0.316 \pm 0.036$, respectively.

The measured $\Lambda_c^+ / D^0$ ratios, obtained dividing the $p_T$-integrated $\Lambda_c^+$ and D$^0$ yields [54], are presented in Fig. 3 taking into account the correlation between the measured and extrapolated uncertainties. Similarly to what is observed for the $\Lambda / K_S^0$ ratio [39,66], the $\Lambda_c^+ / D^0$ ratios in Pb–Pb collisions are compatible with the $p_T$-integrated $\Lambda_c^+ / D^0$ ratios at pp and p–Pb multiplicities [11,33] within one standard deviation of the combined uncertainties. This observation, together with the significant enhancement of the $\Lambda_c^+ / D^0$ ratio at intermediate $p_T$ with increasing multiplicity, seen here and in pp collisions [32], suggests a modified (and perhaps similar) mechanism of hadronization in all hadronic collision systems with respect to charm fragmentation tuned on $e^+e^-$ and $e^-p$ measurements (PYTHIA 8 point in Fig. 3). The coalescence models of [4,3,9], in which the $\Lambda_c^+ / D^0$ ratio depends on the balance of quark and diquark densities at
Λ⁺ production in Pb–Pb collisions at √s_{NN} = 5.02 TeV

ALICE Collaboration

Figure 4: The pT-integrated and to pT > 0 extrapolated Λ⁺/D⁰ ratios in central and mid-central Pb–Pb collisions at √s_{NN} = 5.02 TeV compared to the same ratio at pp and p–Pb [11, 32] and Au–Au [34] multiplicities. Predictions from theoretical calculations are shown as well [7, 8, 10, 23, 30, 31].

hadronization time, expect a dependence of the pT-integrated Λ⁺/D⁰ ratio on multiplicity (leading to an increase by about a factor 3–10 in nuclear collisions compared with their pp baseline), which is not observed. The measured pT-differential enhancement may, instead, predominantly be caused by altered production ratios for baryons and mesons following from the phase-space distribution of the quarks. This can arise from the collective radial expansion of the system, for which, in the coalescence picture (Catania and TAMU Pb–Pb points in Fig. 4), the accounting of space–momentum correlations in the procedure have been observed to be fundamental in [8, 9]. Interactions in the hadronic phase are, on the contrary, expected to have a small effect on the Λ⁺/D⁰ ratio [6, 67]. The statistical hadronization approach (SHMc and TAMU pp points in Fig. 4), can also describe both the pT-differential and pT-integrated observations with the, currently debated, caveat that for the proper normalization yet unobserved charm-baryon states need to be assumed [10, 31]. Note that the authors of the TAMU model include these additional states already in their predictions, while for the SHMc model it is not the baseline. The uncertainty of the pT-integrated yield in Pb–Pb collisions is still relatively large, and more precise measurements at low pT will help to further discriminate between charm-baryon formation scenarios.

Finally, Fig. 5 shows the R_{AA} of prompt Λ⁺ baryons compared with the previously introduced theoretical models [7, 8, 13]. The Catania R_{AA} predictions are from an earlier version of the model than the Λ⁺/D⁰ predictions and they do not have an uncertainty band. The TAMU model provides a good description of the R_{AA}, over the whole pT range, in both central and mid-central collisions. The Catania model describes the data in both central and mid-central collisions for pT > 2 GeV/c, however for pT < 2 GeV/c the model predicts a R_{AA} higher than unity which is disfavored by data. Both these models do not include charm-quark interactions with medium constituents via radiative processes, hence are not expected to describe the R_{AA} for pT > 8 GeV/c. The SHMc model instead significantly underestimates the Λ⁺ R_{AA} over the whole pT range.

5 Conclusions

In summary, the measurements of the production yield of prompt Λ⁺ baryons in central (0–10%) and mid-central (30–50%) Pb–Pb collisions at a center-of-mass energy per nucleon pair √s_{NN} = 5.02 TeV were presented. The yield could be extrapolated to pT = 0 in the two centrality classes with significantly smaller uncertainties than the previous measurement by STAR in 10–80% Au–Au collisions.
Λ⁺ production in Pb–Pb collisions at √s_{NN} = 5.02 TeV

ALICE Collaboration

Figure 5: Nuclear modification factor R_{AA} of prompt Λ⁺ baryons in central (0–10%; left) and mid-central (30–50%; right) Pb–Pb collisions at √s_{NN} = 5.02 TeV, compared with model predictions. When estimated, the model uncertainty is shown as a shaded band.

at √s_{NN} = 200 GeV, exploring not only a new energy regime but also higher multiplicities. The p_T-differential Λ⁺/D⁰ ratios increase from pp to central Pb–Pb collisions for 4 < p_T < 8 GeV/c with a significance of 3.7 standard deviations, while the p_T-integrated ratios are compatible within one standard deviation. Both observations are in qualitative agreement with the baryon-to-meson ratio for strange hadrons. The measurements are described by theoretical calculations that include both coalescence and fragmentation processes when describing the hadronization of heavy flavors in the QGP. The upgraded ALICE detector for the LHC Runs 3 and 4 will increase its acquisition rate by up to a factor of about 50 in Pb–Pb collisions and the tracking precision by a factor 3–6, meaning future measurements of Λ⁺-baryon production will allow for stronger constraints on the heavy-quark hadronization mechanisms in heavy-ion collisions [68].

Acknowledgements

The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: A. I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences, Austrian Science Fund (FWF): [M 2467-N36] and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (Finep), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Ministry of Education of China (MOEC), Ministry of Science & Technology of China (MSTC) and National Natural Science Foundation of China (NSFC), China; Ministry of Science and Education and Croatian Science Foundation, Croatia; Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Cubaenergía, Cuba; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council for Independent Research | Natural Sciences, the VILLUM FONDEN and
$\Lambda_c^+$ production in Pb–Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV

ALICE Collaboration

Danish National Research Foundation (DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat à l’Energie Atomique (CEA) and Institut National de Physique Nucléaire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS), France; Bundesministerium für Bildung und Forschung (BMBF) and GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany; General Secretariat for Research and Technology, Ministry of Education, Research and Religions, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy Government of India (DAE), Department of Science and Technology, Government of India (DST), University Grants Commission, Government of India (UGC) and Council of Scientific and Industrial Research (CSIR), India; Indonesian Institute of Science, Indonesia; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) and Japan Society for the Promotion of Science (JSPS) KAKENHI, Japan; Consejo Nacional de Ciencia (CONACYT) and Tecnología, through Fondo de Cooperación Internacional en Ciencia y Tecnología (FONCICYT) and Dirección General de Asuntos del Personal Académico (DGAPA), Mexico; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; The Research Council of Norway, Norway; Commission on Science and Technology for Sustainable Development in the South (COMSATS), Pakistan; Pontificia Universidad Católica del Perú, Peru; Ministry of Education and Science, National Science Centre and WUT ID-UB, Poland; Korea Institute of Science and Technology Information and National Research Foundation of Korea (NRF), Republic of Korea; Ministry of Education and Scientific Research, Institute of Atomic Physics, Ministry of Research and Innovation and Institute of Atomic Physics and University Politehnica of Bucharest, Romania; Joint Institute for Nuclear Research (JINR), Ministry of Education and Science of the Russian Federation, National Research Centre Kurchatov Institute, Russian Science Foundation and Russian Foundation for Basic Research, Russia; Ministry of Education, Science, Research and Sport of the Slovak Republic, Slovakia; National Research Foundation of South Africa, South Africa; Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW), Sweden; European Organization for Nuclear Research, Switzerland; Suranaree University of Technology (SUT), National Science and Technology Development Agency (NSDTA) and Office of the Higher Education Commission under NRU project of Thailand, Thailand; Turkish Energy, Nuclear and Mineral Research Agency (TENMAK), Turkey; National Academy of Sciences of Ukraine, Ukraine; Science and Technology Facilities Council (STFC), United Kingdom; National Science Foundation of the United States of America (NSF) and United States Department of Energy, Office of Nuclear Physics (DOE NP), United States of America.

References

[1] W. Busza, K. Rajagopal, and W. van der Schee, “Heavy Ion Collisions: The Big Picture, and the Big Questions”, Ann. Rev. Nucl. Part. Sci. 68 (2018) 339–376 [arXiv:1802.04801 [hep-ph]].

[2] B. Muller, J. Schukraft, and B. Wyslouch, “First Results from Pb–Pb collisions at the LHC”, Ann. Rev. Nucl. Part. Sci. 62 (2012) 361–386 [arXiv:1202.3233 [hep-ex]].

[3] A. Andronic et al., “Heavy-flavour and quarkonium production in the LHC era: from proton–proton to heavy-ion collisions”, Eur. Phys. J. C 76 (2016) 107 [arXiv:1506.03981 [nucl-ex]].

[4] S. H. Lee et al., “$\Lambda_c$ Enhancement from Strongly Coupled Quark-Gluon Plasma”, Phys. Rev. Lett. 100 (2008) 222301 [arXiv:0709.3637 [nucl-th]].

[5] Y. Oh, C. M. Ko, S. H. Lee, and S. Yasui, “Ratios of heavy baryons to heavy mesons in relativistic nucleus–nucleus collisions”, Phys. Rev. C 79 (2009) 044905 [arXiv:0901.1382 [nucl-th]].

[6] S. K. Das et al., “Propagation of heavy baryons in heavy-ion collisions”, Phys. Rev. D 94 (2016) 114039 [arXiv:1604.05666 [nucl-th]].
Λ_c^+ production in Pb–Pb collisions at √s_{NN} = 5.02 TeV

ALICE Collaboration

[7] S. Plumari et al., “Charmed hadrons from coalescence plus fragmentation in relativistic nucleus–nucleus collisions at RHIC and LHC”, Eur. Phys. J. C 78 (2018) 348, arXiv:1712.00730 [hep-ph].

[8] M. He and R. Rapp, “Hadronization and Charm-Hadron Ratios in Heavy-Ion Collisions”, Phys. Rev. Lett. 124 (2020) 042301, arXiv:1905.09216 [nucl-th].

[9] A. Beraudo et al., “In-medium hadronization of heavy quarks and its effect on charmed meson and baryon distributions in heavy-ion collisions”, Eur. Phys. J. C 82 (2022) 607, arXiv:2202.08732 [hep-ph].

[10] A. Andronic et al., “The multiple-charm hierarchy in the statistical hadronization model”, JHEP 07 (2021) 035, arXiv:2104.12754 [hep-ph].

[11] ALICE Collaboration, S. Acharya et al., “Λ_c^+ production in pp and in p–Pb collisions at √s_{NN} = 5.02 TeV”, Phys. Rev. C 104 (2021) 054905, arXiv:2011.06079 [nucl-ex].

[12] ALICE Collaboration, S. Acharya et al., “Λ_c^+ production and baryon-to-meson ratios in pp and p–Pb collisions at √s_{NN} = 5.02 TeV at the LHC”, Phys. Rev. Lett. 127 (2021) 202301, arXiv:2011.06078 [nucl-ex].

[13] ALICE Collaboration, S. Acharya et al., “Λ_c^+ production in pp collisions at √s = 7 TeV and in p–Pb collisions at √s_{NN} = 5.02 TeV”, JHEP 04 (2018) 108, arXiv:1712.09581 [nucl-ex].

[14] ALICE Collaboration, S. Acharya et al., “Measurement of prompt D^0, Λ_c^+, and Σ_c^0(2455) production in pp collisions at √s = 13 TeV”, Phys. Rev. Lett. 128 (2022) 012001, arXiv:2106.08278 [hep-ex].

[15] CMS Collaboration, A. M. Sirunyan et al., “Production of Λ_c^+ baryons in proton–proton and lead–lead collisions at √s_{NN} = 5.02 TeV”, Phys. Lett. B 803 (2020) 135328, arXiv:1906.03322 [hep-ex].

[16] LHCb Collaboration, R. Aaij et al., “Prompt charm production in pp collisions at √s = 7 TeV”, Nucl. Phys. B 871 (2013) 1–20, arXiv:1302.2864 [hep-ex].

[17] ARGUS Collaboration, H. Albrecht et al., “Observation of the charmed baryon Λ_c in e^+e^- annihilation at 10 GeV”, Phys. Lett. B 207 (1988) 109–114.

[18] CLEO Collaboration, P. Avery et al., “Inclusive production of the charmed baryon Λ_c^+ from e^+e^- annihilations at √s = 10.55 GeV”, Phys. Rev. D 43 (1991) 3599–3610.

[19] ARGUS Collaboration, H. Albrecht et al., “Inclusive production of D^0, D^+ and D^{*+}(2410) mesons in B decays and nonresonant e^+e^- annihilation at 10.6 GeV”, Z. Phys. C 52 (1991) 353–360.

[20] ZEUS Collaboration, S. Chekanov et al., “Measurement of charm fragmentation ratios and fractions in photoproduction at HERA”, Eur. Phys. J. C 44 (2005) 351–366, arXiv:hep-ex/0508019.

[21] ZEUS Collaboration, H. Abramowicz et al., “Measurement of charm fragmentation fractions in photoproduction at HERA”, JHEP 09 (2013) 058, arXiv:1306.4862 [hep-ex].

[22] ZEUS Collaboration, H. Abramowicz et al., “Measurement of D^+ and Λ_c^+ production in deep inelastic scattering at HERA”, JHEP 11 (2010) 009, arXiv:1007.1945 [hep-ex].
Λ^+ production in Pb–Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV

ALICE Collaboration

[23] T. Sjöstrand et al., “An introduction to PYTHIA 8.2”, *Comput. Phys. Commun.* **191** (2015) 159–177, arXiv:1410.3012 [hep-ph]

[24] M. Bahr et al., “Herwig++ physics and manual”, *Eur. Phys. J. C** **58** (2008) 639–707, arXiv:0803.0883 [hep-ph]

[25] S. Frixione, P. Nason, and G. Ridolfi, “A Positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction”, *JHEP* **09** (2007) 126, arXiv:0707.3088 [hep-ph]

[26] B. A. Kniehl, G. Kramer, I. Schienbein, and H. Spiesberger, “Λ^± production in pp collisions with a new fragmentation function”, *Phys. Rev. D** **101** (2020) 114021, arXiv:2004.04213 [hep-ph]

[27] L. Gladilin, “Fragmentation fractions of c and b quarks into charmed hadrons at LEP”, *Eur. Phys. J. C** **75** (2015) 19, arXiv:1404.3888 [hep-ex]

[28] Particle Data Group Collaboration, P. Zyla et al., “Review of Particle Physics”, *PTEP* **2020** (2020) 083C01

[29] J. R. Christiansen and P. Z. Skands, “String formation beyond leading colour”, *JHEP* **08** (2015) 003, arXiv:1505.01681 [hep-ph]

[30] V. Minissale, S. Plumari, and V. Greco, “Charm hadrons in pp collisions at LHC energy within a coalescence plus fragmentation approach”, *Phys. Lett. B** **821** (2021) 136622, arXiv:2012.12001 [hep-ph]

[31] M. He and R. Rapp, “Charm-baryon production in proton–proton collisions”, *Phys. Lett. B** **795** (2019) 117–121, arXiv:1902.08889 [nucl-th]

[32] ALICE Collaboration, S. Acharya et al., “Observation of a multiplicity dependence in the $p_T$-differential charm baryon-to-meson ratios in proton–proton collisions at $\sqrt{s} = 13$ TeV”, *Phys. Lett. B** **829** (2022) 137065, arXiv:2111.11948 [nucl-ex]

[33] ALICE Collaboration, S. Acharya et al., “Λ^+ production in Pb–Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV”, *Phys. Lett. B** **793** (2019) 212–223, arXiv:1809.10922 [nucl-ex]

[34] STAR Collaboration, J. Adam et al., “First Measurement of Λc Baryon Production in Au + Au Collisions at $\sqrt{s_{\text{NN}}} = 200$ GeV”, *Phys. Rev. Lett.* **124** (2020) 172301, arXiv:1910.14628 [nucl-ex]

[35] S. Cho et al., “Charmed hadron production in an improved quark coalescence model”, *Phys. Rev. C** **101** (2020) 024909, arXiv:1905.09774 [nucl-th]

[36] J. Zhao, S. Shi, N. Xu, and P. Zhuang, “Sequential Coalescence with Charm Conservation in High Energy Nuclear Collisions”, arXiv:1805.10858 [hep-ph]

[37] S. Cao et al., “Charmed hadron chemistry in relativistic heavy-ion collisions”, *Phys. Lett. B** **807** (2020) 135561, arXiv:1911.00456 [nucl-th]

[38] LHCB Collaboration, R. Aaij et al., “Prompt Λ^+ production in p–Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV”, *JHEP* **02** (2019) 102, arXiv:1809.01404 [hep-ex]

[39] LHCB Collaboration, R. Aaij et al., “Measurement of the Λ^+ to D^0 production cross-section ratio in peripheral Pb–Pb collisions”, *JHEP* **06** (2023) 132, arXiv:2210.06939 [hep-ex]

[40] ALICE Collaboration, K. Aamodt et al., “The ALICE experiment at the CERN LHC”, *JINST* **3** (2008) S08002
\[ \Lambda^+_c \] production in Pb–Pb collisions at \( \sqrt{s_{\text{NN}}} = 5.02 \text{ TeV} \)  

**ALICE Collaboration**

[41] ALICE Collaboration, B. Abelev et al., “Performance of the ALICE Experiment at the CERN LHC”, *Int. J. Mod. Phys.* A29 (2014) 1430044, [arXiv:1402.4476 [nucl-ex]]

[42] ALICE Collaboration, E. Abbas et al., “Performance of the ALICE VZERO system”, *JINST* 8 (2013) P10016, [arXiv:1306.3130 [nucl-ex]]

[43] R. Arnaldi et al., “The Zero degree calorimeters for the ALICE experiment”, *Nucl. Instrum. Meth. A* 581 (2007) 397–401. [Erratum: *Nucl. Instrum. Meth. A* 604 (2009) 765].

[44] ALICE Collaboration, S. Acharya et al., “Measurement of \( D^0, D^+, D^{*+} \) and \( D_s^+ \) production in Pb–Pb collisions at \( \sqrt{s_{\text{NN}}} = 5.02 \text{ TeV} \)”, *JHEP* 10 (2018) 174, [arXiv:1804.09083 [nucl-ex]]

[45] ALICE Collaboration, S. Acharya et al., “Centrality determination in heavy ion collisions”, ALICE-PUBLIC-2018-011. https://cds.cern.ch/record/2636623.

[46] X.-N. Wang and M. Gyulassy, “HIJING: A Monte Carlo model for multiple jet production in pp, pA, and AA collisions”. *Phys. Rev.* D44 (1991) 3501–3516.

[47] P. Skands, S. Carrazza, and J. Rojo, “Tuning PYTHIA 8.1: the Monash 2013 Tune”, *Eur. Phys. J. C* 74 (2014) 3024, [arXiv:1404.5630 [hep-ph]]

[48] R. Brun et al., “GEANT: Detector Description and Simulation Tool”, CERN-W-5013. http://cds.cern.ch/record/1082634.

[49] ALICE Collaboration, K. Aamodt et al., “Alignment of the ALICE Inner Tracking System with cosmic-ray tracks”. *JINST* 5 (2010) P03003, [arXiv:1001.0502 [physics.ins-det]].

[50] J. Alme et al., “The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events”, *Nucl. Instrum. Meth. A* 622 (2010) 316–367, [arXiv:1001.1950 [physics.ins-det]].

[51] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System”, in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794. 2016. [arXiv:1603.02754 [cs.LG]].

[52] A. Akindinov et al., “Performance of the ALICE Time-Of-Flight detector at the LHC”, *Eur. Phys. J. Plus* 128 (2013) 44.

[53] ALICE Collaboration, J. Adam et al., “Determination of the event collision time with the ALICE detector at the LHC”, *Eur. Phys. J. Plus* 132 (2017) 99, [arXiv:1610.03055 [physics.ins-det]].

[54] M. Cacciari, M. Greco, and P. Nason, “The \( p_T \) spectrum in heavy-flavour hadroproduction”, *JHEP* 05 (1998) 007, [arXiv:hep-ph/9803400 [hep-ph]].

[55] M. Cacciari et al., “Theoretical predictions for charm and bottom production at the LHC”, *JHEP* 10 (2012) 137, [arXiv:1205.6344 [hep-ph]].

[56] ALICE Collaboration, S. Acharya et al., “Prompt \( D^0, D^+, D^{*+} \) production in Pb–Pb collisions at \( \sqrt{s_{\text{NN}}} = 5.02 \text{ TeV} \)”, *JHEP* 01 (2022) 174, [arXiv:2110.09420 [nucl-ex]].

[57] LHCb Collaboration, R. Aaij et al., “Measurement of \( b \) hadron fractions in 13 TeV pp collisions”, *Phys. Rev. D* 100 (2019) 031102, [arXiv:1902.06794 [hep-ex]].

[58] ALICE Collaboration, S. Acharya et al., “Production of charged pions, kaons, and (anti-)protons in Pb–Pb and inelastic pp collisions at \( \sqrt{s_{\text{NN}}} = 5.02 \text{ TeV} \)”, *Phys. Rev. C* 101 (2020) 044907, [arXiv:1910.07678 [nucl-ex]].
Λc⁺ production in Pb–Pb collisions at \( \sqrt{s_{NN}} = 5.02 \) TeV

ALICE Collaboration

[59] ALICE Collaboration, B. Abelev et al., “K0 and \( \Lambda \) Production in Pb–Pb Collisions at \( \sqrt{s_{NN}} = 2.76 \) TeV”, *Phys. Rev. Lett.* 111 (2013) 222301, arXiv:1307.5530 [nucl-ex].

[60] ALICE Collaboration, S. Acharya et al., “Measurement of prompt Dc⁺-meson production and azimuthal anisotropy in Pb–Pb collisions at \( \sqrt{s_{NN}} = 5.02 \) TeV”, *Phys. Lett. B* 827 (2022) 136986, arXiv:2110.10006 [nucl-ex].

[61] ALICE Collaboration, S. Acharya et al., “Measurement of D0, D⁺, D*⁺ and Dc⁺ production in pp collisions at \( \sqrt{s} = 5.02 \) TeV with ALICE”, *Eur. Phys. J. C* 79 (2019) 388, arXiv:1901.07979 [nucl-ex].

[62] L. Ravagli and R. Rapp, “Quark coalescence based on a transport equation”, *Phys. Lett. B* 655 (2007) 126–131, arXiv:0705.0021 [hep-ph].

[63] D. Ebert, R. N. Faustov, and V. O. Galkin, “Spectroscopy and Regge trajectories of heavy baryons in the relativistic quark-diquark picture”, *Phys. Rev. D* 84 (2011) 014025, arXiv:1105.0583 [hep-ph].

[64] A. Mazeliauskas, S. Floerchinger, E. Grossi, and D. Teaney, “Fast resonance decays in nuclear collisions”, *Eur. Phys. J. C* 79 (2019) 284, arXiv:1809.11049 [nucl-th].

[65] E. Schnedermann, J. Sollfrank, and U. W. Heinz, “Thermal phenomenology of hadrons from 200A GeV S+S collisions”, *Phys. Rev. C* 48 (1993) 2462–2475, arXiv:nucl-th/9307020.

[66] ALICE Collaboration, S. Acharya et al., “Multiplicity dependence of (multi-)strange hadron production in proton–proton collisions at \( \sqrt{s} = 13 \) TeV”, *Eur. Phys. J. C* 80 (2020) 167, arXiv:1908.01861 [nucl-ex].

[67] S. Ghosh et al., “Diffusion of \( \Lambda_c \) in hot hadronic medium and its impact on \( \Lambda_c/D \) ratio”, *Phys. Rev. D* 90 (2014) 054018, arXiv:1407.5069 [nucl-th].

[68] Z. Citron et al., “Report from Working Group 5: Future physics opportunities for high-density QCD at the LHC with heavy-ion and proton beams”, *CERN Yellow Rep. Monogr.* 7 (2019) 1159–1410, arXiv:1812.06772 [hep-ph].
\section*{A Raw-yield extraction}

Examples of the invariant mass distributions from which the $\Lambda_c^+$ raw yields are extracted are reported in Fig. [A.1]. The spectra together with the result of the fits in $1 < p_T < 2$ GeV/$c$ and $4 < p_T < 6$ GeV/$c$ for central (0–10%) and $2 < p_T < 4$ GeV/$c$ and $8 < p_T < 12$ GeV/$c$ for mid-central (30–50%) Pb–Pb collisions are shown.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figures/A1.png}
\caption{Invariant mass ($M$) distributions of $\Lambda_c^+ \rightarrow pK^0_S \rightarrow p\pi^+\pi^-$ candidates and charge conjugates in different $p_T$ intervals in central (0–10%; top) and mid-central (30–50%; bottom) Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV. The blue solid lines show the total fit functions and the red dashed lines are the combinatorial-background terms. The values of the mean ($\mu$) and the width ($\sigma$) of the signal peak are reported together with the signal counts ($S$) and the signal-over-background ratio ($S/B$) in the mass interval ($\mu - 3\sigma, \mu + 3\sigma$).}
\end{figure}
The ALICE Collaboration

S. Acharya, D. Adamová, A. Adler, J. Adolfsson, G. Aglieri Rinella, M. Agnello, N. Agrawal, Z. Ahammed, S. Ahmad, S. Ahn, I. Ahuja, Z. Akbar, A. Akindinov, M. Al-Turany, S.N. Alam, D. Aleksandrov, B. Alessandro, H.M. Alfandé, R. Alfaro Molina, B. Ali, Y. Ali, A. Alici, N. Alizadehvandchali, A. Alkin, J. Alme, G. Alocos, T. Ali, I. Altsbyeev, M.N. Amaan, C. Andrei, D. Andreou, A. Andronic, V. Anguelov, A. Antinori, P. Antoniou, C. Anu, N. Apadula, L. Aphecetche, A. Appelshäuser, S. Arcelli, R. Arnaldi, I.C. Arsene, M. Arslanbek, A. Augustinus, R. Averbeck, S. Aziz, M.D. Azmi, A. Badalà, Y.W. Baek, X. Bai, R. Baillie, Y. Bailung, R. Bala, A. Balbino, A. Baldiisier, B. Bali, S. Banerjee, Z. Banoo, R. Barbera, L. Barioglio, M. Barlou, G.G. Barnaföldi, L.S. Barnby, V. Barret, C. Bartels, K. Barth, E. Bartsch, F. Baruffaldi, N. Bastid, B. Batigné, B. Batyunya, D. Baur, J.L. Bazo Alba, I.G. Bearden, C. Beattie, P. Becht, I. Belikov, A.D.C. Bell Hechavarria, F. Bellini, R. Bellwied, S. Belokurova, V. Belyaev, G. Bencedi, S. Beołe, A. Bercuci, Y. Berdnikova, A. Berdnikova, L. Bergmann, M.G. Besou, L. Betev, P.P. Bhaduri, A. Bhasin, I.R. Bhat, M.A. Bhat, B. Bhattacharjee, P. Bhattacharya, L. Bianchi, N. Bianchi, J. Bielicki, J. Bielicková, J. Biernat, A. Bilandzic, G. Biro, S. Biswas, J.T. Blair, D. Blau, M.B. Blidaru, C. Blume, G. Boca, F. Bock, A. Bogdanov, S. Boi, J. Bok, L. Boldizsár, A. Bolozdyna, M. Bombara, P.M. Bond, G. Bonomi, H. Borel, A. Borissov, H. Bossi, E. Botta, L. Bratrud, P. Braun-Munzinger, M. Bregant, M. Broz, G.E. Bruno, M.D. Buckland, D. Budnikov, H. Buesching, S. Bufalion, O. Bugnon, P. Buhler, Z. Buthelezi, J.B. Butt, A. Bylinkin, S.A. Bysiak, M. Caï, H. Caines, A. Caliva, E. Calvo Villar, J.M.M. Camacho, R.S. Camacho, P. Camerini, F.D.M. Canedo, M. Carabas, F. Carnesecchi, R. Caron, J. Castillo Castellanos, E.A.R. Casula, F. Catalano, C. Ceballos Sanchez, I. Chakaberia, P. Chakraborty, S. Chandra, S. Chapeland, M. Chartier, S. Chattopadhyay, S. Chattopadhyay, T.G. Chavez, T. Cheng, C. Cheshkov, B. Cheynis, V. Chibante Barroso, D.D. Chinellato, S. Cho, P. Chochula, P. Christakoglou, C. Christensen, P. Christiansen, T. Chujo, C. Ciccolo, L. Cifarelli, F. Cindolo, M.R. Ciupek, G. Clair, J. Cleymans, F. Colamarzì, J.S. Colburn, D. Colella, A. Collu, M. Colocci, M. Concas, G. Conesa Balbastro, Z. Conesa del Valle, G. Contin, J.G. Contreras, M.L. Cochet, T.M. Cormier, P. Cortese, M.R. Cosentino, F. Costa, S. Costanza, P. Crochet, R. Cruz-Torres, E. Cuautle, P. Cui, L. Cunqueiro, A. Dainese, M.C. Danisch, A. Danu, P. Das, S. Das, S. Das, A. De Carlo, G. De Calvald, L. De Cilladi, J. De Cuveland, A. De Falco, D. De Gruttola, N. De Marco, C. De Martin, S. De Pasquale, S. Deb, H.F. Degenhardt, K.R. Deja, R. Del Grande, L. Dello Stritto, W. Deng, P. Dhankher, D. Di Bari, A. Di Mauro, R.A. Díaz, T. Dietel, Y. Ding, R. Divià, D.U. Dixit, O. Djusvland, U. Dmitrieva, J. Doi, A. Dobrin, B. Dénigus, A.K. Dubey, A. Dubla, S. Dudi, P. Dupieux, M. Durkacz, N. Dzalaia, T.M. Eder, R.J. Ehlers, V.N. Eikeland, F. Eisenhuth, D. Elia, B. Erasmus, F. Ericoli, F. Erhardt, A. Erokhin, M.R. Ersdal, B. Espagnon, G. Eulisse, D. Evans, S. Evdokimov, L. Fabbietti, M. Faggin, J. Fáivre, F. Fan, W. Fan, A. Fantoni, M. Fasel, P. Fecchio, A. Felicicchio, G. Feofilo, A. Fernández Téllez, A. Ferrero, A. Ferretti, V.J.G. Feuillard, J. Figiel, V. Filoza, D. Finogeev, F.M. Fionda, G. Fiorena, F. Floer, A.N. Flores, S. Foertsch, S. Fokin, E. Fragiacomo, E. Frajna, A. Francisco, U. Fuchs, N. Funicello, C. Furget, A. Furs, J.J. Gaardhøje, M. Gagliardi, A.M. Gago, A. Gal, C.D. Galvan, P. Ganot, C. Garabatos, J.R.A. García, E. Garcia-Solis, K. Garg, C. Gargiulo, A. Garibbi, K. Garner, P. Gasik, E.F. Gauger, A. Gautam, M.B. Gay Ducati, M. Germain, P. Ghosh, S.K. Ghosh, M. Giacalone, P. Gianotti, P. Giubellino, P. Giubilato, A.M.C. Glaenzer, P. Glässel,
很难从提供的图像中读取自然语言的文本。
learning
Λ⁺ production in Pb–Pb collisions at \( \sqrt{s_{\text{NN}}} = 5.02 \) TeV

ALICE Collaboration

V. Vechernin\textsuperscript{113}, A. Velure\textsuperscript{21}, E. Vercellin\textsuperscript{24}, S. Vergara Limón\textsuperscript{45}, L. Vermunt\textsuperscript{62}, R. Vértesi\textsuperscript{146}, M. Verweij\textsuperscript{62}, L. Vickovic\textsuperscript{35}, Z. Vilakazi\textsuperscript{132}, O. Villalobos Baillie\textsuperscript{111}, G. Vino\textsuperscript{53}, A. Vinogradov\textsuperscript{89}, T. Virgili\textsuperscript{29}, V. Vislavicius\textsuperscript{90}, A. Vodopyanov\textsuperscript{75}, B. Volkel\textsuperscript{34,105}, M.A. Völkl\textsuperscript{105}, K. Voloshin\textsuperscript{93}, S.A. Voloshin\textsuperscript{144}, G. Volpe\textsuperscript{33}, B. von Haller\textsuperscript{34}, I. Vorobyev\textsuperscript{106}, N. Voziuk\textsuperscript{63}, J. Vrláková\textsuperscript{38}, B. Wagner\textsuperscript{21}, C. Wang\textsuperscript{40}, D. Wang\textsuperscript{40}, M. Weber\textsuperscript{114}, A. Wegryn\textsuperscript{34}, S.C. Wenzel\textsuperscript{34}, J.P. Wessels\textsuperscript{145}, S.L. Weyhmiller\textsuperscript{147}, J. Wiechula\textsuperscript{68}, J. Wikne\textsuperscript{20}, G. Wilk\textsuperscript{86}, J. Wilkinson\textsuperscript{108}, G.A. Willems\textsuperscript{145}, B. Windelband\textsuperscript{105}, M. Winn\textsuperscript{139}, W.E. Witt\textsuperscript{131}, J.R. Wright\textsuperscript{119}, W. Wu\textsuperscript{40}, Y. Wu\textsuperscript{129}, R. Xu\textsuperscript{7}, A.K. Yadav\textsuperscript{42}, S. Yalcin\textsuperscript{77}, Y. Yamaguchi\textsuperscript{46}, K. Yamakawa\textsuperscript{46}, S. Yang\textsuperscript{21}, S. Yano\textsuperscript{46}, Z. Yin\textsuperscript{7}, I.-K. Yoo\textsuperscript{17}, J.H. Yoon\textsuperscript{61}, S. Yuan\textsuperscript{21}, A. Yuncu\textsuperscript{105}, V. Zaccolo\textsuperscript{23}, C. Zampolli\textsuperscript{34}, H.J.C. Zanoli\textsuperscript{62}, F. Zanone\textsuperscript{105}, N. Zardoshti\textsuperscript{34}, A. Zarochentsev\textsuperscript{113}, P. Závada\textsuperscript{66}, N. Zaviyalov\textsuperscript{109}, M. Zhalov\textsuperscript{99}, B. Zhang\textsuperscript{7}, S. Zhang\textsuperscript{40}, X. Zhang\textsuperscript{7}, Y. Zhang\textsuperscript{129}, V. Zherebchevskii\textsuperscript{113}, Y. Zhi\textsuperscript{11}, N. Zhigareva\textsuperscript{93}, D. Zhou\textsuperscript{5}, Y. Zhou\textsuperscript{90}, J. Zhu\textsuperscript{108}, Y. Zhu\textsuperscript{7}, G. Zinovjev\textsuperscript{1,3}, N. Zurlo\textsuperscript{141,58}

Affiliation Notes

1 Deceased
II Also at: Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Bologna, Italy
III Also at: Dipartimento DET del Politecnico di Torino, Turin, Italy
IV Also at: M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear, Physics, Moscow, Russia
V Also at: Department of Applied Physics, Aligarh Muslim University, Aligarh, India
VI Also at: Institute of Theoretical Physics, University of Wroclaw, Poland
VII Also at: University of Kansas, Lawrence, Kansas, United States

Collaboration Institutes

1 A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation, Yerevan, Armenia
2 AGH University of Science and Technology, Cracow, Poland
3 Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, Kiev, Ukraine
4 Bose Institute, Department of Physics and Centre for Astroparticle Physics and Space Science (CAPSS), Kolkata, India
5 Budker Institute for Nuclear Physics, Novosibirsk, Russia
6 California Polytechnic State University, San Luis Obispo, California, United States
7 Central China Normal University, Wuhan, China
8 Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Havana, Cuba
9 Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City and Mérida, Mexico
10 Chicago State University, Chicago, Illinois, United States
11 China Institute of Atomic Energy, Beijing, China
12 Chungbuk National University, Cheongju, Republic of Korea
13 Comenius University Bratislava, Faculty of Mathematics, Physics and Informatics, Bratislava, Slovakia
14 COMSATS University Islamabad, Islamabad, Pakistan
15 Creighton University, Omaha, Nebraska, United States
16 Department of Physics, Aligarh Muslim University, Aligarh, India
17 Department of Physics, Pusan National University, Pusan, Republic of Korea

21
Λ_c^+ production in Pb–Pb collisions at √s_{NN} = 5.02 TeV

ALICE Collaboration

18 Department of Physics, Sejong University, Seoul, Republic of Korea
19 Department of Physics, University of California, Berkeley, California, United States
20 Department of Physics, University of Oslo, Oslo, Norway
21 Department of Physics and Technology, University of Bergen, Bergen, Norway
22 Dipartimento di Fisica dell’Università and Sezione INFN, Cagliari, Italy
23 Dipartimento di Fisica dell’Università and Sezione INFN, Trieste, Italy
24 Dipartimento di Fisica dell’Università and Sezione INFN, Turin, Italy
25 Dipartimento di Fisica and Astronomia dell’Università and Sezione INFN, Bologna, Italy
26 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Catania, Italy
27 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Padova, Italy
28 Dipartimento di Fisica e Nucleare e Teorica, Università di Pavia, Pavia, Italy
29 Dipartimento di Fisica ‘E.R. Caianiello’ dell’Università and Gruppo Collegato INFN, Salerno, Italy
30 Dipartimento DISAT del Politecnico and Sezione INFN, Turin, Italy
31 Dipartimento di Scienze e Innovazione Tecnologica dell’Università del Piemonte Orientale and INFN
Sezione di Torino, Alessandria, Italy
32 Dipartimento di Scienze MIPT, Università di Messina, Messina, Italy
33 Dipartimento Interateneo di Fisica ‘M. Merlin’ and Sezione INFN, Bari, Italy
34 European Organization for Nuclear Research (CERN), Geneva, Switzerland
35 Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of
Split, Split, Croatia
36 Faculty of Engineering and Science, Western Norway University of Applied Sciences, Bergen,
Norway
37 Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague,
Prague, Czech Republic
38 Faculty of Science, P.J. Šafárik University, Košice, Slovakia
39 Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt,
Germany
40 Fudan University, Shanghai, China
41 Gangneung-Wonju National University, Gangneung, Republic of Korea
42 Gauhati University, Department of Physics, Guwahati, India
43 Helmholtz-Institut für Strahlen- und Kernphysik, Rheinische Friedrich-Wilhelms-Universität Bonn,
Bonn, Germany
44 Helsinki Institute of Physics (HIP), Helsinki, Finland
45 High Energy Physics Group, Universidad Autónoma de Puebla, Puebla, Mexico
46 Hiroshima University, Hiroshima, Japan
47 Hochschule Worms, Zentrum für Technologietransfer und Telekommunikation (ZTT), Worms,
Germany
48 Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania
49 Indian Institute of Technology Bombay (IIT), Mumbai, India
50 Indian Institute of Technology Indore, Indore, India
51 Indonesian Institute of Sciences, Jakarta, Indonesia
52 INFN, Laboratori Nazionali di Frascati, Frascati, Italy
53 INFN, Sezione di Bari, Bari, Italy
54 INFN, Sezione di Bologna, Bologna, Italy
55 INFN, Sezione di Cagliari, Cagliari, Italy
56 INFN, Sezione di Catania, Catania, Italy
57 INFN, Sezione di Padova, Padova, Italy
58 INFN, Sezione di Pavia, Pavia, Italy
59 INFN, Sezione di Torino, Turin, Italy
60 INFN, Sezione di Trieste, Trieste, Italy
Λ+ production in Pb–Pb collisions at √s_{NN} = 5.02 TeV

ALICE Collaboration

61 Inha University, Incheon, Republic of Korea
62 Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University/Nikhef, Utrecht, Netherlands
63 Institute for Nuclear Research, Academy of Sciences, Moscow, Russia
64 Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia
65 Institute of Physics, Homi Bhabha National Institute, Bhubaneswar, India
66 Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
67 Institute of Space Science (ISS), Bucharest, Romania
68 Institut für Kernphysik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
69 Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico
70 Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
71 Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico
72 iThemba LABS, National Research Foundation, Somerset West, South Africa
73 Jeonbuk National University, Jeonju, Republic of Korea
74 Johann-Wolfgang-Goethe Universität Frankfurt Institut für Informatik, Fachbereich Informatik und Mathematik, Frankfurt, Germany
75 Joint Institute for Nuclear Research (JINR), Dubna, Russia
76 Korea Institute of Science and Technology Information, Daejeon, Republic of Korea
77 KTO Karatay University, Konya, Turkey
78 Laboratoire de Physique des 2 Infinis, Irène Joliot-Curie, Orsay, France
79 Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS-IN2P3, Grenoble, France
80 Lawrence Berkeley National Laboratory, Berkeley, California, United States
81 Lund University Department of Physics, Division of Particle Physics, Lund, Sweden
82 Moscow Institute for Physics and Technology, Moscow, Russia
83 Nagasaki Institute of Applied Science, Nagasaki, Japan
84 Nara Women’s University (NWU), Nara, Japan
85 National and Kapodistrian University of Athens, School of Science, Department of Physics, Athens, Greece
86 National Centre for Nuclear Research, Warsaw, Poland
87 National Institute of Science Education and Research, Homi Bhabha National Institute, Jatni, India
88 National Nuclear Research Center, Baku, Azerbaijan
89 National Research Centre Kurchatov Institute, Moscow, Russia
90 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
91 Nikhef, National institute for subatomic physics, Amsterdam, Netherlands
92 NRC Kurchatov Institute IHEP, Protvino, Russia
93 NRC «Kurchatov» Institute - ITEP, Moscow, Russia
94 NRNU Moscow Engineering Physics Institute, Moscow, Russia
95 Nuclear Physics Group, STFC Daresbury Laboratory, Daresbury, United Kingdom
96 Nuclear Physics Institute of the Czech Academy of Sciences, Rež u Prahy, Czech Republic
97 Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States
98 Ohio State University, Columbus, Ohio, United States
99 Petersburg Nuclear Physics Institute, Gatchina, Russia
100 Physics department, Faculty of science, University of Zagreb, Zagreb, Croatia
101 Physics Department, Panjab University, Chandigarh, India
102 Physics Department, University of Jammu, Jammu, India
103 Physics Department, University of Rajasthan, Jaipur, India
104 Physikalisches Institut, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
105 Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
106 Physik Department, Technische Universität München, Munich, Germany
Production in Pb–Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV

ALICE Collaboration

107 Politecnico di Bari and Sezione INFN, Bari, Italy
108 Research Division and ExteMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
109 Russian Federal Nuclear Center (VNIIEF), Sarov, Russia
110 Saha Institute of Nuclear Physics, Homi Bhabha National Institute, Kolkata, India
111 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
112 Sección Física, Departamento de Ciencias, Pontificia Universidad Católica del Perú, Lima, Peru
113 St. Petersburg State University, St. Petersburg, Russia
114 Steðfan Meyer Institut für Subatomare Physik (SMI), Vienna, Austria
115 SUBATECH, IMT Atlantique, Université de Nantes, CNRS-IN2P3, Nantes, France
116 Suranaree University of Technology, Nakhon Ratchasima, Thailand
117 Technical University of Košice, Košice, Slovakia
118 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland
119 The University of Texas at Austin, Austin, Texas, United States
120 Universidad Autónoma de Sinaloa, Culiacán, Mexico
121 Universidade de São Paulo (USP), São Paulo, Brazil
122 Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
123 Universidade Federal do ABC, Santo André, Brazil
124 University of Cape Town, Cape Town, South Africa
125 University of Houston, Houston, Texas, United States
126 University of Jyväskylä, Jyväskylä, Finland
127 University of Kansas, Lawrence, Kansas, United States
128 University of Liverpool, Liverpool, United Kingdom
129 University of Science and Technology of China, Hefei, China
130 University of South-Eastern Norway, Tønsberg, Norway
131 University of Tennessee, Knoxville, Tennessee, United States
132 University of the Witwatersrand, Johannesburg, South Africa
133 University of Tokyo, Tokyo, Japan
134 University of Tsukuba, Tsukuba, Japan
135 University Politehnica of Bucharest, Bucharest, Romania
136 Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France
137 Université de Lyon, CNRS/IN2P3, Institut de Physique des 2 Infinis de Lyon, Lyon, France
138 Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France, Strasbourg, France
139 Université Paris-Saclay Centre d’Etudes de Saclay (CEA), IRFU, Département de Physique Nucléaire (DPhN), Saclay, France
140 Università degli Studi di Foggia, Foggia, Italy
141 Università di Brescia, Brescia, Italy
142 Variable Energy Cyclotron Centre, Homi Bhabha National Institute, Kolkata, India
143 Warsaw University of Technology, Warsaw, Poland
144 Wayne State University, Detroit, Michigan, United States
145 Westfälische Wilhelms-Universität Münster, Institut für Kernphysik, Münster, Germany
146 Wigner Research Centre for Physics, Budapest, Hungary
147 Yale University, New Haven, Connecticut, United States
148 Yonsei University, Seoul, Republic of Korea