Synthesis of 1,3,5-thiadiazines from formamidinothiocarbamide

D. T. Tayade, M. E. Shelke*, J. S. Wagmare and R. C. Panpaliya

Department of Chemistry, Mahatama Fule Mahavidyalaya, Warud-444 906, Maharashtra, India
Department of Chemistry, Jijamata Mahavidyalaya, Buldhana, Maharashtra, India

E-mail: meshelke@rediffmail.com

Manuscript received 25 May 2005, revised 12 September 2005, accepted 11 November 2005

Abstract: Novel series of 2-substitutedamino-4-(2-imino-4-thiobiureto-S-yl-carbamidino)-6-substitutedimino-1,3,5-thiadiazines (3a-f) and 2-substitutedamino-4-(4-imino-6-substitutedimino-1,3,5-thiadiaz-2-yl)-6-substitutedimino-1,3,5-thiadiazines (Sa-f) has been obtained by basification of their hydrochlorides (la-O) and (4a-f) respectively. The latter were synthesized by the interaction of 1-formamidino-3-thioamido-N-substitutedformamidinothiocarbamides (la-O) and N-substitutedisocyanodichloride in 1 : 1 and 1 : 2 molar ratio respectively which were prepared initially by the condensation of aryllalkylisothiocyanate and 1,3-diformamidinothiocarbamide in 1 : 1 molar ratio. The structure of all these compounds were established on the basis of elemental analysis, IR and PMR spectral data.

Keywords: 1,3,5-Thiadiazines, synthesis, substitutedthiocarbamides.

The literature survey reveals that the heterocyclic compounds having 1,3,5-thiadiazines nucleus enhanced pharmaceutical, medicinal, agricultural and industrial values. The synthetic applications of N-substitutedisocyanodichlorides have been investigated and shown to have enough potential in the synthesis of nitrogen and sulphur containing heterocyclic compounds thus aim to synthesize 1,3,5-thiadiazines, reaction of N-aryl/alkylisocyanodichloride have been carried out with different 1-formamidino-3-thioamido-N-substitutedformamidinothiocarbamides in 1 : 1 and 1 : 2 molar ratios.

Experimental

All chemicals used were of analar grade. N-Substitutedisocyanodichlorides were prepared according to literature method. Melting point of all synthesized compounds was determined in open capillary and uncorrected; IR spectra were recorded on Perkin-Elmer spectrometer in the range 4000–400 cm⁻¹ in Nujol mull as KBr pellets. PMR spectra were recorded with TMS as internal standard using CDCl₃ and DMSO-d₆. TLC checked the purity of the compounds on silica gel-G plates with layer thickness of 0.3 mm. All compounds gave satisfactory C, H, N and S elemental analysis.

The parent compound 1-formamidino-3-thioamido-N-substitutedformamidinothiocarbamide (la-f) was prepared by refluxing the mixture of 1,3-diformamidinothiocarbamide with aryl/alkylisothiocyanate in 1 : 1 molar ratio in aceton ethanol medium for 4 h on water bath.

Synthesis of 1-formamidino-3-thioamido-N-phenylformamidinothiocarbamide (Ia) : Mixture of 1,3-diformamidinothiocarbamide (0.01 m), phenylisothiocyanate (0.01 m) in carbon tetrachloride (30 ml) was refluxed on water bath for 4 h in 1 : 1 molar ratio. The mixture was filtered and filtrate during distillation yielded the crystals of Ia. Yield 80%; m.p. 264 °C; IR spectra of compound shows v(N-H) 3356.6, v(C-H)(Ar) 3131.3, v(C=N) 1635.4, v(C-N) 1294.7, v(C=S) group 1197.7, v(C-S) 777.9 and v(C=NH) grouping 1688.4 cm⁻¹. The PMR spectra of compounds showed signals due to N-H protons at 8 6.7776 ppm, Ar-H at 8 7.4657 ppm and the signal at 8 3.155 ppm is due to moisture in DMSO-~ and 8 1.25 ppm is due to DMSO. Elemental analysis (Found: C, 40.35; H, 4.10; N, 33.02; S, 21.48. Calcd.: C, 40.67; H, 4.40; N, 33.22; S, 21.69%).

Similarly, other compounds (Ib-f) were synthesized and enlisted in Table 1.

Synthesis of 2-phenylamino-4-(2-imino-4-thiobiureto-5-yl-carbamidino)-6-phenylimino-1,3,5-thiadiazine (3a(i)) :

1-Formamidino-3-thioamido-N-phenylformamidinothiocarbamide (0.01 m) (Ia) was suspended in carbon tetrachloride medium (25 ml). To this a solution of N-phenylisocyanodichloride (0.01 m) was added in 1 : 1 molar proportions. The reaction mixture was refluxed on water bath for 4 h. During heating evaluation of hydro-
gen chloride gas was observed and tested with moist blue litmus paper. Cooling the reaction mixture and distilled off excess solvent crystals were separated out. And crystallized from aqueous ethanol. Yield 72%, m.p. 210 °C and identified as 2-phenylamino-4-(2-imino-4-thiobiureto-5-yl-carbamidino)-6-phenylimino-1,3,5-thiadiazine hydrochloride (2a(i)). On basification of (2a(i)) with ammonium hydroxide solution afforded free bases (3a(i)). It was recrystallised from aqueous ethanol, m.p.195 °C.

Similarly, other compounds, (2a(ii) to 2f(iv)) were synthesized from (1a-f) and which on basification yielded thiadiazines (3a(ii) to 3a(iv)) and (3b(ii) to 3f(iv)) by above mention method and enlisted in Table 2.

Properties of compound (3a(i)):

It is light brown crystalline solid having m.p.195 °C. From analytical data, molecular formula is C17H16N8S2, molecular weight 396. IR spectra of compound shows v(N-H) 3359.5, v(C-H)(Ar) 2924.7, v(C=N) 1642.2, v(C-N) 1293.3, v(C=S) grouping 1173.7, v(C-S) 778.2 and v(C=NH) grouping 1506.1 cm⁻¹. The PMR spectra of compound showed signals due to Ar-H protons at δ 7.04-7.71 ppm, Ar-NH protons at δ 6.68-6.87 ppm, N-H protons at δ 4.2-4.3 ppm and the signal at δ 2.7-3.1 ppm is due to moisture in DMSO-d6 and δ 0.75-2.2 ppm is due to DMSO. Elemental analysis (Found : C, 51.49; H, 3.99; N, 28.14; S, 16.12. Calcd. : C, 51.52; H, 4.04; N, 28.28; S, 16.16%). From these spectral, elemental and chemical data the compound (3a(i)) is 2-phenylamino-4-(2-imino-4-thiobiureto-5-yl-carbamidino)-6-phenylimino-1,3,5-thiadiazine.

Properties of compound (3b(i)):

It is pale yellow crystalline solid having m.p. 190 °C. From analytical data, molecular formula is C13H16N8S2, molecular weight 348. IR spectra of compound shows v(N-H) 3355.1, v(C-H)(Ar) 2922.4, v(C=N) 1687.7, v(C-N) 1294.5, v(C-S) grouping 1193.6, v(C-S) 776.9, v(C=NH) grouping 1506.1 cm⁻¹. The PMR spectra of compound showed signals due to Ar-H protons at δ 7.04-7.71 ppm, Ar-NH protons at δ 6.68-6.87 ppm, N-H protons at δ 4.2-4.3 ppm and the signal at δ 2.7-3.1 ppm is due to moisture in DMSO-d6 and δ 0.75-2.2 ppm is due to DMSO. Elemental analysis (Found : C, 51.49; H, 3.99; N, 28.14; S, 16.12. Calcd. : C, 51.52; H, 4.04; N, 28.28; S, 16.16%). From these spectral, elemental and chemical data the compound (3b(i)) is 2-phenylamino-4-(2-imino-4-thiobiureto-5-yl-carbamidino)-6-phenylimino-1,3,5-thiadiazine.

Table 1. Physical data of the synthesised compounds

Compd.	R	Yield (%)	M.p. (°C)	Molecular weight	Molecular formula
1a	Phenyl	80	264	295	C10H13N5S2
1b	p-Chlorophenyl	75	272	329	C10H12N7S2Cl
1c	p-Tolyl	82	254	310	C11H16N7S2
1d	Ethyl	73	230	247	C6H13N7S2
1e	Methyl	84	218	233	C9H11N7S2
1f	t-Butyl	79	256	275	C9H17N7S2

*All compounds gave satisfactory C, H, N and S analysis.

Table 2. Physical data of the synthesised compounds

Compd.	R	R1	Yield (%)	M.p. (°C)
3a(i)	Phenyl	Phenyl	68	195
3a(iv)	Phenyl	t-Butyl	65	182
3b(i)	Ethyl	Phenyl	62	190
3b(iii)	Ethyl	Ethyl	73	177
3c(i)	p-Chlorophenyl	Phenyl	68	207
3c(ii)	p-Chlorophenyl	p-Chlorophenyl	79	219
3c(iii)	p-Chlorophenyl	Ethyl	74	191
3d(i)	Phenyl	Phenyl	72	203
3d(ii)	Phenyl	p-Chlorophenyl	76	227
3d(iii)	Ethyl	Ethyl	59	187
3d(iv)	t-Butyl	Ethyl	54	181
3e(i)	Phenyl	Phenyl	62	184
3e(ii)	p-Chlorophenyl	p-Chlorophenyl	69	189
3e(iii)	Ethyl	Ethyl	76	172
3f(iv)	t-Butyl	R-Butyl	59	176
3f(i)	Ethyl	Phenyl	62	265
3f(ii)	Phenyl	Phenyl	62	285
3f(iii)	Ethyl	Ethyl	89	245
3f(iv)	R-Butyl	Phenyl	77	254
5a(i)	Phenyl	Phenyl	75	245
5b(i)	Ethyl	Phenyl	67	272
5b(ii)	Ethyl	Phenyl	69	226
5b(iii)	Ethyl	Ethyl	73	235
5c(i)	p-Chlorophenyl	Phenyl	59	279
5c(ii)	p-Chlorophenyl	p-Chlorophenyl	62	294
5c(iii)	Ethyl	Phenyl	69	252
5c(iv)	p-Chlorophenyl	t-Butyl	74	254
5d(i)	t-Butyl	Phenyl	72	269
5d(ii)	p-Chlorophenyl	Phenyl	79	289
5d(iii)	t-Butyl	Phenyl	81	212
5d(iv)	t-Butyl	R-Butyl	68	223
5e(i)	Methyl	Phenyl	54	239
5e(ii)	Phenyl	Phenyl	59	264
5e(iii)	Ethyl	Ethyl	68	231
5e(iv)	Phenyl	Ethyl	71	242
5f(i)	t-Butyl	Phenyl	81	264
5f(ii)	R-Butyl	Phenyl	69	281
5f(iii)	Ethyl	Phenyl	74	238
5f(iv)	R-Butyl	Phenyl	69	234

*All compounds gave satisfactory C, H, N and S analysis.
From this spectral, elemental and chemical data the compound (3b(i)) is 2-ethylamino-4-(4-imino-6-phenylimino-1,3,5-thiadiazine-2-yl)-6-phenylimino-1,3,5-thiadiazine hydrochloride (4a(i)).

On basification of (4a(ii)) with ammonium hydroxide solution afforded free base (5a(i)). It was recrystallised from aqueous ethanol, m.p. 265 °C.

Similarly, other compounds, (4a(ii) to 4f(iv)) were synthesized from (la-f). And which on basification yielded other thiadiazines (5a(ii) to 5a(iv)) and (5b(ii) to 5f(iv)) by above mention method and enlisted in Table 2.

Properties of compound (5a(i)):

It is ivory crystalline solid having m.p. 265 °C. From analytical data; molecular formula $\text{C}_{24}\text{H}_{19}\text{N}_{9}\text{S}_{2}$, molecular weight 497. IR spectra of compound shows ν(N-H) 3308.4, ν(C-H)(Ar) 3146.6, ν(C=N) 1666.1, ν(C=S) 1626.9, and ν(C=O) 1007.6 cm$^{-1}$. The PMR spectra of compound showed signals due to Ar-NH protons at δ 8.63 ppm, Ar-H protons at δ 7.14–7.18 ppm and the signal at δ 2.58–2.59 ppm is due to moisture in DMSO.

Properties of compound (5b(i)):

It is bricks red crystalline solid having m.p. 245 °C. From analytical data; molecular formula $\text{C}_{20}\text{H}_{19}\text{N}_{9}\text{S}_{2}$, molecular weight 348. IR spectra of compound shows ν(N-H) 3383.9 and ν(C-H)(Ar) 3146.6, ν(C=N) 1660.5, ν(C=S) 1332.7, ν(C=S) 1154.2, and ν(C=O) 1007.6 cm$^{-1}$. The PMR spectra of compound showed signals due to Ar-NH protons at δ 8.63 ppm, Ar-H protons at δ 7.14–7.18 ppm and the signal at δ 2.58–2.59 ppm is due to moisture in DMSO.

Scheme 1

\[
\text{H}_2\text{C} \xrightarrow{-\text{NH}} \text{NH-C} \xrightarrow{\text{NH}} \text{NH} \xrightarrow{\text{NH-C}} \text{S} \xrightarrow{\text{C-N-R}} \text{R}
\]

Scheme 2

\[
\text{H}_2\text{C} \xrightarrow{-\text{NH}} \text{NH-C} \xrightarrow{\text{NH}} \text{NH} \xrightarrow{\text{NH-C}} \text{S} \xrightarrow{\text{C-N-R}} \text{R}
\]

where, R_1 = phenyl, p-chlorophenyl, p-tolyl, ethyl, methyl, t-butyl

R_2 = phenyl, p-chlorophenyl, ethyl, t-butyl

Synthesis of 2-phenylamino-4-(4-imino-6-phenylimino-1,3,5-thiadiaz-2-yl)-6-phenylimino-1,3,5-thiadiazine (5a(i)):

1-Formamidino-3-thioamido-N-phenylformamidinothiocarbamide (0.01 m) (1a) was suspended in acetone ethanol medium (25 ml). To this a solution of N-phenylisocyanodichloride (0.02 m) was added. The reaction mixture was refluxed on water bath for 12 h. During heating evolution of hydrogen chloride gas was observed and tested with moist blue litmus paper. After cooling the reaction mixture and distilled off excess solvent, solid crystals were separated out. And crystallized from aqueous ethanol. Yield 73%, m.p. 272 °C and identified as 2-phenylamino-4-(4-imino-6-phenylimino-1,3,5-thiadiaz-2-yl)-6-phenylimino-1,3,5-thiadiazine hydrochloride (4a(i)).
Acknowledgement

Authors are thankful to Dr. D. M. Ambhore, Principal and Prof. J. B. Devhade, Head, Department of Chemistry, Jijamata Mahavidyalaya, Buldhana for providing facilities. Authors are also thankful to Dr. V. N. Ingale, Head, Department of Chemistry, Nagpur University, Nagpur for providing UV spectra. They are also thankful to S.A.I.F., C.I.L., Punjab University, Chandigarh for providing IR, NMR spectra and elemental analysis.

References

1. P. K. Srivastava, Indian J. Chem., 1963, 1, 354.
2. L. M. Pugacheva, USSR Patent, 1975, 466, 263 (Chem. Abstr., 1975, 83, 99192); M. G. Paranjape and P. P. Pathe, Indian J. Chem., Sect. B, 1981, 20, 824; M. G. Paranjape, P. P. Pathe, M. W. Ambekar and N. M. Nimdekar, J. Chem. Soc., 1982, 59, 670; B. N. Beard, J. Indian Chem. Soc., 1984, 61, 42.
3. A. I. Vogel, “Text Book of Practical Organic Chemistry including Qualitative Organic Analysis”, ELBS and Longman Greek and Co. Ltd., 1954, 615.