Stimulation of β_1 Integrins on Fibroblasts Induces PDGF Independent Tyrosine Phosphorylation of PDGF β-Receptors

Christian Sundberg and Kristofer Rubin
Department of Medical and Physiological Chemistry, Biomedical Center, S-751 23 Uppsala, Sweden

Abstract. We report that integrin-mediated signaling induces a rapid and transient tyrosine phosphorylation of platelet-derived growth factor (PDGF) β-receptors in human diploid foreskin AG 1518 fibroblasts. A transient tyrosine phosphorylation of PDGF β-receptors was evident one and two hours after cells had been plated on collagen type I and fibronectin, as well as on immobilized anti-integrin subunit IgG, but not on poly-L-lysine. In contrast EGF or PDGF α-receptors were not phosphorylated on tyrosine residues under these conditions. Tyrosine phosphorylation of PDGF β-receptors induced by plating on collagen type I was inhibited by cytochalasin D and herbimycin A, unaffected by cycloheximide and enhanced by orthovanadate. Furthermore, a transient phosphorylation of PDGF β-receptors occurred when AG 1518 fibroblasts were cultured in three-dimensional collagen lattices or exposed to external strain exerted through centrifugation. The latter effect was evident already after two minutes. Clustering of cell surface β_1 integrins led to PDGF β-receptor phosphorylation both in suspended and firmly attached AG 1518 fibroblasts. Plating of cells on collagen type I, fibronectin, and anti-β_1-integrin IgG resulted in the formation of PDGF β-receptor aggregates as detected by immunofluorescence. Suramin or anti-PDGF-BB IgG had no effect on the plating-induced tyrosine phosphorylation of PDGF β-receptors. PDGF-B chain mRNA, or protein, were not detected in AG 1518 fibroblasts. Our data suggest that a ligand-independent PDGF β-receptor activation during cell adhesion and early phases of cell spreading is involved in integrin-mediated signaling in fibroblasts, and constitutes parts of a mechanism for cells to respond during the dynamic phases of externally applied tension as well as fibroblast-mediated tension during cell adhesion and collagen gel contraction.

Cell adhesion to extracellular matrix (ECM) regulates a plethora of cellular activities (6, 35, 68). Adhesion of cells to ECM components depends on a set of transmembrane receptors belonging to the integrin family. Integrins are heterodimers of non-covalently associated α and β subunits (2, 29, 32, 51), which link the ECM with the cytoskeleton, and act as signal transducing receptors (13, 16, 19, 35, 44, 55). In many types of cells, integrin stimulation by ligand occupation or clustering by antibodies elicits changes in the intracellular pH, cytoplasmic-free calcium concentration, phosphoinositide synthesis, protein tyrosine phosphorylation, and expression of certain genes. Proteins that are tyrosine phosphorylated in response to integrin-mediated adhesion include the focal adhesion kinase (p125FAK) (9, 21, 25, 38, 53), paxillin (9), and the MAP kinases, ERK-1 and ERK-2 (72). Many of the responses elicited by integrin-mediated adhesion are also evoked by activation of the PDGF β-receptors (7, 11, 71). Thus, PDGF stimulation leads to tyrosine phosphorylation of p125FAK and paxillin, as well as MAP kinases (11, 48). The role of PDGF β-receptors, if any, in integrin-induced signaling, is not known.

In addition to its well-known growth-promoting activities, PDGF stimulates several processes that depend on integrin activity. Examples are PDGF stimulated and $\alpha_5\beta_1$-mediated chemotaxis through collagen type I-coated membranes (61) and fibroblast-mediated contraction of three-dimensional collagen lattices (14, 24, 37, 42, 54). Conversely, PDGF β-receptors become functionally refractory in fibroblasts that have contracted a collagen gel (43, 64). PDGF specifically stimulates the synthesis of the collagen-binding integrin $\alpha_2\beta_1$ (1) and increases the apparent activity of β_1 integrins in fibroblasts (24). Thus, several experimental observations strongly suggest that PDGF β-receptors modulate, and are modulated by, cellular processes dependent on integrin activity.

Integrins are concentrated and co-localize with several cytoskeletal components at focal adhesion sites (8, 57, 67). Within focal adhesions, cytoskeletal components, as well as signaling molecules concentrate, and are believed to serve as regulatory complexes for integrin signaling. Stimulation of fibroblasts with PDGF induces a rapid and tran-
sient change of the cytoskeletal structure, involving the formation of membrane and circular ruffles (45). Stimulation with this growth factor also results in a redistribution, as well as a change in the phosphorylation pattern of the focal adhesion protein vinculin (30), a process dependent on changes in phosphoinositide turnover (18).

It has been suggested that integrins can function as mechanoochemical transducers conveying strain from the extracellular matrix to the cytoskeleton leading to effects on the cell signaling machinery (reviewed in 33, 56). In a recent communication, Wang et al. (69) demonstrated that integrin-mediated adhesions will restrain external force applied to the structural components linked to the cell surface via integrins. Given the background that integrins transduce chemical signals that converge with responses elicited by the PDGF β-receptor, and that the latter in turn influence integrin activity, it is reasonable to propose an involvement of PDGF β-receptors in the mechanoochemical transducing properties of integrins.

Here we report that integrins and integrin-mediated adhesion processes induce an early and transient phosphorylation and internalization of PDGF β-receptors in fibroblasts. These processes were independent of PDGF. The PDGF β-receptor autophosphorylation was stimulated by increases in mechanical tension or stress exerted on the cells. Thus our findings suggest that autophosphorylation of PDGF β-receptors constitutes parts of a mechanism for cells to respond during the dynamic phases of externally applied tension, as well as fibroblast-mediated tension during cell adhesion and collagen gel contraction. Furthermore, the data are compatible with that PDGF β-receptor activation during cell adhesion and early phases of cell spreading may be a component in integrin-induced signaling in fibroblasts.

Materials and Methods
Antibodies and Other Reagents
The characteristics of the PDGF β-receptor specific mouse mAb, PDGFR-B2, have been described elsewhere (28, 52). PDGFR-B2 was used at a concentration of 1 μg/ml (49, 65). Polyclonal rabbit anti-PDGF-BB IgG (34) was kindly donated by Dr. C.-H. Hedin (Ludwig Institute for Cancer Research, Uppsala, Sweden). The anti-phosphotyrosine mouse mAb (4G10) (15, 36), and polyclonal rabbit anti-human PDGF type B-receptor serum raised against a synthetic peptide corresponding to amino acids 1013-1025 (12) was purchased from Upstate Biotechnology Inc. (Lake Placid, NY). The anti-phosphotyrosine mouse mAb PY20 (20) was purchased from Transduction Laboratories (Lexington, KY). The anti-PDGF α-receptor mAb (anti-PDGF-Rα) (27) was purchased from Genzyme (Cambridge, MA). The anti-human EGF receptor mAb, clone 108, (3) was kindly donated by Dr. Andreas Batzer (New York University Medical Center, New York, NY). The mAb PGF,007, raised toward a synthetic α-receptor mAb (anti-PDGF-Rα) (27) was kindly donated by Dr. C.-H. Hedin (Ludwig Institute for Cancer Research, Uppsala, Sweden). The anti-human PDGF-A and PDGF-BB (47a) was kindly donated by Dr. Drs. From Sigma Chemi- cal Co. (St. Louis, MO). The anti-β-subunit mAb TS27 (29) was kindly donated by Dr. Timothy Springer (Boston Blood Center, Boston, MA). The anti-integrin α5,β1-subunit mAb P1H5; anti-integrin α2,β1-subunit mAb P1B3; anti-integrin αv,β3-subunit mAb P1D6; and the anti-integrin β1-subunit mAb P4C10 (10, 63, 70) were all kindly donated by Dr. William Carter (Fred Hutchinson Cancer Research Center, Seattle, WA). Polyclonal rabbit anti-integrin β1-subunit IgG was raised essentially as described (23, 30) with the modifications that purified rat hepatocytes were used as starting material and that collagen-binding proteins were eluted from collagen type I-Sepharose affinity columns by 10 mM EDTA. Cy- tochalin D, cyclohexamide, herbicin A, and sodium orthovanadate were purchased from Sigma Chem. Co.

Rabbit anti-mouse IgG antibodies and goat anti-rabbit IgG antibodies were purchased from Sigma Chem. Co. and used at a concentration of 10 μg/ml. Affinity purified F(ab)2 fragments of goat anti-mouse immunoglobulins (IgG, IgA, and IgM) was purchased from Coop Biomedical (Malvern, PA). Biotinylated horse anti-mouse IgG, biotinylated goat anti-rabbit IgG, and Texas red avidin D were from Vector Laboratories (Burlingame, CA). Fluorescein-conjugated goat anti-mouse IgG, and goat anti-rabbit IgG were from Becton and Dickinson (Mountainview, CA) and Sigma Chem. Co., respectively. All antibodies were diluted in PBS (130 mM NaCl, 10 mM Na-phosphate, pH 7.4), and used in optimal concentrations determined after serial dilutions.

Recombinant human PDGF-AA and PDGF-BB (47a) was kindly donated by Dr. C.-H. Hedin. PDGF was purchased from Sigma Chem. Co. Suramin, an agent which inhibits the binding of several growth factors to their receptors and is able to dissociate receptor-bound growth factors including PDGF (5, 31, 39), was kindly provided by Bayer (Leverkusen, Germany). Human plasma fibronectin was purified according to the method described by Miekka et al. (46). Calf skin collagen type I (Vitro- gen 100) was obtained from Celtrix (Paio Alto, CA). DME, MCDB 104 medium used for serum-free cell culture and trypsin-EDTA were obtained from the National Veterinary Institute (Uppsala, Sweden). FBS was obtained from Sera-Lab limited (Sussex, UK).

Cells
Stock cultures of human diploid foreskin AG 1518 fibroblasts (Genetic Mutant Cell Repository, Camden, NJ), were grown in 175 cm2 cell culture flasks (Costar Corp., Cambridge, MA) in DMEM supplemented with 10% FBS, 50 μg/ml streptomycinsulphate, 60 μg/ml penicillin G, and 2 mM l-glutamine (National Veterinary Institute). Cells were passaged once a week and fed fresh medium twice a week. All experiments were performed with cells in passages 15-20 (passage split 1:2). Cells grown to near confluence were detached by two rinses with PBS containing 10 mM EDTA, and subsequently treated for 3 min with trypsin-EDTA. Trypsin was neutralized with DME containing 10% FBS. Cells were then centrifuged and resuspended in MCDB 104 medium.

Preparation of Collagen Gels
For the manufacturing of threedimensional collagen gels, tissue culture 24-well plates (Costar Corp.) were coated overnight with PBS containing 2% BSA (National Veterinary Institute) that had been heat inactivated at 35°C for 2 h, followed by washing the plates twice with PBS. Neutral collagen solutions were prepared by mixing two times concentrated MCDB 104 medium, 0.2 M Hepes, pH 8.0, and vitrogen 100, in the proportions 5:1:4 by volume. Fibroblasts suspended in two times MCDB 104 medium were mixed with the collagen solution to bring the final cell concentration to 600,000 cells/ml, and the final collagen concentration to 1.1 mg/ml. The collagen/cell mixture was added to molds and allowed to polymerize for 20 min at 37°C. After polymerization, 1 ml of MCDB 104 was added and gels that were to be rotated (relaxed) were dislodged from the walls of the plates with a spatula and allowed to float freely in the well. Gels that were not dislodged are referred to as stressed.

Cell Staining
Cells were seeded onto coverslips in 24-well plates (Costar Corp.) and cul- tivated for the designated time periods. Cells were fixed in fresh 2% paraformaldehyde 4°C for 10 min. After rinsing in TBS (0.15 M NaCl and 0.01 M Tris, pH 7.4) cells were incubated for 15 min in TBS with 0.1% Tween, rinsed in TBS containing 0.1% BSA, and 0.1% Tween. thereafter remaining free aldehyde groups were blocked by incubating in 0.1 M glycine containing 0.5% BSA, pH 7.4, for 1 h. Coverslips were incubated with the primary mouse monoclonal antibody for 45 min, rinsed, and incubated with biotinylated horse anti-mouse IgG diluted for 30 min, rinsed, and incubated with a mixture of Texas red avidin D and Bodipy FL Phallacidin (Molecular Probes Inc.), rinsed, and subsequently mounted in glycerin/PBS (9:1) containing 0.1% phenylemedamine (Aldrich, Steinheim, Germany).

Detection of β1-integrin Clustering
AG 1518 fibroblasts were grown on glass coverslips in the presence of 10% FBS for 2 d, washed, and then serum depleted in MCDB 104 for 24 h.
Cells were either incubated with polyclonal anti-β1 integrin IgG (250 μg/ml) only or with polyclonal anti-β1 integrin IgG (250 μg/ml) followed by goat anti-rabbit IgG (20 μg/ml) prior to fixation in 2% paraformaldehyde 4°C for 30 min and rinsed in TBS. Cells were incubated for 15 min in TBS with 0.1% Tween, rinsed in TBS containing 0.1% BSA and 0.1% Tween, and free aldehyde groups were blocked by incubating in 0.1 M glycine with 0.5% BSA, pH 7.4, for 1 h. IgG was visualized by incubation with goat anti-rabbit IgG FITC (Sigma Chem. Co.) or rabbit anti-goat IgG FITC (Sigma Chem. Co.) for 30 min, rinsed in TBS, and mounted as described above.

Experimental Conditions
Plating Experiments. 60 mm dishes were coated at 37°C overnight with 30 μg/ml collagen type I, 20 μg/ml of plasma fibronectin or 4 μg of poly-L-lysine diluted in PBS. To coat dishes with different IgGs or IgM, 100 μg/ml of affinity-purified F(ab)2 fragments of goat anti-mouse immunoglobulins (IgG, IgA, and IgM) were incubated in PBS on 60 mm dishes for 8 h at 4°C. All dishes were washed in PBS and remaining free plastic protein-binding sites blocked for 2 h in PBS containing 2% BSA that had been heat inactivated, and again washed twice in PBS. Dishes were then incubated overnight with monoclonal anti-integrin subunit antibodies diluted in PBS, and subsequently washed twice in PBS. AG 1518 fibroblasts were trypsinized for 2 min at 37°C, and then washed and resuspended in MCDB 104 medium. 800,000 cells were plated in the 60 mm cell culture dishes unless otherwise stated and incubated at 37°C for the designated time periods.

Integrin Cross-linking Experiments. 400,000 AG 1518 fibroblasts were seeded in 60 mm dishes and grown to near confluence in DME supplemented with 10% FBS. Before the initiation of experiments cells were serum starved in MCDB 104 for 24 h, washed twice in MCDB 104 and incubated with polyclonal anti-β1 integrin IgG (250 μg/ml) for 30 min. Cells were washed once in MCDB 104 and incubated with secondary goat anti-rabbit antibody (20 μg/ml) for different time periods to dust cell surface β1 integrins.

Experiments on Cells in Suspension were Performed as Follows. 500 μl of protein A-Sepharose beads (Pharmacia, Piscataway, NJ) were incubated in 4 ml of a solution containing 250 μg/ml polyclonal anti-β1 integrin IgG for 2 h at 4°C and then washed three times in PBS. 50 μl of the beads were incubated with 800,000 cells in 600 μl MCDB 104 in suspension at 37°C for the designated time periods. Alternatively, 800,000 cells were incubated in 600 μl MCDB 104 containing 250 μg/ml polyclonal anti-β1 integrin antibodies in suspension at 37°C.

Solubilization and Immunoprecipitation
Cell monolayers were removed from the culture dishes by scraping with a rubber policeman and solubilized for 30 min in 400 μl solubilization buffer (0.5% Triton X-100, 0.5% sodium deoxycholate, 20 mM Tris-HCl, pH 7.4, 0.15 M NaCl, 30 mM dithiothreitol, 2 mM EDTA, 0.4 mM Na-vanadate, 5 μg/ml leupeptin, 5 μg/ml pepstatin A, 1 mM PFA block, and 250 KIE/ml aprotinin). Collagen gels were pooled and volumes were equilibrated to 1.5 ml with MCDB 104. Thereafter 500 μl of four times concentrated solubilization buffer was added. Samples were then homogenized (15 strokes) with a 2 ml Dounce homogenizer at 4°C and incubated for 30 min.

Lysates were centrifuged at 16,000 g for 30 min. Supernatants were precleared by incubating with normal rabbit IgG and protein A-Sepharose (Pharmacia) for 1.5 h. Supernatants were then immunoprecipitated with polyclonal anti-PDGF β-receptor, or monoclonal anti-PDGF α-receptor IgG, anti-phosphotyrosine IgG or anti-EGF receptor IgG for 2 h, and subsequently precipitated with protein A-Sepharose. The Sepharose pellets were washed three times in 0.5 M NaCl and three times in 0.15 M NaCl solubilization buffer and subjected to SDS-PAGE.

Immunoblotting
Samples for SDS-PAGE were mixed with reducing sample buffer (0.2 M Tris-HCl, pH 6.8, 18% glycerol, 4% SDS, 0.01% bromophenol blue, 10% mercaptoethanol) and were subjected to a 7.5% acrylamide gel electrophoresis (40) using minigel aggregates (Bio-Rad Labs, Boston, MA). Rainbow-colored protein molecular weight markers (Amersham) were used. Gels were transferred to Immobilon polyvinylidene fluoride membranes (Millipore Corp., Bedford, MA).

Membranes were blocked overnight at 4°C in TBS with 5% BSA and 0.2% Tween-20 and then incubated for 2 h with the anti-phosphoryrosine mAb PY20 or P4G10 diluted in blocking solution. Membranes were incubated in TBS with 0.1% BSA and 0.2% Tween followed by 1.5-h incubations with horseradish peroxidase-linked sheep anti-mouse IgG (Amer sham) in blocking solution. Bands were developed using the enhanced chemiluminescence substrate kit (Amer sham) for 1–3 min with medical x-ray film (Fuji). Films were analyzed by laser scanning densitometry on an Ultrascan XL (LKB-Wallac, Bromma, Sweden).

Centrifugation Experiments
Plastic dishes were coated with collagen type I (30 μg/ml) or fibronectin (20 μg/ml) as described above. AG 1518 fibroblasts were plated at a density of 800,000 cells in 60 mm dishes, and allowed to adhere for 4 h in MCDB 104. Dishes were then incubated on ice until used in centrifugation experiments. Immediately before centrifugation, dishes were incubated at 37°C for 5 min, washed once with MCDB 104, and then completely filled with MCDB 104 containing 10 mM Hepes and 100 μM sodium orthovanadate, pH 7.4, at 37°C. Dishes were covered with parafilm and airbubbles removed with a syringe. The cell plates were immediately centrifuged for the designated time periods. The dishes were placed in the centrifuge so that the centrifugal force was directed upward and perpendicular to the plane of the interphase between the cell and the substrate. The Omniprobe 2.0 SR centrifuge (Heraeus Sepatech, Hanau, Germany) used enables precise regulation of temperature, acceleration, deceleration, and final G-force value. Cell plates were centrifuged upside-down at 25°C, varying the final G-force values. Parallel control plates that were not subjected to centrifugation were incubated in MCDB 104, 10 mM Hepes, and 100 μM sodium orthovanadate at 25°C.

Results
Plating of Cells on ECM Substrates Induces Tyrosine Phosphorylation of PDGF β-Receptors
Plating of human AG 1518 fibroblasts on dishes coated with collagen type I or fibronectin in serum-free MCDB 104 medium resulted in a rapid tyrosine phosphorylation of PDGF β-receptors (Fig. 1, A and B). Maximal PDGF β-receptor tyrosine phosphorylation was detected 1 and 2 h, respectively, after plating. The tyrosine phosphorylation response elicited by plating cells on collagen type I and fibronectin was transient, 6 h after plating a clear decrease in PDGF β-phosphorylation was apparent on both substrates. In cells plated on poly-L-lysine only a limited phosphorylation of PDGF β-receptors was detected 2 h after plating (Fig. 1 C). The limited phosphorylation of PDGF β-receptors in cells plated on poly-L-lysine was completely abrogated by the presence of 10 μg/ml cycloheximide (Fig. 1 D). In contrast the PDGF β-receptor phosphorylation induced by plating cells on fibronectin or collagen type I was not affected by cycloheximide (Fig. 1 D) thus the PDGF β-receptor phosphorylation response after plating cells on poly-L-lysine was due to synthesis of a cell attachment protein. Furthermore, the plating-induced tyrosine phosphorylation of PDGF β-receptors was not altered by the presence of 10% FBS, or when cells were plated at a four times lower density, but was enhanced in the presence of orthovanadate and inhibited in the presence of herbimycin A (data not shown). As expected no tyrosine phosphorylation of PDGF β-receptors was detected in AG 1518 fibroblasts that had been plated in the presence of 10% FBS, grown to confluence and serum depleted for 24 h. PDGF-BB stimulation of such cells resulted, however, in a rapid and effective tyrosine phosphorylation of PDGF β-receptors (Fig. 1, A and D).

The plating-induced phosphorylation of PDGF β-receptors was sensitive to disruption of the actin cytoskeletal in-
Figure 1. Plating-induced phosphorylation of PDGF β-receptors in AG 1518 fibroblasts. Cells were plated and cultured in MCDB 104 medium for the indicated time periods under serum-free conditions. (A) Cells plated on fibronectin; (B) cells plated on collagen type I; (C) cells plated on poly-L-lysine; (D) cells plated on poly-L-lysine and cultured in the presence of cycloheximide (10 μg/ml); and (E) cells plated on collagen type I and cultured in the presence or absence of (5 μg/ml) cytochalasin D. Phosphorylation of PDGF β-receptors achieved after stimulation of cells with 20 ng/ml of PDGF-BB for 15 min is shown in A and D. PDGF α-receptors were immunoprecipitated with specific polyclonal anti-PDGF B-receptor IgG, and tyrosine phosphorylation was detected by immunoblotting after separation of precipitated proteins by SDS-PAGE. The relative migration of pre-stained molecular weight standard proteins are indicated. 220, Myosin; 97, phosphorylase B; and 66, bovine serum albumin. These marker proteins migrate as proteins with Mr:s 220,000, 97,000, and 66,000 respectively. IP, Immunoprecipitation.
bronectin led to the formation of PDGF β-receptor vesicles suggesting that the plating-induced phosphorylation resulted in assembly and internalization of the PDGF β-receptors. The receptor clusters were evident two hours after plating of cells on collagen type I (Fig. 3, E and F) or on fibronectin (Fig. 3, G and H). Cells plated on poly-L-lysine did not exhibit clusters of PDGF β-receptors 2 h after plating (Fig. 3, K and L).

Plating of AG 1518 Fibroblasts on Anti-integrin Subunit IgG Induces Phosphorylation and Clustering of PDGF β-Receptors

The involvement of β₁ integrins in the plating-induced phosphorylation of PDGF β-receptors was investigated. In a first series of experiments AG 1518 fibroblasts were seeded on dishes to which monoclonal anti-integrin α subunit or anti-integrin β₁-subunit IgG had been immobilized (see Materials and Methods). Monoclonal antibodies used were TS2/7 (anti-α₁), P1H5 and P1E6 (anti-α₂), P1B5 (anti-α₃), P1D6 (anti-α₄), and P4C10 (anti-β₁). AG 1518 fibroblasts attached and spread readily to surfaces coated with all of these antibodies, anti-α₂ and anti-β₁ being the most effective in supporting cell spreading. A rapid tyrosine phosphorylation of PDGF β-receptors was evident after plating of cells on all of the anti-integrin antibodies (Fig. 4). Phosphorylation of PDGF β-receptors occurred most rapidly in cells plated on monoclonal anti-α₂ and anti-β₁ integrin IgG with a maximal level achieved 30 min after plating and thereafter decreasing during a 2-h incubation period. AG 1518 fibroblasts, plated on monoclonal anti-fibroblast surface marker IgM (1B10) were able to adhere and spread but did not display any phosphorylation of the PDGF β-receptors during the time period investigated (Fig. 4). Cells did not adhere to dishes coated solely with the anti–mouse Fab, fragments used to immobilize the anti-integrin subunit antibodies.

Plating of cells on polyclonal anti-β₁ integrin IgG resulted in rapid formation of PDGF β-receptor clusters visible 2 h after plating (Fig. 3, I and J), these clusters gradually decreased during a 6-h incubation period (data not shown), as assessed by immunofluorescence using PDGF-B2 IgG. When omitting the primary antibody in the immunofluorescence staining procedure no patches were detected indicating that the secondary biotinylated horse anti-mouse IgG does not cross-react with rabbit IgG (data not shown). No PDGF β-receptor clusters were detected in cells plated on poly-L-lysine (Fig. 3, K and L).

To further assess the effects of β₁ integrin stimulation on phosphorylation of PDGF β-receptors in AG 1518 fibroblasts, antibody cross-linking experiments were conducted. Fibroblasts were grown to near confluence in DME with 10% FBS, serum-depleted in MCDB 104 medium for 24 h, and stimulated with 250 μg/ml polyclonal anti-β₁ integrin IgG for 30 min. After removal of unbound anti-β₁ IgG by washing with MCDB 104, cultures were incubated with...
Figure 3. Plating-induced formation of PDGF β-receptor granules in AG 1518 fibroblasts. (A, C, E, G, I, and K), immunofluorescence stainings of PDGF β-receptors using PDGFR-B2 IgG; (B, D, F, H, J, and L), detection of F-actin by Bodipy FL-Phallacidin. Both reagents were used in the double fluorescence staining procedure described in Materials and Methods. Double-stained areas are represented side by side in the figure. In A–D cells had been cultured on glass coverslips in DME containing 10% FBS and subsequently serum depleted for a 24-h time period in MCDB 104 medium. In E–I cells had been cultured on glass coverslips coated with the indicated substances for 2 h in MCDB 104 medium. (A and B) Nonstimulated AG 1518 fibroblasts; (C and D) AG 1518 fibroblasts stimulated for 15 min with 50 ng/ml of PDGF-BB. Note the formation of PDGF β-receptor granules in C, and circular actin ruffles in the same cells (D); (E and F) AG 1518 fibroblasts plated on collagen type I-coated coverslips; (G and H) AG 1518 fibroblasts plated on human plasma fibronectin-coated coverslips; (I and J) AG 1518 fibroblasts plated on polyclonal anti-β1 integrin IgG-coated coverslips; (K and L) AG 1518 fibroblasts plated on poly-L-lysine-coated coverslips. Note the presence of PDGF β-receptor granules in (E, G, and I), but absence of circular actin ruffles in the corresponding cells (F, H, and J). No PDGF β-receptor granules or circular actin ruffles were detected in cells plated on poly-L-lysine (K and L). Bar, 40 μm.
Figure 4. Tyrosine phosphorylation of PDGF β-receptors induced by plating AG 1518 fibroblasts on anti-integrin subunit IgG. Cells were plated and cultured in MCDB 104 medium for the indicated time periods. Monoclonal anti-integrin subunit IgG, or anti-fibroblast surface marker IgM were immobilized on plastic culture dishes pre-coated with goat anti-mouse immunoglobulin F(ab)2 fragments as described in Material and Methods. Antibodies used were: TS2/7 (anti-α1); P1E6 (anti-α2); P1B3 (anti-α3); P1D6 (anti-α5); P4C10 (anti-β1); and 1B10 (anti-human fibroblast surface protein; FSP IgM). PDGF β-receptors were immunoprecipitated with specific polyclonal anti-PDGF β-receptor IgG, and tyrosine phosphorylation was detected by immunoblotting after separation of precipitated proteins by SDS-PAGE. The position of pre-stained myosin, migrating as a 220,000-Mr protein in SDS-PAGE is indicated. Phosphorylation of PDGF β-receptors achieved after stimulation of cells with 20 ng/ml of PDGF-BB for 15 min is shown.

Figure 5. Tyrosine phosphorylation of PDGF β-receptors in AG 1518 fibroblasts induced by clustering cell surface β1 integrins by antibodies. (A and B), AG 1518 fibroblasts suspended in 600 μl MCDB 104 medium; (C and D) AG 1518 fibroblasts grown to confluence in DMEM with 10% FBS and subsequently serum-depleted for 24 h in MCDB 104 medium. (A and B) Cells incubated with 250 μg/ml polyclonal anti-β1 integrin IgG for 30 min and subsequently with 10 μg/ml goat anti-rabbit IgG for the indicated time periods. PDGF β-receptors were immunoprecipitated with specific polyclonal anti-PDGF β-receptor IgG, and tyrosine phosphorylation was detected by immunoblotting after separation of precipitated proteins by SDS-PAGE. The positions of pre-stained myosin and phosphorylase B, migrating as 220,000- and 97,000-Mr proteins are indicated. Phosphorylation of PDGF β-receptors achieved after stimulation of cells with 20 ng/ml of PDGF-BB for 15 min is shown in A.

150 μg polyclonal anti-β1 integrin IgG coupled to 50 μl protein A-Sepharose; (D) cells incubated with 250 μg/ml polyclonal anti-β1 integrin IgG for 30 min and subsequently with 10 μg/ml goat anti-rabbit IgG for the indicated time periods. PDGF β-receptors were immunoprecipitated with specific polyclonal anti-PDGF β-receptor IgG, and tyrosine phosphorylation was detected by immunoblotting after separation of precipitated proteins by SDS-PAGE. The positions of pre-stained myosin and phosphorylase B, migrating as 220,000- and 97,000-Mr proteins are indicated. Phosphorylation of PDGF β-receptors achieved after stimulation of cells with 20 ng/ml of PDGF-BB for 15 min is shown in A.

PDGF β-Receptors are Phosphorylated in AG 1518 Fibroblasts during the Process of Collagen Gel Contraction

AG 1518 fibroblasts readily contract three-dimensional collagen gels in a process that is stimulated by, but not dependent on, PDGF or serum (64), and that is mediated by β1 integrins (24). A prominent phosphorylation of PDGF β-receptors in AG 1518 fibroblasts during the process of contracting free-floating gels (relaxed condition) was evident 4 h after that gels had been floated (20% of maximal response), corresponding to 5 h after seeding of the collagen/cell mixture (Fig. 7 B). Fibroblasts cultured in attached collagen gels (stressed conditions) also exhibited a strong phosphorylation of PDGF β-receptors, but the response followed a different time course with a peak in the phosphorylation at 1.5 and 5 h after initiation of cultures with relative levels of phosphorylation corresponding to 13 and 11% of the maximal response, respectively, (Fig. 7 A). In lysates of AG 1518 fibroblasts cultured both under stressed and relaxed conditions a ~110,000-Mr protein that was phosphorylated on tyrosine co-precipitated with the PDGF β-receptor. The identity of this latter protein is not known but the degree of tyrosine phosphorylation of this protein closely followed that of PDGF β-receptors.
Figure 6. Appearance of clustered cell-surface β1 integrins on AG 1518 fibroblasts. AG 1518 fibroblasts grown to confluence in DME with 10% FBS and subsequently serum-depleted for 24 h in MCDB 104 medium. (A) Fibroblasts incubated with 250 μg/ml polyclonal anti-β1 integrin IgG for 30 min prior to fixation and staining with goat anti-rabbit FITC; (B) fibroblasts incubated with 250 μg/ml polyclonal anti-β1 integrin IgG for 30 min, washed, and further incubated with 10 μg/ml of goat anti-rabbit IgG prior to fixation and staining with goat anti-rabbit FITC. Bar, 40 μm.

PDGF β-Receptor Phosphorylation is Induced in AG 1518 Fibroblasts in Response to the Application of External Tension on the Cells

To assess the effect of the PDGF β-receptor phosphorylation by external strain on cell-substrate adhesions AG 1518 fibroblasts attached to collagen type I and fibronectin were subjected to a centrifugal force that was directed perpendicular to the plane of the cell-substrate interface using the technology detailed in Materials and Methods. The centrifuge used, enabled precise control of acceleration, de-acceleration, temperature, and final G-force value. Cultures were centrifuged with constant acceleration and deceleration rates but with final G-force values ranging from 2–64 g. Tyrosine phosphorylation of PDGF β-receptors was evident in cells plated on collagen type I that had been exposed to centrifugal force for 2 min with a peak in phosphorylation after 5 min (Fig. 8 A and 9) and a subsequent decrease in tyrosine phosphorylation after 10 min. Tyrosine phosphorylation of PDGF β-receptors increased with increasing final G-force values up to 32 g. Fibroblasts remained attached during centrifugation even at 64 g for 10 min, and, in addition, responded to stimulation with 20 ng/ml PDGF-BB by tyrosine phosphorylation of PDGF β-receptors when stimulated immediately after being exposed to centrifugal forces (Fig. 8 D). It can therefore be concluded that the decrease in tyrosine phosphorylation, noticeable after centrifugation for 10 min, was not due to detachment of cells, nor to downregulation of PDGF β-receptors from the cell surface. Cells attached to fibronectin exhibited a similar response of tyrosine phosphorylation of PDGF β-receptors when exposed to centrifugal force, however, the peak in tyrosine phosphorylation was observed already after 2 min (Figs. 8 D and 9). Cells incubated in medium containing 100 μM sodium orthovanadate but not subjected to centrifugation exhibited a slight increase in tyrosine phosphorylation (3% of maximal response) of PDGF β-receptors above background levels (0.5% of maximal response) after a 5-min incubation period compared to uncentrifuged cells incubated in the absence of orthovanadate (Fig. 8 C).

Figure 7. Induction of tyrosine phosphorylation of PDGF β-receptors in AG 1518 fibroblasts cultured in three-dimensional collagen gels. (A) AG 1518 fibroblasts cultured and maintained under “stressed” (see text) conditions; stressed; and (B) AG 1518 fibroblasts cultured and maintained under “relaxed” (see text) conditions. Incubations were performed in MCDB 104 medium for the indicated time periods referring to the times after gelation of the lattices. PDGF β-receptors were immunoprecipitated with specific polyclonal anti-PDGF β-receptor IgG, and tyrosine phosphorylation was detected by immunoblotting after separation of precipitated proteins by SDS-PAGE. The positions of pre-stained myosin and phosphorylase B, migrating as 220,000- and 97,000-Mr, proteins are indicated. Phosphorylation of PDGF β-receptors achieved after stimulation of cells with 20 ng/ml of PDGF-BB for 15 min is shown in A.
Figure 8. Induction of PDGF β-receptor tyrosine phosphorylation in AG 1518 fibroblasts exposed to centrifugal forces. Cells were plated on the respective substrates and cultured in MCDB 104 medium prior to exposure to centrifugal forces as detailed in Material and Methods. Final G-force values (g) and time periods are indicated in A and B. (A) Fibroblasts plated on collagen type I; (B) fibroblasts plated on human plasma fibronectin. (C) Fibroblasts plated on collagen type I and cultured in MCDB 104, and then incubated (without being subjected to centrifugation) for 5 min in the presence (lane 1), or absence (lane 2) of 100 μM orthovanadate; (D) fibroblasts plated on collagen type I and cultured in MCDB medium, centrifuged for 10 min at 2 g (lane 1) and 64 g (lane 2) and thereafter stimulated with 50 ng/ml of PDGF-BB for 15 min. PDGF β-receptors were immunoprecipitated with specific polyclonal anti-PDGF β-receptor IgG, and tyrosine phosphorylation was detected by immunoblotting after separation of precipitated proteins by SDS-PAGE. The positions of prestained myosin and phosphorylase B, migrating as 220,000- and 97,000-Mr proteins are indicated in A and B.

Discussion

We have demonstrated that PDGF β-receptors in AG 1518 diploid human fibroblasts become phosphorylated on tyrosine residues in response to changes in cell shape, or in response to external strain exerted on the cells. This tyrosine phosphorylation occurred in the absence of exogenously added PDGF. The response was apparent during attachment, and early phases of spreading on fibronectin or collagen type I, but not when fibroblasts were plated on poly-L-lysine. Furthermore, tyrosine phosphorylation of PDGF β-receptors occurred during collagen gel contraction and when cells were exposed to a centrifugal force. As assessed from laser densitometric scanning, the magnitudes of the tyrosine phosphorylation responses in all these cases amounted to between 20 and 30% of the response achieved by stimulation with 20 ng/ml of PDGF-BB for 15 min. Furthermore, we demonstrated that PDGF β-receptors become clustered in response to plating of AG 1518 fibroblasts on fibronectin and collagen type I. These receptor clusters were morphologically indistinguishable from the intracellular granular accumulations seen after stimulation of these cells with PDGF-BB (62, 65), indicating that plating-induced tyrosine phosphorylation leads to an internalization of PDGF β-receptors. Tyrosine phosphorylation of PDGF β-receptors occurred when cells were plated on immobilized anti-β1 integrin IgG, but not when they were plated on IgG directed to a fibroblast (nonintegrin) cell surface marker. It can therefore be concluded that the plating-induced response is a result of β1 integrin-mediated adhesion reactions. We also investigated if the effects on PDGF β-receptors could be attributed to a specific β1-integrin. Experiments in which AG 1518 fibroblasts were plated on immobilized monoclonal anti-integrin subunit IgG revealed that PDGF β-receptor tyrosine phosphorylation was elicited in response to engagement of the integrins α1β1, α2β1, α3β1, and α5β1. These results demonstrate that the various integrin α subunits do not confer specificity to the plating-induced tyrosine phosphorylation of PDGF β-receptors. Taken together, our findings demonstrate the existence of a cross-talk between β1 integrin-mediated adhesion reactions and tyrosine phosphorylation of PDGF β-receptors. Furthermore, the findings raise the interesting possibility that part of the signal transduction events that are evoked by β1 integrin engagement (13, 55) in fact may be dependent on activation of PDGF β-receptors.

The present data suggest that β1 integrin-mediated tyrosine phosphorylation of PDGF β-receptors does not involve auto- or paracrine stimulation by PDGF-AB/BB. This notion is based on several observations. The kinetics of the reactions, displaying maximal responses at early...
The above concept was also supported by the transient tyrosine phosphorylation of PDGF β-receptors initiated during contraction of AG 1518 fibroblast-populated collagen matrices. Cell-mediated collagen gel contraction is an obviously dynamic process, dependent on an intact actin cytoskeleton, and resulting from compaction of the collagen fiber network by elongated fibroblasts (4, 22, 66) through the process of "cell traction" (26). During this process, integrins form stable contacts with the collagen fibers; these contacts should be operable for a certain time period after which they are to be dismantled allowing for new contacts to be formed. Such a model is supported by the recent finding that the β1 integrin-activating antibody TS2/16 paradoxically inhibits contraction of smooth muscle cell-populated collagen matrices (42). In anchored AG 1518 fibroblast-populated collagen gels, in which contraction is mechanically impeded ("stressed" conditions; 43), tyrosine phosphorylation of PDGF β-receptors peaked at 1 and 4 h. In floating collagen matrices ("relaxed" conditions) tyrosine phosphorylation peaked at 4 h. This difference in timing of the response may be related to differences in the mechanical tension during contraction. Floating collagen gels remain mechanically relaxed during contraction in contrast to anchored lattices where a high mechanical stress is generated (47). Our results indicate that tyrosine phosphorylation of PDGF β-receptors in collagen gels coincides with the buildup of mechanical stress and subsequent collagen gel contraction. Thus our findings support the view that tyrosine phosphorylation of PDGF β-receptors is elicited during dynamic phases of β1 integrin-mediated adhesion processes. It has been reported that PDGF β-receptors become functionally refractory in fibroblasts that are cultured in contracting relaxed collagen gels (43, 64). The present results add the possibility that a persistent remodelling of integrin-mediated contacts during contraction, leading to the observed PDGF-BB-independent phosphorylation of PDGF β-receptors, makes the latter nonavailable for stimulation by added ligand.

A correlation between alterations in mechanical tension and PDGF β-receptor tyrosine phosphorylation in AG 1518 fibroblasts was further supported by experiments in which cells were exposed to centrifugal forces. Under the experimental conditions used focal adhesions already formed with the underlying substratum were challenged by forces induced through centrifugation. A rapid and transient PDGF β-receptor tyrosine phosphorylation was elicited in response to a centrifugal force directed upwards from, and perpendicular to, the plane of the culture dishes. This phosphorylation response was dependent on the magnitude of the centrifugal force applied to the cells up to a force of 32 g, at 64 g the phosphorylation response decreased in magnitude. The latter effect was not due to that cells detached from the substrate. Furthermore, immediately after centrifugation fibroblasts responded to stimulation by PDGF-BB with a rapid and prominent tyrosine phosphorylation of PDGF β-receptors. However, it can not be ruled out that the observed decrease in tyrosine phosphorylation after centrifugation at 64 g is due to mechanical damage inflicted on the cells. The time needed to reach the final G-force value in the centrifuge varied from 30 s to over 2 min when cells were centrifuged at 64 g. The transient character of the tyrosine phosphorylation response, with maximal phosphorylation achieved after 5 min, thereafter declining to background levels regardless of final G-force value, indicate that when cells have achieved a constant tension, adaption occurs. Mechanoreceptors often register dynamic rather than static mechanical forces, and adaption occurs when a displacement stim-
Adhesion and PDGF B-Receptor Phosphorylation

Adaptation enables mechanoreceptors to remain highly sensitive to changes in environment. These results further support that the phosphorylation response of PDGF B-receptors is elicited in response to changes in tension exerted on the cells, and that this effect can be induced in already established focal adhesions.

The signal transduction pathway involved in plating-induced tyrosine phosphorylation of PDGF B-receptors is not known. One possibility is that the tyrosine phosphorylation of PDGF B-receptors is carried out by tyrosine kinases, e.g., p125FAK, that become activated as part of the integrin-signaling pathway (13, 55). Alternatively, integrin engagement could induce changes in the spatial distribution of PDGF B-receptors in a manner that leads to their dimerization and activation. In experiments aimed to discriminate between these possibilities we took advantage of porcine aortic endothelial (PAE) cells transfected with PDGF B-receptor cDNA constructs (17). Plating-induced PDGF B-receptor tyrosine phosphorylation was observed when PAE cells, transfected with the wildtype receptor, were plated on fibronectin (manuscript in preparation). In PAE cells expressing kinase-inactivated (K634A) receptors (26) no plating-induced tyrosine phosphorylation of PDGF B-receptors was observed. From these experiments it is possible to conclude that plating-induced PDGF B-receptor tyrosine phosphorylation is dependent on the intrinsic tyrosine kinase activity of the receptor. Thus it seems less likely that integrin-mediated activation of tyrosine kinases such as p125FAK phosphorylate PDGF B-receptors.

The cross-talk between PDGF B-receptors and B integrins has several implications. An obvious possibility is that this phosphorylation response, at least in part, is responsible for integrin-mediated signaling events. Thus, PDGF B-receptor activation could constitute an upstream signaling event in the phosphorylation of p125FAK, paxillin, and the MAP kinases. Furthermore, the integrin-mediated phosphorylation of PDGF B-receptors could be part of a positive feedback loop-strengthening cell-ECM contact. In favor of such a hypothesis are the findings that the phosphorylation response was observed during cell spreading, collagen gel contraction and when cells were exposed to extracellular tension. Evidence that receptor tyrosine kinases stimulates integrin-mediated adhesion in reactions not likely to be dependent on stimulation of de novo biosynthesis of integrins include stem cell factor–enhanced B integrin-mediated adhesion of mast cells to fibronectin (59), PDGF-BB stimulated contraction of B integrin-mediated fibroblast-populated collagen gel contraction (1) and smooth muscle cell migration through collagen-coated membranes (61).

In summary, the present study provides evidence for a coupling between B integrin-mediated adhesion reactions and ligand-independent activation of PDGF B-receptors in AG 1518 fibroblasts. This activation is elicited during the dynamic phases of adhesion and spreading, collagen gel contraction and when external force is applied to the cells. Furthermore, the signal leading to activation of PDGF B-receptors is dependent on clustering of B integrins at the cell surface. The results demonstrate a novel, potential regulatory mechanism for cell behavior based on a cross-talk between adhesion and tyrosine kinase receptors.

We thank Professor C.-H. Heldin for valuable discussions.

The present work was supported by grants from the Swedish Cancer Society, Konung Gustaf Vå Särsonden, Novo Nordisk insulin fond.

Received for publication 13 October 1995 and in revised form 22 November 1995.

References

1. Ahlen, K., and K. Rubin. 1994. Platelet-derived growth factor-BB stimulates synthesis of the integrin a2 subunit in human diploid fibroblasts. Exp. Cell Res. 215:547-554.
2. Albeda, S., and C. Buck. 1990. Integrins and other cell adhesion molecules. FASEB (Fed. Am. Soc. Exp. Biol.) J. 11:2868-2880.
3. Barz, A., D. Rotin, J. Urena, E. Skolnik, and J. Schlessinger. 1994. Hierarchy of binding sites for GRb2 and Shc on the epidermal growth factor receptor. Mol. Cell. Biol. 14:5192-5201.
4. Bell, E., B. Ivarsson, and C. Merrill. 1979. Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc. Natl. Acad. Sci. USA. 76:1274-1278.
5. Betsholtz, C., A. Johansson, C.-H. Heldin, and B. Westermarck. 1986. Rapid turnover of simian sarcoma virus-transformation and inhibition of growth factor-induced mitogenesis by suramin. Proc. Natl. Acad. Sci. USA. 83:6440-6444.
6. Bissel, S., H. Hall, and G. Parry. 1982. How does extracellular matrix direct gene expression? J. Theor. Biol. 99:31-68.
7. Bornfeldt, K.E., E.W. Raines, T. Nakano, L.M. Graves, E.G. Krebs, and R. Rowe. 1994. Insulin-like factor-1 and platelet-derived growth factor-BB induced directed migration of human arterial smooth muscle cells via signaling pathways that are distinct from those of proliferation. J. Clin. Invest. 93:1266-1274.
8. Burridge, K., K. Fath, T. Kedly, G. Nuckolla, and C. Turner. 1988. Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Annu. Rev. Cell Biol. 4:487-525.
9. Burridge, K., C. Turner, and L. Romer. 1992. Tyrosine phosphorylation of paxillin and pp125FAK accompanies cell adhesion to extracellular matrix: a role in cytoskeletal assembly. J. Cell Biol. 119:893-903.
10. Carter, W., E. Wayner, T. Bouchard, and P. Kaur. 1990. The role of integrins a5b1 in cell-cell and cell-substrate adhesion of human epidermal cells. J. Cell Biol. 110:1387-1404.
11. Claesson-Welsh, L. 1994. Platelet-derived growth factor receptor subtypes. J. Biol. Chem. 269:30202-30206.
12. Claesson-Welsh, L., A. Eriksson, A. Morén, L. Severinson, B. Ek, A. Östman, C. Betscholt, and C.-H. Heldin. 1988. cDNA cloning and expression of a human platelet-derived growth factor (PDGF) receptor specific for B-chain containing PDGF molecules. Mol. Cell. Biol. 8:3476-3486.
13. Clark, E.A., and J.S. Brugge. 1995. Integrins and signal transduction pathways: the road taken. Science (Wash. DC) 268:233-239.
14. Clark, R.A., J.M. Folkvord, C.E. Hart, M.J. Murray, and J.M. McPherson. 1989. Platelet isoforms of platelet-derived growth factor stimulate fibroblasts to contract collagen matrices. J. Cell. Biol. 108:1006-1040.
15. Cohen, B., M. Yoakim, H. Piwnica-worms, T. Roberts, and B. Schaffhausen. 1990. Tyrosine phosphorylation is a signal for the trafficking of pp85, an 85-kDa phosphorylated polypeptide associated with phosphatidylinositol kinase activity. Proc. Natl. Acad. Sci. USA. 87:4458-4462.
16. Deckers, C., and Z. Wecz. 1995. Signal transduction by integrin receptors for extracellular matrix: cooperative processing of extracellular information. Curr. Opin. Cell Biol. 7:772-781.
17. Eriksson, A., A. Siegbahn, B. Westmark, C.-H. Heldin, and L. Claesson-Welsh. 1992. PDGF a- and B-receptors activate unique and common signal transduction pathways. EMBO J. 11:543-550.
18. Fukami, K., T. Endo, M. Imanura, and T. Takenawa. 1994. a-Actinin and vinculin are PIP2-binding proteins involved in signaling by tyrosine kinase. J. Biol. Chem. 269:1523-1527.
19. Ginsberg, M.H., X. Du, and E.F. Flow. 1992. Inside-out integrin signaling. Curr. Opin. Cell Biol. 4:766-771.
20. Glenney, J., L. Zokas, and M. Kamps. 1988. Monoclonal antibodies to phosphotyrosine. J. Immunol. Meth. 109:277-285.
21. Guan, J., and D. Shalloway. 1992. Regulation of focal adhesion-associated protein tyrosine kinase by both cellular adhesion and oncogenic transformation. Nature (Lond.) 358:890-892.
22. Gundersen, C., and F. Grinnell. 1985. Studies on the mechanism of hydraulized collagen gel reorganization by human skin fibroblasts. J. Cell Sci. 79:617-81.
23. Gullberg, D., T. Larsson, E.A. Grinnell, and C. Sundberg. 1995. Identification of integrin-like matrix receptors with affinity for interstitial collagens. J. Biol. Chem. 264:2986-2994.
24. Gullberg, D., A. Tingström, A.C. Thurston, L. Olsson, L. Larsson, T.K. Borg, and K. Rubin. 1990. B-integrin-mediated collagen gel contraction is stimulated by PDGF. Exp. Cell Res. 186:264-272.
25. Hanks, S.K., M.B. Calab, M.C. Harper, and S.K. Patel. 1992. Focal adhe-
The Journal of Cell Biology, Volume 132, 1996

The characterization of PDGF-B receptor expressing cells in the vasculature of the thromboid synovium. Lab. Invest. 64:321-329.

Rubin, K., D. Gullberg, T. Borg, and B. Obrink. 1986. Hepatocyte adhesion to collagen. Isolation of membrane glycoproteins involved in adhesion to collagen. Exp. Cell. Res. 164:127-138.

Ruoslahti, E. 1991. Integrins. J. Clin. Invest. 87:1-5.

Rönnstrand, L., L. Terracio, L. Claesson-Welsh, C.-H. Heldin, and K. Rubin. 1988. Characterization of two monoclonal antibodies against the external domain of the receptor for platelet-derived growth factor-BB. J. Biol. Chem. 263:10429-10435.

Schaller, M., C. Borgen, B. Cobb, R. Vines, A. Reynolds, and J. Parson. 1992. pp125FAK: a structurally distinctive protein-tyrosine kinase associated with focal adhesions. Proc. Natl. Acad. Sci. USA. 89:5192-5196.

Schiró, J.A., B.M. Chan, W.T. Rowny, P.D. Kassner, A.P. Pentland, M.E. Hemler, A.Z. Eisen, and T.S. Kupper. 1991. Integrin αγδ (VLA-2) mediates reorganization and contraction of collagen matrices by human cells. Cell. 67:403-410.

Schwartz, M. 1992. Transmembrane signaling by integrins. Trends Cell. Biol. 2:304-308.

Schwartz, M., and D. Ingber. 1994. Integrating with integrins. Mol. Biol. Cell. 5:389-393.

Schwartz, M.A., and C. Lechene. 1992. Adhesion is required for protein kinase C-dependent activation of the Na+/H+ antiporter by platelet-derived growth factor. Proc. Natl. Acad. Sci. USA. 89:6138-6141.

Seifert, R.A., C.E. Hart, P.E. Phillips, J.W. Forstrom, R. Ross, M.J. Murray, and D.P. Bowman Pope. 1989. Different two subunits associate to create isomeric specific platelet-derived growth factor receptors. J. Biol. Chem. 264:8771-8778.

Serve, H., N.S. Yee, G. Stela, L. Sepp-Lorenzno, J.C. Tan, and P. Besmer. 1995. Differential roles of IRS-1 and IRS-2 in receptor-mediated proliferation, survival and cell adhesion in mast cells. EMBO J. 14:473-483.

Shirasaki, T., S. Morimoto, K. Itoh, H. Sato, K. Sugihara, T. Onishi, and T. Ogihara. 1989. Radioimmunoassay of human platelet-derived growth factor using monoclonal antibody toward a synthetic 73-97 fragment of its B-chain. Clin. Chim. Acta. 184:65-74.

Skinner, M.P., E.W. Raines, and R. Ross. 1994. Dynamic expression of αβ1, αγδ, and αβ2 integrin receptors by human vascular smooth muscle cells. αβ1 integrin is required for chemotaxis across type I collagen-coated membranes. Am. J. Pathol. 145:1070-1081.

Sorkin, A., B. Westmark, C.-H. Heldin, and L. Claesson-Welsh. 1991. Effect of receptor kinase inactivation on the rate of internalization and degradation of the PDGF and the PDGF BB-receptor. J. Cell Biol. 112:469-478.

Takada, Y., E.A. Wynn, W.G. Carter, and M.E. Hemler. 1988. Extracellular matrix receptors, ECMRII and ECMRI, for collagen and fibronectin correspond to VLA-2 and VLA-3 in the VLA family of heterodimers. J. Cell Biochem. 37:385-393.

Tingström, A., C.-H. Heldin, and K. Rubin. 1992. Regulation of fibroblast-mediated collagen gel contraction by platelet-derived growth factor, interleukin-1α and transforming growth factor-β1. J. Cell Sci. 102:315-322.

Tingström, A., C. Reuterdaht, P. Lindahl, C.-H. Heldin, and K. Rubin. 1992. Expression of platelet-derived growth factor β-receptors on human fibroblasts: Regulation by recombinant platelet-derived growth factor-BB, IL-1 and tumor necrosis factor-a. J. Immunol. 148:546-554.

Tomasek, J., and E. Hay. 1984. Analysis of the role of microfilaments and microtubules in acquisition of bipolarity and elongation of fibroblasts in hydrated collagen gels. J. Cell Biol. 99:538-549.

Turner, C.E. 1994. Paxillin: a cytoskeletal target for tyrosine kinases. Bioessays. 16:47-52.

von der Mark, K., H. von der Mark, and G. Goosman. 1992. Cellular responses to extracellular matrix. Kidney Int. 41:652-666.

Wang, N., J. Butler, and D. Ingber. 1993. Mechanotransduction across the cell surface and through the cytoskeleton. Science (Wash. DC). 260:1124-1127.

Wayner, E.A., W.G. Carter, R.S. Piotrowicz, and T.J. Kunicz. 1988. The function of multiple extracellular matrix receptors in mediating cell adhesion to extracellular matrix: preparation of monoclonal antibodies to the fibronectin receptor that specifically inhibit cell adhesion to fibronectin and react with platelet glycoproteins IIa-IIb. J. Cell Biol. 107:1881-1891.

Williams, L. 1989. Signal transduction of the platelet-derived growth factor. Science (Wash. DC). 243:1564-1570.

Zhai, X., and R.K. Association. 1995. Integrin-dependent activation of MAP kinase: A link to shape-dependent cell proliferation. Mol. Biol Cell. 6:272-282.