Conditional expectation and Bayes’ rule for quantum random variables and positive operator valued measures

Michael J. Kozdron
University of Regina

http://stat.math.uregina.ca/~kozdron/

CPTPN-3
First Nations University of Canada
August 21, 2012
(F-P-S) *Classical and nonclassical randomness in quantum measurements* by Douglas Farenick, Sarah Plosker, and Jerrod Smith. *J. Math. Phys.*, 52:122204, 2011.

(F-K) *Conditional expectation and Bayes rule for quantum random variables and positive operator valued measures* by Douglas Farenick and MJK. *J. Math. Phys.*, 53:042201, 2012.
A measurement of a quantum system is represented mathematically by a positive operator valued measure \(\nu \) which is defined on a \(\sigma \)-algebra \(\mathcal{O}(X) \) of measurement events such that whenever a measurement is made with the system in state \(\rho \), the measurement event \(E \in \mathcal{O}(X) \) will occur with probability

\[
\text{Tr}(\rho \nu(E)).
\]

Reference. *The Quantum Theory of Measurement* by Busch, Lahti, Mittelstaedt, LNP, Springer, 1991.

In practice, quantum measurements of an actual physical system are made by way of some apparatus and so \(X \) is often assumed to be finite.

Mathematically, however, there is no need for such a restriction and so one of our goals is to approach the theory of quantum measurement under the assumption that \(X \) be arbitrary.
Some notation

X, a locally compact Hausdorff space

$\mathcal{O}(X)$, the Borel σ-algebra of subsets of X

$\mathcal{F}(X)$, a sub-σ-algebra of $\mathcal{O}(X)$

\mathcal{H}, a d-dimensional Hilbert space

$\mathcal{B}(\mathcal{H})$, the space of (bounded) linear operators on \mathcal{H}

$\text{Tr} : \mathcal{B}(\mathcal{H}) \to \mathbb{C}$, the canonical trace functional

$\mathcal{B}(\mathcal{H})_+ = \{ a \in \mathcal{B}(\mathcal{H}) : \langle a\zeta, \zeta \rangle \geq 0 \ \forall \ \zeta \in \mathcal{H} \}$, the space of positive operators

$S(\mathcal{H})$, the state space of \mathcal{H}, namely the set of all density operators $\rho \in \mathcal{B}(\mathcal{H})_+$ with $\text{Tr}(\rho) = 1$

$\text{Eff}(\mathcal{H})$, the set of quantum effects, namely those positive operators $h \in \mathcal{B}(\mathcal{H})_+$ such that every eigenvalue of h lies in $[0, 1]$.

$S(\mathcal{H}) \subset \text{Eff}(\mathcal{H})$
A set function $\nu : \mathcal{F}(X) \to \mathcal{B}(\mathcal{H})$ is called a positive operator valued measure on $(X, \mathcal{F}(X))$ if

1. $\nu(E) \in \text{Eff}(\mathcal{H})$ for every $E \in \mathcal{F}(X)$,

2. $\nu(X) \neq 0$, and

3. for every countable collection $\{E_k\}_{k \in \mathbb{N}} \subseteq \mathcal{F}(X)$ with $E_j \cap E_k = \emptyset$ for $j \neq k$ we have

$$\nu\left(\bigcup_{k \in \mathbb{N}} E_k \right) = \sum_{k \in \mathbb{N}} \nu(E_k)$$

where the convergence on the right side of the previous equality is with respect to the σ-weak topology of $\mathcal{B}(\mathcal{H})$.

If $\nu(X) = 1 \in \mathcal{B}(\mathcal{H})$, we call it a positive operator valued probability measure.

Notation. $\text{POVM}_{\mathcal{H}}(X)$ or $\text{POVM}^{\perp}_{\mathcal{H}}(X)$
Quantum random variables

A quantum random variable on X is a function $\psi : X \to \mathcal{B} (\mathcal{H})$ such that

$$x \mapsto \text{Tr}(\rho \psi(x))$$

is a complex random variable on X for every density operator $\rho \in S(\mathcal{H})$.

Recall. A random variable is a Borel-measurable function on a measure space X with $\mu(X) = 1$.
Quantum averaging (F-P-S, F-K)

Theorem. There is a definition of integral whereby a quantum random variable ψ may be integrated against the positive operator valued probability measure ν to produce an operator

$$
\mathbb{E}_{\nu} [\psi] := \int_X \psi \, d\nu \in \mathcal{B}(\mathcal{H}).
$$

Example. If $X = \{x_1, x_2, \ldots, x_n\}$, then

$$
\mathbb{E}_{\nu} [\psi] = \sum_{j=1}^{n} h_j^{1/2} \psi(x_j) h_j^{1/2}
$$

where $h_j = \nu(x_j)$.
The principal Radon-Nikodým derivative (F-P-S)

Let $\nu \in \text{POVM}_H(X, \mathcal{F}(X))$ so that $\mu(E) = \frac{\text{Tr}(\nu(E))}{d}$ is a Borel measure.

Let $\{e_1, \ldots, e_d\}$ be an orthonormal basis of \mathcal{H}.

Let $\nu_{ij} : \mathcal{F}(X) \to \mathbb{C}$ be defined by $\nu_{ij}(E) = \langle \nu(E)e_j, e_i \rangle$ so that $\nu_{ij} \ll_{ac} \mu$. By classical R-N Theorem, there exists a unique function

$$\frac{d\nu_{ij}}{d\mu} \in L^1(X, \mathcal{F}(X), \mu)$$

such that

$$\nu_{ij}(E) = \int_E \frac{d\nu_{ij}}{d\mu} d\mu.$$

The function

$$\frac{d\nu}{d\mu} = \sum_{i,j=1}^d \frac{d\nu_{ij}}{d\mu} \otimes e_{ij}$$

where $e_{ij} \in \mathcal{B}(\mathcal{H})$ sends e_j to e_i and e_k to 0 is called the principal Radon-Nikodým derivative of ν.
The non-principal Radon-Nikodým derivative (F-P-S)

Theorem. If \(\nu_1, \nu_2 \in \text{POVM}_\mathcal{H}(X, \mathcal{F}(X)) \), then the following statements are equivalent.

1. \(\nu_2 \ll_{ac} \nu_1 \), i.e., \(\nu_2(E) = 0 \) whenever \(\nu_1(E) = 0 \).

2. There exists a bounded \(\nu_1 \)-integrable \(\mathcal{F}(X) \)-measurable function \(\varphi : (X, \mathcal{F}(X)) \to \mathcal{B}(\mathcal{H}) \), unique up to sets of \(\nu_1 \)-measure zero, such that
\[
\nu_2(E) = \int_E \varphi \, d\nu_1
\]
for every \(E \in \mathcal{F}(X) \).

Moreover, if the equivalent conditions above hold and if \(\mu_j = \mu_{\nu_j} \) is the finite Borel measure induced by \(\nu_j \), then \(\mu_2 \ll_{ac} \mu_1 \) and
\[
\varphi = \left(\frac{d\mu_2}{d\mu_1} \right) \left[\left(\frac{d\nu_1}{d\mu_1} \right)^{-1/2} \left(\frac{d\nu_2}{d\mu_2} \right) \left(\frac{d\nu_1}{d\mu_1} \right)^{-1/2} \right]
\]
(2)
i.e., \(\varphi \) is the non-principal Radon-Nikodým derivative of \(\nu_2 \) wrt \(\nu_1 \) so we write
\[
\frac{d\nu_2}{d\nu_1} = \varphi.
\]
A non-commutative multiplication (F-K)

If \(a, b \in \mathcal{B}(\mathcal{H})_+ \) are both invertible, then the geometric mean of \(a \) and \(b \) is defined by setting

\[
a \# b = a^{1/2} (a^{-1/2}ba^{-1/2})^{1/2} b^{1/2}.
\]

Definition. Suppose that \(\nu_1, \nu_2 \in \text{POVM}_\mathcal{H}(X) \) with \(\nu_2 \ll_{ac} \nu_1 \), and let \(\mu_j = \mu_{\nu_j} \) be the induced Borel probability measures. If \(\psi : X \to \mathcal{B}(\mathcal{H}) \) is a quantum random variable, then

\[
\psi \boxtimes \frac{d\nu_2}{d\nu_1} = \left(\left(\frac{d\nu_1}{d\mu_1} \right)^{-1} \# \frac{d\nu_2}{d\nu_1} \right) \left(\frac{d\nu_1}{d\mu_1} \right)^{1/2} \psi \left(\frac{d\nu_1}{d\mu_1} \right)^{1/2} \left(\left(\frac{d\nu_1}{d\mu_1} \right)^{-1} \# \frac{d\nu_2}{d\nu_1} \right).
\]

Remark. In the commutative setting— and, in particular, in the classical case of \(\mathcal{H} = \mathbb{C} \)— the multiplication defined by \(\boxtimes \) reduces to ordinary multiplication. That is, if \(a, b \in \mathcal{B}(\mathcal{H})_+ \) commute, then \(a \# b = a^{1/2} b^{1/2} = b^{1/2} a^{1/2} = b \# a \). Thus, if \(\psi, \frac{d\nu_1}{d\mu_1}, \) and \(\frac{d\nu_2}{d\nu_1} \) are pairwise commuting, then

\[
\psi \boxtimes \frac{d\nu_2}{d\nu_1} = \psi \frac{d\nu_2}{d\nu_1} = \frac{d\nu_2}{d\nu_1} \psi.
\]
Theorem. Suppose that $\nu_1, \nu_2 \in \text{POVM}_H^1(X)$ with $\nu_2 \ll_{ac} \nu_1$, and let $\mu_j = \mu_{\nu_j}$ be the induced Borel probability measures. If $\psi : X \to B(H)$ is a ν_2-integrable quantum random variable, then

$$\psi \boxtimes \frac{d\nu_2}{d\nu_1}$$

is a ν_1-integrable quantum random variable and

$$\mathbb{E}_{\nu_2} [\psi] = \mathbb{E}_{\nu_1} \left[\psi \boxtimes \frac{d\nu_2}{d\nu_1} \right]$$

or, equivalently,

$$\int_X \psi \, d\nu_2 = \int_X \psi \boxtimes \frac{d\nu_2}{d\nu_1} \, d\nu_1.$$
Theorems for the Radon-Nikodým derivatives (F-K)

Theorem (Chain Rule). If $\nu_1, \nu_2, \nu_3 \in \text{POVM}_H^1(X)$ with $\nu_1 \ll_{ac} \nu_2 \ll_{ac} \nu_3$, then
\[
\frac{d\nu_1}{d\nu_2} \otimes \frac{d\nu_2}{d\nu_3} = \frac{d\nu_1}{d\nu_3}.
\]

Corollary. If $\nu_1, \nu_2 \in \text{POVM}_H^1(X)$ with $\nu_2 \ll_{ac} \nu_1$ and $\nu_1 \ll_{ac} \nu_2$, then
\[
\frac{d\nu_1}{d\nu_2} \otimes \frac{d\nu_2}{d\nu_1} = \frac{d\nu_2}{d\nu_1} \otimes \frac{d\nu_1}{d\nu_2} = 1.
\]
Quantum conditional expectation (F-K)

Theorem. Suppose that \(\nu \in \text{POVM}_1^{(H)}(X) \) and that \(\psi : X \to \mathcal{B}(\mathcal{H})_+ \) is a \(\nu \)-integrable quantum random variable with \(\mathbb{E}_\nu [\psi] \neq 0 \). If \(\mathcal{F}(X) \) is a sub-\(\sigma \)-algebra of \(\mathcal{O}(X) \), then there exists a function \(\varphi : X \to \mathcal{B}(\mathcal{H}) \) such that

1. \(\varphi \) is \(\mathcal{F}(X) \)-measurable,
2. \(\varphi \) is \(\nu \)-integrable, and
3. \(\mathbb{E}_\nu [\psi \chi_E] = \mathbb{E}_\nu [\varphi \chi_E] \) for every \(E \in \mathcal{F}(X) \).

Moreover, if \(\tilde{\varphi} \) is any other \(\nu \)-integrable \(\mathcal{F}(X) \)-measurable function satisfying \(\mathbb{E}_\nu [\psi \chi_E] = \mathbb{E}_\nu [\tilde{\varphi} \chi_E] \) for every \(E \in \mathcal{F}(X) \), then \(\nu(\{x \in X : \varphi(x) \neq \tilde{\varphi}(x)\}) = 0 \).

We write

\[\varphi = \mathbb{E}_\nu [\psi | \mathcal{F}(X)] . \]
Quantum Bayes’ rule (F-K)

Theorem. Let $\nu_1, \nu_2 \in \text{POVM}_\mathcal{H}^1(X)$ with $\nu_2 \ll_{ac} \nu_1$ and $\nu_1 \ll_{ac} \nu_2$.

If $\psi : X \to \mathcal{B}(\mathcal{H})_+$ is a quantum random variable with $\mathbb{E}_{\nu_2}[\psi] \neq 0$ and $\mathcal{F}(X)$ is a sub-σ-algebra of $\mathcal{O}(X)$, then

$$
\mathbb{E}_{\nu_2}[\psi|\mathcal{F}(X)] \otimes \mathbb{E}_{\nu_1}\left[\frac{d\nu_2}{d\nu_1}|\mathcal{F}(X)\right] = \mathbb{E}_{\nu_1}\left[\psi \otimes \frac{d\nu_2}{d\nu_1}|\mathcal{F}(X)\right].
$$