Supplementary Material

Mechanistic Insights into Molecular Evolution of Species Specific Differential Glycosaminoglycan Binding Surfaces in GRO Chemokines

Khushboo Gulati1, Minal Jamsandekar1, and Krishna Mohan Poluri1,2*

1Department of Biotechnology, 2Centre for Nanotechnology
Indian Institute of Technology Roorkee
Roorkee – 247667, Uttarakhand, India
E-mail: krishfbt@iitr.ac.in / mohanpmk@gmail.com

Stab.1: Nucleotide sequence IDs of GRO family chemokines (CXCL1, CXCL2, and CXCL3) from different mammalian species.

Species	CXCL1	CXCL2	CXCL3	
African bush elephant		-	XM_010594141.1	
Bactrian camel	XM_010969408.1	-		
Baiji	XM_007463218.1	XM_007463219.1	-	
Bison	XM_010838198.1	-	XM_010838177.1	
Black-capped squirrel monkey	XM_010342726.1	XM_010342728.1	-	
Bovine	NM_175700.1	NM_001048165.1	NM_001046513.2	
Brown rat	NM_030845.1	NM_053647.1	NM_138522.1	
Cape golden mole	XM_006871594.1	-	-	
Cat	XM_011279689.1	-	-	
Cape elephant shrew	XM_006898468.1	-	-	
Chinese hamster	NM_001244044.1	XM_007630617.1	XM_001244139.1	
Chimpanzee	XM_001156094.4	XM_001155614.4	XM_517228.4	
Chinese tree shrew	XM_006142920.2	-	-	
Crab-eating macaque	AB262775.1	AB262776.2	AB262777.1	
Common bottlenose dolphin	XM_004319600.1	-	-	
Deer mouse	-	XM_006993515.2	-	
Ferret	XM_004766349.2	-	-	
Gibbon	XM_012499279.1	ENSNLET0000010136	XM_003265742.2	
Giant panda	XM_002919144.2	-	-	
Gorilla	XM_004038813.1	XM_004038819.1	-	
Goat	XM_013964688.1	-	-	
Golden hamster	-	XM_005068086.2	-	
Guinea pig	NM_001172938.1	-	-	
Gray short-tailed opossum	XM_007495669.2	-	-	
Hedgehog	-	-	XM_004703375.1	
House mouse	NM_008176.3	NM_009140.2	NM_203320.3	
Human	NM_001511.3	NM_002089.3	NM_002090.2	
Horse	NM_001309480.1	NM_001143955.1	NM_001143793.2	
Killer whale	XM_012538162.1	-	-	
Little brown bat	-	-	XM_006094377.2	
Marmoset	XM_002745753.3	-	-	
Mouflon	XM_012135521.2	-	-	
Minke whale	XM_007179836.1	-	-	
Nine-banded armadillo	-	-	XM_004465324.2	
Species	PDB ID 1	PDB ID 2	PDB ID 3	Reference
-----------------------------	----------	----------	----------	-----------
Naked mole rat	XM_004833919.1	-	-	
Orangutan	XM_002814861.3	XM_002814867.3	XM_002814865.2	
Ord’s kangaroo rat	XM_013020161.1	-	-	
Philippine tarsier	XM_008059500.1	-	-	
Pig	NM_001001861.2	NM_001001861.2	XM_005666754.2	
Platypus	XM_007669225.1	-	-	
Rabbit	U95808.1	ENSOCUT00000031529	U12310.1	
Rhesus macaque	NM_001032878.1	-	-	NM_001032879.1
Sperm whale	XM_007126262.1	-	-	
Star nosed mole	-	-	-	XM_004681217.2
Thirteen-lined GROund squirrel	XM_012551956.1	XM_005333294.2	XM_005333245.1	
Tasmanian devils	XM_006059633.1	XM_006059634.1	-	
Water buffalo	-	XM_004392914.1	XM_004392941.1	
Walrus	-	-	-	XM_004419172.2
West Indian manatee	-	-	-	XM_005891250.2
White rhinoceros	-	XM_004419171.2	XM_004419172.2	
Yak	-	-	-	

Stab.2: PDB-ID’s of all the available murine and human GRO Protein structures.
Stab.3: Ramachandran plot statistics for modeled murine/human/horse CXCL (GRO) chemokine structures.

	Murine CXCL1	Murine CXCL3	Human CXCL3
Residues in most favoured regions [A,B,L]	108 88.5%	107 93.9%	93 78.8%
Residues in additional allowed regions [a,b,l,p]	13 10.7%	6 5.3%	25 21.2%
Residues in generously allowed regions [~a,~b,~l,~p]	1 0.8%	1 0.9%	0 0.0%
Residues in disallowed regions	0 0.0%	0 0.0%	0 0.0%
Number of non-glycine and non-proline residues	122 100.0%	114 100.0%	118 100.0%
Number of end-residues (excl. Gly and Pro)	2 4	4 4	4 4
Number of glycine residues (shown as triangles)	10 8	8 8	8 8
Number of proline residues	12 12	12 8	8 8
Total number of residues	146	138	138

	Horse CXCL1	Horse CXCL2	Horse CXCL3
Residues in most favoured regions [A,B,L]	110 92.45%	110 92.4%	110 92.4%
Residues in additional allowed regions [a,b,l,p]	8 6.7%	8 6.7%	8 67.6%
Residues in generously allowed regions [~a,~b,~l,~p]	1 0.8%	1 0.8%	1 0.8%
Residues in disallowed regions	0 0.0%	0 0.0%	0 0.0%
Number of non-glycine and non-proline residues	119 100.0%	119 100.0%	119 100.0%
Number of end-residues (excl. Gly and Pro)	3 3	3 3	3 3
Number of glycine residues (shown as triangles)	8 8	8 8	8 8
Number of proline residues	7 7	7 7	7 7
Total number of residues	137	137	138
Sfig. 1: Schematic showing a brief evolutionary summary of mammalian species

- Borcotheria
 - Euarchontoglires
 - Glires
 - Rodents
 - Lagomorpha
 - Euarchonta
 - Primates
 - Dermoptera and Scandentia
 - Laurasiatheria
 - Scrotifera
 - Eulipotyphla
 - Fereungulata
 - Ungulata
 - Perissodactyla
 - Cetoartiodactyla
 - Pholidata
 - Carnivora
 - Chiroptera
 - Ferae
Sfig. 2: Extent of conservation of GRO sequences among different species calculated using ConSurf server [7] along with the sequence diagram created by the WebLogo program [8]. The positively selected residues are marked with red bars.
Sfig. 3: Structural models for (A) MCXCL1 (NMR Model), and (B) MCXCL3, (C) HCXCL3, (D) SCXCL1, (E) SCXCL2, (F) SCXCL3, using homology modeling.
Sfig.4: Electrostatic surface potential maps for murine GRO proteins in monomeric form. The vacuum electrostatics was generated using PYMOL molecular graphics system [9].
References

1. Fairbrother WJ, Reilly D, Colby TJ, Hesselgesser J, Horuk R. 1994 The solution structure of melanoma growth stimulating activity. *J Mol.Biol.* 242, 252-270.

2. Kim KS, Clark-Lewis I, Sykes BD. 1994 Solution structure of GRO/melanoma growth stimulatory activity determined by 1H NMR spectroscopy. *J Biol.Chem.* 269, 32909-32915.

3. Qian YQ, Johanson KO, McDevitt P. 1999 Nuclear magnetic resonance solution structure of truncated human GRObeta [5-73] and its structural comparison with CXC chemokine family members GROalpha and IL-8. *J Mol.Biol.* 294, 1065-1072.

4. Poluri KM, Joseph PR, Sawant KV, Rajarathnam K. 2013 Molecular basis of glycosaminoglycan heparin binding to the chemokine CXCL1 dimer. *J.Biol.Chem.* 288, 25143-25153.

5. Shao W, Jerva LF, West J, Lolis E, Schweitzer BI. 1998 Solution structure of murine macrophage inflammatory protein-2. *Biochemistry.* 37, 8303-8313.

6. Rajasekaran D, Keeler C, Syed MA, Jones MC, Harrison JK, Wu D, Bhandari V, Hodsdon ME, Lolis EJ. 2012 A model of GAG/MIP-2/CXCR2 interfaces and its functional effects. *Biochemistry.* 51, 5642-5654.

7. Ashkenazy H, Abadi S, Martz E, Chay O, Mayrose I, Pupko T, Ben-Tal N. 2016 ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. *Nucleic Acids Res.* 44, W344-W350.

8. Crooks GE, Hon G, Chandonia JM, Brenner SE. 2004 WebLogo: a sequence logo generator. *Genome Res.* 14, 1188-1190.

9. Anonymous. The PyMOL Molecular Graphics System, Version 1.4.1 Schrödinger, LLC, in: Anonymous.