Highly Stable Energetic Coordination Polymer Assembled with Co(II) and Tetrazole Derivatives

Hui-Fang Wu, †‡ Jian-Gang Xu, † Jian Lu, †‡ Fa-Kun Zheng, *† Shuai-Hua Wang, † and Guo-Cong Guo †‡

†State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
‡University of Chinese Academy of Sciences, Beijing 100039, P. R. China

Supporting Information

ABSTRACT: A solvothermal reaction of Co(CH₃COO)₂·4H₂O and 5-mercapto-1-methyl-tetrazole (Hmmtz) in methanol (MeOH) yielded a one-dimensional solvent-free energetic coordination polymer, namely, [Co(mmtz)]ₙ 1, which was structurally characterized. The enthalpy of formation (ΔH°) of 1 (907 kJ mol⁻¹) is much larger than that of commercial 2,4,6-trinitrotoluene (~59 kJ mol⁻¹). The impact sensitivity and the friction sensitivity are greater than 40 J and 360 N, respectively, indicating that compound 1 exhibits a potential application as a safe explosive. Temperature-dependent molar magnetic susceptibilities show that weak antiferromagnetic behavior exists in 1.

INTRODUCTION

Energetic materials (EMs) are compounds or mixtures that react sustainably and release a large amount of energy within a short time period, including explosives, gunpowder, and pyrotechnic agents.¹⁻⁵ Traditional EMs like 2,4,6-trinitrotoluene (TNT), 1,3,5-trinitro-1,3,5-triazine (RDX), and 1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane (HMX) are commonly used for military and commercial blasting.⁴ However, the most prominent problem of traditional EMs is high sensitivity toward friction and shock, which creates serious safety hazard and significant economic losses in their applications.⁶ To acquire less sensitive CPs, two two-dimensional (2D) materials, [Zn₂(N₂H₄)₃(N₂H₄CO₂)₂(ClO₄)₂·H₂O]ₙ (ZnHHP) and [Co₂(N₂H₄)₄(N₂H₃CO₂)₂(ClO₄)₂·H₂O]ₙ (CHHP), were synthesized.⁶ The results show that the sensitivity have significantly been reduced through ligand modification. Afterward, Pang et al. first designed two three-dimensional (3D) 4,4'-azo-1,2,4-triazole-based coordination polymers [Ag(atrz)₁.₅(NO₃)]ₙ and [Cu(atrz)₃(NO₃)₂]ₙ with excellent thermal stability, high heats of detonation, and less sensitivity.⁷ These reported results indicate that coordination polymers, rationally designed with different structural dimensionalities, can serve as new-generation energetic material candidates. The design strategies of ECPs are focused on the diverse structural types realized by strong coordination bonds between the metal centers and the ligands.¹⁸ On the other hand, intermolecular interaction in EMs, such as π–π stacking, which can effectively buffer against mechanical stimulation to decrease the sensitivity, is also an effective way to improve the stability of EMs.²⁻⁴ Additional, highly energetic covalent bonds of the ligand can offer the primary energetic source to enhance energetic performances of ECPs.¹,¹²,¹⁷

In this study, a 1D solvent-free ECP [Co(mmtz)]ₙ 1 was obtained by the solvothermal method (Scheme 1). The constant-volume combustion heat, thermogravimetric analysis-differential scanning calorimetry (TGA-DSC) curves, and sensitivities of 1 were measured. The values of ΔH° (907 kJ
Scheme 1. Synthesis of 1

Energetic Properties. The enthalpy of formation (ΔH°) is a crucial parameter to assess the performance of ECPs. The constant-volume combustion heat (Q_v) measurement of 1 was carried out, and the test value of Q_v is 14.438 kJ g$^{-1}$. According to the gas volume correction: $\Delta H = Q_v + \Delta nRT$ (Δn is determined by the change in the number of gas constituents before and after the reaction, $T = 298.15$ K and $R = 8.314$ J mol$^{-1}$ K$^{-1}$) and the ideal combustion reaction eq 1, the enthalphy of combustion ($\Delta_l H$), can be calculated. The ideal combustion reaction equation is given as follows

$$\begin{align*}
\text{C}_2\text{H}_6\text{Co}_2\text{S}_2\text{(s)} + 8\text{O}_2\text{(g)} & \rightarrow \text{CoO}\text{(s)} + 4\text{CO}_2\text{(g)} + 3\text{H}_2\text{O}\text{(l)} + 4\text{N}_2\text{(g)} \\
& + 2\text{SO}_2\text{(g)} \\
\Delta_l H^\circ[1, s] &= \Delta_l H^\circ[\text{CoO, s}] + 4\Delta_l H^\circ[\text{CO}_2, \text{gl}] + 3\Delta_l H^\circ[\text{H}_2\text{O, I}] + 2\Delta_l H^\circ[\text{SO}_2, \text{gl}] - \Delta_l H^\circ[1, s] \tag{1}
\end{align*}$$

The $\Delta_l H$ value of 1 was calculated as -14.421 kJ g$^{-1}$. According to eq 2, the ΔH° value of 1 can be deduced using Hess’s law and inferred as 907 kJ mol$^{-1}$ at 101.325 kPa and 298.15 K, with the known enthalpies of CoO (s, -237.9 kJ mol$^{-1}$), H_2O (l, -285.83 kJ mol$^{-1}$), CO_2 (g, -393.51 kJ mol$^{-1}$), and SO_2 (g, -296.8 kJ mol$^{-1}$). Compound 1 has a high nitrogen content leading to the relatively high positive $\Delta_l H^\circ$. Compared to that of the commercial TNT (-59 kJ mol$^{-1}$), the ΔH° value of 1 is higher. In addition, compared to other reported ECPs like Co-BTA 15 ($\Delta H^\circ = 8.314$ J mol$^{-1}$; $\text{Co}_9\text{(BTA)}_{10}\text{(HBTA)}_2\text{(H}_2\text{O})_{10}$), $\text{H}_2\text{BTA} = \text{N,N-bis}(1\text{-H-tetrazole-5-yl})$-amine), $\text{Cd-BTA}5$ ($\text{[Cd(BTA)(H}_2\text{O})_4]$), and Cu-DNS^1 ($\text{Cu}_2\text{(DNS)}\text{(tetrazole)(H}_2\text{O})$, $\text{H}_2\text{DNS} = 3\text{-dinitrosalicylic acid}$) (Table 1), the ΔH° value of 1 has obvious advantages.

Sensitivity Test. The impact and friction sensitivity test is an indispensable measurement of EMs for the risk assessment. The experimental data of 1 as well as those of the commercial explosive TNT and some selected ECPs were also given for comparison in Table 1. For compound 1, the experimental value of IS is greater than 40 J and FS is larger than 360 N. Compound 1 possesses low impact and friction sensitivity, showing that 1 has an excellent mechanical stability than TNT and the selected ECPs, such as Co-BTA 15 (IS = 27 J, FS > 360 N). These results denoted that compound 1 is an insensitive energetic material in accordance with the U.N. Standard. 31 The introduction of electron-donating substituents like methyl ($-\text{CH}_3$), hydroxyl ($-\text{OH}$), or sulphydryl ($-\text{SH}$) can also reduce the sensitivity of compounds. 32 The good thermal stability, low mechanical sensitivity, and high Δ_H° value of 1

![Figure 1](image-url)
Magnetic Properties. The temperature-dependent molar magnetic susceptibilities were obtained in an external field of 1 kOe at temperatures ranging from 2 to 300 K. The plots of χ_M and $\chi_M T$ vs T for 1 are shown in Figure 3. The measured

Figure 3. χ_M and $\chi_M T$ vs T plots for 1. The red solid line represents the best fit of the Curie–Weiss law within 70–300 K.

$\chi_M T$ value is 2.26 emu K mol$^{-1}$, which is slightly higher than that of the theoretical value of a magnetic isolated Co(II) (1.875 emu K mol$^{-1}$, $g = 2.00$ and $S = 3/2$) at 300 K because of the orbital contribution of Co(II) in a tetrahedral surrounding. The $\chi_M T$ values reduce gradually to 1.90 emu K mol$^{-1}$ at 100 K when the temperature decreases and then reduces rapidly to 0.078 em mol$^{-1}$ K$^{-1}$ at 2 K. The results indicate that compound 1 has antiferromagnetic interactions. The magnetic susceptibility within 70–300 K was fitted well to the Curie–Weiss law $\chi_M = C/(T - \theta)$ with $C = 2.516(1)$ emu mol$^{-1}$ K$^{-1}$ and $\theta = -29.985(0)$ K. The effective magnetic moment (μ_{eff} = $(8C)^{1/2} \mu_B$) per Co$^{2+}$ ion in 1 is 4.5 μ_B, which approached the value of 5.1 μ_B for a free Co(II) ion. The negative Weiss constant also denotes the antiferromagnetic interactions in 1 (the distance between the nearest Co$^{2+}$ ions is 3.908(4) Å). The measured field-dependent isothermal magnetization curve at 10 K shows that the magnetization decreases almost linearly at an external field ranging from 80 to 0 kOe (Figure S1, Supporting Information). When the magnetic field $H = 0$, the magnetization value of 1 is zero, which indicates that compound 1 does not generate magnetism without the external magnetic field. The magnetic influence of 1 on the electronic instrument signals of transport vehicles can be neglected.

Table 1. Energetic Performance of Compound 1, Traditional Explosive TNT, and Some Selected ECPs

	Co-BTA15	Cd-BTA30	Co-DNS1	TNT32
ISa/[J]	>40	27	>40	15
FSb/[N]	>360	>360	>360	>360
ΔH^m/$[kJ \text{ mol}^{-1}]$	907	860	212	304
N^c/[N]	38.72	59.85	44.76	19.08
T_d^d/$[^\circ C]$	304	253	356	317

aImpact sensitivity. bFriction sensitivity. cEnthalpy of formation. dNitrogen content. eDecomposition temperature.

In summary, a new nitrogen-rich Co(II) coordination polymer 1 was successfully obtained and structurally characterized. The energetic properties of 1 have been thoroughly investigated. Compound 1 displays good thermal stability ($T_d = 304 ^\circ C$), a high ΔH^m value (907 kJ mol$^{-1}$), and low sensitivity (IS > 40 J and FS > 360 N), which are superior to the traditional TNT ($T_d = 295 ^\circ C$, $\Delta H^m = -59$ kJ mol$^{-1}$, IS = 15 J, FS > 353 N). In contrast to the ligand Hmmtz with the T_d value of 125 $^\circ C$, the thermal stability of 1 remarkably increases through utilizing coordination polymerization and $\pi-\pi$ interactions. The temperature-dependent molar magnetic susceptibilities show the existence of weak antiferromagnetic interactions in 1. These results imply that compound 1 can act as a safe energetic material candidate. This work can provide valuable references for the rational design of new safe EMs.

CONCLUSIONS

EXPERIMENTAL SECTION

Safety Precautions. Caution! Hmmtz and 1 are potential EMs. Dealing with these materials requires appropriate protective measures like safety glasses and leather gloves.

Materials and Methods. All chemicals can be commercially obtained and used without further purification. TGA and DSC data were collected using a Mettler Toledo instrument under a N$_2$ atmosphere with 2.7 mg power of the samples heated in an Al$_2$O$_3$ crucible at a linear heating rate of 5 K min$^{-1}$. Elemental analyses were performed on an Elementar Vario EL III microanalyzer. The Fourier transform infrared...
spectra were recorded on a PerkinElmer Spectrum using KBr pellets. The temperature-dependent molar magnetic susceptibilities were calculated on a Quantum Design MPMS-XL SQUID magnetometer using crushed samples (in the powdered form). IS and FS were measured on a BAM fall hammer BFH-12 and a BAM friction apparatus FSKM-10, respectively, calibrated by manufacturers using traditional energetic materials such as TNT, RDX, and HMX. Powdered X-ray diffraction (PXRD) patterns were recorded on a Rigaku MiniFlex 600 diffractometer using Cu Kα radiation in the 2θ range of 5° < 2θ < 65° at room temperature. The Mercury software can produce the simulated patterns of compound 1.

Synthesis of [Co(mmtz)2]. A mixture of Hmmtz (174 mg, 1.5 mmol) and Co(CH3COO)2·4H2O (125 mg, 0.5 mmol) in MeOH (10 mL) was sealed into a 25 mL Teflon-lined autoclave after 15 min of ultrasonic treatment, then heated to 120 °C for 8 h, and kept for 3 days at 120 °C. Finally, it was cooled to 30 °C at a linear rate of 3 °C h⁻¹. Dark blue block crystals of 1 were formed (yield: 60%, based on Co). Calcd for C14H8CoN8S2: C, 56.96; H, 2.56; N, 38.48%. Found: C, 56.72; H, 2.38; N, 38.57%. IR (KBr pellet, cm⁻¹): 2949 w, 1717 w, 1466 m, 1385 s, 1310 m, 1182 m, 1086 w, 1032 w, 989 w, 831 w, 712 m (Figure S2, Supporting Information). The peak of experimental PXRD pattern (Figure S3, Supporting Information) was in accordance with the simulation, showing the pure phase of the as-synthesized 1.

X-ray Crystallography. Diffraction data of 1 were measured on a Rigaku PILATUS CCD diffractometer at 293 K using Mo Kα radiation (λ = 0.71073 Å). The intensity data sets were measured on the ω-scan technique and found to decrease on CrystalClear software. The direct methods were used to resolve the structure and the subsequent successive difference Fourier yielded in other nonhydrogen atoms. The hydrogen atoms were calculated and added to the idealized positions. A full-matrix least-squares refinement based on F² refined the final structure. Table 2 summarizes the relevant crystal data and structure refinement results of 1.

Table 2. Crystal Data and Structure Refinements for 1

Parameter	Value
CCDC	1558432
formula	C14H8CoN8S2
formula weight	578.22
crystal system	monoclinic
space group	C2/c
a [Å]	14.902(14)
b [Å]	13.529(12)
c [Å]	12.197(11)
α [deg]	90
β [deg]	121.158(11)
γ [deg]	90
V [Å³]	2104(3)
Z	8
DcCAL [g cm⁻³]	1.826
F(000)	1160
2θ [deg]	6.886–54.974
refnls	8757
∑ond²	0.992
R₁ (I>2σ(I))	0.0588
wR₁ (I>2σ(I))	0.1026
R₁ (all data)	0.1423
wR₁ (all data)	0.1298

"R₁ = \sum(Fo - Fc)/\sumFc, wR₂ = \left(\sum(w(Fo² - Fc²)^2)/\sum(w(Fc²))\right)^{1/2}."

ACKNOWLEDGMENTS

The authors are grateful for the financial support from the National Natural Science Foundation of China (21601186 and 21971240), the China Postdoctoral Science Foundation (2018M642581), and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB20000000).

REFERENCES

1. Guo, Z.; Wang, Y.; Liu, X.; Zhang, C.; Zhang, Y.; Ma, H. Auxiliary ligand-directed synthesis of 3D energetic coordination polymer from discrete complex: enhanced energy density, thermal stability and energy performance. *CrystEngComm* 2019, 21, 462–469.
2. Yang, J.; Yin, X.; Wu, L.; Wu, J.; Zhang, J.; Gozin, M. Alkaline and Earth Alkaline Energetic Materials Based on a Versatile and Multifunctional 1-Aminotetrazol-5-one Ligand. *Inorg. Chem.* 2018, 57, 15105–15111.
3. Freis, M.; Klampoth, T. M.; Sterstorfer, J.; Szmihardt, N. Di[(1H-tetrazol-5-yl)methane as Neutral Ligand in Energetic Transition Metal Complexes. *Inorg. Chem.* 2017, 56, 7936–7947.
4. Chen, D.; Yang, H.; Yi, Z.; Xiong, H.; Zhang, L.; Zhu, S.; Cheng, G. C₆N₅H₄: An Environmentally Friendly Primary Explosive with High Heat of Formation. *Angew. Chem., Int. Ed.* 2018, 57, 2081–2084.
5. Wang, S.-H.; Zheng, H.-F.; Wu, M.-F.; Liu, Z.-F.; Chen, J.; Guo, G.-C.; Wu, A. Q. Hydrothermal syntheses, crystal structures and physical properties of a new family of energetic coordination polymers with nitrogen-rich ligand N-[2-(1H-tetrazol-5-yl)ethyl]glycine. *CrystEngComm* 2013, 15, 2616–2623.
6. Wang, Y.; Liu, Y.; Song, S.; Yang, Z.; Qi, X.; Wang, K.; Liu, Y.; Zhang, Q.; Tian, Y. Accelerating the discovery of insensitive high-energy-density materials by a materials genome approach. *Nat. Commun.* 2018, 9, No. 2444.
7. Wang, Q.; Feng, X.; Wang, S.; Song, N.; Chen, Y.; Tong, W.; Han, Y.; Yang, L.; Wang, B. Metal-Organic Framework Templated Synthesis of Copper Azide as the Primary Explosive with Low Electrostatic Sensitivity and Excellent Initiation Ability. *Adv. Mater.* 2016, 28, 5837–5843.
(8) Tang, Y.; Kumar, D.; Shreeve, J. M. Balancing Excellent Performance and High Thermal Stability in a Dinitrotriazine Fused
1,2,3,4-Tetrazine. J. Am. Chem. Soc. 2017, 139, 13684–13687.
(9) Kent, R. V.; Wiscon, R. A.; Sharon, P.; Grinstein, D.; Frimer, A. A.; Matzger, A. J. Cocystal Engineering of a High Nitrogen Energetic Material. Cryst. Growth Des. 2018, 18, 219–224.
(10) Bennion, J. C.; Chowdhury, N.; Kamp, J. W.; Matzger, A. J. Hydrogen Peroxide Solvates of 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexazaisowurtzitane. Angew. Chem., Int. Ed. 2015, 55, 13118–13121.
(11) Dippold, A. A.; Klaf, D. T. M. A study of dinitro-bis-1,2,4-triazole-1,1-dioxide and derivatives: design of high-performance insensitive energetic materials by the introduction of N-oxides. J. Am. Chem. Soc. 2013, 135, 9931–998.
(12) Fischer, D.; Klahe, P. T. M.; Stierstorfer, J. Int(nitramino)tetrazole: High Sensitivity and Superior Explosive Performance. Angew. Chem., Int. Ed. 2015, 54, 10299–10302.
(13) Shen, A.; Xu, Y.; Lu, M. A series of high-energy coordination polymers with 3,6-bis(4-nitroamino-1,2,5-oxadiazol-3-yl)-1,4,2,5-dioxadiazine, a ligand with multi-coordination sites, high oxygen content and detonation performance: syntheses, structures, and performance. J. Mater. Chem. A 2017, 5, 18854–18861.
(14) Xu, J.-G.; Sun, C.; Zhang, M.-J.; Liu, B.-W.; Li, X.-Z.; Lu, J.; Wang, S.-H.; Zheng, F.-K.; Guo, G.-C. Coordination Polymerization of Metal Azides and Powerful Nitrogen-Rich Ligand toward Primary Explosives with Excellent Energetic Performances. Chem. Mater. 2017, 29, 9725–9733.
(15) Zhang, S.; Liu, X.-Y.; Yang, Q.; Su, Z.-Y.; Gao, W.-J.; Wei, Q.; Xie, G.; Chen, S.-P.; Gao, S.-L. A New Strategy for Storage and Transportation of Sensitive High-Energy Materials: Guest-Dependent Energy and Sensitivity of 3D Metal–Organic-Framework-Based Energetic Compounds. Chem. Eur. J. 2014, 20, 7906–7910.
(16) Liu, X.; Qu, X.; Zhang, S.; Ke, H.; Yang, Q.; Shi, Q.; Wei, Q.; Xie, G.; Chen, S.-P. High-Performance Energetic Characteristics and Magnetic Properties of a Three-Dimensional Cobalt(II) Metal-Orgamic Framework Assembled with Azido and Triazole. Inorg. Chem. 2015, 54, 11520–11525.
(17) Zhang, S.; Yang, Q.; Liu, X.; Qu, X.; Wei, Q.; Xie, G.; Chen, S.; Gao, S. High-energy metal–organic frameworks (HE-MOFs): Synthesis, structure and energetic performance. Coord. Chem. Rev. 2016, 307, 292–312.
(18) Seth, S.; McDonald, K. A.; Matzger, A. J. Metal Effects on the Sensitivity of a Structural Metal–Organic Framework Based on S-Amino-3-nitro-1H,2,4-triazole. Inorg. Chem. 2017, 56, 10151–10154.
(19) Bushuyev, O. S.; Brown, P.; Maiti, A.; Gee, R. H.; Peterson, G. R.; Weeks, B. L.; Hoeksew, L. J. Ionic polymers as a new structural motif for high-energy-density materials. J. Am. Chem. Soc. 2012, 134, 1422–1425.
(20) Bushuyev, O. S.; Peterson, G. R.; Brown, P.; Maiti, A.; Gee, R. H.; Weeks, B. L.; Hoeksew, L. J. Metal-organic frameworks (MOFs) as safer, structurally reinforced energetics. Chem. - Eur. J. 2013, 19, 1706–1711.
(21) Li, S.; Wang, Y.; Qu, C.; Zhao, X.; Zhang, J.; Zhang, S.; Pang, S. 3D energetic metal-organic frameworks: synthesis and properties of high energy materials. Angew. Chem., Int. Ed. 2013, 52, 14031–14035.
(22) Xu, J.-G.; Li, X.-Z.; Wu, H.-F.; Zheng, F.-K.; Chen, J.; Guo, G.-C. Substitution of Nitrogen-Rich Linkers with Insensitive Linkers in Azide-Based Energetic Coordination Polymers toward Safe Energetic Materials. Cryst. Growth Des. 2019, 19, 3934–3944.
(23) Zhang, Y.; Zhang, S.; Sun, L.; Yang, Q.; Han, J.; Wei, Q.; Xie, G.; Chen, S.; Gao, S. A solvent-free dense energetic metal-organic framework (EMOF): to improve stability and energetic performance via in situ microcalorimetry. Chem. Commun. 2017, 53, 3034–3037.
(24) Sun, S.; Li, M. Conduction in multi-tetrazole derivatives: a new design direction for energetic materials. J. Mol. Model. 2018, 24, No. 173.
(25) Zhang, C.; Wang, X.; Huang, H. z-Stacked Interactions in Explosive Crystals: Bursts against External Mechanical Stimuli. J. Am. Chem. Soc. 2008, 130, 8359–8365.
(26) Zhang, J.; Zhang, Q.; Vo, T. T.; Parrish, D. A.; Shreeve, J. M. Energetic salts with pi-hydrogen and bonding-interactions lead the way to future energetic materials. J. Am. Chem. Soc. 2015, 137, 1697–704.
(27) Yin, P.; Shreeve, J. M. Nitrogen-Rich Azoles as High Density Energy Materials. Adv. Heterocycl. Chem. 2017, 121, 89–131.
(28) Xu, J.-G.; Wang, S.-H.; Zhang, M.-J.; Sun, C.; Xiao, Y.; Li, R.; Zheng, F.-K.; Guo, G.-C.; Huang, J.-S. Nitrogen-Rich Tetranuclear Metal Complex as a New Structural Motif for Energetic Materials. ACS Omega 2017, 2, 346–352.
(29) Seth, S.; Matzger, A. J. Coordination Polymerization of S,S’-Dinitro-2H,2H’-3,3’-bi-1,2,4-triazole Leads to a Dense Explosive with High Thermal Stability. Inorg. Chem. 2017, 56, 561–565.
(30) Zhao, M.; Xu, J.-G.; Zhang, N.-N.; Lu, J.; Xin, X.-H.; Zheng, F.-K.; Guo, G.-C. A highly stable and tightly packed 3D energetic coordination polymer assembled from nitrogen-rich tetrazole derivatives. New J. Chem. 2018, 42, 13927–13932.
(31) Impact: insensitive > 40 J, less sensitive ≥ 35 J, sensitive ≥ 4 J, very sensitive ≤ 3 J; Friction: insensitive > 360 N, less sensitive = 360 N, 80 N < sensitive < 360 N, very sensitive ≤ 80 N, extremely sensitive ≤ 10 N.
(32) Kumar, D.; Imler, G. H.; Parrish, D. A.; Shreeve, J. M. Aminoacetionitrile as precursor for nitrogen rich stable and insensitive asymmetric N-methylene-C linked tetrazole-based energetic compounds. J. Mater. Chem. A 2017, 5, 16767–16775.
(33) Bar, A. K.; Pichon, C.; Sutter, J.-P. Magnetic anisotropy in two to eight-coordinated transition-metal complexes: Recent developments in molecular magnetism. Coord. Chem. Rev. 2016, 308, 346–380.
(34) Chen, M.-C.; Li, L.-H.; Chen, Y.-B.; Chen, L. In-phase alignments of asymmetric building units in Ln4GaSbS9 (Ln = Pr, Nd, Sm, Gd-Ho) and their strong nonlinear optical responses in middle IR. J. Am. Chem. Soc. 2013, 113, 4617–4624.
(35) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341.