

An elementary proof of de Finetti’s Theorem

Werner Kirsch
Fakultät für Mathematik und Informatik
FernUniversität in Hagen, Germany

September 5, 2018

Abstract

A sequence of random variables is called exchangeable if the joint distribution of the sequence is unchanged by any permutation of the indices. De Finetti’s theorem characterizes all \(\{0, 1\}\)-valued exchangeable sequences as a ‘mixture’ of sequences of independent random variables.

We present an new, elementary proof of de Finetti’s Theorem. The purpose of this paper is to make this theorem accessible to a broader community through an essentially self-contained proof.

1 Introduction

Definition 1 A finite sequence of (real valued) random variables \(X_1, X_2, \ldots, X_N\) on a probability space \((\Omega, \mathcal{F}, \mathbb{P})\) is called exchangeable, if for any permutation \(\pi\) of \(\{1, 2, \ldots, N\}\) the distributions of \(X_{\pi(1)}, X_{\pi(2)}, \ldots, X_{\pi(N)}\) and \(X_1, X_2, \ldots, X_N\) agree, i.e. if for any Borel sets \(A_1, A_2, \ldots, A_N\)

\[
\mathbb{P}(X_1 \in A_1, X_2 \in A_2, \ldots, X_N \in A_N) = \mathbb{P}(X_{\pi(1)} \in A_1, X_{\pi(2)} \in A_2, \ldots, X_{\pi(N)} \in A_N)
\]

An infinite sequence \(\{X_i\}_{i \in \mathbb{N}}\) is called exchangeable, if the finite sequences \(X_1, X_2, \ldots, X_N\) are exchangeable for any \(N \in \mathbb{N}\).

Obviously, independent, identically distributed random variables are exchangeable, but there are many more examples of exchangeable sequences.

Let us denote by \(\pi_p\) the (Bernoulli) probability measure on \(\{0, 1\}\) given by \(\pi_p(1) = p\) and \(\pi_p(0) = 1 - p\). If the random variables \(X_i\) are independent and distributed according to \(\pi_p\), i.e. \(\mathbb{P}(X_i = 1) = \pi_p(1) = p\) and \(\mathbb{P}(X_i = 0) = 1 - p\).
\(\pi_p(0) = 1 - p \), then the probability distribution of the sequence \(X_1, \ldots, X_N \) is the product measure

\[
\mathcal{P}_p = \bigotimes_{i=1}^{N} \pi_p \quad \text{on} \quad \{0, 1\}^N
\]

(2)

In 1931 B. de Finetti proved the following remarkable theorem which now bears his name:

Theorem 2 (de Finetti’s Representation Theorem) Let \(X_i \) be an infinite sequence of \(\{0, 1\} \)-valued exchangeable random variables then there exists a probability measure \(\mu \) on \([0, 1] \) such that for any \(N \) and any sequence \((x_1, \ldots, x_N) \in \{0, 1\}^N \)

\[
\mathbb{P}(X_1 = x_1, \ldots, X_N = x_N) = \int \mathcal{P}_p(x_1, \ldots, x_N) d\mu(p) = \int \prod_{i=1}^{N} \pi_p(x_i) d\mu(p)
\]

(3)

(4)

Loosely speaking: An exchangeable sequence with values in \(\{0, 1\} \) is a ‘mixture’ of independent sequences with respect to a measure \(\mu \) on \([0, 1] \).

De Finetti’s Theorem was extended in various directions, most notably to random variables with values in rather general spaces [4]. For reviews on the theorem see e. g. [1], see also the textbook [6] for a proof.

The proof of Theorem 2 we present here is very elementary. It is based on the method of moments which allows us to prove weak convergence of measures.

Acknowledgement It is a pleasure to thank Michael Fleermann for careful proof-reading and many helpful suggestions.

2 **Preliminaries**

For a probability measure \(\mu \) on \(\mathbb{R} \) we define the \(k^{th} \) moments by \(m_k(\mu) := \int x^k \, d\mu(x) \) whenever the latter integral exists (in the sense that \(\int |x|^k \, d\mu(x) < \infty \)). In the following we will be dealing with measures with compact support so that all moments exist (and are finite). The following theorem is a light version of the method of moments which is nevertheless sufficient for our purpose.

Proposition 3

1. Let \(\mu_n \ (n \in \mathbb{N}) \) be probability measures with support contained in a (fixed) interval \([a, b]\). If for all \(k \) the moments \(m_k(\mu_n) \) converge to some \(m_k \) then the sequence \(\mu_n \) converges weakly to a measure \(\mu \) with moments \(m_k(\mu) = m_k \) and with support contained in \([a, b]\).
2. If \(\mu \) is a probability measure with support contained in \([a, b]\) and \(\nu \) is a probability measures on \(\mathbb{R} \) such that \(m_k(\mu) = m_k(\nu) \) then \(\mu = \nu \).

Remark 4 Let \(\mu_n \) and \(\mu \) be probability measures on \(\mathbb{R} \). Recall that weak convergence of the measures \(\mu_n \) to \(\mu \) means that

\[
\int f(x) \, d\mu_n(x) \to \int f(x) \, d\mu(x)
\]

for all bounded, continuous functions \(f \) on \(\mathbb{R} \).

The above theorem is true and, in fact, well known if the support condition is replaced by the much weaker assumption that the moments \(m_k(\mu) \) (resp. the numbers \(m_k \)) do not grow too fast as \(k \to \infty \) (see [6] or [5] for details).

Proof. We sketch the proof, for details see the literature cited above. By Weierstrass approximation theorem the polynomials on \(I = [a - 1, b + 1] \) are uniformly dense in the space of continuous functions on \(I \). Hence the integral \(\int f(x) \, d\mu(x) \) for continuous \(f \) can be computed from the knowledge of the moments of \(\mu \). From this part 2 of the theorem follows.

Moreover, we get that the integrals \(\int f(x) \, d\mu_n(x) \) converge for any continuous \(f \). The limit is a positive linear functional. Thus the probability measures \(\mu_n \) converge weakly to a measure \(\mu \) with

\[
\int f(x) \, d\mu_n(x) \to \int f(x) \, d\mu(x)
\]

which implies part 1. \(\blacksquare \)

3 Proof of de Finetti’s Theorem

The following theorem is a substitute for a (very weak) law of large numbers.

Theorem 5 Let \(X_i \) be an infinite sequence of \(\{0, 1\} \)-valued exchangeable random variables then \(S_N := \frac{1}{N} \sum_{i=1}^{N} X_i \) converges in distribution to a probability measure \(\mu \).

\(\mu \) is concentrated on \([0, 1]\) and its moments are given by

\[
m_k(\mu) = \mathbb{E}\left(X_1 \cdot X_2 \cdot \ldots \cdot X_k\right)
\]

where \(\mathbb{E} \) denotes expectation with respect to \(\mathbb{P} \).

Definition 6 We call the measure \(\mu \) associated with \(X_i \) according to Theorem 5 the de Finetti measure of \(X_i \).
Proof. (Theorem 5)
To express the moments of \(S_N \) we compute
\[
\left(\sum_{i=1}^{N} X_i \right)^k = \sum_{(i_1, \ldots, i_k) \in \{1, \ldots, N\}^k} X_{i_1} \cdot X_{i_2} \cdot \ldots \cdot X_{i_k} \quad (7)
\]
To simplify the evaluation of the above sum we introduce the number of different indices in \((i_1, \ldots, i_k)\) as
\[
\rho(i_1, i_2, \ldots, i_k) = \#\{i_1, i_2, \ldots, i_k\} \quad (8)
\]
Consequently
\[
(7) = \sum_{r=1}^{k} \sum_{(i_1, \ldots, i_k) \in \{1, \ldots, N\}^k \atop \rho(i_1, \ldots, i_k) = r} X_{i_1} \cdot X_{i_2} \cdot \ldots \cdot X_{i_k} \quad (9)
\]
Thus we may write
\[
\mathbb{E}\left(\left(\frac{1}{N} \sum_{i=1}^{N} X_i \right)^k \right) = \frac{1}{N^k} \sum_{i_1, \ldots, i_k = 1}^{N} \mathbb{E}\left(X_{i_1} \cdot X_{i_2} \cdot \ldots \cdot X_{i_k} \right) \nonumber
\]
\[
+ \frac{1}{N^k} \sum_{i_1, \ldots, i_k = 1}^{N} \mathbb{E}\left(X_{i_1} \cdot X_{i_2} \cdot \ldots \cdot X_{i_k} \right) \quad (10)
\]
There are at most \((k - 1)^k N^{k-1}\) index tuples \((i_1, \ldots, i_k)\) with \(\rho(i_1, \ldots, i_k) < k\). Indeed, we have \(N^{k-1}\) possibilities to chose the possible indices (‘candidates’) for \((i_1, \ldots, i_k)\). Then for each of the \(k\) positions in the \(k\)-tuple we may chose one of the \(k - 1\) candidates which gives \((k - 1)^k\) possibilities. This covers also tuples with less than \(k - 1\) different indices as some of the candidates may finally not appear in the tuple. It follows that the second term in (10) goes to zero. So
\[
\mathbb{E}\left(\left(\frac{1}{N} \sum_{i=1}^{N} X_i \right)^k \right) \approx \frac{1}{N^k} \sum_{i_1, \ldots, i_k = 1}^{N} \mathbb{E}\left(X_{i_1} \cdot X_{i_2} \cdot \ldots \cdot X_{i_k} \right),
\]
so using exchangeability:
\[
= \frac{1}{N^k} \sum_{i_1, \ldots, i_k = 1}^{N} \mathbb{E}\left(X_1 \cdot X_2 \cdot \ldots \cdot X_k \right) \nonumber
\]
\[
\approx \mathbb{E}\left(X_1 \cdot X_2 \cdot \ldots \cdot X_k \right) \quad (11)
\]
An application of Proposition 3 gives the desired result.

We note a Corollary to the Theorem 5 or better to its proof.

Corollary 7 If \(\{X_i\} \) is an exchangeable sequence of \(\{0, 1\}\)-valued random variables and

\[
r = \rho(i_1, i_2, \ldots, i_k) = \#\{i_1, i_2, \ldots, i_k\}
\]

then

\[
\mathbb{E}\left(X_{i_1} \cdot X_{i_2} \cdot \ldots \cdot X_{i_k}\right) = \mathbb{E}\left(X_1 \cdot X_2 \cdot \ldots \cdot X_r\right)
\]

(12)

Proof. Since \(X_i \in \{0, 1\} \) we have \(X_i^\ell = X_i \) for all \(\ell \in \mathbb{N}, \ell \geq 1 \). Hence, the product in the left hand side is actually a product of \(r \) different \(X_j \), the expectation of which equals the right hand side due to exchangeability.

For the proof of Theorem 2 we will use the following simple lemma.

Lemma 8 Suppose \(\{X_i\}_{i \in \mathbb{N}} \) is a \(\{0, 1\}\)-valued exchangeable sequence. Then for pairwise distinct \(i_1, i_2, \ldots, i_k \in \mathbb{N} \) and \(x_1, \ldots, x_k \in \{0, 1\} \) with \(\sum x_i = m \)

\[
P\left(X_{i_1} = x_1, \ldots, X_{i_k} = x_k\right) = \frac{1}{\binom{k}{m}} P\left(\sum_{i=1}^{k} X_i = m\right)
\]

(13)

Proof. There are \(\binom{k}{m} \) tuples \(x_1, \ldots, x_k \) with \(\sum x_i = m \). Due to exchangeability they all lead to the same probability.

We now prove Theorem 2.

Proof. (Theorem 2)

Let \(\mu \) be the de Finetti measure of \(X_i \) (see Definition 6) and define a \(\{0, 1\}\)-valued process \(\{Y_i\}_i \) by

\[
P\left(Y_1 = y_1, \ldots, Y_k = y_k\right) = \int \prod_{i=1}^{k} \pi_p(y_i) \, d\mu(p)
\]

(14)

The process \(Y_i \) is obviously exchangeable.

We’ll prove that \(X_i \) and \(Y_i \) have the same finite dimensional distributions.

According to Lemma 8 it suffices to show that \(S_N = \sum_{i=1}^{N} X_i \) and \(T_N = \sum_{i=1}^{N} Y_i \) have the same distributions for all \(N \) and for this it is enough by Propo-
position 3 to prove that their moments agree.

\[
\mathbb{E}\left(S_N^k\right) = \sum_{r=1}^{k} \sum_{i_1, \ldots, i_k=1}^{N} \mathbb{E}\left(X_{i_1} \cdot \ldots \cdot X_{i_k}\right)
= \sum_{r=1}^{k} \sum_{i_1, \ldots, i_k=1}^{N} \mathbb{E}\left(X_1 \cdot \ldots \cdot X_r\right) \quad \text{(by Corollary 7)}
= \sum_{r=1}^{k} \sum_{i_1, \ldots, i_k=1}^{N} \int \prod_{i=1}^{r} \pi_p(x_i) \, d\mu(p) \quad \text{(by Theorem 5)}
= \sum_{r=1}^{k} \sum_{i_1, \ldots, i_k=1}^{N} \mathbb{E}\left(Y_1 \cdot \ldots \cdot Y_r\right) \quad \text{(by (14))}
= \sum_{r=1}^{k} \sum_{i_1, \ldots, i_k=1}^{N} \mathbb{E}\left(Y_{i_1} \cdot \ldots \cdot Y_{i_k}\right) \quad \text{(Corollary 7)}
= \mathbb{E}\left(T_N^k\right) \quad \text{(15)}
\]

References

[1] D. Aldous: Exchangeability and related topics, pp. 1-198 in: Lecture Notes in Mathematics 117, Springer (1985).

[2] B. de Finetti: Funzione caratteristica di un fenomeno aleatorio, Atti della R. Accademia Nazionale dei Lincei, Ser. 6, Memorie, Classe di Scienze Fisiche, Matematiche e Naturali 4, 251–299 (1931).

[3] B. de Finetti: La prevision: ses lois logiques, ses sources subjectives, Annales de l’Institut Henri Poincare, 7, 1–68 (1937).

[4] Hewitt, E. and Savage, L. J.: Symmetric measures on Cartesian products. Transactions of the American Mathematical Society, 80, 470–501 (1955).

[5] W. Kirsch: Moments in Probability, book in preparation, to appear at DeGruyter.
[6] A. Klenke: Probability Theory, Springer (2013)

Werner Kirsch werner.kirsch@fernuni-hagen.de