On groups of finite upper rank

Dan Segal

April 27, 2021

Rank and upper rank

For a finite group G with Sylow p-subgroup P the rank and the p-rank of G are defined by

$$r(G) = \sup\{d(H) \mid H \leq G\},$$
$$r_p(G) = r(P),$$

where as usual $d(H)$ denotes the minimal size of a generating set for H. When G is an arbitrary group, $\mathcal{F}(G)$ denotes the set of finite quotient groups of G, and we define the (‘local’ and ‘global’) upper ranks of G:

$$ur_p(G) = \sup\{r_p(Q) \mid Q \in \mathcal{F}(G)\}$$
$$ur(G) = \sup\{r(Q) \mid Q \in \mathcal{F}(G)\}.$$

A theorem of Lucchini [L], first proved for soluble groups by Kovács [K], asserts that for a finite group G,

$$\sup_p r_p(G) \leq r(G) \leq 1 + \sup_p r_p(G),$$

so the analogue holds for the upper ranks of an infinite group; in particular, $ur(G)$ is finite if and only if the local upper ranks $ur_p(G)$ are bounded as p ranges over all primes.

Let us denote by \mathcal{U} the class of all groups G such that $ur_p(G)$ is finite for every prime p. One can describe \mathcal{U} more colourfully as the class of groups whose profinite completion has a p-adic analytic Sylow pro-p subgroup for every prime p [DDMS].

Background

More than 20 years ago, Alex Lubotzky conjectured that there is a ‘subgroup growth gap’ for finitely generated soluble groups. We had recently established that a finitely generated (f.g.) residually finite group has polynomial subgroup growth if and only if it is virtually a soluble minimax group (see [LMS] or [LS], Chapter 5). I showed in [S3] that there exist f.g. groups of arbitrarily slow non-polynomial subgroup growth; the Lubotzky question amounts to: do there exist such groups that are soluble?
Now if a f.g. soluble group G has subgroup growth of type strictly less than $n^{\log n/(\log \log n)^2}$ then $ur_p(G)$ is finite for every prime p ([MS], Prop. 2.6, [S2], Proposition C). On the other hand, it is known that a finitely generated residually finite group has finite upper rank if and only if it is virtually a soluble minmax group [MS1]. So Lubotzky’s conjecture would follow from

Conjecture A [S2] Let G be a f.g. soluble group. If $G \in \mathcal{U}$ then G has finite upper rank.

Equivalently: if the upper p-ranks of G are all finite, then they are bounded. If G is assumed to be residually finite, this conclusion is equivalent to saying that G is a minmax group.

In fact, Conjecture A would imply that a f.g. soluble group cannot have subgroup growth of type strictly between polynomial and $n^{\log n}$ ([S5], Proposition 5.1).

I am now doubtful about this conjecture, having spent over two decades failing to prove it. What follows is a survey of what is known on the topic.

Olshanski-Osin groups

In [MS] we raised the question: is Conjecture A true even without the solubility hypothesis? If G is a group with $ur_2(G)$ finite then G has a subgroup H of finite index such that every finite quotient of H is soluble ([LS], Theorem 5.5.1). This (at first sight surprising) consequence of the Odd Order Theorem suggests that the solubility hypothesis in Conjecture A may be redundant. Without that hypothesis, however, the conjecture is false, as was recently pointed out to me by Denis Osin. I am very grateful to him for allowing me to reproduce his argument here. It depends on

Theorem 1 ([OO] Theorem 1.2) Let $P = (p_i)$ be an infinite sequence of primes. There exists an infinite 2-generator periodic group $G(P) = G_0$ having a descending chain of normal subgroups $(G_i)_{i \geq 0}$ with $\bigcap G_i = 1$ such that G_{i-1}/G_i is abelian of exponent dividing p_i for each $i \geq 1$.

Now let $G = G(P)$ where P consists of distinct primes. Each quotient G/G_n is finite. Given $m \in \mathbb{N}$ there exists n such that $p_i \nmid m$ for all $i \geq n$. It is easy to see that each element of G_n has order coprime to m, whence $G_n \leq G^m$. It follows that for each prime p,

$$ur_p(G) = \sup \{ ur_p(G/G^m) \mid m \in \mathbb{N} \}$$

$$= \sup \{ r_p(G/G_n) \mid n \in \mathbb{N} \} = \left\{ \begin{array}{ll} r_p(G/G_k) & \text{if } p = p_k \\ 0 & \text{if } p \neq p_i \forall i \end{array} \right\} < \infty.$$

Thus $G \in \mathcal{U}$. On the other hand, G is residually finite and not virtually soluble (as it is infinite, f.g. and periodic), and so G has infinite upper rank by the theorem from [MS1] quoted above.

Whether Conjecture A holds with ‘soluble’ replaced by ‘torsion-free’ is still an open problem.
The groups of slow subgroup growth constructed in [S3] are built out of finite simple groups. The groups $G(P)$, in contrast, have all their finite quotients soluble: I call such groups of prosoluble type (because their profinite completions are prosoluble). As far as I know, these provide the first such examples with arbitrarily slow non-polynomial subgroup growth; they show that Lubotzky’s conjecture becomes false if ‘soluble’ is replaced by ‘of prosoluble type’:

Proposition 2 let $f : \mathbb{N} \to \mathbb{R}_{>0}$ be an unbounded non-decreasing function. Then there exists a sequence P of primes such that the group $G = G(P)$ satisfies

$$s_n(G) \leq n^{f(n)}$$

for all large n, but G does not have polynomial subgroup growth.

Here, $s_n(G)$ denotes the number of subgroups of index at most n in G.

Proof. Suppose that $P = (p_i)$ is a strictly increasing sequence of primes. Let H be a proper subgroup of index $\leq n$ in G. Then $G_0 > H \geq G_{n!} \geq G_k$ for some k. Let k be minimal such. Then $G_k \leq H \cap G_{k-1} < G_{k-1}$, so

$$p_k \mid |G_{k-1} : H \cap G_{k-1}| \leq n.$$

It follows that

$$s_n(G) = s_n(G_{k(n)})$$

where $k(n)$ is the largest k such that $p_k \leq n$.

Put $Q_n = G/G_{k(n)}$. According to [LS], Corollary 1.7.2,

$$s_n(Q_n) \leq n^{2+r(n)}$$

where $r(n) = \max_p r_p(Q_n)$. Write $m_j = |G : G_{j-1}|$ for each $j \geq 1$. Since G is a 2-generator group, G_{j-1} can be generated by $1 + m_j$ elements, and so $r_{p_j}(Q_n) \leq 1 + m_j$ for $j \leq k(n)$, while $r_p(Q_n) = 0$ if $p \notin \{p_1, \ldots, p_{k(n)}\}$.

Now we can choose the sequence P recursively as follows: p_1 is arbitrary. Set $\mu_1 = 1$. Given p_i and μ_i for $i \leq t$, set

$$\mu_{t+1} = \mu_t \cdot p_t^{1+\mu_t}$$

and let $p_{t+1} > p_t$ be a prime so large that

$$f(p_{t+1}) \geq 3 + \mu_{t+1}.$$

Note that $|G_{j-1} : G_j| \leq p_j^{1+m_j}$ for each j, so $m_{j+1} \leq m_j \cdot p_j^{1+m_j}$. It follows that $m_j \leq \mu_j$ for all j. Then

$$r(n) \leq \max\{1 + m_j \mid j \leq k(n)\} \leq \max\{1 + \mu_j \mid j \leq k(n)\} = 1 + \mu_{k(n)} \leq f(p_{k(n)}) - 2 \leq f(n) - 2.$$
Thus
\[s_n(G) = s_n(Q_n) \leq n^{2+r(n)} \leq n^{f(n)}. \]

Of course, \(G \) does not have polynomial subgroup growth because it has infinite upper rank, as observed above.

Minimax groups: a reminder

Let us denote by \(S \) the class of all residually finite virtually soluble minimax groups. The following known results will be used without special mention:

- If \(G \in S \) then \(G \) is virtually nilpotent-by-abelian.
- If \(G \in S \) then \(G \) is virtually residually (finite nilpotent).
- A minimax group is in \(S \) if and only if it is virtually torsion-free.
- The class \(S \) is extension-closed.
- If \(G \) has a nilpotent normal subgroup \(N \) such that \(G/N' \) is (a) minimax resp. (b) of finite upper rank, then \(G \) is (a) minimax, resp. (b) of finite upper rank.
- Let \(G \) be f.g. and residually finite. Then \(\text{ur}(G) \) is finite if and only if \(G \in S \).

For most of these, see [LR], Chapter 5 and Chapter 1. The penultimate claim is an easy consequence of [LR], 1.2.11. The final claim is [MS1], Theorem A.

Some known cases

Proposition 3 Let \(G \) be a f.g. nilpotent-by-polycyclic group. If \(G \in U \) then \(G \) is a minimax group.

Proof. Let \(N \) be a nilpotent normal subgroup of \(G \) with \(G/N \) polycyclic. It will suffice to show that \(G/N' \) is minimax, so replacing \(G \) by this quotient we may assume that \(N \) is abelian. Then \(N \) is Noetherian as a \(G/N \)-module, so the torsion subgroup \(T \) of \(N \) has finite exponent, \(e \) say. Let \(\sigma \) be the set of prime divisors of \(e \).

By P Hall’s ‘generic freeness lemma’ (cf. [LR], 7.1.6) \(N/T \) has a free abelian subgroup \(F_1/T \) such that \(N/F_1 \) is a \(\pi \)-group for some finite set of primes \(\pi \). Then \(F_1 = T \times F \) where \(F \) is free abelian, and \(N/F \) is a \(\pi \cup \sigma \)-group.

Let \(p \not\in \pi \cup \sigma \) be a prime. Then \(N = FN^p \) and \(N^p \cap F = F^p \), so \(F/F^p \cong N/N^p \). Now \(G/N^p \) is residually finite and the image of \(N/N^p \) in any finite quotient of \(G/N^p \) has rank at most \(\text{ur}_p(G) = r_p \); it follows that \(|F/F^p| = |N/N^p| \leq p^{r_p} \). Therefore \(F \) has rank at most \(r_p \). Hence for each prime \(q \not\in \pi \cup \sigma \) we have
\[\text{ur}_q(G) \leq \text{ur}(G/N) + \text{ur}(F) \leq \text{ur}(G/N) + r_p. \]
It follows that \(ur(G) \) is finite, since \(G/N \) is polycyclic and \(\pi \cup \sigma \) is finite.

As \(G \) is residually finite it follows that \(G \) is a minimax group. (For the quoted properties of f.g. abelian-by-polycyclic groups, see for example \([LR]\), Chapters 4 and 7.)

The upper \(p \)-rank of a group \(G \) can equivalently be defined as the rank of a Sylow pro-\(p \) subgroup \(P \) of \(\hat{G} \), the profinite completion of \(G \), where for a profinite group \(P \), the rank of \(P \) is

\[
\text{r}(P) = \sup \{ \text{r}(P/N) \mid N \triangleleft P, \ N \text{ open} \}.
\]

The pro-\(p \) groups of finite rank are well understood (see \([DDMS]\)); in particular, they are linear groups in characteristic 0.

Proposition 4 ([LS], Window 8, Lemma 9) Let \(K \) be a f.g. residually nilpotent group. Suppose that the pro-\(p \) completion \(\hat{K}_p \) of \(K \) has finite rank for some prime \(p \). Then there exists a finite set of primes \(\pi \) such that the natural map

\[
K \rightarrow \prod_{q \in \pi} \hat{K}_q
\]

is injective.

This is the key to

Theorem 5 ([S5], Theorem 5) Let \(G \) be a f.g. group that is virtually residually nilpotent. If \(G \in \mathcal{U} \) then \(G \) has finite upper rank.

Proof. It follows from Proposition 4 that \(G \) has a subgroup \(K \) of finite index such that \(K \) is residually (finite nilpotent of rank at most \(r \)); here \(r = \max_{q \in \pi} ur_q(G) \). By a result mentioned above, we may also take it that every finite quotient of \(K \) is soluble. The main result of [S1] now shows that \(K \) is virtually nilpotent-by-abelian (see also \([LS]\), Window 8, Corollary 5), and the result follows by Proposition 3.

Let \(H \) denote the class of all groups \(G \) with the property: every virtually residually nilpotent quotient of \(G \) is a minimax group.

Theorem 5 shows that finitely generated groups in \(\mathcal{U} \) belong to \(H \). It is not true that every f.g. soluble residually finite group in \(H \) has finite upper rank:

Proposition 6 ([PS], Proposition 10.1) Let \(p \) be a prime, let

\[
H = \langle x_n \mid n \in \mathbb{Z} \rangle; \ x_p^n = x_{n-1}
\]

be the additive group of \(\mathbb{Z}[1/p] \) written multiplicatively, and let \(\tau \) be the automorphism of \(H \) sending \(x_n \) to \(x_{n+1} \) for each \(n \). Extend \(\tau \) to an automorphism of the group algebra \(\mathbb{F}_pH \) and then to an automorphism of \(\mathbb{W} = \mathbb{F}_pH \rtimes H = C_p \rtimes H \). Set \(G = \mathbb{W} \rtimes \langle \tau \rangle \). Then
• G is a 3-generator residually finite abelian-by-minimax group
• $G \in \mathcal{H}$
• $ur_q(G) = 2$ for every prime $q \neq p$
• $ur_p(G)$ is infinite.

This shows, also, that the hypothesis of Conjecture A can’t be weakened by omitting finitely many primes.

Still, the strongest result so far obtained towards Conjecture A rests on a consideration of certain groups in \mathcal{H}. It seems clear that the trouble with the last example is due to the presence of ‘bad’ torsion; if we exclude this we obtain the following:

Theorem 7 (PS, Theorem 3.2) Let $G \in \mathcal{H}$ be f.g. and residually finite. Suppose that G has a metabelian normal subgroup N with G/N polycyclic. Then G/N is minimax. If N' has no π-torsion where $\pi = \text{spec}(G/N')$ then G is minimax.

(For a minimax group H, $\text{spec}(H)$ denotes the (finite) set of primes p such C_{p^∞} is a section of H.)

From this, it is relatively straightforward to deduce

Theorem 8 (cf. PS, Corollary 3.3) Let G be a finitely generated group that is nilpotent-by-abelian-by-polycyclic. If $G \in \mathcal{U}$ then G has finite upper rank.

Proof. We may assume that G satisfies the hypotheses of Theorem 7. Keeping the notation there, put $A = N'$, an abelian normal subgroup of G. For a prime p and $K \triangleleft_f G$ let $D_p(K)/(A \cap K)$ be the p'-component of the finite abelian group $A/(A \cap K)$. Then

$$r_p(G/K) = r_p(G/KD_p(K)).$$

So if we set

$$D = \bigcap_{K \triangleleft_f G} K D_p(K),$$

we have $ur_p(G) = ur_p(G/D)$ for all $p \notin \pi$.

Now $AD/D \cong A/(A \cap D)$ has no π-torsion, since each $A/(A \cap KD_p(K))$ is a p-group. Clearly G/D is residually finite, so Theorem 7 applies to show that G/D is a minimax group. Hence

$$ur_p(G) = ur_p(G/D) \leq ur(G/D) < \infty$$

for every $p \notin \pi$, and as π is finite it follows that $ur_p(G)$ is bounded over all primes p. ■
The hypotheses in Theorem 8 seem rather restrictive. However, if we could only replace ‘nilpotent-by-abelian’ with ‘abelian-by-nilpotent’ then we could deduce the full force of Conjecture A; this is explained below.

Modules of finite upper rank

Let G be a counterexample to Conjecture A of least possible derived length, l; we may assume that G is residually finite. Let A be maximal among abelian normal subgroups of G that contain $G^{(l-1)}$. Then G/A is residually finite (by an elementary lemma) and has finite upper rank, so G/A is a minimax group. In particular, G/A is virtually nilpotent-by-abelian and so G is abelian-by-nilpotent-by-polycyclic: this is the point of the final remark in the preceding section.

Putting $\Gamma = G/A$ we consider A as a Γ-module, written additively as $A\Gamma$. If B is a submodule of finite index in $A\Gamma$ then G/B is residually finite (because \mathcal{S} is extension-closed), whence

$$r_p(A/B) \leq ur_p(G)$$

for each prime p; and it is clear that

$$ur(G/B) \leq r(A/B) + ur(G/A).$$

Let us define the upper rank of a Γ-module M by $ur(M) = \sup \{r(M/B) \mid B \leq \Gamma \ M, \ M/B \text{ finite}\}$, and set

$$ur_p(M) = \sup \{r(M/B) \mid pM \leq B \leq \Gamma \ M, \ M/B \text{ finite}\}
= ur(M/pM).$$

I will say that M is a quasi-f.g. Γ-module if there exists a f.g. group G that is an extension of M by Γ. The preceding observations now show that $A\Gamma$ is a counterexample to

Conjecture B Let Γ be a f.g. residually finite soluble minimax group and let M be a quasi-f.g. Γ-module. If $ur_p(M)$ is finite for every prime p then M has finite upper rank.

Conversely, it is easy to see that if M is a counterexample to Conjecture B then the corresponding extension G is a counterexample to Conjecture A. So the two conjectures are equivalent.

Theorem 8 establishes Conjecture B for the special case where Γ is abelian-by-polycyclic. A reduction step in the proof is Proposition 5.2 of [PS], which shows that M contains a finitely generated Γ-submodule B such that the finite module quotients of B are ‘nearly all’ isomorphic to finite quotients of M, and conversely. The hypothesis that Γ is abelian-by-polycyclic is used in the proof of this reduction, but can be dispensed with; this is explained in the next section. The main part of the proof, however, does depend on Γ having an abelian normal subgroup A such that Γ/A is polycyclic. Following a strategy devised by P. Hall
and further developed by Roseblade [R], one examines the structure of B as a module for the group ring $\mathbb{Z}A$, with Γ/A as a group of operators. The necessary module theory is developed in [S4] and [S2].

For the general case of Conjecture B, it would seem necessary to generalize this machinery in one of two directions: either allow A to be nilpotent (rather than abelian), or allow Γ/A to be minimax (rather than polycyclic – while still assuming $\Gamma/C\Gamma(A)$ to be polycyclic, if one takes A inside the centre of the Fitting subgroup of Γ). Whether either of these approaches is feasible remains unclear. Machinery relevant to the first approach has been developed by Tushev [T]. A major difficulty with the second approach is the fact that the ‘generic freeness’ property mentioned above definitely fails when Γ/A is not polycyclic, as observed by Kropholler and Lorensen in [KL], Cor. 5.6. Other aspects of the Hall-Roseblade theory have been usefully generalized by Brookes [B].

On the other hand, if one is seeking a counterexample to conjecture B, the simplest candidate would seem to be the following group: Let K be the Heisenberg group over $\mathbb{Z}[1/2]$ and take $\Gamma = K \rtimes \langle t \rangle$ where t acts on a matrix by doubling the off-diagonal entries (and multiplying the top right corner entry by 4). Then M could be the quotient $\mathbb{Z}\Gamma/J$ where J is a carefully constructed right ideal: generators of J should be chosen to ensure that $\mathbb{Z}\Gamma/J$ has finite upper p-rank for each prime p, but in such a way that these ranks are unbounded.

A possible reduction: quasi-f.g. modules.

Let Γ be a f.g. residually finite soluble minimax group. Then Γ has a nilpotent normal subgroup K such that Γ/K is virtually abelian. We fix a normal subgroup Z of Γ with $Z \leq Z(\Gamma)$, and let $R = \mathbb{Z}Z$ denote its group ring. For a multiplicatively closed subset Λ of R, an R-module M is said to be Λ-torsion if every element of M is annihilated by some element of Λ.

Proposition 9 Let A be a quasi-f.g. Γ-module. Then A has a finitely generated Γ-submodule B such that A/B is Λ-torsion for each Λ of the form $R \setminus L$ where L is a maximal ideal of finite index in R not containing the augmentation ideal $(Z - 1)R$.

Before giving the proof we note a corollary. For a Γ-module M, let $\mathcal{F}(M)$ denote the set of isomorphism types of finite quotient Γ-modules of M.

Corollary 10 For A and B as above, we have

$$\mathcal{F}(A) \setminus S = \mathcal{F}(B) \setminus S$$

where S consists of the finite Γ-modules that have a composition factor on which Z acts trivially.

This is essentially a formal consequence of the stated condition on Λ-torsion, which implies that

$$AJ + B = A, \quad AJ \cap B = BJ$$
whenever J is the annihilator in R of some finite Γ-module not in S. Thus questions about the upper ranks of A might be reduced to questions about the upper ranks of the finitely generated module B, if - by some subsidiary argument - one could leave aside the quotients lying in S (this is in principle the approach taken in [PS, §§5, 6]).

To establish the Proposition, we consider a f.g. group E with an abelian normal subgroup A such that $E/A = \Gamma$. In E there is a series of normal subgroups

$$E > K_1 \geq Z_1 \geq A \geq \gamma_{c+1}(K_1)[Z_1, K_1]$$

where $K_1/A = K$ is nilpotent of class c, say, and $Z_1/A = Z$. Now Z is an abelian minimax group, hence contains a finite subset Y_1 such that $Z/\langle Y_1 \rangle$ is divisible. Since $E/K_1 \cong \Gamma/K$ is virtually abelian and E is f.g., K_1 is finitely generated as a normal subgroup of E; we choose a finite set $X = X - 1$ of normal generators for K_1 and assume that X contains a set Y of representatives for the elements of Y_1. Finally, let $S = S^{-1}$ be a finite set of generators for E.

Lemma 11 Let L be a maximal ideal of finite index in $R = \mathbb{Z}Z$ not containing $Z - 1$. Then $\Lambda = R \setminus L$ satisfies

$$(\Lambda^g + 1) \cap Y_1 \neq \emptyset$$

for every $g \in E$.

Proof. Write $D = Z \cap (L + 1)$. If (1) fails for g then $D^g \supseteq Y_1$ which implies $D^g = Z$ since $Z/\langle Y_1 \rangle$ is divisible while $|Z : D^g|$ is finite. Hence $D = Z$ and so $L \supseteq Z - 1$. ■

Now we define B to be the E-submodule of A generated by the finite set

$$\{[x, y], [x^s, y] \mid x \in X, y \in Y, s \in S\}.$$

We aim to show that if Λ is a multiplicatively closed subset of R satisfying (1) for every $g \in E$, then the R-module A/B is Λ-torsion; with Lemma 11 this will complete the proof of Proposition 9.

Note that $\gamma_{i+1}(K_1)$ is generated by the elements $v_i(x, w)^g$ for $g \in E$ and

$$v_i(x, w) = [x_0, x_1^{w_1}, \ldots, x_i^{w_i}],$$

$x_j \in X$, $w_j \in E$. Put

$$A_i = \langle [v_i(x, w), z]^g \mid x_j \in X, z \in Y, g, w_j \in E \rangle,$$

$$B_i = \langle [x^v, y]^g \mid x \in X, y \in Y, g, v \in E, l(v) \leq i \rangle$$

where $l(v)$ denotes the least n such that $v = s_1 \ldots s_n$ ($s_j \in S$). Note that $B_1 = B$.

Claim: A/A_c is Λ-torsion.
To see this, choose \(y \in Y \) with \(\overline{y} - 1 \in \Lambda \) where \(\overline{y} = Ay \). Then (mixing additive and multiplicative notation)

\[
A(\overline{y} - 1)^c = [A, y] \subseteq \gamma_{c+1}(K_1) \subseteq A.
\]

Given a generator \(v_c(x, w)^g \) of \(\gamma_{c+1}(K_1) \), choose \(z \in Y \) such that \(\overline{z} - 1 \in \Lambda \). Then

\[
v_c(x, w)^g(\overline{z} - 1) = [v_c(x, w), z] \in A_c.
\]

Claim: For \(i > 1 \), \(B_i/B_{i-1} \) is \(\Lambda \)-torsion.

To see this, say \(b = [x^{\gamma_{u}}, y] \) is a generator of \(B_i \) where \(l(u) \leq i - 1 \). Choose \(z \in Y \) such that \(\overline{z} - 1 \in \Lambda \). Then

\[
(b(\overline{z} - 1))^{-g-1}y = [x^{\gamma_{u}}, y, z^{-u}]^{-y^{-1}} = [x^{u}, x^{-\gamma_{u}}, y^{-1}]z^{\gamma_{u}} + [y^{-1}, z^{-u}, x^{\gamma_{u}}]z^{u}.
\]

The first term lies in \(B_1 \leq B_{i-1} \) and the second term lies in \(A_{i-1} \). The claim follows since each of these modules is \(E \)-invariant.

Claim: Write \(B_{\infty} = \bigcup_j B_j \). Then for \(i > 1 \), \(A_i \leq B_{\infty} + A_{i-1} \).

To see this, let \(x = (x', x) \) and \(w = (1, w_1, \ldots) = (w', w) \) be \((i + 1) \)-tuples in \(X, E \) respectively, and let \(z \in Y \). Then

\[
[v_i(x, w), z]^{-x^{-w}} = [v_{i-1}(x', w'), x^{w}, z]^{-x^{-w}} = [x^{w}, z^{-1}, v_{i-1}(x', w')][z + [z, v_{i-1}(x', w')^{-1}, x^{w}]v_{i-1}(x', w')].
\]

The first term lies in \(B_{\infty} \) and the second term lies in \(A_{i-1} \). The claim follows since each of these modules is \(E \)-invariant.

The three claims together now imply that \(A/B \) is \(\Lambda \)-torsion, and the proof is complete.

Further reductions

Suppose that the pair \((\Gamma, M) \) furnishes a counterexample to Conjecture B, where \(M \) is finitely generated as a \(\Gamma \)-module. With quite a lot of extra work, generalizing some ideas from [S4], one can establish

Proposition 12 The module \(M \) has a torsion-free residually finite quotient \(\tilde{M} \) of infinite upper rank such that every proper, \(\pi \)-torsion-free residually finite quotient of \(\tilde{M} \) has finite rank, where \(\pi = \text{spec}(\Gamma) \).

(Here \(\text{spec}(\Gamma) \) denotes the (finite) set of primes \(p \) such that \(\Gamma \) has a section \(C_{p^{\infty}} \).

This reduces the problem to consideration of a ‘minimal counterexample’, in a rather weak sense. Whether this is any help is not clear, and there seems little point in including the proof here.
Further results that may be relevant are obtained in [KL1]; these can be used to show that a module like our putative counterexample has many finite-rank quotients that split as direct sums.

References

[B] C. J. B. Brookes, Ideals in soluble groups of finite rank, *Math. Proc. Cambridge Phil. Soc.* **97** (1985), 27-49.

[DDMS] M. P. F. du Sautoy and D. Segal, *Analytic pro-p groups*, (2nd ed.), Cambridge Studies Advanced Math. **61**, CUP, Cambridge 1999.

[H] P. Hall, On the Finiteness of Certain Soluble Groups, *Proc. London Math. Soc. (3)* **9** (1959), 595-622.

[K] L. G. Kovács, On finite soluble groups, *Math. Zeit.* **103** (1968), 37-39.

[KL1] P. Kropholler and K. Lorensen, The cohomology of virtually torsion-free soluble groups of finite rank, *Trans. American Math. Soc.* **367** (2015), 6441-6459.

[KL] P. Kropholler and K. Lorensen, Group-graded rings satisfying the strong rank condition, *J. Algebra* **539** (2019), 326-338.

[LS] A. Lubotzky and D. Segal, *Subgroup Growth*, Progress in Math. **212**, Birkhäuser, Basel, 2003.

[LMS] A. Lubotzky, A. Mann and D. Segal, Finitely generated groups of polynomial subgroup growth, *Israel J. Math.* **82** (1993), 363-371.

[LR] J. C. Lennox and D. J. S. Robinson, *The Theory of Infinite Soluble Groups*, Clarendon Press, Oxford 2004.

[L] A. Lucchini, A bound on the number of generators of a finite group, *Arch. Math.* **53** (1989), 313-317.

[MS] A. Mann and D. Segal, Subgroup growth: some current developments, *Infinite Groups ’94* (de Giovanni and Newell, eds.), W. de Gruyter, Berlin, 1995.

[MSI] A. Mann and D. Segal, Uniform finiteness conditions in residually finite groups, *Proc. London Math. Soc. (3)* **61** (1990), 529-545.

[OO] A. Olshanskii and D. Osin, Large groups and their periodic quotients, *Proc. AMS* **136** (2008), 753-759.

[PS] L. Pyber and D. Segal, Finitely generated groups with polynomial index growth, *J. reine angew. Math.* **612** (2007), 173-211.
[R] J. E. Roseblade, Group rings of polycyclic groups, *J. Pure and Applied Algebra* 3 (1973), 307-328.

[S1] D. Segal, A footnote on residually finite groups. *Israel J.Math.* 94(1996), 1-5.

[S2] D. Segal, On modules of finite upper rank, *Trans. AMS* 353 (2000), 391–410.

[S3] D. Segal, The finite images of finitely generated groups, *Proc. London Math. Soc. (3)* 82 (2001), 597-613.

[S4] D. Segal, On the group rings of abelian minimax groups, *J. Algebra* 237 (2001), 64–94.

[S5] D. Segal, On the finite images of infinite groups, in: *Groups: topological, combinatorial and arithmetic aspects*, LMS Lect. Notes 311, CUP, Cambridge (2004), 542–563.

[S6] D. Segal, On the group rings of abelian minimax groups, II: the singular case, *J. Algebra* 306 (2006), 378–396.

[T] A. V. Tushev, On primitive representations of soluble groups of finite rank, *Matemat. Sbornik* 191 (2000), 117-159 = *Sbornik: Mathematics* 191 (2000), 1707-1748.