LOCALLY UNSPLIT FAMILIES OF RATIONAL CURVES OF LARGE ANTICANONICAL DEGREE ON FANO MANIFOLDS

CINZIA CASAGRANDE AND STÉPHANE DRUEL

Abstract. In this paper we address Fano manifolds of dimension $n \geq 3$ with a locally unsplit dominating family of rational curves of anticanonical degree n. We first observe that their Picard number is at most 3, and then we provide a classification of all cases with maximal Picard number. We also give examples of locally unsplit dominating families of rational curves whose varieties of minimal tangents at a general point is singular.

Contents

1. Introduction 1
2. Notations and preliminaries 5
3. Fano manifolds containing a prime divisor with Picard number one 7
4. Fano manifolds with a locally unsplit family of rational curves of anticanonical degree n 16
5. Examples of locally unsplit families of rational curves of anticanonical degree n 22
6. Appendix: the relative Hilbert scheme 29
References 33

1. INTRODUCTION

Let X be a Fano manifold, and let V be a dominating family of rational curves on X. By this we mean that V is an irreducible component of RatCurves$^n(X)$, the scheme parametrizing integral rational curves on X, and that the union of the curves parametrized by V is dense in X.

We say that V is locally unsplit if for general $x \in X$, the subfamily V_x of curves containing x is proper. This is true, for instance, if V is a dominating family with minimal degree with respect to some ample line bundle on X.

When V is locally unsplit, the anticanonical degree of the curves of the family can vary between 2 and $n + 1$, where n is the dimension of X.

Following Miyaoka [Miy04], we define l_X to be the minimal anticanonical degree of a locally unsplit dominating family of rational curves in X, so that $l_X \in \{2, \ldots, n + 1\}$. Equivalently, l_X is the minimal anticanonical degree of a free rational curve in X (see Remark 1.2).

Date: December 19, 2012.
2010 Mathematics Subject Classification. 14J45, 14C05, 14E30.
In this paper we study Fano manifolds with a locally unsplit dominating family of rational curves of anticanonical degree n, including in particular Fano manifolds X with $l_X = n$.

Let us recall the following results, due respectively to Cho, Miyaoka, and Shepherd-Barron (see also [Keb02a]), and to Miyaoka.

Theorem 1.1 ([CMSB02]). Let X be a Fano manifold of dimension n. The following properties are equivalent:

1. X has a locally unsplit dominating family of rational curves of maximal anticanonical degree $n + 1$;
2. $X \cong \mathbb{P}^n$.

In particular, $l_X = n + 1$ if and only if $X \cong \mathbb{P}^n$.

Theorem 1.2 ([Miy04]). Let X be a Fano manifold of dimension $n \geq 3$, and with Picard number $\rho_X = 1$. Then $l_X = n$ if and only if X is isomorphic to a quadric.

On the other hand, there are also cases where $l_X = n$ and $\rho_X > 1$.

Example 1.3 ([Miy04], Remark 4.2). Let $A \subset \mathbb{P}^n$ be a smooth subvariety, of dimension $n - 2$ and degree $d \in \{1, \ldots, n\}$, contained in a hyperplane. Let X be the blow-up of \mathbb{P}^n along A. Then X is Fano with $\rho_X = 2$ and $l_X = n$.

The locally unsplit dominating family of rational curves of anticanonical degree n is given by the transforms of lines intersecting A in one point.

First of all, we show that in fact these are the only examples.

Theorem 1.4. Let X be a Fano manifold of dimension $n \geq 3$, with $\rho_X > 1$ and $l_X = n$. Then there exists a smooth subvariety $A \subset \mathbb{P}^n$ of dimension $n - 2$ and degree $d \in \{1, \ldots, n\}$, contained in a hyperplane, such that X is isomorphic to the blow-up of \mathbb{P}^n along A.

Together with Miyaoka’s result (Theorem 1.2), this gives a complete classification of Fano manifolds with $l_X = n$.

Then we turn to the case where X is a Fano manifold having a locally unsplit dominating family of rational curves of anticanonical degree n, where $n \geq 3$ is the dimension of X. Notice that this assumption is easier to check than the condition $l_X = n$, as it involves only one family of rational curves.

In the toric case, these varieties have been classified by Fu and Hwang.

Proposition 1.5 ([FH09], Proposition 11). Let X be a toric Fano manifold, of dimension $n \geq 3$, having a locally unsplit dominating family of rational curves of anticanonical degree n. Then X is one of the following:

1. the blow-up of \mathbb{P}^n at a linear \mathbb{P}^{n-2} (here $\rho = 2$ and $l_X = n$);
2. $\mathbb{P}^1 \times \mathbb{P}^{n-2}$ (here $\rho = 2$ and $l_X = 2$);
3. the blow-up of \mathbb{P}^n at $A \cup \{p\}$, where A is a linear \mathbb{P}^{n-2}, and p a point not in A (here $\rho = 3$ and $l_X = 2$).

We show that if X has a locally unsplit dominating family V of rational curves of anticanonical degree n, then the Picard number of X is at most 3 (see Proposition 1.5). Moreover we classify all cases with $\rho_X = 3$, giving a complete description of X and V. Let us describe our results.

We first construct and study a family of examples.
Example 1.6. Fix integers n, a and d such that $n \geq 3$, $d \geq 1$ and $0 \leq a \leq d$. Let moreover $A \subset \mathbb{P}^{n-1}$ be a smooth hypersurface of degree d.

Set $Y := \mathbb{P}^{n-1}(\mathcal{O}_{\mathbb{P}^{n-1}}(a))$, and let $\hat{G}_Y \cong \mathbb{P}^{n-1} \subset Y$ be a section of the \mathbb{P}^1-bundle $Y \to \mathbb{P}^{n-1}$ with normal bundle $\mathcal{N}_{\hat{G}_Y/Y} \cong \mathcal{O}_{\mathbb{P}^{n-1}}(a)$.

Finally set $A_Y := \hat{G}_Y \cap \pi^{-1}(A)$ (so that $A_Y \cong A$), and let $\sigma : X \to Y$ be the blow-up of A_Y.

Then X is smooth of dimension n and Picard number 3, and it is Fano if and only if $a \leq n - 1$ and $d - a \leq n - 1$. In the Fano case, these varieties appear in [Tsu06], where the author classifies Fano manifolds containing a divisor $G \cong \mathbb{P}^{n-1}$ and with negative normal bundle.

Proposition 1.7. Let X be as in Example 1.6. Then X has a locally unsplit dominating family V of rational curves of anticanonical degree n.

Then we show that these are all the examples with $\rho \geq 3$.

Theorem 1.8. Let X be a Fano manifold of dimension $n \geq 3$, and suppose that X has a locally unsplit dominating family V of rational curves of anticanonical degree n. Then $\rho_X \leq 3$.

If moreover $\rho_X = 3$, then X is isomorphic to one of the varieties described in Example 1.6, and the family V is unique.

We study in more detail the family of curves given by Proposition 1.7. For $x \in X$, we denote by V_x the normalization of the closed subset of V parametrizing curves containing x.

Theorem 1.9. Let X and V be as in Proposition 1.7 and $x \in X$ a general point. Let $z \in \mathbb{P}^{n-1}$ be the image of x under the morphism $X \to \mathbb{P}^{n-1}$, and let $p_z : A \to \mathbb{P}^{n-2}$ be the degree d morphism induced by the linear projection $\mathbb{P}^{n-1} \to \mathbb{P}^{n-2}$ from z.

Then V_x is smooth and connected. If $a = 0$, then $V_x \cong \mathbb{P}^{n-2}$. If $a > 0$, then V_x is isomorphic to the relative Hilbert scheme $\text{Hilb}^{|d|}(A/\mathbb{P}^{n-2})$ of zero-dimensional subschemes, of length a, of fibers of p_z.

Finally, we consider the variety of minimal rational tangents (VMRT) associated to the locally unsplit family V at a general point x, defined as follows. Let $\tau_x : V_x \to \mathbb{P}(T_{X,x}^*)$ be the map sending a curve from V_x to its tangent direction at x, and define the VMRT C_x to be the image of τ_x in $\mathbb{P}(T_{X,x}^*)$. We still denote by τ_x the induced map $V_x \to C_x$; this is in fact the normalization morphism by [Keb02b] and [HM04].

Theorem 1.10. Let X and V be as in Proposition 1.7 and $x \in X$ a general point.

1) The VMRT $C_x \subset \mathbb{P}(T_{X,x}^*)$ is an irreducible hypersurface of degree $d \choose a$.
2) If $a \in \{0, 1, d - 1, d\}$, then $\tau_x : V_x \to C_x$ is an isomorphism.
3) If $2 \leq a \leq d - 2$, then $\tau_x : V_x \to C_x$ is not an isomorphism. More precisely: the closed subset where τ_x is not an isomorphism has codimension 1, and the closed subset where τ_x is not an immersion has codimension 2.
This provides the first examples of locally unsplit dominating families of rational curves whose VMRT at a general point \(x \) is singular, equivalently such that \(\tau_x : V_x \to C_x \) is not an isomorphism (see [Hwa01] Question 1, [KC06] Problem 2.20, and [Hwa10]). Notice that if \(2 \leq a \leq d - 2 \), then \(V \) is not a dominating family of rational curves of minimal degree (see Remark 5.4).

In order to prove Theorems 1.9 and 1.10 we are led to study relative Hilbert schemes of zero-dimensional subschemes of the projection of a smooth hypersurface from a general point. We show the following result, of independent interest.

Theorem 1.11. Fix integers \(m, a, \) and \(d \), such that \(m \geq 1 \) and \(1 \leq a \leq d \). Let \(A \subset \mathbb{P}^{m+1} \) be a smooth hypersurface of degree \(d \). Let \(z \in \mathbb{P}^{m+1} \) be a general point, and let \(A \to \mathbb{P}^m \) be the morphism induced by the linear projection from \(z \), where we see \(\mathbb{P}^m \) as the variety of lines through \(z \) in \(\mathbb{P}^{m+1} \).

1) The scheme \(\operatorname{Hilb}^a(A/\mathbb{P}^m) \) is connected and smooth of dimension \(m \), and the natural morphism \(\Pi : \operatorname{Hilb}^a(A/\mathbb{P}^m) \to \mathbb{P}^m \) is finite of degree \(\binom{d}{a} \).

2) Let \(\ell \subset \mathbb{P}^{m+1} \) be a line through \(z \), and let \([W] \in \operatorname{Hilb}^a(A/\mathbb{P}^m) \) be a point over \([\ell] \in \mathbb{P}^m \). Then \(\Pi \) is smooth at \([W] \) if and only if \(W \) is a union of irreducible components of \(\ell \cap A \).

This result can be applied to study the ramification of the projection of the hypersurface \(A \) from a general point. The possible non-reduced fibers occurring in such a projection are well-known when \(A \) is a curve or a surface (see for instance [CF11]), but not in general, to our knowledge. We obtain the following result, which nevertheless is not optimal (see the discussion on the case \(\dim A = 2 \) in the last part of the proof of Theorem 1.10).

Corollary 1.12. Let \(A \subset \mathbb{P}^{m+1} \) be a smooth hypersurface, and let \(A \to \mathbb{P}^m \) be the morphism induced by the linear projection from a general point of \(\mathbb{P}^{m+1} \). Let \(F = h_1p_1 + \cdots + h_rp_r \) be any fiber. Then

\[
\sum_{i=1}^{r} \left\lfloor \frac{h_i}{2} \right\rfloor \leq m.
\]

1.13. Outline of the paper. In section 2, we introduce notations used in the remainder of the paper, and we discuss some properties of families of rational curves.

In section 3 we study Fano manifolds \(X \) of dimension \(n \geq 3 \) having a prime divisor \(D \) with \(\rho_D = 1 \), using techniques from the Minimal Model Program, and in particular results from [BCHM10]. It follows from [Tsu06] Proposition 5] that \(\rho_X \leq 3 \); we study the cases \(\rho_X = 2 \) and \(\rho_X = 3 \). In the case \(\rho_X = 2 \), we describe the possible extremal contractions of \(X \) (see Remark 3.4 and Proposition 3.3). Then we give a complete classification of these varieties when \(\rho_X = 3 \), see Example 3.4 and Theorem 3.5. This generalizes results from [BCW02, Tsu06] for the case \(D \cong \mathbb{P}^{n-1} \) and negative normal bundle.

In section 4, we specialize the results of the previous section to the case where \(X \) has a locally unsplit dominating family \(V \) of rational curves of anticanonical degree \(n \). Indeed, for general \(x \in X \), any irreducible component
of the locus swept out by curves of the family through x is a divisor D with $\rho_D = 1$. This yields $\rho_X \leq 3$.

We first prove Theorem 1.4 on the case $l_X = n$. Next we show that, under the assumptions of Theorem 1.8 if moreover $\rho_X = 3$, then X is isomorphic to one of the varieties described in Example 1.6 and we determine the class of the family V in $\mathcal{N}_1(X)$ (see Proposition 3.5). Finally, when $\rho_X = 2$, we describe the possible extremal contractions of X (see Lemma 1.3). In this section we use repeatedly the characterization of the projective space given by Theorem 1.1.

In section 5 we first construct a locally unsplit dominating family of rational curves on the varieties introduced in Example 1.6, proving Proposition 1.7. With the use of Proposition 4.5 we also show that the family is unique, completing the proof of Theorem 1.8. Finally, we show Theorems 1.9 and 1.10 using Theorem 6.1 from the Appendix (section 6).

In section 6 we discuss the relative Hilbert scheme $\text{Hilb}^a(A/\mathbb{P}^n)$, where $A \to \mathbb{P}^n$ is the projection of a smooth hypersurface $A \subset \mathbb{P}^{n+1}$ from a general point. We first study local properties of the natural morphism $\Pi : \text{Hilb}^a(A/\mathbb{P}^n) \to \mathbb{P}^n$, and we show that $\text{Hilb}^a(A/\mathbb{P}^n)$ is integral (see Theorem 6.1). This is used in the proof of Theorem 1.9.

In Theorem 6.1 we also determine the genus of the curve $\text{Hilb}^a(A/\mathbb{P}^1)$; together with the description of the fibers of Π, this is crucial for the proof of Theorem 1.10.

At last we prove that the Hilbert scheme is smooth (Theorem 1.11), as a consequence of Theorem 1.9 and we show Corollary 1.12.

1.14. Acknowledgements. This work was initiated during the conference Géométrie Algébrique et Géométrie Complexe at C.I.R.M., Marseille, in March 2012; we thank the organizers for this opportunity. We are also grateful to Alberto Collino for some useful conversations.

The authors were partially supported by the European Research Network Program GDRE-GRIFGA (Italian-French GDRE in Algebraic Geometry). The first named author was partially supported by the Research Project M.I.U.R. PRIN 2009 “Spazi di moduli e teoria di Lie”. The second named author was partially supported by the project CLASS of Agence nationale de la recherche, under agreement ANR-10-JCJC-0111. We would like to thank these institutions for their support.

2. Notations and preliminaries

Throughout this paper, we work over the field of complex numbers.

We will use the definitions and apply the techniques of the Minimal Model Program frequently, without explicit references. We refer the reader to [KM98] and [Deb01] for background and details.

For any projective variety X, we denote by $\mathcal{N}_1(X)$ (respectively, $\mathcal{N}_1^1(X)$) the vector space of one-cycles (respectively, Cartier divisors), with real coefficients, modulo numerical equivalence. We denote by $[C]$ (respectively, $[D]$) the numerical equivalence class of a curve C (respectively, of a Cartier divisor D). Moreover, $\text{NE}(X) \subset \mathcal{N}_1(X)$ is the convex cone generated by classes of effective curves.
For any closed subset $Z \subset X$, we denote by $N_1(Z, X)$ the subspace of $N_1(X)$ generated by classes of curves contained in Z.

If D is a Cartier divisor in X, we set $D^\perp := \{ \gamma \in N_1(X) \mid D \cdot \gamma = 0 \}$.

If X is a normal projective variety, a contraction of X is a surjective morphism $\varphi : X \to Y$, with connected fibers, where Y is normal and projective. The contraction is elementary if $\nu_X - \nu_Y = 1$.

Let R be an extremal ray of $\text{NE}(X)$. If D is a divisor in X, the sign of $D \cdot R$ is the sign of $D \cdot \Gamma$, Γ a non-zero one-cycle with class in R.

Suppose that $K_X \cdot R < 0$, and let $\varphi : X \to Y$ be the associated elementary contraction. We set $\text{Locus}(R) := \text{Exc}(\varphi)$, the locus where φ is not an isomorphism.

By a \mathbb{P}^1-bundle we mean a smooth morphism whose fibers are isomorphic to \mathbb{P}^1, while a morphism is called a conic bundle if every fiber is isomorphic to a plane conic.

If \mathcal{E} is a vector bundle on a variety Y, we denote by $\mathbb{P}_Y(\mathcal{E})$ the scheme $\text{Proj}_Y(\text{Sym}(\mathcal{E}))$.

We refer the reader to [Kol96, §II.2 and IV.2] for the main properties of families of rational curves; we will keep the same notation as [Kol96]. In particular, we recall that $\text{RatCurves}^n(X)$ is the normalization of the open subset of $\text{Chow}(X)$ parametrizing integral rational curves.

By a family of rational curves in X we mean an irreducible component V of $\text{RatCurves}^n(X)$. We say that V is a dominating family if its universal family dominates X. We say that V is locally unsplit if, for a general point $x \in X$, the subfamily of V parametrizing curves through x is proper.

Let V be a locally unsplit dominating family of rational curves on X. The class in $N_1(X)$ of a curve C from V does not depend on the choice of C, and will be denoted by $[V]$.

We denote by $[C] \in V$ a point corresponding to the integral rational curve $C \subset X$.

For $x \in X$, we denote by V_x the normalization of the closed subset of V parametrizing curves through the point x, and by $\text{Locus}(V_x) \subseteq X$ the union of all curves of the family V_x.

We denote by $\text{Hom}(\mathbb{P}^1, X, 0 \mapsto x)$ the scheme parametrizing morphisms from \mathbb{P}^1 to X sending $0 \in \mathbb{P}^1$ to x.

We now recall some well-known properties.

Suppose that $x \in X$ is general. Then every curve in V_x is free. This implies that V_x is smooth, of dimension $-K_X \cdot [V] - 2$, but possibly not connected. Moreover there is a smooth closed subset $\tilde{V}_x \subset \text{Hom}(\mathbb{P}^1, X, 0 \mapsto x)$, which is a union of irreducible components, containing all birational maps $f : \mathbb{P}^1 \to X$ such that $f(0) = x$ and $f(\mathbb{P}^1)$ is a curve of the family V_x. There is an induced smooth morphism $\tilde{V}_x \to V_x$, sending $[f]$ to $[f(\mathbb{P}^1)]$.

Still for a general point x, if a curve from V_x is smooth at x, then it is parametrized by a unique point of V_x.

We say that an integral rational curve $C \subset X$ is standard if the pull-back of $T_X|_C$ under the normalization $\mathbb{P}^1 \to C$ is $\mathcal{O}_{\mathbb{P}^1}(2) \oplus \mathcal{O}_{\mathbb{P}^1}(1)^p \oplus \mathcal{O}_{\mathbb{P}^1}^{-1-p}$ for some $p \in \{0, \ldots, n-1\}$.
3. Fano manifolds containing a prime divisor with Picard number one

In this section we study Fano manifolds X having a prime divisor D with $
ho_D = 1$, or more generally $\dim N_1(D, X) = 1$. The main technique here is the study of extremal rays and contractions of X.

The first step for the proofs of Theorems 1.4 and 3.5 is the following Lemma. It is a standard application of Mori theory, in particular the proof can be adapted from [Tsu06, proof of Proposition 5], and follows the same strategy used in [BCW02]. We give a short proof for the reader’s convenience.

Lemma 3.1. Let X be a Fano manifold of dimension $n \geq 3$ and Picard number $\rho_X > 1$, and let $D \subset X$ be a prime divisor with $\dim N_1(D, X) = 1$. Then one of the following holds:

(i) $\rho_X = 2$ and there exists a blow-up $\sigma: X \to Y$ with center $A_Y \subset Y$ smooth of codimension 2, Y is smooth and Fano, and $D \cdot R > 0$, where σ is the contraction of the extremal ray R of $\text{NE}(X)$;

(ii) $\rho_X = 2$ and there exists a conic bundle $\sigma: X \to Y$, finite on D, such that Y is smooth and Fano;

(iii) $\rho_X = 3$ and there is a conic bundle $\varphi: X \to Z$, finite on D, such that Z is smooth, Fano, and $\rho_Z = 1$. The conic bundle φ is the contraction of a face $R + \hat{R}$ of $\text{NE}(X)$, where R and \hat{R} both correspond to a smooth blow-up of a codimension 2 subvariety. Moreover $D \cdot R > 0$, and we have a diagram:

$\xymatrix{ \hat{Y} \ar@{^{(}->}[r]^\sigma & Y \ar@{^{(}->}[r] & Z }$

where σ is the contraction of R, $\hat{\sigma}$ is the contraction of \hat{R}, Y and \hat{Y} are smooth, Y is Fano, the center $A_Y \subset Y$ of the blow-up σ is contained in $D_Y := \sigma(D)$, and π and $\hat{\pi}$ are conic bundles.

Proof. Let R be an extremal ray of $\text{NE}(X)$ with $D \cdot R > 0$, and $\sigma: X \to Y$ the associated contraction.

If $R \subset N_1(D, X)$, then every curve contained in D has class in R, hence $\sigma(D)$ is a point and $D \subseteq \text{Locus}(R)$. We conclude that $\text{Locus}(R) = X$, because $D \cdot R > 0$. On the other hand, since $\rho_X > 1$, we can find a non-trivial fiber F of σ disjoint from D, which yields $D \cdot R = 0$, a contradiction. Therefore $R \not\subset N_1(D, X)$.

This implies that σ is finite on D, therefore every non-trivial fiber of σ has dimension one. Thus Y is smooth and there are two possibilities: either σ is a conic bundle, or it is the blow-up of $A_Y \subset Y$ with A_Y smooth of codimension 2 (see [Wi91, Theorem 1.2]).

If σ is a conic bundle, then $\rho_Y = 1$ because $\sigma(D) = Y$, so we are in case (ii). If σ is a blow-up and $\rho_Y = 1$, then we are in case (i).
Assume that σ is a blow-up and $\rho_Y \geq 2$, and set $D_Y := \sigma(D)$. Then D_Y is a prime divisor in Y and $N_1(D_Y, Y) = \sigma_*(N_1(D, X))$, hence $\dim N_1(D_Y, Y) = 1$. Moreover $A_Y \subset D_Y$.

Let $E \subset X$ be the exceptional divisor. We have $-K_X + E = \sigma^*(-K_Y)$. If $C \subset A_Y$ is an irreducible curve, and $C' \subset D_Y$ is an irreducible curve not contained in A_Y, then there exists $\lambda \in \mathbb{Q}_{>0}$ such that $C = \lambda C'$, so that $-K_Y \cdot C = \lambda(-K_Y \cdot C') = \lambda(-K_X \cdot \tilde{C}) + \lambda(E \cdot \tilde{C}) > 0$, where \tilde{C} is the transform of C' in X. This implies that Y is Fano (see [W91]).

We repeat the same argument in Y and take an extremal ray $R_2 \subset \text{NE}(Y)$ with $D_Y \cdot R_2 > 0$.

Similarly as before we see that $R_2 \not\subset N_1(D_Y, Y)$, so that again, if $\pi: Y \to Z$ is the contraction of R_2, π is finite on D_Y and has fibers of dimension at most one. Hence as before π is either a conic bundle or the smooth blow-up of a subvariety of codimension 2 in Z.

If π is a conic bundle, then $\rho_Z = 1$ because $\pi(D_Y) = Z$, so $\rho_X = 3$. Set $\varphi := \pi \circ \sigma: X \to Z$; then φ has a second factorization $X \xrightarrow{\tilde{\sigma}} \tilde{Y} \xrightarrow{\tilde{\pi}} Z$. Since every fiber of φ has dimension one, both $\tilde{\sigma}$ and $\tilde{\pi}$ have fibers of dimension ≤ 1. Applying [AW97] Theorem 4.1 we conclude that φ and $\tilde{\pi}$ are conic bundles, \tilde{Y} is smooth, and $\tilde{\sigma}$ the blow-up of a smooth subvariety of codimension 2, so we are in case (iii).

Finally, π cannot be a blow-up. Indeed if so, $\text{Exc}(\pi)$ is a prime divisor which intersects D_Y, and since $\dim N_1(D_Y, Y) = 1$, $\text{Exc}(\pi)$ has strictly positive intersection with every curve contained in D_Y. In particular $\text{Exc}(\pi)$ must intersect A_Y, as $\dim A_Y = n - 2 \geq 1$. If F is a non-trivial fiber of π with $F \cap A_Y \neq \emptyset$, and $\tilde{F} \subset X$ is its transform, one has $-K_X \cdot \tilde{F} < -K_Y \cdot F = 1$, a contradiction.

Remark 3.2 and Proposition 3.3 below describe the possible extremal contractions of X in the case $\rho_X = 2$.

Remark 3.2. Let X be a Fano manifold, and $D \subset X$ a prime divisor with $\dim N_1(D, X) = 1$. If D is not nef, then it is the exceptional locus of a divisorial contraction sending D to a point.

Proof. Let R be an extremal ray of $\text{NE}(X)$ such that $D \cdot R < 0$, and σ the associated contraction. Notice that $\text{Exc}(\sigma) \subset D$ since $D \cdot R < 0$. On the other hand, every curve contained in D has class in R since $\dim N_1(D, X) = 1$. This implies that $D = \text{Exc}(\sigma)$, and that $\sigma(D)$ is a point.

Proposition 3.3. Let X be a Fano manifold of dimension $n \geq 3$ and Picard number $\rho_X = 2$, and let $D \subset X$ be a nef prime divisor with $\dim N_1(D, X) = 1$. Then $S := D^\perp \cap \text{NE}(X)$ is an extremal ray of X, and one of the following holds:

(i) the contraction of S is $X \to \mathbb{P}^1$, and D is a fiber;

(ii) the contraction of S is divisorial, sends its exceptional divisor G to a point, and $G \cap D = \emptyset$;

(iii) the contraction of S is small, it has a flip $X \dashrightarrow X'$, X' is smooth, and there is a \mathbb{P}^1-bundle $\psi: X' \to Y'$. Moreover ψ is finite on the transform of D in X'.
Furthermore, if there exists a smooth, irreducible subvariety $A \subset D$, of codimension 2, such that the blow-up of X along A is Fano, then (iii) cannot happen.

Proof.

3.3.1. We first notice that D is not ample, because $\mathcal{N}_1(D,X) \subset \mathcal{N}_1(X)$. Indeed the push-forward of one-cycles $\mathcal{N}_1(D) \rightarrow \mathcal{N}_1(X)$ is not surjective, so that the restriction map $\mathcal{N}^1(X) \rightarrow \mathcal{N}^1(D)$ is not injective. We have $\mathcal{N}^1(X) \cong H^2(X,\mathbb{R})$ (because X is Fano) and $\mathcal{N}^1(D) \hookrightarrow H^2(D,\mathbb{R})$, hence the restriction map $H^2(X,\mathbb{R}) \rightarrow H^2(D,\mathbb{R})$ is not injective as well. By Lefschetz Theorem on hyperplane sections, D cannot be ample (recall that $n \geq 3$).

Since D is nef and non-ample, and $\rho_X = 2$, we conclude that $D^\perp \cap \text{NE}(X)$ is an extremal ray S of $\text{NE}(X)$. Set $G := \text{Locus}(S) \subseteq X$.

3.3.2. If $S \subset \mathcal{N}_1(D,X)$, then the contraction of S sends D to a point, and hence $D \subseteq G$. On the other hand $D \cdot S = 0$, thus D is the pull-back of a Cartier divisor. Therefore the target of the contraction of S is \mathbb{P}^1, D is a fiber, and we are in case (i).

3.3.3. We assume that $S \not\subset \mathcal{N}_1(D,X)$. If $G \cap D \neq \emptyset$, then D must intersect some irreducible curve C with class in S, and this yields $C \subseteq D$, because $D \cdot C = 0$. This contradicts $S \not\subset \mathcal{N}_1(D,X)$, therefore $G \cap D = \emptyset$. In particular, the contraction of S is birational. Finally $\mathcal{N}_1(G,X) \subseteq D^\perp$ has dimension one; this implies that the contraction of S maps G to points. If S is a divisorial extremal ray, then we are in case (ii).

3.3.4. Suppose now that the contraction of S is small; by [BCHM10, Corollary 1.4.1] the flip $X \dashrightarrow X'$ of S exists. Let $D' \subset X'$ be the transform of D, S' the small extremal ray of X' associated with the flip, and $G' := \text{Locus}(S')$.

Notice that $G' \cap D' = \emptyset$, as $G \cap D = \emptyset$.

Notice also that X' has normal, \mathbb{Q}-factorial, and terminal singularities, and $\text{Sing}(X') \subseteq G'$. We have $\rho_{X'} = \rho_X = 2$ and $K_{X'} \cdot S' > 0$; on the other hand, a curve disjoint from G' has positive anticanonical degree. In particular, by the Cone Theorem, X' has a second extremal ray T with $-K_{X'} \cdot T > 0$, and

$$\text{NE}(X') = \mathbb{R}_{\geq 0}S' + \mathbb{R}_{> 0}T.$$

Since the flip $X \dashrightarrow X'$ is an isomorphism in a neighborhood of D, the linear subspace $\mathcal{N}_1(D',X') \cong \mathcal{N}_1(D,X)$ stays one-dimensional. Moreover $D' \cdot S' = 0$, hence we must have $D' \cdot T > 0$.

Let $\psi : X' \rightarrow Y'$ be the contraction of T. Similarly as before, we see that $T \not\subset \mathcal{N}_1(D',X')$. Since the contraction of S sends G to points, the contraction of S' sends G' to points. This implies that every curve in G' has class in the extremal ray S'.

We deduce that ψ is finite on both D' and G'.

In particular, since $D' \cdot T > 0$, every non-trivial fiber of ψ has dimension one.

3.3.5. Let C be an irreducible component of a non-trivial fiber of ψ. If $C \cap G' \neq \emptyset$, then:

$$-K_{X'} \cdot C > 1.$$
Indeed if $\bar{C} \subset X$ is the transform of C, we have $-K_{X'} \cdot C > -K_X \cdot \bar{C} \geq 1$. This follows from [KM98, Lemma 3.38], see [Cas09, Lemma 3.8] for an explicit proof.

3.3.6. We show that ψ is of fiber type. By contradiction, assume that ψ is birational.

Suppose that $\text{Exc}(\psi) \cap G' \neq \emptyset$, and let F_0 be an irreducible component of a fiber of ψ which intersects G'. Notice that $F_0 \not\subseteq G'$ (since ψ is finite on G'), in particular $F_0 \not\subseteq \text{Sing}(X')$. We get $-K_{X'} \cdot F_0 \leq 1$ by [Ish91, Lemma 1.1], and $-K_{X'} \cdot F_0 > 1$ by [3.3.5] a contradiction.

Therefore $\text{Exc}(\psi) \cap G' = \emptyset$, so that $\text{Exc}(\psi)$ is contained in the smooth locus of X'. By [Wiś91, Theorem 1.2], $\text{Exc}(\psi)$ is a divisor. We have $\text{Exc}(\psi) \cdot S' = 0$ and $\text{Exc}(\psi) \cdot T < 0$, hence $-\text{Exc}(\psi)$ is nef, a contradiction.

Thus ψ is of fiber type.

3.3.7. We show that $\psi: X' \to Y'$ is a \mathbb{P}^1-bundle with X' and Y' smooth, so that we are in case (iii).

Since $\text{Sing}(X')$ cannot dominate Y', the general fiber of ψ is a smooth rational curve of anticanonical degree 2.

Suppose that there is a fiber F of ψ such that the corresponding one-cycle is not integral and $G' \cap F \neq \emptyset$. Then there is an irreducible component C of F, such that $-K_{X'} \cdot C \leq 1$. If $C \cap G' = \emptyset$, then $-K_{X'}$ is Cartier in a neighbourhood of C, and we must have $-K_{X'} \cdot C = 1$ and $-K_{X'} \cdot (F - C) = 1$ (where we consider F as a one-cycle). Thus, up to replacing C with another irreducible component of F, we may assume that $C \cap G' \neq \emptyset$, and $-K_{X'} \cdot C \leq 1$; but this contradicts [3.3.5].

By [Ko96, Theorem II.2.8], ψ is smooth in a neighbourhood of $\psi^{-1}(\psi(G'))$. Thus $\text{Sing}(X') = \psi^{-1}(\text{Sing}(Y') \cap \psi(G'))$, because $\text{Sing}(X') \subseteq G'$. This implies that $\text{Sing}(X') = \emptyset$, since ψ is finite on G'. In particular, Y' is smooth (see [AW97, Theorem 4.1(2)] and references therein), ψ is a conic bundle, and either the discriminant locus Δ of ψ has pure codimension one or $\Delta = \emptyset$. If $\Delta \neq \emptyset$, then $\psi(G') \cap \Delta \neq \emptyset$ (ψ is finite on G' and $\dim G' \geq 1$), a contradiction. This proves that $\psi: X' \to Y'$ is a \mathbb{P}^1-bundle with X' and Y' smooth.

3.3.8. Suppose now that we are in case (iii), and that there is a smooth irreducible subvariety $A \subset D$ of codimension 2, such that the blow-up of X along A is Fano. We show that this gives a contradiction.

Let $A' \subset D'$ be the transform of A, and let us consider the divisor $\psi^*(\psi(A'))$ in X'. Since $\psi^*(\psi(A')) \cdot T = 0$, we must have $\psi^*(\psi(A')) \cdot S' > 0$. Therefore we find a fiber F' of ψ which intersects both A' and G'.

Let $F \subset X$ be the transform of F'. As in [3.3.5], we see that $-K_X \cdot F < -K_{X'} \cdot F' = 2$, so that $-K_X \cdot F = 1$. On the other hand $F \cap A \neq \emptyset$ and $F \not\subseteq A$, hence the transform of F in the blow-up of X along A should have non-positive anticanonical degree, a contradiction.

We will show that any Fano manifold X with $\rho_X = 3$ having a prime divisor D with $\dim N_1(D, X) = 1$ is isomorphic to one of the varieties described below.

We first recall the following definition for the reader’s convenience. Let L be an ample line bundle on a normal projective variety Z. Consider the
\(\mathbb{P}^1 \)-bundle \(Y = \mathbb{P}_Z(\mathcal{O}_Z \oplus \mathcal{L}) \), with natural projection \(\pi : Y \to Z \). The tautological line bundle \(\mathcal{O}_Y(1) \) is semiample on \(Y \). For \(m \gg 0 \), the linear system \(|\mathcal{O}_Y(m)| \) induces a birational morphism \(Y \to Y_0 \) onto a normal projective variety, contracting the divisor \(E = \mathbb{P}_Z(\mathcal{O}_Z) \cong Z \subset Y \) corresponding to the projection \(\mathcal{O}_Z \oplus \mathcal{L} \to \mathcal{O}_Z \) to a point. Following [BS95], we call \(Y_0 \) the normal generalized cone over the base \((Z, \mathcal{L}) \).

Example 3.4. Fix integers \(n, a, \) and \(d \), such that \(n \geq 3, a \geq 0, \) and \(d \geq 1 \).

Let \(Z \) be a Fano manifold of dimension \(n-1 \), with \(\rho_Z = 1 \). Let \(\mathcal{O}_Z(1) \) be the ample generator of \(\text{Pic}(Z) \). If \(m \) is an integer, then we write \(\mathcal{O}_Z(m) \) for \(\mathcal{O}_Z(1) \otimes m \). Let moreover \(A \in |\mathcal{O}_Z(d)| \) be a smooth hypersurface.

Set \(Y := \mathbb{P}_Z(\mathcal{O}_Z \oplus \mathcal{O}_Z(a)) \), and let \(\pi : Y \to Z \) be the \(\mathbb{P}^1 \)-bundle.

If \(a > 0 \), then there is a birational contraction \(Y \to Y_0 \) sending a divisor \(G_Y \) to a point, where \(Y_0 \) is the normal generalized cone over \((Z, \mathcal{O}_Z(a)) \). We have \(G_Y \cong Z, G_Y \) is a section of \(\pi \), and \(N_{G_Y/Y} \cong \mathcal{O}_Z(-a) \).

If \(a = 0 \), then \(Y \cong Z \times \mathbb{P}^1 \). Let \(G_Y \) be a fiber of \(Y \to \mathbb{P}^1 \). We have \(G_Y \cong Z, G_Y \) is a section of \(\pi \), and \(N_{G_Y/Y} \cong \mathcal{O}_Z \).

Let now \(\hat{G}_Y \cong Z \subset Y \) be a section of \(\pi \) with normal bundle \(N_{\hat{G}_Y/Y} \cong \mathcal{O}_Z(a) \). Notice that \(G_Y \cap \hat{G}_Y = \emptyset \) if \(a > 0 \). If \(a = 0 \), we choose \(\hat{G}_Y \) such that \(G_Y \cap \hat{G}_Y = \emptyset \). Set \(A_Y := \hat{G}_Y \cap \pi^{-1}(A) \). Finally let \(\sigma : X \to Y \) be the blow-up of \(A_Y \) (see figure 3.4.1).

Then \(X \) is a smooth projective variety of dimension \(n \), with \(\rho_X = 3 \).

Let \(G, \hat{G} \subset X \) be the tranforms of \(G_Y, \hat{G}_Y \subset Y \) respectively. Then \(G \cong \hat{G} \cong Z, N_{G/X} \cong \mathcal{O}_Z(-a) \), and \(N_{\hat{G}/X} \cong \mathcal{O}_Z(-(d-a)) \).

The composition \(\varphi := \pi \circ \sigma : X \to Z \) is a conic bundle, and has a second factorization:
Table 3.4.3. Intersection table in X.

F	F	C_G	$C_{\hat{G}}$	$C_G + a\delta F$
E	-1	1	0	$d\delta$
E	1	-1	$d\delta$	0
G	0	1	$-a\delta$	0
$-K_X$	1	1	$\delta (i_Z - a) \delta$	$(i_Z - (d - a)) \delta$

where $\hat{Y} = \mathbb{P}_Z(\mathcal{O}_Z \oplus \mathcal{O}_Z(d - a))$. The images \hat{G} and $\hat{\sigma}(\hat{G})$ are disjoint sections of the \mathbb{P}^1-bundle $\hat{\pi}: \hat{Y} \to Z$, with normal bundles $\mathcal{N}_{\hat{\sigma}(\hat{G})/\hat{Y}} = \mathcal{O}_Z(d - a)$ and $\mathcal{N}_{\hat{G}/\hat{Y}} = \mathcal{O}_Z(a - d)$. Moreover $\hat{\sigma}$ is the blow-up of \hat{Y} along the intersection $\hat{\sigma}(\hat{G}) \cap \hat{\pi}^{-1}(A)$.

Set $E := \text{Exc}(\sigma)$ and $\hat{E} := \text{Exc}(\hat{\sigma})$, and let $F \subset E$ and $\hat{F} \subset \hat{E}$ be fibers of the \mathbb{P}^1-bundles. Let moreover $C_Z \subset Z$ be an irreducible curve having minimal intersection with $\mathcal{O}_Z(1)$, and set $\delta := \mathcal{O}_Z(1) \cdot C_Z$. Finally let $C_G \subset G$ and $C_{\hat{G}} \subset \hat{G}$ be curves corresponding to C_Z. We have the following relations of numerical equivalence:

\begin{equation}
C_G + a\delta \hat{F} \equiv C_{\hat{G}} + (d - a)\delta F, \quad dG + a\hat{E} \equiv d\hat{G} + (d - a)E,
\end{equation}

and the relevant intersections are shown in table 3.4.3 where i_Z is the index of Z, i.e. the integer defined by $\mathcal{O}_Z(-K_Z) \cong \mathcal{O}_Z(i_Z)$.

Lemma 3.4.4. The cone $\text{NE}(X)$ is closed and polyhedral.

If $a = 0$, then $\text{NE}(X)$ has three extremal rays, generated by the classes of F, \hat{F}, and $C_{\hat{G}}$, with loci E, \hat{E}, and \hat{G} respectively.

If $a \geq d$, then $\text{NE}(X)$ has three extremal rays, generated by the classes of F, \hat{F}, and $C_{\hat{G}}$, with loci E, \hat{E}, and \hat{G} respectively.

If instead $0 < a < d$, then $\text{NE}(X)$ is non-simplicial and has 4 extremal rays, generated by the classes of F, \hat{F}, C_G, and $C_{\hat{G}}$, with loci E, \hat{E}, G and \hat{G} respectively.

Proof. Set $R := \mathbb{R}_{\geq 0}[F]$, $\hat{R} := \mathbb{R}_{\geq 0}[\hat{F}]$, $S := \mathbb{R}_{\geq 0}[C_G]$, and $\hat{S} := \mathbb{R}_{\geq 0}[C_{\hat{G}}]$. We already know that R and \hat{R} are extremal rays of $\text{NE}(X)$, and that $R + \hat{R}$ is a face.

Since $\sigma : = \mathcal{O}_Z \oplus \mathcal{O}_Z(a)$ is nef and non-ample, $\mathcal{O}_Y(\hat{G}_Y) = \mathcal{O}_{\mathbb{P}^2(\sigma)}(1)$ is nef and non-ample in Y, and the same holds for $\sigma^*(\hat{F}_Y) = \hat{G} + E$ in X. It is not difficult to see that $(\hat{G} + E)_{+} \cap \text{NE}(X) = R + S$. In particular, this shows that S is an extremal ray of $\text{NE}(X)$, so that there exists a nef divisor H such that $H_{+} \cap \text{NE}(X) = S$.

If $0 < a < d$, then similarly as before $\hat{\sigma}(G)$ is nef and non-ample in \hat{Y}, so that $\hat{\sigma}^*(\hat{\sigma}(G)) = G + \hat{E}$ is nef in X. The plane $(G + \hat{E})_{+}$ intersects $\text{NE}(X)$ along the face $\hat{R} + \hat{S}$; in particular, \hat{S} is an extremal ray.

Finally, the divisor

$$D := (\hat{G} \cdot C_{\hat{G}}) H + (H \cdot C_{\hat{G}}) \hat{G}$$
is nef, it is not numerically trivial, and \(D \cdot S = D \cdot \hat{S} = 0 \). Therefore \(D^\perp \cap \overline{\text{NE}}(X) = S + \hat{S} \), and we get the statement in the case \(0 < a < d \).

If instead \(a \geq d \), then \(\hat{\sigma}(\hat{G}) \) is nef, non-ample in \(\hat{Y} \), so that \(\hat{G} = \hat{\sigma}^*(\hat{\sigma}(\hat{G})) \) is nef, and does not intersect \(G \). We get \(\hat{G}^\perp \cap \overline{\text{NE}}(X) = \hat{R} + S \), which gives the statement in the case \(a \geq d \).

The case \(a = 0 \) follows from the case \(a = d \), see Remark 3.4.6.

A straightforward consequence of Lemma 3.4.4 is the following.

Remark 3.4.5. \(X \) is Fano if and only if \(a \leq i_Z - 1 \) and \(d - a \leq i_Z - 1 \).

Indeed, since \(\overline{\text{NE}}(X) \) is closed and polyhedral, \(X \) is Fano if and only if every extremal ray of \(\overline{\text{NE}}(X) \) has positive intersection with the anticanonical divisor (see table 3.4.3).

Remark 3.4.6. Suppose that \(a \leq d \). Then by choosing \(a' = d - a \), we get a variety \(X' \) isomorphic to \(X \), with the roles of \(Y \) and \(\hat{Y} \) interchanged.

Example 1.6 is a special case of this example, with \(Z = \mathbb{P}^{n-1} \), and the additional condition \(a \leq d \).

We are now in position to prove the main result of this section.

Theorem 3.5. Let \(X \) be a Fano manifold of dimension \(n \geq 3 \) and Picard number \(\rho_X = 3 \), and let \(D \subset X \) be a prime divisor with \(\dim \mathcal{N}_1(D, X) = 1 \). Then \(X \) is isomorphic to one of the varieties described in Example 3.4.

Remark that if \(X \) is as in Example 3.4, then \(G \) is a prime divisor with \(\rho_G = 1 \), and hence \(\dim \mathcal{N}_1(G, X) = 1 \).

Proof of Theorem 3.5.

3.5.1. As \(\rho_X = 3 \), we are in case (iii) of Lemma 3.1 and there is a conic bundle \(\varphi: X \to Z \). We keep the same notation as in Lemma 3.1 in particular we recall the diagram:

```
\begin{center}
\begin{tikzpicture}
  \node (X) at (0,0) {$X$};
  \node (Y) at (2,-2) {$Y$};
  \node (Z) at (0,-2) {$Z$};
  \node (hatY) at (2,0) {$\hat{Y}$};

  \draw[->] (X) to node[above] {$\hat{\sigma}$} (hatY);
  \draw[->] (X) to node[below] {$\sigma$} (Y);
  \draw[->] (Y) to node[above] {$\varphi$} (Z);
  \draw[->] (X) to node[below] {$\pi$} (Z);
  \draw[->] (Y) to node[below] {$\hat{\pi}$} (Z);

\end{tikzpicture}
\end{center}
```

We set \(E := \text{Locus}(R) \) and \(\hat{E} := \text{Locus}(\hat{R}) \). Notice that we may have \(D \cdot \hat{R} > 0 \) (if \(D \cap \hat{E} \neq \emptyset \)) or \(D \cdot \hat{R} = 0 \) (if \(D \cap \hat{E} = \emptyset \)). In the first case \(\sigma: X \to Y \) and \(\hat{\sigma}: X \to \hat{Y} \) have the same properties with respect to \(X \) and \(D \), so that their role is interchangeable, while in the second case the behaviour of the two blow-ups with respect to \(D \) is different.

3.5.2. We show that every prime divisor \(B \subset X \) must intersect \(E \cup \hat{E} \).

We first notice that \(\sigma(B) \cap \sigma(\hat{E}) \neq \emptyset \) in \(Y \). Indeed, if \(\pi(\sigma(B)) = Z \), then the claim is obvious. Otherwise, \(\sigma(B) = \pi^{-1}(\varphi(B)) \), and the claim follows from \(\rho_Z = 1 \). Thus, if \(A_Y \cap \sigma(B) \neq \emptyset \), then \(B \) intersects \(E \). Otherwise, \(B \) intersects \(\hat{E} \).
\[\hat{\sigma}(G) \equiv Z \pmod{a} \]

for some \(r \in \mathbb{Z} \), and since \(G_Y \cap \hat{G}_Y = \emptyset \), restricting to \(G_Y \) we get \(r = a \), and restricting to \(\hat{G}_Y \) we get \(\mathcal{N}_{\hat{G}_Y/Y} \equiv \mathcal{O}_Z(a) \). Thus \(X \) is one of the varieties described in Example 3.4 for \(a > 0 \).

3.5.8. Let \(G \subset X \) be the transform of \(G_Y \). We have \(G \cap (D \cup E) = \emptyset \) since \(G_Y \cap D_Y = \emptyset \), and hence \(G \cap \hat{E} \neq \emptyset \) by 3.5.2.

Let us consider now the image \(\hat{\sigma}(G) \subset \hat{Y} \). Then \(\hat{\sigma}(G) \) is a section of \(\hat{\pi} \), so that \(\hat{\sigma}(G) \equiv Z \) and \(\rho_{\hat{\sigma}(G)} = 1 \). Moreover \(\hat{\sigma}(G) \) contains the center \(A_Y \subset \hat{Y} \).
of the blow-up \(\hat{\sigma} \). This also implies that \(\hat{Y} \) is Fano, as in the proof of Lemma 3.1.

3.5.9. Suppose now that there exists a section \(H \subset \hat{Y} \) of \(\hat{\pi} : \hat{Y} \to Z \), disjoint from \(\hat{\sigma}(G) \). Then its transform in \(Y \) yields a section of \(\sigma : Y \to Z \), disjoint from \(G_Y \), and containing \(A_Y \), and this implies the statement by 3.5.7.

In order to construct such \(H \), we consider the divisor \(D_{\hat{Y}} := \hat{\sigma}(D) \subset \hat{Y} \).

Notice that \(\dim N_1(D_{\hat{Y}}, \hat{Y}) = 1 \), and that the two divisors \(D_{\hat{Y}} \) and \(\hat{\sigma}(G) \) are distinct, because \(G \cap D = \emptyset \) in \(X \).

3.5.10. Suppose first that \(D_{\hat{Y}} \) is not nef. By Remark 3.2, \(D_{\hat{Y}} \) is the exceptional locus of a divisorial contraction sending \(D_{\hat{Y}} \) to a point. Then, by Lemma 3.6, \(D_{\hat{Y}} \) is a section of \(\hat{\pi} \).

Moreover we have \(D_{\hat{Y}} : C \geq 0 \) for every curve \(C \subset \hat{\sigma}(G) \), because \(D_{\hat{Y}} \neq \hat{\sigma}(G) \) and \(\rho_{\hat{\sigma}(G)} = 1 \). Since \(D_{\hat{Y}} \) is not nef, the divisors \(D_{\hat{Y}} \) and \(\hat{\sigma}(G) \) must be disjoint, and we can set \(H := D_{\hat{Y}} \).

3.5.11. We assume now that \(D_{\hat{Y}} \) is nef. Then Proposition 3.3 applies, and \(D_{\hat{Y}} \cap \text{NE}(\hat{Y}) \) is an extremal ray \(S_{\hat{Y}} \) of \(\text{NE}(\hat{Y}) \).

We claim that case (iii) of Proposition 3.3 cannot happen, namely that \(S_{\hat{Y}} \) cannot be small. Indeed this follows from Proposition 3.3 if \(A_{\hat{Y}} \subset D_{\hat{Y}} \), namely if \(D \cap \hat{E} = \emptyset \). If instead \(D \cap \hat{E} = \emptyset \), then \(\hat{\sigma}(G) \cap D_{\hat{Y}} = \emptyset \), hence the contraction of \(S_{\hat{Y}} \) sends \(\hat{\sigma}(G) \) to a point, and it cannot be small.

Suppose that we are in case (i) of Proposition 3.3. As in 3.5.6 we see that \(\hat{Y} \cong Z \times \mathbb{P}^1 \), and \(D_{\hat{Y}} \) and \(\hat{\sigma}(G) \) are fibers of the projection \(\hat{Y} \to \mathbb{P}^1 \). Thus we can define \(H \) to be a general fiber of the projection \(\hat{Y} \to \mathbb{P}^1 \).

Finally, suppose that we are in case (ii) of Proposition 3.3, so that the contraction of \(S_{\hat{Y}} \) is divisorial. By Lemma 3.6, \(\text{Locus}(S_{\hat{Y}}) \) is a section of \(\hat{\pi} \).

So if \(\text{Locus}(S_{\hat{Y}}) \cap \hat{\sigma}(G) = \emptyset \), we set \(H := \text{Locus}(S_{\hat{Y}}) \).

If instead \(\text{Locus}(S_{\hat{Y}}) \cap \hat{\sigma}(G) \neq \emptyset \), then we get \(\text{Locus}(S_{\hat{Y}}) = \hat{\sigma}(G) \), because \(\rho_{\hat{\sigma}(G)} = 1 \). Therefore by Lemma 3.6 there is a section \(\hat{H} \) of \(\hat{\pi} \) disjoint from \(\hat{\sigma}(G) \).

The following result is certainly well-known to experts. We include a proof for lack of references.

Lemma 3.6. Let \(Y \) and \(Z \) be smooth connected projective varieties, and let \(\pi : Y \to Z \) be a \(\mathbb{P}^1 \)-bundle. Let \(\psi : Y \to Y_0 \) be a birational morphism onto a projective variety sending an effective and reduced divisor \(G \) to points. Then \(Y \cong \mathbb{P}_Z(O_Z \oplus \mathcal{M}) \) for some line bundle \(\mathcal{M} \) on \(Z \) so that \(G \) identifies with the section of \(\pi \) corresponding to \(\mathcal{M} \). Moreover, \(\mathcal{M}^{\otimes -1} \) is ample.

Proof. By replacing \(\psi \) with its Stein factorization, we may assume that \(Y_0 \) is normal and that \(\psi \) has connected fibers.

We show that \(G \) is a section of \(Y \to Z \). Notice that \(\pi \) is finite on \(G \).

Let \(B \subset Z \) be a general smooth connected curve, and set \(S := \pi^{-1}(B) \).

Then \(G \cap S \) is a reduced curve; let \(C \) be an irreducible component of \(G \cap S \).

Moreover let \(C_0 \subset S \) be a minimal section, and \(f \subset S \) a fiber of \(\pi \). Then \(C \neq f \).

Set \(e = -C_0^2 \).

Suppose that \(C \neq C_0 \). Then \(C \equiv ac_0 + bf \) where \(a \in \mathbb{Z}_{\geq 0} \), \(b \geq ae \) if \(e \geq 0 \), and \(2b \geq ae \) if \(e < 0 \) (see [Har77 Propositions V.2.20 and V.2.21]).
Thus:

\[C^2 = (aC_0 + bf)^2 = -a^2 + 2ab = a(-ae + 2b) \geq 0. \]

On the other hand, the restriction of \(\psi \) to \(S \) induces a birational morphism \(\psi|_S: S \to \psi(S) \) sending \(C \) to a point, and hence \(C^2 < 0 \), yielding a contradiction. Thus \(C = C_0 \), hence \(G \cap S = C_0 \). This completes the proof of the first assertion.

Set \(\mathcal{G} := \pi_* \mathcal{O}_Y(G) \). Then \(\mathcal{G} \) is a locally free sheaf of rank 2 that fits into a short exact sequence

\[0 \to \mathcal{O}_Z \to \mathcal{G} \to \mathcal{M} \to 0 \]

corresponding to \(\alpha \in H^1(Z, \mathcal{M}^{\otimes -1}) \), \(Y \) identifies with \(\mathbb{P}_Z(\mathcal{G}) \), \(\mathcal{O}_Y(G) \) with the tautological line bundle \(\mathcal{O}_{\mathbb{P}_Z(\mathcal{G})}(1) \), and \(G \) corresponds to \(\mathcal{G} \to \mathcal{M} \). By [Dru04, Lemme 3.2 and Lemme 3.3] we have

\[\text{Pic}(2G) \cong \text{Pic}(G) \oplus H^1(Z, \mathcal{M}^{\otimes -1}), \]

and \([\mathcal{O}_{\mathbb{P}_Z(\mathcal{G})}(1) \otimes \pi^* \mathcal{M}^{\otimes -1}] \) maps to \((0, \alpha)\) under the above isomorphism.

Let \(\mathcal{H} \) be an ample line bundle on \(Y_0 \). Then there exists \(m \in \mathbb{Z}_{>0} \) such that \(\psi^* \mathcal{H} \cong \mathcal{O}_{\mathbb{P}_Z(\mathcal{G})}(m) \otimes \pi^* \mathcal{M}^{\otimes -m} \). This implies that \([\mathcal{O}_{\mathbb{P}_Z(\mathcal{G})}(m) \otimes \pi^* \mathcal{M}^{\otimes -m}] = 0 \in \text{Pic}(2G)\). Hence we must have \(\alpha = 0 \), and \(\mathcal{G} \cong \mathcal{O}_Z \oplus \mathcal{M} \). Let \(G' \) be the section of \(Y \to Z \) corresponding to \(\mathcal{G} \cong \mathcal{O}_Z \oplus \mathcal{M} \to \mathcal{O}_Z \). Then \(G \cap G' = \emptyset \), therefore \(\psi^* \mathcal{H}|_{G'} \) is ample. But \(\psi^* \mathcal{H}|_{G'} \cong \mathcal{M}^{\otimes -m} \) under the isomorphism \(G' \cong Z \). This completes the proof of the Lemma.

\[\square \]

4. Fano manifolds with a locally unsplit family of rational curves of anticanonical degree \(n \)

In this section, we prove Theorem [1.4] and Proposition [1.5]. We start with the following observations.

Remark 4.1. Let \(V \) be a locally unsplit dominating family of rational curves on a smooth projective variety \(X \), and suppose that the curves of the family have anticanonical degree \(n \). Let \(x \) be a general point, and let \(\text{Locus}(V_x) \subseteq X \) be the union of all curves parametrized by \(V_x \). Then by [Kol96, Corollaries IV.2.6.3 and II.4.21] we have that \(\text{Locus}(V_x) \) is a divisor and \(\mathcal{N}_1(\text{Locus}(V_x), X) = \mathbb{R}[V] \).

Remark 4.2. Let \(X \) be a Fano manifold, and recall that \(l_X \) is the minimal anticanonical degree of a locally unsplit dominating family of rational curves in \(X \).

If \(x \in X \) is a general point, then every irreducible rational curve \(C \) through \(x \) has anticanonical degree at least \(l_X \), see [Kol96, Theorem IV.2.4]. This implies that \(l_X \) can equivalently be defined as the minimal anticanonical degree of a dominating family of rational curves in \(X \).

Proof of Theorem 1.4. Since \(l_X = n \), there is a locally unsplit dominating family \(V \) of rational curves of anticanonical degree \(n \). Thus by Remark 4.1 \(X \) contains a prime divisor \(D \) with \(\dim \mathcal{N}_1(D, X) = 1 \), so that we can apply Lemma 3.1.

Since \(l_X = n > 2 \), we know that \(X \) cannot have a conic bundle structure. Therefore Lemma 3.1 yields that \(\rho_X = 2 \) and there exists \(\sigma: X \to Y \) such
that Y is smooth with $\dim Y = n$ and $\rho_Y = 1$, and σ is the blow-up of $A \subset Y$ smooth of codimension 2.

Let $E \subset X$ be the exceptional divisor; we have $-K_X + E = \sigma^*(-K_Y)$.

Let W be a locally unsplit dominating family of rational curves in Y, $C \subset Y$ a general curve of the family, and $\tilde{C} \subset X$ its transform. Then $C \not\subset A$, hence $E \cdot \tilde{C} \geq 0$. Moreover \tilde{C} moves in a dominating family of rational curves in X, so that $-K_X \cdot \tilde{C} \geq n$. This yields $-K_Y \cdot C \geq n$.

We show that $-K_Y \cdot [W] > n$. Indeed if $-K_Y \cdot [W] = n$, then for any curve C of the family such that $C \not\subset A$, we must have $E \cdot \tilde{C} = 0$, and hence $C \cap A = \emptyset$. On the other hand, for $y \in Y$ general, $\text{Locus}(W_y)$ is an ample divisor (recall that $\rho_Y = 1$), so that it must intersect A. This gives a contradiction.

We conclude that W has anticanonical degree $n + 1$, so that $Y \cong \mathbb{P}^n$ by Theorem 1.1.

Now if $\ell \subset \mathbb{P}^n$ is a line intersecting A in at least two points, and $\tilde{\ell} \subset X$ is its transform, then $-K_X \cdot \tilde{\ell} < n$. We deduce that the secant variety $\text{Sec}(A)$ of A is not the whole \mathbb{P}^n, and this implies that A is degenerate (see for instance [Laz04] Theorem 3.4.26)). Finally one can check that since X is Fano, the degree d of A is at most n, completing the proof. ■

The proof of Lemma 4.3 below depends on the following result, which is of independent interest.

Lemma 4.3. Let X and Y be smooth connected projective varieties, and let $\pi: X \to Y$ be a \mathbb{P}^1-bundle. Let V be a locally unsplit dominating family of rational curves on X with $-K_X \cdot [V] = \dim(X) \geq 3$. Set $n := \dim(X)$. Then $X \cong \mathbb{P}^1 \times \mathbb{P}^{n-1}$, and V is the family of lines in the \mathbb{P}^{n-1}'s.

Proof. Let x be a general point in X, V_x' an irreducible component of V_x, and $U_x' \to V_x'$ the universal family. Let $U_x' \to X$ be the evaluation morphism, and $U_x' \to T$ its Stein factorization. Then T is a normal generalized cone; in particular $\text{pr} = 1$ by [Kol96] Corollary II.4.21.

We claim that the composite map $T \to X \to Y$ is finite; in particular, it is dominant. Suppose otherwise. Then, by [Kol96] Corollary II.4.21], π sends every curve in $D := \text{Locus}(V_x')$ to a point. Thus $-K_X \cdot [V] = 2$, yielding a contradiction.

Set $Z := T \times_Y X$, with natural morphisms $\tau: Z \to T$, and $\nu: Z \to X$.

\[
\begin{array}{ccc}
Z & \xrightarrow{\nu} & X \\
\downarrow{\tau} & & \downarrow{\pi} \\
T & \xrightarrow{} & Y
\end{array}
\]

Notice that τ is a \mathbb{P}^1-bundle. Let $T_Z \subset Z$ be the section of τ induced by $T \to X$; we have $\nu(T_Z) = D$. Then $Z \cong \mathbb{P}(\mathcal{E})$, where $\mathcal{E} := \tau_* \mathcal{O}_Z(T_Z)$ is a rank 2 vector bundle on T that fits into a short exact sequence

$$0 \to \mathcal{O}_T \to \mathcal{E} \to \mathcal{M} \to 0,$$

with \mathcal{M} a line bundle on T. Moreover, $\mathcal{E} \to \mathcal{M}$ corresponds to the section T_Z, and $\mathcal{O}_Z(T_Z)$ identifies with the tautological line bundle, so that $\mathcal{O}_Z(T_Z)|_{T_Z} \cong \tau^* \mathcal{M}|_{T_Z}$.
We prove that \(-K_Y \cdot \pi_*[V] \leq n\). Suppose otherwise, namely that \(K_{X/Y} \cdot [V] > 0\). We have:

\[
O_Z(K_{Z/T}) \cong O_Z(-2T_Z) \otimes \tau^*\mathcal{M},
\]

and therefore

\[
O_Z(K_{Z/T})|_{T_Z} \cong O_Z(-T_Z)|_{T_Z}.
\]

Let \([C] \in V'\), and let \(C_Z\) be an irreducible component of \(\nu^{-1}(C)\) contained in \(T_Z\). Then, by the projection formula:

\[-T_Z \cdot C_Z = K_{Z/T} \cdot C_Z = \nu^*(K_{X/Y}) \cdot C_Z = mK_{X/Y} \cdot C > 0,\]

where \(m \in \mathbb{Z}_{>0}\) is such that \(\nu_* C_Z = mC\). This implies that \(\mathcal{M} \cdot \tau_* C_Z < 0\).

Let now \([C'] \in V\) be a general point, and let \(C'_Z\) an irreducible component of \(\nu^{-1}(C')\) not contained in \(T_Z\). Then, as above, we must have \(K_{Z/T} \cdot C'_Z > 0\). On the other hand, \(T_Z \cdot C'_Z \geq 0\) since \(C'_Z \not\subseteq T_Z\), and \(\mathcal{M} \cdot \tau_* C'_Z < 0\) because \(\rho_T = 1\). This implies that

\[K_{Z/T} \cdot C'_Z = -2T_Z \cdot C'_Z + \mathcal{M} \cdot \tau_* C'_Z < 0,\]

yielding a contradiction. Therefore \(-K_Y \cdot \pi_*[V] \leq n\).

Let \([C] \in V\) be a general point, and set \(\ell := \pi(C)\). Then we must have:

\[-K_Y \cdot \ell \leq n = \dim(Y) + 1.\]

Let \(V_Y\) be the irreducible component of \(\text{RatCurves}^n(Y)\) passing through \(\ell\). Let \(x \in C\) be a general point, and set \(y := \pi(x) \in \ell\). Then \(\dim(V_Y)_y \geq \dim V_x = \dim Y - 1\) since \(T \to Y\) is dominant, and hence

\[-K_Y \cdot \ell = -K_Y \cdot [V_Y] = \dim(V_Y)_y + 2 \geq \dim Y + 1\]

by \cite{Ko96} Theorems II.1.7 and II.2.16]. Thus \(\pi_* C = \ell\), \(-K_Y \cdot \ell = \dim(Y) + 1\), and

\[K_{X/Y} \cdot [V] = 0.\]

Let \(\mathbb{F}\) be the normalization of \(\pi^{-1}(\ell)\), and let \(\tilde{\ell}\) be the normalization of \(\ell\). Let \(C'\) be the transform of \(C\) in \(\mathbb{F}\). By the projection formula, we have \(K_{\mathbb{F}/\ell} \cdot C' = K_{X/Y} \cdot C = 0\). This implies that \(\mathbb{F} \cong \ell \times \mathbb{P}^1\), and that \(C'\) is a fiber of \(\mathbb{F} \to \mathbb{P}^1\). In particular, \(\pi|_C : C \to \ell\) is birational. Thus, \(V_Y\) is a locally unsplit family of rational curves with \(-K_Y \cdot [V_Y] = n = \dim(Y) + 1\). Therefore \(Y \cong \mathbb{P}^{n-1}\) by Theorem 1.1, and \(T = D\) is a section of \(\pi\). Since \(K_{X/Y} \cdot [V] = 0\), we must have \(\mathcal{M} \cong 0\), and hence \(\mathcal{M} \cong \mathcal{O}_{\mathbb{P}^{n-1}}\). Finally, \(\mathcal{E} \cong \mathcal{O}_{\mathbb{P}^{n-1}}^{\oplus 2}\), since \(h^1(\mathbb{P}^{n-1}, \mathcal{O}_{\mathbb{P}^{n-1}}) = 0\). This completes the proof of the Lemma.

\section*{Lemma 4.4.} Let \(X\) be a Fano manifold of dimension \(n \geq 3\) and Picard number \(\rho_X = 2\), and suppose that \(X\) has a locally unsplit dominating family of rational curves \(V\) of anticanonical degree \(n\). Let \(D \subset X\) be an irreducible component of \(\text{Locus}(V_x)\) for a general point \(x \in X\).

Then one of the following holds:

(a) \(X\) is the blow-up of \(\mathbb{P}^n\) along a linear subspace of codimension 2;

(b) \(X \cong \mathbb{P}^1 \times \mathbb{P}^{n-1}\);
(c) $D^\perp \cap \text{NE}(X)$ is an extremal ray of X, whose associated contraction is divisorial and sends its exceptional divisor to a point; the other extremal contraction of X is either a (singular) conic bundle, or the blow-up of a smooth variety along a smooth subvariety of codimension 2.

Proof. By Remark 4.1, $\mathcal{N}_1(D, X) = \mathbb{R}[V]$. This implies that D is nef since $D \cdot [V] \geq 0$. Let R be an extremal ray of X such that $D \cdot R > 0$, and let $\sigma: X \to Y$ be the contraction of R. By Lemma 3.1, Y is a smooth Fano variety, and either σ is a blow-up with center $A_Y \subset Y$ smooth of codimension 2, or σ is a conic bundle. Set $S := D^\perp \cap \text{NE}(X)$. Then S is an extremal ray of X by Proposition 3.3.

Suppose that we are in case (i) of Proposition 3.3. We show that we are in case (a) or (b). The contraction of S is $\varphi: X \to \mathbb{P}^1$, D is a fiber, and hence $D \cdot [V] = 0$. Let F be a general fiber of φ. Then the family of rational curves from V contained in F is locally unsplit with anticanonical degree $\dim(F) + 1$, thus $F \simeq \mathbb{P}^{n-1}$ by Theorem 1.1.

Let $B_0 \subset \mathbb{P}^1$ be a dense open subset such that $X_0 := \varphi^{-1}(B_0) \to B_0$ is smooth. By Tsen’s Theorem, there exists a divisor H_0 on X_0 such that $\mathcal{O}_F(H_0|_F) \simeq \mathcal{O}_{\mathbb{P}^{n-1}}(1)$.

Let H be the closure of H_0 in X. Then H is φ-ample since φ is elementary. If $p \in \mathbb{P}^1$, then $[\varphi^*(p)] \cdot H^{n-1} = 1$. Therefore, all fibers of φ are integral, and by [Fu73, Corollary 5.4] we have $X \cong \mathbb{P}_\mathbb{P}^1(\mathcal{E})$ with \mathcal{E} a vector bundle of rank n on \mathbb{P}^1. Since X is Fano, it is not difficult to see that either $X \cong \mathbb{P}^1 \times \mathbb{P}^{n-1}$, or X is the blow-up of \mathbb{P}^n along a linear subspace of codimension 2. Thus we get (a) or (b).

Case (ii) of Proposition 3.3 is (c).

We show that case (iii) of Proposition 3.3 does not occur. Suppose otherwise. Then the contraction φ of S is small, it has a flip $X \dashrightarrow X'$, X' is smooth, and there is a smooth \mathbb{P}^1-bundle $\psi: X' \to Y'$. Let $|C| \in V$ be a general point. Then $\text{Exc}(\varphi) \cap C = \emptyset$ (see [Kol96, Proposition II.3.7]). Let V' be the irreducible component of $\text{RatCurves}^n(X')$ passing through the transform C' of C in X'.

We show that V' is a locally unsplit dominating family of rational curves on X'. Let $x \in X \setminus \text{Exc}(\varphi)$ be a general point. If $\text{Locus}(V_x) \cap \text{Exc}(\varphi) \neq \emptyset$, then $|V| \in S$ since $\mathcal{N}_1(\text{Locus}(V_x), X) = \mathbb{R}[V]$ and $D \cdot S = 0$, and hence $\text{Locus}(S) = X$, yielding a contradiction. Therefore, $\text{Locus}(V_x) \cap \text{Exc}(\varphi) = \emptyset$, and hence $V_x' \cong V_x$ is proper. This proves that V' is a locally unsplit family of rational curves. Notice also that $-K_{X'} \cdot [V'] = n$. By Lemma 4.3, $X' \simeq \mathbb{P}^1 \times \mathbb{P}^{n-1}$, so that X' does not have small contractions, a contradiction. This completes the proof of the Lemma.

Finally, we prove the main result of this section.

Proposition 4.5. Let X be a Fano manifold of dimension $n \geq 3$, and suppose that X has a locally unsplit dominating family V of rational curves of anticanonical degree n. Then $\rho_X \leq 3$.

If moreover $\rho_X = 3$, then X is isomorphic to one of the varieties described in Example 1.6, and $|V| \equiv C_G + (d - a)F$, where F is a fiber of σ, and C_G is the transform of a line in $G_Y \cong \mathbb{P}^{n-1}$ (notations as in Example 1.6).
Therefore (4.5.3) becomes:

\[\phi - (4.5.6) \]

by [Kol96, Theorems II.1.7 and II.2.16]. Thus using (4.5.5) we get

\[n = \phi \] (4.5.4).

We show that

\[\gamma > \]

Notice that

\[\rho \] (4.5.1).

Intersecting with \(G \) yields \(\beta = a \gamma \delta \), and intersecting with

\[-K \] yields \(\alpha = n - m \gamma \):

\[(4.5.3) \quad [V] \equiv (n - m \gamma)F + \alpha \gamma \delta + \gamma G.\]

Notice that \(\gamma > 0 \), because \([F] \) belongs to the extremal ray \(R \), and \([V] \notin R \).

Moreover \(\hat{E} \cdot [V] = \gamma \delta (d - a) \), so we obtain \(d - a \geq 0 \).

Finally, we also have \(\hat{G} \cdot [V] = n - m \gamma \geq 0 \).

By (4.5.3) we have

\[(4.5.5) \quad -KZ \cdot \varphi_* [V] = -KZ \cdot \gamma C = \gamma m \leq n = \dim Z + 1.\]

Let \([C] \in V \) be a general point, and let \(VZ \) be the irreducible component of \(\text{RatCurves}^3(Z) \) passing through \(\varphi(C) \). Let \(x \in C \) be a general point, and set \(z := \varphi(x) \). Then \(\dim (VZ)_z \geq \dim V_x = \dim Z - 1 \), and hence

\[-KZ \cdot [VZ] = \dim (VZ)_z + 2 \geq \dim Z + 1 \]

by [Kol96] Theorems II.1.7 and II.2.16]. Thus using (4.5.5) we get \(\varphi_*(C) = \varphi(C), \gamma = n/m, \dim (VZ)_z = \dim V_x \), and

\[(4.5.6) \quad -KZ \cdot [VZ] = \dim Z + 1.\]

Therefore (4.5.3) becomes:

\[(4.5.7) \quad [V] \equiv \frac{n}{m} \left(a \delta F + C_G \right).\]

We show that \(VZ \) is a locally unsplit family of rational curves on \(Z \). As \(\dim (VZ)_z = \dim V_x \), and \(V_x \) is proper, the curves in \((VZ)_z \) and their possible degenerations are images of curves in \(V_x \), which are integral. Therefore, in order to show that \(VZ \) is locally unsplit, we only have to exclude the possibility that \(\varphi \) has degree \(> 1 \) on some curve of \(V_x \).

We proceed by contradiction, and assume that for some \([C_\infty] \in V_x \), the morphism \(C_\infty \to \varphi(C_\infty) \) has degree \(k \geq 2 \).
Let \(\ell \to \varphi(C_\infty) \) be the normalization, set \(F := \ell \times \hat{Y} \), and denote by
\[
\begin{array}{c}
F \xrightarrow{\nu} Y \\
\pi|_F \downarrow \\
\ell \xrightarrow{\varphi} Z
\end{array}
\]
the natural morphisms.

Let \(C'_\infty \subset F \) be the transform of \(\sigma(C_\infty) \subset Y \). Let moreover \(C_0 \subset F \) be a minimal section of \(\pi|_F \), and \(F \subset C_\infty \) a general fiber.

We have \(G_Y \cdot \sigma(C_\infty) = \sigma^*(G_Y) \cdot C_\infty = G_Y[V] = 0 \) by \((4.5.2)\) and \(\sigma(C_\infty) \nsubseteq G_Y \) because \(x \in C_\infty \) is general, hence \(G_Y \cap \sigma(C_\infty) = \emptyset \).

The pull-back of \(G_Y \) to \(F \) is precisely \(C_0 \), so that \(C'_\infty \cap C_0 = \emptyset \). Moreover \(\pi|_F \) has degree \(k \) on \(C'_\infty \).

Set \(a_0 := -C'_0 \in \mathbb{Z}_{\geq 0} \). Then \(F \cong F_{a_0} \), and we obtain:

\[(4.5.9)\]
\[
C'_\infty \equiv k (C_0 + a_0f) \quad \text{and} \quad -K_F \cdot C'_\infty = k(a_0 + 2).
\]

Consider now \(\nu^*\hat{G}_Y \subset F \). This is a section of \(\pi|_F \) disjoint from \(C_0 \), so that \(\nu^*\hat{G}_Y \equiv C_0 + a_0f \). We also have \(\sigma^*\hat{G}_Y = \hat{G} + E \), and \(\hat{G} \cdot [V] = 0 \) by \((4.5.7)\), so using the projection formula:

\[(4.5.10)\]
\[
E \cdot C_\infty = \sigma^*\hat{G}_Y \cdot C_\infty = \hat{G}_Y \cdot \sigma(C_\infty) = \nu^*\hat{G}_Y \cdot C'_\infty = k a_0.
\]

Since \(A_Y \subset \hat{G}_Y \), we have \(\nu^{-1}(A_Y) \subset \nu^*\hat{G}_Y \). Moreover \(C_\infty \nsubseteq E \cup \hat{E} \) because \(x \in C_\infty \), hence \(\varphi(C_\infty) \nsubseteq A \), and \(\nu^{-1}(A_Y) \) is a zero-dimensional scheme.

We see \(\nu^{-1}(A_Y) \) as a zero-dimensional subscheme of \(\nu^*\hat{G}_Y \cong \mathbb{P}^1 \); in particular, it is determined by its support and by its multiplicity at each point. We write \(\nu^{-1}(A_Y) = h_1p_1 + \cdots + h rp_r \).

\[4.5.11.\] Let \(\varpi: \tilde{F} \to F \) be the blow up of \(F \) along \(\nu^{-1}(A_Y) \); note that there is a natural morphism \(\tilde{\nu}: \tilde{F} \to X \):

\[
\begin{array}{c}
\tilde{F} \xrightarrow{\tilde{\nu}} X \\
\varpi|_\tilde{F} \downarrow \\
\ell \xrightarrow{\varphi} Z
\end{array}
\]

Observe that \(\tilde{F} \) is a normal surface, with l.c.i singularities. Indeed, locally over \(p_i \), \(\tilde{F} \) can be described as the blow-up of \(\mathbb{A}^2_y \) at the ideal \((x^{h_i}, y)\). In particular, \(\tilde{F} \) is smooth at \(\varpi^{-1}(p_i) \) if \(h_i = 1 \), otherwise it has a Du Val singularity of type \(A_{h_i-1} \).

Set \(F_i := \varpi^{-1}(p_i) \) (with reduced scheme structure); then

\[(4.5.12)\]
\[
K_{\tilde{F}} = \varpi^*K_F + \sum_{1 \leq i \leq r} h_i F_i, \quad \text{and} \quad \sum_{1 \leq i \leq r} h_i F_i = \tilde{\nu}^*E.
\]
Let $\hat{C}_\infty' \subset \hat{F}$ be the transform of $C'_\infty \subset F$. Then $\nu(\hat{C}_\infty') = C_\infty$, and using (4.5.12), (4.5.2), and (4.5.10), we get:

\[(4.5.13) \quad -K_F \cdot \hat{C}_\infty' = -K_F \cdot C'_\infty - E \cdot C_\infty = 2k + ka_0 - ka_0 = 2k.\]

4.5.14. The curve \hat{C}_∞' is an integral rational curve in \hat{F}, of anticanonical degree $2k$ by (4.5.13). We fix a point $p_0 \in \hat{C}_\infty'$ such that $\nu(p_0) = x$. By [Kol96, Theorems II.1.7 and II.2.16], every irreducible component of RatCurves$^n(\hat{F}, p_0)$ through $[\hat{C}_\infty']$ has dimension $\geq 2k - 2 \geq 2$, because $k \geq 2$ by assumption.

Let $B \subseteq$ RatCurves$^n(\hat{F}, p_0)$ be an irreducible curve through $[\hat{C}_\infty']$. If B is proper, we get Locus$(B) = \hat{F}$ and hence $\rho_\hat{F} = 1$ by [Kol96 Corollary IV.4.21], a contradiction. If instead B is not proper, the closure of its image in Chow(\hat{F}) contains points corresponding to non-integral curves. But this gives again a contradiction, because V_x is proper.

We conclude that V_Z is a locally unsplit family of rational curves on Z, with $-K_Z \cdot [V_Z] = \dim Z + 1$ by (4.5.6). Hence $Z \cong \mathbb{P}^{n-1}$ by Theorem 1.1. $C_Z \subset Z$ is a line, $\delta = \mathbb{O}_Z(1) \cdot C_Z = 1, m = -K_Z \cdot C_Z = n$, and $\gamma = 1$. Finally $[V] \equiv aF + C_G$ by (4.5.7).

5. EXAMPLES OF LOCALLY UNSPLIT FAMILIES OF RATIONAL CURVES OF ANTICANONICAL DEGREE n

Let X be one of the varieties introduced in Example 1.6, we use the same notations as in Examples 1.6 and 3.4, with $Z = \mathbb{P}^{n-1}$.

We construct a dominating family of rational curves on X, and then show that it is locally unsplit. Notice that the condition $a \leq d$ is necessary to ensure the existence of such a family, see 4.5.2.

We first consider the case $a = 0$, so that $Y = \mathbb{P}^{n-1} \times \mathbb{P}^1$, and X is the blow-up of $\mathbb{P}^{n-1} \times \mathbb{P}^1$ along $A \times \{p_0\}$, where $p_0 \in \mathbb{P}^1$ is a fixed point. The general curve of the family V is the transform in X of $\ell \times \{p\} \subset Y$, where $p \neq p_0$ and $\ell \subset \mathbb{P}^{n-1}$ is a line. Therefore V is a locally unsplit dominating family of rational curves, and for a general point $x \in X$, V_x is isomorphic to the variety of lines through a fixed point in \mathbb{P}^{n-1}, hence $V_x \cong \mathbb{P}^{n-2}$.

Suppose from now on that $a > 0$, and set

$$X_0 := X \setminus \left(E \cup \hat{E} \cup G \cup \hat{G} \right).$$

Let $\ell \subset \mathbb{P}^{n-1}$ be a line not contained in A, and let $x \in X_0$ be such that $\varphi(x) \in \ell$. Set $F := \pi^{-1}(\ell) \cong \mathbb{P}_1(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(a))$, and denote by π_F the restriction of π to F. We have $G_Y \cap F = C_0$ the minimal section of π_F, and $\hat{G}_Y \cap F \cong \mathbb{P}^1$ is another section with $\hat{G}_Y \cap F \equiv C_0 + af$, where f is a fiber of π_F (see figure 5.1.1).

Since $A \subset \mathbb{P}^{n-1}$ is a hypersurface of degree d, and $\ell \not\subset A$, $A \cap \ell$ is a zero-dimensional scheme of length d. Moreover $A_Y \cap F$ is isomorphic to $A \cap \ell$, because \hat{G}_Y is a section of π. In particular $A_Y \cap F$ can be seen as a closed subscheme of $\ell \cong \mathbb{P}^1$, hence it is determined by its support and by its multiplicity at each point.

Recall that $1 \leq a \leq d$ by assumption. Let us consider a closed subscheme W of $A_Y \cap F$, of length a. Again, W is determined by its support and by
We associate to I and F and that the corresponding curve on $W = \pi \cap F$ at each point, so that without loss of generality we can write $W = \{p_1, \ldots, p_a\}$, where p_i are possibly equal points in $A_Y \cap F$ (and each p_i appears at most h_i times, if h_i is the multiplicity of $A_Y \cap F$ at p_i).

Construction 5.1. We associate to (ℓ, W, x) a smooth rational curve $C \subset X$, of anticanonical degree n, and containing x.

Set $y := \sigma(x) \in F \setminus (\pi^{-1}(A) \cup G_Y \cup \hat{G}_Y)$. We write \mathcal{I}_W (respectively, \mathcal{I}_y) for the ideal sheaf of W (respectively, y) in F. We claim that

$$h^0(F, \mathcal{O}_F(C_0 + af) \otimes \mathcal{I}_W \otimes \mathcal{I}_y) = 1,$$

and that the corresponding curve on F is smooth and irreducible.

Since $h^0(F, \mathcal{O}_F(C_0 + af)) = a + 2$, we must have $h^0(F, \mathcal{O}_F(C_0 + af) \otimes \mathcal{I}_W \otimes \mathcal{I}_y) \geq 1$.

Let $C_1 \in |C_0 + af|$ be a curve containing W and y. Observe first that C_1 is irreducible. Otherwise, since $C_1 \cdot f = 1$, there is a unique irreducible component C'_1 of C_1 such that $C'_1 \cdot f = 1$ and $C_1 \equiv C'_1 + rf$ for some $r \geq 1$ (C'_1 is a section of $\pi|_F$). In particular, $C'_1 \in |C_0 + bf|$ with $b < a$. By [Har77, Corollary V.2.18], we have $b = 0$ and $C'_1 = C_0$. Thus $C_1 = C_0 \cup f_1 \cup \cdots \cup f_a$ where the f_i's are possibly equal fibers of $\pi|_F$.

Notice that W is a subscheme of both $C_1 = C_0 \cup f_1 \cup \cdots \cup f_a$ and $\hat{G}_Y \cap F$. Since $\hat{G}_Y \cap F$ is disjoint from C_0, we must have

$$W = \{p_1, \ldots, p_a\} \subseteq (f_1 \cup \cdots \cup f_a) \cap \hat{G}_Y.$$

On the other hand \hat{G}_Y intersects transversally any fiber of $\pi|_F$, thus we get $\{p_1, \ldots, p_a\} = \{f_1 \cap \hat{G}_Y, \ldots, f_a \cap \hat{G}_Y\}$, and up to renumbering we can assume that f_i is the fiber of $\pi|_F$ containing p_i. This implies that $y \in C_1 \subseteq \pi^{-1}(A) \cup G_Y$, which contradicts our choice of y. Thus C_1 is irreducible, hence it is a section of $\pi|_F$, and $C_1 \cong \mathbb{P}^1$.

To show that C_1 is unique, let $C_2 \in |C_0 + af|$ be another curve containing W and y. Then C_2 is irreducible, $C_1 \cdot C_2 = a$, and $\{p_1, \ldots, p_a, y\} \subseteq C_1 \cap C_2$, which implies that $C_1 = C_2$. This show our claim.

We remark that:

$$A_Y \cap C_1 = \hat{G}_Y |_{C_1}.$$

Indeed C_1 is not contained in \hat{G}_Y, because $y \notin \hat{G}_Y$. Moreover $W \subseteq A_Y \cap C_1 \subseteq \hat{G}_Y \cap C_1$ and $\hat{G}_Y \cdot C_1 = a$, so that $W = A_Y \cap C_1 = \hat{G}_Y |_{C_1}$.
We define $C \subset X$ to be the transform of $C_1 \subset Y$, so that C is a smooth rational curve through x. It is not difficult to see that $C \cong C_G + aE$, and hence $-K_X \cdot C = n$ (see table 3.4.3).

Lemma 5.2. If $\ell \cap A$ is either reduced, or has a unique non reduced point of multiplicity 2, then:

$$T_X|_{C} \cong \mathcal{O}_{\mathbb{P}^1}(2) \oplus \mathcal{O}_{\mathbb{P}^1}(1)^{n-2} \oplus \mathcal{O}_{\mathbb{P}^1},$$

hence C is a standard, free, smooth rational curve.

Proof. Suppose first that $C \cap (E \cap \hat{E}) = \emptyset$. This implies that φ is smooth in a neighbourhood of C, thus the map $T_X|_{C} \rightarrow \varphi^*T_{\mathbb{P}^{n-1}|C}$ is onto. Its kernel is a torsion free sheaf of rank 1 on C, hence a locally free sheaf, of degree $-K_X \cdot C + \varphi^*K_{\mathbb{P}^{n-1}} \cdot C = 0$. Since $\varphi^*T_{\mathbb{P}^{n-1}|C} \cong \mathcal{O}_{\mathbb{P}^1}(2) \oplus \mathcal{O}_{\mathbb{P}^1}(1)^{n-2}$, this implies the statement.

Suppose now that $C \cap (E \cap \hat{E}) \neq \emptyset$, and let x_1 be a point in this intersection. Set $z_1 := \varphi(x_1)$, and let $h \in \{1, 2\}$ (respectively, $k \in \{1, h\}$) be the multiplicity of z_1 in $\ell \cap A$ (respectively, in $W \subseteq \ell \cap A$).

Notice that E and \hat{E} are Cartier divisors on X, and they do not contain C in their support.

As σ is an isomorphism on C, we have $E|_{C} = C \cap E \cong C_1 \cap A_Y \cong W$. On the other hand:

$$(E + \hat{E})|_{C} = \varphi^*(A)|_{C} = \varphi^*_{\sigma}(A_\ell),$$

therefore we have the following equalities of divisors on C:

$$C \cap \hat{E} = \hat{E}|_{C} = \varphi^*_{\sigma}(A_\ell - W).$$

In particular z_1 has multiplicity $h - k$ in $\varphi_*(C \cap \hat{E})$, and since $x_1 \in C \cap \hat{E}$, we have $h - k > 0$. We deduce that $h = 2$, $k = 1$, and z_1 is the unique non-reduced point in $\ell \cap A$.

As $W \cap (A_\ell - W) = \{z_1\}$, we also deduce that C intersects $E \cap \hat{E}$ only in x_1. Moreover, since C is transverse to E (and to \hat{E}) in x_1, we have:

$$C \cap E \cap \hat{E} = \{x_1\}.$$

Now let us consider the tangent morphism $d\varphi: T_X \rightarrow \varphi^*T_{\mathbb{P}^{n-1}}$, which is surjective outside $E \cap \hat{E}$, and has rank $n - 2$ in every point $x \in E \cap \hat{E}$, with image $T_{A,\varphi(x)}$. Let us also consider the natural surjective morphism:

$$\xi: \varphi^*T_{\mathbb{P}^{n-1}} \rightarrow \varphi^*(T_{\mathbb{P}^{n-1}/T_A}|_{E \cap \hat{E}}).$$

Since E and \hat{E} intersect transversally, a local computation shows that the image of $d\varphi$ is the subsheaf of $\varphi^*T_{\mathbb{P}^{n-1}}$ given by the kernel of ξ. In other words, we have an exact sequence:

$$T_X \xrightarrow{d\varphi} \varphi^*T_{\mathbb{P}^{n-1}} \xrightarrow{\xi} \varphi^*(T_{\mathbb{P}^{n-1}/T_A}|_{E \cap \hat{E}}) \rightarrow 0.$$

Let us now restrict to the curve C. Then $\varphi^*(T_{\mathbb{P}^{n-1}/T_A}|_{E \cap \hat{E} \cap C} = \mathbb{C}_{x_1}$ is a skyscraper sheaf, and we have an exact sequence:

$$T_X|_{C} \xrightarrow{d\varphi|_{C}} \varphi^*T_{\mathbb{P}^{n-1}|C} \xrightarrow{\xi|_{C}} \mathbb{C}_{x_1} \rightarrow 0,$$

where $\xi|_{C}$ is just the evaluation map.
We have $\varphi^*T^{n-1}_{\ell} \cong \mathcal{O}_{P1} (2) \oplus \mathcal{O}_{P1} (1)^{n-2}$, and the factor $\mathcal{O}_{P1} (2) \cong \varphi^*T_{\ell} \subset \varphi^*T^{n-1}_{\ell}$ is contained in ker(ξ_{ℓ}), because $T_{\ell,z_1} \subset T_{A,z_1}$. Therefore we get an induced surjective morphism $\mathcal{O}_{P1} (1)^{n-3} \to \mathbb{C}$, whose kernel is $\mathcal{O}_{P1} (1)^{n-3} \oplus \mathcal{O}_{P1}$. This gives an exact sequence

$$0 \to \mathcal{O}_{P1} (2) \to \ker(\xi_{\ell}) \to \mathcal{O}_{P1} (1)^{n-3} \oplus \mathcal{O}_{P1} \to 0,$$

which yields ker(ξ_{ℓ}) $\cong \mathcal{O}_{P1} (2) \oplus \mathcal{O}_{P1} (1)^{n-3} \oplus \mathcal{O}_{P1}$.

Thus $d\varphi_{\ell}$ yields a surjective map $T_{X|C} \to \mathcal{O}_{P1} (2) \oplus \mathcal{O}_{P1} (1)^{n-3} \oplus \mathcal{O}_{P1}$. The kernel of this morphism is a torsion free sheaf of rank 1 on C, hence a locally free sheaf, of degree $-K_X \cdot C - (n-1) = 1$. Finally, the exact sequence

$$0 \to \mathcal{O}_{P1} (1) \to T_{X|C} \to \mathcal{O}_{P1} (2) \oplus \mathcal{O}_{P1} (1)^{n-3} \oplus \mathcal{O}_{P1} \to 0$$

gives the statement.\[\blacksquare\]

Lemma 5.3. Let C' be an effective one-cycle in X such that $C' \equiv C$ and $C' \cap X_0 \neq \emptyset$.

Then C' is integral and is obtained as in (a) for some choices of $\ell' \subset \mathbb{P}^{n-1}$, $x' \in X$, and $W' \subset \ell' \cap A$. In particular, C' is again a smooth, connected rational curve.

Proof. Since $\varphi_s(C') \equiv \varphi_s(C)$, it follows that $\varphi(C')$ is a line ℓ' in \mathbb{P}^{n-1}, and $\ell' \nsubseteq A$ because $C' \nsubseteq \varphi^{-1}(A) = E \cup \hat{E}$. Moreover, there is a unique irreducible component C'' of C' that maps onto ℓ', and $C'' \to \ell'$ is a birational morphism.

Therefore we have

$$C' = C'' + F_1 + \cdots + F_r + \hat{F}_1 + \cdots + \hat{F}_s + e_1 + \cdots + e_h,$$

where the F_i's are (possibly equal) fibers of $\varphi|_E$, the \hat{F}_i's are fibers of $\varphi|_{\hat{E}}$, and the e_i's are fibers of φ over $\mathbb{P}^{n-1} \setminus A$. Moreover $C' \equiv C_G + a\hat{F}$, and using table (3.3.3) we get:

$$0 = G \cdot C' = G \cdot C'' + s + h \quad \text{and} \quad 0 = \hat{G} \cdot C' = \hat{G} \cdot C'' + r + h.$$

Since C'' is irreducible and $G \cap \hat{G} = \emptyset$, the intersections $G \cdot C''$ and $\hat{G} \cdot C''$ cannot be both negative; this yields $h = 0$. Then C'' cannot be contained in $G \cup \hat{G}$, because C' is not contained in $E \cup \hat{E} \cup G \cup \hat{G}$. We conclude that $r = s = 0$, and $C' = C''$ is integral.

Set $F' := \pi^{-1}(\ell') \subset Y$, and denote by $\pi_{F'}$ the restriction of π to F'. We consider the curve $C'_1 := \sigma(C') \subset F'$.

Since $\pi|_{C'_1}$ has degree one, we have $C'_1 \equiv C'_0 + rf'$, where $C'_0 = G_Y \cap F'$ is the minimal section of $\pi_{F'}$, f' is one of its fibers, and $r \in \mathbb{Z}$.

On the other hand we have

$$-K_{F'/\ell} \cdot C'_1 = -K_{Y/\mathbb{P}^{n-1}} \cdot C'_1 = -K_{Y/\mathbb{P}^{n-1}} \cdot C_1 = -K_{F/\ell} \cdot C_1 = a,$$

where $C_1 := \sigma(C)$. Therefore $r = a$, and $C'_1 \equiv C'_0 + af'$.

Finally, as $E \cdot C' = a$ and C' is smooth, C'_1 intersects A_Y in a zero-dimensional subscheme W' of length a. This shows that C' is a curve obtained via the construction described in (b).\[\blacksquare\]
Proof of Proposition 1.7. If \(a = 0 \), the statement is clear.

Suppose that \(a > 0 \). By Theorem 6.1, pairs \((\ell, W)\) where \(\ell \subset \mathbb{P}^{n-1} \) is a line not contained in \(A \), and \(W \subseteq \ell \cap A \) is a subscheme of length \(a \), vary in an irreducible family of dimension \(2n - 4 \). Using this, it is not difficult to show that varying \((\ell, W, x)\), construction 5.1 yields an irreducible algebraic family of smooth, connected rational curves in \(X \), of anticanonical degree \(n \).

More precisely, we get a locally closed irreducible subvariety \(V_0 \) of \(\text{RatCurves}^n(X) \) of dimension \(2n - 3 \), whose points correspond to curves \(C \) obtained as in 5.1.

By Lemma 5.2, a general curve \(C \) from \(V_0 \) is free and hence yields a smooth point in \(\text{RatCurves}^n(X) \). Moreover, \(\dim|C| \text{RatCurves}^n(X) = -K_X \cdot [V] + n - 3 = 2n - 3 \). This implies that the closure \(V \) of \(V_0 \) in \(\text{RatCurves}^n(X) \) is an irreducible component, and that \(V \) gives a dominating family of curves of anticanonical degree \(n \).

On the other hand, Lemma 5.3 shows that \(V_x \) is proper for every \(x \in X \), so that \(V \) is a locally unsplit family.

Remark 5.4. Let \(H \) be an ample line bundle on \(X \). If \(2 \leq a \leq d - 2 \), then \(V \) is not a dominating family of rational curves of minimal degree with respect to \(H \). Indeed, the family \(W \) of curves on \(X \) whose points correspond to smooth fibers of \(\varphi \) is a locally unsplit dominating family of rational curves, and \(|W| = F + \hat{F} \). Thus

\[
H \cdot |V| = \frac{1}{2} \left(H \cdot C_G + H \cdot C_G + aH \cdot \hat{F} + (d - a)H \cdot F \right) > H \cdot |W|.
\]

Proof of Theorem 1.8. The first part of the statement follows from Proposition 1.6. Assume that \(\rho_X = 3 \). Then, again by Proposition 1.3, \(X \) is isomorphic to one of the varieties described in Example 1.6 and \(|V| = C_G + (d - a)F \) (notation as in Example 1.6 and Proposition 4.5). By (3.4.2), this is the same as \(|V| = C_G + a\hat{F} \). This means that the curves of the family \(V \) are numerically equivalent to the curves obtained in construction 5.1. Thus Lemma 5.3 implies that the family \(V \) coincides with the family of curves constructed in the proof of Proposition 1.7.

Proof of Theorem 1.9. As before, we can assume that \(a > 0 \). Let \(x \in X \) be a general point, and set \(z := \varphi(x) \in \mathbb{P}^{n-1} \). Let \(p_z : A \to \mathbb{P}^{n-2} \) be the morphism of degree \(d \) induced by the linear projection \(\mathbb{P}^{n-1} \to \mathbb{P}^{n-2} \) from \(z \), where we see \(\mathbb{P}^{n-2} \) as the variety of lines \(\ell \) through \(z \) in \(\mathbb{P}^{n-1} \). Then the pairs \((\ell, W)\) such that \(\ell \subset \mathbb{P}^{n-1} \) is a line through \(x \), and \(W \subset A \cap \ell \) is a zero-dimensional subscheme of length \(a \), are parametrized by the relative Hilbert scheme \(\mathcal{H}_z := \text{Hilb}^{[a]}(A/\mathbb{P}^{n-2}) \).

Since \(x \) is general, \(\mathcal{H}_z \) is integral by Theorem 6.1. Therefore, using [Har77, Corollary III.12.9], construction 5.1 can be made in family over \(\mathcal{H}_z \).

One first constructs a subscheme \(C_1 \subset Y \times \mathcal{H}_z \), such that the fiber of \(C_1 \to \mathcal{H}_z \) over \((\ell, W)\) is the curve \(C_1 \). As \(C_1 \) intersects \(A_Y \times \mathcal{H}_z \) along the Cartier divisor \(\hat{G}_Y \times \mathcal{H}_z \) (see (5.1.2)), the transform

\[
C \subset X \times \mathcal{H}_z
\]
of \(C_1 \subset Y \times \mathcal{H}_z \) is isomorphic to \(C_1 \). In particular, the fiber of \(\xi : C \to \mathcal{H}_z \) over \((\ell, W)\) is the curve \(C \).
As \(C \) is a smooth rational curve through \(x \), \(\xi : C \to \mathcal{H}_z \) is a \(\mathbb{P}^1 \)-bundle with a section \(s : \mathcal{H}_z \to C \), given by \(s(h) = (x, h) \).

In particular, \(C \) is the projectivization of a rank 2 vector bundle over \(\mathcal{H}_z \), and it is locally trivial in the Zariski topology.

Fix a point \(0 \in \mathbb{P}^1 \). Let \(H_0 \subseteq \mathcal{H}_z \) be an open subset such that \(\xi^{-1}(H_0) \cong \mathbb{P}^1 \times H_0 \). We can assume that the section \(s|_{H_0} \), under this isomorphism, is identified with the constant section \(\{0\} \times H_0 \).

In particular, \(C \) is the projectivization of a rank 2 vector bundle over \(H_0 \), and it is locally trivial in the Zariski topology.

Therefore we get a morphism over \(H_0 \):
\[
\mathbb{P}^1 \times H_0 \to X \times H_0,
\]
which is an embedding on \(\mathbb{P}^1 \times \{h\} \), and sends \((0, h)\) to \((x, h)\), for every \(h \in H_0 \). This yields a morphism \(H_0 \to \text{Hom}(\mathbb{P}^1, X, 0 \mapsto x) \).

Since \(x \) is general, every curve in \(V_x \) is free, and \(\text{Hom}(\mathbb{P}^1, X, 0 \mapsto x) \) contains a union of smooth irreducible components \(\tilde{V}_x \), whose image in \(\text{RatCurves}^n(X, x) \) is \(V_x \). By construction, the morphism \(H_0 \to \text{Hom}(\mathbb{P}^1, X, 0 \mapsto x) \) takes values in \(\tilde{V}_x \).

By [Kol96, Theorem II.2.16], these morphisms glue together and yield a morphism
\[
\Psi : H_z \to V_x.
\]

By Lemma 5.3 the morphism \(\Psi \) is surjective. Moreover, the pair \((\ell, W)\) determines uniquely the curve \(C \) in construction 5.1. As \(C \) is smooth, it corresponds to a unique point in \(V_x \); therefore \(\Psi \) is injective.

Finally, \(V_x \) being smooth, we conclude that \(\Psi \) is an isomorphism, \(H_z \) is smooth, and \(V_x \) is irreducible. \[\square\]

Notice that \(a \) and \(a' = d - a \) yield not only the same variety \(X \) (see Remark 3.4.6), but also the same family \(V \) of rational curves on \(X \), and \(V_x \cong \text{Hilb}^{[a]}(A/\mathbb{P}^{n-2}) \cong \text{Hilb}^{[d-a]}(A/\mathbb{P}^{n-2}) \) for general \(x \in X \).

The cases \(a \in \{0, d\} \) and \(a \in \{1, d-1\} \) are the simplest ones. For the reader’s convenience, we describe explicitly the latter.

Example 5.5. If \(a = 1 \), then \(Y \) is the blow-up of \(\mathbb{P}^n \) at a point. Thus \(X \) is the blow-up of \(\mathbb{P}^n \) along \(\{p_0\} \cup A \), where \(A \) is smooth, of dimension \(n - 2 \), degree \(d \), contained in a hyperplane \(H \), and \(p_0 \notin H \). This is one of the few examples of Fano manifolds obtained by blowing-up a point in another manifold, see [BCW02].

The general curve of the family \(V \) is the transform in \(X \) of a line in \(\mathbb{P}^n \) intersecting \(A \) in one point.

Therefore for a general point \(x \in X \) we have \(V_x \cong A \cong \text{Hilb}^{[1]}(A/\mathbb{P}^{n-2}) \).

From the point of view of the family of curves, this is essentially the same example as Example 1.3; see also [Hwa10, Example 1.7].

Let us consider now the morphism
\[
\tau_x : V_x \to \mathcal{C}_x \subset \mathbb{P}(T^*_{X,x}),
\]
where \(x \) is a general point (notation as in the Introduction). We recall the following useful observation.

Remark 5.6. Let \([C] \in V_x \). Then \(\tau_x \) is an immersion at \([C] \) if and only if \(C \) is standard, see [Hwa01, Proposition 1.4] and [Ara06, Proposition 2.7].
As x is general, $\varphi \colon X \to \mathbb{P}^{n-1}$ is smooth at x, and the differential of φ at x induces the linear projection $\mathbb{P}(T_{x,X}) \dashrightarrow \mathbb{P}(T_{\mathbb{P}^{n-1},z})$ from the point $[T_{X/\mathbb{P}^{n-1},x}] \in \mathbb{P}(T_{x,X})$.

We have $[T_{X/\mathbb{P}^{n-1},x}] \not\in C_x$, because $\varphi[C]$ is an isomorphism for every C in V_x, and the projection restricts to a morphism $\Pi' \colon C_x \to \mathbb{P}^{n-2} = \mathbb{P}(T_{\mathbb{P}^{n-1},z})$.

Observe that there is a commutative diagram:
\[
\begin{array}{ccc}
\mathcal{H}_x & \xrightarrow{\Phi} & C_x \\
\downarrow{\Psi} & & \downarrow{\tau_x} \\
V_x & \xrightarrow{\Pi} & \mathbb{P}^{n-2} \\
\end{array}
\]

where we have set $\Phi := \tau_x \circ \Psi : \mathcal{H}_x \to C_x$.

Proof of Theorem 1.10. Since Π has degree $\binom{d}{a}$, Ψ is an isomorphism, and τ_x is birational, we conclude that Π' has degree $\binom{d}{a}$, therefore $C_x \subset \mathbb{P}^{n-1}$ is a hypersurface of degree $\binom{d}{a}$. Moreover C_x is irreducible, because V_x is.

We have seen in the above Example that τ_x is an isomorphism for $a = 1$ and $a = d - 1$, and the statement is clear if $a = 0$ or $a = d$.

We suppose from now on that $2 \leq a \leq d - 2$; notice that in particular $d \geq 4$. Since Ψ is an isomorphism, the statement follows if we show that the closed subset where Φ is not an isomorphism (respectively, an immersion) has codimension 1 (respectively, 2).

Let $L \subset \mathbb{P}^{n-2}$ be a general line. Then $A_L := p^{-1}_z(L)$ is a smooth plane curve of degree d, and $\Pi^{-1}(L) = \text{Hilb}^{[a]}(A_L/L)$ is a smooth curve of genus $1 + \binom{d}{a}(a(d-a)-2)$ by Theorem 6.11 (4).

On the other hand, $(\Pi')^{-1}(L)$ is a plane curve of degree $\binom{d}{a}$, hence it has arithmetic genus $p_a = \frac{1}{2}(\binom{d}{a} - 1)(\binom{d}{a} - 2)$.

We claim that $\Phi_{|\Pi^{-1}(L)}$ cannot be an isomorphism onto its image. By contradiction, if it were, the two curves should have the same genus, so we get:

\[
\frac{(\binom{d}{a} - 1)(\binom{d}{a} - 2)}{2} = 1 + \frac{1}{2}\binom{d}{a}(a(d-a)-2).
\]

This yields easily $\binom{d}{a} = a(d-a) + 1$, or equivalently $d(d-1) \cdots (d-a+1) = a!(a(a-d) + 1)$. Since $a \leq d-2$, we must have

\[
(d-2) \cdots (d-a+1) \geq \frac{a!}{2},
\]

and hence

\[
d(d-1) = \frac{a!(a(d-a)+1)}{(d-2) \cdots (d-a+1)} \leq 2(a(d-a)+1).
\]

Equivalently, we get $d^2 - (2a+1)d + 2a^2 - 2 \leq 0$. It is easy to see that this contradicts the assumption $2 \leq a \leq d-2$.

We conclude that the closed subset where Φ is not an isomorphism has codimension 1.

Let us consider again the plane curve A_L. Since $A_L \to L$ is a general projection, every non-reduced fiber contains just one double point. Hence,
for every $[\ell] \in L$, the intersection $\ell \cap A$ is either reduced, or has a unique non-reduced point, of multiplicity 2. By Lemma 5.2 for every $W \subseteq \ell \cap A$, the corresponding curve $C \subset X$ is standard, therefore τ_x is an immersion at $\Psi([W])$ by Remark 5.6.

We have shown that Φ is an immersion in every point of $\Pi^{-1}(L)$, hence the closed subset where Φ is not an immersion has codimension at least 2.

Suppose now that $n \geq 4$, and let $P \subset \mathbb{P}^{n-2}$ be a general plane. Then $A_P := p_{\mathbb{P}^1}^{-1}(P)$ is a smooth surface of degree d in \mathbb{P}^3, and $A_P \rightarrow P$ is the projection from a general point. Let $B \subset \mathbb{P}^2$ be the branch curve of this projection. It is classically known that B has only nodes and cusps, see [CF11]. Moreover, the fiber of $A_P \rightarrow P$ over a smooth point $z \in B$ contains just one double point, the fiber over a node contains two double points, and the fiber over a cusp contains one triple point (see [CF11] Proposition 3.7). The number of nodes in B depends only on the degree d of A_P, and more precisely it is $d(d-1)(d-2)(d-3)/2$, see [FLS11] Lemma 3.2(a).

Since $d \geq 4$, B contains nodes, and we conclude that there is at least one $[\ell] \in P$ such that $A \cap \ell = 2p_1 + 2p_2 + p_3 + \cdots + p_{d-2}$. As $a \leq d-2$, we can consider the subscheme $W := p_1 + p_2 + \cdots + p_a$ and the point $[W] \in H_x$. Notice that the points p_1 and p_2 do appear in W, because $a \geq 2$. Then by Theorem 6.1 (2), the tangent space of the fiber $\Pi^{-1}(\ell)$ at $[W]$ has dimension 2.

On the other hand, as Π' is a linear projection from a point, the tangent space of the fiber $(\Pi')^{-1}(\ell)$ at $\Phi([W])$ has dimension at most 1. This shows that Φ is not an immersion at $[W]$, and hence that the closed subset where Φ is not an immersion has codimension 2.

Corollary 5.7. Let X and V be as in Proposition 1.7. Assume that $2 \leq a \leq d-2$, and that $n \geq 4$. Then non-standard curves of the family V cover X.

Proof. This follows from Remark 5.6 and Theorem 1.10.

Example 5.8 (Fano 3-folds). Let X and V be as in Proposition 1.7 and consider the case $n = 3$. Then X is Fano if and only if $a \leq 2$ and $d-a \leq 2$, in particular $d \leq 4$. Thus the only case where X is Fano and τ_x is not an isomorphism is for $d = 4$ and $a = 2$. This Fano 3-fold X is N. 9 in [IP90] §12.4.

In this case $A \subset \mathbb{P}^2$ is a smooth quartic, $V_x \cong H_x = \text{Hilb}^2(A/\mathbb{P}^1)$ is a smooth connected curve of genus 7, and $\Pi : H_x \rightarrow \mathbb{P}^1$ has degree 6. Using Theorem 6.1 (2), one can describe precisely the ramification of Π.

On the other hand, $\mathcal{C}_x \subset \mathbb{P}^2$ is an irreducible curve of degree 6 and arithmetic genus 10. The normalization $H_x \rightarrow \mathcal{C}_x$ is an immersion, but it is not injective.

6. **Appendix:** the relative Hilbert scheme

The proof of Theorem 1.10 relies on the following results of independent interest.

Theorem 6.1. Fix integers m, a, and d, such that $m \geq 1$ and $1 \leq a \leq d$. Let $A \subset \mathbb{P}^{m+1}$ be a smooth hypersurface of degree d, $z \in \mathbb{P}^{m+1} \setminus A$ a general
point, and \(p_z : A \to \mathbb{P}^m \) the linear projection from \(z \) (where we see \(\mathbb{P}^n \) as the variety of lines through \(z \) in \(\mathbb{P}^{m+1} \)).

(1) The relative Hilbert scheme \(\text{Hilb}^{[a]}(A/\mathbb{P}^m) \) is an integral local complete intersection scheme of dimension \(m \), and the natural morphism

\[
\Pi : \text{Hilb}^{[a]}(A/\mathbb{P}^m) \to \mathbb{P}^m
\]

is flat and finite of degree \(\binom{d}{a} \).

(2) Let \([\ell] \in \mathbb{P}^n \) and \([W] \in \Pi^{-1}([\ell]) \). Write \(\ell \cap A = h_1p_1 + \cdots + h_rp_r \) with \(h_i \geq 1 \) and \(p_i \neq p_j \) for \(i \neq j \), and \(W = k_1p_1 + \cdots + k_rp_r \) with \(0 \leq k_i \leq h_i \). The tangent space of the fiber \(\Pi^{-1}([\ell]) \) at \([W]\) has dimension \(\sum_{i=1}^r \min(k_i, h_i - k_i) \).

(3) \(\Pi \) is smooth at \([W]\) if and only if \(W \) is a union of irreducible components of \(\ell \cap A \), equivalently: \(W \cap (\ell \cap A - W) = \emptyset \).

(4) Suppose that \(m = 1 \). Then the curve \(\text{Hilb}^{[a]}(A/\mathbb{P}^1) \) is smooth of genus \(g = 1 + \frac{1}{2} \binom{d}{a}(a(d - a) - 2) \).

The following results will be used in the proof of Theorem 6.1.

Lemma 6.2. Let \(h \) be a positive integer, and set:

\[
\Lambda := \frac{\mathbb{C}[t]}{(t^h)} \quad \text{and} \quad F := \text{Spec} \Lambda.
\]

Let \(W \) be a non-empty closed subscheme of \(F \), with ideal \(I := t^k \Lambda \subseteq \Lambda \), where \(k \in \{1, \ldots, h\} \) is an integer. Then:

(1) \(\dim_{\mathbb{C}} \text{Hom}_F(\mathcal{I}_W, \mathcal{O}_W) = \dim_{\mathbb{C}} \text{Ext}^1_{\mathcal{O}_W}(\mathcal{I}_W, \mathcal{O}_W) = \min(k, h - k) \);

(2) \(\text{Hilb}(F) \) has dimension zero, \(\text{Obs}(W) = \text{Ext}^1_{\mathcal{O}_W}(\mathcal{I}_W, \mathcal{O}_W) \), and the tangent space of \(\text{Hilb}(F) \) at \([W]\) has dimension \(\min(k, h - k) \);

(3) \(\text{Hilb}(F) \) is smooth at \([W]\) if and only if \(W = F \).

Proof of Lemma 6.2. We have a short sequence of \(\Lambda \)-modules:

\[
0 \longrightarrow t^{-k} \Lambda \longrightarrow \Lambda \longrightarrow t^k \Lambda = I \longrightarrow 0,
\]

where the second morphism is given by \(1 \mapsto t^k \), so that \(I \cong \Lambda/t^k \Lambda \) as \(\Lambda \)-modules. Using this isomorphism, a direct computation shows that \(\dim_{\mathbb{C}} \text{Hom}_A(I, A/I) = \min(k, h - k) \).

Applying the functor \(\text{Hom}_A(-, A/I) \) to the above sequence, and using the vanishing of \(\text{Ext}^1_A(\Lambda, A/I) \), we get the exact sequence of \(\Lambda \)-modules:

\[
0 \longrightarrow \text{Hom}_A(I, A/I) \longrightarrow \text{Hom}_A(t^{-k} \Lambda, A/I) \longrightarrow \text{Ext}^1_A(I, A/I) \longrightarrow 0.
\]

Similarly as before, observe that \(t^{-k} \Lambda \cong A/I \) as \(\Lambda \)-modules. Moreover, if \(\pi : \Lambda \to A/I \) is the quotient map, it is easy to see that \(\pi^* : \text{Hom}_A(A/I, A/I) \to \text{Hom}_A(A, A/I) \) is an isomorphism of \(\Lambda \)-modules. Therefore

\[
\text{Hom}_A(t^{-k} \Lambda, A/I) \cong \text{Hom}_A(A/I, A/I) \cong \text{Hom}_A(A, A/I),
\]

and we obtain (1):

\[
\dim_{\mathbb{C}} \text{Hom}_A(I, A/I) = \dim_{\mathbb{C}} \text{Ext}^1_A(I, A/I) = \min(k, h - k).
\]

The Hilbert scheme of \(F \) is supported on finitely many points, thus it has dimension zero. Recall that by [Kol96, Definition 1.2.6], the obstruction
Proof of Theorem 6.1. Let follows easily.

\[\text{in particular } \Pi \text{ is a finite morphism, and } \dim \text{Hilb} U\]

Notice that \[\text{particular, } \text{Hilb} U\]

\[\text{a flat finite morphism.}\]

Finally, (3) follows from (2).

Lemma 6.3. Let \(p: A \to T\) be a finite morphism between smooth quasi-projective varieties. Let \(F\) be a fiber of \(p\), and \(W \subseteq F\) a reduced subscheme of length \(a\). Let \(\Pi: \text{Hilb}^a(A/T)_{\text{red}} \to T\) be the natural morphism. Suppose that \(F\) has a unique non reduced point at \(z_1\).

Then the Hilbert scheme \(\text{Hilb}^a(A/T)_{\text{red}}\) is smooth at \([W]\), and there exists a neighbourhood for the Euclidean topology \(U \subset \text{Hilb}^a(A/T)_{\text{red}}\) (respectively, \(U_1 \subset A\)) of \([W]\) (respectively, \(z_1\)) and an isomorphism \(\iota: U_1 \cong U\) such that the diagram:

\[
\begin{array}{ccc}
U_1 & \xrightarrow{\iota} & U \\
\downarrow^{\pi_{U_1}} & & \downarrow^{\Pi_U} \\
T & & \\
\end{array}
\]

commutes.

Proof. Recall that the Hilbert-Chow morphism \(\text{Hilb}^a(A) \to A^a := A^a/S_a\) maps a zero-dimensional subscheme of length \(a\) of \(A\) to the associated effective 0-cycle of degree \(a\). Notice that \([W]\) is contained in the open subset of \(\text{Hilb}^a(A)\) where the Hilbert-Chow morphism is an isomorphism, and that \(\text{Hilb}^a(A)\) is smooth at \([W]\) since \([W]\) is reduced.

Let \(V \subset T\) be an open neighbourhood of \(p(z_1)\) for the Euclidean topology such that \(p^{-1}(V) = U_1 \cup \cdots \cup U_r, U_i \cap U_j = \emptyset\) if \(i \neq j, U_1 \subset A\) is an open neighbourhood of \(z_1\), and \(p_{U_i}: U_i \to V\) is an isomorphism for \(i \geq 2\).

Then, up to shrinking \(V\) if necessary, the morphism

\[U_1 \ni z \mapsto [(z, (p_{U_2})^{-1}(p(z)), \ldots, (p_{U_r})^{-1}(p(z)))] \in A^a\]

yields a holomorphic map

\[U_1 \to \text{Hilb}^a(A/T)_{\text{red}} \subset \text{Hilb}^a(A).\]

Notice that \(U_1 \to \text{Hilb}^a(A/T)_{\text{red}}\) is an immersion, and that it induces a bijective morphism \(\iota: U_1 \to U := \iota(U_1)\) such that \(\Pi_{|U} = p_{|U_1} \circ \iota\). Our claim follows easily.

Proof of Theorem 6.2. Let \(\ell \subset \mathbb{P}^{m+1}\) be a line passing through \(z\), and set \(F := \ell \cap A\), so that \(F\) is a zero-dimensional subscheme of \(\ell \setminus \{z\} \cong \mathbb{A}^1\). We have:

\[\Pi^{-1}([\ell]) = \text{Hilb}^a(F)\]

in particular \(\Pi\) is a finite morphism, and \(\dim \text{Hilb}^a(A/\mathbb{P}^m) \leq m\).

Let \([W] \in \text{Hilb}^a(A/\mathbb{P}^m)\) be a point over \([\ell] \in \mathbb{P}^m\). Applying Lemma 6.2 to every connected component of \(\Pi^{-1}([\ell])\), we get (2) and (3), and also that \(\dim_{\mathbb{C}} \text{Hom}_F(\mathcal{J}_W, \mathcal{O}_W) = \dim_{\mathbb{C}} \text{Obs}(W)\). Thus, by [Kol96, Theorems 1.2.10.3 and 1.2.10.4], any irreducible component of \(\text{Hilb}^a(A/\mathbb{P}^m)\) through \([W]\) has dimension \(m\), and \(\Pi\) is a local complete intersection morphism. In particular, \(\text{Hilb}^a(A/\mathbb{P}^m)\) is a local complete intersection scheme, and \(\Pi\) is a flat finite morphism.
By (3), \(\Pi \) is étale over \([\ell]\) if and only if \(\ell \cap A \) is reduced, i.e., \(p_z \) is étale over \([\ell]\). Therefore \(\text{Hilb}^{[a]}(A/\mathbb{P}^m) \) is generically smooth over \(\mathbb{P}^m \). In particular, \(\text{Hilb}^{[a]}(A/\mathbb{P}^m) \) is generically reduced and hence reduced as it is a Cohen-Macaulay scheme.

We proceed to show that the scheme \(\text{Hilb}^{[a]}(A/\mathbb{P}^m) \) is irreducible. This follows from the fact that since \(z \) is general, the monodromy group of the projection \(p_z: A \to \mathbb{P}^m \) is the whole symmetric group \(S_d \), see [Cuk99, Proposition 2.3].

Let \(U \subset \mathbb{P}^m \) be a dense open subset such that \(p_z \) and \(\Pi \) are étale over \(U \). Set \(A_0 := p_z^{-1}(U) \subseteq A \) and \(H_0 := \Pi^{-1}(U) = \text{Hilb}^{[a]}(A_0/U) \). Since \(H_0 \) is dense in \(\text{Hilb}^{[a]}(A/\mathbb{P}^m) \), and \(H_0 \) is smooth, we are reduced to show that \(H_0 \) is connected.

Notice that \(H_0 \) is a closed subscheme of \(\text{Hilb}^{[a]}(A_0) \), and that every \([W]\) in \(H_0 \) is contained in the open subset of \(\text{Hilb}^{[a]}(A_0) \) where the Hilbert-Chow morphism \(\text{Hilb}^{[a]}(A_0) \to (A_0)^{(a)} \) is an isomorphism.

Let \([W_1]\) and \([W_2]\) be two points in \(H_0 \) that map to a given point in \(U \). Since any irreducible component of \(H_0 \) maps onto \(U \), it is enough to prove that there is a path in \(H_0 \) joining \([W_1]\) to \([W_2]\).

Let \([W_1]\) \(\in \) \((A_0)^a\) mapping to \([W_1]\). Since the monodromy group of \(p_z \) is the symmetric group \(S_d \), there is a path \(\gamma: [0, 1] \to (A_0)^a \) joining \([W_1]\) to \([W_2]\), such that the points in \(\gamma(t) \) are distinct and contained in a fiber of \(p_z \), for every \(t \in [0, 1] \). This yields a path joining \([W_1]\) to \([W_2]\) in \(H_0 \), and proves that \(\text{Hilb}^{[a]}(A/\mathbb{P}^m) \) is integral.

Finally, suppose that \(m = 1 \). We show that \(\text{Hilb}^{[a]}(A/\mathbb{P}^1) \) is a smooth curve of genus

\[
g = 1 + \frac{1}{2} \left(\frac{d}{a} \right) (a(d - a) - 2).
\]

Notice that since the projection \(p_z: A \to \mathbb{P}^1 \) is general, there are precisely \(d(d - 1) \) non-reduced fibers, and every non-reduced fiber contains just one non-reduced point, with multiplicity 2.

Let \([W]\) \(\in \) \(\text{Hilb}^{[a]}(A/\mathbb{P}^1) \) be a point over \([\ell]\) \(\in \) \(\mathbb{P}^1 \). By (3), either \(\Pi \) is étale at \([W]\), or \(\ell \cap A \) has a double point, \(W \) is reduced, and contains this point in its support. Note that there are exactly \(\binom{d - 2}{a - 1} \) such \([W]\)'s, and that \(\Pi \) has ramification index 2 at any of these points by Lemma 6.3.

If \(\Pi \) is étale at \([W]\), then \(\text{Hilb}^{[a]}(A/\mathbb{P}^1) \) is obviously smooth at \([W]\). Otherwise, \(\text{Hilb}^{[a]}(A/\mathbb{P}^1) \) is smooth at \([W]\) by Lemma 6.3. This shows that \(\text{Hilb}^{[a]}(A/\mathbb{P}^1) \) is a smooth curve.

By the Hurwitz formula, we have:

\[
2g - 2 = -2 \left(\frac{d}{a} \right) + d(d - 1) \left(\frac{d - 2}{a - 1} \right) = \left(\frac{d}{a} \right) (a(d - a) - 2).
\]

This completes the proof of the theorem.

\[\Box\]

Remark 6.4. The same proof shows that for every \(z \in \mathbb{P}^{m+1} \setminus A \), the relative Hilbert scheme \(\text{Hilb}^{[a]}(A/\mathbb{P}^m) \) is a reduced local complete intersection.
scheme of dimension m, and that the natural morphism $\Pi : \text{Hilb}^{[a]}(A/\mathbb{P}^m) \to \mathbb{P}^m$ is flat and finite of degree (d_a). Moreover, (2) and (3) hold true.

We need also a slightly more general version of the previous construction, as follows. Let $A \subset \mathbb{P}^{m+1}$ be a smooth hypersurface of degree $d \geq 1$, and fix $a \in \{1, \ldots, d\}$. Set
\[
\mathcal{G} := \{[\ell] \in G(1, m+1) \mid \ell \text{ is not contained in } A\},
\]
with its universal family $\mathcal{U} := \{([\ell], z) \in \mathcal{G} \times \mathbb{P}^{m+1} \mid z \in \ell\}$. Let us consider the intersection:
\[
\mathcal{I} := \mathcal{U} \cap (\mathcal{G} \times A).
\]
The induced morphism $\mathcal{I} \to \mathcal{G}$ is finite and flat, of degree d; the fiber over a line $[\ell]$ is $\ell \cap A$. The relative Hilbert scheme $\text{Hilb}^{[a]}(\mathcal{I}/\mathcal{G})$ parametrizes pairs (ℓ, W) where $\ell \subset \mathbb{P}^{m+1}$ is a line not contained in A, and W is a subscheme of length a of $\ell \cap A$. With the same proof of Theorem 6.1, one shows:

Theorem 6.5. The Hilbert scheme $\text{Hilb}^{[a]}(\mathcal{I}/\mathcal{G})$ is an integral scheme of dimension $2m$.

Proof of Theorem 6.5. Let X be as in Example 3.4.2 with $n = m + 2$. Then the statement follows from Proposition 1.7, Theorem 1.8, and Theorem 6.1.

Proof of Corollary 6.2. Set $a := \sum_{i=1}^{r} \left\lfloor \frac{h_i}{2} \right\rfloor$. If $a = 0$, there is nothing to prove. If $a > 0$, consider the relative Hilbert scheme $\text{Hilb}^{[a]}(A/\mathbb{P}^m)$, which is smooth of dimension m by Theorem 1.11. Let $\Pi : \text{Hilb}^{[a]}(A/\mathbb{P}^m) \to \mathbb{P}^m$ be the natural morphism, and set $W := \left[\frac{h_1}{2}\right]p_1 + \cdots + \left[\frac{h_r}{2}\right]p_r$. Then the tangent space of the fiber of Π at $[W]$ has dimension a by Theorem 6.1 (2), hence $a \leq m$.

References

[Ara06] C. Araujo, *Rational curves of minimal degree and characterizations of projective spaces*, Math. Ann. 335 (2006), 937–951.

[AW97] M. Andreatta and J. A. Wiśniewski, *A view on contractions of higher-dimensional varieties*, Algebraic Geometry - Santa Cruz 1995, Proc. Symp. Pure Math., vol. 62, 1997, pp. 153–183.

[BCHM10] C. Birkar, P. Cascini, C. D. Hacon, and J. McKernan, *Existence of minimal models for varieties of log general type*, J. Amer. Math. Soc. 23 (2010), 405–468.

[BCW02] L. Bonavero, F. Campana, and J. A. Wiśniewski, *Variétés projectives complexes dont l’éclatée en un point est de Fano*, C. R., Math., Acad. Sci. Paris 334 (2002), 463–468.

[BS95] M. C. Beltrametti and A. J. Sommese, *The adjunction theory of complex projective varieties*, de Gruyter Expositions in Mathematics, vol. 16, Walter de Gruyter & Co., Berlin, 1995.

[Cas09] C. Casagrande, *On Fano manifolds with a birational contraction sending a divisor to a curve*, Michigan Math. J. 58 (2009), 783–805.

[CF11] C. Ciliberto and F. Flamini, *On the branch curve of a general projection of a surface to a plane*, Trans. Amer. Math. Soc. 363 (2011), 3457–3471.

[CMSB02] K. Cho, Y. Miyaoka, and N. Shepherd-Barron, *Characterizations of projective space and applications to complex symplectic geometry*, Higher Dimensional Birational Geometry, Adv. Stud. Pure Math., vol. 35, Math. Soc. Japan, 2002, pp. 1–89.
[Cuk99] F. Cukierman, *Monodromy of projections*, Mat. Contemp. **16** (1999), 9–30, 15th School of Algebra (Portuguese) (Canela, 1998).

[Deb01] O. Debarre, *Higher-dimensional algebraic geometry*, Universitext, Springer-Verlag, 2001.

[Dru04] S. Druel, *Caractérisation de l’espace projectif*, Manuscripta Math. **115** (2004), no. 1, 19–30.

[FH09] B. Fu and J.-M. Hwang, *Minimal rational curves on complete toric manifolds*, preprint [arXiv:0912.1638], 2009.

[FLS11] M. Friedman, M. Leyenson, and E. Shustin, *On ramified covers of the projective plane* I: Interpreting Segre’s theory (with an appendix by Eugenii Shustin), Internat. J. Math. **22** (2011), 619–653.

[Fuj75] T. Fujita, *On the structure of polarized varieties with Δ-genera zero*, J. Fac. Sci. Univ. Tokyo Sect. IA Math. **22** (1975), 103–115.

[Har77] R. Hartshorne, *Algebraic geometry*, Graduate Texts in Mathematics, vol. 52, Springer-Verlag, 1977.

[HM04] J.-M. Hwang and N. Mok, *Birationality of the tangent map for minimal rational curves*, Asian J. Math. **8** (2004), 51–64.

[Hwa01] J.-M. Hwang, *Geometry of minimal rational curves on Fano manifolds*, School on Vanishing Theorems and Effective Results in Algebraic Geometry (Trieste, 2000), ICTP Lect. Notes, vol. 6, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2001, pp. 335–393.

[Hwa10] ——, *Equivalence problem for minimal rational curves with isotrivial varieties of minimal rational tangents*, Ann. Sci. Éc. Norm. Supér. **43** (2010), 607–620.

[IP99] V. A. Iskovskikh and Yu. G. Prokhorov, *Algebraic geometry V*- *Fano varieties*, Encyclopaedia Math. Sci. vol. 47, Springer-Verlag, 1999.

[Ish91] S. Ishii, *Quasi-Gorenstein Fano 3-folds with isolated non-rational loci*, Compos. Math. **77** (1991), 335–341.

[KC06] S. Kebekus and L. Solá Conde, *Existence of rational curves on algebraic varieties, minimal rational tangents, and applications*, Global aspects of complex geometry, Springer, Berlin, 2006, pp. 359–416.

[Keb02a] S. Kebekus, *Characterizing the projective space after Cho, Miyaoka and Shepherd-Barron*, Complex Geometry (Göttingen, 2000), Springer, 2002, pp. 147–156.

[Keb02b] ——, *Families of singular rational curves*, J. Algebraic Geom. **11** (2002), 245–256.

[KM98] J. Kollár and S. Mori, *Birational geometry of algebraic varieties*, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, 1998.

[Kol96] J. Kollár, *Rational curves on algebraic varieties*, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 32, Springer-Verlag, 1996.

[Laz04] R. Lazarsfeld, *Positivity in algebraic geometry I*, Springer-Verlag, 2004.

[Miy04] Y. Miyaoka, *Numerical characterizations of hyperquadrics*, Complex Analysis in Several Variables - Memorial Conference of Kiyoshi Oka’s Centennial Birthday, Adv. Stud. Pure Math., vol. 42, Math. Soc. Japan, 2004, pp. 209–235.

[Tsu06] T. Tsukioka, *Classification of Fano manifolds containing a negative divisor isomorphic to projective space*, Geom. Dedicata **123** (2006), 179–186.

[Wis91] J. A. Wiśniewski, *On contractions of extremal rays of Fano manifolds*, J. Reine Angew. Math. **417** (1991), 141–157.

CINZIA CASAGRANDE: UNIVERSITÀ DI TORINO, DIPARTIMENTO DI MATEMATICA, VIA CARLO ALBERTO 10, 10123 TORINO - ITALY

E-mail address: cinzia.casagrande@unito.it

STÉPHANE DREUL: INSTITUT FOURIER, UMR 5582 DU CNRS, UNIVERSITÉ GRENoble 1, BP 74, 38402 SAINT MARTIN D’HÉRES - FRANCE

E-mail address: dru1@ujf-grenoble.fr