He used to tell me, “Do what you like to do. It’ll probably turn out to be what you do best.” —Wallace Stegner, _Crossing to Safety_

1 Introduction

Over nearly three decades at the University of Wisconsin, Jeff Naughton has left an indelible mark on computer science. He has been a global leader of the database research field, deepening its core and pushing its boundaries. Many of Naughton’s ideas were translated directly into practice in commercial and open-source systems. But software comes and goes. In the end, it is the ideas themselves that have had impact, ideas written down in papers.

Naughton has been a prolific scholar over the last thirty years, with over 175 publications in his bibliography, covering a wide range of topics. This document does not attempt to enumerate or even summarize the wealth of ideas that Naughton has published over the course of his academic career—the task is too daunting. Instead, the best this short note aims to do is to serve as a rough map of the territory: something to help other researchers navigate the wide spaces of Naughton’s work.

2 Brief Academic Biography

Jeffrey F. Naughton received his bachelor’s degree from the University of Wisconsin in 1982, and completed his Ph.D. at Stanford in 1987 under the direction of Jeffrey Ullman. After a two-year stint as an Assistant Professor at Princeton, he returned to the University of Wisconsin where he served on the faculty for 26 years. During his years at Wisconsin, Naughton supervised numerous research students, served as Chair of the Computer Sciences Department, and was a five-time repeat recipient of the venerable “Cow Award” for excellence in classroom teaching.

His research promise was recognized early with the Presidential Young Investigator award in 1991. His research success was honored in its fullness multiple times, including the ACM-SIGMOD Test of Time Award in 2004 for Shore object database system [41], and the 2008 ACM Software Systems Award as a member of the Gamma Parallel Database team. As overarching recognition of both his contributions and ongoing promise, Naughton received the University of Wisconsin Vilas Associate award for excellence in research in 2000, and was inducted as a Fellow of the ACM in 2002.

As of this writing, Naughton has supervised at least 43 Ph.D. students (Table 1). Including the five students he is currently supervising, Naughton has at least 92 Ph.D. descendants [188].

This bibliography marks a checkpoint in Naughton’s career, not an endpoint. In 2016, Naughton left the University of Wisconsin for a senior post in research and development at Google. There will undoubtedly be many years of Naughton innovations in his new environment, and hopefully some of those ideas will appear in the scholarly literature as well.

3 Bibliographic Overview

3.1 Recursive Query Processing (1986-1991)

Naughton’s PhD thesis focused on the optimization of recursive queries in Datalog [6], a topic of significant theoretical interest at the time. Naughton contributed multiple results in this area at Stanford, Princeton and Wisconsin. Highlights include techniques begun in his PhD thesis to rewrite queries to avoid recursion entirely when possible (bounded recursions) [1, 7, 28], and techniques to rewrite queries for efficient bottom-up evaluation [15]. Sadly, many of Naughton’s results in this area are difficult to find online at present; interested scholars are directed to their nearest university library for details.

3.2 Sampling (1989-1995)

Sampling and Estimation are recurring themes of Naughton’s work throughout his career, with papers as
recently as 2016 [189]. The heyday of Naughton’s sampling work occurred in the first half of the 1990’s, in the domain of selectivity estimation for query optimization.

Naughton’s initial publications on the topic arose during his stint at Princeton, where he worked with celebrated theoretician Richard Lipton. The first paper arose in the domain of recursive queries: estimating the size of transitive closures in order to optimize recursive queries in a cost-based manner [11]. This led to subsequent papers on relational database sampling, often with Lipton or Peter J. Haas of IBM Research, covering traditional select/join query selectivity estimation [17, 37, 44, 52, 61] as well as distinct value (projection) estimation [50].

Naughton’s expertise on sampling and estimation informed many topics later in his career, discussed below.

3.3 Object Databases (1991-1997)

Naughton’s work in the database group at Wisconsin is characterized by deep, abiding collaborations on systems projects with his colleagues, notably David DeWitt and Michael Carey.

First among these efforts was work on Object-Oriented Databases. Particularly influential efforts included the Shore system [41] and the OO7 [35, 35] and Bucky [64] benchmarks. The OO7 and Shore work are among Naughton’s most-cited papers [187], attesting to the broad interest in Naughton’s projects in this area. At a more technical level, Naughton and his PhD students did deep work in this context on clustering objects in secondary storage [31, 34], database loading for interconnected objects [48, 58], and garbage collection in secondary storage [49].

3.4 Parallel Databases (1991-1997)

Naughton was a participant in Wisconsin’s Gamma Parallel Database effort, which is considered one of the landmark research systems in 20th century computing history. He was also on the team that did follow-on work on Parallel Geo-Spatial data management in the Paradise project [66]. Parallelism is another recurring theme in Naughton’s work throughout various topics below.

Naughton’s contributions in parallel databases focused on improving join processing, including non-equijoins (“band” joins) [21], and joins that have to cope with data skew [32]—the latter being a very common problem in modern Big Data settings. In these papers, Naughton brought his expertise in database sampling to bear on the runtime execution of queries [33]. Naughton also worked on parallel execution of object traversal [43], as part of a body of work that presaged the popularity of MapReduce-style parallel computation.

3.5 Aggregation and Data Cubes (1995-2005)

In addition to joins, Naughton did extensive work on aggregate query processing. This included early work on adaptive aggregation using sampling [53] in the context of parallel databases. But some of Naughton’s most extensive and well-cited aggregation work was in the area of multidimensional data cubes, including his work on computing the cube [59, 68, 74, 75], and on working with materialized views of the cube [70, 72, 83, 107, 120]. Multidimensional data cubes have become a fixture in the practical landscape of data management—they are a standard user interface metaphor in modern Business Intelligence tools and spreadsheets, and are an ongoing area of focus for database vendors as well as open-source database systems. As of the time of this writing, Naughton’s initial work on computing the cube was both his third-most-cited [59] and seventh-most-cited [68] papers, with 775 and 527 citations respectively [187].

3.6 Document Databases and the Web (1999-2009)

As the millennium drew to a close, the world became connected via the Internet and the World-Wide Web, and Naughton’s work turned to issues in web data management. These included topics in managing semi-structured document data, and in serving database data online.

Naughton and his students were among the leaders in bridging XML document management and traditional database ideas from the relational era. The work is broadly applicable to any data model with nested and/or variant structure, including the JSON model used in many currently-popular document databases.

Naughton’s work on XML and relational databases was extensive in its scope [76, 89, 101, 105, 111, 113, 114, 118, 145]. It was also extremely influential in both industry and academia. Naughton’s single most-widely-cited paper is his 1999 work that opened up this space, laying out the connections and differences between XML and relational databases [76], as of this writing it had over 1500 citations in the literature [187]. Another topic in this area that has attracted enormous attention is the problem of answering containment queries [81, 90]; the second of these papers is Naughton’s second-most-cited result, with over 1000 citations as of the time of writing [187].

Naughton also returned to his roots in this domain, revisiting problems such as selectivity estimation [84, 99] and recursive query processing [112] in the context of XML. In later years, Naughton returned to the topic
of document data in the guise of “sparse” relational datasets, which can be viewed either as relations with many nulls, or key-value maps [123,131].

A related topic at the turn of the millenium was the integration of databases with web servers. In this domain, Naughton worked on a series of papers regarding web caching for database-backed websites [79,87,96,141].

3.7 Streaming, Progress and Online Query Processing (2001-2014)

Naughton was an ongoing contributor to improving the user experience for long-running queries—an abiding issue in large-scale analytics. Naughton’s work included an ongoing effort into progress indicators for long-running queries [115,119,128,165,167,168,180], as well as providing online results for those queries while they are in progress [94,95,176]. In both cases, progress and answers often need to be estimated, again exercising Naughton’s expertise in database sampling and estimation.

In a related vein, Naughton contributed fundamental work on processing continuous queries over Data Streams [92,103,122,169]—here too, results have to be produced before data is fully consumed. The setting for much of his work was the Niagara Internet Query System [58], a vision of streaming XML documents that combined challenges in XML document processing with challenges in stream processing, adaptive query execution, data integration and text search.

3.8 Privacy in Databases (2009-2013)

In his last decade at Wisconsin, Naughton became interested in the topic of data privacy, with a particular focus on anonymization methods for query processing. In many of Naughton’s papers in this area there were connections to topics where he had done pioneering prior work previously, including connections between anonymization and spatial indexing [133], as well as anonymization of set-valued attributes [146], streaming events [156], range predicates [169] and recursive queries [170]. Naughton’s privacy work also including dynamic anonymization [155] and anonymization of frequent itemset algorithms for data mining [161].

3.10 Text Search in Databases (2009-2015)

Related to his work on XML as well as Information Extraction, Naughton and his students worked on various problems in searching and combining textual data in databases. This includes work on combining keyword search results with forms [144,149], approximate string membership [157,160], and debugging of “why not” provenance in keyword search over databases [182].

3.11 Indexing (1995-2014)

A cross-cutting topic in Naughton’s work is the development and use of index structures, from generalized search trees [51] to document store indexes [92,93] to text queries [111,178].

3.12 And So Much More

Jeff Naughton is sui generis: beyond category. So it is not surprising that the categories above do not cover his work. Given his devotion to his many Ph.D. students, the best overview of Naughton’s work may be the topics of his students’ dissertations in Table 1. To both Jeff and his students, I apologize both for the work I misclassified above, and the work I neglected to classify entirely.

4 A Personal Note

Jeff Naughton’s bibliography and papers, impressive as they are, present only a narrow picture of the man. I consider myself lucky to have studied with him at Wisconsin. As Jeff’s student both during and after my Ph.D., I learned many things beyond computer science. I learned how to shake off disappointment and failure, and turn them into research results; I will be forever grateful for his confidence in me and his gentle guidance through difficult times. I saw how humor can smooth the ups and downs of learning. I was given patient lessons in balancing ambition and grace, from a role model who coupled a characteristically midwestern humility to deep insight, steady confidence and a wicked sense of humor. Perhaps most significantly I got to see—first with puzzle-ment and later with admiration—how a first-rate scholar can protect his time, put family first, and raise delightful children. As the years have passed, I’ve had to find my own path through similar issues, and I’ve been grateful to have seen the trails Jeff blazed. I don’t try to follow
Jeff directly; he is unique. But he has been a guidepost for me in many issues at the juncture of scholarship, drive, and fulfillment. For all that I am grateful.

Like Jeff, I have lifelong ties to Madison; probably this makes me more wistful about his departure from the UW than I might be otherwise. To me, Jeff has many of the qualities that represent the best of Wisconsin character: wit, wisdom and friendly modesty. His departure will leave a hole at the heart of the computer sciences department. I know Jeff will bring all those qualities and more to his new career in industry. I hope the people of both Wisconsin and the data management community continue to benefit from Jeff’s brilliance and character for many years to come.

And so, by circuitous and unpredictable routes, we converge toward midcontinent and meet in Madison, and are at once drawn together.

—Wallace Stegner, Crossing to Safety

References

[1] J. F. Naughton. Data Independent Recursion in Deductive Databases. In A. Silberschatz, editor, Proceedings of the Fifth ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, March 24-26, 1986, Cambridge, Massachusetts, USA, pages 267–279. ACM, 1986.

[2] J. F. Naughton. One-Sided Recursions. In H. F. Korth, editor, XP / 7.52 Workshop on Database Theory, University of Texas at Austin, TX, USA, August 13-15, 1986, 1986.

[3] J. F. Naughton. Redundancy in Function-Free Recursive Rules. In Proceedings of the 1986 Symposium on Logic Programming, Salt Lake City, Utah, USA, September 22-25, 1986, pages 236–245. IEEE-CS, 1986.

[4] K. A. Morris, J. F. Naughton, Y. P. Saraiya, J. D. Ullman, and A. V. Gelder. YAWN! (Yet Another Window on NAIL!). IEEE Data Eng. Bull., 10(4):28–43, 1987.

[5] J. F. Naughton. One-Sided Recursions. In M. Y. Vardi, editor, Proceedings of the Sixth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, March 23-25, 1987, San Diego, California, USA, pages 340–348. ACM, 1987.

[6] J. F. Naughton. Optimization of Recursive Database Query Languages. PhD thesis, Stanford University, Stanford, CA, USA, 1987. AAIB801000.

[7] J. F. Naughton and Y. Sagiv. A Decidable Class of Bounded Recursions. In M. Y. Vardi, editor, Proceedings of the Sixth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, March 23-25, 1987, San Diego, California, USA, pages 227–236. ACM, 1987.

[8] R. W. Haddad and J. F. Naughton. Counting Methods for Cyclic Relations. In C. Edmondson-Yurkanan and M. Yannakakis, editors, Proceedings of the Seventh ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, March 21-23, 1988, Austin, Texas, USA, pages 333–340. ACM, 1988.

[9] K. Li and J. F. Naughton. Multiprocessor Main Memory Transaction Processing. In DPDS, pages 177–187, 1988.

[10] J. F. Naughton. Compiling Separable Recursions. In H. Boral and P. \(\backslash \). Larson, editors, Proceedings of the 1988 ACM SIGMOD International Conference on Management of Data, Chicago, Illinois, June 1-3, 1988, pages 312–319. ACM Press, 1988.

[11] R. J. Lipton and J. F. Naughton. Estimating the Size of Generalized Transitive Closures. In P. M. G. Apers and G. Wiederhold, editors, Proceedings of the Fifteenth International Conference on Very Large Data Bases, August 22-25, 1989, Amsterdam, The Netherlands, pages 165–171. Morgan Kaufmann, 1989.

[12] J. F. Naughton. Data Independent Recursion in Deductive Databases. J. Comput. Syst. Sci., 38(2):259–289, 1989.

[13] J. F. Naughton. Minimizing function-free recursive inference rules. J. ACM, 36(1):69–91, 1989.

[14] J. F. Naughton, R. Ramakrishnan, Y. Sagiv, and J. D. Ullman. Argument Reduction by Factoring. In P. M. G. Apers and G. Wiederhold, editors, Proceedings of the Fifteenth International Conference on Very Large Data Bases, August 22-25, 1989, Amsterdam, The Netherlands, pages 173–182. Morgan Kaufmann, 1989.

[15] J. F. Naughton, R. Ramakrishnan, Y. Sagiv, and J. D. Ullman. Efficient Evaluation of Right-, Left-, and Multi-Lineare Rules. In J. Clifford, B. G. Lindsay, and D. Maier, editors, Proceedings of the 1989 ACM SIGMOD International Conference on
[16] K. Li, J. F. Naughton, and J. S. Plank. Real-Time, Concurrent Checkpoint for Parallel Programs. In D. A. Padua, editor, *Proceedings of the Second ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming (PPOPP)*, Seattle, Washington, USA, March 14-16, 1990, pages 79–88. ACM, 1990.

[17] R. J. Lipton and J. F. Naughton. Query Size Estimation by Adaptive Sampling. In D. J. Rosenkrantz and Y. Sagiv, editors, *Proceedings of the Ninth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, April 2-4, 1990, Nashville, Tennessee, USA*, pages 40–46. ACM Press, 1990.

[18] R. J. Lipton, J. F. Naughton, and D. A. Schneider. Practical Selectivity Estimation through Adaptive Sampling. In H. Garcia-Molina and H. V. Jagadish, editors, *Proceedings of the 1990 ACM SIGMOD International Conference on Management of Data, Atlantic City, NJ, May 23-25, 1990*, pages 1–11. ACM Press, 1990.

[19] J. F. Naughton and R. Ramakrishnan. How to Forget the Past Without Repeating It. In D. McLeod, R. Sacks-Davis, and H.-J. Schek, editors, *16th International Conference on Very Large Data Bases, August 13-16, 1990, Brisbane, Queensland, Australia, Proceedings*, pages 278–289. Morgan Kaufmann, 1990.

[20] J. F. Naughton and S. Seshadri. On Estimating the Size of Projections. In S. Abiteboul and P. C. Kanellakis, editors, *ICDT’90, Third International Conference on Database Theory, Paris, France, December 12-14, 1990, Proceedings*, volume 470 of *Lecture Notes in Computer Science*, pages 499–513. Springer, 1990.

[21] D. J. DeWitt, J. F. Naughton, and D. A. Schneider. An Evaluation of Non-Equijoin Algorithms. In G. M. Lohman, A. Sernadas, and R. Camps, editors, *17th International Conference on Very Large Data Bases, September 3-6, 1991, Barcelona, Catalonia, Spain, Proceedings*, pages 443–452. Morgan Kaufmann, 1991.

[22] D. J. DeWitt, J. F. Naughton, and D. A. Schneider. Parallel Sorting on a Shared-Nothing Architecture using Probabilistic Splitting. In *Proceedings of the First International Conference on Parallel and Distributed Information Systems (PDIS 1991), Fontainebleau Hilton Resort, Miami Beach, Florida, December 4-6, 1991*, pages 280–291. IEEE Computer Society, 1991.

[23] R. W. Haddad and J. F. Naughton. A Counting Algorithm for a Cyclic Binary Query. *J. Comput. Syst. Sci.*, 43(1):145–169, 1991.

[24] K. Li, J. F. Naughton, and J. S. Plank. Checkpointing Multicomputer Applications. In *Tenth Symposium on Reliable Distributed Systems, SRDS 1991, Pisa, Italy, September 30 - October 2, 1991, Proceedings*, pages 2–11. IEEE Computer Society, 1991.

[25] K. Li, J. F. Naughton, and J. S. Plank. An efficient checkpointing method for multicomputers with wormhole routing. *International Journal of Parallel Programming*, 20(3):159–180, 1991.

[26] J. F. Naughton. One-Sided Recursions. *J. Comput. Syst. Sci.*, 42(2):199–236, 1991.

[27] J. F. Naughton and R. Ramakrishnan. Bottom-Up Evaluation of Logic Programs. In J.-L. Lassez and G. D. Plotkin, editors, *Computational Logic - Essays in Honor of Alan Robinson*, pages 640–700. The MIT Press, 1991.

[28] J. F. Naughton and Y. Sagiv. A Simple Characterization of Uniform Boundedness for a Class of Recursions. *J. Log. Program.*, 10(3&4):233–252, 1991.

[29] S. Seshadri and J. F. Naughton. On the Expected Size of Recursive Datalog Queries. In D. J. Rosenkrantz, editor, *Proceedings of the Tenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, May 29-31, 1991, Denver, Colorado, USA*, pages 268–279. ACM Press, 1991.

[30] S. Sudarshan, D. Srivastava, R. Ramakrishnan, and J. F. Naughton. Space Optimization in the Bottom-Up Evaluation of Logic Programs. In J. Clifford and R. King, editors, *Proceedings of the 1991 ACM SIGMOD International Conference on Management of Data, Denver, Colorado, May 29-31, 1991*, pages 68–77. ACM Press, 1991.

[31] M. M. Tsangaris and J. F. Naughton. A Stochastic Approach for Clustering in Object Bases. In J. Clifford and R. King, editors, *Proceedings of the 1991 ACM SIGMOD International Conference on Management of Data, Denver, Colorado, May 29-31, 1991*, pages 12–21. ACM Press, 1991.
cessing. In J. B. Bocca, M. Jarke, and C. Zaniolo, editors, VLDB ’94, Proceedings of 20th International Conference on Very Large Data Bases, September 12-15, 1994, Santiago de Chile, Chile, pages 510–521. Morgan Kaufmann, 1994.

[48] J. L. Wiener and J. F. Naughton. Bulk Loading into an OODB: A Performance Study. In J. B. Bocca, M. Jarke, and C. Zaniolo, editors, VLDB ’94, Proceedings of 20th International Conference on Very Large Data Bases, September 12-15, 1994, Santiago de Chile, Chile, pages 120–131. Morgan Kaufmann, 1994.

[49] V.-F. Yong, J. F. Naughton, and J.-B. Yu. Storage Reclamation and Reorganization in Client-Server Persistent Object Stores. In Proceedings of the Tenth International Conference on Data Engineering, February 14-18, 1994, Houston, Texas, USA, pages 120–131. IEEE Computer Society, 1994.

[50] P. J. Haas, J. F. Naughton, S. Seshadri, and L. Stokes. Sampling-Based Estimation of the Number of Distinct Values of an Attribute. In U. Dayal, P. M. D. Gray, and S. Nishio, editors, VLDB ’95, Proceedings of 21th International Conference on Very Large Data Bases, September 11-15, 1995, Zurich, Switzerland, pages 311–322. Morgan Kaufmann, 1995.

[51] J. M. Hellerstein, J. F. Naughton, and A. Pfeffer. Generalized Search Trees for Database Systems. In U. Dayal, P. M. D. Gray, and S. Nishio, editors, VLDB ’95, Proceedings of 21th International Conference on Very Large Data Bases, September 11-15, 1995, Zurich, Switzerland, pages 562–573. Morgan Kaufmann, 1995.

[52] R. J. Lipton and J. F. Naughton. Query Size Estimation by Adaptive Sampling. J. Comput. Syst. Sci., 51(1):18–25, 1995.

[53] J. F. Naughton, R. Ramakrishnan, Y. Sagiv, and J. D. Ullman. Argument Reduction by Factoring. Theor. Comput. Sci., 146(1&2):269–310, 1995.

[54] S. Seshadri and J. F. Naughton. On the Expected Size of Recursive Datalog Queries. J. Comput. Syst. Sci., 51(2):137–148, 1995.

[55] A. Shatdal and J. F. Naughton. Adaptive Parallel Aggregation Algorithms. In M. J. Carey and D. A. Schneider, editors, Proceedings of the 1995 ACM SIGMOD International Conference on Management of Data, San Jose, California, May 22-25, 1995, pages 104–114. ACM Press, 1995.

[56] D. Srivastava, S. Sudarshan, R. Ramakrishnan, and J. F. Naughton. Space Optimization in Deductive Databases. ACM Trans. Database Syst., 20(4):472–516, 1995.

[57] S. Venkataraman, M. Livny, and J. F. Naughton. The Impact of Data Placement on Memory Management for Multi-Server OODBMS. In P. S. Yu and A. L. P. Chen, editors, Proceedings of the Eleventh International Conference on Data Engineering, March 6-10, 1995, Taipei, Taiwan, pages 355–364. IEEE Computer Society, 1995.

[58] J. L. Wiener and J. F. Naughton. OODB Bulk Loading Revisited: The Partitioned-List Approach. In U. Dayal, P. M. D. Gray, and S. Nishio, editors, VLDB ’95, Proceedings of 21th International Conference on Very Large Data Bases, September 11-15, 1995, Zurich, Switzerland, pages 30–41. Morgan Kaufmann, 1995.

[59] S. Agarwal, R. Agrawal, P. Deshpande, A. Gupta, J. F. Naughton, R. Ramakrishnan, and S. Sarawagi. On the Computation of Multidimensional Aggregates. In T. M. Vijayaraman, A. P. Buchmann, C. Mohan, and N. L. Sarda, editors, VLDB ’96, Proceedings of 22th International Conference on Very Large Data Bases, September 3-6, 1996, Mumbai (Bombay), India, pages 506–521. Morgan Kaufmann, 1996.

[60] D. J. DeWitt, J. F. Naughton, J. C. Shafer, and S. Venkataraman. Parallelising OODBMS Traversals: A Performance Evaluation. VLDB J., 5(1):3–18, 1996.

[61] P. J. Haas, J. F. Naughton, S. Seshadri, and A. N. Swami. Selectivity and Cost Estimation for Joins Based on Random Sampling. J. Comput. Syst. Sci., 52(3):550–569, 1996.

[62] J. M. Hellerstein and J. F. Naughton. Query Execution Techniques for Caching Expensive Methods. In H. V. Jagadish and I. S. Mumick, editors, Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data, Montreal, Quebec, Canada, June 4-6, 1996, pages 423–434. ACM Press, 1996.

[63] A. Shatdal, P. Deshpande, J. F. Naughton, and K. Ramasamy. Storage Estimation for Multidimensional Aggregates in the Presence of Hierarchies. In T. M. Vijayaraman, A. P. Buchmann, C. Mohan, and N. L. Sarda, editors, VLDB ’96, Proceedings of 22th International Conference on Very Large Data Bases, September 3-6, 1996,
[64] M. J. Carey, D. J. DeWitt, J. F. Naughton, M. Asgarian, P. Brown, J. Gehrke, and D. Shah. The BUCKY Object-Relational Benchmark (Experience Paper). In J. Peckham, editor, SIGMOD 1997, Proceedings ACM SIGMOD International Conference on Management of Data, May 13-15, 1997, Tucson, Arizona, USA, pages 135–146. ACM Press, 1997.

[65] P. Deshpande, J. F. Naughton, K. Ramasamy, A. Shukla, K. Tufte, and Y. Zhao. Cubing Algorithms, Storage Estimation, and Storage and Processing Alternatives for OLAP. *IEEE Data Eng. Bull.*, 20(1):3–11, 1997.

[66] J. M. Patel, J.-B. Yu, N. Kabra, K. Tufte, B. Nag, J. Burger, N. E. Hall, K. Ramasamy, R. Lueder, C. J. Ellmann, J. Kupsch, S. Guo, D. J. DeWitt, and J. F. Naughton. Building a Scaleable Geospatial DBMS: Technology, Implementation, and Evaluation. In J. Peckham, editor, SIGMOD 1997, Proceedings ACM SIGMOD International Conference on Management of Data, May 13-15, 1997, Tucson, Arizona, USA, pages 336–347. ACM Press, 1997.

[67] S. Venkataraman, M. Livny, and J. F. Naughton. Memory Management for Scalable Web Data Servers. In W. A. Gray and P.\-\-\-\- Larson, editors, Proceedings of the Thirteenth International Conference on Data Engineering, April 7-11, 1997 Birmingham U.K, pages 510–519. IEEE Computer Society, 1997.

[68] Y. Zhao, P. Deshpande, and J. F. Naughton. An Array-Based Algorithm for Simultaneous Multidimensional Aggregates. In J. Peckham, editor, SIGMOD 1997, Proceedings ACM SIGMOD International Conference on Management of Data, May 13-15, 1997, Tucson, Arizona, USA, pages 159–170. ACM Press, 1997.

[69] P. A. Bernstein, M. L. Brodie, S. Ceri, D. J. DeWitt, M. J. Franklin, H. Garcia-Molina, J. Gray, G. Held, J. M. Hellerstein, H. V. Jagadish, M. Lesk, D. Maier, J. F. Naughton, H. Pirahesh, M. Stonebraker, and J. D. Ullman. The Asilomar Report on Database Research. *SIGMOD Record*, 27(4):74–80, 1998.

[70] P. Deshpande, K. Ramasamy, A. Shukla, and J. F. Naughton. Caching Multidimensional Queries Using Chunks. In L. M. Haas and A. Tiwary, editors, SIGMOD 1998, Proceedings ACM SIGMOD International Conference on Management of Data, June 2-4, 1998, Seattle, Washington, USA, pages 259–270. ACM Press, 1998.

[71] J. F. Naughton and G. Weikum. Guest Editors’ Introduction. *Distributed and Parallel Databases*, 6(1):5–6, 1998.

[72] A. Shukla, P. Deshpande, and J. F. Naughton. Materialized View Selection for Multidimensional Datasets. In A. Gupta, O. Shmueli, and J. Widom, editors, VLDB’98, Proceedings of 24rd International Conference on Very Large Data Bases, August 24-27, 1998, New York City, New York, USA, pages 488–499. Morgan Kaufmann, 1998.

[73] S. Venkataraman, J. F. Naughton, and M. Livny. Remote Load-Sensitive Caching for Multi-Server Database Systems. In S. D. Urban and E. Bertino, editors, Proceedings of the Fourteenth International Conference on Data Engineering, Orlando, Florida, USA, February 23-27, 1998, pages 514–521. IEEE Computer Society, 1998.

[74] Y. Zhao, P. Deshpande, J. F. Naughton, and A. Shukla. Simultaneous Optimization and Evaluation of Multiple Dimensional Queries. In L. M. Haas and A. Tiwary, editors, SIGMOD 1998, Proceedings ACM SIGMOD International Conference on Management of Data, June 2-4, 1998, Seattle, Washington, USA, pages 271–282. ACM Press, 1998.

[75] Y. Zhao, K. Ramasamy, K. Tufte, and J. F. Naughton. Array-Based Evaluation of Multi-Dimensional Queries in Object-Relational Database Systems. In S. D. Urban and E. Bertino, editors, Proceedings of the Fourteenth International Conference on Data Engineering, Orlando, Florida, USA, February 23-27, 1998, pages 241–249. IEEE Computer Society, 1998.

[76] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J. DeWitt, and J. F. Naughton. Relational Databases for Querying XML Documents: Limitations and Opportunities. In M. P. Atkinson, M. E. Orlowska, P. Valduriez, S. B. Zdonik, and M. L. Brodie, editors, VLDB’99, Proceedings of 25th International Conference on Very Large Data Bases, September 7-10, 1999, Edinburgh, Scotland, UK, pages 302–314. Morgan Kaufmann, 1999.

[77] A. Aboulnaga and J. F. Naughton. Accurate Estimation of the Cost of Spatial Selections. In ICDE, pages 123–134, 2000.
[78] P. Deshpande and J. F. Naughton. Aggregate Aware Caching for Multi-Dimensional Queries. In C. Zaniolo, P. C. Lockemann, M. H. Scholl, and T. Grust, editors, Advances in Database Technology - EDBT 2000, 7th International Conference on Extending Database Technology, Konstanz, Germany, March 27-31, 2000, Proceedings, volume 1777 of Lecture Notes in Computer Science, pages 167–182. Springer, 2000.

[79] Q. Luo, J. F. Naughton, R. Krishnamurthy, P. Cao, and Y. Li. Active Query Caching for Database Web Servers. In D. Suciu and G. Vossen, editors, The World Wide Web and Databases, Third International Workshop WebDB 2000, Dallas, Texas, USA, May 18-19, 2000, Selected Papers, volume 1997 of Lecture Notes in Computer Science, pages 92–104. Springer, 2000.

[80] J. F. Naughton. SIGMOD’2000 Program Chair’s Message. SIGMOD Record, 29(3):10–11, 2000.

[81] K. Ramasamy, J. M. Patel, J. F. Naughton, and R. Kaushik. Set Containment Joins: The Good, The Bad and The Ugly. In A. E. Abbadi, M. L. Brodie, S. Chakrabarty, U. Dayal, N. Kamel, G. Schlageter, and K.-Y. Whang, editors, VLDB 2000, Proceedings of 26th International Conference on Very Large Data Bases, September 10-14, 2000, Cairo, Egypt, pages 351–362. Morgan Kaufmann, 2000.

[82] J. Shanmugasundaram, K. Tufte, D. J. DeWitt, D. Maier, and J. F. Naughton. Architecting a Network Query Engine for Producing Partial Results. In WebDB (Selected Papers), pages 58–77, 2000.

[83] A. Shukla, P. Deshpande, and J. F. Naughton. Materialized View Selection for Multi-Cube Data Models. In C. Zaniolo, P. C. Lockemann, M. H. Scholl, and T. Grust, editors, Advances in Database Technology - EDBT 2000, 7th International Conference on Extending Database Technology, Konstanz, Germany, March 27-31, 2000, Proceedings, volume 1777 of Lecture Notes in Computer Science, pages 269–284. Springer, 2000.

[84] A. Aboulnaga, A. R. Alamdeeen, and J. F. Naughton. Estimating the Selectivity of XML Path Expressions for Internet Scale Applications. In P. M. G. Apers, P. Atzeni, S. Ceri, S. Paraboschi, K. Ramamohanarao, and R. T. Snodgrass, editors, VLDB 2001, Proceedings of 27th International Conference on Very Large Data Bases, September 11-14, 2001, Roma, Italy, pages 591–600. Morgan Kaufmann, 2001.

[85] A. Aboulnaga, J. F. Naughton, and C. Zhang. Generating Synthetic Complex-Structured XML Data. In WebDB, pages 79–84, 2001.

[86] J.-y. Cai, V. T. Chakaravarthy, R. Kaushik, and J. F. Naughton. On the Complexity of Join Predicates. In P. Buneman, editor, Proceedings of the Twentieth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, May 21-23, 2001, Santa Barbara, California, USA. ACM, 2001.

[87] Q. Luo and J. F. Naughton. Form-Based Proxy Caching for Database-Backed Web Sites. In P. M. G. Apers, P. Atzeni, S. Ceri, S. Paraboschi, K. Ramamohanarao, and R. T. Snodgrass, editors, VLDB 2001, Proceedings of 27th International Conference on Very Large Data Bases, September 11-14, 2001, Roma, Italy, pages 191–200. Morgan Kaufmann, 2001.

[88] J. F. Naughton, D. J. DeWitt, D. Maier, A. Aboulnaga, J. Chen, L. Galanis, J. Kang, R. Krishnamurthy, Q. Luo, N. Prakash, R. Ramamurthy, J. Shanmugasundaram, F. Tian, K. Tufte, S. Vignlas, Y. Wang, C. Zhang, B. Jackson, A. K. Gupta, and R. Chen. The Niagara Internet Query System. IEEE Data Eng. Bull., 24(2):27–33, 2001.

[89] J. Shanmugasundaram, E. J. Shekita, J. Kiernan, R. Krishnamurthy, S. Vignlas, J. F. Naughton, and I. Tatarinov. A General Techniques for Querying XML Documents using a Relational Database System. SIGMOD Record, 30(3):20–26, 2001.

[90] C. Zhang, J. F. Naughton, D. J. DeWitt, Q. Luo, and G. M. Lohman. On Supporting Containment Queries in Relational Database Management Systems. In S. Mehrotra and T. K. Sellis, editors, Proceedings of the 2001 ACM SIGMOD international conference on Management of data, Santa Barbara, CA, USA, May 21-24, 2001, pages 425–436. ACM, 2001.

[91] J. Chen, D. J. DeWitt, and J. F. Naughton. Design and Evaluation of Alternative Selection Placement Strategies in Optimizing Continuous Queries. In R. Agrawal and K. R. Dittrich, editors, Proceedings of the 18th International Conference on Data Engineering, San Jose, CA, USA, February 26 - March 1, 2002, pages 345–356. IEEE Computer Society, 2002.

[92] R. Kaushik, P. Bohannon, J. F. Naughton, and H. F. Korth. Covering indexes for branching path
queries. In M. J. Franklin, B. Moon, and A. Ailamaki, editors, *Proceedings of the 2002 ACM SIGMOD International Conference on Management of Data*, Madison, Wisconsin, June 3-6, 2002, pages 133–144. ACM, 2002.

[93] R. Kaushik, P. Bohannon, J. F. Naughton, and P. Shenoy. Updates for Structure Indexes. In *VLDB 2002, Proceedings of 28th International Conference on Very Large Data Bases*, August 20-23, 2002, Hong Kong, China, pages 239–250. Morgan Kaufmann, 2002.

[94] G. Luo, C. J. Ellmann, P. J. Haas, and J. F. Naughton. A scalable hash ripple join algorithm. In M. J. Franklin, B. Moon, and A. Ailamaki, editors, *Proceedings of the 2002 ACM SIGMOD International Conference on Management of Data*, Madison, Wisconsin, June 3-6, 2002, pages 252–262. ACM, 2002.

[95] G. Luo, J. F. Naughton, and C. J. Ellmann. A Non-Blocking Parallel Spatial Join Algorithm. In R. Agrawal and K. R. Dittrich, editors, *Proceedings of the 18th International Conference on Data Engineering*, San Jose, CA, USA, February 26 - March 1, 2002, pages 697–705. IEEE Computer Society, 2002.

[96] Q. Luo, S. Krishnamurthy, C. Mohan, H. Pirahesh, H. Woo, B. G. Lindsay, and J. F. Naughton. Middle-tier database caching for e-business. In M. J. Franklin, B. Moon, and A. Ailamaki, editors, *Proceedings of the 2002 ACM SIGMOD International Conference on Management of Data*, Madison, Wisconsin, June 3-6, 2002, pages 600–611. ACM, 2002.

[97] S. Viglas and J. F. Naughton. Rate-based query optimization for streaming information sources. In M. J. Franklin, B. Moon, and A. Ailamaki, editors, *Proceedings of the 2002 ACM SIGMOD International Conference on Management of Data*, Madison, Wisconsin, June 3-6, 2002, pages 37–48. ACM, 2002.

[98] S. Abiteboul, R. Agrawal, P. A. Bernstein, M. J. Carey, S. Ceri, W. B. Croft, D. J. DeWitt, M. J. Franklin, H. Garcia-Molina, D. Gawlick, J. Gray, L. M. Haas, A. Y. Halevy, J. M. Hellerstein, Y. E. Ioannidis, M. L. Kersten, M. J. Pazzani, M. Lesk, D. Maier, J. F. Naughton, H.-J. Schek, T. K. Sellis, A. Silberschatz, M. Stonebraker, R. T. Snodgrass, J. D. Ullman, G. Weikum, J. Widom, and S. B. Zdonik. The Lowell Database Research Self Assessment. *CoRR*, cs.DB/0310006, 2003.

[99] A. Aboulnaga and J. F. Naughton. Building XML statistics for the hidden web. In *Proceedings of the 2003 ACM CIKM International Conference on Information and Knowledge Management*, New Orleans, Louisiana, USA, November 2-8, 2003, pages 358–365. ACM, 2003.

[100] S. Chaudhuri, R. Kaushik, and J. F. Naughton. On Relational Support for XML Publishing: Beyond Sorting and Tagging. In A. Y. Halevy, Z. G. Ives, and A. Doan, editors, *Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data*, San Diego, California, USA, June 9-12, 2003, pages 611–622. ACM, 2003.

[101] A. Halverson, J. Burger, L. Galanis, A. Kini, R. Krishnamurthy, A. N. Rao, F. Tian, S. Viglas, Y. Wang, J. F. Naughton, and D. J. DeWitt. Mixed Mode XML Query Processing. In *VLDB*, pages 225–236, 2003.

[102] J. Kang and J. F. Naughton. On Schema Matching with Opaque Column Names and Data Values. In A. Y. Halevy, Z. G. Ives, and A. Doan, editors, *Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data*, San Diego, California, USA, June 9-12, 2003, pages 205–216. ACM, 2003.

[103] J. Kang, J. F. Naughton, and S. Viglas. Evaluating Window Joins over Unbounded Streams. In U. Dayal, K. Ramamritham, and T. M. Vijayaraman, editors, *Proceedings of the 19th International Conference on Data Engineering*, March 5-8, 2003, Bangalore, India, pages 341–352. IEEE Computer Society, 2003.

[104] R. Krishnamurthy, V. T. Chakaravarthy, and J. F. Naughton. On the Difficulty of Finding Optimal Relational Decompositions for XML Workloads: A Complexity Theoretic Perspective. In D. Calvanese, M. Lenzneri, and R. Motwani, editors, *Database Theory - ICDT 2003*, 9th International Conference, Siena, Italy, January 8-10, 2003, Proceedings, volume 2572 of *Lecture Notes in Computer Science*, pages 267–281. Springer, 2003.

[105] R. Krishnamurthy, R. Kaushik, and J. F. Naughton. XML-SQL Query Translation Literature: The State of the Art and Open Problems. In Z. Bellahsene, A. B. Chaudhri, E. Rahm, M. Rys, and R. Unland, editors, *Database and XML Technologies, First International XML Database Symposium, XSym 2003*, Berlin, Germany, September
[106] G. Luo, J. F. Naughton, C. J. Ellmann, and M. Watzke. A Comparison of Three Methods for Join View Maintenance in Parallel RDBMS. In U. Dayal, K. Ramamritham, and T. M. Vijayaraman, editors, *Proceedings of the 19th International Conference on Data Engineering, March 5-8, 2003, Bangalore, India*, pages 177–188. IEEE Computer Society, 2003.

[107] G. Luo, J. F. Naughton, C. J. Ellmann, and M. Watzke. Locking Protocols for Materialized Aggregate Join Views. In *VLDB*, pages 596–607, 2003.

[108] K. A. Ross, M. N. Garofalakis, and J. F. Naughton. Reminiscences an Influential Papers. *SIGMOD Record*, 32(1):62–63, 2003.

[109] S. Viglas, J. F. Naughton, and J. Burger. Maximizing the Output Rate of Multi-Way Join Queries over Streaming Information Sources. In *VLDB*, pages 285–296, 2003.

[110] A. Ayad and J. F. Naughton. Static Optimization of Conjunctive Queries with Sliding Windows Over Infinite Streams. In G. Weikum, A. C. Knig, and S. D. sloch, editors, *Proceedings of the ACM SIGMOD International Conference on Management of Data, Paris, France, June 13-18, 2004*, pages 419–430. ACM, 2004.

[111] R. Kaushik, R. Krishnamurthy, J. F. Naughton, and R. Ramakrishnan. On the Integration of Structure Indexes and Inverted Lists. In G. Weikum, A. C. Knig, and S. D. sloch, editors, *Proceedings of the ACM SIGMOD International Conference on Management of Data, Paris, France, June 13-18, 2004*, pages 779–790. ACM, 2004.

[112] R. Krishnamurthy, V. T. Chakaravarthy, R. Kaushik, and J. F. Naughton. Recursive XML Schemas, Recursive XML Queries, and Relational Storage: XML-to-SQL Query Translation. In Z. M. zsoyoglu and S. B. Zdonik, editors, *Proceedings of the 20th International Conference on Data Engineering, ICDE 2004, 30 March - 2 April 2004, Boston, MA, USA*, pages 42–53. IEEE Computer Society, 2004.

[113] R. Krishnamurthy, R. Kaushik, and J. F. Naughton. Efficient XML-to-SQL Query Translation: Where to Add the Intelligence? In M. A. Nascimento, M. T. zu, D. Kossmann, R. J. Miller, J. A. Blakeley, and K. B. Schiefer, editors, *Proceedings of the Thirtieth International Conference on Very Large Data Bases, Toronto, Canada, August 31 - September 3 2004*, pages 144–155. Morgan Kaufmann, 2004.

[114] R. Krishnamurthy, R. Kaushik, and J. F. Naughton. Unraveling the Duplicate-Elimination Problem in XML-to-SQL Query Translation. In S. Amer-Yahia and L. Gravano, editors, *Proceedings of the Seventh International Workshop on the Web and Databases, WebDB 2004, June 17-18, 2004, Maison de la Chimie, Paris, France, Colocated with ACM SIGMOD/PODS 2004*, pages 49–54, 2004.

[115] G. Luo, J. F. Naughton, C. J. Ellmann, and M. Watzke. Toward a Progress Indicator for Database Queries. In G. Weikum, A. C. Knig, and S. D. sloch, editors, *Proceedings of the ACM SIGMOD International Conference on Management of Data, Paris, France, June 13-18, 2004*, pages 791–802. ACM, 2004.

[116] S. Abiteboul, R. Agrawal, P. A. Bernstein, M. J. Carey, S. Ceri, W. B. Croft, D. J. DeWitt, M. J. Franklin, H. Garcia-Molina, D. Gawlick, J. Gray, L. M. Haas, A. Y. Halevy, J. M. Hellerstein, Y. E. Ioannidis, M. L. Kersten, M. J. Pazzani, M. Lesk, D. Maier, J. F. Naughton, H.-J. Schek, T. K. Sel-lis, A. Silberschatz, M. Stonebraker, R. T. Snodgrass, J. D. Ullman, G. Weikum, J. Widom, and S. B. Zdonik. The Lowell database research self-assessment. *Commun. ACM*, 48(5):111–118, 2005.

[117] R. Kaushik, J. F. Naughton, R. Ramakrishnan, and V. T. Chakaravarthy. Synopses for query optimization: A space-complexity perspective. *ACM Trans. Database Syst.*, 30(4):1102–1127, 2005.

[118] R. Krishnamurthy, R. Kaushik, and J. F. Naughton. XML Views as Integrity Constraints and their Use in Query Translation. In K. Aberer, M. J. Franklin, and S. Nishio, editors, *Proceedings of the 21st International Conference on Data Engineering, ICDE 2005, 5-8 April 2005, Tokyo, Japan*, pages 693–704. IEEE Computer Society, 2005.

[119] G. Luo, J. F. Naughton, C. J. Ellmann, and M. Watzke. Increasing the Accuracy and Coverage of SQL Progress Indicators. In K. Aberer, M. J. Franklin, and S. Nishio, editors, *Proceedings of the 21st International Conference on Data
[120] G. Luo, J. F. Naughton, C. J. Ellmann, and M. Watzke. Locking Protocols for Materialized Aggregate Join Views. *IEEE Trans. Knowl. Data Eng.*, 17(6):796–807, 2005.

[121] S. Shankar, A. Kini, D. J. DeWitt, and J. F. Naughton. Integrating databases and workflow systems. *SIGMOD Record*, 34(3):5–11, 2005.

[122] A. Ayad, J. F. Naughton, S. J. Wright, and U. Srivastava. Approximating StreamingWindow Joins Under CPU Limitations. In L. Liu, A. Reuter, K.-Y. Whang, and J. Zhang, editors, *Proceedings of the 22nd International Conference on Data Engineering, ICDE 2006*, 3-8 April 2006, Atlanta, GA, USA, page 142. IEEE Computer Society, 2006.

[123] J. L. Beckmann, A. Halverson, R. Krishnamurthy, and J. F. Naughton. Extending RDBMSs To Support Sparse Datasets Using An Interpreted Attribute Storage Format. In L. Liu, A. Reuter, K.-Y. Whang, and J. Zhang, editors, *Proceedings of the 22nd International Conference on Data Engineering, ICDE 2006*, 3-8 April 2006, Atlanta, GA, USA, page 58. IEEE Computer Society, 2006.

[124] C. Estan and J. F. Naughton. End-biased Samples for Join Cardinality Estimation. In L. Liu, A. Reuter, K.-Y. Whang, and J. Zhang, editors, *Proceedings of the 22nd International Conference on Data Engineering, ICDE 2006*, 3-8 April 2006, Atlanta, GA, USA, page 20. IEEE Computer Society, 2006.

[125] J. Huang, J. F. Naughton, and M. Livny. TRAC: Toward Recency and Consistency Reporting in a Database with Distributed Data Sources. In U. Dayal, K.-Y. Whang, D. B. Lomet, G. Alonso, G. M. Lohman, M. L. Kersten, S. K. Cha, and Y.-K. Kim, editors, *Proceedings of the 32nd International Conference on Very Large Data Bases, Seoul, Korea, September 12-15, 2006*, pages 223–234. ACM, 2006.

[126] A. Kini, S. Shankar, J. F. Naughton, and D. J. DeWitt. Database support for matching: limitations and opportunities. In S. Chaudhuri, V. Hristidis, and N. Polyzotis, editors, *Proceedings of the ACM SIGMOD International Conference on Management of Data, Chicago, Illinois, USA, June 27-29, 2006*, pages 85–96. ACM, 2006.

[127] G. Luo, J. F. Naughton, C. J. Ellmann, and M. Watzke. Transaction Reordering and Grouping for Continuous Data Loading. In C. Bussler, M. Castellanos, U. Dayal, and S. B. Navathe, editors, *Business Intelligence for the Real-Time Enterprises, First International Workshop, BIRTE 2006, Seoul, Korea, September 11, 2006, Revised Selected Papers*, volume 4365 of *Lecture Notes in Computer Science*, pages 34–49. Springer, 2006.

[128] G. Luo, J. F. Naughton, and P. S. Yu. Multi-query SQL Progress Indicators. In Y. E. Ioanidis, M. H. Scholl, J. W. Schmidt, F. Matthes, M. Hatzopoulos, K. Bhm, A. Kemper, T. Grust, and C. Bhm, editors, *Advances in Database Technology - EDBT 2006, 10th International Conference on Extending Database Technology, Munich, Germany, March 26-31, 2006, Proceedings*, volume 3896 of *Lecture Notes in Computer Science*, pages 921–941. Springer, 2006.

[129] C. F. Reilly and J. F. Naughton. Exploring Provenance in a Distributed Job Execution System. In L. Moreau and I. T. Foster, editors, *Provenance and Annotation of Data, International Provenance and Annotation Workshop, IPAW 2006, Chicago, IL, USA, May 3-5, 2006, Revised Selected Papers*, volume 4145 of *Lecture Notes in Computer Science*, pages 237–245. Springer, 2006.

[130] E. Chu, A. Baid, T. Chen, A. Doan, and J. F. Naughton. A Relational Approach to Incrementally Extracting and Querying Structure in Unstructured Data. In C. Koch, J. Gehrke, M. N. Garofalakis, D. Srivastava, K. Aberer, A. Deshpande, D. Florescu, C. Y. Chan, V. Ganti, C.-C. Kanne, W. Klas, and E. J. Neuhold, editors, *Proceedings of the 33rd International Conference on Very Large Data Bases, University of Vienna, Austria, September 23-27, 2007*, pages 1045–1056. ACM, 2007.

[131] E. Chu, J. L. Beckmann, and J. F. Naughton. The case for a wide-table approach to manage sparse relational data sets. In C. Y. Chan, B. C. Ooi, and A. Zhou, editors, *Proceedings of the ACM SIGMOD International Conference on Management of Data, Beijing, China, June 12-14, 2007*, pages 821–832. ACM, 2007.

[132] J. Huang and J. F. Naughton. K-relevance: a spectrum of relevance for data sources impacting a query. In C. Y. Chan, B. C. Ooi, and A. Zhou, editors, *Proceedings of the ACM SIGMOD International Conference on Management of Data, Bet-
[133] T. Iwuchukwu and J. F. Naughton. K-Anonymization as Spatial Indexing: Toward Scalable and Incremental Anonymization. In C. Koch, J. Gehrke, M. N. Garofalakis, D. Srivastava, K. Aberer, A. Deshpande, D. Florescu, C. Y. Chan, V. Ganti, C.-C. Kanne, W. Klas, and E. J. Neuhold, editors, Proceedings of the 33rd International Conference on Very Large Data Bases, University of Vienna, Austria, September 23-27, 2007, pages 746–757. ACM, 2007.

[134] A. Kini and J. F. Naughton. Database Support for Weighted Match Joins. In 19th International Conference on Scientific and Statistical Database Management, SSDBM 2007, 9-11 July 2007, Banff, Canada, Proceedings, page 20. IEEE Computer Society, 2007.

[135] W. Shen, A. Doan, J. F. Naughton, and R. Ramakrishnan. Declarative Information Extraction Using Datalog with Embedded Extraction Predicates. In C. Koch, J. Gehrke, M. N. Garofalakis, D. Srivastava, K. Aberer, A. Deshpande, D. Florescu, C. Y. Chan, V. Ganti, C.-C. Kanne, W. Klas, and E. J. Neuhold, editors, Proceedings of the 33rd International Conference on Very Large Data Bases, University of Vienna, Austria, September 23-27, 2007, pages 1033–1044. ACM, 2007.

[136] D. J. DeWitt, E. Paulson, E. Robinson, J. F. Naughton, J. Royalty, S. Shankar, and A. Krioukov. Clustera: an integrated computation and data management system. PVLDB, 1(1):28–41, 2008.

[137] A. Doan, J. F. Naughton, R. Ramakrishnan, A. Baid, X. Chai, F. Chen, T. Chen, E. Chu, P. DeRose, B. J. Gao, C. Gokhale, J. Huang, W. Shen, and B.-Q. Vuong. Information extraction challenges in managing unstructured data. SIGMOD Record, 37(4):14–20, 2008.

[138] J. Huang, T. Chen, A. Doan, and J. F. Naughton. On the provenance of non-answers to queries over extracted data. PVLDB, 1(1):736–747, 2008.

[139] J. Kang and J. F. Naughton. Schema Matching Using Interattribute Dependencies. IEEE Trans. Knowl. Data Eng., 20(10):1393–1407, 2008.

[140] G. Luo, J. F. Naughton, C. J. Ellmann, and M. Watzke. Transaction reordering with application to synchronized scans. In J. G. Shanahan, S. Amer-Yahia, I. Manolescu, Y. Zhang, D. A. Evans, A. Kolcz, K.-S. Choi, and A. Chowdhury, editors, Proceedings of the 17th ACM Conference on Information and Knowledge Management, CIKM 2008, Napa Valley, California, USA, October 26-30, 2008, pages 1335–1336. ACM, 2008.

[141] Q. Luo, J. F. Naughton, and W. Xue. Form-based proxy caching for database-backed web sites: keywords and functions. VLDB J., 17(3):489–513, 2008.

[142] L. Shrinivas and J. F. Naughton. Issues in applying data mining to grid job failure detection and diagnosis. In M. Parashar, K. Schwan, J. B. Weissman, and D. Laforenza, editors, Proceedings of the 17th International Symposium on High-Performance Distributed Computing (HPDC-17 2008), 23-27 June 2008, Boston, MA, USA, pages 239–240. ACM, 2008.

[143] X. Chai, B.-Q. Vuong, A. Doan, and J. F. Naughton. Efficiently incorporating user feedback into information extraction and integration programs. In U. etintemel, S. B. Zdonik, D. Kossmann, and N. Tatbul, editors, Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2009, Providence, Rhode Island, USA, June 29 - July 2, 2009, pages 87–100. ACM, 2009.

[144] E. Chu, A. Baid, X. Chai, A. Doan, and J. F. Naughton. Combining keyword search and forms for ad hoc querying of databases. In U. etintemel, S. B. Zdonik, D. Kossmann, and N. Tatbul, editors, Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2009, Providence, Rhode Island, USA, June 29 - July 2, 2009, pages 349–360. ACM, 2009.

[145] A. Doan, J. F. Naughton, A. Baid, X. Chai, F. Chen, T. Chen, E. Chu, P. DeRose, B. J. Gao, C. Gokhale, J. Huang, W. Shen, and B.-Q. Vuong. The Case for a Structured Approach to Managing Unstructured Data. In CIDR 2009, Fourth Biennial Conference on Innovative Data Systems Research, Asilomar, CA, USA, January 4-7, 2009, Online Proceedings. www.cidrdb.org, 2009.

[146] Y. He and J. F. Naughton. Anonymization of Set-Valued Data via Top-Down, Local Generalization. PVLDB, 2(1):934–945, 2009.

[147] W. Lang, J. M. Patel, and J. F. Naughton. On energy management, load balancing and replication. SIGMOD Record, 38(4):35–42, 2009.
[148] C. F. Reilly and J. F. Naughton. Transparently Gathering Provenance with Provenance Aware Condor. In J. Cheney, editor, First Workshop on the Theory and Practice of Provenance, TaPP’09, San Francisco, CA, USA, February 23, 2009, Proceedings. USENIX, 2009.

[149] A. Baid, I. Rae, J. Li, A. Doan, and J. F. Naughton. Toward Scalable Keyword Search over Relational Data. PVLDB, 3(1):140–149, 2010.

[150] G. Luo, J. F. Naughton, C. J. Ellmann, and M. Watzke. Transaction reordering. Data Knowl. Eng., 69(1):29–49, 2010.

[151] J. F. Naughton. DBMS: Lessons from the first 50 years, speculations for the next 50. In F. Li, M. M. Moro, S. Ghandeharizadeh, J. R. Haritsa, G. Weikum, M. J. Carey, F. Casati, E. Y. Chang, I. Manolescu, S. Mehrotra, U. Dayal, and V. J. Tsotras, editors, Proceedings of the 26th International Conference on Data Engineering, ICDE 2010, March 1-6, 2010, Long Beach, California, USA, page 2. IEEE, 2010.

[152] S. Subramanian, Y. Zhang, R. Vaidyanathan, H. S. Gunawi, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, and J. F. Naughton. Impact of disk corruption on open-source DBMS. In F. Li, M. M. Moro, S. Ghandeharizadeh, J. R. Haritsa, G. Weikum, M. J. Carey, F. Casati, E. Y. Chang, I. Manolescu, S. Mehrotra, U. Dayal, and V. J. Tsotras, editors, Proceedings of the 26th International Conference on Data Engineering, ICDE 2010, March 1-6, 2010, Long Beach, California, USA, pages 509–520. IEEE, 2010.

[153] K. Q. Tran, S. Blanas, and J. F. Naughton. On Transactional Memory, Spinlocks, and Database Transactions. In R. Bordawekar and C. A. Lang, editors, International Workshop on Accelerating Data Management Systems Using Modern Processor and Storage Architectures - ADMS 2010, Singapore, September 13, 2010, pages 43–50, 2010.

[154] J. Do, D. Zhang, J. M. Patel, D. J. DeWitt, J. F. Naughton, and A. Halverson. Turbocharging DBMS buffer pool using SSDs. In T. K. Sellis, R. J. Miller, A. Kementsietsidis, and Y. Velegrakis, editors, Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2011, Athens, Greece, June 12-16, 2011, pages 1113–1124. ACM, 2011.

[155] Y. He, S. Barman, and J. F. Naughton. Preventing equivalence attacks in updated, anonymized data. In S. Abiteboul, K. Bhm, C. Koch, and K.-L. Tan, editors, Proceedings of the 27th International Conference on Data Engineering, ICDE 2011, April 11-16, 2011, Hannover, Germany, pages 529–540. IEEE Computer Society, 2011.

[156] Y. He, S. Barman, D. Wang, and J. F. Naughton. On the complexity of privacy-preserving complex event processing. In M. Lenzerini and T. Schwentick, editors, Proceedings of the 30th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2011, June 12-16, 2011, Athens, Greece, pages 165–174. ACM, 2011.

[157] C. Sun and J. F. Naughton. The Token Distribution Filter for Approximate String Membership. In A. Marian and V. Vassalos, editors, Proceedings of the 14th International Workshop on the Web and Databases 2011, WebDB 2011, Athens, Greece, June 12, 2011, 2011.

[158] J. Li, R. V. Nehme, and J. F. Naughton. GSLPI: A Cost-Based Query Progress Indicator. In A. Kementsietsidis and M. A. V. Salles, editors, IEEE 28th International Conference on Data Engineering (ICDE 2012), Washington, DC, USA (Arlington, Virginia), 1-5 April, 2012, pages 678–689. IEEE Computer Society, 2012.

[159] C. F. Reilly, Y.-H. Chiang, and J. F. Naughton. Instrumenting a logic programming language to gather provenance from an information extraction application. In A. Mille, F. L. Gandon, J. Misselis, M. Rabinovich, and S. Staab, editors, Proceedings of the 21st World Wide Web Conference, WWW 2012, Lyon, France, April 16-20, 2012 (Companion Volume), pages 589–590. ACM, 2012.

[160] C. Sun, J. F. Naughton, and S. Barman. Approximate String Membership Checking: A Multiple Filter, Optimization-Based Approach. In A. Kementsietsidis and M. A. V. Salles, editors, IEEE 28th International Conference on Data Engineering (ICDE 2012), Washington, DC, USA (Arlington, Virginia), 1-5 April, 2012, pages 882–893. IEEE Computer Society, 2012.

[161] C. Zeng, J. F. Naughton, and J.-Y. Cai. On differentially private frequent itemset mining. PVLDB, 6(9):673–684, 2013.
[163] D. J. DeWitt, I. F. Ilyas, J. F. Naughton, and M. Stonebraker. We are drowning in a sea of least publishable units (LPUs). In K. A. Ross, D. Srivastava, and D. Papadias, editors, Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2013, New York, NY, USA, June 22-27, 2013, pages 921–922. ACM, 2013.

[164] Y. He, S. Barman, and J. F. Naughton. On Load Shedding in Complex Event Processing. CoRR, abs/1312.4283, 2013.

[165] J. Li, R. V. Nehme, and J. F. Naughton. Toward Progress Indicators on Steroids for Big Data Systems. In CIDR 2013, Sixth Biennial Conference on Innovative Data Systems Research, Asilomar, CA, USA, January 6-9, 2013, Online Proceedings. www.cidrdb.org, 2013.

[166] D. Wang, Y. He, E. A. Rundensteiner, and J. F. Naughton. Utility-maximizing event stream suppression. In K. A. Ross, D. Srivastava, and D. Papadias, editors, Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2013, New York, NY, USA, June 22-27, 2013, pages 589–600. ACM, 2013.

[167] W. Wu, Y. Chi, H. Hacigms, and J. F. Naughton. Towards Predicting Query Execution Time for Concurrent and Dynamic Database Workloads. PVLDB, 6(10):925–936, 2013.

[168] W. Wu, Y. Chi, S. Zhu, J. Tatemura, H. Hacigms, and J. F. Naughton. Predicting query execution time: Are optimizer cost models really unusable? In C. S. Jensen, C. M. Jermaine, and X. Zhou, editors, 29th IEEE International Conference on Data Engineering, ICDE 2013, Brisbane, Australia, April 8-12, 2013, pages 1081–1092. IEEE Computer Society, 2013.

[169] C. Zeng, J.-Y. Cai, P. Lu, and J. F. Naughton. On optimal differentially private mechanisms for count-range queries. In W.-C. Tan, G. Guerrini, B. Catania, and A. Gounaris, editors, Joint 2013 EDBT/ICDT Conferences, ICDT ‘13 Proceedings, Genoa, Italy, March 18-22, 2013, pages 261–271. ACM, 2013.

[170] C. Zeng, E. Lantz, J. F. Naughton, and D. Page. On Differentially Private Inductive Logic Programming. In G. Zaverucha, V. S. Costa, and A. Paes, editors, Inductive Logic Programming - 23rd International Conference, ILP 2013, Rio de Janeiro, Brazil, August 28-30, 2013, Revised Selected Papers, volume 8812 of Lecture Notes in Computer Science, pages 18–30. Springer, 2013.

[171] D. J. Abadi, R. Agrawal, A. Ailamaki, M. Balazinska, P. A. Bernstein, M. J. Carey, S. Chaudhuri, J. Dean, A. Doan, M. J. Franklin, J. Gehrke, L. M. Haas, A. Y. Halevy, J. M. Hellerstein, Y. E. Ioannidis, H. V. Jagadish, D. Kossmann, S. Madden, S. Mehrotra, T. Milo, J. F. Naughton, R. Ramakrishnan, V. Markl, C. Olston, B. C. Ooi, C. R. D. Suciu, M. Stonebraker, T. Walter, and J. Widom. The Beckman Report on Database Research. SIGMOD Record, 43(3):61–70, 2014.

[172] Y.-H. Chiang, A. Doan, and J. F. Naughton. Modeling entity evolution for temporal record matching. In C. E. Dyreson, F. Li, and M. T. zsu, editors, International Conference on Management of Data, SIGMOD 2014, Snowbird, UT, USA, June 22-27, 2014, pages 1175–1186. ACM, 2014.

[173] Y.-H. Chiang, A. Doan, and J. F. Naughton. Tracking Entities in the Dynamic World: A Fast Algorithm for Matching Temporal Records. PVLDB, 7(6):469–480, 2014.

[174] C. Gokhale, S. Das, A. Doan, J. F. Naughton, N. Rampalli, J. W. Shavlik, and X. Zhu. Corleone: hands-off crowdsourcing for entity matching. In C. E. Dyreson, F. Li, and M. T. zsu, editors, International Conference on Management of Data, SIGMOD 2014, Snowbird, UT, USA, June 22-27, 2014, pages 601–612. ACM, 2014.

[175] Y. He, S. Barman, and J. F. Naughton. On Load Shedding in Complex Event Processing. In N. Schweikardt, V. Christophides, and V. Leroy, editors, Proc. 17th International Conference on Database Theory (ICDT), Athens, Greece, March 24-28, 2014, pages 213–224. OpenProceedings.org, 2014.

[176] W. Lang, R. V. Nehme, E. Robinson, and J. F. Naughton. Partial results in database systems. In C. E. Dyreson, F. Li, and M. T. zsu, editors, Proc. 17th International Conference on Database Theory (ICDT), Athens, Greece, March 24-28, 2014, pages 1275–1286. ACM, 2014.

[177] J. Li, J. F. Naughton, and R. V. Nehme. Resource Bricolage for Parallel Database Systems. PVLDB, 8(1):25–36, 2014.

[178] I. Rae, A. Halverson, and J. F. Naughton. In-RDBMS inverted indexes revisited. In I. F.
Cruz, E. Ferrari, Y. Tao, E. Bertino, and G. Trajcevski, editors, *IEEE 30th International Conference on Data Engineering, Chicago, ICDE 2014, IL, USA, March 31 - April 4, 2014*, pages 352–363. IEEE, 2014.

[179] K. Q. Tran, J. F. Naughton, B. Sundarmurthy, and D. Tsirogiannis. JECB: a join-extension, code-based approach to OLTP data partitioning. In C. E. Dyreson, F. Li, and M. T. zsu, editors, *International Conference on Management of Data, SIGMOD 2014, Snowbird, UT, USA, June 22-27, 2014*, pages 39–50. ACM, 2014.

[180] W. Wu, X. Wu, H. Hacigms, and J. F. Naughton. Uncertainty Aware Query Execution Time Prediction. *PVLDB*, 7(14):1857–1868, 2014.

[181] P. Xiong, H. Hacigms, and J. F. Naughton. A software-defined networking based approach for performance management of analytical queries on distributed data stores. In C. E. Dyreson, F. Li, and M. T. zsu, editors, *International Conference on Management of Data, SIGMOD 2014, Snowbird, UT, USA, June 22-27, 2014*, pages 955–966. ACM, 2014.

[182] A. Baid, W. Wu, C. Sun, A. Doan, and J. F. Naughton. On Debugging Non-Answers in Keyword Search Systems. In G. Alonso, F. Geerts, L. Popa, P. Barcel, J. Teubner, M. Ugarte, J. V. d. Bussche, and J. Paredaens, editors, *Proceedings of the 18th International Conference on Extending Database Technology, EDBT 2015, Brussels, Belgium, March 23-27, 2015*, pages 37–48. Open-Proceedings.org, 2015.

[183] A. Kumar, M. Jalal, B. Yan, J. F. Naughton, and J. M. Patel. Demonstration of Santoku: Optimizing Machine Learning over Normalized Data. *PVLDB*, 8(12):1864–1875, 2015.

[184] A. Kumar, J. F. Naughton, and J. M. Patel. Learning Generalized Linear Models Over Normalized Data. In T. K. Sellis, S. B. Davidson, and Z. G. Ives, editors, *Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015*, pages 1969–1984. ACM, 2015.

[185] X. Wu, M. Fredrikson, W. Wu, S. Jha, and J. F. Naughton. Revisiting Differentially Private Regression: Lessons From Learning Theory and their Consequences. *CoRR*, abs/1512.06388, 2015.

[186] D. Abadi, R. Agrawal, A. Ailamaki, M. Balazinska, P. A. Bernstein, M. J. Carey, S. Chaudhuri, J. Dean, A. Doan, M. J. Franklin, J. Gehrke, L. M. Haas, A. Y. Halevy, J. M. Hellerstein, Y. E. Ioannidis, H. V. Jagadish, D. Kossmann, S. Madden, S. Mehrotra, T. Milo, J. F. Naughton, R. Ramakrishnan, V. Markl, C. Olston, B. C. Ooi, C. R. D. Suciu, M. Stonebraker, T. Walter, and J. Widom. The Beckman report on database research. *Commun. ACM*, 59(2):92–99, 2016.

[187] Google Scholar. Jeffrey Naughton, Apr. 2016. [https://scholar.google.com/citations?user=H-VmFU4 Retrieval 04/10/2016](https://scholar.google.com/citations?user=H-VmFU4)

[188] Mathematics Genealogy Project. Jeffrey Frank Naughton, Apr. 2016. Retrieved 04/10/2016.

[189] W. Wu, J. F. Naughton, and H. Singh. Sampling-Based Query Re-Optimization. *CoRR*, abs/1601.05748, 2016.
Name	Ph.D.	Dissertation Title
S. Seshadri	1992	Probabilistic Methods in Query Processing
Emmanuel Tsangaris	1992	Principles of Static Clustering for Object Oriented Databases
Joseph M. Hellerstein	1995	Optimization and Execution Techniques for Queries with Expensive Methods
Bradley Rubin	1995	Information Retrieval Using a Combined Object-Oriented Database/File System Paradigm
Janet Wiener	1995	Algorithms for Loading Object-Oriented Databases
Srikant Ramakrishnan	1996	Fast Algorithms for Mining Association Rules and Sequential Patterns
Ambuj Shatdal	1996	Architectural Considerations for Parallel Query Evaluation Algorithms
Shivakumar Venkataraman	1996	Global Memory Management for Multi-Server Database Systems
Yihong Zhao	1998	Performance Issues of Multi-Dimensional Data Analysis
Prasad Deshpande	1999	Efficient Database Support for OLAP Queries
Amit Shukla	1999	Materialized View Selection for Multidimensional Datasets
Karthikeyan Ramasamy	2001	Efficient Storage and Query Processing of Set-Valued Attributes
Jayavel Shanmugasundaram	2001	Bridging Relational Technology and XML
Ashraf Aboulnaga	2002	Cost Estimation Techniques for Database Systems
Qiong Luo	2002	Caching for Web-Based Database Applications
Chun Zhang	2002	Relational Databases for XML Indexing
Jaewoo Kang	2003	Toward the Scalable Integration of Internet Information Sources
Raghav Kaushik	2003	Graph Summarization for Path Indexing in Graph-Structured Data
Stratis Viglas	2003	Novel Query Optimization and Evaluation Techniques
Rajasekar Krishnamurthy	2004	XML-to-SQL Query Translation
Gang Luo	2004	Techniques for Operational Data Warehousing
Ahmed Ayad	2006	Optimization and Approximation Techniques for Data Streaming Queries
Jennifer Beckmann	2006	Relational Database Management System Support for Sparse Data Sets
Alan Halverson	2006	Storage and Query Processing Optimizations for Hierarchically-Organized Data
Tochukwu Iwuchukwu	2007	Anonymization Techniques for Large and Dynamic Data Sets
Ameet Kini	2007	Supporting Match Joins in Relational Database Management Systems
Eric Chu	2008	Sparse Relational Data Sets: Issues and an Application
Jiansheng Huang	2008	On Interpreting and Debugging Results of Database Queries over Imprecise Data
Lakshmikant Shrinivas	2008	Applications of Data Mining to Cluster Scheduling and Failure Diagnosis
Christine Reilly	2010	Transparent Gathering of Provenance During Program Execution
Akanksha Baid	2011	Toward Scalable Keyword Search over Relational Data
Yeye He	2012	Privacy Preserving Data Publishing and Analysis
Chong Sun	2012	Multi-Filter String Matching and Human-Centric Entity Matching for Information Extraction
Khai Tran	2013	Realizing Parallelism in OLTP Workloads
Chen Zeng	2013	On Differentially Private Mechanisms for Count-Range Queries and their Applications
Yueh-Hsuan Chiang	2014	Towards Large-Scale Temporal Entity Matching
Jiexing Li	2014	Performance Prediction and Resource Bricolage for Database Systems
Ian Rae	2014	From Index Nested Loops to ZigZag Merge: An Experimental Analysis of Skipping Join Algorithms
Wentao Wu	*	
Arun Kumar	*	
Fatemah Panahi	*	
Xi Wu	*	
Bruhathi Sundarmurthy	*	

* Ph.D. expected.