Effect of surcharge load on Microbial-Induced Calcite Precipitation (MICP) treatment of tropical peat

Ignatius Ren Kai Phang¹, Kwong Soon Wong¹*, Yen San Chan², Sie Yon Lau²

¹Department of Civil & Construction Engineering, Curtin University Malaysia, CDT 250, Miri, Malaysia
²Department of Chemical Engineering, Curtin University Malaysia, CDT 250, Miri, Malaysia

Email: wongkwongsoon@curtin.edu.my

Abstract. Peat is known as problematic ground with low bearing capacity and extensively high compressibility. Ordinary Portland cement (OPC) and lime were usually used to tackle unfavourable characteristics of peat by improving it with its cementation effect. However, little was known of the effect of bio-cementation towards peat improvement. Bio-cementation or commonly known as Microbial-induced calcite precipitation (MICP) has been recently introduced as a ground improvement alternative for geotechnical engineering application. MICP performed by utilising metabolic pathways of non-pathogenic urealytic bacteria that precipitates calcium carbonate (CaCO₃) crystal as cementation binder that seal soil particles together increasing soil strength. MICP of inorganic soil was extensively explored, and only limited was done for organic soil. This study explores on the effect of different surcharge preloading of 18kPa, 36kPa and 48kPa towards Microbial-Induced Calcite Precipitation (MICP) treatment of tropical peat. Fibrous peat studied were obtained from Miri, Sarawak and cured under a submerged condition with different vertical preload for seven days. Laboratory study including unconfined compression test, quantification of carbonates precipitated, and moisture content of stabilised specimens was observed to evaluate the performance of stabilisation effort. Unconfined compressive strength (UCS) of treated specimens was observed to be higher than untreated specimens with the highest increase of UCS up to 469%. However, CaCO₃ precipitation amount for this study was observed to decrease with increasing surcharge preload.

1. Introduction
Tropical lowland peatlands covered approximately 23 million hectares in Southeast Asia with the most extensive coverage situated in the coastal zone of Southeast Asia, especially in the countries such as Indonesia and Malaysia. Malaysia has peatlands cover of approximately 2.6 million hectares with Sarawak state covering the most significant extent of peatland over 1.6 million hectares represent approximately 70 per cent of peatlands in the country [1, 2]. Peatland construction is usually unfavourable with its poor bearing capacity, low permeability, high compressibility with high creep rates and often difficult accessibility [3, 4]. Peat stabilisation can be done through chemical method including deep mixing and surface stabilisation along with chemicals additives or binders [5, 6]. Portland cement or lime was commonly used for such efforts promoting cementation in peat [7, 8].
Limited study was done for the effect of bio-cementation as an alternative for peat stabilisation. Bio-cementation or known as Microbial-induced Carbonate Precipitation (MICP) works by bio-precipitation of carbonate crystal on soil materials bridging soil particles and sealing void leading to improvement of engineering [9]. The microbial mechanism was based on hydrolysis of urea by urealytic organism followed with the introduction of calcium (Ca^{2+}) ions into the environment leading to calcite ($CaCO_3$) precipitation [10, 11]. Shear strength (cohesion and friction angle) and unconfined compressive strength (UCS) of bio-cemented soil was shown to be improved compared to control [12-14]. MICP as emerging soil improvement method has been widely studied for inorganic soil [15-20]. Flushing with cementation reagents of constant flow rate or surface percolation and soaking methods commonly practised for MICP treatment on soil bio-cementation [21-23]. The objective of this study is to evaluate the effect of the different surcharge load towards MICP of peat after seven days curing under a submerged condition in the laboratory. Cementation reagents containing calcium chloride ($CaCl_2$) as Ca^{2+} sources and urea were added, and urease activity was depended on indigenous urease activity of peat. Unconfined compression test was performed to evaluate strength development, and calcium carbonate precipitation was also quantified for stabilised peat specimens of three different surcharge rates - 18kPa, 36kPa and 48kPa in 7 days.

2. Methodology

2.1. Materials

The peat samples were collected in Miri, Sarawak, Malaysia. The disturbed soil was collected in bulk and stored in containers sealed to prevent any moisture loss or gain. The properties of the used peat in this study were characterised following ASTM D4427 [24] and subsequently presented in Table 1 below.

Previous study makes use of exogenous bacteria as urease source. Urealytic non-pathogenic bacteria such as $S. pasteurii$ and $B. megaterium$ were introduced to the target soil to induce urea hydrolysis to facilitate bio-cementation mechanism [11, 25]. The previous study has shown the presence of urealytic microbial sources in tropical peat [26, 27]. Hence, indigenous urease activity of peat was considered as sole urease source for this study.

Properties	Natural peat
Natural moisture content (%)	700 - 800
Fibre content (%)	50 - 60
Organic content (%)	94 - 96
Ash content (%)	4 - 6
pH	4.9
Von Post Designation	H3 - H5
Specific gravity	1.23

2.2. Specimen preparation

Roots and coarse fibres from wet peat were removed followed by wet sieving passing through 2 mm sieve. The peat slurry was homogenised with kitchen mixer to ensure that uniform moisture distribution throughout peat matrices. For each specimen, 500g of the peat slurry was mixed with 100 mL of pre-sterilized cementation mixtures containing both urea (60.06 g) and CaCl$_2$ (110.98 g). For untreated specimens, peat slurry was mixed with 100 mL of distilled water. The peat slurry mixture was homogenised for 5 minutes with kitchen mixer to ensure that uniform moisture distribution before being pour into PVC tube with a size of 50 mm internal diameter and 260 mm height with porous stone covering both ends. Wet curing for soft soil stabilisation simulating saturated field condition was performed [28, 29].

The tubes were placed vertically submerged in water with different surcharge load of 18kPa, 36kPa and 48kPa for both treated and untreated specimens. The specimens were cured for seven days before
performing the Unconfined Compression Strength (UCS) Test. All the treated and untreated samples were prepared in duplicates.

2.3. Method of testing

The stabilised specimens were extracted from the PVC pipe and cut to 100 mm height with a ratio of 1:2 with the diameter. UCS test was performed following ASTM D2166 [30] under the maximum of 500 N load cell by using Universal Testing Machine with the loading rate of 2.0 mm/min. The unconfined compressive strength recorded as the peak stress of the soil stress-strain curve or is identified as peak stress correspond to vertical strain reaches 20% as described by a previous study [31]. The moisture content of the untreated and untreated specimens was obtained according to ASTM D4427 [24]. The specimens were rinsed with distilled water to remove excess CaCl$_2$ and urea on soil particles before CaCO$_3$ precipitation of the samples was estimated based on acid wash method described by Heiri, et al. [32].

3. RESULTS AND DISCUSSION

Figure 1. shown reduction of the moisture content of the treated samples compared to untreated samples correspond to the same surcharge preload curing. This is due to the presence of urea hydrolysis which consumes water producing carbonates ions while increasing the pH of the soil environment [33]. The moisture content of soil greatly affects soil stability and its strength [34, 35]. Increased of surcharge preload during curing produces specimens with lower moisture content while increasing preload contributes to the consolidation of peat specimens and speed up water discharge [36]. Carbonates content were not present in untreated specimens. Figure 2. showed that calcium carbonates (CaCO$_3$) precipitated were decreased with increasing surcharge preload. The trend suggested that relative density may affect calcium carbonate precipitation. Increasing consolidation due to higher surcharge load may increase the bulk density of curing peat. A previous study on inorganic soil showed that more calcium carbonate precipitation occurs in soil with lower relative density [37].

The study were observed with overall higher unconfined compressive strength (UCS) of the treated sample compared to untreated (Figure 3.). Highest UCS was observed at 17.19 kPa for specimens cured at 48kPa preloading compared to 8.31 kPa obtained by treated specimens cured under 18kPa surcharge preload. Although it was observed that treated has shown higher strength compared to untreated under the same respective surcharge loading, however the magnitude percentage of strength gain between treated and untreated was highest with specimens cured under lower surcharge load of 18kPa followed by 36kPa and 48kPa with 469%, 425% and 457% respectively. These may be due to decreasing CaCO$_3$ precipitation that affects bio-cementation of peat particles. Hence, this may suggest that increasing UCS values between treated and untreated were due to consolidation with increasing preload and CaCO$_3$ precipitated has also contribute to strength gain.
Figure 1. Moisture content changes compared between Untreated and Treated Samples after cured for seven days under a submerged condition with different surcharge preload.

Figure 2. Calcium carbonates (CaCO$_3$) precipitated in the Treated Samples after cured for seven days under a submerged condition with different surcharge preload.

Figure 3. Unconfined compressive strength (UCS) of Treated and Untreated samples after cured for seven days under a submerged condition with different surcharge preload.

4. Conclusion
This study concluded that overall unconfined compressive strength (UCS) of the treated peat specimens (shown with CaCO$_3$ precipitation) were higher compared to untreated specimens (without CaCO$_3$ precipitation). Although it was observed that increasing surcharge load has decreased CaCO$_3$ precipitation, compressive strength of the treated specimens was observed to be higher than untreated...
specimens with less CaCO$_3$ when cured under the same surcharge load. The results suggested the potential of bio-cementation in peat stabilisation and future study are required.

Acknowledgement
We acknowledge Curtin University, Malaysia for providing the required facility for the study. This work was financially supported by the Ministry of Higher Education (MOHE) Fundamental Research Grant Scheme (FRGS) (FRGS/1/2015/TK01/CURTIN/02/3). We also acknowledge the Sarawak Biodiversity Centre (SBC) for the required permission. Authors wish to declare that there is no conflict of interest concerning this work.

References
[1] Mutalib A A 1992 Characterization, distribution and utilization of peat in Malaysia. In: Proceedings of the International Symposium on Tropical Peatland. Kuching, Sarawak, Malaysia, 6-10 May 1991,
[2] Melling L 2016 Tropical Peatland Ecosystems: Springer) pp 59-73
[3] Hashim R and Islam M S 2008 Properties of stabilized peat by soil-cement column method Electronic Journal of Geotechnical Engineering 13 1-9
[4] Kolay P, Sii H and Taib S 2011 Tropical peat soil stabilization using class F pond ash from coal fired power plant International Journal of Civil and Environmental Engineering 3 79-83
[5] Islam M S and Hashim R 2009 Bearing capacity of stabilised tropical peat by deep mixing method Australian Journal of Basic and Applied Sciences 3 682-8
[6] Islam S and Hashim R 2008 Stabilization of peat by deep mixing method: a critical review of the state of practices Electronic Journal of Geotechnical Engineering 13
[7] Kazemian S, Huat B B, Mohammed T A, Aziz F N A, Moayedi H and Barghchi M 2011 Influence of peat characteristics on cementation and pozzolanic reactions in the dry mixing method Arabian Journal for Science and Engineering 36 1189-202
[8] Souliman M I and Zapata C 2011 International Case Studies of Peat Stabilization by Deep Mixing Method
[9] DeJong J T, Fritzges M B and Nüsslein K 2006 Microbially induced cementation to control sand response to undrained shear Journal of Geotechnical and Geoenvironmental Engineering 132 1381-92
[10] Stocks-Fischer S, Galinat J K and Bang S S 1999 Microbiological precipitation of CaCO$_3$ Soil Biology and Biochemistry 31 1563-71
[11] Achal V, Mukherjee A, Basu P and Reddy M S 2009 Strain improvement of Sporosarcina pasteurii for enhanced urease and calcite production Journal of industrial microbiology & biotechnology 36 981-8
[12] Cheng L, Cord-Ruwisch R and Shahin M A 2013 Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation Canadian Geotechnical Journal 50 81-90
[13] Zhao Q, Li L, Li C, Li M, Amini F and Zhang H 2014 Factors affecting improvement of engineering properties of MICP-treated soil catalyzed by bacteria and urease Journal of Materials in Civil Engineering 26 04014094
[14] Montoya B and DeJong J 2015 Stress-strain behavior of sands cemented by microbially induced calcite precipitation Journal of Geotechnical and Geoenvironmental Engineering 141 04015019
[15] Al Qabany A and Soga K 2013 Effect of chemical treatment used in MICP on engineering properties of cemented soils Géotechnique 63 331
[16] Lee M L, Ng W S and Tanaka Y 2013 Stress-deformation and compressibility responses of bio-mediated residual soils Ecological engineering 60 142-9
[17] Feng K and Montoya B 2015 IFCEE 2015, pp 2242-51
[18] Sharma A and Ramkrishnan R 2016 Study on effect of Microbial Induced Calcite Precipitates
on strength of fine grained soils Perspectives in Science 8 198-202

[19] Hamdan N, Kavazanjian Jr E, Rittmann B E and Karatas I 2017 Carbonate mineral precipitation for soil improvement through microbial denitrification Geomicrobiology journal 34 139-46

[20] Smith A, Pritchard M and Bashir S 2017 The Reduction of the Permeability of a Lateritic Soil through the Application of Microbially Induced Calcite Precipitation Natural Resources

[21] Khodadadi T H, Kavazanjian E and Bilsel H 2017 Geotechnical Frontiers 2017, pp 195-201

[22] Cheng L and Cord-Ruwisch R 2014 Upscaling effects of soil improvement by microbially induced calcite precipitation by surface percolation Geomicrobiology Journal 31 396-406

[23] Harkes M P, Van Paassen L A, Booeter J L, Whiffin V S and van Loosdrecht M C 2010 Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement Ecological Engineering 36 112-7

[24] ASTM 2018 Standard Classification of Peat Samples by Laboratory Testing. In: D4427, (West Conshohocken, PA: ASTM International)

[25] Ng W-S, Lee M-L and Hii S-L 2012 An overview of the factors affecting microbial-induced calcite precipitation and its potential application in soil improvement World Academy of Science, Engineering and Technology 62 723-9

[26] Blonska E 2010 Enzyme activity in forest peat soils Folia Forestalia Polonica. Series A. Forestry 52

[27] Phang I R K, Chan Y S, Wong K S and Lau S Y 2018 Isolation and characterization of urease-producing bacteria from tropical peat Biocatalysis and agricultural biotechnology 13 168-75

[28] EuroSoilStab 2001 Design Guide Soft Soil Stabilization Development of Design and Construction Methods to Stabilize Soft Organic Soils. CT97-0351. Project No.: BE 96-3177

[29] Hebib S and Farrell E R 2003 Some experiences on the stabilization of Irish peats Canadian geotechnical journal 40 107-20

[30] ASTM 2016 Standard Test Method for Unconfined Compressive Strength of Cohesive Soil. In: D2166, (West Conshohocken, PA: ASTM International)

[31] Sing W L, Hashim R and Ali F H 2008 Behavior of Stabilized Peat Soils in Unconfmed Compression Tests Am. J. Engg. &Appl'edScz 1 274-9

[32] Heiri O, Lotter A F and Lemcke G 2001 Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results Journal of paleolimnology 25 101-10

[33] Agehara S and Warncke D 2005 Soil moisture and temperature effects on nitrogen release from organic nitrogen sources Soil Science Society of America Journal 69 1844-55

[34] Chenu C, Le Bissonnais Y and Arrouays D 2000 Organic matter influence on clay wettability and soil aggregate stability Soil Science Society of America Journal 64 1479-86

[35] Ekwue E 1990 Organic-matter effects on soil strength properties Soil and Tillage Research 16 289-97

[36] Gofar N and Mohamed R Ground improvement by preloading and vertical drain Ground improvement & stabilization 53

[37] Tsukamoto M and Oda K 2013 Influence of relative density on microbial carbonate precipitation and mechanical properties of sand. In: Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering. Paris, pp 2613-6