Synthesis of loganVir, a New Carbocyclic Nucleoside Analog
Luigi Ornanoa,b, Armandodoriano Biancoa,b

a) Dipartimento di Chimica, Università di Roma “La Sapienza”, P.le Aldo Moro, 5, 00185 Roma.

b) Consorzio CoSMeSe, Dipartimento di Scienze della Vita e dell’Ambiente, Università di Cagliari, Via S.Ignazio da Laconi 11, 09123 Cagliari.

\texttt{luigi.ornano@uniroma1.it}

Abstract

Starting from a natural cyclopentanoid monoterpenone belonging to the class of iridoid glucosides called Loganin, we performed the synthesis of a new carbocyclic nucleoside, allowing the preparation of a new lead compound, with a potential HIV antiviral activity as a RT competitive inhibitor that we named LoganVir. The stereocontrol of the coupling reaction was completed utilizing the procedure described by Mitsunobu with a purinic base.

Key words: Antiviral agents / Terpenoids / Rearrangements / Chiral intermediates / synthons

Spectrometric identification

\`H and 13C NMR spectra were recorder on Varian Mercury 300 MHz instrument using CDCl\textsubscript{3}, CD\textsubscript{3}OD and D\textsubscript{2}O as deuterated solvents, the chemical shift was expressed in ppm from TMS (the signal of HDO at 4.78 ppm is used as reference for spectra in D\textsubscript{2}O) MS spectra were performed on a Q-TOF MICRO spectrometer (Micromass, now Waters, Manchester UK) equipped with an ESI source, that was operated in the negative and/or positive ion mode. The flow rate of sample injection was 10µL/min. With 100 acquisition per spectrum. Data were analyzed using Masslynx software developed by Waters.

Chromatography

Products were purified by solid-liquid column chromatography on Merck 0.063-0.20 mm silica gel; eluent was chosen case by case. TLC on plates precoated with Kiegel-
Gel 60 F₂₅₄ (Merck) was used to monitor the progress of the reaction; spots were developed by spraying with 2 N H₂SO₄ and heating to 120 °C for 1 min.

Compound 1

(Loganic Acid)

(1S,6S,7R)-6-hydroxy-7-methyl-1-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-1,4a,5,6,7,7a-hexahydrocyclopenta[c]pyran-4-carboxylic acid.

¹H-NMR, (300 MHz, D₂O), δ : 0.88 (3H, d, J=6.1 Hz, H-10), 1.60 (1H, m, H-8), 1.74 (1H, m, H-9), 1.97 (1H, m, H-5), 2.86 (1H, m, H-5’), 3.13 (1H, m, H-3’), 3.25 (1H, m, H-4’), 3.58 (2H, m, H-5’’), 3.98 (1H, m, H-7), 4.58 (1H, d, J=9.2 Hz, H-1’), 5.22 (1H, d, J=9.0 Hz, H-1), 6.90 (1H, s, H-3). ¹³C-NMR, (75 MHz, D₂O), δ : 14.4 (C-10), 32.9 (C-5), 42.3 (C-6), 42.7 (C-8), 47.9 (C-9), 63.3 (C-6’), 72.2 (C-4’), 75.2 (C-2’), 76.9 (C-7), 78.1 (C-3’), 78.7 (C-5’), 98.2 (C-1), 100.8 (C-1’), 121.4 (C-4), 147.4 (C-3), 178.3 (C-11).

ESI-MS: m/z = 399.1060 [M+Na]⁺ (calculated mass C₁₆H₂₄O₁₀ (376.5580)).

Compound 2 (Loganin)

(1S,6S,7R)-methyl-6-hydroxy-7-methyl-1-(((2S,3R,4S)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-1,4a,5,6,7,7‘hexahydrocyclopenta[c]pyran-4-carboxylate.

S.1 ¹H-NMR spectrum of 2
1H-NMR, (330 MHz, CD$_3$OD), δ: 1.08 (H-10, d, J=7.5 Hz), 1.60 (H-6, ddd, J=14.0 Hz, J=7.5 Hz, J=4.5 Hz), 1.86 (H-8, m), 2.03 (H-9, m), 2.25 (H-6, ddd, J=14 Hz, J=8.0 Hz, J=1.5 Hz), 3.10 (H-5, m), 3.20 (H-2’, d, J=8.1 Hz), 3.67 (-OMe), 4.04 (H-7, m), 4.65 (H-1’, d, J=8.0 Hz), 5.73 (H-1, d, J=4.5 Hz), 7.37 (H-3, d, J=0.5 Hz).

S.2 13C-NMR spectrum of 2

13C-NMR, (75 MHz, CD$_3$OD), δ: 12.8 (C-10), 30.7 (C-5), 40.1 (C-8), 40.3 (C-6), 45.0 (C-9) 52.6 (-OMe), 61.5 (C-6’), 70.4 (C-4’), 73.6 (C-2’), 74.4 (C-7), 76.5 (C-3’), 77.1 (C-5’), 97.6 (C-1), 99.4 (C-1’), 113.2 (C-4), 151.0 (C-3).

S.3 ESI-MS spectrum of 2
ESI-MS: m/z = 413.1824 [M+Na]^+ (calculated mass C_{17}H_{26}O_{10} 390.3850).

S.4 1H-NMR spectrum of 3

![Image of 1H-NMR spectrum of 3]

S.5 13C-NMR spectrum of 3

![Image of 13C-NMR spectrum of 3]

S.6 ESI-MS spectrum of 3

![Image of ESI-MS spectrum of 3]
S.7 1H-NMR spectrum of 4

S.8 13C-NMR spectrum of 4 (13C-NMR original format)

S.9 ESI-MS spectrum of 4
S.10 1H-NMR spectrum of 5

S.11 13C-NMR spectrum of 5

S.12 ESI-MS spectrum of 5
S.13 1H-NMR spectrum of **6**

S.14 1H-NMR spectrum of **6**
S.15 ESI-MS spectrum of 6

S.16 1H-NMR spectrum of 7
S.17 13C-NMR spectrum of 7

S.18 ESI-MS spectrum of 7

S.19 1H-NMR spectrum of 8
13C-NMR spectrum of 8

ESI-MS spectrum of 8
