Scalar Gaussian Wiretap Channel with Peak Amplitude Constraint: Numerical Computation of the Optimal Input Distribution

Luca Barletta*, Alex Dytso**

* Politecnico di Milano, Milano, 20133, Italy, Email: luca.barletta@polimi.it
** New Jersey Institute of Technology, Newark, NJ 07102, USA, Email: alex.dytso@njit.edu

Abstract—This paper studies a scalar Gaussian wiretap channel where instead of an average input power constraint, we consider a peak amplitude constraint on the input. The goal is to obtain insights into the secrecy-capacity and the structure of the secrecy-capacity-achieving distribution. Capitalizing on the recent theoretical progress on the structure of the secrecy-capacity-achieving distribution, this paper develops a numerical procedure, based on the gradient ascent algorithm and a version of the Blahut-Arimoto algorithm, for computing the secrecy-capacity-achieving input and output distributions.

I. Introduction

Consider the scalar Gaussian wiretap channel with outputs

\begin{align}
Y_1 &= X + N_1, \\
Y_2 &= X + N_2,
\end{align}

where \(N_1 \sim \mathcal{N}(0, \sigma_1^2)\) and \(N_2 \sim \mathcal{N}(0, \sigma_2^2)\), and with \((X, N_1, N_2)\) independent of each other. The output \(Y_1\) is observed by the legitimate receiver whereas the output \(Y_2\) is observed by the malicious receiver. The block diagram for the Gaussian wiretap channel is shown in Fig. 1.

\[N_1 \sim \mathcal{N}(0, \sigma_1^2)\]
\[X \quad \rightarrow \quad Y_1 \quad \text{Legitimate User}\]
\[\quad + \quad Y_2 \quad \text{Malicious User}\]
\[N_2 \sim \mathcal{N}(0, \sigma_2^2)\]

Fig. 1: The Gaussian wiretap channel.

In this work, we assume that the input \(X\) is limited by a peak-power constraint or, equivalently, by a peak amplitude constraint given by \(|X| \leq A\). For this setting, the secrecy-capacity is given by

\[C_s(\sigma_1, \sigma_2, A) = \max_{P_X:|X| \leq A} I(X;Y_1) - I(X;Y_2)\quad \text{(3)}\]

where \(P_X\) denotes the distribution of the input random variable \(X\), and where \(I(X;Y_i)\) is the mutual information between \(X\) and \(Y_i\), \(i \in \{1, 2\}\). We are interested in studying the input distribution \(P_X\) that maximizes (4). It can be shown that for \(\sigma_1^2 \geq \sigma_2^2\) the secrecy-capacity is equal to zero. Therefore, in the remaining, we assume that \(\sigma_2^2 < \sigma_1^2\).

The \(P_X\) and \(C_s(\sigma_1, \sigma_2, A)\), besides a few cases, are in general unknown. The expression of the capacity is an important benchmark in communications theory, and knowing the secrecy-capacity-achieving distribution is important as it is useful for the code or modulation design. Furthermore, the availability of numerical examples of \(P_X\) may also guide theoretical work by pointing out possible properties of \(P_X\) that we might want to prove. Therefore, it is both of theoretical and practical need to produce numerical examples of \(P_X\) and \(C_s(\sigma_1, \sigma_2, A)\). In this work, we take a numerical approach to computing \(P_X\) and \(C_s(\sigma_1, \sigma_2, A)\) and provide numerical examples of these quantities for various parameter regimes of \((A, \sigma_1, \sigma_2)\). Data from these simulations are made available at [1].

A. Notation

Throughout the paper, the deterministic scalar quantities are denoted by lower-case letters and random variables are denoted by uppercase letters.

We denote the distribution of a random variable \(X\) by \(P_X\). The support set of \(P_X\) is denoted and defined as

\[\text{supp}(P_X) = \{ x : \text{for every open set } D \ni x \text{ we have that } P_X(D) > 0 \}. \quad \text{(5)}\]

The cardinality of \(\text{supp}(P_X)\) will be denoted by \(|\text{supp}(P_X)|\). The relative entropy between distributions \(P\) and \(Q\) will be denoted by \(D(P||Q)\).

Let \(g_1\) and \(g_2\) be nonnegative functions, then \(g_1(x) = O(g_2(x))\) means that there exists a constant \(c > 0\) and \(x_0\) such that \(\frac{g_1(x)}{g_2(x)} \leq c\) for all \(x > x_0\).

B. Literature Review

The wiretap channel was introduced by Wyner in [2], who also established the secrecy-capacity of the degraded wiretap channel. The wiretap channel plays a central role in network information theory; the interested reader is referred to [3]–[6] and reference therein for an in-detail treatment of the topic.
The secrecy-capacity of a Gaussian wiretap channel with an average power constraint was shown by Leung and Hellman in [7], where the capacity-achieving input distribution was shown to be Gaussian. The secrecy-capacity of the Gaussian wiretap channel with an amplitude and power constraint was considered by Ozel et al. in [8] where the authors showed that the capacity-achieving input distribution is discrete with finitely many support points. Recently, the result of [8] was sharpened in [9] in several ways. First, an explicit upper bound on the number of support points of P_X of the following from has been shown:

$$|\text{supp}(P_X)| \leq \frac{A^2}{\sigma_1^2} + O(\log(A)). \quad (6)$$

where $A = (2e + 1)\left(\frac{\sigma_1 + \sigma_2}{\sigma_2 - \sigma_1}\right)^2 + \left(\frac{\sigma_1 + \sigma_2}{\sigma_2 - \sigma_1} + 1\right)^2$. Second, the following two lower bounds on the cardinality of the support of the following form have been shown:

$$|\text{supp}(P_X)| \geq \frac{2A_\infty}{\sigma_1^2} e^{(X:Y_2)} \quad (7)$$

$$\geq 1 + \frac{2A_\infty}{\sigma_1^2}, \quad (8)$$

where the second bound follows from the trivial bound $e^{(X:Y_2)} \geq 1$.

In this work, specifically capitalizing on the upper bound in (6), we propose an algorithm that produces extensive numerical examples for P_X. A firm upper bound on the size of the support in [9] allows us to move the optimization from the space of probability distributions to the \mathbb{R}^{2n} space, where n is the number of support points of P_X. (i.e., $n = |\text{supp}(P_X)|$). Working in \mathbb{R}^{2n} allows us to employ finite-dimensional methods such as the gradient ascent together with a variant of the Blahut-Arimoto algorithm [10] for the wiretap channel [11]. The firm bound n also guarantees that our algorithm will converge to at least a local maximum. To guarantee our solution is close to the global maximum, we also check it against the Karush-Kuhn-Tucker (KKT) conditions.

To the best of our knowledge, there are no existing prior works which focus on generating numerical examples of secrecy-capacity-achieving distribution for the Gaussian wiretap channel in the regime where P_X is not available analytically. However, there is extensive prior work on generating examples of the capacity-achieving distribution for the point-to-point channel, which is a special case of the wiretap channel when $\sigma_2 = \infty$. The interested reader is referred to [12]-[14] for examples of such implementations.

C. Outline and Contributions

The outline and the contribution of the paper are as follows. Section II will present the following: the KKT conditions needed for the optimality of P_X; the algorithm that will produce numerical examples of P_X and other quantities related to P_X. Section III will present our extensive numerical simulations and the observations surrounding these simulations.

II. Proposed Algorithm

In this section, we first present the KKT equations, which provide sufficient and necessary conditions for the optimality of P_X. Second, we present the algorithm which will be used to generate numerical examples of P_X. The proposed algorithm is the combination of a version of the Blahut-Arimoto algorithm and the gradient ascent algorithm. The key step of the algorithm evaluates the KKT conditions with the candidate solution, which ensures that the solution is close to the true solution.

A. KKT conditions

The starting point for the design of our algorithm are the following KKT conditions shown in [8].

Lemma 1. The secrecy-capacity-achieving input distribution P_X and induced secrecy-capacity-achieving output distributions P_{X_1} and P_{Y_2} satisfy the following

$$\Xi(x; P_X) = C_s(\sigma_1, \sigma_2, A), \quad x \in \text{supp}(P_X), \quad (9a)$$

$$\Xi(x; P_X) \leq C_s(\sigma_1, \sigma_2, A), \quad x \in [-A, A], \quad (9b)$$

where for $x \in \mathbb{R}$

$$\Xi(x; P_X) = D(P_{X_1|x}(\cdot|x)||P_{Y_2}) - D(P_{Y_1|x}(\cdot|x)||P_{Y_2}). \quad (10)$$

In the numerical computation of P_X, we find more convenient to check the negated version of (9), where a tolerance parameter ε is introduced which trades off accuracy with computational burden. Specifcally, P_X is not an optimal input pmf if any of the following conditions is satisfied:

$$\Xi(A; P_X) + \varepsilon < \Xi(x; P_X), \text{ for some } x \in [-A, A] \quad (11a)$$

$$|\Xi(x; P_X) - \Xi(A; P_X)| > \varepsilon, \text{ for some } x \in \text{supp}(P_X). \quad (11b)$$

Note that in (11) in place of the secrecy-capacity $C_s(\sigma_1, \sigma_2, A)$, which is unknown, used the value of $\Xi(A; P_X)$, thanks to the fact that $A \in \supp(P_X)$ for any (σ_1, σ_2, A). With some abuse of notation, we refer to (11) as to the ε-KKT conditions.

B. Numerical Algorithm

The algorithm that gives a numerical lower bound to secrecy-capacity and that estimates the optimal input pmf P_X is given in Algorithm I. The algorithm takes as input: the value A of the amplitude constraint; the values (σ_1, σ_2) of the standard deviations of the additive noise; the vector x of the support points of the initial tentative P_X; the vector p of the probabilities associated with the points in x, and a value ε which is related to the accuracy of the capacity estimation. Using the bound in [9] Eq. (83)], we can set the dimensionally of p and x to be less than

$$\frac{A^2}{\sigma_1^2} + b_2 + \log \frac{b_1A + b_4A + b_5}{b_6A + b_7}, \quad (12)$$

where the constants $\{b_i\}_{i=1}^7$ depend on $(\sigma_1, \sigma_2, C_s)$. We can easily prove that if $x \in \text{supp}(P_X)$, then $-x \in \text{supp}(P_X)$ and
be the candidate novel support point (or points, due to the ε with the move away by 10^−2 from the transition point).

The optimality of the resulting distribution \(P_X \) is tested with the \(\varepsilon \)-KKT conditions. If any of the conditions (11) is satisfied, then the function \(\text{UPDATE} \) modifies \(P_X \) according to the following rules. Let

\[
\hat{x} = \arg \max_{x \in [-A, A]} \Xi(x; P_X)
\]

be the candidate novel support point (or points, due to the even symmetry of \(\Xi(\cdot; P_X) \)), and

\[
S = \{x \in \text{supp}(P_X) : (11b) \text{ is true}\}
\]

be the set of support points for which \(\Xi(\cdot; P_X) \) falls outside the horizontal \(\varepsilon \)-strip that contains \(\Xi(A; P_X) \). If both conditions in (11) are verified and there exist \(x_1, x_2 \in S \) such that \(|x_1 - x_2| < \delta = 0.1 \) and \(\hat{x} \in [x_1, x_2] \), then \(\hat{x} \) replaces both \(x_1 \) and \(x_2 \) in the support of \(P_X \) with \(P_X(\hat{x}) = P_X(x_1) + P_X(x_2) \). Otherwise, if only (11a) is satisfied, then \(\hat{x} \) is added to the support of \(P_X \) and the probabilities are set to \(P_X(x) = |\text{supp}(P_X)|^{-1} \) for all \(x \in \text{supp}(P_X) \).

The main algorithm repeats the two-step optimization procedure until \(P_X \) is validated, which becomes the proposed \(P_X^* \).

III. Simulations and Observations

In this section, we use Algorithm 1 to provide examples of the \(P_X^* \). For several values of the parameters \((\sigma_1, \sigma_2, A)\), we will plot the following: \(C_s(\sigma_1, \sigma_2, A) \); the location of the support points of \(P_X^* \); the cardinality of \(\text{supp}(P_X^*) \); the output pdfs \(P_{Y_1} \) and \(P_{Y_2} \). The simulation data results are publicly available [1].

We consider two regimes. In the first regime we examine a scenario where the eavesdropper experiences significantly large noise than the legitimate user and specifically we consider \(\sigma_1^2 = 1 \) and \(\sigma_2^2 = 10 \). In the second regime, we examine a scenario where the noise at both users is comparable and specifically we consider \(\sigma_1^2 = 1 \) and \(\sigma_2^2 = 1.5 \).

Fig. 2 presents the structure of the support of the secrecy-capacity-achieving distribution vs. \(A \) and the values of \(C_s(\sigma_1, \sigma_2, A) \) vs. \(A \). We observe the following:

- In Fig. 2a we plot \(\text{supp}(P_X^*) \) vs. \(A \), where due to symmetry of \(P_X^* \) we only plot the nonnegative points in \(\text{supp}(P_X^*) \). In addition, in Fig. 2b we normalize the values of the support and plot the nonnegative values of \(\frac{\text{supp}(P_X^*)}{A} \) vs. \(A \). First, we see that, as \(A \) increases, the new points appear only at zero while the nonzero points travel away from the origin. Moreover, the points are created in only the following two ways: either a point at zero simply emerges, or an existing point at zero splits into two points. This behavior is analogous to the behavior of the support of the capacity-achieving distribution for the point-to-point channel [16].

Second, note that the support points of \(P_X^* \) for \(\sigma_2^2 = 10 \) leg behind (i.e., for larger values of \(A \)) the support points of \(P_X^* \) for \(\sigma_2^2 = 1.5 \). This could be explained by noting that when the eavesdropper faces less additive noise, the transmitter has to create more equivocation in order to keep the leakage information rate at the eavesdropper equal to zero: This could be done only by adding a new support point in \(P_X^* \).

- In Fig. 2b we plot the cardinality of \(\text{supp}(P_X^*) \) vs. \(A \). First, we observe that the cardinality increases linearly in \(A \). Should this behavior continue for larger values of \(A \), the upper bound in (6) will be loose. Note a similar issue exists for a point-to-point channel with a peak
amplitude constraint where the cardinality of the support of the capacity-achieving distribution is lower-bounded by a term in the order of A while the upper bound is in the order of A^2 [16]. Therefore, since the point-to-point channel is a special case of the wiretap channel, it is not surprising that similar behavior occurs here too.

Second, Fig. 2f suggests that the bound in (7) might be loose. However, we conjecture that this bound, while it may not be attaining the correct constants, is tight asymptotically as $A \to \infty$.

- In Fig. 2d we plot the difference between the nonnegative adjacent points in $\text{supp}(P_{Y_\star})$ starting from the largest and the second largest. An interesting observation here is that the distance between two adjacent points eventually stops fluctuating and concentrates on a single value. In other words, the space between adjacent points eventually does not change. However, it is important to note that the spacing is not uniform. Along this direction, an interesting future direction would be to consider the asymptotic behavior of X_\star and find the limiting distribution as $A \to \infty$.

- In Fig. 2b we plot the secrecy-capacity vs. A. It is interesting to note that the secrecy-capacity is not concave for small values of A. There are two reasons for this. First, note that C_s is given as the difference of mutual informations. Therefore, even if each mutual information is concave in A, this does not imply that C_s is concave in A as the difference of concave functions is not concave. Second, note that even the single mutual information may not be concave in A. See Fig. 2b where the mutual information is plotted vs. A. Note that because of the I-MMSE relationship [17], the mutual information is a concave function of the signal-to-noise ratio and is, therefore, concave in A^2. However, this does not imply that the mutual information is concave in A. In fact, as we see from Fig. 2b for small values of A, the mutual information can be convex in A.

In addition to studying the optimal input distribution, it is also interesting to observe the behavior of the output distributions P_{Y_\star} at the legitimate user and P_{Y_\star} at the eavesdropper, and to compare them. Fig. 3 provides examples of P_{Y_\star}, P_{Y_\star}, and P_{X_\star} for $\sigma_1^2 = 1$ and $\sigma_2^2 = 10$, and Fig. 4 provides examples of P_{Y_\star}, P_{Y_\star}, and P_{X_\star} for $\sigma_1^2 = 1$ and $\sigma_2^2 = 1.5$.

The eavesdropper’s pdf P_{Y_\star} and the legitimate user’s pdf P_{Y_\star} have clear differences. In particular, P_{Y_\star} has just one inflection point for positive abscissa values, and very much resembles the Gaussian pdf. To aid this comparison of P_{Y_\star} to the Gaussian distribution, we also plot P_{Y_\star} where Y_\star is the Gaussian random variable with variance $E[(X)^2] + \sigma_2^2$ (i.e., Y_\star and Y_\star have the same variance). In contrast, P_{Y_\star} has many peaks and inflection points, which correspond to the locations of the support points of P_{X_\star}. Because of the difference in structure of the two pdfs, estimating X_\star is easier from the sample Y_\star than from the sample Y_\star. Of course, this is expected, as we desire the eavesdropper to gain little information from the observation Y_\star. The proximity to Gaussian can also be seen through the mutual information. In particular, Fig. 2f plots $I(X_\star; Y_\star)$ and compares it to the mutual information attained by the Gaussian input with same variance as X_\star.

As one possible future direction, it would be interesting to show that P_{Y_\star} is indeed close to Gaussian in some distance between distributions (e.g., relative entropy). It would also be interesting to study how the smoothnesses of P_{Y_\star} and P_{Y_\star} differ. This can be accomplished by studying the maximum number of inflection points of each pdf.

References

[1] L. Barletta and A. Dytso. (2021) Simulated data. [Online]. Available: https://github.com/ucando83/WiretapCapacity

[2] A. D. Wyner, “The wire-tap channel,” Bell Syst. Tech. J., vol. 54, no. 8, pp. 1355–1387, 1975.

[3] M. Bloch and J. Barros, Physical-Layer Security: From Information Theory to Security Engineering. Cambridge University Press, 2011.

[4] F. Oggier and B. Hassibi, “A perspective on the MIMO wiretap channel,” Proc. of IEEE, vol. 103, no. 10, pp. 1874–1892, 2015.

[5] Y. Liang, H. V. Poor, and S. Shamai (Shitz), “Information theoretic security,” Foundations and Trends in Communications and Information Theory, vol. 5, no. 4–5, pp. 355–580, 2009.

[6] H. V. Poor and R. F. Schaefer, “Wireless physical layer security,” Proc. the Natl. Acad. Sci. U.S.A., vol. 114, no. 1, pp. 19–26, 2017.

[7] S. Leung-Yan-Cheong and M. Hellman, “The Gaussian wire-tap channel,” IEEE Trans. Inf. Theory, vol. 24, no. 4, pp. 451–456, 1978.

[8] O. Ozel, E. Ekrem, and S. Ulukus, “Gaussian wiretap channel with amplitude and variance constraints,” IEEE Trans. Inf. Theory, vol. 61, no. 10, pp. 5553–5563, 2015.

[9] L. Barletta and A. Dytso, “Scalar Gaussian wiretap channel: Properties of the support size of the secrecy-capacity-achieving distribution,” arXiv preprint arXiv:2109.01566, 2021.

[10] R. Bhayat, “Computation of channel capacity and rate-distortion functions,” IEEE Trans. Inf. Theory, vol. 18, no. 4, pp. 460–473, 1972.

[11] K. Yasui, T. Suko, and T. Matsushima, “An algorithm for computing the secrecy capacity of broadcast channels with confidential messages,” in 2007 IEEE International Symposium on Information Theory. IEEE, 2007, pp. 936–940.

[12] J. G. Smith, “The information capacity of amplitude-and-variance-constrained scalar Gaussian channels,” Info. Control, vol. 18, no. 3, pp. 203–219, 1971.

[13] A. Favano, M. Ferrari, M. Magarini, and L. Barletta, “The capacity of the amplitude-constrained vector Gaussian channel,” arXiv preprint arXiv:2101.08643, 2021.

[14] D. Xiao, L. Wang, D. Song, and R. D. Wesel, “Finite-support capacity-approaching distributions for AWGN channels,” in 2020 IEEE Information Theory Workshop (ITW). IEEE, 2021, pp. 1–5.

[15] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex Optimization. Cambridge university press, 2004.

[16] A. Dytso, S. Yagli, H. V. Poor, and S. Shamai (Shitz), “The capacity achieving distribution for the amplitude constrained additive Gaussian channel: An upper bound on the number of mass points,” IEEE Trans. Inf. Theory, vol. 66, no. 4, pp. 2006–2022, 2020.

[17] D. Guo, S. Shamai, and S. Verdú, “Mutual information and minimum mean-square error in Gaussian channels,” IEEE Trans. Inf. Theory, vol. 51, no. 4, pp. 1261–1282, 2005.
(a) Plot of the nonnegative values of $\text{supp}(P_{X^*})$ vs. A.
(b) Plot of the nonnegative values of $\frac{\text{supp}(P_{X^*})}{A}$ vs. A.
(c) Plot of $|\text{supp}(P_{X^*})|$ vs. A.
(d) Distance between adjacent points of $\text{supp}(P_{X^*})$ vs. A.
(e) Plot of $C_s(\sigma_1, \sigma_2, A)$ (in nats) vs. A.
(f) Plot of $I(X^*:Y_2^*)$ vs. A.

Fig. 2: Simulations results for the case of $\sigma_1^2 = 1$ and $\sigma_2^2 = \{1.5, 10\}$.
Fig. 3: Examples of input and output distributions for the case of $\sigma_1^2 = 1$ and $\sigma_2^2 = 10$.
Fig. 4: Examples of input and output distributions for the case of $\sigma_1^2 = 1$ and $\sigma_2^2 = 1.5$.