Hadronic decays of charm mesons provide important input for beauty physics and also open a window into the study
of strong final state interactions. For Cabibbo-suppressed charm decays, precise measurements are challenging due to low statistics and high backgrounds. Among them, the singly Cabibbo-suppressed (SCS) decays $D^{+0} \to \omega \pi^{+0}$ have not yet been observed. The most recent experimental search was performed by the CLEO Collaboration in 2006 [1] with a 281 pb$^{-1}$ data collected on the $\psi(3770)$ peak. The branching ratio upper limits were set to 3.4×10^{-4} and 2.6×10^{-4} at the 90% confidence level (C.L.) for $D^{+} \to \omega \pi^{+}$ and $D^{0} \to \omega \pi^{0}$, respectively [1]. Following the diagrammatic approach, the small decay rates may be caused by the destructive interference between the color-suppressed quark diagrams C_V and C_F. Numerically, if W-annihilation contributions are neglected, the branching fractions of the $D \to \omega \pi$ decays should be at about 1.0×10^{-4} level [2,3].

Besides searching for $D^{+0} \to \omega \pi^{+0}$, we also report measurements of the branching fractions for the decays $D^{+0} \to \eta \pi^{+0}$. Precise measurements of these decay rates can improve understanding of U-spin and $SU(3)$-flavor symmetry breaking effects in D decays, benefiting theoretical predictions of CP violation in D decays [4].

We employ the “double tag” (DT) technique first developed by the MARK-III Collaboration [5,2] to perform absolute measurements of the branching fractions. As the peak of the $\psi(3770)$ resonance is just above the DD threshold and below the $DD\pi$ threshold, for D meson we are interested, only DD pair-production is allowed. We select “single tag” (ST) events in which either a D or \bar{D} is fully reconstructed without reference to the other meson. We then look for the D decays of interest in the remainder of each event, namely, in DT events where both the D and \bar{D} are fully reconstructed. This strategy suppresses background and provides an absolute normalization for branching fraction measurements without the need for knowledge of the luminosity or the $e^+e^-\to D\bar{D}$ production cross section. The absolute branching fractions for D meson decays are calculated by the general formula

$$B_{\text{sig}} = \frac{\sum_{\alpha} N_{\text{tag},\alpha}^{\text{obs,}\alpha} \varepsilon_{\text{tag},\alpha}^{\text{eff}}}{\sum_{\alpha} N_{\text{tag}}^{\text{obs,}\alpha} \varepsilon_{\text{tag}}^{\text{eff}}},$$

(1)

where α denotes different ST modes, $N_{\text{tag},\alpha}^{\text{obs,}\alpha}$ is the yield of ST events for the tag mode α, $N_{\text{tag}}^{\text{obs,}\alpha}$ is the corresponding yield of DT events, and $\varepsilon_{\text{tag},\alpha}^{\text{eff}}$ and $\varepsilon_{\text{tag}}^{\text{eff}}$ are the ST and DT efficiencies for the tag mode α.

BESIII is a general-purpose magnetic spectrometer with a helium-gas-based drift chamber (MDC), a plastic scintillator time-of-flight system (TOF), and a CsI(Tl) electromagnetic calorimeter (EMC) enclosed in a superconducting solenoidal magnet providing a 1.0 T field. The solenoid is supported by an octagonal flux-return yoke with resistive-plate counters interleaved with steel for muon identification (MUC). The acceptance for charged particles and photons is 93% of 4\pi, and the charged particle momentum and barrel (endcap) photon energy resolutions at 1 GeV are 0.5% and 2.5% (5.0%), respectively [5]. The data used has an integrated luminosity of 2.93 fb$^{-1}$ [8] and was collected with the BESIII detector at a center-of-mass energy of 3.773 GeV.

A GEANT4-based [9] Monte-Carlo (MC) simulation package, which includes the geometric description of the detector and the detector response, is used to determine the detection efficiency and to estimate the potential peaking background. Signal MC samples of a D meson decaying only to $\omega \pi$ (\eta\pi) together with a D decaying only to the tag modes used are generated by the MC generator KKMC [10] using EVTGEN [11], with initial state radiation (ISR) effects [12] and final state radiation effects [13] included. For the background studies, MC samples of $\psi(3770) \to D^0\bar{D}^0$, D^+D^- and $\psi(3770) \to non-DD$ decays, ISR production of $\psi(3686)$ and J/ψ, and $e^+e^-\to q\bar{q}$ continuum processes, are produced at $\sqrt{s} = 3.773$ GeV. All known decay modes of the various D and ψ mesons are generated with branching fractions taken from the Particle Data Group (PDG) [14], and the remaining decays are generated with LUNDCHARM [15].

Charged tracks are required to be well-measured and to satisfy criteria based on the track fit quality; the angular range is restricted to $|\cos \theta| < 0.93$, where θ is the polar angle with respect to the direction of positron beam. Tracks (except for K^0_S daughters) must also be consistent with coming from the interaction point (IP) in three dimensions. Particle identification (PID) combining information of measured energy loss (dE/dx) in the MDC and the flight time obtained from the TOF is used to separate charged kaons and pions, the likelihood is required to be $L(K) > L(\pi)$, $L(K) > 0$ for kaons and vice-versa for pions. Electromagnetic showers are reconstructed by clustering EMC crystal energies; efficiency and energy resolution are improved by including the energy deposited in nearby TOF counters. To identify photon candidates, showers must have minimum energies of 25 MeV for $|\cos \theta| < 0.80$ (barrel region) or 50 MeV for $0.86 < |\cos \theta| < 0.92$ (endcap regions). The angle between the shower direction and all track extrapolations to the EMC must be larger than 10 standard deviations. A requirement on the EMC timing suppresses electronic noise and energy deposits unrelated to the event. The π^0 candidates are reconstructed by requiring the diphoton invariant mass to obey $M_{\gamma\gamma} \in (0.115, 0.150)$ GeV/c^2. Candidates with both photons coming from the endcap regions are rejected due to poor resolution. To improve resolution and reduce background, we constrain the invariant mass of each photon pair to the nominal π^0 mass [14]. The K^0_S candidates are selected from pairs of oppositely charged and vertex-constrained tracks consistent with coming from the IP along the beam direction but free of aforementioned PID and having an invariant mass in the range $0.487 < M_{\pi^+\pi^-} < 0.511$ GeV/c^2.

The ST candidate events are selected by reconstructing a D^- or D^0 in the following hadronic final states: $D^- \to K^+\pi^-\pi^-$, $K^+\pi^0\pi^0$, $K^*^-\pi^0$, $K^0_S\pi^0\pi^0$, $K^*0\pi^+\pi^-\pi^-$, $K^-\pi^0\pi^0$, and $D^0 \to K^+\pi^0$, $K^0\pi^+\pi^-\pi^0$, $K^0\pi^0\pi^0\pi^0$, $K^+\pi^-\pi^+\pi^-\pi^0$, comprising approximately 28.0% and 38.0% [14] of all D^- and D^0 decays, respectively. For the signal side, we reconstruct $D^+ \to \omega \pi^+\eta\pi^+$ and $D^0 \to \omega \pi^0\eta\pi^0$, with $\omega(\eta) \to \pi^+\pi^-\pi^0\pi^0$. Throughout the paper, charge-conjugate modes are implicitly implied, unless otherwise noted.

To identify the reconstructed D candidates, we use two
variables, the beam-constrained mass, \(M_{BC} \), and the energy difference, \(\Delta E \), which are defined as

\[
M_{BC} = \sqrt{E_{beam}^2/c^4 - |\vec{p}_D|^2/c^2}, \quad \Delta E = E_D - E_{beam}.
\]

Here, \(\vec{p}_D \) and \(E_D \) are the reconstructed momentum and energy of the \(D \) candidate in the \(e^+e^- \) center-of-mass system, and \(E_{beam} \) is the beam energy. For true \(D^{*+} \) candidates, \(\Delta E \) will be consistent with zero, and \(M_{BC} \) consistent with the \(D^{*+} \) mass. The resolution of \(M_{BC} \) is less than 2 MeV/c² and is dominated by the beam energy spread. The \(\Delta E \) resolution is about 10 MeV for final states consisting entirely of charged tracks, but increases to about 15 (20) MeV for cases where one (two) \(\pi^0 \) are included. We accept \(D \) candidates with \(M_{BC} \) greater than 1.83 GeV/c² and with mode-dependent \(\Delta E \) requirements of approximately three standard deviations (\(\sigma \)) around the fitted double Gaussian means. For the ST modes, we accept at most one candidate per mode per event; the candidate with the smallest \(|\Delta E| \) is chosen [10].

To obtain ST yields, we fit the \(M_{BC} \) distributions of the accepted \(D \) candidates, as shown in Fig. 1. The signal shape which is modeled by MC shape convoluted with a Gaussian function includes the effects of beam energy spread, ISR, the \(\psi(3770) \) line shape, and resolution. Combinatorial background is modeled by an ARGUS function [17]. With requirement of 1.866 < \(M_{BC} \) < 1.874 GeV/c² for \(D^+ \) case or 1.859 < \(M_{BC} \) < 1.871 GeV/c² for \(D^0 \) case, ST yields are calculated by subtracting the integrated ARGUS background yields within the signal region from the total event counts in this region. The tag efficiency is studied using MC samples following the same procedure. The ST yields in data and corresponding tag efficiencies are listed in Table I.

On the signal side we search for \(D^+ \to \pi^+\pi^-\pi^0\pi^0 \) and \(D^0 \to \pi^+\pi^-\pi^0\pi^0 \) modes containing an \(\omega \) \((\eta) \) decay. The requirements on \(\Delta E \) are applied similar as in the tag selection; if multiple candidates are found, the candidate with the minimum \(|\Delta E| \) is chosen. For both \(D^+ \) and \(D^0 \) decays, two possible \(\omega \) \((\eta) \) combinations exist. Combinations with \(3\pi \) mass in the interval (0.4, 1.0) GeV/c² are considered. The chance that both \(\omega \) \((\eta) \) candidates combinations lie in this range is only about 0.3%, rendering this source of multiple candidates negligible.

With the DT technique, the continuum background \(e^+e^- \to q\bar{q} \) is highly suppressed. The remaining background dominantly comes from \(D \) events broadly populating the \(3\pi \) mass window. To suppress the non-\(\omega \) background, we require that the helicity, \(H_\omega = \cos\theta_H \), of the \(\omega \) have an absolute value larger than 0.54 (0.51) for \(D^+ \) (\(D^0 \)). The angle \(\theta_H \) is the opening angle between the direction of the normal to the \(\omega \to 3\pi \) decay plane and direction of the \(D \) meson in the \(\omega \) rest frame. True \(\omega \) signal from \(D \) decays is longitudinally polarized so we expect a \(\cos^2\theta_H \) distribution. To further suppress background from \(D^{*+0} \to K_{2S}^0\pi^+\pi^-\pi^- \) with \(K_{2S}^0 \to \pi^+\pi^- \), we apply a \(K_{2S}^0 \) veto by requiring \(|M_{\pi^+\pi^-} - m_{K_{2S}^0}^{PDG}| > 12 \) (9) MeV/c² for the \(D^+ \) (\(D^0 \)) analysis. Here, \(m_{K_{2S}^0}^{PDG} \) is the known \(K_{2S}^0 \) mass and \(M_{\pi^+\pi^-} \) is calculated at the IP for simplicity. The requirements on the \(\omega \) helicity and \(K_{2S}^0 \) veto are optimized to get maximum sensitivity based on the signal MC events and data in \(\omega \) sidebands.

After the above selection criteria, the signal region \(S \) for the DT candidates is defined as 1.866 < \(M_{BC} \) < 1.874 GeV/c² for the \(D^+ \) (1.859 < \(M_{BC} \) < 1.871 GeV/c² for the \(D^0 \)) in the two-dimensional (2D) \(M_{BC}^{sig} \) versus \(M_{BC}^{tag} \) plane, as illustrated in Fig. 2. We also define sideband box regions to estimate potential background [13]. Sidebands A and B contain candidates where either the \(D \) or the \(\bar{D} \) is misreconstructed. Sidebands C and D contain candidates where both \(D \) and \(\bar{D} \) are misreconstructed, either in a correlated way (C), by assigning daughter particles to the wrong parent, or in an uncorrelated way (D).

![FIG. 1. \(M_{BC} \) distributions of ST samples for different tag modes.](image1)

![FIG. 2. 2D \(M_{BC} \) distributions for (a) \(D^+ \to \omega\pi^+ \) and (b) \(D^0 \to \omega\pi^0 \) with the signal (S) and sideband (A, B, C, D) regions used for background estimation indicated.](image2)
TABLE I. ST data yields ($N_{\gamma\gamma}^{\text{obs}}$), ST ($\epsilon_{\gamma\gamma}$) and DT ($\epsilon_{\gamma\gamma}^{\text{sig}}$ and $\epsilon_{\gamma\gamma}^{\text{bkg}}$) efficiencies, and their statistical uncertainties. Branching fractions of the K_S^0 and π^0 are not included in the efficiencies, but are included in the branching fraction calculations. The first six rows are for D^- and the last five are for D^0.

Mode	ST Yields	$\epsilon_{\gamma\gamma}$ (%)	$\epsilon_{\gamma\gamma}^{\text{sig}}$ (%)	$\epsilon_{\gamma\gamma}^{\text{bkg}}$ (%)
$K^+\pi^-\pi^-$	772711 ± 895	48.76 ± 0.02	11.01 ± 0.15	12.64 ± 0.17
$K^+\pi^-\pi^0$	226969 ± 608	23.19 ± 0.02	4.47 ± 0.10	5.26 ± 0.11
$K^0_S\pi^+$	95974 ± 315	52.35 ± 0.07	11.69 ± 0.18	13.99 ± 0.21
$K^0_S\pi^-\pi^+$	211872 ± 572	26.68 ± 0.03	5.35 ± 0.13	6.44 ± 0.14
$K^0_S\pi^-\pi^-$	121801 ± 459	30.53 ± 0.04	6.16 ± 0.13	7.17 ± 0.15
$K^+K^-\pi^+$	65955 ± 306	38.72 ± 0.07	8.50 ± 0.13	9.76 ± 0.14
$K^+\pi^-\pi^-$	529558 ± 745	64.79 ± 0.03	12.44 ± 0.16	14.17 ± 0.17
$K^+\pi^-\pi^0$	1044963 ± 1164	34.13 ± 0.01	5.73 ± 0.11	6.87 ± 0.12
$K^+\pi^-\pi^+$	708523 ± 946	38.33 ± 0.02	6.04 ± 0.11	7.00 ± 0.13
$K^+\pi^-\pi^0$	236719 ± 747	13.87 ± 0.02	1.78 ± 0.06	2.10 ± 0.07
$K^+\pi^-\pi^+$	534325 ± 684	15.55 ± 0.03	1.93 ± 0.06	2.08 ± 0.07

FIG. 3. Fits to the 3π mass spectra for (a) $D^+ \to \pi^+\pi^-\pi^0\pi^+$ and (b) $D^0 \to \pi^+\pi^-\pi^0\pi^0$ in the signal region S as defined in Fig. 2. Points are data; the (red) solid lines are the total fits; the (blue) dashed lines are the background shapes, and the hatched histograms are peaking background estimated from 2D M_{BC} sidebands.

To obtain the $\omega(\eta)$ yield, we perform a fit to the $\pi^+\pi^-\pi^0$ invariant mass ($M_{3\pi}$) distribution with events in the signal region S. The $\omega(\eta)$ shape is modeled by the signal MC shape convoluted with a Gaussian function to describe the difference in the $M_{3\pi}$ resolution between MC and data. Due to high statistics, the width σ_ω of the Gaussian for the η case is determined by the fit, while the width σ_{ω} for the ω case is constrained by the MC-determined ratio $R = \sigma_{\omega}/\sigma_{\omega}$ giving the relative $M_{3\pi}$ resolution for η and ω final states. For D^+, the background shape is described by a third-order Chebychev polynomial, while for D^0 we use a shape of $a_0 M_{3\pi}^2 + a_1 M_{3\pi}^0 + a_2 M_{3\pi}^2 + a_3 M_{3\pi}^4 + a_4 M_{3\pi}^6$, where a_i ($i = 0, \ldots, 4$) are free parameters. The fit results are shown in Fig. 3 and the total yield N_{ω} for D^+ and D^0 cases are listed in Table II.

To estimate the $\omega(\eta)$ yield in the signal region S from background processes, event counts in sidebands A, B, and C are projected into the signal region S using scale factors determined from integrating the background shape in the ST M_{BC} fits. Contributions to sideband D are assumed to be uniformly distributed across the other regions [13]. For these events from the sideband regions, we perform similar fits to the 3π mass spectra, and find the peaking background yields $N_{\omega(\eta)}^{\text{bkg}}$ for D^+ and D^0 respectively, as listed in Table II. By subtracting the ω peaking background extending underneath the signal region, the DT signal yields, $N_{\omega(\eta)}^{\text{sig}}$, are obtained. The statistical significances for $D^+ \to \omega\pi^+$ and $D^0 \to \omega\pi^0$ are found to be 5.5σ and 4.1σ, respectively, as determined by the ratio of the nominal maximum likelihood value and the likelihood value for a fit where the signal is set to zero by fixing the total yield N_{ω} to equal to the sideband based background prediction, $N_{\omega(\eta)}^{\text{bkg}}$.

TABLE II. Summary for the total $\omega(\eta)$ yields ($N_{\omega(\eta)}$), $\omega(\eta)$ peaking background yields ($N_{\omega(\eta)}^{\text{bkg}}$), and net DT yields ($N_{\omega(\eta)}^{\text{sig}}$) in the signal region S as defined in Fig. 2. $N_{\omega(\eta)}^{\text{obs}}$ is estimated from the defined sidebands. The errors are statistical.

Mode	$N_{\omega(\eta)}$	$N_{\omega(\eta)}^{\text{bkg}}$	$N_{\omega(\eta)}^{\text{sig}}$
$D^+ \to \omega\pi^+$	100 ± 16	21 ± 4	79 ± 16
$D^0 \to \omega\pi^0$	50 ± 12	5 ± 5	45 ± 13
$D^+ \to \eta\pi^+$	264 ± 17	6 ± 2	258 ± 18
$D^0 \to \eta\pi^0$	78 ± 10	3 ± 2	75 ± 10

We now remove the ω helicity requirement, and investigate the helicity dependence of our signal yields. By following procedures similar to those described above, we obtain the signal yield in each $|H_\omega|$ bin. The efficiency corrected yields are shown in Fig. 4 demonstrating agreement with expected $\cos^2\theta_H$ behavior, further validating this analysis.

With analogous selection criteria, we also determine $B(D^{\pm,0} \to \eta\pi^{\pm,0})$ as a cross-check. The results are found to be consistent with the nominal results given below for $B(D^{\pm,0} \to \eta\pi^{\pm,0})$, using relaxed cuts, as well as the PDG listings [14].

As shown in Fig. 3 the background level in the η signal region of the 3π invariant mass distribution is small compared to that near the ω mass. Also, according to the MC simula-
is the relative difference on the control sample. The relative data-MC efficiency differences are investigated via the relative change in signal yields for different signal region definitions based on the control samples $D^0 \rightarrow K^0 \pi^+ \pi^0$ and $D^0 \rightarrow K^0 \pi^+ \pi^-$. We assign uncertainties of 1.0% and 0.5% per track for track finding and PID, respectively, and 1.0% per reconstructed π^0.

Uncertainty due to the 2D signal region definition is investigated via the relative change in signal yields for different signal region definitions based on the control samples $D^+ \rightarrow K^0 S \pi^+ \pi^0$ and $D^0 \rightarrow K^0 S \pi^0 \pi^0$ which have the same pions in the final state as our signal modes. With the same control samples, uncertainties due to the ΔE requirements are also studied. The relative data-MC efficiency differences are taken as systematic uncertainties, as listed in Table III.

Uncertainty due to the $|H_{\omega}|$ requirement is studied using the control sample $D^0 \rightarrow K^0_S \omega$. The data-MC efficiency difference with or without this requirement is taken as our systematic uncertainty. Uncertainty due to the K^0_S veto is similarly obtained with this control sample.

The ω peaking background is estimated from 2D M_{BC} sidebands. We change the sideband ranges by 2 MeV/c^2 for both sides and investigate the fluctuation on the signal yields, which is taken as a systematic uncertainty.

In the nominal fit to the $M_{3\pi}$ distribution, the ratio R, which is the relative difference on the $M_{3\pi}$ resolution between η and ω positions, is determined by MC simulations. With control samples $D^0 \rightarrow K^0_S \eta$ and $K^0_S \omega$, the difference between data and MC defined as $\delta R = R_{data}/R_{MC} - 1$ is obtained. We vary the nominal R value by $\pm 1\sigma$ and take the relative change of signal yields as a systematic uncertainty.

Uncertainties due to the background shapes are investigated by changing the orders of the polynomials employed. Uncertainties due to the $M_{3\pi}$ fitting range are investigated by changing the range from $(0.50, 0.95)$ GeV/c^2 to $(0.48, 0.97)$ GeV/c^2 in the fits, yielding relative differences which are taken as systematic uncertainties.

We summarize the systematic uncertainties in Table III. The total effect is calculated by combining the uncertainties from all sources in quadrature.

- **TABLE III. Summary of systematic uncertainties in %.** Uncertainties which are not involved are denoted by “-”.

Source	$\omega \pi^+$	$\omega \pi^0$	$\eta \pi^+$	$\eta \pi^0$		
π^\pm tracking	3.0	2.0	3.0	2.0		
π^\pm PID	1.5	1.0	1.5	1.0		
π^0 reconstruction	1.0	2.0	1.0	2.0		
2D M_{BC} window	0.1	0.2	0.1	0.2		
ΔE requirement	0.5	1.6	0.5	1.6		
$	H_{\omega}	$ requirement	3.4	3.4	--	--
K^0_S veto	0.8	0.8	--	--		
Sideband regions	1.3	2.2	0.0	0.5		
Signal resolution	0.9	0.9	--	--		
Background shape	2.3	1.3	1.9	3.5		
Fit range	0.3	1.9	0.8	1.5		
$B(\omega(\eta) \rightarrow \pi^+ \pi^- \pi^0)$ [14]	0.8	0.8	1.2	1.2		
Overall	5.8	6.0	4.3	5.3		

Finally, the measured branching fractions of $D \rightarrow \omega \pi$ and $\eta \pi$ are summarized in Table IV where the first errors are statistical and the second ones are systematic.

- **TABLE IV. Summary of branching fraction measurements, and comparison with the previous measurements for $D \rightarrow \omega \pi$ [1] and $D \rightarrow \eta \pi$ [19].**

Mode	This work	Previous measurements
$D^+ \rightarrow \omega \pi^+$	$(2.79 \pm 0.57 \pm 0.16) \times 10^{-4}$	$< 3.4 \times 10^{-4}$ at 90% C.L.
$D^0 \rightarrow \omega \pi^0$	$(1.17 \pm 0.34 \pm 0.07) \times 10^{-4}$	$< 2.6 \times 10^{-4}$ at 90% C.L.
$D^+ \rightarrow \eta \pi^+$	$(3.07 \pm 0.22 \pm 0.13) \times 10^{-3}$	$(3.53 \pm 0.21) \times 10^{-3}$
$D^0 \rightarrow \eta \pi^0$	$(0.65 \pm 0.09 \pm 0.04) \times 10^{-3}$	$(0.68 \pm 0.07) \times 10^{-3}$

In summary, we present the first observation of the SCS decay $D^+ \rightarrow \omega \pi^+$ with statistical significance of 5.5σ. We find the first evidence for the SCS decay $D^0 \rightarrow \omega \pi^0$ with statistical significance of 4.1σ. The results are consistent with the theoretical prediction [2], and can improve understanding of U-spin and $SU(3)$-flavor symmetry breaking effects in D decays [4]. We also present measurements of the branching...
fractions for $D^+ \to \eta \pi^+$ and $D^0 \to \eta \pi^0$ which are consistent with the previous measurements [19].

The BESIII collaboration thanks the staff of BEPCII and the IHEP computing center for their strong support. This work is supported in part by National Key Basic Research Program of China under Contract No. 2015CB856700; National Natural Science Foundation of China (NSFC) under Contracts Nos. 11125525, 11232544, 11335008, 11425524; the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; the CAS Center for Excellence in Particle Physics (CCEPP); the Collaborative Innovation Center for Particles and Interactions (CICPI); Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contracts Nos. 11179007, 10975093, U1232201, U1332201; CAS under Contracts Nos. KJCX2-YW-N29, KJCX2-YW-N45; 100 Talents Program of CAS; National 1000 Talents Program of China; INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology; German Research Foundation DFG under Contract No. Collaborative Research Center CRC-1044: Istituto Nazionale di Fisica Nucleare, Italy; Joint Funds of the National Science Foundation of China under Contract No. U1232107; Ministry of Development of Turkey under Contract No. DPT2006K-120470; Russian Foundation for Basic Research under Contract No. 14-07-9152; The Swedish Research Council; U. S. Department of Energy under Contracts Nos. DE-FG02-04ER41291, DE-FG02-05ER41374, [1007.08188] DESC0010118; U.S. National Science Foundation; University of Groningen (RuG) and the Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt; WCU Program of National Research Foundation of Korea under Contract No. R32-2008-000-10155-0.

[1] P. Rubin et al. [CLEO Collaboration], Phys. Rev. Lett. 96, 081802 (2006).
[2] H. Y. Cheng and C. W. Chiang, Phys. Rev. D 81, 074021 (2010).
[3] Hai-Yang Cheng, private communication.
[4] W. Kwong and S. P. Rosen, Phys. Lett. B 298, 413 (1993); Y. Grossman and D. J. Robinson, JHEP 1304, 067 (2013).
[5] R. M. Baltrusaitis et al. [MARK-III Collaboration], Phys. Rev. Lett. 56, 2140 (1986).
[6] J. Adler et al. [MARK-III Collaboration], Phys. Rev. Lett. 60, 89 (1988).
[7] M. Ablikim et al. [BESIII Collaboration], Nucl. Instrum. Meth. A 614, 345 (2010).
[8] M. Ablikim et al. [BESIII Collaboration], Chin. Phys. C 37, 123001 (2013); M. Ablikim et al. [BESIII Collaboration], [arXiv:1507.08188] (accepted by Phys. Lett. B).
[9] S. Agostinelli et al. [GEANT4 Collaboration], Nucl. Instrum. Meth. A 506, 250 (2003).
[10] S. Jadach, B. F. L. Ward and Z. Was, Comput. Phys. Commun. 130, 260 (2000); Phys. Rev. D 63, 113009 (2001).
[11] D. J. Lange, Nucl. Instrum. Meth. A 462, 152 (2001); R. G. Ping, Chin. Phys. C 32, 599 (2008).
[12] E. A. Kuraev and V. S. Fadin, Sov. J. Nucl. Phys. 41, 466 (1985) [Yad. Fiz. 41, 733 (1985)].
[13] E. Richter-Was, Phys. Lett. B 303, 163 (1993).
[14] K. Nakamura et al. [Particle Data Group], J. Phys. G 37, 075021 (2010) and 2011 partial update for the 2012 edition.
[15] J. C. Chen, G. S. Huang, X. R. Qi, D. H. Zhang and Y. S. Zhu, Phys. Rev. D 62, 034003 (2000).
[16] Q. He et al. [CLEO Collaboration], Phys. Rev. Lett. 95, 121801 (2005).
[17] H. Albrecht et al. [ARGUS Collaboration], Phys. Lett. B 241, 278 (1990).
[18] D. M. Asner et al. [CLEO Collaboration], Phys. Rev. D 78, 012001 (2008).
[19] H. Mendez et al. [CLEO Collaboration], Phys. Rev. D 81, 052013 (2010).