Expression of the Adenosine A$_2$A-A$_3$ Receptor Heteromer in Different Brain Regions and Marked Upregulation in the Microglia of the Transgenic APP$_{Sw,Ind}$ Alzheimer’s Disease Model

Alejandro Lillo1,2, Iu Raïch1,2, Jaume Lillo1,3, Catalina Pérez-Olives1,3, Gemma Navarro1,2,4,†, and Rafael Franco1,3,5,6,†

1 Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos III, Valderrebollo 5, 28031 Madrid, Spain; alillo@ub.edu (A.L.); iraichpa7@ub.edu (I.R.); jaumellillo@ub.edu (J.L.); catalinaperez@ub.edu (C.P.-O.)
2 Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain
3 Department of Biochemistry and Molecular Biomedicine, University of Barcelona, 08028 Barcelona, Spain
4 Institut de Neurociències, Universitat de Barcelona (UBNeuro), 08036 Barcelona, Spain
5 School of Chemistry, University of Barcelona, 08028 Barcelona, Spain
6 Faculty of Biology, Universitat de Barcelona, Diagonal 643, Prevosti Building, 08028 Barcelona, Spain

* Correspondence: gnavarro@ub.edu (G.N.); rfranco@ub.edu (R.F.); Tel: +34-93-402-1008 (G.N. & R.F.)
† These authors contributed equally to this work.

Abstract: Adenosine (Ado) receptors have been instrumental in the detection of heteromers and other higher-order receptor structures, mainly via interactions with other cell surface G-protein-coupled receptors. Apart from the first report of the Ado receptor interacting with the A$_2$A Ado receptor, there has been more recent data on the possibility that every Ado receptor type, A$_1$, A$_2$A, A$_2$B, and A$_3$, may interact with each other. The aim of this paper was to look for the expression and function of the A$_2$A/A$_3$ receptor heteromer (A$_2$A$_2$A$_3$Het) in neurons and microglia. In situ proximity ligation assays (PLA), performed in primary cells, showed that A$_2$A$_3$Het expression was markedly higher in striatal than in cortical and hippocampal neurons, whereas it was similar in resting and activated microglia. Signaling assays demonstrated that the effect of the A$_2$A$_2$R agonist, PSB 777, was reduced in the presence of the A$_3$R agonist, 2-Cl-IB-MECA, whereas the effect of the A$_3$R agonist was potentiated by the A$_2$A$_2$R antagonist, SCH 58261. Interestingly, the expression of the heteromer was markedly enhanced in microglia from the APP$_{Sw,Ind}$ model of Alzheimer’s disease. The functionality of the heteromer in primary microglia from APP$_{Sw,Ind}$ mice was more similar to that found in resting microglia from control mice.

Keywords: neuroinflammation; neurodegenerative disease; dementia; G protein-coupled receptor; activated microglia; purinergic signaling; striatum; hippocampus; cerebral cortex

1. Introduction

Adenosine (Ado) is a nucleoside that participates in the metabolism of nucleic acids, of enzyme cofactors/substrates (nicotinamide adenine nucleotides, flavin-adenine dinucleotides etc.), and of energy-related relevant molecules, such as ATP. One of the functions of the nucleoside is to be a warning for excess energy expenditure or for hypoxia; in such conditions, ATP is converted to Ado, whose presence activates Ado receptors on the cell surface. There are four Ado receptors whose affinity for Ado varies and that belong to the rhodopsin-like class A G protein-coupled receptors (GPCRs): A$_1$, A$_2$A, A$_2$B, and A$_3$. The canonical heteromeric G proteins to which they couple are G$_s$ (A$_2$A and A$_2$B) and G$_i$ (A$_1$ and A$_3$). Accordingly, activation of the A$_2$A$_2$R or the A$_2$B$_2$R leads to increases of [cAMP] and...
engagement of the protein kinase A-mediated signaling pathway whereas activation of A1R or A3R leads to decreases in intracellular cAMP levels [1].

GPCRs may form heterodimers and higher-order structures that arise as distinct functional units. Research on Ado receptors has been instrumental to identify a variety of heteromers starting with those established in the striatum with dopamine receptors [2,3]. It was also found that the A1 and A2A receptors are sensors of the Ado concentration via the formation of tetrameric structures complexed with two heterotrimeric G proteins, one Gi and one Gs. At low Ado concentrations, Gi-mediated signaling is predominant whereas at higher concentrations, Gs-mediated signaling predominates [4–6]. More recently, heteromers formed by A2A and A2B and by A2A and A3 receptors have been reported, although their physiological function has not yet been fully elucidated [7–9].

The A2A receptor (A2A-R) is enriched in striatal neurons and was largely considered a target for combating Parkinson’s disease. Noteworthy, a first-in-class selective A2A antagonist, istradefylline, has been approved as an adjuvant therapy in Parkinson’s disease [10–15]. The receptor is a target for neuroprotection in other neurodegenerative diseases, such as Huntington’s and Alzheimer’s, and in brain injury [16–25]. In addition, altered expression of (individual) adenosine receptors was found in the brain of AD patients [26]. Importantly, the expression of the receptor in microglia from control samples was fairly low whereas the A2A-R was markedly upregulated in glial cells in the hippocampus and cerebral cortex of AD patients [26]. A first aim of this paper was to look for the differential expression and functionality of complexes formed by the A2A-R and the A3-R (A2A-A3 Hets) in different regions of the mice brain.

Age is the main risk factor in AD and, unfortunately, the efforts made to obtain anti-AD drugs have so far failed. Intriguing is the lack of success of therapies based on the benefits provided by a variety of drugs tested in transgenic AD models ([27–29] and references therein). A further relevant issue is the lack of appropriate protocols to assess the neuroprotective potential of potential therapeutic drugs in humans [30]. It should, also, be noted that it is doubtful that neurons that progressively die in AD patients can prolong survival by targeting them directly. Alternatively, targeting the glia may be a better option to allow for neuroprotection, especially in those neurological diseases, including AD, in which the microglia are activated [31–33].

Acutely, activated proinflammatory and cytotoxic microglial cells are also known as M1. Either by alternative activation pathways or upon phenotypic changes can microglia contribute to repair and regenerate by expressing anti-inflammatory and immune-regulatory molecules (M2a cells) or acquire the M2b/c deactivating phenotype, also expressing anti-inflammatory markers [34]. Activation of the A2A-R in activated microglia may yet lead to another phenotype, M2d [35–38]. In this sense, in 2005, we reported iNOS production by primary microglia upon A2A-R activation [39].

On the one hand, GPCR-mediated signaling is relevant in the activation of microglia occurring in animal models of Alzheimer’s disease (AD) [40]; in fact, GPCRs expressed in microglia could be important for regulating the M1 (proinflammatory)/M2 (neuroprotective) balance in these cells [31,35]. On the other hand, adenosine regulates microglial activation via, at least, A2A and A3 receptors [32,41–57]. A second aim of this paper was to look for the differential expression and functionality of the A2A-A3Het in primary microglia from control mice and from the APPSwind AD mouse model, which carries the transgene for the human amyloid precursor protein (APP) with Swedish and Indiana mutations.

2. Materials and Methods

2.1. Reagents

PSB 777 ammonium salt, 2-Cl-IB-MECA, SCH 58261, and PSB 10 hydrochloride were purchased from Tocris Bioscience (Bristol, UK). Concentrated (10 mM) stock solutions prepared in DMSO were stored at −20 °C. In each experimental session, aliquots of concentrated solutions of compounds were thawed and conveniently diluted in the appropriate
experimental solution. Lipopolysaccharides from Escherichia coli O111:B4 (LPS) and Interferon-γ (IFN-γ) were purchased from SigmaAldrich (St. Louis, MO, USA).

2.2. APP Transgenic Mouse Model of Alzheimer’s Disease (AD)

APP_{Sw,Ind}-derived embryos or pups, individually genotyped and divided into “APP_{Sw,Ind}” and “control”, were used for preparing primary cultures (12 embryos or pups in a typical experiment). Animal care and experimental procedures were in accordance with European and Spanish regulations (86/609/CEE; RD1201/2005). Mice were handled, as per law, by personnel with the ad hoc certificate (issued by the Generalitat de Catalunya) that allows animal handling for research purposes.

2.3. Neuronal and Microglial Primary Cultures

To prepare primary striatal neurons, brains from the fetuses of pregnant C57/BL6j mice were removed (gestational age: 17 days). Neurons were isolated as described in [59] and plated at a confluence of 40,000 cells/0.32 cm². Briefly, the samples were dissected, carefully stripped of their meninges, and digested with 0.25% trypsin for 20 min at 37 °C. Trypsinization was stopped by adding an equal volume of culture medium (Dulbecco’s modified Eagle medium-F-12 nutrient mixture, Invitrogen). Cells were brought to a single cell suspension by repeated pipetting followed by passage through a 100 µm-pore mesh. Pelleted (7 min, 200 g) cells were resuspended in supplemented DMEM and seeded at a density of 3.5 × 10⁵ cells/mL in 6-well plates for functional assays and 12-well plates for PLA assays. For neuronal cultures, the day after, medium was replaced by neurobasal medium supplemented with 2 mM L-glutamine, 100 U/mL penicillin/streptomycin, and 2% (v/v) B27 (GIBCO). Primary microglia were obtained from 2–3-day-old pups and processed as described above for neurons but instead of neurobasal/B27, using Dulbecco’s modified Eagle medium supplemented with 2 mM L-glutamine, 100 U/mL penicillin/streptomycin, MEM Non-Essential Amino Acid Solution (1/100), and 10% (v/v) heat-inactivated Fetal Bovine Serum (FBS). All supplements were from Invitrogen (Paisley, Scotland, United Kingdom). Cells were maintained in a humid atmosphere of 5% CO₂ at 37 °C and were used for assays after 15 days of culture. For LPS-activated microglia, 48 h before initiating the experiment, 0.01% (v/v) LPS and 0.002% (v/v) IFN-γ were added to Dulbecco’s modified Eagle medium where microglial cells were kept.

2.4. cAMP Determination

Microglial and neuronal primary cultures were plated in 6-well plates. Two hours before initiating the experiment, cell-culture medium was replaced by non-supplemented DMEM medium. Then, cells were detached, resuspended in non-supplemented DMEM medium containing 50 µM zardaverine, and plated in 384-well microplates (2500 cells/well). Cells were pretreated (15 min) with the corresponding antagonists (1 µM SCH 58261 for A_{2A}R and 1 µM PSB 10 for A₃R) or vehicle and stimulated with agonists (100 nM PSB 777 for A_{2A}R and 100 nM 2-Cl-IB-MECA for A₃R) (15 min) before the addition of 0.5 µM FK or vehicle. Finally, reaction was stopped by addition of the Eu-cAMP tracer and the ULight-cAMP monoclonal antibody prepared in the “cAMP detection buffer” (PerkinElmer). All steps were performed at 25°. Homogeneous time-resolved fluorescence energy transfer (HTRF) measures were performed after 60 min of incubation at RT using the Lance Ultra cAMP kit (PerkinElmer, Waltham, MA, USA). Fluorescence at 665 nm was analyzed on a PHERAStar Flagship microplate reader equipped with an HTRF optical module (BMG Lab Technologies, Offenburg, Germany).
2.5. MAPK Phosphorylation Assays

To determine MAP kinase 1/2 (ERK1/2) phosphorylation, primary striatal neurons and microglia were plated (50,000 cells/well) in transparent Deltalab 96-well plates and kept in the incubator for 15 days. Then, 2 h before the experiment, the medium was replaced by non-supplemented DMEM medium. Next, the cells were pre-treated at RT for 10 min with antagonists (1 µM SCH 58261 for A2AR and 1 µM PSB 10 for A3R) or vehicle and stimulated for an additional 7 min with selective agonists (100 nM PSB 777 for A2AR and 100 nM 2-Cl-IB-MECA for A3R). Then, cells were washed twice with cold PBS before the addition of 30 µL/well “Ultra lysis buffer” -PerkinElmer- (15 min treatment). Afterwards, 10 µL of each supernatant were placed in white ProxiPlate 384-well microplates and ERK1/2 phosphorylation was determined using an AlphaScreen® SureFire® kit (PerkinElmer) following the instructions of the supplier, and using an EnSpire® Multimode Plate Reader (PerkinElmer, Waltham, MA, USA).

2.6. Proximity Ligation Assay (PLA)

Physical interaction between A2AR and A3R were detected using the Duolink in situ PLA detection Kit (OLink; Bioscience, Uppsala, Sweden) following the instructions of the supplier. Primary neurons and microglia were grown on glass coverslips, fixed in 4% paraformaldehyde for 15 min, washed with PBS containing 20 mM glycine to quench the aldehyde groups, and permeabilized with the same buffer containing 0.05% Triton X-100 (20 min). Then, samples were successively washed with PBS. After 1 h of incubation at 37 °C with the blocking solution in a pre-heated humidity chamber, cells were incubated overnight in the antibody diluent medium with a mixture of equal amounts of mouse anti-A2AR (1/100; 05-717, Millipore Corp, Billerica, MA, USA) and rabbit anti-A3R (1/100; ab197350, Abcam, Cambridge, United Kingdom) to detect A2AR-A3R complexes. Neurons and microglia were processed using the PLA probes detecting primary antibodies (Duolink II PLA probe plus and Duolink II PLA probe minus) diluted in the antibody diluent solution (1:5). Ligation and amplification were conducted as indicated by the supplier. Samples were mounted using the mounting medium with Hoechst (1/100; Sigma-Aldrich, St. Louis, MO, USA) to stain nuclei. Samples were observed in a Zeiss 880 confocal microscope (Carl Zeiss, Oberkochen, Germany) equipped with an apochromatic 63× oil immersion objective (N.A. 1.4) and 405 nm and 561 nm laser lines. For each field of view, a stack of two channels (one per staining) and four Z stacks with a step size of 1 µm were acquired. The number of neurons containing one or more red spots versus total cells (blue nucleus) was determined, and the unpaired t-test was used to compare the values (red dots/cell) obtained.

2.7. Data Handling and Statistical Analysis

Data from immunofluorescence and functional assays were analyzed using Prism 6 (GraphPad Software, Inc., San Diego, CA, USA). The data are the mean ± SEM. Statistical analysis was performed with SPSS 18.0 software. Significance was analyzed by one-way ANOVA, followed by Bonferroni’s multiple comparison post hoc test. Significant differences were considered when \(p < 0.05 \).

3. Results

3.1. Differential Expression of A2A/A3 Hets in Primary Neurons from the Cortex, Striatum, and Hippocampus

Using the in situ proximity ligation assay (PLA), which is instrumental to the detection of complexes formed by two proteins in natural cells and in tissue sections, the expression of A2A/A3 Hets was assessed in primary neurons from mice’s frontal cortex, striatum, and hippocampus. As observed in Figure 1, the expression of A2A/A3 Hets in the striatum was significantly higher than that in the cortex or hippocampus; these results correlate with higher expression of the heteromer in the brain region with the highest expression of A2AR.
3.2. Characterization of the Functionality of A\textsubscript{2A}A\textsubscript{3}Hets in Primary Neurons from Three Brain Regions

After demonstrating the differential expression of A\textsubscript{2A}A\textsubscript{3}Hets between the hippocampus, frontal cortex, and striatum, we were interested in checking whether the differential expression of the heteromer leads to differences in functionality. We have previously shown that the heteromeric context led to a marked decrease of the signaling originating at the A\textsubscript{3}R and that A\textsubscript{2A}R antagonists may overrode the blockade [9]. As the A\textsubscript{2A}R couples to G\textsubscript{s} and the A\textsubscript{3}R couples to G\textsubscript{i}, measurement of both increases in cAMP levels and decreases of forskolin-induced cAMP levels were undertaken. In primary neurons from the striatum, where there is a higher expression of A\textsubscript{2A}A\textsubscript{3}Hets, the A\textsubscript{2A}R agonist, PSB 777, increased the concentration of cytosolic cAMP. The increase was only blocked by the selective A\textsubscript{2A}R antagonist, SCH 58261. In the striatum, the selective A\textsubscript{3}R agonist, 2-Cl-IB-MECA, reduced the cytosolic cAMP levels induced by PSB 777 treatment. Neither in cortical nor in hippocampal neurons did agonists lead to significant increases in cAMP levels (Figure 2A–C).

In primary striatal neurons treated with 0.5 \textmu M forskolin (FK), the A\textsubscript{3}R agonist, 2-Cl-IB-MECA, was able to reduce cAMP levels only in the presence of the selective A\textsubscript{2A}R antagonist. This finding is consistent with previous results obtained in a heterologous expression system, namely, A\textsubscript{3}R activation does not lead to G\textsubscript{i} engagement when the receptor is forming heteromers with A\textsubscript{2A}R. In contrast, the A\textsubscript{3}R agonist had an effect in hippocampal neurons, probably due to the expression of A\textsubscript{3}Rs not forming heteromers with A\textsubscript{2A}R. Still, the A\textsubscript{2A}R antagonist increased the effect of the A\textsubscript{3}R agonist. The results in neurons from the frontal cortex were similar, although the decrease induced by 2-Cl-IB-MECA was significant only in the presence of the A\textsubscript{2A}R antagonist (Figure 2D–F).
Figure 2. A2A3Het-mediated Gs/Gi signaling in primary striatal, hippocampal, and cortical neurons from C57BL/6j mice. (A–F) Primary neurons were pre-treated with selective antagonists, 1 μM SCH 58261 -A2AR- or 1 μM PSB 10 -A3R-, and subsequently treated with the selective agonists, 100 nM PSB 777 -A2AR- or 100 nM 2-Cl-IB-MECA -A3R-. cAMP levels after 500 nM forskolin (FK) stimulation or vehicle treatment were detected by the Lance Ultra cAMP kit and results were expressed in % respect to basal levels (A–C) or in % respect to levels obtained upon FK stimulation (D–F). The values are the mean ± S.E.M. of 6 different experiments performed in triplicates. One-way ANOVA followed by Bonferroni’s multiple comparison post-hoc test were used for statistical analysis. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001; versus basal levels (A–C) or versus FK treatment (D–F).

3.3. Characterization of the Functionality of A2A3Hets in Primary Microglia

Experiments similar to those described in the previous section were performed in primary microglia from the total brain, resting or activated using LPS and IFN-γ. Although the expression of A2A3Hets was similar in resting versus activated cells (Figures 3 and 4), the functionality of Ado receptors differed. In resting cells, the A2AR agonist PSB 777, was able to increase the levels of the cyclic nucleotide. This effect was completely blocked by the presence of the A3R agonist, showing a negative cross-talk similar to that observed in primary striatal neurons. In cells treated with FK, the effect of 2-Cl-IB-MECA was noticeable and further increased by the A2AR antagonist (Figure 3). Similar results were obtained in experiments performed in activated microglia; the main difference was that the significance of 2-Cl-IB-MECA on decreasing the FK-induced cAMP levels (in activated cells) required the presence of the A2AR antagonist (Figure 4).
Figure 3. Expression and function of $A_2A A_3$Hets in primary cultures of microglia from C57BL/6j mice. (A) $A_2A A_3$Hets were detected in primary cultures of microglia by the in situ proximity ligation assay (PLA) using specific antibodies. Cell nuclei were stained with Hoechst (blue). Samples from 5 different animals were processed and analyzed. Scale bar: 20 μm. (B–D) Primary cultures of microglia from C57BL/6j mice were pre-treated with antagonists, 1 μM SCH 58261 -for A_2AR- or 1 μM PSB 10 -for A_3R-, subsequently stimulated with selective agonists, 100 nM PSB 777 -for A_2AR- or 100 nM 2-Cl-IB-MECA -for A_3R-, individually or in combination and treated with 500 nM forskolin (FK) or vehicle. (B) ERK1/2 phosphorylation was analyzed using an AlphaScreen® SureFire® kit (PerkinElmer) while cAMP levels were collected by the Lance Ultra cAMP kit and results were expressed in % respect to basal levels (B,C) or in % respect levels obtained upon 0.5 μM FK stimulation (D). Values are the mean ± S.E.M. of 10 different experiments performed in triplicates. One-way ANOVA followed by Bonferroni’s multiple comparison post-hoc tests were used for statistical analysis. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001; versus basal (B,C) or versus FK treatment (D).

Besides G$_i$ or G$_s$ coupling, the activation of Ado receptors leads to subsequent activation of the mitogen-activated protein kinase (MAPK) signaling pathway. To test the properties of the heteromer in the link to the MAPK signaling cascade, we measured ERK1/2 phosphorylation in resting and activated microglia. In activated cells, significant ERK1/2 phosphorylation was detected with the A_2AR agonist; the effect did not increase when A_3R agonist was also present (Figure 4). In resting cells, the A_2AR agonist led to more robust ERK1/2 phosphorylation that was significantly blocked by the presence of the A_3R agonist without any significant change in the presence of the A_3R antagonist (Figure 3). Interestingly, the A_3R agonist induced no effect in MAPK phosphorylation. Contrary to the data observed in the cAMP assays, the pretreatment with A_2AR antagonists never potentiated this effect.
Figure 4. Expression and function of A2A A3 Hets in primary cultures of LPS-activated microglia from C57BL/6j mice. (A) A2A A3 Hets were detected in primary cultures of non-activated and LPS-activated microglia by the in situ proximity ligation assay (PLA) using specific antibodies. The negative control was obtained by omitting the primary anti-A3R antibody. Experiments were performed in samples from 5 different animals. (B) The number of red dots/cell was quantified using the Andy’s algorithm Fiji’s plug-in and represented versus the number of Hoechst-stained cell nuclei (blue). The number of red dots/cell was compared between non-activated and LPS-activated microglia. The unpaired t-test was used for statistical analysis. Scale bar: 20 μm. (C-E) Primary cultures of LPS-activated microglia from C57BL/6j mice were pre-treated with antagonists, 1 μM SCH 58261 - for A2AR- or 1 μM PSB 10 - for A3R, subsequently stimulated with selective agonists, 100 nM PSB 777 - for A2AR - or 100 nM 2-Cl-IB-MECA - for A3R, individually or in combination and treated with 500 nM forskolin (FK) or vehicle. (C) ERK1/2 phosphorylation was analyzed using an AlphaScreen® SureFire® kit (PerkinElmer) while cAMP levels were collected by the Lance Ultra cAMP kit and results were expressed in % respect to basal levels (C,D) or in % respect to levels obtained upon 0.5 μM FK stimulation (E). Values are the mean ± S.E.M. of 6 different experiments performed in triplicates. One-way ANOVA followed by Bonferroni’s multiple comparison post-hoc tests were used for statistical analysis. * p < 0.05, **** p < 0.0001; versus basal (C,D) or versus FK treatment (E).

3.4. Expression and Functionality of the Heteromer in the APPSw,Ind Transgenic Mice Model of Alzheimer’s Disease (AD)

Microglial cells are important in neurodegenerative diseases coursing with neuroinflammation. For this reason, we compared the expression of A2A A3 Hets in primary microglia from the brain of the APPSw,Ind transgenic AD model and of age-matched control mice. Figure 5A,B shows that the expression of the heteromer was increased by about two-fold in cells from the transgenic animal. Functionality was assessed in cells from the APPSw,Ind mice by measuring cAMP and pERK1/2 levels upon stimulation with agonists. The Gs coupling was confirmed when the A2AR agonist, PSB 777, was used. This effect was counteracted when cells were coactivated with the A3R agonist and PSB 777, showing a negative cross-talk, and also when preactivated with the A3R antagonist, showing cross-antagonism (Figure 5D), which was also found in activated cells from control mice (Figure 4D). Regarding Gi coupling, we found a significant effect of the A3R agonist, 2-Cl-IB-MECA, that was further enhanced by the A2AR antagonist, SCH 58261 (Figure 5E).
The level of ERK1/2 phosphorylation was much higher when cells were treated with the A2A-R agonist than when cells were treated with the A3-R agonist. Costimulation led to a negative cross-talk, i.e., to a reduced signal when compared to the effect exerted by the A2A-R agonist. Importantly, PSB 10 did not reduce the effect of the A2A-R agonist, i.e., no cross-antagonism from A3-R to A2A-R was detected in these cells.

Figure 5. Expression and function of A2A-A3-Hets in primary cultures of microglia from the APPsw,ind mice model of Alzheimer’s disease. (A) A2A-A3-Hets were detected in primary cultures of APPsw,ind microglia by the in situ proximity ligation assay (PLA) using specific antibodies. The negative control was obtained by omitting the primary anti-A3-R antibody. Experiments were performed in samples from 12 different animals. (B) The number of red dots/cell was quantified using the Andy’s algorithm Fiji’s plug-in and represented versus the number of Hoechst-stained cell nuclei (blue). The number of red dots/cell was compared to those in microglia from wild type (WT) mice. The unpaired t-test was used for statistical analysis. **p < 0.01, versus WT. Scale bar: 20 µm.** (C-E) Primary cultures of microglia from APPsw,ind mice were pre-treated with antagonists, 1 µM SCH 58261 -for A2A-R- or 1 µM PSB 10 -for A3-R-, and subsequently stimulated with selective agonists, 100 nM PSB 777 -for A2A-R- or 100 nM 2-CI-IB-MECA -for A3-R-, individually or in combination.

(C) ERK1/2 phosphorylation was analyzed using an AlphaScreen® SureFire® kit (PerkinElmer) while cAMP levels were collected with the Lance Ultra cAMP kit and results were expressed in % respect to basal levels (C,D) or in % respect levels obtained upon 0.5 µM FK stimulation (E). Values are the mean ± S.E.M. of 6 different experiments performed in triplicates. One-way ANOVA followed by Bonferroni’s multiple comparison post-hoc tests were used for statistical analysis. * p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; versus basal (C,D) or versus FK treatment (E).

4. Discussion

The results in this paper confirm a previous report showing that A2A-R and A3-R interact to form heteromeric complexes [9]. These complexes occur naturally and their expression in primary neurons correlates with the expression of A2A-R in different brain regions. In fact, the expression of A2A-A3-Hets was much higher in neurons from the striatum than from the cortex or hippocampus (Figure 1).

There is interest in the potential of targeting A2A-Rs for combating a variety of diseases, especially after the success in launching istradefylline, a selective A2A-R antagonist for
At first sight, this is puzzling as PSB 777 is a very selective and full agonist of A_{2A}(NMDARs), resulting from cross-antagonisms within macromolecular complexes formed by NMDA and A_{2A}R antagonists. Regarding A_{2A}R-mediated signaling, we found that the use of the more selective agonist, PSB 777, leads to a reduced signal if compared to that reported using CGS 21680. At first sight, this is puzzling as PSB 777 is a very selective and full agonist of A_{2A}R; however, differential selectivity depending on the context may be the answer. The more

Microglial A_{2A}R antagonists targeting neurons expressing these heteromers. Indeed, within the heteromer, A_{2A}R antagonists would block A_{2A}R while making A₃R respond to endogenous adenosine, i.e., exogenous A₃R agonists would not be necessary to provide neuroprotection.

Neuroprotection—that is, addressing disease progression—may likely be achieved by targeting the glia that surround neurons whose survival is already significantly compromised. Microglia are attracting attention in the field of AD because microglial cells are involved in the inflammation that occurs in the brain of patients and because microglia could acquire a neuroprotective phenotype, generally known as M2 as opposed to M1 or pro-inflammatory; among the several GPCRs expressed in these cells, A_{2A}R is an attractive target to regulate microglial activation and polarization.

A_{2A}R seems to have a residual role in resting microglia, but it becomes a main player in AD-related activated microglia, pointing to the A_{2A}R expressed in these cells as an attractive target. Adenosine regulates microglial fate and activation, by unknown mechanisms and without details on the role of each AR type on cell polarization. The microglial A_{2A}R regulates lipopolysaccharide-induced neuroinflammation and further data on the potential of these glial cells in the context of neurodegeneration and neuronal dysfunction was provided in 2016 by Cunha [75]. Despite the few reports on A₃R and microglia, the receptor is expressed in primary cultures and immortalized microglial cells, apart from its contribution to the MAPK signaling pathway [44], it mediates the inhibition of cell migration and the production of TNFα [30].

In previous reports, we have shown that A_{2A}R regulates nitric oxide production in cells activated with LPS and IFN-γ [39]. Moreover, A_{2A}R is markedly upregulated in the cortical and hippocampal microglia of AD patients [26]. Therefore, it is relevant to consider how the interaction of A_{2A}R with other cell surface proteins can affect its functionality in both healthy and pathological conditions. Previous reports have demonstrated in microglia that A_{2A}R interacts with the cannabinoid CB2 receptor to form functional units in which cannabinoid signaling is compromised; however, the presence of A_{2A}R antagonists leads to potentiation of cannabinoid signaling. These functional complexes are up-regulated in the APP_{Sw,Ind} AD transgenic mouse model [33], thus reinforcing the view that A_{2A}R antagonists may be useful in the therapy of AD. Additionally favoring the potential of A_{2A}R antagonists in AD therapy is the reduced activity of N-methyl-D-aspartate receptors (NMDARs), resulting from cross-antagonisms within macromolecular complexes formed by NMDA and A_{2A}R receptors in both neurons and microglia [32]. It should be noted that one of the current anti-AD treatments consists of reducing NMDAR function by using an allosteric negative modulator (memantine) [84].

Functional data in neurons and microglia are partly similar to those found in a heterologous system in which the two receptors are expressed and form A_{2A}-A₃Hets. Hence, A₃R-mediated signaling seems to be reduced/absent except in the presence of A_{2A}R antagonists. Regarding A_{2A}R-mediated signaling, we found that the use of the more selective agonist, PSB 777, leads to a reduced signal if compared to that reported using CGS 21680. At first sight, this is puzzling as PSB 777 is a very selective and full agonist of A_{2A}R; however, differential selectivity depending on the context may be the answer. The more
robust signaling using CGS 21680 is not likely due to binding to A3R as the use of the selective A3R agonist, 2-Cl-IB-MECA, does not lead to significant responses either. This fact also suggests that PSB 777, in the experimental conditions and models used here, is not specially biased. In conclusion, it seems that PSB 777 is less potent than CGS 21680 in activating Gs-mediated signaling or in the link to the MAPK pathway cascade in microglia [9,33]. Functional selectivity in the form of biased agonism or else is dependent on the context of GPCR, especially if the receptor is part of a heteromer. Our results confirm that signaling via A2AR or A3R varies depending on the context, that is, on the structure of the heteromer and/or allosteric interactions with G and scaffold proteins [86,87]. Otherwise, it would be difficult to interpret why the signal is more robust in resting than in activated microglia although the expression of the heteromer is similar. Even assuming that part of the signaling is independent of A2A3Het, the effect of PSB 777 should, theoretically, be higher in activated microglia where A2AR is upregulated.

In conclusion, it is important to note that A2A3Het is upregulated in the APPSw,Ind AD model and that signaling through A2AR may depend on its interaction with other cell surface proteins and/or with proteins of the signaling machinery. In the primary microglia of the APPSw,Ind AD model, the functional selectivity is such that A2AR would increase Gs-mediated signaling of A3R. These findings reinforce the idea that A2AR antagonists deserve consideration to combat AD.

Author Contributions: Conceptualization, G.N. and R.F.; Data curation, R.F.; Formal analysis, A.L., J.L. and G.N.; Investigation, A.L., J.L., I.R. and C.P.-O.; Methodology, A.L., I.R. and G.N.; Resources, G.N. and R.F.; Supervision, G.N. and R.F.; Validation, G.N.; Writing—original draft, G.N.; Writing—review & editing, A.L., J.L., I.R., C.P.-O., G.N. and R.F. All authors have read and agreed to the published version of the manuscript.

Funding: This work was partially supported by the AARFD-17-503612 grant from the US Alzheimer’s Association, and by grants SAF2017-84117-R, RTI2018-094204-B-I00 and PID2020-113430RB-I00 funded by Spanish MCIN/AEI/10.13039/501100011033 and, as appropriate, by “ERDF A way of making Europe”, by the “European Union” or by the “European Union Next Generation EU/PRTR”. The research group of the University of Barcelona is considered as a group of excellence (grup consolidat #2017 SGR 1497) by the Regional Catalan Government, which does not provide any specific funding for reagents or for payment of services or Open Access fees).

Institutional Review Board Statement: Animal care and experimental procedures were in accordance with European and Spanish regulations (86/609/CEE; RD1201/2005).

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are available upon reasonable request to corresponding authors.

Acknowledgments: In memoriam, Marí a Teresa Miras-Portugal a great scientist and a beloved friend of R.F.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References
1. Alexander, S.P.; Christopoulos, A.; Davenport, A.P.; Kelly, E.; Mathie, A.; Peters, J.A.; Veale, E.L.; Armstrong, J.F.; Faccenda, E.; Harding, S.D.; et al. The Concise Guide To Pharmacology 2021/22: G Protein-Coupled Receptors. Br. J. Pharmacol. 2021, 178, S27–S156. [CrossRef] [PubMed]
2. Gines, S.; Hillion, J.; Torvinen, M.; Le Crom, S.; Casado, V.; Canela, E.I.; Rondin, S.; Lew, J.Y.; Watson, S.; Zoli, M.; et al. Dopamine D1 and Adenosine A1 Receptors form Functionally Interacting Heteromeric Complexes. Proc. Natl. Acad. Sci. USA 2000, 97, 8606–8611. [CrossRef]
3. Hillion, J.; Canals, M.; Torvinen, M.; Casado, V.; Scott, R.; Terasmia, A.; Hansson, A.; Watson, S.; Olah, M.E.; Mallol, J.; et al. Coaggregation, Cointernalization, and Codesensitization of Adenosine A2A Receptors and Dopamine D2 Receptors. J. Biol. Chem. 2002, 277, 18091–18097. Available online: http://www.ncbi.nlm.nih.gov/pubmed/11872740 (accessed on 21 March 2015). [CrossRef] [PubMed]
4. Ciruela, F.; Casadó, V.; Rodrigues, R.; Luján, R.; Burgueño, J.; Canals, M.; Borycz, J.; Rebola, N.; Goldberg, S.; Mallol, J.; et al. Presynaptic Control of Striatal Glutamatergic Neurotransmission by Adenosine A1-A2A Receptor Heteromers. J. Neurosci. 2006, 26, 2080–2087. [CrossRef] [PubMed]

5. Navarro, G.; Cordomi, A.; Brugarolas, M.; Moreno, E.; Aguinaga, D.; Pérez-Benito, L.; Ferre, S.; Cortés, A.; Casadó, V.; Mallol, J.; et al. Cross-communication between Gi and Gs in a G-Protein-Coupled Receptor Heterotrimer Guided by a Receptor C-Terminal Domain. BMC Biol. 2018, 16, 1–15. [CrossRef]

6. Navarro, G.; Cordomi, A.; Zelma-Fernández, M.; Brugarolas, M.; Moreno, E.; Aguinaga, D.; Pérez-Benito, L.; Cortés, A.; Casadó, V.; Mallol, J.; et al. Quaternary Structure of a G-Protein-Coupled Receptor Heterotrimer in Complex with Gi and Gs. BMC Biol. 2016, 14, 26. [CrossRef]

7. Gnad, T.; Navarro, G.; Lahesmaa, M.; Reverte-Salisa, L.; Copperi, F.; Cordomi, A.; Naumann, J.; Hochhäusser, A.; Haufs-Brusberg, S.; Wenzel, D.; et al. Adenosine/ADP Receptor Signaling Ameliorates the Effects of Aging and Counteracts Obesity. Cell Metab. 2020, 32, 56–70.e7. Available online: https://pubmed.ncbi.nlm.nih.gov/32589947/ (accessed on 9 July 2020). [CrossRef]

8. Hinz, S.; Navarro, G.; Borroto-Escuela, D.; Seibt, B.F.; Ammon, C.; De Filippo, E.; Danish, A.; Lacher, S.K.; Červinková, B.; Rafeh, M.; et al. Adenosine A2A Receptor Ligand Recognition and Signaling Is Blocked by A2B Receptors. Oncotarget 2018, 9, 13593–13611. Available online: http://www.ncbi.nlm.nih.gov/pubmed/29568380 (accessed on 5 April 2018). [CrossRef]

9. Lillo, A.; Martínez-Pinilla, I.; Navarro, G.; Franco, R. Adenosine A2A and A3 Receptors Are Able to Interact with Each Other. A Further Piece in the Puzzle of Adenosine Receptor-Mediated Signaling. J. J. Mol. Sci. 2020, 21, 5070. Available online: https://www.mdpi.com/1422-0067/21/14/5070?utm_source=researcher_app&utm_medium=referral&utm_campaign=RESR_MKRT_Researcher_inbound (accessed on 29 July 2020). [CrossRef]

10. Jenner, P. An Overview of Adenosine A2A Receptor Antagonists in Parkinson’s Disease. Int. Rev. Neurobiol. 2014, 119, 71–86. Available online: http://www.ncbi.nlm.nih.gov/pubmed/25175961 (accessed on 23 October 2017).

11. Jenner, P.; Mori, A.; Hauser, R.; Morelli, M.; Fredholm, B.B.; Chen, J.F. Adenosine A2A Receptors, A2A Antagonists, and Parkinson’s Disease. Park. Relat. Disord. 2009, 15, 406–413. Available online: http://www.ncbi.nlm.nih.gov/pubmed/19446490 (accessed on 25 June 2015). [CrossRef]

12. Saki, M.; Yamada, K.; Koshimura, E.; Sasaki, K.; Kanda, T. In Vitro Pharmacological Profile of the A2A Receptor Antagonist Istradefylline. Naunyn. Schmiedebergs Arch. Pharmacol. 2013, 386, 963–972. Available online: http://www.ncbi.nlm.nih.gov/pubmed/23812646 (accessed on 27 December 2017). [CrossRef]

13. Kondo, T.; Mizuno, Y.; Japanese Istradefylline Study Group. A Long-Term Study of Istradefylline Safety and Efficacy in Patients with Parkinson Disease. Clin. Neuropharmacol. 2015, 38, 41–46. Available online: http://www.ncbi.nlm.nih.gov/pubmed/25768849 (accessed on 17 March 2015). [CrossRef]

14. Mizuno, Y.; Kondo, T. Adenosine A2A Receptor Antagonist Istradefylline Reduces Daily OFF Time in Parkinson’s Disease. Mov. Disord. 2013, 28, 1138–1141. Available online: http://www.ncbi.nlm.nih.gov/pubmed/23483627 (accessed on 23 October 2017). [CrossRef] [PubMed]

15. Berger, A.A.; Winnick, A.; Welschmeyer, A.; Kaneb, A.; Berardino, K.; Cornett, E.M.; Kaye, A.D.; Viswanath, O.; Urits, I. Istradefylline to Treat Patients with Parkinson’s Disease Experiencing “Off” Episodes: A Comprehensive Review. Neurol. Int. 2020, 12, 109–129. Available online: https://www.ncbi.nlm.nih.gov/pubmed/33302331/ (accessed on 14 October 2021). [CrossRef] [PubMed]

16. Hatfield, S.M.; Sitkovsky, M. A2A Adenosine Receptor Antagonists to Weaken the Hypoxia-HIF-1α Driven Immunosuppression and Improve Immunotherapies of Cancer. Curr. Opin. Pharmacol. 2016, 29, 90–96. Available online: http://www.ncbi.nlm.nih.gov/pubmed/27429212 (accessed on 24 October 2017). [CrossRef] [PubMed]

17. Popoli, P.; Blum, D.; Domenici, M.R.; Burnouf, S.; Chern, Y. A Critical Evaluation of Adenosine A2A Receptors as Potentially “Druggable” Targets in Huntington’s Disease. Curr. Pharm. Des. 2008, 14, 1500–1511. Available online: http://www.ncbi.nlm.nih.gov/pubmed/18537673 (accessed on 19 December 2017). [CrossRef]

18. Chen, J.-F.; Sonsalla, P.K.; Pedata, F.; Melani, A.; Domenici, M.R.; Popoli, P.; Geiger, J.; Lopes, L.V.; de Mendonça, A. Adenosine A2A Receptors and Brain Injury: Broad Spectrum of Neuroprotection, Multifaceted Actions and “Fine Tuning” Modulation. Prog. Neurobiol. 2007, 83, 310–331. Available online: http://www.ncbi.nlm.nih.gov/pubmed/18023959 (accessed on 23 October 2017). [CrossRef]

19. Oruu, M.; Bakešová, J.; Brugarolas, M.; Quiroz, C.; Beaumont, V.; Goldberg, S.R.; Lluis, C.; Cortés, A.; Franco, R.; Casadó, V.; et al. Striatal Pre- and Postsynaptic Profile of Adenosine A2A Receptor Antagonists. PLoS ONE 2011, 6, e16088. [CrossRef]

20. Lee, C.; Chern, Y. Adenosine Receptors and Huntington’s Disease. Int. Rev. Neurobiol. 2014, 119, 195–232. Available online: http://linkinghub.elsevier.com/retrieve/pii/B9780128010228000106 (accessed on 19 December 2017).

21. Li, W.; Silva, H.B.; Real, J.; Wang, Y.-M.; Rial, D.; Li, P.; Payen, M.-P.; Zhou, Y.; Muller, C.E.; Tomé, A.R.; et al. Inactivation of Adenosine A2A Receptors Reverses Working Memory Deficits at Early Stages of Huntington’s Disease Models. Neurobiol. Dis. 2015, 79, 70–80. Available online: http://www.ncbi.nlm.nih.gov/pubmed/25892655 (accessed on 19 December 2017). [CrossRef] [PubMed]

22. Li, P.; Rial, D.; Canas, P.M.; Yoo, J.H.; Li, W.; Zhou, X.; Wang, Y.; Van Westen, G.J.P.; Payen, M.P.; Augusto, E.; et al. Optogenetic Activation of Intracellular Adenosine A2A Receptor Signaling in the Hippocampus Is Sufficient to Trigger CREB Phosphorylation and Impair Memory. Mol. Psychiatry 2015, 20, 1339–1349. Available online: http://www.ncbi.nlm.nih.gov/pubmed/25687775 (accessed on 9 March 2018). [CrossRef]
23. Tyebji, S.; Saavedra, A.; Canas, P.M.; Pliassova, A.; Delgado-García, J.M.; Alberch, J.; Cunha, R.A.; Gruart, A.; Pérez-Navarro, E. Hyperactivation of D1 and A2A Receptors Contributes to Cognitive Dysfunction in Huntington’s Disease. *Neurobiol. Dis.* 2015, 74, 41–57. Available online: http://linkinghub.elsevier.com/retrieve/pii/S0969961114003428 (accessed on 19 December 2017). [CrossRef] [PubMed]

24. Chiu, F.-L.L.; Lin, J.-T.T.; Chuang, C.-Y.Y.; Chien, T.; Chen, C.-M.M.; Chen, K.-H.H.; Hsiao, H.-Y.Y.; Lin, Y.-S.S.; Cherrn, Y.; Kuo, H.-C.C. Elucidating the Role of the A2A Adenosine Receptor in Neurodegeneration Using Neurons Derived from Huntington’s Disease iPScs. *Hum. Mol. Genet.* 2015, 24, 6066–6079. [CrossRef]

25. Chen, J.-F. Adenosine Receptor Control of Cognition in Normal and Disease. *Int. Rev. Neurobiol.* 2014, 119, 257–307. Available online: http://www.ncbi.nlm.nih.gov/pubmed/25179970 (accessed on 18 February 2016).

26. Angulo, E.; Casado, V.; Mallol, J.; Canela, E.I.; Viñals, F.; Ferrez, I.; Lluis, C.; Franco, R. A1 Adenosine Receptors Accumulate in Neurodegenerative Structures in Alzheimer Disease and Mediate both Amyloid Precursor Protein Processing and Tau Phosphorylation and Translocation. *Brain Pathol.* 2003, 13, 440–451. [CrossRef]

27. Banik, A.; Brown, R.E.; Bamburg, J.; Lahiri, D.K.; Khurana, D.; Friedland, R.P.; Chen, W.; Ding, Y.; Mudher, A.; Padjen, A.L.; et al. Translation of Pre-Clinical Studies into Successful Clinical Trials for Alzheimer’s Disease: What Are the Roadblocks and How Can They Be Overcome? *J. Alzheimers Dis.* 2015, 47, 815–843. [CrossRef] [PubMed]

28. Nisticò, R.; Pignatelli, M.; Piccinni, S.; Mercuri, N.B.; Collingridge, G. Targeting Synaptic Dysfunction in Alzheimer’s Disease Therapy. *Mol. Neurobiol.* 2012, 46, 572–587. Available online: http://www.ncbi.nlm.nih.gov/pubmed/22914888 (accessed on 20 December 2017). [CrossRef]

29. Franco, R.; Cedazo-Minguez, A. Successful Therapies for Alzheimer’s Disease: Why so Many in Animal Models and None in Humans? *Front. Pharmacol.* 2014, 5, 146. Available online: http://www.ncbi.nlm.nih.gov/pubmed/25009496 (accessed on 15 January 2022). [CrossRef]

30. Franco, R.; Navarro, G. Adenosine A2A Receptor Antagonists in Neurodegenerative Diseases: Huge Potential and Huge Challenges. *Front. Psychiatry* 2018, 9, 1–5. Available online: https://pubmed.ncbi.nlm.nih.gov/29593579/ (accessed on 13 September 2020). [CrossRef]

31. Navarro, G.; Morales, P.; Rodríguez-Cueto, C.; Fernández-Ruiz, J.; Jagerovic, N.; Franco, R. Targeting Cannabinoid CB2 Receptors in the Central Nervous System. Medicinal Chemistry Approaches with Focus on Neurodegenerative Disorders. *Front. Neurosci.* 2016, 10, 406. Available online: www.uniprot.org (accessed on 7 December 2016). [CrossRef] [PubMed]

32. Franco, R.; Rivas-Santisteban, R.; Casanovas, M.; Lillo, A.; Saura, C.A.; Navarro, G. Adenosine A2A Receptor Antagonists Affects NMDA Glutamate Receptor Function. Potential to Address Neurodegeneration in Alzheimer’s Disease. *Cells* 2020, 9, 1075. Available online: https://pubmed.ncbi.nlm.nih.gov/32357548/ (accessed on 31 March 2021). [CrossRef] [PubMed]

33. Franco, R.; Reyes-Resina, I.; Aguinaga, D.; Lillo, A.; Jiménez, J.; Raich, I.; Borroto-Escuela, D.O.; Ferreiro-Vera, C.; Canela, E.I.; Sánchez de Medina, V.; et al. Potentiation of Cannabinoid Signaling in Microglia by Adenosine A2A Receptor Antagonists. *Glia* 2019, 67, 2410–2423. [CrossRef] [PubMed]

34. Chhor, V.; Le Charpentier, T.; Lebon, S.; Oré, M.-V.; Celador, I.L.; Josserand, J.; Degos, V.; Jacobot, E.; Hagberg, H.; Sāvman, K.; et al. Characterization of Phenytoin Markers and Neuronotoxic Potential of Proliferated Primary Microglia In Vitro. *Brain. Behav. Immun.* 2013, 32, 70–85. Available online: http://www.sciencedirect.com/science/article/pii/S088915911300127X (accessed on 17 November 2014). [CrossRef] [PubMed]

35. Franco, R.; Fernández-Suárez, D. Alternatively Activated Microglia and Macrophages in the Central Nervous System. *Prog. Neurobiol.* 2015, 131, 65–86. Available online: http://www.ncbi.nlm.nih.gov/pubmed/26067058 (accessed on 14 June 2015). [CrossRef]

36. Pinhal-Enfield, G.; Ramanathan, M.; Hasko, G.; Vogel, S.N.; Salzman, A.L.; Boons, G.-J.; Leibovich, S.J. An Angiogenic Switch in Macrophages Involving Synergy between Toll-Like Receptors 2, 4, 7, and 9 and Adenosine A(2A) Receptors. *Am. J. Pathol.* 2003, 163, 711–721. [CrossRef]

37. Ferrante, C.J.; Pinhal-Enfield, G.; Elson, G.; Cronstein, B.N.; Hasko, G.; Outram, S.; Leibovich, S.J. The Adenosine-Dependent Angiogenic Switch of Macrophages to an M2-Like Phenotype Is Independent of Interleukin-4 Receptor Alpha (IL-4Rα) Signaling. *Inflammation* 2013, 36, 921–931. Available online: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3710311&tool=pmcentrez&rendertype=abstract (accessed on 1 October 2014). [CrossRef]

38. Ferrante, C.J.; Leibovitch, S.J. Regulation of Macrophage Polarization and Wound Healing. *Adv. Wound Care* 2012, 1, 10–16. Available online: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3623587&tool=pmcentrez&rendertype=abstract (accessed on 9 October 2014). [CrossRef]

39. Saura, J.; Angulo, E.; Ejarque, A.; Casado, V.; Tusa, J.; Moratalla, R.; Chen, J.-F.F.; Schwartzchild, M.A.; Lluis, C.; Franco, R.; et al. Adenosine A2A Receptor Stimulation Potentiates Nitric Oxide Release by Activated Microglia. *J. Neurochem.* 2005, 95, 919–929. Available online: http://www.ncbi.nlm.nih.gov/pubmed/16092928 (accessed on 20 March 2015). [CrossRef]

40. Haque, M.E.; Kim, I.S.; Jakaria, M.; Akther, M.; Choi, D.K. Importance of GPCR-Mediated Microglial Activation in Alzheimer’s Disease. *Front. Cell. Neurosci.* 2018, 12, 258. Available online: https://pubmed.ncbi.nlm.nih.gov/30186116/ (accessed on 14 October 2021). [CrossRef]

41. Ferreira-Silva, J.; Aires, I.D.; Boia, R.; Ambrósio, A.F.; Santiago, A.R. Activation of Adenosine A3 Receptor Inhibits Microglia Reactivity Elicited by Elevated Pressure. *Int. J. Mol. Sci.* 2020, 21, 7218. Available online: https://pubmed.ncbi.nlm.nih.gov/33007835/ (accessed on 14 October 2021). [CrossRef]
42. Ogata, T.; Schubert, P. Programmed Cell Death in Rat Microglia Is Controlled by Extracellular Adenosine. *Neurosci. Lett.* **1996**, *218*, 91–94. Available online: http://www.ncbi.nlm.nih.gov/pubmed/8945735 (accessed on 3 September 2018). [CrossRef]

43. van der Putten, C.; Zuidervijk-Sick, E.A.; van Straalen, L.; de Geus, E.D.; Boven, L.A.; Kondova, I.; IJzerman, A.P.; Bajramovic, J.J. Differential Expression of Adenosine A3 Receptors Controls Adenosine A2A Receptor-Mediated Inhibition of TLR Responses in Microglia. *J. Immunol.* **2009**, *182*, 7603–7612. Available online: http://www.ncbi.nlm.nih.gov/pubmed/19494284 (accessed on 3 September 2018). [CrossRef]

44. Merighi, S.; Borea, P.A.; Stefanelli, A.; Bencivieni, S.; Castillo, C.A.; Varani, K.; Gessi, S. A 3 Adenosine Receptor Agonist Attenuates Neuropathic Pain by Suppressing Systemic Inflammation Regulates Microglial Responses to Tissue Damage In Vivo. *Glia* **2014**, *62*, 1345–1360. Available online: http://www.ncbi.nlm.nih.gov/pubmed/24807189 (accessed on 3 September 2018). [CrossRef] [PubMed]

45. Gyoneva, S.; Davalos, D.; Biswas, D.; Swanger, S.A.; Garnier-Amblard, E.; Loth, F.; Akassoglou, K.; Traynelis, S.F. Systemic Activation of Microglia and Convergence of Nociceptive Inputs in the Spinal Dorsal Horn. *Exp. Brain Res.* **2014**, *236*, 3203–3213. Available online: https://www.mdpi.com/2073-4409/9/5/1108 (accessed on 11 March 2021). [CrossRef] [PubMed]

46. Ohsawa, K.; Sanagi, T.; Nakamura, T.; Suzuki, I.; Ioue, K.; Kohsaka, S. Adenosine A3 Receptor Is Involved in ADP-Induced Microglial Process Extension and Migration. *J. Neurochem.* **2012**, *121*, 217–227. Available online: http://www.ncbi.nlm.nih.gov/pubmed/22335470/ (accessed on 3 September 2018). [CrossRef] [PubMed]

47. Terayama, R.; Tabata, M.; Maruhama, K.; Iida, S. A 3 Adenosine Receptor Agonist Attenuates Neuropathic Pain by Suppressing Activation of Microglia and Convergence of Nociceptive Inputs in the Spinal Dorsal Horn. *Exp. Brain Res.* **2018**, *236*, 3203–3213. Available online: https://www.ncbi.nlm.nih.gov/pubmed/30206699/ (accessed on 14 October 2021). [CrossRef] [PubMed]

48. Mucke, L.; Masliah, E.; Yu, G.Q.; Mallory, M.; Rockenstein, E.M.; Tatsuno, G.; Hu, K.; Kholodenko, D.; Johnson-Wood, K.; McConlogue, L. High-Level Neuronal Expression of Abeta 1-42 in Wild-Type Human Amyloid Protein Precursor Transgenic Mice: Synaptotoxicity without Plaque Formation. *J. Neurosci.* **2000**, *20*, 4050–4058. Available online: http://www.ncbi.nlm.nih.gov/pubmed/10818140 (accessed on 31 July 2017). [CrossRef]

49. Illes, P.; Rubini, P.; Ulrich, H.; Zhao, Y.; Tang, Y. Regulation of Microglial Functions by Purinergic Mechanisms in the Healthy and Diseased CNS. *Cells* **2020**, *9*, 1108. Available online: https://www.mdpi.com/2073-4409/9/5/1108 (accessed on 11 March 2021). [CrossRef] [PubMed]

50. Ohlsson, K.; Sanagi, T.; Nakamura, T.; Suzuki, I.; Ioue, K.; Kohsaka, S. Adenosine A3 Receptor Is Involved in ADP-Induced Microglial Process Extension and Migration. *J. Neurochem.* **2012**, *121*, 217–227. Available online: http://www.ncbi.nlm.nih.gov/pubmed/22335470/ (accessed on 3 September 2018). [CrossRef] [PubMed]
60. Silva, A.C.; Lemos, C.; Gonçalves, F.Q.; Plásssova, A.V.; Machado, N.J.; Silva, H.B.; Canas, P.M.; Cunha, R.A.; Lopes, J.P.; Agostinho, P. Blockade of Adenosine A2A Receptors Recovers Early Deficits of Memory and Plasticity in the Triple Transgenic Mouse Model of Alzheimer’s Disease. Neurobiol. Dis. 2018, 117, 72–81. Available online: http://www.ncbi.nlm.nih.gov/pubmed/29859867 (accessed on 9 March 2020). [CrossRef]

61. Gonçalves, F.Q.; Lopes, J.P.; Silva, H.B.; Lemos, C.; Silva, A.C.; Gonçalves, N.; Tomé, Â.R.; Ferreira, S.G.; Canas, P.M.; Rial, D.; et al. Synaptic and Memory Dysfunction in a β-Amyloid Model of Early Alzheimer’s Disease Depends on Increased Formation of ATP-Derived Extracellular Adenosine. Neurobiol. Dis. 2019, 132, 104570. [CrossRef]

62. Canas, P.M.; Porciuncula, L.O.; Cunha, G.M.A.; Silva, C.G.; Machado, N.J.; Oliveira, J.M.A.; Oliveira, C.R.; Cunha, R.A. Adenosine A2A Receptor Blockade Prevents Synchronization and Memory Dysfunction Caused by β-Amyloid Peptides via p38 Mitogen-Activated Protein Kinase Pathway. J. Neurosci. 2009, 29, 14741–14751. [CrossRef]

63. Da Silva, S.V.; Haberl, M.G.; Zhang, P.; Bethge, P.; Lemos, C.; Gonçalves, N.; Gorlewicz, A.; Malezieux, M.; Gonçalves, F.Q.; Muzio, L.; Viotti, A.; Martino, G. Microglia in Neuroinflammation and Neurodegeneration: From Understanding to Therapy. Acta Pharmacol. Sin. 2016, 37, 1191. [CrossRef] [PubMed]

64. Temido-Ferreira, M.; Ferreira, D.G.; Batalha, V.L.; Marques-Morgado, I.; Coelho, J.E.; Pereira, P.; Gomes, R.; Pinto, A.; Carvalho, S.; Canas, P.M.; et al. Age-Related Shift in LTD Is Dependent on Neuronal Adenosine A2A Receptors Interplay with mGluR5 and NMDA Receptors. Mol. Psychiatry 2020, 25, 1876–1900. [CrossRef] [PubMed]

65. Dall’Igna, O.P.; Porciúncula, L.O.; Souza, D.O.; Cunha, R.A.; Lara, D.R. Neuroprotection by Caffeine and Adenosine A2A Receptor Blockade of Beta-Amyloid Neurotoxicity. Br. J. Pharmacol. 2003, 138, 1207–1209. Available online: https://pubmed.ncbi.nlm.nih.gov/12711619/ (accessed on 3 January 2022). [CrossRef] [PubMed]

66. Ashton, J.C.; Glass, M. The Cannabinoid CB2 Receptor as a Target for Inflammation-Dependent Neurodegeneration. Curr. Neuropharmacol. 2007, 5, 73–80. [CrossRef] [PubMed]

67. Stone, T.W. Purines and Neuroprotection. Adv. Exp. Med. Biol. 2002, 513, 249–280. Available online: https://pubmed.ncbi.nlm.nih.gov/12578242/ (accessed on 3 January 2022). [CrossRef]

68. Ashton, J.C.; Glass, M. The Cannabinoid CB2 Receptor as a Target for Inflammation-Dependent Neurodegeneration. Curr. Neuropharmacol. 2007, 5, 73–80. [CrossRef] [PubMed]

69. Colton, C.A.; Mott, R.T.; Sharpe, H.; Xu, Q.; Van Nostrand, W.E.; Vitek, M.P. Expression Profiles for Macrophage Alternative Activation Genes in AD and in Mouse Models of AD. J. Neuroimmun. 2006, 3, 27. Available online: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1609108&tool=pmcentrez&rendertype=abstract (accessed on 16 October 2014). [CrossRef] [PubMed]

70. Fiebich, B.L.; Biber, K.; Lieb, K.; van Calker, D.; Berger, M.; Bauer, J.; Gebicke-Haerter, P.J. Cyclooxygenase-2 Expression in Rat Hippocampal Neurogenesis Via Activation of Wnt/Catenin Signaling in Hypertension. Mol. Neurobiol. 2018, 55, 5282–5298. Available online: http://www.ncbi.nlm.nih.gov/pubmed/28884281 (accessed on 4 October 2019). [CrossRef]

71. Grosjean, N.; et al. Early Synaptic Deficits in the APP/PS1 Mouse Model of Alzheimer’s Disease Involve Neuronal Adenosine A2A Receptors. Nat. Commun. 2016, 7, 11915. [CrossRef] [PubMed]

72. Michelucci, A.; Heurtaux, T.; Grandbarbe, L.; Morga, E.; Heuschling, P. Characterization of the Microglial Phenotype under Specific Pro-Inflammatory and Anti-Inflammatory Conditions: Effects of Oligomeric and Fibrillar Amyloid-Beta. J. Neurosci. 2018, 410–420. Available online: http://www.ncbi.nlm.nih.gov/pubmed/29859867 (accessed on 3 September 2018). [CrossRef] [PubMed]

73. Ni, R.; Mu, L.; Ametamey, S. Positron Emission Tomography of Type 2 Cannabinoid Receptors for Detecting Inflammation in the Central Nervous System. Acta Pharmacol. Sin. 2019, 40, 351–357. Available online: http://www.nature.com/articles/s41401-018-0035-5 (accessed on 26 June 2018). [CrossRef]

74. Goyeneva, S.; Swanger, S.A.; Zhang, J.; Weinshenker, D.; Traynelis, S.F. Altered Motility of Plaque-Associated Microglia in a Model of Alzheimer’s Disease. Neuroscience 2016, 330, 410–420. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0306452216302202 (accessed on 4 March 2019). [CrossRef]

75. Cunha, R.A.; Martino, G.; Martino, G. Glial Ascending Modulation of Synaptic Plasticity in the Amyloid-β Model of Early Alzheimer’s Depend on Increased Formation of ATP-Derived Extracellular Adenosine. Neurobiol. Dis. 2016, 98, 199–208. [CrossRef]

76. Rial, D.; Ferreira, S.G.; Canas, P.M.; Rial, D.; et al. P2 and P1 Receptors. Glia 2013, 61, 47–54. [CrossRef] [PubMed]

77. Rathbone, M.P.; Middlemiss, P.J.; Gybers, J.W.; Andrew, C.; Herman, M.A.R.; Reed, J.K.; Ciccarelli, R.; Di Iorio, P.; Caciagli, F. Trojan Effects of Purines in Neurons and Glial Cells. Prog. Neurobiol. 1999, 59, 663–690. Available online: http://www.ncbi.nlm.nih.gov/pubmed/10845757 (accessed on 3 September 2018). [CrossRef]
81. Von Lubitz, D.K.; Simpson, K.L.; Lin, R.C. Right Thing at a Wrong Time? Adenosine A3 Receptors and Cerebroprotection in Stroke. *Ann. N. Y. Acad. Sci.* **2001**, *939*, 85–96. Available online: http://www.ncbi.nlm.nih.gov/pubmed/11462807 (accessed on 3 September 2018). [CrossRef] [PubMed]

82. Hwang, S.; Cho, G.-S.; Ryu, S.; Kim, H.J.; Song, H.Y.; Yune, T.Y.; Ju, C.; Kim, W.-K. Post-Ischemic Treatment of WIB801C, Standardized Cordyceps Extract, Reduces Cerebral Ischemic Injury via Inhibition of Inflammatory Cell Migration. *J. Ethnopharmacol.* **2016**, *186*, 169–180. Available online: http://www.ncbi.nlm.nih.gov/pubmed/27036628 (accessed on 3 September 2018). [CrossRef] [PubMed]

83. Ryu, S.; Kwon, J.; Park, H.; Choi, I.-Y.; Hwang, S.; Gajulapati, V.; Lee, J.Y.; Choi, Y.; Varani, K.; Borea, P.A.; et al. Amelioration of Cerebral Ischemic Injury by a Synthetic Seco-nucleoside LMT497. *Exp. Neurobiol.* **2015**, *24*, 31. Available online: http://www.ncbi.nlm.nih.gov/pubmed/25792868 (accessed on 3 September 2018). [CrossRef]

84. Lipton, S. Pathologically-Activated Therapeutics for Neuroprotection: Mechanism of NMDA Receptor Block by Memantine and S-Nitrosylation. *Curr. Drug Targets* **2007**, *8*, 621–632. [CrossRef] [PubMed]

85. El-Tayeb, A.; Michael, S.; Abdelrahman, A.; Behrenswerth, A.; Gollos, S.; Nieber, K.; Müller, C.E. Development of Polar Adenosine A2A Receptor Agonists for Inflammatory Bowel Disease: Synergism with A2B Antagonists. *ACS Med. Chem. Lett.* **2011**, *2*, 890–895. Available online: https://pubmed.ncbi.nlm.nih.gov/24900277/ (accessed on 17 October 2021). [CrossRef] [PubMed]

86. Franco, R.; Rivas-Santisteban, R.; Reyes-Resina, I.; Navarro, G. The Old and New Visions of Biased Agonism through the Prism of Adenosine Receptor Signaling and Receptor/Receptor and Receptor/Protein Interactions. *Front. Pharmacol.* **2021**, *11*, 628601. [CrossRef] [PubMed]

87. Franco, R.; Aguinaga, D.; Jiménez, J.; Lillo, J.; Martínéz-Pinilla, E.; Navarro, G. Biased Receptor Functionality versus Biased Agonism in G-Protein-Coupled Receptors. *Biomol. Concepts* **2018**, *9*, 143–154. Available online: http://www.ncbi.nlm.nih.gov/pubmed/30864350 (accessed on 26 July 2019). [CrossRef]