Microbiome therapeutics: exploring the present scenario and challenges
Monika Yadav and Nar Singh Chauhan*

Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, India

*Corresponding author. Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana 124001, India. Tel: +91-1262393064; Email: nschauhan@mdurohtak.ac.in

Abstract

Human gut-microbiome explorations have enriched our understanding of microbial colonization, maturation, and dysbiosis in health-and-disease subsets. The enormous metabolic potential of gut microbes and their role in the maintenance of human health is emerging, with new avenues to use them as therapeutic agents to overcome human disorders. Microbiome therapeutics are aimed at engineering the gut microbiome using additive, subtractive, or modulatory therapy with an application of native or engineered microbes, antibiotics, bacteriophages, and bacteriocins. This approach could overcome the limitation of conventional therapeutics by providing personalized, harmonized, reliable, and sustainable treatment. Its huge economic potential has been shown in the global therapeutics market. Despite the therapeutic and economical potential, microbiome therapeutics is still in the developing stage and is facing various technical and administrative issues that require research attention. This review aims to address the current knowledge and landscape of microbiome therapeutics, provides an overview of existing health-and-disease applications, and discusses the potential future directions of microbiome modulations.

Key words: microbiome therapeutics; human microbiome; engineered microbiome; probiotics; prebiotics; fecal microbiome transplantation

Introduction

The human microbiome enlists all the microorganisms and their related metabolites/products identified in and on the human body [1]. Technological advancement has enabled the assessment of the pleiotropic effects of the human gut microbiome in health and diseases [2]. With the extensive role of microbes in human health, they hold the enormous potential to be used as therapeutics for disease management. Microbiome therapy holds great promise to treat any severe type of disease condition and acts as the potential source to achieve the objective of personalized therapy by overcoming key issues like interpersonal variability and stability in every type of environment [3]. The high-resolution data analysis enabled the development of modifiers for microbiome engineering [4, 5]. As microbial dysbiosis is associated with the majority of human diseases, various strategies are now being applied to restore the native microbiota for efficient disease management [6]. There is now an emerging interest in developing and delivering synthetic microbial consortia for health benefits [7]. Strategies such as fecal microbiota transplantation (FMT) or probiotics that rely on the administration of exogenous microbes could be used to manage dysbiosis-related disorders [6]. Recent advancements in synthetic biology have developed the possibility of targeted cell therapeutics through probiotic engineering that targets specific cells, tissues, or pathways [8]. Genetic switches are being prepared to modulate the microbiome-
related pathways [9]. The individual microbe or entire microbial consortia could be manipulated to generate certain therapeutic molecules or antitoxins [10]. Gut-microbiome engineering leads to the development of chemical entities to advance personalized medicine and improve human healthcare [11–14]. Similarly, bacteriophages could be used or even engineered to add or delete specific functions into the microbial community [11]. Certain non-living agents such as microbial metabolites and peptides could be engineered to be used as small-molecule modulatory therapy for microbial disease management [12]. The response to therapeutics could vary from individual to individual depending upon the disease and type of medications [13]. However, the field of microbiome therapeutics faces some major challenges such as the proper identification of disease-causing microbial signatures, lack of consideration of ethical and safety issues, and lack of clinical trials, as most of the experiments have been done in rodents. Thus, more experimental trials need to be done to provide efficacy in the microbiome therapeutics through the study of the interaction between therapeutics and the host. In this review, we took efforts to summarize the current research progress in the field of microbiome therapeutics (Figure 1), as well as tried to showcase the health implications of microbiome therapeutics.

Why is microbiome therapeutics significant?

It is believed that conventional therapies have resulted in antibiotic resistance among pathogens, resistance to chemotherapy, drug non-responsiveness, and poor specificity. These manifestations are posing a serious threat to the health of the human population. Microbial therapy overcome these drawbacks of modern medicines [15, 16]. Microbes are natural residents within the body that increase their therapeutic capacity without any side effects. Additionally, microbes can be engineered genetically to improve their efficacy and safety. A resilient human gut microbiome has an important role in the maintenance of human health, while its dysbiosis could result in disease onset [17]. Microbes harbor the potential to overcome the onset of the diseases by interacting with the host and thus are useful for microbiome therapeutic development [18]. Christensenella sp. is known to reduce depression and anxiety-like behavior [19]. Akkermansia muciniphila relieves metabolic disorders and cooperates with the use of metformin in cancer therapeutics [20] as we l l a sp r o t e c t s against atherosclerosis by reducing gut permeability and preventing inflammation [21]. Lactobacillus johnsonii protects against cancer [22]. Bifidobacterium longum reduces the severity of Crohn’s disease [23] and repairs the integrity of the mucus layer impaired due to a high-fat diet [24]. Oxalibacterium formigenes prevents kidney stones by the homeostasis of oxalic acid [25]. Bacteroides spp. protects against adiposity [26]. With increased information about the potential of gut microbes, the scope in the field of therapeutics emerged with a new hope of disease diagnosis, test methods, and new ways of data collection and manipulation [27]. Live biotherapeutics are being developed to introduce microbes into the host [28]. Microbiome modulation by the addition of exogenous

Figure 1. Role of microbiome augmentation in the maintenance of healthy life
microbes has been fascinating for the previous decade [12]. The need of the hour is the small-molecule therapeutics to manipulate the host microbiota. The small molecules should be able to alter the functions of the microbes to prevent the cause of diseases [12].

How to implement microbiome therapeutics

Efforts were made to harness the benefits of the host–microbiome interaction for microbiome therapeutic development [4]. Additive therapy, subtractive therapy, and modulatory therapy are commonly used strategies for microbiome therapeutics (Figure 2) [4]. Additive therapy includes the addition of microbial strains or microbial consortia, while subtractive therapy is aimed to remove the lethal pathogens known for the onset of a specific disease [29]. Modulatory therapy is primed to modify or manipulate the host–microbiome interaction for certain functions using certain non-living agents [30].

Additive therapy

Additive therapy is the administration of individual strain or microbial consortium to harness the health-promoting benefits either as probiotics or through FMT (Figure 2) [29]. Microbes used in additive therapy could be either natural or genetically engineered to produce therapeutic molecules [31].

FMT

In general, FMT involves the administration of the therapeutic microbial population. FMT is a beneficial method to replace the disease-causing microbes with beneficial microbes. It involves the transfer of healthy microbes from healthy donors to recipients through various modes of delivery. The donor must be screened using strict guidelines [32]. To reduce the transmission of infection from the donor, suitable stool and blood examinations need to be done within 4 weeks before transplantation [32]. For the immunotolerance of the recipient against the donor’s microbes, a close relative of the recipient should be preferred as the donor [33] whereas an unrelated donor should be the choice in the case of a genetic disorder such as inflammatory bowel disease [34]. It was found that mere fecal filtrate containing bacterial debris, metabolites, DNA, etc. was enough to treat recurrent *Clostridioides difficile* infection (CDI) [35, 36]. Pure culture of intestinal bacteria from a single healthy donor was used to treat recurrent CDI [37]. FMT has been successfully used to treat antibiotic-induced dysbiosis in *C. difficile* infection [38, 39]. FMT has been used efficiently to treat recurrent infections of *C. difficile* (with a spectacular percentage of recovery) [40] and research is ongoing to test whether FMT can be used for other diseases (with the percentage of success much lower than those observed with CDI) [41]. Restoration of butyrate-producing bacteria and improved insulin production were achieved on the transfer of fecal microbes from lean to obese mice [42]. Antibiotic-resistant pathogens associated with recurrent urinary-tract infections were drastically reduced post FMT [43]. Certain disorders such as alcoholic hepatitis and cirrhosis are associated with a deficiency in mucosa-associated invariant T-cells. Restoration of these T-cells was observed in patients after FMT [44]. Similarly, alcohol-induced loss of Bacteroidetes was restored after FMT [45]. With successful efficacy, several FMT clinical trials have been done in the case of liver disorders, the progression of fibrosis, hepatic encephalopathy, and alcoholic hepatitis [46]. FMT has been successfully studied in various neurological disorders such as autism, sclerosis, and Parkinson’s disease [47]. The transfer of fecal microbes from healthy to cancer patients improved the response to immune checkpoint inhibitors [48]. The success of the FMT approach depends on the heritability of microbes once transferred, which depends on the...
The gut microbes respond to the most significant effects of probiotics is the improvement in gut-microbial composition [79]. The live microbes given orally as diet and thus the probiotic microbes have a positive impact on the human gut microbial composition [80], thereby improving nutritional health and status [81]. Probiotics have been efficiently used to treat several diseases such as inflammatory bowel disease [82], diarrhea [83], Crohn’s disease [84], ulcerative colitis [85], and cancer [86]. During inflammatory bowel disease, ulcers, or fistula, the gut barrier is destroyed. The leaky gut lining is more prone to pathogens and pH fluctuations [87]. Now, efforts are being made to engineer these probiotics to express certain biotherapeutics. Engineered probiotics are being developed for disease diagnosis and treatment (Table 2). This approach works based on re-modulating the diseased environment to healthy environmental conditions by augmenting with an exogenous functional trait.

In general terms, FMT can be considered as super probiotic, as the fecal microbiota consists of a microbial consortium that has a complex network/support mechanism for long-term survival within the host (Figure 3).

Subtractive therapy
Subtractive therapy has emerged to be a fascinating tool in the field of microbiome engineering [124]. This therapy aims to reduce the deleterious pathogens from the microbiome with the help of the antimicrobial activity of bacteriocins and bacteriophages (Figure 2). Antibiotics were traditionally used for the removal of unwanted pathogens but due to the development of antibiotic resistance among the gut microbes, therapies such as bacteriocins and bacteriophages are being used to target the pathogens with minimal effects on the other members of the microbiome. Bacteriocins are ribosomally synthesized peptides exhibiting antimicrobial activity [125]. Bacteriocins work against pathogens in multiple ways, such as membrane rupture, toxins, inhibition of the respiratory mechanism, and overall cell lysis [126]. Bacteriocins could be either lanthionine-containing [127] or non-lanthionine-containing bacteriocins [128]. The non-lanthionine-containing bacteriocins act against Cladostreum, Enterococcus, Pediococcus, Lactobacillus, and Leuconostoc whereas lanthionine-containing enterocin and nisin have antibacterial activity against Bacillus cereus, Geobacillus stearothermophilus, and Cladostreum botulinum [130]. Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria are known to produce bacteriocins [131, 132]. Commensals use bacteriocin to successfully survive the niche competition within the gut [133]. They prevent pathogen colonization, inhibit the defenses, and have an overall positive effect on host immunity [134] (Table 3). Bacteriocins have been used for the preservation of dairy products [156]. Bacteriocins are used to preserve meat, vegetables, beverages, etc. [157]. Pediocin and nisin are commercial food preservatives [158]. Bacteriocins produced by Pediococcus acidilactici BA28 are used to treat peptic ulcers [159]. Ferrimenticin HV6b produced by Limosilactobacillus fermentum HV6b has antimicrobial and sporicidal activity, and thus is used in vaginal creams [160]. Bacteriocins such as nisin are also used in the veterinary industry to control microbial infections [156]. Similarly, Enterococcus faecalis SL-5-produced ESL5 is used as a lotion to prevent acne lesions caused by Propionibacterium acne [161]. Bacteriocins are also used for oral care. Macedocin produced by S. macedonicus is used for mouthwash and maintaining oral health [162]. Similarly to the development of antibiotic resistance, microbes may develop bacteriocin resistance by adapting to the environmental conditions or degradation of bacteriocins [163]. Efforts
Table 2. Applications of naive/engineered probiotics to achieve a desired physiological trait for better health

Serial no.	Engineered/naive strain	Cloned gene	Desired target	Effect	References
1	Escherichia coli	CsgA-TFF + trefoil factor	Gut epithelium during colitis	Treated colitis with mucosal healing and immunomodulation	[88]
		Deletion of negative regulator of L-arg biosynthesis and insertion of a feedback-resistant L-arg biosynthetic enzyme	High concentration of ammonia in blood	Conversion of ammonia to arginine	[89]
		Phenylalanine metabolizing enzyme	Phenylalanine concentration in blood	Conversion of phenylalanine to trans-cinnamate and phenylpyruvate treating phenylketonuria	[90]
		Antibiofilm protease DegP	Biofilm inhibition of other E. coli strains, S. aureus, and S. epidermidis	Inhibition of the growth of pathogens	[91]
		Antibiotic microcin H47	Pathogen-growth inhibition	Displaced Salmonella enterica from gut	[92]
		Detecting and utilizing tetrathionate and Microcin β-galactosidase and luciferase	Inhibition of Salmonella sp.	Inhibition of Salmonella sp. in presence of tetrathionate	[93]
		Thiosulfate and tetrathionate sensor Lysine and pyosin	Tumor detection	Liver metastasis detection with luciferin detection in urine	[94]
		Quorum sensing with CRISPRi technology	Detection of the presence of Vibrio cholerae	Vibrio cholera detection	[97]
		Sense and detect inflammatory signal from nitric oxide	Detection of gut inflammation due to nitric oxide	Inflammatory signals cause activation of DNA recombinase to detect and respond to NO signals	[98]
		Two-component regulatory system to detect tetrathionate	Detection of tetrathionate	Detection of inflammatory signals	[99]
2	Lactococcus lactis	IL-10	Intestinal inflammation during colitis and Crohn’s disease	Anti-inflammatory IL-10 production	[100]
		Human Trefoil Factor 1	Oral mucosa	Reduced severity of oral mucositis	[101]
		GAD65370–575-encoding plasmid	Reversal of diabetes	Tolerance induction in Type 1 diabetes	[102]
		Proinsulin and IL-10	Reversal of autoimmune diabetes	Tolerance induction in Type 1 diabetes	[103]
		Glucagon like Peptide-1	Oral delivery of Glucagon like Peptide-1	Efficacy in treatment of Type 2 diabetes	[104]
		Ligand-binding domain and signal transduction domain of Vibrio cholera	Sense the presence of Vibrio cholerae	Detection and suppression of pathogen Vibrio cholera	[105]
		MT1 or MT1–MT1 nanobody with a HisG and Myc-tag	Intestinal inflammation associated with colitis	Anti-inflammatory action against colitis	[106]

(continued)
Serial no.	Engineered/naive strain	Cloned gene	Desired target	Effect	References	
3	Bacteroides ovatus	Transforming growth factor-β1	Intestinal inflammation during colitis	through secretion of anti-mTNF antibodies	Improvement of colitis treatment by production of transforming growth factor-β	[107]
		Keratinocyte-growth factor-2 with xylanase promoter	Intestinal inflammation during colitis	Anti-inflammatory action against colitis through secretion of human growth factors in response to dietary xylan		
4	Lactic-acid bacteria	Elafin	Intestinal inflammation during inflammatory bowel disease	Improved treatment against intestinal dysfunction		
5	Lactobacillus gasseri ATCC 33323	Glucagon like Peptide-1	Intestinal cells to become glucagon-responsive insulin-secreting cells	Reduced hyperglycemia		
6	NS8		Attenuation of neuroinflammation and metabolism of 5-hydroxytryptamine	Prevention of cognitive decline and anxiety-like behavior during hyperammonemia		
7	Lactobacillus acidophilus, group N Streptococcus, Bacteroides distasonis, Escherichia coli var. mutabilis, Clostridium sp., Streptococcus faecalis, Lactobacillus salivarius, and an EOS fusiform bacterium	Interleukin-22	Increased expression of REG3G	Reduction in ethanol-induced steatohepatitis		
8	Limosilactobacillus reuteri		Change in biochemical measures of depression and anxiety	Depressive changes		
9	Lactobacillus acidophilus, Lactcaseibacillus casei, and Bifidobacterium bifidum	Interleukin-22	Hypocholesterolemic effects	Obesity		
10	Lactcaseibacillus casei, Lactobacillus acidophilus, and Bifidobacterium longum	Interleukin-22	Anti-proliferative effect against cancer	Colorectal cancer		
11	Limosilactobacillus fermentum NCIMB 5221	Interleukin-22	Anti-proliferative effect against cancer	Colorectal cancer		
12	Lactiplantibacillus plantarum L67	Interleukin-22	Anti-proliferative effect against cancer	Colorectal cancer		
13	Leuvenilactobacillus brevis DPC5108 and Bifidobacterium dentium	Interleukin-22	Anti-proliferative effect against cancer	Colorectal cancer		
14	Leuvenilactobacillus brevis W, Bifidobacterium lactis W, Lactobacillus acidophilus W37, Bifidobacterium bifidum W2, Ligilactobacillus salivarius W2, Lactcaseibacillus casei W5, and Lactococcus lactis	Interleukin-22	Anti-proliferative effect against cancer	Colorectal cancer		

(continued)
should be made to improve the potency of bacteriocins to work in the direction of therapeutics.

Bacteriophages are viruses that are specific to a bacterium. As bacteriophages insert their genome within their specific bacteria and cause bacterial membrane disintegration, bacteriophages are used to target antibiotic-resistant pathogens [164]. Phage and phage products are used to treat several diseases caused by antibiotic-resistant microbial pathogens [165]. Bacteriophage therapy successfully eradicated methicillin-resistant *Staphylococcus aureus* [166], thus treating osteomyelitis [167]. The MR299-2 and NH-4 have been successful in the treatment of Pseudomonas-induced lung infection [168]. *Propionibacterium acnes* bacteriophage is successfully used in acne treatment [169]. Bacteriophage sb-1 from *Staphylococcus* was used to heal foot ulcers [170]. Bacteriophages selectively reduce the colonization of an *E. coli* strain responsible for inflammation [171–173]. Phage treatment relieved the colitis symptoms in *E. coli* strain LF82-colonized mice [174]. Engineered phages used with a CRISPR-Cas system help in the more specific killing of pathogens by sensing the strain-specific determinants [175]. Phages are host-specific and function against their specific hosts without affecting the environment with no side effects in the host. Additionally, phages can mutate to prevent the development of resistance within the host. Despite these advantages, phage therapy suffers some drawbacks. Bacteria may develop resistance to phages by adopting restriction modification, spontaneous mutations, or using adaptive immunity by the CRISPR-Cas system [176]. Phage therapy should be preceded by the correct identification of the bacterial pathogen [16]. Certain cases of phage therapy have shown no efficacy [16]. Also, phage therapy requires a neutralized environment that is

Table 2. (continued)

Serial no.	Engineered/naive strain	Cloned gene	Desired target	Effect	References
15	*Lacticaseibacillus rhamnosus*, *Limosilactobacillus reuteri*, and *Bifidobacterium lactis*	Diarrhea	[121]		
16	*Bifidobacterium*, *Lactobacillus*, and *Streptococcus thermophillus*	Ulcerative colitis	[122, 123]		

Figure 3. The differential functions of fecal microbiota transplantation and probiotics in treating human disorders
not obtained within the digestive tract due to the influence of gastric secretions [177].

Modulatory therapy

Modulatory therapy includes the modulation of the gut microbes or their associated interactions with the human host for human health. It considers the restoration of the depleted microbiome and the transformation of existing microbes for a healthier microbiome (Figure 2). Restoration/modulation of gut microbiota can happen through various modulations such as diet, exercise, and antibiotics that impact the composition of the gut microbiome [178, 179]. The microbiome sustains what we eat, thus diet is a major target for modifying the gut microbiome. Dietary modification has a great effect on the gut microbiome. Physical exercise is also associated with a healthy microbiome and consequent short-chain fatty acid (SCFA) production [180]. Athletes consume more proteins that have an impact on the gut microbiome [181]. Marathon runners were examined with an increase in Veillonella promoting exercise endurance [182]. A gluten-free diet [183]; reduced fiber intake [184]; fermentable oligo-, di-, or monosaccharides, and polyols [185]; Table 3.

Serial no.	Host strain	Bacteriocin produced	Target organism	Host benefits	Reference
1	Enterococcus faecalis	Bacteriocin 21	Multi-drug-resistant Enterococcus	Limiting infections	[133]
2	Ligilactobacillus salivarius	Abp118	Listeria monocytogenes	Anti-infective activity	[135]
		Salivaricin P	Listeria monocytogenes	Anti-infective activity	[136]
		Bacteriocin L-1077	Campylobacter jejuni-L-4	Antimicrobial activity	[137]
3	Streptococcus salivarius	Salivaricin A2 and Salivaricin B	Streptococcus pyogenes	Pathogen inhibition	[138]
4	Engineered R-type bacteriocins	Avidocin	Clostridium difficile	Anti-infective activity	[139]
5	Lactococcus lactis	Nisin Z	Clostridium difficile	Anti-infective activity	[140]
		Nisin A	Clostridium difficile	Bactericidal activity	[141]
		Nisin V	Clostridium difficile	Bactericidal activity	[142]
		Lacticin	Clostridium difficile	Antimicrobial activity	[143]
6	Streptococcus mutans	Mutacin B-Ny266	Staphylococcus aureus	Anti-infective activity	[144]
		Mutacin H-29B	Neisseria gonorrhoeae, Helicobacter pylori, Campylobacter jejuni	Antimicrobial activity	[145]
7	Probiotic mixture of Lactobacillus, Bifidobacterium, and Lactococcus/Streptococcus	Mixture of bacteriocins	Salmonella enterica and Listeria monocytogenes	Inhibition of pathogen growth	[146]
8	Pediococcusacidilactici ULS	Pediocin PA-1	Listeria monocytogenes	Pathogen inhibition	[147]
		Thuricin CD	Clostridium difficile	Bactericidal activity	[148]
9	Bacillus thuringiensis DPC 6431	LFFS71	Clostridium difficile	Antimicrobial activity	[149]
10	Planobisporarosea	Actagain A (DAB)	Gram-positive pathogens including Clostridium difficile	Antimicrobial activity	[150]
11	Actinoplanesliguria	Sonorensin	Staphylococcus aureus and Listeria monocytogenes	Inhibition of spoilage bacteria	[151]
12	Bacillus sonorensis	ColicinIb1E1, and Microcin C7	Enterobacter, Escherichia, Klebsiella, Morganella, Salmonella, Shigella, and Yersinia	Antimicrobial activity	[152]
13	Escherichia coli strain H22	ColicinIb1E1	Cancer cells like MCF-7, HEK293T, HT1080, HeLa, and H1299	Antibacterial and anticancer activity	[153]
14	Enterococcus faecium	Bacteriocin E50-52	Campylobacter jejuni	Antimicrobial activity	[154]
15	Enterococcus sp.	Enterocin E-760	Campylobacter sp.	Antimicrobial activity	[155]
and increased protein intake [181] affect the gut-microbiome composition. Dietary fibers improve disorders such as chronic constipation [186]. Limited or inadequate dietary intake renders the gut microbes having to use the glycans in the host mucus layer, which disturbs the integrity of the mucus layer [187]. Vitamin D is a key factor in determining microbiota composition [188]. Dietary modifications could improve the production of microbial metabolites such as SCFAs [189] and help in the continued growth of beneficial microbes [190]. Diet modification along with other therapy for diabetes improves the glycemic index [191]. Administration of a ketogenic diet decreased the abundance of gut Escherichia coli, Bacteroides spp., and Bifidobacteria, and Dialister in children with severe epilepsy [192]. Thus, a ketogenic diet was used as an alternative for drug-resistant epilepsy [192]. The administration of long-chain fatty acids restored the Lactobacillus and improved the pathological conditions in ethanol-induced liver disease [193]. Similarly, butyrate concentration was corrected by the administration of glycerol tributyrate [194] to have a positive effect on health [195]. The antioxidant tempol was used to change the bacterial composition towards non-obese conditions, thus treating obesity [196]. Prebiotics increase the beneficial microbes and remove the pathogens such as fibers, galactooligosaccharides that increase the Bifidobacterium abundance [197]. Other factors such as alcohol consumption [198], smoking [199], and drugs [200] also impact the gut-microbiome composition. Some medicines/drugs may impact the gut-microbiome composition and may potentially increase antibiotic-induced resistance [201]. Alcohol consumption increases the content of gram-negative bacteria [202], decreases SCFA production [203], and increases intestinal permeability [204]. Alcohol increases the abundance of Bacteroidetes and reduces the Lactobacilli content [205] as well as the abundance of Proteobacteria [206]. Increased alcohol uptake results in the increased abundance of Proteobacteria and decreased Faecalibacterium in the human stool [203]. Smoking also induces alterations in the oral, airway, and gut-microbiome composition [207]. Smoking cessation alters the intestinal microbiome composition by increasing the abundance of Firmicutes and Actinobacteria with a simultaneously decreased abundance of Bacteroidetes and Proteobacteria [208]. There exists an association between smoking, dysbiosis, and the onset of an illness. The increased abundance of Bacteroidetes in CD patients contributes to the disease development and severity [209]. Antibiotics also affect the gut microbiome negatively by decreasing the microbial diversity, altering the metabolic activity, and developing the antibiotic resistance that ultimately leads to antibiotic-associated diarrhea and CDI infections [210].

Psychobiotics

Psychobiotics are the group of agents that may be probiotic, postbiotic, prebiotic, or symbiotic and target the gut–brain axis and confer mental health [211] (Table 4). Psychobiotics have a psychotropic effect on anxiety, depression, and stress [216]. Brain and gut microbes communicate through vagus nerves, immunoregulatory pathways, and the neuroendocrine system [217]. Psychobiotics work through a strategy by affecting the cognitive and emotional pathways, targeting the hypothalamic-pituitary-adrenal (HPA) axis for inflammatory molecules that are directly related to depression [218], or targeting the neurotransmitters as well as proteins that are a part of the brain functions [219]. Human microbes such as Lactobacillus GG and Bifidobacterium infantis 35,624 increase the interleukin-10 and thus, by reducing pro-inflammatory cytokines directly or indirectly, they help in maintaining the integrity of the blood–brain barrier [220] (Table 5). Strains of Lactobacillus such as Lactobacillus odontolyticus and Lactiplantibacillus plantarum produce acetylcholine [223]. Similarly, spore-forming human gut microbes increase the biosynthesis of serotonin from the enterochromaffin cells [223]. Psychobiotics, mainly FMT, have shown beneficial results in the case of various mental disorders such as Parkinson’s disease [229], Alzheimer’s disease [234], Tourette syndrome [235], autism [236], and insomnia [237]. FMT was found to be successful in relieving depression and anxiety [238]. Thus, psychobiotics have emerged as a solution to various neurodegenerative disorders. They can be a useful and promising strategy for healthy well-being. Although the results are promising, human studies are still lacking. Further research in the area of psychobiotics needs to be done to make them an alternative therapy for neurodevelopmental and neurodegenerative disorders.

Challenges in the field of microbiome therapeutics

Microbiome therapy establishes a native gut microbial environment for healthy gut functioning and preventing dysregulation.

Table 4. Various types of significant psychobiotics

Psychobiotics	Definition	Examples	Reference
Probiotics	Live microbes that when consumed or applied in adequate amounts to the body provide health benefits	Escherichia coli, Lactococcus lactis, Bacteroides ovatus, lactic-acid bacteria, Lactobacillus gasseri, Lactobacillus helveticus, etc.	[212]
Postbiotics	Inanimate microbes and/or their components that confer health benefits to the host	Microbial cell lysates, cell fractions, short-chain fatty acids (SCFAs), polysaccharides (EPS), peptidoglycan-derived muropeptides, teichoic acid, metabolites, etc.	[213]
Prebiotics	A non-digestible food component that stimulates the host’s health by improving the growth or activity of one or more colon microbes	Fructans, Galacto-Oligosaccharides, Starch, and Glucose-derived Oligosaccharides	[214]
Synbiotics	A mixture of prebiotics and probiotics that affect the host’s health by improving the growth/activity of beneficial microbes present in the gut	A mixture of probiotics such as Lactobacilli, Bifidobacteria spp., S. boulardii, B. coagulans, etc., with prebiotics such as fructooligosaccharide, xyloseoligosaccharide, inulin, etc.	[215]
The microbes as therapy aim to restore dysbiosis and improve the host survival by affecting the metabolic, nutritional, as well as physiological pathways. The success of microbiome therapeutics is promising but usually suffers from a few challenges. The major challenge in the field of microbiome therapeutics is the identification of the microbes to address disease complexities (Figure 4). Different microbial strains are suitable for different therapeutic approaches based on their survival within the body. The Bacteroides sp. [107], Lactobacillus sp. [110], E. coli Nissle 1917 [239], and Lactobacillus lactis [102] have been used as therapeutic vectors. Bacteroides sp. colonizes the colon and caecum successfully while Lactobacillus sp. and E. coli Nissle successfully enrich within the small intestine. Lactobacillus lactis cannot colonize the intestine [240]. Thus, the disease biogeography decides the suitability of the probiotic used for the treatment. Proper characterization of microbes based on their functional benefits needs to be done before choosing them for treatment. The efficacy of microbiome therapeutics has, for a long time and under various circumstances, become challenging. Additionally, microbiome therapeutic research was primarily carried out using rodent models and efforts are required for human trials. The stability and robustness of the clinically relevant microbial strains ensure successful microbiome therapeutics (Figure 4). To understand the environmental conditions faced by the microbes and the mutual interactions among microbes that affect functions, chemostats need to be developed [241]. Similarly, 3D intestinal scaffolds [242], organoids [243], and gut-on-a-chip models [244] have been used to study the interactions between hosts and probiotics. Various safety and regulatory issues need to be examined for successful clinical trials of microbiome therapeutics. A regulatory framework needs to be designed to address the biosafety of therapeutics to reduce the negative effects and release of the engineered microbes into the environment. The safety of engineered probiotics needs to be assessed for prolonged therapeutic efficacy (Figure 4). The horizontal transfer of the recombinant DNA from the engineered microbiome to the native microbiome is a major concern [245]. Similarly, the environmental release of recombinant probiotics could have harmful effects [246]. Thus, auxotrophic microbes that lose viability in the absence of a particular substrate need to be used as therapeutics [247], as they are not able to colonize the outer environments. Thus, synchronized research and regulatory mechanisms need to be used for a safe therapeutic approach, in addition to therapeutic maintenance, as engineered phages may lead to their loss of function [248]. Thus, further efforts should be done to reduce the burden on cellular therapies for the long-term stability of therapeutics [246].

Table 5. Attributes of psychobiotics in mental health

Serial no.	Psychobiotic	Effect	Target disease	Reference
1	Lacticaseibacillus rhamnosus JB-1	Regulation of emotional behavior and central GABA-receptor expression	Depression and anxiety	[216]
2	Galactooligosaccharide mixture	Waking cortisol response	Depression	[221]
3	Sodium butyrate	Central serotonin neurotransmission and brain-derived neurotrophic factor (BDNF) expression	Depression	[222]
4	Bifidobacterium or Lactobacillus	Restoration of gut-barrier integrity	Stress	[223]
5	Lactiplantibacillus plantarum PS128	Inflammation and corticosterone level	Depression and anxiety	[224]
6	Lactobacillus helveticus NS8	Levels of serotonin, norepinephrine, and BDNF	Anxiety, depression, and cognitive dysfunction	[225]
7	Bifidobacterium longum NCC3001	BDNF expression	Depression	[226]
8	Lactobacillus helveticus R0052	[239]	Anxiety and depression	[227]
9	Lactiplantibacillus plantarum MTCC1325	Improves cognitive behaviors, gross behavioral activities, and restores the level of acetylcholine	Alzheimer’s disease	[228]
10	Mixture of Lactobacillus acidophilus, Bifidobacterium bifidum, Limosilactobacillus reuteri, and Limosilactobacillus fermentum	High-sensitivity C-reactive protein and malondialdehyde levels	Parkinson’s disease	[229]
11	Lactobacillus acidophilus	Self-control and attention	Attention deficit hyperactivity disorder	[230]
12	Heat-killed Levilactobacillus brevis SBC8803	Wakefulness and night-time wheel-running activity	Insomnia	[231]

Figure 4. Challenges associated with the field of microbiome therapeutics
Current scenario

As an estimate, the global microbiome therapeutics market size was valued at USD 34.1 million in 2019, which is expected to reach to USD 838.2 million by 2026 [249]. Several companies are virtually using microbiome therapeutic approaches to treat and diagnose diseases [250]. In 2020, the fecal microbiome suspension with the name SER-109 completed its third-phase trial. It was found to be effective against CDIs. Companies such as Rebiotix and Ferring pharma are using the bacterial suspension as RBX2660 [251]. This suspension with live spores of bacteria was the first to enter clinical trials. Additionally, companies are targeting immune-system arousal through the use of checkpoint inhibitors to treat tumors. Vedanta Biosciences has developed a microbe–drug combination to induce helper T-cells against tumors [252]. This trial is currently in phase 1. Merck along with Evelo Biosciences and 4D Pharma is currently working in this direction with the use of the drug Keytruda [253].

There are certainly several advantages in using this subset of bacteria for disease treatment but it is often associated with risk factors such as the presence of pathogens in the stool sample that may lead to disease initiation. To avoid this, certain companies such as Seres are using purified suspensions devoid of pathogens [254]. Microbiota [255] and Vedanta [256] are currently working on a strategy to isolate gut microbes and identify detailed genomic information for the healthy bacteria and pathogens and then prepare a list of microbes associated with the disease or human health. However, there is a risk of contamination at every step of purification. Thus, companies are trying to isolate the specific bacterial products for therapeutics and scaling them up through fermentation. Companies like 4D Pharma use single microbes for immunomodulation [257]. 4D Pharma in association with Merck have invested in developing a microbial vaccine. Evelo Biosciences is also working on the strategy of the single-microbiome approach [258]. Also, Second Genome [259], Kaleido Biosciences [260], and Enterome [261] are focusing on the biologically active molecules of microbes. Enterome has targeted a signaling pathway that causes Crohn’s disease and developed a product that is currently in a phase 2 trial. Certain microbial molecules that may inhibit inflammation or initiate immunity against tumor development are also being targeted by the company (Table 6).

Conclusion and future perspectives

Global human microbiome therapeutics is expected to grow spontaneously by 2027 and acquire a market size worth USD 1,731 million [265]. Advancement in synthetic biology and microbiome ecology has inspired the use of additive, subtractive, and modulatory therapies of microbiome engineering in clinics. Although research efforts have proven the efficacy of microbiome therapeutics, additional research to understand the microbiome and its interaction with the host needs to be done to move this concept of microbiome therapeutics into clinical trials to create a guide for efficient treatment. This era of microbiome therapeutics along with the combined efforts may help in disease treatment with clinical applications. The use of bacterial suspensions poses a risk to patients’ health, as it may lead to the entry of pathogens within the recipient; thus, strategies to avoid contamination need to be used. Live therapeutics is the need of the hour to treat patients with the hand-picked healthy microbial group. Additionally, before the administration of bacteria into patients, proper genomic characterization of the bacterial groups needs to be done to discriminate disease-specific signature microbes from healthy microbes. Companies should now increase the manufacturing of bacteria-specific products to avoid the broad range of negative impacts of the microbes and, for that, companies should invest more. Efforts need to be made to prepare pills with single-microbe species that may improve the immune response in patients and treat patients better. Thus, the microbiome therapeutic companies need to unite with the pharma industries to improve the efficacy of the treatments. The studies and results obtained through the clinical trials on gut bacteria should further be explored for autoimmunity and neurological disorders to expand the field of microbiome therapeutics.

Table 6. Strategies adopted by the various institutions to overcome microbial disorders

Serial no.	Disease target	Strategy	Outcome	Reference
1	IBD	Fimbrialadhesin (Fim H) inhibitor	Blockage of Escherichia coli binding to intestinal epithelium	[12]
2	Irritable bowel syndrome	SYN-010 containing modified lovastatin	Reduction in methane production to provide relief in IBS	[12]
3	Hyperammonemia	Drug KB195	Reduction in nitrogen metabolism to provide relief in hyperammonemia	[12]
4	Inhibition of drug-resistant pathogen	Bioactive products	Improvement in beneficial microbes and inhibition of methicillin-resistant Staphylococcus aureus	[262]
5	Clostridium difficile infection	Vaccine oral capsule CP-101	Improved treatment of CDI	[263]
6	Cancer	Microbial consortium of commensal bacteria (VE800)	Improvement in the ability of T-cells to infiltrate tumors, suppress tumor growth, and potentially improve patient survival	[263]
7	Obesity	Oxygen pills	Oxygen pills improve the aerobic/facultative aerobic bacteria for effective treatment of obesity	[262]
8	Multiple disorders	Live biotherapeutics	Single strain of gut bacteria improves the microbial dysbiosis	[264]
Authors’ Contributions
N.S.C. conceived of and designed the study. M.Y. and N.S.C. wrote the manuscript. Both authors read and approved the manuscript.

Funding
No funding was availed for the current study.

Acknowledgements
N.S.C. acknowledges the MDU RKF fund for financial support vide MDU/DSW/339. This article does not contain any studies with animals performed by any of the authors.

Conflict of Interest
None declared.

References
1. Walter J, Ley R. The human gut microbiome: ecology and recent evolutionary changes. Annu Rev Microbiol 2011;65:411–29.
2. DeGruttola AK, Low D, Mizoguchi A et al. Current understanding of dysbiosis in disease in human and animal models. Inflamm Bowel Dis 2016;22:1137–50.
3. Kashyap PC, Chia N, Nelson H et al. Microbiome at the frontier of personalized medicine. Mayo Clin Proc 2017;92:1855–64.
4. Mimee M, Citorik RJ, Lu TK. Microbiome therapeutics—advances and challenges. Adv Drug Deliv Rev 2016;105:44–54.
5. Sheth RJ, Cabral V, Chen SP et al. Manipulating bacterial communities by in situ microbiome engineering. Trends Genet TIG 2016;32:89–200.
6. Gagliardi A, Totino V, Cacciotti F et al. Rebuilding the gut microbiota ecosystem. Int J Environ Res Public Health 2018;15:1679.
7. Seres Therapeutics. Our platform—Seres Therapeutics. 2020. https://www.serestherapeutics.com/our-platform/ (10 August 2020, date last accessed).
8. Charbonneau MR, Isabella VM, Li N et al. Developing a new class of engineered live bacterial therapeutics to treat human diseases. Nat Commun 2020;11:1738.
9. Xie M, Ye H, Wang H et al. β-cell-mimetic designer cells provide closed-loop glycemic control. Science 2016;354:1296–301.
10. McCarty NS, Ledesma-Amaro R. Synthetic biology tools to engineer microbial communities for biotechnology. Trends Biotechnol 2019;37:181–97.
11. Batinovic S, Wassef F, Knowler S et al. Bacteriophages in natural and artificial environments. Pathog Basel Suisse 2019;8:100.
12. Cully M. Microbiome therapeutics go small molecule. Nat Rev Drug Discov 2019;18:569–72.
13. Sharma A, Buschmann MM, Gilbert JA. Pharmacometabonomics: the holy grail to variability in drug response? Clin Pharmacol Ther 2019;106:317–28.
14. Enright EF, Gahan CGM, Joyce SA et al. The impact of the gut microbiota on drug metabolism and clinical outcome. Yale J Biol Med 2016;89:375–82.
15. Greene S, Reid A. Moving Targets: Fight the Evolution of Resistance in Infections, Pests and Cancer. Washington, DC: American Academy of Microbiology Colloquium Report, 2012.
16. WHO. World Cancer Report. Stewart B, Wild CP (eds). International Agency for Research on Cancer, 2014. ISBN 978-92-832-0429-9.
17. Ogunrinola GA, Oyewale JO, Oshamika OO et al. The human microbiome and its impacts on health. Int J Microbiol 2020;2020:8045646–7.
18. Thaiss CA, Elinav E. The remedy within: will the microbiome fulfill its therapeutic promise? J Mol Med (Berl) 2017;95:1021–7.
19. Cowen L. French Biotech licenses microbiome therapeutic to treat mood disorders. 2020. https://www.labiotech.eu/trends-news/lnc-therapeutics-microbiome/ (17 April 2020, date last accessed).
20. de la Cuesta-Zuluaga J, Mueller NT, Corrales-Agudelo V et al. Metformin is associated with higher relative abundance of mucin-degrading Akkermansia muciniphila and several short-chain fatty acid-producing microbiota in the gut. Diabetes Care 2017;40:54–62.
21. Li J, Lin S, Vanhoutte PM et al. Akkermansia muciniphila protects against atherosclerosis by preventing metabolic endotoxemia-induced inflammation in Apo–/– mice. Circulation 2016;133:2434–46.
22. Cheema AK, Maier I, Dowdy T et al. Chemopreventive metabolites are correlated with a change in intestinal microbiota measured in A-T mice and decreased carcinogenesis. Alekseyenko AV (ed.). PLoS One 2016;11:e0151190.
23. Joossens M, De Preter V, Ballet V et al. Effect of oligofructose-enriched inulin (OF-IN) on bacterial composition and disease activity of patients with Crohn’s disease: results from a double-blind randomised controlled trial. Gut 2012;61:958.
24. Schroeder BO, Birchenough GMH, Stählin M et al. Bifidobacteria or fiber protects against diet-induced microbiota-mediated colonic mucus deterioration. Cell Host Microbe 2018;23:27–40.e7.
25. Jalanka-Tuovinen J, Salonen A, Niskilä J et al. Intestinal microbiota in healthy adults: temporal analysis reveals individual and common core and relation to intestinal symptoms. PLoS One 2011;6:e23035.
26. Walker AW, Parkhill J. Microbiology. Fighting obesity with bacteria. Science 2013;341:1069–70.
27. Jones L. The human microbiome—a new frontier in drug discovery. 2016. https://www.ddw-online.com/the-human-microbiome-a-new-frontier-in-drug-discovery-528-201608/ (26 August 2016, date last accessed).
28. McCarville JL, Chen GY, Cuevas VD et al. Microbiota metabolites in health and disease. Annu Rev Immunol 2020;38:147–70.
29. Marchesi JR, Adams DH, Fava F et al. The gut microbiota and host health: a new clinical frontier. Gut 2016;65:330–9.
30. Claesen J, Fischbach MA. Synthetic microbes as drug delivery systems. ACS Synth Biol 2015;4:358–64.
31. Khoruts A, Sadowsky M. Understanding the mechanisms of faecal microbiota transplantation. Nat Rev Gastroenterol Hepatol 2016;13:508–16.
32. Cammarota G, Ianiro G, Tilg H, et al.; European FMT Working Group. European Consensus Conference on Faecal Microbiota Transplantation in Clinical Practice. Gut 2017;66:589–90.
33. Bakken JS, Borody T, Brandt L, et al.; Fecal Microbiota Transplantation Workgroup. Treating Clostridium difficile infection with fecal microbiota transplantation. Clin Gastroenterol Hepatol 2011;9:1044–9.
34. Kelly CR, Kahn S, Kashyap P et al. Update on fecal microbiota transplantation 2015: indications, methodologies, mechanisms, and outlook. Gastroenterology 2015;149:223–37.
35. Ott SJ, Waetzig GH, Rehman A et al. Efficacy of sterile fecal filtrate transfer for treating patients with Clostridium difficile infection. Gastroenterology 2017;152:799–811.e7.

36. Zuo T, Wong SH, Lam K et al. Bacteriophage transfer during faecal microbiota transplantation in Clostridium difficile infection is associated with treatment outcome. Gut 2018;67:634–43.

37. Petrof EO, Gloor GB, Vanner SJ et al. Stool substitute transplant plant for the eradication of Clostridium difficile infection: "RePOOPulating" the gut. Microbiome 2013;1:3.

38. Quraishi MN, Widlak M, Bhala N et al. Systematic review with meta-analysis: the efficacy of faecal microbiota transplantation for the treatment of recurrent and refractory Clostridium difficile infection. Aliment Pharmacol Ther 2017;46:479–93.

39. van Nood E, Vrieze A, Nieuwdorp M et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 2013;368:407–15.

40. Baktash A, Terveer EM, Zwittink RD et al. Mechanistic insights in the success of fecal microbiota transplants for the treatment of clostridium difficile infections. Front Microbiol 2018;9:1242.

41. Allegritti JR, Mullish BH, Kelly C et al. The evolution of the use of faecal microbiota transplantation and emerging therapeutic indications. Lancet 2019;394:420–31.

42. Vrieze A, Van Nood E, Hollemann F et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 2012;143:913–6.e7.

43. Tariq R, Pardi DS, Tosh PK et al. Fecal microbiota transplantation for recurrent Clostridium difficile infection reduces recurrent urinary tract infection frequency. Clin Infect Dis Off Dis 2017;65:1745–7.

44. Gao B, Ma J, Xiang X. MAIT cells: a novel therapeutic target for alcoholic liver disease? Gut 2018;67:784–6.

45. Ferrere G, Wrzoszek L, Cailleux F et al. Fecal microbiota manipulation prevents dysbiosis and alcohol-induced liver injury in mice. J Hepatol 2017;66:806–15.

46. ClinicalTrials.gov. US National Library of Medicine, National Institutes of Health. 2000. https://clinicaltrials.gov/ (29 February 2000, date last accessed).

47. Finegold SM, Molitoris B, Mhala N et al. Systematic review with meta-analysis: the efficacy of faecal microbiota transplantation for the treatment of recurrent and refractory Clostridium difficile infection. Aliment Pharmacol Ther 2017;46:479–93.

48. ClinicalTrials.gov. US National Library of Medicine, National Institutes of Health. 2000. https://clinicaltrials.gov/ (29 February 2000, date last accessed).

49. Hall AB, Tolonen AC, Xavier RJ. Human genetic variation and the gut microbiome in disease. Nat Rev Genet 2017;18:690–9.

50. Paramsothy S, Nielsen S, Kamm MA et al. Specific bacteria and metabolites associated with response to fecal microbiota transplantation in patients with ulcerative colitis. Gastroenterology 2019;156:1440–54.e2.

51. Rossen NG, Fuentes S, van der Spek MJ et al. Findings from a randomized controlled trial of fecal microbiota transplantation for patients with ulcerative colitis. Gastroenterology 2015;149:110–8.e4.

52. Sokol H, Landman C, Seksik P et al.; Saint-Antoine IBD Network. Fecal microbiota transplantation to maintain remission in Crohn’s disease: a pilot randomized controlled study. Microbiome 2020;8:12.

53. US Food and Drug Administration. FDA In Brief: FDA warns about potential risk of serious infections caused by multidrug resistant organisms related to the investigational use of fecal microbiota for transplantation. 2019. https://www.fda.gov/news-events/fda-brief/fda-brief-fda-warns-about-potential-risk-serious-infections-caused-multi-drug-resis-tant-organisms (13 June 2019, date last accessed).

54. Basson AR, Zhou Y, Seo B et al. Autologous fecal microbiota transplantation for the treatment of inflammatory bowel disease. Transl Res 2020;226:1–11.

55. Johnsen PH, Hilpisch F, Vallee PC et al. The effect of fecal microbiota transplantation on IBS related quality of life and fatigue in moderate to severe non-constipated irritable bowel: secondary end points of a double blind, randomized, placebo-controlled trial. Elio Med 2020;51:102562.

56. Borody T, Leis S, Campbell J et al. Fecal microbiota transplantation (FMT) in multiple sclerosis (MS): 942. Am J Gastroenterol 2011;106:S352.

57. Ananthaswamy A. Faecal transplant eases symptoms of Parkinson's disease. New Sci 2011;209:8–9.

58. Eiseman B, Silen W, Bascom GS et al. Fecal enema as an adjunct in the treatment of pseudomembranous enterocolitis. Surgery 1958;44:854–9.

59. Costello SP, Hughes PA, Waters O et al. Effect of fecal microbiota transplantation on 8-week remission in patients with ulcerative colitis: a randomized clinical trial. JAMA 2019;321:156–64.

60. Moayyedi P, Surette MG, Kim PT et al. Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial. Gastroenterology 2015;149:102–9.

61. Xiang L, Ding X, Li Q et al. Efficacy of faecal microbiota transplantation in Crohn’s disease: a new target treatment? Microbiot Biotechnol 2020;13:760–9.

62. Yang Z, Bu C, Yuan W et al. Fecal microbiota transplant via endoscopic delivering through small intestine and colon: no difference for Crohn’s disease. Dig Dis Sci 2020;65:150–7.

63. Bajaj JS, Salzman NH, Acharya C et al. Fecal microbiota transplant capsules are safe in hepatic encephalopathy: a phase 1, randomized, placebo-controlled trial. Hepatology 2019;70:1690–703.

64. Philips CA, Pande A, Shasthry SM et al. Healthy donor fecal microbiota transplantation in steroid-ineligible severe alcoholic hepatitis: a pilot study. Clin Gastroenterol Hepatol 2017;15:600–2.

65. Shi YC, Yang YS. Fecal microbiota transplantation: current status and challenges in China. JGH Open 2018;2:114–6.

66. Chen R, Xu Y, Wu P et al. Fecal microbiota transplantation for the treatment of inflammatory bowel infection reduces re- viated Alzheimer’s disease-like pathogenesis in APP/PS1 transgenic mice. Transl Psychiatry 2019;9:189.
71. Keskey R, Cone JT, DeFazio JR et al. The use of fecal microbiota transplant in sepsis. Transl Res 2020;226:12–25.
72. Kump P, Wurm P, Gröchenig HP et al. The taxonomic composition of the donor intestinal microbiota is a major factor influencing the efficacy of faecal microbiota transplantation in therapy refractory ulcerative colitis. Aliment Pharmacol Ther 2018;47:67–77.
73. Petro EÖ, Khoruts A. From stool transplants to next-generation microbiota therapeutics. Gastroenterology 2014;146:1573–82.
74. Guslandi M, Giollo P, Testoni PA. A pilot trial of Saccharomyces boulardii in ulcerative colitis. Eur J Gastroenterol Hepatol 2003;15:697–8.
75. Cuello-Garcia CA, Brozek JL, Fiocchi A et al. Probiotics for the prevention of allergy: a systematic review and meta-analysis of randomized controlled trials. J Allergy Clin Immunol 2015;136:952–61.
76. Fujiyama N, Ueno N, Kohgo Y. Probiotic treatments for induction and maintenance of remission in inflammatory bowel diseases: a meta-analysis of randomized controlled trials. Clin J Gastroenterol 2014;7:1–13.
77. Kesarcodi-Watson A, Kaspar H, Lategan MJ et al. Probiotics in aquaculture: the need, principles and mechanisms of action and screening processes. Aquaculture 2008;274:1–14.
78. Varankovich NV, Nickerson MT, Korbber DR. Probiotic-based strategies for therapeutic and prophylactic use against multiple gastrointestinal diseases. Front Microbiol 2015;6:685.
79. Depommier C, Everard A, Druart C et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat Med 2019;25:1096–103.
80. David LA, Maurice CF, Carmody RN et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014;505:559–63.
81. Versalovic J. The human microbiome and probiotics: implications for pediatrics. Ann Nutr Metab 2013;63:42–52.
82. Coqueiro AY, Raizel R, Bonvini A et al. Probiotics for inflammatory bowel diseases: a promising adjuvant treatment. Int J Food Sci Nutr 2019;70:20–9.
83. McFarland LV. Meta-analysis of probiotics for the prevention of antibiotic associated diarrhea and the treatment of Clostridium difficile disease. Am J Gastroenterol 2006;101:812–22.
84. Jonkers D, Penders J, Mascllee A et al. Probiotics in the management of inflammatory bowel disease: a systematic review of intervention studies in adult patients. Drugs 2012;72:803–23.
85. Kelesidis T, Pothoulakis C. Efficacy and safety of the probiotic Saccharomyces boulardii for the prevention and therapy of gastrointestinal disorders. Therap Adv Gastroenterol 2012;5:111–25.
86. Uccello M, Malaguarnera G, Basile F et al. Potential role of probiotics on colorectal cancer prevention. BMC Surg 2012;12:S35.
87. Podolsky DK. Mucosal immunity and inflammation. V. Innate mechanisms of mucosal defense and repair: the best offense is a good defense. Am J Physiol 1999;277:C495–9.
88. Praveschotinunt P, Duraj-Thatte AM, Gelfat I et al. Engineered E. coli Nissle 1917 for the delivery of matrix-tethered therapeutic domains to the gut. Nat Commun 2019;10:5580.
89. Kurtz CB, Millet YA, Puurunen MK et al. An engineered E. coli Nissle improves hyperammonemia and survival in mice and shows dose-dependent exposure in healthy humans. Sci Transl Med 2019;11:eaau7975.
90. Isabella VM, Ha BN, Castillo MJ et al. Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria. Nat Biotechnol 2018;36:857–64.
91. Fang K, Jin X, Hong SH. Probiotic Escherichia coli inhibits biofilm formation of pathogenic E. coli via extracellular activity of DegP. Sci Rep 2018;8:4939.
92. Sassone-Corsi M, Nuccio SP, Liu H et al. Microcins mediate competition among Enterobacteriaceae in the inflamed gut. Nature 2016;540:280–3.
93. Palmer JD, Piattelli E, McCormick BA et al. Engineered probiotic for the inhibition of salmonella via tetrathionate-induced production of microcin H47. ACS Infect Dis 2018;4:39–45.
94. Danino T, Prindle A, Kwong GA et al. Programmable probiotics for detection of cancer in urine. Sci Transl Med 2015;7:289ra84.
95. Daefler KN, Galley JD, Sheth RU et al. Engineering bacterial thiosulfate and tetrathionate sensors for detecting gut inflammation. Mol Syst Biol 2017;13:923.
96. Gupta S, Bram EE, Weiss R. Genetically programmable pathogen sense and destroy. ACS Synth Biol 2013;2:715–23.
97. Holowko MB, Wang H, Jayaraman P et al. Biosensing Vibrio cholerae with genetically engineered Escherichia coli. ACS Synth Biol 2016;5:1275–83.
98. Archer EF, Robinson AB, Suel GM. Engineered E. coli that detect and respond to gut inflammation through nitric oxide sensing. ACS Synth Biol 2012;1:451–7.
99. Riggill DT, Baym M, Kerns SJ et al. Long-term monitoring of inflammation in the mammalian gut using programmable commensal bacteria. Synthetic Biol 2016;10.1101/075051.
100. Braat H, Rottiers P, Hommes DW et al. A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn’s disease. Clin Gastroenterol Hepatol 2006;4:754–9.
101. Caluwaerts S, Vandendouwec K, Steidler L et al. AG013, a mouth rinse formulation of Lactococcus lactis secreting human Trefoil Factor 1, provides a safe and efficacious therapeutic tool for treating oral mucositis. Oral Oncol 2010;46:546–70.
102. Robert S, Gysemans C, Takishii T et al. Oral delivery of glutamic acid decarboxylase (GAD)-65 and IL10 by Lactococcus lactis reverses diabetes in recent-onset NOD mice. Diabetes 2013;62:2876–87.
103. Takiishi T, Korf H, Van Bellen TL et al. Reversal of autoimmune diabetes by restoration of antigen-specific tolerance using genetically modified Lactococcus lactis in mice. J Clin Invest 2012;122:1717–25.
104. Agarwal P, Khatri P, Billack B et al. Oral delivery of glucagon like peptide-1 by a recombinant Lactococcus lactis. Pharm Res 2014;31:3404–14.
105. Mao N, Cubillos-Ruiz A, Cameron DE et al. Probiotic strains detect and suppress choler in mice. Sci Transl Med 2018;10:eaa02586.
106. Vandendouwe K, de Haard H, Beirnaert E et al. Orally administered L. lactis secreting an anti-TNF Nanobody demonstrates efficacy in chronic colitis. Mucosal Immunol 2010;3:49–56.
107. Hamady ZZ, Scott N, Farrar MD et al. Treatment of colitis with a commensal gut bacterium engineered to secrete human TGF-β1 under the control of dietary xylan 1. Inflamm Bowel Dis 2011;17:1925–35.
108. Hamady ZZ, Scott N, Farrar MD et al. Xylan-regulated delivery of human keratinocyte growth factor-2 to the inflamed colonies.
109. Motta JP, Bermúdez-Humarán LG, Deraison C et al. Food-grade bacteria expressing eF Cin protect against inflammation and restore colon homeostasis. Sci Transl Med 2012;4:158ra144.

110. Duan FF, Liu JH, March JC. Engineered commensal bacteria to treat hyperammonemia. Proc Natl Acad Sci USA 2015;112:594–803.

111. Luo J, Wang T, Liang S et al. Ingestion of Lactobacillus strain reduces anxiety and improves cognitive function in the hyperammonemia rat. Sci China Life Sci 2014;57:327–35.

112. Shen TC, Albenberg L, Bittinger K et al. Engineering the gut microbiota to treat hyperammonemia. J Clin Invest 2015;125:2841–50.

113. Hendriks T, Duan Y, Wang Y et al. Bacteria engineered to produce IL-22 in intestine induce expression of REG3G to reduce ethanol-induced liver disease in mice. Gut 2019;68:1504–15.

114. Noonan S, Zaveri M, Macaninch E et al. Food & mood: a review of supplementary prebiotic and probiotic interventions in the treatment of anxiety and depression in adults. BMJ Nutr Prev Heal 2020;3:351–62.

115. Karimi G, Sabran MR, Jamaluddin R et al. The anti-obesity effects of Lactobacillus casei strain Shirota versus Orlistat on high fat diet-induced obese rats. Food Nutr Res 2015;59:29273.

116. Kohaoui I, Malhotra M, Moulay AA et al. In-vitro characterization of the anti-cancer activity of the probiotic bacterium lactobacillus fermentum NCIMB 5221 and potential against colorectal cancer cells. J Cancer Sci Ther 2015;7:7.

117. Barrett E, Ross RP, O’Toole PW et al. L-Aminobutyric acid production by culturable bacteria from the human intestine. J Appl Microbiol 2012;113:411–7.

118. Song S, Lee SJ, Park DJ et al. The anti-allergic activity of Lactobacillus plantarum L67 and its application to yogurt. J Dairy Sci 2016;99:9372–82.

119. Gawlik-Kotelnicka O, Strzelecki D. Probiotics as a treatment for "metabolic depression"? A rationale for future studies. Pharmaceuticals (Basel) 2021;14:384.

120. Daliri EBM, Oh H, Lee BH. Psychobiotics; a promise for neurodevelopmental therapy. J Probiotics Health 2016;4:2.

121. Sazawal S, Hiremath G, Dhirunga U et al. Efficacy of probiotics in prevention of acute diarrhoea: a meta-analysis of masked, randomised, placebo-controlled trials. Lancet Infect Dis 2006;6:374–82.

122. Bibiloni R, Fedorak RN, Tannock GW et al. VSL#3 probiotic-mixture induces remission in patients with active ulcerative colitis. Am J Gastroenterol 2005;100:1539–46.

123. Tursi A, Brandimarte G, Papa A et al. Treatment of relapsing mild-to-moderate ulcerative colitis with the probiotic VSL#3 as adjunctive to a standard pharmaceutical treatment: a double-blind, randomized, placebo-controlled study. Am J Gastroenterol 2010;105:2218–27.

124. Lu TK, Collins JJ. Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proc Natl Acad Sci USA 2009;106:4629–34.

125. Klaenhammer TR. Bacteriocins of lactic acid bacteria. Biochimie 1988;70:337–49.

126. Mahlapuu M, Håkansson J, Ringstad L et al. Antimicrobial peptides: an emerging category of therapeutic agents. Front Cell Infect Microbiol 2016;6:194.

127. Hegarty JW, Guinane CM, Ross RP et al. Bacteriocin production: a relatively unharvested probiotic trait? F1000Res 2016;5:2587.

128. Oldak A, Zielińska D. Bacteriocins from lactic acid bacteria as an alternative to antibiotics. Postepy Hig Med Dosw (Online) 2017;71:328–38.

129. Umu OCO, Rudi K, Diep DB. Modulation of the gut microbiota by prebiotic fibres and bacteriocins. Microb Ecol Health Dis 2017;28:1348886.

130. Egan K, Field D, Rea MC et al. Bacteriocins: novel solutions to age old spore-related problems? Front Microbiol 2016;7:461.

131. O’Toole PW, Cooney JC. Probiotic bacteria influence the composition and function of the intestinal microbiota. Interdiscip Perspect Infect Dis 2008;2008:175285.

132. O’Shea EF, O’Connor PM, Raftsij EJ et al. Production of multiple bacteriocins from a single locus by gastrointestinal strains of Lactobacillus salivarius. J Bacteriol 2011;193:6973–82.

133. Kommineni S, Breitl DJ, Lam V et al. Bacteriocin production augments niche competition by Enterococci in the mammalian gastrointestinal tract. Nature 2015;526:719–22.

134. O’Toole PW, Cooney JC. Probiotic bacteria influence the composition and function of the intestinal microbiota. Interdiscip Perspect Infect Dis 2008;2008:175285.

135. Corr SC, Li Y, Riedel CU et al. Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proc Natl Acad Sci USA 2007;104:7617–21.

136. O’Shea EF, O’Connor PM, Raftsij EJ et al. Production of multiple bacteriocins from a single locus by gastrointestinal strains of Lactobacillus salivarius. J Bacteriol 2011;193:6973–82.

137. Line JE, Svetoch EA, Ersulianov BV et al. Isolation and purification of enterocin E-760 with broad antimicrobial activity against gram-positive and gram-negative bacteria. Antimicrob Agents Chemother 2008;52:1094–100.

138. Patras KA, Wescombe PA, Rössler B et al. Streptococcus salivarius K12 limits group B streptococcus vaginal colonization. Infect Immun 2015;83:3438–44.

139. Gebhart D, Williams SR, Bishop-Lilly KA et al. Novel high-molecular-weight, R-type bacteriocins of Clostridium difficile. J Bacteriol 2012;194:6240–7.

140. Le Lay C, Fernandez B, Hammami R et al. On Lactococcus lactis molecular-weight, R-type bacteriocins of Clostridium difficile. J Bacteriol 2012;194:6240–7.

141. Bartoloni A, Martella A, Goldstein BP et al. In-vitro activity of nisin against clinical isolates of Clostridium difficile. J Chemother Chemother 2004;16:119–21.

142. Field D, Quigley L, O’Connor PM et al. Studies with bioengineered Nisin peptides highlight the broad-spectrum potency of Nisin V. Microbi Technol 2010;3:473–86.

143. Rea MC, Clayton E, O’Connor PM et al. Antimicrobial activity of lacticin 3,147 against clinical Clostridium difficile strains. J Med Microbiol 2007;56:940–6.

144. Mota-Meira M, Morency H, Lavoie MC. In vivo activity of mutacin B-Ny266. J Antimicrob Chemother 2005;56:869–71.

145. Gong W, Wang J, Chen Z et al. Solution structure of LCI, a novel antimicrobial peptide from Bacillus subtilis. Biochemistry 2011;50:3621–7.

146. Klu YAK, Chen J. Influence of probiotics, included in peanut butter, on the fate of selected Salmonella and Listeria strains under simulated gastrointestinal conditions. J Appl Microbiol 2016;120:1052–60.
147. Dabour N, Zihler A, Kheadr E et al. In vivo study on the effectiveness of pediocin PA-1 and Pediococcus acidilactici ULS at inhibiting Listeriamonocytes. Int J Food Microbiol 2009; 133:225–33.

148. Rea MC, Dobson A, O’Sullivan O et al. Effect of broad- and narrow-spectrum antimicrobials on Clostridium difficile and microbial diversity in a model of the distal colon. Proc Natl Acad Sci USA 2011;108:4639–44.

149. Citron DM, Tyrrell KL, Merriam CV et al. Comparative in vitro activities of LFF57 against Clostridium difficile and 630 other intestinal strains of aerobic and anaerobic bacteria. Antimicrob Agents Chemother 2012;56:2493–503.

150. Boakes S, Ayala T, Herman M et al. Generation of an actagardine A variant library through saturation mutagenesis. Appl Microbiol Biotechnol 2012;95:1509–17.

151. Chopra I, Singh G, Kumar JK et al. Sonorenisin: a new bacteriocin with potential of an anti-biofilm agent and a food bio-preservative. Sci Rep 2015;5:13412.

152. Cursino L, Smajs D, Smarda J et al. Exoproducts of the Escherichia coli strain H22 inhibiting some enteric pathogens both in vitro and in vivo. J Appl Microbiol 2006;100: 821–9.

153. Baindara P, Gautam A, Raghava GPS et al. Novel bacteriocins from Enterococcus faecalis SL-5 against Propionibacterium acnes, the causative agent in acne vulgaris. Exploiting CRISPR-Cas derivatives as biotherapeutic agents in disease prevention and treatment. J Antimicrob Chemother 2019;74:16–15.

154. Perez RH, Zendo T, Sonomoto K. Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications. Microb Cell Fact 2014;13: S3.

155. Gautam N, Sharma N. Bacteriocin: safest approach to preserve food products. Indian J Microbiol 2009;49:204–11.

156. Vijay Simha B, Sood SK, Kumariya R et al. Simple and rapid purification of pediocin PA-1 from Pediococcus pentosaceus NCDC 273 suitable for industrial application. Microbiol Res 2012;167:544–9.

157. Kaur B, Garg N, Sachdev A et al. Isolation and molecular characterization of anti-Helicobacter pylori poylri bacteriocin producing Pediococcus acidilactici BA28. Sci Rep 2012;2:1323.

158. Kaur B, Balgir PP, Mittu B et al. Biomedical applications of fermented HV6b isolated from Lactobacillus fermentum HV6b MTCC10770. Biomed Res Int 2013;2013:168438.

159. Bang BS, Sea JG, Lee GS et al. Antimicrobial activity of enterocins from Enterococcus faecalis SL-5 against Propionibacterium acnes, the causative agent in acne vulgaris, and its therapeutic effect. J Microbiol 2009;47:101–9.

160. Zoumpopoulou G, Pelpelassi E, Papaioannou W et al. Incidence of bacteriocins produced by food-related lactic acid bacteria active towards oral pathogens. Int J Mol Sci 2013;14:4640–54.

161. Dicks LMT, Dreyer L, Smith C et al. A review: the fate of bacteriocins in the human gastro-intestinal tract: do they cross the gut-blood barrier? Front Microbiol 2018;9:2297.

162. Weynberg KD, Jaschke PR. Building better bacteriophage with biofoundries to combat antibiotic-resistant bacteria. Phage 2020;1:23–6.

163. Lin DM, Koskella B, Lin HC. Phage therapy: an alternative to antibiotics in the age of multi-drug resistance. World J Gastrointest Pharmacol Ther 2017;8:162–73.

164. Drilling AJ, Ooi ML, Miljkovic D et al. Long-term safety of topical bacteriophage application to the frontal sinus region. Front Cell Infect Microbiol 2017;7:49.

165. Abedon ST. Commentary: phage therapy of staphylococcal chronic osteomyelitis in experimental animal model. Front Microbiol 2016;7:1251.

166. Alemayehu D, Casey PG, McAuliffe O et al. Bacteriophages $\Phi MR299$-2 and ΦNH-4 can eliminate Pseudomonas aeruginosa in the murine lung and on cystic fibrosis lung airway cells. MBio 2012;3:e00029–12.

167. Brown TL, Petrovski S, Dyson ZA et al. The formulation of bacteriophage in a semi solid preparation for control of Propionibacterium acnes growth. PLoS One 2016;11:e0151184. McDowell A (ed) 2012:56

168. Fish R, Kutter E, Wheat G et al. Compassionate use of bacteriophage therapy for foot ulcer treatment as an effective step for moving toward clinical trials. Methods Mol Biol Clifton NJ 2018;1693:159–70.

169. Valher A, Soltan DMM, Douraghi M et al. Isolation and identification of specific bacteriophage against enteropathogenic Escherichia coli (EPEC) and in vitro and in vivo characterization of bacteriophage. FEMS Microbiol Lett 2018;365:fny136.

170. Yu L, Wang S, Guo Z et al. A guard-killer phage cocktail effectively lysed the host and inhibits the development of phage-resistant strains of Escherichia coli. Appl Microbiol Biotechnol 2018;102:971–83.

171. Sartor RB, Wu GD. Roles for intestinal bacteria, viruses, and fungi in pathogenesis of inflammatory bowel diseases and therapeutic approaches. Gastroenterology 2017;152:327–39.e4.

172. Galitser M, De Sordi L, Sivignon A et al. Bacteriophages targeting adherent invasive escherichia coli strains as a promising new treatment for Crohn’s disease. J Crohns Colitis 2017;11: 840–7.

173. Bikard D, Euler CW, Jiang W et al. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat Biotechnol 2014;32:1146–50.

174. Oechslin F. Resistance development to bacteriophages occurring during bacteriophage therapy. Viruses 2018;10:351.

175. Elbreki M, Ross RP, Hill C et al. Bacteriophages and their derivatives as biotherapeutic agents in disease prevention and treatment. Viruses 2014;2014:20.

176. Bhalodi AA, van Engelen TSR, Virk HS et al. Impact of antimicrobial therapy on the gut microbiome. J Antimicrob Chemother 2019;74:16–15.

177. Monda V, Villano I, Messina A et al. Exercise modifies the gut microbiota with positive health effects. Oxid Med Cell Longev 2017;2017:3831972.

178. Allen JM, Mailing LJ, Niemiro GM et al. Exercise alters gut microbiota composition and function in lean and obese humans. Med Sci Sports Exerc 2018;50:747–57.

179. Clarke SF, Murphy EF, O’Sullivan O et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut 2014;63:1913–20.

180. Scheiman J, Lubem JM, Chavkin TA et al. Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Nat Med 2019;25:1104–9.

181. Deehan EC, Walter J. The fiber gap and the disappearing gut microbiome: implications for human nutrition. Trends Endocrinol Metab 2016;27:239–42.

182. Saffouri GB, Shields-Cutler RR, Chenv J et al. Small intestinal microbial dysbiosis underlies symptoms associated with functional gastrointestinal disorders. Nat Commun 2019;10:2012.
185. Sloan TJ, Jalanka J, Major GAD et al. A low FODMAP diet is associated with changes in the microbiota and reduction in breath hydrogen but not colonic volume in healthy subjects. PLoS One 2018;13:e0201410.

186. Makki K, Deehan EC, Walter J et al. The impact of dietary fibre on gut microbiota in host health and disease. Cell Host Microbe 2018;23:70–15.

187. Birchenough G, Schroeder BO, Bäckhed F et al. Dietary destabilisation of the balance between the microbiota and the colonic mucus barrier. Gut Microbes 2019;10:246–50.

188. Tabatabaeizadeh SA, Tafazoli N, Ferns G et al. Vitamin D, the gut microbiome and inflammatory bowel disease. J Res Med Sci 2018;23:75.

189. O’Keefe SJD, Li JV, Lahti L et al. Smoking status and composition of gut microbiota: insights from quantitative investigations on human fecal samples using FISH. Inflamm Bowel Dis 2014;20:1496–501.

190. Bindels LB, Delzenne NM, Cani PD et al. Towards a more comprehensive concept for prebiotics. Nutr Gastroenterol Hepatol 2015;12:303–10.

191. Zhao L, Zhang F, Ding X et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 2018;359:1151–6.

192. Lindefeldt M, Eng A, Darban H et al. The impact of dietary fibre on gut microbiota composition and functions in patients with HIV. J Neuroimmuno 2019;3:nzz036.

193. Chen P, Torralba M, Darban H et al. Prebiotic potential of a maize-based soluble fibre and impact of dose on the human gut microbiota. PLoS One 2016;11:e0144457.

194. Xie G, Zhong W, Zheng X et al. Chronic ethanol consumption alters mammalian gastrointestinal content metabolites. J Proteome Res 2013;12:3297–306.

195. Cresci GA, Bush K, Nagy LE. Tributyrin supplementation protects mice from acute ethanol-induced gut injury. Alcohol Clin Exp Res 2014;38:1489–501.

196. Li F, Jiang C, Krausz KW et al. Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity. Nat Commun 2013;4:2384.

197. Costable A, Deavelle ER, Morales AM et al. Prebiotic potential of a maize-based soluble fibre and impact of dose on the human gut microbiota. PLoS One 2016;11:e0144457.

198. Hernández-Quíroz F, Nirmalkar K, Villalobos-Flores LE et al. Influence of moderate beer consumption on human gut microbiota and its impact on fasting glucose and β-cell function. Alcohol 2020;85:77–94.

199. Lee SH, Yun Y, Kim SJ et al. Association between cigarette smoking status and composition of gut microbiota: population-based cross-sectional study. JCM 2018;7:282.

200. Martinez S, Campa A, Narasimhan G et al. Pilot study on the effect of cocaine use on the intestinal microbiome and metabolome and inflammation in HIV-infected adults in the Miami Adult Studies in HIV (MASH) cohort (P13-027-19). Curr Dev Nutr 2019;3:nzx036.

201. Typass Group Systems microbiology (2020). The Typass group develops high-throughput approaches to study bacterial cellular networks, and to understand their interactions with the environment, the host and other bacterial species. https://www.embl.org/groups/typass/ (31 July 2020, date last accessed).

202. Meroni M, Longo M, Dongiovanni P. Alcohol or gut microbiota: who is the guilty? JIMMS 2019;20:4568.

203. Björkhaug ST, Aanes H, Neupane SP et al. Characterization of gut microbiota composition and functions in patients with chronic alcohol overconsumption. Gut Microbes 2019;10:663–75.

204. Tang Y, Zhang L, Forsyth CB et al. The role of miR-212 and iNOS in alcohol-induced intestinal barrier dysfunction and steatohepatitis. Alcohol Clin Exp Res 2015;39:1632–41.

205. Kosnicki KL, Penprase JC, Cintora P et al. Effects of moderate, voluntary ethanol consumption on the rat and human gut microbiome. Addict Biol 2019;24:617–30.

206. Barr T, Sureshchandra S, Ruegger P et al. Concurrent gut transcriptome and microbiota profiling following chronic ethanol consumption in nonhuman primates. Gut Microbes 2018;9:338–56.

207. Huang C, Shi G. Smoking and microbiome in oral, airway, gut and some systemic diseases. J Transl Med 2019;17:225.

208. Biedermann L, Brülisauer K, Zeitl J et al. Smoking cessation alters intestinal microbiota: insights from quantitative investigations on human fecal samples using FISH. Inflamm Bowel Dis 2012;18:1092–100.

209. Ramirez J, Guarner F, Bustos Fernandez L et al. Antibiotics as major disruptors of gut microbiota. Front Cell Infect Microbiol 2020;10:572912.

210. Dinan TG, Stanton C, Cryan JF. Psychobiotics: a novel class of psychotropic. Biol Psychiatry 2013;74:720–6.

211. Dinan TG, Stanton C, Cryan JF. Psychobiotics: a novel class of psychobiotics. Front Psychiatry 2019;10:572912.

212. Food and Agricultural Organization of the United Nations and World Health Organization. Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. World Health Organization, 2001.

213. Salminen S, Collado MC, Endo A et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of probiotics. Nat Rev Gastroenterol Hepatol 2021;18:649–67.

214. Davani-Davari D, Negahdaripour M, Karimzadeh I et al. Prebiotics: definition, types, sources, mechanisms, and clinical applications. Foods 2019;8:92.

215. Pandey KR, Naik SR, Vakil BV. Probiotics, prebiotics and synbiotics: a review. J Food Sci Technol 2015;52:7577–87.

216. Bravo JA, Forsythe P, Chew MV et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A 2011;108:16050–5.

217. Li Y, Hao Y, Fan F et al. The role of microbiome in insomnia. Front Psychiatry 2018;9:669.

218. Dowlati Y, Herrmann N, Swardfager W et al. A meta-analysis of cytokines in major depression. Biol Psychiatry 2010;67:446–57.

219. Lu Y, Christian K, Lu B. BDNF: a key regulator for protein synthesis-dependent LTP and long-term memory? Neurobiol Learn Mem 2008;89:312–23.

220. de Vries HE, Blom-Roosemalen MC, van Oosten M et al. The influence of cytokines on the integrity of the blood-brain barrier in vitro. J Neuroimmuno 1996;64:37–43.

221. Schmidt K, Cowen PJ, Harmer CJ et al. Prebiotic intake reduces the waking cortisol response and alters emotional bias in healthy volunteers. Psychopharmacology (Berl) 2015;232:1793–801.

222. Sun J, Wang F, Hong G et al. Antidepressant-like effects of sodium butyrate and its possible mechanisms of action in mice exposed to chronic unpredictable mild stress. Neurosci Lett 2016;618:159–66.

223. Ait-Belgnaoui A, Durand H, Cartier C et al. Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA
response to an acute psychological stress in rats. Psychoneuroendocrinol 2012;37:1885–95.

224. Liu YW, Liu WH, Wu CC et al. Psychotropic effects of Lactobacillus plantarum PS128 in early life-stressed and naive adult mice. Brain Res 2016;1631:1–12.

225. Liang S, Wang T, Hu X et al. Administration of Lactobacillus helveticus N58 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress. Neurosci 2015;310:561–77.

226. Berck P, Verdu EF, Foster JA et al. Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice. Gastroenterology 2010;139:2102–12.e1.

227. Messaoudi M, Lalonde R, Viole N et al. Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus acidophilus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br J Nutr 2011;105:755–64.

228. Nimgampalle M, Kuna Y. Anti-Alzheimer properties of probiotics, lactobacillusplantarum MTCC 1325 in Alzheimer’s disease induced albino rats. J Clin Diagn Res 2017;11:KC01–5.

229. Tamtaji OR, Taghizadeh M, Daneshvar KR et al. Clinical and metabolic response to probiotic administration in people with Parkinson’s disease: a randomized, double-blind, placebo-controlled trial. Clin Nutr 2019;38:1031–5.

230. Harding KL, Judah RD, Gant C. Outcome-based comparison of Ritalin versus food-supplement treated children with ADHD. Altern Med Rev 2003;8:319–30.

231. Miyazaki K, Itoh N, Yamamoto S et al. Dietary heat-killed Lactobacillus brevis SBC8803 promotes voluntary wheel-running and affects sleep rhythms in mice. Life Sci 2014;111:47–52.

232. Roshchina VV. New trends and perspectives in the evolution of neurotransmitters in microbial, plant, and animal cells. Adv Exp Med Biol 2016;874:25–77.

233. Yano JM, Yu K, Donaldson GP et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 2015;161:264–76.

234. Akbari E, Asemi Z, Daneshvar KR et al. Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer’s disease: a randomized, double-blind and controlled trial. Front Aging Neurosci 2016;8:256.

235. Zhao H, Shi Y, Luo X et al. The effect of fecal microbiota transplantation on a child with tourette syndrome. Case Rep Med 2017;2017:615239.

236. Shaaban SY, El Gendy YG, Mehanna NS et al. The role of probiotics in children with autism spectrum disorder: a prospective, open-label study. Nutr Neurosci 2018;21:676–81.

237. Nakakita Y, Tsuchimoto N, Takata Y et al. Effect of dietary heat-killed Lactobacillus brevis SBC8803 (SBL88™) on sleep: a non-randomised, double blind, placebo-controlled, and crossover pilot study. Benef Microbes 2016;7:501–9.

238. Chinna Meyyappan A, Forth E, Wallace CJK et al. Effect of fecal microbiota transplant on symptoms of psychiatric disorders: a systematic review. BMC Psychiatry 2020;20:299.

239. Chen Z, Guo L, Zhang Y et al. Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity. J Clin Invest 2014;124:3391–406.

240. Donaldson GP, Lee SM, Mazmanian SK. Gut microbiota of the bacterial microbiota. Nat Rev Microbiol 2016;14:20–32.

241. Auchtung JM, Robinson CD, Britton RA. Cultivation of stable, reproducible microbial communities from different fecal donors using minibioreactor arrays (MBRAs). Microbiome 2015;3:42.

242. Costello CM, Sorna RM, Goh YL et al. 3-D intestinal scaffolds for evaluating the therapeutic potential of probiotics. Mol Pharm 2014;11:2030–9.

243. Lukovac S, Belcer Z, Pellis L et al. Differential modulation by Akkermansia muciniphila and Faecalibacterium prausnitzii of host peripheral lipid metabolism and histone acetylation in mouse gut organoids. mBio 2014;5:e01438-14.

244. Kim HJ, Li H, Collins J et al. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proc Natl Acad Sci USA 2016;113:E7–15.

245. Smillie CS, Smith MB, Friedman J et al. Ecology drives a global network of gene exchange connecting the human microbiome. Nature 2011;480:241–4.

246. Ceroni F, Algar R, Stan GB et al. Quantifying cellular capacity identifies gene expression designs with reduced burden. Nat Methods 2015;12:415–8.

247. Steidler L, Neirynck S, Huyghebaert N et al. Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10. Nat Biotechnol 2003;21:785–9.

248. Gladstone EG, Molineux IJ, Bull JJ. Evolutionary principles and synthetic biology: avoiding a molecular tragedy of the commons with an engineered phase. J Biol Eng 2012;6:13.

249. Facts & Factors. At 58% CAGR growth, global microbiome Therapeutics Market Share, Forecast (2021–2027). 2021. https://www.factssfactors.com/news-release/2021/06/16/2248309/0/en/At-58-CAGR-Growth-Global-Microbiome-Therapeutics-Market-Share-Will-Reach-USD-838-2-Million-by-2026-Facts-Factors.html (16 June 2021, date last accessed).

250. Gosañbez L. The microbiome biotech landscape: an analysis of the pharmaceutical pipeline. 2020. https://www.microbiot metabolismes.com/the-microbiome-biotech-landscape-an-analy sis-of-the-pharmaceutical-pipeline/ (26 March 2020, date last accessed).

251. Rebiotix a Ferring Company. Rebiotix reports positive top line data from open-label phase 2 trial of RXB2660 in recurrent Clostridium difficile. 2017. https://www.rebiotix.com/positive-top-line-data-open-label-phrase-2-trial-rxb2660-recurrent-clostridium-difficile/ (11 April 2017, date last accessed).

252. Vedanta Biosciences. Vedanta Biosciences presents new data from phase 1 study of VE202, its rationally-defined consortium for the treatment of inflammatory bowel disease, at the International Human Microbiome Consortium Congress 2021 (IHMC). 2021. https://www.vedantabio.com/news-media/press-releases/detail/2762/vedanta-biosciences-presents-new-data-from-phase-1-study-of-VE202 (29 June 2021, date last accessed).

253. Evelo Biosciences. Orally Delivered Microbial Extracellular Vesicles Modulate Systemic Inflammation through the Small Intestinal Axis (Sintax™) Virtual Immunology 2021, the 104th Annual Meeting of the American Association of Immunologists (AAI). 2021. https://evelo.com/publications/ (2 December 2020, date last accessed).

254. Seres therapeutics. Seres therapeutics achieves enrollment of 300 subjects with phase 3 ECOSPOT IV open-label extension study of SER-109, a potentially first-in-class investigational microbiome therapeutic for recurrent C. difficile infection. 2021. https://ir.serestherapeutics.com/ (15 September 2021, date last accessed).

255. Cambridge, England (Business Wire) Microbiota. Microbiota’s live bacterial therapeutic, MB097, in development to begin clinical trials in 2022 in immuno-oncology.
256. Vedanta Biosciences, Inc. Our discovery platform: enabling a new drug modality. 2010. https://www.vedantabio.com/platform (2 December 2020, date last accessed).

257. 4D pharma plc. 4D Pharma presents additional positive results of phase II study of Blautix® for the treatment of irritable bowel syndrome. 2021. https://www.4dpharmapl.com/en/newsroom/press-releases/4D-pharma-Presents-Additional-Positive-Results-Phase-II-Blautix-for-Treatment-of-Irritable-Bowel-Syndrome-DDW-2021 (25 May 2021, date last accessed).

258. Evelo Biosciences. The small intestine provides a big opportunity to transform medicine. 2014. https://evelobio.com/our-platform/ (2 December 2020, date last accessed).

259. Brisbane C. Second Genome presents preclinical data at ESMO 2021 demonstrating that a novel microbiome-derived peptide, SG-3–00802, reverses resistance to anti-programmed death protein-1 (PD-1) therapy. 2021. https://www.secondgenome.com/news/second-genome-presents-preclinical-data-at-esmo-2021-demonstrating-that-a-novel-microbiome-derived-peptide-sg-3-00802-reverses-resistance-to-anti-programmed-death-protein-1-pd-1-therapy (16 September 2021, date last accessed).

260. Kaleido Biosciences. A differentiated product platform company. 2015. https://kaleido.com/platform/ (2 December 2020, date last accessed).

261. Enterome. Enterome highlights microbiome publication describing sibofimloc’s novel mechanism of action for the treatment of Crohn’s disease. 2021. https://www.enterome.com/enterome-highlights-microbiome-publication-describing-sibofimlocs-novel-mechanism-of-action-for-the-treatment-of-crohns-disease/ (16 September 2021, date last accessed).

262. Kali A. Antibiotics and bioactive natural products in treatment of methicillin resistant Staphylococcus aureus: a brief review. Pharmacogn Rev 2015;9:29–34.

263. Terry M. The brave new world of microbiome-based therapies. 2020. https://www.biospace.com/article/the-brave-new-world-of-microbiome-based-therapies/ (11 February 2020, date last accessed).

264. Polaris Market Research. Human microbiome therapeutics market size worth $1,544.6 million by 2027 CAGR: 23.8%: exclusive study by Polaris Market Research. 2020. https://www.medgadget.com/2020/07/human-microbiome-therapeutics-market-size-worth-1544-6-million-by-2027-cagr-23-8-exclusive-study-by-polaris-market-research.html (15 July 2020, date last accessed).

265. Emergen Research. Human microbiome therapeutics market size worth USD 1,098.4 million by 2027 | rising government initiatives in microbiome research projects and increasing drug-related side effects are driving the industry growth, says Emergen Research. 2021. https://www.globenewswire.com/en/news-release/2021/03/02/2185374/0/en/Human-Microbiome-Therapeutics-Market-Size-Worth-USD-1-098-4-Million-by-2027-Rising-Government-Initiatives-In-Microbiome-Research-Projects-And-Increasing-Drug-Related-Side-Effects-A.html (2 March 2021, date last accessed).