Research Article

Variation in chemical constituents of essential oils of the fresh, dried and fermented leaves of *Premna serratifolia*

Khin Su Yee1,2, Penpun Wetwityaklung1, Worrakanya Narakornwit1, Tasamaporn Sukwattanasinit1, Bunyapa Wangwattana1, Uthai Sotanaphun1*

1 Department of Pharmacognosy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
2 Department of Pharmacognosy, University of Pharmacy, Mandalay, Myanmar

ABSTRACT

This study aimed to identify the composition of the essential oils of the fresh, dried and fermented leaves of *Premna serratifolia* by gas chromatography-mass spectrometry (GC-MS) using DB-5 and Carbowax 20M columns. A total of 77, 82 and 90 compounds were detected, which involved the main compound categories of hydrocarbons, terpenoids, and phenolics. Amyl vinyl carbinol (15.8-32.6%), linalool (11.1-15.1%), phytol (7.7-12.5%), salicylic acid methyl ester (3.9-7.2%) and (E)-caryophyllene (3.1-6.6%) were predominant components of the fresh leaves oils. After drying and fermentation, the chemical compositions were changed by various reactions. The amounts of amyl vinyl carbinol were decreased to 6.3-13.8% and 6.9-11.5% after drying and fermentation, respectively. Likewise, linalool and phytol were decreased to 6.3-7.5% and 7.3-9.0% after drying, and decreased to 5.3-7.9% and 2.0-3.4% after fermentation, respectively. In both the dried and the fermented leaf oils, alphahumulene was disappeared and beta-myrcene was detected as a new compound. The noticeable changes in chemical composition after drying process were much increasing in the amount of (E)-caryophyllene (6.6-12.2%) to become the most abundant compound, and the hydrolysis of palmitic acid ethyl ester to palmitic acid (5.0%). The fermentation method could dramatically increase the amounts of phenolic compounds especially 4-vinylanisole (2.4-41.1%) which became the major compound, marked decrease the phytol and found acorenone B (4.4%) as a new compound. The present study demonstrated that drying and fermentation processes affected the volatile composition of the leaves of *P. serratifolia*.

Keywords:
Premna serratifolia, Essential oil, GC-MS, Drying, Fermentation

1. INTRODUCTION

Premna serratifolia L. (family Lamiaceae) is a shrub or tree in tropical and subtropical regions. Its leaves have a characteristic fetid smell and native people in Celebes use it as a food additive to reduce the fishy smell1. In Peninsula, Malaysia, and Indonesia, young leaves of this plant are used as vegetables2. In Myanmar, the leaves were used for the treatments of cancer and liver diseases. Some people take the preparation of the fresh leaves and some others use the dried leaves. If the fresh leaves of this plant were kept at room temperature or dried in the shade under inappropriate condition, some leaves will be fermented and turned to dark brown color. The fresh, dried and fermented leaves have different smells which suggested that their volatile chemical constituents should be in variation. Many medicinal plants have been reported for chemical variation between their fresh and dried leaves, such as *Tapinanthus bangwensis*3, *Artemisia afra*4, *Ocimum sanctum*5, and *Cymbopogon citratus*6. One of the most well-known fermented example was the hydrolysis of aroma precursors by endogenous glycosidase during the manufacturing processes of Oolong tea and black tea, and many aroma compounds occurred7.

This study was a keen interest to investigate the difference among volatile phytochemical constituents of the fresh, dried and fermented leaves of *P. serratifolia*.

*Corresponding author:
Uthai Sotanaphun sotanaphun_u@su.ac.th

Pharmaceutical Sciences Asia © 2021 by
Faculty of Pharmacy, Mahidol University, Thailand is licensed under CC BY-NC-ND 4.0. To view a copy of this license, visit https://www.creativecommons.org/licenses/by-nc-nd/4.0/
using gas chromatography coupled with mass spectrometry (GC-MS) technique. The result would be declared as basic scientific evidence that their qualities were not equal and should be concerned.

2. MATERIALS AND METHODS

2.1. Plant material

Leaves of *P. serratifolia* were collected from Mandalay Division, Myanmar, in October 2018. The taxonomic species was identified by comparing its flower and leaf characters with the references. The voucher specimen (Ps172018) was deposited with the herbarium of the Department of Pharmacognosy, Silparkorn University, Thailand. The leaves were divided into three parts. The first part was the fresh leaves, the second part was dried in the shade, and the third part was fermented by packing in a plastic bag and place at room temperature for 10 days in the shade until the leaves turned to black color.

2.2. Preparation of essential oils

The fresh leaf sample (490 g), the dried leaf sample (244 g) and the fermented leaf sample (201 g) were separately chopped into small pieces and hydrodistilled in a Clevenger apparatus for 5 hours to obtain essential oils. The collected oils were dried over anhydrous sodium sulfate and stored at 4°C in air-tight glass containers. The yields of the essential oils of the fresh, dried and fermented leaves were 0.008, 0.139 and 0.139%, respectively.

2.3. GC-MS analysis

The essential oils were analyzed by Agilent 6890 gas chromatography equipped with Agilent technology, 5973N mass selective spectrometric detector (EIMS, electron energy, 70 eV, scanning from 40 to 500 m/z) with a quadrupole analyzer and an Agilent Chem Station data system (Agilent Technologies, U.S.A.). Two columns, fused silica capillary column (5%-phenyl)-methylpolysiloxane DB-5 (30 m x 0.32 mm ID x 0.25 µm film thickness) and Carbowax 20M polyethylene glycol (PEG) (60 m x 0.25 mm ID x 0.25 µm film thickness) were used. Ultra-high purity helium gas (99.999%) was used as a carrier gas at a flow rate of 1mL/min. The sample (1.0 µL) was injected with a splitless mode. The solvent delay for the detector was 3 minutes. The ion source temperature was 230°C and quadrupole temperature was programmed at 150°C. For the DB-5 column, the initial oven temperature was 80°C and increased to 130°C at the 5°C/min, then increased to 280°C at the 10°C/min and hold for 5 min. For Carbowax 20M column, the initial oven temperature was 60°C and increased to 220°C at the 2°C/min. Identification of compounds was performed by comparison of their RI relative to n-alkanes (C8-C26) with Adams11, NIST Chemistry WebBook, SRD 6912, Babushok et al13 and Leffingwell et al14. Their mass spectra were also compared with libraries databases of Wiley7n.l and NIST 05.

3. RESULTS AND DISCUSSION

Essential oils of the fresh leaves of *P. serratifolia* were prepared by hydrodistillation and studied by GC-MS. Two GC columns, the non-polar DB-5, and the polar Carbowax 20M columns were used to ensure the most complete investigation of the constituents. The identification of each compound was based on its mass fragmentation pattern and RI (Retention Index) calculation comparing with data in the references. The results are shown in Table 1 and Table 2. Seventy-seven compounds were detected. Most of the identified compounds were classified into hydrocarbons (26.1% in DB-5 and 57.1% in Carbowax 20M), terpenoids (42.8% in DB-5 and 26.0% in Carbowax 20M) and phenolics (15.0% in DB-5 and 10.9% in Carbowax 20M) compound categories. Some fatty acids, apocarotenoids, and miscellaneous compounds were also detected (Table 3). The most abundant compounds were amyl vinyl carbinol (15.8% in DB-5 and 32.6% in Carbowax 20M), linalool (15.1% in DB-5 and 11.1% in Carbowax 20M), phytol (12.5% in DB-5, and 7.7% in Carbowax 20M), salicylic acid methyl ester (7.2% in DB-5 and 3.9% in Carbowax 20M) and (E)-caryophyllene (6.6% in DB-5 and 3.1% in Carbowax 20M). The previous study identified only 4 compounds of eugenol, eugenyl acetate, massoil and cis-2-oxabicyclo, 4.4.0-decane in the fresh leaf oil1. In this study, a very less amount of eugenol was detected (1.2% in DB5). This might be due to the different location and climate of plant origin. This study was the first report of the constituent of essential oil obtained from the leaves of this plant growing in Myanmar.

After the leaves of *P. serratifolia* were dried under the shade, increasing in the number of compounds in essential oils was observed, resulting in 82 total compounds; whereas when the leaves were allowed to ferment and turn to dark color, 90 compounds were detected (Tables 1 and Table 2). Some compounds were disappeared and some new compounds occurred as concluded in Figure 1. The compounds those lose after drying and fermentation methods were not much different. The significantly lost compounds were alpha-humulene, amyl carbinol, (Z)-3-hexen-1-ol and acetophenone. The new occurring compounds were mostly the small molecular weight terpenoids and aldehyde hydrocarbons compound categories, but they were detected in only trace amounts.
Compound	Fresh leaves	Dried leaves	Fermented leaves	Literature			
	RI	% Relative amount	RI	% Relative amount	RI	% Relative amount	
alpha-Pinene	-	-	1015	0.8	-	-	9391
Amyl vinyl carbinol	1031	15.8	1030	6.3	1031	6.9	9791
Amyl ethanol ketone	-	-	-	-	1034	1.2	9841
beta-Myrcone	-	-	1037	8.7	1034	6.7	9911
Amyl ethyl carbinol	1049	6.4	-	-	1040	5.7	1002
Unknown	-	-	-	-	1048	0.7	-
m-cymene	1059	0.2	-	-	-	-	1026
Limonene	1069	0.3	1065	0.3	1066	0.4	1029
Benzenacetaldehyde	1079	1.5	-	-	1076	1.0	1042
Unknown	-	-	1115	1.2	-	-	-
Linalool	1126	15.1	1122	6.3	1123	7.9	1097
(Z)-beta-Terpineol	-	-	-	-	1125	0.6	1144
Unknown	-	-	-	-	1144	0.4	-
p-Vinyl Anisole	1112	4.5	1172	8.9	1184	1.4	1160
neo-Menthol	-	-	1190	0.6	-	-	1166
Unknown	-	-	1190	1.1	-	-	-
Naphthalene	1204	0.6	-	-	-	-	1181
Unknown	-	-	-	-	1205	0.5	-
Salicylic acid methyl ester	1216	7.2	-	-	-	-	1193
beta-Cyclocitrinal	1236	0.7	-	-	-	-	1218
Nerol	1239	0.5	1237	0.3	-	-	1230
5-(1’-1’-Dimethyl[1]bicyclo[3,10]hexan-2-one	-	-	-	-	1256	1.7	-
p-Anisaldehyde	-	-	-	-	1260	1.9	1270
Unknown	-	-	1270	1.0	-	-	-
alpha-Benzenacetaldehyde ethylidene-	-	-	1282	0.2	1279	0.8	1279
Salicylic acid ethyl ester	1282	1.1	-	-	-	-	1311
Carboxylic acid	-	-	1307	0.7	-	-	-
3,4,4a,5,6,8a-Hexahydro-2,5,5,8a-tetramethyl-(2,4aalpha,8a,8-alpha)-2H-1-benzopyran	1307	0.5	-	-	1384	1.4	-
p-Vinylglycol	1323	1.1	1322	0.1	1322	0.6	1324
Benzene,4-ethyl-1,2-dimethoxy-	-	-	-	-	1329	0.6	-
Unknown	-	-	-	-	1332	0.7	-
Acetanisole	1366	1.2	1365	0.7	1366	1.7	1359
Eugenol	1369	1.3	1368	0.6	-	-	-
Unknown	-	-	-	-	1371	0.6	1368
3,4-Dimethoxyzystere	-	-	-	-	1384	1.4	-
beta-Damascenone	1392	1.4	1392	0.7	-	-	1385
beta-Elemene	1400	0.3	1400	0.4	1400	0.9	1404
Methylcuganol	-	-	1407	0.4	-	-	1403
Unknown	-	-	1413	0.4	-	-	-
Isocaryophyllene	-	-	-	-	1420	1.1	1423
Unknown	-	-	1421	0.7	-	-	-
(E)-Caryophyllene	1436	6.6	1438	12.2	1437	12.7	1433
Dihydro-beta-ionone	-	-	1447	0.4	-	-	1444
Neryl acetone	-	-	1456	1.0	1456	0.6	1456
(E)-beta-Farnesene	1459	0.4	1460	0.5	1460	0.6	1457
alpha-Humulene	1467	1.6	-	-	-	-	1463
1,1,4,8-Tetramethyl(4,7,10)-cycloendecatriene-	-	-	1468	2.4	1468	3.0	-
(E)-beta-Ionone	1491	0.9	1493	2.9	1493	1.7	1489
Unknown	-	-	-	-	1499	1.1	-
alpha-Farnesene	1509	0.2	-	-	-	-	1506
beta-Bisabolene	1514	3.0	1515	3.8	1515	4.8	1512
Unknown	-	-	1526	1.4	-	-	-
beta-Cadinene	-	-	1533	1.1	-	-	-
Unknown	-	-	1534	1.4	-	-	-
Nerolidol	1566	0.9	1566	1.3	1567	1.3	1563
Table 1. Chemical constituents of the essential oils of the fresh, dried and fermented P. serratifolia leaves analysed by GC-MS using DB-5 column. (cont.)

Compound	Fresh leaves	Dried leaves	Fermented leaves	Literature			
	RI	% Relative amount					
Caryophyllene oxide	1597	1.8	1598	2.6	1598	2.9	1583
Humulene oxide	-	-	-	-	1628	0.4	1602
3,4-Dimethyl-3-cyclohexen-1-carboxaldehyde	1629	0.3	-	-	-	-	1669
beta-Tumerone	-	-	1674	1.0	-	-	-
Unknown	-	-	-	-	1678	2.4	-
Unknown	-	-	-	-	1681	2.7	-
Acorenone B	-	-	-	-	1708	4.4	1698
Myristic acid ethyl ester	1794	0.3	-	-	-	-	1794
Isopropyl myristate	1826	0.3	-	-	-	-	1824
Hexahydrofarnesyl acetone	1848	0.3	1844	3.6	1849	1.5	1844
Isobutyl phthalate	1875	0.2	-	-	1875	0.3	1874
Palmitoleic acid methyl ester	-	-	1912	0.9	1911	0.3	1912
Farnesyl acetone C	1925	0.4	1926	2.0	1925	0.7	1920
Isopropyl	-	-	-	-	1951	0.1	1948
(Z)-11-Hexadecenoic acid	1964	1.3	1963	1.0	1963	0.8	1953
Unknown	-	-	1978	5.0	-	-	1968
(E)-11-Hexadecenoic acid ethyl ester	1980	0.8	-	-	1979	0.4	1974
Palmitic acid	1990	1.2	-	-	-	-	1990
Geranyl linoleo isomer1	-	-	2038	0.2	-	-	-
Linoleic acid methyl ester	-	-	2098	0.4	-	-	2097
Linolenic acid methyl ester	-	-	2106	1.2	2105	0.3	2108
Phytol	2128	12.5	2124	7.3	2120	3.4	2122
(E)-9-Octadecenoic acid	-	-	2146	0.4	-	-	2133
Linoleic acid ethyl ester	2167	0.6	-	-	2165	0.1	2164
Linolenic acid ethyl ester	2175	2.3	2174	0.4	2173	0.6	2170
Geranyl linoleo isomer2	-	-	2180	0.4	-	-	-
15-Methyl-heptadecanoic acid ethyl ester	2194	0.4	-	-	-	-	-
n-Docosane	-	-	-	-	2199	0.1	2200
n-Tricosane	2299	0.2	2299	0.1	2299	0.1	2300
n-Tetracosane	2399	0.1	2399	0.1	2399	0.1	2400
n-Pentacosane	2499	0.2	2499	0.1	2499	0.2	2500
Bis-(2-ethylhexyl) phthalate	2554	3.0	2552	0.1	-	-	2556
n-Hexacosane	2599	0.1	2598	0.1	2598	0.2	2600
n-Heptacosane	2700	0.4	2699	0.4	2698	0.3	2700
Squalene	2826	0.2	-	-	2825	0.1	2847
n-Nonacosene	2897	3.0	2898	0.4	2898	0.4	2900

Table 2. Chemical constituents of the essential oils of the fresh, dried and fermented P. serratifolia leaves analysed by GC-MS using Carbowax 20M column.

Compound	Fresh leaves	Dried leaves	Fermented leaves	Literature			
	RI	% Relative amount					
(E)-2-Hexenal	1271	0.6	1278	0.7	1279	0.3	1216
(E)-beta-Oicimene	-	-	1282	0.2	1283	0.2	1250
Amyl ethyl ketone	1299	7.8	1297	0.3	1298	0.7	1264
p-Cymene	-	-	1307	0.2	1300	0.2	1270
alpha-Terpinolen	-	-	1308	0.1	-	-	1282
Amyl vinyl ketone	1325	0.3	1326	1.4	1326	0.2	1301
6-Methyl-5-hepten-2-one	-	-	1355	0.1	1355	0.1	1345
Amyl carbinal	1379	5.4	-	-	-	-	1371
(Z)-3-Hexen-1-ol	1401	2.2	-	-	-	-	1373
Amyl ethyl carbinal	1423	8.1	1414	2.1	1416	6.2	1392
3,5,5-Trimethyl-3-cyclohexen-1-one	-	-	1425	0.1	-	-	1420
Amyl vinyl carbinal	1474	32.6	1460	13.8	1461	11.5	1444
(E)-Linalool oxide	1476	0.2	-	-	-	-	1454
(Z)-Linalool oxide	1491	0.2	1486	0.2	1486	0.3	1474
(E.E)-2,4-Hexadienal	1502	0.1	1498	0.2	1499	0.2	1491
3,4,4a,5,6,8a-Hexahydro-2,5,5,8a-tetramethy-(2.alpha,4a.alpha,8a.alpha) 2H-1-benzopyran	1527	0.2	-	-	-	-	-
Compound	Fresh leaves	Dried leaves	Fermented leaves	Literature			
---	--------------	--------------	------------------	------------			
RI % Relative amount							
Camphor	-	1531 0.1	-	1515¹¹			
(E)-2-Nonenal	-	1538 0.2	1540 0.2	1556¹³			
Linalool	1554 11.1	1549 7.5	1549 5.3	1543¹³			
1-Methyl-4-(1-methylethyl)-trans-2-	-	-	-	-			
cyclohexen-1-ol	-	-	-	-			
beta-Elemene	-	1578 0.2	-	1574¹²			
(E,E)-2,6-Nonadienal	-	1583 0.4	1585 0.6	1582¹³			
(E)-Caryophyllene	1594 3.1	1596 14.6	1597 8.4	1599¹³			
Unknown	-	-	-	-			
2-Acetyltiazole	1632 0.1	-	-	1634¹²			
Acetophenone	1645 2.0	-	-	1648¹³			
(E)-beta-Farnesene	-	-	-	-			
p-Vinyl anisole	1659 2.4	1660 13.1	1667 41.1	1670¹³			
Unknown	1667 0.2	-	-	-			
4-Oxoisophorone	-	1694 0.2	1696 0.2	1690¹³			
(E,E)-2,4 Nonadienal	-	-	-	-			
beta-Bisabolene	1706 1.5	1707 6.0	1706 2.7	1699¹³			
Naphthalene	1717 0.2	1717 0.2	-	1709¹³			
alpha-Farnesene	-	1722 0.4	1722 0.2	1744¹³			
Unknown	1722 0.2	-	-	-			
delta-Cadinene	-	1737 0.2	-	1756¹³			
Salicylic acid methyl ester	1755 3.9	1751 0.5	1752 0.3	1768¹³			
Salicylic acid ethyl ester	1788 0.4	-	-	1798¹²			
Nerol	-	1802 0.3	1801 0.1	1795¹³			
Unknown	1802 0.4	-	-	-			
(E)-beta-Damascone	1814 0.6	1813 0.7	1813 0.2	1821¹³			
Dihydro-beta-Ionone	-	1827 0.3	-	1825¹³			
Unknown	1830 0.2	-	-	-			
Neryl acetone	1843 0.1	1844 1.2	1844 0.4	1835¹³			
Geraniol	1852 0.7	1851 0.7	1851 0.4	1851¹²			
alpha-Ionone	-	1853 0.6	-	1857¹³			
4-Ethyl-1,2-dimethoxy-benzene	-	-	1870 0.4	1875¹²			
Unknown	1877 0.6	1876 0.7	1877 1.1	-			
(E,E,E)-2,4,6-Nona-trienal	-	1889 0.2	1889 0.4	-			
Unknown	1913 0.2	-	-	-			
Unknown	1923 0.2	-	1923 0.5	-			
(E)-beta-Ionone	1943 0.2	1945 2.2	1944 0.4	1936¹³			
Unknown	1978 0.2	-	-	-			
Caryophyllene oxide	1991 0.7	1992 2.5	1991 1.0	1986¹³			
Methylenegol	-	2002 0.7	2002 0.5	2006¹³			
4-(2,2,6-Trimethyl-7-	2002 0.1	-	-	2002¹³			
oxabicyclo[4,1,0]hept-1-yl]-3-buten-2-one	-	-	-	-			
p-Anisaldehyde	2020 0.5	2020 1.7	2021 1.5	2011¹³			
Nerolidol	2029 0.4	2029 1.4	2029 0.4	2036¹³			
Myristic acid ethyl ester	2037 0.1	-	-	2045¹³			
Zingiberenol	-	-	2114 0.1	2109¹³			
Hexahydro farnesyl acetone	2121 0.1	2124 4.1	2122 0.8	2129¹³			
Unknown	-	-	-	-			
Acetanisole	2144 0.1	2144 0.4	2145 0.7	2148¹³			
Eugenol	2151 0.6	2151 1.5	2151 1.1	2150¹³			
Longiborneol	-	2160 0.4	2159 0.2	2157¹³			
2,6,11,15-Tetramethyl-hexadeca-	2175 0.6	2174 1.1	2174 0.4	-			
2,6,8,10,14-pentaene	-	-	-	-			
p-Vinylguaiacol	2184 0.6	-	2184 0.4	2180¹²			
alpha-Cadinol	2191 0.1	2191 0.3	-	2191¹³			
Unknown	-	2202 1.7	2202 0.5	-			
Acorenone B	2226 0.1	2227 0.9	-	2225¹²			
Palmitoleic acid methyl ester	2245 0.4	-	2243 0.2	2235¹³			
beta-Tumerone	-	2246 0.5	-	-			
9-hexadecenoic ethyl ester	2268 0.3	-	2266 0.2	2269¹²			
Unknown	-	-	2281 1.7	-			
Table 2. Chemical constituents of the essential oils of the fresh, dried and fermented *P. serratifolia* leaves analysed by GC-MS using Carbowax 20M column. (cont.)

Compound	Fresh leaves	Dried leaves	Fermented leaves	Literature			
	RI	% Relative amount	RI	% Relative amount	RI	% Relative amount	
Isophytol	-	-	2284	0.3	-	-	2293¹³
2,4-Bis(1,1-dimethylylethyl)-phenol	2291	0.1	2291	0.6	2291	0.2	2316¹²
3,7,11-Trimethyl-(E,E)-2,6,10-dodecatrien-1-ol	-	-	-	-	2357	0.1	2366¹³
Farnesyl acetone C	2362	0.1	2363	1.2	2362	0.4	2377¹³
Ketone (1H-Indole)	-	-	2425	0.2	2425	0.2	2420¹²
Octadecanoic acid ethyl ester	2453	0.1	-	-	-	-	2450¹²
Oleic acid ethyl ester	2468	0.2	-	-	-	-	2461¹²
Linoleic acid methyl ester	-	-	2478	0.3	-	-	2480¹²
Linoleic acid ethyl ester	2515	0.2	-	-	-	-	2519¹²
Linolenic acid methyl ester	-	-	2547	1.1	2546	0.2	2550¹²
Linolenic acid ethyl ester	2584	0.7	-	-	2582	0.4	2594¹²
Phytol	2625	7.7	2620	9.0	2617	2.0	2613¹¹
Dibutyl phthalate	-	-	2704	0.5	-	-	2703¹²
3-(4-Methoxyphenyl),2-propenoic acid ethyl ester	2641	0.5	-	-	-	-	-

Table 3. Category of chemical constituents of the essential oils of the fresh, dried and fermented *P. serratifolia* leaves.

Compound category	Compound sub-category	Fresh leaves	Dried leaves	Fermented leaves			
		% Relative amount					
Terpenoids	Monoterpene hydrocarbons	0.5	-	9.7	0.4	7.1	0.4
	Monoterpene alcohols	15.6	11.8	7.1	8.5	9.2	6.1
	Monoterpene ketones	-	-	-	0.1	-	-
	Miscellaneous oxygenated monoterpenes	-	-	-	0.4	-	-
	Sesquiterpene hydrocarbons	12.1	4.7	19.3	21.4	23.8	11.5
	Sesquiterpenes alcohols	-	-	-	0.1	-	-
	Sesquiterpene ketones	-	-	-	0.7	-	-
	Miscellaneous oxygenated sesquiterpenes	-	-	-	1.0	-	-
	Diterpenoid hydrocarbons	-	-	-	0.6	-	-
	Diterpenoid alcohols	12.5	7.7	7.9	9.3	3.5	2.0
	Diterpenoids	0.2	-	-	-	-	-
Phenolics	Fatty acids	15.0	10.9	10.2	18.4	7.9	6.0
	Fatty acids esters	-	-	7.2	-	-	-
Hydrocarbons	Hydrocarbon alcohols	22.2	48.2	6.3	15.9	12.5	17.8
	Hydrocarbon aldehydes	-	0.7	-	1.7	-	1.7
	Hydrocarbon ketones	-	8.1	-	1.6	-	2.9
	Long chain hydrocarbons	3.9	-	1.2	-	1.2	-
Apocarotenoids	Apocarotenoids	4.9	1.7	11.9	12.1	5.7	2.8
Miscellaneous	2.8	0.2	0.9	0.9	2.7	0.2	
Unknowns	2.6	2.1	11.8	2.3	13.9	5.2	

The significant new abundant compounds of both the dried and the fermented leaf oils were beta-myrcene and (ZZZ)-4,7,10-cycloundecatriene,1,1,4,8-tetramethyl. The major difference between the dried and the fermented leaf oils was the detection of fatty acids (especially palmitic acid) only in the dried leaf oil, whereas acorenone B was found only in the fermented leaf oil.

Changing in a relative amount of each constituent was the major observation after drying or fermentation (Figure 2). Comparing with essential oil of the fresh leaves, essential oils of the dried leaves and the fermented leaves possessed less amounts of monoterpenes (especially linalool), *vice versa*, a higher proportion of sesquiterpenes (e.g. *(E)*-caryophyllene, beta-bisabolene, caryophyllene oxide) were observed, especially *(E)*-caryophyllene that became the most abundant compound of the dried leaf oil (6.6-12.2% in DB-5 and 3.1-14.6% in Carbowax 20M). The amount of phytol, the only major diterpenoid compound of the fresh leaf oil, was dramatically decreased after fermentation, but changing of this compound after drying was not much significant. In overview, the amount of phenolic compounds did not change much after drying.
while there was a marked increase after fermentation. In detail, the amount of salicylic acid methyl ester decreased in both the dried and the fermented leaf oils, but the amount of \(p \)-vinyl anisole was dramatically increased after fermentation more than the drying method and became the most abundant compound of the fermented leaf oil (2.4-41.1% Carbowax 20M). On the other hand, free fatty acids were found only in the dried leaf oil. In overview, the amounts of fatty acid esters (e.g. palmitic acid ethyl ester, linolenic acid ethyl ester) and hydrocarbons (e.g. \(\alpha \)-amyl ethyl carbinol, \(\alpha \)-methyl vinyl carbinol, \(\alpha \)-amyl ethyl ketone) tended to decrease in both the dried and the fermented leaf oils.

The relation between chemical structures of some constituents of the essential oils of the leaves of \(P. \) serratifolia after drying or fermentation could be explained via different reactions. \(\beta \)-Myrcene which was the new detected compound of both the dried and fermented leaf oils, possesses the same chemical skeleton of acyclic monoterpeneoids as linalool that concomitantly dramatically decreasing in relative amount. Dehydration of linalool to form \(\beta \)-myrcene might be the mechanism of this reaction but it has never been reported in the plant. There was only a report found that linalool could be converted to \(\beta \)-myrcene by microbial biotransformation using linalool dehydratase isomerase\(^{15}\). After drying and fermentation, alpha-humulene was disappeared, whereas relative amounts of (\(E \))-caryophyllene and caryophyllene oxide increased. alpha-Humulene and (\(E \))-caryophyllene possess a similar sesquiterpenoid skeleton and have humulyl cation as the same biosynthetic precursor\(^{16}\). Some unproven factors might affect their biosynthesis expression, and (\(E \))-caryophyllene could be further oxidized to caryophyllene oxide\(^{17}\). Most of the fatty acid esters were found mainly in the fresh leaf oil (e.g. palmitic acid ethyl ester), whereas fatty acids were detected only in dried leaf oil (e.g. palmitic acid). In general, fatty acid esters have low boiling points and easily volatilized, then they might be lost during the long period of air dry and fermentation. However, at the same time, some fatty acid esters might be hydrolyzed and caused the formation of fatty acids due to endogenous or microbial enzymes\(^{18}\). Hydrolysis of palmitic acid ethyl ester to palmitic acid was the example. As same as fatty acid ester, most of hydrocarbon compounds can easily volatile, then decreasing in the amounts of \(\alpha \)-methyl vinyl carbinol, \(\alpha \)-amyl ethyl carbinol, \(\alpha \)-amyl ethyl ketone was observed. However, some increasing in the amount of \(\alpha \)-methyl vinyl ketone was detected. Functional groups were the only difference among these compounds, and the highest oxidative degree was the functional group of the \(\alpha \)-methyl vinyl ketone. Therefore, the increasing of this compound was possibly due to the oxidation of its derivatives in the fresh leaves.

Apocarotenoids were the known degradative products derived from carotenoids by enzymatic and non-enzymatic oxidation. Increasing in their amounts after drying or fermentation was normally observed in many plant materials such as \(M. \) alba, \(M. \) nigra\(^{19}\), black tea and Oolong tea\(^{20}\). The result of this study was also in the same manner. After drying and fermentation, increasing in their proportion was observed. The relative amounts of apocarotenoids in the fresh leaf oil (4.9% in DB-5 and 1.7% in Carbowax 20M) were much increased in the dried leaf oil (11.9% in DB-5 and 12.1% in Carbowax 20M) than fermented leaf oil (5.7% in DB-5 and 2.8% in Carbowax 20M). Three significantly increasing compounds were beta-ionone, hexahydrofarnesyl acetone and farnesyl acetone C. Degradation mechanisms of carotenoids to form these three compounds have already been reported\(^{19,21}\).

Biological activities of some major compounds of essential oils of \(P. \) serratifolia have been reported and supported the traditional usage of anticancer and the treatment of liver diseases. Linalool have been reported for antimicrobial, anti-inflammatory, anticancer, and antioxidant properties\(^{22}\). (\(E \))-caryophyllene, palmitic acid, phytol, apocarotenoids and \(\alpha \)-amyl vinyl carbinol possessed anticancer, and antioxidant activities\(^{23-27}\). \(\beta \)-Myrcene was antiproliferative compound\(^{28}\), whereas \(p \)-vinylanisole and methyl salicylate were shown to have antioxidant activity\(^{29-30}\). However, after drying or fermentation, amounts of some compounds increased and some compounds decreased. Therefore, biological activities of \(P. \) serratifolia leaves after drying or fermentation should be varied in potency from the fresh leaves and should be studied in more detail.

4. CONCLUSIONS

After drying and fermentation, a significant change in the chemical composition of essential oil of the leaves of \(P. \) serratifolia was detected. Some compounds disappeared, some new compounds occurred, and most compounds changed in their relative amounts. Dehydration, hydrolysis, and oxidation were suggested as the transformation reactions of some compounds. This result indicated the importance of the post-harvesting process on the quality of this herb. Bioactivity of its fresh, dried and fermented leaves would be further studied.

5. ACKNOWLEDGEMENT

We would like to thank Faculty of Pharmacy, Silpakorn University, Thailand, for providing chemical, glassware, equipment, and supporting laboratory facilities used this study.

Conflict of interest
None to declare.
Figure 1. Comparison of some constituents of the essential oils of the fresh, dried and fermented *P. serratifolia* leaves.

Figure 2. Changing in relative amounts of some constituents of the essential oils of the leaves of *P. serratifolia* after drying and fermentation, analysed by DB-5 (a) and Carbowax 20M (b) columns.
Figure 3. Proposed transformation mechanisms of some volatile compounds of the leaves of *P. serratulifolia* after drying and fermentation.

Funding

None to declare.

Ethics approval

None to declare.

Article info:

Received April 17, 2020
Received in revised form July 28, 2020
Accepted December 9, 2020

REFERENCES

1. Nuruliana L, Musta R, Rudi L. Microencapsulation of essential oil from rogo plant (*Premna serratifolia* L.) as antibacter *Escherichia coli*. Eng Sci Technol. 2018;7:314-23.
2. de Kok R. The genus *Premna* L.(Lamiaceae) in the flora Malestana area. Kew Bull. 2013;68(1):55-84.
3. Atewola-Odole OC, Oladosu IA. Comparison of chemical compositions of essential oils from the fresh and dried leaves of *Tapinanthis bangwensis* (Engl. and K. Krause) Danser [Loranthaceae]. Am J Essent Oil Nat Prod. 2016;4(3):31-3.
4. Adeogun OO, Maroyi A, Afolaran AJ. Variation in the chemical composition of essential oils from *Artemisia africana* (Jaqc) ex-wild leaf obtained by different methods and the effect of oil extracts on *Artemia salina* L. Trop J Pharm Res. 2018;17(3):519-28.
5. Mirdha B, Naik S, Mahapatra S. Antimicrobial activities of essential oils obtained from fresh and dried leaves of *Ocimum sanctum* (L.) against enteric bacteria and yeast. Acta Hortic. 2007;756:267-70.
6. Hanan AM, Salam Y, El-Leithy A, Aly SE. Lemongrass (*Cymbopogon citratus*) essential oil as affected by drying methods. Ann Agric Sci. 2012;57(2):113-6.
7. Baldermann S, Yang Z, Katsuno T, Tu VA, Mase N, Nakamura Y, et al. Discrimination of green, Oolong, and black teas by GC-MS analysis of characteristic volatile flavor compounds. Am J Anal Chem. 2014;5:620-32.
8. Shou-liang C, Gilbert MG. Verbenaceae. In: Wu Z, Raven PH, editors. Flora of China, Volume17: Verbenaceae through Solanaceae. Missouri Botanical Garden Press; 1994. p. 1-49.
9. Munir AA. A taxonomic revision of the genus *Prema* L. (Verbenaceae) in Australia. J Adel Bot Gard. 1984;7(1):1-43.
10. Leeratiwong C, Chantaranothai P, Paton AJ. A synopsis of the genus *Prema* L.(Lamiaceae) in Thailand. Trop Nat Hist. 2009;9(2):113-42.
11. Adams RP. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry. 4th ed. Allured Publishing Corporation. Carol Stream; 2007.
12. National Institute of Standard and Technology Chemistry WebBook, SRD 69; 2018. [cited 2018 October]. Available from: http://www.webbook.nist.gov.
13. Babushok V, Linstrom P, Zenkevich I. Retention indices for frequently reported compounds of plant essential oils. J Phys Chem Ref Data. 2011;40(4):1-15.
14. Leffingwell JC, Alford E, Leffingwell D, Penn R, Mane S. Identification of the volatile constituents of Cyprian Latakia tobacco by dynamic and static headspace analyses. Leffingwell Rep. 2013;5(2):1-29.
15. Nestl BM, Geinitz C, Popa S, Rizek S, Haselbeck RJ, Stephen R, et al. Structural and functional insights into asymmetric enzymatic dehydration of alkenols. Nat Chem Biol. 2017;13(3):275-81.
16. Yu F, Okamoto S, Nakasone K, Adachi K, Matsuda S, Harada H, et al. Molecular cloning and functional characterization of α-humulene synthase, a possible key enzyme of zerumbone biosynthesis in shampoo ginger (*Zingiber zerumbet* Smith). Planta. 2008;227(6):1291-9.
17. Turek C, Stintzing FC. Stability of essential oils: a review. Compr Rev Food Sci F. 2013;12(1):40-53.
18. Mozafari AA, Vafaei Y, Shahyad M. Phytochemical composition and in vitro antioxidant potential of Cynodon dactylon leaf and rhizome extracts as affected by drying methods and temperatures. J Food Sci Tech. 2018;55(6):2220-9.
19. Radulović NS, Miljković VM, Mladenović MZ, Nikolić GS. Essential oils of Morus alba and M. nigra leaves: Effect of drying on the chemical composition. Nat Prod Commun. 2017;12(1):115-18.
20. Ho C-T, Zheng X, Li S. Tea aroma formation. Food Sci Hum Wellness. 2015;4(1):9-27.
21. Bonne T. Oxidation and thermal degradation of carotenoids. J Oil Palm Res. 1999;2:62-78.
22. Kamatou GP, Viljoen AM. Linalool-A review of a biologically active compound of commercial importance. Nat Prod Commun. 2008;3(7):1183-92.
23. Dahham SS, Tabana YM, Iqbal MA, Ahamed MB, Ezzat MO, Majid AS, et al. The anticancer, antioxidant and antimicrobial properties of the sesquiterpene β-caryophyllene from the essential oil of Aquilaria crasna. Molecules. 2015;20(7):11808-29.
24. Ravi L, Krishnan K. Cytotoxic potential of N-hexadecanoic acid extracted from Kigelia pinnata leaves. Asian J Cell Biol. 2017;12:20-7.
25. Islam MT, Ali ES, Uddin SJ, Shaw S, Islam MA, Ahmed MI, et al. Phyto: A review of biomedical activities. Food Chem Toxicol. 2018;121:82-94.
26. Shariyi Y, Linnewiel-Hermoni K, Khanin M, Salaman H, Veprik A, Danilenko M, et al. Carotenoids and apocarotenoids in cellular signaling related to cancer: A review. Mol Nutr Food Res. 2012;56(2):259-69.
27. Al-Fatimi M, Wurster M, Lindequeist U. Chemical composition, antimicrobial and antioxidant activities of the volatile oil of Ganoderma pfeifferi Bres. Medicines (Basel). 2016;3(2):10.
28. Blowman K, Magalhães M, Lemos MFL, Cabral C, Pires IM. Anticancer properties of essential oils and other natural products. Evid Based Complementary Altern Med. 2018(7):1-12.
29. Pereira DM, Valentão P, Pereira JA, Andrade PB. Phenolics: From chemistry to biology. Molecules. 2009;14:2202-11.
30. Oloyede GK. Toxicity, antimicrobial and antioxidant activities of methyl salicylate dominated essential oils of Laportea aestuans (Gaud). Arab J Chem. 2016;9:840-45.