A screen for gene paralogies delineating evolutionary branching order of early Metazoa

Albert Erives and Bernd Fritzsch

Department of Biology, University of Iowa, Iowa City, IA, 52242, USA.

E-mails for correspondence: albert-erives@uiowa.edu, bernd-fritzsch@uiowa.edu
The evolutionary diversification of animals is one of nature’s greatest mysteries. In addition, animals evolved wildly divergent multicellular life strategies featuring ciliated sensory epithelia. In many lineages epithelial sensoria became coupled to increasingly complex nervous systems. Currently, different phylogenetic analyses of single-copy genes support mutually-exclusive possibilities that either Porifera or Ctenophora is sister to all other animals. Resolving this dilemma would advance the ecological and evolutionary understanding of the first animals. Here we computationally identify and analyze gene families with ancient duplications that could be informative. In the TMC family of mechano-transducing transmembrane channels, we find that eumetazoans are composed of Placozoa, Cnidaria, and Bilateria, excluding Ctenophora. Likewise, in the MLX/MLXIP family of bHLH-ZIP regulators of metabolism, we find that members of a proposed clade of “Benthozoa” (Porifera + Eumetazoa) share a duplication, absent in Ctenophora. These results suggest a new avenue for deducing deep phylogeny by choosing rather than avoiding ancient gene paralogies.

The branching order of the major metazoan lineages has received much attention due to its importance in understanding how animals and their sensory and nervous systems evolved (JEKELY et al. 2015). To date, most phylogenetic analyses have used single-copy orthologs, with different genes and approaches finding support for either Ctenophora (RYAN et al. 2013; MOROZ et al. 2014; BOROWIEC et al. 2015; WHEELAN et al. 2015; SHEN et al. 2017) or Porifera (PISANI et al. 2015; FEUDA et al. 2017; SIMION et al. 2017) as outgroup animal lineage. In contrast, comparative analysis of single-cell transcriptomes from different lineages and cell types is consistent with an independent origin of neuron-like cells in ctenophores (SEBE-PEDROS et al. 2018). Another recent study that does not even rely on sequence analysis directly provides evidence that the sponge choanocyte does not correspond to the sponge cell type most similar transcriptomically to the choanoflagellate cell type (SOGABE et al. 2019). In summary, few studies (SEBE-PEDROS et al. 2018; SOGABE et al. 2019) have addressed the question of early animal branching without using single-copy genes for phylogenetic analysis.
Single-copy genes are preferred for phylogenetic inference of lineage branching order for several reasons (Fitch and Margoliash 1967; Woese and Fox 1977). First, single-copy genes more closely approximate clock-like divergence (Zuckerkandl and Pauling 1965; Fitch and Margoliash 1967; Woese and Fox 1977; Pett et al. 2019) compared to duplicated genes, which frequently experience neofunctionalization and/or uneven subfunctionalization and rate asymmetries (compare left and right-hand trees in Fig. 1A) (Walsh 1995; Lynch et al. 2001; Holland et al. 2017). An organismal tree of animals (e.g., left cladogram in Fig. 1A) can be constructed from a single-copy gene, or from a set of concatenated single-copy genes, provided orthologous outgroup genes are included in the analysis as an aid for rooting. The specific tree in Fig. 1A depicts the “benthozoic hypothesis”, which is premised on the latest common ancestor (LCA) of Choanozoa (Choanoflagellatea + Metazoa) being holopelagic, and the LCA of “Benthozoa” (a name that we propose here for a clade uniting Porifera and Eumetazoa) having evolved a biphasic pelagic larva and a benthic adult form. Other alternative life cycle scenarios have been proposed that correspond to different branching patterns (Nielsen 2008; Nielsen 2013; Jekely et al. 2015) some of which are based on fossil interpretation (Zhao et al. 2019).

Second, single-copy genes (strict orthologs across all lineages) offer a practical advantage in eliminating the ambiguity associated with gene duplications (paralogs). Some paralogs represent recent lineage-specific duplications while others stem from deeper duplications contributing to a larger gene super-family. Nonetheless, a gene tree of a pair of genes produced by a duplication in the stem-metazoan lineage can depict lineage-branching order doubly so, once in each paralog’s subtree (right phylogram in Fig. 1A). Furthermore, a gene tree of paralogs offers a unique advantage unavailable in single-copy gene trees: a tree of paralogs captures the duplication itself and unites lineages sharing the duplication relative to outgroup lineages with a single gene.

A majority of gene orthologs are part of larger super-families (Ohno 1970; Taylor and Raes 2004) as has been well documented for the Hox gene family (Holland et al. 2017). Thus,
many “single-copy” genes are only ostensibly so because they can be evaluated separately from their ancient paralogs; and because in principle single-copy genes diverged lineally from a single ancestral gene present in the latest common ancestor (LCA) of a taxonomic clade. However, the choice of homologs is a poorly examined aspect of modern phylogenetic analysis even though various ortholog-calling errors associated with ancient paralogy have been noted (NOUTAHI et al. 2016).

Here we identify candidate gene paralogies established prior to the evolution of Eumetazoa (Bilateria + Cnidaria + Placozoa) for the purpose of determining early animal branching order. The majority of these paralogies predate the metazoan LCA and/or experienced apparent gene losses in either candidate first animal sister lineage (Porifera or Ctenophora) and are not informative (see Table S1). Nonetheless, we find at least three analyzed gene families that possibly support the proposed clade of Benthozoa (Porifera + Eumetazoa) while we have found none that support the traditional grouping of Ctenophora with Eumetazoa. Among the most intriguing of our findings are the recently identified family of multimeric transmembrane mechanosensitive channel proteins, the TMC proteins (KERESZTES et al. 2003; BALLESTEROS et al. 2018), in which family we find definitive independent duplications in Eumetazoa \((Tmc48756 \rightarrow Tmc487 + Tmc56) \), Ctenophora \((Tmc48756 \rightarrow Tmc-\alpha, Tmc-\beta, Tmc-\gamma, \) and \(Tmc-\delta \)), and possibly Benthozoa \((Tmc12348756 \rightarrow Tmc48756 + a \) neofunctionalized \(Tmc123 \) clade). In summary, our identification and analysis of genes duplicating and diversifying in the stem-benthozoic lineage will help to outline the extent of a shared biology for Benthozoa and the nature of independent evolutionary neuralization in Eumetazoa and Ctenophora.
Material & Methods

Comparative genomic orthology counting and screening. For the data depicted in Fig. 1D, we used BioMart query tool (DURINCK et al. 2005; HAIDER et al. 2009; SMEDLEY et al. 2009) and the EnsemblCompara orthology calls (VILELLA et al. 2009) for MetazoaEnsembl Genomes Release 41. We also used these same tools to identify 2146 unique protein-coding genes in the placozoan Trichoplax adhaerens, which share the following properties: (1) these genes all can be grouped into a smaller number of paralogy groups; (2) these genes all have homologs in the cnidarian Nematostella vectensis; (3) the cnidarian homologs can also all be grouped into a smaller number of paralogy groups; (4) these genes all have homologs in the molluscan genome of Lottia gigantea, representing Lophotrochozoa, as well as in Drosophila melanogaster, representing Ecdysozoa; and (5) these genes all have homologs in the sponge Amphimedon queenslandica (a sponge in class Demospongiae). To ensure that our results would not be skewed by errors in gene annotation and curation, we focused on genes for which we could identify homologs in other cnidarians (the anthozoan Stylophora pistillata and the hydrozoan Hydra vulgaris), another sponge (the homoscleromorphan sponge Oscarella carmela), and throughout Bilateria. We then constructed phylogenetic trees for several different gene families from this list.

Sequence alignment. Sequences were obtained from a variety of sources including NCBI BLAST with taxonomic specification and ComparaEnsembl orthology calls (VILELLA et al. 2009). Care was taken to get sequences from representative taxa with whole-genome sequence assemblies. Several TMC genes identified in this manner are the result of computational annotation that were then hand curated for this study. These are indicated in the tree figure (Fig. 1) and in the FASTA headers (Supplementary files) by the accession numbers with “CUR” appended. Alignment of protein-coding sequence was conducted using MUSCLE alignment option in MEGA7 (KUMAR et al. 2016). The multiple sequence alignment (MSA) was conducted
using default parameters that were adjusted as follows. The gap existence parameter was
changed to -1.6 and the gap extension parameter was changed to -0.01. Excessively long
protein sequences were trimmed at the N- and C- termi so that they began and ended on
either side of the ten transmembrane domains. Lengthy, fast-evolving, loop segments and/or
repetitive amino acid sequences occurring in between transmembrane domains were trimmed.
Supplementary Files for curated data sets are provided as explained under “Data availability”.

Bayesian Inference. To conduct metropolis-coupled-MCMC Bayesian phylogenetic we used
the MrBayes (version 3.2) software (HUELSENECK AND RONQUIST 2001; RONQUIST AND
HUELSENECK 2003; RONQUIST et al. 2012). All runs used two heated chains ("nchains = 2",
“temperature = 0.08”) that were run for 1.2 M generations with a burn-in fraction of 20%. Initial
runs for all gene families sampled all substitution models, but we always found 100% percent
posterior probability assigned to the WAG substitution model (WHELAN AND GOLDMAN 2001).
Subsequently all finishing runs used the WAG model with invariant-gamma rates modeling.
Double precision computing was enabled using BEAGLE toolkit (AYRES et al. 2012; RONQUIST
et al. 2012). All trees were computed multiple times during the process of sequence curation
and annotation. The final *cornichon/cornichon-related* gene family tree of Supporting Figure 2
(ver. 21) finished with 0.009 average standard deviation of split frequencies from two heated
chains. The final *Tmc* gene family tree of Figure 3 (ver. 69) finished with 0.005 average
standard deviation of split frequencies from the two heated chains. The final *MLX/MLXIP* gene
family tree of Figure 4 (ver. 20) finished with 0.007 average standard deviation of split
frequencies from the two heated chains. Tree graphics were rendered with FigTree version
1.4.4 and annotated with Adobe Photoshop tools.

Data availability. All data files, including sequence files (*.fas), multiple sequence alignment
files (*.masx and *.nexus), and curation documents (Curated_*_Genes.docx), are provided with
the Supporting Information as a zipped archive. Four files are provided for each of the three
gene families shown for a total of 12 files.

Figure 1. Dangers and promise of ancient paralogy when deducing the deep
phylogeny of animals. (A) A hypothetical true organismal tree (left tree) is shown depicting
branching order of the principal metazoan lineages: Ctenophora (Ct), Porifera (Po), Placozoa
(Pl), Cnidaria (Cn), and Bilateria (B). Eu = Eumetazoa. This tree depicts the benthozoic
hypothesis, in which Ctenophora is sister to all other animals (here referred to as
Benthozoa). On the right is a corresponding tree for a gene duplicated in the stem-metazoan
lineage resulting in two sub-clades for paralog one (blue) and paralog two (magenta).
Asymmetric rates (faster or slower) are depicted in the cladogram, typical with neo-
functionalized paralogs. (B) The gene tree in panel 1a is redrawn here with a different rooting
procedure in order to isolate paralog clade two (magenta clade) such that the sponge (Po2)
lineage appears as the outgroup lineage for that subclade. The dotted line anticipates the
analyses of each subclade as separate “single-copy” gene clades (C) Shown are trees
constructed when the isolated gene clades are forced into the false rooting scheme
conflicting with the hypothetical true organismal tree shown in a. Focusing on the more
slowly evolving gene tree (right hand tree in magenta in 1a), the first re-rooting flips the
ctenophore Ct2 gene so that it is swept into the faster evolving clade (left hand side tree in
blue), which has a higher propensity for long branch attraction. Thus, the erroneous rooting
of each sub-clade results in false-positive gene loss (top tree) and false-positive
compositional and rate heterogeneity (bottom tree). (D) Consistent with the predicted false-
positive errors, comparative genomic orthology data sets that are based on the premise that
sponge genomes are the outgroup predict a small number of orthologs called in a
ctenophore genome relative to other metazoan genomes. Shown are the percentages of
each organism’s protein-coding gene set that have orthologs called in a cnidarian
(Nematostella, x-axis) or a sponge (Amphimedon, y-axis) as inferred from the Metazoa
ComparaEnsembl orthology calls (see Methods).
Gene duplications from the early metazoan radiation

Ever since the elucidation of the first non-bilaterian animal genomes, mainly those from Cnidaria (PUTNAM et al. 2007), Placozoa (SRIVASTAVA et al. 2008), Porifera (SRIVASTAVA et al. 2010), and Ctenophora (RYAN et al. 2013; MOROZ et al. 2014), we have attempted to identify gene duplications that could definitively order early metazoan phylogeny. Given the preponderance and constancy of gene duplication (and gene loss) throughout evolution, one should in principle be able to find a candidate duplication shared by all major animal lineages except the one true sister animal lineage. As a possible explanation for our repeated failures to find such a signature gene family, we hypothesized the existence of a methodological bias associated with the various ortholog-calling pipelines on which we were relying. This hypothesis of inherent bias related to ancient gene paralogy motivated the comparative genomic screen that we present here.

To illustrate possible problems that arise by not accounting for ancient paralogy, we consider the “benthozoic” hypothesis in which Ctenophora is the sister group to Benthozoa (Porifera + Eumetazoa) (RYAN et al. 2013; MOROZ et al. 2014; BOROWIEC et al. 2015; JEKELY et al. 2015; WHELAN et al. 2015; SHEN et al. 2017). By choosing the most closely-related homologs to one of a pair of duplicated genes (the more slowly evolving magenta subclade two of Fig. 1), or by internally re-rooting the true gene tree so that the subclade in question fits the standard model in which Porifera is sister to all other animals (Fig. 1A right gene tree re-rooted to Fig. 1B tree), we end up with an isolated subclade with a false-positive gene loss (top phylogram in Fig. 1C). Furthermore, the ctenophoran true outgroup sequence (“Ct2”) is easily collected into the more divergent sub-clade (blue subclade one). When the fast evolving gene sub-clade is rooted separately with sponge as outgroup (“Po1”), the inherent topology unites both ctenophore paralogs in an apparent ctenophore-specific duplication (bottom phylogram in Fig. 1C). Due to this topology this second fast-evolving subclade would feature false-positive rate heterogeneity and compositional heterogeneity. False-positive compositional heterogeneity is consistent with
recent attributions of (true) evolutionary sequence bias in ctenophores (FEUDA et al. 2017). Last, as predicted by the benthozoic hypothesis and deep paralogy-induced miscalling of orthologs, we find that using Porifera as the first sister animal lineage results in the automated annotation of fewer orthologs being called in the ctenophore Mnemiopsis leidyi relative to sponge (Amphimedon queenslandica), placozoan (Trichoplax adhaerens), cnidarian (Nematostella vectensis), and bilaterian (the lophotrochozoan Lottia gigantea and Capitella teleta) genomes (Fig. 1D).

Based on the above observations and rationale, we devised a comparative genomic screen in which orthology calls to the ctenophore Mnemiopsis and the sponge Amphimedon are not considered during the initial candidate paralogy group screen. We begin with the 16,590 protein-coding genes from the beetle Tribolium castaneum (Tcas5.2 genes), which we chose as a model bilaterian that has not experienced extensive gene loss as in nematodes (ERIVES 2015), nor extensive gene duplications as in vertebrates. The Tribolium gene set becomes 8,733 genes if we only consider those that exist in paralogous relationship(s) with other Tribolium genes. Of these only 2,617 have orthologs called in the mosquito Aedes aegypti, the lophotrochozoan Capitella teleta, and the placozoan Trichoplax adhaerens. Then we discard those paralogous Tribolium genes which are related by a common ancestor in more recent taxonomic group such as Cucujiformia (an infraorder of beetles), Holometabola, Hexapoda, Mandibulata, Arthropoda, Pancrustacea, Protostomia, Bilateria, and Eumetazoa. This narrows the list to 2,322 candidate paralogous genes. However, many of these genes exist in impractical paralogy groups that are too large to attempt careful curation from multiple genomes. We thus removed 1,133 genes from the 153 largest paralogy groups, which contained 4 to 41 genes each. We were then left with about <500 small paralogy groups containing 2 to 3 genes each (Supporting Table S1). We sampled from the candidate small paralogy groups to find sets that had at least one ortholog called in Amphimedon queenslandica and at least one in Mnemiopsis leidyi. We note that we cannot rule out the possibility that metazoan-relevant paralogies were
excluded because true orthologs failed to be computationally called in sponges and ctenophores. Many of the candidate paralogy groups have paralogs called in sponges and ctenophores, indicating that the duplications occurred prior to the latest common ancestor (LCA) of Metazoa.

We then subjected candidate paralogy groups that passed our first test to a draft phylogeny by Maximum Parsimony, and if warranted by Bayesian Inference. Extensive gene curation of unannotated exons was then conducted to build the best possible (most informative) trees (see Methods). We report on the first three gene families for which we could construct a clear picture (well-supported nodes) based on gene duplications (cornichon, TMC, and MLX/MLXIP families). All trees shown were computed with metropolis-coupled-MCMC Bayesian phylogenetic inference to construct multiple gene trees (see Methods).

Duplication of the cornichon-family of transmembrane chaperones

We find that the cornichon (cni/CNIH1-CNIH3) and cornichon-related (cnir/CNIH4) paralogy groups, which encode eukaryotic chaperones of transmembrane receptors (HERRING et al. 2013), was either duplicated in the stem-choanozoan lineage with subsequent gene loss only in choanoflagellates and ctenophores, or else duplicated in the stem-benthozoan lineage with subsequent neofunctionalization. We find that both cni and cnir clades exist only in Porifera, Placozoa, Cnidaria, and Bilateria but not Ctenophora and Choanoflagellatea (Fig. 2). This tree is based on a protein that is only ~150 amino acids long and suggests that the ancestral cni/cnir gene was duplicated in the stem-choanozoan lineage with two subsequent independent losses in the stem-ctenophore lineage and the stem-choanoflagellate lineage (Fig. 2). However, an alternative interpretation is that the progenitor gene was duplicated in the stem-benthozoic lineage with the cnir clade undergoing neofunctionalization to an extent promoting artifactual basal branching. In this alternative interpretation there is no need to invoke independent gene
losses for Ctenophora and Choanoflagellatea. In either case the progenitor gene was present as a single copy gene in the LCA of Holozoa as shown by the basal branching of the single gene from the filozoan *Capsaspora owczarzaki*, which branches before the duplication (Fig. 2).
Figure 2. A stem-choanozoan duplication: cornichon and cornichon-related.

Shown is the gene tree for a eukaryotic transmembrane receptor chaperone (see text for details). Tree was generated from a multiple sequence alignment composed of 167 alignment columns and is rooted with Holomycota (Fungi) as outgroup.
A TMC duplication defines Eumetazoa and excludes Ctenophora

We find that a phylogenetic analysis of gene duplications of the transmembrane channels (TMCs), a large family of ion leak channels with roles in mechanotransduction (DELMAS AND COSTE 2013; PAN et al. 2013; BALLESTEROS et al. 2018; PAN et al. 2018; QIU AND MULLER 2018), excludes ctenophores from a eumetazoan super-clade composed of Bilateria, Cnidaria, and Placozoa (Fig. 3). We describe the main features of this gene family’s origin and diversification.

Firstly, the TMC gene family is ancestral to eukaryotes because we can identify TMC genes in different lineages of Unikonta and Bikonta, which are the two main branches of the eukaryotic tree. A close affinity of the TMC proteins with OSCA/TMEM proteins has been proposed (MURTHY et al. 2018) despite low sequence similarity (BALLESTEROS et al. 2018). We find that the percent identity between predicted TMC proteins analyzed here is higher than between TMC proteins and TMEM. For example, the gap-normalized percent amino acid identity in a pairwise alignment of human Tmc1 with the single Naegleria gruberi Tmc sequence is 17.3%, versus 12.7% (~5% less) with human Ano3/TMEM16C (Supporting File S2). Moreover the identity between Tmc1 and TMEM16C goes away in a multiple sequence alignment suggesting it is inflated by the extra degree of freedoms allowed in a gapped pair-wise alignment.

Secondly, in the context of the ancient eukaryotic provenance of the TMC family, we find an intriguing and suggestive pattern of TMC gene loss as follows. We find that the Tmc gene exists as a single copy in the genome of the non-amoebozoan slime mold Fonticula alba and a few early-branching fungal lineages, altogether representing the clade of Holomycota. One of these fungal lineages, Rozella allomycis, belongs to the Cryptomycota, a phylum notable for its absence of a chitinous cell wall typically present in most other fungi (JONES et al. 2011). The absence of a cell wall allows the Cryptomycota to maintain a phagotrophic lifestyle (JONES et al. 2011). The only other fungal lineages with a TMC gene are from Blastocladiomycota,
suggesting that TMC genes were lost in all of Ascomycota, Basidiomycota, and Zygomycota, for which many genomes have been sequenced.

Physiological incompatibility of Tmc function with certain cell walls is further supported by a similar distribution of Tmc genes in Viridiplantae (Fig. 3 green clade). We find that a single Tmc gene can be found in a chlorophyte (Coccomyxa subellipsoidea), a charophyte (Klebsormidium nitens), and in the multicellular plants of a liverwort (Marchantia polymorpha), a moss (Physcomitrella patens), and a lycophyte (Selaginella moellendorfii). The moss Physcomitrella and the lycophyte Selaginella represent a nonvascular land plant and a vascular land plant most closely-related to the clade composed of ferns, gymnosperms, and angiosperms, which correspond to the crown group having evolved lignin-based secondary cell walls (SARKAR et al. 2009). In addition, both the Physcomitrella and Selaginella genomes lack many of the CESA genes responsible for the synthesis of plant cell wall components (SORENSEN et al. 2010). Thus these TMC distributions in both plants and fungi suggest that rigid cell walls potentially interfere with physical environmental coupling to TMCs.

Thirdly, while we find TMC genes as a single copy in some lineages of the fungal and plant kingdoms, in Naegleria gruberi, and in the filozoan Capsaspora owczarzaki, we find that Tmc genes uniquely underwent a number of duplications during the early holozoan radiation (or earlier with corresponding losses in fungi). A complementary way of stating this finding is that TMC gene duplications can be found only within Choanozoa (choanoflagellates + Metazoa) (Fig. 3). The choanoflagellates Monosiga brevicollis and Salpingoeca rosetta have at least three TMC genes each, which we have labeled Tmc-X, Tmc-Y, and Tmc-Z for ease of reference here (Fig. 3). Remarkably, only ctenophores appear to have genes from the Tmc-X clade, which is a basally-branching Tmc clade that is sister to all of the remaining TMC genes from all of Opisthokonta. Only choanoflagellates and Holomycota have genes in the Tmc-Y clade. Last, except Capsaspora, whose single TMC gene is of uncertain affinity to the well supported Tmc-X/Y/Z clades, all of the remaining TMC genes are choanozoan genes from the Tmc-Z clade.
Fourthly, Tmc-Z apparently underwent a key duplication (“Tmc123” + “Tmc48756”) in the stem-metazoan lineage with a corresponding loss of one of the paralogs (“Tmc123”) in ctenophores. Alternatively, this duplication is actually a stem-benthozoan duplication that occurred after ctenophores split off from the rest of Metazoa. These two Tmc-Z subclades are so named here for their relationship to the vertebrate TMC1/2/3 (“Tmc-Z1”) and TMC4/8/7/5/6 (“Tmc-Z2”) paralogy groups.

Fifthly, we find that the Tmc-Z2 gene (Tmc48756) underwent a Eumetazoa-defining duplication that unites Placozoa, Cnidaria, and Bilateria (Fig. 3). Thus, in this stem-eumetazoan lineage we see that the Tmc-Z2 bifurcates into the sister-clades of Tmc487 and Tmc56. This duplication likely excludes the possibility that Porifera or Ctenophora are more closely related to any single lineage within Eumetazoa. This contrasts with the stem-ctenophore lineage, in which the single Tmc-Z2 gene independently duplicated several-fold to produce four ctenophore-specific duplications (Tmc-α, Tmc-β, Tmc-γ, and Tmc-δ) (Fig. 3, lineages in shades of yellow, gold, and mustard). This ctenophore specific repertoire is present in two different classes and three different orders of ctenophores. In Class Tentaculata, we have four Tmc48756 genes from each of Mnemiopsis leidyi (Order Lobata) and Pleurobrachia bachei (Order Cydippida). In class Nuda, so named because of a complete (derived) loss of tentacles, we have only three Tmc48756 genes from Beroë abyssicola (Order Beroida) because a representative gene from the Tmc-γ clade could not be identified.

Many metazoan sub-clades (e.g., Ctenophora, Lophotrochozoa, and Vertebrata) can be defined by clade-specific duplications. For example, lophotrochozoans share a duplication of Tmc487 into Tmc487a + Tmc487b, while gnathostomes share a duplication of vertebrate Tmc12 into TMC1 + TMC2 and Tmc48 into TMC4 + TMC8. If we include the cyclostomes (hagfish + lamprey), then all vertebrates share the duplication of Tmc123 into Tmc12 + TMC3, and Tmc487 into Tmc48 + TMC7. Thus, the “canonical” eight gene vertebrate repertoire represented by TMC1–TMC8 is more correctly characterized as a gnathostome-specific TMC
repertoire because cyclostomes are united in sharing only some of the duplications seen in humans (see Fig. 3).

Considering the Tmc gene duplications that are ancestral to Choanozoa and those specific to metazoan phyla, this phylogeny, based on the large TMC protein spanning ten transmembrane domains, unites Placozoa, Cnidaria, and Bilateria into a single Eumetazoa in the following ways. First, of greatest significance, is the shared derived eumetazoan duplication of Tmc48756 into Tmc487 and Tmc56. Second, is the close placement of Porifera as the sister group of Eumetazoa in both the Tmc123 and Tmc48756 subclades. Third is the unique situation that ctenophores possess TMC genes from an ancestral Tmc-X clade that were apparently lost in a stem-benthozoan lineage while also possessing an expansive repertoire via ctenophore-specific duplications (Tmc-α, Tmc-β, Tmc-γ, and Tmc-δ). These latter duplications are most parsimonious if they predate the eumetazoan duplication within the Tmc-Z2 clade. Below, we speculate on the significance of the evolution of mechanotransduction in connection with the evolution of diverse ‘body plans’ during the metazoan radiation.

Figure 3. Independent duplications of TMC genes define separate clades for eumetazoans versus ctenophores. A phylogenetic tree of the mechanotransducing transmembrane channels (TMC) delineates early metazoan diversification as a branching of only three lineages: Eumetazoa (magenta Placozoa, teal Cnidaria, and violet Bilateria), Porifera (blue), and Ctenophora (gold shades). Each of the eight TMC orthogroups specific to gnathostomes are highlighted in yellow. This tree is based on a data set composed of 777 trimmed alignment columns and is rooted between unikonts (labeled “Opisthokonta” due to the apparent loss in Amoebozoa) and bikonts. Eumetazoan lineages share a duplication corresponding to the Tmc487 and Tmc56 TMC clades, while ctenophores share independent duplications of an ancestral Tmc48756 gene. The ctenophores share with choanoflagellates a more ancient Tmc duplication (labeled Tmc-X here).
Fig. 3
Transmembrane channel (TMC) phylogeny
(via Bayesian metropolis-coupled MCMC)
A bHLH-ZIP duplication unites Benthozoa

We find that a new gene family from the bHLH-ZIP superfamily originated in the stem-metazoan lineage most likely from a duplication of the more distantly-related Max bHLH-ZIP gene (Fig. 4). This gene occurs as one gene copy in all ctenophores but as a pair of duplicated genes in Porifera and Eumetazoa (Fig. 4A). The pair of paralogous genes corresponds to Max-like X (MLX)/bigmax and MLX Interacting Protein (MLXIP)/Mondo. Mondo paralogs are also known as the carbohydrate response element binding protein (ChREBP) (YAMASHITA et al. 2001; IIZUKA et al. 2004; HAVULA AND HIETAKANGAS 2018). The progenitor gene likely encoded a bHLH-ZIP homodimeric transcription factor (TF) in the stem-metazoan lineage, continuing as such into modern ctenophores, but evolved into the MLX:MLXIP heterodimer found in all other animals (Bigmax:Mondo in Drosophila, MLX:MondoA or MLX:MondoB in gnathostomes). Figure 4B shows that the bHLH domain from ctenophores shares residues with both subfamilies (pink vs. black background in Fig. 4B). In the Discussion we speculate on a possible role for this gene duplication in a lifecycle synapomorphy for the proposed clade of Benthozoa.

Figure 4. MLX/bigmax and MLXIP/Mondo encode a bHLH-ZIP heterodimer originating in a stem-benthozan gene duplication. (A) Phylogenetic analysis of a bHLH-ZIP gene originating in the stem-metazoan lineage (possibly from a duplication of the distantly-related Max gene) followed by a second duplication after the divergence of the ctenophore lineage. Color coding of lineages follows Figure 2 except when topology precludes coloring sister stem lineages. This tree is rooted with ctenophores as the outgroup lineage. This tree is based on a data set composed of 263 alignment columns. (B) Shown are a subset of alignment columns in which the ctenophore residues more closely resemble either the MLX sequences (top pink) or the MLXIP/Mondo sequences (bottom dark gray). The MLXIPL/MondoB representative sequence is shown for humans.
Discussion

By identifying and phylogenetically analyzing small paralogy groups that predate a eumetazoan super-clade composed of Bilateria, Cnidaria, and Placozoa, we find a handful of gene duplications that are consistent with Ctenophora being the sister metazoan lineage to all other animals (Figs. 2, 3 and 4). We discuss the significance of the different gene families that we identified and the possible relevance to metazoan biology.

We find that the transmembrane channel (TMC) gene family continued to duplicate and diversify for several phyla throughout metazoan evolution. For example, we see that the cyclostomes (hagfish and lampreys) branched early in the vertebrate tree prior to a number of duplications that occurred only in the stem-gnathostome lineage ($\text{Tmc}_{12} \rightarrow \text{TMC}1 + \text{TMC}2$; $\text{Tmc}_{48} \rightarrow \text{TMC}4 + \text{TMC}8$; $\text{Mondo} \rightarrow \text{MondoA/MLXIP} + \text{MondoB/MLXIPL}$; and $\text{CNIH}_{23} \rightarrow \text{CNIH}2 + \text{CNIH}3$). Nonetheless, cyclostomes and gnathostomes share the vertebrate-specific duplications corresponding to Tmc_{12}, and $\text{Tmc}_{48} + \text{TMC}7$. Thus like the vertebrate clade and the subclade, many other metazoan phyla can be defined solely on the basis of Tmc gene duplications (Fig. 3). We thus propose that the evolutionary diversification of the Tmc channels throughout Metazoa, including the independent diversification within Ctenophora (Fig. 3), must have been under selection of two principal forces. The first is the changing physical constraints and sensorial opportunities associated with the evolutionary diversification of animal body plans themselves. The second factor is the evolutionary diversification of specialized cell types within their epithelial sensoria.

Mechanosensory, chemosensory and photosensory responses are universal among single and multicellular organisms and can be related to the evolution of specific proteins enabling already single cells to respond to mechanical, chemical and photic stimuli. For example, opsin proteins evolved in single-celled ancestors of metazoans (FEUDA et al. 2012; ARENDT 2017) and many single cell organisms can sense light, gravity and several chemical stimuli with dedicated sensors (SWAFFORD AND OAKLEY 2018). While the history of chemical and
photic senses and the formation of specialized cell types and integration into appropriate organs in metazoans has been driven by the molecular insights into the molecular transducers (ARENDT et al. 2016), mechanosensory transduction has seen less progress due to uncertainty of consistent association of a specific mechanotransducer channel across phyla (BEISEL et al. 2010). On the one hand, mechanical sensation is clearly present in all single cell organisms to function as safety valves to release intracellular pressure sensed as tension in the lipid bilayer and was proposed as a possibly unifying principle of mechanosensation (KUNG 2005). Follow up work showed a multitude of channels associated with mechanosensation (BEISEL et al. 2010; DELMAS AND COSTE 2013) arguing against a single unifying evolution of mechanotransduction. Indeed, several families of mechanosensory channels have been identified whereby pores open as a function of lipid stretch or tethers attached to extra-or intracellular structures (COX et al. 2018b; COX et al. 2018a)

Simply speaking, no single molecule has been identified to be associated with all mechanotransduction across phyla such as the ecdysozoan TRP channels also found in bony fish but absent in mammals (BEISEL et al. 2010; COX et al. 2018b; QIU AND MULLER 2018). Likewise, the ubiquitous Piezo mechanotransduction channels in Merkel cells (DELMAS AND COSTE 2013; RANADE et al. 2015; COX et al. 2016) were hypothesized to be the mechanotransduction channel of hair cells (ARENDT et al. 2016) but have meanwhile been found not to be directly associated with the mechanotransduction process (WU et al. 2017). Molecular analysis of mammalian mutations meanwhile has focused on the family of TMC (transmembrane channels) as possibly involved in hair cell mechanotransduction (DELMAS AND COSTE 2013; PAN et al. 2013) and replacement of mutated TMC can restore hearing (ASKEW et al. 2015; SHIBATA et al. 2016; YOSHIMURA et al. 2018). More recently, molecular analysis has established that the TMC forms a mechanosensory pore as a homodimer with each subunit having ten predicted transmembrane domains (PAN et al. 2018). However, the detailed transmembrane protein dimer is unclear as other proteins are needed to transport the TMC
channels to the tip (PACENTINE AND NICOLSON 2019) and the entire complex of the vertebrate mechanosensory channel and its attachment to intra- and extracellular tethers remains unresolved (QIU AND MULLER 2018). To what extent TMC family channel evolution aligns with mechanosensory cell and organ evolution remains to be seen but is already indicating unique features of ctenophores at every level (FRITZSCH et al. 2006; FRITZSCH et al. 2015). Recent work also establishes that ecdysozoan Tmc123 paralogs function in body kinesthesia (proprioception), sensory control of locomotion or egg-laying behavior via membrane depolarization, and nociception (GUO et al. 2016; WANG et al. 2016; YUE et al. 2018). In summary, our study further lays the groundwork for understanding the molecular history of a sensory channel family in the context of the evolution of developmental gene regulatory circuits in different animal lineages (CORBO et al. 1997; FRITZSCH et al. 2000; BEISEL et al. 2010; FRITZSCH AND ELLIOTT 2017; COX et al. 2018a).

We speculate on the possible connection of the MLX + MLXIP/Mondo duplication (Fig. 4) to a transition from a holopelagic to a biphasic pelago-benthic life cycle in the stem-benthozoan lineage. This particular result furthers a growing picture of metabolic and chaperone gene loss and gene innovation in early animal evolution (ERIVES AND FASSLER 2015; RICHTER et al. 2018). Basic-helix-loop-helix (bHLH) TFs function as obligate dimers for DNA-binding (MURRE et al. 1989; LASSAR et al. 1991; MURRE et al. 1991). Therefore, it is unlikely that a second MLX-related gene encoding a heterodimeric partner to the single gene found in ctenophores is artfactually missing in multiple sequenced genomes and transcriptomes (RYAN et al. 2013; MOROZ et al. 2014). It is more likely that that the single MLX-like gene corresponds to the predicted evolutionary intermediate gene encoding a homodimeric bHLH TF.

The MLX:MLXIP/MLXIPL heterodimeric TF acts as a transcriptional regulator of metabolic pathways (e.g., lipogenesis genes) in response to variation in intracellular sugar concentrations (YAMASHITA et al. 2001; IIZUKA et al. 2004; SANS et al. 2006; HAVULA et al. 2013; HAVULA AND HIETAKANGAS 2018). In this regard it is interesting to speculate that the duplication
evolved in connection with the evolution of a biphasic pelago-benthic life cycle featuring a pelagic feeding larva and a benthic feeding adult (whether it was a motile planula or sessile adult). Pelagic larval and benthic adult feeding forms would have distinct nutritional intakes associated with dissimilar feeding strategies and dissimilar nominal parameters. This bimodal variation would have evolved on top of variation associated with just a single feeding strategy. Thus, a stem-benthozoic ancestor may have demanded additional complexity in metabolic regulation that was subsequently afforded by duplicated paralogs to expand regulation of life cycle cell forms into differentiation of different cell types (Fritzsche et al. 2015).

References

Arendt, D., 2017 Evolution: The enigmatic xenopsins. eLife 6: e31781.

Arendt, D., J. M. Musser, C. V. Baker, A. Bergman, C. Cepko et al., 2016 The origin and evolution of cell types. Nature Reviews Genetics 17: 744.

Askew, C., C. Rochat, B. Pan, Y. Asai, H. Ahmed et al., 2015 Tmc gene therapy restores auditory function in deaf mice. Science translational medicine 7: 295ra108-295ra108.

Ayres, D. L., A. Darling, D. J. Zwickl, P. Beerli, M. T. Holder et al., 2012 BEAGLE: an application programming interface and high-performance computing library for statistical phylogenetics. Syst Biol 61: 170-173.

Ballesteros, A., C. Fenollar-Ferrer and K. J. Swartz, 2018 Structural relationship between the putative hair cell mechanotransduction channel TMC1 and TMEM16 proteins. eLife 7: e38433.

Beisel, K., D. He, R. Hallworth and B. Fritzsche, 2010 Genetics of mechanoreceptor evolution and development in The Senses: A Comprehensive Reference. Elsevier Inc.
Borowiec, M. L., E. K. Lee, J. C. Chiu and D. C. Plachetzki, 2015 Extracting phylogenetic signal and accounting for bias in whole-genome data sets supports the Ctenophora as sister to remaining Metazoa. BMC Genomics 16: 987.

Corbo, J. C., A. Erives, A. Di Gregorio, A. Chang and M. Levine, 1997 Dorsoventral patterning of the vertebrate neural tube is conserved in a protochordate. Development 124: 2335-2344.

Cox, C. D., C. Bae, L. Ziegler, S. Hartley, V. Nikolova-Krstevski et al., 2016 Removal of the mechanoprotective influence of the cytoskeleton reveals PIEZO1 is gated by bilayer tension. Nature communications 7: 10366.

Cox, C. D., N. Bavi and B. Martinac, 2018a Bacterial mechanosensors. Annual review of physiology 80: 71-93.

Cox, C. D., N. Bavi and B. Martinac, 2018b Cytoskeleton-associated proteins modulate the tension sensitivity of piezo1. Biophysical Journal 114: 111a.

Delmas, P., and B. Coste, 2013 Mechano-gated ion channels in sensory systems. Cell 155: 278-284.

Durinck, S., Y. Moreau, A. Kasprzyk, S. Davis, B. De Moor et al., 2005 BioMart and Bioconductor: a powerful link between biological databases and microarray data analysis. Bioinformatics 21: 3439-3440.

Erives, A. J., 2015 Genes conserved in bilaterians but jointly lost with Myc during nematode evolution are enriched in cell proliferation and cell migration functions. Dev Genes Evol 225: 259-273.

Erives, A. J., and J. S. Fassler, 2015 Metabolic and chaperone gene loss marks the origin of animals: evidence for Hsp104 and Hsp78 chaperones sharing mitochondrial enzymes as clients. PLoS One 10: e0117192.

Feuda, R., M. Dohrmann, W. Pett, H. Philippe, O. Rota-Stabelli et al., 2017 Improved Modeling of Compositional Heterogeneity Supports Sponges as Sister to All Other Animals. Curr Biol 27: 3864-3870 e3864.
Feuda, R., S. C. Hamilton, J. O. McInerney and D. Pisani, 2012 Metazoan opsin evolution reveals a simple
route to animal vision. Proceedings of the National Academy of Sciences: 201204609.

Fitch, W. M., and E. Margoliash, 1967 Construction of phylogenetic trees. Science 155: 279-284.

Fritzsch, B., K. W. Beisel and N. A. Bermingham, 2000 Developmental evolutionary biology of the
vertebrate ear: conserving mechanoelectric transduction and developmental pathways in
diverging morphologies. Neureport 11: R35-44.

Fritzsch, B., and K. L. Elliott, 2017 Gene, cell, and organ multiplication drives inner ear evolution.
Developmental biology.

Fritzsch, B., I. Jahan, N. Pan and K. L. Elliott, 2015 Evolving gene regulatory networks into cellular
networks guiding adaptive behavior: an outline how single cells could have evolved into a
centralized neurosensory system. Cell Tissue Res 359: 295-313.

Fritzsch, B., S. Pauley and K. W. Beisel, 2006 Cells, molecules and morphogenesis: the making of the
vertebrate ear. Brain Res 1091: 151-171.

Guo, Y., Y. Wang, W. Zhang, S. Meltzer, D. Zanini et al., 2016 Transmembrane channel-like (tmc) gene
regulates Drosophila larval locomotion. Proc Natl Acad Sci U S A 113: 7243-7248.

Haider, S., B. Ballester, D. Smedley, J. Zhang, P. Rice et al., 2009 BioMart Central Portal--unified access to
biological data. Nucleic Acids Res 37: W23-27.

Havula, E., and V. Hietakangas, 2018 Sugar sensing by ChREBP/Mondo-Mlx-new insight into downstream
regulatory networks and integration of nutrient-derived signals. Curr Opin Cell Biol 51: 89-96.

Havula, E., M. Teesalu, T. Hyotylainen, H. Seppala, K. Hasygar et al., 2013 Mondo/ChREBP-Mlx-regulated
transcriptional network is essential for dietary sugar tolerance in Drosophila. PLoS Genet 9:
e1003438.

Herring, B. E., Y. Shi, Y. H. Suh, C. Y. Zheng, S. M. Blankenship et al., 2013 Cornichon proteins determine
the subunit composition of synaptic AMPA receptors. Neuron 77: 1083-1096.
Holland, P. W., F. Marlétaz, I. Maeso, T. L. Dunwell and J. Paps, 2017 New genes from old: asymmetric
divergence of gene duplicates and the evolution of development. Philosophical Transactions of
the Royal Society B: Biological Sciences 372: 20150480.

Huelsenbeck, J. P., and F. Ronquist, 2001 MRBAYES: Bayesian inference of phylogenetic trees.
Bioinformatics 17: 754-755.

Iizuka, K., R. K. Bruick, G. Liang, J. D. Horton and K. Uyeda, 2004 Deficiency of carbohydrate response
element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis. Proc Natl Acad Sci U
SA 101: 7281-7286.

Jekely, G., J. Paps and C. Nielsen, 2015 The phylogenetic position of ctenophores and the origin(s) of
nervous systems. Evodevo 6: 1.

Jones, M. D., I. Forn, C. Gadelha, M. J. Egan, D. Bass et al., 2011 Discovery of novel intermediate forms
redefines the fungal tree of life. Nature 474: 200-203.

Keresztes, G., H. Mutai and S. Heller, 2003 TMC and EVER genes belong to a larger novel family, the TMC
gene family encoding transmembrane proteins. BMC genomics 4: 24.

Kumar, S., G. Stecher and K. Tamura, 2016 MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0
for Bigger Datasets. Mol Biol Evol 33: 1870-1874.

Kung, C., 2005 A possible unifying principle for mechanosensation. Nature 436: 647.

Lassar, A. B., R. L. Davis, W. E. Wright, T. Kadesch, C. Murre et al., 1991 Functional activity of myogenic
HLH proteins requires hetero-oligomerization with E12/E47-like proteins in vivo. Cell 66: 305-315.

Lynch, M., M. O'Hely, B. Walsh and A. Force, 2001 The probability of preservation of a newly arisen gene
duplicate. Genetics 159: 1789-1804.

Moroz, L. L., K. M. Kocot, M. R. Citarella, S. Dosung, T. P. Norekian et al., 2014 The ctenophore genome
and the evolutionary origins of neural systems. Nature 510: 109-114.
Murre, C., P. S. McCaw and D. Baltimore, 1989 A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell 56: 777-783.

Murre, C., A. Voronova and D. Baltimore, 1991 B-cell- and myocyte-specific E2-box-binding factors contain E12/E47-like subunits. Mol Cell Biol 11: 1156-1160.

Murthy, S. E., A. E. Dubin, T. Whitwam, S. Jojoa-Cruz, S. M. Cahalan et al., 2018 OSCA/TMEM63 are an evolutionarily conserved family of mechanically activated ion channels. Elife 7: e41844.

Nielsen, C., 2008 Six major steps in animal evolution: are we derived sponge larvae? Evol Dev 10: 241-257.

Nielsen, C., 2013 Life cycle evolution: was the eumetazoan ancestor a holopelagic, planktotrophic gastraea? BMC Evol Biol 13: 171.

Noutahi, E., M. Semeria, M. Lafond, J. Seguin, B. Boussau et al., 2016 Efficient Gene Tree Correction Guided by Genome Evolution. PLoS One 11: e0159559.

Ohno, S., 1970 Evolution by gene duplication. Allen & Unwin; Springer-Verlag, London, New York.

Pacentine, I. V., and T. Nicolson, 2019 Subunits of the mechano-electrical transduction channel, Tmc1/2b, require Tmie to localize in zebrafish sensory hair cells. PLoS genetics 15: e1007635.

Pan, B., N. Akyuz, X. P. Liu, Y. Asai, C. Nist-Lund et al., 2018 TMC1 Forms the Pore of Mechanosensory Transduction Channels in Vertebrate Inner Ear Hair Cells. Neuron 99: 736-753 e736.

Pan, B., G. S. Geleoc, Y. Asai, G. C. Horwitz, K. Kurima et al., 2013 TMC1 and TMC2 are components of the mechanotransduction channel in hair cells of the mammalian inner ear. Neuron 79: 504-515.

Pett, W., M. Adamski, M. Adamska, W. R. Francis, M. Eitel et al., 2019 The role of homology and orthology in the phylogenomic analysis of metazoan gene content. Molecular biology and evolution 36: 643-649.
Pisani, D., W. Pett, M. Dohrmann, R. Feuda, O. Rota-Stabelli et al., 2015 Genomic data do not support comb jellies as the sister group to all other animals. Proc Natl Acad Sci U S A 112: 15402-15407.

Putnam, N. H., M. Srivastava, U. Hellsten, B. Dirks, J. Chapman et al., 2007 Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317: 86-94.

Qiu, X., and U. Muller, 2018 Mechanically Gated Ion Channels in Mammalian Hair Cells. Front Cell Neurosci 12: 100.

Ranade, S. S., R. Syeda and A. Patapoutian, 2015 Mechanically activated ion channels. Neuron 87: 1162-1179.

Richter, D. J., P. Fozouni, M. B. Eisen and N. King, 2018 Gene family innovation, conservation and loss on the animal stem lineage. Elife 7.

Ronquist, F., and J. P. Huelsenbeck, 2003 MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-1574.

Ronquist, F., M. Teslenko, P. van der Mark, D. L. Ayres, A. Darling et al., 2012 MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61: 539-542.

Ryan, J. F., K. Pang, C. E. Schnitzler, A. D. Nguyen, R. T. Moreland et al., 2013 The genome of the ctenophore Mnemiopsis leidyi and its implications for cell type evolution. Science 342: 1242592.

Sans, C. L., D. J. Satterwhite, C. A. Stoltzman, K. T. Breen and D. E. Ayer, 2006 MondoA-Mlx heterodimers are candidate sensors of cellular energy status: mitochondrial localization and direct regulation of glycolysis. Mol Cell Biol 26: 4863-4871.

Sarkar, P., E. Bosneaga and M. Auer, 2009 Plant cell walls throughout evolution: towards a molecular understanding of their design principles. Journal of Experimental Botany 60: 3615-3635.

Sebe-Pedros, A., E. Chomsky, K. Pang, D. Lara-Astiaso, F. Gaiti et al., 2018 Early metazoan cell type diversity and the evolution of multicellular gene regulation. Nat Ecol Evol 2: 1176-1188.
Shen, X. X., C. T. Hittinger and A. Rokas, 2017 Contentious relationships in phylogenomic studies can be driven by a handful of genes. Nat Ecol Evol 1: 126.

Shibata, S. B., P. T. Ranum, H. Moteki, B. Pan, A. T. Goodwin et al., 2016 RNA interference prevents autosomal-dominant hearing loss. The American Journal of Human Genetics 98: 1101-1113.

Simion, P., H. Philippe, D. Baurain, M. Jager, D. J. Richter et al., 2017 A Large and Consistent Phylogenomic Dataset Supports Sponges as the Sister Group to All Other Animals. Curr Biol 27: 958-967.

Smedley, D., S. Haider, B. Ballester, R. Holland, D. London et al., 2009 BioMart--biological queries made easy. BMC Genomics 10: 22.

Sogabe, S., W. L. Hatileberg, K. M. Kocot, T. E. Say, D. Stoupin et al., 2019 Pluripotency and the origin of animal multicellularity. Nature.

Sorensen, I., D. Domozych and W. G. T. Willats, 2010 How Have Plant Cell Walls Evolved? Plant Physiology 153: 366-372.

Srivastava, M., E. Begovic, J. Chapman, N. H. Putnam, U. Hellsten et al., 2008 The Trichoplax genome and the nature of placozoans. Nature 454: 955-960.

Srivastava, M., O. Simakov, J. Chapman, B. Fahey, M. E. Gauthier et al., 2010 The Amphimedon queenslandica genome and the evolution of animal complexity. Nature 466: 720-726.

Swafford, A. J., and T. H. Oakley, 2018 Multimodal sensorimotor system in unicellular zoospores of a fungus. Journal of Experimental Biology 221: jeb163196.

Taylor, J. S., and J. Raes, 2004 Duplication and divergence: the evolution of new genes and old ideas. Annu Rev Genet 38: 615-643.

Vilella, A. J., J. Severin, A. Ureta-Vidal, L. Heng, R. Durbin et al., 2009 EnsemblCompara GeneTrees: Complete, duplication-aware phylogenetic trees in vertebrates. Genome Res 19: 327-335.

Walsh, J. B., 1995 How often do duplicated genes evolve new functions? Genetics 139: 421-428.
Wang, X., G. Li, J. Liu, J. Liu and X. Z. Xu, 2016 TMC-1 Mediates Alkaline Sensation in C. elegans through Nociceptive Neurons. Neuron 91: 146-154.

Whelan, N. V., K. M. Kocot, L. L. Moroz and K. M. Halanych, 2015 Error, signal, and the placement of Ctenophora sister to all other animals. Proc Natl Acad Sci U S A 112: 5773-5778.

Whelan, S., and N. Goldman, 2001 A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18: 691-699.

Woese, C. R., and G. E. Fox, 1977 Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A 74: 5088-5090.

Wu, Z., N. Grillet, B. Zhao, C. Cunningham, S. Harkins-Perry et al., 2017 Mechanosensory hair cells express two molecularly distinct mechanotransduction channels. Nature neuroscience 20: 24.

Yamashita, H., M. Takenoshita, M. Sakurai, R. K. Bruick, W. J. Henzel et al., 2001 A glucose-responsive transcription factor that regulates carbohydrate metabolism in the liver. Proc Natl Acad Sci U S A 98: 9116-9121.

Yoshimura, H., S. B. Shibata, P. T. Ranum and R. J. Smith, 2018 Enhanced viral-mediated cochlear gene delivery in adult mice by combining canal fenestration with round window membrane inoculation. Scientific reports 8: 2980.

Yue, X., J. Zhao, X. Li, Y. Fan, D. Duan et al., 2018 TMC Proteins Modulate Egg Laying and Membrane Excitability through a Background Leak Conductance in C. elegans. Neuron 97: 571-585 e575.

Zhao, Y., J. Vinther, L. A. Parry, F. Wei, E. Green et al., 2019 Cambrian Sessile, Suspension Feeding Stem-Group Ctenophores and Evolution of the Comb Jelly Body Plan. Current Biology.

Zuckerkandl, E., and L. Pauling, 1965 Molecules as documents of evolutionary history. J Theor Biol 8: 357-366.
Author Contributions A.E. and B.F. conceived this study together; A.E. conducted the computational analyses, including the phylogenomic tree constructions; A.E. and B.F. analyzed the data; A.E. wrote the manuscript, excluding the Discussion, which B.F. helped to write; and A.E. and B.F. edited the entire manuscript.

Supplementary Information is available in the online version of the paper.

Supporting Information

File **S1**. Zipped file containing curation documents, fasta and alignment files for all gene sets.

File **S2**. TMC1/TMEM pairwise alignments.

Table **S1**. Candidate early metazoan paralogs.