Technical Note

The Thumb Test: A Simple Physical Examination Maneuver for the Diagnosis of Symptomatic Posterior Shoulder Instability

Pascal Boileau, M.D., Ph.D., Peter M. Van Steyn, M.D., Michael Czarnecki, D.O., Sylvain Teissier, Gregory Gasbarro, M.D., and Joseph W. Galvin, D.O.

Abstract: Posterior shoulder instability is becoming increasingly recognized in young active patient populations. Diagnosing posterior instability can be challenging because patients commonly present with a complaint of pain without a history of a dislocation or subluxation event. Additionally, a posterior labral tear is not always clearly visualized on advanced imaging studies. As such, physical examination is critical to the diagnosis. We report a simple physical examination maneuver for the diagnosis of symptomatic posterior shoulder instability. The thumb test attempts to replicate a posterior bone block procedure, helping to re-establish stability and relieve pain. The examiner places his or her thumb over the posterior glenohumeral joint line while the patient actively forward elevates the affected arm overhead. Improvement in pain and stability with this maneuver is diagnostic for symptomatic posterior shoulder instability. This test augments current physical examination maneuvers to assist with correctly diagnosing posterior shoulder instability.

Physical Examination Technique

Patient Positioning

The thumb test is performed with the patient in a seated or standing position. The examiner stands behind the patient on the affected side.

Furthermore, anterior shoulder pain and tenderness along the bicipital groove are commonly reported. Radiographic and advanced imaging parameters such as increased glenoid retroversion, glenoid dysplasia, increased posterior capsular area, and increased posterior acromial height and decreased posterior acromial slope are associated with posterior shoulder instability and can aid clinicians in the diagnosis.4-11

Physical examination, however, remains the most critical step in the diagnosis of posterior shoulder instability. Prior tests for diagnosing posterior shoulder instability include the jerk test, Kim test, push-pull test, Porcellini test, and posterior load-and-shift test.12-14

These tests are variably effective in making a definitive diagnosis. This article describes an additional physical examination maneuver, the thumb test, which is simple and effective and can be used to augment current tests in making a diagnosis of posterior shoulder instability. Informed verbal consent was obtained from the patient shown in the figures and Video 1.
is very strong and muscular, the examiner can use his or her hands and 2 thumbs to resist the posterior forces. The patient is then asked to repeat the provocative maneuver performed in the first step (Fig 4).

Test Interpretation

The result of the thumb test is considered positive if the patient has relief of posterior shoulder pain and improved stability with or without improvement in range of motion with the thumb in place. Clinically, in the senior author’s clinic, patients with a diagnosis of a posterior labral tear and/or instability with a positive thumb test result were all found to have correlating posterior labral pathology on shoulder arthroscopy requiring repair (Video 1). Pearls and pitfalls of the described technique are presented in Table 1.

Discussion

Historically, posterior shoulder instability was believed to account for only 2% to 10% of all glenohumeral instability. However, with increased awareness, it is apparent that posterior shoulder instability may be far more frequent and could comprise as much as 20% of operatively treated instability cases in active young adults. Additionally, pathologic activation patterns of muscles can lead to posterior positional functional shoulder instability. The accuracy of magnetic resonance imaging for diagnosing posterior labral injuries is lower than for anterior inferior labral pathology. This highlights the role of the physical examination to assist with diagnosis, but commonly used maneuvers have varying sensitivities and specificities and can be challenging to perform in patients guarding with pain. For instance, the Kim test was found to have 80% sensitivity and 94% specificity and the authors recommended its use in conjunction with the Jerk test to better detect postero-inferior...
instability. In contrast, the jerk test was shown to have a sensitivity of only 73% and specificity of 98%.

The thumb test is a simple examination maneuver for diagnosing posterior shoulder instability and labral tears as confirmed by arthroscopic findings at the time of surgery by the senior author. The examiner’s thumb functions as a posterior glenoid “bone block,” helping to re-establish stability and relieve pain. Additionally, the thumb test is helpful in confirming the direction of instability, which is not always obvious clinically and on imaging studies in the absence of labral or capsular tears. Overall, this examination is easy to perform and is less limited by patient guarding and apprehension because it is an active examination and not passively performed by the examiner. Limitations currently are a lack of statistical validation with calculated sensitivities and specificities, along with interobserver and intra-observer reliability. Diagnosing posterior labral tears and instability can be challenging, and no test performed alone has shown excellent sensitivity and specificity. As such, an examiner must frequently use multiple provocative tests to make the diagnosis. This is the first description of the thumb test, which adds to

Table 1. Pearls and Pitfalls

| The thumb test is easily performed and less technically challenging given that it is an active maneuver and is less susceptible to patient guarding and apprehension. |
| The examiner must ensure that the thumb is placed directly over the glenohumeral joint line, with half of the thumb contacting the posterior glenoid rim and half of it contacting the medial aspect of the posterior humeral head. |
| This article serves only as a description of this examination technique, and further study is needed to determine sensitivity and specificity. |
currently established physical examination maneuvers and aids in the diagnosis of posterior labral tears and symptomatic unidirectional posterior shoulder instability.

References
1. Song DJ, Cook JB, Krul KP, et al. High frequency of posterior and combined shoulder instability in young active patients. J Shoulder Elbow Surg 2015;24:186-190.
2. Teske LG, Arvesen J, Kissenerth MJ, et al. Athletes diagnosed with anterior and posterior shoulder instability display different chief complaints and disability. J Shoulder Elbow Surg 2021;30:S21-S26 (suppl).
3. Galvin JW, Yu H, Slevin J, et al. High incidence of anterior shoulder pain in young athletes undergoing arthroscopic posterior labral repair for posterior shoulder instability. Arthrosc Sports Med Rehabil 2021;3:e1441-e1447.
4. Meyer DC, Ernstbrunner L, Boyce G, Imam MA, El Nashar R, Gerber C. Posterior acromial morphology is significantly associated with posterior shoulder instability. J Bone Joint Surg Am 2019;101:1253-1260.
5. Galvin JW, Morte DR, Grassbaugh JA, Parada SA, Burns SH, Eichinger JK. Arthroscopic treatment of posterior shoulder instability in patients with and without glenoid dysplasia: A comparative outcomes analysis. J Shoulder Elbow Surg 2017;26:2103-2109.
6. Gottschalk MB, Ghasem A, Todd D, Daruwalla J, Xerogeanes J, Karas S. Posterior shoulder instability: Does glenoid retroversion predict recurrence and contralateral instability? Arthroscopy 2015;31:488-493.
7. Eichinger JK, Galvin JW, Grassbaugh JA, Parada SA, Li X. Glenoid dysplasia: Pathophysiology, diagnosis, and management. J Bone Joint Surg Am 2016;98:958-968.
8. Galvin JW, Parada SA, Li X, Eichinger JK. Critical findings on magnetic resonance arthograms in posterior shoulder instability compared with an age-matched controlled cohort. Am J Sports Med 2016;44:3222-3229.
9. Dewing CB, McCormick F, Bell SJ, et al. An analysis of capsular area in patients with anterior, posterior, and multidirectional shoulder instability. Am J Sports Med 2008;36:515-522.
10. Sheean AJ, Kibler WB, Conway J, Bradley JP. Posterior labral injury and glenohumeral instability in overhead athletes: Current concepts for diagnosis and management. J Am Acad Orthop Surg 2020;28:628-637.
11. Antosh IJ, Tokish JM, Owens BD. Posterior shoulder instability. Sports Health 2016;8:520-526.
12. Harryman DT II, Sidles JA, Harris SL, Matsen FA III. Laxity of the normal glenohumeral joint: A quantitative in vivo assessment. J Shoulder Elbow Surg 1992;1:66-76.
13. Kim SH, Park JC, Park JS, Oh I. Painful jerk test: A predictor of success in nonoperative treatment of posteroinferior instability of the shoulder. Am J Sports Med 2004;32:1849-1855.
14. Morey VM, Singh H, Paladini P, Merolla G, Phadke V, Porcellini G. The Porcellini test: A novel test for accurate diagnosis of posterior labral tears of the shoulder: Comparative analysis with the established tests. Musculoskelet Surg 2016;100:199-205.
15. Provencher MT, LeClere LE, King S, et al. Posterior instability of the shoulder: Diagnosis and management. Am J Sports Med 2011;39:874-886.
16. Moroder P, Danzinger V, Mazia N, et al. Characteristics of functional shoulder instability. J Shoulder Elbow Surg 2020;29:68-78.
17. Chandnani VP, Yeager TD, DeBerardino T, et al. Glenoid labral tears: Prospective evaluation with MRI imaging, MR arthrography, and CT arthrography. AJR Am J Roentgenol 1993;161:1229-1235.
18. Legan JM, Burkhard TK, Goff WB II, et al. Tears of the glenoid labrum: MR imaging of 88 arthroscopically confirmed cases. Radiology 1991;179:241-246.
19. Kim SH, Park JS, Jeong WK, Shin SK. The Kim test: A novel test for posteroinferior labral lesion of the shoulder—A comparison to the jerk test. Am J Sports Med 2005;33:1188-1192.
20. Sheean AJ, Arner JW, Bradley JP. Posterior glenohumeral instability: Diagnosis and management. Arthroscopy 2020;36:2580-2582.