Omega-3 fatty acids in the treatment of acute lung injury: a systematic review and meta-analysis

CURRENT STATUS: POSTED

Caijie Huang
910th Hospital of PLA

Jianming Zheng
910th Hospital of PLA

Wenzhao Huang
910th Hospital of PLA

Meihao Yan
910th Hospital of PLA

Liyue Hong
910th Hospital of PLA

Yuancheng Hong cuijin1963@163.com
910th Hospital of PLA
Corresponding Author

Runnv Jin
910th Hospital of PLA

Xincheng Huang
910th Hospital of PLA

Hongtao Fan
910th Hospital of PLA

Huizhen Chen
910th Hospital of PLA

Heping Yang
910th Hospital of PLA

Weiping Su
910th Hospital of PLA

Xiaoping Huang
910th Hospital of PLA
DOI:
10.21203/rs.2.18449/v1

SUBJECT AREAS
Pulmonology

KEYWORDS
Omega-3 fatty acids, acute lung injury, treatment, meta-analysis, review
Abstract

Background

Several randomized controlled trials (RCTs) have compared the treatment of acute lung injury (ALI) with or without omega-3 fatty acids, yet the results remained inconsistent. Therefore, we attempted this meta-analysis to analyze the role of T Omega-3 fatty acids in the treatment of ALI patients.

Methods

We searched PubMed et al databases from inception date to Oct 31, 2019 for RCTs that compared the treatment of ALI with or without omega-3 fatty acids. Two authors independently screened the studies and extracted data from the published articles. Summary mean differences (MD) with 95% confidence intervals (CI) were calculated for each outcome by means of fixed- or random-effects model.

Results

Six RCTs with a total of 277 patients were identified, with 142 with omega-3 fatty acids treatment and 135 without omega-3 fatty acids treatment. Omega-3 fatty acids treatments significantly improve the PaO$_2$ (MD =13.82, 95%CI 8.55– 19.09), PaO$_2$/FiO$_2$ (MD =33.47, 95% CI 24.22– 42.72), total protein (MD =2.02, 95% CI 0.43– 3.62) in ALI patients; furthermore, Omega-3 fatty acids treatments reduced the duration of mechanical ventilation (MD =-1.72, 95% CI -2.84– -0.60) and intensive care unit stay (MD =-1.29, 95% CI -2.14– -0.43) in ALI patients.

Conclusions

Omega-3 fatty acids can effectively improve the respiratory function and promote the recovery of ALI patients. More studies focused on the long-term efficacy and safety of omega-3 fatty acids use for ALI are needed.
Introduction

Acute lung injury (ALI) is a very common type of critically ill disease in the clinic, which is caused by various intrapulmonary and external factors such as severe trauma, shock, acidosis or serious infection et al[1, 2]. If left untreated, it may progress into acute respiratory distress syndrome (ARDS) with high mortality[3]. In the past decade, great progress has been made in the management of patients with ALI and ARDS. However, the mortality of ALI/ARDS is still high with a range of 40–31%[4, 5]. In addition to infection control, low tidal volume protective lung mechanical ventilation, nutritional treatment of ARDS/ALI plays an important role in the treatment strategies[6–8], especially the provision of calories by fat nutrition is a key part[9].

At present, the fat emulsions used in clinical practice are mostly based on soybean oil. Soybean oil-based fat emulsions are rich in long-chain fat emulsions, which can affect granulocyte activity under severe stress such as trauma and infection, resulting in impaired immune function and increased lipid peroxidation, which in turn increases organ function damage[10, 11]. This tendency to increase the inflammatory response often makes the use of soybean oil-based fat emulsions in a dilemma clinically. In recent years, Omega-3 fatty acids have attracted much attention due to their ability to reduce inflammation and regulate immunity. It’s been reported[12, 13] that it produces the effect of inhibiting inflammation and regulating immunity in many diseases. It has achieved good effects in the treatment of severe patients such as sepsis, systemic inflammatory response syndrome et al[14, 15]. Compared to traditional fat emulsions, Omega-3 fatty acids show its superiority in nutritional therapy for critically ill patients[16]. However, the studies on the effects of Omega-3 fatty acids for the treatment of ALI are still lacking.

Based on literature review, we have found that there are several randomized controlled trials (RCTs) focusing on the omega-3 fatty acids in the treatment of ALI, yet the results
have remained inconsistent. Furthermore, there aren’t related meta-analysis on the role of omega-3 fatty acids in the treatment of ALI, further investigations are needed. Therefore, we have attempted to conduct this meta-analysis to evaluate the efficacy and safety of omega-3 fatty acids in the treatment of ALI, to provide insights into the clinical management of ALI.

Methods

We attempted to conduct and reported this meta-analysis in comply with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)[17]

Literature search

Relevant RCTs on the role omega-3 fatty acids in the treatment of ALI were screened and identified. We searched PUBMED, EMBASE, Cochrane library, China National Knowledge Infrastructure (CNKI) and Wanfang Database, China Biomedical Literature Database (CBM) for relevant trials published in English or Chinese up to Oct 31, 2019. Following search terms were used: “omega-3; fish oil; ω-3[acute lung injury; ALI; acute respiratory distress syndrome; ARDS”. We adopted those search terms with combined Boolean operators “AND” or “OR” in every database. Besides, relevant systematic reviews and meta-analyses from these databases were identified, and their bibliographies were scrutinized for further relevant trials, as were those of the RCTs included in the review.

Eligibility criteria

Two investigators independently reviewed the identified articles. The inclusion criteria for RCTs were as follows: (1) RCT design; (2) comparative analysis of ALI treatment with or without omega-3 fatty acids; (3) the details of omega-3 fatty acids treatment and related outcomes were reported. The exclusion criteria were as follows: (1) case reports, reviews, editorial comments, meeting abstracts and articles without applicable data; (2) studies with insufficient data, such as missing the standard deviation (SD);(3) Considerable
overlaps between the authors, research centers among the published literature.

Study selection

The search results were imported into the software of Endnote X7 for literature management. Two authors independently reviewed the title, abstract or descriptors of the identified studies and excluded studies that clearly did not meet the inclusion criteria. After excluding duplicate and apparently irrelevant studies, the full text of the remaining studies was reviewed to assess eligibility for inclusion. Any disagreements were resolved by discussion or by asking an independent third opinion.

Data collection

Two authors independently extracted the data from each study with a standardized data extraction checklist, which included the study characteristics (e.g., first author’s name, publication year, journal, country where the study was conducted), characteristics of included study subjects (e.g., number of participants, age, gender distribution et al), details of omega-3 fatty acids treatment intervention, outcome variables (e.g., follow-up period) and study conclusion. Outcomes were extracted preferentially by intention to treat (ITT) at the end of follow-up. Quantitative data were extracted to calculate effect sizes. Data on effect size that could not be obtained directly were recalculated when possible or contacted the original authors for data. Any discrepancy was resolved by further consensus.

Risk of bias assessment

Two authors independently assessed the methodological quality of the included studies for major potential sources of bias using the Cochrane Collaboration’s risk of bias tool, which includes the method of random sequence generation, allocation concealment, blinding of participants and personnel, blinding of outcome assessment, incomplete outcome data, selective reporting, and other sources of bias. We evaluated the methodological quality of
every included RCT by rating each criterion as low, high or unclear risk of bias. Any disagreements were resolved through further discussion whenever necessary.

Statistical analysis

Review Manager Version 5.3 software were used for data-analysis. All the data syntheses and interpretations were also performed by two authors independently to ensure the accuracy of the results. Binary outcomes were presented as Mantel-Haenszel-style odds ratios (OR) with 95% confidence intervals (CIs). Continuous outcomes were reported as mean differences (MDs). A fixed-effect model was adopted in cases of homogeneity (P-value of χ^2 test > 0.10 and $I^2 < 50\%$), whereas a random-effect model was used in cases of obvious heterogeneity (P-value of χ^2 test > 0.10 and $I^2 \geq 50\%$). Publication bias was evaluated by using funnel plots, and asymmetry was assessed by conducting Egger regression test. The statistical significance level was 0.05 in this present study.

Results

Study selection

Figure 1 shows a flow diagram of study selection. The electronic searches identified 111 literatures, and 80 reports were clearly not relevant after the first screening. The full text of 21 studies was retrieved for further in-depth consideration, and 15 studies were excluded for the several reasons. Finally, 6 RCTs[18-23] were included in this meta-analysis. References cited in published original and review papers were examined, and no further studies were found.

Characteristics of included RCTs

The characteristics of RCTs included in this present meta-analysis are presented in Table 1. Of these included studies, one were performed in India[23], the resting five in China[18-22]. The combined sample size across the 6 included studies was 277 participants, with
142 ALI patients with omega-3 fatty acids treatment and 135 patients without omega-3 fatty acids treatment. The patient samples in the included studies were variable with a range of 34 to 61. For study results, one study didn’t support the use of omega-3 fatty acids in ARDS patients, whereas the other studies all favored the use of omega-3 fatty acids for the treatment of ALI.

Methodological quality of the included studies

Figure 2 and 3 show the quality assessment of the studies in this present meta-analysis.

All 6 included studies were randomized, but only two RCTs[21, 23] specified the method of randomization. All the RCTs did not reference whether any allocation concealment process was used. 4 RCTs[20-23] reported the design on blinding patients, personnel and outcome assessors. No other significant biases amongst the included RCTs were found. Intention to treat (ITT) was performed for all patients.

Outcomes

The changes of PaO\(_2\) Three RCTs[19, 20, 22] reported the changes of PaO\(_2\) for ALI patients with or without omega-3 fatty acids treatment, the pooled data from the three RCTs revealed that the omega-3 fatty acids treatments significantly improve the PaO\(_2\) in ALI patients (MD =13.82, 95% CI 8.55–19.09, \(P < 0.001\), \(I^2 = 0\%\); Figure 4).

The changes of PaO\(_2\)/FiO\(_2\) Five RCTs[18-22] reported the changes of PaO\(_2\)/FiO\(_2\) for ALI patients with or without omega-3 fatty acids treatment, the pooled data from the five RCTs revealed that the omega-3 fatty acids treatments significantly improve the PaO\(_2\)/FiO\(_2\) in ALI patients (MD =33.47, 95% CI 24.22–42.72, \(P < 0.001\), \(I^2 = 0\%\); Figure 5).

The changes of total protein (TP) Three RCTs[18, 21, 22] reported the changes of TP for ALI patients with or without omega-3 fatty acids treatment, the pooled data from the three RCTs revealed that the omega-3 fatty acids treatments significantly increase the TP in ALI
The duration of mechanical ventilation (MV) Three RCTs[21-23] reported the duration of MV for ALI patients with or without omega-3 fatty acids treatment, the pooled data from the three RCTs revealed that the omega-3 fatty acids treatments significantly reduced the duration of MV in ALI patients (MD = -1.72, 95% CI -2.84– -0.60, P=0.003, I² = 0%; Figure 7).

The length of ICU stay Three RCTs[21-23] reported the length of ICU stay for ALI patients with or without omega-3 fatty acids treatment, the pooled data from the three RCTs revealed that the omega-3 fatty acids treatments significantly reduced the length of ICU stay in ALI patients (MD = -1.29, 95% CI -2.14– -0.43, P=0.003, I² = 59%; Figure 8).

Subgroup and sensitivity analyses

No subgroup analyses were performed in our study because the heterogeneity among included RCTs in the synthesized results remained small. We attempted to evaluate publication bias by using a funnel plot if 10 or more RCTs[24]. However, the number of included RCTs were only six, we could not evaluate publication bias by using a funnel plot. Sensitivity analyses, which investigate the influence of one study on the overall risk estimate by removing one study in each turn, suggested that the overall risk estimates were not substantially changed by any single study.

Discussion

Patients with ALI are in a state of high metabolism, and it’s necessary to provide nutritional support[25]. Besides, the nutritional support of critically ill patients should fully consider the tolerance of the damaged organ, critically ill patients should start EN as soon as the conditions permit[25]. It’s been reported that early EN support improves immune function and protein levels in ARDS patients, which may reduce mortality and
shorten the duration of MV and ICU stay[26]. With six RCTs included, the results of this present meta-analysis have indicated that omega-3 fatty acids significantly improve the PaO₂, PaO₂/FiO₂ increase the TP level, and reduce the length of MV and ICU stay for ALI patients. Therefore, the use of omega-3 fatty acids is a promising and effective treatment strategy for ALI.

The potential mechanism of omega-3 fatty acids for ALI treatment should be considered. A number of studies[27-29] have found that omega-3 fatty acids can regulate the synthesis of lipid mediators, release cytokines, activate white blood cells and endothelial cells, thereby regulating the body's excessive inflammatory response to reduce the lung inflammation. Moreover, it’s possible that omega-3 fatty acids increase the patient's PaO₂ and PaO₂/FiO₂ to improve the patient's respiratory function. Furthermore, omega-3 fatty acids can reduce the concentration of IL-8, leukotriene and neutrophils in the bronchial lavage fluid of patients, and reduce alveolar permeability, thereby improving patients’ gas exchange[30, 31]. Meanwhile, it not only provides energy as a nutrient-supporting substance, maintains nitrogen balance, but also can reduce insulin resistance and hyperlipidemia[32]. However, the potential risks of omega-3 fatty acids use should also be concerned. Two included RCTs[21, 22] reported the adverse events after the use of omega-3 fatty acids, mainly diarrhea, bloating, gastric contents reflux. It be related to that after long-term or unreasonable use of antibiotics, the intestinal flora is dysfunctional, it’s easy to diarrhea[33]. And it’s possible that the nutrient solution temperature is too low, or with improper preparation ratio[34]. The occurrence of diarrhea is negatively correlated with serum protein levels[35]. Attention should be paid to the speed of infusion, the temperature of the nutrient solution is kept constant.

The pathological feature of ALI is pulmonary edema caused by increased pulmonary
capillary permeability, the pathological basis of which is neutrophil-mediated local inflammatory response in the lung[36]. Pathophysiological changes were mainly due to increased Qs/Qt and imbalance of ventilation/blood flow ratio[37]. The application of omega-3 fatty acids not only can quickly reduce the inflammatory reaction of lung tissue, but also transform LTB4, which aggravates inflammatory reaction, into LTB5 series, which is less active, thereby significantly reducing pulmonary edema, improving the pulmonary vascular permeability[38-40]. Besides, as specific immunonutrients, omega-3 fatty acids can regulate the activity of lipid mediators, cytokines and endothelial cell, thereby regulating the excessive inflammatory response of the body under infection and trauma[41]. Given all this together, the use of omega-3 fatty acids may be a useful adjuvant therapy for ALI patients.

The limitations exist in this study must be considered. Firstly, the number of RCTs included in this study is too small, and five out of six RCTs were from China, and the representativeness is poor. Secondly, the potential risk of bias in the allocation concealment process, blinding of researchers, blinding of outcome assessments must be considered since the information on those issues remains unclear, further studies with strict design are needed. Thirdly, no relevant economic indicators were reported among included RCTs, thus we could not perform analysis on this issue. Future clinical trials should focus on collecting and reporting relevant economic data to evaluate the cost of omega-3 fatty acids treatment. Future studies on the ALI treatment with omega-3 fatty acids should pay attention to study design. And the selected indicators should reflect the purpose of the study as much as possible with longer follow-up period.

In conclusion, as a new type of nutritional preparation, omega-3 fatty acids can improve the respiratory function and respiratory status of ALI patients by increase PaO₂ and PaO₂/FiO₂. Meanwhile, it can increase the TP level, and reduce the length of MV and ICU
stay for ALI patients. Therefore, omega-3 fatty acids may be a potential effective and safe strategy for the ALI treatment. Future larger-scale RCTs are needed to further explore the timing and dosage of omega-3 fatty acids application in the ALI treatment.

Abbreviations

RCTs: randomized controlled trials
ALI: acute lung injury
OR: odds ratios
MD: mean differences
CI: confidence intervals
ARDS: acute respiratory distress syndrome
CNKI: China National Knowledge Infrastructure
CBM: China Biomedical Literature Database
ITT: intention to treat
TP: total protein
MV: mechanical ventilation
PUFA: polyunsaturated fatty acids

Declarations

Ethics approval and consent to participate
None

Consent for publication
Not applicable.

Availability of data and materials
All data generated or analyzed during this study are included in this published article.

Competing interests
The authors declare that they have no competing interests.

Funding

None.

Author contributions

C H, J Z and Y H designed research; C H, J Z, W H, M Y, L H, R J, X H, H F and H C conducted research; C H J Z, H Y, W S and X H analyzed data; C H wrote the first draft of manuscript; C H, J Z and Y H had primary responsibility for final content. All authors read and approved the final manuscript.

Acknowledgments

None.

References

1. Matthay MA, Zemans RL, Zimmerman GA, Arabi YM, Beitler JR, Mercat A, Herridge M, Randolph AG, Calfee CS: Acute respiratory distress syndrome. Nat Rev Dis Primers 2019, 5(1):18.

2. Roubinian NH, Triulzi DJ: Transfusion-Associated Circulatory Overload and Transfusion-Related Acute Lung Injury: Etiology and Prevention. Hematol Oncol Clin North Am 2019, 33(5):767-779.

3. Gossman W, Peniston Feliciano HL, Mahapatra S: Acute Respiratory Distress Syndrome (ARDS). In: StatPearls. edn. Treasure Island (FL); 2019.

4. Erickson SE, Martin GS, Davis JL, Matthay MA, Eisner MD, Network NNA: Recent trends in acute lung injury mortality: 1996-2005. Crit Care Med 2009, 37(5):1574-1579.

5. Spragg RG, Bernard GR, Checkley W, Curtis JR, Gajic O, Guyatt G, Hall J, Israel E, Jain M, Needham DM et al: Beyond mortality: future clinical research in acute lung injury. Am J Respir Crit Care Med 2010, 181(10):1121-1127.
6. Mokra D, Mikolka P, Kosutova P, Mokry J: **Corticosteroids in Acute Lung Injury: The Dilemma Continues.** *Int J Mol Sci* 2019, **20**(19).

7. Dushianthan A, Cusack R, Burgess VA, Grocott MP, Calder PC: **Immunonutrition for acute respiratory distress syndrome (ARDS) in adults.** *Cochrane Database Syst Rev* 2019, **1:**CD012041.

8. Chen JJ, Deng JS, Huang CC, Li PY, Liang YC, Chou CY, Huang GJ: **p-Coumaric-Acid-Containing Adenostemma lavenia Ameliorates Acute Lung Injury by Activating AMPK/Nrf2/HO-1 Signaling and Improving the Anti-oxidant Response.** *Am J Chin Med* 2019:1-24.

9. Stapleton RD, Martin TR, Weiss NS, Crowley JJ, Gundel SJ, Nathens AB, Akhtar SR, Ruzinski JT, Caldwell E, Curtis JR et al: **A phase II randomized placebo-controlled trial of omega-3 fatty acids for the treatment of acute lung injury.** *Crit Care Med* 2011, **39**(7):1655-1662.

10. King HM, Cosslett AG, Thomas CP, Price-Davies R: **A HPLC method to monitor the occurrence of lipid peroxidation in intravenous lipid emulsions used in parenteral nutrition using in-line UV and charged aerosol detection.** *Clin Nutr ESPEN* 2018, **28:**96-102.

11. Fell GL, Anez-Bustillos L, Dao DT, Baker MA, Nandivada P, Cho BS, Pan A, O’Loughlin AA, Nose V, Gura KM et al: **Alpha-tocopherol in intravenous lipid emulsions imparts hepatic protection in a murine model of hepatosteatosis induced by the enteral administration of a parenteral nutrition solution.** *PLoS One* 2019, **14**(7):e0217155.

12. Baker MA, Cho BS, Anez-Bustillos L, Dao DT, Pan A, O’Loughlin AA, Lans ZM, Mitchell PD, Nose V, Gura KM et al: **Fish oil-based injectable lipid emulsions containing medium-chain triglycerides or added alpha-tocopherol offer anti-**
inflammatory benefits in a murine model of parenteral nutrition-induced liver injury. *Am J Clin Nutr* 2019, **109**(4):1038-1050.

13. Kristine Koekkoek W, Panteleon V, van Zanten AR: Current evidence on omega-3 fatty acids in enteral nutrition in the critically ill: A systematic review and meta-analysis. *Nutrition* 2019, **59**:56-68.

14. Parikh R, Bates JHT, Poynter ME, Suratt BT, Parsons PE, Kien CL, Heyland DK, Crain KI, Martin J, Garudathri J *et al*: Pharmacokinetics of omega-3 fatty acids in patients with severe sepsis compared with healthy volunteers: A prospective cohort study. *Clin Nutr* 2019.

15. Singer P, Blaser AR, Berger MM, Alhazzani W, Calder PC, Casaer MP, Hiesmayr M, Mayer K, Montejo JC, Pichard C *et al*: ESPEN guideline on clinical nutrition in the intensive care unit. *Clin Nutr* 2019, **38**(1):48-79.

16. Klek S: Omega-3 Fatty Acids in Modern Parenteral Nutrition: A Review of the Current Evidence. *J Clin Med* 2016, **5**(3).

17. Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart LA, Group P-P: Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. *BMJ* 2015, **350**:g7647.

18. Dai F, Zhao Z: Application of enteral nutrient solution rich in omega-3 fatty acids in patients with ARDS. *Modern Practical Medicine* 2009, **21**(6):588-589.

19. Shen Y, Shi X: Therapeutic effect of ω-3 polyunsaturated fatty acid on acute lung injury. *Chinese Journal of Microecology* 2010, **22**(7):640-642.

20. Shen Y, Shi X, Wu A: Effects of omega-3 polyunsaturated fatty acids on plasma TNF-α, IL-6 and IL-10 in patients with acute lung injury. *Strait Pharmaceutical Journal* 2011, **23**(6):251-254.
21. Wang R, Gao D, Gong W, Xu L, Liu C: Lung protection of omega-3 fatty acids in elderly patients with acute lung injury induced by mechanical ventilation. Medical Journal of Clinical Research 2011, 28(8):1478-1479.

22. Zhao Z, Dai F, He G, Luo W: Lung protection of omega-3 fatty acids in patients with acute respiratory distress syndrome undergoing mechanical ventilation. Parenteral & Enteral Nutrition 2010, 17(5):266-269.

23. Gupta A, Govil D, Bhatnagar S, Gupta S, Goyal J, Patel S, Baweja H: Efficacy and safety of parenteral omega 3 fatty acids in ventilated patients with acute lung injury. Indian J Crit Care Med 2011, 15(2):108-113.

24. Duval S, Tweedie R: Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 2000, 56(2):455-463.

25. Turner KL, Moore FA, Martindale R: Nutrition support for the acute lung injury/adult respiratory distress syndrome patient: a review. Nutr Clin Pract 2011, 26(1):14-25.

26. Raghavendran K, Napolitano LM: ALI and ARDS: challenges and advances. Crit Care Clin 2011, 27(3):xiii-xiv.

27. Scorletti E, Byrne CD: Omega-3 fatty acids and non-alcoholic fatty liver disease: Evidence of efficacy and mechanism of action. Mol Aspects Med 2018, 64:135-146.

28. Abdelhamid AS, Brown TJ, Brainard JS, Biswas P, Thorpe GC, Moore HJ, Deane KH, AlAbdulghafoor FK, Summerbell CD, Worthington HV et al: Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev 2018, 11:CD003177.

29. Lee HJ, Han YM, An JM, Kang EA, Park YJ, Cha JY, Hahm KB: Role of omega-3
polyunsaturated fatty acids in preventing gastrointestinal cancers: current status and future perspectives. *Expert Rev Anticancer Ther* 2018, **18**(12):1189-1203.

30. He GZ, Dong LG, Cui XY, Chen XF, Zhang R: *Impact of glutamine and omega-3 polyunsaturated fatty acids on intestinal permeability and lung cell apoptosis during intestinal ischemia-reperfusion injury in a rat model*. *Zhonghua Wei Chang Wai Ke Za Zhi* 2012, **15**(5):484-489.

31. He GZ, Dong LG, Chen XF, Zhou KG, Shu H: *Lymph duct ligation during ischemia/reperfusion prevents pulmonary dysfunction in a rat model with omega-3 polyunsaturated fatty acid and glutamine*. *Nutrition* 2011, **27**(5):604-614.

32. Zayed EA, AinShoka AA, El Shazly KA, Abd El Latif HA: *Improvement of insulin resistance via increase of GLUT4 and PPARgamma in metabolic syndrome-induced rats treated with omega-3 fatty acid or l-carnitine*. *J Biochem Mol Toxicol* 2018, **32**(11):e22218.

33. Guo Q, Goldenberg JZ, Humphrey C, El Dib R, Johnston BC: *Probiotics for the prevention of pediatric antibiotic-associated diarrhea*. *Cochrane Database Syst Rev* 2019, **4**:CD004827.

34. Pitta MR, Campos FM, Monteiro AG, Cunha AGF, Porto JD, Gomes RR: *Tutorial on Diarrhea and Enteral Nutrition: A Comprehensive Step-By-Step Approach*. *JPEN J Parenter Enteral Nutr* 2019, **43**(8):1008-1019.

35. Hod K, Sperber AD, Maharshak N, Ron Y, Shapira I, David Z, Rogowski O, Berliner S, Shenhar-Tsarfaty S, Dekel R: *Serum cholinesterase activity is elevated in female diarrhea-predominant irritable bowel syndrome patients compared to matched controls*. *Neurogastroenterol Motil* 2018, **30**(12):e13464.
36. Qu L, Chen C, Chen Y, Li Y, Tang F, Huang H, He W, Zhang R, Shen L: **High-Mobility Group Box 1 (HMGB1) and Autophagy in Acute Lung Injury (ALI): A Review.** *Med Sci Monit* 2019, **25**:1828-1837.

37. Gouda MM, Bhandary YP: **Acute Lung Injury: IL-17A-Mediated Inflammatory Pathway and Its Regulation by Curcumin.** *Inflammation* 2019, **42**(4):1160-1169.

38. Gammone MA, Riccioni G, Parrinello G, D'Orazio N: **Omega-3 Polyunsaturated Fatty Acids: Benefits and Endpoints in Sport.** *Nutrients* 2018, **11**(1).

39. Rutting S, Xenaki D, Lau E, Horvat J, Wood LG, Hansbro PM, Oliver BG: **Dietary omega-6, but not omega-3, polyunsaturated or saturated fatty acids increase inflammation in primary lung mesenchymal cells.** *Am J Physiol Lung Cell Mol Physiol* 2018, **314**(6):L922-L935.

40. Gutierrez-Delgado RI, Barraza-Villarreal A, Escamilla-Nunez C, Hernandez-Cadena L, Garcia-Feregrino R, Shackleton C, Ramakrishnan U, Sly PD, Romieu I: **Effect of omega-3 fatty acids supplementation during pregnancy on lung function in preschoolers: a clinical trial.** *J Asthma* 2019, **56**(3):296-302.

41. Xu QL, Cai C, Qi WW, Xia ZG, Tang YZ: **Influence of omega-3 polyunsaturated fatty acids on inflammation-related parameters in lung tissue of rats with severe scald.** *Zhonghua Shao Shang Za Zhi* 2011, **27**(5):358-362.

Table

Table 1 The characteristics of included RCTs
Studies	Countries	Group	Participants	Age (years)	Length of diet	Conclusions
Dai 2009	China	Omega 3 fatty acids	17	39.5±5.8	1W	Omega 3 fatty acids are beneficial to the recovery of respiratory function in patients with ARDS.
Gupta 2010	India	Omega 3 fatty acids	31	51.16±15.58	1W	In ventilated patients with ARDS, intravenous Omega 3 fatty acids alone do not improve ventilation, length of ICU stay or survival.
Shen 2010	China	Omega 3 fatty acids	20	66.1±15	1W	Omega-3 polyunsaturated fatty acid improves respiratory function and prognosis in patients with ALI.
Shen 2011	China	Omega 3 fatty acids	22	64.0±9.0	1W	The use of omega-3 polyunsaturated fatty acids helps to improve inflammatory factor levels in ALI patients.
Wang 2011	China	Omega 3 fatty acids	26	75.2±8.9	1W	Omega-3 fatty acids are beneficial to the recovery of respiratory function in ALI patients, and it shorten the time of mechanical ventilation and length of ICU stay.
Zhao 2010	China	Omega 3 fatty acids	26	40.2±6.1	1W	The Omega 3 polyunsaturated fatty acids enriched enteral nutrition solution can facilitate the recovery of respiratory function.

Notes: W, week; ARDS, acute respiratory distress syndrome; ALI, acute lung injury

Figures
Figure 1

The flow chart of study selection
Figure 2

Risk of bias graph

Random sequence generation (selection bias)
Allocation concealment (selection bias)
Blinding of participants and personnel (performance bias)
Blinding of outcome assessment (detection bias)
Incomplete outcome data (attrition bias)
Selective reporting (reporting bias)
Other bias

Low risk of bias
Unclear risk of bias
High risk of bias
Figure 3

Risk of bias summary

Study or Subgroup	Omega-3 fatty acids	Control						
	Mean	SD	Total	Mean	SD	Total	Weight	
Shen 2010	47.6	17.5	20	31.3	10.69	19	33.9%	16.30 [7.25, 25.35]
Shen 2011	47.6	17.05	22	36	13.69	21	32.7%	12.60 [3.38, 21.82]
Zhao 2010	44.9	14.04	28	72.4	19.14	26	33.4%	12.50 [3.38, 21.52]
Total (95% CI)	68	66	13.82 [8.55, 19.09]					

Heterogeneity: $\chi^2 = 0.44$, df = 2 ($P = 0.80$); $I^2 = 0$
Test for overall effect: $Z = 5.14$ ($P < 0.00001$)

Figure 4

Forest plot for the changes of PaO2
Figure 5
Forest plot for the changes of PaO2/FiO2

Figure 6
Forest plot for the changes of TP

Figure 7
Forest plot for the duration of MV

Figure 8
Forest plot for the length of ICU stay