Public support for health taxes and media regulation of harmful products in South Korea

Kyae Hyung Kim¹†, EunKyo Kang¹† and Young Ho Yun²*

Abstract

Background: Public health policy is inevitably associated with either a strong presence or lack of public support. We investigated factors associated with both the public support of and opposition to health taxes and the media regulation regarding advertising harmful products in Korea.

Methods: We interviewed 1200 respondents that were recruited using an equal-probability sampling method in accordance with the 2016 Korean census. Our investigation examined the extent of support and opposition towards health taxes and the media regulation of advertising that targets the consumption of tobacco, alcohol, and unhealthy foods according to socioeconomic characteristics, health habits, body mass index (BMI), and exposure to the advertising of harmful products. The study was conducted using a univariate and stepwise multivariate regression analysis.

Results: The majority (71.8%) of the respondents were supportive of imposing health taxes in general. Despite a high prevalence of tobacco and alcohol consumption among the respondents, they strongly supported media regulation of tobacco (72.3%), alcohol (63.7%), and eating broadcasts (51.9%) of food advertising (44.0%). Those that were non-smokers, earned a high-income, were married, or had a child were likely to support at least one kind of regulation regarding alcohol and smoking related advertising. An exposure to excessive advertising of unhealthy products was associated with an increase of respondents supporting the media regulation. Those who regarded the media as being influential seemed to be more supportive of health taxes or media regulation.

Conclusion: Our results indicated strong public support among the respondents for health taxes and the media regulation regarding the advertising of unhealthy products. Based on our data, we are optimistic that countries whose population show a high rate of tobacco, alcohol or unhealthy food consumption may launch public policy in addressing these factors.

Keywords: Food tax, Perception, Smoking, Alcohol, Public support

Background

Managing risk factors for chronic diseases has long been an important global issue. The prevalence of obesity has doubled in 73 countries since 1980, and cardiovascular disease has become the leading cause of death and disability [1]. Dietary risk factors and low physical activity accounted for 10.0% of deaths and disabilities globally [2]. In addition, tobacco smoking (including secondhand smoke) and alcohol consumption were leading attributable risks, accounting for 6.3 and 4.8%, respectively, of deaths and disabilities worldwide [2]. Alcohol consumption causes more than 200 diseases and injuries resulting in death and disability relatively early in life [3]. In the age group of 20 to 39, about 13.5% of total deaths are due to alcohol [3]. In South Korea, the prevalence of obesity, tobacco use, and alcohol abuse is notably high when compared to other OECD countries [4–6].

Taxes, subsidies, and welfare policies on unhealthy and harmful products have known to be more effective than information campaigns on reducing their consumption [7].
Taxes have been used in many countries to deter smoking and harmful alcohol use, and more recently, an increasing number of governments have sought to expand this approach to foods and beverages that are high in fat, salt, or sugar [8]. In general, governments tend to be very cautious about introducing new taxes or raising existing taxes, despite the significant benefits that health taxes can produce. Taxes are never popular, and the burden of taxation on tobacco, alcohol products, foods, and beverages tends to be larger for low-income consumers [7, 9]. Cross-border and illicit trade are major negative phenomena, especially for alcohol and tobacco products [10]. Despite public reluctance to tax, earmarking taxes is a way to gain public support for imposing taxes. As stated by the WHO report, about 30 countries have earmarked tobacco tax revenues for health purposes, which has given positive public supports for tobacco tax [11]. In Korea, cigarette prices almost doubled due to taxation in early 2015, [12] while commodities such as alcohol, sugar-sweetened beverages (SSB), and unhealthy, Energy Dense Nutrition Poor (EDNP) foods are still not subject to health-related taxation.

Unhealthy media environment is also shown to be a key driver of chronic diseases [13]. Smokers and alcohol drinkers are often depicted as being more successful and healthier in movies than they are in real life. Product placement of alcohol products and brands is very common in movies, and reality-shows in Korea. Exposure to food and beverage advertising on television and online [14] on YouTube, [15] Facebook, [16] and other social media, [17] has been shown to influence the food preferences, purchases, and consumption of these products, especially pertaining to youths. Eating broadcasts (Food-porn, Mukbang in Korean [18]) that have a strong presence in social media rely on close-up images of cooking, provocatively presented foods that are high in fat, salt and sugar, as well as exotic dishes, soft drinks, liqueurs, etc. Advertising and marketing professionals have started using the eating broadcast trend, which is very popular among individuals in their 20’s and 30’s, as a new advertising approach [19, 20]. In response, regulations of the marketing of the eating broadcasts through the mass media has been suggested.

Public health policy has inevitably needed public support [21]. We investigated factors associated with both the public support of and opposition to health taxes and regulation in a sampled population in South Korea.

Methods

Participants and procedures

This survey was conducted from April 4 to May 7, 2018. Interviewees were recruited using an equal-probability sampling method according to the 2016 Korean census, taking the age and sex strata by region. Eligible participants fulfilled the following criteria: 1) 19 years of age or older, 2) able to understand the purpose of the study, and 3) able to read and answer the questionnaires in Korean. Participants were informed of the scope of the study by trained research assistants at the beginning of the study, and completed a semi-structured, self-reported questionnaire paper at the completion. The study was carried out by World Research Co., Ltd., and 1200 participants completed the questionnaire (response rate was approximately 30%).

Measurement

Opinions on alcohol advertisement, smoking scenes portrayed in the media, food-shows, and food advertisement regulations

Participants received questions regarding their opinions on the negative impact of alcohol advertising, smoking scenes portrayed by the mass media, eating broadcasts, and food advertising on health habits (Additional file 1). The respondents replied to the question, “Some believe that regulatory measures are necessary in the following areas as their portrayal in the mass media has a negative impact on viewers’ health habits. Do you think it is necessary to regulate these areas?” with a range of 1 to 4 (1 = strongly disagree, 2 = disagree, 3 = agree, 4 = strongly agree). The areas presented were: 1) alcohol advertising, 2) smoking scenes portrayed by the mass media, 3) eating broadcasts, and 4) food advertisement. The definition of eating broadcasts that was provided was “Broadcasting that shows host eating and communicating online and via ‘Afreeca TV’ (example of internet/social media-based TV).”

Exposure to alcohol advertising, smoking scenes portrayed by the media, eating broadcasts, and food advertising and their influence on health habits

To determine the participants’ degree of exposure to alcohol advertising, smoking scenes portrayed by the media, eating broadcasts, and food advertising, respondents were asked the following question during the last week: “How often have you been exposed to the following factors during the last week?” Participants selected one of four answers: 1) Never, 2) Rarely, 3) Occasionally, and 4) Always. And how these four factors would affect their health habits, respondents were asked the following question during the last week: “How do the following factors affect your health habits?” Their responses were based on a 4-point scale: 1) not at all affected 2) mostly not affected, 3) mostly affected, and 4) strongly affected.

Health tax

The World Health Organization (WHO) recommended introducing a sugar tax in 2016 on sugar-sweetened beverages (SSB) containing sugars known to be a major cause of chronic diseases [22]. In this regard, we asked
respondents how they felt about imposing health taxes, such as environmental or tobacco consumption taxes, on companies. Interviewees responded using a 4-point Likert scale that ranged from “strongly disagree” to “strongly agree.”

Sociodemographic variables

We collected the respondents’ sociodemographic information included age, sex, marital status, educational status, monthly income, job status, and household composition. Health related variables such as BMI, smoking, and drinking were also assessed.

Statistical analysis

In this study, we analyzed factors that are related to how individuals perceive health taxes, as well as alcohol advertising, smoking scenes portrayed by the media, and food advertising regulations, and conducted univariate analyses to measure the relationship between the respondents’ views on these items, as well as sociodemographic variables, and health related factors. We also performed univariate analyses to assess the association between the exposure to these factors, their influence on the individuals, as well as the resulting views the individuals have on regulation. Socio-demographic factors, health-related variables, and exposure and influence factors that were found to be significant in univariate analysis were used to investigate associations related to the individuals’ views on regulation. In the final model, we performed multivariate regression analysis to identify independent factors that were statistically significant. The statistical tests performed included the Pearson’s chi-square for comparison of proportions. In all analyses, we determined two-sided p-values and considered a p-value that was less than 0.05 to be significant. All data were analyzed with SPSS software version 23.0 (Armonk, NY, USA) and R software version 3.5.1 in RStudio® version 1.1.456 (RStudio Inc., Boston, MA, USA).

Results

Demographic characteristics of study participants

Demographics and clinical characteristics for the 1200 respondents of the study are provided in Table 1. The average age of the participants was 46.97 years, and more than half were female (50.7%). Most of them were married or living with a partner (73.7%). High school graduates and higher education graduates showed similar characteristics. Most individuals had a monthly income between $3000 and $6000, and 70.0% were employed. 74.6% of respondents had one or more children, most were non-smokers, and drank less than once a week.

Table 1 Demographics and Clinical Characteristics of Participants (N = 1200)

Characteristic	No	%
Age		Mean + SD 46.97 ± 14.18
Sex		Male 592 49.3
		Female 608 50.7
Marital status		≤ Not married 265 22.1
		Divorced/Widowed/Separated 51 4.3
		Married/Cohabited 884 73.7
Education		≤ Middle school graduate 124 10.3
		High school 537 44.8
		≥ College or University 539 44.9
Income		< 3000$ 307 25.7
		3000$ - 6000$ 809 67.8
		> 6000$ 78 6.5
Job status		Gainfully employed 840 70.0
		Dependents 360 30.0
Household composition		No children 305 25.4
		One or more children 895 74.6
Smoking status		Current Smoker 270 22.5
		Ex-smoker 144 12.0
		Non-smoker 786 65.5
Drinking		> 1 time per week 414 34.5
		≤ 1 time per week 786 65.5
BMI		Underweight 41 3.4
		Normal weight 591 49.3
		Overweight 344 28.7
		Obese 224 18.7
Alcohol Advertisement		Agree with regulation 764 63.7
		Against regulation 436 36.3
Smoking scene		Agree with regulation 868 72.3
		Against regulation 332 27.7
Eating broadcasts		Agree with regulation 623 51.9
		Against regulation 577 48.1
Food Advertisement		Agree with regulation 529 44.1
		Against regulation 671 55.9
Health Tax		Agree to impose 861 71.8
		Disagree to impose 339 28.2

Abbreviation: SD, Standard Deviation

Opinions about mass media regulations and health taxes

Regarding alcohol advertising and smoking scenes portrayed by the media, more than half of the respondents were in favor of their regulation (63.7 and 72.3%, respectively). 51.9% of the respondents were in favor of the regulation of eating broadcasts, and 44.1% for the regulation of food advertising. 71.8% of the participants indicated that they agreed with introducing health taxes.
Relationship between sociodemographic variables and perception of health taxes and mass media regulation

Regarding the advertising of alcohol, married respondents were more in favor of regulation than unmarried respondents, while respondents who had at least one child indicated a higher level of approval than those who had no children (Table 2). Women were more likely to be in favor of regulations on smoking than men, and graduates of higher education more than graduates of middle school or lower. Supporters of smoking regulations tended to have higher incomes, and in the case of eating broadcasts, individuals who were married, divorced, widowed, and had children tended to support regulations in comparison to those who were unmarried. We found no indication of a sociodemographic factor correlating with being in favor of the regulation of food advertising. Respondents aged 40 and over, as well as those who were married, divorced, or separated were more in favor of imposing health taxes. While individuals who had jobs and those who had children were more likely to agree on imposing health taxes, those with a monthly income of more than $6000 were less likely to be in favor of health taxes.

Univariate analysis of perception of health taxes and mass media regulation in regards to smoking, drinking, and BMI status

In Table 3, the opinions about the regulation of alcohol advertising showed a relationship between an individual’s smoking status and their BMI. Ex-smokers and non-smokers tended to prefer these regulations, while underweight individuals showed a tendency to see alcohol advertising regulations less favorably. Regarding the regulation of smoking scenes portrayed by the media, non-smokers tended to be more in favor of the regulations. In the case of eating broadcasts, underweight respondents tended to disagree with their regulation, and non-smokers favored the regulation of food advertising. There was no relationship between the consumption of alcohol, BMI, and health taxes, but ex-smokers and non-smokers showed a tendency to favor health taxes.

Association of mass media exposure and its influence, and perception of health taxes, and mass media regulation

Table 4 showed the association of mass media regulation and mass media exposure and its influence. All those who were exposed or influenced by alcohol advertising were found to be more in favor of its regulation. In the case of smoking scenes portrayed by the media, people who were exposed or influenced by them were more likely to agree with their regulation, and similarly, those who were exposed or influenced by eating broadcasts were more likely to favor their regulation. In the case of food advertising, exposure and influence had a similar impact. Individuals who were exposed to and influenced by alcohol advertising (in this case, exposure to alcohol advertising had no effect, while being influenced by it did have an effect), smoking scenes portrayed by the media, eating broadcasts, and food advertising showed a tendency to favor health taxes.

Multivariate logistic regression models for factors associated with views of health taxes and mass media regulation

In the case of the regulation of alcohol advertising, independent factors with statistical significance were household composition, influence of alcohol advertising, and exposure to eating broadcasts. The respondents who had a higher income level, one or more children, were non-smokers, had been exposed to alcohol advertising and eating broadcasts, and had been influenced by smoking scenes portrayed by the media, were more likely to agree to the regulation of smoking scenes in the media. All those who were married, divorced, widowed, had been exposed to smoking scenes or eating broadcasts, and influenced by alcohol advertising, smoking scenes in the media, or eating broadcasts indicated a tendency towards supporting the regulation of eating broadcasts. Regarding the regulation of food advertising, participants who were exposed to alcohol advertising or smoking scenes in the media, and influenced by alcohol advertising, were more likely to consent to the regulation of food advertising. In addition, factors such as older age, being married, divorced, or widowed, having a job, having one or more children, being an ex-smoker or non-smoker, having been exposed to smoking scenes in the media, or eating broadcasts, as well as having been influenced by smoking scenes in the media, or food advertising, were associated with having positive views towards the imposition of health taxes. (Table 5).

Discussion

The present study shows that there is a strong public support for strengthening health policies in Korea. Around 70% of the study sample was supportive of imposing health taxes in general. It was a high proportion considering a previous study from 2012 conducted in 27 European countries on tobacco taxes, ranging from 38.4% (Greece) to 71.3% (Finland) of respondents indicating their support of the taxes [23]. Public support for health taxes in Korea was higher than that in 2014 for SSB taxes in the United States, which only indicated 40.0% [24] and 57.7% in France in 2012 [25]. Regarding the advertising of unhealthy products, there was a strong support amongst Koreans, with the highest support being for the regulation of tobacco (72.3%), alcohol (63.7%), and food/sugar (40–52%), which was consistent
| Table 2 Univariate associations between sociodemographic variables and perception of health tax and mass media regulation |
|--|------------------|------------------|------------------|------------------|------------------|------------------|
| | Regulation | Health Tax |
| | Alcohol advertising | Smoking scene | Eating broadcasts | Food advertising | OR (95% CI) | p-value |
| Age | | | | | | | | | | | | |
| 20–39 | 1 (Ref) | 1.37 (1.06–1.77) | 0.019 |
| ≥ 40 | 1.15 (0.89–1.47) | N/S | 0.86 (0.65–1.12) | N/S | 1.19 (0.94–1.52) | N/S | 1.37 (1.05–1.77) | 0.019 |
|Sex | | | | | | | | | | | | |
| Male | 1 (Ref) | 1.00 (0.78–1.28) | N/S |
| Female | 1.15 (0.91–1.46) | N/S | 1.43 (1.11–1.84) | 0.006 | 1.07 (0.86–1.35) | N/S | 1.04 (0.83–1.31) | N/S |
|Marital Status | | | | | | | | | | | | |
| Not married | 1 (Ref) | 1.59 (1.19–2.13) | 0.002 |
| Divorced/Widowed/Separated | 1.31 (1.00–1.74) | 0.048 | 1.01 (0.74–1.37) | N/S | 1.35 (1.03–1.78) | 0.032 | 1.18 (0.89–1.56) | N/S |
| Married/Cohabited | 1.55 (0.82–2.94) | N/S | 1.26 (0.63–2.54) | N/S | 2.00 (1.08–3.72) | 0.027 | 1.40 (0.77–2.55) | N/S |
|Educational Status | | | | | | | | | | | | |
| ≤ Middle school | 1 (Ref) | 2.33 (1.12–4.86) | 0.024 |
| High school | 1.34 (0.90–2.00) | N/S | 1.45 (0.96–2.19) | N/S | 1.03 (0.70–1.52) | N/S | 1.05 (0.71–1.56) | N/S |
| College or higher | 1.26 (0.85–1.88) | N/S | 1.57 (1.04–2.37) | 0.034 | 1.00 (0.66–1.48) | N/S | 1.15 (0.78–1.71) | N/S |
|Monthly Income | | | | | | | | | | | | |
| < 3000$ | 1 (Ref) | 0.76 (0.48–1.20) | N/S |
| 3000$–6000$ | 1.16 (0.89–1.53) | N/S | 1.41 (1.06–1.88) | 0.017 | 1.07 (0.82–1.39) | N/S | 0.91 (0.70–1.18) | N/S |
| > 6000$ | 1.01 (0.61–1.69) | N/S | 1.96 (1.08–3.56) | 0.028 | 0.86 (0.52–1.42) | N/S | 0.73 (0.44–1.21) | N/S |
|Job Status | | | | | | | | | | | | |
| No | 1 (Ref) | 1.43 (1.07–1.92) | 0.017 |
| Yes | 1.18 (0.90–1.56) | N/S | 1.14 (0.84–1.55) | N/S | 1.21 (0.92–1.58) | N/S | 1.21 (0.92–1.59) | N/S |
|Household composition | | | | | | | | | | | | |
| No children | 1 (Ref) | 1.51 (1.15–2.00) | 0.004 |
| One or more children | 1.40 (1.08–1.83) | 0.012 | 1.08 (0.81–1.44) | N/S | 1.34 (1.06–1.61) | 0.014 | 1.08 (0.83–1.41) | N/S |

Abbreviations: OR odds ratio, Ref reference, N/S Non-significant
Table 3: Univariate analysis of perception of health tax and mass media regulation with smoking, drinking and BMI status

Regulation	Alcohol advertising	Smoking scene	Eating broadcasts	Food advertising	Health Tax										
	N (%)	OR (95% CI)	p-value	N (%)	OR (95% CI)	p-value	N (%)	OR (95% CI)	p-value						
Tobacco use															
Current smoker	156 (57.8)	1 (Ref)	183 (67.8)	1 (Ref)	131 (48.5)	1 (Ref)	103 (38.1)	1 (Ref)	178 (65.9)	1 (Ref)					
Ex-smoker	98 (68.1)	1.56 (1.02–2.38)	0.041	99 (68.8)	1.05 (0.68–1.62)	N/S	76 (52.8)	1.19 (0.79–1.78)	N/S	64 (44.4)	1.30 (0.86–1.96)	N/S	111 (77.1)	1.74 (1.09–2.76)	0.019
Non-smoker	510 (64.9)	1.35 (1.02–1.79)	0.037	586 (74.6)	1.39 (1.03–1.88)	0.031	416 (52.9)	1.19 (0.91–1.57)	N/S	362 (46.1)	1.38 (1.04–1.84)	0.024	572 (72.8)	1.38 (1.03–1.86)	0.033
Drink frequency															
> 1 time per week	263 (63.5)	1 (Ref)	296 (71.5)	1 (Ref)	203 (49.0)	1 (Ref)	181 (43.7)	1 (Ref)	297 (71.7)	1 (Ref)					
≤ 1 time per week	501 (63.7)	0.99 (0.77–1.27)	N/S	572 (72.8)	0.94 (0.72–1.22)	N/S	420 (53.4)	0.84 (0.66–1.06)	N/S	348 (44.3)	0.98 (0.77–1.24)	N/S	564 (71.8)	1.00 (0.77–1.30)	N/S
BMI															
Normal weight	374 (63.3)	1 (Ref)	423 (71.6)	1 (Ref)	315 (53.3)	1 (Ref)	263 (44.5)	1 (Ref)	424 (71.7)	1 (Ref)					
Underweight	19 (46.3)	0.50 (0.27–0.95)	0.033	28 (68.3)	0.86 (0.43–1.69)	N/S	14 (34.1)	0.45 (0.23–0.88)	0.020	15 (36.6)	0.72 (0.37–1.39)	N/S	27 (65.9)	0.76 (0.39–1.48)	N/S
Overweight	216 (63.5)	1.02 (0.77–1.34)	N/S	243 (71.5)	1.00 (0.74–1.34)	N/S	175 (51.5)	0.92 (0.70–1.20)	N/S	151 (44.4)	1.00 (0.77–1.31)	N/S	253 (74.4)	1.15 (0.85–1.55)	N/S
Obese	155 (68.0)	1.23 (0.88–1.70)	N/S	174 (76.3)	1.28 (0.90–1.83)	N/S	119 (52.2)	0.98 (0.72–1.33)	N/S	100 (43.9)	0.97 (0.71–1.32)	N/S	157 (68.9)	0.87 (0.62–1.21)	N/S

Abbreviations: OR odds ratio, Ref reference, N/S Non-significant
with previous studies [25–27]. Among East Asian countries, there is scarce data regarding public support in this area. Korea has a similar smoking rate (22.5%) to China (23.3%) and Japan, (21.7%) but has a higher level of tobacco regulation due to the government’s strong will and public support. While most countries that have high rates of tobacco, alcohol, and obesogenic-food consumption are cautious in introducing regulations and tax policies, our data on public support are promising.

Individual factors such as age, sex, and education level can have an influence on the support of public health policies [25, 28]. McMillen et al. reported that older populations in the US showed higher levels of supporting regulatory tobacco policies, [28] and women to be more likely to support both regulatory policies on tobacco [28] and alcohol, [29] but opposing regulatory SSB policies. [25] In some studies, the higher the level of education, the higher the degree of support [25, 30]. However, in this study, the multivariate model showed that public support and opposition to regulations were not related to age, sex, or education. In another study, high-income urban Koreans seemed to consume more SSB than others [31]. Even highly educated Korean men consumed higher rates of tobacco and alcohol, as they are regarded as a way to promote social ties in competitive workplaces and military service [6, 32].

In our study, non-smokers are more supportive of media regulation and health taxes, which is consistent with previous studies [4–6, 33]. Alcohol consumption and BMI show no correlation with being for or against taxes and regulation. Individuals who were married or living with a partner were more likely to support the regulation of eating broadcasts and taxes on unhealthy products. Individuals with one or more children also showed support for regulating alcohol advertising and smoking scenes in the media. In regards to these results, we find it reasonable to build a supportive base for regulation and taxes through family-based advocacy and by extending children- and youth-centered policies to the rest of the population.

Table 4

Regression	Alcohol advertising	Smoking scene	Eating broadcasts	Food advertising	Health Tax		
	OR (95% CI)	p-value	OR (95% CI)	p-value	OR (95% CI)		
Exposure to alcohol advertising	No 1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)		
Yes 2.05 (1.62–2.61)	< 0.001	1.45 (1.15–1.82)	0.002	1.35 (1.07–1.70)	0.011	1.26 (0.98–1.62)	N/S
Influenced by alcohol advertising	No 1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)		
Yes 4.45 (3.41–5.81)	< 0.001	2.82 (2.23–3.58)	< 0.001	3.04 (2.39–3.85)	< 0.001	2.04 (1.57–2.65)	< 0.001
Exposure to smoking scene	No 1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)		
Yes 1.97 (1.52–2.54)	< 0.001	2.12 (1.66–2.70)	< 0.001	2.00 (1.57–2.54)	< 0.001	1.98 (1.50–2.62)	< 0.001
Influenced by smoking scene	No 1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)		
Yes 2.94 (2.26–3.82)	< 0.001	2.58 (2.03–3.28)	< 0.001	2.53 (1.99–3.21)	< 0.001	2.28 (1.72–3.00)	< 0.001
Exposure to eating broadcasts	No 1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)		
Yes 2.24 (1.73–2.89)	< 0.001	2.20 (1.71–2.85)	< 0.001	1.39 (1.08–1.79)	0.011	1.69 (1.30–2.21)	< 0.001
Influenced by eating broadcasts	No 1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)		
Yes 2.07 (1.62–2.64)	< 0.001	2.65 (2.08–3.38)	< 0.001	2.08 (1.62–2.66)	< 0.001	1.46 (1.13–1.89)	0.004
Exposure to food advertising	No 1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)		
Yes 1.53 (1.18–1.99)	0.001	1.80 (1.39–2.34)	< 0.001	1.68 (1.29–2.19)	< 0.001	1.77 (1.34–2.32)	< 0.001
Influenced by food advertising	No 1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)	1 (Ref)		
Yes 2.15 (1.69–2.74)	< 0.001	2.33 (1.84–2.95)	< 0.001	3.48 (2.71–4.48)	< 0.001	1.85 (1.44–2.39)	< 0.001

Abbreviations: OR odds ratio, Ref reference, N/S Non-significant
Table 5	Forward Stepwise regression analysis with perception of health tax and mass media regulation								
Regulation	Alcohol advertising	Smoking scene	Eating broadcasts	Food advertising	Health Tax				
	aOR (95% CI)	p-value							
Age									
20–39	N/S	N/S	N/S	N/S	1 (Ref)				
≥ 40	1.39 (1.01–1.91)	0.042							
Marital Status									
Not married	N/S	N/S	1 (Ref)	N/S	1 (Ref)				
Divorced/Widowed/Separated	1.43 (1.07–1.92)	0.016			2.39 (1.23–4.65)	0.010			
Married/Cohabited							2.21 (1.03–4.71)	0.041	
Monthly Income									
< 3000$	N/S	1 (Ref)	N/S	N/S	N/S	N/S	N/S	N/S	
3000$–6000$	1.51 (1.11–2.04)	0.008							
> 6000$	2.29 (1.22–4.30)	0.010							
Job Status									
No	N/S	N/S	N/S	N/S	N/S	N/S	1 (Ref)	1.50 (1.12–2.01)	0.006
Yes									
Household composition									
No children	1 (Ref)	1 (Ref)	N/S	N/S	N/S	1 (Ref)	1.50 (1.15–1.97)	0.004	
One or more children	1.49 (1.12–1.98)	0.006	1.52 (1.16–1.98)	0.003	1.50 (1.15–1.97)	0.004			
Smoking									
Current smoker	N/S	1 (Ref)	N/S	N/S	N/S	1 (Ref)			
Ex-smoker	1.07 (0.67–1.70)	N/S	1.55 (0.96–2.52)	N/S	1.55 (1.12–2.14)	0.008			
Non-smoker	1.52 (1.10–2.09)	0.011							
Exposure to alcohol advertising									
No	N/S	1 (Ref)	N/S	N/S	N/S	1 (Ref)	N/S	N/S	
Yes	1.60 (1.21–2.13)	0.001	1.52 (1.14–2.03)	0.004					
Influenced by alcohol advertising									
No	1 (Ref)	N/S	1 (Ref)	N/S	N/S	N/S	N/S	N/S	
Yes	4.01 (3.06–5.25)	< 0.001	1.80 (1.34–2.44)	< 0.001	2.32 (1.76–3.06)	< 0.001			
Exposure to smoking scene									
No	N/S								
Yes	1.34 (1.02–1.75)	0.037	1.53 (1.16–2.03)	0.003	1.49 (1.09–2.02)	0.012			
Regulation	Alcohol advertising	Smoking scene	Eating broadcasts	Food advertising	Health Tax				
--------------------------------	---------------------	---------------	-------------------	------------------	------------				
	aOR (95% CI)	p-value	aOR (95% CI)	p-value	aOR (95% CI)	p-value			
Influenced by smoking scene									
No	N/S	1 (Ref)	1 (Ref)	N/S	1 (Ref)				
Yes		2.79 (2.05–3.81)	< 0.001	1.40 (1.02–1.91)	0.036				
Exposure to eating broadcasts									
No	1 (Ref)	1 (Ref)	1 (Ref)	N/S	1 (Ref)				
Yes	1.74 (1.33–2.28)	< 0.001	1.96 (1.47–2.62)	< 0.001					
Influenced by eating broadcasts									
No	N/S	N/S	1 (Ref)	N/S	N/S				
Yes		1.74 (1.31–2.32)	< 0.001						
Influenced by food advertising									
No	N/S	N/S	N/S	1 (Ref)	1 (Ref)				
Yes				2.72 (2.08–3.57)	< 0.001				

Abbreviations: aOR adjusted odds ratio, Ref reference, N/S Non-significant

*Multiple logistic regression analysis including variables identified as independent predictors that showed statistical significance in univariate analysis.
In the present study, exposure to the advertising of unhealthy products resulted in a tendency towards support for its regulation, which was clearly not what industries and advertising companies intended. Meyvis et al. described that irrelevant information systematically weakens the consumers’ expectations that the product will provide the promised benefit [34]. In Korea, alcohol advertising exposure in 2016 included terrestrial TV (32, 313 times in 2016), cable TV (277,769 times), and general service TV (including IPTV, satellite TV, 2897 times) which resulted in 890 instances of exposure per day [35]. From our perspective, this indicates that the public is not responding positively to alcohol advertising. Children and adolescents whose judgement abilities are not yet fully developed are most susceptible to the influences of such advertising [14]. In addition to the exposure to alcohol advertising, exposure to food advertising increases food intake, BMI, body fat percentage, and trunk adiposity, especially in children and adolescent [36, 37]. Regulations and subsidies that encourage companies to produce healthier products and advertise health benefits would be effective and create healthier environments [38].

Regulatory tobacco interventions are underway in Korea, such as the introduction of the national legal minimum age and the regulation of off-premise sales and smoking bans in public places that have been in place since 2016 [12]. Warning messages on cigarette packs increased in size and were made more graphic starting in 2015 [12]. Prices of cigarettes almost doubled due to taxation in early 2015 [12]. Alcohol regulation has taken its first steps towards enforcement, with strong public support, banning advertisements by models drinking alcohol and placement of beer gulping sound effects to entice viewers starting as early as 2020.

Over the past several years, Korea’s obesity-related policies have focused on youths, which entails a ban on offering SSB in schools. EDNP foods advertising are currently unavailable on TV between 5 pm and 7 pm, [39] and recently, the government has begun to expand its anti-obesity policies for the entire population, which includes the regulation of TV eating broadcasts. After realizing that viewers were interested in ‘the act of eating itself,’ food companies began to engage in marketing activities in which entertainers and movie stars consume their products on TV for public broadcasting [19]. For example, when a famous female singer ate ‘Gopchang (Grilled Beef Tripe)’ in her documentary show, the total sales of it increased 600% in 2018 [40]. However, regulation remains controversial as claims have been made that it violates the basic rights of the people. Likewise, taxes on sugar, salt, or fat are generally regarded as being unlikely in the near future in Korea, although taxes that increase their prices by 20% or more could reduce the consumption of unhealthy products [41]. Government policies had continued to support the growth of agricultural production, food industries, and distributors spurred by existing perspectives on food security, economics, and trades. However, the recent role of the government has changed to coordinate multidimensional and multifaceted strategies to improve the population’s health. There should be a greater emphasis on strengthening a supportive base through family-centered advocacy and broaden its reach to the entire population by further regulations and taxes on alcohol, SSB, and EDNP in Korea.

Our study has several limitations. First, the cross-sectional nature of our study design indicates that only limited causal associations can be made. Second, several pieces of information were collected from the self-reported questionnaires, so reporting bias cannot be excluded, and comparison with other country results is limited. Third, this study was limited due to a lack of information on participants’ health status, as well as their in-depth knowledge of possible future effects of complex health policies and media regulations related to health.

Conclusions

We found our nationally sampled population showed strong public support for the taxation and regulation of unhealthy products. Whether an individual tended to support or oppose taxation and regulation was not associated with age, sex, and education. However, individuals that were married, living with a partner, or had one or more children showed support for the regulation of the media and for introducing health taxes. Excessive exposure to the advertising of unhealthy products resulted in individuals being more supportive of its regulation. We recommend introducing regulations and subsidies that would encourage companies to produce healthier products and advertise their health benefits.

Additional file

Additional file 1: Questionnaire. Questionnaire for: 1) Opinions on alcohol advertisement, smoking scenes portrayed in the media, eating broadcasts, and food advertisement regulations. 2) Exposure to alcohol advertising, smoking scenes portrayed by the media, eating broadcasts, and food advertising and their influence on health habits. 3) Health tax. (DOCX 13 kb)

Abbreviations

BMI: Body Mass Index; EDNP: Energy Dense Nutrition Poor; IPTV: Internet Protocol Television; OECD: Organization for Economic Cooperation and Development; SSB: Sugar-Sweetened Beverages; WHO: World Health Organization

Acknowledgements

Not applicable.

Authors’ contributions

YHY contributed to the ideas in this paper. KHK and EKK equally contributed the writing and analyses. YHY contributed to the design, interpretation of the data and analyses and had valuable critics of the draft. All authors have read and approved the final manuscript.
Funding
This study was supported by grants from Seoul National University, Seoul, Korea (grant numbers 80020160151). None of the funding organizations had any role in the design of the study, analysis, or interpretation of the data, or in the preparation, review, and approval of the manuscript.

Availability of data and materials
The raw data are being kept in the custody of Seoul National University Medical College and are available upon request (contact corresponding author YHY or first author EKKS).

Ethics approval and consent to participate
Informed consent to participate in this public survey is obtained from all participants. Interested and eligible participants receive information about the study of verbal recording. The entire process of this study was approved by the Institutional Review Board of Seoul National University Hospital (IRB No. 1804–024-934).

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Family Medicine, and Institute for Public Health and Medical Service, Seoul National University Hospital, Seoul, South Korea. 2Department of Family Medicine and Department of Biomedical Science, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 110–799, South Korea.

Received: 2 December 2018 Accepted: 24 May 2019
Published online: 30 May 2019

References
1. OC GBD. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017;377(1):13–27.
2. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair Rohani H, Amann M, Anderson HR, Andrews KG, Aryee M, et al. A comparative risk assessment of burden of disease and injury attributable to 7 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the global burden of disease study 2010. Lancet (London, England). 2012;380(9859):2246–60.
3. World Health Organization. Global status report on alcohol and health; 2013. http://www.who.int/substance_abuse/publications/global_alcohol_report/gsr_2013/en/
4. Division of Chronic Disease Control, Korea Centers for Disease Control and Prevention. Korea Health Statistics 2016, Korea National Health and Nutrition Examination Survey. http://knhanes.cdc.go.kr/
5. Kim O, Jeon HO. Relationship between obesity, alcohol consumption, and physical activity of male office workers in South Korea. Nurs Health Sci. 2011;13(4):457–62.
6. Allem JP, Ayers JW, Irvin VL, Hofstetter CR, Hovell MF. South Korean military service promotes smoking: a quasi-experimental design. Yonsei Med J. 2012;53(2):433–8.
7. Sassi F, Belloni A, Capobianco C. The role of fiscal policies in health promotion, 2013.
8. Sassi F, Belloni A. Fiscal incentives, behavior change and health promotion: what place in the health-in-all-policies toolkit? Health Promot Int. 2014;29(Suppl 1):103–12.
9. Zhen C, Finkelstein EA, Nonnemaker J, Kanss S, Todd JE. Predicting the effects of sugar-sweetened beverage taxes on food and beverage demand in a large demand system. Am J Agric Econ. 2014;96(1):1–25.
10. Gruber J, Sen A, Stabile M. Estimating price elasticities when there is smuggling: the sensitivity of smoking to price in Canada. J Health Econ. 2002;21(5):621–42.
11. Organization WH. WHO report on the global tobacco epidemic 2015: raising taxes on tobacco: World Health Organization; 2015.
12. Ministry of Health and Welfare, Korea. Anti-smoking policy in Korea. http://www.nosmokeguide.go.kr/index.do
13. Swinburn BA, Sacks G, Hall KD, McPherson K, Finegood DT, Moodie ML, Gortmaker SL. Obesity 1: the global obesity pandemic: shaped by global drivers and local environments. Lancet. 2011;378(9793):804–14.
14. Boyland EJ, Nolan S, Kelly B, Tudur-Smith C, Jones A, Halford JC, Robinson E. Advertising as a cue to consume: a systematic review and meta-analysis of the effects of acute exposure to unhealthy food and nonalcoholic beverage advertising on intake in children and adults. Am J Clin Nutr. 2016;103(2):519–33.
15. LeeAnn T, Hoe NS, Azahadi O, Tilakavati K. What’s on YouTube? A case study on food and beverage advertising in videos targeted at children on social media. Child Obes. 2018;14(5):280–90.
16. Brownbill AL, Miller CL, Braunack-Mayer AJ. The marketing of sugar-sweetened beverages to young people on Facebook. Aust N Z J Public Health. 2018.
17. Jin SV. Interactive effects of Instagram Foodies’ Hashtagged Foodporn and peer Users’ eating disorder on eating intention, envy, Parasocial interaction, and online friendship. Cyberpsychol Behav Soc Netw. 2018;21(3):157–67.
18. Wikipedia, The Free Encyclopedia. Mukbang. https://en.wikipedia.org/wiki/Mukbang
19. YK Kim BK, YY Park, HK Park Foodporn (Mukbang) Marketting. In., vol. 51: Korea marketing association; 2017: 58–70.
20. Kim S-J. If you eat watcing ‘food porn’ Mukbang...You are already addicted. In: Health Chosun. Jung-gu, Seoul: (주)신한스학. 2018.
21. Burstein P. The impact of public opinion on public policy: a review and an agenda. Polit Res Quart. 2003;56(1):29–40.
22. World HO. Taxes on sugary drinks: why do it? World Health Organization; 2017.
23. Filippidis FT, Agaku IT, Vardavas CI, Majeed A. The association between economic recession and public support for increased tobacco taxation in 27 European countries. Scand J Public Health. 2014;42(7):589–92.
24. Curry LE, Rogers T, Williams P, Honsi G, Willett J, Schmitt CL. Public attitudes and support for a sugar-sweetened beverage tax in America’s heartland. Health Promot Pract. 2018;19(3):418–26.
25. Julia C, Mejean C, Vicari F, Peneau S, Hercberg S. Public perception and characteristics related to acceptance of the sugar-sweetened beverage taxation launched in France in 2012. Public Health Nutr. 2015;18(14):2679–88.
26. Berry NM, Carter P, Nolan R, Dar Grande E, Booth S. Public attitudes to government intervention to regulate food advertising, especially to children. Health Promot J Austr. 2017;28(1):85–7.
27. Maina WK, Kitonyo R, Ogwell AE. Using findings from a public opinion poll to build political support for tobacco control policy in Kenya. Tob Control. 2013;22(6):423–6.
28. Winickoff JP, McMillen R, Tansi S, Wilson K, Gottlieb M, Crane R. Public support for raising the age of sale for tobacco to 21 in the United States. Tob Control. 2016;25(3):284–8.
29. Roberts B, Stickleby A, Murphy A, Kizilova K, Dal Grande E, Booth S. Public attitudes to government intervention to regulate food advertising, especially to children. Health Promot J Austr. 2017;28(1):85–7.
30. Donaldson EA, Cohen JE, Rutkow L, Villanti AC, Kanarek NF, Barry CL. Public support for a sugar-sweetened beverage tax and pro-tax messages in a mid-Atlantic US state. Public Health Nutr. 2015;18(12):2263–73.
31. Lim H, Lee HJ, Choue R, Wang Y. Trends in fast-food and sugar-sweetened beverages to young people on Facebook. Aust N Z J Public Health. 2018.
32. Boyland EJ, Nolan S, Kelly B, Tudur-Smith C, Jones A, Halford JC, Robinson E. Advertising as a cue to consume: a systematic review and meta-analysis of the effects of acute exposure to unhealthy food and nonalcoholic beverage advertising on intake in children and adults. Am J Clin Nutr. 2016;103(2):519–33.
33. Gardner B, West R. Public support in England for raising the price of cigarettes to fund tobacco control activities. Tob Control. 2016;25(3):284–8.
34. Roberts B, Stickleby A, Murphy A, Kizilova K, Dal Grande E, Booth S. Public attitudes to government intervention to regulate food advertising, especially to children. Health Promot J Austr. 2017;28(1):85–7.
35. Lim H, Lee HJ, Choue R, Wang Y. Trends in fast-food and sugar-sweetened beverage consumption and their association with social environmental status in South Korea. J Acad Nutr Diet. 2018;118(7):1228–1236 e1221.
36. Park JH, Lee CK, Kim SY, Suh C, Kim KH, Kim JH, Son BC, Lee JT, Yu SD, Choi W, et al. Decline in non-smoking workers’ urine cotinine levels after increased smoking regulation in Korea. Ann Occup Environ Med. 2015;27(17.
37. Gardner B, West R. Public support in England for raising the price of cigarettes to fund tobacco control activities. Tob Control. 2010;19(4):331–3.
38. Meyvis T, Janieziewski C. Consumers’ benefits about product benefits; the effect of obviously irrelevant product information. J Consum Res. 2002;28(4):618–35.
39. Yearly frequency of alcohol advertising in TV channels (terrestrial, cable, and general service TV. https://www.khealtl.or.kr/board/menuId=MENU000649&stidl=null
40. Chen YY, Chiu YC, Ting TT, Liao HY, Chen WJ, Chen CY. Television viewing and alcohol advertising with alcohol expectancies among school-aged children in Taiwan. Drug Alcohol Depend. 2016;162:219–26.
37. Powell LM, Wada R, Khan T, Emery SL. Food and beverage television advertising exposure and youth consumption, body mass index and adiposity outcomes. Can J Econ. 2017;50(2):345–64.
38. Lee Y, Yoon J, Chung SJ, Lee SK, Kim H, Kim S. Effect of TV food advertising restriction on food environment for children in South Korea. Health Promot Int. 2017;32(1):26–34.
39. Kim S, Lee Y, Yoon J, Chung SJ, Lee SK, Kim H. Restriction of television food advertising in South Korea: impact on advertising of food companies. Health Promot Int. 2013;28(1):17–25.
40. Paek SJ. This scene caused "Crazy fan of GopChang (grilled beef tripe)" today. In: Chosun news. 2018.
41. Wright A, Smith KE, Hellowell M. Policy lessons from health taxes: a systematic review of empirical studies. BMC Public Health. 2017;17(1):583.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.