Observation and Modeling of the January 2009 West Papua, Indonesia Tsunami

YUSHIRO FUJII,1 KENJI SATAKE,2 and YUJI NISHIMAE3

Abstract—We modeled a tsunami from the West Papua, Indonesia earthquakes on January 3, 2009 ($M_w = 7.7$). After the first earthquake, tsunami alerts were issued in Indonesia and Japan. The tsunami was recorded at many stations located in and around the Pacific Ocean. In particular, at Kushimoto on Kii Peninsula, the maximum amplitude was 43 cm, larger than that at Manokwari on New Guinea Island, near the epicenter. The tsunami was recorded on near-shore wave gauges, offshore GPS sensors and deep-sea bottom pressure sensors. We have collected more than 150 records and used 72 stations’ data with clear tsunami signals for the tsunami source modeling. We assumed two fault models (single fault and five subfaults) which are located to cover the aftershock area. The estimated average slip on the single fault model (80×40 km) is 0.64 m, which yields a seismic moment of 1.02×10^{20} Nm ($M_w = 7.3$). The observed tsunami waveforms at most stations are well explained by this model.

Key words: West Papua, Indonesia 2009 earthquake, tide gauge, wave gauge, GPS buoy, ocean bottom tsunami sensor, tsunami simulation.

1. Introduction

A large earthquake occurred on the north coast of Doberai Peninsula, West Papua, Indonesia (0.408°S, 132.886°E, $M_w = 7.7$ at 19:43:50 UTC according to USGS) on January 3, 2009. This earthquake was followed by the second event (0.707°S, 133.361°E, $M_w = 7.4$ at 22:33:40 UTC, according to USGS) 3 h later at about 60 km southeast. Focal mechanisms of thrust type by USGS’s CMT solutions and the shallow depth of about 20 km indicate that these events occurred on the plate boundary along the Manokwari Trench (e.g. OKAI, 1999) where the Pacific Plate is subducting beneath the Australian Plate (Fig. 1).

After the first event, Meteorological, Climatological and Geophysical Agency, Indonesia (BMKG) issued an alert for a local tsunami potential near the source region. According to the field survey of the coastal area, northern West Papua, near the sources (MUHARI et al., 2009), the run-up heights were up to 1.97 m. The tsunami did not cause much damage to houses or fisheries facilities, and there were no casualties.

Far from the West Papua coast, the Japan Meteorological Agency (JMA) issued a Tsunami Advisory to the Izu-Bonin Islands, the southwestern coasts of Honshu and Shikoku Islands facing to Pacific Ocean, eastern coast of Kyushu Island, and Satsunan Islands (Fig. 2). The observed tsunamis at tide gauges along the Japanese coast range from a few to several tens of centimeters. The maximum tsunami amplitude of 43 cm was recorded at Kushimoto.

Around New Guinea Island, many earthquakes have occurred in the past. The earthquakes in 1996, 1998, September and October 2002, which generated tsunamis are noted with their labels in Fig. 1. The 1996, 2002 September and October tsunamis reached coasts in Japan, and were observed at some tide gauges. For the 1996 and September 2002 events, maximum tsunami heights of 1.04 m at Chichijima and 0.20 m at Naze were recorded, respectively (JMA, 2002, 2009).

The 2009 tsunamis were recorded not only at highly dense coastal tide gauges and near shore wave gauges but also at GPS buoys and ocean bottom tsunami sensors (OBTS) recently installed. For example, JMA’s OBTS system in Tonankai was just started in November 2008 to monitor oceanographic phenomena such as tides, wind waves or tsunamis.
In this paper, we describe the observed tsunami heights and waveforms, and model the tsunami to estimate the tsunami source using those data.

2. Observed Tsunamis

Tsunamis from the 2009 West Papua, Indonesia earthquakes were recorded on many coastal tide gauges in and around the Pacific Ocean (Fig. 3), as well as near-shore wave gauges, off-shore GPS buoys, and cabled OBTS (pressure gauges) off the Japanese coasts (Fig. 4). We have collected 105 tide gauge waveforms including tsunami signals from Indonesia’s National Coordination Agency for Surveys and Mapping (BAKOSURTANAL), JMA, Japan Coastal Guard (JCG), Japan’s Geographical Survey Institute (GSI), and USA’s West Coast/Alaska Tsunami Warning Center (WCATWC). The tsunamis were also recorded at 29 near-shore wave gauges and eight offshore GPS buoys operated by Japan’s Nationwide Ocean Wave information network for Ports and HA rbourS (NOW-PHAS). Tsunami sensors installed on the ocean bottom by JMA and the Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 11 sensors in total (Boso 1, one of JMA’s OBTS, malfunctioned), successfully recorded tsunami signals as well as seismic signals. Among these data, we selected 50 tide gauges, 10 wave gauges, 3 GPS buoys and 9 OBTS, which clearly recorded tsunami signals to be used for tsunami modeling. The locations of these selected stations, 72 in total, are listed in Table 1.

Figures 3b and 4b show the maximum tsunami heights (positive values of zero-to-peak in tsunami waveforms after the data processing which will be described later) at the observation stations. The tsunami heights are larger along the Izu-Bonin ridge system and the southern coasts of Japan, because of the waveguide effect (trapped wave energy in shallow ridge region) as pointed out by SATAKE and KANAMORI (1991) and S ATAKE et al (1992). The tide gauge, wave gauge, GPS buoy and OBTS records usually include low frequency ocean tides and high frequency waves such as seismic waves or wind waves. We filter these records to retrieve the tsunami signals in the following way. First, we approximate the tidal component as a polynomial function, and remove the tides from the original records. Then, we apply a moving average with a box-car function which has a band width of three sampling points to reduce the high frequency noises. Figure 5 shows the processed records as examples of
The observed tsunami waveforms indicate that the tsunami amplitudes range from a few to 40 cm at the tide gauges, a few to 10 cm at the wave gauges, up to 120 cm.
Figure 4

a Same as Fig. 3a, but for the region around Japan. The sources of the 2009 West Papua, Indonesia earthquakes are far south of this map (see Fig. 3a). b Same as Fig. 2b, but for the region around Japan
Table 1
List of tide gauges, wave gauges, GPS buoys and OBTS

Station*	Latitude (deg:min:s)	Longitude (deg:min:s)	Water depth (m)	Record sampling	MTH (m)**	Agencies***
Manokwari	0:51:25S	134:04:38E	1 min	0.32	BAKO	
Biak	1:10:40S	136:03:21E	3 min	0.19	BAKO	
Jayapura	2:32:42S	140:42:46E	1 min	0.088	BAKO	
Yap	9:18:18N	138:04:37E	1 min	0.014	UH	
Saipan	15:13:36N	145:44:31E	1 min	0.083	UH	
Chichijima	27:06N	142:12E	15 s	0.36	JMA	
Hachijojima	33:07:36N	139:48:28E	30 s	0.094	JCG	
Miyakejima	34:03N	139:33E	15 s	0.22	JMA	
Kozushima	34:12:18N	139:08:12E	30 s	0.23	JCG	
Soma	37:50N	140:58E	30 s	0.094	GSI	
Katsuura	35:08N	140:15E	30 s	0.12	GSI	
Mera	34:55N	139:50E	15 s	0.28	JMA	
Boso 2 (OBTS)	34:44:57N	140:45:29E	2,098	1 s	0.0087	JMA
Boso 3 (OBTS)	34:47:58N	140:30:42E	1,912	1 s	0.012	JMA
Yokosuka	35:17:05N	139:39:17E	30 s	0.084	JCG	
Aburatsubo	35:10N	139:37E	30 s	0.25	GSI	
HPG1 (OBTS)	35.00:11N	139:13:29E	1,176	1 s	0.017	JAMS
Ito	34:53N	139:08E	30 s	0.043	GSI	
Shimoda	34:41N	138:58E	0.5 s	0.30	NAW	
Shimoda (WG)	34:38:48N	138:57:11E	51.1	0.5 s	0.12	NAW
Irozaki	34:37N	138:51E	15 s	0.092	JMA	
Tago	34:48N	138:46E	30 s	0.035	GSI	
Uchiura	35:01N	138:53E	15 s	0.098	JMA	
Shimizuminato	35:01N	138:31E	15 s	0.044	JMA	
Yaizu	34:52N	138:20E	30 s	0.13	GSI	
Omaezaki (WG)	34:37:17N	138:15:33E	22.8	0.5 s	0.045	NAW
Tokai (OBTS)	33:45:54N	137:35:23E	2,202	1 s	0.013	JMA
Tonankai 1 (OBTS)	33:39:15N	136:50:26E	2,050	1 s	0.0079	JMA
Tonankai 2 (OBTS)	33:51:28N	137:21:34E	1,120	1 s	0.013	JMA
Tonankai 3 (OBTS)	34:13:02N	137:41:31E	1,103	1 s	0.0098	JMA
Maisaka	34:41N	137:37E	15 s	0.060	JMA	
Owase	34:05N	136:12E	15 s	0.20	JMA	
Kumano	33:56N	136:10E	15 s	0.32	JMA	
Mie owase (GPS)	33:54:08N	136:15:34E	210	1 s	0.049	NAW
Uragami	33:34N	135:54E	15 s	0.23	JMA	
Kushimoto	33:29N	135:46E	15 s	0.43	JMA	
Shionomisaki (WG)	33:25:59N	135:44:50E	54.7	0.5 s	0.044	NAW
Shirahama	33:41N	135:23E	15 s	0.13	JMA	
Gobo	33:51N	135:10E	15 s	0.23	JMA	
Wakayama	34:13N	135:09E	15 s	0.067	JMA	
Wakayama SW (GPS)	33:38:32N	135:09:24E	201	1 s	0.033	NAW
Komatsushima	34:01N	134:35E	15 s	0.32	JMA	
Awayuki	33:46N	134:36E	15 s	0.097	JMA	
Murotomisaki	33:16N	134:10E	15 s	0.24	JMA	
MPG1 (OBTS)	32:23:27N	134:28:31E	2,308	1 s	0.0095	JAMS
MPG2 (OBTS)	32:38:35N	134:21:53E	1,507	1 s	0.013	JAMS
Kochi	33:30N	133:34E	15 s	0.12	JMA	
Kochi (WG)	33:28:57N	133:35:13E	24.1	0.5 s	0.071	NAW
Susaki	33:23N	133:18E	0.5 s	0.22	NAW	
Kure	33:20N	133:15E	30 s	0.16	GSI	
Kamikawaguchi (WG)	33:01:54N	133:03:29E	27.9	0.5 s	0.10	NAW
Tosashimizu	32:47N	132:58E	15 s	0.20	JMA	
Kochi W (GPS)	32:37:52N	133:09:21E	309	1 s	0.064	NAW
Hosojima	32:26N	131:40E	30 s	0.14	GSI	
Hosojima (WG)	32:26:36N	131:43:42E	48.3	0.5 s	0.040	NAW
5 cm at the GPS buoys, and up to 1.5 cm at the OBTS, respectively. These differences of the tsunami amplitude are basically due to the differences in water depth at the observation point. The tide gauges are installed along coastal areas at depths of a few to several meters, wave gauges at depths of about 10 to 50 m, GPS buoys at depths of about 200 m, and OBTS at depths of about 1,000–4,000 m. The tsunami with maximum amplitude of 36 cm was observed at Chichijima located on Izu-Bonin ridge, which is comparable to that observed at Manokwari, the nearest tide gauge to the sources.
3. Tsunami Modeling

3.1. Bathymetry Data

Since phase velocities of shallow-water (tsunami) waves depend on water depth, accurate bathymetric data are essential for tsunami numerical computations. For the global ocean, a gridded bathymetry dataset is available from GEBCO (British Oceanographic Data Centre, 1997). The GEBCO data was newly updated with 30 arc-second grid resolution (GEBCO_08). We use this bathymetry data for calculating tsunami waveforms or Green functions.

3.2. Fault Models

We first assume a single fault for the first event and estimate the average slip on the fault. Then, in order to estimate the extent of the tsunami source and its slip distribution, we divide the tsunami source into five subfaults to cover the area of aftershocks that occurred during 3 h after the first event but before the second event (Fig. 6). A fault model for the second event is not considered, because the tsunami from the second event overlapped with the later phases of the first event’s tsunami, which made it difficult to distinguish the arrival of the second event’s tsunami from the observed records.

We perform two sets of inversion to estimate the tsunami source using the single fault model and five-subfault model. The size of the fault is 80 × 40 km for the single fault model. For the five subfault model, each subfault is 20 × 40 km (Fig. 6 and Table 2). The focal mechanism of strike 112°, dip 36°, slip angle 77°, from the USGS CMT solution of the first event, and the top depths of 10 km, are adopted for all the fault models. We assume an instantaneous rupture for the two fault models, because the tsunami propagation velocity is 0.1 km/s for the water depth of 1,000 m, much smaller than the typical rupture velocity of a few km/s. The epicenter is located between subfaults 2 and 3.

3.3. Finite-Difference Computation

In order to calculate tsunami propagation from each fault to the stations, the linear shallow-water, or
long-wave, equations were numerically solved by using a finite-difference method (Satake, 1995). Details of the governing equations without Coriolis force are described in Fujii and Satake (2007). The computation area extends from 120°E to 155°E and 5°S to 45°N (rectangular area in Fig. 3a. The bathymetric grid interval is uniformly 30′ (30 arc-seconds, about 0.9 km), hence there are 4,200 × 6,000 grid points along the longitude and latitude directions, respectively. We set a minimum water depth on the coasts to 2 m. Because the observed tsunami heights of the West Papua tsunami were mostly up to a few tens of centimeters at the tide gauges, the small amplitude assumption in linear shallow-water long-wave equations is valid. We made the computations of 9 h for tsunami propagation. A time step of 1 s is used to satisfy the stability condition for the finite-difference method.

As an initial condition for the tsunami numerical computation, static deformation of the seafloor is calculated for a rectangular fault model (Okada, 1985) and used assuming that the initial water height distribution is the same as that of seafloor. We also consider the effects of coseismic horizontal displacement in regions of steep bathymetric slope (Tanikawa and Satake, 1996). We assumed a constant rise time (or slip duration) of 30 s for the single fault model and each subfault. Waveforms at the observed stations were computed and used as Green functions for the inversion.

3.4. Tsunami Waveform Inversions

We used the non-negative least square method (Lawson and Hanson, 1974) and delete-half jackknife method (Tichelaar and Ruff, 1989) to estimate slips and errors, respectively. The observed tsunami waveforms were resampled at 1 min intervals, hence synthetic waveforms are also computed at 1 min interval. We used the first cycles of the tsunami waveforms for the inversions, because the limited resolution of bathymetry data near coastal tide gauges and near-shore wave gauges may prevent accurate modeling of later phases such as reflected waves. The total number of data points used for the inversions is 641. We weight the OBTS data ten times, GPS buoy data five times, and wave gauge data three times greater than the other tide gauge data, because the amplitudes of near-shore or offshore records are smaller, by an order of magnitude as described in Sect. 2, than those of tide gauge records.

4. Results and Discussions

The inversion results are shown in Table 2 and Fig. 6. The estimated slip on the single fault model (Fig. 6a) is 0.64 m, which yields a seismic moment of 1.02×10^{20} Nm ($M_w = 7.3$) assuming a rigidity of 5.0×10^{10} N/m². For the five-subfault model (Fig. 6b), a moderate slip of 0.70 m was estimated near the epicenter (subfault 3) and a large slip of 2.07 m was located on the eastern end of the source (subfault 5). The amount of largest slips at the eastern end of the source region in the five-subfault models may not be well resolved because of the large error (1.10 m; see Table 2). The total seismic moment is calculated as 1.11×10^{20} Nm ($M_w = 7.3$) for the five-subfault model, assuming the same rigidities of 5.0×10^{10} N/m² for all the subfaults. Regardless of the fault models, the estimated moment magnitude is smaller than that inferred from seismic data (cf. $M_w = 7.6$ from USGS CMT solution). Before the inversions, we performed a forward modeling referring the source model of $M_w = 7.6$ and found that the first-wave amplitudes of synthetic waveforms at some stations of OBTS (off Tokai, Tonankai and Shikoku) were overestimated for the observed amplitudes. Since the Green functions of such OBTS installed in deep sea, which were used for the inversions, must be calculated more accurately than the ones of tide gauges or wave gauges located near coasts, the moment magnitude of 7.6 might be slightly overestimated for the tsunami generation. The source process of the 2009 West Papua earthquake has been inferred from teleseismic body waves by Hayes (2009) and Pojata et al. (2010). Their results show a single asperity around the epicenter. The large slip on subfault 3 in the five-subfault model may correspond to their single asperities.

Comparison of the observed tsunami waveforms and the synthetic ones from the single fault model is shown in Fig. 7. The calculated tsunami waveforms from the five-subfault model are not shown, because the differences in synthetic waveforms from the two
fault models are much smaller than the differences between the observed and synthetic waveforms. We used most of the observed tsunami waveforms at wave gauges, GPS buoys, and OBTS around Japan for the inversions. On the other hand, we used the observed tsunami waveforms at five tide gauges on the small islands (Biak, Yap, Saipan, Chichijima, Minamidaitojima) which are located on the tsunami’s way from the source to the offshore or near-shore stations of the Japanese main islands. Some stations’ data were not used for the inversions, because the first arrivals of the observed waveforms do not match the

Figure 7

a Comparisons of the observed (gray lines) and synthetic (black lines) tsunami waveforms computed from the estimated slip by adopting the single model. Time ranges shown by solid curves are used for the inversions; the dashed parts are not used for the inversions, but shown for comparison. Out of 36 waveforms shown here, we used parts of 13 records (underlined stations) for the inversions. b (cont’d) Out of 36 waveforms shown here, we used parts of 13 records (underlined stations) for the inversions. (Submitted January 3, 2010, Revised June 15, 2010, Accepted July 1, 2010)
synthetic ones (e.g. Manokwari, Jayapura, HPG1 (OBTS)), although the tide gauges are located close to the source. The synthetic waveforms generally agree with the observed phases at most stations, however, the calculated tsunami amplitudes are consistently underestimated. At some stations (e.g. Biak, Saipan, Shimoda (WG)), the synthetic waveforms are well reproduced not only for the first cycles of tsunami waveforms (inversion time windows) but also for the later phases which were not used in the inversions. It is difficult to judge which of the single fault and five-subfault model is the best model, because the differences of the synthetic waveforms among the both fault models are very
small. This may indicate the limitation due to the poor station coverage to resolve the extent of the tsunami source; in this case we mainly used far field data located in the direction perpendicular to the fault strike.

5. Conclusions

The tsunamis generated by the January 2009 West Papua, Indonesia earthquakes were recorded not only at many coastal tide gauges located in and around the Pacific Ocean but also at near-shore wave gauges, off-shore GPS buoys and OBTS off the Japanese coasts. Using the observed tsunami waveforms, we modeled the tsunami from the first event to estimate the tsunami source and found that the tsunami data observed at tide gauges, wave gauges, GPS buoys and OBTS were well reproduced. The recently updated bathymetry data of GEBCO_08, 30 arc-second grid data was used in the tsunami simulations. The average slip of 0.64 m was estimated on the single fault of 80 × 40 km. The calculated seismic moment is 1.01 × 10^{20} Nm (M_w = 7.3), slightly less than the magnitude inferred from seismic data (M_w = 7.7).

Acknowledgments

We thank the National Coordination Agency for Surveys and Mapping (BAKOSURTANAL), Japan Coastal Guard (JCG), Geographical Survey Institute (GSI), and West Coast/Alaska Tsunami Warning Center (WCATWC) for providing us tide gauge data. We also thank Ports and Harbors Bureau (PHB) under the Ministry of Land, Infrastructure, Transport and Tourism (MLIT) and Port and Airport Research Institute (PARI) for providing us with tide gauge, wave gauge and GPS buoy data. The data of ocean bottom tsunami sensors of the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) were downloaded from their web site. We thank Efim Pelinovsky and an anonymous reviewer for their valuable comments which have improved our manuscript. Most of the figures were generated using the Generic Mapping Tools (WESSEL AND SMITH, 1998).

This research was partially supported by Grants-in-Aid for Scientific Research (B) (No. 21310113), Ministry of Education, Culture, Sports, Science and Technology (MEXT), and Science and Technology Research Partnership for Sustainable Development (SATREPS) from Japan Science and Technology Agency (JST), Japan International Cooperation Agency (JICA), State Ministry of Research and Technology of Indonesia (RISTEK) and Indonesian Institute of Science (LIPI).

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

REFERENCES

British Oceanographic Data Centre (1997). The centenary edition of the GEBCO digital atlas (CD-ROM).

FUIH, Y., and SATAKE, K. (2007). Tsunami source of the 2004 Sumatra–Andaman earthquake inferred from tide gauge and satellite data, Bull. Seismol. Soc. Am., 97, S192–S207.

HAYES, G. (2009). Preliminary result of the Jan 3, 2009 M_w 7.6 Papua Earthquake, http://earthquake.usgs.gov/eqcenter/eqinthenews/2009/us2009bjbn/lfinite_fault.php.

JMA (2002). Monthly report on earthquakes and volcanoes in Japan, September, 2002 (in Japanese).

JMA (2009). Monthly report on earthquakes and volcanoes in Japan, January, 2009 (in Japanese).

LAWSON, C. L., and HANSON, R. J. (1974). Solving least squares problems, 340 pp., Prentice-Hall, Inc., Englewood Cliffs, NJ.

MUHARI, A., KISMAN, M., WANMA, B., and WANMA, F. (2009). The ‘Doublet’ earthquake at Papua, Indonesia January 3rd, 2009, Survey Report and Preliminary Model Analysis, Sub Directorate for Coastal Disaster Mitigation Ministry of Marine Affairs and Fisheries.

OKADA, Y. (1985). Surface deformation due to shear and tensile faults in a half-space, Bull. Seismol. Soc. Am., 75, 1135–1154.

OKAL, E. A. (1999). Historical seismicity and seismotectonic context of the great 1979 Yapen and 1996 Biak, Irian Jaya earthquakes, Pure. Appl. Geophys., 154, 633–675.

POATA, N., KOKETSU, K., and MIYAKE, H. (2010). Source processes of the 2009 Irian Jaya, Indonesia, earthquake doublet, Earth Planets Space, 62, 475–481.

SATAKE, K. (1995). Linear and nonlinear computations of the 1992 Nicaragua earthquake tsunami, Pure. Appl. Geophys., 144, 455–470.

SATAKE, K., and KANAMORI, H. (1991). Abnormal tsunami caused by the June 13, 1984, Torishima, Japan, earthquake, J. Geophys. Res. Solid Earth, 96, 19933–19939.

SATAKE, K., YOSHIDA, Y., and ABE, K. (1992). Tsunami from the Mariana earthquake of April 5, 1990–Its abnormal propagation and implications for tsunami potential from outer-rise earthquakes, Geophys. Res. Lett., 19, 301–304.
TANIOKA, Y., and SATEKE, K. (1996). Tsunami generation by horizontal displacement of ocean bottom, *Geophys. Res. Lett.*, 23, 861–864.

TICHELAAR, B. W., and RUFF, L. J. (1989). How good are our best models? Jackknifing, bootstrapping, and earthquake depth, *Eos Trans. AGU*, 70, 593, 605–606.

WESSEL, P., and SMITH, W. H. F. (1998). New, improved version of the generic mapping tools released, *EOS Trans. AGU*, 79, 579.

(Received January 3, 2010, revised June 15, 2010, accepted July 1, 2010, Published online December 14, 2010)