Defect Process, Dopant Behaviour and Li Ion Mobility in the Li$_2$MnO$_3$ Cathode Material

Navaratnarajah Kuganathan 1,2,*, Efstratia N. Sgourou 3,4, Yerassimos Panayiotatos 4 and Alexander Chroneos 1,2,†

1 Department of Materials, Imperial College London, London SW72AZ, UK; alexander.chroneos@imperial.ac.uk or ab8104@coventry.ac.uk
2 Faculty of Engineering, Environment and Computing, Coventry University, Priory Street, Coventry CV15FB, UK
3 Solid State Physics Section, University of Athens, Panepistimiopolis Zografos, 15784 Athens, Greece; e_sgourou@hotmail.com
4 Department of Mechanical Engineering, University of West Attica, 12210 Athens, Greece; gpana@uniwa.gr
* Correspondence: n.kuganathan@imperial.ac.uk or ad0636@coventry.ac.uk

Received: 6 March 2019; Accepted: 2 April 2019; Published: 7 April 2019

Abstract: Lithium manganite, Li$_2$MnO$_3$, is an attractive cathode material for rechargeable lithium ion batteries due to its large capacity, low cost and low toxicity. We employed well-established atomistic simulation techniques to examine defect processes, favourable dopants on the Mn site and lithium ion diffusion pathways in Li$_2$MnO$_3$. The Li Frenkel, which is necessary for the formation of Li vacancies in vacancy-assisted Li ion diffusion, is calculated to be the most favourable intrinsic defect (1.21 eV/defect). The cation intermixing is calculated to be the second most favourable defect process. High lithium ionic conductivity with a low activation energy of 0.44 eV indicates that a Li ion can be extracted easily in this material. To increase the capacity, trivalent dopants (Al$^{3+}$, Co$^{3+}$, Ga$^{3+}$, Sc$^{3+}$, In$^{3+}$, Y$^{3+}$, Gd$^{3+}$ and La$^{3+}$) were considered to create extra Li in Li$_2$MnO$_3$. The present calculations show that Al$^{3+}$ is an ideal dopant for this strategy and that this is in agreement with the experiential study of Al-doped Li$_2$MnO$_3$. The favourable isovalent dopants are found to be the Si$^{4+}$ and the Ge$^{4+}$ on the Mn site.

Keywords: Li$_2$MnO$_3$; defects; Li diffusion; dopants

1. Introduction

The next generation of high capacity energy storage systems require lithium ion cathode material exhibiting high energy density, low cost and non-toxicity. A variety of cathode materials have been examined in the past decade to improve the performance of the rechargeable Li ion batteries [1–11]. As very few of them exhibit promising results, there is a necessity to make breakthroughs in finding new materials.

“Layered” Li$_2$MnO$_3$ was recently investigated as a potential cathode material for Li ion batteries due to its high theoretical capacity of 285 mAhg$^{-1}$ and first charge plateau of ~4.5 eV [12,13]. Furthermore, manganese is relatively safe, abundant and low-cost, making Li$_2$MnO$_3$ a very promising cathode material. However, the material suffered from poor structural stability during cycling and electrical conductivity [14,15]. Li$_2$MnO$_3$ was initially identified as an inactive material because the electrochemical activity of the material via the oxidation of Mn$^{4+}$ to Mn$^{5+}$ did not occur [16,17]. The electrochemical activity was reinvestigated later and it was determined that the extraction and reinsertion of Li is possible. Chen et al. [18] showed that theoretically Li extraction can be charge compensated by the formation of O$_2$ from O$^{2-}$ ions in the lattice. Cho et al. [19] demonstrated
that oxygen loss is energetically favourable during delithiation. Electrochemical performance was recently examined by doping Al on the Mn site, and it was shown that Al-doped Li$_2$MnO$_3$ exhibits an enhancement on the rate capability and cycling stability [20].

To optimize the performance of Li ion batteries, a more detailed fundamental understanding of existing materials is necessary. Computational modelling techniques have significantly contributed to the characterization of experimental structures, prediction of pathways of migrating ions and identification of promising dopants in a variety of oxide materials [21–36]. In the present study, we examine the intrinsic defects process, Li ion diffusion paths and the effect of dopants on the Mn site in Li$_2$MnO$_3$.

2. Computational Methods

Static atomistic calculations were performed on the crystal structure of Li$_2$MnO$_3$ and its defect structures using the General Utility Lattice Program (GULP) code [37]. This method is based on the classical Born model of ionic crystals. Interactions between ions include the long-range (i.e., Coulombic) ionic interactions and the short-range (i.e., electron–electron repulsion and van der Waals interactions) ionic interactions, with both being considered. Short-range repulsive forces were modelled using the Buckingham potentials (refer to Supplementary Information). The Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [38] was applied to relax atom positions and lattice constants. In all optimized structures, forces on the atoms were smaller than 0.001 eV/Å. The point defects and migrating atoms were modelled using the Mott–Littleton method [39]. In this method, two spherical regions are defined, with the inner spherical region containing a number of ions greater than 700. In this region, ions are relaxed explicitly. Defect enthalpies in this simulation are expected to be overestimated as the ions are treated as spherical shapes with full charge at dilute limit. However, relative energies and trends remain consistent.

From a thermodynamic viewpoint, the defect parameters (for example, migration and formation energies) can be defined via the comparison of the real (defective) crystal to an isobaric or isochoric ideal (non-defective) crystal. These sets of defect formation parameters can be interconnected through thermodynamic relations as discussed in previous studies [40,41]. Here, the atomic scale calculations correspond to the isobaric parameters for the migration and formation processes [42,43].

3. Results

3.1. Bulk Li$_2$MnO$_3$ Structure

Figure 1 shows the experimentally observed crystal structure of Li$_2$MnO$_3$. This structure belongs to the monoclinic structure of the C2/m space group (lattice parameters $a = 4.937$ Å, $b = 8.532$ Å, $c = 5.030$ Å, $\alpha = 90.0^\circ$, $\beta = 109.46^\circ$ and $\gamma = 90.0^\circ$) as reported by Strobel et al. [44] in their single crystal X-ray diffraction. The crystal structure of Li$_2$MnO$_3$ was subsequently reinvestigated by Boulineau et al. [45] and their reported structure was closer to the previous structure, with a small amount of cation mixing. Here, we used the crystal structure reported by Strobel et al. [44], as this model consisted of full occupancy atom positions. Both Li and Mn form edge-sharing distorted octahedral units with adjacent O atoms, as shown in the Figure 1.

Both atom positions and lattice constants were allowed to relax under constant pressure to obtain the equilibrium lattice structure. The calculated lattice constants were in excellent agreement with the experimental values, as reported in Table 1.

3.2. Intrinsic Defect Processes

Next, defect formation energies for the isolated vacancy, interstitial and anti-site defect were calculated, and were combined to calculate the Frenkel, Schottky and anti-site intrinsic defect reaction energies (Equations (1)–(8)). Intrinsic defect processes are useful to study the electrochemical behaviour of Li$_2$MnO$_3$. The following reactions, which were written by using Kröger–Vink notation [46], represent the Frenkel, Schottky and anti-site intrinsic defect processes:

\[
\begin{align*}
\text{Li Frenkel: } & \text{Li}^{X}_{\text{Li}} \rightarrow V^{\text{I}}_{\text{Li}} + \text{Li}^{*} \quad (1) \\
\text{Mn Frenkel: } & V^{X}_{\text{Mn}} \rightarrow V^{\text{III}}_{\text{Mn}} + \text{Mn}^{\text{IV}}_{\text{Li}} \\
\text{O Frenkel: } & O^{X}_{O} \rightarrow V^{\text{IV}}_{O} + O^{\text{I}}_{O} \\
\text{Schottky: } & 2\text{Li}^{X}_{\text{Li}} + \text{Mn}^{X}_{\text{Mn}} + 3O^{X}_{O} \rightarrow 2V^{\text{I}}_{\text{Li}} + V^{\text{III}}_{\text{Mn}} + 3V^{\text{IV}}_{O} + \text{Li}_2\text{MnO}_3 \\
\text{Li}_2\text{O Schottky: } & 2\text{Li}^{X}_{\text{Li}} + O^{X}_{O} \rightarrow 2V^{\text{I}}_{\text{Li}} + V^{\text{IV}}_{O} + \text{Li}_2\text{O} \\
\text{MnO}_2\text{Schottky: } & \text{Mn}^{X}_{\text{Mn}} + 2O^{X}_{O} \rightarrow V^{\text{III}}_{\text{Mn}} + 2V^{\text{IV}}_{O} + \text{MnO}_2 \\
\text{Li/Mn antisite (isolated): } & \text{Li}^{X}_{\text{Li}} + \text{Mn}^{X}_{\text{Mn}} \rightarrow \text{Li}^{\text{III}}_{\text{Mn}} + \text{Mn}^{\text{IV}}_{\text{Li}} \\
\text{Li/Mn antisite (cluster): } & \text{Li}^{X}_{\text{Li}} + \text{Mn}^{X}_{\text{Mn}} \rightarrow \left\{ \text{Li}^{\text{III}}_{\text{Mn}} : \text{Mn}^{\text{IV}}_{\text{Li}} \right\}^{X}
\end{align*}
\]

Table 1. Calculated structural parameters and corresponding experimental values [44] reported for monoclinic (C2/m) Li$_2$MnO$_3$.

Parameter	Calculated (Å)	Experiment [44] (Å)	Δl(%)
a	4.8715	4.9370	1.33
b	8.3519	8.5320	2.11
c	5.0177	5.0300	0.24
α	90.0	90.0	0.00
β	110.07	109.46	0.56
γ	90.0	90.0	0.00

Figure 1. Crystal structure of Li$_2$MnO$_3$ (space group C 2/m).
We report the reaction energies for these intrinsic defect processes in Figure 2. The Li Frenkel was calculated to be the most thermodynamically favourable intrinsic defect process. This process increases the concentration of Li vacancies that can enhance vacancy-assisted Li ion diffusion in Li$_2$MnO$_3$. Other Frenkel defect processes exhibit highly endoergic energies, suggesting that they are unlikely to occur at operating temperatures. The second most favourable defect process is the Li–Mn anti-site. In this defect, a small percentage of Li on Mn sites (Li$^{V_{Li}}$) and Mn on Li sites (Mn$^{V_{Mn}}$) would be observed at high temperatures. Anti-site defect has been observed in experimental and theoretical studies during the synthesis of as-prepared material and cycling [47–52]. The Li$_2$O Schottky reaction (Equation (5)), leading to the formation of further V_L^i and $V_{O}^{••}$, is 5.16 eV per defect, indicating that this reaction can only take place at high temperatures.

![Figure 2](https://via.placeholder.com/150)

Figure 2. Energetics of intrinsic defect process calculated in monoclinic Li$_2$MnO$_3$.

3.3. Lithium Ion Diffusion

There is a necessity to understand the lithium ion diffusion paths together with activation energies to assess Li$_2$MnO$_3$ as a potential high-capacity cathode material for Li ion batteries. Determining Li ion diffusion paths is extremely challenging experimentally. Classical pair potential-based simulation can provide valuable information about various possible Li ion diffusion paths and corresponding activation energies. Low activation energy is a key requirement for a promising high-rate battery material. Possible Li vacancy-assisted diffusion paths were constructed. Six different local Li hops (Figure 3) were identified for the Li vacancy migration. Table 2 reports the Li–Li separation, together with corresponding activation energies. Table 2 shows the energy profile diagrams for activation energies of local Li hops.

Five possible long-range paths consisting of local Li hops with lower overall activation energies were identified (Table 3). The first long-range path (intra layer along the b axis) exhibited a slightly distorted linear pattern (A→E→E→A), with an overall activation energy of 0.59 eV. The second path connected local hops B and F, forming a curved trajectory (F→B→B→B) along the ab plane (intra layer), with an overall activation energy of 0.47 eV. The third long-range path (C→C→C→C) lay between layers (inter layer), with the Li local hops of C. The activation energy for this migration was calculated to be 0.44 eV. This was the lowest activation energy of the four intra layer Li migration paths. In the fourth long-range path (D→D→D→D), the Li ion migrated in the bc plane (intra layer), with an overall migration energy of 0.45 eV. Finally, the fifth long-range path (D→D→D→D) was located in the ab plane (intra layer) and the activation energy for this path was 0.47 eV. The current results show that the Li ion would diffuse fast in Li$_2$MnO$_3$ via intra layers or inter layers.
There is a necessity to understand the lithium ion diffusion paths together with activation energies. Determining Li ion diffusion paths is extremely challenging experimentally. Classical pair potential-energy calculations can be used to determine Li–Li separations and activation energies for interstitial migration of Li ions.

Calculated Li–Li separations and activation energies using classical pair-potential method for Li2MnO3

Migration Path	Li–Li Separation (Å)	Activation Energy (eV)
A	2.65	0.27
B	2.77	0.37
C	2.83	0.44
D	2.84	0.45
E	2.85	0.59
F	2.87	0.47

Figure 2. Energetics of intrinsic defect process calculated in monoclinic Li2MnO3.

Table 2. Possible long-range lithium vacancy migration paths considered. Yellow, light blue, purple, green, grey and light brown color atoms correspond to different Li hopping trajectories.

Long-Range Path	Direction	Overall Activation Energy (eV)
A→E→E→A	b axis	0.59
F→B→B→B	ab plane	0.47
C→C→C→C	ac plane	0.44
D→D→D→D	bc plane	0.45
F→F→F→F	ab plane	0.47

Table 3. Possible long-range Li ion diffusion paths and their corresponding overall activation energies.
3.4. Trivalent Doping

The capacity of Li$_2$MnO$_3$ can be increased by incorporating additional Li in the form of interstitials into the as-prepared crystal structure. This would increase its applicability in rechargeable lithium batteries. Doping trivalent cations on the Mn site is an efficient engineering strategy to create Li interstitials in the lattice. In previous work, this strategy has been applied to Li and Na ion battery materials. In this work, we considered some trivalent dopants from different parts of the periodic table (early transition elements, post-transition elements and lanthanide elements). The selection of the prominent dopant Al$^{3+}$ is due to its small size and low cost. Furthermore, there is an experimental report on the doping of Al$^{3+}$ on the Mn site [20]. The solution of R$_2$O$_3$ (R = Al, Co, Ga, Sc, In, Y, Gd and La) was considered via the following process (in Kröger–Vink notation):

$$R_2O_3 + 2Mn^{3+}_{\text{Mn}} + Li_2O \rightarrow 2R^{3+}_{\text{Mn}} + 2Li^* + 2MnO_2$$ \hspace{1cm} (9)

Figure 5 reports the solution enthalpies of R$_2$O$_3$ calculated using the classical pair-potential method. The present calculations show that the most favourable dopant on the Mn site is Al$^{3+}$. This indicates that the extra lithium can be incorporated in the form of interstitials into Li$_2$MnO$_3$. The exact concentration of the composition can be provided by an experimental study. The possible composition of Al-doped Li$_2$MnO$_3$ is Li$_{2+x}$Mn$_{1-x}$Al$_x$O$_3$ ($x = 0.0, \ldots, 1.0$).

![Figure 5. Enthalpy of solution of R$_2$O$_3$ (R = Al, Co, Ga, Sc, In, Y, Gd and La) with respect to the R$^{3+}$ ionic radius in Li$_2$MnO$_3$.](image)

Xiang et al. [20] synthesised both Li$_2$MnO$_3$ and Al-doped Li$_2$MnO$_3$ and examined their rate capacities. Their study shows that there is a greater improvement in the Al-doped Li$_2$MnO$_3$ compared with that of pristine Li$_2$MnO$_3$. The second most favourable dopant is the Co$^{3+}$ and its solution enthalpy is calculated to be 0.52 eV, only 0.07 eV higher than that of Al$^{3+}$. Solution enthalpy increases gradually with the ionic radius of M$^{3+}$ ions reflecting in the bond lengths and bond angles. The optimised bond lengths and bond angles of trivalent dopants occupying the Mn site and the octahedral MnO$_6$ unit in the relaxed structure of undoped Li$_2$MnO$_3$ are shown in Figure 6. The highest solution enthalpy is calculated for La$^{3+}$. This is due to the larger ionic radius difference between the La$^{3+}$ and the Mn$^{4+}$. The current solution enthalpy values for Sc$^{3+}$, In$^{3+}$, Y$^{3+}$, Gd$^{3+}$ and La$^{3+}$ are highly endoergic, suggesting that they are unfavourable at operating temperatures.

Figure 5. Enthalpy of solution of R$_2$O$_3$ (R = Al, Co, Ga, Sc, In, Y, Gd and La) with respect to the R$^{3+}$ ionic radius in Li$_2$MnO$_3$.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure5.png}
\caption{Enthalpy of solution of R$_2$O$_3$ (R = Al, Co, Ga, Sc, In, Y, Gd and La) with respect to the R$^{3+}$ ionic radius in Li$_2$MnO$_3$.}
\end{figure}
3.5. Tetravalent Doping

Here, we consider some isovalent dopants (Si\(^{4+}\), Ge\(^{4+}\), Ti\(^{4+}\), Sn\(^{4+}\), Zr\(^{4+}\) and Ce\(^{4+}\)) on the Mn site. The following reaction equation was used to calculate the solution enthalpy:

\[
\text{MO}_2 + \text{Mn}^{X}_{\text{Mn}} \rightarrow \text{M}^{X}_{\text{Mn}} + \text{MnO}_2
\]

(Solution enthalpy increases with ionic radius. Exoergic solution enthalpy was calculated for Si\(^{4+}\) and Ge\(^{4+}\) (Figure 7). This was due to the smaller ionic radius of Si\(^{4+}\) (0.40 Å) compared with Mn\(^{4+}\) (0.53 Å). The higher charge density of Si\(^{4+}\) forms stronger Si–O bonds, as reported in Figure 8. The ionic radii of Ge\(^{4+}\) and Mn\(^{4+}\) are the same. This is reflected in the exoergic solution enthalpy. The optimised structures of MO\(_6\) units together with bond lengths and bond angles are shown in Figure 8. Endoergic solution enthalpies are observed for the other dopants. Solution enthalpy for CeO\(_2\) is highly endoergic, meaning that doping Ce on the Mn site is highly unlikely to occur.)
which will ensure the number of Li vacancies that are necessary for vacancy-assisted Li diffusion.

Author Contributions: Computation, N.K.; writing, N.K.; analysis and editing, E.N.S., Y.P. and A.C.

Energies 2019, 12, Table S1: Interatomic potential parameters used in the atomistic simulations of Li₂MnO₃.

Supplementary Materials: The following are available online at http://www.mdpi.com/xxx/s1, Table S1: Interatomic potential parameters used in the atomistic simulations of Li₂MnO₃.

Acknowledgments: The research leading to these results received funding from the European Union's H2020 Programme under Grant Agreement no 824072–HARVESTORE.

Conflicts of Interest: The authors declare no conflict of interest.

Figure 7. Enthalpy of solution of RO₂ (R = Si, Ge, Ti, Sn, Zr and Ce) with respect to the R⁴⁺ ionic radius in Li₂MnO₃.

Figure 8. Distorted octahedral MnO₆ units in the relaxed structure of undoped Li₂MnO₃ and the coordination formed by the isovalent (tetravalent) dopants on the Mn site with neighbour oxygen.

4. Conclusions

In conclusion, we have used atomistic simulation techniques to examine intrinsic defects, Li ion diffusion pathways with activation energies and favourable trivalent and tetravalent dopants on the Mn site in Li₂MnO₃. The lowest defect energy process was calculated to be the Li Frenkel, which will ensure the number of Li vacancies that are necessary for vacancy-assisted Li diffusion. The second most favourable defect process was found to be the cation mixing. Diffusion of lithium with the low activation energy of 0.44 eV suggests that high ionic conductivity would be observed in Li₂MnO₃. Doping of Al on the Mn site is an efficient strategy to increase the Li content, as reported in the experiment. The favourable isovalent dopants were calculated to be the Si⁴⁺ and Ge⁴⁺. These theoretical predictions require experimental verification.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1073/12/7/1329/s1, Table S1: Interatomic potential parameters used in the atomistic simulations of Li₂MnO₃.

Author Contributions: Computation, N.K.; writing, N.K.; analysis and editing, E.N.S., Y.P. and A.C.

Funding: The research leading to these results received funding from the European Union’s H2020 Programme under Grant Agreement no 824072–HARVESTORE.
Acknowledgments: We acknowledge the computational facilities and support provided by the High Performance Computing Center at Imperial College.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Armand, M.; Tarascon, J.M. Building better batteries. *Nature* 2008, 451, 652. [CrossRef] [PubMed]
2. Whittingham, M.S. Lithium batteries and cathode materials. *Chem. Rev.* 2004, 104, 4271–4302. [CrossRef] [PubMed]
3. Padhi, A.K.; Nanjundaswamy, K.S.; Goodenough, J.B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. *J. Electrochem. Soc.* 1997, 144, 1188–1194. [CrossRef]
4. Nyttén, A.; Abouimrane, A.; Armand, M.; Gustafsson, T.; Thomas, J.O. Electrochemical performance of Li$_2$FeSiO$_4$ as a new Li-battery cathode material. *Electrochem. Commun.* 2005, 7, 156–160. [CrossRef]
5. Nishimura, S.-I.; Hayase, S.; Kanno, R.; Yashima, M.; Nakayama, N.; Yamada, A. Structure of Li$_2$FeSiO$_4$. *J. Am. Chem. Soc.* 2008, 130, 13212–13213. [CrossRef]
6. Armstrong, A.R.; Kuganathan, N.; Islam, M.S.; Bruce, P.G. Structure and lithium transport pathways in Li$_2$FeSiO$_4$ cathodes for lithium batteries. *J. Am. Chem. Soc.* 2011, 133, 13031–13035. [CrossRef]
7. Masquelier, C.; Croguennec, L. Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. *Chem. Rev.* 2013, 113, 6552–6591. [CrossRef]
8. Wang, J.; Zhang, G.; Liu, Z.; Li, H.; Liu, Y.; Wang, Z.; Li, X.; Shih, K.; Mai, L. Li$_3$V(MoO$_4$)$_3$ as a novel electrode material with good lithium storage properties and improved initial coulombic efficiency. *Nano Energy* 2018, 44, 272–278. [CrossRef]
9. Recham, N.; Chotard, J.N.; Dupont, L.; Delacourt, C.; Walker, W.; Armand, M.; Tarascon, J.M. A 3.6 V lithium-based fluorosulphate insertion positive electrode for lithium-ion batteries. *Nat. Mater.* 2009, 9, 68. [CrossRef] [PubMed]
10. Afyon, S.; Wörle, M.; Nesper, R. A lithium-rich compound Li$_7$Mn(BO$_3$)$_3$ containing Mn$^{2+}$ in tetrahedral coordination: A cathode candidate for lithium-rich batteries. *Angew. Chemie Int. Ed.* 2013, 52, 12541–12544. [CrossRef] [PubMed]
11. Nishimura, S.-I.; Nakamura, M.; Natsui, R.; Yamada, A. New lithium iron pyrophosphate as 3.5 V class cathode material for lithium ion battery. *J. Am. Chem. Soc.* 2010, 132, 13596–13597. [CrossRef] [PubMed]
12. Thackeray, M.M.; Johnson, C.S.; Vaughey, J.T.; Li, N.; Hackney, S.A. Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries. *J. Mater. Chem. A* 2015, 4, 2257–2267. [CrossRef]
13. Goodenough, J.B.; Kim, Y. Challenges for rechargeable Li batteries. *Chem. Mater.* 2010, 22, 587–603. [CrossRef]
14. Rana, J.; Stan, M.; Kloepsch, R.; Li, J.; Schumacher, G.; Welte, E.; Zizak, I.; Banhart, J.; Winter, M. Structural changes in Li$_3$MnO$_3$ cathode material for Li-ion batteries. *Adv. Energy Mater.* 2014, 4, 1300998. [CrossRef]
15. Francis Amalraj, S.; Markovskaya, B.; Sharon, D.; Talierman, M.; Zinigrad, E.; Persky, R.; Haik, O.; Grinblat, J.; Lampert, J.; Schulz-Dobrick, M.; et al. Study of the electrochemical behavior of the “inactive” Li$_3$MnO$_3$. *Electrochim. Acta* 2012, 78, 32–39. [CrossRef]
16. Ammundsen, B.; Paulsen, J. Novel lithium-ion cathode materials based on layered manganese oxides. *Adv. Mater.* 2001, 13, 943–956. [CrossRef]
17. Robertson, A.D.; Bruce, P.G. The origin of electrochemical activity in Li$_2$MnO$_3$. *Chem. Commun.* 2002, 2790–2791. [CrossRef]
18. Chen, H.; Islam, M.S. Lithium extraction mechanism in Li-Rich Li$_2$MnO$_3$ involving oxygen hole formation and dimerization. *Chem. Mater.* 2016, 28, 6656–6663. [CrossRef]
19. Cho, E.; Kim, K.; Jung, C.; Seo, S-W.; Min, K.; Lee, H.S.; Park, G.-S.; Shin, J. Overview of the oxygen behavior in the degradation of Li$_2$MnO$_3$ cathode material. *J. Phys. Chem. C* 2017, 121, 21118–21127. [CrossRef]
20. Xiang, Y.; Wu, X. Enhanced electrochemical performances of Li$_2$MnO$_3$ cathode materials by Al doping. *Ionics* 2018, 24, 83–89. [CrossRef]
21. Kuganathan, N.; Islam, M.S. Li$_2$MnSiO$_4$ lithium battery material: Atomic-scale study of defects, lithium mobility, and trivalent dopants. *Chem. Mater.* 2009, 21, 5196–5202. [CrossRef]
22. Fisher, C.A.J.; Kuganathan, N.; Islam, M.S. Defect chemistry and lithium-ion migration in polymorphs of the cathode material Li$_2$MnSiO$_4$. *J. Mater. Chem. A* 2013, 1, 4207–4214. [CrossRef]
23. Kuganathan, N.; Kordatos, A.; Anurakavan, S.; Iyngaran, P.; Chroneos, A. Li$_3$SbO$_4$ lithium-ion battery material: Defects, lithium ion diffusion and tetravalent dopants. *Mater. Chem. Phys.* **2019**, *225*, 34–41. [CrossRef]

24. Kordatos, A.; Kuganathan, N.; Kelaidis, N.; Iyngaran, P.; Chroneos, A. Defects and lithium migration in Li$_3$CuO$_2$. *Sci. Rep.* **2018**, *8*, 6754. [CrossRef] [PubMed]

25. Kuganathan, N.; Chroneos, A. Defects, dopants and sodium mobility in Na$_2$MnSiO$_4$. *Sci. Rep.* **2018**, *8*, 14669. [CrossRef]

26. Kuganathan, N.; Chroneos, A. Defects and dopant properties of Li$_9$V$_2$(PO$_4$)$_3$. *Sci. Rep.* **2019**, *9*, 333. [CrossRef] [PubMed]

27. Kuganathan, N.; Ganeshalingam, S.; Chroneos, A. Defects, dopants and lithium mobility in Li$_9$V$_3$(P$_2$O$_7$)$_3$(PO$_4$)$_2$. *Sci. Rep.* **2018**, *8*, 8140. [CrossRef] [PubMed]

28. Kuganathan, N.; Iyngaran, P.; Chroneos, A. Lithium diffusion in Li$_3$FeO$_3$. *Sci. Rep.* **2018**, *8*, 5832. [CrossRef]

29. Kuganathan, N.; Kordatos, A.; Chroneos, A. Li$_2$SnO$_3$ as a cathode material for lithium-ion batteries: Defects, lithium ion diffusion and dopants. *Sci. Rep.* **2018**, *8*, 12621. [CrossRef]

30. Kuganathan, N.; Kordatos, A.; Chroneos, A. Defect chemistry and Li-ion diffusion in Li$_2$RuO$_3$. *Sci. Rep.* **2019**, *9*, 550. [CrossRef] [PubMed]

31. Kuganathan, N.; Kordatos, A.; Kelaidis, N.; Chroneos, A. Defects, lithium mobility and tetravalent dopants in the Li$_3$NbO$_4$ cathode material. *Sci. Rep.* **2019**, *9*, 2192. [CrossRef] [PubMed]

32. Kuganathan, N.; Kordatos, A.; Fitzpatrick, M.E.; Vovk, R.V.; Chroneos, A. Defect process and lithium diffusion in Li$_2$TiO$_3$. *Solid State Ionics* **2018**, *327*, 93–98. [CrossRef]

33. Kuganathan, N.; Toukalas, L.H.; Chroneos, A. Defects, dopants and Li-ion diffusion in Li$_2$SiO$_3$. *Solid State Ionics* **2019**, *335*, 61–66. [CrossRef]

34. Araújo, C.M.; Blomqvist, A.; Scheicher, R.H.; Chen, P.; Ahuja, R. Superionicity in the hydrogen storage material Li$_2$NH: Molecular dynamics simulations. *Phys. Rev. B* **2009**, *79*, 172101. [CrossRef]

35. Seymour, I.D.; Chroneos, A.; Kilner, J.A.; Grimes, R.W. Defect processes in orthorhombic LnBaCo$_2$O$_5$ double perovskites. *Phys. Chem. Chem. Phys.* **2011**, *13*, 15305–15310. [CrossRef] [PubMed]

36. Jay, E.E.; Rushton, M.J.D.; Chroneos, A.; Grimes, R.W.; Kilner, J.A. Genetics of superionic conductivity in lithium lanthanum titanates. *Phys. Chem. Chem. Phys.* **2015**, *17*, 178–183. [CrossRef] [PubMed]

37. Gale, J.D.; Rohl, A.L. The general utility lattice program (GULP). *Molec. Simul.* **2003**, *29*, 291–341. [CrossRef]

38. Gale, J.D. GULP: A computer program for the symmetry-adapted simulation of solids. *J. Chem. Soc. Faraday Trans.* **1997**, *93*, 629–637. [CrossRef]

39. Mott, N.F.; Littleton, M.J. Conduction in polar crystals. I. Electrolytic conduction in solid salts. *Trans. Faraday Soc.* **1938**, *34*, 485–499. [CrossRef]

40. Varotsos, P. Defect volumes and the equation of state in α-PbF$_2$. *Phys. Rev. B* **2007**, *76*, 092106. [CrossRef]

41. Varotsos, P. Comparison of models that interconnect point defect parameters in solids with bulk properties. *J. Appl. Phys.* **2007**, *101*, 123503. [CrossRef]

42. Chroneos, A.; Vovk, R.V. Modeling self-diffusion in UO$_2$ and ThO$_2$ by connecting point defect parameters with bulk properties. *Solid State Ionics* **2015**, *274*, 1–3. [CrossRef]

43. Chroneos, A. Connecting point defect parameters with bulk properties to describe diffusion in solids. *Appl. Phys. Rev.* **2016**, *3*, 041304. [CrossRef]

44. Strobel, P.; Lambert-Andron, B. Crystallographic and magnetic structure of Li$_2$MnO$_3$. *J. Solid State Chem.* **1988**, *75*, 90–98. [CrossRef]

45. Boulineau, A.; Croguennec, L.; Delmas, C.; Weill, F. Reinvestigation of Li$_2$MnO$_3$ structure: Electron diffraction and high resolution TEM. *Chem. Mater.* **2009**, *21*, 4216–4222. [CrossRef]

46. Kröger, F.A.; Vink, H.J. Relations between the concentrations of imperfections in crystalline solids. In *Solid State Physics*; Seitz, F., Turnbull, D., Eds.; Academic Press: New York, NY, USA, 1956; Volume 3, pp. 307–435.

47. Poliaev, V.V.; Petrenko, A.A.; Nalbandyan, V.B.; Medvedev, B.S.; Shvetsova, E.S. Crystal structure, phase relations and electrochemical properties of monoclinic Li$_2$MnSiO$_4$. *J. Solid State Chem.* **2007**, *180*, 1045–1050. [CrossRef]

48. Ensling, D.; Stjerndahl, M.; Nyttén, A.; Gustafsson, T.; Thomas, J.O. A comparative XPS surface study of Li$_2$FeSiO$_4$/C cycled with LiTFSI- and LiPF$_6$-based electrolytes. *J. Mater. Chem.* **2009**, *19*, 82–88. [CrossRef]
49. Liu, H.; Choe, M.-J.; Enrique, R.A.; Orvañanos, B.; Zhou, L.; Liu, T.; Thornton, K.; Grey, C.P. Effects of antisite defects on Li diffusion in LiFePO$_4$ revealed by Li isotope exchange. J. Phys. Chem. C 2017, 121, 12025-12036. [CrossRef]

50. Kempaiah Devaraju, M.; Duc Truong, Q.; Hyodo, H.; Sasaki, Y.; Honma, I. Synthesis, characterization, and observation of antisite defects in LiNiPO$_4$ nanomaterials. Sci. Rep. 2015, 5, 11041. [CrossRef]

51. Kuganathan, N.; Chroneos, A. Na$_3$V(PO$_4$)$_2$ cathode material for Na ion batteries: Defects, dopants and Na diffusion. Solid State Ionics 2019, 336, 75-79. [CrossRef]

52. Kuganathan, N.; Iyngaran, P.; Vovk, R.; Chroneos, A. Defects, dopants and Mg diffusion in MgTiO$_3$. Sci. Rep. 2019, 9, 4394. [CrossRef] [PubMed]

53. Hoang, K. Doping Li-rich cathode material Li$_2$MnO$_3$: Interplay between lattice site preference, electronic structure, and delithiation mechanism. Phys. Rev. Mater. 2017, 1, 075404. [CrossRef]

54. Kong, F.; Longo, R.C.; Park, M.-S.; Yoon, J.; Yeon, D.-H.; Park, J.-H.; Wang, W.-H.; Ke, S.; Doo, S.-G.; Cho, K. Ab initio study of doping effects on LiMnO$_2$ and Li$_2$MnO$_3$ cathode materials for Li-ion batteries. J. Mater. Chem. A 2015, 3, 8489-8500. [CrossRef]