Rare anastomosis between the ascending pharyngeal and vertebral arteries via the hypoglossal canal: A cadaveric case report

Stephen J. Bordes¹, Sina Zarrintan², Joe Iwanaga³,⁴,¹⁰, Marios Loukas⁵, Aaron S. Dumont³, R. Shane Tubbs³,⁴,⁵,⁶,⁷,⁸,⁹

¹Department of Surgery, Louisiana State University, New Orleans, LA, USA, ²Division of Vascular and Endovascular Surgery, Department of Surgery, Tabriz University of Medical Sciences, Tabriz, Iran, ³Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA, ⁴Department of Neurology, Tulane University School of Medicine, New Orleans, LA, USA, ⁵Department of Anatomical Sciences, St. George’s University, Grenada, ⁶Department of Surgery, Tulane University School of Medicine, New Orleans, LA, ⁷Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, ⁸Department of Neurosurgery, Ochsner Neuroscience Institute, Ochsner Health System, New Orleans, LA, USA, ⁹Queensland University, Brisbane, Australia, ¹⁰Division of Gross and Clinical Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, Fukuoka, Japan

Abstract: We present a rare case of external carotid artery-vertebral artery anastomosis via the ascending pharyngeal artery, diagnosed upon cadaveric dissection. The ascending pharyngeal artery gave rise to a branch to the hypoglossal canal, which is a variation of a true persistent fetal hypoglossal artery. Knowledge of persistent carotid-vertebrobasilar anastomoses is important as these fetal vessels can contribute significantly to the posterior cerebral circulation. Only 10 cases of external carotid artery-vertebrobasilar artery anastomoses have been reported to our knowledge, and our case presents the first cadaveric dissection of this rare variation.

Key words: Ascending pharyngeal artery, Persistent fetal hypoglossal artery, Hypoglossal artery, Hypoglossal canal, Vertebral artery

Received May 7, 2021; Accepted June 9, 2021

Introduction

Persistent fetal, or primitive, anastomoses between the carotid and vertebrobasilar systems are known variations resulting from a failure of regression during embryogenesis. Fetal trigeminal arteries are most likely to persist followed by hypoglossal, otic, and proatlantal intersegmental arteries (Fig. 1) [1, 2]. These variations, which typically connect the internal carotid artery to the vertebral artery, are estimated

Fig. 1. The four persistent carotid-vertebrobasilar anastomoses.
to occur in 0.027% to 0.26% of the population [1-4]. We present a rarer variation. An anastomosis was identified between the external carotid and vertebral arteries via a hypoglossal branch of the ascending pharyngeal artery. Only 10 cases of this uncommon variation can be found in the literature [4]. To our knowledge, our case is the first cadaveric report. All other reported cases have identified this variation using magnetic resonance or computed tomography angiography. Knowledge of these persistent fetal anastomoses is crucial as they can contribute significant blood flow to the vertebrobasilar system and posterior cerebral circulation.

Case Report

During a cadaveric head and neck dissection, the left ascending pharyngeal artery was found to give off a branch to the hypoglossal canal (Fig. 2). The specimen was a 79-year-old at death male with no signs of previous trauma or pathology to the area dissected. This hypoglossal arterial branch was followed cranially and found to join the ipsilateral vertebral artery at the level at which it gave off the posterior inferior cerebellar artery (Fig. 3). The hypoglossal artery was 1.28 mm in diameter and 38 mm long. The hypoglossal canal was not enlarged on this side. Thus, this variant anastomosis connected the external carotid artery with the vertebrobasilar system (Fig. 4). There was no similar finding on the contralateral side.

Discussion

Embryology

During early embryonic stages (approximately weeks 6–8), the fetal carotid arteries supply much of the anterior and posterior cerebral circulation. The basilar artery is formed by the fusion of two paired neural arteries that course along the surface of the hindbrain [1, 2]. The carotid arteries initially supply these neural arteries via trigeminal, hypoglossal, otic, and proatlantal intersegmental anastomoses [1, 2, 4]. When the posterior communicating arteries form from the fusion of the paired neural arteries, blood flow is redirected to the vertebrobasilar system [1-4].

Embryology

During early embryonic stages (approximately weeks 6–8), the fetal carotid arteries supply much of the anterior and posterior cerebral circulation. The basilar artery is formed by the fusion of two paired neural arteries that course along the surface of the hindbrain [1, 2]. The carotid arteries initially supply these neural arteries via trigeminal, hypoglossal, otic, and proatlantal intersegmental anastomoses [1, 2, 4]. When the posterior communicating arteries form from the fusion of the paired neural arteries, blood flow is redirected to the vertebrobasilar system [1-4].
between distal internal carotid and neural arteries, the four carotid-vertebrobasilar anastomoses regress and under normal circumstances the vertebral arteries become the major suppliers of the posterior cerebral circulation [2]. Failure of the primitive carotid-vertebrobasilar anastomoses to regress leads to persistent fetal anastomoses in adulthood.

True persistent primitive hypoglossal artery

A persistent fetal hypoglossal artery is the second most common anastomosis between the carotid and vertebrobasilar arterial systems (Figs. 5, 6) [1, 2, 4]. This variation is more common on the left side and in females [1]. The most frequent of these anastomoses originates from a persistent fetal trigeminal artery [4]. Less common anastomoses involve the otic and proatlantal arteries. If there is a persistent fetal hypoglossal artery, Brismar’s diagnostic criteria suggest that an extracranial branch should originate from the internal carotid artery and anastomose with the vertebrobasilar trunk after passing through the hypoglossal canal [5]. The anastomosis typically originates between the C1 and C2 levels of the internal carotid artery [1]. The branch then passes through a commonly enlarged hypoglossal canal and joins to an ipsilateral inferior segment of the basilar or vertebral artery. If this anastomosis is large, ipsilateral posterior communicating or vertebral arteries can be absent or hypoplastic. As mentioned previously, this communication is thought to occur in 0.027% to 0.26% of the population [2, 4].

Variant ascending pharyngeal-vertebral anastomosis

In our case, we identified an external carotid-vertebrobasilar anastomosis (Figs. 2–4), which is rarer than the variation mentioned above that arises from the internal carotid artery [3, 4]. To our knowledge only 10 cases have been reported previously and all have been identified using angiography [4]. Our cadaveric dissection (Figs. 2–4) showed the ascending pharyngeal branch of the external carotid artery giving off a hypoglossal branch that then coursed through the hypoglossal canal prior to joining the ipsilateral vertebral artery.

The ascending pharyngeal artery normally divides into two major trunks: an anterior pharyngeal trunk and a posterior neuromeningeal trunk. The latter trunk gives off jugular and hypoglossal branches with both supplying the dura mater of the posterior cranial fossa [6]. The hypoglossal branches also supply the hypoglossal nerve rootlets and contribute to the arterial arcade supplying the dens by joining the posterior ascending branch of the vertebral artery [6, 7].

Yamamoto et al. [4] and Uchino et al. [8] termed this persistent hypoglossal arterial variation a dilated ascending pharyngeal artery; they proposed that proximal fetal proatlantal intersegmental and distal fetal hypoglossal arteries contribute to this anastomosis. Lasjunias et al. [9] identified two types of proatlantal artery: type I and type II. A type I proatlantal intersegmental artery originates from the inter-
nal carotid artery and represents a true persistent fetal pro-
atlantal artery. A type II originates from the external carotid
artery and shares a common trunk with the occipital artery.
Uchino et al. [8] Okahara et al. [10] suggested that this varia-
tion represents a persistent first cervical intersegmental
artery. In our case, and in the cases of Yamamoto et al. [4] and
Uchino et al. [3] the proximal anastomoses originated from
the ascending pharyngeal artery as opposed to the occipital
artery, further defining this variant anastomosis.

Persistent carotid-vertebrobasilar anastomoses can be
associated with atherosclerotic disease, intracranial isch-
emia, and intracranial aneurysms [1-3, 8]. These variations
should be identified prior to carotid endarterectomy (CEA),
intravascular embolization, and other skull base surgeries
as these persistent fetal vessels can serve as significant sup-
pliers of the posterior cerebral circulation. In the presence
of this variation, endarterectomy of external carotid during
CEA is warranted. Some vascular surgeons believe that end-
arterectomy of the external carotid artery may be neglected [11]
without a significant consequence. However, neglecting end-
arterectomy of the external carotid artery is not suggested in
the presence of a persistent external carotid-vertebrobasilar
anastomosis. In addition, modification of technique during
carotid artery stenting may be necessary in patients with this
variation. These modifications include but are not limited to
the selection of stent type (closed cell vs. open cell stents) and
introduction of guidewires into the external carotid artery.
Technical modifications in patients with persistent carotid-
vertebrobasilar anastomoses should be individualized based
on pre-operative angiographic findings. Establishment of
external carotid artery flow would be more important when
vertebral artery hypoplasia is present on the contralateral
side.

ORCID

Stephen J. Bordes: https://orcid.org/0000-0002-7507-0674
Sina Zarrintan: https://orcid.org/0000-0002-3968-0221
Joe Iwanaga: https://orcid.org/0000-0002-8502-7952
Marios Loukas: https://orcid.org/0000-0003-2811-6657
Aaron S. Dumont: https://orcid.org/0000-0002-8077-8992
R. Shane Tubbs: https://orcid.org/0000-0003-1317-1047

Author Contributions

Conceptualization: RST. Data acquisition: RST. Data
analysis or interpretation: SJB, SZ, JI, ML, RST. Drafting of
the manuscript: SJB. Critical revision of the manuscript: SZ,
JI, ML, RST. Approval of the final version of the manuscript:
all authors.

Conflicts of Interest

No potential conflict of interest relevant to this article was
reported.

Acknowledgements

The authors sincerely thank those who donated their
bodies to science so that anatomical research could be per-
formed. Results from such research can potentially increase
mankind’s overall knowledge and hence improve patient
care. Therefore, these donors and their families deserve our
highest gratitude [12].

References

1. Srinivas MR, Vedaraju KS, Manjappa BH, Nagaraj BR. Persis-
tent primitive hypoglossal artery (PPHA) - a rare anomaly with
literature review. J Clin Diagn Res 2016;10:TD13-4.
2. Uchino A, Saito N, Okada Y, Kozawa E, Nishi N, Mizukoshi
W, Inoue K, Nakajima R, Takahashi M. Persistent hypoglossal
artery and its variants diagnosed by CT and MR angiography.
Neuroradiology 2013;55:17-23.
3. Uchino A, Saito N, Kurita H. Anastomosis of the external
carotid artery and the V3 segment of the vertebral artery (pre-
sumed persistent second cervical intersegmental artery) diag-
nosed by CT angiography. Surg Radiol Anat 2018;40:233-6.
4. Yamamoto R, Mori N, Nakae Y, Tanaka F, Jokura K. Anoma-
lous anastomosis between the external carotid artery and ver-
tebrobasilar artery via the hypoglossal canal: a case report and
review of literature. Surg Radiol Anat 2019;41:849-52.
5. Brismar J. Persistent hypoglossal artery, diagnostic criteria. Re-
port of a case. Acta Radiol Diagn (Stockh) 1976;17:160-6.
6. Hacein-Bey L, Daniels DL, Ulmer JL, Mark LP, Smith MM,
Strottmann JM, Brown D, Meyer GA, Wackym PA. The asc-
ending pharyngeal artery: branches, anastomoses, and clini-
cal significance. AJNR Am J Neuroradiol 2002;23:1246-56.
7. Iwanaga J, Simonds E, Choi PJ, Oskouian RJ, Tubbs RS. Ana-
tomical study of the posterior ascending artery: application to
C2 pedicle screw placement. World Neurosurg 2018;112:e662-5.
8. Uchino A, Saito N. Persistent hypoglossal artery arising from
the external carotid artery diagnosed by MR angiography. Surg
Radiol Anat 2011;33:543-5.
9. Lasjaunias P, Théron J, Moret J. The occipital artery. Anatomy–
normal arteriographic aspects–embryological significance.
Neuroradiology 1978;15:31-7.
10. Okahara M, Kiyosue H, Mori H, Tanoue S, Sainou M, Naga-
tomi H. Anatomic variations of the cerebral arteries and their
embryology: a pictorial review. Eur Radiol 2002;12:2548-61.
11. Ascher E, Hingorani A, Markevich N, Schutzer R, Yorkovich
WR, Kallakuri S, Tsemekhim B. Carotid surgery without exter-
nal carotid endarterectomy: a 6-year clinical experience with
1027 cases. Eur J Vasc Endovasc Surg 2003;25:458-61.
12. Iwanaga J, Singh V, Ohtsuka A, Hwang Y, Kim HJ, Moryś J,
Ravi KS, Ribatti D, Trainor PA, Sañudo JR, Apaydin N, Şengül
G, Albertine KH, Walocha JA, Loukas M, Duparc F, Paulsen
F, Del Sol M, Adds P, Hegazy A, Tubbs RS. Acknowledging the
use of human cadaveric tissues in research papers: recommenda-
tions from anatomical journal editors. Clin Anat 2021;34:2-4.