Molecular epidemiology and antimicrobial resistance of group A streptococcus recovered from patients in Beijing, China

CURRENT STATUS: UNDER REVISION

BMC Infectious Diseases

Hongxin Li
Children's Hospital Affiliated to Capital Institute of Pediatrics
lihxin@126.com
ORCiD: https://orcid.org/0000-0001-9377-722X

Lin Zhou
Children's Hospital Affiliated to Capital Institute of Pediatrics

Yong Zhao
the Six Medical Centre of PLA General Hospital

Lijuan Ma
Children's Hospital Affiliated to Capital Institute of Pediatric

Xiaoyan Liu
Children's Hospital Affiliated to Capital Institute of Pediatrics

Jin Hu
Children's Hospital Affiliated to Capital Institute of Pediatrics

DOI:
10.21203/rs.2.22135/v2

SUBJECT AREAS
Infectious Diseases

KEYWORDS
Group A streptococcus, GAS, Streptococcal M protein, emm types, Superantigens, antimicrobial resistance, scarlet fever, Children
Abstract

Background: Group A streptococcus (GAS) is an important human pathogen responsible for a broad range of infections. Epidemiological surveillance has been crucial to detect changes in the geographical and temporal variation of the disease pattern. The objective of this study was to investigate the molecular epidemiological characteristics and antimicrobial resistance of GAS isolates from patients in Children’s Hospital in Beijing. Methods: From 2016 to 2017, pharyngeal swab samples were collected from the outpatients in Children’s Hospital, Capital Institute of Pediatrics, who were diagnosed with scarlet fever. Antimicrobial susceptibility test was performed according to the distribution of conventional antibiotics and Clinical and Laboratory Standards Institute (CLSI) recommendations. The distribution of the macrolide-resistance genes (ermB, ermA, mefA), emm (M protein-coding gene) typing, and superantigens (SAg) gene profiling were examined by polymerase chain reaction (PCR). Results: A total of 297 GAS strains were collected. The susceptibility of the strains to penicillin, ceftriaxone, and levofloxacin was 100%. The rate of antimicrobial resistance to erythromycin and clindamycin was 98.3% and 96.6%, respectively. The dominant emm types were emm12 (65.32%), emm1 (27.61%), emm75 (2.69%), and emm89 (1.35%). Of the 297 isolates, 290 (97.64%) carried the ermB gene, and 5 (1.68%) carried the mefA gene, while none carried the ermA gene. The most common superantigen genes identified from GAS isolates were smeZ (96.97%), speC (92.59%), speG (91.58%), and ssa (85.52%), speI (54.55%), speH (52.19%), and speA (34.34%). Isolates with the genotype emm1 possessed speA, speC, speG, speJ, speM, ssa, and smeZ, while emm12 possessed speC, speG, speH, speI, speM, ssa, and smeZ superantigens. Conclusions: The prevalent strain of GAS isolates in Beijing has a high antimicrobial resistance rate to macrolides; however, penicillin can still be the preferred antibiotic for treatment. The primary mechanism of resistance to erythromycin is related to the expression of ermB. The common emm types were emm12 and emm1. A correlation was established between emm and the superantigen gene. Thus, long-term monitoring and investigation of the emm types and superantigen genes of GAS prevalence are imperative.

Background
Streptococcus pyogenes (Lancefield group A streptococcus; GAS) is a major pathogen causing infectious diseases in children. It causes suppurative and non-suppurative diseases, such as erysipelas, suppurative tonsillitis, scarlet fever, rheumatic fever, and glomerulonephritis [1]. Globally, there are about 616 million cases of GAS pharyngitis every year, among which, 17,800 cases are new infections, and about 517,000 patients with severe GAS are deceased every year[2]. Recently, the positive rate of GAS was estimated at 21.2% in the pharyngeal culture of patients diagnosed as “streptococcal infection/tonsillitis/angina” [3]. Moreover, the incidence of streptococcal pharyngitis is common in children aged 0–14 years. From 2012 to 2014, the average number of positive cases of streptococcal culture was 2685.1/100,000 children in Beijing, including 1652.7 outpatient visits [4]. In 2011, scarlet fever broke out in mainland China and Hong Kong, with a sharp increase in incidence[5, 6]. Penicillin is the preferred clinical treatment of GAS infection, while erythromycin is the first alternative antibiotic for patients allergic to penicillin, followed by clindamycin. The drug resistance rate to macrolides, used as alternative antibiotics, is gradually increasing, which might be related to the overuse of such antibiotics [7, 8]. In our previous study, 95 isolates were recovered from suppurative tonsillitis, acute glomerulonephritis, scarlet fever and streptococcal dermatitis. The resistance rates of the isolates to erythromycin, clindamycin and tetracycline were 98.9%, 100%, 94.7% respectively [9].

The M protein encoded by the *emm* gene is the main pathogenic factor of GAS, and different types vary in pathogenicity. Therefore, *emm* typing is employed to track outbreak and routinely monitor GAS diseases. From 2011 to 2013, the proportion of *emm12.0* in children with GAS infection in Xicheng District of Beijing decreased gradually, and *emm1.0* increased every year [10]. The interplay among GAS diseases, *emm* types, superantigen gene, and antimicrobial resistance needs further investigation [11, 12]. The resistance of GAS to macrolides is related to the mechanism underlying target modification mediated by *ermA* and *ermB* and the pumping mechanism mediated by *mefA*. Intriguingly, different primary mechanisms of resistance regulate various epidemic strains [13]. The superantigen gene is the main virulence factor and closely related to the pathogenicity of GAS. Hitherto, 11 superantigen genes, including speA, speC, speG, speH, spel, spej, speK, speL, speM,
smeZ, and ssa, were found to be distributed among various strains [14, 15]. Previously, the emm typing and superantigen distribution of GAS strains from different regions of mainland China were investigated, which indicated that the typing and antimicrobial resistance were slightly different[16, 17]. In this study, we recovered GAS isolates from patients with scarlet fever in Children’s Hospital, Capital Institute of Pediatrics from 2016 to 2017, and conducted antimicrobial susceptibility test, emm genotype analysis, and combined analysis of superantigen to assess the molecular epidemiological characteristics and antimicrobial resistance mechanisms of GAS strains.

Methods

Strain collection

A total of 297 cases of GAS isolates were recovered from pediatric patients presenting scarlet fever in the Children’s Hospital, Capital Institute of Pediatrics, from January 2016 to December 2017. Throat swabs were obtained from patients by two physicians for routine microbiologic analysis.

Bacterial identification

The throat swab samples were inoculated on a Columbia blood plate (BD, USA) and cultured in a CO₂ incubator at 37 °C for 24–36 h. A single round colony with the transparent hemolytic ring was selected, cultured, and evaluated by Gram staining. The Streptococcus Grouping Kit (Oxoid, Basingstoke, UK) was used to classify the suspicious colonies.

Antimicrobial susceptibility testing

According to the distribution of conventional antibiotics and recommendations of Clinical and Laboratory Standards Institute (CLSI), disk diffusion method (K-B method) was used to test the susceptibility of the isolated Streptococcus pyogenes to ten antibiotics. The distance between each disk was > 24 mm, and the distance between the center of the disk and edge of the dish was > 15 mm. The plate was incubated at 37 °C for 18–24 h and only two plates were stacked. The susceptibility of bacteria was determined by the diameter of the inhibition growth and CLSI standard[18]. Streptococcus pneumoniae ATCC 49619 was used as a control strain.

DNA extraction of GAS genome

DNA extraction of GAS genome was performed according to the recommended method by the Center
for Disease Control and Prevention (CDC; http://www.cdc.gov/ncidod/biotechnology/stream/protocol_emm-type.htm), one ring of GAS was suspended in 300 μL saline and incubated at 70 °C for 15 min. The precipitate, obtained by centrifugation and suspended in 50 μL TE (pH 8.0), 10 μL mutanolysin (3000 U/mL), and 2 μL hyaluronidase (30 mg/mL), was reheated at 100 °C for 10 min and centrifuged to obtain genomic DNA.

emm genotyping

The *emm*-typing of all isolates was performed according to the protocols and recommendations of the CDC. The sequence data were uploaded to the *emm* typing database (http://www.cdc.gov/ncidod/biotechnology/strep/strepblast.htm) for comparison. A sequence was considered to belong to a specific *emm* gene when the first 160 nt of the sequence exhibited ≥95% sequence identity with that of the reference *emm* gene.

Erythromycin-resistance gene detection

All GAS isolates were screened for the presence of *ermB*, *ermA*, and *mefA* as previously reported[19] Primer sequences are listed in Table 1. The reaction system (25 μL) contained 1 μL 2mM DNA template, 1 μL (10 mM) for each primer, 0.2 μL Taq DNA polymerase (5 U/μL), 2 μL of 2.5 mM dNTPs, 2.5 μL of 10× Taq buffer (2.5 mM MgCl₂ plus; Takara Biotechnology Co.), and 17.3 μL water. The initial denaturation was performed for 1 min at 94 °C, followed by denaturation for 30 s at 94 °C annealing for 30 s at 54 °C, extended for 30 s at 72 °C for 29 cycles and final extension for 3 min at 72 °C.

| Table 1. Primer sequences for erythromycin-resistance genes |
Superantigen detection

Eleven superantigen genes (speA, speC, speG, speH, speI, speJ, speK, speL, speM, ssa, and smeZ) were amplified by PCR using the genomic DNA extracted during emm typing as previously described[20]. By comparing the size of the products with the predicted positive fragments, the expression of superantigen in GAS was determined. The primers used for amplification are listed in Table 2.

Table 2. Primers for PCR of virulence and superantigen genes

Gene	Primer direction	Primer sequence	Annealing Temperature (°C)	Amplicon size (bp)
speA	Forward	5’-ATGGAAAAACAATAATTTTATGATTG-3’	52	756
	Reverse	5’-TTACTTGGTTGTTAGTAGACTTC-3’		
spec	Forward	5’-AATTTGCATTCTGCGCTTA-3’	52	400
	Reverse	5’-GCAGGGTAAATTITTTACAACGAC-3’		
speG	Forward	5’-TCATGTGTTTTTAGCTATGGAAGTC-3’	52	590
	Reverse	5’-ACTGTCTCGACTTTAAAGCTTATCA-3’		
speH	Forward	5’-AGATTGGATATCAGG-3’	52	416
	Reverse	5’-CTATTCTCTCGTTATGG-3’		
speI	Forward	5’-AATGAAGGTCCGCCTTTTC-3’	52	516
	Reverse	5’-TCTCTCTGTCCCATGTCTCTG-3’		
Results

Patients’ characteristics.

297 isolates were recovered from 1183 throat swab samples. For the 297 patients, the mean age was 6.17 years, the median was 6 years (range from 1 to 13 years), and 175 were boys, 132 were girls.

Antimicrobial susceptibility testing results

All 297 GAS isolates were sensitive to penicillin, ceftriaxone, cefotaxime, cefepime, vancomycin, and levofloxacin. They were resistant to erythromycin, clindamycin and tetracycline with the resistance rate 98.3%(292/297), 96.6% (287/297) and 90.23% (268/297), respectively (Table 3).

Gene	Forward	Reverse
speJ	Forward	5'-GATAGTGAAAATATTTAAAGACG-3'
	Reverse	5'-TTATTAGTCCAAAGGTAATATC-3'
speK	Forward	5'-GTGTGTCTAATGCCCACCGTCT-3'
	Reverse	5'-GGAACATATATGCTCCTAGAT-3'
speL	Forward	5'-CAGCACCTTCTCTTTTCTCG-3'
	Reverse	5'-GGAAAAAGGGAGCGCAAG-3'
speM	Forward	5'-GGATGAGTGAATAATCGGTAAAC-3'
	Reverse	5'-AGTCTGGGACGTGATAA-3'
ssa	Forward	5'-TGATCAAATATTGCTCCAGGTG-3'
	Reverse	5'-TCCACAGGTCAGCTTTTACAG-3'
smeZ	Forward	5'-CTTCAATATTGCAATAATTTC-3'
	Reverse	5'-TGTAACTGTGTGTTTAGTTGTGAT-3'

Table 3. Antimicrobial susceptibility test of 297 strains of GAS from Children's Hospital between 2016 and 2017.
Antibiotic	Susceptible	Intermediate	Resistant
Penicillin C	297/100	0	0
Ceftriaxone	297/100	0	0
Clindamycin	8/2.69	2/0.67	287/96.6
Erythromycin	3/1.01	2/0.67	292/98.3
Tetracycline	16/5.39	13/4.38	268/90.23
Vancomycin	297/100	0	0
Chloramphenicol	283/95.29	12/4.04	2/0.67
cefepime	297/100	0	0
cefotaxime	297/100	0	0
Levofloxacin	297/100	0	0

Distribution of emm types

Overall, 9 emm types were detected in GAS strains, including 28 subtypes from 2016 to 2017. The majority of the cases were emm12 (65.32%, 194/297), emm1 (27.61%, 82/297), emm75 (2.69%, 8/297), and emm89 (1.35%, 4/297). emm12.0 and emm1.0 are the most prevalent subtypes, accounted for 46.8% and 26.26%, respectively. A variant subtype (stg485.0) was also detected. The distribution of the emm types is shown in Table 4.

Table 4. Distribution of the emm genotypes S. pyogenes strains from Children’s Hospital between 2016 and 2017.
emm types	emm subtypes	Count (n)	
emm1	emm1.0	78	
	emm1.25	1	
	emm1.3	1	
	emm1.33	2	
emm12	emm12.0	139	
	emm12.12	1	
	emm12.13	1	
	emm12.19	27	
	emm12.20	1	
	emm12.21	2	
	emm12.30	1	
	emm12.36	4	
	emm12.37	8	
	emm12.40	2	
	emm12.66	2	
	emm12.69	2	
	emm12.70	1	
	emm12.72	2	
	emm12.76	1	
emm6	emm6.19	1	
	emm6.4	1	
	emm6.89	1	
emm75	emm75.0	8	
emm89	emm89.0	4	
stg485	stg485.0	1	
emm225	emm225	1	
emm3	emm3.1	3	
emm4	emm4.0	1	
Total		28	297
emm types and erythromycin-resistance genes

Among the 297 isolated GAS strains, 290 (97.64%) carried *ermB*, while 5 (1.68%) carried *mefA* and none carried *ermA* (Table 5). Three erythromycin sensitive strains were found among the isolates, distributed in subtype *emm12.0* and *emm3.1*. None of the three isolates showed the presence of *ermA*, *ermB*, and *mefA*. Clindamycin-sensitive strains were distributed in *emm12.0* and *emm3.1* subtypes. The positive rates of *ermB*, *ermA*, and *mefA* in *emm12* and *emm1* strains were 45.79%, 0%, 0.34% and 26.3%, 0%, 0.67%, respectively.

emm type and superantigen distribution

In 297 strains, the most common superantigen genes identified from *S. pyogenes* were *smeZ* (96.97%), *speC* (92.59%), *speG* (91.58%), and *ssa* (85.52%), while the expression rate of other superantigens was slightly lower: *speI* (54.55%), *speH* (52.19%), *speA* (34.34%), *speM* (24.57%), *speJ* (22.22%), *speL* (5.05%), and *speK* (2.02%). *emm1* tended to harbor *speA*, *speC*, *speG*, *speJ*, *speM*, *ssa*, and *smeZ*, but less *speI*, *speK*, and *speL*. *emm12* tended to harbor *speC*, *speG*, *speH*, *speL*, *speM*, *ssa*, and *smeZ*, with little or no *speJ*, *speK*, *speL*. Variant stg485 did not express any superantigens.

The details of superantigen distribution are shown in Table 5.

emm gene	*erythromycin-resistant gene*						
Type	n.	*ermB* (n/%)	*ermA* (n/%)	*mefA* (n/%)	*speA* (n)	*speC* (n)	*speG* (n)
------------	-----	--------------	--------------	--------------	------------	------------	------------
emm1.0	78	78/26.3	0/0	2/0.67	70	76	74
emm12.0	139	136/45.79	0/0	1/0.34	11	125	126
emm3.1	3	1/0.34	0/0	1/0.34	2	2	3
emm4.0	1	1/0.34	0/0	0/0	0	1	1
emm6.19	1	1/0.34	0/0	0/0	1	1	1
emm6.4	1	1/0.34	0/0	0/0	1	1	1
Discussion

S. pyogenes or GAS is a leading pathogen causing infectious diseases in children. The GAS infection manifests as mild non-invasive diseases, such as acute pharyngitis or life-threatening invasive diseases, such as sepsis and toxic shock syndrome [15]. Scarlet fever is a acute infectious disease caused by GAS, that can affect people of all ages, but it is most often seen in children. Before the advent of antibiotics, scarlet fever was extremely serious, often causing long periods of illness, many
dangerous complications, and even death. A re-emergence of scarlet fever has been noted in Hong Kong, mainland China, South Korea, and England, UK, and other countries around the world since 2008 to 2014[21-23]. Penicillin has always been the preferred treatment for the GAS infection. In penicillin allergic patients, macrolides are the most commonly used antibiotics for treating streptococcal infections. however, the resistance rate of macrolides has also been increasing gradually [7]. Of the GAS isolates recovered from the throat swabs of children with pharyngitis in Madison, Wisconsin, 15% demonstrated nonsusceptibility for clindamycin and erythromycin, and inducible resistance (positive D-test) was detected in 12% isolates[24]. S. pyogenes isolates collected from infected patients from 7 cities/provinces in China during the years 2009-2016, were phenotypically susceptible to penicillin, ampicillin, cefotaxime, and vancomycin, whereas 93.5%, 94.2%, and 86.4% were resistant to erythromycin, clindamycin, and tetracycline, respectively[25]. In this study, the GAS isolates recovered from children with scarlet fever were highly sensitive to penicillin, cephalosporin, levofloxacin, and vancomycin while the resistance rates to erythromycin, clindamycin and tetracycline are 98.3%, 96.6% and 90.23%, respectively (see Table 3). No significant shift was detected in the resistance rate of GAS isolates to antibiotics between 2016 and 2017. These findings were consistent with those from previous study in 2013 that the resistance rates of isolates obtained from scarlet fever in Beijing to erythromycin, clindamycin and tetracycline were 99.3%, 99.3% and 88.2% respectively [26]. However, Erythromycin resistance was found in 51.4% of isolates in India[27]. In Brazil, resistance to erythromycin and clindamycin was 15.4%[28]. Thus, antimicrobial susceptibility test is suggested before choosing erythromycin as an alternative treatment for penicillin-allergic patients.

Traditionally, GAS infection patients with penicillin allergy are commonly treated with macrolide antibiotics. In the late 1990s, the resistance rate of GAS isolates to erythromycin in most regions of China was less than 50%. Around 2008, the drug resistance rate of GAS to erythromycin was 95-100%, while that for the isolates in Taiwan decreased from 53.1% in 2000 to 0% in 2010, but rapidly increased to 65% in 2011. The genes involved in erythromycin resistance were mefA (53.1%), ermB (35.9%), and ermTR (10.9%) [29]. In this study, the resistance rate to erythromycin was 98.3%, that
was much higher than that detected in North America and some European countries (9.6–35.8%). Of the total 297 isolates, 290 (97.64%) harbored the *ermB* gene, 5 (1.68%) harbored *mefA*, none harbored *ermA*. This phenomenon differed from that in the USA, Italy, Chile, and Canada where erythromycin-resistant strains of GAS are mainly M-resistant phenotypes mediated by *mefA*. The target modification mechanism mediated by *ermB* is the main resistance mechanism of GAS in China. The pattern of antibiotic resistance fluctuates worldwide. In a study in India, 51.4% of the GAS isolates were resistant to erythromycin, of which, 65.1% harbored *ermB* and 32.5% harbored *mefA* as the only genes resistant to macrolides, while 2.2% harbored both *ermB* and *mefA* [8]. The resistance rate of erythromycin and clindamycin in Korea decreased from 51.0% and 33.7% in 2002 to 9.8% and 8.8% in 2004, respectively. The sharp decline in erythromycin resistance in a short period may be related to the change in *emm* type distribution in the community [30]. In Portugal, the resistance rates of erythromycin and clindamycin were 14% (carrying the *ermB* gene) and 9% (harboring the *ermTR* gene) in 2010–2015, respectively [31]. Thus, it could be deduced that the high resistance rate of macrolides in China was related to the distribution of *emm* types.

The distribution of *emm* genotypes of GAS varied according to the countries, regions, and periods. *emm1* is the most popular type in Germany, consistent with that in the USA, Australia, and Japan; the prevalent types were *emm1* (31.8%), *emm28* (15.4%), and *emm 89* (14.5%) [14, 32]. Presently, the most popular *emm* types in China are *emm12* and *emm1*. In 2011, two patients with scarlet fever died in Hong Kong; the GAS pathogens were *emm1* and *emm12* [33]. In Chaoyang district, Beijing, in 2011, the main GAS epidemic strain of scarlet fever in children was *emm12.0* [5]. In our study, 297 GAS isolates were recovered from patients with scarlet fever at the Children’s Hospital from 2016 to 2017. Nine *emm* types, including 28 subtypes, were identified, of which, *emm12* (65.32%, 194/297) and *emm1* (27.61%, 82/297) were the most prevalent *emm* types (Table 4). In a previous study, eight *emm* types were identified in 155 isolates of GAS recovered from the pharynx of children with scarlet fever, pharyngeal tonsillitis, as well as healthy carrier in Beijing. *emm1.0* and *emm12.0* were the main types of scarlet fever and pharyngeal tonsillitis. *stg485, emm18.0, emm1.0*, and *emm12.0* were the main types of healthy carrier [34]. From 2009 to 2016, the main *emm* types of GAS strains were
emm12 (42.9–62.2%) and emm1 (30.7–35.0%) [25, 35]). Interestingly, the proportion of emm12 and emm1 in this study was similar to that reported previously. These results showed that the emm genotypes of GAS isolates changed significantly in recent years as compared to those identified in the 1990s. The most common emm genotypes in 1993-1994 were emm3.1, emm1.0, emm4.0, emm12.0, st1815.0, emm6.0, and emm18.0 [36]. You Y collected 2484 strains of GAS during 2011-2018 and found that the prevalent emm types of GAS causing scarlet fever shifted for 8 years in Beijing since 2012, the frequency of emm12 S pyogenes started to decline from 2011, whereas emm1 started to increase and then exceeded emm12 in 2013 and 2014. Since 2015, emm12 exceeded emm1 and became the main type again. Notably, numbers of nonpredominant types emm128 increased substantially in 2017 and of emm3 in 2018 [37].

The main types of GAS in China are different from those in other countries around the world. A total of 35 emm types in 1282 isolates from GAS infection in children in Greece from 2007 to 2013, included emm1 (16.7%), emm12 (13.6%), emm77 (10.9%), emm6 (6.8%), and emm89 (6.6%) [1]. Among 1122 invasive isolates from Finland during 2008–2013, 72 emm types were identified, of which emm28 (26%), emm89 (12%), and emm1 (12%) were the most common types [38]. The main emm types of iGAS strains in Portugal from 2010 to 2015 were emm1 (28%), emm89 (11%), emm3 (9%), emm12 (8%), and emm6 (7%) [31]. Furthermore, the isolates of emm60.1 and emm63.0 genotypes were prevalent in the children from the villages of Guizhou Province in China, which led to the outbreak of acute glomerulonephritis in 2005 [39]. In 2012, many people suddenly had a fever, sore throat and/or fatigue, headache, and other similar symptoms within 24 h in Beijing. The isolated GAS strain had the same genotype (emm89), which was first discovered to cause tonsillar pharyngitis in Beijing, China[40]. emm89 was also identified in this study. Between January 2016 and May 2017, a rare outbreak of GAS, caused by emm66.0, occurred in England and Welsh [41]. The local outbreak of GAS infection is related to the shift of emm types. Moreover, different emm types carry different resistance genes, which leads to the difference of erythromycin resistance rate. In erythromycin-resistance isolates in Brazil the ermB gene was predominant, followed by the ermA gene. Thirty-two emm types and subtypes were found, but five (emm1, emm4, emm12, emm22, emm81) were
detected in 48% of the isolates[28]. These results were different from that in China[21]. Therefore, continuous monitoring of streptococcal infection is required.

GAS superantigens, except speG, speJ, and smeZ encoded by chromosome, speA, speC, speH, speI, speK, speL, speM, and ssa are encoded by phage, which is the main driving force for pathogenic strains to obtain pathogenic factors through transfer. The transfer and mutation of genes can produce highly pathogenic GAS strains, which affect the epidemic situation of the GAS disease, resulting in different distributions of the S. pyogenes superantigen gene spectrum in different periods and geographical areas. A study from Portugal showed that smeZ (96.0%) and speG (86.9%) were common in GAS, followed by speC, ssa, speJ, speA, speK, and speI [42]. A multicenter study in China has proved that 31.1% of the GAS isolates contain speA, while 58.6% contain speC [17]. The GAS isolates from pediatric patients in China during 1993-1994 and 2005-2006 primarily consisted of emm1 and emm12. The GAS strains carrying six or more superantigen genes increased from 46.53% in 1993-1994 to 78.39% in 2005-2006. The level of ssa, speH, and speJ genes increased, while that of speA decreased. The gene spectrum of superantigen is related to the type of emm, but the same emm type strains occasionally carry different superantigen genes in the two periods. Intriguingly, no significant difference was detected in the distribution of emm types and SAg gene spectrum among different disease isolates [36]. In this study, 11 superantigens, including speC, speG, and smeZ of GAS strains were detected. emm1 harbored speA, speC, speG, speJ, speM, ssa, and smeZ, but the content of speI, speK, speL was less. emm12 type tended to contain speC, speG, speH, speI, speM, ssa, and smeZ, with little or no speJ, speK, and speL. A study from Germany showed that the most common superantigen genes in GAS were speG (92.1%), speJ (50.9%), and speC (42.0%). Simultaneously, a correlation was established between emm type or superantigen gene and clinical complications [14]. In an outbreak of GAS infection caused by a rare emm58 type in a multiple trauma treatment center, it was found that this type of isolate produced streptococcal exotoxin SPEB, SPEC, SPEG, SPEF, and SMEZ, and was resistant to macrolides and tetracycline resistant strains [43]. From 2009 to 2016, all isolates from infected patients in 10 general tertiary hospitals in 7 provinces (cities) of China, whether invasive or no-invasive, harboured superantigen genes speB and sLO. The
other superantigen genes, \textit{smeZ}, \textit{speF}, and \textit{speC} accounted for 96.4%, 91.4%, and 87.1% of collected isolates, respectively. All strains were sensitive to penicillin, ampicillin, cefotaxime, and vancomycin, while the resistance rates to erythromycin, clindamycin, and tetracycline were 93.5%, 94.2%, and 86.4% respectively, indicating high genotype diversity and macrolide resistance rate of \textit{S. pyogenes} in clinical isolates in China [25]. In the previous studies on children, 30.5% and 57.2% of GAS isolates harboured superantigen genes \textit{speA} and \textit{speC}, respectively. 88.8% of \textit{emm1.0} genotype strains contained the \textit{speA} gene, while 69.6% of the \textit{emm12.0} genotype strains contained the \textit{speA} gene [17]. In Taiwan, isolates with \textit{emm1.0}, \textit{emm4.0}, and \textit{emm12.0} genotype are the main causes of non-invasive diseases. A few isolates with \textit{emm1.0} genotype harbouring \textit{speC} and \textit{SpeH} genes, while a few isolates with \textit{emm12.0} genotype carry \textit{speJ} and \textit{smeZ} genes [44]. In Spain, the isolates of \textit{s.pyogenes} with \textit{emm1.0} genotype, associated with pharyngitis, carry \textit{speA}, \textit{speG} and \textit{speJ} genes, but does not carry \textit{speC}, \textit{speH}, \textit{speJ} or \textit{ssa} genes [45]. All the above studies showed that the distribution of \textit{emm} genotypes and superantigen gene profiles were time and region dependent.

Conclusions

The classification of pathogenic microorganisms is essential for epidemiological research. In this study, all GAS isolates from the Children’s Hospital were sensitive to penicillin, ceftriaxone, and vancomycin, and highly resistant to erythromycin and clindamycin. Nevertheless, penicillin can still be used as the first option for the treatment of streptococcal infections. \textit{emm} gene typing study shows that \textit{emm12} and \textit{emm1} are the most prevalent genotypes. \textit{ermB} gene is a key role of \textit{Streptococcus} in the resistance to macrolides, and \textit{speC}, \textit{speG}, and \textit{smeZ} are the most common superantigens of GAS. The long-term monitoring of the \textit{emm} types and superantigens of GAS is crucial for understanding the variations of GAS M protein, the generation of new bacterial type, the prediction of epidemic trends and the preparation of vaccine.

Abbreviations

GAS: Group A streptococcus; \textit{emm}: encoding mature M Protein gene; CLSI: Clinical and Laboratory Standards Institute; MIC: minimum inhibitory concentration; CDC: Center for Disease Control and Prevention; PCR: polymerase chain reaction;

Declarations
Ethics approval and consent to participate

This study was approved by the Ethics Committee of the Capital Institute of Pediatrics. Written consent forms were obtained from the participants’ guardians before collecting the pharyngeal swab samples, and the anonymity of the participants was guaranteed.

Consent for publication

Not applicable

Availability of data and material

The datasets supporting the conclusions of this article are included within the article.

Competing interests

The authors have indicated they have no competing interests.

Funding

This work was supported by Research Foundation of the Capital Institute of Pediatrics (NO.QN-2016-09) and Research Foundation of the Capital Institute of Pediatrics (NO.PY-2020-05). The study sponsors had no role in study design; collection, analysis, and interpretation of data; writing the report; or the decision to submit the report for publication.

Authors’ contributions

Hongxin Li, Lin Zhou, and Yong Zhao designed the study; Hongxin Li, Lin Zhou, Xiaoyan Liu, Jin Hu, and Lijuan Ma collected data; Xiaoyan Liu, Jin Hu, and Linjuan Ma coordinated and supervised the data collection; Yong Zhao, Hongxin Li, and Lin Zhou analyzed the data; Hongxin Li and Lin Zhou participated in the interpretation of data; Hongxin Li and Yong Zhao drafted the initial manuscript. All authors approved the final manuscript as submitted and agree to be accountable for all aspects of work.

Acknowledgements

Not applicable

References

1. Koutouzi F, Tsakris A, Chatzichristou P, Koutouzis E, Daikos GL, Kirikou E, Petropoulou N, Syriopoulou V, Michos A: *Streptococcus pyogenes emm Types and Clusters*
during a 7-Year Period (2007 to 2013) in Pharyngeal and Nonpharyngeal Pediatric Isolates. *J Clin Microbiol* 2015, **53**(7):2015-2021.

2. Carapetis JR, Steer AC, Mulholland EK, Weber M: **The global burden of group A streptococcal diseases.** *Lancet Infect Dis* 2005, **5**(11):685-694.

3. Li D, Wang S, Miao F, Zhang JB, Wang YQ, Yang QJ: **Pathogenic surveillance of scarlet fever in Xicheng District of Beijing in 2014.** *International Journal of Laboratory Medicine* 2015(17):2507-2508, 2511.

4. Wu S, Peng X, Yang Z, Ma C, Zhang D, Wang Q, Yang P: **Estimated burden of group a streptococcal pharyngitis among children in Beijing, China.** *BMC Infect Dis* 2016, **16**(1):452.

5. You YH, Song YY, Yan XM, Wang HB, Zhang MH, Tao XX, Li LL, Zhang YX, Jiang XH, Zhang BH et al: **Molecular epidemiological characteristics of Streptococcus pyogenes strains involved in an outbreak of scarlet fever in China, 2011.** *Biomed Environ Sci* 2013, **26**(11):877-885.

6. Tse H, Bao JY, Davies MR, Maamary P, Tsoi HW, Tong AH, Ho TC, Lin CH, Gillen CM, Barnett TC et al: **Molecular characterization of the 2011 Hong Kong scarlet fever outbreak.** *J Infect Dis* 2012, **206**(3):341-351.

7. Grivea IN, Al-Lahham A, Katopodis GD, Syrogiannopoulos GA, Reinert RR: **Resistance to erythromycin and telithromycin in Streptococcus pyogenes isolates obtained between 1999 and 2002 from Greek children with tonsillopharyngitis: phenotypic and genotypic analysis.** *Antimicrob Agents Chemother* 2006, **50**(1):256-261.

8. Abraham T, Sistla S: **Molecular epidemiology of macrolide resistant Group A streptococci from Puducherry, India.** *J Infect Dev Ctries* 2017, **11**(9):679-683.

9. Li HX, Zhou L, Xu J, Cao HN, Zhang HL, Ma YC, Liu XY, Hu J: **Application of group A
Streptococcal antigen detection and drug sensitivity analysis. *Bei Jing Yi Xue* 2019, 41(11):1010-1012.

10. Cui JH, Miao Y, Hu XF, Jin B, Ji YL, Li D: **Genotyping of emm gene in group A hemolytic streptococcus from children in Xicheng district of Beijing from 2011 to 2013.** *Chin J Health Lab Tec* 2014, 24(14):2048-2050.

11. McMillan DJ, Sanderson-Smith ML, Smeesters PR, Sriprakash KS: **Molecular markers for the study of streptococcal epidemiology.** *Curr Top Microbiol Immunol* 2013, 368:29-48.

12. Bessen DE, Smeesters PR, Beall BW: **Molecular Epidemiology, Ecology, and Evolution of Group A Streptococci.** *Microbiol Spectr* 2018, 6(5).

13. Bley C, van der Linden M, Reinert RR: **mef(A) is the predominant macrolide resistance determinant in Streptococcus pneumoniae and Streptococcus pyogenes in Germany.** *Int J Antimicrob Agents* 2011, 37(5):425-431.

14. Imohl M, Fitzner C, Perniciaro S, van der Linden M: **Epidemiology and distribution of 10 superantigens among invasive Streptococcus pyogenes disease in Germany from 2009 to 2014.** *PLoS One* 2017, 12(7):e0180757.

15. Shannon BA, McCormick JK, Schlievert PM: **Toxins and Superantigens of Group A Streptococci.** *Microbiol Spectr* 2019, 7(1).

16. Jing HB, Ning BA, Hao HJ, Zheng YL, Chang D, Jiang W, Jiang YQ: **Epidemiological analysis of group A streptococci recovered from patients in China.** *J Med Microbiol* 2006, 55(Pt 8):1101-1107.

17. Liang Y, Liu X, Chang H, Ji L, Huang G, Fu Z, Zheng Y, Wang L, Li C, Shen Y et al: **Epidemiological and molecular characteristics of clinical isolates of Streptococcus pyogenes collected between 2005 and 2008 from Chinese children.** *J Med Microbiol* 2012, 61(Pt 7):975-983.
18. CLSI: **Performance Standards for Antimicrobial Susceptibility Testing**: Clinical and Laboratory Standards Institute (CLSI), M100, 28th edition; 2018.

19. Perez-Trallero E, Montes M, Orden B, Tamayo E, Garcia-Arenzana JM, Marimon JM: *Phenotypic and genotypic characterization of Streptococcus pyogenes isolates displaying the MLSB phenotype of macrolide resistance in Spain, 1999 to 2005*. *Antimicrob Agents Chemother* 2007, **51**(4):1228-1233.

20. Green NM, Beres SB, Graviss EA, Allison JE, McGeer AJ, Vuopio-Varkila J, LeFebvre RB, Musser JM: *Genetic diversity among type emm28 group A Streptococcus strains causing invasive infections and pharyngitis*. *J Clin Microbiol* 2005, **43**(8):4083-4091.

21. You Y, Davies MR, Protani M, McIntyre L, Walker MJ, Zhang J: *Scarlet Fever Epidemic in China Caused by Streptococcus pyogenes Serotype M12: Epidemiologic and Molecular Analysis*. *EBioMedicine* 2018, **28**:128-135.

22. Lamagni T, Guy R, Chand M, Henderson KL, Chalker V, Lewis J, Saliba V, Elliot AJ, Smith GE, Rushton S et al: *Resurgence of scarlet fever in England, 2014-16: a population-based surveillance study*. *Lancet Infect Dis* 2018, **18**(2):180-187.

23. Liu Y, Chan TC, Yap LW, Luo Y, Xu W, Qin S, Zhao N, Yu Z, Geng X, Liu SL: *Resurgence of scarlet fever in China: a 13-year population-based surveillance study*. *Lancet Infect Dis* 2018, **18**(8):903-912.

24. DeMuri GP, Sterkel AK, Kubica PA, Duster MN, Reed KD, Wald ER: *Macrolide and Clindamycin Resistance in Group a Streptococci Isolated From Children With Pharyngitis*. *Pediatr Infect Dis J* 2017, **36**(3):342-344.

25. Lu B, Fang Y, Fan Y, Chen X, Wang J, Zeng J, Li Y, Zhang Z, Huang L, Li H et al: *High Prevalence of Macrolide-resistance and Molecular Characterization of Streptococcus pyogenes Isolates Circulating in China from 2009 to 2016*. 20
26. Zhao CJ, Peng XM, Yang P, Shi WX, Lu GL, Pang Y: Research on the drug sensitivity test results of group A Streptococcus in children in Beijing in 2013. Chinese Journal of Health Laboratory Technology 2015, 25(15):2623-2625.

27. Abraham T, Sistla S: Trends in antimicrobial resistance patterns of Group A streptococci, molecular basis and implications. Indian J Med Microbiol 2018, 36(2):186-191.

28. Areas GP, Schuab RB, Neves FP, Barros RR: Antimicrobial susceptibility patterns, emm type distribution and genetic diversity of Streptococcus pyogenes recovered in Brazil. Mem Inst Oswaldo Cruz 2014, 109(7):935-939.

29. Chuang PK, Wang SM, Lin HC, Cho YH, Ma YJ, Ho TS, Shen CF, Liu CC: The trend of macrolide resistance and emm types of group A streptococci from children at a medical center in southern Taiwan. J Microbiol Immunol Infect 2015, 48(2):160-167.

30. Koh EH, Kim S, Lee NY: Decrease of erythromycin resistance in group A streptococci by change of emm distribution. Jpn J Infect Dis 2008, 61(4):261-263.

31. Friaes A, Melo-Cristino J, Ramirez M: Changes in emm types and superantigen gene content of Streptococcus pyogenes causing invasive infections in Portugal. Sci Rep 2019, 9(1):18051.

32. Gherardi G, Vitali LA, Creti R: Prevalent emm Types among Invasive GAS in Europe and North America since Year 2000. Front Public Health 2018, 6:59.

33. Hsieh YC, Huang YC: Scarlet fever outbreak in Hong Kong, 2011. J Microbiol Immunol Infect 2011, 44(6):409-411.

34. Liang YM, Chang HS, Shen XZ, Yu SJ, Yuan L, Yang YH: Relationship between emm
Typing and Superantigen Genes speA and speC of Streptococcus Pyogenes Isolated from Children in Beijing. *Journal of Applied Clinical Pediatrics* 2010, 25(22):1700-1702.

35. Zhang DT, Yang P, Wu SS, Zhao JC, Lu GL, Guo J, Wang QY, peng X, M.: **M protein gene of group A streptococcus isolated from children with pharyngeal infection in Beijing, 2011-2014.** *Disease Surveillance* 2015, 30(11):917-921.

36. Ma Y, Yang Y, Huang M, Wang Y, Chen Y, Deng L, Yu S, Deng Q, Zhang H, Wang C et al: **Characterization of emm types and superantigens of Streptococcus pyogenes isolates from children during two sampling periods.** *Epidemiol Infect* 2009, 137(10):1414-1419.

37. You Y, Peng X, Yang P, Wang Q, Zhang J: **8-year M type surveillance of Streptococcus pyogenes in China.** *Lancet Infect Dis* 2020, 20(1):24-25.

38. Smit PW, Lindholm L, Lyytikainen O, Jalava J, Patari-Sampo A, Vuopio J: **Epidemiology and emm types of invasive group A streptococcal infections in Finland, 2008-2013.** *Eur J Clin Microbiol Infect Dis* 2015, 34(10):2131-2136.

39. Zheng MH, Jiao ZQ, Zhang LJ, Yu SJ, Tang GP, Yan XM, He LH, Meng FL, Zhao F, Zhang MJ et al: **Genetic analysis of group A streptococcus isolates recovered during acute glomerulonephritis outbreaks in Guizhou Province of China.** *J Clin Microbiol* 2009, 47(3):715-720.

40. Liu YM, Zhao JZ, Li BB, Yang JY, Dong XG, Zhang JJ, Cao B: **A report on the first outbreak of a single clone group A Streptococcus (emm-type 89) tonsillopharyngitis in China.** *J Microbiol Immunol Infect* 2014, 47(6):542-545.

41. Bubba L, Bundle N, Kapatai G, Daniel R, Balasegaram S, Anderson C, Chalker V, Lamagni T, Brown C, Ready D et al: **Genomic sequencing of a national emm66 group A streptococci (GAS) outbreak among people who inject drugs and the
homeless community in England and Wales, January 2016-May 2017. *J Infect* 2019, **79**(5):435-443.

42. Friaes A, Pinto FR, Silva-Costa C, Ramirez M, Melo-Cristino J: **Group A streptococci clones associated with invasive infections and pharyngitis in Portugal present differences in emm types, superantigen gene content and antimicrobial resistance.** *BMC Microbiol* 2012, **12**:280.

43. Mathur P, Bhardwaj N, Gupta G, Punia P, Tak V, John NV, Agrawal D, Misra MC: **Outbreak of Streptococcus pyogenes emm type 58 in a high dependency unit of a level-1 trauma center of India.** *Indian J Crit Care Med* 2014, **18**(2):77-82.

44. Lin HC, Wang SM, Lin YL, Lin YS, Wu JJ, Chuang WJ, Lin MT, Liu CC: **Group A streptococcal infection caused by emm1 strains among children in southern Taiwan.** *Eur J Clin Microbiol Infect Dis* 2008, **27**(12):1253-1256.

45. Rivera A, Rebollo M, Miro E, Mateo M, Navarro F, Gurgui M, Mirelis B, Coll P: **Superantigen gene profile, emm type and antibiotic resistance genes among group A streptococcal isolates from Barcelona, Spain.** *J Med Microbiol* 2006, **55**(Pt 8):1115-1123.