The orbits and minimal sets in d – algebra

Ahmed Talip Hussein

University of Al-Qadisiyah, College of Science, Department of Mathematics, Al-Qadisiyah, Iraq
Ahmed.talip@qu.edu.iq

Abstract:
In this paper we will define a topological d – algebra and find some properties of this structure and the most important characteristics and we came to define a new type of spaces called D-periodic space.

Keywords: Td – algebra, syndetic set, topological transformation d – algebra, periodic space.

1. Introduction
Y. Imai and K. Iseki [4] and K. Iseki [5] introduced two classes of abstract algebras: namely, BCK-algebras and BCI-algebras. It is known that the class of BCK algebras is a proper subclass of the class of BCI-algebras. In [2], [3] Q. P. Hu and X. Li introduced a wide class of abstract algebras: BCH-algebras. They have shown that the class of BCI-algebras is a proper subclass of the class of BCH-algebras. J. Neggers and H. S. Kim [6] introduced the notion of d-algebras which is another generalization of BCK-algebras, and investigated relations between d-algebras and BCK-algebras. They studied the various topologies in a manner analogous to the study of lattices. However, no attempts have been made to study the topological structures making the star operation of d – algebra continuous. Theories of topological groups, topological rings and topological modules are well known and still investigated by many mathematicians. Even topological universal algebraic structures have been studied by some authors.
In this paper we initiate the study of topological d – algebras. We need some preliminary materials that are necessary for the development of the paper. Section 2 contains some basic knowledges of the d – algebras which are needed for studying this topic. And we will define a topological d – algebra and study some general facts for topological d – algebras.
In section 3, we studied topological transformation monoid (D – space) and the most important characteristics. In section 4 we given define a new type of spaces called D - periodic space and study some properties of D – periodic space.
1. Topological d-algebra

In this section, we examine the definition of topological d-algebra and some issues and examples related to the subject.

2.1 Definition: A non-empty set D together with a binary operation and a zero element 0 is said to be a d – algebra if the following axioms are satisfied for all x, y ∈ D

1) x • x = 0
2) 0 x = 0
3) x y = 0 and y x = 0 imply that x = y.

2.2 Definition: An element e of D is called a left identity if e • a = a, a right identity if a • e = a for all a ∈ D and ae. If e is both left and right identity then we called e is an identity element. Also we say that (D, •) is d – algebra with identity element.

2.3 Example:

i) Let D be any non-empty set and P(D) is power set of D then (P(D), ∩) is d – algebra and is right identity in (P(D), ∩).

ii) Let D = {0, a, b, c} and define the binary operation on D by the following table:

	0	a	b	c
0	0	0	0	0
a	0	0	b	c
b	0	b	0	a
c	0	c	a	0

Table (1)

Then the pair (D, •) is d – algebra with identity element a.

2.4 Definition: Let (D, •, 0) be a d-algebra and I ⊆ D. I is called a d-sub algebra of D if x y ⊆ I whenever x ⊆ I and y ⊆ I. I is called d – ideal of D if:

1) 0 ⊆ I
2) y ⊆ I and x y ⊆ I imply that x ⊆ I.

2.5 Definition: Let (D, •) be a d – algebra and T be a topology on D. The triple (D, •, T) is called a topological d – algebra (denoted by Td – algebra) if the binary operation • is continuous.

2.6 Example:

i) Let D = {0, a, b, c} and be define by the following table:

	0	a	b	c
0	0	0	0	0
a	a	0	0	a
b	b	b	0	b
c	c	c	c	0

Table (2)

Then the pair (D, •) is d – algebra and T = {0, {b}, {c}, {0,a}, {b,c}, {0,a,b}, {0,a,c}, D} is topology on D such that the triple (D, •, T) is a topological d – algebra.

ii) Let R be a set of real number and • is a binary operation which define by a • b = a(a – b)^2 then (R, •) is d – algebra and (R, •, T) is Td – algebra where T is usual topology on R.
2.7 Definition: Let D be a Td–algebra, U be a non–empty subset of D and a any element in D we define the sets $U_a= \{xD/ xaU\}$ and $aU=\{xD/axU\}$. Also if $K D$ we put $KU = aU$ and $UK = Ua$.

2.8 Example: Let $D=\{0,1,2,3,\ldots\}$ and T be the discrete topology on D and $a*b = a.(a- b)^2$. It is clear the triple $(D,*,T)$ is a Td–algebra and if $U = \{xD/ x 9\}$, $K=\{0,1,2\}$ and $a=2$ then $U_2=\{0,1,2,3\}$, $2U = \{0,1,2,3,4\}$ and $KU = \{0,1,2,3,4\}$.

2.9 Proposition: Let D be a Td–algebra and A, B, W, K are subsets of D then:

1) If AB then $AW BW$.

2) If $W K$ then $AW AK$. Proof:

1) Let $x AW$, then there exist aA such that xaW. Since $A B$, so $AWBW$.

2) Let $x AW$, then there exist aA such that xaW. Thus xW, since WK, then xK, so AWK.

2.10 Proposition: Let D be Td–algebra, U and F be two non–empty subset of D, then:

1) If U is open set, then U_a and aU are open sets for all $a D$.

2) If F is closed set, then F_a and aF are closed sets for all $a D$. Proof:

1) Let U be an open set, $a D$ and let xaU. Then $ax U$, since $*$ is continuous, then there exist two open sets A and B of D Such that $(a,x) AB$, $axAB= (A,B) U$, thus $aB U$. Then $xBaU$, so U_a is open set of D. By same way we can prove that U_a is an open set.

2) Let F be an closed set and $a D$. Now we prove that F_a is closed set. Let x, then there exist a net $\{x\}$ in F such that xx. Since D is Td–algebra, then $ax ax$. Thus axF, so xF. Hence F_a is closed set and by same way we prove that Fa is closed set.

2.11 Corollary: Let D be Td–algebra, U and A be two non–empty subset of D, then:

1) The sets U_a and aU are open sets if U is open set.

2) The sets U_a and aU are closed sets if U is closed set and A is finite.

2.12 Proposition: Let D be Td–algebra and D be a T_2–compact space. If U is compact set of D then U_a and aU are compact sets for all $a D$.

Proof:

Let U be a compact subset of D. Since D is T_2 then U is closed set in D. Thus by proposition (2.10) then U_a and aU are closed sets in D for all $a D$. Then U_a and aU are compact sets in D for all $a D$.

2.13 Proposition: If H is sub algebra of a Td–algebra D, then is sub algebra.

Proof:

Let x,y, then there exist two nets $\{x\}$, $\{y\}$ in H such that xx and yy, since $*$ is continuous then $xy y$. Since is closed set, then xy. Thus is sub d–algebra.

2.14 Proposition: If $\{0\}$ is open set of a Td–algebra D, then D is discrete.

Proof:

Let $x D$. Since $x x = 0$ (by definition 2.1) and $\{0\}$ is open, then by continuity of binary operation of d–algebra, there exist two open sets V and U of x such that $U V = \{0\}$. Put $W = U V$. Then $W W = \{0\}$. This implies that $W = \{x\}$, so D is discrete space.

2.15 Proposition: $\{0\}$ is closed in a Td–algebra D if and only if D is Hausdorff.

Proof:

Assume that x and y are different elements in D. Then $xy 0$ or $y x 0$ (by definition2.1,3). We can assume $xy 0$.Since D is a Td–algebra. Then there exist two open sets U and V of x and y respectively, such that $UV X / \{0\}$.
Thus $U \cap V = 0$ so D is Hausdorff clear.

2.16 Proposition: If I is an open ideal of a T_d–algebra D. Then I is also closed.

Proof: Let x be an element of I. Then by the continuity of d–algebra there exists an open neighborhood V of x such that $V \cap I$ is not empty. If for some y is contained in $V \cap I$, then $V \cap I$ by definition of d–ideals. This is contradiction. Thus $V \cap I = 0$. So I is d–ideal.

2. D–space

In this section we will examine the D–space and some simple illustrative examples and their causes and consequences.

3.1 Definition: A topological transformation d–algebra is a triple (D,X,α) where D is a topological d–algebra, X is a topological space and $\alpha : DX \times X \to X$ is a continuous function such that $(d_1, (d_2, x)) = (d_1d_2, x)$ for all $d_1, d_2 \in D$, $x \in X$, and if (D) is a topological d–algebra with identity e, we say that the triple (D,X) is a topological transformation d–algebra with identity such that $(e, x) = x$ for all $x \in X$.

3.2 Example: Let (R,U) be T_d–algebra where $ab = a(a-b)^2$ for all $a,b \in R$ and (R,U) be usual space then (R,R) is a topological transformation d–algebra where $(a,b) = b$ for all $a,b \in R$.

3.3 Remark:

(i) The function is called an action of D on X and the space X together with is called a D–space (or more precisely left D–space) and if (D) is a topological d–algebra with identity, then the space X together with α is called a D–space with identity.

(ii) Since is understood from the context we shall often use the notation $d.x$ or $x.d$ for (d,x) and $d_1.(d_2.x) = (d_1d_2).x$ for $(d_1, (d_2,x)) = (d_1d_2,x)$.

(iii) Similarly, for $H \in D$ and $A \times X$ we put $HA = \{d.a/ dH, aA\}$ for (H,A).

(iv) For dD, let $d : XX$ be the continuous function defined by $d(x) = (d, x) = d.x$. Thus

$$d_1 \circ d_2 = d_1(d_2.x)$$

and if X is D–space with identity then $e = \lambda_x$, the identity function of X.

3.4 Proposition: Let X be D–space If $A \subset X$, $B \subset D$ and dD then:

i) d is continuous.

ii) If A, B are compact subset of X and D respectively then BA is compact subset of X.

iii) $A \cap B$ is compact subset of X and D respectively then BA is compact subset of X and if W is a neighborhood of BA then there exist two neighborhoods U and V for A and B respectively such that VU.

Proof:

i) Since d is continuous function and $d d_1 = d_1(d_2.x)$

ii) Since is continuous function then $A \subset X$.

iii) Since is continuous function and $(BA) = \lambda_x$. Thus BA is compact set.

iv) Clear.

3.5 Definition: Let (D,X) be a topological transformation d–algebra, and $x \in X$. The set $D_x = \{dD/ (d,x) = x\}$ is called the stabilizer of x and we define the set $D_x = xD_x$ as the stabilizer.

3.6 Example: Let (Z,T) be topological d–algebra with discrete topology and a binary operation where $ab = a(a-b)^2$ for all $a,b \in Z$. Then (Z,R) is a topological transformation d–algebra where (R,U) is usual topology on real number and $: ZRR$ such that $(z,r) = r$ for all $z \in Z$ and $r \in R$, then the stabilizer of x is $Z_x = \{zZ/(z,x) = x\}$

Thus $Z_x = 0 = Z$.

3.7 Definition: Let X be a D–space. We called that it is minimal function if (D,X) is dense in X.

4. D–space
for all $x \in X$.

3.8 Example: Let $D = \{0, a, b, c\}$ and is define by the table:

	0	a	b	c
0	0	0	0	0
a	b	0	b	c
b	c	a	0	c
c	a	a	b	0

Table (3)

Then (D) is d–algebra and (D) is Td–algebra where is discrete topology on D and let (D) be indiscrete topological space. The action of (D) on (D) such that $(a,b) = b$ then for every $d \in D$, .. Thus is minimal function.

3.9 Definition: Let X be a D-space. We called that is faithful if for any distinct $d_1, d_2 \in D$ there exist $x \in X$ such that $(d_1, x) \neq (d_2, x)$.

3.10 Example: Let $D = \{0, 1, 2, 3\}$ and be define by the following table:

	0	1	2	3
0	0	0	0	0
1	1	0	1	1
2	2	2	0	2
3	3	3	3	0

Table (4)

Then (D) is d–algebra and (D) is Td–algebra where is discrete topology on D. (N) is a topological space where $= \{U_n / U_n = \{0, 1, 2, 3, n, n+1, \ldots\} : If \ DN D defined by (a, b) = a, then action of (D) on (D). Then for any $a, b \in D$ then there $n \in N$ such that $a = (a, n)$ $(b, n) = b$, then is faithful.

3.11 Definition: Let D be a Td– algebra , a subset T of D is called right syndetic in D if there exists a compact subset H of D such that $HT = TD$ and T is called left syndetic if there exists a compact subset H of D such that $HT = TD$.

3.12 Example: Let $X = \{1, 2, 3\}$ and $(P(X), Td)$ be Td–algebra with discrete topology. If $T = \{X, \{1\}, \{2\}, \{3\}\}$ and $H = \{X, \{1, 2\}, \{1, 3\}, \{2, 3\}\}$ then $HT = TD = P(X)$ and T is right syndetic in $P(X)$. If $T = \{X, \{1\}, \{1, 2\}, \{1, 3\}\}$, $K = \{1\}, \{2\}, \{3\}, \{2, 3\}\}$ then $TK = TK = P(X)$ and T is left syndetic in $P(X)$.

Notation: we note that if a Td– algebra D is finite then every subset of D is right (left) syndetic in D.

3.13 Proposition: Let D be a Td– algebra and T be a subset of D then T is right syndetic in D if and only if there are compact subsets H_1, H_2 of D such that $HT = TD$.

Proof:

Let T be right syndetic in D then there exists a compact subset H in D such that $HT = TD$.

Put $H = H_1H_2$ then:

$$D = D$$ and $HT = (H_1H_2)T = H_1T H_2 T = H_1D D = D$
Thus T is right syndetic in D.

3.14 Proposition: Let D be a Td – algebra and A be a right (left) syndetic subset in D then Ā is right (left) syndetic subset in D.

Proof:

Since A is a right syndetic subset in D, then there exists a compact subset H of D such that HA = HA = D by proposition (2.7) and A Ā then Ā = Ā = D thus Ā is right (left) syndetic.

3.15 Definition: Let (D,X) be a topological transformation d- algebra. The point xX is called periodic relative to if Dx is right syndetic in D and is called periodic if D is right syndetic.

3.16 Proposition: Let (D,X) be topological transformation d- algebra if is periodic then any element of X is periodic relative to the function.

Proof:

let be periodic. Then by Definition (3,13), we get D is right syndetic. Then there exist a compact subset H of D such that HD = HD = D. But D = ∩∞x∈X Dx and x∈X Dx. Thus HD = HD = D, then HD = HD = D hence any element in X is periodic relative to.

3.17 Proposition: Let (D, X) be a topological transformation d- algebra and let xX be a periodic relative to . Then (D,x) is compact and (D,x) = (D,y) for any y (D,x).

Proof:

let x X such that x is a periodic relative to. Then there exists a compact subset H of D such that HD = HD = D. First we prove that (D, x) = (H, x). Let y (H, x) h ∈ H such that y= (h,x) . since H D , thus y= (h,x) (D,x) (H, x) (D,x). Let z(D, x). Then there exists d1 D such that z = (d1,x) . Since HD = D , then there exist h,H such that d1 = h,d2 and d2 D,. then z= (d1,x)= (h1d2,x)= (h1 , (d2,x) = (h1,x)z (H,x) , hence (D ,x) (H,x) thus (D, x) = (H, x) . Since (H, x) is compact , then (D, x) is compact. Second let y (D ,x) we prove that (D ,x) = (D ,y) . let z(D,x) then there exist d1,d2D. Such that y= (d, x) and z =(d1, x). Since D= D then there exist h,H such that hd D[z] by define of if D] then (hd, x) = x. Then z = (d1,x) = (d1, (hd ,x)) = (d1, (d ,x)) = (d1,h , (d ,x)) = (d2, (d2 ,x))=(d2 ,y)(D,y) then (D, x)(D, y). Let w (D, x) D such that W= (d3 ,y) w= (d3 , (d3 ,x) = (d3 ,x) (D,x) (D, y)(D,x) then (D ,x) = (D ,y) (D ,x).

3.18 Proposition: Let (D, X) be a topological transformation d- algebra , let X be a T2 – space and the point x X is periodic point relative to , then is minimal function if and only if X = (D,x).

Proof:

Suppose that is minimal. Since X is T2 – space and by proposition (3.15) we get that (D, x) is closed set in X. Thus (D,x) = X (since is minimal).

let X = (D,x) , by proposition (3.15) we get that (D,y) = (D,x) = X for all y X. So is minimal.

3.19 Definition: Let X be a D – space . we say that is called topological transitive if for any two non – empty open subsets U, V X , there exist dD such that (d,U) ∩V ≠

3.20 Example: Let D = {0, a, b, c} such that is define by the following table :
then (D) is Td – algebra where =\{D, \{b\}, \{c\}, \{b,c\}, \{a\}, \{0\}\} and (D,\emptyset) is topological space where =\{D, \{a\}, \{a,b\}\} then D is D – space where (a,b)=b a,b D .Thus is topologically transitive.

3.21 Definition: Let X be a D – space we say that X is a topological point transitive if there exist a point x such that =X and x is called point transitive.

3.22 Definition: Let X be a D- space we say that X is densely point transitive if there exist dense set Y X of point transitive.

3.23 Proposition :Every densely point transitive D- space is a topologically transitive.

Proof: Let U and V be two open non-empty subset of X such that and Y be set of point transitive such that =X then Y \cap V \neq \emptyset, so there exist y \in Y \cap V. By transitivity of y , then there exists d D such that U dV,hence (D,X) is topological transitive d – algebra.

3. the orbits and minimal sets in d – algebra

In this section we study the invariant sets, minimal sets, the orbits of element and the relationship between these concepts, with some specific issues and illustrative examples.

Notation: Let (D,X) be a topological transformation D – algebra, C \subset D and Y \subset X then C (Y) = (C,Y) =\{(c, y), c\in C, y\in Y\}.

4.1 Definition: Let (D,X) be a topological transformation of X .we say that A is invariant under D if and only if D (A)=A

4.2 Example: Let (R,R) be a topological transformation d – algebra (where (R, U) is a topological D- algebra such that is define by ab= a(a-b)^2 for all a,b R and U is usual topology on R and is define by (r1,r2)= r2 for all r1, r2 R . Then any subset of R is invariant set.

4.3 Proposition: Let (D,X) be a topological transformation then :

1) If is a family of all invariant subsets under D then is invariant set under D if and only if D (A)=A

2) If A and B are an invariant subsets of X under D then A \cap B are invariant subsets of X under D.

3) If is closed function and A is invariant subset of X under D then \bar{A} is invariant subset under D.

4) If is open function , D is d- algebra with identity e and A is invariant of X under D - algebra then A is invariant subset under D.

Proof:

1) Let A Then A is an invariant of X under D , then (DA) = A for all A. D(D)= (Then is invariant set.

And :

D = (D = (\cap A (DA))) since is one to one then (\cap A (DA))=
\cap A (DA) = \cap A A then is invariant set.
2) i) Let \(A \) be invariant the \((DA)^c =A\). Since one to one then \((DA)^c =((DA))^c\). Hence \((DA)^c =A^c\) thus \(A^c\) is invariant.

ii) Let \(A \) and \(B \) be two invariant subsets of \(X \) under \(D \) then \((D(A \cap B)^c) =A \cap B^c\), since \(A \cap B = A \cap (X \setminus B)\) then from (1) and (2,i) we get that \(A-B \) is invariant.

3) Since is continuous and closed function. Then \(\bar{A} = (D^{-1}) \) thus \(\bar{A} \) is invariant.

4) Since \(D \) is \(d\)-algebra with identity \(e \), now we prove that \((D \ A)\). Since \(D \) is open function and \((D A) =A\) then \((D A) =A\), so \(\phi(D A) =A\) then \(A \) is invariant.

4.4 Definition: Let \((D, X)\) be a topological transformation \(d\)-algebra and \(x \in X \). The orbit of \(x \) by \(D \) is the set \(\{d x : dD\} \) and we denoted by \(D_x \). The orbit closure of \(x \) by \(D \) is

4.5 Proposition: Let \((D, X)\) be a topological transformation \(d\)-algebra such that \(D \) is \(d\)-algebra with identity \(e \) then :

1) If \(x \in X \) then \(D_x \) is minimal invariant subset of \(X \) contain \(x \).

2) If \(x \in X \) and is closed then the orbit closure of \(x \) by \(D \) is minimal invariant closed subset of \(X \) by \(D \) and contain \(x \).

Proof:

1) Let \(x \in X \), then \(D_x \) is orbit of \(x \) by \(D \). Since \((D, X)\) is topological transformation \(d\)-algebra and \((D) \) is a \(d\)-algebra with identity then \(D(D_x) = (D D_x) = (D (D,x)) \)=\((DD),x)=(D,x) = D_x\).

Then \(D_x \) is an invariant under \(D \) and contains \(x \). Let \(A \) be a subset of \(X \) such that \(A \) is invariant under \(D \), \(x A \) and \(D_x \). Since \(D (A) = A \) then \(D(A) \subseteq D(x) \). But \(D (x) D(A) \) (since \(x \in A \)) then \(A=D (x) \). Thus \(D_x \) is minimal.

2) Let \(x \in X \), then is the orbit closure of \(x \) by \(D \), from (1) we get that \(D_x \) is an invariant under \(D \) then by proposition (4.3) is an invariant under \(D \). Now we prove that minimal set of \(X \).

Let \(A \) be closed subset of \(X \) and it is invariant under \(D \) such that \(x A \). Then \(D_x \) \(D(A) \), then \(= \bar{A} \) then \(\bar{A} \) (since \(A \) is closed) then is minimal set.

4.6 Definition: Let \((D, X)\) be topological transformation \(d\)-algebra, \(A \) be a subset of \(X \) and \(S \) be a subset of \(D \). Then the set \(A \) is called minimal set by the set \(S \) if \(A \) is orbit closure by the set \(S \) and if \(B \in S \) such that \(B \) is any orbit closure by \(S \) then \(B=A \). The set \(A \) is called closure minimal orbit if \(S = D \)

4.7 Remark: Let \((D, X)\) be a topological transformation. Then \(X \) is a closure minimal orbit if and only if \(\bar{x} = X \) for all \(x \in X \)

Proof

Let \(x \) be closure orbit minimal then \(= x \) for some \(x \). Let \(y \in X \) since \(X \). Then by Definition (4.6) we have \(= X \).

4.8 proposition: Let \((D, X)\) be a topological transformation \(d\)-algebra with identity \(e \) such that is closed function. Then the following are equivalent:-

i) \(A \) is closure minimal orbit by \(D \)

ii) \(A \) is a closure non-empty and invariant under \(D \) and it is smaller set satisfy this property.

iii) \(A \) is close non-empty set and \(A = DU \) for all closed non-empty set \(U \) of \(A \).

Proof (i) (ii) let \(A \) be closure minimal orbit by \(D \). Then \(A = \) for some \(x \) , thus \(A \) is non-empty and closed. Then \(A \) is invariant under \(D \) (by proposition (4.5)). Now, let \(B \neq \) and it is invariant under \(D \) and closed such that \(B A \). Since \(A = \) invariant and is smaller under \(D \). Hence \(A = B \).
ii)(iii) let $U \neq \emptyset$ and U is closed set of A then $D U \cap A = A D U A$ and since $(D U) = D U$, $D U$ is closed and since $D(DU) = (D(DU))$, $D U = (D, U) = D U$. Then $D U$ is closed and invariant by D. Since A is smaller and satisfy this property, the set $A D U$ the $A = DU$.

(iii) (i) let A be closed non-empty set and $A = DU$ for all closed set U of A then there exist $x A \{x\}$ is closed set of A (by X is T_2 space), then $A = D \{x\} = Dx = \bar{A} = A$. Then A is closure orbit. Let $y A$ such that γA. Since $\{y\}$ is closed set of A then $Dy = A = A$ thus A is closure minimal orbit by D.

4.9 Remark: Let X be a compact D–space than every closure orbit by D is compact.

4.10 Definition: Let (D, X) be a topological transformation d–algebra with left identity. we say that X is D–periodic space if any point x in X is periodic point.

4.11 Example: Let (D) a topological with left identity 0 where $D = \{0, 1, 2, 3\}$ is discrete topology on D and is binary operation which define by the following table:

	0	1	2	3
0	0	0	0	0
1	1	0	3	2
2	2	3	0	1
3	3	2	1	0

Table (6)

And (R, U) is usual topological space then (D, R) is a topological transformation d–algebra with left identity 0 where $(d,r) = r$ for all $(d, r) \in D R$ then $Dx = D$ for all $x R$ and $0 D$ such that $0D = 0D = D$ then (D, R) is D–periodic space.

4.12 Proposition: Let X be D–periodic space where D is d–algebra with left identity then the collection of all orbits by D is partition for X.

Proof: Let $\{Dx / Dx \text{ is orbit of } x \text{ by } D\}$ now we want to prove that $Dx \cap Dy = \emptyset$ for all $x, y \in X$ such that $Dx \neq Dy$. Suppose that $Dx \cap Dy \neq \emptyset$ there exist $z X$ such that $z x$ and $z y$ then $Dx = Dz$ and $Dy = Dz$ $Dx = Dy = Dz$ by proposition(3.17). Since $e D$ then $x D x$ for all $x X$, $Dx X$, thus $X = X$, then is partial for X.

4.13 Proposition: Let X be D–periodic space with left identity e then relation $P = \{(x, y) X / y D x\}$ is equivalent relation on X.

Proof: i) Since $e D$ and $(e, x) = ex = x$ then $(x, x) D$.

ii) Let $(x, y) P$, then $y D x$ and by proposition (2.17) we get $x D y (y, x) P$.

iii) Let (x, y) and $(y, z) P$ then $y D x$ and $z D y$. Thus $Dx = Dy = Dz$ (by proposition (2.17)) $z D x, z P$ then P is equivalent relation on X.

4.14 Proposition: Let X be D–periodic T_2–space then Dx is closed and minimal set for all $x \in X$.

Proof: Let $x X$, then x is periodic point (since X is D–periodic space). Then $(D, x) = Dx$ is compact by proposition (2.17). Since X is T_2 then Dx is closed then $Dx = A$. For all x, X.
Thus Dx is closure orbit, let $y Dx$. Since $y = Dy = Dx$ then Dx is minimal set.

4.15 Proposition: Let X be a D-periodic $-T_2$ space where D is d-algebra with left identity e and $A X$, then A is invariant set under D if and only if A for all $y A$.

Proof:
Let $y A$, then $Dy D(A) = A$. Since y is periodic point, thus Dy closed by proposition (4.14), then $Dy = A$.

Since $e D$, then $A D(A)$ and since A for all $y A$, then $yA A$ thus $D(A)$

Thus A is invariant set by D.

References

1) Bourbaki, N., Elements of Mathematics, "General Topology", Chapter 1-4, Springer – Verlog, Heidelberg, New-York, pairs, Tokyo, 2nd Edition(1989).
2) HU, Q. P.—LI, X.: On BCH-algebras, Math. Sem. Notes, Kobe Univ. 11 (1983), 313-320.
3) HU, Q. P.—LI, X.: On proper BCH-algebras, Math. Japon. 30 (1985), 659-661.
4) IMAI, Y.—ISEKI, K.: On axiom systems of propositional calculi XIV, Proc. Japan Acad. Ser. A Math. Sci. 42 (1966), 19-22.
5) ISEKI, K.: An algebra related with a propositional calculus, Proc. Japan Acad. Ser. A Math. Sci. 42 (1966), 26-29.
6) Joseph Neggers; Young Bae Jun; HeeSik Kim.: On d-ideals in d-algebras, Mathematica Slovaca, Vol. 49 (1999), No. 3, 243—251.
7) NEGERS, J.—KIM, H. S.: On d-algebras, Math. Slovaca 49 (1999), 19-26.