Local release of properdin in the cellular microenvironment: role in pattern recognition and amplification of the alternative pathway of complement

Claudio Cortes1,2, Jennifer A. Ohtola1, Gurpanna Saggu1 and Viviana P. Ferreira1

1 Department of Medical Microbiology and Immunology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
2 Department of Medical Immunology and Microbiology, Medical University of the Americas, West Indies, Nevis

Proporfin, the only positive regulatory protein of the complement system, acts as both a stabilizer of the alternative pathway (AP) convertases and as a selective pattern recognition molecule of certain microorganisms and host cells (i.e., apoptotic/necrotic cells) by serving as a platform for de novo C3b,Bb assembly. Properdin, a highly positively charged protein, normally exists as cyclic dimers (P2), trimers (P3), and tetramers (P4) of head-to-tail associations of monomeric E3 KDa subunits. While most complement proteins are produced mainly in the liver, properdin is synthesized primarily by various cell types, including neutrophils, monocytes, primary T cells, and shear-stressed endothelial cells resulting in properdin serum levels of 4–25 μg/ml. Multiple inflammatory agonists stimulate the release of properdin from stimulated leukocytes into the cellular microenvironment. Concentrated, focused increases in properdin levels may lead to stabilization and initiation of AP convertases, thus greatly amplifying the complement response to a local stimulus. This review highlights current knowledge related to these properties and discusses the implications of properdin production in a pro-inflammatory microenvironment.

Keywords: properdin, alternative pathway, complement system, pattern recognition, inflammation
properdin has been identified as an initiating pattern recognition molecule of the AP, as will be discussed further.

PROPERDIN: AN ANCIENT COMPLEMENT REGULATORY MOLECULE OF THE ALTERNATIVE PATHWAY

PROPERDIN STRUCTURE

Properdin, a highly positively charged protein, exists as cyclic dimers (P2), trimers (P3), and tetramers (P4) of head-to-tail associations of monomeric subunits (Smith et al., 1983; Panghurn, 1989). Each monomer is ∼53 kDa (Nolan and Reid, 1990), 26 nm in length, x 2.5 nm in diameter (Smith et al., 1984, 1991), contains 442 amino acid residues, and is composed of seven thrombospondin repeat type I (TSR0-TSR6) domains (Higgins et al., 1995). In addition, the properdin monomer contains an N-glycosylation site and 14 C-linked mannosylation sites when bound to a cell membrane versus their respective fluid-phase counterparts (Farries et al., 1988b). Properdin also interacts with the C3 and C5 convertases (Fearon and Austen, 1975; Medziurich et al., 1976). Recent reports propose that properdin acts as a pattern recognition molecule (as discussed ahead). This view is consistent with the complement inhibition function proposed over 50 years ago (Pillmér et al., 1954) and has re-opened the controversy regarding the functions of properdin.

Properdin bound to a surface has the potential to initiate complement activation

Hourcade (1986) demonstrated that properdin, covalently bound to a biosensor surface, could subsequently recruit C3b and factor B to form C3b,Bb,P. Importantly, this study also showed that even when properdin binds to surface-bound C3b, properdin can still recruit C3b and factor B to form a new convertase. This goes beyond the “convertase stabilizer” function, in which properdin binds only once the convertase is already formed. Additional evidence supporting the ability of properdin to initiate complement activation (by forming de novo C3 convertases on cell surfaces) comes from studies where human embryonic kidney cells (Vazan et al., 2000) or Escherichia coli (Spitzer et al., 2007) were transfected with a vector expressing a transmembrane form of properdin on the cell surface, turning the cell surface into an activator of the AP.

Properdin has been shown to bind to a variety of cell surfaces

Recent studies have reported properdin binding directly to various non-self surfaces: zymosan (Spitzer et al., 2007; Ferreira et al., 2010a), rabbit erythrocytes, Neisseria gonorrhoeae (Spitzer et al., 2007), certain E. coli strains (Spitzer et al., 2007; Sover et al., 2008), early (Kemper et al., 2008) or late (Xu et al., 2008) apoptotic cells, necrotic cells (Xu et al., 2008; Ferreira et al., 2010a), live human leukemia T cell lines (Kemper et al., 2008), normal human proximal tubular epithelial cells (Gaarkeuken et al., 2008), Chinese hamster ovary cells (Kemper et al., 2008), neutrophils (Wirthmueller et al., 1997; Camous et al., 2011), and carriage oligomeric matrix protein (Happonen et al., 2010). Furthermore, bound properdin serves as a platform for de novo C3b,Bb assembly, leading to C3 cleavage and complement activation on these surfaces, suggesting that properdin may serve as a pattern recognition molecule for AP initiation on targets.

To study the specificity of properdin-target interactions the physiological forms of properdin (P2–P4) should be separated from aggregated (“activated”) properdin

Biochemical studies of serum-derived pure properdin indicate that non-physiological high molecular weight, highly charged polymers (known as Pn or “activated” properdin) form during long term storage and freezing/shawing (Farries et al., 1987; Panghurn, 1989). Although “activated” properdin (or Pn) retains the ability to stabilize AP convertases, it possesses the abnormal capacity to activate complement in solution (consumption of complement; Panghurn, 1989) and bind non-specifically to surfaces such as live T cells (Ferreira et al., 2010a) and Neisseria (Agarwal et al., 2010). The studies mentioned in the previous section (except Agarwal et al., 2010; Ferreira et al., 2010a; Cortes et al., 2011) and parts of other studies (Kemper et al., 2008; Xu et al., 2008; Camous et al., 2011) were carried out with unfracticated pure properdin potentially containing aggregates. Studies using physiological forms of properdin (P2–P4) separated from non-physiological aggregates, by ion exchange and/or size exclusion chromatography, found native properdin does not bind to some previously described surfaces, such as rabbit erythrocytes, live Jurkat cells (Ferreira et al., 2010a) and Neisseria sp. (Agarwal et al., 2010). However, native properdin forms do bind to necrotic cells, yeast cell wall components (Ferreira et al., 2010a), Chlamydia pneumoniae (Cortes et al., 2011), and activated platelets (Saggi et al., 2012), suggesting it is a highly selective recognition molecule. In addition, neutrophil-derived native/physiological properdin can bind to apoptotic T cells (Kemper et al., 2008) and neutrophils (Wirthmueller et al., 1997; Camous et al., 2011), while properdin, in the context of C3-deficient serum can bind to dying cells (Xu et al., 2008). Interestingly, T cell-derived properdin is ∼100 times more active than serum properdin (Schwabl et al., 1993) when tested in a traditional AP hemolytic assay, but the molecular mechanisms involved in the increased activity remain unknown. Although it has been speculated that serum-derived, unfracticated properdin (containing aggregated “activated” properdin) may be similar to native neutrophil- or T cell-derived properdin, biochemical experimental evidence is lacking. Moreover, activated properdin forms (Pn), are not normally in circulation (or are tightly controlled) since their presence leads
to systemic complement activation and consumption (Pangburn, 1989). Based upon available experimental evidence, future studies should be carried out only with native properdin forms (separated from “activated” properdin), or with fresh leukocyte-derived properdin, in order to effectively determine specific interactions between properdin and surfaces and not over-estimate the role of properdin (due to aggregates) in complement activation.

Surface-bound properdin may lead to complement activation by recruiting C3b molecules derived from different sources. For instance, it is possible that properdin binds C3b-generated during the activation of any of the three complement pathways or recruits soluble C3(H2O) (a C3b-like molecule) to form a membrane-bound C3(H2O),Bb convertase. We have recently determined that physiological forms of properdin bound to activated platelets, but not resting platelets, recruits both C3(H2O) and factor B, generating a functional C3(H2O),Bb convertase that promotes complement activation on platelets (Saggu et al., 2012), whereas platelet-bound C3(H2O) alone has been shown to not produce a functional convertase (Hamad et al., 2010).

THE ROLE OF PROPERDIN IN THE LOCAL MICROENVIRONMENT

SOURCES OF PROPERDIN

Unlike most other complement proteins, which are produced mainly in the liver, properdin is synthesized by various cell types (Table 1, Figure 1) resulting in properdin serum levels of 4–25 μg/ml (Pangburn, 1989; Nolan and Reid, 1993; Fijen et al., 1999; Schwaeble and Reid, 1999; Xu et al., 2008). Multiple inflammatory agonists, such as TNF-α, C5a, or fMLP, stimulate the release of properdin (Table 1) into the pro-inflammatory microenvironment to induce local AP activation.

LOCAL RELEASE OF PROPERDIN

Concentrated transient increases in local properdin levels due to cell production (i.e., T cells, monocytes, and neutrophils) would likely lead to stabilization (reviewed in Schwaeble and Reid, 1999) and initiation of the AP convertases, thus greatly amplifying the complement response to a local stimulus, in particular because these cells also synthesize the other complement proteins necessary for activation.

The complement system plays a role in the clearance of dead/dying cells through opsonization and promotion of phagocyte cytosis (Hiscman and Daba, 2007; Tissow et al., 2008). Properdin released by phagocytes binds to apoptotic and necrotic cells (Kemper et al., 2008; Xu et al., 2008), and this may aid in their removal directly or through properdin-mediated complement activation (Figure 1). Likewise, local release of properdin may opsonize and kill microorganisms by directly promoting their phagocytosis or through properdin-mediated complement opsonization and killing. Native properdin forms bind directly to C. pneumoniae

The complement system plays a role in the clearance of dead/dying cells through opsonization and promotion of phagocyte cytosis (Hiscman and Daba, 2007; Tissow et al., 2008). Properdin released by phagocytes binds to apoptotic and necrotic cells (Kemper et al., 2008; Xu et al., 2008), and this may aid in their removal directly or through properdin-mediated complement activation (Figure 1). Likewise, local release of properdin may opsonize and kill microorganisms by directly promoting their phagocytosis or through properdin-mediated complement opsonization and killing. Native properdin forms bind directly to C. pneumoniae

Table 1 | List of sources of properdin.

Cellular Source	Form	Stimulus	Reference
Monocytes	protein	constitutive	Whaley (1980)
Dendritic cells	mRNA, protein	constitutive	Reis et al. (2006), Li et al. (2011)
Monocyte-derived	mRNA	constitutive	Li et al. (2011)
Dermal	mRNA	constitutive	Li et al. (2011)
Langerhans	mRNA	constitutive	Li et al. (2011)
Myeloid	mRNA	constitutive	Li et al. (2011)
Plasmacytoid	mRNA	constitutive	Li et al. (2011)
Primary T cells	mRNA	constitutive	Schwaeble et al. (1993)
Mast cells	protein	constitutive	Stover et al. (2008)
Granulocytes	mRNA, protein	TNFα, TNF/fMLP, PMA	Wirthmueller et al. (1997), Camous et al. (2011)
Endothelial cells	mRNA, protein	laminar shear stress	Bongrazio et al. (2003)
Adipocytes	mRNA, protein	constitutive	Peake et al. (1997), Pattrick et al. (2009)
H9 (T cell)	mRNA	constitutive	Schwaeble et al. (1993)
HuT78 (T cell)	mRNA	constitutive	Schwaeble et al. (1993)
Jurkat (T cell)	mRNA	constitutive	Schwaeble et al. (1993)
T-ALL (T cell)	mRNA	constitutive	Schwaeble et al. (1993)
HL-60 (promyelocyte)	protein	DMSO	Farries and Atkinson (1989)
U-937 (monocyte)	Protein	PMA, LPS, IFNγ	Mintz (1988)
Monocyte Mono Mac6	mRNA, protein	IFNγ (mRNA only), IL-1β, TNFα, LPS, TNP, PMA	Schwaeble et al. (1994)
3T3-L1 adipocytes	mRNA	constitutive	Peake et al. (1997)
Properdin released by immune cells may directly bind to surfaces (pathogens and cells) promoting AP complement activation. Properdin may recruit C3b or C3b(H2O) to form a C3 convertase and further promote C3b deposition on surfaces (P-mediated complement activation). Sources of C3b may be derived from C3 convertases of the alternative pathway (AP), lectin (LP), or classical pathways (CP). C3b(H2O) derived from "tick over" C3 hydrolysis may also bind to cell-bound properdin, forming a C3b(H2O),Bb convertase on the cell. In addition, properdin can bind to C3b on surfaces and recruit additional C3b and factor B, generating new convertases. Properdin that does not encounter a nearby cell surface may lose the ability to bind to surfaces directly soon after it is in contact with blood, thereby preventing unwanted properdin-mediated complement damage in surrounding areas while keeping the conventional function of stabilizing the C3 and C5 convertases of the AP. Properdin-mediated complement activation may participate in opsonization, MAC deposition, and C3a and C5a release, which are important processes in inflammatory immune responses. Finally, locally released properdin may carry out functions that are independent from complement activation/amplification. For simplicity, the orange triangle represents a properdin trimer.

and promote AP-mediated complement activation, with possible consequences in infectivity (Cortes et al., 2011) and in chronic inflammation found in atherosclerosis. Properdin-mediated complement activation may also be important for further recruitment of pro-inflammatory cells to infection sites. Concomitantly, properdin may play other direct roles, independent from complement activation, influencing lipid metabolism (Gauvreau et al., 2012).

At sites of inflammation where many different properdin-producing cells are in close proximity and cytokine release and complement activation occurs, neutrophils rapidly secrete properdin upon degranulation stimuli (Table 1). Endogenous native properdin has been detected on the surface of isolated, non-stimulated neutrophils (Withnauer et al., 1997) and TNF/IL-8-stimulated neutrophils (Camous et al., 2011), independently from C3 (Camous et al., 2011). Unfractionated properdin (known to contain non-physiological complement-activating aggregates, as described above), when incubated with isolated resting neutrophils, promotes complement activation on neutrophil membranes (Camous et al., 2011), and when added to whole blood, induces the formation of platelet-leukocyte aggregates (Rief et al., 2008). Interestingly, pro-inflammatory and coagulation-induced stimuli allow neutrophils to activate the AP in an autocrine or paracrine fashion, despite the presence of membrane-bound complement regulatory proteins on neutrophil surfaces (Camous et al., 2011). The exact mechanism of complement activation on neutrophils remains to be determined and
properdin-mediated initiation is possible. Complement activation on neutrophils results in increased release of complement products such as C5a fragments and the MAC complex which could further activate neutrophils, endothelial cells, or other cells in close contact with adherent neutrophils further contributing to a pro-inflammatory microenvironment.

In vivo studies using properdin deficient mice have revealed important roles for properdin in disease models including septic and non-septic shock (Ivanovska et al., 2008; Stover et al., 2008), various arthritis models (Dimitrova et al., 2010, 2012; Kimura et al., 2010), and abdominal aortic aneurism (AAA; Zhou et al., 2012). Because properdin-deficient mice are protected from the severity of certain diseases (Ivanovska et al., 2008; Kimura et al., 2010; Zhou et al., 2012), efforts to understand the consequences of therapeutically inhibiting properdin (Gupta-Bansal et al., 2006; Kimura et al., 2010) and the contribution of locally synthesized properdin in the disease pathogenesis are being evaluated.

POTENTIAL BINDING LIGANDS FOR PROPERDIN ON SURFACES

Properdin is a highly positively charged protein (isoelectric point >9.5). Properdin may interact directly with surfaces by recognizing glycosaminoglycan (GAG) chains of surface proteoglycans on proximal tubular epithelial cells (Zaferani et al., 2011) and T cells (Kemper et al., 2008). Candidate sulfated GAGs shown to interact with properdin include heparin (Yu et al., 2003), heparan sulfate (Kemper et al., 2008, 2011), dextran sulfate (Holt et al., 1990), fucoidan (Holt et al., 1990), and chondroitin sulfate (Kemper et al., 2008). Interestingly, Holt et al. (1990) demonstrated differences between the sulfated glycosaminoglycan binding properties of native and activated (P2) properdin. While both native and activated properdin bind to dextran sulfate (Mr 500,000) and fucoidan, only the “activated” form of properdin binds to chondroitin sulfate C, heparin, and dextran sulfate (Mr 5,000). Other ligands for properdin on cells include DNA on late apoptotic and necrotic cells (Yu et al., 2008), and bacterial LPS and lipooligosaccharide (Kimura et al., 2008). All cell surface molecules (identified to date), shown to interact directly with properdin on cells, are negatively charged (with the exception of the convertase proteins of the AP). Additional studies are needed for identifying the receptors for properdin on other surfaces on which properdin has been found to bind, as discussed previously herein.

BINDING OF PROPERDIN TO SURFACES IS REGULATED IN SERUM

Binding of purified physiological forms of properdin to certain surfaces (zymosan, necrotic cells, and C. pneumoniae) is inhibited by normal human serum in a dose-dependent manner (Ferreira et al., 2010a; Cortes et al., 2011). In agreement with these results, binding of unfraccionated pure properdin to apoptotic T cells was also inhibited in the presence of serum (Kemper et al., 2008), and direct binding of properdin to zymosan and E. coli was not detected in the context of normal human serum or lepirudin-anticoagulated plasma unless C3 components bound first (Harboe et al., 2012). Therefore, yet-to-be identified inhibitors of this interaction may exist in serum. Local production of properdin transiently elevates the concentration in close proximity to the cells producing it, while properdin that leaves the microenvironment of production will be progressively inhibited as a regulatory mechanism. Tight regulation of the ability of properdin to bind to surfaces would be expected in order to prevent unwanted properdin-mediated complement activation and damage at more distant/bystander cell surfaces. As mentioned, properdin binds DNA and sulfated glycoconjugates. Thus, fluid-phase forms of DNA (Rhodes et al., 2006) or glycoproteins could potentially serve as regulators of properdin/surface interactions once properdin has left the microenvironment of the cells producing it (i.e., neutrophils). Studies aimed at identifying putative serum-derived inhibitors of the interaction between properdin and cell surfaces are necessary.

FINAL REMARKS

The complement system is an essential component of the innate immune system that participates in elimination of pathogens and altered host cells. The important role of the local production of complement components and their role in the inflammatory microenvironment is an important emerging field. Properdin, the only known positive regulatory protein of the complement system, is produced by various cell types. This review describes the role of properdin as a stabilizer of AP convertases and as a selective pattern recognition molecule, highlighting its function as an activator of the AP on surfaces to which it binds (pathogens, host cells). Future studies aimed at identifying the receptor(s) that bind properdin to pathogens and host cells, the factors that contribute to regulation of properdin binding to surfaces in serum, the differences between serum-derived and leukocyte-derived properdin, and the role of properdin in the pro-inflammatory microenvironment, specifically in exacerbating or controlling inflammatory diseases, will significantly contribute to determining under which scenarios the therapeutic inhibition of specific properdin functions may be warranted.

ACKNOWLEDGMENTS

The authors’ work has been supported by The National Institutes of Health (1P30HL101317-01) and The American Heart Association (0735101N) to Viviana P. Ferreira.
Functions of locally released properdin

Gupta-Bansal, R., Parent, J. B., and Gaarkeuken, H., Siezenga, M. A., Zuid-Farries, T. C., and Atkinson, J. P. (1988). Analysis of the interaction between propo-

derin and factor B, components of the alternative pathway C3 convertase of complement. Biochim. Biophys. Acta 977, 507–517.

Cortes et al. Functions of complement alternative pathway proteins in cardiovascular disease. Front. Biosci. 12, 4006–4018.

Gupta-Bansal, R. (1989). Analysis of the natural polymeric forms of human properdin and their role in complement activation. J. Immunol. 142, 202–207.

Parent, K. M. (1978). “The alternative pathway: activation and regulation,” in The Complement System, ed. K. Retseh and G. O. Ylik (New York: Springer-Verlag), 93–115.

Parent, M. K., Ferrer, V. P., and Cortes, C. (2008). Discrimination between host and pathogens by the complement system. Vaccine 26, Suppl. 5, B15–B23.

Parent, M. K., Ciesla, R. D., and Muller-Eberhard, H. J. (1988). Activation of the alternative complement pathway: recognition of surface structures on activators by bound C3b. J. Immunol. 142, 977–982.

Parent, M. K., and Muller-Eberhard, H. J. (1980). Role of the putative thioester bond in C3 activation of the alternative pathway and the binding of C3b to biological targets of complement. J. Exp. Med. 152, 1102–1114.

Parent, M. K., Ciesla, R. D., and Muller-Eberhard, H. J. (1981). Formation of the initial C3 convertase of the alternative complement pathway. Acquisation of C3-like activity by spontaneous breakdown of the putative thioester. J. Exp. Med. 150, 867–868.

Parent, M. K., Pentikainen, M. O. (2007). Functions of locally released properdin in cardiovascular diseases. Front. Biosci. 12, 4006–4018.

Parent, K. M. (1989). Analysis of the natural polymeric forms of human properdin and their role in complement activation. J. Immunol. 142, 202–207.

Parent, K. M. (1978). “The alternative pathway: activation and regulation,” in The Complement System, ed. K. Retseh and G. O. Ylik (New York: Springer-Verlag), 93–115.

Parent, M. K., Ferrer, V. P., and Cortes, C. (2008). Discrimination between host and pathogens by the complement system. Vaccine 26, Suppl. 5, B15–B23.

Parent, M. K., Ciesla, R. D., and Muller-Eberhard, H. J. (1988). Activation of the alternative complement pathway: recognition of surface structures on activators by bound C3b. J. Immunol. 142, 977–982.

Parent, M. K., and Muller-Eberhard, H. J. (1980). Role of the putative thioester bond in C3 activation of the alternative pathway and the binding of C3b to biological targets of complement. J. Exp. Med. 152, 1102–1114.

Parent, M. K., Ciesla, R. D., and Muller-Eberhard, H. J. (1981). Formation of the initial C3 convertase of the alternative complement pathway. Acquisation of C3-like activity by spontaneous breakdown of the putative thioester. J. Exp. Med. 150, 867–868.

Parent, M. K., Pentikainen, M. O. (2007). Functions of locally released properdin in cardiovascular diseases. Front. Biosci. 12, 4006–4018.

Parent, K. M. (1989). Analysis of the natural polymeric forms of human properdin and their role in complement activation. J. Immunol. 142, 202–207.

Parent, K. M. (1978). “The alternative pathway: activation and regulation,” in The Complement System, ed. K. Retseh and G. O. Ylik (New York: Springer-Verlag), 93–115.

Parent, M. K., Ferrer, V. P., and Cortes, C. (2008). Discrimination between host and pathogens by the complement system. Vaccine 26, Suppl. 5, B15–B23.

Parent, M. K., Ciesla, R. D., and Muller-Eberhard, H. J. (1988). Activation of the alternative complement pathway: recognition of surface structures on activators by bound C3b. J. Immunol. 142, 977–982.
Rhodes, A., Wirtz, S. J., Thomas, H., Collinson, P., and Bennett, E. D. (2008). Plasma DNA concentration as a predictor of mortality and sepsis in critically ill patients. Crit. Care Med. 36, B160.

Ridlén, D., Hajishengallis, G., Tang, K., and Lammers, I. D. (2013). Complement: a key system for immune surveillance and homeostasis. Nat. Immunol. 11, 785–797.

Roboth, K. (1998). “Complement in inflammation,” in The Complement System, eds. K. Roboth, G. O. TIL and G. M. Hunsick (New York: Springer-Verlag), 462–471.

Rued, J., Rued, P., Meixner, T., and Metzen, M. (2008). The complement factor properdin induces formation of platelet-leukocyte aggregates via leukocyte activation. Platelets 19, 309–314.

Saggu, G., Cortes, C., Emich, H. N., Ramires, G., Worth, S. J., and Ferreira, V. P. (2012). Identification of a novel mode of complement activation on stimulated platelets mediated by properdin. J. Immunology 217, 1175–1187.

Schroeder, B. D., Medicus, R. G., Goto, O., and Müller-Eberhard, H. J. (1975). Properdin and nephritogenic factor-dependent C3 convertase requirement of native C3 for enzyme formation and the function of bound C3b as properdin receptor. J. Exp. Med. 142, 769–772.

Schwabl, W., Dippold, W. G., Schalter, M. K., Pollok, H., Jonas, D., Lutting, B., et al. (1995). Properdin, a positive regulator of complement activation, is expressed on human T cells and peripheral blood T cells. J. Immunol. 155, 2521–2526.

Schwabl, W., Hauner, H. P., Monti, J., Diurch, M. P., Strehl, M., Claus, C., et al. (1994). Expression of properdin in human monocytes. Eur. J. Biochem. 219, 759–766.

Schwabl, W. J., and Raul, K. B. (1999). Does properdin crosslink the cellular and the humoral immune response? J. Immunol. Today 25, 17–21.

Smith, C. A., Fenghun, M. K., Vogel, C.-W., and Müller-Eberhard, H. J. (1994). Molecular architecture of human properdin, a positive regulator of the alternative pathway of complement. J. Biol. Chem. 269, 4592–4598.

Smith, K. F., Neiman, K. E., Reid, K. B., and Perkins, S. J. (1991). Neutrophon and X-ray scattering studies on the human complement protein properdin provide an analysis of the thermosprorbidin repeat. Biochemistry 30, 8000–8008.

Spiro, D., Mitchell, L. M., Atkinson, J. F., and Honkasalo, D. E. (2007). Properdin can initiate complement activation by binding specific target surfaces and providing a platform for de novo convertase assembly. J. Immunol. 179, 2680–2688.

Stover, C. M., Luckett, J. C., Echtermacher, B., Repetti, A., Figgitt, S. E., Brown, J., et al. (2008). Properdin inhibits C5a-induced neutrophil activation. J. Immunol. 180, 5133–5138.

Sun, Z., Reid, K. B., and Perkins, S. J. (2004). The dimeric and trimeric solution structures of the multidomain complement protein properdin by X-ray scattering, analysis trimerization and constrained modelling. J. Mol. Biol. 343, 1327–1343.

Trovato, L. A., Blom, A. M., and Guasch, P. (2008). Role of complement and complement regulators in the removal of apoptotic cells. Mol. Immunol. 45, 1199–1207.

Vuagnat, B. R., Mach, J., and Le Doussal, J. M. (2000). Activation of the alternative pathway of human complement by autologous cells expressing transmembrane scavenger receptor properdin. Mol. Immunol. 37, 467–478.

Whaley, K. (1985). Biosynthesis of the complement components and the regulatory proteins of the alternative complement pathway by human peripheral blood monocytes. J. Exp. Med. 157, 501–516.

Witthaut, L., Vidal, B., Thelen, M., Schaller, M. K., Sowter, C., Whaley, K., et al. (1997). Properdin, a positive regulator of complement activation, is released from secondary granules of stimulated peripheral blood neutrophils. J. Immunol. 158, 4444–4451.

Xu, Z., Berger, S. P., Trove, L. A., de Boer, H. C., Schlageter, N., Masure, G., et al. (2008). Properdin binds to late apoptotic and necrotic cells independently of C3b and regulates alternative pathway complement activation. J. Immunol. 180, 7621.

Yu, H., Munoz, E. M., Edens, R. E., Brown, J., et al. (2008). Properdin activates neutrophils in proteinuric renal disease. J. Immunol. 180, 7621–7629.

Zaferani, A., Vives, R. R., van der, J., Naxis, G. J., van, G. H., et al. (2011). Identification of tubular heparan sulfate as a docking platform for the alternative complement component properdin in proteinuric renal disease. J. Biol. Chem. 286, 5359–5367.

Zhao, H. F., Yan, H., Stover, C. M., Fernandez, T. M., Rodriguez de, C. S., Song, W. C., et al. (2012). Anti-body directs properdin-dependent activation of the complement alternative pathway in a mouse model of abdominal aortic aneurysm. Proc. Natl. Acad. Sci. U.S.A 109, E435–E442.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.