Higher derivatives of length functions along earthquake deformations

Martin Bridgeman*

November 12, 2014

1 Introduction

Let S be a closed surface of genus $g \geq 2$ and $T(S)$ the associated Teichmüller space of hyperbolic structures on S. Given $\gamma \in \pi_1(S)$, let $L_\gamma : T(S) \to \mathbb{R}$ be the associated length function and $T_\gamma : T(S) \to \mathbb{R}$ the associated trace function. The functions L_γ, T_γ have a simple relation given by

$$T_\gamma = 2 \cosh(L_\gamma/2).$$

(1)

Let β be the homotopy class of a simple multicurve (i.e. a union of disjoint simple non-trivial closed curves in S) and t_β the vector field on $T(S)$ associated with left twist along the geodesic representative of β (see [4]). In this paper, we describe a formula to calculate the higher order derivatives of the functions L_γ, T_γ along t_β. In particular we will find a formula for

$$t_\beta L_\gamma = t_\beta t_\beta \ldots t_\beta L_\gamma.$$

The formulae we derive generalize formulae for the first two derivatives due to Kerchoff (1st derivative, see [4]) and Wolpert (1st and 2nd derivatives, see [5, 6]).

Kerckhoff and Wolpert both showed that the first derivative is given by

$$t_\beta L_\gamma = \sum_{p \in \beta' \cap \gamma'} \cos \theta_p,$$

(2)

where β', γ' are the geodesic representatives of β, γ respectively and θ_p is the angle of intersection at $p \in \beta' \cap \gamma'$. Kerckhoff further generalized the formula for the case when β, γ are measured laminations (see [4]).

*This work was partially supported by grant #266344 from the Simons Foundation
In [6], Wolpert derived this formula for second derivative

\[t_{\alpha}t_{\beta}L_{\gamma} = \sum_{(p,q) \in \beta' \cap \gamma'} e^{l_{pq}} + e^{l_{qp}} \sin \theta_p \sin \theta_q + \sum_{(r,s) \in \beta' \cap \gamma'} e^{m_{rs}} + e^{m_{sr}} \frac{2}{2(e^{L_{\gamma}} - 1)} \sin \theta_r \sin \theta_s. \]

where \(l_{xy} \) is the length along \(\gamma \) between \(x, y \) (similarly \(m_{xy} \) is the length along \(\beta \)).

It follows from Wolpert’s formula that

\[t_{\beta}^2 L_{\gamma} = t_{\beta} t_{\beta} L_{\gamma} = \sum_{p,q \in \beta' \cap \gamma'} e^{l_{pq}} + e^{l_{qp}} \frac{2}{2(e^{L_{\gamma}} - 1)} \sin \theta_p \sin \theta_q. \] (3)

Our formula generalizes equations 2, and 3 to higher derivatives. Our approach is to derive a formula for the higher derivatives of \(T_{\gamma} \) and then use the functional relation in equation 1 to derive the formula for \(L_{\gamma} \).

2 Higher Derivative Formula

We take the geodesic representatives of \(\beta \) and \(\gamma \). We let the geometric intersection number satisfy \(i(\beta, \gamma) = n \) and we order the points of intersection \(x_1, \ldots, x_n \) by choosing a base point on \(\gamma \). We let \(\theta_i \) be the angle of intersection of \(\beta, \gamma \) at \(x_i \) and \(l_i \) be the length along \(\gamma \) from \(x_1 \) to \(x_i \). This gives us \(n \)-tuples \((l_1, \ldots, l_n)\) and \((\theta_1, \ldots, \theta_n)\).

In order to describe the formula for the higher derivatives, we first introduce some more notation.

Given \(r \), we let \(P(r) \) be the set of subsets of the set \(\{1, \ldots, r\} \). Then for \(I \in P(r) \) will be denoted by \(I = (i_1, \ldots, i_k) \) where \(1 \leq i_1 < i_2 < \ldots < i_k \leq r \). We then define \(\hat{I} \) to be the complementary subset. We also let \(|I| \) be the cardinality of \(I \).

We define the alternating length \(L_I \) for \(I = (i_i, \ldots, i_k) \) by

\[L_I = \sum_{j=1}^{k} (-1)^j l_{i_j} = -l_{i_1} + l_{i_2} - l_{i_3} - \ldots + (-1)^k l_{i_k}. \]

We further define a signature for \(I \in P(r) \). For \(I = (i_1, \ldots, i_k) \) we can consider the integers in \(\{1, \ldots, r\} \) in the ordered blocks \([1, i_1], [i_1, i_2], \ldots, [i_k, r] \). We take the sum of the cardinality of the even ordered blocks. Then

\[s(I) = (i_2 - i_1 + 1) + (i_4 - i_3 + 1) + \ldots (i_k - i_{k-1} + 1) \quad k \text{ even} \]

\[s(I) = (i_2 - i_1 + 1) + (i_4 - i_3 + 1) + \ldots (r - i_k + 1) \quad k \text{ odd} \]

For \((\theta_1, \ldots, \theta_n) \) we also define

\[\cos(\theta_I) = \prod_{j=1}^{k} \cos(\theta_{i_j}) = \cos(\theta_{i_1}) \cos(\theta_{i_2}) \ldots \cos(\theta_{i_k}) \]
and similarly define \(f(\theta_I) \) for \(f \) a trigonometric functions.

We let \(u_j = l_j + i\theta_j \). The function \(F_r \) is given by

\[
F_r(u_1, \ldots, u_r, L) = \sum_{I \in P(r), |I| \text{ even}} (-1)^{s(I)} \sin(\theta_I) \cos(\theta_I) \left(e^{L/2 - L_I} + (-1)^r e^{L_I - L/2} \right)
\]

or equivalently

\[
F_r(u_1, \ldots, u_r, L) = \sum_{I \in P(r), |I| \text{ even}} (-1)^{s(I)} 2 \sin(\theta_I) \cos(\theta_I) \cosh(L/2 - L_I)
\]

for \(r \) even and

\[
F_r(u_1, \ldots, u_r, L) = \sum_{I \in P(r), |I| \text{ even}} (-1)^{s(I)} 2 \sin(\theta_I) \cos(\theta_I) \sinh(L/2 - L_I)
\]

for \(r \) odd.

We let \(C(n, r) \) be the set of the subsets of size \(r \) of the set \(\{1, 2, \ldots, n\} \). It is given by

\[
C(n, r) = \{ I = (i_1, i_2, \ldots, i_r) \mid 1 \leq i_1 < i_2 < \ldots < i_r \leq n \}
\]

Given \(m \in \mathbb{N} \), we let \([m]\) be the parity of \(m \), i.e. \([m] = 0\) if \(m \) is even, and \([m] = 1\) if \(m \) is odd.

Theorem 1 Let \(\beta \) be a homotopy class of a simple closed multicurve and \(\gamma \) a homotopy class of non-trivial closed curve. Let the geometric intersection number \(i(\beta, \gamma) = n \). Then

\[
t_k^\beta T_\gamma = \frac{1}{2k} \sum_{[r]=[k]} B_{n,k,r} \sum_{I \in C(n,r)} F_r(u_{i_1}, \ldots, u_{i_r}, L_\gamma)
\]

where \(B_{n,k,r} \) are constants described below.

The first two equations correspond to formulae 2 and 3 for the derivatives of length. We use the above, to derive the next case as an example.

Third Derivative: We use the above formula to calculate the formula for the third derivative.

\[
t_3^\beta T_\gamma = \frac{1}{8} ((6n - 4) \sinh(L_\gamma/2) \sum_{i=1}^n \cos(\theta_i) + 12 \left(\sum_{i<j<k} \sinh(L_\gamma/2) \cos(\theta_i) \cos(\theta_j) \cos(\theta_k) \right.
\]

\[
+ \sinh(L_\gamma/2 - l_{ij}) \sin(\theta_i) \sin(\theta_j) \cos(\theta_k) - \sinh(L_\gamma/2 - l_{jk}) \sin(\theta_j) \cos(\theta_i) \sin(\theta_k)
\]

\[
+ \sinh(L_\gamma/2 - l_{jk}) \cos(\theta_i) \sin(\theta_j) \sin(\theta_k))
\]
2.1 Constants $B_{n,k,r}$

We let $P(k,n)$ be the collection of partitions of k into n ordered nonnegative integers, i.e.

$$P(k,n) = \left\{ p = (p_1, p_2, \ldots, p_n) \in \mathbb{N}_0^n \mid \sum_{i=1}^{n} p_i = k \right\}$$

For $p \in P(k,n)$, we define $[p] = ([p_1], \ldots, [p_n])$ where $[n]$ is the parity of n. We let $|p| = |p_1| + \ldots + |p_n|$. Then $[p]$ is an n-tuple of 0's and 1's with exactly $|p|$ 1's.

Given $p \in P(k,n)$ we define $B(p)$ as a sum of multinomials given by

$$B(p) = \sum_{q \in P(k,n), |q| = |p|} \binom{k}{q}.$$

It is easy to see that $B(p)$ only depends on n, k and $r = |p|$. We therefore define

$$B_{n,k,r} = B(p) \quad \text{for some } p \text{ with } |p| = r$$

In particular if we let $p_r = (1, 1, \ldots, 1, 0, \ldots, 0) \in P(k,n)$, of r 1's followed by $(n-r)$ 0's, we have

$$B_{n,k,r} = \sum_{p \in P(k,n), |p| = |p_r|} \binom{k}{p}.$$

A simple calculation gives

$$B_{n,k,k} = \binom{k}{p_k} = \binom{k}{1,1,1,\ldots,0,0,\ldots,0} = k!$$

3 Twist Deformation

We consider $T(S)$ as the fuchsian locus of the associated quasifuchsian space $QF(S)$. Let $X \in T(S)$ and $X = \mathbb{H}^2/\Gamma$ where Γ is a subgroup of $PSL(2, \mathbb{C})$ acting on upper half space $\mathbb{H}^3 = \{(u, v, w) \in \mathbb{R}^3 \mid w > 0\}$ fixing the hyperbolic plane $\mathbb{H}^2 = \{(u, 0, w) \mid w > 0\}$. Let Γ_z be the subgroup of $PSL(2, \mathbb{C})$ obtained by complex shear-bend along β by amount $z = s + it$, i.e. left shear by amount s followed by bend of t. Then for small z, $X_z = \mathbb{H}^3/\Gamma_z \in QF(S)$. In the terminology of Epstein-Marden this is a quake-bend deformation. See II.3 of [3] for details on quake bend deformations and II.3.9 for a detailed discussion of derivatives of length along quakebend deformations.

Let $\gamma \in \Gamma$ be a hyperbolic element and let $\gamma(z) \in \Gamma_z$ be the element of the deformed group corresponding to γ and $L(z)$ the complex translation length of $\gamma(z)$. To see how γ is deformed, by conjugating, we assume that γ has axis the geodesic g with endpoints $0, \infty \in \mathbb{C}$ and is given by

$$\gamma = \begin{pmatrix} \lambda & 0 \\ 0 & 1/\lambda \end{pmatrix}$$

with $\lambda = e^{L/2}$ where $L > 0$ is the translation length of γ.

We consider the lifts of β which intersect the axis g of γ and normalize to have a lift of β labelled β_1 which intersects axis g at height 1. We enumerate all other lifts by the order of the height of their intersection point with g starting with the intersection point of β_1. Let n be such that $\gamma \beta_1 = \beta_{n+1}$. Let $R_i(z)$ be the Möbius transformation corresponding to a complex bend about β_i of z. Then under the complex bend about β, $\gamma(z)$ given by

$$\gamma(z) = R_1(z)R_2(z)\ldots R_n(z)\gamma.$$

A similar description of the deformation of an element in the punctured surface case can be given in terms of shearing coordinates (see [2] for details).

Taking traces we have

$$T(z) = Tr(R_1(z)R_2(z)\ldots R_n(z)\gamma) = 2\cosh(L(z)/2).$$

We can find the derivatives of $L(z)$ by differentiating this formula repeatedly. The final formula is obtained by applying symmetry relations on the derivatives and some elementary combinatorics.

We note that both $T(z)$ and $L(z)$ are holomorphic in z. Differentiating in the real direction we have

$$t^k_\beta L = \frac{d^kL}{dz^k}(0) = L^{(k)}(0)$$

Also if we let b_β be the vector field on $T(S)$ given by pure bending along β, then we have by analyticity of $L(z)$

$$b^k_\beta L = i^kL^{(k)}(0) = (it_\beta)^k L$$

This corresponds to the observation that $b_\beta = J.t_\beta$ where J is the complex structure on $QF(S)$ (see [1]).

Figure 1: Lift of γ
3.1 Derivation of First Two Derivatives

We now calculate the first two derivatives and recover Wolpert’s formulae. By the product rule we have

\[
T'(0) = \sum_{i=1}^{n} Tr(R'_i(0) \gamma) \quad T''(0) = \sum_{i=1}^{n} Tr(R''_i(0) \gamma) + 2 \sum_{i,j=1}^{n} Tr(R'_i(0)R'_j(0) \gamma) \quad (4)
\]

We now describe \(R_i(z) \). Let \(\beta_i \) have endpoints \(a_i, b_i \in \mathbb{R} \) where \(a_i > 0 \) and \(b_i < 0 \). We let \(\lambda_i \) be the height at which \(\beta_i \) intersects \(g \). We orient \(\beta_i \) from \(a_i \) to \(b_i \) and \(g \) from 0 to \(\infty \) and let \(\theta_i \) be the angle \(\beta_i \) makes with side \(g \) with respect to these orientations (see figure 1).

Then

\[\lambda_i = \sqrt{-a_i b_i} \quad \cos \theta_i = -\frac{a_i + b_i}{a_i - b_i} \quad \sin \theta_i = \frac{2\sqrt{-a_i b_i}}{a_i - b_i}. \]

As \(\beta_i \) intersects at height 1, the distance \(l_i \) between the intersection points of \(\beta_1 \) and \(\beta_i \) is given by \(e^{l_i} = \lambda_i \). Then we let \(f_i \in SL(2, \mathbb{R}) \) acting on the upper-half space by \(f_i(z) = (z - a_i)/(z - b_i) \) and let \(S(z) = f_iR_i(z)f_i^{-1} \). Then \(S_i(z) \) is the complex translation given by

\[S(z) = \begin{pmatrix} e^{z/2} & 0 \\ 0 & e^{-z/2} \end{pmatrix}. \]

Thus as \(R_i(z) = f_i^{-1}S(z)f_i \). Taking derivatives we have \(R'_i(0) = f_i^{-1}S'(0)f_i \) and

\[R'_i(0) = \frac{1}{a_i - b_i} \begin{pmatrix} -b_i & a_i \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1/2 & 0 \\ 0 & -1/2 \end{pmatrix} \begin{pmatrix} 1 & -a_i \\ 1 & -b_i \end{pmatrix} = \frac{1}{2(a_i - b_i)} \begin{pmatrix} -(a_i + b_i) & 2a_ib_i \\ -2 & a_i + b_i \end{pmatrix} \]

Therefore

\[R'_i(0) = \frac{1}{2} \begin{pmatrix} \cos \theta_i & -e^{l_i} \sin \theta_i \\ -e^{-l_i} \sin \theta_i & -\cos \theta_i \end{pmatrix} \]

Also as \(S''(0) = \frac{1}{4}I \) we have \(R''_i(0) = \frac{1}{4}I \). Using this we have that

\[
Tc(R'_i(0) \gamma) = Tr \left(\frac{1}{2} \begin{pmatrix} \cos \theta_i & -e^{l_i} \sin \theta_i \\ -e^{-l_i} \sin \theta_i & \cos \theta_i \end{pmatrix} \begin{pmatrix} e^{L/2} & 0 \\ 0 & e^{-L/2} \end{pmatrix} \right) = \sinh(L/2) \cos \theta_i
\]

\[
Tc(R'_i(0)R'_j(0) \gamma) = Tr \left(\frac{1}{4} \begin{pmatrix} \cos \theta_j & -e^{l_j} \sin \theta_j \\ -e^{-l_j} \sin \theta_j & \cos \theta_j \end{pmatrix} \begin{pmatrix} \cos \theta_j & -e^{l_j} \sin \theta_j \\ -e^{-l_j} \sin \theta_j & \cos \theta_j \end{pmatrix} \begin{pmatrix} e^{L/2} & 0 \\ 0 & e^{-L/2} \end{pmatrix} \right)
= \frac{1}{4} \left(\cos \theta_i \cos \theta_j (e^{L/2} + e^{-L/2}) + \sin \theta_i \sin \theta_j (e^{L/2+l_i} - e^{-(L/2+l_i)}) \right) \quad (5)
\]

Let \(l_{ij} \) be the distance along \(\gamma \) from \(\beta_i \) to \(\beta_j \) with respect to the orientation of \(\gamma \). Then for \(i < j \) we have \(l_{ij} = l_j - l_i \), and \(l_{ji} = L - l_{ij} \) for \(i > j \).

\[
Tc(R'_i(0)R'_j(0) \gamma) = \frac{1}{2} (\cos \theta_i \cos \theta_j \cosh(L/2) + \sin \theta_i \sin \theta_j \cosh(L/2 - l_{ij})). \quad (6)
\]

Combining these we obtain the first two derivatives of \(T_\gamma \).

\[T'(0) = \sinh(L/2) \sum_{i=1}^{n} \cos \theta_i \]

6
\[T''(0) = \sum_{i,j=1 \atop i < j}^{n} (\cos \theta_i \cos \theta_j \cosh(L/2) + \sin \theta_i \sin \theta_j \cosh(L/2 - l_{ij})) + n \frac{\cosh(L/2)}{2} \]

As \(T(z) = 2 \cosh(L(z)/2) \), then \(T'(0) = \sinh(L/2) L'(0) \) giving
\[L'(0) = \sum_{i=1}^{n} \cos \theta_i \]

Also \(T''(0) = \frac{1}{2} \cosh(L/2)(L'(0))^2 + \sinh(L/2) L''(0) \). Therefore
\[T''(0) = \frac{\cosh(L/2)}{2} \left(n + 2 \sum_{i,j=1 \atop i < j}^{n} \cos \theta_i \cos \theta_j \right) + \sum_{i,j=1 \atop i < j} \sin \theta_i \sin \theta_j \cosh(L/2 - l_{ij}). \]

We have
\[n + 2 \sum_{i,j=1 \atop i \neq j}^{n} \cos \theta_i \cos \theta_j = \left(\sum_{i=1}^{n} \cos \theta_i \right)^2 + \sum_{i=1}^{n} \sin^2 \theta_i \]

and
\[T''(0) = \frac{\cosh(L/2)}{2} \left((\sum_{i=1}^{n} \cos \theta_i)^2 + \sum_{i=1}^{n} \sin^2 \theta_i \right) + \sum_{i,j=1 \atop i < j} \sin \theta_i \sin \theta_j \cosh(L/2 - l_{ij}). \] (7)

Solving for \(L''(0) \) we obtain
\[L''(0) = \sum_{i=1}^{n} \frac{\sin^2 \theta_i}{2 \tanh(L/2)} + \sum_{i,j=1 \atop i < j} \frac{\sin \theta_i \sin \theta_j \cosh(L/2 - l_{ij})}{\sinh(L/2)}. \]

As \(l_{ii} = 0 \) we can write
\[L''(0) = \sum_{i,j=1}^{n} \frac{e^{l_{ij}} - L/2 + e^{L/2 - l_{ij}}}{2(e^{L/2} - e^{-L/2})} \sin \theta_i \sin \theta_j = \sum_{i,j=1}^{n} \frac{e^{l_{ij}} + e^{l_{ji}}}{2(e^L - 1)} \sin \theta_i \sin \theta_j. \]

The above give the formulae 2 and 3 as described.

4 Higher Derivatives

We now derive the formula for higher derivatives. We have the formula
\[T(z) = \text{Tr}(R_1(z)R_2(z) \ldots R_n(z) \gamma). \]
We let \(P(k, n) \) be the collection of partitions of \(k \) into \(n \) ordered nonnegative integers, i.e.

\[
P(k, n) = \left\{ p = (p_1, p_2, \ldots, p_n) \in \mathbb{N}_0^n \mid \sum_{i=1}^n p_i = k \right\}
\]

Then by the product rule, the \(k \)th derivative of \(T \) at zero is,

\[
T^{(k)}(0) = \sum_{p \in P(k, n)} \binom{k}{p} Tr(R_1^{(p_1)}(0)\ldots R_n^{(p_n)}(0)\gamma)
\]

We have from above that \(R_i(z) = f_i^{-1}S(z)f_i \) where

\[
S(z) = \begin{pmatrix} e^{z/2} & 0 \\ 0 & e^{-z/2} \end{pmatrix}.
\]

As \(S^{(2)}(z) = \frac{1}{4}S(z) \), we have for \(m \) even

\[
R_i^{(m)}(0) = \frac{1}{2m}I
\]

and for \(m \) odd we have

\[
R_i^{(m)}(0) = \frac{1}{2m-1}R_i'(0) = \frac{1}{2m} \begin{pmatrix} \cos \theta_i & -e^i \sin \theta_i \\ -e^{-i} \sin \theta_i & -\cos \theta_i \end{pmatrix}.
\]

Let \(z = x + iy \) and define

\[
A(z) = \begin{pmatrix} \cos y & -e^x \sin y \\ -e^{-x} \sin y & -\cos y \end{pmatrix}.
\]

We let \(u_j = l_j + i\theta_j \). Then

\[
R_j^{(p)}(0) = \begin{cases} \frac{1}{2^p} A(u_j) & p \text{ odd} \\ \frac{1}{2^p} I & p \text{ even} \end{cases}
\]

Therefore

\[
T^{(k)}(0) = \frac{1}{2^k} \sum_{p \in P(k, n)} \binom{k}{p} Tr(A(u_1)^{[p_1]}\ldots A(u_n)^{[p_n]}\gamma)
\]

where \([m]\) is the parity of \(m \). We define

\[
F_r(z_1, \ldots, z_r, L) = Tr(A(z_1)\ldots A(z_r)\gamma)
\]

Therefore gathering terms we have

\[
T^{(k)}(0) = \frac{1}{2^k} \sum_{r=0}^k B_{n,k,r} \sum_{1 \leq i_1 < \ldots < i_r \leq n} F_r(u_{i_1}, \ldots, u_{i_r}, L)
\]

where \(B_{n,k,r} \) are the coefficients described above. We note that we only get non-zero terms for \([r] = [k]\), so we have \(B_{n,k,r} = 0 \) for \([k] \neq [r]\).
We define the function
\[G_r(u_1, \ldots, u_n, L) = \sum_{I \in C(n,r)} F_r(u_i, \ldots, u_i, L). \]

Then \(G_r \) is symmetric in \((u_1, \ldots, u_n)\) and we have
\[t^k \beta^\gamma = \frac{1}{2k} \sum_{r=0}^{k} B_{n,k,r} G_r(u_1, \ldots, u_n, L_\gamma) \]

4.1 Function \(F_r \)

We now calculate the formula for \(F_r \).

Lemma 1 The function \(F_r \) is given by
\[F_r(u_1, \ldots, u_r, L) = \sum_{I \in P(r), |I| \text{ even}} (-1)^{s(I)} \sin(\theta_I) \cos(\theta_I) \left(e^{L/2 - L_I} + (-1)^r e^{L_I - L/2} \right). \]

or equivalently
\[F_r(u_1, \ldots, u_r, L) = \sum_{I \in P(r), |I| \text{ even}} (-1)^{s(I)} 2 \sin(\theta_I) \cos(\theta_I) \cosh(L/2 - L_I) \]
for \(r \) even and
\[F_r(u_1, \ldots, u_r, L) = \sum_{I \in P(r), |I| \text{ even}} (-1)^{s(I)} 2 \sin(\theta_I) \cos(\theta_I) \sinh(L/2 - L_I) \]
for \(r \) odd.

Proof: We have
\[A(u) = \begin{pmatrix} \cos \theta & -e^l \sin \theta \\ -e^{-l} \sin \theta & \cos \theta \end{pmatrix}. \]
Therefore \(F_r(u_1, \ldots, u_r, L) = Tr(A(u_1), \ldots, A(u_r) \gamma) \) has the form
\[F_r(u_1, \ldots, u_r, L) = \sum_{I \in P(r)} a_I \sin(\theta_I) \cos(\theta_I) \]
for some coefficients \(a_I \). Expanding we have
\[F_r(u_1, \ldots, u_r, L) = (A(u_1) \ldots A(u_r) \gamma)_1^1 + (A(u_1) \ldots A(u_r) \gamma)_2^2 = e^{L/2}(A(u_1) \ldots A(u_r))_1^1 + e^{-L/2}(A(u_1) \ldots A(u_r))_2^2. \]

Similarly we have
\[(A(u_1) \ldots A(u_r))_j^i = \sum_{I \in P(r)} a_j^i(I) \sin(\theta_I) \cos(\theta_I) \]
and define
\[(A(u_1) \ldots A(u_r))^j_j(I) = a^j_j(I) \sin(\theta_j) \cos(\theta_j).\]

We prove the lemma by induction. Given \(I = (i_1, \ldots, i_k) \in P(r)\) then \(I_j = (i_1, i_2, \ldots, i_{j-1}) \in P(i_j)\).

The matrix \(A(u)\) has cos terms on the diagonal and sin off diagonal. As \(\sin(\theta_{ik})\) is the last sin term we have in \((A(u_1), \ldots, A(u_r))^j_j(I)\) we have
\[
(A(u_1) \ldots A(u_r))^j_j(I) = (A(u_1) \ldots A(u_{i_k-1}))^j_2(I_k)(A(u_{i_k})^j_2A(u_{i_k+1})^j_1 \ldots A(u_r)^j_1
\]
\[= \cos(\theta_{i_k+1}) \ldots \cos(\theta_r) \left(-e^{-l_{ik}} \sin(\theta_{ik})\right) (A(u_1) \ldots A(u_{i_k-1}))^j_2(I_k),\]

Now iterating, as the next sin is \(\sin(\theta_{ik})\) we have
\[
(A(u_1) \ldots A(u_{i_k-1}))^j_2(I_k) = (A(u_1) \ldots A(u_{i_k-2}))^j_1(I_{k-1})A^j_1(u_{i_k-1})A^j_2(u_{i_k-1}+1)A^j_2(u_{i_k-1}+2) \ldots A^j_2(u_{i_k-1}).
\]

Thus we have
\[
(A(u_1), \ldots, A(u_r))^j_j(I) = (-1)^{i_k-i_k-1+e^{l_{ik-1}}-l_{ik}} \sin(\theta_{i_k-1}) \ldots \cos(\theta_{i_k}) \sin(\theta_{i_k}) \ldots \cos(\theta_{i_k+1}) \ldots \cos(\theta_r).
\]

As each off-diagonal term switches the index, there must be an even number of off-diagonal terms in the trace and therefore \(|I|\) is even. Then by induction
\[
(A(u_1), \ldots, A(u_r)\gamma)^j_j(I) = (-1)^s(I) \sin(\theta_I) \cos(\theta_I)e^{L/2-L_I}
\]
where
\[
s(I) = (i_2 - i_1 + 1) + (i_4 - i_3 + 1) + \ldots (i_k - i_{k-1} + 1)
\]
and
\[
L_I = \sum_{j=1}^k (-1)^j l_{ij} = -l_{i_1} + l_{i_2} - l_{i_3} - \ldots + (-1)^k l_{i_k}
\]

Similarly
\[
\frac{(A(u_1), \ldots, A(u_r))^j_j(I)}{(A(u_1) \ldots A(u_{i_k-1}))^j_2(I_{k-1})} = (-e^{-l_{ik-1}} \sin(\theta_{ik-1})) \ldots (\cos(\theta_{ik-1})) \ldots (\cos(\theta_{r}))(\cos(\theta_{ik}))(\cos(\theta_{ik+1})) \ldots \cos(\theta_r).
\]

Counting negative signs we have \(r - s(I) + |I|\) negative signs.
\[
(A(u_1), \ldots, A(u_r)\gamma)^j_j(I) = (-1)^{r - s(I) + |I|} \sin(\theta_I) \cos(\theta_I)e^{L_I - L/2}
\]
As \(|I|\) is even we get
\[
(A(u_1), \ldots, A(u_r)\gamma)^j_j(I) = (-1)^{r + s(I)} \sin(\theta_I) \cos(\theta_I)e^{L_I - L/2}
\]
giving the result. □
5 Some examples

We have from the calculations in the last section that

\[F_0(L) = 2 \cosh(L/2) \quad F_1(u, L) = 2 \sinh(L/2) \cos \theta \]

\[F_2(u_1, u_2, L) = 2(\cos \theta_1 \cos \theta_2 \cosh(L/2) + \sin \theta_1 \sin \theta_2 \cosh(L/2 - l_{12})) \]

Calculating \(F_3 \) we have

\[F_3(u_1, u_2, u_3, L) = 2 \sinh(L/2) \cos(\theta_1) \cos(\theta_2) \cos(\theta_3) + 2 \sinh(L/2 - l_{12}) \sin(\theta_1) \sin(\theta_2) \cos(\theta_3) \]

\[-2 \sinh(L/2 - l_{13}) \sin(\theta_1) \cos(\theta_2) \sin(\theta_3) + 2 \sinh(L/2 - l_{23}) \cos(\theta_1) \sin(\theta_2) \sin(\theta_3) \]

Therefore we have

\[G_0(L) = 2 \cosh(L/2) \quad G_1(u_1, \ldots, u_n, L) = 2 \sinh(L/2) \sum_{i=1}^{n} \cos \theta_i \]

\[G_2(u_1, \ldots, u_n, L) = 2 \sum_{i<j}^{n} (\cos \theta_i \cos \theta_j \cosh(L/2) + \sin \theta_i \sin \theta_j \cosh(L/2 - l_{ij})) \]

\[G_3(u_1, \ldots, u_n, L) = 2 \sum_{i<j<k}^{n} (\sinh(L/2) \cos(\theta_i) \cos(\theta_j) \cos(\theta_k) + \sinh(L/2 - l_{ij}) \sin(\theta_i) \sin(\theta_j) \cos(\theta_k) \]

\[- \sinh(L/2 - l_{ik}) \sin(\theta_i) \cos(\theta_j) \sin(\theta_k) + \sinh(L/2 - l_{jk}) \cos(\theta_i) \sin(\theta_j) \sin(\theta_k)) \]

As the functions \(G_r \) do not depend on \(k \), once we’ve calculated all derivatives less than \(k \), we only need calculate \(G_k \) to find the \(k \)th derivative.

For \(k = 3 \) we have

\[t_{3}^{3}T_{\gamma} = \frac{1}{8} (B_{n,3,1}G_1(u_1, \ldots, u_n, L_\gamma) + B_{n,3,3}G_3(u_1, \ldots, u_n, L_\gamma)) \]

\[B_{n,3,3} = 3! = 6 \quad B_{n,3,1} = (n - 1) \left(\begin{array}{c} 3 \\ 1, 2 \end{array} \right) + \left(\begin{array}{c} 3 \\ 3 \end{array} \right) = 3(n - 1) + 1 = 3n - 2 \]

\[t_{3}^{3}T_{\gamma} = \frac{1}{8} ((6n - 4) \sinh(L_\gamma/2) \sum_{i=1}^{n} \cos(\theta_i) + 12 \left(\sum_{i<j<k}^{n} \sinh(L_\gamma/2) \cos(\theta_i) \cos(\theta_j) \cos(\theta_k) \]

\[+ \sinh(L_\gamma/2 - l_{ij}) \sin(\theta_i) \cos(\theta_j) \cos(\theta_k) - \sinh(L_\gamma/2 - l_{ik}) \sin(\theta_i) \cos(\theta_j) \sin(\theta_k) \]

\[+ \sinh(L_\gamma/2 - l_{jk}) \cos(\theta_i) \sin(\theta_j) \sin(\theta_k)) \]
References

[1] F. Bonahon, “Shearing hyperbolic surfaces, bending pleated surfaces and Thurston’s symplectic form,” Ann. Fac. Sci. Toulouse Math. (6) 5 (1996), pp. 233–297.

[2] L. Chekhov, Lecture Notes on Quantum Teichmuller Theory, preprint 2007, arXiv:0710.2051

[3] D.B.A. Epstein and A. Marden, “Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces,” in Fundamentals of Hyperbolic Geometry: Selected Expositions, R.D. Canary, D.B.A. Epstein, A. Marden, eds., LMS Lecture Notes 328, 2005.

[4] S. Kerckhoff “The Nielsen realization problem,” Annals of Math. 117 (2) (1983), no. 2, pp. 235–265.

[5] S. Wolpert, “An elementary formula for the Fenchel-Nielsen twist”, Comm. Math. Helv., 56, 132-135 (1981)

[6] S. Wolpert, “Thurston’s Riemannian metric for Teichmüller space,” J. Diff. Geom., 23 (1986), pp. 143–174.