Introduction: Autism spectrum disorder (ASD) is a complex developmental disorder defined by moderate to severe speech delay, deficits of motor coordination, and characteristic social and emotional behavior (Carr et al., 2010; Horn, 2011). ASD also commonly presents with comorbidities including epilepsy, intellectual disability (ID), and anxiety (Lee, Lee, & Kim, 2017). Difficulties in diagnosing and managing ASD include the large number of contributing genetic and environmental factors and broad spectrum of observable phenotypes (Xu, Cao, Zhang, & Cheadle, 2018). Recent studies have indicated that the heterogeneity of ASD can be understood through dysregulation of diverse cellular signaling mechanisms (Baudouin, 2014). Products of ASD-associated genes may be members of critical developmental pathways, with deficiencies at varying
genomic locations or developmental stages resulting in variable clinical presentation. While the genomic landscape of ASD has been increasingly well described in the post-genomic era, the biological significance of many ASD-associated variants has yet to be elucidated. There is an outstanding need to continue to accumulate genomic data toward the goal of understanding the complex context of ASD. While single case studies make complex variant predictions difficult, multiple genetic case studies that corroborate the significance of putative ASD-associated developmental genes can confirm the significance of complex variant genotypes.

The two-hit hypothesis of autism development involves compounding risks which can be of a genetic or environmental origin (Moussa, Srikrishnan, Blackwell, Dash, & Sibai, 2016). With variants in over 100 genes contributing to ASD (Lam, Yeung, & Law, 2017), a variant analysis pipeline of the genome or exome can suggest possible causative/contributing variants. Variants not observed in either parent are termed de novo mutations and occur at a rate of about 100 variants per child (Iossifov et al., 2013). Previous studies have linked chemical insults occurring during neural tube closure to ASD presentation (Rodier, Ingram, Tisdale, Nelson, & Romano, 1996), suggesting involvement of genes expressed during embryogenesis. Early central nervous system (CNS) patterning is determined by a number of transcription factors (TFs) including Forkhead Box P1 (FOXP1) (OMIM#605515). Deletions result in mild craniofacial abnormalities; a long narrow cranium, high and broad forehead, and short nose with broad bridge (Horn, 2011). FOXP1-related ID syndrome is emerging as a unique disorder with affected individuals presenting with global developmental delay, specific craniofacial abnormalities, and heart or kidney malformations (Siper et al., 2017).

We present a familial case study involving an affected individual diagnosed with ASD, his parents and unaffected sister. From exome sequencing, we identified a potential de novo causative variant in the 3′ untranslated region (UTR) of FOXP1 that we show likely impacts mRNA secondary structure and protein levels consistent with haploinsufficiency. The implications of the 3′ UTR variant are discussed in the context of other variants found in the same sequence repeat region of the gene, along with inherited variants that could contribute to the unique phenotype reported here. Additionally, inherited gene variations that could affect the phenotype and create adverse drug-gene interactions were also identified using a pharmacogenomics screen as possible contributing factors.

2 | METHODS

2.1 | Ethical compliance

This study was approved by the University of Minnesota Ethics Committee. As an educational investigation, this study was considered exempt from requiring additional Internal Review Board approval. Samples from three family members were provided from a previous collection, with written consent to be used in this study.

2.2 | Medical history

The patient (Patient 1), a 20-year-old male, was diagnosed with ASD by DSM-IV criteria at age 2 years. He was born to nonconsanguineous parents, his father age 39, and his mother age 33 at the time of his birth. The patient’s parents noted environmental risk factors including exposure to flood conditions in the home in early pregnancy and high levels of maternal stress throughout gestation. During pregnancy, his mother experienced significant bleeding at 36 weeks. He was born by cesarean section due to transverse lie, no other complications were noted during delivery. His sibling, a younger sister, and both parents are neurotypical. The proband, Patient 1, showed first signs of regression when he stopped tracking objects at 8 months. When he did not begin speaking at 12 months, he began speech and occupational therapy under the diagnosis of “autistic tendencies.” Patient 1 went on to speak short one-syllable words and took his first steps at 13 months. Patient 1 was evaluated for hypertelorism, macrocephaly, prominent forehead, frontal hair upsweep, long narrow face, pronounced jaw, down-slanting palpebral fissures, short nose, and frontal bridge. No dysmorphic craniofacial characteristics were reported. Patient 1 suffers from severe anxiety, hyper-stimulation, and depression. He experiences difficulty transitioning and exhibits self-injurious behavior when angry. These ASD-related symptoms remain unresolved despite pharmaceutical treatment. Following formal diagnosis of “ASD and language disorder” at 2 years of age, Patient 1 was placed on multi-vitamin supplementation along with the following: risperidone and aripiprazole without effect, methylphenidate, amphetamine/dextro-amphetamine, dapoxetine, and gabapentin for anxiety. For anxiety a low dose clonazepam, and sertraline HCl have been tried, and he is currently taking citalopram. At the age of 17 years, following anesthesia for wisdom tooth removal, he began to experience seizure-like activity. Frequency was initially weekly but improved with treatment of lamotrigine and lacosamide to every other month. Patient 1 recovered quickly from seizure-like activity and did not experience loss of consciousness during episodes. Onset of seizure-like activity was marked by slurring of speech and eyes rolling to the right. Several focal spikes in the front temporal lobe have been recorded on EEGs, and MRI results were normal. Parents report no family history of neurological disorders.
2.3 | Exome sequencing

Genomic DNA was isolated from peripheral blood, obtained following informed consent, using QIAamp DNA Blood Maxi Kit (Qiagen Germantown, MD), quantified using NanoDrop-8000 and stored at −20°C. Agilent XT libraries were captured using Agilent All Exon V5 + UTR kit. Libraries were pooled, and exome sequencing was performed on a 125 bp paired-end run in Illumina’s HiSeq2500 next-generation high-throughput sequencing system using v4 chemistry. Variants identified through exome sequencing were submitted to the NCBI ClinVar database (https://www.ncbi.nlm.nih.gov/clinvar/).

2.4 | Variant analysis pipeline

Raw next-generation/Exome sequencing data were processed using an NGS variant analysis pipeline in Galaxy, a web-based platform that provides tools essential to perform variant analysis. Prior to read alignment, data quality control (QC) was performed using pair-end synchronization (pe-sync) and FastQC tools in the Galaxy tools pane. Poor base call quality reads and adapter contamination were filtered using Adapter Removal (Lindgreen, 2012). Binary alignment mapping (.bam) files were then created by mapping raw Exome sequencing and RNAseq analysis reads to the hg19 human reference genome using Burrows Wheeler Aligner 0.5.9 (BWA) (Li & Durbin, 2009). Insert size distribution and coverage of on-target fragments were determined using the Picard tool to assess the capture frequency. Ambiguously mapped and poor-quality reads were removed using SAMtools. Reads were sorted, and mate-pair information fixed using Paired read-mate fixer tool within the Picard module that also removed duplicates. INDELs were realigned using Genome Analysis Toolkit (GATK) Indel realigner and then variants were called using GATK Unified Genotyper using a minimum phred-scaled confidence threshold of 20 (Li et al., 2009; McKenna et al., 2010).

Since the proband is a Caucasian male with European ancestry, Western European (CEU) genomes in the 1,000 Genomes Project were used as controls to filter out common overlapping mutations (1000 Genomes Project Consortium et al., 2012). Inherited variants were analyzed and excluded as contributing factors through comparison of heterozygous/homozygous and missense variants of Patient 1 and his parents. The variant/vcf (variant calling format) file for Patient 1 was then examined for potential de novo causative mutations by comparing it with the variations present in both mother and father. The variants were annotated using the human reference database (GRCh38) and snpEff to identify the most likely destructive variants (1000 Genomes Project Consortium et al., 2012; Cingolani et al., 2012). Candidate variants were further filtered based on the following criteria: variant novelty, genic or genomic location, data quality score (Qual), depth of coverage (DP), zygosity, phylogenetic conservation across species, percentage of reads with the variant, disease association, predicted splice site alterations, and predicted deleterious effects on protein and/or RNA processing (Worthey, 2013; Worthey et al., 2011).

2.5 | Sanger sequence analysis

Buccal cells were obtained from Patient 1, both parents, and sister following informed consent. Genome extraction was completed on all samples using the protocol designed by (Mendoza et al., 2016). Primers for FOXP1 transcript 1 were designed: forward 5′-AGATAAGCCAGGAAAGCAGTG-3′ and reverse 5′-CATGTTGGAGGAGAAAACCTC-3′. Polymerase chain reaction (PCR) was completed using genomic template from each individual and gel extraction was utilized to isolate each sample using the manufacturers recommended protocol (Qiagen#28704). Samples were then submitted for Sanger sequencing at the University of Minnesota Genomics Center (UMGC). Forward and reverse reads were analyzed, and heterozygous base pairs (bps) were evaluated using Mutation Surveyor (SoftGenetics). Variants that could not be confirmed in the forward and reverse direction were excluded.

2.6 | mRNA secondary structure

Secondary structure of the FOXP1 messenger RNA (mRNA) (NM_032682.5:c.3413_3414del) (NM_032682.5:c.3413_3414dup) was evaluated using minimum free energy, and centroid algorithms accessed through the Vienna RNA package 2.0. Minimum Free energy thermodynamic analysis provided predicted secondary structures (RNAfold) to evaluate the effects of variation on secondary structure (Liu et al., 2014; Reamont-Buettn, Cho, & Borlak, 2007).

2.7 | Western blotting

Samples were obtained from Patient 1 and both parents following informed consent and peripheral blood mononuclear cells (PBMCs) were isolated using the Ficoll-Paque gradient method. Nuclear extraction was completed following the manufacturer’s recommended protocol (Abcam#113474), and the cytoplasmic fraction was used for western blot. To eliminate genomic contamination, each sample was treated with DNase 1 prior to electrophoresis. Western blots were completed using antibodies for FOXP1 (D35D10, Cell Signaling Technology) and PTEN (D4.3, CST), with β-actin (8H10D10, CST) used as a loading control, and a FOXP1 overexpression lysate (LC40319, OriGene) used as a positive control. Protein concentration was determined using the Pierce BSA colorimetric assay (Thermo#23227). Samples (20 μg) were loaded on a 12% Bis Tris gel. Western blots were viewed using a Li-Cor Odyssey imaging system (FC-0470).
2.8 | Pharmacogenomics testing

To assess possible side effects of pharmaceutical therapy enlisted in this case, a pharmacogenomics screen was completed. The RightMed comprehensive test (OneOme, Minneapolis, MN) was administered to determine possible unforeseen drug-gene interactions that could result in an increase in the severity of symptoms or toxicity in the individual. Relevant variants identified through pharmacogenomics testing were submitted to the NCBI ClinVar database (https://www.ncbi.nlm.nih.gov/clinvar/).

3 | RESULTS

3.1 | Next-generation sequencing of Patient 1 identified a de novo variant in FOXP1 gene

Whole exome sequencing of Patient 1’s DNA was completed to identify possible ASD-related genetic factors. To discount non-causative variants, the exomes of both parents were also sequenced for comparative analysis. Exome sequencing called a total of 3,821,087 variants including 3,397,964 SNPs. A total of 2,717,840 of these variants followed the filtering criteria QUAL > 30. When the common overlapping mutations were filtered out using western European (CEU) genomes in the 1,000 Genomes Project data (1000 Genomes Project Consortium et al., 2012), 2,191,181 variants remained. Analysis of the remaining variants in Patient 1 was performed using the criteria: having a SnpEFF/SnpSift (Genetic variant annotation and effect prediction toolbox) and ClinVar (Archive of interpretations of clinically relevant variations) annotations, and with clinical significance and/or OMIM and 4,690 variants remained (Dolled-Fihart, Lee, Ou-yang, Haraksingh, & Lin, 2013; Landrum et al., 2014). Variants with at least one de novo mutant allele in the proband and with an autism-related clinical annotation revealed rs143202281 (rs886058828) in the gene FOXP1 (chr3: 71,004,983 GCA/G, GCA/CA (Qual = 46.73). Interestingly, clinical annotation identified FOXP1 as a candidate gene associated with the symptoms “Intellectual Disability with Language Impairment and Autistic Features” (Hamdan et al., 2010; LeFevre et al., 2013).

To validate our results, we performed PCR-amplified Sanger sequencing using DNA from the proband, parents, and sister. Both mother and sister exhibited the common population sequence obtained from the NCBI ClinVar database, including 12 tandem (TG) repeats in the 3’ UTR of the FOXP1 gene. A two-base deletion following the TG repeat was reported in Patient 1, while curiously, a two-base insertion was identified in his father (unaffected) at the same location, within the 3’ UTR of FOXP1 (NM_032682.5:c.3413_3414del) (NM_032682.5:c.3413_3414dup). Figure 1 illustrates the heterozygous insertion and deletion variants reported in Patient 1 and his father, genomic location, and multiple sequence alignment of the four family members.

3.2 | mRNA thermodynamic and centroid analysis revealed possible structural variants in FOXP1 3’ UTR associated with ASD

FOX1’s 3’ UTR likely forms a complex secondary structure that regulates accessibility of RNA binding proteins and microRNA binding sites. We hypothesized that the 3’ UTR variant observed in Patient 1 may substantially alter FOXP1 mRNA secondary structure and therefore impact FOXP1 post-transcriptional regulation. We queried the Vienna RNA secondary structure prediction software (Lorenz et al., 2011) with the FOXP1 (NM_032682.5) variants identified above. Single base pairs were analyzed to identify regions that would self-hybridize to form classical stem loop structures that could be targeted by RNA interacting proteins by predicting the minimum free energy (MFE) state of each sequence. Stability of the mRNA transcript is determined by hydrogen bonding between paired nucleotides (Gaspar, Moura, Santos, & Oliveira, 2013). A stable stem-loop structure was identified in the variant region; and using MFE prediction, the most stable ΔG value for the local region in the mother and sister's transcripts was −33.8 kcal/mol. Notably, when the TG insertion (father) was analyzed, the ΔG value was indicated to be −34.0 kcal/mol. and the predicted structure was preserved. However, when the TG deletion (Patient 1) was analyzed, it was predicted that the secondary structure would be significantly altered, and the stem-loop would be destabilized with a ΔG of −33.0 kcal/mol.

Analysis was then expanded to include a more global perspective of sequence variation on secondary structure, derived from other reported sequence FOXP1 3’ UTR variations. Centroid analysis was completed based on the Boltzmann-weighted structure ensemble using the RNAfold webserver (Lorenz et al., 2011). mRNA structure of eight transcripts were completed; Patient 1, his father, and controls (mother and sister), and five additional variants submitted to the NCBI ClinVar database also associated with autism. These structures can be seen in Table 1, where the control structure is compared to the variant structures. It can be seen that in the variant observed in the father (NM_032682.5:c.3413_3414dup), the stem loop is preserved, while in all autism related cases it is lost or significantly altered.

3.3 | Western blotting confirms reduced FOXP1 protein expression in Patient 1

To explore FOXP1 protein expression, western blot analysis was completed using PBMCs obtained from the Patient 1, and both parents. Of candidate interacting proteins, heterogeneous nuclear ribonuclear proteins (hnRNPs) would be associated with a decreased expression of FOXP1, while an overexpression could indicate decreased binding of microRNA-486-5p.
Since microRNA-486-5p interacted with both FOXP1 and phosphatase and tensin homolog (PTEN) transcripts, we hypothesized that alteration in FOXP1 interaction could lead to a microRNA-486-5p directed alteration of PTEN expression. Patient 1 exhibited a substantial (2.2-fold) decrease in FOXP1 protein, and elevated expression of PTEN (1.4-fold) (Figure 2). An unpaired \(t \) test was carried out and \(p \)-values were assigned for each of the variants for both FOXP1 and PTEN expression. In the case of Patient 1 (NM_032682.5:c.3413_3414del), levels for both proteins were significantly different than the control with reported \(p < 0.0001 \). In his father's case (NM_032682.5:c.3413_3414dup), there was a much smaller difference in the level of FOXP1 (1.4-fold) decrease, and PTEN protein levels were not significantly different than the control levels observed in the mother.

3.4 | Pharmacogenomics testing utilized to identify possible drug-gene interactions

Pharmaceutical therapies are commonly used to manage behavioral symptoms associated with ASD. However, due to variants that influence metabolism, unforeseen drug-gene interactions may occur including toxicity (Mitra, Dodge, Van Ness, Sokeye, & Van Ness, 2017). Since, medical interventions were being pursued for Patient 1, the RightMed comprehensive test (OneOme) was used to generate a personalized medication report summary, specifically targeting 23 genetic variants affecting at least 200 medications. This supplemented exome sequencing, since some of the analyses include copy number variants.

Among initial incidental findings, the gene and phenotype summary identified variants in the CYP2C Cluster (NC_000010.10:g.96405502G>A), the catechol-O-methyltransferase (COMT) gene (OMIM#116790) (NM_000754.3:c.472G>A), the coagulation factor II (F2) gene (NM_005064.4:c.97G>A), and the Solute Carrier Family 6 Member 4 (SLC6A4) gene (OMIM#182138) (NM_000045.5:c.-1917_-1875del43 and NM_000145.5:c.-1936G>A). A summary of the variants reported in this case can be seen in Table 2, along with related drug impact and potential disorders. The full report from OneOme can be seen in Table S1.

Notably, some of these represent potentially important incidental findings. The CYP2C cluster and NUDT15 (OMIM#615792) (NM_018283.3:c.415C>T) variants are strongly associated with therapies involving warfarin and thiopurines (Moriyama et al., 2016; Ndadza et al., 2018). These are not relevant to the case or management of behaviors but would be important entries in a permanent clinical document in case they may have future consideration. What was
TABLE 1
FOXP1 mRNA structural analysis. A) *FOXP1* mRNA secondary structure predictions observed in mother and sister’s (control) sequence. A stable stem-loop structure can be seen with the TG tandem repeat identified in close-up. (B) Patient 1 and his father’s secondary structure predictions can be seen alongside additional variants from the NCBI ClinVar database.

A

![Diagram of mRNA structure with TG tandem repeat highlighted](image)

B

Loc.	NCBI 1000 Genomes Browser	Variant	Associated Condition	Clinical Significance	mRNA Secondary structure
c.3403	rs886058829	del T	ID with language impairment and autistic features	Uncertain	![mRNA Structure](image)
c.3407_3414	rs142202281	dup TGTGTGTG	ID with language impairment and autistic features	Uncertain	![mRNA Structure](image)
c.3411_3414	rs551672258	del TGTG	ID with language impairment and autistic features	Uncertain	![mRNA Structure](image)
c.3413_3414	rs886058828	del TG (Patient 1)	ID with language impairment and autistic features	Uncertain	![mRNA Structure](image)
c.3413_3414	rs143202281	dup TG (Patient 1’s father)	ID with language impairment and autistic features	Uncertain	![mRNA Structure](image)
c.3415	rs886058827	delC ins TGTGTGTGTGT	ID with language impairment and autistic features	Uncertain	![mRNA Structure](image)
c.3419_3420	rs886058825	dup CG	ID with language impairment and autistic features	Uncertain	![mRNA Structure](image)
first considered incidental findings in the variants of COMT and SLC6A4 genes, however, took on additional implications as discussed below. To stratify the extent of drug-gene interactions, a comparison of current and previous medications aligned with metabolic enzyme pathway can be seen in Table 3. It was observed that citalopram and sertraline are metabolized by \textit{CYP2C19} (OMIM#124020) (Uckun et al., 2015; Yuce-Artun et al., 2016), and risperidone, aripiprazole, dextroamphetamine, dexamphetamine, and catapres are metabolized by \textit{CYP2D6} (OMIM#124030) (Claessens et al., 2010; Dodsworth et al., 2018; Lisbeth et al., 2016; Miranda-G. et al., 2007; Teh & Bertilsson, 2012). The RightMed comprehensive test reported Patient 1 as an intermediate phenotype for each of these genes, including decreased metabolic activity, stating that “drugs converted to active metabolites may have reduced efficacy. Active drugs converted to inactive metabolites may cause side effects or toxicity.” The Inheritance pattern for contributing genetic factors is included in Figure 3.

DISCUSSION

Technological innovations in the post-genomic era have radically enhanced our ability to identify potentially causative genomic alterations in complex and highly heterogeneous diseases and disorders. Identifying causative variants in ASD has proven particularly challenging and delineating the full genomic landscape of ASD necessitates in depth examination of countless additional individual cases. Through a targeted analysis pipeline, we identified variants within the 3’ UTR of the \textit{FOXP1} gene at c.3413_3414 in both the proband and his unaffected father. Previously, variants within the functional domains of the \textit{FOXP1} protein have been associated with autism (Carr et al., 2010; Hamdan et al., 2010; Horn, 2011); Pariani, Spencer, Graham, & Rimoin, 2009) and more recently, \textit{FOXP1} related ID syndrome (Meerschaut et al., 2018; Siper et al., 2017). For this reason, we identified \textit{FOXP1} as a possible causative variant in this case. The impact of these variants was then examined through mRNA thermodynamics analysis and quantified at the level of mature protein expression. The de novo variant in Patient 1 was identified using the WES variant analysis pipeline, and inherited variants were reported in possible contributing genes, supporting an increased risk of autism development with compounding risk factors. Indeed, this analysis demonstrates the potential for a combination of sequence variations having an impact on the developmental delays seen in this case and highlights the difficulty in assigning cause to a single gene-trait.

\textit{FOXP1} belongs to the Forkhead Box (FOX) superfamily of TFs, coding for proteins associated with neural development, metabolism, and immune function (Kumar, Batra, Kanthaje, Ghosh, & Chakraborti, 2017; LeFevre et al., 2013). Expression of genes that are transcriptionally regulated by \textit{FOXP1} are dependent on maintaining a precise protein level. Although the exact mechanism of tissue-specific regulation is yet undefined, \textit{FOXP1} has been associated with motor neuron and striatum development and differentiation of dopamine neurons (Konstantoulas, Parmar, & Li, 2010; Li et al., 2015). FOXP2 was first implicated in the development of Language
Disorder (LD), with haploinsufficiency linked to developmental verbal dyspraxia (DVD) (Feuk et al., 2006). FOXP1 has been associated with more severe forms of ASD including ID (Araujo et al., 2017). Loss‐of‐function of FOXP1 protein has been documented through reduced protein expression, reduced repressive activity, or improper alternate splicing (Meerschaut et al., 2018). Developmental titration of FOXP1 levels can be regulated through numerous mechanisms. There is evidence that this is accomplished, in part, by post‐transcriptional regulation of FOXP1 mRNA through critical cis regulatory elements (CREs) (Huelga et al., 2012; Jangi & Sharp, 2014; Liu et al., 2014) and microRNAs (miRNAs) in UTRs of the gene (Otaegi, Pollock, Hong, & Sun, 2011; Popovitchenko et al., 2016). Bioinformatic analysis revealed that the variants observed were near the binding sites of mRNA‐486‐5p (miRNA.org). The FOXP1 pre‐mRNA is also subject to alternate splicing through hnRNPs (Huelga et al., 2012).

Comparison of NCBI ClinVar database variants in the local region identified additional cases of ASD presenting with expansion or contraction of the same TG tandem repeat sequence observed in this case. Structural prediction indicated that insertion and deletion variants could potentially alter the mRNA architecture. Diversity in the 3′ UTR of genes has been observed as one mechanism that mRNA provides variability in a tissue specific manner (Tushev et al., 2018). Further, genes such as FOXP1, with an unusually large 3′ UTR, could be subject to increased 3′ end processing to achieve this variability (Reamon‐Buettner et al., 2007). This study suggests that different 3′ UTR variants of FOXP1 might share a common consequence on secondary structure and post‐translational regulation.

Western blot analysis determined a twofold decrease in expression of the mature FOXP1 protein in Patient 1, suggesting a potential role for FOXP1 haploinsufficiency as a causative factor in this case (Figure 2).

FOXP1 is expressed in the fetal telencephalon. FOXP1 proteins interact with neural stem cells and promote differentiation and migration through repression of the Notch signaling pathway (Braccioli et al., 2017). FOXP1 is also expressed in the developing striatal projection neurons and basal ganglia (Araujo et al., 2017; Tamura, Morikawa, Iwanishi, Hisaoka, & Senba, 2004). Reduction in the striatum and enlargement of the lateral ventricles has been observed in patients with FOXP1 haploinsufficiency (Bacon et al., 2015; Pariani et al., 2009). FOXP1 is necessary for proper development of motor

Table 2: Patient 1 Drug Metabolism

Gene	Genotype	Phenotype summary	References
CYP1A2	*1A/*1F	Rapid metabolites may cause toxicity or side effects	RightMed Comprehensive test (OneOme)
CYP2B6	*1/*6	Decreased activity, active drugs converted to inactive metabolites may cause side effects or toxicity	RightMed Comprehensive test (OneOme)
CYP2C19	*1/*2	Decreased activity, active drugs converted to inactive metabolites may cause side effects or toxicity	RightMed Comprehensive test (OneOme)
CYP2C Cluster	rs12777823 GA	Altered warfarin clearance	RightMed Comprehensive test (OneOme)
CYP2D6	*1/*4	Decreased activity, active drugs converted to inactive metabolites may cause side effects or toxicity	RightMed Comprehensive test (OneOme)
COMT	rs4680 AA	Low activity in the catabolism of neurotransmitters dopamine, epinephrine, and norepinephrine	RightMed Comprehensive test (OneOme), NCBI Gene (www.ncbi.nlm.nih.gov/gene)
F2	rs1799963 GA	Increased risk of thrombosis associated with prothrombin thrombophilia	RightMed Comprehensive test (OneOme)
NUDT15	rs116855232	Increased risk of leukopenia with thiopurine administration	RightMed Comprehensive test (OneOme)
SLC6A4	S/S (Sa/Sa)	Reduced expression of serotonin transporter localized in presynaptic neuronal membranes.	RightMed Comprehensive test (OneOme), OMIM (www.omim.org/entry/182138)
UGT1A1	*1/*28	Decreased enzyme activity, increased risk for severe neutropenia with irinotecan and toxicity with nilotinib	RightMed Comprehensive test (OneOme)

Note: Gene/Phenotype summary of variants reported by the RightMed Comprehensive test (OneOme).
circuits, and lack of FOXP1 in motor neuron progenitor populations may result in abnormal development of motor pools (Adams, Rousso, Umbach, & Novitch, 2015). Previous research suggests that determination of the preganglionic motor column and lateral motor column requires co-repression of LIM homeobox (LHX3/4) genes and FOXP1 (Mukaigasa et al., 2017). Since FOXP1 is regulated in a tissue specific manner, studies including 3’ UTR variants could provide further insight into the pathophysiology of FOXP1 deficiency within the CNS. Given that multiple affected individuals have presented with variants in this local region, the TG tandem repeat region observed could be a critical region for structurally relevant RNA-protein interactions and have a pleiotropic downstream impact along a related developmental pathway.

While the de novo FOXP1 variant was relevant based on previous associations with developmental disorders, the additional inherited variants we identified suggested additional considerations. The OneOme pharmacogenomic report provided additional potential insight into what was initially thought to be incidental findings (i.e., initially considered unrelated to the developmental delay in Patient 1). From that report we discovered Patient 1 carries an inherited dominant variant in the F2 gene that is associated with a significantly increased risk of thrombosis (Lao, 2014). Reduced COMT expression, and the SLC6A4 short transcript was also reported. Low fetal COMT expression, as observed in Patient 1, could create an added risk during vascular development and gestation and has been associated with preeclampsia and sudden infant death syndrome (SIDS) (Pertegal et al., 2016). This genotype has been associated with increased connectivity between the ventromedial prefrontal cortex and the amygdala (Klucken et al., 2015). COMT is responsible for catabolism of dopamine, norepinephrine, epinephrine, caffeine, and catechol estrogens (Sannino et al., 2015), and dopamine elevation has been observed in the autistic brain (Gardener, Spiegelman, & Buka, 2009). Dexamphetamine, as prescribed to Patient 1, functions by inducing the release of dopamine in the striatum, and dopamine and noradrenaline in the cortex (Schrantee et al., 2016). This incidental finding could influence the severity of symptoms observed in this case, and it is also possible that supplementation for low COMT could alleviate some of the anxiety Patient 1 is experiencing. Low COMT has been linked to anxiety and major depressive disorder. The neuroprotective and anti-anxiety effects of magnesium are well established, and increased magnesium levels have been shown to neutralize surface charges in the CA1 neurons of the RETT mouse model (Balakrishnan & Mironov, 2018). Notably, low magnesium levels have also been shown to induce seizure-like activity (Isaev et al., 2012).

The sodium dependent serotonin transporter (5-HTT) is encoded by the SLC6A4 gene and serotonin (5-HT) homeostasis is involved in sleep cycle regulation, appetite, thermoregulation, pain perception, respiration, and bowel function (Margoob & Mushtaq, 2011). A 43 base pair insertion or deletion in the 5′ promoter region is called the 5-HTTLPR, denoted as either

Drug-Gene interaction
Current treatment
Citalopram
Lamotrigine
Lacosamide
Risperidone
Aripiprazole
Methylphenidate
Amphetamine & dextromethamphetamine
Dexamphetamine
Catapres
Gabapentin
Clonazepam
Sertraline

Note: Pharmaceutical list of treatments for Patient 1 with metabolic pathways. Both current and previous treatments are included, and genes in which Patient 1 possesses a variant that affects metabolism are in bold.
the short (S) or long (L) allele (Hooten, Hartman, Black, Laures, & Walker, 2013). The homozygous S allele as observed in Patient 1, would be expected to result in a reduction in translation of the serotonin transporter. Reduced expression is associated with decreased clearance of serotonin from the presynaptic cleft, and subsequent elevated extracellular fluid serotonin in the striatum, cortex, and hippocampal CA1 neurons (Murphy et al., 2008). Previous studies suggest that the COMT polymorphism, in conjunction with the SLC6A4-HTTLPR S allele can result in a decrease in gray matter volume in the hippocampus, cerebellum, and striatum (LeFevre et al., 2013; Radua et al., 2013). During embryogenesis, 5-HT neurons differentiate in the dorsal raphe nucleus (DRN) and migrate to the ventral forebrain through the medial forebrain bundle (Bonnin & Levitt, 2011). During the post-natal refinement period, 5-HT is expressed by the layer 5 & 6 pyramidal neurons (Andrade, 2011). The S allele of Slc6a4 has been shown to result in a reduction in mass of the prefrontal cortex, and abnormal connectivity, by increasing glutamatergic synapses on 5-HT neurons (Soiza-Reilly et al., 2018). Serotonin has also been shown to switch the attractive cue of netrin-1 to repulsion in thalamic axon guidance (Bonnin & Levitt, 2011). Future studies could define the implications of elevated serotonin levels throughout development. Furthermore, maternal expression of the SLC6A4 S allele has been associated with behavior development through stress induced hypermethylation that epigenetically alters the fetal transcriptome, downregulating critical genes involved in cortical development, and inducing an increased corticosteroid response to stress (Sjaarda et al., 2017). Serotonin syndrome (SS) is caused by a progressive increase in serotonin levels in the central and peripheral nervous systems (Wang, Vashistha, Kaur, & Houchens, 2016). The Hunter Serotonin Toxicity Criteria (HSTC) includes the use of a serotonergic agent along with 1 of the 5 following: clonus, inducible clonus with agitation or diaphoresis, ocular clonus with agitation or diaphoresis, tremor, hypertonia with elevated temperature (above 38ºC) with ocular or inducible clonus (Volpini-Abadie, Kaye, & Kaye, 2013). The serotonin transporter is inhibited by selective serotonin reuptake inhibitors (SSRIs) fluoxetine, sertraline, paroxetine, and citalopram (Rudnick, 2006), and serotonin release is stimulated by amphetamines (Vo, Nefsey, & Lin, 2015). Case reports indicate that the use of the cytochrome P450 2C19 (CYP2C19) inhibitor fluconazole can result in serotonin toxicity when taken with citalopram. Citalopram is a substrate for CYP2C19 and inhibition of metabolism can result in toxicity (Levin, Cortes-Ladino, Weiss, & Palomba, 2008). Patient 1 possesses a CYP2C19 variant that reduces activity (Table 2), and is also taking citalopram, which could have adverse side effects. Inhibition of cytochrome P450 enzymes (CYP2D6) with SSRIs is another mechanism of SS, where an accumulation of

FIGURE 3 Contributing Genetic Factors Summary WES variant analysis pipeline results were identified and confirmed with the RightMed Comprehensive Test (OneOme). (a) Polygenic inheritance pattern pedigree. (b) Contributing gene summary including gene ID, chromosomal location, reference, and alternate SNP identifiers.
serotonergic drugs (venlafaxine, methadone, tramadol, oxycodone, risperidone, dextromethorphan, and phenytoin) leads to toxicity through decreased drug metabolism (Volpi-Abadie et al., 2013). The RightMed comprehensive test also indicates Patient 1 possesses a variant in CYP2D6 that would decrease enzymatic activity with side effects of toxicity (Table 2). These interactions suggest that pharmaceuticals affecting the same metabolic pathway could result in toxicity and may affect the seizure threshold.

These findings emphasize the importance of assessing both environmental and genetic risk factors and to evaluate possible drug–gene interactions when enlisting pharmacological therapies. This study identified complex genetic variants that may represent possible causative drivers for ASD. Additionally, incidental findings through pharmacogenomic screening identified several variants that potentially have substantial implications for symptom management, emphasizing the importance of such screenings. Proper expression of TFs is of particular importance during pre-natal and early post-natal development, and deficits in neuronal migration have been implicated in autism, schizophrenia, and epilepsy development; however, the direct mechanism is yet unknown (Li et al., 2015). Here, we sought to identify putative genotypic variants that have the potential to influence neural circuitry, lower the seizure threshold and explain the unique neurological phenotype observed in this case. The biological significance of these variants is yet undefined and as additional patients are identified, may further suggest a pathogenic contribution to ASD development. Future studies should examine how neurological development is impacted by UTR variants in genes that encode proteins with putative dose-dependent significance for ASD. Advancing our understanding of how an individuals’ genomic landscape both contributes to their specific neurological phenotype and determines their response to common therapies has the potential to dramatically improve informed treatment strategies and elevate the quality of life for individuals living with ASD.

ACKNOWLEDGMENTS
The authors thank the family for their involvement in this case study and The University of Minnesota Genomics Center.

CONFLICT OF INTEREST
None to declare.

ORCID
Kristy Jay https://orcid.org/0000-0001-8895-8392

REFERENCES
1000 Genomes Project Consortium, Abecasis, G. R., Auton, A., Brooks, L. D., DePristo, M. A., Durbin, R. M., … McVean, G. A. (2012). An integrated map of genetic variation from 1,092 human genomes. Nature, 491, 56–65. https://doi.org/10.1038/nature11632

Adams, K. L., Rousso, D. L., Umbach, J. A., & Novitch, B. G. (2015). Foxp1-mediated programming of limb-innervating motor neurons from mouse and human embryonic stem cells. Nature Communications, 6, 6778. https://doi.org/10.1038/ncomms7778

Andrade, R. (2011). Serotonergic regulation of neuronal excitability in the prefrontal cortex. Neuropsychopharmacology, 61, 382–386. https://doi.org/10.1016/j.neuropharm.2011.01.015

Araujo, D. J., Toriumi, K., Escamilla, C. O., Kulkarni, A., Anderson, A. G., Harper, M., … Konopka, G. (2015). Foxp1 in forebrain pyramidal neurons controls gene expression required for spatial learning and synaptic plasticity. Journal of Neuroscience, 37, 10917–10931. https://doi.org/10.1523/JNEUROSCI.1005-17.2017

Bacon, C., Schneider, M., LeMagueresse, C., Froehlich, H., Sticht, C., Gluch, C., … Rappold, G. A. (2015). Brain-specific Foxp1 deletion impairs neuronal development and causes autistic-like behavior. Molecular Psychiatry, 20, 632–639. https://doi.org/10.1038/mp.2014.116

Balakrishnan, S., & Mironov, S. L. (2018). Rescue of hyperexcitability in hippocampal CA1 neurons from MeCP2 (−/−) mouse through surface potential neutralization. PLoS ONE, 13, e0195094. https://doi.org/10.1371/journal.pone.0195094

Baudouin, S. J. (2014). Heterogeneity and convergence: The synaptic pathophysiology of autism. European Journal of Neuroscience, 39, 1107–1113. https://doi.org/10.1111/ejn.12498

Bonnin, A., & Levitt, P. (2011). Fetal, maternal, and placental sources of serotonin and new implications for developmental programming of the brain. Neuroscience, 1, 1–7. https://doi.org/10.1016/j.neuroscience.2011.10.005

Braccioli, L., Vervoort, S. J., Adolfs, Y., Heijnen, C. J., Basak, O., Pasterkamp, R. J., … Coffer, P. J. (2017). FOXP1 promotes embryonic stem cell differentiation by repressing Jagged1 expression. Stem Cell Reports, 9, 1530–1545. https://doi.org/10.1016/j.stemcr.2017.10.012

Carr, C. W., Moreno-De-Luca, D., Parker, C., Zimmerman, H. H., Ledbetter, N., Martin, C. L., … Abdul-Rahman, O. A. (2010). Chiari 1 malformation, delayed gross motor skills, severe speech delay, and epileptiform discharges in a child with FOXP1 haploinsufficiency. European Journal of Human Genetics, 8, 1216–1220. https://doi.org/10.1016/j.ejhg.2010.06

Cingolani, P., Platts, A., Wang, L. L., Coon, M., Nguyen, T., Wang, L., … Ruden, D. M. (2012). A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly, 6, 80–92. https://doi.org/10.4161/fly.19695

Claessens, A. J., Risler, L. J., Eyal, S., Shen, D. D., Easterling, T. R., & Hebert, M. F. (2010). CYP2D6 mediates 4-hydroxylation of clonidine in vitro: Implication for pregnancy-induced changes in clonidine clearance. Drug Metabolism and Disposition, 38, 1393–1396. https://doi.org/10.1124/dmd.110.033878

Dodsworth, T., Kim, D. D., Procyslyn, R. M., Ross, C. J., Honer, W. G., & Barr, A. M. (2018). A systematic review of the effects of CYP2D6 phenotypes on risperidone treatment in children and adolescents. Child and Adolescent Psychiatry and Mental Health, 16, 37. https://doi.org/10.1186/s13034-018-0243-2
Gardener, H., Spiegelman, D., & Buka, S. L. (2009). Prenatal risk factors for autism: A comprehensive meta-analysis. *British Journal of Psychiatry, 195*, 7–14. https://doi.org/10.1192/bjp.bp.108.051672

Gaspar, P., Moura, G., Santos, M. A. S., & Oliveira, J. L. (2013). mRNA secondary structure optimization using a correlated stem-loop prediction. *Nucleic Acids Research, 41*, e73. https://doi.org/10.1093/nar/gks1473

Hamed, F. F., Daoud, H., Rochefort, D., Piton, A., Gauthier, J., Langlois, M., … Michaud, J. L. (2010). De novo mutations in FOXP1 in cases with intellectual disability, autism, and language impairment. *American Journal of Human Genetics, 87*, 671–678. https://doi.org/10.1016/j.ajhg.2010.09.017

Hooten, W. M., Hartman, W. R., Black, J. L., Laures, H. J., & Walker, D. L. (2013). Associations between serotonin transporter gene polymorphisms and heat pain perception in adults with chronic pain. *BMC Medical Genetics, 14*, 78. https://doi.org/10.1186/1471-2350-14-78

Horn, D. (2011). Mild to moderate intellectual disability and significant speech and language deficits in patients with FOX1P deletions and mutations. *Molecular Syndromology, 2*, 213–216. https://doi.org/10.1159/000309196

Huelga, S. C., Vu, A. Q., Arnold, J. D., Liang, T. Y., Liu, P. P., Yan, B. Y., … Yeo, G. W. (2012). Integrative genome-wide analysis reveals cooperative regulation of alternative splicing by hnRNP proteins. *Cell Reports, 1*, 167–178. https://doi.org/10.1016/j.celrep.2012.02.001

Iossifov, I., Ronemus, M., Levy, D., Wang, Z., Hakker, I., Rosenbaum, J., … Wigler, M. (2013). De novo gene disruptions in children with autistic spectrum disorder. *Neuron, 74*, 285–299. https://doi.org/10.1016/j.neuron.2012.04.009

Isaev, D., Ivanchick, G., Khmyz, V., Isaeva, E., Savrasova, A., Krishtal, O., … Maximyuk, O. (2012). Surface charge impact in low-magnesium conditions on protein stability and folding. *Cell Reports, 1*, 417–423. https://doi.org/10.1016/j.celrep.2011.05.007

Jang, M., & Sharp, P. A. (2014). Building robust transcriptomes with master splicing factors. *Cell, 159*, 487–498. https://doi.org/10.1016/j.cell.2014.09.054

Kaddurah-Daouk, R., Hankemeier, T., Scholl, E. H., Baillie, R., Harms, A., Stage, C., … Rasmussen, H. B. (2018). Pharmacometabolomics informs about pharmacokinetic profile of methylphenidate. *CPT: Pharmacometrics & Systems Pharmacology, 7*, 525–533. https://doi.org/10.1002/psp4.12309

Kluczen, T., Kruse, O., Wehrum-Osinsky, S., Hennig, J., Schweckendiek, J., & Stark, R. (2015). Impact of COMT Val158Met-polymorphism on appetitive conditioning and amygdala/prefrontal effective connectivity. *Human Brain Mapping, 3*, 1093–1110. https://doi.org/10.1002/hbm.22688

Konstantoulas, C. J., Parmar, M., & Li, M. (2010). Foxp1 promotes midbrain identity in embryonic stem cell-derived dopamine neurons by regulating Pitx3. *Journal of Neurochemistry, 3*, 836–847. https://doi.org/10.1111/j.1471-4159.2010.06650.x

Kumar, S., Batra, A., Kanthahe, S., Ghosh, S., & Chakraborti, A. (2017). Crosstalk between microRNA-122 and FOX family genes in HepG2 cells. *Experimental Biology and Medicine, 24*, 436–440. https://doi.org/10.1177/1535370616681548

Lam, C.-W., Yeung, W.-L., & Law, C.-Y. (2017). Global developmental delay and intellectual disability associated with a de novo TOP2B mutation. *Clinica Chimica Acta, 469*, 63–68. https://doi.org/10.1016/j.cca.2017.03.022

Landrum, M. J., Lee, J. M., Riley, G. R., Jang, W., Rubinstein, W. S., Church, D. M., & Maglott, D. R. (2014). ClinVar: Public archive of relationships among sequence variation and human phenotype. *Nucleic Acids Research, 42*(D1), D980–D985. https://doi.org/10.1093/nar/gkt1113

Lao, J. I. (2014). Autism spectrum disorders: An intervention approach based on genomic analysis. *Biologv and Medicine, 01*(s1), https://doi.org/10.4172/0974-8369.S1-002.

Lee, E., Lee, J., & Kim, E. (2017). Excitation/inhibition imbalance in animal models of autism spectrum disorders. *Biological Psychiatry, 81*, 838–847. https://doi.org/10.1016/j.biopsych.2016.05.011

LeFevre, A. K., Taylor, S., Malek, N. H., Horn, D., Carr, C. W., Abdulrahman, O. A., … Hunter, M. F. (2013). FOXP1 mutations cause intellectual disability and a recognizable phenotype. *American Journal of Medical Genetics. Part A, 161*, 3166–3175. https://doi.org/10.1002/ajmg.a.36174

Levin, T. T., Cortes-Ladino, A., Weiss, M., & Palomba, M. L. (2008). Life-threatening serotonin toxicity due to citalopram-fluconazolone drug interaction: Case reports and discussion. *General Hospital Psychiatry, 30*, 372–377. https://doi.org/10.1016/j.genhospitalpsy.ch.2008.03.008

Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinformatics (Oxford, England), 25*, 1754–1760. https://doi.org/10.1093/bioinformatics/btp324

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., … Durbin, R. (2009). The sequence alignment/map format and SAMtools. *Bioinformatics, 25*(16), 2078–2079. https://doi.org/10.1093/bioinformatics/btp352.

Li, X., Xiao, J., Fröhlich, H., Tu, X., Li, L., Xu, Y., … Chen, J.-G. (2015). Foxp1 regulates cortical radial migration and neuronal morphogenesis in developing cerebral cortex. *PLoS ONE, 10*, e0127671. https://doi.org/10.1371/journal.pone.0127671

Lindgreen, S. (2012). AdapterRemoval: Easy cleaning of next-generation sequencing reads. *BMC Research Notes, 5*, 337. https://doi.org/10.1186/1748-7188-6-337.

Lisbeth, P., Vincent, H., Kristof, M., Bernard, S., Manuel, M., & Hugo, N. (2016). Genotype and co-medication dependent CYP2D6 metabolic activity: Effects on serum concentrations of aripiprazole, haloperidol, risperidone, paliperidone and zuclopenthixol. *European Journal of Clinical Pharmacology, 72*, 175–184. https://doi.org/10.1007/s00228-015-1965-1

Liu, C., Rennie, W. A., Carmack, C. S., Kanoria, S., Cheng, J., Lu, J., & Ding, Y. (2014). Effects of genetic variations on microRNA: Target interactions. *Nucleic Acids Research, 42*, 9543–9552. https://doi.org/10.1093/nar/gku675

Lorenz, R., Bernhart, S. H., Höner zu Siederdissen, C., Tafer, H., Flamm, C., Stadler, P. F., & Hofacker, I. L. (2011). ViennaRNA package 2.0. *Algorithms for Molecular Biology, 6*, 26. https://doi.org/10.1186/1748-7188-6-26.
Margoob, M. A., & Mushitaq, D. (2011). Serotonin transporter gene polymorphism and psychiatric disorders: is there a link? *Indian Journal of Psychiatry, 53*, 289–299. https://doi.org/10.4103/0019-5545.91901

McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., … DePristo, M. A. (2010). The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. *Genome Research, 20*, 1297–1303. https://doi.org/10.1101/gr.107524.110

Meerschaert, I., Rochefort, D., Revençu, N., Pétre, J., Corsello, C., Rouleau, G. A., … Callewaert, B. (2018). FOXP1-related intellectual disability syndrome: A recognisable entity. *Journal of Medical Genetics, 54*, 613–623. https://doi.org/10.1136/jmedgenet-2017-104579

Mendoza, Á. C., Volante, B. B., Hernández, M. E., Mendoza, C. C., Pliego, A. F., Baptista Gonzalez, H. A., & Juárez, H. E. (2016). Design of a protocol for obtaining genomic DNA from saliva using mouthwash: Samples taken from patients with periodontal disease. *Journal of Oral Biology and Craniofacial Research, 6*, 129–134. https://doi.org/10.1016/j.jobcr.2016.01.002

Milosheska, D., Lorber, B., Vovk, T., Kastelic, M., Dolžan, V., & Grabnar, I. (2016). Pharmacokinetics of lamotrigine and its metabolite N-2-glucuronide: Influence of polymorphism of UDP-glucuronosyltransferases and drug transporters. *British Journal of Clinical Pharmacology, 82*, 399–411. https://doi.org/10.1111/bcp.12984

Miranda-G., E., Sordo, M., Salazar, A. M., Contreras, C., Bautista, L., Rojas Garcia, A. E., & Ostrosky-Wegman, P. (2007). Determination of amphetamine, methamphetamine, and hydroxyamphetamine derivatives in urine by gas chromatography-mass spectrometry and its relation to CYP2D6 phenotype of drug users. *Journal of Analytical Toxicology, 31*, 31–36. https://doi.org/10.1093/jat/31.1.31

Mirta, A. K., Dodge, J., Van Ness, J., Sokeye, I., & Van Ness, B. (2017). A de novo splice site mutation in EHMT1 resulting in Kleefstra syndrome with pharmacogenomics screening and behavior therapy for regressive behaviors. *Molecular Genetics & Genomic Medicine, 5*, 130–140. https://doi.org/10.1002/mg3.265

Moriyama, T., Nishii, R., Perez-Andreu, V., Yang, W., Klussmann, F. A., Zhao, X., … Yang, J. J. (2016). *NUDT15* polymorphisms alter thiouridine metabolism and hematopoietic Toxicity. *Nature Genetics, 48*, 367–373. https://doi.org/10.1038/ng.3508

Moussa, H. N., Srikrishnan, A., Blackwell, S. C., Dash, P., & Sibai, B. M. (2016). Fetal origins of autism spectrum disorders: The non-asomatous maternal factors. *European Journal of Medical Genetics, 613–623*. https://doi.org/10.1136/jmedgenet-2017-104579

Mukaiaga, K., Sakuma, C., Okada, T., Homma, S., Shimada, T., Nishiyama, K., … Yaginuma, H. (2017). Motor neurons with limb-innervating character in the cervical spinal cord are sculpted by apoptosis based on the Hox code in the chick embryo. *Development, 144*, 4645–4657. https://doi.org/10.1242/dev.158873

Murphy, D. L., Fox, M. A., Timpano, K. R., Moya, P. R., Ren-Patterson, R., Andrews, A. M., … Wendland, J. R. (2008). How the serotonin story is being rewritten by new gene-based discoveries principally related to SLC6A4, the serotonin transporter gene, which functions to influence all cellular serotonin systems. *Neuropharmacology, 55*, 932–960. https://doi.org/10.1016/j.neuropharm.2008.08.034

Ndadza, A., Cindi, Z., Makambwa, E., Chimusa, E., Wonkam, A., Kenge, A. P., … Dandara, C. (2018). Warfarin dose and CYP2C gene cluster: An African ancestral-specific variant is a strong predictor of dose in black South African patients. *OMICS: A Journal of Integrative Biology, 23*(1):36-44. https://doi.org/10.1089/omi.2018.0174

Ouagui, G., Pollock, A., Hong, J., & Sun, T. (2011). MicroRNA miR-9 modifies motor neurons columns by a tuning regulation of FoxP1 levels in developing spinal cords. *Journal of Neuroscience, 31*, 809–818. https://doi.org/10.1523/JNEUROSCI.4330-10.2011

Pariani, M. J., Spencer, A., Graham, J. M., & Rimoin, D. L. (2009). A 785 kb deletion of 3p14.1p13, including the FOXP1 gene, associated with speech delay, contractures, hypertonia and blepharophimosis. *European Journal of Medical Genetics, 52*, 123–127. https://doi.org/10.1016/j.ejmg.2009.03.012

Pertegal, M., Fenoy, F. J., Hernández, M., Mendiola, J., Delgado, J. L., Bonacasa, B., … Hernández, I. (2016). Fetal Val108158Met catechol-O-methyltransferase (COMT) polymorphism and placental COMT activity are associated with the development of pre-eclampsia. *Fertility and Sterility, 105*(1), 134–143.e3. https://doi.org/10.1016/j.fertnstert.2015.09.019

Popovitchenko, T., Thompson, K., Viljetic, B., Jiao, X., Kontoyanni, D. L., Kiledjian, M., … Rasin, M. R. (2016). The RNA binding protein HuR determines the differential translation of autism-associated FoxP subfamily members in the developing neocortex. *Scientific Reports, 6*, 28998. https://doi.org/10.1038/srep28998

Radua, J., El-Hage, W., Monté, G. C., Gohier, B., Tropeano, M., Phillips, M. L., & Surguladze, S. A. (2013). COMT Val158Met x SLC6A4 5-HTTLPR interaction impacts on gray matter volume of regions supporting emotion processing. *Social Cognitive and Affective Neuroscience, 9*, 1232–1238. https://doi.org/10.1093/scan/nst089

Radulovic, L. L., Türck, D., vonHodenberg, A., Vollmer, K. O., McNally, W. P., DeHart, P. D., … Chang, T. (1995). Disposition of gabapentin (neurotinon) in mice, rats, dogs, and monkeys. *Drug Metabolism and Disposition, 23*, 441–448.

Reamons-Buettner, S. M., Cho, S.-H., & Borlak, J. (2007). Mutations in the 3′-untranslated region of GATA4 as molecular hotspots for congenital heart disease (CHD). *BMC Medical Genetics, 8*, 38. https://doi.org/10.1186/1471-2350-8-38

Rodier, P. M., Ingram, J. L., Tisdale, B., Nelson, S., & Romano, J. (1996). Embryological origin for autism: Developmental anomalies of the cranial nerve motor nuclei. *The Journal of Comparative Neurology, 370*, 247–261. https://doi.org/10.1002/cne.9861(19960624)370:2%3c247 :AID-CNE8%3e3.0.CO;2-2

Rudnick, G. (2006). Structure/function relationships in serotonin transporter: New insights from the structure of a bacterial transporter. *Handbook of Experimental Pharmacology, 175*, 59–73. https://doi.org/10.1007/3-540-29784-7_3

Sannino, S., Gozzi, A., Cerasa, A., Piras, F., Scheggia, D., Managò, F., … Papaleo, F. (2015). COMT genetic reduction produces sexually divergent effects on cortical anatomy and working memory in mice and humans. *Cerebral Cortex, 25*, 2529–2541. https://doi.org/10.1093/cercor/bhu053

Schrantee, A., Ferguson, B., Stoffers, D., Boijj, J., Rombouts, S., & Reneman, L. (2016). Effects of dexamphetamine-induced dopamine release on resting-state network connectivity in recreational amphetamine users and healthy controls. *Brain Imaging and Behavior, 10*, 548–558. https://doi.org/10.1007/s11682-016-9419-z

Siper, P. M., De Rubeis, S., Trelles, M. D. P., Durkin, A., Di Marino, D., Muratet, F., … Buxbaum, J. D. (2017). Prospective investigation of FOXP1 syndrome. *Molecular Autism, 8*, 57. https://doi.org/10.1186/s13229-017-0172-6
Sjaarda, C. P., Hecht, P., McNaughton, A. J. M., Zhou, A., Hudson, M. L., Will, M. J., ... Liu, X. (2017). Interplay between maternal SLC6A4 mutation and prenatal stress: A possible mechanism for autistic behavior development. Scientific Reports, 7, 8735. https://doi.org/10.1038/s41598-017/405-3

Soiza-Reilly, M., Meye, F. J., Olusakin, J., Telley, L., Petit, E., Chen, X., ... Gaspar, P. (2018). SSRIs target prefrontal to raphe circuits during development modulating synaptic connectivity and emotional behavior. Molecular Psychiatry, 24(5):726-745. https://doi.org/10.1038/s41380-018-0260-9

Tamura, S., Morikawa, Y., Iwanishi, H., Hisaoka, T., & Senba, E. (2004). Foxp1 gene expression in projection neurons of the mouse striatum. Neuroscience, 124, 261–267. https://doi.org/10.1016/j.neuroscience.2003.11.036

Teh, L. K., & Bertilsson, L. (2012). Pharmacogenomics of CYP2D6: Molecular genetics, interethnic differences and clinical importance. Drug Metab and Pharmacokinet, 27, 55–67. https://doi.org/10.2133/dmpk.DMPK-11-RV-121

Tóth, K., Csukly, G., Sirok, D., Belic, A., Kiss, Á., Háfra, E., ... Monostory, K. (2016). Optimization of clonazepam therapy adjusted to patient’s CYP3A status and NAT2 genotype. International Journal of Neuropsychopharmacology, 19(12), pyw083. https://doi.org/10.1093/ijnp/pyw083

Tushev, G., Glock, C., Heumüller, M., Biever, A., Jovanovic, M., & Schuman, E. M. (2018). Alternative 3’ UTRs modify the localization, regulation potential, stability, and plasticity of mRNAs in neuronal compartments. Neuron, 98, e6. https://doi.org/10.1016/j.neuron.2018.03.030

Uckun, Z., Baskak, B., Ozel-Kizil, E. T., Ozdemir, H., Devrimci Ozguven, H., & Suzen, H. S. (2015). The impact of CYP2C19 polymorphisms on citalopram metabolism in patients with major depressive disorder. Journal of Clinical Pharmacy and Therapeutics, 40, 672–679. https://doi.org/10.1111/jcpt.12320

Vo, K., Nefsey, P., & Lin, C. (2015). Concurrent use of amphetamine stimulants and antidepressants by undergraduate students. Patient Prefer Adherence, 9, 161–172. https://doi.org/10.2147/PPA.S74602

Volpi-Abadie, J., Kaye, A. M., & Kaye, A. D. (2013). Serotonin syndrome. Ochsner Journal, 13, 533–540.

Wang, R. Z., Vashistha, V., Kaur, S., & Houchens, N. W. (2016). Serotonin syndrome: Preventing, recognizing, and treating it. Cleveland Clinic Journal of Medicine, 83, 810–817. https://doi.org/10.3949/ccjm.83a.15129

Worthey, E. A. (2013). Analysis and annotation of whole-genome or whole-exome sequencing-derived variants for clinical diagnosis. Current Protocols in Human Genetics, 95, 1–9.24.28. https://doi.org/10.1002/cphg.49

Worthey, E. A., Mayer, A. N., Syverson, G. D., Helbling, D., Bonacci, B. B., Decker, B., ... Dimmock, D. P. (2011). Making a definitive diagnosis: Successful clinical application of whole exome sequencing in a child with intractable inflammatory bowel disease. Genetics in Medicine, 13, 255–262. https://doi.org/10.1097/GIM.0b013e3182088158

Xu, C., Cao, H., Zhang, F., & Cheadle, C. (2018). Comprehensive literature data-mining analysis reveals a broad genetic network functionally associated with autism spectrum disorder. International Journal of Molecular Medicine, 42, 2353–2362. https://doi.org/10.3892/ijmm.2018.3845

Yuce-Artun, N., Baskak, B., Ozel-Kizil, E. T., Ozdemir, H., Uckun, Z., Devrimci-Ozguven, H., & Suzen, H. S. (2016). Influence of CYP2B6 and CYP2C19 polymorphisms on sertraline metabolism in major depression patients. International Journal of Pharmaceutics, 38, 388–394. https://doi.org/10.1016/j.ijpharm.2016-0259-8

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

How to cite this article: Jay K, Mitra A, Harding T, Matthes D, Van Ness B. Identification of a de novo FOX1 mutation and incidental discovery of inherited genetic variants contributing to a case of autism spectrum disorder and epilepsy. *Mol Genet Genomic Med.* 2019;7:e751. https://doi.org/10.1002/mgg3.751