Insertion depth of nasotracheal tubes sized to fit the nostril: an observational study

Bora Lee, Wyun Kon Park, Soon Young Yun, Soojeong Kang and Hyun Joo Kim

Abstract

Objective: Nasotracheal (NT) intubation is commonly applied during head and neck surgery. However, improper tube size and depth may cause complications. In the current study, we investigated whether NT tubes are being appropriately used in terms of size and depth in adult patients.

Methods: Nares were sized in 40 patients using standard nasopharyngeal airways (6.0–8.0) before elective surgery under general anesthesia. The largest sized airway that passed easily into the nasopharynx without resistance was considered as a proper size. Using a fiberoptic scope, the distances from the nares to the vocal cords and the nares to the carina were measured. Rates of proper NT tube positioning were calculated with regard to the cuff and distal tip.

Results: The most frequent sizes of properly fitted NT tubes were 6.5 and 6.0 in male and female patients, respectively. Positioning of the cuff and distal tip was only appropriate when using a properly sized tube in 26% and 47% of male and female patients, respectively.

Conclusion: Care should be taken to determine the insertion depth after placing an NT tube that has been sized to fit the nostril. Moreover, NT tubes of the same diameter may be required in various lengths.

Trial registration: Registered at ClinicalTrials.gov; https://clinicaltrials.gov/ct2/show/NCT02876913; Registration number NCT02876913

Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Yonsei-ro, Seodaemun-Gu, Seoul, Republic of Korea

Corresponding author:
Hyun Joo Kim, Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-Gu, Seoul 03722, Republic of Korea.
Email: jjollong@yuhs.ac

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
Introduction

Nasotracheal (NT) intubation is commonly performed in patients undergoing head and neck surgeries, such as intraoral, dental, or microlaryngeal procedures or mandibulectomies.1,2 Nonetheless, the choice of tubes used in clinical practice must be judicious.2,3 Previous studies have suggested that the proximal cuffs of NT tubes should be placed > 2 cm below the vocal cords4,5 because upward movement (towards the cords) may be damaging or result in unintentional extubation during surgery.6,7 Various head and neck positions may also alter the relative depth of the proximal cuff.8 Extension or rotation may lengthen the airway and cause withdrawal of the tube.9 Moreover, a downwardly displaced distal tip (i.e., tubal shift towards the carina) creates the potential for endobronchial intubation, atelectasis, or hypoxemia.10 Such displacement is possible during flexion of the neck, the Trendelenburg position, or laparoscopically-induced pneumoperitoneum.11–13 Consequently, a separation of 5 ± 2 cm between the distal tip and the carina is advised.12

An NT tube should be reasonably accommodated by the nostril cavity.1 Many complications associated with insertion of an oversized NT tube have been reported, including epistaxis, turbinectomy, retropharyngeal dissection, and nasal ala pressure sores or necrosis.14–16 These complications might be reduced by implementing several strategies, such as warming of the tube, and use of lubricants or a vasoconstrictor.2,17 Additionally, such complications may be prevented via proper tube sizing.18 The diameter of a tube intended for nasal passage is understandably less than that of a tube that is passed orally.2

Despite the fundamental importance of these issues, no studies have evaluated NT size and depth concurrently. Furthermore, in our clinical experience, coordinating tube size and length to limit potential complications (e.g., unintentional extubation or epistaxis) has been difficult. The uniquely preformed curvatures of standard NT tubes and the complexities of intranasal structures might be at odds, resulting in an imbalance in the proportionate relationship between the sizes and lengths of these tubes.2,19

This prospective, observational study was performed to determine whether NT tubes are used properly in terms of size and insertion depth in adult patients. We investigated whether the tube depth was appropriate regarding cuff and distal tip positions when a properly fitted NT tube was selected according to nostril size.

Materials and methods

Patients

This study was approved by the Severance Hospital institutional review board (protocol number: 4-2016-0504) and registered at ClinicalTrial.gov (NCT02876913). We enrolled 40 patients of class I or II
American Society of Anesthesiologists physical status. All of the patients were scheduled for elective oral and maxillofacial surgery requiring NT intubation between August 2016 and June 2017. All of the patients provided written informed consent. Exclusion criteria were a history of difficult intubation, modified Mallampati score > 3, mouth opening < 2 cm, facial anomaly, unstable teeth, and nasal disease.

**Measurements**

Each patient was placed on the operating table with their head and neck in a neutral position. We measured straight distances from the lateral border of the nares to the tragus of the ear (NE) and to the angle of the mandible (NM) using a protractor and tape measure. Before induction, the patient identified which nostril they felt the most comfortable breathing through. Anesthesia was induced with propofol (Fresofol 1% MCT, 2 mg/kg; Fresenius Kabi Austria GmbH, Graz, Austria), rocuronium (Rocumeron, 0.8 mg/kg; Ilsung Pharmaceuticals Co., Ltd., Seoul, Korea), and remifentanil (Ultian, 0.5–1.0 µg/kg; Hanlim Pharm. Co., Ltd., Seoul, Korea). After mask ventilation (2.0%–2.5% sevoflurane in 100% oxygen) that was sufficient to ensure muscle relaxation, a nasopharyngeal airway (PVC airway, 6.0–8.0; SunMed, Grand Rapids, MI, USA) that was well lubricated with jelly was vertically inserted into the predetermined nostril. If a size 6.0 nasopharyngeal airway could not be inserted without more than mild resistance, insertion was attempted on the other side. The largest nasopharyngeal airway that could be easily passed into the nasopharynx without resistance was considered the proper size. Friction that was encountered between the nasopharyngeal airway and intranasal structures was considered mild resistance. Moderate resistance was defined as intranasal encroachment and abrasion during airway insertion, with the potential for bleeding. The largest tube that showed mild resistance upon insertion was considered a tight fit. A very tight fit was calculated by adding 0.5 mm to the size of the tightly fitting airway. If more than mild resistance was met when passing a size 6.0 airway into the nasopharynx, no attempt was made to use a larger airway because of the risk of bleeding, turbinectomy, or submucosal dissection. The outer diameter of a properly sized nasopharyngeal airway corresponded with the inner nostril diameter. In airways with inner diameter sizes of 6.0, 6.5, 7.0, 7.5, and 8.0 mm, the respective outer diameters were 8.0, 8.7, 9.3, 10.0, and 10.7 mm. The outer diameter of an NT tube (Mallinckrodt TaperGuard cuff; Medtronic, Minneapolis, MN, USA) marginally exceeded that of a nasopharyngeal airway, with a difference of only 0.2 mm.

Upon removing the nasopharyngeal airway, mask ventilation (2.0%–2.5% sevoflurane in 100% oxygen) was reintroduced for 1 minute. Following facial mask removal, a fiberoptic bronchoscope (Olympus LF-P; Olympus Corp, Tokyo, Japan) was inserted through the nostril. The distances from the nares to the carina and from the nares to the vocal cords were measured. The scope was inserted until its distal end just made contact with the carina, while maintaining the patient’s neck in a neutral position. Tape was applied at the nares to mark the bronchoscopic location, and it was withdrawn until the distal tip was positioned precisely between the vocal cords. Tape was applied again, and the distances from tape markings to the distal end of the fiberoptic bronchoscope were measured with a ruler. Laryngoscopic NT intubation was performed using a tube that had been warmed and softened by warm water, and anesthesia was maintained via sevoflurane (0.8–1.0 age-adjusted minimal alveolar
concentration in 50% O₂/air) and remifentanil (0.05–0.15 μg/kg/minute).¹⁷

Once the tube was fixed at the start of curvature (6.0, 25 cm; 6.5, 26 cm; 7.0, 27 cm; 7.5, 28 cm; 8.0, 29 cm), proper positioning of the NT tube required that the cuff was 2 cm below the vocal cords,⁴ and the distal tip was 5 ± 2 cm from the carina.¹² Both stipulations were mandatory (Figure 1). Additionally, the distance between the nares and the distal tip of the tube (relative to the carina) minus 5 cm was considered ideal. The primary outcome was the rate of proper NT tube positioning with regard to the cuff and distal tip.

Statistical analysis

Continuous variables are expressed as mean (standard deviation) or median (interquartile range) and categorical variables as numerical values (percentile). Patients’ characteristics and operative data were compared using the unpaired t-test, Mann–Whitney U-test, χ² test, or Fisher’s exact test as appropriate. Clinically related variables were evaluated by correlation analysis. All statistical tests were two-tailed, with significance set at p < 0.05.

Analyses were performed using IBM SPSS Statistics for Windows, version 23 (IBM Corp., Armonk, NY, USA) and R software (version 3.4.3; R Foundation for Statistical Computing, www.r-project.org).

Results

All 40 patients fully completed the study. There were 20 men and 20 women, aged 20 to 70 years. In all cases, the nostrils that were intubated were preferentially selected by the patients, and the chosen nostril did not need to be abandoned for any reason. The types of oral and maxillofacial surgeries performed included enucleation of a cyst, surgical tooth extraction, and excision of a mandibular mass.

Patients’ characteristics and recorded data are shown in Table 1. Weight, height, distance from the nares to the vocal cords, and distance from the nares to the carina were greater in male patients than in female patients (all p < 0.01). Age, NM, and NE did not differ significantly by sex. The most frequent calibers of properly sized tubes were 6.5 in male patients and 6.0 in female patients. A size 6.0 nasopharyngeal

Figure 1. Ideal depth of nasotracheal tube placement with (a) the cuff 2 cm below the vocal cords and (b) the distal tip 5 ± 2 cm from the carina. *Vocal cords
airway was considered tight in one male and in three female patients.

Appropriate NT tube depths were recorded in 26% male and 47% female patients according to proper tube sizes and stipulated cuff/distal tip locations (Figure 2). When the cuff and distal tip position were considered, the appropriate rates were highest with tight fitting NT tubes in male patients and properly fitting NT tubes in female patients, although notably, both rates were <50%. Based on the distal tip position, in male patients, the appropriate depth was more likely to be achieved with a tight fitting NT tube than with a properly fitting NT tube. However, in female patients, as the tube size became tighter, the position of the distal tip became closer to the carina, resulting in a higher inappropriate rate (approximately 85%). Based primarily on the cuff position, a tight NT tube was most appropriate in female patients, whereas in male patients, a very tight size was most appropriate.

Increased tube caliber was associated with the distal tip advancing closer to the carina and the cuff being further from the vocal cords (Figure 3). In male patients, cuff positions of properly sized NT tubes tended to fall short. The cuff positions encroached on the vocal cords in >50% of patients, thus qualifying as inappropriate. In contrast, properly sized NT tubes were often associated with cuff positions that were too long in female patients, and this limited the distance between the distal tip and the carina. Only 59% of female patients qualified as appropriately positioned.

Correlation analysis showed a Pearson coefficient of \(-0.136\) associated with the relationship between proper nasopharyngeal airway size and height. The relationship

| Table 1. Baseline characteristics and values measured by fiberoptic bronchoscopy and nasopharyngeal airways. |
|-------------------------------------------------|-------------------------------------------------|------------------|
| Age (years) | 42 ± 14 | 41 ± 13 | 0.855 |
| Height (cm) | 172.4 ± 5.8 | 162.3 ± 5.5 | <0.001 |
| Weight (kg) | 69.7 ± 12.8 | 58.6 ± 10.2 | 0.004 |
| NV distance (cm) | 18.6 ± 1.4 | 16.7 ± 1.2 | <0.001 |
| NC distance (cm) | 31.4 (30.1–32.3) | 28.7 (27.9–29.7) | <0.001 |
| NE distance (cm) | 10.8 ± 0.8 | 10.4 ± 1.4 | 0.366 |
| NM distance (cm) | 9.9 (9.0–10.2) | 9.2 (8.8–10.0) | 0.515 |
| Ideal distance between the nares and the distal tip of tube, relative to the carina | 26.4 (25.1–27.4) | 23.7 (22.9–24.7) | <0.001 |
| Nostril side (left/right) | 10/10 | 8/12 | 0.523 |
| Easily passed nasopharyngeal airway size | | | |
| 6.0 | 2 | 7 | 0.177 |
| 6.5 | 8 | 5 |
| 7.0 | 7 | 3 |
| 7.5 | 0 | 1 |
| 8.0 | 2 | 1 |

Values are expressed as mean (standard deviation), median (interquartile range), or patient number. NV = nares to the vocal cords; NC = nares to the carina; NE = lateral border of the nares to the tragus of the ear; NM = lateral border of the nares to the angle of the mandible. The distance from the nares to the distal tip of the tube minus 5 cm was considered the ideal measurement relative to the carina.
between the ideal distance from the nares to the distal tip of the tube and height showed a Pearson coefficient of 0.584.

**Discussion**

To the best of our knowledge, this prospective, observational study is the first to investigate appropriate use of NT tubes based on size and insertion depth. These results suggest that using an NT tube that is properly sized for a particular patient will not ensure appropriate placement, as defined by cuff and distal tip positions. In the present study, the cuff position was inappropriate in 24% to 53% of patients for whom properly sized NT tubes were selected. This observed rate exceeded our expectations,
although we have frequently encountered
cuffs caught in the vocal cords when
extending a patient’s head and neck. In clin-
ical practice, we often use NT tubes that are
tight or very tight, as a safeguard against
accidental extubation. Moreover, some
clinicians insert NT tubes beyond recom-
mended markings to prevent cord
encroachment by the proximal cuff.8,21
Such anticipatory behavior may skew the
incidence of improperly positioned proxi-
mal cuffs. Nevertheless, NT tubes should
be fixed at the first sign of curvature or at
the manufacturer’s designated mark
because of the risk of nasal ala pressure
sores.22,23 Furthermore, proper sizing of
NT tubes—in conjunction with nostril cav-
ities—helps reduce the risk of unnecessary
bleeding.1,18 Therefore, we investigated
whether properly sized NT tubes can
reach appropriate depths relative to the
proximal cuff. Our findings indicated that
the proximal cuff was positioned too close
to the vocal cords, which created the poten-
tial for cord damage or accidental extuba-
tion, when a properly sized NT tube was
fixed as intended.

Larger sized tubes incorporate a longer
distance from curvature to the proximal
cuff compared with smaller sized counter-
parts. Therefore, the distance from the
vocal cords to the proximal cuff may be
greater in larger sized tubes. In the current
study, the rate of appropriate proximal cuff
positioning increased proportionally as
tube size increased. However, as tube size
increased, the distal tip also moved closer to
the carina, which increased the risk of endo-
bronchial intubation and rendered tube
placement inappropriate.5,12 When we
chose a larger sized NT tube than the
patient’s nostril size to ensure an appropri-
ate proximal cuff position of the NT tube,
the distal tip position was inappropriate in
approximately 85% of female patients.
Male patients were similarly affected,
although not to the same extent because
the distance from the nares to the carina is
longer in male patients than in female
patients, increasing the margin of safety.24

Previous NT tube studies that used sizes
of 6.0 to 6.5 for female patients and 7.0 for
male patients did not provide a basis for
size selection.25,26 Anesthesiologists are usu-
gally guided by sex and height when choos-
ing NT tubes, taking into consideration
that a larger sized tube has a longer tube
length. In a previous study, the distance
from the nares to the vocal cords was sig-
ificantly correlated with the patient’s
height.27 Similarly, in the current study,
there was a positive correlation between
the ideal distance from the nares to the
distal tip of the tube and the patient’s
height. NT tube size is positively associated
with NT tube length because of product
design. Therefore, if an NT tube is selected
to ensure proper tube position based on the
patient’s height, the diameter of the NT
tube can be too small or too large for the
patient’s nostril. Consequently, tubes of the
same size should be made available in var-
ious lengths so that nostril size and patient’s
height can be accommodated. A previous
study showed that NT intubation at 26 cm
and 28 cm in female and male patients,
respectively, measured at the nares, enabled
adequate placement in most adult
patients.28 While these data were generated
indirectly using chest radiographs, our
determinations were based on direct meas-
urements relative to the carina obtained via
fiberoptic bronchoscopy (ideal depth: 26.5
± 2 cm in male patients; 23.7 ± 2.0 cm in
female patients). Therefore, a new perspec-
tive on the design and production of NT
tubes that offers variability in length and
caliber is required.

There are several limitations of our study
as follows. First, our study had a small
sample size. However, post-hoc power anal-
ysis showed power values > 0.9 for the rates
of appropriate NT tube positions in male
and female patients when we assumed an
inappropriate position rate of 0% to 10%. Therefore, our sample size appears to have been sufficient to support the primary endpoint of the current study. Additionally, there was subjectivity involved in gauging the ease of, or resistance to, passage of the NT tube. Pressure may be applied to increase nasal cavity resistance, and the internal nasal contours are not uniform with regard to geometric shapes (i.e., simple circles or rectangles). In an effort to maximize the objectivity of our data within the limitations of the study, the same experienced anesthesiologist assessed nasopharyngeal airway resistance and performed the actual NT intubation procedures in all patients.

The rate of inappropriate placement is high if the nostril diameter serves as the determinant of a properly sized NT tube. Therefore, care should be taken to determine tube depth when choosing an NT tube that is sized to fit the nostril. Further investigation of a formula for predicting the appropriate fixation depth is also warranted. NT tubes of the same diameter may need to be made available in various lengths to accommodate the nostril size and airway length.

Acknowledgments
The authors would like to thank Dong-Su Jang, MFA (medical illustrator, Medical Research Support Section, Yonsei University College of Medicine), for his help with the figures.

Declaration of conflicting interest
The authors declare that there is no conflict of interest.

Funding
This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

References
1. Prasanna D and Bhat S. Nasotracheal intubation: an overview. J Maxillofac Oral Surg 2014; 13: 366–372.
2. Hall CE and Shutt LE. Nasotracheal intubation for head and neck surgery. Anaesthesia 2003; 58: 249–256.
3. Rector FT, DeNuccio DJ and Alden MA. Reducing the complications of routine nasotracheal intubations. AANA J 1987; 55: 221–232.
4. Salem MR. Verification of endotracheal tube position. Anesthesiol Clin North America 2001; 19: 813–839.
5. Conrardy PA, Goodman LR, Lainge F, et al. Alteration of endotracheal tube position. Flexion and extension of the neck. Crit Care Med 1976; 4: 8–12.
6. Kim JT, Kim HJ, Ahn W, et al. Head rotation, flexion, and extension alter endotracheal tube position in adults and children. Can J Anaesth 2009; 56: 751–756.
7. Cavo JW, Jr. True vocal cord paralysis following intubation. Laryngoscope 1985; 95: 1352–1359.
8. Hartrey R and Kestin IG. Movement of oral and nasal tracheal tubes as a result of changes in head and neck position. Anaesthesia 1995; 50: 682–687.
9. Wong DT, Weng H, Lam E, et al. Lengthening of the trachea during neck extension: which part of the trachea is stretched? Anesth Analg 2008; 107: 989–993.
10. Zwillich CW, Pierson DJ, Creagh CE, et al. Complications of assisted ventilation. A prospective study of 354 consecutive episodes. Am J Med 1974; 57: 161–170.
11. MacKenzie M and MacLeod K. Repeated inadvertent endobronchial intubation during laparoscopy. Br J Anaesth 2003; 91: 297–298.
12. Goodman LR, Conrardy PA, Laing F, et al. Radiographic evaluation of endotracheal tube position. AJR Am J Roentgenol 1976; 127: 433–434.

ORCID iD
Hyun Joo Kim http://orcid.org/0000-0003-1963-8955
13. Heinonen J, Takki S and Tammisto T. Effect of the Trendelenburg tilt and other procedures on the position of endotracheal tubes. *Lancet* 1969; 1: 850–853.

14. O’Hanlon J and Harper KW. Epistaxis and nasotracheal intubation—prevention with vasoconstrictor spray. *Ir J Med Sci* 1994; 163: 58–60.

15. Rastogi S, Bhutia T, Singh A, et al. Nasal ala pressure sores following head and neck reconstructive surgery: A retrospective analysis from a tertiary cancer hospital. *Indian J Anaesth* 2017; 61: 74–76.

16. Williams AR, Burt N and Warren T. Accidental middle turbinectomy: a complication of nasal intubation. *Anesthesiology* 1999; 90: 1782–1784.

17. Hosseinzadeh H, Taheri Talesh K, Golzari SE, et al. Warming endotracheal tube in blind nasotracheal intubation throughout maxillofacial surgeries. *J Cardiovasc Thorac Res* 2013; 5: 147–151.

18. Sim WS, Chung IS, Chin JU, et al. Risk factors for epistaxis during nasotracheal intubation. *Anaesth Intensive Care* 2002; 30: 449–452.

19. Chauhan V and Acharya G. Nasal intubation: a comprehensive review. *Indian J Crit Care Med* 2016; 20: 662–667.

20. Earle R, Shanahan E, Vaghadia H, et al. Epistaxis during nasotracheal intubation: a randomized trial of the Parker flex-tip nasal endotracheal tube with a posterior facing bevel versus a standard nasal RAE endotracheal tube. *Can J Anaesth* 2017; 64: 370–375.

21. Taileur R, Bathory I, Dolci M, et al. Endotracheal tube displacement during head and neck movements. Observational clinical trial. *J Clin Anesth* 2016; 32: 54–58.

22. Cherng CH and Chen YW. Using a modified nasotracheal tube to prevent nasal ala pressure sore during prolonged nasotracheal intubation. *J Anesth* 2010; 24: 959–961.

23. Read DH and Du Boulay M. A nasotracheal tube for faciomaxillary surgery. *Anaesthesia* 1982; 37: 940–943.

24. Eagle CC. The relationship between a person’s height and appropriate endotracheal tube length. *Anaesthesia Intensive Care* 1992; 20: 156–160.

25. Ahmed-Nusrath A, Tong JL and Smith JE. Pathways through the nose for nasal intubation: a comparison of three endotracheal tubes. *Br J Anaesth* 2008; 100: 269–274.

26. Seo KS, Kim JH, Yang SM, et al. A new technique to reduce epistaxis and enhance navigability during nasotracheal intubation. *Anesth Analg* 2007; 105: 1420–1424.

27. Han DW, Shim YH, Shin CS, et al. Estimation of the length of the nares-vocal cord. *Anesth Analg* 2005; 100: 1533–1535.

28. Reed DB and Clinton JE. Proper depth of placement of nasotracheal tubes in adults prior to radiographic confirmation. *Acad Emerg Med* 1997; 4: 1111–1114.

29. Kemper M, Dullenkopf A, Schmidt AR, et al. Nasotracheal intubation depth in paediatric patients. *Br J Anaesth* 2014; 113: 840–846.

30. Rigini N, Boaz M, Ezri T, et al. Prompt correction of endotracheal tube positioning after intubation prevents further inappropriate positions. *J Clin Anesth* 2011; 23: 367–371.

31. Smith JE and Reid AP. Asymptomatic intra-nasal abnormalities influencing the choice of nostril for nasotracheal intubation. *Br J Anaesth* 1999; 83: 882–886.