Potential of polypropylene nanocomposite reinforced with cellulose nanofiber from oil palm empty fruit bunch as sustainable packaging: A review

Muhammad Syukur Sarfat1*, Dwi Setyaningsih1,2, Farah Fahma1, Nastiti Siswi Indrasti1

1Department of Agroindustrial Technology, IPB University, Bogor, Indonesia, 16680
2Surfactant and Bioenergy Research Center, IPB University, Bogor, Indonesia, 16144

*Email: mssarfat.oct87@gmail.com

Abstract. Sustainable packaging focuses on the production of packaging that promotes environmental, social, and economic health. The use of thermoplastic such as polypropylene (PP) in packaging has raised concern about environmental impact, so research needed to identify alternative sustainable packaging materials to reduce the environmental impact. Cellulose Nanofiber (CNF) has been considered sustainable packaging material due to its low weight, high strength, high abundance, rigidity, and biodegradability. Therefore, CNF from Oil Palm Empty Fruit Bunch (OPEFB) is the potential additional raw material for developing sustainable packaging. CNF can be used as additional raw material to reinforce the PP matrix, called a polypropylene nanocomposite (PPNC). However, limited research has focused on CNF preparation for PPNC production. Therefore, this review is to explain the potential PPNC reinforced with CNF from OPEFB as sustainable packaging.

1. Introduction

A package is goods or tools used to hold, handle, protect, and present products from producers to consumers. A package is produced according to the type of packaging materials that can be divided into polymers, glass, papers, textile, woods, metals, ceramics, and other types of packaging materials [1]. The packaging materials used in the food and beverage packaging, medical, pharmaceutical packaging, and other application are non-degradable (such as glass, plastics, and metals), and this packaging can increase the environmental impact [2]. This situation caused many requests to increase the exploration and use of eco-friendly packaging. Numerous studies have reported that packaging materials based on biopolymer can reduce the waste from non-biodegradable packaging [3,4].

CNF from natural resources has been recognized as a renewable polymeric material and abundant in nature and as the primary source of sustainable raw materials for sustainable packaging production. CNF has attractive characteristics, such as biodegradability, chemical stability, and biocompatibility. CNF has been utilized as raw materials to produce papers, textiles, and pharmaceuticals [5,6]. In recent years, CNF has attracted researchers’ interest for maximization of the mechanical properties of packaging. The additional CNF in packaging production can minimize the production cost and
minimize the environmental impact [7,8], and then it is can then provide tensile, flexural properties, and superior rigidity [9].

Process design to CNF isolation will ensure the requirement of packaging and product quality such as packaging safety levels, size, ergonomics, height, thickness, stress levels, lifecycle, and cost [10], and define the suitability and limitations of CNF in the development the sustainable packaging [11].

Natural material potential as raw material to CNF isolation is Oil Palm Empty Fruit Bunch (OPEFB) has generated from oil palm extraction process. OPEFB production in Indonesia will continue to increase with increasing the amount of oil palm production. OPEFB has the potential to be developed into products that have added value. Numerous studies have researched CNF isolation from OPEFB (Table 1).

Table 1. Studies researched CNF isolation from OPEFB

No	Methods	Characteristics	References
1	Sulfuric acid hydrolysis	Size: 1 – 3.5; 53.83 – 58.78	[12]
2	Sodium chlorite hydrolysis	Size: 4 – 15; 30.77 – 50.38	[13]
3	Acid hydrolysis	Size: 1 – 100; 42.52 – 80.42	[14]
4	Sulfuric acid hydrolysis	Size: 5 – 10; 49.92	[15]
5	Acid hydrolysis	Size: 30.717 – 70; 26.65 – 76.15	[17]
6	Enzyme hydrolysis from *Trichoderma sp.*	Size: 32.6 – 36.4; 26.65 – 76.15	[18]
8	Sulfuric acid hydrolysis	Size: 894.25; 31.1	[19]
9	Chemical and Nano grinding treatment	Size: 17.82	[20]

Based on data from Badan Pusat Statistik (BPS) from 2014 to 2017, palm oil production in Indonesia has increased from 29.28 to 34.94 million tons per annum. OPEFB fiber is made up from three complex polymers (cellulose, hemicellulose, and lignin). OPEFB is byproduct that have high cellulose content [20]. Cellulose content in OPEFB around 30 – 40% (w/w) [21], 37.26% (w/w) [22], 29.37% (w/w) [23], 37.3 – 46.5% (w/w) [24], 44.42% (w/w) [18], 69.27% (w/w) [25], 39.13% (w/w) [26], and 36.67% (w/w) [27].

Therefore, CNF from OPEFB is the potential additional raw material to develop sustainable packaging. However, limited research has focused on CNF preparation for PPNC production. Therefore, this review explains the potential PPNC reinforced with CNF from OPEFB as sustainable packaging and defines the suitability and limitations of CNF in developing sustainable packaging.

2. Production of CNF

Nanotechnology is a science focusing on production design, raw material, product characterization, and product application by controlling the size of the product at the nanoscale [28]. It is consisting of three discipline science which are mathematics, chemistry, and physics to processing the raw materials to be a product that has at least one size in nanoscale [29], control a substance at the nanometer (nm) level [30], and the range of particle size from 0.1 to 100 nm [31]. Studies about nanotechnology have been conducted on the CNF isolation from several natural sources and their application to develop added-value products [2,29,32,33]. Natural sources’ selection is pendent on the local fiber availability, chemical components, and economic viability [9]. CNF isolation from natural sources can be conducted in two steps: cellulose fiber pretreatment and CNF isolation (Figure 1) [2,34–36].
2.1. Pretreatments of Cellulose Fibers from OPEFB

Pretreatment of cellulose fibers from OPEFB is carried out after the bleaching process in the CNF isolation. Pretreatment of cellulose fibers consist of 2 types, namely mechanical treatment (include crushing and refining) [37] and chemical treatment include enzymatic hydrolysis [6], fermentation [18], acetylation [34], carboxymethylation [38], TEMPO oxidation [39], and acid hydrolysis [40].

The reasons for performing the pretreatment step of cellulose fibers before CNF isolation from cellulose fibers are [7,36,41]: Efficiency of CNF isolation is increasing, produce highly purified cellulose fibers, removing the lignin and hemicellulose, the hydrophilic surface of cellulose fibers is changed to be hydrophobic, reducing the size of cellulose fibers during isolation process to prevent clogging of CNF instruments, and decrease the energy consumption in the CNF isolation from cellulose fibers.

Many researchers are interested in the production of nanoparticles from cellulose fibers under a top-down condition, which are mechanical treatments, such as crushing, grinding, and high-pressure homogenization, and bottom-up condition, which are biological treatment, such as enzymatic hydrolysis [42,43], and chemical treatment, such as acid hydrolysis [44-46].

A major obstacle in the success of CNF commercialization is the high energy consumption during pretreatment of cellulose fibers. Therefore, researchers have been combining mechanical treatment with a chemical treatment to increase the efficiency of size reduction before homogenization so that it can help to minimize energy consumption [47].

Acid hydrolysis is performed in the presence of acid for depolymerization of cellulose fibers, and the low density of amorphous regions in native cellulose fibers will break up and releasing the individual crystallite cellulose (Figure 2) when subjected to acid treatment [47,48]. Particle size of CNF from OPEFB after acid hydrolysis around 1.0 – 3.5 nm [12], 4 – 15 nm [13], <100 nm [14], 5 – 10 nm [15], and 17.85 nm [20]. The particle size of CNF from OPEFB after enzyme hydrolysis around <70 nm [17] and 32.6 – 36.4 nm [18].

2.2. CNF Isolation

CNF isolation methods from cellulosic fibers using a variety of methods, such as mechanical and chemical methods, including high-pressure homogenization methods [49–52], microfluidization
methods [53,54], micro grinding methods [55,56], high-intensity ultrasonication methods [17,57–59], electrospinning methods [60–62], and steam explosion methods [63–65]. Each technology of the CNF isolation method has advantages and disadvantages (Table 2).

Table 2. The advantages and disadvantages of various CNF isolation methods

Methods	The advantages	The disadvantages	References
High-intensity ultrasonication	• High power output	• Need treatment to dissipate of Generated heat in this method	[5,45,66–67]
	• High efficiency of defibrillation	• High noise level	
	• High effectiveness of defibrillation	• Need pretreatments to release CNF	
High-pressure homogenization	• High clogging	• Useful to laboratory scale only	[66,67]
	• The method is quick, effective, and continues	• High passing time	
	• Can be scaled up from laboratory production to	• High energy consumption	
	industrial production	• Suspension temperature is increasing	
Micro fluidization	• Less clogging	• Inappropriate for industrial scale	[67]
	• Uniformity in size reduction		
	• Need fewer cycle to optimize fibers degradation		
Micro grinding	• Low energy consumption	• Difficulty in disk maintenance and replacement	[66,68]
	• Need less cycle to CNF preparation	• Reduction in crystallinity of CNF	
	• No need to refining pretreatment		
Electrospinning	• Complex hierarchical structures can be obtained by	• The performance of CNF is not well researched	[69,70]
	calcination controlling		
Steam explosion	• No recycling and environmental cost	• Incomplete destruction of lignin and fibers matrix	[71–73]
	• Low operational cost	• Partial hemicellulose solubilization	
	• Low energy input	• Creates inhibitors at high temperature	

Fahma et al. [12] reported that the hydrolysis of 20 g cellulose fibers in 210 mL sulfuric (64 % w/w) under strong agitation at 45°C for 60 minutes is the best condition for CNF isolation from OPEFB. Lisdayana et al. [74] isolate the CNF from OPEFB using an ultrafine grinder under strong agitation (1500 rpm), and then it was ultrasonicated using an ultrasonicator for 30 minutes.

3. Properties of CNF from OPEFB

Property analysis of CNF from OPEFB consists of Morphology and Fractionation analysis, Fourier Transform Infrared Spectroscopy (FTIR) analysis, Degree of Crystallinity analysis. Table 3 shown the properties of CNF from OPEFB from several researches.
Table 3. Properties of CNF from OPEFB from several researches

Properties	Methods	Results*	Identification of Result	References
Morphology and Fractionation of CNF from OPEFB	Atomic Force Microscope (AFM)	The diameter of obtained CNF was 2.05 ± 0.89 nm and can know of the exact length of CNF	[12]	
Transmission Electron Microscope (TEM)	Bruker Tensor 37 spectrometer	The similarity of cellulose fibers and CNF spectrum from OPEFB. This means that their chemical compositions were similar	[12]	
Fourier Transform Infrared Spectroscopy (FTIR)	Nicolet spectrometer	No peaks at 1720 and 1509 cm\(^{-1}\) and low-intensity peak at 1267 cm\(^{-1}\). This means that it was significantly effective in reducing lignin and hemicellulose	[74]	
Degree of Crystallinity	Wide-Angle X-ray Diffraction (WAXD)	The CNF crystallinity index was 55.09% and then decreased to 54.22% after size reduction of cellulose fibers to CNF using acid hydrolysis	[12]	
	X-ray Diffraction (XRD)	The CNF crystallinity index was 56.57% and then increased to 64.23% after size reducing of cellulose fibers to cellulose nanofibers using mechanical treatment	[74]	

* Reprinted with permission from ref. 12 (Copyright 2020 Springer Nature Switzerland) and Reprinted with permission from ref. 74 (Copyright 2020 Taylor & Francis Group)

4. Commercial PP

PP is a thermoplastic polymer and can be produced by polymerizing the propylene molecule. Propylene is a byproduct of the cracking process and from the gasoline refining process. The new process to produce propylene has been obtained by dehydrogenation of propane [75–79]. The crystallinity level of commercial PP is ranging from between 40 and 60% [80]. PP can be categorized
as isotactic PP (PP-it) with melting point ranging from 160 to 166 °C [81], atactic PP (PP-at), and syndiotactic PP (PP-st) with a melting point of 130 °C and crystallinity of 30% [82] (Figure 3).

PP is now the third-largest consumed plastic material after polyethylene (PE) and polyvinyl chloride (PVC). The Primary Advantages of PP are low density, excellent reproduction of mold surface, good sound-deadening properties, versatile (many ways processing), easily colored, easily modified, good water vapor barrier, excellent chemical resistance, and capable of being recycled. Commercial PP has an isotactic index between 85 and 95% with several useful properties such as transparency, high heat distortion temperature, dimension stability, flame resistance, and very suitable for reinforcing, filling, and blending. An isotactic structure leads to a semicrystalline polymer, where the higher isotacticy (isotactic fraction), than greater the semi-crystallinity, softening point, rigidity, e-modulus, and hardness [83]. PP from natural material fibers is one of the most sources to create the polymer composites [84].

Figure 3. Subdividing of polypropylene [85] (Reprinted from ref. 85. Copyright 2020 LibreTexts)

5. Potential Preparation Method to Production of PPNC Reinforced with CNF from OPEFB

5.1. Definition of PPNC

Nanocomposite (NC) typically are particle filled polymers product that was produced from raw materials that have at least one size of the dispersed particles is in the nanoscale (less than 100 nm) [86]. Sandri et al. [87] has defined NC as multi-component materials that comprised multiple different phases in which at least one size of phase is in nanoscale. PP is one of the most widely used packaged materials for industrial packaging because of its good processability, high breakdown strength, and low dissipation [88]. Industrial packaging development from PP based nanomaterials can benefit to properties enhancement of packaging. PP is one of the most important polymers because of its recyclability, design flexibility, low density, hydrophobic, and low production cost, making it a popular preference as a matrix of composites and compatibility when reinforced with polar surfaces, such as cellulose [89]. PPNC can be defined as a product that is formed by infusing nanomaterials into the PP matrix. These PPNC have a great opportunity in industry application because of their remarkable enhancements in material properties compared to the natural polymers.
5.2. Preparation Methods for PPNC Production from CNF

PP is a polymer that potential to be used in industrial applications because of its ease of production, lightweight, and often ductile nature. However, PP has disadvantages, such as low strength and low modulus. Fibers or whiskers can be used as reinforcements materials to the PP matrix to improve PP’s mechanical properties to increase the heat and impact resistance, flame retardancy, mechanical strength, decrease electrical conductivity, and gas permeability to oxygen and water vapor [90]. Numerous studies have researched PPNC production from CNF (Table 4).

Table 4. Research about PPNC production from CNF

No	Preparation Methods	Properties	References
1	Six twin-screw elements	• The elastic modulus of PPNC was increased by the addition of only 1% CNW	[91]
2	Solvent casting	• Good film transparency	[92]
		• The slight agglomeration of CNW in the PPNC film	
		• The PPNC tensile strength was increasing 70–80% if compared with neat PP	
		• The crystallinity was increasing by 50%	
		• Increased content of CNW because of the higher hydrophilicity, higher thermal degradation temperature, and higher thermal conductivity	
3	Twin-screw extrusion	• The PPCV crystallinity was lower than neat PP	[93]
		• Mechanical, thermal properties above the glass transition temperature of PP	
		• Water absorption capability was weakened	
4	Solvent casting	• The microscopy results showed a substantial rise in the magnitudes of key rheological parameters of PPNC	[94]
		• Steady-shear results revealed a strong shear thinning behavior of PPNC	
		• PPNC exhibited yield stress.	
		• Considerable improvement in the modulus of PPNC	
5	Twin-screw-co-rotating extruder	• The CNF addition increased the tensile modulus (36%), tensile strength (11%), flexural modulus (21%), flexural strength (7%), impact strength (23%) if compared to those of neat PP	[95]
6	Solvent casting	• The crystallization rate of PPNC is faster than neat PP	[96]
		• The activation energy, the equilibrium melting point, and the initial lamellae thickness during isothermal crystallization of PPNC was higher than neat PP	
7	Twin-screw extrusion	• The CNC addition was increasing the tensile strength (1–14%), tensile modulus (15–22%), flexural modulus (13–26%) and decreasing the elongation at break (50–96%), impact strength (10–20%) if compared with neat PP	[97]
8	Melt-extrusion	• The tensile property and the thermal stability of the PPNC with MAPP grafted CNC was higher than that of pristine and TDI grafted CNC systems	[98]
		• A melt extrusion process with pre dispersion processing exhibited more positive effects on the properties of the PPNC in comparison to the systems without pre dispersion	
6. Conclusion

The use of thermoplastic such as PP in packaging has raised concern about environmental impact, so research needed to identify alternative sustainable packaging materials to reduce the environmental impact. PP is one of the most important polymers because of its recyclability, design flexibility, low density, hydrophobic, and low production cost, making it a popular preference as a matrix of composites and compatibility when reinforced with polar surfaces, such as cellulose. CNF has considered a sustainable packaging material due to its low weight, high strength, high abundance, rigidity, and biodegradability. Natural material potential as raw material to CNF isolation is OPEFB has generated from oil palm extraction process. CNF can be used as additional raw material to reinforce the PP matrix, which is called a PPNC. PPNC reinforced with CNF from OPEFB is a potential product as sustainable packaging.

References

[1] Ivankovic A, Zeljko K, Talic S, Bevanda A M, Lasic M 2017 Review: Biodegradable packaging in the food industry J. of Food Safety and Food Quality 68(2) 23–52
[2] Khalil H P S A, Davoudpour Y, Saurabha C K, Hossaina Md S, Adnane A S, Dunganid R, Paridahb M T, Sarkerf Md Z I, Fazitaa M R N, Syakira M I, Haafiz M K M 2016 A review on nanocellulosic fibres as new material for sustainable packaging: Process and applications Renewable and Sustain Energy Rev 64 823–836
[3] Davis G and Song J 2006 Biodegradable packaging based on raw materials from crops and their impact on waste management Ind crops and Prod 23(2) 147–61
[4] Rhim J W and Ng P K 2007 Natural biopolymer-based nanocomposite films for packaging applications Crit Rev Food Sci Nutr 47(4) 411–33
[5] Khalil H P S A, Davoudpour Y, Islam Md N, Mustapha A, Sudesh K, Dungan R, Jawaid M 2014 Production and modification of nanofibrillated cellulose using various mechanical processes: a review Carbohydr Polym 99 649–65
[6] Khalil H P S A, Hossain Md S, Rosamah E, Norulaini N A N, Leh C P, Asniza M, Davoudpour Y, Zaidul I S M 2014 High-pressure enzymatic hydrolysis to reveal physico-chemical and thermal properties of bamboo fiber using a supercritical water fermenter BioResources 9(4) 7710–7720
[7] Zhao R, Torley P, Halley P J 2008 Emerging biodegradable materials: starch-and protein-based bio-nanocomposites J Mater Sci 43(9) 3058–3071
[8] Khalil H P S A, Hossain Md S, Rosamah E, Azli N A, Saddon N, Davoudpoura Y, Islam Md N, Dungan R 2015 The role of soil properties and it’s interaction towards quality plant fiber: a review Renew Sustain Energy Rev 43 1006–1015
[9] Kalia S, Dufresne A, Cherian B M, Kaith B S, Luc A v’erous, Njuguna J, Nasiopoulos E 2011 Cellulose-based bio-and nanocomposites: a review Int J Polym Sci 2011(8) 1–35
[10] Lee S and Xu X 2005 Design for the environment: life cycle assessment and sustainable packaging issues Int J Environ Technol Manag 5(1) 14–41
[11] Ludeuna L, Vazquez A, Alvarez V 2012 Effect of lignocellulosic filler type and content on the behavior of polycaprolactone based eco-composites for packaging applications Carbohydr Polym 87(1) 411–421
[12] Fahma F, Hori N, Iwamoto S, Iwata T, Takemura A 2010 Isolation, preparation, and characterization of nanofibers from oil palm empty-fruit-bunch (OPEFB) Cellulose 17 977–985
[13] Lani N S, Johari A, Ngadi N, Jusoh M 2014 Isolation, Characterization, and application of nanocellulose from oil palm empty fruit bunch fiber as nanocomposites J Nanomaterials 3 1–9
[14] Salehudin M H, Salleh E, Mamat S N H, Ida Muhamad I I 2014 Starch based active packaging film reinforced with empty fruit bunch (EFB) cellulose nanofiber Procedia Chemistry 9 23–33
[15] Fatah I Y A, Khalil P S A, Hossain Md S, Aziz A A, Davoudpour Y, Dungani R, Bhat A 2014 Exploration of a chemo-mechanical technique for the isolation of nanofibrillated cellulose fiber from oil palm empty fruit bunch as a reinforcing agent in composites materials Polymers 6(10) 2611–2624

[16] Shanmugarajah B, Kiew P L, Chew I M L, Choong T S Y, Tan K W 2015 Isolation of nanocrystalline cellulose (NCC) from palm oil empty fruit bunch (EFB): preliminary result on ftr and dls analysis Chemical Engineering Transactions 45 1705–1710

[17] Aditiawati P, Amelia C, Dungani R 2018 Enzymatic production of cellulose nanofibers from oil palm empty fruit bunch (EFB) with crude cellulase of Trichoderma sp. Materials Research Express 5(3) 034005

[18] Aditiawati P, Dungani R, Fikri R M, Hartati S 2019 Optimization of cellulose nanofiber production from oil palm empty fruit bunch using Trichoderma sp. with the solid state fermentation method BioResources 14(2) 3688–3700

[19] Setyaningsih D, Uju, Muna N, Isroi, Suryawan N B, Nurfauzi A A 2018 Cellulose nanofiber isolation from palm oil empty fruit bunches (EFB) through strong acid hydrolysis Earth and Environ Sci 141 012027

[20] Supian M A F, Jamari S, Najwa Mohd Amin K, Mohamad S 2019 Production of cellulose nanofiber (CNF) from empty fruit bunch (EFB) via mechanical method J Environ Chemical Eng 8(1) 103024

[21] Dewanti D P 2018 Cellulose potential of empty fruit bunches waste as the raw material of bioplastics environmentally friendly Jurnal Teknologi Lingkungan 19(1) 81–88

[22] Sluiter B, Hames R, Ruiz C, Scarlata J, Sluiter D, Templeton M, Crocker D 2011 Determination of structural carbohydrates and lignin in biomass Technical report NREL/TP-510-42618

[23] Aini A P, Lee H W, Sitompul J P, Rasrendra C B 2018 Production of lactic acid from empty fruit bunch of palm oil using catalyst of barium hydroxide. MATEC Web of Conf 156 06004

[24] Sudiyani Y, Styarini D, Triwahyuni E, Sudiyarmano, Sembiring K C, Aristiawan Y, Abimanyu H, Han M H 2013 Utilization of biomass waste empty fruit bunch fiber of palm oil for bioethanol production using pilot-scale unit. Energy Procedia 32 31–38

[25] Pangsaeng N, Rattanapan U, Thanapimmetha A, Srinoppakhun P, Liu C G, Zhao X Q, Bai F W, Sakdaronnarong C 2019 Chemical-free fractionation of palm empty fruit bunch and palm fiber by hot-compressed water technique for ethanol production Energy Reports 5 337–348

[26] Isroi, Ishola M M, Millati R, Syamsiah S, Cahyanto M N, Niklasson C, Taherzadeh M J 2012 Structural changes of oil palm empty fruit bunch (OPEFB) after fungal and phosphoric acid pretreatment Molecules 17 14995–15012

[27] Isroi, Cifriadi A, Panji T 2016 Bioplastic production from oil palm empty fruit bunch Inter Conf on Biomass 2016: 10-11th October 2016, Bogor, Indonesia

[28] Ramsden J 2005 Chapter 1-What is nanotechnology? Nanotechnology Perceptions 1(1) 3–17

[29] Kamel S 2007 Nanotechnology and its applications in lignocellulosic composites, amini review Express Polym Lett 1(9) 546–75

[30] Igarashi K 2004 Nanotechnology for new industry creation and life-style innovation. National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8563, Japan

[31] Nikalje A P G 2015 Nanotechnology and its applications in medicine Med chem 5(2) 081–089

[32] Chauhan V S and Chakrabarti S K 2012 Use of nanotechnology for high performance cellululosic and papermaking products Cellulose Chem Technol 46(5) 389–400

[33] Thielemans W, Warbey C R, Walsh D A 2009 Permselective nanostructured mem-branes based on cellulose nanowhiskers Green Chem 11(4) 531–537

[34] Ashori A, Babaei, Jonoobi M, Hamzeh Y 2014 Solvent free acetylation of cellulose nanofibers for improving compatibility and dispersion Carbohydr Polym 102 369–75

[35] Fatah I Y A, Khalil H P S A, Hossain M S, Aziz A A, Davoudpour Y, Dungani R, Bhat A 2014 Exploration of a chemo-mechanical technique for the isolation of nanofibrillated cellulose
fiber from oil palm empty fruit bunch as a reinforcing agent in composites materials *Polymers* 6(10) 2611–2624

[36] Zhang X, Tu M, Paice M G 2011 Routes to potential bioproducts from lignocellulosic biomass lignin and hemicelluloses *BioEnergy Res* 4(4) 246–57

[37] Jonoobi M, Niska K O, Harun H, Misra M 2009 Chemical composition, crystallinity, and thermal degradation of bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofibers *BioResources* 4(2) 626–39

[38] Siro I, Plackett D, Hedenqvist M, Ankerfors M, Lindstrom T 2011 Highly transparent films from carboxymethylated microfibrillated cellulose: the effect of multiple homogenization steps on key properties *J Appl Polym Sci* 119(5) 2652–60

[39] Su Y, Burger C, Hsiao B S, Chu B 2014 Characterization of TEMPO oxidized cellulose nanofibers in aqueous suspension by small angle X-ray scattering *J Appl Crystallogr* 47(2) 788–798

[40] Davoudpour Y, Hossain S, Khalil H P S A, Haafiz M K M, Ishak Z A M, Hassan A, Sarker Z I 2015 Optimization of high pressure homogenization parameters for the isolation of cellulosic nanofibers using response surface methodology *Ind Crops Prod* 74 381–387

[41] Khalil H P S A 2012 Bamboofibre reinforced biocomposites: a review *MaterDes* 42 353–368

[42] Zhang Q, Zhang P, Pei Z J, Wang D 2013 Relationships between cellulosic biomass particle size and enzymatic hydrolysis sugar yield: analysis of inconsistent reports in the literature *Renew Energy* 60 127–136

[43] Brinchi L, Cotana F, Fortunati E, Kenny J M 2013 Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications *Carbohydrate Polym* 94(1) 154–169

[44] Xiong R, Zhang X, Tian D, Zhou Z, Lu C 2012 Comparing microcrystalline with spherical nanocrystalline cellulose from waste cotton fabrics *Cellulose* 19(4) 1189–1198

[45] Lavoine N, Desloges I, Dufresne A, Bras J 2012 Microfibrillated cellulose its barrier properties and applications in cellulose materials: a review *Carbohydrate Polym* 90(2) 735–764

[46] Jiang F and Hsieh Y 2013 Chemically and mechanically isolated nanocellulose and their self-assembled structures *Carbohydrate Polym* 95(1) 32–40

[47] Lee V H, Hamid S B A, Zain S K 2014 Review article conversion of lignocellulosic biomass to nanocellulose: Structure and Chemical Process *The Sci World J* 2014 1–20

[48] Lee K Y, Aitomaki Y, Berglund L A, Oksman K, Bismarck A 2014 On the use of nanocellulose as reinforcement in polymer matrix composites *Compos Sci Technol* 105 15–27

[49] Wang Y, Wei X, Li J, Wang F, Wang Q, Chen J, Kong L 2015 Study on nanocellulose by high pressure homogenization in homogeneous isolation *Fibers and Polymers* 16(3) 572–578

[50] Davoudpour Y, Hossain Md S, Khalil H P S A, Haafiz M K M, Ishak Z A M, Hassan A, Sarker Md Z I 2015 Optimization of high pressure homogenization parameters for the isolation of cellulosic nanofibers using response surface methodology *Industrial Crops and Products* 74 381–387

[51] Li J, Wei X, Wang Q, Chen J, Chang G, Kong L, Su J, Liu Y 2012 Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization *Carbohydr Polym* 90(4) 1609–1613

[52] Savadkar N R, Karande V S, Vigneshwaran N, Kadam P G, Mhaske S T 2015 Preparation of cotton linter nanowhiskers by high-pres-sure homogenization process and its application in thermoplastic starch *Appl Nanosci* 5(3) 281–290

[53] Liu Q, Lu Y, Aguedo M, Jacquet N, Ouyang C, He W, Yan C, Bai W, Guo R, Goffin D, Song J, Richel A 2017 Isolation of high-purity cellulose nanofibers from wheat straw through the combined environmentally friendly methods of steam explosion, microwave-assisted hydrolysis, and microfluidization *ACS Sustain Chem Eng* 5 6183–6191

[54] Wang B, Mozuch M D, Sabo R C, Kersten P, Zhu J Y, Jin Y 2015 Production of cellulose nanofibrils from bleached eucalyptus fibers by hyperthermostable endoglucanase treatment and subsequent microfluidization *Cellulose* 22(1) 351–61
[55] Nair S S, Zhu J Y, Deng Y, Ragauskas A J 2014 Characterization of cellulose nanofibrillation by microgrinding J Nanopart Res 16: 2349
[56] Karimi S, Tahir P Md, Karimi A, Dufresne A, Abdulkhani A 2014 Kenaf bast cellulosic fibers hierarchy: a comprehensive approach from micro to nano Carbohydr Polym 101 878–885
[57] Syafri E, Kasim A, Abral H, Asben A 2018. Cellulose nanofibers isolation and characterization from ramie using a chemical-ultrasonic treatment. J Natural Fibers 16 1145–1155
[58] Xie J, Hse C Y, De Hoop C F, Hu T, Qi J, Shupe T F 2016 Isolation and characterization of cellulose nanofibers from bamboo using microwave liquefaction combined with chemical treatment and ultrasonication Carbohydr Polym 151 725–734
[59] Li Y, Zhu H, Xu M, Zhuang Z, Xu M, Dai H 2014 High yield preparation method of thermally stable cellulose nanofibers. BioResources 9(2) 1986–1997
[60] Martinez-Sanz M, Lopez-Rubio A, Lagaron J M 2013 Nanocomposites of ethylene vinyl alcohol copolymer with thermally resistant cellulose nanowiskers by melt compounding (I): morphology and thermal properties J Appl Polym Sci 128(5) 2666–2678
[61] Cao X, Wang X, Ding B, Yu J, Sun G 2013 Novel spider-web-like nanoporous networks based on jute cellulose nanowiskers Carbohydr Polym 92(2) 2041–2047
[62] He X, Xiao Q, Lu C, Wang Y, Zhang X, Zhao J, Zhang W, Zhang X, Deng Y 2014 Uniaxially aligned electrospun all-cellulose nanocomposite nanofibers reinforced with cellulose nanocrystals: scaffold for tissue engineering Biomacromolecules 15(2) 618–627
[63] Deepa B, Abraham E, Cherian B M, Bismarck A, Blaker J J, Pothan L A, Leao A L, Souza S F, Kottaisamy M 2011 Structure, morphology and thermal characteristics of banana nanofibers obtained by steam explosion Bioresour Technol 102(2) 1988–1997
[64] Abraham E, Elbi P A, Deepa B, Parameswaranpillai J, Pothan L A, Narina S S, Thomas S 2012 X-ray diffraction and biodegradation analysis of green composites of natural rubber/nanocellulose Polym Degrad Stab 97(11) 2378–2387
[65] Sutka A, Kukle S, Gravitis J, Grave L 2013 Characterization of cellulose microfibrils obtained from Hemp Conf Papers in Materials Sci 2013 171867
[66] Belgacem M N and Missoum K 2014 Nanofibrillated cellulose: surface modification and potential applications Colloid Polym Sci 292(1) 5–31
[67] Spence K L, Venditti R A, Rojas O J, Habibi Y, Pawlak J J 2011 A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods Cellulose 18(4) 1097–1111
[68] Isik M, Sardon H, Mecerreyes D 2014 Ionic liquids and cellulose: dissolution, chemical modification and preparation of new cellulosic materials Int J Mol Sci 15(7) 11922–11940
[69] Kumar P S, Sundaramurthy J, Sundarrajan S, Babu V J, Singh G, Allakhverdiev S I, Ramakrishna S 2014 Hierarchical electrospun nanofibers for energy harvesting, production and environmental remediation Energy & Environ Sci 7(10) 3192–3222
[70] Shi X, Zhou W, Ma D, Ma Q, Bridges D, Ma Y, Hu A 2015 Review article: electrospinning of nanofibers and their applications for energy devices J Materials Sci 45(23) 6283–6312
[71] Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ. 2010. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–61.
[72] Agbor V B, Cicek N, Sparling R, Berlin A, Levin D B 2011 Biomass pretreatment: fundamentals toward application Biotechnol Adv 29 675–85
[73] Gnansounou E and Dauriat A 2010 Techno-economic analysis of lignocellulosic ethanol: a review Bioresour Technol 101 4980–4991
[74] Lisdayana N, Fahma F, Sunarti T C, Iriani E S 2018 Thermoplastic Starch–PVA Nanocomposite Films Reinforced with Nanocellulose from oil palm empty fruit bunches (OPEFBs): effect of starch type J Natural Fibers 17(7) 1069–1080
[75] Shubhra Q T H, Alam A K M M, Beg M D H, Khan M A, Gafur M A 2011 Mechanical and degradation characteristics of natural silk and synthetic phosphate glass fiber reinforced polypropylene composites J Compos Mater 45 1305–1313

[76] Bledzki A K, Fink H P, Specht K 2004 Unidirectional hemp and flax EP and PP composites: Influence of defined fiber treatments J Appl Polym Sci 93(5) 2150–2156

[77] Muhammad P and Mohini M S 2003 Sheet-molded polyolefin natural fiber composites for automotive applications Macromol Mater Eng 288(7) 553–557

[78] Wambua P, Ivens J, Verpoest I 2003 Natural fibres: Can they replace glass in fibre reinforced plastics? Compos Sci Technol 63(9) 1259–1264

[79] Sain M, Law S, Suhara F, Boullioux A 2005 Interface modification and mechanical properties of natural fiber-polyolefin composite products J Reinforce Plast Compos 24(2) 121–130

[80] Joseph P V, Marcelo R S, Mattoso L H C, Joseph K, Thomas S 2002 Environmental effects on the degradation behaviour of sisal reinforced polypropylene composites Compos Sci Technol 62 1357–1372

[81] Somani R H, Yang L, Sics I, Hsiao B S, Pogodina N V, Winter H H, Agarwal P, Fruitwala H, Tsou A 2002 Orientation induced crystallization in isotactic polypropylene melt by shear deformation Macromol Symp 185 105–118

[82] Brydson J A 1999 Plastics materials vol 7 ed Oxford: Butterworth-Heinemann pp 247–268

[83] Tripathi D 2002 Practical guide to polypropylene Shawbury U K Rapra Technology Ltd

[84] Shubhra Q T H, Alam A K M M, Quayyum M A 2013 Mechanical properties of polypropylene composites A review J Thermoplastic Composite Materials 26(3) 362–391

[85] Robert J D and Caserio M C 2020 Basic principles of organic chemistry LibreTexts Chemistry pp 29.5.2

[86] Tripathy N, Ahmad R, Song J E, Khang G 2019 Biomimetic Approaches for Regenerative Engineering, Encyclopedia of Biomedical Engineering Narayan R Ed Elsevier Amsterdam The Netherlands pp 483–495

[87] Sandri G, Bonferroni M C, Rossi S, Ferrari F, Aguzzi C Viseras C, Caramella C 2016 Clay minerals for tissue regeneration, repair, and engineering. Clay minerals for tissue regeneration, repair, and engineering. Ágren M S editor Elsevier Amsterdam The Netherlands pp 385–402

[88] Cheng L, Chi X, Yan C, Xie D, Liu X, Wen Y, Liu W, Li S 2018 Polypropylene nanocomposite for power equipment: a review IET Nanodielectr 1(2) 92–103

[89] Iwamoto S, Lee S H, Endo T 2014 Mechanical properties of polypropylene composites reinforced by surface-coated microfibrillated cellulose Composites: Part A 59 26–29

[90] Fischer H 2003 Polymer nanocomposites: from fundamental research to specific applications Materials Sci and Eng: C 23(6-8) 763–772

[91] Lee S H, Teramoto Y, Endo T 2011 Cellulose nanofiber-reinforced polycaprolactone/polypropylene hybrid nanocomposite Composites Part A: Applied Sci and Manufac 42(2) 151–156

[92] Bahar E, Ucar N, Onen A, Wang Y, Oksüz M, Ayaz O, Ucar M, Demir A 2012 Thermal and mechanical properties of polypropylene nanocomposite materials reinforced with cellulose nano whiskers J Applied Polym Sci 125(4) 2882–2889

[93] Hassan M L, Mathew A P, Hassan E A, Fadel S M, Oksman K 2014 Improving cellulose/polypropylene nanocomposites properties with chemical modified bagasse nanofibers and malleated polypropylene J Reinforced Plastics and Composites 33(1) 26–36

[94] Khoshkava V and Kamal M R 2014 Effect of cellulose nanocrystals (CNC) particle morphology on dispersion and rheological and mechanical properties of polypropylene/CNC nanocomposites ACS Appl Mater Interfaces 6 8146–8157

[95] Peng Y, Gallegos S A, Gardner D J, Han Y, Cai Z 2014 Maleic anhydride polypropylene modified cellulose nanofibril polypropylene nanocomposites with enhanced impact strength Polim Compos 37(3) 782–793
[96] Khoshkava V, Ghassemi H, Kamal M R 2015 Effect of cellulose nanocrystals (CNC) on isothermal crystallization kinetics of polypropylene *Thermochim Acta* **608** 30–39

[97] Yousefian H and Rodrigue D 2015 Nanocrystalline cellulose, chemical blowing agent, and mold temperature effect on morphological, physical/mechanical properties of polypropylene *J Appl Polym Sci* **132** 42845

[98] Gwon J G, Cho H J, Lee D, Choi D H, Lee S, Wu Q, Lee S Y 2018 Physicochemical and mechanical properties of polypropylene-cellulose nanocrystal nanocomposites: effects of manufacturing process and chemical grafting *BioResources* **13**(1) 1619–1636