Angiotensin-II (Ang-II) from extracardiac sources and intracardiac synthesis regulates cardiac homeostasis, with mitogenic and growth-promoting effects largely due to altered gene expression. Here, we assessed the possibility that angiotensin-1 (AT1R) or angiotensin-2 (AT2R) receptors on the nuclear envelope mediate effects on cardiomyocyte gene expression. Immunoblots of nucleus-enriched fractions from isolated cardiomyocytes indicated the presence of AT1R and AT2R proteins that copurified with the nuclear membrane marker nucleoprotein-62 and histone-3, but not markers of plasma (calpactin-I), Golgi (GRP-78), or endoplasmic reticulum (GM130) membranes. Confocal microscopy revealed AT1R and AT2R proteins on nuclear membranes. Microinjected Ang-II preferentially bound to nuclear sites of isolated cardiomyocytes. AT1R and AT2R ligands enhanced de novo mRNA synthesis in isolated cardiomyocyte nuclei incubated with [α32P]UTP (e.g. 36.0 ± 6.0 cpm/ng of DNA control versus 246.4 ± 15.4 cpm/ng of DNA for Ang-II, 390.1 ± 15.5 cpm/ng of DNA L-162313 (AT1), 180.9 ± 7.2 cpm/ng of DNA for Ang-II (AT2), p < 0.001). Ang-II application to cardiomyocyte nuclei enhanced NFκB mRNA expression, a response that was suppressed by co-administration of AT1R (valsartan) and/or AT2R (PD123177) blockers. Dose-response experiments with Ang-II applied to purified cardiomyocyte nuclei versus intact cardiomyocytes showed greater increases in NFκB mRNA levels at saturating concentrations with ~2-fold greater affinity upon nuclear application, suggesting preferential nuclear signaling. AT1R, but not AT2R, stimulation increased [Ca2+]p in isolated cardiomyocyte nuclei. Inositol 1,4,5-trisphosphate receptor blockade by 2-aminoethoxydiphenyl borate prevented AT1R-mediated Ca2+ release and attenuated AT1R-mediated transcription initiation responses. We conclude that cardiomyocyte nuclear membranes possess angiotensin receptors that couple to nuclear signaling pathways and regulate transcription. Signaling within the nuclear envelope (e.g. from intracellularly synthesized Ang-II) may play a role in Ang-II-mediated changes in cardiac gene expression, with potentially important mechanistic and therapeutic implications.

Materials and Methods

Reagents and Antibodies—The following antibodies were used for immunoblotting: AT1R and AT2R from Santa Cruz (Santa Cruz, CA) and Alomone Labs (Jerusalem, Israel); calpac...
tyramine, GM130, and GRP-78 from BD Biosciences (Franklin Lakes, NJ); histone from Cell Signaling (Danvers, MA); and nucleoporin 62 from ABCAM (Cambridge, MA) (see supplemental Table S1 for more details). All secondary antibodies were from Jackson ImmunoResearch Laboratories (West Grove, PA). Candesartan was kindly provided by AstraZeneca (Mississauga, Ontario) and valsartan by Novartis (Downingtown, PA). Candesartan was kindly provided by AstraZeneca (Mississauga, Ontario) and valsartan by Novartis (Downingtown, PA). Candesartan was kindly provided by AstraZeneca (Mississauga, Ontario) and valsartan by Novartis (Downingtown, PA). Candesartan was kindly provided by AstraZeneca (Mississauga, Ontario) and valsartan by Novartis (Downingtown, PA). Candesartan was kindly provided by AstraZeneca (Mississauga, Ontario) and valsartan by Novartis (Downingtown, PA). Candesartan was kindly provided by AstraZeneca (Mississauga, Ontario) and valsartan by Novartis (Downingtown, PA). Candesartan was kindly provided by AstraZeneca (Mississauga, Ontario) and valsartan by Novartis (Downingtown, PA). Candesartan was kindly provided by AstraZeneca (Mississauga, Ontario) and valsartan by Novartis (Downingtown, PA).
Nuclear Envelope Angiotensin Receptors

ous mixing. The following day, membranes were washed (4 × 12 min) with a solution containing 0.5% (w/v) skimmed milk powder and 0.1% (v/v) Tween 20 in PBS, then incubated with the appropriate horseradish peroxidase-conjugated secondary antibody (60 min at room temperature). Membranes were thoroughly washed with PBS containing Tween 20 (4 × 12 min) and immunoreactive bands were revealed using Enhanced Chemiluminescence Reagent in conjunction with Bio-Max MR film (PerkinElmer Life Sciences). Preliminary experiments were performed to establish exposure times that avoided film saturation and permitted quantification. To ensure equal protein loading, blots were stripped and stained using Ponceau S (0.5% Ponceau S, 1% glacial acetic acid, in deionized water). Immunoblots were scanned (1200 dpi) and band intensities quantified with Quantity One 1D analysis software (Bio-Rad Laboratories).

Confocal Microscopy and Deconvolution—Freshly isolated cardiomyocytes were plated on 18-mm laminin (10 μg/ml)-coated coverslips for 60 min (37 °C, 95% O2, 5% CO2), fixed with 2% paraformaldehyde for 20 min, and permeabilized with blocking buffer comprising 2% normal donkey serum and 0.2% (v/v) Triton X-100 in PBS for 60 min. After extensive washing to remove the excess serum, cells were incubated overnight at 4 °C with the primary antibody diluted in PBS containing 1% normal donkey serum and 0.05% Triton X-100. Coverslips were then rinsed several times with PBS and incubated for 60 min at room temperature with secondary antibody (Alexa 488-conjugated anti-rabbit antibody or Alexa 555-conjugated anti-mouse antibody diluted in 1% normal donkey serum and 0.05% Triton X-100). After a final wash with PBS, coverslips were mounted and fixed on glass slides with a drop of a mixture containing 0.1% diazabicyclo(2.2.2)octane (DABCO)/glycerol. Fluorescence images were acquired using a Zeiss LSM 510 confocal fluorescence microscope (Carl Zeiss, Oberkochen, Germany). Composite images were created using Zeiss LSM510 software. For every secondary antibody, control experiments were performed omitting the primary antibody to confirm the specificity of the primary antibody. Nuclei were visualized using Hoechst 33342 or DRAQ5 nucleic acid stain. Image stacks were digitally deconvolved (0.01% threshold, lowest background and real signal/noise values) for 25 iterations to reduce out-of-focus light using the Maximum Likelihood Estimation algorithm and digitally deconvolved (0.01% threshold, lowest background and real signal/noise values) for 25 iterations to reduce out-of-focus light using the Maximum Likelihood Estimation algorithm and the appropriate experimentally determined point spread function with Huygens Professional software (version 3.1.0p1, Scientific Volume Imaging, Hilversum, The Netherlands). Files were stored in ICS format and exported to PowerPoint (Microsoft, Redmond, WA).

\([a-32P]UTP \text{RNA Transcription Initiation Assay}\) — Transcription initiation assays were performed using freshly isolated cardiomyocyte nuclei as previously described (14). Briefly, a mixture of nuclei (treated with ligand where indicated), 1× transcription buffer (50 mM Tris, 0.15 mM KCl, 1 mM MnCl2, 6 mM MgCl2, 1 mM ATP, 2 mM dithiothreitol, 1 unit/μl of RNase inhibitor, pH adjusted to 7.4 with NaOH) and \([a-32P]UTP\) were incubated for 30 min at 30 °C. CTP and GTP were omitted to prevent chain elongation. Following treatment with DNase (10 units/μl), nuclei were solubilized (10 mM Tris–HCl, pH 8.0, 10 mM EDTA, and 1% SDS), aliquots transferred onto Whatman GF/C glass fiber filters (Sigma–Aldrich, Oakville, Ontario, Canada), washed with 5% trichloroacetic acid, and air dried. \(^{32}\text{P}\) incorporation was measured by Cerenkov counting in a \(\beta\)-counter. The DNA concentration was determined spectrophotometrically and \(^{33}\text{P}\) incorporation is expressed as dpm/ng of DNA.

RNA Extraction, Reverse Transcription, and qPCR—Total RNA was extracted from cardiomyocyte nuclei using the TRIzol method (Invitrogen) after homogenization with a motor-driven mixer. The concentration, quality, and purity of total RNA were determined using a BioAnalyzer (Genome Innovation Center, Montreal, Quebec). Total RNA was treated with DNase I (10 units for 15 min at 37 °C) to remove potential contamination by genomic DNA. cDNA templates for PCR amplification were synthesized from 1 μg of total RNA with a reverse transcriptase kit (SuperArray).

Quantitative PCR (qPCR) was performed using SuperArray SYBR Green PCR kits and a Stratagene MX3000P qPCR system. Quantitative measurements were performed in triplicate and normalized to the average of three housekeeping internal controls (glyceraldehyde-3-phosphate dehydrogenase, \(\beta\)-actin, and heat shock protein 90-kDa globin) and standard curves were made from 10-fold serial dilutions of cDNA pools containing high concentrations of the gene of interest. Data were collected and analyzed using MX3000P software. Relative gene expression was calculated using the comparative threshold cycle (Ct) method (15). The sequences of primers used for qPCR are shown in supplemental Table S2.

\(\text{Ca}^{2+} \text{ Imaging — } \text{Ca}^{2+} \text{ concentration ([Ca}^{2+}\text{])} \) was measured in isolated nuclei with the ratiometric calcium indicator Fura-2/AM (Sigma). Fura-2/AM was prepared daily as a 5 mM stock solution in dimethyl sulfoxide. Right after the isolation, freshly isolated cardiomyocyte nuclei were resuspended in 0.5 ml of loading buffer containing 25 mM HEPES, 100 mM KCl, 2 mM K2HPO4, and 4 mM MgCl2. Fura-2/AM was added to the suspension of isolated nuclei for a final concentration of 7.5 μM and incubated on ice for 45 min. After an initial loading period, nuclei were washed of extracellular Fura-2/AM by centrifugation (2700 × g for 5 min, 4 °C) to remove non-incorporated Fura-2/AM and were then added with 1000 μl of loading buffer containing 800 nM CaCl2 onto the fluorodish. Ang-II, the AT1 agonist L162313, the AT2 agonist CGP42112A, inositol 1,4,5-trisphosphate (IP3), or vehicle (dimethyl sulfoxide) were added, directly in the bath, close to a single nucleus, pre-treated or free of selective blockers (candesartan, PD123177, or 2-aminoethoxydiphenyl borate (2-APB)) to produce a final concentration of 10 μM. A microspectrofluorimeter (IonOptix, Milton, MA) was used for fluorescence measurements. Excitation wavelengths were 340 and 380 nm. Fluorescence emission was detected at 509 nm and expressed as the ratio of the two excitation wavelengths (\(F_{340}/F_{380}\)). The amplitudes of [Ca\(^{2+}\)] were calculated by subtraction of the baseline \(F_{340}/F_{380}\) ratio from peak values. \(\text{Ca}^{2+} \text{ concentrations were determined by calibrating the fluorescent signal by sequential addition of } 9 \text{ μM ionomycin plus } 1 \text{ mM CaCl}_2 \text{ to obtain the maximal fluorescence ratio } (R_{\text{max}}) \text{ and } 4 \text{ mM EGTA to obtain the minimum fluorescence ratio } (R_{\text{min}}). \text{ Autofluorescence was deter-}
mined by subtracting fluorescence from non-loaded nuclei and from the fluorescence produced by Fura-2-loaded nuclei.

Assessment of Intracellular Components of Angiotensin Synthesis System—Cardiomyocytes were lysed by sonication in ice-cold 1 m acetic acid containing a protease/inhibitor mixture (Sigma S8820). The lysate was sedimented at 15,000 × g for 15 min, and the supernatant was dried in a vacufuge, followed by reconstitution in 1% acetic acid. The samples were applied to a conditioned DSC-18 column (Supelco), washed, and eluted with methanol. The eluted samples were dried and reconstituted in PBS for enzyme-linked immunosorbent assay (ELISA, Peninsula Labs). Ang-II was measured by quantitative competitive ELISA, using a specific anti-Ang-II antibody (Peninsula Labs), which was previously validated by high-performance liquid chromatography chip/mass spectrometric analysis (7). ELISA was performed on anti-Ang-II antibody-coated 96-well dishes. Competitive binding of synthetic biotinylated Ang-II, in the presence of the extracted peptide, was detected with streptavidin-horseradish peroxidase conjugate. A standard curve, generated from binding of a constant amount of biotinylated Ang-II with increasing concentrations of non-biotinylated synthetic Ang-II, was used to calculate the concentration of the peptide in the sample. The concentration of Ang-II in the cell lysates is expressed as femtomoles per milligram of protein. Components of the Ang-II biosynthetic pathway (angiotensinogen, renin, angiotensin converting enzyme, and cathepsin) were quantified in cardiomyocyte lysates by qRT-PCR, as described above.

Statistical Analysis—Data are expressed as mean ± S.E. Analysis of variance with Tukey’s post-hoc test was used for statistical comparison. A p value < 0.05 was considered statistically significant.

RESULTS

Endogenous AT1 and AT2 Receptors Localize to Nuclei Isolated from Cardiomyocytes and Cardiac Tissue—To examine the intracellular localization of AT1 and AT2 receptors, we isolated membrane, cytosolic, and nuclear fractions from isolated cardiac myocytes and from whole adult rat hearts. In initial studies, we characterized nuclear AT1 and AT2 receptors from intact cardiac tissue preparations. However, to be sure that biochemical results applied specifically to cardiomyocytes, we developed a nucleus-enriched preparation from isolated cardiomyocytes. All results shown in this paper were obtained with the Santa Cruz antibody. Fig. 1A, B, and C, show the same cardiomyocytes stained for Nup62. Fig. 2, Ab and Bb, show the same cardiomyocytes stained for Nup62. Fig. 2, Ac and Bc, indicate extensive colocalization, more clearly evident in the higher magnification images in the insets. Phase-contrast reference images of the same cells are shown in Fig. 2, Ad and Bd. Similar results to those shown in Fig. 2 were obtained in all 40 cardiac cells from 10 rats examined for AT1R and all 30 cells from 10 rats studied for AT2R. No signal was observed in cells where the primary antibodies were omitted.

Differential Subcellular Trafficking of Ang-II: Extracellular Versus Intracellular Injection—Fig. 3 shows in vitro fluorescence imaging of intracellular Ang-II distribution after extracellular administration of Ang-II labeled with FITC to freshly isolated cardiomyocytes. High resolution images were then acquired by confocal microscopy at 5-min intervals. A 60-min time course confirmed the trafficking of Ang-II inside the cell, without any clear specificity for the nucleus. FITC-labeled Ang-II trafficking was significantly changed by the AT1R antagonist valsartan (10 μM), indicating that binding to cell membrane AT1R receptors is important for Ang-II internalization (Fig. 3B). For corresponding dark-field images, see supplemental Fig. S3.) The absence of nuclear Ang-II in Fig. 3A

Nuclear Envelope Angiotensin Receptors
argues against endocytosis as the mechanism for ATR localization and suggest that ATRs in the nuclear membrane are most likely a result of intracellular synthesis and trafficking.

We then microinjected fluorescently labeled Ang-II into the cytoplasm of single cardiomyocytes to analyze the intracellular distribution of Ang-II (Eppendorf Femtojet; 1 nM Ang-II in 50 to 75 fl per cell), as shown in Fig. 4A. Although FITC-Ang-II rapidly diffused throughout the cytoplasm, the fluorescence was enriched or sequestered in the perinuclear region of injected cells 10–20 s after microinjection. The fluorescence decreased rapidly after 20 s but a clear signal at the nucleus was present (Fig. 4A). Although FITC-Ang-II showed little or no nuclear Ang-II microinjected cells. Cells that were microinjected with valsartan (100 nM) prior to FITC-Ang-II showed little or no nuclear Ang-II fluorescence (Fig. 4B). The data in Fig. 4 suggest that nuclei have a higher density of Ang-II binding sites than do other subcellular structures.

Nuclear Ang-II Receptors Regulate Transcription Initiation—β-Adrenergic receptors were recently shown to stimulate \(^{[32P]}\)UTP incorporation in isolated nuclei (16). To determine whether nuclear ATRs are able to control transcription, freshly isolated cardiomyocyte (Fig. 5) or cardiac tissue (supplemental Fig. S4) nuclei were incubated with \(\alpha\)-\(^{32P}\)UTP in addition to ATR ligands and antagonists. Ang-II, L162,313 (AT1R-selective agonist), PD123177 (AT2R-selective agonist), candesartan (AT1R-selective antagonist), and PD123177 (AT2R-selective antagonist) were added directly to the incubation medium (Fig. 5A). Both non-selective and subtype-specific agonists increased the synthesis of RNA, although stimulation with an AT1R agonist produced a greater response than with the AT2R agonist (390 ± 16 cpm/ng of DNA versus 181 ± 7 cpm/ng of DNA, \(n = 4\)/group, \(p < 0.001\)). Both AT1R and AT2R antagonists significantly reduced the ability of Ang-II to enhance transcription.

To determine whether the activation of heterotrimeric G proteins are involved in coupling ATRs within the nuclear membrane to transcription, freshly isolated nuclei were pre-treated for 120 min with pertussis toxin. Pretreatment of isolated cardiomyocyte nuclei with pertussis toxin blocked the ability of Ang-II to increase de novo RNA synthesis (Fig. 5B). Thus, Gi is involved in coupling Ang-II receptors to transcription.

Ribosomal RNA (rRNA) constitutes the most abundant form of RNA. To determine whether stimulation of ATRs on nuclear membranes alters the abundance of rRNA following stimulation of isolated nuclear preparations, total RNA was resolved on 2% agarose gels and visualized by staining with ethidium bromide. Ang-II increased rRNA levels (Fig. 5C). Overall, Ang-II increased the signal strength (18 and 28 S) to 2.09 ± 0.08 OD, compared with 1.02 ± 0.02 OD in control (\(n = 4\)/group, \(p < 0.001\)). The Ang-II effect was attenuated by valsartan and PD123177, which reduced the signal strength to 1.21 ± 0.04 OD and 1.11 ± 0.07 OD (\(n = 4\)/group, \(p < 0.001\)), respectively. Responses in total cardiac nuclear preparations (supplemental Fig. S4) were qualitatively similar to results from isolated cardiomyocyte nuclei (Fig. 5).

Nuclear Ang-II Receptors Regulate NFκB Gene Expression—Studies have shown that Ang-II is implicated in the activation of various nuclear transcription factors, including NFκB, and control of NFκB gene transcription is a potentially important regulatory mechanism (17). To assess the possible role of nuclear ATRs in the control of NFκB transcription, we treated isolated cardiomyocytes and purified nuclei with different concentrations of Ang-II. Following RNA isolation, the expression of NFκB was assessed by qPCR and normalized to the average of three housekeeping genes, \(\beta_2\)-microglobulin, glyceraldehyde-3-phosphate dehydrogenase, and heat shock protein 90-kDa α,
class B member 1. The primer sequences are provided in supplemental Table S2. Ang-II produced clear concentration-response curves, both when applied to intact cells and to nuclei isolated from cardiac tissues (supplemental Fig. S5A). Fig. 6A shows dose-response results obtained from 120-min applications of Ang-II to isolated intact cardiomyocytes (extracellular) or to nuclear preparations isolated from cardiomyocytes. At higher concentrations, there was a significantly greater increase in NFκB mRNA expression following Ang-II application to cardiomyocyte-nuclear preparations versus extracellular application to isolated cardiomyocytes. Preincubation of nuclei with valsartan (10⁻⁶ M) or PD123177 (10⁻⁶ M) prior to Ang-II administration reduced the Ang-II-induced increase in NFκB mRNA abundance (49 and 39% inhibition, respectively, versus Ang-II alone; n = 4/group, p < 0.001, Fig. 6B), whereas pretreatment with both antagonists abolished the NFκB mRNA expression response to Ang-II (n = 4, p = NS versus control).

Nuclear AT1R Stimulation Induces Nuclear [Ca²⁺] Responses via IP₃R-mediated Mechanisms and Thereby Influences Transcription Initiation—The nuclear envelope serves as a pool for calcium and has been proposed to regulate nuclear Ca²⁺ signals (18). Several mechanisms for generating Ca²⁺ transients in the nucleus have been identified (19). The effect of ATR agonists on nuclear Ca²⁺ concentration was examined in freshly isolated nuclei using the ratiometric fluorescent Ca²⁺

![FIGURE 2. Subcellular distribution of AT1R and AT2R in adult rat ventricular cardiomyocytes. A, panels a–d show representative results from a single cell. Panel a is a confocal image demonstrating the nuclear localization of AT1R (green); b shows nuclear staining with Nup62 (red); c is a superimposed confocal image showing the colocalization of AT1R with Nup62, coincident signals appear in yellow (Merge); d is a phase-contrast image of the same cell. Data are representative of 40 cells from 10 rats. B, panels a–d show representative results from a single cell. Panel a is a confocal image demonstrating the nuclear localization of AT2R (green); b shows nuclear staining with nucleoporin p62 (red); c is a superimposed confocal image showing the colocalization of AT2R with Nup62, coincident signals appear in yellow (Merge); d is a phase-contrast image of the same cell. Data are representative of 30 cells from 10 rats.](image-url)

![FIGURE 3. Endocytosis and intracellular trafficking of Ang-II. A, FITC-Ang-II (1 nM) was applied extracellularly to the bathing medium. Images are shown immediately after Ang-II application (0 min) and then 30 and 60 min later. Merged images are superimposed fluorescent images. B, cells were preincubated with valsartan (10⁻⁶ M, for 25 min) prior to administration of Ang-II. Hoechst 33342 was used as a nuclear marker. Z-stacks were acquired every 5 min using a Zeiss LSM-510 confocal microscope (n = 6/group).](image-url)
Nuclear Envelope Angiotensin Receptors

Figure 4. Subcellular localization of intracellularly applied FITC-Ang-II. A, phase-contrast image showing myocyte immediately prior to injection. FITC-Ang-II (10 nM) was microinjected into freshly isolated cardiomyocytes and fluorescence was visualized 10 and 20 s post-injection. B, cells were microinjected with valsartan (100 nM) prior to FITC-Ang-II injection. 4',6-Diamidino-2-phenylindole (DAPI) was used as a nuclear marker. No fluorescence was observed in adjacent cells at any time. (Results similar to those in A and B were obtained for 10 microinjected cells from 10 rats each.)

indicator, Fura-2/AM. Exposure to vehicle alone did not alter nuclear Ca\(^{2+}\) signals (supplemental Fig. S6). Exposure of nuclei to Ang-II (10 \(\mu\)M) produced a prompt increase in Ca\(^{2+}\). In the example shown in Fig. 7A, Ca\(^{2+}\) in nuclei isolated from cardiomyocytes rose from a baseline value of 111 to 243 nM, followed by a return to baseline values. The AT1R-selective agonist L162,313 (10 \(\mu\)M) also caused an intranuclear Ca\(^{2+}\) response (Fig. 7B), and the Ang-II response was prevented by co-administration with the AT1R inhibitor candesartan (10 \(\mu\)M) (Fig. 7C). Unlike AT1R-selective agonists, the AT2R agonist CGP42112A (10 \(\mu\)M) failed to elicit a nuclear Ca\(^{2+}\) response (Fig. 7D) and the AT2R antagonist PD123177 (10 \(\mu\)M) was unable to prevent an Ang-II-mediated Ca\(^{2+}\) rise (Fig. 7E). Overall mean data (\(n = 4/\text{condition}\)) are summarized in Fig. 7F, indicating a significant increase in nuclear Ca\(^{2+}\) with AT1R agonists, which is blocked by an AT1R antagonist. AT2R selective agonists produced no significant change in Ca\(^{2+}\), nor did antagonism of AT2R significantly attenuate the response to Ang-II. Similar results were obtained in nuclei isolated from whole hearts (supplemental Fig. S7).

IP\(_3\) is an important mediator of nuclear Ca\(^{2+}\) mobilization via nuclear envelope Ca\(^{2+}\) stores (20). We therefore tested the hypothesis that Ang-II regulates nuclear Ca\(^{2+}\) via IP\(_3\)-dependent Ca\(^{2+}\) release. As shown in Fig. 8A, IP\(_3\) (10 \(\mu\)M) caused a transient increase of [Ca\(^{2+}\)] in nuclei isolated from cardiomyocytes, whereas the application of IP\(_3\) after pre-treatment with the IP\(_3\)R blocker 2-APB (10 \(\mu\)M) failed to increase nuclear Ca\(^{2+}\) significantly (Fig. 8B). Pretreatment of nuclei with 2-APB suppressed the nuclear Ca\(^{2+}\) responses induced by CGP42112A-induced transcription initiation (Fig. 9C, \(n = 4/\text{condition}\)). Similar results were obtained with nuclei isolated from intact cardiac tissues (supplemental Fig. S9).

Assessment of Intracellular Components of Angiotensin Synthesis System—We found by ELISA that lysates prepared from isolated cardiomyocytes contain Ang-II at concentrations of 32.7 ± 4.1 fmol/mg of protein in the free cytosol. In addition, we found by qPCR that components required to produce Ang-II such as angiotensin converting enzyme, renin, angiotensinogen, and cathepsin are present inside cardiomyocytes (supplemental Fig. 1B).

DISCUSSION

Main Findings—In the present study, we examined the subcellular localization of Ang-II receptors and their functionality in adult rat ventricular cardiomyocytes. Our data indicate that both AT1R and AT2R localize to and signal at the nuclear envelope, and that this localization is not a result of post-endocytic trafficking. We also found that nuclear AT1Rs and AT2Rs mediate de novo RNA synthesis, affecting the abundance of both rRNA and NFkB mRNA, and that G1 availability is essential for this Ang-II effect. Ang-II signaling via AT1Rs induces Ca\(^{2+}\) responses in isolated nuclei via IP\(_3\)R-dependent pathways, which participate in AT1R-induced de novo RNA synthesis.

Relation to Previous Studies of GPCR Nuclear Receptors—Classically, GPCRs, which comprise the largest protein superfamily in the human genome, are thought to induce intracellular effects via downstream signaling pathways from the plasma...
Nuclear Envelope Angiotensin Receptors

FIGURE 5. AT1R and AT2R in nuclear membranes regulate cardiomyocyte transcription initiation. A, de novo RNA synthesis. Isolated cardiomyocyte nuclear preparations were stimulated with Ang-II, L-162,313 (a non-peptide AT1R-selective agonist), CGP42112A (an AT2R-selective agonist), candesartan plus Ang-II, or PD123177 plus Ang-II (all at 10 μM), as indicated. Following the addition of antagonists candesartan (Cand) and PD123177, nuclei were preincubated for 30 min prior to the addition of Ang-II. ***, p < 0.001 versus control; +, p < 0.05; ++, p < 0.001 versus Ang-II. B, cardiomyocyte nuclei were treated with 5 μg/ml of pertussis toxin for 2 h and then stimulated with Ang-II. Data represent mean ± S.E. of at least five separate experiments performed in triplicate and normalized to control. ***, p < 0.001 versus control; NS, non-significant versus control. C, representative 2% agarose gel electrophoresis of RNA extracted from purified cardiomyocyte nuclei of two separate experiments stained with ethidium bromide (GTP and CTP not omitted) under the following conditions: non-stimulated (lanes 1 and 2); stimulated with Ang-II (10 μM, lanes 3 and 4); stimulated with Ang-II in the presence of valsartan (10 μM, lanes 5 and 6); stimulated with Ang-II in the presence of PD123177 (10 μM, lanes 7 and 8). Results in lanes 1, 3, 5, and 7 are from one experiment, lanes 2, 4, 6, and 8 from another. 1 μg of each sample was loaded. Bottom panel shows mean ± S.E. results as arbitrary optical density (OD) units from 4 different experiments/condition. ***, p < 0.001 versus control; +++, p < 0.01 versus Ang-II.

FIGURE 6. Regulation of cardiomyocyte nuclear NFκB mRNA expression by nuclear ATRs. Isolated nuclei were treated for 2 h with Ang-II at different concentrations. NFκB mRNA was quantified by qPCR. A, data are presented as NFκB mRNA expression relative to an average of three housekeeping genes (n = 6/concentration/group). *, p < 0.05; **, p < 0.01; ***, p < 0.001 versus intact cells. B, valsartan (10 μM) or PD123177 (10 μM) significantly reduced the Ang-II (10 μM) induced NFκB activity, whereas pretreatment of nuclei with both AT1 and AT2 antagonists completely abolished the NFκB gene expression response. Results are expressed as mean ± S.E. ***, p < 0.001 versus Ang-II.

In recent years, we and others have confirmed that endothelin (15), β- and α-adrenergic (17, 23), prostaglandin E₂ (24) receptors, in addition to the signaling molecules associated with many GPCRs, including adenylate cyclase (25), G-protein coupled receptor kinases (GRK) (26, 27), phospholipase proteins (22), Gₛ, Gₐ, and Gᵦ, are present on the nuclear/perinuclear membranes in a constitutive manner, independent of agonist stimulation. Determining the subcellular localization of proteins provides crucial information concerning their function and interaction with other molecules in a specific microenvironment, and thus represents a critical step in genome annotation.

The data in the present paper suggest that Ang-II stimulates cardiomyocyte nuclear receptors to induce transcriptional responses in a Gₛ-dependent manner, similar to previous observations for cardiac nuclear β-adrenoceptors (17). We found that Ang-II increases [Ca²⁺]ᵦ in nuclear-enriched preparations via AT1Rs. Intracellular Ang-II increases nuclear [Ca²⁺]ᵦ in vascular smooth muscle cells, an effect that is blocked by intracellular but not extracellular AT1R blockade (28). Intracellular application of Ang-II increases cell [Ca²⁺]ᵦ in A7r5 vascular smooth muscle cells lacking extracellular ATRs, an effect prevented by AT1R, but not AT2R blockers (29). Nuclear Ca²⁺ signaling appears to be an important regulator of gene transcription, particularly in neurons (30), and IP₃ receptors are involved in nuclear Ca²⁺ signaling in a muscle cell line (31). Our observation of nuclear AT1R-selective effects to increase nuclear [Ca²⁺]ᵦ suggests a potential role for AT1R-mediated nuclear Ca²⁺ changes in transcriptional responses. The degree of [³²P]UTP incorporation enhancement was greater with nuclear preparation application of the AT1R agonist L-162,313 than with the AT2R agonist CGP42112A (Fig. 5A), consistent with the notion that AT1R-related Ca²⁺-dependent nuclear signaling may participate in transcriptional responses. However, clearly the Ang-II-induced transcriptional response does not depend solely on increased nuclear [Ca²⁺]ᵦ, because Ang-II-induced rRNA (Fig. 5C) and NFκB (Fig. 6B) RNA expression...
changes were sensitive to both AT1R and AT2R blockade, and selective AT2R stimulation with CGP42112A-induced transcriptional responses. Further work will be needed to characterize in detail how Ang-II induces nuclear \([\text{Ca}^{2+}]\) responses and to define nuclear \([\text{Ca}^{2+}]\)-sensitive and -insensitive transcriptional control pathways.

Evidence for a Role of Intracellular Ang-II Signaling—The involvement of an intracellular renin-angiotensin system in biological responses has long been debated. We found significant expression of the components needed to produce Ang-II in cardiomyocyte lysates, and measured cytoplasmic Ang-II concentrations of over 30 fmol/mg of protein, of the same order as reported by Singh et al. \((5)\). Ichihara et al. \((32)\) demonstrated the existence of nonproteolytically activated intracardiac prorenin and elevated tissue Ang-II concentrations in genetically hypertensive rats, which produced end organ damage despite prevention of systemic renin-angiotensin activation. By contrast, the prevention of intracellular prorenin activation fully prevented cardiac fibrosis, despite the maintenance of systemic renin-angiotensin activation and severe hypertension \((32)\). Mice engineered to lack intracardiac angiotensinogen lack cardiac hypertrophy and fibrosis despite hypertension comparable with similarly hypertensive control mice \((33)\). In a rat vascular smooth muscle cell line (A7r5) devoid of plasma membrane ATRs, intracellular (liposome-based) Ang-II delivery enhances cell proliferation, whereas extracellular Ang-II has no effect, with intracellular Ang-II responses suppressed by intracellular application of AT1R or AT2R blockers \((29)\). Independent of systemic hemodynamic effects, local cardiac Ang-II may cause deleterious myocardial remodeling and functional deterioration post-myocardial infarction \((34)\). In summary, there is evidence for a role of intracellular Ang-II signaling in cardiovascular remodeling. Our data, which indicate that AT1Rs and AT2Rs are present on cardiomyocyte nuclei and that Ang-II induces AT1R- and AT2R-mediated transcriptional responses in purified nuclear preparations, suggest that nuclear ATRs may be important mediators of intracellular Ang-II effects on the heart.

Potential Role of Nuclear AT1 and AT2 Receptors in Cardiac Remodeling—Ang-II is an important signaling molecule for cardiac remodeling, although there remains uncertainty over whether cardiac Ang-II signaling alone is enough to induce remodeling or whether Ang-II actions conspire with stressors (like hypertension and excess hemodynamic load) to induce remodeling \((35)\). Overexpression of AT1Rs is a much more potent stimulus to cardiac remodeling than Ang-II overproduction, suggesting that receptor density may be the limiting factor for Ang-II-related remodeling \((35)\). It has long been known that radiolabeled Ang-II preferentially localizes in
Nuclear Envelope Angiotensin Receptors

There is growing interest in the development of intracrine pharmacology, small molecule compounds designed to modulate intracellular signaling systems mediated by compounds synthesized within the target cell (40). Lipid-soluble renin inhibitors and angiotensin converting enzyme inhibitor prodrugs are particularly effective in inhibiting ATR-related glioblastoma (41) and neuroblastoma (42) cell growth, pointing to the potential importance of blocking intracellular Ang-II signaling. Further information about the nature, role, and significance of cardiomyocyte nuclear ATRs should contribute to the development of rationally based intracrine pharmacology for cardiac remodeling prevention.

Potential Limitations—Transmembrane receptors can exist in monomeric, homodimeric, or heterodimeric states, and the monomeric state of the receptor may alter its pharmacological properties. AT1 and bradykinin B2 receptors form stable heterodimers, increasing G-protein activation (43). The dimerization status of the nuclear membrane ATRs could have important implications for the intracrine physiology of the renin-angiotensin system, but is beyond the scope of the present study. We have not investigated the specific molecular properties of nuclear ATRs, and it remains to be determined whether they are identical to cell-membrane receptors that are simply targeted to the nucleus, or whether a subset of ATRs with specific molecular compositions are selectively targeted to nuclear membranes.

Angiotensin-receptor blockers are known to suppress angiotensin-related cardiac remodeling. To act via nuclear angiotensin-receptor inhibition they would have to achieve significant intracellular concentrations. The extent to which commercially available agents cross the plasma membranes of heart cells is incompletely known, although telmisartan, a lipid-soluble agent, has been shown to achieve 10-fold concentration in the intracellular compartment versus culture medium (44).

Conclusions—The current study provides novel insights into cardiac intracellular Ang-II signaling by demonstrating the existence of nuclear AT1Rs and AT2Rs that are coupled to RNA transcription and nuclear Ca\(^{2+}\) signaling in cardiomyocytes. Ang-II acts via AT1Rs to induce Ca\(^{2+}\) mobilization in cardiomyocyte nuclear preparations via IP\(_3\) receptor-mediated mechanisms. A better understanding of the nature and role of nuclear Ang-II receptors will help to provide a better appreciation of the molecular basis for cardiac remodeling and hopefully lead to the development of

the perinuclear regions of cardiomyocytes following intraventricular injection (36). The presence of nuclear Ang-II receptors has been demonstrated in the liver (11, 12) and kidneys (37). Similar to our findings, direct application of Ang-II to isolated renal-cortical cell nuclei enhances in vitro transcription of a variety of genes (37). Ang-II activates several nuclear transcription factors and is implicated in the pathogenesis of vascular damage through NFKB (18). NFKB increases the expression of cytokines, enzymes, and adhesion molecules, as well as other products involved in inflammation, proliferation, and hypertrophy (38). Our observations raise the interesting possibility that direct nuclear receptor signaling may be an important mediator of the action of Ang-II to promote cardiac remodeling via altered gene transcription.

Novel Elements and Potential Implications—Our work is the first demonstration, to our knowledge, that cardiomyocytes express nuclear envelope Ang-II receptors that can induce changes in cardiac gene transcription, that Ang-II stimulation of nuclear receptors can induce nuclear [Ca\(^{2+}\)] responses via IP\(_3\)-mediated pathways in an AT1R-specific fashion, and that blockade of IP\(_3\)-mediated nuclear [Ca\(^{2+}\)] changes suppress the AT1R-mediated effect on cardiac gene transcription. To demonstrate the properties of the nuclear angiotensin system in cardiomyocytes, we developed and applied a novel nucleus-enriched preparation from isolated cardiomyocytes, to our knowledge for the first time in the literature. Our findings provide mechanistic insights into observations suggesting that Ang-II acts through intracellular receptors to regulate cardiomyocyte growth and induce cardiac remodeling (39).
improved pharmacological interventions for cardiac disease prevention and therapy.

Acknowledgments—We thank Annick Fortier for expert statistical analysis; George Vaniotis, Dr. Balazs Ordog, and Chantal St-Cyr for excellent technical assistance and suggestions; Dr. Clemance Merlen, Dr. Eric Thorin, and Dr. Ling Xiao for providing endothelial cells, smooth muscle cells, and brain tissue; and France Thériault for secretarial support.

REFERENCES

1. Dahlöf, B., Devereux, R. B., Kjeldsen, S. E., Julius, S., Beevers, G., de Faire, U., Fyhruquist, F., Isbä, H., Kristiansson, K., Lederballe-Pedersen, O., Lindholm, L. H., Nieminen, M. S., Onvikk, P., Oparil, S., and Wedel, H. (2002) Lancet 359, 995–1003.
2. Wachtell, K., Hornestam, B., Lehto, M., Slotwinski, D. J., Gerds, E., Olsen, M. H., Aurup, P., Dahlöf, B., Isbä, H., Julius, S., Kjeldsen, S. E., Lindholm, L. H., Nieminen, M. S., Rokkedal, J., and Devereux, R. B. (2005) J. Am. Coll. Cardiol. 45, 705–711
3. Groth, W., Blume, A., Gohlke, P., Unger, T., and Culman, I. (2003) J. Hypertens. 21, 2175–2182
4. De Mello, W. C. (2006) Regul. Pept. 133, 10–12
5. Singh, V. P., Le, B., Khode, R., Baker, K. M., and Kumar, R. (2008) Diabetes 57, 3297–3306
6. Re, R. N., and Cook, J. L. (2007) Nat. Clin. Pract. Cardiovasc. Med. 4, 549–557
7. Singh, V. P., Le, B., Bhat, V. B., Baker, K. M., and Kumar, R. (2007) Am. J. Physiol. Heart Circ. Physiol. 293, H939–H948
8. Sadoshima, I., Xu, Y., Slatyer, H. S., and Izumo, S. (1993) Cell 75, 977–984
9. Peters, J., Farrenkopf, R., Clausmeyer, S., Zimmer, J., Kantachuesiri, S., Sharp, M. G., and Mullins, J. J. (2002) Circ. Res. 90, 1135–1141
10. De Mello, W. C. (1998) Hypertension 32, 976–982
11. Booz, G. W., Conrad, K. M., Hess, A. L., Singer, H. A., and Baker, K. M. (1992) Endocrinology 130, 3641–3649
12. Tang, S. S., Rogg, H., Schmacher, R., and Dzau, V. J. (1992) Endocrinology 131, 374–380
13. Battle, T., Arnal, J. F., Challah, M., and Michel, J. B. (1994) Tissue Cell 26, 943–955
14. Boivin, B., Chevalier, D., Villeneuve, L. R., Rousseau, E., and Allen, B. G. (2003) J. Biol. Chem. 278, 29153–29163
15. Livak, K. J., and Schmittgen, T. D. (2001) Cell 105, 541–557
16. Boivin, B., Chevalier, D., Villeneuve, L. R., Rousseau, E., and Allen, B. G. (2003) J. Biol. Chem. 278, 29153–29163
17. Wright, C. D., Chen, Q., Venkat, N. L., Huang, Y., Healy, C. L., Kasinathan, S., Ti, H., Allen, B. G., and Hébert, T. E. (2006) Cardiovasc. Res. 71, 69–78
18. Meberg, P. J., Kinney, W. R., Valcute, G. E., and Rottenburg, A. (1996) Brain Res. Mol. Brain Res. 38, 179–190
19. Malviya, A. N., and Rague, P. J. (1998) Cell 92, 17–23
20. Zima, A. V., Bare, D. J., Mignery, G. A., and Blatter, L. A. (2007) J. Biol. Chem. 282, 601–611
21. Gerasimenko, O., and Gerasimenko, J. (2004) J. Cell Sci. 117, 3087–3094
22. Bockaert, J., and Pin, J. P. (1999) EMBO J. 18, 1723–1729
23. Gettier, U. (2000) Endocr. Rev. 21, 90–113
24. Wright, C. D., Chen, Q., Byo, N. L., Huang, Y., Healy, C. L., Kasisathan, S., and O’Connell, T. D. (2008) Circ. Res. 103, 992–1000
25. Bhattacharya, M., Peri, G. K., Almazan, G., Ribeiro-da-Silva, A., Shichi, H., Durocher, Y., Abramovitz, M., Hou, X., Varma, D. R., and Chemtob, S. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 15792–15797
26. Willard, F. S., and Crouch, M. F. (2000) Immunol. Cell Biol. 78, 387–394
27. Martini, J. S., Raake, P., Vinge, I. E., DeGeorge, B. R., Jr., Chuprun, J. K., Harris, D. M., Gao, E., Eckhart, A. D., Pitcher, J. A., and Koch, W. J. (2008) Proc. Natl. Acad. Sci. U.S.A. 105, 12457–12462
28. Sorrentino, D., Ciccarello, M., Santulli, G., Campanile, A., Altobelli, G. G., Cimini, V., Galasso, G., Astone, D., Piscione, F., Pastore, L., Trimarco, B., and Iaccarino, G. (2008) Proc. Natl. Acad. Sci. U.S.A. 105, 17818–17823
29. Haller, H., Lindschau, C., Erdmann, B., Quass, P., and Luft, F. C. (1996) Circ. Res. 79, 765–772
30. Filipeno, C. M., Haning, H. R., de Zeeuw, D., and Nelemans, A. (2001) Br. J. Pharmacol. 132, 1590–1596
31. Bez, S., Charpentier, G., Lee, H. C., Baux, G., Fossier, P., and Cancelo, J. M. (2008) J. Biol. Chem. 283, 27859–27870
32. Kusnier, C., Cárdenas, C., Hidalgo, J., and Jaimovich, E. (2006) Biol. Res. 39, 541–553
33. Ichihara, A., Kaneshiro, Y., Takemitsu, T., Sakoda, M., Suzuki, F., Naka-gawa, T., Nishiyama, A., Inagami, T., and Hayashi, M. (2006) Hypertension 47, 894–900
34. Kang, N., Walther, T., Tian, X. L., Bohlender, J., Fukamizu, A., Ganten, D., and Bader, M. (2002) J. Mol. Med. 80, 359–366
34. Xu, J., Carretero, O. A., Lin, C. X., Cavasin, M. A., Shesely, E. G., Yang, J. J., Reudelhuber, T. L., and Yang, X. P. (2007) Am. J. Physiol. Heart Circ. Physiol. 293, H1900–H1907

35. Reudelhuber, T. L., Bernstein, K. E., and Delafontaine, P. (2007) Hypertension 49, 1196–1201

36. Robertson, A. L., Jr., and Khairallah, P. A. (1971) Science 172, 1138–1139

37. Li, X. C., and Zhuo, J. L. (2008) Am. J. Physiol. Cell Physiol. 294, C1034–C1045

38. Barnes, P. J., and Karin, M. (1997) N. Engl. J. Med. 336, 1066–1071

39. Baker, K. M., Chernin, M. I., Schreiber, T., Sanghi, S., Haiderzaidi, S., Booz, G. W., Dostal, D. E., and Kumar, R. (2004) Regul. Pept. 120, 5–13

40. Re, R. N., and Cook, J. L. (2008) J. Clin. Pharmacol. 48, 344–350

41. Juillerat-Jeanneret, L., Celerier, J., Chapuis Bernasconi, C., Nguyen, G., Wostl, W., Maerki, H. P., Janzer, R. C., Corvol, P., and Gasc, J. M. (2004) Br. J. Cancer 90, 1059–1068

42. Chen, L., Re, R. N., Prakash, O., and Mondal, D. (1991) Proc. Soc. Exp. Biol. Med. 196, 280–283

43. AbdAlla, S., Lother, H., and Quitterer, U. (2000) Nature 407, 94–98

44. Shao, J., Nangaku, M., Inagi, R., Kato, H., Miyata, T., Matsusaka, T., Noiri, E., and Fujita, T. (2007) J. Hypertens. 25, 1643–1649