Avaliação da influência hormonal em pacientes com fraturas atribuídas a osteoporose*

Evaluation of Hormonal Influence in Patients with Fractures Attributed to Osteoporosis

Danila Malheiros-Souza1, Leonardo Franco Pinheiro Gaia1, Fausto Fernandes de Almeida Sousa1, Pedro Ivo Ferreira Favaro1, Virmendes Rodrigues1, Denise Bertulucci Rocha Rodrigues1,2

1 Departamento de Ciências Biológicas, Laboratório de Imunologia, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brasil
2 Laboratório de Imunobiologia, Universidade de Uberaba, Uberaba, MG, Brasil

Endereço para correspondência Denise Bertulucci Rocha Rodrigues, PhD, Universidade de Uberaba, Uberaba, MG, Av Nenê Sabino, 1801, Uberaba MG, 38055-500, Brasil (e-mail: denise.rodrigues@uniube.br).

Rev Bras Ortop 2021;56(6):804–808.

Resumo

Objetivo Avaliar a influência dos níveis hormonais de vitamina D, calcitonina, testosterona, estradiol e paratormônio em pacientes com fratura atribuída a osteoporose, quando comparados com pacientes jovens que tiveram fraturas decorrentes de acidente de alto impacto.

Métodos Foram coletadas amostras de sangue de 30 pacientes idosos com fratura atribuída a osteoporose (T-score ≤ -2,5) (grupo com osteoporose) e 30 amostras de sangue de pacientes jovens que sofreram fraturas decorrentes de acidentes de alto impacto (grupo controle). Foram realizadas dosagem de 1,25-hidroxivitamina D (Kit Diasorin, Saluggia, Italy), calcitonina (Kit Siemens, Tarrytown, NY, USA), testosterona, estradiol e paratormônio (Kit Beckman Couter, Indianapolis, IN, United States) pela técnica de quimiluminescência. Os dados foram inseridos em uma planilha de dados no programa Microsoft Excel (Microsoft Corp., Redmond, WA, EUA) e analisados pelo programa de estatística Statview. Os resultados que apresentaram distribuição não normal foram analisados com métodos não paramétricos. Para análise de variáveis comparando-se os dois grupos, aplicou-se o teste Mann-Whitney. Foi utilizado o teste de correlação de Spearman para a correlacionar os níveis hormonais. Um valor p > 0,05 foi considerado significante. Todas as análises foram feitas comparando gênero e grupos de pacientes com e sem osteoporose.

Resultados Mulheres com osteoporose apresentam níveis significativamente menores de estradiol e vitamina D (p = 0,047 e p = 0,0275), respectivamente. Homens com osteoporose demonstraram níveis significativamente maiores de paratormônio (p = 0,0065). Não houve diferença significativa nos níveis de testosterona e calcitonina.

Palavras-chave
► osteoporose
► hormônios
► estradiol
► calcitonina
► hormônio paratireóideo

* Trabalho desenvolvido no Laboratório de Imunologia, Departamento de Ciências Biológicas, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brasil.

received 05 de Agosto de 2020
accepted 01 de Dezembro de 2020
Published on-line Agosto 27, 2021

DOI https://doi.org/10.1055/s-0041-1726065.
ISSN 0102-3616.

© 2021. Sociedade Brasileira de Ortopedia e Traumatologia. All rights reserved.
This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Revinter Publicações Ltda., Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
Conclusão  Existem diferenças hormonais entre os gêneros na osteoporose. Em mulheres, níveis significativamente menores de oestradiol e vitamina D e, nos homens, níveis significativamente maiores de paratormônio, parecem influenciar na doença.

**Materiais e métodos**

O projeto foi aprovado pelo Comitê de Ética com protocolo de número 51827515.4.0000.5145.

**Grupo de Estudo**

Foram coletadas amostras de sangue de 30 pacientes idosos com fratura atribuída à osteoporose (T-score ≤ -2.5) (grupo com osteoporose) e 30 amostras de sangue de pacientes jovens que sofreram fraturas decorrentes de acidentes de alto impacto (grupo controle). Foram excluídos os pacientes com outras doenças ósseas, com fraturas não causadas por osteoporose, pacientes imunossuprimidos, com neoplasias malignas ou alterações hepáticas, e que não concordaram participar da pesquisa. O soro coletado desses pacientes foi utilizado para dosagem hormonal.

**Coleta de sangue**

A coleta de sangue venoso foi realizada sempre no período matutino, 1 dia após a cirurgia de reconstrução óssea indicada pelo médico ortopedista. A amostra de sangue foi obtida...
por punção venosa, com a utilização de três tubos de coleta a vácuo contendo ativador de coágulo e gel separador. Após 30 minutos da coleta, foi feita a centrifugação a 5.000 rotações por minuto (rpm) por 10 minutos para obtenção de soro.

### Análise hormonal

Após a centrifugação das amostras de sangue coletadas, os tubos de soro foram encaminhados para análise hormonal. Foram realizadas dosagem de 1,25-hidroxitriamina D (Kit Diasonor, Saluggia, Italy), calcitonina (Kit Siemens, Tarrytown, NY, USA), testosterona, estradiol e paratormônio (Kit Beckman Couter, Indianapolis, IN, United States) pela técnica de quimiluminescência, uma reação química, a qual, ao se processar, gera energia luminosa. Durante a reação, os reagentes se transformam em estados intermediários eletronicamente excitados e, ao passarem para um estado de menor excitação, liberam a energia absorvida na forma de luz.

### Análise estatística

Os dados foram inseridos em uma planilha de dados no programa Microsoft Excel (Microsoft Corp., Redmond, WA, EUA) e analisados pelo programa de estatística Statview. Os resultados que apresentaram distribuição não normal foram analisados com métodos não paramétricos. Para análise de variáveis comparando-se os dois grupos, aplicou-se o teste Mann-Whitney. Foi utilizado o teste de correlação de Spearman para a correlacionar os níveis hormonais. Um valor p < 0,05 foi considerado significante.

### Resultados

No presente estudo, foi realizada a dosagem hormonal de 60 pacientes, sendo 30 de pacientes com osteoporose e 30 do grupo controle.

A média de idade dos pacientes foi de 58,8 ± 22,61 anos, e todas as análises foram feitas comparando gênero, grupo de pacientes com osteoporose e grupo controle. Os dados com o número de pacientes e a média de idade de cada grupo estão contidos na [Tabela 1](#).

Os níveis séricos de vitamina D foram significativamente maiores no gênero feminino do grupo controle quando comparados com o gênero feminino do grupo com osteoporose (p = 0,0275). Não houve diferença significativa entre os gêneros masculinos e femininos do grupo com osteoporose (Figura 1A).

Na análise de testosterona livre, foram observados níveis significativamente maiores no gênero masculino quando comparado com gênero feminino em ambos os grupos, controle e osteoporose (Mann Whitney; "p = 0,0023 e "p = 0,0046). Não houve diferença significativa nos níveis de testosterona livre entre o gênero masculino do grupo controle e do grupo com osteoporose (Figura 1B).

Os níveis de estradiol foram significativamente menores nas mulheres do grupo com osteoporose comparados com as do grupo controle (Mann-Whitney; p = 0,047). Não houve diferença significativa nos níveis de estradiol entre homens e mulheres do grupo controle e do grupo com osteoporose (Figura 1C).

Os níveis de paratormônios foram significativamente maiores nos homens com osteoporose quando comparados com o grupo controle (Mann-Whitney; p = 0,0065). Não houve diferença significativa entre as mulheres do grupo controle com as mulheres do grupo com osteoporose. Tampouco foi observada uma diferença significativa nos níveis de paratormônios quando comparados os gêneros masculino e feminino em ambos os grupos, controle e osteoporose (Figura 1D).

Não houve diferença significativa nos níveis de calcitonina entre o grupo controle e o grupo com osteoporose, independentemente do gênero. Também não houve diferença significativa quando comparados homens e mulheres independentemente dos grupos, controle e osteoporose (Figura 1E).

### Discussão

A osteoporose é causada por um desequilíbrio da remodelação óssea, que pode ser causado por fatores hormonais; além disso, estudos mais recentes mostram que fatores imunológicos também influenciam na fisiopatogênese da doença. No presente estudo, foi avaliada a presença de hormônios em pacientes com osteoporose, comparando também a diferença entre os gêneros.

No presente estudo, diferenças significativas foram encontradas nas dosagens de vitamina D, estradiol e paratormônio. Mulheres com osteoporose e homens jovens apresentaram níveis significativamente menores de vitamina D comparados com mulheres jovens. Estudos mostram que a deficiência de vitamina D está associada a fraqueza muscular, perda óssea, quedas e fraturas.13 Semelhante à literatura, nossos dados sugerem que a diminuição de vitamina D em

### Tabela 1

|                | Média idade (anos) | Número de pacientes (n) | Idade mínima (anos) | Idade máxima (anos) |
|----------------|--------------------|-------------------------|---------------------|---------------------|
| Controle feminino | 39,5               | 08                      | 18                  | 58                  |
| Controle masculino | 39,6               | 22                      | 19                  | 58                  |
| Osteoporose feminino | 80,05             | 18                      | 64                  | 98                  |
| Osteoporose masculino | 74,9               | 12                      | 60                  | 88                  |
| Total           | 58,8               | 60                      | 18                  | 98                  |
Fig. 1 Dosagem hormonal por quimiluminescência de pacientes do sexo feminino e masculino diagnosticados com osteoporose e pacientes do grupo controle. (A) Vitamina D1,25, sendo *p = 0,0169 e **p = 0,0275; (B) Testosterona, sendo *p = 0,0023 e **p = 0,0046; (C) Estradiol, sendo p = 0,047; (D) Paratormônio, sendo p = 0,0065; (E) Calcitonina (Mann-Whitney).
mulheres de maior idade pode contribuir na predisposição à osteoporose. O presente estudo mostra também que níveis reduzidos de estradiol estão relacionados com o aparecimento da osteoporose em mulheres a partir de 60 anos, condizente com outros estudos que mostram que a saúde óssea está inversamente relacionada com níveis reduzidos de estradiol. A deficiência de estradiol também foi associada com a presença de osteoporose em homens > 64 anos, embora essa associação não tenha sido encontrada nos resultados obtidos.

A remodelação óssea também tem sido estimulada pelo paratormônio; um estudo feito com mulheres idosas mostra que houve um aumento significativo de paratormônio em mulheres com osteoporose. Em nosso estudo, níveis significativamente maiores de paratormônio foram encontrados em homens com osteoporose, mostrando que a presença do paratormônio contribui para o aparecimento da doença em homens > 60 anos, ao contrário das mulheres, que não tiveram diferenças nos níveis de paratormônio. A testosterona não foi um fator limitante para o aparecimento da doença nos pacientes do nosso estudo; este hormônio parece estar mais relacionado com as diferenças entre os gêneros masculino e feminino. Contudo, um estudo mostra que a deficiência de testosterona em homens > 64 anos está associada com a rápida perda óssea e, consequentemente, com o desenvolvimento de osteoporose. Embora dados da literatura mostrem que a calcitonina age inibindo a reabsorção óssea, não foram encontradas diferenças significantes nos níveis de calcitonina entre os grupos e gêneros estudados.

Conclusão

O presente estudo sugere que mulheres com osteoporose apresentaram níveis significativamente menores de estradiol e vitamina D quando comparadas com mulheres jovens sem osteoporose. Já homens com osteoporose apresentaram níveis significativamente maiores de paratormônio quando comparados com homens sem osteoporose, o que mostra a importância dos hormônios e da vitamina D no desenvolvimento da doença. Já a testosterona, apesar de níveis menores estarem associados com a osteoporose, nosso estudo não demonstra uma associação com a doença; há uma diferença significativa apenas em relação ao gênero, independentemente da idade e da presença de osteoporose.

Contributeções dos autores

Todos os autores contribuíram para a concepção e delinearimento do estudo. O estudo foi concebido por Rodrigues V. e Rodrigues D. B. R. Gaia L. F. P.; Sousa F. F. A., Favaro P. L., Malheiro-Souza D. coletaram o material, prepararam o banco de dados e realizaram as análises estatísticas. Malheiro-Souza D. realizou o teste imunoenzimático (ELISA) e a citometria (CBA). Malheiro-Souza D. e Rodrigues D. B. R. redigiram o rascunho do manuscrito e o revisaram. Rodrigues V. revisou o manuscrito.

Fontes de suporte

O presente estudo teve apoio das instituições Universidade de Uberaba, da Universidade Federal do Triângulo Mineiro e do Centro de Educação Profissional, além do suporte financeiro da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) e do Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Conflito de interesses

Os não têm conflito de interesses a declarar.

Referências

1. Zaidi M. Skeletal remodeling in health and disease. Nat Med 2007; 13(07):791–801
2. Charles JF, Coury F, Sulyanto R, et al. The collection of NFATC1-dependent transcripts in the osteoclast includes numerous genes non-essential to physiologic bone resorption. Bone 2012;51(05):902–912
3. Udagawa N, Takahashi N, Yasuda H, et al. Osteoprotegerin produced by osteoclasts is an important regulator in osteoclast development and function. Endocrinology 2000;141(09):3478–3484
4. Breckon JJ, Papaioannou S, Kon LW, et al. Stromelysin (MMP-3) synthesis is up-regulated in estrogen-deficient mouse osteoblasts in vivo and in vitro. J Bone Miner Res 1999;14(11):1880–1890
5. Silva BC, Bilezikian JP. Parathyroid hormone: anabolic and catabolic actions on the skeleton. Curr Opin Pharmacol 2015;22:41–50
6. Damien E, Price JS, Lanyon LE. Mechanical strain stimulates osteoblast proliferation through the estrogen receptor in males as well as females. J Bone Miner Res 2000;15(11):2169–2177
7. Gui Y, Duan Z, Qiu X, et al. Multifarious effects of 17β-estradiol on apolipoprotein E receptors gene expression during osteoblast differentiation in vitro. Biosci Trends 2016;10(01):54–66
8. Kousteni S, Han L, Chen JR, et al. Kinase-mediated regulation of common transcription factors accounts for the bone-protective effects of sex steroids. J Clin Invest 2003;111(11):1651–1664
9. Wiren KM, Toombs AR, Semirea AA, Zhang X. Osteoblast and osteocyte apoptosis associated with androgen action in bone: requirement of increased Bax/Bcl-2 ratio. Bone 2006;38(05):637–651
10. Adams JS. Vitamin D as a defense. J Musculoskelet Neuronal Interact 2006;6(04):344–346
11. Chen H, Gilbert LC, Lu X, et al. A new regulator of osteoclastogenesis: estrogen response element-binding protein in bone. J Bone Miner Res 2011;26(10):2537–2547
12. Weaver CM, Alexander DD, Boushey CJ, et al. Calcium plus vitamin D supplementation and risk of fractures: an updated meta-analysis from the National Osteoporosis Foundation. Osteoporos Int 2016;27(01):367–376
13. Bischoff-Ferrari HA, Conzemmann M, Dick W, Theiler R, Stähelin HB. [Effect of vitamin D on muscle strength and relevance in regard to osteoporosis prevention]. Z Rheumatol 2003;62(06):518–521
14. Kousteni S, Bellido T, Plokitin LI, et al. Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Cell 2001;104(05):719–730
15. Fink HA, Ewing SK, Ensrud KE, et al. Association of testosterone and estradiol deficiency with osteoporosis and rapid bone loss in older men. J Clin Endocrinol Metab 2006;91(10):3908–3915
16. Al-Daghri NM, Aziz I, Yakout S, et al. Inflammation as a contributing factor among postmenopausal Saudi women with osteoporosis. Medicine (Baltimore) 2017;96(04):e5780
17. Martin TJ, Sims NA. Osteoclast-derived activity in the coupling of bone formation to resorption. Trends Mol Med 2005;11(02):76–81