Electron/Photon identification in ATLAS and CMS

Claude Charlot
LLR-École Polytechnique, Palaiseau, IN2P3/CNRS

for CMS and ATLAS collaborations
Outline

- Physics motivation
- ATLAS and CMS detectors @LHC
- In situ calibration procedures
- Energy estimation
- Electron tracking
- Material budget effects
- e/jet and γ/π^0 separation
- Soft electrons
Physics motivations

- Higgs search
 - $H \rightarrow \gamma\gamma$
 - $H \rightarrow ZZ(\ast) \rightarrow 4e$
- BSM
 - TeV resonances
 - Also SUSY
 - Leptonic decays of charginos and neutralinos
- Many SM processes, top, $Z \rightarrow ee$, $W \rightarrow ev$
 - Backgrounds to new signals
 - Calibration processes
The CMS Detector

Superconducting Coil

HCAL
- Plastic scintillator/brass sandwich

Calorimeters
- ECAL: Scintillating PbWO4 crystals
 - 75848 Xtals
 - 36 supermodules
 - 4 dees
 - $|\eta|<2.6$

Muon Barrel
- Drift Tube
- Resistive Plate
- Cathode Strip Chambers

Tracker
- Pixel
 - 3 layers (barrel)
 - 2x2 disks (fwd)

SST
- >8 hits, depending on η
- $|\eta|<2.5$

General Specifications
- Total weight: 12,500 t
- Overall diameter: 15 m
- Overall length: 21.6 m
- Magnetic field: 4 Tesla

C. Charlot, HCP2006, Electron and photon ID at ATLAS and CMS
CMS PbWO4 Calorimetry

Energy resolution

\[
\frac{\sigma(E)}{E} = \frac{2.8 \%}{\sqrt{E}} + \frac{124 \text{ MeV}}{E} \oplus 0.26 \%
\]

C. Charlot, HCP2006, Electron and photon ID at

- **0.6% at 50 GeV**
- **Resolution 3x3**
 \[\sigma/E = 0.39 \pm 0.01 \%\]
- **Resolution 5x5**
 \[\sigma/E = 0.42 \pm 0.01 \%\]
The ATLAS Detector

General requirements for the LArEM:
- $\sigma_E/E = 10\%/\sqrt{E} \pm 24.5\%/E \pm 0.7\%$
- linearity better than 0.5% up to 300 GeV
- shower direction with $s_q \sim 50$ mrad / \sqrt{E}
- fine granularity of 1st compartment
- shower shape measurement

Layer	Granularity ($\Delta\eta \times \Delta\varphi$)
Pre-sampler	0.025 x 0.1
Front	0.003 x 0.1
Middle	0.025 x 0.025
Back	0.05 x 0.025

C. Charlot, HCP2006, Electron and photon ID at ATLAS and CMS
C. Charlot, HCP2006, Electron and photon ID at ATLAS and CMS

ATLAS LAr calorimetry

Energy resolution

- CTB 2004 (preliminary)
- Run 2102478
- $E_{\text{beam}} = 180$ GeV
- $\eta = 0.3$

Calo TB 2001-2002

- $10.0 \pm 0.1 \% /\sqrt{E} \pm 0.21 \pm 0.03 \%$

Constant term

- @245 GeV
- P13 production module, $\phi > 7$
- $\text{rms} \Rightarrow c_L = 0.45 \%$

C. Charlot, HCP2006, Electron and photon ID at ATLAS and CMS
Intercalibration: phi symmetry

- **Startup scenario:** use single jet triggers
 - Previous study using min. bias events
 - Jets closer to the relevant energy scales
 - Reach 2-3% depending on eta
 - In only few hours assuming full trigger bandwidth allocated to phi symmetry calibration
 - To be complemented by a method to intercalibrate the phi rings
 - e.g. $Z \rightarrow ee$
 - Which therefore needs to run on less regions
 - Limited by the tracker material non uniformity in ϕ
Intercalibration: $Z \rightarrow ee$

- Intercalibration of regions at start up using kinematical constraint
- Select low radiating electron pairs
 - Main difficulty
 - Efficiency of 5.6% for golden-golden Z's
- 0.6% after $2fb^{-1}$ (CMS)
 - Starting from a mis-calibration between rings of 2% and within rings of 4%
 - As result of lab measurements and phi symmetry

C. Charlot, HCP2006, Electron and photon ID at ATLAS and CMS
Intercalibration: $W \rightarrow e\nu$

- Intercalibrate in small regions
 - Use peak of E/p to intercalibrate the regions
- Going from electron to photon will require MC
Cluster energy corrections

0.1%-0.2% spread from 10GeV to 1TeV over all \(\eta \)!

\[
E_{\text{rec}} = (a(E) + b(E))E_{PS} + c(E)(E_{PS}^{vis} \cdot E_{1}^{vis})^{0.5} + d(E) \sum_{i=1,3} E_{i}^{calo} \cdot (1 + f_{\text{leak}}(\text{depth})) \cdot f_{\text{brem}}(E) \cdot f_{\text{cell impact}}
\]

- E loss upstream of PS
- E loss
- PS and calo
- calo sampling fraction + lateral leakage E dependent
- Longitudinal leakage

Testbeam: Achieved better than 0.1 % over 20-180 GeV:
- done in one \(\eta \) position in a setup with less material than in ATLAS and no B field
- No Presampler for \(\eta > 1.8 \)

C. Charlot, HCP2006, Electron and photon ID at ATLAS and CMS
Cluster corrections

\[E_{\text{corr}} = E_{\text{sc}} \cdot F(N_{\text{cry}}) \cdot f(\eta) \]

\[E_{\text{endcaps}} = E_{\text{presh}} + E_{\text{corr}} \]

Algorithmic corrections ultimately tuned on \(Z \rightarrow ee \) data

- \(F(N_{\text{cry}}) \): containment, ECAL only correction
- \(f(\eta) \): energy lost, residual \(\eta \) dependence, depending on track-cluster patterns (\(e \) classes)

C. Charlot, HCP2006, Electron and photon ID at ATLAS and CMS
Electrons and photons starts with clusters in the ECAL

For electrons, associate the cluster with a track

Pixel match in CMS
 - Same algo for offline and HLT
 - Low p_T algo starts with tracking

HLT 2.5

Full PIXEL detector

C. Charlot, HCP2006, Electron and photon ID at ATLAS and CMS
CMS in-out GSF electron tracking

- Energy loss for electrons is highly non-gaussian
- Bethe-Heitler energy loss modeled by several gaussians
- Use most probable value of the components pdf instead of mean
- Meaningful momentum @ last point

Graphs:

- Hits collected up to the end

Equation:

\[\text{brem fraction: } \left(\frac{p_{\text{in}} - p_{\text{out}}}{p_{\text{in}}} \right) \]

Figures:

- CMS
- 30 GeV

C. Charlot, HCP2006, Electron and photon ID at ATLAS and CMS
E-scale corrections, e classes

- Different track-cluster patterns due to brems in tracker material
- E-scales corrections depend on classes
 - « golden electrons »
 - Good E/p and phi match
 - Low brems fraction
 - « big brems electrons »
 - Good E/P match
 - High brems fraction
 - « narrow electrons »
 - Good E/P match
 - Intermediate brems fraction
 - « showering electrons »
 - Bad E/P match, brems clusters
- Tuned using Z→ee data
 - Still MC needed for low p_T region

C. Charlot, HCP2006, Electron and photon ID at ATLAS and CMS
Material from data

- Location from X-ray of the detector using conversions
- Amount from variables sensitive to material integral
 - E/p distribution
 - Use brem fraction from GSF
 - \(<X/X_0> \sim -\ln(1-f_{\text{brem}}) \)

~2% precision on X/X0

C. Charlot, HCP2006, Electron and photon ID at ATLAS and CMS
Photon conversions

- ECAL driven inward seed/track finding
 - Followed by outward seed/track finding
- Pairs of opposite-charge tracks fitted to common vertex
 - Parameters refitted with vertex constraint
- Photon momentum from the tracks
 - Determines the primary interaction vertex

C. Charlot, HCP2006, Electron and photon ID at ATLAS and CMS
Shower shape

LArEM beam test 2001-2002

Comparison between data and G4 standalone simulation

Longitudinal development

Lateral development

C. Charlot, HCP2006, Electron and photon ID at ATLAS and CMS
C. Charlot, HCP2006, Electron and photon ID at ATLAS and CMS

e⁻/jet separation using TRT

- **Results from TB 2002 @20 GeV**

 - 20-GeV electrons
 - beam-test data
 - Monte-Carlo simulation

 - 20-GeV pions
 - beam-test data
 - Monte-Carlo simulation

- **Results from CTB2004 @9 GeV**

 - Preliminary

 - 90% electron efficiency
 - 2x10⁻² pion efficiency
 - (#energy than TB2002)

Typical TR photon energy depositions in the TRT are 8-10 keV. Pions deposit about 2 keV.
Isolation is a very powerful tool to reject jet backgrounds:
- Track based isolation
- Calorimeter isolation
- Combined isolation

H → 4e signal ($m_H = 150$)
Backgd: $t\bar{t}$ $p_T^{1,2,3,4} > 5$

H → $\gamma\gamma$ signal ($m_H = 120$)
Backgd: $\gamma + \text{jet}$ $p_T^{1} > 40$, $p_T^{2} > 15$

Rej > 11

C. Charlot, HCP2006, Electron and photon ID at ATLAS and CMS
Electron identification

- Electromagnetic object from calo information
- Track matching ($\Delta\eta$, $\Delta\phi$), E/p
- Use of transition radiation (ATLAS)
- Isolation
- ID per class (CMS)
- Identification of conversions
\(\pi^0/\gamma \) separation

- Once isolation has been applied, only jet with little hadronic activity remains

Results from TB 2002 @50 GeV

Results from G4 full simulation

\[R_{p0} \text{(data)} = 3.18 \pm 0.12 \text{ (stat)} \]
\[R_{p0} \text{(MC)} = 3.29 \pm 0.10 \text{ (stat)} \]

\[\varepsilon_{\gamma} = 90\% \]

C. Charlot, HCP2006, Electron and photon ID at ATLAS and CMS
Electrons from b’s

- Reconstruction of electrons close to jet is difficult
 - Dedicated algorithm required
- ATLAS low p_T algorithm:
 - Build cluster around extrapolated track
 - Calculate cluster properties
 - pdf and neural net for ID
- Performances on single tracks
- Soft e^- b-tagging efficiency
 - ATLAS: 60% for R=150 (WH)
 - CMS: 60-70% above 10 GeV
 - miss rate ~1.5% (tt and QCD)

\[\begin{align*}
\text{ATLAS: } 60\% \text{ for } R=150 \text{ (WH)} \\
\text{CMS: } 60-70\% \text{ above } 10 \text{ GeV} \\
\text{miss rate } \sim 1.5\% \text{ (tt and QCD)}
\end{align*}\]
Electron and photon ID are essential ingredients for new physics at LHC

In situ calibration procedures are established

Material budget is a key issue
 - Impact the reconstruction efficiency
 - Degrades performances

Isolation is a very powerful tool

Final ID using shape and match variables

Dedicated algorithms needed for e- from b’s