Machine Learning with DBOS

Robert Redmond*
MIT

Nathan W. Weckwerth*
MIT

Brian S. Xia*
MIT

Qian Li
Stanford University

Peter Kraft
Stanford University

Çağatay Demiralp
Sigma Computing

Michael Stonebraker
MIT

ABSTRACT

We recently proposed a new cluster operating system stack, DBOS, centered on a DBMS. DBOS enables unique support for ML applications by encapsulating ML code within stored procedures, centralizing ancillary ML data, providing security built into the underlying DBMS, co-locating ML code and data, and tracking data and workflow provenance.

Here we demonstrate a subset of these benefits around two ML applications. We first show that image classification and object detection models using GPUs can be served as DBOS stored procedures with performance competitive to existing systems. We then present a 1D CNN trained to detect anomalies in HTTP requests on DBOS-backed web services, achieving SOTA results. We use this model to develop an interactive anomaly detection system and evaluate it through qualitative user feedback, demonstrating its usefulness as a proof of concept for future work to develop learned real-time security services on top of DBOS.

KEYWORDS
database-oriented operating system, machine learning, anomaly detection, heterogeneous hardware

1 INTRODUCTION

We earlier introduced the database-oriented operating system (DBOS), a new operating system stack [37] that stores all system and application state in database tables and executes the operations on state as transactions. We have been building and experimenting with it in phases since then. DBOS offers several benefits over traditional OSes, which we discuss in detail elsewhere [23, 37]. Some of the DBOS benefits are directly relevant to machine learning (ML). In this paper, we first discuss these benefits in general. We then demonstrate the practicability and scalability for a cross-section of them through two application cases: (1) Serving GPU-accelerated deep ML models on DBOS, where programs are implemented and executed as stored procedures, and (2) developing an end-to-end anomaly detection service, where the driving ML model and the affordances of the interactive visual analysis interface leverage provenance data for training and contextualization, respectively.

ML has become ubiquitous with applications across domains [4] from molecular biology to law. ML models are increasingly used to automate and augment software systems and user tasks, causing many applications to be redesigned [19, 43]. ML is, however, typically built on top of most systems as secondary services or applications. It is often difficult for developers to find adequate training data, address privacy and scalability concerns, or track and manage updates to data as well as models. Application and system software would benefit from an OS stack that provides first-class support for ML development and deployment. DBOS offers several advantages in this context.

Data and Code Together While most existing cloud systems disaggregate compute and data, DBOS tightly integrates them, co-designing its function execution (stored procedure) subsystem with a distributed DBMS. Since ML development and serving are data-intensive, DBOS provides significant performance gains for data-intensive operations by bringing data and code together [23]. Its serverless environment reduces latencies due to data transfers over network, and simplifies task scheduling and memory management, enabling performances exceeding those provided by Amazon Lambda [1] and Open Whisk [9].

Security and Privacy With the increasing importance of data protection and privacy requirements (e.g., GDPR and HIPAA), challenges in sandboxing model training and serving have become a rate-limiting factor in adopting ML in the current multitenant cloud computing settings. As a result of the above design choice, co-locating data and code, DBOS executes all user applications and OS services as stored procedures. This in turn provides a time-tested means for sandboxing ML development and serving, benefiting from the built-in access control mechanisms of the underlying DBMS. DBOS’s program execution model also offers an effective solution for training and serving ML models without transferring users’ data outside the database. This preempts and simplifies a multitude of privacy and security concerns along with associated contractual hurdles in ML model development and serving in enterprises. We can further adopt recent work [2, 14] on database security and privacy into DBOS.

Serverless Computation Workflow DBOS provides a function-as-a-service, or serverless, model of computation [23] where users write large programs as graphs of smaller functions and submit these to a remote service for execution. Serverless computing is

*Authors contributed equally to this research.

This paper is published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their personal and corporate Web sites with the appropriate attribution, provided that you attribute the original work to the authors and AIDB 2022. 4th International Workshop on Applied AI for Database Systems and Applications (AIDB ’22). September 5th, 2022, Sydney, Australia.
becoming popular because it enables transparent application auto-
scaling, dramatically reducing the complexity of managing cloud services [18]. We believe a serverless computing model will greatly
benefit ML development and deployment, which often must run at
cscale in distributed settings.

Data Governance and Observability: Developing and deploying
ML models is an iterative process based on trial and error. ML
developers experiment with new datasets, models, and parameters
to achieve their modeling goals. ML models also often need to
be deployed and regularly updated to improve performance or
preserve them against shifts in data distributions that may occur
in application domains. DBOS makes model management [27, 40,
45] easier by centralizing and tracking relevant model data and
parameters. Since model performance is often determined by
the quality and the size of training data, reproducing various versions
or checkpoints in this process is critical for debugging. The data and
workflow provenance of DBOS offers opportunities to improve the
ML development (e.g., training, debugging, introspection, etc.) and
serving experience. DBOS augments data provenance information
with workflow provenance to further facilitate interpretability. It
records executions of user functions along with related metadata
and associates them with data provenance information. Moreover,
since we co-locate data and compute, we can potentially leverage
ideas from prior work [28] to automatically capture fine-grained
data provenance.

Support for Heterogeneous Hardware: Hardware like GPUs,
TPUs, SSDs, and FPGAs have become omnipresent in compute
clusters, bringing constraints as well as optimization opportunities
for ML and other data-centric applications at scale. Performant
ML models heavily rely on heterogeneous hardware such as GPUs
and TPUs. DBOS proposes directly supporting and managing such
hardware through its stored procedure interface freeing users from
the headaches of provisioning.

Training Data: Given the current state of ML technology centered
on high-capacity models, the availability of large-scale training data
is perhaps the most important requirement for wider and deeper
adoption of ML. The data generated by DBOS provenance tracking
can facilitate the integration of ML to improve core OS components
as well as applications built on top of it.

In the following, we present results from two of our ongoing ML-
related projects around DBOS. In the first project (Section 2), we
investigate the performance of serving ML models in DBOS stored
procedures while using heterogeneous hardware such as GPUs. We
show that image classification and object detection models using
GPUs can be served as DBOS stored procedures at scale without
incurring significant performance loss. In the second project (Sec-
tion 3), we demonstrate how provenance data collected by DBOS
can be used to develop ML-driven applications to augment system
services. To that end, we present an ML model trained on HTTP
request logs collected by a DBOS-backed web service called Nectar
Network.1 Using byte pair encoding along with a 1D CNN, we
achieve state-of-the-art (SOTA) performance. We use this model
to drive an interactive anomaly detection system and demonstrate its
usefulness through the qualitative feedback we collect.

1https://github.com/DBOS-project/apiary/tree/main/postgres-demo

![Figure 1: DBOS architecture for using external services. Upward lines represent the flow of data originating from the underlying database. Downward lines represent the flow of information computed by an external process.]

2 HETEROGENEOUS HARDWARE SUPPORT

DBOS proposes built-in support for heterogeneous hardware in a
serverless computation platform with tightly integrated computa-
tion and storage layers. Combined with data and workflow prove-
nance tracking, this makes DBOS compelling for developers to use
in data- and compute-intensive tasks, including machine learning
development and deployment. DBOS can run compute-intensive
tasks as external services and thus utilize specialized hardware such
as GPUs. Below we briefly describe the asynchronous programming
model architecture of DBOS and then results from ML models we
deployed using it.

2.1 System Architecture

In DBOS, programmers develop applications as a collection of
stored procedures, which use embedded SQL queries to commu-
nicate with the underlying SQL DBMS (VoltDB [38] in our case)
instance. These stored procedures run natively as ACID transac-
tions in the database. VoltDB achieves high OLTP performance
in part by a single-threaded-run-to-completion stored procedure
execution model. However, this model is ill-suited for computa-
tionally intense tasks such as ML. To circumvent this problem, DBOS
enables developers to asynchronously invoke stateless functions
that are not tied to the database. These stateless functions connect
via TCP to an external process that manages the computation. Fig-
ure 1 shows the high-level architecture of DBOS’s asynchronous
programming model.

The entry point for an end-user to invoke a compute-intensive
task is a single primary stored procedure. This stored procedure
retrieves data from the database and asynchronously invokes a
stateless function, and the primary stored procedure also asyn-
chronously invokes another stored procedure to handle the return
value from the stateless function. This stateless function does not
have access to the database and thus can be run concurrently with
other stored procedures. It connects over TCP to a long-running
An external process is a long-running process that accepts TCP connections from potentially many stateless functions. This has several advantages over doing computation directly in stateless functions: (1) The external process can initialize computation structures (e.g., loading saved ML models) before receiving any connections, eliminating potential long delays in computation. (2) The limitation on the amount of information returned by a stored procedure means that data from multiple stateless functions may need to be pooled to run a single computation. (3) Transferring data over TCP means the external process may be run in any high-level language, not just Java, and may potentially be run on any machine. Figure 2 shows the structure of a message sent to the external process. The external process determines which task the identifier denoting which task the message belongs to and, if necessary, an identifier resolving which piece of the puzzle the message represents when pooling data from multiple stateless functions.

2.2 Evaluation

Now we evaluate this architecture for serving image classification models.

Datasets and Models

We select three popular image classification datasets with images at different scales: MNIST [22], ImageNet [7], and COCO [25]. Figure 3 shows an example from each dataset. We believe that our datasets and corresponding models represent realistic use cases for a user deploying an image classification model.

The MNIST dataset consists of 70,000 images of handwritten digits. Each image is black and white and has a fairly small size of 28×28 pixels. The MNIST model we use has a single hidden layer with 512 nodes (or units). The ImageNet dataset is an image dataset organized by the WordNet hierarchy [39], containing over 1.4M images. The images in ImageNet are scrapped from various sources on the web and vary significantly in size, with an average size of around 470×390 pixels—most models often resize the images to a standard 256×256 or 224×224 pixels before using them. Training a model to perform with high accuracy on the ImageNet dataset can be quite costly compared to training a classifier for the MNIST dataset. Since developing novel or extremely accurate models is not the goal of our evaluation, we consider only the standard 1,000 categories that are used by the ILSVRC challenge [34], an annual image classification competition run by the curators of ImageNet. More importantly, we perform transfer learning using a pre-trained headless model [15]. The pre-trained model uses the MobileNetV2 [35] architecture and was changing the task ID referenced in Figure 2 to tell the external process which purpose to use it for. (2) Inference and training can be performed immediately by the external process, or it can wait until a certain batch size appears. This allows users to balance work done by the external process between different tasks or prioritize a specific task over others. (3) The models themselves can be stored in DBOS and loaded into the external process by simply storing and sending 1MB chunks of the serialized model. Combined with DBOS’s robust provenance system, this allows users to easily track not only which data was used for training and inference, but also the history of the model itself as it is trained on new data or experiences architectural changes from the end user.

In our current implementation, we assume each compute intensive task can run in a single external process. However, it is possible to extend our system to interact with a group of external processes for supporting distributed tasks, for example, large-scale ML models (e.g., OpenAI GPT-3) inferences.

Figure 2: Structure of a message sent to the external process. Each message includes an identifier denoting which task the message belongs to and, if necessary, an identifier resolving which piece of the puzzle the message represents when pooling data from multiple stateless functions.

Figure 3: Example images from each dataset from left to right: MNIST, ImageNet, and COCO.
Table 1 and Figure 4 respectively show the inference (testing) overhead and amortized latencies across datasets. The results are promising, with overheads of less than 10% when compared with TensorFlow-Serving for both the ImageNet and COCO datasets, which contain significantly larger images than the MNIST dataset. Even for the MNIST dataset, with enough invocations of the primary stored procedure the overhead drops to just over 10%, and a single invocation yields performance just under 30% worse than that of TensorFlow-Serving. In general, the performance hit incurred by deploying machine learning models using DBOS is negligible compared to the cost of computation. We discuss the results per model in more detail below.

While simple, our MNIST model achieved 96% accuracy or more on the testing set. Since the MNIST images are only 28×28 pixels and they are black and white, each only takes up 784 bytes, indicating 1,200 images could comfortably fit into a single MB and thus we fetch this many with each invocation of the primary stored procedure. The external process simply returns the classification of each image. We pay a relatively high overhead compared to both model execution time and TensorFlow-Serving, especially when only invoking a single stored procedure. We can also see in Figure 4 that the GPU is not dramatically better than the CPU for this example. Both of these facts are understandable as the computation here is relatively simple compared to the other inference tasks, with inference taking only a few microseconds for each image. Even so, the overhead is not too large; with 1,000 invocations of the primary stored procedure the overhead against TensorFlow-Serving falls to just over 10% and the overhead against the base model execution time is 23.8%.

The ImageNet images have been scaled to 224×224 pixels and they are color images, suggesting 6 images can comfortably fit into 1MB. Thus we fetch 6 images with each invocation of the primary stored procedure. The external process simply returns the classification of each image. Here the overhead against model execution time and TensorFlow-Serving is, unsurprisingly, drastically better than for the MNIST example. Note that for this model the GPU outperforms the CPU by a factor of 3 (Figure 4) due to the computation being more complex. For our system using DBOS on a GPU, even when invoking a single stored procedure the overhead against TensorFlow-Serving is less than 10%, dropping to just 5% at 1,000 invocations.

The COCO images have been scaled to 512×512 pixels and they are color images, suggesting only a single image can fit within 1MB. Thus each invocation of the primary stored procedure fetches a single image. For this example the external process returns more than just a simple classification for each image; instead, it returns data corresponding to multiple objects identified in the image and estimated bounding boxes for each. Functionally this does not change...
One important question is what can be answered through such a data provenance system. Below are some potential queries of interest.

- **Table history.** Who was the last person to write to a particular table? Which table had the most updates over an arbitrary time frame?
- **Compromised users.** What are all of the blocks that were read or written by a compromised user over an arbitrary time frame? Who are all of the users that read a compromised block over an arbitrary time frame?
- **Chain of provenance.** What are all of the blocks that may have resulted from reading a particular block (downstream)? What are all of the blocks that may have influenced a particular block (upstream)/?
- **Debugging.** What is the exact state of a table at a particular point in time?

Web Application Attacks
Web applications have quickly become one of the most popular platforms for information and service delivery [6, 24]. They have several features that have led to their success, such as remote accessibility, cross-platform compatibility, and fast development. As a result, web applications are also used for providing services such as healthcare and financial services that often handle sensitive data. On the other hand, web applications are the most common attack vector (a means by which an attacker can gain access to a network server) used for intrusion, resulting in the most breaches and compromising data [3]. In the following sections, we detail the most common types of web application attacks, including the methodology and end goal.

SQL injection A SQL injection attack occurs when a malicious user tampers with the SQL queries sent by the web application to its corresponding database [8, 24]. This occurs when SQL keywords or operators are inserted into queries without input sanitization to explicitly remove or filter them out. This can be done through malevolent insertions into user inputs (e.g. fillable fields), cookies, and/or HTTP headers. Importantly, the contents of the insertion dictate whether the attack is of the first- or second-order. First-order attacks are executed immediately with the intent to return results immediately. In other words, the entire attack is localized within the insertion. A concrete example is using the union keyword to attack malicious SQL queries to the end of standard SQL queries. Second-order attacks rely on an initial insertion that lies dormant for some period of time, usually until a follow-up insertion prompts the execution of the first insertion. A concrete example is inserting an initial malicious query that can be prompted at a later date. The follow-up query would return metadata on users who have accessed the web application since the initial insertion. The overall purpose of these attacks may be to steal credentials, alter data, delete data, and/or access connected resources.

Cross-site scripting Cross-site scripting (XSS) occurs when a malicious user is able to execute custom scripts in a victim’s browser [24]. This typically occurs when web responses are unsanitized, meaning they are unchecked for special characters/keywords that may lead to unexpected or malicious behavior. This becomes problematic when web applications utilize the same-origin policy, which allows scripts in a webpage to access the data in another webpage if they

Table 1: Overhead incurred by DBOS with the external process running on a GPU in comparison to TensorFlow-Serving and raw model execution time across MNIST, ImageNet, and COCO datasets. The overhead decreases at scale.

	1 Invocation		1,000 Invocations	
	TF-Serving	Execution	TF-Serving	Execution
MNIST	28.8%	72.7%	10.6%	23.8%
ImageNet	9.1%	26.3%	5.0%	16.7%
COCO	5.1%	6.7%	3.3%	9.8%

Table 1: Overhead incurred by DBOS with the external process running on a GPU in comparison to TensorFlow-Serving and raw model execution time across MNIST, ImageNet, and COCO datasets. The overhead decreases at scale.
both come from the same origin (combination of URI scheme, host name, and port number). For instance, an attacker could insert a malicious script into a less secure webpage in order to access confidential information from a more secure webpage. Similar to SQL injection, there are first- and second-order attacks that dictate the timing of when the attack occurs. A first-order attack, such as reflected XSS, prompts the user to click on a custom link which delivers an XSS payload to the web application. This payload allows the attacker to perform any action that the user would be able to perform. A second-order attack, such as persistent XSS, may rely on sending the XSS payload to a back-end database (e.g. through usernames, comments, forum posts, etc.) that gets triggered once a victim loads a webpage containing the relevant information. These attacks are often used to steal sensitive information about a victim such as credit card information, medical records, and/or cookie details.

Distributed denial-of-service Distributed denial-of-service (DDoS) occurs when a malicious user overwhelms a target resource with superfluous traffic, rendering the resource unable to respond to legitimate traffic in a timely manner [33]. It should be noted that the superfluous traffic comes from a wide variety of sources (i.e. the “distributed” aspect), which makes it much more difficult to differentiate and block the multiple sources of such traffic. This attack is not specific to web applications, but it remains one of the most common attack patterns due to its generality and effectiveness. The primary purpose of a DDoS attack is to render a web application inoperable, thereby disrupting its normal function and inconveniencing its users. Some secondary purposes that directly result from a DDoS attack include extortion, reputational damage, and/or financial drain.

Nectar Network Nectar Network is a simple web application developed on top of DBOS. It serves as a rudimentary social networking site and is publicly accessible at nectarnetwork.org. We made Nectar Network publicly available in order to capture real-world internet traffic, thereby allowing us to test DBOS provenance capture and develop real-time anomaly detection using a realistic web application deployment. All HTTP requests are logged and stored in Vertica [21] using the fields shown in Figure 5. This schema loosely follows the W3C extended logging format as described by Microsoft [44]. The format contains enough information to form a complete history of an HTTP request.

3.1 Model

Our model (Figure 6) has two basic components: tokenization and classification. The tokenization component uses byte-level byte pair encoding (BBPE) to break down the input bytes into byte tokens that hold semantic meaning. In the classification step, a convolutional neural network (CNN) takes the token bytes as input and outputs the predicted probability of anomaly.

Byte-level Byte Pair Encoding Byte pair encoding (BPE) was introduced as a method of compressing strings [10]. The technique uses the characters of a string as tokens, and additionally adds tokens representing the most common combinations of characters present in a string. By doing so BPE is able to outperform Lempel–Ziv–Welch compression in terms of compressed data size at the cost of increased time for compression. Note that after tokenization, there is a dictionary mapping seen characters to assigned tokens known commonly as a vocabulary. Because BPE can tokenize a string without loss of information, it can serve as a tokenizer for language machine learning techniques [36]. The authors report that this tokenization method serves well for vocabularies in which there are very rare words and words that are out of vocabulary. Byte-level byte pair encoding (BBPE) is a tokenization method that builds on BPE but operates on bytes instead of characters [42]. This is particularly powerful because BBPE guarantees that there will be no unknown tokens. In the worst case, an input can be tokenized as its individual bytes, meaning unique characters that have not been seen before can still be tokenized. Since HTTP requests and other machine code often includes unique characters, and in particular injection attacks use unique characters to confuse web application, this characteristic makes BBPE a strong choice for tokenizing our HTTP requests.

Incoming HTTP requests are formatted into a single string which includes all of the fields separated by spaces. An example string is “GET http://url.com/path HTTP/1.1 [User-Agent] [Content-Length] ...”, in which ... represents additional HTTP fields. We then collect and use these to train the BBPE tokenizer.

Convolutional Neural Network (CNN) Once BBPE tokenizes the HTTP request, the request is classified by a CNN model. The full architecture of the model is shown in Figure 6.

Token embeddings Earlier work [46] shows that learning embedded tokens as part of the CNN works well for task-specific text applications, such as detecting web attacks. This helps the learned embedding relate more closely with the desired classification, in this case, whether an HTTP request is malicious. This stands in
Table 2: 5-fold cross-validation performance across datasets.

Dataset	Accuracy	Precision	Recall	F1	F1std
CSIC	0.999	0.999	0.998	0.998	4.95x10^-4
Sigma	0.999	0.996	0.996	0.996	27.4x10^-4
Nectar	0.999	0.999	0.999	0.999	2.26x10^-4

3.2 Model Evaluation

Metrics We report the precision, recall, and F1 scores along with the accuracy for our model’s performance across evaluation datasets and conditions. Note that the accuracy score alone provides an incomplete picture of performance, particularly when we have unbalanced class distributions in datasets. For example, in the Nectar Network dataset, a high proportion of events captured are malicious in nature. As such, a classifier could label all events as malicious and still achieve a high accuracy due to the low total number of non-malicious events.

Datasets We use three HTTP request datasets with different characteristics for our evaluation.

CSIC The CSIC dataset is a public benchmark [12], which earlier methods of anomaly detection often used to report results. This dataset consists of generated traffic, and so the labels are known to be accurate. We use this dataset to compare our model with a select sample of earlier work.

Sigma Computing The CSIC dataset is automatically generated and fairly balanced. In real-world applications, this is rarely the case. The Sigma Computing dataset contains anonymized HTTP logs at Sigma Computing [5, 11], representing real-world activity. The logs were labeled by Cloudflare. The majority of the traffic logged is benign in nature. Less than 4% of the events logged are malicious.

Nectar Network This dataset consists of HTTP requests from Nectar Network provenance capture which was labeled using the “Registered” ruleset for Snort v2.9.19. This ruleset contains 43,091 rules, with any violations being logged and the corresponding entry being labeled as anomalous. Entries with no rule violations were considered to be benign. Since the website is available for public access, the majority of the traffic it generated was from webcrawlers or malicious users. As a result, the data is heavily weighted towards events labeled as malicious, with only about 7% of the traffic being benign.

Baselines We compare our model with three top-performing models selected from the literature: HTTP2vec [13], Code Level CNN [17], and SAE [41]. HTTP2vec also uses BBPE to tokenize the inputs, but it obtains the token embeddings via RoBERTa [26] and feeds them as input features to a support vector machine classifier. Code Level CNN uses a similar CNN architecture, but only tokenizes the inputs based on special characters. SAE uses n-grams before extracting features using a stacked autoencoder.

Results Table 2 shows the performance of our model measured through a 5-fold cross-validation on all of the datasets. The results reported are the averages over the 5 splits, along with the standard deviation of the F1 score. The model achieves high prediction performance across all metrics and datasets.

Table 3 depicts how the performance of the model changes with different amounts of training data. While performance does decrease, it’s surprising just how well the model can do with only 5% (~3,000) examples to train on. This suggests that BBPE, which is trained on the entire dataset, is doing the heavy lifting for representation learning and making it easier for the CNN to learn a proper classifier. One possible instance of this lies in SQL injection attacks, which often obscure their intent by using URL encoding. %25 decodes as %, which is the URL escape character. This can be exploited against poorly secured web applications. Since BBPE operates at the byte level, it is able to recognize %25 as a unique token, which gives the CNN a very easy way to identify this as a feature of attacks.

Table 3: Performance of our model on the CSIC dataset with decreasing ratios of training data used in train-test splits.

% Train	Accuracy	Precision	Recall	F1
80%	0.998	0.997	0.997	0.997
50%	0.995	0.994	0.995	0.994
25%	0.985	0.969	0.994	0.982
10%	0.957	0.907	0.996	0.949
5%	0.953	0.946	0.938	0.942

Table 4: Performance of models on the CSIC dataset.

Method	F1
BBPE CNN (ours)	0.998
HTTP2vec [13]	0.969
Code Level CNN [17]	0.963
SAE [41]	0.841
Table 4 compares the performance of our model with the baselines on the CSIC dataset. Our model outperforms the best performing baseline by about 3% in F1 score.

3.3 User Interface

We develop an interactive visual analysis tool driven by our ML model above. Our goal is twofold: to help security administrators to further investigate predicted anomalies within the context of DBOS provenance data, and to demonstrate an end-to-end utilization of DBOS provenance tracking. We below focus on the user interface of the tool and its evaluation.

The user interface has three main views (or pages), which can be navigated through three corresponding tabs. The first tab (default tab on launch) is the overview page (Figure 7), which allows the user to apply various filters to the provenance data for interactive display. The second tab is the search page (Figure 9), which allows the user to directly query the provenance data using SQL commands as input. The third tab is the stats page (Figure 10), which allows the user to visualize anomaly trends through a historical line graph of detected anomalies.

Prioritizing Anomalies The goal of the overview page is to provide an interface for a user to filter anomalies based on the available logged fields and an anomaly threshold. This allows for anomaly prioritization based on the filtering options selected. An example of how this process is enacted can be seen in Figure 7. The left sidebar specifies the available filtering options and the right main content displays the output data table based on the selected filtering options.

The sidebar consists of two components; the anomaly threshold and advanced search options. The anomaly threshold is a slider between 0 to 1 that specifies the minimum value of the predicted label that should be displayed in the output data table. The advanced search view enables a user to easily filter for any number of HTTP fields with associated values. The user can interactively compose filtering predicates using AND and OR to construct compound filters. The system converts interactively expressed search filters in this view into SQL commands, which are then shown in the main content panel. For reference, the SQL command corresponding to the filtering options selected in Figure 7 is:

```
SELECT LOG_TIMESTAMP, RAW_REQUEST, MODEL_LABEL, SNORT_LABEL
FROM HTTPLOG_REQUEST_LABELED
WHERE MODEL_LABEL > 0.70
AND RAW_REQUEST LIKE '%getRemoteAddr': '81.174.251.27'%' AND RAW_REQUEST LIKE '%getRequestURI': '%index.php' % ORDER BY MODEL_LABEL.
```

For more complex searches (e.g., those based on nested conditions), users can directly enter custom raw SQL queries in the search tab. The data table shows a filtered list of labeled entries in the database. There are three columns that correspond to the "EntryID", "Predicted Label", and "Snort Label". The EntryIDs are the timestamps that correspond to unique HTTP requests. Importantly, each timestamp is a clickable link that generates a popup containing the raw HTTP field-value pairs in a human-readable format. Figure 8 displays a popup that results from clicking on the first EntryID from the data table in Figure 7. Note that the value of "getRemoteAddr" matches the input value of "81.174.251.27", and the value of "getRequestURI" matches the input value of "%index.php", in which % denotes a wildcard character that represents zero or more characters. The predicted label is the outputted probability from the
Analyzing Historical Data

work requests. The output is consistent with the anomaly threshold
An additional quality of life feature is that queries can be submitted
The web application operates under the assumption that it is be-
view of anomalous behavior by visualizing aggregate anomalous
original query string.
the web application handles it gracefully by displaying a two-entry
above the table for ease of use. In the event of an invalid SQL query,
unique. Repeatedly submitting the same query will simply result in
the previous 10 submissions, and each submission in the history is
clicking on the associated link. Note that the history only maintains
generated under the history section with the exact text submitted.
by either using the submit button or pressing the keyboard enter
knowledge of the underlying Vertica provenance database. This is done by inputting and executing arbitrary
SQL queries, which gives the flexibility needed to handle complex
investigations. An example SQL command has been executed and
displayed in Figure 9. The left sidebar specifies user inputs and
options, and the main content panel displays the result of the SQL
query. The sidebar provides several features to facilitate the search
process. The top checkbox dictates whether the user text input
below should be cleared every time a new query is submitted. Im-
portantly, queries are not sanitized or modified before submission.
The web application operates under the assumption that it is be-
ing used by a security administrator or other party with intimate
knowledge of the underlying Vertica provenance database schema.
An additional quality of life feature is that queries can be submitted
by either using the submit button or pressing the keyboard enter
button. Once a query has been submitted and displayed, a link is
generated under the history section with the exact text submitted.
This allows the user to easily resubmit a previous query by simply
clicking on the associated link. Note that the history only maintains
the previous 10 submissions, and each submission in the history is
unique. Repeatedly submitting the same query will simply result in
that query staying at the top of history.

Investigating Anomalies The main function of the search page is
to enable the user to directly query the underlying Vertica prove-
nance database. This is done by inputting and executing arbitrary
SQL queries, which gives the flexibility needed to handle complex
investigations. An example SQL command has been executed and
displayed in Figure 9. The left sidebar specifies user inputs and
options, and the main content panel displays the result of the SQL
query. The sidebar provides several features to facilitate the search
process. The top checkbox dictates whether the user text input
below should be cleared every time a new query is submitted. Im-
portantly, queries are not sanitized or modified before submission.
The web application operates under the assumption that it is be-
ing used by a security administrator or other party with intimate
knowledge of the underlying Vertica provenance database schema.
An additional quality of life feature is that queries can be submitted
by either using the submit button or pressing the keyboard enter
button. Once a query has been submitted and displayed, a link is
generated under the history section with the exact text submitted.
This allows the user to easily resubmit a previous query by simply
clicking on the associated link. Note that the history only maintains
the previous 10 submissions, and each submission in the history is
unique. Repeatedly submitting the same query will simply result in
that query staying at the top of history.

The main panel of the search page (Figure 9) consists of the
Table that results from the most recent query submitted by the user.
Importantly, the text of the most recent query is displayed in bold
above the table for ease of use. In the event of an invalid SQL query,
the web application handles it gracefully by displaying a two-entry
data table that consists of the problematic syntax as well as the
original query string.

Analyzing Historical Data The stats page provides a historical
view of anomalous behavior by visualizing aggregate anomalous
activity over various timeframes and dates. The default settings
and associated line plot are shown in Figure 10. The left sidebar
specifies all available user options, and the main content panel
displays the resulting line plot. There is no submit button as in the
other pages since the line plot reacts automatically to changes or
selections in the user options. This is simply because there are no
text inputs in the stats user options that would cause unnecessary
and excessive queries upon all textual changes whatsoever. Users
can use the historical view to recognize peaks in the number of
attacks that might point to a concerted attack effort or to understand
long-term trends in their security. The sidebar consists of only two
components: the anomaly threshold and the time unit. As in the
overview page, the anomaly threshold dictates the minimum value
at which predicted labels are considered to be truly anomalous. The
time unit has three options: day, hour, and minute. The time unit
indicates the granularity at which anomalies should be aggregated
and displayed in the line plot.

The main view displays an interactive line plot with the selected
user options. Users can select and magnify subsections of the line
graph with brushing. Similarly, users can mouse hover the line
data points and see the corresponding tuple of the exact date
and number of detected anomalies in a tooltip. Overall, users can
download the plot, zoom freely, pan, zoom in, zoom out, autoscale,
reset axes, show the closest data on hover, and compare data on
hover.

3.4 User Interface Evaluation

Throughout the development of the application, we actively sought
out user feedback to improve the application design and better
understand the needs of target users. We conducted a longitudinal
study involving five industry professionals. We collected feedback
through two consecutive studies, a formative (initial) study carried
out at the beginning of the development and a summative (final)
study at the end, using an identical protocol. The participants were
given a brief explanation of the purpose of the web application as
well as a live demonstration of its main features at the time. After
each view was described and displayed in its entirety, each user was
allowed to freely explore the view to their satisfaction. Afterward,
they were given view-specific questions (Table 5) to evaluate the
key aspects of views such as functionality, aesthetics, and ease of
use. Our participants were asked to give numeric scores between
1 (strongly disagree) to 5 (strongly agree) for each question. They
were also given an open-ended prompt at the end of each survey
to provide general feedback and suggestions.
Table 5: Survey questions. We elicited responses for twelve view-specific questions, four per view.

View (Page)	Question
Overview	Q1: How well do you feel you can prioritize anomalies based on the available sidebar options?
	Q2: Does the data table display relevant anomaly information clearly and effectively?
	Q3: Would you consider the layout of the page to be well-organized and aesthetically pleasing?
	Q4: Is it simple and easy to use the provided interface to produce your desired output?
Search	Q5: How well do you feel you can investigate anomalies based on the available sidebar options?
	Q6: Does the data table display relevant anomaly information clearly and effectively?
	Q7: Would you consider the layout of the page to be well-organized and aesthetically pleasing?
	Q8: Is it simple and easy to use the provided interface to produce your desired output?
Stats	Q9: How well do you feel you can understand historical anomaly trends based on the available sidebar options?
	Q10: Does the line plot display relevant anomaly information clearly and effectively?
	Q11: Would you consider the layout of the page to be well-organized and aesthetically pleasing?
	Q12: Is it simple and easy to use the provided interface to produce your desired output?

Initial Study: The initial study was performed to gather formative feedback on the general functionality, design, and implementation of the system. Figure 11 shows the aggregate scores (green) given by the participants after the guided, live demonstration, and free exploration process of each page. Scores were generally above average, but there were some poorer ratings in the overview and search pages that warranted further development. The general feedback regarding both views was that the data table returned by queries was relatively cluttered and lacking in functionality. At the same time, the limited number of available side options in both pages made it difficult to truly prioritize or investigate anomalies in depth.

We implemented several changes based on the initial study to improve the user interface and general functionality of the application. In particular, we implemented a new data table rendering to support search options within the table itself as well as column-specific sorting options (ascending or descending order). At the same time, we removed the column showing the HTTP field-value pairs as plain text as another in the overview page. Instead, we used the timestamps as unique entry IDs with clickable links. When clicked on, these links produced popups that displayed HTTP field-value pairs in a standard table format, making it much more accessible. With respect to the overview sidebar options, the advanced search sidebar options, the unique history provided a much needed quality of life improvement that made investigations much simpler and easier. Users can now recall a previously executed query to see the result again or to make small edits to the query as they explore the data. Additionally, the line plot in the stats page was replaced and rendered using the Plotly package [32] rather than ggplot. This allowed for interactive features including panning, zooming, and brushing incorporated directly into the plot itself.

Final Study: The summative study was performed after incorporating the user feedback from the initial study as we discussed above. Figure 11 shows aggregate responses (purple) obtained from our participants in the final study. Results represent a significant improvement over the initial evaluation, suggesting our revisions on the user interface and the underlying functionalities have been effective.

4 CONCLUSION

DBOS facilitates ML applications by supporting the following three principles.

1) A DBMS for ML applications is a very good idea. The model and all ancillary data should be DBMS-based, for easy querying and versioning. The DBOS design highly encourages this mode of thinking.

2) Co-locating data and computation is a very good idea. Whenever possible, DBOS co-locates computation and data. Anything coded in our programming environment [23] supports this, and many ML operations can be done this way, resulting in a significant performance speedup. Machine learning on specialized hardware cannot leverage co-location; however, DBOS performance using accelerators is similar to that of existing approaches.

3) Automatic provenance support is a very good idea. Not only does this facilitate backing up an ML project so a different path forward can be tried, but also monitoring/real-time/security ML applications can run directly off the provenance data as we showed in this paper.

In summary, ML applications are data intensive and model evolution can be well supported by a versioning system. Such applications benefit from the DBOS architecture, and we expect these ideas will become more prevalent in the future.
REFERENCES

[1] 2014. Amazon Web Services Announces AWS Lambda. https:// press.aboutamazon.com/news-releases/news-release-detail/amazon-web- services-announces-aws-lambda.

[2] 2021. Spyte: Privacy-first Data Management through Pseudonymization and Partitioning., author=Deshpande, Amol. In 2021 Conference on Innovative Data Systems Research (CIDR’21).

[3] Wade Baker, Mark Goudie, Alexander Hutton, C. David Hyland, Jelle Nien- manstvedt, Christopher Novak, David Ostertag, Christopher Porter, Mike Rosen, Bryan Sartin, and Peter Tippett. 2010. Data Breach Investigations Report.

[4] Ruchi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S. Bernstein, Jeanette Borko, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson, Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri Chatterji, Annie Chen, Kathleen Creel, Jared Quincy Davis, Dora Des- nesky, Chris Donahue, Moussa Doumbouya, Ezn Durmus, Stefano Eronen, John Etchemdny, Kavin Ezhayaraj, Li Fei-Fei, Chee Siong Finn, Trevor Gale, Lauren Gillespie, Karan Goei, Noel Goodman, Shelley Grossman, Neel Guha, Tsunoturi Hashimoto, Peter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang, Thomas Icard, Sashin Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl Krauth, Neeraja Kow/centernet/hourglass_

[5] Mateusz Gniewkowski, Henryk Maciejewski, Tomasz R. Surmacz, and Wiktor. csic.es/dataset/

[6] Carmen Torrano Giménez, Alejandro Pérez Villegas, and Gonzalo Álvarez. 2010. HTTP dataset CSIC 2010. https://www.tic.itc.csic.es/dataset/

[7] Phillip Gage. 1994. A New Algorithm for Data Compression. The C User Journal.

[8] Kaizing Huang, Thomas Icard, Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl Krauth, Neeraja Kow, Michael Cafarella, Goetz Graefe, Jeremy Kepner, Christos Kozkasrakis, et al. 2022. A Progress Report on DBOS: A Database-oriented Operating System. In 2022 Conference on Innovative Data Systems Research (CIDR’22).

[9] Xiaowei Li and Yuan Xue. 2014. A survey on server-side approaches to securing web applications. ACM Comput. Surv. 46, 4 (2014), 54:1–54:29. https://doi.org/10.1145/2541315

[10] Yann LeCun and Corinna Cortes. 2010. MNIST handwritten digit database. (2010). http://yann.lecun.com/exdb/mnist/

[11] Qian Li, Peter Kraft, Kostis Kaffes, Athinaogoras Skadadosopoulos, Deepanshu Ku- mas, Jason Li, Michael Cafarella, Goetz Graefe, Jeremy Kepner, Christos Kozkasrakis, et al. 2022. A Progress Report on DBOS: A Database-oriented Operating System. In 2022 Conference on Innovative Data Systems Research (CIDR’22).

[12] Hui Miao, Ang Li, Larry S Davis, and Amol Deshpande. 2017. Modulib: Deep learning lifecycle management. In ICDE.

[13] Kiran-Kumar Muniwawaddy-Ruddy, David A Holland, Uri Braun, and Margo S. Seltzer. 2006. Provenance-aware storage systems.. In Data Management through Pseudonymization and Partitioning., author=Deshpande, Amol. In 2021 Conference on Innovative Data Systems Research (CIDR’21).

[14] Plotly. 2012–2022. Plotly. https://plot.ly.

[15] Google Cloud Platform. 2022. (2022). https://cloud.google.com/

[16] Feel when they are ready, and who. For the record, in 2022, the Google Cloud Platform has released a new feature called the Cloud SQL Proxy. This feature provides a secure connection between your application and the Cloud SQL instance. It can be configured to use any desired authentication method, such as Google Cloud Identity. In this way, you can ensure that your data is protected at all times.

[17] Vaughn Reagan. 2022. Security and privacy in cloud computing. In Proceedings of the 18th Annual Network and Distributed System Security Symposium (NDSS'21), San Diego, California, USA.

[18] Yahoo. 2021. HTTP2vec: Embedding of HTTP Requests for Detection web-services-announces-aws-lambda.

[19] Deepanshu Kumar, Qian Li, Jason Li, Peter Kraft, Athinaogoras Skadadosopoulos, Lalith Suresh, Michael J Cafarella, and Michael Stonebraker. 2021. Data Gov- ernance in a Database Operating System (DBOS). In Heterogeneous Data Management, Polystores, and Analytics for Healthcare - VLDB Workshops, Poly 2021 and IFDBM 2021, Virtual Event, August 20, 2021, Revised Selected Papers (Lecture Notes in Computer Science, Vol 12921). EL Kindi Renig, Vajiy Gadeppally, Timothy G. Mattson, Michael Stonebraker, Tim Kraska, Fudong Wang, Gang Lu, Jun Kong, and Alevtina Dubovitskaya (Eds.). Springer, 43–59. https://doi.org/10.1007/978-3-030-93663-1_4

[20] Andrew Lamb, Matt Fuller, Ramakrishna Varadarajan, Nga Tran, Ben Vandiver, Lyric Doshi, and Chuck Bear. 2012. The Vertica Analytic Database. C-Store 7 Years Later. Proc. VLDB Endow. 5, 12 (2012), 1790–1801. https://doi.org/10.14778/ 2367502.2367518

[21] Andrei Karpathy. 2017. Software 2.0. https://medium.com/karpathy/software- 2-0-a64125b37c5. Accessed: 2022-05-27.

[22] 2016, Berlin, Germany, Volume 1: Long Papers

[23] Anand Kulkarni, Richard Jones, and Michael Stonebraker. 2005. Into the Cloud: An outsourcing scenario. In Proceedings of the 29th International Conference on Very Large Data Bases (VLDB’03). Morgan Kaufmann, 411–422. https://doi.org/10.1007/978-3-030-36887-5_19

[24] Hadi Maleki, Mohammad Mehdizadeh, and Meysam Shabani. 2022. A Survey on Provenance-based Cloud Storage Systems. IEEE Access, 10:1, 2022, 351–378. https://doi.org/10.1109/ACCESS.2022.3168503

[25] Lyric Doshi, and Chuck Bear. 2012. The Vertica Analytic Database: C-Store 7 Years Later. Proc. VLDB Endow. 5, 12 (2012), 1790–1801. https://doi.org/10.14778/ 2367502.2367518

[26] Andrew Lamb, Matt Fuller, Ramakrishna Varadarajan, Nga Tran, Ben Vandiver, Lyric Doshi, and Chuck Bear. 2012. The Vertica Analytic Database. C-Store 7 Years Later. Proc. VLDB Endow. 5, 12 (2012), 1790–1801. https://doi.org/10.14778/ 2367502.2367518

[27] #cloudinfrastructure #cloudcomputing #cloudstorage #cloudsecurity #cloudcomputingindustry #cloudcomputingstrategies #cloudcomputingarchitectures #cloudcomputingsecurity #cloudcomputingbestpractices #cloudcomputingtrends #cloudcomputingtools
[42] Changhan Wang, Kyunghyun Cho, and Jiatao Gu. 2020. Neural Machine Translation with Byte-Level Subwords. In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020. The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020. AAAI Press, 9154–9160. https://ojs.aaai.org/index.php/AAAI/article/view/6451

[43] Peter Warden. 2017. Deep Learning is Eating Software. https://petewarden.com/2017/11/13/deep-learning-is-eating-software/. Accessed: 2022-05-27.

[44] Steven White, Jason Martinez, David Coulter, Drew Batchelor, Alex Laforge, Mike Jacobs, and Michael Satran. 2021. W3C Logging. https://docs.microsoft.com/en-us/windows/win32/http/w3c-logging.

[45] Matei Zaharia, Andrew Chen, Aaron Davidson, Ali Ghodsi, Sue Ann Hong, Andy Konwinski, Siddharth Murching, Tomas Nykodym, Paul Ogilvie, Mani Parkhe, et al. 2018. Accelerating the machine learning lifecycle with MLflow. IEEE Data Eng. Bull. (2018).

[46] Ming Zhang, Boyi Xu, Shuaibing Lu, and Zhechao Lin. 2017. A Deep Learning Method to Detect Web Attacks Using a Specially Designed CNN. In Neural Information Processing - 24th International Conference, ICONIP 2017, Guangzhou, China, November 14-18, 2017, Proceedings, Part V (Lecture Notes in Computer Science, Vol. 10638) Derong Liu, Shengli Xie, Yanqing Li, Dongbin Zhao, and El-Sayed M. El-Alfy (Eds.). Springer, 828–836. https://doi.org/10.1007/978-3-319-70139-4_84

[47] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl. 2019. Objects as Points. (2019).