Environmental Research Communications

LETTER

Complex imprint of solar variability on tree rings

Alexander Land1,2, Bernd Kromer1, Sabine Remmele1, Nicolas Brehm4 and Lukas Wacker1

1 Institute of Biology (190a), University of Hohenheim, Stuttgart, Germany
2 Silviculture & Forest Growth and Yield, University of Applied Sciences, Rottenburg am Neckar, Germany
3 Institute of Environmental Physics, University of Heidelberg, Heidelberg, Germany
4 Laboratory for Ion Beam Physics, Department of Physics, ETH Zürich, Zürich, Switzerland

E-mail: alexander.land@uni-hohenheim.de

Keywords: 14C production, Europe, solar variability, tree rings

Abstract

Many studies have investigated the role of solar variability in Holocene climate. Beyond sunspot observations, solar activity can be reconstructed from 14C in tree rings. Due to the lack of sub-decadal resolution of 14C records, these studies focused on long-term processes. In this study, we use an annually-resolved 14C record to examine solar variability (e.g. 11-year Schwabe solar cycle) and its connection to European seasonal climate inferred from tree-ring records during the entire past millennium with spectral and wavelet techniques. The 11-year Schwabe solar cycle shows a significant impact in European moisture- and temperature-sensitive tree-ring records. Complex ‘top-down’/ ‘bottom-up’ effects in the strato-tropospheric system are assumed to affect European spring and summer climate with a temporal-shift as evident from observed changes in phase behavior. Significant evidence is also found for the ~60- and ~90-year band during the first half of the past millennium.

1. Introduction

Annually resolved total ring width or maximum latewood density chronologies are powerful tools in paleoclimate studies. For the Northern Hemisphere, numerous datasets exist, mainly covering the previous one to two millennia, which provide insight into climate drivers, such as temperature and precipitation, and they can be used to study the role of internal and external climate forcing. For the latter, signals of solar variability in total ring width chronologies have been widely discussed (Douglass 1919, Hughes 1982, Rigorzo et al 2007, Breitenmoser et al 2012, Prestes et al 2018). So far, direct comparison to solar variability, e.g. the 11-year Schwabe solar cycle, was limited to the interval of sunspot number observations over the past ~250 years. Further back in time, cosmogenic isotopes, mainly 14C preserved in tree rings and 10Be in polar ice cores, provide the best proxies to investigate solar variability (Stuiver and Quay 1980, Solanki et al 2004, Steinhilber et al 2012, Roth and Joos 2013).

The 11-year solar cycle in cosmogenic isotopes was resolved for 1510 CE onwards, obtained in the pioneering work of Stuiver and Braziunas (1993) on annual tree-ring 14C measurements, for AD 998–1510 in Sequoia (Eastoe et al 2019) and during the Spörer solar minimum (Fogtmann-Schulz et al 2019). Eastoe et al found indication of the 11-yr cycle between AD 1000 and 1120, but quote analytical uncertainties as limitation in analysis of this time range. The earlier interval of the Holocene was measured in decadal resolution; hence the Schwabe solar cycle could not be reconstructed, but only longer solar cycles on century scales. However, we recently extended the annual 14C dataset back to 972 CE (Brehm et al in press), enabling the variability of the open solar flux to now be reconstructed for the full previous millennium. It is employed here as reconstructed 14C production (see methods) with high production indicating low solar activity and vice versa. We note that this new 14C production record displays the activity of the Sun more precisely than the sunspot number because the 14C production on Earth is highly influenced by changes in the solar open flux, whereas the sunspot number...
record only yields information about the activity on the Sun’s surface observed visually, and solar open flux exists also during intervals of no sunspots (Owens et al 2012).

It is therefore now feasible to compare total ring width or maximum latewood density records to a \(^{14}\)C production series on annual resolution for the first time in order to derive information of an imprint of the 11-year solar cycle in tree-ring climate proxies during the past millennium.

Here we use three temperature-sensitive (Büntgen et al 2013, Esper et al 2014, Helama et al 2014) and four moisture-sensitive (Griggs et al 2007, Büntgen et al 2011, Wilson et al 2013, Land et al 2019) records from Europe over the period of annually measured \(^{14}\)C. We observe significant cross-correlation of reconstructed moisture and temperature and solar variability, both in the Schwabe solar cycle and in the \(~60\) and \(~90\)-year spectral window.

2. Methods

2.1. Tree-ring records
We used a set of seven tree-ring climate reconstruction series from Europe (figure S1 available online at stacks.iop.org/ERC/2/101003/mmedia). These records were chosen due to their geographical distribution (41–62\(^{\circ}\)N and 30\(^{\circ}\)E–1\(^{\circ}\)W), climate signal (moisture-, temperature-sensitivity), foliage of tree species (evergreen/deciduous) and length of record (from \(~2000\) CE back to at least 1089 CE). These reconstruction records are accessible via the National Oceanic and Atmospheric Administration, NOAA (https://www.ncdc.noaa.gov). Five of the reconstruction records were inferred from total ring width (TRW) data and two from wood density (MXD) measurements holding sub-annual (spring and/or summer) information. In various studies, different methods have been applied to detrend the individual tree-ring series before the final tree-ring record (chronology) was developed (such as regional curve standardization or spline function) to preserve high- to low-frequency variability (for more information regarding the standardization method applied the reader is referred to the original publications). The tree species used in the various studies range from evergreen species, for instance Pine (Pinus sylvestris) and Larch (Larix decidua), to deciduous species, for instance sessile oak (Quercus petrea) and common oak (Quercus robur). For detailed specifications see table S1.

2.2. \(^{14}\)C production
\(^{14}\)C production was calculated from the annual time series of the atmospheric \(^{14}\)C level, \(\Delta^{14}\)C, outlined in detail by (Güttler et al 2015), and expanded in (Brehm et al in press). In short, a carbon cycle box model of 22 boxes (11 for each hemisphere) is used to calculate monthly \(^{14}\)C production from the balance of \(^{14}\)C production and decay, taking into account the carbon fluxes between the carbon reservoirs, and the difference in \(^{14}\)C between annual data, interpolated at monthly intervals.

2.3. Spectral and wavelet analysis
Cross wavelet analysis has been performed with the MATLAB\(^{\circ}\) software package of Grinsted et al (2004). Cross wavelet allows for studying frequencies at different time domains, which is useful when dealing with non-stationary time series. To mitigate the influence of low frequency (>100 years) signals in the \(^{14}\)C production and the tree-ring records a 5–100-year bandpass filter was applied before cross wavelet analysis. This pre-step is necessary because the \(^{14}\)C production record and some of the tree-ring records hold very low-frequency signals tending to suppress the outcome of the cross wavelets at high–to mid-frequencies and thus the interpretation at different time-frequency domains. In the following figures the 5% significance level against red noise is indicated by a black line. Light shading shows cone of influence where edge effects may have great influence.

Additionally, the software REDFIT-X (Björg Ólafsdóttir et al 2016) was used for independent spectral analysis. REDFIT-X applies Lomb-Scargle Fourier transform for the cross-spectral analysis. A Monte Carlo approach was used to estimate the uncertainty associated with phase and coherency. The significance of the spectral content against red noise (first-order autoregressive (AR1) process) was estimated using 1,000 simulations (testing against a proper null hypothesis). The REDFIT-X analysis was performed with the original and unfiltered records as presented in the figures 2(c)–(f) and figure S2.

Applying both methods (cross wavelet and REDFIT-X) ensure for independent interpretation of the results and avoid misinterpretation of spurious behavior.

3. Results and discussion

The datasets used are presented in detail in the methods section and in table S1 and their locations illustrated in figure S1.
In tree-ring research non-climatic growth trends in individual tree-ring series are usually removed by various techniques which often eliminate low frequency, century-scale signals. Hence, here we focus on a spectral window of 5 to 100 years.

We start by analyzing the spectral frequency domains of the 14C production and in the tree-ring record from the Main Region in southern Germany (Land et al. 2019) which has been shown to be highly correlated to local precipitation. As the spectral properties of all time series used cannot be assumed to be stationary, we perform the continuous wavelet transform for 14C production (figure 1(a)) and for the precipitation reconstruction of the Main Region (figure 1(b)) using the Grinsted et al. (2004) toolbox.

As expected for cosmogenic isotopes, significant spectral power is found in 14C production in the 11-year band as well as high spectral power for 60 and 90 years (figures 1(a), 2(f)). However, the continuous wavelet transform exhibits multiple periods in which the solar signal fades out partly during grand minima of the Schwabe solar cycle during the past millennium. These minima are centered at \sim1030 CE (Oort), \sim1310 CE (Wolf), \sim1470 CE (Spörer), \sim1680 CE (Maunder) and \sim1810 CE (Dalton). The continuous wavelet transform shows high power on the \sim60-year frequency domain until \sim1500 CE but appears highly significant only in the second half of the 18th century. The \sim90-year frequency band is inherent in the 14C production record (except of the 15th and 16th century). In the continuous wavelet transform of the precipitation reconstruction of the Main Region (figure 1(b)) the spectral power on the decadal range is wider (8–20 years), including the Schwabe solar cycle, and quite similar to 14C production in the 60-year band. The REDFIT-X analyses confirm these results (figure 2(e)).

When these two records are compared via cross wavelet transform (figure 2(a)) common power for the Schwabe solar cycle between both records is significantly evident and absent only in some intervals of several decades. The independent analysis with REDFIT-X confirms this result (figure 2(c)) with high cross power at 12.6, 14.1 and 56.4-years.

The same conclusion is offered from the visual comparison of the two records, separated in two bandpass regimes, 5–30 and 30–100 years respectively (figure S5). In the 5–30-year band, dominated by the Schwabe solar cycle in 14C production, we observe that the Main Region precipitation record is either synchronous to inverted solar activity, or slightly delayed by 2.4 years (Main Region precipitation record appears later on the non-lagged time scale). We note that some temporal offsets between the precipitation record and 14C production could result from 14C measurement uncertainties, which lead to a standard deviation of the definition of year of 14C production minima/maxima by ca. 2 years (for more details the reader is referred to Brehm et al. in press). On the longer bandwidth window, the precipitation record signal appears strongly anti-correlated to solar activity, even in the trend of the amplitudes.

The discussion thus far has focused on the precipitation record of the Main Region (southern Germany). We arrive at similar conclusions when regarding other published tree-ring chronologies in Europe (figures 3(a)–(f), figure S1–4, table S1).
Once again the Schwabe solar cycle is seen in most of these tree-ring records (figure S2–3) with high cross power to the 14C production (figure 3). The two temperature records of Finnish Lakeland and Northern Europe show the weakest Schwabe solar cycle signal, whereas the temperature record of Eastern Europe equals the Schwabe solar cycle signal of the used precipitation records. Strong common power also exists for the 60- and 90-year bands (except North Aegean) during the first half of the millennium, showing higher common power for the temperature records than for the precipitation records (figure 3, figure S2).

One more measure is given by the cross coherence, a close analogue to the correlation coefficient. The cross coherence of 14C production and all tree-ring records used are provided in figure 2(b), S2, S4.

Significant spectral coherences between 14C production and tree-ring records in the ~11-year frequency band appear scattered during the past millennium (figure 2(b), figure S4) and thus is only significantly expressed for the records Main Region, Central Europe, North Aegean, Eastern Europe and Northern Europe (figure 2(b),
This finding is independent of the sensitivity type (moisture-, temperature-sensitivity) of the tree-ring records or the geographical location.

What could be the cause(s) of a solar imprint to tree growth in Europe? There are many studies, both based on observations (Hood et al 2013, Dorado Liñán et al 2015, Czymzik et al 2016, Turner et al 2016, Wang et al 2017, Laurenz et al 2019) and modelling (Shindell 1999, Scaife et al 2013, Kodera et al 2016, Yukimoto et al 2017) which examine a link between solar variability and (North Atlantic) surface climate. The ‘top-down’ link caused by stratospheric ozone variation between solar minima and maxima onto North Atlantic tropospheric circulation (Kodera and Kuroda 2005, Gray et al 2010, Thiéblemont et al 2015) including blocking at mid latitudes (Moffa-Sánchez et al 2014, Woollings et al 2018) and the delayed response of North Atlantic sea surface temperature to changing atmosphere-ocean heat fluxes (Gray et al 2016, Wang et al 2019) are discussed as potential mechanisms. On the other hand, Chiodo et al (2019) showed that the 11-year solar cycle has no significant influence on the North Atlantic Oscillation, and thus a possible link coupling solar signals and surface climate variability through ‘bottom-up’ effects (e.g. Zhou et al 2018, Frederick et al 2019) seem to be also likely mechanisms, which receive increasing attention. These mechanisms involve cosmic ray flux and solar wind magnetic field, among others, affecting the current flow in the global electric circuit and subsequently influence the weather and climate by electric-cloud microphysics at high but also down to lower latitudes (for detailed explanations see Lam and Tinsley 2016, Frederick et al 2019 and references therein). Nevertheless, the complex response of tropospheric clouds to solar activity (like solar wind and cosmic rays) may account for the 11-year solar cycle in the tree-ring records continuing also during solar minima as well as the intermittency of the found correlations.

There is a complex interplay between purely atmospheric responses at zero lag and slowly changing sea surface temperature, leading to delay of several years (Scaife et al 2013). In Laurenz et al (2019) it is observed that for the past 115 years precipitation in Central and Western Europe is most significantly influenced by solar variability, and that the solar influenced zone of rainfall in June and July in Europe migrates from Britain via Germany into SE Europe. Similarly, Zanchettin et al (2008) find correlations between Po river discharge and regional precipitation in the Po plain with solar variability and North Atlantic Oscillation.

4. Conclusions

Most previous studies focused on solar influence on North Atlantic winter climate or long-term solar variability on Earth’s climate due to missing annually resolved 14C records. For the first time European tree-ring records and 14C production, both annually-resolved, have been investigated regarding their common signals for the full past millennium. Thus, this study extends the ongoing discussion twofold: (1) the tree-ring climate proxies used

Figure 3. Cross wavelet transform of 14C production record and European tree-ring reconstruction series. Moisture-sensitive series from a, South-central England (Wilson et al 2013), b, Central Europe (Büntgen et al 2011), c, North Aegean (northeastern Greece and northwestern Turkey, (Griggs et al 2007)) and temperature-sensitive series from d, Eastern Europe (greater Tatra region, (Büntgen et al 2013)), e, Finnish Lakeland (Helama et al 2014), f, Northern Europe (Esper et al 2014). Black line indicates significance at 5% level and light shadings for cone of influence where edge effects may have great influence.
here are sensitive to spring and/or summer climate and (2) the annual resolution of tree-ring chronologies and the reconstructed annual 14C production open the view into the spectral band of the 11-year Schwabe solar cycle.

We find significant Schwabe-cycle signals in European tree growth indicating a clear forcing of the respective regional climate by changing solar activity on this short-term timescale. However, the previously mentioned ‘top-down’/’bottom-up’ links are complex and may lead to a time delay at a specific geographical area which is finally manifested in the tree-ring records. The presented results show the complexity of the Sun-tree interaction at high-frequency variability and underlines at the same time that further studies on regional as well as on hemispheric/global scales are required to resolve the legacy of A E Douglass.

Acknowledgments

We thank Margaret Eppli for language editing. The authors declare no competing interests.

Author contributions

A L, B K and S R performed the spectral and wavelet analysis. N B and L W modelled the 14C production inferred from annual radiocarbon measurements. A L, B K, S R, N B and L W designed the research. All authors helped in discussing ideas, interpreting results and writing the paper.

Correspondence and requests for materials should be addressed to A L.

ORCID iDs

Alexander Land https://orcid.org/0000-0002-8579-9880
Nicolas Brehm https://orcid.org/0000-0003-0248-7345

References

Björn Ólafsdóttir K, Schulz M and Mudelsee M 2016 REDFIT-X: cross-spectral analysis of unevenly spaced paleoclimate time series Comput. Geosci. 91 11–8
Brehm N et al in press Radiocarbon in tree-rings reveals the solar 11-yr cycle over the last millennium Nature Geosci Breitenmoser P, Beer J, Brönnimann S, Frank D, Steinhilber F and Wanner H 2012 Solar and volcanic fingerprints in tree-ring chronologies over the past 2000 years Palaeogeogr. Palaeoclimatol. Palaeoecol. 313–314 127–39
Büntgen U et al 2011 2500 years of European climate variability and human susceptibility Science 331 578–82
Büntgen U, Kyncl T, Ginzler C, Jacka D S, Esper J, Tegel W, Heussner K-U and Kyncl J 2013 Filling the Eastern European gap in millennium-long temperature reconstructions Proc. Natl Acad. Sci. 110 1773–8
Chiodo G, Oehrlein J, Polvani L M, Fyfe J C and Smith A K 2019 Insignificant influence of the 11-year solar cycle on the North Atlantic Oscillation Nature Geosci 12 94–9
Czmyzik M, Muscheler R and Brauer A 2016 Solar modulation of flood frequency in central Europe during spring and summer on interannual to multi-centennial timescales Clim. Past 12 799–805
Dorado Lían I, Zorita E, González-Rouco F, Heinrich I, Campello F, Muntén E, Andreu-Hayles L and Gutiérrez E 2015 Eight–hundred years of summer temperature variations in the southeast of the Iberian Peninsula reconstructed from tree rings Clim. Dyn. 44 75–93
Douglass A E 1919 A Study of the Annual Rings of Trees in Relation to Climate and Solar Activity (Washington: Carnegie Institution of Washington)
Eastoe C J, Tuck C S and Touchan R 2019 14C and 13C in Annual Tree-Ring Samples from Sequoiadendron Giganteum, AD 998–1510: solar cycles and climate ats/ps-rc 61 661–80
Esper J, Dührhorn E, Krusic P J, Timonen M and Büntgen U 2014 Northern European summer temperature variations over the Common Era from integrated tree-ring density records J. Quaternary Sci. 29 487–94
Fogtmann-Schulz A, Kudsk S G K, Trant P L K, Baattinger C, Karoff C, Olsen J and Knudsen M F 2019 Variations in solar activity across the Sproer minimum based on radiocarbon in Danish Oak Geophys. Res. Lett. 46 1617–23
Frederick J E, Tinsley B A and Zhou L 2019 Relationships between the solar wind magnetic field and ground-level longwave irradiance at high northern latitudes J. Atmos. Sol. Terr. Phys. 193 105063
Gray L J et al 2010 Solar influences on climate Rev. Geophys. 48 3
Gray L J, Woolings T J, Andrews M and Knight J 2016 Eleven–year solar cycle signal in the NAO and Atlantic/European blocking Q.J.R. Meteorol. Soc. 142 1890–903
Griggs C, DeGaetano A, Kuniholm P and Newton M 2007 A regional high-frequency reconstruction of May–June precipitation in the north Aegean from oak tree rings, A.D. 1089–1989 Int. J. Climatol. 27 1075–95 Dentrochronology, regional dendrochronology, oak tree-ring chronology, Quercus spp., May–June precipitation reconstruction, north Aegean, NE Greece, NW Turkey
Grinsted A, Moore J C and Jevrejeva S 2004 Application of the cross wavelet transform and wavelet coherence to geophysical time series Nonlinear Processes Geophys. 11 561–6
Güttler D et al 2015 Rapid increase in cosmogenic 14C in AD 775 measured in New Zealand kauri trees indicates short-lived increase in 14C production spanning both hemispheres Earth Planet. Sci. Lett. 411 290–7
Helama S, Vartiainen M, Holopainen J, Mäkelä H, Kolström T and Meriläinen J 2014 A palaeotemperature record for the Finnish Lakeland based on microdensitometric variations in tree rings Geochronometria 41 265–77
Hood L, Schimanke S, Spanghèl T, Bal S and Cubasch U 2013 The surface climate response to 11-Yr solar forcing during Northern Winter: observational analyses and comparisons with GCM simulations J. Climate 26 7489–306
Hughes M K (ed) 1982 Climate from Tree Rings (Cambridge: Cambridge University Press)
Kodera K and Kuroda Y 2005 A possible mechanism of solar modulation of the spatial structure of the North Atlantic Oscillation J. Geophys. Res. 110 R03
Kodera K, Thiéblemont R, Yukimoto S and Matthes K 2016 How can we understand the global distribution of the solar cycle signal on the Earth’s surface? Atmos. Chem. Phys. 16 12925–44
Lam M M and Tinsley B A 2016 Solar wind-atmospheric electricity-cloud microphysics connections to weather and climate J. Atmos. Sol. Terr. Phys. 149 277–90
Land A, Remmele S, Hofmann J, Reichle D, Eppeli M, Zang C, Buras A, Hein S and Zimmermann R 2019 Two millennia of Main region (southern Germany) hydroclimate variability Climate of the Past 15 1677–90
Laurenz L, Ludecke H-J and Lüning S 2019 In Scaife A A, Ineson S, Knight J R, Gray L, Kodera K and Smith D M 2013 A mechanism for lagged North Atlantic climate response to solar variability Geophys. Res. Lett. 39 L19102
Land A, Remmele S, Hofmann J, Reichle D, Eppeli M, Zang C, Buras A, Hein S and Zimmermann R 2019 Two millennia of Main region (southern Germany) hydroclimate variability Climate of the Past 15 1677–90
Laurenz L, Ludecke H-J and Lüning S 2019 Influence of solar activity changes on European rainfall J. Atmos. Sol. Terr. Phys. 185 29–42
Moffa-Sánchez P, Born A, Hall I R, Thornalley D J R and Barker S 2014 Solar forcing of North Atlantic surface temperature and salinity over the past millennium Nature Geosci 7 275–8
Owens M J, Usoskin I and Lockwood M 2012 Heliospheric modulation of galactic cosmic rays during grand solar minima: past and future variations Geophys. Res. Lett. 39 L19102
Prestes A, Klausner V, Rojahn da Silva I, Ojeda-González A and Lorenzi C 2018 Araucaria growth response to solar and climate variability in South Brazil Ann. Geophys. 36 717–29
Roth R and Joos F 2013 A reconstruction of radiocarbon production and total solar irradiance from the Holocene 14C and CO2 records: implications of data and model uncertainties Clim. Past 9 1879–909
Shindell D 1999 Solar cycle variability, ozone, and climate Science 284 305–8
Solanki S K, Usoskin I G, Kromer B, Schüssler M and Beer J 2004 Unusual activity of the Sun during recent decades compared to the previous 11,000 years Nature 431 1084–7
Steinhilber F et al 2012 9,400 years of cosmic radiation and solar activity from ice cores and tree rings PNAS 109 5967–71
Thiéblemont R and Zhou L M 2016 How can we understand the global distribution of the solar cycle signal on the Earth’s surface? Atmos. Chem. Phys. 16 12925–44
Thiéblemont R, Matthes K, Omrani N-E, Kodera K and Hansen F 2015 Solar forcing synchronizes decadal North Atlantic climate variability Nat. Commun. 6 8268
Turner T E, Swindles G T, Charman D I, Langdon P G, Morris P J, Booth R K, Parry L E and Nichols J E 2016 Solar cycles or random processes? Evaluating solar variability in Holocene climate records Sci. Rep. 6 23961
Wang J, Yang B, Ljungqvist F C, Luterbacher J, Osborn T J, Briffa K R and Zorita E 2017 Internal and external forcing of multidecadal Atlantic climate variability over the past 1,200 years Nature Geosci 10 512–7
Wang W, Matthes K, Tian W, Park W, Shangguan M and Ding A 2019 Solar impacts on decadal variability of tropopause temperature and lower stratospheric (LS) water vapour: a mechanism through ocean–atmosphere coupling Clim. Dyn. 52 5585–604
Wilson R, Miles D, Loader N J, Melvin T, Cunningham L, Cooper R and Briffa K 2013 A millennium long March–July precipitation reconstruction for southern-central England Clim. Dyn. Hydroclimate, Precipitation, Reconstruction, Tree-rings, Oak, Southern England 40 997–1017
Woodings T, Barriopedro D, Methven J, Son S-W, Martius O, Harvey B, Sillmann J, Lupo A R and Seneviratne S 2018 Blocking and its response to climate change Current Climate Change Reports 4 287–300
Yukimoto S, Kodera K and Thiéblemont R 2017 Delayed North Atlantic response to solar forcing of the stratospheric polar Vortex SOLA 13 53–8
Zanchettin D, Rubino A, Traverso P and Tomasino M 2008 Impact of variations in solar activity on hydrological decadal patterns in northern Italy J. Geophys. Res. 113 209
Zhou L, Tinsley B, Wang L and Burns G 2018 The zonal-mean and regional tropospheric pressure responses to changes in ionospheric potential J. Atmos. Sol. Terr. Phys. 171 111–8