More on the Density of Analytic Polynomials in Abstract Hardy Spaces

Alexei Karlovich and Eugene Shargorodsky

Abstract. Let \(\{F_n\} \) be the sequence of the Fejér kernels on the unit circle \(\mathbb{T} \). The first author recently proved that if \(X \) is a separable Banach function space on \(\mathbb{T} \) such that the Hardy-Littlewood maximal operator \(M \) is bounded on its associate space \(X' \), then \(\|f * F_n - f\|_X \to 0 \) for every \(f \in X \) as \(n \to \infty \). This implies that the set of analytic polynomials \(\mathcal{P}_A \) is dense in the abstract Hardy space \(H[X] \) built upon a separable Banach function space \(X \) such that \(M \) is bounded on \(X' \). In this note we show that there exists a separable weighted \(L^1 \) space \(X \) such that the sequence \(f * F_n \) does not always converge to \(f \in X \) in the norm of \(X \). On the other hand, we prove that the set \(\mathcal{P}_A \) is dense in \(H[X] \) under the assumption that \(X \) is merely separable.

Mathematics Subject Classification (2010). Primary 46E30, Secondary 42A10.

Keywords. Banach function space, abstract Hardy space, analytic polynomial, Fejér kernel.

1. Preliminaries and the main results

For \(0 < p \leq \infty \), let \(L^p := L^p(\mathbb{T}) \) be the Lebesgue space on the unit circle \(\mathbb{T} := \{z \in \mathbb{C} : |z| = 1\} \) in the complex plane \(\mathbb{C} \). For \(f \in L^1 \), let

\[
\hat{f}(n) := \frac{1}{2\pi} \int_{-\pi}^{\pi} f(e^{i\theta})e^{-in\theta} d\theta, \quad n \in \mathbb{Z},
\]

be the sequence of the Fourier coefficients of \(f \). Let \(X \) be a Banach space continuously embedded in \(L^1 \). Following [13, p. 877], we will consider the abstract Hardy space \(H[X] \) built upon the space \(X \), which is defined by

\[
H[X] := \{f \in X : \hat{f}(n) = 0 \quad \text{for all} \quad n < 0\}.
\]

This work was partially supported by the Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) through the project UID/MAT/00297/2013 (Centro de Matemática e Aplicações).
It is clear that if $1 \leq p \leq \infty$, then $H[L^p]$ is the classical Hardy space H^p.

A function of the form

$$q(t) = \sum_{k=0}^{n} \alpha_k t^k, \quad t \in \mathbb{T}, \quad \alpha_0, \ldots, \alpha_n \in \mathbb{C},$$

is said to be an analytic polynomial on \mathbb{T}. The set of all analytic polynomials

is denoted by \mathcal{P}_A. It is well known that the set \mathcal{P}_A is dense in H^p whenever $1 \leq p < \infty$ (see, e.g., [3, Chap. III, Corollary 1.7(a)]). The density of the set \mathcal{P}_A in the abstract Hardy spaces $H[X]$ was studied by the first author [8] for the case when X is a so-called Banach function space.

Let us recall the definition of a Banach function space. We equip \mathbb{T} with the normalized Lebesgue measure $dm(t) = |dt|/(2\pi)$. Let L^0 be the space of all measurable complex-valued functions on \mathbb{T}. As usual, we do not distinguish functions which are equal almost everywhere (for the latter we use the standard abbreviation a.e.). Let L^0_+ be the subset of functions in L^0 whose values lie in $[0, \infty]$. The characteristic function of a measurable set $E \subset \mathbb{T}$ is denoted by χ_E.

Following [1, Chap. 1, Definition 1.1], a mapping $\rho : L^0_+ \to [0, \infty]$ is called a Banach function norm if, for all functions $f, g, f_n \in L^0_+$ with $n \in \mathbb{N}$, for all constants $a \geq 0$, and for all measurable subsets E of \mathbb{T}, the following properties hold:

(A1) $\rho(f) = 0 \Leftrightarrow f = 0$ a.e., $\rho(af) = a\rho(f)$, $\rho(f + g) \leq \rho(f) + \rho(g)$,

(A2) $0 \leq g \leq f$ a.e. \Rightarrow $\rho(g) \leq \rho(f)$ (the lattice property),

(A3) $0 \leq f_n \uparrow f$ a.e. \Rightarrow $\rho(f_n) \uparrow \rho(f)$ (the Fatou property),

(A4) $m(E) < \infty \Rightarrow \rho(\chi_E) < \infty$,

(A5) $\int_E f(t) \, dm(t) \leq C_E \rho(f)$

with a constant $C_E \in (0, \infty)$ that may depend on E and ρ, but is independent of f. When functions differing only on a set of measure zero are identified, the set X of all functions $f \in L^0$ for which $\rho(|f|) < \infty$ is called a Banach function space. For each $f \in X$, the norm of f is defined by $\|f\|_X := \rho(|f|)$. The set X under the natural linear space operations and under this norm becomes a Banach space (see [1, Chap. 1, Theorems 1.4 and 1.6]). If ρ is a Banach function norm, its associate norm ρ' is defined on L^0_+ by

$$\rho'(g) := \sup \left\{ \int_{\mathbb{T}} f(t) g(t) \, dm(t) : f \in L^0_+, \, \rho(f) \leq 1 \right\}, \quad g \in L^0_+.$$

It is a Banach function norm itself [1, Chap. 1, Theorem 2.2]. The Banach function space X' determined by the Banach function norm ρ' is called the associate space (Köthe dual) of X. The associate space X' can be viewed as a subspace of the (Banach) dual space X^*.
Recall that L^1 is a commutative Banach algebra under the convolution multiplication defined for $f, g \in L^1$ by

$$(f * g)(e^{i\theta}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(e^{i\theta - i\varphi})g(e^{i\varphi})\,d\varphi, \quad e^{i\theta} \in \mathbb{T}.$$

For $n \in \mathbb{N}$, let

$$F_n(e^{i\theta}) := \sum_{k=-n}^{n} \left(1 - \frac{|k|}{n+1} \right) e^{i\theta k} = \frac{1}{n+1} \left(\frac{\sin \frac{n+1}{2}\theta}{\sin \frac{\theta}{2}} \right)^2, \quad e^{i\theta} \in \mathbb{T},$$

be the n-th Fejér kernel. For $f \in L^1$, the n-th Fejér mean of f is defined as the convolution $f * F_n$.

Given $f \in L^1$, the Hardy-Littlewood maximal function is defined by

$$(Mf)(t) := \sup_{I \ni t} \frac{1}{m(I)} \int_I |f(\tau)|\,dm(\tau), \quad t \in \mathbb{T},$$

where the supremum is taken over all arcs $I \subset \mathbb{T}$ containing $t \in \mathbb{T}$. The operator $f \mapsto Mf$ is called the Hardy-Littlewood maximal operator.

Theorem 1.1 ([8, Theorem 3.3]). Suppose X is a separable Banach function space on \mathbb{T}. If the Hardy-Littlewood maximal operator is bounded on the associate space X', then for every $f \in X$,

$$\lim_{n \to \infty} \|f * F_n - f\|_X = 0. \quad (1.1)$$

It is well known that for $f \in L^1$ one has

$$(f * F_n)(e^{i\theta}) = \sum_{k=-n}^{n} \hat{f}(k) \left(1 - \frac{|k|}{n+1} \right) e^{i\theta k}, \quad e^{i\theta} \in \mathbb{T}$$

(see, e.g., [9, Chap. I]). This implies that if $f \in H[X] \subset H[L^1] = H^1$, then $f * F_n \in \mathcal{P}_A$. Combining this observation with Theorem 1.1 we arrive at the following.

Corollary 1.2 ([8, Theorem 1.2]). Suppose X is a separable Banach function space on \mathbb{T}. If the Hardy-Littlewood maximal operator M is bounded on its associate space X', then the set of analytic polynomials \mathcal{P}_A is dense in the abstract Hardy space $H[X]$ built upon the space X.

Note that if a Banach function space X is, in addition, rearrangement-invariant then the requirement of the boundedness of M on the space X' can be omitted in Corollary 1.2 (see [8, Theorem 1.1] or [11, Lemma 1.3(c)]). Leśnik [10] conjectured that the same fact should be true for arbitrary, not necessarily rearrangement-invariant, Banach function spaces.

In this note, we first observe that Theorem 1.1 does not hold for arbitrary separable Banach function spaces. For a function $K \in L^1$, consider the convolution operator C_K with kernel K defined by

$$C_Kf = f * K, \quad f \in L^1.$$
It follows from \cite[Theorem 2]{12} that there exists a continuous function
\(p : \mathbb{T} \to [1, \infty) \) such that the sequence of the convolution operators \(C_{F_n} \) is
not uniformly bounded in the variable Lebesgue space \(L^{p(\cdot)} \) defined as the set of all \(f \in L^0 \) such that
\[
\int_{\mathbb{T}} |f(t)|^{p(t)} \, dm(t) < \infty.
\]
It is well known (see, e.g., \cite[Proposition 2.12, Theorem 2.78, Section 2.10.3]{4}) that if
\(p : \mathbb{T} \to [1, \infty) \) is continuous, then \(L^{p(\cdot)} \) is a separable Banach function
space equipped with the norm
\[
\|f\|_{L^{p(\cdot)}} = \inf \left\{ \lambda > 0 : \int_{\mathbb{T}} \left| \frac{f(t)}{\lambda} \right|^ {p(t)} \, dm(t) \leq 1 \right\}.
\]
Since the norms of the convolution operators \(C_{F_n} \) may not be uniformly
bounded on \(L^{p(\cdot)} \), the standard argument, based on the uniform boundedness
principle, leads us to the following.

Theorem 1.3. There exist a separable Banach function space \(X \) on \(\mathbb{T} \) and a
function \(f \in X \) such that (1.1) is not fulfilled.

We show that the separable Banach function space in Theorem 1.3 can be chosen as a weighted \(L^1 \) space, that is, the techniques of variable Lebesgue spaces can be omitted.

Theorem 1.4 (Main result 1). There exist a nonnegative function \(w \in L^1 \)
such that \(w^{-1} \in L^\infty \) and a function \(f \) in the separable Banach function space
\(X = L^1(w) = \{ f \in L^0 : fw \in L^1 \} \) such that (1.1) is not fulfilled.

In spite of the observation made in Theorems 1.3 and 1.4 we show that the requirement of the boundedness of the Hardy-Littlewood maximal operator \(M \) on the associate space \(X' \) of a separable Banach function space \(X \) in Corollary 1.2 can be omitted. Thus, Leśnik’s conjecture \cite{10} is, indeed, true.

Theorem 1.5 (Main result 2). If \(X \) is a separable Banach function space on \(\mathbb{T} \), then the set of analytic polynomials \(\mathcal{P}_A \) is dense in the abstract Hardy space \(H[X] \) built upon the space \(X \).

The paper is organized as follows. In Section 2 we prove that a convolution
operator \(C_K \) with a nonnegative symmetric kernel \(K \in L^1 \) is bounded on
a Banach function space \(X \) if and only if it is bounded in its associate space \(X' \). Further, we consider a special weight \(w \in L^1 \) such that \(w^{-1} \in L^\infty \). Then
\(X = L^1(w) \) is a separable Banach function space with the associate space
\(X' = L^\infty(w^{-1}) \). We show that the sequence of convolution operators \(\{ C_{K_n} \} \)
with nonnegative bounded symmetric kernels \(K_n \), satisfying \(\| K_n \|_{L^1} = 1 \) and
a natural localization property, is not uniformly bounded on \(X' = L^\infty(w^{-1}) \),
and therefore, on its associate space \(X'' = X = L^1(w) \). Applying this result
to the sequence of the Fejér kernels \(\{F_n\} \), we prove Theorem 1.4 with the aid of the uniform boundedness principle.

In Section 3, we recall that the separability of a Banach function space \(X \) is equivalent to \(X^* = X' \). Further, we collect some facts on the identification of the Hardy spaces \(H^p \) on the unit circle and the Hardy spaces \(H^p(\mathbb{D}) \) of analytic functions in the unit disk \(\mathbb{D} \). Finally, we give the proof of Theorem 1.5 based on the application of the Hahn-Banach theorem, a corollary of the Smirnov theorem and properties of the identification of \(H^1 \) with \(H^1(\mathbb{D}) \).

2. Proof of the first main result

2.1. Norms of convolution operators on \(X \) and on its associate space \(X' \)

The Banach space of all bounded linear operator on a Banach space \(E \) is denoted by \(B(E) \).

Lemma 2.1. Let \(X \) be a Banach function space on \(\mathbb{T} \) and \(K \in L^1 \) be a nonnegative function such that \(K(e^{i\theta}) = K(e^{-i\theta}) \) for almost all \(\theta \in [-\pi, \pi] \). Then the convolution operator \(C_K \) is bounded on the Banach function \(X \) if and only if it is bounded on its associate space \(X' \). In that case

\[
\|C_K\|_{B(X')} = \|C_K\|_{B(X)}.
\] (2.1)

Proof. Suppose \(C_K \) is bounded on \(X' \). Fix \(f \in X \setminus \{0\} \). Since \(K \geq 0 \), we have \(|f \ast K| \leq |f| \ast K \). According to the Lorentz-Luxemburg theorem (see, e.g., [1, Chap. 1, Theorem 2.7]), \(X = X'' \) with equality of the norms. Hence

\[
\|f \ast K\|_X \leq \|f| \ast K\|_X = \|f| \ast K\|_{X''} = \sup \left\{ \int_{\mathbb{T}} (|f| \ast K)(t)|g(t)| \, dm(t) : g \in X', \|g\|_{X'} \leq 1 \right\}.
\]

Then for every \(\varepsilon > 0 \) there exists a function \(h \in X' \) such that \(h \geq 0 \), \(\|h\|_{X'} \leq 1 \), and

\[
\|f \ast K\|_X \leq (1 + \varepsilon) \int_{\mathbb{T}} (|f| \ast K)(t)h(t) \, dm(t).
\] (2.2)

Taking into account that \(K(e^{i\theta}) = K(e^{-i\theta}) \) for almost all \(\theta \in \mathbb{R} \), by Fubini’s theorem, we get

\[
\int_{\mathbb{T}} (|f| \ast K)(t)h(t) \, dm(t) = \int_{\mathbb{T}} (h \ast K)(t)|f(t)| \, dm(t).
\]

From this identity, Hölder’s inequality for \(X \) (see, e.g., [1, Chap. 1, Theorem 2.4]), and the boundedness of \(C_K \) on \(X' \), we obtain

\[
\int_{\mathbb{T}} (|f| \ast K)(t)h(t) \, dm(t) = \|f\|_X \|h \ast K\|_{X'} \leq \|f\|_X \|C_K\|_{B(X')}.
\] (2.3)

It follows from (2.2)–(2.3) that

\[
\|C_K\|_{B(X')} = \sup_{f \in X, f \neq 0} \frac{\|f \ast K\|_X}{\|f\|_X} \leq (1 + \varepsilon)\|C_K\|_{B(X')}.
\]
for every $\varepsilon > 0$, which implies the boundedness of C_K on X and the inequality
\[
\|C_K\|_{B(X)} \leq \|C_K\|_{B(X')}.
\] (2.4)

If C_K is bounded on X, then using the Lorentz-Luxemburg theorem and (2.4) with X' in place of X, we obtain that C_K is bounded on X' and
\[
\|C_K\|_{B(X')} \leq \|C_K\|_{B(X')} = \|C_K\|_{B(X)}.
\] (2.5)

Combining (2.4)–(2.5), we arrive at (2.1). □

2.2. Spaces $L^1(w)$ and $L^\infty(w^{-1})$ with a special weight w

Lemma 2.2. Let
\[
w(e^{i\theta}) := \begin{cases} \sqrt{m}, & \frac{\pi}{2m} \leq |\theta| \leq \frac{\pi}{2m-1}, \ m \in \mathbb{N}, \\ 1, & \frac{\pi}{2m+1} < |\theta| < \frac{\pi}{2m}, \ m \in \mathbb{N}. \end{cases}
\] (2.6)

Then the spaces
\[L^1(w) = \{f \in L^0 : fw \in L^1\}, \ L^\infty(w^{-1}) = \{f \in L^0 : fw^{-1} \in L^\infty\}\]
are Banach function spaces on \mathbb{T} with respect to the norms
\[
\|f\|_{L^1(w)} = \|fw\|_{L^1}, \ \|f\|_{L^\infty(w^{-1})} = \|fw^{-1}\|_{L^\infty},
\]
and $(L^1(w))' = L^\infty(w^{-1})$. Moreover, the space $L^1(w)$ is separable.

Proof. It is clear that $w^{-1} \in L^\infty$ and, since
\[
\|w\|_{L^1} = \frac{1}{2\pi} \int_{-\pi}^{\pi} w(e^{i\theta}) \, d\theta = \sum_{m=1}^{\infty} \left(\frac{1}{2m} - \frac{1}{2m+1} \right) + \sum_{m=1}^{\infty} \sqrt{m} \left(\frac{1}{2m-1} - \frac{1}{2m} \right) < \infty,
\] (2.7)
we also have $w \in L^1$. Then it follows from [7, Lemma 2.5] that $L^1(w)$ and $L^\infty(w^{-1})$ are Banach function spaces and $(L^1(w))' = L^\infty(w^{-1})$. Finally, the separability of the space $L^1(w)$ follows from [4, Proposition 2.6] and [1, Chap. 1, Corollary 5.6]. □

2.3. Norms of convolution operators are not uniformly bounded on the spaces $L^1(w)$ and $L^\infty(w^{-1})$ with the special weight w

Theorem 2.3. Let $\{K_n\}$ be a sequence of bounded functions $K_n : \mathbb{T} \to \mathbb{C}$ such that
\[
K_n(e^{i\theta}) \geq 0, \quad K_n(e^{i\theta}) = K_n(e^{-i\theta}) \text{ a.e. on } [-\pi, \pi],
\] (2.8)
\[
\frac{1}{2\pi} \int_{-\pi}^{\pi} K_n(e^{i\theta}) \, d\theta = 1,
\] (2.9)
and
\[
\lim_{n \to \infty} \sup_{\varepsilon \leq |\theta| \leq \pi} K_n(e^{i\theta}) = 0 \text{ for each } \varepsilon > 0.
\] (2.10)
If w is the weight given by (2.6), then the convolution operators C_{K_n} are bounded on $L^\infty(w^{-1})$ and on $L^1(w)$ for all $n \in \mathbb{N}$, however,

$$\sup_{n \in \mathbb{N}} \|C_{K_n}\|_{B(L^\infty(w^{-1}))} = \infty,$$

(2.11)

$$\sup_{n \in \mathbb{N}} \|C_{K_n}\|_{B(L^1(w))} = \infty.$$

(2.12)

\textbf{Proof.} By (2.6)–(2.7), $w \in L^1$ and $w^{-1} \in L^\infty$. Therefore, for every $n \in \mathbb{N},$

$$\|C_{K_n}f\|_{L^1(w)} \leq \frac{1}{2\pi} \left\| \int_{-\pi}^{\pi} K_n(e^{i\theta}) |f(e^{i\theta})| d\theta \right\|_{L^1(w)}$$

$$\leq \frac{1}{2\pi} \int_{-\pi}^{\pi} \left\| K_n(e^{i\theta}) \right\|_{L^1(w)} |f(e^{i\theta})| d\theta$$

$$\leq \frac{1}{2\pi} \|K_n\|_{L^\infty} \|w\|_{L^1} \|f\|_{L^1}$$

$$= \frac{1}{2\pi} \|K_n\|_{L^\infty} \|w\|_{L^1} \|w^{-1}f\|_{L^1}$$

$$\leq \frac{1}{2\pi} \|K_n\|_{L^\infty} \|w\|_{L^1} \|w^{-1}\|_{L^\infty} \|f\|_{L^1(w)}.$$

Hence

$$\|C_{K_n}\|_{B(L^1(w))} \leq \frac{1}{2\pi} \|K_n\|_{L^\infty} \|w\|_{L^1} \|w^{-1}\|_{L^\infty}, \quad n \in \mathbb{N}.$$

It follows from (2.8) and Lemmas [2.1]–[2.2] that the operators C_{K_n} are bounded on $L^\infty(w^{-1})$ for all $n \in \mathbb{N}$. Moreover, (2.11) implies (2.12).

Let us prove (2.11). Consider the sequence

$$v_m(e^{i\theta}) := \begin{cases} \sqrt{m}, & \frac{\pi}{2m} \leq \theta \leq \frac{\pi}{2m-1}, \\ 0, & \theta \in [-\pi, \pi] \setminus \left[\frac{\pi}{2m}, \frac{\pi}{2m-1} \right], \end{cases} \quad m \in \mathbb{N}.$$

Then it follows from (2.6) that $\|v_m\|_{L^\infty(w^{-1})} = 1$ for all $m \in \mathbb{N}$.

Fix $m \in \mathbb{N}$. According to (2.9) and the localization property (2.10), there exists $n(m) \in \mathbb{N}$ such that

$$\int_{-\frac{\pi}{(2m)^2}}^{\frac{\pi}{(2m)^2}} K_n(e^{i\theta}) d\theta = \frac{1}{2} \int_{-\frac{\pi}{(2m)^2}}^{\frac{\pi}{(2m)^2}} K_n(e^{i\theta}) d\theta \geq \frac{1}{3} \quad \text{for all} \quad n \geq n(m).$$

Since $K_n \in L^1$, for every $n \geq n(m)$, there exists $\delta_n > 0$ such that

$$\int_{-\frac{\pi}{(2m)^2}}^{\frac{\pi}{(2m)^2}} K_n(e^{i\theta}) d\theta \geq \frac{1}{4},$$

$$n \in \mathbb{N}.$$
Therefore, for almost all $\vartheta \in \left[\frac{\pi}{2}m - \delta_n, \frac{\pi}{2}m\right]$, one gets

$$(C_{K_n} v_m) (e^{i\vartheta}) = \frac{\sqrt{m}}{2\pi} \int_{\frac{\pi}{2m}}^{\frac{\pi}{2m} + \frac{\pi}{(2m)^2}} K_n (e^{i\vartheta - i\theta}) \, d\theta \geq \frac{\sqrt{m}}{2\pi} \int_{\frac{\pi}{2m} - \frac{\pi}{(2m)^2}}^{\frac{\pi}{2m}} K_n (e^{i\eta}) \, d\eta \geq \frac{\sqrt{m}}{2\pi} \int_{\frac{-\pi}{(2m)^2}}^{-\frac{\pi}{2m}} K_n (e^{i\eta}) \, d\eta \geq \frac{\sqrt{m}}{2\pi} \int_{\frac{-\pi}{(2m)^2}}^{\frac{\pi}{(2m)^2}} K_n (e^{i\eta}) \, d\eta \geq \frac{\sqrt{m}}{8\pi}.$$ \hspace{1cm} (2.13)

In view of (2.6), $w(e^{i\vartheta}) = 1$ for all $\vartheta \in \left(\max\left\{\frac{\pi}{2m} - \delta_n, \frac{\pi}{2m+1}\right\}, \frac{\pi}{2m}\right)$. Hence, it follows from (2.13) that

$$\|C_{K_n} v_m\|_{L^\infty(w^{-1})} \geq \frac{\sqrt{m}}{8\pi} \quad \text{for all} \quad n \geq n(m),$$

while $\|v_m\|_{L^\infty(w^{-1})} = 1$. So

$$\|C_{K_n}\|_{B(L^\infty(w^{-1}))} \geq \frac{\sqrt{m}}{8\pi} \quad \text{for all} \quad n \geq n(m).$$

Since $m \in \mathbb{N}$ is arbitrary, the latter inequality immediately implies (2.11). \hspace{1cm} \Box

2.4. Proof of Theorem 1.4

Let $X = L^1(w)$, where w is the weight given by (2.6). By Lemma 2.2, X is a separable Banach function space. It is well known (and not difficult to check) that the sequence $\{F_n\}$ of the Fejér kernels is a sequence of bounded functions satisfying (2.8)–(2.10). By Theorem 2.3, the operators C_{F_n} are bounded on X for every $n \in \mathbb{N}$.

Assume that (1.1) is fulfilled for all $f \in X$. Then, for all $f \in X$, the sequence $\{C_{F_n} f\}$ is bounded in X. Therefore, by the uniform boundedness principle, the sequence $\{\|C_{F_n}\|_{B(X)}\}$ is bounded, but this contradicts (2.12). Thus, there exists a function $f \in X$ such that (1.1) does not hold. \hspace{1cm} \Box

3. Proof of the second main result

3.1. Separable Banach function spaces X are spaces for which X^* is isometrically isomorphic to X'

Combining [1, Chap. I, Corollaries 4.3 and 5.6] and observing that the measure dm is separable (for the definition of a separable measure, see, e.g., [1, p. 27] or [3, Chap. I, Section 6.10]), we arrive at the following.

Theorem 3.1. Let X be a Banach function space on \mathbb{T}. Then X is separable if and only if its dual space X^* is isometrically isomorphic to the associate space X'.

3.2. Hardy spaces on the unit disk

Let D denote the open unit disk in the complex plane \mathbb{C}. Recall that a function F analytic in D is said to belong to the Hardy space $H^p(D)$, $0 < p \leq \infty$, if the integral mean

$$M_p(r, F) = \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} |F(re^{i\theta})|^p \, d\theta \right)^{1/p}, \quad 0 < p < \infty,$$

$$M_\infty(r, F) = \max_{-\pi \leq \theta \leq \pi} |F(re^{i\theta})|,$$

remains bounded as $r \to 1$. If $F \in H^p(D)$, $0 < p \leq \infty$, then the nontangential limit

$$f(e^{i\theta}) = \lim_{r \to 1^-} F(re^{i\theta})$$

exists for almost all $\theta \in [-\pi, \pi]$ (see, e.g., [5, Theorem 2.2]) and the boundary function $f = f(e^{i\theta})$ belongs to L^p.

The following lemma is an immediate consequence of the Smirnov theorem (see, e.g., [5, Theorem 2.1]).

Lemma 3.2. If $F \in H^p(D)$ for some $p \in (0, 1)$ and its boundary function f belongs to L^1, then $F \in H^1(D)$.

Recall that if $f \in H^1$ then its analytic extension F into D, given by the Poisson integral

$$F(re^{i\theta}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P(r, \theta - \varphi) f(e^{i\varphi}) \, d\varphi, \quad 0 \leq r < 1, \quad -\pi \leq \theta \leq \pi,$$

where

$$P(r, \theta) = \frac{1 - r^2}{1 - 2r\cos \theta + r^2}, \quad 0 \leq r < 1, \quad -\pi \leq \theta \leq \pi,$$

is the Poisson kernel, belongs to $H^1(D)$ and the boundary function of F coincides with f a.e. on T (see, e.g., [5, Theorem 3.1]).

It is important to note that the Taylor coefficients of $F \in H^p(D)$ coincide with the Fourier coefficients of its boundary function $f \in L^p$. More precisely, one has the following.

Theorem 3.3 ([5 Theorem 3.4]). Let $F(z) = \sum_{n=0}^{\infty} a_n z^n$ belong to $H^1(D)$ and let $\{\hat{f}(n)\}$ be the sequence of the Fourier coefficients of its boundary function $f \in L^1$. Then $\hat{f}(n) = a_n$ for all $n \geq 0$ and $\hat{f}(n) = 0$ for $n < 0$.

3.3. Proof of Theorem 1.5

Suppose P_A is not dense in $H[X]$. Take any function $f \in H[X]$ that does not belong to the closure of P_A with respect to the norm of X. Since X is separable, it follows from Theorem 3.1 that X^* is isometrically isomorphic to X'. Then, by a corollary of the Hahn-Banach theorem (see, e.g., [2 Chap. 7, Theorem 4.1]), there exists a function $g \in X' \subset L^1$ such that

$$\int_{-\pi}^{\pi} f(e^{i\theta}) g(e^{i\theta}) \, d\theta \neq 0 \quad (3.1)$$
and
\[\int_{-\pi}^{\pi} p(e^{i\theta}) g(e^{i\theta}) \, d\theta = 0 \quad \text{for all} \quad p \in \mathcal{P}_A. \]
In particular, if \(p(e^{i\theta}) = e^{in\theta} \) with \(n = 0, 1, 2, \ldots \), then
\[\hat{g}(-n) = 0 \quad \text{for all} \quad n = 0, 1, 2, \ldots \] \hspace{1cm} (3.2)
Hence \(g \in H[X'] \subset H^1 \). For functions \(f \in H[X] \subset H^1 \) and \(g \in H[X'] \subset H^1 \), let \(F \) and \(G \) denote their analytic extensions to the unit disk \(\mathbb{D} \) by means of their Poisson integrals. Then \(F, G \in H^1(\mathbb{D}) \). It follows from (3.2) and Theorem 3.3 that \(G(0) = 0 \). Since \(F, G \in H^1(\mathbb{D}) \), by Hölder’s inequality, \(FG \in H^{1/2}(\mathbb{D}) \). On the other hand, since \(f \in X \) and \(g \in X' \), it follows from Hölder’s inequality for Banach function spaces (see [1, Chap. 1, Theorem 2.4]) that \(fg \in L^1 \). Then it follows from Lemma 3.2 that \(FG \in H^1(\mathbb{D}) \). Since \((FG)(0) = F(0)G(0) = 0 \), applying Theorem 3.3 to \(FG \), we obtain \(\hat{f}g(0) = 0 \), that is,
\[\int_{-\pi}^{\pi} f(e^{i\theta}) g(e^{i\theta}) \, d\theta = 0, \]
which contradicts (3.1). \(\square \)

Acknowledgment
We would like to thank the referee for the useful remarks.

References
[1] C. Bennett and R. Sharpley, Interpolation of Operators. Academic Press, Boston, 1988.
[2] Yu. M. Berezansky, Z. G. Sheftel, and G. F. Us, Functional Analysis, Vol. 1, Birkhäuser, Basel, 1996.
[3] J. B. Conway, The Theory of Subnormal Operators. American Mathematical Society, Providence, RI, 1991.
[4] D. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces. Birkhäuser, Basel, 2013.
[5] P. L. Duren, Theory of \(H^p \) Spaces. Academic Press, New York and London, 1970.
[6] L. V. Kantorovich and G. P. Akilov, Functional Analysis. Pergamon Press, Oxford, 2nd ed., 1982.
[7] A. Karlovich, Fredholmness of singular integral operators with piecewise continuous coefficients on weighted Banach function spaces. J. Integral Equations Appl. 15 (2003), 263–320.
[8] A. Karlovich, Density of analytic polynomials in abstract Hardy spaces. Comment. Math., to appear. Preprint is available at arXiv:1710.10078 [math.CA] (2017).
[9] Y. Katznelson, An Introduction to Harmonic Analysis, Dower Publications, Inc., New York, 1976.
[10] K. Lešnik, Personal communication to A. Karlovich. February 23, 2017.
[11] K. Leśnik, *Toeplitz and Hankel operators between distinct Hardy spaces*. arXiv:1708.00910 [math.FA] (2017).

[12] I. I. Sharapudinov, *Uniform boundedness in $L^p (p = p(x))$ of some families of convolution operators*. Math. Notes 59 (1996), 205–212.

[13] Q. Xu, *Notes on interpolation of Hardy spaces*. Ann. Inst. Fourier 42 (1992), 875–889.

Alexei Karlovich
Centro de Matemática e Aplicações,
Departamento de Matemática,
Faculdade de Ciências e Tecnologia,
Universidade Nova de Lisboa,
Quinta da Torre,
2829-516 Caparica, Portugal
e-mail: oyk@fct.unl.pt

Eugene Shargorodsky
Department of Mathematics
King’s College London
Strand, London WC2R 2LS
United Kingdom
e-mail: eugene.shargorodsky@kcl.ac.uk