Plant diversity components of agroforestry in Tanjung Botung, Village, Barumun District, Padang Lawas Regency, North Sumatra

R Rambey1*, A S J Lubis1, A Susilowati1, A B Rangkuti1, Onrizal1, N Wijayanto2, IZ Siregar2
1 Faculty of Forestry, Universitas Sumatera Utara, Jl. Tri Darma Ujung No 1 Kampus USU, Medan, North Sumatera 20155, Indonesia
2 Faculty of Forestry and Environment, IPB University (Bogor Agricultural University), Bogor, Indonesia

*Corresponding email: ridahati.rambey@usu.ac.id / ridahati2017@gmail.com

Abstract. Agroforestry is a land-use pattern that combines crops in one land with spatial and temporal arrangements. This study aims (1) to identify the species components of agroforestry, (2) to analyze the species diversity in agroforestry, and (3) to calculate the benefits of species in agroforestry for the community around Tanjung Botung Village. Based on the results in this research, it is known that there are 33 species of plants found in agroforestry land which consists of 19 families. To determine the type that dominates the growth rate, it is seen from the value of the Important Value Index. The highest IVI level was in the shrubs level namely Elaeis guineensis (56.67), in the seedling level namely Hevea brasiliensis (83.57), in the sapling level namely Durio zibethinus (38.37), in the pole level namely Hevea brasiliensis (68.04) and in tree level namely Hevea brasiliensis (99.69). To find out the level of species diversity was calculated using the Shannon-Wiener Index (H'). From the results of the study, it was concluded that the value of species diversity ranged from 1.63 to 2.35, meaning that the value of species diversity (H') for all growth levels was categorized as moderate.

1. Introduction
Agroforestry is a land-use system and technology in which long-lived trees and short-lived crops are cultivated on the same land in time and space settings [1,2]. The component of agroforestry is in the form of food plants that are needed by the community daily. According to [3] states that food plants are everything that grows, lives, has stems, roots, leaves, and can be eaten or consumed by humans. Foodstuffs that come from plants in the forest are in the form of fruits, leaves, and seeds.

The application of agroforestry patterns has been carried out since ancient times in various regions in Indonesia. The agroforestry pattern contains various types of plants (tree-based) that are grown and treated with a forest-like cropping pattern and ecosystem. This system is covered by various components such as trees, shrubs, annual plants and grasses in large quantities [4,5]. Because the types of plants vary so the products produced will vary as well. In addition to the dual benefits, it also has a high ecological function because it consists of several canopy stars.

One of the challenges of land management in the community in North Sumatera is the conversion of land to monoculture plantations such as oil palm plantations. Tanjung Botung is one of the villages that still has agroforestry land which is still being developed by the community. The existence of Agroforestry in Tanjung Botung Village is expected to continue to be maintained by the community.
Agroforestry can provide food crops, fruits, sources of firewood and others. This study aims (1) to identify the species components of agroforestry, (2) to analysis the species diversity in agroforestry, and (3) to calculate the benefits of species in agroforestry for the community around Tanjung Botung Village.

2. Method

2.1 Study location and method
This research was conducted from January to March 2021 in Tanjung Botung Village, Barumun District, North Padang Lawas Regency, North Sumatera Province. The research method was carried out by analysis of vegetation on 20 plots of agroforestry land. The plots were laid out intentionally on community lands that applied agroforestry patterns. Vegetation analysis was carried out at each growth level, namely understorey and seedlings with a subplot size of 2 x 2 m, saplings with a size of 5 x 5 m, poles 10 x 10 m and trees with a plot size of 20 x 20 m.

2.2 Analysis data
Important Value Index (IVI)
Important value index is a quantitative parameter that can be used to express the level of dominance (level of control) of species in a plant community. Important value index (IVI) is calculated by the formula [6]:

a. Density of a species (D) 1)

\[D = \frac{\sum \text{Individual of a species}}{\text{Sample plot area}} \]

b. Relative Density (RD) 2)

\[\text{RD} = \frac{\text{Density a species}}{\text{Density all a species}} \times 100\% \]

c. Frequency of a species (F) 3)

\[F = \frac{\sum \text{Sub - plot where a species is found}}{\sum \text{All sub - plot}} \]

d. Relative Frequency (RF) 4)

\[\text{RF} = \frac{\text{Frequency a species}}{\text{Frequency of all species}} \times 100\% \]

e. Dominance 5)

\[D = \frac{\text{Area of the base of a species}}{\text{Sample plot area}} \]
f. Relative Basal Area (RBA)

\[
RBA = \frac{\text{Dominance a species}}{\text{Dominance all species}} \times 100\%
\]

For pole and tree level:
\[
IVI = RD + RF + RBA
\]

For seedlings, saplings and understorey:
\[
IVI = KR + FR
\]

Where:
- \(RD\) = Relative Density
- \(RF\) = Relative Frequency
- \(DR\) = Relative Dominance

Shannon-Wiener index \((H')\)
The level of species diversity Shannon-Wiener index \((H')\) was classified into high \((H' > 3)\), medium \((1 \leq H' \leq 3)\), and low \((H' < 1)\). Species diversity can be calculated using the Shannon-Wiener diversity index with the following formula [7].

\[
H' = -\sum \frac{n_i}{N} \log \frac{n_i}{N}
\]

Where:
- \(H'\) = Shannon-Wiener diversity index
- \(n_i\) = Number of individuals of one species
- \(N\) = Total number of individuals of all species

3. Results and Discussion

3.1 Composition of species found on agroforestry land
Based on the research results, it is known that there are 33 species found in agroforestry land which consists of 19 families, namely 4 species of Fabaceae (21.05%), 4 species of Myrtaceae (21.05%), 3 species of Anacardiaceae (15.78%), 2 species of Arecales (6%), 2 species Malvaceae (10.52%), 2 species of Lauraceae (10.52%), 2 species of Sapindaceae (10.52%), 2 species of Clusiaceae (10.52%), 2 species of Moraceae (10.52%). While the family asparageaceae, solanaceae, caricaeae, musaceae, zingiberaceae, rutaceae, euphorbiaceae, rubiaceae, malvaceae, bombacaceae, meliaceae, sapotaceae, oxalidaceae has a species (5.26%). The number species composition at the understorey level was 7 species, the seedling level was 9 species, the sapling level was 15 species, the pole level was 14 species, and the tree level was 13 species. The species composition found in the agroforestry land of Tanjung Botung Village can be seen in Table 1.

Compared to the results [8] in Jurit Village Agroforestry, there were 15 species of understorey, 11 species of seedling level, 19 species of sapling level, 22 species of pole level and 22 species of tree level. The difference in the number of species is caused by differences in cropping patterns. Based on [9] study in Nanga village Pemubuh District Sekadau Hulu Sekadau Regency at agroforestry there were 16 types of trees, 17 types of poles, 18 types of poles, and 16 types of seedlings. The most dominant family in Nanga Pemubuh Village at all growth stages consisted of 3 families, namely Arecales, Dipterocarpaceae, and Moraceae.
No	Local name	Scientific name	Family	Utilization	Understory	Seed	Sapling	Pole	Tree
1	Hanjuang	Cordyline fruticosa	Asparagaceae	Hedgerows					
2	Kelapa	Elaeis guineensis	Arecaceae	Food					
3	Terong	Solanum torvum	Solanaceae	Food					
4	Putri Malu	Mimosa pudica	Fabaceae	Medicinal plant					
5	Tehu	Saccharum officinarum	Poaceae	Food					
6	Pepaya	Carica papaya	Caricaceae	Food					
7	Aren	Arenga pinnata	Arecaceae	Food					
8	Jeruk nipsis	Citrus aurantiifolia	Rutaceae	Spices					
9	Karet	Hevea brasiliensis	Moraceae	rubber					
10	Kopi	Coffea sp	Rubiaceae	Food					
11	Jengkol	Archidendron pauciflorum	Fabaceae	Food					
12	Jambu bol	Syzygium malaccense	Myrtaceae	Food					
13	Coklat	Theobroma cacao	Malvaceae	Food					
14	Kayu manis	Cinnamomum verum	Lauraceae	Spices					
15	Cengkeh	Syzygium aromaticum	Myrtaceae	Spices					
16	Durian	Durio zibethinus	Malvaceae	Food					
17	Langsat	Lansium domesticum	Meliaceae	Food					
18	Rambutan	Nephelium lappaceum	Sapindaceae	Food					
19	Jambu biji	Psidium guajava	Myrtaceae	Food					
20	Sawo manila	Manilkara zapota	Sapotaceae	Food					
21	Belimbing	Averrhoa bilimbi	Oxalidaceae	Food					
22	Kelor	Mangira ollefera	Moringaceae	Food					
23	Manggis	Garcinia mongostana	Clusiaceae	Food					
24	Alpukat	Persia Americana	Lauraceae	Food					
25	Kelengkeng	Dimocarps longan	Sapindaceae	Food					
26	Daun salam	Syzygium polyanthum	Myrtaceae	Spices					
27	Nangka	Artocarpus heterophyllus	Moraceae	Food					
28	Asam gelugur	Garcinia atroviridis	Clusiaceae	Spices					
29	Gedongdon	Spondias dulcis	Anacardiaceae	Food					
30	Lamtoro	Leucaena leucocephala	Fabaceae	Food					
31	Mangga	Mangifera Indica	Anacardiaceae	Food					
32	Kweni	Mangifera odorata	Anacardiaceae	Food					
33	Asam Jawa	Tamarindus indica	Fabaceae	Spices					

Note: + = present, – = not present

| Total | 7 | 9 | 15 | 14 | 13 |
3.2 Important Value Index of Understorey
The understorey is all vegetation that is not a tree species and cannot grow to a tree level. The presence of understorey in forest plantations, apart from being a source of biodiversity, also plays a role in protecting the soil and soil organisms, helping to create a microclimate on the forest floor, protecting the soil from erosion, and maintaining soil fertility [6]. The presence of a plant species in an area indicates the ability adaptation to habitat and wide tolerance to environmental conditions [10,11]. The higher the IVI value of a species shows the higher level of control over the community. The dominant species is the species that has the highest IVI value in a forest vegetation [12]. A species can be said to play a role if the IVI value for the seedling and sapling level is 10% and for the pole and tree level it has an IVI value 15%. The IVI value of each understorey species in detail can be seen in Table 2.

Table 2. Values of Relative Density, Relative Frequency and Important Value Index for understorey levels

No	Scientific name	RD	RF	IVI
1	Cordyline fruticose	6.89	5.12	12.02
2	Elaeis guineensis	31.03	25.64	56.67
3	Solanum torvum	8.62	7.69	16.31
4	Mimosa pudica	20.69	25.63	31.81
5	Saccharum officinarum	22.41	20.51	42.92
6	Arenga pinnata	6.89	10.25	17.15

Note:
RD= Relative Density, RF= Relative Frequency, IVI value above 10%

The highest IVI at the understorey level was Elaeis guineensis (56.67), followed by Saccharum officinarum (42.92), and Mimosa pudica (31.81). Based on the IVI value, the highest of IVI values was found in oil palm plants, which was 56.67, meaning that the type of oil palm was the dominant species at the understorey level. Elaeis guineensis is a plantation commodity that has recently been in great demand because it has a promising economic value.

3.3 Important Value Index of Seedling
The results showed that the highest IVI at the seedling level was Hevea brasiliensis (83.57), followed by Coffea sp (29.14), Theobroma cacao (25.75) and then Durio zibethinus (21.28). Hevea brasiliensis was the dominant species in the growth rate of seedlings. While the lowest IVI were Archidendron pauciflorum, Cinnamomum verum, and Syzygium aromaticum. Values of Relative Density, Relative Frequency and Important Value Index for the seedling level can be seen in Table 3.

Table 3. Value of Relative Density, Relative Frequency and Index of Important Values for Seedling Level

No	Scientific name	RD	RF	IVI
1	Citrus aurantiifolia	6.78	11.11	17.89
2	Hevea brasiliensis	47.46	36.11	83.57
3	Coffea sp	15.25	13.89	29.14
4	Theobroma cacao	11.86	13.89	25.75
5	Durio zibethinus	10.17	11.11	21.28

Note:
RD= Relative Density, RF= Relative Frequency, IVI value above 10%
3.4 Important Value Index of Sapling

The highest growth rate of saplings IVI was *Durio zibethinus* (38.37), then *Coffea* sp (32.94) and *Theobroma cacao* (28.27). At the sapling growth rate, *Durio zibethinus* had the highest number compared to other species, meaning that *Durio zibethinus* was the dominant species. *Durio zibethinus* is a type of fruit plant that is deliberately planted to produce fruit.

Table 4. Value of Relative Density, Relative Frequency and Index of Importance Values for Sapling Levels

No	Scientific name	RD	RF	IVI
1	*Coffea* sp	14.52	18.42	32.94
2	*Citrus aurantiifolia*	8.06	7.89	15.96
3	*Durio zibethinus*	22.58	15.79	38.37
4	*Nephelium lappaceum*	6.45	7.89	14.35
5	*Theobroma cacao*	17.74	10.53	28.27
6	*Garcinia mangostana*	4.84	5.26	10.10

Note: RD= Relative Density, RF= Relative Frequency, IVI value above 10%

3.5 Important Value Index of Pole

The highest growth rate of pole IVI was *Hevea brasiliensis* (68.04), *Theobroma cacao* (37.00) then *Coffea* sp (30.56). Based on the IVI value, each species has a value more than 10. The highest IVI value is *Hevea brasiliensis*, this indicates that this species dominates the growth of agroforestry at the pole level. *Hevea brasiliensis* is a type of plant that is deliberately cultivated to produce sap.

Table 5. Value of Relative Density, Relative Frequency and Important Value Index for pole level

No	Scientific name	RD	RF	RBA	IVI
1	*Dimocarpus longan*	1.31	2.50	6.33	10.14
2	*Hevea brasiliensis*	32.89	27.50	7.65	68.04
3	*Durio zibethinus*	11.84	10.00	6.21	28.06
4	*Syzygium polyanthum*	2.63	5.00	6.56	14.19
5	*Theobroma cacao*	17.10	12.50	7.40	37.00
6	*Coffea* sp	11.84	12.50	6.21	30.56
7	*Archidendron pauciflorum*	3.94	5.00	8.82	17.76
8	*Artocarpus heterophyllus*	1.31	2.50	8.42	12.23
9	*Persea Americana*	1.31	2.50	6.44	10.26
10	*Garcinia atroviridis*	1.31	2.50	7.77	11.59
11	*Spondias dulcis*	2.63	5.00	8.68	16.31
12	*Leucaena leucocephala*	5.26	5.00	4.16	14.42
13	*Mangifera Indica*	2.63	5.00	7.90	15.53
14	*Nephelium lappaceum*	3.94	2.50	7.40	13.84

Note: RD= Relative Density, RF= Relative Frequency, RBA= Relatif Basal Area, IVI

3.6 Tree

The highest IVI value at the tree level was *Hevea brasiliensis* (99.69), followed by *Durio zibethinus* (39.59), and *Nephelium lappaceum* (20.93). The lowest IVI score was *Persea americana* (10.42).
study by [13,14] also revealed that *H. brasiliensis* can dominate community lands around riverbanks. *H. brasiliensis* is a type of wood that is deliberately planted to produce sap.

Table 6. Values of Relative Density, Relative Frequency and Significance Index for tree level

No	Scientific name	KR	FR	RBA	INP
1	*Nephelium lappaceum*	7.14	7.14	6.64	20.93
2	*Hevea brasiliensis*	50.00	42.85	6.84	99.69
3	*Mangifera Indica*	3.57	3.57	7.73	14.87
4	*Artocarpus heterophyllus*	1.78	3.57	8.46	13.82
5	*Durio zibethinus*	16.07	14.28	9.23	39.59
6	*Archidendron pauciflorum*	1.78	3.57	9.80	15.16
7	*Persea americana*	1.78	3.57	4.88	10.24
8	*Mangifera odorata*	3.57	3.57	10.99	18.13
9	*Garcinia atroviridis*	1.78	3.57	9.46	14.81
10	*Psidium guajava*	5.35	3.57	5.73	14.66
11	*Tamarindus indica*	1.78	3.57	5.73	11.09
12	*Garcinia mangostana*	3.57	3.57	7.63	14.77
13	*Dimocarpus longan*	1.78	3.57	6.84	12.19
	Total	100	100	100	300

Note:
Relative Density (RD)
Relatif Frequency (RF)
Relatif Basal Area (RBA)

3.7 Shannon-Wiener Index (H')

To see the level of plant diversity is calculated using the Shannon-Wiener Index (H'). The H' value at the understorey level is 1.72, at the seedling level is 1.63, at the sapling level is 2.35, at the pole level is 2.09 and tree level of 1.77. From the results of the study, it was concluded that the value of species diversity ranged from 1.63 to 2.35, meaning that the value of species diversity (H') for all growth levels was categorized as moderate.

4. Conclusion

There are 33 species found in agroforestry land which consists of 19 families, namely 4 species of Fabaceae (21.05%), 4 species of Myrtaceae (21.05%), 3 species of Anacardiaceae (15.78%), 2 species of Arecaceae (%), 2 species Malvaceae (10.52%), 2 species of Lauraceae (10.52%), 2 species of Sapindaceae (10.52%), 2 species of Clusiaceae (10.52%), 2 species of Moraceae (10.52%). While the family asparageaceae, solanaceae, caricaeae, musaceae, zingiberaceae, rutaceae, euphorbiaceae, rubiaceae, malvaceae, bombacaceae, meliaceae, sapotaceae, oxalidaceae has a species (5.26%). The highest IVI was at the understorey level, namely *Elaies guinensis* at 56.67%, at the seedling level, *Hevea brasiliensis* at 83.56%, at the sapling level, *Durio zibethinus*, at 38.37%, at the pole level, at *Hevea brasiliensis* at 68.04. % and at the highest IVI tree level, *Hevea brasiliensis* was 99.69%.

References

[1] De Foresta H, Kusworo A, Michon G, Djamiko A. 2000. When a garden looks like a forest: typical Indonesian agroforest – Society contribution for sustainable development (in Indonesian). Bogor: International Center for Research in Agroforestry

[2] R Rambey1, N Wijayanto2, I Z Siregar2, Onrizal1 and A Susilowati. 2019. Study of agroforestry mindi planting pattern (Melia dubia cavanilles) in Selaawi Village, Garut District, West Java Province. The 8th International Symposium for Sustainable Humanosphere IOP Conf. Series: Earth and Environmental Science 374 (2019) 012033
[3] Apriliani A, Sukarsa, Hexa AP. 2014. Kajian Etnobotani Tumbuhan Sebagai Bahan Tambahan Pangan Secara Tradisional Oleh Masyarakat Di Kecamatan Pekuncen Kabupaten Banyumas. [Study of Ethnobotany of Plants as Food Additives Traditionally by Communities in Pekuncen District, Banyumas Regency]. Jurnal Scripta Biologica. Vol : 1 (1) Hal : 76-84

[4] Wahyuningsih S and Astut i A 2015 Cocoa (Theobroma cacao, L) agroforestry management model to household income contribution (A case in Anyar Sub-District, Serang District, Banten Province) Jurnal Agribisnis Indonesia 3 2 pp 113-34

[5] Pinem NF, Rambey, R. Factors affecting revenue of cocoa farmers in Biru-biru District, Deli Serdang Regency, North Sumatra.

[6] Soeranegara, I dan Indrawan. 1998. Ekologi Hutan Indonesia. Laboratorium Ekologi Hutan. Fakultas Kehutanan [Indonesian Forest Ecology. Forest Ecology Laboratory. Faculty of Forestry], Institut Pertanian Bogor, Bogor

[7] Odum EP 1996 Dasar-dasar Ekologi (Ecology Fundamentals) Gadjah Mada University Press Yogyakarta [Indonesian]

[8] Ikhwan SP, Rita RRND. 2018. Identifikasi Jenis Vegetasi dan Pola Agroforestrydi Hutan Rakyat Desa Jurit Kecamatan Pringgasela Kabupaten Lombok Timur J Sylva Salamas 1 pp 123-130

[9] Harmono A, Rafdinal, Linda R 2019 Keanekaragaman Vegetasi Agroekosistem Karet Masyarakat Dayak Kerabat di Desa Nanga Pemubuh Kecamatan Sekadau Hulu Kabupaten Sekadau J Protobiont 2 pp 94 – 103

[10] Kunarso A dan Azwar F. 2013. Keragaman Jenis Tumbuhan Bawah pada Berbagai Tegakan Hutan Tanaman di Benakat, Sumatera Selatan. [Understorey Diversity on Several Plantation Forest Stands in Benakat, South Sumatra]. Jurnal Penelitian Hutan Tanaman Vol. 10 No. 2, Juni 2013: 85-98

[11] Soegianto A. 1994. Ekologi Kuantitatif: Metode analisis populasi dan komunitas [Quantitative Ecology: Methods of population analysis and Community]. Surabaya: Usaha Nasional.

[12] Kusmana C1997 Metode Survei Vegetasi (Vegetation Survey Method) Bogor (ID): Institut Pertanian Bogor.

[13] Guardiola-Claramonte M, Troch PA, Ziegler AD, Giambelluca TW, Durcik M, Vogler JB, Nullet MA. 2010. Hydrologic effects of the expansion of rubber (Hevea brasiliensis) in a tropical catchment. Ecohydrology 3 (3): 306-314. DOI: 10.1002/eco.110.

[14] Rambey R, Susilowati A, Rangkuti AB, Onrizal O, Desr ita, Ardhi R, Hartanto A. 2021. Plant diversity, structure and compositionof vegetation around Barumun Watershed, North Sumatra, Indonesia.Biodiversitas 22:3250-3256.