Influence of the Crystal Growth Temperature on the Formation of Zr Reach Crystalline Phases in a Nuclear Waste Confinement Glass Ceramic

Dalila Moudir, Nour-el-hayet Kamel, Abdelbaki Benmounah, Yasmina Mouheb, Rafika Souag, Boudjmaa Bezzazi, Fairouz Aouchiche, Ziane Kamel, and Soumia Kamariz

1. Algiers Nuclear Research Centre, Division of Nuclear Techniques, P.O.Box: 399, Alger-RP, Algiers, Algeria
2. Research Unit on Materials, Processes and Environment (URMPE), University M’hamed Bouguerra, Avenue de l’indépendance, 35000, Boumerdès, Algeria

Received: August 15, 2014 / Accepted: August 23, 2014 / Published: August 25, 2014.

Abstract: Many glass ceramics are potential candidates for the confinement of radioactive waste. This is the case of glasses embedding radiation-resistant ceramics as zirconolites, pyrochlores or pyroxenes. This study deals with the influence of the crystal growth temperature on the formation of such phases in a nuclear glass ceramic in the system: Al₂O₃-SiO₂-CaO-MgO-ZrO₂-TiO₂. The materials with six contents of ZrO₂, ranging from 1.00 to 6.40 m.%, are synthesized by a discontinuous method, consisting in a double-melting at 1,350 °C, followed by both a nucleation at 564 °C, and a crystal growth treatment at: 900, 1,000 and 1,100 °C. For the whole of the materials, the morphology reveals a glassy feature, with a opaque aspect. One can also evidence a different crystallization process from the bulk to the surface. The glass ceramics X-ray diffraction analysis (XRD) show that the main identified crystalline skeletons are those of: 2M-zirconolite, CaZrTi₂O₇ and ZrO₂, depending on the content of ZrO₂ in materials and the crystal-growth temperature. The material with the middle content in ZrO₂ (4.5 m.%) and crystallized at the middle value of Tc (1,010 °C) show the greatest content in zirconolite (87 %), doped with either lanthanides or alcalin-earth elements, due to the complexity of the mixture of oxides. The temperature of 1,010 ° C appears to be more selective with regard to the formation of the 2M-zirconolite.

Key words: Glass ceramic, radioactive waste, crystallization temperature, XRD, crystalline phase.

1. Introduction

The development of specific sequestration matrix designed to confine particular radionuclides is an important research field.

The industrial solution currently adopted for the confinement of the radiotoxic elements belonging to the nuclear waste, consists to incorporate them in a glass of the system: SiO₂-Al₂O₃-B₂O₃-Na₂O. This confinement is not specific, and has the advantage of a good loading ability and an excellent long-term behavior [1].

Various mineral matrices for the specific disposal of many radioisotopes produced from nuclear waste, particularly, for minor actinides (Mac), and fission products “lanthanides” (FP), include ceramics, such as zircon-titanates (zirconolite), zirconates (zirconia, stabilized zirconia, and phosphates (apatite, monazite) [2, 3].

The ceramics elaborating processes are difficult to implement to date, and many glass-ceramics are also under study. They consist of crystals homogeneously distributed in a glass matrix, and exhibit increased performances compared to alumino-borosilicate glasses.

Research on glass-ceramics (noted: GC) matrices for
radioactive waste (RW) sequestration can benefit from both glass technology and interesting confinement properties of crystalline ceramic phases [4, 5].

In this study, we have synthesized a ZrO$_2$-rich glass-ceramic by a discontinuous method, consisting in a double-melting at 1,350 °C, followed by both a crystallization and crystal-growth, treatments at 564 and 1,010 °C, respectively. In order to access the influence of the crystal-growth temperature on the nature of the germs born in the bulk of the GC materials, pellets of variable contents in ZrO$_2$ are ceramized at three crystal-growth temperatures (Tc), namely: 900, 1,010 and 1,100 °C during 3 h. The crystalline phases analysis formed in the materials is performed by X-ray diffraction (XRD).

2. Experiments

The general GC mixtures chemical composition is inspired from previous research studies [6]. The samples are prepared with the following ZrO$_2$ mass contents: 1.00, 2.49, 3.50, 4.50, 5.00, 5.70 and 6.40 m. % (Table 1).

The employed commercial reagents were: Al$_2$O$_3$ (Fluka), B$_2$O$_3$ (Purity ≥ 99%), CaO (Merck, ≥ 97%), CeO$_2$ (Aldrich, 99.999%), CrO$_3$ (Merck, ≥ 99%), Fe$_2$O$_3$ (Merck, ≥ 99%), K$_2$CO$_3$ (Merck, ≥ 99%), Li$_2$O (Merck, ≥ 99%), MgO (Fluka, ≥ 97%), MnO$_2$ (Merck), MoO$_3$ (Merck, ≥ 99.5%), Nd$_2$O$_3$ (Fluka, ≥ 99.9%), P$_2$O$_5$ (Merck, ≥ 98%), Pr$_6$O$_11$ (Merck, ≥ 99%), SiO$_2$ (Prolabo), Ta$_2$O$_5$ (Merck, ≥ 99%), Ti$_2$O$_3$ (Merck, ≥ 99%), V$_2$O$_5$ (Labosi), WO$_3$ (Merck), Y$_2$O$_3$ (Merck, ≥

Oxide (m.%)	Content (%)						
ZrO$_2$	1.000	2.487	3.500	4.500	5.000	5.700	6.400
Al$_2$O$_3$	12.948	12.948	12.948	12.948	12.948	12.948	12.948
B$_2$O$_3$	0.782	0.782	0.782	0.782	0.782	0.782	0.782
BaO	0.586	0.586	0.586	0.586	0.586	0.586	0.586
CaO	11.487	11.487	11.487	11.487	11.487	11.487	11.487
CeO$_2$	3.113	3.113	3.113	3.113	3.113	3.113	3.113
CrO$_3$	0.391	0.391	0.391	0.391	0.391	0.391	0.391
Er$_2$O$_3$	1.281	1.281	1.281	1.281	1.281	1.281	1.281
Fe$_2$O$_3$	1.281	1.281	1.281	1.281	1.281	1.281	1.281
K$_2$O	0.978	0.978	0.978	0.978	0.978	0.978	0.978
La$_2$O$_3$	0.489	0.489	0.489	0.489	0.489	0.489	0.489
Li$_2$O	4.105	4.105	4.105	4.105	4.105	4.105	4.105
MgO	2.500	2.500	2.500	2.500	2.500	2.500	2.500
MnO$_2$	0.195	0.195	0.195	0.195	0.195	0.195	0.195
MoO$_3$	2.737	2.737	2.737	2.737	2.737	2.737	2.737
Nd$_2$O$_3$	1.173	1.173	1.173	1.173	1.173	1.173	1.173
NiO	0.586	0.586	0.586	0.586	0.586	0.586	0.586
P$_2$O$_5$	0.391	0.391	0.391	0.391	0.391	0.391	0.391
Pr$_6$O$_11$	0.098	0.098	0.098	0.098	0.098	0.098	0.098
SiO$_2$	47.427	45.940	44.927	43.927	43.427	42.727	42.027
Ta$_2$O$_5$	0.195	0.195	0.195	0.195	0.195	0.195	0.195
TiO$_2$	4.790	4.790	4.790	4.790	4.790	4.790	4.790
V$_2$O$_5$	0.098	0.098	0.098	0.098	0.098	0.098	0.098
WO$_3$	0.782	0.782	0.782	0.782	0.782	0.782	0.782
Y$_2$O$_3$	0.489	0.489	0.489	0.489	0.489	0.489	0.489
Yb$_2$O$_3$	0.098	0.098	0.098	0.098	0.098	0.098	0.098

Total | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
99%), Yb$_2$O$_3$ (Aldrich, 99.9%), ZrO$_2$ (Aldrich, 99%). REE elements’ oxides are dried overnight at 1,000 °C, and the other oxides at 400 °C, for the same time. BaO, Er$_2$O$_3$, La$_2$O$_3$ and NiO are prepared by calcination at 450 °C of BaNO$_3$ (Fluka, 99.6%), Er$_3$O$_5$·5H$_2$O (Acros Organics, 99.9%), La(NO$_3$)$_3$·6H$_2$O (Fluka, 99.99%), and Ni(NO$_3$)$_2$·6H$_2$O (Fluka, 99.6%), respectively.

The GC synthesis is carried out by a double-melting at 1,350 °C. This is necessary to ensure a complete homogenization of the oxides mixture, to guarantee isotrope properties of the final products. The melts are poured in a graphite cylindrical mold to obtain pellets. The nucleation step is carried out at a nucleation temperature (Tn) of the parent glass, chosen as the glass transition temperature measured by differential thermal analysis (Tg) plus 30 °C (Tn = Tg + 30). Tn = 564 °C for 2 h. the crystal growth treatment (Tc) is performed at: 900, 1,010 and 1,100 °C for 3 h, for the whole. The GC materials are cooled to the ambient air.

For the six studied compositions glasses, X-ray diffraction (XRD) analysis was conducted by a Philips X’Pert PRO apparatus, operating at CuKα1 wavelength (λKα1 = 0.15406 nm). The analytical parameters were as follow: V = 40 kV and I = 40 mA; a 2θ scanning from 3° to 80°. The XRD data were collected at room temperature on milled and sieved glass samples, with a mean size of 80 μm. For this, a 5657 Gmbh Retsch automatic agath mortar was used. The crystalline phase(s) identification was done using the Philips X’Pert plus 2004 software [7].

3. Results and Discussion

3.1 Characterization of the Materials

For the three Tc heat treatments and for the GC six chemical compositions studied, the XRD spectra are gathered in Figs. 1-7.

![Fig. 1 Diffractogram of the GC with 1 m.% ZrO$_2$ content.](image)

(a) Tc = 900 °C, (b) Tc = 1,010 °C and (c) Tc = 1,100 °C.

![Fig. 2 Diffractogram of the GC with 2.49 m.% ZrO$_2$ content.](image)

(a) Tc = 900 °C, (b) Tc = 1,010 °C and (c) Tc = 1,100 °C.
Influence of the Crystal Growth Temperature on the Formation of Zr Reach Crystalline Phases in a Nuclear Waste Confinement Glass Ceramic

Fig. 3 Diffractogram of the GC with 3.50 m.% ZrO$_2$ content. (a) Tc = 900 °C, (b) Tc = 1,010 °C and (c) Tc = 1,100 °C.

Fig. 4 Diffractogram of the GC with 4.50 m.% ZrO$_2$ content. (a) Tc = 900 °C, (b) Tc = 1,010 °C and (c) Tc = 1,100 °C.

Fig. 5 Diffractogram of the GC with 5.00 m.% ZrO$_2$ content. (a) Tc = 900 °C, (b) Tc = 1,010 °C and (c) Tc = 1,100 °C.

Fig. 6 Diffractogram of the GC with 5.70 m.% ZrO$_2$ content. (a) Tc = 900 °C, (b) Tc = 1,010 °C and (c) Tc = 1,100 °C.
Influence of the Crystal Growth Temperature on the Formation of Zr Reach Crystalline Phases in a Nuclear Waste Confinement Glass Ceramic

Fig. 7 Diffractogram of the GC with 6.40 m.% ZrO_2 content. (a) Tc = 900 °C, (b) Tc = 1,010 °C and (c) Tc = 1,100 °C.

At the lowest crystal-growth temperature of 900 °C, and for the lowest levels of ZrO_2 in the GCs, there are few Zr-containing phases (especially zirconolite CaZrTi_2O_7) in the germinated crystals: CaZrTi_2O_7 (JCPDS: 00-034-0167), ZrO_2 (JCPDS: 01-073-1441), ZrTiO_4 (JCPDS: 01-074-1504), Nd_3(Ce_0.05Zr_0.95)_2O_7 (JCPDS: 01-078-1619), ZrTiO_4 (JCPDS:01-080-1783), (Ca_0.85Nd_0.075Zr_0.075) (Nd_0.075Zr_0.775Ti_0.15) (Ti_2O_7) (JCPDS: 01-081-1491), ZrO_1.95 (JCPDS: 01-081-1544), Zr_0.86Y_0.14O_1.93 (JCPDS: 01-082-1243), Ca_0.15Zr_0.85O_1.85 (JCPDS: 01-084-1829).

They reach a significant concentration, when the content of ZrO_2 in the ceramic reaches 3.50 %.

At the intermediate temperature of crystallization (1,010 °C), the Zr-reach phases are the main crystalline germs in the materials, even for the lowest content in of ZrO_2 (1%).

However, it is only over 2.49 m. % of ZrO_2 in the GC material that the zirconolite skeleton CaZrTi_2O_7 appears with a significant concentration. The most VC materials contain over 65 m. % of zirconolite jointly with other additive Zr-containing phases.

For Tc = 1,100 °C, the most crystals formed in the bulk of the GC materials are Zr oxides for the whole of ZrO_2 contents in the materials, with a great content in 2M-zirconolite over 4.5 m.% of ZrO_2 in the GC matrices.

3.2 Discussion

Loiseau and Caurant et al. [9] have synthesized Zr-rich GC materials. They report the co-existence of germs of zirconolite and ZrO_2 fluorine crystals, with a Tc temperature of 1,000 °C. The fluorine structure shows a very muddled distribution of Ca^{2+}, Zr^{4+} and Ti^{4+} cations in zirconolite. This muddle distribution is attenuated when Tc increases [10].

For the present study, the zirconolite is the main formed phase in the bulk of the GC materials for the Tc temperature of 1,010 °C, which is near this given by Loiseau and Caurant et al. [9] despite the differences in the nature of the GC materials and the synthesis parameters.

The best crystal-growth treatment in term of selectivity toward the 2M-zirconolite formation seems to be that of 1,100 °C.

One can conclude that the lowest crystal-growth temperature Tc = 900 °C does not favor the germination of Zr-rich phases, particularly zirconolite. The intermediate Tc temperature of 1,010 °C, leads to the greatest selective formation of zirconolite in the GC materials.

However, 900 and 1,100 °C also lead to the germination of radiation resistant phases rich in Zr, and thus may ensure a double-confinement of the lanthanides and actinides present in the radioactive waste solution [9].

4. Conclusions

In this study, we performed the synthesis and characterization of Zr-reach GC materials dedicated for the confinement of radioactive waste. The parent glass is an aluminosilicate glass in the system: SiO_2-Al_2O_3-CaO-MgO-ZrO_2-TiO_2.

The synthesis method is based on a double melting at
1,350 °C, followed by a nucleation at 564 °C and a crystal growth at: 900, 1,010 and 1,100 °C. The obtained results allow concluding that the GC materials exhibit typical properties compared to those of the glass matrix, because they contain highly self-irradiation resistant phases, such as zirconolite. Thus, these materials are potential candidates as nuclear waste forms for double-containment of actinides and lanthanides. For the whole of the studied chemical compositions of the materials, and for the three chosen Tc treatments, a Zr-reach crystalline phase, the 2M-zirconolite (CaZrTi2O7), was identified by XRD analysis, with high levels over 60% for the lowest ZrO2 content in the materials. Minor phases as zirconia (ZrO2) and zircon (ZrSiO4) are also observed.

The highest content in zirconolite (87%) is reached for the GC with 4.5 m.% of ZrO2. The lowest crystallization temperature (900 °C) does not promote the germination of Zr-rich phases, especially zirconolite. This is intermediate crystal-growth temperature of 1,010 °C, which leads to the greatest selectivity in zirconolite ceramic germination. However, the crystal-growth temperatures of 1,010 and 1,100 °C also result in germination of Zr-reach radiation resistant phases.

References

[1] A. Jouan, N.J. Francillon, J.P. Moncouyoux, Vitrification of radioactive high-level waste in France, Status and Perspectives Source: Glass 3 (4) (1997) 4-10.
[2] F.P. Glasser, The role of ceramics, cement and glass in the immobilization of radioactive wastes, British Ceramic Transactions Journal 84 (1) (1985) 1-8.
[3] I.W. Donald, B.L. Metcalfe, R.N.J. Taylor, The immobilization of high level radioactive wastes using ceramics and glasses, Journal of Materials Science 32 (22) (1997) 5851-5887.
[4] P.J. Hayward, The use of glass ceramics for immobilising high level wastes from nuclear fuel recycling, Glass Technologie 29 (4) (1988) 122-136.
[5] P.J. Hayward, Glass-ceramics in Radioactive Waste Forms for the Future, Elsevier Science Publishers B. V., 1988, pp. 427-493.
[6] N. Kamel, D. Moudir, Z. Kamel, A. Djerridi, S. Mouhamou, A. Benmounah, et al., Effect of the Ce content on a nuclear waste glassy matrix in the system: SiO2-Al2O3-CaO-MgO-ZrO2-TiO2, synthesized at a low melting temperature, Journal of Materials Science and Engineering A 3 (4) (2013) 209-223.
[7] JCPDS Data Philips X’Pert High Score Package, Diffraction data CD-ROM, International Center for Diffraction Data, Newtown Square PA, 2004.
[8] R. Jenkins, R.L. Snyder, Introduction to X-Ray Powder Diffraction, Wiley, Interscience, 1996.
[9] P. Loiseau, D. Caurant, O. Majerus, N. Baffier, C. Fillet, Crystallization study of (TiO2, ZrO2)-rich SiO2-Al2O3-CaO glasses Part I: Preparation and characterization of zirconolite-based glass-ceramics, Journal of Materials Science 38 (2003) 843-852.
[10] E.R. Vance, C.J. Ball, M.G. Blackford, D.J. Cassidy, K.L. Smith, Crystallisation of zirconolite from an alkoxide precursor, Journal of Nuclear Materials 175 (1990) 58-66.