MesoRAD: A New Radiocarbon Data Set for Archaeological Research in Mesoamerica

JULIE A. HOGGARTH
CLAIRE E. EBERT
VICTOR E. CASTELAZO-CALVA

ABSTRACT

The Mesoamerican Radiocarbon Database (MesoRAD) compiles radiocarbon dates from the archaeological literature of Mesoamerica. The inaugural data set, ‘Lowland Maya Dates’, includes 1846 radiocarbon dates from 132 sites in 21 distinct environmental zones in the Maya lowlands. These data span the Paleoindian to Colonial Periods (11,670 to 190 uncal BP, 13,740 cal BP to modern) across southern Mexico, Belize, Guatemala, El Salvador, and Honduras. Here, we describe the methods used to compile and organize these dates, including the spatial, chronological, and environmental coverage of the data set.

CORRESPONDING AUTHOR:
Julie A. Hoggarth
Department of Anthropology & Institute of Archaeology, Baylor University, US
j.steding@cas.au.dk

KEYWORDS:
Maya archaeology; Radiocarbon dates; Dates as data; Mesoamerica

TO CITE THIS ARTICLE:
Hoggarth JA, Ebert CE, Castelazo-Calva VE 2021 MesoRAD: A New Radiocarbon Data Set for Archaeological Research in Mesoamerica. Journal of Open Archaeology Data. 9: 10, pp. 1–9. DOI: https://doi.org/10.5334/joad.83
(1) OVERVIEW

CONTEXT

Regional radiocarbon databases and datasets compiling published 14C dates with their associated contextual information have flourished with an expanding number of dates-as-data (sensu) [1] studies. Such approaches are common in many areas of the world, especially in Europe [2, 3, 4], South America [5, 6, 7], and North America [8, 9, 10]. Mesoamerica’s absence in this corpus of research is poignant, given that this region was home to several complex prehistoric societies including the Olmec at San Lorenzo (Veracruz, Mexico), Teotihuacan (Valley of Mexico), the Aztec at Tenochtitlan (D.F. Mexico), the Zapotec at Monte Albán (Oaxaca, Mexico), and Classic Maya city-states, among others. To date, few dates-as-data studies have been published in Mesoamerica, with those that have concentrated in the Maya lowlands [11, 12, 14, 15]. Some of the reticence towards radiocarbon-based approaches in Mesoamerican archaeology stems from widespread reliance on ceramic-based chronologies, including those that were originally tied to historic calendar systems such as in the Maya lowlands. We have argued elsewhere that epigraphic and radiocarbon-based approaches complement each other well and often show similar patterns [12]. As global-approaches to radiocarbon-based demographic reconstructions continue into the future [16], filling in the spatial gaps in the coverage of radiocarbon data sets will be required for comparative regional and global analysis. Here, we report on the inaugural data set of the Mesoamerican Radiocarbon Database (MesoRAD), focused on identifying radiocarbon dates from the Maya lowlands.

The initial data collection was part of two related studies focused on identifying climatic impacts related the rise and fall of lowland Maya polities. In the first, Hoggarth and colleagues [12] identified the timing of the end of political systems across the northern Maya lowlands at the end of the Classic period. That study, while regional in nature, also contributed to understanding the timing of the end of monumental construction at Chichén Itzá in the context of regional drought in the ninth and eleventh centuries. In the second study, Ebert and colleagues [11] documented regional trends in polity growth across the central Maya lowlands from the Middle Formative to Early Classic period, with special attention to the impacts of a multi-decadal drought that spanned 150 to 250 cal CE. That study identified declines in activity in some regions of the lowlands (e.g., Northern Belize), while other region (e.g., Western Belize) remained stable. These two studies studies recorded some of the initial attributes of radiocarbon dates in the Maya lowlands, but it was not until later when the authors combined their data, added an additional 500 dates, and formally created MesoRAD. These activities standardized the data collection process and filled in both chronological and spatial gaps in the Maya lowlands dataset. Given that these previous papers were temporally and spatially restricted in their scope, they did not focus on the processes associated with compiling radiocarbon data sets. This paper introduces the larger, more complete radiocarbon compilation (n = 1846) and to fully describe dates and their attributes for use in future dates-as-data studies.

Spatial coverage

While MesoRAD was established as a repository for published radiocarbon dates from across Mesoamerica, the inaugural data set focuses within the Maya lowlands. This area spans from southern Mexico (including Tabasco and Chiapas), including the Yucatan peninsula, Belize, Guatemala, and parts of Honduras and El Salvador. The current data set covers this entire area, although only a few dates recorded for Honduras and El Salvador (Figure 1). The Maya lowlands have been further subdivided into 27 distinct environmental zones [17].

The portion of Mesoamerica examined here covers approximately 50,000 sq.km:

- Description: Southern Mexico, Guatemala, Belize, and portions of western Honduras and El Salvador.
- Geographic Coordinate system: World Geodetic System (WGS) 1984.
- Datum: World Geodetic System (WGS) 1984.

Figure 1 shows the study area where published radiocarbon dates in the Maya lowlands have been compiled. Coordinates (WGS84) of the bounding box of this area are as follows:

- Northern boundary: 21.563417 (decimal degrees).
- Southern boundary: 13.827524.
- Eastern boundary: 86.766776.
- Western boundary: 92.440518.

Figure 2 shows the spatial clustering of dates, relative to total dates per period. Kernel Density maps, which calculate the magnitude-per-unit area from point features, were created for major time periods. Density analyses were weighted by the percent of dates represented by a site during a specific period (i.e., weighted by the count of dates at a site divided by total number of dates at all sites for the period). This allows us to identify areas that exhibit strong evidence of activity dating based on time period, but also demonstrates biases in archaeological research such as an emphasis on the Classic period or sites/regions that have been more intensively dated. For example, the large sample of dates from the Upper Belize River Valley (n = 303) is apparent from the Archaic through Terminal Classic periods, and these dates compose approximately 20% of the entire lowland Maya data set. Likewise, the large-scale radiocarbon dating programs at Ceibal [18] and the broader Pasión region (n = 164) can be identified as especially high for the Early/Middle Formative period, making up approximately 10% of the dataset. Though most sites with Postclassic...
Figure 1 Map of MesoRAD study area showing current extent of data coverage.

Figure 2 Kernel density function maps showing clusters of 14C dates (which passed chronometric hygiene) from each time period.
and Historic dates have between 1–3 dates, higher numbers of dates are also recorded at Mayapan ($n = 28$) [19]. While ‘dates as data’ studies suggest these trends show occupational intensity, spatial patterning also indicated localized trends archaeological research designs. Biases in contextual coverage are also apparent. Most dates derived from monumental site cores (defined as the ceremonial epicenters which contain public and monumental architecture), followed by settlement/residential contexts, caves, and rock shelters (Figure 3), demonstrating that radiocarbon-based chronology building has largely centered on monumental contexts at site cores.

Temporal coverage
Radiocarbon dates were identified from the central, southern, and northern Maya lowlands and show that these regions were intensely settled from the Formative to Terminal Classic periods. Figure 4 shows trends in 14C data across six time periods in the Maya lowlands. While some might expect that long-term research in the region would reveal a bias towards Classic 14C dates, we find that earlier time periods are not underestimated in the sample. Many published Formative period dates have emerged from recent projects, in addition to the long span of this interval in these figures. These trends show low-level occupation in the central lowlands during the Paleoindian and Archaic period (>1200 cal BC). Sedentism and the origins of village life ~1000 cal BC can be identified for the Formative period. ‘Hot spots’ are present in the Pasión region, such as at Ceibal (Inomata et al. 2013), in the Upper Belize River Valley [11], and in northern Belize (Hammond et al. 2009), though there is evidence of occupation across the entire lowlands. We identify intense occupational activity in southern Belize during the Early Classic [15] and nearly ubiquitous occupation across the region during the Late Classic.

![Figure 3](image3.jpg) Percent of dates that passed the chronometric hygiene criteria, by context.

![Figure 4](image4.jpg) Percent of dates associated with time periods across the Paleoindian to Historic Maya Lowlands.
Environmental Coverage

Considerable scholarship has focused on the cultural changes that occurred during the Classic to Postclassic period transition. Shifts in settlement from interior locations to coastlines, lakes/lagoons, and rivers is often hypothesized based on archaeological data [20]. Dates from the Maya lowlands permit us to help understand these patterns. We organized sites into resource zones based on water/resource availability and used 14C dates to look at temporal shifts between zones. These zones include interior sites, which are those that lack rivers or lakes/lagoons within 2 km of the ceremonial center, those with bodies of water (lakes, lagoons, rivers) within 2 km of the ceremonial center, those with cenotes within 2 km of the ceremonial center, and those located within 2 km of the coastline. The identification of water features came from published maps and articles, although it is possible that smaller water features that are not reported in the literature may be present at some sites. The distance of 2 km was used as a buffer since that is the distance which epicentral settlement mound density drops off at known medium-sized settlements [21]. Results indicate (Figure 5) approximately 66% of Late Classic 14C dates are associated with interior sites, with 31% with sites near freshwater bodies. Few dated sites were located along the coast or by cenotes (although sites do exist that fit these criteria, we simply lack 14C dates). These trends minimally shifted during the Terminal Classic, both in terms of location of sites and frequencies of dates.

Settlement trends shift during the Postclassic and Historic periods, when interior sites decrease and sites near freshwater bodies of water, cenotes, and the coastline become more frequent. Sizable reductions (~39%) in 14C dates from interior areas are also noted from the Late Classic to Postclassic period (Figure 5). While dates associated with cenotes increased primarily because of the large sample of dates from Mayapan, dates from zones with adjacent freshwater bodies of water also increase into the Postclassic period (Table 1). These analyses demonstrate potential to assess regional scale questions, such as settlement shifts related to environmental resources, across Mesoamerica using 14C data.

(2) METHODS

This database was created by scouring the published literature for radiocarbon dates, searching journal articles, books, and unpublished grey literature (field reports, dissertations). Publications in both English and Spanish were explored so that we did not miss entire sites due to language barriers. While this data set is likely not completely exhaustive, it represents the first and largest systematic compilation of radiocarbon dates from Mesoamerica.

STEPS

The data set was assembled using Microsoft Excel for ease of organizing data. This also allows other researchers, especially those based outside the US, to download the full dataset in .csv formats for convenient use. Column were organized using several categories, including:

Context and provenience

Site: Name of the archaeological site in which 14C dates were recovered.
Adaptive Region: Environmental zone (if identified).
See [17] for adaptive regions of the Maya lowlands.
Provenience: Specific contextual information about the provenience of the dated sample, including structure number, feature information (e.g. “under Floor 4”), and other relevant associated archaeological information.
Context: Categories of specific contexts types where sample was recovered. Included examples are: Site Core, Settlement, Cave, Rockshelter.

Sample specifics

Material: Material dated (e.g. charcoal, bone, shell, etc.). When species are reported, they are also listed here.
Lab number: Reported lab number. In the case that conflicting lab numbers are reported, we referred back to the original publication to decide which to use in the database.
Conventional 14C Age (BP): Uncalibrated radiocarbon age (BP)
Error: Attached uncalibrated error.
Dating Method: Conventional radiometric or AMS dating when reported
Duplicate/Replicate: Here we note whether dates are duplicates or replicates. Duplicate dates are dates on the same sample by multiple labs or using multiple protocols.
Chronometric hygiene/Issues with date: Notes about quality control, including whether a date fits with other archaeological data, has large attached errors, or a date was identified as an outlier in a sequence in
Figure 5 Percent sites and dates associated with aquatic resources.
a Bayesian chronological model.
Citation: Original reference(s) where date was reported.

SAMPLING STRATEGY
We did not institute a sampling strategy for inclusion into the spreadsheet. Rather, all dates that were identified were included in the radiocarbon data set irrespective of quality control attributes (see next section) or temporal period. This allows future researchers to critically evaluate whether to utilize dates or not, with concerns noted in the "Chronometric hygiene" notes.

QUALITY CONTROL
Dates were evaluated in relation to chronometric hygiene criteria [12] to identify questionable dates. While all dates were compiled for storage within the radiocarbon database, details were added about questionable dates, which include those that did not align with other archaeological data (such as those that dated earlier or later than would be accepted archaeologically), those with measurement precisions >100 years, or dates rejected by the original researchers for other specific reasons. Since radiocarbon chronologies, coupled with chronometric hygiene standards, are largely lacking across the Maya Lowlands, these steps create standardized criteria that may be used for comparative studies. Of the compiled data, 82.8% ($n = 1529$) passed the chronometric hygiene criteria, while 317 dates have been identified that might be questionable or critically assessed for use in 'dates as data' studies in future studies.

CONSTRAINTS
Locational data are sensitive, given the widespread looting in the region. However, in order to enhance the useability of the data set, the locational data has been scrubbed using code from [13] to hide the genuine site locations. This has the effect of offering locational data for future users while not comprising site integrity.

(3) **DATASET DESCRIPTION**
The ‘Lowland Maya Dates’ data set is archived as a .csv file updated as additional dates are identified (the current version is v.1.4, updated in November 2021). One worksheet of the excel file consists of 14C dates from archaeological contexts. A second worksheet includes radiocarbon dates identified from environmental contexts compiles dates from agricultural fields, lake core, and other environmental proxies. A third worksheet includes the bibliography for the citation column of the database.

OBJECT NAME
MesoRAD_v.1.4shiftedloc.csv

DATA TYPE
Secondary data

FORMAT NAMES AND VERSIONS
.csv

CREATION DATES
Dates from the Maya lowlands were initially compiled as part of two related projects. Hoggarth compiled the first dataset in 2014, with the (SPD) results from the Late Classic through Late Postclassic periods published in [12]. Ebert and colleagues [11] compiled dates from the central and southern Maya lowlands, of which the (SPD) results from the Formative to Early Classic periods were reported [11]. These initial dates were standardized into the formal data set, with the addition of a ~500 additional dates, in 2019. The inaugural data set was archived on tDAR in 2020 (Hoggarth and Ebert 2020), although until this paper we had not described the processes of how those data were compiled.

DATASET CREATORS
The scholars who have contributed to the compilation of radiocarbon dates in the Maya lowlands include the three authors (Hoggarth, Ebert, and Castelazo Calva).

LANGUAGE
English, Spanish

LICENSE
Creative Commons Attribution 4.0

REPOSITORY LOCATION
The data sets are permanently archived at and can be downloaded from tDAR [22]. The DOI for ‘Lowland Maya Dates’ is: doi: 10.48512/XCV8467840
https://core.tdar.org/dataset/467840/mesorad-v14

PAL/ARCH	E-M FORM	L FORM	E CLASSIC	L CLASSIC	T CLASSIC	POSTCL/HIST	MOD	NO INFO	
Interior	81	306	143	213	223	82	49	3	27
Body of Water	64	138	42	87	103	34	31	4	24
Cenote	6	7	5	6	3	19	50	0	6
Coast	22	6	22	6	8	7	16	0	1
Unknown	0	0	6	1	0	1	0	0	1

Table 1 Number of radiocarbon dates per time period in each environmental zone.
MesoRAD is the largest and only compilation of 14C dates in Mesoamerica. The creation of the data set offers a new opportunity to apply dates-as-data research in specific sub-regions, such as in the Maya lowlands. Until recently, this region was completely absent from such studies. Future studies can explore more fine-grained questions on demographic trends, as well as human-environmental interactions, using information assembled. As additional areas in Mesoamerica are added, we expect that differing culture areas can be compared more easily. As dates-as-data studies expand to be more global in nature, the data from MesoRAD can be utilized to assess major questions in archaeology.

Researchers who work in Mesoamerica (or Central America) who have published radiocarbon data (primary data from their research or compiled secondary data from a region) who wish to archive that data with MesoRAD are welcome to contact Julie Hoggarth (Julie_Hoggarth@baylor.edu).

ACKNOWLEDGEMENTS

We thank Britt Davis for assistance in using R.

FUNDING STATEMENT

The creation of MesoRAD came about in relation to two, inter-related, NSF-funded projects: Examining the Disintegration of Maya Polities and Demographic Decline in the Central Maya Lowlands (BCS-1460369, Hoggarth Co-PI) and Maya Households and the Origins of Social Stratification (BCS-1460369, Ebert Co-PI). While both of those projects focused in the Belize River Valley, both Hoggarth and Ebert compiled 14C dates to allow for regional comparisons.

COMPETING INTERESTS

The authors have no competing interests to declare.

AUTHOR AFFILIATIONS

Julie A. Hoggarth orcid.org/0000-0001-8612-8846
Department of Anthropology & Institute of Archaeology, Baylor University, US

Claire E. Ebert orcid.org/0000-0002-8554-2727
Department of Anthropology, University of Pittsburgh, US

Victor E. Castelazo-Calvo
Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, CL

REFERENCES

1. Rick JW. Dates as data: an examination of the Peruvian preceramic radiocarbon record. American Antiquity, 1987; 52(1): 55–73. DOI: https://doi.org/10.2307/281060
2. Nielsen SV, Persson P, Solheim S. De-Neolithisation in southern Norway inferred from statistical modelling of radiocarbon dates. Journal of Anthropological Archaeology, 2019; 53: 82–91. DOI: https://doi.org/10.1016/j.jaa.2018.11.004
3. Palmisano A, Bevan A, Shennan S. Comparing archaeological proxies for long-term population patterns: An example from central Italy. Journal of Archaeological Science, 2017; 87: 59–72. DOI: https://doi.org/10.1016/j.jas.2017.10.001
4. Timpson A, Colledge S, Crema E, Edinborough K, Kerig T, Manning K, Thomas MG, Shennan S. Reconstructing regional population fluctuations in the European Neolithic using radiocarbon dates: a new case-study using an improved method. Journal of Archaeological Science, 2014; 52: 549–557. DOI: https://doi.org/10.1016/j.jas.2014.08.011
5. de Souza JG, Riris P. Delayed demographic transition following the adoption of cultivated plants in the eastern La Plata Basin and Atlantic coast, South America. Journal of Archaeological Science, 2021; 125: 105293. DOI: https://doi.org/10.1016/j.jas.2020.105293
6. Riris P, Arroyo-Kalin M. Widespread population decline in South America correlates with mid-Holocene climate change. Scientific Reports, 2019; 9(1): 1–10. DOI: https://doi.org/10.1038/s41598-019-43086-w
7. Timpson A, Barberena R, Thomas MG, Méndez C, Manning K. Directly modelling population dynamics in the South American Arid Diagonal using 14C dates. Philosophical Transactions of the Royal Society B, 2021; 376(1816): 20190723. DOI: https://doi.org/10.1098/rstb.2019.0723
8. Bird D, Freeman J, Robinson E, Maughan G, Finley JB, Lambert PM, Kelly RL. A first empirical analysis of population stability in North America using radiocarbon records. The Holocene, 2020; 30(9): 1345–1359. DOI: https://doi.org/10.1177/0959683620919975
9. Buchanan B, Collard M, Edinborough K. Paleoindian demography and the extraterrestrial impact hypothesis. Proceedings of the National Academy of Sciences, 2008; 105(33): 11651–11654. DOI: https://doi.org/10.1073/pnas.0803762105
10. Robinson E, Bocinsky RK, Bird D, Freeman J, Kelly RL. Dendrochronological dates confirm a Late Prehistoric population decline in the American Southwest derived from radiocarbon dates. Philosophical Transactions of the Royal Society B, 2021; 376(1816): 20190718. DOI: https://doi.org/10.1098/rstb.2019.0718
11. Ebert CE, May NP, Culleton BJ, Awe JJ, Kennett DJ. Regional response to drought during the formation and decline of Preclassic Maya societies. Quaternary Science Reviews, 2017; 173: 211–235. DOI: https://doi.org/10.1016/j.quascirev.2017.08.020

12. Hoggarth JA, Breitenbach SF, Culleton BJ, Ebert CE, Masson MA, Kennett DJ. The political collapse of Chichén Itzá in climatic and cultural context. Global and Planetary Change, 2016; 138: 25–42. DOI: https://doi.org/10.1016/j.gloplacha.2015.12.007

13. Bevan A. Spatial methods for analysing large-scale artefact inventories. Antiquity, 2012; 86: 492–506. DOI: https://doi.org/10.1017/S0003598X0006289X

14. Price MH, Capriles JM, Hoggarth JA, Bocinsky K, Ebert CE, Jones JH. End-to-end Bayesian analysis for summarizing sets of radiocarbon dates. Journal of Archaeological Science, 2021; 135: 105473. DOI: https://doi.org/10.1016/j.jas.2021.105473

15. Prufer KM, Thompson AE, Meredith CR, Culleton BJ, Jordan JM, Ebert CE, Winterholder B, Kennett DJ. The Classic Period Maya transition from an ideal free to an ideal despotic settlement system at the polity of Uxchenka. Journal of Anthropological Archaeology, 2017; 45: 53–68. DOI: https://doi.org/10.1016/j.jaa.2016.11.003

16. Bird D, Miranda L, Vonder Linden M, Robinson E, Nicholson C, Bocinsky RK, Capriles JM, Finley JB, Gayo EM, Gil A, d’Alpoim Guedes J, Hoggarth JA, Kay A, Loftus E, Lombardo U, Mackie M, Palmisano A, Solheim S, Kelly RL, Freeman J. P3k14C: A synthetic Global Database of Archaeological Radiocarbon Dates. Accepted.

17. Dunning N, Beach T, Farrell P, Luzzadder-Beach S. Prehispanic agrosystems and adaptive regions in the Maya lowlands. Culture & Agriculture, 1998; 20(23): 87–101. DOI: https://doi.org/10.1525/cag.1998.20.2-3.87

18. Inomata T, Triadan D, MacLellan J, Burham M, Aoyama K, Palomo JM, Yonenobu H, Pinzón F, Nasu H. High-precision radiocarbon dating of political collapse and dynastic origins at the Maya site of Ceibal, Guatemala. Proceedings of the National Academy of Sciences, 2017; 114(6): 1293–1298. DOI: https://doi.org/10.1073/pnas.1618022114

19. Lope CP, Masson MA, Hare TS, Kú PCD. The chronology of Mayapan: New radiocarbon evidence. Ancient Mesoamerica, 2006; 17(2): 153–175. DOI: https://doi.org/10.1017/S0956536106060135

20. Masson MA. Postclassic Maya Communities at Progresso Lagoon and Laguna Seca, Northern Belize. Journal of Field Archaeology, 1999; 26(3): 285–306. DOI: https://doi.org/10.2307/130515

21. Hoggarth JA. Social reorganization and household adaptation in the aftermath of collapse at Baking Pot, Belize. Unpublished PhD dissertation, Pittsburgh, PA: University of Pittsburgh; 2012.

22. Hoggarth JA, Ebert CE. Mesoamerican Radiocarbon Database (MesoRad). (tDAR id: 467840); 2021. DOI: https://doi.org/10.48512/XCV8467840

TO CITE THIS ARTICLE:
Hoggarth JA, Ebert CE, Castelazo-Calva VE 2021 MesoRAD: A New Radiocarbon Data Set for Archaeological Research in Mesoamerica. Journal of Open Archaeology Data, 9: 10, pp. 1–9. DOI: https://doi.org/10.5334/joad.83

Published: 21 December 2021

COPYRIGHT:
© 2021 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Archaeology Data is a peer-reviewed open access journal published by Ubiquity Press.