To appear in the *Journal of Applied Statistics*
Department of Surgical Outcomes and Analysis, Kaiser Permanente
Vol. 00, No. 00, Month 20XX, 1–6
Checking Identifiability of Covariance Parameters in Linear Mixed Effects Models

Supplementary Material

Wei Wang

(Received 00 Month 20XX; accepted 00 Month 20XX)

1. Histograms of $\hat{\sigma}$ and $\hat{\rho}$ (MLE)
Figure 1. Maximum likelihood estimated covariance parameters in model A. Vertical lines indicate the true parameter values: $\sigma = \sqrt{0.6} \approx 0.77$, and $\rho = 0.4$.

Figure 2. Maximum likelihood estimated covariance parameters in model B. Vertical lines indicate the true parameter values: $\sigma = \sqrt{0.6} \approx 0.77$, and $\rho = 0.5$.

2. Histograms of $\hat{\sigma}$ and $\hat{\rho}$ (REML)
Figure 3. REML estimated covariance parameters in model A. Vertical lines indicate the true parameter values: \(\sigma = \sqrt{0.6} \approx 0.77 \), and \(\rho = 0.4 \).

Figure 4. REML estimated covariance parameters in model B. Vertical lines indicate the true parameter values: \(\sigma = \sqrt{0.6} \approx 0.77 \), and \(\rho = 0.5 \).

3. Coverage plots of \(\rho \)
Figure 5. Coverage plot of the parameter ρ in model A. True value is $\rho = 0.4$.

Figure 6. Coverage plot of the parameter ρ in model B. True value is $\rho = 0.5$.

4. Proofs

In our study, a matrix Σ with parameter θ is obtained through the map $\Sigma = \sum_{k=1}^{m} \theta_k E_{I_k}$ with the domain $\Theta = \{\theta : \Sigma \in S^m_{12}\}$. We first show that the parameter space Θ is open in \mathbb{R}^m. This result helps to establish the necessary conditions of model identifiability.
in the consequent results. The openness is immediate to visualize for some structured Σ, e.g. an MI-Σ. For other structures such as UN or Toeplitz, the verification is not straightforward. Although it is well known that S^n_+ is an open subset of S^n [1, page 55], the set S^n_+ itself is too general for our discussion since each Σ_j is parameterized by θ_j and $\theta = (\theta'_1 \cdots \theta'_J)'$ is the target of the study. In general, we have the following result. By the lemma, each parameter space Θ_j is open in R^{m_j}. Hence, the space $\Theta = \Theta_1 \times \cdots \times \Theta_J$ of θ is open in $R^{\sum_j m_j}$.

Lemma 4.1 $\Theta = \{ \theta : \Sigma \in S^n_+ \}$ is an open set of R^n.

Proof of Lemma 4.1:
We consider the Euclidean norm $\| \cdot \|$ of θ. Let θ be an arbitrary point of Θ. We define a ball centered at θ with radius r as $B(\theta, r) = \{ x : \| \theta - x \| < r \}$. We need to show that given θ, there exists an r such that $B(\theta, r) \subset \Theta$.

Since $\theta \in \Theta$, all the leading principal minors of Σ are positive. For a given positive leading principal minor, θ lies in an open set (not necessarily Θ). There is a radius such that a ball with this radius centered at θ is in this open set. Considering all the leading principal minors together, there exists a minimum radius enabling a ball to be in all these open sets. That is, every point of Θ is an interior point.

Proof of Theorem 3.1:
We prove that the model is not identifiable if and only if elements of F are linearly dependent. Let c_j be an arbitrary vector of length m_j with elements c_{jk}, $k = 1, \ldots, m_j$. Let $c = (c'_1 \cdots c'_J)' \neq 0$. Suppose $\sum_{j=1}^J Z_j \left(\sum_{k=1}^{m_j} c_{jk} E_{jk} \right) Z'_j = 0$. Linear dependence of elements of F is equivalent to $c \neq 0$. Define $\theta^* = \theta + c$. It is clear that both θ^* and θ produce the same Σ_y. Let d be a constant and $\theta^* = \theta + dc$. By Lemma 4.1, $\theta^* \in \Theta$ for small enough $|d|$.

Proof of Corollary 3.1:
We have $\text{vec}\Sigma_y = V\theta$. Define $\theta^* = \theta + c$ where c is arbitrary. Suppose $\text{vec}\Sigma_y = V\theta^*$. Then, V of full column rank is equivalent to $c = 0$. For small enough $|d|$, $\theta^* = \theta + dc \in \Theta$ by Lemma 4.1.

Proof of Theorem 3.2:
Proof of the theorem is very similar to the proof of Corollary 3.1, and is omitted.

References

[1] A. Berman. *Cones, Matrices and Mathematical Programming*. Springer-Verlag Berlin, 1973.