In many acutely ill hypoxemic patients, hypoxemia is caused by flooding and infiltration of alveoli and interstitium. This decreases the diffusion of gases across alveolo-capillary membrane, leading to shunting of blood from the lung areas that are completely consolidated or collapsed. A decrease in pulmonary compliance leads to an increase in work of breathing, causing more negative in-trapleural pressure. This leads to lung strain that can exacerbate the preexisting pulmonary insult. This is called Patient self-inflicted lung injury (P-SILI).1,2 In some patients, hypoxemia may be due to collapse of the airway during inspiration or expiration.

Providing positive-end expiratory pressure (PEEP) in these conditions prevents the collapse of alveoli during expiration and thus improves the diffusion of gases and thus oxygenations. Positive-end expiratory pressure increases the functional residual capacity (FRC), leading to better lung compliance, which will reduce air hunger. Devices that give PEEP are high-flow nasal cannula (HFNC), continuous positive airway pressure (CPAP), and bilevel positive airway pressure (BiPAP). One can also titrate the concentration of oxygen while using these devices as required, depending on the patient’s response.3 Standard oxygen therapy (SOT), using nasal prong, face mask, and non-rebreathing masks provides higher concentration of oxygen in inspired air, which will improve oxygenation, depending on the severity and extent of pulmonary involvement. But these devices will not improve the root cause of the problem and therefore will not increase the FRC or decrease the air hunger.4

Standard BiPAP machines, which are the mainstay of noninvasive ventilatory support, also provide pressure support during inspiration. But these devices are expensive. Studies have shown that in acute respiratory failure, only CPAP can improve arterial oxygenation and reduce the need for endotracheal intubation, as compared with the Venturi mask.5,6 Continuous positive airway pressure is equally effective than noninvasive positive pressure support ventilation in cardiogenic edema.7 The recent coronavirus disease-2019 (COVID-19) pandemic showed that HFNC, which provides PEEP without pressure support, is also effective in mild acute respiratory distress syndrome (ARDS). But HFNC consumes a large amount of oxygen. In addition, both these devices need electricity to run.

In India, there exists a huge gap in availability of healthcare. Majority of the rural or underprivileged population remains deprived of affordable medicines and healthcare technology. To bridge the gap between availability and affordability of medicines, Government of India has taken important steps, such as the Jan Aushadhi stores and e-pharmacies to make medication accessibility,
encouraging initial results. Twelve patients (80%) who completed the PEP-OT trial (45-minute trial) had a significant improvement in respiratory rate and heart rate. There was also a trend toward improved SpO₂ and perceived level of dyspnea at the end of the 45-minute PEP-OT trial. None of the patients had worsening of the symptoms. However, these results need to be interpreted with caution as the study period was only 45 minutes. To consider its use in hypoxemic patients as an alternative to HFNC or CPAP devices will require a much larger study for a longer period of time. However, if found, the device can be used safely with careful monitoring in remote hospitals, where HFNC or CPAP is unavailable.

Positive expiratory pressure oxygen therapy, if found effective, can be potentially used in parenchymal pathologies like pneumonia and pulmonary edema, as well as in airway diseases like bronchiectasis, chronic obstructive pulmonary disease (COPD), and acute asthma exacerbation. The parts of the PEP-OT devices are reusable and the cost is negligible as compared with HFNC and CPAP delivery devices. However, further studies which will compare PEP-OT as an alternative or as being superior to SOT, as well as being a non-inferior alternative to HFNC or CPAP therapy in patients with respiratory distress, are required. Positive expiratory pressure oxygen therapy appears to be an attractive and physiologically favorable oxygen delivery alternative with a wide range of potential applications.

Orcid

Vijaya Prakash Patil https://orcid.org/0000-0002-5177-5696
Abhishek Rajput https://orcid.org/0000-0002-8598-4242

References

1. Grieco DL, Menga LS, Eleuteri D, Antonelli M. Patient self-inflicted lung injury: Implications for acute hypoxemic respiratory failure and ARDS patients on non-invasive support. Minerva Anestesiol 2019;85(9):1014–1023. DOI: 10.23736/S0375-9393.19.13418-9.

2. Yoshida T, Grieco DL, Brochard L, Fujino Y. Patient self-inflicted lung injury and positive end-expiratory pressure for safe spontaneous breathing. Curr Opin Crit Care 2020;26(1):59–65. DOI: 10.1097/MCC.0000000000000691.

3. Ferreyro BL, Angriman F, Munshi L, Sorbo LD, Ferguson ND, Rochwerg B, et al. Association of noninvasive oxygenation strategies with all-cause mortality in adults with acute hypoxemic respiratory failure: A systematic review and meta-analysis. JAMA 2020;324(1):57–67. DOI: 10.1001/jama.2020.9524.

4. Scala R, Pisani L. Noninvasive ventilation in acute respiratory failure: Which recipe for success? Eur Respir Rev 2018;27(149):180029. DOI: 10.1183/16000617.0029-2018.

5. Cosentini R, Brambilla AM, Aliberti S, Bignamini A, Nava S. Helmet continuous positive airway pressure vs oxygen therapy to improve oxygenation in community-acquired pneumonia: A randomized, controlled trial. Chest 2010;138(1):114–120. DOI: 10.1378/chest.09-2290.

6. Brambilla AM, Aliberti S, Prina E, Nicoli F, Del Forno M. Helmet CPAP vs. oxygen therapy in severe hypoxemic respiratory failure due to pneumonia. Intensive Care Med 2014;40(7):942–949. DOI: 10.1007/s00134-014-3325-5.

7. Pagano A, Numis FG, Rosato V, Russo T, Porta G. Pressure support ventilation vs continuous positive airway pressure for treating of acute cardiogenic pulmonary edema: A pilot study. Respir Physiol Neurobiol 2018;255:7–10. DOI: 10.1016/j.resp.2018.04.007.

8. Dhochak N, Ray A, Soneja M, Wig N, Kabra SK, Lodha R. Positive Expiratory Pressure Oxygen Therapy for Respiratory Distress: A Single-arm Feasibility Trial. Indian J Crit Care Med 2022;26(11):1169–1174.