Review Article

Reporting and ideal testosterone levels in men undergoing androgen deprivation for prostate cancer—time for a rethink?

Sonja Cabarkapa a, Marlon Perera a, Ken Sikaris b, Jonathan S. O’Brien a, Damien M. Bolton a, b, Nathan Lawrentschuk a, c, d, 1

a Department of Surgery, Austin Hospital, University of Melbourne, Melbourne, Australia
b Department of Pathology, University of Melbourne, Melbourne, Australia
c Olivia Newton-John Cancer Research Institute, Austin Hospital, Melbourne, Australia
d Department of Surgical Oncology, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Australia

1. Introduction

Since the 1940s, serum testosterone (T) has marked the cornerstone of prostate cancer (PC) progression as postulated by Huggins and Hodges, 1 suggesting a direct correlation between high levels of T and PC progression. This highlights the rationale for castration, traditionally surgical, in an attempt to lower serum T and limit PC progression. Over the last 3 decades, androgen deprivation therapy (ADT) has been introduced as an alternative to surgical castration to achieve castration in the treatment of advanced PC. 2 Historically, the recommended castrate threshold was below 1.7 nmol/L (50 ng/dL), and this value is still referenced by some regulatory authorities and utilized in clinical trials. 3

However, recent studies have conferred better oncological outcomes, with an even lower T threshold of 0.7 nmol/L (20 ng/dL). 1–3 This has resulted in changes to international guidelines including a recent statement from the European Association of Urology promoting this lower threshold. 3

Despite the identification of the importance of ensuring castrate levels of T during ADT, the manner in which serum T is reported has not been re-evaluated in recent times. The absolute values assist in clinical decision making, underpinning the importance of their accuracy. However, at present, T levels are still reported in the context of men being assessed for hypogonadism rather than therapeutic castration. Typical threshold levels for hypogonadism are generally >12 nmol/L (346 ng/dL), 5 values that hold little significance in the setting of ADT (see Fig. 1). Similarities may be drawn in the assessment of biochemical recurrence after definitive treatment for PC—where accurate prostate-specific antigen (PSA) levels at the lowest detection points are critical and may affect management.
In the setting of ADT, clinicians are truly interested in information that pertains to the following:

1. How low the T level is (as an absolute value in preference to an interval where possible).
2. The lowest T level the laboratory is able to detect.
3. Accurate clinical guidance as to what the level indicates often in the form of a clinical note.

Variations as to what levels are considered “ideal” exist among international guidelines. This has prompted the need for advisory offering recommendations on the optimal levels and timing of tests. In this study, we aimed to determine the current standards of T reporting from pathology laboratories across Australia. Further, we aimed to review the current guidelines in T monitoring in the setting of ADT.

2. Materials and methods

2.1. Survey of pathology laboratories

A list of registered pathology laboratories in Australia and New Zealand was obtained from business listings and the register at the Royal College of Pathologists of Australasia. Laboratories were contacted and enrolled into the current study, and laboratory reporting data were collected via a phone survey. Questions were directed to a senior laboratory staff member, and in the case that the member of staff was unable to give a verbal response, the questions were sent to them via e-mail. The corresponding answers were entered into the survey template and returned by e-mail. Data collected from each participating laboratory included the following: laboratory information (region/city) and T testing information (manufacturer and analyzer utilized, T assay utilized, T units reported, T reference intervals, lowest reported T value, and lowest detectable T value). In addition to this laboratory-specific data, the awareness of T-lowering medication and reporting standards in this population were assessed.

2.2. Construction of a clinical reporting guideline to be issued with reports of serum T

We performed a systematic search to identify all locoregional reporting guidelines for T. Specifically, we aimed to identify articles that outlined the reporting strategies and recommended frequency of T in patients on ADT. To obtain relevant articles, we...
systematically searched Web of Science (including MEDLINE), EMBASE, and Cochrane. The following search terms were used: “prostate cancer” (/exp, prostat* ca*, prostat* neo*), “testosterone” (/exp, testoster*), “androgen deprivation” (/exp, andro*, depriv*, castrat*), +/- “survival” (/exp, surviv*). In addition, we systematically searched national and international urological, oncological, and pathology bodies’ databases and documentation for respective PC guidelines. These guidelines were reviewed for recommendations on T testing and T reporting by pathology laboratories.

2.3. Statistical analysis

Survey data were collated into an Excel 2007 spreadsheet (Microsoft Excel, Redmond, CA, USA). Minimal statistical analysis

Pathology laboratory	Assay used	Units reported	Interval	Limit of blank	Limit of quantification
Melbourne Dorevitch	Siemens Centaur immunoassay (Siemens, Berlin, Germany)	nmol/L	8.3–30.2	<0.3	LoD
Melbourne Pathology	Electrochemiluminescence immunoassay	nmol/L	9.9–28.8 (over 35 yr)	<0.4	<0.4 nmol/L
St Vincents	Siemens Centaur immunoassay (Siemens, Berlin, Germany)	nmol/L	8.0–30.0	<0.2	<0.1 nmol/L
Healthscope	Siemens Centaur immunoassay (Siemens, Berlin, Germany)	nmol/L	8.0–30.0	<0.4	LoD
Sydney	Siemens Immunolyte 2000 (Siemens, Berlin, Germany)	nmol/L	5.6–23.6	<0.7	LoD
South Eastern Area Laboratory Services	Abbott Architect (Abbott Laboratories, IL, USA)	nmol/L	9.5–28 (over 36 yr)	<0.1	LoD
Douglas Hanly Moir	Roche Cobas 601 (Roche, Basel, Switzerland)	nmol/L	9.9–27.8	0.087–52.000	<0.069 nmol/L
San Path St Vincents Hospital	Siemens Centaur immunoassay (Siemens, Berlin, Germany)	nmol/L	8.3–28.7	<0.4	LoD
Laverty	Siemens Centaur immunoassay (Siemens, Berlin, Germany)	nmol/L	5.6–23.6	<0.7	LoD
New Zealand	Siemens Centaur immunoassay (Siemens, Berlin, Germany)	nmol/L	8.3–28.7	<0.4	LoD
Southern Community Laboratories (Healthscope)	Beckman Coulter Dxi (Beckman Coulter, Brea, CA, USA)	nmol/L	9.0–30.0	<0.35	LoD
Medlab Central (Douglas Hanly Moir)	Roche chemiluminescent assay (Roche, Basel, Switzerland)	nmol/L	8.0–38.0	<0.40	0.09 nmol/L
Northland Pathology (Healthscope)	Roche Cobas 601 (Roche, Basel, Switzerland)	nmol/L Tiered to patient	<0.4	0.416 nmol/L	
Pathlab	Roche chemiluminescent assay (Roche, Basel, Switzerland)	nmol/L	8.0–29.0	<0.5	0.087 nmol/L

LoD, limit of detection.
was performed. Available data were reported as frequencies unless otherwise specified.

3. Results

3.1. Reporting

The data from the survey of pathology laboratories are outlined in Table 1. On assessment of reporting standards, all laboratories reported T intervals and clinical guidelines in a similar fashion with the focus on “normal” T levels. A typical example of how T levels are currently reported is included in Fig. 1. No laboratory reported castrate levels of T or the lowest level that the respective assay was able to achieve. Further, within these pathology T reports, no clinical guidelines were appended to guide clinicians treating men with PC.

3.2. Current guidelines and recommendations for reporting T in men on ADT

From our systematic search strategy, we identified 78 articles relevant for assessment (Fig. 2). Of these articles, we identified eight recommendations regarding T testing in patients on ADT. Pertinent guidelines were identified from the National Comprehensive Cancer Network,7 the European Association of Urology,8 the Canadian Urological Association,9 and the American Urological Association.10 Their respective recommendations are summarized in Table 2.

3.3. Construction of a clinical reporting guideline to be issued with reports of serum T

After examining current reporting by international guidelines, a proposed T reporting schema may include the following (example template is highlighted in Fig. 3):

1. Absolute level of T in the designated units.
2. Reference intervals for the normal male.
3. Lowest interval and highest values obtained by the respective assay (e.g., <0.4—100 nmol/L).
4. Pertinent clinical guidelines at the bottom of the report to state that “international guidelines recommend a serum testosterone level to be at least <0.7 nmol/L or <1 nmol/L in the setting of androgen deprivation for prostate cancer.”8
5. Recommendations for repeat testing in the setting of ADT for PC: it would be reasonable to test serum T at least 6 monthly or when a rise in serum PSA and/or clinical progression occurs while on ADT.

4. Discussion

A significant proportion of PC patients present with advanced disease.1 In these patients, assessment of T levels during the early stages of ADT is critical in ensuring appropriate treatment of PC. Furthermore, during ADT treatment, T monitoring may assist in ensuring acceptable castration or the diagnosis of castrate-resistant PC. Despite increasing evidence, the optimal role and frequency of monitoring of T are not clear. The pertinent findings of the current study are multiple. First, we outlined the heterogeneity and loss of pertinent data when T values are reported by pathology laboratories. Further, we identified the significant variation in recommendations for T monitoring from the major urological and oncological authoritative bodies.

While T does not directly cause prostate dysplasia, it is considered imperative for the growth and progression of PC.12,13
Physiologically, T has three endogenous sources in the male, predominantly from the Leydig cells in the testis and small amounts from the zona reticularis in the adrenal glands and specific PC cells. Only 1–2% of T circulates in the blood freely, constituting the active form of the hormone, which is able to bind to androgen receptors. The remaining T is bound to plasma proteins, predominantly to sex hormone binding globulin and weakly to albumin, in a reversible manner, becoming biologically active in certain tissues. Hormonal therapies influence the binding of T to sex hormone binding globulin, thereby altering the biologically active fraction of T. As a consequence, laboratories correct for sex hormone binding globulin when reporting free T. T samples are best taken in the morning when circulating T levels are highest, with most laboratories using the method of automated chemiluminescent immunoassays or similar principles.

The findings of the current study highlight the limitations of the current format of pathology reporting of serum T in the context of PC patients, which thus requires re-evaluation. Our study illustrates that in Australia, low serum T levels are typically reported as below threshold values that are significant for a diagnosis of hypogonadism (e.g., <12.0 nmol/L), rather than as an absolute measure. In the setting of PC, castration was typically achieved by means of bilateral orchietomy. Recent advances in pharmacotherapy have led to the introduction of gonadotrophin-releasing hormone or luteinizing hormone-releasing hormone to achieve chemical castration. Despite increased morbidity, chemical castration remains the mainstay of treatment. Absolute values of T allow the clinician to ensure acceptable levels of castration during ADT. Patients who do not achieve a minimum T level of <0.7 nmol/L in their 1st year of ADT have been reported to have a significantly higher risk (HR) of developing castrate-resistant PC: [0.7–1.7 nmol/L: Hazard Ratio (HR), 1.62; 95% confidence interval (CI), 1.20–2.18; ≥1.7 nmol/L: HR, 1.90; 95% CI, 0.778–4.70]. Additionally, in the case of men who do not reach “ultra” low serum T, earlier castration resistance ensues due to the higher number of partially resistant cells persisting. Accordingly, reporting regimes that neither provide objective values nor the lowest detectable value for the assay are insufficient. Re-evaluation of the current reporting schemata should take into account the important roles that T plays, and the necessity for prompt and accurate interpretation.

Our review identified a stark absence of objective guidelines outlining the optimal use of T testing in the setting of ADT. A consensus on the following parameters is required: definition of castrate levels of T, frequency at which T should be performed during ADT, and what to do when targets are not met. Historically, the most common definition for castrate quoted in the literature is a measured level of T of 1.7 nmol/L (50 ng/dL), derived from studies in the late 1960s and early 1970s. Alternatively, several authors consider 0.7 nmol/L (20 ng/dL) T as the lower limit, as this is the value obtained with orchietomy. These lower T values are supported by the growing body of evidence suggesting that lower T during ADT infers superior oncological outcomes. Advocates of the continued use of 1.7 nmol/L (50 ng/dL) T as the lower limit argue that there is no difference in the follow-up of patients regarding the decrease in PSA and the evolution of PC with either 0.7 nmol/L or 1.7 nmol/L (20 ng/dL or 50 ng/dL) T. Regarding the frequency of T monitoring, a recommendation from a recent study suggests that patients initiating ADT should have their T and PSA levels monitored regularly during the 1st year of treatment. T should be assayed just before the next androgen-lowering injection to ensure a sustained response through the dosing interval. Not achieving a T level of 0.7 nmol/L (20 ng/dL) during the 1st year of ADT should prompt consideration of a change in hormone therapy or to bilateral orchietomy (if continuous therapy is intended).

The limitations of this study include those inherent to surveyed-based data. In current literature, there are considerable interest and scope for research on the role of T in advanced PC. No doubt, further large robust prospective study assessing the role of T in oncological outcomes will improve knowledge on PC progression and improve treatment. With this information, the role of monitoring T during ADT will become clearer.

A growing body of evidence highlights the role of maximal T suppression in men on ADT for PC. In Australia, there is no agreed standard for the monitoring of serum T in patients undergoing ADT. Nor is there a standard template for the reporting of T in this patient cohort, which may lead to confusion for both the patient and the clinician. The fashion in which these results are displayed must be re-evaluated as per the proposed schemata to assist in interpretation by clinicians and enhancing patients’ understanding. Alongside this, a joint position statement between authoritative bodies should be agreed upon to facilitate clinicians in optimization of T monitoring in patients on ADT.

Conflicts of interest

All authors have no conflict of interest to declare.

References

1. Huggins C, Hodges CV. Studies on prostatic cancer: I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. J Urol 1941;2002(168):3–12.
2. Rosario DJ, Davey P, Green J, Greene D, Turner B, Payne H, et al. The role of gonadotrophin-releasing hormone antagonists in the treatment of patients with advanced hormone-dependent prostate cancer in the UK. World J Urol 2016;34:1601–9.
3. Mottet N, Bellmunt J, Briers E, van den Bergh RCN, Bolla M, van Casteren NJ, et al. Guidelines on prostate cancer. European Association of Urology 2015: 56–137.
4. Crawford ED, Moul JW, Sartor O, Shore ND. Extended release, 6-month formulations of leuprolide acetate for the treatment of advanced prostate cancer: achieving testosterone levels below 20 ng/dL. Expert Opin Drug Metab Toxicol 2015;11:1405–74.
5. Klotz L, O’Callaghan C, Ding K, Toren P, Dearmaley D, Higano CS, et al. Nadir testosterone within first year of androgen-deprivation therapy (ADT) predicts for time to castration-resistant progression: a secondary analysis of the PR-7 trial of intermittent versus continuous ADT. J Clin Oncol 2015;33:1151–6.

6. Perry-Keene D. Low testosterone in men. Aust Prescr 2014;37:196–200.

7. NCCN (USA). The complete library of NCCN clinical practice guidelines in oncology. Rockledge, PA: National Comprehensive Cancer Network; 2003.

8. Heidenreich A, Bastian PJ, Bellmunt J, Bolla M, Joniau S, van der Kwast T, et al. EAU guidelines on prostate cancer. Part II: treatment of advanced, relapsing, and castration-resistant prostate cancer. Eur Urol 2014;65:467–79.

9. Saad F, Chi KN, Finelli A, Hotte SJ, Izawa J, Kapoor A, et al. The 2015 CUA-CUOG Guidelines for the management of castration-resistant prostate cancer (CRPC). Can Urol Assoc J 2015;9:90–6.

10. Cookson MS, Lowrance WT, Murad MH, Kibel AS. Castration-resistant prostate cancer: AUA guideline amendment. J Urol 2015;193:491–9.

11. Ang M, Rajic B, Foreman D, Moretti K, O’Callaghan ME. Men presenting with prostate-specific antigen (PSA) values of over 100 ng/mL. BJU Int 2016;117(Suppl 4):68–75.

12. van der Sluis TM, Bijnsdorp IV, Jacobs JJ, Meuleman EJ, Rozendaal L, Geldof AA, et al. Serum testosterone plays an important role in the metastatic ability of castration resistant prostate cancer. World J Urol 2013;31:467–8.

13. Gomella LG. Effective testosterone suppression for prostate cancer: is there a best castration therapy? Rev Urol 2009;11:52–60.

14. Rove KO, Crawford ED, Perachino M, Morote J, Klotz L, Lange PH, et al. Maximal testosterone suppression in prostate cancer—free vs total testosterone. Urology 2014;83:1217–22.

15. Miner MM, Sadovsky R. Evolving issues in male hypogonadism: evaluation, management, and related comorbidities. Cleve Clin J Med 2007;74(Suppl 3):S36–46.

16. Dason S, Allard CB, Tong J, Shyegam B. Defining a new testosterone threshold for medical castration: Results from a prospective cohort series. Can Urol Assoc J 2013 May-Jun;7(5–6):E263–7. http://dx.doi.org/10.5489/cuaj.471.

17. Vargas A, Machado RD, Filho DI, Paiva CE, Dos Reis RB, Tobias-Machado M, et al. LHRH analog therapy is associated with worse metabolic side effects than bilateral orchiectomy in prostate cancer. World J Urol 2016;34:1621–8.

18. Rhee H, Gunter JH, Heathcote P, Ho K, Stricker P, Corcoran NM, et al. Adverse effects of androgen-deprivation therapy in prostate cancer and their management. BJU Int 2015;115(Suppl 5):3–13.

19. Klotz L, Toren P. Androgen deprivation therapy in advanced prostate cancer: is intermittent therapy the new standard of care? Curr Oncol 2012;19(Suppl 3):S13–21.

20. Novara G, Galfano A, Secco S, Ficarra V, Artibani W. Impact of surgical and medical castration on serum testosterone level in prostate cancer patients. Urol Int 2009;82:249–55.

21. Oefelein MG, Feng A, Scolieri MJ, Ricchiutti D, Resnick MI. Reassessment of the definition of castrate levels of testosterone: implications for clinical decision making. Urology 2000;56:1021–4.

22. Pickles T, Hamm J, Morris WJ, Schreiber WE, Tyldesley S. Incomplete testosterone suppression with luteinizing hormone-releasing hormone antagonists: does it happen and does it matter? BJU Int 2009;103:332–5. discussion 5.

23. Dias Silva E, Ferreira U, Matheus W, Faria EF, Silva GD, Saito M, et al. Goserelin versus leuprolide in the chemical castration of patients with prostate cancer. Int Urol Nephrol 2012;44:1039–44.

24. Dason S, Allard CB, Tong J, Shyegam B. Defining a new testosterone threshold for medical castration: Results from a prospective cohort series. Can Urol Assoc J 2013;7:E263–7.
Author/s:
Cabarkapa, S; Perera, M; Sikaris, K; O'Brien, JS; Bolton, DM; Lawrentschuk, N

Title:
Reporting and ideal testosterone levels in men undergoing androgen deprivation for prostate cancer-time for a rethink?

Date:
2018-03-01

Citation:
Cabarkapa, S., Perera, M., Sikaris, K., O'Brien, J. S., Bolton, D. M. & Lawrentschuk, N. (2018). Reporting and ideal testosterone levels in men undergoing androgen deprivation for prostate cancer-time for a rethink?. PROSTATE INTERNATIONAL, 6 (1), pp.1-6. https://doi.org/10.1016/j.prnil.2017.05.003.

Persistent Link:
http://hdl.handle.net/11343/257302

File Description:
published version

License:
CC BY-NC-ND