Hadronic Light-by-Light Contribution to Muon $g - 2$: Status and Prospects 1

Joaquim Prades

CAFPE and Departamento de Física Teórica y del Cosmos, Universidad de Granada, Campus de Fuente Nueva, E-18002 Granada, Spain.

Abstract

I review the recent calculations and present status of the hadronic light-by-light contribution to muon $g - 2$.

June 2008

1Invited talk at “PHIPSI08, International Workshop on e^+e^- collisions from Phi to Psi”, April 7-10 2008, Frascati, Italy.
1 Introduction

Here, I discuss the contribution to the muon $g - 2$ of a hadronic bubble connected to the external static magnetic source through one photon leg and to the muon line with another three photon legs. This corresponds to the so-called hadronic light-by-light contribution to the muon anomaly $a_\mu = (g - 2)/2$. Recent reviews are in [1, 2]. One of the six possible photon momenta configurations is shown in Fig. 1 and its contribution to the vertex $-|e| \bar{u}(p') \Gamma^\beta(p - p') u(p) A_\beta$ is

$$
\Gamma^\beta(p_3) = -e^6 \int \frac{d^4p_1}{(2\pi)^4} \int \frac{d^4p_2}{(2\pi)^4} \frac{\Pi^{\rho\alpha\beta}(p_1, p_2, p_3)}{q^2 p_1^\rho p_2^\alpha} \gamma_\alpha(p_4 - m)^{-1} \gamma_\nu(p_5 - m)^{-1} \gamma_\rho
$$

where $p_3 \to 0$ is the momentum of the photon that couples to the external magnetic source, $q = p_1 + p_2 + p_3$ and m is the muon mass. The dominant contribution to the hadronic four-point function

$$
\Pi^{\rho\alpha\beta}(p_1, p_2, p_3) = -p_3 \lambda \frac{\partial \Pi^{\rho\alpha\lambda}(p_1, p_2, p_3)}{\partial p_3^\beta} \Big|_{p_3=0}
$$

and therefore one just needs derivatives of the four-point function at $p_3 = 0$. The contribution to a_μ is

$$
a_\mu^{\text{hl}} = \frac{1}{48m} \text{tr} \left\{ (\not p + m) [\gamma^\beta, \gamma^\lambda] (\not p + m) \frac{\partial \Gamma_\lambda(0)}{\partial p_3^\beta} \right\}.
$$
The four-point function $\Pi^{\rho\alpha\beta}(p_1, p_2, p_3)$ is an extremely difficult object involving many scales and no full first principle calculation of it has been reported yet. Notice that we need momenta p_1 and p_2 varying from 0 to ∞. Unfortunately, there is neither a direct connection of a^hl_μ to a measurable quantity. Two lattice groups have started exploratory calculations [3, 4] but the final uncertainty that these calculations can reach is not clear yet.

Attending to a combined large number of colors N_c of QCD and chiral perturbation theory (CHPT) counting one can distinguish four types of contributions [5]. Notice that the CHPT counting is only for organization of the contributions and refers to the lowest order term contributing in each case. The four different types of contributions are:

- Goldstone boson exchanges contribution are $\mathcal{O}(N_c)$ and start at $\mathcal{O}(p^6)$ in CHPT.
- One-meson irreducible vertex contribution and non-Goldstone boson exchanges contribute also at $\mathcal{O}(N_c)$ but start contributing at $\mathcal{O}(p^8)$ in CHPT.
- One-loop of Goldstone bosons contribution are $\mathcal{O}(1/N_c)$ and start at $\mathcal{O}(p^4)$ in CHPT.
- One-loop of non-Goldstone boson contributions which are $\mathcal{O}(1/N_c)$ but start contributing at $\mathcal{O}(p^8)$ in CHPT.

Based on the counting above there are two full calculations [6, 7] and [8,9]. There is also a detailed study of the π^0 exchange contribution [10] putting emphasis in obtaining analytical expressions for this part.

Using operator product expansion (OPE) in QCD, the authors of [11] pointed out a new short-distance constraint of the reduced full four-point Green function

$$\langle 0| T[V^\nu(p_1)V^\alpha(p_2)V^\rho(-(p_1 + p_2 + p_3))] |\gamma(p_3)\rangle$$

when $p_3 \to 0$ and in the special momenta configuration $-p_1^2 \simeq -p_2^2 \gg -(p_1 + p_2)^2$ Euclidean and large. See also [12]. This short distance constraint was not explicitly imposed in previous calculations.

2 Leading in the $1/N_c$ Expansion Contribution

Using effective field theory techniques, the authors of [13] shown that leading contribution to a^hl_μ contains a term enhanced by a $\log^2(\mu/m)$ factor where μ is an ultraviolet scale and the muon mass m provides the infrared scale. This leading logarithm is generated by the Goldstone boson exchange contributions and is fixed by the Wess–Zumino–Witten (WZW) vertex $\pi^0\gamma\gamma$. In the chiral limit where quark masses are neglected and at large N_c, the coefficient of this double
Table 1: Results for the π^0, η and η' exchange contributions.

Reference	$10^{10} \times a_\mu$	π^0 only	π^0, η and η'
[6, 7]	5.7	8.3 \pm 0.6	
[8, 9]	5.6	8.5 \pm 1.3	
[10] with $h_2 = 0$	5.8	8.3 \pm 1.2	
[10] with $h_2 = -10$ GeV2	6.3		
[16]	6.3 \sim 6.7		
[11]	7.65	11.4\pm1.0	

logarithm is model independent and has been calculated and shown to be positive in [13]. All the calculations we discuss here agree with these leading behaviour and its coefficient including the sign. A global sign mistake in the π^0 exchange in [6, 8] was found by [10, 13] and confirmed by [7, 9] and by others [14, 15]. The subleading μ-dependent terms [13], namely, $\log(\mu/m)$ and a non-logarithmic term $\kappa(\mu)$, are model dependent and calculations of them are implicit in the results presented in [6–9, 11]. In particular, $\kappa(\mu)$ contains the large N_c contributions from the one-meson irreducible vertex and non-Goldstone boson exchanges. In the next section we review the recent model calculations of the full leading in the $1/N_c$ expansion contributions.

2.1 Model Calculations

The π^0 exchange contribution was calculated in [6–10, 16] by constructing the relevant four-point function in terms of the off-shell $\pi^0\gamma^*(p_1)\gamma^*(p_2)$ form factor $\mathcal{F}(p_1^2, p_2^2)$ and the off-shell $\pi^0\gamma^*(q)\gamma(p_3 = 0)$ form factor $\mathcal{F}(q^2, 0)$ modulating each a WZW $\pi^0\gamma\gamma$ vertex. In all cases several short-distance QCD constraints were imposed on these form-factors. In particular, they all have the correct QCD short-distance behaviour

$$\mathcal{F}(Q^2, Q^2) \to \frac{A}{Q^2} \quad \text{and} \quad \mathcal{F}(Q^2, 0) \to \frac{B}{Q^2}$$

(6)

when Q^2 is Euclidean and are in agreement with $\pi^0\gamma^*\gamma$ data. They differ slightly in shape due to the different model assumptions (VMD, ENJL, Large N_c, $N_\chi QM$) but they produce small numerical differences always compatible within quoted uncertainty $\sim 1 \times 10^{-10}$ –see Table 1.

Within the models used in [6–10, 16], to get the full contribution at leading in $1/N_c$ one needs to add the one-meson irreducible vertex contribution and the non-Goldstone boson exchanges. In particular, in [8, 9] the one-meson irreducible vertex contribution below some scale Λ was identified with the ENJL quark loop contribution while a loop of a heavy quark with mass Λ was used to mimic the
Table 2: Sum of the short- and long-distance quark loop contributions [8] as a function of the matching scale Λ.

Λ [GeV]	0.7	1.0	2.0	4.0
$10^{10} \times a_\mu$	2.2	2.0	1.9	2.0

Table 3: Results for the axial-vector exchange contributions from [6, 7] and [8, 9].

References	$10^{10} \times a_\mu$
[6, 7]	0.17 ± 0.10
[8, 9]	0.25 ± 0.10

correlation massless QCD quark loop above Λ. The results are in Table 2 where one can see a very nice stability region when Λ is in the interval [0.7, 4.0] GeV. Within the ENJL model, the ENJL quark loop is related through Ward identities to the scalar exchange which we discuss below and both have to be included [8, 9]. Similar results for the quark loop below Λ were obtained in [6, 7] though these authors didn’t discuss the short-distance long-distance matching.

The exchange of axial-vectors and scalars in nonet symmetry –this symmetry is exact in the large N_c limit, was also included in [8, 9] while only the axial-vector exchange was included in [6, 7]. The result of the scalar exchange obtained in [8] is

$$a_\mu(\text{Scalar}) = -(0.7 \pm 0.2) \times 10^{-10}.$$ \hspace{1cm} (7)

The result of the axial-vector exchanges in [6, 7] and [8, 9] can be found in Table 3.

Melnikov and Vainshtein used a model that saturates the hadronic four-point function in (2) at leading order (LO) in the $1/N_c$ expansion with π^0 and axial-vector exchanges. In that model, the new OPE constraint of the reduced four-point function found in [11] forces the $\pi^0\gamma^*(q)\gamma(p_3 = 0)$ vertex to be point-like rather than including a $F(q^2, 0)$ form factor. There are also OPE constraints for other momenta regions which are not satisfied by the model in [11] though they argued that this makes only a small numerical difference of the order of 0.05×10^{-10}. In fact, within the large N_c framework, it has been shown [17] that in general for other than two-point functions, to satisfy fully the QCD short-distance properties requires the inclusion of an infinite number of narrow states.

The results in [11] for the Goldstone boson exchanges and for the axial-vector exchanges can be found in Table 1 and 3, respectively.
Table 4: Results quoted in Ref. [11] for the axial-vector exchange depending of the $f_1(1285)$ and $f_1(1420)$ resonances mass mixing.

Mass Mixing	$10^{10} \times a_\mu$
No New OPE and Nonet Symmetry with M=1.3 GeV	0.3
New OPE and Nonet Symmetry with M=1.3 GeV	0.7
New OPE and Nonet Symmetry with M= M_ρ	2.8
New OPE and Ideal Mixing with Experimental Masses	2.2 \pm 0.5

Table 5: Full hadronic light-by-light contribution to a_μ at $\mathcal{O}(N_c)$. The difference between the two results of Refs. [8] and [9] is the contribution of the scalar exchange $-(0.7 \pm 0.1) \times 10^{-10}$. This contribution is not included in Refs. [6,7] and [11].

Hadronic light-by-light at $\mathcal{O}(N_c)$	$10^{10} \times a_\mu$
Nonet Symmetry [6,7]	9.4 \pm 1.6
Nonet Symmetry + Scalar [8,9]	10.2 \pm 1.9
Nonet Symmetry [8,9]	10.9 \pm 1.9
New OPE and Nonet Symmetry [11]	12.1 \pm 1.0
New OPE and Ideal Mixing [11]	13.6 \pm 1.5
3 Next-to-Leading in the $1/N_c$ Expansion Contributions

At next-to-leading (NLO) in the $1/N_c$ expansion, the pion loop is the dominant one and because the pion mass is not much larger than the muon mass m, one expects a contribution of the order of 10^{-10}. To dress the photon interacting with pions, a particular Hidden Gauge Symmetry (HGS) model was used in [6,7] while a full VMD was used in [8,9]. The results obtained are $-(0.45 \pm 0.85) \times 10^{-10}$ in [6] and $-(1.9 \pm 0.5) \times 10^{-10}$ in [8]. Both models satisfy the known constraints though start differing at $O(p^6)$ in CHPT. It is also known that the full VMD does rather well reproducing higher order terms of CHPT while the special version of the HGS used in [6] does not give the correct QCD high energy behavior in some two-point functions, in particular it does not fulfill the Weinberg Sum Rules, see [8] for more comments. Some studies of the cut-off dependence of the pion loop using the full VMD model was done in [8] and showed that their final number comes from fairly low energies where the model dependence should be smaller.

The authors of [11] analyzed the model used in [6,7] and showed that there is a large cancellation between the first three terms of an expansion in powers of $(m_\pi/M_\rho)^2$ and with large higher order corrections when expanded in CHPT orders but the same applies to the π^0 exchange as can be seen from Table 6 in the first reference in [1] by comparing the WZW column with the others. The authors of [11] took $(0 \pm 1) \times 10^{-10}$ as a guess estimate of the total NLO in $1/N_c$ contribution. This seems too simply and certainly with underestimated uncertainty.

4 Comparison Between Different Calculations

The comparison of individual contributions in [6–10,16] and in [11] has to be done with care because they come from different model assumptions to construct the full relevant four-point function. In fact, the authors of [16] have shown that their constituent quark loop provides the correct asymptotics and in particular the new OPE found in [11]. It has more sense to compare results for a_μ^{bl} either at leading order or at next-to-leading order in the $1/N_c$ expansion. The recent results for a_μ^{bl} at LO in the $1/N_c$ expansion is what is shown in Table 5. The nice agreement between them within the quoted uncertainty leads us [1] to take

$$a_\mu^{\text{bl},N_c} = (11 \pm 4) \times 10^{-10}$$

as a robust result for the hadronic light-by-light contribution to muon anomaly a_μ at LO in the $1/N_c$ expansion.

The results for the final hadronic light-by-light contribution to a_μ quoted in [6,7], [8,9] and [11] are in Table 6. The apparent agreement between [6,7]
and [8, 9] hides non-negligible differences which numerically almost compensate between the quark-loop and charged pion and kaon loops. Notice also that [6, 7] didn’t include the scalar exchange. Comparing the results of [8, 9] and [11], as discussed above, we have found several differences of order 1.5×10^{-10} which are not related to the new short-distance constraint used in [11]. The different axial-vector mass mixing accounts for -0.7×10^{-10} and the absence of the scalar exchange in [11] accounts for -1.9×10^{-10}. These model dependent differences add up to -4.1×10^{-10} out of the final -5.3×10^{-10} difference between [8, 9] and [11]. Clearly, the new OPE constraint used in [11] accounts only for a small part of the large numerical final difference.

5 Conclusions

We observe a nice agreement, see Table 5, between the recent model calculations of the hadronic light-by-light contribution to a_μ at LO in the $1/N_c$ expansion, hence concluding that

$$a_{\mu, N_c}^{l, N_c} = (11 \pm 4) \times 10^{-10}$$

is a very solid result. We also understand the origin of the final numerical difference between the results quoted in [11] and [8, 9]. Its origin is not dominated by the new OPE constraint found in [11] and it rather comes from the addition of several model dependent differences of order 1.5×10^{-10} as discussed above.

It is possible and desirable to make a new calculation of a_{μ}^{l, N_c} using the techniques developed in [13, 17, 18] and the new OPE results [11].

The authors of [2] have done a conservative analysis of the present situation of the hadronic light-by-light contribution to a_μ including the NLO in the $1/N_c$ expansion contribution.

Very valuable information about various pieces of the theoretical models used to calculate the hadronic light-by-light contribution to a_μ can be obtained by measuring the \(\pi^0 \rightarrow \gamma\gamma^* \), \(\pi^0 \rightarrow \gamma^*\gamma^* \) and \(\pi^0 \rightarrow e^+e^- \) decays which constrain the off-shell \(\pi^0\gamma^*\gamma^* \) and \(\pi^0\gamma^*\gamma \) form factors and the subleading μ-dependent terms discussed in Section 2 and by measuring the \(\gamma^*\gamma^* \rightarrow \pi^+\pi^- \), \(e^+e^- \rightarrow \pi^+\pi^- \) processes which constrain the \(\pi^+\pi^-\gamma^*\gamma^* \) vertex which dominates the uncertainty.

Full Hadronic Light-by-Light	$10^{10} \times a_\mu$
[6, 7]	8.9 ± 1.7
[8, 9]	8.9 ± 3.2
[11]	13.6 ± 2.5
of the pion loop contribution. The $\gamma\gamma$ programme at the upgraded DAΦNE-2 facility at Frascati is very well suited for these measurements.

Acknowledgments

It is a pleasure to thank Hans Bijnens, Elisabetta Pallante, Eduardo de Rafael and Arkady Vainshtein for enjoyable collaborations and discussions on the different topics discussed here. This work has been supported in part by MICINN, Spain and FEDER, European Commission (EC) Grant No. FPA2006-05294, by the Spanish Consolider-Ingenio 2010 Programme CPAN Grant No. CSD2007-00042, by Junta de Andalucía Grants No. P05-FQM 101, P05-FQM 347 and P07-FQM 03048 and by the EC RTN FLAVIAnet Contract No. MRTN-CT-2006-035482.

References

[1] J. Bijnens and J. Prades, Mod. Phys. Lett. A 22 (2007) 767; Acta Phys. Polon. B 38 (2007) 2819.

[2] J. Prades, E. de Rafael and A. Vainshtein, Contribution to the “Glasgow White Paper on the Muon $g - 2$”, D. Stöckinger and T. Teubner (eds) (2008).

[3] M. Hayakawa, T. Blum, T. Izubuchi and N. Yamada, PoS LAT2005 (2006) 353.

[4] P. Rakow for QCDSF Collaboration, Talk at “Topical Workshop on the Muon $g - 2$”, 25-26 October 2007, Glasgow, UK.

[5] E. de Rafael, Phys. Lett. B 322 (1994) 239.

[6] M. Hayakawa and T. Kinoshita, Phys. Rev. D 57 (1998) 465; M. Hayakawa, T. Kinoshita and A.I. Sanda, Phys. Rev. D 54 (1996) 3137; Phys. Rev. Lett. 75 (1995)790.

[7] M. Hayakawa and T. Kinoshita, Phys. Rev. D 66 (2002) 019902 [Erratum].

[8] J. Bijnens, E. Pallante and J. Prades Nucl. Phys. B 474 (1996) 379; Phys. Rev. Lett. 75 (1995) 1447; *Erratum-ibid.* 75 (1995) 3781.

[9] J. Bijnens, E. Pallante and J. Prades Nucl. Phys. B 626 (2002) 410.

[10] M. Knecht and A. Nyffeler, Phys. Rev. D 65 (2002) 073034.

[11] K. Melnikov and A. Vainshtein, Phys. Rev. D 70 (2004) 113006.
[12] M. Knecht, S. Peris, M. Perrottet and E. de Rafael, JHEP 03 (2004) 035.

[13] M. Knecht, A. Nyffeler, M. Perrottet, and E. de Rafael, Phys. Rev. Lett. 88 (2002) 071802.

[14] I.R. Blokland, A. Czarnecki and K. Melnikov, Phys. Rev. Lett. 88 (2002) 071803.

[15] M. Ramsey-Musolf and M.B. Wise, Phys. Rev. Lett. 89 (2002) 041601.

[16] A.E. Dorokhov and W. Broniowski, arXiv:0805.0760 [hep-ph].

[17] J. Bijnens, E. Gámiz, E Lipartia and J. Prades, JHEP 04 (2003) 055.

[18] V. Cirigliano et al., Nucl. Phys. B 753 (2006) 139; I. Rosell, J.J. Sanz-Cillero and A. Pich, JHEP 08 (2004) 042.