SPIN AND ELECTRON STRUCTURE†

Matej PAVŠIČ*, Erasmo RECAMI**, Waldyr A. RODRIGUES Jr.***

I.N.F.N., Sezione di Catania, 57 Corsitalia, Catania, Italy.

and

G. Daniele MACCARRONE, Fabio RACITI, Giovanni SALESI

Dipartimento di Fisica, Università di Catania, Catania, Italy.

ABSTRACT: The recent literature shows a renewed interest, with various independent approaches, in the classical models for spin. Considering the possible interest of those results, at least for the electron case, we purpose in this paper to explore their physical and mathematical meaning, by the natural and powerful language of Clifford algebras (which, incidentally, will allow us to unify those different approaches). In such models, the ordinary electron is in general associated to the mean motion of a point–like “constituent” Q, whose trajectory is a cylindrical helix. We find, in particular, that the object Q obeys a new, non-linear Dirac–like equation, such that —when averaging over an internal cycle (which corresponds to a linearization)— it transforms into the ordinary Dirac equation (valid, of course, for the electron as a whole).

† Work partially supported by INFN, CNR, MURST; by FUNREI, CNPq, FAPESP; and by the Slovenian Ministry of Science and Technology.

* On leave from the J.Stefan Institute; University of Ljubljana; 61111–Ljubljana; Slovenia.

** Also: Department of Applied Mathematics; State University at Campinas; 13083–Campinas, S.P.; Brazil; Department of Physics; State University at Catania; 95129–Catania; Italy; and: Facoltà di Ingegneria; Università degli studi di Bergamo; Bergamo; Italy.

*** On leave from Departamento de Matemática Aplicada — Imecc; UNICAMP; 13083–Campinas, S.P.; Brazil.
1. **Introduction** – The possibility of constructing formal classical models of spin was already realized at least 60 years ago, from different points of view.\(^1\) In particular, Schrödinger’s suggestion\(^2\) that the electron spin was related to its Zitterbewegung (zbw) motion has been investigated by several authors\(^3\).

In ref.\(^4\), for instance, one meets even the proposal of models with clockwise and anti-clockwise “inner motions” as classical analogues of quantum relativistic spinning particles and antiparticles, respectively. The use of grassmannian variables in a classical lagrangian formulation for spinning particles was proposed, on the contrary, by Berezin and Marinov\(^5\) and by Casalbuoni\(^6\). Pauri,\(^7\) moreover, showed how a relativistic (or non-relativistic) spin can enter a classical formulation, in the ordinary phase space [without resource now to grassmannian quantities], just as a consequence of the algebraic structure of the Poincaré (or Galilei) group. In such an interesting approach, it was found\(^7\) that a relativistic classical zbw motion can directly follow as a “spin effect” from the requirements of existence of a lagrangian and of a covariant position in Dirac’s instant form of relativistic dynamics. The quantum analogue of those developments had been studied in ref.\(^8\).

The number of papers appeared on the subject of classical models for spin, starting from the fifties, is so large that it would be difficult to try quoting them here. A recent approach, based on a generalization of Dirac non-linear electrodynamics, where the spin of the electron is identified with the momentum of the Poynting vector in a soliton solution of that theory, can be found in ref.\(^9\).

In this paper we choose, by making recourse to the natural and powerful language of Clifford algebras, to refer ourselves mainly to the model by Barut and Zanghi\(^10,11\) (BZ), which relates the spin (at least in the case of the electron) to a helical motion. Namely, we first recast the BZ model into the Clifford formalism, in the meantime clarifying its physical and mathematical meanings; then, we quantize that model for the electron case. In particular, we derive from the BZ model a new non-linear equation for the “spinorial variable” of the model, which when linearized reduces to the ordinary Dirac equation. Solutions of this non-linear equation will be discussed in forthcoming papers\(^12\).

2. **Spin and helical motion** – In the BZ model,\(^10\) a classical electron is characterized, besides by the usual pair of conjugate variables \((x^\mu, p_\mu)\), by a second pair of conjugate classical spinor variables \((z, \tilde{z})\), representing internal degrees of freedom, which are functions of an invariant time parameter \(\tau\), that when convenient will be identified with the proper time of the center of mass (CM). Quantity \(z\) was a Dirac spinor, while \(\tilde{z} \equiv z^\dagger \gamma^0\). Barut and Zanghi, then, introduced for a spinning particle the classical lagrangian \([c = 1]\)

\[
\mathcal{L} = \frac{1}{2} \lambda (\tilde{z} \dot{z} - \dot{\tilde{z}} z) + p_\mu (\dot{x}^\mu - \tilde{z} \gamma^\mu z) + eA_\mu(x) \tilde{z} \gamma^\mu z ,
\]

(1)

where \(\lambda\) has the dimension of an action, \(\gamma^\mu\) are the Dirac matrices, and the particle velocity is

2
\[v_\mu \equiv \bar{z}\gamma_\mu z \ . \tag{1'} \]

We are not writing down explicitly the spinorial indices of \(\bar{z} \) and \(z \). Let us consider the simple case of a free electron \((\dot{A}_\mu = 0) \). Then a possible solution of the equations of motion corresponding to the lagrangian (1) is:

\[z(\tau) = \left[\cos m\tau - i\gamma^\mu \frac{p_\mu}{m} \sin m\tau \right] z(0) , \tag{2a} \]

\[\bar{z}(\tau) = \bar{z}(0) \left[\cos m\tau + i\gamma^\mu \frac{p_\mu}{m} \sin m\tau \right] , \tag{2b} \]

and \(p_\mu = \text{constant} ; \ p^2 = m^2 ; \ H = p_\mu \bar{z}\gamma^\mu z \equiv p_\mu v^\mu \); and finally:

\[\ddot{x}_\mu = v_\mu = \frac{p_\mu}{m^2} H + \left[\dot{x}_\mu(0) - \frac{p_\mu}{m^2} H \right] \cos 2m\tau + \frac{\dot{x}_\mu(0)}{2m} \sin 2m\tau \tag{2c} \]

(which in ref.\(^{10}\) appeared with two misprints). In connection with this “free” general solution, let us remark that \(H \) is a constant of motion so that we can set \(H = m \). Solution (2) exhibits the classical analog of the phenomenon known as “zitterbewegung” (zbw): in fact, the velocity \(v_\mu \equiv \dot{x}_\mu \) contains the (expected) term \(p_\mu/m \) plus a term describing an oscillatory motion with the characteristic frequency \(\omega = 2m \). The velocity of the center of mass will be given by \(W_\mu = p_\mu/m \). Notice incidentally that, instead of adopting the variables \(z \) and \(\bar{z} \), one can work in terms of the spin variables, \(i.e. \) in terms of the dynamical variables \((x_\mu, v_\mu, \pi_\mu, S_{\mu\nu})\), where:

\[v_\mu = \dot{x}_\mu ; \ \pi_\mu = p_\mu - eA_\mu ; \ S_{\mu\nu} = \frac{1}{4}i\bar{z}[\gamma_\mu, \gamma_\nu]z , \]

so that \(\dot{S}_{\mu\nu} = \pi_\mu v_\nu - \pi_\nu v_\mu \) and \(\ddot{v}_\mu = 4S_{\mu\nu} \pi^\nu \). In the case of a free electron, by varying the action corresponding to \(L \) one finds as generator of space-time rotations the conserved quantity \(J_{\mu\nu} = L_{\mu\nu} + S_{\mu\nu} \), where \(S_{\mu\nu} \) is just the particle spin.\(^{#2}\)

Let us explicitly observe that solution (2c) is the equation of a space-time cylindrical helix, \(i.e. \) it represents in 3–space a helical motion. Let us also stress that this motion describes particle spin at a classical level. In fact, such a classical system has been shown by Barut and Pavšič\(^{13} \) to describe, after quantization, the Dirac electron.\(^{13–15} \)

An alternative approach leading to a classical description of particles with spin was put forth by Pavšič,\(^{16–18} \) by making recourse to the (extrinsic) curvature of the particle world–line in Minkowski space. Let us finally mention that the same classical equations of motion could also be obtained by studying the internal dynamics of the considered (classical) particle, did split \(x_\mu \) and \(v_\mu \equiv \dot{x}_\mu \) as follows: \(x_\mu \equiv X_\mu + Q_\mu ; \ v_\mu \equiv W_\mu + U_\mu \) (where by definition \(W_\mu \equiv \dot{X}_\mu \) and \(U_\mu \equiv \dot{Q}_\mu \)). In the particular case of a free particle, \(W_\mu = 0 ; \ W_\mu = p_\mu/m \). One can now interpret \(X_\mu \) and \(p_\mu \) as the c.m. coordinates, and \(Q_\mu \) and \(P_\mu \equiv mU_\mu \) as the relative position and momentum, respectively. For a free particle, then, one finds that the internal variables are coordinates oscillating with the zbw frequency \(2m \) and that, again, the total angular momentum \(J_{\mu\nu} = L_{\mu\nu} + S_{\mu\nu} \) is a constant of motion, quantities \(S_{\mu\nu} \) being the spin variables.

\(^{0#1}\) For other solutions, see refs.\(^{12}.\)

\(^{0#2}\) Alternatively, Barut and Zanghi,\(^{10}\) in order to study the internal dynamics of the considered (classical) particle, did split \(x_\mu \) and \(v_\mu \equiv \dot{x}_\mu \) as follows: \(x_\mu \equiv X_\mu + Q_\mu ; \ v_\mu \equiv W_\mu + U_\mu \) (where by definition \(W_\mu \equiv \dot{X}_\mu \) and \(U_\mu \equiv \dot{Q}_\mu \)). In the particular case of a free particle, \(W_\mu = 0; \ W_\mu = p_\mu/m \). One can now interpret \(X_\mu \) and \(p_\mu \) as the c.m. coordinates, and \(Q_\mu \) and \(P_\mu \equiv mU_\mu \) as the relative position and momentum, respectively. For a free particle, then, one finds that the internal variables are coordinates oscillating with the zbw frequency \(2m \) and that, again, the total angular momentum \(J_{\mu\nu} = L_{\mu\nu} + S_{\mu\nu} \) is a constant of motion, quantities \(S_{\mu\nu} \) being the spin variables.
motion (and the same Poisson–bracket algebra) have been found also in a third approach, which consists in adding to the ordinary lagrangian an extra term containing Grassmann variables.

3. About the electron structure – Considering the interest of the previous results (which suggest in particular that the helical motion can have a role in the origin of spin), we propose to explore their physical meaning more deeply, by the very natural —and powerful— language of the Clifford algebras;20,21 in particular of the “space-time algebra (STA)” $\mathbb{R}_{1,3}$. First of all, let us preliminarily clarify why Barut and Zanghi had to introduce the Dirac spinors z in their lagrangian, by recalling that classically the motion of a spinning top has to be individuated by (i) the world–line σ of its center of mass (e.g., by the ordinary coordinates x^μ and the conjugate momenta p_μ), and (ii) a Frenet tetrad#3 attached to the world–line σ. This continues to be true when wishing to describe the motion of a point-like spinning particle. For the Frenet tetrad23 we have:

\[e_\mu = R\gamma_\mu \bar{R} = \Lambda_\nu^\mu \gamma_\nu; \quad \Lambda_\nu^\mu \in L_+^\dagger \]

where e_0 is parallel to the particle velocity v (even more, $e_0 = v$ whenever one does use as parameter τ the CM system proper–time); the tilde represents the reversion#4; and $R = R(\tau)$ is a “Lorentz rotation” [more precisely, $R \in \text{Spin}_+(1,3)$, and a Lorentz transform of quantity a is given by $a' = Ra\bar{R}$]. Moreover $R\bar{R} = \bar{R}R = 1$. The Clifford STA fundamental unit–vectors γ_μ should not be confused with the Dirac matrices γ_μ. Let us also recall that, while the orthonormal vectors $\gamma_\mu \equiv \partial/\partial x^\mu$ constitute a global tetrad in Minkowski space-time (associated with a given inertial observer), on the contrary the Frenet tetrad e_μ is defined only along σ, in such a way that e_0 is tangent to σ. At last, it is: $\gamma^\mu = \eta^{\mu\nu} \gamma_\nu$, and $\gamma_5 \equiv \gamma_0 \gamma_1 \gamma_2 \gamma_3$.

Notice that $R(\tau)$ does contain all the essential information carried by a Dirac spinor. In fact, out of R, a “Dirac–Hestenes” (DH) spinor24 ψ_{DH} can be constructed as follows:

\[\psi_{\text{DH}} = \rho \frac{1}{2} e^{\beta \gamma_5/2} R \]

where ρ is a normalization factor; and $e^{\beta \gamma_5} = +1$ for the electron (and -1 for the positron); while, if ε is a primitive idempotent of the STA, any Dirac spinor ψ_D can be represented in our STA as:25

\[\psi_D = \psi_{\text{DH}} \varepsilon. \]
For instance, the Dirac spinor z introduced by BZ is obtained from the DH spinor ψ_{DH} by the choice $\varepsilon = \frac{1}{2}(1 + \gamma_0)$. Incidentally, the Frenet frame can also write $\rho e_\mu = \psi_{DH}^* \gamma_\mu \tilde{\psi}_{DH}$.

Let us stress that, to specify how does the Frenet tetrad rotate as τ varies, one has to single out a particular $R(\tau)$, and therefore a DH spinor ψ_{DH}, and eventually a Dirac spinor ψ_D. This makes intuitively clear why the BZ Dirac–spinor z provides a good description of the “spin motion” of a classical particle.

Let us now repeat what precedes on a more formal ground. In the following, unless differently stated, we shall indicate the DH spinors ψ_{DH} simply by ψ.

Let us translate the BZ lagrangian into the Clifford language.

In eq.(1) quantity $z^T = (z_1 \; z_2 \; z_3 \; z_4)$ is a Dirac spinor $\tau \rightarrow z(\tau)$, and $\tilde{z} = z^\dagger \gamma^0$. To perform our translation, we need a matrix representation of the Clifford space-time algebra; this can be implemented by representing the fundamental Clifford vectors (γ_0, γ_1, γ_2, γ_3) by the ordinary Dirac matrices γ_μ. Choosing:

$$\gamma_0 \rightarrow \gamma_0 \equiv \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}; \; \gamma_i \rightarrow \gamma_i \equiv \begin{pmatrix} 0 & \sigma_i & 0 & 0 \\ -\sigma_i & 0 & 0 & 0 \\ 0 & 0 & 0 & \sigma_i \\ 0 & 0 & -\sigma_i & 0 \end{pmatrix},$$

the representative in $\mathbb{R}_{1,3}$ of Barut–Zanghi’s quantity z is

$$z \rightarrow \Psi \equiv \psi \varepsilon; \; \varepsilon \equiv \frac{1}{2}(1 + \gamma_0) \quad (6)$$

where ψ, and $\tilde{\psi}$, are represented (with $\psi \tilde{\psi} = 1$) by

$$\psi = \begin{pmatrix} z_1 & -\bar{z}_2 & z_3 & -\bar{z}_4 \\ 2 & \bar{z}_1 & z_4 & -\bar{z}_3 \\ 3 & \bar{z}_4 & z_1 & -\bar{z}_2 \\ 4 & -\bar{z}_3 & z_2 & \bar{z}_1 \end{pmatrix}; \; \tilde{\psi} = \begin{pmatrix} \bar{z}_1 & \bar{z}_2 & -\bar{z}_3 & -\bar{z}_4 \\ -\bar{z}_2 & \bar{z}_1 & -\bar{z}_4 & z_3 \\ \bar{z}_3 & -\bar{z}_4 & \bar{z}_1 & -\bar{z}_2 \\ -\bar{z}_4 & \bar{z}_3 & -\bar{z}_2 & z_1 \end{pmatrix} \quad (7)$$

The translation of the various terms in eq.(1) is then:

$$\frac{i}{2}(\dot{z}z - z\dot{z}) \rightarrow \langle \tilde{\psi}\psi \gamma_1 \gamma_2 \rangle_0$$

$$p_\mu (\dot{x}^\mu - \bar{z} \gamma^\mu z) \rightarrow \langle p(\dot{x} - \psi \gamma_0 \tilde{\psi}) \rangle_0$$

$$eA_\mu \bar{z} \gamma^\mu z \rightarrow e \langle A \psi \gamma_0 \tilde{\psi} \rangle_0,$$

where $\langle \; \rangle_0$ means “the scalar part” of the Clifford product. Thus, the lagrangian \mathcal{L} in the Clifford formalism is

$$\mathcal{L} = \langle \tilde{\psi}\psi \gamma_1 \gamma_2 + p(\dot{x} - \psi \gamma_0 \tilde{\psi}) + eA \psi \gamma_0 \tilde{\psi} \rangle_0 \quad (8)$$

which is analogous, incidentally, to Krüger’s lagrangian26 (apart from a misprint).

As we are going to see, by “quantizing” it, also in the present formalism it is possible
(and, actually, quite easy) to derive from \mathcal{L} the Dirac–Hestenes equation:

$$\partial \psi(x) \gamma_1 \gamma_2 + m \psi(x) \gamma_0 + e A(x) \psi(x) = 0 ,$$ \hspace{1cm} (9)

which is nothing but the ordinary Dirac equation written down in the Clifford formalism.20,24 Quantity $\partial = \gamma^\mu \partial_\mu$ is the Dirac operator. Let us notice that p in eq.(8) can be regarded as a Lagrange multiplier, when the velocity $v = \dot{x}$ is represented by $\psi \gamma_0 \bar{\psi}$. The BZ model is indeed a hamiltonian system, as proved by using Clifford algebras in ref.27 (cf. also ref.28). The dynamical variables are then $(\psi, \bar{\psi}, x, p)$, and the Euler–Lagrange equations yield a system of three independent equations:

$$\dot{\psi} \gamma_1 \gamma_2 + \pi \epsilon_\gamma_0 = 0 \quad (10a)$$
$$\dot{x} = \psi \gamma_0 \bar{\psi} \quad (10b)$$
$$\dot{\pi} = e F \cdot \dot{x} \quad (10c)$$

where $F \equiv \partial \wedge A$ is the electromagnetic field (a bivector, in Hestenes’ language) and $\pi \equiv p - eA$ is the kinetic momentum. [Notice incidentally, from eq.(10b), that $\ddot{x} = \rho(\tau)]$.

At this point, let us consider a velocity vector field $V(x)$ together with its integral lines (or stream–lines). Be σ the stream–line along which a particle moves (i.e., the particle world–line). Then, the velocity distribution V is required to be such that its restriction $V(x)|_\sigma$ to the world–line σ is the ordinary velocity $v = v(\tau)$ of the considered particle.

If we moreover recall29,30 that any Lorentz “rotation” R can be written $R = e^F$, where F is a bivector, then along any stream–line σ we shall have:19

$$\dot{R} \equiv \frac{dR}{d\tau} = \frac{1}{2} \nu^\mu \Omega_\mu R = \frac{1}{2} \Omega R ,$$ \hspace{1cm} (11)

with $\partial_\mu R = \Omega_\mu R/2$, where $\Omega_\mu \equiv 2 \partial_\mu F$, and where $\Omega \equiv \nu^\mu \Omega_\mu$ is the angular–velocity bivector (also known, in differential geometry, as the “Darboux bivector”). Therefore, for the tangent vector along any line σ we obtain the relevant relation:

$$\frac{d}{d\tau} = \nu^\mu \partial_\mu = v \cdot \partial$$

The [total derivative] equation (10a) thus becomes:6

$$v \cdot \partial \psi \gamma_1 \gamma_2 + \pi \psi \gamma_0 = 0 ,$$ \hspace{1cm} (12)

which is a non-linear [partial derivative] equation, as it is easily seen by using eq.(10b) and rewriting it in the noticeable form

01 Observe that in eq.(8) it is $\psi = \psi(\tau)$, while in eq.(9) we have $\psi = \psi(x)$ with $\psi(x)$ such that its restriction $\psi(x)|_\sigma$ to the world–line σ coincides with $\psi(\tau)$. Below, we shall meet the same situation, for instance, when passing from eq.(10a) to eqs.(12)–(12').
\((\psi_0 \tilde{\psi}) \cdot \partial \psi_1 \psi_2 + \pi \psi_0 = 0\). \hspace{1cm} (12')

Equation (12') constitutes a new non-linear Dirac–like equation. The solutions of this new equation will be explicitly discussed in refs.12. Let us here observe only that the probability current \(J \equiv V\) is conserved: \(\partial \cdot V = 0\), as we shall show elsewhere.

Let us pass now to the free case \((A_\mu = 0)\), when eq.(10a) may be written

\[\dot{\psi}_{1\gamma} + p\psi_0 = 0, \hspace{1cm} (10'a)\]

and admits some simple solutions.12 Actually, in this case \(p\) is constant [cf. eq.(10c)] and one can choose the \(\gamma_\mu\) frame so that \(p = m\gamma_0\) is a constant vector in the direction \(\gamma_0\). Since \(\dot{x} = \psi_0 \psi\), it follows that

\[v = \frac{1}{m} \psi p \tilde{\psi}; \quad \frac{p}{m} = \psi^{-1} v \tilde{\psi}^{-1}. \hspace{1cm} (13)\]

The mean value of \(v\) over a zitterbewegung period is then given by the relation

\[\langle v \rangle_{zbw} = \frac{p}{m} = \psi^{-1} v \tilde{\psi}^{-1}. \hspace{1cm} (14)\]

which resembles the ordinary quantum–mechanical mean value for the wave–function \(\psi^{-1}\) (recall that in Clifford algebra for any \(\psi\) it exists its inverse). Let us recall, by comparison, that the time average of \(v_\mu\) given in eq.(2c) over a zbw period is evidently equal to \(p_\mu/m\).

Let us explicitly stress that, due to the first one \([z \rightarrow \psi \varepsilon]\) of eqs.(6), the results found by BZ for \(z\) are valid as well for \(\psi\) in our formalism. For instance, for BZ [cf. eq.(1')] it was \(v_\mu = \tilde{\gamma} \gamma^\mu z \equiv v_\mu^{BZ}\), while in the Clifford formalism [cf. eq.(7)] it is

\[v = \psi \gamma^0 \psi = \langle \gamma^0 \psi \gamma^\mu \psi \rangle_0 \gamma_\mu = v_\mu^{BZ} \gamma_\mu. \]

As a consequence, \(\sigma\) refers in general to a cylindrical helix (for the free case) also in our formalism.

Going back to eq.(10'a), by the second one of eqs.(13) we finally obtain our non-linear (free) Dirac–like equation in the following form:

\[v \cdot \partial \psi_1 \psi_2 + m \psi^{-1} v \tilde{\psi}^{-1} \psi_0 = 0, \hspace{1cm} (15)\]

which in the ordinary, tensorial language would write: \(i(\bar{\Psi} \gamma^\mu \Psi) \partial_\mu \Psi = \gamma^\mu p_\mu \Psi\), where \(\bar{\Psi}\) and \(\gamma^\mu\) are now an ordinary Dirac spinor and the ordinary Dirac matrices, respectively, and \(\dot{p}_\mu \equiv i \partial_\mu\).

In connection with this fundamental equation of motion (15), let us explicitly notice the following. At a classical level, the equation of motion in the BZ model was eq.(10a), which held for the world–line \(\sigma\). In other words, eq.(10a) was valid for one world–line; on the contrary, eq.(15) is a field equation, satisfied by quantities \(\psi(x)\) such that \(\psi(x)|_\sigma = \psi(\tau)\). A change in interpretation is of course necessary when passing from the classical to the “quantum” level: and therefore eq.(15) is now to be regarded as valid for a congruence of world lines, that is to say, for a congruence of stream–lines of the velocity field \(V = V(x)\).
In the quantum case, the “particle” can follow any of those integral lines, with probability amplitude ρ. In this context, it must be recalled that a tentative interpretation of the Dirac equation within the Clifford algebra approach has been suggested in ref.20, and later in ref.31. However, in the present paper we shall not put forth, nor discuss, any interpretation of our formalism.

As we have seen, eq.(15) will hold for our helical motions. Notice moreover that, since [cf. eq.(4)] it is $\psi = \rho \frac{1}{2} e^{\beta \gamma_5} R$, in the case of the helical path solution the Lorentz “rotation” R will be the product of a pure space rotation and a boost.

It is important to observe that, if we replace v in eq.(15) by its mean value over a zbw period, eq.(14), then we end up with the Dirac–Hestenes equation \[i.e., the ordinary Dirac equation!\], valid now for the center-of-mass world–line. In fact, since $\langle v \rangle_{\text{zwb}} = p/m$, eq.(15) yields

$$p \cdot \partial \psi_{\gamma_1 \gamma_2} + mp \psi_{\gamma_0} = 0,$$

(15')

and therefore —if we recall that for the eigenfunctions of p in the DH approach20 it holds $\partial \psi_{\gamma_1 \gamma_2} = p\psi$, so that $(p \cdot \partial) \psi_{\gamma_1 \gamma_2} = p \partial \psi_{\gamma_1 \gamma_2}$— one obtains:

$$p(\partial \psi_{\gamma_1 \gamma_2} + mp \psi_{\gamma_0}) = 0,$$

(15’’)

which is satisfied once it holds the ordinary Dirac equation (in its Dirac–Hestenes form):

$$\partial \psi_{\gamma_1 \gamma_2} + mp \psi_{\gamma_0} = 0.$$

(16)

Let us observe that all the eigenfunctions of p are solutions both of eq.(15) and of the Dirac equation.

In conclusion, our non-linear Dirac–like equation (15) is a quantum–relativistic equation, that can be regarded as “sub-microscopic” in the sense that it refers to the internal motion of a point-like “constituent” Q. In fact, the density current $\psi_{\gamma_0} \tilde{\psi}$, relative to the solutions ψ of eq.(15), does oscillates in time in a helical fashion, in complete analogy to the initial equation (2c); so that x and \dot{x} refer to Q. On the contrary, the ordinary (linear) Dirac equation can be regarded as the equation describing the global motion of the geometrical centre of the system (\textit{i.e.}, of the whole “electron”); actually, it has been obtained from eq.(15) by linearization, that is to say, replacing the density current $v \equiv \psi_{\gamma_0} \tilde{\psi}$ by its time average p/m over the zbw period [cf. eqs.(13)–(14)].

At last, let us underline that, in the free case, eq.(10’a) admits also a trivial solution σ_0, corresponding to rectilinear motion.

4. A very simple solution – In the free case, the equation (10’a) admits also a very
simple solution (the limit of the ordinary helical paths when their radius r tends to zero), which —incidentally— escaped BZ’s attention; namely:

$$
\psi = \rho^2 \exp[-\gamma_2 \gamma_1 m \tau] = \psi(0) \exp[-\gamma_2 \gamma_1 m \tau]
$$

(17)
as it can be easily verified. Notice that expressions (17) are also solutions of the Dirac equation (16). Moreover, from eq.(10b) it follows that $v \equiv \dot{x} = \rho \gamma_0$ and we can set $\rho = 1$, which confirms that the trivial solution (17) corresponds to rectilinear uniform motion, and that τ in this case is just the proper–time along the particle world–line σ_0. (In this case, of course, the zbw disappears).

Before going on, we want to explicitly put forth the following observation. Let us first recall that in our formalism the (Lorenz force) equation of motion for a charged particle moving with velocity w in an electromagnetic field F is

$$
\dot{w} = \frac{e}{m} F \cdot w .
$$

(18)

Now, for all the free–particle solution of the BZ model in the Clifford language, it holds the “Darboux relation”:

$$
\dot{e}_\mu = \Omega \cdot e_\mu ,
$$

(19)

so that the “sub–microscopic” point–like object Q, moving along the helical path σ, is endowed [cf. eq.(11)] with the angular–velocity bivector

$$
\Omega = \frac{1}{2} \dot{e}_\mu \wedge e^\mu = \frac{1}{2} \dot{e}_\mu e^\mu ,
$$

(20)
as it follows by recalling that e_μ can always be written, like in eq.(3), as $e_\mu = R \gamma_\mu \tilde{R}$. Finally, let us observe that eq.(19) yields in particular $\dot{e}_0 = \Omega \cdot e_0$, which is formally identical to eq.(18). Thus, the formal, algebraic way we chose [see eq.(18)] for describing that the system as a whole possesses a non-vanishing magnetic dipole structure suggests that the bivector field Ω may be regarded as a kind of internal electromagnetic–like field, which keeps the “sub–microscopic” object Q moving along the helix.\(^{32–36}\) In other words, Q may be considered as confining itself along σ [i.e., along a circular orbit, in the electron C.M.], via the generation of the internal, electromagnetic–like field

$$
F_{\text{int}} \equiv \frac{m}{2e} \dot{e}_\mu \wedge e^\mu .
$$

We shall further discuss this point elsewhere.

5. Further remarks – In connection with our new equation (12’), or rather with its
(free) form (15), we met solutions corresponding—in the free case—to helical motions with constant radius \(r \); as well as a limiting solution, eq.(17), for \(r \to 0 \). We have seen above that the latter is a solution also of the ordinary (free) Dirac equation. Actually, the solution of the Dirac equation for a free electron in its rest frame can be written in the present formalism as \(\psi(x) = \psi(0) \exp[-\gamma_2 \gamma_1 m \tau] \), which coincides with our eq.(17) along the world–line \(\sigma_0 \). Let us here add the observation that, by recalling that in the Clifford formalism the spin bivector \(S \) is given by \(S = \bar{R} \gamma_2 \gamma_1 R \), whilst the angular–velocity bivector \(\Omega \) is given by eq.(20), one can finally write

\[p \cdot v = \Omega \cdot S = m, \]

which seems to suggest the electron rest–mass to have an (internal) kinetic origin! It is possible, moreover, that such a motion be also at the origin of electric charge itself; in any case, we already saw that, if the electron is associated with a clock-wise rotation, then the positron will be associated with an anti–clock-wise rotation, with respect to the motion direction. Further considerations about the solutions of our non-linear, new equation and the interesting consequences of the present formalism are in preparation and will appear elsewhere.

At last, we mentioned at the beginning of this note about further methods for introducing an helical motion as the classical limit of the “spin motion”. We want here to show how to represent in the Clifford formalism the extrinsic curvature approach, due to its possible interest for the development of the present work.

Let us first recall that in classical differential geometry one defines the Frenet frame \(\{e_\mu\} \) of a non-null curve \(\sigma \) by the so–called Frenet equations, which with respect to proper time \(\tau \) write [besides \(\dot{x} = e_0 = v \)]:

\[\ddot{x} = \dot{e}_0 = K_1 e^1; \quad \dot{e}_1 = -K_1 e^0 + K_2 e^2; \quad \dot{e}_2 = -K_2 e^1 + K_3 e^3; \quad \dot{e}_3 = -K_3 e^2 \]

(22)

where the i-th curvatures \(K_i \) (i=1,2,3) are scalar functions chosen in such a way that \(e_j^2 = -1 \), with j=1,2,3. Quantity \(K_1 \) is often called curvature, and \(K_2, \ K_3 \) torsions (recall that in the 3–dimensional space one meets only \(K_1 \) and \(K_2 \), called curvature and torsion, respectively). Inserting eqs.(22) into eq.(20), we get for the Darboux (angular–velocity) bivector:

\[\Omega = K_1 e^1 e^0 + K_2 e^2 e^1 + K_3 e^3 e^2, \]

so that one can build the following scalar function

\[\Omega \cdot \Omega = K_1^2 - K_2^2 - K_3^2 = (\dot{e}_\mu \wedge e^\mu) \cdot (\dot{e}_\nu \wedge e^\nu). \]

(23')

At this point, one may notice that the square, \(K^2 \), of the “extrinsic curvature” entering Pavšič’s lagrangian is equal to \(-K_1^2\), so that such a lagrangian results —after the present
analysis—to take advantage only of the first part,

\[\ddot{x}^2 = c_0^2 = -K_1^2 , \]

of the Lorentz invariant (23'). On the contrary, in our formalism the whole invariant \(\Omega \cdot \Omega \) suggests itself as the suitable, complete lagrangian for the problem at issue; and in future work we shall exploit it, in particular comparing the expected results with Plyushchay’s.\(^{37}\)

For the moment, let us stress here only the possibly important result that the lagrangian \(L = \Omega \cdot \Omega \) does coincide (factors apart) along the particle world-line \(\sigma \) with the auto-interaction term\(^{38}\)

\[\theta^5 (d\theta^\mu \wedge \theta_{\mu}) \cdot (d\theta^\nu \wedge \theta_{\nu}) \]

of the *Einstein–Hilbert lagrangian density* written (in the Clifford bundle formalism) in terms of tetrads of 1-form fields \(\theta^\mu \). Quantity \(\theta^5 \equiv \theta^0 \theta^1 \theta^2 \theta^3 \) is the volume element.

Finally, we can examine within our formalism the third approach: that one utilizing Grassmann variables.\(^{19}\) For instance, if we recall that the Grassmann product is nothing but the external part \(A_r \wedge B_s = \langle A_r, B_s \rangle_{|r-s|} \) of the Clifford product (where \(A_r, B_s \) are a \(r \)-vector and a \(s \)-vector, respectively), then the Ikemori lagrangian\(^{19}\) can be immediately translated into the Clifford language and shown to be equivalent to the BZ lagrangian, apart from the constraint \(p^2 = m^2 \).
6. ACKNOWLEDGEMENTS

The authors express their gratitude to the Referee, for his comments and for many references to previous related work; and acknowledge the kind collaboration of J. Vaz. They are also grateful to Asim O. Barut, A. Campolattaro, R.H.A. Farias, E. Giannetto, Cesare Lattes, L. Lo Monaco, P. Loumesto, A. Insolia, E. Majorana Jr., J.E. Maiorino, R.L. Monaco, E.C. de Oliveira, M. Sambataro, S. Sambataro, Q.G. de Souza and M.T. Vasconselos for stimulating discussions. Two of them (M.P. and W.A.R.) thank moreover I.N.F.N.–Sezione di Catania, Catania, Italy, for kind hospitality during the preparation of the first draft of this work; while F.R. acknowledges a grant from the Fondazione Bonino–Pulejo, Messina.

References

[1] See, e.g., J. Frenkel: Z. Phys. 37 (1926) 243; M. Mathisson: Acta Phys. Pol. 6 (1937); L.H. Kramers: Quantentheorie des Electron und der Strahlung (1938); H. Hönl and A. Papapetrou: Z. Phys. 112 (1939) 512; H.J. Bhabha and A.C. Corben: Proc. Roy. Soc. (London) A178 (1941) 273.

[2] E. Schrödinger: Sitzzunber. Preuss. Akad. Wiss. Phys.-Math. Kl. 24 (1930) 418. Cf. also A.H. Compton: Phys. Rev. 11 (1917) 330; 14 (1919) 20, 247.

[3] J. Weyssenhof and A. Raabe: Acta Phys. Pol. 9 (1947) 7; M.H.L. Pryce, Proc. Roy. Soc. (London) A195 (1948) 6; C.N. Fleming: Phys. Rev. B137 (1965) 188.

[4] H.C. Corben: Phys. Rev. 121 (1961) 1833.

[5] F.A. Berezin and M.S. Marinov: JETP Lett. 21 (1975) 320.

[6] R. Casalbuoni: Nuovo Cimento 33 (1976) 389.

[7] M. Pauri: in Group Theoretical Methods in Physics, Lectures Notes in Physics, vol. 135, p.615, ed. by J.Ehlers, K.Hepp, R.Kippenhahn, H.A.Weidenmüller and J.Zittartz (Springer-Verlag; Berlin, 1980). See also E.P. Wigner: Ann. of Phys. 40 (1939) 149.

[8] T.F. Jordan and N. Mukunda: Phys. Rev. 132 (1963) 1842.

[9] W.A. Rodrigues Jr., J. Vaz Jr. and E. Recami: Found. Phys. 23 (1993) 469.

[10] A.O. Barut and N. Zanghi: Phys. Rev. Lett. 52 (1984) 2009.

[11] F. Riewe: Lett. Nuovo Cimento 1 (1971) 807.
[12] W.A. Rodrigues Jr., J. Vaz Jr., E. Recami and G. Salesi: “About Zitterbewegung and Electron Structure”, Report INFN/AE–93/06 (Frascati, 1993), to appear in Phys. Lett. B. See also E. Recami and G. Salesi: (in preparation).

[13] A.O. Barut and M. Pavšič: Class. Quant. Grav. 4 (1987) L131. Cf. also refs. 14, 15.

[14] Cf., e.g., E. Recami and G. Ziino: Nuovo Cim. A33 (1976) 205.

[15] A.O. Barut: Phys. Lett. B237 (1990) 436.

[16] M. Pavšič: Phys. Lett. B205 (1988) 231; B221 (1989) 264; Class. Quant. Grav. 7 (1990) L187.

[17] M. Pavšič: (in preparation). Cf. also H. Arodż, A. Sitarz and P. Wegrzyn: Acta Phys. Pol. B20 (1989) 921; M.S. Plyushchay: Phys. Lett. B236 (1990) 291. Cf. also refs. 18.

[18] J. Isberg, U. Lindström, H. Nordström and J. Grundberg: Mod. Phys. Lett. A5 (1990) 2491; M.S. Plyushchay: Phys. Lett. B235 (1990) 50.

[19] A.O. Barut and M. Pavšič: Phys. Lett. B216 (1989) 297; H. Ikemori: Phys. Lett. B199 (1987) 239; F.A. Berezin and M.S. Marinov: Ann. of Phys. 104 (1977) 336.

[20] D. Hestenes: Found. Phys. 20 (1990) 1213. See also D. Hestenes: Found. Phys. 15 (1985) 63; J. Math. Phys. 14 (1973) 893; and R. Gurtler and D. Hestenes: J. Math. Phys. 16 (1975) 573.

[21] D. Hestenes: Space–Time Algebra (Gordon & Breach; New York, 1966); New Foundations for Classical Mechanics (Reidel; Dordrecht, 1989). See also A. Crumeyrolle: Orthogonal and Symplectic Clifford Algebras: Spinor Structures (Kluwer; Dordrecht, 1990).

[22] F. Gursey: Nuovo Cimento 5 (1957) 784.

[23] See D. Hestenes and G. Sobczyk: Clifford Algebra to Geometric Calculus (Reidel; Dordrecht, 1984), Chapt. 6.

[24] D. Hestenes: J. Math. Phys. 14 (1973) 893; 16 (1975) 556. Cf. also W.A. Rodrigues jr. and E.C. Oliveira: Int. J. Theor. Phys. 29 (1990) 397.

[25] V.L. Figuereido, E.C. Oliveira and W.A. Rodrigues Jr.: Int. J. Theor. Phys. 29 (1990) 371.

[26] H. Krüger: in The Electron, ed. by D. Hestenes and A. Weingartshofer (Kluwer; Dordrecht, 1991), p.49. See also the contributions by R. Boudet and S. Gull into the same volume.
[27] J. Vaz, Jr. and W.A. Rodrigues Jr.: “Clifford Algebra Approach to the Barut-Zanghi Models as a Hamiltonian System”, preprint RP 11/93 (Imecc-UNICAMP; Campinas, S.P., 1993).

[28] J. Rawnsley: Lett. Math. Phys. 24 (1992), 331.

[29] J.R.R. Zeni and W.A. Rodrigues Jr.: Int. J. Mod. Phys. A7 (1992) 1793.

[30] J. Vaz Jr. and W.A. Rodrigues Jr.: “On the equivalence of Dirac and Maxwell equations, and Quantum mechanics” to appear in Int. J. Theor. Phys. 6 (1993).

[31] S. Gull, A. Lasenby and C. Doran: “Electron Paths, Tunnelling and Diffraction in the Spacetime Algebra”, to appear in Found. Phys. (1993).

[32] Cf. also, e.g., G. Szamosi and D. Trevisan: preprint (Univ. of Windsor, Ontario; 1978).

[33] See e.g. H.A. Lorentz: Theory of Electrons, 2nd edition (Teubner; Leipzig, 1916), p.2. Cf. also refs.35.

[34] Cf. also W.A. Rodrigues Jr., J. Vaz Jr. and E. Recami: “Free Maxwell equations, Dirac equation, and Non-dispersive de Broglie Wave–Packets”, to appear in Courants, Amers, Écueils em Micro–Physique, ed. by G. and P. Lochak.

[35] See e.g. S.S. Schweber: An Introduction to Relativistic Quantum Field Theory (Harper & Row; New York, 1961), p.91; J.D. Bjorken and S.D. Drell: Relativistic Quantum Mechanics (McGraw–Hill; New York, 1964).

[36] A. Campolattaro: Int. J. Theor. Phys. 29 (1990) 141, and refs. therein.

[37] M.S. Plyushchay: Phys. Lett. B235 (1990) 47.

[38] W.A. Rodrigues Jr. and Q.A.G. de Souza: “The Clifford bundle and the nature of the gravitational field”, to appear in Found.Phys. 23 (1993).