Retraction

Retraction: Mechanical properties of concrete as partial replacement of coarse aggregate by e-waste (IOP Conf. Ser.: Mater. Sci. Eng. 1145 012005)

Published 23 February 2022

This article (and all articles in the proceedings volume relating to the same conference) has been retracted by IOP Publishing following an extensive investigation in line with the COPE guidelines. This investigation has uncovered evidence of systematic manipulation of the publication process and considerable citation manipulation.

IOP Publishing respectfully requests that readers consider all work within this volume potentially unreliable, as the volume has not been through a credible peer review process.

IOP Publishing regrets that our usual quality checks did not identify these issues before publication, and have since put additional measures in place to try to prevent these issues from reoccurring. IOP Publishing wishes to credit anonymous whistleblowers and the Problematic Paper Screener [1] for bringing some of the above issues to our attention, prompting us to investigate further.

[1] Cabanac G, Labbé C and Magazinov A 2021 arXiv:2107.06751v1

Retraction published: 23 February 2022
Mechanical properties of concrete as partial replacement of coarse aggregate by e-waste

S Bharani¹, M N A Gulshantaj², G Rameshkumar³ and V B Senthilnathan⁴
¹Assistant Professor, Department of Civil Engineering, KPR Institute of Engineering and Technology, India
²Associate Professor, Sona College of Technology, India
³Assistant Professor, Department of Civil Engineering, Dr. NKP Institute of Technology, India
⁴Manging Partner, VB India Private Limited, India
bharani.sri69@gmail.com¹

Abstract. At present the demand of coarse mixture is accumulated day by day within the world. Eighty-five to ninetieth of electronic waste is disposed on landfills might drop in setting and affects human health conditions. For the recovery of terribly serious issue within the world to beat this speedy rising drawback is being questioned. The E plastic waste is growing day by day in the IT Industries because it could be a important resource. The service of Electronic waste plastic could be a solution to ecological and biological issues. Because the use of Electronic waste plastic in concrete will reduce the waste and provides a decent strength for the structures and roads. it'll reduces the lowland value for energy saving. A close experimental study had been administered to study the mechanical properties of typical concrete, by casting the specimen with various percentage of E-waste like 0%, 10%, 15%, 20% and different strength characteristics are conducted in lab.

Keywords: E-Waste, Coarse aggregate, Compressive strength, Split tensile Strength test

1. Introduction
Electronic and Electrical waste, magnificently referred to as e-waste things, it does not disintegrate or spoil away. The blasting use of electronic and electrical gear has created another nevertheless extraordinary venturesome stream of waste, known as "electronic-waste", or primarily referred to as e-waste.

On one hand the event of natural philosophy product has created life simple for near on the opposite hand it's inspired use and throws mentality. these days individuals choose to get a replacement appliance instead of taking the pains to induce the older one repaired. Such a trend not solely ends up in increase in volume of electrical and electronic waste however additionally poses severe threat in public fitness and setting [1]. E-waste is growing exponentially in recent years as a result of the markets for these products are growing chop-chop. E-waste is presently one in every of the fastest developing waste streams. Consistently, innumerable recent PCs, cellular telephones, TV sets and radio gear are tossed, an oversized portion [2]. Informal process of electronic waste in developing countries might cause serious health and
pollution issues, as these countries have restricted regulative oversight of e-waste process. the matter of disposing and managing solid waste materials all told countries has become one in every of the most important environmental, economic, and social problems. an entire waste management system as well as supply reduction, reuse, recycling, land-filling, and burning has to be enforced to manage the increasing waste disposal issues [3]. Generally, a plastic isn't recycled into constant form of plastic product made up of recycled plastics are usually not reclaimable. the employment of perishable plastics is increasing [4]. If a number of these get mixed within the different plastics for exercise, the rescued plastic isn't reclaimable as a result of the variance in properties and soften temperatures [5].

1.1. Components of E-Waste
Components of e-waste consists of the following:
The Electronic waste can be available in the form of chips, used board, metallic electrode and computer wires which are all mostly wasted due to high use of electronic components [6].

1.2. Methods of disposal of E - Plastic Waste
The E plastic waste produced is cleared in the below mentioned ways.
1.2.1. Land Filling. Filling of land could be a dumping space wherever debris is accrued and ultimately coated with dirt and mud. Fractions of E plastic waste is most frequently drop into landfills [7].
1.2.2. Incineration. E plastic waste is set fire to in combustion method. During the process of Incineration, the gases like dioxins that run away to the environment and pollute it.
1.2.3. Reuse. Three to five percent of computers that are useless by their users are reused. Reprocess created doable either direct used use or use once slight alteration [8].
1.2.4. Recycling. Due to some Environmental and public health issue some of the E plastic waste has been recycled by using the proper machinery [9]. When the chances of recycle are bushed, then ensuing preference lies on utilization method. utilization implies that the previous raw materials area unit rescued be the product of in creating different method. And also, the prices of utilization area are more. It’s necessary to make a price economical, which can be thought-about because the real would like hour. One facet of the strategy ought to embrace utilization and recycle of electronic merchandise in construction field [10].

1.3. Merits of using E plastic waste in concrete
- The use of plastic waste will reduce the increase of plastic waste and the waste is noncorrosive.
- This materials sturdiness is chemical resistant, less in weight compared to normal material.
- It has good properties and will withstand all situations

1.4. Objectives
The main objectives of the study are to identify the strength behaviour of concrete by adding E-plastic waste in the different percentage. Also reduce the cost of the construction [11].

2. Experimental Investigation
2.1. Compressive Strength
The Cube of M25 strength is tested by using UTM and the conventional specimen were tested and the replacement were done by 10% and 20% cement replacement level by E-Plastic Waste, fly ash and super plasticizer is supplemental to the mixes. The results of compressive strength of E-waste concrete are given in the Table 1 and Figure 1.
Table 1. Compressive strength at 7 days and 28 days

Mix	E-Waste (%)	Compressive Strength (Mpa)	
		7 Days	28 Days
M0	0	18.22	26.6
M1	10	19.11	28.44
M2	15	20	31
M3	20	17.33	24.5

Figure 1. Compressive strength at 7days and 28 days

For the conventional mix, the M0 shows that the result is 18.22MPa for initial mix and the result is increased to 19.11 Mpa at the 15% replacement. The same is repeated in the both 7 and 28 day testing.

2.2. Flexural strength test

The results of flexural test of E-waste concrete are given in the Table 2 and Figure 2. The influence of E-waste in concrete at different ratios are tabulated as below.

Table 2. Flexural strength at 7days and 28 days

Mix	E-Waste (%)	Flexural Strength (Mpa)	
		7 days	28 days
M0	0	2.45	4.25
M1	10	2.35	3.32
M2	15	2.59	4.51
M3	20	2.43	3.83
2.3. Split tensile Strength test

The enduringness results of M25 grade of e-waste concrete trial mixes at the age of seven- and twenty-eight-days square measure. The event of tensile strengths of M25 grade of concrete trial mixes containing 100 percent, 15% and two hundredth replacement and square measure comparatively compared. It notes that the strength at the age of 7 days for M25 grade of e-waste concrete trial mixes M0, M1, M2, M3, M4 containing 10%, 15% and 20% of e-waste were 2.4, 2.05, 2.31 and 2.26 Mpa and for 28 days were 3.45, 3.13, 3.34 and 3.28 respectively. The experimental result for split tensile strength is given in the Table 3 and Figure 3, the tensile strength is maximum when replacing 15% E – plastic waste.

Table 3. Split Tensile strength at 7days and 28 days

MIX	E-WASTE (%)	SPLIT TENSILE STRENGTH (Mpa)	7 Days	28 Days
M0	0		2.45	3.51
M1	10		2.25	3.23
M2	15		2.35	3.56
M3	20		2.28	3.31

Figure 2. Flexural strength of E-waste concrete at 7days and 28 days

For the conventional mix, the M0 shows that the result is 2.45MPa for initial mix and the result is increased to 2.59MPa at the 15% replacement. The same is repeated in the both 7 and 28 day testing.

Figure 3. Tensile strength of E-waste concrete at 7days and 28 days
3. Conclusion

- It is observed that 15 percent of E-waste has been replaced by aggregate is giving better achievement in the concrete.
- For the increase of E waste %, strength may be reduced.
- By increasing the replacement, density of concrete is reduced.
- Replacement by coarse aggregate in E-waste the bonding will be increased when compare to the nominal mix.
- So, it may be concluded that the e-waste will partly replace the coarse aggregates in concrete and it offers a property resolution to the natural resources like aggregates and reduction within the accumulation of e-waste and additionally reduces the surplus lowland because of the e-waste.

References

[1] Agarwal.V.C, Use of waste plastic bags (Low Density Polyethylene (LDPE)) in concrete, Journal of Academia and Industrial Research (JAIR) 3(3), pp.46-62,2016
[2] Amiya Akram, E-waste management by utilization of e-plastics in concrete mixture as coarse aggregate replacement, International journal of innovative research in science, engineering and technology 4(7), pp.24-39,2017
[3] H. Anandakumar and K. Umamaheswari, A bio-inspired swarm intelligence technique for social aware cognitive radio handovers, Computers & Electrical Engineering, vol. 71, pp. 925–937, Oct. 2018. doi:10.1016/j.compeleceng.2017.09.016
[4] R. Arulmurugan and H. Anandakumar, Early Detection of Lung Cancer Using Wavelet Feature Descriptor and Feed Forward Back Propagation Neural Networks Classifier, Lecture Notes in Computational Vision and Biomechanics, pp. 103–110, 2018. doi:10.1007/978-3-319-71767-8_9
[5] Ashwini Mnajunath, Partial replacement of e-waste as coarse aggregate in concrete, International Conference on Solid Waste Management, 35, pp.731-739.
[6] Sunil Ahirwar, An Experimental Study on Concrete by using E-waste as Partial Replacement for Coarse Aggregate International Journal of Science Technology & Engineering, 3 (04), pp 7- 13
[7] BIS: 516-1959 (reaffirmed 1997), Methods of Tests for Strength of Concrete, Bureau of Indian Standards, New Delhi.
[8] S Elavarasan, AK Priya, N Ajai, S Akash, TJ Annie, G Bhuvana, Experimental study on partial replacement of cement by metakaolin and GGBS, Materials Today - Proceedings, October 2020.
[9] S. Bharani, G. Ramesh Kumar, J. Manikandan, T. Balayogi, M. Gokul, D.C. Bhuvanesh, Experimental investigation on partial replacement of steel slag and E-waste as fine and coarse aggregate, Materials Today - Proceedings, October 2020.
[10] G Ramesh Kumar, Santosh, Bharani S, Influence of e-waste in bituminous mixes, Materials Today – Proceedings, https://doi.org/10.1016/j.matpr.2020.08.539.
[11] V. Kavinkumar, IRA-International Journal of Technology & Engineering 03(3), June 2016. An Analytical and Numerical Investigation on Punching Shear Behavior of SCC Slabs, http://dx.doi.org/10.21013/jte.v3.n3.p11.