GLOBAL MINIMALITY OF GENERIC MANIFOLDS AND HOLOMORPHIC EXTENDIBILITY OF CR FUNCTIONS

J. Merker

Summer address:
Allée du noyer
F-25170 CHAUCENNE
FRANCE.

Université Paris VI
ANALYSE COMPLEXE ET GEOMETRIE
U.R.A. 213 du CNRS
Tour 45-46 5e étage – Boîte 172
4, place Jussieu
75252 PARIS CEDEX 05

Introduction.

Let M be a smooth generic submanifold of \mathbb{C}^n. Several authors have studied the property of CR functions on M to extend locally to manifolds with boundary attached to M and holomorphically to generic wedges with edge M (cf. [14], [67], [68]). In a recent work ([69]), Tumanov has showed that CR-extendibility of CR functions on M propagates along curves that run in complex tangential directions to M. His main result appears as a natural generalization of results by Trépreau on propagation of singularities of CR functions ([61]). Indeed, Theorem 5.1 in [69] states that the direction of CR-extendibility moves parallelly with respect to a certain differential geometric partial connection in a quotient bundle of the normal bundle to M, and this variation is dual to the one introduced by Trépreau, according to Proposition 7.3 in [69].

In this paper we give a new and simplified presentation of the connection introduced in Tumanov’s work. Let M be a real manifold and N a submanifold of M, K a subbundle of TM with the property that $K|_N \subset TN$. Then by means of the Lie bracket, we can define a K-partial connection on the normal bundle of N in M (Proposition 1.1). In general, the parallel translation associated with that partial connection will be induced by the flow of K-tangent sections of TM (Proposition 1.2). When M is a generic submanifold of \mathbb{C}^n containing a CR submanifold S with the same CR dimension we recover in section 2 the T^S-partial connection constructed by Tumanov in [69].

Recall that the CR-orbit of a point $z \in M$ is the set of points that can be reached by piecewise smooth integral curves of complex tangent vector fields. We then say that M is globally minimal at a point $z \in M$ if the CR-orbit of z contains a neighborhood of z in M. Using previous results, we show that vector space generated by the directions of CR-extendibility of CR functions on M exchanges by the induced composed flow between two points in a same CR-orbit (Lemma 3.5). As an application, we prove the main result of this paper, conjectured by Trépreau in [61] : for wedge extendibility of CR functions to hold at every point in the CR-orbit of $z \in M$ it is sufficient that M be globally minimal at z (Theorem 3.4). Up till now we can only conjecture the converse (for a local result, see [6]).
I wish to thank J.-M. Trépreau for helpful critical and simplifying remarks.

Remark : After this paper was completed, we have received a preprint by B. Jöricke Deformation of CR-manifolds, minimal points and CR-manifolds with the microlocal analytic extension property, which contains also a proof of Theorem 3.4 and Theorem 3.6. Our proof seems quite different since we obtain these results relying on Tumanov’s propagation theorems, the generic manifold M being fixed, whereas B. Jöricke works with conic perturbations of the base manifold so as to produce minimal points.

§1. Partial connections associated with a system of vector fields.

Let M be a real differentiable manifold of class C^2 of dimension n and $H \to M$ a r-dimensional vector bundle over M. Recall that a connection ∇ on the bundle $H \to M$ is a bilinear mapping which assigns to each pair of a vector field X with domain U and a section η of H over U a section $\nabla_X \eta$ of H over U and satisfy

$$\nabla_{\phi X} = \phi \nabla_X, \quad \nabla_X (\phi \eta) = \phi \nabla_X \eta + (X \phi) \eta, \quad \phi \in C^1(M, \mathbb{R}).$$

When the covariant derivative $\nabla_X \eta$ can only be defined for vectors X that belong to a subbundle K of TM, we call the connection ∇ a K-partial connection (cf. [69]).

If N is a submanifold of M, let T_NM be the normal bundle of N in M, i.e.

$$T_NM = TM|_N/TN.$$

Proposition 1.1. Let M be a real manifold of class C^2, $N \subset M$ a submanifold of class C^2 too and let K be a C^1 subbundle of TM with the property that $K|_N \subset TN$. Then there exists a natural K-partial connection ∇ on the bundle T_NM which is defined as follows. If $x \in N, X \in K[x]$ and η is a local section of T_NM over a neighborhood of x, then take

$$\nabla_X \eta = [\tilde{X}, \tilde{Y}](x) \mod T_xN$$

where \tilde{X} is a C^1 local section of K extending X and \tilde{Y} is a lifting of η in TM in a neighborhood of x.

Proof. We first check that the definition is independent of the lifting \tilde{Y}. In fact, when \tilde{Y} is tangent to N, as \tilde{X} is tangent to N too, the Lie bracket $[\tilde{X}, \tilde{Y}]$ remains tangent to N hence is zero in the quotient bundle.

Next we have to check that the definition of ∇ is independent of the chosen section \tilde{X} or, to rephrase, that if $\tilde{X}(x) = 0$ then $[\tilde{X}, \tilde{Y}](x)$ belongs to T_xN. Since K is a fiber bundle we can write

$$\tilde{X} = \sum_{j=1}^{r} f_j \tilde{X}_j, \quad f_j(0) = 0, \quad j = 1, \ldots, r$$

where $r = \text{rank } K$, $(\tilde{X}_j)_{j=1, \ldots, r}$ is a frame for K near x and the f_j are C^1 real valued functions defined near x. Noting that

$$[f \tilde{X}, \tilde{Y}] = f[\tilde{X}, \tilde{Y}] - (\tilde{Y} f) \tilde{X} \equiv f[\tilde{X}, \tilde{Y}] \mod TN$$

the result follows and the mapping ∇ is well-defined. Moreover the preceding implies that if $\phi \in C^1(M, \mathbb{R})$

$$\nabla_{\phi X} \eta \equiv \phi \nabla_X \eta.$$

Last, we check that ∇_X is a derivation. Indeed

$$\nabla_X (\phi \eta) \equiv [\tilde{X}, \phi \tilde{Y}](x) \equiv (\tilde{X}, \phi) \tilde{Y} + \phi [\tilde{X}, \tilde{Y}] \equiv (X \phi) \eta + \phi \nabla_X \eta.$$
and the proof is complete.

With the connection ∇ it is associated the parallel translation of fibers of TN along smooth curves on the base N that run in directions tangent to K. Let $I \ni t$ be a subinterval of \mathbb{R} and $\gamma : I \to N$ be a smooth curve with the property that $\dot{\gamma}(t) \in K[\gamma(t)]$, where $\dot{\gamma} = \frac{d}{dt}\gamma(t)$. A curve $\eta(t) \in TN[\gamma(t)]$ is a horizontal lift of γ if $\nabla_\gamma \eta = 0$. Existence and uniqueness of horizontal lifts provide linear isomorphisms

$$\Phi_{t_0,t} : TN[\gamma(t_0)] \to TN[\gamma(t)]$$

obtained by moving elements of K along horizontal lifts of γ.

Recall (cf. [58]) that the Lie bracket $[\hat{X}, \hat{Y}]$ is defined as the Lie derivative $L_{\hat{X}} \hat{Y}$ of \hat{Y} with respect to \hat{X}

$$[\hat{X}, \hat{Y}](x) = L_{\hat{X}} \hat{Y} = \lim_{h \to 0} [\hat{Y}(x) - d\hat{X}_h(\hat{Y}(\hat{X}_h(x)))]$$

where \hat{X}_t is the local flow on M generated in a neighborhood of x by the vector field \hat{X}, and $d\hat{X}_t$ denotes its differential. In the assumptions of Proposition 1.1, \hat{X} is of class C^1 so the mapping $x \to \hat{X}_t(x)$ is of class C^1 and the differential is a well-defined continuous mapping. When \hat{X} is K-tangent its flow (and more generally any piecewise smooth composition of such flows) stabilizes the tangent bundle TN of the manifold N, hence its differential induces isomorphisms of fibers of TN, which we denote by dX_t. Assume moreover that the curve γ is an integral curve of a C^1 K-tangent vector field \hat{X}, (which cannot be true for most general smooth curves γ but is sufficient enough for the applications) : $\gamma(0) = x$ and $\gamma(t) = \hat{X}_t(x)$. Then we claim that the mapping

$$dX_t : TTN[x] \to TN[\gamma(t)]$$

provides the parallel translation $\Phi_{0,t}$. Indeed let $\eta_0 \in TTN[x]$ and take $\eta(t) = dX_t(\eta_0)$. Then by the definition of the partial connection ∇ and the definition of the Lie bracket we have

$$\nabla_\gamma \eta(t) \equiv 0.$$

By uniqueness of solutions of linear differential equations of order one it must be that

$$\eta(t) = \Phi_{0,t}(\eta_0).$$

Proposition 1.2. Under the hypotheses of Proposition 1.1, let $\gamma(t) = X_t(x_1)$ be a smooth (piecewise smooth) integral curve of a K-tangent vector field X (a finite number of K-tangent vector fields) running from $x_1 \in N$ to $x_2 \in N$. Then the parallel translation along γ associated with the K-partial connection ∇ is induced by the differential of the flow of X (composed flow).

In order to give an expression of the covariant derivatives induced by the partial connection ∇, we choose coordinates on M, $x = (x', x'') \in \mathbb{R}^l \times \mathbb{R}^m$ such that the base point corresponds to $x = 0$ and the submanifold N is defined by the equation $x'' = 0$. Let $(x, \eta) = (x', x'', \eta', \eta'')$ be the canonical coordinates on TM, and $(x', \eta'') \in \mathbb{R}^l \times \mathbb{R}^m$ the associated coordinates on TN.

If $X = \sum_{j=1}^{l+m} a_j(x) \frac{\partial}{\partial x_j}$ is a C^1 section of K, it must be tangent to N, so $a_j(x', 0) = 0$, $j = l+1, \ldots, l+m$. We choose a local section η of TN over a neighborhood of 0 in N, in fact a section \hat{Y} of TM of the form

$$\hat{Y} = \sum_{j=l+1}^{l+m} \eta_j(x') \frac{\partial}{\partial x_j}.$$
Recalling Proposition 1.1 we have the following expression for the covariant derivative of \(\eta\) in the direction of \(X\)

\[
\nabla_X \eta = \sum_{j=l+1}^{l+m} \sum_{k=1}^{l} a_k(x',0) \frac{\partial \eta_k}{\partial x_j}(x') \frac{\partial}{\partial x_j} - \sum_{j,l+1}^{l+m} \eta_k(x') \frac{\partial a_j}{\partial x_k}(x',0) \frac{\partial}{\partial x_j}.
\]

Given an integral curve \(\gamma(t) = (\gamma'(t),0)\) of the field \(X\), the equations for the horizontal lifts look like

\[
X.\eta_j = \dot{\eta}_j(t) = \sum_{k=l+1}^{l+m} \frac{\partial a_k}{\partial x_k}(\gamma'(t),0)\eta_k(t) \quad j = l + 1, \ldots, l + m
\]

so the curve \((\gamma'(t), \eta''(t))\) is the integral curve of the following vector field \(\dot{X}\) on \(T_N^* M\)

\[
\dot{X}(x', \eta'') = \sum_{j=1}^{l} a_j(x',0) \frac{\partial}{\partial x_j} + \sum_{j,l+1}^{l+m} \frac{\partial a_j}{\partial x_k}(x',0)\eta_k(x') \frac{\partial}{\partial \eta_j}.
\]

Alternately, the partial connection \(\nabla\) can be defined by the family of horizontal subspaces \(H(\eta) \subset T_N T_N^* M\) generated by vectors of the form \(\dot{X}\).

Let us consider the dual connection \(\nabla^*\) to the connection \(\nabla\) on the dual bundle \(T_N^* M\). Recall that the conormal bundle of \(N\) in \(M\), \(T_N^* M\), consists of forms in \(T^* M\) that vanish on \(TN\). It has fiber over a point \(x \in N\)

\[T_N^* M[x] = \{\phi \in T_x^* M; \phi|_{TN} = 0\}.\]

The dual connection \(\nabla^*\) is defined by the following relation: if \(X\) is a \(K\)-tangent vector to \(N\) at \(x\), \(\eta\) is any section of \(T_N M\) near \(x\) and \(\phi\) is any section of \(T_N^* M\)

\[X < \phi, \eta > = < \nabla^*_X \phi, \eta > + < \phi, \nabla_X \eta > .\]

It is easily checked that such a relation defines a \(K\)-partial connection on \(T_N^* M\).

Along with the coordinates on \(T_N^* M\) we introduced before we can introduce the canonical coordinates \((x', \xi'')\) on the conormal bundle \(T_N^* M\). These are dual to the coordinates \((x', \eta'')\) for the canonical duality \(<,>\) between \(T_N M\) and \(T_N^* M\)

\[< \sum_{j=l+1}^{l+m} \xi_j dx_j , \sum_{j=l+1}^{l+m} \eta_j \frac{\partial}{\partial x_j} > = \sum_{j=l+1}^{l+m} \xi_j \eta_j .\]

Using the previous definition of the dual connection we can then compute the covariant derivative of a section \(\sum \xi_j dx_j = \phi\) of \(T_N^* M\). One easily shows

\[\nabla_X \phi = \sum_{j=l+1}^{l+m} (X \xi_j + \sum_{k=l+1}^{l+m} \xi_k \frac{\partial a_k}{\partial x_j}) dx_j.\]

Hence, under the assumption of Proposition 1.2, the parallel translation associated with the connection \(\nabla^*\) is given by means of the integral curves of the following vector field on \(T_N^* M\)

\[
\dot{X} = \sum_{j=1}^{l} a_j(x',0) \frac{\partial}{\partial x_j} - \sum_{j,l+1}^{l+m} \frac{\partial a_j}{\partial x_k}(x',0)\xi_j \frac{\partial}{\partial \xi_k}.
\]

There is another way of thinking the connection \(\nabla^*\) dual to the partial connection \(\nabla\) which has been considered by Trépreau in [61].
To a general vector field X on M it is associated its symbol $\sigma(X)$ which is an invariantly defined function on the cotangent bundle T^*M of M. To a function f of class C^1 on T^*M it is associated its hamiltonian field H_f.

Let X_j, $j = 1, \ldots, r$ be a local basis of K-tangent sections of TM. Let Σ_K be the orthogonal complement of K in T^*M. If $X = \sum_{j=1}^r \phi_j X_j$ is a C^1 section of K we have

$$H_{\sigma(X)}|_{\Sigma_K} = \sum_{j=1}^r \phi_j H_{\sigma(X_j)}|_{\Sigma_K} + \sum_{j=1}^r \sigma(X_j) H_{\phi_j}|_{\Sigma_K}.$$

Since $\sigma(X_j)$, $j = 1, \ldots, r$ is zero on Σ_K, we deduce that the restricted hamiltonian field

$$H_{\sigma(X)}|_{\Sigma_K} = \sum_{j=1}^r \phi_j H_{\sigma(X_j)}|_{\Sigma_K}$$

depends only on the value of X at the base point and not on the chosen section. If X is tangent to N, $H_{\sigma(X)}$ when restricted to $T^*_N M$ is tangent to $T^*_N M$. Hence we have constructed another vector field on $T^*_N M$ which is in fact the same as the one associated with the connection dual to the partial connection ∇.

Indeed, let as before (x', ξ') be the canonical coordinates on the conormal bundle $T^*_N M$. Recall that the hamiltonian field of a function $f = f(x, \xi)$ just looks like

$$H_f = \sum_{j,k=1}^{l+m} \frac{\partial f}{\partial x_j} \frac{\partial}{\partial x_k} - \frac{\partial f}{\partial \xi_j} \frac{\partial}{\partial \xi_k}.$$

The symbol of the section

$$X = \sum_{j=1}^{l+m} a_j \frac{\partial}{\partial x_j} \quad a_j(x', 0) = 0, \quad j = l + 1, \ldots, l + m$$

of K being $\sigma(X) = \sum a_j \xi_j$ we can compute

$$H_{\sigma(X)}|_{T^*_N M} = \sum_{j=1}^l a_j(x', 0) \frac{\partial}{\partial x_j} - \sum_{j,k=l+1}^{l+m} \frac{\partial a_j}{\partial x_k}(x', 0) \xi_j \frac{\partial}{\partial \xi_k}$$

and the last expression proves that $H_{\sigma(X)}$ is the same vector field on $T^*_N M$ as \tilde{X} computed previously, so the set of restricted hamiltonian fields $H_{\sigma(X)}|_{T^*_N M}$ defines the same family of horizontal subspaces for the partial connection ∇^*.

The next section is devoted to the application of the preceding results to the geometry of CR submanifolds of C^n.

§2. Application to generic submanifolds of C^n

In this section we apply results of section 1 in the context of differential geometry in the complex euclidean space C^n. Afterwards we check that our definitions recover those of Trépreau [61] and Tumanov [62].

Let TC^n be the real tangent bundle of C^n and J be the standard complex structure operator on TC^n. Let T^*C^n be the bundle of holomorphic (C-linear) 1-forms on C^n. In the canonical coordinates $z = (z_1, \ldots, z_n)$ its fiber over a point z consists of $(1,0)$-forms $\omega = \sum_{j=1}^n \zeta_j dz_j$, $\zeta_j \in C$, $j = 1, \ldots, n$. Then
\(T^*C^n \) is a complex manifold. It can be (and it is usually) identified with the real dual bundle of \(TC^n \) introducing the real duality defined by

\[
(\omega, X) \in T^*C^n \times TC^n \quad (\omega, X) \mapsto \text{Im} \langle \omega, X \rangle.
\]

In other words we identify real and holomorphic forms by \(\text{Im} \omega \leftrightarrow \omega \).

Now, let \(M \) be a real submanifold of \(C^n \). In this identification, the conormal bundle \(T^*_M C^n \) is a subbundle of \(T^*C^n \) and it has fiber spaces

\[
T^*_M C^n[z] = \{ \omega \in T^*C^n ; \text{Im} \omega|_{T_zM} = 0 \}.
\]

Hence the bundles \(T_M C^n = TC^n|_M/TM \) and \(T^*_M C^n \) are in duality by

\[
(\omega, X \mod TM) \mapsto \text{Im} \langle \omega, X \rangle.
\]

Assume moreover that \(M \) is generic (that is \(TM + JT M = TC^n|_M \)) and let \(\Sigma_M \) be the orthogonal complement of the complex tangent bundle \(T^cM \) in the cotangent bundle \(T^*M \). In the terminology of linear partial differential equations it is the characteristic set (and since \(T^cM \) is a fiber bundle, the characteristic manifold) of the system of CR vector fields. It is easily checked that \(\Sigma_M \) and \(T_M/T^cM \) are in duality in the same way.

Since \(M \) is CR, \(\Sigma_M \) is a fiber bundle and there is a canonical bundle epimorphism

\[
\theta : T^*_M C^n \rightarrow \Sigma_M,
\]

defined by \(\theta(\omega) = \iota_M^* \omega \) where \(\iota_M : M \rightarrow C^n \) is the natural injection. Since \(M \) is generic, \(\theta \) is an isomorphism.

On the other hand the complex structure \(J \) induces an isomorphism, still denoted by \(J \)

\[
J : TM/T^cM \rightarrow T_M C^n.
\]

Lemma 2.1. \(\theta \) is the transposed of \(J \), i.e.

\[
(\omega, JX) = (\theta(\omega), X)
\]

for every \(\omega, X \).

(Indeed \(< \omega, JX > = i < \omega, X > \).

From now on we let \(S \subset M \) be a CR submanifold of \(M \) with the property that \(CRdim S = CRdim M \). Equivalently it is required that \(T^cS = T^cM|_S \). By restriction analogous pairs of bundles remain isomorphic when \(TM/T^cM \) is replaced by \(T_S M \), \(\Sigma_M \) is replaced by \(T^*_S M \), \(T^*_M C^n \) is replaced by \(TC^n|_S \) / \((TM|_S + JT S) = E \), and \(T^*_M C^n \) is replaced by \(T^*_M C^n \cap iT^*_N C^n = E^* \), but now \(T^cS \)-partial connections can be defined by means of the isomorphisms \(J \) and \(\theta \) on the two new bundles \(E \) and \(E^* \). Note that the duplication essentialy deals with complex differential geometry.

First, the results of the previous section apply with \(K = T^cM = TM \cap JT M \) and \(N = S \) and produce a \(T^cS \)-partial connection \(\nabla \) on \(T_S M \) together with the dual connection \(\nabla^* \) on \(T^*_S M \). On the other hand, the push forward by \(J \) of \(\nabla \) defines a \(T^cS \)-partial connection \(\Theta \) on \(E \); its action on a section \(\vartheta \) of \(E \) in the direction of a complex tangent vector \(X \) is simply

\[
\Theta_X \vartheta := J \nabla_X (J^{-1} \vartheta).
\]
Similarly, the pull-back of the T^S-partial connection ∇^* by θ defines a T^S-partial connection Θ^* on E^*, and Θ^* is the connection dual to Θ since θ is the transposed of J (lemma 2.1).

Recall from section 1 that if X is a section of $T^S M$ then $\hat{X} = H_{\tau(X)}|_{T^S_M}$ is tangent to $T^S M$. In [61], Trépreau showed that E^* is a CR manifold, using a lemma which states that given such a vector field \hat{X} tangent to $T^S M$ with horizontal part X complex tangent to M, there exists a unique vector field \tilde{X} complex tangent to E^* with the same horizontal part X. Moreover Trépreau states that

$$\tilde{X} = d\theta(\hat{X})$$

Hence we deduce that the T^S-partial connection $\Theta^* = \theta^*\nabla^*$ can alternately be given, as is originally done in [61], by means of the vector fields of the form \hat{X}, i.e. horizontal subspaces of Θ^* are spanned by tangent vectors to integral curves of \hat{X}. We then have checked that the parallel translation in E^* introduced by Trépreau with the assumption of Proposition 1.2 is the same as the one associated with the T^S-partial connection Θ^* previously defined starting, as in section 1, with the partial connection associated with the bundle of complex tangents to M, $K = T^S M$. Moreover, since \hat{X} is complex tangent to E^*, we see that $T^S E^*$ is the set of horizontal subspaces for the T^S-partial connection Θ^*. This has been noticed in [69] and will be useful in the next section when proving Theorem 3.4.

§3. Orbits and the extension of CR functions.

In this section, it is assumed that M is a generic submanifold of \mathbb{C}^n of smoothness class C^2, and we let X be the set of C^1 sections over open subsets of M of $T^S M$. If $z \in M$, the subset of M consisting of points of M which can be reached by piecewise C^1-smooth integral curves of elements of X, starting at z, is called the CR-orbit of z, and is denoted by $\mathcal{O} [z]$.

If U is an open subset of M, $X|_U$ denotes the set of elements of X restricted to U. It is well-known (cf. [59], [6], [61]) that

$$\lim_{U} \mathcal{O}(X|_U, z)$$

where U runs over the open neighborhoods of z in M defines the germ at z of the unique CR-submanifold of M with the same CR dimension as M of minimal dimension passing through z, which is called the local CR-orbit of z and is denoted by $\mathcal{O}^{loc} [z]$. When considering $\mathcal{O}^{loc} [z]$ in the following we shall mean such a submanifold of a neighborhood of z in M, i.e. an actual representative of the germ. It plays the crucial role in the study of automatic extendibility of CR functions (cf. Theorem 3.1 below).

Recall that a smooth complex-valued function on M is called a CR function if it is annihilated by every antiholomorphic tangent vector field on M. A continuous function can be thought CR in the sense of distribution theory. We denote by $CR(M)$ the set of all continuous CR functions on M.

For completeness we recall definitions from [61] and [69]. We say that a manifold M with boundary is attached to M at (m, u), $m \in M$, $u \neq 0$, $u \in T_M \mathbb{C}^n [m]$ if $bM \cap U = M \cap U$ for some neighborhood U of m, and u is represented by a vector $u_1 \in T_m M$ directed inside M.

Let f be a CR function on M; we say that f is CR-extendible at (m, u) if it extends continuously to be CR on some \hat{M} attached to M at (m, u). When there is a CR submanifold S of M through m and a manifold \hat{M} attached to M at (m, u), $u \in T_M \mathbb{C}^n [m]$, we also say that \hat{M} is attached to M at (m, η), if u represents $\eta \in E_m$, $\eta \neq 0$ (E is the bundle defined in section 2). Similarly it makes sense to consider CR-extendibility at (m, η), $m \in S, \eta \in E_m$. But it should be noted that given $\eta \neq 0$ in E_m does not determine \hat{M} unambiguously unless S is complex
From now on we will require that M belong to the class $C^{(k,\alpha)}$, $k \geq 2, 0 < \alpha < 1$. This regularity assumption can be justified since it behaves well when proving the strongest local results on CR-extendibility (In fact, it behaves well through the so-called Bishop equation, [68], Theorem 1.), and constructing wedges with ribs and an edge having such a regularity (cf. [4]). Moreover, we need manifolds of class at least C^2 in order to apply Proposition 1.1. Since it will be of use in the proof of Theorem 3.4 we recall the following theorem due to Tumanov ([68])

Theorem 3.1. (A. E. Tumanov) Let M be a generic submanifold of $\mathbb{C}^n, n = p + q$, with dim $M = 2p + q$, $\text{CRdim } M = p$, and of smoothness class $C^{k,\alpha}$ $(k \geq 2), 0 < \alpha < 1$. For every point $z \in M$ there exist $r = r(z) = \dim \mathcal{O}_{\theta}^{loc} - 2$ CRdim M manifolds with boundary $\tilde{M}_1, \ldots, \tilde{M}_r$, attached to M at z, of class $C^{(k,\beta)}$ whenever $0 < \beta < \alpha$ such that

(a) Every CR function on M is CR-extendible to $\tilde{M}_1, \ldots, \tilde{M}_r$.

(b) $\sum_{j=1}^{r} T_{\gamma} \tilde{M}_j = T_{\gamma} M + JT_{\gamma} \mathcal{O}_{\theta}^{loc}$ whenever z' close to z in $\mathcal{O}_{\theta}^{loc}$.

Moreover the manifold germ $\mathcal{O}_{\theta}^{loc}$ is of class $C^{(k,\beta)}$ whenever $0 < \beta < \alpha$.

Note that $\mathcal{O}_{\theta}^{loc}$ is at least of class C^2 so it can play the role of N in Propositions 1 and 2. Using the connections constructed in section 2 we can reinterpret the main result on propagation of analyticity for CR functions recently proved by Tumanov.

According to Tumanov ([69], Proposition 7.3), the connection dual to the one that is constructed during the paper has the property that its horizontal subspaces are exactly fibers of the complex tangent bundle $T^c E^*$, hence, concludes Tumanov, the induced parallel translation need be the same as the one introduced on E^* by Trépreau. We have shown in section 2 that our connection Θ has as a dual connection a connection $*=\Phi$ with the same property; so $=J_* \nabla$ coincides with the connection constructed by Tumanov.

Proposition 1.2 together with Theorem 5.1 in [69] leads to

Theorem 3.2. Let $M \subset \mathbb{C}^n$ be a generic manifold and $S \subset M$ a CR submanifold of M with the property that CRdim $S = \text{CRdim } M$. Let γ be a piecewise smooth integral curve of $T^c M$ running from $z' \in S$ to $z'' \in S$ and let Φ_γ be the associated composed flow. Then for every $\epsilon > 0$, every $\eta' \in E_{z'}$ and every manifold M' attached to M at (z', η'), there exists another manifold M'' attached to M at (z'', η''), $\eta'' \in E_{z''}$ such that

(a) $|\eta'' - Jd\Phi_\gamma(z).J^{-1}\eta'| < \epsilon$

(b) if a CR function on M extends to be CR on \tilde{M}' it extends to be CR on \tilde{M}''

(c) if M, \tilde{M}' belong to $C^{k,\alpha}$ $(k \geq 2), 0 < \gamma < \alpha < 1$ then there exists such a $\tilde{M}'' \in C^{(k,\gamma)}$.

Theorem 3.2 shows that the so-called propagation of analyticity for CR functions is intrinsically related to the geometry of the base manifold M. Moreover, it fundamentally means that the study of extendibility for CR functions is closely related to the study of sections of the complex tangent space to M.

Following Sussmann ([59]), we begin with some adapted terminology and recalls. Let $X \in \mathbf{X}$ be a local section of $T^c M$. The C^1 integral curves $t \rightarrow \gamma(t)$ of X generate local diffeomorphisms of M where they are defined (the so-called flow of X) which we will denote by $z \rightarrow X_t z$. Composites of several maps of the form X_t can produce local diffeomorphisms of neighborhoods of points that are far from each other in a same CR-orbit. If $X = (X_1, \ldots, X_m)$ is an element of \mathbf{X}^m such that for $t = (t_1, \ldots, t_m) \in \mathbb{R}^m$, the map $z \rightarrow X_{m,t_m} \cdots X_{1,t_1} z$ is well defined in a neighborhood of z, we will still denote it for convenience by X_t or Φ (cf. Proposition 1.2).

Let $\Delta_\mathbf{X}$ be the distribution spanned by \mathbf{X}, i.e. the mapping which to $z \in M$ assigns the linear hull of vectors $X(z)$ where X belongs to \mathbf{X}: it is just the distribution associated with the complex tangent bundle of M. We let $P_\mathbf{X}$ denote the smallest distribution which contains $\Delta_\mathbf{X}$ and is invariant under complex-flow.
diffeomorphisms, or for short the smallest X-invariant distribution which contains \(\Delta_X \). Precisely, \(P_X(z) \) is the linear hull of vectors of the form \(dX_t(v) \) where \(v \in \Delta_X(z') \) and \(z = X_t(z') \). A \(C^1 \) distribution \(P \) on \(M \) has the maximal integral manifold property if for every \(z \in M \) there exists a submanifold \(S \) of \(M \) such that \(z \in S \) and for every \(z' \in S \), \(T_{z'}S = P(z') \). Moreover, \(S \) is said to be a maximal integral manifold of \(P \) if \(S \) is an integral manifold of \(P \) such that every connected integral manifold of \(P \) which intersects \(S \) is an open submanifold of \(S \).

Then the results of Sussmann, which extend to the \(C^2 \) case tell us that \(\mathcal{O} \ [z] \) is a (connected) maximal integral submanifold of \(P_X \) (perhaps with a finer topology) and admits a unique differentiable structure making the injection \(i : \mathcal{O} \ [z] \to M \) an immersion of class \(C^1 \).

We now introduce the following definitions.

Definition 3.3. Let \(M \) be a generic submanifold of \(\mathbb{C}^n \) and \(z \in M \). \(M \) is called minimal at \(z \) if \(\mathcal{O}^{loc} \ [z] \) contains a neighborhood of \(z \) in \(M \). It is called globally minimal at \(z \) if \(\mathcal{O} \ [z] \) contains a neighborhood of \(z \).

In view of the global results of Sussmann definition 3.3 means that the generic manifold \(M \) is globally minimal at a point \(z \) if and only if there exist a finite number of points \(z'_l \), \(l = 1, ..., d \) in the CR-orbit of \(z \) and composed flow diffeomorphisms \(\Phi_l \), \(l = 1, ..., d \) of a neighborhood of \(z'_l \) in \(M \) on a neighborhood of \(z \) in \(M \) respectively such that

\[
T_zM = \sum_{l=1}^{d} d\Phi_l(z'_l) \cdot (T^{\mathbb{C}}_{z'_l}M).
\]

We are now able to prove the theorem conjectured by Trépreau in [61] which is the natural generalization of a celebrated theorem of Tumanov ([67]). Here is the substance of this paper.

Theorem 3.4. Let \(M \) be a generic submanifold of \(\mathbb{C}^n \) of smoothness class \(C^{(k, \alpha)} \), \(k \geq 2, 0 < \alpha < 1 \) which is globally minimal at a point \(z \in M \). Then for every \(z' \) in the CR-orbit of \(z \) there exists a wedge \(W \) of edge \(M \) at \(z' \) such that

\[(*) \ every \ CR \ function \ on \ M \ extends \ holomorphically \ into \ W.\]

Proof. We shall make use of the following abuse of language: we will say that a CR-function \(u \) is CR-extendible in the direction \(v \in TM/T^cM[z] \) if it is in fact CR-extendible in the direction of \(Jv \). Let us consider the set

\[H_z = Vect \{ v \in T_zM/T^c_zM; \ u \ is \ CR-extendible \ at \ (z, v) \ \}\]

and its preimage under the natural surjection \(\pi : TM \to TM/T^cM \)

\[\hat{H}_z = \pi^{-1}(H_z) \subset T_zM. \]

Lemma 3.5. Let \(X \) be a \(C^1 \) section of \(T^cM \) over a neighborhood of \(z \in M \) and let \(\Phi_t \) be the flow of \(X \) and \(\Phi = \Phi_t \) for some \(t \). Then, if \(v \in T_zM \),

\[v \in \hat{H}_z \iff d\Phi(z).v \in \hat{H}_{\Phi(z)}. \]

Proof. Since the statement is a symmetric and a transitive one we can assume that \(z \) and \(z' \) are so close that \(z' := \Phi(z) \) is contained in a CR submanifold \(S \) of \(M \) with \(CRdimS = CRdimM \) which is minimal at \(z \) (for instance take for \(S \) the local CR-orbit of \(z \)) and such that \(z' \) belongs to the boundary of the manifolds whose existence comes from Theorem 3.1. Hence

\[(*) \ \hat{H}_{z'} \supset T_{z'}S.\]

9
So if \(v \) belongs to \(T_zS \) there is nothing to add. On the other hand, if \(\xi = pr_{T_zM}v \neq 0 \) we apply the propagation result Theorem 3.2 and obtain that for every \(\epsilon > 0 \) \(u \) is CR-extendible at \((z', \xi'') \), where \(\xi'' \) is \(\epsilon \)-close in Euclidean norm to \(\xi' = d\Phi(x)\xi \); so letting \(\epsilon \) decrease to zero, since every finite-dimensional vector space is closed, we have \(\xi' \in pr_{T_zM}(H_{z'}) \). Because of (*) the indetermination on the specific representative of \(\xi' \) is removed whence

\[
d\Phi(z).v \in \hat{H}_{z'}
\]

and the lemma is proved.

END OF PROOF OF THEOREM 3.4. The global lemma 3.5 and the condition of global minimality imply immediately that

\[
\hat{H}_{z'} = T_{z'}M
\]

for every \(z' \) in the (global) CR-orbit of \(z \). The conclusion follows by the edge-of-the-wedge theorem and the proof is complete.

Theorem 4.1 admits an obvious generalization which involves the concept of \(\mathcal{W}_r \)-wedges. Recall that a \(\mathcal{W}_r \)-wedge at \(z \) with edge \(M \) is locally the general intersection of a wedge of edge \(M \) at \(z \) and a generic manifold containing \(M \) as a submanifold of codimension \(r \).

Theorem 3.6. Let \(M \) be a generic submanifold of \(\mathbb{C}^n \) of smoothness class \(C^{(k,\alpha)} \), \(k \geq 2, 0 < \alpha < 1 \), and let \(r = \dim O\ [z] - 2CRdim M \). Then for every \(z' \) in the CR-orbit of \(z \), every \(\gamma \) with \(0 < \gamma < \alpha \), there exists a \(\mathcal{W}_r \)-wedge \(\mathcal{W} \) of edge \(M \) at \(z' \) and of smoothness class \(C^{k,\gamma} \) such that

\[
(\ast) \text{ every CR function on } M \text{ extends to be CR on } \mathcal{W}.
\]

Moreover, the tangent space to \(\mathcal{W} \) at \(z' \) spans \(T_{z'}M + JT_{z'}O\ [z] \).

Proof. The same argument runs in proving that \(\hat{H}_{z'} \) contains \(T_{z'}M + JT_{z'}O\ [z] \) and the conclusion then follows by the edge-of-the wedge theorem of Ayrapetyan ([4]), in the classes \(C^{(k,\alpha)} \), \(k \geq 2, 0 < \alpha < 1 \).
References

[1] P. Ahern and W. Rudin, *Totally real embeddings of S^3 into \mathbb{C}^3*, Proc. Amer. Math. Soc. **94** (1985), 460-462.

[2] H. Alexander, *A note on polynomially convex hulls*, Proc. Amer. Math. Soc. **33** (1972), 389-391.

[3] S. Alinhac et P. Gérard, *Opérateurs pseudo-différentiels et théorème de Nash-Moser*, InterEditions/Editions du CNRS, 1991.

[4] R. A. Ayrapetian, *Extending CR functions from piecewise smooth CR manifolds*. Mat. Sbornik **134** (1987), 108-118. Trad. in english in Math. USSR Sbornik **62** (1989), 1, 111-120.

[5] R. A. Ayrapetian and G. M. Henkin, *Analytic continuation of CR functions through the “edge of the wedge”,* Dokl. Akad. Nauk. SSSR **259** (1981), 777-781.

[6] M. S. Baouendi and L. P. Rothschild, *Cauchy-Riemann functions on manifolds of higher codimension in complex space*. Invent. Math. **101** (1990), 45-56.

[7] M. S. Baouendi, L. P. Rothschild and J.-M. Trépreau, *On the geometry of analytic discs attached to real manifolds*, Preprint 1992.

[8] M. S. Baouendi and F. Treves, *A property of the functions and distributions annihilated by a locally integrable system of vector fields*, Ann. of Math. **114** (1981), 387-421.

[9] R. F. Basener, *Peak points, barrier and pseudoconvex boundary points*, Proc. Amer. Math. Soc. **65** (1977), 89-92.

[10] E. Bedford, *Locally determined envelopes of holomorphy in \mathbb{C}^2*, Math. Ann. **281** (1988), 419-429.

[11] S. Berhanu and G. A. Mendoza, *Orbits and global unique continuation for systems of vector fields*, Preprint 1991.

[12] E. Bishop, *Differentiable manifolds in complex euclidean space*, Duke Math. J. **32** (1965), 1-22.

[13] J.-M. Bony, *Principe du maximum, inégalités de Harnack*, Ann. Inst. Fourier, **19** (1969), 277-304.

[14] A. Boggess and J. Pitts, *CR extension near a point of higher type*, C. R. Acad. Sci. Paris Sér. 1 Math. **298** (1984), 9-12.

[15] B. Chabat, *Introduction à l’Analyse Complex*, Éditions Mir, Moscou, 1990.

[16] G. De Rham, *Variétés différentiables, courants, formes harmoniques*, Hermann, Paris, 1960.

[17] J. Duval, *Un exemple de disque polynômalement convexe*, Math. Ann. **281** (1988) 583-588.

[18] J. Duval, *Convexité rationnelle des surfaces lagrangiennes*, Invent. Math. **104** (1991), 581-599.

[19] J. Duval, *Une contrainte géométrique pour certaines sous-variétés rationnellement convexes*, Math. Ann. **289** (1991), 627-629.

[20] O. Forster, *Lectures on Riemann Surfaces*, Graduate Texts in math. **81**.

[21] F. Forstneric, *On some totally real embedings of three manifolds*, Manuscripta Math. **55** (1986), 1-7.

[22] F. Forstneric, *Analytic discs with boudaries in a maximal real submanifold of \mathbb{C}^n*, Ann. Inst. Fourier, Grenoble **37**, 1 (1987), 1-44.

[23] F. Forstneric, *A totally real three sphere in \mathbb{C}^3 bounding a family of analytic discs*, Proc. Amer. Math. Soc. **108** (4) (1990), 887-892.

[24] F. Forstneric, *Complex tangents of real surfaces in complex surfaces*, Duke Math. J. **67** (1992), 353-376.

[25] F. Forstneric, *A smooth holomorphically convex disc in \mathbb{C}^3 that is not polynomially convex*, Proc. Amer. Math. Soc. **116** (1992), 411-415.

[26] F. Forstneric, *Approximation of smooth mappings by automorphisms of \mathbb{C}^n*, Preprint 1993.
[27] F. Forstneric, *Intersection of analytic discs and smooth discs*, Preprint 1993.

[28] F. Forstneric, *Complement of Runge Domains and holomorphic hulls*, Michigan Math. J., to appear.

[29] F. Forstneric and J. Globevnik, *Discs in pseudoconvex domains*, Comment. Math. Helv. 67 (1992), 129-145.

[30] J. Globevnik, *Boundary interpolation and proper holomorphic maps from the disc to the ball*, Math. Z. 198 (1988), 145-150.

[31] J. Globevnik, *Perturbation by analytic discs along maximal real submanifolds of \mathbb{C}^n*, Preprint 1993.

[32] M. Golubitsky and V. Guillemin, *Stable mappings and their singularities*, Graduate Texts in Math. 14.

[33] S. Greenfield, *Extendibility properties of real submanifolds of \mathbb{C}^n*, Proceedings of the C.I.M.E. Summer Conference on Bounded Homogeneous Domains, Urbino, 1967.

[34] M. W. Hirsch, *Differential Topology*, Graduate Texts in math. 33.

[35] C. D. Hill and G. Taiani, *Families of analytic discs in \mathbb{C}^n with boundaries in a prescribed CR submanifold*, Ann. Scuol. Norm. Sup. Pisa 4-5 (1978), 327-380.

[36] L. Hörmander, *The Analysis of Linear Partial Differential Operators I*, Grundlehren der mathematischen Wissenschaften, 256.

[37] N. Hanges and F. Treves, *Propagation of holomorphic extendibility of CR functions*, Math. Ann. 263 (1983), 157-177.

[38] N. Hanges and F. Treves, *On the local holomorphic extension of CR functions*, Preprint 1992.

[39] P. Honvault, *Ensembles de module maximum des domaines rigides de \mathbb{C}^2*, Thèse 1994, Université de Lille I, à paraître dans Math. Z.

[40] N. E. Stennrod, P. R. Halmos, M. M. Schiffer and J. Dieudonné, *How to write mathematics*, American mathematical society, 1975.

[41] A. Iordan, *Ensemble de module maximal dans des domaines pseudoconvexes*, C. R. Acad. Sc. Paris Sér. 300 (1985), 655-656.

[42] B. Jörricke, *Removable singularities of CR-functions*, Ark. Mat. 26 (1988), 117-143.

[43] B. Jörricke, *Envelopes of holomorphy and CR-invariant subsets of CR-manifolds*, C. R. Acad. Sci. Paris Sér. 1 315 (1992), 407-411.

[44] B. Jörricke, *Deformation of CR-manifolds, minimal points and CR-manifolds with the microlocal analytic extension property*, Preprint 1994.

[45] S. G. Krantz, *Function theory of several complex variables*, Wadsworth and Brooks/Cole 1992.

[46] S. Lang., *Analysis II*, Addison-Wesley, 1969.

[47] P. Lelong, *Fonctions plurisous-harmoniques et formes différentielles positives*, Gordon and Breach, Dunod, 1968.

[48] H. Lewy, *On the local character of the solution of an atypical differential equation in three variables and a related problem for regular functions of two complex variables*, Ann. of Math. 64 (1956), 514-522.

[49] H. Lewy, *An example of a smooth linear partial differential equation without solution*, Ann. of Math. (2) 66 (1957), 155-158.

[50] S. Maingot, *Sur l’extension des fonctions CR*, C. R. Acad. Sci. Paris Sér. 1 308 (1990), 291-295.

[51] M. E. Marson, *Wedge extendability for hypoanalytic structures*, unpublished.

[52] J. Merker, *Global minimality of generic manifolds and holomorphic extendibility of CR functions*, Int. Math. Res. Not. 8 (1994), 329-342.
[53] A. Nagel and J.-P. Rosay, Maximum modulus sets and reflexion sets, Ann. Inst. Fourier 41 (1991), 2, 431-466.

[54] S.I. Pinchuk, A boundary uniqueness theorem for holomorphic functions of several complex variables, Mat. Zametki 15 (1974), 205-212; English transl. in Math. Notes 15 (1974).

[55] J.-P. Rosay, Sur un problème d’unicité pour les fonctions CR, C. R. Acad. Sci. Paris Sér. I 302 (1986), 9-11.

[56] J.-P. Rosay, À propos de “wedge” et d’“edge”, et de prolongements holomorphes, Trans. Amer Math. Soc. 297 (1986), 63-72.

[57] J.-P. Rosay, A remark on a theorem by F. Forstneric, Ark. Math. 28 (1990) 311-314.

[58] M. Spivak Differential geometry, volume one, Brandeis university, 1970.

[59] H. J. Sussmann, Orbits of families of vector fields and integrability of distributions, Trans. Amer. Math. Soc. 180 (1973), 171-188.

[60] J.-M. Trépreau, Sur le prolongement holomorphe des fonctions CR définies sur une hypersurface réelle de classe C^2, Invent. Math. 83 (1986), 583-592.

[61] J.-M. Trépreau, Sur la propagation des singularités dans les variétés CR, Bull. Soc. Math. Fr. 118 (1990), 403-450.

[62] J.-M. Trépreau, On the extension of holomorphic functions across a real hypersurface, Math. Z. 211 (1992), 93-103.

[63] J.-M. Trépreau, On the Global Bishop Equation, Unpublished.

[64] J.-M. Trépreau, Cours de DEA, 2e Semestre 1992, Manuscrit.

[65] F. Treves, Basic linear differential equations, Academic Press, New York, 1975.

[66] F. Treves, Approximation and representation of functions and distributions annihilated by a system of complex vector fields. Palaiseau, École Polytechnique, Centre de Mathématiques, 1981.

[67] A. E. Tumanov, Extending CR functions on a manifold of finite type over a wedge, Mat. Sbornik 136 (1988), 129-140. Trad in english in Math. of the USSR Sbornik 64 (1989), 1, 129-140.

[68] A. E. Tumanov, Extending CR-functions into a wedge. Mat. Sbornik 181 (1990), 951-964. Trad. in English in Math. USSR Sbornik 70 (1991), 2, 385-398.

[69] A. E. Tumanov, Connections and propagation of Analyticity for CR Functions, Preprint 1992. To appear in Duke Math. J.

[70] S. M. Webster, The Euler and Pontrjagin numbers of an n-manifold in \mathbb{C}^n, Comment. Math. Helv. 60 (1985) 193-216.

[71] S. M. Webster, On the reflection principle in several complex variables, Proc. Amer. Math. Soc. 71 (1978), 26-28.

[72] R. O. Wells, Differential Analysis on Complex Manifolds, Graduate Texts in Math. 65, Springer, New-York-Heidelberg-Berlin, 1993.

[73] R. O. Wells, Compact real submanifolds of a complex manifold with nondegenerate holomorphic tangent bundles, Math. Ann. 179 (1969), 123-129.

[74] J. Wermer, Polynomially convex discs, Math. Ann. 158 (1965), 6-10.

[75] J. Wermer, Banach Algebras and Several Complex Variables, Graduate Texts in Math. 35.

[76] E. C. Zachmanoglou, Propagation of the zeroes and Uniqueness in the Cauchy Problem for first order partial differential equations, Arch. Rat. Mech. Anal. 38 (1970), 178-181.

[77] E.C. Zachmanoglou, Foliations and the propagation of zeroes of solutions of partial differential equations, Bull. Amer. Math. Soc. 78 (1972), 835-839.