Experimental observation of permanent magnet rotation

Weiming Tong (✉️ 15193943275@139.com)
Suochi Schooling District, Cheng County
https://orcid.org/0000-0003-0107-9526

Bihe Chen
College of Enology, Northwest A&F University 22 Xinong Road, Yangling Shaanxi Province

Article

Keywords:

Posted Date: January 25th, 2023

DOI: https://doi.org/10.21203/rs.3.rs-1559932/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Why does the Earth rotate? At present, it is impossible to use an experimental device to show which forces cause planets (such as Earth) to rotate in the solar system. Therefore, we developed a device to observe the rotation of a permanent magnet in a magnetic field to achieve an understanding of rotational force. A permanent magnet rotating under the action of a DC motor is installed on Motor Shaft; a permanent magnet designed to rotate in a magnetic field is placed in a circular container with water and floats on the surface of the water. Using the above setup, experimental methods and procedures based on this research can be used to observe the rotational behaviour of a permanent magnet in a magnetic field, understand the reason for its rotation, and determine the strength of the rotational force of the permanent magnet in the magnetic field.

Introduction

Why does the Earth rotate1,2? Many scholars have considered this question. In the 17th century, an accurate description of Earth’s rotation was provided via Newtonian mechanics. Today, it is common knowledge that the Earth rotates. However, which forces causes the Earth to rotate? Scientists believe that phenomena in the universe are controlled by two long-range forces, gravitation and electromagnetic forces. At present, several theories on the Earth's rotation remain as hypotheses3-5, and the driving forces of the Earth's rotation have not been mechanically processed. In teaching and scientific research, there are devices that simulate the rotation of the Earth, such as the apparatus of the Sun-Earth (-Moon) system or the apparatus of the eight planets in the solar system simulated. However, this does not help us observe how objects on the ground rotate with respect to each other under the influence of fundamental forces, let alone help us study which forces cause planets (such as Earth) to rotate in the solar system. The rapid development of modern electronics has led to the emergence of electronic products such as DC motors of various powers and speeds, AC/DC power adapters for controlling the speed of DC motors6, photoelectric digital tachometers (noncontact)7 and permanent magnets of various shapes and materials (grade)8,9. These developments led us to develop an experimental apparatus10-13. Through the interaction between permanent magnets, the rotation of permanent magnets in a magnetic field can be observed and understood and two different magnetic forces can be sensed with the hand, namely, the attractive force and the rotational force. This will contribute to the understanding of the rotational forces and provide an experimental basis for further improving the efficiency of the use of magnetic energy and developing mathematical models. This will help advance the development of devices that demonstrate the rotation of planets in the solar system.

The structure of this paper is as follows: In the results section, we list the experiments performed in Sections A–F and present our findings. In the conclusions section, we conclude the paper and summarize the key points. In the methods section, we detail the materials and design of the developed device and describe the experimental methods and procedures as well as the issues to be considered in the experiments.
In this study, a magnetic ball is installed at the motor shaft of a DC motor to make it rotate. We call it the motor-driven magnet, which is symbolized by S_1 and marked with S_1 on the motor-driven magnet. A magnetic ball designed to interact with a motor-driven magnet and rotate in a magnetic field. We call it the rotating magnet, which is symbolized by M_1 and marked as M_1 on the rotating magnet. The rotation distances of different features between S_1 and M_1 obtained by different experimental methods are symbolized by r_1 and r_2.

Results

Magnet rotation

In Experiment A, M_1 was placed on the same plane centred on S_1 when S_1 was rotating at 30 rpm. When using a bicoloured circle on M_1 as a reference frame and M_1 was between 10 and 42 cm from S_1, we observed that M_1, floating in a circular container, rotates due to the rotational torque of $S_1^{14,15}$. M_1 always rotated around an axis passing through its core, similar to the rotation of the Earth16. Meanwhile, M_1's axis of rotation wobbles around its core once in each cycle. This phenomenon was similar to the "Chandler wobble" shown by the Earth's axis of rotation17. When the distance between M_1 and S_1 was 20–42 cm, M_1 would continue to rotate even if a 300 by 300 by 2 mm iron plate was placed in the middle between S_1 and M_1. When using a bicoloured circle on M_1 and the water surface used to float M_1 as a frame of reference, and allowing M_1 to approach or move away from S_1 within a range of 10–42 cm, we observed that during each cycle of M_1's rotation, the orientation of M_1's axis of rotation was at an angle of 85–90 degrees to the water surface where M_1 was floating. In other words, the orientation of M_1's axis of rotation was always almost perpendicular to the water surface, regardless of how the distance between M_1 and S_1 varied in the range of 10–42 cm. As the distance between M_1 and S_1 varies between 10 and 42 cm, we observed that the angle between the circular surface of a bicoloured circle on M_1 and the surface of the water used to float M_1 also changes. For instance, if the distance from M_1 to S_1 was 10 cm, then the angle between the circular surface of a bicoloured circle on M_1 and the surface of the water in which M_1 was floating would be 85–90 degrees for each cycle of M_1's rotation. If the distance from M_1 to S_1 was 42 cm, the angle between the circular surface of a bicoloured circle on M_1 and the surface of the water in which M_1 was floating would be 55–60 degrees for each cycle of M_1's rotation. Based on the change in distance between M_1 and S_1, this caused a change in the angle between the circular surface of a bicoloured circle on M_1 and the surface of the water in which M_1 was floating, and also caused the position of the intersection of M_1's axis of rotation on its sphere to change in an invisible manner. This phenomenon was similar to the "polar wandering" exhibited by the Earth's axis of rotation18. When the rotating M_1 was in a fixed position within the range S_1 10–42 cm, we gently applied a coloured paint dot to the axis of rotation of the M_1 sphere above the water surface. The coloured dot marked on the axis of rotation of M_1 was then used as a reference frame as the distance between M_1 and S_1 varied between 10 and 42, and in this way we observed change in position of the intersection of the axis of rotation of M_1 on
its sphere. When using the red and blue dots on M_1 representing the north and south magnetic poles and the surface of the water in which M_1 was floating as a frame of reference and allowing M_1 to approach or move away from S_1 within a range of 10–42 cm, we observed a change in the angle between the magnetic axis of M_1 and the surface of the water in which M_1 floats. For instance, if the distance between M_1 and S_1 was 10 cm, then the angle between M_1’s magnetic axis and the surface of the water in which M_1 was floating would be 0–5 degrees for each cycle of M_1’s rotation. If the distance between M_1 and S_1 was 42 cm, then the angle between M_1’s magnetic axis and the surface of the water in which M_1 was floating would be 55–60 degrees for each cycle of M_1’s rotation. In addition, the blue and red dots on M_1, used to represent the North and South Poles, always rotate around the axis of rotation of M_1. The experimental results show that in order to obtain the same results as in this study, the magnetic sphere representing M_1 must be placed in the centre of the hollow sphere and their centres of gravity must coincide. The magnetic sphere representing M_1 and the hollow sphere were standard spheres, otherwise different results would be generated.

Equal rotation period

In Experiment B, when the distance between M_1 and S_1 was 10–42 cm and S_1 rotated in a range of 30–60 rpm, we observed that during each cycle of S_1’s rotation, the south and north magnetic poles of M_1 corresponded to the north and south magnetic poles of S_1, and the rotation periods of M_1 and S_1 were equal. Furthermore, while S_1 rotates at a constant speed during each cycle, M_1 does not rotate at a constant speed; M_1 pauses for a moment during each cycle, after which it accelerates and continues its rotation. When the distance between M_1 and S_1 was 10–25 cm and S_1 was rotating in the range of 30–600 rpm, we observed that when S_1 accelerated, decelerated or stopped rotating, M_1 also accelerated, decelerated or stopped accordingly, and the rotation periods of M_1 and S_1 were equal.

Speed and distance

In Experiment C, whenever S_1 was rotated at 30, 90, 120, 240, 480 and 600 rpm, M_1, which was floating in a circular container and static, was allowed to slowly approach S_1 from 80 cm, and we measured and observed that the distance r_1 at which M_1 started its rotation as it approached S_1 was different. The results are shown in Table 1. The results show that when S_1 was rotating at the slowest speed of 30 rpm, the distance r_1 at which M_1 approached S_1 and started to rotate was 42 cm, this was the maximum distance at which M_1 started to rotate. When the distance between M_1 and S_1 was 42 cm, S_1 would have to rotate at 30 rpm or slower if M_1 was required to rotate.

Maximum distance

In Experiment D, M_1 floating in a circular container and rotating was moved from a position 10 cm from S_1 to a position further away whenever S_1 was rotated at 30, 90, 120, 240, 480 and 600 rpm, and we
measured and observed that the distance r_2 at which M_1 continued to rotate after moving away from S_1 was different. The results are shown in Table 2. The results show that when S_1 was rotating at 90 rpm, the distance r_2 at which M_1 continued to rotate after it slowly moved away from S_1 was 60 cm, this was the maximum distance at which M_1 continued to rotate.

Central angle and rotation

In Experiment E, we observed no rotation of M_1 when the motor shaft was linked at the 0 and 20 scales on the S_1 sphere. This occurred regardless of the orientation of M_1 relative to S_1, the rotational speed of S_1, and the distance between S_1 and M_1. When the motor shaft was linked at the 21 scale on the S_1 sphere, M_1 could not rotate within a range of 5–15 cm close to S_1 but could rotate within a range of 16–23 cm farther from S_1. When the motor shaft was linked at 45 scale on the S_1 sphere, M_1 could not rotate within a range of 5–9 cm close to S_1, but could rotate within a range of 10–32 cm farther from S_1. When the motor shaft was linked at the 57 scales on the S_1 sphere, M_1 could not rotate within a range of 5–7 cm close to S_1, but could rotate within a range of 8–34 cm farther from S_1. When the motor shaft was linked at 58 scale on the S_1 sphere, M_1 rotates in all ranges from 5–35 cm from S_1. When the motor shaft was linked at 90 scale on the S_1 sphere, M_1 rotates in all ranges from 5–42 cm from S_1. The experimental results show that the four equal arcs NA, SA, NB and SB with a scale of 0–90 on the S_1 sphere have the same effect and result on the rotation of M_1 caused by S_1. When the motor shaft was linked at the 0 to 57 scale on the S_1 sphere and M_1 was in a non-rotating state, M_1 would adhere to the container wall in the S_1 direction and wobble around its core.

Feeling the rotational force

In Experiment F, when the motor shaft was linked at 0 and 20 scales on the S_1 sphere, M_1 was allowed to approach or move away from S_1 and we could feel by hand that there was only an attractive force between S_1 and M_1. When the motor shaft was linked at 90 scale on S_1 sphere, allowing M_1 to approach or move away from S_1, we could feel two different magnetic forces between S_1 and M_1 by hand, namely the attractive force and the rotational force. When the motor shaft was linked at 21 to 90 scales on the S_1 sphere, allowing M_1 to approach or move away from S_1, we could feel the strength of the rotational force on M_1 by hand. As the linking point between the motor shaft and the S_1 sphere increases from 21 to 90 scales, the strength of the rotational force on M_1 increases. As the linking point on the motor shaft and S_1 sphere decrease from 90 to 21 scales, the strength of the rotational force on M_1 decreases. Also, as the distance between S_1 and M_1 decreases from 20 cm to 5 cm, the strength of the rotational and attractive forces between them gradually increases. As the distance between S_1 and M_1 increases from 5 cm to 20 cm, the strength of the rotational and attractive forces between them gradually decreases.
Conclusions

Based on the results obtained using the designed apparatus and the aforementioned experimental procedures, the following conclusions are presented:

M₁ floating in a circular container rotates due to the rotational torque of S₁, this would help to determine the relationship among the rotation of M₁ and the geometry of its magnet. As the distance between M₁ and S₁ changes, so does the angle between the circular surface of a bicoloured circle on M₁ and the surface of the water in which M₁ was floating, and this helps to determine the relationship among the intersection of M₁’s axis of rotation on its sphere and the distance between M₁ and S₁. As the distance between M₁ and S₁ changes, so does the angle between the orientation of M₁’s magnetic axis and the surface of the water in which M₁ was floating, and this helps to determine the relationship among the orientation of M₁’s magnetic axis and the distance between M₁ and S₁. When S₁ was rotated at different speeds, the rotation periods between M₁ and S₁ were equal, and this helped to determine the relationship that the rotation periods between M₁ and S₁ were equal. As S₁ rotated at different speeds, a resting M₁ was slowly moved to approach S₁, this caused M₁ to start rotating at different distances, this helped to determine the relationship among the distance that caused M₁ to start rotating and the speed of S₁. As S₁ rotated at different speeds, the spinning M₁ was slowly moved away from S₁, this resulted in M₁ continuing to rotate at different distances, this helped to determine the relationship among the maximum distance that resulted in M₁ continuing to rotate and the speed of S₁. M₁ did not rotate when the motor shaft was linked at scales from 0 to 20 on the S₁ sphere, this helped to determine the relationship among the non-rotational behaviour of M₁ and the central angle corresponding to scales from 0 to 20 on the S₁ sphere. When the motor shaft was linked at a scale of 21 to 57 on the S₁ sphere, M₁ would not rotate at distances close to S₁, but would rotate at relatively large distances, and this helped to determine the relationship between the non-rotational distance of M₁ close to S₁ and the synchronous rotational distance away from S₁ and the central angle corresponding to the 21 to 57 scale on the S₁ sphere. When the motor shaft was linked at a scale of 58 to 90 on the S₁ sphere, M₁ would be rotated over the entire distance it could be rotated, and this would help to determine the relationship between the total distance of synchronous rotation between M₁ and S₁ and the central angle corresponding to the 58 to 90 scale on the S₁ sphere. When the motor shaft was linked at 0 and 20 scales on the S₁ sphere, allowing M₁ to approach or move away from S₁, we could feel by hand only an attractive force between S₁ and M₁, this helped to determine the relationship between the absence of rotational forces between M₁ and S₁ and the central angle corresponding to the 0 to 20 scales on the S₁ sphere. When the motor shaft linked at the 21 to 90 scale on the S₁ sphere, allowing M₁ to approach or move away from S₁, we can feel the rotational force on M₁ and its strength by hand, this helps to determine the relationship between the rotational force on M₁ and its strength and the central angle corresponding to the 21 to 90 scale on the S₁ sphere. Using the above setup, permanent magnets of other materials (grades) and sizes can also be designed as motor-driven magnets and rotating magnets.
Methods

Design of permanent magnet rotations driven by a DC motor

A magnetic sphere was installed on the motor shaft of a DC motor with the centreline of the motor shaft passing through the centre of gravity of the magnetic sphere (DC motor model: ZYTD520, DC 24V, 5000 rpm, gearbox, ZGB37RG, DC 24V, rpm: 600). A circular base made of a non-ferromagnetic material was installed at the bottom end of the DC motor shaft. To aid observation and research, NdFeB magnetic spheres of 5 mm diameter material (grade) N42 were attracted and attached to a magnetic ball installed on a DC motor shaft in order to accurately locate the north and south poles of the magnetic ball installed on the motor shaft. A compass was then used to determine the north and south poles of the magnetic ball on the motor shaft, with the south pole marked with red paint as S and the north pole marked with blue paint as N. The speed of the DC motor was regulated by the AC/DC power adapter and its speed varied between stop, slow and fast (AC/DC power adapter model: MXD-24W024, INPUT: AC 100-240V 50/60Hz, OUTPUT: DC 1–24V 100–1000 mA). The magnetic sphere installed on the shaft of a DC motor for rotation, which we call the motor-driven magnet, was symbolized by \(S_1 \) and marked \(S_1 \) on the motor-driven magnet, see Fig. 1 left. \(S_1 \) was a NdFeB sphere with a material (grade) of N35.

Design of a permanent magnet rotating in a magnetic field

A magnetic sphere was placed and fixed in the centre of a hollow sphere made of a non-ferromagnetic material and it was ensured that the hollow sphere containing the magnetic sphere could float on the surface of the water. To aid observation and research, NdFeB magnetic spheres of 5 mm diameter material (grade) N42 were attracted and attached to the hollow sphere containing a magnetic sphere in order to accurately locate the North and South Poles on the hollow sphere containing a magnetic sphere. A compass was subsequently used to identify the north and south magnetic poles on the hollow sphere, with the south pole was marked with a dot of red paint, and the north pole was marked with a dot of blue paint. A circle was paint on the hollow sphere with circular surface perpendicular to the magnetic axis (similar to the Earth’s equator and magnetic axis). Half of this circle was painted red and the other half was painted blue. We call this sphere a rotating magnet, symbolized by \(M_1 \), and mark \(M_1 \) on the rotating magnet, see the sphere in the circular container on the right in Fig. 1. \(M_1 \) was a NdFeB magnet and the material (grade) was N42.

Design of magnet rotation caused by central angle
To find the key reason for the rotation of a permanent magnet. We take an arbitrary circle on the sphere of S_1 such that it passes through the North and South poles of S_1, thus generating NS and SN semicircles on the sphere of S_1 from the point N representing the North Pole and the points S representing the South Pole. We then take a point A on the NS semicircle to bisect the NS semicircle and a point B on the SN semicircle to bisect the SN semicircle. Thus, four arcs of equal length were generated on the circle of the S_1 sphere, namely the NA, SA, NB and SB arcs. Since the NA, SA, NB, and SB arcs on the circle of the S_1 sphere all correspond to a central Angle of 90 degrees. Therefore, we set points N and S on the circle on the S_1 sphere to 0 degrees and points A and B to 90 degrees. We also subdivide the NA, SA, NB and SB arcs into 90 equal parts and show the central angles using scale numbers from 0 to 90. The link interface between a DC motor shaft and the S_1 sphere can be set at any position between 0 and 90, see the sphere on the left in Fig. 1. When the motor shaft was linked at the scale from 0 to 90 on the S_1 sphere, the central axis of the motor shaft had to pass through the centre of gravity of the S_1 sphere to ensure that the DC motor equipped with S_1 was steady during rotation.

Experimental setup and procedures

The motor shaft of a DC motor was first linked at 90 scale on the S_1 sphere, namely point A or B on the S_1 sphere, and then M_1 was placed in a circular container with water and floated on the water surface, see Fig. 1. The speed of the DC motor was regulated by an AC/DC power adapter and caused the rotation of S_1 mounted on the motor shaft to vary between stop and 30 to 600 rpm. During the experiment, the minimum distance between S_1 and M_1 was 5cm and no other ferromagnetic objects not required for the experiment were allowed within 2 m. the ambient temperature was lower than 80°C.

In Experiment A, M_1 was placed on the same plane centred on S_1 when S_1 was rotating at 30 rpm. Using a bicoloured circle on M_1 as a reference frame and a distance of 10–42 cm between M_1 and S_1, we observed the behaviour of M_1 floating on the surface of the water in a circular container. Using a bicoloured circle on M_1 and the surface of the water in which M_1 was floating as a frame of reference, and allowing M_1 to approach or move away from S_1 within a range of 10–42 cm, we observed the angle between M_1’s axis of rotation and the surface of the water in which M_1 was floating, the change in angle that occurred between the circular surface of the bicoloured circle on M_1 and the surface of the water in which M_1 was floating, and the invisible change in the position of the intersection of M_1’s axis of rotation on its spherical surface. Using the red and blue dots on M_1 representing the north and south magnetic poles and the surface of the water in which M_1 was floating as a frame of reference, and allowing M_1 to approach or move away from S_1 within a range of 10–42 cm, we observed the angular change that occurred between the magnetic axis of M_1 and the surface of the water in which M_1 was floating, the position of the north and south magnetic poles on M_1 relative to the axis of rotation of M_1. According to the above method, the floating design of M_1 was not required if frictional resistance was not taken into account. To observe the rotational behaviour of M_1, a magnetic ball representing M_1 can be placed
directly in a circular transparent container with a smooth concave bottom or in the palm of the experimenter's hand.

In Experiment B, M_1 was placed on the same plane centred on S_1. The distance between M_1 and S_1 was $10–42$ cm and S_1 was regulated to rotate at a range of $30–60$ rpm. We observed the rotation periods of S_1 and M_1 as well as their respective rotational speeds. The distance between M_1 and S_2 was $10–25$ cm and S_1 was regulated to rotate at a range of $30–600$ rpm. As S_1 accelerated, decelerated and stopped rotating, we observed and measured the rotational periods of S_1 and M_1 with an optoelectronic digital tachometer.

In Experiment C, the distance between M_1 and S_1 in the same plane was 80 cm. Whenever S_1 was regulated to rotate at $30, 90, 120, 240, 480$ and 600 rpm, M_1, floating in a circular container and quiescent, was slowly approached from 80 cm to S_1, and we measured the distance r_1 at which M_1 started its rotation as it approached S_1. Following the above method, S_1 could also be regulated to rotate at any speed from 30 to 600 rpm so that a resting M_1 slowly approaches S_1 from far to near to measure the distance r_1 at which M_1 starts to rotate as it approaches S_1.

In Experiment D, the initial distance between M_1 and S_1 was 10 cm in the same plane centred on S_1. Whenever S_1 was regulated to rotate at $30, 90, 120, 240, 480$ and 600 rpm, M_1, which was floating in a circular container and rotating, was moved further away from S_1 from a distance of 10 cm, and we measured the maximum distance r_2 at which M_1 continued to rotate after it had moved away from S_1. Following the above method, S_1 can also be regulated to rotate at any speed from 30 to 600 rpm so that the rotating M_1 slowly moves away from S_1 from near to far to measure the maximum distance r_2 that M_1 continues to rotate after it has moved away from S_1.

In Experiment E, the motor shaft was linked to the S_1 sphere at the 0 and 20 scale, S_1 was regulated to rotate at any speed between 30 and 600 rpm, and M_1 was placed anywhere between 10 and 30 cm around S_1. We observed the behaviour of M_1 floating in a circular container. The speed of S_1 was regulated to 30 rpm in the same plane centred on S_1. The motor shaft was linked at the $21, 45$ and 57 scales on the S_1 sphere and M_1 was slowly moved from a distance of 5 cm from S_1 to a position further away from S_1. We measured and observed the non-rotational distance of M_1 close to S_1 and the synchronous rotational distance of M_1 away from S_1. The speed of S_1 was regulated to 30 rpm in the same plane centred on S_1. The motor shaft was linked at the 58 and 90 scales on the S_1 sphere and M_1 was slowly moved from a distance of 5 cm from S_1 to a position further away from S_1. We measured and observed the entire distance M_1 could rotate after being moved away from S_1. Following the method described above, the speed of S_1 was regulated to 30 rpm in the same plane centred on S_1. The motor shaft of the DC motor was then linked at the scales from 0 to 90 on the NA, SA, NB and SB arcs on the S_1 sphere to observe the rotational and non-rotational behaviour of M_1, measuring the non-rotational
distance close to S_1 after M_1 had been moved away from S_1 and its farther synchronous rotational distance, and the entire distance M_1 can rotate after it has been moved away from S_1.

In Experiment F, a DC motor equipped with S_1 was placed stably on the experimental table. In the same plane centred on S_1, S_1 was rotated at 30 rpm. We hold M_1 in our left or right hand and move it back and forth between 5 and 20 cm to bring it close to or away from S_1. The motor shaft was linked at the scales of 0 and 20 on the S_1 sphere, allowing M_1 to approach or move away from S_1, and we used our hands in order to feel the force between M_1 and S_1. The motor shaft was linked at a scale of 90 on the S_1 sphere, allowing M_1 to approach or move away from S_1, and we used our hands in order to feel the two different magnetic forces between M_1 and $S_1$37,38. The motor shaft was linked at a scale of 21 to 90 on the S_1 sphere, allowing M_1 to approach or move away from S_1, and we used our hands in order to feel the strength of the rotational force on M_1. Following the above method, the motor shaft can also be linked anywhere on the S_1 sphere from 0–90 scale, while regulating S_1 to rotate at any speed from 30–600 rpm. Hold M_1 with our left or right hand and allow it to approach or move away from S_1 in order to feel the two different magnetic forces between M_1 and S_1 and their strength (when using additional permanent magnets of different materials and sizes to feel the two different magnetic forces between the motor-driven magnet and the rotating magnet, the size and magnetic strength of the motor drive magnet and the rotating magnet must not be too large at the same time. Otherwise, when the distance between the motor-driven magnet and the rotating magnet is relatively close, a hand cannot control the motor-driven magnet and the rotating magnet; they will cohere together instantly and may even cause damage to the hand and apparatus).

Declarations

ACKNOWLEDGEMENTS

We would like to thank Mr. Zhongping Jia and Mr. Guojun Wei from the Longnan Electric Power Bureau of Gansu Province, China, and Ms. Liping Liu, Mr. Qiang Liu and Mr. Yan Chun from Cheng County, Gansu Province, China, for their support of this research over the last decade.

AUTHOR CONTRIBUTIONS

Weiming Tong designed the experimental device and analysed the experimental methods and procedures. Weiming Tong and Bihe Chen jointly measured and analysed the experimental data. Weiming Tong and Bihe Chen wrote the paper. They discussed the results and significance and commented on the manuscript.

COMPETING INTERESTS

There are no conflicts of interest to declare.
References

1. Raghuprasad, P. K. Pivotal role of spin in celestial body motion mechanics: prelude to a spinning universe. *J. High Energy Phys. Gravit. Cosmol.* **7**, 98-122 (2021).

2. Dickey, J. O. Earth rotation: theory and observation. *EOS: Earth Space Sci. News* **71**, 1791 (1990).

3. Lin, Y. Observational study about the influence of the solar wind on the earth's rotation. *Sol. Phys.* **179**, 179-188 (1998).

4. Gross, R. S. Ocean tidal effects on earth rotation. *J. Geodyn.* **48**, 219-225 (2009).

5. Pashkevich, V. V. Some aspects of the mathematical modeling of the earth rotation. *Adv. Space Res.* **30**, 387-392 (2002).

6. Zhang, Z., Jin, S., Liu, G., Hou, Z. & Zheng, J. Model-free adaptive direct torque control for the speed regulation of asynchronous motors. *Processes* **8**, 333 (2020).

7. Miyazaki, K. A photoelectric tachometer. *J. Phys. E: Sci. Instrum.* **1**, 486-487 (1968).

8. Coey, J. M. D. Permanent magnet applications. *J. Magn. Magn. Mater.* **248**, 441-456 (2002).

9. Lemaire, H. Matériaux durs pour aimants permanents. *Rev. Phys. Appl.* **9**, 819-836 (1974).

10. Tong, W. M. A method of interaction motion of permanent magnet. China patent CN102055380B (2011).

11. Tong, W. M. A device and method permanent magnet interaction turn. China patent CN101951120A (2011).

12. Tong, W. M. Magnetic field transmission instrument. China patent CN201222320Y (2008).

13. Tong, W. M., Chen, B. H. Experiments on permanent magnets rotation. PREPRINT (Version 2) available at Research Square, https://doi.org/10.21203/rs.3.rs-1180414/v2 (2022).

14. Sugawa, C., Kakuta, C. & Matsukura, H. On the relation between the rotation of the earth and solar activity. *Proc. Int. Astron. Union* **48**, 231-233 (1972).

15. Rongqin, C., Jianpo, G., Juanxiu, H. & Chaoqiong, H. The angular momentum of the solar system. *Astron. Astrophys.* **4**, 33-40 (2016).

16. Sommeria, J. Foucault and the rotation of the Earth. *C. R. Phys.* **18**, 520-525 (2017).

17. Höpfner, J. Chandler and annual wobbles based on space-geodetic measurements. *J. Geodyn.* **36**, 369-381 (2003).

18. Hiroyuki, H., Yuhji, Y. & Hidetoshi, S. Magnetic poles and geomagnetic poles. *Educ. Earth Sci.* **68**, 197-203 (2016).

19. Li, Z., Huang, R. & Wang, S. On the non-synchronous rotation of binary systems? *Sci. China Phys. Mech. Astron.* **57**, 1194-1200 (2014).

20. Zhiwei, D., Runpu, Y. & Chen, J. Study on methods for improving the milling process of sintered NdFeB. *Adv. Mater. Chem.* **6**, 20-25 (2018).

21. Nagarajan, N. Earth's magnetic field and its wandering magnetic poles. *Resonance* **25**, 363-379 (2020).
22. Wilkins, G. A. Report of general discussions at IAU symposium No. 78 on nutation and the earth's rotation. *Proc. Int. Astron. Union* **78**, 247-250 (1980).

23. Ralph, D. C. & Stiles, M. D. Spin transfer torques. *J. Magn. Magn. Mater.* **320**, 1190-1216 (2007).

24. Singh, K. M. & Singh, K. P. The fifth force: an enigma in this Universe. *Mod. Phys. Lett. A* **34**, 1950056 (2019).

25. Rújula, A. D. Fundamental forces: are there more than four? *Nature* **323**, 760-761 (1986).

26. Urban, N., Meyer, A., Keller, V. & Franke, J. Contribution of additive manufacturing of rare earth material to the increase in performance and resource efficiency of permanent magnets. *Appl. Mech. Mater.* **882**, 135-141 (2018).

27. Li, W. Editorial for the special issue on rare earth permanent magnets. *Engineering* **6**, 101 (2020).

28. Dudley, D. W. & Bonfiglioli, R. S. P. A. *Gear Motor Handbook* (Springer Berlin Heidelberg, Cham, 1995).

29. Qi, M. I. N., Sun, Q. & Qiao, D. H. *Multi-Mode High-Efficiency PWM AC/DC Controller Design* (DEStech Transactions on Computer Science and Engineering, 2018).

30. Homma, M. & Sugimoto, S. Advances in magnetic materials over the last decade. *Mater. Jpn.* **36**, 946-949 (1997).

31. Matsuura, Y. Recent development of Nd–Fe–B sintered magnets and their applications. *J. Magn. Magn. Mater.* **303**, 344-347 (2006).

32. Haberer, J. P. & Lemaire, H. The physics and the technology of rare earth permanent magnets. *J. Phys. Colloq.* **40**, C5-C273 (1979).

33. Nakamura, H. The current and future status of rare earth permanent magnets. *Scr. Mater.* **154**, 273-276 (2018).

34. Zhang, Y., Leng, Y., Tan, D. & Liu, J. Study on magnetic force calculation of spherical permanent magnets. *J. Magn.* **23**, 654-658 (2018).

35. Zhong, J., Zhong, S., Zhang, Q. & Peng, Z. Measurement of instantaneous rotational speed using double-sine-varying-density fringe pattern. *Mech. Syst. Signal Process.* **103**, 117-130 (2018).

36. McCarthy, D. D. Polar motion and earth rotation. *Rev. Geophys.* **17**, 1397-1403 (1979).

37. Boldrin, L. A. G., Araujo, R. A. N. & Winter, O. C. On the rotational motion of NEAs during close encounters with the Earth. *Eur. Phys. J. Spec. Top.* **229**, 1391-1403 (2020).

38. Bejancu, A. & Farran, H. R. A new point of view on the fifth force in 4D physics. *Gen. Relativ. Gravit.* **45**, 449-463 (2013).

Tables
Table 1
Shows the distance r_1 that causes M_1 to start rotating as resting M_1 slowly approaches S_1 from far to near in the same plane due to the following rotation speeds of S_1

Motor-driven magnet	S_1 (rpm)	Rotating magnet	M_1 (rpm)	r_1 (cm)
S_1	30	M_1	30	42
S_1	90	M_1	90	39
S_1	120	M_1	120	36
S_1	240	M_1	240	25
S_1	480	M_1	480	15
S_1	600	M_1	600	10

Table 2
Shows the distance r_2 that causes M_1 to continue to rotate as the rotating M_1 slowly moves away from S_1 from near to far in the same plane due to the following rotational speeds of S_1

Motor-driven magnet	S_1 (rpm)	Rotating magnet	M_1 (rpm)	r_2 (cm)
S_1	30	M_1	30	42
S_1	90	M_1	90	60
S_1	120	M_1	120	52
S_1	240	M_1	240	38
S_1	480	M_1	480	30
S_1	600	M_1	600	25

Figures
Figure 1

Experimental device for observing the rotation of permanent magnets10

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Movie1.mp4
- Movie2.mp4
- Movie3.mp4
- Movie4.mp4
- Movie5.mp4
- Movie6.mp4