Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Graphene vs. silica coated refractory nitrides based core-shell nanoparticles for nanoplasmonic sensing

Alok Singh, Manmohan Singh Shishodia

Department of Applied Physics, Gautam Buddha University, Greater Noida, 201312, India

ARTICLE INFO

Keywords:
- Core-shell
- Nanoparticle
- Plasmonic sensor
- Biosensor
- Mie scattering theory
- Refractory nitride
- Graphene

ABSTRACT

Plasmonic nanoparticles based on conventional metals like gold (Au) and silver (Ag) has attracted significant attention of biosensor researchers. Core-shell nanoparticles (CSNP) have shown specific advantages by virtue of unique combination of strong field enhancement and wide ranging spectral tuneability of localized surface plasmon resonances (LSPR). In view of the remarkable plasmonic properties of refractory nitrides (e.g., ZrN and TiN) like higher degree of spectral tuneability, growth compatibility, high melting point, inherent CMOS and biocompatibility etc., and reported high surface area, excellent bio-molecular compatibility, improvement in the speed, higher sensitivity in graphene, the present work assess the feasibility of graphene coated refractory nitrides based CSNP as an efficient refractive index sensor. Mie theory is employed for the theoretical analysis and simulation of such plasmonic structures. The results reported in the present work have been corroborated using COMSOL. The comparison of plasmonic properties and sensing characteristics e.g., FWHM, quality factor, sensitivity and figure of merit is presented for graphene and silica based sensors. It is reported that the sensitivity = 171.68 (nm/RIU) and figure of merit ≈ 3.57 × 10^4 (nm/RIU) can be attained. The present work suggests that graphene coated refractory nitrides based core-shell structures may emerge as ultrasensitive biosensor.

1. Introduction

In the backdrop of the fast growing world population, the need of developing efficient healthcare systems and devices is at its peak [1,2]. In turn, it is therefore mandatory to explore the possibility and scope for developing efficient, long lasting, economical and practically feasible solutions to the existing as well as future medical challenges posing threat to the existence of humanity like the pandemic spread of COVID-19. Plasmonic systems and devices exploiting unique features of hybrid quanta known as surface plasmons are emerging as the backbone of medical diagnostics e.g., large efforts of physicists, chemists, biologists, material scientists etc. are focused on the development of ultrasensitive plasmonic detectors for biosensing applications [3,4]. For the sake of completeness, this is to be emphasized that the plasmonic systems based on both, the propagating surface plasmons as well as localized surface plasmons are being investigated and considered for their applications in optoelectronic integration, light harvesting, energy transfer, cancer therapy, food safety, environmental monitoring, surface enhanced Raman spectroscopy (SERS) etc. [5–13]. As far as localized surface plasmon resonance (LSPR) based sensing is concerned, gold (Au) has been the most widely used conventional plasmonic material for theoretical exploration and experimental investigations. Since long, the plasmonics has been suffering from the limited number of plasmonic materials, resulting in the underutilized potential of plasmonics. In order to expand the domain of plasmonics, it is obligatory to expand the list of plasmonic materials beyond conventional plasmonic materials e.g., gold, silver, copper etc. Refractory nitrides such as TiN and ZrN has recently been explored for their applications in biosensing [5]. Moreover, graphene coated nanoparticles have also emerged as effective plasmonic systems based on alternative plasmonic materials [14]. Due to their exceptional optical, electrical, thermal and mechanical properties, graphene and its derivatives are considered to be the promising materials for biosensing [15,16]. In order to improve the performance of nanoparticle based plasmonic sensors, it is required that the scattering efficiency increase and the line-width or full width half maximum (FWHM) of plasmonic resonances decrease. As reported in Ref. [5], this was attained using plasmonic nanoparticle structures and optical gain incorporation in the dielectric layer. Although the gain incorporation is a viable alternative, this will lead to the enhanced complexity and the cost of the sensor. Therefore, it will be of great use if one can enhance the...
sensor performance without optical gain incorporation. There are different ways to secure reduce full width at half maximum. The use of Fanomodes closely packed nanodisk clusters are among such approaches [17]. Obviously, the sensitivity and other sensing characteristics also depend on the choice of material, size, shape and the nature of embedding medium. The graphene layer can be combined with the conventional plasmonic nanostructures to improve the interaction between the graphene and the incident electromagnetic radiation. These reports and literature survey suggests that the use of graphene coated nanoparticles are extremely advantageous for sensing applications [18, 19]. Graphene can also be placed in different kinds of optical micro-cavities [20]. Also, the patterned periodic graphene islands improve the plasmonic interactions and effects significantly [21]. Since the successful isolation and first characterization of graphene in 2004, there has been the quest to explore the applications of graphene in energy harvesting, display panels, solar cells, sensing etc. [22–29]. Graphene shows fairly good plasmonic response MIR and FIR spectral region. A large volume of efforts are focused on increasing the light absorption using graphene. For example, it has been shown that the light absorption can be enhanced by placing a graphene layer in nanocavities. By integrating the graphene with metal gratings, and photonic crystal cavity, enhancement ~70%, and 85%, respectively has been reported [30, 31]. Increasing the graphene absorption normally results in narrower absorption peaks and thus higher figure of merit of the sensor. In Ref. [32], graphene is used as a spacer between the Au film and Au nanoparticles to obtain larger FOM relative to that one without graphene spacer. Furthermore, the size and geometry of the nanoparticle are another two main parameters that affect the sensitivity and the FOM of a LSPR sensor [7–14]. There are many reported LSPR sensors with different nanoparticle shapes e.g., spherical [33,34], nanocube [22], nanoprisms, nanopyramid [34], nanoring [35], and nanobelts [36]. Recently [37], proposed a temperature sensor using ternary structure in which one of the layers is superconducting material where the sensitivity of 31.18 nm/K has been reported. Photonic crystals have also been used for sensing devices in biomedical applications. Ramanujam et.al. proposed RI sensor for cancer and, 43 nm/RIU sensitivity was reported [38]. In view of the remarkable plasmonic properties of refractory nitrdes (e.g., ZrN and TiN) like higher degree of spectral tuneability, growth compatibility, high melting point, inherent CMOS and biocompatibility etc. [5], and reported high surface area, excellent bio-molecular compatibility, improvement in the speed, higher sensitivity in graphene, the present work assess the feasibility of graphene coated refractory nitrides based CSNP as an efficient refractive index sensor. Mie theory is employed for the theoretical analysis and simulation of such plasmonic structures. The results reported in the present work have been corroborated using COMSOL. The comparison of plasmonic properties and sensing characteristics e.g., FWHM, quality factor, sensitivity and figure of merit is presented for graphene and silica based sensors. Specially, the case of sensing blood with different plasma concentrations is taken as an example for demonstration.

The objective of the present article is to: (I). estimate the sensing characteristics of ZrN (core)-graphene (shell) and TiN (core)-graphene (shell) structure, (II). estimate the sensing characteristics of ZrN (core)-silica (shell) and TiN (core)-silica (shell) structure, (III). compare sensing characteristics of graphene assisted structure with silica assisted structure, (IV). investigate the role of aspect ratio (r1/r2) on sensing characteristics, (V). establish the dependence of sensing characteristics on aspect ratio through fitting equations, perceived to be of key importance for developing appropriate designs, (VI). propose different design strategies for obtaining improved sensor performance.

The manuscript is organized as follows. Section II describes the theoretical description, giving simple details of the theory. Section-III presents the results of our investigations. The concluding remarks are given in Sec. IV.

![Fig. 1. The schematic diagram of representative core-shell nanoparticle (CSNP) based plasmonic sensor. The structure consists of transition metal nitride (e.g., TiN, ZrN) core (permittivity ε1 and radius r1), and graphene or SiO2 shell (permittivity ε2, radius r2 and thickness d). The core-shell nanoparticle system is surrounded by the sensing medium (dielectric constant, ε3 and refractive index, n).](image-url)
Fig. 2. The variation of real (Re(n)) and imaginary (Im(n)) parts (solid line) of the refractive index of graphene as a function of chemical potential (μ_c). Evidently, the calculated data (solid line) shows an excellent agreement with that reported in Ref. 40. Other parameters are: $d = 0.34$-nm, $T = 300$ K.

$$B_n = m_1\psi_1(m_1x_1)\psi_1'(m_1x_1) - m_1\psi_1'(m_1x_1)\psi_1(m_1x_1)$$

$$m_2\psi_2(m_1x_1)\psi_2'(m_1x_1) - m_2\psi_2'(m_1x_1)\psi_2(m_1x_1)$$

where, m_1 and m_2 are the refractive indices of core and the shell relative to the surrounding medium. Also, $x_1 = kr_1$ and $x_2 = kr_2$ are size parameter and, $\psi_n(x) = x\psi_n(x)$ is the Riccati-Bessel function of first kind and, $\psi_n'(x) = x\psi_n'(x)$ denotes the Hankel function of second kind. For the nanoparticle under consideration, Q_{abs} is calculated using Eq. (1). The approach used here is versatile as it can be used for the variety of nanoparticle systems and can be easily extended to different spectral regions and also to different material systems.

3. Results and discussion

In this section, results of our investigations concerning design considerations for graphene/SiO$_2$ coated ZrN/TiN based plasmonic structure as shown in Fig. 1 are presented. The thickness dependent optical response of graphene is considered using Kubo’s formula [27,30]. The conductivity (σ) of an infinitesimal thin graphene sheet depends on the frequency of interacting light, and the surface conductivity is the sum of intra-conductivity (σ_{intra}) and inter-conductivity (σ_{inter}), described as follows [39,40]:

$$\sigma_{intra} = \frac{ie^2k_B T}{\pi h (\omega + i/\tau)} \left(\frac{\mu_c}{k_B T} + 2 \ln \left(e^{\frac{\mu_c}{k_B T}} + 1 \right) \right) \quad (6)$$

$$\sigma_{inter} = \frac{ie^2}{4\pi h} \ln \left(\frac{2\mu_c - (\omega + i/\tau)h}{2\mu_c + (\omega + i/\tau)h} \right) \quad (7)$$

Here, ω is the frequency of incident radiation, μ_c is the chemical potential [31], τ is the relaxation time ($\tau^{-1} \leq 1.0$ meV), T is the temperature, and h is the reduced Planck’s constant. The thickness (d) dependent relative permittivity of graphene expressed as [42],

$$\varepsilon_g = 1 + i\varepsilon/\varepsilon_\infty d \quad (8)$$

Fig. 2 shows the variation of real and imaginary parts of the refractive index of graphene as a function of chemical potential (μ_c) for graphene thickness = 0.34 nm. The calculations are performed at a fixed wavelength, $\lambda = 1550$-nm and constant temperature, T. The validity of calculated (solid line) graphene data is corroborated by its comparison with the data reported in Ref. 40 (open circles). It is clearly visible that, the real and imaginary parts of graphene refractive index crosses each other at, $\mu_c = 0.5$ eV, which is referred to as the epsilon-near-zero point (ENZ) point. Epsilon-near-zero point refers to the point above which graphene shows metallic behavior. The high confinement of optical plasmonic modes to the graphene ensures high light–matter interaction that enhance nonlinear optical processes [41]. The calculated data (solid line) shows an excellent agreement with that reported in Ref. [40] (open circles). The spectral variation of real (ε_r) and imaginary (ε_r'') parts of the dielectric function of graphene for different chemical potential values ($\mu_c = 0.46, 0.48$ and 0.50 eV) is presented in Fig. 3 (a, and b), respectively (solid lines). Also shown is the corresponding data (open circles) from Ref. [42]. The excellent agreement between present data and that from literature validates the use of present data for further analysis. The spectral variation of the real and imaginary part of graphene for different graphene thicknesses (d_c=1.0 and 1.2 nm) is shown in Fig. 4. Also shown is the variation of corresponding real and imaginary part of the refractive index. For the sake of enhanced clarity and readability, the data in wavelength as well as energy terms is plotted. The calculations are performed at chemical potential, $\mu_c = 1.0$ eV and temperature, $T = 300$ K.

The Mie scattering theory calculated (solid lines) spectral variation of scattering efficiency of optimized CSNP (30, 32.5) for TiN/ZrN core and graphene shell is presented in Fig. 5. The shell here is taken as the graphene layer of thickness 2.5 nm. For the sake of validation of these
calculations, Mie theory results (solid line) have also been compared with the results obtained from FEM solver COMSOL (open circle). An excellent agreement between Mie theory and COMSOL calculations is evident. The system is embedded in the medium of refractive index, \(n = 1.417\). Here \(\mu_0 = 1.0\) eV and \(T = 300\) K.

Fig. 4. The spectral variation of real (a), and imaginary (b) parts of dielectric function and complex refractive indices at \(\mu_0 = 1.0\) eV, for different graphene thicknesses (d\(_c\)=1.0 and 1.2 nm). For the sake of enhanced clarity and readability, the data in wavelength as well as energy terms is plotted. Other parameters are: \(T = 300\) K.

For the sake of validation of our calculations, Mie theory results (solid line) have also been compared with the results obtained from FEM solver COMSOL (open circle). An excellent agreement between Mie theory and COMSOL calculations is evident. The system is considered to be embedded in the medium of refractive index, \(n = 1.339\). This is found that the resonance peaks in scattering efficiency spectra can be fitted into the Lorentzian expression

\[
Q = Q_0 + \frac{A \lambda}{\lambda - \lambda_R^2 + \frac{i}{2} \Delta \lambda}
\]

where, \(Q_0, A, \lambda_R, \) and \(\Delta \lambda\), represents the baseline shift, the area under the curve, FWHM, and resonance wavelength, respectively. The data fitted into the Lorentzian distribution is also shown (open circles). The values of \(w\) (nm) and \(\lambda_0\) (nm) obtained from fitting are (100.46, 642.99), (46.78, 537.63), (8.55, 1152.13), and (5.32, 1150.70) for TiN/SiO\(_2\), ZrN/SiO\(_2\), TiN/Graphene, and ZrN/Graphene, respectively. The comparison of sensing characteristics e.g., peak scattering efficiency (\(Q_{\text{scat}}\)), peak wavelength (\(\lambda_R\)), FWHM, sensitivity (S), quality factor (QF) and figure of merit (FOM) for TiN/SiO\(_2\), TiN-Graphene, ZrN/SiO\(_2\), and ZrN-Graphene CSNP (30, 32.5) is summarized in Table 1. The system is considered to be embedded in the defected blood having different plasma concentrations. Table 2 shows the comparison of performance parameters between similar recent research and the present work.

Next, consider a practical example, where sensing medium is the defected blood containing different concentrations of plasma. The dependence of refractive index of blood with plasma concentration \(C_p\) is described by the following expression [38],

\[
n = 1.32459 + \frac{0.001942C_p}{n + 1.0 - 1.32459}
\]

where, 1.32459 corresponds to the refractive index of blood with \(C_p = 0\) and \(C_p\) is the plasma concentration in blood and it is measured in the units of g/l. In present calculations, \(C_p\) varies from 0 g/l to 50 g/l in the steps of 10 g/l and its corresponding refractive index (n) is calculated. The variation of resonance wavelength (\(\lambda_R\)) with the refractive index (n) of the defected plasma in blood compound (surrounding medium), \(n = 1.339, 1.359, 1.378, 1.397, 1.417\), is shown in Fig. 8 for, (a). TiN/SiO\(_2\), ZrN/SiO\(_2\), TiN/Graphene, and ZrN/Graphene, respectively. The comparison of sensing characteristics e.g., peak scattering efficiency (\(Q_{\text{scat}}\)), peak wavelength (\(\lambda_R\)), FWHM, sensitivity (S), quality factor (QF) and figure of merit (FOM) for TiN/SiO\(_2\), TiN-Graphene, ZrN/SiO\(_2\), and ZrN-Graphene CSNP (30, 32.5) is summarized in Table 1. The system is considered to be embedded in the defected blood having different plasma concentrations. Table 2 shows the comparison of performance parameters between similar recent research and the present work.

Next, consider a practical example, where sensing medium is the defected blood containing different concentrations of plasma. The dependence of refractive index of blood with plasma concentration \(C_p\) is described by the following expression [38],

\[
n = 1.32459 + \frac{0.001942C_p}{n + 1.0 - 1.32459}
\]

and 1163.2 nm for TiN and ZrN, respectively. The calculated spectral variation of scattering efficiency for SiO\(_2\)/graphene coated core-shell nanoparticle, CSNP (30, 32.5) consisting of TiN and ZrN core is shown in Fig. 7(a–b) (solid lines). The particle is considered to be surrounded by the medium of refractive index, \(n = 1.339\). This is found that the resonance peaks in scattering efficiency spectra can be fitted into the Lorentzian expression

\[
Q = Q_0 + \frac{A \lambda}{\lambda - \lambda_R^2 + \frac{i}{2} \Delta \lambda}
\]

where, \(Q_0, A, \lambda_R, \) and \(\Delta \lambda\), represents the baseline shift, the area under the curve, FWHM, and resonance wavelength, respectively. The data fitted into the Lorentzian distribution is also shown (open circles). The values of \(w\) (nm) and \(\lambda_0\) (nm) obtained from fitting are (100.46, 642.99), (46.78, 537.63), (8.55, 1152.13), and (5.32, 1150.70) for TiN/SiO\(_2\), ZrN/SiO\(_2\), TiN/Graphene, and ZrN/Graphene, respectively. The comparison of sensing characteristics e.g., peak scattering efficiency (\(Q_{\text{scat}}\)), peak wavelength (\(\lambda_R\)), FWHM, sensitivity (S), quality factor (QF) and figure of merit (FOM) for TiN/SiO\(_2\), TiN-Graphene, ZrN/SiO\(_2\), and ZrN-Graphene CSNP (30, 32.5) is summarized in Table 1. The system is considered to be embedded in the defected blood having different plasma concentrations. Table 2 shows the comparison of performance parameters between similar recent research and the present work.
The results suggest that λ_R is a very sensitive function of the refractive index of surrounding medium. Next, we focus on estimating the sensitivity (S), which is defined as the rate of change of the peak wavelength with the refractive index, and the same is mathematically written as, $S = \frac{d\lambda}{dn}$. The quality factor of plasmonic resonance is defined as $QF = \frac{\lambda_R}{FWHM}$, where λ_R denotes the resonance wavelength in the scattering efficiency spectra. The sensor figure of merit (FOM) is defined as the product of sensitivity (S) and the quality factor (QF), viz. $FOM = S \times QF$.

The effect of aspect ratio (r_1/r_2) on resonance wavelength (λ_R), quality factor (QF), sensitivity (S) and figure of merit (FOM) for TiN/SiO$_2$ and ZrN/SiO$_2$ core-shell nanoparticles are shown in Fig. 9 (a–d). All these variations are also fitted (into polynomial) and the fitted data is shown through circles. Similarly, the effect of aspect ratio (r_1/r_2) on resonance wavelength (λ_R), quality factor (QF), sensitivity (S) and figure of merit (FOM) for TiN/Graphene and ZrN/Graphene core-shell nanoparticle is shown in Fig. 9 (e–h). All these variations are also fitted and the fitted data is shown as circles. Unless mentioned otherwise, $\mu_c = 1.0$ eV, and $T = 300$-K for all calculations. This is observed that λ_R vs. aspect ratio (r_1/r_2) follow straight line for SiO$_2$ as well as graphene shell. The variation of QF with aspect ratio follows straight line (first order polynomial) for SiO$_2$ shell while for graphene, the variation is quadratic (second order polynomial). Also, in case of SiO$_2$ shell, the QF increase with aspect ratio, while for graphene shell, QF increase with aspect ratio. Interestingly, it can be seen that the variation of S with aspect ratio is quadratic.

![Graphene](image1.png)

![Graphene](image2.png)

Fig. 6. The calculated maps in Y-Z plane for the norm of the electric field normalized to the incoming electric field, $|E_{tot}/E_{inc}|$ for TiN-Graphene, and ZrN-Graphene core-shell nanoparticle (CSNP). For these calculations, $r_1 = 30$ nm and $r_2 = 32.5$ nm and the CSNP is labeled as CSNP (30, 32.5), where the first and the second index refers to the core and shell radius (in nm), respectively. The calculations are performed at the peak wavelengths, which are 1166.0 nm and 1163.2 nm for TiN and ZrN, respectively at $\mu_c = 1$ eV. Other parameters are same as in Fig. 5.

Fig. 7. Lorentzian fitting for resonance peaks for (a). TiN–SiO$_2$ and ZrN–SiO$_2$ with SiO$_2$ thickness, $d = 2.5$-nm, (b). TiN-Graphene and ZrN-Graphene with graphene thickness, $d = 2.5$-nm. Also shown is the FWHM for the surrounding medium with the refractive index of defected plasma in blood compound as surrounding medium is 1.339. Here, core-shell nanoparticle dimensions are (30, 32.5) at $\mu_c = 1$ eV.

Table 1
The comparison of sensing performance parameters for CSNP (30, 32.5) (based on TiN and ZrN). The system is considered to be embedded in the defected blood having 10 g/l plasma concentration.

Core-Shell nanoparticle, $r_1 = 30$ nm and $r_2 = 32.5$ nm, $\varepsilon_2 = 1.339$	Material	TiN-SiO$_2$	TiN-Graphene	ZrN-SiO$_2$	ZrN-Graphene
λ_R (nm)	642.99	1152.13	537.63	1150.17	
Q_{res}	0.50	11.52	4.30	27.92	
FWHM(nm)	100.46	8.55	46.78	5.32	
S (nm/RIU)	108.64	137.26	114.99	215.95	
FOM (nm/RIU)	6.9×10^2	2.31×10^4	1.57×10^3	3.57×10^4	

Table 2
The comparison of the sensitivity between similar recent works and this work.

Sr. No.	References	Sensitivity (nm/RIU)
1	H. Y. Lin, C. H. Huang, G. L. Cheng et al. [45].	51.0
2	H. J. El-Khouzondar, P. Mahalakshmi, R. J. El-Khouzondar et al. [38].	51.5
3	Y. Wang, F. Q. Pu, Y. J. Gu, P. Xue et al. [47].	71.0
4	P. Pathania, and M. S. Shishodia [39].	77.9
5	In This Work	171.6

The results suggest that λ_R is a very sensitive function of the refractive index of surrounding medium. Next, we focus on estimating the sensitivity (S), which is defined as the rate of change of the peak wavelength with the refractive index, and the same is mathematically written as, $S = \frac{d\lambda}{dn}$. The quality factor of plasmonic resonance is defined as $QF = \frac{\lambda_R}{FWHM}$, where λ_R denotes the resonance wavelength in the scattering efficiency spectra. The sensor figure of merit (FOM) is defined as the product of sensitivity (S) and the quality factor (QF), viz. $FOM = S \times QF$. The effect of aspect ratio (r_1/r_2) on resonance wavelength (λ_R), quality factor (QF), sensitivity (S) and figure of merit (FOM) for TiN/SiO$_2$ and ZrN/SiO$_2$ core-shell nanoparticles are shown in Fig. 9(a–d). All these variations are also fitted (into polynomial) and the fitted data is shown through circles. Similarly, the effect of aspect ratio (r_1/r_2) on resonance wavelength (λ_R), quality factor (QF), sensitivity (S) and figure of merit (FOM) for TiN/Graphene and ZrN/Graphene core-shell nanoparticle is shown in Fig. 9(e–h). All these variations are also fitted and the fitted data is shown as circles. Unless mentioned otherwise, $\mu_c = 1.0$ eV, and $T = 300$-K for all calculations. This is observed that λ_R vs. aspect ratio (r_1/r_2) follow straight line for SiO$_2$ as well as graphene shell. The variation of QF with aspect ratio follows straight line (first order polynomial) for SiO$_2$ shell while for graphene, the variation is quadratic (second order polynomial). Also, in case of SiO$_2$ shell, the QF decrease with aspect ratio, while for graphene shell, QF increase with aspect ratio. Interestingly, it can be seen that the variation of S with aspect ratio is quadratic.
for both, SiO$_2$ as well as graphene shell. However, the dependence in two cases is opposite. In SiO$_2$ shell, S increase with aspect ratio and decrease with aspect ratio for graphene shell. Similar variation can be seen for FOM also. It is observed that the graphene assisted core-shell nanoparticle structure produces higher sensitivity (S) and figure of merit (FOM). Also it is evident that ZrN core produces higher sensitivity in case of SiO$_2$ shell and it is nearly equal in case of graphene shell. Moreover, higher FOM is obtained for ZrN core compared to TiN shell. The fitting parameters for TiN/SiO$_2$, ZrN/SiO$_2$, TiN/Graphene and ZrN/Graphene core-shell nanoparticles. These are fitted into the polynomial, $y = a_0 + a_1x + a_2x^2$, where y represents λ_R, QF, S and FOM is summarized in Table 3. In summary, ZrN core shows clear advantage compared to TiN core for SiO$_2$ shell. Graphene assisted CSNP shows clear edge over dielectric shell such as SiO$_2$. The analysis suggests that compared to dielectric shell, better sensing characteristics can be obtained for graphene coated structure. The following conclusions can be drawn: (I). resonance wavelength can be fine tuned by controlling aspect ratio, (II). aspect ratio can be optimized to obtain best sensitivity or FOM, (III). graphene coated CSNP produces higher sensitivity and FOM compared to that of dielectric coated CSNP, (IV). ZrN exhibit sensing characteristics superior than that of TiN, (V). sensing characteristics are more sensitive to the graphene thickness compared to the case of dielectric.

Fig. 8. Calculated dependence of the resonant wavelength (λ_R) on the refractive index (n) of the surrounding medium for (a). TiN–SiO$_2$ and ZrN–SiO$_2$ with SiO$_2$ thickness, $d_{SiO2} = 2.5$ nm, and (b). TiN-Graphene and ZrN-Graphene with graphene thickness $d_G = 2.5$ nm. The calculations are done at five different blood plasma concentrations, 10 g/l, 20 g/l, 30 g/l, 40 g/l and 50 g/l. Other parameters are: $r_1 = 30$ nm, $r_2 = 32.5$ nm. The sensitivity is simply the slope of these lines.

Fig. 9. Calculated (solid line) variation of λ_R, QF, S and FOM for (a–d). TiN/SiO$_2$ and ZrN/SiO$_2$ CSNP as a function of aspect ratio (r_1/r_2). Also shown is the polynomial fitting (circles), (e–h). TiN/Graphene and ZrN/Graphene CSNP as a function of aspect ratio (r_1/r_2). Also shown is the polynomial fitting (circles). The refractive index of embedding medium is 1.339 and $T = 300$ K.

Table 3

	TiN–SiO$_2$	ZrN–SiO$_2$	TiN-Graphene	ZrN-Graphene
λ_R (nm)	$a_0 = 8.2E2$	$-2.1E2$	$6.4E3$	$6.4E3$
	$a_1 = -1.9E2$	$7.3E2$	$-5.7E3$	$-5.7E3$
QF	$a_0 = 8.22$	8.15	$8.4E4$	$10.6E4$
	$a_1 = -1.95$	3.74	$-1.8E5$	$-2.2E5$
S (nm/RIU)	$a_0 = -1.2E2$	$-1.5E2$	$1.6E4$	$1.7E4$
	$a_1 = 3.8E2$	$5.2E2$	$-3.2E4$	$-3.4E4$
FOM (nm/RIU)	$a_0 = -1.4E2$	$-2.2E4$	$1.5E4$	$1.6E4$
	$a_1 = 1.9E3$	$1.2E5$	$-3.4E5$	$-3.6E5$
	$a_0 = 3E3$	$6.2E3$	$-2.2E6$	$-3.4E6$
	$a_1 = -1.3E3$	$-2.5E3$	$1.0E6$	$1.5E6$
4. Conclusions

In conclusion, TiN–SiO₂, ZrN–SiO₂, TiN–Graphene and ZrN–Graphene-based core-shell nanoparticle systems are assessed for their suitability as plasmonic sensors. The analysis suggests that, (I), resonance wavelength can be fine tuned by controlling aspect ratio, (II). aspect ratio can be optimized to obtain best sensitivity or FOM, (III), graphene coated CSNP produces higher sensitivity and FOM compared to that of dielectric coated CSNP, (IV), ZrN exhibit sensing characteristics superior than that of TiN, (V), sensing characteristics are more sensitive to the graphene thickness compared to the case of dielectric. Moreover, refractory nitrides like TiN, and ZrN can serve as alternative plasmonic materials. The sensitivity of graphene assisted sensors can be significantly enhanced without gain incorporation and hence maintaining the simplicity of the system.

Data availability statement

All data generated or analysed during this study are included in this published article.

Acknowledgements

MSS gratefully acknowledge Science & Engineering Research Board, DST, India for providing financial support through Grant No. CRG/2019/006912. Authors acknowledge Dr. Saurabh Mani Tripathi (IIT Kanpur, India) for providing access to COMSOL.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.physb.2020.114288.

References

[1] J.W. Vauapel, Biodemography of human ageing, Nature 464 (2010) 536.
[2] A. Angelopoulos, N.G. Bourbakis, Prognosis—a wearable health-monitoring system for people at risk: methodology and modeling, IEEE Trans. Inf. Technol. Biomed. 14 (2010) 613.
[3] A. Loiseau, V. Atila, G.B. Aullen, M. Lam, M. Salmoin, S. Boujday, Silver-based plasmonic nanoparticles for and their use in biosensing, Biosensors 9 (2019) 78.
[4] A. Tricoli, N. Nasiri, S. De, Wearable and miniaturized sensor technologies for personalized and preventive medicine, Adv. Funct. Mater. 27 (2017) 1605271.
[5] M.S. Shishodia, P. Pathania, Estimation of sensing characteristics for refractory nitrides based gain assisted core-shell plasmonic nanoparticles, Phys. Plasmas 25 (2018), 042101.
[6] M.S. Shishodia, A.G.U. Perera, Heterojunctionplasmonicmidinfrared detectors, Photonics Nanostructures: Fundam. Appl. 9 (2011) 95.
[7] H. Huang, S. Su, N. Wu, H. Wan, S. Wan, H. Bi, L. Sun, Graphene-based sensors for human health monitoring, Front. Chem. 7 (2019).
[8] M.S. Shishodia, S. Juneja, Localized surface plasmon resonance due to electromagnetic coupling between graphene and Au nanoparticles, Optic Express 20 (2012) 19690.
[9] E. Comini, G. Faglia, G. Shervelgiri, Z. Pan, Z.L. Wang, Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts, Appl. Phys. Lett. 81 (2002) 1869.
[10] M. Sovizianand M. Alamnehadi, Design and simulation of high-sensitivity refractometric sensors based on defect modes in one-dimensional ternary dispersive photonic crystal, J. Opt. Soc. Am. B 36 (2019) 3430.
[11] H.J. El-Khronzad, P. Mahalachkini, R.I. El-Khronzad, N.B. Ramakumaj, J.S. Amiri, P. Yapunin, Design of one dimensional refractive index sensor using ternary photonic crystal waveguide for plasma blood samples applications, Physica E: Low-Dimensional Systems and Nanostructures 141 (2021) 114352.
[12] P. Pathania, M.S. Shishodia, Gain-Assisted transition metal ternary nitrides (Ti–ZrN) core–shell based sensing of waterborne bacteria in drinking water, Plasmonics 14 (2019) 1435.
[13] M.K. Shah, R. Lu, Y. Zhang, S. Ye, S. Zhang, Y. Liu, Theoretical investigation of intensity-dependent optical nonlinearity in graphene-aided D-microfiber, Optik Commun. 55 (2018).
[14] H. Yu, P. Feng, Y. Yang, Z.Y. Li, “Plasmon-enhanced light–matter interactions and applications”, NPJ Comput. Mater. 5 (2019) 45.
[15] B. Liu, C. Tang, J. Chen, M. Zhu, M. Pei, X. Zhu, Electrically tunable fano resonance from the coupling between interband transition in monolayer graphene and magnetic dipole in metallics, Sci. Rep. 7 (2017) 17117.
[16] H.Y. Lin, C.H. Huang, G.L. Cheng, N.K. Chen, H.C. Chui, Tapered optical fiber sensor based on localized surface plasmon resonance, Optic Express 20 (2012) 21701.
[17] Y. Wang, F.Q. Pu, Y.J. Gu, P. Xu, X.H. Ning, S.P. Xu, B. Zhao, W.Q. Xu, Preparation of localized surface plasmon resonance sensing film with gold colloids by electrostatic assembly, Chem. J. Chin. Univ. 29 (2010) 1543.