Pharmacists as Immunizers in Lebanon: A National Survey of Community Pharmacists’ Willingness and Readiness to Administer Adult Immunization

Dalal Youssef (dalalyoussef.esu@gmail.com)
Ministry of Public Health, Lebanon

Linda Abou Abbas
Ministry of Public Health, Lebanon

Suzan Farhat
Lebanese University

Hamad Hassan
Ministry of Public Health, Lebanon

Keywords: Community Pharmacists, Immunization, Willingness, Readiness, Lebanon.

Posted Date: July 28th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-757591/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background: Since the focus of healthcare has shifted toward prevention, pharmacists were highly encouraged to expand their practice to include immunization services. Our study aimed to assess the knowledge, attitudes and beliefs of community-based Lebanese pharmacists, in addition to their willingness to expand their practice scope to include vaccine administration.

Methods: A cross-sectional study was conducted during the phase preceding the arrival of the COVID-19 vaccine in Lebanon between 1st and 31st December 2020. Data were collected from Lebanese pharmacists through an online survey that included information on socio-demographic characteristics, clinical experience, willingness to administer vaccines, knowledge about vaccination, attitudes towards immunization, reasons supporting utilizing pharmacists as immunizers and the requested elements to incorporate immunization in pharmacists’ practice scope. Knowledge and attitude scores were computed. Participants’ overall knowledge and overall attitude were categorized using modified Bloom’s cut-off point as good if the score was equal or more than 60%, and poor if the score was less than 60%.

Results: A total of 412 community pharmacists participated in this survey. Of the total, 66.5% of the surveyed community pharmacists are willing to administer vaccines. The majority of surveyed pharmacists (96.1%) had an overall good level. Out of all, 92.7% showed a positive overall attitude score toward immunization, 95.4% agreed that community pharmacists can play an important role in advertising and promoting vaccination. The main needed elements for implementing immunization services in pharmacies listed by participants were: support of health authorities (99.3%), statutory allowance (82.8%), patient demand (95.4%), pharmacist’s interest (96.1%) and continuous education and training workshops on immunization.

Conclusion: Most of Lebanese community pharmacists are willing to offer immunizations. However, before any statutory reform targeting the expansion of pharmacists’ scope of practice to include provision of immunizations, it is important to consider education and training as a fundamental part of the process.

Introduction

Immunization is considered as one of the most cost-effective strategy for disease prevention [1]. Despite its known benefits, adult immunization rates worldwide fall below desired targets [2]. Many factors have been identified as barriers towards achievement of target immunization coverage rates, including general public apathy, concerns and misconceptions about the safety and efficacy of vaccines, cost, lack of access to immunizers and convenience [3]. Thus, in order to improve immunization rate, there is an urgent need to address these barriers.

Since the focus of healthcare has shifted toward prevention, pharmacists were highly encouraged to expand their practice to incorporate preventive measures including immunization [4, 5]. Besides, one of the suggested strategies to succeed in an immunization program and increase the coverage rates among
adults lies in involving pharmacists in vaccine administration [6]. This extension in the practice scope can be achieved through different ways such as starting by advocating immunization through raising awareness about the benefits of vaccine among the public, particularly pharmacy visitors, discussing the patient's immunization status and recommending vaccines during the patient's visit to the pharmacy. Lastly, pharmacists, especially community ones, can be potential immunizers by administering vaccines in their practice setting [7].

In their attempt to increase the rate of immunization, many countries have adopted the strategy of involving non-traditional immunization providers and, thus, allowing pharmacists to administer vaccines [8]. Many studies intended to highlight the positive effects of implementing vaccinations in community pharmacies. The results of these studies showed that pharmacists increase the availability of vaccinations, accelerate immunization, effectively educate patients, affect the vaccination coverage rate, prevent new cases of diseases, and by reducing the number of diseases or complications, they bring savings to the healthcare system [9-12]. Experiences in countries, who adopted the mentioned strategy such as England, Portugal, and the United States, prove the benefits of pharmacy-driven vaccination for both patients and the healthcare system [13]. Similarly, in Canada, following the implementation of vaccination administered by pharmacists, the proportion of people vaccinated in the general population has increased significantly [14].

In Lebanon, pharmacists are not legally allowed to administer vaccines at the present time. However, it is well known that Lebanese pharmacists are actively involved in raising awareness and promoting adult immunization programs. In the light of COVID-19 pandemic and the need to enroll a national vaccination plan and prior to embarking on a program expanding the scope of pharmacy practice to include the provision of immunizations, it is important to understand the intention of the Lebanese pharmacist to become an immunization provider. Such information highlights the importance of policy change and legal reform toward expanding the scope of pharmacy practice. Thus, our study aims to assess the knowledge, attitudes and beliefs of community-based Lebanese pharmacists with respect to expanding their scope of practice, in addition to their willingness to participate in vaccine administration.

Methods

Study design and population:

A cross-sectional study using an internet-based survey was conducted during the phase preceding the arrival of the COVID-19 vaccine in Lebanon between 1st and 31st December 2020. Pharmacists were electronically invited to participate. All community pharmacists working currently in pharmacy setting, and who agreed to participate in the study, were eligible for participation. Exclusion criteria included: clinical pharmacists, retired community pharmacists, those who were out of the country at the time of the survey, as well as those not practicing actually. Pharmacists who were unreachable due to change of their contact information during the time of the survey and those who refused to participate in the study were also excluded.
Questionnaire development

A 58-items questionnaire was developed and designed specifically by the authors to assess the study objectives and to cover important aspects of pharmacists as immunizers. It was drafted, piloted and modified prior to distribution. A panel of experts involving both rural and urban pharmacists provided comments on the survey design. They were asked to provide qualitative feedback on clarity, wording, interpretability and relevance. Then, the original English draft of the questionnaire was translated and adapted to the Arabic language based on standard translation guidelines [15]. The questionnaire was pre-tested among 30 community pharmacists for survey flow, functionality, readability, comprehension of instructions, and clarity. Based upon feedback from the pre-test, minor modifications regarding readability and clarity were made to the questionnaire. Furthermore, the reliability of the questionnaire was checked. The average time for filling the survey was 12 minutes. The questionnaire was self-administered and consisted of close-ended questions. It was divided into 6 domains:

1. Baseline information of participants: including age, gender, profile, educational level, clinical experience and working hours in addition to information about the pharmacy (location, opening hours...)
2. Pharmacists’ willingness to administer adult vaccines
3. Pharmacists’ knowledge about vaccination
4. Pharmacists’ specific immunization attitudes
5. Reasons supporting utilizing pharmacists as immunizers
6. Elements needed to incorporate immunization in pharmacists’ practice scope

Knowledge and attitude scores were computed. Participants’ overall knowledge and overall attitude were categorized using modified Bloom’s cut-off point as good if the score was equal or more than 60%, and poor if the score was less than 60%.

Sample size calculation

To calculate the sample size of the study, the Raosoft sample size calculator was used. Based on a total population size of 4185 community pharmacies registered with OPL, a 95% confidence level and an absolute error of 5%, a minimal sample of 352 pharmacists was required to allow adequate power for bivariate and multivariable analyses.

Data collection

An anonymous online questionnaire using a Google form was sent using WhatsApp or email to all community pharmacists. Then, pharmacists were contacted via phone call and notified about the survey and its purpose. The link of the study included a brief introduction to the background, the objective of the survey, and instructions for filling the questionnaire.

Ethical considerations
A written informed consent was obtained for each participant. They were reassured that their participation is voluntary and that they are free to withdraw at any time. In addition, all information was gathered anonymously and handled confidentially. The study design assured adequate protection of study participants, and neither included clinical data about patients nor configured itself as a clinical trial. Hence, this study was exempted from ethical approval of the ministry of Public Health.

Statistical analysis

The collected data were checked for completeness and consistency before analysis. The data were analyzed using the statistical software SPSS (Statistical Package for Social Sciences), version 22.0. A reliability analysis was done to validate each of these scores and was performed using the Cronbach’s alpha test. A coefficient of above 0.7 indicated a good internal consistency. Descriptive statistics were reported using frequency and percentages for categorical variables. Finally, the analyzed data were organized and presented in the tabular, graphical and narrative form as necessary.

Results

1. Baseline characteristics of the study participants

Table 0-1 shows the baseline characteristics of the participants. A total of 412 community pharmacists participated in this survey of which 54.9% are females. Most of them (62.4%) are aged less than 40 years old. More than half of them (55.1%) are pharmacy owners and 55.6% have a pharmacy diploma degree. With respect to their work, 43.7% of them have a work experience of more than 10 years as community pharmacist and only 23.3% have no previous experience in immunization. Regarding pharmacy distribution, the majority of pharmacists (68%) work in urban area particularly in Mount-Lebanon province (37.6%). Lastly, the majority of pharmacies where our participants work (55.30%) are opened 80 to 120 hours per week.

2. Willingness to be an immunizer:

Of the total, 66.5% of the surveyed community pharmacists are willing to administer vaccines at this time, if they were legally permitted by the legislation to administer vaccines to adults without additional trainings. The willingness to incorporate this service into their practice rises to 94.4% if the legislation was combined to an immunization program or certification program (Figure 2 & Figure 3).

3. Pharmacists self-reported knowledge

The majority of surveyed pharmacists (96.1%) had an overall good level of knowledge (≥60%) and only 3.9% of them had a poor level of knowledge (<60%). Table 0-2 illustrates the knowledge domains about vaccination. The majority of respondents were knowledgeable in different domains except the domain related to vaccine contraindications and precautions. The highest knowledge scales were shown in the general knowledge about vaccination (99.3%) and the domain specific to influenza vaccination (90.5%).
Besides, around three quarters of respondents were well informed about the storage, administration and adverse reactions of vaccines.

Table 0-3 describes pharmacists’ answers to vaccination knowledge items. Despite the good level of knowledge recorded in the domain related to the storage and administration of vaccines, only 45.4% of pharmacists were aware that inactivated vaccines may be administered at the same time or at any time before or after a live vaccine. Similarly, 45.4% of them were not knowledgeable about the fact that local adverse reaction such as pain, swelling, and redness at the injection site generally occurred within few hours of the injection, and are usually mild and self-limited.

In respect of the contraindications and precautions domains of vaccine, only 26% of participants recognized that pneumococcal vaccination is not contraindicated for asplenic patients.

4. Pharmacists’ specific immunization attitudes

Out of all, 92.7% of surveyed pharmacists showed a positive overall attitude score toward immunization. Around 90% of them considered that vaccines produce more health benefits than health risks, and that increasing the proportion of adults who receive recommended immunizations is important. However, only 20.4% of them considered that natural infection or a healthy lifestyle are effective alternatives to vaccines.

5. Reasons supporting utilizing pharmacists as immunizers

The majority of respondents (95.4%) agreed that community pharmacists can play an important role in advertising and promoting vaccination. Moreover, more than 90% of them considered that allowing pharmacists to vaccinate can reduce costs paid by patients, and that pharmacies are easily accessible to the community which will improve the overall vaccination rate among adults as they feel more comfortable. In addition, 84.7% of them agreed that pharmacists should be legally permitted to administer vaccines. However, only 50% of respondents agreed that pharmacists have received adequate teaching/training about vaccine administration during their education (Figure 3).

6. Elements needed for implementing immunization services in pharmacies

The main needed elements for implementing immunization services in pharmacies listed by participants were: support of health authorities (Ministry of Public Health and Order of Lebanese Pharmacists) (99.3%), statutory allowance (82.8%), patient demand (95.4%), pharmacist’s interest (96.1%) and continuous education and training workshops on immunization, safely administration and handling of vaccines (93.7%). Only 55.6% of participated pharmacists highlighted the need of formal certification in vaccine administration as requisite for allowing pharmacists to be immunizers.

Discussion
This study was conducted during the preparedness phase for the roll-out of COVID-19 vaccines in Lebanon. It has particular importance during the COVID-19 pandemic as pharmacists could have a responsibility to take a prominent role in combating infectious diseases and control programs in healthcare systems, in addition to their significant impact on the vaccination coverage rate. To the best of our knowledge, this is the first representative national Lebanese study aiming to explore readiness and willingness of community pharmacists to expand their practice scope into administering vaccines for adults.

The main findings in our study were that more than half of the surveyed community pharmacists are willing to start in the meantime the administration of vaccines in case they were legally permitted to do it without additional trainings. However, this willingness to incorporate this service into their practice rises to more than 90% if the legislation was combined to an education or certification program. This could be explained by the fact that despite their willingness to proceed, many pharmacists felt not well prepared, given that their education was not sufficient to begin at this time incorporating immunization services at their practice, and that formal certification should be required to do so. In this context, many pharmacist regulatory bodies have recognized the stipulation of proper immunization training prior to service provision, hence, the need of developing immunization training programs to ensure safe and effective administration of vaccines by pharmacists [16]. Such programs show their success in the Maritimes, in which 97% of pharmacists felt prepared to administer immunizations following completion [2].

In regards to community pharmacists’ knowledge, our results showed that the majority of respondents were knowledgeable in different domains except the domain related to vaccine contraindications and precautions. Good knowledge is crucial to expand the scope of practice of pharmacists as it supports them in providing adequate education to the public and, consequently, improving their performance and confidence in administrating vaccines. However, this study indicates that respondents lack the necessary knowledge of precautions and contraindications of vaccines, and those related to its administration such as the possibility of administration of inactivated vaccines at the same time or at any time before or after a live vaccine. Also, knowledge regarding the fact that local adverse reaction occurring at the injection site within few hours of administration and that are usually mild and self-limited, was not well recognized. These gaps in knowledge may need to be narrowed and underline a crucial need for strategies to educate community pharmacists about particular aspects of the contraindications and precautions of vaccines through continuing medical education, supplementary professional information, and additional patient educational materials [17]. It should be noted that a good proportion of the participants recognized the need for further education in this field.

It is notable that our results proved positive attitude toward utilization of pharmacists as immunizers. Most of pharmacists appraised the importance of their role in advertising and promoting vaccination among public. This is consistent with the findings of a study conducted in Italy that investigated KAP regarding vaccinations by community pharmacists in Italy [18]. Moreover, pharmacists believed that allowing them to vaccinate can reduce costs paid by patients and that pharmacies are easily accessible to the community which will improve the overall vaccination rate among adults as they feel more
comfortable. Our results aligned with the findings of many studies that showed that vaccination costs were less when this service was provided by pharmacists, compared to those that were physician-administered [19]. Another study showed that immunization rates against influenza were higher for individuals aged more than years old in areas where pharmacists provided vaccinations, most likely due to improved accessibility and convenience [20, 21]. Finally, increased vaccination rate will be translated by a decrease in mortality and hospitalizations rates in elderly patients; hence, reduction of the cost related to direct medical care [22, 23].

In addition, 84.7% of pharmacists agreed that they should be legally permitted to administer vaccines. This highlights the importance to focus on statutory reform to enable pharmacists to provide vaccination under the umbrella of law [24].

Since only half of respondents agreed that pharmacists have received adequate teaching/training about vaccine administration during their education, additional training for proper immunization practices is highly recommended. This should be synchronized with regulation changes anticipated by the profession and pharmacy schools to expand the scope of practice and enable pharmacist-administered vaccination.

Regarding the factors necessary for the implementation of vaccination services in community pharmacies, participants indicated that support of health authorities (Ministry of Public Health and Order of Lebanese Pharmacists), statutory allowance, patient demand, pharmacist interest and continuous education and training workshops on immunization, safely administration and handling of vaccines are needed. Consistently, many studies found similar results with respect to essential elements identified, such as legal liability and formal education [25, 26]. In respect to patient demand, CDC estimates that almost 20% of the 2010-2011 influenza adult vaccinations were administered by pharmacists [27].

Continuous education and training workshops on immunization, safely administration and handling of vaccines are recommended in addition to the formal certification in vaccine administration as requisite for allowing pharmacists to be immunizers. Furthermore, it is necessary to prepare standards as well as a legal framework for the provision of such services.

Limitations of the study

Some limitations of this study should be acknowledged. First, our study relies on community pharmacists’ self-reported information, which makes it prone to the disadvantages of desirability biases. Furthermore, this online questionnaire might have favored a selection bias since it might only allow the participation of community pharmacists who have access to online resources.

Conclusion

Most of Lebanese community pharmacists are willing to offer immunizations. However, before any statutory reform targeting the expansion of pharmacists’ scope of practice to include provision of immunizations, it is important to consider education and training as a fundamental part of the process.
Future research is needed to examine pharmacists’ perceived barriers about immunization, as well as the determinants of their willingness to administer vaccines.

Declaration

Authors’ contributions

Conception and design: D.Y, S.F, H.H and L.A.A

Analysis and interpretation of the data: D.Y and L.A.A

Drafting of the article: D.Y, S.F, H.H and L.A.A

Critical revision of the article for important intellectual content: D.Y, S.F, L.A.A and H.H

Final approval of the article: D.Y, S.F, L.A.A and H.H

Funding

No funding was received.

Availability of data and materials

Data are available from the corresponding authors upon reasonable request.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Ethical approval and consent for publication

A written informed consent was obtained from participants. They were informed that all information would be gathered anonymously and handled confidentially and that their participation is voluntary. The questionnaire was collected only in subjects who expressed consent for study participation.

This study is exempt from ethical approval in the ministry of Public Health. As individual participants cannot be identified based on the presented material, this study caused no plausible harm or stigma to participants. The study design assured adequate protection of study participants, and neither includes clinical data about patients nor configure itself as a clinical trial.

Acknowledgments
The authors acknowledge Mr. Mohamad Noureddine and Mrs. Fatima Awada for their assistance in data collection. The authors also thank all community pharmacists who participated in this study.

Authors information

Dalal Youssef, MSc, MPH, RSM, PhD candidate, Ministry of Public Health, Lebanon, Preventive medicine department

Linda Abou Abbas, MPH, PhD, Ministry of Public Health, Epidemiological surveillance unit

Hamad Hassan, PharmD, PhD, Ministry of Public Health

Suzan Farhat, BS pharmacy, Masters Candidate

References

1. Rémy, V., Y. Zöllner, and U. Heckmann, Vaccination: the cornerstone of an efficient healthcare system. J Mark Access Health Policy, 2015. 3.

2. Edwards, N., et al., Pharmacists as immunizers: a survey of community pharmacists’ willingness to administer adult immunizations. Int J Clin Pharm, 2015. 37(2): p. 292-5.

3. Anderson, E.L., Recommended solutions to the barriers to immunization in children and adults. Mo Med, 2014. 111(4): p. 344-8.

4. Hepler, C.D. and L.M. Strand, Opportunities and responsibilities in pharmaceutical care. Am J Hosp Pharm, 1990. 47(3): p. 533-43.

5. Grabenstein, J.D., Pharmacists and immunization: increasing involvement over a century. Pharm Hist, 1999. 41(4): p. 137-52.

6. Ecarnot, F., et al., Pharmacy-based interventions to increase vaccine uptake: report of a multidisciplinary stakeholders meeting. BMC Public Health, 2019. 19(1): p. 1698.

7. Rosado, H. and I. Bates. An overview of current pharmacy impact on immunisation: A global report. 2016.

8. Richardson, W.M. and A.I. Wertheimer, A Review of the Pharmacist as Vaccinator. Innov Pharm, 2019. 10(3).

9. Schwerzmann, J., et al., Evaluating the Impact of Pharmacies on Pandemic Influenza Vaccine Administration. Disaster Med Public Health Prep, 2017. 11(5): p. 587-593.

10. Isenor, J.E. and S.K. Bowles, Opportunities for pharmacists to recommend and administer routine vaccines. Can Pharm J (Ott), 2019. 152(6): p. 401-405.
11. Bartsch, S.M., et al., *Epidemiologic and economic impact of pharmacies as vaccination locations during an influenza epidemic*. Vaccine, 2018. **36**(46): p. 7054-7063.

12. Bacci, J.L., et al., *The effects of vaccination forecasts and value-based payment on adult immunizations by community pharmacists*. Vaccine, 2019. **37**(1): p. 152-159.

13. Kirkdale, C.L., et al., *Benefits of pharmacist-led flu vaccination services in community pharmacy*. Ann Pharm Fr, 2017. **75**(1): p. 3-8.

14. Isenor, J.E., B.A. O'Reilly, and S.K. Bowles, *Evaluation of the impact of immunization policies, including the addition of pharmacists as immunizers, on influenza vaccination coverage in Nova Scotia, Canada: 2006 to 2016*. BMC Public Health, 2018. **18**(1): p. 787.

15. Beaton, D., et al., *Guidelines for the Process of Cross-Cultural Adaption of Self-Report Measures*. Spine, 2001. **25**: p. 3186-91.

16. Canadian Society of Hospital Pharmacists. *Immunization Competencies Education Program (ICEP)*. [Internet]. Ottawa (ON): Canadian Society of Hospital Pharmacists; 2014 [cited 2014 Nov 16]. http://www.cshp.ca/programs/onlineeducation/icepCourse_e.asp. Accessed 29 June 2021.

17. Bach, A.T. and J.A. Goad, *The role of community pharmacy-based vaccination in the USA: current practice and future directions*. Integr Pharm Res Pract, 2015. **4**: p. 67-77.

18. Della Polla, G., et al., *Investigating knowledge, attitudes, and practices regarding vaccinations of community pharmacists in Italy*. Hum Vaccin Immunother, 2020. **16**(10): p. 2422-2428.

19. Prosser, L.A., et al., *Non-traditional settings for influenza vaccination of adults: costs and cost effectiveness*. Pharmacoeconomics, 2008. **26**(2): p. 163-78.

20. Steyer, T.E., et al., *The role of pharmacists in the delivery of influenza vaccinations*. Vaccine, 2004. **22**(8): p. 1001-6.

21. Goad, J.A., et al., *Vaccinations administered during off-clinic hours at a national community pharmacy: implications for increasing patient access and convenience*. Ann Fam Med, 2013. **11**(5): p. 429-36.

22. Nichol, K.L., *The efficacy, effectiveness and cost-effectiveness of inactivated influenza virus vaccines*. Vaccine, 2003. **21**(16): p. 1769-75.

23. Dalton, K. and S. Byrne, *Role of the pharmacist in reducing healthcare costs: current insights*. Integr Pharm Res Pract, 2017. **6**: p. 37-46.

24. Schmit, C.D. and M.S. Penn, *Expanding state laws and a growing role for pharmacists in vaccination services*. J Am Pharm Assoc (2003), 2017. **57**(6): p. 661-669.
25. Neuhauser, M.M., et al., *Involvement of immunization-certified pharmacists with immunization activities*. Ann Pharmacother, 2004. 38(2): p. 226-31.

26. Kamal, K., S. Madhavan, and L. Maine, *Impact of the American Pharmacists Association's (APhA) Immunization Training Certification Program*. The American Journal of Pharmaceutical Education, 2003. 67: p. 124.

27. Lu, P.-j., et al., *Surveillance of influenza vaccination coverage—United States, 2007–08 through 2011–12 influenza seasons*. Morbidity and Mortality Weekly Report: Surveillance Summaries, 2013. 62(4): p. 1-28.

Tables
Table 0-1: Baseline characteristics of the participants (N=412)	n	%
Gender		
Male	186	45.10%
Female	226	54.90%
Age (years)		
20-29	128	31.10%
30-39	129	31.30%
40-49	81	19.70%
Equal or more than 50	74	18.00%
Profile		
Manager	44	10.70%
Owner	227	55.10%
Staff pharmacist	141	34.20%
Educational level		
BS pharmacy	229	55.60%
Pharm D	102	24.80%
Master, PhD or more	81	19.70%
Years of experience		
0-10 years	232	56.40%
More than 10 years	180	43.70%
Previous experience in immunization		
No	96	23.30%
Yes	316	76.70%
Pharmacist’s working hours per week		
24 hours or Less	93	23.60%
25-40 hours	87	21.10%
More than 40 hours	232	56.30%
Geographic location of the pharmacy		
Rural	132	32%
Urban 280 68%

Number of hours/week pharmacy is open

Hours/week	Count	Percentage
Less than 80 hours	153	37.20%
80-120 hours	228	55.30%
7 days 24/24	31	7.50%

Table 0-2: Pharmacist’s knowledge subscales

Domain	Description	Poor	Good
D1	Domain 1: General knowledge	3(0.7%)	409(99.3%)
D2	Domain 2: Influenza vaccines	39(9.5%)	373(90.5%)
D3	Domain 3: Contraindications and precautions to vaccination	284(68.9%)	128(31.1%)
D4	Domain 4: Storage and administration of vaccine	114(27.7%)	298(72.3%)
D5	Domain 5: Adverse reactions following vaccination	102(24.8%)	310(75.2%)
Overall knowledge	16(3.9%)	396(96.1%)	

Table 0-3: Pharmacists’ answers to knowledge items
#	Correct	Incorrect	I don’t Know
	n(%)	n(%)	n(%)
D1: General knowledge			
K1	409(99.3%)	3(0.7%)	0(0%)
K2	375(91%)	6(1.5%)	31(7.5%)
K3	383(93%)	20(7%)	9(2.2%)
K4	402(97.6%)	6(1.4%)	4(1%)
K5	396(96.1%)	6(1.4%)	10(2.5%)
K6	412(100%)	0(0%)	0(0%)
K7	334(81.1%)	78(18.9%)	4(1%)
K8	377(91.5%)	22(5.3%)	13(3.2%)
K9	378(91.7%)	28(6.8%)	6(1.5%)
D2: Influenza vaccination			
K10	383(93%)	22(5.3%)	7(1.7%)
K11	358(86.9%)	38(9.2%)	16(3.9%)
K12	404(98.1%)	8(1.9%)	0(0%)
K13	334(81.1%)	66(16%)	12(2.9%)
D3: Contraindications and precautions to vaccination			
K14 Pneumococcal vaccination is contraindicated for asplenic (without a spleen) patients.			
---	---	---	
107(26%)	103(25%)	202(49%)	

K15 Breastfeeding is a contraindication to vaccination
292(70.9%)	47(11.3%)	73(17.8%)

K16 Pregnant women who are expected to deliver during the influenza season should not receive the influenza vaccine.
300(72.8%)	56(13.6%)	56(13.6%)

K17 Anaphylactic reaction to a previous dose of vaccine or a vaccine component is a contraindication to further doses of the same vaccine or to the same component in other vaccines
387(93.9%)	7(1.5%)	18(4.4%)

K18 Persons receiving immunosuppressive medications should not receive the influenza vaccine.
204(49.5%)	134(32.5%)	74(18%)

K19 Live-virus vaccines (MMRII...) should be postponed until after chemotherapy or high dose steroid has ended
342(83%)	25(6.3%)	45(10.7%)

D4: Storage and administration of vaccine

K20 Improper storage of vaccines may affect the immune response of the vaccine recipient.
384(93.2%)	7(1.7%)	21(5.1%)

K21 Stabilizers protect the vaccine during storage and transportation.
356(86.4%)	26(6.3%)	30(7.3%)

K22 Inactivated vaccines may be administrated at the same time or at any time before or after a live vaccine
187(45.4%)	112(27.2%)	113(27.4%)

K23 A person who received a live vaccine should wait 28 days before receiving another live vaccine
291(70.6%)	48(11.7%)	73(17.7%)

D5: Adverse reactions following vaccination

K24 Local adverse reaction such as pain, swelling, and redness at the injection site generally occurred within a few hours of the injection and are usually mild and self-limited
187(45.4%)	219(53.1%)	6(1.5%)

K25 Systemic adverse reactions may occur following receipt of live, attenuated vaccines which must replicate to produce immunity
283(68.7%)	85(20.6%)	44(10.7%)

K26 A systemic reaction is usually mild and occurs 3-21 days after the vaccine was administrated (incubation period of the vaccine)
318(77.2%)	23(5.5%)	71(17.2%)

K27 Severe allergic reactions may be life-threatening but fortunately, they are rare
386(93.7%)	10(2.4%)	16(3.9%)

K28 The risk of an allergic reaction can be decreased by effective screening prior to vaccination
316(76.7%)	43(10.5%)	53(12.8%)
Providers should report any clinically significant adverse event occurring after administration of the vaccine even if they are unsure whether the vaccine caused the event.

Table 4: Elements needed for implementing immunization services in pharmacies

	No (%)	Yes (%)	
E1	More university education and training on immunization administration for pharmacists are needed	67(16.3%)	345(83.7%)
E2	Formal certification in vaccine administration should be required for pharmacists.	183(44.4%)	229(55.6%)
E3	Continuous education and training workshops on immunization, safely administration and handling of vaccines	26(6.3%)	386(93.7%)
E4	Financial reimbursement or adequate remuneration	66(16%)	346(84%)
E5	Patients demand	19(4.6%)	393(95.4%)
E6	Collaboration with medical clinics	86(20.9%)	326(79.1%)
E7	Support from medical and nursing associations	76(18.4%)	336(81.6%)
E8	Support of health authorities (Ministry of Public Health and Order of Lebanese Pharmacists)	3(0.7%)	409(99.3%)
E9	Pharmacist interest	16(3.9%)	396(96.1%)
E10	Legal issue	71(17.2%)	341(82.8%)

Figures
Figure 1

At this time, if you were legally permitted by the legislation to administer vaccines to adults, are you willing to incorporate this service into your practice/business without additional training?

Willingness to incorporate vaccination service into your practice/business without additional training if it is legally permitted?

No 33%
Yes 67%

Figure 2

If an immunization training or certification program was available to you, and you were legally permitted by the legislation to administer vaccines to adults, are you willing to incorporate this service into your practice/business?

Willingness to incorporate vaccination service into practice after attending an immunization training or certification program and being legally permitted

No 6%
Yes 94%
Figure 3

Respondents attitudes towards involving immunization in the practice scope of pharmacists