Simultaneous Removal of NOx and Soot Particulate from Diesel Exhaust by in-situ Catalytic Generation and Utilisation of N2O
Davies, Catherine; Thompson , Kate; Cooper, Anna; Golunski, Stan; Taylor, Stuart ; Bogarra Macias, Maria; Doustdar, Omid; Tsolakis, Athanasios

DOI: 10.1016/j.apcatb.2018.07.072

License: Creative Commons: Attribution (CC BY)

Citation for published version (Harvard):
Davies, C, Thompson , K, Cooper, A, Golunski, S, Taylor, S, Bogarra Macias, M, Doustdar, O & Tsolakis, A 2018, 'Simultaneous Removal of NOx and Soot Particulate from Diesel Exhaust by in-situ Catalytic Generation and Utilisation of N2O', Applied Catalysis B: Environmental, vol. 239, pp. 10-15. https://doi.org/10.1016/j.apcatb.2018.07.072

Link to publication on Research at Birmingham portal
Simultaneous removal of NOx and soot particulate from diesel exhaust by in-situ catalytic generation and utilisation of N2O

Catherine Daviesa, Kate Thompsona, Anna Coopera, Stan Golunskia, Stuart H. Taylorb⁎, Maria Bogarra Maciab, Omid Doustdarb, Athanasios Tsolakisb

aCardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK
bFuture Power Systems Group, School of Engineering, University of Birmingham, Birmingham B15 2TT, UK

A B S T R A C T

Keywords: Diesel exhaust NOx Reduction Soot oxidation Nitrous oxide Silver

One of the outstanding challenges in diesel exhaust catalysis is to integrate oxidation chemistry, soot filtration and NOx reduction in a single aftertreatment unit, while avoiding the need for fuel injection to regenerate the filter. Here we show that destruction of trapped soot can be initiated catalytically at 200 °C when its oxidation is coupled with non-selective NOx reduction (using NH3 as reductant), which acts as an in-situ source of N2O. In laboratory tests over an extended temperature range (up to 800 °C), using supported silver as a catalyst for both non-selective NOx-reduction and soot oxidation, the conversion of immobilised soot to CO2 can be resolved into four consecutive steps as the temperature rises: catalysed oxidation by N2O; non-catalysed oxidation by NO2; catalysed oxidation by O2; non-catalysed oxidation by O2. Initial engine tests indicate that the critical first step (C + N2O) can be replicated in a diesel exhaust.

1. Introduction

Effective control of air pollution leads to substantial benefits whether measured in terms of human wellbeing or in value to the economy [1]. On the other hand, in major cities throughout the world, the cost of long-term exposure to the combination of fine particulate (sub-PM2.5) and NOx in the atmosphere is currently being counted in hundreds of thousands of lost human life-years, while the number of hospital admissions attributable to the effects of short-term exposure to these pollutants amounts to many thousands per year [2]. Although the major causes of pollutant-related mortality and morbidity arise from respiratory and cardiovascular conditions, there is increasing evidence of wider health effects, including cognitive impairment arising from fine particulate crossing the blood-brain barrier [3]. The primary source of these localised pollutants is road traffic, with diesel vehicles being implicated more than gasoline (petrol) vehicles. The detrimental effects now overshadow the environmental benefits of higher fuel economy and lower CO2 emissions that enabled modern diesel vehicles to achieve high market share, particularly in Europe. Many governments are now at the point of scheduling the phasing-out of conventional diesel and gasoline vehicles, and yet it will be several decades before most vehicles are electrically powered.

The exhaust-gas from a spark ignition gasoline engine, operating under stoichiometric air/fuel conditions, can be treated highly effectively in a single catalytic converter, but there is no equivalent integrated technology for the diesel engine [4]. Instead, diesel vehicles are fitted with multiple units, which consecutively remove carbon monoxide and hydrocarbons, soot, and NOx [5]. A four-way system, in which all the regulated pollutants would be controlled in a single unit [6,7], would be expected to have the performance benefits associated with lower weight and back-pressure, and with faster warm up, than the combination of existing technologies. Two of the most difficult functions to integrate are the regeneration of a filter (by complete oxidation of trapped soot to CO2) and the selective catalytic reduction (SCR) of NOx to nitrogen (in which the selective reductant is ammonia generated in-situ from aqueous urea via decomposition and hydration reactions [8]; Eqs. (1) and (2)). On diesel passenger cars, the trapping of soot particulate and the SCR reaction are carried out under the normal exhaust-gas temperatures, typically between 100 and 360 °C [9,10], whereas the oxidation of soot (3) is induced by catalytic combustion of injected fuel which generates a large exotherm in the exhaust system. Ammonia generation CO(NH2)2 + H2O → CO2 + 2 NH3 (1) Selective reduction 4 NH3 + 4 NO + O2 → 4 N2 + 6 H2O (2) Soot combustion C + O2 → CO2 (3)

⁎ Corresponding author.
E-mail address: TaylorSH@cardi.ac.uk (S.H. Taylor).

https://doi.org/10.1016/j.apcatb.2018.07.072
Received 15 April 2018; Received in revised form 22 July 2018; Accepted 27 July 2018
Available online 29 July 2018
0926-3373/ © 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/BY/4.0/).
Previous work has shown that the temperature for complete oxidation of diesel particulate can be lowered by > 250 °C through the use of a silver catalyst [11,12], potentially eliminating the need for fuel injection into the exhaust as a means of regenerating soot filters on passenger cars. In common with other workers in the field [13-16], we have been investigating the potential for coupling catalytic soot oxidation with SCR. Although we were expecting this to require a combination of catalysts with high performance for each separate function, we have found that a silver catalyst can reduce NOx to N2 while at the same time oxidising soot, at the low temperatures typical of diesel exhaust, despite it being a poor (ie non-selective) SCR catalyst in the absence of soot. This effect arises because the non-selective product of SCR is N2O Eq. (4), which we have found to be effective at initiating the oxidation of trapped soot Eqs. (5) and (6) in the presence of silver. As the exhaust-gas temperature rises, N2O formation diminishes as initially NOx reduction becomes more selective and then the direct oxidation reactions of NO and NH3 predominate, but soot removal can continue through the well-established oxidation routes in which NO2 and O2 are the oxidants.

\[
\text{Non-selective reduction: } 2 \text{NH}_3 + 2 \text{NO} + 1.5 \text{O}_2 \rightarrow 2 \text{N}_2 \text{O} + 3 \text{H}_2\text{O} \tag{4}
\]

\[
\text{Soot oxidation by } \text{N}_2\text{O: } \text{C} + 2 \text{N}_2\text{O} \rightarrow \text{CO}_2 + 2 \text{N}_2 \tag{5}
\]

\[
\text{C} + \text{N}_2\text{O} + 0.5 \text{O}_2 \rightarrow \text{CO}_2 + 2 \text{N}_2 \tag{6}
\]

2. Experimental

The design of our experimental study consisted of preparing a range of catalysts (supported silver, platinum and vanadyl) with distinct functionality for exhaust treatment, and testing them for their ability to reduce NOx in a simulated fuel-lean exhaust gas, before we evaluated their performance for the simultaneous removal of NOx and elemental carbon. Finally, we coated the best-performing catalyst onto a diesel particulate filter, which was tested under real exhaust-gas.

2.1. Catalysts

A silver formulation known to be active for soot combustion [12] was prepared by co-precipitating a support material with an atomic composition of Ce0.32Zr0.13Al2O3 (i.e. containing Ce/Zr molar ratio of 7/3, or 47% Ce and 13% Zr by weight) from a mixed aqueous solution of the solid precursors (ammonium cerium(IV) nitrate, purity ≥ 98.5%, from Sigma-Aldrich; zirconyl oxyxinate hydrate, 99%, Aldrich; aluminium nitrate nonohydrate, ≥ 98%, Sigma-Aldrich) using aqueous Na2CO3 as precipitant (solid 99.5%, Alfa Aesar). After drying the support material (110 °C for 16 h), it was impregnated with an aqueous solution of AgNO3 (solid 99.9%, Aldrich) to achieve a loading of 2 wt% Ag, before the fully formulated catalyst was dried (110 °C for 16 h) and calcined at 500 °C (5 h; flowing air) in preparation for testing. This catalyst is subsequently referred to as Ag/CZA.

A broad-acting oxidation catalyst was prepared by dispersing platinum, with a loading of 2 wt%, on an alumina support. Aqueous platinum tetrachloride (11.5 cm3, 3.48 g cm−3, Alfa Aesar) was heated to 90 °C with constant stirring, before γ-Al2O3 (1.96 g, 0.0192 mol, Merck) was added and stirred until there was no excess liquid present. The resulting white paste was then dried at 110 °C for 16 h, before being calcined at 500 °C for 5 h. This catalyst is subsequently referred to as Pt/Al2O3.

An ammonia-SCR catalyst, with a composition of 2 wt% V2O5 and 6 wt% WO3 supported on TiO2, was prepared by dissolving ammonium metavanadate (0.064 g, 5.48 × 10−4 mol, ≥ 99%, Sigma-Aldrich), oxalic acid (0.099 g, 1.10 × 10−3 mol, ≥ 99%, Aldrich) and ammonium metatungstate hydrate (0.159 g, 5.38 × 10−5 mol, ≥ 99%, Fluka) in 5 cm3 of de-ionised water. The solution was brought to a temperature of 90 °C under constant stirring, before titanium oxide (2.3 g, 0.0288 mol) was added. The resulting suspension was stirred for 30 min while maintaining the temperature at 90 °C, until all the excess water had been absorbed or evaporated to leave a brown paste. The remaining solid was dried under static air at 110 °C for 16 h, before being calcined for 5 h at 500 °C. This catalyst is subsequently referred to as V2O5-WO3/TiO2.

2.2. Laboratory test procedure

Having established that carbon black (Cabot Black Pearls 2000) was a consistent mimic for the elemental carbon component of diesel soot (see Supplementary Information), samples taken from a single batch were used throughout the laboratory tests in this study.

The catalytic reduction of NOx and the oxidation of soot were studied by passing a gas mixture containing 500 ppm NO, 500 ppm NH3, 8% O2 (by volume) in nitrogen at a flow rate of 200 cm3 min−1 either through 0.25 g of catalyst (equivalent to a gas-hourly space velocity of 40,000 h−1) or through a mixture of 0.025 g carbon black and 0.25 g catalyst, while the temperature was increased at a rate of 7 °C min−1. The carbon + catalyst mixture was prepared by shaking the two powders together to form the loose contact typical of that between the catalytic washcoat and the trapped soot in a catalysed soot filter [17]. In the tests on catalyst alone, the maximum temperature was 500 °C, whereas the temperature was ramped to 800 °C when carbon black was present, and the maximum temperature was then held until all the carbon had oxidised. Although the gas mixture was intended to be representative of a diesel exhaust-gas to which NH3 (hydrolysed urea) had been added, CO2 and H2O were deliberately excluded, so that their formation could be used to track the oxidation of the carbon black. All gas concentrations shown were measured (in mol-ppm) using an FTIR gas analyser (Gasmet), except for the concentration of N2 which was calculated from the nitrogen balance.

2.3. Catalysed diesel soot filter

A batch of the Ag/CZA catalyst (prepared as described above) was dispersed in dilute nitric acid (3 vol% concentrated HNO3 in distilled water), before the resultant slurry was stirred for 4 h. A silicon carbide diesel particulate filter (length: 4.5 in. diameter: 1 in. cell density: 200 cpsi; wall thickness: 0.012 in.) was then dipped repeatedly into the slurry, which adhered to the inner surfaces of the filter channels. Any excess of catalyst in the channels was forced out by blowing a controlled air flux through the filter. Finally, the catalyst-coated filter was calcined in static air at 600 °C for 3 h. From weighing the calcined filter, the catalyst loading was found to be 8.4 wt%, while the thickness of the catalyst coating was observed by electron microscopy to be about 100 μm (see Supplementary Information).

2.4. Engine test procedure

A experimental single-cylinder direct injection diesel engine was used to test an uncoated diesel particulate filter and the catalyst-coated filter. The engine calibration was kept the same in all tests, and to reduce test-to-test variability and ensure steady state operation, the engine was warmed up until the oil temperature reached 60 °C, before carrying out the testing at 1500 rpm and 15 Nm (3 bar IMEP). The filter was mounted in a tubular reactor which was positioned at the centre of a tube furnace (see schematic in Supplementary Information), which was programmed to maintain the exhaust-gas temperature at the filter inlet at 300 °C. Exhaust gas from the engine was fed through the filter, while the pressure drop across it was continuously monitored. The soot-particulate size distribution in the exhaust gas, upstream and downstream of the soot filter, was measured using a scanning mobility particle sizer (comprising a TSI series 3080 electrostatic classifier, a 3081 differential mobility analyser and a 3775 condensation particle
counter). In common with the laboratory tests, the concentrations of the gas-phase species were measured using an FTIR gas analyser (MKS MultiGAS 2030 series).

3. Results and interpretation

3.1. In-situ generation and utilisation of N2O

When a silver soot-combustion catalyst, Ag/CZA, was tested for its ability to catalyse the reduction of NOx by reaction with NH3 in the absence of soot, the NO concentration decreased by 50% between 150 °C and 310 °C, before beginning to increase. This gave rise to the inverted peak for NO concentration seen in Fig. 1, which is mirrored by a positive peak for N2O concentration over the temperature range 225–425 °C. The onset of the N2O peak (225 °C) coincides with the temperature at which the NH3 concentration began to decrease, while the upper limit of the N2O peak (425 °C) coincides with the NH3 concentration reaching zero, the NO returning to its starting concentration, and the onset of NO2 formation. Above 425 °C, the NO concentration continued to rise (exceeding its starting concentration), while the NO2 concentration levelled.

These results show that Ag/CZA is active for NOx reduction over the temperature range 150–425 °C. Initially, between 150 and 225 °C when the NH3 is not being converted, the decrease in NO concentration is due to its adsorption on the catalyst surface, an effect often observed for NOx-reduction catalysts [18]. The subsequent rise in both N2O and NO concentrations (225–310 °C) indicates that the catalyst is actively reducing the NO in the synthetic exhaust-gas by catalysing its reaction with NH3. However, at the lowest temperatures, it clearly lacks the selectivity of the most effective SCR catalysts, which would convert the NO to N2. As the catalyst is not active for the dissociation of N2O below 500 °C, the decline in N2O concentration between 310 and 425 °C indicates that it competes with NO for reduction by ammonia over this temperature range. At temperatures above 400 °C, the dominant reactions are the oxidation both of the NO and NH3 by O2, with the resultant release of NO and NO2.

Significantly, no N2O was detected between ambient temperature and 800 °C, when the same test procedure was repeated using a mixture of the Ag/CZA catalyst and carbon black (an effective soot mimic in these experiments). In place of the N2O peak between 220 and 425 °C (seen in Fig. 1), continuous formation of CO2 was detected, as the first of four consecutive steps (i) to (iv) in Fig. 2. As oxidation of the carbon black was the primary source of any of the CO2 formed in this test, it can be deduced that the N2O produced by the non-selective reaction of NO with NH3, is responsible for step (i) in the release of CO2. (The small CO2 peak visible at 250 °C corresponds to the dissociation of carbonate and hydrogen carbonate species initially present on the catalyst surface.) As the maximum concentration of CO2 exceeded that of the ‘missing’ N2O during the first step, it implies that storage of N2O (or of a precursor) on the carbon preceded the onset of the C + N2O reaction. These processes must take place as the N2O is being formed, because feeding N2O does not lead to the same effects, even when the Ag/CZA catalyst is mixed with the soot (see Supplementary Information).

The subsequent step-changes in CO2 concentration (seen in Fig. 2) can be explained by the known effects of the other two potential oxidising agents: O2 (already present in the simulated exhaust gas) and NO2 (which can be formed from the NO in the simulated exhaust gas and from the NH3 added as reductant). The step between 450 and 525 °C is consistent with the direct (non-catalytic) reaction of soot with NO2 being the predominant oxidation route in this temperature range, leading to the formation of CO2 and NO Eq. (7) [19]. This interpretation is substantiated by the corresponding test in the absence of soot (Fig. 1), which showed a crossover temperature of just above 400 °C for the disappearance of N2O and the appearance of NO2. The next step (525–700 °C) closely matches the position of the peak in the mass lost during the catalytic oxidation of soot by O2, while the final step (> 700 °C) matches that for the non-catalytic reaction with O2 [12]. Overall, the four steps in CO2 production seen in Fig. 2 correspond to the following sequence of reactions by which the elemental carbon in soot can be consumed: (i) catalysed oxidation by N2O, (ii) non-catalysed oxidation by NO2, (iii) catalysed oxidation by O2, and (iv) non-catalysed oxidation by O2. Clearly, Ag/CZA provides the functionality for both of the catalysed oxidation reactions, as well as being active for the non-selective catalytic reduction of NOx, through which the N2O is formed.

Soot oxidation by NO2 + O2 → CO2 + NO

When Ag/CZA was replaced by Pt/Al2O3 (a platinum catalyst which can be used for a variety of combustion reactions [20–22] and for NOx reduction using hydrocarbons [23,24]), its performance in the absence of soot showed that it is even less selective for NOx reduction to N2 than Ag/CZA (compare Figs. 1 and 3). Whereas the N2O-selectivity of Ag/CZA was close to 50% between 220 and 300 °C, and increased to 100% between 300 and 425 °C, the predominant product of NOx reduction was N2O over the entire temperature range when the catalyst was Pt/Al2O3 (Fig. 3). However, despite the high activity of the Pt/Al2O3 catalyst for the non-selective reduction of NOx at low temperatures (N2O formation reached a maximum at 200 °C), it did not show any measurable activity for the oxidation of soot below 450 °C (Fig. 4), with the disappearance of the N2O being accounted for by its storage by the soot.
Similarly, V₂O₅-WO₃/TiO₂ (a proven SCR catalyst for diesel NOₓ control [25,26]) showed no low-temperature soot oxidation activity (Fig. 5). This was not unexpected as its high selectivity to N₂ means that it generated negligible amounts of N₂O when it was tested in the absence of soot (Fig. 6). The inability of this catalyst to release either gas-phase N₂O or NO₂, and to catalyse the oxidation of soot by reaction with O₂, led to all the soot being oxidised in a single high-temperature step (non-catalytic combustion), which gave rise to the large CO₂ and CO peaks with onset temperatures above 750 °C (Fig. 6).

3.2. Operando testing of silver catalyst in a diesel particulate filter

When a diesel particulate filter coated in Ag/CZA was inserted into a real diesel exhaust-stream maintained at 300 °C (the temperature for maximum N₂O formation during NOₓ reduction by ammonia over this catalyst), the filtration efficiency consistently exceeded 99% across the range of particulate size monitored, but only when NH₃ was added to the exhaust gas (Fig. 7). By contrast, in the absence of added NH₃, the efficiency of the coated monolith only exceeded 99% for particulate size < 75 nm, and it showed the characteristic ‘dip’ in the mid-range, corresponding to the region in which diffusional filtration is decreasing while the contributions from alternative mechanisms (interception and inertial impaction) have yet to reach their maxima [27]. Although these tests do not provide direct evidence for the C + N₂O reaction under operating conditions, the results are entirely consistent with the elimination of particulate within the filter when the non-selective reaction between NOₓ and NH₃ is taking place. It is worth noting that the ammonia was added at two different concentrations, 500 ppm (as used in...
the laboratory tests) and 540 ppm (to achieve a 1:1 stoichiometry with the NOx released by the engine). As seen by comparing traces (iii) and (iv) in Fig. 7, the higher ammonia concentration gave a higher value for the filtration efficiency, which is consistent with a higher rate of N₂O formation and a higher rate of soot oxidation. Our interpretation is that, in these experiments, the filtration efficiency is in effect a measure of soot destruction and not a measure of soot retention.

Measurements of the pressure drop through the Ag/CZA-coated filter provide support for our interpretation that the improved filtration efficiency when NH₃ was added is due to particulate oxidation, and not simply to the retention of more particulate within the filter. Although the individual pressure-drop values varied with time (giving rise to the ‘noise’ in Fig. 8) while the filter was continuously filling and regenerating, the polynomial trends reveal that the pressure drop was consistently lower when NH₃ was being added.

4. Conclusions – Implications for NOx and soot particulate control

The ability of NOx to oxidise carbon has been exploited in explosives and pyrotechnics for centuries [28,29] and, more recently, in continuously-regenerating soot filters fitted on heavy-duty diesel vehicles [30]. It also shows potential for oxidising soot at low exhaust-gas temperatures, if the NOx can be formed within a catalyst pore structure in which the soot is trapped [31] (though the NOx is itself only reduced back to NO during this reaction). By contrast, N₂O is known to be stored and released from the exhaust-gas filter. Extensive engine testing is now required to evaluate the extent of soot control together with the associated NOx reduction over a wide range of operating conditions, and to confirm negligible emissions of N₂O as seen in our laboratory tests.

Acknowledgements

The authors gratefully acknowledge the support of RCUK through (i) the Environmental programme of the EPSRC UK Catalysis Hub (grant EP/K014706/1, EP/K014668/1, EP/K014854/1, EP/K014714/1 and EP/M013219/1), (ii) the Cardiff University EPSRC Impact Acceleration Account, and (iii) the EPSRC Centre for Doctoral Training in Catalysis (funded by EPSRC, Cardiff University and the Universities of Bath and Bristol). Information on the data underpinning the results, including how to access them, can be found in the Cardiff University data catalogue at http://doi.org/10.17035/d.2018.0054956978.

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.apcatb.2018.07.072.

References

[1] P.J. Landrigan, et al., The Lancet Commission on pollution and health, Lancet 391 (2018) 462–512.
[2] H. Walton, D. Dajnak, S. Bevers, M. Williams, P. Watkiss, A. Hunt, Understanding the Health Impacts of Air Pollution in London, Final Report for Transport for London and the Greater London Authority, King’s College London, 2015.
[3] M. Cacciatore, et al., Particulate air pollutants, APGE allels and their contributions to cognitive impairment in older women and to amyloidogenesis in experimental models, Trans. Psychiatry 7 (2017) e1022.
[4] M.V. Twigg, Catalytic control of emissions from cars, Catal. Today 163 (2011) 33–41.
[5] M. Piumetti, S. Bensaid, D. Fino, N. Russo, Catalysis in diesel engine NOx after-treatment: a review, Catal. Struct. React. 1 (2015) 155–173.
[6] C.N. Miller, R. Chedotal, P. Da Costa, Synthetic gas bench study of a 4-way catalytic converter: catalytic oxidation, NOx storage/reduction and impact of soot loading and regeneration, Appl. Catal. B: Environ. 90 (2009) 339–346.
[7] P. Granger, Challenges and breakthroughs in post-combustion catalysis: how to match future stringent regulations, Catal. Sci. Technol. 7 (2017) 5195–5211.
[8] A.M. Bernhard, D. Peitz, M. Elsener, T. Schildhauer, Ö. Kröcher, Catalytic urea hydrolysis in the selective catalytic reduction of NOx: catalyst screening and kinetics on anatase TiO₂ and ZrO₂, Catal. Sci. Technol. 3 (2013) 942–951.
[9] M.V. Twigg, An essay book review of ‘Urea-SCR technology for deNOx after treatment of diesel exhausts’, Johnson Matthey Technol. Rev. 59 (2015) 221–232.
[10] H. Jääskeläinen, Diesel exhaust gas, DieselNet Technology Guide, revision 2018.01.
[11] T. Kayama, K. Yamazaki, H. Shinjoh, Nanostructured ceria-silver synthesized in a one-pot redox reaction catalyzes carbon oxidation, JACS 132 (2010) 13154–13155.
[12] R. Ramdas, E. Nowicka, R. Jenkins, D. Sellick, C. Davies, S. Golunski, Using real particulate matter to evaluate combustion catalysts for direct regeneration of diesel soot filters, Appl. Catal. B: Environ. 175 (2015) 436–443.
[13] T.G. Watling, M.R. Ravenscroft, G. Avery, Development, validation and application of a model for an SCR catalyst coated diesel particulate filter, Catal. Today 188 (2012) 32–41.
[14] K.G. Rappe, Integrated Selective Catalytic Reduction–Diesel Particulate Filter Aftertreatment: Insights into Pressure Drop, NOx Conversion, and Passive Soot Oxidation Behavior, Ind. Eng. Chem. Res. 53 (2014) 17547–17557.
[15] O. Mihai, S. Tamm, M. Stenfeldt, C. Wang-Hansen, L. Olsson, Evaluation of an integrated selective catalytic reduction-coated particulate filter, Ind. Eng. Chem. Res. 54 (2015) 11779–11791.
[16] Y. Cheng, J. Liu, Z. Zhao, Y. Wei, W. Song, X. Chunming, The simultaneous purification of PM and NOx in diesel engine exhausts over a single 3DOM CeO₂–Fe₃O₄–ZrO₂ catalyst, Environ. Sci. Nano 4 (2017) 1168–1177.
[17] J.P.A. Neeft, M. Makee, J.A. Moulijn, Catalysts for the oxidation of soot from diesel exhaust gases. I. An exploratory study, Appl. Catal. B: Environ. 8 (1996) 57–78.
[18] R. Foo, T. Vazhnova, D.B. Lukyanov, P. Millington, J. Collier, S. Golunski, Formation of reactive Lewis acid sites on Fe/WO₃–ZrO₂ catalysts for higher temperature SCR applications, Appl. Catal. B: Environ. 162 (2015) 174–179.

In the context of diesel passenger cars, the temperature range of the exhaust gas is typically 100–360 °C. Significantly, this overlaps with the temperature range (225–425 °C) over which the silver catalyst can operate bi-functionally to reduce NOx and oxidise soot. Initial engine tests of an Ag/CZA-coated diesel particulate filter at a fixed exhaust-gas temperature of 300 °C show very high filtration efficiency and low pressure-drop, consistent with the C + N₂O reaction continuously regenerating the filter. Extensive engine testing is now required to evaluate the extent of soot control together with the associated NOx reduction over a wide range of operating conditions, and to confirm negligible emissions of N₂O as seen in our laboratory tests.

Fig. 7. Pressure drop across the Ag/CZA-coated filter as function of elapsed time, (i) in the absence of NH₃, and (ii) when 500 ppm NH₃ was added to the exhaust gas inlet. Normalised values shown in red and blue; linear trend lines in black (for interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).
[19] G.C. Dhal, D. Mohan, R. Prasad, Preparation and application of effective different catalysts for simultaneous control of diesel soot and NOx emissions: an overview, Catal. Sci. Technol. 7 (2017) 1803–1825.

[20] T.V. Choudhary, S. Banerjee, V.R. Choudhary, Catalysts for combustion of methane and lower alkanes, Appl. Catal. A Gen. 234 (2002) 1–23.

[21] S. Ordonez, L. Bello, H. Sastre, R. Rosal, F.V. Diez, Kinetics of the deep oxidation of benzene, toluene, n-hexane and their binary mixtures over a platinum on γ-alumina catalyst, Appl. Catal. B: Environ. 38 (2002) 139–149.

[22] L.F. Liotta, Catalytic oxidation of volatile organic compounds on supported noble metals, Appl. Catal. B: Environ. 100 (2010) 403–412.

[23] F. Witzel, G.A. Still, W.K. Hall, Reaction studies of the selective reduction of NO by various hydrocarbons, J. Catal. 149 (1994) 229–237.

[24] B. Burch, P.J. Millington, A.P. Walker, Mechanism of the selective reduction of nitrogen monoxide on platinum-based catalysts in the presence of excess oxygen, Appl. Catal. B: Environ. 4 (1994) 65–94.

[25] A.M. Beale, I. Lexanzo-Gonzalez, T. Maunula, R.G. Palgrave, Development and characterization of thermally stable supported V–W–TiO2 catalysts for mobile NH3–SCR applications, Catal. Struct. React. 1 (2015) 25–34.

[26] A. Marberger, M. Elserer, D. Ferri, O. Krocher, VOx surface coverage optimization of V2O5/WS2–TiO2 SCR catalysts by variation of the V loading and by aging, Catalysts 5 (2015) 1704–1720.

[27] K.R. Spurny, Filtration science at the end of the 20th century, in: K.R. Spurny (Ed.), Advances in Aerosol Filtration, Lewis, 1997, pp. 13–24.

[28] J. Needham, The Grand Titration – Science and Society in East and West, Allen & Unwin, London, 1960.

[29] J. Bebe, Manual of Explosives, Military Pyrotechnics and Chemical Warfare Agents – Composition, Properties, Uses, Macmillan, New York, 1945.

[30] B.I. Cooper, J.E. Thoss, Role of NO in diesel particulate emission control, SAE International Paper No. 890404, (1989).

[31] X. Yu, Z. Zhao, Y. Wei, J. Liu, Ordered micro/macro porous K-OMS-2/SiO2 nanocatalysts: Facile synthesis, low cost and high catalytic activity for diesel soot oxidation, Sci. Rep. 7 (2017) 43894.

[32] Y. Peng, F. Zhang, C. Xu, Q. Xiao, Y. Zhong, W. Zhu, Adsorption of nitrous oxide on activated carbon, J. Chem. Eng. Data 54 (2009) 3079–3081.

[33] Y.H. Li, G.Q. Lu, V. Rudolph, The kinetics of NO and N2O reduction over coal chars in fluidised-bed combustion, Chem. Eng. Sci. 53 (1998) 1–26.