Geometric phases of light: insights from fibre bundle theory

C. Cisowski, J. B. Götte, and S. Franke-Arnold

University of Glasgow,
School of Physics and Astronomy,
Glasgow. UK.

(Dated: May 10, 2022)

Geometric phases are ubiquitous in physics; they act as memories of the transformation of a physical system. In optics, the most prominent examples are the Pancharatnam-Berry phase and the spin-redirection phase. Recent technological advances in phase and polarization structuring have led to the discovery of additional geometric phases of light. The underlying mechanism for all of these is provided by fibre bundle theory.

In this colloquium, we review how fibre bundle theory does not only shed light on the origin of geometric phases of light, but also lays the foundations for the exploration of high dimensional state spaces, with implications for topological photonics and quantum communications.

CONTENTS

I. Introduction 1
II. Geometric versus dynamic phase in a nutshell 2
III. The Pancharatnam-Berry phase 2
A. Experimental realisation 2
B. Geometric interpretation 3
IV. The origin of geometric phases 3
A. Fibre bundle theory, a universal model 3
B. From Poincaré to Hopf 5
V. Exploring high dimensional state spaces 6
A. The spin-redirection phase 6
B. Geometric phases of spatial transverse modes 7
C. Geometric phases of general vectorial fields 9
VI. Summary and perspectives 11
VII. Acknowledgements 11
References 11

I. INTRODUCTION

Phase is a curious protagonist in the land of physics, it bears no physical significance when a single wave is considered, yet becomes crucially important when several waves are involved, hereby causing spectacular effects such as interference. In 1984, Sir Michael Berry established that the wave function of a quantum system can gain a phase of geometric nature in addition to the dynamic phase naturally acquired over time (Berry, 1984). This discovery impacted various areas of physics, such as condensed matter, nuclear, plasma and optical physics (Wilczek and Shapere, 1989; Wilczek and Zee, 1984). Although geometric phases may appear as mere theoretical curiosities, they have led to a myriad of applications and in optics are now at the basis of wavefront shaping technologies (Cohen et al., 2019; Jisha et al., 2021). Their importance for exotic surface effects, including superconductivity and topological insulators including the quantum Hall effect, has been honoured in the recent Nobel Prize awarded to David Thouless, Duncan Haldane and Michael Kosterlitz for research on topological phases of matter.

A matrix-based formalism can be used to determine whether a system will acquire a geometric phase (O’Neil and Courtial, 2000), however this approach gives little insight in regard to the origin of the phenomenon. Fibre bundle theory provides a deeper understanding of geometric phases: it links a phase to a state transformation based on geometrical considerations. This mathematical framework was developed in the first half of the 20th century, and turned out, to everyone’s surprise, to provide an excellent description of gauge fields, including electromagnetic fields (Yang, 2014). It became the universal language of geometric phases almost immediately, even before Berry had time to publish his seminal work (Simon, 1983), and played a key role in the generalization of Berry’s phase to non-adiabatic and non-cyclic systems (Aharonov and Anandan, 1987; Samuel and Bhandari, 1988).

A plethora of geometric phases have been witnessed in optics (Bhandari, 1997; Samuel and Bhandari, 1988; Vinitskii et al., 1990). Well-known examples include the Pancharatnam-Berry phase (Pancharatnam, 1956), born from polarization transformations, and the spin-redirection phase (Rytov, 1938; Vladimirskiy, 1941), which arises when light is taken along a non-planar trajectory. The last decades have seen significant technological advances in the control of phase and polarization structured light, with an ever expanding repertoire of higher order spatial modes and complex vector light fields. These developments have revealed new
geometric phases of light, caused by the transformation of spatial transverse modes (Calvo, 2005; Van Enk, 1993; Galvez et al., 2003; Galvez and O’Connell, 2005; Gutierrez-Cuevas et al., 2020) and of general vectorial fields (Liu et al., 2017; Milione et al., 2012, 2011; Milman and Mosseri, 2003). However, with just a handful of exceptions (Bliokh, 2009; Bouchiat and Gibbons, 1988; Cohen et al., 2019) these phases are rarely linked to fibre bundles, causing key concepts such as connection and curvature to be surrounded by an aura of mathematical mystery.

In this colloquium, we illustrate how fibre bundle theory can bring about a deeper understanding of geometric phases. We do not expect the reader to have prior knowledge in the area of fibre bundle theory and will introduce a few key concepts. We show that the geometric phases recently observed in structured light beams are mostly based on two-dimensional sub-spaces of a much larger state space, and that fibre bundle theory could guide the exploration of the entire state space. Establishing a firmer link between geometric phases of light and fibre bundle theory could highlight interdisciplinary research opportunities and stimulate new discoveries. The experimental simplicity and versatility of optical systems could even allow us to test concepts of fiber bundle theory itself.

Let us start our discussion by recalling how geometric phases differ from their dynamic counterparts using a simple interferometric construction.

II. GEOMETRIC VERSUS DYNAMIC PHASE IN A NUTSHELL

Interferometry is a precious tool for measuring the phase difference between two beams of light. In a Mach-Zehnder interferometer, the phase difference $\Delta \phi$ between the two beams exiting the interferometer is null if the arms of the interferometer are of equal optical path length (see Fig.1.a). The phase naturally acquired over time as the beam propagates is called the dynamical phase, ϕ_d. Increasing the optical path length of one of the arms, by introducing a piece of glass for instance, will create an excess of dynamical phase $\phi_d' + \phi_g'$ in this arm such that $\Delta \phi = \phi_d' + \phi_g'$ (see Fig.1b), modifying interference and leading to a difference in the interferometer output.

It is also possible to obtain a finite phase difference even if the arms are of equal optical path length, by imposing a series of state transformation to one of the beams (see Fig.1c) (Aharonov and Anandan, 1987). These transformations will cause the beam propagating through this arm to acquire a phase, ϕ_g, solely dependent on the path formed in the state space, in addition to the dynamical phase acquired upon propagation, such that, at the exit of the interferometer, $\Delta \phi = \phi_g$. The phase ϕ_g is said to be geometric. In the next section, we show how a succession of polarization transformations can create such a geometric phase called Pancharatnam-Berry phase.

III. THE PANCHARATNAM-BERRY PHASE

The Pancharatnam-Berry (PB) phase is one of the most ubiquitous geometric phases of light (Bhandari, 1997; Lee et al., 2017; Vinitskiï et al., 1990; Zela, 2012). It was discovered by Pancharatnam in 1956, upon generalizing the notion of interference for partially orthogonal polarized beams (Pancharatnam, 1956) and was identified as a geometric phase by Ramaseshan and Nityananda in 1986 (Ramaseshan, 1986). This led Berry to provide a quantum interpretation of this phenomenon, causing his name to be linked to this phase along with Pancharatnam’s (Berry, 1987b).

A. Experimental realisation

The PB phase is generated by changing the polarization state of a beam of light propagating along a fixed direction. In practice, a sequence of polarization transformations can be realized using several retarders, which would correspond to the optical elements in Fig.1c. For simplicity, we assume that the retarders do not change the optical path length. If the beam of light is initially horizontally polarized (state 1), we can use a quarter
waveplate (QWP) to convert the beam into a circularly polarized state (state 2), use a second QWP to return the polarization state to linear (state 3), however rotated by 45° with respect to the horizontal, then employ a suitably oriented half waveplate (HWP) to restore the polarization direction to horizontal (state 4). The sequence of polarization transformation is illustrated in Fig. 2a. As stated previously, a geometric phase is dependent on the path formed in the state space. In order to determine whether our sequence of state transformation will generate a geometric phase, we therefore need to turn to geometric considerations.

B. Geometric interpretation

Realizing a sequence of (unitary) polarization transformation can be visualized as a path on the Poincaré sphere. The Poincaré sphere is the state space of purely polarized light, meaning that each point on the sphere represents a pure polarization state. By convention, the poles represent circularly polarized light, the equator linearly polarized light and the hemispheres right and left elliptically polarized light (see Fig. 2b). All states on the sphere can be conveniently obtained from a linear superposition of diametrically opposed states.

The path corresponding to the polarization transformation shown in Fig. 2a is drawn in Fig. 2b, where successive polarization states have been linked using geodesics.

In optics, it is common practice to calculate the PB phase, which we denote \(\phi_g \), directly from the solid angle \(\Omega_{PS} \) enclosed by the path formed on the Poincaré sphere, shown in light blue (shaded area) in Fig. 2 (Pancharatnam 1956; Samuel and Bhandari 1988), using the simple relation:

\[
\phi_g = -\frac{1}{2} \Omega_{PS}. \tag{1}
\]

If the sequence of polarization transformations is associated with a vanishing solid angle, no PB phase will be generated. Eq. 1 provides a straightforward manner to calculate the PB phase, however, the relationship between phase and a path formed on the state space is far from obvious. Indeed, in physics, states are defined up to a phase factor, meaning that two state vectors \(|\psi\rangle \) and \(\exp(i\phi) |\psi\rangle \), where \(\phi \in [0, 2\pi] \), are considered to be physically equivalent. A path traced on the Poincaré sphere thus does not directly provide information on the evolution of the phase of the system. An additional structure, capable of tracking this evolution is needed, and this is where fibre bundle theory comes into play.

IV. THE ORIGIN OF GEOMETRIC PHASES

In what follows, we introduce some fundamentals of fibre bundle theory and show how geometric phases are interpreted in terms of fibre bundles. We then examine the PB phase from this new perspective.

A. Fibre bundle theory, a universal model

In the landscape of mathematics, fibre bundle theory sits at the crossroads of differential geometry, topology and connection theory. It was developed independently from physics in the first half of the 20th century (Ehresmann 1949; Feldbau 1939; Hopf 1931; Seifert 1933; Serre 1951; Steenrod et al. 1951; Whitney 1935). The overlap with physics became evident only in retrospect, when examining Dirac’s theory on magnetic monopoles (Dirac 1931) from a geometric perspective showed that Dirac had described a fibre bundle (Lubkin 1963; Wu and Yang 1975). Wu and Yang went further by demonstrating that fibre bundle theory is the natural language of gauge theory. They summarized this idea in a table showing how both theories describe the same concept using different terminologies (Wu and Yang 1975). At this point, fibre bundle theory ceased to be an abstract framework, but became suitable for the description of physical reality. This discovery profoundly influenced the physics and the mathematics community during the late 20th century, as detailed in the overview provided in Boi (2004).

We illustrate the basic idea of fibre bundles in Fig. 3 on the example of a cylinder and a Möbius strip. A fibre bundle is constructed from a (topological) space \(B \) called the base space (which for both Fig. 3a, and b is a circle). Above each point \(p \in B \) is a space called the fibre \(F \) (shown as a line segment, defined by its two endpoints), linked to the base space by a projection map (indicated by dashed lines). At the core of fibre bundle theory is the idea that locally, within a close neighborhood of points

![Figure 2: A sequence of polarization transformations. a. Practical realisation. b. Geometric interpretation: a closed path is traced on the Poincaré sphere.](image-url)
For the cylinder this is true globally, making it a trivial fibre bundle. The topological and geometrical properties of the fibre bundle may however prevent us from a consistent global mapping. This is the case for the twisted Möbius strip, as indicated by the ant, which can move from one end of the line segment F to the other when traversing along the Möbius band. The fibre bundle is then said to be non-trivial (Batterman 2003). A fibre bundle thus contains two types of information: local and global. Physical phenomena are often studied from a local (infinitesimal) perspective; fibre bundle theory invites us to take a step back and look for global properties that may also affect our system.

To complete the definition of a fibre bundle, one may also specify the structure group G acting on the bundle. In the case of the Möbius strip, $G = \pm 1$ where the element -1 acts on the fibre by sending an element from the top to the bottom of the fibre (Batterman 2003).

Fibre bundles relevant in optics and quantum optics tend to operate in larger state spaces, e.g. with fibres keeping track of phase evolutions. While it is perfectly feasible to describe optics in terms of complex electromagnetic fields, and quantum optics in terms of quantum states, fibre bundle theory offers a supplementary geometric interpretation, transcending specific applications and potentially allowing us to develop a more intuitive understanding of the underlying phenomena.

The concept of a fibre bundle linking a phase to a state transformation was introduced by Aharonov and Anandan (Aharonov and Anandan 1987). Here, the base space B of the fibre bundle is the complex projective Hilbert space, as illustrated Fig. 4 which we call state space. The fibre above each state consists of all the normalized state vectors capable of representing that state, namely, $\exp(i\phi)|\psi\rangle$, where $\phi \in [0,2\pi]$. The structure group is the unitary group $U(1)$ and the total space, E, is the Hilbert space. This fibre bundle is a principal bundle, meaning that the fibre is the structure group.

As we mentioned earlier, a state transformation can be visualized as a path in the state space. If we assume that the transformation is cyclic, meaning that the state transforms back to the initial state at the end of the transformation, it forms a closed path C in the state space, shown by the curve in the base space B in Fig. 4. Knowledge of this path alone does not include any phase information. To record phase information, the path C is “lifted” to form a path C' in E. Since many curves C' can project down onto the same curve C there are many ways to realize this lift. Some rules must be provided, this is the role of the connection A. The connection decomposes the tangent space of the bundle into a vertical and horizontal component, specifying the direction along the fibres and ‘perpendicular’ to the fibres, respectively. The curve C is then lifted along the horizontal direction (along the fibre in Fig. 4). This allows us to compare (connect) points on different fibres. The splitting of the space into its horizontal and vertical components hence the connection is tied to a particular set of coordinates.

Lifting a closed path in B will often result in an open path in E. If we assume that the beginning and end point of the path lie on the same fibre, they are linked by a simple phase factor $\exp(i\phi)$ (a $U(1)$ transformation), called the “holonomy of the connection on the fibre bundle” (Nakahara 1990). This phase factor indicates that the wave function has failed to come back to itself at the end of the transformation. Explicitly, for a cyclic evolution of period T, $\psi_p(T) = \exp(i\phi)\psi_p(0)$.

In the classical realm, holonomies can take the form of a rotation, such as the one allowing a cat falling from an...
Aharonov and Anandan identified the connection A^{AA} that yields the geometric phase $\exp(i\phi) = \exp(i\phi_g)$ as its holonomy. To do so, they defined the geometric phase as the difference between the total phase and the dynamic phase (Aharonov and Anandan 1987; Zwaniger et al. 1990). Of course not all evolutions are cyclic, Samuel and Bhandari showed that the path formed in the projective space can simply be closed using the shortest geodesic (Samuel and Bhandari 1988), a process which does not affect the geometric phase (Benedict and Feher 1989). The geometric phase can then be calculated using the connection of Aharonov and Anandan:

$$\phi_g = \oint_C A^{AA} = i \oint_C \langle \tilde{\psi} \mid d |\tilde{\psi}\rangle,$$

where d is an exterior differential operator and $|\tilde{\psi}\rangle$ is a basis vector field, also known as section or gauge (an explicit derivation can be found in (Bohm et al. 2003)). Eq. 2 can be used if A^{AA} is uniquely defined over the region of the state space covered by the path C. In practice, several A^{AA} may coexist due to the geometry of the Hilbert space and of the projective Hilbert space (Urbanke 1991). One may then prefer the following expression, obtained using Stokes theorem:

$$\phi_g = \int_S dA^{AA} = \int_S V^{AA},$$

where S is the surface in the state space enclosed by C, and V^{AA} is the curvature of the connection. Unlike the connection A^{AA}, the curvature V^{AA} is well defined everywhere. It measures the dependence of the phase holonomy on the path formed in the projective Hilbert space. Geometric phases owe their name to this path dependence, and one may say that it is the curvature of the state space that gives birth to geometric phases (Anandan 1988).

It is possible to witness a phase holonomy even if the curvature vanishes, when the path C cannot be shrunk to a point. This typically happens if the path encloses a topological defect. The phase holonomy becomes a signature of the defect and is insensible to the shape of the path, and hence is called a “topological phase” (Lyre 2014).

A remarkable fact about the fibre bundle interpretation of geometric phases proposed by Aharonov and Anandan is that it remains valid regardless of the dimension of the state space. We will come back to this after providing a fibre bundle interpretation of the PB phase.

B. From Poincaré to Hopf

In the case of the PB phase, the relevant state space is the Poincaré sphere. The sphere representation is specific to two-dimensional systems, and studying its construction reveals the associated fibre bundle. When fully polarized light propagates along a fixed direction, say z, it becomes analogous to a two-state (qubit) system:

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle,$$

where $|0\rangle$ and $|1\rangle$ are the eigenstates of the Pauli spin operator σ_z, and α and β are complex parameters with $|\alpha|^2 + |\beta|^2 = 1$ to ensure normalization. The state vector $|\psi\rangle$ lives in the two-dimensional Hilbert space, denoted by H_2. This space is our total space E, which can be pictured as a hypersphere S^3 embedded in \mathbb{R}^4, represented in orange (left shaded area) in Fig. 6a. In Sugic et al. (2021) this space has been coined the optical hypersphere.

In optics, a pure state $|\psi\rangle$ can only be identified up to a phase factor $\exp(i\phi)$, and in quantum theory the set of state vectors $\exp(i\phi) |\psi\rangle$ describe the same physical state: the probability of a measurement of the system given by Born’s rule for $|\psi\rangle$ and $\exp(i\phi) |\psi\rangle$ is one. To account for this, in the projective Hilbert space all states $\exp(i\phi) |\psi\rangle$, where $\phi \in [0, 2\pi]$, represent the same quantum state.

This set of equivalent state vectors form a fibre, which can be pictured as a circle S^1 parametrized by ϕ (C in Fig. 6). For a two-state system, the state space is the projective Hilbert space CP^1, which is an ordinary sphere, known as S^2 by mathematicians. The state space is obtained by mapping each quantum state (circle) in the total space onto a point on the sphere. This mapping is performed by the Hopf map, which maps a circle onto a point p in a plane $\mathbb{R}^2(\infty)$, then maps this point onto a point $p’$ on the sphere via an inverse stereographic projection, as illustrated in Fig. 5a (Mosseri and Dandoloff 2001). This is how the Poincaré sphere, and all spheres representing two-state systems, are constructed.

The PB phase then corresponds to the holonomy of the connection A^{AA} on a fibre bundle where the base space is CP^1 (the Poincaré sphere), a fibre is a set of equivalent states vectors, the group structure is $U(1)$, and the total space is H_2. This fibre bundle is known as the Hopf fibration, and it is capable of describing all two-state systems, not just polarization. As such, it is often encountered in physics, where it describes magnetic monopoles, two-dimensional harmonic oscillators, Taub-NUT space (relevant in the framework of general relativity) and twistors (Urbanke 1991). Because it involves spaces embedded in different dimensions, the Hopf bundle is difficult to visualize, however, performing a direct stereographic map from S^3 to \mathbb{R}^3 will make its fibre structure apparent (Mosseri and Ribeiro 2007). A schematic illustration is provided in Fig. 6.

It is not possible to assign a single connection A^{AA} over
the whole Poincaré sphere. Indeed, if we introduce polar coordinates θ, ϕ, we may define a connection A using the basis $|\psi\rangle$ (Bouchiat and Gibbons 1988; Kataevskaya and Kundikova 1995):

$$|\psi\rangle = (\cos(\theta/2), e^{-i\phi} \sin(\theta/2)); \quad A = \frac{1}{2}(1 - \cos \theta) d\phi$$

Eq. (5)

A is defined everywhere except at $\theta = 0$ (north pole). To cover the entire sphere we may introduce another basis $|\tilde{\psi}\rangle$ and a second connection A':

$$|\tilde{\psi}\rangle = (e^{i\phi} \cos(\theta/2), \sin(\theta/2)); \quad A' = \frac{1}{2}(-1 - \cos \theta) d\phi$$

Eq. (6)

A' is defined everywhere but at $\theta = \pi$ (south pole). The singular points $\theta = \pi$ and $\theta = 0$ correspond to Dirac string singularities (Dirac 1931; Yang 1996), they can be moved around the sphere by choosing different basis but cannot be removed. The sphere is thus divided into two overlapping regions, each region having a different connection. In the overlapping region, the connections are related by a phase transformation (Urbantke 1991).

In this case, it is preferable to calculate the PB phase using Stokes theorem:

$$\phi_g = \frac{1}{2} \int_C (\pm 1 - \cos \theta) d\phi = \frac{1}{2} \int_S \sin \theta d\theta d\phi = \frac{1}{2} \Omega_S,$$

Eq. (7)

where Ω_S is the solid angle enclosed by the path C formed in clockwise fashion on the Poincaré sphere. We have recovered Eq. (1) using fibre bundle theory, and have detailed how the PB phase arises from a state transformation. Eq. (1) is only valid because the state space can be represented as a sphere, which is true for all two-state systems. Eq. (7) shows that the curvature on the Hopf fibration does not vanish, it confirms that the PB phase depends on the path traced in the state space, it is truly a “geometric” phase.

PB phases are at the core of state-of-the-art wavefront shaping technologies (Bomzon et al. 2002; Dorrah et al. 2021; Kim et al. 2015; Radwell et al. 2016). Q-plates (Marrucci et al. 2006), in particular, rely on PB phases to impart a helical phase profile to a beam of light and have been commercialized under the name of vortex retarders. The underlying principle of these devices is that a spatially variant PB phase profile can be obtained by realizing spatially resolved polarization transformations. Conversely, exotic polarization distributions such as the ones witnessed when interfering multiple beams of light (Cardano et al. 2013; Galvez et al. 2012) or obtained upon tight focusing (Bauer et al. 2015) may contain interesting geometric phases profiles.

In this section we have directed our attention to fully polarized light for didactic purposes. Note however, that geometric phases can also arise from the transformation of partially polarized light. In this case, the state space becomes the Poincaré ball to include points inside the sphere (Ericsson et al. 2003; Sjöqvist et al. 2000). The geometric phase can then be obtained by purifying the state (Milman 2006). Interestingly, the Poincaré ball naturally incorporates some hyperbolic geometry (Ungar 2002), whose relevance with regard to special relativity has been highlighted in (Lévay 2004) and (Samuel and Sinha 1997).

V. EXPLORING HIGH DIMENSIONAL STATE SPACES

The state space of an n-state system where $n > 2$ can no longer be represented by an ordinary sphere (Bengtsson and Życzkowski 2006). Such spaces have recently become accessible in optics, through spatial transverse modes, strongly focused light and general vectorial light. In the following we review how geometric phases are currently calculated on these spaces, and discuss how fibre bundle theory could lay the foundation for the exploration of high dimensional state spaces. Our first encounter with a high dimensional state space stems from the study of polarized beams of light with spatially vary-
The spin-redirection phase is a geometric phase that arises when polarized light is taken along a non-planar trajectory. It was first witnessed in inhomogeneous media (Rytov [1938] and in optical fibres (Chiao and Wu [1986], Ross [1984]), in which case it is the result of an adiabatic transformation, meaning that a photon that is initially in an eigenstate of the spin operator, aligned with the direction of the wave vector, will remain in this eigenstate at all times. In other words, its helicity does not change upon propagation. At the time, it was believed that the cycling of the parameters driving the adiabatic transformation determines the existence of geometric phases. Geometric phases were calculated from the path traversed in time formed in the space of parameters in our case, the sphere of directions of the wave vector $\mathbf{R}(t) = \mathbf{k}(t)/k$. The fibre bundle linking a phase to a parameter transformation was introduced by Simon (Simon [1983]). The adiabatic geometric phase can then be calculated from the connection on Simon’s fibre bundle. The adiabatic geometric phase $\phi_{g,a}$ acquired by a photon when the direction of the wave vector is cycled reads:

$$\phi_{g,a} = -\sigma \Omega_k(C),$$

where $\Omega_k(C)$ is the solid angle subtended by the path formed on the sphere of directions \mathbf{k} and where the helicity σ denotes the projection of the spin onto \mathbf{k}, which takes values $\sigma = 1$ for left-handed and $\sigma = -1$ for right-handed circularly polarized light. Here, $\phi_{g,a}$ is analogous to a well-known adiabatic phase, namely the Berry phase obtained from the evolution of a spin particle interacting with a time-varying magnetic field $\mathbf{B}(t)$ of constant amplitude, where the directions of the magnetic field, $\mathbf{R}(t) = \mathbf{B}(t)/B$ are the parameters (Berry [1984]).

The geometric phase $\phi_{g,a}$ produces a characteristic effect: when \mathbf{k} recovers its initial orientation, the polarization axis of linearly and elliptically polarized light is rotated. This rotation can be understood in terms of circular birefringence: The left and right circularly polarized light components of the beam acquire opposite geometric phases (Tomita and Chiao [1986]).

It soon appeared that this rotation can also be observed when light is redirected by a sequence of mirrors (Berry [1987], Kitano et al. [1987]). However, in this case the transformation is non-adiabatic because mirror reflections reverse the helicity. An attempt was made to continue using the parameter space to calculate the geometric phases but it became clear that this description had reached its limits, it had to rely on modified wave-vectors and had to account for occasional π phase shifts (Kitano et al. [1987]). At a similar time, Aharonov and Anandan changed their emphasis from the parameter space to the state space. They showed that adiabaticity is not a necessary condition for the existence of geometric phase, but it is the state evolution that matters (Aharonov and Anandan [1987]). Similarly, for the case of a spin particle in a magnetic field Anandan considered the evolution of the spin instead of the evolution of the magnetic field direction (parameter), hereby lifting the adiabatic requirement (Anandan [1992]). For spin 1/2 particles, the sphere of spin directions is the Bloch sphere. Inspired by this work, Chiao et al. shifted the emphasis from the evolution of the direction of the wave vector to the evolution of the spin vector \mathbf{S} of photons (Chiao et al. [1988]). The geometric phase, now called spin-redirection (SR) phase, became:

$$\phi_{g,a} = -\sigma \Omega_{SR}(C),$$

where $\Omega_{SR}(C)$ is the familiar solid angle formed on the sphere representing the directions of the spin \mathbf{S} of the photon in real space. Fig. 7 illustrates how a beam of light can be taken along a non-planar trajectory using a succession of mirrors, and shows the respective path traced on the sphere of spin directions of photons.

Note, however, that unlike the Bloch sphere of spin-1/2 particles, which incorporates information on the direction of the spin in real space and identifies all pure states, the sphere of spin directions of photons is not a state space. The state space identifying all pure polarization states was presented earlier - it is the Poincaré sphere. However, the Poincaré sphere is built on the assumption that polarization characterizes the oscillation of a two dimensional electric field contained in the plane transverse to a constant propagation direction. If the propagation direction varies, so does the orientation of the transverse plane spanning the polarization.

When the propagation direction of a beam of light is
varied, the electric field becomes a 3-component vector $\mathbf{E} = (E_x, E_y, E_z)$ in the laboratory frame. The normalized state vector $|\psi\rangle$ representing the system then corresponds to a rotated 3-component spinor, reflecting the spin-1 nature of photons (Berry 1987b, Hannay 1998). We are thus dealing with a 3-state system, of state space $\mathbb{C}P^2$, which is no longer an ordinary sphere. State spaces become difficult to visualize as their dimension increases, and so does picturing the evolution of the state in that space. Fortunately, Majorana provided an elegant way to circumvent this difficulty. Majorana was studying the behaviour of a spin system of arbitrary angular momentum j in the presence of a magnetic field when he realized that varying the direction and magnitude of the magnetic field amounts to rotating j (Majorana 1932). After the rotation, a system that was originally in an eigenstate finds itself in a superposition of $2j + 1$ states. The j-spin problem thus becomes equivalent to relating angular momentum states associated with different directions in space (Schwinger 1977). This is equivalent to the problem we encounter when we wish to compare polarization along a varying propagation direction. Majorana went on by representing a spin j state as a constellation of $2j$ points on an ordinary sphere. Each point, poetically called a star, represents the direction of a spin-1/2 angular momentum (Bloch and Rabi 1945). From a geometric perspective, what Majorana really did was write an n-dimensional state space $\mathbb{C}P^n$, as an unordered product of $n - \mathbb{C}P^1$, the space of all unordered sets of n-points on a sphere.

In 1998, Hannay used the Majorana representation to visualize 3D polarized light as two stars on a sphere (see Fig.8) (Hannay 1998). In his work, he managed to relate the Majorana’s mathematical construct with a concept of a polarization ellipse and its orientation direction in 3D space, familiar to all researchers working in optics. Specifically, he showed that the foci of the polarization ellipse are given by the projection of the stars onto the plane perpendicular to their bisector. He also deduced the geometric phase associated with the transformation of 3D polarized light from the circuits traced by the two stars.

Nonparaxial fields, for which the electric field component along the propagation direction is non-negligible, have attracted increasing attention in the past decades, in virtue of their capacity to mix the spin and orbital angular momentum content of the beam (Barnett and Allen 1994, Blokh et al. 2010, Ma et al. 2016). This renewed the interest in their geometric phases and has brought the Majorana representation back in the spotlight (Alonso 2020, Blokh et al. 2019).

While picturing the state evolution is certainly helpful, we have shown in section IV that all we really need to calculate the geometric phase is the connection on the relevant fibre bundle. For a spin-1 system, the base space is the state space $\mathbb{C}P^2$, the total space is the Hilbert space \mathbb{H}_3 and the fibre is $U(1)$. A good description of this fibre bundle is provided in (Bouchiat and Gibbons 1988). In this case, the set of pure states is characterized by four parameters consisting of three Euler angles θ, φ, α giving the orientation in space of the principal axis of the polarization vector, and an extra parameter defining the shape of the ellipse δ. The geometric phase of 3D polarized light reads:

$$\phi_g = \oint_C A = \oint_C (\sin \delta \cos \theta \, d\varphi + (\sin \delta - 1) \, d\alpha).$$

Hannay recognized that this expression is equivalent to the one found using the Majorana representation (Hannay 1998). The set of coordinates on $\mathbb{C}P^2$ contains some singularities, like the ones we identified at the poles on the Poincaré sphere (Bouchiat and Gibbons 1988). It would be interesting to study whether this has physical consequences. A clear geometric interpretation of the limiting cases, where the geometric phase becomes the Pancharatnam-Berry phase or the spin-redirection phases would also be useful. It has been suggested that, in the context of general relativity, $\mathbb{C}P^2$ can be regarded as a half pseudoparticle surrounded by a cosmological event horizon and that it shares properties of the Yang-Mills instanton (Gibbons and Pope 1978). We ask whether investigating the phase holonomies of 3D polarized light could be exploited to study these systems.

Turning paraxial light into a 3D field is relatively straightforward, one can use a high numerical aperture or rely on scattering (Blokh et al. 2011), measuring the entire electric field however, is a highly challenging task. Fortunately, it is now possible to access high dimensional state space without breaking the paraxiality, by structuring light in its spatial degree of freedom.
B. Geometric phases of spatial transverse modes

Optical modes are characterized not only by their polarization but also by their spatial profile, determining both phase and intensity distribution across the beam (Forbes et al., 2021). While polarization is usually limited to a two-dimensional state space, there is an infinite number of orthogonal spatial modes, with Hermite-Gaussian (HG\textsubscript{n,m}) and Laguerre-Gaussian (LG\textsubscript{n,l}) modes providing possible basic sets in Cartesian and polar coordinates respectively.

A spatial transverse mode of order \(N = n + m = 2\ p + |l| \), may be represented by a normalized vector |\(\psi \rangle \) which may refer to a coherent state as approximated by a classical light beam, or the wavefunction of a photon. The state vector then lives in a Hilbert space of dimension \(N + 1 \), and the state space is \(\mathbb{CP}^N \) (Allen et al., 1999).

For \(N = 1 \), |\(\psi \rangle \) is a two-state system, of the form of Eq. 4, where |0\rangle and |1\rangle correspond to any two linear dependent orthogonal modes, conveniently we can choose LG\textsubscript{0,0} and LG\textsubscript{0,-1} modes or HG\textsubscript{0,1} and HG\textsubscript{1,0} modes. Like for all two-state systems, this state space can be pictured as an ordinary sphere, the so-called sphere of first order modes, shown in Fig. 3a (Agarwal, 1999; Van Enk, 1993; Padgett and Courtial, 1999). By convention, the poles represent the modes LG\textsubscript{0,0} and the equator corresponds to first order HG modes of varying alignment. All diametrically opposed modes form a suitable orthogonal basis system, from which all modes on the sphere can be obtained as a linear superposition. A path C can be formed on the sphere using a sequence of mode-preserving optical elements, like a pair of Dove prisms acting as a mode rotator, or a pair of cylindrical lenses acting as a mode convertor (Beijersbergen et al., 1993).

The geometric phase associated with the transformation of first order modes reads as (Van Enk, 1993; Galvez et al., 2003):

\[
\phi_{g,N=1} = -\frac{1}{2} \Omega(C),
\]

where \(\Omega(C) \) is the solid angle enclosed by the path formed on the sphere, in analogy to the PB phase. This is not surprising since the underlying geometry is the same. The phase \(\phi_{g,N=1} \) can be interpreted as the holonomy of the connection on the Hopf fibration, where the base space corresponds to the sphere of first order modes. This interpretation, to the best of our knowledge, has not yet been made explicit in the literature.

For \(N > 1 \), the dimension of the state space |\(\psi \rangle \) grows. Second order modes, for example, need to be expressed in terms of not two, but three fundamental modes, where LG\textsubscript{0,0}+2, LG\textsubscript{0,1} and LG\textsubscript{1,0}-2 form a complete basis; third order modes require four fundamental modes, where LG\textsubscript{0,0}+3, LG\textsubscript{1,1}, LG\textsubscript{1,0}-3 and LG\textsubscript{0,0} form a complete basis, and so on. So far, geometric phases have been calculated on two-dimensional subspaces of these high dimensional state spaces, represented as spheres. In Habraken and Nienhuis, 2010, a number of (\(N + 1 \))/2 spheres is used to represent modes of odd mode order \(N \) and a number of (\(N + 2 \))/2 spheres in order to represent modes of even mode order. In practice, this means that both second order and third order modes will be represented using two ordinary spheres (see Fig. 4 b and c).

However, unlike for first and third order modes, not all the poles of the spheres of second order modes carry orbital angular momentum, indeed, one sphere presents the LG\textsubscript{1,0} mode and the mode (\(i\LG1,0 \)) at the poles. This is a general feature of even modes. Also note that the modes at the equator of the spheres no longer correspond to the linear superposition of the poles, as would be the case for generalized Poincaré spheres: for the first sphere of second order modes, for example, we would expect to see HG\textsubscript{1,1} rather than HG\textsubscript{0,2} modes at the equator. This reflects the choice of the authors in Habraken and Nienhuis (2010) to obtain all the modes on these spheres by performing a mode-preserving transformation on the modes at the poles, which can easily be realized in the laboratory using astigmatic mode converters (to move along lines of constant longitude) and image rotators (to move along lines of constant latitude). The geometric phase obtained from a cyclic mode-preserving transformation, which effectively forms a path on these sub-dimensional state spaces, is then calculated using (Calvo 2005):

\[
\phi_{g,N} = -\frac{1}{2} t \Omega,
\]

where \(\Omega \) is the solid angle formed on the sphere describing the transformation. Interestingly, when a path is formed on a sphere on which all modes carry the same amount of orbital angular momentum, like the second sphere of second order modes, no geometric phase is generated (Galvez and O’Connell, 2005). This would indicate that geometric phases are mediated by a variation of orbital angular momentum, in the same way as polarization transformations that generate a PB phase involve variation of the spin angular momentum (Van Enk, 1993; McWilliam et al., 2022; Tiwari, 1992). While the sphere-based representation is useful as it directly relates to transformations that are easily realisable in the laboratory, it is not suitable to describe generic transformations in the state space of higher order modes.

Interpreting spatial transverse modes in terms of a fibre bundle would allow us to explore geometric phases over the entire state space, not just over two-dimensional sub-spaces. For a spatial transverse mode of order \(N \), the relevant fibre bundle would be the so called tautological line bundle, with the same base space \(\mathbb{CP}^N \), total space \(\mathbb{H}_{N+1} \) and \(U(1) \) as the fibre. It would be interesting to determine, at least theoretically, whether transforma-
Figure 9: Spheres of spatial transverse modes following the convention of Habraken and Nienhuis [2010], with all modes on one sphere linked by optical mode converters and rotators. a. The sphere of first order modes is the direct analogue of the Poincaré sphere. b. and c. Second and third order modes each are represented on two spheres. For simplicity, we shall only consider first order transverse modes, in which case we are dealing with a two-qubit system [Souza et al., 2007]. Homogeneously polarized light is described by a product state, separable into a qubit that describes the polarization, and one for the spatial mode. Light with non-homogeneous polarization instead is non-separable in these distinct degrees of freedom [Souza et al., 2007]. Well-known examples of non-separable modes are radially and azimuthally polarized modes of the form \(LG^0_1 + LG^0_2\), where \(\sigma^\pm\) represents left and right circular polarised light respectively [Liu et al., 2018; Otte et al., 2016; Selyem et al., 2019; Zhan, 2009]. These modes have received increasing attention as they can be focused to tighter spots than their uniformly polarized counterparts [Youngworth and Brown, 2000]. General vector beams built from first order modes are usually represented using two Poincaré-like \(S^2\) spheres, shown in Fig. 10, where the poles correspond to uniformly circularly polarized vortex modes, of helicity \(\sigma = \pm 1\) and carrying an optical vortex of topological charge \(\ell = \pm 1\). The states on the equator correspond to co-rotating modes, such as radial and azimuthal modes, and counter-rotating modes [Holleczek et al., 2011; Milione et al., 2011]. The geometric phase associated with the transformation of these modes is then calculated from the solid angle \(\Omega\) formed on the relevant sphere [Milione et al., 2011]:

\[
\phi_g = \pm \frac{1}{2}(\ell + \sigma)\Omega,
\]

The total geometric phase is thus linked to the total angular momentum of the beam \(\ell + \sigma\). This was experimentally verified in [Milione et al., 2012], where a combination of a half wave plate and an astigmatic mode converter realized the mode transformation.

Again, the space of pure states of a two-qubit system, \(\mathbb{C}P^3\), is not an ordinary sphere. However, depending on the degree of separability of the states, the associated substate space may take a more recognizable form.

C. Geometric phases of general vectorial fields

Combining the polarization and spatial degrees of freedom of light amounts to building a bipartite system, where the Hilbert space of the system corresponds to the tensor product of the individual spaces \(H_{\text{pol}} \otimes H_{\text{spa}}\).
Figure 10: Spheres of first order polarized modes. On the left sphere, \(\sigma = -\ell \) at the poles and the modes on the equator are co-rotating vector modes. For the sphere on the right, \(\sigma = \ell \) and the modes on the equator are counter-rotating modes.

Separable states for instance, form a \(\mathbb{C}P^1 \otimes \mathbb{C}P^1 \) subspace, called Segre embedding \((\text{Bengtsson and Zyczkowski}, 2006) \). There is a curious correspondence between the geometry of arbitrary separable states and the fibre bundle with base space \(S^4 \), fibre \(S^3 \) and total space \(S^7 \) \((\text{Mosseri and Dandoloff}, 2001) \). Interestingly, this fibration is a generalization of the Hopf fibration, and is normally used to describe quaternions, but it has also been used to study the geometric phases of two-qubit systems \((\text{Lévay}, 2004) \). The phase associated with the cyclic evolution of a maximally entangled state is purely topological \((\text{Lévay}, 2004; \text{Milman and Mosseri}, 2003) \). The topological phase arising under the cyclic transformation of maximally non-separable optical modes has been measured in \((\text{Matoso et al.}, 2019; \text{Souza et al.}, 2014, 2007) \). It would be useful to study whether the tautological line bundle over \(\mathbb{C}P^3 \) yields similar results, considering that the Hopf fibration is not originally intended for the description of complex fields, and does not generalize to arbitrary dimensions.

In this section, we have considered vector modes built from first order modes, but a more general description would include arbitrary vector fields based on spatial modes of higher order. The sphere-based representation presented in Fig. 10 then needs to be expanded by allowing the LG beams at the poles to be of different topological charge, \(\ell \) and \(m \). The associated geometric phase then reads \((\text{Yi et al.}, 2015) \):

\[
\phi_g = -\frac{\ell - (m + 2\sigma)}{4} \Omega,
\]

where \(\Omega \) is the solid angle formed on the modified sphere under consideration. This phase was measured in \((\text{Liu et al.}, 2017) \) using two identical q-plates. Interpreting this phase in terms of a fibre bundle is certainly possible, but would be pure speculation without first addressing the questions raised by two-qubit systems.

VI. SUMMARY AND PERSPECTIVES

Fibre bundle theory presents a rigorous treatment for the understanding of phases. It sheds light on the origin of the solid angle law linking a geometric phase to the path formed on a generalised Poincaré sphere representing the mode space when the mode is transformed. These spaces however often only represent two-dimensional subspaces of a high dimensional state space. They cannot be represented by a sphere and are difficult to visualize, they may however present geometric and topologic features giving birth to interesting geometric and topologic phases, undetectable in the two-dimensional sub-space descriptions. Majorana-based representations are slowly emerging, they are capable of providing an accurate expression for geometric phases born in high dimensional state spaces, while providing a clear visual interpretation. At a more fundamental level, tautological line bundles should be used to calculate these geometric phases, the only ingredient needed is the connection on these bundles. Research on general vectorial modes raises the question of how non-separability can be accounted using fibre bundles, and whether this causes measurable effects.

With this colloquium we hope to encourage collaborations between the optics and the mathematics communities, as we believe that higher order structured Gaussian modes and vector modes may allow the exploration of new concepts.

VII. ACKNOWLEDGEMENTS

The authors acknowledge insightful discussions with Remy Mosseri, Antonio Zelaquett Khoury, Kerr Maxwell and Mark Dennis.

This work was supported by the Royal Society through a Newton International Fellowship (NIF/R1/192384), the Leverhulme Trust and the UK’s Engineering and Physical Research Council with grant number EP/V048449/1.

REFERENCES

Agarwal, G S (1999), “SU(2) structure of the Poincaré sphere for light beams with orbital angular momentum,” J. Opt. Soc. Am. A 16 (12), 2914–2916.

Aharonov, Y., and J. Anandan (1987), “Phase change during a cyclic quantum evolution,” Phys. Rev. Lett. 58, 1593–1596.

Allen, L., J. Courtial, and M. J. Padgett (1999), “Matrix formulation for the propagation of light beams with orbital and spin angular momenta,” Phys. Rev. E 60, 7497–7503.
metric phases, entangled systems, and local unitary transformations," Phys. Rev. Lett. 91, 090405.
Feldbau, J (1939), “Sur la classification des espaces fibrés.” C. R. Acad. Sci., Paris 208, 1621–1623.
Forbes, Andrew, Michael de Oliveira, and Mark R. Dennis (2021), “Structured light,” Nature Photonics 15 (4), 253–262.
Galvez, E J, P. R. Crawford, H. I. Sztul, M. J. Pysher, P. J. Haglin, and R. E. Williams (2003), “Geometric phase associated with mode transformations of optical beams bearing orbital angular momentum,” Phys. Rev. Lett. 90, 203901.
Galvez, Enrique J, Shreya Khadka, William H. Schubert, and Sean Nomoto (2012), “Poincaré-beam patterns produced by nonseparable superpositions of Laguerre-Gauss and polarization modes of light,” Appl. Opt. 51 (15), 2925–2934.
Galvez, Enrique J, and Megan A. O’Connell (2005), “Existence and absence of geometric phases due to mode transformations of high-order modes,” in Nanomanipulation with Light Vol. 5736, edited by David L. Andrews, International Society for Optics and Photonics (SPIE) pp. 166 – 172.
Gibbons, G W, and C. N. Pope (1978), “CP2 as a gravitational instanton.” Communications in Mathematical Physics 61 (3), 239–248.
Gutiérrez-Cuevas, R, S. A. Wadoo, A. N. Vamivakas, and M. A. Alonso (2020), “Modal majorana sphere and hidden symmetries of structured-gaussian beams,” Phys. Rev. Lett. 125, 123903.
Habraken, Steven J M, and Gerard Nienhuis (2010), “Geometric phases in higher-order transverse optical modes,” in Complex Light and Optical Forces IV Vol. 7613, edited by Enrique J. Galvez, David L. Andrews, and Jesper Glückstad, International Society for Optics and Photonics (SPIE) pp. 121 – 128.
Hannay, J H (1985), “Angle variable holonomy in adiabatic excursion of an integrable Hamiltonian.” Journal of Physics A: Mathematical and General 18 (2), 221–230.
Hannay, J H (1998), “The Berry phase for spin in the Majorana representation.” Journal of Physics A: Mathematical and General 31 (2), L53–L59.
Holleckcz, Annemarie, Andrea Aiello, Christian Gabriel, Christoph Marquardt, and Gerd Leuchs (2011), “Classical and quantum properties of cylindrically polarized states of light.” Opt. Express 19 (10), 9714–9736.
Hopf, H (1931), “Über die abbildungen der dreidimensionalen sphäre auf die kugelfläche,” Mathematische Annalen 104, 637–665.
Jisha, Chandroth Pannian, Stefan Nolte, and Alessandro Abberucci (2021), “Geometric phase in optics: From wavefront manipulation to waveguiding,” Laser & Photonics Reviews 15, 2100003.
Kataevskaya, I V, and N D Kundikova (1995), “Influence of the helical shape of a fibre waveguide on the propagation of light,” Quantum Electronics 25 (9), 927–928.
Kim, Jiwan, Yanning Li, Matthew N. Miskiewicz, Chulwoo Oh, Michael W. Kudoven, and Michael J. Escuti (2015), “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica 2 (11), 958–964.
Kitano, M, T. Yabuzaki, and T. Ogawa (1987), “Comment on “Observation of Berry’s topological phase by use of an optical fiber”,” Phys. Rev. Lett. 58, 523–525.
Leach, Jonathan, Mark R. Dennis, Johannes Courtial, and Miles J. Padgett (2004), “Knotted threads of darkness,” Nature 432 (7014), 165–165.
Lee, Yun-Han, Guanjun Tan, Tao Zhan, Yishi Weng, Guigeng Liu, Fangwang Gou, Fenglin Peng, Nelson V. Tabiryan, Sebastian Gauza, and Shin-Tson Wu (2017), “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Optical Data Processing and Storage 3 (1), 79–88.
Lévay, Péter (2004), “The geometry of entanglement: metrics, connections and the geometric phase.” Journal of Physics A: Mathematical and General 37 (5), 1821–1841.
Liu, Sheng, Shuxia Qi, Yi Zhang, Peng Li, Dongjing Wu, Lei Han, and Jianlin Zhao (2018), “Highly efficient generation of arbitrary vector beams with tunable polarization, phase, and amplitude,” Photonics Research 6 (4), 228.
Liu, Yuanyuan, Zhenxing Liu, Junxiao Zhou, Xiaohui Ling, Weixing Shu, Haifu Luo, and Shuangchun Wen (2017), “Measurements of Pancharatnam Berry phase in mode transformations on hybrid-order Poincare sphere,” Opt. Lett. 42 (17), 3447–3450.
Lubkin, Elihu (1963), “Geometric definition of gauge invariance,” Annals of Physics 23 (2), 233–283.
Lyre, Hoëlger (2014), “Berry phase and quantum structure,” Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 45, 45–51.
Ma, LB, SL Li, Vladimir M Pomin, Martina Hentschel, Jörg B Götte, Yin Yin, MR Jorgensen, and Oliver G Schmidt (2016), “Spin-orbit coupling of light in asymmetric microcavities,” Nature Communications 7 (1), 1–6.
Majorana, Ettore (1932), “Atomi orientati in campo magnetico variabile,” Il Nuovo Cimento 9 (2), 43–50.
Marrucci, L, C. Manzo, and D. Paparo (2006), “Optical spin-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905.
Matoso, A A, R. A. Ribeiro, L. E. Oxman, A. Z. Khoury, and S. Pádua (2019), “Fractional topological phase measurement with a hyperentangled photon source,” Scientific Reports 9 (1).
McWilliam, Amy, Claire Marie Cisowski, Robert Bennett, and Sonja Franke-Arnold (2022), “Angular momentum redirection phase of vector beams in a non-planar geometry,” Nanophotonics 11 (4), 727–736.
Milione, Giovanni, S. Evans, D. A. Nolan, and R. R. Alfano (2012), “Higher order Pancharatnam-Berry phase and the angular momentum of light,” Phys. Rev. Lett. 108, 190401.
Milione, Giovanni, H. I. Sztul, D. A. Nolan, and R. R. Alfano (2011), “Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light,” Phys. Rev. Lett. 107, 053601.
Milman, Pérola (2006), “Phase dynamics of entangled qubits,” Phys. Rev. A 73, 062118.
Milman, Pérola, and Rémy Mosseri (2003), “Topological phase for entangled two-qubit states,” Phys. Rev. Lett. 90, 230403.
Montgomery, Richard (1993), “Gauge theory of the falling cat,” Fields Inst. Commun. 1, 10.1090/fic/001/09.
Mosseri, Rémy, and Rossen Dandoloff (2001), “Geometry of entangled states, Bloch spheres and Hopf fibrations,” Journal of Physics A: Mathematical and General 34 (47), 10243–10252.
Mosseri, Rémy, and Pedro Ribeiro (2007), “Entanglement and Hilbert space geometry for systems with a few qubits,” Math. Struct. Comput. Sci. 17 (6), 1117–1132.
Nakahara, Mikio (1990), Geometry, topology and physics. Graduate student series in physics (Hilger, Bristol).
O’Neil, Anna T, and Johannes Courtial (2000), “Mode transformations in terms of the constituent Hermite–Gaussian or Laguerre–Gaussian modes and the variable-phase mode converter,” Optics Communications 181 (1), 35–45.

Otte, E, C Alpmann, and C Denz (2016), “Higher-order polarization singularities in tailored vector beams,” Journal of Optics 18 (7), 074012.

Padgett, M J, and J. Courtial (1999), “Poincaré-sphere equivalent for light beams containing orbital angular momentum,” Opt. Lett. 24 (7), 430–432.

Pancharatnam, S (1956), “Generalized theory of interference and its applications,” Proceedings of the Indian Academy of Sciences - Section A 44 (6), 398–417.

Radwell, N, R. D. Hawley, J. B. Götte, and S. Franke-Arnold (2016), “Achromatic vector vortex beams from a glass cone,” Nature Communications 7 (1), 10.1038/ncomms10564.

Ramaseshan, S Nityananda, R (1986), “The interference of polarized light as an early example of Berry’s phase,” Current Science India 55, 1225–1226.

Ross, J N (1984), “The rotation of the polarization in low birefringence monomode optical fibres due to geometric effects,” Optical and Quantum Electronics 16 (3), 455–461.

Rytov, S M (1938), “On transition from wave to geometrical optics,” Dokl. Akad. Nauk. SSSR 18(2).

Samuel, Joseph, and Rajendra Bhandari (1988), “General setting for Berry’s phase,” Phys. Rev. Lett. 60, 2339–2342.

Samuel, Joseph, and Supurna Sinha (1997), “Thomas rotation and polarized light: A non-abelian geometric phase in optics,” Pramana 48 (5), 969–975.

Schwinger, Julian (1977), “The Majorana formula,” Transactions of the New York Academy of Sciences 38 (1 Series II), 170–184.

Seifert, H (1933), “Topologie dreidimensionaler gefaserter Räume,” Acta Mathematica 60 (0), 147–238.

Selyem, Adam, Carmelo Rosales-Guzmán, Sarah Croke, Andrew Forbes, and Sonja Franke-Arnold (2019), “Basis-independent tomography and nonseparability witnesses of pure complex vectorial light fields by stokes projections,” Physical Review A 100 (6).

Serre, Jean-Pierre (1951), “Homologie singulière des espaces fibrés,” The Annals of Mathematics 54 (3), 425.

Simon, Barry (1983), “Holonomy, the quantum adiabatic theorem, and Berry’s phase,” Phys. Rev. Lett. 51, 2167–2170.

Sjöqvist, Erik, Arun K. Pati, Artur Ekert, Jeeva S. Anandan, Marie Ericsson, Daniel K. L. Oi, and Vlatko Vedral (2000), “Geometric phases for mixed states in interferometry,” Phys. Rev. Lett. 85, 2845–2849.

Souza, C E R, J. A. O. Huguenin, and A. Z. Khoury (2014), “Topological phase structure of vector vortex beams,” J. Opt. Soc. Am. A 31 (5), 1007–1012.

Souza, C E R, J. A. O. Huguenin, P. Milman, and A. Z. Khoury (2007), “Topological phase for spin-orbit transformations on a laser beam,” Phys. Rev. Lett. 99, 160401.

Steenrod, NE, N. Steenrod, and Princeton University Press (1951), The Topology of Fibre Bundles, Princeton landmarks in mathematics and physics (Princeton University Press).

Sugic, Danica, Ramon Droop, Eileen Otte, Daniel Ehrmantraut, Franco Nori, Janne Ruostekoski, Cornelia Denz, and Mark R. Dennis (2021), “Particle-like topologies in light,” Nature Communications 12 (1), 10.1038/s41467-021-26171-3.

Tiwari, SC (1992), “Geometric phase in optics,” Journal of Modern Optics 39 (5), 1097–1105.

Tomita, Akira, and Raymond Y. Chiao (1986), “Observation of Berry’s topological phase by use of an optical fiber,” Phys. Rev. Lett. 57, 937–940.

Ungar, Abraham A (2002), “The hyperbolic geometric structure of the density matrix for mixed state qubits,” Foundations of Physics 32 (11), 1671–1699.

Urbanke, H (1991), “Two-level quantum systems: States, phases, and holonomy,” American Journal of Physics 59 (6), 503–509.

Vinitskii, S I, V L Derbov, Vladimir M Dubovik, B L Markovski, and Yu P Stepanovskii (1990), “Topological phases in quantum mechanics and polarization optics,” Soviet Physics Uspekhi 33 (6), 403–428.

Vladimirsikiy, VV (1941), “The rotation of a polarization plane for curved light ray,” Dokl. Akad. Nauk. SSSR 31.

Whitney, H (1935), “Sphere-spaces,” Proceedings of the National Academy of Sciences 21 (7), 464–468.

Wilczek, F, and A Shapere (1989), Geometric Phases in Physics, 1st ed. (World Scientific, Singapore).

Wilczek, Frank, and A. Zee (1984), “Appearance of gauge structure in simple dynamical systems,” Phys. Rev. Lett. 52, 2111–2114.

Wu, Tai Tsun, and Chen Ning Yang (1975), “Concept of non-integrable phase factors and global formulation of gauge fields,” Phys. Rev. D 12, 3845–3857.

Yang, Chen Ning (1996), “Magnetic monopoles, fiber bundles, and gauge fields,” in NATO ASI Series (Springer US) pp. 55–65.

Yang, Chen Ning (2014), “The conceptual origins of Maxwell’s equations and gauge theory,” Physics Today 67 (11), 45–51.

Yi, Xiong, Yachao Liu, Xiaohui Ling, Xinxing Zhou, Yougang Ke, Hailu Luo, Shuangchun Wen, and Diannyan Fan (2015), “Hybrid-order poincaré sphere,” Phys. Rev. A 91. 023801.

Youngworth, K S, and T. G Brown (2000), “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7 (2), 77–87.

Zela, Francisco De (2012), “The Pancharatnam-Berry phase: Theoretical and experimental aspects,” in Theoretical Concepts of Quantum Mechanics (InTech).

Zhan, Qiwen (2009), “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1 (1), 1–57.

Zwanziger, J W, M Koenig, and A Pines (1990), “Berry’s phase,” Annual Review of Physical Chemistry 41 (1), 601–646.