Towards an understanding of the genus *Glutinoglossum* with emphasis on the *Glutinoglossum glutinosum* species complex (Geoglossaceae, Ascomycota)

A.G. Fedosova\(^1\), E.S. Popov\(^1\), P. Lízòň\(^2\), V. Kučera\(^2\)

Key words
earth tongues
key
morphology
new species
systematics
typification

Abstract
Glutinoglossum is one of the earth tongue genera with viscid or glutinous ascoscars. Based on morphology and ITS1-5.8S-ITS2, nLSU and tef1 sequence data, seven new species are described: *G. cincinnatum*, *G. umbircrake*, *G. orientale*, *G. peregrinana*, *G. proliferatum*, *G. pseudoglutinosum*, and *G. triseptatum*. The lectotypes for *Geoglossum glutinosum* var. *lubricum* and for *Geoglossum glabrum* var. *majus* as well as the epiotype for *Glutinoglossum glutinosum* are designated. The comprehensive morphological study of *G. heptaseptatum* resulted in the discovery of ascospores germinating by conidia inside the asci, which is first noted for *Glutinoglossum* species. The status of *Cibalocoryne* is discussed.

Article info
Received: 27 December 2016; Accepted: 13 September 2017; Published: 4 December 2017.

Dedicated to the memory of Professor Richard P. Korf (28 May 1925 – 20 August 2016)

INTRODUCTION

Glutinoglossum is a recently described genus in the family *Geoglossaceae* (Hustad et al. 2013). The genus comprises fungi with orthotropic clavate or cylindrical stipitate dark coloured ascoscars. It differs from the other genera in the family in having viscid or glutinous ascoscars and pale brown, mostly straight paraphyses with enlarged apical cells continuing beyond the hymenium down the stipe and forming a distinct gelatinous layer. Ascospores are slow-maturing with mostly 3 or 7 septa. Though the genus *Geoglossum* also accommodates some species with glutinous ascoscars (*G. affine*, *G. peckianum*, and *G. uliginosum*), *Glutinoglossum* forms a separate clade with *G. glutinosum* as a core according to molecular evidence (Hustad et al. 2013, Hustad & Miller 2015).

Geoglossum glutinosum was described by Persoon (1796). The highly polymorphic nature of the species was observed by early mycologists and resulted in description of several infraspecific taxa – *Geoglossum glutinosum* var. *sylvestre*, *G. glutinosum* var. *lubricum*, *G. glutinosum* forma *minor* (Persoon 1797, 1822, Saccardo 1878). Persoon (1797) described also *Geoglossum viscosum*, one more species with viscid ascoscars. The main differences between those taxa as they were understood at the time consisted in macromorphological characters and ecological preferences.

Hazslinszky (1881) divided the genus *Geoglossum* into four genera based on the characters of hymenium and ascospores: *Eugeoglossum*, *Helote*, *Corynetes*, and *Cibalocoryne* which included the only species with glutinous ascoscars, *C. viscosa*. In the same article Hazslinszky also treated his newly described genera as subgenera of *Geoglossum*. The issue of the rank of *Cibalocoryne* and validity of its publication has been raised in literature repeatedly (Mains 1954, Maas Geesteranus 1964, Hustad et al. 2013, Hustad & Miller 2015); nevertheless, the problem still has not resolved. *Cibalocoryne* as well as *C. viscosa* and *Geoglossum* subg. *Cibalocoryne* currently are forgotten names for the taxa of the family *Geoglossaceae*.

Durand (1908) was the first who paid attention to viscid gelatinous ascoscars and descending paraphyses which form continuous layer to the stipe of some geoglossoid fungi. On this basis he erected the genus *Gloeoglossum* with *G. difforme* as a type species, *G. glutinosum*, and *G. affine* (Durand 1908). Imai (1941) added two more species, *G. barlae* and *G. umbatritele*, and proposed inclusion of *Gloeoglossum bogoriense* in *Gloeoglossum*. However, later he transferred these species into the genus *Cibalocoryne* (Imai 1942). Many subsequent authors dealing with the group recognized neither *Cibalocoryne* nor *Gloeoglossum* and treated mentioned taxa within the *Geoglossum* (Lloyd 1916, Nannfeldt 1942, Mains 1954). Nowadays, the genus *Gloeoglossum* is treated as a synonym of *Geoglossum* since the type species *G. difforme* belongs to *Geoglossum* s.str. clade (Hustad et al. 2013). Nannfeldt (1942) pointed out isolated position of *G. glutinosum* within *Geoglossum* due to its highly viscid ascoscars, peculiarities of paraphyses and asci. Moreover, he focused to ascospore colouring and number of septa at maturity and put *G. glutinosum* into a group with tardily coloured and seven or fewer septated ascospores.

Recent phylogenetic analysis (Hustad et al. 2013) showed that *Geoglossum glutinosum* formed a well-supported clade separate from *Geoglossum* and allowed the establishment of a new genus *Glutinoglossum* for *G. glutinosum* and the closely related *G. heptaseptatum*. Later Hustad & Miller (2015) undertook a comprehensive examination of *Glutinoglossum* based on a statistical analysis of molecular data and morphology and recognized four additional species, namely *G. americanum* from North America, and *G. australasicum*, *G. exiguum*, and *G. methvenii* from Australasia.

All aforementioned *Glutinoglossum* species previously were considered as a single *Geoglossum glutinosum* species which had worldwide distribution. The use of molecular approach pushed to the revision of morphological characters, geographical and ecological data which, as it turned out, are important for any reuse or distribution, you must make clear to others the license terms of this work, which can be found at http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode. Any of the above conditions can be waived if you get permission from the copyright holder. Nothing in this license impairs or restricts the author’s moral rights.
for species delimitation. All this resulted in the description of new species (Hustad et al. 2013, Hustad & Miller 2015), and allowed considering Geoglossum glutinosum in the sense of previous authors as a species complex.

Our study focusing foremost on material of Geoglossum glutinosum from Europe and Northern Asia resulted in:

i. delimitation of seven new species related to G. glutinosum based both on morphological and molecular data;

ii. emendation of description of G. glutinosum and designation of the epitype;

iii. increase of knowledge about biogeography and details of ascospore development of G. heptaseptatum; and

iv. designation of the lectotypes for Geoglossum glutinosum var. lubricum and for Geoglossum glutinosum var. majus.

MATERIALS AND METHODS

Specimens and morphological studies

The study is based on recently collected material as well as on specimens preserved in European and Asian herbaria (L, LE, LEP, PAD, SAV, TAAM, and VLA). Herbarium acronyms are used in accordance with Index Herbariorum (Thiers, continuously updated). Species descriptions are based on the studied material while description of the genus was compiled using both literature and studied material. The macro-morphological characters of collections were described according to the observations of fresh and dry material as well as the image analysis of the photos. The micro-morphological structures were examined in dried material. Fragments of ascocarps were mounted in 5 % KOH and tap water for standard light microscopy. To test the amyloid reaction of asci’s walls and apical rings Melzer’s reagent (MLZ) and Lugol’s solution (IKI) without KOH pre-treatment were used. The images of micro-morphological characters were captured with an AxioCam MRC 5 digital camera on an Axiol- mager A1 microscope (Carl Zeiss, Göttingen, Germany). The measurements of micro-morphological characters and Q value (length / width ratio) were made in KOH and given according to the formula: \(Q = \frac{\text{length}}{\text{width}} \).

Ascospore septation is described in the following format: e.g., (0–)3(4–6)7, meaning that spores with 3 and 7 septa predominantly, but spores with 1, 6 or without septa can also be found. Number of septa for ascospores inside asci was noted. The collected specimens were deposited in the Mycological Herbarium of the Komarov Botanical Institute (LE), Russian Academy of Sciences, and in the Herbarium of the Institute of Botany (SAV), Slovak Academy of Sciences.

DNA extraction, amplification, and sequencing

Total genomic DNA was extracted from a small piece of a single dried ascocarp using an AxyPrep Multisource Genomic DNA MiniPrep Kit (Axogen Biosciences, Union City, CA, USA). Three rDNA loci were amplified and sequenced. The internal transcribed spacer region (ITS1-5.8S-ITS2, ITS) was amplified and sequenced using the primer pairs ITS1F-ITS4 (White et al. 1990, Gardes & Bruns 1993) and newly designed ITS1F-GEO-F, ITS2R-GEO-R following the protocol set forth in Wang et al. (2011). The primer pair GEO-F (5′-GGCCAACTCCCCACCCCTTG-3′) and GEO-R (5′-AGTCAGCTCGTACAGTGGT-3′) was designed using an OligoAnalyzer 3.1 web tool (https://eu.idtdna.com/calc/analyser). The D1-D3 domains at the 5′ end of the 28S large subunit (nrLSU, LSU) were amplified and sequenced using the primer pairs JS1-LR5 and LR5R-LR5 (Vilgalys & Hester 1990, Cubeta et al. 1991, Landvik 1996) following Co-David et al. (2009). The fragment of the protein-coding gene, translation elongation factor 1 alpha (tef1), was amplified and sequenced using 983F-1567R primers (Rehner 2001). Amplifications were performed using a Thermo Scientific GeneJET PCR Purification Kit (Thermo Scientific, Vilnius, Lithuania) and an AxyPrep™ DNA Gel Extraction Kit (Axogen Biosciences, Union City, CA, USA). For sequencing reaction the BigDye™ Terminator v. 3.1 cycle sequencing Ready Reaction Kit (Applied Biosystems, Foster City, CA, USA) was used. Sequences were generated on the ABI model 3130 Genetic Analyzer and initially processed using the Sequencing Analysis 5.3.1 (Applied Biosystems, Foster City, CA, USA). To obtain the consensus sequences of each specimen BioEdit v. 7.2.5 (Hall 1999) and MEGA6 (Tamura et al. 2013) were used. Sequences generated in this study were submitted to NCBI GenBank (Table 1).

Sequence alignment and phylogenetic analysis

Three alignments consisting of individual datasets of ITS, LSU, and tef1 sequences were created using MAFFT v. 7 web tool (http://mafft.cbrc.jp/alignment/server/) with Q-INS-I strategy and then were corrected manually with MEGA6 (Tamura et al. 2013). To remove ambiguous regions from individual alignment TrimAl v. 1.3 (Capella-Gutiérrez et al. 2009) on the Phylémon2 server (http://phylemon.bioinfo.cifp.es/utilities.html) was used. All alignments were tested by means of PartitionFinder 2 (Lanfear et al. 2017) which includes PhyML program (Guindon et al. 2010), and using greedy algorithm described in Lanfear et al. (2012). The best-fit AICc-selected models of evolution were SYM+I+G for ITS, GTR+I+G for LSU, and SYM+G for tef1. Phylogenetic reconstructions were performed with maximum likelihood (ML) and Bayesian (BA) analyses. The ML phylogenetic analysis was run in RAxML Black Box server (http://embnet-vital-it.raxml bbw/) which implements the search protocol Stamatakis et al. (2008), with Gamma model of rate heterogeneity and estimation of proportion of invariable sites. Clades with a bootstrap support (BS) value > 70 % were considered significant and retained.

Bayesian inference employing a metropolis coupled Markov Chain Monte Carlo algorithm was performed with MrBayes v. 3.2.5 (Ronquist & Huelsenbeck 2003). Four independent chains were run 13 million generations with trees sampled every 100 generations, under the appropriate model parameters. Tracer v. 1.6.0 (Rambaut et al. 2014) was used to evaluate the quality of a sample from the posterior and the continuous parameters, using effective sample size (ESS). The clades with posterior probability (PP) value > 0.95 were considered to be significantly supported.

To obtain combined matrix, individual datasets of ITS, LSU and tef1 were checked for potential conflict before integration into a single dataset. Conflict of individual gene phylogenies was assumed to be significant if clad with ML BS (> 70 %) or BPP (> 0.95) were conflicting in the individual tree topologies (Lutzoni et al. 2004). Since there were no significant conflicting clades among the individual gene topologies, all regions were combined in this order listed: ITS, LSU, and tef1. Further ML and BA phylogenetic analyses were performed on the concatenated dataset as described above. Alignments and phylogenies were deposited in TreeBASE (http://treebase.org) under the submission ID 21085.

RESULTS

Phylogenetic analysis

Ninety new sequences were generated for this study, including 38 ITS, 38 LSU and 14 tef1 (Table 1). To these were added 6 ITS and 4 LSU sequences from our previous studies (Fedosova & Kovalenko 2015, Kučera et al. 2015), and 68 sequences,
Table 1 Voucher information and NCBI GenBank accession numbers of DNA sequences of the specimens used in the phylogenetic analyses. Some sequences retrieved from GenBank were re-identified and the names originally used in GenBank are given after the taxon names (‘as’). The sequences newly generated in this study are marked with ‘*’.

Taxon	Locality	Voucher Information	GenBank accession numbers	Notes
Geoglossum cookeanum	Czech Republic	ILS 67347	KC222122	KC222135
	USA	ILS 61035	JQ256417	JQ256434
Geoglossum diffforme	USA	ILS 67348	KC222123	KC222136
Geoglossum nigritum	USA	ILS 67349	DQ419490	DQ471044 isolate
Geoglossum similie	USA	ILS 67350	KC222125	KC222138
Glutinoglossum americanum as Glutinoglossum glutinosum	USA	ILS 67352	KC222128	KC222141 holotype
G. americana	USA	ILLS 64444	KP690086	KP690098
G. australasicum	New Zealand	PDD 103623	KP690088	KP690100 holotype
G. australasicum as Glutinoglossum glutinosum	New Zealand	PDD 103619	KP690087	KP690099
G. circinatum	Russia: Krasnoyarsk Territory	LE 303993	KX694149* XKKX694187* KX898401* holotype	
G. exiguum	Poland	SAV F-11258	KX694156* KX694195*	
	Russia: Leningrad Region	LE 222165	KX694157* KX694196*	epitype
G. glutinosum	Czech Republic	ILS 67353	KC222129	KC222142
	Czech Republic	SAV F-11203	KX694158* KX694197*	KX898402*
	Czech Republic	SAV F-9965	KX694151* KX694189*	
	Czech Republic	SAV F-11268	KX694152* KX694190*	
	Czech Republic	SAV F-11257	KX694153* KX694191*	
	Czech Republic	SAV F-11248	KX694154* KX694192*	
	Denmark	SAV F-11269	–	
	Poland	SAV F-11258	KX694155* KX694194*	
	Russia: Leningrad Region	LE 222165	KX694157* KX694196*	
	Russia: Republic of Tatarstan	LE 303994	KX694158* KX694197*	KX898402*
	UK	ILS 72217	KP690091	KP690103
	UK	ILS 64446	KP690092	KP690104
	UK	ILS 64445	KP690093	KP690105
G. heptaseptatum	Czech Republic	ILS 63754	KC222130	KC222143
	Czech Republic	K(M) 165359	KC222131	KC222144
	Czech Republic	SAV F-11270	KX694159* KX694198*	
	Latvia	LE 303990	KX694160* KX694199*	
	Russia: Leningrad Region	LE 236625	KX694161* –	
	Russia: Leningrad Region	LE 222169	KX694162* KX694200*	
	Russia: Leningrad Region	LE 222479	KX694163* –	KX898403*
	Russia: Leningrad Region	LE 222167	KX694164* KX694201*	
	Slovakia	SAV F-10544	KU215768	KU215770
	Slovakia	SAV F-10540	KU215767	KU215769
G. lumbricale as Geoglossum glutinosum	China	HMAS 72096	HQ222870	–
G. lumbricale	Russia: Novgorod Region	LE 303987	KX694165* KX694202* KX898404* holotype	
G. methvenii	New Zealand	PDD 103629	KP690006	KP690108
	New Zealand	PDD 103597	KP690095	KP690107
	New Zealand	PDD 103604	KP690097	KP690109
G. orientale	Vietnam	LE 291818	KX694167* KX694204* KX898405* holotype	
G. peregrinans	Finland	SAV F-10789	KX694168* KX694205*	
	Russia: Karachayevo-Circassian Republic	LE 291817	KX694169* KX694206* KX898407*	
	Russia: Primorye Territory	LE 303988	KX694170* KX694207* KX898408* holotype	
	Russia: Primorye Territory	LE 303989	KX694171* KX694208* KX898409*	
	Russia: Pekov Region	LE 222635	KX694172* KX694209* KX898410*	
	Russia: Pekov Region	LE 222636	KX694173* KX694210* KX898411*	
	Slovakia	SAV F-11246	KX694174* KX694212*	
	Romania	SAV F-11249	KX694175* KX694212*	
	Finland	SAV F-11243	KX694176* KX694213*	
	Czech Republic	SAV F-11255	KX694177* KX694214*	
	Slovakia	SAV F-11063	KX694178* KX694215*	
	Slovakia	SAV F-11196	KX694179* KX694216*	
	Slovakia	SAV F-11246	KX694180* KX694217*	
	Slovakia	SAV F-11265	KX694181* KX694218*	
	Slovakia	SAV F-10406	KX694182* KX694219*	
	Slovakia	SAV F-11267	–	
	Slovakia	SAV F-10399	KX694183* KX694221*	
	Slovakia	SAV F-11251	KX694184* KX694222*	
	UK	ILS 64448	KP690094	KP690106
G. pseudoglutinosum	Strain 1100649	–	–	strain
G. pseudoglutinosum as Geoglossum glutinosum	USA	ILS 60491	JQ256423 JN012009 outgroup	
G. triseptatum	Slovakia	SAV F-9828	KX694185* KX694223*	
	Slovakia	SAV F-10526	KX694196* KX694224*	
Graddonia coracina	USA	ILS 60491	KX694185	
Leucoglossum durandii as Trichoglossum durandii	China	HMAS 70090	HQ222875	–
including outgroup taxon (Graddonia coracina), were retrieved from NCBI GenBank (Table 1).

Table 1 (cont.)

Taxon	Locality	Voucher	GenBank accession numbers	Notes
L. leucosporum	Germany	B 70 0015491	KP272110 – – –	holotype
	Germany	B 70 0015492	KP272111 – – –	
	Russia	LE 291874	KP272112 KP272113 KP272211	
	Russia	LE 291891	KP272114 KP272115 KP272116	
Sabuloglossum arenarium	Finland	OULU-F077201	GU324785 GU324786	isolate
S. arenarium	The Netherlands	ILLS 61043	JQ256426 JQ256440 –	
Sarcoleotia globosa	Czech Republic	OSC63633	AY789410 AY789409 –	strain
Trichoglossum hirsutum	USA	ILLS 61045	JQ256428 JQ256442 –	
		ILLS 67355	KG221232 KG221245 –	

The phylogenetic analyses of three combined matrix revealed six well-supported monophyletic clades corresponding to the genera Geoglossum, Glutinoglossum, Leucoglossum, Sabuloglossum, Sarcoleotia, and Trichoglossum (Fig. 1). Glutinoglossum was recovered as a well-supported genus (BS = 74, PP = 1). Within the genus Glutinoglossum ten clades had a high support (Fig. 2). Glutinoglossum cinctatum and G. proliferatum each are represented by single sequence and form two separate lineages. The combination of the unique morphological characters of respective specimens and statistical support of molecular data allowed us to consider these lineages as distinct species on a par with G. americanum, G. australasicum, G. exigum, G. glutinosum, G. heptaseptatum, G. lumbricale, G. methvenii, G. orientale, G. peregrinans, G. pseudoglutosum, and G. triseptatum. The clade of G. pseudoglutosum was unsupported in the phylogenetic analyses, but has distinctive morphological and ecological characters. Thus, in this work we recognize thirteen species of Glutinoglossum, seven of which
are new. Below the description of the genus Glutinoglossum and descriptions of nine species distributed in Eurasia are given.

TAXONOMIC PART

Glutinoglossum Hustad et al., Persoonia 31: 104. 2013

Type species. *Glutinoglossum glutinosum* (Pers.) Hustad et al. (≡ *Geoglossum glutinosum* Pers.).

Asccarps solitary, scattered, gregarious, subcaespitose, clavate, lanceolate, cylindrical-clavate, clavate-capitate, sometimes rudimentary bifurcated, stipitate, 10–75 mm high, dark brown, black, brown, glutinous, viscid. **Ascigerous part** clavate, lanceolate, cylindrical, capitate, 1/2–4/5 the total length of the ascocarp, black, dark brown. **Stipe** dark brown, black, usually slightly lighter than the ascigerous part. **Asci** narrowly clavate, clavate, cylindrical-clavate, 8-spored, arising from croziers, with inamyloid wall and euamyloid apical ring. **Ascospores** subfusoid, cylindrical, clavate, slightly curved, slow-maturing, initially hyaline and aseptate, becoming septate and coloured (pale brown to brown) in maturity, with one or several lipid drops in each cell, germinating by ovoid, subglobose or ellipsoid, pale brown, brown, one-celled conidia inside the asci. **Paraphyses** hyaline below, brown, pale brown to hyaline in the apical part, mostly straight, anastomosing in basal and middle parts, simple or sometimes branching, immersed in light brown or brown amorphous matrix in apical part. **Apical cells of paraphyses** cylindrical, slightly swollen, enlarged up to pyriform, globose, sometimes proliferating, incrusted. **Hyphae of stipe surface** mostly like paraphyses.

![Phylogenetic tree](image)

Fig. 2 Phylogenetic tree generated from maximum likelihood analysis based on ITS-LSU-tef1 sequence data. Main subtree – the genus *Glutinoglossum*. Numbers above branches indicate BS values > 70 %, thickened branches indicate PP value > 0.95. Holotypes and epitype are in bold. The parts of Russia are abbreviated: C = the Caucasus Mountains; E = European part; FE = the Far East; S = Southern Siberia. Scale bar represents the number of nucleotide changes per site.
Glutinoglossum

G. glutinosum
- Size of asci (μm): 209–241 × 12.0–16.0
- Predominantly number of septa of ascospores: 3
- Size of ascospores (μm): 63–72 × 4.5–5.0
- Apical part of paraphyses: Straight
- Apical cells of paraphyses: Pyriform, capitellate
- Habitat: Grassland
- Distribution: Europe

G. methvenii
- Size of asci (μm): 227–254 × 16.0–17.0
- Predominantly number of septa of ascospores: 3
- Size of ascospores (μm): 89–76 × 5.0–6.0
- Apical part of paraphyses: Curved, hooked
- Apical cells of paraphyses: Slightly inflated
- Habitat: Forest
- Distribution: Australasia

G. triseptatum
- Size of asci (μm): 222–239 × 13.0–14.5
- Predominantly number of septa of ascospores: 3
- Size of ascospores (μm): 73–76 × 4.5–5.0
- Apical part of paraphyses: Straight
- Apical cells of paraphyses: Inflated, pyriform
- Habitat: Wet grassland
- Distribution: Europe

G. americanum
- Size of asci (μm): 182–220 × 12.5–14.5
- Predominantly number of septa of ascospores: 2
- Size of ascospores (μm): 61–70 × 4.0–4.5
- Apical part of paraphyses: Straight
- Apical cells of paraphyses: Pyriform
- Habitat: Forest
- Distribution: North America

G. australasicum
- Size of asci (μm): 208–256 × 17.5–19.5
- Predominantly number of septa of ascospores: 3
- Size of ascospores (μm): 80–92 × 4.0–5.0
- Apical part of paraphyses: Filiform, straight
- Apical cells of paraphyses: Clavate-cylindrical
- Habitat: Wet grassland
- Distribution: Australasia

G. exiguum
- Size of asci (μm): 135–245 × 15.0–16.0
- Predominantly number of septa of ascospores: 2
- Size of ascospores (μm): 83–92 × 4.0–5.0
- Apical part of paraphyses: Straight
- Apical cells of paraphyses: Pyriform-globose
- Habitat: Forest
- Distribution: Australasia

G. heptaseptatum
- Size of asci (μm): 215–225 × 14.0–15.0
- Predominantly number of septa of ascospores: 3
- Size of ascospores (μm): 74–87 × 4.5–5.0
- Apical part of paraphyses: Straight
- Apical cells of paraphyses: Pyriform, globose
- Habitat: Grassland
- Distribution: Europe, North America

G. circinatum
- Size of asci (μm): 217–249 × 15.5–21.0
- Predominantly number of septa of ascospores: 2
- Size of ascospores (μm): 76–94 × 5.0–5.5
- Apical part of paraphyses: Cirrinate, straight
- Apical cells of paraphyses: Inflated, pyriform, globose
- Habitat: Forest
- Distribution: Asia

G. lumbricale
- Size of asci (μm): 202–231 × 13.5–14.0
- Predominantly number of septa of ascospores: 0–3
- Size of ascospores (μm): 59–84 × 3.5–5.0
- Apical part of paraphyses: Filiform, straight, curved, hooked, cirrinate
- Apical cells of paraphyses: Cylindrical
- Habitat: Grassland
- Distribution: Europe, Asia

G. orientale
- Size of asci (μm): 237–280 × 14.5–16.5
- Predominantly number of septa of ascospores: 3
- Size of ascospores (μm): 64–94 × 4.5–5.0
- Apical part of paraphyses: Straight
- Apical cells of paraphyses: Chains of pyriform and globose cells
- Habitat: Forest
- Distribution: Asia

G. proliferatum
- Size of asci (μm): 224–258 × 12.0–15.0
- Predominantly number of septa of ascospores: 2
- Size of ascospores (μm): 62–80 × 4.5–5.5
- Apical part of paraphyses: Straight
- Apical cells of paraphyses: Chains of pyriform and globose cells
- Habitat: Grassland
- Distribution: Europe

G. pseudoglutinosum
- Size of asci (μm): 228–267 × 13.5–15.0
- Predominantly number of septa of ascospores: 2
- Size of ascospores (μm): 68–81 × 4.5–5.0
- Apical part of paraphyses: Straight, curved
- Apical cells of paraphyses: Inflated
- Habitat: Grassland, forest
- Distribution: Europe

G. peregrinans
- Size of asci (μm): 225–255 × 13.5–17.0
- Predominantly number of septa of ascospores: 3
- Size of ascospores (μm): 71–86 × 5.0
- Apical part of paraphyses: Hook-like, curved
- Apical cells of paraphyses: Chains of proliferating cells, filiform, cirrinate
- Habitat: Grassland
- Distribution: Europe, Asia

Notes:
- The genus is characterized by dark coloured asco-carps, highly glutinous or viscid when fresh and nitid when dry; it has quite narrow asci and ascospores; ascospores slowly mature remaining pale brown for a long time; paraphyses are immersed in amorphous matrix and stick together, continuing beyond the hymenium down the stipe; apical cells of the paraphyses are mainly swollen, globose or pyriform. The main differences between species consist in form of paraphyses apices (chains of proliferating cells, filiform, cirrinate); in the number of septa in ascosporous which are inside the mature ascii; in size of spores and ascii; in geography and ecology (Fig. 3).

While studying collections of *Glutinoglossum* formation of anastomoses in the basal and middle parts, branching of the apical part and proliferation of the apical cells of paraphyses by hyaline hyphae was noted (Fig. 4a–b, f–g).

One of the most important characters for delimitation of *Glutinoglossum* species is the number of septa that have ascospores contained inside the mature ascii prior the discharge (Fig. 4h–j). Three groups of species based on this character can be distinguished. The first group includes species with only 3-septate ascospores, *G. glutinosum* and *G. triseptatum*. The second group consists of Eurasian species with 3- and 7-septate ascospores, *G. circinatum*, *G. lumbricale*, *G. orientale*, *G. peregrinans*, *G. proliferatum*, and *G. pseudoglutinosum*. The species possessing solely 7-septate ascospores form the third group (only *G. heptaseptatum* was examined morphologically in this study). It should be noted that the number of septa can increase after the ascospore discharge.

Habitat: On soil or rotten wood, often among mosses in grasslands, mixed or deciduous forests.

Distribution: The Northern and Southern Hemispheres.
Fig. 4 Microscopic characters in *Glutinoglossum*. a–b. Proliferation of apical cells of paraphyses by hyaline hyphae: a. *G. circinatum* (LE 303993, holotype); b. *G. orientale* (LE 291818); c–e. ascospores germinating by conidia, *G. heptaseptatum* (LE 222167); f. branched apical part of paraphyses, *G. peregrinans* (LE 303988, holotype); g. anastomosis in the basal part of paraphyses, *G. orientale* (LE 222166, holotype); h. hymenium with only 7-septate ascospores inside asci, *G. heptaseptatum* (LE 222167); i. hymenium with only 3-septate ascospores inside asci, *G. glutinosum* (LE 222165, epitype); j. hymenium with 3- and 7-septate ascospores inside asci, *G. circinatum* (LE 303993, holotype). — Scale bars = 10 µm.

Key to species of *Glutinoglossum*

1. Mature asci contain ascospores predominantly 3-septate ... 2
2. Mature asci contain ascospores predominantly 3–7-septate ... 4
2. Paraphyses apically straight, curved and hooked elements present; ascospores 70–80 µm long. — Australasia ... G. *methvenii* *
2. Paraphyses apically straight, curved, without hook-like elements; ascospores 60–80 µm long. — Europe ... 3
3. Ascospores 60–70 µm long .. 2. *G. glutinosum*
3. Ascospores 70–80 µm long .. 9. *G. triseptatum*
4. Mature asci always contain ascospores with more than 3 septa .. 5
4. Mature asci contain both 3- and 7-septate ascospores ... 8
5. Ascospores 60–70 µm long. — Northern Hemisphere (North America) *G. americanum* *
5. Ascospores longer. — Northern or Southern Hemisphere .. 6
6. In grasslands; ascospores 70–90 µm long. — Northern Hemisphere (Europe, North America) 3. *G. heptaseptatum*
6. In forests; ascospores 80–92 µm long. — Southern Hemisphere (Australasia) 7
7. Apical cells of paraphyses cylindrical to clavate-cylindrical .. *G. australasicum* *
7. Apical cells of paraphyses swollen, pyriform to globose.

8. Paraphyses apically hooked, curved or circinate.

9. Apical cells of paraphyses mostly cylindrical; ascospores with varying number of septa, 60–84 μm long.

10. Paraphyses apically circinate, hooked, curved; ascospores 80–90 μm long.

11. Paraphyses apically with chains of pyriform and globose elements; ascospores 70–85 μm long.

12. Ascospores 68–81 μm long; gelatinous coating covering hyphae of stipe surface conspicuous; stipe with mucilaginous layer in fresh condition. — Europe.

8. G. pseudoglutinosum

12. Ascospores 83–94 μm long; gelatinous coating covering hyphae of stipe surface inconspicuous; stipe without mucilaginous layer in fresh condition. — Asia. — 5. G. orientale

Notes — Glutinoglossum circinatum belongs to the group of species which has mature asci with 3- and 7-septate ascospores inside. Among the other species of the group G. circinatum can be recognized by its relatively long ascospores (78–94 μm), more broad asci (15.5–21 μm), circinate and curved elements in the apical part of paraphyses and hyphae of stipes surface (Fig. 3).

2. Glutinoglossum glutinosum

Ascocarps solitary, lanceolate, stipitate, 28 mm high, dark brown, glutinous. Ascigerous part clavate, 1/4 the total length of the ascocarp, 7 mm long, dark brown up to black, dumbbell-shaped to oval in cross section, transition zone delimited by form and colour, surface in dry material smooth, cерaneous, sometimes tomentose due to prominent paraphyses protruding from the hymenium. Stipe dark brown, slightly lighter than the ascigerous part, compressed, oval with ribs in cross section, surface in dry material smooth, nitid. Ascii narrowly clavate, (217–)232.3–249 μm long, (15.5–)17.6–21 μm wide, Q = (11.8–)13.4–(14.7–) μm. Ascospores subcubiform, cylindrical, (78–)84.6–(94–) μm long, (5–)5.1–(5.5–) μm wide, Q = (14–)16.6–(19.3–) μm, pale brown, (0–)3–(5–)7–septate. Paraphyses hyaline below, pale brown up to hyaline in the apical part, straight, moderately septate, (2–)2.9–(3.5–) μm diam, in apical part straight, hooked, curved, or circinate. Apical cells of paraphyses cylindrical, swollen to pyriform, (14–)23.5–(51.5–) × (3–)7.9–(10.5–) μm, brown, pale brown to hyaline. Hyphae of stipe surface hyaline below, brown to hyaline in the apical part, moderately septate, straight, curved to circinate, apical cells cylindrical, swollen, or pyriform. Habitat — On soil in mixed forest. Known distribution — Russia (Siberia).
Fig. 6 Glutinoglossum species. a. G. glutinosum (SAV F-11248); b. G. pseudoglutiinosum (LE 304022, SAV F-11289); c. G. heptaseptatum (LE 303990); d. G. orientale (LE 222166, holotype); e. mucilaginous layer covering stipe of G. pseudoglutiinosum (LE 304022, SAV F-11289); f. G. circinatum (LE 303993, holotype); g. G. peregrinans (LE 303988, holotype); h. G. peregrinans (LE 303989). — Scale bars = 10 mm. — Photos: a. J. Gaisler; b–c, e–h. A.G. Fedosova; d. E.S. Popov.
A.G. Fedosova et al.: The genus Glutinoglossum

form, colour, and surface, surface in dry material smooth, ceraceous, sometimes alveolate. **Stipe** dark brown, slightly lighter than ascigerous part, terete or compressed, with ribs in cross section, surface in dry material smooth, ceraceous, nitid. **Asci** narrowly clavate, (180–)209.3–241.2(–283.5) x (9–)12.2–15.9(–19) μm, Q = (10.8–)14.6–18.3(–24.5). **Ascospores** subfusiform, elongate-clavate, cylindrical, narrowed to one end, sometimes slightly curved, (47–)63–71.8(–87) x (3.5–)4.6–5.1(–5.5) μm, Q = (9.4–)12.4–14.9(–19.3), pale brown up to brown, (0–)3(–7)-septate. **Paraphyses** hyaline below, brown, pale brown to hyaline in the apical part, straight, rarely, moderately or frequently septate, (2–)2.6–3.4(–5.5) μm diam, in apical part straight, sometimes curved. **Apical cells of paraphyses** cylindrical, slightly swollen up to pyriform and globose, sometimes proliferate, (8–)16.3–24.3(–45) x (4–)5.9–9.8(–13) μm, brown, pale brown to hyaline. **Hyphae of stipe surface** hyaline below, brown to hyaline in the apical part, moderately septate, straight, curved, hooked, apical cells cylindrical or swollen.

Habitat — On soil in deciduous forests and wet meadows with moss, most commonly on acidic bedrock.

Known distribution — Czech Republic, Denmark, France, Germany, Poland, Russia (European part), UK (Hustad et al. 2013, Hustad & Miller 2015, this paper).

Additional specimens examined. [Additional details and specimen descriptions are included here, following the provided format.]
Glutinoglossum glutinosum prefers acidic bedrock what appears as an important ecological character of this species.

Application of the molecular approach to the genus Glutinoglossum resulted in reconsideration of the morphological characters, geographical patterns, and ecological preferences used for delimitation of the species. Worldwide distribution and wide range of quantitative characters such as size of ascis or ascospores specified for G. glutinosum indicated that the name may be used to refer to several different species. Recently three Australasian and one American species of Glutinoglossum were delimited in G. glutinosum species complex (Hustad & Miller 2015), and additional Eurasian taxa in this study are described. Thus, in distribution of G. glutinosum we mentioned only those countries from which we have examined herbarium specimens or molecular data.

Neotype of Geoglossum glutinosum (L 0110938) is represented by seven ascocarps. Ascocarps clavate, lanceolate, stipitate, 22–47 mm high, dark brown up to black. Ascigerous part clavate, less than 1/2 the total length of the ascocarp, black, transition zone sharply delimited by form and colour in some ascocarps and not delimited in others. Stipe dark brown, slightly lighter than ascigerous part. Description and illustrations of microcharacters were given by Durand (1908).

In the protologue of G. glutinosum Persoon (1796) did not mention any specimen for this species while locality as ‘prope Ossterode’ was referred. Durand studied Persoon’s material kept in L and in his work (1908) cited a specimen of G. glutinosum as 'Type: European, in herb. Persoon, at Leiden'. According to the Art. 9.17 of the International Code of Nomenclature for algae, fungi, and plants (ICN) (McNeill et al. 2012), Durand designated the material as (first-step) neotype. The second-step of neotypification was made by Hustad et al. (2013) when number of the specimen was published. The misapplication of the term ‘holotype’ (Hustad et al. 2013) to denote what is in fact a neotype treated as an error to be corrected (Art. 9.9 of ICN) (McNeill et al. 2012). Glutinoglossum glutinosum is a type species of the genus. In order to be applied in the taxonomy of the geoglossoid fungi, the type specimen of G. glutinosum should be univocal and be available for critically identification. Since the neotype of G. glutinosum is very old and not available for molecular study we designate the epitype. Epitype selection is based on analysis of available good preserved material and its comparison with the photographs, drawings, and notes on microcharacters of neotype preserved at Leiden made by Durand. The epitype specimen has clearer morphological characters as well as ITS and LSU sequenced.

Lectotype of Geoglossum glutinosum var. lubricum (L 0110962) is represented by five ascocarps. Ascocarps lanceolate, stipitate, 25–35 mm high, black. Ascigerous part clavate, 1/4–1/3 the total length of the ascocarp, black, transition zone sharply delimited by form. Stipe black. For description and illustrations of microcharacters of the specimen see Durand (1908).

Describing Geoglossum glutinosum var. lubricum, Persoon (1822) mentioned ‘in Vogesia’ as a habitat of the new variety. The one specimen of this variety (as ‘Geoglossum lubricum’) kept in Persoon’s Herbarium (L) was collected by Mougeot near ‘Bruyerium’ (Lorraine, Voges, Bruyères). We suppose the specimen represents the original material of Geoglossum glutinosum var. lubricum but it is uncertain if it was the only specimen used by Persoon for the description of the new variety. Therefore, the specimen L 0110962 is selected as a lectotype.

3. Glutinoglossum heptaseptatum Hustad et al., Persoonia 31: 105. 2013 — Fig. 4c–e, h, 6c, 9

Holotype: CZECH REPUBLIC, Hradec Králové, Betlem, moist pasture with moss, 20 Oct. 2010, J. Gaissler (ILLS 63754).

Synonym. Geoglossum glabrum var. majus Weim., Hymen. Gasteromyc.: 497. 1836.

Lectotype designated here: ‘Sylva Gor., 15 Sept. 1820’ (LEP), MycoBank MBT378955 (Fig. 10).

Ascocarps solitary to gregarious, caespitose, clavate, lanceolate, sometimes rudimentary bifurcated, stipitate, 20–40 mm high, black up to dark brown, glutinous. Ascigerous part clavate to capitate, 1/7–1/2 the total length of the ascocarp, 2–13 mm long, black, compressed, dumbbell-shaped, or oval in cross section, transition zone delimited by form and surface, surface in dry material smooth, ceraceous, nitid. Stipe black, dark brown at the top up to brown below, terete, compressed, or dumbbell-shaped in cross section, surface in dry material smooth, ceraceous, nitid, sometimes with papillae and ribs. Ascii narrowly clavate, (195–)215.3–225.3(–260) × (12–)14–15(–16) μm, Q = (13–)14.9–15.9(–19.6). Ascocarps sub-fusiform, elongate-subclavate, cylindrical, sometimes curved, (65–)74.3–86.6(–105) × (4–)4.6–5(–6) μm, Q = (13.6–)15.3–17.1(–21), pale brown up to brown, (0–)7(–11)-septate, germinating by ovoid, subglobose or ellipsoid, pale brown up to brown, one-celled conidia (3.5–)4.6(–7) × (2.5–)3(–3.5) μm, Q = (1.2–)1.6(–2.4) inside the ascii. Paraphyses hyaline below, brown, pale brown to hyaline in the apical part, straight, frequently or moderately septate, (1.5–)2.9–3.3(–5) μm diam, in apical part straight, seldom curved. Apical cells of paraphyses

![Fig. 9](image-url) Glutinoglossum heptaseptatum (LE 222167). a. Ascospores; b. ascospores germinating by conidia; c. apical part of paraphyses; d. hyphae of stipe surface; e. ascus with 7-septate ascospores inside; f. inamyloid reaction of ascus, with euamyloid apical ring; g. ascus apical ring in IKI. — Scale bars = 20 μm.
Fig. 10 Lectotype of *Geoglossum glabrum* var. *majus* (LEP). a. Envelope with label; b. ascocarp; c. anastomosis in the middle part of paraphyses; d–f. ascospores; g. hyphae of stipe surface; h–i. apical cells of paraphyses. — Scale bars: b = 10 mm; c–i = 10 µm.
swollen, pyriform up to globose, sometimes with rostrate projection, cylindrical in immature material, sometimes proliferate, (8.5–)15.8–26.8–(–51.5) x (3.5–)6.7–10.5–(–15.5) μm, brown, pale brown to hyaline. Hyphae of stipe surface hyaline below, brown to hyaline in the apical part, frequently or moderately septate, straight, sometimes curved, apical cells swollen, globose, or pyriform.

Habitat — On soil in various types of meadows.

Known distribution — Czech Republic, Latvia, Russia (European part), Slovakia, USA (Hustad et al. 2013, Hustad & Miller 2015, Kučera et al. 2015, this paper).

Additional specimens examined. CZECH REPUBLIC, Český les Mts, Lesná, c. 5 km NW of the village centre, Pavlova Huť nature reserve, N49°46’51.35” E12°28’20.73”, alt. 759 m, 19 Oct. 2012, V. Kučera (SAV F-11270); Tělové region, c. 1.7 km NW of the centre of the village, skå of Malý Horúsky rybník, N49°09’12.4” E14°42’05.6”, alt. 421 m, mowed meadow, on soil, 16 Oct. 2016, A.G. Fedosova & V. Kučera (LE 304023, SAV F-11288); LATVIA, Talsi District, Mežda parish, Šķēde, Mežmāja, in a ditch by the roadside, N57°14’55.35” E22°41’29.74”, in short grass, on soil, 23 Sept. 2014, A.G. Fedosova (LE 303990). — RUSSIA, Karelia, Kivach, inter Marchantias, Aug. 1968, R. Singer & M.V. Freiendling (LE 179925); Leningrad Region, Vyborg District, Berezyove Islands Zakaznik, Bolschoi Berezyovyi Island (Koivistoonaisaari), Peschanomyskaya bay, maritime Calamagrostis meadows, on soil, 2 Oct. 2005, O.V. Morozova (LE 236625); ibid., Kirovsky District, near Muya, road to Turyshkinsk station, NS9°38’20.4” E31°14’23.9”, meadow, on soil, 2 Sept. 2002, E.S. Popov (LE 222167); ibid., Turyshkinsk station, NS9°14’23.3” E31°14’31.1”, meadow, on soil, 2 Sept. 2004, E.S. Popov (LE 222169); ibid., Priozersky District, Otradnoye, near cemetery, N60°49’15” E31°14’31”, meadow, on soil, 2 Sept. 2004, E.S. Popov (LE 303991). — RUSSIA, Stolické vrchy Mts, Muránska Zdvihva, c. 2.8 km N of the village, Karavá, N48°45’40.13” E20°08’26.38”, alt. 649 m, fen meadow with Erio phorum sp., Salix sp. and mosses, 21 Sept. 2012, V. Kučera (SAV F-10540, SAV F-10544); Veľká Farra Mts, c. 500 m NW of the centre of Rojkov, Rojkovské rašelinisko National reserve, N49°08’54.7” E19°07’14.7”, alt. 438 m, peat bog, on soil, 2 Oct. 2016, V. Kučera & A.G. Fedosova (LE 304021).

Notes — Glutinoglossum heptaseptatum belongs to the group of species with predominantly 7-septate ascospores. This is the only species with such character known in Eurasia at the moment. Moreover, G. heptaseptatum is characterized by stout, straight paraphyses, with apical cells usually broad (6.7–10.5 μm), mainly pyriform or globose, immersed in well-developed brown amorphous matrix. Among other Glutinoglossum species with 7-septate ascospores G. heptaseptatum stands out by habitat. All known finds of this species (ascocarps) originate from different types of grasslands in Europe excepting ITS sequences obtained from soil in a restored grassland-savanna in the Cedar Creek Natural History Area, Minnesota, USA (Hustad & Miller 2015).

While studying one of the specimens of G. heptaseptatum (LE 222167) pale brown 7-septate ascospores germinating by ascoconidia were observed inside the asci (Fig. 4c–e, 9b). It was not reported for Glutinoglossum before, however, this phenomenon was observed earlier in other genera of the family Geoglossaceae, namely Geoglossum fallax (Arauzo & Iglesias 2014), Hemileucoglossum alveolatum (Prasher & Sharma 1997, Arauzo & Iglesias 2014), L. littorale (Arauzo & Iglesias 2014), Leucoglossum leucosporum (Arauzo & Iglesias 2014, Fedosova & Kovalenko 2015) and Nothomitra sinensis (Zhuang & Wang 1997). It seems the phenomenon is common across the family. Lectotype of G. glabrum var. majus (LEP) (Fig. 10) is represented by one broken ascoconcarp. Ascoconcarp lanceolate, stipitate, black. Ascigerous part clavate, black, oval in cross section, transition zone sharply delimited by form, surface in dry material cereaceous, smooth. Stipe black, compressed in cross section, surface in dry material cereaceous. Asci 8-spored, collapsed. Ascospores subfusiform, elongate-subclavate, cylindrical, sometimes curved, (63–)73.4–(–85) x (4–)4.8–(–5.5) μm, Q = (13.2–)15.5–(–18), pale brown to brown, (5–)7-septate. Paraphyses brown, straight, frequently or moderately septate, (2.5–)4.1–(–6) μm diam, in apical part straight, immersed in brown amorphous matrix. Apical cells of paraphyses are swollen, pyriform, globose, (9.5–)12.2–(–17) x (7.5–)8.4–(–10) μm, brown to pale brown, incrusted. Hyphae of stipe surface hyaline below, brown to hyaline in the apical part. We consider the specimen kept in LEP represents G. heptaseptatum due to certain microscopic characters and brief information about vital characters (‘glutinosa, nigra’) on the label. The ascospores of the specimen are predominantly 7-septate, the range of ascospore size corresponds to G. heptaseptatum, paraphyses are stout and robust with globose or pyriform apical cells, stipe surface contains more or less long brown and hyaline hyphae. The species of the G. glabrum group have the apical part of paraphyses and hyphae of stipe surface formed by chains of several inflated cells (up to 5) unlike G. heptaseptatum with only apical cells of paraphyses inflated. All aforementioned characters of the lectotype of G. glabrum var. majus fit very well with G. heptaseptatum.

Weinmann (1836) in his description of G. glabrum var. majus pointed out with reference to a letter of Dr. Goldbach that the fungus occurs in autumn in dry mossy meadows near Moscow, but he did not cite any specimen. In the Mycological Herbarium of LEP we found a specimen labelled ‘Clavaria camosa, glutinos, nigra. Sylva Gor 15 Sept. 1820. In Pers. et DC. nulla quadrat.’ in Goldbach’s handwriting and annotated in another hand ‘Cfr. Geogl. glabr.’ (Fig. 10a). We consider that ‘sylva Gor’ means ‘sylva Gorenkiensia’, a part of Count Alexei R. Rozumovsky’s Gorenki estate (now within the city of Balashikha near Moscow) where Goldbach worked on his dissertation (Fischer 1855). One more fact confirming affinity of this specimen with Goldbach is its mention in the revision of fungi from the vicinity of Moscow by Bucholtz (1897). Bucholtz treated the specimen as Geoglossum ophioglossoides citing ‘Goldb. exs. Silva Gorenki 15 Nov. 1820’ and adding ‘Exs. Goldb. 46, Praep. № 42’. We suppose wrong designation of month is a misspelling. We also assume that Goldbach’s material could be divided into parts: the one was sent to Weinmann in Pavlovsk (now part of Saint Petersburg), and the other was left by Goldbach in his own herbarium in Moscow. Bucholtz is known to be graduated from Moscow University (Parnasto 2010, Pfister 2010) where the main part of Goldbach’s herbarium is kept (Bucholtz 1897, Sokoloff et al. 2002). Moreover, Bucholz unequivocally indicated the place of work as ‘Moskau, Bot. Garten der Universitat’. We tried to find this part of Goldbach’s collection in the department of Mycology and Allogy of the Moscow State University (MW) but had not been succeeded yet. Another part of Goldbach’s material which was used by Weinmann for variety description probably belonged to the part of fungi which was deposited to the Herbarium of the Imperial Academy of Sciences (in Saint Petersburg, now LE) (Weinmann 1836). We suppose the lectotype of Geoglossum glabrum var. majus could be deposed in LEP by Jacezewski who worked in the Imperial Botanical Garden (now part of LE). In 1897 he established phytopathological laboratory, however, in 1905 he left the Botanical Garden and during 1905–1907 worked at home with a personal library and herbarium (Berestetskaja 2013) which could contain some specimens from the herbarium of the Imperial Botanical Garden. In 1907 Jacezewski founded the Bureau of Mycology and Phytopathology (now LEP) which included the mycological herbarium based on the personal Jacezewski’s collection (Berestetskaja 2013). We suppose that the specimen kept in LEP belongs to the original material of G. glabrum var. majus, and here we designate this specimen as lectotype of G. glabrum var. majus to stabilize the name.
4. Glutinoglossum lumbricale Fedosova, sp. nov. — MycoBank MB1815856; Fig. 11

Etymology. The epithet comes from the Latin name of earthworms and refers to the thin interwoven paraphyses reminding of earthworms.

Holotype. RUSSIA, Novgorod Region, Batetsky District, near Peredolokaya station, Novoe Ovsino, near railway, N58°29'57.7" E30°17'4.4", alt. 46 m, unfertilized grassland (Calamagrostis epigeios, Taraxacum officinale, Alchemilla vulgaris s.lat., Fragaria viridis), on a gentle slope, on soil, 19 Oct. 2013, A.G. Fedosova (LE 303987).

Ascocarps solitary, clavate, rudimentary bifurcated, stipitate, 17 mm high, black, glutinous. Ascigerous part cylindrical, 1/3 the total length of the ascocarp, 6 mm long, black, compressed in cross section, transition zone poorly delimited, surface in dry material smooth, ceraceous. Stipe black, compressed in cross section, surface in dry material smooth, ceraceous, nitid. Asci narrowly clavate, (201.5–)217.2(–230.5) × (13.5–)13.8(–14) μm, Q = (14.4–)15.8(–16.9). Ascospores subfusiform, cylindrical, slightly curved, (58.5–)73.9(–84) × (3.5–)4(–5) μm, Q = (14.1–)18.5(–24.2), pale brown, seldom brown, 0–6-septate. Paraphyses hyaline below, pale brown to hyaline in the apical part, straight, moderately or frequently septate, (2–)2.8(–4) μm diam, in apical part filiform, straight, hooked, curved, or circinate, interwoven. Apical cells of paraphyses cylindrical, narrow, seldom slightly swollen, (16–)20.4(–29.5) × (2–)3.7(–6.5) μm, pale brown to hyaline. Hyphae of stipe surface hyaline below, brown to hyaline in the apical part, moderately septate, straight, hooked, curved, or circinate, interwoven, sometimes branched in the apical part, apical cells narrow, sometimes swollen.

Habitat. — On soil in unfertilized grassland.

Fig. 11. Glutinoglossum lumbricale (LE 303987, holotype). a. Ascospores; b. apical part of paraphyses; c. hyphae of stipe surface; d. ascus with ascospores inside; e. inamyloid reaction of ascus, with euamyloid apical ring; f. ascus apical ring in IKI. — Scale bars = 20 μm.

5. Glutinoglossum orientale Fedosova, E.S. Popov & A.V. Alexandrova, sp. nov. — MycoBank MB818540; Fig. 4b, g, 6d, 12

Etymology. The epithet refers to the oriental distribution of the species.

Holotype. RUSSIA, Primorye Territory, Khasansky District, Kedrovaya Pad State Nature Biosphere Reserve, valley of the River Kedrovaya, N43°05'53" E131°33'23", broadleaf forest, on soil, 20 Aug. 2005, E.S. Popov (LE 222166).

Ascocarps gregarious, caespitose, clavate to lanceolate, sometimes rudimentary bifurcate, stipitate, 30–65 mm high (dry material), black to dark brown, glutinous. Ascigerous part cylindrical, clavate, up to lanceolate, 1/4–1/2 the total length of the ascocarp, 9–20 mm long, black up to dark brown, compressed, dumbbell-shaped, oval in cross section, transition zone delimited by form, surface in dry material smooth, ceraceous, known distribution. — China (Wang et al. 2011, as G. glutinosum), Russia (European part).

Notes. — Glutinoglossum lumbricale is characterized by small asci (202–231 × 13.5–14 μm), rather narrow ascospores (3.5–5 μm), very thin paraphyses and by hyphae of stipe surface which are curved, circinate, interwoven in the apical part, with mainly narrowly cylindrical apical cells (Fig. 3). This species belong to species with 3- and 7-septate ascospores inside asci. The sequence obtained from the holotype has high identities (1 011/1 025 – 99 %) with the sequence of the nrITS region of G. glutinosum from China (HQ222870), obtained in the study of soil fungal diversity by Wang et al. (2011).

Fig. 12. Glutinoglossum orientale (LE 222166, holotype). a. Ascospores; b. apical part of paraphyses; c. hyphae of stipe surface; d. ascus with 7-septate ascospores inside; e. inamyloid reaction of ascus, with euamyloid apical ring; f. ascus apical ring in IKI. — Scale bars = 20 μm.
sometimes tomentose due to prominent paraphyses protruding from the hymenium, nitid. *Stipe* dark brown, lighter than ascigerous part, compressed, dumbbell-shaped, terete with ribs, or oval in cross section, surface in dry material smooth, nitid. *Ascii* narrowly clavate, (200–)237.4–279.5(–297) × (12.5–)14.5–16.3–(19) μm, Q = (12.1–14.7–20.8–(23.3). *Ascosporae* cylindrical, subfuscous, slightly curved, narrowed to one end, (72.5–)83.6–94.2–(103.5) × (3.5–)4.6–4.7–(5.5) μm, Q = (14.7–)17.7–20.7–(24.9), pale brown up to brown, (0–)3(4–6) 7-septate. *Paraphyses* hyaline below, brown, pale brown to hyaline in the apical part, straight, moderately or frequently septate, (1.5–)2.5–5.5–(8) μm diam, in apical part brown to hyaline, straight, moderately septate, (0–)3(4–6) 7-septate.

Hyphae of stipe surface hyaline below, brown to hyaline in the apical part, moderately septate, straight, curved, sometimes proliferate, apical cells swollen or pyriform.

Habitat — On soil, rarely on wood, in forests and meadows.

Known distribution — Finland, France, Russia (the Caucasus, European part, the Far East), Slovakia.

Additional specimens examined. **FINLAND**, Perä-Pohjanmaa prov., Rovanjoki, Pisavara, NE corner of the Strict Nature Reserve, next to the abandoned house, N66°18'44.0" E25°09'13.6", on soil among Calamagrostis sp., 4 Sept. 2013, V. Kučera (Sav-F-10789). — **FRANCE**, dans les bois humides, sur ta terre, en automne (Desmazières, Pl. Crypt. N. France, Ed. 1, No 422, as *Geoglossum glutinosum* (LE 179508). — **RUSSIA**, (Amur Region), Obluchye, Yadrino, mixed forest with *Tilia* and *Abies*, on soil, 10 Aug. 1961, A. Raitvīr (TAAM042223); Karachayevo-Circassian Republic, Karachayevskiy District. Teberda State Nature Biosphere Reserve, near Teberda, left side of the Teberda River, N43°26'23.4" E41°43'54", alt. 1380 m, forb meadow, on soil, 7 Aug. 2009, E.S. Popov (LE 291817); Khabarovsk District, (Khabarovskiy District, Khekhtisirsy forest, on buried wood, 14 Sept. 1946, L.J.N. Vassiljeva (VLA-D-3557); ibid., (Komsmolskiy District, Seliikhino, Kabansopka, mixed forest with *Tilia* and *Abies*, 18 Aug. 1961, A. Raitvīr (TAAM042325); Leningrad Region, Lzhezsky District, Krasnye Gory, road to the cemetery, N58°57’21’’ E29°39’37’’4, meadow, on soil, 17 Sept. 2015, A.G. Fedosova (LE 304020); (Primorye Territory, Chuguevyisky District, Yerkhne-Ussursky forest station, at the base of Taxus, 22 Aug. 1974, E.M. Bulakh (VLA-D); Primorye Territory, Terneysky District, Sikhote-Alin Nature Reserve, Ranger station Sukhaya, N44°59’47.2’’ E136°15’13.8’’, herb meadow, on soil, 3 Sept. 2013, A.G. Fedosova (LE 303889); Pisovka Region, Kunyinsky District, between Lastovka and Begunovo, W shore of Zhizhitskoye Lake, N56°15’18’’ E131°10’09’’, stand of Calamagrostis canescens, on soil, 24 July 2003, E.S. Popov (LE 303905, LE 222636, LE 222635). — **SLOVAKIA**, Malá Fatra Ms, Martinské hole, turistic path near the hut, N49°05’43.476’’ E18°49’58.224’, alt. 1256 m, on soil, 19 Sept. 2014, M. Krivuš (Sav-F-11246).

6. **Glutinoglossum peregrinans** Fedosova & V. Kučera, sp. nov. — MycoBank MB818547; Fig. 4f, 6g–h, 13

Etymology. The epithet means ‘wandering’ and refers also to the wide distribution of this species across Eurasia and to some of its habitats near forest huts.

Holotype. RUSSIA, Primorye Territory, Dalnegorsk Urban Okrug, near Dalnegorsk, Partizanskaya Pad, upper reaches of the Mramorny Spring, N44°35’49.3” E135°33’21”, mixed forest (*Abies nephrolepis*

Ascocarps solitary to gregarious, caespitose, clavate, cylindrical, rudimentary bifurcate, stipitate, 35–55 mm high, dark brown up to dark brown, glutinous.

Ascigerous part dark brown, lighter than ascigerous part, compressed, dumbbell-shaped, terete with ribs in cross section, transition zone poorly delimited by form from the hymenium, nitid. *Stipe* dark brown, lighter than ascigerous part, compressed, dumbbell-shaped, terete with ribs in cross section, transition zone poorly delimited by form from the hymenium, nitid.

Habitat — On soil in valley broadleaf and montane evergreen tropical forests.

Known distribution — Russia (the Far East), Vietnam.

Additional specimen examined. **VIETNAM**, Lam Dong Province, Lac Duong District, Bidoup Nui Ba National Park, Long Lanh, montane evergreen tropical forest dominated by Fagaceae, Lauraceae, Theaceae, and Magnoliaceae, on soil, 12 July 2011, A.V. Alexandrova (LE 291818).

Notes — *Glutinoglossum orientale* is an easily recognizable species due to the combination of long asc (237–280 μm) and very long ascospores (84–94 μm); paraphyses are straight, seldom only curved and cinerate in apical part (Fig. 3). It is one of six species which have 3- and 7-septate ascospores inside ascii.

Fig. 13 Glutinoglossum peregrinans (LE 303988, holotype). a. Ascospores; b. apical part of paraphyses; c. hyphae of stipe surface; d. asci with 3- and 7-septate ascospores inside asci; e. inamyloid reaction of ascus, with euamyloid apical ring; f. ascus apical ring in IKI. — Scale bars = 20 μm.
Notes — Among other species which have 3- and 7-septate ascospores inside asci *G. peregrinans* possesses the widest range of morphological variation. However, it can be distinguished due to curved or hooked apical part of paraphyses without circinate elements (Fig. 3).

7. *Glutinoglossum proliferatum* V. Kučera, sp. nov. — MycoBank MB818553; Fig. 14

Etymology. The epithet refers to the shape of paraphyses which apical cells proliferate to form chains of pyriform and globose cells.

Holotype. ROMANIA, Făgăraș Mts, Transfăgărășan route, blue marked tourist path, near the tunnel, N45°36’07.52” E24°37’10.05”, alt. 2099 m, among grass next to the path, 22 Sept. 2015, M. Caboň (SAV F-11249).

Ascocarps solitary, lanceolate to clavate, short stipitate, 13–24 mm high, black, with glutinous stipe. *Ascigerous part* clavate, 1/2–4/5 the total length of the ascocarp, 7–18 mm long, black, dumbbell-shaped, compressed in cross section, transition zone delimited by form, surface in dry material smooth, sometimes tomentose due to prominent paraphyses protruding from the hymenium. *Stipe* black, short, compressed in cross section, surface in dry material smooth, nitid. *Asci* narrowly clavate, (223.5–)244.8(–287.5) × (12–)13.7(–15) μm, Q = (16.1–)18(–22.7). *Ascospores* subfusiform, cylindrical, elongate-clavate, slightly curved, (62–)74(–79.5) × (4.5–)5(–5.5) μm, Q = (12.5–)14.9(–17.1), pale brown, (0–)3(4–6) 7-septate. *Paraphyses* hyaline below, brown to pale brown in the apical part, straight, frequently or moderately septate, (2.5–)4.7(–8) μm diam, in apical part straight or slightly curved. *Apical cells of paraphyses* pyriform, globose, or swollen, frequently proliferate, sometimes with rostrate projection, (11–)11.6(–13) × (5–)8.7(–10) μm, brown up to pale brown. *Hyphae of stipe surface* hyaline below, brown to hyaline in the apical part, frequently or moderately septate, straight, curved, apical cells pyriform, globose, or swollen, sometimes proliferate. *Habitat* — On soil among grass. *Known distribution* — Romania.

Notes — From other species with 3- and 7-septate ascospores *G. proliferatum* is easily distinguishable morphologically by straight paraphyses formed by chains of proliferating pyriform and globose cells (Fig. 3). The only specimen of this species was collected in a mountain meadow (alt. 2099 m).

8. *Glutinoglossum pseudoglutinosum* V. Kučera, sp. nov. — MycoBank MB818555; Fig. 15

Etymology. The epithet derived from ‘pseudo-’ (false, in Greek) and the species epithet ‘glutinosum’.

Holotype. SLOVAKIA, Malé Karpaty Mts, Sološnica, 1.5 km SE of the village church, N48°27’22.88” E17°14’37.96”, alt. 318 m, mowed meadow, on soil, 1 Oct. 2013, V. Kučera (SAV F-10903).

Ascocarps solitary to gregarious and scattered, lanceolate, stipitate, 10–65 mm high, dark brown, glutinous, with mucilaginous layer on the stipe. *Ascigerous part* truncate or cylindrical with rounded apex when young, later in development lanceolate, 1/3 the total length of the ascocarp, 3–21 mm long, dark brown up to black, when young oval later compressed in cross section, when fresh transition zone delimited by form and colour, surface in dry material smooth. *Stipe* dark brown, slightly lighter than the ascigerous part, oval in cross section, surface in dry material smooth. *Asci* narrowly clavate, (195–)227.5–266.6(–320)
The epithet refers to the predominantly 3-septate ascospores. *G. peregrinans* has apically straight paraphyses but formed by chains of proliferating globose or swollen cells, sometimes slightly curved or hooked. *G. orientale* has apically often are hooked or curved; besides, apical cells of paraphyses swollen, globose, or pyriform, (8.5–)17.3–28.7–(60) × (3–)5.5–10.2–14 μm, brown, pale brown to hyaline. **Hyphae of stipe surface** hyaline brown, to brown in the apical part, moderately or rarely septate, straight, covered, curved by conspicuous gelatinous coat, apical cells cylindrical, sometimes swollen only coloured cells.

Habitat — On soil in mowed meadows or pastures, in broadleaf forests, preferably on calcareous bedrock.

Known distribution — Czech Republic, Germany, Slovakia, United Kingdom (Hustad & Miller 2015, as *G. glutinosum*).

Additional specimens examined. **Czech Republic, Posázaví region,** Benešov District, Čtyřkoly, c. 750 m W of the village centre, 50 m of the chalet colony, N49°22′10.82″ E18°32′03.26″, alt. 604 m, grazed meadow, on soil, 11 Nov. 2014, V. Kučera (SAV F-11255). — (**Germany, Free State of Saxony**), bei Schandau, an einem grasigen Abhang im Zahngrunde, 6 Oct. 1906, W. Krieger (Krieger, Fungi Saxoni. Exs., No. 2626, as *Geoglossum glutinosum* (LEP)). — **Slovakia,** Javorníky Mts Papradno, Podjavorín, Dolný Grúnik, N49°16′27.08″ E18°20′2.84″, alt. 775 m, broadleaf forest, on soil, 11 Oct. 2014, V. Kučera (SAV F-11265); Ralčina, Bratislava, N49°11′16.86″ E14°42′47.25″, alt. 317 m, irregulary mowed meadow, on soil among grass, 11 Nov. 2014, J. Matouš (SAV F-9828).

Notes — *Glutinoglossum pseudoglutinosum* is easily recognised in fresh condition in the field due to the thick mucilaginous layer covering the stipe (Fig. 6e). Consequently, the stipe is so viscid that it is almost impossible to collect the ascocarps without a knife. Micromorphologically, this feature appears in a distinct inconspicuous gelatinous covering very thin hyphae of stipe surface. *Glutinoglossum pseudoglutinosum* occurs preferably on calcareous bedrock and this probably plays a limiting role for the species distribution. Apart from the thick mucilaginous layer, *G. pseudoglutinosum* also differs from other species which have 3–7-septate ascospores (*G. ciricinatum*, *G. lumbricale*, *G. orientale*, *G. peregrinans*, and *G. proliferatum*) by characters of ascospores, ascii, apical cells and apical part of paraphyses (Fig. 3). The ascospores of *G. pseudoglutinosum* are shorter than those of *G. orientale* (68–81 μm long vs 84–94 μm); they are narrower than those of *G. ciricinatum* (4.5–5 μm wide vs 5.5–5 μm). Moreover, *G. ciricinatum* has broader ascii (15.5–21 μm wide vs 13.5–15 μm in *G. pseudoglutinosum*). Paraphyses of *G. pseudoglutinosum* apically are straight or sometimes slightly curved or hooked, formed by single pyriform, globose or swollen cells. *Glutinoglossum proliferatum* also has apically straight paraphyses but formed by chains of proliferating pyriform and globose cells. Paraphyses of *G. lumbricale* and *G. peregrinans* apically often are hooked or curved; besides, *G. lumbricale* has very thin paraphyses with cylindrical apical cells. Although *G. pseudoglutinosum* has 3- and 7-septate ascospores inside ascii, according to the phylogenetic analyses, *G. pseudoglutinosum* does not cluster with other species of this group but it is closer to *G. glutinosum* which has predominantly 3-septate ascospores. Though *G. pseudoglutinosum* has no support in the phylogenetic analyses, morphological and ecological characters allow us to consider this species as a separate one.

9. **Glutinoglossum triseptatum** V. Kučera, sp. nov. — MycoBank MB818557; Fig. 16

Etymology. The epithet refers to the predominantly 3-septate ascospores.

Holotype. **SLOVAKIA,** Zvolenská Kotlina basin, Zvolen, c. 2.5 km NNW of the city centre, arboretum Borová hora, N48°35′54.37″ E19°08′00.05″, alt. 316 m, wet meadow, on soil, 30 Sept. 2009, V. Kučera (SAV F-9828).

Ascocarps solitary to gregarious, lanceolate, stipitate, 15–30 mm high, brown, glutinosus. Ascigerous part lanceolate, 1/4 the total length of the ascocarp, 10 mm long, dark brown, oval in cross section, transition zone poorly delimited by form and colour, surface in dry material smooth, cereaceous. Stipe dark brown, slightly darker than the ascigerous part, oval in cross section, surface in dry material smooth, nitr. Ascii narrowly clavate, (200–)221.8–238.5(–270) × (12–)13–14.4–(16) μm, Q = (13.1–)15.5–18.4(–21.3). Ascospyles cylindrical, subfusciform, elongate-clavate, slightly curved, (58–)72.5–76.4–(90) × (3.5–)4.7–4.8(–6) μm, Q = (11.1–)15.1–16.3(–20.8), pale brown up to brown, (1–3)(4–5)-septate. **Paraphyses** hyaline

\[(11–)13.7–14.8(–18) \mu m, \ Q = (11.9–)15.5–19.5(–24.6). \]

Ascospores cylindrical, elongate-clavate, slightly curved, (4.5–5 μm wide vs 5.5–5 μm). Moreover, *G. ciricinatum* has broader ascii (15.5–21 μm wide vs 13.5–15 μm in *G. pseudoglutinosum*). Paraphyses of *G. pseudoglutinosum* apically are straight or sometimes slightly curved or hooked, formed by single pyriform, globose or swollen cells. *Glutinoglossum proliferatum* also has apically straight paraphyses but formed by chains of proliferating pyriform and globose cells. Paraphyses of *G. lumbricale* and *G. peregrinans* apically often are hooked or curved; besides,
below, pale brown to hyaline in the apical part, straight, frequently or moderately septate, (1.5–)2.1–3.8(–)5 μm diam, in apical part straight, slightly curved. Apical cells of paraphyses swollen, globose, or pyriform, (8–)17.2–21.1(–35) × (5–)7.9–9(–19) μm, brown, pale brown to hyaline. Hyphae of stipe surface hyaline below, brown to hyaline in the apical part, moderately septate, straight or curved, apical cells swollen, pyriform or globose, sometimes with rostrate projections.

Habitat — On soil in meadows near broadleaf forests. Known distribution — Slovakia.

Additional specimen examined. SLOVAKIA. Malé Karpaty Mts, Pezinok, Kejda, 15 Sept. 2010, V. Kautman (SAV F-10282).

Notes — Glutinoglossum triseptatum is one of the three species characterized by 3-septated ascosporas inside mature asci. Glutinoglossum triseptatum and G. glutinosum occur in Europe and have straight or sometimes curved paraphyses at the apical part and differ from each other by the length of ascosporas which are 73–76 μm long in G. triseptatum vs 63–72 μm in G. glutinosum. In contrast to these species G. methvenii belongs to Australasian fungal biota and is characterized by broader ascosporas (5–6 μm wide vs 4.5–5 μm in G. glutinosum and G. triseptatum) and curved to hooked apical part of paraphyses (Fig. 3).

DUBIOUS NAMES AND IMPERFEKTLY KNOWN TAXA

Cibalocoryne Hazsl., Értek. Természettd. Kőrér. Magyar Tud. Akad. 11 (19): 7. 1881

Type species: Cibalocoryne viscosa Hélzsl.

Geoglossum Pers. subg. Cibalocoryne Hazsl., Értek. Természettd. Kőrér. Magyar Tud. Akad. 11 (19): 7. 1881

Type species. Cibalocoryne viscosa Hélzsl.

Cibalocoryne viscosa Hélzsl., Értek. Természetttud. Kőrér. Magyar Tud. Akad. 11 (19): 8. 1881

Synonym. Geoglossum viscosulum (Hélzsl.) Bacc., Syll. Fung. 8: 43. 1889.

Type. Missing (destroyed during World War II). According to the protologue ‘Nő mohos lejtőkön, mohokon, a m. Tátra Rothbaumgrund nevű völgyében’ (Grows on mossy slopes, on mosses, in the valley of Rothbaumgrund in Tatra Mountains (now Belianske Tatry Mts, Suchá dolina valley)).

Notes — Hazslinszky (1881) in his treatment divided the genus Geoglossum in four distinct genera, according to the characters of hymenium and spores. However, few lines below, he subordinated new genera Euveglossum, Cibalocoryne, Helote and Corynetes as subgenera to Geoglossum in the sense of Persoon. The name Cibalocoryne was introduced by him for the only species C. viscosa. Although the rank of Cibalocoryne was not stated unambiguously in the original publication one year later Hazslinszky (1882) referred to his new species as Cibalocoryne viscosa. A serious question we have to deal with is whether Hazslinszky fully accepted the new taxa as he completely misspelled it later as ‘Cephalocoryna viscosa’ (Hazslinszky 1886) or ‘Cephalocoryna’ (Hazslinszky 1887).

Cibalocoryne and C. viscosa were treated as distinct taxa only by Hazslinszky (1881, 1882, 1886, 1887) and Imai (1942). After the work of Saccardo (1889) C. viscosa is accepted within the genus Geoglossum (Massar 1897, Durand 1908). According to the description and drawings of original material of C. viscosa forwarded by Moesz (curator of the Hungarian Natural History Museum (BP) fungi at that time who refused to send specimens because of war instability) Nannfeldt (1942) stated that this name represents only a synonym of Geoglossum (Glutinoglossum glutinosum). After this work, C. viscosa was considered by mycologists as a synonym of G. glutinosum (Mains 1954, Maas Geesteranus 1965, Hustad & Miller 2015).

Our attempt to get more information on Cibalocoryne viscosa, besides the protologue, failed. Original material of Cibalocoryne viscosa was transferred to BP as a part of Hazslinszky’s collections after his death (presumably by the family). During World War II Herbarium BP at first remained in Budapest. In 1942 the management of the museum decided to move the most important collections in a castle in the village of Váchartyán to protect those (Gizella Vasas, pers. comm. 2016). Unfortunately, the castle was destroyed in 1945, and all collections kept there were lost (Rajczy & Buczko 1995). At present the original material of C. viscosa is absent in BP. Moesz’s letter to Nannfeldt with data on specimens is not located in the Uppsala University Library archives nor in the Museum of Evolution (UPS) (Håkan Hallberg, pers. comm. 2016, Stefan Ekman, pers. comm. to Anders Dahlberg 2016, Johan Nitare, pers. comm. to Anders Dahlberg 2016, Anders Dahlberg, pers. comm. 2017, Svengun-Ryman, pers. comm. 2017) and even figure no. 10 depicting the species mentioned in the protologue is missing in the plate (and was not a supplement either in errata or in following issues of the journal). Moreover, attempts to get some data on another specimen of C. viscosa collected near Prešov (Hazslinszky 1886) were also unsuccessful. There were two collections of Hazslinszky’s material (Lizioń 1997). After the death of Hazslinszky one of the collections was moved to Budapest and the second was kept in the museum of Prešov (before World War II) and then (in the beginning of the 1950s) was transferred to Bratislava (Botany Department of Comenius University, SLO) (Lizioń 1997). Nowadays, a few Hazslinszky’s specimens are present at SLO and several more in the Slovak National Museum (BRA) but none of them have geoglossoid fungi collected by Hazslinszky. So, Hazslinszky and Moesz were the only ones who have seen the fungus. And only Nannfeldt received data taken from the type specimen by Gusztav Moesz.

Mains (1954) raised the issue of the validity of Cibalocoryne as a generic name “since Hazslinszky (1881) appears to have proposed it as a subgenus and only suggested a future generic status” that is not a validly published name according to the Art. 36.1(b) (McNeill et al. 2012). Maas Geesteranus (1964) pointed out that Hazslinszky’s use of the term ‘genus’ for his taxa is improper but agreed that formally taxa were published both with the generic and subgeneric ranks that is a validly published name before 1 January 1953 (Art. 36.2 of ICN) (McNeill et al. 2012). Hustad et al. (2013) also have concluded that Cibalocoryne was not a validly published name. Nevertheless, all these publications recognized the complexity of the situation.

If Cibalocoryne was validly published and C. viscosa is a synonym of G. glutinosum, the name Cibalocoryne would have a priority before Glutinoglossum. What complicates the situation is whether Cibalocoryne was validly published and whether C. viscosa is a synonym of G. glutinosum. Since there exists no original material of G. glutinosum it cannot be reliable affirmed that C. viscosa and G. glutinosum are synonyms or not. Next complexity is that the name Cibalocoryne was published as a provisional name (Art. 36.1(b)) or generic and subgeneric names are alternative (Art. 36.2). If the name Cibalocoryne was not validly published in 1881, it is then important to know whether it was validated later. None of the publications (Hazslinszky 1882, 1886, 1887, Imai 1942) validate the generic name. Moreover, new combinations made by Imai (1942) would also not be validly published (Art. 53.1). Since later the name Cibalocoryne considered to be a synonym of Geoglossum (Massar 1897), it could not have been validly published (Art. 36.1(c)).
Despite complexity of the problem, from the formal point of view the name *Cibalocoryne* cannot be rejected until additional information on this problem would appear.

Geoglossum glutinosum forma *minor* Sacc., *Michelia* 1 (4): 444. 1878

Lectotype. ‘1 Oct. 78, Bell.’ (PAD, H.B. Patavinus, Herbarium Mycol. P.A. Saccardo), designated by Durand (1908) (Fig. 17).

Description of the type specimen (based on the observations and photographs made by Emanuele Campo).

Lectotype of *Geoglossum glutinosum* forma *minor* (PAD) is represented by three ascocarps, one of which is broken. Ascocarps clavate, cylindrical, stipitate, up to 1 cm high, black, entirely covered by clay. Ascigerous part clavate, 1/4–1/3 the total length of the ascocarp, black, terete, transition zone delimited by form, covered by clay. Stipe black, terete, covered by clay. Asci clavate, 15–20 μm wide, 8-spored, with inamyloid wall and amyloid apical ring, many collapsed. Ascospores elongate-clavate, subfusiform, cylindrical, sometimes curved, narrowed towards one end, 54–77 × 5–6 μm, brown, (3–6)-7-septate. Paraphyses collapsed. Apical cells of paraphyses collapsed. Hypheae of stipe surface mainly collapsed, apical cells brown, globose or ovoid, sometimes forming chains of 2–3 cells.

Notes — Describing this forma, Saccardo (1878) wrote the ‘Hab. in udis inter Marchantias a Belluno, Oct. 1878 (Spogazzi-ni)’, thereby indicating the gathering. Durand (1908) mentioned ‘a specimen’ and ‘a plant’ concerning the Saccardo’s specimen from Italy which was cited as ‘type’ among examined types and figure legend. Moreover, in PAD the only one specimen fits well with the locality mentioned in the protologue. So, Durand’s action could be treated as lectotypification of the name.

Ascocarps in the lectotype are covered by clay, therefore the colour and surface characters of ascocarps are difficult to observe; many microstructures are collapsed. Neither amorphous matrix nor any gelatinous structures covering hyphae were found in hymenium and on the stipe surface. Apart from *Geoglossum glutinosum* forma *minor*, the name under which it was published (though on the label it is written ‘β minus’ and Durand (1908) cited it as ‘var. minus’), there are other names on the label such as ‘*Geoglossum americanum*’, ‘*Geoglossum cf. hirs. americanum*’ and ‘*Geoglossum glabrum*’. Durand (1908) considered this taxon as a dwarf form of *Geoglossum nigritum*. In spite of the fact that the protologue mentions predominantly 3-septate ascospores for this forma the most of the ascospores of the studied lectotype are 7-septate. Having examined both the ascocarps and the drawing of the spores, asci and the paraphyses on the label we conclude the specimen belongs to the *Geoglossum umbratile* species group. This group at present includes several species (Arauzo & Iglesias 2014) of which...
Geoglossum scabripes seems the most appropriate. Thus we consider the name Geoglossum glutinosum forma minor as a presumptive synonym of Geoglossum scabripes.

Geoglossum glutinosum var. sylvestre Pers., Comm. Fung. Clav.: 38. 1797

Notes — The name has not been mentioned after the publication in 1797. The type is missing in Persoon's Herbarium of the Naturalis Biodiversity Center (L) and probably no other specimens exist; moreover, the original description is ambiguous. Therefore, the name should be omitted.

Geoglossum viscosum Pers., Comm. Fung. Clav.: 39. 1797

Notes — Persoon (1797) described under the name G. viscosum a species with sticky black ascocarps related to G. glutinosum, while 'pratis montosis apricis' was pointed out as a habitat. Since the end of the 19th century this name has been considered as a synonym of Geoglossum glutinosum (Massiee 1897, Durand 1908, Mains 1954). The type is not present in Persoon's Herbarium of the Naturalis Biodiversity Center (L). Presently, the name should be omitted because the type is lost, and the original description is ambiguous.

Acknowledgements We would like to warmly thank all our friends and colleagues for joint discussions as well as for their help in the field or with laboratory work. We wish to acknowledge our gratitude to the following curators and staff of the herbaria L, PAD, and LEP: Drs G. Thijsse (L), R. Marcucci (PAD), and L.I. Berestetskaya (LEP) for the opportunity to study Persoon's, Saccardo's, and Goldbach's herbaria. Curators and staff of the herbaria BRA, SLO, and MW: Drs I. Kautmanová (BRA), S. Jančovičová (SLO), and E.Yu. Blagoveshchenskaya (MW) for searching Hazslinszky's and Goldbach's material as well as curators and staff of the herbaria TAM and VLA: Drs I. Parmasto (TAM) and A.V. Bogachova (VLA) for searching material and arranging loans. Especially we are indebted to our friends and colleagues, who contributed collections to the study: J. Gaisler, O.V. Morozova, V. Kautman, N. Rybáriková, A.V. Alexandrova, E.M. Bulakh, M. Cabaň, E.A. Fo-mina, I. Kautmanová, A.E. Kovalenko, M. Krivuš, J. Matouš, K.O. Potapov, Z. Trojanková. We are grateful to Dr E. Campo for checking the lectotype of Geoglossum glutinosum forma minor in PAD. We sincerely thank Dr N. Varga for invaluable help in translation of the protologue of Cibalocteryne viscosula, Drs G. Vasas and Á. Révai for sharing information about Hazslinszky's original material, Drs H. Hallberg, S. Ekman, J. Nitare, A. Dahlberg and S. Jančovičová for sharing information about Hazslinszky's material, I. Parmasto, I. Kautmanová, A.E. Kovalenko, M. Krivuš, J. Matouš, K.O. Potapov, Z. Trojanková. We are grateful to Dr E. Campo for checking the lectotype of Geoglossum glutinosum forma minor in PAD. We sincerely thank Dr N. Varga for invaluable help in translation of the protologue of Cibalocteryne viscosula, Drs G. Vasas and Á. Révai for sharing information about Hazslinszky's original material, Drs H. Hallberg, S. Ekman, J. Nitare, A. Dahlberg and S. Ryman for search information about the Mozes's letter. We are grateful to Drs I.V. Sokolova, K. Marhold, and J. McNeill for interesting discussions on the Cibalocteryne nomenclature problem. We thank Dr M. Tomášovský for useful comments. We are also grateful to the anonymous reviewers of the manuscript for their valuable and constructive comments and corrections; the technical support provided by The Core Facility Center ‘Cell and Molecular Technologies in Plant Science’ of the Komarov Botanical Institute. Some of the DNA samples were processed by Alvalab. The study was carried out by AGF & ESP within the framework of the institutional research project (no. 01201255604) of the Komarov Botanical Institute and supported in part by the Russian Foundation for Basic Research (project 16-34-00510 mol_a) to AGF, and by VEGA 2/0008/15 to VK & PL.

REFERENCES

Araujo S, Iglesias P. 2014. La familia Geoglossaceae ss. str. en la península Ibérica y la Macaronesia. Errotrai 11: 166–259.

Berestetskaja Li. 2013. About the private mycological laboratory of A.A. Jaczewski. In: Gagkayeva TYu (ed), Problems of mycology and plant pathology in the 21st century: 22–26. National Academy of Mycology, Moscow.

Lloyd CG. 1916. The Geoglossaceae (viz., The genus Geoglossum and related genera). Mycological Writings 5: 1–24.

McNeill J, Barrie FR, Buck WR, et al. (eds). 2012. International Code of Nomenclature for algae, fungi, and plants (Melbourne Code) adopted by the Eighteenth International Botanical Congress Melbourne, Australia, July 2011. [Regnum Vegetabile No. 154.] Koeltz Scientific Books, Königstein, Germany.

Mains EB. 1954. North American species of Geoglossum and Trichoglosum. Mycological Writings 34 (3): 772–773.

Lloyd CG. 1916. The Geoglossaceae (viz., The genus Geoglossum and related genera). Mycological Writings 5: 1–24.

McNiel J, Barrie FR, Buck WR, et al. (eds). 2012. International Code of Nomenclature for algae, fungi, and plants (Melbourne Code) adopted by the Eighteenth International Botanical Congress Melbourne, Australia, July 2011. [Regnum Vegetabile No. 154.] Koeltz Scientific Books, Königstein, Germany.

Pfister DH. 2010. Fedor Bucholtz, mycologist and his herbarium. Folia Cryptogamica Estonica 47: 59–72.

Pfister DH. 2010. Fedor Bucholtz, mycologist and his herbarium. Folia Cryptogamica Estonica 47: 59–72.

Persoon CH. 1796. Observations Mycologicae. Vol. 1. Wolf, Leipzig.

Persoon CH. 1797. Commentaria fungi Claviformisbus. Wolf, Leipzig.

Persoon CH. 1822. Mycologia Europaea. Sect. 1. Palmius, Erlenf.}

Pfister DH. 2010. Fedor Bucholtz, mycologist and his herbarium. Folia Cryptogamica Estonica 47: 73–76.
Prasher IB, Sharma R. 1997. Geoglossum Pers. Geoglossaceae, Leotiales in eastern Himalayas. In: Chahal SS, Prashar IB, Randhawa HS, et al. (eds.), Achievements and prospects in mycology and plant pathology: 12–19. International Book Distributors, Dehradun, India.

Rajczy M, Buczko K (eds). 1995. 125 years of the Botanical Department of the Hungarian Natural History Museum. Hungarian Natural History Museum, Budapest.

Rambaut A, Suchard MA, Xie D, et al. 2014. Tracer v1.6. Available from http://beast.bio.ed.ac.uk/Tracer [accessed on 28 April 2017].

Rehner SA. 2001. Primers for elongation factor 1-alpha (EF1-alpha). Available from http://www.aftol.org/pdfs/EF1primer.pdf [retrieved 8 July 2016].

Ronquist F, Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574.

Saccardo PA. 1878. Fungi Veneti novi vel critici vel mycologiae Venetae addendi. Series IX. Michelia 1: 361–445.

Saccardo PA. 1889. Sylloge fungorum omnium hucusque cognitorum. Padua, Italy.

Sokoloff DD, Balandin SA, Gubanov IA, et al. 2002. The history of botany in Moscow and Russia in the 18th and early 19th centuries in the context of the Linnaean Collection at Moscow University (MW). Huntia 11 (2): 129–191.

Stamatakis A, Hoover P, Rougemont J. 2008. A rapid bootstrap algorithm for the RAxML Web-servers. Systematic Biology 57: 758–771.

Tamura K, Stecher G, Peterson D, et al. 2013. MEGA6: molecular evolutionary genetic analysis version 6.0. Molecular Biology and Evolution 30: 2725–2729.

Thiers B. (continuously updated). Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium. Available from http://sweetgum.nybg.org/science/ih/ [accessed 16 September 2016].

Vilgalys R, Hester M. 1990. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172: 4238–4246.

Wang Z, Nilsson RH, Lopez-Giraldez F, et al. 2011. Tasting soil fungal diversity with earth tongues: phylogenetic test of SATé alignments for environmental ITS data. PLoS ONE 6: e19039.

Weinmann JA. 1836. Hymeno- et Gastero-myctes hucusque in imperio Rossico observatos. Academiae imperialis Scientiarum, St. Petersburg.

White TJ, Bruns T, Lee S, et al. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Michael AJ, Gelfand DH, Sninsky JJ, et al. (eds), PCR protocols: a guide to the methods and applications: 315–322. Academic Press, New York.

Zhuang WY, Wang Z. 1997. Some new species and new records of disco-mycetes in China, 7. Mycotaxon 63: 307–321.