Prevalence of the paa gene (porcine attaching and effacing associated) in porcine enteropathogenic Escherichia coli (PEPEC) associated with postweaning diarrhea in south Brazil

Marilda C. Vidotto¹, Elaine C.T. Florian³, Mario A. Ono²

¹Departamento de Medicina Veterinária Preventiva, Universidade Estadual de Londrina, Londrina, PR, Brazil.
²Departamento de Ciências Patológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil.
³Departamento de Bioquímica e Biotecnologia, Universidade Estadual de Londrina, Londrina, PR, Brazil.

Submitted: October 17, 2011; Approved: July 23, 2012.

Abstract

Paa (porcine attaching and effacing associated) may be an important virulence factor E. coli of piglets with diarrhea. This study showed for the first time in Brazil the prevalence of the paa gene (22%) in E. coli strains isolated from piglets and these isolates also harboured genes for other adhesins and toxins LT II, STA and STB.

Key words: Escherichia coli, pig, PEPEC, paa gene, postweaning diarrhea.

Neonatal diarrhea and postweaning diarrhea (PWD) in pigs are diseases of considerable economic importance and are characterized by watery diarrhea, dehydration, loss of body weight and sometimes death of infected pigs (Nagy and Fekete, 1999). Enterotoxigenic E. coli (ETEC) is an important cause of PWD, and its pathogenicity involves the adherence of the pathogen to the small intestine by means of specific adhesion factors (fimbriae) and production of one or several exotoxins responsible for disease development. ETEC produce heat-stable (Sta or Stb) and/or heat-labile (LT) enterotoxin that cause fluid and electrolyte secretion (Nagy and Fekete, 1999)

However, non-enterotoxigenic porcine E. coli strains have been associated with PWD and neonatal diarrhea in swine by adhesion to intestinal epithelial cells in a characteristic attaching and effacing (A/E) pattern. This porcine enteropathogenic E. coli (PEPEC) produces an outer membrane protein (intimin), which is involved in the intimate attachment of the bacteria to enterocytes and induced typical A/E lesion in a pig ileal explant model (Zhu et al., 1994, 1995). The A/E lesion contributes to the initial phases of PEPEC pathogenicity (Batisson et al., 2003).

The gene that induces this lesion was designated paa (porcine A/E-associated gene) (Nagy and Fekete, 1999; An et al., 1999), and its sequence revealed an open reading frame of 753 bp encoding a 27.6-kDa protein, that shows similarity with Paa of enterohemorrhagic E. coli O157:H7 strains (Batisson et al., 2003). The A/E activity of PEPEC is highly correlated with the presence of the LEE (locus of enterocyte effacement) detected by DNA probes derived from the LEE of human enteropathogenic E. coli (EPEC) strain E2348/69 (An et al., 2000).

In Brazil there is a lack of information about the prevalence of the paa gene of porcine E. coli. The objective of the present study was to evaluate the presence of paa gene, and its correlation with the presence of enterotoxin STA, STb and LT encoding genes of E. coli strains isolated from piglets with diarrhea in Northern region of Paraná State, Brazil, described in a previous study (Vidotto et al., 2009).

Three hundred Escherichia coli strains isolated from 100 piglets with diarrheaea from different farms in Paraná State (Vidotto et al., 2009) were tested for the presence of the paa gene by polymerase chain reaction assay (PCR). The E. coli HB101 strain (Boyer and Roulland-Dssoix, 1969) was included as negative control.

Send correspondence to M.C. Vidotto. Departamento de Medicina Veterinária Preventiva, Universidade Estadual de Londrina, Campus Universitário, Caixa Postal 6001, 86051-970 Londrina, PR, Brazil. E-mail: macarlos@uel.br.
The base sequences for specific oligonucleotide primers used in this study were constructed based on the regions of conserved sequences between the paa gene of ETEC and PEPEC O45 (GeneBank U82533.4), PAA PEPEC O45-F: 5’- TCTTCTGCTGCTTATGCTGATA TC-3’ and PAA PEPEC O45-R: 5’- TTACCAGCCATA TTTTGGATGC-3’, annealing at nucleotides 37 to 60 and 718 to 738 of the paa gene, respectively. Bacterial DNA to be amplified was released from whole organisms by boiling, and PCR was carried out in a total volume of 25 μL containing 5 μL template DNA, each of the primers at 20 pmol, 200μM dNTPs, PCR buffer and 1.5 U Taq DNA polymerase (Invitrogen). PCR amplifications consisted of 30 cycles of 94 °C for 1 min, annealing temperature specific for each primer for 1 min and 72 °C for 2 min. The amplified DNA was visualized in 1.5% agarose gels stained with ethidium bromide. The 100-pb ladder (Promega, Madison, WI) was used as standard.

Of 100 piglets with diarrhea, 22% presented E. coli that carried paa genes. The presence of the paa gene (Table 1) was correlated with the presence of genes that encode fimbrial adhesins F4, F5, F6, F18, F41 and the toxins LT II, STa and STb found in these studied strains (Vidotto et al., 2009). Some strains that carried the paa gene also harboured genes for others adhesins and toxins (Table 1). There was no significant association of paa gene with the other virulence genes when analyzed by chi-square test (p > 0.05).

Table 1 - Distribution of the paa gene and enterotoxins among E. coli strains isolated from diarrheic piglets.

Adhesins	Nº of strains	STb	LT	STa LT	STb LT	STa STb LT	None toxin
Paa	2		2				
Paa	3	3					
Paa	2	2					
Paa	1	1					
Paa + F6	1	1					
Paa + F41	1						
Paa + F4+F5	1						
Paa + F5+F18	1						
Paa + F4+F6+F18	2	1					
Paa + F4+F18+F41	1						
Paa + F5+F18+F41	1						
Paa + F4+F5+F6+F41	1						
Paa + F4+F6+F18+F41	2	1					
Paa + F4+F5+F18+F41	1						
Paa + F4+F5+F6+F41	2						
Total	22	3	4	3	3	6	3

Paa- porcine A/E lesion-associated adhesin, F4- K88, F5- K99, F6-987P. LT-thermolabile enterotoxin, ST-termostable enterotoxin. No statistically significant association detected.
Porcine enteropathogenic *E. coli*

operon. The occurrence of enterotoxins was also associated with specific fimbriae in *E. coli* from pigs and several strains produced more than one fimbrial antigen (Nagy and Fekete, 2005; Toledo *et al.*, 2012; Vidotto *et al.*, 2009).

The prevalence of the *paa* gene (22%) found in this study was different than that found by others, Zhang *et al.* (2007) found a prevalence of 60% in *E. coli* strains isolated from young pigs with diarrhea in the US, and Boerlin *et al.* (2005) detected *paa* in 92% of porcine ETEC isolated in Canada.

The *paa* gene sequence is similar to that of the EPEC eae gene that codifies intimin (Zhu *et al.*, 1994), and the eae gene also have been found in 25.7% of isolates in Brazil (Martins *et al.*, 2000), 28.33% in China (Cheng *et al.*, 2006); and 27% of isolates in Mexico (Toledo *et al.*, 2012).

In conclusion, this study showed for the first time in Brazil the prevalence of the *paa* gene in *E. coli* strains isolated from piglets with diarrhea, and confirms the combination of various virulence genes in ETEC and porcine EPEC, suggesting that the *paa* gene could play a role in virulence.

Acknowledgments

We thank Dra. Ana Verginia Libos Messetti and Dra. Vanderli Marino Melem for statistical analysis. This work was supported by “Conselho Nacional de Desenvolvimento Científico e Tecnológico” (CNPq).

References

An H, Fairbrother JM, Desautels C, Harel J (1999) Distribution of a novel locus called Paa (porcine attaching and effacing associated) among enteric *Escherichia coli*. Adv Exp Med Biol 473:179-184.

An H, Fairbrother JM, Desautels C, Mabrouk T, Dugourd D, Dezfulian H, Harel J (2000) Presence of the LEE (locus of enterocyte effacement) in pig attaching and effacing *Escherichia coli* and characterization of eae, espA, espB and espD genes of PEPEC (pig EPEC) strain 1390. Microb Pathog 28:291-300.

Batisson I, Guimond MP, Girard F, An H, Zhu C, Oswald E, Fairbrother JM, Jacques M, Harel J (2003) Characterization of the novel factor paa involved in the early steps of the adhesion mechanism of attaching and effacing *Escherichia coli*. Infect Immun 71:4516-4525.

Boerlin P, Travis R, Gyles CL, Reid-Smith R, Janecko N, Lim H, Nicholson V, McEwen SA, Friendship R, Archambault M (2005) Antimicrobial resistance and virulence genes of *Escherichia coli* isolates from swine in Ontario. Appl Envir Microbiol 71:6753-6761.

Boyer H, Roulland-Dussoix J (1969) A complementation analysis of the restriction and modification of DNA in *E. coli*. J Mol Biol 41:459-472.

Bruant G, Zhang Y, Garneau P, Wong J, Laing C, Fairbrother JM, Gannon VPJ, Harel J (2009) Two distinct groups of porcine enteropathogenic *Escherichia coli* strains of serogroup O45 are revealed by comparative genomic hybridization and virulence gene microarray. BMC Genomics 009:10:402.

Cheng D, Sun H, Xu J, Gao S (2006) PCR detection of virulence factor genes in *Escherichia coli* isolates from weaned piglets with edema disease and/or diarrhea in China. Vet Microbiol 115:320-328.

Leclerc S, Boerlin P, Gyles C, Dubreuil JD, Mourez M, Fairbrother JM, Harel J (2007) *paa*, originally identified in attaching and effacing *Escherichia coli*, is also associated with enterotoxigenic *E. coli*. Res Microbiol 158:97-104.

Martins MDF, Martínez-Rossi NM, Ferreira A (2000) Pathogenic characteristics of *Escherichia coli* strains isolated from newborn piglets with diarrhea in Brazil. Vet Microbiol 76:51-59.

Nagy B, Fekete PZ (1999) *Enterotoxigenic Escherichia coli* (ETEC) in farm animals. Vet Res 30:259-284.

Nagy B, Fekete PZ (2005) Enterotoxigenic *Escherichia coli* in veterinary medicine. Int J Med Microbiol 295:443-454.

Toledo A, Gómez D, Cruz C, Carreón R, López J, Giono S, Castro AM (2012) Prevalence of virulence genes in *Escherichia coli* strains isolated from piglets in the suckling and weaning period in Mexico. J Med Microbiol. 61:148-56.

Vidotto MC, Lima NCS, Fritzen TTJ, Freitas JC, Venâncio EJ, Ono MA (2009) Frequency of virulence genes in *Escherichia coli* strains isolated from piglets with diarrhea in the North Parana State, Brazil. Braz J Microbiol 40:199-204.

Zhang W, Zhao M, Ruesch L, Omot A, Francis D (2007) Prevalence of virulence genes in *Escherichia coli* strains recently isolated from young pigs with diarrhea in the US. Vet Microbiol 123:145-152.

Zhu C, Harel J, Jacques M, Desautels C, Donnenberg MS, Beaudry M, Fairbrother JM (1994) Virulence properties and attaching-effacing activity of *Escherichia coli* O45 from swine postweaning diarrhea. Infect Immun 62:4153-4159.

Zhu C, Harel J, Jaques M, Fairbrother JM (1995) Interaction with pig ileal explants of *Escherichia coli* O45 isolated from swine with postweaning diarrhea. Can J Vet Res 59:118-123.

All the content of the journal, except where otherwise noted, is licensed under a Creative Commons License CC BY-NC.