Gieson’s stain, hydroxyproline, transforming growth factor-β1 (TGF-β1), nuclear factor-E2-related factor 2 (Nrf2), matrix metalloproteinase-2 (MMP-2) and tissue inhibitor of metalloproteinase-1 (TIMP-1).

RESULTS: Serum COHb and protein and mRNA expression levels of HO-1 and Nrf2 were increased in the BDL group compared with the Sham group and were much higher in the CoPP group. The ZnPP group showed lower expression of HO-1 and Nrf2 and lower COHb. The levels of iron and PVP were enhanced in the BDL group but were lower in the ZnPP and DFX groups and were higher in the CoPP and Fe groups. Hepcidin levels were higher, whereas superoxide dismutase levels were increased and malonaldehyde levels were decreased in the ZnPP and DFX groups. The ZnPP group also showed inhibited TGF-β1 expression and regulated TIMP-1/MMP-2 expression, as well as obviously attenuated liver fibrosis.

CONCLUSION: Reducing hepatic iron deposition and CO levels by inhibiting HO-1 activity though the Nrf2/Keap pathway could be helpful in improving hepatic fibrosis and maintaining portal vein pressure.

© 2013 Baishideng. All rights reserved.

Key words: Heme oxygenase-1; Hepcidin; Iron accumulation; Oxidative stress; Portal vein pressure; Carboxyhemoglobin; Bile duct ligation

ORIGINAL ARTICLE

Inhibiting heme oxygenase-1 attenuates rat liver fibrosis by removing iron accumulation

Qiu-Ming Wang, Jian-Ling Du, Zhi-Jun Duan, Shi-Bin Guo, Xiao-Yu Sun, Zhen Liu, Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
Jian-Ling Du, Department of Endocrinology, First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China

Author contributions: Wang QM and Du JL performed the experiments, analyzed the data and wrote the manuscript; Duan ZJ and Wang QM designed the experiments; Wang QM performed the experiments, analyzed the data and wrote the manuscript; Duan ZJ and Guo SB revised the manuscript.

Supported by Grants from the National Natural Science Foundation of China, No. 30970886; The Science and Technology Project of Dalian, No. 2010E15SF179; and the Initial Doctoral funding of Liaoning Province, No. 20121110

Correspondence to: Zhi-Jun Duan, Professor, Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Dalian 116011, Liaoning Province, China. cathydoctor@sina.com
Telephone: +86-411-83635963 Fax: +86-411-83632383
Received: January 13, 2013 Revised: March 15, 2013
Accepted: March 28, 2013
Published online: May 21, 2013

Abstract

AIM: To investigate the effects of the heme oxygenase (HO)-1/carbon monoxide system on iron deposition and portal pressure in rats with hepatic fibrosis induced by bile duct ligation (BDL).

METHODS: Male Sprague-Dawley rats were divided randomly into a Sham group, BDL group, Fe group, deferoxamine (DFX) group, zinc protoporphyrin (ZnP) group and cobalt protoporphyrin (CoPP) group. The levels of HO-1 were detected using different methods. The serum carboxyhemoglobin (COHb), iron, and portal vein pressure (PVP) were also quantified. The plasma and mRNA levels of hepcidin were measured. Hepatic fibrosis and its main pathway were assessed using Van Gieson’s stain, hydroxyproline, transforming growth factor-β1 (TGF-β1), nuclear factor-E2-related factor 2 (Nrf2), matrix metalloproteinase-2 (MMP-2) and tissue inhibitor of metalloproteinase-1 (TIMP-1).

RESULTS: Serum COHb and protein and mRNA expression levels of HO-1 and Nrf2 were increased in the BDL group compared with the Sham group and were much higher in the CoPP group. The ZnPP group showed lower expression of HO-1 and Nrf2 and lower COHb. The levels of iron and PVP were enhanced in the BDL group but were lower in the ZnPP and DFX groups and were higher in the CoPP and Fe groups. Hepcidin levels were higher, whereas superoxide dismutase levels were increased and malonaldehyde levels were decreased in the ZnPP and DFX groups. The ZnPP group also showed inhibited TGF-β1 expression and regulated TIMP-1/MMP-2 expression, as well as obviously attenuated liver fibrosis.

CONCLUSION: Reducing hepatic iron deposition and CO levels by inhibiting HO-1 activity though the Nrf2/Keap pathway could be helpful in improving hepatic fibrosis and regulating PVP.

© 2013 Baishideng. All rights reserved.

Key words: Heme oxygenase-1; Hepcidin; Iron accumulation; Oxidative stress; Portal vein pressure; Carboxyhemoglobin; Bile duct ligation

Core tip: In this study, inhibiting heme oxygenase-1 (HO-1)/carbon monoxide (CO) system by zinc protoporphyrin in rat liver fibrosis induced by bile duct ligation, the author aimed to affect the HO-1/CO system by iron deposition and portal pressure. Reducing hepatic iron deposition and CO levels by inhibiting HO-1 activity though the nuclear factor-E2-related factor 2/Keap pathway could be helpful in improving hepatic fibrosis and maintaining portal vein pressure.
Wang QM et al. Removing iron lightens fibrosis

Wang QM, Du JL, Duan ZJ, Guo SB, Sun XY, Liu Z. Inhibiting heme oxygenase-1 attenuates rat liver fibrosis by removing iron accumulation. World J Gastroenterol 2013; 19(19): 2921-2934 Available from: URL: http://www.wjgnet.com/1007-9327/full/v19/i19/2921.htm DOI: http://dx.doi.org/10.3748/wjg.v19.i19.2921

INTRODUCTION
Iron is an essential nutrient for growth and survival, but excessive iron accumulation in cells can result in cell injury. Iron overload is not uncommon in many patients with end-stage liver cirrhosis, and it can also occur in patients with a history of multiple blood transfusions.

Research has shown that in cultured hepatocytes, iron activates hepatic stellate cells and increases the secretion of latent transforming growth factor-β (TGF-β) due to hepatocytes being injured by iron in the pathogenesis of iron-ironoduced liver fibrosis. In mice, iron overload enhanced the development of carbon tetrachloride-induced hepatic fibrosis. In clinical studies, approximately half of patients with hereditary iron accumulation developed liver fibrosis. Moreover, a significant reduction of fibrosis in the liver was demonstrated in a number of thalassemia patients treated with deferasirox.

Clinically, repeated large-volume blood transfusions are sometimes necessary for cirrhotic patients with massive upper gastrointestinal bleeding; in most cases, patients are transfused with packed red blood cells (RBCs), which results in iron overload as the human body cannot excrete iron. Each unit of RBCs contains approximately 250 mg of iron, and after 10-15 RBC transfusions, iron typically accumulates in the liver, heart, skin, and endocrine organs. However, how iron overload affects the pathogenesis and treatment of patients with hepatic fibrosis is not yet well understood.

Heme oxygenase-1 (HO-1) is the primary rate-limiting enzyme in heme catabolism. It catalyzes the oxidative degradation of heme into free iron, carbon monoxide (CO), and biliverdin.

Previous reports have recently shown HO-1 to be protective in liver cells in various liver diseases such as acute liver injury, alcoholic liver disease, liver fibrosis and ischemia/reperfusion injury through multiple pathways. Other reports have indicated that this protection might be restricted to a narrow threshold of HO-1 over-expression. Our previous studies showed that over-expression of HO-1 could be harmful to the liver functioning of rats with cirrhosis induced by bile duct ligation (BDL), which was also reported by Froh et al., but whether this effect was related to iron accumulation and CO release was not clear.

In normal Sprague-Dawley (SD) rats, increased HO activity as a pro-oxidant mechanism resulted in iron accumulation in the liver; in contrast, decreased HO activity reduced intracellular iron levels and oxidative stress. In this study, we investigated the effect of HO-1 on iron accumulation and CO release by inhibiting or inducing HO-1 expression with zinc protoporphyrin (ZnPP) or cobalt protoporphyrin (CoPP) in fibrotic rat models induced by BDL, and we further studied whether regulating HO-1 expression could improve liver fibrosis by reducing hepatic iron accumulation and portal vein pressure.

MATERIALS AND METHODS

Animal care
The experimental protocols were approved by the Animal Care and Use Committee of Dalian Medical University, in accordance with the guidelines established by the Canadian Council on Animal Care.

BDL and treatment in rat
Fifty-three healthy male SD rats, weighing 200-220 g, were obtained from the Laboratory Animal Center of Dalian Medical University and were randomly divided into six groups: a Sham group (n = 6), BDL group (n = 10), CoPP treatment group (n = 12), ZnPP treatment group (n = 8), Fe treatment group (n = 9) and DFX treatment group (n = 8). The rats were housed in a specific pathogen-free (SPF) center, at room temperature of 24-26 °C and relative humidity of 60%-65%. Water was provided ad libitum.

The rats were well fed and housed for 3 d before any experimental protocols. Biliary cirrhosis was induced by BDL. Five groups underwent BDL together with Sham-operated animals as a healthy control. The surgical procedures were approved by the Animal Care and Use Committee of Dalian Medical University. Laparotomy was performed under anesthesia with ether. The bile duct was isolated and double-ligated with a 3-0 silk suture. The abdominal wall and skin were closed with 4-0 silk sutures. The abdominal wall and skin were closed with 4-0 silk sutures, and the antibiotic gentamicin (0.3 mL) was injected intramuscularly. Rats in the Sham group underwent laparotomy with the bile duct isolated but not ligated. After surgery, the Sham and BDL groups received an intraperitoneal injection of saline. Other groups received an intraperitoneal injection consisting of CoPP, ZnPP, iron-dextran (ID) and deferoxamine (DFX) (5, 5, 50, 100 mg/kg body weight) three times per week, respectively. After the establishment of the rat models, the number of rats was reduced to 6 in each group because of deaths during the study process.

ZnPP and CoPP (Sigma, St Louis, MO, United States) were dissolved in 0.2 mol/L of NaOH, adjusted to a pH of 7.4, were diluted in 0.85% NaCl, with a final concentration of 1 mg/mL as previously described, and were used for inhibiting and inducing HO-1 expression, respectively. DFX mesylate salt and ID (Sigma, St Louis, MO, United States) were diluted in 0.85% NaCl with final concentrations of 40 and 20 mg/mL, respectively. Histostain™ Plus Kits (SP9001) (Zhongshan Goldenbridge
Biological Technology, Beijing, China); hydroxyproline (HYP), malonaldehyde (MDA) and superoxide dismutase (SOD) (Key GEN Biotech Nanjing, China); a hepcidin enzyme-linked immunosorbent assay (ELISA) Kit (EIAab Science, Wuhan, China); and a TaKaRa RNA polymerase chain reaction (PCR) kit (avian myeloblastosis virus), version 3.0 (TaKaRa Biotechnology, Dalian, China), were used in this study.

Sample collection and examination
Four weeks after surgery, a catheter connected to a pressure transducer (BL-420F biological experimental system, Chengdu Technology and Market Co. Ltd., China), was placed in the portal vein to measure PVP. Subsequently, 1 mL of arterial blood was withdrawn to measure carboxyhemoglobin (COHb), using a RapiD Lab 1245 Blood Gas Analyzer (Siemens, New York, NY, United States). Then, blood samples were collected from the abdominal aorta to measure serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), and serum iron, using a Hitachi 7600-110 automatic biochemical analyzer (Hitachi Co, Tokyo, Japan). The levels of liver SOD and MDA were determined with a UV-2100 spectrophotometer (Chemito Instruments Pvt. Ltd.).

Liver iron content measurement
Liver iron content was determined by atomic absorption spectrometry with acetylene-air flame atomization. The analysis was performed with a Varian atomic absorption spectrometer (Mulgrave) with deuterium background correction. Measurements were obtained with a 248.3 nm analytical line in the spectral interval of 0.2 nm. Iron concentration was determined by the standard addition method. Sample digestion was accomplished with the MDS 2000 microwave sample preparation system (CEM) in Teflon cartridges, using a mixture of nitric acid (5 mL) and hydrogen peroxide (2 mL) (both from Merck, ultrapure grade) for 20 min at a pressure of 120 psi. The resulting product was analyzed directly in the Teflon cartridges.

Histology and immunohistochemistry
Part of liver lobe was excised, and the tissue was fixed in 10% neutral formalin solution and embedded in paraffin. Hematoxylin and eosin staining and Van Gieson’s (VG) staining were performed according to standard procedures. The severity and degree of lesions were graded according to methods previously described. Briefly, tissue sections (4 μm thick) were treated with HCl (5%) to liberate ferric ions. The samples were then treated with 5% potassium ferrocyanide to produce insoluble ferric ferrocyanide. The slides were counterstained with Neutral red. For immunohistochemical examination, deparaffinized sections were incubated with HO-1 antibodies (1:1000 dilution) and appropriate biotinylated secondary antibodies, followed by the avidin-biotin-peroxidase complex. The immunoreactive signal was developed by color deposition, using diaminobenzidine as a substrate. Yellow material in the cytoplasm was considered to indicate positive cells. Cell staining was assigned 4 scores, as previously described. The final score was defined as staining intensity × percentage of positive cells. The mean score of five fields was used to compare the six groups.

Hepatic HYP content
Liver tissue (100 mg) was prepared for HYP determination, according to a modification of the method previously described. The HYP content of the liver, as an indirect measurement of tissue collagen content, was expressed in microgram per gram of wet weight (μg/g).

Measurement of plasma hepcidin
Plasma hepcidin was measured by ELISA and was determined using 96-well microtiter plates coated with the recombinant peptide and a polyclonal antibody (Santa Cruz Biotechnology, INC, 1:3000 dilution). Assay procedures were performed according to the manufacturer’s instructions, and absorbance of each well was determined at a 450 nm wavelength. The process was performed as described previously.

Western blot analysis
The resected hepatic tissues were extracted with lysis buffer (1% Triton X-100; 50 mmol/L Tris-HCl, pH 7.6; 150 mmol/L NaCl; and 1% protease inhibitor cocktail). The protocols for western blot analyses have been described previously. Western blot analyses were performed with liver homogenates (30 μg protein) using anti-nuclear factor-E2-related factor 2 (Nrf2) antibody (Boster Biological Technology, Wuhan, China, 1:100 dilution), anti-TGF-B1 antibody (Boster Biological Technology, Wuhan, China, 1:100 dilution), anti-HO-1 antibody (Abcam, Cambridge, MA, United States, 1:2000 dilution), anti-β-actin antibody (Zhongshan Goldenbridge Biological Technology, Beijing, China, 1:500 dilution), and secondary antibody anti-rabbit and anti-mouse immunoglobulin G (Biosynthesis Biotechnology, Beijing, China, 1:500 dilution). The intensity of each signal was corrected using the values obtained from the immunodetection of β-actin, and the relative protein intensity was expressed as multiples of the content in the normal group.

RNA isolation and gene expression analysis
Total RNA was extracted from the livers following a standard guanidinium phenol-chloroform extraction protocol. The quantity of RNA was determined by measuring the optical density at 260 nm (A260 = 1 for 40 μg/mL RNA), and the purity of RNA was assessed by determining the ratio of the optical density obtained at 260 and 280 nm (pure RNA: A260/A280 = 2.0) using a UV-1206 spectrophotometer (Shimadzu, Japan). An aliquot of each mixture was used for reverse-transcription (RT)-PCR amplification, using reagents purchased from Takara Bio Inc. (Dalian, China). PCR products were separated by 2.5% agarose gel electrophoresis. The product bands were
photographed, and the density of each product band was quantified. The results are expressed as the ratios of the band density for target mRNA to that of β-actin mRNA. The primers utilized for PCR and RT-PCR are listed in Table 1.

Statistical analysis

All of the data are presented as the mean ± SD. Statistical testing was performed with SPSS software, version 16.0. The groups were compared using one-way analysis of variance with Dunnett’s multiple comparison test (where applicable). Correlative comparison of two non-hierarchical variances with normal distribution was evaluated by Pearson’s test, whereas Spearman’s test was used for non-normally distributed data. P < 0.05 was considered statistically significant.

RESULTS

Measurement of biochemical indicators in liver fibrosis induced by BDL

Four weeks postoperatively, common bile duct dilatation was observed in the BDL group, and ascites and jaundice also developed in the BDL group, suggesting that the BDL model was successfully established in our experiments.

The serum levels of AST, ALT and TBIL in the BDL group were much higher than those in the Sham group (P < 0.01). These levels were much lower in the ZnPP group and DFX group, but the levels in the CoPP group and Fe group were significantly higher than those in the BDL group (P < 0.01) (Figure 1G and H). The serum levels of AST were decreased in the DFX group compared with those in the ZnPP group (P < 0.05) (Figure 1G). These data indicated that inhibiting HO-1 expression and further reducing iron accumulation could improve liver function; in contrast, inducing HO-1 expression aggravated liver injury.

Inhibiting HO-1 expression reduced liver fibrosis and PVP induced by BDL

Liver damage was analyzed by hematoxylin and eosin staining. The livers in the Sham group showed normal lobular architecture with central veins and radiating hepatic cords (Figure 1A). Obvious fibrous hyperplasia and fibrosis extension with fibroblast proliferation were found in the interlobular and central venous regions in the livers in the BDL and CoPP groups (Figure 1B and C). Compared with the BDL group, fibrous hyperplasia was significantly reduced around the central veins in the ZnPP group (Figure 1D). The histopathological scores for fibrosis in the livers of BDL rats were improved in the ZnPP group (Figure 1E and F). Collagen type I was observed with VG staining (Figure 2A-F). In the BDL group, collagen type I in the portal area and bile duct wall was much thicker than in the Sham group (P < 0.01) (Figure 2A and B). Compared with the BDL group, there was a decrease in type I collagen in the ZnPP group. The extent of fibrosis was much higher in the CoPP group than in the BDL group (P < 0.01) (Figure 2G). The change in HYP content in liver tissue was in accordance with type I collagen. It was observed that HYP was significantly decreased in the ZnPP group compared with the BDL group (Figure 2H). These data showed that inhibiting HO-1 expression reduced collagen deposition in liver fibrosis.

The COHb levels in arterial blood were significantly higher in the BDL group compared with the Sham group (P < 0.01), and they were much lower following ZnPP and DFX treatment, while they were higher in the CoPP- and Fe-treated groups than in the BDL group (P < 0.01) (Figure 3A). PVP was significantly higher in the BDL group compared with the Sham group (P < 0.01). Compared with the BDL group, PVP decreased in the ZnPP and DFX groups (P < 0.01) and was enhanced in CoPP and Fe rats (P < 0.01). Moreover, PVP decreased following ZnPP treatment relative to DFX treatment (P < 0.05) (Figure 3B).

Table 1 Primers used for the reverse transcription-polymerase chain reaction and polymerase chain reaction analysis

Gene	Gene ID	Forward/reverse	Sequences 5’-3’	Product size (bp)
HO-1	NM012580	Forward	ATATCTATACCGCCCTCTGGAA	350
Nrf2	AF304364	Forward	GATGCTCGGGAAGGTGAA	345
TGF-β1	NM021578	Forward	CCGCAACAACGCAATCTA	437
Hepcidin	NM053469	Forward	GACGGCAACACTGATTCCA	159
TIMP-1	NM053819	Forward	CGTGGGCAACAAGTATGAGA	300
MMP-2	NM031054	Forward	CTGTCGCTGTCTGATTCCT	430
β-actin	NM01144	Forward	GAGGGAAATCGTGCGTGAC	445

HO-1: Heme oxygenase-1; Nrf2: Nuclear factor-E2-related factor 2; TGF-β1: transforming growth factor-β1; TIMP-1: Tissue inhibitor of metalloproteinase-1; MMP-2: Matrix metalloproteinase-2.
Levels of TGF-β1 were significantly enhanced in the BDL group compared with the Sham group ($P < 0.01$). These levels were lower in the ZnPP group and higher in the CoPP group compared with the BDL group (Figure 4A and B). The mRNA expression levels of MMP-2 and TIMP-1 were much higher in the BDL group than in the Sham group ($P < 0.01$). These levels were significantly lower in the ZnPP group and higher in the CoPP group than in the BDL group ($P < 0.01$) (Figure 4C). These results showed that down-regulated HO-1 expression reduced extracellular matrix (ECM) deposition and fibrosis.

Figure 1 Pathological features of rat liver tissue detected by hematoxylin and eosin staining and serum index. A: Normal lobular architecture in the Sham group; B, C, E: Obvious fibrous hyperplasia and fibrosis extension with fibroblast proliferation in the bile duct ligation (BDL) group, cobalt protoporphyrin (CoPP) group and Fe group; D and F: Less fibrous hyperplasia and fibrosis in the zinc protoporphyrin (ZnPP) group and deferoxamine (DFX) group; G, H: Levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and total bilirubin (TBIL); I: Histopathological scores for fibrosis (magnification × 100). Values are expressed as mean ± SE ($n = 6$). $^bP < 0.01$ vs Sham group; $^cP < 0.05$, $^dP < 0.01$ vs BDL group; $^fP < 0.01$ vs ZnPP group.
The mRNA and protein expression levels of HO-1 were significantly higher in the BDL group than in the Sham group ($P < 0.01$). These levels were obviously lower in the ZnPP group and higher in the CoPP group than in the BDL group ($P < 0.01$) (Figure 4A and B). Hepatic immunostaining showed that HO-1 was mainly expressed in the liver cells and partly in the mesenchymal cells and Kupffer cells. Localization of HO-1 occurred mainly around the centrilobular veins (Figure 5A-F). The values of HO-1 expression were consistent with the above data (Figure 5G).

The serum levels of iron in the BDL group were significantly higher than in the Sham group ($P < 0.01$). These levels were greatly lower in the ZnPP group than in the BDL group ($P < 0.01$) (Figure 6G). The change in liver iron content was in accordance with serum iron levels (Figure 6H).

The mRNA and protein expression levels of hepcidin were significantly lower in the BDL group than in the Sham group ($P < 0.01$). These levels were higher in the ZnPP group and lower in the CoPP group compared with the BDL group, and they were higher in the DFX group than in the ZnPP group (Figure 4C and 6I).

We used Prussian blue staining to localize iron accumulation in liver tissue and found that iron obviously accumulated in the BDL and CoPP groups. Iron was strongly stained mainly in Kupffer cells in these groups (Figure 6B and C). However, iron staining was rarely found in the Sham and ZnPP groups (Figure 6A and D). These results indicate that inhibiting HO-1 expression could reduce iron production, resulting in decreased iron accumulation in the liver. In contrast, enhanced HO-1 expression led to increased hepatic accumulation of iron.

Levels of SOD were obviously lower in the BDL group than in the Sham group ($P < 0.01$). These levels were higher in the ZnPP group and lower in the CoPP group compared with the BDL group, and they were higher in the DFX group than in the ZnPP group (Figure 3C). The MDA change tendency was opposite that of iron.

Figure 2 Van Gieson’s staining of collagen I for liver sections and liver hydroxyproline content. A-F: Collagen type I was deposited in the bile duct ligation (BDL) group, cobalt protoporphyrin (CoPP) group and Fe group (B, C and E) and was rarely found in the Sham group, zinc protoporphyrin (ZnPP) group and deferoxamine (DFX) group (A, D and F); G: The area of collagen type I; H: Hydroxyproline content of liver tissue (magnification, × 100). Values are expressed as mean ± SE (n = 6). $^b P < 0.01$ vs Sham group; $^c P < 0.05$, $^d P < 0.01$ vs BDL group; $^e P < 0.05$ vs ZnPP group.

HO-1 mediated iron accumulation and oxidative stress in liver

The mRNA and protein expression levels of HO-1 were significantly higher in the BDL group than in the Sham group ($P < 0.01$). These levels were obviously lower in the ZnPP group and higher in the CoPP group than in the BDL group ($P < 0.01$) (Figure 4A and B). Hepatic immunostaining showed that HO-1 was mainly expressed in the liver cells and partly in the mesenchymal cells and Kupffer cells. Localization of HO-1 occurred mainly around the centrilobular veins (Figure 5A-F). The values of HO-1 expression were consistent with the above data (Figure 5G).

The serum levels of iron in the BDL group were significantly higher than in the Sham group ($P < 0.01$). These levels were greatly lower in the ZnPP group than in the BDL group ($P < 0.01$) (Figure 6G). The change in liver iron content was in accordance with serum iron levels (Figure 6H).

The mRNA and plasma levels of hepcidin were significantly lower in the BDL group than in the Sham group ($P < 0.01$). These levels were higher in the ZnPP group and lower in the CoPP group compared with the BDL group, and they were higher in the DFX group than in the ZnPP group (Figure 4C and 6I).

We used Prussian blue staining to localize iron accumulation in liver tissue and found that iron obviously accumulated in the BDL and CoPP groups. Iron was strongly stained mainly in Kupffer cells in these groups (Figure 6B and C). However, iron staining was rarely found in the Sham and ZnPP groups (Figure 6A and D). These results indicate that inhibiting HO-1 expression could reduce iron production, resulting in decreased iron accumulation in the liver. In contrast, enhanced HO-1 expression led to increased hepatic accumulation of iron.

Levels of SOD were obviously lower in the BDL group than in the Sham group ($P < 0.01$), and they were significantly higher in the ZnPP group and lower in the CoPP group than in the BDL group ($P < 0.01$) (Figure 3C). The MDA change tendency was opposite that of iron.
Figure 3 The levels of carboxyhemoglobin, portal vein pressure malonaldehyde and superoxide dismutase. A, B: The levels of carboxyhemoglobin (COHb) were accordance with heme oxygenase-1 expression, and portal vein pressure (PVP) levels were measured; C, D: The levels of superoxide dismutase (SOD) and malonaldehyde (MDA) was detected. Values are expressed as mean ± SE (n = 6). *P < 0.01 vs Sham group; †P < 0.01 vs BDL group; ‡P < 0.05, ‡‡P < 0.01 vs zinc protoporphyrin (ZnPP) group. BDL: Bile duct ligation; CoPP: Cobalt protoporphyrin; DFX: Deferoxamine.
Hepcidin MMP-2 TIMP-1 β-actin

Sham BDL CoPP ZnPP Fe DFX

1.0 0.8 0.6 0.4 0.2 0.0

mRNA level (%)

d d d d d d

Wang QM et al. Removing iron lightens fibrosis

Figure 4 The heme oxygenase-1, transforming growth factor-β1, nuclear factor-E2-related factor 2, hepcidin, matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-1 expression were detected by Western blot and reverse transcription-polymerase chain reaction. A, B: The mRNA and protein levels of heme oxygenase-1 (HO-1), transforming growth factor-β1 (TGF-β1) and nuclear factor-E2-related factor 2 (Nrf2); C: The mRNA levels of hepcidin, matrix metalloproteinase-2 (MMP-2) and tissue inhibitor of metalloproteinase-1 (TIMP-1). Values are expressed as mean ± SE. b P < 0.01 vs Sham group; c P < 0.05, d P < 0.01 vs bile duct ligation (BDL) group; e P < 0.05, f P < 0.01 vs zinc protoporphyrin (ZnPP) group. CoPP: Cobalt protoporphyrin; DFX: Deferoxamine.

Figure 5 Liver sections were stained with heme oxygenase-1 antibody. A: Heme oxygenase-1 (HO-1) expression was less around the central veins in the Sham group; B, C, E: Much more HO-1 expression was found around the central veins in the bile duct ligation (BDL) group, cobalt protoporphyrin (CoPP) group and Fe group; D, F: Less staining was observed in the zinc protoporphyrin (ZnPP) group and deferoxamine (DFX) group; H: Immunohistochemical staining scores (magnification ×400). Values are expressed as mean ± SE (n = 6). b P < 0.01 vs Sham group; c P < 0.05, d P < 0.01 vs BDL group; f P < 0.01 vs ZnPP group.
SOD (Figure 3D). In the BDL model, inhibiting HO-1 expression reduced oxidative stress.

Iron induced oxidative stress and Nrf2 expression

Both the serum iron and liver iron content were higher in the Fe group but lower in the DFX group compared with the BDL group (Figure 6G and H). Prussian blue staining showed more iron accumulation in the Fe group and less in the DFX group (Figure 6E and F). The ZnPP group showed low iron levels (Figure 6D and F-H). The levels of plasma hepcidin were obviously lower in the Fe group but higher in the DFX group compared with the

Figure 6 Perl’s Prussian blue staining, levels of hepcidin, serum and liver iron. A: No iron accumulated in the Sham group; B: A small amount of iron mainly accumulated on Kupffer cells in the bile duct ligation (BDL) group; C: Much more iron accumulation was found in interlobular and macrophagocytes in the cobalt protoporphyrin (CoPP) group; D, F: Almost no iron accumulation was detected in the zinc protoporphyrin (ZnPP) group and deferoxamine (DFX) group; E: Massive iron accumulation was observed in the Fe group; G, H: There were no differences in the hepatic and serum iron content of these six groups; I: Plasma hepcidin also was measured by enzyme-linked immuno sorbent assay (magnification × 400). Values are expressed as mean ± SE (n = 6). *P < 0.01 vs Sham group; †P < 0.05, ‡P < 0.01 vs BDL group; †*P < 0.05 vs ZnPP group.
BDL group (Figure 6I). The expression of HO-1 was significantly higher in the Fe group but was lower in the DFX group compared with the BDL group (P < 0.01). It was also lower in the DFX group than in the ZnPP group (Figure 4A and B).

The mRNA and protein expression levels of Nrf2 were enhanced in the BDL group compared with the Sham group. Additionally, these levels were significantly higher in the CoPP and Fe groups than in the BDL group, and they were lower in the ZnPP and DFX groups (P < 0.01) (Figure 4A and B). We found the levels of SOD in the Fe group to be slightly lower than in the BDL group (P < 0.05); however, they were much higher than in the DFX group (P < 0.01) (Figure 3C). The levels of MDA were significantly increased in the Fe group but were reduced in the DFX group compared with the BDL group (P < 0.01) (Figure 3D). The levels of SOD were much higher, and MDA was lower in the DFX group compared with the ZnPP group (P < 0.01) (Figure 6C and D). These data indicate that iron accumulation in the liver increased the oxidative stress reaction and caused further damage to the liver.

Hematoxylin and cosin staining showed more fibrous hyperplasia in the Fe group and less in the DFX group compared with the BDL group (Figure 1E and F). The content of HYP was significantly higher in the Fe group than in the Sham group (P < 0.01), and it was lower in the DFX group than in the BDL group (P < 0.01) (Figure 2H). Compared with the BDL group, collagen I was increased in the Fe group and decreased in the DFX group (Figure 2E-G). The mRNA and protein expression levels of \(\alpha \)-smooth muscle actin and TGF-\(\beta \)-1 were significantly enhanced in the Fe group and decreased in the DFX group compared with the BDL group (Figure 4A and B). The levels of MMP-2 and TIMP-1 mRNA were much higher in the Fe group and were lower in the DFX group compared with the BDL group (P < 0.01). Compared with the ZnPP group, TGF-\(\beta \)-1 expression and ECM were lower in the DFX group (Figure 4C).

Correlation between oxidative stress and liver fibrosis

Correlation analysis revealed that both SOD and MDA were significantly correlated with HYP levels (\(R = -0.912, 0.887 \), respectively, \(P < 0.01 \)). These data also showed that oxidative stress could result in ECM deposition in the liver and could further aggravate liver fibrosis.

DISCUSSION

Many chronic liver diseases progress to hepatic fibrosis[20]. Iron overload in the liver increased the risk of developing fibrosis, as well as subsequent morbidity and mortality[21]. HO-1 catalyzes heme into iron, and it plays an important role in iron homeostasis. A previous study showed that HO-1 was associated with hepatocellular damage and had multiple mechanisms to influence liver fibrosis progression. In this study, we aimed to investigate how iron and CO, the product affected by HO-1 activity, affected hepatic fibrosis and PVP. We found that lower HO-1 expression could reduce iron accumulation and PVP and improve fibrosis.

In several chronic liver diseases, HO-1 plays a protective effect in the liver against oxidative stress-dependent damage[32-34]. However, its protective effects in inflammation and fibrosis have been disputed. Some studies have shown that HO-1 over-expression increases liver injury in rats under conditions of experimental chronic cholestasis[35]. Low HO-1 induction was shown to be cytoprotective, and high levels of HO-1 could result in the accumulation of free divalent iron, thus increasing oxidative injury in fibroblast cell cultures[36]. We found that lower HO-1 expression could benefit end-stage liver cirrhosis by reducing iron accumulation, which is in accordance with the findings of the above studies. Surprisingly, induction of HO-1 interfered with chronic inflammation and prevented progression of liver fibrosis in Mdr2-knockout mice, and it further might delay progression to hepatocellular carcinoma[37]. Our previous study indicated that induction of HO-1 could ameliorate immune liver fibrosis[38]. The reason why the above studies are different from this study could be that HO-1 plays a diverse role in different stages during the progression of liver fibrosis. In early stages of liver fibrosis, inducing HO-1 could have a protective effect, but it could increase liver injury in end stages via liver hypertension. Moreover, the different animal models for inducing fibrosis could constitute another explanation of these results.

The majority of endogenous CO is catalyzed by inducible expression of HO-1. CO can modulate blood flow and maintain the integrity of the vessel wall[39]. COHb levels can be used to estimate HO activity in experimental animals. Interestingly, we observed that up-regulated COHb resulted from increased HO-1, which aggravated PVP in BDL rats. Moreover, lower levels of COHb can decrease the PVP found in the ZnPP and DFX treatment groups. HO/CO plays a role in the pathophysiology of portal hypertension, and CO can regulate the intrahepatic vascular resistance of cirrhotic rats[38]. Tarquini et al[40] indicated that the HO/CO system is activated in patients with liver cirrhosis, and CO contributes to the hyperdynamic cirulatory syndrome. CO might improve intrahepatic microcirculation in early stage hepatic fibrosis, and excessive CO could be harmful, leading to an unbalanced nitric oxide/CO system in end-stage hepatic fibrosis. It therefore seems best to reduce PVP by decreasing CO.

Normally, HO-1 is only slightly expressed in hepatocytes and Kupffer cells. In hepatic cirrhosis, the expression of HO-1 is increased. Khan et al[41] reported that an increase in HO-1 expression is associated with iron accumulation. The study of Kartikasari et al[42] showed that iron is derived from intracellular heme degradation, and HO-1 activity contributes to increased levels of intracellular labile iron. Other research has shown that non-heme iron increases are associated with the induction of HO-1 in neurons, microglia and capillary endothelial cells, whereas HO-2 levels remain unchanged, implying that the non-heme iron increases might be the result
In conclusion, HO-1 played a pivotal role in iron accumulation and portal pressure in the livers in our study.

Wang QM et al. Removing iron lightens fibrosis
(Figure 7). In the clinic, many end-stage cirrhosis patients with upper gastrointestinal bleeding treated with multiple massive transfusions run the risk of iron overload and further liver injury. Today, iron chelation therapy is often utilized to remove excess stored iron in some diseases\(^{65,66}\). In our study, iron accumulation induced hepatic fibrogenesis, indicating that cirrhotic patients with massive stored RBC transfusions would benefit from iron removal therapy. Our research provided a new way to reduce liver iron and portal pressure by inhibiting HO-1 expression. However, we must find a proper model for the simulation of upper gastrointestinal bleeding and transfusion. In clinical experiments, we will attempt to include cirrhotic patients with bleeding complications, who would eventually receive transfusions, to investigate the effects of iron transfusions on liver cirrhosis.

Removing iron and reducing portal pressure by inhibition of HO-1 improves liver fibrosis in bile duct-ligated rats. In addition, iron is also closely related to another complication of cirrhosis: hepatocellular carcinoma\(^7\). Regulation of iron homeostasis, by interfering with HO-1, could effectively treat hepatic cirrhosis and also prevent hepatocellular carcinoma.

ACKNOWLEDGMENTS

The authors thank Li Lv for providing the clinical and experimental equipment. The authors also thank Qin Zhou for technical support.

COMMENTS

Background

Iron overload in the liver is a very common phenomenon in many chronic liver diseases. Heme oxygenase-1 (HO-1) and its by-products, iron and carbon monoxide (CO), play crucial roles in hepatic fibrosis. The underlying molecular mechanisms of HO-1, regarding iron deposition and portal vein pressure (PVP) in hepatic fibrosis, remain unknown.

Research frontiers

HO-1 and degradation products are important to cytoprotection in many types of liver injury, but protection can be restricted to a narrow threshold. Iron overload often triggers oxidative stress and inflammation and induces liver cell damage, and the CO/nitric oxide system could be harmful to portal pressure. Iron can activate nuclear factor-E2-related factor 2 (Nrf2) and increase HO-1 expression. Inhibiting HO-1 activity is necessary for reducing iron and PVP.

Innovations and breakthroughs

In this study, by inhibiting HO-1 expression by zinc protoporphyrin in rat liver fibrosis induced by bile duct ligation (BDL), the author aimed to affect the HO-1/CO system by iron deposition and portal vein pressure. Reducing hepatic iron deposition and CO levels by inhibiting HO-1 activity through the Nrf2/Keap pathway could be helpful in improving hepatic fibrosis and maintaining PVP.

Applications

Removing iron and reducing CO by inhibiting HO-1 activity provides a new strategy for treating liver fibrosis, and further, it could help prevent liver carcinoma.

Terminology

HO-1 is a primary rate-limiting enzyme in heme catabolism. It catalyzes the oxidative degradation of heme to free iron, CO, and biliverdin. Nrf2 is an important upstream contributor to the induction of HO-1 expression, and it has a protective effect on cells against oxidative stress. Hepcidin is expressed mainly in the liver, and it functions as a negative regulator of iron absorption from the duodenum.

Peer review

This study analyzed the role of HO-1 inhibition in rat liver fibrosis using an experimental model of BDL. The results are interesting, and they suggest that regulation of iron homeostasis and CO production could effectively treat liver cirrhosis and PVP and even prevent hepatocellular carcinoma.

REFERENCES

1. Shaw GC, Cope JJ, Li L, Corson K, Hersey C, Ackermann GE, Gwynn B, Lambert AJ, Wingert RA, Traver D, Trede NS, Barat BA, Zhou Y, Minet E, Donovan A, Brownlie A, Balzan R, Weiss MJ, Peters LL, Kaplan J, Zon LI, Pow BH. Mitoferrin is essential for erythroid iron assimilation. Nature 2006; 440: 96-100 [PMID: 16511496 DOI: 10.1038/nature04512]

2. Brown KE, Demery PA, Ridnour LA, Fimmel CJ, Kladney RD, Brunt EM, Spitz DR. Effect of iron overload and dietary fat on indices of oxidative stress and hepatic fibrogenesis in rats. Liver Int 2003; 23: 232-242 [PMID: 12895262]

3. Kayali Z, Rangelov R, Mitros F, Shufelt C, Elmi F, Rayhill SC, Schmidt WN, Brown KE. Hemosiderosis is associated with accelerated compensation and decreased survival in patients with cirrhosis. Liver Int 2005; 25: 41-48 [PMID: 15698397 DOI: 10.1111/j.1478-3231.2005.00122.x]

4. Horovitz JM, Nikolaidis P, Chen ZM, Siegelman E, Garg A, Feng C, Miller FH. Iron deposition surrounding the hepatic veins of cirrhotic patients on MRI. J Magn Reson Imaging 2011; 33: 598-602 [PMID: 21563243 DOI: 10.1002/jmri.22503]

5. Parkes JG, Templeton DM. Modulation of stellate cell proliferation and gene expression by rat hepatocytes: effect of toxic iron overload. Toxicol Lett 2003; 144: 225-233 [PMID: 12927366]

6. Arezzini B, Lunghi B, Lugarella G, Gardi C. Iron overload enhances the development of experimental liver cirrhosis in mice. Int J Biochem Cell Biol 2003; 35: 486-495 [PMID: 12565710]

7. Niederau C, Fischer R, Sonnenberg A, Stremmel W, Trampisch HJ, Strehmeyer M. Survival and causes of death in cirrhotic and in noncirrhotic patients with primary hemochromatosis. N Engl J Med 1985; 313: 1256-1262 [PMID: 4058506 DOI: 10.1056/NEJM198511141370204]

8. Deugnier Y, Turbin B, Ropert M, Cappellini MD, Porter JB, Giannone V, Zhang Y, Griffe L, Brisset P. Improvement in liver pathology of patients with β-thalassemia treated with deferasirox for at least 3 years. Gastroenterology 2011; 141: 1202-1211 [PMID: 21741344 DOI: 10.1053/j.gastro.2011.06.065]

9. Hendrickson JE, Hillyer CD. Noninfectious serious hazards of transfusion. Anesth Analg 2009; 108: 759-769 [PMID: 19224780 DOI: 10.1213/ane.0b013e3181e38f04]

10. Maines MD, Trakshel GM, Katty RK. Characterization of two constitutive forms of rat liver microsomal heme oxygenase. Only one molecular species of the enzyme is inducible. J Biol Chem 1986; 261: 411-419 [PMID: 3079757]

11. Maines MD. Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. FASEB J 1988; 2: 2557-2568 [PMID: 3290025]

12. Yang H, Zhao LF, Zhao ZF, Wang Y, Zhao JJ, Zhang L. Heme oxygenase-1 prevents liver fibrosis in rats by regulating the expression of PPARγ and NF-κB. World J Gastroenterol 2012; 18: 1680-1688 [PMID: 22529699 DOI: 10.3748/wjg.v18.i14.1680]

13. Malaguarnera L, Maddeddu R, Palio E, Arena N, Malaguarnera M. Heme oxygenase-1 levels and oxidative stress-related parameters in non-alcoholic fatty liver disease patients. J Hepatol 2005; 42: 585-591 [PMID: 15763346 DOI: 10.1016/j.jhep.2004.11.040]

14. Wen T, Guan L, Zhang YL, Zhao JY. Dynamic changes of heme oxygenase-1 and carbon monoxide production in acute liver injury induced by carbon tetrachloride in rats.
May 21, 2013 Volume 19 Issue 19

Wang QM et al. Removing iron lightens fibrosis

Toxicology 2006; 228: 51-57 [PMID: 16978757 DOI: 10.1016/j.tox.2006.08.014]

Zeng Z, Huang HF, Chen MQ, Song F, Zhang YJ. Heme oxygenase-1 protects donor livers from ischemia/reperfusion injury in the role of Kupffer cells. World J Gastroenterol 2010; 16: 1285-1292 [PMID: 20222175]

Geuken E, Bujs CI, Visser DS, Blokzijl H, Moslage H, Nemes B, Leuvenik HG, de Jong KP, Peeters PM, Slooff MJ, Porte RJ. Expression of heme oxygenase-1 in human livers before transplantation correlates with graft injury and function after transplantation. Am J Transplant 2005; 5: 1875-1885 [PMID: 15995234 DOI: 10.1111/j.1600-6143.2005.00960.x]

Guo SB, Duan ZJ, Li Q, Sun XY. Effect of heme oxygenase-1 on renal function in rats with liver cirrhosis. World J Gastroenterol 2011; 17: 322-328 [PMID: 21253390 DOI: 10.3748/wjv.t17.i3.322]

Guo SB, Duan ZJ, Li Q, Sun XY. Effects of heme oxygenase-1 on pulmonary function and structure in rats with liver cirrhosis. Chin Med J (Engl) 2011; 124: 918-922 [PMID: 21518630]

Froh M, Conzelmann I, Walbran F, Netter S, Wiest R, Wheeler MD, Lehnert M, Usugi T, Scholmerich J, Thurman RG. Heme oxygenase-1 overexpression increases liver injury after bile duct ligation in rats. World J Gastroenterol 2007; 13: 3478-3486 [PMID: 17695695]

Khan ZA, Barbin YP, Cukiernik M, Adams PC, Chakrabarti S. Heme-oxygenase-mediated iron accumulation in the liver. Can J Physiol Pharmacol 2004; 82: 445-446 [PMID: 15389291 DOI: 10.1139/y04-082]

Fallon MB, Abrams GA, McGrath JW, Hou Z, Luo B. Common bile duct ligation in the rat: a model of intrapulmonary vasodilatation and hepatopulmonary syndrome. Am J Physiol 1997; 272: G779-G784 [PMID: 9142980]

Luo B, Abrams GA, Fallon MB. Endothelin-1 in the rat bile duct ligation model of hepatopulmonary syndrome: correlation with pulmonary dysfunction. J Hepatol 1998; 29: 571-578 [PMID: 9824266]

Amersi F, Buelow R, Kato H, Ke B, Coito AJ, Shen XD, Zhao D, Zaky J, Melinek J, Lassman CR, Kolls JK, Alam J, Ritter T, Volk HD, Farmer DG, Ghobrial RM, Busutil RW, Kupiec-Weglinski JW. Upregulation of heme oxygenase-1 protects genetically fat Zucker rat livers from ischemia/reperfusion injury. J Clin Invest 1999; 104: 1631-1639 [PMID: 10587527 DOI: 10.1172/JCI9703]

Feron VJ, Kittel B, Kuper CF, Ernst H, Rittinghausen S, Muhle H, Koh W, Ganner A, Mallett AK, Hoffmann HD. Chronic bronchial effects of respirable methylene diphenyl diisocyanate (MDI) aerosol in rats: combination of findings from two bioassays. Arch Toxicol 2001; 75: 159-175 [PMID: 11409538]

BUNTING H. The histochemical detection of iron in tissues. Stain Technol 1949; 24: 109-115 [PMID: 18161685]

Remmel W, Stegner HE. [Recommendation for uniform definition of an immunoreactive score (IRS) for immunohistochemical estrogen receptor detection (ER-ICA) in breast cancer tissue]. Pathologie 1987; 138-140 [PMID: 3330308]

Brown KE, Poulos JE, Li L, Soweid AM, O’Neill MD, Lehnert M, Uesugi T, Scholmerich J, Thurman RG. Heme oxygenase 1 prevents progression of liver fibrosis in Mdr2 knockout mice. Hepatology 2005; 41: 1158-1165 [PMID: 16752336 DOI: 10.1001/jp.2014.1542]

Koliarakis E, Marinou M, Vassilakopoulos P, Vavourakis V, Vassilakopoulos TP, Vavourakis A. Liver hepcidin mRNA expression is inappropriately low in alcoholic patients. J Clin Hypertens (Greenwich) 2012; 14: 198-205 [PMID: 22458740 DOI: 10.1111/j.1715-7176.2012.00606.x]

Van Landeghem L, Laleman W, Vander Elst I, Zeegers M, Van Pelt J, Cassiman D, Nevers F. Carbon monoxide produced by intrasinusoidally located haem-oxygenase-1 regulates the vascular tone in cirrhotic rat liver. Liver Int 2009; 29: 650-660 [PMID: 18795901 DOI: 10.1111/j.1672-0241.2008.01857.x]

Tarquini R, Masini E, La Villa G, Barletta G, Novelli M, Mastroianni R, Romainelli FG, Vizzutti F, Santossouso U, Lafig G. Increased plasma carbon monoxide in patients with viral cirrhosis and hyperdynamic circulation. Am J Gastroenterol 2009; 104: 891-897 [PMID: 19277027 DOI: 10.1038/ajg.2009.2]

Kartikasari AE, Wagenfaer FA, Yachie A, Wiegerink ET, Kemna EH, Swinkels DW. Hepcidin mRNA expression and defective iron recycling account for dysregulation of iron homeostasis in heme oxygenase-1 deficiency. J Cell Mol Med 2009; 13: 3091-3102 [PMID: 18774956 DOI: 10.1111/j.1582-4934.2008.00494.x]

Ren H, Leib SL, Ferriero DM, Tauber MG, Christen S. Induction of haem oxygenase-1 causes cortical non-haem iron increase in experimental pneumococcal meningitis: evidence that concomitant ferritin up-regulation prevents iron-induced oxidative damage. J Neurochem 2007; 100: 532-544 [PMID: 17116231 DOI: 10.1111/j.1471-4159.2006.04230.x]

Costa-Matos L, Batista P, Monteiro N, Simões M, Egas C, Pereira J, Pinho H, Santos N, Ribeiro J, Cipriano MA, Henríques P, Girão F, Rodrigues A, Carvalho A. Liver hepcidin mRNA expression is inappropriately low in alcoholic patients compared with healthy controls. Eur J Gastroenterol Hepatol 2012; 24: 1158-1165 [PMID: 22732356 DOI: 10.1097/MEG.0b01332835f6d0]

Nicolas G, Bennoun M, Devaux I, Beaumont C, Grandchamp B, Kahn A, Vaulont S. Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proc Natl Acad Sci USA 2001; 98: 8780-8785 [PMID: 11447267 DOI: 10.1073/pnas.151179498]

Jaroszewicz J, Roques EA, Fliisik R. Serum prohepcidin reflects the degree of liver function impairment in liver cirrhosis.
Wang QM et al. Removing iron lightens fibrosis

rhosis. Biomarkers 2008; 13: 478-485 [PMID: 18979640]

Huang YH, Chuang JH, Yang YL, Huang CC, Wu CL, Chen CL. Cholestasis downregulate hepatic expression through inhibiting IL-6-induced phosphorylation of signal transducer and activator of transcription 3 signaling. Lab Invest 2009; 89: 1128-1139 [PMID: 19652645 DOI: 10.1038/labvest.2009.82]

Huang YH, Yu-Hsieh H, Huang CC, Shin-Mu VT, Tai MH, Chen CL, Chuang JH. Liver hepcidin and storable iron expression in biliary atresia. Pediatr Res 2006; 59: 662-666 [PMID: 16627878 DOI: 10.1209/03-1.prd:0000214974.55049.f1]

Huang YH, Chou MH, Du YY, Huang CC, Wu CL, Chen CL, Chuang JH. Expression of toll-like receptors and type 1 interferon specific protein MxA in biliary atresia. Lab Invest 2007; 87: 66-74 [PMID: 17075576 DOI: 10.1038/labvest.3700490]

Huang H, Constante M, Layoun A, Santos MM. Contribution of STAT3 and SMAD4 pathways to the regulation of hepcidin by opposing stimuli. Blood 2009; 113: 3593-3599 [PMID: 19204324 DOI: 10.1182/blood-2008-08-176414]

Ganz T. Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation. Blood 2003; 102: 783-788 [PMID: 12663437 DOI: 10.1182/blood-2003-03-0672]

Andrews NC. Forging a field: the golden age of iron biology. Blood 2008; 112: 219-230 [PMID: 18608887 DOI: 10.1182/blood-2007-12-077888]

Pae HO, Lee YC, Chung HT. Heme oxygenase-1 and carbon monoxide: emerging therapeutic targets in inflammation and allergy. Recent Pat Inflamm Allergy Drug Discov 2008; 2: 159-165 [PMID: 19076605]

Yao P, Nussler A, Liu L, Hao L, Song F, Schirmeier A, Nussler N. Quercetin protects human hepatocytes from ethanol-derived oxidative stress by inducing heme oxygenase-1 via the MAPK/Nrf2 pathways. J Hepatol 2007; 47: 253-261 [PMID: 17435488 DOI: 10.1016/j.jhep.2007.02.008]

Lamb NJ, Quinlan GJ, Munbty S, Evans TW, Gutteridge JM. Haem oxygenase shows pro-oxidant activity in microsomal and cellular systems: implications for the release of low-molecular-mass iron. Biochem J 1999; 344 Pt 1: 153-158 [PMID: 10585455]

Okada S. Iron-induced tissue damage and cancer: the role of reactive oxygen species-free radicals. Pathol Int 1996; 46: 311-332 [PMID: 8806878]

Pietrangelo A. Metals, oxidative stress, and hepatic fibrogenesis. Semin Liver Dis 1996; 16: 13-30 [PMID: 8723320 DOI: 10.1053/s-2007-1007215]

Pietrangelo A. Hereditary hemochromatosis—a new look at an old disease. N Engl J Med 2004; 350: 2383-2397 [PMID: 15175440 DOI: 10.1056/NEJMra031573]

Myers BM, Prendergast GF, Holman R, Kuntz SM, LaRusso NF. Alterations in the structure, physicochemical properties, and pH of hepatocyte lysosomes in experimental iron overload. J Clin Invest 1991; 88: 1207-1215 [PMID: 1918375 DOI: 10.1172/JCI115423]

Pietrangelo A, Borella F, Casalgrandi G, Montosi G, Cecarelli D, Gallesi D, Giovannini F, Gasparetto A, Masini A. Antioxidant activity of silybin in vivo during long-term iron overload in rats. Gastroenterology 1995; 109: 1941-1949 [PMID: 7498660]

Moon MS, McDevitt EI, Zhu J, Stanley B, Krzeminski J, Amin S, Aliaga C, Miller TG, Isom HC. Elevated hepatic iron activates NF-E2-related factor 2-regulated pathway in a dietary iron overload mouse model. Toxicol Sci 2012; 129: 74-85 [PMID: 22649188 DOI: 10.1093/toxsci/kfs193]

Numazawa S, Ishikawa M, Yoshida S, Tanaka S, Yoshida T. Atypical protein kinase C mediates activation of NF-E2-related factor 2 in response to oxidative stress. Am J Physiol Cell Physiol 2003; 285: C334-C342 [PMID: 12700136 DOI: 10.1115/j-applcell.00043.2003]

Baird I, Dinkova-Kostova AT. The cytoprotective role of the Keap1-Nrf2 pathway. Arch Toxicol 2011; 85: 241-272 [PMID: 21365312 DOI: 10.1007/s00204-011-0674-5]

Parola M, Robino G. Oxidative stress-related molecules and liver fibrosis. J Hepatol 2001; 35: 297-306 [PMID: 11580156]

Maher JJ, Tzagarakis C, Giménez A. Malondialdehyde stimulates collagen production by hepatic lipocytes only upon activation in primary culture. Alcohol Alcohol 1994; 29: 605-610 [PMID: 7811345]

De Blesper PJ, Xu G, Rombouts K, Rogiers V, Geerts A. Glutathione levels discriminate between oxidative stress and transforming growth factor-beta signalling in activated rat hepatic stellate cells. J Biol Chem 1999; 274: 33881-33887 [PMID: 10567349]

Farrika K, Tzoumari I, Pappa C, Choularias G, Berdoukas V. Normalisation of total body iron load with very intensive combined chelation reverses cardiac and endocrine complications of thalassaemia major. Br J Haematol 2010; 148: 466-475 [PMID: 19912219 DOI: 10.1111/j.1365-2457.2009.07970.x]

Anderson LJ, Westwood MA, Holden S, Davis B, Prescott E, Wonke B, Porter JB, Walker JM, Pennell DJ. Myocardial iron clearance during reversal of siderotic cardiomyopathy with intravenous desferrioxamine: a prospective study using T2* cardiovascular magnetic resonance. Br J Haematol 2004; 127: 348-355 [PMID: 15491298 DOI: 10.1111/j.1365-2457.2004.05202.x]

Kew MC. Hepatic iron overload and hepatocellular carcinoma. Cancer Lett 2009; 286: 38-43 [PMID: 19081672 DOI: 10.1016/j.canlet.2008.11.001]

P- Reviewers: Bustos M, Boschá L, Montecucco F, Okoshi S
S- Editor: Huang XZ L- Editor A E- Editor Xiong L