COMBINATORIAL FORMULAS FOR KAZHDAN-LUSZTIG POLYNOMIALS WITH RESPECT TO W-GRAph IDEALS

QI WANG

ABSTRACT. Let \((W, S, L)\) be a weighted Coxeter system and \(J\) a subset of \(S\), Yin \([12]\) introduced the weighted \(W\)-graph ideal \(E_J\) and the weighted Kazhdan-Lusztig polynomials \(\{P_{x,y} \mid x, y \in E_J\}\). In this paper, we study the combinatorial formulas for \(P_{x,y}\), which will extend the results of Brenti \([2]\) and Deodhar \([5]\).

1. Introduction

Let \((W, S)\) be a Coxeter system, we denote by \(\ell\) and \(\leq\) the length function and the Bruhat order on \(W\), respectively.

\(W\)-graph is introduced by Kazhdan and Lusztig \([7]\). A \(W\)-graph provides a method for constructing a matrix representation of \(W\) and the entries of this matrix are called Kazhdan-Lusztig polynomials. However, these polynomials are not easy to compute.

Brenti \([2]\) provided a combinatorial algorithm for Kazhdan-Lusztig polynomials, which is depended only on \(R\)-polynomials. Later, Deodhar \([3]\) introduced the parabolic Kazhdan-Lusztig polynomials associated with a standard parabolic subgroup \(W_J\) of \(W\), and showed two analogous combinatorial formulas for these parabolic cases in \([5]\). Brenti’s result corresponds exactly to the case \(J = \emptyset\). Then, Tagawa \([10]\) generalized these formulas to weighted parabolic Kazhdan-Lusztig polynomials.

Howlett and Nguyen \([6]\) introduced the concept of \(W\)-graph ideals and showed that a \(W\)-graph can be constructed from a \(W\)-graph ideal \(E_J \subseteq W\), where \(W\) is equipped with the left weak Bruhat order \(\leq_L\). They constructed the Kazhdan-Lusztig polynomials with respect to a \(W\)-graph ideal. Deodhar’s construction exactly corresponds to the case \(E_J = D_J\), where \(D_J\) is the set of minimum coset representatives of \(W_J\).

Recently, Yin \([12]\) and \([13]\) generalized the construction of \(W\)-graph ideals to a weighted Coxeter system \((W, S, L)\). He showed that there exists a pair of dual modules \(M(E_J, L)\) and \(\tilde{M}(E_J, L)\) with respect to a given \(W\)-graph ideal \(E_J\). Similarly, Yin constructed the weighted Kazhdan-Lusztig polynomials \(\{P_{x,y} \mid x, y \in E_J\}\) and the inverse weighted Kazhdan-Lusztig polynomials \(\{Q_{x,y} \mid x, y \in E_J\}\).

In this paper, we continue the work in \([12]\) and \([13]\) with slightly different on the ground ring. We consider Hecke algebras over the ring of Laurent polynomials \(\mathbb{Z}[q^{1/2}, q^{-1/2}]\), where \(q_s = q^{L(s)}\) and \(L\) is a weight function.

This paper is organized as follows. In Section 2, we review basic concepts concerning weighted Coxeter groups and Hecke algebras. In Section 3 and 4, we modify the concept of \(W\)-graph ideals to our setting and the weighted Kazhdan-Lusztig polynomials on \(M(E_J, L)\) are also considered. In Section 5 and 6, we devote to giving combinatorial formulas for \(\{P_{x,y} \mid x, y \in E_J\}\) and coefficients of those polynomials. In Section 7, we show similar combinatorial formulas for the inverse weighted Kazhdan-Lusztig polynomials.

Key words and phrases. Hecke algebra, \(W\)-graph, \(W\)-graph ideal, Kazhdan-Lusztig polynomial.
Acknowledgements. This project was considered during my master’s course. I am very grateful to my supervisor, Prof. Yunchuan Yin, for taking me into this field and giving me a lot of help in writing this paper. I am also very grateful to him for his enthusiasm to help me study abroad.

2. Preliminaries

In this section, we follow the conventions in [12]. Let Γ be a totally ordered abelian group with zero element 0 and \leq the order on Γ.

Let $\mathbb{Z}[\Gamma]$ be a free \mathbb{Z}-module with a basis set $\{q^\gamma \mid \gamma \in \Gamma\}$ and the multiplication is given by $q^\gamma q^\zeta = q^{\gamma+\zeta}$, where q is an indeterminant. For any $f \in \mathbb{Z}[\Gamma]$, we denote by $[q^\gamma]$ the coefficient of q^γ on $[q^\gamma]$. If $f \neq 0$, then the degree of f is defined to be $\deg(f) := \max \{\gamma \mid [q^\gamma] \neq 0\}$, and we set $\deg(0) = -\infty$. Then, the map $\deg : \mathbb{Z}[\Gamma] \to \Gamma \cup \{-\infty\}$ satisfies $\deg(fg) = \deg(f) + \deg(g)$.

For any reduced word $w = s_1s_2\cdots s_k$, a map $L : W \to \Gamma$ is called a weight of W if

$$L(w) = L(s_1) + L(s_2) + \cdots + L(s_k).$$

Throughout, we assume that $L(s) \geq 0$ for any $s \in S$.

Let $\mathcal{H} := \mathcal{H}(W, S, L)$ be the weighted Hecke algebra corresponding to (W, S) with parameters $\{q_s^{1/2} \mid s \in S\}$, where $q_s = q^{\ell(s)}$. It is well-known that \mathcal{H} is a free $\mathbb{Z}[\Gamma]$-module and \mathcal{H} has a basis set $\{T_w \mid w \in W\}$. In particular, the multiplication is given by

$$T_s T_w = \begin{cases} T_{sw} & \text{if } \ell(sw) > \ell(w), \\ q_s T_{sw} + (q_s - 1)T_w & \text{if } \ell(sw) < \ell(w). \end{cases}$$

We denote by $- : \mathbb{Z}[\Gamma] \to \mathbb{Z}[\Gamma]$ the automorphism of $\mathbb{Z}[\Gamma]$ induced by sending γ to $-\gamma$ for any $\gamma \in \Gamma$. This can be extended to a ring involution $- : \mathcal{H} \to \mathcal{H}$ such that

$$\sum_{w \in W} a_w \cdot T_w = \sum_{w \in W} a_w \cdot T_w = \sum_{w \in W} \overline{a_w} \cdot T_w,$$

and $\overline{T_s} = q_s^{-1}T_s + (q_s^{-1} - 1)$ for any $s \in S$.

For any $J \subseteq S$, let $W_J := \langle J \rangle$ be the corresponding parabolic subgroup of W. We denote the set of minimum coset representatives of W_J by

$$D_J = \{w \in W \mid \ell(ws) > \ell(w) \text{ for all } s \in J\}.$$

Let \leq_L be the left weak Bruhat order on W. We say $x \leq_L y$ if and only if $y = zx$ and $\ell(y) = \ell(z) + \ell(x)$ for some $z \in W$. If this is the case, then x is said to be a suffix of y.

Definition 2.1. ([12] Definition 2.3) Let $E \subseteq W$, we define

$$\text{Pos}(E) := \{s \in S \mid \ell(xs) > \ell(x) \text{ for all } x \in E\}.$$

Obviously, $\text{Pos}(E)$ is the largest subset J of S satisfying $E \subseteq D_J$. Let E be an ideal in poset (W, \leq_L), that is, E is a subset of W such that if $u \in W$ is a suffix of $v \in E$, then $u = v$. This implies that $\text{Pos}(E) = S/E = \{s \in S \mid s \notin E\}$.

Let J be a subset of $\text{Pos}(E)$ such that $E \subseteq D_J$. In this context, we shall denote by E_J the set E with respect to J. For each $y \in E_J$, we define the following subsets of S.

$$SD(y) := \{s \in S \mid \ell(sy) < \ell(y)\},$$

$$SA(y) := \{s \in S \mid \ell(sy) > \ell(y) \text{ and } sy \in E_J\},$$

$$WD(y) := \{s \in S \mid \ell(sy) > \ell(y) \text{ and } sy \notin D_J\},$$

$$WA(y) := \{s \in S \mid \ell(sy) > \ell(y) \text{ and } sy \in D_J/E_J\}. $$
It is obvious that for each \(y \in E_J \), each \(s \in S \) appears in exactly one of the four sets defined above (since \(E_J \subseteq D_J \)).

3. W-graph ideal modules

We recall from [13] the definition of W-graph ideals with some modifications.

Definition 3.1. ([13] Definition 1.1, Modified) A W-graph consists of the following data.

1. A vertex set \(\Lambda \) together with a map \(I \) which assigns a subset \(I(x) \subseteq S \) to each vertex \(x \in \Lambda \).
2. For each \(s \in S \) with \(L(s) = 0 \), there is an edge: \(x \to sx \). For each \(s \in S \) with \(L(s) > 0 \), there is a collection of edges such that \(\mu^s_{x,y} = \mu^s_{y,x} \) and \(\{ \mu^s_{x,y} \in \mathbb{Z}[\Gamma] \mid x, y \in \Lambda, s \in I(x), s \notin I(y) \} \).
3. Let \([A]_{\mathbb{Z}[\Gamma]}\) be a free \(\mathbb{Z}[\Gamma] \)-module with basis \(\{b_y \mid y \in \Lambda\} \). We require that the map \(T_s \to \tau_s \) gives an \(\mathcal{H} \)-representation of \(\mathcal{H} \) with the following multiplication.

\[
\tau_s(b_y) = \begin{cases}
 b_{sy} & \text{if } L(s) = 0; \\
 -b_y & \text{if } L(s) > 0, s \in I(y); \\
 q_s b_y + q_s^{1/2} \sum_{x \in \Lambda, s \in I(x)} \mu^s_{x,y} b_x & \text{if } L(s) > 0, s \notin I(y).
\end{cases}
\]

Definition 3.2. ([13] Definition 2.4, Modified) Let \((W,S,L)\) be a weighted Coxeter system and \(E_J \subseteq W \), we call \(E_J \) a W-graph ideal if the following holds.

1. There is a \(\mathbb{Z}[\Gamma]-\)free \(\mathcal{H} \)-module \(M(E_J, L) \) with a basis \(\{\Gamma_y \mid y \in E_J\} \) such that

\[
T_s \Gamma_y = \begin{cases}
 q_s \Gamma_{sy} + (q_s - 1) \Gamma_y & \text{if } s \in SD(y), \\
 \Gamma_{sy} & \text{if } s \in SA(y), \\
 -\Gamma_y & \text{if } s \in WD(y), \\
 q_s \Gamma_y - \sum_{z < y, z \in E_J} r^s_{z,y} \Gamma_z & \text{if } s \in WA(y),
\end{cases}
\]

for some polynomials \(r^s_{z,y} \in q_s \mathbb{Z}[\Gamma] \).

2. The \(\mathcal{H} \)-module \(M(E_J, L) \) admits a \(\mathbb{Z}[\Gamma] \)-semilinear involution \(\Gamma_y \to \widetilde{\Gamma}_y \) satisfying \(\widetilde{\Gamma}_1 = \Gamma_1 \) and \(\widetilde{T_w \Gamma_y} = \widetilde{T_w} \widetilde{\Gamma}_y \) for all \(T_w \in \mathcal{H}, \Gamma_y \in M(E_J, L) \).

We call \(M(E_J, L) \) the W-graph ideal module and refer to [13] for the definition of another W-graph ideal module \(\widetilde{M}(E_J, L) \).

There exists an algebra homomorphism \(\Phi : \mathcal{H} \to \mathcal{H} \) given by \(\Phi(q_s) = -q_s \) and \(\Phi(T_w) = \epsilon_w q_w \widetilde{T_w} \) for all \(s \in S, w \in W \), where the bar is the standard involution on \(\mathcal{H} \). Furthermore, \(\Phi^2 = \text{id} \) and \(\Phi \) commutes with the bar involution.

Proposition 3.3. ([13] Theorem 3.1) There exists a unique homomorphism \(\eta \) from \(M(E_J, L) \) to \(\widetilde{M}(E_J, L) \) such that \(\eta(\Gamma_1) = \widetilde{\Gamma}_1 \) and \(\eta(T_w \Gamma_y) = \Phi(T_w) \eta(\Gamma_y) \) for all \(T_w \in \mathcal{H} \) and \(\Gamma_y \in M(E_J, L) \). Moreover,

1. \(\eta \) is a bijection and the inverse \(\eta^{-1} \) satisfies properties of \(\eta \).
2. \(\eta \) commutes with the involution on \(M(E_J, L) \) and \(\widetilde{M}(E_J, L) \).

Proof. Let \(\eta(\Gamma_y) = \epsilon_y q_y \Gamma_y \), then it is easy to see the proposition. \(\square \)
4. Kazhdan-Lusztig polynomials with respect to W-graph ideals

In this section, we recall the weighted Kazhdan-Lusztig polynomials introduced by Yin [12] and [13]. First, let $\Gamma' := \{L(s) \mid s \in S\}$ and we consider the totally order \leq on Γ. Then, we have $\mathbb{Z}[\Gamma'] \subseteq \mathbb{Z}[\Gamma]$ and $\mathbb{Z}[\Gamma'] = \{ \prod q_i^{n_i} \mid s_i \in S, n_i \in \mathbb{Z} \}$.

4.1. The weighted R-polynomials on $M(E_J, L)$. We recall from [12] the construction of $\{R_{x,y} \mid x, y \in E_J\}$ and $\{\tilde{R}_{x,y} \mid x, y \in E_J\}$ with some modifications.

Definition 4.1. There is a unique family of polynomials $R_{x,y} \in \mathbb{Z}[\Gamma]$ satisfying

$$\Gamma^y = \sum_{x \in E_J} \epsilon_x \epsilon_y q_y^{-1} R_{x,y}^x \Gamma_x,$$

we call them the weighted R-polynomials on $M(E_J, L)$.

We assume that $R_{x,y} = 0$ if $x \notin E_J$ or $y \notin E_J$. Then, we have

Proposition 4.2. Let $x, y \in E_J$, then $R_{x,y} = 0$ if $x \neq y$, $R_{x,y} = 1$ if $x = y$.

Proposition 4.3. For any $x, y \in E_J$, we have $R_{x,y} \in \mathbb{Z}[\Gamma']$ and

$$0 \leq \deg (R_{x,y}) \leq L(y) - L(x).$$

There are some further properties for $R_{x,y}$ as follows.

Lemma 4.4. ([12] Lemma 4.3, [13] Corollary 3.2, Modified) Let $x, y \in E_J$, then

1. $R_{x,y} = \epsilon_x \epsilon_y q_y^{-1} \tilde{R}_{x,y}$.
2. $\sum_{x \in t \subseteq y, t \in E_J} \epsilon_t \epsilon_y R_{x,t} \tilde{R}_{t,y} = \delta_{x,y}$ (Kronecker delta).

Proof. To prove the first statement, we apply the function η to both sides of the formula

$$\Gamma^y = \sum_{x \in E_J} \epsilon_x \epsilon_y q_y^{-1} R_{x,y}^x \Gamma_x,$$

and use the fact that η commutes with the involution to compare with the formula

$$\tilde{\Gamma}^y = \sum_{x \in E_J} \epsilon_x \epsilon_y q_y^{-1} \tilde{R}_{x,y} \tilde{\Gamma}_x,$$

then we can see the result.

To prove the second statement, we use (1) and the equality $\tilde{\Gamma}_y = \Gamma_y$,

$$\Gamma_y = \sum_{x \in E_J} \epsilon_x \epsilon_y q_y R_{x,y} \Gamma_x = \sum_{t \subseteq y, x \in t} \epsilon_x \epsilon_t R_{x,t} \tilde{R}_{t,y} \Gamma_x = \sum_{x \in y} \left(\sum_{x \in t \subseteq y} \epsilon_x \epsilon_t R_{x,t} \tilde{R}_{t,y} \right) \Gamma_x,$$

Therefore, we have

$$\sum_{x \in t \subseteq y} \epsilon_t \epsilon_y R_{x,t} \tilde{R}_{t,y} = \epsilon_x^{-1} \epsilon_y \sum_{x \in t \subseteq y} \epsilon_x \epsilon_t R_{x,t} \tilde{R}_{t,y} = \epsilon_x^{-1} \epsilon_y \delta_{x,y} = \delta_{x,y}.$$

Corollary 4.5. Let $x, y \in E_J$, then

$$\sum_{x < t \subseteq y, t \subseteq E_J} \epsilon_x \epsilon_t \tilde{R}_{x,t} \tilde{R}_{t,y} = \delta_{x,y} - R_{x,y}.$$

We can easily find the following relation between $R_{x,y}$ and other kinds of R-polynomials.
Remark 4.6. With the above conventions, we have

1. If $E = D$ and $x, y \in D$, then
 \[R_{x,y} = R'_{x,y}(q) \psi, \quad u_s = -1, \]
 \[\tilde{R}_{x,y} = R'_{x,y}(q) \psi, \quad u_s = q_s, \]
 where $R'_{x,y}(q) \psi$ is a weighted parabolic R-polynomial ([10]), u_s is a solution of the equation $u_s^2 = q_s + (q_s - 1) u_s$ and ψ is a weight of W into $\mathbb{Z}[\Gamma]$.

2. If $E = W$ (i.e. $J = \emptyset$) and $x, y \in W$, then
 \[R_{x,y} = \tilde{R}_{x,y} = R'_{x,y}, \]
 where $R'_{x,y}$ is a weighted R-polynomial ([9]). If further $q_s = q$ for all $s \in S$, then
 \[R_{x,y}(q) = \tilde{R}_{x,y}(q) = R_{x,y}(q), \]
 where $R_{x,y}(q)$ is a R-polynomial ([7]).

4.2. The weighted Kazhdan-Lusztig polynomials on $M(E_J, L)$.

Proposition 4.7. There exists a unique family of polynomials \(\{ P_{x,y} \in \mathbb{Z}[\Gamma] \mid x, y \in E_J \} \) satisfying the following condition:

\[q_x^{-1} q_y P_{x,y} = \sum_{x \leq t \leq y, t \in E_J} R_{x,t} P_{t,y}. \]

We call them the weighted Kazhdan-Lusztig polynomials on $M(E_J, L)$.

Proof. First, we show the existence of $P_{x,y}$ by induction on $\ell(y) - \ell(x)$. If $\ell(y) - \ell(x) = 0$, then $P_{x,x} = P_{x,x} \iff P_{x,x} = 1$. If $\ell(y) - \ell(x) \neq 0$, then it follows our assumption and Corollary 4.5 that

\[F := \sum_{x < t \leq y, t \in E_J} R_{x,t} P_{t,y} \]

\[= q_x q_y^{-1} \sum_{x < t \leq y, t \in E_J} \epsilon_x \epsilon_t \tilde{R}_{x,t} \left(\sum_{t \leq z \leq y, z \in E_J} R_{t,z} P_{z,y} \right) \]

\[= q_x q_y^{-1} \sum_{x < t \leq y, z \in E_J} \delta_{x,t} P_{t,y} - q_x q_y^{-1} \sum_{x < t \leq y, t \in E_J} R_{x,t} P_{t,y} \]

\[= -q_x q_y^{-1} \sum_{x < t \leq y, t \in E_J} R_{x,t} P_{t,y} \]

This implies

\[F + P_{x,y} = q_x q_y^{-1} (F + P_{x,y}) + \mathbb{F} = q_x q_y^{-1} P_{x,y}, \]

Therefore, the existence of $P_{x,y}$ is shown by replacing F. The uniqueness of $P_{x,y}$ is obvious by the method of the proof of the existence above. \qed

Similarly, we set $P_{x,y} = 0$ if $x \notin E_J$ or $y \notin E_J$.

Corollary 4.8. Assume that $x < y \in E_J$, then $P_{x,y} \in \mathbb{Z}[\Gamma']$ and
\[0 \leq \deg(P_{x,y}) < \frac{L(y) - L(x)}{2}. \]

Proof. It follows Proposition 4.3 and Proposition 4.7 that $P_{x,y} \in \mathbb{Z}[\Gamma']$ and the inequality on the left is true. Let $d := \deg(P_{x,y})$ and note that
\[q_x^{-1/2} q_y^{1/2} P_{x,y} - q_x^{1/2} q_y^{-1/2} P_{x,y} = q_x^{1/2} q_y^{-1/2} \sum_{x < t \leq y, i \in E_J} R_{x,t} P_{t,y}, \]
we have
\[\frac{L(y) - L(x)}{2} - d \leq \deg\left(q_x^{-1/2} q_y^{1/2} P_{x,y}\right) \leq \frac{L(y) - L(x)}{2}, \]
\[\frac{L(x) - L(y)}{2} \leq \deg\left(q_x^{1/2} q_y^{-1/2} P_{x,y}\right) \leq \frac{L(x) - L(y)}{2} + d. \]

Then, by the uniqueness of $P_{x,y}$,
\[\frac{L(x) - L(y)}{2} + d < 0 < \frac{L(y) - L(x)}{2} - d. \]

Therefore, the inequality on the right is also true. \qed

Remark 4.9. It is worth mentioning that the \mathcal{H}-module $M(E_J, L)$ has a unique basis \{ $C_y \mid y \in E_J$ \} such that $C_y = C_y$ for any $y \in E_J$, and
\[C_y = \sum_{x \leq y \in E_J} \epsilon_x \epsilon_y q_x^{-1/2} q_y^{1/2} P_{x,y} \Gamma_x. \]

This is the so-called Kazhdan-Lusztig basis.

The relation between $P_{x,y}$ and other kinds of Kazhdan-Lusztig polynomials is very similar to Remark 4.6, we do not show details.

5. The combinatorial formulas for $P_{x,y}$

In this section, we define \mathcal{H}-polynomials on $M(E_J, L)$ and show combinatorial formulas for $\{P_{x,y} \mid x, y \in E_J\}$, which extend the results of Tagawa [10] and Deodhar [5].

For any $\gamma \in \Gamma$, we define the following truncation functions.
\[U_\zeta \left(\sum_{\gamma \geq 0} [q^\gamma] q^\gamma \right) = \sum_{\gamma \geq 0} [q^\gamma] q^\gamma \text{ and } L_\zeta \left(\sum_{\gamma < 0} [q^\gamma] q^\gamma \right) = \sum_{\gamma < 0} [q^\gamma] q^\gamma. \]

Definition 5.1. Assume that E_J is a W-graph ideal.

1. Let $\mathcal{J}_k(x, y) = \{ \varphi : x = x_0 < x_1 < \cdots < x_{k+1} = y \mid x_i \in E_J \}$ be the set of all E_J-chains of length equal to $k + 1$, where x_0 is called the initial element of φ and x_{k+1} is called the final element of φ. Let $x < y$, we denote by $\mathcal{J}(x, y) = \bigcup_{k \geq 0} \mathcal{J}_k(x, y)$ the set of all E_J-chains.

2. Let $\mathcal{M}_k(x, y) = \{ \varphi : x = x_0 \leq x_1 \leq \cdots \leq x_{k+1} = y \mid x_i \in E_J \}$ be the set of all E_J-multichains of length equal to $k + 1$, and we denote by $\mathcal{M}(x, y) = \bigcup_{k \geq 0} \mathcal{M}_k(x, y)$ the set of all E_J-multichains.

Note that an E_J-chain is an E_J-multichain as well. Conversely, for each E_J-multichain, there exists a unique E_J-chain which is obtained by removing the repetitions.

We define a family of polynomials which is depended only on the weighted R-polynomials $R_{x,y}$. We call them \mathcal{H}-polynomials on $M(E_J, L)$.

Definition 5.2. Assume that \(x \leq y \in E_J \) and \(\varphi : x = x_0 \leq x_1 \leq \cdots \leq x_{r+1} = y \) is a \(E_J \)-multichain, let
\[
\mathcal{R}_\varphi = \begin{cases}
 q_{x_1}^{-1} q_y R_{x,y} & \text{if } r = 0, \\
 R_{x_1,1} U_{L(x)-L(x_1)} \left(q_{x_1}^{-1} q_y \mathcal{R}_{\varphi'} \right) & \text{if } r \geq 1.
\end{cases}
\]
where \(\varphi' : x_1 \leq x_2 \leq \cdots \leq y \in \mathcal{M}(x_1, y) \).

Then, we show some properties of \(\mathcal{R} \)-polynomials.

Proposition 5.3. Assume that \(x \leq y \in E_J \), \(\varphi \in \mathcal{M}(x, y) \), \(\varphi' \in \mathcal{M}(x_1, y) \) and \(\mathcal{R}_\varphi \neq 0 \).

1. Let \(d(\varphi) \) be the maximum power of \(q \) that divides \(\mathcal{R}_\varphi \), then
\[
\frac{L(y)-L(x_1)}{2} < \deg(\mathcal{R}_\varphi) \leq L(y) - L(x) - d(\varphi').
\]

2. For all \(i \in \{2, 3, \ldots, \ell(\varphi)\} \), we have \(x_{i-1} < x_i \).

Proof. (1) The inequality on the left follows the definition of \(\mathcal{R}_\varphi \). Since
\[
\deg(\mathcal{R}_\varphi) = \deg(\mathcal{R}_{x_1}) + \deg \left(U_{L(x)-L(x_1)} \left(q_{x_1}^{-1} q_y \mathcal{R}_{\varphi'} \right) \right)
\]
\[
\leq L(x_1) - L(x) + \deg \left(q_{x_1}^{-1} q_y \mathcal{R}_{\varphi'} \right) = L(y) - L(x) - d(\varphi'),
\]
the inequality on the right is also true.

(2) We show this by induction on \(\ell(\varphi) \). If \(\ell(\varphi) = 2 \), then \(\varphi = (x_0, x_1, x_2) \) and \(x_1 < x_2 \) (there is a contradiction between \(\mathcal{R}_{x_0,x_1,x_2} = 0 \) and our assumption if \(x_1 = x_2 \)).

Suppose that the inequality holds when \(\ell(\varphi) \leq k \), \((k \geq 2) \), then we show it for \(\ell(\varphi) = k + 1 \). Since \(\mathcal{R}_{x_0,x_1,\cdots,x_{k+1}} \neq 0 \),
\[
\deg \left(q_{x_1}^{-1} q_{x_{k+1}} \mathcal{R}_{x_2,\cdots,x_{k+1}} \right) > \frac{L(y)-L(x_1)}{2}.
\]
Then, by statement (1), we have \(L(x_1) < L(x_2) \). This is equivalent to \(x_1 < x_2 \). Therefore,
\[
x_1 < x_2 < x_3 < \cdots < x_{k+1}
\]
follows our inductive hypothesis. \(\square \)

The following corollaries are obvious.

Corollary 5.4. Let \(x \leq y \in E_J \) and \(\varphi \in \mathcal{M}(x, y) \). If \(\ell(y) - \ell(x) < \ell(\varphi) - 1 \), then \(\mathcal{R}_\varphi = 0 \).

Corollary 5.5. For any \(x \leq z \in E_J \) and \(k \in \mathbb{N} \), let \(z^{(k)} := (z, z, \ldots, z) \in (E_J)^k \). Then, \(\mathcal{R}_{z^{(k)}} = 0 \) if \(k \geq 3 \), \(\mathcal{R}_{x,z^{(k)}} = 0 \) if \(k \geq 2 \).

Corollary 5.6. For any \(x, y \in E_J \), we have
\[
\mathcal{R}_{x,y} = \epsilon_x \epsilon_y q_x q_y^{-1} \mathcal{R}_{x,y},
\]
where \(\mathcal{R}_{x,y} \) is the \(\mathcal{R} \)-polynomials on \(\mathcal{M}(E_J, L) \).

In order to prove our main result in this section, we require the following lemmas.

Lemma 5.7. Let \(x < y \in E_J \), then
\[
P_{x,y} = \mathcal{R}_{x,y} = \sum_{x \leq t \leq y, t \in E_J} q_t^{-1} q_y \mathcal{R}_{x,t} \mathcal{P}_{t,y}.
\]

Proof. By applying the involution \(\mathcal{T} \) on \(q_x^{-1} q_y \mathcal{P}_{x,y} = \sum_{x \leq t \leq y, t \in E_J} R_{x,t} \mathcal{P}_{t,y} \), one can get the required result. \(\square \)
Lemma 5.8. For any $x < y \in E_J$, we have

$$[q^0] \left(\sum_{\varphi \in \mathcal{I}(x,y)} \mathcal{R}_\varphi \right) = \begin{cases} [q_x^{-1}q_y] R_{x,y} & \text{if } \ell(\varphi) = 1, \\ 0 & \text{if } \ell(\varphi) \geq 2, \end{cases}$$

Proof. It is easy to prove by the definition of \mathcal{R}_φ. □

We now have the following result as described in the introduction.

Theorem 5.9. Assume that E_J is a W-graph ideal and $x, y \in E_J$.

1. If $x < y$, then $P_{x,y} = L_{\frac{L(y) - L(x)}{2}} \left(\sum_{\varphi \in \mathcal{I}(x,y)} \mathcal{R}_\varphi \right)$.

2. If $x \leq y$, then $P_{x,y} = \sum_{\varphi \in \mathcal{I}(x,y)} \mathcal{R}_\varphi$.

Proof. According to Corollary 5.4, the sum on the right side of (1) and (2) is finite. We show (1) by induction on $\ell(y) - \ell(x)$. If $\ell(y) - \ell(x) = 1$, then we use the involution on two sides of the equation introduced in Proposition 4.7, and we get $P_{x,y} - q_x^{-1}q_y P_{x,y} = q_x^{-1}q_y P_{x,y}$. It follows the definition of \mathcal{R}_φ and Proposition 4.8 that $P_{x,y} = L_{\frac{L(y) - L(x)}{2}} (\mathcal{R}_{x,y})$.

Assume that (1) holds when $\ell(y) - \ell(x) < k$ and we show it for $\ell(y) - \ell(x) = k$. First, by Lemma 5.7, we have

$$[q^0] (P_{x,y}) - [q^0] (\mathcal{R}_{x,y}) = [q^0] \left(\sum_{x \leq t < y, t \in E_J} q_t^{-1}q_y \mathcal{R}_{x,t} P_{t,y} \right).$$

Since $\deg (P_{x,y}) < \frac{L(y) - L(x)}{2}$ and Lemma 5.8, it is easy to check that

$$[q^0] (P_{x,y}) = [q^0] \left(L_{\frac{L(y) - L(x)}{2}} \left(\sum_{\varphi \in \mathcal{I}(x,y)} \mathcal{R}_\varphi \right) \right).$$

Assume again that the following holds for all pairs $x' < y'$ and $\gamma' < \gamma$ ($q^\gamma \in \mathbb{Z}[\Gamma]$),

$$[q^\gamma] (P_{x,y}) - [q^\gamma] (q_x^{-1}q_y P_{x,y}) = [q^\gamma] \left(\sum_{\varphi \in \mathcal{I}(x,y)} \mathcal{R}_\varphi \right).$$

Similarly, by Lemma 5.7, we have

$$[q^\gamma] (P_{x,y}) - [q^\gamma] (\mathcal{R}_{x,y}) - [q_x^{-1}q_y P_{x,y}] (P_{x,y})$$

$$= \sum_{x < t < y, t \in E_J} \sum_{0 \leq t \leq \gamma} [q^{\gamma - t}] (\mathcal{R}_{x,t}) [q^\xi] (q_t^{-1}q_y P_{t,y}),$$

and

$$[q^\gamma] (q_t^{-1}q_y P_{t,y}) = \begin{cases} 0 & \text{if } \xi \leq \frac{L(y) - L(t)}{2}, \\ [q_t^{-1}q_y P_{t,y}] (P_{t,y}) & \text{if } \xi > \frac{L(y) - L(t)}{2}. \end{cases}$$

Then, we substitute the latter one into the former one,
prove by Corollary 4.8.

and Corollary 5.4, we have

This completes the proof of (2).

For any \(x < t < y \) and \(\frac{L(y) - L(t)}{2} < \xi \leq \gamma \), we have \(L(y) - L(t) - \xi < \xi < \gamma \). Then, following our assumption,

\[
[q^{-\xi}] (P_{t,y}) - [q^{-\xi}] (P_{t,y}) = [q^{-\xi}] (P_{t,y}) \left(\sum_{\varphi' \in \mathcal{F}(t,y)} R_{\varphi'} \right).
\]

However, \([q^{\xi}] (P_{x,y}) = 0 \) (since \(\xi \geq \frac{L(y) - L(t)}{2} \)). By the definition of \(R_{\varphi} \), Proposition 5.3 and Corollary 5.4, we have

\[
[q^{-\xi}] (P_{x,y}) - [q^{-\xi}] (R_{x,y}) - [q^{-\xi}] (P_{x,y}) = \sum_{\varphi \in \mathcal{F}(x,y)} [q^{-\xi}] (R_{\varphi}) - \sum_{\varphi \in \mathcal{F}(x,y)} [q^{-\xi}] (R_{\varphi}) = [q^{-\xi}] (R_{x,y})
\]

The above is equivalent to \(P_{x,y} - q^{-1} q_y P_{x,y} = \sum_{\varphi \in \mathcal{F}(x,y)} R_{\varphi} \). Therefore, (1) is easy to prove by Corollary 4.8.

Now, we can show the statement (2). If \(x = y \), then (2) is true since \(P_{x,x} = 1 = R_{x,x} \). If \(x < y \), then by (1), Proposition 5.3, Corollary 5.4, Corollary 5.5 and the fact \(U_{a+b} (q^n P) = q^n L_{a+b}(P) \), we have

\[
P_{x,y} = \sum_{\varphi \in \mathcal{F}(x,y)} R_{\varphi} + q^{-1} q_y L_{\frac{L(y) - L(x)}{2}} (\sum_{\varphi \in \mathcal{F}(x,y)} R_{\varphi})
\]

\[
= \sum_{\varphi \in \mathcal{F}(x,y)} R_{\varphi} + \sum_{\varphi \in \mathcal{F}(x,y)} U_{L(y) - L(x)} (q^{-1} q_y R_{\varphi})
\]

\[
= \sum_{\varphi \in \mathcal{F}(x,y)} R_{\varphi} + \sum_{\varphi \in \mathcal{F}(x,y)} R_{x,\varphi} = \sum_{x < t < y, \varphi \in \mathcal{F}(x,y), t \in E_J} R_{x,\varphi} + \sum_{\varphi \in \mathcal{F}(x,y)} R_{x,\varphi} + \sum_{\varphi \in \mathcal{F}(x,y)} R_{\varphi}
\]

\[
= \sum_{x < t < y, \varphi \in \mathcal{F}(x,y), t \in E_J} R_{x,\varphi} + \sum_{\varphi \in \mathcal{F}(x,y)} R_{\varphi} = \sum_{x < t < y, \varphi \in \mathcal{F}(x,y), t \in E_J} R_{x,\varphi} + \sum_{\varphi \in \mathcal{F}(x,y)} R_{\varphi}
\]

This completes the proof of (2). \(\square \)
Moreover, we have the following corollary immediately. Let \(\Psi = \bigcup_{k \leq \ell(y)-\ell(x)} \mathcal{J}_k(x,y) \) and \(\Upsilon = \bigcup_{k \leq \ell(y)-\ell(x)} \mathcal{M}_k(x,y) \).

Corollary 5.10. Let \(x, y \in E_I \).

1. If \(x < y \), then \(P_{x,y} = L_{L(y)-L(x)} \left(\sum_{\varphi \in \Psi} \mathcal{R}_\varphi \right) \).
2. If \(x \leq y \), then \(P_{x,y} = \sum_{\varphi \in \Upsilon} \mathcal{R}_\varphi \).

Proof. It follows Proposition 5.4 that \(\mathcal{R}_\varphi = 0 \) if \(\varphi \in \bigcup_{k \geq \ell(y)-\ell(x)+1} \mathcal{M}_k(x,y) \). Then, the corollary follows Theorem 5.9. \(\square \)

6. The Coefficients of \(P_{x,y} \)

The purpose in this section is to obtain explicit formulas for the coefficients of \(P_{x,y} \). Let

\[\Gamma'' := \{ \sum n_i L(s_i) \mid s_i \in S, n_i \in \mathbb{Z}, i \in \mathbb{N} \} \]

Then, by Theorem 5.9 and Corollary 5.10, we immediately have the following results.

Corollary 6.1. Assume that \(x, y \in E_I \) and \(\gamma \in \Gamma'' \).

1. If \(x < y \), then \([q^\gamma] (P_{x,y}) = [q^\gamma] \left(\sum_{\varphi \in \Psi} \mathcal{R}_\varphi \right) \).
2. If \(x \leq y \), then \([q^\gamma] (P_{x,y}) = [q^\gamma] \left(\sum_{\varphi \in \Upsilon} \mathcal{R}_\varphi \right) \).

Before to show the formulas, we have to show the following.

Lemma 6.2. Assume that \(x \leq y \in E_I \), \(r \in \mathbb{N} \), \(\varphi \in \mathcal{M}(x,y) \) and \(\gamma \in \Gamma'' \), then

\[[q^\gamma] (\mathcal{R}_\varphi) = \sum_{S \in \mathcal{F}_\varphi} \prod_{i=0}^r \left[q_{x_{i+1}} q_y q_0 q_{x_i} q_y q_1 \right] (R_{x_{i+1}}) \]

where we set \(S := (\lambda_0, \lambda_1, \ldots, \lambda_{r+1}) \) and

\[\mathcal{F}_\varphi := \{ (a_0, a_1, \ldots, a_{r+1}) \in (\Gamma'')^{r+2} \mid a_0 = L(y) - L(x) - \gamma, \]

\[\gamma \geq a_1 > a_2 > \cdots > a_r > a_{r+1} = 0, \]

\[a_i > L(y) - L(x_i) - a_i \geq a_{i+1} \ for \ i \in \{1, 2, \ldots, r\} \} \]

Proof. It follows the definition of \(\mathcal{R}_\varphi \) and \(\lambda_0 = L(y) - L(x) - \gamma \) that

\[[q^\gamma] (\mathcal{R}_\varphi) = \sum_{\gamma > \lambda_1 \geq 0} [q^{-\lambda_1}] (\mathcal{R}_{x_{i+1}}) [q_{x_{i+1}} q_y q_1] (\mathcal{R}_\varphi) \]

\[= \sum_{S' \in \mathcal{F}_{L(y)-L(x_1)-\lambda_1} (\varphi')} \left(\prod_{i=1}^r \left[q_{x_{i+1}} q_y q_1 q_0^{-1} q_{x_i} q_y q_{x_{i+1}} q_y q_{x_i} \right] (R_{x_{i+1}}) \right) \]

\[= \sum_{S \in \mathcal{F}_\varphi} \prod_{i=0}^r \left[q_{x_{i+1}} q_y q_0^{-1} q_{x_i} q_y q_{x_{i+1}} \right] (R_{x_{i+1}}) \],
Lemma 7.2. Let
\[\mathcal{F}_{L(y)-L(x_1)-1}(\varphi') = \{ (a_1, a_2, \cdots, a_{r+1}) \in (\Gamma')^{r+1} | \]
\[a_1 = \lambda_1, \]
\[L(y) - L(x_1) - \lambda_1 \geq a_2 > a_3 > \cdots > a_r > a_{r+1} = 0, \]
\[a_i > L(y) - L(x_i) - a_i \geq a_{i+1} \text{ for } i \in \{2, 3, \cdots, r\} \}. \]

This completes the proof of the lemma. \[\square\]

Theorem 6.3. Assume that \(x, y \in E_J, \varphi \in \mathcal{M}(x, y), r \in N \) and \(\gamma \in \Gamma'' \), then
\[[q^\gamma] (P_{x,y}) = [q^\gamma] (R_{x,y}) \]
\[+ \sum_{r=1}^{\ell(y)-\ell(x)} \sum_{\varphi \in \mathcal{M}(x,y)} \sum_{S \in \mathcal{F}_{y}(\varphi)} \prod_{i=1}^{r} [q_{x,i+1}q_{y}^{-1}q_{i}^{\lambda_i}q_{i+1}^{\lambda_i}] (R_{x_i,x_{i+1}}). \]

Proof. Following Corollary 5.4 and Theorem 5.9, one can easily check that
\[[q^\gamma] (P_{x,y}) = [q^\gamma] (R_{x,y}) + \sum_{r=1}^{\ell(y)-\ell(x)} \sum_{\varphi \in \mathcal{M}(x,y)} [q^\gamma] (R_{\varphi}). \]

The result is a straightforward consequence of Lemma 6.2 and the definition of \(R_{\varphi} \). \[\square\]

7. The inverse weighted Kazhdan-Lusztig polynomials

In this section, we recall from [13] the construction of \(\{Q_{x,y} \mid x, y \in E_J\} \) and give combinatorial formulas for those polynomials, which are similar to \(\{P_{x,y} \mid x, y \in E_J\} \). This also extends the results of [11] and [5].

Let \(y \in E_J \), the formula for \(C_y \) introduced in Remark 4.9 may be rewritten as
\[q_y^{1/2} C_y = \sum_{x \leq y, x \in E_J} \epsilon_x \epsilon_y P_{x,y} q_x^y \Gamma_x, \]
and inverting this gives
\[q_y^y \Gamma_y = \sum_{x \leq y, x \in E_J} Q_{x,y} q_x^{1/2} C_x, \]
where \(Q_{x,y} \) is given recursively by
\[\sum_{x \leq t \leq y, t \in E_J} \epsilon_t \epsilon_y Q_{x,t} P_{t,y} = \delta_{x,y}. \]

Proposition 7.1. There exists a unique family of polynomials \(\{Q_{x,y} \in \mathbb{Z}[\Gamma'] \mid x, y \in E_J\} \) satisfying \(Q_{x,y} = 0 \) if \(x \not\succeq y \), \(Q_{x,x} = 1 \) and
\[0 \leq \deg (P_{x,y}) < \frac{L(y)-L(x)}{2}. \]

The following is similar to [9] Section 10 and [13] Subsection 3.3. We omit the proof.

Lemma 7.2. Let \(x \leq y \in E_J \), then
\[q_x^{-1} q_y Q_{x,y} = \sum_{x \leq t \leq y, t \in E_J} Q_{x,t} \tilde{R}_{t,y}. \]

Next, we will show some results which can be proved similar to Section 5 and Section 6. Therefore, we describe only the statement of results and the proofs are omitted.

Definition 7.3. Assume that \(x \leq y \in E_J \) and \(\varphi \in \mathcal{M}(x, y) \), we define
\[R_\varphi = \begin{cases}
 q_x^{-1} q_y \tilde{R}_{x,y} & \text{if } \ell(\varphi) = 1, \\
 U(L(x_r) - L(x))/2 \left(q_x^{-1} q_y \tilde{R}_\varphi^* \right) \tilde{R}_{x_r,y}^* & \text{if } \ell(\varphi) \geq 2.
\end{cases} \]

where \(\varphi' : x = x_0 < x_1 \leq \cdots < x_r \in \mathcal{M}(x, x_r) \).

Theorem 7.4. Assume that \(x, y \in E_J \).

1. If \(x < y \), then \(Q_{x,y} = L(x,y) - L(x)(x,y) \sum_{\varphi \in \mathcal{M}(x,y)} \tilde{R}_\varphi \).
2. If \(x \leq y \), then \(Q_{x,y} = \sum_{\varphi \in \mathcal{M}(x,y)} \tilde{R}_\varphi^* \).

Theorem 7.5. Assume that \(x, y \in E_J \) and \(\gamma \in \Gamma'' \).

1. If \(x < y \), then \([q^\gamma] \left(Q_{x,y} \right) = [q^\gamma] \left(L(x,y) - L(x) \sum_{\varphi \in \mathcal{M}(x,y)} \tilde{R}_\varphi \right) \).
2. If \(x \leq y \), then \([q^\gamma] \left(Q_{x,y} \right) = [q^\gamma] \left(\sum_{\varphi \in \mathcal{M}(x,y)} \tilde{R}_\varphi^* \right) \).

Theorem 7.6. Assume that \(x, y \in E_J, \varphi \in \mathcal{M}(x, y), r \in N \) and \(\gamma \in \Gamma'' \), then
\[[q^\gamma] \left(Q_{x,y} \right) = [q^\gamma] \left(\ell(y) - \ell(x) \right) + \sum_{r=1}^{\ell(y)-\ell(x)} \sum_{\varphi \in \mathcal{M}(x,y)} \sum_{\psi \in \mathcal{F}_\gamma^*(\varphi)} \prod_{i=1}^{r} \left[q_x q_{x_{r-i}}^{-1} q_{\lambda_i}^{-1} q_{\lambda_{i+1}}^{-1} \right] \left(\tilde{R}_{x_{r-i}, x_{r-i+1}} \right), \]

where we set \(S : = (\lambda_0, \lambda_1, \cdots, \lambda_r) \) and
\[\mathcal{F}_\gamma^*(\varphi) := \{(a_0, a_1, \cdots, a_{r+1}) \in (\Gamma'^{\gamma})^{r+2} | \]
\[a_0 = L(y) - L(x) - \gamma, \]
\[\gamma \preceq a_1 \preceq a_2 \preceq \cdots \preceq a_r \preceq a_{r+1} = 0, \]
\[a_i \geq L(x_{r-i}) - L(x) - a_i \geq a_{i+1} \text{ for } i \in \{1, 2, \cdots, r\} \} \}.

REFERENCES

[1] A. Björner, F. Brenti, Combinatorics of Coxeter groups, Graduate Texts in Mathematics, 231. Springer, New York, 2005.
[2] F. Brenti, A combinatorial formula for Kazhdan-Lusztig polynomials. *Invent. Math.*, **118** (1994), no. 2, 371–394.
[3] V. Deodhar, On some geometric aspects of Bruhat orderings. II: The parabolic analogue of Kazhdan-Lusztig polynomials. *J. Algebra*, **111** (1987), no. 2, 483–506.
[4] V. Deodhar, Duality in parabolic set up for questions in Kazhdan-Lusztig theory. *J. Algebra*, **142** (1991), no. 1, 201–209.
[5] V. Deodhar, J-chains and multichains, duality of Hecke modules, and formulas for parabolic Kazhdan-Lusztig polynomials. *J. Algebra*, **190** (1997), no. 1, 214–225.
[6] R.B. Howlett, V. Nguyen, W-graph ideals. *J. Algebra*, **361** (2012), 188–212.
[7] D. Kazhdan, G. Lusztig, Representations of Coxeter groups and Hecke algebras. *Invent. Math.*, **53** (1979), no. 2, 165–184.
[8] G. Lusztig, Left cells in Weyl groups. Lecture Notes in Math., 1024, Springer, Berlin, 1983.
[9] G. Lusztig, Hecke algebras with unequal parameters. CRM Monograph Series, 18. *American Mathematical Society*, Providence, RI, 2003.
[10] H. Tagawa, A construction of weighted parabolic Kazhdan-Lusztig polynomials. *J. Algebra*, **216** (1999), no. 2, 566–599.
[11] H. Tagawa, Some properties of inverse weighted parabolic Kazhdan-Lusztig polynomials. *J. Algebra*, 239 (2001), no. 1, 298–326.

[12] Y. Yin, W-graphs for Hecke algebras with unequal parameters. *Manuscripta Math.*, 147 (2015), no. 1-2, 43–62.

[13] Y. Yin, W-graph ideals and duality. *J. Algebra*, 453 (2016), 377–399.

School of Mathematics, Shanghai University of Finance and Economics, 777 Guoding Road, Shanghai 200433, China

E-mail address: q.wang@163.sufe.edu.cn