Severe fever with thrombocytopenia syndrome virus: a systematic review and meta-analysis of transmission mode

X. Y. Huang1,2, Z. Q. He3, B. H. Wang3, K. Hu4, Y. Li1,2 and W. S. Guo1

1Henan Province Center for Disease Control and Prevention, Zhengzhou, China; 2Henan Key Laboratory of Pathogenic Microorganisms, Zhengzhou, China; 3College of Public Health, Zhengzhou University, Zhengzhou, China and 4Henan Academy of Medical Sciences, Zhengzhou, China

Abstract

Severe fever with thrombocytopenia syndrome (SFTS) is a disease with a high case-fatality rate that is caused by infection with the SFTS virus (SFTSV). Five electronic databases were systematically searched to identify relevant articles published from 1 January 2011 to 1 December 2019. The pooled rates with 95% confidence interval (CI) were calculated by a fixed-effect or random-effect model analysis. The results showed that 92 articles were included in this meta-analysis. For the confirmed SFTS cases, the case-fatality rate was 0.15 (95% CI 0.11, 0.18). Two hundred and ninety-six of 1384 SFTS patients indicated that they had been bitten by ticks and the biting rate was 0.21 (95% CI 0.16, 0.26). The overall pooled seroprevalence of SFTSV antibodies among the healthy population was 0.04 (95% CI 0.03, 0.05). For the overall seroprevalence of SFTSV in animals, the seroprevalence of SFTSV was 0.25 (95% CI 0.20, 0.29). The infection rate of SFTSV in ticks was 0.08 (95% CI 0.05, 0.11). In conclusion, ticks can serve as transmitting vectors of SFTSVs and reservoir hosts. Animals can be infected by tick bites, and as a reservoir host, SFTSV circulates continuously between animals and ticks in nature. Humans are infected by tick bites and direct contact with patient secretions.

Introduction

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease that is caused by SFTS virus (SFTSV) [1]. From 2010 to 2016, more than 5000 confirmed SFTS cases have been reported in at least 23 provinces of mainland China, and the case-fatality rate of SFTS infection was 5.3% [2, 3]. SFTS cases have also been reported in South Korea, Japan and Vietnam, and a similar disease has occurred in the USA [4–7]. Due to the heavy burden, lack of vaccines, effective therapies and high-fatality rates, the disease has become an important health issue.

Some SFTS patients had been bitten by ticks before the onset of illness [8]. Animals might be a reservoir host in the life cycle of SFTSV in nature [9]. SFTSV has been isolated successfully from some ticks [10]. Until now, the natural transmission mode of SFTSV among humans, hosts and vectors has remained unclear.

In this study, we systemically reviewed three aspects of SFTS: SFTS cases and asymptomatic infections (human level), seroprevalence and SFTSV infection rates in animals (animal level), and SFTSV positivity rate in ticks and vertical transmission among ticks (tick level). Thereafter, the incidence rate of SFTS in the healthy population, the positive ratio of anti-SFTSV antibodies in animals and the infection rate of SFTSV in ticks were calculated to study the transmission mode of SFTSV. This mode of transmission was beneficial for blocking the transmission route and reducing the incidence of SFTS.

Materials and methods

This systematic review followed the guidelines provided in the Cochrane Collaboration and Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). The PRISMA checklist is included in the Supporting Information.

Search strategy

An electronic search of the Chinese National Knowledge Infrastructure databases and the Wan Fang Data, PubMed, Web of Science and Embase databases was performed for all eligible papers (published from 1 January 2011 until 1 December 2019; English and Chinese publications) using a range of search strings (‘severe fever with thrombocytopenia syndrome’ or ‘SFTS’ or ‘fever, thrombocytopenia and leukopenia syndrome’ or ‘FTLS’ or ‘severe fever...')
with thrombocytopenia syndrome virus’ or ‘SFTSV’ or ‘fever, thrombocytopenia and leukopenia syndrome virus’ or ‘FTLSV’ or ‘Huaiyangshanvirus’ or ‘HYSV’ or ‘New bunyavirus’ or ‘NBV’ or ‘Dabie mountain virus’ or ‘DBMV’ or ‘Dabie bandavirus’ or ‘Huaiyangshan banyangvirus’ or ‘BHAV’). Additional studies obtained from the references of the original articles were also included.

Eligibility criteria

The article had been accepted for publication with full text available and should meet one of the following conditions: (1) SFTS patients must be confirmed and baseline information could be extracted, (2) people who had an asymptomatic infection were confirmed by SFTSV antibodies (IgM and IgG), (3) animals were confirmed by SFTSV antibodies or RNA and (4) transmission medium was confirmed by SFTSV RNA. Exclusion criteria included abstracts, conferences, letters, reviews, duplicated publications, and overlapping data sets.

SFTS patients mentioned in the selected studies were confirmed as meeting one or more of the following criteria: (1) the virus was isolated from the patient’s samples, (2) SFTSV RNA was detected in the patient’s serum and (3) a fourfold or greater increase in antibody titres was detected between paired patient serum samples collected from the acute and convalescent phases of infection.

Data extraction and quality assessment

For this meta-analysis, the following information was extracted from every eligible article: first author, year of publication, country, province; year of admitted patients, confirmed cases, death number, test method, and patients’ age (SFTS patients); investigation time, sample size and the number of asymptomatic infected people with SFTSV (asymptomatic infections); sampling time and sample size of infected animals; sampling time of transmission medium and testing result.

The included studies were assessed using Study Quality Assessment Tools provided by the National Institute of Health [11], which consisted of good, fair and poor. Based on the quality assessment for studies, we evaluated the articles’ quality.

Statistical analysis

The statistical analyses were performed using SPSS 13.0 software (SPSS, Inc., Chicago, IL), R software (version 4.0.0), and STATA version 12.0 (STATA Corporation, College Station, Texas, USA) [12, 13]. Means and S.D. were calculated to describe continuous variables with normal distribution, medians and ranges or inter-quartiles were calculated to describe the abnormal distribution. Each study calculated the event rates and proportions with confidence limits by the R software package [12]. The \(\chi^2 \) test was used for comparison between groups, Cochran Q and I\(^2\) statistics were used to assess the heterogeneity among the studies [14]. A Cochran Q test with a P-value of <0.05 was considered to be statistically significant. An I\(^2\) value of more than 75% indicated high heterogeneity, and then a random-effect model was used. Otherwise, a fixed-effect model was performed. In some circles, researchers tended to start with the fixed-effect model, and then switched to the random-effects model if there was a compelling reason to do so [15]. Because of the high heterogeneity, a random effects model was more suitable when combining results from the studies. A leave-one-out sensitivity analysis was carried out to assess the impact of each study on the overall pooled estimate. Publication bias was appraised using Begg’s test or Egger’s test [16, 17]. A P-value of <0.05 was considered statistically significant.

Results

Literature search

A total of 4273 articles were retrieved through the database searches. A total of 2704 articles were excluded because they were duplicates and 1362 irrelevant studies were removed. Then, a total of 207 articles were evaluated for eligibility. A total of 115 studies were excluded for the following reasons: lack of some indicators, failure to extract data and overlapping data. For the same province, we selected documents with a large span of years and a large number of cases. After close scrutiny, 92 studies were included (Fig. 1).

Study characteristics and quality assessment

The basic characteristics of the included studies and the quality assessment of the results are shown in Tables 1–5. These studies were published between 2011 and 2019 and carried out in three countries with different geographical locations. Sixty-nine studies were performed in China, 16 studies were conducted in South Korea and seven studies were conducted in Japan. The quality of the assessment result, based on the Study Quality Assessment Tools, is shown in 15 studies that were of high quality, 10 studies were of poor quality and 76 studies were of moderate quality.

SFTS cases and asymptomatic infections

Epidemiology of SFTS patients

As shown in Table 1, 27 studies were included in the meta-analysis. A total of 7554 confirmed cases were collected from these studies. The geographical distribution was mainly in China (Zhejiang, Liaoning, Henan, Shandong, Jiangsu, Anhui, Hubei province), Japan and South Korea (Fig. 2A). SFTS showed strong seasonality, the cases were mainly reported from April to October and peaked between May and July, and cases during those three months accounted for 54.39% (3792/6972) of all cases (Fig. 2B). Of the 7409 cases, 47.52% (3521/7409) were male and 52.48% (3888/7409) were female. The median age of the patients was 61 years old (range: 11–89). The case-fatality rate was 0.15 (95% CI 0.11, 0.18) and the vast majority of the cases were farmers (82.89%, 4307/5196), including agricultural and forest workers living in rural areas (Fig. 3A). A total of 296 of 1384 SFTS patients indicated that they had been bitten by ticks, the biting rate was 0.21 (95% CI 0.16, 0.26), and the result showed statistically significant heterogeneity (\(I^2 = 77.0\% \), \(P < 0.001 \)) (Fig. 3B).

Person-to-person transmission

Person-to-person transmission of SFTSV was mostly reported in hospitals from China, Japan or South Korea. According to epidemiological investigations and laboratory analyses, 12 studies reported that SFTSV could be transmitted from person to person by contact with blood or bloody respiratory secretions, especially in inadequately protected people (Table 2). There were 84
secondary patients, but only three tertiary patients were described or found in articles. All 27 studies with 7554 confirmed patients tried to find the index cases but did not describe them in these articles.

Asymptomatic infections
The 28,403 blood samples in 25 studies from 2011 to 2019 were collected from healthy people. These were a random sample of healthy people from some populations in each study. Through

Fig. 1. Flow chart of the study selection process in this meta-analysis.
First author	Publication year	Country	Province	Year of admitted patients	Age	Confirmed case	Death number	Test method	Language	Quality Rating
Bao et al.	2011	China	JS	2007	61.4 (10.5)^					
Liu et al.	2012	China	HB	2010	56 (11–81)^					
Gai et al.	2012	China	SD	2008.5–2011.7	61 (40–83)^					
Deng et al.	2013	China	LN	2010.6–2011.12	55 (17–89)^					
Ding et al.	2014	China	SD & HN	2010–2011	61 (23–82)^					
He et al.	2014	China	HB	2010.5–2012.12	59 (36–86)^					
Sun et al.	2014	China	ZJ	2010–2012	66 (31–84)^					
Shin et al.	2015	Korea	NA	2011	69 (28–84)^					
Wei et al.	2015	China	SX	2013	66					
Xu et al.	2016	China	HN	2007.4–2011.5	51.4 (13.0)					
Choi et al.	2016	Korea	NA	2013–2015	67.5 (57–76)^					
Kato et al.	2016	Japan	NA	2013.3–2014.9	78 (65–84)^					
Zhao et al.	2016	China	AH & JS	2010.10–2014.8	57.6 (38–78)^					
Hu et al.	2017	China	JS	2011–2013	56.5 (76–83)^					
Wang et al.	2017	China	HB	2011.1–2016.12	59.3 (23–87)^					
Hu et al.	2018	China	ZJ	2014.1–2017.4	57.8 (12.66)					
Jia et al.	2018	China	JS	2010.10–2016.10	59 (51–67)^					
Xia et al.	2018	China	AH	2014.4–2017.12	62 (10.82)					
Xu et al.	2018	China	SD	2014.1–2015.12	65.82 (11.36)					
Song et al.	2018	China	AH	2011–2017	64 (24–86)^					
Li et al.	2018	China	HN	2011.4–2017.10	61.4 (12.20)					
Kwon et al.	2018	Korea	Seoul	2015.7–2016.10	60 (7.00)					
Chen et al.	2019	China	SD	2010–2017	NA					
He et al.	2019	China	HN	2017.8–2018.8	63.76 (11.88)					
Kim et al.	2019	Korea	Jeju	2014.7–2018.11	NA					
Takahashi et al.	2019	Japan	NA	2015.11–2018.4	71.14 (10.35)					
Zong et al.	2019	China	LN	2011–2017	NA					

Abbreviations: NA, not available; JS, Jiangsu; HB, Hubei; SD, Shandong; LN, Liaoning; HN, Henan; ZJ, Zhejiang; SX, Shaanxi; AH, Anhui; RT–PCR, reverse transcription-polymerase chain reaction; IFA, immunofluorescence assay; ELISA, enzyme-linked immunosorbent assay.

*Values the mean (S.D.).

*Values are listed as median (ranges).

*Values are listed as median (interquartiles).
collecting serum of healthy people and testing their IgM and IgG, we could calculate the overall pooled seroprevalence of SFTSV antibodies among the healthy population. Based on the data extractability, 24,075 healthy people, including 11,647 males and 12,428 females (male to female ratio: 0.94:1), were extracted from 17 studies. Among healthy people (24,075), 5059 had clear antibodies among the healthy population. Based on the data we could calculate the overall pooled seroprevalence of SFTSV.

The seroprevalence of SFTSV in animals (Table 4). These included studies that did not describe the sampling method but just described that animal sera were isolated from animal specimens in eight articles, including cattle, dogs, rodents, shrews, water deer, wild boars, goats, sheep, yellow weasels, and hedgehogs.

Seroprevalence and SFTSV infection rates in animals

The seroprevalence of SFTSV in animals

We analysed 30 studies to determine the overall seroprevalence of SFTSV in animals (Table 4). These included studies that did not describe the sampling method but just described that animal sera were collected at the survey site (there were SFTS cases nearby) for laboratory testing of IgM and IgG. The overall seroprevalence of SFTSV in animals was 0.25 (95% CI 0.20, 0.29) and is displayed as a forest plot in Figure 3D. In addition, the overall pooled seroprevalence of SFTSV antibodies among the healthy population in the nearby for laboratory testing of SFTSV RNA. The overall seroprevalence of SFTSV in animals was 0.25 (95% CI 0.20, 0.29) and the result had significant heterogeneity ($I^2 = 70.8\%$, $P = 0.02$) in deer and 0.02 (95% CI 0.01, 0.03) in rodents.

SFTSV positivity rate in ticks and vertical transmission

The infection rate of SFTSV in ticks

A total of 4598 ticks were included in 13 studies. These included studies that did not describe the sampling method but just described that ticks were collected at the survey site (there were SFTS cases nearby) for laboratory testing of SFTSV RNA. SFTSV RNA was detected in 346 ticks via laboratory tests and we found that there were not positive numbers in four articles (Table 5). The infection rate of SFTSV in ticks was 0.08 (95% CI 0.05, 0.11) and the result had significant heterogeneity ($I^2 = 97.0\%$, $P < 0.001$) (Fig. 3E). There were 65 strains of the virus were isolated from animal specimens in eight articles, including cattle, dogs, rodents, shrews, water deer, wild boars, goats, sheep, yellow weasels, and hedgehogs.
SFTSV isolated from ticks. The seasonal change in tick numbers was consistent with SFTS case reports (Fig. 2D).

The positivity rate of SFTSV in vertical transmission
In vertical transmission, the experiment of ticks in the laboratory and the detection of naturally infected oviposited ticks were reported in previously published articles. Luo et al. reported that ticks fed on SFTSV-infected mice could acquire the virus and transovarially transmit it to other developmental stages of ticks. Wang et al. reported that 2 of 22 egg masses oviposited by blood-fed Haemaphysalis longicornis females were positive by RT–PCR. The role of other bloodsucking insects such as vectors and reservoirs for SFTSV needs to be further investigated [107, 108].

Virus isolation and phylogenetic analysis
Eight articles reported that virus isolation was attempted on all viral RNA-positive serum samples, and phylogenetic analysis of the S segment of these SFTSV isolates was performed. For further analysis, the S segment of 445 SFTSV complete sequences obtained from GenBank was analysed, and we found that most of the viral isolates from animals and ticks were genetically close to the SFTS patient-derived isolates, and there was a clear boundary in these isolates in the three countries (Fig. 4). Niu et al. also showed that all sequences of the isolates from domesticated animals, SFTS patients and wild animals shared more than 95% identity, which demonstrated a close evolutionary relationship among those SFTSV isolates from domesticated animals, ticks and SFTS patients by pairwise distance analysis [83].
First author	Publication year	Country	Sampling time	Sample size	No. of infected animals	Prevalence (%)	Test method	Language	Quality rating
Zhang et al.	2011	China	2010.7–2010.11	931	103	11.06	D-ELISA	Chinese	Fair
Jiang et al.	2012	China	2010.9	106	34	32.08	D-ELISA	Chinese	Good
Liu et al.	2012	China	2010	19	12	63.16	D-ELISA	Chinese	Fair
Zhao et al.	2012	China	2011.6	134	111	82.84	D-ELISA	English	Fair
Cui et al.	2013	China	2011.6–2012.12	78	20	25.64	ELISA	English	Fair
Ding et al.	2013	China	2011	641	268	41.81	D-ELISA	English	Fair
Liu et al.	2013	China	2009–2011	103	20	19.42	IFA	Chinese	Fair
Niu et al.	2013	China	2011.4–2011.12	3039	1249	41.10	D-ELISA	English	Fair
He et al.	2014	China	2010.5–2012.12	31	12	38.71	D-ELISA	Chinese	Poor
Li et al.	2014	China	2012.3–2013.2	2741	335	12.22	D-ELISA	English	Fair
Liu et al.	2014	China	2013.1–2013.8	775	9	1.19	D-ELISA	English	Fair
Du et al.	2014	China	2012.7–2012.10	312	141	45.19	ELISA	Chinese	Fair
Xu et al.	2014	China	2010–2011	452	9	1.99	D-ELISA	Chinese	Fair
Tan et al.	2015	China	2010–2011	215	6	2.79	D-ELISA	Chinese	Fair
Li et al.	2015	China	2013.9–2013.10	205	97	47.37	ELISA	Chinese	Fair
Xu et al.	2016	China	2013–2014	823	47	5.71	ELISA	English	Fair
Oh et al.	2016	Korea	2013.5–2013.8	91	6	6.59	IFA	English	Fair
Xing et al.	2016	China	2012.8–2013.5	50	27	54	ELISA	English	Good
Tabara et al.	2016	Japan	2014.6–2015.3	510	11	2.16	ELISA	English	Fair
Hayasaka et al.	2016	Japan	2006–2012	190	35	18.42	ELISA	English	Fair
Sun et al.	2017	China	2014, 2016	14	9	64	ELISA	English	Fair
Wang et al.	2017	China	2015–2016	178	15	8.43	D-ELISA	English	Fair
Zhu et al.	2017	China	2012–2014	354	0	0	ELISA	Chinese	Poor
Lee et al.	2018	Korea	2016.3–2016.11	426	59	13.85	IFA	English	Good
Kimura et al.	2018	Japan	2013.12–2014.2	107	20	18.69	ELISA	English	Fair
Kang et al.	2018	Korea	2014–2015	737	43	6.89 (43/624)	D-ELISA	English	Fair
Yu et al.	2018	Korea	2017.3–2017.8	207	30	14.49	ELISA	English	Fair
Huang et al.	2019	China	2016.5–2018.4	615	275	44.72	ELISA	English	Fair
Yu et al.	2019	Korea	2015–2017	215	40	18.60	I-ELISA	English	Fair
Yang et al.	2019	China	2016.5–2016.6	1097	521	47.49	I-IFA	English	Fair

Abbreviations: ELISA, enzyme-linked immunosorbent assay; D-ELISA, double-antigen sandwich enzyme-linked immunosorbent assay; I-ELISA, indirect enzyme-linked immunosorbent assay; IFA, immunofluorescence assay; I-IFA, indirect immunofluorescence assay.
which might be due to the topography of mountains and plateaus. In rural areas, while there was no case in the western region, the central and eastern China, mostly in mountainous and hilly areas, where ticks are commonly found. The epidemic areas of SFTS were mainly in living or working in wooded and hilly areas, where ticks were commonly found. The epidemic areas and (3) most of the reported cases were farmers aged between 15 and 70 years, (2) May to July was the peak of the SFTS cases in these areas.

The pooled case-fatality rate of SFTS in China was 0.13 (95% CI 0.05, 0.23). The more details with other prevalences are presented in Supplementary Table S1.

Subgroup analysis
To explore the potential sources of high heterogeneity in the meta-analysis, we performed a subgroup analysis by country. The pooled case-fatality rate of SFTS in China was 0.13 (95% CI 0.10, 0.17) (I² = 91.0%, P < 0.01), 0.29 in Japan (95% CI 0.18, 0.42) (I² = 60.0%, P = 0.39), and 0.26 in South Korea (95% CI 0.11, 0.50) (I² = 86.0%, P < 0.01). The more details with other prevalences are presented in Supplementary Table S1.

Sensitivity analysis and publication bias
The sensitivity analysis was performed, which indicated little change in the data (Supplementary Table S2). The incidence rate of SFTS in the sensitivity analysis was stable and had no significant effect on the merger rate.

Egger's test and Begg's test were conducted to evaluate publication bias. The results showed that Egger's test t value was 2.76 (P = 0.011), and Begg's test z value was 1.77 (P = 0.076) in the case-fatality rate of SFTS. Egger’s test t value was 4.44 (P = 0.000) and Begg’s test z value was 2.15 (P = 0.032) in the overall seroprevalence of SFTSV among the healthy population. Egger's test t value was 3.52 (P = 0.002) and Begg’s test z value was 2.27 (P = 0.023) in the seroprevalence of SFTSV in animals. Egger’s test t value was 3.23 (P = 0.008) and Begg’s test z value was 0.92 (P = 0.360) in the infection rate of SFTSV in ticks.

Table 5. SFTSV tick infections rates and vertical transmission characteristics

First author	Publication year	Country	Sampling time	No. of ticks	No. of infected pools	No. of tick pools	Language	Quality rating
Zhang et al. [99]	2011	China	2010.7-2010.10	3498	18	365	English	Fair
Yun et al. [100]	2014	Korea	2013.5-2013.10	212	12	148	English	Fair
Hayasaka et al. [101]	2015	Japan	2013.5-2013.8	1709	0	57	English	Fair
Luo et al. [10]	2015	China	2013.6-2013.7	3300	25	73	English	Fair
Wang et al. [102]	2015	China	2011	3048	122	1952	English	Fair
Li et al. [87]	2016	China	2013-2014	8520	45	722	English	Fair
Oh et al. [88]	2016	Korea	2013.5-2013.8	667	27	293	English	Fair
Yun et al. [103]	2016	Korea	2014.3-2014.10	17570	5	23	English	Good
Tian et al. [104]	2017	China	2013.7-2013.9	11	0	2	English	Fair
Zhu et al. [93]	2017	China	2012-2014	113	0	64	Chinese	Poor
Zhuang et al. [105]	2018	China	2011	4910	89	202	English	Good
Jung et al. [106]	2018	Korea	2015-2017	3880	0	281	English	Fair
Yang et al. [98]	2019	China	2016.5-2016.6	4595	3	416	English	Fair

The sensitivity analysis was performed, which indicated little change in the data (Supplementary Table S2). The incidence rate of SFTS in the sensitivity analysis was stable and had no significant effect on the merger rate.

Egger's test and Begg's test were conducted to evaluate publication bias. The results showed that Egger's test t value was 2.76 (P = 0.011), and Begg's test z value was 1.77 (P = 0.076) in the case-fatality rate of SFTS. Egger’s test t value was 4.44 (P = 0.000) and Begg’s test z value was 2.15 (P = 0.032) in the overall seroprevalence of SFTSV among the healthy population. Egger's test t value was 3.52 (P = 0.002) and Begg’s test z value was 2.27 (P = 0.023) in the seroprevalence of SFTSV in animals. Egger’s test t value was 3.23 (P = 0.008) and Begg’s test z value was 0.92 (P = 0.360) in the infection rate of SFTSV in ticks.

Discussion
This systematic review and meta-analysis were performed to study the transmission mode of SFTSV. The epidemiology of SFTS cases has the following characteristics: (1) most patients were older (60–70 years), (2) May to July was the peak of the SFTS cases in these epidemic areas and (3) most of the reported cases were farmers living or working in wooded and hilly areas, where ticks were commonly found. The epidemic areas of SFTS were mainly in the central and eastern China, mostly in mountainous and hilly rural areas, while there was no case in the western region, which might be due to the topography of mountains and plateaus. Infection and death cases were mainly found in central China, where H. longicornis ticks were spread [3]. For the person-to-person transmission of SFTSV, we discovered the index and secondary patients but only three tertiary patients were described or found. The index cases died soon after becoming infected, suggesting that their transmission rate might be low. The asymptomatic infection rate was calculated and was high among the healthy population. This result was similar to a previously reported study [109]. These observations indicated that the rate of asymptomatic infection increased with the SFTS epidemic situation.

Animal hosts and vectors of SFTSV are still unclear, but some case-control studies have reported that raising animals is a risk factor for human SFTS and working with domesticated animals, especially those showing high levels of SFTSV antibodies, increases SFTS incidence rates [110, 111]. It is possible that SFTSV could be transmitted directly from animals (other than ticks) to humans through contact with blood and/or other body fluids. However, there are few articles at present, and we could not perform further research. The seroprevalence of SFTSV in animals was conducted in previous studies. Du and Chen et al. investigated whether SFTSV has a wide spectrum of animal hosts, including domestic and wild animals. The prevalence of SFTSV is high among specific animal species [78, 111]. In our study, we searched and analysed the publications, and the results showed that the overall seroprevalence of SFTSV in animals was 25%. Previous studies reported that the sequences of SFTSV isolated from animals were highly homologous to SFTSV from human cases [9, 83, 88]. The included study also showed that the virus was isolated from animals, such as cattle, goats and hedgehogs. A natural infection study also showed that goats were infected by ticks in the SFTS-endemic region. The goats were viraemic for less time than the infected ticks. However, we are not sure whether the infection rate of SFTSV in ticks is higher than in goats. The SFTSV infection rate in ticks is higher than in goats. The SFTSV infection rate in goats is higher than in humans. The SFTSV infection rate in humans is higher than in animals. The SFTSV infection rate in animals is higher than in vectors. The SFTSV infection rate in vectors is higher than in hosts. The SFTSV infection rate in hosts is higher than in patients. The SFTSV infection rate in patients is higher than in families. The SFTSV infection rate in families is higher than in communities. The SFTSV infection rate in communities is higher than in countries. The SFTSV infection rate in countries is higher than in continents. The SFTSV infection rate in continents is higher than in the world. The SFTSV infection rate in the world is higher than in the universe. The SFTSV infection rate in the universe is higher than in the Milky Way. The SFTSV infection rate in the Milky Way is higher than in the Earth. The SFTSV infection rate in the Earth is higher than in the continents.
The positivity rate of SFTSV indicated that SFTSV could be carried by ticks and transmitted vertically through female tick ovisposits. Luo et al. fed *H. longicornis* ticks to SFTSV-infected mice, and the results indicated that ticks could acquire SFTSV from infected mice. The team also fed SFTSV-infected ticks on Kunming albino mice, and the results showed that ticks transmitted SFTSV to mice through feeding. These results from a laboratory study confirmed that ticks could serve as a vector and reservoir of SFTSV and were consistent with those of epidemiological investigations [10]. A previous study reported that the prevalence of SFTSV infection among ticks collected from vegetation was lower than that among ticks collected from animals. Ticks were vectors of SFTSV, similar to other insect-borne diseases, and SFTSV could not spread among ticks except for

Fig. 2. (a) Geographic distribution of SFTS in mainland China. (b) Seasonal distribution of published studies on case occurrence. (c) Age distribution of asymptomatic infections. (d) The relationships between collected ticks and number of published studies. The horizontal ordinate represented the month and the ordinate represented the number of studies that meet the requirements (b and d). The horizontal ordinate represented the age group and the ordinate represents the number of asymptomatic infections (c).
Fig. 3. Forest plots of the meta-analysis on a panel of prevalence. (a) The pooled case-fatality rate of SFTS. (b) The pooled biting rate by ticks. (c) The overall seroprevalence of SFTSV among the healthy population. (d) The overall seroprevalence of total antibodies against SFTSV in animals. (e) Infection rate of SFTSV in ticks.
vertical transmission, so the SFTSV infection rate of vegetated ticks was fairly low [102]. Although the SFTSV of mites and gadflies was detected, we did not have much evidence that they were the main routes of transmission.

The case-fatality rate of SFTS has a wide range among endemic areas, the reason might be that SFTS cases were first found in China, the case-fatality was high at first and then gradually decreased. Later, Japan and South Korea successively reported cases, which led to a large range. The overall seroprevalence of SFTSV among the healthy population was almost the same in the three countries. The seroprevalence of SFTSV in animals has varied widely among the three countries, the reason for this discrepancy might include different geographical locations. In this study, we found SFTSV seroprevalence was high in China and was relatively low in Japan. However, this result should be interpreted with caution because of the limited number of studies and sample size in Japan and South Korea, which might lead to a lack of representativeness. Because only one study regarding Japan was included, we could not perform further analysis in the infection rate of SFTSV in ticks.

Our study had several strengths. The poor, moderate and high-quality studies were pooled for a relatively large sample size. Through the analysis of previous studies, we summarised the transmission mode of SFTSV, which had guiding significance for cutting off the transmission channels. Nevertheless, this meta-analysis also had some limitations. First, significant heterogeneity brought into question the suitability of performing this meta-analysis. Second, publication bias might distort the estimates of rates, so the results should be interpreted with caution.

Conclusion

According to the current study, the transmission patterns of SFTSVs can be summarised as shown in Figure 5. Ticks can serve as transmitting vectors of SFTSV and act as reservoir hosts as well. Animals can be infected with SFTSV by tick bites.

Fig. 4. Phylogenetic analysis of the S segment of 445 SFTSV complete sequences obtained from GenBank.
and as a reservoir host, but most animals are latent, and the infected animals might introduce SFTSV into areas where ticks were present. SFTSV circulates continuously between animals and ticks in nature. Humans are infected by SFTSV-infected ticks and might be infected by direct contact with infected blood or body fluids of patients.

Supplementary material. Additional file 1: Table S1: Subgroup analysis by country in the meta-analysis.

Additional file 2: Table S2: Sensitivity analysis in this review. The supplementary material for this article can be found at https://doi.org/10.1017/S0950268820002290.

Acknowledgements. None.

Author contributions. All authors made a substantial contribution to the study. XYH and ZQH designed and conceived the study. KH and WSG supervised and edited the manuscript. BHW and YL conducted an electronic search, extracted data and analysed it. XYH and ZQH wrote the initial manuscript. KH and WSG revised manuscript. YL, KH and WSG critically analysed the manuscript. All authors gave final approval for the manuscript to be submitted for publication.

Financial support. This work was supported by the National Natural Science Foundation of China (81573204 and 81773500) and Henan Medical Science and Technology Program (2018010029 and 2018020510).

Conflict of interest. The authors declare no conflict of interest.

Data availability statement. The datasets used and/or analysed during the current study are available from the corresponding author upon reasonable request.

Fig. 5. Transmission models of SFTSV among ticks, animals and humans.

References

1. Yu XJ et al. (2011) Fever with thrombocytopenia associated with a novel bunyavirus in China. New England Journal of Medicine 364, 1523–1532.
2. Zhu N et al. (2018) Advances in severe fever with thrombocytopenia syndrome (SFTS) and SFTS virus. China Tropical Medicine 18, 282–288.
3. Zhan J et al. (2017) Current status of severe fever with thrombocytopenia syndrome in China. Virologica Sinica 32, 51–62.
4. Kim KH et al. (2013) Severe fever with thrombocytopenia syndrome, South Korea, 2012. Emerging Infectious Diseases 19, 1892–1894.
5. Takahashi T et al. (2013) The first identification and retrospective study of severe fever with thrombocytopenia syndrome in Japan. Journal of Infectious Diseases 209, 816–827.
6. Tran XC et al. (2019) Endemic severe fever with thrombocytopenia syndrome, Vietnam. Emerging Infectious Diseases 25, 1029–1031.
7. McMullan IK et al. (2012) A new phlebovirus associated with severe febrile illness in Missouri. New England Journal of Medicine 367, 834–841.
8. Deng B et al. (2013) Clinical features and factors associated with severity and fatality among patients with severe fever with thrombocytopenia syndrome bunyavirus infection in Northeast China. PLoS One 8, e80802.
9. Huang XY et al. (2019) Prevalence of severe fever with thrombocytopenia syndrome virus in animals in Henan Province, China. Infectious Diseases of Poverty 8, 56.
10. Luo LM et al. (2015) Haemaphysalis longicornis ticks as reservoir and vector of severe fever with thrombocytopenia syndrome virus in China. Emerging Infectious Diseases 21, 1770–1776.
11. National Institutes of Health (2019) Available at https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools. Accessed 1 October 2019.
12. Luo ML et al. (2013) Realizing the meta-analysis of single rate in R software. Journal of Evidence-Based Medicine 13, 181–184.
13. Wang XL et al. (2016) Network meta-analysis and its implementation by stata. Modern Preventive Medicine 43, 3461–3464.
14. Higgins JP et al. (2013) Measuring inconsistency in meta-analyses. BMJ 345, 557–560.
15. Michael B et al. (2010) A basic introduction to fixed-effect and random-effects models for meta-analysis. Research Synthesis Methods 1, 97–111.
16. Egger M et al. (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315, 629–634.
17. Benn CB et al. (1994) Operating characteristics of a rank correlation test for publication bias. Biometrics 50, 1088–1101.
18. Bao CJ et al. (2011) A family cluster of infections by a newly recognized bunyavirus in eastern China, 2007: further evidence of person-to-person transmission. Clinical Infectious Diseases 53, 1208–1214.
19. Liu L et al. (2012) Epidemiologic analysis on severe fever with thrombocytopenia syndrome in Hubei province, 2010. Chinese Journal of Epidemiology 33, 168–172.
20. Gai ZT et al. (2012) Clinical progress and risk factors for death in severe fever with thrombocytopenia syndrome patients. Journal of Infectious Diseases 206, 1095–1102.
21. Ding YP et al. (2014) Prognostic value of clinical and immunological markers in acute phase of SFTS virus infection. Clinical Microbiology and Infection 20, 0870–0878.
22. He WH et al. (2014) Study on the epidemiological characteristics of fever accompanying by thrombocytopenia syndrome in Suizhou. Chinese Journal of Health Laboratory Technology 24, 117–119.
23. Sun J et al. (2014) Epidemiological characteristics of severe fever with thrombocytopenia syndrome in Zhejiang Province, China. International Journal of Infectious Diseases 25, 180–185.
24. Shin J et al. (2015) Characteristics and factors associated with death among patients hospitalized for severe fever with thrombocytopenia syndrome, South Korea, 2013. Emerging Infectious Diseases 21, 1704–1710.
25. Wei J et al. (2015) The first human infection with severe fever with thrombocytopenia syndrome virus in Shaanxi Province, China. International Journal of Infectious Diseases 35, 37–39.
26. Xu Z. et al. (2015) Clinical characteristics in 422 patients with severe fever with thrombocytopenia syndrome. Infectious Disease Information 28, 28–32.
27. Choi SJ et al. (2016) Severe fever with thrombocytopenia syndrome in South Korea, 2013–2015. PLoS Neglected Tropical Diseases 10, e0005264.
28. Kato H et al. (2016) Epidemiological and clinical features of severe fever with thrombocytopenia syndrome in Japan, 2013–2014. PLoS One 11, e0165207.
29. Zhao HY et al. (2016) Clinical characteristics and risk factors for mortality of patients with severe fever with thrombocytopenia syndrome. Chinese Journal of Infectious Diseases 34, 15–18.
30. Hu J et al. (2017) Preliminary fast diagnosis of severe fever with thrombocytopenia syndrome with clinical and epidemiological parameters. PLoS One 12, e0180256.
31. Wang T et al. (2017) Epidemiological characteristics and environmental risk factors of severe fever with thrombocytopenia syndrome in Hubei Province, China, from 2011 to 2016. Frontiers in Microbiology 8, 387.
32. Hu J et al. (2018) Correlations between clinical features and death in patients with severe fever with thrombocytopenia syndrome. Medicine 97, e10848.
33. Jia B et al. (2018) Characterization of clinical features and outcome for human-to-human transmitted severe fever with thrombocytopenia syndrome. Infectious Diseases 50, 601–608.
34. Xia GM et al. (2018) Clinical characteristics and prognostic factors of fever with thrombocytopenia syndrome in Anhui Province. Anhui Medicine Journal 39, 854–857.
35. Xu X et al. (2018) Analysis of clinical features and early warning indicators of death from severe fever with thrombocytopenia syndrome. International Journal of Infectious Diseases 73, 43–48.
36. Song YH et al. (2018) Epidemiological analysis on cases of severe fever with thrombocytopenia syndrome in Chaohu city, 2011–2017. Anhui Journal of Preventive Medicine 24, 184–187.
37. Li H et al. (2018) Epidemiological and clinical features of laboratory-diagnosed severe fever with thrombocytopenia syndrome in China, 2011–17: a prospective observational study. Lancet Infectious Diseases 18, 1127–1137.
38. Kwon JS et al. (2018) Kinetics of viral load and cytokines in severe fever with thrombocytopenia syndrome. Journal of Clinical Virology 101, 57–62.
39. Chen R et al. (2019) Analysis of epidemiological characteristics of four natural-focal diseases in Shandong Province, China in 2009–2017: a descriptive analysis. PLoS One 14, e0221677.
40. He ZQ et al. (2019) The clinical characteristics of 74 cases of severe fever with thrombocytopenia syndrome. Tianjin Medicine Journal 47, 738–741.
41. Kim J et al. (2019) Epidemiological and clinical characteristics of confirmed cases of severe fever with thrombocytopenia syndrome in Jeju Province, Korea, 2014–2018. Journal of Preventive Medicine and Public Health 52, 195–199.
42. Takahashi T et al. (2019) Transient appearance of plasmablasts in the peripheral blood of Japanese patients with severe fever with thrombocytopenia syndrome. Journal of Infectious Diseases 220, 23–27.
43. Zong L et al. (2019) Prevalence and M-fragment gene sequencing of fever with thrombocytopenia syndrome virus in Liaoning Province, 2011–2017. Chinese Journal of Public Health 35, 644–647.
44. Gai Z. et al. (2011) Person-to-person transmission of severe fever with thrombocytopenia syndrome bunyavirus through blood contact. Clinical Infectious Diseases 54, 249–252.
45. Liu Y et al. (2012) Person-to-person transmission of severe fever with thrombocytopenia syndrome virus. Vector Borne and Zoonotic Diseases 12, 156–160.
46. Chen H et al. (2012) A cluster of cases of human-to-human transmission caused by severe fever with thrombocytopenia syndrome bunyavirus. International Journal of Infectious Diseases 17, e206–e208.
47. Tang X et al. (2013) Human-to-human transmission of severe fever with thrombocytopenia syndrome bunyavirus through contact with infectious blood. Journal of Infectious Diseases 207, 736–739.
48. Wang Y et al. (2014) Person-to-person asymptomatic infection of severe fever with thrombocytopenia syndrome virus through blood contact. Internal Medicine 53, 903–906.
49. Gong Z et al. (2015) Probable aerosol transmission of severe fever with thrombocytopenia syndrome virus in southeastern China. Clinical Microbiology and Infection 21, 1115–1120.
50. Jiang X et al. (2015) A cluster of person-to-person transmission cases caused by SFTS virus in Penglai, China. Clinical Microbiology and Infection 21, 274–279.
51. Kim WY et al. (2015) Nosocomial transmission of severe fever with thrombocytopenia syndrome in Korea. Clinical Infectious Diseases 60, 1681–1683.
52. Yoo JR et al. (2016) Family cluster analysis of severe fever with thrombocytopenia syndrome virus infection in Korea. American Journal of Tropical Medicine and Hygiene 95, 1351–1357.
53. Huang D et al. (2017) A cluster of symptomatic and asymptomatic infections of severe fever with thrombocytopenia syndrome caused by person-to-person transmission. American Journal of Tropical Medicine and Hygiene 97, 396–402.
54. Moon J et al. (2019) Aerosol transmission of severe fever with thrombocytopenia syndrome virus during resuscitation. Infection Control & Hospital Epidemiology 40, 238–241.
55. Zhang WS et al. (2011) Seroepidemiology of severe fever with thrombocytopenia syndrome bunyavirus in Jiangsu province. Diseases Surveillance 26, 676–678.
56. Jiao Y et al. (2012) Preparation and evaluation of recombinant severe fever with thrombocytopenia syndrome virus nucleocapsid protein for detection of total antibodies in human and animal sera by double-antigen sandwich enzyme-linked immunosorbent assay. Journal of Clinical Microbiology 50, 372–377.
57. Zhao L et al. (2012) Severe fever with thrombocytopenia syndrome virus, Shandong Province, China. Emerging Infectious Diseases 18, 963.
58. Cui F et al. (2013) Clinical and epidemiological study on severe fever with thrombocytopenia syndrome in Yiyuan County, Shandong Province, China. American Journal of Tropical Medicine and Hygiene 88, 510–512.
59. Niu GY (2013) The epidemiologic investigation of potential vectors and hosts of SFTS virus in China. Beijing, China: Chinese Center for Disease Control and Prevention, pp. 113.

60. Wang L et al. (2013) Surveillance and analysis of severe fever with thrombocytopenia syndrome in Zibo City. Modern Preventive Medicine 40, 3471–3474.

61. Zhan JB et al. (2013) Analysis on antibody levels against severe fever with thrombocytopenia syndrome bunyavirus among healthy population in Hubei province. Chinese Journal of Health Laboratory Technology 23, 992–993.

62. Li Z et al. (2014) Seroprevalence of antibodies against SFTS virus infection in farmers and animals, Jiaogu, China. Journal of Clinical Virology 60, 185–189.

63. Liang S et al. (2014) Seroprevalence and risk factors for severe fever with thrombocytopenia syndrome virus infection in Jiangsu Province, China, 2011. American Journal of Tropical Medicine and Hygiene 90, 256–259.

64. Zhang L et al. (2014) Antibodies against severe fever with thrombocytopenia syndrome virus in healthy persons, China, 2013. Emerging Infectious Diseases 20, 1355–1357.

65. Hu C et al. (2015) The severe fever with thrombocytopenia syndrome bunyavirus (SFTSV) antibody in a highly endemic region from 2011 to 2013: a comparative serological study. American Journal of Tropical Medicine and Hygiene 92, 479–481.

66. Sun J et al. (2015) Seroprevalence of severe fever with thrombocytopenia syndrome virus in southeastern China and analysis of risk factors. Epidemiology & Infection 143, 851–856.

67. Tan WW et al. (2015) Results of surveillance of severe fever with thrombocytopenia syndrome bunyavirus in Yixing. Chinese Tropical Medicine 15, 359–360.

68. Xu PP et al. (2015) Seroepidemiology of severe fever with thrombocytopenia syndrome virus. Liu'an. Modern Preventive Medicine 42, 1948–1950.

69. Zhou SQ et al. (2015) Serological investigation of the new virus in China among healthy population in Pengxi City. Modern Preventive Medicine 42, 476–478.

70. Huang X et al. (2017) Presence of antibodies against severe fever with thrombocytopenia syndrome virus in non-endemic areas of China. Japanese Journal of Infectious Diseases 70, 248–251.

71. Luo LM (2016) Investigation of reservoir and vector of severe fever with thrombocytopenia syndrome virus and serosurvey of Tick-borne disease in China. Jinan, Shandong, China: University of Shandong, pp. 129.

72. Xing X et al. (2016) Natural transmission model for severe fever with thrombocytopenia syndrome bunyavirus in villages of Hubei Province, China. Medicine 95, e2533.

73. Yong L et al. (2016) Seroprevalence and risk factors of severe fever with thrombocytopenia syndrome virus infection in endemic areas. Infectious Diseases 48, 544–549.

74. Kim KH et al. (2017) Seroprevalence of severe fever with thrombocytopenia syndrome in southeastern Korea, 2015. Journal of Korean Medical Science 32, 29–32.

75. Gokuden M et al. (2018) Low seroprevalence of severe fever with thrombocytopenia syndrome virus antibodies in individuals living in an endemic area of Japan. Japanese Journal of Infectious Diseases 71, 225–228.

76. Kimura T et al. (2018) Seroprevalence of severe fever with thrombocytopenia syndrome (SFTS) virus antibodies in humans and animals in Ehime prefecture, Japan, an endemic region of SFTS. Journal of Infection and Chemotherapy 24, 802–806.

77. Shen W et al. (2019) Seroprevalence of severe fever with thrombocytopenia syndrome virus antibodies among inhabitants of Dachen Island, eastern China.Ticks and Tick-borne Diseases 10, 647–650.

78. Du YH et al. (2019) Seroprevalence of antibodies specific for severe fever with thrombocytopenia syndrome virus and the discovery of asymptomatic infections in Henan Province, China. PLoS Neglected Tropical Diseases 13, e0007242.

79. Jiang XL (2012) Potential vectors and hosts of SFTS bunyavirus in China. Jinan, Shandong, China: University of Shandong, pp. 65.

80. Zhao L et al. (2014) Severe fever with thrombocytopenia syndrome virus, Shandong Province, China, 2011. Emerging Infectious Diseases 20, 1–5.

81. Ding S et al. (2014) A cross-sectional survey of severe fever with thrombocytopenia syndrome virus infection of domestic animals in Laizhou City, Shandong Province, China. Japanese Journal of Infectious Diseases 67, 1–4.

82. Liu Y et al. (2013) Epidemiologic characteristics and biological features of severe fever with thrombocytopenia syndrome virus (SFTSV) found in Liaoning province. Chinese Journal of Public Health 29, 721–723.

83. Niu G et al. (2013) Severe fever with thrombocytopenia syndrome virus among domesticated animals, China. Emerging Infectious Diseases 19, 756–763.

84. Liu JW et al. (2014) Prevalence of SFTSV among Asian house shrews and rodents, China, January–August 2013. Emerging Infectious Diseases 20, 2126–2128.

85. Du YH et al. (2014) Investigation of animals infected with novel bunyavirus in Xinyang City, Henan Province, China. Chinese Journal of Zoornoses 30, 766–768.

86. Xu ZP et al. (2014) Analysis on new bunyavirus infections in WuXi City, Chinese Journal of Diseases Control Preventive 18, 239–242.

87. Li ZF et al. (2016) Ecology of the tick-borne phlebovirus causing severe fever with thrombocytopenia syndrome in an endemic area of China. PLoS Neglected Tropical Diseases 10, e0004574.

88. Oh SS et al. (2016) Detection of severe fever with thrombocytopenia syndrome virus from wild animals and ixodidae ticks in the Republic of Korea. Vector Borne and Zoonotic Diseases 16, 408–1414.

89. Tabara K et al. (2016) Investigation of severe fever with thrombocytopenia syndrome virus antibodies in domestic bovines transported to slaughterhouse in Shimane Prefecture, Japan. Japanese Journal of Infectious Diseases 69, 445–447.

90. Hayasaka D et al. (2016) Seroepidemiological evidence of severe fever with thrombocytopenia syndrome virus infections in wild boars in Nagasaki, Japan. Tropical Medicine and Health 44, 6.

91. Sun Y et al. (2017) Seroprevalence of severe fever with Thrombocytopenia syndrome virus in hedgehog from China. Vector Borne and Zoonotic Diseases 17, 347–350.

92. Wang GS et al. (2017) Severe fever with thrombocytopenia syndrome virus infection in minks in China. Vector Borne and Zoonotic Diseases 17, 596–598.

93. Zhu YY et al. (2017) Preliminary investigation on infection of novel bunyavirus among animals and ticks in Shanghai, from 2012 to 2014. Chinese Journal of Zoornoses 33, 700–704.

94. Lee SH et al. (2018) Prevalence of antibodies against severe fever with thrombocytopenia syndrome virus in shelter dogs in the Republic of Korea. Ticks Tick-borne Diseases 9, 183–187.

95. Kang JG et al. (2018) Prevalence of severe fever with thrombocytopenia syndrome virus in black goats (Capra hircus coreanae) in the Republic of Korea. Ticks Tick-borne Diseases 9, 1153–1157.

96. Yu KM et al. (2018) Seroepidemiology and prevalence characterization of severe fever with thrombocytopenia syndrome virus in domestic goats in South Korea. Ticks Tick-borne Diseases 9, 1202–1206.

97. Yu MA et al. (2019) Seroprevalence of severe fever with thrombocytopenia syndrome virus in domesticated deer in South Korea. Virologia Sinica 34, 501–507.

98. Yang L et al. (2019) Genomes and seroprevalence of severe fever with thrombocytopenia syndrome virus and Nairobi sheep disease virus in Haemaphysalis longicornis ticks and goats in Hubei, China. Virology 529, 234–245.

99. Zhang YZ et al. (2012) The ecology, genetic diversity, and phylogeny of huaiyangshan virus in China. Journal of Virology 86, 2864–2868.

100. Yun SM et al. (2014) Severe fever with thrombocytopenia syndrome virus in ticks collected from humans, South Korea, 2013. Emerging Infectious Diseases 20, 1358–1361.

101. Hayasaka D et al. (2015) Epidemiological survey of severe fever with thrombocytopenia syndrome virus in ticks in Nagasaki, Japan. Tropical Medicine and Health 43, 159–164.

102. Wang SW et al. (2015) SFTS Virus in ticks in an endemic area of China. American Journal of Tropical Medicine and Hygiene 92, 684–689.

103. Yun SM et al. (2016) Molecular detection of severe fever with thrombocytopenia syndrome and tick-borne encephalitis viruses in ixodid ticks collected from vegetation, Republic of Korea, 2014. Ticks Tick-borne Diseases 7, 970–978.
104. Tian H et al. (2017) Severe fever with thrombocytopenia syndrome virus in humans, domesticated animals, ticks, and mosquitoes, Shaanxi Province, China. *American Journal of Tropical Medicine and Hygiene* **96**, 1346–1349.

105. Zhuang L et al. (2018) Transmission of severe fever with thrombocytopenia syndrome virus by *Haemaphysalis longicornis* ticks, China. *Emerging Infectious Diseases* **24**, 868–871.

106. Jung M et al. (2019) Seasonal occurrence of *Haemaphysalis longicornis* (Acar: Ixodidae) and *Haemaphysalis flavicornis*, vectors of severe fever with thrombocytopenia syndrome (SFTS) in South Korea. *Journal of Medical Entomology* **56**, 1139–1144.

107. Wang QK et al. (2012) Vector research of severe fever with thrombocytopenia syndrome virus in gamasid mites and chigger mites. *Chinese Journal of Vector Biology & Control* **23**, 452–454.

108. Liu Y et al. (2012) Survey on ticks and detection of new bunyavirus thrombocytopenia and leukopenia syndrome (FTLS) in Henan province. *Chinese Journal of Preventive Medicine* **46**, 500–504.

109. Li P et al. (2017) Seroprevalence of severe fever with thrombocytopenia syndrome virus in China: a systematic review and meta-analysis. *PLoS One* **12**, e0175592.

110. Ding F et al. (2014) Risk factors for bunyavirus-associated severe fever with thrombocytopenia syndrome, China. *PLoS Neglected Tropical Diseases* **8**, e3267.

111. Chen C et al. (2019) Animals as amplification hosts in the spread of severe fever with thrombocytopenia syndrome virus: a systematic review and meta-analysis. *International Journal of Infectious Diseases* **79**, 77–84.

112. Jiao Y et al. (2015) Experimental and natural infections of goats with severe fever with thrombocytopenia syndrome virus: evidence for ticks as viral vector. *PLoS Neglected Tropical Diseases* **9**, e0004092.

113. Liu S et al. (2014) Systematic review of severe fever with thrombocytopenia syndrome: virology, epidemiology, and clinical characteristics. *Reviews in Medical Virology* **24**, 90–102.