Autocrine transforming growth factor-\(\beta\) growth pathway in murine osteosarcoma cell lines associated with inability to affect phosphorylation of retinoblastoma protein

FARIBA NAVID,1 JOHN J. LETTERIO,2 CHOH L. YEUNG,1 MICHEIL PEGTEL2 & LEE J. HELMAN1

1Pediatric Oncology Branch and 2Laboratory of Cell Regulation and Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1928, USA

Abstract

Purpose. Production of active transforming growth factor-\(\beta\) (TGF-\(\beta\)) by human osteosarcoma may contribute to malignant progression through mechanisms that include induction of angiogenesis, immune suppression and autocrine growth stimulation of tumor cell growth. To study events associated with induction of cell proliferation by TGF-\(\beta\), we have evaluated the TGF-\(\beta\) pathway in two murine osteosarcoma cell lines, K7 and K12.

Results. Northern and immunohistochemical analyses show that each cell line expresses TGF-\(\beta\)1 and TGF-\(\beta\)3 mRNA and protein. Both cell lines secrete active TGF-\(\beta\)1 and display a 30\%–50\% reduction in growth when cultured in the presence of a TGF-\(\beta\) blocking antibody. Expression of TGF-\(\beta\) receptors T\(\beta\)RI, T\(\beta\)RII and T\(\beta\)RIII is demonstrated by affinity labeling with \(^{125}\text{I}-\text{TGF-}\beta\)1, and the intermediates, Smads 2, 3 and 4, are uniformly expressed. Smads 2 and 3 are phosphorylated in response to TGF-\(\beta\), while pRb phosphorylation in each osteosarcoma cell line is not affected by either exogenous TGF-\(\beta\) or TGF-\(\beta\) antibody.

Conclusions. The data implicate events downstream of Smad activation, including impaired regulation of pRb, in the lack of a growth inhibitory response to TGF-\(\beta\), and indicate that this murine model of osteosarcoma is valid for investigating the roles of autocrine TGF-\(\beta\) in vivo.

Key words: osteosarcoma, transforming growth factor-\(\beta\), Smad proteins, retinoblastoma protein

Introduction

Transforming growth factor-\(\beta\) (TGF-\(\beta\)) is a pleiotropic cytokine that is highly abundant in bone and is involved in various aspects of bone cell biology including replication, differentiation, osteogenesis and resorption.1 Both stimulatory and inhibitory effects of TGF-\(\beta\) on the growth of cell lines derived from normal osteoblasts and osteosarcoma cells have been reported in the literature.2–6 The mechanisms responsible for the variable effects of TGF-\(\beta\) on growth of osteoblastic cell lines are not clear. The recent reports suggesting a correlation between severity of disease and TGF-\(\beta\) expression in osteosarcoma, as assessed by immunohistochemistry in tissue samples, support the hypothesis that TGF-\(\beta\) plays a role in the pathogenesis of this malignant bone tumor.7–9 An understanding of the mechanisms mediating the effects of TGF-\(\beta\) on the growth of osteosarcoma cells may give insight into the biology of this tumor.

Three mammalian isoforms of TGF-\(\beta\) (TGF-\(\beta\)1, -\(\beta\)2 and -\(\beta\)3) have been identified with nearly identical biological activity in vitro, and overlapping patterns of expression in vivo. TGF-\(\beta\)1 is widely expressed in most tissues throughout development and in the adult organism, while TGF-\(\beta\)3 is most strongly expressed in tissues of mesenchymal origin. Though they share overlapping activities in most culture systems, TGF-\(\beta\)3 is 3- to 10-fold more potent on a molar basis than TGF-\(\beta\)1 or TGF-\(\beta\)2 in fetal rat bone and in rat osteosarcoma cultures.1,10

The three isoforms signal through the same receptor complex but with different binding affinities.11–13 Three major classes of receptors have been identified for TGF-\(\beta\), namely a type I and type II receptor (T\(\beta\)RI and T\(\beta\)RII) and betaglycan (T\(\beta\)RIII). The type III receptor is a large cell surface proteoglycan whose function is unclear, though it may be involved in the presentation of ligand to the type II receptor.14,15 The T\(\beta\)RI and T\(\beta\)RII are transmembrane serine/
expression and the response to this cytokine in two clonal murine osteosarcoma cell lines, K7 and K12, derived from a single spontaneously occurring tumor in a BALB/c mouse. These two cell lines exhibit distinct morphologic and biologic differences. The

TGF-β appears to chiefly block progression through the mid/late G1 phase of the cell cycle by affecting expression and function of a number of cell cycle regulatory proteins. TGF-β has been shown to either downregulate expression or decrease the activity of cdk2, cdk4 and cyclin E. In addition, TGF-β treatment induces the expression and functional activity of the cyclin-dependent kinase inhibitors (CDKIs), p15ßNIf1 and p21Cip1 are upregulated in a variety of cell types, whereas the distribution of p27Kip1 is altered in response to TGF-β. These alterations in cdks, cyclins and CDKIs block entry into the S phase of the cell cycle by directly and indirectly preventing the phosphorylation of the retinoblastoma protein (pRB).

The TGF-β ligands and signaling intermediates play complex roles in tumorigenesis. Altered expression and mutational inactivation of the TGF-β receptors and downstream effectors, including Smad2 and Smad4, have been shown to prevent the growth inhibitory effects of TGF-β and contribute to enhanced tumorigenesis. However, the role of TGF-β ligands in carcinogenesis appears to be more complex, and is in part attributed to the pleiotropic activity of TGF-β, including the ability to act as an autocrine, paracrine and sometimes endocrine growth factor. TGF-β has been shown to be involved in tumor invasion and metastasis, stromal matrix formation, immunosuppression and angiogenesis. Tumor cells that become resistant to the growth inhibitory effects of TGF-β often secrete an active form of the protein, which acts in a paracrine fashion to promote tumor progression by virtue of such effects on surrounding tissues. Indeed, in murine models of carcinogenesis involving TGF-β1 heterozygote knock-out mice, loss of heterozygosity at the TGF-β1 locus does not occur within tumor tissue, presumably due to the selective allelic retention and probable promoting effects of TGF-β1 in the tumor microenvironment.

In this report, we describe the patterns of TGF-β expression and the response to this cytokine in two clonal murine osteosarcoma cell lines, K7 and K12, derived from a single spontaneously occurring tumor in a BALB/c mouse. These two cell lines exhibit distinct morphologic and biologic differences. The

Materials and methods

Cell lines

K7 and K12 are two clonal cell lines that were established and characterized by Schmidt et al. from a single spontaneously occurring murine osteosarcoma. Cell lines were grown in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 100 U/ml penicillin, 100 µg/ml streptomycin and 2 mM L-glutamine at 37°C and 5–6% CO2. The TGF-β sensitive Mv1Lu (CCL64) cells were maintained subconfluent in DMEM (high glucose) containing L-glutamine, 10% FBS and 1% penicillin/streptomycin.

TGF-β assays

Conditioned media preparation. A total of 3×10⁶ osteosarcoma cells (K7 and K12) were cultured for up to 48 h in 2 ml of serum-free medium, supplemented with 5 ml ITS+ (insulin, transferrin, selenium) culture supplement (Collaborative Biomedical, Bedford, MA, lot no. 901837). Culture supernatants were collected, centrifuged at 10 000×g at 4°C to pellet any cells or debris, and supernatant was transferred to siliconized tubes with protease inhibitors (leupeptin, pepstatin and aprotinin, 1 mg/ml) and stored at −70°C.

TGF-β bioassay. A modified Mv1Lu bioassay was used. Cells were plated at 1×10⁴ cells/well in 96 well plates with 200 µl of DMEM containing 10% FBS, and incubated for 8–12 h at 37°C to ensure complete adherence. Media was aspirated and replaced with serial dilutions of each conditioned media (diluted in DMEM with 0.5% FBS), in the presence or absence of 30 µg/ml of either the pan-specific mouse monoclonal anti-TGF-β blocking antibody 1D11 (Genzyme, Cambridge, MA) or control IgG; additional wells were treated with media plus TGF-β
standard concentrations in a total volume of 150 µl/well (each condition was performed in triplicate). Plates were subsequently incubated for an additional 24 h, and 1 mCi of [3H]thymidine was added for the final 2 h of the incubation. Media was aspirated and replaced with 50 µl of Trypsin-ethylene-diaminetetraacetic acid (EDTA)/well, and cells were incubated for 30 minutes at 37°C prior to harvesting onto 96-well filter plates which were processed with a Top Count Microplate Scintillation Reader according to manufacturer’s instructions (Packard Instrument Company, Meriden, CT).

TGF-β enzyme-linked immunosorbent assay (ELISA) assay. Performed using an TGF-β1 immunoassay kit (R&D Systems, Minneapolis, MN).

Immunohistochemical detection of TGF-β isoforms in tumor tissue

Tumor tissue was fixed in neutral buffered formalin and embedded in paraffin. Sections 5 µM thick were stained with hematoxylin and eosin for routine histology. Additional sections were evaluated with isoform-specific anti-TGF-β antibodies directed against TGF-β1, TGF-β2 and TGF-β3, followed by peroxidase staining as previously described.

TGF-β blocking studies with antibody and latency-associated peptide

K7 and K12 cell lines were plated in triplicate in 96 well plates in DMEM with 10% FBS at a density of 5 x 10^3/well and 7.5 x 10^3/well, respectively. Twenty-four hours later, cells were washed twice with 1XPBS (phosphate buffered saline without calcium and magnesium, pH 7.4) and incubated with pan-specific anti-TGF-β antibody or recombinant TGF-β1 latency-associated peptide (LAP) in 200 µl of 0.5% FBS, DMEM and 2 µl of ITS+premix containing insulin, transferrin, selenious acid, bovine serum albumin (BSA) and linoleic acid (Beckton Dickinson Labware, Bedford, MA); 10 µg/ml class-matched mouse IgG1 k (MOPC-21) (Sigma BioSciences, St Louis, MO), was used as control. Media was changed every 48 h. Cells were harvested at 48, 72 and 96 h after treatment. Cell number was determined using MTT assay as described above.

Western blot analysis

Osteosarcoma cells were grown to confluence in six well plates, washed three times in ice cold binding buffer (DMEM high glucose, 25 mM Heps, pH 7.4, 1 mg/ml BSA) and incubated in 2 ml of the same buffer plus 125I-TGF-β1 (0.35 µCi; Dupont/NEN, Boston, MA) with or without an excess of unlabeled TGF-β1 (120 ng) to compete for specific binding of radiolabeled ligand. Plates were incubated on a rocker at 4°C for 2.5 h, washed three times in cold wash buffer (DMEM, 1% BSA, pH 7.4) and incubated in 1 ml of the same buffer containing 3 mM disuccinimidyl suberate (Pierce, Rockford, IL). After incubating for 1 h at 4°C, cells were washed three times in cold sucrose buffer (250 mM sucrose, 10 mM Tris, pH 7.4, 1 mM EDTA) and lysed in 200 µl of 1XRTIP (1XPBS, 1% NP40, 0.5% sodium deoxycholate, 0.1% SDS) with protease inhibitors (200 nM AEBSF, 1 µg/ml leupeptin, pepstatin and aprotinin) added immediately prior to cell lysis. Radiolabeled proteins were separated on 8% Tris-Glycine polyacrylamide gels (NOVEX, San Diego, CA). Gels were dried and exposed to Kodak Xomat film (Kodak, Rochester, NY).
Smad immunoprecipitation

Cells were grown to confluence in 100 mm tissue culture dishes, washed twice with phosphate-free DMEM and incubated with 2 ml phosphate-free DMEM and 0.75 mCi $[^{32}P]$ orthophosphate at 37°C in an incubator for 90 minutes; 10 ng/ml of TGF-β_1 and 10 ng/ml of TGF-β_3 was added to the designated plate for each cell line and incubated for another 30 minutes. Cells were washed with cold PBS, counted, lysed with RIPA buffer (plus protease inhibitors) and incubated at 4°C for 30 minutes. Cells were then harvested with cell scrapers and spun at 12 000 r.p.m. at 4°C for 20 minutes. Supernatant was stored at −70°C until ready to use. Protein G (50 μl per reaction) (Santa Cruz Biotechnology, Inc., Santa Cruz, CA) with Smad2 (1 μg per reaction) mouse monoclonal antibody (catalog no. S66220, Transduction Laboratories, Lexington, NY) or MOPC-21 (1 μg per reaction) was incubated overnight at 4°C on a shaker; 50 μl of protein G plus the antibody was mixed with one-third of the protein lysates (exact amount was adjusted for cell count), and incubated with continuous shaking at 4°C. The immunoprecipitates were collected by centrifugation at 2500 r.p.m. for 5 minutes at 4°C. The pellet was washed four times with PBS, resuspended in Tris-Glycine SDS sample buffer (NOVEX, San Diego, CA), and boiled for 5 minutes. The agarose beads were pelleted by centrifugation and the supernatant was loaded on an 8% Tris-Glycine polyacrylamide gel. Electrophoresis was carried out at 125 V. The gel was dried and exposed to Kodak BioMax Light Film (Kodak, Rochester, NY).

Results

TGF-β is an autocrine growth factor in K7 and K12 cells

Expression of both TGF-β_1 and TGF-β_3 mRNA was detected by Northern analysis (β1>β3) in both K7 and K12 cell lines, while there was no detectable expression of TGF-β_2 (data not shown). Immunohistochemical studies of sections from tumors of K7 and K12 grown in a syngeneic mouse strain reveal abundant expression of both TGF-β_1 and TGF-β_3, with no detectable TGF-β_2 protein (Fig. 1).

Culture of both K7 and K12 in serum-free conditions revealed the production of active TGF-β by both cell lines. Using an ELISA assay, we determined the level of TGF-β_1 secreted into conditioned media over a 48 h period to be 8.38 ng/ml for K7 and 0.94 ng/ml for K12. TGF-β is secreted as a latent precursor by most normal cells, but is produced in an active state by a variety of tumors. Inhibition of the growth of mink lung epithelial (Mv1Lu) cells was used to confirm the presence of active TGF-β in conditioned media, and reveals that 40–50% of the TGF-β secreted by K7 and K12 is in the active form (Fig. 2).

We next sought to determine whether the endogenously secreted TGF-β had any autocrine biological activity. Growth of either K7 or K12 in the presence of 5 μg/ml or 10 μg/ml of a pan-specific blocking monoclonal antibody resulted in a 50% reduction in cell number when compared to their growth in the presence of an IgG control antibody. (Fig. 3A, B). Concentrations of antibody up to 30 μg/ml did not result in further growth inhibition (data not shown). To confirm this autocrine stimulatory effect of endogenous TGF-β on cell growth, K7 and K12 cells were treated with recombinant TGF-β_1 LAP, a potent inhibitor of biologically active TGF-β. 50 Treatment with 250 ng/ml of LAP resulted in a 38% and 32% decrease in growth of K7 and K12 cells respectively, when compared to PBS-treated control cultures (Fig. 3C, D).

Mitogenic response to exogenous TGF-β in K7 and K12 cells

Though both K7 and K12 cells secrete TGF-β, the effect of exogenous TGF-β on their growth was also examined. Exposure of K7 and K12 cell cultures grown in serum-free media to 10 ng/ml of TGF-β_1 resulted in a greater than 60% increase in the rate of growth in each cell line, when compared to the solvent-treated control cultures (Fig. 4).

TGF-β receptors

Abnormalities in the expression of both TβRI and TβRII have been reported in primary human tumors, and in established tumor cell lines that are insensitive to growth inhibitory effects of TGF-β. To assess the receptor status in the K7 and K12 cell lines, an 125I labeled TGF-β_1 affinity binding assay was performed. All three TGF-β receptors are present on the cell surface in each cell line, and appear at the expected size (Fig. 5). Interestingly, there is an additional band that migrates between the TβRI and TβRII in both cell lines, though more prominent in K12 than in K7. Immunoprecipitation of this band with an antibody to betaglycan suggest that this band may represent an alternately glycosylated form of TβRII (data not shown).

Phosphorylation of Smad2 similar in Mv1Lu and osteosarcoma cell lines

The established role of both Smad2 and Smad4 as tumor suppressor genes highlights the importance of their function in conveying the growth inhibitory signals from TGF-β family ligands. Their function in the mitogenic response to TGF-β in osteosarcoma is not known. We find no difference in the phosphorylation of Smad2 in response to TGF-β inhibition of Mv1Lu (CCL64) cell growth or the mitogenic response of either osteosarcoma cell line (Fig. 6). A smaller band just below Smad2 was detected in the TGF-β-treated cells in the $[^{32}P]$ orthophosphate labeled immunoprecipitates with anti-Smad2. This
Figure 1. Expression of TGF-β isoforms in murine K7 osteosarcomas, both in primary (A, C, E, G) and pulmonary (B, D, F, H) metastatic tissue. Immunostaining of sections with the LC antibody to TGF-β1 reveals intracellular localization (A, B), while staining with the CC antibody to TGF-β1 (E, F) generates the typical pattern of extracellular matrix-associated localization frequently observed with this antibody, primarily in areas where osteoid is also observed (asterisk in E). The anti-TGF-β3 antibody (C, D) also strongly reacts with tumor cells and can be seen in normal columnar epithelia of the lung for comparison (arrowhead in D). Immunostaining of sections with normal rabbit serum (G, H) are the negative controls. Comparable results were obtained for tumors derived from K12 cells.
slightly smaller band is the appropriate size for Smad3, which is highly homologous with Smad2 and reacts with the antibody used for immunoprecipitation. Smad 4 was also detected in K7 and K12 cells, at levels similar to that found in CCL64 cells (Fig. 7).

Phosphorylation of pRb in response to TGF-β

An important target in the growth arrest response to TGF-β in Mv1Lu cells is pRb, which is maintained in a dephosphorylated state following exposure to this cytokine. To assess the pattern of pRb phosphorylation in response to TGF-β in K7 and K12 cells, we cultured each in the presence of either exogenous TGF-β1 or a TGF-β blocking antibody. Neither treatment affects the phosphorylation state of pRb in either K7 or K12. However, as previously described, pRB is dephosphorylated in Mv1Lu in response to TGF-β (Fig. 8).

Discussion

In the present study, we show that TGF-β acts as an autocrine stimulator of growth in two murine osteosarcoma cell lines, K7 and K12. Our experiments...
show that the major proximal elements in the TGF-β signaling pathway are intact, namely the TGF-β receptors and Smads 2, 3 and 4. However, while ligand-induced phosphorylation of Smads 2 and 3 is associated with a reduction of phosphorylated pRb and growth arrest in mink lung epithelial cells (CCL64), culture of either K7 or K12 in the presence of either exogenous TGF-β or antibody to TGF-β has no effect on pRb phosphorylation status. The data suggest that the resistance to the growth inhibitory effect of TGF-β in these osteosarcoma cell lines results from the inability of normal receptor-initiated events to affect the phosphorylation of pRb. However, since TGF-β treatment did not alter the phosphorylation status of pRb, the mechanism for

the growth stimulatory effects of TGF-β on these cells remains unclear.

The retinoblastoma protein has been established as an important mediator of growth inhibition in response to TGF-β. Herrera et al. showed that under certain growth conditions fibroblasts derived from RB-deficient mouse embryos (RB−/−) had a stimulatory growth response to TGF-β. In addition, abnormalities in the retinoblastoma gene are found in greater than 50% of osteosarcomas, and are believed to play a role in the pathogenesis of this tumor. Alterations in the pathway controlling
phosphorylation of pRb may account for the lack of growth inhibitory response to TGF-β observed in our cell lines and would be functionally analogous to mutations found in human osteosarcomas. In the human osteosarcoma cell line Sk-2 (lane 5), the phosphorylation of pRb was reduced in comparison to the control group (lane 1). These results indicate that the early post-receptor events occur as expected following exposure to ligand, and that in the absence of an inactive Rb they might result ultimately in the mitogenic response. The potential influence of inhibitory Smads, Smad6 and Smad7, has not yet been evaluated, but may play a role despite the normal appearance of phosphorylated forms of Smad2 and Smad3 following receptor activation.

In summary, we report the mitogenic potential of autocrine TGF-β as produced by two clonal murine osteosarcoma cell lines, K7 and K12. Our analysis predicts that this murine syngeneic tumor model is an appropriate in vivo system for determining how the production of TGF-β by osteosarcoma contributes to its growth. Further study of post-receptor signaling events will aim to identify factors dissociating normal ligand-induced activation of Smads in osteosarcoma from inhibition of pRb phosphorylation.
References

1. Centrella M, Horowitz M, Wozney J, McCarthy T. Transforming growth factor-β gene family members and bone. *Endocr Rev* 1994;15:27–39.

2. Pfeilschifter J, D’souza S, Mundy G. Effects of transforming growth factor-β on osteoblastic osteosarcoma cells. *Endocrinology* 1987;121:212–8.

3. Pirskanen A, Jaäskeläinen T, Mäenpää P. Effects of transforming growth factor β1 on the regulation of osteocalcin synthesis in human MG-63 osteosarcoma cells. *J Bone Miner Res* 1994;9:1635–42.

4. Robey PG, Young MF, Flanders KC, Roche NS, Kondaiah P, Reddi A *et al.* Osteoblasts synthesize and respond to transforming growth factor-type β (TGFβ) in vitro. *J Cell Biol* 1987;105:457–63.

5. Centrella M. Growth-factor receptors and responses: a comparison of normal bone and osteosarcoma derived cell cultures. In: Novak J, McMaster J, eds. *Frontiers of osteosarcoma research: interdisciplinary survey of clinical and research advances.* Seattle: Hogrefe & Huber, 1993:457–68.

6. Kloen P, Jennings C, Gebhardt M, Springfield D, Mankin H. Expression of transforming growth factor-beta (TGF-β) receptors, TGF-β1 and TGF-β2 production and autocrine growth control in osteosarcoma cells. *Int J Cancer* 1984;38:440–5.

7. Yang R-S, Wu C-T, Lin K-H, Hong RL, Liu T-K, Lin K-S. Relation between histological intensity of transforming growth factor-β isoforms in human osteosarcoma and the rate of lung metastasis. *Tohoku J Exp Med* 1998;184:133–42.

8. Franchi A, Arganini L, Baroni G, Calzolari A, Capanna R, Campanacci D *et al.* Expression of transforming growth factor β isoforms in osteosarcoma variants: association of TGFβ1 with high-grade osteosarcomas. *J Pathol* 1998;185:284–9.

9. Kloen P, Gebhardt M, Perez-Atayde A, Rosenberg A, Springfield D, Gold L *et al.* Expression of transforming growth factor-β (TGF-β) isoforms in osteosarcomas. *Cancer* 1997;80:2230–9.

10. ten Dijke P, Iwata KK, Goddard C, Pieler C, Canals E, McCarthy TL. b1 and b2 transforming growth factor beta receptors and growth inhibitory responses in retinoblastoma cells. *Cell* 1994;73:1003–14.

11. Nakao A, Imanura T, Souchelnytskyi S, Kawabata M, Ishisaki A, Oeda E *et al.* TGF-β receptor-mediated signalling through Smad2, Smad3, and Smad4. *EMBO J* 1997;16:5353–62.

12. Nakao A, Rüser E, Imamura T, Souchelnytskyi S, Stenman G, Heldin C-H *et al.* Identification of Smad2, a human Mad-related protein in the transforming growth factor b signaling pathway. *J Biol Chem* 1997;272:2896–900.

13. Derynick R, Zhang Y, Feng X-H. Smads: transcriptional activators of TGF-β responses. *Cell* 1998;95:737–40.

14. Lagna G, Hata A, Hemmati-Brivanlou A, Massagué J. Partnership between DPC4 and SMAD proteins in TGF-β signaling pathways. *Nature* 1996;383:832–6.

15. Yangi Y, Suzawa M, Kawabata M, Miyazono K, Yana-gisawa J, Kato S. Positive and negative modulation of vitamin D receptor function by transforming growth factor-beta signaling through Smad proteins. *J Biol Chem* 1999;274:12971–4.

16. Yangi Y, Yanagi Y, Masuhiro Y, Suzawa M, Watanabe M, Kashihara K *et al.* Convergence of transforming growth factor-β and vitamin D signaling pathways on SMAD transcriptional coactivators. *Science* 1999;283:1317–21.

17. Reynisdottir I, Polyak K, Iavarone A, Massagué J. Kip/Cip and Ink4 cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-β. *Genes & Dev* 1995;9:1831–45.

18. Polyak K, Kato J, Solomon M, Sherr C, Massagué J, Roberts J *et al.* p27-Kip1, a cyclin-cdk inhibitor, links transforming growth factor-β and contact inhibition to cell cycle arrest. *Genes & Dev* 1994;8:89–22.

19. Laiho M, DeCaprio JA, Ludlow JW, Livingstone DM, Massagué J. Growth inhibition by TGF-β linked to suppression of retinoblastoma protein phosphorylation. *Cell* 1990;62:175–85.

20. Dowdy S, Hinds P, Louie K, Reed S, Arnold A, Weinberg R. Physical interaction of the retinoblastoma protein with human D cyclins. *Cell* 1993;73:499–511.

21. Weinberg R. The retinoblastoma protein and cell cycle control. *Cell* 1995;81:323–30.

22. Eppert K, Scherer S, Ozcelik H, Pironc R, Hoodless P, Kim H *et al.* MADR2 maps to 18q21 and encodes a TGF β-Smad family. *Am J Hum Genet* 1994;26:597–614.

23. Massagué J. Transforming growth factor-β family. *Cell* 1992;69:1067–70.

24. Graycar J, Miller D, Arrick B, Lyons R, Moses H, Derynck R. Human transforming growth factor-β3: recombinant expression, purification, and biological activities in comparison with transforming growth factors β1 and β2. *Mol Endocrinol* 1989;3:1977–86.

25. Wang X-F, Lin HY, Ng-Eaton E, Downward J, Lodish HF, Weinberg RA. Expression cloning and characterization of the TGF-β type III receptor. *Cell* 1993;74:805–17.

26. Lopez-Casillas F, Wrana JL, Massagué J. Betaglycan presents ligand to the TGF-β signaling receptor. *Cell* 1993;73:1435–44.

27. Wrana JL, Attisano L, Carcamo J, Zentella A, Doody J, Laiho M *et al.* TGF-β signals through a heteromeric protein kinase receptor complex. *Cell* 1992;71:1003–14.

28. Liu X, Sun Y, Constantinescu S, Karam E, Weinberg R, Lodish H. Transforming growth factor β-induced phosphorylation of Smad3 is required for growth inhibition and transcriptional induction in epithelial cells. *Proc Natl Acad Sci USA* 1997;94:10669–74.

29. Nakao A, Imanura T, Souchelnytskyi S, Kawabata M, Ishisaki A, Oeda E *et al.* TGF-β receptor-mediated signaling through Smad2, Smad3, and Smad4. *EMBO J* 1997;16:5353–62.
pulmonary adenocarcinoma cell adhesion, motility, and invasion in vitro. J Natl Cancer Inst 1992;84:523–7.

38 Welch D, Fabra A, Nakajima M. Transforming growth factor b stimulates mammary adenocarcinoma cell invasion and metastatic potential. Proc Natl Acad Sci USA 1990;87:7678–82.

39 Taipale J, Saharinen J, Keski-Oja J. Extracellular matrix-associated transforming growth factor-β: role in cancer cell growth and invasion. Adv in Cancer Res 1992;75:87–134.

40 Hojo M, Morimoto T, Maluccio M, Asano T, Morimoto K, Lagman M et al. Cyclosporin induces cancer progression by a cell-autonomous mechanism. Nature 1999;397:530–4.

41 Bunting E, Jakubczak J, Robert I, Mummy M, Hemmati P, Bagnall K et al. Expression of a dominant-negative mutant TGF-β type II receptor in transgenic mice reveals essential role for TGF-β in regulation of growth and differentiation in the exocrine pancreas. EMBO J 1997;16:2621–33.

42 Tang B, Bunting E, Jakowlew SB, Bagnall KM, Mariano J, Anver M et al. Transforming growth factor-β1 is a new form of tumor suppressor with true haploid insufficiency. Nat Med 1998;4:802–7.

43 Schmidt J, Straub G, Schiön A, Luz A, Murray A, Melchiori A, Aresu O et al. Establishment and characterization of osteogenic cell lines from a spontaneous murine osteosarcoma. Differentiation 1988;39:151–60.

44 Danielpour D, Kim K, Dart L, Watanabe S, Roberts A, Sporn M. Sandwich enzyme-linked immunosorbent assays (SELISAs) quantitate and distinguish two forms of transforming growth factor-beta (TGF-β1 and TGF-β2) in complex biological fluids. Growth Factors 1989;2:61–71.

45 Flanders KC, Thompson NL, Cissel DS, Oberghen-Schilling EV, Baker CC, Kass MD et al. Transforming growth factor-β1: histochemical localization with antibodies to different epitopes. J Cell Biol 1989;108:653–60.

46 Flanders KC, Cissel DS, Mullens LT, Danielpour D, Sporn MB, Roberts AB. Antibodies to transforming growth factor-β2 peptides: specific detection of TGF-β2 in immunooassays. Growth Factors 1990;3:45–52.

47 Flanders KC, Lubeck G, Engels S, Cissel DS, Roberts AB, Kondiah P et al. Localization and actions of transforming growth factor-β in the embryonic nervous system. Development 1991;113:183–91.

48 Denizot F, Lang R. Rapid colorimetric assay for cell growth and survival. J Immunol Methods 1986;89:271–7.

49 El-Brady O, Romanus J, Helman L, Cooper M, Rechler M, Israel M. Autonomous growth of a human neuroblastoma cell line is mediated by insulin-like growth factor II. J Clin Invest 1989;84:829–39.

50 Büttinger E, Factor VM, Tsang ML, Weatherbee JA, Kopp JB, Qian SW et al. The recombinant proregion of transforming growth factor β1 (latency-associated peptide) inhibits active transforming growth factor β1 in transgenic mice. Proc Natl Acad Sci USA 1996;93:5877–82.

51 Herrera RE, Mäkelä TP, Weinberg RA. TGFβ-induced growth inhibition in primary fibroblasts requires the retinoblastoma protein. Mol Biol Cell 1996;7:1335–42.

52 Wadayama B, Toguchida J, Shimizu T, Ishizaki K, Sasaki M, Kotoura Y et al. Mutation spectrum of the retinoblastoma gene in osteosarcoma. Cancer Res 1994;54:3042–8.

53 Benassi M, Molendini L, Gambaro F, Sollazzo M, Ragazzini P, Merli M et al. Altered G1 phase regulation in osteosarcoma. Int J Cancer 1997;74:518–22.

54 Hinds P, Mittnacht S, Dulic V, Arnold A, Reed S, Weinberg R. Regulation of retinoblastoma protein functions by ectopic expression of human cyclins. Cell 1992;70:993–1006.

55 Miller C, Aslo A, Campbell M, Kawamata N, Lampkin B, Koeffler H. Alterations of the p15, p16, and p18 genes in osteosarcoma. Cancer Genet Cytogenet 1996;86:134–44.

56 Centrella M, McCarthy TL, Canalis E. Transforming growth factor β is a bifunctional regulator of replication and collagen synthesis in osteoblast-enriched cell cultures from fetal rat bone. J Biol Chem 1987;262:2869–74.

57 Rosen DM, Stempien SA, Thompson AV, Seyedin SM. Transforming growth factor-beta modulates the expression of osteoblast and chondroblast phenotypes in vitro. J Cell Physiol 1988;134:337–46.

58 Hahn S, Schutte M, Hoque A, Moskaluk C, Costa LD, Rozenblum E et al. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 1996;271:350–3.

59 Schutte M, Hruban R, Hedrick L, Cho K, Nadasdy G, Weinstein C et al. DPC4 gene in various tumor types. Cancer Res 1996;56:2527–30.

60 Imamura T, Takase M, Nishihara A, Oeda E, Hanai J, Kiyokawa M et al. Smad6 inhibits signalling by the TGF-β superfamily. Nature 1997;389:622–6.

61 Nakao A, Afrahn M, Moren A, Nakayama T, Christian J, Heuchel R et al. Identification of Smad7, a TGFβ-inducible antagonist of TGF-β signalling. Nature 1997;389:631–5.