Abstract

Speech dialog systems need to deal with various kinds of ill-formed speech inputs that appear in natural human-human dialog. Self-correction (or speech-repair) is a particularly problematic phenomenon. Although many ways of dealing with self-correction have been proposed, these have limitations in both detecting and correcting for this phenomenon. In this paper, we propose a method to overcome these problems in Japanese speech dialog. We evaluate the proposed method using our speech dialog corpus and discuss its limitations and the work that remains to be done.

1 Introduction

Self-correction, or speech repair, is a major source of the disfluencies that speech dialog systems have to resolve. Since Hindle (1983), there have been many proposals as to how speech dialog systems can deal with self-correction (Bear et al., 1992; Nakatani and Hirschberg, 1993; Den, 1997; Nakano and Shimazu, 1998; Core and Schubert, 1999).

Through self-monitoring, human speakers can instantly correct their mistakes during an utterance (Levelt, 1989). Therefore, we can detect self-correction with local models such as the Repair Interval Model (RIM) proposed by Nakatani and Hirschberg (1993). Most work has used the same model or models similar to the RIM. The RIM divides the self-correction into three intervals, reparandum (RPD), disfluency (DF), and repair (RP), and assumes that these three intervals appear in the order of “... RPD DF RP ...”. For example, “[I want]RPD [uh]DF [I want]RP a window seat.” However, human speakers do not always correct errors immediately. Sometimes a moment passes before we realize that we made an error. Or sometimes we change our intention, or decide to add more information during utterances. In such cases, in Japanese, we can correct our utterances at positions beyond more than one constituent (figure 1).

In figure 1, solid arrows show the dependency between words 1. The dashed arrow shows the correspondence between two constituents that share the same semantic role with regard to the verb “osite (push).” These two constituents refer to the same object, but describe different information. In this utterance, the speaker corrects “akai tama (red ball)” (RPD) with “ookii tama (big ball)” (RP) beyond “osite”. The RIM cannot capture this self-correction because “osite” is not a DF.

After the detection of self-corrections, which cause ill-formedness, we have to restore the well-formedness of utterances. For this purpose, past work proposed the deletion of detected RPDs. This method works well in many cases, but sometimes removes too much or too little information. Core and Schubert (1999) pointed out this problem, but provided no procedure to solve it. To resolve this problem, we have to merge the RPD and the RP into one constituent.

In this paper, we propose a method to handle Japanese self-correction on our incremental dependency parser. We extend the model for Japanese self-correction and propose a method to merge RPD and RP to solve the problems mentioned above. We evaluate our method by using our quasi-dialog corpus and discuss its limitations and our future work. Section 2 describes our parser based on Japanese dependency analysis. Section 3 shows how to deal with the self-correction on the parser. Section 4 discusses the evaluation on the corpus. We conclude and look at our future research direction in section 5.

1 “ni (to)” is a postposition. The usual Japanese dependency analysis makes “mae (front)” depend on “ni”. In this paper, however, our analysis makes “ni” depend on “mae” because postpositions are often omitted in spoken Japanese.
2 Incremental dependency parser

We use an incremental dependency parser because incremental processing is requisite for current and future speech dialog systems.

2.1 Dependency parser

We can describe the Japanese syntactic structure in a regular expression as “(C F*+)”, where C is a content word and F is a function word. We call the pattern “(C F*)” bun-setsu. A function word depends on the preceding content word.

The parser creates a dependency tree on a stack, an element of which keeps a subtree of the structure. The parser maintains multiple stacks simultaneously, each of which corresponds to a different hypothesis.

After the parser receives a word sequence from the speech recognizer, it pushes words on the stack incrementally. When a content word is pushed into a stack, all the succeeding function words are attached incrementally. When a content word is pushed into a stack, the parser pops up the first two elements of the stack (t2, t1, respectively, in figure 2), then checks to see if a dependency between rw1 and rw2 is possible. Here, rw denotes the root word of the subtree t. If a dependency is possible, the parser duplicates the stack. The parser restores the original stack by pushing down the two popped-up elements. In the new stack, the parser pushes down a new element containing the dependency of rw1 and rw2. To this new stack, the parser recursively applies the same procedure.

In the example in figure 2, when the verb “osite” is pushed onto a stack “[(mae-ni)((akai) tama)]>” and no function word follows “osite”, the parser generates three stacks:

\[
[(mae-ni)((akai) tama)](osite) >
[(mae-ni)((akai) tama) osite] >
[[(mae-ni)((akai) tama) osite]] >
\]

The parser assigns a score to each hypothesis and limits the number of hypotheses. (In this paper, we do not describe the score computation.)

2.2 Grammar and dictionary

When a content word C1 depends on another content word C2, we assume that C1 takes a semantic role with regard to C2. Possible semantic roles and constraints to assign the roles are described in the dictionary (figure 3).

The first line in figure 3 shows the features of a verb “osite (push)”:
- a verb (VERB)
- imperative (IMP+)
- action PUSH (PUSH)
- degree of act (DEGREE: STD).

The following lines show the roles of the verb and the constraints on each role. For example, the second line specifies the constraints on a word that will take the <OBJ> role:
- number of words which will take this role (1)
- direction of dependency, forward or backward (“*” means “both”)
- part of speech (NOUN)
- postpositions which mark this role (“wa”, “wo”, “mo” and “- (unmarked)”)
- semantic feature (INSTANCE+).

The parser assigns a role to every dependent according to the dictionary. By referring to these roles, a syntactic tree can be easily transformed into a semantic frame. Moreover, they help the restoration process for self-corrections.

3 Self-correction

When we applied past work to our corpus (QDC, see section 4 for details), we encountered two problems as mentioned in section 1. One was that a model like the RIM (Nakatani and Hirschberg, 1993) cannot detect long-distance self-corrections like that shown in figure 1. The other was that the restoration procedure was not sufficient.
In this section, we explain our self-correction classification, and then show how self-corrections can be detected and well-formedness restored with the parser introduced in section 2.

3.1 Self-correction classification

Figure 4 shows the self-correction classification. We classify self-correction into three classes: addition, repair, and restart.

Addition

Addition includes simple repetition. There is an addition constraint that an RPD and an RP must be able to refer to the same object or the same manner. The RIM can detect only adjacent additions. Therefore, we introduce a new class—long-distance. Most work has treated both addition and repair in the same way. However, since there is a difference in usage, we distinguish between them.

Repair

An explicit repair is accompanied by an editing term, such as “gomen (sorry), “tigau (no),” and so on. An implicit repair is not.

A repair is further classified into adjacent and long-distance. However, implicit long-distance repair is generally not acceptable in Japanese.

Restart

A restart occurs when a speaker interrupts the current utterance and begins a new one. There are explicit and implicit restarts. An implicit restart is generally difficult to detect without using prosodic information, gesture, etc. Furthermore, it is difficult to distinguish an explicit restart from an implicit repair. However, once a restart is detected, the ill-formedness can be easily corrected by simply removing the words before the editing term.

In this paper, we focus on addition and repair and do not discuss restart any further.

Hesitation

Most of the methods that have been reported handle hesitation in the resolution of self-correction. They rely on partial matching between the word fragment and the following word to detect hesitations. However, we cannot reasonably assume that current speech recognizers can recognize a word fragment as a correct word. Moreover, this does not work if the following word is a different word regardless of recognition results. Therefore, we do not handle hesitations with self-corrections. Instead, we provide word skipping to deal with hesitation and speech recognizer misrecognition. This is done before each dependency analysis, but we will not give a detailed explanation here of word skipping.

3.2 Processing addition and repair

Some methods such as (Bear et al., 1992) process self-corrections sentence by sentence. However, such approaches are not suitable for use with incremental parsing (Nakano and Shimazu, 1998). To deal with self-corrections incrementally, we embed the self-correction process in the parser like (Hindle, 1983); that is, after each dependency analysis, self-correction is checked for and restoration is done if necessary. The parser considers the stack’s top element t_2 as an RP, and the second element t_1 (or part of t_1) as an RPD (see figure 2).

First, we explain how to handle long-distance self-corrections. From examination of our corpora and our linguistic introspection, we assume that long-distance self-corrections always take the following pattern:

...RPD ...verb DF RP ...

Also, the RPD necessarily depends on the verb. As a result, the RPD and the RP of long-distance self-corrections must be the pairs of noun phrases or adverbial phrases.

There are two ways to treat long-distance self-corrections. One is to assume that the RP backward depends on the verb (as in figure 1); that is, by assuming that a long-distance self-correction is a combination of inversion and self-correction. The other is to assume that the RP forward depends on the omitted verb; that is,

...RPD ...verb DF RP (verb) ...

In this case, supplementing the omitted verb reduces the above structure to the conventional RIM structure “...RPD DF RP ...”. This interpretation has an advantage in that we can handle various self-corrections uniformly by supplementing omitted verbs. However, we use the former interpretation.
1. Pop the element of the stack as t_2. Pop the next element as t_1. If t_1 is an editing term, pop the third element as t_3 and set the flag indicating explicitness. The root word of t_1 is rw_1 and that of t_2 is rw_2.

2. The case that rw_1 and rw_2 belong to the same part of speech (adjacent):

 (a) If rw_1 and rw_2 satisfy the replacement conditions, return that rw_2 is a candidate of self-correction to rw_1. Go to 4.

3. The case that rw_1 and rw_2 belong to a different part of speech (long-distance):

 (a) If rw_1 is not a verb, return that rw_2 is not a self-correction to rw_1 and go to 4.

 (b) If rw_2 is neither a noun nor an adverb, return that rw_2 is not a self-correction to rw_1 and go to 4.

 (c) If there is any content word $d_{rw_1}^w$ depending on rw_1 that satisfies the replacement conditions with rw_2, return that rw_2 is a self-correction candidate to $d_{rw_1}^w$. However, if it is not explicit, rw_2 and $d_{rw_1}^w$ have to indicate the same object or the same manner. Then go to 4.

4. Push back the popped elements and exit.

Figure 5: Detection algorithm of addition and repair

because supplementing verbs has a high processing cost and the former seems more natural.

Detection Figure 5 shows an algorithm to detect addition and repair in our parser that was described in section 2. This algorithm is based on the classification in figure 4.

The replacement conditions given in figure 5 are the constraints that rw_1 or $d_{rw_1}^w$ (a content word depending on rw_1) and rw_2 must satisfy. Figure 6 shows an example of the replacement conditions for nouns. This is almost the same as Class (I) of Classification (A) in (Nakano and Shimazu, 1998). We show how the replacement conditions work with the following utterance:

\[
\text{kamera-ha} \quad \text{mae-wo} \quad \text{mae-ni} \quad \text{itte} \quad \text{(camera-topic)} \quad \text{(front-obj)} \quad \text{(front-to)} \quad \text{(go)}
\]

The possibility of a self-correction between “kamera-ha” and “mae-wo” is not detected because it does not satisfy any condition listed in figure 6. However, the possibility of a self-correction between “mae-wo” and “mae-ni” is detected because it satisfies the second condition in figure 6. Here, “ha” is a postposition indicating the topic (in this case the subjective case as well) and “wo” indicates the objective case.

\[
\text{sono} \quad \text{akai} \quad \text{usiro no tama} \quad \text{gomen} \quad \text{[aoi tama]t_2} \quad \ldots \quad \text{that red back of ball} \quad \text{sorry blue ball} \quad \ldots
\]

\[
t_1: \quad \text{[(sono) (akai) (usiro-no) tama)} \quad \text{<IND> <COL> <LDC>}
\]

\[
t_2: \quad \text{[(aoi) tama]} \quad \text{<COL>}
\]

the parser generates t_2'. <X> indicates a semantic role has been given to the word just above <X>.

Restoration In the past, detected RPDs have simply been removed from hypotheses. Core and Schubert (1999) illustrated the problem of this approach with an example: “have the engine take the oranges to Elmira, um, I mean, take them to Corning.” They claimed that removing the RPD lost the referent of “them.” Their answer to this problem was to pass the RPDs with hypotheses to the semantic analysis. However, they did not provide any specific idea as to how the semantic analysis should handle the RPDs. Moreover, discarding the relation between an RPD and an RP at the syntactic analysis stage makes hypotheses difficult to score.

In our method, the parser processes a self-correction as soon as it is detected. Also, the parser does not identify the type of self-correction after restoration because a self-correction, especially at the beginning of an utterance, can be interpreted in several ways. For example, we can interpret the utterance, “I, I go there”, as a repetition (addition), a restart, or a hesitation or misrecognition of the speech recognizer. However, every interpretation generates the same result: “I go there.” Therefore, our parser keeps one hypothesis for several interpretations and does not keep redundant hypotheses which waste resources.

When subtree t_1 (RPD) is replaced by subtree t_2 (RP), the parser merges the two subtrees. More specifically, the parser transfers information from t_1 to t_2 by copying missing words in t_2, unless this causes a contradiction.

For example, from the two dependency trees t_1 and t_2 of the following utterance,

[sono akai usiro no tama]t_1 gomen [aoi tama]t_2

that red back of ball sorry blue ball

$F_1 = F_2$
$N_1 = N_2$ and $F_2 \neq nil$
$N_1 \sim N_2$ and $F_1 = nil$

F_1 is a function word and N_1 is a noun, and F_1 depends on N_1. “$N_1 \sim N_2$” means that N_1 and N_2 are the same word. “$N_1 \sim N_2$” means that N_1 and N_2 belong to the same semantic class. “$F_1 = nil$” means that N_1 does not have any function word.
The parser creates a correspondence between words in t_1 and t_2 by matching words and roles.

Let subtree t_1 with a root word rw_1 be replaced by subtree t_2 with a root word rw_2. Here, $d_{i}^{rw_1}, \ldots, d_{m}^{rw_1}$ are the m words depending on rw_1, and $d_{i}^{rw_2}, \ldots, d_{n}^{rw_2}$ are the n words depending on rw_2. In figure 7, we show the algorithm of the function $dmerge(rw_1, rw_2)$ which copies the missing words from t_1 to t_2. This algorithm is designed to satisfy three assumptions concerning human recognition of self-correction.

Assumption 1 If there is a one-to-one correspondence between $d_{i}^{rw_1}$ and $d_{j}^{rw_2}$ with respect to their word form, then $d_{i}^{rw_1}$ can be recognized as replaceable by $d_{j}^{rw_2}$, even though the role of $d_{i}^{rw_1}$ with regard to rw_1 differs from the role of $d_{j}^{rw_2}$ with regard to rw_2.

Assumption 2 If there is a one-to-one correspondence between $d_{i}^{rw_1}$ and $d_{j}^{rw_2}$ with respect to their semantic role, then $d_{i}^{rw_1}$ can be recognized as replaceable by $d_{j}^{rw_2}$, even though $d_{i}^{rw_1}$ and $d_{j}^{rw_2}$ are different words.

Assumption 3 Only if there is no discrepancy between assumptions 1 and 2, $d_{i}^{rw_1}$ can be recognized as replaceable by $d_{j}^{rw_2}$.

Assumption 1 corresponds to step 1 in figure 7 and assumption 2 corresponds to step 2.

Because of assumption 1 and step 4 in figure 7, from t_1 and t_2 of the next utterance,

$$[ext{[arc migi kara osite]}]_{t_1} \text{ gomen [migi ni osite]}_{t_2}$$

that right from push sorry right to push

$$t_1: \quad ((\text{are}) \quad \text{(migi-kara) osite})$$

$$t_2: \quad ((\text{migi-ni) osite})$$

we can make the correct subtree t'_2 instead of the wrong subtree t''_2.

$$t'_2: \quad ((\text{are}) \quad \text{(migi-ni) osite})$$

$$t''_2: \quad ((\text{are}) \quad \text{(migi-kara) (migi-ni) osite})$$

Because of assumption 2 and step 4 in figure 7, from t_1 and t_2 of the following utterance,

$$[\text{tukue no mae ni osite}]_{t_1} \text{ gomen [usiro ni osite]}_{t_2}$$

desk of front to push sorry back to push

$$t_1: \quad (((\text{tukue-no) mae-ni) osite})$$

$$t_2: \quad ((\text{usiro-ni) osite}))$$

We can make the correct subtree t'_2: copies missing words from subtree t_1 with root word rw_1 to subtree t_2 with root word rw_2.

1. Find the correspondence between $d_i^{rw_1}$ and $d_i^{rw_2}$ with respect to their word form, where $i = 1 \ldots m$ and $j = 1 \ldots n$.
2. Find the correspondence between $d_i^{rw_1}$ and $d_i^{rw_2}$ with respect to their role, where $i = 1 \ldots m$ and $j = 1 \ldots n$.
3. Pick up the pairs of one-to-one correspondence found in steps 1 and 2, and apply $dmerge$ to them recursively. However, these correspondences have to be coherent between steps 1 and 2.
4. Copy to rw_2 any $d_i^{rw_1}$ for which no correspondence is found in steps 1 and 2.
5. If the semantic class of rw_2 subsumes that of rw_1, replace rw_2 with rw_1.

Figure 7: Merge algorithm

The QDC (quasi-dialog corpus) has 15 dialogs and 532 utterances between a user and three virtual agents simulated by humans. This corpus was collected in the following setting. A user could command two agents to arrange objects in a virtual world. The remaining agent was a camera which presented a world view to the user. The camera agent itself could not handle objects; it could only

6The QDC is open to the public at http://tanaka-www.cs.titech.ac.jp/pub/qdc/.
change the user’s view according to orders given by the user.

We manually applied our proposed method to the QDC. In the QDC, we found 71 self-corrections, excluding hesitations, and we judged that 16 of these were not properly solved by our method. Although our parser produces scored N-best hypotheses, we counted only the first hypotheses as the answer. Because this corpus is small and we applied our method manually, we do not discuss quantitative evaluation. Instead, we will show examples that our method could not handle properly.

Type 1: Separated RPD and RP

This type of error is classified into class (II) of classification (A) in (Nakano and Shimazu, 1998). This is another case where RPD and RP are separated. This occurs at the beginning of utterances.

Since our model allows only a verb between the RPD and the RP (see section 3.2) and “mae ni” is not a verb, this example cannot be handled by our method. In particular, “mae ni” blocks the first “kuroi” from the second “kuroi” and they are never next to each other on the stack. Our method thus cannot detect this self-correction. Although we cannot find a correspondence between an RPD and an RP in such cases, we can usually obtain a proper hypothesis through word skipping. Moreover, if we can handle restart properly, many cases will be solved without problem.

Type 2: Information lost through word replacement

There was one instance of this type. In the method proposed in this paper, we save information by copying missing words from an RPD to an RP. However, this method loses important information in cases such as the following.

![Figure 8: Example of a type 1 error](image)

The speaker first mentioned a blue object by using a noun “ao (blue)”, and referred to it again with a noun “burokku (block).” In most cases, no problem arises if a noun is replaced by a more specific noun.

Type 3: Requiring deep semantic analysis

There were nine instances of this type.

![Figure 10: Example of a type 3 error (1)](image)

In this case, though, the user referred to the same object twice in terms of a different aspect – color and object type. Simple replacement of nouns in such cases causes the loss of important information. To deal with such a case, we need more semantic operations with ontological knowledge.

Type 4: Head omission

Two examples of this type were found, and both were almost the same expressions used by the same person. In the example in figure 12, the last phrase “kamera no (of the camera)” would depend on the second phrase “migi ni” (to the right of). However, it cannot depend on “migi” because this would cause cross-dependency (the bold solid arrow in figure 12).

![Figure 12: Example of a type 4 error](image)

To resolve this self-correction as a long-distance addition, we have to complement the omitted head noun “migi” at the end of the utterance.

7These examples are simplified for explanation.
5 Conclusion

In this paper, we have expanded the conventional model of self-correction and have proposed a method to restore well-formedness without information loss. A parser incorporating this method can handle a wider variety of expressions. While the parser itself might encounter difficulties if applied directly to other languages, such as English, the basic principles of the restoration process are applicable to languages other than Japanese.

We evaluated the proposed method when applied to our quasi-dialog corpus and identified unresolved problems. As future work, we intend to evaluate our method in an actual speech dialog system.

Our method uses only syntactic and semantic information to detect self-corrections. We can find most self-correction candidates with these types of information. However, we need more information to evaluate the validity of each candidate. In our method, the more words a hypothesis contains, the higher the score assigned to the hypothesis. This policy causes a problem. For example, if the parser receives the sentence in figure 14 containing a self-correction of “akai”, it produces at least the following three hypotheses.

A: (((((akai) (isu-no) (mae-no)) tama)
the ball at the front of the red chair
B: (((akai) (isu-no) (mae-no) tama)
the red ball at the front of the chair
C: (((akai) (((akai) (isu-no) (mae-no)) tama)
the red ball at the front of the red chair

Although the parser should rank these hypothesis in the order of A, B, C, it actually ranks them in the order of C, A, B, because hypothesis C contains the most words. However, the policy that causes this problem is needed to prevent the parser from removing too much information. If we give preference to any self-correction candidate, the parser will rank the following (wrong) hypothesis above hypotheses A, B, and C.

((akai) (mae-no) tama)
the red ball at the front (of you)

To resolve this problem, we have to utilize acoustic-prosodic information, as in (Bear et al., 1992; Nakatani and Hirschberg, 1993), for scoring to boost the ranks of hypotheses where self-corrections are restored. This will be especially critical for restarts, because restarts usually disregard many words.

References

J. Bear, J. Downing, and E. Shriberg. 1992. Integrating multiple knowledge sources for detection and correction of repairs in human-computer dialog. In Proceedings of 30th Annual Meeting of ACL, pages 56–63.

M. G. Core and L. K. Schubert. 1999. A syntactic framework for speech repairs and other disruptions. In Proceedings of 37th Annual Meeting of ACL, pages 413–420.

Y. Den. 1997. A uniform approach to spoken language analysis (in Japanese). Journal of Natural Language Processing, 4(1):23–40.

D. Hindle. 1983. Deterministic parsing of syntactic non-fluencies. In Proceedings of 21st Annual Meeting of ACL, pages 123–128.

W. J. M. Levelt. 1989. Speaking. The MIT Press.

M. Nakano and A. Shimazu. 1998. Parsing utterances including self-repairs (in Japanese). IPSJ Journal, 39(6):1935–1943.

C. Nakatani and J. Hirschberg. 1993. A speech-first model for repair identification and correction. In Proceedings of 31st Annual Meeting of ACL, pages 200–207.