NDM-1 Metallo-β-Lactamase and ArmA 16S rRNA methylase producing Providencia rettgeri clinical isolates in Nepal

Tatsuya Tada1, Tohru Miyoshi-Akiyama1, Rajan K Dahal3, Manoj K Sah3, Hiroshi Ohara2, Kayo Shimada1, Teruo Kirikae1* and Bharat M Pokhrel3

Abstract

Background: Drug-resistant Providencia rettgeri producing metallo-β-lactamase and 16S rRNA methylase has been reported in several countries. We analyzed P. rettgeri clinical isolates with resistance to carbapenems and aminoglycosides in a hospital in Nepal.

Methods: Five clinical isolates of multidrug-resistant P. rettgeri were obtained in a hospital in Nepal. Antimicrobial susceptibilities were determined using the microdilution method and entire genomes were sequenced to determine drug-resistant genes. Epidemiological analysis was performed by pulsed-field gel electrophoresis.

Results: Four of the 5 isolates were resistant to carbapenems (imipenem and meropenem), with MICs ≥16 mg/L, with the remaining isolate showing intermediate resistance to imipenem, with an MIC of 2 mg/L and susceptibility to meropenem with an MIC ≤1 mg/L. All 5 isolates had blaVEB-1. Of the 4 carbapenem-resistant strains, 3 had blaNDM-1 and 1 had blaOXA-72. All isolates were highly resistant to aminoglycosides (MICs ≥1,024 mg/L) and harbored armA. As the result of pulsed-field gel electrophoresis pattern analysis in the 5 P. rettgeri isolates, 4 had identical PFGE patterns and the fifth showed 95.7% similarity.

Conclusions: This is the first report describing multidrug-resistant P. rettgeri strains harboring blaNDM-1 or blaOXA-72 and armA isolated from patients in Nepal.

Keywords: NDM-1, OXA-72, 16S rRNA methylase, Providencia rettgeri, Molecular epidemiology

Background

Providencia rettgeri has been associated with hospital acquired infections, including catheter-related urinary tract infections, bacteremia, skin infections, diarrhea, and gastroenteritis [1,2]. To date, there have been 5 reports of P. rettgeri isolates harboring metallo-β-lactamase (MBL) encoding genes, including IMP-type MBL producers in Japan [3,4]; VIM-type MBL, PER-1 extended-spectrum β-lactamase (ESBL) and 16S rRNA methylase ArmA in Korea [5]; and NDM-type MBL in Israel [6] and Brazil [7].

NDM-type MBL was initially identified in Klebsiella pneumoniae and Escherichia coli in 2009 in Sweden [8]. Since then, NDM-1-producing Enterobacteriaceae have been isolated in various parts of the world [9,10].

Exogenously acquired 16S rRNA methylase genes responsible for very high levels of resistance to various aminoglycosides are widely distributed among Enterobacteriaceae and glucose-nonfermentative microbes [11]. Gram-negative pathogens producing 16S rRNA methylase ArmA have been isolated in various countries [11].

Although co-production of several resistance determinants is not rare in Enterobacteriaceae [12-16], it is less common in P. rettgeri [5]. We describe here P. rettgeri clinical isolates from Nepal that produce carbapenemase (NDM-1 or OXA-72) and 16S rRNA methylase (ArmA).
Table 1 Summary of the characteristics of the 5 *P. rettegeri* strains, including antimicrobial resistance profiles and resistant genes

Strains	Tissue sources	Infection	MIC (mg/L)	Antibiotics resistant genes														
			PIP	TZP	CAZ	FEP	IPM	DPM	MEM	ATM	ABK	AMK	GEN	CIP	CST	FOF	TIG	
IOMTU1	Pus	SSI	1,024	512	>1,024	64	32	16	64	1,024	>1,024	>1,024	128	>128	512	4	blaNDM-1, blaOXA-10, blaVEB-1, blaTEM-1, blaADC-67, armA, aadA1, aadA2	
IOMTU4	Sputum	NLRTI	1,024	128	>1,024	256	16	16	32	1,024	>1,024	>1,024	>128	512	4	blaOXA-72, blaOXA-10, blaVEB-1, blaTEM-1, blaADC-67, armA, aadA1		
IOMTU91	Sputum	NLRTI	>1,024	1,024	>1,024	1,024	64	32	64	1,024	>1,024	>1,024	>1,024	128	128	4	blaNDM-1, blaOXA-10, blaVEB-1, blaTEM-1, blaADC-67, armA, aadA1	
IOMTU94	Pus	SSI	1,024	4	>1,024	256	2	1	1	>1,024	1,024	1,024	1,024	256	>128	1,024	4	blaOXA-10, blaVEB-1, blaTEM-1, blaADC-67, armA, aadA1
IOMTU99	Sputum	NLRTI	>1,024	512	>1,024	128	64	32	64	1,024	>1,024	>1,024	>1,024	>1,024	>1,024	>1,024	4	blaNDM-1, blaOXA-10, blaVEB-1, blaTEM-1, blaADC-67, armA, aadA1

SSI, surgical site infection; NLRTI, nosocomial lower respiratory tract infection; PIP, piperacillin; TZP, piperacillin/tazobactam; CAZ, ceftazidime; FEP, cefepime; IPM, imipenem; DPM, doripenem; MEM, meropenem; ATM, aztreonam; ABK, arbekacin; AMK, amikacin; GEN, gentamicin; CIP, ciprofloxacin; CST, colistin; FOF, fosfomycin; TIG, tigecycline.
Methods

Bacterial strains

Five P. rettgeri clinical isolates were obtained from May to July 2012 from 5 patients at Tribhuvan University Teaching Hospital in Kathmandu, Nepal. Three isolates were from sputum and 2 from pus at surgical sites. Samples were obtained as part of standard patient care. Phenotypical identification [17] was confirmed by API 32GN (BioMérieux, Mercy l’Etoile, France) and 16S rRNA sequencing (1,497 bp) [18,19].

Antimicrobial susceptibilities

MICs were determined using the microdilution method, according to the guidelines of the Clinical Laboratory Standards Institute (CLSI) [20]. Breakpoints to antibiotics were determined. The modified Hodge test, the meropenem-sodium mercaptoacetic acid double-disk synergy test (Eiken Chemical, Tokyo, Japan) and E-test (imipenem/EDTA) (AB Biodisk, Solna, Sweden) were performed.

Entire genome sequencing

The entire genomes of these isolates were extracted and sequenced by MiSeq (Illumina, San Diego, CA). CLC genomics workbench version 5.5 (CLC bio, Tokyo, Japan) was used for de novo assembly of reads and to search for 923 drug-resistance genes, including genes encoding β-lactamases, 16S rRNA methylases and aminoglycoside-acetyl/adenylyltransferases; point mutations in the gyrA, parC and pmrCAB operons; and point mutations in the fos genes, including fosA, fosA2, fosA3, fosC and fosC2.

Pulsed-field gel electrophoresis (PFGE) and southern hybridization

PFGE analysis was performed as described [3]. An 813 bp probe for blaNDM-1 was synthesized by PCR amplification using the primers 5’-atggaattcgcccaatattattgcacc-3’ (forward) and 5’-tcaggcagcttgctggaatgggg-3’ (reverse), and a 780 bp probe for blaOXA-72 was synthesized using the primers 5’-agtttctctcagtgcatgtcatactat-3’ (forward) and 5’-agcagccatctctcttctctacct-3’ (reverse). Southern hybridization to detect blaNDM-1 and blaOXA-72 was performed using these probes, which were detected using DIG High Prime DNA labeling and detection starter kit II (Roche Diagnostics, Mannheim, Germany).

Nucleotide sequence accession numbers

The nucleotide sequences surrounding blaNDM-1 and blaOXA-72 have been deposited in GenBank with the accession number AB828598 and AB857844, respectively.

Ethical approval

The study protocol was reviewed and approved by the Institutional Review Board of the Institute of Medicine, Tribhuvan University (ref. 6-11-E) and the Biosafety Committee, National Center for Global Health and Medicine (approval number: 23-M-49).

Results

Antimicrobial susceptibilities

Four of the 5 isolates were resistant to carbapenems (doripenem, imipenem and meropenem) and piperacillin/tazobactam, whereas the fifth was susceptible to piperacillin/tazobactam, doripenem and meropenem and showed intermediate resistance to imipenem (Table 1). All 5 isolates were highly resistant to cephalosporins (ceftazidime and cefepime), aztreonam, aminoglycosides (arbekacin, amikacin and gentamicin), ciprofloxacin, colistin and fosfomycin, and all 5 showed intermediate resistance to tigecycline. The four isolates resistant to carbapenems were negative with the modified Hodge test, but three of the four isolates were positive with the meropenem-sodium mercaptoacetic acid double-disk synergy test and E-test/EDTA.

Drug-resistant genes

All 5 isolates tested had several genes associated with β-lactam and aminoglycoside-resistance (Table 1). These isolates had blaVEB-1, blaOXA-10, blaTEM-1, blaADC-67 (ampC), armA and adaA1; 3 had blaNDM-1; and 1 had blaOXA-72. None of these isolates had any other β-lactamase encoding genes, including the class A genes blasHV5, and blaCTX-Ms; the class B genes blasAIM, blasDIM, blasGIM, blasMPWII, blasNDM3, blasKHM, blasSIM, blasSMB, blasSPM, blasTMBr and blasVIM; or the class D gene blasOXA5 except for blaOXA-10 and blaOXA-72. None had other genes encoding 16S rRNA methylases or aminoglycoside acetyl/adenylyltransferases. All 5 isolates had point mutations in the quinolone-resistance-determining regions of gyrA and parC, with amino acid substitutions of S83I and D87E in GyrA and S80I in ParC.

Figure 1 PFGE profiles obtained following SfiI digestion of P. rettgeri chromosomes.
PFGE and southern hybridization
Of the 5 P. rettgeri isolates, 4 had identical PFGE patterns and the fifth showed 95.7% similarity (Figure 1). Three of these isolates had a plasmid harboring blaNDM-1 and one had a plasmid harboring blaOXA-72 with plasmid sizes ranging from 9.42 to 23.1 kbp (data not shown).

Genomic structures surrounding blaNDM-1 and blaOXA-72
The genetic environments surrounding blaNDM-1 (Accession no. AB828598) was blaNDM-1-bleMBL-trpF-dsbC-cutA1. All 3 isolates harboring blaNDM-1 (JOMTU1, 91 and 99) had the same genetic environments. The blaOXA-72 gene was flanked by conserved inverted repeats at the XerC/XerD binding sites [21], indicating mobilization by site-specific recombination mechanisms. The rep1 gene was located downstream of blaOXA-72 (Accession no. AB857844).

Discussion
The relatively high MICs to piperacillin/tazobactam and carbapenems of the five P. rettgeri isolates are likely due to the presence of blaNDM-1 or blaOXA-72. The enzymatic activities of metallo-β-lactamasas, including NDM-1, were not inhibited by tazobactam [22], a β-lactamase inhibitor, in agreement with the MIC profiles of these isolates to piperacillin/tazobactam. The high MICs of all 5 isolates to ceftazidime, ceftipime and aztreonam were likely due to the presence of blaVEB-1 [23], and the presence of armA in these isolates is likely associated with their extremely high resistance to all aminoglycosides tested [11]. Point mutations in the quinolone-resistance-determining regions of gyrA and parC have been associated with high resistance to quinolones [24]. Point mutations in pmrCAB operon have been associated with the resistance of Acinetobacter spp. [25] and Pseudomonas aeruginosa [26] to polymyxin and colistin; and the presence of fos genes, including fosA, fosA2, fosA3, fosC and fosC2, has been associated with resistance to fosfomycin in Gram-negative bacteria [27-29].

Plasmids containing blaNDM-1 or blaOXA-72 may be disseminated among Gram-negative pathogens in Nepal. The genetic environments surrounding blaNDM-1 in our P. rettgeri strains (blaNDM-1-bleMBL-trpF-dsbC-cutA1) were also observed in other plasmids, including A. baumannii plasmid pAbNDM-1 from China (Accession no. JN377410), Citrobacter freundii plasmid pVE315203 from China (Accession no. JX254913), E. coli plasmid pNDM1022337 from Canada (Accession no. JF714412), K. pneumoniae plasmid pKP-NCGM18-1 from Nepal (Accession no. AB824738) [30], K. pneumoniae plasmids pKPx1, pKPN5047 and pNDM-HN380 from China (Accession nos. AP012055, KC311431 and JX104760, respectively), and P. rettgeri plasmid pF9R90 (Accession no. JQ362415) from China. In addition, the genetic structure of OXA-72 producing Acinetobacter spp [31-34] and K. pneumoniae (Accession no. JX268653 and AB825955 deposited in 2012 and 2013, respectively) had the same genetic structure (blaOXA-72-rep1) as our strain of P. rettgeri.

Conclusions
To our knowledge, this is the first report describing P. rettgeri strains harboring blaNDM-1 or blaOXA-72 and armA isolated from patients in Nepal. These 5 strains were highly resistant to both β-lactams and aminoglycosides and expanded in a clonal manner in the hospital.

Competing interests
The authors declare that they have no competing interest.

Authors’ contributions
TT: Performed PCR and sequencing, analyzed data and drafted the manuscript. TMA: Performed entire genome sequencing. RKO and MKS: Performed drug susceptibility tests. HD: Supervised this study. KS: Performed pulsed-field gel electrophoresis and its pattern analysis. TK and BMP: Designed protocols and supervised this study. All authors read and approved the final manuscript.

Acknowledgements
The authors thank emeritus professor Masayasu Nakano, Jichi Medical University, for comments on the manuscript. This study was supported by grants [International Health Cooperation Research (23-A-301 and 24-S-5)], a grant from the Ministry of Health, Labor and Welfare of Japan (H24-Shinko-Ippan-010), and JSPS Kakenhi Grant Number 24790432.

Author details
1Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, Tokyo 162-8655, Japan. 2Department of International Medical-Cooperation, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan. 3Department of Microbiology, Institute of Medicine, Tribhuvan University, Maharajgunj, Kathmandu, Nepal.

Received: 1 May 2013 Accepted: 27 January 2014
Published: 3 February 2014

References
1. Stock I, Wiedermann B: Natural antibiotic susceptibility of Providencia stuartii, P. rettgeri, P. alkalifaciens and P. rustigianii strains. J Med Microbiol 1998, 47:629–642.
2. Yoh M, Matsuyma J, Ohnishi M, Takagi K, Miyagi H, Mori K, Park KS, Ono T, Honda T: Importance of Providencia species as a major cause of travellers’ diarrhoea. J Med Microbiol 2005, 54:1077–1082.
3. Shirato K, Ishii Y, Kimura S, Alba J, Watanabe K, Matsuushima Y, Yamaguchi K: Metallo-beta-lactamase IMP-1 in Providencia rettgeri from two different hospitals in Japan. J Med Microbiol 2005, 54:1065–1070.
4. Nishio H, Komatsu M, Shibata M, Shimakawa K, Sueyoshi N, Ura T, Satoh K, Honda T, Miyagi H, Miyata K, Watanabe K, Matsujiima Y, Yamaguchi K: Metallo-beta-lactamase-producing Gram-negative bacilli: laboratory-based surveillance in cooperation with 13 clinical laboratories in the Kinki region of Japan. J Clin Microbiol 2004, 42:525–526.
5. Lee HW, Kang HY, Shin KS, Kim J: Multidrug-resistant Providencia isolates carrying blalve, blalad, blalad2, and armA. J Microbiol 2007, 45:272–274.
6. Geren-Halevi S, Hindiyeh MY, Ben-David D, Smolian G, Gal-Mor O, Azar R, Castanheira M, Belasouc N, Rahav G, Tal I, Mendelton E, Keller N: Isolation of genetically not related blaNDM-1, positive Providencia rettgeri in Israel. J Clin Microbiol 2013, 51:1642–1643.
7. Carvalho-Assef AP, Pereira FS, Albano RM, Bencao GC, Chagas TP, Timm LN, Da Silva RC, Falci DR, Asensi MD: Isolation of NDM-producing Providencia rettgeri in Brazil. J Antimicrob Chemother. in press.
8. Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, Walsh TR: Characterization of a new metallo-beta-lactamase gene, metallo-BLA, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother 2009, 53:3046–5054.

9. Comaglia G, Giamarellou H, Rossolini GM: Metallo-beta-lactamases: a last frontier for beta-lactam? Lancet Infect Dis 2011, 11:381–393.

10. Pillai DR, McGee A, Low DE: New Delhi metallo-beta-lactamase-1 in Enterobacteriaceae: emerging resistance. CMAJ 2011, 183:59–64.

11. Wachino J, Arakawa Y: Exogenously acquired 16 S rRNA methyltransferases found in aminoglycoside-resistant pathogenic Gram-negative bacteria: an update. Drug Resist Updat 2012, 15:133–148.

12. Sheng WH, Radal RE, Hsuheh PR: SMART Program: Distribution of extended-spectrum beta-Lactamases, AmpC beta-Lactamases, and carbapenemases among Enterobacteriaceae isolates causing intra-abdominal infections in the Asia-Pacific region: results of the Study for Monitoring Antimicrobial Resistance Trends (SMART). Antimicrob Agents Chemother 2013, 57:2981–2988.

13. Bueno MF, Francisco GR, OYora JA, de Oliveira Garcia D, Doi Y: Co-production of 16S Ribosomal RNA Methyltransferase RmtD and RmtG with KPC-2 and CTX-M-group ESBLs in Klebsiella pneumoniae. Antimicrob Agents Chemother 2013, 57:2397–2400.

14. Galani I, Souli M, Panagea T, Poulakou G, Giamarellou H, Giamarellou L: Prevalence of 16 S rRNA methylase genes in Enterobacteriaceae isolates from a Greek university hospital. Curr Microbiol 2012, 18:ES2–ES4.

15. Zacharczuk K, Piekarska K, Sycz J, Zawadzka E, Sulkowska A, Wardak S, Jagielski M, Gierczynski R: Emergence of Klebsiella pneumoniae coproducing KPC-2 and 16 S rRNA methylase ArmA in Poland. Antimicrob Agents Chemother 2011, 55:443–446.

16. Wu Q, Liu Q, Han L, Sun J, Ni Y: Plasmid-mediated carbapenem-hydrolyzing enzyme KPC-2 and ArmA 16 S rRNA methylase conferring high-level aminoglycoside resistance in carbapenem-resistant Enterobacter cloacae in China. Diag Microbiol Infect Dis 2010, 66:326–328.

17. Tang YW, Ellis NM, Hopkins MK, Smith DH, Dodge DE, Persing DH: Comparison of phenotypic and genotypic techniques for identification of unusual aerobic pathogenic gram-negative bacilli. J Clin Microbiol 1998, 36:3674–3679.

18. Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC, Hiom SJ, Dymock D, Wade WG: Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16 S rRNA. Appl Environ Microbiol 1998, 64:795–799.

19. Simmon KE, Croft AC, Petti GA: Application of SmartGene IDNS software to partial 16 S rRNA gene sequences for a diverse group of bacteria in a clinical laboratory. J Clin Microbiol 2006, 44:4403–4406.

20. Clinical Committee for Clinical Laboratory Standards: Methods for dilution antimi crobial susceptibility tests that grow aerobicly, 9th ed. In Approved standard M07-A9. 8th edition. Wayne, Pa: Clinical and Laboratory Standards Institute; 2012.

21. D’Andrea MM, Giani T, D’Arezzo S, Capone A, Petrosillo N, Visca P, Luzzaro F, Rossolini GM: Characterization of pABVA01, a plasmid encoding the OXA-24 carbapenemase from Italian isolates of Acinetobacter baumannii. Antimicrob Agents Chemother 2009, 53:3528–3533.

22. Bush K, Jacoby GA: Updated functional classification of beta-lactamas. Antimicrob Agents Chemother 2010, 54:969–976.

23. Poirel L, Naas T, Guibert M, Chabri EB, Labia R, Nordmann P: Molecular and biochemical characterization of VEB-1, a novel class A extended-spectrum beta-lactamase encoded by an Escherichia coli integron gene. Antimicrob Agents Chemother 1999, 43:573–581.

24. Jacoby GA: Mechanisms of resistance to quinolones. Clin Infect Dis 2005, 41(Suppl 2):S120–S126.

25. Adams MD, Nickel GC, Bajakoutian S, Lavender H, Murthy AR, Jacobs MR, Bonomo RA: Resistance to colistin in Acinetobacter baumannii associated with mutations in the PrmAB two-component system. Antimicrob Agents Chemother 2009, 53:3628–3634.

26. Moskowitz SM, Ernst RK, Miller SJ: PrmAB, a two-component regulatory system of Pseudomonas aeruginosa that modulates resistance to cationic antimicrobial peptides and addition of aminoarabinose to lipid A. J Bacteriol 2004, 186:575–579.

27. Beharry Z, Palbhill T: Functional analysis of active site residues of the fosfomycin resistance enzyme FosA2 from Pseudomonas aeruginosa. J Biol Chem 2005, 280:17765–17771.

28. Xu H, Miao V, Kwong W, Xia R, Davies J: Identification of a novel fosfomycin resistance gene (fosA2) in Enterobacter cloacae from the Salmon River, Canada. Lett Appl Microbiol 2011, 52:427–429.

29. Wachino J, Yamane K, Suzuki S, Kimura K, Arakawa Y: Prevalence of fosfomycin resistance among CTX-M-producing Escherichia coli clinical isolates in Japan and identification of novel plasmid-mediated fosfomycin-modifying enzymes. Antimicrob Agents Chemother 2010, 54:3061–3064.

30. Tada T, Miyoshi-Akyaama T, Dhal RK, Mishra SK, Okara H, Shimada K, Kinkade T, Pohkrel BM: Dissemination of multidrug-resistant Klebsiella pneumoniae clinical isolates with various combinations of carbapenemases (NDM-1 and OXA-72) and 16 S rRNA methylases (ArmA, Rmtc and Rmrf) in Nepal. Int J Antimicrob Agents 2013, 42:372–374.

31. Wenneck JS, Picco RC, Carvalhaes CG, Cardoso JP, Gales AC: OXA-72-producing Acinetobacter baumannii in Brazil: a case report. J Antimicrob Chemother 2011, 66:452–454.

32. Wang H, Guo P, Sun H, Wang H, Yang Q, Chen M, Xu Y, Zhu Y: Molecular epidemiology of clinical isolates of carbapenem-resistant Acinetobacter spp. from Chinese hospitals. Antimicrob Agents Chemother 2007, 51:4022–4028.

33. Monteleone MC, Maya JJ, Correa A, Espinal P, Mojica MF, Ruiz SJ, Rosso F, Vila J, Quinn JP, Villegas MV: First identification of OXA-72 carbapenemase from Acinetobacter pittii in Colombia. Antimicrob Agents Chemother 2012, 56:3996–3998.

34. Goc-Baslic I, Towner KJ, Kovacic A, Siiko-Krajcjevic K, Tonkic M, Novak A, Punda-Polic V: Outbreak in Croatia caused by a new carbapenem-resistant clone of Acinetobacter baumannii producing OXA-72 carbapenemase. J Hosp Infect 2011, 77:368–369.