I.Kh. Sabitov

The volume of an infinitesimally flexible polyhedron is a multiple root of its volume polynomial

1. In [1] among the many open problems there is one under the number 6 in which the following property of polyhedra is announced as a suggestion:

Theorem. Algebraic volume of an infinitesimally non-rigid polyhedron is a multiple root of its volume polynomial.

Here we present a sketch of a proof of this assertion in three-dimensional space. Because any flexible polyhedron is infinitesimally (inf.) bendable one then as a corollary of our theorem we can affirm that the volume of any flexible polyhedron is a multiple root of its volume polynomial.

2. Let \(P \) be a simplicial orientable inf. bendable polyhedron in \(\mathbb{R}^3 \) of any combinatorial structure \(K \). Let points \(M_i(x_i, y_i, z_i), 1 \leq i \leq n \), be its vertices. Inf. bendability (i.e., flexibility, non-rigidity) of the polyhedron \(P \) means that there are vectors \(Z_i = \{\xi_i, \eta_i, \zeta_i\} \) attached to vertices \(M_i \) satisfying the equations

\[
(x_i - x_j)(\xi_i - \xi_j) + (y_i - y_j)(\eta_i - \eta_j) + (z_i - z_j)(\zeta_i - \zeta_j) = 0, \tag{1}
\]

written for all edges \((i, j) \in E \) of \(P \) (where by \(E \) we note the set of all edges of \(P \), and indices correspond to numbers \(i \) and \(j \) of end vertices of edges). Under the deformation

\[
(x_i, y_i, z_i) \rightarrow (x_i + \varepsilon\xi_i, y_i + \varepsilon\eta_i, z_i + \varepsilon\zeta_i) \tag{2}
\]

the length \(l_{ij} \) of the edge \((i, j) \) changes to an inf. small \(o(\varepsilon) \), \(\varepsilon \rightarrow 0 \).

The vectors \(Z_i \) are found as a solution of homogenous linear system of \(|E| \) equations for \(3n \) unknowns (in reality for \(3n - 6 \) unknowns because 6 unknowns can be fixed by a motion of \(P \) as a solid). The number of edges is \(|E| = 3n + 6g - 6 \) where \(g \) is topological genus of \(P \). So for the existence of a nontrivial solution of our system it is necessary and sufficient that the rank of the main matrix of system be less then the number of unknowns equal to \(3n - 6 \). So in the case of inf. bendability of \(P \) the coordinates of its vertices should satisfy to one or more polynomial equations of the form

\[
det D(x) = 0 \quad (g = 0), \quad det D_1(x) = 0, ..., det D_s(x) = 0, \quad s = C_{3n-6}^{3n+6g-6}. \tag{3}
\]

It is important to remark that if an inf. small deformation is trivial that is it an initial velocity vector of a motion of \(P \) as a solid body then the distances between all vertices of \(P \) are changed by the order \(o(\varepsilon), \varepsilon \rightarrow 0 \). With an additional condition the inverse statement is true too:

Lemma 1. If a polyhedron is not a situated on a plane then for any non-trivial inf. deformation there exists a small of nonzero length diagonal whose length changes to the exact order \(O(\varepsilon), \varepsilon \rightarrow 0 \).

Remarks. 1) A small diagonal is the one between two vertices of two faces with a common edge. In some cases this diagonal is in reality an edge. The
lemma is equivalent to the affirmation that there is a dihedral angle changing as an exact $O(\varepsilon)$, $\varepsilon \to 0$.

2) If all vertices of P are situated on a plane then can be that under a nontrivial inf. bending the lengths of all diagonals are changing to the order $o(\varepsilon)$, $\varepsilon \to 0$.

3. Let’s continue the proof. Recall that a volume polynomial of a polyhedron P is any polynomial of the form

$$Q(V, l) = V^{2N} + \sum_{i=1}^{N} a_i(l)V^{2N-2i},$$

where coefficients $a_i(l)$ are some polynomials too in the set l of squares of lengths of edges of P such that after the substitution in (4) instead the volume V and the squares of lengths of edges their expressions in coordinates of vertices $x = (x_1, y_1, z_1, ..., z_n)$ the value $Q(V(x), l(x))$ becomes identically zero relatively to all coordinates.

In [1] one can find a proof of existence theorem for such a polynomial with a detailed description of the background history.

Let’s consider a new polyhedron P_ε with vertices coordinates $(x_i + \varepsilon \xi_i, y_i + \varepsilon \eta_i, z_i + \varepsilon \zeta_i)$ and with the same combinatorial structure K. For the squares of lengths of its edges we have $l_{ij}^2(\varepsilon) = l_{ij}^2 + \varepsilon^2 L_{ij}^2$, where $L_{ij}^2 = (\xi_i - \xi_j)^2 + (\eta_i - \eta_j)^2 + (\zeta_i - \zeta_j)^2$. Renumber all edges by the index k, $1 \leq k \leq |E|$ and compose for P_ε its volume polynomial:

$$Q(V, l, \varepsilon) = V^{2N}(\varepsilon) + \sum_{i=1}^{N} a_i(l_\varepsilon)V^{2N-2i}(\varepsilon) = 0, \forall \varepsilon.$$

Evidently for $\varepsilon = 0$ this polynomial becomes a volume polynomial for the initial polyhedron with $V_0 = V(0)$. The derivation of (5) by ε gives

$$Q'_{V}V'_\varepsilon + 2\varepsilon \sum_{i=1}^{N} \left(\frac{\partial a_i(l_\varepsilon)}{\partial l_k} L_{ik}^2 \right) V^{2N-2i} = 0.$$

If $\lim_{\varepsilon \to 0} V'_\varepsilon \neq 0$ then one has $Q'_{V}(V_0) = 0$, so the multiplicity of the root $V = V_0$ is proven.

Let now be $V_2'(0) = 0$. Algebraic volume of a polyhedron is defined as the sum of oriented volumes of tetrahedra with a common vertex and the bases on oriented faces of the polyhedron. Let this common vertex be taken as a vertex of P and choose this vertex as the origin for coordinate system. Then the volume of a tetrahedron with vertices M_i, M_j, M_k is given by the formula

$$V_{ijk}(\varepsilon) = \frac{1}{6} \det \begin{pmatrix} x_i + \varepsilon \xi_i & y_i + \varepsilon \eta_i & z_i + \varepsilon \zeta_i \\ x_j + \varepsilon \xi_j & y_j + \varepsilon \eta_j & z_j + \varepsilon \zeta_j \\ x_k + \varepsilon \xi_k & y_k + \varepsilon \eta_k & z_k + \varepsilon \zeta_k \end{pmatrix}.$$

By calculating these determinants for all faces for the total volume we have a presentation:

$$V(P_\varepsilon) = V_0 + \varepsilon V_1 + \varepsilon^2 V_2 + \varepsilon^3 V_3.$$

2
By the supposition \(V'_1(0) = 0 \), so \(V_1 = 0 \). If \(V_3 \neq 0 \) then two isometric polyhedra \(P_\varepsilon \) and \(P_{-\varepsilon} \) have different volumes that is the polynomial \(^{\mathfrak{5}}\) has two different roots tending under \(\varepsilon \to 0 \) to the same root \(V_0 \) of the initial volume polynomial. Thus the volume of our \(P \) is a multiple root of its volume polynomial.

Now we consider the case \(V_1 = V_3 = 0 \) so \(V(P_\varepsilon) \) is

\[
V(P_\varepsilon) = V_0 + \varepsilon^2 V_2.
\]

We suppose also that \(V_0 \neq 0 \) (because the root \(V = 0 \) is multiple already). Let \(Q'_V(0) \neq 0 \). Then the equation \(^{\mathfrak{5}}\) determinates \(V \) as an analytical implicit function \(V = V(l) \) of \(|E| \) variables \(l_{ij}^2 = l_{ij}^2 + \varepsilon^2 L_{ij}^2 \) as independent arguments in some full neighborhood of values of edge lengths of \(P \) which are not related with coordinates of vertices (recall that in general only some collections of non-negative numbers can be presented as squares of lengths of a polyhedron).

Accordingly \(^{\mathfrak{2}}\) any small diagonal \(d \) satisfies an polynomial equation of the form

\[
D(l, V, d) = A_0(l, V)d^{2K} + A_1(l, V)d^{2K-2} + \ldots + A_K(l, V) = 0,
\]

where coefficients \(A_i, 1 \leq i \leq K \) are some polynomials too in squares of edge lengths and square of the polyhedron’s volume which not all are identically zero. For polyhedra \(P_\varepsilon \) the coefficients \(A_i \) in (ref\(^{\mathfrak{6}}\)) are presentable as follows

\[
A_i = a_{i0} + ai_1\varepsilon^2 + \ldots + a_{im}\varepsilon^{2n},
\]

and not all coefficients \(a_{ij} \) are zero.

Lemma 2. Any small diagonal of polyhedra \(P_\varepsilon \) is represented in the form \(d = d_0 + o(\varepsilon), d_0 \neq 0 \).

In the proof of lemma one should to distinguish two cases 1) there is at least one coefficient \(a_{i0} \neq 0 \) and 2) all coefficients \(a_{i0} = 0 \). In the first case we consider for \(D \) from \(^{\mathfrak{6}}\) its derivative \(D'_d(l, V, d) \). If the derivative is not zero then \(d \) is expressed from \(^{\mathfrak{6}}\) as an implicit function and its Taylor expansion consists only of powers of \(\varepsilon^{2m} \). If this derivative is zero then \(d \) satisfies a similar equation of 2 powers less (after the cancellation by \(d \neq 0 \)) and one can continue the same considerations and finally we arrive either to a case with the possibility to present \(d \) by a Taylor expansion with even powers of \(\varepsilon \) or to a biquadratic equation. In the case 2) we should reduce all the coefficients by the maximal common degree \(\varepsilon^{2m} \) and we arrive to the case 1).

Now we note that by lemma 1 there exists at least one small diagonal of the form \(d = d_0 + a\varepsilon, a \neq 0 \), which is in contradiction with lemma 2. So the supposition \(Q'_V \neq 0 \) is not true.

Let’s remark that a seeming theorem should be true for inf. bendable polyhedra in any space \(R^n, n > 3 \) because by \(^{\mathfrak{3}}\) for them there exist volume polynomials too, but for the moment we don’t have a needed affirmation about the existence of equations for small diagonals similar to \(^{\mathfrak{9}}\). It would be interesting also to find an algebraic and geometrical interpretation for the multiplicity order of the volume as a root of a volume equation.
References

[1] I.Kh. Sabitov Algebraic methods for solutions of polyhedra. Russian Math. Surveys, Turpion-Moscow Ltd, (United Kingdom) 66:3 (2011), 445-505.

[2] I.Kh. Sabitov Algorithmic solution of the problem of isometric realization for two-dimensional polyhedral metrics. Izvestiya Mathematics, Amer.Math.Soc.(United States), 66:2 (2002), p. 377-391.

[3] A.A. Gaifullin Generalization of Sabitov’s theorem to polyhedra of arbitrary dimensions. Discr. and Comput. Geometry, 52:2 (2014), 195-220.