A FREE BOUNDARY PROBLEM IN THERMAL INSULATION WITH A PRESCRIBED HEAT SOURCE

PAOLO ACAMPORA\(^1\), EMANUELE CRISTOFORONI\(^2\), CARLO NITSCH\(^1\) AND CRISTINA TROMBETTI\(^1\)

Abstract. We study the thermal insulation of a bounded body \(\Omega \subset \mathbb{R}^n\), under a prescribed heat source \(f > 0\), via a bulk layer of insulating material. We consider a model of heat transfer between the insulated body and the environment determined by convection; this corresponds to Robin boundary conditions on the free boundary of the layer. We show that a minimal configuration exists and that it satisfies uniform density estimates.

Mathematics Subject Classification. 35R35, 35J25, 35A01.

Received June 30, 2022. Accepted November 30, 2022.

1. Introduction

Let \(\Omega \subset \mathbb{R}^n\) be an open bounded set with smooth boundary, let \(f \in L^2(\Omega)\) be a positive function and let \(\beta, C_0\) be positive constants. We consider the following energy functional

\[
F(A, v) = \int_A |\nabla v|^2 \, dL^n + \beta \int_{\partial A} v^2 \, dH^{n-1} - 2 \int_{\Omega} fv \, dL^n + C_0 L^n(A \setminus \Omega),
\]

and the variational problem

\[
\inf \left\{ F(A, v) \right\} \quad \left| \begin{array}{l}
A \supseteq \Omega \text{ open, bounded and Lipschitz} \\
v \in W^{1,2}(A), \ v \geq 0 \text{ in } A
\end{array} \right\}.
\]

This problem is related to the following thermal insulation problem: for a given heat source \(f\) distributed in a conductor \(\Omega\), find the best possible configuration of insulating material surrounding \(\Omega\). A similar problem has been studied in [2, 10] for a thin insulating layer, and in [4, 5, 7] for a prescribed temperature in \(\Omega\).

Keywords and phrases: Robin, thermal insulation, free boundary, heat source.

1 Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, Università degli studi di Napoli Federico II, Via Cintia, Complesso Universitario Monte S. Angelo, 80126 Napoli, Italy.

2 Mathematical and Physical Sciences for Advanced Materials and Technologies, Scuola Superiore Meridionale, Largo San Marcellino 10, 80126 Napoli, Italy.

* Corresponding author: p.acampora98@gmail.com

© The authors. Published by EDP Sciences, SMAI 2023
following stationary problem, with Robin boundary condition on ∂A. Precisely

\[
\begin{cases}
-\Delta u_A = f & \text{in } \Omega, \\
\frac{\partial u_A^-}{\partial \nu} = \frac{\partial u_A^+}{\partial \nu} & \text{on } \partial \Omega, \\
\Delta u_A = 0 & \text{in } A \setminus \Omega, \\
\frac{\partial u_A^-}{\partial \nu} + \beta u_A = 0 & \text{on } \partial A,
\end{cases}
\]

where u_A^- and u_A^+ denote the traces of u_A on $\partial \Omega$ in Ω and in $A \setminus \Omega$ respectively. That is

\[
\int_A \nabla u_A \cdot \nabla \varphi \, d\mathcal{L}^n + \beta \int_{\partial A} u_A \varphi \, d\mathcal{H}^{n-1} = \int_\Omega f \varphi \, d\mathcal{L}^n,
\]

for all $\varphi \in W^{1,2}(A)$. The Robin boundary condition represents the case when the heat transfer with the environment is conveyed by convection.

If for any couple (A, v) with A an open bounded set with Lipschitz boundary containing Ω and $v \in W^{1,2}(A)$, $v \geq 0$ in A, we identify v with $v \chi_A$, where χ_A is the characteristic function of A, and the set A with the support of v, then the energy functional (1.1) becomes

\[
\mathcal{F}(v) = \int_{\mathbb{R}^n} |\nabla v|^2 \, d\mathcal{L}^n + \beta \int_{J_v} \left(\pi^2 + v^2 \right) \, d\mathcal{H}^{n-1} - 2 \int\Omega f \, d\mathcal{L}^n + C_0 \mathcal{L}^n(\{v > 0\} \setminus \Omega),
\]

and the minimization problem (1.2) becomes

\[
\inf \left\{ \mathcal{F}(v) \bigm| v \in SBV^\perp(\mathbb{R}^n) \cap W^{1,2}(\Omega) \right\} ,
\]

where v^\perp and v are respectively the approximate upper and lower limits of v, J_v is the jump set and ∇v is the absolutely continuous part of the derivative of v. See Section 2 for the definitions.

We state the main results of this paper in the two following theorems.

Theorem 1.1. Let $n \geq 2$, let $\Omega \subset \mathbb{R}^n$ be an open bounded set with $C^{1,1}$ boundary, let $f \in L^2(\Omega)$, with $f > 0$ almost everywhere in Ω. Assume in addition that, if $n = 2$,

\[
\|f\|^2_{L^2(\Omega)} < C_0 \lambda_\beta(B) \mathcal{L}^2(\Omega),
\]

where B is a ball having the same measure of Ω. Then problem (1.5) admits a solution. Moreover, if $p > n$ and $f \in L^p(\Omega)$, then there exists a positive constant $C = C(\Omega, f, p, \beta, C_0)$ such that if u is a minimizer to problem (1.5) then

\[
\|u\|_\infty \leq C.
\]

Theorem 1.2. Let $n \geq 2$, let $\Omega \subset \mathbb{R}^n$ be an open bounded set with $C^{1,1}$ boundary, let $p > n$ and let $f \in L^p(\Omega)$, with $f > 0$ almost everywhere in Ω. Assume in addition that, if $n = 2$ condition (1.6) holds true. Then there exist positive constants $\delta_0 = \delta_0(\Omega, f, p, \beta, C_0)$, $c = c(\Omega, f, p, \beta, C_0)$, $C = C(\Omega, f, p, \beta, C_0)$ such that if u is a minimizer to problem (1.5) then

\[
u \geq \delta_0 \quad \mathcal{L}^n \text{-a.e. in } \{u > 0\},
\]
and the jump set J_u satisfies the density estimates
\[cr^{n-1} \leq H^{n-1}(J_u \cap B_r(x)) \leq Cr^{n-1}, \]
with $x \in \overline{J}_u$, and $0 < r < d(x, \partial \Omega)$. In particular, we have
\[H^{n-1}(J_u \setminus J_u) = 0. \]

We refer to Section 2 for the definitions of $\lambda_\beta(B)$ in (1.6), and the distance $d(x, \partial \Omega)$ in Theorem 1.2. Section 3 is devoted to the proof of Theorem 1.1, while Section 4 is devoted to the proof of Theorem 1.2.

We notice that the assumptions on the function f do not seem to be sharp. Indeed, it is well known that (see for instance [12], Thm. 8.15), in the more regular case, the assumption $f \in L^p(\Omega)$ with $p > n/2$ ensures the boundedness of solutions to equation (1.3).

2. Notation and tools

In this section we recall some definitions and properties of the spaces BV, SBV, and SBV^1. We refer to [1, 3, 11] for a deep study of the properties of these functions.

In the following, given an open set $\Omega \subseteq \mathbb{R}^n$ and $1 \leq p \leq \infty$, we will denote the $L^p(\Omega)$ norm of a function $v \in L^p(\Omega)$ as $\|v\|_{L^p(\Omega)}$, in particular when $\Omega = \mathbb{R}^n$ we will simply write $\|v\|_p = \|v\|_{L^p(\mathbb{R}^n)}$.

Definition 2.1 (BV). Let $u \in L^1(\mathbb{R}^n)$. We say that u is a function of bounded variation in \mathbb{R}^n and we write $u \in BV(\mathbb{R}^n)$ if its distributional derivative is a Radon measure, namely
\[\int_\Omega u \frac{\partial \varphi}{\partial x_i} = \int_\Omega \varphi \, dD_i u \quad \forall \varphi \in C^\infty_c(\mathbb{R}^n), \]
with Du a \mathbb{R}^n-valued measure in \mathbb{R}^n. We denote with $|Du|$ the total variation of the measure Du. The space $BV(\mathbb{R}^n)$ is a Banach space equipped with the norm
\[\|u\|_{BV(\mathbb{R}^n)} = \|u\|_1 + |Du|(\mathbb{R}^n). \]

Definition 2.2. Let $E \subseteq \mathbb{R}^n$ be a measurable set. We define the set of points of density 1 for E as
\[E^{(1)} = \left\{ x \in \mathbb{R}^n \mid \lim_{r \to 0^+} \frac{\mathcal{L}^n(B_r(x) \cap E)}{\mathcal{L}^n(B_r(x))} = 1 \right\}, \]
and the set of points of density 0 for E as
\[E^{(0)} = \left\{ x \in \mathbb{R}^n \mid \lim_{r \to 0^+} \frac{\mathcal{L}^n(B_r(x) \cap E)}{\mathcal{L}^n(B_r(x))} = 0 \right\}. \]

Moreover, we define the essential boundary of E as
\[\partial^* E = \mathbb{R}^n \setminus (E^{(0)} \cup E^{(1)}). \]

Definition 2.3 (Approximate upper and lower limits). Let $u : \mathbb{R}^n \to \mathbb{R}$ be a measurable function. We define the approximate upper and lower limits of u, respectively, as
\[\overline{u}(x) = \inf \left\{ t \in \mathbb{R} \mid \limsup_{r \to 0^+} \frac{\mathcal{L}^n(B_r(x) \cap \{ u > t \})}{\mathcal{L}^n(B_r(x))} = 0 \right\}, \]
and
\[u(x) = \sup \left\{ t \in \mathbb{R} \left| \limsup_{r \to 0^+} \frac{\mathcal{L}^n(B_r(x) \cap \{ u < t \})}{\mathcal{L}^n(B_r(x))} = 0 \right. \right\}. \]

We define the jump set of \(u \) as
\[J_u = \{ x \in \mathbb{R}^n \mid u(x) < \underline{u}(x) \}. \]

We denote by \(K_u \) the closure of \(J_u \).

If \(\underline{u}(x) = \overline{u}(x) = l \), we say that \(l \) is the approximate limit of \(u \) as \(y \) tends to \(x \), and we have that, for any \(\varepsilon > 0 \),
\[\limsup_{r \to 0^+} \frac{\mathcal{L}^n(B_r(x) \cap \{ |u - l| \geq \varepsilon \})}{\mathcal{L}^n(B_r(x))} = 0. \]

If \(u \in BV(\mathbb{R}^n) \), the jump set \(J_u \) is a \((n-1)\)-rectifiable set, i.e. \(J_u \subseteq \bigcup_{i \in \mathbb{N}} M_i \), up to a \(H^{n-1} \)-negligible set, with \(M_i \) a \(C^1 \)-hypersurface in \(\mathbb{R}^n \) for every \(i \). We can then define \(H^{n-1} \)-almost everywhere on \(J_u \) a normal \(\nu_u \) coinciding with the normal to the hypersurfaces \(M_i \). Furthermore, the direction of \(\nu_u(x) \) is chosen in such a way that the approximate upper and lower limits of \(u \) coincide with the approximate limit of \(u \) on the half-planes
\[H^+_{\nu_u} = \{ y \in \mathbb{R}^n \mid \nu_u(x) \cdot (y - x) \geq 0 \} \]
and
\[H^-_{\nu_u} = \{ y \in \mathbb{R}^n \mid \nu_u(x) \cdot (y - x) \leq 0 \} \]
respectively.

Definition 2.4. Let \(E \subseteq \mathbb{R}^n \) be a measurable set and let \(\Omega \subseteq \mathbb{R}^n \) be an open set. We define the **relative perimeter** of \(E \) inside \(\Omega \) as
\[P(E; \Omega) = \sup \left\{ \int_E \text{div} \varphi \, d\mathcal{L}^n \mid \varphi \in C^1_c(\Omega, \mathbb{R}^n), \ |\varphi| \leq 1 \right\}. \]

If \(P(E; \mathbb{R}^n) < +\infty \) we say that \(E \) is a **set of finite perimeter**.

Theorem 2.5 (Relative Isoperimetric Inequality). Let \(\Omega \) be an open, bounded, connected set with Lipschitz boundary. Then there exists a positive constants \(C = C(\Omega) \) such that
\[\min \{ \mathcal{L}^n(\Omega \cap E), \mathcal{L}^n(\Omega \setminus E) \} \frac{n-1}{n} \leq CP(E; \Omega), \]
for every set \(E \) of finite perimeter.

See for instance [14] for the proof of this theorem.

Theorem 2.6. Let \(\Omega \) be an open, bounded, connected set with Lipschitz boundary. Then there exists a constant \(C = C(\Omega) > 0 \) such that
\[H^{n-1}(\partial^* E \cap \partial \Omega) \leq C H^{n-1}(\partial^* E \cap \Omega) \]
for every set of finite perimeter \(E \subseteq \Omega \) with \(0 < \mathcal{L}^n(E) \leq \mathcal{L}^n(\Omega)/2 \).
We refer to Theorem 2.3 of [8] for the proof of the previous theorem, observing that if \(\Omega \) is a Lipschitz set, then it is an admissible set in the sense defined in [8] (see [16], Rem. 5.10.2).

Theorem 2.7 (Decomposition of BV functions). Let \(u \in \text{BV}(\mathbb{R}^n) \). Then we have

\[
dDu = \nabla u \, d\mathcal{L}^n + |\pi - u| \nu_u \, d\mathcal{H}^{n-1}|_{J_u} + dD^c u,
\]

where \(\nabla u \) is the density of \(Du \) with respect to the Lebesgue measure, \(\nu_u \) is the normal to the jump set \(J_u \) and \(D^c u \) is the Cantor part of the measure \(Du \). The measure \(D^c u \) is singular with respect to the Lebesgue measure and concentrated out of \(J_u \).

Definition 2.8. Let \(v \in \text{BV}(\mathbb{R}^n) \), let \(\Gamma \subseteq \mathbb{R}^n \) be a \(\mathcal{H}^{n-1} \)-rectifiable set and let \(\nu(x) \) be the generalized normal to \(\Gamma \) defined for \(\mathcal{H}^{n-1} \text{-a.e.} \ x \in \Gamma \). For \(\mathcal{H}^{n-1} \text{-a.e.} \ x \in \Gamma \) we define the traces \(\gamma^+_\Gamma(v)(x) \) of \(v \) on \(\Gamma \) by the following Lebesgue-type limit quotient relation

\[
\lim_{r \to 0} \frac{1}{r^n} \int_{B_r^+(x)} |v(y) - \gamma^+_\Gamma(v)(x)| \, d\mathcal{L}^n(y) = 0,
\]

where

\[
B_r^+(x) = \{ y \in B_r(x) \mid \nu(x) \cdot (y - x) > 0 \},
\]

\[
B_r^-(x) = \{ y \in B_r(x) \mid \nu(x) \cdot (y - x) < 0 \}.
\]

Remark 2.9. Notice that, by Remark 3.79 of [1], for \(\mathcal{H}^{n-1} \text{-a.e.} \ x \in \Gamma \), \((\gamma^+_\Gamma(v)(x), \gamma^-_\Gamma(v)(x)) \) coincides with either \((\pi(x), \underline{v}(x)) \) or \((\underline{v}(x), \pi(x)) \), while, for \(\mathcal{H}^{n-1} \text{-a.e.} \ x \in \Gamma \setminus J_u \), we have that \(\gamma^+_\Gamma(v)(x) = \gamma^-_\Gamma(v)(x) \) and they coincide with the approximate limit of \(v \) in \(x \). In particular, if \(\Gamma = J_u \), we have

\[
\gamma^+_J(v)(x) = \pi(x) \quad \gamma^-_J(v)(x) = \underline{v}(x)
\]

for \(\mathcal{H}^{n-1} \text{-a.e.} \ x \in J_u \).

We now focus our attention on the BV functions whose Cantor parts vanish.

Definition 2.10 (SBV). Let \(u \in \text{BV}(\mathbb{R}^n) \). We say that \(u \) is a special function of bounded variation and we write \(u \in \text{SBV}(\mathbb{R}^n) \) if \(D^c u = 0 \).

For SBV functions we have the following.

Theorem 2.11 (Chain rule). Let \(g : \mathbb{R} \to \mathbb{R} \) be a differentiable function. Then if \(u \in \text{SBV}(\mathbb{R}^n) \), we have

\[
\nabla g(u) = g'(u) \nabla u.
\]

Furthermore, if \(g \) is increasing,

\[
\overline{g}(u) = g(\pi), \quad \underline{g}(u) = g(u)
\]

while, if \(g \) is decreasing,

\[
\overline{g}(u) = g(u), \quad \underline{g}(u) = g(\pi).
\]

We now give the definition of the following class of functions.
Definition 2.12 (SBV$^{1/2}$). Let $u \in L^2(\mathbb{R}^n)$ be a non-negative function. We say that $u \in \text{SBV}^{1/2}(\mathbb{R}^n)$ if $u^2 \in \text{SBV}(\mathbb{R}^n)$. In addition, we define

$$J_u := J_{u^2}, \quad \pi := \sqrt{u^2}, \quad \eta := \sqrt{\pi^2},$$

$$\nabla u := \frac{1}{2u} \nabla (u^2) \chi_{\{u > 0\}}.$$

Notice that this definition extends the validity of the Chain Rule to the functions in $\text{SBV}^{1/2}(\mathbb{R}^n)$. We refer to Lemma 3.2 of [3] for the coherence of this definition.

Theorem 2.13 (Compactness in SBV$^{1/2}$). Let u_k be a sequence in $\text{SBV}^{1/2}(\mathbb{R}^n)$ and let $C > 0$ be such that for every $k \in \mathbb{N}$

$$\int_{\mathbb{R}^n} |\nabla u_k|^2 \, d\mathcal{L}^n + \int_{J_{u_k}} (\pi_k^2 + \eta_k^2) \, d\mathcal{H}^{n-1} + \int_{\mathbb{R}^n} u_k^2 \, d\mathcal{L}^n < C.$$

Then there exists $u \in \text{SBV}^{1/2}(\mathbb{R}^n)$ and a subsequence u_{k_j} such that

- Compactness:

$$u_{k_j} \overset{L^2_{\text{loc}}(\mathbb{R}^n)}{\longrightarrow} u$$

- Lower semicontinuity: for every open set Ω we have

$$\int_{\Omega} |\nabla u|^2 \, d\mathcal{L}^n \leq \liminf_{j \to +\infty} \int_{\Omega} |\nabla u_{k_j}|^2 \, d\mathcal{L}^n$$

and

$$\int_{J_{u} \cap \Omega} (\pi^2 + \eta^2) \, d\mathcal{H}^{n-1} \leq \liminf_{j \to +\infty} \int_{J_{u_{k_j}} \cap \Omega} \left(\pi_{k_j}^2 + \eta_{k_j}^2\right) \, d\mathcal{H}^{n-1}.$$

Definition 2.14 (Robin Eigenvalue). Let $\Omega \subseteq \mathbb{R}^n$ be an open bounded set with Lipschitz boundary, let $\beta > 0$. We define $\lambda_\beta(\Omega)$ as

$$\lambda_\beta(\Omega) = \inf \left\{ \frac{\int_{\Omega} |\nabla v|^2 \, d\mathcal{L}^n + \beta \int_{\partial \Omega} v^2 \, d\mathcal{H}^{n-1}}{\int_{\Omega} v^2 \, d\mathcal{L}^n} \ : \ v \in W^{1,2}(\Omega) \setminus \{0\} \right\}.$$ \hspace{1cm} (2.1)

Remark 2.15. Standard tools of calculus of variation ensure that the infimum in (2.1) is achieved, see for instance.

Lemma 2.16. For every $0 < r < R$, the following inequality holds

$$\lambda_\beta(B_r) \leq \left(\frac{\mathcal{L}^n(B_R)}{\mathcal{L}^n(B_r)}\right)^{\frac{2}{n}} \lambda_\beta(B_R),$$

where B_R and B_r are balls with radii R and r respectively.
Proof. Let \(\varphi \) be a minimum of (2.1) for \(\Omega = B_R \) and with \(\|\varphi\|_{2,B_R} = 1 \). We define
\[
w(x) = \varphi \left(\frac{R}{r} x \right) \quad \forall x \in B_r.
\]
Therefore,
\[
\lambda_\beta(B_r) \leq \frac{\int_{B_r} |\nabla w(x)|^2 \, d\mathcal{L}^n(x) + \int_{\partial B_r} w(x)^2 \, d\mathcal{H}^{n-1}(x)}{\int_{B_r} w(x)^2 \, d\mathcal{L}^n(x)} = \left(\frac{r}{R} \right)^{n-2} \int_{B_R} |\nabla \varphi(y)|^2 \, d\mathcal{L}^n(y) + \left(\frac{r}{R} \right)^{n-1} \int_{\partial B_R} \varphi(y)^2 \, d\mathcal{H}^{n-1}(y)
\]
\[
= \left(\frac{r}{R} \right) \lambda_\beta(B_r) = \left(\frac{\mathcal{L}^n(B_r)}{\mathcal{L}^n(B_R)} \right)^{-\frac{n}{2}} \lambda_\beta(B_R).
\]
Since \(r/R < 1 \), by minimality of \(\varphi \), we get
\[
\lambda_\beta(B_r) \leq \left(\frac{r}{R} \right)^{n-2} \lambda_\beta(B_R) = \left(\frac{\mathcal{L}^n(B_r)}{\mathcal{L}^n(B_R)} \right)^{-\frac{n}{2}} \lambda_\beta(B_R).
\]

Let \(\beta, m > 0 \), and let us denote by
\[
\Lambda_{\beta,m} = \inf \left\{ \frac{\int_{\mathbb{R}^n} |\nabla v|^2 \, d\mathcal{L}^n + \int_{\mathbb{R}^n} (v^2 + \pi^2) \, d\mathcal{H}^{n-1}}{\int_{\mathbb{R}^n} v^2 \, d\mathcal{L}^n} \mid v \in \text{SBV}^2(\mathbb{R}^n) \setminus \{0\} \cup \mathcal{L}^n(\{v > 0\}) \leq m \right\}.
\]

Here we state a theorem, referring to Theorem 5 of [3] for the proof.

Theorem 2.17. Let \(B \subseteq \mathbb{R}^n \) be a ball of volume \(m \). Then
\[
\Lambda_{\beta,m} = \lambda_\beta(B).
\]

We will denote by \(d(x, \partial \Omega) \) the distance between \(x \in \mathbb{R}^n \) and the boundary \(\partial \Omega \), and for every \(\varepsilon > 0 \) we define
\[
\Omega_\varepsilon = \{ x \in \Omega \mid d(x, \partial \Omega) > \varepsilon \}.
\]

We will use the following result.

Proposition 2.18. Let \(\Omega \) be an open bounded set with \(C^{1,1} \) boundary, then there exist a constant \(C = C(\Omega) > 0 \) and a \(\varepsilon_0 = \varepsilon_0(\Omega) > 0 \) such that
\[
\mathcal{L}^n(\Omega \setminus \Omega_\varepsilon) \leq C\varepsilon \quad \forall \varepsilon < \varepsilon_0.
\]
Proof. It is well known (see for instance Theorem 17.5 of [13]) that there exist a constant $C = C(\Omega)$ and $\varepsilon_0 = \varepsilon_0(\Omega) > 0$ such that

$$P(\Omega_\varepsilon) = P(\Omega) + C(\Omega) \varepsilon + O(\varepsilon^2),$$

for every $0 < \varepsilon < \varepsilon_0$. Let $r(x) = d(x, \partial \Omega)$ be the distance from the boundary of Ω. By coarea formula we have

$$\mathcal{L}^n(\Omega \setminus \Omega_\varepsilon) = \int_{\{0 < r < \varepsilon\}} d\mathcal{L}^n = \int_0^\varepsilon P(\Omega_t) \, dt \leq C(\Omega) \varepsilon.$$

\[\square \]

3. Existence of minimizers

In this section we prove Theorem 1.1: in Proposition 3.3 we prove the existence of a minimizer to problem (1.5); in Proposition 3.7 we prove the L^∞ estimate for a minimizer.

In this section, we will assume that $\Omega \subseteq \mathbb{R}^n$ is an open bounded set with $C^{1,1}$ boundary, that $f \in L^2(\Omega)$ is a positive function and that β, C_0 are positive constants. We consider the energy functional \mathcal{F} defined in (1.4).

Lemma 3.1. Let $n \geq 2$ and assume that, if $n = 2$, condition (1.6) holds true. Then there exist two positive constants $c = c(\Omega, f, \beta, C_0)$ and $C = C(\Omega, f, \beta, C_0)$ such that if $v \in SBV^2(\mathbb{R}^n) \cap W^{1,2}(\Omega)$, with $\mathcal{F}(v) \leq 0$ and $\Omega \subseteq \{ v > 0 \}$, then

$$\mathcal{L}^n(\{ v > 0 \}) \leq c,$$ \hspace{1cm} (3.1)

$$\|v\|_2 \leq C.$$ \hspace{1cm} (3.2)

Proof. Let B' be a ball with the same measure as $\{ v > 0 \}$. By Theorem 2.17

$$0 \geq \mathcal{F}(v) \geq \lambda_\beta (B') \int_{\mathbb{R}^n} v^2 \, d\mathcal{L}^n - 2 \int_\Omega fv \, d\mathcal{L}^n + C_0 \mathcal{L}^n(\{ v > 0 \} \setminus \Omega).$$

By Lemma 2.16 and Hölder inequality

$$0 \geq \lambda_\beta (B) \left(\frac{\mathcal{L}^n(\Omega)}{\mathcal{L}^n(\{ v > 0 \})} \right)^\frac{2}{n} \|v\|_2^2 - 2\|f\|_{2,\Omega} \|v\|_2$$

$$+ C_0 \mathcal{L}^n(\{ v > 0 \} \setminus \Omega)$$

where B is a ball with the same measure as Ω. Obviously (3.3) implies that

$$\|f\|_{2,\Omega}^2 - \lambda_\beta (B) \left(\frac{\mathcal{L}^n(\Omega)}{\mathcal{L}^n(\{ v > 0 \})} \right)^\frac{2}{n} C_0 \mathcal{L}^n(\{ v > 0 \} \setminus \Omega) \geq 0.$$ \hspace{1cm} (3.3)

Let $M = \mathcal{L}^n(\{ v > 0 \})$, and notice that, since $\Omega \subseteq \{ v > 0 \}$,

$$\mathcal{L}^n(\{ v > 0 \} \setminus \Omega) = M - \mathcal{L}^n(\Omega),$$
therefore
\[\|f\|_{2,\Omega}^2 \geq C_0 \lambda_\beta(B) \left(L^\alpha(\Omega) \right)^{\frac{2}{n}} \left(M^{1-\frac{2}{n}} - M^{-\frac{2}{n}} L^\alpha(\Omega) \right). \]

This implies (taking into account (1.6) if \(n = 2 \)) that there exists \(c = c(\Omega, f, \beta, C_0) > 0 \) such that
\[L^\alpha(\{ v > 0 \}) < c. \]

Finally observe that by (3.3) it follows
\[\|v\|_2 \leq C(M), \quad (3.4) \]
where
\[C(M) = \frac{M^{\frac{2}{n}} \left(\|f\|_{2,\Omega} + \sqrt{\|f\|_{2,\Omega}^2 - C_0 \lambda_\beta(B) \left(\frac{L^\alpha(\Omega)}{M} \right)^{\frac{2}{n}} (M - L^\alpha(\Omega))} \right)}{\lambda_\beta(B) L^\alpha(\Omega)} \leq \frac{2c^{\frac{2}{n}} \|f\|_{2,\Omega}}{\lambda_\beta(B) L^\alpha(\Omega)}. \]

Remark 3.2. Let \(v \in \text{SBV}^{\frac{1}{2}}(\mathbb{R}^n) \cap W^{1,2}(\Omega) \), it is always possible to choose a function \(v_0 \) such that \(v_0 = v \) in \(\mathbb{R}^n \setminus \Omega \), \(F(v_0) \leq F(v) \), and \(\Omega \subseteq \{ v_0 > 0 \} \). Indeed the function \(v_0 \in W^{1,2}(\Omega) \), weak solution to the following boundary value problem
\[\begin{cases} -\Delta v_0 = f & \text{in } \Omega, \\ v_0 = \gamma^-_{\partial \Omega}(v) & \text{on } \partial \Omega, \end{cases} \quad (3.5) \]
satisfies
\[\int_{\Omega} \nabla v_0 \cdot \nabla \varphi \, dL^n = \int_{\Omega} f \varphi \, dL^n \]
for every \(\varphi \in W_0^{1,2}(\Omega) \) and \(v_0 = \gamma^-_{\partial \Omega}(v) \) on \(\partial \Omega \) in the sense of the trace. Then, extending \(v_0 \) to be equal to \(v \) outside of \(\Omega \), we have that \(\Omega \subseteq \{ v_0 > 0 \} \) and \(F(v_0) \leq F(v) \).

Proposition 3.3 (Existence). Let \(n \geq 2 \) and, if \(n = 2 \), assume that condition (1.6) holds true. Then there exists a solution to problem (1.5).

Proof. Let \(\{ u_k \} \) be a minimizing sequence for problem (1.5). Without loss of generality we may always assume that, for all \(k \in \mathbb{N} \), \(F(u_k) \leq F(0) = 0 \), and, by Remark 3.2, \(\Omega \subseteq \{ u_k > 0 \} \). Therefore we have
\[0 \geq F(u_k) \geq \int_{\mathbb{R}^n} |\nabla u_k|^2 \, dL^n + \beta \int_{J_{u_k}} (\frac{1}{2} u_k^2 + |u_k|^2) \, dH^{n-1} - 2 \int_{\Omega} f v \, dL^n \]
\[\geq \int_{\mathbb{R}^n} |\nabla u_k|^2 \, dL^n + \beta \int_{J_{u_k}} (\frac{1}{2} u_k^2 + |u_k|^2) \, dH^{n-1} - 2 \|f\|_{2,\Omega} \|u_k\|_{2,\Omega}, \]
and by (3.2),
\[
\int_{\mathbb{R}^n} |\nabla u_k|^2 \, d\mathcal{L}^n + \beta \int_{J_{u_k}} (\bar{u}_k^2 + u_k^2) \, d\mathcal{H}^{n-1} \leq C \|f\|_{2,\Omega}.
\]

Then we have that there exists a positive constant still denoted by C, independent on the sequence $\{u_k\}$, such that
\[
\int_{\mathbb{R}^n} |\nabla u_k|^2 \, d\mathcal{L}^n + \int_{J_{u_k}} (\bar{v}_k^2 + u_k^2) \, d\mathcal{H}^{n-1} + \int_{\mathbb{R}^n} u_k^2 \, d\mathcal{L}^n < C. \tag{3.6}
\]

The compactness theorem in SBV$^\frac{1}{2}(\mathbb{R}^n)$ (Thm. 2.13), ensures that there exists a subsequence $\{u_{k_j}\}$ and a function $u \in$ SBV$^\frac{1}{2}(\mathbb{R}^n) \cap W^{1,2}(\Omega)$, such that u_{k_j} converges to u strongly in $L^1_{\text{loc}}(\mathbb{R}^n)$, weakly in $W^{1,2}(\Omega)$, almost everywhere in \mathbb{R}^n and
\[
\int_{\mathbb{R}^n} |\nabla u|^2 \, d\mathcal{L}^n \leq \liminf_{j \to +\infty} \int_{\mathbb{R}^n} |\nabla u_{k_j}|^2 \, d\mathcal{L}^n,
\]
\[
\int_{J_u} (\bar{v}^2 + u^2) \, d\mathcal{H}^{n-1} \leq \liminf_{j \to +\infty} \int_{J_{u_{k_j}}} (\bar{v}_{k_j}^2 + u_{k_j}^2) \, d\mathcal{H}^{n-1}.
\]
\[
\mathcal{L}^n(\{ u > 0 \} \setminus \Omega) \leq \liminf_{j \to +\infty} \mathcal{L}^n(\{ u_{k_j} > 0 \} \setminus \Omega).
\]

Finally we have
\[
\mathcal{F}(u) \leq \liminf_{j \to +\infty} \mathcal{F}(u_{k_j}) = \inf \left\{ \mathcal{F}(v) \mid v \in \text{SBV}^\frac{1}{2}(\mathbb{R}^n) \cap W^{1,2}(\Omega) \right\},
\]

Therefore u is a minimizer to problem (1.5).

Theorem 3.4 (Euler-Lagrange equation). Let u be a minimizer to problem (1.5), and let $v \in$ SBV$^\frac{1}{2}(\mathbb{R}^n)$ such that $J_v \subseteq J_u$. Assume that there exists $t > 0$ such that $\{ v > 0 \} \subseteq \{ u > t \}$ \mathcal{L}^n-a.e., and that
\[
\int_{\mathcal{J}_u \setminus \mathcal{J}_v} v^2 \, d\mathcal{H}^{n-1} < +\infty.
\]

Then
\[
\int_{\mathbb{R}^n} \nabla u \cdot \nabla v \, d\mathcal{L}^n + \beta \int_{J_u} (\bar{v}\gamma^+(v) + u\gamma^-(v)) \, d\mathcal{H}^{n-1} = \int_{\Omega} fv \, d\mathcal{L}^n, \tag{3.7}
\]

where $\gamma^\pm = \gamma^\pm_{J_u}$.

Proof. Notice that since $v \in$ SBV$^\frac{1}{2}(\mathbb{R}^n)$ with $J_v \subseteq J_u$ we have that $v \in$ SBV$^\frac{1}{2}(\mathbb{R}^n) \cap W^{1,2}(\Omega)$. Assume $v \in$ SBV$^\frac{1}{2}(\mathbb{R}^n) \cap L^\infty(\mathbb{R}^n)$. If $s \in \mathbb{R}$, recalling that $\{ v > 0 \} \subseteq \{ u > t \}$ \mathcal{L}^n-a.e.,
\[
u(x) + sv(x) = u(x) \geq 0 \quad \mathcal{L}^n\text{-a.e. } \forall x \in \{ u \leq t \},
\]

while, for $|s|$ small enough,
\[
u(x) + sv(x) \geq t - |s| \|v\|_\infty > 0 \quad \forall x \in \{ u > t \}.
\]
Therefore we still have

\[u + sv \in \text{SBV}\frac{1}{2}(\mathbb{R}^n, \mathbb{R}^+). \]

Moreover by minimality of \(u \) we have, for every \(|s| \leq s_0 \)

\[
\mathcal{F}(u) \leq \mathcal{F}(u + sv) \\
= \int_{\mathbb{R}^n} |\nabla u + s\nabla v|^2 \, d\mathcal{L}^n \\
+ \int_{J_{u+sv}} \left[(\gamma^+(u) + s\gamma^+(v))^2 + (\gamma^-(u) + s\gamma^-(v))^2 \right] \, d\mathcal{H}^{n-1} \\
- 2 \int_{\mathbb{R}^n} f(u + sv) \, d\mathcal{L}^n + C_0 \mathcal{L}^n(\{ u > 0 \}).
\]

Claim: The set

\[
S := \{ s \in [-s_0, s_0] \mid \mathcal{H}^{n-1}(J_u \setminus J_{u+sv}) \neq 0 \}
\]

is at most countable.

Let us define

\[
D_0 = \{ x \in J_u \mid \gamma^+(u)(x) \neq \gamma^-(u)(x) \}, \\
D_s = \{ x \in J_u \mid \gamma^+(u + sv)(x) \neq \gamma^-(u + sv)(x) \},
\]

and notice that

\[
\mathcal{H}^{n-1}(J_u \setminus D_0) = 0, \quad \mathcal{H}^{n-1}(J_{u+sv} \setminus D_s) = 0.
\]

Then we have to prove that

\[
\{ s \in [-s_0, s_0] \mid \mathcal{H}^{n-1}(D_0 \setminus D_s) \neq 0 \}
\]

is at most countable. Observe that if \(t \neq s \),

\[
(D \setminus D_t) \cap (D \setminus D_s) = \emptyset.
\]

Indeed if \(x \in D \setminus D_s \)

\[
\gamma^+(u)(x) \neq \gamma^-(u)(x), \\
\gamma^+(u) + s\gamma^+(v)(x) = \gamma^-(u) + s\gamma^-(v)(x),
\]

then

\[
\gamma^+(v)(x) \neq \gamma^-(v)(x),
\]
and so
\[s = \frac{\gamma^-(u)(x) - \gamma^+(u)(x)}{\gamma^+(v)(x) - \gamma^-(v)(x)}. \]

If \(H^0 \) denotes the counting measure in \(\mathbb{R} \), we can write
\[
\int_{-s_0}^{s_0} H^{n-1}(D_0 \setminus D_s) \, dH^0 = H^{n-1}\left(\bigcup_{(-s_0,s_0)} D_0 \setminus D_s \right) \leq H^{n-1}(J_u) < +\infty,
\]
then the claim is proved.

We are now able to differentiate in \(s = 0 \) the function \(F(u + sv) \), and observing that \(0 \notin S \) is a minimum for \(F(u + sv) \), we get
\[
\frac{1}{2} \delta F(u, v) = \int_{\mathbb{R}^n} \nabla u \cdot \nabla v \, dL^n + \beta \int_{J_u} [\pi\gamma^+(v) + \omega\gamma^-(v)] \, dH^{n-1} = \int_{\Omega} fv \, dL^n = 0.
\]

If \(v \notin L^\infty(\mathbb{R}^n) \), we consider \(v_h = \min\{v, h\} \). Then
\[
\delta F(u, v_h) = 0 \quad \forall h > 0.
\]

Observe that, since \(\gamma^\pm(v_h) = \min\{\gamma^\pm(v), h\} \),
\[
\gamma^\pm(v_h) \to \gamma^\pm(v) \quad H^{n-1}\text{-a.e. in } J_u.
\]

Therefore, passing to limit for \(h \to +\infty \), by dominated convergence on the term
\[
\int_{\mathbb{R}^n} \nabla u \cdot \nabla v_h \, dL^n,
\]
and by monotone convergence on the terms
\[
\beta \int_{J_u} [\pi\gamma^+(v_h) + \omega\gamma^-(v_h)] \, dH^{n-1}, \quad \int_{\Omega} fv_h \, dL^n,
\]
we get
\[
0 = \lim_{h} \delta F(u, v_h) = \delta F(u, v).
\]

We now want to use the Euler-Lagrange equation (3.7) to prove that if \(f \) belongs to \(L^p(\Omega) \) with \(p > n \), and if \(u \) is a minimizer to problem (1.5) then \(u \) belongs to \(L^\infty(\mathbb{R}^n) \). In order to prove this we need the following

Lemma 3.5. Let \(m \) be a positive real number. There exists a positive constant \(C = C(m, \beta, n) \) such that, for every function \(v \in SBV^1(\mathbb{R}^n) \) with \(L^\infty(\{ v > 0 \}) \leq m \),
\[
\left(\int_{\mathbb{R}^n} v^{2-1^*} \, dL^n \right)^{\frac{1}{2}} \leq C \left[\int_{\mathbb{R}^n} |\nabla v|^2 \, dL^n + \beta \int_{J_u} (\pi^2 + v^2) \, dH^{n-1} \right],
\]
where \(1^* = \frac{n}{n-1} \) is the Sobolev conjugate of 1.

Proof. Classical Embedding of \(BV(\mathbb{R}^n) \) in \(L^{1^*}(\mathbb{R}^n) \) ensures that

\[
\left(\int_{\mathbb{R}^n} v^{2-1^*} \ d\mathcal{L}^n \right)^{1^*} \leq C(n) \| Dv^2 \| (\mathbb{R}^n)
\]

\[
= C(n) \left[\int_{\mathbb{R}^n} 2v |\nabla v| \ d\mathcal{L}^n + \int_{J_v} (v^2 + \bar{v}^2) \ d\mathcal{H}^{n-1} \right].
\]

For every \(\varepsilon > 0 \), using Young’s and Hölder’s inequalities, we have

\[
\left(\int_{\mathbb{R}^n} v^{2-1^*} \ d\mathcal{L}^n \right)^{1^*} \leq \frac{C(n)}{\varepsilon} \int_{\mathbb{R}^n} v^2 \ d\mathcal{L}^n
\]

\[
\quad + C(n) \left[\varepsilon \int_{\mathbb{R}^n} |\nabla v|^2 \ d\mathcal{L}^n + \int_{J_v} (v^2 + \bar{v}^2) \ d\mathcal{H}^{n-1} \right]
\]

\[
\leq \frac{C(n) m^\frac{1}{n}}{\varepsilon} \left(\int_{\mathbb{R}^n} v^{2-1^*} \ d\mathcal{L}^n \right)^{1^*}
\]

\[
\quad + C(n) \left[\varepsilon \int_{\mathbb{R}^n} |\nabla v|^2 \ d\mathcal{L}^n + \int_{J_v} (v^2 + \bar{v}^2) \ d\mathcal{H}^{n-1} \right].
\]

Setting \(\varepsilon = 2C(n)m^\frac{1}{n} \), we can find two constants \(C(m, n), C(m, \beta, n) > 0 \) such that

\[
\left(\int_{\mathbb{R}^n} v^{2-1^*} \ d\mathcal{L}^n \right)^{1^*} \leq C(m, n) \left[\int_{\mathbb{R}^n} |\nabla v|^2 \ d\mathcal{L}^n + \int_{J_v} (v^2 + \bar{v}^2) \ d\mathcal{H}^{n-1} \right]
\]

\[
\leq C(m, \beta, n) \left[\int_{\mathbb{R}^n} |\nabla v|^2 \ d\mathcal{L}^n + \beta \int_{J_v} (v^2 + \bar{v}^2) \ d\mathcal{H}^{n-1} \right].
\]

\[\square\]

We refer to [15] for the following lemma.

Lemma 3.6. Let \(g : [0, +\infty) \to [0, +\infty) \) be a decreasing function and assume that there exist \(C, \alpha > 0 \) and \(\theta > 1 \) constants such that for every \(h > k \geq 0 \),

\[
g(h) \leq C(h - k)^{-\alpha} g(k)^\theta.
\]

Then there exists a constant \(h_0 > 0 \) such that

\[
g(h) = 0 \quad \forall h \geq h_0.
\]

In particular we have

\[
h_0 = C^\frac{1}{\alpha} g(0)^{\frac{\theta-1}{\alpha}} 2^{\theta(\theta-1)}.
\]
Proposition 3.7 \((L^\infty \text{ bound}) \). Let \(n \geq 2 \) and assume that, if \(n = 2 \), condition \((1.6)\) holds true. Let \(f \in L^p(\Omega) \), with \(p > n \). Then there exists a constant \(C = C(\Omega, f, p, \beta, C_0) > 0 \) such that if \(u \) is a minimizer to problem \((1.5)\), then

\[
\|u\|_{L^\infty} \leq C.
\]

Proof. Let \(\gamma^+ = \gamma^+_u \). For every \(\varphi, \psi \in SBV^{\frac{1}{2}}(\mathbb{R}^n) \) satisfying \(J_{\varphi}, J_{\psi} \subseteq J_u \), define

\[
a(\varphi, \psi) = \int_{\mathbb{R}^n} \nabla \varphi \cdot \nabla \psi \, d\mathcal{L}^n + \beta \int_{J_u} [\gamma^+(\varphi)\gamma^+(\psi) + \gamma^-(\varphi)\gamma^-(\psi)] \, dH^{n-1}.
\]

For every \(v \) satisfying the assumptions of Theorem 3.4, it holds that

\[
a(u, v) = \int_{\Omega} fv \, d\mathcal{L}^n.
\]

In particular, let us fix \(k \in \mathbb{R}^+ \) and define

\[
\varphi_k(x) = \begin{cases} u(x) - k & \text{if } u(x) \geq k, \\ 0 & \text{if } u(x) < k,
\end{cases}
\]

then

\[
\gamma^+(\varphi_k)(x) = \begin{cases} \pi(x) - k & \text{if } \pi(x) \geq k, \\ 0 & \text{if } \pi(x) < k,
\end{cases}
\]

and analogously for \(\gamma^-(\varphi_k) \). Furthermore, let us define

\[
\mu(k) = \mathcal{L}^n(\{ u > k \}).
\]

We want to prove that \(\mu(k) = 0 \) for sufficiently large \(k \). From Theorem 3.4, we have

\[
a(u, \varphi_k) = \int_{\Omega} f\varphi_k \, d\mathcal{L}^n, \tag{3.8}
\]

and we can observe that

\[
a(u, \varphi_k) = \int_{\{ u > k \}} |\nabla u|^2 \, d\mathcal{L}^n + \beta \int_{J_u \cap \{ u > k \}} [\pi(u - k) + u(u - k)] \, dH^{n-1} \\
\geq \int_{\{ u > k \}} |\nabla u|^2 \, d\mathcal{L}^n + \beta \int_{J_u \cap \{ u > k \}} [(u - k)^2 + (u - k)^2] \, dH^{n-1} \\
= a(\varphi_k, \varphi_k).
\]

Moreover, by minimality, \(\mathcal{F}(u) \leq \mathcal{F}(0) = 0 \) and by Remark 3.2, \(\Omega \subseteq \{ u > 0 \} \). Therefore, \((3.1)\) holds true and we can apply Lemma 3.5, having that there exists \(C = C(\Omega, f, \beta, C_0) > 0 \) such that

\[
\int_{\Omega} f\varphi_k \, d\mathcal{L}^n = a(u, \varphi_k) \geq a(\varphi_k, \varphi_k) \geq C\|\varphi_k\|_{L^1}^2. \tag{3.9}
\]
On the other hand

$$\int_{\Omega} f \varphi_k \, d\mathcal{L}^n = \int_{\Omega \cap \{ u > k \}} f(u - k) \, d\mathcal{L}^n \leq \left(\int_{\Omega \cap \{ u > k \}} f^{\frac{2}{p+1}} \, d\mathcal{L}^n \right)^{\frac{p+1}{2}} \| \varphi_k \|_{2,1^*} \tag{3.10}$$

where

$$\sigma = \frac{p(n + 1)}{2n} > 1,$$

since $p > n$. Joining (3.9) and (3.10), we have

$$\| \varphi_k \|_{2,1^*} \leq C \| f \|_{p,\Omega} \mu(k)^{\frac{n+1}{2n+1}}, \tag{3.11}$$

Let $h > k$, then

$$(h - k)^{2-1^*} \mu(h) = \int_{\{ u > h \}} (h - k)^{2-1^*} \, d\mathcal{L}^n$$

$$\leq \int_{\{ u > h \}} (u - k)^{2-1^*} \, d\mathcal{L}^n$$

$$\leq \int_{\{ u > k \}} (u - k)^{2-1^*} \, d\mathcal{L}^n = \| \varphi_k \|_{2,1^*}.$$

Using (3.11) and the previous inequality, we have

$$\mu(h) \leq C(h - k)^{-2-1^*} \mu(k)^{\frac{n+1}{(n-1)\sigma}}.$$

Since $p > n$, then $\sigma' < (n + 1)/(n - 1)$. By Lemma 3.6, we have that $\mu(h) = 0$ for all $h \geq h_0$ with $h_0 = h_0(\Omega, f, \beta, C_0) > 0$, which implies

$$\| u \|_\infty \leq h_0.$$

Proof of Theorem 1.1. The result is obtained by joining Proposition 3.3 and Proposition 3.7.

4. DENSITY ESTIMATES FOR THE JUMP SET

In this section we prove Theorem 1.2: in Proposition 4.6 we prove the lower bound for minimizers to problem (1.5); in Proposition 4.8 and Proposition 4.9 we prove the density estimates for the jump set of a minimizer to problem (1.5).

In this section, we will assume that $\Omega \subseteq \mathbb{R}^n$ is an open bounded set with $C^{1,1}$ boundary, that $f \in L^p(\Omega)$, with $p > n$, is a positive function, and that β, C_0 are positive constants. We consider the energy functional F defined in (1.4).

In order to show that if u is a minimizer to problem (1.5) then u is bounded away from 0, we will first prove that there exists a positive constant δ such that $u > \delta$ almost everywhere in Ω, and then we will show that this implies the existence of a positive constant δ_0 such that $u > \delta_0$ almost everywhere in the set $\{ u > 0 \}$. In the following we will denote by $U_t := \{ u < t \} \cap \Omega$.

Remark 4.1. Let u be a minimizer to (1.5), by Remark 3.2, u is a solution to

$$
\begin{cases}
-\Delta u = f & \text{in } \Omega, \\
u \geq 0 & \text{on } \partial \Omega
\end{cases}
$$

\hspace{1cm}

Let $u_0 \in W^{1,2}_0(\Omega)$ be the solution to the following boundary value problem

$$
\begin{cases}
-\Delta u_0 = f & \text{in } \Omega, \\
u_0 = 0 & \text{on } \partial \Omega.
\end{cases}
\tag{4.1}
$$

Then, by maximum principle,

$$
u \geq u_0 \quad \text{in } \Omega \subseteq \{ u > 0 \} \quad \text{and} \quad \{ u < t \} \cap \Omega = U_t \subseteq \{ u_0 < t \} \cap \Omega.
$$

Lemma 4.2. There exist two positive constants $t_0 = t_0(\Omega, f)$ and $C = C(\Omega, f)$ such that if u is a minimizer to (1.5) then for every $t \in [0, t_0]$ it results

$$
\mathcal{L}^n(U_t) \leq C t.
\tag{4.2}
$$

Proof. Let u_0 be the solution to (4.1), fix $\varepsilon > 0$ such that the set

$$
\Omega_\varepsilon = \{ x \in \Omega \mid d(x, \partial \Omega) > \varepsilon \}
$$

is not empty. Since u_0 is superharmonic and non-negative in Ω, by maximum principle we have that

$$
\alpha = \inf_{\Omega_\varepsilon} u_0 > 0.
$$

then u_0 solves

$$
\begin{cases}
-\Delta u_0 = f & \text{in } \Omega, \\
u_0 = 0 & \text{on } \partial \Omega, \\
u_0 \geq \alpha & \text{on } \partial \Omega_\varepsilon.
\end{cases}
$$

Therefore, if we consider the solution v to the following boundary value problem

$$
\begin{cases}
-\Delta v = 0 & \text{in } \Omega \setminus \overline{\Omega}_\varepsilon, \\
v = 0 & \text{on } \partial \Omega, \\
v = \alpha & \text{in } \overline{\Omega}_\varepsilon,
\end{cases}
$$

we have that $u \geq u_0 \geq v$ almost everywhere in Ω and

$$
\{ u < t \} \cap \Omega = U_t \subseteq \{ u_0 < t \} \cap \Omega \subseteq \{ v < t \} \cap \Omega.
$$

Hopf Lemma implies that

there exists a constant $\tau = \tau(\Omega) > 0$ such that

$$
\frac{\partial v}{\partial \nu} < -\tau \quad \text{on } \partial \Omega.
$$
Let \(x \in \Omega \), and let \(x_0 \) be a projection of \(x \) onto the boundary \(\partial \Omega \), then

\[
|x - x_0| = d(x, \partial \Omega), \quad \frac{x - x_0}{|x - x_0|} = -\nu_\Omega(x_0),
\]

where \(\nu_\Omega \) denotes the exterior normal to \(\partial \Omega \). We can write

\[
v(x) = v(x_0) + \nabla v(x_0) \cdot (x - x_0) + o(|x - x_0|)
\]

\[
= -\frac{\partial v}{\partial \nu}(x_0)|x - x_0| + o(|x - x_0|)
\]

\[
\geq \tau |x - x_0| + o(|x - x_0|)
\]

\[
> \frac{\tau}{2} |x - x_0| = \frac{\tau}{2} d(x, \partial \Omega)
\]

(4.3)

for every \(x \) such that \(d(x, \partial \Omega) < \sigma_0 \) for a suitable \(\sigma_0 = \sigma_0(\Omega, f) > 0 \). Notice that if \(\bar{x} \in \Omega \) and \(\lim_{x \to \bar{x}} v(x) = 0 \) then necessarily \(\bar{x} \in \partial \Omega \). Therefore, there exists a \(t_0 = t_0(\Omega, f) > 0 \) such that \(v(x) < t_0 \) implies \(d(x, \partial \Omega) < \sigma_0 \). Consequently, if \(t < t_0 \), we have that

\[
\{ v < t \} \subseteq \{ d(x, \partial \Omega) < \sigma_0 \},
\]

and by (4.3), we get

\[
\mathcal{L}^n(U_t) \leq \mathcal{L}^n(\{ v < t \}) \leq \mathcal{L}^n\left(\left\{ x \in \Omega \mid d(x, \partial \Omega) \leq \frac{2}{\tau} t \right\} \right).
\]

Since \(\Omega \) is \(C^{1,1} \), by Proposition 2.18, we conclude the proof.

\[\square \]

Lemma 4.3. Let \(g : [0, t_1] \to [0, +\infty) \) be an increasing, absolutely continuous function such that

\[
g(t) \leq C t^\alpha (g'(t))^\sigma \quad \forall t \in [0, t_1],
\]

(4.4)

with \(C > 0 \) and \(\alpha > \sigma > 1 \). Then there exists \(t_0 > 0 \) such that

\[
g(t) = 0 \quad \forall t \leq t_0.
\]

Precisely,

\[
t_0 = \left(\frac{C(\alpha - \sigma)}{\sigma - 1} g(t_1)^{\frac{\sigma - 1}{\sigma}} + t_1^\frac{\sigma - \alpha}{\sigma} \right)^{\frac{\alpha}{\sigma - \alpha}}.
\]

Proof. Assume by contradiction that \(g(t) > 0 \) for every \(t > 0 \). Inequality (4.4) implies

\[
\frac{g'}{g^\frac{\sigma}{\alpha}} \geq \frac{1}{C} t^{-\frac{\alpha}{\sigma}}.
\]
Integrating between t_0 and t_1, we have
\[\frac{\sigma}{\sigma - 1} \left(g(t_1) \frac{\sigma - 1}{\sigma} - g(t_0) \frac{\sigma - 1}{\sigma} \right) \geq \frac{1}{C} \frac{\sigma}{\sigma - \alpha} \left(t_1^\frac{\sigma - \alpha}{\sigma} - t_0^\frac{\sigma - \alpha}{\sigma} \right). \]

Since $\alpha > \sigma > 1$, we have
\[0 \leq g(t_0) \frac{\sigma - 1}{\sigma} \leq \frac{\sigma - 1}{C(\alpha - \sigma)} \left(t_1^\frac{\sigma - \alpha}{\sigma} - t_0^\frac{\sigma - \alpha}{\sigma} \right) + g(t_1) \frac{\sigma - 1}{\sigma}, \]
which is a contradiction if
\[t_0 \leq \left(\frac{C(\alpha - \sigma)}{\sigma - 1} g(t_1) \frac{\sigma - 1}{\sigma} + t_1 \frac{\sigma - \alpha}{\sigma} \right) \frac{\sigma - \alpha}{\sigma}. \]

\[\square \]

Remark 4.4. Let g be as in Lemma 4.3 and assume that $g(t_1) \leq K$, then $g(t) = 0$ for all $0 < t < \tilde{t}$ where
\[\tilde{t} = \left(\frac{C(\alpha - \sigma)}{\sigma - 1} K \frac{\sigma - 1}{\sigma} + t_1 \frac{\sigma - \alpha}{\sigma} \right) \frac{\sigma - \alpha}{\sigma}. \]

We now have the tools to prove the lower bound inside Ω.

Proposition 4.5. There exists a positive constant $\delta = \delta(\Omega, f, p, \beta, C_0) > 0$ such that if u is a minimizer to problem (1.5) then
\[u \geq \delta \]
almost everywhere in Ω.

Proof. Assume that Ω is connected and define the function
\[u_t(x) = \begin{cases} \max\{u, t\} & \text{in } \Omega, \\ u & \text{in } \mathbb{R}^n \setminus \Omega \end{cases} \]
Recalling that $U_t = \{ u < t \} \cap \Omega$, we have
\[J_{u_t} \setminus \partial^* U_t = J_u \setminus \partial^* U_t, \]
and on this set $u_t = u$ and $\mathring{U_t} = \mathring{U}$.

Then we get by minimality of u, and using the fact that $J_{u_t} \cap \partial^* U_t \subseteq \partial \Omega$,

$$0 \geq F(u) - F(u_t)$$

$$= \int_{U_t} |\nabla u|^2 \, d\mathcal{L}^n - 2 \int_{U_t} f(u - t) \, d\mathcal{L}^n + \beta \int_{\partial^* U_t \cap J_u} (u^2 + \overline{u}^2) \, d\mathcal{H}^{n-1} +$$

$$- \beta \int_{J_{u_t} \cap \partial^* U_t \cap J_u} \left[t^2 + (\gamma_{\partial^* \Omega}(u))^2 \right] \, d\mathcal{H}^{n-1} - \beta \int_{(J_{u_t} \cap \partial^* U_t) \setminus J_u} (t^2 + u^2) \, d\mathcal{H}^{n-1}$$

$$\geq \int_{U_t} |\nabla u|^2 \, d\mathcal{L}^n - 2 \beta t^2 \mathcal{H}^{n-1}(\partial^* U_t \cap \partial \Omega)$$

where we ignored all the non-negative terms except the integral of $|\nabla u|^2$, and we used that $u \leq t$ in $\partial^* U_t \setminus J_u$. By Lemma 4.2, we can choose t small enough to have $\mathcal{L}^n(U_t) \leq \mathcal{L}^n(\Omega)/2$, then applying the isoperimetric inequality in Theorem 2.6 to the set $E = U_t$, we get

$$\int_{U_t} |\nabla u|^2 \, d\mathcal{L}^n \leq 2\beta Ct^2 P(U_t; \Omega). \quad (4.5)$$

Let us define

$$p(t) = P(U_t; \Omega),$$

and consider the absolutely continuous function

$$g(t) = \int_{U_t} u |\nabla u| \, d\mathcal{L}^n = \int_0^t s p(s) \, ds.$$

By minimality of u we can apply the a priori estimates (3.6) to prove the equiboundedness of g, i.e. there exists $K = K(\Omega, f, \beta, C_0) > 0$ such that $g(t) \leq K$ for all $t > 0$. Using the Hölder inequality and the estimate (4.5) we have

$$g(t) \leq \left(\int_{U_t} u^2 \, d\mathcal{L}^n \right)^{\frac{1}{2}} \left(\int_{U_t} |\nabla u|^2 \, d\mathcal{L}^n \right)^{\frac{1}{2}} \leq \sqrt{2\beta C t \mathcal{L}^n(U_t)^{\frac{1}{2}} (t^2 p(t))^{\frac{1}{2}}}.$$

Fix $1 > \varepsilon > 0$. Then we can write $\mathcal{L}^n(U_t) = \mathcal{L}^n(U_t)^{\varepsilon} \mathcal{L}^n(U_t)^{1-\varepsilon}$, and by Lemma 4.2 there exists a constant $C = C(\Omega, f, \beta) > 0$ such that

$$g(t) \leq C t^{2 + \frac{1-\varepsilon}{\varepsilon} \mathcal{L}^n(U_t)^{\varepsilon} p(t)^{\frac{1}{\varepsilon}}}.$$

By the relative isoperimetric inequality in Theorem 2.5, we can estimate

$$\mathcal{L}^n(U_t)^{\frac{1}{\varepsilon}} \leq C(\Omega, n) p(t)^{\frac{n}{n-1}},$$

and, noticing that $p(t) = g'(t)/t$, we get

$$g(t) \leq Ct^{\alpha}(g'(t))^\sigma,$$
where
\[\alpha = 2 - \frac{\varepsilon}{2} \left(1 + \frac{n}{n-1} \right), \quad \sigma = \frac{1}{2} + \frac{\varepsilon}{2} \frac{n}{n-1}. \]

In particular, if we choose
\[\varepsilon \in \left(\frac{n-1}{n}, \frac{3n-3}{3n-1} \right), \]
we have that \(\alpha > \sigma > 1 \), and then, using Lemma 4.3 and Remark 4.4, there exists a \(\delta = \delta(\Omega, f, p, \beta, C_0) > 0 \) such that \(g(t) = 0 \) for every \(t < \delta \). Then \(L^n(\{ u < t \} \cap \Omega) = 0 \) for every \(t < \delta \), hence
\[u \geq \delta \]
after everywhere in \(\Omega \).

When \(\Omega \) is not connected, then
\[\Omega = \Omega_1 \cup \cdots \cup \Omega_N, \]
with \(\Omega_i \) pairwise disjoint connected open sets. Using \(u_t \) as the function \(u \) truncated inside a single \(\Omega_i \), we find constants \(\delta_i > 0 \) such that
\[u(x) \geq \delta_i \]
after everywhere in \(\Omega_i \). Therefore choosing \(\delta = \min \{ \delta_1, \ldots, \delta_N \} \) we have \(u(x) > \delta \) almost everywhere in \(\Omega \).

Finally, following the approach in [7], we have

Proposition 4.6 (Lower Bound). There exists a positive constant \(\delta_0 = \delta_0(\Omega, f, p, \beta, C_0) \) such that if \(u \) is a minimizer to problem (1.5) then
\[u \geq \delta_0 \]
after everywhere in \(\{ u > 0 \} \).

Proof. Let \(\delta \) be the constant in Proposition 4.5. For every \(0 < t \leq \delta \) let us define the absolutely continuous function
\[h(t) = \int_{\{ u \leq t \} \setminus J_u} u \left| \nabla u \right| \, dL^n = \int_0^t sP(\{ u > s \} ; \mathbb{R}^n \setminus J_u) \, ds. \]

By minimality of \(u \) we can apply the a priori estimates (3.6) to prove the equiboundedness of \(h \), i.e. there exists \(K = K(\Omega, f, \beta, C_0) > 0 \) such that \(h(t) \leq K \) for all \(t > 0 \).

We will show that \(h \) satisfies a differential inequality. For any \(0 < t < \delta \), let us consider \(u^t = u \chi_{\{ u > t \}} \), where \(\chi_{\{ u > t \}} \) is the characteristic function of the set \(\{ u > t \} \), as a competitor for \(u \). We observe that, by Proposition 4.5,
\[\Omega \subseteq \{ u > t \}, \text{ so we have that} \]
\[0 \geq F(u) - F(u') \]
\[= \int_{\{ u \leq t \} \setminus J_u} |\nabla u|^2 \, d\mathcal{L}^n + \beta \int_{J_u \cap \{ u > t \}^{(0)}} (u^2 + \pi^2) \, d\mathcal{H}^{n-1} \]
\[+ \beta \int_{J_u \cap \partial^* \{ u > t \}} u^2 \, d\mathcal{H}^{n-1} - \beta \int_{\partial^* \{ u > t \} \setminus J_u} u^2 \, d\mathcal{H}^{n-1} \]
\[+ C_0 \mathcal{L}^n (\{ 0 < u \leq t \}). \]

Rearranging the terms,
\[\int_{\{ u \leq t \} \setminus J_u} |\nabla u|^2 \, d\mathcal{L}^n + \beta \int_{J_u \cap \{ u > t \}^{(0)}} (u^2 + \pi^2) \, d\mathcal{H}^{n-1} \]
\[+ \beta \int_{J_u \cap \partial^* \{ u > t \}} u^2 \, d\mathcal{H}^{n-1} - \beta \int_{\partial^* \{ u > t \} \setminus J_u} u^2 \, d\mathcal{H}^{n-1} \]
\[\leq \beta t^2 P \left(\left\{ u > t \right\} : \mathbb{R}^n \setminus J_u \right) = \beta t h'(t). \]

On the other hand using Hölder’s inequality, we have
\[h(t) \leq \left(\int_{\{ u \leq t \}} |\nabla u|^2 \, d\mathcal{L}^n \right)^{\frac{2}{3}} \mathcal{L}^n (\{ 0 < u \leq t \})^{\frac{1}{3}} \left(\int_{\{ u \leq t \}} u^{2-1^*} \, d\mathcal{L}^n \right)^{\frac{1}{2}}. \] (4.7)

Classical Embedding of BV in \(L^{1^*} \) applied to \(u^2 \chi_{\{ u \leq t \}} \), ensures
\[\left(\int_{\{ u \leq t \}} u^{2-1^*} \, d\mathcal{L}^n \right)^{\frac{1}{2^*}} \leq C(n)|D(u^2 \chi_{\{ u \leq t \}})|(\mathbb{R}^n), \]

and, using (4.6),
\[|D(u^2 \chi_{\{ u \leq t \}})|(\mathbb{R}^n) = 2 \int_{\{ u \leq t \}} u |\nabla u| \, d\mathcal{L}^n + \beta \int_{J_u \cap \{ u > t \}^{(0)}} (u^2 + \pi^2) \, d\mathcal{H}^{n-1} \]
\[+ \beta \int_{J_u \cap \partial^* \{ u > t \}} u^2 \, d\mathcal{H}^{n-1} + \beta \int_{\partial^* \{ u > t \} \setminus J_u} u^2 \, d\mathcal{H}^{n-1} \]
\[\leq 2t \left(\mathcal{L}^n (\{ 0 < u \leq t \}) \int_{\{ u \leq t \} \setminus J_u} |\nabla u|^2 \, d\mathcal{L}^n \right)^{\frac{1}{2}} + 3th'(t) \]
\[\leq \left(2 \frac{\delta \beta}{\sqrt{C_0}} + 3 \right) t h'(t). \] (4.8)

Therefore, joining (4.7), (4.6), and (4.8), we have
\[h(t) \leq C_3 (th'(t))^{1 + \frac{1}{n^*}}, \] (4.9)
where
\[C_3 = \beta^{\frac{1}{2}} \left(\frac{\beta}{C_0} \right)^{\frac{1}{2}} C(n)^{\frac{1}{2}} \left(2 \frac{\delta \beta}{\sqrt{C_0}} + 3 \right)^{\frac{1}{2}}. \]

By (4.9) we now want to show that there exists \(\delta_0 = \delta_0(\Omega, f, p, \beta, C_0) > 0 \) such that \(h(t) = 0 \) for every \(0 \leq t < \delta_0 \). Indeed assume by contradiction that \(h(t) > 0 \) for every \(0 < t \leq \delta \). We have

\[\frac{h'(t)}{h(t)^{\frac{2n}{2n+1}}} \geq C_3^{-\frac{2n}{2n+1}} \left(\frac{2n}{2n+1} \right). \]

Integrating from \(t_0 > 0 \) to \(\delta \), we get

\[\left(h(\delta)^{\frac{1}{2n+1}} - h(t_0)^{\frac{1}{2n+1}} \right) \geq C_4 \log \left(\frac{\delta}{t_0} \right), \]

where
\[C_4 = C_3^{-\frac{2n}{2n+1}} \frac{2n}{2n+1}. \]

Then
\[h(t_0)^{\frac{1}{2n+1}} \leq h(\delta)^{\frac{1}{2n+1}} + C_4 \log \left(\frac{t_0}{\delta} \right). \]

Finally, for any
\[0 < t_0 \leq \bar{\delta} = \delta \exp \left(-h(\delta)^{\frac{1}{2n+1}}/C_4 \right), \]
we have \(h(t_0) < 0 \), which is a contradiction. Then, setting \(\delta_0 = \delta \exp \left(-K^{\frac{1}{2n+1}}/C_4 \right) \leq \bar{\delta} \), we conclude that \(h(t) = 0 \) for any \(0 < t < \delta_0 \), from which we have
\[u \geq \delta_0 \]
almost everywhere in \{ \(u > 0 \) \}.

Remark 4.7. From Proposition 4.6, if \(u \) is a minimizer to problem (1.5), we have that
\[\partial^* \{ u > 0 \} \subseteq J_u \subseteq K_u. \tag{4.10} \]
Indeed, on \(\partial^* \{ u > 0 \} \) we have that, by definition, \(u = 0 \) and that, since \(u \geq \delta_0 \mathcal{L}^n \text{-a.e. in } \{ u > 0 \} \), \(\bar{u} \geq \delta_0 \).

Proposition 4.8 (Density Estimates). There exist positive constants \(C = C(\Omega, f, p, \beta, C_0) \), \(c = c(\Omega, f, p, \beta, C_0) \) and \(\delta_1 = \delta_1(\Omega, f, p, \beta, C_0) \) such that if \(u \) is a minimizer to problem (1.5) then for every \(B_r(x) \) such that \(B_r(x) \cap \Omega = \emptyset \), we have:

(a) For every \(x \in \mathbb{R}^n \setminus \Omega \),
\[\mathcal{H}^{n-1}(J_u \cap B_r(x)) \leq C r^{n-1}; \tag{4.11} \]
(b) For every $x \in K_u$,
\[\mathcal{L}^n(B_r(x) \cap \{ u > 0 \}) \geq cr^n; \]
\[(4.12) \]

(c) The function u has bounded support, namely
\[\{ u > 0 \} \subseteq B_{1/\delta_1}. \]

Proof. This theorem is a consequence of Proposition 4.6, since we immediately have
\[\int_{J_u \cap B_r(x)} (u^2 + \pi^2) \, d\mathcal{H}^{n-1} \geq \delta_0^2 \mathcal{H}^{n-1}(J_u \cap B_r(x)), \]
and by minimality of u we have (a)
\[
0 \geq F(u) - F(u \chi_{\mathbb{R}^n \setminus B_r(x)}) \\
\geq \int_{J_u \cap B_r(x)} (u^2 + \pi^2) \, d\mathcal{H}^{n-1} - \int_{\partial B_r(x) \setminus J_u} u^2 \, d\mathcal{H}^{n-1} \\
\geq \int_{J_u \cap B_r(x)} (u^2 + \pi^2) \, d\mathcal{H}^{n-1} - \int_{\partial B_r(x) \setminus \{ u>0 \}^{(1)}} (u^2 + \pi^2) \, d\mathcal{H}^{n-1} \\
\geq \int_{J_u \cap B_r(x)} (u^2 + \pi^2) \, d\mathcal{H}^{n-1} - 2\|u\|_\infty^2 \mathcal{H}^{n-1}(\partial B_r(x) \cap \{ u > 0 \}^{(1)}),
\]
where, in the second inequality, we have used (4.10). Thus we have
\[\mathcal{H}^{n-1}(J_u \cap B_r(x)) \leq \frac{2\|u\|_\infty^2}{\delta_0^2} \mathcal{H}^{n-1}(\partial B_r(x) \cap \{ u > 0 \}^{(1)}) \leq Cr^{n-1}, \]
where $C = C(\Omega, f, p, \beta, C_0) > 0$.

(b) We now want to use the estimate (4.11) together with the relative isoperimetric inequality in order to get a differential inequality for the volume of $B_r(x) \cap \{ u > 0 \}^{(1)}$. Let $x \in K_u$, then for almost every r we have
\[0 < V(r) := \mathcal{L}^n(B_r(x) \cap \{ u > 0 \}^{(1)}) \leq k P(B_r(x) \cap \{ u > 0 \}^{(1)}) \frac{n-1}{n} \]
\[\leq k \mathcal{H}^{n-1}(\partial B_r(x) \cap \{ u > 0 \}^{(1)}) \frac{n-1}{n}, \]
where $k = k(\Omega, f, p, \beta, C_0) > 0$, and in the last inequality we used that (4.10) and (4.13) imply
\[P \left(B_r(x) \cap \{ u > 0 \}^{(1)} \right) \leq \mathcal{H}^{n-1} \left(\partial B_r(x) \cap \{ u > 0 \}^{(1)} \right) + \mathcal{H}^{n-1} (J_u \cap B_r(x)) \]
\[\leq \left(1 + \frac{2\|u\|_\infty^2}{\delta_0^2} \right) P(B_r(x); \{ u > 0 \}^{(1)}). \]

Then we have
\[\frac{V'(r)}{V(r)^{\frac{n-1}{n}}} \geq \frac{1}{k}, \]
which implies
\[\mathcal{L}^n(B_r(x) \cap \{ u > 0 \}) \geq cr^n. \]

(c) Finally, let \(x \in K_u \) such that \(d(x, \partial \Omega) \geq 1/\delta_1 \). From (4.12), noticing that \(F(u) \leq F(0) = 0 \), we have that
\[c\delta_1^{-n} \leq \mathcal{L}^n(\{ u > 0 \} \setminus \Omega) \leq \frac{2\|u\|_{\infty}}{C_0} \int_{\Omega} f \, d\mathcal{L}^n, \]
which is a contradiction if \(\delta_1 \) is sufficiently small. Then the thesis is given by (4.10).

Finally, we have

Proposition 4.9 (Lower Density Estimate). There exists a positive constant \(c = c(\Omega, f, p, \beta, C_0) \) such that if \(u \) is a minimizer to problem (1.5) then

1. For any \(x \in K_u \) and \(B_r(x) \subseteq \mathbb{R}^n \setminus \Omega \),
 \[\mathcal{H}^{n-1}(J_u \cap B_r(x)) \geq cr^{n-1}; \]

2. \(J_u \) is essentially closed, namely
 \[\mathcal{H}^{n-1}(K_u \setminus J_u) = 0; \]

The proof of Proposition 4.9 relies on classical techniques used in [9] to prove density estimates for the jump set of almost-quasi minimizers of the Mumford-Shah functional. We refer to Theorem 5.1 of [7] and Corollary 5.4 of [7] for the details of the proof.

Proof of Theorem 1.2. The result is obtained by joining Proposition 4.6, Proposition 4.8, and Proposition 4.9.

Remark 4.10. Given the summability assumption on the function \(f \) and the lower bound given in Proposition 4.6, we have that minimizers to (1.2) are almost-quasi-minimizers of the functional \(\mathcal{G} \), defined on \(\text{SBV}^{1/2}(\mathbb{R}^n) \cap W^{1,2}(\Omega) \) as
\[\mathcal{G}(v) = \int_{\mathbb{R}^n} |\nabla v|^2 \, d\mathcal{L}^n + \lambda \mathcal{H}^{n-1}(J_v), \]
that is, there exists \(C(\Omega, f, p, \beta, C_0) > 0 \), \(\Lambda(\Omega, f, p, \beta, C_0) \geq \lambda \) and \(\alpha(n, p) > n - 1 \) such that, if \(B_r(x) \) is a ball of radius \(r \leq 1 \), and \(v \in \text{SBV}^{1/2}(\mathbb{R}^n) \cap W^{1,2}(\Omega) \), with \(\{ u \neq v \} \subset B_r(x) \), then
\[\mathcal{G}_\lambda(u; B_r(x)) \leq \mathcal{G}_\lambda(v; B_r(x)) + Cr^\alpha, \]
where
\[\mathcal{G}_\lambda(v; B_r(x)) := \int_{B_r(x)} |\nabla v|^2 \, d\mathcal{L}^n + \lambda \mathcal{H}^{n-1}(J_v \cap B_r(x)). \]

Indeed, let \(u \) be a minimizer to (1.2), let \(B_r(x) \) be a ball of radius \(r \leq 1 \), and let \(v \in \text{SBV}^{1/2}(\mathbb{R}^n) \cap W^{1,2}(\Omega) \), with \(\{ u \neq v \} \subset B_r(x) \), and let
\[w = \min \{ \max \{ v, 0 \}, \|u\|_{\infty} \}. \]
By minimality of \(u \) we have that
\[
G_\lambda(u; B_r(x)) \leq G_\lambda(v; B_r(x)) + Cr^n,
\]
where \(\lambda = \beta \delta_0^2 \) and \(\Lambda = 2 \beta \| u \|_\infty^2 \). Moreover,
\[
\int_{\Omega \cap B_r(x)} fu \, d\mathcal{L}^n \leq \| f \|_{p, \Omega} \| u \|_{\infty} \mathcal{L}^n(B_r)^{1/p'} = C(\Omega, f, p, \beta, C_0)r^\alpha,
\]
where
\[
n > \alpha = \frac{n}{p'} > n - 1.
\]
Finally, we have
\[
G_\lambda(u; B_r(x)) \leq G_\lambda(v; B_r(x)) + Cr^\alpha.
\]

Such a minimality property can be used to prove that the lower density estimate in Proposition 4.9 still holds even when \(B_r(x) \cap \Omega \) is non-empty. Indeed, the above density estimate is a consequence of the following decay lemma

Lemma 4.11 (Decay lemma). Let \(1 > \gamma > n - \alpha \). There exists \(\tau_0 = \tau_0(n, \Omega, \gamma, \lambda) > 0 \) such that for every \(\tau_0 > \tau > 0 \) there exist \(r_0 = r_0(\tau, \Omega), \varepsilon_0 = \varepsilon_0(\tau, \Omega) > 0 \) such that, if \(x_0 \in \partial \Omega, r_0 > r > 0, \) and \(u \) is a almost-quasi minimizer on \(B_r = B_r(x_0) \) for the functional \(\mathcal{G} \) such that
\[
\mathcal{H}^{n-1}(J_u \cap B_r) \leq \varepsilon_0 r^{n-1},
\]
then we have that either
\[
G_\lambda(u; B_r) \leq r^{n-\gamma},
\]
or
\[
G_\lambda(u; B_{rr}) \leq r^{n-\gamma} G_\lambda(u; B_r).
\]

Proof. The proof of the decay lemma is similar to the one in Lemma 5.3 of [7], Section 4 of [6], Lemma 4.9 of [9]; the main difference is in the construction of the blow-up sequence of almost-quasi minimizers.

Let \(u_k \) be a sequence of almost-quasi minimizer on \(B_{r_k} \) contradicting the lemma, with \(\lim_k r_k = 0 \). To reach a contradiction one usually constructs a sequence of functions \(\tilde{u}_k \) on the unit ball, related to the sequence \(u_k \), that converges to an harmonic function \(v \). In order to prove that \(v \) is harmonic we construct a sequence of admissible test functions \(\psi_k \) on \(B_{r_k} \) and use the minimality property of \(u_k \). If \(d(x_0, \Omega) > 0 \), then the test function are only required to be in \(\text{SBV}(B_{r_k}) \), while, if \(x_0 \in \partial \Omega \) the additional constraint \(\psi_k \in \text{SBV}(B_{r_k}) \cap W^{1,2}(\Omega \cap B_{r_k}) \) should be treated with more carefulness.

Without loss of generality let \(x_0 = 0 \) and let \(E_k = r_k^{2-n} G_\lambda(u_k; B_{r_k}) \), and define
\[
v_k(x) = \frac{1}{E_k^{1/2}} u_k(r_k x).
\]
For any k, we extend $u_k \in W^{1,2}(\Omega \cap B_{r_k})$ to $Lu_k \in W^{1,2}(B_{r_k})$, which is a function such that $u_k - Lu_k \equiv 0$ in Ω. Let us define, with a slight abuse of notation,

$$Lv_k(x) = \frac{1}{E^{1/2}_k} Lu_k(r_k x), \quad w_k = v_k - Lv_k,$$

so that, by construction, and by properties of the blow-up,

$$\lim inf_k L^n(\{w_k = 0\}) \geq \lim inf_k r_k^{-n} L^n(\Omega \cap B_{r_k}) > 0. \quad (4.14)$$

This is the key property: by Poincaré inequality in SBV, there exist \tilde{w}_k truncated functions, such that

$$\lim_k L^n(\{w_k \neq \tilde{w}_k\}) = 0, \quad (4.15)$$

and, up to subtracting medians, w_k converge in L^2 to some Sobolev function. By (4.14) and (4.15), and considering that \tilde{w}_k is a truncation of w_k, then for big enough k, up to L^n-negligible sets,

$$\{w_k = 0\} \subseteq \{w_k = \tilde{w}_k\}.$$

This means that if we define $\tilde{v}_k = \tilde{w}_k + Lv_k$, then the scaled back functions

$$\tilde{u}_k(x) := E^{1/2}_k \tilde{v}_k \left(\frac{x}{r_k} \right)$$

respect the property $\tilde{u}_k \equiv u_k$ in $\Omega \cap B_{r_k}$. Moreover, it is possible to choose an extension L (see Lem. 4.12) such that, combining the Poincaré inequality in SBV and the Poincaré inequality in $W^{1,2}$, then there exist constants c_k such that $\tilde{v}_k - c_k$ converge in L^2 to a function $v \in W^{1,2}(B_1)$. This ensures that, if we take $\rho \leq \rho'$ small enough, η cut-off functions between B_{ρ} and $B_{\rho'}$, and $\varphi \in W^{1,2}(B_1)$, then the test functions $\psi_k = E^{1/2}_k \varphi_k(x/r_k)$, with

$$\varphi_k = \left(\eta(\varphi + c_k) + (1 - \eta) \tilde{v}_k \right) \chi_{B_{\rho'}} + v \chi_{B_1 \setminus B_{\rho'}},$$

are admissible test functions for any $\varphi \in W^{1,2}(B_1)$, leading to similar computations that can be found in the aforementioned papers. \hfill \Box

Lemma 4.12. Let Ω an open set with Lipschitz boundary, and let $x_0 \in \partial \Omega$. There exist positive constants $\rho_0 = \rho_0(\Omega, x_0)$, $C = C(\Omega, x_0)$, $\delta = \delta(\Omega, x_0) > 1$, and an extension operator

$$L : W^{1,2}(\Omega) \rightarrow W^{1,2}(B_{\rho_0}(x_0))$$

such that, for any $u \in W^{1,2}(\Omega)$, and for any $r < \rho_0$, we have that $Lu \equiv u$ in $\Omega \cap B_{\rho_0}(x_0)$ and

$$\int_{B_r(x_0)} |\nabla Lu|^2 \, d\mathcal{L}^n \leq C \int_{\Omega \cap B_{r+}(x_0)} |\nabla u|^2 \, d\mathcal{L}^n. \quad (4.16)$$

Proof. We can assume without loss of generality that $x_0 = 0$, and, if s is small enough, we have that, up to rotations,

$$\Omega \cap B_s = \{ (x', x_n) \in B_s \mid \gamma(x') < x_n \},$$
for a suitable Lipschitz function γ, with $\gamma(0) = 0$. We denote by Φ the diffeomorphism that flattens the boundary $\partial \Omega$, namely

$$\Phi(x', x_n) = (x', x_n - \gamma(x')),$$

$$\Phi^{-1}(y', y_n) = (y', y_n + \gamma(y')).$$

Let $M = \|\nabla \gamma\|_\infty$, we claim that for any $r < (1 + M)^{-2}s$ we have

$$\Phi(B_r) \subset B_{(1+M)r} \subset \Phi(B_{(1+M)^2r}). \quad (4.17)$$

Indeed, let $x \in B_r$, then

$$|\Phi(x)|^2 \leq |x|^2 + 2|x_n\gamma(x)| + |\gamma(x)|^2,$$

so that, we have

$$|\gamma(x)| \leq |x||\nabla \gamma\|_\infty,$$

and then

$$|\Phi(x)| \leq (1 + M)r.$$

In a similar way, we have that for any $x \in B_{(1+M)r}$,

$$|\Phi^{-1}(x)| \leq (1 + M)^2r,$$

thus the claim is proved.

Let us take a ball B_t such that $\Phi^{-1}(B_t) \subset B_s$, which we can find thanks to (4.17), and let us reflect the function $v(x) = u(\Phi(x))$ as follows: for any $x \in B_t$, we define

$$Lv(x) = \begin{cases} v(x) & \text{if } x_n < 0, \\ -3v(x', -x_n) + 4v(x', -\frac{x_n}{2}) & \text{if } x_n > 0, \end{cases}$$

which is still a Sobolev function in B_t. Moreover, we have

$$\int_{B_t} |\nabla Lv|^2 \, d\mathcal{L}^n \leq C \int_{B_t \cap \{x_n < 0\}} |\nabla v|^2 \, d\mathcal{L}^n,$$

where C is independent of Ω. We put $Lu(x) = Lv(\Phi^{-1}(x))$, and by change of variables, we get

$$\int_{\Phi^{-1}(B_t)} |\nabla Lu|^2 \, d\mathcal{L}^n \leq C(\Omega) \int_{\Omega \cap \Phi^{-1}(B_t)} |\nabla u|^2 \, d\mathcal{L}^n. \quad (4.18)$$

Finally, taking $\rho_0 = (1 + M)^{-2}s$, and $t_0 = (1 + M)^{-1}s$, we have $B_{\rho_0} \subset \Phi^{-1}(B_{t_0})$. Therefore, denoting by $\delta = (1 + M)^2$, by (4.17) and (4.18), we get, for $r < \rho_0$,

$$\int_{B_r(x_0)} |\nabla Lu|^2 \, d\mathcal{L}^n \leq \int_{\Phi^{-1}(B_{\sqrt{s}})} |\nabla Lu|^2 \, d\mathcal{L}^n \leq C \int_{\Omega \cap \Phi^{-1}(B_{\sqrt{s}})} |\nabla u|^2 \, d\mathcal{L}^n \leq C \int_{\Omega \cap B_{\rho_0}} |\nabla u|^2 \, d\mathcal{L}^n. \Box$$
Remark 4.13. Notice that if Ω is bounded, the constants in Lemma 4.12 can be chosen independent of the point x_0.

Remark 4.14. Let u be a minimizer to (1.5) and let $A = \{ u > 0 \} \setminus K_u$, then the boundary of A is equal to K_u: in first place, assume by contradiction that there exists an $x \in (\partial A) \setminus K_u$, then u is superharmonic in a small ball centered in x with radius r. Therefore, being

$$\{ u > 0 \} \cap B_r(x) \neq \emptyset,$$

it is necessary that $u > 0$ in the entire ball, and then $x \notin \partial A$, which is a contradiction. In other words,

$$\partial A \subseteq K_u$$

By the same argument we also have that A is open, and moreover $J_u \subseteq \partial A$, then

$$K_u \subseteq \partial A.$$

In particular, the pair (A, u) is a minimizer for the functional

$$F(E, v) = \int_E |\nabla v|^2 \, d\mathcal{L}^n - 2 \int_{\Omega} f v \, d\mathcal{L}^n + \int_{\partial E} (v^2 + \bar{v}^2) \, d\mathcal{H}^{n-1} + C_0 \mathcal{L}^n(E \setminus \Omega)$$

over all pairs (E, v) with E open set of finite perimeter containing Ω and $v \in W^{1,2}(E)$.

Acknowledgements. We would like to thank the referee for the detailed review, and for the valuable advice that helped us to enrich this paper.

References

[1] L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2000).
[2] D. Bucur, G. Buttazzo and C. Nitsch, Symmetry breaking for a problem in optimal insulation. J. Math. Pures Appl. 107 (2017) 451–463.
[3] D. Bucur and A. Giacomini, A variational approach to the isoperimetric inequality for the robin eigenvalue problem. Arch. Ration. Mech. Anal. 198 (2010) 927–961.
[4] D. Bucur and S. Luckhaus, Monotonicity formula and regularity for general free discontinuity problems. Arch. Ration. Mech. Anal. 211 (2014) 489–511.
[5] D. Bucur, M. Nahon, C. Nitsch and C. Trombetti, Shape optimization of a thermal insulation problem (2021). cvgmt preprint.
[6] D. Bucur and A. Giacomini, Shape optimization problems with Robin conditions on the free boundary. Ann. Inst. H. Poincaré C Anal. Non Linéaire 33 (2016) 1539–1568.
[7] L.A. Caffarelli and D. Kriventsov, A free boundary problem related to thermal insulation. Commun. Partial Differ. Equ. 41 (2016) 1149–1182.
[8] A. Cianchi, V. Ferone, C. Nitsch and C. Trombetti, Poincaré trace inequalities in $BV(\mathbb{B}^n)$ with non-standard normalization. J. Geom. Anal. 28 (2018) 3522–3552.
[9] E. De Giorgi, M. Carriero and A. Leaci, Existence theorem for a minimum problem with free discontinuity set. Arch. Ration. Mech. Anal. 108 (1989) 195–218.
[10] F. Della Pietra, C. Nitsch, R. Scala and C. Trombetti, An optimization problem in thermal insulation with robin boundary conditions. Commun. Partial Differ. Equ. 46 (2021) 2288–2304.
[11] L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions, Revised Edition. Textbooks in Mathematics. CRC Press (2015).
[12] D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order. Springer-Verlag (2001). Reprint of the 1998 edition.
[13] F. Maggi, Sets of finite perimeter and geometric variational problems, volume 135 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2012). An introduction to geometric measure theory.
[14] V. Maz’ya, Sobolev spaces with applications to elliptic partial differential equations, volume 342 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Heidelberg, augmented edition (2011).
[15] M.K. Murthy and G. Stampacchia, Boundary value problems for some degenerate-elliptic operators. Ann. Matemat. Pura Appl. 80 (1968) 1–122.

[16] W.P. Ziemer, Weakly Differentiable Functions. Springer-Verlag, Berlin, Heidelberg (1989).

Please help to maintain this journal in open access!

This journal is currently published in open access under the Subscribe to Open model (S2O). We are thankful to our subscribers and supporters for making it possible to publish this journal in open access in the current year, free of charge for authors and readers. Check with your library that it subscribes to the journal, or consider making a personal donation to the S2O programme by contacting subscribers@edpsciences.org.

More information, including a list of supporters and financial transparency reports, is available at https://edpsciences.org/en/subscribe-to-open-s2o.