Magnitude and Spatial Distribution Control of the Supercurrent in Bi$_2$O$_2$Se-Based Josephson Junction

Jianghua Ying, Jiangbo He, Guang Yang, Mingli Liu, Zhaozheng Lyu, Xiang Zhang, Huaiyuan Liu, Kui Zhao, Ruiyang Jiang, Zhongqing Ji, Jie Fan, Changli Yang, Xiunian Jing, Guangtong Liu, Xuewei Cao, Xuefeng Wang, Li Lu, and Fanming Qu*

Cite This: Nano Lett. 2020, 20, 2569–2575

ABSTRACT: Many proposals for exploring topological quantum computation are based on superconducting quantum devices constructed on materials with strong spin–orbit coupling (SOC). For these devices, full control of both the magnitude and the spatial distribution of the supercurrent is highly demanded, but has been elusive up to now. We constructed a proximity-type Josephson junction on nanoplates of Bi$_2$O$_2$Se, a new emerging semiconductor with strong SOC. Through electrical gating, we show that the supercurrent can be fully turned ON and OFF, and its real-space pathways can be configured either through the bulk or along the edges. Our work demonstrates Bi$_2$O$_2$Se as a promising platform for constructing multifunctional hybrid superconducting devices as well as for searching for topological superconductivity.

KEYWORDS: Bi$_2$O$_2$Se nanoplate, supercurrent, spatial distribution, Josephson junction

Superconducting proximity effect (SPE) allows a normal metal to superconduct when placed adjacent to a superconductor. It plays a central role in the extensive applications of superconducting quantum devices. Recently, the search for topological superconductivity has utilized SPE as a primary mechanism to construct hybrid heterostructures, since intrinsic topological superconductors (TSCs) are scarce in nature.1–8 Apart from being a novel topological phase of matter, TSCs afford platforms to hold Majorana zero modes (MZMs) which could be used for building fault-tolerant quantum computers.9–11 On this fascinating blueprint, SPE has been realized in various topological materials and semiconductors with strong spin–orbit coupling (SOC), and TSCs and MZMs have been unveiled among these hybrid structures.2–4,12–16 In spite of this rapid progress, for the development of electrically tunable superconducting quantum devices, control of both the magnitude and the spatial distribution of the supercurrent in nanoscale superconducting devices is a crucial ingredient. In superconductor–normal metal–superconductor (SNS) Josephson junctions, the control of the ON/OFF of the supercurrent through electrical gating (namely supercurrent transistor) has been demonstrated in quantum dots, nanowires/nanotubes, and others.17–19 However, the flow path of Cooper pairs is predefined by the geometry of the devices. Regarding regulating the spatial distribution of the supercurrent, in bulk-insulating SNS junctions, Cooper pairs flow naturally on the nontrivial two-dimensional (2D) surfaces of three-dimensional (3D) topological insulators and semimetals or on the helical edges of 2D topological insulators.20–24 However, the supercurrent is difficult to turn OFF by gating due to the gapless nature in these topological materials. Efforts have also been put toward monitoring of the supercurrent distribution in ferromagnets and semiconductors such as InAs and graphene.25–31 Nevertheless, simultaneous regulation of both the magnitude and the real-space pathways of the supercurrent in SNS junctions has been elusive, especially in semiconductors with strong SOC. From a fundamental viewpoint, SOC is essential to lift the spin degeneracy and is a prerequisite for most of the materials (trivial or nontrivial) explored so far to establish TSCs.1–4,6,13–15,20 In this work, we address this issue and demonstrate the full control of the supercurrent through electrical gating in the Josephson junction device on a new emerging star material with strong SOC–Bi$_2$O$_2$Se nanoplates. 2D materials such as graphene, phosphorene, transition metal dichalcogenides, and topological insulators have

Received: January 3, 2020
Revised: March 22, 2020
Published: March 23, 2020
Recent research on a new layered semiconductor Bi₂O₂Se has been booming thanks to its superior electronic properties such as ambient stability, ultrahigh electron mobility (~2.8 × 10⁵ cm²/V·s at 2 K), and a tunable bandgap.³⁵⁻⁴¹ The existence of strong SOC, suppression of backscattering, as well as high-performance field-effect transistors and optoelectronics, has been experimentally demonstrated in Bi₂O₂Se thin films.³²⁻⁴⁶ Coherent surface states have also been examined in Bi₂O₂Se nanowires,⁴⁷ and a large Rashba SOC was further predicted to be present on the polar or nonpolar surfaces due to the intrinsic band bending.⁴⁰ These surface states reside partially in the bulk band gap, leaving appropriate space for multifunctional electrical tuning. Given these intriguing properties, Bi₂O₂Se provides opportunities to manipulate SPE and is a promising platform to engineer TSCs.

In this work, we study a Josephson junction constructed on a Bi₂O₂Se nanoplate and demonstrate the full control of the magnitude and the spatial distribution of the supercurrent through electrical gating. By employing superconducting interferometry techniques, we found that the supercurrent can be fully turned ON and OFF, and meanwhile, the supercurrent flow can be configured either through the bulk or only along the edges. Two alternative mechanisms of the bulk to edge supercurrent transition are presented.

Bi₂O₂Se nanoparticles were synthesized by means of chemical vapor deposition in a horizontal tube furnace.³⁵,⁴⁸ Figure 1a shows an optical microscope image of the as-grown nanoplates, viewed perpendicular to the mica substrate. The nanoplates take a rectangular shape, and either lie down on the substrate or grow vertically as indicated by the red arrows in Figure 1a. The standing Bi₂O₂Se nanoplates can be easily transferred onto SiO₂/Si substrates in a purely mechanical way instead of a vapor deposition process.³⁵,⁴⁸,⁴⁻⁷ Bi₂O₂Se nanoplate (dark blue) forming a proximity-type Josephson junction. The circuit displays the quasi-four terminal measurement configurations. Correspondence between the supercurrent–density profile, Jₓ(x), in a Josephson junction (left column) and the superconducting interference pattern, i.e., the dependence of critical supercurrent between the ON and OFF states. Figure 2a,b presents the gate tuning of the magnitude of the one-slit Fraunhofer-like pattern (top right).

\[I_\text{c}(B_y) \] presents a one-slit Fraunhofer-like pattern following the form \(\sin(\pi \Phi / \Phi_0) / (\pi \Phi / \Phi_0) \), where \(\Phi = L_{\text{eff}} B_y \) is the flux, \(L_{\text{eff}} \) and \(W \) are the effective length and width of the junction, respectively, and \(\Phi_0 = h / 2 e \) is the flux quantum (\(h \) is the Planck constant, \(e \) the elementary charge). The central lobe of \(I_\text{c}(B_y) \) has a width of \(2 \Phi_0 \), and the side lobes of \(\Phi_0 \). In addition, the height of the lobes shows an overall 1/\(B_y \) decay. When the supercurrent flows along the two edges (bottom row), the single junction mimics a superconducting quantum interference device (SQUID) and presents a two-slit interference pattern with the form \(\cos(\pi \Phi / \Phi_0) \). The lobes in this case have a uniform width of \(\Phi_0 \) and a weak overall decay (the decrease mainly results from the suppression of the superconductivity in the contacts and a finite width of the edge modes). In the intermediate regime, the bulk and edge supercurrent coexist, and \(I_\text{c}(B_y) \) exhibits a one-slit to two-slit transition. Generally speaking, \(I_\text{c}(B_y) \) and \(J(x) \) can be extracted quantitatively from each other through integration or Fourier transform.

We first present the gate tuning of the magnitude of the supercurrent between the ON and OFF states. Figure 2a,b shows the differential resistance \(dV / dI = V_{\text{ac}} / I_{\text{ac}} \) as a function of gate voltage \(V_g \) and dc bias current \(I_{\text{dc}} \). To reach a high contrast and a clear view of the color map, we divided the full \(V_g \) range of −10 to 60 V into these two subranges and plotted.
them in two different color scales. The dV/dI peaks, as indicated by the white arrows, correspond to the critical current I_c separating the zero-resistance state (uniform blue color) at low $l_{0,k}$ from the normal state at high $l_{0,k}$. Two typical line cuts are plotted in Figure 2d, taken at $V_g = 20$ V (blue) and 40 V (red), respectively. Figure 2c shows the gate voltage dependence of the normal-state resistance R_N and I_c extracted from Figure 2a and b. When sweeping V_g from 60 V to -10 V, R_N increases monotonically toward infinite (~ 50 kΩ at $V_g = -20$ V, data not shown), which is expected as the electrons are depleted. Meanwhile, I_c decreases also monotonically from 223 nA at $V_g = 60$ V to 0 nA around $V_g = -7$ V. Therefore, the supercurrent can be fully turned ON/OFF by gating. Note that the black arrows in Figure 2a,c indicate the upturn of I_c around $V_g = 15$ V.

Next, we switch to the superconducting interference and disentangle the bulk and edge supercurrent. To do so, a perpendicular magnetic field B_z was applied to the junction. Figure 3a shows the differential resistance dV/dI as a function of both B_z and I_{dc} at $V_g = 60, 40, 20$, and 0 V, respectively. The whitish envelope characterizes the critical current I_c and separates the superconducting and normal states. At $V_g = 60$ V, I_c presents a one-slit Fraunhofer-like pattern, with a central lobe of width roughly twice the side lobes and also a global fast decay. The average period of $\Delta B_z \approx 5.1$ G agrees with the analysis above can also be investigated by using the Dynes–Fulton approach to extract the supercurrent density profile. Figure 3b displays the position (x) dependence of $J_s(x)$ at different V_g obtained from the Fourier transform of the I_c vs B_z curves retrieved from Figure 3a accordingly. Note that $x = 0$ corresponds to the center of the junction. The bulk-dominated supercurrent at $V_g = 60$ and 40 V, the bulk to edge transition at $V_g = 20$ V, and the edge-dominated supercurrent at $V_g = 0$ V can be immediately recognized. Therefore, through electrical gating, we realized the configuration of the supercurrent pathways.

We now discuss the underlying mechanism of the gate tuning of the supercurrent distribution. Although the Fraunhofer to SQUID evolution and the supercurrent density profiles demonstrate the “bulk” to edge supercurrent transition, it is ambiguous that if the “bulk” is the 3D bulk or, alternatively, the top and bottom surfaces. These two scenarios arise from the Se or Bi termination-sensitive surface states in Bi$_2$O$_2$Se.

For Se-terminated (001) surface, Figure 4a sketches the band structure (not to scale) around the Γ point, including the spin-split subbands (blue) close to the valence band. Regarding the fact that when sweeping V_g from 60 V to -10 V, the normal state resistance increases monotonically toward infinite, the conduction band of the (3D) bulk undertakes the electron transport, as indicated by the blue shaded region. However, the
bulk to edge supercurrent transition suggests the existence of edge states, presumably due to downward band bending at the edges.26,40,45 Figure 4b displays such band bending and the formation of the edge states (at energy E'), as illustrated by the red dashed line in Figure 4a. Consequently, edge supercurrent dominates when the Fermi level E_F sits between E' and the bottom of the conduction band E_C (bottom panel of Figure 4c). The upturn of the critical current around $V_{g} = 15$ V, as guided by the black arrows in Figure 2a and c, corresponds to the onset of the 3D bulk supercurrent when $E_F > E_C$ (top panel of Figure 4c), consistent with the observation of finite I_c in the bulk at $V_{g} = 20$ V (Figure 3).

The scenario for Bi-terminated top/bottom surface is completely different.46 Figure 4d sketches the band structure (not to scale) around Γ point, including the two spin-split subbands (blue) on (001) surface. According to ref 40, the separation between the subband bottoms is $E_1 - E_0 \approx 0.34$ eV. We assign $V_{g} = -10$ V to correspond to a Fermi level position just below E_0, since the junction tends to be insulating. Thus, the Fermi level position $E_F(V_{g}) = \pi \hbar^2 n/(2m^*E_1) + E_1$, where n is the 2D electron density induced by the gate, a factor of 2 denotes an equal footing of the top and bottom surfaces, ϵ is the dielectric constant of SiO$_2$, $d = 300$ nm is the thickness of SiO$_2$, and m^* = 0.14m_0 the effective electron mass of Bi$_2$O$_2$Se (m_0 is the electron mass).35 At $V_{g} = 60$ V, E_F sits slightly below E_0, far below E_1 and the conduction band E_C. Hence, in the gate-voltage range studied, as indicated by the blue shaded region in Figure 4d, electrons are only induced on the surfaces of the Bi$_2$O$_2$Se nanoplate, but not in the 3D bulk. Consequently, the “bulk” supercurrent mentioned above flows actually through the top and bottom surfaces. We would like to note that there can be a difference between these two surfaces due to the gate being at the bottom and the contacts being on the top.

Similarly, the bulk to edge transition indicates a slightly different E_1 (onset energy) between the top/bottom surfaces and the edge surfaces. Under this assumption, Figure 4e illustrates such effective band bending and the formation of the subbands. When E_F sits above E_0, the top and bottom surfaces dominate the supercurrent with relatively small contributions from the side surfaces considering the small thickness of 15 nm (top panel of Figure 4f). However, within the narrow energy window between E_1 and E_0, the side surfaces dominate (bottom panel of Figure 4f). Again, the upturn of I_c around $V_{g} = 15$ V implies the onset of the supercurrent on the top and bottom surfaces.

For both Se and Bi terminations, however, the full width at half-maximum (fwhm) of the supercurrent density peak, \sim570 nm (see bottom right panel in Figure 3b), is much larger than the typical thickness of surface states, say, several nanometers.40,52 This can be explained by the extension of the 2D electron waves from the edge to the 3D bulk for the Se-terminated case (from side surfaces to the top and bottom surfaces for Bi-terminated case) with an order of the Fermi wavelength, as observed in graphene.57 Such an explanation is further corroborated by the decay of the supercurrent density from the edge toward the center of the junction (see Supporting Information). Notably, these two scenarios are very interesting, although the current study could not differentiate between the Se- or Bi-terminated surfaces, and alternative interpretations for the edge supercurrent may also apply. Therefore, detailed studies are required to nail down more exquisite physical pictures. Note that the crystal structure, the thickness, and the edge characteristics of Bi$_2$O$_2$Se nanoplates are different from gapped graphene, so that the mechanism for the transition of the supercurrent distribution belongs to different scenarios.3,46

In summary, we fabricated a Josephson junction device on a Bi$_2$O$_2$Se nanoplate and realized a superconducting proximity effect. Through electrical gating, the supercurrent can be fully turned ON and OFF, and simultaneously, the supercurrent spatial distribution can be configured in the bulk or along the edges. The termination-sensitive surface states render plentiful mechanisms and various possible configurations, and leave extensive room for multifunctional electrical tuning. Considering the remarkable properties and the strong spin–orbit coupling, Bi$_2$O$_2$Se is a promising platform for studying numerous novel phenomena, such as constructing gate controllable hybrid superconducting devices,18 supercurrent field-effect transistors,19 nanoscale SQUID,53 superconducting optoelectronics,54 Josephson laser,20 Cooper-pair beam splitter,21 and engineering topological superconductors.2,3,6

Associated Content

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.nanolett.0c00025.
Synthesis and characterization of Bi$_2$O$_2$Se nanoplates; Device fabrication; Low-temperature transport measurement; Extraction of the supercurrent–density profile; Comparison between different devices (PDF)

AUTHOR INFORMATION

Corresponding Authors

Li Lu — Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; School of Physical Sciences and CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100049, China; Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China; Beijing Academy of Quantum Information Sciences, Beijing 100193, China; Email: lihu@iphy.ac.cn

Fanning Qu — Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; School of Physical Sciences and CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100049, China; Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China; orcid.org/0000-0001-6660-9333; Email: fanningqu@iphy.ac.cn

Authors

Jianghua Ying — Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Jiangbo He — Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Guang Yang — Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Mingli Liu — Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Zhaozheng Lyu — Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Ruiyang Jiang — Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Zhongqing Ji — Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China

Jie Fan — Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China

Changli Yang — Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

Xiunian Jing — Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China

Guangtong Liu — Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China

Xuexei Zhao — School of Physics, Nankai University, Tianjin 300071, China

Xuefeng Wang — National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; orcid.org/0000-0002-3472-7895

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.nanolett.0c00025

Author Contributions

L.L. and F.Q. supervised the overall research. J.Y. and R.J. synthesized the material. J.Y. fabricated the device and carried out the measurement with the assistance from J.H., G.Y., M.L., Z.L., X.Z., H.L., K.Z., R.J., Z.J., J.F., C.Y., X.J., G.L., L.L., and F.Q. All authors participated in the analysis of the data. F.Q., J.Y., and L.L. wrote the paper under constructive discussions with all other authors.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We would like to thank Hailin Peng and Ning Kang for fruitful discussions. This work was supported by the National Basic Research Program of China from the MOST grants 2017YFA0304700, 2016YFA0300601, and 2015CB921402, by the NSF China grants 11527806, 11174357, 91421303, 11774405, and 61822403, by the Strategic Priority Research Program B of Chinese Academy of Sciences, Grants No. XDB28000000 and XDB07010100, by the Beijing Municipal Science & Technology Commission, China, Grant No. Z191100007219008, by the Open Research Fund from State Key Laboratory of High Performance Computing of China, and by Beijing Academy of Quantum Information Sciences, Grant No. Y18G08.
REFERENCES

(1) Qi, X.-L.; Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 2011, 83, 1057–1110.
(2) Ren, H.; et al. Topological superconductivity in a phase-controlled Josephson junction. Nature 2019, 569, 93–98.
(3) Fornieri, A.; et al. Evidence of topological superconductivity in planar Josephson junctions. Nature 2019, 569, 89–92.
(4) Mourik, V.; et al. Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices. Science 2012, 336, 1003–1007.
(5) Fu, L.; Kane, C. L. Superconducting Proximity Effect and Majorana Fermions at the Surface of a Topological Insulator. Nat. Phys. 2010, 6, 966–969.
(6) Pientka, F.; et al. Topological Superconductivity in a Planar Josephson Junction. Phys. Rev. X 2017, 7, 021032.
(7) Oreg, Y.; Refael, G.; von Oppen, F. Helical Liquids and Majorana Bound States in Quantum Wires. Phys. Rev. Lett. 2010, 105, 177002.
(8) Lutchyn, R. M.; Sau, J. D.; Das Sarma, S. Majorana Fermions in a Topological Phase Transition in Semiconductor-Superconductor Heterostructures. Phys. Rev. Lett. 2010, 105, 077001.
(9) Wilczek, F. Majorana returns. Nat. Phys. 2009, 5, 614–618.
(10) Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Ann. Phys. 2003, 303, 2–30.
(11) Nadj-Perge, S.; et al. Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor. Science 2014, 346, 562–567.
(12) Doh, Y.-J.; et al. Tunable Supercurrent Through Semiconductor Nanowires. Science 2005, 309, 272–275.
(13) Bocquillon, E.; et al. Gapless Andreev bound states in the quantum spin Hall insulator HgTe. Nat. Nanotechnol. 2017, 12, 137.
(14) Wu, J.; et al. Experimental Detection of a Majorana Mode in the core of a Magnetic Vortex inside a Topological Insulator-Superconductor Bi2Te3/NbSe2 Heterostructure. Phys. Rev. Lett. 2015, 114, 017001.
(15) Tong, T.; et al. Ultrahigh Hall mobility and suppressed backward scattering in layered superconductor Bi2O2Se. Appl. Phys. Lett. 2018, 113, 072106.
(16) Hart, S.; et al. Induced superconductivity in the quantum spin Hall edge. Nat. Phys. 2014, 10, 638–643.
(17) Pribliag, V. S.; et al. Edge-mode superconductivity in a two-dimensional topological insulator. Nat. Nanotechnol. 2015, 10, 593–597.
(18) Huang, C.; et al. Proximity-induced surface superconductivity in Dirac semimetal Cd3As2. Nat. Commun. 2019, 10, 2217.
(19) Veldhorst, M.; et al. Josephson supercurrent through a topological insulator surface state. Nat. Mater. 2012, 11, 417–421.
(20) Schindler, F.; et al. Higher-order topology in bismuth. Nat. Phys. 2018, 14, 918–924.
(21) Lahabi, K.; et al. Controlling supercurrents and their spatial distribution in ferromagnets. Nat. Commun. 2017, 8, 2056.
(22) de Vries, F. K.; et al. h/e Superconducting Quantum Interference through Trivial Edge States in InAs. Phys. Rev. Lett. 2018, 120, 047702.
(23) Allen, M. T.; et al. Spatially resolved edge currents and guided-electronic states in graphene. Nat. Phys. 2016, 12, 128.
(24) Tong, T.; et al. Induced superconductivity in the quantum spin Hall edge. Nat. Phys. 2014, 10, 761–764.
(25) Ben Shalom, M.; et al. Quantum oscillations of the critical current and high-field superconducting proximity in ballistic graphene. Nat. Phys. 2016, 12, 318–322.
(26) Calado, V. E.; et al. Ballistic Josephson junctions in edge-contacted graphene. Nanotechnol. 2015, 10, 761–764.
(27) Chulkov, E. V. Surface electronic structure of bismuth oxychalcogenides. Phys. Rev. B: Condens. Matter Mater. Phys. 2019, 89, 145121.
(28) Yu, J.; et al. Controlled Vapor-Solid Deposition of Millimeter-Scale Single Crystal 2D Bi2O2Se for High-Performance Phototransistors. Adv. Funct. Mater. 2019, 29, 1807979.
(29) Li, J.; et al. Majorana Bound States in Quantum Wires. Phys. Rev. Lett. 2008, 100, 096407.
(30) Eremen, S. V.; et al. Tunable Supercurrent Through Semi-conductor Nanowires. Science 2016, 354, 1557–1562.
(31) Yang, G.; et al. Protected gap closing in Josephson trijunctions constructed on Bi2Te3. Phys. Rev. B: Condens. Matter Mater. Phys. 2019, 100, 180501.
(32) Hart, S.; et al. Controlled Josephson supercurrent through a topological superconductor-quantum dot devices. Nat. Nanotechnol. 2010, 5, 703.
(33) Khan, U.; et al. Strong spin-orbit interaction and magnetotransport in semiconductor Bi2O2Se nanolayers. Nanoscale 2018, 10, 2704–2710.
(34) Hart, S.; et al. Induced superconductivity in the quantum spin Hall edge. Nat. Phys. 2014, 10, 638–643.
(55) Cassidy, M. C.; et al. Demonstration of an ac Josephson junction laser. *Science* 2017, 355, 939.

(56) Hofstetter, L.; Csonka, S.; Nygård, J.; Schönenberger, C. Cooper pair splitter realized in a two-quantum-dot Y-junction. *Nature* 2009, 461, 960–963.