Fluorenophane chlorobenzene solvate: molecular and crystal structures

Viktoriya V. Dyakonenko,a,* Svitlana V. Shishkina,a,b Tatiana Yu. Bogashchenko,c Alexander Yu. Lyapunov,c,d,e and Tatiana I. Kirichenko*

a SSI ‘Institute for Single Crystals’, National Academy of Sciences of Ukraine, 60 Nauky Ave., Kharkiv 61001, Ukraine, b V. N. Karazin Kharkiv National University, 4 Svobody sq., Kharkiv 61112, Ukraine, c A. V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, 86 Lustdorfskaya doroga, Odesa, Ukraine, d Enamine Ltd., Chervonotkatska Street 78, Kyiv, 02094, Ukraine, and e Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine. *Correspondence e-mail: vika@xray.isc.kharkov.com

The title compound, \(1^H,7^H,3,5,9,11\)-tetraoxa-1,7(2,7)-difluorena-4,10(1,3)-dibenzenacyclododecaphane-1,7-dione (fluorenophane), exists as a solvate with chlorobenzene, \(C_8H_8O_6/C_6H_5Cl\). The fluorenophane contains two fluorenone fragments linked by two \(m\)-substituted benzene fragments. Some decrease in its macrocyclic cavity leads to a stacking interaction between the tricyclic fluorenone fragments. In the crystal, the fluorenophane and chlorobenzene molecules are linked by weak C—H\(\cdots\)C Cl hydrogen bonds. The Cl atom of chlorobenzene does not form a halogen bond. A Hirshfeld surface analysis and two-dimensional fingerprint plots were used to analyse the intermolecular contacts found in the crystal structure.

1. Chemical context

Discovered at the end of the last century, the ability of cyclophanes to form inclusion complexes makes them the central class of synthetic receptors in molecular recognition processes (Diederich, 1991). Particular attention has been paid to the possibility of cationic cyclophanes with box geometries being involved in strong donor–acceptor interactions leading to the formation of ‘guest–host’ complexes with different guests (Dale et al., 2016; Barnes et al., 2013; Gong et al., 2010). Previously we have obtained fluorenophane 1 with two fluorenone fragments linked by rigid xylyl groups (Lukyanenko et al., 2003; Simonov et al., 2006). X-ray diffraction analysis of this cyclophane revealed the box geometry with an open intramolecular cavity and the formation of inclusion complexes with DMF and nitrobenzene (Simonov et al., 2006). The other fluorenophane obtained by our group, 2, differs from the previous one in the position of the methylene groups, which are located directly at the benzene fragment in 1 or fluorenone in 2. Fluorenophane 2 forms inclusion complexes with chloroform and bromoform with a 1:2 stoichiometry. Moreover, C—Cl\(\cdots\)\(\pi\) and C—Br\(\cdots\)\(\pi\) halogen bonds (Shishkina et al., 2021) are present in the complexes. In contrast to cationic cyclophanes, there are no charged fragments in fluorenophanes. Continuing our research in this area, we have obtained fluorenophane 3 with a different position of attachment of the benzene rings compared to 2 (\(m\)- and \(p\)-isomers, respectively) and studied its complexation with chlorobenzene.
2. Structural commentary

Fluorenophane 3 was crystallized from chlorobenzene and exists in the crystal as a solvate in a 1:1 ratio rather than as an inclusion complex. Fluorenophane 3 contains two fluorenone fragments linked by two 1-substituted benzene fragments (Fig. 1). The macrocycle 3 has a boat conformation similar to structure 1 [the torsion angles C41—O6—C1—C2, C37—O5—C36—C33, C20—O3—C22—C23, and C16—O2—C15—C13 are −90.6 (4), 78.4 (4), −80.0 (4) and 91.6 (4)°, respectively]. In structure 3, the fluorenone fragments are oriented in the same directions (cis-orientation) while the orientation of these fragments is trans in structures 1 and 2. meta-Substitution of the two benzene fragments results in a smaller macrocycle cavity as compared to fluorenophanes 1 and 2 with para-substituted benzene fragments. As a result, the two fluorenones are slightly bowed inwards [the dihedral angle between C2–C7 and C8–C14 benzene rings is 12.51 (18)° in one fluorenone while the dihedral angle between the C31–C35 and C23–C28 benzene rings is 9.64 (18)° in the other fluorenone]. This can be explained by a π-stacking interaction between the C10—O1 carbonyl group and the C25/C26/C31/C30/C29 fluorenone ring [centroid Cg2, with O1...Cg2 = 3.469 (3) Å, C10...Cg2 = 3.492 (4) Å, C10...O1...Cg2 = 81.1 (2)°]. In contrast to structures 1 and 2, the macrocycle in structure 3 does not contain any molecules inside its cavity. Therefore, the structure under study is a chlorobenzene solvate of fluorenophane.

3. Supramolecular features

In the crystal, the fluorenophane and chlorobenzene molecules are linked to each other by weak C46—H46⋯O6 and C18—H18⋯C1 hydrogen bonds while the fluorenophanes are linked by weak C35—H35⋯O1 hydrogen bonds (Table 1), forming stepped ribbons. The ribbons are connected by C1—H1⋯Cl1 hydrogen bonds while the fluorenophanes are linked by weak C35—H35⋯O1 hydrogen bonds (Table 1), forming stepped ribbons. The ribbons are connected by C1—H1⋯Cl1 interactions (Table 1) to give the final three-dimensional structure. The halogen atom does not form a halogen bond in the structure of 3, in contrast to the supramolecular complexes studied earlier (Shishkina et al., 2021). The electrostatic potential for chlorobenzene was calculated using the B3LYP/6–311G(d,p) method. An area with a positive charge (σ-hole) was not found in the electrostatic potential map around the halogen atom (Fig. 2). The highest electrostatic potential at the chlorine atom is −0.08 eV. This fact can explain the absence of halogen bonds in the structure of 3.

4. Hirshfeld surface analysis

Crystal Explorer 17.5 (Turner et al., 2017) was used to analyze interactions in the crystal. Molecular Hirshfeld surfaces mapped over dnorm with a standard (high) surface resolution.

Figure 1
The molecular structure of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
Electrostatic potential map of the chlorobenzene molecule in 3 calculated by the B3LYP/6-311G(d,p) method.
and a fixed colour scale of -0.134 (red) to 1.206 (blue) were generated separately (Fig. 3) for the fluorenonophane and chlorobenzene molecules. The areas in red correspond to contacts that are shorter than the sum of the van der Waals radii of the closest atoms. Thus, the red spots at some hydrogen atoms and at the carbonyl oxygen atom as well as in the area of the five-membered ring indicate the existence of short C–H···O and C–H···π(ring) contacts.

5. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.42, update of November 2020; Groom et al., 2016) for cyclophanes containing fluorenone and benzene fragments yielded two hits: two structures with fluorenone fragments linked by rigid xylol groups (CCDC 263272 and CCDC 263273; Simonov et al., 2006). Recently, two more structures with fluorenonophanes linked by para-substituted benzene fragments were published (CCDC 647971 and CCDC 2098245; Shishkina et al., 2021). The structures found are characterized by a larger macrocyclic cavity compared to that in fluorenonophane 3.

6. Synthesis and crystallization
A solution of 1.75 g (4.78 mmol) of 2,7-bis(bromomethyl)-9H-fluoren-9-one (Haenel et al., 1985) in 200 mL of anhydrous DMF was added to a mixture of 0.526 g (4.78 mmol) of resorcinol and 3.96 g (28.7 mmol) of K$_2$CO$_3$ in 270 mL of anhydrous DMF with stirring under nitrogen for 10 h at 353–358 K. The reaction mixture was stirred at the same temperature for a further 35 h, cooled and filtered (Fig. 5). The precipitate was washed with DMF and the filtrate was evaporated under reduced pressure. The residue was dissolved

Figure 3
Hirshfeld surface mapped over d_{norm}, showing the conformation of the fluorenonophane and chlorobenzene molecules.

Figure 4
The two-dimensional fingerprint plots for fluorenonophane 3 (top) and chlorobenzene (bottom).
in CHCl₃ and washed with an aqueous sodium carbonate solution (50 mL), then with water (3 × 50 mL) to a neutral pH. After drying over MgSO₄, the CHCl₃ was evaporated under reduced pressure. The product was purified by chromatography on silica gel (Acros 0.060, EtOH, 500:1. The yield of cyclophane analyzed for C₄₂H₂₈O₆: C, 80.24; H, 4.49. Found: C, 80.44; H, 4.76%. Crystals were obtained by crystallization of fluorenophane 3 from chlorobenzene.

7. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 2. Carbon-bound H atoms were added in calculated positions with C–H bond lengths of 0.95 Å for C–H, 0.92 Å for CH₂ and refined as riding atoms with Uiso(H) = 1.2Ueq(C).

Funding information

The authors thank the National Academy of Sciences of Ukraine for financial support in the framework of the projects ‘New supramolecular systems based on cyclophanes with fluorenone and benzimidazole fragments. Design, synthesis, structure, perspectives’ (0120U100122) and ‘Functional materials for biomedical purposes based on halogen-containing organic compounds’ (0120U102660).

References

Barnes, J. C., Juriček, M., Strutt, N. L., Frasconi, M., Sampath, S., Giesener, M. A., McGrier, P. L., Bruns, C. J., Stern, C. L., Sarjeant, A. A. & Stoddart, J. F. (2013). J. Am. Chem. Soc. 135, 183–192.

Dale, E. J., Vermeulen, N. A., Juriček, M., Barnes, J. C., Young, R. M., Wasielewski, M. R. & Stoddart, J. F. (2016). Acc. Chem. Res. 49, 262–273.

Diederich, F. (1991). Cyclophanes. Cambridge: The Royal Society of Chemistry.

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

Gong, H.-Y., Rambo, B. M., Karnas, E., Lynch, V. M. & Sessler, J. L. (2010). Nat. Chem. 2, 406–409.

Table 2

Crystal data	Chemical formula	C₄₂H₂₈O₆Cl₂CH₂Cl
M₀	741.19	
Crystal system, space group	Triclinic, P1	
Temperature (K)	100	
a, b, c (Å)	6.2278 (6), 9.6965 (8), 14.9822 (13)	
α, β, γ (°)	105.288 (8), 97.126 (7), 96.919 (7)	
V (Å³)	854.83 (13)	
Z	1	
Radiation type	Mo Kα	
μ (mm⁻¹)	0.17	
Crystal size (mm)	0.6 × 0.4 × 0.2	

Data collection

Diffractometer | Xcalibur, Sapphire3 |
Absorption correction | Multi-scan (CrysAlis PRO; Rigaku OD, 2018) |

Refinement

R[F² > 2σ(F²)], wR(F²), S | 0.064, 0.171, 1.03 |
No. of reflections | 7191 |
No. of parameters | 496 |
No. of restraints | 3 |
H-atom treatment | H-atom parameters constrained |
Δρ_{max}, Δρ_{min} (e Å⁻³) | 0.79, −0.42 |
Absolute structure | Flack x determined using 564 quotients | (Parsons et al., 2013) |
Absolute structure parameter | 0.19 (9) |

Computer programs: CrysAlis PRO (Rigaku OD, 2018), SHELXT (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.

Haenel, M. W., Irngartinger, H. & Krieger, C. (1985). Chem. Ber. 118, 144–162.

Lukyanenko, N. G., Kirichenko, T. I., Lyapunov, A. Yu., Bogaschenko, T. Yu., Pastushin, V. N., Simonov, Yu. A., Fonari, M. S. & Botoshansky, M. M. (2003). Tetrahedron Lett. 44, 7373–7376.

Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.

Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.

Sheldrick, G. M. (1997a). Acta Cryst. A53, 1–6.

Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.

Shishkina, S. V., Dyakonenko, V. V., Shishkin, O. V., Semyozhenko, V. P., Bogaschenko, T. Yu., Lyapunov, A. Yu. & Kirichenko, T. I. (2021). Struct. Chem. http://doi.org/10.21203/rs.3.rs-747526/v1

Simonov, Yu. A., Bogaschenko, N. Yu., Pastushok, V. N., Botoshanski, M. M., Fonari, M. S., Lyapunov, A. Yu. & Lukyanenko, N. G. (2006). Russ. J. Org. Chem. 42, 1075–1082.

Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://Hirschfeldsurface.net
supporting information

Fluorenophane chlorobenzene solvate: molecular and crystal structures

Viktoriya V. Dyakonenko, Svitlana V. Shishkina, Tatiana Yu. Bogashchenko, Alexander Yu. Lyapunov and Tatiana I. Kirichenko

Computing details

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

19H,79H-3,5,9,11-Tetraoxa-1,7(2,7)-difluorena-4,10(1,3)-dibenzenacyclododecaphane-19,79-dione chlorobenzene monosolvate

Crystal data

C42H28O6·C6H5Cl

Mr = 741.19

Triclinic, P1

a = 6.2278 (6) Å
b = 9.6965 (8) Å

M = 14.9822 (13) Å

α = 105.288 (8)°
β = 97.126 (7)°
γ = 96.919 (7)°

V = 854.83 (13) Å³

Z = 1

F(000) = 386

Dx = 1.440 Mg m⁻³

Mo Kα radiation, λ = 0.71073 Å

Cell parameters from 1987 reflections

θ = 3.9–33.0°

μ = 0.17 mm⁻¹

T = 100 K

Block, colourless

0.6 × 0.4 × 0.2 mm

Data collection

Xcalibur, Sapphire3
diffractometer

Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source

Graphite monochromator

Detector resolution: 16.1827 pixels mm⁻¹

Absorption correction: multi-scan, CrysAlisPro; Rigaku OD, 2018

Tmin = 0.846, Tmax = 1.000

8226 measured reflections

7191 independent reflections

5307 reflections with I > 2σ(I)

Rp = 0.028
θmax = 35.0°, θmin = 3.0°

h = −9→8

k = −7→15

l = −24→20

Refinement

Refinement on F²
Least-squares matrix: full

R[F² > 2σ(F²)] = 0.064

wR(F²) = 0.171

S = 1.03

7191 reflections

496 parameters

3 restraints

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ²(Fc)² + (0.0825P)² + 0.017P]

where P = (Fc² + 2Fh²)/3

(Δ σ)max < 0.001

Acta Cryst. (2021). E77, 1285-1288
Δρ_{max} = 0.79 \text{ e Å}^{-3} \\
Δρ_{min} = -0.42 \text{ e Å}^{-3}

Absolute structure: Flack x determined using 564 quotients [(I)−(I)]/[(I)+(I)] (Parsons et al., 2013)

Absolute structure parameter: 0.19 (9)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

	x	y	z	U_{iso}*/U_{eq}		
O1	0.3386 (4)	0.2409 (3)	0.30318 (19)	0.0294 (6)		
O2	0.3907 (5)	0.5919 (3)	0.66155 (19)	0.0298 (6)		
O3	0.3627 (5)	0.9250 (3)	0.47327 (18)	0.0265 (5)		
O4	0.3771 (4)	0.5007 (3)	0.14591 (18)	0.0265 (5)		
O5	0.0097 (4)	-0.0028 (3)	-0.12980 (18)	0.0264 (5)		
O6	0.0323 (4)	-0.3103 (3)	0.07559 (18)	0.0259 (5)		
C1	-0.1767 (6)	-0.2869 (4)	0.0994 (3)	0.0245 (7)		
H1A	-0.238920	-0.369009	0.120950	0.029*		
H1B	-0.275117	-0.286764	0.042198	0.029*		
C2	-0.1747 (6)	-0.1482 (4)	0.1741 (2)	0.0239 (7)		
C3	-0.3613 (6)	-0.1340 (4)	0.2162 (3)	0.0266 (7)		
H3	-0.485939	-0.207766	0.193390	0.032*		
C4	-0.3703 (6)	-0.0156 (4)	0.2902 (3)	0.0267 (7)		
H4	-0.498316	-0.007812	0.318459	0.032*		
C5	-0.1889 (6)	0.0909 (4)	0.3217 (2)	0.0222 (6)		
C6	-0.0046 (6)	0.0796 (4)	0.2766 (2)	0.0220 (6)		
C7	0.0060 (6)	-0.0388 (4)	0.2035 (2)	0.0224 (6)		
H7	0.132576	-0.045426	0.174069	0.027*		
C8	-0.1381 (6)	0.2194 (4)	0.4039 (2)	0.0225 (6)		
C9	0.0774 (6)	0.2848 (4)	0.4097 (2)	0.0244 (7)		
C10	0.1658 (6)	0.2076 (4)	0.3267 (2)	0.0231 (7)		
C11	-0.2608 (6)	0.2752 (4)	0.4711 (3)	0.0261 (7)		
H11	-0.410474	0.235645	0.465987	0.031*		
C12	-0.1588 (7)	0.3914 (4)	0.5467 (3)	0.0278 (7)		
H12	-0.242323	0.432694	0.592837	0.033*		
C13	0.0608 (6)	0.4491 (4)	0.5571 (2)	0.0250 (7)		
C14	0.1794 (6)	0.3979 (4)	0.4864 (3)	0.0244 (7)		
H14	0.327603	0.439670	0.490436	0.029*		
C15	0.1603 (7)	0.5576 (4)	0.6484 (3)	0.0290 (8)		
H15A	0.097362	0.647655	0.652418	0.035*		
H15B	0.118770	0.519599	0.700067	0.035*		
C16	0.4764 (6)	0.7076 (4)	0.6331 (2)	0.0251 (7)		
C17	0.6890 (7)	0.7711 (4)	0.6749 (3)	0.0298 (8)		
H17	0.766706	0.736390	0.720920	0.036*		
C18	0.7850 (7)	0.8861 (5)	0.6479 (3)	0.0316 (8)		
Atom	U11	U22	U33	U12	U13	U23
-------	------	------	------	------	------	------
H18	0.930083	0.931503	0.676396	0.038*		
C19	0.6746 (6)	0.9367 (4)	0.5802 (3)	0.0297 (8)		
H19	0.743820	1.015419	0.561995	0.036*		
C20	0.4627 (6)	0.8717 (4)	0.5394 (2)	0.0245 (7)		
C21	0.3627 (6)	0.7559 (4)	0.5661 (2)	0.0256 (7)		
H21	0.217055	0.710835	0.538118	0.031*		
C22	0.1320 (6)	0.8832 (4)	0.4482 (3)	0.0260 (7)		
H22A	0.071510	0.954612	0.419840	0.031*		
H22B	0.068110	0.886179	0.505817	0.031*		
C23	0.0619 (6)	0.7348 (4)	0.3860 (2)	0.0231 (7)		
C24	0.1890 (6)	0.6774 (4)	0.3150 (2)	0.0242 (7)		
H24	0.329679	0.727598	0.314978	0.029*		
C25	0.1081 (6)	0.5461 (4)	0.2498 (2)	0.0220 (6)		
C26	−0.0988 (6)	0.4699 (4)	0.2487 (2)	0.0222 (6)		
C27	−0.2240 (6)	0.5237 (4)	0.3154 (3)	0.0260 (7)		
H27	−0.362640	0.471796	0.316539	0.031*		
C28	−0.1408 (6)	0.6572 (4)	0.3816 (2)	0.0250 (7)		
H28	−0.224639	0.695843	0.428392	0.030*		
C29	0.2013 (6)	0.4666 (4)	0.1678 (2)	0.0230 (6)		
C30	0.0310 (6)	0.3407 (4)	0.1173 (2)	0.0236 (7)		
C31	−0.1468 (6)	0.3419 (4)	0.1661 (2)	0.0222 (6)		
C32	0.0253 (6)	0.2392 (4)	0.0333 (2)	0.0232 (6)		
H32	0.148081	0.238534	0.001502	0.028*		
C33	−0.1620 (6)	0.1380 (4)	−0.0043 (3)	0.0243 (7)		
C34	−0.3346 (6)	0.1355 (4)	0.0463 (3)	0.0260 (7)		
C35	−0.459675	0.062432	0.021745	0.031*		
C36	−0.3285 (6)	0.2373 (4)	0.1318 (3)	0.0258 (7)		
C37	−0.447445	0.234509	0.165682	0.031*		
C38	−0.1881 (6)	0.0386 (4)	−0.1026 (2)	0.0261 (7)		
C39	−0.292015	−0.049858	−0.107536	0.031*		
C36B	−0.125393	0.087410	−0.147047	0.031*		
C37	0.0872 (6)	−0.1085 (4)	−0.0968 (2)	0.0243 (7)		
C38	0.2524 (6)	−0.1682 (4)	−0.1384 (3)	0.0294 (8)		
H38	0.305188	−0.136765	−0.187734	0.035*		
C39	0.3404 (6)	−0.2748 (4)	−0.1071 (3)	0.0296 (8)		
C39	0.454620	−0.316585	−0.135380	0.036*		
C40	0.2643 (6)	−0.3216 (4)	−0.0352 (3)	0.0292 (8)		
H40	0.325432	−0.394801	−0.014078	0.035*		
C41	0.0986 (6)	−0.2601 (4)	0.0050 (2)	0.0250 (7)		
C42	0.0074 (6)	−0.1549 (4)	−0.0254 (3)	0.0246 (7)		
H42	−0.108662	−0.114593	0.002177	0.030*		
C11	0.2053 (2)	0.17453 (13)	0.65929 (9)	0.0542 (4)		
C43	0.4128 (7)	0.2615 (4)	0.7525 (3)	0.0306 (8)		
C44	0.3680 (7)	0.2937 (5)	0.8418 (3)	0.0320 (8)		
H44	0.224785	0.265769	0.853168	0.038*		
C45	0.5314 (8)	0.3668 (5)	0.9151 (3)	0.0348 (9)		
H45	0.502082	0.389116	0.977568	0.042*		
C46	0.7375 (8)	0.4077 (5)	0.8978 (3)	0.0406 (10)		
H46	0.850033	0.460205	0.948342	0.049*		
------	----------	----------	----------	--------		
C47	0.7812 (9)	0.3732 (6)	0.8083 (4)	0.0484 (12)		
H47	0.924417	0.401211	0.796899	0.058*		
C48	0.6189 (9)	0.2979 (5)	0.7341 (3)	0.0418 (11)		
H48	0.649317	0.271929	0.671735	0.050*		

Atomic displacement parameters (Å²)

	\(U_{11}^{2}\)	\(U_{22}^{2}\)	\(U_{33}^{2}\)	\(U_{12}\)	\(U_{13}\)	\(U_{23}\)
O1	0.0216 (13)	0.0295 (14)	0.0336 (14)	−0.0023 (10)	0.0080 (10)	0.0040 (11)
O2	0.0278 (14)	0.0216 (12)	0.0279 (13)	−0.0000 (10)	0.0036 (10)	0.0015 (9)
O3	0.0219 (13)	0.0244 (13)	0.0315 (13)	0.0000 (10)	0.0054 (10)	0.0058 (10)
O4	0.0267 (14)	0.0236 (12)	0.0270 (12)	−0.0000 (10)	0.0049 (10)	0.0057 (10)
O5	0.0216 (17)	0.0219 (16)	0.0274 (15)	0.0000 (12)	0.0033 (13)	0.0072 (12)
O6	0.0211 (17)	0.0246 (17)	0.0348 (18)	−0.0000 (13)	0.0064 (13)	0.0077 (14)
C1	0.0204 (16)	0.0256 (17)	0.0326 (18)	−0.0005 (13)	0.0067 (13)	0.0064 (14)
C2	0.0227 (17)	0.0215 (16)	0.0219 (15)	0.0037 (12)	0.0035 (12)	0.0052 (12)
C3	0.0212 (16)	0.0236 (12)	0.0227 (15)	0.0016 (12)	0.0042 (12)	0.0074 (12)
C4	0.0210 (16)	0.0221 (16)	0.0232 (15)	0.0006 (12)	0.0052 (12)	0.0053 (12)
C5	0.0222 (16)	0.0214 (16)	0.0233 (15)	0.0009 (12)	0.0072 (12)	0.0048 (12)
C6	0.0242 (17)	0.0220 (16)	0.0262 (17)	0.0018 (13)	0.0055 (13)	0.0056 (13)
C7	0.0206 (16)	0.0224 (16)	0.0245 (16)	0.0021 (12)	0.0032 (12)	0.0044 (12)
C8	0.0225 (17)	0.0262 (18)	0.0282 (17)	0.0003 (13)	0.0065 (13)	0.0058 (13)
C9	0.0289 (19)	0.0269 (18)	0.0275 (17)	0.0025 (14)	0.0083 (14)	0.0067 (14)
C10	0.0271 (18)	0.0231 (17)	0.0237 (16)	−0.0005 (13)	0.0044 (13)	0.0064 (13)
C11	0.0258 (18)	0.0199 (16)	0.0263 (16)	0.0007 (13)	0.0040 (13)	0.0061 (12)
C12	0.032 (2)	0.0248 (17)	0.0268 (18)	−0.0030 (14)	0.0045 (14)	0.0051 (14)
C13	0.0253 (17)	0.0234 (16)	0.0229 (16)	0.0005 (13)	0.0049 (13)	0.0009 (12)
C14	0.0252 (18)	0.032 (2)	0.0271 (17)	0.0011 (14)	0.0012 (13)	0.0030 (14)
C15	0.0242 (18)	0.035 (2)	0.0291 (18)	−0.0017 (14)	0.0027 (14)	0.0006 (15)
C16	0.0227 (18)	0.0254 (18)	0.0348 (19)	−0.0057 (13)	0.0051 (14)	0.0019 (14)
C17	0.0242 (17)	0.0224 (16)	0.0252 (16)	0.0018 (12)	0.0055 (12)	0.0041 (12)
C18	0.0254 (17)	0.0243 (16)	0.0243 (16)	−0.0028 (13)	0.0027 (12)	0.0022 (12)
C19	0.0239 (17)	0.0257 (17)	0.0255 (16)	0.0027 (13)	0.0027 (13)	0.0031 (13)
C20	0.0229 (17)	0.0220 (16)	0.0240 (16)	0.0032 (13)	0.0021 (12)	0.0067 (12)
C21	0.0222 (17)	0.0242 (16)	0.0235 (16)	−0.0005 (13)	0.0045 (12)	0.0036 (12)
C22	0.0189 (16)	0.0238 (16)	0.0227 (15)	0.0011 (12)	0.0039 (12)	0.0062 (12)
C23	0.0189 (15)	0.0236 (16)	0.0207 (15)	0.0000 (12)	0.0018 (11)	0.0024 (12)
C24	0.0214 (16)	0.0218 (15)	0.0238 (15)	0.0027 (12)	0.0039 (12)	0.0073 (12)
C25	0.0212 (16)	0.0238 (16)	0.0245 (16)	0.0021 (12)	0.0043 (12)	0.0069 (13)
C26	0.0228 (17)	0.0223 (16)	0.0273 (16)	0.0005 (12)	0.0025 (13)	0.0083 (13)
Geometric parameters (Å, °)

Bond	Distance	Angle
O1—C10	1.207 (4)	
O2—C15	1.410 (5)	
O2—C16	1.374 (5)	
O3—C20	1.353 (5)	
O3—C22	1.420 (5)	
O4—C29	1.214 (4)	
O5—C36	1.415 (5)	
O5—C37	1.362 (4)	
O6—C1	1.420 (4)	
O6—C41	1.363 (4)	
C1—H1A	0.9900	
C1—H1B	0.9900	
C2—H22B		0.9900
C2—C23	1.502 (5)	
C2—C24	1.383 (5)	
C3—C25	1.383 (5)	
C4—C26	1.492 (5)	
C5—C27	1.377 (5)	
C6—C28	1.492 (5)	
C7—C29	1.400 (5)	
C8—C30	1.400 (5)	
C9—C31	1.370 (5)	
C10—C32	0.9500	
C11—C33	1.400 (5)	
C12—C34	1.382 (5)	
C13—C35	1.389 (5)	
C14—C36	1.400 (5)	
C15—C37	1.382 (5)	
C16—C38	1.383 (5)	
C17—C39	1.377 (5)	
C18—C40	1.400 (5)	
C19—C41	1.382 (5)	
C20—C42	0.9500	
C21—C43	1.382 (5)	
C22—C44	1.382 (5)	
C23—C45	0.9500	
C24—C46	1.400 (5)	
C25—C47	1.382 (5)	
C26—C48	0.9500	

Acta Cryst. (2021). E77, 1285-1288 sup-5
Bond	Length (Å)	Bond	Length (Å)	Bond	Length (Å)
C11—C12	1.390 (5)	C38—C39	1.384 (6)		
C12—H12	0.9500	C39—H39	0.9500		
C12—C13	1.387 (5)	C39—C40	1.387 (6)		
C13—C14	1.386 (5)	C40—H40	0.9500		
C13—C15	1.495 (5)	C40—C41	1.377 (5)		
C14—H14	0.9500	C41—C42	1.375 (5)		
C15—H15A	0.9900	C42—H42	0.9500		
C15—H15B	0.9900	C42—C43	1.732 (4)		
C16—C17	1.385 (5)	C43—C44	1.362 (5)		
C16—C21	1.372 (5)	C43—C48	1.371 (6)		
C17—H17	0.9500	C44—H44	0.9500		
C17—C18	1.378 (6)	C44—C45	1.372 (6)		
C18—H18	0.9500	C45—H45	0.9500		
C18—C19	1.383 (6)	C45—C46	1.373 (7)		
C19—H19	0.9500	C46—H46	0.9500		
C19—C20	1.382 (5)	C46—C47	1.364 (7)		
C20—C21	1.392 (5)	C47—H47	0.9500		
C21—H21	0.9500	C47—C48	1.381 (7)		
C22—H22A	0.9900	C48—H48	0.9500		
C16—O2—C15	117.1 (3)	C24—C23—C28	119.8 (3)		
C20—O3—C22	116.5 (3)	C28—C23—C22	118.7 (3)		
C37—O5—C36	116.8 (3)	C23—C24—H24	120.6		
C41—O6—C1	118.1 (3)	C25—C24—C23	118.8 (3)		
O6—C1—H1A	108.6	C25—C24—H24	120.6		
O6—C1—H1B	108.6	C24—C25—C26	121.5 (3)		
O6—C1—C2	114.5 (3)	C24—C25—C29	129.7 (3)		
H1A—C1—H1B	107.6	C26—C25—C29	108.5 (3)		
C2—C1—H1A	108.6	C25—C26—C31	108.6 (3)		
C2—C1—H1B	108.6	C27—C26—C25	120.2 (3)		
C3—C2—C1	117.3 (3)	C27—C26—C31	131.1 (3)		
C7—C2—C1	122.5 (3)	C26—C27—H27	121.0		
C7—C2—C3	120.2 (3)	C26—C27—C28	118.0 (3)		
C2—C3—H3	119.1	C28—C27—H27	121.0		
C4—C3—C2	121.9 (3)	C23—C28—C27	121.6 (3)		
C4—C3—H3	119.1	C23—C28—H28	119.2		
C3—C4—H4	120.9	C27—C28—H28	119.2		
C5—C4—C3	118.3 (3)	O4—C29—C25	127.1 (3)		
C5—C4—H4	120.9	O4—C29—C30	127.5 (3)		
C4—C5—C6	119.9 (3)	C30—C29—C25	105.3 (3)		
C4—C5—C8	131.2 (3)	C31—C30—C29	109.1 (3)		
C6—C5—C8	108.7 (3)	C32—C30—C29	129.5 (3)		
C5—C6—C10	107.9 (3)	C32—C30—C31	121.3 (3)		
C7—C6—C5	122.1 (3)	C30—C31—C26	108.4 (3)		
C7—C6—C10	129.9 (3)	C35—C31—C26	131.4 (3)		
C2—C7—H7	121.2	C35—C31—C30	120.1 (3)		
C6—C7—C2	117.7 (3)	C30—C32—H32	120.5		
C6—C7—H7	121.2	C30—C32—C33	119.0 (3)		
Bond	Distance (Å)	Angle (°)			
----------------------	--------------	--------------			
C9—C8—C5	108.5 (3)	C33—C32—H32	120.5		
C11—C8—C5	131.3 (3)	C32—C33—C34	119.5 (3)		
C11—C8—C9	120.1 (3)	C32—C33—C36	120.7 (3)		
C8—C9—C10	108.7 (3)	C34—C33—C36	119.7 (3)		
C14—C9—C8	121.4 (3)	C33—C34—H34	119.2		
C14—C9—C10	129.8 (3)	C35—C34—C33	121.6 (3)		
O1—C10—C6	126.6 (3)	C35—C34—H34	119.2		
O1—C10—C9	127.7 (3)	C31—C35—C34	118.4 (3)		
C9—C10—C6	105.7 (3)	C31—C35—H35	120.8		
C8—C11—H11	121.1	C34—C35—H35	120.8		
C8—C11—C12	117.9 (3)	O5—C36—C33	114.3 (3)		
C12—C11—H11	121.1	O5—C36—H36A	108.7		
C11—C12—H12	118.9	O5—C36—H36B	108.7		
C13—C12—C11	122.3 (4)	C33—C36—H36A	108.7		
C13—C12—H12	118.9	C33—C36—H36B	108.7		
C12—C13—C15	117.1 (3)	H36A—C36—H36B	107.6		
C14—C13—C12	119.3 (3)	O5—C37—C38	116.1 (3)		
C14—C13—C15	123.4 (3)	O5—C37—C42	123.0 (3)		
C9—C14—C13	118.6 (3)	C38—C37—C42	120.9 (4)		
C9—C14—H14	120.7	C37—C38—H38	120.5		
C13—C14—H14	120.7	C37—C38—C39	118.9 (3)		
O2—C15—C13	114.4 (3)	C39—C38—H38	120.5		
O2—C15—H15A	108.7	C39—C38—H39	119.5		
O2—C15—H15B	108.7	C38—C39—C40	121.0 (4)		
C13—C15—H15A	108.7	C40—C39—H39	119.5		
C13—C15—H15B	108.7	C39—C40—H40	120.6		
H15A—C15—H15B	107.6	C41—C40—C39	118.8 (4)		
O2—C16—C17	115.7 (3)	C41—C40—H40	120.6		
C21—C16—O2	122.8 (3)	O6—C41—C40	115.9 (3)		
C21—C16—C17	121.5 (3)	O6—C41—C42	122.9 (3)		
C16—C17—H17	120.9	C42—C41—C40	121.2 (3)		
C18—C17—C16	118.3 (4)	C37—C42—H42	120.5		
C18—C17—H17	120.9	C41—C42—C37	119.1 (3)		
C17—C18—H18	119.3	C41—C42—H42	120.5		
C17—C18—C19	121.5 (4)	C44—C43—C11	119.8 (3)		
C19—C18—H18	119.3	C44—C43—C48	121.6 (4)		
C18—C19—H19	120.3	C48—C43—C11	118.6 (3)		
C20—C19—C18	119.3 (3)	C43—C44—H44	120.3		
C20—C19—H19	120.3	C43—C44—C45	119.5 (4)		
O3—C20—C19	116.9 (3)	C45—C44—H44	120.3		
O3—C20—C21	123.1 (3)	C44—C45—H45	120.1		
C19—C20—C21	120.0 (4)	C44—C45—C46	119.8 (4)		
C16—C21—C20	119.4 (3)	C46—C45—H45	120.1		
C16—C21—H21	120.3	C45—C46—H46	119.9		
C20—C21—H21	120.3	C47—C46—C45	120.2 (4)		
O3—C22—H22A	108.7	C47—C46—H46	119.9		
O3—C22—H22B	108.7	C46—C47—H47	119.7		
O3—C22—C23	114.1 (3)	C46—C47—C48	120.6 (4)		
Bond	Angle (°)	Bond	Angle (°)		
----------------------	-----------	----------------------	-----------		
H22A—C22—H22B	107.6	C48—C47—H47	119.7		
C23—C22—H22A	108.7	C43—C48—C47	118.3 (4)		
C23—C22—H22B	108.7	C43—C48—H48	120.8		
C24—C23—C22	121.4 (3)	C47—C48—H48	120.8		
O2—C16—C17—C18	178.9 (3)	C19—C20—C21—C16	0.1 (5)		
O2—C16—C21—C20	−178.5 (3)	C20—O3—C22—C23	−80.0 (4)		
O3—C20—C21—C16	179.4 (3)	C21—C16—C17—C18	0.5 (6)		
O3—C22—C23—C24	−30.7 (5)	C22—O3—C20—C19	−165.2 (3)		
O3—C22—C23—C28	152.4 (3)	C22—O3—C20—C21	15.4 (5)		
O4—C29—C30—C31	−179.6 (4)	C22—C23—C24—C25	−174.6 (3)		
O4—C29—C30—C32	−3.9 (7)	C22—C23—C28—C27	174.6 (3)		
O5—C37—C38—C39	179.1 (3)	C23—C24—C25—C26	−0.1 (5)		
O5—C37—C42—C41	−178.6 (3)	C23—C24—C25—C29	174.4 (3)		
O6—C1—C2—C3	−165.4 (3)	C24—C23—C28—C27	−2.3 (5)		
O6—C1—C2—C7	12.6 (5)	C24—C25—C26—C27	−1.9 (5)		
O6—C41—C42—C37	179.0 (3)	C24—C25—C26—C31	174.7 (3)		
C1—O6—C41—C40	−160.6 (3)	C24—C25—C29—O4	4.5 (6)		
C1—O6—C41—C42	19.3 (5)	C24—C25—C29—C30	−173.6 (4)		
C1—C2—C3—C4	175.2 (4)	C25—C26—C27—C28	1.8 (5)		
C1—C2—C7—C6	−175.9 (3)	C25—C26—C31—C30	0.0 (4)		
C2—C3—C4—C5	0.5 (6)	C25—C26—C31—C35	−177.1 (4)		
C3—C2—C7—C6	2.1 (5)	C25—C29—C30—C31	−1.5 (4)		
C3—C4—C5—C6	2.3 (5)	C25—C29—C30—C32	174.2 (4)		
C3—C4—C5—C8	−172.2 (4)	C26—C25—C29—O4	179.6 (4)		
C4—C5—C6—C7	−3.1 (5)	C26—C25—C29—C30	1.5 (4)		
C4—C5—C6—C10	−179.0 (3)	C26—C27—C28—C23	0.3 (6)		
C4—C5—C8—C9	174.1 (4)	C26—C31—C35—C34	174.0 (4)		
C4—C5—C8—C11	−3.6 (7)	C27—C26—C31—C30	176.1 (4)		
C5—C6—C7—C2	0.8 (5)	C27—C26—C31—C35	−1.0 (7)		
C5—C6—C10—O1	−173.4 (4)	C28—C23—C24—C25	2.2 (5)		
C5—C6—C10—C9	6.1 (4)	C29—C25—C26—C27	−177.5 (3)		
C5—C8—C9—C10	4.8 (4)	C29—C25—C26—C31	−0.9 (4)		
C5—C8—C9—C14	−172.1 (3)	C29—C30—C31—C26	1.0 (4)		
C5—C8—C11—C12	173.4 (4)	C29—C30—C31—C35	178.4 (3)		
C6—C5—C8—C9	−0.9 (4)	C29—C30—C32—C33	−174.1 (4)		
C6—C5—C8—C11	−178.6 (4)	C30—C31—C35—C34	−2.8 (5)		
C7—C2—C3—C4	−2.9 (5)	C30—C32—C33—C34	−4.0 (5)		
C7—C6—C10—O1	11.1 (6)	C30—C32—C33—C36	171.1 (3)		
C7—C6—C10—C9	−169.4 (4)	C31—C26—C27—C28	−173.9 (4)		
C8—C5—C6—C7	172.6 (3)	C31—C30—C32—C33	1.2 (5)		
C8—C5—C6—C10	−3.3 (4)	C32—C30—C31—C35	−175.2 (3)		
C8—C9—C10—O1	172.7 (4)	C32—C30—C34—C35	2.3 (5)		
C8—C9—C10—C6	−6.7 (4)	C32—C33—C34—C35	3.5 (5)		
C8—C9—C14—C13	−2.0 (5)	C32—C33—C36—O5	33.9 (5)		
C8—C11—C12—C13	−1.6 (6)	C33—C34—C35—C31	0.0 (6)		
C9—C8—C11—C12	−4.0 (5)	C34—C33—C36—O5	−151.0 (3)		
C10—C6—C7—C2	175.7 (3)	C36—O5—C37—C38	167.2 (3)		
C10—C9—C14—C13
\(-178.2 \, (4)\)
C36—O5—C37—C42
\(-13.0 \, (5)\)

C11—C8—C9—C10
\(-177.2 \, (3)\)
C36—C33—C34—C35
\(-171.7 \, (3)\)

C11—C8—C9—C14
\(5.9 \, (6)\)
C36—O5—C37—C42
\(78.4 \, (4)\)

C11—C12—C13—C14
\(5.5 \, (6)\)
C37—C38—C42—C41
\(0.1 \, (6)\)

C11—C12—C13—C15
\(-170.5 \, (4)\)
C38—C37—C42—C41
\(1.3 \, (5)\)

C12—C13—C14—C9
\(-3.6 \, (5)\)
C38—C39—C40—C41
\(0.0 \, (6)\)

C12—C13—C15—O2
\(168.8 \, (3)\)
C39—C40—C41—O6
\(-179.6 \, (3)\)

C14—C9—C10—O1
\(-10.7 \, (7)\)
C39—C40—C41—C42
\(0.5 \, (5)\)

C14—C9—C10—C6
\(169.9 \, (4)\)
C40—C41—C42—C37
\(-1.2 \, (5)\)

C14—C13—C15—O2
\(-7.0 \, (5)\)
C41—O6—C1—C2
\(-90.6 \, (4)\)

C15—O2—C16—C21
\(158.0 \, (3)\)
C41—O6—C1—C2
\(-90.6 \, (4)\)

C14—C13—C15—O2
\(-7.0 \, (5)\)
C11—C43—C44—C45
\(-177.9 \, (3)\)

C15—O2—C16—C21
\(-23.6 \, (5)\)
C11—C43—C44—C45
\(-177.9 \, (3)\)

C15—O2—C16—C17
\(91.6 \, (4)\)
C43—C44—C45—C46
\(0.5 \, (6)\)

C16—O2—C16—C17
\(-158.0 \, (3)\)
C44—C45—C46—C47
\(-2.2 \, (7)\)

C17—O2—C16—C17
\(0.7 \, (6)\)
C45—C46—C47—C48
\(-1.4 \, (7)\)

C17—O2—C16—C21
\(-0.2 \, (6)\)
C45—C46—C47—C48
\(-1.4 \, (7)\)

C18—C19—C20—O3
\(-179.7 \, (3)\)
C46—C47—C48—C43
\(-1.3 \, (7)\)

C18—C19—C20—C21
\(-0.3 \, (6)\)
C46—C47—C48—C43
\(-1.3 \, (7)\)

Hydrogen-bond geometry (Å, °)

\(D—H···A\)
\(D—H\)
\(H···A\)
\(D···A\)
\(D—H···A\)

C18—H18···Cl1i
0.95
2.83
3.547 (4)
133

C35—H35···O1ii
0.95
2.58
3.491 (5)
161

C46—H46···O6iii
0.95
2.55
3.418 (5)
152

C1—H1A···Cg2iv
0.99
2.95
3.610 (4)
125

C22—H22A···Cg1v
0.99
2.73
3.711 (4)
170

C36—H36B···Cg15vi
0.99
2.84
3.713 (4)
148

Symmetry codes: (i) \(x+1, y+1, z\); (ii) \(x-1, y, z\); (iii) \(x+1, y+1, z+1\); (iv) \(x, y-1, z\); (v) \(x, y+1, z\); (vi) \(x-1, y, z-1\).