Bohr Hamiltonian with Davidson potential for triaxial nuclei

I. Yigitoglu1 and Dennis Bonatsos2
1 Faculty of Science and Arts, Department of Physics, Gaziosmanpasa University, 60240 Tokat, Turkey
2 Institute of Nuclear Physics, N.C.S.R. “Demokritos”, GR-15310 Aghia Paraskevi, Attiki, Greece

A solution of the Bohr Hamiltonian appropriate for triaxial shapes, involving a Davidson potential in β and a steep harmonic oscillator in γ, centered around $\gamma = \pi/6$, is developed. Analytical expressions for spectra and B(E2) transition rates ranging from a triaxial vibrator to the rigid triaxial rotor are obtained and compared to experiment. Using a variational procedure it is pointed out that the Z(5) solution, in which an infinite square well potential in β is used, corresponds to the critical point of the shape phase transition from a triaxial vibrator to the rigid triaxial rotor.

I. INTRODUCTION

The advent of critical point symmetries \cite{1–4}, manifested experimentally \cite{5, 7} in nuclei or near the point of shape phase transitions, revived interest in special solutions \cite{8, 9} of the Bohr Hamiltonian \cite{10}. While shape phase transitions in nuclei have been originally found \cite{11, 12} in the framework of the Interacting Boson Model \cite{12}, the first examples of critical point symmetries, the E(5) symmetry \cite{1} (corresponding to the second order phase transition between spherical and γ-unstable (soft with respect to axial asymmetry) nuclei) and the X(5) symmetry \cite{2} (appropriate for the first order phase transition between spherical and prolate deformed nuclei), have been developed as special solutions of the Bohr Hamiltonian, using an infinite square well potential in the β degree of freedom (related to the magnitude of the deformation). In E(5) the potential is independent of the γ degree of freedom, related to the shape of the nucleus, while in X(5) the potential is separable into two terms, $u(\beta) + v(\gamma)$, the latter being a steep harmonic oscillator centered around $\gamma = 0$, corresponding to prolate deformed nuclei. The Z(5) solution developed later, formally resembles the X(5) case in using a separable potential and an infinite square well potential in β, but it differs drastically in using a steep harmonic oscillator potential in the γ degree of freedom centered around $\gamma = \pi/6$, corresponding to triaxial shapes.

Triaxial shapes in nuclei have been considered for a long time, since the introduction of the rigid triaxial rotor \cite{14, 15}, despite the fact that very few candidates have been found experimentally \cite{16, 17}. In the framework of the IBM, triaxial shapes can occur in three different cases:

i) In the IBM-1 framework, in which no distinction between protons and neutrons is made, the inclusion of higher order (three-body) terms is needed \cite{18, 19}.

ii) In the IBM-2 framework, in which protons and neutrons are used as distinct entities, the inclusion of one-body and two-body terms suffices \cite{20, 22}.

iii) In the sdg-IBM framework, the presence of the g-boson also suffices \cite{23}.

Shape phase transitions involving rigid triaxial shapes have been studied recently in the IBM-2 framework \cite{20–22}, while in the sdg-IBM framework no transitions towards stable triaxial shapes have been found so far \cite{23}.

In the present work, the Z(5) solution is modified by replacing the infinite square well potential in β by a Davidson potential \cite{24},

$$u(\beta) = \beta^2 + \frac{\beta_0^4}{\beta^2},$$

where β_0 corresponds to the position of the minimum of the potential. This solution is going to be called Z(5)-D.

Similar studies already exist in the literature for both the E(5) \cite{8, 25} and X(5) \cite{26, 27} cases. In addition, other potentials, like β^{2n} potentials \cite{28, 30}, and the Morse \cite{31} and Kratzer \cite{8} potentials have been used in the E(5) (γ-unstable) \cite{22} and X(5) ($\gamma \approx 0$, prolate deformed) \cite{33} frameworks.

In addition to providing easily comparable to experimental solutions for the spectra and B(E2) transition rates, the present study leads to an important by-product. Using a variational procedure applied earlier in the E(5) and X(5) frameworks \cite{26, 27}, one can see that the Z(5) solution can be interpreted as corresponding to the critical point of a shape phase transition between a triaxial vibrator and a rigid triaxial rotor.

In Sections 2 and 3 the β part and the γ part of the spectrum are considered, while B(E2) transition rates are calculated in Section 4. Numerical results, including results of the above-mentioned variational procedure, are shown in Section 5, while in Section 6 a brief comparison to experiment is attempted. Finally, conclusions and plans for further work are found in Section 7.

II. THE β-PART OF THE SPECTRUM

The original Bohr Hamiltonian \cite{10} is

$$H = -\frac{\hbar^2}{2B} \left[\frac{1}{\beta^2} \frac{\partial^2}{\partial \beta} + \frac{1}{\beta^2 \sin 3\gamma} \frac{\partial}{\partial \gamma} \frac{3\gamma}{\partial \gamma} \right] + V(\beta, \gamma),$$

$$-\frac{1}{4\beta^2} \sum_{k=1,2,3} \frac{Q_k^2}{\sin^2 \left(\gamma - \frac{2\pi k}{3} \right)} + V(\beta, \gamma),$$

(2)
where β and γ are the usual collective coordinates, while Q_k ($k = 1, 2, 3$) are the components of angular momentum in the intrinsic frame, and B is the mass parameter.

In the case in which the potential has a minimum around $\gamma = \pi/6$, the term involving the components of the angular momentum can be written \cite{13} in the form $4(Q_1^2 + Q_2^2 + Q_3^2) - 3Q_1^2$. Using this result in the Schrödinger equation corresponding to the Hamiltonian of Eq. \cite{2}, introducing \cite{2} reduced energies $\epsilon = 2BE/h^2$ and reduced potentials $u = 2BV/h^2$, and assuming \cite{2} that the reduced potential can be separated into two terms, one depending on β and the other depending on γ, i.e. $u(\beta, \gamma) = u(\beta) + v(\gamma)$, the Schrödinger equation can be approximately separated into two equations

$$\left[-\frac{1}{\beta^4} \frac{\partial}{\partial \beta} \beta^4 \frac{\partial}{\partial \beta} + \frac{1}{4\beta^2} (4L(L+1) - 3\alpha^2) + u(\beta) \right] \xi_{L,\alpha}(\beta) = \epsilon \beta \xi_{L,\alpha}(\beta), \quad (3)$$

$$\left[-\frac{1}{(\beta^2)^2} \frac{\partial}{\partial \beta} \sin \beta \frac{\partial}{\partial \gamma} \sin \beta \frac{\partial}{\partial \gamma} + v(\gamma) \right] \eta(\gamma) = \epsilon_s \eta(\gamma), \quad (4)$$

where L is the projection of the angular momentum on the body-fixed \hat{x}'-axis (α has to be an even integer \cite{34}), (β^2) is the average of β^2 over $\xi(\beta)$, and $\epsilon = \epsilon_\beta + \epsilon_\gamma$. It should be noticed that the separation of variables is approximate, since in Eq. \cite{4} the quantity (β^2) appears, which depends on the quantum numbers L and α, appearing in Eq. \cite{3}. Therefore an approximate separation of variables is achieved in the adiabatic limit, as in Ref. \cite{33}. As a consequence, the energy relation $\epsilon = \epsilon_\beta + \epsilon_\gamma$ is also approximate.

The total wave function should have the form $\Psi(\beta, \gamma, \theta_i) = \xi_{L,\alpha}(\beta) \eta(\gamma) D_{\ell,\alpha}(\theta_i)$, where θ_i ($i = 1, 2, 3$) are the Euler angles, $D(\theta_i)$ denote Wigner functions of them, L are the eigenvalues of angular momentum, while M and α are the eigenvalues of the projections of angular momentum on the laboratory fixed \hat{z}-axis and the body-fixed \hat{x}'-axis respectively.

Instead of the projection α of the angular momentum on the \hat{x}'-axis, it is customary to introduce the wobbling quantum number \cite{33,36} $n_w = L - \alpha$, which labels a series of bands with $L = n_w, n_w + 2, n_w + 4, \ldots$ (with $n_w > 0$) next to the ground state band (with $n_w = 0$) \cite{34}.

Eq. \cite{3} has been solved in the case in which $u(\beta)$ is an infinite well potential, the corresponding solution called Z(5) \cite{13}. The spectrum is given by roots of Bessel functions, for which the notation has been kept the same as in Ref. \cite{2}, namely $E_{s,n_w,L}$, the ground state band corresponding to $s = 1, n_w = 0$.

Eq. \cite{3} is exactly soluble also in the case in which the potential has the form of a Davidson potential \cite{24}

$$u(\beta) = \beta^2 + \frac{\beta_0^2}{\beta^2}, \quad (5)$$

where β_0 is the position of the minimum of the potential. When plugging the Davidson potential in Eq. \cite{4}, the β_0^2/β^2 term of the potential is combined with the $[4L(L+1) - 3\alpha^2]/4\beta^2$ term appearing there and the equation is solved exactly \cite{25,37}, the eigenfunctions being Laguerre polynomials of the form

$$\xi_{n,n_w,L}(\beta) = \xi_{n,\alpha,L}(\beta) = \left[\frac{2n!}{\Gamma(n + a + 1/2)} \right]^{1/2} \beta^a L_n^a(\beta^2) e^{-\beta^2/2}, \quad (6)$$

where $\Gamma(z)$ stands for the Γ-function, n is the usual oscillator quantum number (which should be distinguished from the wobbling quantum number n_w), $L_n^a(\beta)$ denotes the Laguerre polynomials \cite{38}, and

$$a = -\frac{3}{2} + \sqrt{\frac{4L(L+1) - 3\alpha^2 + 9}{4} + \beta_0^4}, \quad (7)$$

The energy eigenvalues are then (in $\hbar \omega = 1$ units)

$$E_{n,L}^{(n_w)} = 2n + a + \frac{5}{2}$$

$$= 2n + 1 + \sqrt{\frac{L(L+4) + 3n_w(2L - n_w) + 9}{4} + \beta_0^4}, \quad (8)$$

where $n = 0, 1, 2, \ldots$ One can see that a formal correspondence between the energy levels of the Z(5) model and the present model, to which we shall refer as the Z(5)-D model can be established through the relation $n = s - 1$, which expresses just a formal one-to-one correspondence between the states in the two spectra, while the origin of the two quantum numbers is different, s labeling the order of a zero of a Bessel function and n labeling the number of zeros of a Laguerre polynomial. For the energy states the notation $E_{s,n_w,L} = E_{n+1,n_w,L}$ will be used, as in Refs. \cite{2,13}. Therefore the ground state band corresponds to $s = 1 (n = 0)$ and $n_w = 0$.

In the limit $\beta_0 \to \infty$ one can expand the square root in Eq. \cite{8} and keep only the lowest order term, thus obtaining

$$E_L^{(n_w)} = A[L(L+4) + 3n_w(2L - n_w)], \quad (9)$$

where A is a constant, which is the spectrum of the triaxial rotator obtained in Ref. \cite{34}.

In the special case $\beta_0 = 0$, i.e., in the case that a harmonic oscillator is used, one obtains a parameter-free (up to overall scale factors) exactly soluble model to which we shall refer as the Z(5)-β^2 model, in analogy to the E(5)-β^2 \cite{28,29} and X(5)-β^2 \cite{30} models. This model represents a triaxial vibrator.
III. THE \(\gamma \)-PART OF THE SPECTRUM

The \(\gamma \)-part of the spectrum is obtained from Eq. (4), as described in Ref. [13], by putting in it a harmonic oscillator potential having a minimum at \(\gamma = \pi/6 \), i.e.

\[
v(\gamma) = \frac{1}{2} c (\gamma - \frac{\pi}{6})^2 = \frac{1}{2} c \gamma^2, \quad \tilde{\gamma} = \gamma - \frac{\pi}{6}.
\] (10)

In the case of \(\gamma \approx \pi/6 \) a simple harmonic oscillator equation in the variable \(\tilde{\gamma} \) occurs. Similar potentials and solutions in the \(\gamma \)-variable have been considered in [10, 39].

The total energy in the case of the \(\text{Z}(5) \)-D model is then

\[
E(n, n_w, L, n_\gamma, \beta_0) = E_0 + A [2n + 1 + \sqrt{\frac{L(L+4) + 3n_w(2L-n_w) + 9}{4} + \beta_4^2}] + B n_\gamma,
\] (11)

where \(n_\gamma \) is the number of oscillator quanta in the \(\tilde{\gamma} \) degree of freedom, and \(E_0, A, B \) are free parameters.

It should be noticed that in Eq. (11) there is a latent dependence on \(s, L \), and \(n_w \) “hidden” in the \(\langle \beta^2 \rangle \) term. The approximate separation of the \(\beta \) and \(\gamma \) variables is achieved by considering an adiabatic limit, as in the \(\text{X}(5) \) case [2, 35].

IV. B(E2) TRANSITION RATES

The quadrupole operator is given by

\[
T^{(E2)}_\mu = t \beta \left[D^{(2)}_{\mu,0}(\theta_i) \cos \left(\gamma - \frac{2\pi}{3} \right) + \frac{1}{\sqrt{2}} \left(D^{(2)}_{\mu,2}(\theta_i) + D^{(2)}_{\mu,-2}(\theta_i) \right) \sin \left(\gamma - \frac{2\pi}{3} \right) \right],
\] (12)

where \(t \) is a scale factor, while in the Wigner functions, \(D^{(2)} \), the quantum number \(\alpha \) appears next to \(\mu \), and the quantity \(\gamma - 2\pi/3 \) in the trigonometric functions is obtained from \(\gamma - 2\pi k/3 \) for \(k = 1 \), since in the present case the projection \(\alpha \) along the body-fixed \(x' \)-axis is used.

The symmetrized wave function for \(\text{Z}(5) \)-D reads

\[
\Psi(\gamma, \beta, \theta_i) = \xi_{\alpha, \alpha, L}(\beta) \eta_{n_\gamma}(\tilde{\gamma})
\]

\[
\sqrt{\frac{2L + 1}{16\pi^2(1 + \delta_{\alpha,0})}} (D^{(L)}_{\mu,\mu} + (-1)^L D^{(L)}_{\mu,-\mu}),
\] (13)

where the normalization factor occurs from the standard integrals involving two Wigner functions [40] and is the same as in [34]. \(\alpha \) has to be an even integer [34], while for \(\alpha = 0 \) it is clear that only even values of \(L \) are allowed, since the symmetrized wave function is vanishing otherwise.

The calculation of B(E2)s proceeds as in Ref. [13] and need not be repeated here. In the calculation of matrix elements the integral over \(\tilde{\gamma} \) leads to unity [because of the normalization of \(\eta(\tilde{\gamma}) \)], and taking into account that \(\gamma \) in Eq. (12) is fixed to the \(\pi/6 \) value, because of the steep potential used in \(\gamma \), while the integral over \(\beta \) takes the form

\[
I_\beta(n_i, L_i, \alpha_i, n_f, L_f, \alpha_f) = \int \beta \xi_{n_i, \alpha_i, L_i} \xi_{n_f, \alpha_f, L_f}(\beta) \beta^4 d\beta,
\] (14)

where the \(\beta \) factor comes from Eq. [12], and the \(\beta^4 \) factor comes from the volume element [10]. It is worth reminding, though, that a \(\Delta\alpha = \pm 2 \) selection rule occurs, which results in vanishing quadrupole moments.

V. NUMERICAL RESULTS

A. Spectra

The lowest bands for the \(\text{Z}(5) \)-D model are shown in Table 1 for the limiting parameter values \(\beta_0 = 0 \) (the \(\text{Z}(5) \)-\(\beta^2 \) model) and \(\beta \to \infty \) (the triaxial rotor model [34, 39]), as well as for the intermediate value \(\beta_0 = 2 \) (for illustrative purposes). The levels of \(\text{Z}(5) \) [13] are also shown for comparison. The bands shown are:

i) The ground state band (gsb), with \((s = 1, n_w = 0)\).

ii) The quasi-\(\gamma_1 \) band, composed by the even \(L \) levels with \((s = 1, n_w = 2)\) and the odd \(L \) levels with \((s = 1, n_w = 1)\).

iii) The quasi-\(\gamma_2 \) band, composed by the even \(L \) levels with \((s = 1, n_w = 4)\) and the odd \(L \) levels with \((s = 1, n_w = 3)\).

iv) The quasi-\(\beta_1 \) band, with \((s = 2, n_w = 0)\).

v) The quasi-\(\beta_2 \) band, with \((s = 3, n_w = 0)\).

Since the last two bands go to infinity for \(\beta_0 \to \infty \), the energy levels for \(\beta_0 = 3 \) have been shown instead.

In all cases \(B = 0 \) has been used in Eq. (11), i.e., the term involving \(n_\gamma \) has been ignored.

For all bands a uniform raising of the energies from the triaxial vibrator (\(\beta_0 = 0 \)) values to the triaxial rigid rotor (\(\beta_0 \to \infty \)) values is observed.

A quantity being very sensitive to structural changes (since it is a discrete derivative of energies) is the odd-even staggering in gamma bands, described by quantity [16]

\[
S(J) = \frac{E(J^+_1) + E((J - 2)^+_1)}{2E(J^+_1)},
\] (15)

which measures the displacement of the \((J - 1)^+_1\) level relative to the average of its neighbors, \(J^+_1\) and \((J - 2)^+_1\), normalized to the energy of the first excited state of the ground state band, \(2^+_1\).
It is known [17] that γ-soft shapes exhibit staggering with negative values at even \(L \) and positive values at odd \(L \), while triaxial γ-rigid shapes exhibit the opposite behavior, i.e., positive values at even \(L \) and negative values at odd \(L \). In Table 1 it is clear that the present models exhibit strong staggering of the triaxial type, with the even-\(L \) levels growing much faster with \(L \) than the odd-\(L \) levels.

B. Variational procedure

A variational procedure appropriate for locating the behavior of various physical quantities at a critical point has been introduced [26, 27] and applied for recovering the E(5) [1] and X(5) [2] ground state bands from Davidson potentials in the relevant frameworks. The method is applicable in cases in which one has a one-parameter potential spanning the region between two limiting symmetries. The method is based on the fact that if a shape/phase transition occurs between these two symmetries, the rate of change of various physical quantities should become maximum at the critical point [41]. The parameter value corresponding to the maximum, \(\beta_{0,m} \), is determined for each value of angular momentum separately.

The variational procedure used here resembles the standard Ritz variational procedure of quantum mechanics [42], in which a trial wave function containing a free parameter is used, while here a potential containing a free parameter is used, a difference being that in the Ritz approach the parameter is determined by minimizing the energy, while here the parameter is found be maximizing the rate of change of the relevant physical quantity.

The method is analogous to the variable moment of inertia model (VMI) [47], in which the energy is minimized with respect to the moment of inertia (which depends on the angular momentum) separately for each value of angular momentum \(L \).

In the present case, as seen in subsec. 2.1, the Davidson potentials of Eq. (11) lead to a triaxial vibrator Z(5)-\(\beta^2 \), for \(\beta_0 = 0 \), while they give the rigid triaxial rotator [14, 17, 34] for \(\beta_0 \to \infty \). Applying the variational procedure to the energy ratios \(E(L)/E(2) \) of the ground state band \((s = 1, n_{aw} = 0) \) of the Z(5)-D model, where \(\beta_0 \) is the free parameter serving to span the region between the two limiting cases, we are led to the results shown in Table 1, where for each value of angular momentum \(L \) the location of the maximum, \(\beta_{0,m} \), and the corresponding energy (normalized to the energy of the first excited state) are given. It is clear that the band determined through the variational procedure agrees very well with the ground state band of the Z(5) model. The agreement remains equally good for the \(s = 1, n_{aw} = 1, 2, 3, 4 \) bands, also shown in Table 1, thus indicating that the Z(5) model is possibly related to a shape/phase transition from a triaxial vibrator to the rigid triaxial rotator.

C. B(E2) transition rates

Both intraband and interband B(E2) transition rates for the same models are reported in Table 2. In addition, results for the O(6) limit of the Interacting Boson Model [12] are shown for comparison, derived from the expressions given in Ref. [12], the final results reading

\[
R_{g,g}(L + 2 \to L) = \frac{B(E2; (L + 2)_g \to L_g)}{B(E2; 2g \to 0_g)} = \frac{5(L + 2)(2N - L)(2N + L + 8)}{2(L + 5)4N(N + 4)},
\]

\[
R_{\gamma_{even},g}(L \to L) = \frac{B(E2; L_\gamma \to L_g)}{B(E2; 2g \to 0_g)} = \frac{10(L + 1)(2N - L)(2N + L + 8)}{(L + 5)(2L - 1)4N(N + 4)},
\]

\[
R_{\gamma_{odd},g}(L \to L + 1) = \frac{B(E2; L_\gamma \to (L + 1)_g)}{B(E2; 2g \to 0_g)} = \frac{5(L - 1)(2L + 3)(2N - L - 1)(2N + L + 9)}{L(L + 6)(2L + 1)4N(N + 4)},
\]

\[
R_{\gamma_{even} \to \gamma_{even}}(L + 2 \to L) = \frac{B(E2; (L + 2)_\gamma \to L_\gamma)}{B(E2; 2g \to 0_g)} = \frac{5L(2L + 7)(2N - L - 2)(2N + L + 10)}{2(L + 7)(2L + 3)4N(N + 4)}
\]

\[
R_{\gamma_{odd} \to \gamma_{odd}}(L + 2 \to L) = \frac{B(E2; (L + 2)_\gamma \to L_\gamma)}{B(E2; 2g \to 0_g)} = \frac{5(L - 1)(L + 3)(L + 4)(2N - L - 3)(2N + L + 11)}{2(L + 1)(L + 2)(L + 8)4N(N + 4)}
\]

In all of the above equations, \(N \) stands for the boson number. Numerical results for \(N \to \infty \) are reported in Table 2. We remark that the O(6) predictions for \(N \to \infty \) are very similar to the ones of the rigid triaxial rotator [14, 15], i.e. to those of the Z(5)-D model for \(\beta_0 \to \infty \).
VI. COMPARISON TO EXPERIMENT

As seen from Table 1, one should look for nuclei having ground state bands characterized by $R_{4/2} = E(4)/E(2)$ ratios between 2.150 and 2.667, while the γ_1 bandhead (normalized to the 2^+_1 state) should be between 1.734 and 2.000, the β_1 bandhead (normalized in the same way) being above 2.528. The Xe isotopes $^{128-132}$Xe, lying below the N=82 shell closure, nearly fulfill these conditions. Results of one-parameter $\langle \beta_0 \rangle$ rms fits are shown in Table 3, with σ being the quality measure

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n}(E_i(exp) - E_i(th))^2}{(n-1)E(2^+_1)^2}}.$$ \hspace{1cm} (22)

The overall agreement is good, with the notable exception of the even-L levels of the quasi-γ_1 band, which grow too fast, as already remarked at the end of subsec. 5.1. As a result, the theoretical predictions exhibit strong triaxial odd–even staggering, which is not seen experimentally. Indeed, the Xe isotopes are known [17] to exhibit staggering of the γ-soft type, in contrast to the strong triaxial γ-rigid staggering shown here by the theoretical values. The only nuclei found in the extended recent search of Ref. [17] to possess γ_1 bands with triaxial shapes are 112Rn, 170Er, 192Os, 192Pt, and 232Th, all of them located in the nuclear chart far from the Xe isotopes considered here.

In Table 4 the existing B(E2) transition rates of the same nuclei are compared to the Z(5)-D model predictions for the parameter values obtained from fitting the spectra. No fitting of the B(E2) values has been performed. The theoretical predictions are in general higher than the experimental values, but in most cases lie within the experimental error bars, or quite near them.

VII. CONCLUSIONS

Z(5) [13] is a solution of the Bohr Hamiltonian similar to the X(5) [2] solution, with the notable difference that it regards triaxial shapes ($\gamma \approx \pi/6$) instead of prolate deformed shapes ($\gamma \approx 0$). Predictions for spectra and B(E2) transition rates are parameter independent (up to overall scale factors).

In the present Z(5)-D solution, the infinite square well $u(\beta)$ potential, used in Z(5), is replaced by the Davidson potential [24], involving a free parameter, β_0. As a result, Z(5)-D can cover the region between a triaxial vibrator and the rigid triaxial rotator [14, 15]. In addition to providing easily comparable to experiment analytical solutions for spectra and B(E2) values within this wide region, the present solution has an interesting by-product. Using a variational procedure [26, 27] it is pointed out that the Z(5) solution corresponds to the critical point of the shape phase transition from a triaxial vibrator to the rigid triaxial rotator. However, the Z(5) solution is not a special case of Z(5)-D, obtained for a specific parameter value, or a limiting case of Z(5)-D. Using the Davidson potential one can cover the whole way from triaxial vibrator to triaxial rotator, but one cannot get the critical point as a special case. This is due to the shape of the Davidson potential, which is not flat, as the potential is expected to be at the critical point. The same situation has occurred in the ESD model [51], in which the Davidson potential is used in order to interpolate between a vibrator and the prolate axial rotator with $\gamma \approx 0$. Using the ESD model one can obtain very good fits of many nuclei from the prolate rotator limit down to close to the critical point, but one cannot describe the nuclei very close to the critical point [51].

Concerning the separation of variables which allowed for analytical solutions, a potential of the form $u(\beta) + v(\gamma)$ has been used, bringing in the approximations used in X(5) [2]. These approximations can be avoided in two ways:

i) Using potentials of the form $u(\beta) + v(\gamma)/\beta^2$, which are known [8] to allow for exact separation of variables without any approximations.

ii) Using the powerful techniques of the Algebraic Collective Model [52–54], which allow for the exact numerical diagonalization of any Bohr Hamiltonian.

The first path has been used for a detailed study of the Davidson potential plugged in the Bohr Hamiltonian for $\gamma \approx 0$ [51]. The main advantage of this solution is that all bands are treated on equal footing with respect to the influence of the $v(\gamma)$ potential, while in the present solution only the quasi-γ bands are affected. A similar study for $\gamma \approx \pi/6$ case would be interesting. The analytical solution and a brief comparison to experiment in the Os region has already been given in Ref. [54].

The second path has been recently used for the description of a triaxial symmetry top [54], as well as for the study the onset of rigid triaxial deformation [56]. Further investigations of triaxial shapes using this powerful tool should also be revealing.

[1] F. Iachello, Phys. Rev. Lett. 85, 3580 (2000).
[2] F. Iachello, Phys. Rev. Lett. 87, 052502 (2001).
[3] R. F. Casten, Prog. Part. Nucl. Phys. 62, 183 (2009).
[4] P. Cejnar and J. Jolie, Prog. Part. Nucl. Phys. 62, 210 (2009).
[5] R. F. Casten and N. V. Zamfir, Phys. Rev. Lett. 85, 3584 (2000).
[6] R. F. Casten and N. V. Zamfir, Phys. Rev. Lett. 87, 052503 (2001).
[7] R. F. Casten and E. A. McCutchan, J. Phys. G: Nucl. Part. Phys. 34, R285 (2007).
[8] L. Fortunato, Eur. Phys. J. A 26, s01, 1 (2005).
[9] R. F. Casten, Nat. Phys. 2, 811 (2006).
[10] A. Bohr, Mat. Fys. Medd. K. Dan. Vidensk. Selsk. 26, no. 14 (1952).
[11] D. H. Feng, R. Gilmore, and S. R. Deans, Phys. Rev. C 23, 1254 (1981).
[12] F. Iachello and A. Arima, The Interacting Boson Model (Cambridge University Press, Cambridge, 1987).
[13] D. Bonatsos, D. Lenis, D. Petrellis, and P. A. Terziev, Phys. Lett. B 588, 172 (2004).
[14] A. S. Davydov and G. F. Filippov, Nucl. Phys. 8, 237 (1958).
[15] A. S. Davydov and V. S. Rostovsky, Nucl. Phys. 12, 58 (1959).
[16] N.V. Zamfir and R.F. Casten, Phys. Lett. B 260, 265 (1991).
[17] E. A. McCutchan, D. Bonatsos, N. V. Zamfir, and R. F. Casten, Phys. Rev. C 29, 1420 (1984).
[18] G. Thiamova, Eur. J. Phys. A 45, 81 (2010).
[19] J. M. Arias, J. E. García-Ramos, and J. Dukelsky, Phys. Rev. Lett. 93, 212501 (2004).
[20] M. A. Caprio and F. Iachello, Phys. Rev. Lett. 93, 242502 (2004).
[21] M. A. Caprio and F. Iachello, Ann. Phys. (NY) 318, 454 (2005).
[22] P. Van Isacker, A. Bouldjedri, and S. Zerguine, Nucl. Phys. A 836, 225 (2010).
[23] P. M. Davidson, Proc. R. Soc. 135, 459 (1932).
[24] J. P. Elliott, J. A. Evans, and P. Park, Phys. Lett. B 169, 309 (1986).
[25] D. Bonatsos, D. Lenis, N. Minkov, D. Petrellis, P. P. Raychev, and P. A. Terziev, Phys. Lett. B 584, 40 (2004).
[26] D. Bonatsos, D. Lenis, N. Minkov, D. Petrellis, P. P. Raychev, and P. A. Terziev, Phys. Rev. C 70, 024305 (2004).
[27] J. M. Arias, C. E. Alonso, A. Vitturi, J. E. Garcia-Ramos, J. Dukelsky, and A. Frank, Phys. Rev. C 68, 041302 (2003).
[28] D. Bonatsos, D. Lenis, N. Minkov, P. P. Raychev, and P. A. Terziev, Phys. Rev. C 69, 044316 (2004).
[29] D. Bonatsos, D. Lenis, N. Minkov, P. P. Raychev and P. A. Terziev, Phys. Rev. C 69, 014302 (2004).
[30] I. Boztosun, D. Bonatsos, and I. Inci, Phys. Rev. C 77, 044302 (2008).
[31] L. Fortunato and A. Vitturi, J. Phys. G: Nucl. Part. Phys. 29, 1341 (2003).
[32] L. Fortunato and A. Vitturi, J. Phys. G: Nucl. Part. Phys. 30, 627 (2004).
[33] J. Meyer-ter-Vehn, Nucl. Phys. A 249, 111 (1975).
[34] R. Bijker, R. F. Casten, N. V. Zamfir, and E. A. McCutchan, Phys. Rev. C 68, 064304 (2003).
[35] A. Bohr and B. R. Mottelson, Nuclear Structure (Benjamin, New York, 1975), Vol. II.
TABLE I: Energy spectra of the Z(5)-D model (for different values of the parameter β_0), and for the Z(5) model [13]. $\beta_0 = 0$ corresponds to the Z(5)-β^2 model (a triaxial vibrator), while $\beta \to \infty$ is the rigid triaxial rotator [13-14]. The notation $L_{s,n,w}$ is used. All levels are measured from the ground state, $0_{1,0}$, and are normalized to the first excited state, $2_{1,0}$. See subsec. 5.1 for further discussion. In addition, the energy levels resulting from the variational procedure of subsec. 5.2 are reported (labelled by “var”), along with the parameter values $\beta_{0,m}$ at which they are obtained. See subsec. 5.2 for further discussion.

$L_{s,n,w}$	$\beta_{0,m}$	β_0	0	2	∞	var $Z(5)$
0_{1,0}	0.000	0.000	0.000	0.000	0.000	0.000
1_{2,0}	1.000	1.000	1.000	1.000	1.000	1.000
2_{1,0}	2.150	2.521	2.667	1.375	2.341	2.350
3_{2,0}	3.353	4.424	5.000	1.474	3.956	3.984
4_{3,0}	4.579	6.596	8.000	1.562	5.819	5.877
5_{4,0}	5.817	8.957	11.667	1.640	7.915	8.019
6_{5,0}	7.063	11.450	16.000	1.713	10.237	10.403
7_{6,0}	8.313	14.039	21.000	1.780	12.781	13.024
8_{7,0}	9.566	16.698	26.667	1.843	15.544	15.878
9_{8,0}	10.821	19.410	33.000	1.902	18.523	18.964
10_{9,0}	12.077	22.163	40.000	1.960	21.719	22.279

β_0	0	2	∞	$\beta_{0,m}$	var $Z(5)$	
1_{2,0}	1.734	1.932	2.000	1.336	1.833	1.837
2_{1,0}	3.649	4.930	5.667	1.496	4.386	4.420
3_{2,0}	5.281	7.917	10.000	1.607	6.981	7.063
4_{3,0}	6.791	10.898	15.000	1.697	9.713	9.864
5_{4,0}	8.234	13.874	20.667	1.776	12.615	12.852
6_{5,0}	9.635	16.847	27.000	1.846	15.703	16.043
7_{6,0}	11.008	19.818	34.000	1.911	18.986	19.443
8_{7,0}	12.360	22.877	41.667	1.972	22.468	23.056
9_{8,0}	13.698	25.755	50.000	2.030	26.154	26.884
10_{9,0}	15.024	28.721	59.000	2.085	30.046	30.928

$L_{s,n,w}$	$\beta_{0,m}$	β_0	0	2	3	var $Z(5)$
0_{1,0}	5.055	11.842	24.548	9.782		
1_{2,0}	6.055	12.842	25.548	12.343		
2_{1,0}	7.205	14.363	27.177	15.506		
3_{2,0}	8.408	16.286	29.384	19.059		
4_{3,0}	9.634	18.349	32.109	22.933		
5_{4,0}	10.873	20.799	35.289	27.103		
6_{5,0}	12.014	23.560	40.007	31.552		
7_{6,0}	13.102	26.062	45.007	36.272		
8_{7,0}	14.203	28.563	50.007	41.258		
9_{8,0}	15.536	31.979	55.007	46.504		
10_{9,0}	16.808	35.419	60.007	52.007		
TABLE II: Intraband and interband B(E2) transition rates, normalized to the one between the two lowest states, B(E2;2_{1,0} → 0_{1,0}), are given for Z(5)-D model (for different values of the parameter β₀), for the Z(5) model [13], and for the O(6) limit of the Interacting Boson Model [12]. β₀ = 0 corresponds to the Z(5)-β² model (a triaxial vibrator), while β → ∞ is the rigid triaxial rotor [14, 15]. The notation L_{s,n,ω} is used, while the initial state is labelled by (i), and the final state by (f).

β₀	L_{s,n,ω}^{(i)}	L_{s,n,ω}^{(f)}	O(6)	Z(5)						
2_{1,0}	0_{1,0}	1.000	1.000	1.000	1.000	1.480	1.284	1.000	0.774	
4_{1,0}	2_{1,0}	1.834	1.493	1.389	1.429	1.590	2.440	1.865	1.389	1.192
6_{1,0}	4_{1,0}	2.919	2.041	1.731	1.667	2.203	3.647	2.477	1.731	1.643
8_{1,0}	6_{1,0}	3.955	2.497	1.912	1.818	2.635	4.746	2.955	1.912	1.975
10_{1,0}	8_{1,0}	4.976	2.934	2.024	1.923	2.967	5.804	3.398	2.024	2.242
12_{1,0}	10_{1,0}	5.989	3.383	2.100	2.000	3.234	6.844	3.836	2.100	2.466
14_{1,0}	12_{1,0}	6.999	3.810	2.155	2.059	3.455	7.874	4.277	2.155	2.660
16_{1,0}	14_{1,0}	8.007	4.257	2.197	2.105	3.642	8.897	4.723	2.197	2.829
18_{1,0}	16_{1,0}	9.014	4.708	2.230	2.143	3.803	9.915	5.175	2.230	2.980
20_{1,0}	18_{1,0}	10.020	5.164	2.256	2.174	3.944	10.931	5.630	2.256	3.115

β₀	L_{s,n,ω}^{(i)}	L_{s,n,ω}^{(f)}	O(6)	Z(5)						
2_{1,0}	0_{1,0}	1.000	1.000	1.000	1.000	1.480	1.284	1.000	0.774	
4_{1,0}	2_{1,0}	1.834	1.493	1.389	1.429	1.590	2.440	1.865	1.389	1.192
6_{1,0}	4_{1,0}	2.919	2.041	1.731	1.667	2.203	3.647	2.477	1.731	1.643
8_{1,0}	6_{1,0}	3.955	2.497	1.912	1.818	2.635	4.746	2.955	1.912	1.975
10_{1,0}	8_{1,0}	4.976	2.934	2.024	1.923	2.967	5.804	3.398	2.024	2.242
12_{1,0}	10_{1,0}	5.989	3.383	2.100	2.000	3.234	6.844	3.836	2.100	2.466
14_{1,0}	12_{1,0}	6.999	3.810	2.155	2.059	3.455	7.874	4.277	2.155	2.660
16_{1,0}	14_{1,0}	8.007	4.257	2.197	2.105	3.642	8.897	4.723	2.197	2.829
18_{1,0}	16_{1,0}	9.014	4.708	2.230	2.143	3.803	9.915	5.175	2.230	2.980
20_{1,0}	18_{1,0}	10.020	5.164	2.256	2.174	3.944	10.931	5.630	2.256	3.115
TABLE III: Comparison of theoretical predictions of the Z(5)-D model, labelled by the relevant β_0 value, to experimental spectra of 128Xe 48, 130Xe 49, and 132Xe 50. In each column all energies are normalized to the energy of the relevant 2^+_1 state. The quality measure σ of Eq. (22) is used. See Sec. 6 for further discussion.

128Xe	128Xe	130Xe	130Xe	132Xe	132Xe
$L_{s,n}$	$\beta_0 = 1.32$	$\beta_0 = 1.11$	$\beta_0 = 0$		
41,0	2.333	2.323	2.247	2.157	2.150
61,0	3.922	3.805	3.627	3.163	3.353
81,0	5.674	5.372	5.031	5.040	
101,0	7.597	6.986	6.457	6.489	
121,0			7.867	7.956	
141,0			9.458	9.434	
21,2	2.189	1.830	2.093	1.944	1.734
41,2	3.620	4.180	3.373	2.940	3.649
61,2	5.150	6.284			
31,1	3.228	2.555	3.045	2.701	2.343
51,1	4.508	4.360	4.051	3.246	3.791
71,1	6.165	6.138			
02,0	3.574	3.452	3.346	2.771	2.528
22,0	4.515	4.452			
σ	0.495	0.297	0.422		

TABLE IV: Comparison of theoretical predictions of the Z(5)-D model, labelled by the relevant β_0 value, to experimental $B(E2)$ values of 128Xe 48 and 132Xe 50. In each column all $B(E2)$s are normalized to the $2^+_1 \rightarrow 0^+_1$ transition. See Sec. 6 for further discussion.

128Xe	128Xe	132Xe	132Xe
$L_{s,n}$	$\beta_0 = 1.32$	$\beta_0 = 0$	
41,0	$2_{1,0}$ 1.468 ± 0.201 1.648	1.238 ± 0.180 1.834	
61,0	$2_{1,0}$ 1.940 ± 0.275 2.464		
81,0	$2_{1,0}$ 2.388 ± 0.398 3.228		
21,2	$2_{1,0}$ 1.194 ± 0.187 1.673	1.775 ± 0.288 1.865	
21,2	$0_{1,0}$ 0.016 ± 0.002 0.000	0.003 ± 0.001 0.000	