A General Approach for Securely Querying and Updating XML Data

Houari Mahfoud and Abdessamad Imine
A General Approach for Securely Querying and Updating XML Data

Houari Mahfoud and Abdessamad Imine

Project-Teams CASSIS

Research Report n° 7870 — January 2012 — 23 pages

Abstract: Over the past years several works have proposed access control models for XML data where only read-access rights over non-recursive DTDs are considered. A few amount of works have studied the access rights for updates. In this paper, we present a general model for specifying access control on XML data in the presence of update operations of W3C XQuery Update Facility. Our approach for enforcing such updates specifications is based on the notion of query rewriting where each update operation defined over arbitrary DTD (recursive or not) is rewritten to a safe one in order to be evaluated only over XML data which can be updated by the user. We investigate in the second part of this report the secure of XML updating in the presence of read-access rights specified by a security views. For an XML document, a security view represents for each class of users all and only the parts of the document these users are able to see. We show that an update operation defined over a security view can cause disclosure of sensitive data hidden by this view if it is not thoroughly rewritten with respect to both read and update access rights. Finally, we propose a security view based approach for securely updating XML in order to preserve the confidentiality and integrity of XML data.

Key-words: XML access control, XML security views, XML updating, Query rewriting, XPath, XQuery, Confidentiality and Integrity

* University of Nancy 2 & INRIA Nancy Grand Est (Houari.Mahfoud@inria.fr).
† University of Nancy 2 & INRIA Nancy Grand Est (Abdessamad.Imine@inria.fr).
Une Approche Générale pour Sécuriser l’Accès et la Mise à jour des Données XML

Résumé : Durant ces dernières années, plusieurs travaux ont proposé des modèles de contrôle d’accès pour sécuriser l’accès en lecture aux données XML, basés seulement sur des DTDs non-récursives. Le contrôle d’accès XML considérant les opérations de mise à jour n’a pas reçu suffisamment d’attention. Dans ce papier, nous présentons un modèle général pour spécifier le contrôle d’accès aux données XML moyennant des primitives de mise à jour du W3C XQuery Update Facility. Notre approche pour enforcer ces spécifications de mise à jour est basée sur la notion de réécriture des requêtes (query rewriting en anglais) où chaque opération de mise à jour, définie par rapport à une DTD arbitraire (récursive ou non), est réécrite en une autre opération sûre afin qu’elle soit évaluée seulement sur des données XML modifiables par l’utilisateur qui a soumis l’opération. Nous étudions dans la deuxième partie de ce rapport la sécurisation des opérations de mise à jour XML en présence des droits de lecture spécifiés sous forme d’une vue de sécurité. Pour un document XML, une vue de sécurité permet de représenter pour chaque classe d’utilisateurs les parties du document dont ils sont autorisés à voir. Nous montrons qu’une opération de mise à jour définie par rapport à une vue de sécurité peut entraîner des divulgations des données confidentielles cachées par cette vue, si elle n’est pas soigneusement réécrite en tenant compte des droits de lecture et de mise à jour. Pour pallier à ce problème, nous décrivons une solution qui permet de préserver la confidentialité et l’intégrité des données XML.

Mots-clés : Contôle d’accès XML, Vues de sécurité XML, Mise à jour XML, Réécriture des requêtes, XPath, XQuery, Confidentialité et Intégrité
A General Approach for Securely Querying and Updating XML Data

Contents

1 Motivation 4

2 Preliminaries 8

3 Update Access Control Model 10
 3.1 Update Specifications 10
 3.2 DTD Recursion Problems 12

4 Secure Updating XML 13
 4.1 Updatability 13
 4.2 Update Operations Rewriting 15

5 Secure Updating XML over Security Views 18
 5.1 Access Control for Recursive Views 19
 5.2 Securing Update Operations 20

6 Conclusion 22
1 Motivation

The XQuery Update Facility language [22] is a recommendation of W3C that provides facility to modify some parts of an XML document and leaving the rest unchanged, and this through different update operations, e.g., insert, replace, or delete some nodes of a given XML document. The security requirement is the main problem when manipulating XML documents. An XML document may be queried and/or updated simultaneously by different users. For each class of users some rules can be defined to specify parts of the document which are accessible to the users and/or updatable by them. A bulk of work has been published in the last decade to secure the XML content, but only read-access rights has been considered over non-recursive DTDs [5], [17], [3]. Moreover, a few amount of works have considered update rights.

In this paper, we investigate a general approach for securing XML update operations of the XQuery Update Facility language. Abstractly, for any update operation posed over an XML document, we ensure that the operation is performed only on XML nodes updatable by the user and no sensitive information can be deduced via this operation. Addressing such concerns requires first a specification model to define update constraints and a flexible mechanism to enforce these constraints at update time.

We now present our motivating example for controlling update access. Consider the recursive DTD of a hospital depicted as a graph in Fig. 1(b) (we refer to this DTD throughout the paper to illustrate our examples). An XML document conforming to this DTD consists of different departments (dept) defined by a name dname and each department includes patients of the hospital and other patients coming from some clinics (patients under clinical element). For each patient (with name pname and category categ), the hospital maintains a medical history of its parents (parent) and a medical folder (medicalFolder) which includes all treatments done for this patient (treatment can be analysis or diagnosis); descp and result represent the description and the result of the treatment respectively. The treatment data is organized into two groups depending on whether the treatment has been done in some laboratories (analysis treatments) or not (the diagnosis treatments). Each dname, pname, categ, descp, and result has a single text node (PCDATA) as its child. An instance of the hospital DTD is given in Fig. 2. Due to space limitation, this instance is split into Figures 2 (a) and (b), where Fig. 2(b) represents the medical folder of patient3.

Suppose that the hospital wants to impose an update policy that allows the doctors to update all treatments data (e.g., add some treatment results) except those of analysis (done outside the hospital). According to this policy, only the nodes treatment1 and treatment4 of Fig. 2(b) can be updated. As the nodes treatment2 and treatment3 are analysis treatments they cannot be updated.

Problem 1. The existing access control approaches are unable to specify the above policy. The model given in [3] consists in annotating the schema of the document by different update constraints, like putting attribute @insert=Y in element type treatment of the hospital DTD to specify that some data can be inserted into nodes of type treatment. However, only local annotations (the

\[1\] A DTD is recursive iff at least one of its elements is defined (directly or indirectly) in terms of itself.
update concerns only the node and not its descendants) are used which is not sufficient to define some update policies. For instance, to enforce the hospital update policy imposed, the analysis treatment data (i.e., nodes treatment$_2$ and treatment$_3$) cannot be discarded from doctors’s updates by the model introduced in [3] even by using XPath upward-axes. Specifically, the annotation @insert=[not(ancestor::analysis)] over element type treatment is not the adequate constraint since it makes node treatment$_4$ not updatable.

In the XACU$_{annot}$ language presented in [8], an update annotation over an element type of the DTD is defined with a full path from the DTD root to this element. E.g., the annotation ann(hospital/patients/patient, insert)=Y specifies that some nodes can be inserted under hospital patients. However, the XACU$_{annot}$ language cannot be applied in the presence of recursive DTDs. For instance, due to recursion, the hospital update policy given above cannot be defined since the paths denoting updatable treatment nodes (not done during analysis) stand for an infinite set of paths. As we will see in the next, this set of paths can be expressed using the Kleene star operator (∗) which cannot be expressed in the standard XPath as outlined in [25,26]. To our knowledge, no model exists for specifying update policies over recursive DTDs.

Problem 2. For each update operation, an XPath expression is defined to specify the XML data at which the update is applied. To enforce rights restriction imposed by an update policy, the query rewriting principle can be applied where each update operation (i.e., its XPath expression) is rewritten according to the update rights into a safe one in order to be evaluated only over parts of the XML data updatable by the user. However, this rewriting step is already challenging for a small class of XPath. Consider the downward fragment of XPath which supports child and descendant axes, union and complex predicates. We show that, in case of recursive DTDs, an update operation defined in this fragment cannot be rewritten safely. More specifically, a safe rewriting of the XPath expression of an update operation can stand for an infinite set of paths which cannot be expressed in the downward fragment of XPath. To overcome this rewriting limitation, some solutions have been proposed [7,11] based on the Regular XPath to express safe recursive paths. However, these solutions remain a theoretical achievement since no tool exists to evaluate Regular XPath expressions. Thus, no practical solution exists for enforcing update policies in
Problem 3. We discuss finally the interaction between read and update privileges. For each class of users, some read-access rights can be defined to prevent access to sensitive data of the XML document. Moreover, update rights can be imposed to specify parts of the document which can be updated by these users. In this case, we show that rewriting an update operation by considering simply the update rights is not sufficient to make XML updates secure. In other words, an update operation can be safe w.r.t update policy; but, evaluating this operation over the XML document can make disclosure of sensitive data. For instance, suppose that the doctors can update all data in the hospital, but they can see only patients of category “A”. According to this read-access right, a view can be computed from the instance of Fig. 2(a) by hiding node patient2 and its children nodes (pname2, categ2, parent1, and medicalFolder2). Thus, node patient3 is shown to the doctors since its category is “A” and it appears as an immediate child of node patients1. Consider now the update delete descendant::patients[patient[pname='Nathaniel']]/descendant::result that consists in removing all result nodes provided that patient Nathaniel exists. This update is safe w.r.t the update policy defined above. However, if the execution of this update succeeds then the user can deduce that patient Nathaniel is currently residing in the hospital and his medical data is confidential. Consequently, the interaction between read and update privileges should be thoroughly designed in order to preserve confidentiality and integrity properties.

We present in the following our main contributions of this work proposed to deal with the previous problems.

Our Contributions. Our first contribution is an expressive model for specifying XML update policies, based on the primitives of XQuery Update Facility, and over arbitrary DTDs (recursive or not). Given a DTD D, we annotate element types of D with different update rights to specify restrictions on updating XML documents conform to D through some update operations (e.g., deny.

Figure 2: Example of XML Document.
insertion of new nodes of type \textit{analysis} under \textit{treatment} nodes). We propose a new model that supports inheritance and overriding of update privileges and overcomes expressivity limitations of existing models (see Problem 1). Our approach for enforcing such update policies is based on the notion of \textit{query rewriting}. However, to overcome the rewriting limitation presented above as Problem 2, we investigate the extension of the downward fragment of XPath by some axes and operators. Based on this extension, our second contribution is an algorithm that rewrites any update operation defined in the downward fragment of XPath into another one defined in the extended fragment to be safely evaluated over the XML data. We discuss in the second part of this paper our solution to deal with Problem 3. We propose a general approach to secure update operations defined over a (recursive) security view without disclosure of sensitive data hidden by this view (i.e., to preserve confidentiality and integrity of the XML data, each update operation over the view must be rewritten to be safe w.r.t both read and update rights). To our knowledge, this paper presents the first model for specifying and enforcing update policies using the XQuery update operations and in the presence of arbitrary DTDs (resp. arbitrary security views).

Related Work. During the last years, several works have proposed access control models to secure XML content, but only read-access has been considered over non-recursive DTDs \cite{3,5,17}. There has been a few amount of works on securing XML data by considering the update rights. Damiani et al. \cite{3} propose an XML access control model for update operations of the XUpdate language. They annotate the XML schema with the read and update privileges, and then the annotated schema is translated into two automatons defining read and update policies respectively, which are used to rewrite any access query (resp. update operation) over the XML document to be safe. However, the update policy is expressed only with local annotations which is not sufficient to specify some update rights (see Problem 1). Additionally, the automaton processing cannot be successful when rewriting access queries (resp. update operation) defined over recursive schema (i.e., recursive DTD).

Authors of \cite{8} propose an XML update access control model based on the XQuery update operations. A set of XPath-based rules is used to specify, for each update operation, the XML nodes that can be updated by the user using this operation. These rules are translated into annotations over element types of the DTD (if exists) to present an annotation-based model called XACT\textit{annot}. However this translation is possible only in case of non-recursive DTDs.

Consider the read-access control models. Unlike the secure of XML querying over non-recursive security views, the problem posed by the recursion (i.e., XPath query rewriting is not always possible under recursive security views) has not received a more attention. To overcome this problem, some authors \cite{7,11} propose rewriting approaches based on the non-standard language, “Regular XPath”, which is more expressive than XPath and makes rewriting possible under recursion. However, no practical system exists of both proposed approaches \cite{7} and in general, no tool exists to evaluate Regular XPath queries over XML data. Thus, the need of a rewriting system of XPath queries (resp. update operations) over recursive security views remains an open issue.

\footnote{According to \cite{21} the SMOQE system proposed in \cite{3} has been removed because of conduction of future researches.}
Outline. The remainder of the paper is organized as follows. Section 2 presents basic notions on DTD, XPath, and XML update operations considered in this paper. We describe in Section 3 our specification model of update. Our approach for securing update operations is detailed in Section 4. We recall the notion of security view in Section 5 and present a view-based approach to secure updating of XML documents over (recursive) security views. Finally, we conclude this paper in Section 6.

2 Preliminaries

This section briefly reviews some basic notions tackled throughout the paper.

DTDs. Without loss of generality, we represent a DTD D by $(\text{Ele}, Rg, \text{root})$, where Ele is a finite set of element types; root is a distinguished type in Ele called the root type; Rg is a function defining element types such that for any A in Ele, $Rg(A)$ is a regular expression α defined as follows:

$$\alpha ::= \text{str} \mid \epsilon \mid B \mid \alpha' \mid \alpha^* \mid \alpha \mid \alpha^* \mid \alpha$$

where str denotes the text type PCDATA, ϵ is the empty word, B is an element type in Ele, and finally α', α^* denote concatenation, disjunction, and the Kleene closure respectively. We refer to $A \rightarrow Rg(A)$ as the production of A. For each element type B occurring in $Rg(A)$, we refer to B as a subelement type (or child type) of A and to A as a superelement type (or parent type) of B. A DTD D is said recursive if some element type A is defined in terms of itself directly or indirectly.

We use graph representation to depict our DTDs. For instance, Fig. 1 represents (a) the productions of the hospital DTD; and (b) its graph representation corresponding.

XML Documents. We model an XML document with an unranked ordered finite node-labeled tree, called XML Tree. Let Σ be a finite set of node labels, an XML tree T over Σ is a structure defined as:

$$T = (N, R_\downarrow, R_\rightarrow, L)$$

where N is the set of nodes, $R_\downarrow \subseteq N \times N$ is a child relation, $R_\rightarrow \subseteq N \times N$ is a successor relation on (ordered) siblings, and $L : N \rightarrow \Sigma$ is a function assigning to every node its label. R^\uparrow and R^\leftarrow denote the converse of the relations R_\downarrow and R_\rightarrow respectively. For instance, $R^\leftarrow \subseteq N \times N$ is a predecessor relation on (ordered) siblings.

An XML document T conforms to a DTD D if the following conditions hold: (i) the root of T is the unique node labeled with root; (ii) each node in T is labeled either with an Ele type A, called an A element, or with str, called a text node; (iii) for each A element with k ordered children $n_1, ..., n_k$, the word $L(n_1), ..., L(n_k)$ belongs to the regular language defined by $Rg(A)$; (iv) each text node carries a string value (PCDATA) and is the leaf of the tree. We call T an instance of D if T conforms to D.

XPath Queries. We consider a small class of XPath queries, referred to as \mathcal{X} and defined as follows:

$$p ::= \alpha : \text{lab} \mid p[q] \mid p/p \mid p \cup p$$

$$q ::= p \mid p/text() = 'c' \mid q \text{ and } q \mid q \text{ or } q \mid \text{not}(q)$$

$$\alpha ::= \epsilon \mid \downarrow \mid \downarrow^+ \mid \downarrow^*$$
where p denotes an XPath query and it is the start of the production, lab refers to element type or $*$ (that matches all types), \cup stands for union, c is a string constant, α is the XPath axis relations, and $\varepsilon, \downarrow, \downarrow^+, \downarrow^* \text{ and } \uparrow^*$ denote \textit{self}, \textit{child}, $\textit{descendant}$ and $\textit{descendant-or-self}$ axis respectively. Finally the expression q enclosed in $[]$ is called a \textit{qualifier} (predicate or filter).

Let n be a node in an XML tree T. The evaluation of an XPath query p at node n, called \textit{context} node n, results in a set of nodes which are reachable via p from n, denoted by $n[p]$. A qualifier q is said valid at context node n, denoted by $n \models q$, if one of the following conditions holds: (i) q is an atomic predicate and $n[q]$ is nonempty, i.e., there exists a node reachable via q from n; (ii) q is given by $p/text()=c'$ and $n[p]$ contains a node which has a child text node whose string value is c'; (iii) q is a boolean expression and it is evaluated to true at n, e.g., predicate $not(q)$ is valid at n if $n[q]$ is empty.

Theoretically, this XPath fragment (called downward fragment) has some interesting decision results [19]. Practically, it is commonly used and is essential to XQuery, XSLT and XML Schema [7]. Authors of [7] have shown that in case of recursive security views, the fragment \mathcal{X} is not closed under query rewriting (i.e., some access queries defined in \mathcal{X} cannot be rewritten to be safe). This problem is known as XPath query rewriting problem. We show that the same problem is encountered in controlling update operations and we propose a solution based on the extension of fragment \mathcal{X} as follows:

\[
\begin{align*}
p &:= \varepsilon::lab \mid p[q] \mid p/p \mid p \cup p \mid p[n] \\
q &:= p \mid p/text()=c' \mid q \text{ and } q \mid q \text{ or } q \\
\alpha &:= \varepsilon \mid \downarrow \mid \downarrow^+ \mid \downarrow^* \mid \uparrow \mid \uparrow^+ \mid \uparrow^* \\
\end{align*}
\]

we enrich \mathcal{X} by the upward-axes parent (\uparrow), ancestor (\uparrow^+), and ancestor-or-self (\uparrow^*), the \textit{position} and the \textit{node comparison} predicates. The position predicate, defined with $[n]$ ($n \in N$), is used to return the n^{th} node from an ordered set of nodes. For instance, since we model an XML document with an ordered tree, the query $\downarrow^*{:}[1]$ over a node n returns its first child node. The \textit{node comparison} predicate $[p_1=p_2]$ is valid at a node n only if the evaluation of the right and left XPath queries at n result in exactly the same single node. For example, the predicate $[1::=\uparrow^+::*[:1]]$ is valid at any node n having a parent node. We summarize this extension by the following subsets $\mathcal{X}^\#$ (\mathcal{X} with upward-axes), $\mathcal{X}^\#_{[n]}$ ($\mathcal{X}^\#$ with position predicate), and $\mathcal{X}^\#_{[n,n]}$ ($\mathcal{X}^\#$ with node comparison predicate).

In our case, fragment \mathcal{X} is used only to formulate update operations (resp. access queries) and to define our update policies (resp. access policies), while we will explain later how the augmented fragments of \mathcal{X} defined above can be used to avoid the XPath query rewriting problem.

XML Update Operations. We review some update operations of the W3C XQuery Update Facility recommendation [22] (abbreviated as XUF). We study the use of the following operations: insert, delete, and replace. In each update operation an XPath target expression is used to specify the set of XML node(s) in which the update is applied. Moreover, a second argument source is required for insert and replace operations which represents a sequence of XML nodes. Note that target may evaluate to an arbitrary sequence of nodes, denoted target-nodes, in case of delete operation. As for other operations, however, target must
evaluate to a single node, denoted \textit{target-node}; otherwise a dynamic error is raised. The XML update operations considered in this paper are detailed as follows:

- **insert source into** / **as first into** / **as last into** / **before** / **after target**: Inserts each node in \textit{source} as child, as first child, as last child, as preceding sibling node, or as following sibling node of \textit{target-node} respectively. The order defined between nodes of \textit{source} must be preserved. We abbreviate these kinds of \textit{insert} operations by \textit{insertInto}, \textit{insertAsFirst}, \textit{insertAsLast}, \textit{insertBefore}, and \textit{insertAfter} respectively. In case of \textit{insertBefore} and \textit{insertAfter} operations, \textit{target-node} must have a parent node; otherwise a dynamic error is raised. For \textit{insertInto} operation, the position of insertion is undetermined and may depend on the XUF implementation. Thus, the effect of executing an \textit{insertInto} operation on \textit{target} can be that of \textit{insertAsFirst} / \textit{insertAsLast} executed on \textit{target} or \textit{insertBefore} / \textit{insertAfter} executed at any child node of \textit{target}.

- **delete target**: This operation is used to delete all nodes in \textit{target-nodes} along with their descendant nodes.

- **replace target with source**: Used to replace \textit{target-node} and its descendants with the sequence of nodes specified in \textit{source} by preserving their order. Note that \textit{target-node} must have a parent node; otherwise a dynamic error is raised.

3 Update Access Control Model

This section describes our access control model for XML update.

3.1 Update Specifications

We focus on the security annotation principle presented in [5] and on the update access type notion introduced in [2] to define our update specifications.

Definition 1. Given a DTD \(D \), an update type defined over \(D \) is of the form

\[\text{insertInto}[B_i], \text{insertAsFirst}[B_i], \text{insertAsLast}[B_i], \text{insertBefore}[B_i], \text{insertAfter}[B_i], \text{delete}[B_i] \text{ or replace}[B_i,B_j] \],

where \(B_i \) and \(B_j \) are element types of \(D \). \(\square \)

Intuitively, an update type \(ut \) represents a set of update operations which are defined for specific element types. For example, the update type \(\text{insertInto}[B] \) represents the update operations “insert source into target” where nodes in \textit{source} are of type \(B \). Moreover, \(\text{replace}[B_i,B_j] \) represents the update operations “replace target with source” where \textit{target-node} is of type \(B_i \) and nodes in \textit{source} are of type \(B_j \).

Definition 2. We define an update specification \(S_{up} \) as a pair \((D,ann_{up})\), where \(D \) is a DTD, and \(ann_{up} \) is a partial mapping such that, for each element type \(A \) in \(D \) and each update type \(ut \), \(ann_{up}(A,ut) \), if defined, is an annotation of the form:

\[ann_{up}(A,ut) := Y \mid N \mid [Q] \mid N_h \mid [Q]_h \]

with \(Q \) is a qualifier in our XPath fragment \(\mathcal{X} \). \(\square \)
An update specification S_{up} is an extension of a document DTD D associating update rights with element types of D.

Let n be a node of type A in an instantiation of D. Intuitively, the authorization values Y, N, and $[Q]$ indicate that, the user is authorized, unauthorized, or conditionally authorized respectively to perform update operations of type ut at n (case of insert operations) or over children nodes of n (case of delete and replace operations). For instance, the annotation $ann_{up}(A,insertInto[B])=Y$ specifies that the user can insert nodes of type B as children nodes of n. However, the annotation $ann_{up}(A,replace[B_i,B_i])=[Q]$ indicates that B_i children of n can be replaced by new nodes of type B_j iff: $n \equiv Q$. An annotation $ann_{up}(A,ut)=value$ is said valid at node n iff: (i) $value=Y$; or, (ii) $value=[Q]$ and $n \equiv Q$.

Our model supports inheritance and overriding of update privileges. If $ann_{up}(A,ut)$ is not explicitly defined, then an A element inherits the authorization of its parent node that concerns the same update type ut. On the other hand, if $ann_{up}(A,ut)$ is explicitly defined it may override the inherited authorization of A that concerns the same update type ut. All update operations are not permitted by default.

Example 1. Consider the following annotations defined over the hospital DTD (see the instance given in Fig. 2):

$$R_1: ann_{up}(medicalFolder,delete[treatment])=Y \quad R_2: ann_{up}(analysis,delete[treatment])=N \quad R_3: ann_{up}(diagnosis,delete[treatment])=Y$$

R_1 indicates that the $treatment$ children of $medicalFolder$ nodes can be deleted (e.g., node $treatment_1$). R_2 overrides the delete authorization (Y) inherited from $medicalFolder$ and indicates that the $treatment$ children of $analysis$ nodes cannot be deleted, such as $treatment_2$ and $treatment_3$ nodes (node $treatment_3$ inherits the delete authorization (N) from its parent node $treatment_2$ since the annotation $ann_{up}(treatment,delete[treatment])$ is not explicitly defined). Similarly, R_3 overrides the delete authorization (N) of $analysis$ to allow deletion of the $treatment$ children of $diagnosis$ nodes (case of node $treatment_4$). \square

Finally, the semantic of the specification values N_h and $[Q]_h$ is given as follows: The annotation $ann_{up}(A,ut)=N_h$ indicates that, for a node n of type A, update operations of type ut cannot be performed at n and no overriding of this authorization value is permitted for descendant nodes of n. For instance, if n' is a descendant node of n whose type is A', then an update operation of type ut cannot be performed at n' even though $ann_{up}(A',ut)=Y$ is explicitly defined. While, with the annotation $ann_{up}(A,ut)=[Q]_h$, descendant nodes of an A element can override this authorization value only if Q is valid at this element. For instance, let n and n' be two nodes of type A and A' respectively, and consider the annotation $ann_{up}(A',ut)=[Q]'$, then an update operation of type ut can be performed at node n' iff: $n' \equiv Q'$. Moreover, if the annotation $ann_{up}(A,ut)=[Q]_h$ is defined and n' is a descendant of n, then the annotation $ann_{up}(A',ut)=[Q]'$ takes effect and an update operation of type ut can be performed at node n' iff: $n \equiv Q$ and $n' \equiv Q'$. We call annotation with value N_h or $[Q]_h$ as downward-closed annotation.
Example 2. Suppose that the hospital wants to impose an update policy that authorizes the doctors to update (insertion, deletion,...) only data of patients having category 'A', which are under department 'cardiology' and not involved by clinical trial. We define formally this policy over an update type ut as follows:

$$
R_1: \text{ann}_{\text{up}}(\text{dept},ut)=[\text{dname}/\text{text}()=\text{’cardiology’}]_h \\
R_2: \text{ann}_{\text{up}}(\text{clinical},ut)=N_h \\
R_3: \text{ann}_{\text{up}}(\text{patient},ut)=[\text{categ}/\text{text}()=\text{’A’}]
$$

Consider the case where $ut=\text{insertInto}[\text{treatment}]$. For a node p of type patient, the annotation R_3 takes effect over data of p only if p is under cardiology department and outside of clinics (p has no ancestor node of type clinical); otherwise no insertion of treatment nodes is permitted under node p regardless its category. For the XML document presented in Fig. 2(a), insertions under nodes patient$_3$ and patient$_4$ are permitted (e.g., insert some treatment nodes into medicalFolder$_3$).

In [5], when an annotation R with qualifier $[Q]$ is evaluated to false, all annotations under R will be discarded regardless their truth values, which is not always necessary: According to our policy in Example 2, insertions under node patient$_3$ of Fig. 2(a) are permitted by overriding negative authorization inherited from node patient$_2$. The principle of downward-closed annotation that we present with the specification values $\{N_h,[Q]_h\}$ can be defined using just the values $\{Y,N,[Q]\}$ but with a large XPath fragment (e.g., the fragment X^+) as done in [17]. For instance, the policy of Example 2 can be defined as follows:

$$
R'_1: \text{ann}_{\text{up}}(\text{dept},ut)=[\text{dname}/\text{text}()=\text{’cardiology’}] \\
R'_2: \text{ann}_{\text{up}}(\text{clinical},ut)=N \\
R'_3: \text{ann}_{\text{up}}(\text{patient},ut)=[\text{categ}/\text{text}()=\text{’A’} \text{ and not(}\uparrow*:\text{dept}\text{)}]_h \\
\text{and } \uparrow*:\text{dept}[\text{dname}/\text{text}()=\text{’cardiology’}]_h
$$

Observe that, without using the values $\{N_h,[Q]_h\}$, defining a downward-closed annotation over element type A amounts to propagate its value into all annotations defined under A (values of the two downward-closed annotations R_1 and R_2 of Example 2 are propagated into the annotation R_3 to redefine it with R'_3). In this case, annotation R'_3 depends on R'_1 and R'_2 and must be redefined each time a modification is made on R'_1 and/or R'_2. This propagation leads to verbose annotations. In other words, without the values $\{N_h,[Q]_h\}$, changing one annotation may require the modification of some annotations defined under it, which can be complicated and time consuming in case of large DTDs.

3.2 DTD Recursion Problems

Recall the problems 1 and 2 explained in Section 1. The first problem states the non-existence of models to specify update policies in case of recursive DTDs. Suppose that the hospital imposes that the doctors can update all treatment data except those which have been done outside the hospital (we suppose that all analysis are done in laboratories). According to this policy, a doctor is permitted to update a treatment node in an XML document (e.g., insert new diagnosis

\footnote{This is not recommended for some systems like collaborative editing where the update policies are dynamic and each change is propagated to all the users across the network [13].}
data, delete some result nodes, etc.) only if this node is not attached, directly or by other treatment nodes, to an analysis node. Given the XML document presented in Fig. 2 only nodes treatment1 and treatment4 can be updated while it is not the case of nodes treatment2 and treatment3 which are data analysis (attached to node analysis1). Such a policy can be defined only by using the notion of inheritance and overriding of update privileges which is not considered in the existing approaches [2–4,8]. This policy is defined in our model by the following update annotations:

\[R_1: \text{ann}_\text{up}(\text{medicalFolder}, \text{ut}) = Y \]
\[R_2: \text{ann}_\text{up}(\text{diagnosis}, \text{ut}) = Y \]
\[R_3: \text{ann}_\text{up}(\text{analysis}, \text{ut}) = N \]

where \text{ut} can be any update type defined over element types treatment, descp, diagnosis, and result (e.g., delete\{result\}, insertInto\{diagnosis\}).

The second problem is related to the enforcement of update policies. In case of recursive DTD, an update operation with target defined in fragment \(X \) cannot be rewritten into an equivalent one defined in \(X \) in order to update only authorized data. This problem is known as the XPath closure problem [7]. For instance, according to the previous update annotations, the update operation delete ↓+::treatment cannot be rewritten into a safe update expressed in \(X \).

Indeed, the paths denoting updatable treatment nodes (not done during analysis) stand for an infinite set. This set of paths can be captured with: delete (↓+::medicalFolder ∪ ↓+::diagnosis)/(↓::treatment)*/↓::treatment. However, the kleene star (\(* \)) cannot be expressed in XPath [25,26].

In the next section we explain how the extended fragment \(X_{[n]}^\ominus \), defined in Section 2 can be used to overcome this update operations rewriting problem.

4 Secure Updating XML

In this section we focus only on update rights and we assume that every node is read-accessible by all users. Given an update specification \(S_{up}=(D, \text{ann}_{up}) \), we discuss the enforcement of such update constraints where each update operation posed over an instance \(T \) of \(D \) must be evaluated only over nodes of \(T \) that can be updated by the user w.r.t \(S_{up} \). We assume that the XML document \(T \) remains valid after the update operation is performed, otherwise the update is rejected. In the following, we denote by \(S_{ut} \) the set of annotations defined in \(S_{up} \) over the update type \(ut \) and by \(|S_{ut}| \) the size of this set. Moreover, for a mapping function \text{ann} (such as \text{ann}_{up} of an update specification \(S_{up}=(D, \text{ann}_{up}) \)), we denote by \{\text{ann}\} the set of all annotations defined with \text{ann}, and by \(|\text{ann}|\) the size of this set.

4.1 Updatability

Consider the annotation \text{ann}_{up}(A,ut) = \text{value} and let \(n \) be a node of type \(A \). If this annotation is valid at \(n \) then update operations of type \(ut \) can change either the content of \(n \) (i.e., delete/replace children nodes of \(n \), insert new ones) or the information relative to its preceding-sibling (resp. following-sibling) presented by the relation \(R_n \) (resp. \(R_n \)) in Section 2 (i.e., insert new nodes in preceding/following sibling of \(n \)). Thus, we say that a node \(n \) is updatable w.r.t
update type \(u_t \) if the user is granted to perform update operations of type \(u_t \) either at node \(n \) (case of \textit{insert} operations) or over children nodes of \(n \) (case of \textit{delete} and \textit{replace} operations). For instance, if a node \(n \) is updatable w.r.t \texttt{insertInto}[\(B \)], then some nodes of type \(B \) can be inserted as children of \(n \). Additionally, \(B \) children of \(n \) can be replaced with nodes of type \(B_j \) iff \(n \) is updatable w.r.t \texttt{replace}[\(B_i,B_j \)].

\textbf{Definition 3.} Let \(S_{up}=(D,ann_{up}) \) be an update specification and \(u_t \) be an update type. A node \(n \) in an instantiation of \(D \) is updatable w.r.t \(u_t \) if the following conditions hold:

\begin{enumerate}
\item[i)] The node \(n \) is concerned by a valid annotation with type \(u_t \); or, no annotation of type \(u_t \) is defined over element type of \(n \) and there is an ancestor node \(n' \) of \(n \) such that: \(n' \) is the first ancestor node of \(n \) concerned by an annotation of type \(u_t \), and this annotation is valid at \(n' \) (the inherited annotation).
\item[ii)] There is no ancestor node of \(n \) concerned by an invalid downward-closed annotation of type \(u_t \). \hfill \Box
\end{enumerate}

\textbf{Example 3.} We consider the XML instance of Fig. 2 and we define the following update annotations:

\begin{align*}
R_1 & : \text{ann}_{up}(\text{medicalFolder},\text{insertInto}[\text{result}]) = Y \\
R_2 & : \text{ann}_{up}(\text{diagnosis},\text{insertInto}[\text{result}]) = Y \\
R_3 & : \text{ann}_{up}(\text{analysis},\text{insertInto}[\text{result}]) = N
\end{align*}

The update \texttt{insert} \texttt{<result/>} into \texttt{\downarrow|^+\text{treatment}[::\text{descp/texts()}='biotherapy']} has no effect since the node concerned by this update is \text{treatment}_3 which is not updatable w.r.t \texttt{insertInto}[\text{result}]: According to Definition 3 no annotation of type \texttt{insertInto}[\text{result}] is defined over element type \text{treatment}; and \text{analysis}_1 is the first ancestor node of \text{treatment}_3 concerned by an annotation of type \texttt{insertInto}[\text{result}], annotation \(R_3 \). But, \(R_3 \) is not valid at \text{analysis}_1. \Box

Given an update specification \(S_{up}=(D,ann_{up}) \), we define two predicates \(U^1_{ut} \) and \(U^2_{ut} \) (expressed in fragment \(\mathcal{X}_{\text{xml}} \)) to satisfy the conditions (i) and (ii) of Definition 3 with respect to an update type \(u_t \):

\begin{align*}
U^1_{ut} & := \uparrow^+:\exists[V(\text{ann}_{up}(A,ut)=Y)[\text{N}[\text{Q}][\text{N}_h][\text{Q}_h])\in S_{ut} \not\in A[I]] \\
& \quad [V(\text{ann}_{up}(A,ut)=Y)\in S_{ut} \not\in A V(\text{ann}_{up}(A,ut)=\text{Q})[\text{N}_h][\text{Q}_h])\in S_{ut} \not\in A[Q]] \\
U^2_{ut} & := \wedge(\text{ann}_{up}(A,ut)=[\text{N}_h][\text{Q}_h])\in S_{ut} \not\in (\uparrow^+:\text{A}) \\
& \quad \wedge(\text{ann}_{up}(A,ut)=[\text{Q}_h])\in S_{ut} \not\in (\uparrow^+:\text{A}[\text{not}(Q)])
\end{align*}

where \(\wedge \) and \(\vee \) denote conjunction and disjunction respectively. The predicate \(U^1_{ut} \) has the form \(\uparrow^+:\exists[\text{qual}_1][\text{I}][\text{qual}_2] \). Applying \(\uparrow^+:\exists[\text{qual}_1] \) on a node \(n \) returns an ordered set \(\mathcal{S} \) of nodes (node \(n \) and/or some of its ancestor nodes) such that for each one an annotation of type \(u_t \) is defined over its element type. The predicate \(S[I] \) returns either node \(n \), if an annotation of type \(u_t \) is defined over its element type; or the first ancestor node of \(n \) concerned by an annotation of type \(u_t \). Thus, to satisfy condition (i) of Definition 3 it amounts to check that
the node returned by \(S[1] \) is concerned by a valid annotation of type \(ut \), done by \(S[1][\text{qual}2] \) (i.e., \(n \models U_{ut}^1 \)). The second predicate is used to check that all downward-closed annotations of type \(ut \) defined over ancestor nodes of \(n \) are valid (i.e., \(n \models U_{ut}^2 \)).

Definition 4. Let \(S_{up}=(D,ann_{up}) \), \(ut \), and \(T \) be an update specification, an update type and an instance of DTD \(D \) respectively. We define the updatability predicate \(U_{ut} \) which refers to an \(X_0^n \) qualifier such that, a node \(n \) on \(T \) is updatable w.r.t \(ut \) iff \(n \models U_{ut} \), where \(U_{ut} := U_{ut}^1 \land U_{ut}^2 \).

For example, the XPath expression \(\downarrow::*[U_{ut}] \) stands for all nodes which are updatable w.r.t. \(ut \). As a special case, if \(S_{ut} = \phi \) then \(U_{ut} = false \).

Example 4. According to the update policy of Example 2, the updatability predicate \(U_{ut} := U_{ut}^1 \land U_{ut}^2 \) is defined with:

\[
U_{ut}^1 := \uparrow::*[e::dept \lor e::clinical \lor e::patient][1] \\
\lor [e::dept[i::dname/text()=\text{‘cardiology’}]] \\
\lor [e::patient[i::categ/text()=\text{‘A’}]] \\
U_{ut}^2 := \neg (\downarrow::[\neg ([\downarrow::dname/text()=\text{‘cardiology’}])] \\
\land \neg (\uparrow::[\text{clinical}])
\]

Applying the predicate \(\uparrow::*[e::dept \lor e::clinical \lor e::patient] \) over the node \(medicalFolder_3 \) of Fig. 2(a) returns the ordered set \(S=\{patient_3, patient_2, dept_1\} \) of nodes (each one is concerned by an annotation of type \(ut \); \(S[1] \) returns \(patient_3 \); and the predicate \([e::dept[i::dname/text()=\text{‘cardiology’}]] \lor [e::patient[i::categ/text()=\text{‘A’}]] \) is valid at \(patient_3 \). Thus \(U_{ut}^1 \) is valid at node \(medicalFolder_3 \). Also, we can see that \(medicalFolder_3 \not\models U_{ut} \). Consequently, the node \(medicalFolder_3 \) is updatable w.r.t \(ut \) (i.e., \(medicalFolder_3 \not\models U_{ut} \)). This means that, in case of \(ut=\text{insertInto}[\text{treatment}] \), the user is granted to insert nodes of type \(\text{treatment} \) under node \(medicalFolder_3 \). However, if \(ut=\text{delete}[\text{treatment}] \), then \(\text{treatment} \) children of node \(medicalFolder_3 \) can be deleted (case of node \(treatment_1 \) of the instance of Fig. 2).

Property 1. For an update specification \(S_{up}=(D,ann_{up}) \) and an update type \(ut \), the updatability predicate \(U_{ut} \) can be constructed in at most \(O(|ann_{up}|) \) time.

Proof. Intuitively, for an update type \(ut \), the definition of the set \(S_{ut} \) depends on the parsing of all annotations of \(S_{up} \) (i.e., the set \(\{ann_{up}\} \)) in \(O(|ann_{up}|) \) time. The construction of each predicate \(U_{ut}^1 \) and \(U_{ut}^2 \) over annotations of \(S_{ut} \) takes \(O(|S_{ut}|) \) time. Thus, the predicate \(U_{ut} \) can be constructed in at most \(O(|S_{ut}| + |ann_{up}|) = O(|ann_{up}|) \) time (since \(|S_{ut}| \leq |ann_{up}| \)).

4.2 Update Operations Rewriting

Finally, we detail here our approach for enforcing update policies based on the notion of query rewriting. Given an update specification \(S_{up}=(D,ann_{up}) \). For any update operation with \textit{target} defined in the XPath fragment \(X \), we translate this operation into a safe one by rewriting its \textit{target} expression into another one \textit{target'} defined in the XPath fragment \(X_{[n]} \), such that evaluating \textit{target'} over
any instance of D returns only nodes that can be updated by the user w.r.t S_{up}. We describe in the following the rewriting of each kind of update operation considered in this paper. We refer to DTD D as a pair $(Ele, Rg, root)$, and to $source$ as a sequence of nodes of type B.

Delete/Replace Operations. According to our model of update, if the user holds the delete $[A]$ right on a node n then he can delete children nodes of n of type A. Thus, given the update operation “delete target”, for each node n of type A, referred to by target, parent node n' of n must be updatable w.r.t delete $[A]$ (i.e., $n' \vDash U_{delete}[A]$). To this end, the target expression of delete operations can be rewritten into: $target[U_{delete}[A]]$. Consider now the update operation “replace target with source”. A node n of type A, referred to by target can be replaced with nodes in source if its parent node n' is updatable w.r.t replace $[A, B]$ (i.e., $n' \vDash U_{replace}[A, B]$). Therefore, the target expression of the replace operation can be rewritten into: $target[U_{replace}[A, B]]$.

Insert as first into/as last into/before/after Operations. Consider the update operation “insert target as first into source”. For any node n referred to by target, the user can insert nodes in source at the first child position of n regardless of the type of n, provided that he holds the insertAsFirst $[B]$ right on this node (i.e., $n \vDash U_{insertAsFirst}[B]$). To check this, the target expression of the above update operation can be simply rewritten into: $target[U_{insertAsFirst}[B]]$. The same principle is applied for the operations insertAsLast, insertBefore, and insertAfter.

Insert into Operation. In the following we assume that: if a node n is concerned by an annotation of type insertInto $[B]$, then this annotation implies insertAsFirst $[B]$ (resp. insertAsLast $[B]$) rights for n, and insertBefore $[B]$ (resp. insertAfter $[B]$) rights for children nodes of n (inspired from [S]). In other words, if one can (not) insert children nodes of type B at any child position of some node n as specified by some annotations of type insertInto $[B]$, then one can (not) insert nodes of type B in the first and last child position of n and in preceding and following sibling of children nodes of n (unless if there is some annotations of type insertAsFirst $[B]$, insertAsLast $[B]$, insertBefore $[B]$, or insertAfter $[B]$ respectively that specify otherwise). Thus, one can execute the update operation “insert source into target” over an XML tree T iff: (i) one has the right to execute update operations of type insertInto $[B]$ on the node n ($n \in T[target]$); and (ii) no annotation explicitly prohibits update operations of type insertAsFirst $[B]$ / insertAsLast $[B]$ on node n (resp. insertBefore $[B]$ / insertAfter $[B]$ on children nodes of n). When condition (ii) does not hold (e.g. update operations of type insertAsFirst is explicitly denied), this leads to situation where there is a conflict between insertInto and other insert operations.

The first condition is checked using the updatability predicate $U_{insertInto}[B]$ (whether or not $n \vDash U_{insertInto}[B]$). For the second condition, however, we define the predicate U_{ct}^{-1} over an update type ut such that: for a node n, if $n \vDash U_{ct}$ then update operations of type ut are explicitly forbidden on node n. An update operation of type ut is explicitly forbidden at node n iff at least one of the following conditions holds: a) the node n is concerned by an invalid
annotation of type \(ut\); b) no annotation of type \(ut\) is defined over element type of \(n\) and there is an ancestor node \(n'\) of \(n\) such that: \(n'\) is the first ancestor node of \(n\) concerned by an annotation of type \(ut\), and this annotation is invalid at \(n'\); c) there is an ancestor node of \(n\) concerned by an invalid downward-closed annotation of type \(ut\).

More formally, for an update specification \(S_{up} = (D, \text{ann}_{up})\), we define the predicate \(U_{ut}^{-1} = Cnd_{vb} \lor Cnd_c\) over an update type \(ut\) with:

\[
\begin{align*}
Cnd_{vb} := & \
\downarrow^{\downarrow}::[\not\uparrow::[\not\uparrow::U_{ib}^{-1}] U_{ib}^{-1}] \lor \not\uparrow::[\not\uparrow::U_{ib}^{-1}] U_{ib}^{-1} \lor \not\uparrow::[\not\uparrow::U_{ib}^{-1}] U_{ib}^{-1}\\
\not\uparrow::U_{ib}^{-1} := & \
\{[\not\uparrow::U_{ib}^{-1}] U_{ib}^{-1} \lor \not\uparrow::[\not\uparrow::U_{ib}^{-1}] U_{ib}^{-1} \lor \not\uparrow::[\not\uparrow::U_{ib}^{-1}] U_{ib}^{-1}\}
\end{align*}
\]

For a node \(n\), if \(n \models CRP_B\) then at least the update operation \(\text{insertAsFirst}[B]\) (resp. \(\text{insertAsLast}[B]\)) is forbidden for node \(n\) or \(\text{insertBefore}[B]\) (resp. \(\text{insertAfter}[B]\)) is forbidden for some children nodes of \(n\). Finally, given the update operation “\(\text{insert source into target}\)” over an XML tree \(T\), one can insert nodes of type \(B\) in \(S_{up}\) in source to the node \(n\) \((n \in T[\text{target}])\) if and only if: \(n \models U_{\text{insertInto}}[B] \land \not(CRP_B)\). Thus, the target of the \(\text{insertInto}\) operation can be rewritten into: \(\text{target}[U_{\text{insertInto}}[B] \land \not(CRP_B)]\).

The overall complexity time of our rewriting approach of update operations can be stated as follows:

Theorem 1. For any update specification \(S_{up} = (D, \text{ann}_{up})\) and any update operation \(op\) (defined in \(X\)), there exists an algorithm “*Rewrite Updates*” that translates \(op\) into a safe one \(op'\) (defined in \(X'_{[n]}\)) in at most \(O(|\text{ann}_{up}|)\) time. \(\square\)

Proof. Our algorithm “*Rewrite Updates*” for XML update operations rewriting is given in Fig. 3. As explained in Section 4.2 for any update specification \(S_{up} = (D, \text{ann}_{up})\) with DTD \(D = (Ele, Rg, root)\), the securing of an update operation \(op\) consists in the rewriting of its target expression (defined in \(X\)) into a safe one \(target'\) (defined in \(X'_{[n]}\)) in order to refer only to XML nodes that can be updated by the user w.r.t \(S_{up}\). Proving that \(target'\) can be defined in \(O(|\text{ann}_{up}|)\) time is intuitive and based on the proof of Property 4.

- A *delete* operation can be rewritten by adding the following predicate \([\not\uparrow::[\not\uparrow::U_{\text{delete}}[A_i]]] \lor [\not\uparrow::[\not\uparrow::U_{\text{delete}}[A_i]]] \lor [\not\uparrow::[\not\uparrow::U_{\text{delete}}[A_i]]]\) to its target expression. For each element type \(A_i\) in DTD \(D\), \(S_{\text{delete}}[A_i]\) is a subset of \{\text{ann}_{up}\}, i.e., \(\bigcup_{A_i \in Ele} S_{\text{delete}}[A_i] \subseteq \{\text{ann}_{up}\}\). All these subsets can be computed by parsing only one time the set \{\text{ann}_{up}\}, i.e., in \(O(|\text{ann}_{up}|)\) time. Next, each sub-predicate \(U_{\text{delete}}[A_i]\) is defined over the subset \(S_{\text{delete}}[A_i]\) in \(O(|S_{\text{delete}}[A_i]|)\) time, and all sub-predicates used in

\[\text{as a special case, if } S_{\text{ut}} = \phi \text{ then } U_{\text{ut}}^{-1} = false.\]
Algorithm: Rewrite Updates

\textbf{input}: An update specification $S_{up} = (D, ann_{up})$ and an update operation op.

\textbf{output}: a rewritten of op w.r.t S_{up}.

1. let $D = (Ele, Rg, root)$;
2. let op be defined with target and optional sequence source of nodes which conform to type B;
3. \textbf{case} (delete operation):
 \hspace{1em} target' := target$\setminus_{A_i \in Ele} \epsilon \cup_{A_i \in T} \delta$; $\Delta_{delete[A_i]}[\delta]$;
4. \textbf{case} (replace operation):
 \hspace{1em} target' := target$\setminus_{A_i \in Ele} \epsilon \cup_{A_i \in T} \delta$; $\Delta_{replace[A_i, B]}[\delta]$;
5. \textbf{case} (insertAsFirst operation):
 \hspace{1em} target' := target$\setminus_{A_i \in Ele} \epsilon \cup_{A_i \in T} \delta$; $\Delta_{insertAsFirst[B]}[\delta]$;
6. \textbf{case} (insertAsLast operation):
 \hspace{1em} target' := target$\setminus_{A_i \in Ele} \epsilon \cup_{A_i \in T} \delta$; $\Delta_{insertAsLast[B]}[\delta]$;
7. \textbf{case} (insertBefore operation):
 \hspace{1em} target' := target$\setminus_{A_i \in Ele} \epsilon \cup_{A_i \in T} \delta$; $\Delta_{insertBefore[B]}[\delta]$;
8. \textbf{case} (insertAfter operation):
 \hspace{1em} target' := target$\setminus_{A_i \in Ele} \epsilon \cup_{A_i \in T} \delta$; $\Delta_{insertAfter[B]}[\delta]$;
9. replace target of op with target';
10. \textbf{return} op;

Figure 3: XML Update Operations Rewriting Algorithm.

\begin{align*}
\text{line 4 of Fig. 3 can be defined in } O(\sum |S_{delete[A_i]}|) = O(|ann_{up}|) \text{ time. Therefore, the predicate } &\setminus_{A_i \in Ele} \epsilon \cup_{A_i \in T} \delta \Delta_{delete[A_i]}[\delta] \text{ can be defined in at most } \sum \text{, which is the rewriting time of delete operations. The same} \notag \\
\text{principle is applied for replace operations.} \notag \\
\cdot \text{For an insertAsFirst operation (resp. insertAsLast, insertBefore, and insertAfter) defined with source of nodes conform to type } B, \text{ only one predicate is used to rewrite this operation; the predicate } &\setminus_{A_i \in Ele} \epsilon \cup_{A_i \in T} \delta \Delta_{insertAsFirst[B]}[\delta] \text{ is constructed in at most } O(|ann_{up}|) \text{ time.} \notag \\
\cdot \text{An insertInto operation defined with source of nodes conform to type } B \text{ is rewritten by adding the predicate } &\setminus_{A_i \in Ele} \epsilon \cup_{A_i \in T} \delta \Delta_{insertInto[B]}[\delta] \text{ to its target expression (line 11 of Fig. 3). The predicate } \setminus_{A_i \in Ele} \epsilon \cup_{A_i \in T} \delta \Delta_{insertInto[B]}[\delta] \text{ is constructed in at most } O(|ann_{up}|) \text{ time, while the predicate CRP}_B \text{ is based on the definition of some other predicates } U_{ut}^{i-1} \text{ for each update type } ut \in \{\text{insertAsFirst } [B], \text{ insertAsLast } [B], \text{ insertBefore } [B], \text{ insertAfter } [B]\}. \text{ Similarly to the updatability predicate, the construction of each predicate } &U_{ut}^{i-1} \text{ takes at most } O(|ann_{up}|) \text{ time (the same proof as Property [1]). Thus, the overall complexity time of the rewriting of insertInto operations is } O(5 \times |ann_{up}|) = O(|ann_{up}|) \text{ time.} \notag \\
\end{align*}

5 Secure Updating XML over Security Views

In the previous section we have supposed that all nodes are read-accessible which is not always the case. An XML document T can be queried simultaneously by different users. For each class of users, some read constraints can be imposed to deny access to sensitive information on T. To enforce such constraints, most of existing works which deal with read-access control are based on the notion of Security Views. Abstractly, for each class of users, we annotate the used DTD
A General Approach for Securely Querying and Updating XML Data

5.1 Access Control for Recursive Views

Given a security view $V=(D_v, \sigma)$, some works [3][5][17] have proposed efficient algorithms to rewrite any user query formulated for D_v to an equivalent one formulated for the original DTD D to be finally evaluated over any instance of D. This query rewriting principle has to avoid the overhead of view materialization and maintenance. However, only non-recursive views are considered (i.e., D_v is non-recursive). Consider the XPath fragment X which is more used in practice, it has been shown in [7] that query rewriting is not always possible under X in case of recursive security views.

To overcome this limitation, we presented in [12] a general approach to make XPath query rewriting possible under recursive security views. We briefly discuss here the main principle of our approach.

Given a DTD $D=(Ele, Rg, root)$, we define for each class of users an access specification $S=(D, ann)$ which specifies accessibility of XML nodes in instances of D. Formally, ann is a partial mapping such that, for each production $A \rightarrow Rg(A)$ and each element type B in $Rg(A)$, $ann(A, B)$, if explicitly defined, is an annotation of the form: $ann(A, B) := Y \mid N \mid \{Q\} \mid N_h \mid \{Q\}_h$ where $[Q]$ is a qualifier in our XPath fragment X.

The specification values Y, N, and $[Q]$ indicate that the B children of A elements in an instance of D are accessible, inaccessible, or conditionally accessible respectively. If $ann(A, B)$ is not explicitly defined, then B inherits the accessibility of A (inheritance). On the other hand, if $ann(A, B)$ is explicitly defined it may override the accessibility inherited from A (overriding).

The same principle of downward-closed annotation defined in Section 3.1 is applied for access annotations. With the annotation $ann(A, B)=N_h$, each B child of an A element is inaccessible and any descendant node of this B element can override this accessibility value (N_h) to be accessible. However, with the annotation $ann(A, B)=\{Q\}_h$, for any node n of type B child of an A element, descendant nodes of n can override this accessibility value ($\{Q\}_h$) only if $n \vDash Q$.

We define the security view in our approach to be $V=(D_v, ann)$ by omitting the function σ since it cannot be defined in case of recursive DTDs as outlined in [5][17].

Finally, we describe our algorithm “\textbf{Rewrite}” for XPath queries rewriting over arbitrary security views (recursive or not). Given an access specification $S=(D, ann)$, we extract first the security view $V=(D_v, ann)$ corresponding to S. The user is provided with the DTD view D_v which represents the schema of the data he is able to see. For any query Q defined in X over D_v, our algorithm “\textbf{Rewrite}” translates it into an equivalent one Q_t defined in $X[v]_{[n,=]}$ over the original DTD D such that: for any instance T of D, its virtual view T_v conforms to D_v, the evaluation of Q on T_v yields the same result as the
evaluation of Q_t on T. Our rewriting algorithm “Rewrite” runs in linear time on the size of the query.

We explain now some notations used in the following. For an access specification $S=(D, ann)$, we define predicates A^{acc} and A^+ (expressed in fragment $\mathcal{X}^{n\mid n}$) such that: for any node n in an instance of D, n is accessible w.r.t S if and only if $n \models A^{acc}$. While, n/A^+ returns all accessible ancestor nodes of n. We use algorithm “RW_Pred” to rewrite any predicate p defined in \mathcal{X} over DTD view D_v to an equivalent one $\text{RW}_\text{Pred}(p)$ defined in $\mathcal{X}^{n\mid n}$ over the original DTD D. More details of these predicates, and about the algorithms “Rewrite” and “RW_Pred” can be found in [12].

5.2 Securing Update Operations

We present in this section a security view-based approach for securing XML update operations. Given an access specification $S=(D, ann)$, and its corresponding security view $V=(D_v, ann)$. The update privileges of each class of users are defined over the DTD view $D_v=(Ele_v, Rg_v, root)$ to be $S_{up}=(D_v, ann_{up})$ and not over the original DTD D (i.e., for an update type ut, an annotation $ann_{up}(A, ut)=value$ defined over an element type A does not make sense if $A \notin Ele_v$). Each update operation must be rewritten with respect to both V and S_{up} to be safe, since, considering only update privileges (i.e., rewriting update operations only over S_{up} as explained in Section 4.2) is not sufficient to make XML updates secure and can cause leakage of sensitive information hidden by V. We illustrate this problem by the following example.

Example 5. Let $S=(D, ann)$ be an access specification where D is the hospital DTD and the annotations ann are defined as follows:

- $ann(hospital, dept)=[Q_1]\uparrow; Q_1$ is $\downarrow:dname/text()=\text{‘cardiology’}$
- $ann(dept, clinical)=N_h$
- $ann(patients, patient)=[Q_2]\uparrow; Q_2$ is $\downarrow:categ/text()=A$
- $ann(parent, patient)=[Q_2]\uparrow$

![hospital data](image)
(a) hospital data
(b) medicalFolder of patient_3

Figure 4: View of the XML document of Fig. 2
These annotations indicate that only the patients which are under department 'cardiology', not involved by clinical trial, and also having category 'A' are accessible to the user. Figure 2 represents the virtual view of the XML instance of Fig. 2 according to these annotations. We define now the following update privileges:

$$\text{ann}_{\text{up}}(\text{medicalFolder}, \text{delete}[\text{result}]) = Y$$
$$\text{ann}_{\text{up}}(\text{diagnosis}, \text{delete}[\text{result}]) = Y$$
$$\text{ann}_{\text{up}}(\text{analysis}, \text{delete}[\text{result}]) = N$$

Consider now the update operation $$\text{op} = \text{delete} \downarrow^+::\text{patients}[Q]/\downarrow^+::\text{result}$$ defined over the view instance depicted in Fig. 3 where $$Q$$ is the qualifier “not (\downarrow::\text{patient}[\downarrow::\text{name/text}()=\text{‘Margaret’}])”. Considering only the update privileges is not sufficient to make this operation safe. The rewritten of this update operation w.r.t the update policy defined above returns $$\text{op}'=\text{op}[\downarrow^+::[\text{U}_{\text{delete}}[\text{result}]]]$$.

If the execution of $$\text{op}'$$ over the original instance of Fig. 2 deletes the node $$\text{result}_1$$, then the qualifier $$Q$$ is valid at node $$\text{patients}_1$$ and the user can deduce that some nodes are hidden between nodes $$\text{patients}_1$$ and $$\text{patients}_3$$. By performing the rewritten operation $$\text{op}'$$ with $$Q=\downarrow::\text{patient}[\downarrow::\text{name/text}()=\text{‘Nathaniel’}])$$, the $$\text{result}_1$$ node is deleted and the user can deduce that patient Nathaniel is currently residing in the hospital and has confidential data. Moreover, the user is able to request these sensitive data simply by changing the predicate $$Q$$.

In order to avoid this inference problem, each update operation must be rewritten w.r.t both read and update privileges to be safely executed over any instance. Securely controlling an update operation is then done in two steps:

1. The XPath $$\text{target}$$ expression of the update operation is rewritten according to the read privileges of the user submitting the update operation. This is done by using our rewriting algorithm “Rewrite” described in Section 5.1
2. Let $$\text{target}'$$ be the rewriting of $$\text{target}$$ w.r.t the read privileges, the user must hold the update privilege for each node referred to by $$\text{target}'$$. Then, we rewrite $$\text{target}'$$ w.r.t the update privileges into a safe one in order to be evaluated only over nodes updatable by the user and without disclosure of sensitive information.

Example 6. Consider the read and update privileges of Example 5. The update operation $$\text{op} = \text{delete} \downarrow^+::\text{patients}[Q]/\downarrow^+::\text{result}$$ (where $$Q$$ is the qualifier “not (\downarrow::\text{patient}[\downarrow::\text{name/text}()=\text{‘Margaret’}])”) over the view instance of Fig. 3 is rewritten into $$\text{delete target}''$$ to be safely evaluated over the original instance of Fig. 2 where $$\text{target}''$$ is defined with:

$$\text{target} := \downarrow^+::\text{patients}[Q]/\downarrow^+::\text{result}$$
$$\text{target}' := \text{Rewrite}(\text{target}) = \downarrow^+::\text{result}[\mathcal{A}\text{acc}][\uparrow^+::\text{patients}[\mathcal{A}\text{acc}][\text{RW}_{\text{Pred}}(Q)][\uparrow^+::\text{hospital}]]$$
$$\text{RW}_{\text{Pred}}(Q) := \text{not (\downarrow^+::\text{patient}[\mathcal{A}\text{acc}][\uparrow^+::\text{name}][\::\text{text}()=\text{‘Margaret’}] /\uparrow^+::\text{result} /\uparrow^+::\text{hospital} /\varepsilon::\text{patients})}$$
$$\text{target}'' := \text{target}'[\uparrow^+::[\text{U}_{\text{delete}}[\text{result}]]]$$
H. Mahfoud and A. Imine

We have seen in Example 5 that, by evaluating the predicate \(Q = \text{“not (\(\downarrow::\text{patient}[\downarrow::\text{name}/\text{text}() = ‘Margaret’])”)” over node patients_1 of Fig. 2, some confidential information can be deduced. Using our rewriting algorithm “Rewrite”, we ensure that only accessible nodes can be requested by the update operation. Let \(Q’ \) be the predicate \(\text{“\(\downarrow^+:\text{patient}[A^{\text{acc}}]\downarrow^+:\text{name}[A^{\text{acc}}]\text{:/text}() = ‘Margaret’ /A^+[1]=\varepsilon::\text{patient}/A^+[1]=\varepsilon::\text{patients” (i.e., RW_Pred}(Q)=\text{not (}Q’))”. Evaluating the predicate \(Q’ \) over a node \(n \) in the original instance has to check that there is some accessible nodes of type \text{patient}, having name ‘Margaret’, and which are children of \(n \) or separated from it only with inaccessible nodes. Thus, the rewritten predicate \(RW_Pred(Q) \) (i.e., not (\(Q’))) is not valid at node \(patients_1 \) since the node \(patient_3 \) has name ‘Margaret’ and is separated from \(patients_1 \) only with inaccessible nodes. Therefore, the rewritten update operation delete target’ has no effect over the original instance of Fig. 2 and no confidential information can be deduced.

\[\Box \]

6 Conclusion

We have proposed a general model for specifying XML update policies based on the primitives of XQuery Update Facility. To enforce such policies, we have introduced a rewriting approach to securely updating XML over arbitrary DTDs and for a significant fragment of XPath. In the second part of this work, we have investigated the secure of XML data in the presence of security views. We have reviewed first our previously proposed approach enabling XPath query rewriting over recursive security views. Finally, we have discussed some inference problem that can be caused by combining read and update privileges, and our solution to deal with such a problem. This yields the first XML security model that provides both read and update access control for arbitrary DTDs (resp. security views).

We plan first to extend our approach to handle larger fragments of XPath and other XQuery update operations. Moreover, we aim to provide a working system in order to investigate the practicality of our proposed solutions.

References

[1] A. Berglund, S. Boag, D. Chamberlin, M. F. Fernández, M. Kay, J. Robie, and J. Siméon. XPath language (xpath) 2.0 (second edition). W3C Recommendation, December 2010.
[2] L. Bravo, J. Cheney, and I. Fundulaki. Accon: checking consistency of xml write-access control policies. In EDBT, pages 715–719, 2008.
[3] E. Damiani, M. Fansi, A. Gabillon, and S. Marrara. A general approach to securely querying xml. Computer Standards & Interfaces, 30(6):379–389, 2008.
[4] M. Duong and Y. Zhang. An integrated access control for securely querying and updating xml data. In ADC, pages 75–83, 2008.
[5] W. Fan, C. Y. Chan, and M. N. Garofalakis. Secure xml querying with security views. In SIGMOD Conference, pages 587–598, 2004.
[6] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Smoqe: A system for providing secure access to xml. In VLDB, pages 1227–1230, 2006.
[7] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Rewriting regular xpath queries on xml views. In ICDE, pages 666–675, 2007.
[8] I. Fundulaki and S. Maneth. Formalizing xml access control for update operations. In SACMAT, pages 169–174, 2007.

Inria
A General Approach for Securely Querying and Updating XML Data

[9] I. Fundulaki and M. Marx. Specifying access control policies for xml documents with xpath. In SACMAT, pages 61–69, 2004.

[10] G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms for processing xpath queries. ACM Trans. Database Syst., 30(2):444–491, 2005.

[11] B. Groz, S. Staworko, A.-C. Caron, Y. Roos, and S. Tison. Xml security views revisited. In DBPL, pages 52–67, 2009.

[12] M. Houari and A. Imine. Secure querying of recursive xml views: A standard xpath-based technique. INRIA Research Report, NANCY, France, Available at: http://hal.inria.fr/hal-00646135/en December 2011.

[13] A. Imine, A. Cherif, and M. Rusinowitch. A flexible access control model for distributed collaborative editors. In Secure Data Management, 2009.

[14] F. Jacquemard and M. Rusinowitch. Rewrite-based verification of xml updates. In PPDP, pages 119–130, 2010.

[15] Y. Koglin, G. Mella, E. Bertino, and E. Ferrari. An update protocol for xml documents in distributed and cooperative systems. In ICDCS, pages 314–323, 2005.

[16] A. Kundu and E. Bertino. A new model for secure dissemination of xml content. IEEE Transactions on Systems, Man, and Cybernetics, Part C, 38(3):292–301, 2008.

[17] G. M. Kuper, F. Massacci, and N. Rassadko. Generalized xml security views. In SACMAT, pages 77–84, 2005.

[18] M. Murata, A. Tozawa, M. Kudo, and S. Hada. Xml access control using static analysis. In ACM Conference on Computer and Communications Security, pages 73–84, 2003.

[19] F. Neven and T. Schwentick. On the complexity of xpath containment in the presence of disjunction, dtds, and variables. Logical Methods in Computer Science, 2(3), 2006.

[20] N. Rassadko. Policy classes and query rewriting algorithm for xml security views. In DBSec, pages 104–118, 2006.

[21] N. Rassadko. Query rewriting algorithm evaluation for xml security views. In Secure Data Management, pages 64–80, 2007.

[22] J. Robie, D. Chamberlin, M. Dyck, D. Florescu, J. Melton, and J. Siméon. Xquery update facility 1.0. W3C Recommendation, March 2011.

[23] P. Samarati and S. D. C. di Vimercati. Access control: Policies, models, and mechanisms. In FOSAD, pages 137–196, 2000.

[24] A. Stoica and C. Farkas. Secure xml views. In DBSec, pages 133–146, 2002.

[25] B. ten Cate. The expressivity of xpath with transitive closure. In PODS, pages 328–337, 2006.

[26] B. ten Cate and C. Lutz. The complexity of query containment in expressive fragments of xpath 2.0. J. ACM, 56(6), 2009.

[27] R. Vercautren, J. Hidders, and J. Paredaens. Query translation for xpath-based security views. In EDBT Workshops, pages 250–263, 2006.

RR n° 7870
