Synthesis and Evaluation Biological Activity of Six Oxapentacyclo Derivatives on Gram Negative and Gram Positive Bacteria

Figueroa-Valverde Lauro 1,*, Díaz-Cedillo Francisco 2, Rosas-Nexticapa Marcela 3,*, López-Ramos María 1,*, Alvarez-Ramirez Magdalena 3,*, Mateu-Armad María Virginia 3,*, Lopez Gutierrez Tomas 1

1 Laboratory of Pharmaco-Chemistry, Faculty of Chemical Biological Sciences, University Autonomous of Campeche, Av. Agustín Melgar s/n, Col Buenavista C.P. 24039 Campeche, Camp., México
2 Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional. Prol. Carpio y Plan de Ayala s/n Col. Santo Tomas, México, D.F. C.P. 11340
3 Facultad de Nutrición, Universidad Veracruzana, Médicos y Odontologos s/n C.P. 91010, Unidad del Bosque Xalapa Veracruz, México
* Correspondence: lfiguero@uacam.mx (F.V.L);

Scopus Author ID 55995915500
Received: 20.12.2021; Accepted: 22.01.2022; Published: 18.03.2022

Abstract: There are drugs such as cephalosporin, penicillins, aminoglycosides, quinolones for the treatment of infectious diseases; however, some of these drugs can produce bacterial resistance. This research aimed to synthesize six oxapentacyclo derivatives to evaluate their biological activity against some Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, and Streptococcus pneumoniae using the minimum inhibitory concentration method. The results showed that the methods used in this study produce a good yield of each product. Furthermore, the chemical structure of compounds 2 to 7 was determined using 1H and 13C NMR spectroscopic techniques. Other data showed that only compounds 3 and 5 decreased the growth bacterial of Gram-negative and Gram-positive bacteria; these data suggest that compounds 3 and 5 could be considered good antibacterial agents against infectious diseases produced by Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, and Streptococcus pneumoniae.

Keywords: synthesis; oxapentacyclo; derivatives; bacterial.

© 2022 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

1. Introduction

There are several drugs for the treatment of infectious diseases around the world [1-3]; however, the appearance of some strains resistant to Staphylococcus aureus [4-6], Escherichia coli [7-9], Klebsiella pneumoniae [10,11], and Streptococcus pneumoniae [12,13] has increased deaths in the population. New polycyclic derivatives have synthesized with antibacterial activity against both Gram-positive and Gram-negative bacteria to reduce bacterial resistance. For example, a study showed the preparation of 4-(2,5-Dimethylthiophen-3-yl)-6-(9-ethyl-9H-carbazol-3-yl)-pyrimidin-2-amine as an antibacterial agent against both Staphylococcus aureus and Escherichia coli bacteria [14]. Other data display that oxysporizoline, a polycyclic extracted of fungus Fusarium oxysporum can produce an antibacterial effect against Staphylococcus aureus [15]. In addition, another report showed that a polycyclic sulfonamide decreases the growth of bacteria of Staphylococcus aureus [16]. Also,
A study displayed the synthesis of a heteroaromatic-polycyclic (GSQ1530) as an antibacterial agent against both *Staphylococcus aureus* and *Streptococcus pneumoniae* [17]. Recently, some polycyclic-anthrabenzpquinones derivatives were synthesized, and their theoretical activity against *Staphylococcus aureus* was evaluated [18]. All these data showed several ways to synthesize several polycyclic derivatives with biological activity against Gram-positive and Gram-negative bacteria. However, there are few reports on the preparation of oxapentacyclo derivatives as antibacterial agents; analyzing these data, in this research, six oxapentacyclo analogs were synthesized to evaluate their antibacterial effect on *Staphylococcus aureus*, *Escherichia coli*, *Klebsiella pneumoniae*, and *Streptococcus pneumoniae* using the minimum inhibitory concentration method.

2. Materials and Methods

2.1. General methods.

Starting materials were purchased from commercial suppliers (Sigma-Aldrich and AKos Consulting & Solutions). NMR spectra were recorded on a Varian VXR300/5 FT apparatus (300 MHz/CDCl₃) using tetramethylsilane as an internal standard. Electron Ionization mass spectrometry (EIMS) was recorded on a Finnigan PolarisQ ion trap mass spectrometer. Melting-point (m.p.) was determined on an electrothermal-900 model apparatus. The infrared spectrum (IR) was determined on a thermo-scientific iSO FT/IR device. Elemental analysis was determined using a PerkinElmer apparatus (Ser. II CHNS / 02400).

2.2. Chemical synthesis.

2.2.1. (2R,8S)-11-(4-hydroxybutyl)-5-oxapentacyclo[7.4.1.0₂,8.0₄,6.0₁₀,₁₃]tetradec-11-ene-3,7-dione (2).

In a round bottom flask (10 ml), 1,4,4a,8a-tetrahydro-endo-1,4-methanonaphthalene-5,8-dione (150 mg, 0.86 mmol), 5-hexyn-1-ol (120 µl, 1.08 mmol) and Copper(II) chloride anhydrous (120 mg, 0.89 mmol) in methanol (5 ml) was stirring for 72 h at room temperature. Then the solvent is evaporated on a rotary evaporator and the product is separated using the chloroform:water (4:1) system. yielding 76% of product; m.p. 136-140 °C; IR (ν max, cm⁻¹) 3400, 1712, 1602 and 1070; ¹H NMR (300 MHz, CDCl₃) δH: 1.50-1.54 (m, 4H), 1.70-1.96 (m, 4H), 2.08 (m, 2H), 3.00-3.02 (m, 2H), 3.10-3.50 (m, 3H), 3.58 (broad, 1H), 3.60 (m, 2H), 3.66 (m, 2H), 5.70 (d, 1H, J = 1.33 Hz) ppm. ¹³C NMR (300 Hz, CDCl₃) δC: 24.42, 32.50, 32.55, 36.54, 39.20, 40.42, 42.20, 50.22, 51.30, 51.85, 62.54, 63.50, 130.60, 148.32, 205.40 ppm. EI-MS m/z: 288.13. Anal. Calcd. for C₁₇H₂₀O₄: C, 70.81; H, 6.99; O, 22.20. Found: C, 70.78; H, 6.96.

2.2.2. (2S,8R)-11-(aminomethyl)-5-oxapentacyclo[7.4.1.0₂,8.0₄,6.0₁₀,₁₃]tetradec-11-ene-3,7-dione (3).

In a round bottom flask (10 ml), 1,4,4a,8a-tetrahydro-endo-1,4-methanonaphthalene-5,8-dione (150 mg, 0.86 mmol), prop-2-yn-1-amine (60 µl, 0.93 mmol) and Copper(II) chloride anhydrous (120 mg, 0.89 mmol) in methanol (5 ml) was stirring for 72 h at room temperature. Then the solvent is evaporated on a rotary evaporator and the product is separated using the chloroform:water (4:1) system. yielding 87% of product; m.p. 112-114 °C; IR (ν max, cm⁻¹)
3380, 1712, 1602 and 1072: 1H NMR (300 MHz, CDCl$_3$-d) δ_H: 2.06 (broad, 2H), 1.70-2.90 (m, 4H), 3.00-3.02 (m, 2H), 3.06 (m, 2H), 3.30-3.40 (m, 2H), 3.60 (m, 2H), 5.90 (d, 1H, $J = 1.65$ Hz) ppm. 13C NMR (300 Hz, CDCl$_3$) δ_C: 32.14, 38.95, 39.94, 43.96, 48.40, 50.22, 51.56, 53.15, 63.50, 131.84 144.52, 205.44 ppm. EI-MS m/z: 245.10. Anal. Calcd. for C$_{14}$H$_{15}$NO$_3$: C, 68.56; H, 6.16; N, 5.71; O, 19.57. Found: C, 68.53; H, 6.12.

2.2.3. (2R,8S)-11-[(4-hydroxy-3-methoxy-phenyl)methyl]-5-oxapentacyclo[7.4.1.02,8.04,6.010,13]tetradecane-3,7-dione (4).

In a round bottom flask (10 ml), 1,4,4a,8a-tetrahydro-endo-1,4-methanonaphthalene-5,8-dione (150 mg, 0.86 mmol), eugenol (150 µl, 0.97 mmol) and Copper(II) chloride anhydrous (120 mg, 0.89 mmol) in methanol (5 ml) was stirring for 72 h at room temperature. Then the solvent is evaporated on a rotary evaporator and the product is separated using the chloroform:water (4:1) system. yielding 76% of product; m.p. 142-144 °C; IR (V$_{max}$, cm$^{-1}$) 3400, 1710, 1604 and 1070: 1H NMR (300 MHz, CDCl$_3$-d) δ_H: 1.32-2.30 (m, 7H), 2.60-2.64 (m, 2H), 2.99-3.02 (2H), 3.10-3.48 (m, 2H), 3.62 (s, 3H), 3.84 (s, 3H), 5.47 (broad, 1H), 6.66-6.80 (m, 3H) ppm. 13C NMR (300 Hz, CDCl$_3$) δ_C: 29.70, 33.40, 37.14, 40.62, 41.20, 42.26, 42.40, 49.20, 50.40, 51.52, 55.86, 63.50, 113.34, 114.32, 112.94, 130.90, 144.50, 146.60, 205.40 ppm. EI-MS m/z: 354.14. Anal. Calcd. for C$_{21}$H$_{22}$O$_5$: C, 71.17; H, 6.26; O, 22.57. Found: C, 71.14; H, 6.22.

2.2.4. (2R,8S)-11-(3-aminophenyl)-5-oxapentacyclo[7.4.1.02,8.04,6.010,13]tetradecane-3,7-dione (5).

In a round bottom flask (10 ml), 1,4,4a,8a-tetrahydro-endo-1,4-methanonaphthalene-5,8-dione (150 mg, 0.86 mmol), 3-ethylylaniline (100 µl, 0.94 mmol) and Copper(II) chloride anhydrous (120 mg, 0.89 mmol) in methanol (5 ml) was stirring for 72 h at room temperature. Then the solvent is evaporated on a rotary evaporator and the product is separated using the chloroform:water (4:1) system. yielding 69% of product; m.p. 162-164 °C; IR (V$_{max}$, cm$^{-1}$) 3382, 1712, 1600 and 1070: 1H NMR (300 MHz, CDCl$_3$-d) δ_H: 1.62-1.90 (m, 3H), 3.00-3.02 (m, 2H), 3.20 (m, 1H), 3.60 (m, 2H), 3.62 (m, 1H), 3.66 (m, 1H), 4.04 (broad, 1H), 6.00 (d, 1H, $J = 1.82$ Hz), 6.56-7.20 (m, 4H) ppm. 13C NMR (300 Hz, CDCl$_3$) δ_C: 33.40, 39.40, 41.32, 42.62, 50.22, 51.70, 52.22, 63.50, 111.90, 114.12, 119.70, 128.60, 135.12, 139.00, 145.60, 146.40, 205.40 ppm. EI-MS m/z: 307.12. Anal. Calcd. for C$_{19}$H$_{17}$NO$_3$: C, 74.25; H, 5.58; N, 4.56; O, 15.62. Found: C, 74.22; H, 5.56.

2.2.5. 4-[(2R,8S)-3,7-dioxo-5-oxapentacyclo[7.4.1.02,8.04,6.010,13]tetradecane-11-yl]buta-noic acid (6).

In a round bottom flask (10 ml), 1,4,4a,8a-tetrahydro-endo-1,4-methanonaphthalene-5,8-dione (150 mg, 0.86 mmol), 5-hexyanoic acid (100 µl, 0.90 mmol) and Copper(II) chloride anhydrous (120 mg, 0.89 mmol) in methanol (5 ml) was stirring for 72 h at room temperature. Then the solvent is evaporated on a rotary evaporator and the product is separated using the chloroform:water (4:1) system. yielding 76% of product; m.p. 38-40 °C; IR (V$_{max}$, cm$^{-1}$) 1710, 1602 and 1072: 1H NMR (300 MHz, CDCl$_3$-d) δ_H: 1.70-1.78 (m, 2H), 1.82 (m, 2H), 1.96 (m, 1H), 2.10-2.14 (m, 4H), 3.00-3.02 (m, 2H), 3.10-3.50 (m, 3H), 3.60 (m, 2H), 5.70 (m, 1H, $J = 1.82$ Hz), 8.20 (broad, 1H) ppm. 13C NMR (300 Hz, CDCl$_3$) δ_C: 22.20, 32.50, 33.74, 36.74,
In a round bottom flask (10 ml), 1,4,4a,8a-tetrahydro-endo-1,4-methanonaphthalene-5,8-dione (150 mg, 0.86 mmol), 1-phenyl-2-prpyyn-1-ol (120 µl, 0.98 mmol) and Copper(II) chloride anhydrous (120 mg, 0.89 mmol) in methanol (5 ml) was stirring for 72 h at room temperature. Then the solvent is evaporated on a rotary evaporator and the product is separated using the chloroform:water (4:1) system. Yielding 80% of product; m.p. 88-90 °C; IR (\(\nu_{\text{max}}\), cm\(^{-1}\)) 3400, 1712, 1600 and 1070: \(\text{1H NMR (300 MHz, CDCl}_3-d\text{)} \delta \text{H}: 1.70-3.40 (m, 8H), 3.50 (broad, 1H), 3.60 (m, 2H), 5.12 (m, 1H), 5.80 (d, 1H, J = 1.80 Hz), 7.30-7.50 (m, 5H) ppm. \(\text{13C NMR (300 Hz, CDCl}_3\)} \delta \text{C}: 32.80, 39.22, 40.68, 42.14, 50.20, 50.84, 51.34, 63.55, 76.60, 127.32, 128.42, 128.46, 134.20, 140.14, 149.32, 205.40 ppm. EI-MS m/z: 322.12. Anal. Calcd. for C\(_{20}\)H\(_{18}\)O\(_4\): C, 74.52; H, 5.63; O, 19.85. Found: C, 74.50; H, 5.60

2.3. Pharmacophore model.

3D pharmacophore model for estrone and compounds 2 to 7 was evaluated using LigandScout 4.08 software [19,20]

2.4. Biological evaluation.

Staphylococcus aureus (ATCC 33591), Streptococcus pneumoniae (ATCC 6303), Escherichia coli (ATCC 14035), and Klebsiella pneumoniae (ATCC 4352) were acquired from the strain bank from Laboratory of Pharmacochmistry, Faculty of Chemical-Biological Sciences of the Autonomous University of Campeche.

2.5 Antimicrobial activity.

This stage was carried out using a previously reported technique [21]; in this way, 12 tubes containing 2 mg/2 ml of culture medium (soybean trypticase) were prepared. Then, to the first tube, an aliquot of either of the compounds 2 to 7 (1 mg/ml) was added and was shaken to homogenize the mixture. Then, in the next 11 tubes, different dilutions of either of compounds (2 to 7) at a dose of 0.5 to 0.0004 mg/ml were added with constant stirring (Table 1). Following, each tube was inoculated with 0.1 ml of bacterial suspension, whose concentration corresponded to the McFarland scale \((9 \times 10^8 \text{ cells/ml})\), and all the tubes were incubated at 37°C for 24 h. Finally, a sample of any of the compounds was taken with a sterile loop to inoculate them in specific cultures for each bacterial organism at 37 °C for 24 h.

2.6. Pharmacokinetics parameter.

Pharmacokinetic parameters were determined using the SwissADME software [22,23].

3. Results and Discussion

Several pentacyclic analogs have been prepared using different chemical tools [24-27]; however, some protocols used involve require special conditions such as different pH and higher temperatures. Therefore, in this research, six oxapentacyclo-derivatives were
synthesized from 1,4,4a,8a-tetrahydro-endo-1,4-methanonaphthalene-5,8-dione (compound 1) to evaluate their antibacterial activity against Gram-negative and Gram-positive bacteria; the first stage was achieved as follows:

3.1. Chemical synthesis.

3.1.1. (2R,8S)-11-(4-hydroxybutyl)-5-oxapentacyclo[7.4.1.0^2,8.0^4,6.0^10,13]tetradec-11-ene-3,7-dione (2).

Compound 2 was prepared from 1, 5-hexyn-1-ol, and Copper(II) chloride (Figure 1). The 1H NMR spectrum of 2 showed several signals at 1.50-1.54, 2.08, 3.60 and 3.66 ppm for methylene groups linked to both Tricyclo[4.2.1.0^2,5]non-3-ene fragment and hydroxyl group; at 1.70-1.96 and 3.00-3.50 for Tricyclo[4.2.1.0^2,5]non-3-ene fragment; at 3.60 ppm for 7-Oxa-bicyclo[4.1.0]heptane-2,5-dione fragment; at 5.70 ppm for alkene group. The 13C NMR spectra display chemical shifts at 24.42, 36.54, and 62.54 ppm for methylene groups linked to both Tricyclo[4.2.1.0^2,5]non-3-ene fragment and hydroxyl group; at 32.50 and 39.20-51.85 for Tricyclo[4.2.1.0^2,5]non-3-ene fragment; at 63.50 ppm for 7-Oxa-bicyclo[4.1.0]heptane-2,5-dione fragment; at 130.60-148.32 ppm for alkene group; at 205.40 ppm for ketone groups. Besides, the mass spectrum from 2 showed a molecular ion (m/z) at 288.13.

Figure 1. Synthesis of six oxapentacyclo derivatives (2 to 7). Conditions and reagents: i = 1,4,4a,8a-tetrahydro-endo-1,4-methanonaphthalene-5,8-dione (1), 5-hexyn-1-ol, Copper(II) chloride, 48 h, rt; ii = compound 1, prop-2-yn-1-amine, Copper(II) chloride, 48 h, rt; iii = compound 1, eugenol, Copper(II) chloride, 48 h, rt; iv = compound 1, 3-ethynyliline, Copper(II) chloride, 48 h, rt; v = compound 1, 5-hexynoic acid, Copper(II) chloride, 48 h, rt; vi = compound 1, 1-phenyl-2-prpyn-1-ol, Copper(II) chloride, 48 h, rt. rt = room temperature

3.1.2. 2S,8R)-11-(aminomethyl)-5-oxapentacyclo[7.4.1.0^2,8.0^4,6.0^10,13]tetradec-11-ene-3,7-dione (3).

This stage was achieved via a reaction of 1 with prop-2-yn-1-amine and Copper(II) chloride anhydrous to form 3. The 1H NMR spectrum from 3 showed several signals at 2.06 ppm for the amino group; at 1.70-3.02 and 3.30-3.40 ppm for Tricyclo[4.2.1.0^2,5]non-3-ene fragment; at 3.06 ppm for methylene bound to the amino group; at 3.60 ppm for 7-Oxa-
bicyclo[4.1.0]heptane-2,5-dione fragment; at 5.90 ppm for alkene group. The 13C NMR spectra display chemical shifts at 32.14-50.22 for Tricyclo[4.2.1.02,5]non-3-ene fragment; at 138.44-144.52 ppm for alkene group; at 51.56 ppm for methylene group bound to the amino group; at 53.15-63.50 ppm for 7-Oxa-bicyclo[4.1.0]heptane-2,5-dione fragment; at 205.40 ppm for ketone groups. Finally, the mass spectrum from 2 showed a molecular ion (m/z) at 245.10.

3.1.3. (2R,8S)-11-[(4-hydroxy-3-methoxy-phenyl)methyl]-5-oxapentacyclo[7.4.1.02,8.04,6.010,13]tetradecane-3,7-dione (4).

Compound 4 was prepared from 1, eugenol, and Copper(II) chloride anhydrous under mild conditions. The 1H NMR spectrum from 4 showed several signals at 1.32-2.30 and 3.10-3.48 ppm for Tricyclo[4.2.1.02,5]nonane fragment; at 2.60-2.64 ppm for methylene group linked to both Tricyclo[4.2.1.02,5]nonane fragment and phenyl group; at 2.99-3.02 and 3.62 ppm for 7-Oxa-bicyclo[4.1.0]heptane-2,5-dione fragment; at 3.84 ppm for methyl group; at 5.47 ppm for hydroxyl group; at 6.66-6.80 ppm for phenyl group. 13C NMR spectra display chemical shifts at 29.70-37.14 and 41.20-51.52 ppm for Tricyclo[4.2.1.02,5]nonane fragment; at 40.62 ppm for methylene group bound to both Tricyclo[4.2.1.02,5]nonane fragment and phenyl group; at 55.86 ppm for methyl group; at 63.50 ppm for 7-Oxa-bicyclo[4.1.0]heptane-2,5-dione fragment; at 113.34-146.60 ppm for phenyl group; at 205.40 ppm for ketone groups. In addition, the mass spectrum from 4 showed a molecular ion (m/z) at 354.14.

3.1.4. (2R,8S)-11-(3-aminophenyl)-5-oxapentacyclo[7.4.1.02,8.04,6.010,13]tetradec-11-ene-3,7-dione (5).

Preparation 5 was carried out from 1, 3-ethynylaniline, and Copper(II) chloride anhydrous. The 1H NMR spectrum from 5 showed several signals at 1.62-3.20 and 3.62-3.66 ppm for Tricyclo[4.2.1.02,5]non-3-ene fragment; at 3.60 ppm for 7-Oxa-bicyclo[4.1.0]heptane-2,5-dione fragment; at 4.00 ppm for the amino group; at 6.00 ppm for alkene group; at 6.56-7.20 ppm for phenyl group. 13C NMR spectra display chemical shifts at 33.40-52.22 ppm for Tricyclo[4.2.1.02,5]non-3-ene fragment; at 63.50 ppm for 7-Oxa-bicyclo[4.1.0]heptane-2,5-dione fragment; at 111.90-128.60 and 139.00-145.60 ppm for phenyl group; at 135.12-146.40 ppm for alkene group; at 205.40 ppm for ketone groups. Besides, the mass spectrum from 5 showed a molecular ion (m/z) at 307.12.

3.1.5. 4-[(2R,8S)-3,7-dioxo-5-oxapentacyclo[7.4.1.02,8.04,6.010,13]tetradec-11-en-11-yl]butanoic acid (6).

Compound 1 reacted with 5-hexynoic acid and Copper(II) chloride anhydrous under mild conditions. The 1H NMR spectrum from 6 showed several signals at 1.70-1.78, 1.96 and 3.00-3.50 ppm for Tricyclo[4.2.1.02,5]non-3-ene fragment; at 1.82 and 2.10-2.14 ppm for methylene groups bound to both Tricyclo[4.2.1.02,5]non-3-ene fragment and carboxyl group; at 3.60 ppm for 7-Oxa-bicyclo[4.1.0]heptane-2,5-dione fragment; at 5.70 ppm for alkene group; at 8.20 ppm for carboxyl group. 13C NMR spectra display chemical shifts at 22.20 and 33.74-36.74 ppm for methylene groups bound to both Tricyclo[4.2.1.02,5]non-3-ene fragment and carboxyl group; at 32.50, 39.20-51.84 and 130.62 ppm for Tricyclo[4.2.1.02,5]non-3-ene fragment; 63.50 ppm for 7-Oxa-bicyclo[4.1.0]heptane-2,5-dione fragment; at 130.62-147.55 ppm for alkene group; at 177.98 ppm for carboxyl group; at 205.40 ppm for ketone groups. In addition, the mass spectrum from 6 showed a molecular ion (m/z) at 302.11.
3.1.6. (2S,8R)-11-[hydroxy(phenyl)methyl]-5-oxapentacyclo[7.4.1.02,8.04,6.010,13]tetrade-cane-3,7-dione (7).

Finally, compound 7 was synthesized via a reaction of 1 with 1-phenyl-2-prpyn-1-ol in the presence of Copper(II) chloride anhydrous. The 1H NMR spectrum from 7 showed several signals at 1.70-3.40 ppm for Tricyclo[4.2.1.02,5]non-3-ene fragment; at 3.50 ppm for hydroxyl group; at 3.60 ppm for 7-Oxa-bicyclo[4.1.0]heptane-2,5-dione fragment; at 5.12 ppm for methylene group linked to hydroxyl group; at 5.80 ppm for alkene group; at 7.30-7.50 ppm for phenyl group. 13C NMR spectra display chemical shifts at 32.80-51.34 ppm for Tricyclo[4.2.1.02,5]non-3-ene fragment; at 63.55 ppm for 7-Oxa-bicyclo[4.1.0]heptane-2,5-dione fragment; at 76.60 ppm for methylene group linked to hydroxyl group; at 127.32-128.46 and 140.14 ppm for phenyl group; at 134.20 and 149.32 ppm for alkene groups; at 205.40 ppm for ketone groups. Besides, the mass spectrum from 7 showed a molecular ion (m/z) at 322.12.

3.2. Physicochemical parameters.

There are theoretical methods that are used to determine several physicochemical parameters of different compounds; in this way, in this investigation, some physicochemical factors involved in the chemical structure of compounds 2 to 7 were evaluated using SwisADME software [22,23]. Table 1 shows different physicochemical parameters involved in each of the compounds studied.

Parameter	Compounds					
	2	3	4	5	6	7
Heavy atoms	21	18	26	23	22	24
Arom. heavy atoms	0	0	6	6	0	6
Fraction Csp3	0.76	0.71	0.62	0.47	0.71	0.50
Rotatable bonds	4	1	3	1	4	2
Hydrogen bond acceptors	4	4	5	3	5	4
Hydrogen bond donors	1	1	1	1	1	1
Molar Refractivity	75.44	62.56	93.33	84.73	76.05	85.50
TPSA (Å2)	66.90	72.69	76.13	72.69	83.97	69.90

3.3. Pharmacophore model.

In this study, a pharmacophore model was designed using a previously reported method [19] to support the possibility that functional groups involved in the chemical structure of the studied compounds could interact with some biomolecule through hydrophobic interactions or as hydrogen bond acceptors or bond hydrogen donors. The results showed that these interactions could condition the biological activity of each compound with some biomolecule (Figure 2).

3.4. Antibacterial activity.

There are reports which indicate that several oxapentacyclo can exert biological activity against some bacterial strain [31,32]; analyzing these data, the antibacterial activity of compounds 2 to 7 against Staphylococcus aureus, Streptococcus pneumoniae, Escherichia coli, and Klebsiella pneumoniae was evaluated using 1,4,4a,8a-tetrahydro-endol,1,4-methanonaphthalene-5,8-dione as control with minimum inhibitory concentration method (MIC). The results showed in Tables 2, and 3 indicate that bacterial growth of either Gram-negative or Gram-positive bacteria only was inhibited by compounds 3 and 5; however, this
effect was higher in the presence of compound 5 compared with 3. All these data suggest that the bacterial activity of compounds 3 and 5 depends on amino groups involved in their chemical structure. This hypothesis is supported by some studies which suggest that group amino involved in the chemical structure of a pregnenolone-vitamin B1 derivative is the responsibility of their antibacterial activity against *Staphylococcus aureus*, *Klebsiella pneumoniae*, and *Escherichia coli* [33]. However, the effect exerted by 5 on this type of bacteria could be due to the amino group being linked to the phenyl group, which could result in a hydrophobic interaction with some biomolecule present in the bacteria.

![Figure 2. Pharmacophore from compounds 2 (C-2), 3 (C-3), 4 (C-4), 5 (C-5), 6 (C-6) and 7 (C-7) using the LigandScout software. Hydrogen bond acceptors (HBA, red), hydrogen bond donor (HBD, green).](https://nanobioletters.com/)

Compound	*Staphylococcus aureus* (mg)	*Streptococcus pneumoniae* (mg)	*Escherichia coli* (mg)	*Klebsiella pneumoniae* (mg)
1 (control)	-	-	-	-
2	-	-	-	-
3	-	-	-	-
4	-	-	-	-
5	0.5	0.5	0.5	0.5
6	-	-	-	-
7	-	-	-	-

Table 2. Antibacterial activity of compounds 1 to 7 against four bacterial strains.
Table 3. Antibacterial activity of compounds 3 and 5 against four bacterial strains.

Compound	*Staphylococcus aureus* (mmol)	*Streptococcus pneumoniae* (mmol)	*Escherichia coli* (mmol)	*Klebsiella pneumoniae* (mmol)
3	4.07×10^{-3}	4.07×10^{-3}	4.07×10^{-3}	4.07×10^{-3}
5	1.62×10^{-3}	1.62×10^{-3}	1.62×10^{-3}	1.62×10^{-3}

3.5. Pharmacokinetic evaluation.

There are several methods to predict some pharmacokinetic factors [28-30]. In this way, some pharmacokinetic parameters for compounds 3 and 5 were determined using SwissADME software [22,23]. The results showed differences in gastrointestinal absorption and metabolism (involving different types of cytochrome P₄₅₀ systems), which could depend on differences in chemical structure (Table 4) of each compound on the chemical structure of compounds 3 and 5 and the degree of lipophilicity (Table 5).

Table 4. The pharmacokinetics properties of compounds 3 and 5. The values were determined using the SwissADME software.

Parameter	Compound 3	Compound 5
GI absorption	High	High
BBB permanent	No	Yes
P-gp substrate	Yes	Yes
CYP1A2 inhibitor	No	No
CYP2C19 inhibitor	No	No
CYP2C9 inhibitor	No	No
CYP2D6 inhibitor	No	Yes
CYP3A4 inhibitor	No	No

Table 5. Values of lipophilicity degree for compounds 3 and 5 using SwissADME software.

Parameter	Compound 3	Compound 5
iLOGP	1.62	2.06
XLOGP3	-0.93	1.16
WLOGP	-0.08	1.71
MLOGP	0.55	1.78
SILICOS-IT	0.92	2.12
Consensus Log Po/w	0.42	1.77

4. Conclusions

This investigation reports an easy way to synthesize six oxapentacyclo derivatives (compounds 2 to 7) using some chemical strategies. Besides, compounds 3 and 5 showed that they can exert antibacterial activity against *Staphylococcus aureus*, *Streptococcus pneumoniae*, *Escherichia coli*, and *Klebsiella pneumoniae* which suggest that these compounds could be considered as a good antibacterial agent against infectious diseases produced by these organisms.

Funding

This research received no external funding.

Acknowledgments

To Benjamin Valverde and Raquel Anzurez, for your unconditional support of this manuscript.
Conflicts of Interest

We declare that this manuscript does not have any conflict of financial interests (political, personal, religious, ideological, academic, intellectual, commercial, or otherwise) for its publication.

References

1. Wang, Q.; Duan, Y.; Wang, S.; Wang, L.; Hou, Z.; Cui, Y.; Luo, Y. Occurrence and distribution of clinical and veterinary antibiotics in the faeces of a Chinese population. Journal of Hazardous Materials 2020, 383, https://doi.org/10.1016/j.jhazmat.2019.121129.
2. Butler, M.; Paterson, D. Antibiotics in the clinical pipeline in October 2019. The Journal of antibiotics 2020, 73, 329-364.
3. Buetti, N.; Mazzuchelli, T.; Priore, E.; Balmelli, C.; Llamas, M.; Pallanza, M.; Bernasconi, E. Early administered antibiotics do not impact mortality in critically ill patients with COVID-19. Journal of Infection 2020, 81, e148-e149, https://doi.org/10.1016/j.jinf.2020.06.004
4. Cong, Y.; Yang, S.; Rao, X. Vancomycin resistant Staphylococcus aureus infections: A review of case updating and clinical features. Journal of Advanced Research 2020, 21, 169-176, https://doi.org/10.1016/j.jare.2019.10.005.
5. Guo, Y.; Song, G.; Sun, M.; Wang, J.; Wang, Y. Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus. Frontiers in Cellular and Infection Microbiology 2020, 10, 1-11, https://doi.org/10.3389/fcimb.2020.00107.
6. Rybak, M.; Le, J.; Lodise, T.; Levine, D.; Bradley, J.; Liu, C.; Lomaestro, B. Therapeutic monitoring of vancomycin for serious methicillin-resistant Staphylococcus aureus infections: a revised consensus guideline and review by the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists. Clinical Infectious Diseases 2020, 71, 1361-1364, https://doi.org/10.1093/cid/ciaa036.
7. Nji, E.; Kazibwe, J.; Hambridge, T.; Joko, C.; Larbi, A.; Damptey, L.; Lundborg, C. High prevalence of antibiotic resistance in commensal Escherichia coli from healthy human sources in community settings. Scientific Reports 2021, 11, 1-11, https://doi.org/10.1038/s41598-021-82693-4.
8. Nasser, M.; Palwe, S.; Bhargava, R.; Feuilloley, M.; Kharat, A. Retrospective Analysis on Antimicrobial Resistance Trends and Prevalence of β-lactamases in Escherichia coli and ESKAPE Pathogens Isolated from Arabian Patients during 2000-2020. Microorganisms 2020, 8, https://doi.org/10.3390/microorganisms8101626.
9. Han, T.; Zhang, Q.; Liu, N.; Wang, J.; Li, Y.; Huang, X.; Qi, K. Changes in antibiotic resistance of Escherichia coli during the broiler feeding cycle. Poultry Science 2020, 99, 6983-6989, https://doi.org/10.1016/j.ps.2020.06.068.
10. Ernst, C.; Braxton, J.; Rodriguez-Orsorio, C.; Zagieboylo, A.; Li, L.; Pironti, A.; Hung, D. Adaptive evolution of virulence and persistence in carbapenem-resistant Klebsiella pneumoniae. Nature Medicine 2020, 26, 705-711, https://doi.org/10.1038/s41591-020-0825-4.
11. Peirano, G.; Chen, L.; Kreiswirth, B.; Pitout, J. Emerging antimicrobial-resistant high-risk Klebsiella pneumoniae clones ST307 and ST147. Antimicrobial Agents and Chemotherapy 2020, 64, e01148-20, https://doi.org/10.1128/AAC.01148-20.
12. Kyaw, M.; Lynfield, R.; Schaffner, W.; Craig, A.; Hadler, J.; Reingold, A.; Whitney, C. Effect of introduction of the pneumococcal conjugate vaccine on drug-resistant Streptococcus pneumoniae. New England Journal of Medicine 2006, 354, 1455-1463, https://doi.org/10.1056/NEJMoa051642.
13. Friedland, I.; McCracken J. Management of infections caused by antibiotic-resistant Streptococcus pneumoniae. New England Journal of Medicine 1994, 331, 377-382, https://doi.org/10.1056/NEJM199408113310607.
14. Khan, S.; Asiri, A.; Al-Ghamdi, N.; Asad, M.; Zayed, M.; Elroy, S.; Sharma, K. Microwave assisted synthesis of chalcone and its polycyclic heterocyclic analogues as promising antibacterial agents: In vitro, in silico and DFT studies. Journal of Molecular Structure 2019, 1190, 77-85, https://doi.org/10.1016/J.MOLSTRUC.2019.04.046.
15. Nenkep, V.; Yun, K.; Son, B. Oxysporizoline, an antibacterial polycyclic quinazoline alkaloid from the marine-mudflat-derived fungus Fusarium oxysporum. The Journal of Antibiotics 2016, 69, 709-711, https://doi.org/10.1038/doi.2015.137.
16. Hopkins, M.; Ozmer, G.; Witt, R.; Brandenburg, Z.; Rogers, D.; Keating, C.; Lamar, A. Phl (OAc) 2 and iodine-mediated synthesis of N-alkyl sulfonamides derived from polycyclic aromatic hydrocarbon scaffolds and determination of their antibacterial and cytotoxic activities. Organic and Biomolecular Chemistry 2021, 19, 1133-1144, https://doi.org/10.1039/d0ob02429e.
17. Ge, Y.; Difuntorum, S.; Touami, S.; Critchley, I.; Bürli, R.; Jiang, V.; Moser, H. In vitro antimicrobial activity of GSQ1530, a new heteroaromatic polycyclic compound. *Antimicrobial Agents and Chemotherapy* **2002**, *46*, 3168-3174, https://doi.org/10.1128/aac.46.10.3168-3174.2002.

18. Jiang, D.; Xin, K.; Yang, B.; Chen, Y.; Zhang, Q.; He, H.; Gao, S. Total synthesis of three families of natural antibiotics: Anthrabenzoxocines, fasamycins/naphthacemycins, and benastatins. *CCS Chemistry* **2020**, *2*, 800-812, http://doi.org/10.31635/ccschem.020.202000151.

19. Schaller, D.; Šribar, D.; Noonan, T.; Deng, L.; Nguyen, T.; Pach, S.; Wolber, G. Next generation 3D pharmacophore modeling. *Wiley Interdisciplinary Reviews: Computational Molecular Science* **2020**, *10*, https://doi.org/10.1002/wcms.1468.

20. Mascarenhas, A.; De-Almeida, R.; De-Araujo N.; Mendes, G.; Da-Cruz, J.; Dos-Santos, C.; Leite, F. Pharmacophore-based virtual screening and molecular docking to identify promising dual inhibitors of human acetylcholinesterase and butryrylcholinesterase. *Journal of Biomolecular Structure and Dynamics* **2021**, *39*, 6021-6030, https://doi.org/10.1080/07391102.2020.1796791.

21. Lenin, H.; Figueroa-valverde, L.; Elodia, G.; López-Ramos, M.; Díaz-Cedillo, F.; Pool-Gómez, E.; Regina, C. Antibacterial activity exerted by some diazabicyclo-steroid derivatives against Staphylococcus aureus and Streptococcus pneumoniae. *Oriental Journal of Chemistry* **2017**, *33*, 2647-2667, http://dx.doi.org/10.13005/ojc/330564.

22. Sicak, Y. Design and antiproliferative and antioxidant activities of furan-based thiosemicarbazides and 1, 2, 4-triazoles: their structure-activity relationship and SwissADME predictions. *Medicinal Chemistry Research* **2021**, 1-12, https://rs.21203.rs.3-392722/v1.

23. Riyadi, V.; Sari, I.; Kurniasih, R.; Agustini, T.; Swastawati, F.; Herawati, V.; Tanod, W. SwissADME predictions of pharmacokinetics and drug-likeness properties of small molecules present in Spirulina platensis. In: *IOP Conference Series: Earth and Environmental Science* **2021**, *920*, 012021.

24. Wu, P.; Tu, B.; Liang, J.; Guo, S.; Cao, N.; Chen, S.; Hong, W. Synthesis and biological evaluation of pentacyclic triterpenoid derivatives as potential novel antibacterial agents. *Bioorganic Chemistry* **2021**, *109*, https://doi.org/10.1016/j.bioorg.2021.104692.

25. Spivak, A.; Nedopekina, D.; Gubaidullin, R.; Davletshin, E.; Tukhbatullin, A.; D’yakonov, V.; Dzhemilev, U. Pentacyclic triterpene acid conjugated with mitochondria-targeting cation F16: Synthesis and evaluation of cytotoxic activities. *Medicinal Chemistry Research* **2021**, *30*, 940-951, https://doi.org/10.1007/s00044-021-02702-z.

26. Matsumura, M.; Matsuhashi, Y.; Kawakubo, M.; Hyodo, T.; Murata, Y.; Kawahata, M.; Yasuike, S. Synthesis, Structural Characterization, and Optical Properties of Benzene-Fused Tetracyclic and Pentacyclic Siboles. *Molecules* **2021**, *26*, https://doi.org/10.3390/molecules26010222.

27. Zwawiak, J.; Pawelczyk, A.; Olender, D.; Zaprutko, L. Structure and Activity of Pentacyclic Triterpenes Codrugs. A Review. *Mini Reviews in Medicinal Chemistry* **2021**, *21*, 1509-1526, https://doi.org/10.2174/1389557521666210105110848.

28. Lavielle, M.; Mentré, F. Estimation of population pharmacokinetic parameters of saquinavir in HIV patients with the MONOLIX software. *Journal of Pharmacokinetics and Pharmacodynamics* **2007**, *34*, 229-249, https://doi.org/10.1007/s10327-006-9043-3.

29. Bolon, M.; Bastien, O.; Flamens, C.; Paulus, S.; Salord, F.; Bouliue, R. Evaluation of the estimation of midazolam concentrations and pharmacokinetic parameters in intensive care patients using a bayesian pharmacokinetic software (PKS) according to sparse sampling approach. *Journal of Pharmacy and Pharmacology* **2003**, *55*, 765-771, https://doi.org/10.1211/002235703765951366.

30. Proost, J.; Meijer, D. MW/Pharm, an integrated software package for drug dosage regimen calculation and therapeutic drug monitoring. *Computers in Biology and Medicine* **1992**, *22*, 155-163, https://doi.org/10.1016/0010-4825(92)90011-B.

31. Nair, A.; Vijayan, K. Antibacterial assay guided isolation of a novel hydroxy-substituted pentacyclo ketonic compound from Pseudomonas aeruginosa MTBDCMFR1Ps04. *Brazilian Journal of Microbiology* **2021**, *52*, 335-347, https://doi.org/10.1007/s42770-020-00404-z.

32. Gao, W.; Chai, C.; He, Y.; Li, F.; Hao, X.; Cao, F.; Zhang, Y. Periconiastone A, an antibacterial ergosterol with a pentacyclo [8.7.0.10, 5.02, 14.010, 15] heptadecane system from Periconia sp. TJ403-re01. *Organic Letters* **2019**, *21*, 8469-8472, https://doi.org/10.1021/acs.orglett.9b03270.

33. Figueroa Valverde, L.; Díaz Cedillo, F.; Ceballos Reyes, G.; López Ramos, M. Synthesis and antibacterial activity of pregnenolone-vitamin B1 conjugate. *Journal of the Mexican Chemical Society* **2008**, *52*, 130-135.