Novel Urinary Glycan Biomarkers Predict Cardiovascular Events in Patients with Type 2 Diabetes: A Multicenter Prospective Study with 5-year Follow up (U-CARE Study 2)

Koki Mise
Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences Department of Pharmaceutical Technology Department of Pharmacy: Okayama Daigaku Yakugakubu Daigakuin Ishiyakugaku Sogo Kenkyuka Yakugakuei

Mariko Imamura
Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences Department of Pharmaceutical Technology Department of Pharmacy: Okayama Daigaku Yakugakubu Daigakuin Ishiyakugaku Sogo Kenkyuka Yakugakuei

Satoshi Yamaguchi
Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences Department of Pharmaceutical Technology Department of Pharmacy: Okayama Daigaku Yakugakubu Daigakuin Ishiyakugaku Sogo Kenkyuka Yakugakuei

Mayu Watanabe
Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences Department of Pharmaceutical Technology Department of Pharmacy: Okayama Daigaku Yakugakubu Daigakuin Ishiyakugaku Sogo Kenkyuka Yakugakuei

Chigusa Higuchi
Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences Department of Pharmaceutical Technology Department of Pharmacy: Okayama Daigaku Yakugakubu Daigakuin Ishiyakugaku Sogo Kenkyuka Yakugakuei

Akihiro Katayama
Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences Department of Pharmaceutical Technology Department of Pharmacy: Okayama Daigaku Yakugakubu Daigakuin Ishiyakugaku Sogo Kenkyuka Yakugakuei

Satoshi Miyamoto
Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences Department of Pharmaceutical Technology Department of Pharmacy: Okayama Daigaku Yakugakubu Daigakuin Ishiyakugaku Sogo Kenkyuka Yakugakuei

Haruhito A. Uchida
Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences Department of Pharmaceutical Technology Department of Pharmacy: Okayama Daigaku Yakugakubu Daigakuin Ishiyakugaku Sogo Kenkyuka Yakugakuei
Atsuko Nakatsuka
Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences Department of Pharmaceutical Technology Department of Pharmacy: Okayama Daigaku Yakugakubu Daigakuin
Ishiyakugaku Sogo Kenkyuka Yakugakuai

Jun Eguchi
Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences Department of Pharmaceutical Technology Department of Pharmacy: Okayama Daigaku Yakugakubu Daigakuin
Ishiyakugaku Sogo Kenkyuka Yakugakuai

Kazuyuki Hida
National Hospital Organization Okayama Medical Center

Tatsuaki Nakato
Okayama Saiseikai General Hospital: Okayama Saiseikai Byoin

Atsuhiito Tone
Okayama Saiseikai General Hospital: Okayama Saiseikai Byoin

Sanae Teshigawara
Okayama Saiseikai General Hospital: Okayama Saiseikai Byoin

Takashi Matsuoka
Kurashiki Central Hospital: Kurashiki Chuo Byoin

Shinji Kamei
Kurashiki Central Hospital: Kurashiki Chuo Byoin

Kazutoshi Murakami
Kurashiki Central Hospital: Kurashiki Chuo Byoin

Ikki Shimizu
Sakakibara Heart Institute of Okayama: Shinzobyo Center Sakakibara Byoin

Katsuhiro Miyashita
Okayama Sekijuji Byoin

Shinichiro Ando
Okayama City General Hospital

Tomokazu Nunoue
Nunoue Clinic

Michihiro Yoshida
Okayama University Hospital: Okayama Daigaku Byoin

Masao Yamada
GlycoTechnica

Kenichi Shikata
Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences Department of Pharmaceutical Technology Department of Pharmacy: Okayama Daigaku Yakugakubu Daigakuin
Ishiyakugaku Sogo Kenkyuka Yakugakuai

Jun Wada (junwada@md.okayama-u.ac.jp)
Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences: Okayama Daigaku Daigakuin Ishiyakugaku Sogo Kenkyuka Igakubu

https://orcid.org/0000-0003-1468-5170
Keywords: cardiovascular event, diabetes, glycan, lectins, lectin microarray, N-glycans, prognosis, urinary biomarkers

DOI: https://doi.org/10.21203/rs.3.rs-189297/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background

Although various biomarkers predict cardiovascular event (CVE) in patients with diabetes, the relationship of urinary glycan profile with CVE in patients with diabetes remains unclear.

Methods

Among 680 patients with type 2 diabetes, we examined the baseline urinary glycan signals binding to 45 lectins with different specificities. Primary outcome was defined as cardiovascular event including cardiovascular disease, stroke, and peripheral arterial disease.

Results

During approximately 5-year follow-up period, 62 patients reached the endpoint. Cox proportional hazards analysis revealed that urinary glycan signals binding to two lectins were significantly associated with the outcome after adjustment for known indicators of CVE and for false discovery rate, as well as increased model fitness. Hazard ratios for these lectins (+1 SD for the glycan index) were: UDA (recognizing glycan: mixture of Man5 to Man9): 1.78 (95% CI: 1.24–2.55, \(P = 0.002 \)) and Calsepa (High-Man [Man2-6]): 1.56 (1.19–2.04, \(P = 0.001 \)). Common glycan binding to these lectins was high-mannose type of N-glycans. Moreover, adding glycan index for UDA to a model including known factors of CVE improved the outcome prediction (Difference of Harrel’s C-index: 0.028 [95% CI: 0.001–0.055, \(P = 0.044 \)], net reclassification improvement at 5-year risk increased by 0.368 [0.045–0.692, \(P = 0.026 \)], and the Akaike information criterion and Bayesian information criterion decreased from 725.7 to 716.5, and 761.8 to 757.2, respectively).

Conclusions

The urinary excretion of high-mannose glycan may be a valuable marker for predicting CVE in patients with type 2 diabetes, which provide the rationale to explore the mechanism underlying abnormal N-glycosylation in CVE of patients with diabetes.

Trial registration

This study was registered with the University Hospital Medical Information Network in June 26th 2012 (Clinical trial number: UMIN000011525, URL: https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000013482).

Background

Cardiovascular disease (CVD) including ischemic heart disease and stroke is a global burden especially in low and middle-income countries and the leading cause of disability and mortality [1]. The understanding of CVD risk factors is quite important to establish the cardiovascular risk prediction models. The age, gender, body mass index (BMI), systolic blood pressure (SBP), diabetes mellitus, smoking, total cholesterol levels, and past cardiovascular events are established and traditional risk factors in middle-aged and older individuals [2].
Chronic kidney disease (CKD) is an emerging global heath burden with prevalence of ~15% of adult populations and is independently associated with increased cardiovascular event (CVE) besides the traditional risk factors [3, 4]. The addition of albuminuric and estimated glomerular filtration rate (eGFR) to traditional risk factors is significantly associated with cardiovascular event (CVE) in meta-analysis of general population cohort [5, 6]. In type 2 diabetes, the prediction for the CVE is potentially improved by a novel biomarker involved in the biological process not explained by the traditional risk factors [7]. The improvement of risk prediction is statistically evaluated by discrimination ability and reclassification. The area under the receiver operating characteristic (AUROC) or c-index is a measurement for discrimination capacity of classification model, while the net reclassification improvement (NRI) is a commonly used measure for the prediction increment by the addition of new biomarkers. In the Second Manifestations of ARTertial disease (SMART) & the European Prospective Investigation into Cancer and Nutrition-NL (EPIC-NL) [8], Action in Diabetes and Vascular Disease: Preterax and DIamicon Modified Release Controlled Evaluation (ADVANCE) study [9], and the Outcome Reduction With Initial Glargine Intervention (ORIGIN) trial [10], the 23, 16, and 284 serum or plasma biomarkers were evaluated whether these biomarkers independently improve the AUROC and NRI, respectively. The 3 biomarkers in SMART/EPIC-NL, 6 in ADVANCE, and 10 in ORIGIN were identified in the prediction of CVD composite outcomes. N-terminal pro-B-type natriuretic peptide (NT-proBNP) was only common biomarker in 2 studies for the prediction of composite CVE. In addition to candidate approach for the identification of biomarkers, non-biased screening using metabolomic approach was also attempted such as amino acids [11] and lipid profiles [12].

The vigorous attempts were made for the identification of circulating biomarkers and some of the urinary biomarkers were independently associated with CVE in patients with type 2 diabetes, however they have failed to achieve significant incremental ability based on c-statistic and NRI [13–15]. Urine albumin creatinine ratio (UACR) and eGFR are now regarded as the classical risk factors for CVE in type 2 diabetes, the concept of “cardiorenal syndrome” suggests the identification of urinary biomarkers is promising approach. In the Urinary biomarker for Continuous And Rapid progression of diabetic nephropathy (U-CARE) study, we performed urinary lectin microarray, measured urinary glycan signals binding to 45 lectins, and evaluated the potential for the prediction of 30% decline of eGFR or end-stage renal disease (ESRD) in the patients with type 2 diabetes [16]. We found that the urinary glycan binding signals to *Sambucus nigra* (SNA), *Ricinus communis* (RCA120), *Dolichos biflorus* (DBA), *Agaricus bisporus* (ABA), *Artocarpus integrifolia* (Jacalin), and *Amaranthus caudatus* (ACA) improved the prediction of renal outcome in the models employing the known risk factors [16]. The U-CARE study suggested that the global alterations of glycosylation of urinary protein are valuable disease progression markers and may be linked to disease mechanisms in diabetic kidney disease (DKD). Here, we investigated the impact of urinary lectin microarray on the prediction of the composite CVE by adding the glycan binding signals in the multivariate model containing the established risk factors of CVE.

Methods

Study design and participants

This is a second report of U-CARE Study, a prospective cohort study which started in 2012. Precise study design was described previously [16]. In the current study, among 688 patients with type 2 diabetes admitted to multi-institutions in Japan, 680 patients were enrolled. Exclusion criterion was a diagnosis of slowly
progressive type 1 diabetes during follow-up. The diagnosis of diabetes was based on Japanese Diabetes Society criteria. This study was registered with the University Hospital Medical Information Network in June 2012 (UMIN000011525). Written informed consent was obtained from all participants.

Laboratory parameters and definitions

Urinary glycans were measured by the evanescent-field fluorescence-assisted lectin microarray [17]. In brief, we measured urinary levels of Cy3-labeled glycoproteins binding to 45 lectins coated on microplates. In previous study, we demonstrated that net glycan intensity [Net-I; raw glycan intensity (Raw-I) – background intensity] more accurately predicted the 24-hour urinary glycan in comparison with Net-I or Raw-I/urinary creatinine ratios [16]. Based on the evidence, we analyzed glycan indexes defined by Net-I and logarithmically transformed Net-I when they did not follow normal distribution.

In this study, CVD was defined as events requiring admission for treatment, excluding the events with arrhythmia, dilated cardiomyopathy, and valvular heart disease to focus attention on the atherosclerotic cardiovascular diseases. Stroke was defined as cerebral bleeding and infarction requiring admission for treatment, while peripheral arterial disease (PAD) as an event requiring admission for intervention or surgery. CVE were defined as any CVD, stroke, or PAD events. BMI was calculated as weight divided by the square of height (kg/m²). Hypertension was defined as a baseline blood pressure $\geq 140/90$ mmHg or use of antihypertensive drugs. GFR was estimated by the Japanese coefficient–modified Chronic Kidney Disease Epidemiology Collaboration equation. The baseline UACR (mg/gCr) was measured in a spot urine specimen, and normoalbuminuria, microalbuminuria, and macroalbuminuria were defined as $\text{UACR}<30$ mg/gCr, $30\leq\text{UACR}<300$ mg/gCr, and 300 mg/gCr $\leq\text{UACR}$, respectively. Hemoglobin A1c (HbA1c) data are presented as National Glycohemoglobin Standardization Program values according to the recommendations of the Japanese Diabetes Society and the International Federation of Clinical Chemistry. The grade of diabetic retinopathy was determined by an ophthalmologist at baseline. The average annual values of clinical parameters including HbA1c, SBP, and diastolic blood pressure (DBP) were obtained. The administration of statin, angiotensin-converting enzyme (ACE) inhibitor or angiotensin II type I receptor blocker (ARB), glucagon-like peptide-1 receptor agonists (GLP1), and sodium glucose transporter 2 (SGLT2) inhibitor during follow-up were also recorded. These data and previous CVE were compared between patients with and without outcome.

Study Endpoint

The primary endpoint was defined as incidence of CVE, and follow-up period was defined as the period from the initiation of observation to the earliest event of CVE, death, or last observation of clinical variables.

Statistical Analysis

Data were presented as percentages or the mean ± standard deviation [SD], as appropriate. All skewed variables were subjected to natural logarithmic transformation to improve normality before analysis. Correlations among glycan indexes were evaluated by Pearson correlation analysis. The cumulative incidence rate of the primary outcome was estimated by Kaplan-Meier curves for urinary glycan quartiles in all patients, and incidence rates were compared with the log-rank test, including trend test among quartile groups. The Cox proportional hazards model was used to calculate the hazard ratio (HR) and 95% confidence interval (CI) for
the event-censored endpoint. HR and 95% CI for the 1 SD increase of glycan index were individually calculated in each model. In the multivariate model, HRs were adjusted for age, gender, BMI, SBP, low-density lipoprotein (LDL) cholesterol, HbA1c, eGFR, and previous CVE at baseline. These covariates were selected as potential confounders on the basis of biological plausibility and previous reports [15, 18]. False discovery rates (FDRs) for 45 glycan indexes were calculated by Benjamini-Hochberg procedure in these Cox regression analyses to control the expected proportion of false rejections [19]. The level of FDR was defined as 0.05. Time-dependent area under curve (AUC) in multivariate Cox regression analysis was obtained by integration of AUC in every 0.2 year from 0.5 year-observation calculated by 500 bootstrap sampling [20]. We also compared Harrell’s concordance index (c-index) between multivariate Cox proportional hazards models with or without glycan biomarkers. In addition, Akaike information criterion (AIC) and Bayesian information criterion (BIC) in the multivariate Cox regression models were calculated to compare the model fitness. Furthermore, improvement in discriminating the 5-year risk of the study outcome was assessed by analyses of AUROC, category-free NRI, and absolute integrated discrimination improvement (IDI), as reported elsewhere [21, 22]. The 95% CIs for the differences of the Harrell’s c-index and AUROC, category-free NRI, and IDI were computed from 5000 bootstrap samples to adjust for optimism bias. Two-tailed P values <0.05 were considered as statistically significant. Analyses and creation of graphs were performed with Stata SE software (version 14.0, StataCorp LP) and Origin (version 2018, OriginLab).

Results

Observation period and outcome incidence

The median follow-up period was 4.8 years (interquartile range [IQR]: 3.6-5.1 years). During follow-up, the primary endpoint (CVE) occurred in 62 patients (9%) and 21 patients (3%) died. CVE were the cause for 2 patient deaths. Detailed information of CVE and other causes of death were shown in Supplementary Table 1 and 2.

Clinical characteristics

The clinical characteristics of all participants at baseline are displayed in Table 1. Their age was 63 ± 11 years (mean ±SD), 61% of the patients were men, and 24% of them had previous CVE. The median duration of diabetes was 11.1 years (IQR: 6.2-17.7), and baseline HbA1c was 7.1 ± 1.1 % (54.3 ± 12.0 mmol/mol). Under 56% of statin use, the baseline LDL and non-high density lipoprotein (non-HDL) cholesterol levels were 100.1 ± 25.3 mg/dl and 126.5 ± 30.6 mg/dl, respectively. Similarly, 62% of the patients received antihypertensive agents, average blood pressures were SBP (131.0 ± 17.0 mmHg) and DBP (74.7 ± 10.9 mmHg). The mean baseline eGFR was 71.0 ± 17.7 ml/min/1.73m² and median UACR was 17.7 mg/gCr (IQR: 7.8-74.1). The average annual HbA1c, SBP, and DBP levels, and percentage of the use of ACE inhibitor or ARB and GLP-1 receptor agonist during follow-up were not significantly different between the patients with and without outcome. However, statin use during observation was significantly higher and the use of SGLT2 inhibitor was significantly lower in patients with outcome compared to those without outcome (Supplementary Table 3).

Relation between primary endpoint and glycan binding to the lectin panel
Unadjusted and adjusted HRs for glycan binding to the panel of 45 lectins with different specificities and the reported structure of the glycan binding to each lectin are shown in Figure 1 and Supplementary Table 4. The urinary glycan binding signals to 13 lectins (Pisum sativum (PSA), Lens culinaris (LCA), Aleuria aurantia (AAL), SNA, Tanthes japonica (TJAI), RCA120, Narcissus pseudonarcissus (NPA), Canavalia ensiformis (ConA), Galanthus nivalis (GNA), Hippeastrum hybrid (HHL), Tulipa gesneriana (TxLCI), Urtica dioica (UDA), and Calystegia sepium (Calsepa)) were significantly associated with the outcome in either of the univariate and multivariate models. Among them, both glycan binding signals to UDA and Calsepa were selected based on the FDR less than 0.05 in the multivariate models. We fitted a series of multivariate Cox regression models which include (i) only covariates, (ii) covariates + UACR, (iii) covariates + glycan signals (binding to UDA or Capsela), (iv) covariates + UACR + glycan signal (Table 2). Then, the improvement of model fitness was evaluated based on the reduction of both AIC and BIC criteria. These criteria were minimized at the model (iii) for both of UDA and Capsela, which were considered the best fitting model, that is, the two glycans were more substantially improved the model fitness, and the addition of UACR did not exhibit improvement of model fitting. Glycan signals for UDA and Calsepa were not incorporated into the model at the same time to avoid the multicollinearity because of the high correlation each other ($r=0.87$).

The relationships between the glycan indexes and outcome remained largely unchanged when treatment of statin, ACE inhibitor or ARB, and SGLT2 inhibitor during follow-up period, and average annual HbA1c, average annual SBP, and baseline non-HDL cholesterol were incorporated into the multivariate model (Supplementary Table 5). As shown in Supplementary Table 4, UDA and Calsepa are known to bind to mixture of Man5 to Man9 and to High-Man (Man2-6), respectively. The common recognized glycans are classified into intermediate and immature products of N-glycan synthesis [23].

Time-dependent AUC and Harrel’s c-index in Cox regression model with or without urinary glycans

Time-dependent AUCs and Harrel’s c-indexes in multivariate Cox regression model with or without glycan binding signals to UDA and Calsepa were displayed in Figure 2A and B. Overall, AUCs during observation were higher in models with those glycan indexes than in model without them, while the Harrel’s c-index was significantly higher only in model containing glycan binding signal to UDA than in model without the glycans (Harrel’s c-index for model without UDA: 0.766 [95% CI: 0.705-0.828], Harrel’s c-index for model with UDA: 0.794 [0.739-0.850], and difference in Harrel’s c-index: 0.028 [0.001-0.055, P=0.044]).

Cumulative incidence rate of the primary outcome in urinary glycan quartiles

Kaplan-Meier curves stratified according to quartiles for baseline urinary glycan binding to UDA and Calsepa are shown in Figure 3. The cumulative incidence rate of the outcome was significantly higher in the higher quartile for urinary glycan binding to UDA and Calsepa than in the lower quartiles (P for trend: <0.001 for UDA [Figure 3A], and <0.0001 for Calsepa [Figure 3B]).

5-year risk classification ability of urinary glycan binding to UDA and Calsepa

The difference of AUROC between logistic regression models with or without urinary markers, category-free NRI, absolute IDI for predicting the primary outcome at 5-year follow-up time obtained by adding UACR and the glycan indexes for UDA and Calsepa are summarized in Table 3. Adding either of glycan indexes to the
multivariate model significantly improved the ability of discrimination and reclassification such as AUROC and NRI (Difference in AUROC: 0.031 [95% CI: 0.001-0.062, \(P=0.045\]) for UDA, 0.027 [0.001-0.053, \(P=0.040\]) for Calsepa; Category-free NRI: 0.368 [0.045-0.692, \(P=0.026\]) for UDA, 0.388 [0.099-0.677, \(P=0.008\]) for Calsepa), whereas either of the two glycan indexes did not significantly improve integrated discrimination (IDI: 0.024 [-0.009-0.056, \(P=0.16\]) for UDA, 0.021 [-0.010-0.053, \(P=0.18\]) for Calsepa). On the other hand, adding UACR did not show any significance on the incremental prediction (Difference in AUROC: 0.017 [-0.002-0.035, \(P=0.083\], Category-free NRI: 0.269 [-0.027-0.564, \(P=0.075\], IDI: 0.005 [-0.014-0.024, \(P=0.59\]).

Discussion

The urine glycan binding signals to UDA (Mixture of Man5 to Man9) and Calsepa [High-Man (Man2-6)] improved model fitness scores for discrimination ability (Harrel's C-index and AUROC), reclassification (NRI), and log-likelihood/complexity (AIC and BIC) when they were incorporated into the multivariate Cox and logistic regression model employing traditional risk factors. The strength of the current study was that the two urinary glycan signals were the novel urinary markers which could provide the new mechanism of CVE in diabetes. They demonstrated the incremental predictive power with statistical significance, and they might be better markers than UACR. In previous studies of patients with type 2 diabetes, several urinary markers such as urinary kidney injury molecule 1, urinary neutrophil gelatinase associated lipocalin, urinary liver-type fatty acid binding protein, and urinary COOH-terminal propeptide of collagen VI, have been investigated for predicting CVE [13, 15, 24]. However, none of them showed the statistical significance of model discrimination or reclassification in the multivariate model including known risk factors. Although it has been shown that UACR is associated with CVE independent of established confounders, its incremental predictive ability is limited [18]. In our study, UACR had a marginal impact on the outcome in the multivariate Cox regression analysis (HR for logUACR: 1.32 [95% CI: 0.99-1.75], \(P=0.058\), Table 2), while it failed to demonstrate the significant values of AUROC, NRI, and IDI (Table 3) in the multivariate models, which was compatible to the previous results [18]. In contrast to UACR, glycan indexes for UDA and Calsepa showed statistical significance of the incremental prediction as mentioned the above. In addition, model fitness scores, \textit{i.e.} AIC and BIC, of them were clearly better than that of UACR. Therefore, these novel glycan indexes might be superior to UACR for predicting CVE in patients with type 2 diabetes.

Interestingly, UDA and Calsepa recognize the high mannose glycan structures (Supplementary Fig. 1). In endoplasmic reticulum (ER), Glc3Man9GlcNAc2 is transferred to NXT/NXS sites of protein, Glc residues removed by glucosidases, and Man9GlcNAc2 converted to Man8GlcNAc2 by ER a-mannosidase I (MAN1B1). The glycoproteins are then transferred to \textit{cis}-Golgi, the additional Man residues are removed until Man5GlcNAc2 is generated. Man5GlcNAc2 is a key intermediate for the pathway to hybrid and complex \textit{N}-glycans in \textit{trans}-Golgi and \textit{trans}-Golgi network by the removal of mannose residues by Golgi mannosidases, while some of Man5GlcNAc2 also escapes further modification and mature membrane or secreted glycoprotein carry Man5-9GlcNAc2, \textit{i.e.} high mannose structures (Supplementary Fig. 1A) [23]. In the glycan analysis by urine lectin microarray, the elevation of high mannose and complex type of \textit{N}-glycans in urine glycoproteins tightly linked to the development of composite CVE.

The high throughput plasma or serum \textit{N}-glycan profiling studies using hydrophilic interaction liquid chromatography (HILIC) of peptide-\textit{N}-glycosidase F digested and fluorescently labelled \textit{N}-glycans was
reported and 46 N-glycan peaks (GP1-GP46) were demonstrated [25-29]. In the patients with normo- and hyperglycemia during acute inflammation, the comparison of N-glycan profile demonstrated that increased branched, galactosylated, and sialylated tri- and tetraantennary N-glycans are associated with development of type 2 diabetes [25]. In Ghanaian population, branched, trigalactosylated, antennary fucosylated, and triantennary N-glycans (Supplementary Fig. 1B) were increased in the patients with type 2 diabetes [26]. A lower relative abundance of simple biantennary N-glycans and a higher abundance of branched, galactosylated and sialylated complex N-glycans were increased both in type 1 [28] and type 2 [27] diabetes, and similar trends with increased levels of complex N-glycans (GP12, GP16 and GP22) were seen for higher UACR and greater annual loss of eGFR [26, 28]. Recently, in the prospective European Prospective Investigation of Cancer (EPIC)-Potsdam cohort (n = 27,548), the increased levels of complex N-glycans, GP5 in women and GP16, GP23, and GP29 in men, improved the accuracy of risk prediction score for CVD [29].

Independent of serum or plasma N-glycan profiling, our efforts to identify the biomarkers to improve the prediction of DKD and CVD outcomes have been directed to the clinical studies using urinary glycan profiling by lectin microarray in the patients with type 2 diabetes [16, 30]. Previously, we found that urinary glycan profiling by lectin microarray demonstrated the considerable changes in glycan binding signals during the progression of DKD in urine samples rather than serum samples [16, 30]. The changes in glycan profile in urine samples may reflect the glycosylation changes of glycoproteins produced in kidney tissues or the changes in selective permeabilities of blood-derived glycoproteins through glomerular capillaries. In addition, the lectins are long-standing experimental tools to identify the glycan structures, which enable lectin microarray to detect the broad range of glycans compared with HILIC or other methods using mass analysis. For instance, the capture of O-glycans and neutral N-glycans such as high-mannose type and hybrid type N-glycans (Supplementary Fig. 1C) are extremely difficult in HILIC [31]. Furthermore, only 20 ml of urine samples is required and the single step of Cy3 labeling without enzymatic treatments achieve the less-time consuming and high throughput analyses. By taking these advantages of urine lectin microarray, we successfully identified that the glycan binding signals to high mannose or mannose recognizing lectins, UDA and Calsepa, contributed the improvement of the prediction models using established risk factors for CVE. In the previous study, we identified the glycan binding signals to SNA, RCA120, DBA, ABA, Jacalin, and ACA significantly improved the prediction models for 30% decline of eGFR or ESRD and these lectins mainly recognized the O-glycan structures, suggesting the specificity of the analyses with lectin microarray. Furthermore, the application of those 8 lectins for the urine samples of the patients with type 2 diabetes provides a useful diagnostic tool for the future risk for the CVD and DKD progression.

Novel mechanism of the atherosclerotic CVE in diabetes

The current clinical study provides the insight into the mechanism for the progression of atherosclerosis in type 2 diabetes. The detection of high mannose N-glycans, *i.e.* immature forms of N-glycans, in the urine samples in the patients with type 2 diabetes suggests the abnormalities in the processing and maturation of N-glycans in ER and Golgi. In the ER, Glc1Man9GlcNAc2 N-glycans are properly folded by the assist of calnexin and calreticulin, while the misfolded Man9GlcNAc2 is recognized by ER-degradation-enhancing α-mannosidase I-like (EDEM) leading to ER degradation [23]. The inhibition of ER α-mannosidase I (MAN1B1), which mediates the conversion of Man9GlcNAc2 to Man8GlcNAc2, was reported to enhance high mannose intercellular adhesion molecule-1 expression on endothelial cell surface [32]. The impairment of quality control
of glycoproteins and mannosidase activity in ER may cause the accumulation of high mannose \(N\)-glycans in ER. In addition, the knockout of triple gene encoding Golgi \(\alpha 1,2\)-mannosidases (MAN1A1, MAN1A2, and MAN1B1) resulted in the production of high mannose \(N\)-glycans [33]. The defects in the Golgi \(\alpha 1,2\)-mannosidases are also candidate mechanisms to produce high mannose \(N\)-glycans. The link between high mannose \(N\)-glycans and CVE further suggested the new mechanism for the progression of atherosclerosis in type 2 diabetes. High mannose \(N\)-glycans induced on endothelial cells by oscillatory shear or tumor necrosis factor-\(\alpha\) mediate the monocytic recruitment [34] and hypercholesterolemic patients exhibited higher plasma levels of a cluster of high-mannose and complex/hybrid \(N\)-glycans [35].

Study Limitations

One of the key limitations in this study is that this was a multi-center observational study and therapeutic strategy of diabetes and its complications in each participant was not exactly standardized, which might have affected the incidence of the outcome. However, the sensitivity analyses revealed that the impact of glycan indexes for UDA and Calsepa on the outcome did not largely change even when the various treatment factors during follow-up periods were incorporated into the multivariate Cox regression models (Supplementary Table 5). In addition, we might not be able to adjust for other possible confounders in the multivariate models. Several blood biomarkers, such as NT-proBNP and high-sensitivity troponin T, have been established as useful markers for predicting CVE [9, 36]. It remains unknown whether glycan indexes for UDA and Calsepa are significantly associated with the outcome independent of those biomarkers. Nevertheless, we hope that these novel urinary markers predict CVE independent of other confounders since these glycan markers could reflect the novel mechanism of CVE as mentioned the above.

Conclusions

The glycan profiling by urine lectin microarray demonstrated that the elevation of high mannose and complex type of \(N\)-glycans in urine glycoproteins tightly linked to the development of composite CVE. UDA and Calsepa in lectin microarray may be useful diagnostic tool for the prediction of CVD risk in patients with type 2 diabetes. The evidence linking the increased high mannose and complex type of \(N\)-glycans to the incidence of CVE in patients with diabetes suggests the disease mechanisms and therapeutic targets related to organellar dysfunction in ER and Golgi, as well as the progression of atherosclerosis.

Abbreviations

AAL, *Aleuria aurantia*; ABA, *Agaricus bisporus*; ACA, *Amaranthus caudatus*; ADVANCE, Action in Diabetes and Vascular Disease Preterax and Diamicron Modified Release Controlled Evaluation; AIC, Akaike information criterion; ARB, Angiotensin II type I receptor blocker; AUROC, Area under the receiver operating characteristic; BIC, Bayesian information criterion; Calsepa, *Calystegia sepium*; C-index, Concordance index; CKD, Chronic kidney disease; CVE, Cardiovascular event; ConA, *Canavalia ensiformis*; DBA, *Dolichos biflorus*; DBP, Diastolic blood pressure, DKD, Diabetic kidney disease; EDEM, Endoplasmic reticulum-degradation-enhancing \(\alpha\)mannosidase I-like; EPIC-NL, European Prospective Investigation into Cancer and Nutrition-NL; ER, Endoplasmic reticulum; ESRD, End-stage renal disease; FDR, False discovery rates; GLP1, Glucagon-like peptide-1 receptor agonists; GNA,
Galanthus nivalis; HHL, Hippeastrum hybrid; HILIC, Hydrophilic interaction liquid chromatography; IDI, Integrated discrimination improvement; Jacalin, Artocarpus integrifolia; LCA, Lens culinaris; NPA, Narcissus pseudonarcissus; NRI, Net reclassification improvement; NT-proBNP, N-terminal pro-B-type natriuretic peptide; ORIGIN, Outcome Reduction With Initial Glargine Intervention; PAD, Peripheral arterial disease; PSA, Pisum sativum; RCA120, Ricinus communis; SBP, Systolic blood pressure; SGLT2, Sodium glucose transporter 2; SMART, Second Manifestations of ARterial disease; SNA, Sambucus nigra; TJAI, Tanthes japonica; TxLCI, Tulipa gesneriana; UACR, urine albumin creatinine ratio; U-CARE, Urinary biomarker for continuous and rapid progression of diabetic nephropathy; UDA, Urtica dioica.

Declarations

Acknowledgments

We are grateful to Drs Ichiro Nojima, Yuzuki Kano, Yuriko Yamamura, and Yasuhiro Onishi for collecting data. We are also grateful to Daniele Spinelli for helpful comments on the analyses.

Author’s contributions

The contributions of the authors are detailed as follows. KM conceived the study, formulated the analysis plan, performed statistical analyses, collected clinical data, performed urinary lectin microarray, and wrote the manuscript. MI collected and assessed all clinical data. YS measured urinary glycan binding signals to lectins, and collected the clinical data. ST, AT, HU, JE, AN, DO, KS recruited the patients and assessed the data. M. Yoshida supported the statistical analyses. M. Yamada measured urinary glycan binding signals to lectins, analysed the urinary lectin microarray data, and wrote the manuscript. JW conceived the study, supervised the data collection, analysed the data, and edited the manuscript. All authors contributed to interpretation of the data, critical revision of the manuscript, and approval of the final version of the manuscript.

Funding

This work was partly supported by a Health Labor Sciences Research Grant (grant no: 201413003), Japan Agency for Medical Research and development (AMED, grant no: 17ek0210095h0001, 20ek0109445h0001), Novo Nordisk Pharma Ltd (Junior Scientist Development Grant [2016-2017]), Okinaka Memorial Institute for Medical Research (a grant in 2017), and The Yukiko Ishibashi Foundation (a grant in 2016).

Availability of data and materials

The datasets generated and/or analyzed during the current study are not publicly available, while are available from the corresponding author on reasonable request.

Ethics approval and consent to participate

All participants gave informed consent and the Institutional Review Boards of the Okayama University and other institutions enrolled in the U-CARE study approved the study.

Consent for publication
Not applicable.

Competing interests

1. Yamada was a former employee of GP BioSciences Co., Ltd., and is currently an employee of GlycoTechnica Co., Ltd. JW received speaker honoraria from Astra Zeneca, Daiichi Sankyo, MSD, Novartis, Tanabe Mitsubishi, Taisho Toyama and received grant support from Baxter, Chugai, Dainippon Sumitomo, Ono, Teijin. There are no other relevant declarations relating to employment, consultancy, patents, products in development or marketed products. This does not alter the authors’ adherence to all *Cardiovascular Diabetology* policies on sharing data and materials. All other authors declare no competing interests.

References

1. Muthee TB, Kimathi D, Richards GC, Etyang A, Nunan D, Williams V, Heneghan C: Factors influencing the implementation of cardiovascular risk scoring in primary care: a mixed-method systematic review. Implement Sci 2020, 15:57.

2. van Bussel EF, Hoevenaar-Blom MP, Poortvliet RKE, Gussekloo J, van Dalen JW, van Gool WA, Richard E, Moll van Charante EP: Predictive value of traditional risk factors for cardiovascular disease in older people: A systematic review. Prev Med 2020, 132:105986.

3. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY: Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 2004, 351:1296-1305.

4. Tonelli M, Muntner P, Lloyd A, Manns BJ, Klarenbach S, Pannu N, James MT, Hemmelgarn BR, Alberta Kidney Disease N: Risk of coronary events in people with chronic kidney disease compared with those with diabetes: a population-level cohort study. Lancet 2012, 380:807-814.

5. Chronic Kidney Disease Prognosis C, Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, de Jong PE, Coresh J, Gansevoort RT: Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet 2010, 375:2073-2081.

6. Matsushita K, Coresh J, Sang Y, Chalmers J, Fox C, Guallar E, Jafar T, Jassal SK, Landman GW, Muntner P, et al: Estimated glomerular filtration rate and albuminuria for prediction of cardiovascular outcomes: a collaborative meta-analysis of individual participant data. Lancet Diabetes Endocrinol 2015, 3:514-525.

7. Bachmann KN, Wang TJ: Biomarkers of cardiovascular disease: contributions to risk prediction in individuals with diabetes. Diabetologia 2018, 61:987-995.

8. van der Leeuw J, Beulens JW, van Dieren S, Schalkwijk CG, Glatz JF, Hofker MH, Verschuren WM, Boer JM, van der Graaf Y, Visseren FL, et al: Novel Biomarkers to Improve the Prediction of Cardiovascular Event Risk in Type 2 Diabetes Mellitus. J Am Heart Assoc 2016, 5.

9. Looker HC, Colombo M, Agakov F, Zeller T, Groop L, Thorand B, Palmer CN, Hamsten A, de Faire U, Nogoceke E, et al: Protein biomarkers for the prediction of cardiovascular disease in type 2 diabetes. Diabetologia 2015, 58:1363-1371.
10. Gerstein HC, Pare G, McQueen MJ, Haenel H, Lee SF, Pogue J, Maggioni AP, Yusuf S, Hess S, Outcome
Reduction With Initial Glargine Intervention Trial I: Identifying Novel Biomarkers for Cardiovascular Events
or Death in People With Dysglycemia. Circulation 2015, 132:2297-2304.

11. Welsh P, Rankin N, Li Q, Mark PB, Wurtz P, Ala-Korpela M, Marre M, Poulter N, Hamet P, Chalmers J, et al:
Circulating amino acids and the risk of macrovascular, microvascular and mortality outcomes in
individuals with type 2 diabetes: results from the ADVANCE trial. Diabetologia 2018, 61:1581-1591.

12. Alshehry ZH, Mundra PA, Barlow CK, Mellett NA, Wong G, McConville MJ, Simes J, Tonkin AM, Sullivan
DR, Barnes EH, et al: Plasma Lipidomic Profiles Improve on Traditional Risk Factors for the Prediction of
Cardiovascular Events in Type 2 Diabetes Mellitus. Circulation 2016, 134:1637-1650.

13. Vaduganathan M, White WB, Charytan DM, Morrow DA, Liu Y, Zannad F, Cannon CP, Bakris GL,
Investigators E: Relation of Serum and Urine Renal Biomarkers to Cardiovascular Risk in Patients with
Type 2 Diabetes Mellitus and Recent Acute Coronary Syndromes (From the EXAMINE Trial). The American
journal of cardiology 2019, 123:382-391.

14. Rotbain Curovic V, Hansen TW, Eickhoff MK, von Scholten BJ, Reinhard H, Jacobsen PK, Persson F,
Parving HH, Rossing P: Urinary tubular biomarkers as predictors of kidney function decline,
cardiovascular events and mortality in microalbuminuric type 2 diabetic patients. Acta diabetologica
2018, 55:1143-1150.

15. Rasmussen DGK, Hansen TW, von Scholten BJ, Nielsen SH, Reinhard H, Parving HH, Tepel M, Karsdal MA,
Jacobsen PK, Genovese F, et al: Higher Collagen VI Formation Is Associated With All-Cause Mortality in
Patients With Type 2 Diabetes and Microalbuminuria. Diabetes Care 2018, 41:1493-1500.

16. Mise K, Imamura M, Yamaguchi S, Teshigawara S, Tone A, Uchida HA, Eguchi J, Nakatsuka A, Ogawa D,
Yoshida M, et al: Identification of Novel Urinary Biomarkers for Predicting Renal Prognosis in Patients
With Type 2 Diabetes by Glycan Profiling in a Multicenter Prospective Cohort Study: U-CARE Study 1.
Diabetes care 2018, 41:1765-1775.

17. Kuno A, Uchiyama N, Koseki-Kuno S, Ebe Y, Takashima S, Yamada M, Hirabayashi J: Evanescent-field
fluorescence-assisted lectin microarray: a new strategy for glycan profiling. Nat Methods 2005, 2:851-856.

18. Scirica BM, Mosenzon O, Bhatt DL, Udell JA, Steg PG, McGuire DK, Im K, Kanevsky E, Stahre C, Sjöstrand
M, et al: Cardiovascular Outcomes According to Urinary Albumin and Kidney Disease in Patients With
Type 2 Diabetes at High Cardiovascular Risk: Observations From the SAVOR-TIMI 53 Trial. JAMA
cardiology 2018, 3:155-163.

19. Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to
multiple testing. J Roy Stat Soc B 1995, 57:289-300.

20. Cattaneo M, Malighetti P, Spinelli D: Estimating Receiver Operative Characteristic Curves for Time-
dependent Outcomes: The Stroccurve Package. Stata Journal 2018, 17:1015-1023.

21. Pencina MJ, D'Agostino RB, Sr., D'Agostino RB, Jr., Vasan RS: Evaluating the added predictive ability of a
new marker: from area under the ROC curve to reclassification and beyond. Stat Med 2008, 27:157-172;
discussion 207-112.

22. Pencina MJ, D'Agostino RB, Pencina KM, Janssens AC, Greenland P: Interpreting incremental value of
markers added to risk prediction models. Am J Epidemiol 2012, 176:473-481.
23. Stanley P, Taniguchi N, Aebi M: **N-Glycans.** In: *Essentials of Glycobiology.* Edited by rd, Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, Darvill AG, Kinoshita T, Packer NH, et al. Cold Spring Harbor (NY); 2015: 99-111.

24. Panduru NM, Forsblom C, Saraheimo M, Thorn LM, Gordin D, Elonen N, Harjusalo V, Bierhaus A, Humpert PM, Groop PH, et al: Urinary liver-type fatty acid binding protein is an independent predictor of stroke and mortality in individuals with type 1 diabetes. Diabetologia 2017, 60:1782-1790.

25. Keser T, Gornik I, Vuckovic F, Selak N, Pavic T, Lukic E, Gudelj I, Gasparovic H, Biocina B, Tilin T, et al: Increased plasma N-glycome complexity is associated with higher risk of type 2 diabetes. Diabetologia 2017, 60:2352-2360.

26. Adua E, Memarian E, Russell A, Trbojevic-Akmacic I, Gudelj I, Juric J, Roberts P, Lauc G, Wang W: High throughput profiling of whole plasma N-glycans in type II diabetes mellitus patients and healthy individuals: A perspective from a Ghanaian population. Arch Biochem Biophys 2019, 661:10-21.

27. Adua E, Anto EO, Roberts P, Kantanka OS, Aboagye E, Wang W: The potential of N-glycosylation profiles as biomarkers for monitoring the progression of Type II diabetes mellitus towards diabetic kidney disease. J Diabetes Metab Disord 2018, 17:233-246.

28. Bermingham ML, Colombo M, McGurnaghan SJ, Blackbourn LAK, Vuckovic F, Pucic Bakovic M, Trbojevic-Akmacic I, Lauc G, Agakov F, Agakova AS, et al: N-Glycan Profile and Kidney Disease in Type 1 Diabetes. Diabetes Care 2018, 41:79-87.

29. Wittenbecher C, Stambuk T, Kuxhaus O, Rudman N, Vuckovic F, Stambuk J, Schiborn C, Rahelic D, Dietrich S, Gornik O, et al: Plasma N-Glycans as Emerging Biomarkers of Cardiometabolic Risk: A Prospective Investigation in the EPIC-Potsdam Cohort Study. Diabetes Care 2020, 43:661-668.

30. Inoue K, Wada J, Eguchi J, Nakatsuka A, Teshigawara S, Murakami K, Ogawa D, Terami T, Katayama A, Tone A, et al: Urinary fetuin-A is a novel marker for diabetic nephropathy in type 2 diabetes identified by lectin microarray. PLoS One 2013, 8:e77118.

31. Gargano AFG, Schouten O, van Schaick G, Roca LS, van den Berg-Verleg JH, Haselberg R, Akeroyd M, Abello N, Somsen GW: Profiling of a high mannose-type N-glycosylated lipase using hydrophilic interaction chromatography-mass spectrometry. Anal Chim Acta 2020, 1109:69-77.

32. Regal-McDonald K, Xu B, Barnes JW, Patel RP: High-mannose intercellular adhesion molecule-1 enhances CD16(+) monocyte adhesion to the endothelium. Am J Physiol Heart Circ Physiol 2019, 317:H1028-H1038.

33. Jin ZC, Kitajima T, Dong W, Huang YF, Ren WW, Guan F, Chiba Y, Gao XD, Fujita M: Genetic disruption of multiple alpha1,2-mannosidases generates mammalian cells producing recombinant proteins with high-mannose-type N-glycans. J Biol Chem 2018, 293:5572-5584.

34. Scott DW, Chen J, Chacko BK, Traylor JG, Jr., Orr AW, Patel RP: Role of endothelial N-glycan mannose residues in monocyte recruitment during atherogenesis. Arterioscler Thromb Vasc Biol 2012, 32:e51-59.

35. Bai L, Li Q, Li L, Lin Y, Zhao S, Wang W, Wang R, Li Y, Yuan J, Wang C, et al: Plasma High-Mannose and Complex/Hybrid N-Glycans Are Associated with Hypercholesterolemia in Humans and Rabbits. PLoS One 2016, 11:e0146982.

36. Scirica BM, Bhatt DL, Braunwald E, Raz I, Cavender MA, Im K, Mosenzon O, Udell JA, Hirshberg B, Pollack PS, et al: Prognostic Implications of Biomarker Assessments in Patients With Type 2 Diabetes at High
Cardiovascular Risk: A Secondary Analysis of a Randomized Clinical Trial. JAMA cardiology 2016, 1:989-998.

Tables

Table 1: Baseline clinical parameters
Clinical parameters	All patients (n=680)
Age (years)	63 ± 11
Male (%)	61
BMI (kg/m²)	25.6 ± 4.6
Prior CVD/Stroke/PAD (%)	17/9/1
Prior cardiovascular event (%)	24
Duration of DM (years)	11.1 (6.2-17.7)
HbA1c (%)	7.1 ± 1.1
HbA1c (mmol/mol)	54.3 ± 12.0
Triglyceride (mg/dl)	116 (81-163)
Total cholesterol (mg/dl)	180.5 ± 31.9
LDL cholesterol (mg/dl)	100.1 ± 25.3
Non-HDL cholesterol (mg/dl)	126.5 ± 30.6
Uric acid (mg/dl)	5.4 ± 1.4
SBP (mmHg)	131.0 ± 17.0
DBP (mmHg)	74.7 ± 10.9
Hypertension (%)	† 70
Retinopathy (NDR/SDR/prePDR/PDR, %)	‡ 67/17/6/10
eGFR (ml/min/1.73m²)	71.0 ± 17.7
CKD GFR Categories (G1/G2/G3a/G3b/G4/G5, %)	10/69/11/6/3/1
UACR (mg/gCr)	17.7 (7.8-74.1)
Normo/Micro/Macro (%)	63/25/12
Any type of antihypertensive agents (%)	62
ACE inhibitor or ARB (%)	53
Calcium channel blocker (%)	38
Number of antihypertensive agents	1 (0-2)
Treatment for diabetes (Diet only/OHA/Insulin, %)	4/64/32
Drug treatment for hyperglycemia (SU/GLIN/BG/aGI/TZD/DPP4-I/GLP1, %)	32/10/35/28/15/49/7
Drug treatment for dyslipidemia/statin use (%) 64/56

Abbreviations

BMI: body mass index, CVD: cardiovascular disease requiring admission for treatment, Stroke: cerebral bleeding or infarction requiring admission for treatment, PAD: peripheral arterial disease requiring admission for intervention or surgery, Cardiovascular event: any event of CVD, Stroke, and PAD, HbA1c: hemoglobin A1c, Duration of DM: estimated duration of diabetes mellitus, LDL cholesterol: low-density lipoprotein cholesterol, non-HDL cholesterol: non high-density lipoprotein cholesterol, SBP: systolic blood pressure, DBP: diastolic blood pressure, Retinopathy: diabetic retinopathy, NDR/SDR/prePDR/PDR: non diabetic retinopathy, simple diabetic retinopathy, pre proliferative diabetic retinopathy, and proliferative diabetic retinopathy, respectively, eGFR: estimated glomerular filtration rate, CKD GFR Categories; G1: ≥ 90 ml/min/1.73m², G2: 60-90 ml/min/1.73m², G3a: 45-59 ml/min/1.73m², G3b: 30-44 ml/min/1.73m², G4: 15-29 ml/min/1.73m², UACR: urinary albumin creatinine ratio, Normo/Micro/Macro: normoalbuminuria, microalbuminuria, and macroalbuminuria, respectively, ACE inhibitor or ARB: treatment with an angiotensin-converting enzyme inhibitor or angiotensin II type I receptor blocker, respectively, Diet only: diet regimen only, OHA: oral hypoglycemic agent, Insulin therapy: treatment with insulin (including basal-supported oral therapy), SU: sulfonylurea, GLIN: meglitinide analogs, BG: biguanide (Metformin), αGI: alpha-glucosidase inhibitors, TZD: thiazolidinediones, DPP4-I: DPP-4 inhibitors, GLP1: glucagon-like peptide 1 receptor agonists, SGLT2, sodium glucose transporter 2

*Median (interquartile range). †Hypertension was defined as blood pressure ≥ 140/90 mmHg or any antihypertensive drug treatment. ‡Data from 664 patients (98%) were available.

Table 2: Comparison of hazard ratio and model fitting between multivariate models with or without UACR and urinary glycans for UDA and Calsepa

Markers	Multivariate model	Markers	Multivariate model with UACR						
	HR 95% CI P-value	AIC	BIC	HR 95% CI P-value	AIC	BIC			
None	-	-	-	UACR	1.32	0.99-1.75	0.058	724.1	764.8
UDA	1.78 1.24-2.55 0.002	716.5	757.2	UDA	1.70	1.16-2.49	0.006	718.0	763.2
Calsepa	1.56 1.19-2.04 0.001	718.0	758.7	Calsepa	1.50	1.11-2.02	0.009	719.6	764.8

Covariates in multivariate model: age, gender, body mass index, systolic blood pressure, hemoglobin A1c, low density cholesterol levels, estimated glomerular filtration rate, and past cardiovascular event at baseline. Each glycan index was employed into the multivariate model with or without log transformed UACR. Abbreviations: UACR, urinary albumin creatinine ratio, HR: hazard ratio, 95% CI: 95% confidence interval, AIC: Akaike’s information criterion, BIC: Bayesian information criterion, UDA: *Urtica dioica*, Calsepa: *Calystegia sepium*.
Table 3: AUROC, category-free NRI, and IDI for predicting the 5-year outcome with UACR and urinary glycans binding to UDA and Calsepa

	AUROC (95% CI)	Difference of AUROC (95% CI)	P-value	Category-free NRI (95% CI)	P-value	IDI (95% CI)	P-value
Only covariates	0.774						
	(0.711-0.837)						
With UACR	0.790	0.017	0.083	0.269	0.075	0.005	0.59
	(0.732-0.849)	(-0.002-0.035)		(-0.027-0.564)		(-0.014-0.024)	
With glycan to UDA	0.805	0.031	0.045	0.368	0.026	0.024	0.16
[Mixture of Man5 to Man9]	(0.748-0.862)	(0.001-0.062)		(0.045-0.692)		(-0.009-0.056)	
With glycan to Calsepa	0.801	0.027	0.040	0.388	0.008	0.021	0.18
[High-Man (Man2-6)]	(0.744-0.857)	(0.001-0.053)		(0.099-0.677)		(-0.010-0.053)	

Covariates: age, gender, body mass index, systolic blood pressure, hemoglobin A1c, low density cholesterol levels, estimated glomerular filtration rate, and past cardiovascular event at baseline.

Abbreviations: AUROC, The area under a receiver operating characteristic; NRI, net reclassification improvement; IDI, integrated discrimination improvement; UACR, urine albumin creatinine ratio; 95% CI, 95% confidence interval; UDA, *Urtica dioica*; Calsepa, *Calystegia sepium*; Man, Mannose.