Spatial density estimates of Eurasian lynx (*Lynx lynx*) in the French Jura and Vosges Mountains

Olivier Gimenez¹, Sylvain Gatti², Christophe Duchamp³, Estelle Germain⁴, Alain Laurent², Fridolin Zimmermann⁵, Eric Marboutin²

¹CEFE, CNRS, Univ Montpellier, Univ Paul Valéry Montpellier 3, EPHE, IRD, Montpellier, France
²Office National de la Chasse et de la Faune Sauvage, ZI Mayencin, Gières, France.
³Office National de la Chasse et de la Faune Sauvage, Parc Micropolis, Gap, France.
⁴Centre de Recherche et d’Observation sur les Carnivores (CROC), 4 rue de la banie, 57590, Lucy, France
⁵KORA, Thunstrasse 31, 3074, Muri, Switzerland

Abstract

Obtaining estimates of animal population density is a key step in providing sound conservation and management strategies for wildlife. For many large carnivores however, estimating density is difficult because these species are elusive and wide-ranging. Here, we focus on providing the first density estimates of the Eurasian lynx (*Lynx lynx*) in the French Jura and Vosges mountains. We sampled a total of 413 camera trapping sites (with 2 cameras per site) between January 2011 and April 2016 in seven study areas across seven counties of the French Jura and Vosges mountains. We obtained 592 lynx detections over 19,035 trap days in the Jura mountain and 0 detection over 6,804 trap days in the Vosges mountain. Based on coat patterns, we identified a total number of 92 unique individuals from photographs,
including 16 females, 13 males and 63 individuals of unknown sex. Using spatial capture-recapture (SCR) models, we estimated abundance in the study areas between 5 (SE = 0.1) and 29 (0.2) lynx and density between 0.24 (SE = 0.02) and 0.91 (SE = 0.03) lynx per 100 km². We also provide a comparison with non-spatial density estimates and discuss the expected discrepancies. Our study is yet another example of the advantage of combining SCR methods and non-invasive sampling techniques to estimate density for elusive and wide-ranging species, like large carnivores. While the estimated densities in the French Jura mountain are comparable to other lynx populations in Europe, the fact that we detected no lynx in the Vosges mountain is alarming. Connectivity should be encouraged between the French Jura mountain, the Vosges mountain and the Palatinate Forest in Germany where a reintroduction program is currently ongoing. Our density estimates will help in setting a baseline conservation status for the lynx population in France.

Introduction

Obtaining estimates of animal population density is a key step in providing sound conservation and management strategies for wildlife [1]. For many large carnivores however, estimating density is difficult because these species are elusive and wide-ranging, resulting in low detection rates [2]. To deal with these issues, non-invasive techniques, such as camera trapping and DNA sampling, are increasingly used [3]. These non-invasive techniques generate data that can be analyzed with capture-recapture methods to estimate densities [4]. Standard capture-recapture models for closed populations [5] have long been used to estimate animal abundance and density, including many large carnivores [6,7]. However, when converting abundance into density, density estimates are highly sensitive to the size of user-defined area assumed to reflect the effective sampling area [8]. In addition, individual
heterogeneity on the detection due to spatial variation in the distance of home ranges to the
sampling devices may lead to biased density estimates [5]. Spatial capture-recapture (SCR)
models deal with these issues by explicitly incorporating spatial locations of detections [9–
12], and they are increasingly used to estimate densities of large carnivores [13–18].

Here, we focus on the threatened Eurasian lynx (Lynx lynx) in the French Jura and
Vosges mountains (see [19] for a map of its distribution in Europe; see also
https://www.lcie.org/Large-carnivores/Eurasian-lynx for recent updates). As in many regions
of western Europe [20], lynx were extirpated from France between the 17th and 20th centuries
due to habitat degradation, persecution by humans and decrease in prey availability [21].
Shortly after their initial reintroduction in Switzerland in the 1970s [22], lynx naturally
increased their range and started recolonizing France by repopulating forests on the French
side of the Jura [21]. Reintroductions also occurred in the French Vosges mountain between
1983 and 1993 with the perspective of establishing a population there [23]. The species is
listed as endangered in the IUCN Red list and is of conservation concern in France due to
habitat fragmentation, poaching and collisions with cars and trains. Currently, the French
population of lynx is restricted to three mountain ranges, the Vosges, in northeastern France,
the Jura and the Alps, with little connectivity between them most likely due to human-made
linear infrastructures. While the Northern Alps are slowly being recolonized with lynx mostly
coming from the Jura [24], the Jura holds the bulk of the French lynx population. In contrast,
the lynx presence in the Vosges mountain remained stable following the reintroductions and
then, has been continuously decreasing since 2005 [25].

Despite their conservation status, little information on abundance and density of lynx
in France exist. In this study, we used SCR and standard capture-recapture models to provide
the first estimate of lynx abundance and density using camera-trap surveys implemented in
the French Jura and Vosges mountains from 2011 to 2016. Based on these results, we discuss
research and management priorities for the effective conservation of lynx in France.

Methods

Ethics statement

We used non-invasive methods for data collection, which did not involve manipulation or
handling of any living organism. Therefore, approval from an animal ethics committee was
not required. Cameras were set on public or private forests with the permission of local
authorities or local owners, respectively. We advertised the study and the presence of camera
traps to the local stakeholders and the public visiting the areas. In agreement with French
legislation, we deleted photos permitting the identification of goods or people.

Study area and sampling design

The study area encompassed three counties of the French Jura mountain, namely Ain, Doubs
and Jura and four counties of the Vosges mountain, namely Vosges, Haut-Rhin, Bas-Rhin and
Moselle (Figure 1). Elevation ranged from 163 and 1,718 m above sea level in the Jura
mountain and from 104 to 1,422 m in the Vosges mountain. The human population density
was 88 per km² in the Jura mountain and 170 per km² in the Vosges mountain. Forests cover
50% on average of the Jura mountain [26] and 70% of the Vosges mountain [27]. Sampling
occurred over 6 years, between January 2011 and April 2016, mostly in winter and spring,
with surveys lasting between 2 and 4 months. We considered two study areas in 2011, 2014
and 2015, three study areas in 2013 and one study area in 2012 and 2016 through camera
trapping (Figure 1).
We divided each study area into a grid of 2.7 x 2.7 km cells applying a systematic design where one out of two cells was sampled [28], hence ensuring that at least one camera trap was set in each potential lynx home range (between 100km² and 250km², see [29]). To maximize detectability, we set (non-baited) camera traps in forested habitats, based on previous signs of lynx presence and on local knowledge, at optimal locations where landscape and terrain features were likely to channel lynx movements on more predictable paths (on forest roads, hiking trails and to a lesser extent on game paths) [30]. Camera were settled on within a single session design continuously during 60 days between February and beginning of March with little variation between sites.

At each trapping location, we set two Xenon white flash camera traps (models: Capture, Ambush and Attack; Cuddeback, WI, USA) with passive infrared trigger mechanisms to photograph both flanks of an animal. We checked camera traps weekly to change memory cards, batteries and to remove fresh snow after heavy snowfall. Based on unique coat patterns, we identified individual lynx on photographs [31]. The recognition of individual was computer-induced, not fully automated. We used the Extract-compare © software that compares the lynx spot pattern with a library of previously extracted pattern and proposes potential matches according to a score (http://conservationresearch.org.uk/Home/ExtractCompare). The observer can confirm the lynx identification or not and browse through the highest-ranking proposed matches. The final decision is made by the observer based on an additional visual examination of the entire photo set for this particular lynx. Pictures for which no match was found with the software were visually checked against our entire photo library. Only when the match is undeniable is the individual recorded as a match, otherwise it was recorded as a new individual. All captures
that do not fit automated or associated visual confirmation with no doubt, because of a poor picture quality (e.g. blurry, overexposed), were classified as “unconfirmed” and excluded from the analyses. We recorded the date, time, sex whenever possible, and location of each photographic capture of a lynx. During the time of year our study took place, juvenile lynx (< 1 year old) can still be with their mother [32]. In our analysis, we retained only independent lynx, i.e. adult lynx or emancipated individuals based on physical characteristics or previous knowledge of their age or status (from photographic evidence). We defined a capture occasion as 5 successive trap nights [30], dissociating trapping events from individual photo to avoid pseudo-replications.

Spatial capture-recapture analyses

We used spatial capture-recapture (SCR) models to estimate lynx densities [4]. In contrast with standard (non-spatial) capture-recapture models, SCR models use the spatial locations of captures to infer the activity center (or home range) of each individual. We assumed that individual encounters are Bernoulli random variables with individual- and trap-specific detection probabilities. More precisely, the detection probability \(p_{ij} \) of an individual \(i \) at trap \(j \) is assumed to decrease as the distance \((d_{ij}) \) from its activity center increases according to a detection function. We used the half-normal detection function, \(p_{ij} = p_0 \exp(-d_{ij}^2/(2\sigma^2)) \), where \(p_0 \) is the probability of detecting an individual when the trap is located exactly at its center of activity and \(\sigma \) is the spatial scale (or movement) parameter that controls the shape of the detection function. For one of the two study areas in the French Jura mountain in years 2011 and 2013, we detected only a few individuals (see the columns Doubs in Table 1). To increase the effective sample size, we combined the data from the two sampling areas using common detection and spatial parameters for both areas, while estimating density separately (e.g., [33]). We defined a state-space, i.e. the area encompassing all potential activity centers.
of the observed individuals, by building a grid that buffered outermost camera trap locations by 15 km (corresponding to at least 2σ [4]) with a resolution of 1.5 km (or pixels of area 2.25km^2). We fitted SCR models in the maximum likelihood framework using the R package oSCR [34,35].

For comparison, we also estimated abundance using standard (non-spatial) capture-recapture models [5]. We dropped the spatial information and considered only the detections and non-detections for each individual. We considered two models, M0 in which the detection probability is the same for all individuals, and Mh in which the detection probability varies among individuals. We fitted standard models in the maximum likelihood framework using the R package Rcapture [36]. We estimated density as the ratio of estimated abundance over an effective trapping area (ETA). ETA was estimated by adding a buffer to the trapping area equal to the mean maximum distance moved (MMDM) or half of it (HMMDM). We calculated the MMDM by averaging the maximum distances between capture locations for all individuals detected at more than one site.

Results

We collected data from 413 camera trapping sites (2 camera traps were set per site) resulting in 25,839 trap days (Table 1). In total, we identified 92 lynx over 532 detection events in the Jura mountain, including 16 females, 13 males and 63 individuals of unknown sex. The number of detections per individual was 2.6 on average and varied from 1 up to 11. In contrast, we collected no lynx photo in the Vosges mountain, therefore we did not proceed with analyses for this area.

[Table 1 about here]
For the Jura mountain, abundance estimates were similar whether we used spatial or non-spatial models, although always slightly higher for the former. Estimated abundance among study areas varied between 5 (SE = 0.1) and 29 (0.2) lynx in the spatial analyses, between 4 (0.7) and 23 (0.7) with model M0, and between 5 (1.7) and 28 (3.6) with model Mh. Estimated density varied between 0.24 (0.02) and 0.91 (0.03) lynx per 100 km² in the spatial analyses (Table 2). In the non-spatial analyses, the density varied between 0.31 (0.05) and 0.78 (0.02) lynx per 100 km² under model M0 and between 0.34 (0.06) and 0.95 (0.12) under model Mh when the MMDM was used. When we used HMMDM, the density varied between 0.57 (0.10) and 1.46 (0.16) lynx per 100 km² under model M0 and between 0.67 (0.12) and 1.43 (0.16) under model Mh.

From the spatial analyses, we used the model estimates to produce density surfaces within the state-space (Figure 2). The density per pixel of area 2.25 km² ranged from 0 to 0.20 individuals in the Jura mountain.

Discussion

By using camera-trap sampling and SCR models, we provided the first multi-site density estimates for lynx that will help in setting a baseline conservation status for the French lynx population. The multi-site dimension of our study allows exploring variability in the density...
estimates across landscapes. Our study is yet another example of the potential of combining
SCR methods and non-invasive sampling techniques to estimate abundance and density for
elusive and wide-ranging species, like large carnivores [13–18].

When examining densities across study areas in the French Jura mountain, we found
spatial variation between the three counties, with Doubs area having the lowest densities, Ain
the highest densities, and Jura intermediate densities. Our density estimates were of similar
magnitude to other lynx populations in Europe: 1.47 and 1.38 lynx / 100 km² in the
Northwestern Swiss Alps [13], 0.58 (Štiavnica mountains) and 0.81 individuals / 100 km²
(Velká Fatra National Park) in Slovakia [37] and 0.9 individuals / 100 km² in the Bavarian
Forest National Park in Germany [38].

While [13] and [37] used SCR models, [38] used standard capture-recapture models
with HMMDM to estimate densities, which makes them difficult to compare [39]. Indeed, in
other carnivore studies, the use of HMMDM also produced similar density estimates to SCR
models [13], while in others, including ours, the SCR estimates were closer to the MMDM
estimates [2] or intermediate between the MMDM and HMMDM estimates [40]. When
looking at reference values for densities across the distribution range of the species, it may be
biologically meaningful to use the MMDM density estimate as a reference as it covers the
whole potential of animal movements. On the other hand, because SCR models make space
explicit whereas standard model-based densities are sensitive to the definition of the effective
sampling area, we recommend the use of SCR models to estimate lynx densities. Our lynx
density estimates might suffer from potential sources of bias that need to be discussed. First,
the period of sampling is important to account for when setting up camera trap surveys [41].
We conducted our survey outside the dispersal period, during the lynx mating season
(February-March mostly). We did so to avoid capturing transient individuals and to increase
detectability because of high lynx activity and relatively reduced human activities [31].
However, some individuals might have moved in and out of the study areas, especially males who cover greater distances during the mating season. Whereas the presence of non-resident individuals can affect the calculation of (H)MMDM, and in turn density estimated with standard capture-recapture models, SCR density estimates were found to be robust to the presence of transient individuals [42]. Second, males have larger home ranges than females [13], which leads to heterogeneity in the SCR model parameter estimates. Because there were too few males and females identified and lots of individuals with unknown sex, sex-specific SCR analyses [43] produced unreliable abundance and density estimates (results not shown).

If detection heterogeneity is ignored in capture-recapture models, abundance is underestimated [44], therefore our density estimates are probably biased low and should be considered as a conservative metric. The determination of sex could be improved by i) combining the photographic surveys with genetic surveys, ii) conducting deterministic surveys over several years (e.g., [13]), iii) conducting an opportunistic camera trapping survey all over the years and setting camera trap at fresh lynx kills, iv) setting infrared flash camera traps capable of taking burst of images in rapid sequence at marking sites regularly used by the lynx (e.g., [45]). Last, we did not detect any individuals in the Vosges mountain, even though the sampling effort was similar to that implemented in the Jura mountain (Table 1). This finding is likely to be representative of the current critical situation of the lynx in the Vosges mountain.

We envision several perspectives to our work. First, while density estimates are of primary interest for conservation, understanding the mechanisms underlying trends in abundance is required to make sound conservation decisions [1]. SCR models have been extended to open populations [46] and can be used to estimate demographic parameters (survival, reproduction) of large carnivores [47]. Unfortunately, because of logistic constraints, we could not sample the same areas over several years, which precludes a
standard application of these models. A solution may lie in the combination of the data we
collected through systematic camera-trap surveys with additional data in the SCR framework,
such as occupancy data [48] or opportunistic camera-trap data [49]. Second, in addition to
traffic-induced mortality and conflicts with human activities, the expansion of lynx
populations is limited by habitat fragmentation [50], hence the need to assess connectivity
with other populations [51]. SCR models can be used to quantify landscape connectivity by
replacing the Euclidean distance between camera traps and home range centers by the
least-cost path [52,53]. For lynx, this will require setting up traps across a gradient of habitat
types, not only forested habitats, so that resistance to movement can be estimated.

In conclusion, our lynx density estimates for the French Jura mountain complement
nicely the estimates recently provided for the Northwestern Swiss Alps [13]. The use of
camera-trapping coupled with SCR models in both France and Switzerland was the result of a
cooperation between the two countries with the perspective of a transboundary monitoring
[54,55]. This approach would prove useful to accurately estimate densities in other areas
where habitats and prey availability might differ, and overall lynx detectability varies. Also,
collecting and adding movement data from GPS-collared lynx would be useful [49,56] to try
and infer the connections between subpopulations.

The case can be made for monitoring the return of the lynx in the French Alps. Indeed,
small-scale camera-trapping surveys and opportunistic observations are currently active and
producing signs of lynx presence. However, the lack of a coordinated and intensive sampling
effort prevents us from being able to estimate abundance and density and inferring trends.

In contrast, the situation in the Vosges mountain is alarming with no individuals
detected over the study period. Because the Vosges mountain are located between the French
Jura mountain and the Palatinate Forest in Germany where a reintroduction program is
ongoing (program LIFE13 NAT/DE/000755), the lynx colonization in the Vosges mountain
remains possible both by the north and the south. Incidentally, two cases of lynx dispersal in
the Vosges mountain from neighboring mountains have been recently observed ([57];
program LIFE13 NAT/DE/000755). To ensure the detection of lynx in the Vosges mountain,
we recommend reinforcing collaborative monitoring by involving all field stakeholders and
enhancing communication on the species signs of presence.

In this context, obtaining accurate and comparable lynx densities will be crucial to
closely monitor population trends at the national scale and inform management policies for
the effective conservation of the Eurasian lynx in France.

Acknowledgments

We thank the staff from the French National Game and Wildlife Agency (ONCFS), the
CROC, the Forest National Agency, the “Directions Départementales des Territoires”, the
“Fédérations Départementales des Chasseurs” the Regional Natural Parks, the environmental
protection associations and all the volunteers from the “Réseau Loup Lynx” who collected the
photographs during the camera-trapping session. OG was funded by CNRS and the “Mission
pour l’Interdisciplinarité” through the “Osez l’Interdisciplinarité” initiative. CD, EM and SG
were funded by ONCFS. CEFE and CROC were funded by CIL&B, MTES (ITTECOP) and
FRB through the research program ERC-Lynx. CROC was funded by the European Union
within the framework of the Operational Program FEDER-FSE “Lorraine et Massif des
Vosges 2014–2020”, the “Commissariat à l’Aménagement du Massif des Vosges” for the
FNADT (“Fonds National d’Aménagement et de Développement du Territoire”), the DREAL
Grand Est (“Direction Régionale pour l’Environnement, l’Aménagement et le Logement”),
the “Région Grand Est”, the “Zoo d’Amnéville”, the “Fondation d’entreprise UEM”, the
“Fondation Nature & Découvertes”, the “Fondation Le Pal Nature”, and the Chasseur
d’images magazine. This study could not have been conducted without authorizations from and agreements with municipalities, environmental managers and owners.

Author contributions

OG wrote the paper and all co-authors commented on the manuscript. OG and SG analyzed the data. AL, CD, EG, EM and SG coordinated the study designs, the data collection and interpretation, with help from FZ for setting the experimental design in the Jura mountain.

Data accessibility

The Eurasian lynx is an endangered species with high conservation stakes. Interactions with human activities are problematic and lead to poaching and anthropogenic pressures. Providing accurate information on lynx locations can be detrimental to the conservation status of the species. As a consequence, the original data could not be shared.

References

1. Williams BK, Nichols JD, Conroy MJ. Analysis and management of animal populations. San Diego: Academic Press; 2002.

2. Obbard ME, Howe EJ, Kyle CJ. Empirical comparison of density estimators for large carnivores. Journal of Applied Ecology. 2010;47: 76–84. doi:10.1111/j.1365-2664.2009.01758.x

3. Kelly M, Betsch J, Wultsch C, Mesa B, Mills L. Noninvasive Sampling for Carnivores. Carnivore Ecology and Conservation: A Handbook of Techniques. Oxford University Press. 2012. pp. 47–69.

4. Royle JA, Chandler RB, Sollmann R, Gardner B. Spatial Capture-Recapture [Internet]. New York, USA: Academic Press, New York; 2014. doi:10.1016/C2012-0-01222-7
5. Otis DL, Burnham KP, White GC, Anderson DR. Statistical Inference from Capture Data on Closed Animal Populations. Wildlife Monographs. The Wildlife Society; 1978. pp. 3–135. doi:10.2307/2287873

6. Mumma MA, Zieminski C, Fuller TK, Mahoney SP, Waits LP. Evaluating noninvasive genetic sampling techniques to estimate large carnivore abundance. Molecular Ecology Resources. 2015;15: 1133–1144. doi:10.1111/1755-0998.12390

7. Gerber BD, Ivan JS, Burnham KP. Estimating the abundance of rare and elusive carnivores from photographic-sampling data when the population size is very small. Population Ecology. 2014;56: 463–470. doi:10.1007/s10144-014-0431-8

8. White GC, Anderson DR, Burnham KP, Otis DL. Capture-recapture and removal methods for sampling closed populations. Los Alamos, NM: Los Alamos National Laboratory; 1982 p. 14. Available: http://pubs.er.usgs.gov/publication/70120390

9. Royle JA, Young KV. A hierarchical model for spatial capture-recapture data. Ecology. 2008;89: 2281–2289. doi:10.1890/07-0601.1

10. Borchers DL, Efford MG. Spatially Explicit Maximum Likelihood Methods for Capture–Recapture Studies. Biometrics. 2008;64: 377–385. doi:10.1111/j.1541-0420.2007.00927.x

11. Efford M. Density estimation in live-trapping studies. Oikos. 2004;106: 598–610. doi:10.1111/j.0030-1299.2004.13043.x

12. Borchers D. A non-technical overview of spatially explicit capture-recapture models. Journal of Ornithology. 2012;152: 435–444.

13. Pesenti E, Zimmermann F. Density estimations of the Eurasian lynx (Lynx lynx) in the Swiss Alps. Journal of Mammalogy. 2013;94: 73–81. doi:10.1644/11-MAMM-A-322.1

14. Stetz JB, Mitchell MS, Kendall KC. Using spatially-explicit capture-recapture models to explain variation in seasonal density patterns of sympatric ursids. Ecography. 2018;
15. López-Bao JV, Godinho R, Pacheco C, Lema FJ, García E, Llaneza L, et al. Toward reliable population estimates of wolves by combining spatial capture-recapture models and non-invasive DNA monitoring. Scientific Reports. 2018;8. doi:10.1038/s41598-018-20675-9

16. Goldberg JF, Tempa T, Norbu N, Hebblewhite M, Mills LS, Wangchuk TR, et al. Examining Temporal Sample Scale and Model Choice with Spatial Capture-Recapture Models in the Common Leopard Panthera pardus. Aegerter CM, editor. PLOS ONE. 2015;10:e0140757. doi:10.1371/journal.pone.0140757

17. Broekhuis F, Gopalaswamy AM. Counting Cats: Spatially Explicit Population Estimates of Cheetah (Acinonyx jubatus) Using Unstructured Sampling Data. Festa-Bianchet M, editor. PLOS ONE. 2016;11:e0153875. doi:10.1371/journal.pone.0153875

18. Alexander JS, Gopalaswamy AM, Shi K, Riordan P. Face Value: Towards Robust Estimates of Snow Leopard Densities. Margalida A, editor. PLOS ONE. 2015;10:e0134815. doi:10.1371/journal.pone.0134815

19. Chapron G, Kaczensky P, Linnell JDC, von Arx M, Huber D, Andren H, et al. Recovery of large carnivores in Europe’s modern human-dominated landscapes. Science. 2014;346:1517–1519.

20. Breitenmoser U. Large predators in the Alps: The fall and rise of man’s competitors. Biological Conservation. 1998;83:279–289. doi:10.1016/S0006-3207(97)00084-0

21. Vandel J-M, Stahl P. Distribution trend of the Eurasian lynx Lynx lynx populations in France. Mammalia. 2005;69. doi:10.1515/mamm.2005.013

22. Breitenmoser U, Breitenmoser-Würsten C, Capt S. Re-introduction and present status of the lynx (Lynx lynx) in Switzerland. Hystrix It J Mamm. 1998;10. doi:10.4404/hystrix-10.1-4118

23. Vandel J-M, Stahl P, Herrenschmidt V, Marboutin E. Reintroduction of the lynx into
the Vosges mountain massif: From animal survival and movements to population development. Biological Conservation. 2006;131: 370–385.
doi:10.1016/j.biocon.2006.02.012
24. Marboutin E, Duchamp C, Moris P, Briaudet P-E, Léonard Y, Catusse M. Survey of the Lynx distribution in the French Alps: 2005-2009 update. Acta biologica Slovenica. 2012: 29–34.
25. Laurent A, Léger F, Briaudet PE, Léonard Y, Bataille A, Goujon G. Evolution récente (2008-2010) de la population de Lynx en France. Faune Sauvage. 2012;294: 38–39.
26. Breitenmoser U, Breitenmoser-Würsten C, Capt S, Molinari-Jobin A, Molinari P, Zimmermann F. Conservation of the lynx Lynx lynx in the Swiss Jura Mountains. Wildlife Biology. 2007;13: 340–355. doi:10.2981/0909-6396(2007)13[340:COTLLL]2.0.CO;2
27. DREAL Grand Est. Diagnostic partagé du massif des Vosges pour une vision transversale du territoire et de ses enjeux. 2018.
28. Zimmermann F, Breitenmoser-Würsten C, Molinari-Jobin A, Breitenmoser U. Optimizing the size of the area surveyed for monitoring a Eurasian lynx (Lynx lynx) population in the Swiss Alps by means of photographic capture-recapture. Integr Zool. 2013;8: 232–243. doi:10.1111/1749-4877.12017
29. Breitenmoser-Würsten C, Zimmermann F, Stahl P, Vandel J-M, Molinari-Jobin A, Molinari P, Capt S, Breitenmoser U. Spatial and Social stability of a Eurasian lynx Lynx lynx population: an assessment of 10 years of observation in the Jura Mountains. Wildlife Biology. 2007;13: 365–380. doi:10.2981/0909-6396(2007)13[365:SASSOA]2.0.CO;2
30. Blanc L, Marboutin E, Gatti S, Gimenez O. Abundance of rare and elusive species: Empirical investigation of closed versus spatially explicit capture-recapture models with lynx as a case study. The Journal of Wildlife Management. 2013;77: 372–378.
399 doi:10.1002/jwmg.453

31. Zimmermann F, Foresti D. Capture-recapture methods for density estimation. Camera Trapping for Wildlife Research. Pelagic Publishing. Exeter, UK; 2016. pp. 95–141.

32. Zimmermann F, Breitenmoser-Würsten C, Breitenmoser U. Natal dispersal of Eurasian lynx (Lynx lynx) in Switzerland. Journal of Zoology. 2005;267: 381–395. doi:10.1017/S0952836905007545

33. Rocha DG da, Sollmann R, Ramalho EE, Ilha R, Tan CKW. Ocelot (Leopardus pardalis) Density in Central Amazonia. Hagen CA, editor. PLOS ONE. 2016;11: e0154624. doi:10.1371/journal.pone.0154624

34. Sutherland C, Muñoz DJ, Miller DAW, Grant EHC. Spatial Capture–Recapture: A Promising Method for Analyzing Data Collected Using Artificial Cover Objects. Herpetologica. 2016;72: 6–12. doi:10.1655/HERPETOLOGICA-D-15-00027

35. Sutherland C, Royle JA, Linden DW. oSCR: a spatial capture–recapture R package for inference about spatial ecological processes. Ecography. 0. doi:10.1111/ecog.04551

36. Baillargeon S, Rivest L-P. Rcapture: Loglinear Models for Capture-Recapture in R. Journal Of Statistical Software. 2007;19: 1–31.

37. Kubala J, Smolko P, Zimmermann F, Rigg R, Tám B, Ilko T, et al. Robust monitoring of the Eurasian lynx Lynx lynx in the Slovak Carpathians reveals lower numbers than officially reported. Oryx. 2017; 1–9. doi:10.1017/S003060531700076X

38. Weingarth K, Heibl C, Knauer F, Zimmermann F, Bufka L, Heurich M. First estimation of Eurasian lynx (Lynx lynx) abundance and density using digital cameras and capture–recapture techniques in a German national park. Animal Biodiversity and Conservation. 2012; 11.

39. Gerber BD, Karpanty SM, Kelly MJ. Evaluating the potential biases in carnivore capture–recapture studies associated with the use of lure and varying density estimation
techniques using photographic-sampling data of the Malagasy civet. Popul Ecol. 2012;54: 43–54. doi:10.1007/s10144-011-0276-3

40. Reppucci J, Gardner B, Lucherini M. Estimating detection and density of the Andean cat in the high Andes. Journal of Mammalogy. 2011;92: 140–147. doi:10.1644/10-MAMM-A-053.1

41. Weingarth K, Zeppenfeld T, Heibl C, Heurich M, Bufka L, Daniszová K, et al. Hide and seek: extended camera-trap session lengths and autumn provide best parameters for estimating lynx densities in mountainous areas. Biodiversity and Conservation. 2015;24: 2935–2952. doi:10.1007/s10531-015-0986-5

42. Royle JA, Fuller AK, Sutherland C. Spatial capture–recapture models allowing Markovian transience or dispersal. Population Ecology. 2016;58: 53–62. doi:10.1007/s10144-015-0524-z

43. Sollmann R, Furtado MM, Gardner B, Hofer H, Jácomo ATA, Tôrres NM, et al. Improving density estimates for elusive carnivores: Accounting for sex-specific detection and movements using spatial capture–recapture models for jaguars in central Brazil. Biological Conservation. 2011;144: 1017–1024. doi:10.1016/j.biocon.2010.12.011

44. Cubaynes S, Pradel R, Choquet R, Duchamp C, Gaillard J-M, Lebreton J-D, et al. Importance of accounting for detection heterogeneity when estimating abundance: the case of French wolves. Conservation Biology. 2010;24: 621–6. doi:10.1111/j.1523-1739.2009.01431.x

45. Vogt K, Zimmermann F, Kölliker M, Breitenmoser U. Scent-marking behaviour and social dynamics in a wild population of Eurasian lynx Lynx lynx. Behavioural Processes. 2014;106: 98–106. doi:10.1016/j.beproc.2014.04.017

46. Gardner B, Reppucci J, Lucherini M, Royle JA. Spatially explicit inference for open populations: Estimating demographic parameters from camera-trap studies. Ecology. 2010;91:
449 3376–3383.

450 47. Whittington J, Sawaya MA. A Comparison of Grizzly Bear Demographic Parameters Estimated from Non-Spatial and Spatial Open Population Capture-Recapture Models. Boyce MS, editor. PLOS ONE. 2015;10: e0134446. doi:10.1371/journal.pone.0134446

451 48. Blanc L, Marboutin E, Gatti S, Zimmermann F, Gimenez O. Improving abundance estimation by combining capture-recapture and occupancy data: Example with a large carnivore. Journal of Applied Ecology. 2014;51: 1733–1739.

452 49. Tenan S, Pedrini P, Bragalanti N, Groff C, Sutherland C. Data integration for inference about spatial processes: A model-based approach to test and account for data inconsistency. Rocchini D, editor. PLOS ONE. 2017;12: e0185588. doi:10.1371/journal.pone.0185588

453 50. Kramer-Schadt S, Revilla E, Wiegand T, Breitenmoser U. Fragmented landscapes, road mortality and patch connectivity: Modelling influences on the dispersal of Eurasian lynx. Journal of Applied Ecology. 2004;41: 711–723. doi:10.1111/j.0021-8901.2004.00933.x

454 51. Zimmermann F, Breitenmoser U. Potential distribution and population size of the Eurasian lynx Lynx lynx in the jura Mountains and possible corridors to adjacent ranges. Wildlife Biology. 2007;13: 406–416. doi:10.2981/0909-6396(2007)13[406:PDAPSO]2.0.CO;2

455 52. Royle JA, Chandler RB, Gazenski KD, Graves TA. Spatial capture–recapture models for jointly estimating population density and landscape connectivity. Ecology. 2013;94: 287–294. doi:10.1890/12-0413.1

456 53. Sutherland C, Fuller AK, Royle JA. Modelling non-Euclidean movement and landscape connectivity in highly structured ecological networks. Methods in Ecology and Evolution. 2015;6: 169–177. doi:10.1111/2041-210X.12316

457 54. Gervasi V, Brøseth H, Gimenez O, Nilsen EB, Odden J, Flagstad ., et al. Sharing data
improves monitoring of trans-boundary populations: The case of wolverines in central Scandinavia. Wildlife Biology. 2016;22: 95–106. doi:10.2981/wlb.00142

55. Vitkalova AV, Feng L, Rybin AN, Gerber BD, Miquelle DG, Wang T, et al. Transboundary cooperation improves endangered species monitoring and conservation actions: A case study of the global population of Amur leopards. Conservation Letters. 2018; e12574. doi:10.1111/conl.12574

56. Linden DW, Sirén APK, Pekins PJ. Integrating telemetry data into spatial capture–recapture modifies inferences on multi-scale resource selection. Ecosphere. 2018;9: e02203. doi:10.1002/ecs2.2203

57. Hurstel A, Laurent A. Première preuve de dispersion du Lynx d’Eurasie (Lynx lynx) du Jura vers les Vosges. Ciconia. 2016: 1–6.

58. Efford M. secr: Spatially explicit capture-recapture models. R package version 3.2.1. [Internet]. 2019. Available: https://CRAN.R-project.org/package=secr
Figures

Figure 1: Map of the study area in the French Jura and Vosges mountains. The study area encompassed seven counties (Ain, Jura and Doubs in the Jura mountain and Vosges, Haut-Rhin, Bas-Rhin and Moselle in the Vosges mountain) that were monitored through 418 camera trapping sites (298 in the Jura mountain and 115 in the Vosges mountain; two camera traps were set per site), each within a 2.7 x 2.7 km cell. The inset map represents the French counties (grey borders), the counties that were considered in the study (black borders), the Jura mountain (green shaded area) and the Vosges mountain (red shaded area).

Figure 2: Lynx (Lynx lynx) density maps in the French Jura mountain. The density scale is in lynx per 2.25 km² (pixel resolution is 1500m x 1500m). We obtained the estimated abundance in each map by summing up the densities in each pixel altogether. Yellow is for low densities, green for medium densities and blue for high densities; the density scales are specific to each map. Note that the interpretation of these plots as density maps is subject to caution (see the vignette “secr-densitiesurface” of the SECR R package [58]).
Table 1: Main characteristics and results of the lynx camera-trap survey carried out in a) the French Jura mountain and b) the French Vosges mountain.

a. Year/County	2011/Doubs	2011/Jura	2012/Jura & Doubs	2013/Doubs	2013/Ain & Jura	2014/Ain	2015/Ain
Period of trap activity	Jan-Apr	Feb-Apr	Feb-Apr	Feb-Apr	Feb-Apr	Feb-Apr	Feb-May
Number of active traps	48	66	148	44	142	118	30
Number of trapping days (average/area)	63	59	69	63	58	59	99
Number of capture occasions¹	15	15	17	14	13	13	21
Number of detections	22	42	130	25	117	158	38
Number of detected individuals	4	9	21	6	19	23	10
Number of females, unknown, males	1, 1, 2	1, 7, 1	2, 14, 5	1, 4, 1	2, 13, 4	4, 16, 3	2, 8, 0
Number of detections / ind: mean, min, max	3, 2, 4	2.8, 1, 6	2.5, 1, 10	2.7, 1, 6	3.6, 1, 11	3.3, 1, 9	2.2, 1, 5

b. Year/County	2013/Haut-Rhin & Vosges	2014/Bas-Rhin & Moselle	2015/Bas-Rhin & Moselle	2016/Bas & Haut-Rhin	
Period of trap activity	Dec-Jan	Feb-Apr	Feb-Apr	Feb-Apr	Feb-Apr
Number of active traps	60	50	60	60	60
Number of trapping days (average/area)	52	59	57	59	59
Number of detections	0	0	0	0	0

¹A capture occasion is defined as 5 successive trap days.
Table 2: Lynx abundance and density estimates obtained from spatial and non-spatial capture-recapture analyses of camera-trapping data collected in the French Jura mountain. Densities are provided in number of lynx per 100 km². For 2011 and 2013, parameters of the spatial capture-recapture model (p_0 and σ) are common to both areas in each year. Acronyms are defined in the footnote.

Year/County	2011/Doubs	2011/Jura	2012/Jura-Doubs	2013/Doubs	2013/Ain-Jura	2014-Ain	2015-Ain
SCR abundance (SE)	5 (0.1)	12 (0.1)	29 (0.2)	7 (0.1)	21 (0.1)	29 (0.2)	12 (0.1)
SCR density (SE)	0.24 (0.02)	0.44 (0.02)	0.67 (0.02)	0.36 (0.02)	0.54 (0.02)	0.91 (0.03)	0.64 (0.03)
p_0 logit scale (SE)	-2.94 (0.24)	-2.01 (0.20)	-2.57 (0.20)	-2.34 (0.19)	-3.01 (0.42)		
σ log scale (SE)	8.89 (0.14)	8.54 (0.08)	8.95 (0.06)	8.80 (0.07)	8.97 (0.19)		
M0 abundance (SE)	4 (0.7)	9 (0.7)	21 (0.6)	6 (0.3)	19 (0.8)	23 (0.7)	11 (1.2)
Mh abundance (SE)	5 (1.7)	10 (1.8)	25 (2.8)	7 (1.2)	25 (4.1)	28 (3.6)	11 (1.2)
MMDM (km)	9.1	16.2	8.9	9.1	18.2	13.6	12.1
ETA with MMDM (km²)	1991	2930	3089	1171	4954	2936	1549
M0 density MMDM (SE)	0.31 (0.05)	0.31 (0.02)	0.68 (0.02)	0.51 (0.02)	0.38 (0.02)	0.78 (0.02)	0.71 (0.08)
Mh density MMDM (SE)	0.39 (0.13)	0.34 (0.06)	0.81 (0.09)	0.60 (0.10)	0.50 (0.08)	0.95 (0.12)	0.70 (0.08)
ETA with HMMDM (km²)	697	1491	2111	659	2673	1668	753
	M0 density HMMDM (SE)	Mh density HMMDM (SE)					
----------------	-----------------------	-----------------------					
	0.57 (0.10)	0.72 (0.24)					
	0.60 (0.05)	0.67 (0.12)					
	0.99 (0.03)	1.18 (0.13)					
	0.91 (0.05)	1.06 (0.18)					
	0.71 (0.03)	0.93 (0.15)					
	1.38 (0.04)	1.68 (0.21)					
	1.46 (0.16)	1.43 (0.16)					

¹Acronyms used: ETA is for Effective Trapping Area, MMDM for Mean Maximum Distance Moved, HMMDM for Half Mean Maximum Distance Moved, SCR for spatial capture-recapture, M0 for the (non-spatial) capture-recapture model with homogeneous detection probability, Mh for the (non-spatial) capture-recapture model with heterogeneous detection probability and SE for standard error.
Figure 1
Figure 2