Reactive oxygen species and antioxidant properties from mushrooms

Carmen Sánchez

Laboratory of Biotechnology, Research Centre for Biological Sciences, Universidad Autónoma de Tlaxcala, Ixtacuixtla, Tlaxcala, CP. 90062, Mexico

Abstract

Preventive medicine and food industry have shown an increased interest in the development of natural antioxidants, since those most commonly used synthetic antioxidants may have restricted use in food. This could explain why there is currently much research on the antioxidant properties from natural products such as mushrooms. Many mushrooms have been reported to possess antioxidant properties, which enable them to neutralize free radicals. The oxygen molecule is a free radical, which lead to the generation of the reactive oxygen species and can damage the cells. Cell damage caused by free radicals appears to be a major contributor to aging and degenerative diseases. Mushrooms antioxidant components are found in fruit bodies, mycelium and culture both, which include polysaccharides, tocopherols, phenolics, carotenoids, ergosterol and ascorbic acid among others. Fruit bodies or mycelium can be manipulated to produce active compounds in a relatively short period of time, which represent a significant advantage in antioxidant compounds extraction from mushrooms. Antioxidant compounds may be extracted to be used as functional additives or mushrooms can be incorporated into our food regime, representing an alternative source of food to prevent damage caused by oxidation in the human body.

Keywords:
Antioxidant
Fruit body
Mushroom
Mycelium
Reactive oxygen species

1. Introduction

1.1. Mushroom

The term mushroom may come from the Latin word mucus (slime) [1]. According to Chang and Miles [2] "mushroom is a macro...

Abbreviations: ROS, reactive oxygen species; DPPH•, 1,1-diphenyl-2-picrylhydrazyl; TEAC, Trolox equivalent antioxidant capacity; ABTS•⁺, 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulphonate) radical cation; NBT, nitroblue tetrazolium.

E-mail address: sanher6@hotmail.com.

Peer review under responsibility of KeAi Communications Co., Ltd.
fungus with a distinctive fruit body, which can be either epigeous (grow above the earth) or hypogeous (grow underground; i.e. truffles) and large enough to be seen with naked eye to be picked by hand". These organisms are a very large and diversified group of macrofungi (i.e. higher fungi) belonging to basidiomycetes and ascomycetes that can be edible or non-edible. The fungal spores for these two groups of macrofungi are located in a special structure called basidium (for basidiomycetes) or ascus (for ascomycetes). Mushrooms grow mostly above the earth and some of them have an umbrella-shaped fruiting body, where spores are produced (in lamellae, structures on the underside of the pileus or cap). Two phases of growth are distinguishable in these organisms; the reproductive phase (fruit bodies) and the vegetative phase (mycelia or mycelial growth). During substrate invasion, hyphae continually grow and branch to form a network of hyphae (mycelia) and a fruit body grows from underground mycelia by a process called fructification. Mycelial growth is generally coupled with increased enzyme production and respiration. Hyphae absorb digestive products, penetrating the substrate to some extent. The fungal cell wall can be formed by β-D-glucans, proteins, and chitin (Fig. 1).

From the ecological point of view, mushroom can be saprotrophs, parasites and mycorrhiza. There are only few parasitic mushrooms. Most of the cultivated mushrooms are saprotrophs. Mycorrhizal mushrooms have a symbiotic relationship with some vegetation, mainly trees, having a relationship of mutual need. Saprotrophs are able to obtain nutrients from dead organic material and parasites obtain their food from living animals and plants, causing harm to the host [3]. Mushrooms have been eaten and appreciated for their exquisite flavor, economic and ecological values, and medicinal properties for many years. In general, mushrooms contain 90% water and 10% dry matter [4]. They have chemical composition which is attractive from the nutritional point of view [5]. Their nutritional value can be compared to those of eggs, milk, and meat [6]. Mushrooms contain vitamins (thiamine, riboflavin, ascorbic acid, ergosterol and niacin) as well as an abundance of essential amino acids. They also have proteins, fats, ash, and glycosides. Volatiles oils, tocopherols, phenolic compounds, flavonoids, carotenoids, folates, organic acids, etc [7,8]. The total energetic value of mushroom caps is between 250 and 350 cal/kg of fresh mushrooms [4]. Mushrooms can be considered as functional food which provides health benefits in addition to nutritional value [9]. They have been collected in several countries for hundreds of years and technological improvements have made possible their cultivation world-wide.

1.2. Reactive oxygen species and antioxidant system

Around 2.45 billions of years ago molecular oxygen was introduced in our environment by the O2-evolving photosynthetic organisms and reactive oxygen species (ROS) has been present ever since in aerobic life [10]. The O2 molecule is a free radical (it has two impaired electrons), which lead to the generation of the ROS and can damage the cells of all organisms. A free radical is a chemical compound that contains one or more unpaired electrons in atomic or molecular orbitals [11]. Reactive molecules such as superoxide anion (O2−), hydroxyl radical (OH·), hydroxyl ion (OH−), nitric oxide (NO·) and hydrogen peroxide (H2O2) are free radicals and non-radical molecular forms, respectively derived from molecular oxygen. In humans, oxidation is a process that the body uses for normal energy production and immune function. This is part of the process that enables the body to transform nutrients such as carbohydrates, fats, and proteins into energy. During oxidation, ROS are produced at low levels in normal physiological conditions, which are necessary for maintaining normal cell functions, and the endogenous antioxidant defense systems of the body have the capacity to avert any harmful effects. However, ROS are extremely harmful to organisms at high concentrations. When the level of ROS exceeds the defense mechanisms, they can affect many cellular processes.
functions by damaging nucleic acids, oxidizing proteins, and causing lipid peroxidation (Fig. 2). ROS can be produced either by external sources (e.g. tobacco smoke, ozone, stress, etc.) or as byproducts during the mitochondrial electron transport of aerobic respiration or by oxidoreductase enzymes and metal catalyzed oxidation [12]. Because they are reactive, radicals search out ways of pairing up their electron, so radicals often attack nearby chemical compounds. These chemical compounds may be involved in important enzyme reactions, may be components of cell walls or may be part of a DNA molecule. If their chemical structure is changed, their function in the cell may be lost and the result can be cellular senescence or apoptosis [12]. Cell damage caused by free radicals appears to be a major contributor to aging and degenerative diseases of aging such as cancer, cardiovascular disease, cataracts, immune system decline, liver diseases, diabetes mellitus, inflammation, renal failure, brain dysfunction and stress among others [11,13] (Fig. 2). Neutralizing of free radicals or peroxide radicals by an antioxidant agent is important for cell protection against oxidative stress. Then, antioxidants are chemicals which inhibit the oxidation reaction of free radicals by exchanging one of their own electrons with the free radical molecules to stabilize them. These compounds can be endogenous and dietary antioxidants such as polyphenol, vitamin A (e.g. carotenoids), vitamin E (α-tocopherol), β-glucan, etc. Proteins and low molecular weight antioxidants such as ascorbic acid (vitamin C), glutathione, etc, are endogenous antioxidants. Glutathione may be the most important intracellular defense against the deleterious effects of ROS. It is a tripeptide (glutamyl-cysteinyl-glycine), which provides an exposed sulfhydryl group as target for attack. Metal-binding proteins and enzymes are antioxidant proteins. Enzymes that can fight free radical formation and propagation are superoxide dismutase, glutathione peroxidase, etc, and enzymes that repair or eliminate damage biomolecules include lipase, peptidase, transferase among others [14,15] (Fig. 3).

2. In vitro methods to assess antioxidant activity

Around 11 in vitro methods have been used for antioxidant evaluation activity in a biological material [16]. The most commonly used methods to measure mushrooms antioxidant activity are those involving chromogen compounds of radical nature that stimulate the reductive oxygen species (e.g. ABTS and DPPH methods). Examples of other methods that are also used are mentioned below.

2.1. DPPH+ and ABTS++ assays

DPPH+ assay is based on scavenging of the purple chromogen radical 1,1-diphenyl-2-picrylhydrazyl (DPPH+) by the antioxidants, which produces a decrease in absorbance at 515 nm. When a solution of DPPH+ is mixed with a substance that can donate a hydrogen atom, the reduced form of the radical is accompanied by loss of color. The activity is expressed as half inhibitory concentration IC50. It refers to the amount of antioxidant necessary to decrease by 50% the initial DPPH+ concentration. Therefore, a lower IC50 means better radical scavenging activity or antioxidant activity [16,17].

2,2′-azinobis-(3-ethylbenzothiazoline-6-sulphonate) radical cation (ABTS+++) assay is also known as Trolox equivalent antioxidant capacity (TEAC) assay. The antioxidant reduces ABTS++ to ABTS and decolorize it. The relative ability of hydrogen-donating antioxidants to scavenge ABTS++ can be measured spectrophotometrically at 734 nm. Results are expressed by comparison with standard amounts of the synthetic antioxidant trolox (6-hydroxy-2,5,7,8-

![Fig. 2. Schematic representation of a human cell, which can be damaged by free radicals generated from internal and external sources. Neutralizing of free radicals by an antioxidant agent is important to maintain a healthy cell.](image-url)
tetramethylchroman-2-carboxylic acid), a water-soluble analog of vitamin E that can be used as an antioxidant standard to give rise to the TEAC [16].

2.2. Superoxide anion radical scavenging activity assay

Superoxide anion (O$_2^-$), resulting from the univalent reduction of O$_2$, is considered as being the first step leading to oxidative stress. For measuring O$_2^-$ scavenging activity, a suitable system should be selected for generating these radicals. Two systems are used for producing O$_2^-$; the xanthine/xanthine oxidase system and phenazine methosulphate system in the presence of nicotinamide adenine dinucleotide (NADH). The reaction of formation of O$_2^-$ is based on the catalysis of xanthine oxidase. In this case, nitroblue tetrazolium (NBT), a probe/target for measuring the O$_2^-$ scavenging capacities of samples is used. The color reaction of the O$_2^-$ with NBT is detected at 560 nm. Antioxidant activity of samples to inhibit the color to 50% is measured in terms of IC$_{50}$ [16,18].

2.3. Reducing power method

This method is based on the principle of increase in the absorbance of the reaction mixtures. Increase in the absorbance indicates the reducing power of the samples (antioxidant activity). In this method, antioxidant compound forms a colored complex with potassium ferricyanide, trichloroacetic acid and ferric chloride, which is measured at 700 nm [19].

2.4. Ferrous ion chelating assay

The interaction of ferrous ion (Fe$^{2+}$) with hydrogen peroxide in biological systems can lead to formation of highly reactive hydroxyl radicals. Ferrozine is a ferroin compound that can form a complex with a red color by forming chelates with Fe$^{2+}$. In the presence of other chelating agents, the complex formation is disrupted, resulting in a decrease of the red color of the ferrozine-Fe$^{2+}$ complexes. Measurement (spectrophotometrically at 562 nm) of the rate of color reduction therefore allows estimation of the chelating activity of the coexisting chelator. The chelation of ferrous ions is determined using the method of Dinis et al. [20]. EDTA is used as a reference standard for this assay. A lower absorbance value indicates a better ferrous ion-chelating ability of the test sample.

3. Antioxidant compounds from mushrooms

A wide range of mushrooms have been reported to possess antioxidant properties. Extracts from mushrooms contain many components, each of which is unique to a specific mushroom. Antioxidant compounds are found in fruit bodies, mycelium and culture both, which can be phenolics, polysaccharides, tocopherols, flavonoids, carotenoids, glycosides, ergothioneine and ascorbic acid (Table 1).

3.1. Phenolic compounds

Phenolic compounds are aromatic hydroxylated compounds with one or more aromatic rings and one or more hydroxyl groups. They include phenolic acids, flavonoids, hydroxybenzoic acids, hydroxycinnamic acids, lignans, tannins, stilbenes and oxidized polyphenols. Furthermore, some of them stimulate synthesis of endogenous antioxidant molecules in the cell [21,22]. It has been reported that phenolic compounds exhibit antioxidant activity in biological systems, acting as free radical inhibitors, peroxide decomposers, metal inactivators or oxygen scavengers [23,24].
Mushroom scientific name	Mushroom common names	Phylum/Edibility	Antioxidant compounds	Biomaterial source	Reference
Agaricus arvensis	Horse mushroom	B/E	β-Carotene, ascorbic acid, lycopene, phenolic compounds	Fruit bodies extracts	[42–44]
Agaricus bisporus	Common mushroom, button mushroom, white mushroom, champignon mushroom	B/E	Pyroglactone, ergothioneine, α- and β-glucans, Catechin, gallic acid, rutin, caffeic acid	Fruit bodies and mycelia, Fruit bodies hot water extracts	[17,33,35,44–49]
Agaricus blazei	Almond mushroom, mushroom of the sun	B/E	Benzoic acid, myricetin, quercetin, pyroglactone, α- and β-glucans	Fruit bodies hot water extracts	[17,35,50]
Agaricus romagnesi	NA	B/NE	Phenolic compounds, β-carotene	Fruit bodies	[43,44]
Agaricus silvaticus	Scaly wood mushroom	B/E	Phenolic compounds, β-carotene	Fruit bodies	[43,44]
Agaricus silvicoloidus	Wood mushroom	B/E	β-Carotene, ascorbic acid, lycopene, phenolic compounds	Fruit bodies	[42,44,45]
Agrocybe cylindracea	Black poplar mushroom	B/E	α-Tocopherol, β-tocopherol	Fruit bodies	[32,51]
Amanita rubescens	Blusher	B/NE	Phenolics compounds, flavonoids	Methanol extract	[33,52]
Armillaria mellea	Honey mushroom	B/NE	Antioxidant components, ascorbic acid, flavonoids and phenolic compounds	Dried mycelia and mycelia-free broth extracts	[53]
Armillaria ostoyae	Humongous fungus	B/NE	Phenolic compounds	Fruit bodies extracts	[33]
Auricularia auricula-juda	Jelly mushroom; juda's ear fungus	B/E	Polysaccharides, phenolic compounds	Fruit bodies	[54,40]
Auricularia polytricha	Cloud ear, jelly ear	B/E	Phenolic compounds	Fruit bodies extracts	[34,55]
Boletus edulis	Porcini, penny bun	B/E	β-Carotene, α-tocopherol, phenolic compounds, flavonoids, tocopherols	Fruit bodies extracts	[34,47,49,56,58,59]
Calocybe gambosa	St. George's mushroom	B/E	Phenolic compounds, flavonoids	Fruit bodies methanol extract	[47]
Cantharellus cibarius	Chanterelle	B/E	Phenolic compounds, flavonoids	Fruit bodies extracts	[34,45,47,49,52]
Cantharellus clavatus	Pig's ears, violet chanterelle	B/E	Phenolic compounds	Fruit bodies extracts	[34]
Chlorophyllum rhacodes	Shaggy parasol	B/NE	Phenolic compounds	Fruit bodies extracts	[33]
Clavaria vermicularis	Fairy fingers, white worm coral	B/E	Flavonoids, ascorbic acid	Fruit bodies methanol extracts	[25]
Clitocybe alexandri	Alexander's Funnel	B/E	Tocopherols, phenolic compounds	Fruit bodies extracts	[36,60]
Clitocybe geotropa	Trooping funnel	B/E	Phenolic compounds	Fruit bodies extracts	[61]
Coprinus comatus	Shaggy ink cap	B/E	β-Carotene, α-glucans	Fruit bodies extract	[48]
Cariolus versicolor	Polypore mushroom	B/NE	Gallic, p-coumaric, protocatechin, caffeic and vanillic acids	Methanol extracts	[63]
Cortinarius glaucopus	Blue-foot webcap	B/E	Tocopherols, phenolic compounds	Fruit bodies extracts	[36]
Craterellus	Horn of plenty	B/E	Phenolic compounds, flavonoids	Fruit bodies methanol extracts	[47]
Cortinarius spp.	Beefsteak fungus, beefsteak polypore	B/E	Tocopherols, phenolic compounds, Gallic acid, pyroglactone, homogentisic acid, 5-sulfosalicylic acid, protocatechuic acid, quercetin, caffeic acid	Fruit bodies methanol extracts	[36,35,64,65]
Flammulina velutipes	Golden needle mushroom; enokitake (Japanese name)	B/E	Gallic acid, pyroglactone, homogentisic acid, 5-sulfosalicylic acid, protocatechuic acid, quercetin, caffeic acid, mycelium ethanolic extract	Methanol extracts	[63]
Ganoderma applanatum	Artist's bracket, artist's conk, bear bread	B/NE	Gallic, p-coumaric, protocatechin, caffeic and vanillic acids	Methanol extracts	[63]
Ganoderma lucidum	Lingzhi mushroom, Reishi (Japanese name)	B/E	Quercetin, kaempferol, Triterpenoids, polysaccharides	Fruit bodies	[17,35,55,66]
Ganoderma tsugae	Hemlock varnish shelf	B/NE	Polysaccharides	Fruit bodies, mycelium and extracts	[67]
Gomphus clavatus	Pig's ears, violet chanterelle	B/E	Ergosterol, phenolic compounds	Fruit bodies extracts	[68]
Grifola frondosa	Hen-of-the-woods, ram's head and sheep's head.	B/E	Phenolic compounds, β-1,6 and β-1,3-glucan	Fruit bodies extract	[69,70]
Helvella crispa	White saddle, elfin saddle, common helvel	A/NE	Phenolic compounds	Fruit bodies extracts	[34]
Hericium erinaceus	Lion's mane mushroom,	B/E	Phenolic compounds	Fruit bodies and mycelium extract	[71]
Hydnum repandum	Sweet tooth, wood hedgehog, hedgehog mushroom	B/E	Tocopherols, phenolic compounds	Fruit bodies extracts	[33,34,36,72]
Hygrophoropsis aurantica	False chanterelle	B/NE	Tocopherols, phenolic compounds	Fruit bodies extracts	[36]
Hygrophorus marzuolius	March mushroom	B/E	Phenolic compounds, flavonoids	Fruit bodies methanol extracts	[47]

(continued on next page)
Mushroom scientific name	Mushroom common names	Phylum/Edibility	Antioxidant compounds	Biomaterial source	Reference
Hypholoma					
capnoides		B/NE	Tocopherols, phenolics, flavonoids, ascorbic acid, β-carotene	Fruit bodies extracts	[42]
fasciculare		B/E	Ascorbic acid, β-carotene, tocoherpols	Fruit bodies methanolic extract	[73]
marmorosus		B/E	p-Hydroxybenzoic acid, queretin, kaempferol	Mycelium: methanolic and water extracts	[35,55]
Inonotus		B/E	Tocopherols, phenolic compounds	Fruit bodies extracts	[36]
Laccaria		B/E	Tocopherols, phenolic compounds	Fruit bodies extracts	[36]
amethystine	Amethyst deceiver				
lucida	The decever, waxy laccaria				
Lactarius		B/NE	Free sugars, fatty acids, tocoherpols and phenolic acids	Fruit bodies methanolic extract	[74]
citriolens					
Lactarius		B/E	Phenolic compounds, flavonoids	Fruit bodies methanolic extract	[33,34,47,75]
delicious	Saffron milk cap and red pine mushroom				
piperatus	Peppery milk-cap				
Lentinula		B/E	Phenolic compounds, flavonoids	Methanolic extract	[33,52,76]
edodes	Forest mushroom, shiitake				
Lentinus		B/NE	Phenolic compounds, flavonoids	Fruit bodies methanolic extract	[33,77]
Lenzites		B/NE	Phenolic compounds, flavonoids	Fruit bodies methanolic extract	[33]
betulina	Gilled polypore				
Lepista		B/E	Phenolic compounds, flavonoids	Fruit bodies methanolic extract	[33]
nova	Wood blewit, blue stalk mushroom				
Lepista		B/NE	Phenolic compounds, flavonoids	Fruit bodies methanolic extract	[33]
sordida	Fairy rings				
Leucopaxillus		B/E	Phenolic compounds, flavonoids	Fruit bodies methanolic extract	[35]
giganteus	Giant leucopax				
Leuco Penal		B/E	Phenolic compounds, flavonoids	Fruit bodies methanolic extract	[35]
molle	The smooth puffball				
Lycoperon		B/E	Phenolic compounds, flavonoids	Fruit bodies methanolic extract	[35]
perlatum	Common puffball				
Macrolepiota		B/E	Phenolic compounds, flavonoids, ascorbic acid, β-carotene	Fruit bodies methanolic extract	[35]
mastoides	NA				
Macrolepiota		B/E	Phenolic compounds, flavonoids, ascorbic acid, β-carotene	Fruit bodies methanolic extract	[35]
procera	The parasol mushroom				
Marasmius		B/E	Phenolic compounds, flavonoids	Fruit bodies methanolic extract	[35]
oreades	Scotch bonnet, fairy ring mushroom				
Meripilus		B/E	Phenolic compounds, flavonoids	Fruit bodies methanolic extract	[35]
giganteus	Giant polypore, black-staining polyvore				
Mycena		B/E	Tocopherols, phenolics, flavonoids, ascorbic acid, β-carotene	Fruit bodies methanolic extract	[35]
rosea	Rosy bonnet				
Pana		B/NE	Tocopherols, phenolic compounds	Fruit bodies methanolic extract	[35]
conchatus	Lilac oysterling				
Panus		B/NE	Tocopherols, phenolic compounds	Fruit bodies methanolic extract	[35]
tigrinus	NA				
Phellinus		B/E	Phenolic compounds, flavonoids	Fruit bodies methanolic extract	[35]
igniarius	Willow bracket, fire sponge				
linteus	Black hoof mushroom, meshimakobu (Japanese name)	B/NE	Hspidin α-Tocopherol, protocatechuic acid, gallic acid, pyrogallol; homogenetic acid, α- and β-glucans	Dried mushrooms	[81]
Pleurotus					
albidus	NA	B/E	Phenolic compounds, flavonoids	Fruit bodies methanolic extract	[83]
korunulus	NA	B/E	Phenolic compounds, flavonoids	Fruit bodies methanolic extract	[61]
crypticus	Abalone oyster; summer oyster mushroom				
Pleurotus		B/E	Tocopherols, phenolic compounds	Fruit bodies methanolic extract	[34,84]
djamor	Pink oyster mushroom				
dryinus	NA	B/E	Phenolic compounds, flavonoids	Fruit bodies methanolic extract	[33]
eous	NA	B/E	Phenolic compounds, flavonoids	Fruit bodies water extracts	[83]
eryngii	King oyster, king trumpet mushroom;				
ostreatus	Oyster mushroom				

Table 1 (continued)
Phenolic compounds are present in all the mushrooms. These compounds can be pyrogallol, myricetin, caffeic acid, quercetin and catechin among others (Table 1). Mushrooms contain large amounts of polyphenols at concentrations in the range of 6.25–3.62 mg/mL. [25,26]. It has been reported that grapes and wine contain between 1.0 and 1.8 µg/mL of these compounds [27].

Table 1 (continued)

Mushroom scientific name	Mushroom common names	Phylum/Edibility	Antioxidant compounds	Biomaterial source	Reference
Pleurotus pulmonarius	Indian oyster, Italian oyster, phoenix B/E mushroom	myricetin, tocopherols, glycoproteins, α-D-Glucan (pleuran)	Fruit bodies methanolic extracts	[25,81]	
Pleurotus sapor-caju	Grey oyster mushroom	Phenolic compounds	Fruit bodies water and methanolic extracts	[34,88]	
Polyporus squamosus	Dryad’s saddle and pheasant’s back mushroom	β-Carotene, α-tocopherol	Fruit bodies methanolic extracts	[56]	
Polyporus tenuiculus	NA	Phenolic compounds	Fruit bodies	[40]	
Pycnoporus sanguineus	NA	Phenolic compounds	Mycelium extracts	[80]	
Ramaria botrytis	Clustered coral, the pink-tipped coral mushroom	Tocopherols, phenolic compounds, ascorbic acid, β-carotene	Fruit bodies extracts	[26]	
Ramaria formosa	Beautiful clavaria, pink coral fungus	Ascorbic acid, flavonoids	Fruit bodies extracts	[25]	
Russula brevipes	Short-stemmed russula, the stubby brittlegill	Phenolic compounds	Fruit bodies extracts	[34]	
Russula cyanoxantha	Charcoal burner	Phenolic compounds	Methanolic extract	[52]	
Russula delica	Milk-white brittlegill	Phenolic compounds	Fruit bodies methanolic extracts	[56,33]	
Russula integrata	The entire russula	Phenolic compounds	Fruit bodies extracts	[33]	
Russula nigricans	Blackening brittlegill	Phenolic compounds	Fruit bodies extracts	[33]	
Russula vesca	Bare-toothed russula	Tocopherols, phenolic compounds	Fruit bodies extracts	[36]	
Russula vinosa	Darkening brittlegill	Phenolic compounds	Fruit bodies extracts	[33]	
Sarcodon imbricatus	Shingled hedgehog, scaly hedgehog	α- and β-Glucans, phenolic compounds	Fruit bodies extracts	[42,75]	
Schizophyllum commune	Split-gill fungus	Protecatechuc acid, benzoic acid, p-hydroxybenzoic acid	Fruit bodies	[35,72]	
Sparassis crispa	Cauliflower fungus	Phenolic compounds, β-carotene	Aqueous and methanolic extracts of dried fruiting bodies	[49]	
Suillus bovinus	Jersey cow mushroom, bovine bolete	Phenolic compounds, β-carotene	Aqueous and methanolic extracts of dried fruiting bodies	[49]	
Suillus collinitus	NA	Tocopherols, phenolic compounds	Fruit bodies extracts	[36]	
Suillus luteus	Slippery jack or sticky bun	Phenolic compounds	Fruit bodies extracts	[36]	
Suillus mediterraneensis	NA	Tocopherols, phenolic compounds	Fruit bodies extracts	[36]	
Suillus variegatus	Velvet bolete	Phenolic compounds, β-carotene	Aqueous and methanolic extracts of dried fruiting bodies	[49]	
Termitomyces heimii	Termite nest fungus	Phenolic compounds	Fruit bodies extracts	[34,66]	
Termitomyces microcarpus	NA	Phenolic compounds	Fruit bodies extracts	[34]	
Termitomyces mammiformis	NA	Phenolic compounds	Fruit bodies extracts	[34]	
Termitomyces schimpieri	NA	Phenolic compounds	Fruit bodies extracts	[34]	
Termitomyces tylerance	NA	Phenolic compounds	Fruit bodies extracts	[34]	
Tremella fuciformis	White jelly fungus, white wood ear, snow mushroom	3,4-dihydroxybenzaldehyde, vanillic acid, caffic acid, syringic acid and 3,4-dihydroxybenzacetone	Ethanol and water extracts	[55]	
Tricholoma acerbum	Bitter knight	Tocopherols, phenolic compounds, ascorbic acid, β-carotene	Fruit bodies extracts	[26]	
Tricholoma equestre	Man on horseback, Yellow knight	Phenolic compounds, β-carotene	Aqueous and methanolic extracts of dried fruiting bodies	[49]	
Verpa conica	Bell morel, the thimble fungus	β-Carotene, α-tocopherol	Fruit bodies methanolic extracts	[56]	
Volvariella volvacea	Paddy straw mushroom	Phenolic compounds	Fruit bodies extracts	[66]	
Xerocomus submontosus	Suede bolete, boring brown bolete	Phenolic compounds, β-carotene	Aqueous and methanolic extracts of dried fruiting bodies	[49]	

B: Basidiomycota, A: Ascomycota, E: Edible, NE: Non-edible, NA: not available.

3.2. Polysaccharides

A glucan is a α-glucose homopolysaccharide linked by glycosidic bonds. Glucans are classified as α- or β-glucans according to types of glycosidic bonds. α-Glucans are mainly present for storage of glucose such as starch, glycogen, and dextran. β-Glucan is a non-starch polysaccharide comprised of β-linked α-glucose molecules.
linked to one another by 1–3 glycosidic chain with 1–6 glycosidic branches. The physicochemical properties of \(\beta \)-glucans differ depending on characteristics of their primary structure, including linkage type, degree of branching, molecular weight, and conformation (e.g., triple helix, single helix, and random coil structures) [28,29]. \(\beta \)-Glucan is one of the key components of the fungal cell wall (Fig. 1). Hence, antioxidant properties of mushrooms are mainly attributed to \(\beta \)-glucans [13]. Trznadel et al. [30] reported an increase of superoxide dismutase when the commercial yeast \(\beta \)-glucan (Zymosan\(^\text{®}\)) was administrated to chronic uremic patients. Superoxide dismutase is one of the basic antioxidant enzymes we have that fight free radicals (Fig. 3). The length and branches of fungal \(\beta \)-glucan from various mushrooms is widely different [31].

3.3. Ascorbic acid

L-ascorbic acid (vitamin C), being water-soluble, can work inside and outside the cell to combat free radical damage. Vitamin C has been detected in several mushrooms. Among them Boletus edulis [32], B. pseudosulphureus [33], Lactarius deliciosus [34], Pleurotus ostreatus [35], Suillus luteus [36] among others. Ramesh and Fattar [25] reported that mushrooms contain vitamin C at concentrations in the range of 0.15–0.06 mg/mL. Orange juice contains around 0.37 mg of vitamin C/mL [37].

3.4. Tocopherols

Vitamin E is a common term for eight different compounds: four tocopherols (\(\alpha \)-, \(\beta \)-, \(\gamma \)-, and \(\delta \)-tocopherol) and four tocotrienols. Among them \(\alpha \)-tocopherol is the most biologically active. This fat-soluble compound is embedded within the cell membrane, which has a protective fatty layer of lipids [13]. In this way, \(\alpha \)-tocopherol can disable free radicals. Tocopherols have been detected in most mushrooms (Table 1).

3.5. \(\beta \)-carotene and lycopene

\(\beta \)-carotene and lycopene are carotenoids, which are natural pigments present in food (e.g., vegetables, fruits and mushrooms) but are not synthesized by animals. \(\beta \)-carotene is the precursor for the synthesis of vitamin A. Lycopene is an acyclic isomer of \(\beta \)-carotene, and has no vitamin A activity. It is a highly unsaturated, straight chain hydrocarbon containing conjugated and two non-conjugated double bonds, which makes it a potent antioxidant [38,39]. Hussein et al. [40] reported that the amount of \(\beta \)-carotene and lycopene detected in *Lentinus squarrosulus*, were in abundance compared to the concentration reported in some vegetables (e.g. carrot, persimmon and tomato) (Table 1).

3.6. Ergosterol

Some mushrooms possess ergosterol (Table 1), which is the precursor of vitamin D. In mushrooms, ergosterol is converted to vitamin D\(_2\) (ergocalciferol) when exposed to UV radiation. Vitamin D\(_2\) serves as the only available dietary source of vitamin D for those who eat no animal products. Vitamin D is crucial for bone health [41].

4. Concluding remarks

Mushrooms are a natural source of food and antioxidant are becoming important in human health. Interestingly, antioxidant potential in mushrooms is higher than in most vegetables and fruits. The consumption of dietary antioxidant will protect against free radical damage for the prevention of various diseases and aging. Technological developments in cultivation technologies make it possible to produce a wide variety of mushrooms. In addition, research into devising method for cultivation of wild mushrooms is being carried out, so these organisms can be cultivated through artificial methods. A significant advantage in antioxidant compounds extraction from mushrooms is that fruit bodies or mycelium can be manipulated to produce active compounds in a relatively short period of time. Antioxidant compounds may be extracted to be used as functional ingredients or mushrooms can be incorporated to our diet to help the human body to reduce oxidative damage. Health benefits and delicious taste of mushrooms make them a good choice of food to include in our food regime.

References

[1] Baker T. Origin of the word ‘mushroom’. Mycol 1989;3:88–90.
[2] Chang ST, Miles PG. Mushrooms biology - a new discipline. Mycol 1992:6: 64–5.
[3] Cheung PCK. Mushrooms as functional food. NJ, USA: Wiley; 2008. p. 280.
[4] Sánchez C. Cultivation of Pleurotus ostreatus and other edible mushrooms. Appl Microbiol Biotechnol 2010;85(5):1321–37.
[5] Dundar A, Ayc Yildiz A. Yield performance and nutritional contents of three oyster mushroom species cultured on wheat stalk. Afr J Biotechnol 2008:7: 3497–501.
[6] Oei P. Manual on mushroom cultivation: techniques species and opportunities for commercial application in developing countries. Amsterdam: TOOL Publications; 2003.
[7] Sánchez C. Modern aspects of mushroom culture technology. Appl Microbiol Biotechnol 2004:64(6):756–62.
[8] Patel S, Goyal A. Recent developments in mushrooms as anti-cancer therapeutics: a review. J Biotechnol 2012:2(1):1–15.
[9] Rathee S, Rathee D, Rathee D, Kumar V, Rathee P. Mushrooms as therapeutic agents. Braz J Pharmacog 2012:2(2):429–74.
[10] Kump LR. The rise of atmospheric oxygen. Nature 2008:451:277–8.
[11] Alliswell B. Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet 1994:344:721–4.
[12] Cederbaum AI, Lu Y, Wu D. Role of oxidative stress in alcohol–induced liver injury. Arch Toxicol 2009:83(5):519–48.
[13] Kozarski M, Klaus A, Jakovičevič D, Todorovic N, Vudusk J, Petrović P, et al. Antioxidants of edible mushrooms. Molecules 2015:20:19489–525.
[14] Khatura S, Roy T, Acharya K. Antioxidant and free radical scavenging capacity of phenolic extract from Russula laurocerasi. Asian J Pharm Clin Res 2013:6(4): 156–60.
[15] Held P. An introduction to reactive oxygen species: measurement of ROS in cells. 2010. http://www.biohit.com/resources/articles/reactive–oxygen–species.html [Accessed 5 April 2006].
[16] Boligon AA, Machado MM, Athayde ML. Technical evaluation of antioxidant activity. Med Chem 2014:4:517–22.
[17] Kozarski M, Klaus A, Niksic M, Jakovičevič D, Helser JPFF. Antioxidative and immunomodulatory activities of polysaccharide extracts of the medicinal mushroom Agaricus bisporus, Agaricus brasiliensis, Ganoderma lucidum and Phellinus linteus. Food Chem 2011:129:667–75.
[18] Patel RM. Comparative antioxidant activity evaluation and HPTLC phytochemical fingerprinting of some Indian medicinal plant extracts. CIBTech J Bio Protoc 2014;3(1):19–34.
[19] Oyazu M. Studies on products of browning reactions:antioxidant activities of products of browning reaction prepared from glucosamine. J Nutr 1986;44: 307–15.
[20] Dinis TCP, Madeira VMC, Almeida LM. Action of phenolic derivatives (acetaminophen, salicylate and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxidase scavengers. Arch Biochem Biophys 1994:315:161–9.
[21] Cote J, Caillet S, Doyon G. Bioactive compounds in cranberries and their biological properties. Crit Rev Food Sci Nutr 2010;50(7):5667–9.
[22] Oyaizu M. Studies on products of browning reaction prepared from glucosamine. J Nutr 1986;44: 307–15.
[23] Díezak JD. Antioxidants-The ultimate answer to oxidation. Food Technol 1986;40(9):34–102.
[24] Yagi K. A rapid method for evaluation of oxidation and antioxidants. Agric Biol Chem 1970:34(1):142–5.
[25] Ramesh C, Pattar MC. Antimicrobial properties, antioxidant activity and bioactive compounds from six wild edible mushrooms of Western Ghats of Karnataka, India. Phcog Res 2010:2:107–12.
[26] Barros L, Venturini BA, Baptista P, Estevinho LM, Ferreira ICFR. Chemical composition and biological properties of Portuguese wild mushrooms: a comprehensive study. J Agric Food Chem 2008a;56:3856–62.
[27] Machex JJ, Fleuriet A, Billot J. Fruit phenolics. FL, USA: CRC Press, Taylor and Francis Group; 1990.
[28] Tada R, Taniska A, Iwasawa H, Hatashima K, Shoji Y, Ishibashi K, et al.
 Structural characterisation and biological activities of a unique type β-D-glucan obtained from *Aureobasidium pullulans*. Glycocon J 2008;25(9): 851–61.

[29] Vetvicka V, Vetvickova J. Physiological effects of different types of β-glucan. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2007;151(2): 225–31.

[30] Todorovic-Kucia K, Malvić I, Medić D, Gudina D, Vukcević V. Antioxidant and antimicrobial activities of mushrooms. Food Chem 2012;131: 56–63.

[31] Tzamalis C, Harris A, O’Kelly M, Moore T. The effect of wild edible Boletus edulis mushroom. Biomed Res Int 2013;1: 1–12.

[32] Tsai SY, Tsai HL, Mau JL. Antioxidant properties of *Agaricus bisporus* and *Agrocybe cylindracea*, and Boletus edulis. J Food Sci 2008;73(1): 1392–402.

[33] Thacher TD, Clarke BL. Vitamin D insufficiency and oxidative stress. J Nutr 2009;139(6): 1104–10.

[34] Thirumurugan R, Deepak M, Prabhu S, Velmurugan K. Effect of *M. officinalis* leaf extract on the carbohydrate metabolism and antioxidant activity in streptozotocin-induced alloxan diabetic rats. Int J Pharm Sci 2015;7(1): 1–5.

[35] Tuncer E, Altarac A, Aydilek E. Antioxidant activities of wild edible mushrooms from Sinop, Turkey. Food Chem 2012;131: 78–84.

[36] Twardowski B, Tylicka MJ, Sokol S. Antioxidant activity of the mushrooms *Coprinus atramentarius* and *Trametes versicolor*. J Food Process Technol 2011;2: 36–41.

[37] Vamanu E, Nita S. Antioxidant capacity and the correlation with major phenolic compounds, anthocyanin, and tocopherol content in various extracts from the edible mushroom *Phaeolus schweinii*. J Food Process Technol 2013;4(2): 53–60.

[38] Vamanu E, Saarinen J, Vulliamy V, Olubunmi Ojo F, Price T, Syrjälä M, Lahtonen S, Mantila L, Aalto T, Salminen M, et al. Antioxidant activity of wild edible mushrooms from Latvia and Finland. Food Chem Toxicol 2011;49(3): 551–6.

[39] Yang JH, Lin HC, Mau JL. Antioxidant properties of several commercial mushrooms. Food Chem 2002;77: 229–35.

[40] Zhao C, Zhao K, Liu X, Huang YF, Liu B. In vitro antioxidant and antimicrobial activities of polysaccharides extracted from the mycelia of liquid-cultured *Hammulina velutipes*. Food Sci Biotechnol Res 2013;19(4): 61–7.

[41] Abdullah N, Ismail SM, Aminuddin N, Shuib AS, Lau BF. Evaluation of selected culinary-medicinal mushrooms for antioxidant and ACE inhibitory activities. Food Bioproducts and Bioprocesses 2012;1: 1–12.

[42] Teng YH, Yang JH, Mau JL. Antioxidant properties of polysaccharides from *Ganoderma tsugae*. Food Chem 2008;107: 732–8.

[43] Athanasakis G, Aligiannis N, Gonou-Zagou Z, Skaltsounis AL. Antioxidant activity of three edible wild mushrooms from Trabzon, Turkey. J Med Food 2010;13(2): 155–6.

[44] Karaman M, Jovin E, Malbaša Matavulj M, Popovic M. Medicinal and edible lignoncous fungi as natural sources of antioxidative and antibacterial agents. Phytother Res 2010;24: 1473–81.

[45] Yang JH, Lin HC, Mau JL. Antioxidant properties of several commercial mushrooms. Food Chem 2002;77: 229–35.

[46] Zhang H, Wang ZY, Zhang Z, Wang X. Purification and antioxidant activity of a novel integrin-binding protein from the mushroom *Phellinus linteus*. J Food Biochem 2010;34(2): E1094–101.

[47] Shin YJ, Lee SC. Antioxidant activity and β-glucan contents of hydrothermal extracts from *maitake* (*Grifola frondosa*). Food Sci Biotechnol 2014;23(1): 61–2.

[48] Vieira V, Barros L, Martins A, Ferreira ICFR. Expanding current knowledge on the chemical composition and antioxidant activity of the genus *Lactarius*. Food Chem 2010;120: 841–8.

[49] Abdullah N, Ismail SM, Aminuddin N, Shuib AS, Lau BF. Evaluation of selected culinary-medicinal mushrooms for antioxidant and ACE inhibitory activities. Food Bioproducts and Bioprocesses 2012;1: 1–12.

[50] Vamanu E. In vitro antioxidant and antimicrobial activities of two edible wild mushrooms and their mycelial culture extracts. Food Sci Biotechnol Res 2011;17(4): 41–7.

[51] Tsai SY, Tsai HL, Mau JL. Antioxidant properties of *Agaricus bisporus* and *Agrocybe cylindracea*, and Boletus edulis. J Food Sci 2008;73(1): 1392–402.

[52] C. Sánchez / Synthetic and Systems Biotechnology 2 (2017) 13–22
edible mushroom Pleurotus eryngii colected from Tunceli province of Turkey. Dig J Nanomater Bios 2012;7(4):1647–54.

[87] Mitra P, Khatua S, Acharya K. Free radical scavenging and NOS activation properties of water soluble crude polysaccharides from Pleurotus ostreatus. Asian J Pharm Clin 2013;6(3):67–70.

[88] Gogakevar SS, Rokade SA, Ranveer RC, Ghosh JS, Kalyani DC, Sahoo AK. Important nutritional constituents, flavour components, antioxidant and antibacterial properties of Pleurotus sajor-caju. J Food Sci Technol 2014;51(8):1483–91.

[89] Klaus A, Kosarski M, Niksic M, Jakovljevic D, Todorovic N. Antioxidative activities and chemical characterization of polysaccharides extracted from the basidiomycete Schizophyllum commune. LWT Food Sci Technol 2012;44:2005–11.