Mitochondrial DNA analysis in primary congenital glaucoma

Mukesh Tanwar,¹ Tanuj Dada,² Ramanjit Sihota,² Rima Dada¹

¹Laboratory for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India; ²Dr. R.P. Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India

Purpose: To screen mitochondrial DNA (mtDNA) for nucleotide variations in primary congenital glaucoma (PCG).

Methods: The entire coding region of the mitochondrial genome was amplified by polymerase chain reaction from 35 PCG patients and 40 controls. The full mtDNA genome except the D-loop was sequenced. All sequences were analyzed against mitochondrial reference sequence NC_012920.

Results: MtDNA sequencing revealed a total of 132 and 58 nucleotide variations in PCG and controls, respectively. Of 132 nucleotide variations, 42 (31.81%) were non-synonymous and 82 (62.12%) were synonymous changes, and 8 were in RNA genes. The highest number of nucleotide variations were recorded in complex I followed by complex IV, then complex V. Eight patients (22.85%) had potentially pathogenic mtDNA nucleotide changes and twenty (57.14%) had mtDNA sequence changes associated with elevated reactive oxygen species (ROS) production. Mitochondria not only constitute the energy-generating system in the cell, but are also critically involved in calcium signaling and apoptosis. Mitochondrial function can be affected by mutations in mitochondrial and nuclear DNA, chemical insults to components of the electron transport chain, and a lack of substrates such as oxygen. Mitochondrial dysfunction results in an excessive generation of free radicals and reduced mitochondrial respiration. Developing trabecular meshwork (TM) is deficient in antioxidant enzymes, and thus is more susceptible to oxidative stress (OS) induced damage. Previous studies have documented certain mtDNA sequence variations associated with elevated ROS levels and OS. Three such changes (G10398A, A12308G, and G13708A) were present in our patients. Elevated ROS may cause OS. This OS may further damage mtDNA and may cause decreased mitochondrial respiration. This may lead to impaired growth, development and differentiation of TM and consequently trabecular-dysgenesis, which is a characteristic feature of PCG. OS affects both TM and retinal ganglion cells (RGCs) and may be involved in the neuronal death affecting the optic nerve in glaucoma. There are several studies which point that elevated hydrostatic pressure causes breakdown of the mitochondrial network by mitochondrial fission and induce cristae depletion and cellular ATP reduction in differentiated RGC-5 cells in vitro as well as in vivo.

Conclusions: A total of 44 novel mtDNA variations were identified in this study. Non-synonymous mtDNA variations may adversely affect respiratory chain, impair OXPHOS pathway result in low ATP production, high ROS production and impair growth, development and differentiation of TM lead to trabecular-dysgenesis and consequently RGC’s death. Such cases with mtDNA variations and consequent OS may benefit by early diagnosis and prompt management by antioxidant therapy. This may delay OS induced injury to TM and RGCs and hence improve visual prognosis.

Glaucomas are a heterogeneous group of eye conditions with manifestation as early as birth to very late age of onset and are among most common cause of blindness worldwide, accounting for 15% of cases. Primary congenital glaucoma (PCG; OMIM 231300; provided in the public domain by the National Centre for Biotechnology Information, Bethesda, MD) is a severe form of glaucoma with manifestation at birth or early childhood. It is characterized by elevated intraocular pressure (IOP), and enlarged cornea and globe (buphthalmos) [1]. The only observable anatomic defect in PCG is trabecular-dysgenesis. This leads to impaired aqueous drainage, increased intraocular pressure, optic nerve damage, and may consequently lead to partial/permanent visual impairment. Progressive degeneration of retinal ganglion cells (RGCs) and their axons is the primary cause of glaucomatous visual loss. However, many aspects of this blinding disorder are still unclear and current treatment options are not sufficient to block neurodegenerative injury in these patients.

PCG is bilateral in 80% cases. The majority of PCG cases present within the first year of life out of which 25% are diagnosed in the neonatal period and in about 60% within first six months of life. The majority of PCG cases are sporadic. PCG is the most common type of pediatric glaucoma and accounts for 55% of pediatric glaucomas. The prevalence of PCG varies across ethnic communities ranging from 1 in 10,000–20,000 in the western populations [2] to 1 in 2,500...
and 1 in 1,250 in the Saudi Arabian population [3] and Gypsy population of Slovakia [2], and 1 in 3,300 in Andhra Pradesh, India [4]. Early and reliable diagnosis of this disease is vital, so that appropriate and prompt treatment is initiated. This can improve the visual outcome and prevent visual loss.

Three genetic loci: GLC3A at 2p21, GLC3B at 1p36, and GLC3C at 14q24.3-q31.1 have been mapped for PCG [3,5,6]. Mutations in CYP1B1 (GLC3A locus) have been found in PCG patients from different populations [3,7-10] It is estimated that all known loci/genes of glaucoma account for the minority of total cases of glaucoma, and thus, many other genes remain to be identified.

The role of mitochondrial DNA (mtDNA) mutations and oxidative stress (OS) has been reported in primary open angle glaucoma (POAG) [11,12]. Recent studies reported an increased frequency of mtDNA sequence changes in primary open angle glaucoma (POAG), primary angle closure glaucoma (PACG), and pseudoexfoliation glaucoma (PEG) compared to controls [11,13,14]. Therefore this study was planned with the aim to screen PCG cases for mitochondrial DNA variations.

METHODS

Clinical examination and selection of cases: Primary congenital glaucoma cases (n=35) presenting at the Dr. R. P. Centre for Ophthalmic Sciences (AIIMS, New Delhi, India), were enrolled for this study, after ethical approval of the Institutional Review Board (IRB00006862; All India Institute of Medical Sciences, New Delhi, India). The diagnosis involved clinical ocular and systemic examination. Inclusion criteria of the patients were: increased corneal diameter (>12.0 mm), raised IOP (>21 mmHg) with presence/absence of Haab’s striae, and optic disc changes (where examination was possible). Symptoms of epiphora and photophobia were additional inclusion factors. The age of onset ranged from birth to 3 years. All patients with a history of blood transfusion, TORCH (Toxoplasmosis; Rubella; Cytomegalovirus; Herpes Simplex Virus) infection, and drug intake in the mother during pregnancy were excluded. Glaucoma cases other than PCG were also excluded. Detailed family history of ocular or other hereditary disorders up to three generations were taken, and pedigree charts were constructed. Forty ethnically matched normal individuals without any ocular disorders with IOP<20mmHg and corneal diameter <12×12mm were enrolled as controls.

Sample collection and DNA isolation: Peripheral blood sample was collected from patients and controls by venipuncture after informed consent. Blood samples were collected in EDTA (EDTA) vacutainers and stored in −80 °C (°C) until DNA isolation. DNA was isolated from whole blood using the phenol-chloroform method.

Polymerase chain reaction (PCR) amplification and sequence analysis of the mitochondrial DNA coding region: The whole mitochondrial genome was amplified in all patients and controls using 24 pairs of primers [15]. PCR amplifications for all primer sets were performed in a 40 μl volume containing 1.0 μl of 20 μM stock solution for each primer, 100 ng of genomic DNA, 1 unit of Taq polymerase (Bangalore Genei, Bengaluru, Karnataka, India), 0.1 mM of each dNTP, 4 μl of 10× PCR buffer (with 15 mM MgCl₂), by means of 30 cycles of amplification, each consisting of 30 s denaturation at 94 °C, 30 s annealing at 56 °C and 1 min extension at 72 °C. Finally, and extension for 5 min at 72 °C was performed. Amplified PCR products were purified using a gel/PCR DNA fragments extraction kit (catalog number DF100; Geneaid Biotech Ltd., Sijjh City, Taiwan). Purified PCR products were sent for sequencing to MCLAB (Molecular Cloning Laboratories, South San Francisco, CA). The full mtDNA genome was sequenced except D-loop as D-loop is a hyper-variable region. All fragments were sequenced in both forward and reverse direction for confirmation. All sequence variants from both PCG patients and controls were compared to Human Mitochondrial reference sequence NC_012920 provided by the National Center for Biotechnology Information (NCBI) using ClustalW2 (multiple sequence alignment program for DNA; European Molecular Biology Laboratory (EMBL) – European Bioinformatics Institute (EBI)).

Prediction of pathogenicity: For prediction of pathogenic characteristics of all non-synonymous mtDNA changes two homology based programs PolyPhen (Polymorphism Phenotyping) and SIFT (Sorting Intolerant From Tolerant) analysis tool were used. PolyPhen structurally analyzes an amino acid polymorphism and predicts whether that amino acid change is likely to be deleterious to protein function [16-18]. The prediction is based on the position-specific independent counts (PSIC) score derived from multiple sequence alignments of observations in case of functional domain of protein and Predicted hydrophobic and transmembrane (PHAT) matrix element difference in case of transmembrane region of protein. PolyPhen scores of >2.0 indicate the polymorphism is probably damaging to protein function. Scores of 1.5–2.0 are possibly damaging, and scores of <1.5 are likely benign. SIFT is a sequence homology-based tool that sorts intolerant from tolerant amino acid substitutions and predicts whether an amino acid substitution in a protein will have a phenotypic effect [19-22]. SIFT is based on the premise that protein evolution is correlated with protein function. Positions important for function should be conserved in an alignment of the protein family, whereas unimportant positions should appear diverse in an alignment. Positions with normalized probabilities less than 0.05 are predicted to be deleterious and, those greater than or equal to 0.05 are predicted to be tolerated.

Statistical analysis: Pearson χ²/Fisher’s exact test was applied to make a comparison between two groups (cases versus controls). P-values less than 0.05 were considered as
significant. All tests were done using SPSS software for windows (version 11.5; SPSS Inc., Chicago, IL).

RESULTS

MtDNA sequencing following whole genome amplification of mitochondrial DNA revealed a total of 132 nucleotide variations (Table 1) in PCG patients and 58 in controls (Table 2). Of the 132 nucleotide variations, 42 (31.81%) were non-synonymous, 82 (62.18%) were synonymous changes, and 8 were in RNA genes. In total, 23.48% (31/132) variations were novel out of which 41.93% (13/31) were non-synonymous (Table 1). A total of 66/132 (50.00%) variations were observed in complex I, 12/132 (9.09%) in complex III, 26/132 (19.69%) in complex IV, and 20/132 (15.15%) were in complex V (Figure 1). Out of the total variations reported, complex I had 31.81% (21/66) non-synonymous base changes, complex III had 25.00% (3/12), complex IV had 23.07% (6/26), and complex V had 55.00% (11/20) non-synonymous base changes. Of 58 variations in the controls, 14 were non-synonymous changes.

Two non-synonymous changes (p.W239C in ND2 and p.A20T in ATPase6) were present both in cases as well as controls. The remaining 40 non-synonymous changes were limited to PCG cases only. All novel variations from patients and controls were submitted to the GenBank database and accession numbers were obtained (Table 1 and Table 2).

SIFT and PolyPhen analysis of all non-synonymous changes from cases and controls revealed five pathogenic changes (p.P2L, p.I10T, p.M31T in ND1 protein and p.M37I, p.W239C in ND2 protein). Eight patients (22.85%) were positive for either of these pathologic mtDNA nucleotide changes. Clinical features of patients and mtDNA variations identified in this study have been tabulated (Table 3).

DISCUSSION

The human mtDNA is a 16,569-base pair double-stranded, compact, circular molecule which lacks histones and is without introns. MtDNA has several overlapping genes and incomplete termination codons. It contains 37 genes which regulate oxidative phosphorylation (OXPHOS). Of these, 24 are needed for mtDNA translation (2 rRNAs [rRNAs] and 22 tRNAs [tRNAs]), and 13 encode subunits of the respiratory chain: seven subunits of complex I (ND1, 2, 3, 4, 4L, 5, and 6 [ND stands for NADH dehydrogenase]), one subunit of complex III (cytochrome b), three subunits of cytochrome c oxidase (COX I, II, and III), and two subunits of ATP synthase (ATPase6 and ATPase8; Figure 2).

MtDNA mutates 10 times more frequently as compared to nuclear DNA due to its proximity to the electron transport chain (ETC) and lack of histones and other protective proteins and has very basic repair mechanism [23]. Mitochondria are essential for ATP production by OXPHOS and are susceptible to oxidative damage because reactive oxygen species (ROS) damage mitochondrial enzymes directly and alter mitochondrial membrane permeability leading to cell death [24]. Most studies suggest that the majority of intracellular ROS produced by non-phagocytic cells are derived from mitochondria [25,26]. Thus mitochondria are both source and target of free radicals.

Several human diseases have been associated with mtDNA mutations, indicating that dysfunction of the components of oxidative phosphorylation encoded by the mitochondrial genome can be deleterious [27]. Abnormalities in mtDNA have proven to be associated with leber’s hereditary optic neuropathy (LHON) [28], POAG, pseudoexfoliation glaucoma (PEG), primary angle closure glaucoma (PACG), other spontaneous optic neuropathies [11,13,14,29], and male infertility [15].

In this study we screened 35 PCG cases for mtDNA variations. We found 42 non-synonymous mtDNA variations in PCG patients in different mitochondrial genes. The highest number of nucleotide variations were recorded in complex I, followed by complex IV and then complex V. Eight patients (22.85%) were found to be positive for pathogenic changes while in PEG patients this was 10.30% [14].

Complex I is responsible for pumping of protons (H+) from the matrix to the inter-membrane space in association with complex III and IV. Although the mitochondrial ETC is very effective in the reduction of oxygen to water, there is a constant “leak” of electrons from the ETC to oxygen and this results in the formation of superoxide anions. It is generally agreed that there are two main sites in the respiratory chain where superoxide anions are generated viz. complex I and complex III [30,31]. Dismutation of superoxide anions produces hydrogen peroxide as a secondary product, and in the presence of transition metals this can be converted to a highly reactive hydroxyl radical that can readily oxidize proteins, lipids, carbohydrates, DNA, and RNA [32]. Fifty percent nucleotide variations identified in our study were in complex I.

SIFT and PolyPhen analysis of missense changes showed that p.P2L, p.I10T, and p.M31T in ND1 protein and p.M37I and p.W239C in ND2 protein were deleterious to protein function. PHAT (predicted hydrophobic and transmembrane) score difference of p.P2L and p.I10T was >2 and PSIC score of p.M31T was >2. PSIC score of p.M37I and W239C was >2 and >1.5, respectively. All these changes (p.P2L, p.I10T, and p.M31T in ND1 and p.M37I and p.W239C in ND2) had SIFT scores <0.05 and were predicted to be deleterious. Pathogenic variants p.P2L, p.I10T, and p.M31T were present in 3 cases (1 case each) while p.M37I and p.W239C were present in one and four cases, respectively. However, frequency of the pathogenic variants (p.P2L, p.I10T, and p.M31T in ND1 and p.M37I and p.W239C in ND2) was not found to be statistically significant (p value >0.05) in our study population.

Recent studies have shown that G4580A (p.M37I) in ND2 and G10398A (p.A114T) in ND3 are associated with an
Sample number	Genomic Position	Base Change	Gene /Location	Amino acid position	Codon change	Amino acid change	Change in protein	Syn/ Non-syn	Total number of patients with nt changes	GenBank accession number if novel
1	2707	G>A	16s RNA	-	-	-	-	-	1	-
2	2790	Ins T	16s RNA	-	-	-	-	-	2 GU186097	-
3	3311	C>T	ND1	2	CCC>CTC	Pro>Leu	p.P2L	non-syn	1	GU186068
4	3316	G>A	ND1	4	GCC>ACC	Ala>Thr	p.A4T	non-syn	1	-
5	3335	T>C	ND1	10	ATT>ACT	IsoLeu-Thr	p.I10T	non-syn	1	-
6	3398	T>C	ND1	31	ATA>ACA	Met>Thr	p.M31T	non-syn	2 GU186069	-
7	3480	A>G	ND1	58	AAA>AAG	Lys>Lys	p.K58K	syn	2	-
8	3645	T>C	ND1	113	GTT>GTC	Val>Val	p.V113V	syn	1	-
9	3741	C>T	ND1	145	ACC>ACT	Thr>Thr	p.I145T	syn	1	-
10	3826	T>C	ND1	174	TTA>CTA	Leu>Leu	p.L174L	syn	1	-
11	3921	C>T	ND1	205	TCC>TCT	Ser>Ser	p.S205S	syn	2	-
12	4216	T>C	ND1	304	TAT>CAT	Tyr>His	p.Y304H	non-syn	1	-
13	4225	A>G	ND1	307	ATA>GTA	Met>Val	p.M307V	non-syn	1	-
14	4502	T>C	ND2	11	TCT>TCC	Ser>Ser	p.S11S	syn	1	GU186070
15	4561	T>C	ND2	31	GTA>GCA	Val>Ala	p.V31A	non-syn	1	-
16	4580	G>A	ND2	37	ATG>ATA	Met> iso	p.M37I	non-syn	1	-
17	4615	A>G	ND2	49	AAC>AGC	Asn>Ser	p.N49S	non-syn	1	GU186071
18	4638	A>G	ND2	57	ACT>GTC	Ile>Val	p.I57V	non-syn	1	GU186072
19	4703	T>C	ND2	78	AAT>AAC	Asn>Asn	p.N78N	syn	1	-
20	4916	A>G	ND2	149	CTA>CTG	Leu>Leu	p.L149L	syn	1	-
21	4917	A>G	ND2	150	AAC>GAC	Asn>Asp	p.N150D	non-syn	1	-
22	4944	A>G	ND2	159	ATC>GTC	Ile>Val	p.I159V	non-syn	1	-
23	5033	A>G	ND2	188	GGA>GAG	Gly>Gly	p.G188G	syn	1	-
24	5097	A>G	ND2	210	ATC>GTC	Ile>Val	p.I210V	non-syn	1 GU186073	-
25	5186	A>T	ND2	239	TGA>TGT	Trp>Cys	p.W239C	non-syn	4	-
26	5252	G>A	ND2	261	TGT>TTA	Leu>Leu	p.L261L	syn	1	-
27	5360	T>C	ND2	297	ATC>ATT	Ile>Ile	p.I297I	syn	1	-
28	6011	T>C	CO1	36	CTT>CTC	Leu>Leu	p.L36L	syn	1	-
29	6023	G>A	CO1	40	GAG>GAA	Glu>Glu	p.E40E	syn	1	-
30	6217	T>C	CO1	105	TTA>CTA	Leu>Leu	p.L105L	syn	1	GU186074
31	6290	C>T	CO1	129	TAC>TAT	Tyr>Tyr	p.Y129Y	syn	3	-
32	6366	G>A	CO1	155	GTC>ATC	Val>Ile	p.V155I	non-syn	3	-
33	6584	C>T	CO1	227	GAC>GAT	Asp>Asp	p.D227D	syn	1	GU186075
34	7280	C>T	CO1	459	TTC>TTT	Phe>Phe	p.F459F	syn	2	GU186076
35	7598	G>A	CO2	5	GGC>GAC	Ala>Thr	p.A5T	non-syn	1	-
36	7746	A>G	CO2	54	AAC>AAGC	Asn>Ser	p.N54S	non-syn	1	GU186077
37	7843	A>G	CO2	86	ATA>ATG	Met>Met	p.M86M	syn	3	-
38	7886	C>T	CO2	95	CTT>TGT	Leu>Phe	p.L95F	non-syn	2	-
39	7961	T>C	CO2	126	TTA>CTA	Leu>Leu	p.L126L	syn	1	-
40	7962	T>C	CO2	126	TTA>TCA	Leu>Ser	p.L126S	non-syn	1	GU186078
41	8023	T>C	CO2	146	ATA>ATC	Ile>Ile	p.I146T	syn	1	GU186079
42	8116	A>G	CO2	177	GGA>GAG	Gly>Gly	p.G177G	syn	1	-
43	8136	T>C	CO2	184	TTC>TAT	Phe>Phe	p.F184F	syn	32	-
44	8252	G>A	CO2	222	GGG>GGA	Gly>Gly	p.G222G	syn	2	-
45	8346	C>T	tRNA Lys	-	-	-	-	-	1 GU186096	-
Sample number	Genomic Position	Base Change	Gene / Location	Codon change	Amino acid change	Change in protein	Total number of patients with nt changes	GenBank accession number if novel		
---------------	------------------	-------------	----------------	--------------	-------------------	------------------	---	----------------------------------		
46	8396	A>G	ATPase8	ATPase8	Thr>Ala	p.T11A non-syn	1	GU186091		
47	8485	G>A	ATPase8	ATPase8	Lys>Thr	p.K120K syn	1	GU186092		
48	8502	A>G	ATPase8	ATPase8	Ala>Thr	p.P111V syn	1	GU186093		
49	8584	G>A	ATPase8	ATPase8	Thr>Thr	p.V1121V syn	1	GU186094		
50	8658	C>T	ATPase6	ATPase6	Thr>Thr	p.T44T syn	1	GU186081		
51	8684	C>T	ATPase6	ATPase6	Ala>Thr	p.A53T non-syn	1	GU186089		
52	8697	G>A	ATPase6	ATPase6	Lys>Lys	p.K120K syn	1	GU186092		
53	8701	A>G	ATPase6	ATPase6	Thr>Thr	p.V113V syn	1	GU186093		
54	8704	C>T	ATPase6	ATPase6	Thr>Thr	p.T44T syn	1	GU186081		
55	8708	C>T	ATPase6	ATPase6	Thr>Thr	p.T44T syn	1	GU186081		
56	8710	G>A	ATPase6	ATPase6	Thr>Thr	p.T44T syn	1	GU186081		
57	8712	C>T	ATPase6	ATPase6	Thr>Thr	p.T44T syn	1	GU186081		
58	8715	G>A	ATPase6	ATPase6	Thr>Thr	p.T44T syn	1	GU186081		
59	8717	C>T	ATPase6	ATPase6	Thr>Thr	p.T44T syn	1	GU186081		
60	8720	G>A	ATPase6	ATPase6	Thr>Thr	p.T44T syn	1	GU186081		
61	8722	C>T	ATPase6	ATPase6	Thr>Thr	p.T44T syn	1	GU186081		
62	8724	G>A	ATPase6	ATPase6	Thr>Thr	p.T44T syn	1	GU186081		
63	8726	C>T	ATPase6	ATPase6	Thr>Thr	p.T44T syn	1	GU186081		
64	8728	G>A	ATPase6	ATPase6	Thr>Thr	p.T44T syn	1	GU186081		
65	8730	C>T	ATPase6	ATPase6	Thr>Thr	p.T44T syn	1	GU186081		
66	8732	G>A	ATPase6	ATPase6	Thr>Thr	p.T44T syn	1	GU186081		
67	8734	C>T	ATPase6	ATPase6	Thr>Thr	p.T44T syn	1	GU186081		
68	8736	G>A	ATPase6	ATPase6	Thr>Thr	p.T44T syn	1	GU186081		
69	8738	C>T	ATPase6	ATPase6	Thr>Thr	p.T44T syn	1	GU186081		
70	8740	G>A	ATPase6	ATPase6	Thr>Thr	p.T44T syn	1	GU186081		
71	8742	C>T	ATPase6	ATPase6	Thr>Thr	p.T44T syn	1	GU186081		
72	8744	G>A	ATPase6	ATPase6	Thr>Thr	p.T44T syn	1	GU186081		
73	8746	C>T	ATPase6	ATPase6	Thr>Thr	p.T44T syn	1	GU186081		
74	8748	G>A	ATPase6	ATPase6	Thr>Thr	p.T44T syn	1	GU186081		
75	8750	C>T	ATPase6	ATPase6	Thr>Thr	p.T44T syn	1	GU186081		
76	8752	G>A	ATPase6	ATPase6	Thr>Thr	p.T44T syn	1	GU186081		
77	8754	C>T	ATPase6	ATPase6	Thr>Thr	p.T44T syn	1	GU186081		
78	8756	G>A	ATPase6	ATPase6	Thr>Thr	p.T44T syn	1	GU186081		
79	8758	C>T	ATPase6	ATPase6	Thr>Thr	p.T44T syn	1	GU186081		
80	8760	G>A	ATPase6	ATPase6	Thr>Thr	p.T44T syn	1	GU186081		
81	8762	C>T	ATPase6	ATPase6	Thr>Thr	p.T44T syn	1	GU186081		
82	8764	G>A	ATPase6	ATPase6	Thr>Thr	p.T44T syn	1	GU186081		
83	8766	C>T	ATPase6	ATPase6	Thr>Thr	p.T44T syn	1	GU186081		
84	8768	G>A	ATPase6	ATPase6	Thr>Thr	p.T44T syn	1	GU186081		
85	8770	C>T	ATPase6	ATPase6	Thr>Thr	p.T44T syn	1	GU186081		
86	8772	G>A	ATPase6	ATPase6	Thr>Thr	p.T44T syn	1	GU186081		
87	8774	C>T	ATPase6	ATPase6	Thr>Thr	p.T44T syn	1	GU186081		
88	8776	G>A	ATPase6	ATPase6	Thr>Thr	p.T44T syn	1	GU186081		
89	8778	C>T	ATPase6	ATPase6	Thr>Thr	p.T44T syn	1	GU186081		
90	8780	G>A	ATPase6	ATPase6	Thr>Thr	p.T44T syn	1	GU186081		
Sample number	Genomic Position	Base Change	Gene / Location	Amino acid position	Codon change	Amino acid change	Change in protein	Syn/ Non-syn	Total number of patients with nt changes	GenBank accession number if novel
---------------	-----------------	-------------	-----------------	---------------------	-------------	------------------	-----------------	------------	--------------------------------------	----------------------------------
91	12308	A>G	tRNA Leu	-	-	-	-	-	3	-
92	12372	G>A	ND5	12	CTG>CTA	Leu>Leu	p.L12L	syn	4	-
93	12477	T>C	ND5	47	AGT>AGC	Ser>Ser	p.S47S	syn	1	-
94	12498	C>T	ND5	54	TTC>TGT	Phe>Phe	p.F54F	syn	2	-
95	12561	G>A	ND5	75	CAG>CAA	Gln>Gln	p.Q75Q	syn	1	-
96	12681	T>C	ND5	115	AAT>AAC	Asn>Asn	p.N115N	syn	1	-
97	12705	T>C	ND5	123	ATT>ATC	Ile>Ile	p.L123I	syn	10	-
98	12793	T>C	ND5	153	TTG>TGT	Leu>Leu	p.L153L	syn	1	GU186084
99	12810	A>G	ND5	158	TGA>TGG	Thr>Trp	p.W158W	syn	1	-
100	12849	A>T	ND5	171	GCA>GCT	Ala>Ala	p.A171A	syn	8	GU186085
101	12879	T>C	ND5	181	GGT>GGC	Gly>Gly	p.G181G	syn	1	-
102	12906	C>T	ND5	190	ATT>ATT	Ile>Ile	p.I190I	syn	1	-
103	13020	T>C	ND5	228	GGT>GGC	Gly>Gly	p.G228G	syn	1	-
104	13135	G>A	ND5	267	GCA>GCA	Ala>Thr	p.A267T	non-syn	1	-
105	13138	G>A	ND5	268	GAA>GAA	Ser>Ser	p.E268K	non-syn	20	GU186083
106	13188	C>T	ND5	284	ACC>ACC	Thr>Thr	p.T284T	syn	1	-
107	13194	A>T	ND5	286	CTG>CTA	Leu>Leu	p.L286L	syn	1	-
108	13215	T>C	ND5	293	CTT>CTC	Leu>Leu	p.L293L	syn	1	-
109	13368	G>A	ND5	344	GGG>GGG	Gly>Gly	p.G344G	syn	1	-
110	13500	T>C	ND5	388	GGT>GGG	Gly>Gly	p.G388G	syn	1	-
111	13539	A>G	ND5	401	ATA>ATG	Met>Met	p.M401M	syn	2	-
112	13542	A>G	ND5	402	TCA>TCA	Ser>Ser	p.S402S	syn	1	-
113	13651	A>G	ND5	439	ACC>ACC	Thr>Thr	p.T439A	non-syn	1	-
114	13656	T>C	ND5	440	CTT>CTC	Leu>Leu	p.L440L	syn	4	-
115	13708	G>A	ND5	458	GCA>GCA	Ala>Thr	p.A458T	non-syn	1	-
116	13768	T>C	ND5	478	TTC>TTC	Phe>Leu	p.F478L	non-syn	1	GU186086
117	14000	T>A	ND5	555	CCT>CCT	Leu>Pro	p.L555P	non-syn	2	-
118	14022	A>N	ND5	562	TTA>TTG	Leu>Leu	p.L562L	syn	1	-
119	14935	T>C	CYB	63	TTT>TTC	Phe>Phe	p.F63F	syn	1	-
120	15038	A>G	CYB	98	ATC>ATC	Ile>Ile	p.I90I	syn	1	-
121	15043	G>A	CYB	99	GGG>GGA	Gly>Gly	p.G99G	syn	12	-
122	15061	A>G	CYB	105	GGA>GGA	Gly>Gly	p.G105G	syn	1	-
123	15097	T>C	CYB	117	ATT>ATT	Ile>Ile	p.I117I	syn	1	-
124	15148	G>A	CYB	134	CCG>CCA	Pro>Pro	p.P134P	syn	3	-
125	15301	G>A	CYB	185	TTG>TGT	Leu>Leu	p.L185L	syn	16	-
126	15317	G>A	CYB	191	GCC>GCC	Ala>Thr	p.A191T	non-syn	1	-
127	15452	C>A	CYB	236	CTT>ATT	Leu>Ile	p.L236I	non-syn	2	-
128	15607	A>G	CYB	287	AAA>AAA	Lys>Lys	p.K287K	syn	1	-
129	15670	T>C	CYB	308	CAT>CAT	His>His	p.H308H	syn	1	-
130	15683	A>G	CYB	312	CAA>CAG	Gly>Gln	p.Q312Q	syn	2	GU186093

Key: A – Adenine; T – Thymine; G- Guanine; C- Cytosine; Syn- synonymous; Non-syn- non-synonymous; *- novel change; ND1 - NADH dehydrogenase subunit 1; ND2 - NADH dehydrogenase subunit 2; ND3 - NADH dehydrogenase subunit 3; ND4 - NADH dehydrogenase subunit 4; ND4L - NADH dehydrogenase subunit 4L; ND5 - NADH dehydrogenase subunit 5; CO1 - cytochrome c oxidase 1; CO2 - cytochrome c oxidase 2; CO3 - cytochrome c oxidase 3; ATPase6 - ATP synthase subunit a (F-ATPase protein 6); ATPase8 - ATP synthase protein 8; CYB - cytochrome B; tRNA - transfer ribonucleic acid; rRNA - ribosomal ribonucleic acid.
Sample number	Genomic position	Base change	Gene/ Location	Codon change	Amino acid change	Change in protein	Syn/ Non-syn	GenBank accession number if novel
1	3591	G>A	ND1	95	CTG>CTA	Thr>Thr	syn	-
2	3915	G>A	ND1	203	GGG>GGA	Gly>Gly	syn	-
3	3918	G>A	ND1	204	GAG>GAA	Glu>Glu	syn	-
4	3933	A>G	ND1	209	TCA>TGC	Ser>Ser	syn	-
5	3970	C>T	ND1	222	CTA>TTA	Leu>Leu	syn	-
6	3996	C>T	ND1	230	AAC>AAT	Asn>Asn	syn	-
7	4029	C>A	ND1	241	ATC>ATA	Ile>Ile	syn	-
8	4093	A>G	ND1	263	ACC>GCC	Thr> Ala	syn	-
9	4793	A>G	ND2	108	ATA>ATG	Met>Met	syn	-
10	4852	T>A	ND2	128	CTG>CAG	Leu>Gln	syn	-
11	5186	A>T	ND2	239	TGA>TGT	Trp>Cys	syn	-
12	5348	C>T	ND2	293	TAC>TAT	Tyr>Tyr	syn	-
13	5351	G>A	ND2	294	CTA>CTG	Leu>Leu	syn	-
14	6305	G>A	ND1	134	GGG>GGA	Gly>Gly	syn	-
15	6719	T>C	ND1	272	GGT>GGC	Gly>Gly	syn	-
16	6962	G>A	ND1	353	CTG>CTA	Thr>Thr	syn	-
17	7316	G>A	ND1	471	AGT>ATA	Met>Met	syn	-
18	7738	T>C	ND2	51	ACT>ACC	Thr>Thr	syn	-
19	7762	G>A	ND2	59	CAG>CAC	Gln>Gln	syn	-
20	8143	T>C	ND2	186	GGT>GCC	Ala>Ala	syn	-
21	8251	G>A	ND2	222	GGG>GGA	Gly>Gly	syn	-
22	8503	T>G	ATP8	46	AAT>AAG	Asp>Lys	syn	-
23	8584	G>A	ATP6	20	GCA>GCA	Ala>Thr	syn	-
24	8594	T>C	ATP6	23	ATC>ACC	Ile>Thr	syn	-
25	8650	C>T	ATP6	42	CTA>TTC	Leu>Leu	syn	-
26	8718	A>G	ATP6	64	AAA>AAG	Lys>Lys	syn	-
27	8812	G>A	ATP6	96	ACC>GCC	Thr>Ala	syn	-
28	8886	G>A	ATP6	120	AAG>AAG	Lys>Lys	syn	-
29	8925	A>G	ATP6	133	ACA>ACC	Thr>Thr	syn	-
30	10310	G>A	ND3	84	CTG>CTA	Thr>Thr	syn	-
31	10609	T>C	ND4	47	ATA>ACA	Met>Thr	syn	-
32	11467	A>G	ND4	236	TTA>TGC	Leu>Leu	syn	-
33	11914	G>A	ND4	385	ACG>ACA	Thr>Thr	syn	-
34	12007	G>A	ND4	416	TGG>TAG	Trp>Trp	syn	-
35	12073	C>T	ND4	438	TCT>TTC	Phe>Phe	syn	-
36	12107	G>A	ND4	449	CTC>CTT	Thr>Thr	syn	-
37	12133	C>T	ND4	458	TCC>TCT	Ser>Ser	syn	-
38	12237	G>A	ND5	12	CTG>CTA	Thr>Thr	syn	-
39	12373	A>G	ND5	13	ACT>GCT	Thr>Ala	syn	-
40	12406	G>A	ND5	24	GTT>ATT	Val>Ile	syn	-
41	12486	C>T	ND5	50	CCC>CCT	Pro>Pro	syn	-
42	12498	C>T	ND5	54	TTC>TTC	Phe>Phe	syn	-
43	12561	G>A	ND5	75	CAG>CAC	Gln>Gln	syn	-
44	13204	G>A	ND5	290	GTC>ATC	Val>Ile	syn	-
45	13299	A>G	ND5	321	CAA>CAG	Gln>Gln	syn	-
46	13676	A>G	ND5	447	AAC>AGC	Asn>Ser	syn	-
47	13731	A>G	ND5	465	GAA>GAA	Gly>Gly	syn	-
48	13860	C>T	ND5	490	GCC>GCT	Ala>Ala	syn	-
49	14058	C>T	ND5	574	GCC>GCT	Ala>Ala	syn	-
50	14782	C>T	CYB	13	TTA>CTA	Leu>Leu	syn	-
51	15119	G>A	CYB	125	GCA>ACA	Ala>Thr	syn	-
52	15172	G>A	CYB	142	GGG>GGA	Gly>Gly	syn	-
53	15217	G>A	CYB	157	GGG>GGA	Gly>Gly	syn	-
54	15385	C>T	CYB	213	GCC>GCC	Ala>Thr	syn	-
55	15431	A>G	CYB	229	GCC>GCC	Ala>Thr	syn	-
56	15484	A>G	CYB	246	TCA>TGG	Ser>Ser	syn	-
57	15670	T>C	CYB	308	CAT>CAC	His>His	syn	-

Key: A – Adenine; T – Thymine; G- Guanine; C- Cytosine; Syn- synonymous; Non-syn- non-synonymous; ND1- NADH dehydrogenase subunit 1; ND2- NADH dehydrogenase subunit 2; ND3- NADH dehydrogenase subunit 3; ND4- NADH dehydrogenase subunit 4; ND4L- NADH dehydrogenase subunit 4L; ND5- NADH dehydrogenase subunit 5; CO1- cytochrome c oxidase I; CO2- cytochrome c oxidase II; CO3- cytochrome c oxidase III; ATPase6- ATP synthase subunit a (F1-ATPase protein 6); ATPase8- ATP synthase protein 8; CYB- cytochrome B.
increase in production of ROS due to altered complex I function [33-35]. G4580A (p.M37I) was present in 1 patient and G10398A (p.A114T) in 16 patients in our study. The frequency of G10398A (p.A114T) alteration was found to be statistically significant (p value <0.001) in our study population. Twenty patients (57.14%) had changes associated with elevated ROS production. It has been reported that alterations in mitochondrial complex I causes cytochrome c oxidase deficiency and OS [36]. Pathogenic mutations in ND genes have been reported in POAG, PACG, and PEG [11,13,14].

In this study we found mtDNA sequence changes which were different from other types of glaucoma. When compared between cases and controls, frequency of non-synonymous sequence variations in ND2 and ND3 were found to be statistically significant (p value <0.05; Table 4). Point mutations in ND1, ND4, and ND6 have been reported in association with LHON [37,38]. Moreover, mutations in complex I genes are also associated with Leigh syndrome, mitochondrial encephalomyopathy, lactic acidosis stroke-like episodes (MELAS), and infertility [15,39-41].

Cytochrome c oxidase (COX or complex IV), the terminal enzyme of the respiratory chain (RC) catalyzes the reduction of molecular oxygen by reduced cytochrome c. This complex is composed of 13 subunits [42]. Twenty six variations (19.69%) identified in this study were present in complex IV of which six were non-synonymous. Frequency of non-synonymous sequence variations in COI and COII in PCG cases were found to be statistically significant (p value <0.05; Table 4). Human diseases associated with COX mutations include POAG, PACG, PEG, and Leigh syndrome [11,13,14,43]. The frequency of non-synonymous sequence variations in CYB was not found to be statistically significant (p value >0.05; Table 4).

In the current study, 15.15% mtDNA variations (20/132) were observed in complex V (ATPase6 and ATPase8). Mutations in ATPase6 have been reported in POAG, PACG, PEG, neuropathy, ataxia, retinitis pigmentosa (NARP), and mitochondrial DNA-associated Leigh Syndrome (MILS) patients [11,13,14,44,45]. Mitochondrial variations in ATPase6 and ATPase8 have been reported in spinocerebellar ataxias [46].

The A12308G variation in tRNA leu gene is also associated with increased ROS production [34] and this variation was detected in three patients in this study. However, the frequency of the A12308G variation and non-synonymous variations in ATPase8 was not found to be statistically significant (p value >0.05) while that of non-synonymous
Patient number	ND1	ND2	CO1	CO2	ATPα6	ATPα8	CO3	ND4L	ND4	ND5	CYB	Other changes	Last cup disc ratio (OS/OD) at presentation	Corneal diameter (mm) OS/OD	IOP (mmHg) OS/OD		
1	1020Y	1080Y	T135	T1215	W57W	W112L	P114T	-	-	1135	1185	G646	Ins. of T at 2790, 91 (16sRNA)	Hazy MEDIA	15x15/15x15	15	
2	1020Y	1080Y	T135	T1215	W57W	W112L	P114T	-	-	1135	1185	G646	Ins. of T at 2790, 91 (16sRNA)	Hazy MEDIA	15x15/15x15	15	
3	M31T	V155	I	-	V113	V	W57W	P114A	W416	-	1135	1185	G646	Ins. of T at 2790, 91 (16sRNA)	Hazy MEDIA	15x15/15x15	15
4	D227D	G222	G	-	1195	T	W57W	P114A	W416	-	1135	1185	G646	Ins. of T at 2790, 91 (16sRNA)	Hazy MEDIA	15x15/15x15	15
5	Y304H	M307	F184	T187	W57W	L112L	A114T	-	-	1135	1185	G646	Ins. of T at 2790, 91 (16sRNA)	Hazy MEDIA	15x15/15x15	15	
6	N150T	I123	I	-	W416	W	E268K	P134F	L185	-	1135	1185	G646	Ins. of T at 2790, 91 (16sRNA)	Hazy MEDIA	15x15/15x15	15
7	G177	P134	F184	L126	W57W	L112L	A114T	-	-	1135	1185	G646	Ins. of T at 2790, 91 (16sRNA)	Hazy MEDIA	15x15/15x15	15	
8	L174	L105	S205	T145	S11	S	W57W	P114A	W416	-	1135	1185	G646	Ins. of T at 2790, 91 (16sRNA)	Hazy MEDIA	15x15/15x15	15
9	T115	T145	S11	T135	W57W	L112L	P114T	-	-	1135	1185	G646	Ins. of T at 2790, 91 (16sRNA)	Hazy MEDIA	15x15/15x15	15	
10	V113	T145	T135	T1215	W57W	L112L	P114T	-	-	1135	1185	G646	Ins. of T at 2790, 91 (16sRNA)	Hazy MEDIA	15x15/15x15	15	
11	W394	L105	T126	L105	W57W	L112L	A114T	-	-	1135	1185	G646	Ins. of T at 2790, 91 (16sRNA)	Hazy MEDIA	15x15/15x15	15	
12	P2L	N49	-	-	A97; 1065	-	P114T	-	G320	-	1135	1185	G646	Ins. of T at 2790, 91 (16sRNA)	Hazy MEDIA	15x15/15x15	15
13	M31T	V155	I	-	V113	V	W57W	P114A	W416	-	1135	1185	G646	Ins. of T at 2790, 91 (16sRNA)	Hazy MEDIA	15x15/15x15	15
14	-	-	-	-	P114A	-	W416	-	W416	-	1135	1185	G646	Ins. of T at 2790, 91 (16sRNA)	Hazy MEDIA	15x15/15x15	15
15	L261	L126	T11A	N460	W57W	P114A	-	-	-	1135	1185	G646	Ins. of T at 2790, 91 (16sRNA)	Hazy MEDIA	15x15/15x15	15	
Patient number	ND1	ND2	CO1	CO2	ND3	ND4	ND4L	ND5	CYB	Other changes	Last cup disc ratio (OS/OD) at presentation	Corneal diameter (mm) OS/OD	IOP (mmHg) OS/OD				
----------------	-----	-----	-----	-----	-----	-----	------	-----	-----	---------------	---------------------------------	--------------------------	-----------------				
16											p.K40K – p.W57W p.A114A – p.W416W	0.4:10.5:1	11x11/12x12.5				
17											p.S205S	p.T44T – p.W57W p.A114A – p.F457F	0.5:1 – p.G99G	NA	14x14/14x14.5		
18											p.A59T	p.W57W p.A114T – p.G320G	0.4:1 – p.L185L	NA	14.5x14/14x14		
19											p.V155I	p.F17T p.W57W p.A103T – p.F457F	0.5:1 – p.G99G	0.5:1	12x12.5/12x12		
20											p.J10T	p.Y129Y p.M86M – p.G99G	NA	NA	12x13/13x13		
21										p.I59V – p.Y129Y	p.B59V	p.A59T	0.7:1 – p.L185L	NA	15x16/15x16		
22											p.K58K	p.V31A	0.7:1 – p.L185L	NA	14x15/14x15.5		
23											p.K120K	p.L164L; p.G170G	0.7:1 – p.L185L	NA	13x13.5/13x13.5		
24											p.K120K	p.A114A; p.L123M	0.7:1 – p.L185L	NA	14x14/14x14		
25											p.K120K	p.A114A – p.M27M	0.7:1 – p.L185L	NA	14x15/14x15		
26											p.K120K	p.L123M	0.7:1 – p.L185L	NA	14x14/14x14		
27											p.K120K	p.A114A – p.L446L	0.7:1 – p.L185L	NA	14x14/14x14		
28											p.K120K	p.A114A	0.7:1 – p.L185L	NA	14x14/14x14		
29											p.K120K	p.A114A	0.7:1 – p.L185L	NA	14x14/14x14		
30											p.K120K	p.N78N	0.7:1 – p.L185L	NA	14x14/14x14		
31											p.K120K	p.A4T	0.7:1 – p.L185L	NA	14x14/14x14		
32											p.K120K	p.A4T	0.7:1 – p.L185L	NA	14x14/14x14		
33											p.K120K	p.A4T	0.7:1 – p.L185L	NA	14x14/14x14		
34											p.K120K	p.A4T	0.7:1 – p.L185L	NA	14x14/14x14		
35											p.K120K	p.A4T	0.7:1 – p.L185L	NA	14x14/14x14		

Key: NA- not available; OD- right eye; OS- left eye; OU- both eyes; mmHg- millimeter of mercury; IOP- intra ocular pressure; Syn- synonymous; Non-syn- non-synonymous; - novel change; ND1 - NADH dehydrogenase subunit 1; ND2 - NADH dehydrogenase subunit 2; ND3 - NADH dehydrogenase subunit 3; ND4 - NADH dehydrogenase subunit 4; ND4L - NADH dehydrogenase subunit 4L; ND5 - NADH dehydrogenase subunit 5; CO1 - cytochrome c oxidase I; CO2 - cytochrome c oxidase II; CO3 - cytochrome c oxidase III; ATPase6 - ATP synthase subunit a (F-ATPase protein 6); ATPase8 - ATP synthase protein 8; CYB - cytochrome B; tRNA- transfer ribo nucleic acid.
variations in ATPase6 and others (16s RNA, tRNA), as shown in Table 4, were statistically significant (p value <0.05).

Non-synonymous mitochondrial variations adversely affect oxidative phosphorylation resulting in decreased mitochondrial respiration and increased free radical (FR) production [47]. Thus, we hypothesize that mtDNA variations with resultant lower ATP levels may impair growth, development, and differentiation of TM and result in trabecular-dysgenesis (Figure 3); a characteristic feature of PCG. Trabecular-dysgenesis leads to impairment in aqueous drainage hence causes elevation in IOP. ROS levels may increase to supraphysiological levels in TM endothelial cells and due to low ATP levels these cells are unable to eliminate the reactive oxygen intermediates (ROI). MtDNA mutations are also associated with optic neuropathies like LHON [38], NARP [48,49] or Leigh syndrome [50]. The mechanisms by which mitochondrial abnormalities may place the optic nerve at risk remain uncertain [51].

Distribution of high number of mitochondria in the optic nerve head reflects the high energy requirement of the human optic nerve head. Neurons, because of their high energy requirement, are heavily dependent on mitochondria for survival [52]. Mitochondria not only constitute an energy-generating system, but are also critically involved in calcium signaling and apoptosis. Mitochondrial function is impaired by mutations in mitochondrial and nuclear DNA, chemical insults to components of the electron transport chain, and a lack of substrates such as oxygen. The latter is relevant to tissue hypoxia that is believed to be present in the glaucomatous retina and optic nerve head either primarily or secondary to elevated IOP. Any malfunction of the mitochondrial electron transport chain results in excessive generation of free radicals and low ATP production. In our

Table 4. With p-value and relative risk at 95% confidence interval by using Pearson χ^2/Fisher’s exact test for non-synonymous sequence variations in different mitochondrial genes in PCG and controls.

Gene name	Cases (n=35)	Controls (n=40)	p-value	Relative risk at 95% confidence interval
ND1	6 (17.14%)	2 (5.0%)	0.136	1.73 (1.07–2.81)
ND2	10 (28.57%)	2 (5.0%)	0.005	2.10 (1.41–3.12)
ND3	17 (48.60%)	0 (0%)	<0.001	3.22 (2.19–4.72)
ND4	0 (0%)	0 (0%)	—	—
ND4L	0 (0%)	2 (5.0%)	0.495	1.92 (1.54–2.39)
ND5	21 (60.00%)	4 (10.0%)	<0.001	3.00 (1.86–4.83)
CO1	4 (11.42%)	0 (0%)	0.043	2.29 (1.75–2.98)
CO2	5 (14.30%)	0 (0%)	0.019	2.33 (1.78–3.05)
CO3	1 (2.90%)	0 (0%)	0.467	2.17 (1.70–2.78)
CYB	4 (11.42%)	8 (20.00%)	0.360	0.57 (0.18–1.73)
ATPase6	18 (51.42%)	7 (17.50%)	0.002	2.12 (1.34–3.34)
ATPase8	1 (2.85%)	1 (2.5)	1.00	1.07 (0.26–4.40)
Others	8 (22.85%)	0 (0%)	0.001	2.48 (1.85–3.32)

Abbreviations: ND1 - NADH dehydrogenase subunit 1; ND2 - NADH dehydrogenase subunit 2; ND3 - NADH dehydrogenase subunit 3; ND4 - NADH dehydrogenase subunit 4; ND4L - NADH dehydrogenase subunit 4L; ND5 - NADH dehydrogenase subunit 5; CO1 - cytochrome c oxidase I; CO2 - cytochrome c oxidase II; CO3 - cytochrome c oxidase III; ATPase6 - ATP synthase subunit a (F-ATPase protein 6); ATPase8 - ATP synthase protein 8; CYB - cytochrome B; tRNA- transfer ribonucleic acid; rRNA- ribosomal ribonucleic acid.
study we identified 50.00% variations in complex I, 9.02% in complex III, 19.54% in complex IV, and 15.03% in complex V. The presence of primary LHON mutations has been investigated previously in normal tension glaucoma and POAG [12,53] but not in PCG. None of PCG cases had primary LHON mutations (3460G>A, 11778G>A, 14484T>C) in the current study.

It has already been reported that OS leads to oxidative damage to cellular macromolecules such as mitochondrial and nuclear DNA, proteins, and lipids, along with energy depletion and a local dysregulation of calcium homeostasis, resulting in neuronal degeneration [54]. OS is the underlying etiology in several ocular diseases [11,54-59] and plays an essential role in early retinal ischemic injury [60] and glaucoma pathogenesis [61,62]. Mitochondrial dysfunction leads to RGC death through caspase-dependent and caspase-independent pathways initiated by the loss of mitochondrial membrane potential, release of cell death mediators and OS [54]. Glaucomatous eyes have a significant increase in OS and decreased antioxidant activity [62]. Seppet et al. [63] reported that OS is a critical factor in injury to anterior segment of eye. OS has also been reported to induce human trabecular meshwork degenerative changes that favor increased intraocular pressure [64]. Oxidative DNA damage is significantly increased in the trabecular-meshwork (TM) of glaucomatous patients compared to controls [11]. The pathogenic role of ROS in glaucoma is supported by various experimental findings, including (a) resistance to aqueous humor outflow is increased by hydrogen peroxide by inducing TM degeneration and (b) intraocular-pressure increase and severity of visual loss in glaucoma patients parallel to the amount of oxidative DNA damage affecting TM [11]. Oxidative damage constitutes an important pathogenic step triggering TM degeneration which results in intraocular hypertension. OS thus affects both TM and retinal ganglion cells, and may be involved in the neuronal cell death affecting the optic nerve in glaucoma (Figure 3).

Further evidence of oxidative damage in trabecular meshwork in glaucoma [57] and neural degeneration is that many retinal proteins exhibit oxidative modifications in experimental glaucoma [65], and may lead to important structural and functional alterations. Thus, the structure and function of mitochondria are critical determinants of endothelial cells and neuronal health. Essentially, once the mitochondrial lipid bilayer is compromised after the mitochondrial translocation of Bel-2-associated X protein (Bax), cell death is inevitable, because of already triggered events.

It has been established that pathogenic mitochondrial mutations can cause mitochondrial dysfunction and enhance OS, which in turn lead to apoptosis in affected tissue and primary culture of human cells that harbor mtDNA mutations [66]. There are several studies which point to mitochondrial dysfunction in glaucoma and RGC death [66-68]. One hypothesis suggests that progressive optic nerve damage in POAG is the result of optic nerve fiber apoptosis [67]. Mitochondria-induced apoptosis, which may be a mechanism of injury in experimental glaucoma [67] and other optic neuropathies [66], may also be a pathological factor in PCG. Recent study by Abu-Amero et al. [11] reported mitochondrial dysfunction-associated OS as a risk factor for glaucoma. MtDNA alterations result in reduced mitochondrial respiration [11] and OS [36]. Thus reduced ATP levels secondary to mitochondrial damage may impair development and differentiation of TM. Endothelial cells are also damaged due to supraphysiological ROS levels.

These findings suggest that elevation of IOP is related to oxidative degenerative processes affecting the TM specifically endothelial cells. Much evidence indicates that in this region ROS play a fundamental pathogenic role by reducing local antioxidant activities inducing outflow resistance. TM is neural crest in origin [69,70] and developing TM is deficient in antioxidant enzymes and more susceptible to OS induced DNA damage [71]. OS disturbs Ca²⁺ homeostasis and so raised Ca²⁺ levels activate endonucleases.
which cause nuclear DNA damage [63]. OS, early in development and/or throughout life could precipitate both metabolic and anatomic sequelae that cause trabecular dysgenesis and ultimately optic nerve damage in PCG.

Elevated IOP is a characteristic feature of glaucoma and an important risk factor for optic nerve damage [72]. However, the precise relationship between among elevated IOP, glaucomatous optic nerve (ON) damage, and retinal ganglion cell death are poorly understood. Growing evidence indicates that mitochondrial structural and functional dynamics play an important role in cell and animal physiology. Imbalance in the control of mitochondrial fusion and fission dramatically alters overall mitochondrial morphology [73-76]. Elevated IOP in glaucoma induces reduction of cytochrome c oxidase (COX) activity, mitochondrial fission, mitochondrial matrix swelling, cristae depletion, triggers release of optic nerve atrophy type-I (OPA1), and induces subsequent apoptotic cell death in differentiated RGC-5 cells [77,78] (Figure 4). Similar findings were also confirmed in a mouse model [79].

In summary, frequency of mtDNA sequence variations in PCG was significantly higher as compared to controls. Five pathogenic changes (3 in ND1 and 2 in ND2) and 3 other changes (G10398A, A12308G, and G13708A) associated with elevated ROS were present in our patients. Nonsynonymous mtDNA alterations may lead to mitochondrial dysfunction which leads to reduced mitochondrial respiration, OS, damage to mtDNA, altered mitochondrial morphology, alterations in mitochondrial fission and fusion, and ultimately cell’s demise. OS impairs development and differentiation of trabecular meshwork that favor increased intraocular pressure in PCG and consequently RGC death.

This study describes mtDNA sequence variations in a relatively small number of patients with PCG of north Indian ethnic origin. However, these results should be confirmed in other populations. Knowledge of mtDNA mutations and/or mitochondrial dysfunction in PCG may lead to a better understanding of glaucoma pathophysiology [80]. Novel approaches are now available for studying mitochondrial disease in the eye, and a novel in vitro treatment has already been devised for the metabolic defect of at least one mtDNA mutation in LHON [81]. PCG cases with mtDNA variations and consequent OS may benefit by early diagnosis and prompt management with antioxidant therapy.

Conclusion: A total of 44 novel mtDNA variations were identified in current study. MtDNA variations adversely affect respiratory chain, impair the OXPHOS pathway resulting in low ATP production, and impair growth, development, and differentiation of TM. Mitochondrial DNA variations also lead to increased ROS production, oxidative injury to TM and RGCs. Thus, early diagnosis of mitochondrial DNA variations and prompt antioxidant administration may delay OS induced injury to TM and RGCs and hence improve visual prognosis.

ACKNOWLEDGMENTS

The authors would like to thank the families of the patients for their cooperation without this study was not possible. The authors also thank to Dr. Guresh Kumar, Department of Bio-Statistics for statistical analysis. The author Mukesh Tanwar thanks University Grants Commission (UGC), Govt. of India for providing Senior Research Fellowship (SRF).

REFERENCES

1. Sarfarazi M, Stoilov I. Molecular genetics of primary congenital glaucoma. Eye 2000; 14:422-8. [PMID: 11026969]
2. Gencik A, Gencikova A, Ferak V. Population genetical aspects of primary congenital glaucoma. I. Incidence, prevalence, gene frequency, and age of onset. Hum Genet 1982; 61:193-7. [PMID: 7173860]
3. Stoilov I, Akarsu AN, Sarfarazi M. Identification of three different truncating mutations in cytochrome P4501B1 (CYP1B1) as the principal cause of primary congenital glaucoma (Buphthalmos) in families linked to the GLC3A locus on chromosome 2p21. Hum Mol Genet 1997; 6:641-7. [PMID: 9097971]
4. Dandona L, Williams JD, Williams BC, Rao GN. Population-based assessment of childhood blindness in
southern India. Arch Ophthalmol 1998; 116:545-6. [PMID: 9565065]

5. Akarsu AN, Turaceli ME, Aktan SG, Barsoum-Homsy M, Chevrette L, Sayil BS, Sarfarazi M. A second locus (GLC3B) for primary congenital glaucoma (buphthalmos) maps to the 1p36 region. Hum Mol Genet 1996; 5:1199-203. [PMID: 8842741]

6. Stoilov IR, Sarfarazi M. The third genetic locus (GLC3C) for primary congenital glaucoma (PCG) maps to chromosome 14q24.3. ARVO Annual Meeting; 2002 May 5–10; Fort Lauderdale (FL).

7. Tanwar M, Dada T, Sihota R, Yadav U, Das TK, Dada R. Mutation spectrum of CYPIB1 in North Indian congenital glaucoma patients. Mol Vis 2009; 15:1200-9. [PMID: 19536304]

8. Panicker SG, Reddy AB, Mandal AK, Ahmed N, Nagarajaram HA, Hasnain SE, Balasubramanian D. Identification of novel mutations causing familial primary congenital glaucoma in Indian pedigrees. Invest Ophthalmol Vis Sci 2002; 43:1358-66. [PMID: 11980847]

9. Mashima Y, Suzuki Y, Sergeev Y, Ohtake Y, Inatani M, Azuma N, Mikawa T, Araie M. Novel Cytochrome P4501B1 (CYPIB1) gene mutations in Japanese patients with Primary Congenital Glaucoma. Invest Ophthalmol Vis Sci 2001; 42:2211-6. [PMID: 11527932]

10. Bejiani BA, Lewis RA, Tomey KE, Anderson KL, Dueker DK, Jabak M, Astle WF, Otterud B, Leppert M, Lupski JR. Mutations in CYPIB1, the gene for cytochrome P4501B1, are the predominant cause of primary congenital glaucoma in Saudi Arabia. Am J Hum Genet 1998; 62:325-33. [PMID: 9463332]

11. Abu-Amero KK, Morales J, Bosley TM. Mitochondrial abnormalities in patients with primary open-angle glaucoma. Invest Ophthalmol Vis Sci 2006; 47:2533-41. [PMID: 16723467]

12. Izzotti A, Bagnis A, Sacca SC. The role of oxidative stress in glaucoma. Mutat Res 2006; 612:105-14. [PMID: 16413223]

13. Abu-Amero KK, Morales J, Osman MN, Bosley TM. Nuclear and mitochondrial analysis of patients with primary angle-closure glaucoma. Invest Ophthalmol Vis Sci 2007; 48:5591-6. [PMID: 18055808]

14. Abu-Amero KK, Bosley TM, Morales J. Analysis of nuclear and mitochondrial genes in patients with pseudoxfoliation glaucoma. Mol Vis 2008; 14:29-36. [PMID: 18246027]

15. Kumar R, Venkatesh S, Kumar M, Tanwar M, Shamsi MB, Kumar R, Gupta NP, Sharma RK, Talwar P, Dada R. Oxidative stress and sperm mitochondrial DNA mutation in idiopathic oligoasthenozoospermic men. Indian J Biochem Biophys 2009; 46:172-7. [PMID: 19517995]

16. Sunyaev S, Ramensky V, Koch I, Lathe W III. Kondrashiv, Bork P. Prediction of deleterious human alleles. Hum Mol Genet 2001; 10:591-7. [PMID: 11230178]

17. Ramensky V, Bork P, Sunyaev S. Human non-synonymous SNPs: server and survey. Nucleic Acids Res 2002; 30:3894-900. [PMID: 12202775]

18. Sunyaev S, Ramensky V, Bork P. Towards a structural basis of human non-synonymous single nucleotide polymorphisms. Trends Genet 2000; 16:198-200. [PMID: 10782110]

19. Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 2009; 4:1073-81. [PMID: 19561590]

20. Ng PC, Henikoff S. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 2003; 31:380-4. [PMID: 12824425]

21. George Priya Doss C, Rajasekaran R, Sudandiradoss C, Ramanathan K, Purohit R, Sethumadhavan R. A novel computational and structural analysis of nsSNPs in CFTR gene. Genomic Med 2008; 2:23-32. [PMID: 18716917]

22. Gale CP, Grant PJ. The characterisation and functional analysis of the human glyoxalase-1 gene using methods of bioinformatics. Gene 2004; 340:251-60. [PMID: 15475166]

23. Brown WM, George M Jr, Wilson AC. Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci USA 1979; 76:1967-71. [PMID: 109836]

24. Richter C. Oxidative stress, mitochondria, and apoptosis. Restor Neurol Neurosci 1998; 12:59-62. [PMID: 12671298]

25. Finkel T. Redox-dependent signal transduction. FEBS Lett 2000; 476:52-4. [PMID: 10878249]

26. Turrens JF, Boveris A. Oxidative stress, mitochondria, and apoptosis. Biochim Biophys Acta 1995; 1267:67-74. [PMID: 7599228]

27. van der Walt JM, Nicodemus KK, Martin ER, Scott WK, Nance WG, Allen FH Jr, Goetz CG, Small GW, Mastaglia F, Stajich JM, McLaurin AC, Middleton LT, Scott BL, Schmechel DE, Pahwa R, Stern MB, Colcher A, Hiner BC, Jankovic J, Ondo MA, Watts RL, Hubble JP, Haines JL, Koller WC, Lyons K, Pahta R, Stern MB, Colcher A, Hiner BC, Jankovic J, Ondo WG, Allen FH Jr, Goetz CG, Small GW, Mastaglia F, Stajich JM, McLaurin AC, Middleton LT, Scott BL, Schmechel DE, Pericak-Vance MA, Vance JM. Mitochondrial polymorphisms significantly reduce the risk of Parkinson disease. Am J Hum Genet 2003; 72:804-11. [PMID: 12618962]

28. Ross OA, McCormack R, Curran MD, Dugid RA, Barnett YA, Rea IM, Middleton D. Mitochondrial DNA polymorphism: its role in longevity of the Irish population. Exp Gerontol 2001; 36:1161-78. [PMID: 11404057]

29. Bhat A, Koul A, Sharma S, Rai E. Bukhari SIAm Dhar MK, Bameza RN. The possible role of 10398A and 16189C variants in providing susceptibility to T2DM in two north Indian populations: a replicative study. Hum Genet 2007; 120:821-6. [PMID: 17066297]
36. Grad LI, Lemire BD. Mitochondrial complex I mutations in Caenorhabditis elegans produce cytochrome c oxidase deficiency, oxidative stress and vitamin-responsive lactic acidosis. Hum Mol Genet 2004; 13:303-14. [PMID: 14662656]

37. Huoponen K, Vilkkuj J, Aula P, Nikoskelainen EK, Savontaus ML. A new mtDNA mutation associated with Leber hereditary optic neuropathy. Am J Hum Genet 1991; 48:1147-53. [PMID: 1674640]

38. Johns DR, Neufeld MJ, Park RD. An ND6 mitochondrial DNA mutation associated with Leber's hereditary optic neuropathy. Biochem Biophys Res Commun 1992; 187:1551-7. [PMID: 1417830]

39. Morris AA, Leonard JV, Brown GK, Bidouki SK, Bindoff LA, Woodward CE, Harding AE, Lake BD, Harding BN, Farrell MA, Bell JE, Mirakhur M, Turnbull DM. Deficiency of respiratory chain complex I is a common cause of Leigh disease. Ann Neurol 1996; 40:25-30. [PMID: 8687187]

40. Loeffen J, Smeitink J, Triepels R, Smeets R, Schuelke M, Kuriyama H, Waki M, Nakagawa M, Tsuda M. Involvement of the ATPase6 gene found in NARP/MILS patients. Biochim Biophys Acta 2009; 1793:817-24. [PMID: 19269308]

41. Lim BC, Park JD, Hwang H, Kim KJ, Hwang YS, Chae JH, Cheon JE, Kim IO, Lee R, Moon HK. Mutations in ND subunits of complex I are an important genetic cause of childhood mitochondrial encephalopathies. J Child Neurol 2009; 24:828-32. [PMID: 19617458]

42. Shoubridge EA. Cytochrome c oxidase deficiency. Am J Med Genet 2001; 106:46-52. [PMID: 11579424]

43. Diaz F. Cytochrome c oxidase deficiency: patients and animal models. Biochim Biophys Acta 2010; 1802:100-10. [PMID: 19682572]

44. Rojo A, Campos Y, Sánchez JM, Bonaventura I, Aguilar M, Garcia A, González L, Rey MJ, Arenas J, Olivé M, Feller I. NARP-MILS syndrome caused by 8993 T->G mitochondrial DNA mutation: a clinical, genetic and neuropathological study. Acta Neuropathol 2006; 111:610-6. [PMID: 16525806]

45. Kucharczyk R, Rak M, de Rago JP. Biochemical consequences in yeast of the human mitochondrial DNA 8993T->C mutation in the ATPase6 gene found in NARP/MILS patients. Biochim Biophys Acta 2009; 1793:817-24. [PMID: 19269308]

46. Saafai S, Houshamd M, Banoei MM, Panahi MS, Nafisi S, Parivar K, Rostami M, Shariati P. Mitochondrial tRNALeu/Lys and ATPase 6/8 gene variations in spinoocerebellar ataxias. Neurodegener Dis 2009; 6:16-22. [PMID: 19066432]

47. St. John JC, Cooke JD, Barrat CLR. Mitochondrial mutations and male infertility. Nat Med 1997; 3:124-5. [PMID: 9018221]

48. Holt IJ, Harding AE, Petty RKH, Morgan-Hughes JA. A new mitochondrial disease associated with mitochondrial DNA heteroplasy. Am J Hum Genet 1990; 46:428-33. [PMID: 2137962]

49. Puddu P, Barboni P, Mantovani V, Montagna P, Cerullo A, Braglioni M, Molinotti C, Caramazza R. Retinitis pigmentosa, ataxia, and mental retardation associated with mitochondrial DNA mutation in an Italian family. Br J Ophthalmol 1993; 77:84-8. [PMID: 8435424]

50. Tatuch Y, Christodoulou J, Feigenbaum A, Clarke JTR, Wherret J, Smith C, Rudd N, Petrova-Benedict R, Robinson BH. Heteroplasmic mtDNA mutation (T—-G) at 8993 can cause Leigh disease when the percentage of abnormal mtDNA is high. Am J Hum Genet 1992; 50:852-8. [PMID: 1550128]

51. Howell N. LHON and other optic nerve atrophies: the mitochondrial connection. Dev Ophthalmol 2003; 37:94-108. [PMID: 12876832]

52. Barron MJ, Griffiths P, Turnbull DM, Bates D, Nichols P. The distributions of mitochondria a sodium channels reflect the specific energy requirements and conduction properties of the human optic nerve head. Br J Ophthalmol 2004; 88:286-90. [PMID: 14736793]

53. Opial D, Boehnke M, Tadesse S, Lietz-Partzsch A, Flammer J, Munier F, Mermoud A, Hirano M, Flückiger F, Mojon DS. Leber's hereditary optic neuropathy mitochondrial DNA mutations in normal-tension glaucoma. Graefes Arch Clin Exp Ophthalmol 2001; 239:437-40. [PMID: 11561792]

54. Tezel G, Yang X. Caspase-independent component of retinal ganglion cell death, in vitro. Invest Ophthalmol Vis Sci 2004; 45:4049-59. [PMID: 15505055]

55. Verdejo C, Marco P, Renau-Piqueras J, Pinazo-Duran MD. Lipid peroxidation in proliferative vitreoretinopathies. Eye 1999; 13:183-8. [PMID: 10450379]

56. Meagher EA, FitzGerald GA. Indices of lipid peroxidation in vivo: strengths and limitations. Free Radic Biol Med 2000; 28:1745-50. [PMID: 10946216]

57. Elejalde Guerra JI. Oxidative stress, diseases and antioxidant treatment. Am Interna Interna 2001; 18:326-35. [PMID: 11503582]

58. Head KA. Natural therapies for ocular disorders, part two: cataracts and glaucoma. Altern Med Rev 2001; 6:141-66. [PMID: 11302779]

59. Zoric L. Parameters of oxidative stress in the lens, aqueous humor and blood in patients with diabetes and senile cataracts. Srp Arh Celok Lek 2003; 131:137-42. [PMID: 14608877]

60. Kuriyama H, Waki M, Nakagawa M, Tsuda M. Involvement of oxygen free radicals in experimental retinal ischemia and the selective vulnerability of retinal damage. Ophthalmic Res 2001; 33:196-202. [PMID: 11464071]

61. Kortuem K, Geiger DK, Levin LA. Differential susceptibility of retinal ganglion cells to reactive oxygen species. Invest Ophthalmol Vis Sci 2000; 41:3176-82. [PMID: 10967081]

62. Zanon-Moreno V, Marco-Ventura P, Lleo-Perez A, Pons-Vazquez S, Garcia-Medina JJ, Vinuesa-Silva I, Moreno-Nadal MA, Pinazon-Duran MD. Oxidative stress in primary open-angle glaucoma. J Glaucoma 2008; 17:263-8. [PMID: 18552610]

63. Seppet E, Gruno M, Peetsalu A, Gizatullina Z, Nguyen HP, Strollo BF. Heteroplasmic mtDNA mutation (T—-G) at 8993 can cause Leigh disease when the percentage of abnormal mtDNA is high. Am J Hum Genet 1992; 50:852-8. [PMID: 1550128]

64. Sacca SC, Izzotti A, Rossi P, Traverso C. Glaucomatous outflow pathway and oxidative stress. Exp Eye Res 2007; 84:389-99. [PMID: 17196589]

65. Tezel G, Yang X, Cai J. Proteomic identification of oxidatively modified retinal proteins in a chronic pressure-induced rat model.
model of glaucoma. Invest Ophthalmol Vis Sci 2005; 46:3177-87. [PMID: 16123417]
66. Tezel G, Yang X. Caspase-independent component of retinal ganglion cell death, in vitro. Invest Ophthalmol Vis Sci 2004; 45:4049-59. [PMID: 15505055]
67. Tatton WG, Chalmers-Redman RM, Sud A, Podos SM, Mittag TW. Maintaining mitochondrial membrane impermeability, an opportunity for new therapy in glaucoma? Surv Ophthalmol 2001; 45:S277-83. [PMID: 11377449]
68. Mittag TW, Danias J, Pohorenc G, Yuan HM, Burakgazi E, Chalmers-Redman R, Podos SM, Tatton WG. Retinal damage after 3 to 4 months of elevated intraocular pressure in a rat glaucoma model. Invest Ophthalmol Vis Sci 2000; 41:3451-9. [PMID: 11006238]
69. Johnston MC, Noden DM, Hazelton RD, Coulombre JL, Coulombre AJ. Origins of avian ocular and periocular tissues. Exp Eye Res 1979; 29:27-43. [PMID: 510425]
70. Le Douarin N. The Neural Crest. New York: Cambridge University Press; 1982.
71. Sadler TW. Langman’sMedical Embryology. 8th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2000.
72. Weinreb RN, Khaw PT. Primary open-angle glaucoma. Lancet 2004; 363:1711-20. [PMID: 15158634]
73. Chen H, Chan DC. Emerging functions of mammalian mitochondrial fusion and fission. Hum Mol Genet 2005; 14:R283-9. [PMID: 16244327]
74. Yaffe MP. The machinery of mitochondrial inheritance and behavior. Science 1999; 283:1493-7. [PMID: 10066164]
75. Bossy-Wetzel E, Barsoum MJ, Godzik A, Schwarzenbacher R, Lipton SA. Mitochondrial fission in apoptosis, neurodegeneration and aging. Curr Opin Cell Biol 2003; 15:706-16. [PMID: 14644195]
76. Youle RJ, Karbowski M. Mitochondrial fission in apoptosis. Nat Rev Mol Cell Biol 2005; 6:657-63. [PMID: 16025099]
77. Ju WK, Liu Q, Kim KY, Crowston JG, Lindsey JD, Agarwal N, Ellsismman MH, Perkins GA, Weinreb RN. Elevated hydrostatic pressure triggers mitochondrial fission and decreases cellular ATP in differentiated RGC-5 cells. Invest Ophthalmol Vis Sci 2007; 48:2145-51. [PMID: 17460273]
78. Ju WK, Kim KY, Lindsey JD, Angert M, Patel A, Scott RT, Liu Q, Crowston JG, Ellsismman MH, Perkins GA, Weinreb RN. Elevated hydrostatic pressure triggers release of OPA1 and cytochrome C, and induces apoptotic cell death in differentiated RGC-5 cells. Mol Vis 2009; 15:120-34. [PMID: 19169378]
79. Ju WK, Kim KY, Lindsey JD, Angert M, Duong-Polk KX, Scott RT, Kim JJ, Kukhmazov I, Ellsismman MH, Perkins GA, Weinreb RN. Intraocular Pressure Elevation Induces Mitochondrial Fission and Triggers OPA1 Release in Glaucomatous Optic Nerve. Invest Ophthalmol Vis Sci 2008; 49:4903-11. [PMID: 18469184]
80. Carelli V, Ross-Cisneros FN, Sadun AA. Mitochondrial dysfunction as a cause of optic neuropathies. Prog Retin Eye Res 2004; 23:53-89. [PMID: 14766317]
81. Guy J, Qi X, Pallotti F, Schon EA, Manfredi G, Carelli V, Martinuzzi A, Hauswirth WW, Lewin AS. Rescue of a mitochondrial deficiency causing Leber Hereditary Optic Neuropathy. Ann Neurol 2002; 52:534-42. [PMID: 12402249]