Astrophysics at n_TOF Facility at CERN

G Tagliente¹, U Abbondanno², G Aerts³, H Alvarez⁴, F Alvarez-Velarde⁵, S Andriamonje⁶, J Andrzejewski⁶, L Audouin⁸, G Badurek⁹, P Baumann¹⁰, F Bečvář¹¹, F Belloni¹², E Berthoumieux³, S Bisterzo¹², F Calviño¹³, M Calvián¹⁴, D Cano-Ott¹⁵, R Capote¹⁶,¹⁷, C Carrapiço¹⁸, P Cennini¹⁹, V Chepel¹⁹, E Chiaveri¹⁸, N Colonna¹, G Cortes¹⁷, A Couture²⁰, J Cox²⁰, M Dahlfors¹⁸, S David¹⁰, I Dillman⁸, C Domingo-Pardo¹², W Dridi³, I Duran⁴, C Eleftheriadis¹², M Embid-Segura⁵, A Ferrari¹⁸, R Ferreira-Marques¹⁹, K Fujii¹², W Furman¹⁸,¹⁴, R Gallino¹², I Goncalves¹⁹, E Gonzalez-Romero⁵, F Gramega¹⁴, C Guerrero⁵, F Gunsing⁵, B Haas²⁵, R Haight²⁶, M Heil³⁸, A Herrera-Martínez¹⁸, M Igashira²⁷, E Jericha⁹, F Käppeler⁸, Y Kadi¹⁸, D Karadimos⁷, D Karamanis⁷, M Kerveno¹⁰, P Koehler²⁸, E Kossionides²⁹, M Krtička¹¹, H Leeb⁹, A Lindote¹⁳, J Lopes¹⁹, M Lozano¹⁶, S Lukie¹⁰, J Marganiec⁶, S Marrone¹, T Martinez², C Massimi³⁰, P Mastinu¹⁴, A Mengoni¹⁵, P M Milazzo², M Mosconi⁸, F Neves¹⁹, H Oberhummer⁹, J Pancin³, C Papachristodoulou³, C Papadopoulos³¹, C Paradela⁴, N Patronis⁷, A Pavlik³², P Pavlopoulos³³, L Perrot³, M T Pigni⁹, R Plag⁸, A Plompen³⁴, A Plukis³, A Poch¹⁴, J Praena¹⁴, C Pretel³, J Quesada¹⁶, T Rauscher³⁵, R Reifarth²⁶, C Rubbia³⁶, G Rudolf³⁰, P Rullhusen³⁴, J Salgado¹⁷, C Santos¹⁷, L Sarchiapone¹⁸, I Savvidis³³, C Stephan²¹, J L Tain²¹, L Tassan-Got²³, L Tavora¹⁷, R Terlizzi¹, G Vannini³⁰, P Vaz¹⁷, A Ventura³⁷, D Villamarin⁵, M C Vincente⁵, V Vlachoudis³⁸, R Vlastou³¹, F Voss³, S Walter³, H Wendler¹⁸, M Wiescher²⁰ and K Wisshak⁸

¹INFN, Bari, Italy; ²INFN, Trieste, Italy; ³CEA/Saclay, GIF-sur-Yvette, France; ⁴Univ. Santiago de Compostela, Spain; ⁵CIEMAT, Madrid, Spain; ⁶Univ. Lodz, Poland; ⁷Univ. Ioannina, Greece; ⁸FZK, Institut für Kernphysik, Germany; ⁹Technische Universität Wien, Austria; ¹⁰CNRS/IN2P3 - IReS, Strasbourg, France; ¹¹Univ. Prague, Czech Republic; ¹²Dip. Fisica Generale, Univ. Torino, Italy; ¹³Univ. Politecnica Catalunya, Barcelona, Spain; ¹⁴INFN, Laboratori Nazionali di Legnaro, Italy; ¹⁵IAEA, Vienna, Austria; ¹⁶Univ. Sevilla, Spain; ¹⁷ITN, Lisbon, Portugal; ¹⁸CERN, Geneva, Switzerland; ¹⁹LIP - Coimbra & Dep. Fisica Univ. Coimbra, Portugal; ²⁰Univ. Notre Dame, USA; ²¹Inst. Fisica Corpuscular, CSIC-Univ. Valencia, Spain; ²²Aristotle Univ. Thessaloniki, Greece; ²³CNR S/IN2P3 - IPN, Orsay, France; ²⁴JINR, Frank Lab. Neutron Physics, Dubna, Russia; ²⁵CNRS/IN2P3 - IPN, Orsay, France; ²⁶LANL, USA; ²⁷Tokyo Inst. Technology, Japan; ²⁸ORNL, Physics Division, USA; ²⁹NCSR, Athens, Greece; ³⁰Dip. Fisica, Univ. Bologna, & INFN, Bologna, Italy; ³¹National Technical Univ. Athens, Greece; ³²Inst. für Fakultät für Physik, Univ. Wien, Austria; ³³Pôle Univ. L. de Vinci, Paris, France; ³⁴CEC-JRC-IRMM, Geel, Belgium; ³⁵Dep. Physics and Astronomy, Univ. Basel, Switzerland; ³⁶Univ. Pavia, Italy; ³⁷ENEA, Bologna, Italy. The n_TOF Collaboration

Published under licence by IOP Publishing Ltd
Abstract. The neutron time of flight (n_TOF) facility at CERN is a spallation neutron source with white neutron energy spectrum (from thermal to several GeV), covering the full energy range of interest for nuclear astrophysics, in particular for measurements of the neutron capture cross section required in s-process nucleosynthesis. This contribution presents an overview on the astrophysical program carried on at the n_TOF facility, the main results and their implications.

1. The n_TOF facility at CERN
Based on an idea by Rubbia et al. [1], the n_TOF facility at CERN, Geneva, Switzerland, became fully operational in May 2002. After commissioning of the neutron beam, an intense scientific program started, relevance for Nuclear Astrophysics and energy applications. At n_TOF, neutrons are produced via spallation reactions induced by a pulsed proton beam on a massive lead target of 80 x 80 x 60 cm3.

The high proton momentum of 20 GeV/c, the short pulse width of 6 ns, and an intensity of 7×10^{12} protons per pulse make n_TOF one of the most luminous neutron source worldwide. A 5 cm water slab surrounds the lead target acting as a coolant and as moderator of the initial fast neutron spectrum. Neutrons emerging from the target propagate in the vacuum pipe inside a time-of-flight tunnel 200 m long. Two collimators are present along the flight path, one of the diameter of 13,5 cm placed at 135 m from the lead target and one at 180 m with a diameter of 2 cm for the capture measurements. This collimation results in a Gaussian-shaped beam profile [3]. A 1.5 T sweeping magnet placed at 40 m upstream of the experimental area is used to deflect outside the beam charged particles travelling along the vacuum pipe. For an efficient background suppression, several concrete and iron walls are placed along the time-of-flight tunnel.

The measuring station is located inside the tunnel, centered at 187.5 m from the spallation target.

Two complementary setups for neutron capture measurement are used at n_TOF: a pair of specifically designed 12C$_6$D$_6$ [4], and a 4π BaF$_2$ array [5] acting as a total absorption calorimeter (TAC).

Due to the low cross-section of most the samples of Astrophysics interest measured at n_TOF, the 12C$_6$D$_6$ were preferred for these measurements, since these detectors have the advantage of presenting an extremely low sensitivity to scattered neutron.

The data acquisition system is based on flash ADCs with sampling rate up to 1 GHz. The consequent very high data rate ensures an almost zero dead-time [6].

2. Experimental campaign
The experimental campaign devoted to Nuclear Astrophysics is focused mostly on neutron magic nuclei, which act as bottle neck for the flow of s-process. Branching points isotopes and isotopes of special interest, such as the osmium involved in the so-called cosmic clock have also been investigated. Many new relevant results have been achieved, see [7,8,9,10,11,12]. In the following, the most recent result and their astrophysica implications are described.

2.1. 90,91,92,93,94,96Zr (n, γ) cross section measurements
Zr is a typical s-process element belonging to the first s-process peak of solar abundance distribution. Predictions of the production of the various Zr isotopes are critical for s-process modelling. Several of them are close to the magic number of neutron N =50, with 90Zr having exactly N=50. Hence, production of 90,91,92,94Zr is sensitive to the overall neutron flux, which is mostly defined by the 12C neutron source. The abundance of the remaining stable isotope, 96Zr, is determined by the activation of the branching point at the unstable 95Zr. Hence, its production is sensitive to the neutron density,
which is mostly defined by the 22Ne neutron source. Furthermore, most of the abundance of the element Nb is due to the radiogenic decay of the long living 93Zr.

The capture cross sections of the 91,92,93,94,96Zr in term of resonance parameter were measured in a wide neutron energy range. The results [13,14,15,16] show sizeable differences with respect to previous experimental data and allow extracting the related nuclear quantities with improved accuracy.

2.2. 186,187,188Os(n, γ) measurements

The time duration of the nucleosynthesis of the heavy elements produced by neutron capture processes can be used to set limits on the age of the universe [14]. Among several cosmic clock based on the abundances of long-lived radioactive isotopes, the 187Os/187Re is one of the most interesting.

The clock is based on the extremely long half-life of 187Re($T_{1/2} = 43.3$Gyr), decaying to 187Os, and on the fact that 186Os and 187Os are shielded against direct r-process production. Thanks to the well established s-process abundances of the 186Os and 187Os, the age of the Universe can be inferred, in the the Re/Os clock, by the enhancement in the abundance of 187Os due to 187Re → 187Os decay.

The neutron capture cross sections of 186,187,188Os have been measured at the CERN n_TOF facility with improved accuracy and over a wide energy range of neutron energies from 1 eV to 1 MeV. In Fig. 1 a comparison between the n_TOF result and the previous data is shown. Based on the n_TOF data, Maxwellian averaged cross sections have been obtained with uncertainties between 3 and 4%. These results have been complemented by a detailed resonance analysis. Average level spacing, radiative widths, and neutron strength functions have been deduced by statistical analysis to establish a consistent set of input data for detailed cross section calculations with the Hauser-Feshbach statistical model. Based on these calculations stellar enhancement factors were obtained to correct the Maxwellian averaged cross sections determined from experimental (n, γ) data for the effect of thermally excited states in the hot, dense photon bath at the s-process site. The corresponding stellar (n, γ) cross sections have been used to separate the radiogenic part of the 187Os abundance from its s-process component and to define the mother/daughter ratio 187Re/187Os. With a schematic model that assumes an exponentially decreasing production rate for 187Re, an age of the Universe of 14.94 Gyr was obtained from the Re/Os cosmo-cronometer, with an accuracy, mostly related to the remaining nuclear physics uncertainties, of less than 1 Gyr. More details can be found in [17,18,19,20]

![FIG. 1. Comparison between the present results and the previous data [18]](image)

Conclusion

Neutron capture cross sections of astrophysical interest have been measured at the CERN n_TOF facility. The major motivation of these measurements was to reduce the uncertainties on nuclear data to a few percent, as required to improve the stellar s-process model. Improvements in the n_TOF apparatus, compared to previous experiments, resulted in significantly reduced uncertainty in the measured cross-sections, with a valuable impact on studies of s-process nucleosynthesis. New measurements on neutron-magic nuclei and, especially, on branching-point radioactive isotopes, are...
foreseen at n_TOF for the near future, while a much higher neutron flux in a second experimental area at 20 m from the spallation target, now in the proposal phase, would open the way to measurements of relatively short-lived isotopes, produced at ISOLDE, involved in r-process nucleosynthesis.

References
[1] C. Rubbia et al. A high Resolution Spalation driven Facility at the CERN-PS to measure Neutron Cross Sections in the Interval from 1 eV to 250 MeV. CERN/LHC/98-02 (EET) Add. 1. CERN. Geneva. 1998.
[2] U. Abbondanno et al., Tech. Rep. CERN/SL/2002-053 ECT(2003)h
[3] S. J. Pancin et al., Measurement of the n_TOF beam profile with a micromegas detector // Nucl. Instr. Meth. A. – 2004. – Vol. 524. – P. 102.
[4] R. Plag et al., An optimized C6D6 detector for studies of resonance-dominated (n,γ) cross-section // Nucl. Instr. Meth. A. – 2003. – Vol. 496. – P. 425.
[5] C. Guerrero et al., The n_TOF Total Absorption Calorimeter for neutron capture measurements at CERN // Nucl. Instr. Meth. A. – 2009. – Vol. 608. P. 424
[6] U. Abbondanno et al., The data acquisition system of the neutron time-of-flight facility n_TOF at CERN // Nucl. Instr. and Meth. A. 538 (2005) 692.
[7] U. Abbondanno et al., Neutron Capture Cross Section Measurement of 151Sm at the CERN Neutron Time of Flight Facility (n_TOF) // Phys. Rev. Letters. – 2004 – Vol. 93. – P. 161103
[8] R. Terlizzi et al., The 139La(n,γ) cross section: key for the onset of the s process // Phys Rev. – 2007 – Vol. C75. – P. 35807.
[9] C. Domingo-Pardo et al., Measurement of the neutron capture cross section of the s-only isotope 206Pb from 1 eV to 440 keV // Phys Rev. – 2007. – Vol. C75. – P. 15806.
[10] C. Domingo-Pardo et al., Resonance capture cross-section of 207Pb // Phys Rev. – 2006. – Vol. C74. – P. 55802.
[11] C. Domingo-Pardo et al., New measurement of neutron capture resonances in 209Bi // Phys Rev. – 2006. – Vol. C74. – P. 25807.
[12] C. Domingo-Pardo et al., Measurement of the radiative neutron capture cross section of 206Pb and its astrophysical implications // Phys Rev. – 2007. – Vol. C76. – P. 45805.
[13] G. Tagliente et al., Neutron capture cross section of 90Zr: bottleneck in the s-process reaction flow// Phys. Rev. C 77 (2008) 035802.
[14] G. Tagliente et al., Study of the 91Zr(n,γ) reaction up to 26 keV// Phys. Rev. C 78 (2008) 045804.
[15] G. Tagliente et al., The 92Zr(n,γ) reaction and its implication on stellar nucleosynthesis// Phys. Rev. C 81 (2010) 055801.
[16] G. Tagliente et al., Neutron capture on 94Zr: Resonance parameters and Maxwellian-averaged cross sections // submitted to Phys. Rev.C
[17] D. D. Clayton et al., Cosmoradiogenic chronologies of nucleosynthesis // Ap. J. – 1964 – Vol. 139. – P. 637.
[18] M. Mosconi et al., Neutron physics of the Re/Os clock. I. Measurement of the (n,γ) cross sections of 186,187,188Os at the CERN n_TOF facility// Phys. Rev. C 82 (2010) 015802.
[19] M. Mosconi et al., Neutron physics of the Re/Os clock. II. The (n,n') cross section of 187Os at 30 keV neutron energy // Phys. Rev. C 82 (2010) 015803.
[20] K. Fujii et al., Neutron physics of the Re/Os clock. III. Resonance analyses and stellar (n,γ) cross sections of 186,187,188Os // Phys. Rev. C 82 (2010) 015804.