From well-quasi-ordered sets to better-quasi-ordered sets

Maurice Pouzet *
PCS, Université Claude-Bernard Lyon1, Domaine de Gerland -bât. Recherche [B],
50 avenue Tony-Garnier, F69365 Lyon cedex 07, France
pouzet@univ-lyon1.fr

Norbert Sauer †
Department of Mathematics and Statistics, The University of Calgary,
Calgary, T2N1N4, Alberta, Canada
nsauer@math.ucalgary.ca

Abstract

We consider conditions which force a well-quasi-ordered poset (wqo) to be better-quasi-ordered (bqo). In particular we obtain that if a poset P is wqo and the set $S_\omega(P)$ of strictly increasing sequences of elements of P is bqo under domination, then P is bqo. As a consequence, we get the same conclusion if $S_\omega(P)$ is replaced by $J^1(P)$, the collection of non-principal ideals of P, or by $AM(P)$, the collection of maximal antichains of P ordered by domination. It then follows that an interval order which is wqo is in fact bqo.

Key words: poset, ideal, antichain, critical pair, interval-order, barrier, well-quasi-ordered set, better-quasi-ordered set.

1 Introduction and presentation of the results

1.1 How to read this paper

Section contains a collection of definitions, notations and basic facts. The specialist reader should be able to read the paper with only occasional use

*Supported by Intas
†Supported by NSERC of Canada Grant # 691325
of Section 7 to check up on some notation. Section 7 provides readers which are not very familiar with the topic of the paper with some background, definitions and simple derivations from those definitions. Such readers will have to peruse Section 7 frequently.

The paper is organized as follows. Section 2 provides the basics behind the notion of bqo posets and develops the technical tools we need to work with barriers and concludes with the proof of a result about α-bqo’s from which Theorem 1.1 follows. We present some topological properties of ideals in Section 3 and discuss minimal type posets in Section 4. The proof of Theorem 1.7 is contained in Section 5. In Section 6 we present constructions involving maximal antichains of prescribed size.

1.2 Background

Since their introduction by G. Higman [8], well-quasi-ordered, (wqo), sets have played an important role in several areas of mathematics: algebra (embeddability of free algebras in skew-fields, elimination orderings) set theory and logic (comparison of chains, termination of rewriting systems, decision problems) analysis (asymptotic computations, symbolic dynamic). A recent example is given by the Robertson-Seymour Theorem [22] asserting that the collection of finite graphs is wqo under topological embedding.

In this paper we deal with the stronger notion of better-quasi-ordered, (bqo), posets. Bqo posets where introduced by C. St. J. A. Nash-Williams, see [16], to prove that the class of infinite trees is wqo under topological embedding.

Better-quasi-orders enjoy several properties of well-quasi-orders. For example, finite posets are bqo. Well ordered chains are bqo, finite unions and finite products of bqo posets are bqo. The property of being bqo is preserved under restrictions and epimorphic images. Still there is a substantial difference: Well-quasi-ordered posets are not preserved under the infinitary construction described in the next paragraph, but better-quasi-ordered posets are.

A basic result due to G. Higman, see [8], asserts that a poset P is wqo if and only if $I(P)$, the set of initial segments of P, is well-founded. On the other hand, Rado [21] has produced an example of a well-founded partial order P for which $I(P)$ is well-founded and contains infinite antichains. The idea behind the bqo notion is to forbid this situation: $I(P)$ and all its iterates, $I(I(\cdots (I(P)\cdots)))$ up to the ordinal ω_1, have to be well-founded and hence wqo.

This idea is quite natural but not workable. (Proving that a two element
set satisfies this property is far from being an easy task). The working
definition, based upon the notion of barrier, invented by C. St. J. A. Nash-
Williams, is quite involved, see [15] and [16]. Even using this working condi-
tion, it is not so easy to see whether a wqo is a bqo or not. We aim to arrive
at a better understanding of bqo posets and consider two special problems
to see if indeed we obtained such a better understanding.

We solved the first problem, to characterize bqo interval orders, com-
pletely, see Theorem 1.6. The second was Bonnet’s problem, see Problem 1.8. We related the property of a poset to be bqo to the bqo of various
posets associated to a given poset, in particular the poset of the maximal
antichains under the domination order. We think that those results stand
on their own but unfortunately don’t seem to be strong enough to solve
Bonnet’s problem.

1.3 The results

Let P be a poset.

For $X, Y \subseteq P$ let $X \leq_{dom} Y$ if for every $x \in X$ there is a $y \in Y$ with $x \leq y$.
The quasi-order \leq_{dom} is the domination order on P and $S_\omega(P)$ is the set of
strictly increasing ω-sequences of P. We will prove, see Theorem 2.16 and
the paragraph before Theorem 2.16:

Theorem 1.1 If P is wqo, and $(S_\omega(P); \leq_{dom})$ is bqo then P is bqo.

Let $C \in S_\omega(P)$. Then $\downarrow C$ is an ideal of P. On the other hand if I is an
ideal with denumerable cofinality then $I = \downarrow C$ for some $C \in S_\omega(P)$.

Let $\mathcal{J}^{-\downarrow}(P)$ be the set of non principal ideals. Since ideals with denu-
merable cofinality are non-principal, we obtain from Theorem 1.1 and the
property of bqo to be preserved under restrictions that:

Corollary 1.2 If P is wqo and $\mathcal{J}^{-\downarrow}(P)$ is bqo then P is bqo.

The poset $(S_\omega(P); \leq_{dom})$ is often more simple than the poset P. So for
example if P is finite $S_\omega(P) = \emptyset$. It follows trivially from Definition 2.4 that
the empty poset is bqo and hence from Theorem 1.1 that finite posets are
bqo. A result which is of course well known. Also:

Corollary 1.3 If P is wqo and $\mathcal{J}^{-\downarrow}(P)$ is finite then P is bqo.

Corollary 1.2 was conjectured by the first author in his thesis [18] and a proof
of Corollary 1.3 given there. The proof is given in [5] Chapter 7, subsections
7.7.7 and 7.7.8. pp 217 – 219.
The above considerations suggest that $S_\omega(P)$ corresponds to some sort of derivative. As already observed, the elements of $S_\omega(P)$ generate the non-principal ideals of P with denumerable cofinality. The set of ideals $J(P)$ of P form the base set of a Cantor space C, see Section 3. It follows that P is finite if and only if the first Cantor-Bendixson derivative of C is finite and that $J(P)$ is finite if and only if the second Cantor-Bendixson derivative of C is finite.

The space C contains just one limit if and only if $J(P)$ is a singleton space. Such posets are called minimal type posets. Minimal type posets occur naturally in symbolic dynamics. See section 4 for details.

Lemma 1.4 If P is an interval order then $J^{-\downarrow}(P)$ is a chain.

Proof. Let $I, J \in J^{-\downarrow}(P)$. If $I \setminus J \neq \emptyset$ and $J \setminus I \neq \emptyset$ pick $x \in I \setminus J$ and $y \in J \setminus I$. Since I is not a principal ideal then x is not a maximal element in I, so we may pick $x' \in I$ such that $x < x'$. For the same reason, we may pick $y' \in J$ such that $y < y'$. Clearly, the poset induced on $\{x, x', y, y'\}$ is a $2 \oplus 2$. But then P is not an interval order. \hfill \Box

Corollary 1.5 If P is wqo and $J^{-\downarrow}(P)$ is a chain then P is bqo.

Indeed, if P is wqo then $I(P)$ is well-founded. In particular $J^{-\downarrow}(P)$ is well-founded. If $J^{-\downarrow}(P)$ is a chain, this is a well-ordered chain, hence a bqo. From Corollary 1.2 P is bqo.

From Corollary 1.5 this gives:

Theorem 1.6 An interval order is bqo iff it is wqo.

The following Theorem is an immediate consequence of Theorem 5.5. (See Section 7 for a definition of the notions used in Theorem 1.7.)

Theorem 1.7 Let P be a poset. If P has no infinite antichain, then the following properties are equivalent:

(i) P is bqo.

(ii) $(P; \leq_{suc})$ is bqo.

(iii) $(P; \leq_{pred})$ is bqo.

(iv) $(P; \leq_{crit})$ is bqo.

(v) $AM(P)$ is bqo.
As indicated earlier part of the motivation for this research was an intriguing problem due to Bonnet, see \[4\].

Problem 1.8 Is every wqo poset a countable union of bqo posets?

Item $\[16\]$ of Theorem $\[14\]$ may suggest to attack Bonnet’s problem using the antichains of the poset. Note that if a poset P is wqo but not bqo, then it contains antichains of arbitrarily large finite size. Indeed, if the size of antichains of a poset P is bounded by some integer, say m, then from Dilworth’s theorem, P is the union of at most m chains. If P is well founded, these chains are well ordered chains, hence are bqo, and P is bqo as a finite union of bqo’s.

For each integer m, let $AM_m(P)$ be the collection of maximal antichains having size m and $\bigcup AM_m(P)$ be the union of these maximal antichains. Trivially, $AM(P)$ is the union of the sets $AM_m(P)$ for $m \in \mathbb{N}$ if and only if P contains no infinite antichain. It is tempting to use this decomposition to attack Bonnet’s problem. That is, consider the union $\bigcup AM_m(P) = P$ of a well-quasi-ordered poset P.

This does not work in general: there are wqo posets P for which $\bigcup AM_2(P)$ is not bqo (Lemmas $\[6,2\]$ and $\[6,3\]$). Still, this works for wqo posets P for which $\bigcup AM_m(P)$ is bqo for every m and $AM(P)$ is not bqo (these P are not bqo). Rado’s poset provides an example, see Lemma $\[6,3\]$.

Looking at the relationship between $AM_m(P)$ and $\bigcup AM_m(P)$, we prove, see Theorem $\[6,3\]$.

Theorem 1.9 Let P be a poset with no infinite antichain, then $AM_2(P)$ is bqo if and only if $\bigcup AM_2(P)$ is bqo.

This does not extend: it follows from Corollary $\[6,7\]$ that there exists a wqo poset P for which $AM_3(P)$ is bqo but $\bigcup AM_3(P)$ is not bqo.

2 Barriers and better-quasi-orders

2.1 Basics

We use Nash-William’s notion of bqo, see $\[15\]$, and refer to Milner’s exposition of bqo theory, see $\[14\]$. See Section $\[7\]$ for the basic definitions.

The following result due to F. Galvin(1968) extends the partition theorem of F.P. Ramsey.

Theorem 2.1 $\[7\]$ For every subset B of $[\mathbb{N}]^<\omega$ there is an infinite subset X of \mathbb{N} such that either $[X]^<\omega \cap B = \emptyset$ or $[X]^<\omega \cap B$ is a block.
Trivially, every block contains a thin block, the set \(\min_{\leq_{\text{in}}} (B) \) of \(\leq_{\text{in}} \) minimal elements of the block. Moreover, if \(B \) is a block, resp. a thin block, and \(X \) is an infinite subset of \(\bigcup B \) then \(B \upharpoonright X \) is a block, resp. a thin block. The theorem of Galvin implies the following result of Nash-Williams, see [14].

Theorem 2.2 (a) Every block contains a barrier.

(b) For every partition of a barrier into finitely many parts, one contains a barrier.

The partial order \((B, \leq_{\text{lex}}) \) is the lexicographic sum of the partial orders \((B(i), \leq_{\text{lex}}) \):

\[
(B, \leq_{\text{lex}}) = \sum_{i \in \mathbb{N}} (B(i), \leq_{\text{lex}}).
\]

Let \(T(B) \) be the tree \(T(B) := \{s : \exists s \in B(t \leq_{\text{in}} s)\}, \leq_{\text{in}}\) with root \(\emptyset \) and \(T^d(B) \) the dual order of \(T(B) \). If \(T(B) \) does not contain an infinite chain then \(T^d(B) \) is well founded and the height function satisfies

\[
h(\emptyset, T^d(B)) = \sup\{h((a), T^d(B)) + 1 : (a) \in T(B)\} = \sup\{h(\emptyset, T^d((a)B)) + 1 : (a) \in T(B)\}.
\]

Induction on the height gives then that \(T(B) \) is well ordered under the lexicographic order. The order type of \(T \) being at most \(\omega^\alpha \) where \(\alpha := h(\emptyset, T^d(B)) \). From this fact, we deduce:

Lemma 2.3 [17] Every thin block, and in particular every barrier, is well ordered under the lexicographic order.

This allows to associate with every barrier its order-type. We note that \(\omega \) is the least possible order-type. An ordinal \(\gamma \) is the order-type of a barrier if and only if \(\gamma = \omega^n \cdot \alpha \) where \(n < \omega \) and \(n = 1 \) if \(\alpha < \omega \). Every barrier contains a barrier whose order-type is an indecomposable ordinal.

Definition 2.4 A map \(f \) from a barrier \(B \) into a poset \(P \) is good if there are \(s, t \in B \) with \(s \triangleleft t \) and \(f(s) \leq f(t) \). Otherwise \(f \) is bad.

Let \(\alpha \) be a denumerable ordinal. A poset \(P \) is \(\alpha \)-better-quasi-ordered if every map \(f : B \to P \), where \(B \) is a barrier of order type at most \(\alpha \), is good.

A poset \(P \) is better-quasi-ordered if it is \(\alpha \)-better-quasi-ordered for every denumerable ordinal \(\alpha \).
It is known and easy to see that a poset P is ω-better-quasi-ordered if and only if it is well-quasi-ordered. Remember that we abbreviate better-quasi-order by bqo. Since every barrier contains a barrier with indecomposable order type, only barriers with indecomposable order type need to be taken into account in the definition of bqo. In particular, we only need to consider α-bqo for indecomposable ordinals α. Note that for indecomposable ordinals α the notion of α-bqo leads to different objects.

We will need the following results of Nash-Williams (for proofs in the context of α-bqo, see [13] or [19]):

Lemma 2.5 Let P and Q be partial orders, then:

(a) Finite partial orders and well ordered chains are bqo.

(b) If P, Q are α-bqo then the direct sum $P \oplus Q$ and the direct product $P \times Q$ are α-bqo.

(c) If P is α-bqo and $f : P \rightarrow Q$ is order-preserving then $f(P)$ is α-bqo.

(d) If P embeds into Q and Q is α-bqo then P is α-bqo.

(e) If $C \subseteq \mathcal{P}(P)$ is α-bqo then the set of finite unions of members of C is α-bqo.

It follows from Item e that if P is α-bqo then $I_{<\omega}(P)$ is α-bqo which in turn implies that if P is α-bqo then $AM(P)$ is α-bqo. (If P is α-bqo then it is ω-bqo and hence well-quasi-ordered and hence does not contain infinite antichains. Then $AM(P)$ embeds into $A(P)$ which in turn embeds into $I_{<\omega}(P)$.) It follows from Item d that if P is bqo then every restriction of P to a subset of its elements is also bqo.

2.2 Barrier constructions

Let B be a subset of $[\mathbb{N}]^{<\omega}$. See Section 4 for notation.

If B is a block then B^2 is a block and if B is a thin block then B^2 is a thin block. Moreover, if B is a thin block, and $u \in B^2$, then there is a unique pair $s, t \in B$ such that $s \triangleleft t$ and $u = s \cup t$. If B is a block, then $\bigcup_s B = \bigcup_s B = \bigcup B \setminus \text{min}(\bigcup B)$ and sB is a block. Moreover, if B is well ordered under the lexicographic order then sB is well ordered too and if the type of B is an indecomposable ordinal ω^γ then the type of sB is at most ω^γ.

If C is a block and $B := C^2$ then $sB = C \setminus C(a)$, where a is the least element of $\bigcup C$.

The following Lemma is well known and follows easily from the definition.
Lemma 2.6 If \(B \) is a barrier, then \(B^2 \) is a barrier and if \(B \) has type \(\alpha \) then \(B^2 \) has type \(\alpha \cdot \omega \).

A generalization, Lemma 2.7 below, was given by A. Marcone. We recall his construction and result, see [13] Lemma 8 pp. 343.

Let \(B \) be a subset of \(\mathbb{N}^\prec \omega \). Then \(B^\circ \) is the set of all elements \(s \in B \) with the property that for all \(i \in \bigcup B \) with \(i < s(0) \) there is an element \(t \in B \) with \((i) \cdot s \leq \in t \). In other words \(s \in B^\circ \) if \((i) \cdot s \in T(B) \) for all \(i \in \bigcup B \) with \(i < s(0) \). Let \(B' := \{ s : s \in B^\circ \} \setminus \{ \emptyset \} \).

Lemma 2.7 Let \(B \) be a thin block of type larger than \(\omega \), then:

1. \(B' \) is a thin block.
2. For every \(u \in (B')^2 \) there is some \(s \in B \) such that \(s \leq \in u \).
3. If the type of \(B \) is at most \(\omega^\gamma \) then \(B' \) contains a barrier of type at most \(\omega^\gamma \) if \(\gamma \) is a limit ordinal and at most \(\omega^{\gamma-1} \) otherwise.

Remark 2.8 We may note that for every \(s \in B \) such that \(s \leq \in u := s' \cup t' \) we have \(s' \leq \in s \). Indeed, otherwise \(s \leq \in s' \), but \(s' := s'' \) for some \(s'' \in B \), hence \(s \subseteq s'' \) contradicting the fact that \(B \) is a barrier.

A barrier \(B \) is end-closed if

\[
 s \cdot (a) \in B \text{ for every } s \in B_\ast \text{ and } a \in \bigcup B \text{ with } a > \lambda(s). \tag{1}
\]

For example, \([\mathbb{N}]^n \) is end-closed for every \(n, n \geq 1 \), as well as the barrier \(B := \{ s \in \mathbb{N}^\prec \omega : l(s) = s(0) + 2 \} \).

If \(B, C \) are two barriers with the same domain, the set \(B \ast C := \{ s \cdot t : s \in C, t \in B, \lambda(s) < t(0) \} \) is a barrier, the product of \(B \) and \(C \), see [17]. Its order-type is \(\omega^{\gamma+\beta} \) if \(\omega^\gamma \) and \(\omega^\beta \) are the order-types of \(B \) and \(C \) respectively. For example, the product \(\bigcup B \ast \bigcup B \) is end-closed. Provided that \(B \) has type \(\omega^\beta \), it has type \(\omega^{1+\beta} \). The converse holds, namely:

Fact 2.9 The set \(D \subseteq \mathbb{N}^\prec \omega \) is an end-closed barrier of type larger than \(\omega \) if and only if \(D_\ast \) is a barrier and \(D := \bigcup D_n \ast D_\ast \).

Lemma 2.10 Every barrier \(B \) contains an end-closed subbarrier \(B' \).
Proof. Induction on the order-type β of B.

If $\beta := \omega$ then $B = [\bigcup B]^1$ and we may set $B' := B$.

Suppose $\beta > \omega$ and every barrier of type smaller than β contains an end-closed subbarrier.

The set $S(B) := \{i \in \bigcup B : (i) \in B\}$ is an initial segment of $\bigcup B$. (Indeed, let $i \in S(B)$ and $j < i$ with $j \in \bigcup B$. Select $X \in [\bigcup B]^\omega$ such that $(j, i) \leq_{in} X$. Since B is a barrier, X has an initial segment $s \in B$. Since B is an antichain w.r.t. inclusion $i \notin s$, hence $s = (j, i)$.) The type of B is larger than ω, hence $S(B) \neq \bigcup B$. Set $i_0 := \min(\bigcup B \setminus S(B))$.

The set $(i_0)B$ is a barrier because $i_0 \notin S(B)$. Hence induction applies providing some $X_0 \subseteq \bigcup B \setminus (S(B) \cup \{i_0\})$ such that $\{s : (i_0) \cdot s \in B \cap [X_0]^\omega\}$ is an end-closed barrier of domain X_0. It follows that $\{i_0\} \cup X_0 \subseteq \bigcup B$.

Starting with (x_0, X_0) we construct a sequence $(i_n, X_n)_{n<\omega}$ such that for every $n < \omega$:

1. $\{s : (i_n) \cdot s \in B \cap [X_n]^\omega\}$ is an end-closed barrier of domain X_n.
2. $(i_{n+1}) \cup X_{n+1} \subseteq X_n$.

Let $n < \omega$. If $(i_m, X_m)_{m<n}$ is defined for all $m < n$ replace B by $B \cap [X_{n-1}]^\omega$ in the construction of x_0 and X_0 to obtain i_n and X_n.

Then for $X := \{i_n : n < \omega\}$ set $B' := B \cap [X]^\omega$.

2.3 On the comparison of blocks

Let B, B' be two subsets of $[N]^\omega$. We write $B' \leq_{in} B$ if:

For every $s' \in B'$ there is some $s \in B$ such that $s' \leq_{in} s$. (2)

This is the quasi-order of domination associated with the order \leq_{in} on $[N]^\omega$.

Fact 2.11 Let B, B' be two thin blocks. If $B' \leq_{in} B$ then for all $s, t \in B$ and $s', t' \in B'$:

(a) $\bigcup B' \subseteq \bigcup B$.
(b) If $s \leq_{in} s'$ then $s = s'$, hence \leq_{in} is a partial order on thin blocks.
(c) If $\bigcup B = \bigcup B'$ then for every $s \in B$ there is some $s' \in B'$ such that $s' \leq_{in} s$.
(d) If $s' \triangleleft s$ then $s \triangleleft t$ for some $s, t \in B$ with $s' \leq_{in} s$ and $t' \leq_{in} t$.
(e) The set $B' := B' \cup D$ with $D := \{ s \in B : \forall s' \in B' \ (s' \leq_{in} s) \}$ is a thin block and $\bigcup B'' = \bigcup B$ and $B'' \leq_{in} B$.

Proof. (a), (b), (c) follow from the definitions.

(d). Let $s', t' \in B'$ with $s' \triangleleft t'$ and let $t'' := s' \cup t'$. Since $\bigcup B' \subseteq \bigcup B$, $t'' \subseteq \bigcup B$. Let $X \in [\bigcup B]'^\omega$ such that $t'' \leq_{in} X$. There are $s, t \in B$ such that $s \leq_{in} X$ and $t \leq_{in} sX$. We have $s \triangleleft t$. It follows from (b) that $s' \leq_{in} s$ and $t' \leq_{in} t$.

(e) $\bigcup B'' = \bigcup B' \cup \bigcup D$ and $\bigcup B' \subseteq \bigcup B$ imply $\bigcup B'' \subseteq \bigcup B$. For the converse, let $x \in \bigcup B \setminus \bigcup B'$. Since B is a block there is some $s \in B$ having x as first element. Clearly $s \in D$, hence $x \in D$, proving $\bigcup B'' = \bigcup B$. From the definition, B'' is an antichain. Now, let $X \subseteq B$. We prove that some initial segment s'' belongs to B''. Since B is a block, some initial segment s of X belongs to B. If $s \in D$ set $s'' := s$. Otherwise some initial segment s' of s is in B'. Set $s'' := s'$.

Let $f : B \to P$ and $f' : B' \to P$ be two maps. Set $f' \leq_{in} f$ if $B' \leq_{in} B$ and $f'(s') = f(s)$ for every $s' \in B'$, $s \in B$ with $s' \leq_{in} s$. Let $H_X(P)$ be the set of maps $f : B \to P$ for which B is a thin block with domain X.

Fact 2.12 Let $f : B \to P$ and $f' : B' \to P$ with $f' \leq_{in} f$. If B' and B are thin blocks then B' extends to a thin block B'' and f' to a map f'' such that $\bigcup B'' = \bigcup B$ and $f'' \leq_{in} f$.

Proof. Applying (e) of Fact 2.11 set $B'' := B' \cup D$ and define f'' by setting $f''(s'') := f(s)$ if $s'' \in D$ and $f''(s'') := f'(s'')$ if $s'' \in B''$. Then $f'' \leq_{in} f$.

Fact 2.13 Let P be a poset and $X \in \mathbb{N}^\omega$, then:

(a) The relation \leq_{in} is an order on the collection of maps f whose domain is a thin block and whose range is P.

(b) Every \leq_{in}-chain has an infimum on the set $H_X(P)$.

(c) An element f is minimal in $H_X(P)$ if and only if every f' with $f' \leq_{in} f$ is the restriction of f to a sub-block of the domain of f.

(d) If f is minimal in $H_X(P)$ and $f' \leq_{in} f$ has domain C then f' is minimal in $H_{\bigcup C}(P)$.

(e) Let B be a thin block and $f : B \to P$. If f is bad and $f' \leq_{in} f$ then f' is bad.
Proof. (a) Obvious.

(b) Let \(D := \{ f_\alpha : B_\alpha \to P, \alpha \} \) be a chain of maps. Let \(C := \{ \text{dom}(f) : f \in D \} \). Then \(\{ s \in \bigcup C : s' \in \bigcup C \Rightarrow s' \not\prec s \} \) is a thin block and the infimum of \(C \). For \(s \in D \), let \(f'(s) \) be the common value of all maps \(f_\alpha \). This map is the infimum of \(D \).

(c) Apply Fact 2.12

(d) Follows from (c).

(e) Apply (d) of Fact 2.11

\[\square \]

Lemma 2.14 Let \(f \) be a map from a thin block \(B \) into \(P \) and let \(F := \{ f' \in \mathcal{H}_{\bigcup B}(P) : f' \leq_{\text{in}} f \} \). Then there is a minimal \(f' \in F \) such that \(f' \leq_{\text{in}} f \).

Proof. Follows from Fact 2.13 (b) using Zorn’s Lemma.

Let \(s, t \in [\mathbb{N}]^\omega \). Set \(s \leq_{\text{end}} t \) if \(\lambda(s) \leq \lambda(t) \) and \(s_\alpha = t_\alpha \).

Lemma 2.15 Let \(f : B \to P \) a bad map. If \(P \) is wqo and \(f \) is minimal then there is an end-closed barrier \(B' \subseteq B \) such that:

\[s \leq_{\text{end}} t \text{ in } B' \Rightarrow f(s) < f(t) \text{ in } P. \] \hspace{1cm} (3)

Proof. Let \(B_1 \) be a an end-closed subbarrier of \(B \) and let \(C_1 := \{ s \cdot (b) : s \in B_1, b \in \bigcup B_1, b > \lambda(s) \} \). Divide \(C_1 \) into three parts \(D_i, i < 3 \), with \(D_i := \{ s' \cdot (ab) \in C_1 : f(s' \cdot (a)) \rho_i f(s' \cdot (b)) \} \) where \(\rho_0 \) is the equality relation, \(\rho_1 \) is the strict order \(< \) and \(\rho_3 \) is \(\not\leq \) the negation of the order relation on \(P \).

Since \(C_1 \) is a barrier, Nash-Williams’s partition theorem (Theorem 2.7 (b)) asserts that one of these parts contains a barrier \(D \). Let \(X \) be an infinite subset of \(\bigcup C_1 \) such that \(D = C_1 \cap [X]^{<\omega} \).

The inclusion \(D \subseteq D_2 \) is impossible. Otherwise, let \(s \in B_1 \) such that \(s \leq_{\text{in}} X \), set \(Y := X \setminus s_\alpha \) and set \(g(a) := f(s_\alpha \cdot (a)) \) for \(a \in Y \). Then \(g \) is a bad map from \(X \) into \(P \). This contradicts the fact that \(P \) is wqo.

The inclusion \(D \subseteq D_0 \) is also impossible. Otherwise, set \(B' := \{ s' : s' \cdot (a) \in B_1 \cap [X]^{<\omega} \text{ for some } a \} \). For \(s' \in B' \), set \(f'(s') := f(s' \cdot (a)) \) where \(a \in X \). In this case \(f'(s') \) is well-defined. Since \(P \) is wqo and \(f \) is bad, the order type of \(B_1 \) is at least \(\omega^2 \), hence \(B' \) is a barrier. The map \(f' \) satisfies \(f' \leq_{\text{in}} f \). According to Fact 2.13 (c), the minimality of \(f \) implies that \(f' \) is the restriction of \(f \) to \(B' \). Since \(B' \) is not included into \(B \) this is not the case. A contradiction.

Thus we have \(D \subseteq D_1 \). Set \(B' := B_1 \cap [X]^{<\omega} \). Then (3) holds.

\[\square \]
2.4 An application to $S_\omega(P)$

We deduce Theorem 1.1 from the equivalence $(i) \iff (ii)$ in the following result. Without clause (ii), the result is due to A. Marcone [13]. Without Marcone’s result our proof only shows that under clause (ii) P is α-bqo. This suffices to prove Theorem 1.1 but the result below is more precise.

Theorem 2.16 Let α be a denumerable ordinal and P be a poset. Then the following properties are equivalent:

(i) P is $\alpha\omega$-bqo;

(ii) P is ω-bqo and $S_\omega(P)$ is α-bqo.

(iii) $\Psi_{\leq \omega}(P)$ is α-bqo.

(iv) $\Psi(P)$ is α-bqo.

Proof. $(i) \implies (iv)$. Let B be a barrier with order type at most α and $f : B \to \Psi(P)$. If f is bad, let $f' : B' \to P$ where $B' := B^2$ and $f'(s \cup t) \in f(s) \setminus f(t)$. (See Equation [1] in Lemma 2.14) This map f' is bad and the order type of B' is at most $\alpha\omega$.

$(iv) \implies (iii)$ Trivial.

$(iii) \implies (ii)$ P and $S_\omega(P)$ identify to subsets of $\Psi_{\leq \omega}(P)$, hence are α-bqo.

$(ii) \implies (i)$ Induction on α. Suppose that P is not $\alpha\omega$-bqo. Let β be the smallest ordinal such that P is not β-bqo. Then $\beta \leq \alpha\omega$.

Case 1. $\beta = \alpha'\omega$. According to Marcone [13] the implication $(iii) \implies (i)$ holds for all denumerable ordinals, hence there is a bad map $f' : B' \to \Psi_{\leq \omega}(P)$ for which B' is a barrier of type at most α'. Let $X \in \Psi_{\leq \omega}(P)$. Since P is wqo, $\downarrow X$ is a finite union of ideals according to a theorem of Erdős and Tarski (1943), see [5].

Hence there are a finite antichain A_X and a finite set B_X of strictly increasing sequences such that $\downarrow X = \downarrow A_X \cup \downarrow B_X$. Let $g : B' \to \Psi_{\leq \omega}(P) \times \Psi_{\leq \omega}(S_\omega(P))$ defined by $g(s') = (A_{f'}(s'), B_{f'}(s'))$. This map is bad. Hence, from (b) of Lemma 2.14 there is a bad map from a subbarrier B'' of B into P or into $S_\omega(P)$. The latter case is impossible since $S_\omega(P)$ is α-bqo and so is the former case according to the the induction hypothesis.

Case 2. Case 1 does not hold, that is $\beta = \omega^\gamma$ where γ is a limit ordinal it follows that $\beta \leq \alpha$. Let $f : B \to P$ be a bad map where B is a barrier of type β.

According to Lemma 2.14 there is a minimal $f' : B' \to P$ with $\bigcup B' = \bigcup B$ and $f' \leq end f$ and according to Fact 2.13 (e) the map f' is bad. Since P
is wqo, Lemma 2.15 applies. Thus B' contains a subbarrier B'' on which $s \leq_{\text{end}} t$ implies $f'(s) < f'(t)$.

Let $F : B'' \to P$ be given by $F(s') := \{ f'(t) \in P : t \in B'' \text{ and } s' \leq_{\text{in}} t \}$.

Claim 1 $F(s')$ is a finite union of non-principal ideals of P. Since P is wqo, every initial segment is a finite union of ideals. Hence in order to show that $F(s')$ is a finite union of non-principal ideals it suffices to show that it contains no maximal element. Let $x \in F(s')$. Let $t \in B''$ such that $s' \leq_{\text{in}} t$, $f''(t) = x$. Let $u \in B''$ such that $t <_{\text{end}} u$. Then $s' \leq_{\text{in}} u$ hence $f''(u) \in F(s')$. From Lemma 2.15 $f''(t) < f(u)$, proving our claim.

Claim 2 F is good. Indeed, since $S_\omega(P)$ is α-bqo, it follows from (e) of Lemma 2.5 that the collection of finite unions of its members is α-bqo.

Hence f' is good. Indeed, since F is good, there are $s', t' \in B''$ such that $s' < t'$ and $F(s') \subseteq F(t')$. Let $a := t'(l(s') - 1)$ then $s' \leq_{\text{in}} s := s'.(a) \in B''$ then $f'(s'.(a)) \in F(s')$. Since $F(s') \subseteq F(t')$ there is some $t \in B''$ such that $t' \leq_{\text{in}} t$ and $f'(s) \leq f'(t)$. Because $s < t$ the map f' is good.

This contradicts the hypothesis that f' is bad and finishes the proof of the theorem.

\[\square \]

3 The set of ideals of a well-quasi-ordered-poset

In this section, we illustrate the relevance of the notion of ideal w.r.t. well-quasi-ordering.

Define a topology on $\mathfrak{P}(P)$. A basis of open sets consists of subsets of the form $O(F, G) := \{ X \in \mathfrak{P}(P) : F \subseteq X \text{ and } G \cap X = \emptyset \}$, where F, G are finite subsets of P. The topological closure of $\downarrow(P)$ in $\mathfrak{P}(P)$ is a Stone space which is homeomorphic to the Stone space of $\text{Tailalg}(P)$, the Boolean algebra generated by $\uparrow(P)$. With the order of inclusion added the closure of $\downarrow(P)$, $\bigcup \downarrow(P)$, is isomorphic to the Priestley space of $\text{Tailalg}(P)$.

Note that $I_{\omega}(P)$ is the set of compact elements of $I(P)$, hence $\mathcal{J}(I_{\omega}(P)) \cong I(P)$. We also note that $\mathcal{J}(P)$ is the set of join-irreducible elements of $I(P)$.

We have

Lemma 3.1 $\emptyset \notin \bigcup \downarrow(P) \iff P \in F_{\omega}(P)$.

Lemma 3.2 $\downarrow(P) \subseteq \mathcal{J}(P) \subseteq \bigcup \downarrow(P) \setminus \{ \emptyset \}$. In particular, the topological closures in $\mathfrak{P}(P)$ of $\downarrow(P)$ and $\mathcal{J}(P)$ are the same.

A poset P is up-closed if every intersection of two members of $\uparrow(P)$ is a finite union (possibly empty) of members of $\uparrow(P)$.
Proposition 3.3 The following properties for a poset P are equivalent:

(a) $\mathcal{J}(P) \cup \{\emptyset\}$ is closed for the product topology;

(b) $\mathcal{J}(P) = \bigcup \text{down}(P) \setminus \{\emptyset\}$;

(c) P is up-closed;

(d) $\mathcal{F}_{<\omega}(P)$ is a meet-semi-lattice;

(e) $\text{Taillat}(P) = \mathcal{F}_{<\omega}(P) \cup \{P\}$.

Let us recall that a topological space X is scattered if every non-empty subset Y of X contains an isolated point with respect to the topology induced on Y. We have:

Proposition 3.4 Let P be a poset. If P is well-quasi-ordered then $\mathcal{J}(P)$ is a compact scattered space whose set of isolated points coincides with $\text{down}(P)$.

Proof.

Claim 1 $\mathcal{J}(P) = \bigcup \text{down}(P)$.

Indeed, since P is wqo it is up-closed. Hence, from Proposition 3.3 $\mathcal{J}(P) = \bigcup \text{down}(P) \setminus \{\emptyset\}$. Again, since P is wqo, $P \in \mathcal{F}_{<\omega}(P)$. Hence, from Lemma 3.1 $\emptyset \notin \bigcup \text{down}(P)$ proving that $\mathcal{J}(P) = \bigcup \text{down}(P)$, as claimed.

Claim 2 As a subspace of the Cantor space $\Psi(P)$, $\mathcal{I}(P)$ are compact and scattered.

Claim 3 Let $J \in \mathcal{J}(P)$, then J is isolated in $\mathcal{J}(P)$ if and only J is principal.

Suppose that J is isolated. Then there is a clopen set of the form $O(F,G)$ such that $O(F,G) \cap \mathcal{J}(P) = \{J\}$. Since J is up-directed, there is some z in J which majorises F. Clearly, $\downarrow z \in O(F,G) \cap \mathcal{J}(P)$, hence $J = \downarrow z$, proving that J is principal. Conversely, let $z \in P$. Let $G := \min(P \setminus \downarrow z)$. Since P is wqo, G is finite. Hence $O(\{z\}, G)$ is a clopen set. It contains only $\downarrow z$, proving that $\downarrow z$ is isolated. □
From this result, \(J^{-\downarrow} := J(P) \setminus \text{down}(P) \), the set of non-principal ideals of \(P \), coincides with \(J^1(P) \), the first derivative of \(J(P) \) in the Cantor-Bendixson reduction procedure. Our main result establishes a link between the bqo characters of \(J(P) \) and \(J^1(P) \). This suggests to look at the other derivatives.

4 Minimal type posets

Well-quasi-ordered posets with just one non-principal ideal are easy to describe. Each is a finite unions of ideals, all but one being finite. The infinite one, called a minimal type poset, can be characterized in several ways:

Proposition 4.1 ([13]) Let \(P \) be an infinite poset. Then, the following properties are equivalent:

(i) \(P \) is wqo and all ideals distinct from \(P \) are principal;

(ii) \(P \) has no infinite antichain and all ideals distinct from \(P \) are finite;

(iii) Every proper initial segment of \(P \) is finite.

(iv) Every linear extension of \(P \) has order type \(\omega \).

(v) \(P \) is level-finite, of height \(\omega \), and for each \(n < \omega \) there is \(m < \omega \) such that each element of height at most \(n \) is below every element of height at least \(m \).

(vi) \(P \) embeds none of the following posets: an infinite antichain; a chain of order type \(\omega^{\text{dual}} \); a chain of order type \(\omega + 1 \); the direct sum \(\omega \oplus 1 \) of a chain of order type \(\omega \) and a one element chain.

An easy way of obtaining posets with minimal type is given by the following corollary

Corollary 4.2 Let \(n \) be an integer and \(P \) be a poset. The order on \(P \) is the intersection of \(n \) linear orders of order type \(\omega \) if and only if \(P \) is the intersection of \(n \) linear orders and \(P \) has minimal type.

Minimal type posets occur quite naturally in symbolic dynamics. Indeed, let \(S : A^\omega \to A^\omega \) be the shift operator on the set \(A^\omega \) of infinite sequences \(s := (s_n)_{n<\omega} \) of members of a finite set \(A \) (that is \(S(s) := (s_{n+1})_{n<\omega} \)). A subset \(F \) of \(A^\omega \) is invariant if \(S(F) \subseteq F \). As it is well-known, every compact (non-empty) invariant subset contains a minimal one. To a compact
invariant subset F we may associate the set $A(F)$ of finite sequences $s := (s_0, \ldots, s_{n-1})$ such that s is an initial segment of some member of F. Looking as these sequences as words, we may order $A(F)$ by the factor ordering: a sequence s being a factor of a sequence t if s can be obtained from t by deleting an initial segment and an end segment of t.

We have then

Theorem 4.3 $A(F)$ has minimal type if and only if F is a minimal compact invariant subset.

5 Maximal antichains, ”pred” and ”succ”

Let P be a poset. We consider both $A(P)$ and $AM(P)$ to be ordered by domination. The main result of this section will be that if $AM(P)$ α-bqo then P is α-bqo.

Our first aim is to prove that if $AM(P)$ is well founded then P is well founded. To this end we will associate with every element $x \in P$ an antichain $\varphi(x)$ and investigate the connection between x and $\varphi(x)$. First the following:

Lemma 5.1 Let P be a poset and $X \subseteq A(P)$. Then the following properties are equivalent:

(i) X is the minimum of $AM(P)$.

(ii) X is a minimal element of $AM(P)$.

(iii) $P = \uparrow X$.

Proof. Implications $(iii) \Rightarrow (i) \Rightarrow (ii)$ are obvious. $(ii) \Rightarrow (iii)$: Suppose for a contradiction that $P \setminus \uparrow X \neq \emptyset$. For every element $z \in P \setminus \uparrow X$ there is an element $x \in X$ with $z < x$. Let Y be a maximal antichain of the set $P \setminus \uparrow X$ and $Z = X \setminus \uparrow Y$. Then $Z \cup Y$ is a maximal antichain which is strictly dominated by X. \[\square\]

Let P be a poset. Let \mathcal{P} be the order that is the set of pairs $\mathcal{P} := \{(x, y) : x \leq y\}$.

For $S \subseteq P$ let $\min S := \{x \in S : y \in S \text{ and } y \leq x \text{ implies } y = x\}$ and for $x \in P$ let $\Phi(x) := \{z \in P : z \nleq x\}$ and let $\varphi(x) := \min \Phi(x)$. Note that $x \in \varphi(x)$.

Lemma 5.2 $x < y \iff \varphi(x) < \varphi(y)$ and $x \nleq \varphi(y)$ for all $x, y \in P$.
Proof. Suppose $x < y$, then $\Phi(y) \subset \Phi(x)$. Hence $\varphi(y) := \min \Phi(y) \leq_{\text{dom}} \min \Phi(x) =: \varphi(x)$. ($\leq_{\text{dom}}$ is the domination order.) Then $\varphi(x) < \varphi(y)$ because $\varphi(x) \ni x \not\in \varphi(y)$.

Conversely, suppose $\varphi(x) < \varphi(y)$ and $x \not\in \varphi(y)$. If $x \not< y$, then the definition of $\varphi(y)$ insures that $x' \leq x$ for some $x' \in \varphi(y)$. Since $\varphi(x) < \varphi(y)$, we have $x = x'$ proving $x \in \varphi(y)$, a contradiction.

Note that if $\varphi(x)$ is a maximal antichain for every $x \in P$ and $AM(P)$ is well founded then we obtain, using Lemma 5.2, that P is well founded. Actually we will show below that if $AM(P)$ is well-founded then $\varphi(x)$ is a maximal antichain.

Let $x \in P$ and the set $F \subseteq \Psi(P)$. Then $F(x) := \{F \in F : x \in F\}$ and $Incp(x) := \{y \in P : x \text{ and } y \text{ are incomparable}\}$. Note that $AM(Incp(x)) \cong AM(P)(x)$. ($\cong$ is the order isomorphism between the maximal antichains of $Incp(x)$ and the maximal antichains of $AM(P)(x)$ both ordered under domination.) This implies that if $AM(P)$ is well-founded then $AM(\Phi(x))$ is well-founded. Let S be a minimal element of $AM(\Phi(x))$. It follows then from Lemma 5.1 that S is the minimum of $AM(\Phi(x))$ and $\uparrow S = \Phi(x)$. Hence $S = \varphi(x)$. That is: $\varphi(x)$ is the least maximal antichain of P containing x.

Also, if P is well-founded then $\Phi(x)$ is well-founded, hence $\uparrow \varphi(x) = \Phi(x)$ which in turn implies using Lemma 5.1 that $\varphi(x)$ is the least maximal antichain of P containing x. Hence we established the following Lemma:

Lemma 5.3 If $AM(P)$ is well-founded or if P is well founded then for all $x, y \in P$:

1. $\uparrow \varphi(x) = \Phi(x)$.

2. $\varphi(x)$ is the minimum of all maximal antichains of P containing x.

3. $x < y \iff \varphi(x) < \varphi(y)$ and $x \not\in \varphi(y)$.

4. P is well founded.

Associated with the quasi order $(P; \leq_{\text{pred}})$ is the equivalence relation \equiv equal to the set $\{(x, y) : x \leq_{\text{pred}} y \text{ and } y \leq_{\text{pred}} x\}$. Let $(P; \leq_{\text{pred}})/ \equiv$ be the quotient equipped with the order induced by $\text{pred}(P)$. Let π be the canonical map of $(P; \leq_{\text{pred}})$ to $(P; \leq_{\text{pred}})/ \equiv$. For every subset S of P let $\pi(S) := \{\downarrow p(s) : s \in S\}$.

Theorem 5.4
1. The function π induces an embedding of $AM(P)$ into $I((P; \leq_{\text{pred}})/\equiv)$ and if P is well founded then $(P; \leq_{\text{pred}})/\equiv$ embeds into $AM(P)$.

2. π induces an embedding of $J^{-\downarrow}(P)$ into $J^{-\downarrow}(P; \leq_{\text{pred}})/\equiv$.

3. If P has no infinite antichain then this embedding is surjective, hence $J^{-\downarrow}(P) \cong J^{-\downarrow}(P; \leq_{\text{pred}})/\equiv$.

Proof. Let $A, B \in AM(P)$ with $\pi(A) \subseteq \pi(B)$. For every $a \in A$ there is an element $b \in B$ so that a and b are related under \leq. Assume for a contradiction that $b < a$. Then $\pi(b) < \pi(a)$. Because $\pi(A) \subseteq \pi(B)$ there is a $c \in B$ with $\pi(a) < \pi(c)$. This implies, because $b < a$, that $b < c$ a contradiction. Hence $\pi(A) \subseteq \pi(B)$ implies that A is less than or equal to B in the domination order which in turn implies that if $\pi(A) = \pi(B)$ then $A = B$. If A is less than or equal to B in the domination order then $\pi(A) \subseteq \pi(B)$ and hence we conclude that π is an embedding of $AM(P)$ into $I((P; \leq_{\text{pred}})/\equiv)$.

We have: $x \leq_{\text{pred}(P)} y$ if and only if $\Phi(x) \supseteq \Phi(y)$ if and only if $\varphi(x) \leq \varphi(y)$ in $AM(P)$. Hence $x \leq_{\text{pred}} y$ and $y \leq_{\text{pred}} x$, that is $x \equiv y$, if and only if $\varphi(x) = \varphi(y)$. This establishes item 1.

In order to establish item 2 let $J, J' \in J^{-\downarrow}(P)$.

If $J \subseteq J'$ then clearly $\pi(J) \subseteq \pi(J')$. The functions π and π are order-preserving. Hence $J \in J(P)$ implies $\pi(J) \in J(Q)$. Since π is strictly increasing $\pi(J) \in J^{-\downarrow}(Q)$ if and only if $J \in J^{-\downarrow}(P)$.

Suppose $J \not\subseteq J'$. Let $x \in J \setminus J'$. Since J is not principal, there is some $x' \in J$ such that $x < x'$. Since J' is an initial segment, $x' \not\in J'$. Assume for a contradiction that $\pi(x') \in \pi(J')$. Then there is an $x'' \in J'$ such that $\pi(x') \leq \pi(x'')$ hence $x' \leq_{\text{pred}} x''$. Therefore $x < x''$ follows from $x < x'$. Since J' is an initial segment, we have $x \in J'$ contradicting the choice of x.

This proves that $\pi(J) \not\subseteq \pi(J')$. Hence π is an embedding.

Item 3: Let $K \in J^{-\downarrow}(Q)$. Let $J := \{x \in P : \pi(x) \in K\}$. The set J is an initial segment of P since π is order preserving. The set J is a finite union of ideals since P has no infinite antichain; see Fact 5.1. Let $J := J_1 \cup \cdots \cup J_k$. We have $K = \pi(J) = \pi(J_1) \cup \cdots \cup \pi(J_k)$. From the fact that K is an ideal it follows that $K = \pi(J_i)$ for some i. Since K is not principal, J_i cannot be principal.

\[\square \]

We derive Theorem 5.5 from the following result:

Theorem 5.5 Let P be a poset with no infinite antichain and α be a countable ordinal. The following properties are equivalent:

\[\blacksquare \]
(i) P is α-bqo.

(ii) $(P; \preceq_{\text{succ}})$ is α-bqo.

(iii) $(P; \preceq_{\text{pred}})$ is α-bqo.

(iv) $(P; \preceq_{\text{crit}})$ α-bqo.

(v) $AM(P)$ is α-bqo.

Proof. Implications (i) \implies (iv) \implies (iii) follow from the sequence of inclusions $(\preceq) \subseteq (\preceq_{\text{crit}}) \subseteq (\preceq_{\text{pred}})$ and the implication (iv) \implies (ii) follows from the inclusion $(\preceq_{\text{crit}}) \subseteq (\preceq_{\text{succ}(P)})$.

(iii) \iff (v) Suppose $AM(P)$ is α-bqo then P is well-founded according to Lemma 5.3 and hence according to item 1 of Theorem 5.4, $(P; \preceq_{\text{pred}})/\equiv$ embeds into $AM(P)$ implying that $(P; \preceq_{\text{pred}})$ is α-bqo. Conversely, suppose $(P; \preceq_{\text{pred}})$ is α-bqo. Then $I_{\omega}(P; \preceq_{\text{pred}})/\equiv$ is α-bqo according to item 3 of Theorem 5.4. From item 1 of Theorem 5.4, the poset $AM(P)$ embeds into $I_{\omega}<\omega(P; \preceq_{\text{pred}})/\equiv$ and hence is α-bqo.

We prove implications (ii) \implies (i) and (iii) \implies (i) in a similar way as we have proven the implication (ii) \implies (i) in Theorem 2.16.

Induction on α. Let Q be equal to $(P; \preceq_{\text{succ}})$ or equal to $(P; \preceq_{\text{pred}})$. Suppose that Q is α-bqo. Since $(\preceq) \subseteq (\preceq_{\text{succ}} \cap \preceq_{\text{pred}})$, the partial order P is well-founded and since it has no infinite antichain it is wqo. If P is not α-bqo there is a barrier B of type at most α and a bad map $f : B \to P$. From Lemma 2.14 there is a minimal $f' : B' \to P$ such that $\bigcup B' = \bigcup B$ and $f' \preceq_{\text{end}} f$. According to Fact 2.13(e) the map f' is bad. Since P is wqo, Lemma 2.13 applies. Thus B' contains a subbarrier B'' on which

$$s <_{\text{end}} t \implies f'(s) < f'(t).$$

(4)

Suppose $Q := (P; \preceq_{\text{succ}})$. Since $(P; \preceq_{\text{pred}})$ is α-bqo, f' cannot be bad thus there are $s, t \in B''$ such that $s < t$ and $f'(s) \preceq_{\text{succ}(P)} f'(t)$. Pick $t' \in B''$ such that $t <_{\text{end}} t'$. From (4) we have $f'(t) < f'(t')$. According to the definition of $(P; \preceq_{\text{succ}})$, we have $f'(s) < f'(t')$. Since $s < t'$ it follows that f' is good for P. A contradiction.

Suppose $Q := (P; \preceq_{\text{pred}})$. For $s \in B''$ set $s^+ := s, \lambda(a)$ where λ is the successor of $\lambda(s)$ in $\bigcup B''$. Set $f'^+(s) := f'(s^+)$. Since $(P; \preceq_{\text{pred}})$ is α-bqo there are s and t such that $s < t$ and $f'^+(s) \preceq_{\text{pred}} f'^+(t)$, that is $f'(s^+) \preceq_{\text{pred}} f'(t^+)$. Since $s <_{\text{end}} s^+$ we have $f'(s) < f'(s^+)$. According to the definition of $(P; \preceq_{\text{pred}})$, this gives $f'(s) < f'(t^+)$. Since $s < t^+$, the function f' cannot be bad. A contradiction. \hfill \square
6 Maximal antichains with a prescribed size

6.1 Two element maximal antichains

Definition 6.1 Let P be a poset. The structure $(P(2); \leq)$ is defined on $P(2) := P \times 2$ so that:

$$(x, i) \leq (y, j) \text{ if } \begin{cases}
 i = j & \text{and } x \leq y, \text{ or} \\
 i = 0 \text{ and } j = 1 & \text{and there exist incomparable elements } \\
 x', y' \in P \text{ with } x \leq x' \text{ and } y' \leq y.
\end{cases}$$

It is easy to see that $P(2)$ is a poset.

Lemma 6.2 Every poset P embeds into the poset $AM_2(P(2))$.

Proof.

Claim 1. If $y \leq x$ then $(x, 0)$ and $(y, 1)$ are incomparable in $P(2)$. The converse holds if for every $x < y$ there are two incomparable elements x', y' such that $x \leq x'$ and $y' \leq y$.

If $(x, 0)$ and $(y, 1)$ are comparable then necessarily $(x, 0) < (y, 1)$. In this case there are two incomparable elements x', y' such that $x \leq x'$ and $y' \leq y$. But if $y \leq x$, we get $y' \leq x'$, a contradiction. Conversely, suppose that $(x, 0)$ and $(y, 1)$ are incomparable. Then clearly, x and y are comparable. Necessarily, $x \leq y$. Otherwise $x < y$. But, from the condition stated, we have $(x, 0) \leq (y, 1)$, a contradiction.

For $x \in V$, set $X_x := \{(x, 0), (x, 1)\}$.

Claim 2. $X_x \in AM_2(P(2))$.

The set X_x is an antichain according to Claim 1. Moreover, every element (x', i') different from $(x, 0)$ and $(x, 1)$ is comparable to one of these two elements. Indeed, if x' is comparable to x, then (x', i') is comparable to (x, i'). If x' is incomparable to x then (x', i') is comparable to $(x, \neg i')$ where $\neg i' \neq i'$. This proves that X_x is maximal.

Claim 3. The map $x \to X_x$ is an embedding of P into $AM_2(P(2))$. That is:

$$x \leq y \iff X_x \leq X_y.$$

Suppose $x \leq y$. Then we have $(x, 0) \leq (y, 0)$ and $(x, 1) \leq (y, 1)$ proving $X_x \leq X_y$. Conversely, suppose $X_x \leq X_y$, that is $(x, 0) \leq (y, i)$ and $(x, 1) \leq (y, j)$ for some $i, j \in \{0, 1\}$. Due to our ordering, we have $j = 1$, hence $x \leq y$ as required.

\[\square\]
With this construction, a poset P which is not α-bqo but is β-bqo for every $\beta < \alpha$ leads to a poset Q having the same property and for which neither $AM_2(Q)$ nor $\bigcup AM_2(P)$ is α-bqo. The simplest example of this situation is given below.

Theorem 6.3 Let P be a poset with no infinite antichain, and α be a denumerable ordinal, then $AM_2(P)$ is α-bqo if and only if $\bigcup AM_2(P)$ is α-bqo.

Proof. If $Q := AM_2(P)$ is α-bqo then $A(Q)$ is α-bqo. In particular, $AM_2(Q)$ is α-bqo. This set is simply $AM_2(P)$ and the conclusion follows.

For the converse, we prove a bit more. Let P be a subset of $[P]^2$. We quasi-order P as follows: $X \leq Y$ if for every $x \in X$ there is some $y \in Y$ such that $x \leq y$ and for every $y \in Y$ there is some $x \in X$ such that $x \leq y$.

Let T be a subset of $P' := \bigcup P$.

Claim If P is α-bqo then T is α-bqo.

Let $f : B \to T$ be a map from a barrier B of type at most α into T. For each $s \in B$, select a map $F(s) : 2 := \{0, 1\} \to P$ such that $f(s) \in \text{rg}(F(s)) \in P$. For $s \in B$, set $p(s) := i$ if $F(s)(i) = f(s)$ and for $(s, t) \in B \times B$, set $\rho_{(s, t)} := \{(i, j) \in 2 \times 2 : F(s)(i) \leq F(t)(j)\}$. Note that since an order is transitive, for $s, t, u \in B$ the composition of relations satisfies

$$\rho_{(t,u)} \circ \rho_{(s,t)} \subseteq \rho_{(s,u)}$$ \hspace{1cm} (5)

Subclaim 1 We may suppose that:

1. $p(s) = i_0$ for all $s \in B$ and some $i_0 \in 2$;
2. $\rho_{(s,t)} = \rho$ for all pairs $(s, t) \in B \times B$ such that $s < t$ and some $\rho \subseteq 2 \times 2$;
3. for every $i \in 2$ there are some $j, j' \in 2$ such that $(i, j), (j', i) \in \rho$

Proof of Subclaim 1 Since the map p takes only two values, we get from the partition theorem of Nash-Williams p is constant on a subbarrier of B. With no loss of generality, we may suppose that this barrier is B proving that 1 holds. Similarly, the map which associate $\rho_{(s,t)}$ to each element $s \cup t \in B^2$ takes only finitely many values hence, by the same token, this map is constant on a subbarrier C of B^2. Necessarily $C = B^2 \cap [X]^<\omega$ for some $X \subseteq B$. For $B' := B \cap [X]^<\omega$ the condition stated in 2 holds. We may suppose $B' = B$. Finally, since P is α-bqo, the map which associates $\text{rg}(F(s))$ to $s \in B$ cannot be bad. According to the partition theorem of Nash-Williams this map is perfect on a subbarrier C. With no loss of generality, we may suppose this subbarrier equals to B. From this 3 follows. \qed
We will prove that ρ is reflexive. With conditions 1 and 2 it follows that
f is perfect, proving our claim (indeed, let s ⪯ t. From 1, f(s) = F(s)(ι₀)
and f(t) = F(t)(ι₀), from 2 ρ(s, t) = ρ. The reflexivity of ρ insures that
(ι₀, ι₀) ∈ ρ that is (ι₀, ι₀) ∈ ρ(ιₐ, ιₐ) which amounts to F(s)(ι₀) ≤ F(t)(ι₀).
This yields f(s) ≤ f(t) as required).

If ρ is not reflexive, then it follows from condition 3 that {(0, 1), (1, 0)} ⊆ ρ.
From now, on we will suppose this later condition fulfilled.

We say that two elements s₀, s₁ ∈ B are intertwined and we set s₀ ⪯₁ s₁
if there is an infinite sequence X := a₀ < . . . aₙ < . . . of elements of B such
that s₀ <init X even and s₁ <init X odd, where X even := a₀ < . . . a₂n < . . .
and X odd := a₁ < . . . a₂n₊₁ < We set B(½) := {(s₀, s₁) : s₀ ⪯₁ s₁} and
B+ := {s₀ ∪ s₁ : (s₀, s₁) ∈ B(½)} where s₀ ∪ s₁ denotes the sequence w
whose range is the union of the ranges of s₀ and s₁.

We note that
1. if w ∈ B+ then the pair (s₀, s₁) ∈ B(½) such that w = s₀ ∪ s₁ is unique;
2. B+ is a thin block;
3. if X := a₀ < . . . aₙ < . . . is an infinite sequence of elements of B,
 Y := X, s₀, s₁, s₂ ∈ B such that s₀ <init X even, s₁ <init X odd,
 s₂ <init Y odd then s₀ ⪯₁ s₁ ⪯₁ s₂ and s₀ ⪯ s₂.

Let w := s₀ ∪ s₁, w′ := s₀′ ∪ s₁′ ∈ B+. We say that w and w′ are equivalent
if there is a map g from ∪{rg(F(sᵢ)) : i < 2} onto ∪{rg(F(s′ᵢ)) : i < 2} such
that
1. g ◦ F(sᵢ) = F(s′ᵢ) for i < m;
2. ρ(sᵢ, sⱼ) = ρ(s′ᵢ, s′ⱼ) for all i, j < 2;

As one can check easily, this is an equivalence relation on B+. Furthermore,
the number of equivalence classes is finite (one can code each equivalence
class by a relational structure on a set of at most 4 elements, this structure
been made of four binary relations and four unary relations). Since B+ is
a block, it follows from the partition theorem of Nash-Williams that one
class contains a barrier. Let C be such a barrier, X ⊆ B such that C :=
B+ ∩ [X]<ω and let B′ := B ∩ [X]<ω. For s₀, s₁ ∈ B′ such that s₀ ⪯₁ s₁,
ρs₀, s₁ and ρs₁, s₀ are constant; let ρ₁₂ and ρ₁₂ their common value.

For the proof of the next subclaims, we select s₀, s₁, s₂ ∈ B′ such that
s₀ ⪯₁ s₁ ⪯₁ s₂ and s₀ ⪯ s₂; according to condition 3 above this is possible.
Subclaim 2 \(\rho_2 \circ \rho_1 \subseteq \rho \)

Proof of Subclaim 2 We have \(\rho_2 = \rho_{s_0,s_1} = \rho_{s_1,s_2} \) and \(\rho = \rho_{s_0,s_2} \). The claimed inclusion follows from the composition of relations.

Subclaim 3 \(\rho'_2 = \emptyset \)

Proof of Subclaim 3 Suppose the contrary; let \((i,j) \in \rho'_2 \). Case 1. \(i = j \). Let \(k \neq i \). We have \((k,i) \in \rho = \rho_{s_0,s_2} \) and \((i,i) \in \rho' = \rho_{s_2,s_1} = \rho_{s_1,s_0} \).

By composing these relations, we get with 5 \((k,i) \in \rho_{s_0,s_0} \) contradicting the fact that \(rg(F(s_0)) \) is an antichain. Case 2. \(i \neq j \). then from \((i,j) \in \rho'_2 = \rho_{s_2,s_1} = \rho_{s_1,s_0} \) and \((j,i) \in \rho = \rho_{s_0,s_2} \) we get, by composing these relations, \((i,j) \in \rho_{s_1,s_1} \) contradicting the fact that \(rg(F(s_1)) \) is an antichain and proving Subclaim 3.

Subclaim 4 \(\rho_2 \) satisfies condition 3 of Subclaim 1.

Proof of Subclaim 4 Since \(rg(F(s_0)) \) and \(rg(F(s_1)) \) are two maximal antichains, each element of one is comparable to some element of the other. Since \(\rho_{s_1,s_0} = \rho'_2 = \emptyset \), \(rg(F(s_0)) \leq rg(F(s_1)) \) and the result follows.

Now, if \(\rho_2 \) is reflexive, it follows from Subclaim 2 that \(\rho \) is reflexive and our claim is proved. If \(\rho_2 \) is not reflexive then from Subclaim 4 it follows that \(\{(0,1),(1,0)\} \subseteq \rho_2 \). With Subclaim 4 this yields \((0,0),(1,1) \in \rho \) that is \(\rho \) is reflexive and the proof of our claim is complete.

6.2 Rado’s poset

Let \(V := \{(m,n) \in \mathbb{N}^2 : m < n\} \). We denote by \(\leq_R \) the following relation on \(V \):

\[
(m,n) \leq_R (m',n') \text{ if either } m = m' \text{ and } n \leq n' \text{ or } n < m' \tag{6}
\]

This relation is an order. We denote by \(R \) the resulting poset. This poset, discovered by R. Rado [21], is at the root of the discovery of bqo’s. R. Rado observed that \(R \) is wqo but \(I(R) \) is not wqo and has shown that a poset \(P \) is \(\omega^2 \)-bqo if and only if \(I(P) \) is wqo. R. Laver [11] has shown that a poset \(P \) which is wqo, and not \(\omega^2 \)-bqo contains a copy of \(R \). Applying the construction given in Lemma 6.2 we have:

Lemma 6.4 The poset \(AM_2(R(2)) \) is wqo but not \(\omega^2 \)-bqo.

Proof. As a union of two wqo posets, \(R(2) \) is wqo. Hence \(AM(R(2)) \) is wqo for the domination order. In particular \(AM_2(R(2)) \) is wqo. Since \(AM_2(R(2)) \) embeds \(R \), it cannot be \(\omega^2 \)-bqo.
Lemma 6.5 $\bigcup AM_m(R)$ is bqo for every integer m and R embeds into $AM(R)$.

Proof.
a) $\bigcup AM_m(P)$ is bqo. Let $m, m < \omega$. Then $\bigcup AM_m(P) \subseteq \{(i, j) : i < m, i < j < \omega\}$. Indeed, let $A \in AM_m(P)$ then for each $i, i < m$ there is some $(i, j) \in A$ with $i < j$ (otherwise, add to A an element (i, j) with j large enough). Consequently $\bigcup AM_m(P)$ is bqo.
b) R embeds into $AM(R)$. Since R is not ω^2 bqo, $AM(R)$ is not ω^2 bqo (Theorem 5.5). Hence from Laver’s result mentioned above, the poset R embeds into $AM(R)$. For the sake of simplicity we give a direct proof.

Set $X_{(0, 1)} := \{(0, 1), (1, 2)\}$, $X_{(0, n)} := \{(m, n) : m < n\}$ for $n \geq 2$, $X_{(m, n)} := \{(m', m) : m' < m\} \cup \{(m, n)\}$ for $m \geq 1$. One has to check successively that:

Claim 1. $X_{(m, n)}$ is the least antichain in $AM(R)$ which contains (m, n).
Claim 2. $(m, n) \leq (m', n') \Rightarrow X_{(m, n)} \leq X_{(m', n')}$.
Claim 3 $m, m' \geq 1$ and $X_{(m, n)} \leq X_{(m', n')}$ imply $(m, n) \leq (m', n')$.

6.3 Three element maximal antichains

Lemma 6.6 Let $P := (V; \leq)$ be a poset. Let $L := (V; \sqsubseteq)$ be a linear extension of P with the property that if $x < y$ then there is a z with $x \sqsubseteq z \sqsubseteq y$ and z is incomparably in P to both x and y. Then there is a poset Q which is a union of a copy of P and two copies of L for which $\bigcup AM_3(Q) = Q$ and $AM_3(Q)$ is isomorphic to L.

Proof. On $V \times 3$ define the following strict order relation $<_Q$:

$$(x, i) <_Q (y, j) \text{ if } \begin{cases} i = j = 1 & \text{ and } x < y, \text{ or} \\ 1 \neq i \text{ or } j \neq 1 & \text{ and } i \leq j \text{ and } x \sqsubseteq y. \end{cases}$$

Let $Q := (V \times 3; \leq_Q)$ be the resulting poset by adding the identity relation to $<_Q$. The order induced by \leq_Q on $V \times \{i\}$ coincides with the order \leq on V if $i = 1$, whereas it coincides with \sqsubseteq if $i \neq 1$.

Let $A := \{(x_0, i_0), (x_1, i_1), (x_2, i_2), \ldots, (x_{n-1}, i_{n-1})\}$ be a finite antichain of Q with $x_0 \sqsubseteq x_1 \sqsubseteq x_2 \sqsubseteq \cdots \sqsubseteq x_n$. If $i_j \neq 2$ for any $j \in n$ then $\{(x_0, 2)\} \cup A$ is an antichain of Q. If $i_j \neq 0$ for any $j \in n$ then $\{(x_{n-1}, 0)\} \cup A$ is an antichain of Q. It follows that every element of $AM_3(Q)$ is of the form $\{(x_0, 0), (x_1, 1), (x_2, 2)\}$ with $x_0 \sqsubseteq x_1 \sqsubseteq x_2$.

24
Let \(A := \{ (x_0, 0), (x_1, 1), (x_2, 2) \} \in AM_3(Q) \). Assume for a contradiction that \(x_0 \neq x_1 \). Because \(A \) is a maximal antichain it follows that \(x_1 < x_0 \). According to the assumptions of the Lemma, there exists an element \(y \in V \) which is not related to \(x_1 \) and \(x_0 \) and with \(x_1 \sqsubset y \sqsubseteq x_0 \). Then \(\{ (x_0, 0), (y, 1), (x_1, 1), (x_2, 2) \} \) is an antichain. In a similar way we obtain that \(x_2 = x_1 \). It follows that \(AM_3(Q) = \{ \{ y \} \times 3 : y \in V \} \).

We conclude that \(AM_3(Q) \) is isomorphic to \(L \) and \(\bigcup AM_3(Q) = Q \).

Corollary 6.7 There exists a poset \(Q \) for which \(AM_3(Q) \) is bqo but \(\bigcup AM_3(Q) \) is not bqo.

Proof. A poset \(P \) which is wqo and not bqo but satisfies the conditions of Lemma 6.7 leads to a poset \(Q \) which is wqo, not bqo, and for which \(AM_3(Q) \) is bqo but \(\bigcup AM_3(Q) \) is not bqo. One may take for \(P \) Rado’s example and for a linear extension \(L \) the lexicographic order according to the second difference.

7 Index, notation, basic definitions and facts

Let \(P \) denote a partially ordered set.

Poset, qoset, chain, well-founded, wqo, well-quasi-ordered:

If \((P; \leq) \) is a partially ordered set, a poset, we will often just write \(P \) for \((P; \leq) \). We write \(a \leq b \) for \((a, b) \in \leq \). A qoset is a quasi ordered set and a linearly ordered poset is a chain.

A qoset \(P \) is well-founded if it contains no infinite descending chain

\[
\cdots < x_n < \cdots < x_0
\]

and if in addition, \(P \) contains no infinite antichain then it is well-quasi-ordered (wqo). If \(P \) is a chain and well-quasi-ordered then it is well-ordered.

Initial segment, principal, \(I(P) \), \(I_{<\omega}(P) \), \(\downarrow X \):

A subset \(I \) of \(P \) is an initial segment (or is closed downward) if \(x \leq y \) and \(y \in I \) imply \(x \in I \). We denote by \(I(P) \) the set of initial segments of \(P \) ordered by inclusion.

Let \(X \) be a subset of \(P \), then:

\[
\downarrow X := \{ y \in P : y \leq x \text{ for some } x \in X \}.
\]
We say that \(\downarrow X \) is generated by \(X \). If \(X \) contains only one element \(x \), we write \(\downarrow x \) instead of \(\downarrow \{x\} \). An initial segment generated by a singleton is \textit{principal} and it is \textit{finitely generated} if it is generated by a finite subset of \(P \).

We denote by \(I_{<\omega}(P) \) the set of finitely generated initial segments.

\(\text{up}(P), \text{down}(P) \)

We set \(\text{up}(P) := \{\uparrow x : x \in P\} \) and \(\text{down}(P) := \{\downarrow x : x \in P\} \).

\(\leq_{dom} \), domination relation:

A subset \(X \) of \(P \) is being \textit{dominated} by the subset \(Y \) of \(P \), \(X \leq_{dom} Y \), if for every \(x \in X \) there is a \(y \in Y \) such that \(x \leq y \). The domination relation is a quasi-order on the power-set \(\mathcal{P}(P) \). The resulting ordered set is isomorphic to \(I(P) \), ordered by inclusion, via the map which associates with \(X \in \mathcal{P}(P) \) the initial segment \(\downarrow X \).

\(S_\omega(P) \), strictly increasing sequence:

A sequence \((x_n)_{n<\omega} \) of elements of \(P \) is \textit{strictly increasing} if

\[
x_0 < x_1 < \cdots < x_n < x_{n+1} < \cdots
\]

We denote by \(S_\omega(P) \) the set of strictly increasing sequences of elements of \(P \). For \((x_n)_{n<\omega} \in S_\omega(P) \) and \((y_n)_{n<\omega} \in S_\omega(P) \) we set \((x_n)_{n<\omega} \leq (y_n)_{n<\omega} \) if for every \(n < \omega \) there is some \(m < \omega \) such that \(x_n \leq y_m \). This defines a quasi-order on \(S_\omega(P) \). If we identify each \((x_n)_{n<\omega} \in S_\omega(P) \) with the subset \(\{x_n : n < \omega\} \) of \(P \), this quasi-order is induced by the domination relation on subsets.

\(\mathcal{J}(P), \mathcal{J}^{-\downarrow}(P) \), ideal, non principal ideal:

An \textit{ideal} of \(P \) is a non empty initial segment \(I \) which is up-directed, that is every pair \(x, y \in I \) has an upper bound \(z \in I \). Its \textit{cofinality}, \(cf(I) \), is the least cardinal \(\kappa \) such that there is some set \(X \) of size \(\kappa \) such that \(I = \downarrow X \).

The cofinality of \(I \) is either 1, in which case it has a largest element and is said to be \textit{principal}, or is infinite. We denote by \(\mathcal{J}^{-\downarrow}(P) \) the set of non principal ideals of \(P \).

Note the following fact, which goes back to Erdös-Tarski (1943) (see [5]):

Fact 7.1 A poset \(P \) has no infinite antichain if and only if every initial segment of \(P \) is a finite union of ideals.

\(\mathcal{P}^{\text{dual}}, \mathcal{F}(P), \mathcal{F}_{<\omega}(P), \mathcal{J}(P) \), filter:
The dual of P is the poset obtained from P by reversing the order; we denote it by P^{dual}. A subset which is respectively an initial segment, a finitely generated initial segment or an ideal of P^{dual} will be called a final segment, a finitely generated final segment or a filter of P. We denote by $\mathcal{F}(P)$, $\mathcal{F}_{<\omega}(P)$, and $\mathcal{F}(P)$ respectively, the collection of initial segments, finitely generated initial segments, and ideals of P ordered by inclusion.

$\mathfrak{P}(P)$, $A(P)$, $AM(P)$, $AM_n(P)$:

$\mathfrak{P}(P)$ denotes the set of subsets of P and $A(P)$ is the collection of antichains of P, $AM(P)$ the collection of maximal antichains of P and $AM_n(P)$ is the collection of n-element maximal antichains of P. The quasi-order of domination defined on $\mathfrak{P}(P)$ induces an ordering on the set $A(P)$ of antichains of P. The sets $A(P)$ and $A(P^{\text{dual}})$ are equal. Hence, we may order $A(P)$ by the domination order of P^{dual}. In general, these two orders are distinct. But, they coincide on $AM(P)$.

$\leq_{\text{succ}}, \leq_{\text{pred}}, \leq_{\text{crit}}$:

Let P be a poset. We write $a \leq_{\text{pred}(P)} b$ if $x < a$ implies $x < b$ for every $x \in P$. We write $a \leq_{\text{succ}(P)} b$ if $b < y$ implies $a < y$ for every $y \in P$. We write $a \leq_{\text{prec}} b$, or $a \leq_{\text{succ}} b$, if P is understood. We denote by $(P; \leq_{\text{prec}})$ and $(P; \leq_{\text{succ}})$ the corresponding quasi-ordered sets.

We write $a \leq_{\text{crit}(P)} b$ if $a \leq_{\text{pred}(P)} b$ and $a \leq_{\text{succ}(P)} b$. If in addition a and b are incomparable, the pair (a, b) critical.

Interval order:

The poset P is an interval-order if P is isomorphic to a subset J of the set $\text{Int}(C)$ of non-empty intervals of some chain C. The intervals are ordered as follows: for every $I, J \in \text{Int}(C)$, $I < J$ if $x < y$ for every $x \in I$, every $y \in J$.

Interval orders have neat characterizations in different ways: maximal antichains, associated preorders or obstructions, see [4, 23]. We recall this important characterization:

Theorem 7.2 The following properties are equivalent:

(i) P is an interval order.

(ii) $\text{Pred}(P)$ is total qoset.

(iii) $\text{Succ}(P)$ is a total qoset.
(iv) \(P \) does not contain a subset isomorphic to \(2 \oplus 2 \), the direct sum of two copies of the two-element chain.

(v) \(AM(P) \) is a chain.

\(\mathbb{N}, [X]^{<\omega}, l(s), \lambda(s), *s, s*, s \cdot t, s \leq_{in} t, s \leq_{lex} t: \)

The set of non-negative integers is denoted by \(\mathbb{N} \), the set of \(n \)-element subsets of \(X \subseteq \mathbb{N} \) by \([X]^n \) and the set of finite subsets of \(X \subseteq \mathbb{N} \) by \([X]^{<\omega} \). We identify each member \(s \) of \([\mathbb{N}]^{<\omega} \) with a strictly increasing sequence, namely the list of its elements written in an increasing order, eg \(\{3, 4, 8\} \). Let \(s \in [\mathbb{N}]^{<\omega} \); the \textit{length} of \(s \), \(l(s) \), is the number of its elements. For \(m := l(s) \neq 0 \), we write \(s := \{s(0), \ldots, s(m-1)\} \) with \(s(0) < s(1) < \cdots < s(m-1) \). The smallest element of \(s \) is \(s(0) \) the largest, denoted by \(\lambda(s) \), is \(s(m-1) \).

We denote by \(*s \) the sequence obtained from \(s \) by deleting its first element and by \(s* \) the sequence obtained by deleting the last element. (With the convention that \(*\emptyset = \emptyset, s* = \emptyset \). We denote by \((a) \) the one element sequence with entry \(a \).

Let \(s, t \in [\mathbb{N}]^{<\omega} \). If \(\lambda(s) < \lambda(t) \) then \(s \cdot t \) is the concatenation of \(s \) and \(t \). We denote by \(s \leq_{in} t \) the fact that \(s \) is an initial segment of \(t \) and by \(s \leq_{lex} t \) the fact that \(s \) is smaller than \(t \) in the lexicographic order. (For example \(\{3, 5, 8, 9\} \leq_{lex} \{3, 5, 9, 15\} \).) If there exists an \(r \in [\mathbb{N}]^{<\omega} \) with \(s \leq_{in} r \) and \(t = s \cdot r \) then \(s \preccurlyeq t \). For example \(\{i\} \preccurlyeq \{j\} \) if and only if \(i < j \), \((r = \{i, j\}) \); also \(\{i, j\} \preccurlyeq \{i', j'\} \) if and only if \(j = i' \) and then \(r = \{i, i', j'\} \).

\(\bigcup B, B|_X, \text{block, thin block, barrier} \)

Let \(B \subseteq [\mathbb{N}]^{<\omega} \) and \(X \subseteq \mathbb{N} \). Then \(\bigcup B := \bigcup B \) and \(B|_X := B \cap [X]^{<\omega} \). The set \(B \) is a \textit{block} \(^1\) if:

1. \(B \) is infinite.
2. For every infinite subset \(X \subseteq \bigcup B \) there is some \(s \in B \setminus \{\emptyset\} \) such that \(s \leq_{in} X \).

If \(B \) is a block and an antichain for the order \(\leq_{in} \) then \(B \) is a \textit{thin block}, whereas \(B \) is a \textit{barrier} if it is a block and an antichain for the inclusion order. A typical barrier is the set \([\mathbb{N}]^n\) of \(n \)-element subsets of \(\mathbb{N} \).

Trivially, every block contains a thin block, the set \(\min_{\leq_{in}}(B) \) of minimal elements of the block. Moreover, if \(B \) is a block, resp. a thin block, and \(X \) is an infinite subset of \(\bigcup B \) then \(B|_X \) is a block, resp. a thin block.

\(^1\)We stick to the definition of Nash-Williams, 1968 [10]: in some papers, a block is what we call a thin block.
Let $B, B' \subseteq [\mathbb{N}]^{<\omega}$.

$\ast B := \{ \ast s : s \in B \}$. For $s \in [\mathbb{N}]^{<\omega}$

$B_s := \{ t \in B : s \leq \text{in} t \}$

$sB := \{ t \in [\mathbb{N}]^{<\omega} : s \cdot t \in B \} = \{ r \setminus s : r \in B_s \}$. Note that if B is a thin block and sB is non-empty then it is a thin-block.

$B^\circ := \{ s^\circ : s \in B \}$.

$B^2 := \{ u := s \cup t : s, t \in B \text{ and } s \lhd t \}$. (This despite the possible confusion with the cartesian square of B.)

B° is the set of all elements $s \in B$ with the property that for all $i \in \bigcup B$ with $i < s(0)$ there is an element $t \in B$ with $(i) \cdot s \leq \text{in} t$. In other words $s \in B^\circ$ if $(i) \cdot s \in T(B)$ for all $i \in \bigcup B$ with $i < s(0)$. Let $B' := \{ \ast s : s \in B^\circ \} \setminus \{ \emptyset \}$.

$B' \leq \text{in} B$ if for every $s' \in B'$ there is some $s \in B$ such that $s' \leq \text{in} s$. This is the quasi-order of domination associated with the order $\leq \text{in}$ on $[\mathbb{N}]^{<\omega}$.

A map f from a barrier B into a poset P is good if there are $s, t \in B$ with $s \lhd t$ and $f(s) \leq f(t)$. Otherwise f is bad.

Let α be a denumerable ordinal. A poset P is α-better-quasi-ordered if every map $f : B \to P$, where B is a barrier of order type at most α, is good.

A poset P is better-quasi-ordered if it is α-better-quasi-ordered for every denumerable ordinal α.

References

[1] M. Assous, Caractérisation du type d’ordre des barrières de Nash-Williams. Publ. Dép. Math. (Lyon) 11 (1974), no. 4, 89–106.

[2] G.Behrendt, Maximal antichains in partially ordered sets. Eleventh British Combinatorial Conference (London, 1987). Ars Combin. 25 (1988), C, 149–157.

[3] M.Bekkali, M.Pouzet, D.Zhani, Incidence structures and Stone-Priestley duality, 2004.

[4] R.Bonnet, Private communication, december 2004.

[5] R. Fraïssé, Theory of relations. North-Holland Publishing Co., Amsterdam, 2000.
[6] P.C. Fischburn, Interval Orders and Interval graphs, Wiley, 1985.

[7] F. Galvin, A generalization of Ramseys theorem. Notices Amer. Math. Soc. vol.15 p.548 (1969) Abstract 68 T 368.

[8] G. Higman, Ordering by divisibility in abstract algebras, Proc. London. Math. Soc. 2 (3), (1952), 326-336.

[9] J. B. Kruskal, Well-quasi-ordering, the Tree Theorem, and Vazsonyi’s conjecture. Trans. Amer. Math. Soc., 95 (1960)210–225.

[10] J. B. Kruskal, The theory of well-quasi-ordering : a frequently discovered concept. J. Com. Th., 13:297–305, 1972.

[11] R. Laver, Well-quasi-orderings and sets of finite sequences. Math. Proc. Cambridge Philos. Soc. 79 (1976), no. 1, 1–10.

[12] A.Marcone, Foundations of bqo theory Trans. Amer. Math. Soc., 345 (1994), 641-660

[13] A.Marcone, Fine analysis of the quasi-orderings on the power set, Order, 18, (2001)339-347.

[14] E. C. Milner, Basic wqo- and bqo-theory, In Graphs and order (Banff, Alta., 1984), pages 487–502. Reidel, Dordrecht, 1985.

[15] C. St. J. A. Nash-Williams, On well-quasi-ordering finite trees. Proc. Cambridge Philos. Soc., 59:833–835, 1963.

[16] C. St. J. A. Nash-Williams, On better-quasi-ordering transfinite sequences. Proc. Cambridge Philos. Soc., 64:273–290, 1968.

[17] M.Pouzet, Sur les prémeilleurordres, Ann. Inst. Fourier(Grenoble) 22(1972)1-20.

[18] M. Pouzet, Sur la théorie des relations. Thèse d’état, Université Claude-Bernard, Lyon 1, 1978.

[19] M.Pouzet, Graphs and posets with no infinite independent set. Finite and infinite combinatorics in sets and logic (Banff, AB, 1991), 313–335, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 411, Kluwer Acad. Publ., Dordrecht, 1993.

[20] F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc., 30, (1930), 264-286.
[21] R. Rado, Partial well-ordering of a set of vectors, Mathematika, 1 (1954), 89-95.

[22] N. Robertson, P. Seymour, Graph minors—a survey. Surveys in combinatorics 1985 (Glasgow, 1985), 153–171, London Math. Soc. Lecture Note Ser., 103, Cambridge Univ. Press, Cambridge, 1985.

[23] M. Wiener, A contribution to the theory of relative position, Proc. Camb. Philos. Soc., 17, 1914, p. 441-449.