Stacks on stratified spaces

March 23, 2010

Abstract

In this paper, we go into the study of the 2-category \mathcal{S}_{Σ} of Σ-constructible stacks. We show the 2-equivalence between \mathcal{S}_{Σ} and a combinatoric 2-category whose objects are given by a 2-representation of each stratum plus some gluing data.

A stack is a generalization of a sheaf of categories. The notion of equality between two categories being too strict, a stack is, roughly speaking, a “sheaf of categories up to equivalence”. This lax version of sheaves allows to give a structure to objects that can be glued up to isomorphisms. For example, Beilinson, Bernstein and Deligne have shown in [2] that if X is a topological space, the data for all open U of X, of the category of perverse sheaves on U is a stack.

Most of the notations and properties of sheaves can be extended to stacks. In this article we focus on the notions of locally constant stack and constructible stack on a stratified space.

Let us recall some classical facts on sheaf theory. It is well knowns that the category of locally constant sheaves on a locally 1-connected topological space X is equivalent to the category of representations of the fundamental groupoid $\Pi_1(X)$. This result gives a topological description of the category of locally constant sheaves on X. Constructible sheaves are a natural generalization of locally constant sheaves. Indeed, a sheaf F is constructible if there exists a stratification $\{\Sigma_k\}$ of X such that, for every stratum Σ_k, the restriction of F to Σ_k is locally constant on Σ_k. Another classical construction for sheaves on a topological space X, is the description of a sheaf through some descent data. This gives an answer to the natural question of how we can recover a sheaf F from its restrictions to open or closed subset of X. In particular, F is uniquely determined by its restrictions to an open set $U \subset X$ and its complementary F^c, plus some gluing data given by the morphisms of adjunction

$$i_{F}^{-1}F \to i_{F}^{-1}i_{U}^{*}i_{U}^{-1}F,$$

where i_F and i_U are the inclusions of F and U in X. Combining the topological description of locally constant sheaves given above with the previous gluing construction, one can obtain a combinatorial description of a constructible sheaf with respect to a stratification.

In [13], P. Polesello and I. Waschkies generalized to the 2-category of locally constant stacks on a suitable topological space the topological description of locally constant sheaves cited above. In particular they introduced the 2-monodromy functor from the 2-category of locally constant stacks to the 2-category of 2-representations of $\Pi_2(X)$. In the first section of this paper we
recall the definition of the 2-monodromy functor and defining a quasi-2-inverse slightly different from the one in [15]. Then, given a locally trivial fiber bundle $p : X \to B$, we consider the 2-functors of direct and inverse image relative to p between the 2-categories of locally constant stacks and we translate such functors in the language of 2-representations.

In the second section, we consider a stratified topological space and we study how to recover a stack from its restrictions to the strata. In particular, we generalize the gluing construction cited above for sheaves to the case of stacks. Given a topological space X and a stratification $\Sigma = \{\Sigma_k\}_k$ of X, we define the 2-category \mathcal{S}_Σ whose objects are given by

- a stack \mathcal{C}_k on each stratum $\Sigma_k \hookrightarrow X$,
- a functor of stacks $F_{kl} : \mathcal{C}_k \to i_{kl}^{-1} i_{kl}^* \mathcal{C}_l$, for every couple Σ_k, Σ_l of strata such that $\Sigma_k \subset \Sigma_l$,
- for every triple $\Sigma_k, \Sigma_l, \Sigma_m$ such that $\Sigma_k \subset \Sigma_l \subset \Sigma_m$, some morphisms of functors.

We show the following

Theorem 1. The 2-category $\mathcal{S}_t X$ of stacks on X is equivalent to the 2-category \mathcal{S}_Σ.

Hence we see that, in order to define a stack on a stratified topological space, it is sufficient to have stacks on each stratum plus some gluing data consisting of functors of stacks and morphisms of functors. To prove the theorem, we define a couple of quasi-2-inverse functors: the “restriction functor” R_Σ going from $\mathcal{S}_t X$ to \mathcal{S}_Σ and the “gluing functor” G_Σ. The former is the restriction of a stack to each stratum, plus some functors and morphisms given by the 2-adjunction between i_{kl}^* and i_{kl}^{-1}. The definition of the latter is more technical. For all object of \mathcal{S}_Σ we define a 2-functorial 2-limit encoding the gluing data.

In the third section we focus on constructible stacks. The notions of constructible stack was introduced by D. Treumann in [20]. It is a natural generalization of constructible sheaf. A stack \mathcal{C} is called constructible if there exists a stratification Σ of X such that \mathcal{C} is locally constant along each stratum. In [20], D. Treumann has also introduced the exit-path 2-category, which is a stratified version of the fundamental 2-groupoid and he showed that these two 2-categories are equivalent. Let us also cite J. Woolf in [22], he generalize the work of D. Treumann to homotopically stratified sets.

In what follows we focus on constructible stacks with respect to a fixed stratification Σ of X. Although we are interested in the same 2-category $\mathcal{S}_t^c \Sigma$ of Σ-constructible stacks, our approach is different. We show the 2-equivalence between $\mathcal{S}_t^c \Sigma$ and a 2-category whose objects are combinatoric data of 2-representations, functors of 2-representations and isomorphisms of functors. As a constructible stack is locally constant along each stratum and as the 2-monodromy defined by P. Polesello and I. Waschkies is an equivalence of categories, it is natural to ask if the data for every stratum Σ_k of a 2-representation of $\Pi_2(\Sigma_k)$ is sufficient to define a unique constructible stack, up to equivalence.

Now, if we want to describe combinatorially the 2-category $\mathcal{S}_t^c \Sigma$ of Σ-constructible stacks, it remains to understand how the gluing data can be read in the
language of 2-representations. To have a better understanding we restrict ourself to the case of Thom-Mather spaces. A Thom-Mather space is a stratiﬁed space plus a tubular neighborhood T_k of each stratum Σ_k together with a locally trivial ﬁber bundle $p_k : T_k \to \Sigma_k$, (for precise deﬁnitions see [14] and [17]). In this case, we show that the 2-functor $i_k^{-1}i_* : \text{LocConst}(\Sigma_l) \to \text{LocConst}(\Sigma_l)$ restricted to the 2-category of locally constant stacks on Σ_l is 2-equivalent to the functor $p_k_*i_k^{-1}$, where i_{kl} is the natural inclusion of $\Sigma_l \cap T_k$ in Σ_l. Now, in the ﬁrst section, we have deﬁned the equivalent functor in the 2-category of 2-representations. Hence we deﬁne a 2-category \mathcal{S}_{Σ}, 2-equivalent to the 2-category of constructible stacks, whose objects are given by:

- for every stratum Σ_k, a 2-representation α_k of the fundamental 2-groupoid $\Pi_2(\Sigma_k)$,
- for every couple Σ_k and Σ_l of strata such that $\Sigma_k \subset \Sigma_l$, a functor of 2-representation $F_{kl} :$

$$F_{kl} : \alpha_k \longrightarrow p_k_*i_{kl}^{-1}\alpha_l$$

- some morphisms of functors.

As a 2-representation of a 2-groupoid is equivalent to the data of categories, functors of categories and isomorphisms of functors, we can conclude our combinatorial description of a constructible stack.

As an application, in [19], D. Treumann has used his description of the 2-category of constructible stacks and a description of the category of perverse sheaves given by MacPherson and Vilonen in [13] to characterize the stack of perverse sheaves and in the case of Thom-Mather spaces he has showed that if the stratum are 2-connected the category of perverse sheaves is equivalent to the category of ﬁnite-dimensional modules over a ﬁnite-dimensional algebra. As he has used a non explicit local description he does not obtain an explicit description. In the same spirit, using the description of the category \mathcal{S}_{Σ}, we glue I glue the descriptions of the category of perverse sheaves on a normal crossing given by A. Galligo, M. Granger and Ph. Maisonobe in [9], to obtain explicit descriptions of the category of perverse sheaves on smooth toric varieties stratified by the torus action. For a presentation of the result see [7].

Conventions. Here we use the term “2-category” for a strict 2-category. It means that the composition of 1-morphisms is strictly associative. By a 2-functor, we mean a morphism of 2-category preserving the composition of 1-morphisms up to isomorphism. By a 2-representation of a 2-groupoid G, we mean a 2-functor from G to the 2-category of categories CAT. If α is a 2-representation of the fundamental groupoid $\Pi_2(X)$ of X and F is a subset of X, with an abusive notation, we also denote α the functor α restricted to F.

We do not recall the deﬁnitions of stack, constant stack and locally constant stack, the reader can ﬁnd them in [15] or in [20]. We often use the notion of 2-limit and 2-colimit, their deﬁnition is given in [11], for an explicit description see for example the annex of [21] or [8]. The 2-adjunction plays an important role in this paper, we refer to [10].
1 Locally constant and constructible stacks

Let X be a locally connected space. In this section we go into the study of the equivalence between the 2-category L_X of locally constant stacks on X and the 2-category $\mathbf{Rep}(\Pi_2(X), \mathcal{C}AT)$ of 2-representations of the fundamental 2-groupoid $\Pi_2(X)$ of X.

In a first time we shortly recall the definition of the 2-monodromy given by P. Polesello and I. Waschkies in [15]. This 2-equivalence, denoted μ, is a generalization of the monodromy going from the category of locally constant sheaves on X to the category of representation of the fundamental groupoid of X. They show that μ is an equivalence defining a quasi-2-inverse. Here we define a quasi-2-inverse ν of μ slightly different from the one given in [15].

Then, we translate in the language of 2-representations some operations on locally constant stacks. More precisely, let $f : Y \to X$ be a continuous map and $p : X \to B$ be a locally trivial fiber bundle. If \mathcal{C} is a locally constant stack, then $f^{-1}(\mathcal{C})$ and $p^*\mathcal{C}$ are locally constant. We define two 2-functors, also denoted f^{-1} and p^*, going from $\mathbf{Rep}(\Pi_2(X), \mathcal{C}AT)$ to $\mathbf{Rep}(\Pi_2(Y), \mathcal{C}AT)$ and $\mathbf{Rep}(\Pi_2(B), \mathcal{C}AT)$ respectively, commuting with the 2-monodromy.

Let \mathcal{C} be a locally constant stack on X. Let $\gamma : I \to X$ be a path in X. As I is contractible, the stack $\gamma^{-1}\mathcal{C}$ is a constant stack, thus the following functors are equivalences:

$$\mathcal{E}_{x_0} \simeq (\gamma^{-1}(\mathcal{C}))_0 \sim \Gamma([0,1], \gamma^{-1}(\mathcal{C})) \sim (\gamma^{-1}(\mathcal{C}))_1 \simeq \mathcal{E}_{x_1}.$$

Let us denote $\tilde{\gamma}$ the composition of the previous equivalences.

Let H be a homotopy in X, going from a path γ_0 to a path γ_1. The following diagram commutes up to isomorphisms:

The suitable composition of previous isomorphisms of functors gives an isomor-
phism of functors:

\[\tilde{H} : \tilde{\gamma}_0 \to \tilde{\gamma}_1. \]

Then, the image of \(\mathcal{C} \) by the 2-monodromy \(\mu \) is the 2-functor defined as follow:

\[\Pi_2(Y) \to \text{CAT} \]

\[x \mapsto \mathcal{C}_x \]

\[\gamma : x_0 \to x_1 \mapsto \tilde{\gamma} : \mathcal{C}_{x_0} \to \mathcal{C}_{x_1} \]

\[H : \gamma_0 \to \gamma_1 \mapsto \tilde{H} : \tilde{\gamma}_0 \to \tilde{\gamma}_1 \]

As the equivalences, the isomorphisms of functors come from a 2-functor application is 2-functorial.

Now, let us define a quasi-2-inverse of the 2-monodromy, denoted \(\nu \). Let \(\alpha \) be a 2-representation of \(\Pi_2(X) \), let us consider:

- for all open \(U \) of \(X \), the category \(\nu(\alpha)(U) = \varprojlim \alpha \)
- for every pair \(V \subset U \) of open subsets of \(X \), the functor:
 \[\nu(\alpha)(U) \varprojlim \alpha \to \varprojlim \nu(\alpha)(V) \]
 defined by the projections \(\pi_x : \varprojlim \alpha \to \alpha(x) \) of the 2-limit.
- for every triple \(W \subset V \subset U \), the isomorphism of functors defined by the isomorphisms given by the 2-limit:

\[\varprojlim \alpha \to \varprojlim \alpha \]

\[\varprojlim \alpha \to \alpha \]

Lemma 2. These data define a locally constant stack in a 2-functorial way.

Proof. The proof is similar to the proof of the theorem 2.2.5 of [15].

Theorem 3. Let \(X \) be a relatively 2-connected space, \(\Pi_2(X) \) its fundamental 2-groupoid. Then the 2-functors \(\mu \) and \(\nu \) are 2-equivalent.

It would be interesting to establish a dictionary between the operations on locally constant stacks and operations on the 2-representations of \(\Pi_2 \).

The inverse image of a locally constant stack by a continuous function is locally constant.

Proposition 4. Let \(f : X \to Y \) be a continuous map. Let \(f^{-1} \) denote the 2-functor defined by:

\[f^{-1} : \text{Rep}(\Pi_2(Y), \text{CAT}) \to \text{Rep}(\Pi_2(X), \text{CAT}) \]

\[\alpha \mapsto \left(\begin{array}{c}
\alpha(x) \\
\gamma : I \to X \mapsto \alpha(f \circ \gamma) \\
\varepsilon : I \times I \to X \mapsto \alpha(f \circ \varepsilon)
\end{array} \right) \]

Then, the two 2-functors \(f^{-1} \) and \(\mu \circ f^{-1} \circ \nu \) going from \(\text{Rep}(\Pi_2(Y), \text{CAT}) \) to \(\text{Rep}(\Pi_2(X), \text{CAT}) \), are equivalent.
Proof. The proof is straightforward.

Now, we are interested in the direct image of a locally constant stack. Not all direct images of locally constant stacks are locally constant, but D. Treumann has shown the following proposition:

Proposition 5 \([\[20\]\].** Let** \(X\) and \(B\) be locally contractible spaces. Let \(p : X \to B\) be a locally trivial fiber bundle. Let \(\mathcal{C}\) be a locally constant stack on \(X\), then \(p_*\mathcal{C}\) is locally constant on \(B\).

Let \(X\) and \(B\) be two locally contractible spaces and \(p\) be a locally trivial fiber bundle:

\[
p : X \to B.
\]

In what follows, we define explicitly a functor \(p_*\) going from \(2\text{Rep}(\Pi_2(X), \text{CAT})\) to \(2\text{Rep}(\Pi_2(B), \text{Cat})\) such that the following diagram commutes up to isomorphisms:

\[
\begin{array}{ccc}
\mathcal{L}_X & \xrightarrow{p_*} & \mathcal{L}_B \\
\mu \downarrow & & \downarrow \mu \\
2\text{Rep}(\Pi_2(X), \text{CAT}) & \xrightarrow{p_*} & 2\text{Rep}(\Pi_2(B), \text{Cat}).
\end{array}
\]

But first we need to fix some data and notations.

In this section \(\alpha\) denotes a 2-representation of the fundamental 2-groupoid \(\Pi_2(X)\). If \(x \in \text{Ob}(\Pi_2(X))\) we denote by \(\alpha_x\) the isomorphism of functors:

\[
\alpha_x : \alpha(\text{Id}_x) \xrightarrow{\sim} \text{Id}_{\alpha(x)}.
\]

If \(\gamma\) and \(\gamma'\) are two composable paths in \(X\), we denote by \(\alpha_{\gamma, \gamma'}\) the isomorphism:

\[
\alpha_{\gamma, \gamma'} : \alpha(\gamma) \circ \alpha(\gamma') \xrightarrow{\sim} \alpha(\gamma \wedge \gamma').
\]

Let \(\gamma : b_0 \to b_1\) be a path in \(B\) and \(\varepsilon : \gamma_0 \to \gamma_1\) be a homotopy in \(B\), for \(t \in I\) and for \(t_1, t_2 \in I^2\) we set:

\[
F_t := p^{-1}(\gamma(t)), \quad F_{(t_1, t_2)} := p^{-1}(\varepsilon(t_1, t_2)).
\]

Because of the contractibility of \(I\) and \(I \times I\), the fibrations \(p_{1\gamma}\) and \(p_{1\varepsilon}\) given by the pullbacks

\[
\begin{array}{ccc}
I \times \gamma X & \xrightarrow{p_{2\gamma}} & X \\
\downarrow p_{1\gamma} & & \downarrow p \\
I & \xrightarrow{\gamma} & B
\end{array}
\]

\[
\begin{array}{ccc}
(I \times I) \times \varepsilon X & \xrightarrow{p_{2\varepsilon}} & X \\
\downarrow p_{1\varepsilon} & & \downarrow p \\
I \times I & \xrightarrow{\varepsilon} & B
\end{array}
\]

are trivialisable, and there exist trivializations \(h_{\gamma}\) and \(h_{\varepsilon}\) of \(I \times \gamma X\) and \((I \times I) \times \varepsilon X\)
such that
\[p_2 \circ h_{\gamma} \mid_{\{0\} \times F_0} = \pi_2 \quad \text{and} \quad p_2 \circ h_{\varepsilon} \mid_{\{0\} \times F_0} = \pi_3. \tag{1} \]
These trivializations are not unique but two such trivializations are homotopic.

Lemma 6. If \(h \) and \(h' \) are two trivializations of \(I \times \gamma X \) satisfying the condition [1] then \(h_{\varepsilon} \) and \(h'_{\varepsilon} \) are homotopic and there exists a homotopy \(H \), unique up to homotopy, between them such that :
\[(p_2 \circ H) \mid_{I \times \{0\} \times X} = \pi_3, \quad p_1 \circ H = \pi_2, \tag{2} \]
and such that, for all \(t \in I \) \(H(t, \cdot, \cdot) \) is an isomorphism from \(I \times F_0 \) to \(I \times \gamma X \).

In the same way, if \(h_{\varepsilon} \) and \(h'_{\varepsilon} \) are two trivializations of \((I \times I) \times \varepsilon F_0 \), then they are homotopic.

Proof. We set \(h^{-1} = ((h^{-1})_1, (h^{-1})_2) \).

Let us remark that, with the above notations \((h^{-1})_1 = p_1\) and as \(h \) and \(h' \) satisfy the condition [1] for all \(x \in F \), we have :
\[h(0, x) = h'(0, x). \]
This assures that the application
\[H : \quad I \times I \times F_0 \rightarrow I \times \gamma X \]
\[(t_1, t_2, x) \mapsto h\left(t_2, (h^{-1})_2(h'(t_1t_2, x))\right) \]
is a homotopy from \(h \) to \(h' \) and moreover that the conditions of the lemma are satisfied.

Now, let us suppose that \(H_1 \) and \(H_2 \) are two such homotopies going from \(h \) to \(h' \), satisfying the conditions [2]. Let \(t \in I \), let us set :
\[H_1(t, \cdot, \cdot)^{-1} := \left(H_1(t, \cdot, \cdot)^{-1}_1, H_1(t, \cdot, \cdot)^{-1}_2\right). \]
As above, the condition [2] assures that for all \((t, x) \in I \times F_0\) we have the equality
\[H_1(t, 0, x) = H_2(t, 0, x). \]
Hence the homotopy
\[I \times I \times I \times F_0 \rightarrow I \times \gamma X \]
\[(t_1, t_2, t_3, x) \mapsto H_1(t_2, t_3, (H_1(t_2, \cdot, \cdot))^{-1}_2 H_2(t_2, t_1t_3, x)) \]
goes from \(H_1 \) to \(H_2 \).

If \(\varepsilon \) is a homotopy in \(B \), we define in the same way the homotopy between two trivializations of \((I \times I) \times \varepsilon X\).

These trivializations and their unicity up to homotopy allow us to use the properties of the product space, in particular the fact that
\[\pi_n(X \times Y) \simeq \pi_n(X) \times \pi_n(Y). \]
Let \(\gamma : x_0 \rightarrow x_1 \) be a path in \(B \), we set \(F_0 := p^{-1}(\gamma(0)) \) and \(F_1 := p^{-1}(\gamma(1)) \).

In what follows, to each trivialization of \(I \times \gamma X \) satisfying the condition [1], we associate a functor
\[\lim_{\longrightarrow} \quad \alpha \rightarrow \lim_{\longrightarrow} \quad \alpha, \]
\[\pi_2(F_0), \quad \pi_2(F_1) \]
and to each homotopy between two such trivializations we define a morphism
of functors between the functors :

\[
\begin{align*}
\varprojlim_{\Pi_2(F_0)} & \quad \varprojlim_{\Pi_2(F_1)} \\
\end{align*}
\]

Let \(h \) be a trivialization of \(I \times \gamma X \), we denote by \(\Gamma_h \) the composition \(\Gamma_h = p_2 \circ h \).
Hence the following diagram commutes

\[
\begin{array}{ccc}
I \times F_0 & \xrightarrow{\Gamma_h} & X \\
p_1 \downarrow & & \downarrow p \\
I & \xrightarrow{\gamma} & B.
\end{array}
\]

(3)

Let us remark that for all \(t \in I \), the application

\[
\Gamma_h(t, \cdot) : F_0 \longrightarrow F_t,
\]

\[
x \longmapsto \Gamma(t, x)
\]
is an isomorphism and for all \(x \in F_0 \), the application

\[
\Gamma_h(\cdot, x) : I \longrightarrow X,
\]

\[
t \longmapsto \Gamma_h(t, x)
\]
is a path from \(x \) to \(\Gamma(1, x) \).

Lemma 7. Let \(h \) be a trivialization of \(I \times \gamma X \). With the above notations, the data of:

- for every \(y \in F_1 \), the functors \(\alpha(\Gamma_h(\cdot, x)) \circ \pi_x \), where \(y = \Gamma_h(1, x) \),
- for every path \(\delta_1 : x_1 \rightarrow y_1 \) in \(F_1 \), the morphism of functors
 \((\text{Id} \circ \pi_{\delta_0}) \circ (\alpha(\Gamma_h \circ H_{\delta_1}) \circ \text{Id}) \)
 visualized by :

\[
\begin{array}{ccc}
\pi_x & \xrightarrow{\alpha} & \alpha(x_0) \\
\sim & \pi_{\delta_0} & \sim \\
\pi_y & \xrightarrow{\alpha} & \alpha(y_0)
\end{array}
\]

\[
\begin{array}{ccc}
\alpha(x) & \xrightarrow{\alpha(\Gamma_h(\cdot, x))} & \alpha(x_1) \\
\sim & \alpha(\Gamma_h(H_{\delta_1})) & \sim \\
\alpha(y) & \xrightarrow{\alpha(\Gamma_h(\cdot, y))} & \alpha(y_1)
\end{array}
\]

where :

- \(\pi_x, \pi_y \) and \(\pi_{\delta_0} \) are the functors and the isomorphisms of functors
given by the 2-limit,
- the path \(\delta_0 \), is the inverse image of \(\delta_1 \), by \(\Gamma_h(1, \cdot) \), i.e. \(\delta_1 = \Gamma_h(1, \delta_0) \),
In view of the commutation conditions satisfied by the functors define a functor, also denoted Γ_h,

\[\Gamma_h : 2 \lim_{\pi_2(F_0)} \alpha \rightarrow 2 \lim_{\pi_2(F_1)} \alpha. \]

Proof. We have to show that these data satisfy the commutation conditions. Let $\delta_1 : x_1 \rightarrow y_1$ and $\delta'_1 : y_1 \rightarrow z_1$ two composable paths in F_1. We denote by x_0, y_0 and z_0 the points of F_0 such that

\[x_1 = \Gamma(1, x_0), \quad y_1 = \Gamma(1, y_0), \quad z_1 = \Gamma(1, z_0) \]

and δ_0, δ'_0 the paths in F_0 such that:

\[\delta_1 = \Gamma(1, \delta_0), \quad \delta'_1 = \Gamma(1, \delta'_0). \]

In view of the commutation conditions satisfied by the functors π_x and the morphisms of functors π_3, we have to show that:

\[\alpha(\Gamma_h \circ H_{\delta_0, \delta'_0}) = \alpha\left((\Gamma_h \circ H_{\delta'_1}) \bullet Id \circ (Id \bullet (\Gamma_h \circ H_{\delta_1})) \right). \]

As α in a 2-representation of the 2-groupoid $\Pi_2(X)$ it is sufficient to show that there exists a homotopy from $\Gamma_h \circ H_{\delta_0, \delta'_0}$ to $(\Gamma_h \circ H_{\delta'_1}) \bullet Id \circ (Id \bullet (\Gamma_h \circ H_{\delta_1}))$. Let us first consider the two homotopies in $I \times X$, H_{δ_0, δ'_0} and $(H_{\delta'_1} \circ Id) \circ (Id \bullet H_{\delta_1})$, as $\pi_2(I \times X) \simeq \pi_2(I) \times \pi_2(F_0)$, there exists an homotopy between them. Applying Γ_h we find the homotopy we looked for.

We use the same arguments to show that if $\varepsilon : \delta \rightarrow \delta'$ is a homotopy in F_1 we have the equality:

\[\alpha(\varepsilon) \circ (Id \bullet \pi_3) \circ (\alpha(\Gamma_h \circ H_{\delta})) \bullet Id = (Id \bullet \pi_{3'}) \circ (\alpha(\Gamma_h \circ H_{\delta'}) \bullet Id). \]

Hence the data given in the statement of the lemma define a functor from $2 \lim_{\pi_2(F_0)} \alpha$ to $2 \lim_{\pi_2(F_1)} \alpha$.

Now let us consider two trivializations h_0 and h_1 of $I \times X$ satisfying the conditions $\|$ and $H : h_0 \rightarrow h_1$ a homotopy between them satisfying the conditions given in the lemma $\|$. We define an isomorphism of functors from Γ_{h_0} and Γ_{h_1}. In what follows, we set:

\[\Gamma_0 := \Gamma_{h_0} \quad \text{and} \quad \Gamma_1 := \Gamma_{h_1}. \]

Let $x_1 \in F_1$. We denote by x_0 and y_0 the points such that

\[\Gamma_0(1, x_0) = x_1 \quad \text{and} \quad \Gamma_1(1, y_0) = x_1. \]

Let us remark that the application

\[\beta_{x_1} : I \rightarrow F_0 \quad t \mapsto (\Gamma_1(1, \cdot))^{-1} \circ H(t, 1, x_0) \]
is a path in F_0 going from y_0 to x_0. Let us consider a map
\[\phi : I \times I \longrightarrow I \times I \]
\[
(t_1, t_2) \longmapsto \begin{cases}
(2t_2, 0) & \text{if } 0 \leq t_2 \leq \frac{t_1}{2} \\
(t_1, 2 - t_1 t_2 - \frac{t_1}{2}) & \text{if } \frac{t_1}{2} \leq t_2 \leq 1.
\end{cases}
\]
Then the composition, denoted H_{x_1}, of ϕ with the following map:
\[I \times I \longrightarrow X
(t_1, t_2) \longmapsto ((\Gamma_1(t_2, \cdot))^{-1} \circ H(t_1, t_2, x_0)
\]
is a homotopy from $\Gamma_0(\cdot, x_0) \wedge \beta x_1$ to $\Gamma_1(\cdot, y_0)$.

Lemma 8. With the above notation, the data for every $x_1 \in F_1$ of the suitable composition of isomorphisms visualized by the following diagram:

\[\begin{array}{c}
\alpha(x_0) \quad \alpha(\Gamma_0(\cdot, x_0)) \\
\pi_{x_0} \quad \alpha(x_1) \\
\ \\
\pi_{x_0} \quad \alpha(y_0) \quad \alpha(\Gamma_1(\cdot, y_0))
\end{array} \]

define an isomorphism of functors also denoted H:

\[\begin{array}{c}
2 \lim_{\prod_{2}(F_0)} \alpha \quad \Gamma_0 \quad \Gamma_1 \\
\ \\
2 \lim_{\prod_{2}(F_1)} \alpha
\end{array} \]

Proof. The proof uses the same arguments as the proof of lemma 7. Hence if δ is a path in F_1, using the facts that π_{β} satisfied commutation conditions, there exists of homotopy of homotopies

\[I \times I \times I : \longrightarrow X
(t_1, t_2, t_3) \longmapsto H(t_1, H_\delta(t_2, t_3))
\]
and the uniqueness up to homotopy of H_δ, we have that the data given in the lemma satisfy the commutations conditions and define an isomorphism from Γ_0 to Γ_1.

Let $\gamma_0, \gamma_1 : x_0 \rightarrow x_1$ be two paths in $B, \varepsilon : \gamma_0 \longrightarrow \gamma_1$ a homotopy in B and h_ε a trivialization of $(I \times I) \times_e X$. As above, we denote by Γ_ε the composition $p_2 \circ h_\varepsilon$. For $i = 0$ or $i = 1$, we set :

\[\Gamma_{\varepsilon i}(t, x) := \Gamma_\varepsilon(i, t, x). \]

We also denote by Γ_{e_1} the functor defined as in the lemma 7:

\[2 \lim_{\prod_{2}(F_0)} \alpha \longrightarrow 2 \lim_{\prod_{2}(F_1)} \alpha, \]

\[2 \lim_{\prod_{2}(F_i)} \alpha \longrightarrow \]

\[2 \lim_{\prod_{2}(F_{i+1})} \alpha, \]
Using the same process as in the lemma 8, we define an isomorphism Γ_ε:

$$
\begin{array}{c}
\xymatrix{
2 \lim_{\Pi_2(F_0)} \alpha \ar@{-}[r]_{\Gamma_\varepsilon} & 2 \lim_{\Pi_2(F_1)} \alpha.
}
\end{array}
$$

For the rest of this section, for all paths γ of B and for all homotopy ε of paths of B, we fix a trivialization h_γ of $I \times \gamma X$ and h_ε of $(I \times I) \times \varepsilon X$ satisfying the condition (1).

Let γ, γ' be two of composable paths in B, let $h_\gamma, h_{\gamma'}$ and $h_{\gamma \wedge \gamma'}$ the fixed trivializations of $I \times \gamma X$, $I \times \gamma' X$ and $I \times \gamma \wedge \gamma' X$ respectively.

Let us remark that the map $h_{\gamma \wedge \gamma'}$ is also a trivialization of $I \times \gamma \wedge \gamma' X$. Let us consider the homotopy from $h_{\gamma \wedge \gamma'}$ to $h_{\gamma} \wedge h_{\gamma'}$ defined in the lemma 6 and the isomorphism associated by the lemma 8. We denote by $H_{\gamma, \gamma'}$ the composition of the previous isomorphism with the isomorphism defined by the data of $\text{Id} \circ \alpha_{\gamma, \gamma'}$ for all $x \in F_1$. $H_{\gamma, \gamma'}$ is an isomorphism going from $\Gamma_{h_\gamma} \circ \Gamma_{h_{\gamma'}}$ to $\Gamma_{h_{\gamma \wedge \gamma'}}$.

We define the 2-functor p_* going from $\text{Rep}(\Pi_2(X), \text{CAT})$ to $\text{Rep}(\Pi_2(B), \text{CAT})$.

Definition 9. Let $\alpha \in \text{Rep}(\Pi_2(X), \text{CAT})$, we denote by $p_*(\alpha)$ the 2-functor from $\Pi_2(B)$ to CAT that associates:

- to every $b \in B$, the category :
 $$p_*(\alpha)(b) = 2 \lim_{\Pi_2(F_0)} \alpha,$$

- to every path $\gamma : b_0 \to b_1$ in B, the functor defined in the lemma 7 :
 $$p_*(\alpha)(\gamma) = \Gamma : 2 \lim_{\Pi_2(F_0)} \alpha \to 2 \lim_{\Pi_2(F_1)} \alpha,$$

- to every couple of composable paths γ, γ' in B, the isomorphism of functors $H_{\gamma, \gamma'}$:
 $$p_*(\alpha)_{\gamma, \gamma'} : 2 \lim_{\Pi_2(F_0)} \alpha \cong H_{\gamma, \gamma'} \cong 2 \lim_{\Pi_2(F_1)} \alpha,$$

- to every homotopy $\varepsilon : \gamma_0 \to \gamma_1$ in B, the composition :
 $$p_*(\varepsilon) : \Gamma_{\gamma_0} \xrightarrow{H_{\gamma_0}} \Gamma_{\varepsilon_0} \xrightarrow{\Gamma_{\varepsilon_1}} \Gamma_{\gamma_1} \xrightarrow{H_{\gamma_1}} \Gamma_{\gamma_1},$$

The unicity, up to homotopy, of the homotopies between two trivializations assures that these data satisfy the commutation conditions and define a 2-functor from $\Pi_2(X)$ to CAT. And, by the definition of the 2-limit, this map is 2-functorial. Hence we denote by p_* the 2-functor from $\text{Rep}(\Pi_2(X), \text{CAT})$ to $\text{Rep}(\Pi_2(B), \text{CAT})$ defined by these data.
Theorem 10. The following diagram commutes up to equivalence of 2-functors:

\[\mathcal{E}_X \xrightarrow{p_*} \mathcal{E}_B \]

\[2\text{Rep}(\Pi_2(X),\mathcal{C}\mathcal{T}) \xrightarrow{p_*} 2\text{Rep}(\Pi_2(B),\mathcal{C}\mathcal{T}). \]

Proof. Let \(\alpha \) be a 2-representation of \(\Pi_2(B) \) and \(\mathcal{C} \) the image of \(\alpha \) by \(\nu \).

- Let \(b \) a point of \(B \), we have:
 \[(p_*(\mathcal{C}))_b \simeq \Gamma(F_b, \mathcal{C}). \]

Let us recall that by definition \(\Gamma(F_b, \mathcal{C}) = \Gamma(F_b, i_{F_b}^{-1}\mathcal{C}) \), where \(i_{F_b} \) is the inclusion of \(F_b \) in \(X \). Thus, by the proposition 4 we have the natural equivalence:

\[(p_*(\mathcal{C}))_b \simeq 2\lim_{\longrightarrow} \alpha. \]

- Let \(\gamma : b_0 \to b_1 \) be a path in \(B \).

The proposition 4 assures that, for all \(x \in X \), there exists natural isomorphism:

\[\Gamma(X, \mathcal{C}_{F_b}) \xrightarrow{\sim} 2\lim_{\longrightarrow} \alpha \]

\[(\mathcal{C}_{F_b})_x \xrightarrow{\sim} \alpha(x). \]

Thus, to show that \(\nu(p_*\mathcal{C})(\gamma) \simeq p_*(\alpha)(\gamma) \), it is sufficient to show that the diagram commutes up to isomorphism:

\[\Gamma(X, \mathcal{C}_{F_b}) \xrightarrow{\mu(p_*(\mathcal{C}))} \Gamma(B \times F, \mathcal{C}_{F_1}) \]

\[\mathcal{C}_x \xrightarrow{\mu(\mathcal{C})(\Gamma(, x))} \mathcal{C}_y \]

where the two vertical functors are the natural restrictions.

Using the base-change theorem applied to the first diagram of 3, we show that, for all \(y \in F_1 \) there exists isomorphisms of functors visualized by:

\[(\gamma^{-1}p_*\mathcal{C})_0 \xrightarrow{\sim} \Gamma(I, \gamma^{-1}p_*\mathcal{C})_1 \xrightarrow{\sim} (\gamma^{-1}p_*\mathcal{C}) \]

\[\Gamma(\{0\} \times F_0, \Gamma^{-1}(\mathcal{C})) \xrightarrow{\sim} \Gamma(I \times F_0, \Gamma^{-1}(\mathcal{C})) \xrightarrow{\sim} \Gamma(\{1\} \times F_0, \Gamma^{-1}(\mathcal{C})) \]

\[\Gamma^{-1}(\mathcal{C})_x \xrightarrow{\sim} \Gamma(I \times \{y\}, \Gamma^{-1}(\mathcal{C})) \xrightarrow{\sim} \Gamma^{-1}(\mathcal{C})_y \]
where $y = \Gamma(1, x)$.
This shows the existence of the isomorphism we looked for.

\[\square \]

2 The 2-category of stacks on stratified spaces

Let (X, Σ) be a stratified space. It is a natural question to ask if a sheaf is entirely determined by its restrictions on the strata. In other words, if the category of sheaves on X is equivalent to the category whose objects are given by a sheaf on each stratum. The answer is no. To define a sheaf we need some extra data: the gluing data. These are a set of morphisms of sheaves satisfying commutation conditions.

The following section is a generalization of this problem in the case of stacks. Hence we define a 2-category whose objects are the data of a stack on each stratum plus some functors of stacks and morphisms of functors of stacks satisfying some commutation conditions and we show that this category is 2-equivalent to the 2-category of stacks on X.

Let $\mathcal{S}t_X$ be the 2-category of stacks on X. Let us denote S_k the union of the strata of dimension k and i_k the inclusion of S_k on X. If $k < l$ we denote by i_{kl} the 2-functor from $\mathcal{S}t_{\Sigma}$ to $\mathcal{S}t_{\Sigma}$, $i_{kl} = i_k^{-1}i_l$. Let us denote by η_l the 2-adjunction, $\eta_l : Id \rightarrow i_l i_l^{-1}$.

For source of simplicity, if $k < l < m$ we denote by η_l the 2-functor $Id \circ \eta_l \circ Id$ going from i_{km} to $i_{kl}i_{lm}$. Let us define the 2-category $\mathcal{S}t_{\Sigma}$.

Definition 11. Let $\mathcal{S}t_{\Sigma}$ be the 2-category defined as follows.

- The objects of $\mathcal{S}t_{\Sigma}$ are the data:
 - for every S_k, a stack \mathcal{C}_k on S_k,
 - for every pair (k, l) such that $0 \leq k < l \leq n$ (i.e. $S_k \subset S_l$), a functor of stacks:
 $$ F_{kl} : \mathcal{C}_k \rightarrow i_{kl}\mathcal{C}_l,$$
 - for every triple (k, l, m) such that $0 \leq k < l < m \leq n$ (i.e. $S_k \subset S_l \subset S_m$), an isomorphism of functors f_{klm} visualized by:

\[
\begin{array}{ccc}
\mathcal{C}_k & \xrightarrow{F_{kl}} & i_{kl}\mathcal{C}_l \\
\downarrow^{F_{mk}} \quad & & \quad \downarrow^{i_{kl}F_{ml}} \\
i_{km}\mathcal{C}_m & \xleftarrow{\sim} & i_{kl}i_{lm}\mathcal{C}_m
\end{array}
\]

such that the two suitable compositions of the morphisms given by the
faces of the following cube:

\[
\begin{array}{cccc}
E_k & F_{lk} & i_{kl}E_l & i_{kl}F_{ml} \\
F_{pk} & i_{km}E_m & i_{kl}i_{lm}E_m & \\
i_{kp}E_p & i_{km}i_{mp}E_p & i_{kl}i_{lm}i_{mp}E_p & \\
\eta & \eta & \eta & \\
\eta_m & \eta_m & \eta_m & \\
\eta & \eta & \eta & \\
\end{array}
\]

going from \(i_{kl}i_{lm}F_{pm} \circ i_{kl}F_{ml} \circ F_{lk}\) to \(i^{-1}_k \eta_l \circ i^{-1}_k \eta_{mp} \circ F_{pk}\) are equal. This means that the following diagram commutes:

\[
\begin{array}{cccc}
i_{kl}i_{lm}F_{pm} \circ i_{kl}F_{ml} \circ F_{lk} & i_{kl}i_{lm}F_{pm} \circ \eta \circ F_{mk} & \\
i_{kl}(i_{lm}F_{pm} \circ F_{ml}) \circ F_{lk} & i_{kl}(i_{lm}F_{pm} \circ F_{ml}) \circ F_{lk} & i_{kl}F_{pl} \circ F_{lk} \circ G_k & \\
i_{kl}(\eta_m \circ F_{pk}) \circ F_{lk} & \eta_l \circ i_{km}F_{pm} \circ F_{mk} & \eta_l \circ i_{km} \circ \eta_l \circ F_{pk} & \\
i_{kl} \eta_m \circ i_{kl}F_{pl} \circ F_{lk} & i_{kl} \eta_m \circ i_{kl}F_{pl} \circ F_{lk} & i_{kl} \eta_m \circ i_{kl}F_{pl} \circ F_{lk} & \\
\eta \circ \eta \circ F_{pk} & \eta \circ \eta \circ F_{pk} & \eta \circ \eta \circ F_{pk} & \\
\end{array}
\]

• The 1-morphisms from \(\{E_k\}, \{F_{kl}\}, \{f_{klm}\}\) to \(\{E'_k\}, \{F'_{kl}\}, \{f'_{klm}\}\) are given by:
 - for every \(k \in \{0, \ldots, n\}\), a functor of stacks \(G_k : E_k \to E'_k\),
 - for every \(k, l\) such that \(0 \leq k < l \leq n\), an isomorphism of functors:
 \(g_{kl} : F'_{lk} \circ G_k \cong i_{kl}G_l \circ F_{lk}\),

such that the following diagram commutes:

\[
\begin{array}{cccc}
i_{kl}F'_{ml} \circ F'_{lk} \circ G_k & i_{kl}F'_{ml} \circ i_{kl}G_l \circ F'_{lk} & \\
f_{mlk} \circ \eta & i_{kl}g_{m} \circ \eta & i_{kl}g_{m} \circ \eta & \\
\eta \circ F'_{mk} \circ G_k & \eta \circ i_{km} \circ G_m \circ F_{mk} & \eta \circ i_{km} \circ G_m \circ F_{mk} & \\
\end{array}
\]
• the 2-morphisms from the 1-morphism \(\{ \{ G_k \}, \{ g_{kl} \} \} \) to the 1-morphism \(\{ \{ G'_k \}, \{ g'_{kl} \} \} \) are the data for all \(0 \leq k \leq n \) of a morphism of functors of stacks \(\phi_k : G_k \to G'_k \), such that the following diagram commutes:

\[
\begin{array}{ccc}
F'_{kl} \circ G_k & \xrightarrow{g_{kl}} & i_k \circ F_{lk} \\
\text{Id} \circ \phi_k & \downarrow & i_k \circ \phi_k \circ \text{Id} \\
F'_{kl} \circ G'_k & \xrightarrow{g'_{kl}} & i_k \circ F'_{lk}
\end{array}
\]

Hence the objects of this 2-category are the data of a stack on each stratum plus some gluing data: the functors of stacks and isomorphisms of functors.

To show that \(\mathfrak{S}_\Sigma \) is 2-equivalent to \(\mathfrak{S}_X \) we define two 2-functors quasi-2-inverse to each other: \(R_\Sigma \) the “restriction functor” going from \(\mathfrak{S}_X \) to \(\mathfrak{S}_\Sigma \), and \(G_\Sigma \) the “gluing functor” from \(\mathfrak{S}_\Sigma \) to \(\mathfrak{S}_X \). The functor \(R_\Sigma \) is defined thanks to the restriction and the 2-adjunction between the 2-functors \(i_k \) and \(i_k^{-1} \).

Definition 12. Let \(R_\Sigma \) be the 2-functor going from \(\mathfrak{S}_X \) to \(\mathfrak{S}_\Sigma \) which associates to each stack on \(X \) the set of its restrictions to each stratum, its adjunction functors and isomorphisms:

\[
R_\Sigma : \mathfrak{S}_X \longrightarrow \mathfrak{S}_\Sigma
\]

\[
G : \mathcal{C} \longrightarrow \mathcal{C}' \quad \longrightarrow \quad \{ \{ C \} |_{S_k} \}_{k \leq n}, \{ i^{-1}_k \eta \}_{k \leq l \leq n}, \{ \lambda_{mk} \}_{k \leq l \leq m \leq n}
\]

\[
\phi : G \longrightarrow G' \quad \quad \quad \quad \longrightarrow \quad \{ \{ \phi \} |_{S_k} \}_{k \leq n}
\]

where \(\eta \) is the natural functor

\[
\eta : \mathcal{C} \longrightarrow i_l i^{-1}_l \mathcal{C},
\]

\(\lambda_{mk} \) are the natural isomorphisms:

\[
\begin{array}{ccc}
\mathcal{C} |_{S_k} & \xrightarrow{\sim} & (i_l i^{-1}_l \mathcal{C}) |_{S_k} \\
\downarrow & \downarrow \lambda_{mk} & \downarrow \\
(i_m i^{-1}_m \mathcal{C}) |_{S_k} & \xrightarrow{i^{-1}_k \eta} & (i_l i_m i^{-1}_m \mathcal{C}) |_{S_k}
\end{array}
\]

and \(g_{kl} \) are the isomorphisms coming from the fact that \(\eta \) is a 2-transformation:

\[
\begin{array}{ccc}
\mathcal{C} |_{S_k} & \xrightarrow{G |_{S_k}} & \mathcal{C}' |_{S_k} \\
\downarrow i^{-1}_k \eta & \xleftarrow{\sim} & \downarrow i^{-1}_k \eta' \\
(i_l i^{-1}_l \mathcal{C}) |_{S_k} & \xrightarrow{g_{kl}} & (i_l i^{-1}_l \mathcal{C}'') |_{S_k}
\end{array}
\]

15
As these data come from the adjunction, the commutation conditions are satisfied and the image of $R_{S\Sigma}$ belongs to $\mathcal{G}_{S\Sigma}$.

Let us define $G_{S\Sigma}$. The definition of $G_{S\Sigma}$ is inspired by the demonstration of the basic property of gluing stacks on an open covering. Hence the image by $G_{S\Sigma}$ of an object \mathcal{E} of $\mathcal{G}_{S\Sigma}$ is a 2-limit of $i_{k*}\mathcal{E}_k$, where the 2-limit encode the gluing data. That is why we define a category I and, for all object \mathcal{E} of $\mathcal{G}_{S\Sigma}$, a 2-functor from I to $\mathcal{G}t_{S\Sigma}$.

Definition 13. Let I be the category defined as follows.

- Objects of I are the singletons $\{j\}$ with $0 \leq j \leq n$, the couples (j, k) such that $0 \leq j < k \leq n$ and the triple (j, k, l) such that $0 \leq j < k < l \leq n$.

- Morphisms of I are the data for all objects of I of:

$$\text{Hom}(i, i) = \{\text{Id}_i\}$$

$$\text{Hom}(i, j) = \{s_{jk}^i\}$$

$$\text{Hom}(i, k, l) = \{s_{kl}^{ij}\}$$

Let $\mathcal{E} = \{(\mathcal{E}_k), (F_{kl}), (f_{klm})\}$ be an object of $\mathcal{G}_{S\Sigma}$, we also denote \mathcal{E} the 2-functor going from I to $\mathcal{G}t_{S\Sigma}$:

$$\mathcal{E} : I \rightarrow \mathcal{G}t_{S\Sigma}$$

defined as follows:

- For every objects $\{k\}, \{(k, l)\}$ and $\{(k, l, m)\}$ of I:

$$\mathcal{E}(j) = i_{jk}\mathcal{E}_j$$

$$\mathcal{E}(j, k) = i_{jk}i_{jk}\mathcal{E}_k$$

$$\mathcal{E}(j, k, l) = i_{jk}i_{jk}i_{kl}\mathcal{E}_l$$

- The images of the morphisms are defined as follows:

 - for every $s_{jk}^i : (j, k) \rightarrow \{j\}$ such that $j < k : \mathcal{E}(s_{jk}^i) = i_{jk}F_{kj}$,

 - for every $s_{kl}^{ij} : (j, k, l) \rightarrow (j, l) : \mathcal{E}(s_{kl}^{ij}) = \eta_{lk} : i_{jkl}\mathcal{E}_l \rightarrow i_{jkl}F_{kl}$.

- If a is an object of I the 2-morphism $\mathcal{E}_a : Id_{\mathcal{G}t_{\Sigma}(a)} \rightarrow \mathcal{E}(Id_a)$ is the identity.

- If s and s' are two composable morphisms of I, let us define the 2-morphism $\mathcal{E}_{s, s'}$:

$$\mathcal{E}_{s, s'} : \mathcal{E}(s \circ s') \xrightarrow{\sim} \mathcal{E}(s) \circ \mathcal{E}(s')$$

The only two couples of composable morphisms are (s_{jk}^{ik}, s_{jk}^j) and $(s_{kl}^{ij}, s_{kl}^{ij})$. We define $\mathcal{E}_{s_{jk}^{ik}, s_{jk}^j}$ and $\mathcal{E}_{s_{kl}^{ij}, s_{kl}^{ij}}$ as

$$\mathcal{E}_{s_{jk}^{ik}, s_{jk}^j} = f_{ikj}, \quad \mathcal{E}_{s_{kl}^{ij}, s_{kl}^{ij}} = \text{Id}$$
We define the image of \(C \) by \(G \Sigma \) by the 2-limit:

\[
G \Sigma (C) := 2 \lim_{\leftarrow} I C
\]

If \(G = (\{G_k\}, \{g_{kl}\}) : C \to C' \) is a 1-morphism of \(\Sigma \), the commutation conditions satisfied by \(g_{kl} \) assure that we can define a functor from the 2-functor \(C \) to \(C' \). Taking the 2-limit we define a functor \(G \) from \(2 \lim_{\leftarrow} I C \) to \(2 \lim_{\leftarrow} I C' \).

In the same way, if \(\phi = \{\phi_k\} : G \to G' \) is a 2-morphism of \(\Sigma \), we can define a morphism between the functors \(G \) and \(G' \). That is the image of \(\phi \) by \(G \Sigma \).

Now let us consider the 2-category \(\mathcal{F}(I, \mathcal{S}_{\Sigma}) \) of 2-functors from \(I \) to \(\mathcal{S}_{\Sigma} \). Taking the 2-limit can be viewed as a 2-functor from \(\mathcal{F}(I, \mathcal{S}_{\Sigma}) \) to \(\mathcal{S}_{\Sigma} \), for a demonstration see for example [16]. Hence we can define the 2-functor \(G \Sigma \).

Definition 14. Let \(G \Sigma \) be the 2-functor going from \(\Sigma \) to \(\mathcal{S}_{\Sigma} \) defined by:

\[
G \Sigma : \Sigma \longrightarrow \mathcal{S}_{\Sigma}
\]

\[
\mathcal{C} = (\{C_k\}, \{F_{kl}\}, \{f_{klm}\}) \longrightarrow 2 \lim_{\leftarrow} \mathcal{C}
\]

\[
G : \mathcal{C} \to \mathcal{C}' \quad \longrightarrow \quad 2 \lim_{\leftarrow} \mathcal{C} \xrightarrow{G} 2 \lim_{\leftarrow} \mathcal{C}'
\]

\[
\phi : G \to G' \quad \longrightarrow \quad 2 \lim_{\leftarrow} \mathcal{C} \xrightarrow{\phi} 2 \lim_{\leftarrow} \mathcal{C}'
\]

Remarks

- We can define explicitly the stack image of an object of \(\Sigma \). If \(U \) is an open of \(X \) and \(\mathcal{C} = (\{C_k\}, \{F_{kl}\}, \{f_{klm}\}) \) an object of \(\Sigma \) is given by:

\[
G \Sigma (\mathcal{C})(U) = (\{S_k\}, \{g_{kl}\})
\]

where \(S_k \in C_k(U \cap S_k) \) and \(g_{kl} \) is an isomorphism from \(F_{kl}(S_k) \) to \(\eta_{kl}(S_l) \).

- The commutation conditions satisfied by the objects, the 1-morphisms and the 2-morphisms of \(\Sigma \) are not necessary to define the functor \(G \Sigma \). But without them \(G \Sigma \) is not an equivalence.

Theorem 15. The categories \(\mathcal{S}_{\Sigma} \) and \(\mathcal{S}_{\Sigma} \) are 2-equivalent and the functors \(R \Sigma \) and \(G \Sigma \) are quasi-2-inverse.

Proof. Let us define two equivalences of 2-functors

\[
R \Sigma G \Sigma \longrightarrow Id
\]

\[
Id \longrightarrow G \Sigma R \Sigma.
\]

We only define the functor on the objects of the 2-category, but, as we only use 2-functor and projection of the 2-limit to define them, and thanks to the commutations conditions, it is straightforward to show that these applications are 2-functorial.
Let us give some notations. For a morphism \(s : a \to b \) of \(\mathcal{I} \), we denote by \(\pi_a \) and \(p_s \) the projections and the equivalence of functors given by the 2-limit :

\[
\begin{array}{ccc}
\pi_a & \sim & \pi_b \\
\downarrow & & \downarrow \\
\mathcal{C}(a) & \xrightarrow{\varepsilon(s)} & \mathcal{C}(b)
\end{array}
\]

Let \(j \) be an integer smaller than \(n \). We also denote \(\pi_a \) and \(p_s \), projections and equivalence given by the 2-limit \(2 \lim_{a \in \mathcal{I}} i_{j-1}^{-1} \mathcal{C}(a) \).

As \(i_j \) is an inclusion, the following 2-natural transform is an equivalence:

\[
\varepsilon_j : i_{j-1}^{-1} \xrightarrow{\varepsilon_j} \mathcal{C}(a) \xrightarrow{\varepsilon_j \circ (\varepsilon_j)^{-1}} \mathcal{C}(a) \xrightarrow{\varepsilon_j} \mathcal{C}(j)
\]

Let \(\Psi_j \) denote the functor defined by

\[
\Psi_j : 2 \lim_{a \in \mathcal{I}} i_{j-1}^{-1} \mathcal{C}(a) \xrightarrow{\pi_j} i_{j-1}^{-1} \mathcal{C}(j) \xrightarrow{\varepsilon_j} \mathcal{C}(j)
\]

This functor and its inverse is essential in the definition of the equivalence between \(\text{Id} \) and \(G_{\Sigma} R_{\Sigma} \).

Lemma 16. The functor \(\Psi_j : 2 \lim_{a \in \mathcal{I}} i_{j-1}^{-1} \mathcal{C}(a) \to \mathcal{C}(j) \) is an equivalence.

Proof. Let us define \(\Phi_j \), an inverse of \(\Psi_j \).

As we want to define a functor going to a 2-limit, it is sufficient to give for all \(a \) object of \(\mathcal{I} \), a functor \(\Phi_j : \mathcal{C}(j) \to \mathcal{C}(a) \) and for all \(s : a \to b \) morphism of \(\mathcal{I} \) an equivalence \(h_j^s \) of functors:

\[
\begin{array}{ccc}
\mathcal{C}(a) & \xrightarrow{\Phi_j} & \mathcal{C}(j) \\
\downarrow & \sim & \downarrow \\
\mathcal{C}(b) & \xrightarrow{\Phi_j} & \mathcal{C}(a)
\end{array}
\]

satisfying some commutation conditions. Let us first remark that for \(j > k \) and \(k < l < m \) we have:

\[
\begin{align*}
i_{j-1}^{-1} \mathcal{C}(k) &= 0 \\
i_{j-1}^{-1} \mathcal{C}(k, l) &= 0 \\
i_{j-1}^{-1} \mathcal{C}(k, l, m) &= 0.
\end{align*}
\]

Hence we need to define a family of functors for all \(j \leq k < l < m \):
• let us recall that $i_j^{-1}C(j) = i_j^{-1}i_jC_j$, we define Φ_j^j by :
\[
\Phi_j^j = (\varepsilon_j)^{-1}
\]

• for $j < k$ we have $C(k) = i_{jk}C_k$, we define Φ_j^k by
\[
\Phi_j^k = F_{kj}
\]

• for $j \leq k < l$ we have $i_j^{-1}C(k, l) = i_{jk}i_{kl}C_l$, we define $\Phi_j^{(k,l)}$ by the composition :
\[
\Phi_j^{(k,l)} = \eta_k \circ F_{lj}
\]
visualized by :
\[
\Phi_j^{(k,l)} : C_j \xrightarrow{F_{lj}} i_{jl}C_l \xrightarrow{\eta_k} i_{jk}i_{kl}C_l
\]

• for $j \leq k < l < m$, we have $i_j^{-1}C(k, l, m) = i_{jk}i_{kl}i_{lm}C_m$, we define $\Phi_j^{(k,l,m)}$ by the composition :
\[
\Phi_j^{(k,l,m)} = \eta_l \circ \eta_k \circ F_{mj}
\]
visualized by :
\[
\Phi_j^{(k,l,m)} : C_j \xrightarrow{F_{mj}} i_{jm}C_m \xrightarrow{\eta_l} i_{jk}i_{km}C_m \xrightarrow{\eta_k} i_{jk}i_{kl}i_{lm}C_m.
\]

Now let us define the isomorphisms h_s^j,

• for $s = s_{kl}^j : (k, l) \rightarrow l$ we define h_s^j by :
\[
h_s^j = \Id
\]

• for $s = s_{kl}^k : (k, l) \rightarrow k$ with $j < k$ we define h_s^j by :
\[
h_s^j = \theta_{kl}
\]

• let us consider the morphism $s = s_j^k : (j, k) \rightarrow j$, the morphism h_s^j is going from $i_j^{-1}i_jF_{kj} \circ \varepsilon_j^{-1}$ to $\eta_j \circ F_{kj} :
\[
h_s^j : i_j^{-1}i_jF_{kj} \circ \varepsilon_j^{-1} \xrightarrow{\sim} \eta_j \circ F_{kj}
\]

As ε_j comes from a natural 2-transform, there exists an isomorphism $\theta_j : F_{kj} \circ \varepsilon_j \xrightarrow{\sim} \varepsilon_j \circ (i_j^{-1}i_jF_{kj}) :
\[
\xymatrix{
C_j \ar[r]^{\varepsilon_j} \ar[d]_{F_{kj}} & i_j^{-1}i_jC_j \ar[d]_{\theta_j} \\
i_{jk}C_k \ar[r]_{\varepsilon_j} & i_j^{-1}i_{jk}C_k.
}\]

Hence we have the isomorphism :
\[
\eta_j \circ F_{kj} \circ \varepsilon_j \circ (\varepsilon_j)^{-1} \xrightarrow{\Id \bullet \theta_j \bullet \Id} \eta_j \circ \varepsilon_j \circ i_j^{-1}F_{kj} \circ (\varepsilon_j)^{-1}.
\]

Now, η_j is a left quasi-inverse of ε_j, let us denote n_j the isomorphism :
\[
n_j : \eta_k \circ \varepsilon_j \longrightarrow \Id
\]
In the same way let us recall that the isomorphism e_j goes from $\varepsilon_j \circ (\varepsilon_j)^{-1}$ to Id. We define h^s_j by:

$$h^s_j = \eta_j \circ (I_{\varepsilon_j})_\eta_j \bullet \theta_j \bullet I_{(\varepsilon_j)^{-1}} \circ e_j$$

• for $s = s^klm$, we define h^s_j by the identity,

• let us consider the morphism $s^klm : (k, l, m) \rightarrow (k, l)$, the morphism h^s_j is going from the composition $(i_jk \circ \eta_{klm} \circ F_{ml}) \circ \eta_j \circ F_{lj} \sim \eta_j \circ \eta_k \circ F_{mj}$:

$$h^s_j : (i_jk \circ \eta_{klm} \circ F_{ml}) \circ \eta_j \circ F_{lj} \sim \eta_j \circ \eta_k \circ F_{mj}.$$

But, by definition of θ_{jlm} and as η_{kl} comes from a 2-adjunction, we have the two following isomorphisms:

Then, h^s_j is defined by a the correct composition of these two isomorphisms.

Thanks to the commutation conditions and as the morphisms of adjunction satisfy good conditions of commutation, these functors and isomorphisms of functors satisfy the condition to define a functor coming from \mathcal{C}_j to $\text{2 lim}_{i \leftarrow j} \mathcal{C}(a)$, let us denote this functor Φ_j:

$$\Phi_j : \mathcal{C}_j \longrightarrow \text{2 lim}_{i \leftarrow j} \mathcal{C}(a)$$

and for every objects a of \mathcal{J}, let us denote φ^a_j the isomorphism:

$$\varphi^a_j : \pi_a \circ \Phi_j \sim \Phi^a_j.$$

Moreover, the definition of this functor is 2-functorial. This is comes from the fact that the conditions to be an 1-morphism in the 2-category \mathcal{S}_Σ and the fact that the 2-limit can be viewed as a 2-functor coming from the 2-functor going from \mathcal{J} to \mathcal{S}_Σ.

It remains to show that Φ_j is a quasi-inverse of Ψ_j. The easiest part is to show that $\Psi_j \circ \Phi_j$ is isomorphic to the identity. We have by definition:

$$\Psi_j \circ \Phi_j = \varepsilon_j \circ \pi_j \circ \Phi_j \sim \varepsilon_j \circ (\varepsilon_j)^{-1} \sim \varepsilon_j \rightarrow Id.$$

Hence the composition $\varepsilon_j \circ (I_{\varepsilon_j} \bullet \varphi^1_j)$ is an isomorphism between $\Psi_j \circ \Phi_j$ and Id.

20
Let us show that $\Phi_j \circ \Psi_j$ is isomorphic to the identity. To show that, it is sufficient to show that for every object a of \mathcal{I} there exists compatible morphisms l^a_j:

$$l^a_j : \pi_a \circ \Phi_j \circ \Psi_j \sim \pi_a.$$

Let $\{k\}$ be an object of \mathcal{I}, by definition of Φ_j we have the following isomorphism:

$$\varphi_k^j : \pi_k \circ \Phi_j \sim F_{mj},$$

then let us consider the following isomorphism:

$$\varphi_k^j \bullet I_{\Psi_j} : \pi_k \circ \Phi_j \circ \Psi_j \sim F_{mj} \circ \Psi_j$$

(4)

where I_{Ψ_j} is the morphism identity of Ψ_j.

Then we have the following isomorphisms:

Let us recall that p_{jk} is the isomorphism coming from the 2-limit, the equality is given by the definition of Ψ_j and the two others isomorphisms come from the 2-adjunction. Hence, by composing the morphism above, we can define an isomorphism between $F_{mj} \circ \Psi_j$ and π_m:

$$F_{mj} \circ \Psi_j \sim \pi_m.$$

(5)

We define l^k_j by the vertical composition of the isomorphisms (4) and (5).

Let (k, l) and (k, l, m) be two objects of \mathcal{I}, the 2-limit give us these isomorphisms:

![Diagram](https://via.placeholder.com/150)
Hence by composing horizontally \(\pi_{lm}\) with the identity of \(\Phi_j\) and \(\Psi_j\) we obtain:

\[
\pi_{lm} \circ \Phi_j \circ \Psi_j \sim \pi_{lm}^{-1} \eta_{lm} \circ \pi_m \circ \Phi_j \circ \Psi_j.
\] (6)

In the same way, by composing horizontally the identity morphism of \(\eta_l\) and the isomorphism \(l_{jm}^{kl}\) we obtain the isomorphism:

\[
i_{jk}^{-1} \eta_{lm} \circ \pi_m \circ \Phi_j \circ \Psi_j \sim \pi_{lm}^{-1} \eta_{lm} \circ \pi_m
\] (7)

We define \(l_{klm}^{kl}\) as the vertical composition of the isomorphism (3), (4) and the inverse of \(p_{lm}\). The isomorphism \(l_{klm}^{kl}\) is defined in the same way.

The 2-functorial feature of the isomorphisms of adjunction and the compatibility of the isomorphisms of projection assure that the commutation conditions are satisfied. Hence, they define an isomorphisms of functors:

\[
l_j : \Phi_j \circ \Psi_j \sim \operatorname{Id}.
\]

Let us come back to the theorem 15 and let us define an equivalence of 2-functors:

\[
\operatorname{Id} \sim R \Sigma \circ G \Sigma.
\]

We are going to define this equivalence only on objects. The natural feature of the equivalences considered, and the conditions to be an object, a 1-morphism or a 2-morphism of \(\mathcal{S}_{\Sigma}\), assure that the map that we are going to define can be extended in a natural 2-transform between the 2-functors \(\operatorname{Id} \circ R \Sigma \circ G \Sigma\).

Let \(\mathcal{C} = \{\{C_k\}, \{F_{kl}\}, \{f_{klm}\}\}\) be an object of \(\mathcal{S}_{\Sigma}\). We need to define, for all \(j \leq n\), a natural equivalence

\[
\alpha_j : C_j \sim i_{jk}^{-1} \lim_i C(a)
\]

such that there exists for all \(j < k \leq n\) an isomorphism:

The finite 2-limits commute up to isomorphism with the inductive 2-colimits. It is a particular case of a theorem shown in [5], for an immediate proof see [8]. Hence the 2-functors \(i_k^{-1}\) and \(i_k\) commute up to equivalence with the finite 2-limits. Hence we have the following natural equivalences:

\[
2 \lim_i i_j^{-1} C(a) \sim i_j^{-1} 2 \lim_i C(a)
\]

\[
2 \lim_i i_{jk}^{-1} C(a) \sim i_{jk}^{-1} 2 \lim_i C(a)
\]
and the isomorphism:

\[
\begin{array}{c}
2 \lim_{\sim} i_j^{-1} \mathcal{C}(a) \\
\downarrow i_j^{-1} 2 \lim \eta_k \\
\downarrow i_{jk}^{-1} 2 \lim \eta_k \\
\downarrow \sim c \\
i_{jk}^{-1} 2 \lim \mathcal{C}(a).
\end{array}
\]

We define \(\alpha_j \) by the composition:

\[
\alpha_j : \mathcal{C}_j \xrightarrow{\Phi_j} 2 \lim_{\sim} i_j^{-1} \mathcal{C}(a) \xrightarrow{\sim} i_j^{-1} 2 \lim \mathcal{C}(a)
\]

It remains to define a natural equivalence:

\[
\begin{array}{c}
\mathcal{C}_j \\
\downarrow F_{kj} \\
\downarrow \sim \Phi_k \\
\downarrow \sim \epsilon_k \\
i_{jk}^{-1} \mathcal{C}(a) \\
\downarrow 2 \lim_{\sim} \eta_k \\
\downarrow 2 \lim_{\sim} i_{jk}^{-1} \mathcal{C}(a).
\end{array}
\]

As \(\Psi_k \) is a quasi-inverse of \(\Phi_k \) it is sufficient to define an isomorphism between the functors:

\[
i_{jk} \Psi_j \circ i_j^{-1} \eta_k \circ \Phi_j \xrightarrow{\sim} F_{kj}.
\]

Now, we have the following isomorphisms:

\[
\begin{array}{c}
\mathcal{C}_j \\
\downarrow F_{kj} \\
\downarrow \Phi_j \\
\downarrow \epsilon_k \\
i_{jk} \mathcal{C}_k \\
\downarrow i_{jk} \Psi_k \\
\downarrow \sim \epsilon_k \\
i_{jk}^{-1} \mathcal{C}(a) \\
\downarrow i_{jk}^{-1} \mathcal{C}(k) \\
\downarrow \sim \pi_k \\
i_{jk} \mathcal{C}_k.
\end{array}
\]

The two isomorphisms of triangle are given by the definition of \(\Phi_j \) and \(\Psi_k \). The isomorphism of the top is given by the 2-limit and the last one is a horizontal composition of the identity and the isomorphism given by the 2-adjunction:

\[
i_j^{-1} \eta_k \circ i_{jk} \epsilon_k \simeq Id.
\]
The suitable composition of these isomorphisms gives the isomorphism looked for. Hence we have defined an isomorphism from \mathcal{C} to $\Sigma G \circ \Sigma R$. This isomorphism is 2-functorial and this shows that Id is equivalent to $\Sigma G \circ \Sigma R$.

Let us define an isomorphism β from Id to $G \circ \Sigma R$. Let G be a stack on X. Let us recall that from the definition of ΣR we have:

$$\Sigma R(G) = (\{i_k^{-1} \eta_l\}, \{i_k^{-1} \eta_l \}, \{\lambda_{klm}\})$$

where η_l is the natural functor:

$$\eta_l : G \longrightarrow i_k i_l^{-1}G$$

and λ_{klm} is the natural isomorphism:

![Diagram]

Let us consider the family of functors $\{ \Xi_a \}_{a \in \mathcal{I}}$:

- for every $k \leq n$, the functor Ξ_k is defined by:
 $$\Xi_k = \eta_k$$

- for every pair (k, l) with $k < l \leq n$ let us define $\Xi_{(k, l)}$ by:
 $$\Xi_{(k, l)} : G \xrightarrow{\eta_k} i_k i_k^{-1}G \xrightarrow{i_k^{-1} \eta_k} i_k i_l^{-1}G$$

- for every triple (k, l, m) such that $k < l < m \leq n$, $\Xi_{(k, l, m)}$ is defined by:
 $$G \xrightarrow{\eta_k} i_k i_k^{-1}G \xrightarrow{i_k^{-1} \eta_k} i_k i_l^{-1}G \xrightarrow{i_k i_l^{-1} \eta_m} i_k i_l i_l^{-1}G$$

and the family of isomorphisms of functors $\{ \xi_s \}_{s \in \text{Mor}(\mathcal{I})}$:

- for the morphisms $(k, l) \rightarrow k$ and $(k, l, m) \rightarrow (k, l)$ the isomorphism ξ_s is the identity.

- for the morphism $(k, l) \rightarrow l$ the isomorphism ξ_s is the morphism λ_{kl}:

![Diagram]
for the morphism \((k, l, m) \rightarrow (k, m)\) the functor \(\xi\) is defined by the horizontal composition of the identity, the morphism \(\eta_k\) and the isomorphism \(\lambda_{k lm}\).

These families satisfy the compatibility relations. Hence these data define a morphism \(\Xi: G \rightarrow R \circ G(\mathcal{G})\)

and for all object \(a\) of \(\mathcal{G}\) a unique isomorphism \(\xi_a: \Xi \circ \pi_a \sim \Xi_a\)

But the restriction to each stratum is an equivalence. This shows that \(\Xi\) is an equivalence of functor.

3 Constructible stacks

In this section we consider the 2-category, \(\mathcal{S}t\Sigma\), of constructible stacks relatively to a fixed stratification \(\Sigma\). This notion was introduced by D. Treumann in [20]. It is a natural generalization of the notion of constructible sheaf.

Definition 17. A stack on \(X\) is called constructible relatively to \(\Sigma\) if its restrictions to each stratum is locally constant. We denote by \(\mathcal{S}t\Sigma\) the thick sub-2-category of \(\mathcal{S}tX\) whose objects are locally constant stacks.

An important example of constructible stack is the stack of perverse sheaves.

The aim of this section is to describe the 2-category \(\mathcal{S}t\Sigma\) in the language of 2-representations. Here we need to consider more particular stratified spaces: the Thom-Mather spaces relatively 2-connected. A Thom-Mather space \((X, \Sigma)\) is given, for all strata \(\Sigma_k\), with a tubular neighborhood \(T_k\), a locally trivial fiber bundle \(p_k: T_k \rightarrow \Sigma_k\), and a continuous map \(\rho_k\) from \(T_k\) to \(\mathbb{R}^+\), named distance map, such that \(\Sigma_k = \rho_k^{-1}(0)\).

Let us recall that if \(\Sigma_k \subset \Sigma_l\), then we have the equality:

\[pk \circ pl \mid T_k \cap T_l = pk \mid T_k \cap T_l. \]

Let us denote by \(i_k\) the natural inclusion of the stratum \(\Sigma_k\) in \(X\). If \(\Sigma_k \subset \Sigma_l \subset \Sigma_m \subset \Sigma_p\) and if \(i_{k,l}, i_{k,lm}, i_{k,lm,p}\) are the inclusions:

\[i_{l,k}: \Sigma_l \cap T_k \hookrightarrow \Sigma_l, \quad i_{m,lk}: \Sigma_m \cap T_l \cap T_k \hookrightarrow \Sigma_m, \quad i_{p,milk}: \Sigma_p \cap T_m \cap T_l \cap T_k \hookrightarrow \Sigma_p, \]

we denote by \(p_{k,l}, p_{k,lm}, p_{k,lm,p}\), the 2-functors:

\[
\begin{align*}
 p_{k,l} &= p_k \circ i_{l,k}^{-1} : \mathcal{L}_{\Sigma_l} \longrightarrow \mathcal{L}_{\Sigma_k} \\
 p_{k,lm} &= p_k \circ i_{m,lk}^{-1} : \mathcal{L}_{\Sigma_m} \longrightarrow \mathcal{L}_{\Sigma_k} \\
 p_{k,lm,p} &= p_k \circ i_{p,milk}^{-1} : \mathcal{L}_{\Sigma_p} \longrightarrow \mathcal{L}_{\Sigma_k}
\end{align*}
\]
If we denote by $j_{m,lk}$ the inclusion of $\Sigma_m \cap T_l \cap T_k$ in $\Sigma_m \cap T_k$ and η_l the 2-adjunction from Id to $j_{m,lk}^{-1}j_{m,lk}$, we have that $Id_{p_{k,m}} \bullet \eta \bullet Id_{j_{m,lk}}^{-1}$ is going from $p_{k,m}$ to $p_{k,lm}$, we also denote it η_l.

$\eta_l : p_{k,m} \longrightarrow p_{k,lm}$

With another harmless abuse of notation we denote by η_l the natural transformation from $p_{k,mp}$ to $p_{k,mp}$ defined with the adjunction.

Let \mathcal{C} be a constructible stack relatively to Σ, by definition, $R_\Sigma(\mathcal{C})$ is the data of locally constant stacks on each stratum plus the gluing conditions. As we have seen in the first section, a locally constant stack is nothing but a 2-representation. Hence it remains to express the gluing conditions in terms of 2-representations. The first thing to do is to verify that the image of a locally constant stack through the functor $i_{k,l}^{-1}i_{l,m}$ is still a locally constant stack. Then we have to express this functor in term of 2-representations. In order to do this, we show (corollary 21) the equivalence of the 2-functors $i_{k,l}$ and $p_{k,l}$ restricted to the 2-category $\mathcal{H}\Sigma_\Sigma$. Finally, the translation of the 2-functors $i_{k,l}$ and $p_{k,l}$ in the language of 2-representations that we have done in the first section allows us to define a combinatoric 2-category 2-equivalent to the 2-category of constructible stacks.

To do this, the base-change theorem showed by D. Treumann in [20] and the following lemma are very convenient.

Lemma 18. Let Y be a topological space, V be an open of X and F be a subset of X. we denote by i_V, i_F, j_V and j_F the following inclusions:

\[
\begin{array}{c}
V' \downarrow i_V \downarrow Y \\
\downarrow j_V \downarrow V' \cap F' \\
F' \downarrow j_F \downarrow V \\
\end{array}
\]

Then the base-change map :

\[
i_{V}^{-1}i_{F} \sim j_{F}j_{V}^{-1}
\]

is an equivalence.

Proof. It is sufficient to see that the base-change map is an equivalence on the stalks.

Lemma 19. Let Σ_k, Σ_l, Σ_m and Σ_p be four strata such that $\Sigma_k \subset \Sigma_l \subset \Sigma_m \subset \Sigma_p$. There exists natural equivalences of 2-functors :

\[
p_{k,l} \circ p_{l,m} \sim p_{k,lm} \\
p_{k,l} \circ p_{l,mp} \sim p_{k,lm} \\
p_{k,lm} \circ p_{m,p} \sim p_{k,lm}.
\]
Proof. Considering the following commutative diagram:

\[
\begin{array}{ccc}
\Sigma_p \cap T_m \cap T_l \cap T_k & \xrightarrow{p_m} & \Sigma_p \cap T_m \cap T_k \\
\Sigma_m \cap T_l \cap T_k & \xrightarrow{p_l} & \Sigma_m \\
\Sigma_l \cap T_k & \xrightarrow{p_k} & \Sigma_k \\
\end{array}
\]

and as \(p_k \circ p_l |_{T_k \cap T_l} = p_k |_{T_k \cap T_l} \), the lemma is a direct application of the lemma \[13\].

Proposition 20. Let \(\Sigma_k \) be a stratum and \(T_k \) be the tubular neighborhood, the 2-functor \(p_{k*} \), restricted to the 2-category, \(\mathbf{G}_2 \), of constructible stacks on \(T_k \), goes to the 2-category \(\Sigma_{\Sigma_k} \). Moreover \(p_{k*} \) is equivalent to the 2-functor \(i_k^{-1} \).

Proof. Let us consider the 2-natural functor \(\eta_k \) given by the 2-adjunction:

\[
\eta_k : p_{k*} \Rightarrow p_{k*} i_{k*} i_k^{-1}.
\]

By definition of a Thom-Mather space \(p_k \circ i_k = Id \), thus \(p_{k*} i_{k*} i_k^{-1} \) is naturally isomorphic to \(i_k^{-1} \). Hence, there exists a natural functor from \(p_{k*} \) to \(i_k^{-1} \). Let \(\mathcal{C} \) be a constructible stack on \(T_k \), let us show that the functor applied to \(\mathcal{C} \) is an equivalence on its stalks. Let \(x \in \Sigma_k \). We denote by \(F_k \) the set \(p_k^{-1}(x) \) and \(F_{k\varepsilon} = F_k \cap \rho_k^{-1} ([0, \varepsilon]) \). The family \(U \times F_{k\varepsilon} \) is a base of neighborhoods at \(x \), hence we have the equivalences:

\[
\begin{align*}
(p_{k*}\mathcal{C})_x & \simeq 2 \lim_{x \in U \subseteq \Sigma_k} \Gamma(U \times F_k, \mathcal{C}) \\
(i_k^{-1}\mathcal{C})_x & \simeq 2 \lim_{x \in U \subseteq \Sigma_k} 2 \lim_{\varepsilon > 0} \Gamma(U \times F_{k\varepsilon}, \mathcal{C})
\end{align*}
\]

Now, the inclusion \(U \times F_{k\varepsilon} \hookrightarrow U \times F_k \) is a stratified homotopy equivalence. As \(\mathcal{C} \) is a constructible stack, this is shown, by proposition 3.13 of [20], that the 2-limit \(\lim_{\varepsilon \geq 0} \Gamma(U \times F_{k\varepsilon}, \mathcal{C}) \) is constant an equal to \(\Gamma(U \times F_k, \mathcal{C}) \).

Corollary 21. Let \(\Sigma_k, \Sigma_l, \Sigma_m \) and \(\Sigma_p \) be four strata such that \(\Sigma_k \subset \Sigma_l \subset \Sigma_m \subset \Sigma_p \), the 2-functors \(p_{k,l}, p_{k,m}, p_{k,mp} \) are respectively equivalent to the 2-functors \(i_{k,l}, i_{k,m}, i_{k,mp} \). Moreover, there exists isomorphisms of functors:

\[
\begin{array}{ccc}
i_k & p_{k,l} & i_{k,l} \\
i_k & p_{k,m} & i_{k,m} \\
i_k & p_{k,mp} & i_{k,mp}
\end{array}
\]
such that the two suitable compositions of the isomorphisms given by the faces of this cube are equal:

\[
\begin{array}{c}
\alpha_k \\
\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \\
\alpha_{kl} \\
\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \\
\alpha_{klm}
\end{array}
\]

Proof. Let us consider the following commutative diagram:

\[
\begin{array}{c}
\Sigma_k \\
\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \\
T_k \\
\downarrow \quad \downarrow \quad \downarrow \\
X
\end{array}
\]

The composition of the base-change map with the equivalence defined in the proposition 20 is an equivalence from \(i_{kl} \) to \(p_{k,l} \).

To define the other equivalences we proceed in the same way.

The existence of the isomorphisms of functors and their commutations is assured by the fact that the functors \(\eta_l : i_{km} \to i_{klm} \) and \(\eta_l : p_{k,m} \to p_{k,lm} \) are defined using the 2-adjunction and by the fact that the base-change map is 2-functorial.

Definition 22. Let us denote by \(\mathbb{S}_\Sigma \) the 2-category defined as follows.

- The objects are the data:
 - for every \(\Sigma_k \), a representation, \(\alpha_k \), of \(\Pi_2(\Sigma_k) \),
 - for every pair \((\Sigma_k, \Sigma_l) \) such that \(\Sigma_k \subset \Sigma_l \) a functor, \(F_{kl} : \Sigma_k \to \Sigma_l \),
 - for every triple \((\Sigma_k, \Sigma_l, \Sigma_m) \) such that \(\Sigma_k \subset \Sigma_l \subset \Sigma_m \), an isomorphism of functor \(f_{klm} \) visualized by:

\[
\begin{array}{c}
\alpha_k \\
\downarrow \quad \downarrow \quad \downarrow \\
\alpha_{kl} \\
\downarrow \quad \downarrow \quad \downarrow \\
\alpha_{klm}
\end{array}
\]

\[
\begin{array}{c}
\eta_m \\
\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \\
\eta_{klm} \\
\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \\
\eta_{k,lm}
\end{array}
\]

\[
\begin{array}{c}
p_{k,m}(\alpha_m) \\
\downarrow \quad \downarrow \quad \downarrow \\
p_{k,lm}(\alpha_m)
\end{array}
\]

28
such that the following diagram commutes:

\[\begin{array}{c}
p_{k,lm}(F_{pm}) \circ p_{k,l}(F_{ml}) \circ F_{lk} \\
\xrightarrow{\text{Id} \cdot f_{k,lm}} \\
p_{k,lm}(F_{pm}) \circ F_{lk} \\
\xrightarrow{(p_k)_* f_{mp} \cdot \text{Id} f_{lk}} \\
p_{k,l}(\eta_m \circ F_{pk}) \circ F_{lk} \\
\xrightarrow{\text{Id} \cdot f_{lp}} \\
p_{k,l}(\eta_m) \circ p_{k,l}(F_{pl}) \circ F_{lk} \\
\xrightarrow{\text{Id} \cdot f_{km}} \\
p_{k,l}(\eta_m) \circ \eta_l \circ F_{pk} \\
\end{array} \]

- The 1-morphisms from \((\{\alpha_k\}, \{F_{kl}\}, \{f_{klm}\}) \) to \((\{\alpha'_k\}, \{F'_{kl}\}, \{f'_{klm}\}) \) are the data:
 - for every stratum \(\Sigma_k \), a functor \(G_k : \alpha_k \to \alpha'_k \),
 - for every pair \((k, l) \) such that \(0 \leq k < l \leq n \), an isomorphism of functors:
 \[g_{kl} : F'_{lk} \circ G_k \sim p_{k,l}G_l \circ F_{lk} \]
such that the following diagram commutes:

\[\begin{array}{c}
p_{k,l}F'_{ml} \circ F'_{lk} \circ G_k \\
\xrightarrow{\text{Id} \cdot g_{lk}} \\
p_{k,l}F'_{ml} \circ p_{k,l}G_l \circ F_{lk} \\
\xrightarrow{\text{Id} \cdot f_{ml}} \\
\eta_l \circ F'_{mk} \circ G_k \\
\xrightarrow{\text{Id} \cdot g_{mk}} \\
\eta_l \circ p_{k,m}G_m \circ F_{mk} \\
\xrightarrow{\text{Id} \cdot f_{mk}} \\
p_{k,l}G_m \circ \eta_l \circ F_{mk} \\
\end{array} \]

- The 2-morphisms from the 1-morphism \((G_k, \{g_{kl}\}) \) to the 1-morphism \((G'_k, \{g'_{kl}\}) \) are the data for every \(0 \leq k \leq n \) of a morphism of functors of stacks \(\phi_k : G_k \to G'_k \), such that the following diagram commutes:

\[\begin{array}{c}
F'_{kl} \circ G_k \\
\xrightarrow{\text{Id} \cdot \phi_k} \\
F'_{kl} \circ G'_k \\
\xrightarrow{\text{Id} \cdot \phi_{kl}} \\
\xrightarrow{g_{kl}} \\
p_{k,l}G_l \circ F_{lk} \\
\xrightarrow{\text{Id} \cdot \phi_{l}} \\
p_{k,l}G'_l \circ F_{lk} \\
\end{array} \]
Theorem 23. The 2-category, \mathcal{S}_{Σ}^c of constructible stacks relatively to Σ is equivalent to the 2-category \mathcal{S}_{Σ}^c.

Proof. Let us denote by \mathcal{S} the image of the 2-category of constructible stacks relatively to the stratification Σ trough R_{Σ}. Using the corollary ??, and because of the definition of a constructible stacks relatively to Σ, it is easy to show that these 2-category, \mathcal{S}, is equivalent to the 2-category whose objects are the data of a family $(\mathcal{L}_j, \{L_{jk}\}\{l_{jkm}\})$, where \mathcal{L}_j is a locally constant stack on Σ_j, L_{jk} is a morphism of locally constant stacks $L_{jk} : L_j \to p_{j,k}L_k$ and l_{jkm} is an isomorphism of functors:

$$
\begin{array}{ccc}
\mathcal{L}_j & \xrightarrow{L_{jk}} & p_{j,k}(\alpha_l) \\
\downarrow & & \downarrow p_{j,k}(\phi_{mk}) \\
L_{jm} & \xleftarrow{\eta_k} & p_{j,m}(\mathcal{L}_m)
\end{array}
$$

satisfying the same commutation conditions as in the definition of \mathcal{S}_{Σ} and where the 1-morphisms the 2-morphisms are defined in the same way as in the definition of \mathcal{S}_{Σ}.

Now, applying the 2-monodromy to each locally constant stack, and thank to the theorem 10, we show that the 2-category \mathcal{S} is equivalent to \mathcal{S}_{Σ}^c. □

References

[1] M. Artin, A. Grothendieck, and J. L. Verdier. Sga4, 1963/64. Springer Lectures Notes, 270, 1972.

[2] A. Beilinson, J. Bernstein, and P. Deligne. Faisceaux pervers. Astérisque, 100, 1982.

[3] F. Borceux. Handbook of Categorical Algebra 1, Basic Category Theorie. S Cambridge Univ. Press Encycl. of Math. and Its Appl, 1994.

[4] L. Breen. On the classification of 2-gerbes and 2-stacks. Astérisque, 25, 1994.

[5] E. Dubuc and Street R. A construction of 2-filtered bicolimits of categories. Cah. Topol. Géom. Différ. Catég., 46:83–98, 2005.

[6] D. Dupont. Exemples de classifications du champ des faisceaux pervers. PhD thesis, 2008.

[7] D. Dupont. Faisceaux pervers sur les variétés toriques lisses. http://arxiv.org/abs/1003.3199 2009.

[8] D. Dupont. Interchange of filtered 2-colimits and finite 2-limits. http://arxiv.org/abs/0904.1553 2009.

[9] A. Galligo, M. Granger, and Ph. Maisonobe. \mathcal{D}-modules et faisceaux pervers dont le support singulier est un croisement normal. Ann. Inst. Fourier (Grenoble), 1985.
[10] J. Gray. Formal category theory: adjointness for 2-categories. *Lectures
notes in Mathematics*, 391, 1974.

[11] A. Grothendieck. Pursing stacks. *Unpublished manuscript*.

[12] S. Mac Lane. *Categories for the working mathematician. Second edition.*
Graduate Texts in Mathematics, 5. Springer-Verlag, 1998.

[13] R. MacPherson and K. Vilonen. Elementary construction of perverse sheaves. *Invent. Math.*, 84:403–435, 1986.

[14] J. Mather. Stratifications and mappings, dynamical systems. *Academic Press*, pages 195–232, 1973.

[15] P. Polesello and I. Waschkies. Higher monodromy. *Homology Homotopy Appl.*, 7:109–150, 2005.

[16] R. Street. Categorical structures. *Handbook of algebra*, 1:529–577, 1996.

[17] R. Thom. Ensembles et morphismes stratifiés. *Bull. Am. Math. Soc.*, 75:240–284, 1969.

[18] B. Toen. Vers une interprétation galoisienne de la théorie de l’homotopie. *Cahiers de Top. et Geom. Diff. Cat.*, XLIII-4:257–312, 2002.

[19] D. Treumann. Stacks similar to the stack of perverse sheaves. http://arxiv.org/pdf/0801.3016, 2008.

[20] D. Treumann. Exit paths and constructible stacks. *Compos. Math.*, 145:1504–1532, 2009.

[21] I. Waschkies. The stack of microlocal perverse sheaves. *Bull. Soc. Math. France* 132, 3:397–462, 2004.

[22] J. Woolf. The fundamental category of a stratified space. http://arxiv.org/abs/0811.2580, 2009.