CARER: Contextualized Affect Representations for Emotion Recognition

Elvis Saravia, Hsien-Chi Toby Liu, Yen-Hao Huang, Junlin Wu, Yi-Shin Chen

Latinx in AI Coalition @ NeurIPS, Montreal, Canada, 2018
National Tsing Hua University, Taiwan
Emotion Analysis

Task: To detect the fine-grained emotions expressed in textual information.

Challenge: Emotions are communicated using a variety of linguistic phenomena due to social and cultural differences: slang, emoticons, abbreviations, etc.

Thanks God for everything #safe

Tnx mom for waaaaking me two hours early. Can’t fall asleep now #angry
Discovering Emotional Language

Due to linguistic variability, we need a robust method that properly models and captures both contextual and implicit emotional information.

"Thanks God for everything"

"thanks goodness for a great team .. ”

"thanks fro all the continued support and prayers gotta keep working hard!!”

"Thanks for all the tweets… onto the next path now.”

"Thanks mom for waaaking me two hours early. Can’t get asleep now.”

"thanks dad i can always count on u to mess up my day”
Graph-Based Pattern Extraction

Subjective tweets

Objective tweets

Graph Aggregation

Graph Analysis

Subject Words (SW)

Connector Words (CW)

Pattern Extraction

Saravia et al., 2016
Are Graph-Based Emotion Patterns Enough?

Joy Pattern: “thanks *”

“Thanks God for everything”
“thanks goodness for a great team .. ”

“thanks fro all the continued support and prayers gotta keep working hard!!”
“Thanks for all the tweets… onto the next path now.”

“Thanks mom for waaaaking me two hours early. Can’t get asleep now.”
“thanks dad i can always count on u to mess up my day”

Wildcards (i.e., *) are helpful for preserving structure and generalizing but cannot preserve semantic relationships
Objectives

- Build an automatic graph-based algorithm for **emotion-relevant feature extraction**
- Construct **contextualized representations that preserve semantic relationships**
- Analyse model for **robustness and explainability** given the proposed representations
Methodology

➔ Building Syntactic Patterns
➔ Contextualizing Patterns
➔ Representation Learning
Step 1: Cluster Word Embeddings

Goal:
- Model words using Word2Vec
- Cluster words based on similarity measure
- Antonyms are close due to similar context

So its **badness** would be …
would its **goodness** be revealed…
… about the **badness** of human.
Goodness of a human …

Mikolov et al., 2013
Step 2: Update Word Embeddings

Pretrained Word2Vec Embeddings

- god
- goodness
- lord
- heavens
- anyone
- your
- ur
- you
- dad
- mom
- mum
- daddy

Sentiment Updated Word2Vec

- bad
- badness
- goodness
- heaven
- lord
- gooodness
- heavens
- you
- ur
- your
- anyone
- dad
- mom
- mum

Sentiment Task

Deriu et al., 2016

Sentiment-labelled Tweets

Pretrained Word2Vec Embeddings

Update trainable embedding vectors

Positive / Negative

CARER: Contextualized Affect Representations for Emotion Recognition
Step 3: Preserving semantic relationship

Pattern	Text	Contextualized Pattern
thanks *	“thanks god”	thanks C#58
	“Thanks goodness”	thanks C#58
	“Thanks goooodness”	thanks C#58
	“thanks your”	thanks C#90
	“thanks mom”	thanks C#28
	“thanks mum”	thanks C#28

CARER: Contextualized Affect Representations for Emotion Recognition
Input: Contextualized Patterns

“Thanks mom for waaaaking me two hours early. Can’t…”

Input Matrix	anger	anticipation	disgust	fear	joy	sadness	surprise	trust
thanks C#28								
C#28 for								
for C#775								
me C#1201								
C#1201 hours								
...								
<empty>								

Zero padding

Assume a convolution layer with window size of 3

CARER: Contextualized Affect Representations for Emotion Recognition

12
CNN-Based Emotion Recognition Model

- CNN-based (multilayer)
- Zero padding
- Pattern scores as embedding vectors
- Two filter sizes for features with different length

Emotion Dataset

Contextualized Patterns

Embedding

Filter Size = 3

Conv

Conv

Filter Size = 16

Conv

Conv

Flatten

Dense_512

Dense_128

Softmax

8 Emotions

CARER: Contextualized Affect Representations for Emotion Recognition
Experiments

Emotion Recognition for English Short Texts
Experimental Setup: Dataset

- Crawl English tweets
 - Annotated via distant supervision
 - Total 339 hashtags corresponding to the eight emotions

- Refining process (Abdul et al., 2017)
 - 0.66M tweets in total

Emotion	Amount	Hashtags
sadness	214,454	#depressed, #grief
joy	167,027	#fun, #joy
fear	102,460	#fear, #worried
anger	102,289	#mad, #pissed
surprise	46,101	#strange, #surprise
trust	19,222	#hope, #secure
disgust	8,934	#awful, #eww
anticipation	3,975	#pumped, #ready
Experimental Results: 8 Emotions Task

Model	Feature	anger	anticipation	disgust	fear	joy	sadness	surprise	trust	F1-avg
Traditional Methods										
BoW	word freq.	0.53	0.08	0.17	0.53	0.71	0.60	0.36	0.33	0.57
N-gram	word freq.	0.56	0.09	0.17	0.57	0.73	0.64	0.42	0.39	0.61
char	char. freq.	0.35	0.03	0.04	0.20	0.51	0.46	0.10	0.12	0.37
Lexica-based										
LIWC	affect lexicons	0.35	0.03	0.11	0.30	0.49	0.35	0.18	0.19	0.35
State-of-the-Art Methods										
CNN_{sw2v}	s-word embed.	0.57	0.10	0.15	0.63	0.75	0.64	0.61	0.70	0.65
EmoNet	word embed.	0.36	0.00	0.00	0.46	0.69	0.61	0.13	0.25	0.52
FastText	word embed.	0.57	0.01	0.01	0.65	0.77	0.71	0.50	0.54	0.66
DeepMoji	word embed.	0.60	0.00	0.03	0.49	0.75	0.67	0.20	0.27	0.59
Baseline and our work										
CNN_{EP}	EmoPattern‡	0.65	0.10	0.22	0.64	0.73	0.56	0.15	0.08	0.52
CARER₈	cont. patt.‡	0.61	0.31	0.34	0.67	0.75	0.68	0.60	0.55	0.67
CARER	cont. patt.	0.74	0.41	0.43	0.79	0.83	0.82	0.76	0.75	0.79

Note: CARER uses a recent dataset and fewer pattern templates (details in paper)
Emotion Recognition (8 emotions)

Method	F1-score
CARER β	67%
CARER	79%
DeepMoji	59%
ELMo	62%
FastText	66%
ELMo + DeepMoji	76%
What’s Captured by CARER?

Our proposed method can grasp emotional cues in cases of *short text*, *rare words* and *mixed emotions*

Case	Document	Label	DeepMoji	EmoNet	CARER	Contextualized Pattern
Short text	damn what a **night**	joy	surprise	sadness	joy	what a **{night, day, rush, pass}**
Rare words	got **thee** worst sleep ever	anger	sadness	sadness	anger	got **{thee, madd, thatt, bacc}**
Mixed emotions	what the h**k** is **going** on !?	fear	anger	sadness	fear	is **{going, ends, finishes}**
Conclusion

- We proposed **contextualized affect representations** for improving emotion recognition.
- In the future, we anticipate a comprehensive study of how contextualized patterns can be adapted to other **emotion-related tasks**.
Elvis Saravia, Carlos Argueta, and Yi-Shin Chen. "Unsupervised graph-based pattern extraction for multilingual emotion classification." Social Network Analysis and Mining, 2016.

J. Deriu, et al. “Swisscheese at semeval-2016 task 4: Sentiment classification using an ensemble of convolutional neural networks with distant supervision.” Procs. of SemEval, 2016.

Abdul-Mageed, et al., "Emonet: Fine-grained emotion detection with gated recurrent neural networks." Procs. of ACL, 2007.

Felbo, Bjarke, et al. "Using millions of emoji occurrences to learn any-domain representations for detecting sentiment, emotion and sarcasm." arXiv preprint arXiv:1708.00524, 2017.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching word vectors with subword information. Transactions of the Association for Computational Linguistics, 2017.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. “Efficient estimation of word representations in vector space.” arXiv preprint arXiv:1301.3781, 2013