Intramolecular Interactions That Induce Helical Rearrangement upon Rhodopsin Activation

LIGHT-INDUCED STRUCTURAL CHANGES IN METARHODOPSIN II_a PROBED BY CYSTEINE S-H STRETCHING VIBRATIONS

Received for publication, October 29, 2013, and in revised form, March 21, 2014. Published, JBC Papers in Press, April 1, 2014, DOI 10.1074/jbc.M113.527606

Yoichi Yamazaki¹§, Tomoko Nagata¹, Akihisa Terakita⁴, Hideki Kandori¹‖, Yoshinori Shichida¹, and Yasushi Imamoto¹†§

From the †Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan, the ‡Graduate School of Materials Science, Nara Institute of Science and Technology, Nara, 630-0192, Japan, the §Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan, and the ‖Materials, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan

Background: Identification of the intramolecular interactions in metarhodopsin II_a is essential for understanding the activation mechanism of rhodopsin.

Results: Environmental changes around the chromophore, Ala-164, His-211, and Phe-261 were observed by probing with cysteine S-H vibrations.

Conclusion: The interactions involving these residues are altered before the helical rearrangements.

Significance: The intramolecular interactions by which rhodopsin adopts the transducin-activating conformation are shown.

Rhodopsin undergoes rearrangements of its transmembrane helices after photon absorption to transfer a light signal to the G-protein transducin. To investigate the mechanism by which rhodopsin adopts the transducin-activating conformation, the local environmental changes in the transmembrane region were probed using the cysteine S-H group, whose stretching frequency is well isolated from the other protein vibrational modes. The S-H stretching modes of cysteine residues introduced into Helix III, which contains several key residues for the modes. The S-H stretching modes of cysteine residues introduced into Helix III, which contains several key residues for the helical movements, and of native cysteine residues were measured by Fourier transform infrared spectroscopy. This method was applied to metarhodopsin II_a, a precursor of the transducin-activating state in which the intramolecular interactions are likely to produce a state ready for helical movements. No environmental change was observed near the ionic lock between Arg-135 in Helix III and Glu-247 in Helix VI that maintains the inactive conformation. Rather, the cysteine residues that showed environmental changes were located around the chromophore, Ala-164, His-211, and Phe-261. These findings imply that the hydrogen bond between Helix III and Helix V involving Glu-122 and His-211 and the hydrophobic packing between Helix III and Helix VI involving Gly-121, Leu-125, Phe-261, and Trp-265 are altered before the helical rearrangement leading toward the active conformation.

G-protein-coupled receptors (GPCRs)² are activated in response to various kinds of stimuli and in turn activate cognate

G-proteins. GPCRs have common structural motifs consisting of seven transmembrane helices (1–3). Ligands bind to the extracellular surface of a GPCR and activate it. The activation occurs via rearrangements of transmembrane helices (4–6) that are likely to be common among GPCRs (7). Thus, the ligand-induced changes in the intramolecular interactions that induce helical rearrangement should be clarified to understand the mechanisms of activation of GPCRs.

Many GPCRs have been identified, but rhodopsin, which absorbs photons in rod photoreceptor cells, is biochemically, structurally, and physicochemically the best characterized. Rhodopsin consists of a protein moiety called opsin and an 11-cis-retinal chromophore that absorbs a photon. The chromophore is covalently bound to a Lys residue in Helix VII of opsin through a Schiff base linkage. Photoisomerization of the chromophore initiates conformational changes of opsin, leading to the formation of several intermediate states. Among these states, metarhodopsin II (Meta-II) is thought to activate the G-protein transducin (Gt).

Meta-II has an absorption spectrum in the near-UV region, unlike the dark state or the other intermediates. This is mainly because the Schiff base linkage between opsin and chromophore is deprotonated in Meta-II. Meta-II is activated via the significant rearrangement of the transmembrane helices (4–6), as confirmed by the crystal structure of the complex of Meta-II and C-terminal peptide of Gt (8–10). Meta-II forms a pH- and temperature-dependent equilibrium with its precursor metarhodopsin I (Meta-I) (11–14). Recent extensive studies on metarhodopsins have demonstrated that Meta-II is the equilibrium mixture composed of several species (Scheme 1) (14–18). Meta-I is in pH-independent thermal equilibrium with Meta-II_a and Meta-II_b. Although both Meta-II_a and Meta-II_b have a deprotonated Schiff base, Meta-II_a displays only minor helical rearrangements. This

Intramolecular Interaction in Metarhodopsin II a

mixture is in pH-dependent equilibrium with Meta-II H, which binds to and activates Gt.

The intramolecular interactions in rhodopsin are altered essentially by the proton movement from the protonated Schiff base to the counterion (Glu-113). Although the helical arrangement of Meta-II is comparable with those of the dark state or its precursors, the intramolecular interactions in Meta-II should be altered, and these alterations should readily induce significant helical rearrangements. Thus, identification of the intramolecular interactions in Meta-II is essential for understanding the mechanism by which photoactivated rhodopsin adopts the active conformation (18).

In the present study, using Fourier transform infrared (FTIR) spectroscopy (19), we detected the structural changes in the transmembrane region by monitoring changes in the S-H stretching vibration of the cysteine residues present in native rhodopsin or of cysteine residues systematically introduced into the transmembrane region. There are some advantages of using cysteine as a probe. First, depending on the environment, the cysteine S-H stretching frequency is in the 2580–2525 cm⁻¹ region, which is well separated from vibrations of the other groups present in protein (20–23). Thus, changes of the environment of the cysteine can be probed without interference from other vibrational modes. Second, cysteine can be accommodated in the transmembrane region because of its relatively small and hydrophobic nature. Third, cysteine residues are introduced using a well-established point mutation technique, which is simpler than the recently developed method using a non-natural amino acid, p-azido-L-phenylalanine (24).

We have developed this method for mapping the amino acid residues that undergo environmental changes (cysteine scanning) and applied it to bathorhodopsin, whose high resolution crystal structure is available (23). It was confirmed that cysteine residues introduced near the chromophore showed a clear shift focusing on S-H groups suggested the possible cleavage of the disulfide bond formed by these residues (21). In addition, 6 of 10 native cysteine residues have free S-H groups and were replaced with serine (C140S, C167S, C185S, C222S, C264S, and C316S). We also prepared a double mutant, C110A/C187A, because a previous FTIR study focusing on S-H groups suggested the possible cleavage of the disulfide bond formed by these residues (21). In addition, 15 cysteine-introduced mutants at positions 117, 118, and 122–137 were prepared to probe the environmental changes along Helix III. We first examined the effects of these replacements of the native cysteine residues and introductions of cysteine residues.

All of these mutants were reconstituted into pigments with 11-cis-retinal. In addition, difference FTIR spectra between these mutants and their bathorhodopsin are comparable with that of wild type (23). These findings indicate that the overall structure of rhodopsin is little perturbed by these mutations. Absorption maxima (λ max) of mutants and optical purity indexes (ratio of absorbance at 280 nm to absorbance at λ max) of the samples are listed in Table 1. Whereas the absorption maxima of most mutants were similar to that of the wild type (499 nm), mutations near the chromophore caused relatively large
blue shifts of the absorption maxima (A117C, T118C, and W126C). However, the difference FTIR spectra for bathorhodopsin of these mutants agreed with those of wild-type except for the chromophore bands, indicating that the perturbation of these mutations is limited to the vicinity of the chromophore (23).

In some samples, the optical purity index was >3, indicating that a significant amount of opsin and/or other proteins was present in the sample. However, because the difference FTIR spectra before and after visible light irradiation were measured in the following experiments, the proteins that are not photoactive (e.g. opsin) should not contribute to the FTIR spectra.

Formation of Metarhodopsin IIa in Hydrated Phosphatidylcholine Liposomes

- Meta-IIa is the intermediate state in which the chromophore Schiff base is deprotonated but the helical arrangement is similar to that of Meta-I (15, 17, 18, 32). In native rod outer segment (ROS) membrane, small amount of Meta-IIa is in equilibrium with Meta-I and Meta-IIb (Scheme 1). It has been reported that the amount of Meta-IIa in the equilibrium is increased in 1,2-dioleoyl-sn-glycero-3-phosphocholine membranes (18), and Meta-IIa in the equilibrium with significant amounts of Meta-I and Meta-IIb has been partially characterized by FTIR spectroscopy (18).

- In the course of characterization of Meta-II by FTIR, we found that a difference FTIR spectrum whose characteristics agree with those of the Meta-IIa/Rho spectrum is obtained by irradiation of rhodopsin in a hydrated film sample at 280 K, which was prepared by drying rhodopsin in PC liposomes suspended in the phosphate buffer at pH 5.7 followed by hydration by $\sim 1 \mu\text{l}$ of H$_2$O (Fig. 2). Although Meta-IIa is favored at higher

TABLE 1

Absorption maxima and optical purity indexes of recombinant rhodopsin mutants

Mutant	λ_{max} a	Optical purity b	Mutant	λ_{max} a	Optical purity
Wild type	499	1.8	A124C	499 (0)	2.2
C140S	499 (0)	2.9	L125C	501 (+2)	1.8
C167S	497 (–2)	3.3	W126C	484 (–15)	2.8
C185S	501 (+2)	2.5	SI27C	497 (–2)	2.0
C222S	500 (+1)	1.8	L128C	500 (+1)	1.9
C264S	500 (+2)	2.0	V129C	500 (+1)	2.2
C316S	500 (+1)	2.0	V130C	501 (+2)	2.0
C110A/C187A	497 (–2)	3.7	L131C	500 (+1)	2.1
A117C	488 (–11)	NDd	A132C	498 (–1)	2.1
T118C	484 (–15)	NDd	I133C	498 (–1)	2.0
E122C	496 (–3)	2.1	E134C	500 (+1)	2.3
I123C	500 (+1)	1.9			

a Absorption maximum in the visible region.

b Ratio of absorbance at 280 nm to absorbance at λ_{max}.

c Difference from wild-type is shown in parentheses.

d ND, not determined.
pH, this product is trapped at acidic pH, and is likely to be in the protonated form (Meta-IIaH$^-$/H$^{+}$) (see below). This putative Meta-IIaH$^-$/H$^{+}$/Rho spectrum is shown in Fig. 2 in comparison with Meta-I/Rho and Meta-IIbH$^-$/H$^{+}$/Rho spectra. The Meta-I/Rho spectrum has an amide-I band at 1635 cm$^{-1}$, whereas the Meta-IIbH$^-$/H$^{+}$/Rho spectrum has one at 1644 cm$^{-1}$. Because the Meta-IIaH$^-$/H$^{+}$/Rho spectrum has 1645 and 1635 cm$^{-1}$ bands, it appears to be a mixture of Meta-I/Rho and Meta-IIbH$^-$/H$^{+}$/Rho spectra. In fact, synthetic spectra composed of 80% Meta-I/Rho and 20% Meta-IIbH$^-$/H$^{+}$/Rho spectra showed comparable intensities of the 1645 and 1635 cm$^{-1}$ bands (Fig. 3). However, the 949 cm$^{-1}$ band typical of the Meta-I/Rho spectrum (33, 34) disappeared in the Meta-IIaH$^-$/H$^{+}$/Rho spectrum, indicating that the Meta-IIaH$^-$/H$^{+}$/Rho spectrum cannot be generated by a linear combination of Meta-I/Rho and Meta-IIbH$^-$/H$^{+}$/Rho spectra. These findings confirm that the Meta-IIaH$^-$/H$^{+}$/Rho spectrum obtained in the present condition is the difference FTIR spectrum between isolated Meta-IIaH$^-$/H$^{+}$ and rhodopsin.

It should be noted that the irradiation of native rhodopsin in the hydrated film of ROS in this condition generated a Meta-IIbH$^-$/H$^{+}$/Rho spectrum, unlike the spectrum obtained in PC liposomes (Fig. 3). When the hydration level was reduced, a Meta-I-like photoproduct was produced in ROS membrane. Thus, the stabilization of Meta-IIa in our experimental condition is likely to be caused by PC.

Characteristics of Meta-IIaH$^-$/H$^{+}$ — The small amide-I band in the Meta-IIaH$^-$/H$^{+}$/Rho spectrum indicates that Meta-IIaH$^-$/H$^{+}$ undergoes small conformational change. The positive 1712 cm$^{-1}$ band shows the protonation of Glu-113 in Meta-IIaH$^-$/H$^{+}$ (35). Asp-83 and Glu-122 show 1748/1769 cm$^{-1}$ and 1745/1728 cm$^{-1}$ bands, respectively, in the Meta-IIbH$^-$/H$^{+}$/Rho spectrum (36). Similar bands for Asp-83 and Glu-122 are observed in the Meta-IIaH$^-$/H$^{+}$/Rho spectrum. However, the weak intensity of the positive 1748 cm$^{-1}$ band would result from the reduced 1745/1728 cm$^{-1}$ bands of Glu-122. These characteristics of the Meta-IIaH$^-$/H$^{+}$/Rho spectrum are consistent with those of Meta-IIa (18).

To assess the protonation states of Glu residues in Meta-IIaH$^-$/H$^{+}$, the Meta-IIaH$^-$/H$^{+}$/Rho spectrum of the wild type was compared with those of E122C and E134C (Fig. 2, d and e). The
double difference spectra between the Meta-IIaH+/Rho spectra of wild-type and E122C showed that the C=O stretching mode of Glu-122 shifted from 1728 to 1745 cm\(^{-1}\) upon formation of Meta-IIaH+. These frequencies are comparable with those of Meta-IIbH+/Rho, implying that the hydrogen bond involving Glu-122 in Meta-IIaH+ is not altered in Meta-IIbH+. For E134C, the double difference spectrum showed only the positive band at 1740 cm\(^{-1}\), indicating the protonation of Glu-134. Thus, the protonation site in Meta-IIaH+ is Glu-134, like that in Meta-IIbH+. However, the frequency is significantly higher than that in Meta-IIaH+ (1713 cm\(^{-1}\)) (16). Thus, the hydrogen bond involving Cys-134 is weak in Meta-IIaH+ and is strengthened in Meta-IIbH+. Glu-134 in Meta-IIaH+ would be strongly hydrogen-bonded with a water molecule penetrating into the transmembrane region, as suggested by the crystal structures of Meta-II (8) and opsin (37, 38).

Meta-IIaH+/Rho spectra (single difference spectra) of wild type and the mutants in the 1800 to 800 cm\(^{-1}\) region are shown in Fig. 4. They all exhibited no marker band of Meta-I at 949 cm\(^{-1}\) and weak intensity of the 1644 cm\(^{-1}\) band specific for Meta-IIaH+, implying that the introduction of cysteine does not largely affect the formation of Meta-IIaH+. Although the different intensity of the 1644 cm\(^{-1}\) band suggests that the equilibrium constant between Meta-IIaH+ and Meta-IIbH+ varied among the mutants. It should be noted that the conformational changes of A117C, T118C, and W126C were also comparable with those of wild type, whereas they showed significantly blue-shifted absorption spectra.

**Mapping of Structural Changes upon Formation of Meta-IIaH+ Probed by S-H Stretching Modes—Meta-IIaH+/Rho spectra in the S-H stretching region are shown in Fig. 5. Meta-IIaH+/Rho spectra of wild type (cyan lines) are superimposed on those of mutants (red lines), and the double difference spectra between wild-type and mutant spectra are shown below (blue lines). Among the spectra of the seven cysteine-replaced mutants (Fig. 5, a–g), the Meta-IIaH+/Rho spectra of C167S and C185S were different from that of wild type, indicating environmental changes at positions 167 and 185. The double difference spectra between wild type and C167S and between wild-type and C185S exhibited bilobic bands at 2556/2569 cm\(^{-1}\) and 2546/2561 cm\(^{-1}\), respectively (Fig. 5, b and c), implying that the hydrogen bonds involving Cys-167 and Cys-185 are strengthened upon formation of Meta-IIaH+. Although the conformation around Cys-316 changes upon formation of the Gt-activating state (Meta-IIaH+) (39), the S-H stretching vibrations of Cys-316 were not perturbed in Meta-IIaH+.

It has been speculated that cleavage of the disulfide bond between Cys-110 and Cys-187 might occur upon formation of Meta-II based on the finding that the Meta-II/Rho spectrum shows only positive bands in the S-H stretching region (21). However, our results clearly showed that the Meta-IIaH+/Rho spectra of C110A/C187A were identical with that of wild type (Fig. 5g), indicating that the disulfide bond is not cleaved.

The Meta-IIaH+/Rho spectra of the cysteine-introduced mutants are shown in Fig. 5, h–v. Although the native cysteine residues were not replaced in these mutants, the vibrational band of the introduced cysteine was assessed by the double difference spectra between cysteine-introduced mutants and wild type, in which the contribution of native cysteine residues should be canceled.

Ala-117, Thr-118, and Glu-122 are located in the immediate vicinity of the chromophore, and the introduction of the cysteine residue in these positions causes the blue-shifted absorption spectra (Table 1). The double difference spectrum for Meta-IIaH+ of A117C had a broad and weak positive band at 2573 cm\(^{-1}\) (Fig. 5h). A small positive band at 2553 cm\(^{-1}\) and negative bands at 2565 and 2532 cm\(^{-1}\) were observed for T118C (Fig. 5i). The double difference spectrum for E122C shows a negative band at 2574 cm\(^{-1}\) and two positive bands at 2580 and 2563 cm\(^{-1}\) (Fig. 5j). The two positive bands are likely to be caused by the heterogeneity of the S-H group in the Meta-IIaH+. The possible heterogeneity at position 122 is also indicated by the C=O stretching band of Glu-122 having a spectral shoulder (arrow in Fig. 2d).

L123C had a positive band at 2580 cm\(^{-1}\) in the double difference spectrum for the Meta-IIaH+/Rho spectrum (Fig. 5k). The band at 2580 cm\(^{-1}\) suggests that this S-H group does not form a hydrogen bond in Meta-IIaH+ (20). Because the side chain of Ile-123 is located on the opposite side of Helix III from the chromophore and surrounded by Helices II, III, and IV, small movements of these helices would take place upon Meta-IIaH+ formation to disrupt the hydrogen bond of Cys-123.

L125C and L128C displayed bilobic bands, indicating the frequency shift of S-H stretching modes. However, A124C, W126C, and S127C displayed only weak positive bands. Because the absence of the complementary band implies an intensity change with little frequency change of the S-H stretching band, these results suggest that only minor changes occurred in these positions. No environmental change of the S-H group was observed for V129C, V130C, L131C, A132C, I133C, or E134C, although Glu-134 is involved in the conserved ERY sequence. Because large helical movement is suppressed in this condition, the environment around Cys-134 would not be altered.

The environmental changes of amino acid residues probed in this study are shown in Fig. 6. The positions of cysteine residues that showed frequency shifts in Meta-IIaH+/Rho spectra are indicated in red, those with only intensity change are shown in pink, and those with no change are shown in white. The amino acid residues within 4 Å of amino acid residues where introduced cysteine showed frequency shifts were listed using PyMOL software. The results demonstrated that Ala-164, His-211, and Phe-261 were located within 4 Å of two or more positions. It is an advantage of cysteine scanning over the conventional point mutation method that the key amino acid residue is identified without mutation of itself, because mutation of a key residue may substantially alter its nature.

DISCUSSION

The structural changes of rhodopsin in the transmembrane region were detected here by use of the cysteine S-H group as an internal probe. All mutants prepared in this study formed pigments with 11-cis-retinal and were converted to Meta-IIaH+, which exhibited chromophore vibrational bands as well as amide-I bands very similar to those of the wild type. These results indicate that the cysteine residue acts as a highly sensitive probe for conformational changes of the protein, although...
the introduction of a cysteine residue into the transmembrane region hardly perturbs the native structure. In the present study, a photoproduct which has a deprotonated chromophore but undergoes small conformational change was trapped in a hydrated film sample of PC liposome at pH 5.7. Although the characteristics of the FTIR spectrum of this photoproduct regarding the amide-I, Glu-83, and Glu-122 bands agreed with those of Meta-IIa reported previously (18), Glu-134 in this photoproduct is protonated, whereas it is not protonated in Meta-IIa (Fig. 2). Thus, this photoproduct was identified as Meta-IIaH+

Although there is no direct evidence showing the interconversion between Meta-II_H+ and Meta-IIa_H+, Meta-IIa_H+ and Meta-IIa_H+ would be in pH-independent equilibrium, like Meta-IIa and Meta-IIa. Meta-IIa_H+ would be enriched by suppression of the helical rearrangements in the hydrated film con-

FIGURE 4. Meta-IIa_H+/H11001 spectra of wild type and mutants in the 1800 to 800 cm−1 region. Spectra were obtained by irradiation with >520-nm light at 280 K. The absorption maxima in the visible region are shown in parentheses. The vibrational bands shifted from those of wild type are indicated by triangles.
containing less water than in solution. PC is also likely to bias the equilibrium toward Meta-II \(\text{H}^+ / \text{H}^0 \). However, because Meta-II \(\text{H}^+ / \text{H}^0 \) was trapped in the artificial condition, we could not exclude the possibility that the structure of Meta-II that is transiently formed in the physiological condition may be different from that of Meta-II \(\text{H}^+ / \text{H}^0 \) observed here.

It is reported that the deprotonated intermediate is produced by irradiation of rhodopsin crystal (40). The crystal structure of this intermediate (Protein Data Bank entry 2I37) demonstrated that the Helix V is elongated, but the overall helical arrangement is close to the dark state, unlike the G-protein-interacting conformation (Protein Data Bank entries 3DQB, 3PQR, and 2X72). Because the small conformational change would be derived from the crystal packing, 2I37 would represent the structure of Meta-IIa.

We probed the environmental changes for Meta-II \(\text{H}^+ / \text{H}^0 \) at 23 positions (8 native cysteine residues plus 15 introduced cysteine residues) by analyzing the S-H vibrational mode. Mapping of the cysteine residues showing S-H vibrational changes demonstrated that they are localized proximal to Ala-164, His-211, and Phe-261 (Fig. 6).

His-211, which stabilizes the active conformation (41), is hydrogen-bonded with Glu-122. The amino acid residue corresponding to Glu-122 of rhodopsin is Gln in cone pigments, and this is one of the reasons why the decay of Meta-II of cone pigments is significantly faster than that of rhodopsin (42, 43). The environmental changes around His-211 strongly suggest that the hydrogen bond between Glu-122 and His-211 is perturbed in Meta-II \(\text{H}^+ / \text{H}^0 \). Environmental changes were also observed around Phe-261, which forms the hydrophobic interface between helices III and VI together with Gly-121, Leu-125, and Trp-265. These residues are essential for the correct folding of the pigment (44–46). Notably, mutants of these residues, such as F261V and G121L/F261V, show significant constitutive activity (47), suggesting that the disruption of this packing may result in the active conformation. It should be noted that these interpretations are based on the notion that Meta-II \(\text{H}^+ / \text{H}^0 \) is a direct precursor of Meta-IIb \(\text{H}^+ / \text{H}^0 \).

On the other hand, the S-H group of Cys-222 in Helix V forms a hydrogen bond with the backbone carbonyl oxygen of Ala-132 in Helix III in the dark state (Protein Data Bank entry 1U19), whereas this hydrogen bond is disrupted in G-protein-interacting conformations (Protein Data Bank entries 3DQB, 3PQR, and 2X72). The lack of change in the S-H vibration of Cys-222 suggests that the arrangements of Helices III and V are not altered in Meta-II \(\text{H}^+ / \text{H}^0 \). In addition, the lack of environmental change at position 134, which is involved in the conserved ERY sequence and proximate to the Arg-135/Glu-247 ionic lock, also supports the notion that the conformational change is not propagated to the cytoplasmic side in Meta-II \(\text{H}^+ / \text{H}^0 \).

![FIGURE 5. Meta-II \(\text{H}^+ / \text{H}^0 \)/Rho spectra in the S-H stretching region. Meta-II \(\text{H}^+ / \text{H}^0 \)/Rho spectra for mutants (red lines) are superimposed on that of wild type (cyan lines). The double difference spectra are shown below (blue lines). Scale bar, \(1 \times 10^{-4} \). Left, Meta-II \(\text{H}^+ / \text{H}^0 \)/Rho spectra for the cysteine-substituted mutants (a–g). Double difference spectra were calculated by subtracting mutant spectra from wild-type spectra. Middle and right, Meta-II \(\text{H}^+ / \text{H}^0 \)/Rho spectra for cysteine-introduced mutants (h–v). Double difference spectra were calculated by subtracting wild-type spectra from mutant spectra. The typical frequency of the S-H stretching mode is shown by the thick bar at the bottom of each panel.](https://example.com/figure5)
In conclusion, the present results showed that the Glu-122/His-211 hydrogen bond, which stabilizes the active conformation, and the Gly-121/Leu-125/Phe-261/Trp-265 hydrophobic packing between Helices III and VI, which maintains the correct folding and suppresses the constitutive activity, are likely to be perturbed prior to the helical rearrangement. Protonation of Glu-134 facilitates the deprotonation of the chromophore Schiff base but does not necessarily induce the great helical movements. The changes in the intramolecular interaction near the chromophore would induce the significant rearrangement of the transmembrane helices, resulting in the active conformation.

Acknowledgments—We are grateful to Prof. Robert S. Molday (University of British Columbia) for providing the rho 1D4 antibody-producing hybridoma and Dr. Takahiro Yamashita (Kyoto University) for providing the rhodopsin E134C mutant plasmid clone. We are also grateful to Dr. Elizabeth Nakajima for critical reading of the manuscript and invaluable comments.

REFERENCES
1. Palczewski, K., Kumasaka, T., Hori, T., Behnke, C. A., Motoshima, H., Fox, B. A., Le Trong, I., Teller, D. C., Okada, T., Stenkamp, R. E., Yamamoto, M., and Miyano, M. (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289, 739–745
2. Rasmussen, S. G., Choi, H. J., Rosenbaum, D. M., Kobilka, T. S., Thian, F. S., Edwards, P. C., Burghammer, M., Ratnala, V. R., Sanishvili, R., Fischer, R. F., Schertler, G. F., Weis, W. I., and Kobilka, B. K. (2007) Crystal structure of the human β2 adrenergic G-protein-coupled receptor. Nature 450, 383–387
3. Cherezov, V., Rosenbaum, D. M., Hanson, M. A., Rasmussen, S. G., Thian, F. S., Kobilka, T. S., Choi, H. J., Kuhn, P., Weis, W. I., Kobilka, B. K., and Stevens, R. C. (2007) High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science 318, 1258–1265
4. Farrens, D. L., Altenbach, C., Yang, K., Hubbell, W. L., and Korana, H. G. (1996) Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science 274, 768–770
5. Sheikh, S. P., Zvyaga, T. A., Lichtarge, O., Sakmar, T. P., and Bourne, H. R. (1996) Rhodopsin activation blocked by metal-ion-binding sites linking transmembrane helices C and F. Nature 383, 347–350
6. Dunham, T. D., and Farrens, D. L. (1999) Conformational changes in rhodopsin. Movement of helix F detected by site-specific chemical labeling and fluorescence spectroscopy. J. Biol. Chem. 274, 1683–1690
7. Deupi, X., and Standfuss, J. (2011) Structural insights into agonist-induced activation of G-protein-coupled receptors. Curr. Opin. Struct. Biol. 21, 541–551
8. Choe, H. W., Kim, Y. J., Park, J. H., Morizumi, T., Pai, E. F., Krauss, N., Hofmann, K. P., Scheerer, P., and Ernst, O. P. (2011) Crystal structure of metarhodopsin II. Nature 471, 651–655
9. Standfuss, J., Edwards, P. C., D’Antona, A., Fransen, M., Xie, G., Oprian, D. D., and Schertler, G. F. (2011) The structural basis of agonist-induced activation in constitutively active rhodopsin. Nature 471, 656–660
10. Deupi, X., Edwards, P., Singhal, A., Nickle, B., Oprian, D., Schertler, G., and Standfuss, J. (2012) Stabilized G protein binding site in the structure of constitutively active metarhodopsin-II. Proc. Natl. Acad. Sci. U.S.A. 109, 119–124
11. Matthews, R. G., Hubbard, R., Brown, P. K., and Wald, G. (1963) Tautomeric forms of metarhodopsin. J. Gen. Physiol. 47, 215–240
12. Parke, J. H., and Liebman, P. A. (1984) Temperature and pH dependence of the metarhodopsin I-metarhodopsin II kinetics and equilibria in bovine rod disc membrane suspensions. Biochemistry 23, 5054–5061
13. Imai, H., Mizukami, T., Imamoto, Y., and Shichida, Y. (1994) Direct observation of the thermal equilibria among lumirhodopsin, metarhodopsin I, and metarhodopsin II in chicken rhodopsin. Biochemistry 33, 14351–14358
14. Sato, K., Morizumi, T., Yamashita, T., and Shichida, Y. (2010) Direct observation of the pH-dependent equilibrium between metarhodopsins I and II and the pH-independent interaction of metarhodopsin II with transducin C-terminal peptide. Biochemistry 49, 736–741
15. Knierim, B., Hofmann, K. P., Ernst, O. P., and Hubbell, W. L. (2007) Sequences of late molecular events in the activation of rhodopsin. Proc. Natl. Acad. Sci. U.S.A. 104, 20290–20295
16. Vogel, R., Mahalingam, M., Lüdeke, S., Huber, T., Siebert, F., and Sakmar, T. P. (2008) Functional role of the “ionic lock”: an interhelical hydrogen-bond network in family A heptahelical receptors. J. Mol. Biol. 380, 648–655
17. Mahalingam, M., Martínez-Mayorga, K., Brown, M. F., and Vogel, R. (2008) Two protonation switches control rhodopsin activation in mem-

FIGURE 6. Mapping of cysteine residues that showed environmental changes. The positions of cysteine residues that showed a frequency shift in Meta-Il_H/Rho spectra are indicated in red, those with only intensity change are shown in pink, and those with no change are shown in white. The amino acid side chains are shown by spheres positioned at the β-carbons of the original amino acid residues. The crystal structure of lumirhodopsin (Protein Data Bank code 2HPY) was used as a template.
Intramolecular Interaction in Metarhodopsin IIa

branes. Proc. Natl. Acad. Sci. U.S.A. 105, 17795−17800
18. Zaitseva, E., Brown, M. F., and Vogel, R. (2010) Sequential rearrangement of interhelical networks upon rhodopsin activation in membranes: the Meta II, conformational substate. J. Am. Chem. Soc. 132, 4815−4821
19. Vogel, R., and Siebert, F. (2003) Fourier transform IR spectroscopy study for new insights into molecular properties and activation mechanisms of visual pigment rhodopsin. Bio polymers 72, 133−148
20. Li, H., and Thomas, G. J., Jr. (1991) Cysteine conformation and sulfhydryl interactions in proteins and viruses. 1. Correlation of the Raman S-H band with hydrogen bonding and intramolecular geometry in model compounds. J. Am. Chem. Soc. 113 456 − 462
21. Nathans, J., Weitz, C. J., Agarwal, N., Nir, I., and Papermaster, D. S. (1989) Structural changes in the luminorhodopsin-to-metarhodopsin I conversion of air-dried bovine rhodopsin. Biochemistry 34, 16758−16763
22. Kandori, H., Kinoshita, N., Shichida, Y., Maeda, A., Needleman, R., and Yamazaki, Y., Nagata, T., Terakita, A., Kandori, H., Shichida, Y., and Imamoto, Y. (2014) Mapping of the local environmental changes in proteins by cysteine scanning. Biophysics 10, 1−7
23. Ye, S., Zaitseva, E., Calabiano, G., Schertler, G. F., Sakmar, T. P., Deupi, X., and Vogel, R. (2010) Tracking G-protein-coupled receptor activation using genetically encoded infrared probes. Nature 464, 1386−1389
24. Nathans, J. (1990) Determinants of visual pigment absorbance: identification of the retnyiidine Schiff’s base counterion in bovine rhodopsin. Biochemistry 29, 9746−9752
25. Fahmy, K., and Sakmar, T. P. (1993) Regulation of the rhodopsin-transducin interaction by a highly conserved carboxylic acid group. Biochemistry 32, 7229−7236
26. Ohkita, Y. J., Sasaki, J., Maeda, A., Yoshizawa, T., Groesbeek, M., Verde, P., and Lugtenburg, J. (1995) Changes in structure of the chromophore in the photochemical process of bovine rhodopsin as revealed by FTIR spectroscopy for hydrogen out-of-plane vibrations. Biophys. Chem. 56, 71−78
27. park, K., Hildebrand, P. W., kim, Y. J., Krauss, N., Choe, H. W., Hofmann, K. P., and Ernst, O. P. (2008) Crystal structure of opsin in its G-protein-interacting conformation. Nature 455, 497−502
28. Park, J. H., Scheerer, P., Hofmann, K. P., Choe, H. W., and Ernst, O. P. (2008) Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature 454, 183−187
29. Zhang, J., Kato, M., Tokunaga, F., and Palczewski, K. (2000) Light-induced conformational changes of rhodopsin probed by fluorescent Alexa594 immobilized on the cytoplasmic surface. Biochemistry 39, 15225−15233
30. Salom, D., Lodowski, D. T., Stenkamp, R. E., Le Trong, I., Golczak, M., Jastrzebska, B., Harris, T., Ballesteros, J. A., and Palczewski, K. (2006) Crystal structure of a photoactivated deprotonated intermediate of rhodopsin. Proc. Natl. Acad. Sci. U.S.A. 103, 16123−16128
31. Neitz, C. J., and Nathans, J. (1992) Histidine residues regulate the transition of photoexcited rhodopsin to its active conformation, metarhodopsin II. Neuron 8, 465−472
32. Imai, H., Kojima, D., Oura, T., Tachibanaki, S., Terakita, A., and Shichida, Y. (1997) Single amino acid residue as a functional determinant of rod and cone visual pigments. Proc. Natl. Acad. Sci. U.S.A. 94, 2322−2326
33. Imamoto, Y., Seki, I., Yamashita, T., and Shichida, Y. (2013) Efficiencies of activation of transducin by cone and rod visual pigments. Biochemistry 52, 3010−3018
34. Nakayama, T. A., and Khorana, H. G. (1991) Mapping of the amino acids in membrane-embedded helices that interact with the retinal chromophore in bovine rhodopsin. J. Biol. Chem. 266, 4269−4275
35. Han, M., Lin, S. W., Smith, S. O., and Sakmar, T. P. (1996) The effects of amino acid replacements of glycine 121 on transmembrane helix 3 of rhodopsin. J. Biol. Chem. 271, 32330−32336
36. Hwa, J., Garriga, P., Liu, X., and Khorana, H. G. (1997) Structure and function in rhodopsin: packing of the helices in the transmembrane domain and folding to a tertiary structure in the intradiscal domain are coupled. Proc. Natl. Acad. Sci. U.S.A. 94, 10571−10576
37. Han, M., Lin, S. W., Minkova, M., Smith, S. O., and Sakmar, T. P. (1996) Functional interaction of transmembrane helices 3 and 6 in rhodopsin. Replacement of phenylalanine 261 by alanine causes reversion of phenotype of a glycine 121 replacement mutant. J. Biol. Chem. 271, 32337−32342