Energy-Efficient Distributed Learning Algorithms for Coarsely Quantized Signals

Alireza Danaee, Rodrigo C. de Lamare and Vítor H. Nascimento

Abstract—In this work, we present an energy-efficient distributed learning framework using low-resolution ADCs and coarsely quantized signals for Internet of Things (IoT) networks. In particular, we develop a distributed quantization-aware least-mean square (DQA-LMS) algorithm that can learn parameters in an energy-efficient fashion using signals quantized with few bits while requiring a low computational cost. We also carry out a statistical analysis of the proposed DQA-LMS algorithm that includes a stability condition. Simulations assess the DQA-LMS algorithm against existing techniques for a distributed parameter estimation task where IoT devices operate in a peer-to-peer mode and demonstrate the effectiveness of the DQA-LMS algorithm.

Index Terms—Distributed learning, energy-efficient signal processing, adaptive algorithms, coarse quantization.

I. INTRODUCTION

DISTRIBUTED signal processing algorithms are of great relevance for statistical inference in wireless networks and applications such as wireless sensor networks (WSNs) [1] and the Internet of Things (IoT) [2]. These techniques deal with the extraction of information from data collected at nodes that are distributed over a geographic area. Prior work on distributed approaches has studied protocols for exchanging information [3], [4], [5], adaptive learning algorithms [6], [7], [8], [9], the exploitation of sparse and low-rank measurements [10], [11], [12], topology adaptation [13], compensation methods for highly correlated input signals [14], and robust techniques against interference and noise [15]. Although there are many studies on the need for data exchange and signaling among nodes as well as their complexity, prior work on energy-efficient techniques is rather limited.

In this context, energy-efficient signal processing techniques have gained a great deal of interest in the last decade or so due to their ability to save energy and promote sustainable development of electronic systems and devices. Electronic devices often exhibit a power consumption that is dependent on the communication module [16], [17] and from a circuit perspective on analog-to-digital converters (ADCs) and decoders [18]. Reducing the number of bits used to represent digital samples can greatly decrease the energy consumption by ADCs [19]. This is key to devices that are battery operated and wireless networks that must keep the power consumption to a low level for sustainability reasons. In particular, prior work on energy efficiency has reported many contributions in signal processing for communications and electronic systems that operate with coarsely quantized signals [20], [21], [22], [23], [24], [25], [26], [27].

In this work, we propose an energy-efficient distributed learning framework using low-resolution ADCs and coarsely quantized signals for IoT networks [28]. In particular, we devise a distributed quantization-aware least-mean square (DQA-LMS) algorithm that can learn parameters in an energy-efficient way using signals quantized using few bits with a low computational cost. We also develop a statistical analysis of the DQA-LMS algorithm that includes a stability condition. Simulations assess the DQA-LMS algorithm against existing techniques for a distributed parameter estimation task with IoT devices.

This paper is structured as follows: Section II introduces the signal model and states the problem. Section III details the proposed DQA-LMS algorithm, whereas Section IV analyzes DQA-LMS. Section V shows and discusses the simulation results and Section VI draws the conclusions of this work.

II. SIGNAL MODEL AND PROBLEM STATEMENT

Fig. 1. A distributed adaptive IoT network

We consider an IoT network consisting of N nodes or agents, which run distributed signal processing techniques to perform the desired tasks, as depicted in Fig. 1. The model adopted considers a desired signal $d_k(i)$, at each time i, described by

$$d_k(i) = w_o^H x_k(i) + v_k(i), \quad k = 1, 2, \ldots, N,$$

(1)

where $w_o \in \mathbb{C}^{M \times 1}$ is the parameter vector that the agents must estimate, $x_k(i) \in \mathbb{C}^{M \times 1}$ is the regressor and $v_k(i)$ represents Gaussian noise with zero mean and variance $\sigma_{v,k}^2$ at node k. We adopt the Adapt-then-Combine (ATC) diffusion rule as it outperforms the incremental and consensus protocols [3], [4]. At each node k and time i, based on the local data \{$d_k(i)$, $x_k(i)$\} and the estimated parameter vectors $\hat{h}_k(i)$ from its neighborhood, the parameter vector with local estimates $\hat{w}_k(i)$ is updated. The ATC distributed LMS (DLMS) algorithm consists of the recursions:

$$h_k(i) = h_k(i-1) + \mu_k x_N^o(i) x_k(i), \quad w_k(i) = \sum_{l \in N_k} a_{lk} h_l(i),$$

where $\mu_k \in [0, 1]$ is the step-size parameter, $\sigma_{v,k}^2$ is the variance of the noise, and N_k is the set of neighbors of node k.
where $h_k(i)$ and $w_k(i)$ contain the intermediate and the local estimates of w_o at node k and time i, respectively, $e_k(i) = d_k(i) - \hat{d}_k(i) = d_k(i) - w_k^H(i-1)x_k(i)$ is the error between the output of the adaptive filter, $\hat{d}_k(i)$, and the desired signal, $d_k(i)$, at time i. μ_k is the step-size for node k, \mathcal{N}_k is the set of neighbor nodes connected to node k, and a_{ik} are the combination coefficients of neighbor nodes at node k such that $a_{ik} = 0$ if $l \notin \mathcal{N}_k$, $a_{ik} > 0$ if $l \in \mathcal{N}_k$, and $\sum_{l \in \mathcal{N}_k} a_{ik} = 1$. (2)

As shown in Fig. 1 as the measurement data at each node and the unknown system are analog and each agent processes local data $\{d_k(i), x_k(i)\}$ digitally, we need two ADCs in each agent. One concern is that the number of agents increases, the power consumption will grow considerably when using high-resolution ADCs for each agent. This motivates us to quantize signals using few bits. Therefore, the problem we are interested in solving is how to design energy-efficient distributed learning algorithms that can cost-effectively operate with coarsely quantized signals.

III. PROPOSED DQA-LMS ALGORITHM

Let $x_{k,Q} = Q_k(x_k)$ denote the b-bit quantized output of an ADC at node k, described by a set of $2^b + 1$ thresholds $\mathcal{T}_b = \{\tau_0, \tau_1, \ldots, \tau_{2^b}\}$, such that $\infty = \tau_0 < \tau_1 < \ldots < \tau_{2^b} = \infty$, and the set of 2^b labels $L_b = \{l_0, l_1, \ldots, l_{2^b-1}\}$ where $l_p \in (\tau_p, \tau_{p+1}]$, for $p \in [0, 2^b - 1]$. Let us assume that $x_k \sim \mathcal{CN}(0, R_{x_k})$, where $R_{x_k} \in \mathbb{C}^{M \times M}$ is the covariance matrix of x_k. We now use Bussgang’s theorem to derive a model for the quantized vector $x_{k,Q}$, which we will use later to derive our DQA-LMS algorithm. Bussgang’s theorem, $x_{k,Q}$ can be decomposed as

$$x_{k,Q} = G_{k,b}x_k + q_k,$$

where the quantization distortion q_k is uncorrelated with x_k, and $G_{k,b} \in \mathbb{R}^{M \times M}$ is a diagonal matrix described by

$$G_{k,b} = \text{diag}(R_{x_k})^{-\frac{1}{2}} \sum_{j=0}^{2^b-1} \frac{l_j}{\sqrt{\pi}} \left[\exp(-\frac{j^2}{\tau}) \text{diag}(R_{x_k})^{-1} \right]$$

Note that this signal decomposition is also applied to the desired signal, $d_{k,Q}$, which is the output of the second ADC in the system, and for the particular case that $R_{x_k} = \mathbb{E}[x_k x_k^H] = \sigma_{x,k}^2 I_M$, $G_{k,b}$ becomes $g_{k,b} I_M$. However, to minimize the mean square error (MSE) between x_k and $x_{k,Q}$, we need to characterize the probability density function (PDF) of x_k to find the optimal quantization labels. Since the choice of labels based on the PDF is not practical, we assume the regressor $x_k(i)$ is Gaussian, adapt the approach in [21] and approximate the thresholds and labels as follows:

1) We generate an auxiliary Gaussian random variable with unit variance and then use the Lloyd-Max algorithm to find a set of thresholds $\tilde{T}_b = \{\tau_1, \ldots, \tau_{2^b-1}\}$ and labels $\tilde{L}_b = \{l_0, \ldots, l_{2^b-1}\}$ that minimize the MSE between the unquantized and the quantized signals.

2) We complete the set of thresholds \bar{T}_b by adding $\tau_0 = -\infty$ and $\tau_{2^b} = \infty$ to the set \tilde{T}_b.

3) We rescale the labels such that the variance of the auxiliary random variable is 1. To do this, we multiply each label in the set \tilde{L}_b by

$$\alpha = \left(\frac{\sqrt{2\pi}}{2^{b+1}} \right)^{-1/2} \left[\sum_{j=0}^{2^b-1} \frac{l_j}{\sqrt{\pi}} \left(\Phi(\sqrt{2\tau}) - \Phi(\sqrt{2\tau+2}) \right) \right]^{-1/2}$$

to produce a set of suboptimal labels $\bar{L}_b = \alpha \tilde{L}_b$, where $\Phi(.)$ is the cumulative distribution function (CDF) of a standard Gaussian random variable.

We generate these thresholds and labels offline to build $G_{k,b}$ for the proposed DQA-LMS algorithm in what follows.

A. Derivation of DQA-LMS

We consider $x_k(t)$ and $d_k(t)$ as the analog input and output of the unknown system w_o at node k. Let $x_{k,Q}(t)$ and $d_{k,Q}(t)$ denote the high-precision sampled versions of $x_k(t)$ and $d_k(t)$, and $x_{k,Q}(i)$ and $d_{k,Q}(i)$ denote the coarsely quantized versions of $x_k(i)$ and $d_k(i)$, respectively. We assume that the input signal at each node is Gaussian with zero mean and covariance matrix $R_{x_k} = \mathbb{E}[x_k x_k^H] = \sigma_{x,k}^2 I_M$ for $k = 1, 2, \ldots, N$. Using [3], we can decompose $x_{k,Q}(i)$ and $d_{k,Q}(i)$ as

$$x_{k,Q}(i) = g_{k,b}(i)x_k(i) + q_{k,b}(i),$$

$$d_{k,Q}(i) = Q_k(d_k(i)) \approx g_{k,b}(i)\hat{d}_k(i) + q_k(i)$$

where $\hat{d}_k(i) = g_{k,b}(i)\hat{d}_k(i)$ and $q_{k,b}(i)$ and $g_{k,b}(i)$ are built from an estimate of R_{x_k} given by $R_{x_k} = x_k x_k^H$ that depends on the choice of x_k due to [1]. Because the adaptive algorithm receives a quantized signal, $x_{k,Q}$, and the signal is assumed to be wide-sense stationary, at each time instant, we estimate $\sigma_{x,k}^2$ using the variance of the received input, $\sigma_{x,k}^2$, and the distortion factor of the b-bit quantization, $\rho_{k,b}$, such that

$$\sigma_{x,k}^2 \approx \sigma_{x,k}^2 + \rho_{k,b},$$

for a Gaussian signal using non-uniform quantization to obtain the scalar $g_{k,b}(i)$.

We show next that a learning algorithm based directly on (7) is biased for estimating w_o, and show how to correct for this bias. For this, let $\beta_k(i)$ be a coefficient to be chosen shortly, and define $\hat{d}_k(i) = \beta_k(i)w_k^H(i-1)x_k(i)$ and construct an MSE cost function as described by

$$J_k(w_k(i)) = \mathbb{E}[|e_{k,Q}(i)|^2] = \mathbb{E}[|d_{k,Q}(i) - \hat{d}_k(i)|^2]$$

which depends only on the observed quantized quantities $d_{k,Q}(i)$ and $x_{k,Q}(i)$. For $\beta_k(i) = 1$ as in DLM, the quantization of $d_k(i)$ would result in biased estimates of w_o. In the following we show how to optimally choose $\beta_k(i)$ to reduce the bias. The proposed gradient-descent recursion to perform distributed learning based on (8) is described by

$$h_k(i) = w_k(i-1) - \mu_k \nabla J_k(w_k(i-1)).$$

To compute the gradient of $J_k(w_k(i))$ we write the error in (8) as

$$e_{k,Q}(i) = d_{k,Q}(i) - \beta_k(i)w_k^H(i-1)x_{k,Q}(i)$$

$$= g_{k,b}(i)w_k^H(i-1)x_k(i) + q_k(i) - \beta_k(i)w_k^H(i-1)$$

$$= g_{k,b}(i)(w_k^H(i-1)x_k(i) + q_k(i)) - \beta_k(i)w_k^H(i-1)q_{k,b}(i)$$

$$= g_{k,b}(i)(w_k^H(i-1)x_k(i) + q_k(i)) - \beta_k(i)w_k^H(i-1)q_{k,b}(i).$$
We assume that \(R_{x,k} = E[x_k x_k^H] = \sigma^2_{x,k} I_M \) and \(R_{q,k} = E[q_k q_k^H] = \sigma^2_{q,k} I_M \). Substituting (10) in (8) and taking the expected value of (9), we have
\[
E[h_k(i)] = [I_M - \mu_k g_{k,b}(i) \beta_k(i) R_{x,k} - \mu_k g_k(i) \beta_k(i) R_{q,k}] \cdot E[w_k(i - 1)] + \mu_k g_{k,b}(i) R_{x,k} w_o^H.
\] (11)
Substituting the values of \(R_{x,k} \) and \(R_{q,k} \) and taking the limit on (11), we obtain
\[
\lim_{i \to +\infty} E[h_k(i)] = 1 \begin{cases}
\frac{g_{k,b}(i) \sigma^2_{x,k}}{\beta_k(i) g_k(i) \sigma^2_{x,k} + \sigma^2_{q,k}} w_o.
\end{cases}
\] (12)
We conclude that the solution is unbiased if we choose
\[
\beta_k(i) = \frac{g_{k,b}(i) \sigma^2_{x,k}}{g_k(i) \sigma^2_{x,k} + \sigma^2_{q,k}}.
\] (13)
The gradient of \(|c_k Q(i)|^2 \) with respect to \(w_k^H \) is \(\nabla J_k(w_k(i - 1)) = -g_k(i) \sigma^2_{x,k} x_k(i) e_k Q(i) \). After organizing the terms of the gradient, we obtain the DQA-LMS algorithm:
\[
h_k(i) = w_k(i - 1) + \mu_k \begin{cases}
g_k(i) \sigma^2_{x,k} x_k(i) e_k Q(i),
\end{cases}
\] (14)
\[
e_{k,Q}(i) = d_{k,Q}(i) - g_k(i) \sigma^2_{x,k} x_k(i) e_k Q(i),
\] (15)
and \(\sigma^2_{x,k} \approx \sigma^2_{x,k} + \rho_k b_k \). The scalar \(g_k b_k \) can be computed offline when \(R_{x,k} \) is known and wide-sense stationary and must be estimated online when \(R_{x,k} \) is unknown or non-stationary.

B. Computational Complexity and Energy Consumption

Table [1] shows the computational complexity of the DQA-LMS algorithm in terms of the number of multiplications and additions at node \(k \) per time instant, where \(n_k \) is the number of neighbor nodes connected to node \(k \). At each time instant, DQA-LMS performs a few more operations \((\approx O(q^3)) \) than DLMS. Note that we compute \(g_{k,b}(i) \) online since this is more appropriate for non-stationary input data. However, one can compute \(G_{k,b} \) offline if an estimate of \(R_{x,k} \) is available.

However, the extra complexity of DQA-LMS allows the system to work in a more energy-efficient way. In order to assess the power savings by low resolution quantization, we consider a network with \(N \) nodes in which each node uses two ADCs. The power consumption of each ADC is \(P_{ADC}(b) = c B 2^b \) \(\text{(13)} \), where \(B \) is the bandwidth (related to the sampling rate), \(b \) is the number of quantization bits of the ADC, and \(c
\) is the power consumption per conversion step. Therefore, the total power consumption of the ADCs in the network is
\[
P_{ADC,T}(b) = 2 N c B 2^b \text{ (watts)}.
\] (16)

Fig. [2] shows an example of the total power consumption of ADCs in a narrowband IoT (NB-IoT) network running diffusion adaptation consisting of 20 nodes with bandwidth \(B = 200 \text{ kHz} \) [34] and considering the power consumption per conversion step of each ADC, \(c = 494 \text{ fJ} \), as in [35].

![Figure 2](image_url)

Fig. 2. Power consumption of the ADCs in an adaptive IoT network.

IV. ANALYSIS OF DQA-LMS

In this section, we find sufficient conditions for all local estimates to converge in the mean to the unknown parameter vector \(w_o \) by using the evolution of the weight error vectors \([4] \).
Let us consider the global quantities of the network: \(W_o \triangleq [w_o, \ldots, w_o]_{(N M \times 1)} \), \(d_{Q,i} \triangleq [d_{1,Q}(i), \ldots, d_{N,Q}(i)]^T \), \(v_i \triangleq [v_1(i), \ldots, v_N(i)]^T \), \(X_Q(i) \triangleq \text{diag}[X_{1,Q}(i), \ldots, X_{N,Q}(i)] \).

Using these quantities, the global form of (11) is given by \(d_{Q}(i) = W_o X_Q(i) + v(i) \). Defining \(B(i) \), \(W(i) \) and \(H(i) \) as the global quantities for, respectively, \(\beta_k(i), h_k(i) \) and \(w_k(i) \), we can express (14) as
\[
H(i) = W(i - 1) + D W Q(i) (d_{Q,i})^*, \quad W(i) = CH(i),
\] (17)
which can be written in a compact form as
\[
W(i) = CW(i - 1) + CDB(i) X_Q(i) (d_{Q,i})^* - B W H (i - 1) X_Q(i) + v(i) \text{*,}
\] (18)
where \(D \triangleq \text{diag}[\mu_1 I_M, \ldots, \mu_N I_M] \) and \(C \) is an \(MN \times MN \) matrix based on the combination coefficients, \(a_{ij} \), defined as
\[
A \triangleq [a_{ij}], \quad C \triangleq A \otimes I_M.
\] (19)

Using the independence assumption [4] that states that \(x_k Q(i) \) and \(v_k(i) \) are i.i.d. in time and space with \(\sigma^2_{v,k} = E[|v_k(i)|^2] \), and \(v_k(i) \) is independent of \(x_k Q(i) \), we define the weight error vector \(w_k(i) \) and its global vector \(W(i) \) as
\[
W(i) \triangleq W_o - W(i).
\] (20)
Note that using diffusion combination policies for \(a_{ij} \), we have \(CW_o = W_o [4] \). Subtracting \(W_o \) from the left-hand side and \(CW_o \) from the right-hand side of (18), we have
\[
\tilde{W}(i) = CW(i) - CW(i - 1) - CDB(i) X_Q(i)
\] (21)
Taking the expectation of both sides of (21), we have
\[
E[\tilde{W}(i)] = C(I_{MN} - D R_Q) E[\tilde{W}(i - 1)],
\] (22)
where \(C \triangleq E[C], R_Q \triangleq \text{diag}[R_{1,Q}, \ldots, R_{N,Q}] \) and \(R_{k,Q} = E[B_k(i) x_{k,Q}(i) x_{k,Q}^*(i) B_k(i)^*] \).
The noise samples are generated by passing a white Gaussian noise process with variance \(\sigma_n^2 \) through a first order autoregressive model with transfer function \(\frac{1}{1 - \rho r_{x,k} z^{-1}} \) where \(r_{x,k} \in (0.3, 0.5) \) are the correlation coefficients and quantized using Lloyd-Max quantization scheme to generate \(x_k(i) \). The noise samples of each node are drawn from a zero mean white Gaussian process with variance \(\sigma_n^2 \). Fig. 3 plots the network details.

The simulated mean-square deviation (MSD) learning curves are obtained by ensemble averaging over 100 independent trials. We choose the same step sizes for all agents, i.e., \(\mu_k = 0.05 \). The combining coefficients \(a_{ik} \) are computed by the Metropolis rule. The evolution of the ensemble-average learning curves, \(\frac{1}{N} \mathbb{E} [\| \tilde{w} \|^2] \), for the ATC diffusion strategy using different numbers of bits is assessed. The theoretical MSD of the DLMS with the same step size \(\mu \) and the Metropolis rule applied to \(a_{ik} \) is approximated by \(\mu M \sum_{k=1}^{N} r_{x,k}^2 \) and shown by curve 1. Curve 2 shows the standard DLMS performance assuming full resolution ADCs to perform system identification. Curves 3, 5 and 7 show the MSD evolution of the standard DLMS with low resolution signals coarsely quantized with 1, 2 and 3 bits, respectively. Curves 4, 6 and 8 show the MSD performance of the proposed DQA-LMS algorithm that improves the error measurement confronted with coarsely quantized signals. The performance of the proposed DQA-LMS algorithm is closer to the DLMS while it reduces about 90% of the power consumption by ADCs in the network (see Fig. 2).
VI. CONCLUSION

In this paper, we have proposed an energy-efficient framework for distributed learning and developed the DQA-LMS algorithm using low-resolution ADCs for adaptive IoT networks. DQA-LMS has comparable computational cost to the full-resolution DLMS algorithm while it enormously reduces the power consumption of the ADCs in the network. Simulations have shown the close performance of DQA-LMS to the DLMS algorithm despite dealing with coarsely quantized signals.

REFERENCES

[1] J. B. Predd, S. B. Kulkarni, and H. V. Poor, “Distributed learning in wireless sensor networks,” IEEE Signal Processing Magazine, vol. 23, no. 4, pp. 56–69, 2006.

[2] M. M. Rana, W. Xiang, and E. Wang, “Iot-based state estimation for microgrids,” IEEE Internet of Things Journal, vol. 5, no. 2, pp. 1345–1346, 2018.

[3] R. Ollati-Saber, J. A. Fox, and R. M. Murray, “Consensus and cooperation in networked multi-agent systems,” Proceedings of the IEEE, vol. 95, no. 1, pp. 215–233, 2007.

[4] C. G. Lopes and A. H. Sayed, “Diffusion least-mean squares over adaptive networks: Formulation and performance analysis,” IEEE Transactions on Signal Processing, vol. 56, no. 7, pp. 3122–3136, 2008.

[5] A. H. Sayed, S.-Y. Tu, J. Chen, X. Zhao, and Z. J. Towfic, “Diffusion strategies for adaptation and learning over networks: an examination of distributed strategies and network behavior,” IEEE Signal Processing Magazine, vol. 30, no. 3, pp. 155–171, 2013.

[6] R. C. de Lamare and R. Sampaio-Neto, “Reduced-rank adaptive filtering based on joint iterative optimization of adaptive filters,” IEEE Signal Processing Letters, vol. 14, no. 12, pp. 980–983, 2007.

[7] R. C. de Lamare and R. Sampaio-Neto, “Adaptive reduced-rank processing based on joint and iterative interpolation, decimation, and filtering,” IEEE Transactions on Signal Processing, vol. 57, no. 7, pp. 2503–2514, 2009.

[8] S. Xu, R. C. de Lamare, and H. V. Poor, “Distributed estimation over sensor networks based on distributed adaptive gradient algorithms” IET Signal Processing, vol. 10, no. 3, pp. 291–301, 2016.

[9] T. G. Miller, S. Xu, R. C. de Lamare, and H. V. Poor, “Distributed spectrum estimation based on alternating mixed discrete-continuous adaptation,” IEEE Signal Processing Letters, vol. 23, no. 4, pp. 551–555, 2016.

[10] S. Xu, R. C. de Lamare, and H. V. Poor, “Distributed compressed estimation based on compressive sensing,” IEEE Signal Processing Letters, vol. 22, no. 9, pp. 1311–1315, Sep. 2015.

[11] T. G. Miller, S. Xu, R. C. de Lamare, V. H. Nascimento, and Y. Zakharov, “Sparsity-aware distributed conjugate gradient algorithms for parameter estimation over sensor networks,” in 2015 49th Asilomar Conference on Signals, Systems and Computers. IEEE, 2015, pp. 1556–1560.

[12] S. Xu, R. C. de Lamare, and H. V. Poor, “Distributed low-rank adaptive estimation algorithms based on alternating optimization,” Signal Processing, vol. 144, pp. 41 – 51, 2018.

[13] S. Xu, R. C. de Lamare, and H. V. Poor, “Adaptive link selection algorithms for distributed estimation,” EURASIP Journal on Advances in Signal Processing, vol. 2015, no. 1, pp. 86, 2015.

[14] S. Zhang and W. X. Zheng, “Distributed separated-decorrelation lms algorithms over sensor networks with noisy inputs,” IEEE Transactions on Signal Processing, vol. 68, pp. 4163–4177, 2020.

[15] Y. Yu, H. Zhao, R. C. de Lamare, Y. Zakharov, and L. Lu, “Robust distributed diffusion recursive least squares algorithms with side information for adaptive networks,” IEEE Transactions on Signal Processing, vol. 67, no. 6, pp. 1566–1581, 2019.

[16] C. Han, J. M. Jornet, E. Fadel, and I. F. Akyildiz, “A cross-layer communication module for the internet of things,” Computer Networks, vol. 57, no. 3, pp. 622–633, 2013.

[17] I. Ulut, O. F. Kilic, and S. S. Kozat, “Resource-aware event triggered distributed estimation over adaptive networks,” Digital Signal Processing, vol. 68, pp. 127–137, 2017.

[18] A. Mezghani and J. A. Nossek, “Power efficiency in communication systems from a circuit perspective,” in 2011 IEEE International Symposium of Circuits and Systems (ISCAS). IEEE, 2011, pp. 1896–1899.

[19] R. H. Walden, “Analog-to-digital converter survey and analysis,” IEEE Journal on selected areas in communications, vol. 17, no. 4, pp. 539–550, 1999.

[20] L. T. N. Landau and R. C. de Lamare, “Branch-and-bound precoding for multiuser MIMO systems with 1-bit quantization,” IEEE Wireless Communications Letters, vol. 6, no. 6, pp. 770–773, Dec 2017.

[21] S. Jacobsson, G. Durisi, M. Coldrey, U. Gustavsson, and C. Studer, “Throughput analysis of massive MIMO uplink with low-resolution adcs,” IEEE Transactions on Wireless Communications, vol. 16, no. 6, pp. 4038–4051, 2017.

[22] A. Mezghani, M.-S. Kossu, and J. A. Nossek, “A modified MMSE receiver for quantized MIMO systems,” Proc. ITG/IEEE WSA, Vienna, Austria, pp. 1–5, 2007.

[23] L. T. N. Landau, M. Dörpinghaus, R. C. de Lamare, and G. P. Fettweis, “Achievable rate with 1-bit quantization and oversampling using continuous phase modulation-based sequences,” IEEE Transactions on Wireless Communications, vol. 17, no. 10, pp. 7080–7095, Oct 2018.

[24] Z. Shao, R. C. de Lamare, and L. T. N. Landau, “Iterative detection and decoding for large-scale multiple-antenna systems with 1-bit adcs,” IEEE Wireless Communications Letters, vol. 7, no. 3, pp. 476–479, June 2018.

[25] Z. Shao, L. T. N. Landau, and R. C. de Lamare, “Adaptive RLS channel estimation and SIC for large-scale antenna systems with 1-bit ADCs,” in WSA 2018: 22nd International ITG Workshop on Smart Antennas. VDE, 2018, pp. 1–4.

[26] Z. Shao, L. T. N. Landau, and R. C. de Lamare, “Channel estimation for large-scale multiple-antenna systems using 1-bit adcs and oversampling,” IEEE Access, vol. 8, pp. 85243–85256, 2020.

[27] Z. Shao, L. T. N. Landau, and R. C. de Lamare, “Dynamic oversampling for 1-bit adcs in large-scale multiple-antenna systems,” IEEE Transactions on Communications, 2021.

[28] A. Danaee, R. C. de Lamare, and V. H. Nascimento, “Energy-efficient distributed learning with coarsely quantized signals,” IEEE Signal Processing Letters, 2021.

[29] J. R. Bussgang, “Crosscorrelation functions of amplitude-distorted gaussian signals, research lab. electron,” MIT, Cambridge, MA, USA, Tech. Rep, 1952.

[30] S. Lloyd, “Least squares quantization in PCM,” IEEE transactions on information theory, vol. 28, no. 2, pp. 129–137, 1982.

[31] J. Max, “Quantization for minimum distortion,” IRE Transactions on Information Theory, vol. 6, no. 1, pp. 7–12, 1960.

[32] Y. Li, C. Tao, G. Seco-Granados, A. Mezghani, A. L. Swindlehurst, and L. Liu, “Channel estimation and performance analysis of one-bit massive MIMO systems,” IEEE Transactions on Signal Processing, vol. 65, no. 15, pp. 4075–4089, 2017.

[33] O. Orhan, E. Erkip, and S. Rangan, “Low power analog-to-digital conversion in millimeter wave systems: Impact of resolution and bandwidth on performance,” in 2015 Information Theory and Applications Workshop (ITA), IEEE, 2015, pp. 191–198.

[34] R. Ratasuk, B. Veijgaard, N. Mangalvedhe, and A. Ghosh, “Nb-iot system for M2M communication,” in 2016 IEEE wireless communications and networking conference. IEEE, 2016, pp. 1–5.

[35] H. Chung, A. Ryljakov, Z. T. Deniz, J. Bulzacchelli, G. Wei, and D. Friedman, “A 7.5-GS/s 3.8-ENOB 52-mW flash ADC with clock duty cycle control in 65nm CMOS,” in 2009 Symposium on VLSI Circuits. IEEE, 2009, pp. 268–269.

[36] N. Takahashi, I. Yamada, and A. H. Sayed, “Diffusion least-mean squares with adaptive combiners: Formulation and performance analysis,” IEEE Transactions on Signal Processing, vol. 58, no. 9, pp. 4795–4810, 2010.