Synthesis of thiazolidine-2,4-dione derivatives: anticancer, antimicrobial and DNA cleavage studies

S. Vijaya Laxmi 1 · P. Anil 1 · G. Rajitha 2 · Asha Jyothi Rao 3 · Peter A. Crooks 4 · B. Rajitha 2

Received: 15 April 2016 / Accepted: 5 July 2016 / Published online: 15 July 2016 © Springer-Verlag Berlin Heidelberg 2016

Abstract In the search of efficient anticancer agents, here, new 5-(4-alkylbenzylidene)thiazolidine-2,4-dione derivatives (5a–g) have been successfully synthesized and characterized and are evaluated for anticancer and antimicrobial activities using DNA cleavage studies. In vitro studies on anticancer activity of compound 5d (NSC: 768619/1) was done against the full panel of 60 human tumor cell lines. The five-level dose activity results revealed that, the compound 5d was active against all the cell lines, it has shown potential activity against leukemia SR (GI50: 2.04 μM), non-small cell lung cancer NCI-H522 (GI50: 1.36 μM), colon cancer COLO 205 (GI50: 1.64 μM), CNS cancer SF-539 (GI50: 1.87 μM), melanoma SK-MEL-2 (GI50: 1.64 μM), ovarian cancer OVCAR-3 (GI50: 1.87 μM), renal cancer RXF 393 (GI50: 1.15 μM), prostate cancer PC-3 (GI50: 1.90 μM), and breast cancer MDA-MB-468 (GI50: 1.11 μM). DNA cleavage studies revealed that at 50 μg/mL concentration, partial DNA digestion was observed and when the concentration is increasing to threefold (150 μg/mL), complete linear DNA digestion and partial supercoiled DNA digestion was observed. Further antimicrobial studies indicate that all the synthesized compounds except compound 5a possess prominent activity against all the screened microbial species. This study throws a ray of light in the field of anticancer drugs.

Keywords Anticancer activity · Antimicrobial activity · DNA cleavages studies · 4-hydroxybenzylidenethiazolidine-2·4-dione · Cancer

Introduction

Cancer is one of the world’s most serious illnesses; every ten in a hundred people are suffering from cancer [1]. Clinically, many chemotherapeutic drugs provide a satisfactory response when they are first exposed to the tumors, but they cause a variety of side effects to the patients. Therefore, there is an urgent need for potential, selective anticancer drugs in modern oncology [2]. On the other hand, typhoid, cholera, and pneumonia are common worldwide bacterial diseases caused by Gram-negative bacteria. When comparing Gram-positive and Gram-negative bacteria, many species of Gram-negative bacteria are pathogenic. This pathogenic capability is usually associated with certain components of Gram-negative cell walls, in particular the lipopolysaccharide (also known as LPS or endotoxin) layer [3]. If the endotoxin enters the circulatory system, it causes a toxic reaction; thus, outer membrane protects the bacteria from several antibiotics, dyes, and detergents that would normally damage the inner membrane or cell wall (peptidoglycan). The outer membrane also provides these bacteria with resistance to lysozyme and penicillin; therefore, drugs which possess a lipophilic nature can damage lipopolysaccharide layer. Larger alkyl groups when introduced into the drug will increase hydrophobicity as well as biological activity [4–6]. Drug binding causes structural and
conformational changes in the DNA such as DNA bending and winding double or single strand breaks resulting in DNA damage, which inhibits DNA transcription and replication [7, 8]. In order to treat diseases like those which are mentioned above, many potential drugs are designed to target DNA [9]. 2,4-Thiazolidinedione is one of the important pharmacophores in many in vivo studies on thiazolidinedione derivatives proved they have the capacity to reduce the plasma glucose levels. Besides their antidiabetic potency, 2,4-thiazolidinediones suppress the growth of several cancer cell lines including the colon, breast, and prostate in vivo and in vitro [10, 11]. Romeo Romagnoli et al. reported anticancer activity of 5-benzylidene thiazolidine-2,4-dione derivatives (0.19 to 3.2 μM) against murine leukemia (L1210), murine mammary carcinoma (FM3A), human T lymphocyte (CEM), and human cervix carcinoma (HeLa) cells [12]. In another report, a series of 5-acridin-9-ylmethylene-3-benzyl-thiazolidine-2,4-dione analogs with general structure 2, with a moderate antiproliferative activity (IC50: 4.1–58 μM) against a wide panel of cancer cell lines [13]. On the other hand, huge number of literature reports are available on antimicrobial activity of 2,4-thiazolidinedione derivatives [14, 15]. Recent patent literature discloses (Z)-5-decyldenedithiazolines-2,4-dione (3) as a good antifungal agent against Candida albicans [16]. Very recently, Singanan Ponnuchamy et al. identified the antimycobacterial activity of novel hybrid arylidene thiazolidine-2,4-diones [17].

Inspired by the wide range of useful activities of the 2,4-thiazolidinedione derivatives, [18–20] efforts are made to explore the potential biological activities of various heterocyclic compounds. We have synthesized and studied their anticancer, antimicrobial, and DNA cleavage activities.

Results and discussion

Chemistry

The preparation of 5-(4-alkylenzylatedene) thiazolidine-2,4-dione derivatives is outlined in Scheme 1. The compound 4-hydroxybenzylabeledethiazolines-2,4-dione (3) was obtained by the knoevenagel condensation of 4-hydroxybenzaldehyde with 2,4-thiazolidinedione as described in earlier reports [21]; formation of the intermediate was confirmed by the 1H NMR spectral data. 5-methylidene proton signal was displayed in the range 7.7–7.8 ppm as singlet, and NH proton was observed at 12.48 as a broad singlet; these observations were in full agreement with the previous literature reports [22–24]. Further, the reaction of tertiary alkyl amino chlorohydrochlorides (4a-g) with 4-hydroxybenzylatedethiazolines-2,4-dione (3) in acetone and backed K2CO3 and under reflux conditions produced 5-(4-alkylbenzylenatedene)thiazolidine-2,4-dione derivatives in good yields. The assignment of structure for compounds (5a–g) was supported by IR, mass, and NMR spectral studies. Melting points were determined in open capillaries using Stuart SMP30 apparatus and are uncorrected. The progress of the reactions as well as purity of the compounds was monitored by thin layer chromatography with F254 silica-gel precoated sheets using hexane/ethyl acetate (7/3) as eluent. IR spectra were recorded on Perkin-Elmer 100S spectrophotometer using KBr pellet. NMR spectra were recorded on Bruker 400 MHz spectrometer using DMSO-d6 as solvent and TMS as internal standard. Elemental analyses were performed on a Carlo Erba modal EA1108 and mass spectra were recorded on a Jeol JMSD-300 spectrometer.

Scheme 1 Synthesis of 5-(4-alkylenzylatedene)thiazolidine-2,4-dione derivatives (5a–g)
Biological evaluation

Antimicrobial activities

The in vitro antimicrobial activity was performed using the disk diffusion method, (Supplementary File) against Gram-positive bacteria such as *Staphylococcus aureus* and Gram-negative bacteria such as *Escherichia coli*, *Vibrio cholera*, *Klebsiella pneumoniae*, *Salmonella typhi*, and *Candida albicans*. Ampicillin (10 μg/disk), kanamycin (30 μg/disk), and ketoconazole (25 μg/disk) were used as positive references. Compounds 5a–g (100 μg/disk) were used as positive controls for bacteria and ketoconazole for fungi. The screening was performed according to the standard procedure [25, 26]. In view of the highly pathogenic nature of Gram-negative bacteria, we evaluate the antimicrobial activity on more number of Gram-negative bacteria than Gram-positive bacteria. Zone of inhibition values of the compounds (5a–g) and the standards are presented in Table 1. From the antimicrobial data, we observed that except 5a, all the compounds (5b–g) possess activity at 100 μg/disk on both bacterial and fungal species. Meltem ceylan unlusoy et al. reported the synthesis and antimicrobial activity of 2,4-thiazolidione derivatives at 3000 μg/mL [27]. Our newly synthesized compounds antimicrobial activity is satisfactory than their results.

Anticancer activity

In vitro anticancer activity was carried out at National Cancer Institute, Bethesda, USA [28]. Among all the compounds, 5a, 5c, 5d, and 5f were selected and initially screened at a single high dose of 10^{-5} M concentration. The entire 60 human cancer cell lines were organized into nine sub-panels derived from

Table 1 In vitro antibacterial activity of thiazolidine2,4 dione derivatives (5a–g)

S. no	Compound	V.c.	K.p.	S.a.	C.a.	S.t.	E.c.
1	5a	–	–	17	21	22	
2	5b	16	11	14	18	16	12
3	5c	20	21	21	21	22	27
4	5d	19	–	11	20	14	23
5	5e	13	14	18	19	20	22
6	5f	15	–	10	16	13	15
7	5g	22	21	19	22	12	28
8	Am	–	–	38	–	–	–
9	Ka	39	37	–	40	15	
10	Kt	–	–	28	–	–	

Ampicillin (10 μg/disk), kanamycin (30 μg/disk), and ketoconazole (25 μg/disk) were used as positive references. Compounds 5a–g (100 μg/disk)

Am ampicillin, Ka kanamycin, Kt ketoconazole, V.c. *Vibrio cholera*, K.p. *Klebsiella pneumoniae*, S.a. *Staphylococcus aureus*, C.a. *Candida albicans*, S.t. *Salmonella typhi*, E.c. *Escherichia coli*

Table 2 Growth percent and growth inhibition (GI %) in single dose assay (10^{-5} M) for compound 5a

Panel/cell line	Growth percent	Growth inhibition (GI %)
Leukemia		
CCRF-CEM	90.38	9.62
HL-60 (TB)	91.76	8.24
K-562	84.80	15.2
MOLT-4	0.99	19.03
RPMI-8226	96.32	3.68
SR	83.79	16.21
Non-small cell lung cancer		
A549/ATCC	101.37	−1.37
HOP-62	94.81	5.19
HOP-92	75.24	24.76
NCI-H226	94.34	5.66
NCI-H23	98.96	1.04
NCI-H322M	96.54	3.46
NCI-H460	97.69	2.31
NCI-H522	103.10	−3.1
Colon cancer		
COLO 205	104.40	−4.4
HCC-2998	106.34	−6.34
HCT-116	91.74	8.26
HCT-15	93.21	6.79
HT29	99.97	0.03
KM12	102.68	−2.68
SW-620	98.44	1.56
CNS Cancer		
SF-268	95.09	4.91
SF-295	96.60	3.4
SF-539	99.44	0.56
SNB-19	95.40	4.6
SNB-75	86.07	13.93
U251	101.27	−1.27
Melanoma		
LOX IMVI	83.72	16.28
MALME-3M	93.97	6.03
M14	87.81	12.19
MDA-MB-435	98.19	1.81
SK-MEL-2	107.85	−7.85
SK-MEL-28	100.86	−0.86
SK-MEL-5	100.35	−0.35
UACC-257	92.69	7.31
UACC-62	92.49	7.51
Ovarian cancer		
IGROV1	100.47	−0.47
OVCAR-3	98.33	1.67
OVCAR-4	96.51	3.49
OVCAR-5	92.07	7.93
OVCAR-8	103.09	−3.09
nine different human cancer types: leukemia, lung, colon, CNS, melanoma, ovarian, renal, prostate, and breast cancer cell lines. Output from the single-dose screen is reported as a graph of mean growth percent of the treated cells (Supplementary file). From the graph, both growth inhibition values (between 0 and 100) and cytotoxicity values (less than 0) can be detected. The results were analyzed by COMPARE program [29].

Among the four compounds selected for the first dose, compound 5d has shown significant growth inhibition against a variety of cell lines at a single dose of 10^{-5} M concentration and it has been further evaluated for five dose screening at five different minimal concentrations against 60 full cell lines. Dose-response curves of compound 5d were created by plotting cytotoxic effect against the log$_{10}$ of the drug concentration for each cell line (Fig. 1; Supplementary data). Cytotoxic effects of each compound were determined as GI$_{50}$, TGI, and LC$_{50}$ values, which represent the molar drug concentration required to cause 50% growth inhibition, concentration required to cause total growth inhibition, and the concentration that kills 50% of the cells, respectively. The compound 5d has exhibited broad spectrum of growth inhibition activity against nine tumor cell lines with average GI$_{50}$ values (MGMID) 1.18–2.44 μM namely, leukemia SR (GI$_{50}$: 2.04 μM), non-small cell lung cancer NCI-H522 (GI$_{50}$: 1.36 μM), colon cancer COLO 205 (GI$_{50}$: 1.64 μM), CNS cancer SF-539 (GI$_{50}$: 1.18 μM), melanoma LOX IMVI (GI$_{50}$: 2.04 μM), ovarian cancer IGROV1 (GI$_{50}$: 2.44 μM), and breast cancer MCF7 (GI$_{50}$: 3.02 μM).

Table 2 (continued)

Panel/cell line	Growth percent	Growth inhibition (GI %)
NCI/ADR-RES	107.07	-7.07
SK-OV-3	84.50	15.5
Renal cancer		
786-0	89.50	10.5
A498	65.18	34.82
ACHN	87.17	12.83
CAKI-1	97.99	2.01
RXF 393	108.84	-8.84
SN12C	93.20	6.8
UO-31	82.72	17.28
Prostate cancer		
PC-3	90.28	9.72
DU-145	113.92	-13.92
Breast cancer		
MCF7	108.29	-8.29
MDA-MB-231/ATCC	89.17	10.83
BT-549	90.00	10.00
T-47D	80.32	19.68
MDA-MB-468	105.27	-5.27

Table 3 Growth percent and growth inhibition (GI %) in single dose assay (10^{-5} M) for compound 5f (NSC: 768618/1)

Panel/cell line	Growth percent	Growth inhibition (GI %)
Leukemia		
CCRF-CEM	92.91	7.09
HL-60 (TB)	100.43	-0.43
K-562 0.99	86.27	13.73
MOLT-4	97.05	2.95
RPMI-8226	98.02	1.98
SR	96.99	3.01
Non-small cell lung cancer		
A549/ATCC	101.06	-1.06
HOP-62	85.16	14.84
HOP-92	85.37	14.63
NCI-H226	110.35	-10.35
NCI-H23	108.79	-8.79
NCI-H322M	93.69	6.31
NCI-H460	99.75	0.25
NCI-H522	106.49	-6.49
Colon cancer		
COLO 205	104.69	-4.69
HCC-2998	103.42	-3.42
HCT-116	102.17	-2.17
HCT-15	97.61	2.39
HT29	99.92	0.08
KM12	103.18	-3.18
SW-620	102.06	-2.06
CNS cancer		
SF-268	97.33	2.67
SF-295	90.77	9.23
SF-539	98.86	1.14
SNB-19	98.19	1.81
SNB-75	85.90	14.1
U251	103.08	-3.08
Melanoma		
LOX IMVI	92.59	7.41
MALME-3M	101.09	-1.09
M14	103.05	-3.05
MDA-MB-435	94.31	5.69
SK-MEL-2	101.81	-1.81
SK-MEL-28	101.85	-1.85
SK-MEL-5	104.79	-4.79
UACC-257	100.41	-0.41
UACC-62	99.69	0.31
Ovarian cancer		
IGROV1	103.17	-3.17
OVCAR-3	95.04	4.96
OVCAR-4	102.79	-2.79
OVCAR-5	110.45	-10.45
OVCAR-8	109.10	-9.1
1.87 μM), melanoma SK-MEL-2 (GI50: 1.64 μM), ovarian cancer OVCAR-3 (GI50: 1.87 μM), renal cancer RXF 393 (GI50: 1.15 μM), prostate cancer PC-3 (GI50: 1.90 μM), and breast cancer MDA-MB-468 (GI50: 1.11 μM) cell lines (Table 6). Out of these nine different cell lines, compound 5d was highly active on breast cancer MDA-MB-468 (GI50: 1.11 μM) cell lines. These findings may have an impact on further investigations in this field in search of potent anticancer agents.

DNA cleavage studies

DNA cleavage studies were analyzed by agarose gel electrophoresis method [30]. Test samples (1 mg/mL) were prepared in DMF. The samples (25 μg) were added to the isolated pUC-19 plasmid. The samples were incubated for 2 h at 37 °C and then 20 μL of DNA sample (mixed with bromophenol blue dye at 1:1 ratio) was loaded carefully into the electrophoresis chamber wells along with standard DNA marker containing TAE buffer (4.84 g Tris base, pH 8.0, 0.5 M EDTA/1 L) and finally loaded on agarose gel and passed the constant 50 V of electricity for 2 h. Removed the gel and stained with 10 μg/mL ethidium bromide for 10–15 min and the bands observed under UV transilluminator and photographed to determine the extent of DNA cleavage and the results were compared with standard DNA marker.

Table 3 (continued)

Panel/cell line	Growth percent	Growth inhibition (GI %)
NCI/ADR-RES	84.60	15.4
SK-OV-3		
Renal cancer		
786-0	99.55	0.45
A498	75.79	24.21
ACHN	102.38	−2.38
CAKI-1	97.43	2.57
RXF 393	113.31	−13.31
SN12C	99.13	0.87
UO-31	88.54	11.46
Prostate cancer		
PC-3	101.27	−1.27
DU-145	103.86	−3.86
Breast cancer		
MCF7	100.07	−0.07
MDA-MB-231/ATCC	107.50	−7.50
BT-549	98.58	1.42
T-47D	93.68	6.32
MDA-MB-468	115.87	−15.87

Table 4 | Growth percent and growth inhibition (GI %) in single dose assay (10−5 M) for compound 5d (NSC: 768619/1)

Panel/cell line	Growth percent	Growth inhibition (GI %)
Leukemia		
CCRF-CEM	−12.19	Cytotoxic
HL-60 (TB)	8.72	91.28
K-562 0.99	5.25	94.75
MOLT-4	4.20	95.80
RPMI-8226	19.74	80.26
SR	1.70	98.30
Non-small cell lung cancer		
A549/ATCC	3.44	96.56
HOP-62	11.22	88.78
HOP-92	−13.48	Cytotoxic
NCI-H226	16.17	83.83
NCI-H23	6.57	93.43
NCI-H322M	41.47	58.53
NCI-H460	29.71	70.29
NCI-H522	−23.00	Cytotoxic
Colon cancer		
COLO 205	−97.93	Cytotoxic
HCC-2998	41.62	58.38
HCT-116	6.47	93.53
HCT-15	11.35	88.65
HT29	15.01	84.99
KM12	17.59	82.41
SW-620	8.71	91.29
CNS cancer		
SF-268	53.95	46.05
SF-295	21.96	78.04
SF-539	45.27	54.73
SNB-19	53.63	46.37
SNB-75	40.50	59.50
U251	10.79	89.21
Melanoma		
LOX IMVI	−51.42	Cytotoxic
MALME-3M	−2.39	Cytotoxic
M14	28.77	71.23
MDA-MB-435	20.79	79.21
SK-MEL-2	5.71	94.29
SK-MEL-28	50.13	49.87
SK-MEL-5	49.54	50.46
UACC-257	36.39	63.61
UACC-62	28.96	71.04
Ovarian cancer		
IGROV1	35.88	64.12
OVCAR-3	12.68	87.32
OVCAR-4	0.26	99.74
OVCAR-5	76.42	23.58
OVCAR-8	−2.72	Cytotoxic
NCI/ADR-RES	32.37	67.63
SK-OV-3	71.48	28.52
Renal cancer		
786-0	22.97	77.03
A498	−10.26	Cytotoxic
ACHN	23.81	76.19
CAKI-1	0.59	99.41
RXF 393	28.62	71.38
SN12C	45.54	54.46
UO-31	−36.14	Cytotoxic
Prostate cancer		
PC-3	−6.12	Cytotoxic
DU-145	27.90	72.10
The DNA cleavage activities of the compounds 5a–g are presented in (Figs. 2 and 3). It was observed that control DNA is having three forms of DNA (form I, II, and III) in the presence of 5 mM FeSO$_4$ the complete DNA cleavage was observed; however, compounds 5a–g partially cleaved the DNA. The observations made in DNA binding study of synthesized compounds interacting with *E. coli* DNA reveal the significant intercalative mode of interaction of the compounds was observed; concentration and integrity of control are much better than screened compounds. At 50 μg/mL concentration, compounds 5a and 5f possess less DNA cleavage, partial cleavage was observed for other series of compounds, with the increasing the concentration to three-fold (150 μg/mL) complete linear DNA (form III) cleavage and partially cleavage was observed on supercoiled DNA (form I).

DNA cleavage studies of all the synthesized compounds were correlating with the antimicrobial activity of the compounds, exclusively compound 5a partially cleave the DNA and it was found that analog 5a possess less antimicrobial activity, where as compounds 5b–5e possessed marked antimicrobial activity and as well as DNA cleavage activity. It was observed that antimicrobial activity of these compounds may be due to the DNA cleavage.

Materials and methods

All the reagents were procured from Aldrich/Merck and used without further purification. Melting points were determined in open capillaries using Stuart SMP30 apparatus and are uncorrected. The progress of the reactions as well as purity of the compounds was monitored by thin layer chromatography with F254 silica-gel precoated sheets using hexane/ethyl acetate (7/3) as eluent. IR spectra were recorded on Perkin-Elmer 100S spectrophotometer using KBr pellet. NMR spectra were recorded on Bruker 400 MHz spectrometer using DMSO-d_6 as solvent and TMS as internal standard. Elemental analyses were performed on a Carlo Erba modal EA1108 and mass spectra were recorded on a Jeol JMSD-300 spectrometer.
General synthetic procedure for the preparation of compounds (5a–g)

A mixture of 4-hydroxybenzyledenethiazolidines-2,4-dione (3) (0.3 g, 1.3 mM) and each of the tertiary alkylamino chloro hydrochloride derivative (1.3 mM) (4a–g) in acetone (10 mL) containing backed K2CO3 (0.54 g, 3.9 mM) was refluxed for 5–6 h. After this time, the mixture was poured onto crushed ice. The precipitate thus obtained was filtered and washed with water and recrystallized from a mixture of ethanol and acetic acid.

Spectral data of compounds 5a–g:

5-(4-(3-piperidin-1yl)-propoxy)benzylidene)hiazolidine-2,4-dione (5a):

White solid, Yield 73 %, M. P 255–260 °C; IR (KBr, νmax, cm⁻¹): 3380, 3054, 2936, 1732, 1696, 1539, 1442, 1299, 1202; ¹H NMR (300 MHz, DMSO-d6 δ ppm): 1.30 (m, 6H), 1.70–1.73 (t, J = 4.5 Hz, 2H), 2.24 (m, 4H), 2.51 (m, 2H), 3.69 (m, 2H), 6.92 (d, J = 8.4 Hz, 2H), 7.49 (d, J = 8.4 Hz, 2H), 7.81 (s, 1H), 10.2 (s, 1H); ¹³C NMR(75 MHz, DMSO-d6 δ ppm): 20.71 (CH₃), 23.60(CH₂), 24.03 (CH₂), 25.49 (CH₂), 53.97 (2 x CH₂), 56.16 (CH₂), 59.71(CH₂), 116.3 (2 x CH), 123.8 (C), 132.11(C) 132.7(CH), 133.7 (2 x CH), 160.1(C) 165.9 (C = O), 167.4 (C = O); MS ESI (M+1): 346.8 (30 %).

For the M. F C₁₈H₂₂N₂O₃S, M. Wt 346.1; Elemental analysis: Anal. Calcd for C₁₈H₂₂N₂O₃S: C %, 62.40; H %, 6.40; N %, 8.09. Found C %, 62.49; H %, 6.35; N %, 8.16.

5-(4-(2-(dimethylamino)ethoxy)benzylidene)hiazolidine-2,4-dione (5b): White solid, Yield 77 %, M. P 245–250 °C; IR (KBr, νmax, cm⁻¹): 3410, 3027, 2927, 1738, 1689, 1550, 1460, 1270, 1215; ¹H NMR (300 MHz, DMSO-d6 δ ppm): 2.12 (s, 6H), 2.46 (t, 2H), 3.73 (t, 2H), 6.92 (d, J = 8.4 Hz, 2H), 7.49 (d, J = 8.4 Hz, 2H), 7.85 (s, 1H), 10.35 (s, 1H); ¹³C NMR(75 MHz, DMSO-d6 δ ppm): 45.0 (CH₃), 45.3 (CH₃), 57.3(CH₂), 65.9(CH₂), 115.3(C), 116.3(2xCH), 123.8(C), 132.2 (2xCH), 132.9(CH), 160.1(C), 165.7(C = O), 167.3 (C = O); MS ESI (M+1): 293 (80 %) For the M. F C₁₄H₁₆N₂O₃S, M. Wt 292; Elemental analysis: Analy. Calcd for C₁₄H₁₆N₂O₃S: C %, 57.52; H % , 5.52; N %, 9.58. Found C %, 57.64; H %, 5.41; N %, 9.67.

5-(4-(2-morpholinoethoxy)benzylidene)hiazolidine-2,4-dione (5c): White solid, Yield 70 %, M. P 250–255 °C; ¹H-NMR (300 MHz, DMSO-d6 δ ppm): 2.39 (m, 4H), 2.53 (m, 4H), 3.51 (m, 2H), 3.89 (t, 2H), 6.92 (d, J = 8.4 Hz, 2H), 7.49 (d, J = 8.4 Hz, 2H), 7.89 (s,
Table 6 GL50, TGI, and LC50 values of compound 5d (five-dose level) against 60 human cancer cell lines

Panel/cell line	GL50 (μM)	MGMTID (μM)	TGI (μM)	LC50 (μM)
Leukemia				
CCRF-CEM	2.53	6.91	>100	
HL-60 (TB)	2.23	9.43	>100	
K-562	3.14	2.43	10.8	>100
MOLT-4	2.10	8.53	>100	
RPMI-8226	2.57	8.48	>100	
SR	2.04	5.94	41.3	
Non-small cell lung cancer				
A549/ATCC	1.74	6.55	>100	
HOP-62	2.86	6.66	86.2	
NCI-H226	2.29	7.11	>100	
NCI-H232	2.30	2.68	5.76	>100
NCI-H322M	4.87	>100	>100	
NCI-H460	3.38	13.8	>100	
NCI-H522	1.36	3.05	6.84	
Colon cancer				
COLO 205	1.64	3.45	7.28	
HCC-2998	2.89	6.78	>100	
HCT-116	2.50	6.85	>100	
HCT-15	1.79	2.21	4.90	66.5
HT29	2.03	7.91	>100	
KM12	2.16	5.22	>100	
SW-620	2.46	6.81	>100	
CNS cancer				
SF-268	3.50	20.0	>100	
SF-295	2.26	6.17	>100	
SF-539	1.87	3.07	4.09	8.96
SNB-19	5.42	76.2	>100	
SNB-75	3.27	18.8	>100	
U251	2.12	5.31	29.2	
Melanoma				
LOX IMVI	1.93	3.77	7.35	
MALME-3M	1.77	7.27	>100	
M14	2.12	4.81	49.4	
MDA-MB-435	1.97	5.21	>100	
SK-MEL-2	1.64	2.10	4.32	18.5
SK-MEL-28	3.30	>100	>100	
SK-MEL-5	1.70	3.38	6.73	
UACC-257	2.72	9.68	>100	
UACC-62	1.80	3.85	8.23	
Ovarian cancer				
IGROV1	2.94	9.14	>100	
OVCAR-3	1.87	4.39	13.4	
OVCAR-4	2.08	20.6	>100	
OVCAR-5	2.59	2.77	7.39	>100
OVCAR-8	2.22	5.65	70.0	
NCI-ADR-RES	3.03	8.76	>100	
SK-OV-3	4.70	>100	>100	
Renal cancer				
786-0	2.61	11.6	>100	
A498	1.91	5.89	>100	
ACHN	1.70	5.78	57.7	
CAKI-1	2.18	2.08	7.86	>100
RXF 393	1.15	5.27	>100	
SN12C	3.26	>100	>100	
UO-31	1.76	7.18	>100	
Prostate cancer				
PC-3	1.90	2.51	6.09	>100
DU-145	3.12	16.0	>100	
Breast cancer				
MCF7	2.83	21.0	>100	
MDA-MB-231/ATCC	2.01	5.04	>100	

Table 6 (continued)

Panel/cell line	GL50 (μM)	MGMTID (μM)	TGI (μM)	LC50 (μM)
Non-small cell lung cancer (continued)				
HS 578T	3.55	2.35	19.9	>100
BT-549	1.99	5.05	28.2	
T-47D	2.63	9.74	>100	
MDA-MB-468	1.11	5.52	>100	

Light yellow solid, Yield 73 %, M. P 270–275 °C; 1H NMR (300 MHz, DMSO-d6 δ ppm): 1.65 (m, 4H), 2.60 (m, 4H), 2.64 (m, 2H), 3.73 (m, 2H), 6.92 (d, J = 8.4 Hz, 2H), 7.48 (s, J = 8.4 Hz, 2H), 7.89 (s, 1H), 10.50 (s, 1H); 13C NMR

Fig. 2 DNA Cleavages studies of compounds 5a–g at 50 μg/mL concentration. Form I: supercoiled DNA, form II: nicked DNA, form III: linear DNA. Sv20-5a, SV21-5c, SV22-5d, SV23-5e, SV24-5g, SV25-5b, SV26-5f
Conclusions

In summary, we have synthesized a new class of 5-(4-alkylbenzylidene)thiazolidine-2,4-dione derivatives (5a-g) by employing a simple procedure. In our analysis on biological activities, we observed all the compounds displayed marked activity especially analogs 5d and 5g has shown potent anticancer activity and antimicrobial activities, respectively. These compounds are better candidates for novel anticancer and antimicrobial agents. We hope this work will contribute to further studies on thiazolidine-2,4-dione derivatives.

Acknowledgments The authors wish to thank NCI/NIH, Bethesda, USA, for performing the antitumor testing of the synthesized compounds, and one of the authors (RG) is thankful to the Ministry of Human Resource Development, New Delhi for providing the fellowship.

Compliance with ethical standards

Conflict of interest The authors declare that they have no competing interests. The authors alone hereby stand responsible for the contents of this scientific paper.

Open access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original authors and the source are credited.

Ethical statements This article does not contain any studies with human participants or animals performed by any of the authors.

References

1. Albrand G, Terret C (2008) Early breast cancer in the elderly: assessment and management considerations. Drugs Aging 25:35–45
2. Zheng H, Dong Y, Lin L, Sun B, Liu L, Yuan H, Lou H (2016) Novel benz[a]quinolizidine analogs induce cancer cell death through paraptosis and apoptosis. J Med Chem 59:5063–5076
3. Salton MRJ, Kim KS (1996) Structure in: Baron’s medical microbiology (Baron S et al., eds) (4th ed)
4. Frisk-Holmberg M, van der Kleijn E (1972) The relationship between the lipophilic nature of tricyclic neuroleptics and antidepressants, and histamine release. Eur J Pharmacol 18:139
5. Johnston AD. U. S. Pat. Appl. US.2003215635 (2003) Materials and one of the authors (RG) is thankful to the Ministry of Human Resource Development, New Delhi for providing the fellowship.

J Chem Biol (2016) 9:97–106

Fig. 3 DNA Cleavages studies of compounds 5a-g at 150 µg/mL concentration. Form I: supercoiled DNA, form II: nicked DNA, form III: linear DNA. Sv20-5a, SV21-5c, SV22-5d, SV23-5e, SV24-5g, SV25-5b, SV26-5f

(100 MHz, DMSO-d6 δ ppm): 23.13 (2 × CH2), 52.37 (2 × CH2), 53.49(CH2), 60.8 (CH2), 116.36 (2 × CH), 116.47(C), 123.78(C) 132.56(2 × CH), 133.44(CH), 160.16(C), 165.72(C = O), 167.30(C = O); MS ESI (M+1): 319 (100 %). For the M. F C16H18N2O3S, M. Wt 318; Elemental analysis: Anal. Calcd for C16H18N2O3S: C %, 60.36; H %, 5.70; N %, 8.80. Found C %, 60.25; H %, 5.78; N %, 8.71.

5-(4-(2-(diethylamino)ethoxy)benzylidene)thiazolidine-2,4-dione (5f):

White solid, Yield 68 %, M. P 250–255 °C; 1H NMR (300 MHz, DMSO-d6 δ ppm): 1.23 (m, 6H), 2.34 (m, 4H), 2.48 (t, 2H), 3.83 (t, 2H), 6.94 (d, J = 8.4 Hz, 2H), 7.50 (d, J = 8.4 Hz, 2H), 7.90 (s, 1H), 10.41 (s, 1H); 13C-NMR (75 MHz, DMSO-d6): δ 14.2 (2 × CH3), 49.52, (2 × CH2), 55.52(CH2), 69.51(CH2), 115.72(C), 116.31(2 × CH), 123.82(C), 132.75 (2 × CH), 133.56 (CH), 160.32(C), 165.82, (C = O), 167.52 (C = O); MS ESI (M+1): 321 (80 %). For the M. F C16H18N2O3S, M. Wt 320; Elemental analysis: Anal. Calcd for C16H18N2O3S: C %, 58.80; H %, 6.29; N %, 8.74. Found C %, 59.87; H %, 6.38; N %, 8.81.

5-(4-(2-(dimethylamino)propoxy)benzylidene)-thiazolidine-2,4-dione (5g):

White solid, Yield 75 %, M. P 225–230 °C; 1H-NMR (300 MHz, DMSO-d6 δ ppm): 1.12 (d, 3H), 2.25 (s, 6H), 3.32 (m, 1H), 3.89 (m, 1H), 6.73 (d, J = 8.4 Hz, 2H), 7.19 (s, J = 8.4 Hz, 2H), 7.84 (s, 2H), 10.30 (s, 1H); 13C-NMR (75 MHz, DMSO-d6): δ 15.2 (CH3), 49.52, (2 × CH3), 58.52(CH2), 69.51(CH2), 115.72(C), 161.32 (2 × CH), 123.82(2 × CH), 132.75 (2 × CH), 133.56 (CH), 160.32(C), 165.82, (C = O), 167.52 (C = O); MS ESI (M+1): 307 (50 %). For the M. F C16H18N2O3S, M. Wt 306; Elemental analysis: Anal. Calcd for C16H18N2O3S: C %, 58.80; H %, 5.92; N %, 9.14. Found C %, 58.89; H %, 5.81; N %, 9.21.
oxo-2-thioxothiazolidin-3-yl)acetic acid derivatives and evaluation of their cytotoxicity and induction of apoptosis in human leukemia cells. Bioorg Med Chem 17:2576–2584
11. Azizmohammadi M, Khoobi M, Ramazani A, Esmi S, Zarrin A, Firuzi O, Miri R, Shafieee A (2013) 2H-chromene derivatives bearing thiazolidine-2,4-dione, rhodanine or hydantoin moieties as potential anticancer agents. Eur J Med Chem 59:15–22
12. Romagnoli R, Baraldi PG, Salvador MK, Encarnacion Camacho M, Balzarini J, Bermejo J, Estévez F (2013) Anticancer activity of novel hybrid molecules containing 5-benzylidene thiazolidine-2,4-dione. Eur J Med Chem 62:544–557
13. Barros FWA, Gonçalves Silva T, Galdino da Rocha Pitta M, Bezerra DP, Costa-Lotufo LV, De Moraes MO, Pessoa C, De Moura MAFB, De Abreu FC, de Lima Md CA, Lins Galdino S, Da Rocha Pitta I, Goulart MOF (2012) Synthesis and cytotoxic activity of new acridine-thiazolidine derivatives. Bioorg Med Chem 20:3533–3539
14. Nitsche C, Schreier VN, Mira A, Behnam M, Kumar A, Bartenschlager R, Klein CD (2013) Thiazolidinone–peptide hybrids as dengue virus protease inhibitors with antiviral activity in cell culture. J Med Chem 56:8389–8403
15. Pattan S, Kedar M, Pattan J, Dengale S, Snap M, Gharate U, Shinde P, Kadam S (2012) Synthesis and evaluation of some novel 2,4 thiazolidine dione derivatives for antibacterial, antitubercular and antidiabetic derivatives. Indian J Chem 51B:1421–1425
16. Srebnik M, Polacheck I, Steinberg D, Jabbour A, Sionov E (2010) Novel Anti-Biofilm Agents. WO2010/058402 A1
17. Ponnuchamy S, Kanchithalaivan S, Kumar RR, Ali MA, Choon TS (2014) Antimycobacterial evaluation of novel hybrid aryldene thiazolidine-2,4-diones. Bioorg Med Chem Lett 24:1089–1093
18. Asati V, Mahapatra DK, Bharti SK (2014) Thiazolidine-2,4-diones as multi-targeted scaffold in medicinal chemistry: potential anticancer agents. Eur J Med Chem 87:814–833
19. Chadda N, Bahia MS, Kaur M, Silakari O (2015) Thiazolidine-2,4-dione derivatives: programmed chemical weapons for key protein targets of various pathological conditions. Bioorg Med Chem 23: 2953–2974
20. Zidar N, Tomasic T, Sink R, Rupnik V, Kovac A, Turk S, Patin D, Blanot D, Martel CC, Dessen A, Premru MM, Zega A, Gobec S, Kiklje D (2010) Discovery of novel 5-benzylidenemethohdanone and 5-benzylidenethiazolidine-2,4-dione inhibitors of MurD ligase. J Med Chem 53:6584–6594
21. Kim BY, Ahn JB, Lee HW, Kang SK, Lee JH, Shin JS, Ahn SK, Hong CI, Yoon SS (2004) Synthesis and biological activity of novel substituted pyridines and purines containing 2,4-thiazolidinedione. Eur J Med Chem 39:443–447
22. Robert GG, Norman JL, John KQ, Michael JS, Michael WJU, Latifia Y (2000) Regiospecific reduction of 5-benzylidene-2,4-thiazolidinediones and 4-oxo-2-thiazolidinethiones using lithium borohydride in pyridine and tetrahydrofuran. Tetrahedron 56: 4531–4537
23. Chen H, Fan YH, Natarajan A, Guo Y, Iyasere J, Harbinski F, Luus L, Christ W, Aktas H, Halperin JA (2004) Synthesis and biological evaluation of thiazolidine-2,4-dione and 2,4-thione derivatives as inhibitors of translation initiation. Bioorg Med Chem Lett 14:5401–5405
24. Bruno G, Costantino L, Curinga C, Macari R, Monforte F, Nicolo F, Ottana R, Vigorita MG (2002) Synthesis and aldose reductase inhibitory activity of 5-arylidene-2,4-thiazolidinediones. Bioorg Med Chem 10:1077–1084
25. National Committee for Clinical Laboratory Standards (NCCLS) (1982) National Committee for Clinical Laboratory Standards, Villanovan, p 242
26. Linday ME (1962) Practical introduction to microbiology, E and F. N. 436. Spon Ltd., New York, p. p 17
27. Usoly MCU, Dundar OB, Altanlar N, Ertan R (2006) Synthesis and antimicrobial activity of some new 3-substituted benzyl-5-(4-chloro-2-piperidin-1-ylthiazole-5-yl-methylene)-thiazolidine-2,4-dione derivatives. Turk J Chem 30:355–360
28. Alley MC, Scudiero DA, Monks A, Hursey ML, Czerwinski MJ, Fine DL, Abbott BJ, Mayo JG, Shoemaker RH, Boyd MR (1988) Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res 48:589–601
29. Zaharevitz DW, Holbeck SL, Bowerman C, Svetlik PA (2002) Compare: a web accessible tool for investigating mechanisms of cell growth inhibition. J Mol Graph Model 20:297–303
30. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor