Геномика и предиктивная медицина

В.С. Баранов

Научно-исследовательский институт акушерства, гинекологии и репродуктологии имени Д.О. Отта, 199034, Российская Федерация, Санкт-Петербург, Менделеевская линия, 3

Аннотация

Достижения в понимании структурно-функциональной организации генома человека, расшифровка первичной последовательности ДНК в его клетке открыли новые, ранее недостижимые возможности медицинской генетики в понимании причин и механизмов наследственной патологии. По мере совершенствования методов молекулярного анализа генома внедрение генетики в медицину прогрессивно нарастает. Знание генома и его функций позволяет не только уточнить диагноз, но в значительной мере предвидеть наличие у человека наследственной предрасположенности к патологии, оценить вероятность развития того или иного заболевания. Данный подход составил основу нового направления медицинской генетики, получившего название предиктивной (предсказательной) медицины (ПМ). Прогресс ПМ прежде всего отражает успехи бурного развития молекулярно-генетических методов, новые возможности изучения структуры и функций генома. Менее чем за 15 лет после расшифровки генома медицинская генетика прошла сложный путь от анализа единичных генов до исследования всего генома, от сканирования генных ассоциаций до системной генетики мультифакторных заболеваний (МФЗ), от трансляционной до точной медицины, от идеи «генетического паспорта» до геномной электронной карты здоровья. Для современной практической медицины особенно актуальны разработка генетического паспорта, развитие прогностического генетического тестирования (ГТ) и карты репродуктивного здоровья.

Ключевые слова: предиктивная медицина, системная генетика мультифакторных заболеваний, точная медицина, генетический паспорт, электронная геномная карта здоровья, геномная карта репродуктивного здоровья, прогностическое генетическое тестирование.

Genomics and predictive medicine

Vladislav S. Baranov

D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproduction, 3, Mendeleevskaya liniya, Saint Petersburg, 199034, Russian Federation

Abstract

Progress in understanding of structural and functional human genome organization and deciphering primary DNA sequence in human cells allowed for hitherto unreachable new capabilities of medical genetics in identifying the causes and mechanisms of inherited and inborn pathology. Implementation of genetics into medicine is progressively advancing along with improvement of molecular analysis of genome. Knowledge of genome and its functions allows to provide more accurate diagnosis, predict, to a considerable extent, the presence of genetic predisposition of a person to pathology, and to assess the chances for developing one or another disease. This approach became the basis for a new area of medical genetics named predictive medicine. The progress of predictive medicine reflects success in tremendous upgrowth of molecular genetic methods and new capabilities of studying structure and functions of genome. Within less than 15 years after deciphering genome, medical genetics has travelled a long way from a single gene analysis to whole genome studies, from screening of genetic associations...
Введение

История предиктивной медицины (ПМ), ее расцвет, сменявшийся коротким периодом разочарования, последующее возрождение и бурное развитие, близкие и отдаленные перспективы кратко рассмотрены в данном обзоре.

Цель обзора: укрепить в сознании медицинских работников, студентов и сотрудников учреждений медицинского профиля необходимость углубленных знаний по медицинской генетике, обратить их внимание на важные для клинической медицины и практических врачей достижения в этом сравнительно новом направлении молекулярной медицины.

Рассшифровка генома человека в 2000 г. предопределила переход медицины на молекулярный (геномный) уровень. Генетические тесты, направленные на поиск новых методов диагностики, профилактики и лечения наследственных (НБ) и частых ненаследственных болезней, получили широкое распространение. Менее чем за 10 лет идентифицировано более 1500 генов, мутации которых ответственны за тысячи НБ.

В начале 90-х гг. XX в. стремительное развитие получили молекулярно-генетические исследования по изучению многих частых мультифакторных заболеваний (МФЗ), вызванных как генетическими вариациями, так и неблагоприятными факторами внешней среды. Существенный вклад в развитие этого важного направления внесли работы известных отечественных ученых-генетиков академиков Н.П. Бочкова, Е.К. Гинтера (Москва), В.П. Пузьрева (Томск), Е.И. Шварца (Санкт-Петербург), О.В. Евграфова, В.В. Носикова, Д.В. Залетаева (Москва), Э.К. Хуснутдиновой (Уфа) и др. [1—5].

Таким образом, ПМ являлась естественным итогом внедрения достижений генетики человека в медицину. Применяя вновь уникальность генома каждого человека и реальную возможность его анализа на любой стадии онтогенеза [6], ПМ a priori является не только предиктивной (предсказательной), но и персонализированной (индивидуальной) и превентивной (упреждающей). Отсюда очевидно ее полное название – предиктивная, превентивная, персонализированная медицина (ПППМ) или медицина З П [7]. Основные данные о геноме человека, мутациях, полиморфизмах и НБ суммированы в монографиях [7—10].

Таким образом, ПМ – раздел геномной медицины, направленный на досимптоматическое выявление лиц с высокой предрасположенностью к наследственным и частым МФЗ с целью их профилактики, диагностики и лечения.

Introduction

The article reviews a history of predictive medicine (PM), its progress with a brief period of disappointment, its further revival, rapid development, and the nearest and long-term prospects.

The review aims at increasing awareness of medical professionals, medical students, and specialists working in medical institutions of the need for in-depth knowledge of medical genetics and at drawing their attention to the essential achievements in this relatively new area of molecular medicine.

Deciphering human genome in 2000s predetermined the transition of medicine to the molecular (genomic) level. Genetic tests aimed at a search for new methods of diagnostics, prevention, and treatment for hereditary diseases (HD) and common non-hereditary diseases became widespread. Over 1,500 genes with mutations responsible for thousands of HD have been identified for less than 10 years.

The molecular-genetic studies of many common multifactorial diseases (MFD), caused by both genetic variations and unfavorable environmental factors, gained momentum during the early 1990s. The works of recognized national genetic scientists, full members of the Russian Academy of Sciences, N.P. Bochkov, E.K. Ginter (Moscow), V.P. Puzyrev (Tomsk), E.I. Schwarz (Saint Petersburg), O.V. Evgrafov, V.V. Nosikov, D.V. Zaletaev (Moscow), E.K. Khusnutdinov (Ufa), and others significantly contributed to the development of this priority research area [15].

From this perspective, PM became a natural outcome of implementing the advances of human genetics into medicine. Considering the uniqueness of every person’s genome and a realistic possibility for its analysis at any stage of ontogenesis [6], PM is a priori not only a predictive, but also a personalized (individual) and preventive (preemptive) discipline. Obviously, this consideration clarifies the meaning of its full name: Predictive, Preventive, and Personalized Medicine (PPPM) or 3P-Medicine [7]. Key data on human genome, mutations, polymorphisms, and HDs are summarized in the monographs [710].

In this regard, PM is a field of genomic medicine focusing on the presymptomatic identification of persons with a high predisposition to HDs and common MFDs and aiming at their prevention, diagnosis, and treatment.
Методическую основу ПППМ составляет тестирование генов «предрасположенности» — мутантных генов (аллелей), совместимых с ане- и постнатальным развитием, но приводящих при неблагоприятных условиях к различным заболеваниям [7, 8]. Первые 10 лет (2000–2010 гг.) были отмечены бурным внедрением ПППМ не только в отношении болезней, но и для решения различных проблем лечения, старения и спорта. Возникли и давно самостоятельно развиваются такие направления ПМ, как фармакогеномика, нутригеномика, токсикиогеномика, кардиогеномика, психогеномика, дерматогеномика, геномика старения, спортивная геномика и др. [8].

Успехи и разочарования

Исследования генома человека в течение первых лет XXI в. позволили не только идентифицировать гены большинства НБ, но и выявить некоторые редкие моногенные формы ряда цистических МФЗ, таких как остеопороз, болезни Паркинсона и Альцгеймера, некоторых форм сердечно-сосудистой патологии, ряда неврологических заболеваний [1]. Кроме того, эти же исследования обусловили рост ожидания, что недостаточную прогнозистскую силу генетического тестирования (ГТ) МФЗ. Информационно-генетический дефицит ГТ в отношении МФЗ получил название феномена «недостающей наследуемости» (missing heritability). Причины этого феномена были предметом оживленной дискуссии в 2009–2013 гг., и в настоящее время ее причины уже хорошо изучены (см. ниже) [11–14].

Концептуальную основу ПППМ, ее квинтэссенцию составляет генетический паспорт (ГП) — индивидуальная база ДНК-данных, которая отражает уникальные генетические особенности каждого человека, его предрасположенность к тем или иным наследственным и МФЗ. Отмечается, что ГП сегодня позволяет судить лишь о том, в какой мере человек относится к группе риска того или иного МФЗ, но не позволяет достоверно утверждать наличие/отсутствие данного МФЗ у конкретного человека в будущем. Важно также отметить, что ГП — отнюдь не первичная последовательность нуклеотидов (сиквенс) всего генома, но только тех его составляющих (фрагментов), для которых показана (доказана) причинная связь с патологией человека. Основные причины неопределенности кроются в сложности реальных межгенных и межгеновых взаимодействий в организм, в трудностях объективной оценки вклада апипенических и внешних факторов в возникновение МФЗ. Перспективы внедрения современных методов геномики в ПМ, ее будущее как предтчи точной (precision) медицины и ГП и как современного варианта электронной «Генетической карты здоровья» (Genetic Health Chart) [8] будут рассмотрены в заключительной части обзора. Специального внимания заслуживает анализ МФЗ с позиции системной генетики, то есть персонализированное изучение патогеномики МФЗ на всех уровнях реализации наследственной информации [15].

Таким образом, ПМ прошла трудный путь от тестирования единичных генов до исследования всего генома, от генных сетей и скрининга ассоциаций до полноценного секвенирования, от ГП с вариациями единичных генов до генетической карты здоровья, составленной на основе индивидуальных омикских исследований (геном, транскриптоте, метаболом). За последние 20 лет ПМ не только сильно изменилась и благополучно перенесла все сложности оживленной дискуссии в 2009–2013 гг., и в наст.
нности становления и внедрения новых технологий, но по мере прогресса ГТ стала важным источником оперативной информации для клинической и профилактической медицины.

История возникновения и развития ПМ находитесь в прямой зависимости от прогресса в развитии направлений науч о человеке. ПМ сегодня — признанная методология современной науки о геномной медицине. Очевидный параллелизм хронологии развития геномики и прогресс ПМ представлены в таблице 1.

Таблица 1. Просо прогресс молекулярных технологий и эволюция геномной медицины [5]

Хронология геномики человека	Эволюция медицинской генетики
1990–2003 — Проект «Геном человек» и идентификация генов моногенных болезней	Генетическая медицина — Моногенные болезни
1990–2003 — Human Genome Project and identification of genes involved in monogenic diseases	Genetic medicine — Monogenic diseases
2002–2006 — Проекта «Гаплоидный геном» (HapMap)	Геномная медицина — Мультифакторные болезни
2002–2006 — Human Genome Project (HapMap)	Genomic medicine — Multifactorial diseases
2002–2017 — Полиморфный анализ ассоциации (GWAS)	Молекулярная медицина — ДНК-диагностика
2002–2017 — Genome-wide association studies (GWAS)	Molecular medicine — DNA diagnostics
2009–2010 — Коммерциализация генетического тестирования	Предиктивная медицина — Индивидуальные базы ДНК-данных
2009–2010 — Commercialization of genetic testing and vanishing heritability	Predictive medicine — Individual DNA databases
2011 — настоящее время — Системная биология и генетика, геномоподобные МФЗ	Персонализированная медицина — Геномные профили МФЗ
2011 — present — Systems biology and genetics and multifactorial disease ontology	Personalized medicine — Genomic profiles of multifactorial diseases
2005 — настоящее время — Секвенирование нового поколения (NGS), New-generation sequencing (NGS).	Трансляционная медицина — Биомаркеры МФЗ
Programs for genome sequencing:	Translational medicine — Multifactorial disease biomarkers
2008–2021 — «1000 геномов»	Точная (доказательная) медицина — Электронная генетическая карта
2021–2018 — «Геномы английчан» — 100 000	High-precision (evidence-based) medicine — Electronic genetic chart
2015–2021 — «Российские геномы» — 2 500	2016 — настоящее время — Мировые геномные проекты — более 1 000 000
Programs for genome sequencing:	2015–2021 — The 2,500 Genomes Project — Russia
2016 — present — World Genomes Projects — over 1,000,000	

Уместно напомнить, что понятия ПМ и ГП родились на Стрелке Васильевского Острова в Санкт-Петербурге еще в 2000 г. [7]. Их внедрение в генетику происходит прогрессивно и постоянно [16]. Благодаря молекулярным методам возникла генетическая медицина (генные/моногенные болезни), а внедрение геномных технологий (GWAS, NGS), методов биоинформатики и омикского анализа определило смещение научных интересов в сторону мультифакторной патологии. Началась эра геномной медицины и ее производных: молекулярной, предиктивной, трансляционной, персонализированной и точной медицины. Информация о генах-кандидатах, а также о вариантах, ассоциированных с МФЗ, можно почерпнуть в различных базах и международных каталогах НБ: OMIM (http://www.omim.org).

Несмотря на генетическую идентичность, совпадение в парах близнецов за малым исключением (форма ушей, температура кожи, цвет волос и волос на груди) не превышает 70–80%. По мнению известного американского генетика Э. Ландера, в случае ПМ — исследовать методом NGS геном всех наследственных рисков для МФЗ, что привело к созданию сложных тестов, включающих генетический анализ, систематический анализ патогенетических факторов (аллелей) предрасположенности, вариантов, ассоциированных с МФЗ, и клиническое выявление, что привело к созданию сложных тестов, включающих генетический анализ, систематический анализ патогенетических факторов (аллелей) предрасположенности, вариантов, ассоциированных с МФЗ, и клиническое выявление.

It is worthy to note that the concepts of PM and GP came into existence on the Spit of Vasilievsky Island in Saint Petersburg back in 2000s [7]. Their introduction to genetics has been occurring progressively and continuously [16]. Genetic medicine focusing on genetic/monogenic diseases emerged due to the development of molecular methods, whereas implementation of genomic technologies such as genome-wide association studies (GWAS), new-generation sequencing (NGS), bioinformatics methods, and omics analysis resulted in the shift of research interests towards multifactorial pathology. The era of genomic medicine and its derivatives including molecular, predictive, translational, personalized, and precision medicine began. Information on candidate genes and variants associated with MFDs may be obtained from the various databases and international catalogues: OMIM (http://www.omim.org).
цвет глаз, кожи, волос) находится в пределах 70–80%, а для типичных, наиболее частых МФЗ (диабет, атеросклероз, гипертония) — 40–45%. С большей вероятностью это означает, что при тестировании даже всех известных генетических факторов (аллелий) предрасположенности окончательная оценка наследственного риска МФЗ не достигнет 100% и не может превысить частоту совпадения фенотипических признаков у одной из двойцов.

Следовательно, сложные взаимодействия генотипа и фенотипа в процессе онтогенеза являются основной причиной трудностей интерпретации результатов ГТ МФЗ. По мнению известного американского генетика Э. Ландера, исследователь, с разгадкой результатов ГТ МФЗ можно уподобить гордиеву узлу, который можно развязать, только разрубив его, а в случае ПМ — исследовать методом NGS геномы большого числа пациентов с точно установленным диагнозом и с подробными результатами лабораторных и клинических исследований [17]. Для хранения больших массивов данных создаются крупные коллекции биологических образцов, так называемых биобанков. Считается, что широкое внедрение метода NGS позволит идентифицировать новые гены-кандидаты и патогенетически важные мутации. Новые подходы NGS позволят глубоко и комплексно анализировать закономерности нарушений, как вариации числа копий (copy number variations — CNV). В США был создан Центральный институт по исследованию пациентов (Patient Centered Outcomes Research Institute – PCORI), цель которого совместить медицинские карты больных с результатами их лабораторных анализов, с данными их персональных геномов для улучшения качества диагностики, профилактики и лечения частых заболеваний. В 2015 г. при участии и с благословения президента США Б. Обамы в США была запущена программа «Точная медицина» (Precision Medicine). По мнению Ф. Коллинза, результаты исследования на такой большой группе позволят получить доказательства реальности концепции точной медицины».

Идеологическим продолжением проекта «Точная медицина» является американский проект “All of Us” (https://allofus.nih.gov/news-events) or “Self-Made Medicine” are the ideological continuation of Precision Medicine Project. They aim at solving the tasks of personalized medicine. Their goal consists in a search for and interpretation of genomic and medical data. The greatest American universities are involved in the project including Baylor College of Medicine, Johns Hopkins University, University of Texas, Washington University, and University of Cambridge. The projects comprise complete data on health of volunteers undergoing testing for 59 genes involved in severe HD.

The European Association for Predictive, Preventive and Personalized Medicine was established in the countries of European Union in 2015. The society published the program “Personalized Medicine for the European citizen - towards more precise medicine for the diagnosis, treatment and prevention of disease” (2015).

Implementation of new technologies (GWAS) for identification of candidate genes associated with MFDs has not resulted in an increase in the effectiveness of predictive testing [18]. An increase in the number of genes associated with MFDs stimulated the development of complex sets of genes or SNP-pannels used for GT of genetic predisposition. Some panels are currently used for testing on demand by the DNA sequencing method, but
ПМ и патогеномика МФЗ
Увеличение числа генов-кандидатов оказалось малопосредственным для повышения эффективности ГТ наследственной предрасположенности к МФЗ. Более перспективным является сравнительный анализ функциональной активности причинных генов в норме и при патологии на разных уровнях (геном, протеом, метаболом), который позволяет понять динамику патологического процесса — его патогеному (ландшафт) МФЗ [13, 22]. Каждая технология в отдельности не может описать весь патологический процесс.

PM and pathogenomics of MFDs
An increase in the number of candidate genes was found to be of little success in improving GT for inherited predisposition to MFDs. A comparative analysis of functional activities of causal genes at different levels (genome, proteome, and metabolome) allows for understanding the pathological process dynamics, i.e. MFD pathogenomics (landscape) is more promising [13, 22]. Each technology on its own cannot describe the entire pathological process.
Имеется много методов интегративного анализа результатов омиксных исследований (Network analysis) с помощью создания белковых взаимодействий, регуляторных и когнитивных сетей. Эти сети могут архангелы и позволяют выйти на реальные гены болезней и белковые маркеры МФЗ [19, 22]. Для этого проводят полногеномное исследование экспрессии митчих генов, найденных с помощью SNP анализа. Интеграция данных белкового анализа, секвенирования всего генома и SNP (GWAS) анализа используют для диабета типа 2, болезней сердца, аутизма. Интегративный подход с позиции системной генетики позволяет понять генетическую архитектонику МФЗ и становится доминирующим в современной ПМ. На современном этапе интегративная медицина обретает все необходимые качества точной медицины [23].

Согласно программе ЕОППМ, дорожная карта ПМ в качестве своего основного компонента включает массовые секвенирования геномов с целью выявления их популяционных, этнических, социальных и даже межэтнических особенностей. Посредством интегративного анализа экспрессии генов, белок-белковых взаимодействий формируются индивидуальные омиксные профили, которые прогностически прогнозируются на основе этих профилей и комплементарных результатам клинических и лабораторных анализов того же пациента. Наличие этих данных позволяет создать интегрированные генные сети пораженных органов и систем пациента и работать с ним в виртуальном мире. Следовательно, сами пациенты являются не только источником информации, но и пользователями данных ЕОППМ. Акцент «дорожной карты» на предпочтение работы не с самим пациентом, а с его «виртуальными моделями» заслуживает дальнейшего обсуждения, равно как и сам термин «точная медицина». Более адекватным представляется название «индивидуальная медицина».

Анализ итогов GWAS скрининга позволил прийти к заключению, что МФЗ не являются результатом сочетания неблагоприятных аллельных вариантов многих генов. Само по себе частые полиморфизмов генов-каналов МФЗ оказались недостаточными для объяснения возникновения МФЗ. Так, была опровергнута гипотеза «common diseases – common genes», предложенная для объяснения феномена исчезновения надежности. Предпринимались попытки объяснить развитие МФЗ наличием редких доминантных аллелей, встрающихся в геноме с частотой менее 0,5% и потому не улавливаемых методом GWAS. Так появилась гипотеза «редких» аллелей как причиних факторов МФЗ (rare variants – common diseases hypothesis) [24]. Однако для ее проверки необходимым был качественный анализ результатов секвенирования тысяч геномов здоровых и больных людей, и такие исследования уже проводятся в Великобритании, а также в странах Европы и Америки. Вместе с тем теоретические расчеты убеждают в непраливиности гипотезы редких аллелей в этиологии частых МФЗ [25, 26]. Согласно гипотезе S. Hussain, причиной МФЗ является биаллельная инактивация одного из причинных генов соответствующего МФЗ. Постулируется, что первая мутация (редессивный аллель) наследуется от одного из родителей, тогда как второй (слабый аллель) имеет соматическое происхождение и возникает еще в эмбриогенезе или вскоре после рождения. Важную роль в инактивации второго аллеля могут играть эпигенетические нарушения, в частности мутации, вызванные дезаминированием метил-цитозида.

Таблица 2.

Генетические платформы для предиктивного тестирования частых мультифакторных заболеваний	Генетические платформы для предиктивного тестирования частых мультифакторных заболеваний
Нейродегенерации	Dyslipidemia
Channelopathies	GeneSCKits Systemas Genomicos
Cardiomyopathy	200 genes
Pathology of aorta	207 genes
Diabetes mellitus	238 genes
Cardiac diseases	241 genes
Thymidin in CpG islands of structural genes	111 genes

There are many methods for integrative analysis of omics study results (Network Analysis) using the protein-protein interaction networks, regulatory networks, and gene co-expression networks, which narrow the search area and allow to identify causal genes of diseases and protein biomarkers of MFDs [19, 22]. Whole genome studies of the expression of causal genes identified based on SNP analysis are performed for this purpose. The integration of data from protein analysis, whole genome sequencing, and SNP analysis (GWAS) are used for type 2 diabetes mellitus, cardiac diseases, and autism. Integrative approach from the perspective of systems genetics allows to understand genetic architectonics of MFDs and becomes predominant in current PM. At the modern stage, integrative medicine acquires all necessary qualities of precision medicine [23].

According to EAO program, PM roadmap includes mass sequencing of genomes as an essential element aimed at elucidation of their population, ethnic, social, and even tissue-specific features. Integrative analysis of gene expression and protein-protein interactions allow to form individual omics profiles, which undergo clinical approbation, i.e. are compared with the results of clinical and laboratory tests in the same patient. The availability of these data allows to create the integrated gene networks of damaged organ systems in a patient and work with them in virtual reality. Therefore, patients themselves are both information source and users of PPPM data. Roadmap focus on the preferred work with the virtual models of patients rather than with the patients themselves deserves a further discussion along with the term “precision medicine”. “Personalized medicine” is a more adequate term.

The analysis of GWAS screening outcomes allowed to conclude that MFDs are not the result of a superposition of disadvantageous allelic variants of many genes. The common polymorphisms of candidate MFD genes on their own are insufficient to explain the onset of MFDs. Indeed, the hypothesis “common diseases – common genes”, proposed to explain missing heritability phenomenon, was rejected. The attempts were made to explain the development of MFDs through the presence of rare dominant alleles present in the genome with a frequency less than 0.5%, which, therefore, could not be detected by GWAS. It led to establishing the hypothesis of rare alleles as the causal factors for MFDs (rare variants – common diseases hypothesis) [24]. However, testing this hypothesis requires a comparative analysis of results from sequencing thousands of genomes from healthy and diseased persons, and such studies are currently ongoing in the United Kingdom and countries of Europe and America. At the same time, theoretical considerations suggest inappropriateness of rare variant hypothesis in regard to the etiology of common MFDs [25, 26]. According to the hypothesis S. Hussain, a cause of MFD is a biallelic inactivation of one of causal genes related to MFD. It is postulated that the first mutation (recessive allele) is inherited from one of parents, whereas the other (weak allele) has a somatic origin and emerges in embryogenesis or soon after the birth. Epigenetic abnormalities, in particular, mutations caused by methyl-cytosine deamination to thymidine in CpG islands of the structural genes, may play...
на в тимидин в CpG-островках структурных генов. Итак, доминантные мутации структурных генов, сочетающие неблагоприятных аллей нескольких генов одного метаболического пути, а также гомозиготные мутации многочисленных рецессивных генов могут быть причиной разнообразия и высокой популяционной частоты различных МФЗ [26]. Исследование любого количественного признака, равно как и патогенеза МФЗ, невозможно без анализа функции генома, т.е. выяснения всех этапов реализации генетической информации на разных уровнях организации живой материи: молекулярном (ДНК, РНК), биохимическом (белки, функциональные белковые модули, метаболические пути), клеточном, межклеточном и др. [27].

Таким образом, для углубленного понимания МФЗ необходим переход от анализа отдельных составляющих патологического процесса (геном, транскрипт, метаболом и т. д.) к их обобщению [22].

Необходимость перехода естественных наук от анализа к синтезу, от "редукционизма к холизму" была обоснована еще в 1969 г. Л. Берталанфи, который предложил и математически обосновал "теорию систем", положенную в основу "системной биологии". Суть междисциплинарной науки, направленной на изучение и моделирование сложных взаимосвязей в биологических системах с позиции целого (холизм/режуцизм) [28–30]. Одним из ее направлений является система генетики, которая призвана изучать процессы реализации генетической информации, взаимосвязь генетических компонентов метаболических путей и функциональных модулей в развитии фенотипических признаков [22, 30]. Особенно перспективным на данном этапе представляется поиск взаимосвязей между эпигенетикой причинных генов и клиническими симптомами МФЗ. Уточнение структуры генных сетей, их экспрессии, свойств и взаимодействия продуктов причинных генов, состояние соответствующих метаболических путей лежат в основе молекулярной медицины.

Важным итогом исследований по ПМ является интеграция полученных результатов, их совмещение с клиническими данными, создание на этой основе биоинформационной модели заболевания, идентификация ключевых пусковых механизмов, идентификация ключевых молекул, идентификация метаболических путей, идентификация ключевых генов, идентификация ключевых белков, идентификация ключевых молекулярных и клеточных механизмов, идентификация ключевых генетических и других лабораторных тестов, направленных на выяснение особенностей и прогнозирования риска развития волокнистых заболеваний.

PM and systems genetics of MFDs

The PM studies essentially result in an integration of obtained data, their alignment with clinical data, creation of bioinformatics model of disease, and identification of key trigger mechanisms (molecular drivers), whose use is essential for prevention and target treatment of MFDs [25]. Wide implementation of systems genetics approaches and methods signifies the beginning of new stage of PM: translational (target) medicine.

New surge of interest in PM was caused by rapidly growing effectiveness of whole genome sequencing and implementation of NGS. Within a short period of time, the use of NGS allowed to perform genome sequencing of 1,500 residents of Europe and vigorously sequence millions of genomes of people living in the United Kingdom, North America, and China [22]. It is proposed that NGS will allow to solve the essential problems in PM, in particular, identify the new candidate genes for MFDs and detect new pathogenetically significant mutations: to perform qualitative and quantitative analysis of copy number variations (CNV), assess their contribution to MFD pathogenesis and individual genetic specificity of MFDs, and create new genetic classification of diseases.
Предполагается совместить результаты массового полногеномного секвенирования с экспрессией причинных генов, наружения которых является причиной болезни, предложить персонализированное лечение. Она включает не только кариотипирование супругов, но и их тестирование на скрытое носительство более 1,000 аутосомных заболеваний, включая семейные формы гиперхолестеринемии, наследственные раки, кардиомиопатии и др. Особое значение для прогноза репродуктивной

results of laboratory tests. An achievement of this global goal, which is so important for humanity, implies the following milestones:

- Creation of representative DNA biobanks and tissue samples from patients with various MFDs
- Identification of candidate genes and determination of MFD genetic profiles (GWAS, exome and genome sequencing)
- Comparative analysis of epigenetic regulation of candidate genes (methylation, spectra of regulatory miRNA, and expression profiles of candidate genes in health and disease)
- Development of computer software and bioinformatics models
- Determination of main metabolic pathways disrupted in various MFDs
- Search and identification of MFD biomarkers suitable for early diagnosis, treatment, and unbiased assessment of individual MFD risk

The proofs of main strategic PPPM principles will be acquired during the following five years, and, in ten years, PPPM will be included in clinical practice, and, possibly, it will achieve the level of personalized medicine.

Patient Centered Outcomes Research Institute (PCORI) has been established in the U.S. in 2013 aimed at aligning the medical charts of patients with the results of their laboratory tests and personal genome data to improve quality of diagnosis, prevention, and treatment of common diseases. NGS is currently the most important diagnostic method in rare diseases, but its contribution to PM of multifactorial pathology is certain.

Systems genetics opens the true way to overcoming this challenge. The analysis of expression and epigenetic profiles of causal genes, functional modules, epistasis effects, and gene-gene and protein-protein interactions according to the rules of systems genetics significantly expands capabilities of MFD diagnostics [19]. Omics technologies and omics-based integrative approach allow to get in-depth insights into the molecular mechanisms of MFD pathogenomics, identify the main metabolic pathways causing disease if disrupted, and offer personalized treatment. The results of genomic, transcriptomic, and proteomic analysis may provide the basis for electronic records of human health, GP, and family charts of reproductive health in the near future [31, 32].

Currently available genetic chart of reproductive health (GCRH) [8] is increasingly often considered an array of genetic and other laboratory tests aimed at detection of traits and prediction of reproductive risk in the family. It comprises not only karyotyping of spouses, but also testing for latent carriership of over 1,000 autosomal recessive diseases including familial forms of hypercholesterolemia, hereditary cancers, cardiomyopathies, etc. Testing for the genetic markers of recurrent pregnancy loss, infertility, fe
doplacental insufficiency, and thrombophilia are especially significant for the prognosis of reproductive function. To preserve reproductive health in the presence of appropriate clinical indications, GT for hereditary causes of male and female infertility deserves a special attention.

A current variant of familial GCRH comprises the results of medical genetic testing, reproductive functional
факторы пациента. Данные по полу, возрасту, клиническим признакам, прошлой истории болезни могут помочь в определении вероятного диагноза и выборе методов лечения.

Существующие методы лечения:*
- Медикаментозное лечение: назначение противовоспалительных препаратов, гормональных препаратов.
- Хирургическое лечение: операции по удалению опухолей или эндометрия.
- Медицинский абортивный прерывание.
- Лечение воспалительных процессов.

Дальнейшие исследования:
- Применение новых методов диагностики, например, генетического тестирования.
- Использование личных профилей здоровья.
- Разработка индивидуальных программ профилактики и лечения.

Заключение:
Развитие генетического консультирования позволяет эффективно управлять здоровьем и предотвратить развитие сложных состояний, связанных с наследственностью. Это требует дальнейшего развития и внедрения новых технологий в медицинскую практику.
Сегодня разрабатываются и начинают использо-
ваться панели генов для селективного скрининга ново-
рожденных, супругов и взрослых до 25 лет. Отмечается
необходимость стандартизации процедуры скрининга,
tестирование известных вариантов генов [6].

ПМ сегодня
Патогеномика частой акушерской патологии
(эндометриоз и миома матки)

Подход к МФЗ с позиции ПМ позволил существенно
продвинуться вперед в понимании патогеномики типич-
ных МФЗ, таких как эндометриоз (ЭМ) и миома матки
(ММ), в частности уточнить пути профилактики, улучшить
dиагностику и повысить эффективность персонализиро-
ванного лечения, начать разработку методов генной те-
рапии.

Проведенные исследования убедительно показали,
что именно интегративный подход является наиболее
продуктивным и единственным для объективного пони-
мания патогеномики заболеваний. Вопрос о том, в какой
мере идентифицированные «причинные» гены и продук-
tы их экспрессии могут рассматриваться как биомарке-
ры, требует дополнительной проверки. Однако уже сей-
час с полным основанием можно сделать вывод, что оба
заболевания (ЭМ и ММ) являются сборными понятиями,
tак как представляют собой наборы клинически сходных,
но патогенетически разных заболеваний, каждое из кото-
рых имеет свой эпигеном, которому соответствуют свои
клинические формы. Именно внутри таких субъединиц
наиболее вероятны находки специфических биомарке-
ров ЭМ и ММ [33].

Непременным условием успешности такого поиска
является наличие репрезентативных групп соответствую-
щих больных с точноим диагнозом. Отсюда логичным
и своевременным является организация ДНК-биомаркеров
больных ЭМ, секвенирование их геномов, дополненное
биоинформатическим анализом. ЭМ – комплексное си-
стемное заболевание эндометрия, имеющее свою соб-
ственную генетическую программу развития (ГПРЭ), ко-
торая регулирует и направляет основные генетические
и эпигенетические процессы в клетках эндометрия. Пред-
lожена гипотеза, согласно которой ГПРЭ включает, по
крайней мере, три критических периода (КП), во время
которых происходит перепрограммирование генома кле-
tок эндометрия. КП-1 соответствует закладке женской
репродуктивной системы, КП-2 – трансформации эпите-
lимальных клеток эндометрия и брюшины в мезенихмаль-
ные стволовые клетки, КП-3 – становлению и развитию
эпителиоидных гетеротопий (ЭГТ) [34]. Интегративный
подход к изучению патогеномики наружного генитально-
го эндометриоза (НГЭ) позволил получить новые данные
о генетических и эпигенетических факторах, лежащих
в основе возникновения и развития заболевания. Установ-
лено, что ЭМ – не самостоятельная патология, а скорее,
набор («букет») сходных или фенотипически близких
клинических форм, вызванных мутациями разных генов
или неблагоприятным сочетанием функционально непо-
лноценных аллелей и их эпигенетической дисрегуляции.
Каждая клиническая форма ЭМ имеет свой эпигенетиче-
ский ландшафт (ЭЛ) – специфические функциональные
изменения транскрипции причинных генов. Эквивалент-
ность патологического процесса (его окончательный кли-
нический фенотип) определяется индивидуальными осо-
бенностями генома и эпигенома больных женщин.

pathogenomics of typical MFDs such as endometriosis и
uterine myoma, in particular, specify the ways of
prevention, improve diagnosis, increase efficacy of per-
sonalized treatment, and begin the development of gene
therapy methods.

Performed studies convincingly demonstrate that the
very integrative approach is the most productive and the
only unbiased way to understanding pathogenomics
of disease. The question to what extent identified causal
genes and products of their expression may be consid-
ered biomarkers requires further studies. However, one
may currently conclude that both diseases (endometriosis
and uterine myoma) are miscellaneous entities because
they comprise clinically similar, but pathogenetically di-
verse diseases, each of which has its own epigenome
with the corresponding clinical forms. Specific biomarkers
of endometriosis and uterine myoma may be found within
these subunits [33].

An essential condition for such a search is the pres-
ence of representative groups of relevant patients with
accurate diagnosis. Therefore, the organization of DNA
biobanks of patients with endometriosis and sequencing
of their genomes supplemented by bioinformatic analy-
sis is a logical and timely measure. Endometriosis is a
complex systemic endometrial disease, which has its
own genetic program of development regulating and di-
recting the main genetic and epigenetic processes in the
endometrial cells. The proposed hypothesis suggesting
that the genetic program of endometriosis development
includes at least three critical periods when the repro-
gramming of genome of endometrial cells occurs. Criti-
cal period 1 corresponds to the establishment of female
reproductive system; critical period 2 corresponds to the
transformation of epithelial cells of the endometrium and
peritoneum to the mesenchymal stem cells; critical period
3 corresponds to the establishment and development of
endometrioid heterotopies [34]. Integrative approach to
studying pathogenomics of external genital endometrio-
sis allowed to obtain new data regarding the genetic
and epigenetic factors underlying the onset and progression
of disease. Evidence suggests that endometriosis is not a
self-sufficient nosology, but rather an array (bunch) of sim-
ilar or phenotypically close clinical forms caused by the
mutations of different genes or unfavorable combination
of dysfunctional alleles and their epigenetic dysregulation.
Each clinical from of endometriosis has its own epigenetic
landscape i.e. specific functional changes in the transcrip-
tion of causal genes. Equifinality of pathological process
(its final clinical phenotype) is determined by the individual
features of genome and epigenome of affected women.

Therefore, the study of endometriosis pathogenesis,
based on omics technologies and methods of systems ge-
netics, open the prospects for the development of effec-
tive methods of prevention, diagnostics, and personalized
treatment of endometriosis, a common socially significant
disease.

Uterine Myoma (UM)

Studies of PM in the uterine myoma (UM) suggest the
presence of at least two diverse molecular mechanisms of
pathogenesis: genetic and epigenetic [35]. The first and
Таким образом, изучение патогеномики ЭМ с помощью окисных технологий и методов системной генетики открывает перспективы для разработки эффективных методов профилактики, диагностики и персонализированного лечения ЭМ – частого социально значимого заболевания.

Миома матки (ММ)

Исследования по ПМ миомы матки (ММ) указывают на наличие по крайней мере двух разных молекулярных механизмов патогенеза: генетического и эпигенетического [35]. Первый и наиболее частый (80–85%) касается гена MED12, мутация которого сопряжена с повышенной экспрессией «раннего» гена – WNT4, который активируется в стволовые клетки миометрия матки под действием различных повреждающих факторов (инфекции, механотрансдукции). Мутация гена MED12 нарушает метаболические пути, связанные с пролиферацией миобластов и формированием межклеточного матрикса (Wnt/β-катенин, пролактин, и инсулиновый ростовой фактор – ИГФ). В результате этих нарушений развиваются множественные ММ – узлы среднего размера. Второй механизм характеризуется наличием транслокации t(12;14)/(q14-q15;q23-q24) и повышением активности гена HMGA2, продукта которого полиеппидит, относящийся к семейству ДНК-связывающих гистоновых белков, стимулирует пролиферацию клеток и их трансформацию в клетки MM. Экспрессия гена HMGA2 активируется гипоксией, ксенобиотиками, нарушением системы детоксикации, хромосомными аберрациями. Проект гена HMGA2 является главным драйвером развития МФЗ. Гиперэкспрессия гена HMGA2 активирует протоонкоген PLAG1 и ген WIF1 – ингибитор метаболического пути Wnt/β-катенин. Результатом второго эпигенетического пути являются крупные солитарные MM-узлы.

Многочисленные данные свидетельствуют о глобальных нарушениях процессов метилирования/деметилирования гена в клетках лейомыомы (ЛМ). Это указывает на важный вклад нарушений эпигенетической регуляции в патогенез этого заболевания [35]. Существенная роль в эпигенетической регуляции отводится миРНК. Уже первые исследования ЛМ показали значительные нарушения профиля синтеза регуляторных микроRNK, особенно let7, miR-21, miR-93, miR-106b, и miR-200. Многие из них (let-7, 200a, 200c, 93, 106b и 21) регулируют процессы пролиферации, воспаления, ангиогенеза, контролируют синтез компонентов внеклеточного матрикса, процессы апоптоза клеток ЛМ.

Достижения в изучении патогеномики MM открывают новые стратегические перспективы в диагностике и лечении этого заболевания. В частности, подавление сигнального пути инсулинового ростового фактора (ген IGF2BP2) для снижения экспрессии гена HMGA2; подавление роста внеклеточного матрикса путем супрессии генов TGF-β и ACVR1 – новая перспективная стратегия фармакогенетики MM.

Таким образом, используя современные молекулярные технологии и методы системной генетики, удалось существенно продвинуться в понимании патогеномики MM и предложить новые перспективные подходы к ее лечению.

Существенный прогресс достигнут и в других разделах ПМ, как традиционных (фармакогенетика, генетика старения, нутригеномика, спортивная геномика [8]), так и the most common mechanism (8085%) refers to MED12 gene whose mutations are associated with an increased expression of early WNT4 gene, which is activated in the uterine myometrium stem cells in response to various damaging factors (infections, mehanotransductions). Mutation of MED12 gene disrupts the metabolic pathways associated with myoblast proliferation and intracellular matrix formation (Wnt/β-catenin, prolactin, and insulin growth factor (IGF)). These abnormalities result in the development of multiple moderate-size UM nodes. The second mechanism is characterized by the presence of translocation t(12;14)(q14-q15;q23-q24) and an increase in the activity of HMGA2 gene whose product, a polypeptide belonging to the family of NA-binding histone proteins, stimulates cell proliferation and transformation to UM cells. The expression of HMGA2 gene is activated by hypoxia, xenobiotics, detoxification system abnormalities, and chromosome aberrations. HMGA2 gene product is the main driver of UM development. The HMGA2 gene hyperexpression activates protooncogene PLAG1 and WIF1 gene, an inhibitor of metabolic pathway of Wnt/β-catenin. Large solitary UM nodes result from the second epigenetic pathway.

Abundant data suggest the globally abnormal processes of methylation/demethylation in the genome of leiomyoma (LM) cells. This observation denotes a significant contribution of abnormal epigenetic regulation to the pathogenesis of the disease [35]. MicroRNAs play a significant role in the epigenetic regulation. Even the first studies of LM showed the presence of significant abnormalities in the profile of synthesis of regulatory microRNA especially let7, miR-21, miR-93, miR-106b, and miR-200. Many of them (let-7, 200a, 200c, 93, 106b, and 21) regulate the processes of proliferation, inflammation, and angiogenesis and control synthesis of extracellular matrix components and apoptotic processes in the LM cells.

The achievements of studying the UM pathogenomics open new strategic perspectives for diagnosis and treatment of this disease. In particular, a new promising strategy of UM pharmacogenetics consists in the downregulation of insulin growth factor (IGF2BP2 gene) signaling pathway to attenuate the HMGA2 gene expression and the decrease in extracellular matrix growth via suppression of TGF-β and ACVR1 genes.

Therefore, the use of cutting-edge molecular technologies and methods of systems genetics allowed to succeeded in understanding the UM pathogenomics and propose new promising approaches to its treatment.

A significant success has been also achieved in other PM subdisciplines including both traditional (pharmacogenetics, genetics of aging, nutrigenetics, and sports genetics [8]) and relatively recent areas (prenatal GT [6] and hereditary features of sensitivity to COVID-19 infection).

These areas of PM represent the focus of a second edition of new book “Predictive medicine evolution”, which is currently in press.

Conclusion

PM is a natural result of implementing molecular technologies in human genetics. Over 20 years of its existence, PM has travelled the difficult path from the first
сравнительно новых направлениях (пренатальное ГТ [6] и наследственные особенности чувствительности к ко-
видной инфекции).

В настоящее время эти направления ПМ составили основу 2-томного издания новой монографии «Эволюция предиктивной медицины», которая находится в печати.

Заключение

ПМ – естественный результат внедрения молекулярных технологий в генетику человека. За 20 лет существо-
вования ПМ прошла сложный путь от первых попыток досимптоматической диагностики моногенных болезней до функционального картографирования кандидатских генов в геномах здоровых людей. Внедрение метода полногеномного скрип-
нига аллельных ассоциаций (GWAS) способствовало идентификации множества синдромов, ранее неизвестных причинных генов МФЗ, однако не вызвало решительного перелома в эффективности предиктивного ГТ. Его низкая эффективность, как правило, была обусловлена недостаточностью наследственности, связанной с несовершенством тестирования. Поэтому к ПМ с позиции системной генетики (исследование патологии на разных уровнях реализации генетической информации) существенно укрепил позиции ПМ и позволил лучше понять патогенетику МФЗ. Стремление к интеграции геномной информации позволяет утверждать, что в обозримом будущем уже при рождении человек может получить результаты анализа индивидуального генома не только на наличие уже существующей или потенциальной, неразберихающей генетики, но и об индивидуальной предрасположенности к частым МФЗ [34], информацию, важную для фармакотерапии. С возрастом результаты секвенирования генома предполагается интегрировать с медицинской картой новорожденного, что положит начало электронной карте здоровья. В настоящее время ПППМ все еще находится на ранних этапах развития. GT сегодня дает возможность определить для конкретного челове-
ка только группу риска МФЗ, но за малым исключени-
ем не позволяет делать никаких объективных прогнозов в отношении будущих болезней. Уместно подчеркнуть, что любые клинические исследования и анализы (биохи-
мические, функциональные, серологические и др.) дают возможность судить только о текущем состоянии организа-
ма, тогда как ГТ, проведенное раз в жизни, позволяет предоставить информацию об уникальных особенностях всей наследственной предрасположенности человека [36].

Итак, ПМ, возникшая еще в 2000 г., претерпела се-
ную эволюцию и сохранила свою актуальность. Она положила начало ПППМ, которая в обозримом будущем вместе с биоинформатикой и системной генетикой станет неотъемлемой частью трансляционной (таргетной) медицины. Не исключено, что уже упоминавшийся «генетиче-
ский паспорт» в той или иной форме трансформируется в электронную карту здоровья, совмещаемую с индивидуальными геномными данными [37]. Внедрение секвениро-
вания нового поколения (NGS), создание обобщенных генетических и клинических баз данных – путь к «точной геномной персонализированной медицине» будущего. Разработка и внедрение масштабных международных проектов (EPPPM, Precision Medicine), направленных на анализ корреляций между молекулярными изменениями генома и особенностями их фенотипического прояв-
ления, включая МФЗ, свидетельствует об актуальности, перспективности и практической значимости исследова-
ний по ПМ.

атtempts of presymptomatic diagnostics in monogenic dis-
esases to functional mapping of candidate genes in com-
monly MFDs. Implementation of GWAS method contributed to the identification of many previously unknown causal MGF genes, but it did not result in breakthrough effectiveness of predictive GT. It became clear that low effectiveness of PM was caused by missing inheritability associated with the imperfections of testing. An approach to PM from perspective of systems genetics (study of pathology at different levels of genetic information unfolding) significantly reinforced a stand of PM and allowed for better understand-
ing the MFD pathogenomics. Tremendous progress of genomics allows to state that, in the foreseeable future, a person even at birth may receive the results of individual genome analysis not only for the presence of already ex-
isting or potential not-yet manifesting pathology, but also for individual predisposition to common MFDs [34], which is essential for pharmacotherapy. It is perceived that, the results of genome sequencing are proposed to be inte-
gerated with medical record of a newborn, which will lay foundation for the life-long electronic health record. Cur-
rent PPPM is still at the early stages of its development. Nowadays, GT provides an opportunity for a given person to determine only their risk group for MFD, but, with very few exceptions, it does not allow to make any unbiased predictions in regard to occurrence of future diseases. It is reasonable to emphasize that any clinical studies and tests (biochemical, functional, serological, etc.) provide an opportunity to estimate only a current state of organism, whereas GT, once made, provides information on unique features of the entire inheritable program of person [36].

In summary, PM, which emerged in 2000s, has under-
went a significant evolution and preserved its rele-
vance. This discipline gave rise to PPPM, which, along with bioinformatics and systems genetics, will become an essential element of translational (target) medicine. The above-mentioned GP in one or another form will poten-
tially turn into the electronic health record integrated with individual genomic data [37]. Implementation of NGS and creation of integrated genetic and clinical databases are the way to future precision genomic personalized medi-
icine. Development and implementation of large-scale projects (EPPPM, Precision Medicine) aimed at the analy-
sis of correlations between molecular changes in genome and features of the phenotypic manifestation including MFDs suggests the relevance, bright prospects, and prac-
tical significance of PM studies.

References

1. Hereditary diseases. National guidelines; ed. by N.P. Bochkov, E.K. Ginter, V.P. Puzhrev, Moscow: GEOTAR-Media; 2012:757 (In Russ.).
2. Baranov V.S. The program “Human Genome” as a scientific basis for preventive medicine. Bulletin of the Russian Academy of Medical Sci-
ces. 2000;10(27–37. (In Russ.).
3. Baranov V.S. Genome paths: A way to personalized and predictive med-
icine. Acta Naturae. 2009;1(3):77–88.
4. Puzhrev V.P. Genetics of multifactorial diseases: between the past and the future. Medical Genetics. 2003;2(12):498–508 (In Russ.).
5. Puzhrev V.P. Medical pathogenetics. Vavilov Journal of Genetics and Breeding. 2014;18(1):7–21 (In Russ.).
6. Baranov V.S., Kuznetsova T.V., Kashcheeva T.K., Ivashchenko T.E. Pre-
natal diagnosis of hereditary diseases. State and prospects. St. Petersburg: Publishing house of ECO «Vector»; 2020:569 (In Russ.).
of the same coin? Syst. Biol. Reprod. Med. 2016;62(2):93–105. DOI: 10.1007/s00335-2015-1123325.
36. European Science Foundation. Personalized Medicine for the European citizen – towards more precise medicine for the diagnosis, treatment and prevention of disease. 2012. URL: http://archives.esf.org
37. Bank M.A. Researches develop standards for reporting polygenic risk scores. The Scientists. 2021. URL: https://www.the-scientist.com

Acknowledgements

Author expresses profound gratitude to the leading research scientists of Department of Genomic Medicine, T.V. Kuznetsova, Dr. Sci. (Biol.) and T.K. Kashcheeva, Dr. Sci. (Biol.), for their contribution to preparing the manuscript for publication and to Professor V.P. Puzyre, Full Member of the Russian Academy of Science, for positive criticism.

Information about the author

Vladislav S. Baranov, Dr. Sci. (Med.), Professor, Corresponding Member of the Russian Academy of Sciences, Honored Scientist of the Russian Federation, Chief Research Scientist, Department of Genomic Medicine, D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproduction. ORCID 0000-0002-6518-1207.
E-mail: vsbar40@mail.ru.
Vladislav S. Baranov, e-mail: vsbar40@mail.ru.

Received June 03, 2021

Благодарности

Глубокая признательность ведущим научным сотрудникам отдела геномной медицины докторам биологических наук Т.В. Кузнецовой и Т.К. Кащеевой за помощь в подготовке рукописи на печать, академику РАН В.П. Пузьреву за активное обсуждение и конструктивную критику.

Сведения об авторе

Baranov Vladislav Sergeevich, d-r med. наук, профессор, чл.-корр. РАН, Заслуженный деятель науки Российской Федерации, главный научный сотрудник отдела геномной медицины. Научно-исследовательский институт акушерства, гинекологии и репродуктологии имени Д.О. Отта. ORCID 0000-0002-6518-1207.
E-mail: vsbar40@mail.ru.

Баранов Владислав Сергеевич, e-mail: vsbar40@mail.ru.

Поступила 03.06.2021