PSEUDOSPECTRA AND SIMULTANEOUS CONTROL.

MAËVA OSTERMANN

Abstract. We prove that, under some conditions, for $N \geq 10$, $M > 0$ and two functions f and g holomorphic in a domain Ω, we can find two $N \times N$ matrices A and B with identical pseudospectra such that we have simultaneously $\|f(A)\|/\|f(B)\| > M$ and $\|g(A)\|/\|g(B)\| > M$. In particular, this is the case if $f(z) = z^n$ and $g(z) = z^m$, where $n, m \geq 2$.

1. Introduction

Let $N \geq 1$ and $M_N(\mathbb{C})$ be the algebra of complex $N \times N$ matrices. Let $\|\cdot\|_2$ be the Euclidean norm on \mathbb{C}^N and let $\|\cdot\|$ be the associated operator norm on $M_N(\mathbb{C})$. Given $A \in M_N(\mathbb{C})$ and $\varepsilon > 0$, the ε-pseudospectrum of A is defined by

$$
\sigma_\varepsilon(A) := \{ z \in \mathbb{C}, \| (zI - A)^{-1} \| > 1/\varepsilon \}
$$

with the convention $\| (zI - A)^{-1} \| = \infty$ if $z \in \sigma(A)$, the spectrum of A. For more information on pseudospectra, see the book of Trefethen and Embree [6]. A well-known result related to the pseudospectra is the Kreiss matrix theorem. The version below is not the original version of Kreiss result in [1] but the optimal version of such an inequality (see [7]).

Theorem (Kreiss Matrix Theorem). Let $N \in \mathbb{N}$ and $A \in M_N(\mathbb{C})$. Let $r(A) := \sup_{|z| > 1} |z|^{-1} \| (zI - A)^{-1} \|$. Then

$$
r(A) \leq \sup_{k \geq 0} \| A^k \| \leq eN r(A).
$$

In this present paper, we are interested in matrices with same ε-pseudospectrum, for all ε. We say that two matrices A and B have identical pseudospectra if for all $\varepsilon > 0$, $\sigma_\varepsilon(A) = \sigma_\varepsilon(B)$, i.e. if

$$
\| (zI - A)^{-1} \| = \| (zI - B)^{-1} \| \quad (z \in \mathbb{C}).
$$

As direct consequence of the Kreiss matrix theorem, if $A, B \in M_N(\mathbb{C})$ have identical pseudospectra, we have

$$
\sup_{n \geq 0} \| A^n \| \leq eN \sup_{n \geq 0} \| B^n \|.
$$

Now the question that has been asked is: Do we have a similar result if we consider individual powers of A and B? Consider $n = 1$, the answer

\begin{footnotesize}

2010 Mathematics Subject Classification. primary 47A10, secondary 15A18, 15A60.

Key words and phrases. matrix, norm, pseudospectra.
\end{footnotesize}
is Yes. We know that if $A, B \in M_N(\mathbb{C})$ have identical pseudospectra, then $||A|| \leq 2||B||$ (See [4]). In the other hand, if we consider some powers higher than 1, the answer becomes No. Ransford proved, in [3], that for all $M > 0$, there exist $A, B \in M_n(\mathbb{C})$ such that A and B have identical pseudospectra and

$$||A^n|| > M||B^n|| \quad (2 \leq n \leq (N - 3)/2).$$

There is also a result for powers higher than $(N - 3)/2$, due to Ransford and Raouafi in [5]. They showed that if f is an holomorphic function in a domain $\Omega \subset \mathbb{C}$, which is not a Möbius transformation, $M > 0$ and $N \geq 6$, then there exist $A, B \in M_N(\mathbb{C})$, with their spectrum in Ω, such that A and B have identical pseudospectra and

$$||f(A)|| > M||f(B)||.$$

However, their result only applies to a single function f. In the next theorem, we extend this result for two holomorphic functions.

Theorem 1.1. Let f and g be two holomorphic functions in a domain $\Omega \subset \mathbb{C}$ and let $M > 0$ be a constant and $N \geq 10$.

Suppose that f and g do not satisfy the condition

$$\tilde{h}_{1,2}\left(\tilde{h}_{2,4} - \tilde{h}_{3,4}(2\tilde{h}_{2,3} + \tilde{h}_{1,4})\right) + \tilde{h}_{1,3}\left(\tilde{h}_{1,3}\tilde{h}_{3,4} - \tilde{h}_{2,3}\tilde{h}_{2,4}\right) + \tilde{h}_{2,3}^3 = 0, \quad (*)$$

where $\tilde{h}_{i,j} := \frac{1}{i!j!}((f^{(i)}g^{(j)} - f^{(j)}g^{(i)})$.

Then there exist $A, B \in M_N(\mathbb{C})$ with spectrum in Ω such that A and B have identical pseudospectra and

$$\frac{||f(A)||}{||f(B)||} > M \quad \text{and} \quad \frac{||g(A)||}{||g(B)||} > M.$$

In Section 2, we will give a proof of this result. In Section 3, we will show that the result holds for the powers of matrices, regardless of the condition $(*)$, thereby obtaining next theorem.

Theorem 1.2. Let $m, n \in \mathbb{N}$ with $n, m \geq 2$. Let $M > 0$ and $N \geq 10$. Then there exist $A, B \in M_N(\mathbb{C})$ such that A and B have identical pseudospectra and

$$\frac{||A^n||}{||B^n||} > M \quad \text{and} \quad \frac{||A^m||}{||B^m||} > M.$$

2. Case of two functions.

In the proof of Theorem 1.1, we will build the matrices A and B by blocks. The following lemma will be used to verify that the matrices thus constructed do indeed have identical pseudospectra.

Lemma 2.1. Let S be the unilateral shift on \mathbb{C}^8. For $t \geq 1$, we define

$$C_t := tS + ut^3S^3 + c_4t^4S^4 + c_5t^5S^5 + c_6t^6S^6 + c_7t^7S^7.$$
There exists a polynomial condition in \(c_k \) and \(u \) (given in the proof) such that, if this condition is satisfied, then there exists \(\mu > 0 \) such that

\[
||(I - zC_t)^{-1}|| \geq 1 + \mu t^6 |z| \quad (t \geq 1, z \in \mathbb{C}).
\]

Proof. We will first show that there exist two polynomials \(P_1(z) \) and \(P_2(z) \) such that

\[
||(I - zC_t)^{-1}|| \geq 1 + \frac{t^6 |z|}{2} \max(|P_1(z)|, |P_2(z)|) \quad (t \geq 1, z \in \mathbb{C}).
\]

When we compute \((I - zC_t)^{-1}\), we obtain

\[
(I - zC_t)^{-1} = I + ztS + z^2 t^2 S^2 + (z^3 + uz) t^3 S^3
\]

\[
+ (z^4 + 2uz^2 + c_4)t^4 S^4 + (z^5 + 3uz^3 + 2c_4 z^2 + c_5 z)t^5 S^5
\]

\[
+ (z^6 + 4uz^4 + 3c_4 z^3 + (u^2 + 2c_5) z^2 + c_6 z)t^6 S^6
\]

\[
+ (z^7 + 5uz^5 + 4c_4 z^4 + 3(u^2 + c_5) z^3 + 2(u c_5 + c_6) z^2 + c_7 z)t^7 S^7.
\]

Then, when \(t \geq 1 \), by applying the Lemma 2.1 in [5], we have

\[
||(I - zC_t)^{-1}|| \geq 1 + \frac{1}{2} \max \left(|tz|, |z^2 t^2|, |(z^3 + uz) t^3|, \right.
\]

\[
\left. |(z^4 + 2uz^2 + c_4)t^4|, |(z^5 + 3uz^3 + 2c_4 z^2 + c_5 z)t^5|, \right.
\]

\[
\left. |(z^6 + 4uz^4 + 3c_4 z^3 + (u^2 + 2c_5) z^2 + c_6 z)t^6|, \right.
\]

\[
|t^7(z^7 + 5uz^5 + 4c_4 z^4 + 3(u^2 + c_5) z^3 + 2(u c_5 + c_6) z^2 + c_7 z))|)
\]

\[
\geq 1 + \frac{1}{2} \max \left(|(z^6 + 4uz^4 + 3c_4 z^3 + (u^2 + 2c_5) z^2 + c_6 z)t^6|, \right.
\]

\[
\left. |t^7(z^7 + 5uz^5 + 4c_4 z^4 + 3(u^2 + c_5) z^3 + 2(u c_5 + c_6) z^2 + c_7 z))| \right)
\]

\[
\geq 1 + \frac{t^6 |z|}{2} \max(|P_1(z)|, |P_2(z)|)
\]

with

\[
P_1(z) := c_7 + 2z(u c_4 + c_6) + 3z^2(u^2 + c_5) + 4z^3 c_4 + 5uz^4 + z^6
\]

and

\[
P_2(z) := c_6 + z(u^2 + 2c_5) + 3z^2 c_4 + 4uz^3 + z^5.
\]

Let \(\mu := \frac{1}{2} \inf_{z \in \mathbb{C}} \max(|P_1(z)|, |P_2(z)|) \). Then

\[
||(I - zC_t)^{-1}|| \geq 1 + \mu t^6 |z| \quad (t \geq 1, z \in \mathbb{C})
\]

and \(\mu > 0 \) if and only if \(\gcd(P_1, P_2) = 1 \).

Let \(P_3(z) := uz^4 + c_4 z^3 + (2u^2 + c_5) z^2 + (2c_4 u + c_6) z + c_7 \) be the remainder of the Euclidean division of \(P_1 \) by \(P_2 \). Suppose \(u \neq 0 \) and let \(P_3 = Az^3 + Bz^2 + Cz + D \) be the remainder of the Euclidean division of \(u^2 P_2 \) by \(P_3 \).
Thus
\[A := 2u^3 - c_5u + c_4^2 \]
\[B := 3c_4u^2 - 6u + c_4c_5 \]
\[C := u^4 + 2c_5u^2 + (2c_4^2 - c_7)u + c_4c_6 \]
\[D := c_6u^2 + c_4c_7. \]

Assume \(A \neq 0 \) and let \(P_5 = Ez^2 + Fz + G \), the remainder of the Euclidean division of \(A^2P_3 \) by \(P_4 \). Then
\[E := A^2(2u^2 + c_5) - ACu + B^2u - ABc_4 \]
\[F := A^2(2c_4u + c_6) + C(Bu - Ac_4) - ADu \]
\[G := D(Bu - Ac_4) + A^2c_7. \]

Suppose \(E \neq 0 \) and let \(P_6 = Hz + I \), the remainder of the Euclidean division of \(E^2P_4 \) by \(P_5 \). Then
\[H := -AEG + AF^2 - BEF + CE^2 \]
\[I := (AF - BE)G + DE^2. \]

Finally let \(J = EI^2 - FHI + GH^2 \). To conclude, if \(AEJ \neq 0 \) then \(gcd(P_1, P_2) = 1 \) and \(\mu > 0 \).

\[\square \]

Proof of Theorem 1.1 Without less of generality, we can suppose that \(0 \in \Omega \), \(f'(0) \neq 0 \), \(g'(0) \neq 0 \), \(h_{1,2}(0) \neq 0 \) and \(f \) and \(g \) fail to satisfy the equation (*) for \(z = 0 \). For \(k \in \mathbb{N} \), we define \(f_k := \frac{1}{k!}f^{(k)}(0) \) and \(g_k := \frac{1}{k!}g^{(k)}(0) \). And for \(i, j \in \mathbb{N} \), we define \(h_{i,j} := f_ig_j - f_jg_i \). Then the Taylor developments of \(f \) and \(g \) are
\[f(z) = f_0 + f_1z + f_2z^2 + f_3z^3 + f_4z^4 + f_5z^5 + f_6z^6 + f_7z^7 + O(z^8) \]
\[g(z) = g_0 + g_1z + g_2z^2 + g_3z^3 + g_4z^4 + g_5z^5 + g_6z^6 + g_7z^7 + O(z^8). \]

Let \(C_t \) be defined as Lemma 2.1. We begin by finding the \(c_k \), rational functions in \(u \), such that \(||f(C_t)|| = O(t^5) \) and \(||g(C_t)|| = O(t^5) \). We have
\[f(C_t) = f_0I + f_1tS + f_2t^2S^2 + (f_3 + uf_1)t^3S^3 \]
\[+ (f_4 + 2uf_2 + c_4f_1)t^4S^4 + (f_5 + 3uf_3 + 2c_4f_2 + c_5f_1)t^5S^5 \]
\[+ (f_6 + 4uf_4 + 3c_4f_3 + (u^2 + 2c_5)f_2 + c_6f_1)t^6S^6 \]
\[+ (f_7 + 5uf_5 + 4c_4f_4 + 3(u^2 + c_5)f_3 + 2(u^3 + c_6)f_2 + c_7f_1)t^7S^7 \]
Therefore we can choose \(u \) such that \(U \neq 0 \) and then the system has a unique solution. Moreover the solutions \(c_k \) satisfy

\[
g(C_t) = g_0 I + g_1 t S + g_2 t^2 S^2 + (g_3 + u g_1) t^3 S^3
\]
\[
+ (g_4 + 2 u g_2 + c_1 g_1) t^4 S^4 + (g_5 + 3 u g_3 + 2 c_4 g_2 + c_5 g_1) t^5 S^5
\]
\[
+ (g_6 + 4 u g_4 + 3 c_4 g_3 + (u^2 + 2 c_5) g_2 + c_6 g_1) t^6 S^6
\]
\[
+ (g_7 + 5 u g_5 + 4 c_4 g_4 + 3 (u^2 + c_5) g_3 + 2 (u c_5 + c_6) g_2 + c_7 g_1) t^7 S^7.
\]

Thus the \(c_k \) are the solutions of

\[
\begin{cases}
 f_1 c_7 + 2 f_2 (u c_4 + c_6) + 3 f_3 (u^2 + c_5) + 4 f_4 c_4 + 5 u f_5 + f_7 = 0 \\
 f_1 c_6 + f_2 (u^2 + 2 c_5) + 3 f_3 c_4 + 4 u f_4 + f_6 = 0 \\
 g_1 c_6 + g_2 (u^2 + 2 c_5) + 3 g_3 c_4 + 4 u g_4 + g_6 = 0 \\
 g_1 c_7 + 2 g_2 (u c_4 + c_6) + 3 g_3 (u^2 + c_5) + 4 g_4 c_4 + 5 u g_5 + g_7 = 0
\end{cases}
\]

If we define

\[
U = \det \begin{pmatrix} f_1 & 2 f_2 & 3 f_3 & 4 f_4 + 2 u f_2 \\ 0 & f_1 & 2 f_2 & 3 f_3 \\ g_1 & 2 g_2 & 3 g_3 & 4 g_4 + 2 u g_2 \\ 0 & g_1 & 2 g_2 & 3 g_3 \end{pmatrix},
\]

then

\[
U = (4 f_1^2 g_2^2 - 8 f_1 f_2 g_1 g_2 + 4 f_2^2 g_1^2) u
\]
\[
+ f_1^3 (8 g_2 g_4 - 9 g_3^2) + f_1 f_2 (12 g_2 g_3 - 8 g_1 g_4) + f_3 (f_1 (18 g_1 g_3 - 12 g_2^2)
\]
\[
+ 12 f_2 g_1 g_2) - 12 f_2^2 g_1 g_3 + f_4 (8 f_2 g_1^2 - 8 f_1 g_1 g_2) - 9 f_3 g_1^2
\]
\[
= 4 h_{1,2}^2 u + O(1).
\]

Therefore we can choose \(u \) such that \(U \neq 0 \) and then the system has a unique solution. Moreover the solutions \(c_k \) satisfy

\[
b_4 := U c_4 = - ((3 f_1^2 g_2 g_3 - 3 f_1 f_2 g_1 g_3 + f_3 (3 f_2 g_1^2 - 3 f_1 g_1 g_2)) u^2 + O(u)
\]
\[
b_5 := U c_5 = - ((2 f_1^2 g_2^2 - 4 f_1 f_2 g_1 g_2 + 2 f_2^2 g_1^2) u^3 + O(u^2)
\]
\[
b_6 := U c_6 = ((f_1 f_2 (16 g_2 g_4 - 9 g_3^2) - 16 f_2^2 g_1 g_4 + f_3 (9 f_1 g_2 g_3 + 9 f_2 g_1 g_3)
\]
\[
+ f_4 (16 f_2 g_1 g_2 - 16 f_1 g_2^2) - 9 f_3 g_1 g_2) u^2 + O(u)
\]
\[
b_7 := U c_7 = ((6 f_1 f_2 g_2 g_3 - 6 f_2^2 g_1 g_3 + f_3 (6 f_2 g_1 g_2 - 6 f_1 g_2^2)) u^3 + O(u^2).
\]
Now, we verify the condition on the resolvent. We have
\[A' := U^2 A = 2U^2 u^3 - Ub_5 u + b_4^2 \]
\[= 32(f_1 g_2 - f_2 g_1)^4 u^5 + O(u^4) \]
\[= 32h_{1,2}^4 u^5 + O(u^4) \]
\[E' := U^5 E = U^4 (A^2 (2U^2 u + b_5) - ACU u + B^2 U u - ABB_4) \]
\[= a (f_1 g_2 - f_2 g_1)^{10} u^{13} + O(u^{12}) \]
\[= ah_{1,2}^{10} u^{13} + O(u^{12}) \] (with \(a = 6144 \)).
\[J' := U^{29} J = U^{29} (EI^2 - FHI + GH^2) \]
\[= a b^2 h_{1,2}^{55} [h_{2,4}^2 - h_{3,4}^2 (2h_{2,3} + h_{1,3}) + h_{1,3} (h_{1,3} h_{3,4} - h_{2,3} h_{2,4}) + h_{2,3}^3] u^{75} + O(u^{74}) \] (with \(b = 301989888 \)).

Thus we can finally choose \(u \) such that we also have \(A \neq 0, E \neq 0 \) and \(J \neq 0 \). By Lemma 2.1 there exists \(\mu > 0 \) such that
\[||(I - zC_t)^{-1}|| \geq 1 + \mu t^6 |z| \quad (t \geq 1, z \in \mathbb{C}). \]

We finish the proof with the construction of \(A \) and \(B \).
We define \(A_t := C_t + \left(\begin{array}{cc} 0 & \mu t^6 \\ 0 & 0 \end{array} \right) \in M_{10}(\mathbb{C}) \) and \(B_t := C_t + \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right) \in M_{10}(\mathbb{C}) \).
We have, for all \(t \geq 1 \) and \(z \in \mathbb{C} \),
\[\left\| \left(I - z \left(\begin{array}{cc} 0 & \mu t^6 \\ 0 & 0 \end{array} \right) \right)^{-1} \right\| = \left\| \begin{array}{cc} 1 & z \mu t^6 \\ 0 & 1 \end{array} \right\| \leq 1 + \mu t^6 |z|. \]

Then
\[||(I - zA_t)^{-1}|| = ||(I - zC_t)^{-1}|| = ||(I - zB_t)^{-1}||. \]

Now, if \(t \geq 1 \), we see that
\[||f(A_t)|| \geq \left\| f \left(\begin{array}{cc} 0 & \mu t^6 \\ 0 & 0 \end{array} \right) \right\| = \left\| \begin{array}{cc} f_1 & f_1 \mu t^6 \\ 0 & f_0 \end{array} \right\| \geq |f_1| \mu t^6 \]
\[||f(B_t)|| = \max(||f(C_t)||, |f(0)||) = ||f(C_t)|| = O(t^5) \]
\[||g(A_t)|| \geq \left\| g \left(\begin{array}{cc} 0 & \mu t^6 \\ 0 & 0 \end{array} \right) \right\| = \left\| \begin{array}{cc} g_0 & g_1 \mu t^6 \\ 0 & g_0 \end{array} \right\| \geq |g_1| \mu t^6 \]
\[||g(B_t)|| = \max(||g(C_t)||, |g(0)||) = ||g(C_t)|| = O(t^5). \]

Since \(|f_1| \mu > 0 \) and \(|g_1| \mu > 0 \), we have
\[\lim_{t \to \infty} \frac{||f(A_t)||}{||f(B_t)||} = +\infty \quad \text{and} \quad \lim_{t \to \infty} \frac{||g(A_t)||}{||g(B_t)||} = +\infty. \]

So, finally, we can choose \(t \geq 1 \) such that
\[\frac{||f(A_t)||}{||f(B_t)||} > M \quad \text{and} \quad \frac{||g(A_t)||}{||g(B_t)||} > M. \]
3. Case of Two Powers.

To prove the result for powers of matrices, we cannot just apply Theorem 1.1. Indeed, there exist an infinite number of \(n, m \geq 2 \) such that the functions \(f(z) := (1 + z)^n \) and \(g(z) := (1 + z)^m \) fail to satisfy the hypothesis of this theorem. But, as we will see in the proof, we can override this difficulty and show the result for any powers \(n \) and \(m \).

Proof of Theorem 1.2. If \(n = m \), then we can apply the result in [5]. We now suppose that \(n \neq m \). Let \(f(z) := (1 + z)^n \) and \(g(z) := (1 + z)^m \). We use the same notation as the proof of Theorem 1.1. We construct \(A_t \) and \(B_t \) as before. Remember that the condition in the theorem comes from the constraint to have \(\mu > 0 \): It was the condition to have \(\text{deg}(J') = 75 \) as a polynomial in \(u \). As we remarked, we can not conclude the result for all \(n \) and \(m \). So, we need to look the next coefficient and see that \(\text{deg}(J') \geq 74 \). It will imply that we can choose \(t \geq 1 \) such that \(\|f(A_t)\| > M \) and \(\|g(B_t)\| > M \).

And, finally, we just choose \(A = I + A_t \) and \(B = I + B_t \) to conclude.

By computation, we have

\[
J' = (m - 1)m^{58}(m + 1)(n - 1)n^{58}(n + 1)(n - m)^{58} \left[\begin{array}{c}
-29296875(n^2 - 4mn + m^2 + 3) u^{75} \\
131072 \\
+ 1953125 p(n, m) u^{74} + O(u^{73})
\end{array} \right]
\]

with

\[
p(n, m) = 446n^4 - 2649mn^3 - 60n^3 + 4412m^2n^2 + 180mn^2 + 982n^2 - 2649m^3n + 180m^2n - 1411mn - 180n + 446m^4 - 60m^3 + 982m^2 - 180m - 828
\]

To conclude, we need to see that, with our conditions on \(n \) and \(m \), we cannot have \(n^2 - 4mn + m^2 + 3 = 0 \) and \(p(n, m) = 0 \) at the same time.

Assume the opposite. We have

\[
p(n, m) = q(n, m)(n^2 - 4mn + m^2 + 3) + r(n, m)
\]

with \(q(n, m) = 446n^2 + (-865m - 60)n + 506m^2 - 60m - 356 \) and \(r(n, m) = 60(m - 1)(m + 1)(4mn - m^2 - 4) \). Then, we deduce that \(r(n, m) = 0 \).

Moreover, we have

\[
n^2 - 4mn + m^2 + 3 = \frac{4mn - 15m^2 + 4}{16m^2} r(n, m) + \frac{m^4 - 8m^2 + 16}{16m^2}
\]

Then we conclude that \(m = \pm 2 \), but this implies that \(n = 1 \) and we finish with a contradiction.

\[\square\]
4. Final remarks and questions

• The condition (*) is quite mysterious and one might wonder which functions satisfy this condition. In the spirit of [5], Theorem 1.2, we shall show that the condition (*) precludes f and g from being Möbius transformations. More precisely, we show that, if $\lambda f + \mu g$ is a Möbius transformation for some $\lambda, \mu \in \mathbb{C}$, then f and g satisfy (*).

Indeed, without loss of generality, by replacing f or g by $\lambda f + \mu g$, we can assume that f or g is a Möbius transformation. We have:

$$
\tilde{h}_{1,2}(\tilde{h}_{2,4} - \tilde{h}_{3,4}(2\tilde{h}_{2,3} + \tilde{h}_{1,4})) + \tilde{h}_{1,3}(\tilde{h}_{1,3}\tilde{h}_{3,4} - \tilde{h}_{2,3}\tilde{h}_{2,4}) + \tilde{h}_{2,3}^3 \\
= \frac{1}{12}(\tilde{h}_{1,4} - \tilde{h}_{2,3})(Sf.G + F.Sg) - \frac{\tilde{h}_{2,4}^2}{576}(Sf.(Sg)' + (Sf)'Sg) \\
- \frac{\tilde{h}_{1,3}}{48}((Sf)'G + F.(Sg)') + \frac{\tilde{h}_{3,4}}{72}Sf.Sg + \frac{\tilde{h}_{2,3}}{1152}(Sf)'(Sg)' + 2\tilde{h}_{1,2}F.G
$$

with $F = \frac{1}{48}f''f^{(4)} - \frac{1}{36}(f^{(3)})^2$ and $Sf := 2f'f^{(3)} - 3(f'')^2$, the Schwarzian derivative of f (likewise for G and Sg).

If f is a Möbius transformation, then its Schwarzian derivative satisfies $Sf = 0$ and then $(Sf)' = 0$. Moreover, f is a Möbius transformation if and only if the function f_w, defined by $f_w(z) := \frac{f(z)-f(w)}{z-w}$, is a Möbius transformation, for all w in the domain of the function f. Then $Sf_w = 0$, and we deduce that $F(w) = \frac{1}{12}Sf_w(w) = 0$. The same applies if g is a Möbius transformation.

Since some other functions satisfy the condition (*), this raises the question of whether (*) has an interpretation analogous to the condition “f is not a Möbius transformation” in [5].

• The condition “f and g fail to satisfy (*)” is not necessary, in Theorem 1.1. Indeed, Section 3 provides plenty of counterexamples (for example $f(z) = z^2$ and $g(z) = z^7$ verify (*)). What might a necessary and sufficient condition look like?

Acknowledgments

I would like to thank Thomas Ransford for his helpful remarks and support. I was supported by a FRQNT doctoral scholarship.

References

[1] Heinz-Otto Kreiss. Über die Stabilitätsdefinition für Differenzengleichungen die partielle Differentialgleichungen approximieren. *Nordisk Tidskr. Informationsbehandling (BIT)*, 2:153–181, 1962.

[2] Randall J. LeVeque and Lloyd N. Trefethen. On the resolvent condition in the Kreiss matrix theorem. *BIT*, 24(4):584–591, 1984.

[3] Thomas Ransford. On pseudospectra and power growth. *SIAM J. Matrix Anal. Appl.*, 29(3):699–711, 2007.
[4] Thomas Ransford. Pseudospectra and matrix behaviour. In Banach algebras 2009, volume 91 of Banach Center Publ., pages 327–338. Polish Acad. Sci. Inst. Math., Warsaw, 2010.

[5] Thomas Ransford and Samir Raouafi. Pseudospectra and holomorphic functions of matrices. Bull. Lond. Math. Soc., 45(4):693–699, 2013.

[6] Lloyd N. Trefethen and Mark Embree. Spectra and pseudospectra. Princeton University Press, Princeton, NJ, 2005. The behavior of nonnormal matrices and operators.

[7] Elias Wegert and Lloyd N. Trefethen. From the Buffon needle problem to the Kreiss matrix theorem. Amer. Math. Monthly, 101(2):132–139, 1994.

Département de mathématiques et de statistique, Université Laval, Québec City (Québec), Canada G1V 0A6.

Email address: maeva.ostermann.1@ulaval.ca