A product of its environment: the epaulette shark (*Hemiscyllium ocellatum*) exhibits physiological tolerance to elevated environmental CO$_2$

Dennis D. U. Heinrich1, Jodie L. Rummer2,*, Andrea J. Morash3, Sue-Ann Watson1,2, Colin A. Simpfendorfer4, Michelle R. Heupel4,5 and Philip L. Munday1,2

1School of Marine and Tropical Biology, James Cook University, Townsville, Queensland 4811, Australia
2ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
3University of Tasmania, Institute for Marine and Antarctic Studies (IMAS), Sandy Bay, Tasmania 7001, Australia
4Centre for Sustainable Tropical Fisheries and Aquaculture, School of Earth and Environmental Science, James Cook University, Townsville, Queensland 4811, Australia
5Australian Institute of Marine Science, Townsville, Queensland 4810, Australia

*Corresponding author: ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia. Tel: +61 74 781 5300. Email: jodie.rummer@jcu.edu.au

Ocean acidification, resulting from increasing anthropogenic CO$_2$ emissions, is predicted to affect the physiological performance of many marine species. Recent studies have shown substantial reductions in aerobic performance in some teleost fish species, but no change or even enhanced performance in others. Notably lacking, however, are studies on the effects of near-future CO$_2$ conditions on larger meso and apex predators, such as elasmobranchs. The epaulette shark (*Hemiscyllium ocellatum*) lives on shallow coral reef flats and in lagoons, where it may frequently encounter short-term periods of environmental hypoxia and elevated CO$_2$, especially during nocturnal low tides. Indeed, *H. ocellatum* is remarkably tolerant to short periods (hours) of hypoxia, and possibly hypercapnia, but nothing is known about its response to prolonged exposure. We exposed *H. ocellatum* individuals to control (390 µatm) or one of two near-future CO$_2$ treatments (600 or 880 µatm) for a minimum of 60 days and then measured key aspects of their respiratory physiology, namely the resting oxygen consumption rate, which is used to estimate resting metabolic rate, and critical oxygen tension, a proxy for hypoxia sensitivity. Neither of these respiratory attributes was affected by the long-term exposure to elevated CO$_2$. Furthermore, there was no change in citrate synthase activity, a cellular indicator of aerobic energy production. Plasma bicarbonate concentrations were significantly elevated in sharks exposed to 600 and 880 µatm CO$_2$ treatments, indicating that acidosis was probably prevented by regulatory changes in acid–base relevant ions. Epaulette sharks may therefore possess adaptations that confer tolerance to CO$_2$ levels projected to occur in the ocean by the end of this century. It remains uncertain whether other elasmobranchs, especially pelagic species that do not experience such diurnal fluctuations in their environment, will be equally tolerant.

Key words: Climate change, ecophysiology, elasmobranch, hypoxia tolerance, ocean acidification

Editor: Steven Cooke

Received 8 July 2014; Revised 14 September 2014; Accepted 14 September 2014

Cite as: Heinrich DDU, Rummer JL, Morash AJ, Watson S-A, Simpfendorfer CA, Heupel MR, Munday PL (2014) A product of its environment: the epaulette shark (*Hemiscyllium ocellatum*) exhibits physiological tolerance to elevated environmental CO$_2$. Conserv Physiol 2: doi:10.1093/conphys/cou047.
Introduction

Anthropogenic CO$_2$ emissions have caused an increase in atmospheric CO$_2$ by almost 40% over the past 250 years (IPCC, 2013). The resulting rise from pre-industrialization levels (~280 ppm) to 400 ppm in 2014 has occurred at a rate unprecedented for the past 800 000–1 000 000 years (Raven et al., 2005; Doney and Schimel, 2007; Lüthi et al., 2008). The oceans have absorbed more than 30% of the additional CO$_2$ released by human activities, thus tempering the atmospheric rise in CO$_2$ (Sabine et al., 2004; Sabine and Feely, 2007). However, the resulting rise in seawater CO$_2$ partial pressure (PCO$_2$) and the associated reduction in pH, called ocean acidification, is a significant threat to marine organisms and ecosystems (Hoegh-Guldberg et al., 2007; Fabry et al., 2008).

The reduced carbonate saturation state that accompanies lower seawater pH affects the ability of calcifying marine organisms to form carbonate shells and skeletons (Orr et al., 2005; Doney et al., 2009), but rising oceanic CO$_2$ may also impact the respiratory physiology of many water-breathing organisms. Acid–base disturbances related to elevated environmental CO$_2$ can reduce oxygen uptake and delivery, which could directly impact metabolic performance. Reductions in an organism’s scope for aerobic metabolic performance can result in less energy being available for crucial life-history processes, such as growth and reproduction (Pörtner, 2008; Pörtner and Farrell, 2008). For instance, Humboldt squid (Dosidicus gigas) exhibit a 30% reduction in resting metabolic rate and a 45% decrease in activity upon exposure to projected near-future CO$_2$ levels, owing to an impaired oxygen transport system, which would be predicted to reduce overall performance and compress their habitable depth range (Rosa and Seibel, 2008). In contrast, teleost fishes are expected to be physiologically well equipped to compensate pH and ion disturbances caused by high CO$_2$ (Ishimatsu et al., 2008; Brauner and Baker, 2009). Nevertheless, interspecific variation is evident in the physiological responses of teleost fish to elevated CO$_2$; for example, some fishes exhibit no change in aerobic scope in high-CO$_2$ environments (Ishimatsu et al., 2008; Melzner et al., 2009a; Couturier et al., 2013), whereas others reduce aerobic scope (Munday et al., 2009) and some even increase aerobic scope (Couturier et al., 2013; Rümmer et al., 2013a) when exposed to near-future CO$_2$ levels. Consequently, the effects of ocean acidification on a broad range of species, including vulnerable and tolerant species, should be investigated in order to identify traits that will be important for individual performance and success in near-future oceans and predict changes in community structure (Melzner et al., 2009b).

In contrast to the growing body of knowledge about the effects of ocean acidification on teleost fishes, little is known about the impacts of rising levels of oceanic CO$_2$ on elasmobranchs. Elasmobranchs buffer a pH disturbance, such as that associated with exposure to high CO$_2$, in a manner similar to teleosts. Bicarbonate is accumulated in the blood, but in addition, elasmobranchs may also increase branchial ammonia excretion rates to ameliorate the acidosis further (Evans, 1982; King and Goldstein, 1983; Claiborne and Evans, 1992; Brauner and Baker, 2009; Tresguerres et al., 2010). The haemoglobin of elasmobranchs also has a much higher buffering capacity compared with that of most teleosts, and thus, O$_2$ transport and aerobic performance may be less sensitive to pH disturbances (Berenbrink et al., 2005). Yet, it is thought that the resilience of elasmobranchs to acid–base disturbances is related largely to their sophisticated acid excretion processes at the gill (Wood et al., 1995). If elasmobranchs are notably tolerant to near-future CO$_2$ conditions, this could potentially increase predation pressure and alter species compositions of marine environments.

The epaulette shark (Hemiscyllium ocellatum) exhibits exceptionally high tolerance to the severe hypoxia (low oxygen) that it routinely experiences while inhabiting shallow coral reef flats (Routley et al., 2002; Nilsson and Renshaw, 2004), and thus, it may not be surprising if this species is also tolerant to near-future CO$_2$. However, acute responses may differ dramatically from the responses to long-term exposure; studies on *H. ocellatum* in response to anoxia or hypoxia have been following only minutes to hours of exposure (Wise et al., 1998; Renshaw et al., 2002; Routley et al., 2002; Chapman and Renshaw, 2009; Dowd et al., 2010; Speers-Roesch et al., 2012a). No study to date, has examined how *H. ocellatum* responds to prolonged exposure to elevated CO$_2$. Given that increased uptake of CO$_2$ by the ocean will affect both the average CO$_2$ levels and the magnitude of extreme CO$_2$ levels (Shaw et al., 2013), it is important to consider longer-term responses to elevated CO$_2$ beyond those that would be experienced on a diurnal basis (e.g. hours; Ohde and van Woesik, 1999; Compagno, 2002; Last and Stevens, 2009; Shaw et al., 2013). Thus, both the physiological sensitivity of the organism and the variations it may already be experiencing in its habitat are important when considering which species will exhibit positive or negative responses to rising ocean CO$_2$ levels. However, it is also important to consider the relationship between environmental cues and other traits, such as behaviour—which is especially relevant to species like *H. ocellatum*—when considering the importance of phenotypic plasticity, because this could influence selection over the longer term (Marais and Chown, 2008).

We exposed *H. ocellatum* to near-future CO$_2$ conditions for a minimum of 60 days and measured resting oxygen consumption rates and critical oxygen tensions as proxies for resting metabolic rate and sensitivity to hypoxia, respectively. In addition to whole-organism responses, we also measured or calculated haematological and tissue parameters, including plasma ionic (HCO$_3^{-}$, Cl$^{-}$, Na$^{+}$ and K$^{+}$) and urea concentrations, haemoglobin (Hb), mean cell haemoglobin concentration (MCHC), haemocrit (Hct), spleen–somatic index (SSI) and citrate synthase activity in heart, brain and red muscle. The aim was to provide insight into the physiological parameters that may underpin changes in metabolic performance and sensitivity to hypoxia in this species.
We hypothesized that *H. ocellatum* can physiologically tolerate elevated CO$_2$ because it routinely experiences daily reductions in environmental O$_2$ (Routley et al., 2002; Nilsson and Renshaw, 2004) and probably elevations in CO$_2$. However, if CO$_2$ tolerance is related to the diurnal patterns this species already experiences in their natural habitat, prolonged exposure (60 days) to elevated CO$_2$ may negatively affect metabolic rate and hypoxia tolerance.

Materials and methods

Experimental animals

Epaulette sharks (*Hemiscyllium ocelatum*) were collected from the northern Great Barrier Reef by Northern Barrier and Cairns Marine (Cairns, Queensland, Australia) and transported to James Cook University (JCU). Five to six individuals were placed in each of six 700 l tanks in a recirculating seawater system. Individuals were measured [standard length, 33.38 ± 7.29 cm (mean ± SD)] to ensure an equal distribution of sizes among tanks. Unique fin clips along the margins of pectoral, pelvic and dorsal fins were used for individual identification. Shelter was provided in the form of PVC pipe sections placed within each tank. Food was provided once every 24 h and consisted of 4% of shark biomass per tank in raw prawn meat. There was no indication that any individuals or treatment groups were eating less than this amount throughout the duration of the study. Sharks were acclimated to laboratory conditions for at least 4 weeks prior to commencing CO$_2$ treatments.

Experimental CO$_2$ conditions

The experimental system comprised three 8000 l recirculating seawater systems, each set to simulate one of the following three CO$_2$ treatments: control (~390 μatm); medium (~600 μatm); and high (~880 μatm). Carbon dioxide levels were achieved and maintained by CO$_2$ infusion of seawater in 3000 l sumps attached to each recirculating seawater system. The pH$_{NBS}$ (National Bureau of Standards scale) levels were set to match target CO$_2$ concentrations and maintained using a CO$_2$-infusing system (Aqua Medic GmbH, Bissendorf, Germany). If the pH rose above the set point, an electronic solenoid initiated the system to deliver a steady stream of CO$_2$ into a diffuser within the corresponding sump. Carbon dioxide-equilibrated seawater from each system was delivered to two replicate 700 l tanks (~25 l min$^{-1}$) per treatment. Each tank contained five or six sharks, as described above. This central approach of pH manipulation allowed for stabilization of CO$_2$ concentration (in milligrams per litre) of the water within each chamber over the 12 h period of time. The 0 and 100% oxygen levels of the Firesting chamber, thus ensuring complete mixing and homogeneity within the holding tanks. Tanks were covered with transparent plastic sheeting to reduce CO$_2$ loss to the atmosphere.

The pH$_{NBS}$ was measured daily (Hach, model #HQ40d) in each tank to ensure that it remained within ±0.05 of desired levels. Temperatures were also measured daily and maintained at 28.5°C by automated heater/chillers attached to each seawater system. Salinity and alkalinity were measured on a weekly basis. Total alkalinity (TA) was estimated using Gran titrations and certified reference materials (Dr A. G. Dickson, Scripps Institution of Oceanography). Average seawater PCO$_2$ was calculated using these parameters in CO2SYS (Pierrot et al., 2006) and using constants from Dickson and Millero (1987) (Table 1).

Sharks were introduced to the CO$_2$ treatments following 30 days acclimation to laboratory holding conditions and were then maintained in their respective CO$_2$ treatment conditions for a minimum of 60 days prior to physiological experimentation.

Experimental protocol

Resting oxygen consumption rates

Resting O$_2$ consumption rates (MO$_2_{\text{Rest}}$) were determined for sharks following 60–68 days of exposure to control (n = 10), medium (n = 12) and high (n = 11) CO$_2$ conditions and a 48 h fasting period using an intermittent-flow respirometry system with purpose-built respirometry chambers. Animals were transferred individually into the cylindrical 11 or 15 l respirometry chambers (depending on animal body size) submerged in a temperature-controlled aquarium (28.5°C) within each animal’s respective experimental CO$_2$ conditions and habituated to the chamber for 12 h before oxygen consumption measurements commenced. Submersible pumps were fitted to each chamber to supply a continuous water flow (1300 l h$^{-1}$; WEIPRO WH-2000; Yongcheng Aquarium Co., Ltd, Guangdong, China) from the surrounding water bath through the chambers. During respirometry trials, a digital relay timer (MFRT-1 Multi Function Recycling Timer; Xiamen SUPERPRO Technology Co., Ltd, Xiamen, Fujian, China) was used to stop water flow for 15 or 20 min and then resume flushing for 15 min over a total period of 12 h. The intervals of interrupted water flow were short enough to ensure that oxygen within the chambers did not fall below 80% saturation at any time, while flush periods were long enough to eliminate accumulation of metabolic CO$_2$ and allow oxygen levels to return to 100% saturation (Steffensen et al., 1984; Steffensen, 1989). A second pump (1300 l h$^{-1}$; WEIPRO WH-2000) was connected to each respirometry chamber to recirculate water continuously within the chamber, thus ensuring complete mixing and homogeneous water PO$_2$ (P$_{\text{w}O_2}$). Contactless spots (2 mm) with oxygen-sensitive REDFLASH dye were adhered to the inside of glass tubes connected to the recirculating pumps on each respirometer. These spots were then linked to a Firesting Optical Oxygen Meter (Pyro Science e. K., Aachen, Germany) via 5 m fibre-optic cables to record continuously (0.5 Hz) the temperature-compensated O$_2$ concentration (in milligrams per litre) of the water within each chamber over the 12 h period of time. The 0 and 100% oxygen levels of the Firesting oxygen meter were calibrated using 0 and 100% air-saturated seawater. At the end of each trial, the wet mass was taken for each shark [232.47 ± 117.98 g (mean ± SD)] prior to release back to experimental holding conditions.
Critical oxygen tension

Upon completion of \(\text{MO}_2 \text{Rest} \) measurements, sharks were permitted to recover in their respective \(\text{CO}_2 \) treatment conditions for ~3 weeks. Then, the same respirometers used to determine \(\text{MO}_2 \text{Rest} \) were used to determine the critical oxygen tension (\(P_{\text{crit}} \)) for the same sharks exposed to control (\(n = 9 \)), medium (\(n = 12 \)) and high \(\text{CO}_2 \) (\(n = 10 \)). By this point, sharks would have been exposed to their respective experimental conditions for 85–92 days. Prior to measurements, sharks were fasted for 48 h before being introduced to the cylindrical 11–15 l respirometry chambers. Then, the \(\text{MO}_2 \) of each animal was monitored for a minimum of 4 h using an intermittent flush cycle (15 min flush–15 min closed) so that stable \(\text{MO}_2 \text{Rest} \) was achieved prior to commencing the hypoxia experiment. The respirometers were then sealed by turning off flush pumps and closing previously installed ball-valves downstream of the flush pumps. Oxygen levels in the chamber were monitored continuously (0.5 Hz) and allowed to decrease to at least 0.8 mg l\(^{-1}\) to ensure that the critical oxygen tension for each individual was recorded (based on estimates from Routley et al., 2002). The changes in water pH and \(\text{PCO}_2 \) that occur when using closed respirometry for a short period of time have been shown previously to have no effect on \(P_{\text{crit}} \) in fish (Henriksson et al., 2008). After this oxygen concentration was achieved, the aforementioned flush cycle was reinstated such that \(\text{O}_2 \) levels within each respirometer could quickly return to normoxic conditions (100% air-saturated seawater).

Haematological and tissue analyses

Following \(P_{\text{crit}} \) measurements, animals were returned to their treatment tanks to recover for ~1 week. After this time, blood was sampled from sharks exposed to control (\(n = 8 \)), medium (\(n = 10 \)) and high (\(n = 8 \)) \(\text{CO}_2 \) conditions by inserting a 23 gauge needle posterior to the cloaca into the caudal vein and collecting the blood (<1% of body volume) into heparinized syringes. Animals were then euthanized by severing the spinal cord using the method described by Speers-Roesch et al. (2012b) so that tissues could be sampled. Whole blood [Hb] was determined using the HemoCue® (Hb 201 System, Australia Pty Ltd) with 10 µl of whole blood and was reported as grams per 100 ml using a calibration curve according to Clark et al. (2008) corrected for tropical reef species by Rumen et al. (2013b). The Hct was determined by centrifuging 60 µl of whole blood in heparinized micro-capillary tubes for 3 min at 17 000g and calculated as the ratio of packed red blood cells to total blood volume (as a percentage). Both [Hb] and Hct were used to calculate the MCHC. The spleen was dissected from each shark and weighed to the nearest 0.001 g. The SSI was calculated as the ratio of the spleen to body mass (as a percentage). Plasma was flash frozen immediately in liquid nitrogen and then stored at ~80°C until analysis for \([\text{HCO}_3^-]\) via colorometrically linked enzyme assay and for \([\text{Na}^+], [\text{K}^+], [\text{Cl}^-] \) (1:1 dilution with deionized water) and [urea] (1:19 dilution with deionized water) via ion-specific electrodes (ISE; Beckman Coulter System AU480i). Heart, brain and red muscle samples were also collected and frozen in liquid \(\text{N}_2 \) for citrate synthase enzyme analysis according to McClelland et al. (2005). Briefly, frozen tissues were homogenized in a standard buffer solution containing 5 mM EDTA, 0.1% Triton X-100, 0.2 mM dithiothreitol and 50 mM Hepes (adjusted to pH 7.4) and stored at ~80°C. The citrate synthase assay buffer contained (mm): 20 Tris (pH 8.0), 0.1 5,5-dithiobis (2-nitrobenzoic acid) and 0.3 acetyl-CoA. The reaction was initiated by the addition of 0.5 mm oxaloacetate, and absorbance was measured for 5 min at 412 nm. Control samples were assayed without oxaloacetate to control for background hydrolase activity.

Calculations and statistical analyses

Raw text files created for the Firesting recordings were imported offline into LabChart version 6.1.3 (ADInstruments, Colorado Springs, CO, USA), which was used to analyse data. A modified version of equations from Bushnell et al. (1994) and Schurmann and Steffensen (1997) was used to calculate \(\text{MO}_2 \text{Rest} \) (in milligrams per kilogram per hour). To do this, the average of the shallowest 10% of slopes [change in \(\text{O}_2 \) concentration over a period of 15–20 min (in milligrams of \(\text{O}_2 \) per litre per second) in between flushing cycles] was determined for each individual shark. From this, the appropriate

Table 1: Mean values for \(\text{PCO}_2 \), pH, total alkalinity, salinity and temperature over the course of the \(\text{CO}_2 \) exposure period

Treatment	Tank number	\(\text{PCO}_2 \) (µatm)	pH	Total alkalinity (µmol kg\(^{-1}\))	Salinity (ppt)	Temperature (°C)
Control	1	397 ± 6.5	8.16 ± 0.006	2145 ± 4.7	35.6 ± 0.07	28.6 ± 0.05
Control	2	384 ± 6.8	8.18 ± 0.006	2145 ± 4.7	35.6 ± 0.07	28.4 ± 0.04
Medium	1	614 ± 16.6	8.00 ± 0.009	2095 ± 5.1	35.9 ± 0.07	28.7 ± 0.05
Medium	2	608 ± 16.5	8.00 ± 0.009	2095 ± 5.1	35.9 ± 0.07	28.6 ± 0.05
High	1	876 ± 14.6	7.86 ± 0.006	2079 ± 5.3	36.0 ± 0.03	28.7 ± 0.03
High	2	861 ± 14.4	7.87 ± 0.006	2079 ± 5.3	36.0 ± 0.03	28.7 ± 0.04

Total alkalinity was measured weekly for each treatment condition, and temperature was measured daily for each tank within each treatment. Means were calculated for each treatment over the entire experimental period and are given for each holding tank, ±SEM. Abbreviation: \(\text{PCO}_2 \), seawater carbon dioxide partial pressure.
proportion of background O₂ consumption, which was measured 2–3 h before and after each trial for each respirometer and assumed linear, was subtracted. This value was then multiplied by the volume of the respirometer (in litres; minus the volume of the fish), all of which was divided by the mass of the fish (in kilograms). Respirometers were cleaned daily to ensure that background (microbial) respiration did not exceed 10% of the MO₂\text{Rest} of the sharks. Means and SEM for MO₂\text{Rest} were calculated for each of the three CO₂ treatments.

A similar data extraction and calculation protocol was followed for determining P\text{crit}. Again, MO₂\text{Rest} was calculated for each shark from the shallowest 10% of slopes that were recorded prior to sealing the respirometer. Then, the mean slope for every 5 min period of time while the respirometer was sealed was extracted (usually 20–30 slopes), and MO₂ values were calculated from those slopes. To determine P\text{crit}, all MO₂ values were plotted against the oxygen concentration within the chamber for each shark. A horizontal (regression) line was fitted to the mean MO₂\text{Rest} prior to sealing the respirometer. Then, a linear regression was applied to all of the points that consecutively fell below MO₂\text{Rest} once the respirometer had been sealed. The point at which both regression lines intersected was reported as the critical oxygen tension or P\text{crit} for that individual (Fig. 1; Ott et al., 1980; Nilsson et al., 2004; Collins et al., 2013). Means and SEM for P\text{crit} were calculated for each CO₂ treatment.

Nested ANOVA, with holding tanks nested within CO₂ treatments, was first used to test whether there was a significant effect of holding tank on mean MO₂\text{Rest} (in milligrams per kilogram per hour) or mean P\text{crit} (in milligrams of O₂ per litre). As there was no significant effect of tanks on either parameter, data from the two tanks within treatments were pooled for further analyses. ANCOVA was used to compare MO₂\text{Rest} among the three CO₂ treatments, with standard length as a covariate. To compare P\text{crit} among treatment groups, a robust regression analysis was performed with standard length as a covariate. Robust regression analysis was chosen over ANCOVA for P\text{crit} analysis due to potential outliers that could otherwise be solely responsible for significant outcomes. The removal of such outliers was rejected owing to the relatively small sample size. Instead, robust regression weights values differently based on their chance of being an outlier. Hence, the further away a single data point was from the mean, the less influential it became for the statistical outcome of the analysis. There was no interaction between the main effect (CO₂) and the covariate in either analysis; therefore, to increase statistical power, the analyses were run again without this term included. Standard length was not included in haematological and tissue data analyses because it had no significant effect on the outcomes. ANOVAs were then used together with Holm–Sidak post hoc tests to compare haematological and tissue parameters between animals acclimated to control, medium and high CO₂ conditions. Statistical significance was accepted when P < 0.05. All analyses were carried out using S-Plus (TIBCO Software Inc., Palo Alto, CA, USA).

![Figure 1](image-url) **Figure 1**: Representative trace illustrating the changes in oxygen consumption rate of an individual epaulette shark (*Hemiscyllium ocellatum*) as the oxygen concentration of the water decreased and the time over which this occurred. The parallel line represents the resting oxygen consumption rate. After the respirometry chamber was sealed, the oxygen consumption rate began to decrease below resting levels. The diagonal line is a trend line, with the intersection of both lines demarcating the critical oxygen tension (P\text{crit}).
Results

Resting oxygen consumption rates

There were no significant differences in MO_{rest} values between CO$_2$ treatment groups ($F_{2,28} = 0.578; P = 0.568$). However, MO_{rest} depended on the standard length of the individuals, with larger animals having a higher MO_{rest} than smaller animals ($F_{2,28} = 6.70; P = 0.0151$; Fig. 2A). Values for MO_{rest} ranged from 46.8 to 95.4 mg O$_2$ kg$^{-1}$ h$^{-1}$ with a mean of 65.2 ± 2.13 mg O$_2$ kg$^{-1}$ h$^{-1}$ across all treatments.

Critical oxygen tension

The P_{crit} values did not differ significantly between CO$_2$ treatment groups ($t_{4,26} = -0.170; P = 0.866$). However, standard length had a significant effect on the P_{crit} of individuals ($t_{4,26} = 2.26; P = 0.0323$; Fig. 2B), with larger animals reaching P_{crit} at a higher seawater O$_2$ concentration than smaller animals. The P_{crit} values ranged from 1.32 to 5.07 mg O$_2$ l$^{-1}$ with a mean of 2.51 ± 0.122 mg O$_2$ l$^{-1}$ across all treatment groups.

Haematology and tissue samples

No significant differences were detected in Hct between CO$_2$ treatment groups ($F_{2,22} = 0.214; P = 0.809$; Fig. 3A). There was a significant increase in [Hb] between the control and the medium CO$_2$ treatment groups ($F_{2,21} = 3.447; P = 0.048$; Fig. 3B), an elevation that was maintained with the high CO$_2$ treatment group for MCHC values ($F_{2,21} = 5.067; P = 0.0160$; Fig. 3C). Although not significant, there was a trend toward decreased SSI with high CO$_2$ exposure ($F_{2,22} = 2.050; P = 0.153$; Fig. 3D). There was a significant increase in plasma [HCO$_3^-$] in both the medium and high CO$_2$ treatment groups ($F_{2,21} = 10.893; P < 0.001$; Fig. 4A). However, there was no difference in plasma [Na$^+$], [K$^+$], [Cl$^-$] or [urea] between control and CO$_2$ treatment groups ($F_{2,21} = 1.543$, $P = 0.237$; Fig. 4B; [K$^+$], $F_{2,21} = 0.247$, $P = 0.783$; Fig. 4C; [Cl$^-$], $F_{2,21} = 1.697$, $P = 0.207$; Fig. 4D; and [urea], $F_{2,21} = 2.907$, $P = 0.077$; Fig. 4E). Citrate synthase activity did not change significantly between control and CO$_2$ treatment groups in red muscle ($F_{2,16} = 0.371; P = 0.696$), heart ($F_{2,18} = 0.0238; P = 0.976$) or brain ($F_{2,15} = 0.131; P = 0.878$; Fig. 5).

Discussion

Long-term exposure to near-future CO$_2$ conditions did not significantly affect metabolic performance or hypoxia sensitivity of epaulette sharks. In contrast, changes in [Hb] and MCHC were evident after ~90 days of exposure to 600 µatm CO$_2$ levels, and plasma [HCO$_3^-$] was elevated in both the moderate and high CO$_2$ treatment groups, suggesting that physiological adjustments were being made to cope with elevated CO$_2$ at the level of oxygen transport and ion regulation. However, there was no increase in metabolic capacity at the level of the mitochondria, as indicated by the lack of change in citrate synthase activity. Our findings suggest that, for this reef-inhabiting benthic elasmobranch, neither the energetic costs of basic maintenance nor sensitivity to hypoxia may be compromised in the elevated CO$_2$ conditions projected for the end of this century.

The compensatory mechanisms used by _H. ocellatum_ to maintain resting metabolic rates in normoxic and hypoxic conditions after prolonged exposure to elevated CO$_2$ may be linked to maintaining oxygen uptake and delivery and ion regulation. Following ~90 days of CO$_2$ exposure, epaulette sharks exhibited a significant increase in [Hb] and MCHC. Short-term changes in haematological parameters have been documented in teleosts and elasmobranchs following capture, cannulation and exercise (Soivio et al., 1973; Wood et al., 1977; Turner et al., 1983; Wells et al., 1986), upon acclimation to elevated temperature (adult horn sharks, _Heterodontus francisci_; Neale et al., 1977) and in response to anoxia (grey carpet shark, _Chiloscyllium punctatum_, and epaulette shark; Chapman and Renshaw, 2009). In teleosts, acute changes can be associated with adrenergic red blood cell (RBC) swelling (Caldwell et al., 2006), a mechanism in place to protect RBC pH and oxygen transport during stress,
but not known to occur in elasmobranchs (Berenbrink et al., 2005). Both teleosts and elasmobranchs do, however, use their spleen to produce and store RBCs (Turner et al., 1983; Fänge and Nilsson, 1985; Lai et al., 2006) and can contract it to increase the proportion of RBCs in the circulation (Ken-Ichi, 1988; Lai et al., 2006), presumably to aid in oxygen transport (Jensen et al., 1992). We observed a decrease, although non-significant, in the SSI in sharks exposed to both medium and high CO$_2$, suggesting that splenic contraction(s) may have occurred at some point during the CO$_2$ exposure period. Periodic splenic contractions could also increase the proportion of immature RBCs in circulation, which could explain the slight increase in MCHC without significant changes in Hct. The temporal scale of splenic RBC release and subsequent increases in erythropoietin, the glycoprotein responsible for regulating RBC numbers, is well understood for teleosts (Lai et al., 2006) and could be similar in elasmobranchs exposed to elevated CO$_2$ over extended periods of time, which is worth further investigation.

Plasma [HCO$_3^-$] was elevated in sharks upon 90 days of exposure to elevated CO$_2$, which indicates some level of long-term acid–base compensation. This finding is supported by studies by Deigweiher et al. (2008), in which acclimation to elevated CO$_2$ over 6 weeks in a marine teleost resulted in upregulation of Na$^+$/HCO$_3^-$ cotransporters (NBC1) and Na$^+$/K$^+$-ATPase at higher densities. Given the relationship between bicarbonate availability and synthesis of urea (the predominant osmolyte used by most elasmobranchs), acid–base compensatory mechanisms could have affected [urea] and therefore the efficiency of osmoregulatory pathways (Wood et al., 1995). As [urea] did not change with CO$_2$ exposure, this may not be problematic at the CO$_2$ levels used here and/or over the 90 day duration. The activity of citrate synthase, the first enzyme of the Krebs cycle located within the mitochondria, can be a good indicator of aerobic capacity. Unchanged citrate synthase activity after prolonged CO$_2$ exposure further suggests that there is no limitation at the level of aerobic energy production in any of the tested tissues (McClelland et al., 2005). Although there may have been no changes to aerobic capacity, changes may have been occurring in anaerobic pathways (e.g. activity of lactate dehydrogenase, the last enzyme of anaerobic glycolysis) to maintain energy production. This would be worthy of further investigation.

![Figure 3](https://example.com/figure3.png)

Figure 3: Changes in haematocrit (A), haemoglobin concentration (B), mean cell haemoglobin concentration (MCHC; C), and spleen–somatic index (D) after sharks were exposed to control, medium or high CO$_2$ for ~90 days. Different letters within a panel demarcate significant differences between treatment groups, and statistical significance is noted in the top right corner of each panel. Abbreviation: NS, not significant.
As Esbaugh et al. (2012) suggest, species that are already adapted to low levels of CO$_2$ may no longer rely on traditional short-term acid–base compensation strategies but instead use morphological changes (e.g. gill permeability, diffusion distances) or alter chemical equilibrium constraints in the blood over longer periods to maintain oxygen transport.

While there were no changes in metabolic performance in the sharks upon long-term CO$_2$ exposure, there was an unexpected pattern of mass-specific metabolic rates, with larger sharks exhibiting higher mass-specific metabolic rates than smaller sharks. This contradicts the usual pattern exhibited by ectotherms, but may be related to their feeding patterns. For example, we examined sharks ranging in size from ~20 to 50 cm. However, we used a set 48 h fasting period prior to determining oxygen consumption rates and prior to blood and tissue sampling because of their small size and benthic lifestyle and previous feeding patterns while in

Figure 4: Changes in plasma parameters after sharks were exposed to control, medium or high CO$_2$ for ~90 days. Different letters within a panel demarcate significant differences between treatment groups, and statistical significance is noted in the top right corner of each panel. Abbreviation: NS, not significant.
Conservation Physiology • Volume 2 2014

Environment and lifestyle play an important role in physiological tolerance to changing environmental conditions (Pörtner and Farrell, 2008), and this study confirms that *H. ocellatum* is no exception. It is already known that *H. ocellatum* exhibits the lowest value of *P* crit shown for any elasmobranch tested to date, suggesting an exceptional tolerance to short-term hypoxia, which is unique among chondrichthyes (Wise et al., 1998; Routley et al., 2002). *Hemiscyllium ocellatum* occupies shallow reef platforms that are subject to dramatic diurnal fluctuations in environmental *O* 2 and *CO* 2 conditions (Routley et al., 2002; Diaz and Breitburg, 2009; Last and Stevens, 2009). During calm nights, the low *O* 2 tension encountered on coral reefs can drop below 10% air saturation (Routley et al., 2002), usually as a result of respiration by reef organisms and especially during nocturnal low tides. This can also result in elevations in PCO 2, which have been reported to exceed 1000 µatm on shallow reef flats at night (Ohde and van Woesik, 1999; Shaw et al., 2013). The CO 2 levels may even be higher in caves, reef crevices and restricted-flow habitats, which are used by *H. ocellatum* for shelter (Compagno, 2002; Last and Stevens, 2009). Indeed, diurnal or acute fluctuations in *O* 2 and *CO* 2 may play a role in signalling metabolism in species using such habitats. However, acute responses often differ dramatically from responses to prolonged exposure, and it is important to make this distinction. The increased uptake of CO 2 by the ocean will affect both the average CO 2 level and the magnitude of extreme CO 2 fluctuations (Ohde and van Woesik, 1999; Shaw et al., 2013). This makes our finding that *H. ocellatum* exhibited no change in metabolic performance, including sensitivity to hypoxia, after prolonged exposure to projected future CO 2 levels even more important.

Adaptation to life on shallow reef platforms and lagoons may be the key to species like *H. ocellatum* for maintaining performance in projected future CO 2 concentrations (Melzner et al., 2009b). While noteworthy, what was previously known about the physiological tolerance of the epaulette shark to challenging environmental conditions was related to acute exposure of minutes to hours. This is extremely relevant to a shelter-seeking, benthic, reef-dwelling species like the epaulette shark that would experience such conditions burrowing into coral caves to avoid predation or to exploit food sources, activities vital to biological fitness. Pelagic shark species, many of which function as apex predators in their respective environments (Last and Stevens, 2009), however, do not typically exhibit shelter-seeking behaviours in areas that would experience the routine fluctuations in water chemistry experienced by *H. ocellatum* and therefore may not tolerate prolonged periods of elevated CO 2. Given that increased uptake of CO 2 by the ocean may mean that the high CO 2 levels that the epaulette shark may already routinely experience could be the new average ocean CO 2 levels, some species may be able to tolerate future conditions better. Future studies should investigate the importance of fluctuating CO 2 has ecological relevance and should be investigated in future studies.

Capitivity. It could have been that 48 h was sufficient fasting time for the smaller animals but not for the larger animals of that size range (Wood et al., 2007). Therefore, the larger animals could have been exhibiting slightly increased metabolic rates due to specific dynamic action, which could also mask any acid–base processes occurring due to CO 2 exposure. The relationship between acid–base disturbances originating from feeding and those due to elevated water

Figure 5: Changes in red muscle, heart and brain citrate synthase enzyme activity after sharks were exposed to control, medium or high CO 2 for ~90 days. Statistical significance is noted in the top right corner of each panel. Abbreviation: NS, not significant.
environmental conditions in shaping an organism’s tolerance. Differential effects on functional groups could impact predator–prey dynamics, affect the population structure of elasmobranchs and other aquatic organisms inhabiting coral reefs and, ultimately, impact ecosystem health. Investigating both sensitive and tolerant species from an array of habitat types would help to tease apart the role of the environment from other factors, including evolutionary history and behaviour, all of which is important when considering conservation measures under future climate change scenarios.

Acknowledgements

We thank the Marine and Aquaculture Research Facility Units (MARFU) at James Cook University for the technical support and excellent research facilities, Professor Rhondda Jones and Geoffrey Collins for advice and helpful discussions, as well as K. Corkill and L. Davies for technical support. We also greatly appreciate the efforts of three anonymous reviewers whose thorough and insightful edits, comments and suggestions have helped to make this a much stronger story.

Funding

This work was supported by funding from the School of Marine and Tropical Biology (D.D.U.H., P.L.M.); the School of Earth and Environmental Science (C.A.S., M.R.H.); AIMS@JCU (D.D.U.H., M.R.H.); and the Australian Research Council Centre of Excellence for Coral Reef Studies (J.L.R., P.L.M.).

References

Berenbrink M, Koldkjær P, Kepp O, Cossins AR (2005) Evolution of oxygen secretion in fishes and the emergence of a complex physiological system. Science 307: 1752–1757.

Brauner CJ, Baker DW (2009) Patterns of acid-base regulation during exposure to hypercapnia in fishes. In ML Glass, SC Wood, eds, Cardio-Respiratory Control in Vertebrates. Springer, Heidelberg, pp 43–63.

Bushnell P, Steffensen J, Schurmann H, Jones D (1994) Exercise metabolism in two species of cod in arctic waters. Polar Biol 14: 43–48.

Caldwell S, Rummer JL, Brauner CJ (2006) Blood sampling techniques and storage duration: effects on the presence and magnitude of the red blood cell β-adrenergic response in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol A Mol Integr Physiol 144: 188–195.

Chapman CA, Renshaw G (2009) Hematological responses of the grey carpet shark (Chiloscyllium punctatum) and the epaulette shark (Hemiscyllium ocellatum) to anoxia and re–oxygenation. J Exp Zool A Ecol Genet Physiol 311: 422–438.

Claiilbore JB, Evans DH (1992) Acid-base balance and ion transfers in the spiny dogfish (Squalus acanthias) during hypercapnia: a role for ammonia excretion. J Exp Zool 261: 9–17.

Clark TD, Elason EJ, Sandblom E, Hinch SG, Farrell AP (2008) Calibration of a hand-held haemoglobin analyser for use on fish blood. J Fish Biol 73: 2587–2595.

Collins GM, Clark TD, Rummer JL, Carton AG (2013) Hypoxia tolerance is conserved across genetically distinct sub-populations of an iconic, tropical Australian teleost (Lates calcarifer). Conserv Physiol 1: doi:10.1093/conphys/cot029.

Compagno LJ (2002) Sharks of the World: An Annotated and Illustrated Catalogue of Shark Species Known to Date. Vol. 2. Bullhead, Mackeral and Carpet Sharks (Heterodontiformes, Lamniformes and Orectolobiformes). Food and Agriculture Organization of the United Nations, Rome.

Couturier CS, Stecyk JAW, Rummer PL, Munday PL, Nilsson GE (2013) Species-specific effects of near-future CO₂ on the respiratory performance of two tropical prey fish and their predator. Comp Biochem Physiol A Mol Integr Physiol 166: 482–489.

Deigweier K, Koschinck N, Pörtner H-O, Lucassen M (2008) Acclimation of ion regulatory capacities in gills of marine fish under environmental hypercapnia. Am J Physiol Regul Integr Comp Physiol 295: R1660–R1670.

Diaz RJ, Breitburg DL (2009) The hypoxic environment. Fish Physiol 27: 1–23.

Dickson A, Millero F (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res 34: 1733–1743.

Doney SC, Schimel DS (2007) Carbon and climate system coupling on timescales from the Precambrian to the Anthropocene. Ann Rev Environ Resour 32: 31–66.

Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO₂ problem. Annu Rev Mar Sci 1: 169–192.

Dowd WW, Renshaw GM, Cech JJ Jr, Kultz D (2010) Compensatory proteome adjustments imply tissue-specific structural and metabolic reorganization following episodic hypoxia or anoxia in the epaulette shark (Hemiscyllium ocellatum). Physiol Genomics 42: 93–114.

Esabaugh AJ, Heuer R, Grosell M (2012) Impacts of ocean acidification on respiratory gas exchange and acid–base balance in a marine teleost, Opsanus beta. J Comp Physiol B 182: 921–934.

Evans DH (1982) Mechanisms of acid extrusion by two marine fishes: the teleost, Opsanus beta, and the elasmobranch, Squalus acanthias. J Exp Biol 97: 289–299.

Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci 65: 414–432.

Fänge R, Nilsson S (1985) The fish spleen: structure and function. Experientia 41: 152–158.

Henriksson P, Mandic M, Richards JG (2008) The osmoregulatory compromise in sculpins: impaired gas exchange is associated with freshwater tolerance. Physiol Biochem Zool 81: 310–319.

Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K et al. (2007) Coral reefs under rapid climate change and ocean acidification. Science 318: 1737–1742.
IPCC (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. TF Stocker, D Qin, G-K Plattner, M Tignor, SK Allen, J Boschung, A Nauels, Y Xia, V Bex, PM Midgley, eds. Cambridge University Press, Cambridge, UK and New York, NY, USA.

Ishimatsu A, Hayashi M, Kikkawa T (2008) Fishes in high-CO$_2$-acidified oceans. Mar Ecol Prog Ser 373: 295–302.

Jensen FB, Nikinmaa M, Weber RE (1993) Environmental perturbations of oxygen transport in teleost fishes: causes, consequences and compensations. In JC Rankin, F Jensen, eds, Fish Ecophysiology. Springer, The Netherlands, pp 161–179.

Ken-Ichi Y (1988) Contraction of spleen in exercised freshwater teleost. Comp Biochem Physiol A Physiol 96: 65–66.

King PA, Goldstein L (1983) Renal ammoniagenesis and acid excretion in the dogfish, Squalus acanthias. Am J Physiol Regul Integr Comp Physiol 245: R581–R589.

Lai JC, Kakuta I, Mok HO, Rummer JL, McKenzie DJ, Innocenti A, Supuran CT, Brauner CJ (2013a) Elevated CO$_2$ primes the respiratory and metabolic responses of the epaulette shark to progressive hypoxia. Comp Biochem Physiol A Mol Integr Physiol 151: 313–321.

Munday PL, Crawley NE, Nilsson GE (2009) Interacting effects of elevated temperature and ocean acidification on the aerobic performance of coral reef fishes. Mar Ecol Prog Ser 388: 235–242.

Neale NL, Honn KV, Chavin W (1977) Hematological responses to thermal acclimation in a cold water squaliform (Heterodontus francisci Girard 1984). J Comp Physiol 115: 215–222.

Nilsson GE, Renshaw GM (2004) Hypoxic survival strategies in two fishes: extreme anoxia tolerance in the North European crucian carp and natural hypoxic preconditioning in a coral-reef shark. J Exp Biol 207: 3131–3139.

Nilsson GE, Hobbs J-P, Munday PL, Östlund-Nilsson S (2004) Coward or braveheart: extreme habitat fidelity through hypoxia tolerance in a coral-dwelling goby. J Exp Biol 207: 33–39.

Ohde S, van Woekes R (1999) Carbon dioxide flux and metabolic processes of a coral reef, Okinawa. Bull Mar Sci 65: 559–576.

Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F et al. (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 438: 681–686.

Otto ME, Heisler N, Ultsch GR (1980) A re-evaluation of the relationship between temperature and the critical oxygen tension in freshwater fishes. Comp Biochem Physiol A Physiol 67: 337–340.

Pierrot D, Lewis E, Wallace DWR (2006) MS Excel Program Developed for CO$_2$ System Calculations. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, TN, USA. http://cdiac.ornl.gov/ftp/co2sys/CO2SYS_calc_XLS_v2.1/.

Pörtner HO (2008) Ecosystem effects of ocean acidification in times of ocean warming: a physiologist’s view. Mar Ecol Prog Ser 373: 203–217.

Pörtner HO, Farrell AP (2008) Physiology and climate change. Science 322: 690–692.

Raven J, Caldeira K, Elderfield H, Hoegh-Guldberg O, Liss P, Shepherd J, Turley C, Watson A (2005) Ocean Acidification Due to Increasing Atmospheric Carbon Dioxide. The Royal Society, London, UK.

Renshaw GMC, Kerrisk CB, Nilsson GE (2002) The role of adenosine in the anoxic survival of the epaulette shark, Hemiscyllium ocellatum. Comp Biochem Physiol B Biochem Mol Biol 131: 134–141.

Rosa R, Seibel BA (2008) Synergistic effects of climate-related variables suggest future physiological impairment in a top oceanic predator. Proc Natl Acad Sci USA 105: 20776–20780.

Routley MH, Nilsson GE, Renshaw GMC (2002) Exposure to hypoxia primes the respiratory and metabolic responses of the epaulette shark to progressive hypoxia. Comp Biochem Physiol A Mol Integr Physiol 131: 313–321.

Rummer JL, McKenzie DJ, Innocenti A, Supuran CT, Brauner CJ (2013a) Enhanced muscle oxygen delivery may represent the incipient function of the Root effect in ray-finned fishes. Science 340: 1327–1329.

Rummer JL, Stecyk JAW, Couturier CS, Watson S-A, Nilsson GE, Munday PL (2013b) Elevated CO$_2$ enhances aerobic scope of a coral reef fish. Conserv Physiol 1: doi:10.1093/conphys/cot023.

Sabine CL, Feely RA (2007) The oceanic sink for carbon dioxide. Chapter 3. In D Reay, N Hewitt, J Grace, K Smith, eds, Greenhouse Gas Sinks, CABJ Publishing, Oxfordshire, UK, pp 31–49.

Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DWR, Tilbrook B (2004) The oceanic sink for anthropogenic CO$_2$. Science 305: 367–371.

Schurmann H, Steffensen JF (1997) Effects of temperature, hypoxia and activity on the metabolism of juvenile Atlantic cod. J Fish Biol 50: 1166–1180.
Shaw EC, McNeil BI, Tilbrook B, Matear R, Bates ML (2013) Anthropogenic changes to seawater buffer capacity combined with natural reef metabolism induce extreme future coral reef CO₂ conditions. *Glob Change Biol* 19: 1632–1641.

Soivio A, Nyholm K, Westman K (1973) Notes on haematocrit determinations on rainbow trout, *Salmo gairdneri*. *Aquaculture* 2: 31–35.

Speers-Roesch B, Richards JG, Brauner CJ, Farrell AP, Hickey AJR, Wang YS, Renshaw GMC (2012a) Hypoxia tolerance in elasmobranchs. I. Critical oxygen tension as a measure of blood oxygen transport during hypoxia exposure. *J Exp Biol* 215: 93–102.

Speers-Roesch B, Brauner CJ, Farrell AP, Hickey AJR, Renshaw GMC, Wang YS, Richards JG (2012b) Hypoxia tolerance in elasmobranchs. II. Cardiovascular function and tissue metabolic responses during progressive and relative hypoxia exposures. *J Exp Biol* 215: 103–114.

Steffensen JF (1989) Some errors in respirometry of aquatic breathers: how to avoid and correct them. *Fish Physiol Biochem* 6: 49–59.

Steffensen JF, Johansen K, Bushnell PG (1984) An automated swimming respirometer. *Comp Biochem Physiol A Physiol* 79: 437–440.

Tresguerres M, Parks SK, Salazar E, Levin LR, Goss GG, Buck J (2010) Bicarbonate-sensing soluble adenylyl cyclase is an essential sensor for acid/base homeostasis. *Proc Natl Acad Sci USA* 107: 442–447.

Turner JD, Wood CM, Höbe H (1983) Physiological consequences of severe exercise in the inactive benthic flathead sole (*Hippoglossoides elassodon*): a comparison with the active pelagic rainbow trout (*Salmo gairdneri*). *J Exp Biol* 104: 269–288.

Wells R, McIntyre R, Morgan A, Davie P (1986) Physiological stress responses in big gamefish after capture: observations on plasma chemistry and blood factors. *Comp Biochem Physiol A Physiol* 84: 565–571.

Wise G, Mulvey JM, Renshaw GM (1998) Hypoxia tolerance in the epaulette shark (*Hemiscyllium ocellatum*). *J Exp Biol* 201: 1–5.

Wood CM, McMahon B, McDonald D (1977) An analysis of changes in blood pH following exhausting activity in the starry flounder, *Platichthys stellatus*. *J Exp Biol* 69: 173–185.

Wood CM, Pärt P, Wright PA (1995) Ammonia and urea metabolism in relation to gill function and acid–base balance in a marine elasmobranch, the spiny dogfish (*Squalus acanthias*). *J Exp Biol* 198: 1545–1558.

Wood CM, Kajimura M, Bucking C, Walsh PJ (2007) Osmoregulation, ionoregulation and acid–base regulation by the gastrointestinal tract after feeding in the elasmobranch (*Squalus acanthias*). *J Exp Biol* 210: 1335–1349.