N-Acetylgalactosamine Utilization Pathway and Regulon in Proteobacteria

GENOMIC RECONSTRUCTION AND EXPERIMENTAL CHARACTERIZATION IN SHEWANELLA

Semen A. Leyn‡§3, Fang Gao‡, Chen Yang‡, and Dmitry A. Rodionov‡§3

From the Sanford-Burnham Medical Research Institute, La Jolla, California 92037, the Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127994, Russia, and the Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China

Received for publication, May 16, 2012, and in revised form, June 15, 2012. Published, JBC Papers in Press, June 18, 2012, DOI 10.1074/jbc.M112.382333

AUGUST 10, 2012•VOLUME 287•NUMBER 33
JOURNAL OF BIOLOGICAL CHEMISTRY 28047

Background: Amino sugar utilization pathways are highly variable among different bacteria.

Results: The N-acetylgalactosamine utilization pathway and regulon were reconstructed in the genomes of diverse Proteobacteria.

Conclusion: In vitro pathway reconstitution confirmed a novel variant of the N-acetylgalactosamine utilization pathway in the Shewanella lineage.

Significance: Novel enzymatic activities required for amino sugar utilization were characterized.

Amino sugars N-acetyl-d-galactosamine (GalNAc) and d-galactosamine (GalN) constitute various cell structures in all biological domains. In bacteria, GalNAc is a common component of the cell wall (1), being found in lipopolysaccharides (2). In human, GalNAc links carbohydrate chains in mucins (3). The amino sugars were also commonly found in the carbohydrate chains of glycosylated proteins, both in prokaryotes and eukaryotes (4–7).

GalNAc and GalN amino sugars can support the growth of Escherichia coli by serving as carbon and nitrogen sources (8). Genes involved in GalNAc/GalN utilization were initially identified by in silico analysis of the E. coli K-12 genome (8). The proposed catabolic pathway involves the transport and subsequent phosphorylation of GalNAc/GalN substrates, the deacetylation of GalNAc-6-P, the deamination/isomerization of GalN-6-P, the phosphorylation of Tag-6-P, and the cleavage of Tag-1,6-PP to produce glyceraldehyde 3-phosphate and glyceraldehyde. Two PTS systems encoded by agaBCD and agaVWEF genes were then confirmed to mediate transport and phosphorylation of GalNAc and GalN, respectively (9). Two putative enzymes encoded by aga gene loci, AgaA and Agal, were found to be homologous, respectively, to the GlcNAc-6-P deacetylase NagA and the GlcN-6-P deaminase NagB from E. coli (8). Based on this observation, Reizer et al. have proposed that AgaA and Agal function as the GalNAc-6-P deacetylase and the GalN-6-P deaminase, respectively, but neither of these enzymes was then experimentally validated. The identity of the Tag-6-P kinase is yet unknown; however, two alternative hypotheses were proposed: (i) the fructose-6-phosphate kinase PfkA is also responsible for Tag-6-P phosphorylation; and (ii) a novel enzyme with a different specificity is responsible for phospho-

* This work was supported, in whole or in part, by National Institutes of Health Grant R01GM077402 through the NIGMS. This work was also supported by the Genomic Science Program (GSP), Office of Biological and Environmental Research (OBER), U.S. Dept. of Energy (DOE) under Contract DE-SC0004999 with the Sanford-Burnham Medical Research Institute (SBMRI) and as a contribution of the Pacific Northwest National Laboratory (PNNL) Foundational Scientific Focus Area, and by the National Science Foundation of China Grants 30970035 and 31070033, the Russian Foundation for Basic Research Grant 10-04-01768, and the Knowledge Innovation Program of the Chinese Academy of Sciences Grant KSCX2-EW-G-5.

† Both authors contributed equally to this work.

‡ To whom correspondence may be addressed. E-mail: chenyang@sibs.ac.cn.

§ To whom correspondence may be addressed. Tel.: 858-646-3100; Fax: 858-795-5249; E-mail: rodionov@burnham.org.

© 2012 by The American Society for Biochemistry and Molecular Biology, Inc. Published in the U.S.A.
Genomics of N-Acetyl-\(d\)-galactosamine Utilization

lation (10); and (ii) the putative protein AgaZ encoded in the *aga* gene locus functions as Tag-6-P kinase (8). The final step of the \(\text{GalNAc}\) pathway is catalyzed by the Tag-1,6-PP aldolase AgaY that belongs to the class II aldolases (11). The molecular function of the AgaS enzyme encoded in the *aga* gene cluster has not yet been investigated.

The *aga* genes in *E. coli* are transcriptionally regulated by the AgaR repressor from the DeoR family of transcriptional factors (12). The AgaR protein recognizes specific sequences with consensus WRM\(\text{YMMTTCTTTYT}\)R\(\text{YTTTKK}\) (where W is A or T, Y is C or T, R is A or G, M is A or C, and K is G or T) located in the promoter regions of the *agaZ*, *agaS*, and *agaR* genes. All three promoters had elevated activity in the presence of \(\text{GalNAc}\) or \(\text{GalN}\) in the medium, and this induction was dependent on the AgaR repressor (12). The effector for AgaR was not identified; however, it was proposed that phosphorylated intermediates of the GalNAc/\(\text{GalN}\) catabolic pathway, GalNAc-6-P and/or GalN-6-P, can serve as molecular inducers.

Recently, a genomic reconstruction of sugar utilization pathways was performed for aquatic γ-Proteobacteria from the *Shewanella* genus, resulting in identification of a novel variant of the GalNAc catabolic pathway in four *Shewanella* strains (13). The reconstructed catabolic pathway in *Shewanella* spp. involves two *E. coli*-like enzymes (the predicted AgaS deaminase and AgaZ kinase) and four novel functional assignments, including a nonorthologous GalNAc-6-P deacetylase (Aga\(\text{A}_\text{II}\)), a predicted GalNAc kinase (AgaK), and an inner membrane GalNAc permease (AgaP) (Fig. 1). Thus, it was proposed that the GalNAc-specific PTS in *E. coli* is replaced by GalNAc permease and kinase in *Shewanella*. Experimental testing of growth phenotypes confirmed the ability of *Shewanella* strains to grow on GalNAc as a sole carbon and energy source (13).

In this work, we combined the bioinformatics reconstruction of GalNAc utilization pathways and AgaR transcriptional regulators in the genomes of Proteobacteria with the detailed characterizations of three novel enzymes from the GalNAc catabolic pathway in *Shewanella* sp. ANA-3. Activities of the novel GalNAc kinase AgaK and GalNAc-6-P deacetylase Aga\(\text{A}_\text{II}\) were validated by *in vitro* enzymatic assays with purified enzymes. We assigned the role of GalN-6-P isomerase to AgaS protein and confirmed its functionality in both *E. coli* and *Shewanella* (13). Finally, we showed that AgaS functions as a main GalN-6-P isomerase in the GalNAc pathway of *E. coli*, whereas the previously assigned Agal enzyme is not essential for the GalNAc catabolism. Functional diversity of GalNAc catabolic pathways in various taxonomic groups of Proteobacteria is discussed.

EXPERIMENTAL PROCEDURES

Bioinformatics Approaches and Tools—Genome sequences were downloaded from the MicrobesOnline genomic data base (14). Identification of orthologs was performed using BLAST searches in the “nr” data base (15) and confirmed by construction of protein phylogenetic trees. For functional protein annotation, distant homology to characterized proteins was determined using BLAST searches in the Swissprot/Uniprot protein data base. Genomic neighborhood analysis was performed using the MicrobesOnline and SEED Web resources (14, 16). The GalNAc utilization subsystem curation and analysis were conducted using the SEED platform (16). Known specificities of sugar transporters and glycoside hydrolases were extracted from the TCDB (17) and CAZy (18) databases, respectively. Protein domains were determined by protein similarity search tools in the Pfam data base (19). Multiple sequence alignments were constructed by MUSCLE (20). Phylogenetic trees were built using a maximum likelihood algorithm implemented in the proml tool from the PHYLIP package (21). Trees were visualized using Dendroscope (22). Signal peptide sequences were determined using the SignalP server (23).

For genomic reconstruction of AgaR regulons, we used the comparative genomics approach based on identification of candidate regulator-binding sites in closely related bacterial genomes (for review, see Ref. 24). First, we revealed orthologs of the AgaR regulator from *E. coli* and analyzed the genomic context of *agaR* genes to reveal their co-localization with other *aga* genes. A representative subset of species from seven taxonomic groups of Proteobacteria that possess the AgaR regulators and GalNAc utilization pathway genes was selected for comparative genomic analysis (Table 1).

FIGURE 1. Reconstruction of GalNAc utilization pathways in Proteobacteria. Different pathway variants in *E. coli* and *Shewanella* are highlighted by yellow and green background arrows, respectively. Multiple nonorthologous variants of proteins for several functional roles are listed in the same box and marked by uppercase Roman numerals.

The reconstructed catabolic pathway in *Shewanella* spp. includes a nonorthologous GalNAc-6-P deacetylase (Aga\(\text{A}_\text{II}\)), a predicted GalNAc kinase (AgaK), and an inner membrane GalNAc permease (AgaP) (Fig. 1). Thus, it was proposed that the GalNAc-specific PTS in *E. coli* is replaced by GalNAc permease and kinase in *Shewanella*. Experimental testing of growth phenotypes confirmed the ability of *Shewanella* strains to grow on GalNAc as a sole carbon and energy source (13).
TABLE 1

Genomic distribution of components of the reconstructed GalNAc utilization pathways in Proteobacteria

Lineage/Genome	Regulator AgaR	Catabolic enzymes^a	Transporters^b				
Enterobacteriales							
Escherichia coli str. C str. ATCC 8739	i	I	+	+	LIV		
Citrobacter koseri ATCC BAA-895	i	I	+	+	I		
Enterobacter sp. 638	i	I	+	+	I		
Yersinia pestis KIM	ii	I	+	+	III		
Serratia proteamaculans 568	Iv, Iv	I	+	+	I		
Escherichia coli BL21	ii, Iv	I	+	+	I, III		
Proteus mirabilis H14320	i	I	+	+	II		
Photorhabdus luminescens TTO1	iv	I	+	+	I		
Vibrionales							
Vibrio cholifluus CMCP6	v,v	I	+	+	I		
Vibrio fischeri ES114	ii	I	+	+	I		
Vibrio angustum S14	v,v	I	+	+	I		
Photobacterium profundum SS9	ii,v,v	I	+	+	I, III		
Pasteurellales							
Haemophilus parasuis SH0165	ii	I	+	+	II		
Alteromonadales							
Shewanella sp. ANA-3, MR-4, MR-7	iii	I	II	+	+	+	I
Shewanella amazonensis SB2B	iii	I	II	+	+	I	
Aeromonadales							
Aeromonas hydrophila ATCC 7966	i	I	+	+	I		
Xanthomonadales							
Stenotrophomonas maltophilia K279a	Iv	I	I	+	+	I	
Caulobacteriales							
Caulobacter sp. K31	+	I	I	+	+	II	
Burkholderia							
Burkholderia cenocepacia J2315	+	I	I	+	+	II	

^a Groups of regulators clustered into five clades on the AgaR phylogenetic tree and characterized by different DNA motifs are presented as lowercase roman numerals (see supplemental Fig. S1 for details).

^b The presence of genes for the respective functional roles is shown by + or by uppercase Roman numerals, where each numeral denotes an individual functional variant that is nonorthologous to the others in the same column.

RNA Isolation and Real-time RT-PCR—Total RNA was isolated from *Shewanella* sp. ANA-3 cells harvested at a midexponential growth phase. Cells were frozen immediately in liquid nitrogen and ground into powder. RNA was isolated using TRIzolTM (Invitrogen) by following the manufacturer’s instructions. Contaminant DNA was removed by DNase I (Takara) digestion, which was verified by performing the PCR under identical conditions without adding reverse transcriptase. cDNA was generated by reverse transcription reactions using random hexamers as primers, 1 µg of purified RNA, and RTase Moloney murine leukemia virus (RNase H⁻) reverse transcriptase (Takara). The cDNA was amplified using the Applied Biosystems 7300 real-time PCR system. The reaction mixture (20 µl) contained 50–100 ng of cDNA, 0.2 µM gene-specific primers (as shown in supplemental Table S1), and Power SYBR Green PCR master mix (Bio-Rad). The PCR parameters were one cycle of 95 °C for 30 s, followed by 40 cycles of 95 °C for 5 s and 60 °C for 31 s. Melt curves were analyzed to ensure specificity of primer annealing and lack of primer secondary structures. Data analysis was performed with the 7300 system software (Bio-Rad) using 16 S rRNA for normalization. The expression level of each gene was presented as the average of six measurements from two biological replicates, with the corresponding S.D.

Genetic Manipulations—In-frame single-gene deletions of *agaS* and *agal* in *E. coli* ATCC 8739 were achieved by replacing the target genes with a spectinomycin resistance cassette using the standard Lambda Red-mediated gene replacement method (30). The chromosomal deletions of the individual genes were confirmed by PCR. The primers for gene knock-out and PCR confirmation are shown in supplemental Table S1. For comple-
Genomics of N-Acetyl-D-galactosamine Utilization

Genetics analysis, the full-length coding regions of *agaS* and/or *agaY* (EcoC_0561) genes from *E. coli* ATCC 8739 were PCR-amplified using the primers shown in supplemental Table S1 and inserted downstream into the lac promoter in the pUC118 expression vector (Novagen). The resulting plasmids were then electroporated into the *E. coli* ATCC 8739 ΔagaS knock-out mutant. For protein overexpression and purification, the *agaK* (Shewan3A_2698), *agaAII* (Shewan3A_2697), and *agaS* (Shewan3A_2699) genes from *Shewanella* sp. ANA-3 were amplified by PCR using the primers shown in supplemental Table S1. The PCR products were cloned into the expression vector pET28a, and the resulting plasmids were transformed into *E. coli* BL21(DE3) pLysS.

Protein Overexpression and Purification—The recombinant *Shewanella* proteins AgaK, AgaAII, and AgaS were overexpressed as N-terminal fusions with a His6 tag in *E. coli* BL21(DE3) pLysS. The cells were grown in LB medium to an A600 of 0.8 at 37 °C, induced by 0.2 mM isopropyl-β-D-thiogalactopyranoside, and harvested after 12 h of shaking at 16 °C. Protein purification was performed using a rapid Ni-NTA-agarose minicolumn protocol as described previously (31). Briefly, harvested cells were resuspended in 20 mM HEPES buffer (pH 7) containing 100 mM NaCl, 0.03% Brij-35, 2 mM β-mercaptoethanol, and 2 mM phenylmethylsulfonyl fluoride. Lysozyme was added to a concentration of 1 mg ml⁻¹, and the cells were lysed by freezing-thawing followed by sonication. After centrifugation, the supernatant was loaded onto a Ni-NTA-agarose column (0.2 ml). After bound proteins were washed with the 50 mM Tris-HCl buffer (pH 8) containing 1 M NaCl, 0.3% Brij-35, and 2 mM β-mercaptoethanol, they were eluted with 0.3 ml of the same buffer supplemented with 250 mM imidazole. The buffer was then changed to 10 mM Tris-HCl (pH 7.4) containing 0.3 mM DTT, 1 mM EDTA, and 10% glycerol by using Bio-Spin columns (Bio-Rad). The purified proteins were run on a 12% sodium dodecyl sulfate-polyacrylamide gel to monitor their size and purity.

In Vitro Enzymatic Assays—GalNAc kinase activity was assayed by coupling the formation of ADP to the oxidation of NADH to NAD⁺ via pyruvate kinase and lactate dehydrogenase. Briefly, 0.5 μg of purified enzyme was added to 200 μl of 50 mM Tris buffer (pH 7.5) containing 1 mM MgCl₂, 1 mM ATP, 2 mM phosphoenolpyruvate, 0.3 mM NADH, 4 units of pyruvate kinase, 4 units of lactate dehydrogenase, and 1 mM GalNAc (Sigma-Aldrich). The change in NADH absorbance was monitored at 340 nm at 30 °C by using a Beckman DU-800 spectrophotometer. To test substrate specificity of AgaK, GalNAc was replaced by 10 mM glucose, GlcNAc, GalN, GlcN, or N-acetylmannosamine in the assay mixture. Determination of the apparent kcat and Km values was performed by varying the GalNAc concentration in the range of 0.2–8 mM and the GlcNAc concentration in the range of 4–64 mM in the presence of a saturating concentration of ATP. Kinetic data were analyzed using GraphPad Prism 5.0 software. A standard Michaelis-Menten model was used to determine the apparent kcat and Km values.

The GalNAc-6-P deacetylase activity was assayed by adding 5–10 μg of the purified AgaAII enzyme to 200 μl of reaction mixture containing 50 mM Tris (pH 7.5), 2 mM GalNAc, 20 mM MgCl₂, 1 mM ATP, and 5 μg of the purified GalNac kinase AgaK. The amount of GalNac-6-P consumed after 5 min was determined by using p-dimethylaminobenzaldehyde reagent and reading the absorbance at 585 nm (32). The reaction rate was proportional to the amount of the GalNAc-6-P deacetylase in the reaction mixture. The activity toward GlcNac-6-P was also tested by using 2 mM GlcNac-6-P. The same enzymatic assay was also used for in vitro reconstitution of the conversion of GalNAc to Tag-6-P using the three purified recombinant enzymes GalNAc kinase (5 μg), GalNAc-6-P deacetylase (10 μg), and GalN-6-P deaminase/isoromerase (10 μg). The reaction was started by adding 2 mM GalNAc. As controls, one or two enzymes were excluded from the reaction mixture.

RESULTS

Comparative Genomics of GalNAc Utilization in Proteobacteria—For integrated genomic reconstruction of GalNAc utilization pathways and transcriptional regulatory networks in Proteobacteria, we used the established comparative genomics techniques (24, 33) implemented in the SEED and RegPredict Web resources (16, 25). As a result, the GalNAc metabolic pathway and AgaR regulon were identified in 21 species representing six lineages of γ-Proteobacteria (Enterobacteriales, Vibrionales, Pasteurellales, Alteromonadales, Aeromonadales, and Xanthomonadales) and two lineages of α- and β-Proteobacteria (Caulobacterales and Burkholderiales, respectively). The distribution of genes encoding the GalNAc catabolic enzymes and associated transporters across the studied species is summarized in Table 1 and supplemental Table S2.

AgaR Regulon—The transcriptional factor AgaR belongs to the DeoR protein family and was initially characterized in *E. coli* as a repressor of the GalNAc utilization genes (12). Orthologs to the *E. coli* agaR gene were identified in the genomes of various γ-Proteobacteria and in two individual genomes of α- and β-Proteobacteria. In four genomes, we identified two copies of *agaR* genes, whereas *Photobacterium profundum* contains three *agaR* paralogs (Table 1). A strong tendency of *agaR* genes to cluster on the chromosome with GalNAc utilization genes was observed, suggesting conservation of the AgaR ortholog function (Fig. 2). Using the phylogenetic analysis of the identified in Proteobacteria AgaR homologs, we selected five major groups of regulators to use them for further comparative genomics based regulon reconstruction (supplemental Fig. S1). Interestingly, *P. profundum* and *Edwardsiella tarda* possess distantly related AgaR paralogs (~45% identity), whereas the AgaR paralogs in *Serratia proteamaculans* and
Vibrio vulnificus are 74% and 57% identical, respectively, and belong to the same phylogenetic groups on the AgaR tree.

To infer the AgaR regulons in Proteobacteria, we applied the comparative genomics approach (as implemented in the RegPredict Web server) that combines identification of candidate regulator-binding sites with cross-genomic comparison of regulons. The upstream regions of GalNAc utilization genes in each group of AgaR-containing genomes were analyzed using a motif-recognition program to identify conserved AgaR-binding DNA motifs. After construction of a positional weight matrix for each identified motif, we searched for additional AgaR-binding sites in the analyzed genomes and finally performed a cross-species comparison of the predicted AgaR regulons using the phylogenetic footprinting approach (34). Multiple alignments of noncoding regulatory regions of orthologous genes from closely related γ-Proteobacterial genomes confirm high conservation of the predicted AgaR-binding sites (supplemental Fig. S2).

The predicted AgaR-binding motifs in five investigated groups share a common sequence pattern, CTTTC (Fig. 2 and supplemental Fig. S1). In group (i), which includes E. coli and related Enterobacteria, the candidate AgaR motif is in accordance with the consensus experimentally determined for E. coli AgaR using a DNase I footprinting approach (12) (supplemental Fig. S2). In groups (i), (ii), and (iii), the candidate AgaR-binding motifs have the same structure of a direct repeat with a common consensus, CTTTC-5nt-CTTTC, although the copy number and orientation of these direct repeats in the particular regulatory gene regions can be different. In contrast, the predicted regulator-binding motif for group (iv) is an inverted repeat with consensus CTTTC-15nt-GAAAG. Finally, the predicted AgaR motif for group (v) has a common structure of a tandem repeat of two GAAAG sites separated by a 16–18-nt spacer.

GalNAc/GalN Utilization Pathways—The reconstructed AgaR regulons in Proteobacteria revealed various sets of genes that are presumably involved in the GalNAc and/or GalN utilization subsystem (Table 1 and Fig. 2). A large number of the AgaR-regulated genes encode novel enzymes and various transport systems. By analyzing protein similarities and genomic contexts for these genes, we inferred their potential functional roles and reconstructed the associated GalNAc/GalN metabolic pathways (Fig. 1).

The most conserved enzyme in the GalNAc/GalN subsystem is AgaS, a hypothetical sugar phosphate isomerase from the SIS family that is present in all analyzed genomes. Previously, it was proposed that the agaI gene in E. coli codes for a deaminase/isomerase that is responsible for converting GalN-6-P to Tag-6-P (35), an essential step in the GalNAc and GalN utilization pathway (Fig. 1). However, an ortholog of the E. coli agaI gene was identified only in Enterobacter sp. 638, suggesting that AgaI plays an auxiliary role in the GalNAc pathway (supplemental Table S1). Thus, an essential GalN-6-P deaminase/isomerase was missing in GalNAc pathways in most analyzed Proteobacteria. Based on the GalNAc subsystem analysis, we tentatively assigned the missing GalN-6-P deaminase/isomerase function to the agaS gene.

The GalNAc-6-P deacetylase agaA is present in 12 studied genomes, where it is always clustered with other GalNAc utilization genes. In Shewanella spp., the aga gene clusters contain a gene encoding the predicted GalNAc-6-P deacetylase, which is most similar to the GicNac-6-P deacetylase NagA from Shewanella spp. (50% similarity) (36). The identified in Shewanella spp. novel variant of GalNAc-6-P deacetylase was named...
Genomics of N-Acetyl-d-galactosamine Utilization

AgAH to distinguish it from the E. coli AgA enzyme. All three enzymes, AgA from E. coli and both AgAH and NagA from Shewanella, belong to the same COG1820 family of the amido-hydrolase family. Phylogenetic analysis of this protein family has confirmed that AgAH is a close paralog of NagA, suggesting its appearance by a recent gene duplication event (supplementary Fig. S3). Interestingly, GalNAC-6-P deacytases of both types are missing in six analyzed Proteobacteria that have the GalN-6-P catabolic pathway, suggesting that these microorganisms can utilize GalN but not GalNAC amino sugar.

Uptake and subsequent phosphorylation of GalNAC and GalN amino sugars in E. coli are mediated by two specific PTS systems encoded by the agaBCD and agaVWEF genes from the AgaR regulon (9). Genes encoding homologous PTS systems were identified in the aga gene loci and AgaR regulons in Enterobacteria and Vibrionales. To distinguish specificities of these PTS systems, we built the phylogenetic tree for their inner membrane IIC components. The tree contains two separate clades of PTS components that are encoded by gene loci containing the adjacent aga decetylase genes (supplemental Fig. S4). It can be hypothesized that agaA-linked PTS systems are specific to GalNAC substrate (termed PTSI and PTSIII), whereas those PTS systems that are not accompanied by AgaA are specific to GalN amino sugar (PTSII and PTSIV).

The aga-linked PTS systems are absent from Shewanella species and some other Proteobacteria. In Shewanella and Stenotrophomonas maltophilia, the AgaR regulons contain novel genes encoding predicted GalNAC permease and kinase (termed AgaP and AgaK) and a TonB-dependent outer membrane transporter (termed OmpAga) that is potentially involved in the uptake of GalNAC across the outer membrane (Fig. 1).

The predicted GalNAC permease AgaP belongs to the GGP sugar transporter family and is a close paralog of the GlcNAc permease NagP from Shewanella spp. (50% identity; see supplemental Fig. S5) (13). The predicted GalNAC kinase AgaK is a novel ROK-family kinase homologous to the Shewanella glucokinase GlkH (35% similarity) (13).

The aga gene clusters in Caulobacter sp. K31 and Burkholderia cenocepacia species encode a candidate sugar kinase from the BcrAD_BadFG family (termed AgaKH) and a candidate transporter from the EamA family (termed AgaPH)

The predicted AgaR regulons in many Proteobacteria include several glycoside hydrolases that can be potentially involved in the GalNAC/GalN metabolism (supplemental Table S1). For instance, in the Shewanella group the secreted α-N-acetylgalactosaminidase (termed AgaO) (37), which is classified as GH109 in the carbohydrate-active enzyme data base, is encoded in the aga gene locus. The AgaR regulons in two other γ-Proteobacteria, Photobacterium phosphoreum and Aeromonas hydrophila, include an uncharacterized hydrolase from the GH36 family (termed AgaH), which includes α-N-acetylgalactosaminidases.

![Figure 3. Quantitative RT-PCR analysis of aga gene expression.](image)

TABLE 2 Kinetic constants for AgaK from Shewanella sp. ANA-3

Substrate	k_{cat}	K_m	k_{cat}/K_m
GalNAC	104 ± 2.7	0.98 ± 0.19	4.1 × 1010 ± 0.8 × 109
GlcNAC	7.1 ± 0.2	37.2 ± 2.6	1.9 × 1010 ± 0.2 × 109

Experimental Characterization of the GalNAC Catabolic Pathway in Shewanella—Previously, we demonstrated that four Shewanella strains including ANA-3, MR-4, MR-7, and S. amazonensis SB2B are able to grow on GalNAC as a sole carbon and energy source (13). To confirm the predicted physiological role of the aga gene locus in GalNAC utilization, quantitative RT-PCR was carried out with total RNA isolated from Shewanella sp. ANA-3 cells grown with either Gal or GlcNAC used as a control. The expression levels of agaK, agaAH, and agaS genes in the GalNAC-grown cells were elevated >100-fold compared with the cells grown on GlcNAC (Fig. 3).

To provide biochemical evidence for the proposed functional assignments of aga genes, we used the recombinant AgaK, AgaAH, and AgaS proteins from Shewanella sp. ANA-3. The recombinant proteins were overexpressed in E. coli with the N-terminal His\textsubscript{6} tag and purified using Ni-NTA affinity chromatography, to test for activities of GalNAC kinase, GalNAC-6-P deacetylase, and GalN-6-P deaminase/isomerase, respectively. The predicted enzymatic activities of all three proteins were verified using the specific enzymatic assays.

The Shewanella AgaK displayed the GalNAC kinase activity with high k_{cat} value and low apparent K_m value for GalNAC (Table 2). In addition to GalNAC, various other hexoses were tested as substrates of the Shewanella AgaK. Activity was also observed with GlcNAC but not with glucose, GalN, GlcN, or N-acetylmannosamine. However, the catalytic efficiency (k_{cat}/K_m) value with GlcNAC was >200-fold lower than with GalNAC because of the remarkably higher value of K_m and the lower value of k_{cat} (Table 2).
The *Shewanella* AgaAII protein also exhibited a significantly higher deacetylase activity with GalNAc-6-P (7.98 \(\mu \)mol mg\(^{-1}\) min\(^{-1}\)) than GlcNAc-6-P (0.76 \(\mu \)mol mg\(^{-1}\) min\(^{-1}\)). Similarly, the deaminase/isomerase activity of *Shewanella* AgaS with GalN-6-P (9.48 \(\mu \)mol mg\(^{-1}\) min\(^{-1}\)) was approximately 27-fold higher than with GlcN-6-P (0.35 \(\mu \)mol mg\(^{-1}\) min\(^{-1}\)).

We further validated the inferred three-step GalNAc catabolic pathway in *Shewanella* by *in vitro* pathway reconstitution. The reaction mixtures contained GalNAc, ATP, and combinations of the purified recombinant proteins AgaK, AgaAII, and AgaS from *Shewanella* sp. ANA-3. The three-step biochemical conversion of GalNAc to Tag-6-P was concomitant with the formation of ammonium, which was monitored by enzymatic coupling with chromogenic conversion of NADH to NAD\(^+\) via glutamate dehydrogenase (Fig. 4). Results showed that the simultaneous presence of all three proteins, AgaK, AgaAII, and AgaS, was necessary and sufficient for transformation of GalNAc to Tag-6-P.

Phenotypic Characterization of aga Genes in E. coli.—In *E. coli*, two genes were proposed for the role of GalN-6-P deaminase/isomerase in the GalNAc catabolic pathway: *agaI* (previously assigned to the pathway) (35) and *agaS* (assigned in this work). Our comparative genomics analysis suggests that *agaS* is a universal gene in *aga* catabolic gene loci in all Proteobacteria. To uncover the identity of GalN-6-P deaminase and validate the predicted functional role of AgaS in *E. coli*, the chromosomal deletion mutants \(\Delta \text{agaI} \) and \(\Delta \text{agaS} \) were constructed and tested for their ability to grow on GalNAc as a sole carbon and energy source. Some *E. coli* strains (C, B, and EC3132, but not K-12) are able to grow on GalNAc as a single carbon source (9). The *aga* cluster in the *E. coli* K-12 strain has a large deletion of *agaE* and *agaF* and truncation of *agaW* and *agaA* genes, resulting in an GalNAc-negative phenotype (9). For knock-out construction and phenotypic characterization we chose the GalNAc-positive *E. coli* C strain ATCC 8739.

Knock-out of the *agaI* gene did not affect the growth of the resulting strain on GalNAc (Fig. 5A), whereas the \(\Delta \text{agaS} \) mutant lost the ability to grow on GalNAc in minimal medium. Because the *agaS* and *agaY* genes form an operon (12), deletion of the *agaS* gene could prevent the *agaY* gene from being transcribed. Thus, genetic complementation experiments were performed by introducing plasmid constructs expressing *agaS* and/or *agaY* genes into the \(\Delta \text{agaS} \) mutant. Expression of both *agaS* and *agaY* genes restored the ability of the \(\Delta \text{agaS} \) mutant to grow on GalNAc, whereas no appreciable growth was observed when only the *agaY* gene was used to complement the \(\Delta \text{agaS} \) mutant (Fig. 5B). Therefore, these results confirm the predicted function of the GalN-6-P deaminase *agaS*, an essential gene in the GalNAc/GalN catabolic pathway in *E. coli*.

DISCUSSION

Although our current knowledge of sugar utilization metabolic pathways and respective genes in model bacteria such as *E. coli* is nearly comprehensive, the projection of this knowledge to the rapidly growing number of sequenced genomes of more distant species is the challenging problem. The major difficulties for bioinformatics-based functional gene annotations include the existence of alternative biochemical routes,
Genomics of N-Acetyl-\(\text{d}\)-galactosamine Utilization

FIGURE 5. Effect of \textit{agaI} or \textit{agaS} gene deletion on GalNAc-dependent cell growth of \textit{E. coli}. \textbf{A}, growth of \textit{ΔagaI} and \textit{ΔagaS} mutant strains compared with the wild type (WT) strain of \textit{E. coli} ATCC 8739. \textbf{B}, complementation of the \textit{ΔagaS} mutant of \textit{E. coli} ATCC 8739 by introducing plasmid constructs expressing both \textit{agaS} and \textit{agaY} genes or only the \textit{agaY} gene from \textit{E. coli} ATCC 8739. Cells were grown in M9 minimal medium containing 10 mM GalNAc as a sole carbon source. The cell growth was monitored by measuring the \(A_{600 \text{ nm}}\).

nonorthologous gene replacements, and functionally heterogeneous families of paralogs. Comparative genomic context analysis based on the identification of conserved chromosomal clusters (operons) and shared regulatory sites (regulons) are particularly efficient for accurate functional assignment of previously uncharacterized genes of sugar utilization pathways (13). In this study, we used comparative genomics to reconstruct novel variants of the GalNAc/GalN amino sugar catabolic pathways in the genomes of Gram-negative bacteria from the Proteobacteria phylum.

In all studied Proteobacteria, the GalNAc utilization genes are co-localized with genes encoding orthologs of the \textit{E. coli} AgaR repressor. Using the bioinformatic analysis of AgaR orthologs and \textit{aga} gene regulatory regions, we identified five groups of regulators and their respective binding site motifs. All AgaR motifs contain two or more copies of conserved sequences (CTTTC) that occur either as direct or inverted repeats, depending on the type of AgaR motif (Fig. 2). We propose that these pentameric sequences represent a core site recognized by an AgaR monomer. Candidate AgaR-binding sites identified in the promoter regions of \textit{aga} genes are often composed of two or more pairs of these pentameric sites, suggesting a possibility of formation of DNA loops by multimeric complexes of AgaR repressors.

The genomic context analysis and the reconstructed AgaR regulons allowed us to identify novel GalNAc-related genes and reconstruct novel variants of GalNAc utilization pathways in Proteobacteria (Table 1). The most variable parts of the reconstructed GalNAc pathways include transport systems for amino sugar uptake and the first enzymatic steps to convert a substrate to GalN-6-P via its phosphorylation and deacetylation (Fig. 1). The following enzymatic steps for conversion of GalN-6-P to the central glycolytic intermediates are conserved in nearly all studied species.

Proteobacteria use two major strategies to import and phosphorylate amino sugars in the cytoplasm: (i) sugar-specific PTS systems or (ii) a combination of sugar-specific permeases and kinases (Fig. 1). Similarly to \textit{E. coli}, GalNAC- and/or GalN-specific PTS systems were identified and annotated within the \textit{aga} gene loci from Enterobacteriales and Vibrionales. In other bacterial taxa without specific PTS systems (e.g. in \textit{Shewanella} spp.), we identified unique sets of GalNAC- and GalN-specific permeases and kinases (AgaP and AgaK, respectively). AgaP transporters are often accompanied by novel GalNAc-related transporters that belong to the family of outer membrane TonB-dependent receptors (Omp\(\text{A}^{\text{B}}\)). Thus, the proposed novel pathway of GalNAc utilization in \textit{Shewanella} species includes amino sugar uptake through the outer membrane by the Omp\(\text{A}^{\text{B}}\) receptor, further transport through the inner membrane using the AgaP permease, and subsequent amino sugar phosphorylation by the AgaK kinase.

The predicted GalNAc catabolic pathway in \textit{Shewanella} species including the GalNAc kinase AgaK, a novel variant of GalNAc-6-P deacetylase Aga\(\text{A}^{\text{B}}\), and the GalN-6-P isomerase/deaminase AgaS was experimentally validated \textit{in vitro} by enzymatic assays with the purified recombinant proteins from \textit{Shewanella} sp. ANA-3. AgaS is the most conserved member of the analyzed AgaR regulons and GalNAc catabolic pathways. The enzymatic function of AgaS, which was determined as a central enzyme in the GalNAc/GalN catabolic pathways, was also validated by genetic techniques in \textit{E. coli}. Previously, the GalN-6-P isomerase/deaminase function in \textit{E. coli} was tentatively assigned to the Agal protein. However, we found that Agal is not conserved in the analyzed species, being present only in the \textit{Enterobacter} sp. 638, suggesting its auxiliary role. Indeed, this conclusion was proven by \textit{in vivo} physiological tests, when deletion of \textit{agaS} but not \textit{agaI} gene abolished the growth of \textit{E. coli} on GalNAc in minimal medium.

The identities of enzymes catalyzing the last two steps in the GalNAc catabolic pathway were not resolved in some analyzed Proteobacteria (Table 1). The predicted Tag-6-P kinase AgaZ is present in most studied genomes with \textit{aga} genes. The Tag-1,6-PP aldolase AgaY is present mostly in Enterobacteriales and
Vibronales but is missing in *Shewanella* and several other lineages of Proteobacteria. Earlier reports discussed a possible role of AgaZ as a noncatalytic subunit of the AgaY aldolase (11). The observed different patterns of distribution of agaZ and agaY genes do not support this hypothesis and suggest that AgaZ has an essential functional role in the GalNAc pathway that is independent of AgaY. The proposed Tag-6-P kinase activity of AgaZ has to be confirmed in future experiments. On the other hand, the AgaY aldolase activity missing in *Shewanella* species can be fulfilled by a noncommitted aldolase enzyme, such as a class II fructose-bisphosphate aldolase (Fba). Fba is an essential glycolytic enzyme that is present in all *Shewanella* spp. (e.g. SO_0933 in *S. oneidensis*) (13). Interestingly, the *Shewanella* Fba enzymes are more similar to AgaY than to FbaA from *E. coli* (~50 and 35% of sequence similarity, respectively).

The phylogenetic analysis of proteins from the GalNAc catabolic pathway suggests the following evolutionary scenario for emergence of the unique pathway variant in *Shewanella* genus. Several novel components of the GalNAc pathway (AgaP, AgaK, and AgaA^{III}) are present only in *Shewanella* spp. and likely emerged via gene duplication followed by functional divergence. In contrast, the closest orthologs of other components (AgaS, AgaZ, and AgaR repressors) were identified in all other studied Proteobacteria. Thus, the GalNAc pathway in *Shewanella* is composed of both universal and lineage-specific components. The AgaP permease and AgaA^H decacytlyase were likely introduced by genus-specific duplication and specialization of, respectively, the ancestral NagP and NagA proteins from the GlcNAc utilization pathway. Interestingly, the AgaA^H decacytlyase retains a residual activity on GlcNAc-6-P, which is 10-fold less than its activity with GalNAc-6-P. Amino sugar specificities of NagP and NagA transporters are yet to be determined. Interestingly, the AgaS deaminase, which is similar (21% identity) to the GalN-6-P NagBII deaminase from the GlcNAc utilization pathway in *Shewanella* spp. (36), has 27-fold less activity on GlcN-6-P than on the GalN-6-P physiological substrate.

The ecophysiological importance of the GalNAc utilization pathway in four *Shewanella* species that were isolated from various aquatic sources, such as the Black Sea or the Amazon River delta, is not clear. One possibility is that they colonize aquatic animals and utilize GalNAc from the host intestinal mucin. In agreement with this hypothesis, the aga operon in *Shewanella* encodes the secreted glycoside hydrolase AgaO that can cleave α-1,3-linked GalNAc residues from animal-derived blood cell epitopes (37).

A unique variant of the GalN utilization pathway was identified in *Haemophilus parasuis*, a pathogenic bacterium causing Glasser disease in pigs. The agaR-agaS-PTS^{III}-bgl-agaY^H gene cluster in *H. parasuis* encodes two sets of proteins of presumably different evolutionary origins. First, the *H. parasuis* AgaR and AgaS proteins are mostly similar to their respective GalNAc pathway components from Enterobacteria. Second, both the PTS^{III} components and a putative cytoplasmic β-galactosidase (Bgl) have best homologs in the Firmicutes phylum, suggesting that they were likely acquired by horizontal gene transfer. For instance, an orthologous PTS^{III} system is present in eight *Streptococcus* genomes (e.g. SP_0061–64 in *S. pneumoniae*), where it has a similar arrangement with bgl and agaS genes. Thus, we propose that *H. parasuis* possesses a unique pathway for utilization of a GalN-containing disaccharide, possibly of animal origin. Interestingly, the aga gene locus in *H. parasuis* contains an alternative Tag-1,6-PP aldolase from the LacD family, termed AgaY^H, that participates in the Tag-6-P pathway of galactose 6-phosphate degradation in Gram-positive bacteria (38).

Acknowledgments—We thank Andrei Osterman for useful discussions and Pavel Novichkov for providing support with RegPredict software.

REFERENCES

1. Freymond, P. P., Lazarevic, V., Soldo, B., and Karamata, D. (2006) Poly(glucosyl-N-acetylgalactosamine 1-phosphate), a wall teichoic acid of *Bacillus subtilis* 168: its biosynthetic pathway and mode of attachment to peptidoglycan. *Microbiology* 152, 1709–1718
2. Bernatchez, S., Szymanski, C. M., Ishiyama, N., Li, J., Jarrell, H. C., Lau, P. C., Berghuis, A. M., Young, N. M., and Wakarchuk, W. W. (2005) A single bifunctional UDP-GlcNAc/Glc 4-epimerase supports the synthesis of three cell surface glycoconjugates in *Campylobacter jejuni*. *J. Biol. Chem.* 280, 4792–4802
3. Carringway, K. L., and Hull, S. R. (1991) Cell surface mucin-type glycoproteins and mucin-like domains. *Glycobiology* 1, 131–138
4. Abu-Qarn, M., Eichler, M., and Sharon, N. (2008) Not just for Eukarya anymore: protein glycosylation in Bacteria and Archaea. *Curr. Opin. Struct. Biol.* 18, 544–550
5. Barr, J., and Nordin, P. (1980) Biosynthesis of glycoproteins by members of *Acer pseudoplatanus*: incorporation of mannose and N-acetylglucosamine. *Biochem. J.* 192, 569–577
6. Davis, C. G., Elhammer, A., Russell, D. W., Schneider, W. J., Kornfeld, S., Brown, M. S., and Goldstein, J. L. (1986) Deletion of clustered O-linked carbohydrates does not impair function of low density lipoprotein receptor in transfected fibroblasts. *J. Biol. Chem.* 261, 2828–2838
7. Sadler, J. E., Paulson, J. C., and Hill, R. L. (1979) The role of sialic acid in the expression of human MN blood group antigens. *J. Biol. Chem.* 254, 2112–2119
8. Reizer, J., Ramseier, T. M., Reizer, A., Charbit, A., and Saier, M. H., Jr (1996) Novel phosphotransferase genes revealed by bacterial genome sequencing: a gene cluster encoding a putative N-acetylgalactosaminetabolic pathway in *Escherichia coli*. *Microbiology* 142, 231–250
9. Brinkkötter, A., Klöss, H., Alpert, C., and Lengeler, J. W. (2000) Pathways for the utilization of N-acetylgalactosamine and galactosamine in *Escherichia coli*. *Mol. Microbiol.* 37, 125–135
10. Nobelsmann, B., and Lengeler, J. W. (1996) Molecular analysis of the gat genes from *Escherichia coli* and of their roles in galactitol transport and metabolism. *J. Bacteriol.* 178, 6790–6795
11. Brinkkötter, A., Shakeri-Garakani, A., and Lengeler, J. W. (2002) Two class II α-mannose-bisphosphate aldolases from enteric bacteria. *Arch. Microbiol.* 177, 410–419
12. Ray, W. K., and Larson, T. J. (2004) Application of AgaR repressor and dominant repressor variants for verification of a gene cluster involved in N-acetylgalactosamine metabolism in *Escherichia coli* K-12. *Mol. Microbiol.* 51, 813–826
13. Rodionov, D. A., Yang, C., Li, X., Rodionova, I. A., Wang, Y., Obraztsova, A. Y., Zagritko, O. P., Overbeek, R., Romine, M. F., Reed, S., Fredrickson, J. K., Nealon, K. H., and Osterman, A. L. (2010) Genomic encyclopedia of sugar utilization pathways in the *Shewanella* genus. *BMC Genomics* 11, 494
14. Dehal, P. S., Joachimiak, M. P., Price, M. N., Bates, J. T., Baumohl, J. K., Chivian, D., Friedland, G. D., Huang, K. H., Keller, K., Novichkov, P. S., Dubchak, I. L., Alm, E. J., and Arkin, A. P. (2010) MicrobesOnline: an integrated portal for comparative and functional genomics. *Nucleic Acids Res.* 38, D396–400
Genomics of N-Acetyl-D-galactosamine Utilization

15. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids Res.* **25**, 3389–3402

16. Overbeek, R., Begley, T., Butler, R. M., Choudhuri, J. V., Chuang, H. Y., Coelho, M., de Crécy-Lagard, V., Diaz, N., Disz, T., Edwards, R., Fonstein, M., Frank, E. D., Gerdes, S., Glass, E. M., Goessmann, A., Hanson, A., Iwata-Reuyl, D., Jensen, R., Jamshidi, N., Krause, L., Kubal, M., Larsen, N., Linke, B., McHardy, A. C., Meyer, F., Neuveggier, H., Olsen, G., Olson, R., Ostermann, A., Portnoy, V., Puich, G. D., Rodionov, D. A., Rückert, C., Stiner, J., Stevens, R., Thiele, I., Vassieva, O., Ye, Y., Zagnitko, O., and von Unst, V. (2005) The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. *Nucleic Acids Res.* **33**, 5691–5702

17. Saier, M. H., Jr., Yen, M. R., Noto, K., Tamang, D. G., and Elkan, C. (2009) Comparative genomic reconstruction of transcriptional regulatory networks in bacteria. *Genome Res.* **19**, 3778–3789

18. Cantarel, B. L., Coutinho, P. M., Rancurel, C., Bernard, T., Lombard, V., and Henrissat, B. (2009) The Carbohydrate-Active EnZymes database (CAZY): an expert resource for glycomics. *Nucleic Acids Res.* **37**, D233–238

19. Punta, M., Coggill, P. C., Eberhardt, R. Y., Mistry, J., Tate, J., Boursnell, C., Pang, N., Forslund, K., Ceric, G., Clements, J., Heger, A., Holm, L., Sonnhammer, E. L., Eddy, S. R., Bateman, A., and Finn, R. D. (2012) The Pfam protein families database. *Nucleic Acids Res.* **40**, D290–301

20. Edgar, R. C. (2004) Muscle: a multiple sequence alignment method with reduced time and space complexity. *BMC Bioinformatics* **5**, 113

21. Felsenstein, J. (1996) Inferring phylogenies from protein sequences by parsimony, distance, and likelihood methods. *Methods Enzymol.* **266**, 418–427

22. Huson, D. H., Richter, D. C., Rausch, C., Desulian, T., Franz, M., and Rupp, R. (2007) Dendroscope: an interactive viewer for large phylogenetic trees. *BMC Bioinformatics* **8**, 460

23. Petersen, T. N., Brunak, S., von Heijne, G., and Nielsen, H. (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. *Nat. Methods* **8**, 785–786

24. Rodionov, D. A. (2007) Comparative genomic reconstruction of transcriptional regulatory networks in bacteria. *Chem. Rev.* **107**, 3467–3497

25. Novichkov, P. S., Rodionov, D. A., Stavrovskaya, E. D., Novichkova, E. S., Kazakov, A. E., Gelfand, M. S., Arkin, A. P., Mironov, A. A., and Dubchak, I. (2010) RegPredict: an integrated system for regulon inference in prokaryotes by comparative genomics approach. *Nucleic Acids Res.* **38**, W299–307

26. Crooks, G. E., Hon, G., Chandonia, J. M., and Brenner, S. E. (2004) WebLogo: a sequence logo generator. *Genome Res.* **14**, 1188–1190

27. Novichkov, P. S., Laikova, O. N., Novichkova, E. S., Gelfand, M. S., Arkin, A. P., Dubchak, I., and Rodionov, D. A. (2010) RegPrecise: a database of curated genomic inferences of transcriptional regulatory interactions in prokaryotes. *Nucleic Acids Res.* **38**, D111–118

28. Pinchuk, G. E., Ammons, C., Culley, D. E., Li, S. M., McLean, I. S., Romine, M. F., Nealon, K. H., Fredrickson, J. K., and Beliaev, A. S. (2008) Utilization of DNA as a sole source of phosphorus, carbon, and energy by *Shewanella spp.*: ecological and physiological implications for dissimilatory metal reduction. *Appl. Environ. Microbiol.* **74**, 1198–1208

29. Sambrook, J., Russell, D. W. (2001) *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

30. Datsenko, K. A., and Wanner, B. L. (2000) One-step inactivation of chromosomal genes in *Escherichia coli* K-12 using PCR products. *Proc. Natl. Acad. Sci. U.S.A.* **97**, 6640–6645

31. Yang, C., Rodionov, D. A., Rodionova, I. A., Li, X., and Osterman, A. L. (2008) Glyceraldehyde 2-kinase of *Thermotoga maritima* and genomic reconstruction of related metabolic pathways. *J. Bacteriol.* **190**, 1773–1782

32. Reissig, J. L. (1956) Phosphoacetoylgalactosamine mutase of *Neurospora*. *J. Biol. Chem.* **219**, 753–767

33. Osterman, A., and Overbeek, R. (2003) Missing genes in metabolic pathways: a comparative genomics approach. *Curr. Opin. Chem. Biol.* **7**, 238–251

34. Qin, Z. S., McCue, L. A., Thompson, W., Mayerhofer, L., Lawrence, C. E., and Liu, I. S. (2003) Identification of co-regulated genes through Bayesian clustering of predicted regulatory-binding sites. *Nat. Biotechnol.* **21**, 455–459

35. Mukherjee, A., Mammel, M. K., LeClerc, J. E., and Cebula, T. A. (2008) Altered utilization of N-acetyl-m-d-galactosamine by *Escherichia coli* O157:H7 from the 2006 spinach outbreak. *J. Bacteriol.* **190**, 1710–1717

36. Yang, C., Rodionov, D. A., Li, X., Laikova, O. N., Gelfand, M. S., Zagnitko, O. P., Romine, M. F., Obraztsova, A. Y., Nealon, K. H., and Osterman, A. L. (2006) Comparative genomics and experimental characterization of N-acetyl-glucosamine utilization pathway of *Shewanella oneidensis*. *J. Biol. Chem.* **281**, 29872–29885

37. Liu, Q. P., Sulzenbacher, G., Yuan, H., Bennett, E. P., Pietz, G., Saunders, K., Spence, J., Nudelman, E., Lever, S. B., White, T., Neveu, J. M., Lane, W. S., Bourne, Y., Olsson, M. L., Henrissat, B., and Clausen, H. (2007) Bacterial glycosidases for the production of universal red blood cells. *Nat. Biotechnol.* **25**, 454–464

38. Rosey, E. L., Oskouian, B., and Stewart, G. C. (1991) Lactose metabolism in *Shewanella oneidensis* MR-1. *J. Bacteriol.* **173**, 5992–5998