Integrated bioinformatics analysis reveals novel key biomarkers and potential candidate small molecule drugs in gestational diabetes mellitus

Basavaraj Vastrad¹, Chanabasayya Vastrad*², Anandkumar Tengli³

1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India.

2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karnataka, India.

3. Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru and JSS Academy of Higher Education & Research, Mysuru, Karnataka, 570015, India

* Chanabasayya Vastrad

channu.vastrad@gmail.com

Ph: +919480073398

Chanabasava Nilaya, Bharthinagar,
Dharwad 580001 , Karnataka, India
Abstract

Gestational diabetes mellitus (GDM) is one of the metabolic diseases during pregnancy. The identification of the central molecular mechanisms liable for the disease pathogenesis might lead to the advancement of new therapeutic options. The current investigation aimed to identify central differentially expressed genes (DEGs) in GDM. The transcription profiling by array data (E-MTAB-6418) was obtained from the ArrayExpress database. The DEGs between GDM samples and non GDM samples were analyzed with limma package. Gene ontology (GO) and REACTOME enrichment analysis were performed using ToppGene. Then we constructed the protein-protein interaction (PPI) network of DEGs by the Search Tool for the Retrieval of Interacting Genes database (STRING) and module analysis was performed. Subsequently, we constructed the miRNA-hub gene network and TF-hub gene regulatory network by the miRNet database and NetworkAnalyst database. The validation of hub genes was performed through receiver operating characteristic curve (ROC). Finally, the candidate small molecules as potential drugs to treat GDM were predicted by using molecular docking. Through transcription profiling by array data, a total of 869 DEGs were detected including 439 up regulated and 430 down regulated genes. Biological process analysis of GO enrichment analysis showed these DEGs were mainly enriched in reproduction, nuclear outer membrane-endoplasmic reticulum membrane network, identical protein binding, cell adhesion, supramolecular complex and signaling receptor binding. Signaling pathway enrichment analysis indicated that these DEGs played a vital in cell surface interactions at the vascular wall and extracellular matrix organization. Ten genes, HSP90AA1, EGFR, RPS13, RBX1, PAK1, FYN, ABL1, SMAD3, STAT3, and PRKCA in the center of the PPI network, modules, miRNA-hub gene regulatory network and TF-hub gene regulatory network were associated with GDM, according to ROC analysis. Finally, the most significant small molecules were predicted based on molecular docking. Our results indicated that HSP90AA1, EGFR, RPS13, RBX1, PAK1, FYN, ABL1, SMAD3, STAT3, and PRKCA could be the potential novel biomarkers for GDM diagnosis, prognosis and the promising therapeutic targets. The current might be essential to understanding the molecular mechanism of GDM initiation and development.
Keywords: bioinformatics analysis; small drug molecules; differentially expressed genes; gestational diabetes mellitus; novel biomarkers.

Introduction

Gestational diabetes mellitus (GDM) is the diabetes diagnosed during pregnancy, which affecting 2–5% of all pregnant women worldwide [1-2]. Risk factors associated with GDM includes obesity, previous occurrence of diabetes, family history of type 2 diabetes, preeclampsia, hypertension, cardiovascular diseases and genetic factors [3]. In GDM blood glucose levels are elevated during the third trimester of pregnancy [4]. Moreover, the elevated glucose level in pregnancy is closely linked with detrimental consequences in the newborn babe, such as fetal hyperglycemia and cardiovascular disease [5]. Therefore, investigating the molecular mechanisms of GDM and early screening of patients with GDM are essential to restrain the occurrence and progression of GDM.

It is therefore essential to find new genes and pathways that are associated with GDM and patient prognosis, which might not only help to explicate the underlying molecular mechanisms associated, but also to discover new diagnostic molecular markers and therapeutic targets. Transcription profiling by array can rapidly detect gene expression on a global basis and are particularly useful in screening for differentially expressed genes (DEGs) [6]. Gene chips allow the analysis of gene expression in a high throughput way with great sensitivity, specificity and repeatability. A symbolic amount of data has been produced via the use of gene chips and the majority of such gene expression data has been uploaded and stored in public databases. Previous investigation concerning GDM transcription profiling by array have found hundreds of DEGs [7-8]. The availability of bioinformatics analysis based on high-throughput technology enabled the investigation of the modification in gene expression and the interaction between differential genes in GDM, to provide novel insights for further in-depth investigations.
In the current investigation, public transcription profiling by array data of E-MTAB-6418 from ArrayExpress database was downloaded. A total of 38 GDM samples and 70 non GDM samples data in E-MTAB-6418 were available. DEGs between GDM and non GDM were filtered and obtained using bioconductor package limma in R software. Gene Ontology (GO) and REACTOME pathway enrichment analyses of the DEGs were performed. The functions of the DEGs were further assessed by PPI network and modular analyses to identify the hub genes in GDM. Subsequently, miRNA-hub gene regulatory network and TF-hub gene regulatory network were constructed to identify the target genes, miRNAs and TFs in GDM. Hub genes were validated by receiver operating characteristic curve (ROC). Finally, screening of small drug molecules carried out by using molecular docking. The investigation was designed to obtain deep insights during the pathogenesis of GDM.

Materials and methods

Transcription profiling by array data information

The mRNA expression profile E-MTAB-6418 [9] based on A-MEXP-2072 - Illumina HumanHT-12_V4_0_R2_15002873_B was downloaded from the ArrayExpress database (https://www.ebi.ac.uk/arrayexpress/) [10], which included 38 GDM samples and 70 non GDM samples.

Identification of DEGs

To obtain differentially expressed genes (DEGs) between GDM samples and non GDM samples. After limma package in R analysis [11], results including adjusted P values (adj. P. Val) and log FC were provided. Cut-off criterion was set as adj. P. Val <0.05, |log FC| > 1.158 for up regulated genes and |log FC| < -0.83 for down regulated genes. A list of candidate DEGs was obtained via the above methods.

Gene ontology and pathway enrichment of DEGs analysis

Gene ontology (GO) analysis (http://geneontology.org/) [12] and REACTOME (https://reactome.org/) [13] pathway enrichment analysis are both integrated in the ToppGene (ToppFun) (https://toppgene.cchmc.org/enrichment.jsp) [14] program. Therefore, ToppGene is capable of providing comprehensive annotations for functional and pathway interpretations. In this experiment, DEGs were uploaded
onto ToppGene in order to perform related GO and REACTOME pathway enrichment analyses. The cut-off criterion was set as P<0.05.

PPI network establishment and modules selection

Search Tool for the Retrieval of Interacting Genes StringDB interactome (https://string-db.org/) is a database of known and predicted protein-protein interactions [15]. All candidate DEGs were posted into the STRING website, with a confidence score of ≥0.4 set as the cut-off criterion for PPI network construction. Then, Cytoscape (version 3.8.2, http://www.cytoscape.org/) [16] software was utilized to construct protein interaction relationship network. The Network Analyzer plugin was performed to scale node degree [17], betweenness centrality [18], stress centrality [19] and closeness centrality [20] of the PPI network. Significant modules in the visible PPI network were screened using the PEWCC1 (http://apps.cytoscape.org/apps/PEWCC1) [21] plugin. Degree cut-off=2, node score cut-off=0.2, k-core=2, and max depth=100 were set as the cut-off criterion. Three highest-degree modules were extracted, and the potential mechanisms of each module were investigated with ToppGene. A degree of ≥10 was set as the filter criterion. Hub genes with high degree were selected as the potential key genes and biomarkers.

miRNA-hub gene regulatory network construction The miRNet database (https://www.mirnet.ca/) [22] is an open-source platform mainly focusing on miRNA-target interactions. miRNet utilizes fourteen established miRNA-target prediction databases, including TarBase, miRTarBase, miRecords, miRanda, miR2Disease, HMDD, PhenomiR, SM2miR, PharmacomiR, EpimiR, starBase, TransmiR, ADmiRE, and TAM 2.0. In this study, miRNAs were considered the targeted miRNAs of hub genes. Subsequently, the network of the hub genes and their targeted miRNAs was visualized by Cytoscape software.

TF-hub gene regulatory network construction

The NetworkAnalyst database (https://www.networkanalyst.ca/) [23] is an open-source platform mainly focusing on TF-target interactions. NetworkAnalyst utilizes three established TF-target prediction databases, including ENCODE, JASPAR, ChEA. In this study, TFs were considered the targeted TFs of hub genes based on ChEA database. In this study, TFs were considered the targeted TFs of
hub genes. Subsequently, the network of the hub genes and their targeted TFs was visualized by Cytoscape software.

Receiver operating characteristic (ROC) curve analysis

The receiver operating characteristic curve (ROC) was constructed by predicting the probability of a diagnosis being of high or low integrated score of significant hub gene expression in GDM. Area under curve (AUC) analysis was operated to calculate the diagnostic ability by using the statistical package pROC in R software [24].

RT-PCR Analysis

The HTR-8/SVneo (ATCC CRL3271) cell line procured from ATCC. For normal HTR-8/SVneo (ATCC CRL3271) cell line was grown in RPMI-1640 medium added with 10% fetal bovine serum, containing 5.5 mM glucose, and 1% penicillin/streptomycin. Incubate this cell line at 37°C in a 5% CO2 in humidified cell culture incubator. Similarly, for GDM HTR-8/SVneo (ATCC CRL3271) cell line was grown in RPMI-1640 medium added with 10% fetal bovine serum, containing 5.5 mM glucose, and 1% penicillin/streptomycin. Incubate this cell line at 37°C in a 5% CO2 in humidified cell culture incubator for 24 hrs, then stimulated with various concentrations 40 mM of D-glucose for 6 h. TRIzol (cat. no. 9109; Takara Bio, Inc.) was used to isolate total RNA from HTR-8/SVneo cell line and HTR-8/SVneo cell line treated with glucose according to the manufacturer's instructions. TRI Reagent (Sigma, USA).was used to isolate total RNA from each tissue sample according to the manufacturer's instructions. Then, total RNA was reverse transcribed into cDNAs using the FastQuant RT kit (with gDNase; Tiangen Biotech Co., Ltd.). RT-qPCR was performed to measure the levels of cDNAs using a QuantStudio 7 Flex real-time PCR system (Thermo Fisher Scientific, Waltham, MA, USA). RT-PCR procedure was performed as follows: Pre-denaturation at 95°C for 30 sec for 1 cycle followed by 40 cycles of 95°C for 5 sec and 60°C for 20 sec. The relative expression level of the hub genes was calculated following comparative CT method [25]. β-actin was used to normalize the mRNA expression level. The primer sequences are listed in Table 1.

Molecular docking experiments
Molecular docking was used to find biologically active hits among the designed ligands. Using perpetual software module BIOVIA Discovery Studio (Perpetual), Surflex-Docking docking studies were conducted on active constituents. The lowest binding energy conformation was presumed to form a stable complex within the active site of the over expressed proteins. The 2D structures were sketched using Chemdraw software, imported and saved into sdf format using Open Babel free software. The protein structure was processed after introduction of the protein, the co-crystallized ligand and all the water molecule were excluded from the crystal structure; more hydrogen was added and refined the side chain. This study employed CDOCKER, a grid-based molecular docking approach that utilizes the CHARMM force field. A higher number indicates a stronger bond. The CDOCKER score is expressed as a negative number (-CDOCKER ENERGY). The H-bonds, van der Waals, and electrostatic interactions between the target protein and the ligand were used to measure the CDOCKER energy. The modeled protein's binding site was determined using the template protein's crystal data and proteins in which do not Co-crystallized ligand generated binding site automatically. To make it easier for ligands to interact with amino acids, the binding site sphere center was set at 9 Å radius. Furthermore, using smart minimizer algorithm, CHARMM force field was applied followed by energy minimization to define local minima (lowest energy conformation) of the modeled over expressed proteins with an energy gradient of 0.1 kcal mol$^{-1}$ Å$^{-1}$ respectively. The energy minimized receptor protein and the set of 44 natural molecules which was reported as effective in diabetes mellitus and the well-known commonly used allopathic drug Metformin and Glyburide were used as standard and to compare the binding interactions with natural molecules on over expressed proteins in gestational diabetes. The binding site sphere radius set at $X = 29.50$, $Y = -31.38$ and $Z = -38.79$ were submitted to the CDOCKER parameter and also calculated binding energy. The X-ray co-crystallized structure and were extracted from Protein Data Bank of PDB code of 4UV7, 5NJX, 3Q4Z and 3FNI of over expressed genes of Epidermal growth factor receptor (EGFR), Heat shock protein 90 alpha family class A member 1 (HSP90AA1), P21 RAC1 activated kinase 1 (PAK1) and Ring-box 1 (RBX1) respectively in gestational diabetes were selected for docking studies [26-29]. The best position was inserted into the molecular area between the protein and the ligand. The 2D and 3D interaction of amino acid molecules was achieved using the free online Discovery Studio Visualizer.
Results

Identification of DEGs

Transcription profiling by array data sets was obtained from the ArrayExpress database containing GDM samples and non GDM samples; E-MTAB-6418. Then, the R package named “limma” was processed for analysis with adjusted P < 0.05, |log FC| > 1.158 for up regulated genes and |log FC| < -0.83 for down regulated genes. All DEGs were displayed in volcano maps (Fig. 1). A total of 869 genes were finally obtained including 439 up regulated genes and 430 down regulated genes in the GDM samples compared to the non GDM samples and are listed Table 1. Top 869 genes in this dataset were displayed in the heatmap (Fig. 2).

Gene ontology and pathway enrichment of DEGs analysis

To clarify the major functions of these DEGs, we first explored the associated biological processes and REACTOME pathways. The top highly enriched GO terms were divided into three categories: biological process (BP), cellular component (CC), and molecular function (MF) and are listed in Table 2. The most enriched GO terms in BP was reproduction, macromolecule catabolic process, cell adhesion and localization of cell, that in CC was nuclear outer membrane-endoplasmic reticulum membrane network, golgi apparatus, supramolecular complex and cell junction, and that in MF were identical protein binding, molecular function regulator, signaling receptor binding and molecular function regulator. In the REACTOME pathway enrichment analysis, the DEGs were mostly enriched in cell surface interactions at the vascular wall, epigenetic regulation of gene expression, extracellular matrix organization and axon guidance and are listed in Table 3.

PPI network establishment and modules selection

By using the STRING database, the PPI network of DEGs was established and consisted of 4687 nodes and 11236 edges (Fig.3). A total of 10 hub genes were selected for key biomarker identification and are listed in Table 3. They consisted of 5 up regulated genes (HSP90AA1, EGFR, RPS13, RBX1 and PAK1) and 5 down regulated genes (FYN, ABL1, SMAD3, STAT3 and PRKCA). Then PEWCC1 was used to find clusters in the network. Four modules were calculated
according to k-core $k = 2$. Among them, module 1 contained 16 nodes and 32 edges, with the highest score (Fig. 4A) and module 2 contained 16 nodes and 34 edges (Fig. 4B). We performed the functional analysis for the top 2 modules. In functional enrichment analysis, the DEGs of module 1 were mostly enriched in post-translational protein modification, developmental biology and macromolecule catabolic process; the DEGs of module 2 in supramolecular complex and localization of cell.

miRNA-hub gene regulatory network construction

miRNet database was applied to screen the targeted miRNAs of the hub genes. Cytoscape software was used to construct the miRNA-hub gene network. As illustrated in Fig. 5, the interaction network consists of 307 hub genes and 2280 miRNAs. According to the hub genes and miRNAs in the network ranked by their degree of connectivity using Network Analyzer and are listed in Table 4. Based on the expression trend of hub genes in GDM, we found that UBE2D3 was the predicted target of hsa-mir-6127, HSP90AA1 was the predicted target of hsa-let-7d-5p, PAK2 was the predicted target of hsa-mir-8063, DDB1 was the predicted target of hsa-mir-329-3p, DVL3 was the predicted target of hsa-mir-1207-5p, FYN was the predicted target of hsa-mir-4651, ABL1 was the predicted target of hsa-mir-8063, DDB1 was the predicted target of hsa-mir-329-3p, DVL3 was the predicted target of hsa-mir-1207-5p, FYN was the predicted target of hsa-mir-4651, ABL1 was the predicted target of hsa-mir-222-3p, SMAD3 was the predicted target of hsa-mir-410-5p, SMAD3 was the predicted target of hsa-mir-410-5p, SMAD3 was the predicted target of hsa-mir-29c-3p and PRKCA was the predicted target of hsa-mir-663a.

TF-hub gene regulatory network construction

NetworkAnalyst database was applied to screen the targeted TFs of the hub genes. Cytoscape software was used to construct the TF-hub gene network. As illustrated in Fig. 6, the interaction network consists of 306 hub genes and 195 TFs. According to the hub genes and TFs in the network ranked by their degree of connectivity using Network Analyzer and are listed in Table 4. Based on the expression trend of hub genes in GDM, we found that HSP90AA1 was the predicted target of E2F1, UBE2D3 was the predicted target of HCFC1, EGFR was the predicted target of SRY, PSMC4 was the predicted target of ZFX, DDB1 was the predicted target of RUNX1, STAT3 was the predicted target of SPI1, CCND1 was the predicted target of MYBL2, SMAD3 was the predicted target of SUZ12,
FOXO1 was the predicted target of TBX3 and PRKCA was the predicted target of YAP1.

Receiver operating characteristic (ROC) curve analysis

ROC curve analysis was implemented to evaluate the capacity of hub genes to distinguish GDM and non GDM in E-MTAB-6418, HSP90AA1, EGFR, RPS13, RBX1, PAK1, FYN, ABL1, SMAD3, STAT3 and PRKCA, exhibiting better diagnostic efficiency for GDM and non GDM, and the combined diagnosis of these ten hub genes was more effective. The AUC index for the 10 hub gene scores were 0.906, 0.838, 0.825, 0.897, 0.863, 0.876, 0.855, 0.880, 0.932 and 0.872, and are shown Fig.7.

RT-PCR Analysis

To further verify the expression level of hub genes in GDM, RT-PCR was performed to calculate the mRNA levels of the ten hub genes identified in the present study (HSP90AA1, EGFR, RPS13, RBX1, PAK1, FYN, ABL1, SMAD3, STAT3 and PRKCA) in GDM. As illustrated in Fig. 8, the expression of HSP90AA1, EGFR, RPS13, RBX1, PAK1 were significantly up regulated in GDM samples compared with normal, while FYN, ABL1, SMAD3, STAT3 and PRKCA were significantly down regulated in GDM samples compared with normal. The present RT-PCR results were in line with the aforementioned bioinformatics analysis, suggesting that these hub genes might be linked to the molecular mechanism underlying GDM.

Molecular docking experiments

In the recent findings, the docking study was performed using Biovia Discovery Studio perpetual software to analyse the binding pattern of the natural plants products such as herbs have the ability to lower blood glucose levels and ameliorate diabetes with decreased adverse side effects. The natural well known phytoconstituents which decreases the blood sugar level are Malvidin 3-laminaribioside (MLR), Ferulic acid (FRA), Inosporone (INO), Allicin (ALL), Liriodenin (LIR), Azadirachitin (AZA), Sulforaphane, Cajanin (CAJ), Carvone (CAR), Capsaicin (CAP), Terpineol (TER), Phellandrene (PHE), Terpene (TPN), Ellagic acid (ELA), Leucodelphinidin, O-methyltylophorinidine (OMT),
Gymnemic acid, beta-Carotene (BCR), Leucocyanidin (LEC), Syringin (SYR), Ginsenoside (GNS), Phyllanthin (PHY), Punicalagin (PUC), Punicalin (PUN), Arjunic acid (AJA), Arjunetin (ARJ), Arabic acid (ARA), Arjungenin (ARG), Gingerol (GIN), Shogaol, Aloe emodin (ALE), Arabic acid (ARA), Aloin (ALO), Charantin (CHR), Cinnamic acid (CIN), Curcumin (CUR), Eugenol (EUG), Gymnemagenin (GMG), Gymnestrojenin (GYM), Hydroxylucin (HYD), Methoxy hydroxyl chalcoli (MHC), Myricetin (MYR), Nimbine (NIM), Quercetin (QUE), Vicine (VIC) and Shagoal (SHA) are shown in Fig. 9. The molecules were constructed based on the natural plant products containing these chemical constituents which play vital role in reducing type 2 diabetes mellitus. The traditional plant products are used in conjunction with allopathic drug to reduce the dose of the allopathic drugs and or to increase the efficacy of allopathic drugs. Some common and most prominent antidiabetic plants and active principles were selected from their phytochemicals for docking studies in the present research to identify the active natural molecule to avoid the use of allopathic drugs in gestational diabetes and the blood sugar level is controlled by altering the diet. For docking experiments well known and most commonly used two allopathic drugs such as Glyburide (GLY), Metformin (MET) in gestational diabetes are used as standard and to compare the binding interaction of natural phyto constituents with allopathic drugs. A total of common 44 in that 42 natural active constituents few from each of flavonoids, saponins, tannins and glycosides etc., present in plant extracts responsible for antidiabetic function and 2 allopathic drugs were chosen for docking studies on over expressed proteins and the structures are depicted in figure 1 respectively. The one protein from each over expressed genes in gestational diabetes 2 diabetes mellitus such as EGFR (epidermal growth factor receptor), HSP90AA1 (heat shock protein 90 alpha family class A member 1), PAK1 (p21 (RAC1) activated kinase 1), and RBX1 (ring-box 1) and their X-RAY crystallographic structure and co-crystallized PDB code and their PDB code of 4UV7, 5NJX, 3Q4Z and 3FNI respectively were constructed for docking. The docking on natural active constituents was conducted to classify the potential molecule and their binding affinity to proteins. A higher number of negative number -CDOCKER energy and binding energy indicates a stronger binding interactions with proteins, few constituents obtained with a greater -CDOCKER energy and binding energy respectively with particular proteins. Docking experiments were carried out on a total of 42 constituents from plant products, few
constituents obtained excellent -CDOCKER energy and binding energy. Out of 44 molecules few of the molecules obtained -CDOCKER interaction energy of more than 40 and majority with more than 30 and less than 40, few molecules obtained optimum -CDOCKER interaction energy of less than 30 respectively. The molecules with -CDOCKER interaction energy of 40 and above are said to have good interaction with proteins and stable. The natural constituents of the molecules GLY, GNS, GYM, MLR, PUC and ALO, GLY, MLR and ALE, ALO, BCR, CAP, CHR, ELA, LUR, GIN, GLY, GMG, GNS, GYM, LEC, LIR, MLR, MYR, NIM, OMP, PHY, PUC, PUN, QUE, SHE, VI C obtained a -CDOCKER interaction energy of more than 40 with protein of PDB code 5NJX and 3FNI and 3Q4Z respectively. The natural constituents obtained -CDOCKER interaction energy of less than 40 and more than 30 are ALO, ARJ, BCR, CHR, CUR, PHY, PUN and BCR, CAJ, CAP, CUR, GIN, LEC, MYR, OMP, QUE, VIC and AJA, ARA, ARG, CAJ, FRA, HYD, MHC and GNS, PHY, PUC, PUN with 5NJX and 3FNI and 3Q4Z and 4UV7. The constituents obtained less than 30 and more than 20 are AJA, ALE, ARG, CAJ, CAP, GIN, GMG, GYM, HYD, LEC, MHC, MLR, MYR, NIM, OMP, QUE, VIC and AJA, ALE, ALL, ARG, AJA, CHR, CIN, EUG, FRA, GMG, GNS, GYM, LIR, MHC, NIM, PUC and ALL, CIN, EUG, MET, TEP and ALA, ALE, ALO, ARJ, BCR, CAJ, CHR, ELA, FRA, GIN, GMG, LEC, MLR, MYR, OMP, QUE, SHA with 5NJX and 3FNI and 3Q4Z and 4UV7. Following the molecules obtained less than 20 -CDOCKER interaction energy are ALL, ARA, CAR, CHR, CIN, EUG, FRA, LIR, MET, PHE, TEP and ARJ, ARA, CAR, HYD, MET, PHE, TPN and CAR, PHE, TPN and AJA, ALL, ARG, CAR, CIN, EUG, GYM, HYD, LIR, MET, MHC, NIM, PHE, TEP, TPN, VIC with protein 5NJX and 3FNI and 3Q4Z and 4UV7 respectively the biding energy, -CDOCKER energy and -CDOCKER interaction energy are depicted in Table 7. The two molecules such as ALO and MAL Fig. 10 and Fig. 11, their interaction with amino acids of proteins with 3D strictures for 3FN1 Fig. 12 and 3Q4Z Fig. 13, while 2D strictures for 3FN1 Fig. 14 and 3Q4Z Fig. 15.

Discussion

Although people have continuously investigated GDM, the early diagnosis and treatment of GDM is still a huge problem due to the inadequacy of understanding of the molecular mechanisms that drive the occurrence and progression of GDM.
Therefore, in-depth investigation into the factors and mechanisms of GDM advancement are necessary for GDM diagnosis and treatment. Due to well-developed transcription profiling by array technology, it is accessible to resolve the general genetic modification in the development of diseases, which can allow for the recognition of gene targets for diagnosis, therapy, and prognosis of GDM.

In our study, a total of 869 DEGs were screened, including 439 up regulated genes and 430 down regulated genes. Several studies have reported that expression of CGB5 was essential for pregnancy success [30]. Aberrations of CRH (corticotropin releasing hormone) [31] and PSG1 [32] contribute to preeclampsia occurrence. The expression of CYP19A1 was significantly up regulated in hypertensive disorders of pregnancy [33]. Based on previous studies, CD248 is generally associated with progression of hypertension [34], but this gene might be linked with development of GDM. Lin et al [35] reported that expression of COL1A1 was essential for type 2 diabetes mellitus progression, but this gene might be involved in the development of GDM. Delfín et al [36] found that ABI3BP was responsible for progression of cardiovascular diseases, but this gene might be linked with development of GDM. MFAP4 was reported to cause type 1 diabetes mellitus [37], but this gene might be responsible for progression of GDM.

DEGs were found to be enriched in reproduction, nuclear outer membrane-endoplasmic reticulum membrane network, identical protein binding, cell surface interactions at the vascular wall, cell adhesion, supramolecular complex, signaling receptor binding and extracellular matrix organization. CEBPB (CCAAT enhancer binding protein beta) [38], ACSL4 [39], MBD2 [40], ULK1 [41], UCB2 [42], TWIST1 [43], HOOK2 [44], CLDN7 [45], TBK1 [46], YIPF6 [47], TFRC (transferrin receptor) [48], ENPP2 [49], SLIT2 [50], MFGE8 [51], FAT1 [52], GPC4 [53], COL6A3 [54], EGFL6 [55], AOC3 [56], CCN2 [57], LYVE1 [58], RARA (retinoic acid receptor alpha) [59], COL18A1 [60], THY1 [61], CD36 [62], PEMT (phosphatidylethanolamine N-methyltransferase) [63], AIFIL [64], OXTR (oxytocin receptor) [65], LMNA (lamin A/C) [66], CXCL14 [67], DKK3 [68], ANGPTL2 [69] and CMTM7 [70] were reported to be associated with obesity, but these genes might be linked with progression of GDM. AHR (aryl hydrocarbon receptor) [71], STS (steroid sulfatase) [72], PLAC1 [73], CYP11A1 [74], PSG11 [75], STAT5B [76], TLR3 [77], FOLR1 [78], HSPB1 [79],
HSP90AA1 [80], ANXA4 [81], ATF3 [82], DAPK1 [83], ENTPD1 [84], ABL1 [85], VSIG4 [86], CD99 [87], VWF (von Willebrand factor) [88], PODXL (podocalyxin like) [89], PDPN (podoplanin) [90], RND3 [91], VCAN (versican) [92], AXL (AXL receptor tyrosine kinase) [93], PIEZO1 [94], GAS6 [93], LAMA4 [95], CAV1 [96], DLL1 [97], CD44 [98], CD81 [99], SMAD3 [100], NES (nestin) [101], DCN (decorin) [102], AGTR1 [103], SLIT3 [104], B2M [105], STAT3 [106], STC1 [107], and ADAMTS1 [108] were shown to participate in facilitating the preeclampsia. Majchrzak-Celińska et al [109] and Shimodaira et al [110] reported that HSD11B2 and HSD3B1 are responsible for hypertensive disorders of pregnancy. Altered expression of CSNK2A2 [111], NFE2 [112], CAMK2G [113], RASGRP1 [114], S100P [115], SRR (serine racemase) [116], DHPS (deoxyhypusine synthase) [117], DYRK1A [118], JAG1 [119], COL3A1 [120], VTN (vitronectin) [121], WNT3A [122], ACTA2 [123], SEMA3A [124], RARRES2 [125], CAV2 [126] and SPRED1 [127] were observed to be associated with the progression of type 2 diabetes mellitus, but these genes might be liable for advancement of GDM. In a previous report, Santiago et al [128], Auburger et al [129], Qu et al [130], Šnit et al [131] and Hjortebjerg et al [132] reported that SLC22A5, SH2B3, ITPR3, CALD1 and IGFBP4 expression might be regarded as an indicator of susceptibility to type 1 diabetes mellitus, but these genes might be associated with progression of GDM. Krishnan et al [133], Hu et al [134], Martins et al [135], Prieto-Sánchez et al [136], Sugulle et al [137], Zhao et al [138], Siddiqui et al [139], Han et al [140], Lappas et al [141], Wang et al [142], Artunc-Ulkumen et al [143], Blois et al [144], Vacínová et al [145] and Vilmi-Kerälä et al [146] demonstrated that the expression of CREBRF (CREB3 regulatory factor), STRA6, EGFR (epidermal growth factor receptor), MFSD2A, GDF15, PAK1, VCAM1, IGFBP2, IGFBP7, PRKCA (protein kinase C alpha), ADAMTS9, LGALS1, BIN1, TIMP1 and are associated with progression of GDM. Aquila et al [147], Chen et al [148], Xie et al [149], Zhang et al [150], Aspit et al [151], Akadam-Teker et al [152], Jiang et al [153], Cetinkaya et al [154], Grond-Ginsbach et al [155], Dong et al [156], Chardon et al [157], Chen et al [158], Yamada et al [159], Hu et al [160], Bobik and Kalinina [161], Schwanekamp et al [162], Liu et al [163], Schroer et al [164], Raza et al [165], Yang et al [166], Azuaje et al [167], Durbin et al [168], Chowdhury et al [169], Wang et al [170], Li et al [171], Lv et al [172], Bertoli-Avellà et al [173], Grossman et al [174], Andenæs et al [175] and Chen et al [176] demonstrated that HES1, SPIN1,
TBX3, EVA1A, CAP2, BMP1, HSPB8, RDX (radixin), COL5A1, LIMS2, PARVA (parvin alpha), EGFLAM (EGF like, fibronectin type III and laminin G domains), NEXN (nexilin F-actin binding protein), TNFRSF14, TGFBI (transforming growth factor beta induced), HAVCR2, CDH11, COL4A1, COL4A2, COL5A2, SHROOM3, HYAL2, PDLIM3, ETS2, PLSCR4, TGFBI, COL6A2 and LTBP2 could induce cardiovascular diseases, but these genes might be essential for progression of GDM. Flamant et al [177], Wan et al [178], Zhang et al [179], Vallvé et al [180], Heximer and Husain [181], Selvarajah et al [182], Jain et al [183], Sun et al [184], Satomi-Kobayashi et al [185], Jiang et al [186], Waghulde et al [187] and Dahal et al [188] reported that DDR1, CAST (calpastatin), KYNU (kynureninase), FBLN2, SPON1, VEGFC (vascular endothelial growth factor C), FLNA (filamin A), SNAI2, MYADM (myeloid associated differentiation marker), NECTIN2 and SMTN (smoothelin), GPER1, PDGFRB (platelet derived growth factor receptor beta) crucially contribute to the development of hypertension, but these genes might be linked with advancement of GDM.

From the PPI network and modules diagram, it can be observed that HSP90AA1, EGFR, RPS13, RBX1, PAK1, FYN (FYN proto-oncogene, Src family tyrosine kinase), ABL1, SMAD3, STAT3, PRKCA, UBE2A, UCHL3, TUBB2A, ACTA2 and TBCB (tubulin folding cofactor B) were the key nodes of the PPI network and modules, with the highest node degree, betweenness, stress and closeness value. RPS13, RBX1, FYN, UBE2A, TUBB2A and TBCB were the novel biomarkers for the progression of GDM.

From the miRNA-hub gene network construction and TF-hub gene network diagram, it can be observed that UBE2D3, HSP90AA1, PAK2, DDB1, DVL3, FYN, ABL1, SMAD3, STAT3, PRKCA, EGFR, PSMC4, CCND1, FOXO1, hsa-mir-6127, hsa-let-7d-5p, hsa-mir-8063, hsa-mir-329-3p, hsa-mir-1207-5p, hsa-mir-4651, hsa-mir-410-5p, hsa-mir-222-3p, hsa-mir-29c-3p, hsa-mir-663a, E2F1, HCFC1, SRY, ZFX, RUNX1, SPI1, MYBL2, SUZ12, TBX3 and YAP1 were the key nodes of the miRNA-hub gene network construction and TF-hub gene network, with the highest node degree value. Expression of the CCND1 gene plays a role in the development of obesity [189], but this gene might be associated with progression of GDM. FOXO1 [190], hsa-mir-1207-5p [191], hsa-mir-4651 [191], hsa-mir-222-3p [192] and E2F1 [193] are essential for the progression of GDM.
Hsa-let-7d-5p [194], hsa-mir-29c-3p [195] and SRY (Sex-determining Region Y) [196] have been shown to have an important role in type 2 diabetes mellitus, but these genes might be responsible for progression of GDM. Hsa-mir-663a [197] and TBX3 [198] have been shown as a promising biomarker in cardiovascular diseases, but this gene might be involved in progression of GDM. RUNX1 [199] and YAP1 [200] have been demonstrated to function in preeclampsia. UBE2D3, PAK2, DDB1, DVL3, PSMC4, hsa-mir-6127, hsa-mir-8063, hsa-mir-329-3p, hsa-mir-410-5p, HCFC1, ZFX (zinc finger protein, X-linked), SPI1, MYBL2 and SUZ12 were the novel biomarkers for the progression of GDM.

The molecule GLY, MLR obtained a good -CDOCKER interaction energy with 5NJX, 3FNI and 3Q4Z the -CDOCKER interaction energy of GLY is 41.37, 59.92, 41.44 and for MLR is 40.68, 87.65, 43.47 with 5NJX, 3FNI and 3Q4Z respectively. The two molecules such as ALO and MAL its interaction with amino acids are 2’ hydroxyl group formed hydrogen bond interaction with ASP-89 and 3’, 4’ hydroxyl groups formed hydrogen bond interaction with GLU-86. Following 6’ hydroxyl group formed hydrogen bond interaction with LYS-61. The C-13 hydroxyl formed hydrogen bond interaction with ASP-389 and ring C electrons formed pi-pi t-shaped interactions with HIS-63 and pi-alkyl interaction with LYS-388. Ring A electrons formed pi-carbon interaction with LYS-388 and LYS61 respectively. The ring C electrons and 4’ hydroxyl group of molecule MLR formed sulphur oxygen interaction with MET-344 and ring C electrons formed pi-alkyl interaction with LEU-396. The ring A 5 & 6 hydroxyl group formed hydrogen bond interaction with ASP-354 & LYS-538. Ring D 3’ & 6’ hydroxyl group formed hydrogen bond interaction with ASP-393 & GLY-277, 3’’ hydroxyl group formed pi-alkyl interaction with Mg ion. Ring D 5’’ hydroxyl group formed hydrogen bond interaction with ARG-299. Ring E 6’’ alkyl hydroxyl formed Carbon hydrogen interaction with LYS-391 and ring E oxygen, 3’’’ hydroxyl group and 6’’’ alkyl hydroxyl formed pi-alkyl interaction with Mg ions respectively.

In conclusion, the results from the current investigation not only identify a series of DEGs, but also analyze the significant modules, hub and target genes identification, and screening of small therapeutic molecules. In addition, in order to further verify the bioinformatics analysis data, the current investigation detected the expression levels of hub genes (HSP90AA1, EGFR, RPS13, RBX1, PAK1,
FYN, ABL1, SMAD3, STAT3 and PRKCA) in a GDM. These hub genes might serve as potential diagnostic and prognostic biomarkers, and novel therapeutic targets in GDM.

Acknowledgement

I thank Marian C Aldhous, Tommy’s Centre for Fetal and Maternal Health, Medical Research Council Centre for Reproductive Health, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK, very much, the author who deposited their profiling by high throughput sequencing dataset E-MTAB-6418, into the public ArrayExpress database.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

No informed consent because this study does not contain human or animals participants.

Availability of data and materials

The datasets supporting the conclusions of this article are available in the ArrayExpress database (https://www.ebi.ac.uk/arrayexpress/) repository. [E-MTAB-6418] (https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-6418/?array=A-MEXP-2072]

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author Contributions
B. V - Writing original draft, and review and editing

C. V - Software and investigation

A. T - Formal analysis and validation

Authors

Basavaraj Vastrad ORCID ID: 0000-0003-2202-7637

Anandkumar Tengli ORCID ID: 0000-0001-8076-928X

Chanabasayya Vastrad ORCID ID: 0000-0003-3615-4450

References

1. Alfadhli EM. Gestational diabetes mellitus. Saudi Med J. 2015;36(4):399-406. doi:10.15537/smj.2015.4.10307

2. Lambrinoudaki I, Vlachou SA, Creatsas G. Genetics in gestational diabetes mellitus: association with incidence, severity, pregnancy outcome and response to treatment. Curr Diabetes Rev. 2010;6(6):393-399. doi:10.2174/157339910793499155

3. Chen P, Wang S, Ji J, Ge A, Chen C, Zhu Y, Xie N, Wang Y. Risk factors and management of gestational diabetes. Cell Biochem Biophys. 2015;71(2):689-694. doi:10.1007/s12013-014-0248-2

4. Tieu J, McPhee AJ, Crowther CA, Middleton P, Shepherd E. Screening for gestational diabetes mellitus based on different risk profiles and settings for improving maternal and infant health. Cochrane Database Syst Rev. 2017;8(8):CD007222. doi:10.1002/14651858.CD007222.pub4

5. Farrar D, Simmonds M, Bryant M, Sheldon TA, Tuffnell D, Goldar S, Dunne F, Lawlor DA. Hyperglycaemia and risk of adverse perinatal outcomes: systematic review and meta-analysis. BMJ. 2016;354:i4694. doi:10.1136/bmj.i4694

6. Zhu N, Hou J, Wu Y, Li G, Liu J, Ma G, Chen B, Song Y. Identification of key genes in rheumatoid arthritis and osteoarthritis based on bioinformatics analysis. Medicine (Baltimore). 2018;97(22):e10997. doi:10.1097/MD.00000000000010997
7. Liu Y, Wang Y, Wang Y, Lv Y, Zhang Y, Wang H. Gene expression changes in arterial and venous endothelial cells exposed to gestational diabetes mellitus. Gynecol Endocrinol. 2020;36(9):791-795. doi:10.1080/09513590.2020.1712696

8. Zhang Q, He M, Wang J, Liu S, Cheng H, Cheng Y. Predicting of disease genes for gestational diabetes mellitus based on network and functional consistency. Eur J Obstet Gynecol Reprod Biol. 2015;186:91-96. doi:10.1016/j.ejogrb.2014.12.016

9. Chiswick CA, Reynolds RM, Denison FC, Drake AJ, Forbes S, Newby DE, Walker BR, Quenby S, Wray S, Weeks A, et al. Does metformin reduce excess birthweight in offspring of obese pregnant women? A randomised controlled trial of efficacy, exploration of mechanisms and evaluation of other pregnancy complications. Southampton (UK): NIHR Journals Library; August 2016.

10. Kolesnikov N, Hastings E, Keays M, Melnichuk O, Tang YA, Williams E, Dylag M, Kurbatova N, Brandizi M, Burdett T, et al. ArrayExpress update—simplifying data submissions. Nucleic Acids Res. 2015;43(Database issue):D1113-D1116. doi:10.1093/nar/gku1057

11. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47. doi:10.1093/nar/gkv007

12. Thomas PD. The Gene Ontology and the Meaning of Biological Function. Methods Mol Biol. 2017;1446:15–24. doi:10.1007/978-1-4939-3743-1_2

13. Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M, Garapati P, Haw R, Jassal B, Kornberger F, May B et al. The Reactome Pathway Knowledgebase. Nucleic Acids Res. 2018;46(D1):D649–D655. doi:10.1093/nar/gkx1132

14. Chen J, Bardes EE, Aronow BJ, Jegga AG. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 2009;37(Web Server issue):W305-W311. doi:10.1093/nar/gkp427

15. Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P, et al. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 2017;45(D1):D362-D368. doi:10.1093/nar/gkw937
16. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003;13(11):2498-2504. doi:10.1101/gr.1239303

17. Przulj N, Wigle DA, Jurisica I. Functional topology in a network of protein interactions. Bioinformatics. 2004;20(3):340–348. doi:10.1093/bioinformatics/btg415

18. Nguyen TP, Liu WC, Jordán F. Inferring pleiotropy by network analysis: linked diseases in the human PPI network. BMC Syst Biol. 2011;5:179. doi:10.1186/1752-0509-5-179

19. Shi Z, Zhang B. Fast network centrality analysis using GPUs. BMC Bioinformatics. 2011;12:149. doi:10.1186/1471-2105-12-149

20. Fadhal E, Gamieldien J, Mwambene EC. Protein interaction networks as metric spaces: a novel perspective on distribution of hubs. BMC Syst Biol. 2014;8:6. doi:10.1186/1752-0509-8-6

21. Zaki N, Efimov D, Berengueres J. Protein complex detection using interaction reliability assessment and weighted clustering coefficient. BMC Bioinformatics. 2013;14:163. doi:10.1186/1471-2105-14

22. Fan Y, Xia J (2018) miRNet-Functional Analysis and Visual Exploration of miRNA-Target Interactions in a Network Context. Methods Mol Biol 1819:215-233. doi:10.1007/978-1-4939-8618-7_10

23. Zhou G, Soufan O, Ewald J, Hancock REW, Basu N, Xia J (2019) NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res 47:W234-W241. doi:10.1093/nar/gkz240

24. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, Müller M. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 2011;12:77. doi:10.1186/1471-2105-12-77

25. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001;25:402–408. doi:10.1006/meth.2001.1262

26. Wierzchowski M, Dutkiewicz Z, Gielara-Korzańska A, Korzański A, Teubert A, Teżyk A, Stefański T, Baer-Dubowska W, Mikstacka R. Synthesis, biological evaluation and docking studies of trans-stilbene
methylthio derivatives as cytochromes P450 family 1 inhibitors. Chem Biol Drug Des. 2017;90(6):1226-1236. doi:10.1111/cbddd.13042

27. O'Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: An open chemical toolbox. J Cheminform. 2011;3:33. doi:10.1186/1758-2946-3-33

28. Petchi RR, Vijaya C, Parasuraman S. Antidiabetic activity of polyherbal formulation in streptozotocin - nicotinamide induced diabetic wistar rats. J Tradit Complement Med. 2014;4(2):108-117. doi:10.4103/2225-4110.126174

29. Gupta RC, Chang D, Nammi S, Bensoussan A, Bilinski K, Roufogalis BD. Interactions between antidiabetic drugs and herbs: an overview of mechanisms of action and clinical implications. Diabetol Metab Syndr. 2017;9:59. doi:10.1186/s13098-017-0254-9

30. Uusküla L, Rull K, Nagirnaja L, Laan M. Methylation allelic polymorphism (MAP) in chorionic gonadotropin beta5 (CGB5) and its association with pregnancy success. J Clin Endocrinol Metab. 2011;96(1):E199-E207. doi:10.1210/jc.2010-1647

31. Purwosunu Y, Sekizawa A, Farina A, Wibowo N, Okazaki S, Nakamura M, Samura O, Fujito N, Okai T. Cell-free mRNA concentrations of CRH, PLAC1, and selectin-P are increased in the plasma of pregnant women with preeclampsia. Prenat Diagn. 2007;27(8):772-777. doi:10.1002/pd.1780

32. Temur M, Serpim G, Tuzluoğlu S, Taşdoğan FN, Şahin E, Üstünyurt E. Comparison of serum human pregnancy-specific beta-1-glycoprotein 1 levels in pregnant women with or without preeclampsia. J Obstet Gynaecol. 2020;40(8):1074-1078. doi:10.1080/01443615.2019.1679734

33. Shimodaira M, Nakayama T, Sato I, Sato N, Izawa N, Mizutani Y, Furuya K, Yamamoto T. Estrogen synthesis genes CYP19A1, HSD3B1, and HSD3B2 in hypertensive disorders of pregnancy. Endocrine. 2012;42(3):700-707. doi:10.1007/s12020-012-9699-7

34. Xu T, Shao L, Wang A, Liang R, Lin Y, Wang G, Zhao Y, Hu J, Liu S. CD248 as a novel therapeutic target in pulmonary arterial hypertension. Clin Transl Med. 2020;10(5):e175. doi:10.1002/ctm2.175

35. Lin G, Wan X, Liu D, Wen Y, Yang C, Zhao C. COL1A1 as a potential new biomarker and therapeutic target for type 2 diabetes. Pharmacol Res. 2021;105436. doi:10.1016/j.phrs.2021.105436
36. Delfín DA, DeAguero JL, McKown EN. The Extracellular Matrix Protein ABI3BP in Cardiovascular Health and Disease. Front Cardiovasc Med. 2019;6:23. doi:10.3389/fcvm.2019.00023

37. Blindbæk SL, Schlosser A, Green A, Holmskov U, Sorensen GL, Grauslund J. Association between microfibrillar-associated protein 4 (MFAP4) and micro- and macrovascular complications in long-term type 1 diabetes mellitus. Acta Diabetol. 2017;54(4):367-372. doi:10.1007/s00592-016-0953-y

38. Bennett CE, Nsengimana J, Bostock JA, Cymbalista C, Futers TS, Knight BL, McCormack LJ, Prasad UK, Riches K, Rolton D, et al. CCAAT/enhancer binding protein alpha, beta and delta gene variants: associations with obesity related phenotypes in the Leeds Family Study. Diab Vasc Dis Res. 2010;7(3):195-203. doi:10.1177/1479164110366274

39. Killion EA, Reeves AR, El Azzouny MA, Yan QW, Surujon D, Griffin JD, Bowman TA, Wang C, Matthan NR, Klett EL, et al. A role for long-chain acyl-CoA synthetase-4 (ACSL4) in diet-induced phospholipid remodeling and obesity-associated adipocyte dysfunction. Mol Metab. 2018;9:43-56. doi:10.1016/j.molmet.2018.01.012

40. Cheng J, Song J, He X, Zhang M, Hu S, Zhang S, Yu Q, Yang P, Xiong F, Wang DW, et al. Loss of Mbd2 Protects Mice Against High-Fat Diet-Induced Obesity and Insulin Resistance by Regulating the Homeostasis of Energy Storage and Expenditure. Diabetes. 2016;65(11):3384-3395. doi:10.2337/db16-0151

41. An M, Ryu DR, Won Park J, Ha Choi J, Park EM, Eun Lee K, Woo M, Kim M. UMK1 prevents cardiac dysfunction in obesity through autophagy-mediated regulation of lipid metabolism. Cardiovasc Res. 2017;113(10):1137-1147. doi:10.1093/cvr/cvx064

42. Hofmann T, Weibert E, Ahnis A, Obbarius A, Elbelt U, Rose M, Klapp BF, Stengel A. Alterations of circulating NUCB2/nesfatin-1 during short term therapeutic improvement of anxiety in obese inpatients. Psychoneuroendocrinology. 2017;79:107-115. doi:10.1016/j.psyneuen.2017.02.021

43. Ma W, Lu S, Sun T, Wang X, Ma Y, Zhang X, Zhao R, Wang Y. Twist 1 regulates the expression of PPARG during hormone-induced 3T3-L1
preadipocyte differentiation: a possible role in obesity and associated diseases. Lipids Health Dis. 2014;13:132. doi:10.1186/1476-511X-13-132

44. Rodríguez-Rodero S, Menéndez-Torre E, Fernández-Bayón G, Morales-Sánchez P, Sanz L, Turienzo E, González JJ, Martínez-Faedo C, Suárez-Gutiérrez L, Ares J, et al. Altered intragenic DNA methylation of HOOK2 gene in adipose tissue from individuals with obesity and type 2 diabetes. PLoS One. 2017;12(12):e0189153. doi:10.1371/journal.pone.0189153

45. Belalcazar LM, Papandonatos GD, McCaffery JM, Peter I, Pajewski NM, Erar B, Allred ND, Balasubramaniam A, Bowden DW, Brautbar A, et al. A common variant in the CLDN7/ELP5 locus predicts adiponectin change with lifestyle intervention and improved fitness in obese individuals with diabetes. Physiol Genomics. 2015;47(6):215-224. doi:10.1152/physiolgenomics.00109.2014

46. Reilly SM, Chiang SH, Decker SJ, Chang L, Uhm M, Larsen MJ, Rubin JR, Mowers J, White NM, Hochberg I, et al. An inhibitor of the protein kinases TBK1 and IKK-ε improves obesity-related metabolic dysfunctions in mice. Nat Med. 2013;19(3):313-321. doi:10.1038/nm.3082

47. Wang L, Mazagova M, Pan C, Yang S, Brandl K, Liu J, Reilly SM, Wang Y, Miao Z, Loomba R, et al. YIPF6 controls sorting of FGF21 into COPII vesicles and promotes obesity. Proc Natl Acad Sci U S A. 2019;116(30):15184-15193. doi:10.1073/pnas.1904360116

48. Garcia-Valdes L, Campoy C, Hayes H, Florido J, Rusanova I, Miranda MT, McArdle HJ. The impact of maternal obesity on iron status, placental transferrin receptor expression and hepcidin expression in human pregnancy. Int J Obes (Lond). 2015;39(4):571-578. doi:10.1038/ijo.2015.3

49. Reeves VL, Trybula JS, Wills RC, Goodpaster BH, Dubé JJ, Kienesberger PC, Kershaw EE. Serum Autotaxin/ENPP2 correlates with insulin resistance in older humans with obesity. Obesity (Silver Spring). 2015;23(12):2371-2376. doi:10.1002/oby.21232

50. Lim R, Lappas M. Slit2 exerts anti-inflammatory actions in human placenta and is decreased with maternal obesity. Am J Reprod Immunol. 2015;73(1):66-78. doi:10.1111/aji.12334

51. Khalifeh-Soltani A, McKleroy W, Sakuma S, Cheung YY, Tharp K, Qiu Y, Turner SM, Chawla A, Stahl A, Atabai K. Mfge8 promotes obesity by
mediating the uptake of dietary fats and serum fatty acids. Nat Med. 2014;20(2):175-183. doi:10.1038/nm.3450

52. Bidu C, Escoula Q, Bellenger S, Spor A, Galan M, Geissler A, Bouchot A, Dardevet D, Morio B, Cani PD, et al. The Transplantation of ω3 PUFA-Altered Gut Microbiota of fat-1 Mice to Wild-Type Littermates Prevents Obesity and Associated Metabolic Disorders. Diabetes. 2018;67(8):1512-1523. doi:10.2337/db17-1488

53. Leelalertlauw C, Korwutthikulrangsri M, Mahachoklertwattana P, Chanprasertyothin S, Khlaireit P, Pongratanakul S, Poomthavorn P. Serum glypican 4 level in obese children and its relation to degree of obesity. Clin Endocrinol (Oxf). 2017;87(6):689-695. doi:10.1111/cen.13435

54. McCulloch LJ, Rawling TJ, Sjöholm K, Franck N, Dankel SN, Price EJ, Knight B, Liversedge NH, Mellgren G, Nystrom F, et al. COL6A3 is regulated by leptin in human adipose tissue and reduced in obesity. Endocrinology. 2015;156(1):134-146. doi:10.1210/en.2014-1042

55. Oberauer R, Rist W, Lenter MC, Hamilton BS, Neubauer H. EGFL6 is increasingly expressed in human obesity and promotes proliferation of adipose tissue-derived stromal vascular cells. Mol Cell Biochem. 2010;343(1-2):257-269. doi:10.1007/s11010-010-0521-7

56. Jargaud V, Bour S, Tercé F, Collet X, Valet P, Bouloumié A, Guillemot JC, Maurière P, Jalkanen S, Stolen C, et al. Obesity of mice lacking VAP-1/SSAO by Aoc3 gene deletion is reproduced in mice expressing a mutated vascular adhesion protein-1 (VAP-1) devoid of amine oxidase activity. J Physiol Biochem. 2020;10.1007/s13105-020-00756-y. doi:10.1007/s13105-020-00756-y

57. Tan JT, McLennan SV, Williams PF, Rezaeizadeh A, Lo LW, Bonner JG, Twigg SM. Connective tissue growth factor/CCN-2 is upregulated in epididymal and subcutaneous fat depots in a dietary-induced obesity model. Am J Physiol Endocrinol Metab. 2013;304(12):E1291-E1302. doi:10.1152/ajpendo.00654.2012

58. Michurina SV, Ishchenko IY, Arkhipov SA, Klimontov VV, Rachkovskaya LN, Konenkov VI, Zavyalov EL. Effects of Melatonin, Aluminum Oxide, and Polymethylsiloxane Complex on the Expression of LYVE-1 in the Liver of Mice with Obesity and Type 2 Diabetes Mellitus. Bull Exp Biol Med. 2016;162(2):269-272. doi:10.1007/s10517-016-3592-y
59. Redonnet A, Bonilla S, Noël-Suberville C, Pallet V, Dabadie H, Gin H, Higueret P. Relationship between peroxisome proliferator-activated receptor gamma and retinoic acid receptor alpha gene expression in obese human adipose tissue. Int J Obes Relat Metab Disord. 2002;26(7):920-927. doi:10.1038/sj.ijo.0802025

60. Errera FI, Canani LH, Yeh E, Kague E, Armelin-Corrêa LM, Suzuki OT, Tschediel B, Silva ME, Sertié AL, Passos-Bueno MR. COL18A1 is highly expressed during human adipocyte differentiation and the SNP c.1136C > T in its "frizzled" motif is associated with obesity in diabetes type 2 patients. An Acad Bras Cienc. 2008;80(1):167-177. doi:10.1590/s0001-37652008000100012

61. Paine A, Woeller CF, Zhang H, de la Luz García-Hernandez M, Huertas N, Xing L, Phipps RP, Ritchlin CT. Thy1 is a positive regulator of osteoblast differentiation and modulates bone homeostasis in obese mice. FASEB J. 2018;32(6):3174-3183. doi:10.1096/fj.201701379R

62. Wu RX, Dong YY, Yang PW, Wang L, Deng YH, Zhang HW, Huang XY. CD36- and obesity-associated granulosa cells dysfunction. Reprod Fertil Dev. 2019;31(5):993-1001. doi:10.1071/RD18292

63. Gao X, van der Veen JN, Zhu L, Chaba T, Ordoñez M, Lingrell S, Koonen DP, Dyck JR, Gomez-Muñoz A, Vance DE, et al. Vagus nerve contributes to the development of steatohepatitis and obesity in phosphatidylethanolamine N-methyltransferase deficient mice. J Hepatol. 2015;62(4):913-920. doi:10.1016/j.jhep.2014.11.026

64. Parikh D, Riascos-Bernal DF, Egaña-Gorroño L, Jayakumar S, Almonte V, Chinnasamy P, Sibinga NES. Allograft inflammatory factor-1-like is not essential for age dependent weight gain or HFD-induced obesity and glucose insensitivity. Sci Rep. 2020;10(1):3594. doi:10.1038/s41598-020-60433-4

65. Bush NR, Allison AL, Miller AL, Deardorff J, Adler NE, Boyce WT. Socioeconomic Disparities in Childhood Obesity Risk: Association With an Oxytocin Receptor Polymorphism. JAMA Pediatr. 2017;171(1):61-67. doi:10.1001/jamapediatrics.2016.2332

66. Kim Y, Bayona PW, Kim M, Chang J, Hong S, Park Y, Budiman A, Kim YJ, Choi CY, Kim WS, et al. Macrophage Lamin A/C Regulates Inflammation and the Development of Obesity-Induced Insulin Resistance. Front Immunol. 2018;9:696. doi:10.3389/fimmu.2018.00696
67. Cereijo R, Quesada-López T, Gavaldà-Navarro A, Tarascó J, Pellitero S, Reyes M, Puig-Domingo M, Giralt M, Sánchez-Infantes D, Villarroya F. The chemokine CXCL14 is negatively associated with obesity and concomitant type-2 diabetes in humans. Int J Obes (Lond). 2021;10.1038/s41366-020-00732-y. doi:10.1038/s41366-020-00732-y

68. Xie L, Wang PX, Zhang P, Zhang XJ, Zhao GN, Wang A, Guo J, Zhu X, Zhang Q, Li H. DKK3 expression in hepatocytes defines susceptibility to liver steatosis and obesity. J Hepatol. 2016;65(1):113-124. doi:10.1016/j.jhep.2016.03.008

69. Tabata M, Kadomatsu T, Fukuhara S, Miyata K, Ito Y, Endo M, Urano T, Zhu HJ, Tsukano H, Tazume H, et al. Angiopoietin-like protein 2 promotes chronic adipose tissue inflammation and obesity-related systemic insulin resistance. Cell Metab. 2009;10(3):178-188. doi:10.1016/j.cmet.2009.08.003

70. Zhu Q, Xue K, Guo HW, Deng FF, Yang YH. Interaction of the CMTM7 rs347134 Polymorphism with Dietary Patterns and the Risk of Obesity in Han Chinese Male Children. Int J Environ Res Public Health. 2020;17(5):1515. doi:10.3390/ijerph17051515

71. Wang K, Zhou Q, He Q, Tong G, Zhao Z, Duan T. The possible role of AhR in the protective effects of cigarette smoke on preeclampsia. Med Hypotheses. 2011;77(5):872-874. doi:10.1016/j.mehy.2011.07.061

72. Gratton AM, Ye L, Brownfoot FC, Hannan NJ, Whitehead C, Cannon P, Deo M, Fuller PJ, Tong S, Kaitu'u-Lino TJ. Steroid sulfatase is increased in the placentas and whole blood of women with early-onset preeclampsia. Placenta. 2016;48:72-79. doi:10.1016/j.placenta.2016.10.008

73. Wan L, Sun D, Xie J, Du M, Wang P, Wang M, Lei Y, Wang H, Wang H, Dong M. Declined placental PLAC1 expression is involved in preeclampsia. Medicine (Baltimore). 2019;98(44):e17676. doi:10.1097/MD.00000000000017676

74. Pan T, He G, Chen M, Bao C, Chen Y, Liu G, Zhou M, Li S, Xu W, Liu X. Abnormal CYP11A1 gene expression induces excessive autophagy, contributing to the pathogenesis of preeclampsia. Oncotarget. 2017;8(52):89824-89836. doi:10.18632/oncotarget.21158

75. Zhao L, Triche EW, Walsh KM, Bracken MB, Saftlas AF, Hoh J, Dewan AT. Genome-wide association study identifies a maternal copy-number
deletion in PSG11 enriched among preeclampsia patients. BMC Pregnancy Childbirth. 2012;12:61. doi:10.1186/1471-2393-12-61

76. Li W, Geng L, Liu X, Gui W, Qi H. Recombinant adiponectin alleviates abortion in mice by regulating Th17/Treg imbalance via p38MAPK-STAT5 pathway. Biol Reprod. 2019;100(4):1008-1017. doi:10.1093/biolre/ioy251

77. Gierman LM, Silva GB, Pervaiz Z, Rakner JJ, Mundal SB, Thaning AJ, Nervik I, Elschot M, Mathew S, Thomsen LCV, et al. TLR3 expression by maternal and fetal cells at the maternal-fetal interface in normal and preeclamptic pregnancies. J Leukoc Biol. 2020;10.1002/JLB.3MA0620-728RR. doi:10.1002/JLB.3MA0620-728RR

78. Piñuñuri R, Castaño-Moreno E, Llanos MN, Ronco AM. Epigenetic regulation of folate receptor-α (FOLR1) in human placenta of preterm newborns. Placenta. 2020;94:20-25. doi:10.1016/j.placenta.2020.03.009

79. White BG, Williams SJ, Highmore K, Macphee DJ. Small heat shock protein 27 (Hsp27) expression is highly induced in rat myometrium during late pregnancy and labour. Reproduction. 2005;129(1):115-126. doi:10.1530/rep.1.00426

80. Torres-Salazar Q, Martínez-López Y, Reyes-Romero M, Pérez-Morales R, Sifuentes-Álvarez A, Salvador-Moysén J. Differential Methylation in Promoter Regions of the Genes NR3C1 and HSP90AA1, Involved in the Regulation, and Bioavailability of Cortisol in Leukocytes of Women With Preeclampsia. Front Med (Lausanne). 2020;7:206. doi:10.3389/fmed.2020.00206

81. Xu Y, Sui L, Qiu B, Yin X, Liu J, Zhang X. ANXA4 promotes trophoblast invasion via the PI3K/Akt/eNOS pathway in preeclampsia. Am J Physiol Cell Physiol. 2019;316(4):C481-C491. doi:10.1152/ajpcell.00404.2018

82. Kaitu'u-Lino TJ, Brownfoot FC, Hastie R, Chand A, Cannon P, Deo M, Tuohey L, Whitehead C, Hannan NJ, Tong S. Activating Transcription Factor 3 Is Reduced in Preeclamptic Placentas and Negatively Regulates sFlt-1 (Soluble fms-Like Tyrosine Kinase 1), Soluble Endoglin, and Proinflammatory Cytokines in Placenta. Hypertension. 2017;70(5):1014-1024. doi:10.1161/HYPERTENSIONAHA.117.09548

83. Yung C, MacDonald TM, Walker SP, Cannon P, Harper A, Pritchard N, Hannan NJ, Kaitu'u-Lino TJ, Tong S. Death associated protein kinase 1
(DAPK-1) is increased in preeclampsia. Placenta. 2019;88:1-7. doi:10.1016/j.placenta.2019.09.010

84. Zhu L, Lv R, Kong L, Li X. Reduced methylation downregulates CD39/ENTPD1 and ZDHHC14 to suppress trophoblast cell proliferation and invasion: Implications in preeclampsia. Pregnancy Hypertens. 2018;14:59-67. doi:10.1016/j.preghy.2018.03.012

85. Griesshammer M, Sadjadian P, Wille K. Contemporary management of patients with BCR-ABL1-negative myeloproliferative neoplasms during pregnancy. Expert Rev Hematol. 2018;11(9):697-706. doi:10.1080/17474086.2018.1506325

86. Textoris J, Ivorra D, Ben Amara A, Sabatier F, Ménard JP, Heckenroth H, Bretelle F, Mege JL. Evaluation of current and new biomarkers in severe preeclampsia: a microarray approach reveals the VSIG4 gene as a potential blood biomarker. PLoS One. 2013;8(12):e82638. doi:10.1371/journal.pone.0082638

87. Kelemu T, Erlandsson L, Seifu D, Abebe M, Teklu S, Storry JR, Hansson SR. Association of Maternal Regulatory Single Nucleotide Polymorphic CD99 Genotype with Preeclampsia in Pregnancies Carrying Male Fetuses in Ethiopian Women. Int J Mol Sci. 2020;21(16):5837. doi:10.3390/ijms21165837

88. Aref S, Goda H. Increased VWF antigen levels and decreased ADAMTS13 activity in preeclampsia. Hematology. 2013;18(4):237-241. doi:10.1179/1607845412Y.0000000070

89. Martineau T, Boutin M, Côté AM, Maranda B, Bichet DG, Auray-Blais C. Tandem mass spectrometry analysis of urinary podocalyxin and podocin in the investigation of podocyturia in women with preeclampsia and Fabry disease patients. Clin Chim Acta. 2019;495:67-75. doi:10.1016/j.cca.2019.03.1615

90. Onyangunga O, Moodley J, Odun-Ayo F, Naicker T. Immunohistochemical localization of podoplanin in the placentas of HIV-positive preeclamptic women. Turk J Med Sci. 2018;48(5):916-924. doi:10.3906/sag-1706-88

91. Li L, Zhang X, Hong SL, Chen Y, Ren GH. Long non-coding HOTTIP regulates preeclampsia by inhibiting RND3. Eur Rev Med Pharmacol Sci. 2018;22(11):3277-3285. doi:10.26355/eurrev_201806_15146
92. Gogiel T, Galewska Z, Romanowicz L, Jaworski S, Bańkowski E. Pre-eclampsia-associated alterations in decorin, biglycan and versican of the umbilical cord vein wall. Eur J Obstet Gynecol Reprod Biol. 2007;134(1):51-56. doi:10.1016/j.ejogrb.2006.10.003

93. Hirschi KM, Tsai KYF, Davis T, Clark JC, Knowlton MN, Bikman BT, Reynolds PR, Arroyo JA. Growth arrest-specific protein-6/AXL signaling induces preeclampsia in rats†. Biol Reprod. 2020;102(1):199-210. doi:10.1093/biolre/ioz140

94. Arishe OO, Ebeigbe AB, Webb RC. Mechanotransduction and Uterine Blood Flow in Preeclampsia: The Role of Mechanosensing Piezo 1 Ion Channels. Am J Hypertens. 2020;33(1):1-9. doi:10.1093/ajh/hpz158

95. Ji Y, Zhou L, Wang G, Qiao Y, Tian Y, Feng Y. Role of LAMA4 Gene in Regulating Extravillous Trophoblasts in Pathogenesis of Preeclampsia. Med Sci Monit. 2019;25:9630-9636. doi:10.12659/MSM.917402

96. Du F, Zhang Y, Xu Q, Teng Y, Tao M, Chen AF, Jiang R. Preeclampsia serum increases CAV1 expression and cell permeability of human renal glomerular endothelial cells via down-regulating miR-199a-5p, miR-199b-5p, miR-204. Placenta. 2020;99:141-151. doi:10.1016/j.placenta.2020.07.011

97. Shimanuki Y, Mitomi H, Fukumura Y, Makino S, Itakura A, Yao T, Takeda S. Alteration of Delta-like ligand 1 and Notch 1 receptor in various placental disorders with special reference to early onset preeclampsia. Hum Pathol. 2015;46(8):1129-1137. doi:10.1016/j.humpath.2015.03.013

98. Todd N, McNally R, Alqudah A, Jerotic D, Suvakov S, Obradovic D, Hoch D, Hombrebueno JR, Campos GL, Watson CJ, et al. Role of A Novel Angiogenesis FKBPL-CD44 Pathway in Preeclampsia Risk Stratification and Mesenchymal Stem Cell Treatment. J Clin Endocrinol Metab. 2021;106(1):26-41. doi:10.1210/clinem/dgaa403

99. Ding H, Dai Y, Lei Y, Wang Z, Liu D, Li R, Shen L, Gu N, Zheng M, Zhu X, et al. Upregulation of CD81 in trophoblasts induces an imbalance of Treg/Th17 cells by promoting IL-6 expression in preeclampsia. Cell Mol Immunol. 2019;16(1):302-312. doi:10.1038/s41423-018-0186-9

100. Brkić J, Dunk C, Shan Y, O'Brien JA, Lye P, Qayyum S, Yang P, Matthews SG, Lye SJ, Peng C. Differential Role of Smad2 and Smad3 in the Acquisition of an Endovascular Trophoblast-Like Phenotype and
101. Yang X, Ding Y, Yang M, Yu L, Hu Y, Deng Y. Nestin Improves Preeclampsia-Like Symptoms by Inhibiting Activity of Cyclin-Dependent Kinase 5. Kidney Blood Press Res. 2018;43(2):616-627. doi:10.1159/000489146

102. Lala PK, Nandi P. Mechanisms of trophoblast migration, endometrial angiogenesis in preeclampsia: The role of decorin. Cell Adh Migr. 2016;10(1-2):111-125. doi:10.1080/19336918.2015.1106669

103. Zhao L, Dewan AT, Bracken MB. Association of maternal AGTR1 polymorphisms and preeclampsia: a systematic review and meta-analysis. J Matern Fetal Neonatal Med. 2012;25(12):2676-2680. doi:10.3109/14767058.2012.708370

104. Lim R, Barker G, Lappas M. SLIT3 is increased in supracervical human foetal membranes and in labouring myometrium and regulates pro-inflammatory mediators. Am J Reprod Immunol. 2014;71(4):297-311. doi:10.1111/aji.12181

105. Kristensen K, Wide-Swensson D, Schmidt C, Blirup-Jensen S, Lindström V, Strevens H, Grubb A. Cystatin C, beta-2-microglobulin and beta-trace protein in pre-eclampsia. Acta Obstet Gynecol Scand. 2007;86(8):921-926. doi:10.1080/00016340701318133

106. Tang J, Wang D, Lu J, Zhou X. MiR-125b participates in the occurrence of preeclampsia by regulating the migration and invasion of extravillous trophoblastic cells through STAT3 signaling pathway. J Recept Signal Transduct Res. 2020;1-7. doi:10.1080/10799893.2020.1806318

107. Abid N, Embola J, Tryfonos Z, Bercher J, Ashton SV, Khalil A, Thilaganathan B, Cartwright JE, Whitley GS. Regulation of stanniocalcin-1 secretion by BeWo cells and first trimester human placental tissue from normal pregnancies and those at increased risk of developing preeclampsia. FASEB J. 2020;34(5):6086-6098. doi:10.1096/fj.201902426R

108. Namli Kalem M, Kalem Z, Yüce T, Soylemez F. ADAMTS 1, 4, 12, and 13 levels in maternal blood, cord blood, and placenta in preeclampsia. Hypertens Pregnancy. 2018;37(1):9-17. doi:10.1080/10641955.2017.1397690
109. Majchrzak-Celińska A, Kosicka K, Paczkowska J, Główka FK, Bręborowicz GH, Krzyścin M, Siemiątkowska A, Szaumkessel M, Baer-Dubowska W. HSD11B2, RUNX3, and LINE-1 Methylation in Placental DNA of Hypertensive Disorders of Pregnancy Patients. Reprod Sci. 2017;24(11):1520-1531. doi:10.1177/1933719117692043

110. Shimodaira M, Nakayama T, Sato I, Sato N, Izawa N, Mizutani Y, Furuya K, Yamamoto T. Estrogen synthesis genes CYP19A1, HSD3B1, and HSD3B2 in hypertensive disorders of pregnancy. Endocrine. 2012;42(3):700-707. doi:10.1007/s12020-012-9699-7

111. Saxena R, Bjonnes A, Prescott J, Dib P, Natt P, Lane J, Lerner M, Cooper JA, Ye Y, Li KW, et al. Genome-wide association study identifies variants in casein kinase II (CSNK2A2) to be associated with leukocyte telomere length in a Punjabi Sikh diabetic cohort. Circ Cardiovasc Genet. 2014;7(3):287-295. doi:10.1161/CIRCGENETICS.113.000412

112. Yang W, Wang J, Chen Z, Chen J, Meng Y, Chen L, Chang Y, Geng B, Sun L, Dou L, et al. NFE2 Induces miR-423-5p to Promote Gluconeogenesis and Hyperglycemia by Repressing the Hepatic FAM3A-ATP-Akt Pathway. Diabetes. 2017;66(7):1819-1832. doi:10.2337/db16-1172

113. Gloyn AL, Desai M, Clark A, Levy JC, Holman RR, Frayling TM, Hattersley AT, Ashcroft SJ. Human calcium/calmodulin-dependent protein kinase II gamma gene (CAMK2G): cloning, genomic structure and detection of variants in subjects with type II diabetes. Diabetologia. 2002;45(4):580-583. doi:10.1007/s00125-002-0779-8

114. Li JY, Tao F, Wu XX, Tan YZ, He L, Lu H. Common RASGRP1 Gene Variants That Confer Risk of Type 2 Diabetes. Genet Test Mol Biomarkers. 2015;19(8):439-443. doi:10.1089.gtmb.2015.0005

115. Afarideh M, Zaker Esteghamati V, Ganji M, Heidari B, Esteghamati S, Lavasani S, Ahmadi M, Tafakhori A, Nakhjavani M, Esteghamati A. Associations of Serum S100B and S100P With the Presence and Classification of Diabetic Peripheral Neuropathy in Adults With Type 2 Diabetes: A Case-Cohort Study. Can J Diabetes. 2019;43(5):336-344.e2. doi:10.1016/j.jcjd.2019.01.003

116. Zhang S, Xiao J, Ren Q, Han X, Tang Y, Yang W, Zhou X, Ji L. Association of serine racemase gene variants with type 2 diabetes in the
Chinese Han population. J Diabetes Investig. 2014;5(3):286-289. doi:10.1111/jdi.12145

117. Robbins RD, Tersey SA, Oghihara T, Gupta D, Farb TB, Ficorilli J, Bokvist K, Maier B, Mirmira RG. Inhibition of deoxyhypusine synthase enhances islet {beta} cell function and survival in the setting of endoplasmic reticulum stress and type 2 diabetes. J Biol Chem. 2010;285(51):39943-39952. doi:10.1074/jbc.M110.170142

118. Belgardt BF, Lammert E. DYRK1A: A Promising Drug Target for Islet Transplant-Based Diabetes Therapies. Diabetes. 2016;65(6):1496-1498. doi:10.2337/dbi16-0013

119. Yoon CH, Choi YE, Cha YR, Koh SJ, Choi JJ, Kim TW, Woo SJ, Park YB, Chae IH, Kim HS. Diabetes-Induced Jagged1 Overexpression in Endothelial Cells Causes Retinal Capillary Regression in a Murine Model of Diabetes Mellitus: Insights Into Diabetic Retinopathy. Circulation. 2016;134(3):233-247. doi:10.1161/CIRCULATIONAHA.116.014411

120. Gaikwad AB, Gupta J, Tikoo K. Epigenetic changes and alteration of Fbn1 and Col3A1 gene expression under hyperglycaemic and hyperinsulinaemic conditions. Biochem J. 2010;432(2):333-341. doi:10.1042/BJ20100414

121. Alessi MC, Nicaud V, Scroyen I, Lange C, Saut N, Fumeron F, Marre M, Lantieri O, Fontaine-Bisson B, Juhan-Vague I, et al. Association of vitronectin and plasminogen activator inhibitor-1 levels with the risk of metabolic syndrome and type 2 diabetes mellitus. Results from the D.E.S.I.R. prospective cohort. Thromb Haemost. 2011;106(3):416-422. doi:10.1160/TH11-03-0179

122. Yang Q, Wang WW, Ma P, Ma ZX, Hao M, Adelusi TI, Lei-Du, Yin XX, Lu Q. Swimming training alleviated insulin resistance through Wnt3a/β-catenin signaling in type 2 diabetic rats. Iran J Basic Med Sci. 2017;20(11):1220-1226. doi:10.22038/IJBMS.2017.9473

123. Fang H, Luo X, Wang Y, Liu N, Fu C, Wang H, Fang Y, Shi W, Zhang Y, Zeng C, et al. Correlation between single nucleotide polymorphisms of the ACTA2 gene and coronary artery stenosis in patients with type 2 diabetes mellitus. Exp Ther Med. 2014;7(4):970-976. doi:10.3892/etm.2014.1510
124. Xu X, Fang K, Wang L, Liu X, Zhou Y, Song Y. Local Application of Semaphorin 3A Combined with Adipose-Derived Stem Cell Sheet and Anorganic Bovine Bone Granules Enhances Bone Regeneration in Type 2 Diabetes Mellitus Rats. Stem Cells Int. 2019;2019:2506463. doi:10.1155/2019/2506463

125. Zhao K, Ding W, Zhang Y, Ma K, Wang D, Hu C, Liu J, Zhang X. Variants in the RARRES2 gene are associated with serum chemerin and increase the risk of diabetic kidney disease in type 2 diabetes. Int J Biol Macromol. 2020;165(Pt A):1574-1580. doi:10.1016/j.ijbiomac.2020.10.030

126. Fisher E, Schreiber S, Joost HG, Boeing H, Döring F. A two-step association study identifies CAV2 rs2270188 single nucleotide polymorphism interaction with fat intake in type 2 diabetes risk. J Nutr. 2011;141(2):177-181. doi:10.3945/jn.110.124206

127. Meng S, Cao JT, Zhang B, Zhou Q, Shen CX, Wang CQ. Downregulation of microRNA-126 in endothelial progenitor cells from diabetes patients, impairs their functional properties, via target gene Spred-1. J Mol Cell Cardiol. 2012;53(1):64-72. doi:10.1016/j.yjmcc.2012.04.003

128. Santiago JL, Martínez A, de la Calle H, Fernández-Arquero M, Figueredo MA, de la Concha EG, Urcelay E. Evidence for the association of the SLC22A4 and SLC22A5 genes with type 1 diabetes: a case control study. BMC Med Genet. 2006;7:54. doi:10.1186/1471-2350-7-54

129. Auburger G, Gispert S, Lahut S, Omür O, Damrath E, Heck M, Bašak N. 12q24 locus association with type 1 diabetes: SH2B3 or ATXN2?. World J Diabetes. 2014;5(3):316-327. doi:10.4239/wjd.v5.i3.316

130. Qu HQ, Marchand L, Szymborski A, Grabs R, Polychronakos C. The association between type 1 diabetes and the ITPR3 gene polymorphism due to linkage disequilibrium with HLA class II. Genes Immun. 2008;9(3):264-266. doi:10.1038/gene.2008.12

131. Śnit M, Nabrdalik K, Długaszek M, Gumprecht J, Trautsołt W, Górczyńska-Kosiorz S, Grzeszczyk W. Association of rs 3807337 polymorphism of CALD1 gene with diabetic nephropathy occurrence in type 1 diabetes - preliminary results of a family-based study. Endokrynol Pol. 2017;68(1):13-17. doi:10.5603/EP.2017.0003

132. Hjortebjerg R, Tarnow L, Jorsal A, Parving HH, Rossing P, Bjerre M, Frystyk J. IGFBP-4 Fragments as Markers of Cardiovascular Mortality in
Type 1 Diabetes Patients With and Without Nephropathy. J Clin Endocrinol Metab. 2015;100(8):3032-3040. doi:10.1210/jc.2015-2196

133. Krishnan M, Murphy R, Okesene-Gafa KAM, Ji M, Thompson JMD, Taylor RS, Merriman TR, McCowan LME, McKinlay CJD. The Pacific-specific CREBRF rs373863828 allele protects against gestational diabetes mellitus in Māori and Pacific women with obesity. Diabetologia. 2020;63(10):2169-2176. doi:10.1007/s00125-020-05202-8

134. Hu S, Yan J, You Y, Yang G, Zhou H, Li X, Liao X, Tan H. Association of polymorphisms in STRA6 gene with gestational diabetes mellitus in a Chinese Han population. Medicine (Baltimore). 2019;98(11):e14885. doi:10.1097/MD.00000000000014885

135. Martins RS, Ahmed T, Farhat S, Shahid S, Fatima SS. Epidermal growth factor receptor rs17337023 polymorphism in hypertensive gestational diabetic women: A pilot study. World J Diabetes. 2019;10(7):396-402. doi:10.4239/wjd.v10.i7.396

136. Prieto-Sánchez MT, Ruiz-Palacios M, Blanco-Carnero JE, Pagan A, Hellmuth C, Uhl O, Peissner W, Ruiz-Alcaraz AJ, Parrilla JJ, Koletzko B, et al. Placental MFSD2a transporter is related to decreased DHA in cord blood of women with treated gestational diabetes. Clin Nutr. 2017;36(2):513-521. doi:10.1016/j.clnu.2016.01.014

137. Sugulle M, Dechend R, Herse F, Weedon-Fekjaer MS, Johnsen GM, Brosnihan KB, Anton L, Luft FC, Wollert KC, Kempf T, et al. Circulating and placental growth-differentiation factor 15 in preeclampsia and in pregnancy complicated by diabetes mellitus. Hypertension. 2009;54(1):106-112. doi:10.1161/HYPERTENSIONAHA.109.130583

138. Zhao H, Tao S. MiRNA-221 protects islet β cell function in gestational diabetes mellitus by targeting PAK1. Biochem Biophys Res Commun. 2019;520(1):218-224. doi:10.1016/j.bbrc.2019.09.139

139. Siddiqui K, George TP, Nawaz SS, Joy SS. VCAM-1, ICAM-1 and selectins in gestational diabetes mellitus and the risk for vascular disorders. Future Cardiol. 2019;15(5):339-346. doi:10.2217/fca-2018-0042

140. Han N, Fang HY, Jiang JX, Xu Q. Downregulation of microRNA-873 attenuates insulin resistance and myocardial injury in rats with gestational diabetes mellitus by upregulating IGFBP2. Am J Physiol Endocrinol Metab. 2020;318(5):E723-E735. doi:10.1152/ajpendo.00555.2018
141. Lappas M. Insulin-like growth factor-binding protein 1 and 7 concentrations are lower in obese pregnant women, women with gestational diabetes and their fetuses. J Perinatol. 2015;35(1):32-38. doi:10.1038/jp.2014.144

142. Wang F, Xu C, Reece EA, Li X, Wu Y, Harman C, Yu J, Dong D, Wang C, Yang P, et al. Protein kinase C-alpha suppresses autophagy and induces neural tube defects via miR-129-2 in diabetic pregnancy. Nat Commun. 2017;8:15182. doi:10.1038/ncomms15182

143. Artunc-Ulkumen B, Uluçay S, Pala HG, Cam S. Maternal serum ADAMTS-9 levels in gestational diabetes: a pilot study. J Matern Fetal Neonatal Med. 2017;30(12):1442-1445. doi:10.1080/14767058.2016.1219717

144. Blois SM, Gueuvoghlanian-Silva BY, Tirado-González I, Torloni MR, Freitag N, Mattar R, Conrad ML, Unverdorben L, Barrientos G, Knabl J, et al. Getting too sweet: galectin-1 dysregulation in gestational diabetes mellitus. Mol Hum Reprod. 2014;20(7):644-649. doi:10.1093/molehr/gau021

145. Vacínová G, Vejražková D, Lukášová P, Lischková O, Dvořáková K, Rusina R, Holmerová I, Vaňková H, Včelák J, Bendlová B, et al. Associations of polymorphisms in the candidate genes for Alzheimer's disease BIN1, CLU, CR1 and PICALM with gestational diabetes and impaired glucose tolerance. Mol Biol Rep. 2017;44(2):227-231. doi:10.1007/s11033-017-4100-9

146. Vilmi-Kerälä T, Lauhio A, Tervahartiala T, Palomäki O, Uotila J, Sorsa T, Palomäki A. Subclinical inflammation associated with prolonged TIMP-1 upregulation and arterial stiffness after gestational diabetes mellitus: a hospital-based cohort study. Cardiovasc Diabetol. 2017;16(1):49. doi:10.1186/s12933-017-0530-x

147. Aquila G, Vieceli Dalla Sega F, Marracino L, Pavasini R, Cardelli LS, Piredda A, Scoccia A, Martino V, Fortini F, Bononi I et al Ticagrelor Increases SIRT1 and HES1 mRNA Levels in Peripheral Blood Cells from Patients with Stable Coronary Artery Disease and Chronic Obstructive Pulmonary Disease. Int J Mol Sci. 2020;21(5):1576. doi:10.3390/ijms21051576
148. Chen Y, Wu S, Zhang XS, Wang DM, Qian CY. MicroRNA-489 promotes cardiomyocyte apoptosis induced by myocardial ischemia-reperfusion injury through inhibiting SPIN1. Eur Rev Med Pharmacol Sci. 2019;23(15):6683-6690. doi:10.26355/eurrev_201908_18559

149. Xie H, Zhang E, Hong N, Fu Q, Li F, Chen S, Yu Y, Sun K. Identification of TBX2 and TBX3 variants in patients with conotruncal heart defects by target sequencing. Hum Genomics. 2018;12(1):44. doi:10.1186/s40246-018-0176-0

150. Zhang S, Lin X, Li G, Shen X, Niu D, Lu G, Fu X, Chen Y, Cui M, Bai Y. Knockout of Eva1a leads to rapid development of heart failure by impairing autophagy. Cell Death Dis. 2017;8(2):e2586. doi:10.1038/cddis.2017.17

151. Aspit L, Levitas A, Etzion S, Krymko H, Slanovic L, Zarivach R, Etzion Y, Parvari R. CAP2 mutation leads to impaired actin dynamics and associates with supraventricular tachycardia and dilated cardiomyopathy. J Med Genet. 2019;56(4):228-235. doi:10.1136/jmedgenet-2018-105498

152. Akadam-Teker B, Ozkara G, Kurnaz-Gomleksiz O, Bugra Z, Teker E, Ozturk O, Yilmaz-Aydogan H. BMP1 5'UTR+104 T/C gene variation: can be a predictive marker for serum HDL and apoprotein A1 levels in male patients with coronary heart disease. Mol Biol Rep. 2018;45(5):1269-1276. doi:10.1007/s11033-018-4283-8

153. Jiang B, Liu Y, Liang P, Li Y, Liu Z, Tong Z, Lv Q, Liu M, Xiao X. MicroRNA-126a-5p enhances myocardial ischemia-reperfusion injury through suppressing Hspb8 expression. Oncotarget. 2017;8(55):94172-94187. doi:10.18632/oncotarget.21613

154. Cetinkaya A, Berge B, Sen-Hild B, Troidl K, Gajawada P, Kubin N, Valeske K, Schranz D, Akintürk H, Schönburg M, et al. Radixin Relocalization and Nonmuscle α-Actinin Expression Are Features of Remodeling Cardiomyocytes in Adult Patients with Dilated Cardiomyopathy. Dis Markers. 2020;2020:9356738. doi:10.1155/2020/9356738

155. Grond-Ginsbach C, Weber R, Haas J, Orberk E, Kunz S, Busse O, Hausser I, Brandt T, Wildemann B. Mutations in the COL5A1 coding sequence are not common in patients with spontaneous cervical artery dissections. Stroke. 1999;30(9):1887-1890. doi:10.1161/01.str.30.9.1887
156. Dong Y, Zhai W, Xu Y. Bioinformatic gene analysis for potential biomarkers and therapeutic targets of diabetic nephropathy associated renal cell carcinoma. Transl Androl Urol. 2020;9(6):2555-2571. doi:10.21037/tau-19-911

157. Chardon JW, Smith AC, Woulfe J, Pena E, Rakhra K, Dennie C, Beaulieu C, Huang L, Schwartzentruber J, Hawkins C, et al. LIMS2 mutations are associated with a novel muscular dystrophy, severe cardiomyopathy and triangular tongues. Clin Genet. 2015;88(6):558-564. doi:10.1111/cge.12561

158. Chen H, Huang XN, Yan W, Chen K, Guo L, Tummalapali L, Dedhar S, St-Arnaud R, Wu C, Sepulveda JL. Role of the integrin-linked kinase/PINCH1/alpha-parvin complex in cardiac myocyte hypertrophy. Lab Invest. 2005;85(11):1342-1356. doi:10.1038/labinvest.3700345

159. Yamada Y, Sakuma J, Takeuchi I, Yasukochi Y, Kato K, Oguri M, Fujimaki T, Horibe H, Muramatsu M, Sawabe M, et al. Identification of EGFLAM, SPATC1L and RNASE13 as novel susceptibility loci for aortic aneurysm in Japanese individuals by exome-wide association studies. Int J Mol Med. 2017;39(5):1091-1100. doi:10.3892/ijmm.2017.2927

160. Hu YW, Guo FX, Xu YJ, Li P, Lu ZF, McVey DG, Zheng L, Wang Q, Ye JH, Kang CM, et al. Long noncoding RNA NEXN-AS1 mitigates atherosclerosis by regulating the actin-binding protein NEXN. J Clin Invest. 2019;129(3):1115-1128. doi:10.1172/JCI98230

161. Bobik A, Kalinina N. Tumor necrosis factor receptor and ligand superfamily family members TNFRSF14 and LIGHT: new players in human atherogenesis. Arterioscler Thromb Vasc Biol. 2001;21(12):1873-1875

162. Schwanekamp JA, Lorts A, Sargent MA, York AJ, Grimes KM, Fischesser DM, Gokey JJ, Whitsett JA, Conway SJ, Molkentin JD. TGFBI functions similar to periostin but is uniquely dispensable during cardiac injury. PLoS One. 2017;12(7):e0181945. doi:10.1371/journal.pone.0181945

163. Liu C, Zhang H, Chen Y, Wang S, Chen Z, Liu Z, Wang J. Identifying RBM47, HCK, CD53, TYROBP, and HAVCR2 as Hub Genes in Advanced Atherosclerotic Plaques by Network-Based Analysis and Validation. Front Genet. 2021;11:602908. doi:10.3389/fgene.2020.602908

164. Schroer AK, Bersi MR, Clark CR, Zhang Q, Sanders LH, Hatzopoulos AK, Force TL, Majka SM, Lal H, Merryman WD. Cadherin-11
blockade reduces inflammation-driven fibrotic remodeling and improves outcomes after myocardial infarction. JCI Insight. 2019;4(18):e131545. doi:10.1172/jci.insight.131545

165. Raza ST, Abbas S, Eba A, Karim F, Wani IA, Rizvi S, Zaidi A, Mahdi F. Association of COL4A1 (rs605143, rs565470) and CD14 (rs2569190) genes polymorphism with coronary artery disease. Mol Cell Biochem. 2018;445(1-2):117-122. doi:10.1007/s11010-017-3257-9

166. Yang W, Ng FL, Chan K, Pu X, Poston RN, Ren M, An W, Zhang R, Wu J, Yan S, et al. Coronary-Heart-Disease-Associated Genetic Variant at the COL4A1/COL4A2 Locus Affects COL4A1/COL4A2 Expression, Vascular Cell Survival, Atherosclerotic Plaque Stability and Risk of Myocardial Infarction. PLoS Genet. 2016;12(7):e1006127. doi:10.1371/journal.pgen.1006127

167. Azuaje F, Zhang L, Jeanty C, Puhl SL, Rodius S, Wagner DR. Analysis of a gene co-expression network establishes robust association between Col5a2 and ischemic heart disease. BMC Med Genomics. 2013;6:13. doi:10.1186/1755-8794-6-13

168. Durbin MD, O’Kane J, Lorentz S, Firulli AB, Ware SM. SHROOM3 is downstream of the planar cell polarity pathway and loss-of-function results in congenital heart defects. Dev Biol. 2020;464(2):124-136. doi:10.1016/j.ydbio.2020.05.013

169. Chowdhury B, Xiang B, Liu M, Hemming R, Dolinsky VW, Triggs-Raine B. Hyaluronidase 2 Deficiency Causes Increased Mesenchymal Cells, Congenital Heart Defects, and Heart Failure. Circ Cardiovasc Genet. 2017;10(1):e001598. doi:10.1161/CIRCGENETICS.116.001598

170. Wang D, Fang J, Lv J, Pan Z, Yin X, Cheng H, Guo X. Novel polymorphisms in PDLIM3 and PDLIM5 gene encoding Z-line proteins increase risk of idiopathic dilated cardiomyopathy. J Cell Mol Med. 2019;23(10):7054-7062. doi:10.1111/jcmn.14607

171. Li J, Su H, Zhu Y, Cao Y, Ma X. ETS2 and microRNA-155 regulate the pathogenesis of heart failure through targeting and regulating GPR18 expression. Exp Ther Med. 2020;19(6):3469-3478. doi:10.3892/etm.2020.8642

172. Lv L, Li T, Li X, Xu C, Liu Q, Jiang H, Li Y, Liu Y, Yan H, Huang Q, et al. The IncRNA Plscr4 Controls Cardiac Hypertrophy by Regulating
miR-214. Mol Ther Nucleic Acids. 2018;10:387-397. doi:10.1016/j.omtn.2017.12.018

173. Bertoli-Avella AM, Gillis E, Morisaki H, Verhagen JMA, de Graaf BM, van de Beek G, Gallo E, Kruithof BPT, et al. Mutations in a TGF-β ligand, TGFB3, cause syndromic aortic aneurysms and dissections. J Am Coll Cardiol. 2015;65(13):1324-1336. doi:10.1016/j.jacc.2015.01.040

174. Grossman TR, Gamliel A, Wessells RJ, Taghlil-Lamallem O, Jepsen K, Ocorr K, Korenberg JR, Peterson KL, Rosenfeld MG, Bodmer R, et al. Over-expression of DSCAM and COL6A2 cooperatively generates congenital heart defects. PLoS Genet. 2011;7(11):e1002344. doi:10.1371/journal.pgen.1002344

175. Andenæs K, Lunde IG, Mohammadzadeh N, Dahl CP, Aronsen JM, Strand ME, Palermo S, Sjaastad I, Christensen G, Engebretsen KVT, et al. The extracellular matrix proteoglycan fibromodulin is upregulated in clinical and experimental heart failure and affects cardiac remodeling. PLoS One. 2018;13(7):e0201422. doi:10.1371/journal.pone.0201422

176. Chen HX, Yang ZY, Hou HT, Wang J, Wang XL, Yang Q, Liu L, He GW. Novel mutations of TCTN3/LTBP2 with cellular function changes in congenital heart disease associated with polydactyly. J Cell Mol Med. 2020;24(23):13751-13762. doi:10.1111/jcmm.15950

177. Flamant M, Placier S, Rodenas A, Curat CA, Vogel WF, Chatziantoniou C, Dussaule JC. Discoidin domain receptor 1 null mice are protected against hypertension-induced renal disease. J Am Soc Nephrol. 2006;17(12):3374-3381. doi:10.1681/ASN.2006060677

178. Wan F, Letavernier E, Abid S, Houssaini A, Czibik G, Marcos E, Rideau D, Parpaleix A, Lipskaia L, Amsellem V, et al. Extracellular Calpain/Calpastatin Balance Is Involved in the Progression of Pulmonary Hypertension. Am J Respir Cell Mol Biol. 2016;55(3):337-351. doi:10.1165/rcmb.2015-0257OC

179. Zhang Y, Shen J, He X, Zhang K, Wu S, Xiao B, Zhou X, Phillips RS, Gao P, Jeunemaitre X, Zhu D. A rare variant at the KYNU gene is associated with kynureninase activity and essential hypertension in the Han Chinese population. Circ Cardiovasc Genet. 2011;4(6):687-694. doi:10.1161/CIRCGENETICS.110.959064
180. Vallvé JC, Serra N, Zalba G, Fortuño A, Beloqui O, Ferre R, Ribalta J, Masana L. Two variants in the fibulin2 gene are associated with lower systolic blood pressure and decreased risk of hypertension. PLoS One. 2012;7(8):e43051. doi:10.1371/journal.pone.0043051

181. Heximer S, Husain M. A candidate hypertension gene: will SPON1 hold salt and water?. Circ Res. 2007;100(7):940-942. doi:10.1161/01.RES.0000265134.57140.da

182. Selvarajah V, Mäki-Petäjä KM, Pedro L, Bruggraber SFA, Burling K, Goodhart AK, Brown MJ, McEniery CM, Wilkinson IB. Novel Mechanism for Buffering Dietary Salt in Humans: Effects of Salt Loading on Skin Sodium, Vascular Endothelial Growth Factor C, and Blood Pressure. Hypertension. 2017;70(5):930-937. doi:10.1161/HYPERTENSIONAHA.117.10003

183. Jain M, Mann TD, Stulić M, Rao SP, Kirsch A, Pullirsch D, Strobl X, Rath C, Reissig L, Moreth K, et al. RNA editing of Filamin A pre-mRNA regulates vascular contraction and diastolic blood pressure. EMBO J. 2018;37(19):e94813. doi:10.15252/embj.201694813

184. Sun L, Lin P, Chen Y, Yu H, Ren S, Wang J, Zhao L, Du G. miR-182-3p/Myadm contribute to pulmonary artery hypertension vascular remodeling via a KLF4/p21-dependent mechanism. Theranostics. 2020;10(12):5581-5599. doi:10.7150/thno.44687

185. Satomi-Kobayashi S, Ueyama T, Mueller S, Toh R, Masano T, Sakoda T, Rikitake Y, Miyoshi J, Matsubara H, Oh H, et al. Deficiency of nectin-2 leads to cardiac fibrosis and dysfunction under chronic pressure overload. Hypertension. 2009;54(4):825-831. doi:10.1161/HYPERTENSIONAHA.109.130443

186. Jiang J, Nakayama T, Shimodaira M, Sato N, Aoi N, Sato M, Izumi Y, Kasamaki Y, Ohta M, Soma M, et al. Haplotype of smoothelin gene associated with essential hypertension. Hereditas. 2012;149(5):178-185. doi:10.1111/j.1601-5223.2012.02242.x

187. Waghulde H, Cheng X, Galla S, Mell B, Cai J, Pruett-Miller SM, Vazquez G, Patterson A, Vijay Kumar M, Joe B. Attenuation of Microbiotal Dysbiosis and Hypertension in a CRISPR/Cas9 Gene Ablation Rat Model of GPER1. Hypertension. 2018;72(5):1125-1132. doi:10.1161/HYPERTENSIONAHA.118.11175
188. Dahal BK, Heuchel R, Pullamsetti SS, Wilhelm J, Ghofrani HA, Weissmann N, Seeger W, Grimminger F, Schermuly RT. Hypoxic pulmonary hypertension in mice with constitutively active platelet-derived growth factor receptor-β. Pulm Circ. 2011;1(2):259-268. doi:10.4103/2045-8932.83448

189. Thun GA, Imboden M, Berger W, Rochat T, Probst-Hensch NM. The association of a variant in the cell cycle control gene CCND1 and obesity on the development of asthma in the Swiss SAPALDIA study. J Asthma. 2013;50(2):147-154. doi:10.3109/02770903.2012.757776

190. Zhang T, Ji C, Shi R. miR-142-3p promotes pancreatic β cell survival through targeting FOXO1 in gestational diabetes mellitus. Int J Clin Exp Pathol. 2019;12(5):1529-1538.

191. Wang H, She G, Zhou W, Liu K, Miao J, Yu B. Expression profile of circular RNAs in placentas of women with gestational diabetes mellitus. Endocr J. 2019;66(5):431-441. doi:10.1507/endocrj.EJ18-0291

192. Pheiffer C, Dias S, Rheeder P, Adam S. MicroRNA Profiling in HIV-Infected South African Women with Gestational Diabetes Mellitus. Mol Diagn Ther. 2019;23(4):499-505. doi:10.1007/s40291-019-00404-2

193. Zhang C, Wang L, Chen J, Song F, Guo Y. Differential Expression of miR-136 in Gestational Diabetes Mellitus Mediates the High-Glucose-Induced Trophoblast Cell Injury through Targeting E2F1. Int J Genomics. 2020;2020:3645371. doi:10.1155/2020/3645371

194. Catanzaro G, Besharat ZM, Chiacchiarini M, Abballe L, Sabato C, Vacca A, Borgiani P, Dotta F, Tesauro M, Po A, et al. Circulating MicroRNAs in Elderly Type 2 Diabetic Patients. Int J Endocrinol. 2018;2018:6872635. doi:10.1155/2018/6872635

195. Demirsoy İH, Ertural DY, Balci Ş, Çınkır Ü, Sezer K, Tamer L, Aras N. Profiles of Circulating MiRNAs Following Metformin Treatment in Patients with Type 2 Diabetes. J Med Biochem. 2018;37(4):499-506. doi:10.2478/jomb-2018-0009

196. Kasimiotis H, Myers MA, Argentaro A, Mertin S, Fida S, Ferraro T, Olsson J, Rowley MJ, Harley VR. Sex-determining region Y-related protein SOX13 is a diabetes autoantigen expressed in pancreatic islets. Diabetes. 2000;49(4):555-561. doi:10.2337/diabetes.49.4.555
197. Wang H, Shi J, Li B, Zhou Q, Kong X, Bei Y. MicroRNA Expression Signature in Human Calcific Aortic Valve Disease. Biomed Res Int. 2017;2017:4820275. doi:10.1155/2017/4820275

198. Xie H, Zhang E, Hong N, Fu Q, Li F, Chen S, Yu Y, Sun K. Identification of TBX2 and TBX3 variants in patients with conotruncal heart defects by target sequencing. Hum Genomics. 2018;12(1):44. doi:10.1186/s40246-018-0176-0

199. Lappas M. Runt-related transcription factor 1 (RUNX1) deficiency attenuates inflammation-induced pro-inflammatory and pro-labour mediators in myometrium. Mol Cell Endocrinol. 2018;473:61-71. doi:10.1016/j.mce.2018.01.003

200. Liu R, Wei C, Ma Q, Wang W. Hippo-YAP1 signaling pathway and severe preeclampsia (sPE) in the Chinese population. Pregnancy Hypertens. 2020;19:1-10. doi:10.1016/j.preghy.2019.11.002

Tables

Table 1 The sequences of primers for quantitative RT-PCR

Genes	Forward Primers	Reverse Primers
HSP90AA1	AGGAGGTGAGACACGTTCGC	AGAGTTGAGTCTTTGTGTCGG
EGFR	AGGCACGAGTAAACAGCTCAC	ATGAGGACATAACGCAACGACC
RPS13	TCCCAGTCGGTTTACCCTAT	CAGGATTACCCCATCTTGAAAG
RBX1	TTGTGTTGATAACTGTGCCAT	GACGCCCTGTTAGGCTGACAT
PAK1	CGACCCCTCCGATGAAATAA	CAAACGCGATGAAATTTGCTG
FYN	ATGGGCTGTGTCGAATGTAAG	GAAGCTGGGAGTGCTGAG
ABL1	AAGCCCGCTCCTGTGAACCT	AGACCCGAGCTTTTACCT
SMAD3	TGGACGCAGTTCTCCACAC	CCGGCTCGACTGAGTAAC
STAT3	CAGCAGCTTGACACAGCTGA	AACACCGAAAGTGCCATGTGA
PRKCA	GTCCACAAAGAGGTGCCATGAA	AAGGTGGGCTTCCGTAAG

Table 2 The statistical metrics for key differentially expressed genes (DEGs)

IlluminaID	GeneSymbol	logFC	pValue	adj.P.Val	tvalue	Regulation	GeneName
ILMN_324633	RNY5	1.462757	5.68E-06	0.002906	4.775349	Up	RNA, Ro60-associated Y5
ILMN_1691647	CGB5	1.297516	0.000781	0.021869	3.457767	Up	chorionic gonadotropin subunit beta 5
ILMN_1668035	CRH	1.29002	0.001459	0.029715	3.266769	Up	corticotropin releasing hormone
ILMN_1714238	PSG6	1.284052	0.00171	0.032189	3.217109	Up	pregnancy specific beta-1-glycoprotein 6
ILMN_1772768	PSG7	1.257768	0.001767	0.032784	3.208816	Up	pregnancy specific beta-1-glycoprotein 7 (gene/pseudogene)
ILMN_2413473	GH2	1.248351	0.002276	0.037103	3.126124	Up	growth hormone 2
ILMN_1801776	PSG9	1.204077	0.002468	0.038662	3.100092	Up	pregnancy specific beta-1-glycoprotein 9
ILMN_1798000	PSG1	1.147959	0.000469	0.017456	3.608336	Up	pregnancy specific beta-1-glycoprotein 1
Gene Symbol	Description	Fold Change	P-value	q-value	Pathway	Function	
-------------	-------------	-------------	---------	---------	---------	----------	
PSG5	pregnancy specific beta-1-glycoprotein 5	1.143624	0.000969	0.024168	Up		
PSG9	pregnancy specific beta-1-glycoprotein 11	1.130568	0.000132	0.028092	Up		
CYP19A1	cytochrome P450 family 19 subfamily A member 1	1.125321	0.002128	0.044444	Up		
PSG1	pregnancy specific beta-1-glycoprotein 2	1.115865	0.002624	0.040078	Up		
LHB	pregnancy specific beta-1-glycoprotein 11	1.086528	0.002237	0.037529	Up		
PSG4	pregnancy specific beta-1-glycoprotein 4	1.079921	0.002644	0.040091	Up		
PSG2	pregnancy specific beta-1-glycoprotein 2	1.079921	0.002644	0.040091	Up		
PSG11	pregnancy specific beta-1-glycoprotein 11	1.079921	0.002644	0.040091	Up		
LHB	luteinizing hormone subunit beta	1.086528	0.002237	0.037529	Up		
SEMA3B	semaphorin 3B	1.091814	0.001424	0.029234	Up		
CSH2	chorionic somatomamotropin hormone 2	0.93195	0.003208	0.044568	Up		
CGB1	chorionic gonadotropin subunit beta	0.914238	0.003818	0.048801	Up		
CGB7	chorionic gonadotropin subunit beta	0.914238	0.003818	0.048801	Up		
PLAC1	placenta enriched	0.846799	0.003832	0.048867	Up		
LGALS14	galectin 14	0.831948	0.001715	0.032189	Up		
TFP2	tissue factor pathway inhibitor 2	0.817388	0.001424	0.029234	Up		
HOX9	HOP homeobox	0.796216	0.00037	0.01533	Up		
LOC10050635	uncharacterized LOC10050635	0.792699	0.0007	0.025812	Up		
ERV3-1	endogenous retrovirus group 3 member 1, envelope	0.79098	0.001056	0.025169	Up		
EXPH5	exophilin 5	0.771167	0.000748	0.021335	Up		
OLAH	oleyl-ACP hydrolase	0.774415	0.00023	0.012505	Up		
SPTLC3	serine palmitoyltransferase long chain base subunit 3	0.771167	0.000748	0.021335	Up		
P53	keratin associated protein 26-1	0.796216	0.00037	0.01533	Up		
NCB3	uncharacterized LOC10050635	0.792699	0.0007	0.025812	Up		
TGF15	growth differentiation factor 15	0.79098	0.001056	0.025169	Up		
ADHFE1	alcohol dehydrogenase iron containing	0.79098	0.001056	0.025169	Up		
EMX2	empty spiracles homeobox 2	0.724034	0.002299	0.036621	Up		
HSD3B1	hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 1	0.724034	0.002299	0.036621	Up		
INSL4	insulin like 4	0.724034	0.002299	0.036621	Up		
TPPP3	tubulin polymerization promoting protein family member 3	0.724034	0.002299	0.036621	Up		
MAFF	MAF bZIP transcription factor F	0.724034	0.002299	0.036621	Up		
Gene ID	Description	Log2 Fold Change	p-value	q-value			
------------	---	-----------------	----------	---------			
ILMN_236818	TRPV6 transient receptor potential cation channel subfamily V member 6	3.388062	0.001158	0.02618			
ILMN_1704066	TENT5A terminal nucleotidyltransferase 5A	3.62472	0.001305	0.03724			
ILMN_1800412	BMP1 bone morphogenetic protein 1	3.614562	0.001305	0.03724			
ILMN_1727633	NECTIN3 nectin cell adhesion molecule 3	3.11981	0.001305	0.03724			
ILMN_1668455	PPP1R14C protein phosphatase 1 regulatory inhibitor subunit 14C	3.235567	0.001305	0.03724			
ILMN_1695562	ZNF471 zinc finger protein 471	3.38509	0.001305	0.03724			
ILMN_1714586	VGLL3 vestigial like family member 3	3.191522	0.001305	0.03724			
ILMN_1744949	RHBDB3 Rho related BTB domain containing 3	3.235567	0.001305	0.03724			
ILMN_1703284	SPIRE2 spire type actin nucleation factor 2	3.007246	0.001305	0.03724			
ILMN_174376	GLDN gliomedin	3.118817	0.001305	0.03724			
ILMN_2415421	SLC30A2 solute carrier family 30 member 2	3.087159	0.001305	0.03724			
ILMN_1757406	H1-2 linker histone, cluster member	3.316284	0.001305	0.03724			
ILMN_1651496	H2BC5 H2B clustered histone 5	4.027633	0.001305	0.03724			
ILMN_1713125	ENTPD1 ectonucleoside triphosphate diphosphohydrolase 1	3.290157	0.001305	0.03724			
ILMN_1790228	FURIN furin, paired basic amino acid cleaving enzyme	3.292157	0.001305	0.03724			
ILMN_1741143	TXK TXK tyrosine kinase	3.288903	0.001305	0.03724			
ILMN_1787750	CD200 CD200 molecule	3.35461	0.001305	0.03724			
ILMN_1795106	PSG8 pregnancy specific beta-1-glycoprotein 8	3.053083	0.001305	0.03724			
ILMN_1672908	TWIST1 twist family bHLH transcription factor 1	3.138064	0.001305	0.03724			
ILMN_1787691	CITED4 Cbp/p300 interacting transactivator with Glu/Asp rich carboxy-terminal domain 4	3.616082	0.001305	0.03724			
ILMN_1740917	SCNN1B sodium channel epithelial 1 beta subunit	3.155039	0.001305	0.03724			
ILMN_1681248	TCHH trichohyalin	3.42568	0.001305	0.03724			
ILMN_1713397	NCCRPI F-box associated domain containing	3.236641	0.001305	0.03724			
ILMN_1771019	MTMR4 myotubularin related protein 4	3.383725	0.001305	0.03724			
ILMN_1792689	H2AC6 H2A clustered histone 6	3.853384	0.001305	0.03724			
ILMN_1732071	H2BC21 H2B clustered histone 21	3.660351	0.001305	0.03724			
ILMN_1777934	MORN3 MORN repeat containing 3	3.060351	0.001305	0.03724			
ILMN_1754126	SH2D5 SH2 domain containing 5 cytochrome P450 family 11 subfamily A member 1	3.562897	0.001305	0.03724			
ILMN_1768820	CYP11A1 CD200 molecule	3.125417	0.001305	0.03724			
ILMN_1721842	RYBP RING1 and YY1 binding protein	3.344898	0.001305	0.03724			
ILMN_2323172	CSF3R colony stimulating factor 3 receptor	3.140995	0.001305	0.03724			
ILMN_1693789	ALPP alkaline phosphatase, placental	3.002056	0.001305	0.03724			
ILMN_2129015	AFF1 AF4/FMR2 family member 1	3.026214	0.001305	0.03724			
ILMN_1807652	STRA6 stimulated by retinoic acid 6	3.285192	0.001305	0.03724			
ILMN_1746517	KYNU kynurenin	3.164234	0.001305	0.03724			
ILMN_1793695	ITHS inter-alpha-trypsin inhibitor heavy chain 5	3.065788	0.001305	0.03724			
ILMN_1814600	DEPCDC1B DEP domain containing 1B	3.305687	0.001305	0.03724			
ILMN_1708340	DAPK1 death associated protein kinase 1	3.018827	0.001305	0.03724			
ILMN_2204545	ST3GAL4 ST3 beta-galactoside alpha-2,3-sialyltransferase 4	3.212881	0.001305	0.03724			
ILMN_1794239	ODAPH odontogenesis associated phosphoprotein transforming acidic coiled-coil containing protein 2	3.590399	0.001305	0.03724			
ILMN_2315780	TACC2 RB binding protein 6 ubiquitin ligase	3.783862	0.001305	0.03724			
Gene ID	Gene Symbol	Gene Name	FDR	q-value	Log2 Fold Change	Expression Level	
------------	-------------	---	-------	---------	------------------	------------------	
ILMN_1791545	KRT23	keratin 23	0.527971	0.00209	0.011919	3.838417	
ILMN_1798458	KAZN	kazrin, periplakin interacting protein	0.51384	0.00125	0.027297	3.113396	
ILMN_1776883	ADAMTSL4	ADAMTS like 4	0.513545	0.00031	0.014326	3.727088	
ILMN_1811593	NIPAL1	NIPA like domain containing 1	0.509377	0.00057	0.018927	3.549631	
ILMN_3236821	HSPB1	heat shock protein family B (small) member 1	0.507177	0.00083	0.022284	3.438549	
ILMN_1795838	C4orf19	chromosome 4 open reading frame 19	0.504867	0.00304	0.043409	3.031496	
ILMN_1690004	TNFRSF12A	TNF receptor superfamily member 12A	0.49831	1.22E-05	0.003404	4.586051	
ILMN_1702105	EFS	embryonal Fyn-associated substrate	0.49728	0.00237	0.037920	3.11261	
ILMN_1725831	TINCR	TINCR ubiquitin domain containing Rho family interacting cell polarization regulator 2	0.495004	0.00054	0.018404	3.565008	
ILMN_1813139	ANKDD1A	ankyrin repeat and death domain containing 1A	0.490504	0.00054	0.018404	3.565008	
ILMN_2194448	STT3B	STT3 oligosaccharyltransferase complex catalytic subunit B endogenous retrovirus group W member 1, envelope	0.477337	0.00221	0.047380	3.069508	
ILMN_1684034	FKBP2	FKBP prolylisomerase 2	0.466134	0.00495	0.017880	3.59265	
ILMN_1796423	CRYBG2	crystallin beta-gamma domain containing 2	0.465597	0.00216	0.027400	3.31097	
ILMN_1813625	TRIM25	tripartite motif containing 25	0.458975	0.00214	0.058920	3.144568	
ILMN_1652690	GRAMD2B	GRAM domain containing 2B	0.455737	0.00274	0.020970	3.480237	
ILMN_1752510	FAM13A	family with sequence similarity 13 member A	0.453466	0.00335	0.014080	3.705566	
ILMN_2384857	DHR52	dehydrogenase/reductase 2	0.450744	0.01634	0.031747	3.23133	
ILMN_1720771	STX11	syntaxin 11	0.449749	0.00214	0.058920	3.144568	
ILMN_1807563	FKBP2	FKBP prolylisomerase 2	0.446443	0.00182	0.011037	3.877815	
ILMN_1740170	CHCHD10	coiled-coil-helix-coiled-coil-helix domain containing 10	0.445493	0.00011	0.008930	4.005574	
ILMN_1806149	C16orf74	CHCHD10	0.444802	0.00216	0.027400	3.31097	
ILMN_1751120	H4C8	chromosome 16 open reading frame 74	0.444802	0.00216	0.027400	3.31097	
ILMN_1740604	RAB11FIP5	RAB11 family interacting protein 5	0.440815	0.00214	0.058920	3.144568	
ILMN_1753515	SRR	serine racemase	0.435466	0.00325	0.048840	3.010168	
ILMN_1772627	NSG1	neuronal vesicle trafficking associated 1	0.434463	0.00127	0.029273	3.273602	
ILMN_2364700	ENSA	endolysosome alpha	0.434463	0.00127	0.029273	3.273602	
ILMN_1674243	TFRC	transferrin receptor	0.434463	0.00127	0.029273	3.273602	
Gene ID	Gene Name	E-Value 1	FDR 1	Log2FoldChange	State		
-------------	-----------------	------------	-----------	----------------	-------		
ILMN_1779448	EFHD1	0.435614	0.003381	0.045635	Up		
ILMN_1798975	EGFR	0.434921	0.002718	0.040787	Up		
ILMN_1802053	ZNF91	0.433844	0.000914	0.023507	Up		
ILMN_1797557	PLEKH6	0.43335	0.003538	0.046906	Up		
ILMN_1814333	SERPINI1	0.43318	0.00055	0.049898	Up		
ILMN_1683211	NCAN	0.430909	0.002311	0.037392	Up		
ILMN_2142353	GRTP1	0.430742	8.27E-05	0.023877	Up		
ILMN_1809477	CARHS1P	0.428795	0.001041	0.024977	Up		
ILMN_1763765	PAK1	0.427899	0.000645	0.023617	Up		
ILMN_1795972	CLIP4	0.427572	0.000845	0.024977	Up		
ILMN_2143685	CLDN7	0.426872	0.000634	0.019679	Up		
ILMN_2074860	RNTSK	0.425278	0.000506	0.017919	Up		
ILMN_1742538	PCDHGC4	0.422624	0.00088	0.023184	Up		
ILMN_1698917	LCOR	0.419011	0.001391	0.028854	Up		
ILMN_1667994	AMD1	0.418735	0.001391	0.028854	Up		
ILMN_183598	ACSL4	0.416616	0.000954	0.029451	Up		
ILMN_1796206	KMT2C	0.415266	8.27E-05	0.007525	Up		
ILMN_1729417	GNE	0.413507	0.001169	0.02622	Up		
ILMN_1778956	STS	0.411932	0.000347	0.014977	Up		
ILMN_2405254	GRB7	0.408773	0.000261	0.013186	Up		
ILMN_1813314	H2BC12	0.408761	0.002651	0.04015	Up		
ILMN_2346339	FOLR1	0.407865	0.000266	0.01333	Up		
ILMN_1747112	GPAAI	0.407772	1.5E-05	0.003692	Up		
ILMN_1738683	TMEM140	0.40612	0.000597	0.019237	Up		
ILMN_3226388	PSG10P	0.399644	0.00336	0.045553	Up		
ILMN_1769092	EVAIB	0.398688	0.002925	0.042546	Up		
ILMN_1654322	ATP1B3	0.398471	0.00148	0.029861	Up		
ILMN_1699674	ZNF703	0.397878	0.003462	0.046339	Up		
ILMN_2159730	GABRB1	0.396679	0.000663	0.020103	Up		
ILMN_2542357	KLHL5	0.395369	0.003031	0.043318	Up		
ILMN_1700472	EID2	0.394584	8.47E-06	0.00295	Up		
ILMN_2374865	ATF3	0.394537	0.001939	0.034245	Up		
ILMN_1652540	RELL2	0.39244	0.00081	0.022284	Up		
ILMN_1697642	BCAP29	0.391558	0.00201	0.011654	Up		
ILMN_2382974	CCDC7	0.391544	0.000891	0.023304	Up		
ILMN_1742260	ITPRD2	0.39091	0.001076	0.023734	Up		
ILMN_2060145	GRHL2	0.389706	0.000397	0.015954	Up		
ILMN_2195821	CREBAP2	0.389024	0.000261	0.013186	Up		
ILMN_1746676	CLDN8	0.388757	0.002765	0.041192	Up		
ILMN_1700583	ZNF750	0.388452	0.000505	0.017918	Up		
ILMN_1659113	NUCB2	0.386679	0.002616	0.039837	Up		
ILMN_1701393	TBX3	0.381209	1.9E-05	0.004198	Up		
Gene ID	Description	Log2 Fold Change	p-value	Adjusted p-value	Significance	Status	
------------	---------------------------------------	------------------	----------	------------------	-------------	---------	
ILMN_1769201	ELF3	0.38088	0.02808	0.041529	Up	E74 like ETS transcription factor 3	
ILMN_1791280	HSPB8	0.380526	0.02023	0.03504	Up	heat shock protein family B (small) member 8	
ILMN_2149292	TMEM40	0.37849	0.00676	0.020287	Up	transmembrane protein 40	
ILMN_1707088	DENND2D	0.37794	7.09E-05	0.007061	Up	DENN domain containing 2D pleckstrin homology like domain family B member 2	
ILMN_2179778	PHLD8	0.377513	0.00242	0.012762	Up		
ILMN_1801216	S100P	0.375994	7.09E-05	0.007061	Up	S100 calcium binding protein P pleckstrin homology, MyTH4 and FERM domain containing 1	
ILMN_1699254	PLEKHH1	0.37328	0.000271	0.013483	Up	pleckstrin homology like domain family B member 2	
ILMN_1710954	FBXL19-AS1	0.37328	0.000271	0.013483	Up	FBXL19 antisense RNA 1	
ILMN_2376502	RHOBTB1	0.372696	0.01027	0.024813	Up	Rho related BTB domain containing 1	
ILMN_1673455	RASAL2	0.372204	6.16E-05	0.006575	Up	RAS protein activator like 2	
ILMN_3194638	EVA1A	0.371837	0.00021	0.013517	Up	eva-1 homolog A, regulator of programmed cell death	
ILMN_1710284	HES1	0.370834	7.09E-05	0.007061	Up	hes family bHLH transcription factor 1	
ILMN_2064655	CXorf40A	0.369875	3.68E-05	0.005267	Up	chromosome X open reading frame 40A	
ILMN_2373566	PJA1	0.365283	0.00767	0.032784	Up	praja ring finger ubiquitin ligase 1	
ILMN_1779648	H2AW	0.365117	0.000271	0.013483	Up	H2A.W histone	
ILMN_2333107	TLE5	0.363987	0.003856	0.014545	Up	TLE family member 5, transcriptional modulator	
ILMN_1722025	CPEB4	0.363264	0.000601	0.019237	Up	cytoplasmic polyadenylation element binding protein 4	
ILMN_1670263	CNST	0.362857	0.01654	0.031635	Up	consortin, connexin sorting protein	
ILMN_2214678	MXD1	0.36052	0.003377	0.04562	Up	MAX dimerization protein 1 gamma-aminobutyric acid type A receptor subunit	
ILMN_2324202	GABRE	0.359786	0.01796	0.032966	Up	chromosome X open reading frame 40A	
ILMN_2049727	OSER1	0.358697	0.00322	0.014545	Up	oxidative stress responsive serine rich 1	
ILMN_1704377	USP27X	0.35826	0.00113	0.025976	Up	ubiquitin specific peptidase 27 X-linked	
ILMN_3233388	RELL1	0.357964	0.002177	0.036172	Up	RELT like 1	
ILMN_1670878	YTHDC1	0.357534	1.29E-06	0.001955	Up	YTH domain containing 1	
ILMN_1815445	IDS	0.356888	0.002505	0.038937	Up	idurionate 2-sulfatase	
ILMN_1775448	PFN2	0.353131	0.000871	0.023045	Up	profilin 2	
ILMN_1657423	SPG21	0.353073	0.000213	0.011986	Up	SPG21 abhydrolase domain containing, maspardin	
ILMN_2162799	AHR	0.353025	0.002516	0.039016	Up	aryl hydrocarbon receptor	
ILMN_1698323	PLEKHB2	0.352741	0.00209	0.035562	Up	pleckstrin homology domain containing B2	
ILMN_1725718	ZSCAN4	0.352414	0.000589	0.019114	Up	zinc finger and SCAN domain containing 4	
ILMN_2414325	TFNAP8	0.351941	4.64E-05	0.005784	Up	TGF alpha induced protein 8	
ILMN_1656291	TSKS	0.350101	3.27E-05	0.005189	Up	testis specific serine kinase substrate	
ILMN_3245236	FBRS	0.349549	0.002921	0.042546	Up	fibrosin	
ILMN_3243972	SNORA70B	0.349376	0.00036	0.015127	Up	small nucleolar RNA, H/ACA box 70B	
ILMN_1687519	SNAP23	0.349045	0.000691	0.020442	Up	synaptosome associated protein 23	
ILMN_3307729	CXXC5	0.347435	0.003855	0.04893	Up	CXXC finger protein 5 calcium/calmodulin dependent protein kinase II gamma	
ILMN_2359601	CAMK2G	0.346831	1.67E-06	0.001955	Up	RNA binding motif single stranded interacting protein 1	
ILMN_2358541	RBMS1	0.346578	0.001495	0.030009	Up	discoidin domain receptor tyrosine kinase 1	
ILMN_1655702	ABHD5	0.345520	0.000199	0.011583	Up	abhydrolase domain containing 5	
ILMN_1730294	INO80C	0.345306	0.000584	0.01904	Up	INO80 complex subunit C	
ILMN_1729095	PDZD2	0.34383	0.000816	0.022314	Up	PDZ domain containing 2	
Gene ID	Description	Log2 Fold Change	P Value	q Value	Expression		
------------	--	------------------	-----------	-----------	-------------		
ILMN_1775405	ARL4A	0.3433	0.000509	0.017937	Up		
ILMN_1680937	H2BC4	0.342683	0.003032	0.045124	Up		
ILMN_1689578	TRL3	0.342449	0.002261	0.036968	Up		
ILMN_2278335	AKR1B15	0.342114	0.001891	0.033769	Up		
ILMN_1721922	NAB2	0.340891	0.000509	0.017937	Up		
ILMN_1691237	CAP2	0.339551	0.002261	0.036968	Up		
ILMN_2395389	PSMC4	0.336399	0.002261	0.036968	Up		
ILMN_2173919	MYO9A	0.33636	0.002261	0.036968	Up		
ILMN_1690826	TNKS1BP1	0.335255	0.002261	0.036968	Up		
ILMN_1742824	SPATA13	0.331477	0.002261	0.036968	Up		
ILMN_1688755	AAK1	0.329844	0.002261	0.036968	Up		
ILMN_1781374	TUFT1	0.328884	0.002261	0.036968	Up		
ILMN_2124386	RGL2	0.327869	0.002261	0.036968	Up		
ILMN_1803939	YIPF6	0.327011	0.002261	0.036968	Up		
ILMN_2170949	SNX10	0.326699	0.002261	0.036968	Up		
ILMN_1775304	DNAJB1	0.326714	0.002261	0.036968	Up		
ILMN_1657515	RPS6KA5	0.32621	0.002261	0.036968	Up		
ILMN_1690826	TNKS1BP1	0.321786	0.002261	0.036968	Up		
ILMN_1814002	TEAD3	0.320268	0.002261	0.036968	Up		
ILMN_1768958	RASGRP1	0.31925	0.002261	0.036968	Up		
ILMN_2077623	RRAS2	0.319214	0.002261	0.036968	Up		
ILMN_1693014	CEBPB	0.318883	0.002261	0.036968	Up		
ILMN_3235340	ACER2	0.318499	0.002261	0.036968	Up		
ILMN_2403458	SMARCB1	0.318053	0.002261	0.036968	Up		
ILMN_1805395	LTB3	0.317611	0.002261	0.036968	Up		
ILMN_1804148	TMED4	0.317228	0.002261	0.036968	Up		
ILMN_1702447	IGF2BP2	0.316952	0.002261	0.036968	Up		
ILMN_1717195	MB2D	0.316258	0.002261	0.036968	Up		
ILMN_1747451	PLCXD1	0.316197	0.002261	0.036968	Up		
ILMN_1777439	TCL6	0.313824	0.002261	0.036968	Up		
ILMN_2358457	ATF4	0.312963	0.002261	0.036968	Up		
ILMN_1694233	ACYP1	0.312484	0.002261	0.036968	Up		
ILMN_1675937	ANKRD9	0.312142	0.002261	0.036968	Up		
ILMN_1670304	FAM156A	0.311579	0.002261	0.036968	Up		
ILMN_1717234	CAST	0.310235	0.002261	0.036968	Up		
ILMN_1710136	PUDP	0.309696	0.002261	0.036968	Up		
ILMN_1750969	FAM120AOS	0.309171	0.002261	0.036968	Up		
ILMN_1717046	MOB3B	0.309072	0.002261	0.036968	Up		
ILMN_1684042	BET1	0.307537	0.002261	0.036968	Up		
Gene Name	Accession	Fold Change	p-value	Adj. p-value	Description		
--------------------	-----------	-------------	---------	--------------	--		
HIV-1 Tat interactive protein	ILMN_1664303	0.306236	0.0063	0.019629	Up		
CRIM1 divergent transcript	ILMN_3263225	0.305254	0.00552	0.018347	Up		
atypical chemokine receptor 2	ILMN_1763127	0.305224	0.01928	0.03416	Up		
radixin	ILMN_1708611	0.30478	0.01592	0.031099	Up		
zinc finger protein 83	ILMN_2190414	0.304639	0.00691	0.020442	Up		
ST8SIA6 antisense RNA 1	ILMN_3184978	0.304228	3.46E-05	0.005189	Up		
farnesyltransferase, CAAX box, alpha	ILMN_1746494	0.303227	2.43E-05	0.00477	Up		
RANBP2 like and GRIP domain containing 8	ILMN_3238854	0.302737	0.000139	0.00984	Up		
RAR related orphan receptor A	ILMN_1741371	0.301932	0.00691	0.020442	Up		
opsin 3	ILMN_1716988	0.300318	0.02185	0.036205	Up		
ST8SIA6 antisense RNA 4	ILMN_1780382	0.299459	3.46E-05	0.005189	Up		
damage specific DNA binding protein 1	ILMN_1782685	0.298269	0.003743	0.04825	Up		
adenosine kinase	ILMN_1801020	0.298209	0.00201	0.011664	Up		
3-phosphoinositide dependent protein kinase 1	ILMN_1653793	0.297954	0.002793	0.041395	Up		
lysophosphatidylcholineacyltransferase 3	ILMN_1805225	0.296395	6.38E-06	0.00295	Up		
cytochrome c oxidase copper chaperone COX17	ILMN_1741371	0.296064	0.003279	0.045007	Up		
H2B clustered histone 6	ILMN_1687947	0.295728	0.000669	0.020173	Up		
casein kinase 2 alpha 2	ILMN_1734478	0.295428	0.002683	0.040473	Up		
insulin like growth factor 2 mRNA binding protein 3	ILMN_1662578	0.294084	0.00014	0.00984	Up		
STAG3L5P-PVGRG2P-PLRB readthrough	ILMN_1807423	0.293802	0.00826	0.02247	Up		
ST8SIA6-AS1 antisense RNA 1	ILMN_3204734	0.293124	0.003136	0.044111	Up		
cell cycle associated protein 1	ILMN_1754145	0.293108	0.00032	0.014545	Up		
SERTA domain containing 4	ILMN_1730794	0.292851	9.6E-05	0.008175	Up		
pleckstrin homology domain containing A1	ILMN_1719344	0.291747	0.002354	0.03774	Up		
solute carrier family 4 member 2	ILMN_1723843	0.291428	0.002683	0.040473	Up		
glycoprotein integral membrane 1	ILMN_1710027	0.290602	0.0003	0.014133	Up		
phenylethanolamine N-methyltransferase phosphatidylinositol-4-phosphate 5-kinase type 1 beta	ILMN_1733478	0.289858	5.33E-06	0.002879	Up		
electron transfer flavoprotein dehydrogenase	ILMN_1758034	0.288994	0.00644	0.019798	Up		
lyso phospholysolephosphate 1 ADP ribosylation factor like GTPase 6 interacting protein 6	ILMN_1666713	0.288789	0.00059	0.019114	Up		
heat shock protein 90 alpha family class A member 1	ILMN_1797964	0.286061	0.00378	0.015488	Up		
mammalian receptor binding factor 2	ILMN_1719344	0.286739	0.00285	0.041916	Up		
mammalian receptor binding factor 6	ILMN_1734655	0.286517	0.000583	0.01904	Up		
mammalian receptor binding 9B	ILMN_1711408	0.286403	0.002191	0.036239	Up		
S-phase cyclin A associated protein in the ER	ILMN_1811178	0.286258	0.002028	0.035067	Up		
Gene ID	Gene ID	Symbol	Log2FoldChange	FoldChange	Status	Description	
-------------	-------------	----------	---------------	------------	--------	---	
ILMN_1669895	MTM1	CLN3	0.284755	3.264326	Up	lysosomal/endosomal transmembrane protein, battenin	
ILMN_1781560	ST3GAL6	ST3	0.284681	3.440705	Up	beta-galactoside alpha-2,3-sialyltransferase 6	
ILMN_1734229	SPPL2A	SPPL2	0.283933	3.352613	Up	signal peptide peptidase like 2A	
ILMN_2094166	CHMP5	CHMP5	0.282317	3.324924	Up	charged multivesicular body protein 5	
ILMN_1773849	ATP6V0C	ATPase	0.282222	3.419682	Up	H+ transporting V0 subunit c	
ILMN_1739876	RAB3GAP1	RAB3	0.281181	3.324924	Up	GTPase activating protein catalytic subunit 1	
ILMN_1797594	NFAT5	NFAT	0.28094	3.072332	Up	nuclear factor of activated T cells 5	
ILMN_1734542	OVGP1	OVGP1	0.280116	3.161242	Up	oviductal glycoprotein 1	
ILMN_1665982	AKTIP	AKT	0.277649	3.190258	Up	interacting protein	
ILMN_1679268	PELI1	PELI1	0.277477	3.204955	Up	E3 ubiquitin protein ligase 1	
ILMN_3249846	LIMS3-LOC440895	LIMS3-LOC 440895	0.276865	3.330332	Up	WW domain containing adaptor with coiled-coil	
ILMN_2323526	WAC	WAC	0.276545	3.769114	Up	WW domain containing adaptor with coiled-coil	
ILMN_1748077	DDX59	DDX	0.275827	3.149590	Up	DEAD-box helicase 59	
ILMN_1782444	YIPF4	YIPF4	0.275515	3.300882	Up	Yip1 domain family member 4	
ILMN_2339284	CHD2	CHD2	0.27514	3.862717	Up	chromodomain helicase DNA binding protein 2	
ILMN_1706342	ZNF746	ZNF	0.274977	3.250211	Up	zinc finger protein 746	
ILMN_3215367	PPP4R2	PPP4	0.274625	3.472213	Up	protein phosphatase 4 regulatory subunit 2	
ILMN_1687279	DHPS	DHPS	0.274317	3.445971	Up	deoxyhypusine synthase	
ILMN_1685678	EEF1B2	EEF	0.273865	3.366614	Up	eukaryotic translation elongation factor 1 beta 2	
ILMN_1690066	TGD2	TGD2	0.273626	3.720901	Up	tigger transposable element derived 2catechol-O-methyltransferase domain containing 1	
ILMN_1736752	COMTD1	COMTD1	0.273513	3.216644	Up	CCGG triplet repeat binding protein 1	
ILMN_2387090	CGGBP1	CGGBP1	0.273351	3.699974	Up	germ cell-less 1, spermatogenesis associated	
ILMN_2194627	GMCL1	GMCL1	0.273232	3.759819	Up	S100 calcium binding protein A1	
ILMN_3241234	S100A11	S100A11	0.273188	3.431703	Up	S-protein phosphatase 4 regulatory subunit 2	
ILMN_1678454	CASP4	CASP4	0.27189	3.25192	Up	caspase 4	
ILMN_1705907	NUP153	NUP153	0.271384	3.782266	Up	nucleoporin 153	
ILMN_2106265	GDPD1	GDPD1	0.271243	2.992682	Up	glycophosphodiesterphosphodiesterase domain containing 1	
ILMN_1699357	SLC22A5	SLC22A5	0.270646	3.019938	Up	solute carrier family 22 member 5 protein phosphatase 1 regulatory inhibitor subunit 14B	
ILMN_3282768	PPP1R114B	PPP1R1	0.27002	3.331779	Up	TIA1 cytotoxic granule associated RNA binding protein like 1	
ILMN_1784655	TLCRD1	TLCRD1	0.269664	3.219351	Up	TIA1 cytotoxic granule associated RNA binding protein like 1	
ILMN_1809344	BTBD10	BTBD10	0.269367	2.945897	Up	TIA1 cytotoxic granule associated RNA binding protein like 1	
ILMN_1651268	BORCS5	BORCS5	0.268841	3.576152	Up	related complex subunit 5	
ILMN_1676385	PAK2	PAK2	0.268282	3.920545	Up	p21 (RAC1) activated kinase 2	
ILMN_1658337	AKIRIN1	AKIRIN1	0.268214	3.020957	Up	akirin 1	
ILMN_2137464	DVL3	DVL3	0.267864	3.327306	Up	dishevelled segment polarity protein 3	
ILMN_1721833	IER5	IER5	0.26766	3.026706	Up	immediate early response 5	
ILMN_1781431	GLCCI1	GLCCI1	0.267281	4.099378	Up	glucocorticoid induced 1	
ILMN_1808824	NEBL	NEBL	0.266945	3.238616	Up	nebulite	
ILMN_1813028	CBX5	CBX5	0.266965	4.259566	Up	chromobox 5	
ILMN_1717745	TIAL1	TIAL1	0.266333	4.747368	Up	TIA1 cytotoxic granule associated RNA binding protein like 1	
ILMN_1695110	BCAT2	BCAT2	0.266237	3.051398	Up	branched chain amino acid transaminase 2	
Gene ID	Symbol	Fold Change	p-value	q-value	Description		
----------	--------	-------------	---------	---------	--		
ILMN_1735052	ULK1	3.042442	0.266063	0.003262	unc-51 like autophagy activating kinase 1		
ILMN_1666670	RBX1	4.659225	0.265833	0.003026	ring-box 1		
ILMN_1801476	CDS1	3.140131	0.265788	0.003026	CDP-diacylglycerol synthase 1		
ILMN_1707350	TUSC1	3.139179	0.265484	0.003026	tumor suppressor candidate 1		
ILMN_1671265	ING2	3.937352	0.264936	0.003026	inhibitor of growth family member 2		
ILMN_1776297	GOLGA4	3.380238	0.262744	0.003026	golgin A4		
ILMN_1717063	FBXO9	4.803593	0.262633	0.003026	F-box protein 9		
ILMN_1671265	ING2	3.937352	0.264936	0.003026	inhibitor of growth family member 2		
ILMN_1704550	AZIN1	3.112496	0.262282	0.003026	antizyme inhibitor 1		
ILMN_1695961	UCHL3	4.250481	0.262244	0.003026	ubiquitin C-terminal hydrolase L3		
ILMN_1709043	RAB25	3.021403	0.262537	0.003026	RAB25, member RAS oncogene family		
ILMN_1792497	CLK1	4.142743	0.261157	0.003026	CDC like kinase 3		
ILMN_3197097	TSTD1	3.909022	0.261943	0.003026	thiosulfate sulfurtransferase like domain containing 1		
ILMN_1736154	LZTS3	3.74905	0.257357	0.003026	leucine zipper tumor suppressor family member 3		
ILMN_2328776	STK26	3.01189	0.257337	0.003026	serine/threonine kinase 2		
ILMN_3246900	LINC01278	3.09914	0.255848	0.003026	long intergenic non-protein coding RNA 1278		
ILMN_1702407	AGFG1	3.442009	0.255601	0.003026	ArtGAP with FG repeats 1		
ILMN_1684346	TNFAIP8L1	3.229929	0.255953	0.003026	TNF alpha induced protein 8 like 1		
ILMN_1737475	ABHD11	3.149412	0.255933	0.003026	abhydrolase domain containing 1		
ILMN_1682147	HOOK2	3.00611	0.255831	0.003026	hook microtubule tethering protein 2		
ILMN_1736154	LZTS3	3.74905	0.255831	0.003026	leucine zipper tumor suppressor family member 3		
ILMN_2399264	SEPTIN6	3.01189	0.255523	0.003026	sepin 6		
ILMN_2055523	CSN16	3.65339	0.255523	0.003026	chondroitin sulfate sulfotransferase 1		
ILMN_3279712	SMS	3.216153	0.255523	0.003026	acetyl-CoA synthase		
ILMN_1701514	TRAF3P2	3.018317	0.252377	0.003026	TRAF3 interacting protein 2		
ILMN_3227529	RPS13	3.65339	0.252377	0.003026	ribosomal protein S13		
ILMN_1680397	CXCR2	3.439126	0.251961	0.003026	C-X-C motif chemokine receptor 2		
ILMN_1661142	TMF1	3.439126	0.251961	0.003026	TATA element modulatory factor 1		
ILMN_2228044	TBC1D23	4.797583	0.251655	0.003026	TBC1 domain family member 2		
ILMN_2352326	COASY	3.014949	0.251485	0.003026	Coenzyme A synthase		
ILMN_1753457	PKP3	3.449557	0.251362	0.003026	plakophilin 3		
ILMN_2081673	INSL6	4.732468	0.250409	0.003026	insulin like 6		
ILMN_1743396	ACOX3	3.340671	0.250377	0.003026	acyl-CoA oxidase 3, pristanoyl		
ILMN_1711786	NFE2	3.32609	0.250104	0.003026	nuclear factor, erythroid 2 capping actin protein of muscle Z-line subunit		
ILMN_3289099	CAPZA1	3.263922	0.249888	0.003026	alpha 1		
ILMN_2151056	BORCS7	3.776529	0.249315	0.003026	BLOC-1 related complex subunit 7		
ILMN_1716195	H2BC8	3.481999	0.248678	0.003026	H2B clustered histone 8		
ILMN_2368684	JUP	3.001191	0.248584	0.003026	junction plakoglobin		
ILMN_1700026	PXDC1	3.19572	0.248166	0.003026	PX domain containing 1		
ILMN_1690894	HSP90IB3P	3.2861	0.248104	0.003026	heat shock protein 90 beta family member 3		

The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
Gene ID	Description	Log2FC	p-value	FDR	Status		
ILMN_1662880	LINC01554 long intergenic non-protein coding RNA 1554	3.908142	0.000163	0.010418	Up		
ILMN_1664560	DYT1A SERTAD4-AS1 SERTAD4 antisense RNA 1	4.406676	0.004816	0.000163	Up		
ILMN_2347541	NIN long intergenic non-protein coding RNA 3	3.056875	0.001015	0.000163	Up		
ILMN_3185198	ACTR3C actin related protein 3C	3.392602	0.001286	0.000163	Up		
ILMN_2274420	SPTLC1 serine palmitoyltransferase long chain base subunit 1	3.255789	0.000994	0.000163	Up		
ILMN_1711792	GPBP1 GC-rich promoter binding protein 1	3.939077	0.001094	0.000163	Up		
ILMN_1785765	TM9SF2 transmembrane 9 superfamily member 2	2.980358	0.004712	0.000163	Up		
ILMN_1739967	TBK1 TANK binding kinase 1	3.72025	0.001452	0.000163	Up		
ILMN_3243514	PP12613 uncharacterized LOC100192379	4.213967	0.000607	0.000163	Up		
ILMN_2113938	TOR1AIP2 torsin 1A interacting protein 2	3.061016	0.002770	0.000163	Up		
ILMN_1697864	CXorf38 chromosome X open reading frame 38	4.647172	0.003088	0.000163	Up		
ILMN_1737005	SMG9 nonsense mediated mRNA decay factor	4.647172	0.003088	0.000163	Up		
ILMN_2275248	ECE2 endothelin converting enzyme 2	3.919402	0.000607	0.000163	Up		
ILMN_1669090	CXorf56 chromosome X open reading frame 38	4.130027	0.001015	0.000163	Up		
ILMN_1804064	ESRRG estrogen related receptor gamma	3.176409	0.003406	0.000163	Up		
ILMN_1682919	PAFAH2 platelet activating factor related protein factor 1	3.027658	0.002078	0.000163	Up		
ILMN_1676763	PIPS1 PIPS5K1A and PSMD4 like (pseudogene)	3.715885	0.001452	0.000163	Up		
ILMN_1810782	SH3KBP1 SH3 domain containing kinase binding protein 1	3.003739	0.001452	0.000163	Up		
ILMN_1666258	AMFR autocrine motility factor receptor	3.157186	0.003418	0.000163	Up		
ILMN_1776154	COG3 component of oligomeric golgi complex 3	3.234779	0.001310	0.000163	Up		
ILMN_2387553	PSMA3 proteasome 20S subunit alpha 3	3.973908	0.009505	0.000163	Up		
ILMN_1730630	CXorf56 chromosome X open reading frame 38	3.1615	0.003103	0.000163	Up		
ILMN_1673380	GNG12 G protein subunit gamma 12	3.033043	0.004332	0.000163	Up		
ILMN_3247111	LRRG9 leucine rich containing 6	3.489939	0.002087	0.000163	Up		
ILMN_1757956	PCCG1 polycomb group ring finger 1	3.478289	0.002012	0.000163	Up		
ILMN_1759460	TAF7 TATA-box binding protein associated factor 7	5.027658	0.002078	0.000163	Up		
ILMN_1747241	IWS1 interacts with Supt6h, CTD assembly factor 1	2.996419	0.004572	0.000163	Up		
ILMN_1676763	PIPS1 PIPS5K1A and PSMD4 like (pseudogene)	3.715885	0.001452	0.000163	Up		
ILMN_1813148	TM1G1 target of myb1 membrane trafficking protein	3.04312	0.004284	0.000163	Up		
ILMN_1760256	RBM22 RNA binding motif protein 22	3.198833	0.003308	0.000163	Up		
Gene Symbol	Log2 Fold Change	p Value	q Value	Benjamini-Hochberg FDR	Status		
-------------	-----------------	---------	---------	------------------------	--------		
ILMN_1658743	CCNDP1	0.229972	9.97E-05	0.008353	4.04187	Up	
ILMN_1717294	PTPN3	0.229265	0.002347	0.037683	3.11632	Up	
ILMN_2101920	HNRNPH1	0.228516	0.000147	0.026058	3.34185	Up	
ILMN_1736234	CHTOP	0.228516	0.001144	0.019296	3.39222	Up	
ILMN_1700384	KIAA1522	0.228516	0.000577	0.018974	3.54766	Up	
ILMN_1719237	SPDYE8P	0.228465	0.00384	0.048887	2.95495	Up	
ILMN_1701724	GET4	0.228197	0.000247	0.012906	3.79222	Up	
ILMN_1785852	NABP1	0.227819	0.002071	0.035437	3.15632	Up	
ILMN_1755649	SLC16A5	0.227432	0.001462	0.020716	3.46055	Up	
ILMN_1701308	COL1A1	-0.77213	5.05E-07	0.001127	-5.34677	Down	
ILMN_1723522	APOLD1	-0.75887	0.000051	0.017953	-3.58362	Down	
ILMN_1779875	THY1	-0.75181	3.89E-05	0.005414	-4.29148	Down	
ILMN_1696347	CTSC	-0.73439	0.000014	0.015151	-3.68044	Down	
ILMN_1706505	COL5A1	-0.68289	8.23E-08	0.00792	-5.75462	Down	
ILMN_3237946	PXDN	-0.68073	4.96E-06	0.002879	-4.80838	Down	
ILMN_1673639	AB1BP2	-0.67199	0.000361	0.023743	-3.40373	Down	
ILMN_1766914	MFAP4	-0.66612	4.35E-06	0.002722	-4.84032	Down	
ILMN_1795325	ACTG2	-0.65224	0.000984	0.024307	-3.38785	Down	
ILMN_1757604	TPM2	-0.65	0.000014	0.00984	-3.59645	Down	
ILMN_1700643	COL6A3	-0.64553	2.54E-05	0.004833	-4.21049	Down	
ILMN_1725193	IGFBP2	-0.63091	0.000135	0.024881	-3.37242	Down	
ILMN_1720231	TNNT3	-0.61686	0.000039	0.020442	-3.49345	Down	
ILMN_2104356	COL1A2	-0.60473	8.52E-06	0.00295	-4.67573	Down	
ILMN_1773079	COL3A1	-0.60333	5.14E-06	0.002879	-4.96929	Down	
ILMN_1707070	PCOLCE	-0.59908	1.55E-06	0.001955	-5.8687	Down	
ILMN_1797776	PRSS23	-0.59791	3.60E-05	0.001955	-5.11653	Down	
ILMN_2390919	FBLN2	-0.59331	6.9E-06	0.00295	-4.12775	Down	
ILMN_1712046	CPXM1	-0.59179	0.000142	0.00989	-3.94586	Down	
ILMN_1670379	ANTXR1	-0.59159	3.06E-05	0.005173	-4.35299	Down	
ILMN_1743445	FAM107A	-0.58708	0.001007	0.02461	-3.38091	Down	
ILMN_1697268	EMLIN2	-0.58178	2.61E-05	0.004833	-4.39456	Down	
ILMN_1756071	MFGE8	-0.58136	0.00023	0.012505	-3.81152	Down	
ILMN_2115125	CCN2	-0.56274	0.00135	0.028444	-3.29078	Down	
ILMN_1700690	VAT1	-0.55561	1.38E-05	0.003478	-4.55664	Down	
ILMN_1761968	PPP1R14A	-0.55328	6.36E-05	0.00295	-4.74771	Down	
ILMN_1783909	COL6A2	-0.55352	3.46E-05	0.005189	-4.32174	Down	
Gene	Gene Expression	Gene ID	Function or Protein	Expression Value	Enrichment Value	Fold Change	Status
------	-----------------	---------	---------------------	------------------	-----------------	-------------	--------
GPER1	Down	ILMN_2384056	G protein-coupled estrogen receptor 1	-0.55173	0.001275	0.027557	-3.30852
LAMC3	Down	ILMN_1688642	laminin subunit gamma 3	-0.54794	0.000167	0.010606	-3.90071
GAS6	Down	ILMN_1779558	growth arrest specific 6	-0.54545	0.001127	0.027557	-3.56823
RFTN1	Down	ILMN_1800787	raftlin, lipid raft linker 1	-0.54246	0.003091	0.027557	-4.6434
LASP1	Down	ILMN_1665909	LIM and SH3 protein 1	-0.53543	0.001955	0.027557	-5.10383
SLIT3	Down	ILMN_1811313	slit guidance ligand 3	-0.53304	0.007511	0.027557	-5.83956
CAVIN3	Down	ILMN_1793476	caveolae associated protein 3	-0.5317	0.007511	0.027557	-4.43772
VCAM1	Down	ILMN_2307903	vascular cell adhesion molecule 1	-0.53139	0.007511	0.027557	-4.09693
PARM1	Down	ILMN_1656560	prostate androgen-regulated mucin-like protein 1	-0.53103	0.007511	0.027557	-3.91255
CDH11	Down	ILMN_1672611	cadherin 11	-0.52302	0.007511	0.027557	-3.83169
OLFML2B	Down	ILMN_1765557	olfactomedin like 2B	-0.52097	0.007511	0.027557	-4.6686
PDGFRB	Down	ILMN_1815057	platelet derived growth factor receptor beta	-0.52016	0.007511	0.027557	-4.48559
TSC22D3	Down	ILMN_1736178	TSC22 domain family member 3	-0.5199	0.007511	0.027557	-4.33169
LGALS1	Down	ILMN_1723978	galectin 1	-0.51718	0.007511	0.027557	-3.68144
NES	Down	ILMN_1738147	nestin	-0.51576	0.007511	0.027557	-4.6686
PDE8B	Down	ILMN_1687301	phosphodiesterase 8B	-0.51488	0.007511	0.027557	-4.38289
VCAN	Down	ILMN_1687652	versican	-0.51483	0.007511	0.027557	-4.21926
IGFBP7	Down	ILMN_1748124	insulin like growth factor binding protein 7	-0.51439	0.007511	0.027557	-4.21926
LGALS1	Down	ILMN_1738147	galectin 1	-0.51576	0.007511	0.027557	-4.6686
VASP	Down	ILMN_1665219	vasorin	-0.50184	0.007511	0.027557	-3.3994
IGFBP4	Down	ILMN_1665865	insulin like growth factor binding protein 4	-0.49057	0.007511	0.027557	-3.05613
ENPP2	Down	ILMN_1653424	ectonucleotidepyrophosphatase/phosphodiesterase 2	-0.49776	0.007511	0.027557	-4.13908
LAMB2	Down	ILMN_1752968	laminin subunit beta 2	-0.49708	0.007511	0.027557	-3.73636
HEYL	Down	ILMN_1667295	ArfGAP with RhoGAP domain, ankyrin repeat and PH domain 3	-0.49611	0.007511	0.027557	-4.03652
VASA	Down	ILMN_1812618	vasorin	-0.49482	0.007511	0.027557	-3.59477
APAP	Down	ILMN_1661599	ArfGAP with RhoGAP domain, ankyrin repeat and PH domain 3	-0.49404	0.007511	0.027557	-3.0217
DDI4	Down	ILMN_1713496	DNA damage inducible transcript 4	-0.49301	0.007511	0.027557	-3.09422
ST3GAL5	Down	ILMN_1665865	ST3 beta-galactoside alpha-2,3-sialyltransferase 5	-0.492	0.007511	0.027557	-4.08534
TGFBR3	Down	ILMN_1687652	transforming growth factor beta 3	-0.48958	0.007511	0.027557	-3.15638
EMP1	Down	ILMN_1801616	epithelial membrane protein 1	-0.48942	0.007511	0.027557	-3.87097
TNC	Down	ILMN_1733259	laminin subunit gamma 3	-0.48909	0.007511	0.027557	-3.79958
PDSPN	Down	ILMN_1607490	podoplanin	-0.48881	0.007511	0.027557	-3.95297
LTBP4	Down	ILMN_1665219	latent transforming growth factor beta binding protein 4	-0.4882	0.007511	0.027557	-3.70174
FILIP1L	Down	ILMN_1738578	filamin A interacting protein 1 like	-0.48742	0.007511	0.027557	-3.88315
IGFLAM	Down	ILMN_1654109	EGF like, fibronectin type III and laminin G domains	-0.48718	0.007511	0.027557	-3.80108
SPARC	Down	ILMN_1796734	secreted protein acidic and cysteine rich	-0.48641	0.007511	0.027557	-4.49427
EPDR1	Down	ILMN_1675977	epidermin related 1	-0.48638	0.007511	0.027557	-3.04891
VWF	Down	ILMN_1752755	von Willebrand factor	-0.48403	0.007511	0.027557	-3.491
MXRA7	Down	ILMN_1743836	matrix remodeling associated 7	-0.48256	0.007511	0.027557	-3.9585
COL6A1	Down	ILMN_1732151	collagen type VI alpha 1 chain	-0.48252	0.007511	0.027557	-3.56848
Gene ID	Symbol	Log2 Fold Change	FDR	P Value	Regulation	Description	
--------------	--------	-----------------	-------	----------	------------	--	
ILMN_1696965	TNFRSF21	-0.48252	3.82E-07	0.001058	Down	TNF receptor superfamily member 21	
ILMN_1671703	ACTA2	-0.48127	0.001006	0.024602	Down	actin alpha 2, smooth muscle	
ILMN_1777190	CFD	-0.48004	0.001794	0.032947	Down	complement factor D	
ILMN_1785646	PMP22	-0.47862	1.24E-05	0.003412	Down	peripheral myelin protein 22	
ILMN_1795166	PTH1R	-0.47706	1.22E-05	0.003404	Down	parathyroid hormone 1 receptor	
ILMN_1779182	TEMEM98	-0.47485	3.81E-06	0.002678	Down	transmembrane protein 98 latent transforming growth factor beta binding protein 2	
ILMN_3248591	LTBP2	-0.47272	3.28E-05	0.005189	Down	latent transforming growth factor beta binding protein 2	
ILMN_1672503	DPYSL2	-0.47143	5.37E-05	0.002879	Down	dihydroxymethylase like 2	
ILMN_2223941	FBLN5	-0.47095	1.94E-06	0.002072	Down	fibulin 5	
ILMN_1688480	CCND1	-0.46977	0.000483	0.017744	Down	fascin actin-bundling protein 1	
ILMN_1808114	LYVE1	-0.46936	0.003925	0.049436	Down	lymphatic vessel endothelial hyaluronan receptor 1	
ILMN_2087692	CYBRD1	-0.46894	2.69E-05	0.004861	Down	cytochrome b reductase 1	
ILMN_1808707	FSCN1	-0.46767	3.69E-05	0.005267	Down	fascin actin-bundling protein 1	
ILMN_1660808	WPDC1	-0.46665	0.000163	0.010418	Down	WAP four-disulfide core domain 1	
ILMN_2337655	WARS1	-0.4653	4.87E-05	0.005873	Down	tryptophanyl-tRNA synthetase 1	
ILMN_1795166	PTH1R	-0.47706	1.22E-05	0.003404	Down	parathyroid hormone 1 receptor	
ILMN_2057479	EGFRL6	-0.44039	0.002923	0.042546	Down	EGF like domain multiple 6	
Gene ID	Description	Pearson Correlation	p-value	Fold Change	Status		
------------	------------------------------	---------------------	---------	-------------	----------		
ILMN_1784863	CD36	-0.43914	0.001443	0.029457	-3.27014	Down	
ILMN_1789492	ZDHHC8	-0.43853	1.97E-05	0.004301	-4.4659	Down	
ILMN_1790689	CRISPLD2	-0.43782	0.00578	0.018974	-3.54695	Down	
ILMN_1795442	LAMA4	-0.43711	0.00763	-4.08249	Down		
ILMN_1702501	RPS6KA2	-0.43678	2.81E-06	0.002369	-4.94542	Down	
ILMN_1671016	GJA4	-0.43464	0.000331	0.014708	-3.70883	Down	
ILMN_1695442	LAMA4	-0.43355	0.000768	0.021647	-3.46258	Down	
ILMN_1676449	SLIT2	-0.43033	0.009961	0.024096	-3.9507	Down	
ILMN_1715999	CAVIN2	-0.41726	1.48E-06	0.001955	-5.1066	Down	
ILMN_1709486	SRPX	-0.4129	0.002926	0.045246	-3.08744	Down	
ILMN_1675936	HIGD1B	-0.41058	0.000123	0.025959	-3.66386	Down	
ILMN_1800697	LDR2	-0.41769	0.000812	0.022284	-3.44608	Down	
ILMN_1689595	SORL	-0.41276	1.8E-06	0.001955	-5.09704	Down	
ILMN_1681679	TSPO	-0.40818	0.000143	0.009968	-3.9429	Down	
ILMN_1727532	OLFML3	-0.40554	1.42E-06	0.001955	-5.1066	Down	
ILMN_1722532	CMTM3	-0.40145	3.33E-05	0.005189	-4.31961	Down	
ILMN_1683535	FARP1	-0.40137	3.99E-06	0.002688	-4.86121	Down	
ILMN_1756573	NDUF4A4L2	-0.40777	0.00111	0.008868	-4.013	Down	
ILMN_2368735	IGFBP3	-0.40708	0.001143	0.026058	-3.34212	Down	

Down indicates a decrease in expression.
Gene ID	Symbol	log2FoldChange	Adj. P-value	Benjamini-Hochberg FDR	Expression	Description
ILMN_2038775	TUBB2A	-0.40565	0.001946	0.03431	Down	tubulin beta 2A class IIa
ILMN_1812031	PALM	-0.4051	1.37E-05	0.003478	Down	paralemmin
ILMN_1709307	GPSM1	-0.4053	3.66E-05	0.005267	Down	G protein signaling modulator 1
ILMN_3246214	B4GAT1	-0.40496	5.01058	-5.4081	Down	beta-1,4-glucuronyltransferase 1
ILMN_1802411	ITGA1	-0.4038	3.16E-05	0.005189	Down	integrin subunit alpha 1
ILMN_1714861	CD68	-0.40235	0.001299	0.037871	Down	CD68 molecule pleckstrin homology like domain family B member 1
ILMN_1666819	PHLD1B	-0.40156	5.39E-06	0.005073	Down	carbohydrate sulfotransferase 3
ILMN_1802968	SOX18	-0.40033	0.000526	0.018141	Down	SRY-box transcription factor 18
ILMN_2173611	MT1E	-0.39986	0.000353	0.015039	Down	metallothionein 1E
ILMN_1668283	HYAL2	-0.39864	0.000846	0.019821	Down	hyaluridase 2
ILMN_1757440	DIPK1B	-0.39796	0.00033	0.014704	Down	divergent protein kinase domain 1B
ILMN_1773059	ADGRA2	-0.39739	0.000911	0.023503	Down	adhesion G protein-coupled receptor A2
ILMN_1795429	VCL	-0.39693	0.000348	0.014991	Down	vinculin
ILMN_1789733	CLIP3	-0.39665	1.53E-05	0.00373	Down	CAP-Gly domain containing linker protein 3
ILMN_1675062	MYL9	-0.39519	0.001559	0.030619	Down	myosin light chain 9
ILMN_1711566	TIMP1	-0.39465	0.001568	0.030761	Down	TIMP metalloepitidase inhibitor 1
ILMN_1682781	TEAD2	-0.39462	2.27E-05	0.004675	Down	TEA domain transcription factor 2
ILMN_1806733	COL18A1	-0.39225	0.000595	0.019227	Down	collagen type XVIII alpha 1 chain
ILMN_1760901	PRCP	-0.39168	0.000281	0.013751	Down	prolylcarboxypeptidase
ILMN_1691376	JAG1	-0.39137	0.000108	0.008727	Down	jagged canonical Notch ligand 1
ILMN_1808238	RBMPS2	-0.39047	2.27E-05	0.004675	Down	RNA binding protein, mRNA processing factor 2
ILMN_1684391	PLOD1	-0.38987	5.67E-06	0.002906	Down	procollagen-lysine,2-oxoglutarate 5-dioxygenase 1
ILMN_1755657	RASIP1	-0.38985	0.00111	0.025736	Down	Ras interacting protein 1
ILMN_1754795	FAT1	-0.38928	0.000803	0.02216	Down	FAT atypical cadherin 1 atypical chemokine receptor 1 (Duffy blood group)
ILMN_1723884	ACKR1	-0.38904	0.000258	0.013173	Down	NCK associated protein 5 like
ILMN_1763640	NCKAP5L	-0.38828	4.47E-05	0.005755	Down	NCK associated protein 5 like
ILMN_2066151	TEK	-0.38809	0.001131	0.025976	Down	TEK receptor tyrosine kinase
ILMN_1730995	AFAP1L2	-0.38806	6.29E-05	0.006657	Down	actin filament associated protein 1 like 2
ILMN_1676846	ABCE1	-0.38772	0.002141	0.035854	Down	ATP binding cassette subfamily E member 1
ILMN_2306540	PDE9A	-0.38716	0.000255	0.013135	Down	phosphodiesterase 9A
ILMN_1756920	ADAM15	-0.38698	2.31E-05	0.004723	Down	ADAM metalloepitidase domain 15
ILMN_1667460	SULF1	-0.38575	0.000356	0.015084	Down	sulfatase 2
ILMN_1778881	EBF1	-0.38542	0.000387	0.015721	Down	EBF transcription factor 1
ILMN_1810852	LAMC1	-0.38297	0.000107	0.006889	Down	laminin subunit gamma 1
ILMN_1723123	FGFR3	-0.38138	0.000151	0.010247	Down	fibroblast growth factor receptor 3
ILMN_1741632	RAB3L1	-0.3811	1.3E-05	0.003464	Down	RAB3A interacting protein like 1
ILMN_2230025	PDLIM3	-0.381	0.000642	0.019792	Down	PDLIM domain 3
ILMN_1772612	ANGPTL2	-0.37902	2.69E-05	0.004861	Down	angiopoietin like 2
Accessory ID	Gene Symbol	Expression Value	Log Fold Change	Genes and Functions		
------------------	-------------	------------------	----------------	-------------------		
ILMN_1810844	RARRES2	-0.37881	-3.42025	Down retinoic acid receptor responder 2		
ILMN_1738816	FOXO1	-0.37837	-3.57509	Down forkhead box O1		
ILMN_1689953	CD8I	-0.37702	-5.58795	Down CD81 molecule		
ILMN_1651950	TPST1	-0.37597	-4.30272	Down tyrosylprotein sulfotransferase 1		
ILMN_1692731	TTYH3	-0.37535	-4.32847	Down tweety family member 3		
ILMN_1658835	CAV2	-0.37448	-3.39392	Down caveolin 2		
ILMN_1680453	ITM2C	-0.37416	-3.54215	Down integral membrane protein 2C		
ILMN_1702835	SH3BGR1	-0.37249	-3.69952	Down SH3 domain binding glutamate rich protein like		
ILMN_1732923	SIPA1L2	-0.37207	-3.46637	Down signal induced proliferation associated 1 like 2		
ILMN_1797009	F3	-0.37136	-3.71818	Down coxigulation factor III, tissue factor phosphatidylinositol glycan anchor biosynthesis clat U		
ILMN_1738263	PIGU	-0.37121	-3.86457	Down phosphatidylinositol glycan anchor biosynthesis class U		
ILMN_1739946	VKORC1	-0.36840	-3.95412	Down vitamin K epoxide reductase complex subunit 1		
ILMN_1803312	DMT1	-0.36765	-4.44661	Down DIMT1 rRNAmethyltransferase and ribosome maturation factor		
ILMN_2089752	ALKAL2	-0.36753	-3.95119	Down ALK and LTK ligand 2		
ILMN_1729563	UGDH	-0.36578	-3.1755	Down UDP-glucose 6-dehydrogenase		
ILMN_1695290	FERMT2	-0.36562	-4.68113	Down fermitin family member 2		
ILMN_1748473	GIMAP4	-0.3634	-3.88275	Down GTPase, IMAP family member 4		
ILMN_3242038	GPX8	-0.36483	-3.73508	Down glutathione peroxidase 8 (putative)		
ILMN_1781256	LEFTY2	-0.36409	-3.2258	Down left-right determination factor 2		
ILMN_1718607	TSPAN4	-0.36243	-3.98826	Down tetraspanin 4		
ILMN_1653028	COL4A1	-0.36243	-3.78705	Down collagen type IV alpha 1 chain		
ILMN_1806403	RASL12	-0.3617	-3.87729	Down RAS like family 12		
ILMN_1770338	TM4SF1	-0.36154	-3.16202	Down transmembrane 4 L six family member 1		
ILMN_1757552	CAVIN1	-0.36036	-4.47961	Down caveolae associated protein 1		
ILMN_2148944	ADCY4	-0.36032	-3.16139	Down adenylatecyclase 4		
ILMN_2346997	RAB23	-0.36006	-4.241	Down RAB23, member RAS oncogene family		
ILMN_1803429	CD44	-0.35802	-3.268	Down CD44 molecule (Indian blood group)		
ILMN_1757845	SPIRE2	-0.35788	-3.9577	Down spire type actin nucleation factor 1		
ILMN_2063168	MALL	-0.35738	-3.69453	Down mal, T cell differentiation protein like		
ILMN_1794942	HOXC6	-0.35691	-4.45271	Down homeobox C6		
ILMN_2089073	ATP9A	-0.35669	-3.71549	Down ATPase phospholipid transporting 9A (putative)		
ILMN_1676897	HSPA12B	-0.35655	-3.31351	Down heat shock protein family A (Hsp70) member 12B		
ILMN_1720158	ETS2	-0.35607	-4.47844	Down ETS proto-oncogene 2, transcription factor		
ILMN_1767448	LHFP6	-0.35579	-3.44843	Down LHFP6 tetraspan subfamily member 6		
ILMN_338560	IF27L2	-0.35573	-4.38599	Down interferon alpha inducible protein 27 like 2		
ILMN_1784871	FASN	-0.35492	-5.14833	Down fatty acid synthase		
ILMN_1680874	TUBB2B	-0.35438	-4.42951	Down tubulin beta 2B class Iib		
ILMN_2081682	SMAP2	-0.35276	-4.16954	Down small ArfGAP2		
ILMN_1774982	CDC42EP5	-0.35271	-4.24433	Down CDC42 effector protein 5		
ILMN_1788019	LAMA2	-0.35245	-3.0638	Down laminin subunit alpha 2		
ILMN_1783276	NEXN	-0.35153	-3.88438	Down nixin F-actin binding protein		
ILMN_1676088	MSRB3	-0.35012	-3.68065	Down methionine sulfoxidereductase B3		

Note: (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
Gene	FC	P-value	Log2 Fold Change	Description			
RNASE1	-0.34959	0.003183	0.044326	Down ribonuclease A family member 1, pancreatic			
PHGDH	-0.34957	0.007633	-3.08329	Down phosphoglycerate dehydrogenase ADAM metallopeptidase with thrombospondin type 1 motif 9			
ADAMTS9	-0.34922	0.026853	-3.32252	Down discoidin domain receptor tyrosine kinase 2 transforming growth factor beta 1 induced transcript 1			
LRP3	-0.3484	0.001775	-5.19866	Down LDL receptor related protein 3			
DDR2	-0.34789	0.008756	-4.019	Down ADAM metallopeptidase with thrombospondin type 1 motif 9			
TGFBI1	-0.34786	0.012343	-3.18789	Down ADAM metallopeptidase with thrombospondin type 1 motif 9			
POTEF	-0.34742	0.018229	-3.57218	Down POTE ankyrin domain family member F			
AGRN	-0.34641	0.022991	-3.45127	Down agrin			
PIEZO1	-0.3461	0.00798	-3.45127	Down piezo type mechanosensitive ion channel component 1			
LFNG	-0.34636	0.006073	-4.21211	Down LFNG O-fucosylpeptide 3-beta-N-acetylglucosaminyltransferase			
CRYZ	-0.3461	0.018298	-3.56835	Down crystallin zeta			
LYPD6	-0.34584	0.00347	-3.33892	Down C-C motif chemokine ligand 13			
POTEF	-0.34528	0.045851	-2.99986	Down dickkopf WNT signaling pathway inhibitor 3			
FZD4	-0.34522	0.016957	-3.62449	Down frizzled class receptor 4			
PFKFB3	-0.34512	0.018294	-3.56884	Down 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3			
ZNF358	-0.34471	0.002517	-4.9227	Down zinc finger protein 35B			
NFIB	-0.34285	0.031722	-3.23532	Down nuclear factor 1 B			
ANTXR2	-0.3415	0.006347	-4.19218	Down ANTXR cell adhesion molecule 2			
TME35B	-0.33999	0.007511	-4.09378	Down transmembrane protein 35B			
EXTL3	-0.33995	0.03162	-3.22796	Down exostosin like glycosyltransferase 3			
SLC16A10	-0.33976	0.043262	-3.04796	Down solute carrier family 16 member 10			
MMP23B	-0.33959	0.020805	-3.48474	Down matrix metallopeptidase 23B			
PRRX1	-0.33948	0.010103	-3.93722	Down paired related homeobox 1			
ZMAT3	-0.33777	0.001926	-5.14964	Down zinc finger matrin-type 3			
CAMK2N1	-0.33759	0.025566	-3.35581	Down calcium/calmodulin dependent protein kinase II inhibitor 1			
EFEMP1	-0.33701	0.043103	-3.03665	Down EGF containing fibulin extracellular matrix protein 1			
SLC2A10	-0.33689	0.02466	-3.37924	Down solute carrier family 2 member 10			
ARHGEF6	-0.33673	0.034749	-3.16805	Down Rac/Cdc42 guanine nucleotide exchange factor 6			
TME153B	-0.3363	0.008273	-4.04548	Down transmembrane protein 256			
CMTM7	-0.33562	0.006927	-4.14452	Down CKLF like MARVEL transmembrane domain containing 7			
TFNRSF14	-0.33559	0.013333	-3.77075	Down TNF receptor superfamily member 14			
GFOD1	-0.33518	0.019425	-3.52642	Down glucose-fructose oxidoreductase domain containing 1			
DLL1	-0.3346	0.010936	-3.88539	Down delta like canonical Notch ligand 1			
LYL1	-0.3343	0.017744	-3.59922	Down LYL1 basic helix-loop-helix family member			
SEMA3A	-0.33427	0.017744	-3.59859	Down semaphorin 3A			
INKA2	-0.33389	0.00295	-4.71805	Down inka box actin regulator 2			
SPTAN1	-0.33345	0.007229	-4.11685	Down spectrin alpha, non-erythrocytic 1			
MRPL34	-0.33294	0.030319	-3.25087	Down mitochondrial ribosomal protein L3			
FCGRT	-0.33153	0.028444	-3.29084	Down Fc fragment of IgG receptor and transporter			
SMAD3	-0.33045	0.006811	-4.15297	Down SMAD family member 3			
Gene ID	Gene Name	log2 fc	p-value	FDR	E-value	log2 Fold Change	Function
--------------	----------------	---------	---------	-----------	---------	-----------------	--
ILMN_205953	PPM1F	-0.3304	0.001065	0.02524	-3.36391	Down	protein phosphatase, Mg2+/Mn2+ dependent 1F
ILMN_1790953	TBCB	-0.3301	0.004673	0.044269	-4.43726	Down	tubulin folding cofactor B
ILMN_1764788	TNFRSF1B	-0.32976	0.001169	0.044269	-4.36391	Down	TNF receptor superfamily member 1B
ILMN_1754660	ZCCHC24	-0.32898	0.000101	0.038837	-4.03815	Down	zinc finger CCHC-type containing 24
ILMN_2252309	DP7	-0.32892	0.001126	0.025921	-3.34674	Down	dipeptidyl peptidease 7
ILMN_1674160	BIN1	-0.32855	0.002014	0.012004	-3.83144	Down	bridging integrator 1
ILMN_1675656	PPP1BP2	-0.32771	0.00043	0.016889	-3.63326	Down	PPIA binding protein 2
ILMN_1728512	YWHAH	-0.32748	6.04E-05	0.006541	-4.17595	Down	tyrosine 3-monooxygenase/tryptophan 5-monoxygenase activation protein eta
ILMN_1789171	EEF2K	-0.32709	1.05E-05	0.03154	-4.62387	Down	eukaryotic elongation factor 2 kinase
ILMN_1680973	FOXF1	-0.3269	0.000214	0.012004	-3.83144	Down	forkhead box F1
ILMN_1769520	UBE2L6	-0.32541	0.001765	0.032784	-3.20703	Down	ubiquitin conjugating enzyme E2 L6
ILMN_1770290	CNN2	-0.3232	0.000584	0.01904	-3.54398	Down	smoothelin
ILMN_2064725	METTL7B	-0.32189	0.000739	0.021238	-3.4793	Down	methyltransferase-like 7
ILMN_1685540	SHROOM3	-0.32144	9.41E-05	0.000852	-4.5735	Down	shroom family member 3
ILMN_1839019	LPP	-0.32071	0.002215	0.036485	-3.13485	Down	caldesmon 1
ILMN_1779735	LAMTOR4	-0.32003	0.001384	0.028811	-3.28515	Down	LN domain containing preferred translocation partner in lipoma
ILMN_2316838	GPBAR1	-0.31949	0.000134	0.007956	-3.69066	Down	G protein-coupled bile acid receptor 1
ILMN_1810559	RHOQ	-0.31922	9.79E-05	0.008252	-4.04665	Down	ras homolog family member Q
ILMN_1804498	BRAT1	-0.31861	0.000157	0.010362	-3.91859	Down	BRCA1 associated ATM activator 1
ILMN_1778444	FKBP5	-0.31765	0.000284	0.045007	-3.00692	Down	FKBP prolyl isomerase 5
ILMN_1704154	TNFRSF19	-0.31706	0.000322	0.014545	-3.71667	Down	TNF receptor superfamily member 19
ILMN_2104141	FGDS	-0.31637	0.000237	0.012746	-3.80302	Down	FYVE, RhoGEF and PH domain containing 5
ILMN_2149226	CAV1	-0.31687	0.002907	0.042449	-3.04697	Down	caveolin 1
ILMN_1654398	RGL1	-0.31678	0.000409	0.016197	-3.64795	Down	ral guanine nucleotide dissociation stimulator like 1
ILMN_3307982	PARVA	-0.31677	1.15E-05	0.003353	-4.60138	Down	parvin alpha
ILMN_3241262	PABPC4L	-0.3167	0.001528	0.030233	-3.2524	Down	poly(A) binding protein cytoplasmic 4 like
ILMN_1730229	CGNL1	-0.31553	0.000937	0.02378	-3.40267	Down	cingulin like 1
ILMN_1779071	FEZI	-0.31546	3.78E-05	0.005357	-4.29902	Down	fasciculation and elongation protein zeta 1
ILMN_1775330	CCDC9B	-0.31511	8.78E-05	0.007748	-4.07615	Down	coiled-coil domain containing 9B
Gene ID	Gene Symbol	Log2 Fold Change	P-Value	Adjusted P-Value	Downstream	Function	
--------------	-------------	------------------	----------	------------------	------------	--	
ILMN_1701204	VEGFC	-0.31459	0.000186	0.011194	Down	vascular endothelial growth factor C	
ILMN_1777881	TSPAN17	-0.31456	4.57E-05	0.005773	Down	tetraspanin 1	
ILMN_1677200	CYFIP2	-0.31396	0.0005	0.017901	Down	cytoplasmic FMR1 interacting protein 2	
ILMN_2056032	CD99	-0.3134	0.001609	0.013215	Down	CD99 molecule (Xg blood group)	
ILMN_1752591	LEPROT1	-0.3128	0.001734	0.033282	Down	leptin receptor overlapping transcript like 1	
ILMN_1757338	PLSRC4	-0.31123	0.000327	0.014624	Down	phospholipid scramblase 4	
ILMN_3245564	ARHGAP44	-0.3111	4.92E-05	0.005917	Down	Rho GTPase activating protein 44	
ILMN_1699980	TSPAN18	-0.31001	0.000286	0.013944	Down	tetraspanin 18	
ILMN_3232894	CNRIP1	-0.30921	0.00187	0.033574	Down	cannabinoid receptor interacting protein 1	
ILMN_1771800	PRKCA	-0.30913	3.17E-05	0.005189	Down	protein kinase C alpha	
ILMN_2397954	PPP1R3C	-0.30647	0.001626	0.031392	Down	protein phosphatase 1 regulatory subunit 3C	
ILMN_3236344	BMS1P4	-0.3057	0.000323	0.014545	Down	phosphatidylinositol-4-phosphate 5-kinase type 1 gamma	
ILMN_1658847	GFRA2	-0.30559	0.000112	0.008882	Down	collagen type VIII alpha 2 chain	
ILMN_1780057	RENBP	-0.3052	0.000155	0.010361	Down	renin binding protein	
ILMN_1658847	NARP	-0.30411	0.000766	0.021608	Down	NOTCH regulated ankyrin repeat protein	
ILMN_1718303	NECTIN2	-0.30407	0.000344	0.014909	Down	nectin cell adhesion molecule 2	
ILMN_1764410	GUCD1	-0.30401	0.001226	0.026935	Down	guanylylcyclase domain containing 1	
ILMN_1691717	RHBDF2	-0.30355	0.000467	0.017456	Down	rhomboid 5 homolog 2	
ILMN_1766675	CDH6	-0.30348	5.65E-05	0.006347	Down	cadherin 6	
ILMN_1752046	SHB3	-0.30284	0.003129	0.044068	Down	SH2B adaptor protein 3	
ILMN_1656300	GFRA2	-0.30283	0.000222	0.012233	Down	GDNF family receptor alpha 2	
ILMN_2148459	B2M	-0.30266	0.003487	0.046567	Down	beta-2-microglobulin	
ILMN_1795639	MGMT	-0.30229	0.000215	0.012004	Down	O-6-methylguanine-DNA methyltransferase	
ILMN_1687335	FLNA	-0.30213	0.00045	0.017125	Down	filamin A	
ILMN_2049536	TRPV2	-0.30191	5E-05	0.005957	Down	transient receptor potential cation channel subfamily V member 2	
ILMN_1668721	CCND3	-0.30153	0.003431	0.046061	Down	cyclin D3	
ILMN_1801226	DOCK6	-0.30138	0.000109	0.008759	Down	dedicator of cytokinesis 6	
ILMN_3238196	CYTH4	-0.30118	0.001775	0.0328	Down	cytohesin 4	
ILMN_1760667	POLR3G1L	-0.30114	0.000115	0.009	Down	RNA polymerase III subunit G like	
ILMN_2367707	PKN1	-0.30078	1.76E-05	0.004057	Down	protein kinase N1	
ILMN_1756539	SCRN1	-0.30064	2.03E-05	0.004408	Down	secrin 1	
ILMN_1746704	TRIM8	-0.30043	1.71E-06	0.001955	Down	tripartite motif containing 8	
ILMN_1727043	COLGALT1	-0.30041	1.61E-06	0.001955	Down	collagen beta(1-O)galactosyltransferase 1	
ILMN_1789639	FMOD	-0.29998	0.000703	0.020621	Down	fibromodulin	
Gene ID	Gene Name	Fold Change	p-value	q-value	-log10(p-value)		
----------	-----------	-------------	---------	---------	-----------------		
ILMN_1759513	RND3	-0.2987	0.00056	0.018724	-3.5563		
ILMN_2339294	LILRB5	-0.29854	0.000286	0.013933	-3.75099		
ILMN_2205896	MEIS3P1	-0.29849	0.005215	0.018724	-3.51774		
ILMN_1677404	RAP2A	-0.29848	0.000259	0.013173	-3.77819		
ILMN_1853824	MGAT3	-0.29749	0.00891	0.023034	-3.4178		
ILMN_1712480	AXIN2	-0.29689	0.001111	0.008868	-4.01392		
ILMN_1776157	NPC2	-0.29721	0.001023	0.007368	-3.70339		
ILMN_2381697	P4HA2	-0.29305	0.00173	0.008253	-3.89106		
ILMN_1803348	EPHB1	-0.29305	0.00173	0.008253	-3.89106		
ILMN_1769118	SHMT2	-0.29282	0.00024	0.012746	-3.79968		
ILMN_1770824	ARHGAP4	-0.29218	0.000231	0.01255	-3.81002		
ILMN_1713732	ABL1	-0.29499	1.21E-05	0.003404	-4.58941		
ILMN_1687440	HIPK2	-0.2942	0.001881	0.037334	-3.1869		
ILMN_1694539	MAP3K6	-0.29418	7.48E-05	0.007229	-4.11899		
ILMN_1801348	EBP4	-0.29305	0.00173	0.008253	-3.89106		
ILMN_1779464	PARP4	-0.29295	4.71E-05	0.005816	-4.24138		
ILMN_1671404	SVIL	-0.29228	0.00024	0.012746	-3.79968		
ILMN_1769118	SEPTIN9	-0.29218	0.000231	0.01255	-3.81002		
ILMN_2082585	SNAI2	-0.29197	2.58E-06	0.002346	-4.96523		
ILMN_1785424	ABLM1	-0.29182	0.002923	0.042546	-3.04516		
ILMN_2082585	SNAI2	-0.29137	0.009937	0.02378	-3.40282		
ILMN_1809850	RCN3	-0.2896	0.001133	0.009736	-3.96254		
ILMN_3246065	CCDC151	-0.28935	0.00122	0.009241	-3.98798		
ILMN_1745806	PEMT	-0.28934	0.00161	0.010372	-3.91073		
ILMN_1791226	NXXN	-0.28912	6.77E-05	0.006914	-4.14567		
ILMN_1758315	SLC9A9	-0.28902	0.000259	0.013173	-3.77817		
ILMN_1661194	CLDN14	-0.28826	0.00626	0.017456	-3.61005		
ILMN_3225591	RPL14	-0.28806	0.000665	0.020117	-3.50459		
ILMN_2237212	MYO10	-0.28774	0.001061	0.02524	-3.36484		
ILMN_1913060	CMKL1	-0.28763	0.00032	0.014545	-3.71847		
ILMN_1789502	GPC4	-0.28702	0.001807	0.033091	-3.19966		
ILMN_2047599	TMEM50B	-0.28576	0.001003	0.024564	-3.38214		
ILMN_1719543	MAF	-0.28566	0.000438	0.016832	-3.62816		
ILMN_17148625	TCEAL4	-0.2856	0.000494	0.01788	-3.59303		
ILMN_1670134	FADS1	-0.28515	0.00296	0.01409	-3.74097		
ILMN_1660871	NEK6	-0.28507	0.00893	0.023304	-3.41739		
ILMN_1674385	YWHAQ	-0.28455	2.86E-05	0.004971	-4.37044		
GO ID	CATEGORY	GO Name	P Value calc1	FDR B&H	FDR B&Y	Bonferroni Gene Count	Gene
---------	----------	---------------------	---------------	---------	---------	-----------------------	--
GO:0000003	BP	reproduction	1.54E-05	1.92E-02	1.75E-01	7.69E-02	CEBPB, GRHL2, ACSL4, S100A11, KMT2C, UBE2A, TESK2, AGFG1, AHR, HEI1, MAFF, HSD11B2, PAQR7, RHOBTB3, NECTIN3, CRH, SLC4A2, STS, CSNK2A2, SLC2A5, GABRB1, PLAC1, SPICE2, PSN1, NHE4, THDC1, SEPTIN6, SPIN1, STRA6, MBD2, DDR1, TBX3, CAST, CGB7, TEAD3, LHB, GMCL1, OVG1P1, TL1A1, EGFR, INS1, LNP, TL3, TMF1, PLEKHA1
GO:0000057	BP	macromolecular catabolic	5.89E-04	1.28E-01	1.00E+00	1.00E+00	CARHS2P1, RPS13, WA1, UBE2A, UBE2D3, C, UBE2A, UBE2D3, C
process

GO:0042175 CC nuclear outer membrane-endoplasmic reticulum membrane network 1.06E-03 1.69E-01 1.00E+00 6.75E-01 38 SPTLC3, CDS1, BET1, ACSL4, SPCS1, PIGH, EVA1A, CLN3, HSD3B1, ULK1, HSD11B2, FKBP2, AMFR, FOLR1, SPTLC1, RABGAP1, T5, NSG1, GDF15, GPAA1, CYP19A1, STX5, BCA29, NUP153, TOR1AIP2, CAMK2G, NCNT, BAP1, TMED4, STT3B, RASGRP1, MFSD2A, SPPL2A, EGFR, LPCAT3, FURIN, TLR3, APAF1, TMF1

GO:0005794 CC Golgi apparatus 1.36E-02 3.09E-01 1.00E+00 1.00E+00 46 SGSM1, CNST, BET1, SPG21, ST3GAL6, CLN3, AMFR, ANK3, GDF15, YIPF4, RHOB, ST3GAL4, RA, BARGAP1, STS, NCAN, NSG1, PDE4DIP, RAB11FIP5, FHC1, TBC1D23, STX11, CSGALN, ACT1, ECE2, USP33, AGER2, ATP6V0C, ING2, STK26, C1GALT1, C4G3, BMP1, STX5, AP1G2, TAF7, GOLGA4, YIPF6, NUCB2, TMED4, LHB, RASGRP1, EGFR, FURIN, TLR3, TMF1, EFL1, APAF1, TMF1

GO:0042802 MF identical protein binding 4.89E-03 2.96E-01 1.00E+00 1.00E+00 59 CEBPB, IER5, TWIST1, S100A1, S100P, H2B, H2BC6, H2BC4, TLE5, CLK3, AHR, UCK2, TRPV6, HES1, HOOK2, ULK1, HSPB1, CAP2, HSP90AA1, AMFR, GDF15, ANXA4, SRR, C, LDN7, NECTIN3, CGG, BP1, TBK1, GRAMD2, B, ATF3, RIPOR2, STK26, NAB2, DAPK1, IBM1, JUP, DHPS, SMG9, KNYU, HSP8, NUP153, YIPF6, CAMK2G, D, YRK1A, GRB7, RDX, UBA3, TDG, CLDN8, TFRC, GMCL1, RASGR1, SPPL2A, EGFR, CBX5, ENTPD1, TLR3, PAK1, PAK2, SPATA13
| GO:0008772 | MF | molecular function regulator | 1.03E-02 | 2.96E-01 | 1.00E+00 | 1.00E+00 | 55 | SGSM1, NET1, PDPK1, DENND2D, SERPIN1, AGFG1, TNFAIP8, HSPB1, RASAL2, HSP90, AA1, DNAJB1, FNTA, GDF15, ANXA4, CRH, AZIN1, RAB3GAP1, CSH2, PPP4R2, ATP1B3, DEPDC1B, RIPOR2, INHA, MYO9A, INSLA, G2H2, BMP1, PTNP3, CG1, SEMA3B, RGL2, T0R1AIP2, RGDPS8, PPP1R14C, TFFP2, FBRS, C, AST, CGB7, COX17, PP1R14B, ITIH5, HBB, RASGRP1, EEF1B2, GR, TPL1, FAM13A, EGFRI, INS6, TIMP2, FURIN, TL3R3, PAK2, MARK2, ENSA, SPATA13 |
| --- | --- | --- | --- | --- | --- | --- | --- |

Down regulated genes

| GO:0007155 | BP | cell adhesion | 4.46E-28 | 8.58E-25 | 7.92E-24 | 2.57E-24 | 104 | CLDN14, ABL1, ENPP2, VSIG4, EMILIN2, LA, MC3, PGM5, NRARP, F, ZD4, SLIT2, MFAP4, M, FGE8, FAT1, FBLN2, MYL9, CD99, SPON1, J, AG1, GPC4, ANTXR1, SRP5, VCAM1, VCL, F, OXF1, COL1A1, MMP2, VEGFC, COL3A1, C, OL5A1, COL6A1, COL6A2, FLNA, COL6A3, COL8A2, FBLN5, VTN, VWF, COL16A1, ABI3, BP, PODXL, FOLR2, E, GF6L, CYFIP2, LIMS2, PDPR, RND3, JGBF1, P, CC2L2, IGBPBP7, PEZ1, PPM1F, VCAN, PARV, A, SNAI2, AOC3, PRK, CA, CCN2, EGFLAM, E, PDR1, FYN, NEXN, M, YADM, MYO10, AXL, ADAM15, PIEZO1, TNFRSF14, GAS6, ITGA1, TNFRSF21, LYVE1, P, TPRD, ADAMTS9, AC, KR3, WNT3A, NECTT1, N2, FERMT2, RARA, S, H2B3, DDR2, LAMA2, LAMA4, LAMB2, LA, MC1, CAV1, TEK, DLL1, P, PIP5K1C, LGALS1, T, GF1B11, TGFBI, LVAV, CR2, COL18A1, THY1, FAM107A, CD36, LPP, CD44, CD81, CLDN5, C, DH6, CDH11, SMAD3, B, HPA3 |

| GO:0051674 | BP | localization of cell | 2.02E-23 | 1.67E-20 | 1.54E-19 | 1.17E-19 | 111 | ABL1, ABR, MAP1B, A, PCDD1, PDGFRB, ENP, P2, MATN2, ACTA2, C, YGB, TMIGD3, SOX18, LAMC3, F3, ADCY3, S, EMA3A, SLIT2, FAT1, MGAT3, EFEMP1, C, D99, JAG1, AGTR1, GPC4, C, CCL13, CMKLR1, C |
GO:0099080	CC	supramolecular complex	3.08E-13	1.81E-11	1.24E-10	1.63E-10	77
GO:0030054	CC	cell junction	3.95E-13	2.09E-11	1.43E-10	2.09E-10	71
GO:0005102	MF	signaling receptor binding	6.59E-08	6.11E-06	4.59E-05	6.72E-05	75
-----------	----	-----------------------------	----------	----------	----------	----------	----
PRKCA, EGFLAM, FS CN1, NEXN, RAB23, M YADM, LYPD6, ADA M15, SPTAN1, B2M, C CND1, AIF1, ITGA1, RASIP1, GJA4, PDLIM 3, SYT11, ARHGEF44, SVIL, NECTIN2, YWH AQ, FERM2, GPER1, SYNM, DDR2, LASP1, CAV1, CAV2, TEK, DL1, PIP5K1C, TGFBI11, HAVCR2, OXTR, THY1, FAM107A, FARP1, LPP, CD44, TSPAN4, C D81, CLDN5, CGNL1, ARHGEF2, AGRN, CDH6, CAVH11							
CMTM3, ABL1, CRLF1, PDGFRB, ETS2, SE MA3A, SLIT2, MFGF8, EEFMP1, JAG1, AGT R1, CCL13, LTBP4, VCA M1, VEGFC, COL3A 1, COL5A1, FLNA, FBL N5, VTN, VWF, COL16 A1, CNRIP1, CXCL14, ALK1, WYHAIHE, GFL6, PDPN, IGFBP2, I GFBP4, SLIT3, NCOA1, PRKCA, PKN1, CCN2, FYN, DKK3, HYAL2, N ES, ADAM15, B2M, G AS6, ITGA1, STAT3, S TCI, PXDN, PTPRD, W NT3A, PLSCR4, RARA , RARRES2, SH2B3, SH2D3C, LAMA2, LAMA4, LAMB2, CAV1, CAV2, DLL1, TGFBI11, TGFB3, LEFTY2, TGFBI1, RSP03, ANGPTL2, THY1, TIMP1, CD36, CD4, TSPAN4, PALM, SPRED1, CD81, CMTM7, SMD3							
GO:0098772	MF	molecular function regulator	2.41E-05	1.12E-03	8.38E-03	2.46E-02	69
PRKCA, EGFLAM, FS CN1, NEXN, RAB23, M YADM, LYPD6, ADA M15, SPTAN1, B2M, C CND1, AIF1, ITGA1, RASIP1, GJA4, PDLIM 3, SYT11, ARHGEF44, SVIL, NECTIN2, YWH AQ, FERM2, GPER1, SYNM, DDR2, LASP1, CAV1, CAV2, TEK, DL1, PIP5K1C, TGFBI11, HAVCR2, OXTR, THY1, FAM107A, FARP1, LPP, CD44, TSPAN4, C D81, CLDN5, CGNL1, ARHGEF2, AGRN, CDH6, CAVH11							
CMTM3, ABL1, CRLF1, PDGFRB, ETS2, SE MA3A, SLIT2, MFGF8, EEFMP1, JAG1, AGT R1, CCL13, LTBP4, VCA M1, VEGFC, COL3A 1, COL5A1, FLNA, FBL N5, VTN, VWF, COL16 A1, CNRIP1, CXCL14, ALK1, WYHAIHE, GFL6, PDPN, IGFBP2, I GFBP4, SLIT3, NCOA1, PRKCA, PKN1, CCN2, FYN, DKK3, HYAL2, N ES, ADAM15, B2M, G AS6, ITGA1, STAT3, S TCI, PXDN, PTPRD, W NT3A, PLSCR4, RARA , RARRES2, SH2B3, SH2D3C, LAMA2, LAMA4, LAMB2, CAV1, CAV2, DLL1, TGFBI11, TGFB3, LEFTY2, TGFBI1, RSP03, ANGPTL2, THY1, TIMP1, CD36, CD4, TSPAN4, PALM, SPRED1, CD81, CMTM7, SMD3							
Table 4: The enriched pathway terms of the up and down regulated differentially expressed genes

Pathway ID	Pathway Name	P-value	FDR B&H	FDR B&Y	Bonferroni	Gene Count	Gene
1269373	Cell surface interactions at the vascular wall	2.86E-05	4.73E-03	3.47E-02	2.46E-02	13	PSG8,SLC3A2,ATP1B,3,PSG1,PSG2,PSG3,P,SG4,PSG5,PSG6,PSG7,PSG9,PSG11,GRB7
1269734	Epigenetic regulation of gene expression	8.47E-04	2.18E-02	1.60E-01	7.28E-01	11	H2AC6,H2BC8,H2BC6,H2BC4,H2BC21,H4C8,H2BC21,MBD2,TAF1B,TDG,H2BC3
1270001	Metabolism of lipids and lipoproteins	1.33E-03	2.87E-02	2.10E-01	1.00E-00	33	OLAH,SPTLC3,CDS1,ACADVL,ACOXL3A,CSL4,AHR,PIP5K1B,HSD3B1,TNFAIP8,HS
1268701	Post-translational protein modification	3.57E-03	6.02E-02	4.41E-01	1.00E+00	38	BET1,WAC,H2AC6,H2BC8,UBE2A,H2BC6,H2BC4,UBE2D3,H2B21,ST3GAL6,PIGH,
1268677	Metabolism of proteins	1.06E-02	1.30E-01	9.49E-01	1.00E+00	52	ACADVL,ACOXL3A,CSL4,AHR,PIP5K1B,HSD3B1,TNFAIP8,HS
1270302	Development	1.79E-02	1.92E-01	1.00E+00	1.00E+00	36	CEBPB,RPS6KA5,FCTR1,PSMA3,PSMC4,C1GALT1,COG3,H2AW,STX5,DHPS,NUP1
Down regulated genes							
---------------------	-------	----------	----------	-------			
1270244 Extracellular matrix organization	1.93E-23	1.40E-20	1.00E-19	1.40E-20			
1270303 Axon guidance	3.15E-05	1.35E-03	9.67E-03	2.29E-02			
1269478 Signaling by PDGF	2.76E-04	7.15E-03	5.13E-02	2.00E-01			
1269340 Hemostasis	1.83E-03	3.51E-02	2.51E-01	1.00E+00			
1270302 Developmental Biology	6.14E-03	8.76E-02	6.28E-01	1.00E+00			
Table 5 Topology table for up and down regulated genes.

Regulation	Node	Degree	Betweenness	Stress	Closeness					
Up	HSP90AA1	655	0.22721	81351654	0.412863					
Up	EGFR	324	0.081831	21358048	0.396882					
Up	RPS13	176	0.040553	21024400	0.322742					
Up	RBX1	132	0.02978	9542636	0.3408					
Up	PAK1	115	0.016755	4561194	0.37158					
Up	CSNK2A2	112	0.026157	6172590	0.354758					
Up	PAK2	107	0.012051	4334042	0.349858					
Up	DDB1	105	0.029417	6420978	0.340602					
Up	PSMC4	101	0.019368	3810802	0.348739					
Up	DVL3	99	0.017256	5360158	0.344762					
Up	UBE2D3	96	0.018158	6872298	0.333975					
Up	SMARCB1	90	0.021042	7085456	0.33215					
Up	STAT5B	89	0.005633	1782886	0.349937					
Up	STX5	86	0.021729	5783250	0.327692					
Up	UBE2A	86	0.01665	6800442	0.330652					
Up	NUP153	81	0.019493	3839268	0.33388					
Up	JUP	79	0.012614	3875882	0.320148					
Up	PSMA3	78	0.009276	2735940	0.330535					
Up	SH3KBP1	76	0.011315	2648130	0.345321					
Up	HSPB1	69	0.012593	3676246	0.34167					
Up	BET1	67	0.013941	4543480	0.325711					
Up	AMFR	66	0.018899	2411936	0.345907					
Up	RRAS2	64	0.00438	2169028	0.301914					
Up	MARK2	63	0.012107	3287224	0.338315					
Up	CBX5	62	0.015481	3171408	0.327807					
Up	CEBPB	62	0.007601	2245984	0.350172					
Up	PDPK1	62	0.00919	1612918	0.342169					
Up	HNRNPH1	59	0.013608	2423406	0.335625					
Up	DNAJB1	58	0.00611	1362926	0.344205					
Up	ATF3	57	0.005226	1555506	0.352755					
Up	SPATA13	56	0.00717	2217896	0.295759					
Up	FURIN	55	0.017306	2333572	0.332317					
Up	RHOBTB1	54	0.005265	891404	0.309798					
Up	SNAP23	52	0.010301	2133980	0.326551					
Up	Gene	TSS	Log2FC	FDR	Z.score	p.value	Enrichment	LogFC	p.value	NetPath
------	------------	------	--------	------	---------	---------	------------	--------	---------	------------------
Up	STXI1	49	0.006356	0.276999						
Up	TBK1	48	0.00946	0.346521						
Up	RAB25	48	0.00796	0.282579						
Up	ING2	42	0.006848	0.325236						
Up	ULK1	42	0.007643	0.274292						
Up	UCHL3	42	0.007629	0.325779						
Up	PEN2	41	0.004889	0.329235						
Up	CAP2	40	0.002011	0.288156						
Up	UBA3	40	0.005749	0.326187						
Up	DYRK1A	40	0.004394	0.309634						
Up	RBM22	39	0.01146	0.322616						
Up	TKX	38	0.001513	0.28752						
Up	TAF7	38	0.010147	0.324044						
Up	CAMK2G	38	0.007152	0.341969						
Up	ATF4	37	0.006742	0.328036						
Up	TLR3	36	0.004686	0.305217						
Up	MYO9A	36	8.05E-04	0.28752						
Up	BABAM1	36	0.008431	0.324044						
Up	STK26	36	0.008804	0.323842						
Up	ACTR3C	35	0.002617	0.282732						
Up	CREB5	35	0.001154	0.298035						
Up	NET1	33	0.003076	0.327189						
Up	EEF1B2	32	0.00465	0.32501						
Up	AHR	32	0.003156	0.347858						
Up	PIP5K1B	31	0.00183	0.326391						
Up	CLN3	31	0.007159	0.323485						
Up	HES1	30	0.0035	0.300115						
Up	RBPP6	29	0.008094	0.324089						
Up	AP1G2	29	0.008892	0.321377						
Up	RDX	29	0.003378	0.325146						
Up	RGPDS1	28	0.002967	0.322995						
Up	HSD3B1	28	0.009418	0.320497						
Up	COG3	27	0.00261	0.24988						
Up	ATP6V0C	27	0.008472	0.320959						
Up	TFRC	27	0.004398	0.329004						
Up	TIAL1	27	0.005954	0.324858						
Up	DCP2	27	0.007451	0.243872						
Up	CAPZA1	26	0.00269	0.325191						
Up	FKBP2	25	0.03414	0.282255						
Up	TWIST1	24	0.001372	0.298643						
Up	TIMP2	24	0.001662	0.250924						
Up	SPTLC1	24	0.008272	0.320827						
Up	DAPK1	24	0.003354	0.3437						
Up	STT3B	23	0.005888	0.320805						
Up	RBMS1	23	0.005223	0.322772						
Up	ANK3	21	0.004965	0.321819						
Up	TGD	21	0.00124	0.326346						
Up	CHMP5	20	0.00503	0.320915						
Up	MB2D2	20	0.003168	0.265195						
Up	TRIM25	20	0.002013	0.326073						
Up	TEAD3	20	0.001225	0.323954						
Up	SLCA32	20	0.005187	0.323435						
Up	BMP1	19	0.00311	0.290095						
Up	RHOBTB3	19	0.002152	0.322439						
Up	CHD2	19	0.00121	0.256894						
Up	RYBP	19	0.002415	0.322572						
Up	GLRX	18	0.00459	0.320959						
Up	KMT2C	18	0.003676	0.285019						
Up	YTHDC1	18	0.003349	0.33407						
Up	GRIK7	18	5.17E-04	0.294598						
Up	JWSI	17	0.004258	0.236798						
Up	TRAF3IP2	17	0.001901	0.324246						
Up	CSF3R	17	0.001832	0.329027						
Up	AFF1	17	0.003482	0.247805						
Up	INO80C	17	0.003498	0.321245						
Up	CASP4	17	0.002253	0.263822						
Up	YIPF6	17	0.003441	0.320827						
Up	PCDG1	16	0.003259	0.253558						
Up	CXCRC2	16	0.003899	0.33452						
Up	ELF3	16	6.72E-04	0.203260						
Gene Symbol	Fold Change	p-value	Log2FoldChange	Adjusted p-value						
-------------	-------------	---------	----------------	-----------------						
USP33	16	0.002932	430028	0.322927						
AGFG1	15	0.003227	435804	0.321443						
LNPEP	14	7.10E-04	211470	0.322483						
RORA	14	0.001493	299584	0.282187						
LARP1B	14	0.004683	546700	0.321708						
ACSL4	14	0.005208	423594	0.320388						
ESRRG	14	0.001317	573474	0.244687						
MXD1	13	6.21E-04	548286	0.273427						
GET4	13	0.001988	297146	0.321113						
NFE2	13	0.001758	361494	0.277475						
SCNN1B	13	0.001794	293352	0.321863						
TBX3	11	0.00107	660104	0.254826						
RORA	14	0.001493	299584	0.282187						
LARP1B	14	0.004683	546700	0.321708						
ACSL4	14	0.005208	423594	0.320388						
ESRRG	14	0.001317	573474	0.244687						
MXD1	13	6.21E-04	548286	0.273427						
GET4	13	0.001988	297146	0.321113						
NFE2	13	0.001758	361494	0.277475						
SCNN1B	13	0.001794	293352	0.321863						
TBX3	11	0.00107	660104	0.254826						
RORA	14	0.001493	299584	0.282187						
LARP1B	14	0.004683	546700	0.321708						
ACSL4	14	0.005208	423594	0.320388						
ESRRG	14	0.001317	573474	0.244687						
MXD1	13	6.21E-04	548286	0.273427						
GET4	13	0.001988	297146	0.321113						
NFE2	13	0.001758	361494	0.277475						
SCNN1B	13	0.001794	293352	0.321863						
TBX3	11	0.00107	660104	0.254826						
RORA	14	0.001493	299584	0.282187						
LARP1B	14	0.004683	546700	0.321708						
ACSL4	14	0.005208	423594	0.320388						
ESRRG	14	0.001317	573474	0.244687						
MXD1	13	6.21E-04	548286	0.273427						
GET4	13	0.001988	297146	0.321113						
NFE2	13	0.001758	361494	0.277475						
SCNN1B	13	0.001794	293352	0.321863						
TBX3	11	0.00107	660104	0.254826						
RORA	14	0.001493	299584	0.282187						
LARP1B	14	0.004683	546700	0.321708						
ACSL4	14	0.005208	423594	0.320388						
ESRRG	14	0.001317	573474	0.244687						
MXD1	13	6.21E-04	548286	0.273427						
GET4	13	0.001988	297146	0.321113						
NFE2	13	0.001758	361494	0.277475						
SCNN1B	13	0.001794	293352	0.321863						
TBX3	11	0.00107	660104	0.254826						
RORA	14	0.001493	299584	0.282187						
LARP1B	14	0.004683	546700	0.321708						
ACSL4	14	0.005208	423594	0.320388						
ESRRG	14	0.001317	573474	0.244687						
MXD1	13	6.21E-04	548286	0.273427						
GET4	13	0.001988	297146	0.321113						
Gene	Down	DE	FDR	p-value	p-adjusted	Fold Change	q-value			
--------	------	------	-------	---------	------------	-------------	--------			
MYL9	60	0.008098	2479906	0.335361						
DMT1	58	0.008481	2242228	0.32726						
TCY1	54	0.009445	2760706	0.330279						
MRPL34	52	0.006656	17810170	0.236106						
CCND3	51	0.003239	1930616	0.32283						
TCF4	54	0.008618	1694556	0.33133						
DIMT1	58	0.008481	2242228	0.32726						
MRPL34	52	0.006656	17810170	0.236106						
CCND3	51	0.003239	1930616	0.32283						
TCF4	54	0.008618	1694556	0.33133						
Down	miRNA	Hub Genes	Degree	MIcroRNA	Regulation	Hub Genes	Degree	TF		
------	-------	-----------	--------	----------	------------	-----------	--------	----		
NDN	15	0.003831	473694	0.322239						
ADAM15	15	0.001982	294010	0.331283						
ARHGEF2	15	9.41E-04	262476	0.330396						
PMT	14	0.005116	629532	0.29664						
VWF	14	0.001828	345586	0.275097						
OXTR	14	0.001359	122180	0.23325						
FRYL	14	0.001994	332012	0.321598						
ARHGEF6	13	0.001032	179796	0.326573						
TSC2D3	13	1.34E-04	119696	0.32391						
IMPDH1	13	0.002712	390200	0.321554						
NME4	12	0.003215	901430	0.301583						
EHD2	12	0.003128	309602	0.320717						
RGL1	12	5.53E-04	670384	0.247308						
COL18A1	12	0.001098	309928	0.266008						
ADGRA2	12	8.13E-04	196338	0.301583						
FMOD	11	2.68E-04	98450	0.300385						
SLIT3	10	6.95E-05	22762	0.24207						
COL5A1	3	4.31E-05	14682	0.244636						
TGFBI	3	8.62E-06	14986	0.248607						
RASIP1	2	1.64E-06	1660	0.251732						
CAS2	2	0	0	0.258536						
PCOLCE	2	3.25E-05	6584	0.246761						
COL4A2	2	0	0	0.208517						
SVIL	2	0	0	0.262801						
SMTN	2	7.00E-06	2536	0.261073						
COL4A5	2	7.45E-06	6672	0.244776						
FSCN1	2	2.41E-06	2090	0.268585						
ADAMTS1	2	5.19E-05	3268	0.250857						
CTSC	1	0	0	0.244559						
FEZ1	1	0	0	0.21526						
MALL	1	0	0	0.269357						
LYL1	1	0	0	0.248489						
SEMA3A	1	0	0	0.27858						
ENPP2	1	0	0	0.195022						
BST2	1	0	0	0.24757						
F3	1	0	0	0.236738						
COL16A1	1	0	0	0.204978						
ANGPTL2	1	0	0	0.252724						
NCA LD	1	0	0	0.250508						
RASL12	1	0	0	0.228262						
PPP1R14A	1	0	0	0.273923						
FCGR7	1	0	0	0.243872						
CN2	1	0	0	0.268139						
EHBP1	1	0	0	0.242848						
COL3A1	1	0	0	0.216264						
DDIT4	1	0	0	0.25408						
ITM2C	1	0	0	0.249441						
GAS6	1	0	0	0.257007						
FERMT2	1	0	0	0.252751						
RAPGEF5	1	0	0	0.246424						
APCDD1	1	0	0	0.230588						
MMP23B	1	0	0	0.200599						
PTPRD	1	0	0	0.274549						
RSPO3	1	0	0	0.249441						
COL6A1	1	0	0	0.243745						
DDR2	1	0	0	0.247805						
NEK6	1	0	0	0.244776						
COL5A2	1	0	0	0.205788						
TSPAN4	1	0	0	0.244559						
IFITM3	1	0	0	0.27858						
HES4	1	0	0	0.261875						
FAT1	1	0	0	0.242521						

Table 6: miRNA - hub gene and TF – hub gene interaction
Sl. No/ Code	EGFR PDB: 4UV7 (Energy)	-C docker Interaction Energy	HSP90AA1 PDB: 5NJX (Energy)	-C docker Interaction Energy	PAK1 PDB: 3Q4Z (Energy)	-C docker Interaction Energy	RBX1 PDB: 3FN1 (Energy)	-C docker Interaction Energy				
AJA	-56.02	-10.57	18.17	-77.05	21.66	-196.65	13.03	43.86	-113.94	5.61	37.90	
ALE	-22.04	-17.45	10.55	-16.93	12.00	-58.34	-2.81	24.49	-24.28	-9.71	18.84	
ALO	-6.22	-25.19	8.57	-2.69	9.65	-4.41	-19.09	14.60	-11.36	-18.02	15.96	
ARA	-50.94	-28.62	19.50	-57.53	26.43	-159.25	8.76	57.02	-83.85	-16.52	33.54	
ARJ	-43.98	17.23	28.38	-39.56	18.14	25.73	-119.99	33.00	43.82	-39.87	26.58	31.46
ARG	-49.90	20.57	23.74	-61.58	22.29	25.37	-151.03	40.87	47.08	-7.21	-116.32	22.65
ANA	-65.59	-68.87	32.04	-89.71	51.76	-245.05	-79.05	83.86	-61.60	21.05	41.01	
ALL	-118.34	-47.02	34.21	-168.97	50.42	39.91	-139.90	62.54	-18.62	-15.64	14.90	
CAR	-86.83	19.53	35.26	-45.09	19.64	36.45	-131.24	58.34	-48.59	-55.20	21.22	
CAJ	-6.67	-21.05	9.42	-6.26	20.34	-9.30	-16.06	13.09	-47.54	28.64	30.02	
CAP	-35.79	-58.29	19.06	-42.81	28.01	-172.32	-28.95	57.88	-6.63	-25.87	30.85	
CAV	-65.69	22.19	25.24	-53.63	25.00	27.33	-136.49	43.84	47.47	-46.65	19.83	28.55
CHA	-4.05	-30.55	21.32	-35.08	30.24	21.35	-107.73	-7.42	44.11	-27.07	13.28	14.79
---	---	---	---	---	---	---	---					
CHL	-14.17	8.84	17.63	-49.92	15.28	24.60	-81.41	27.24	34.82	-80.66	-26.20	43.47
CIN	-50.02	12.60	14.67	-27.06	11.55	13.70	-92.97	18.99	21.39	-29.49	-17.74	24.17
CUR	-61.32	-38.90	27.73	-64.69	-22.71	40.68	-276.18	16.00	87.65	-61.40	18.48	32.45
ELL	-40.77	-22.62	18.69	-34.20	-24.49	16.72	-137.67	1.59	41.48	-73.55	20.96	35.11
EUG	-71.25	14.65	28.33	-71.08	13.46	27.19	-149.04	30.21	46.83	-40.14	-27.96	25.52
FER	-84.22	11.92	24.50	-38.93	14.41	25.46	-157.42	32.92	48.59	-74.77	-97.25	24.35
GIN	-26.63	-36.38	14.98	-51.74	-30.08	21.65	-135.45	-15.24	39.95	-47.21	14.33	17.68
GNS	-36.67	10.71	17.53	-41.60	12.11	20.48	-132.64	26.84	30.74	-84.78	-82.04	29.12
GYM	-41.53	-84.64	23.43	-52.36	-79.44	27.80	-110.88	-55.77	55.03	-78.34	-164.85	26.81
GYA	-75.68	-162.34	32.37	-86.27	-145.33	40.68	-160.78	-122.08	67.89	-75.89	20.89	41.44
GMT	-4.26	-99.21	17.86	-72.64	-91.68	25.64	-109.57	-79.81	40.10	-47.57	30.04	32.56
HYD	-68.08	19.53	34.12	-125.59	23.82	41.37	-158.25	41.54	59.92	-20.94	20.67	23.23
INO	-50.91	24.87	26.12	-43.89	24.42	27.14	-87.39	39.52	44.59	-28.20	15.41	23.15
LEU	-38.73	18.54	21.60	-26.25	15.39	18.10	-122.22	27.38	32.75	-48.37	26.66	39.62
LEP	-16.17	7.13	15.51	-21.35	8.09	16.21	-62.06	19.28	25.76	-31.27	18.48	20.64
LIR	-53.70	9.95	22.56	-84.07	18.36	27.30	-142.76	31.85	41.89	-29.11	-73.02	27.80
MAL	-58.66	21.70	30.45	-34.92	23.71	32.09	-138.59	36.48	50.57	-24.50	-15.13	18.76
MHC	-28.62	13.37	15.74	-32.04	13.89	16.17	-33.87	21.61	22.73	-40.19	-77.90	31.36
MYR	-22.60	-74.73	29.54	-51.69	-68.66	31.40	-94.78	-45.63	63.61	-48.31	20.69	36.63
NIM	-17.29	-20.00	11.23	-22.94	-18.68	12.75	-39.38	-11.59	19.23	-73.77	21.14	30.96
MPO	-26.31	-85.18	28.60	-27.95	-81.28	30.13	-62.20	-67.23	48.83	-49.69	-107.43	17.79
PHE	-52.17	12.68	21.80	-59.98	17.35	28.95	-140.57	34.70	49.40	-51.52	-95.45	20.50
PUN	-23.27	-121.88	26.67	-62.56	19.02	28.47	-100.15	27.33	36.00	-6.35	3.83	17.39
PUC	-22.94	-98.54	23.93	-110.98	-114.66	31.90	-147.91	-67.17	73.20	-25.35	-112.29	24.27
QUE	-25.04	-95.41	19.39	-29.38	-88.29	31.16	-182.08	-73.82	62.28	-119.62	14.22	41.65
SHA	-62.78	4.01	17.60	-97.71	-87.07	28.88	-133.51	-71.22	39.42	-38.98	22.34	28.18
SYR	-42.02	-112.72	18.53	-57.33	0.94	14.08	-111.64	16.61	30.08	-28.67	15.86	22.42
TER	-48.17	3.01	26.96	-45.14	-109.25	24.75	-88.49	-99.19	31.30	-55.95	20.86	33.04
TPN	-48.96	17.76	22.80	-58.53	5.58	30.24	-151.71	24.04	55.75	-38.43	15.22	28.09
VIC	-49.26	11.32	17.70	-60.62	17.96	23.33	-150.32	32.32	43.25	-15.63	21.72	55.13
GLY	-49.25	15.93	28.98	-46.36	9.39	14.16	-83.17	23.57	29.57	-25.71	18.79	28.22
Figures

Volcano plot

Fig. 1. Volcano plot of differentially expressed genes. Genes with a significant change of more than two-fold were selected. Green dot represented up regulated significant genes and red dot represented down regulated significant genes.
Fig. 2. Heat map of differentially expressed genes. Legend on the top left indicate log fold change of genes. (A1 – A38 = Gestational diabetes mellitus; B1 – B70 = Gestational diabetes mellitus)

Fig. 3. PPI network of DEGs. The PPI network of DEGs was constructed using Cytoscap. Up regulated genes are marked in green; down regulated genes are marked in red.
Fig. 4. Modules of isolated form PPI of DEGs. (A) The most significant module was obtained from PPI network with 16 nodes and 32 edges for up regulated genes (B) The most significant module was obtained from PPI network with 16 nodes and 34 edges for down regulated genes. Up regulated genes are marked in green; down regulated genes are marked in red.

Fig. 5. MiRNA - hub gene regulatory network. The light purple color diamond nodes represent the key miRNAs; up regulated genes are marked in green; down regulated genes are marked in red.
Fig. 6. TF - hub gene regulatory network. The yellow color triangle nodes represent the key TFs; up regulated genes are marked in green; down regulated genes are marked in red.

Fig. 7. ROC curve validated the sensitivity, specificity of hub genes as a predictive biomarker for GDM prognosis.
A) HSP90AA1 B) EGFR C) RPS13 D) RBX1 E) PAK1 F) FYN G) ABL1 H) SMAD3 I) STAT3 J) PRKCA
Fig. 8 Validation of hub genes by RT-PCR. A) HSP90AA1 B) EGFR C) RPS13 D) RBX1 E) PAK1 F) FYN G) ABL1 H) SMAD3 I) STAT3 J) PRKCA
Fig 9. Chemical Structures of Phytoconstituents
Fig. 10 Structure of ALO

Fig. 11 Structure of MAL

Fig. 12 3D Binding of ALO with 3FN1

Fig. 13 3D Binding of MAL with 3Q4Z
Fig. 14 2D Binding of ALO with 3FN1

Fig. 15 2D Binding of MAL with 3Q4Z