Genetic Variation in the TNF Gene Is Associated with Susceptibility to Severe Sepsis, but Not with Mortality

Zhenju Song1, Yuanlin Song2, Jun Yin1, Yao Shen2, Chenling Yao1, Zhan Sun1, Jinjin Jiang2, Duming Zhu3, Yong Zhang2, Qinjun Shen2, Lei Gao2, Chaoyang Tong1*, Chunxue Bai2*

1 Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China, 2 Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China, 3 Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China

Abstract

Background: Tumor necrosis factor (TNF) and TNF receptor superfamily (TNFR)-mediated immune response play an essential role in the pathogenesis of severe sepsis. Studies examining associations of TNF and lymphotoxin-α (LTA) single nucleotide polymorphisms (SNPs) with severe sepsis have produced conflicting results. The objective of this study was to investigate whether genetic variation in TNF, LTA, TNFRSF1A and TNFRSF1B was associated with susceptibility to or death from severe sepsis in Chinese Han population.

Methodology/Principal Findings: Ten SNPs in TNF, LTA, TNFRSF1A and TNFRSF1B were genotyped in samples of patients with severe sepsis (n = 432), sepsis (n = 384) and healthy controls (n = 624). Our results showed that rs1800629, a SNP in the promoter region of TNF, was significantly associated with risk for severe sepsis. The minor allele frequency of rs1800629 was significantly higher in severe sepsis patients than that in both healthy controls (P = 0.0046, odds ratio (OR) = 1.92) and sepsis patients (P = 0.002, OR = 1.56). Further, we investigated the correlation between rs1800629 genotypes and TNF-α concentrations in peripheral blood mononuclear cells (PBMCs) of healthy volunteers exposed to lipopolysaccharides (LPS) ex vivo, and the association between rs1800629 and TNF-α serum levels in severe sepsis patients. After exposure to LPS, the TNF-α concentration in culture supernatants of PBMCs was significantly higher in the subjects with AA+AG genotypes than that with GG genotype (P = 0.007). Moreover, in patients with severe sepsis, individuals with AA+AG genotypes had significantly higher TNF-α serum concentrations than those with GG genotype (P = 0.02). However, there were no significant associations between SNPs in the four candidate genes and 30 day mortality for patients with severe sepsis.

Conclusions/Significance: Our findings suggested that the functional TNF gene SNP rs1800629 was strongly associated with susceptibility to severe sepsis, but not with lethality in Chinese Han population.

Citation: Song Z, Song Y, Yin J, Shen Y, Yao C, et al. (2012) Genetic Variation in the TNF Gene Is Associated with Susceptibility to Severe Sepsis, but Not with Mortality. PLoS ONE 7(9): e46113. doi:10.1371/journal.pone.0046113

Editor: Mark M. Wurfel, University of Washington, United States of America

Received December 14, 2011; Accepted August 28, 2012; Published September 27, 2012

Copyright: © 2012 Song et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by grants from the Major Program of the National Natural Science Foundation of China (30930090), the National Natural Science Foundation of China (81000023 and 81171837), the Shanghai Committee of Science and Technology (09411960400) and the Shanghai Public Health Fund for Distinguished Young Scholars (08GWQ026). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

Introduction

Sepsis is an infection-initiated and inflammation-induced syndrome. Despite progress in the development of antibiotics and other supportive care therapies, severe sepsis remains an un conquered challenge for the clinicians with an unacceptable high mortality rate of 50%–50% [1]. The response to infection is diverse among different individuals. Given the same therapies, most sepsis patients will recover and do well, while a small, but significant portion, will develop severe sepsis and multiple organ system failure, refractory hypotension and death [2,3]. Currently, more and more evidence showed that genetic factors played an important role in the development and severity of sepsis [4,5,6,7,8,9,10,11]. Common sequence variants within genes involved in pro-inflammatory response have received particular attention [12,13].

Although the pathogenesis of sepsis remains incompletely understood, an excessive pro-inflammatory response has been established as a fundamental component of severe sepsis [14]. The proinflammatory cytokine TNF-α is an essential component in the host immune response to infection and has been widely reported to be an important mediator in severe sepsis and septic shock. High circulating levels of TNF-α were correlated with poor outcomes in sepsis patients [15]. TNF-α and lymphotoxin-α (LT-α) share the same receptors as well as many biological activities, and they are central mediators of immune responses [16]. TNF-α and LT-α are encoded by adjacent gene loci in the central or class III region of the human major histocompatibility complex (MHC), between the HLA class I and II genes on the short arm of chromosome 6 [17]. Several SNPs within the promoter region of TNF (−238, −308, −857, −863, −1031) and the first intron of LTA (+252) were thought to influence TNF-α and LT-α production, and have
TNF-α and LT-α exert their pleiotropic functions by activating intracellular signaling cascades via binding to two types of receptors, TNFR-1 (encoded by the TNFRSF1A gene) and TNFR-2 (encoded by the TNFRSF1B gene) [30]. TNFR1-deficient mice are resistant to endotoxic shock and have prolonged survival with less hypothermia [31]. TNFR2 influences the biological activity of TNF-α and LT-α both in a membrane-bound and a soluble form. Membrane-bound TNFR2 facilitates activation of nuclear factor (NF)-κB and mitogen-activated protein kinase signaling cascades upon binding with TNF-α and LT-α, whereas soluble TNFR2 is capable of binding and inactivating circulating TNF-α and LT-α [16,30]. Moreover, animal studies showed that TNFR2 mediated protective effects in the development of severe sepsis [31]. Recent studies proposed that genetic variation in TNFRSF1A and TNFRSF1B was associated with susceptibility to inflammatory and autoimmune diseases, such as tuberculosis, systemic lupus erythematosus, rheumatoid arthritis and Crohn’s disease [32,33,34,35]. However, to date, only one study investigated the role of TNFRSF1A and TNFRSF1B polymorphisms in sepsis susceptibility and mortality [36].

Considering the important role of TNF-α, LT-α, TNFR1 and TNFR2 in the pathogenesis of severe sepsis, we hypothesized that genetic variation in TNF, LTA, TNFRSF1A and TNFRSF1B might be associated with susceptibility to and outcomes from severe sepsis in Chinese Han population. To test this hypothesis, we conducted a relatively large-scale case-control study enrolling 432 severe sepsis patients, 384 sepsis patients and 624 healthy individuals to investigate the association of genetic variants in TNF, LTA, TNFRSF1A and TNFRSF1B with severe sepsis susceptibility and prognosis in Chinese Han population. Furthermore, we investigated the association between the genotypes of the TNF gene SNP rs1800629 and TNF-α concentration in culture supernatants of LPS simulated PBMCs obtained from healthy donors and in serum from severe sepsis patients.

Results

Characteristics of Study Subjects

A total of 432 severe sepsis patients, 384 sepsis patients and 624 healthy volunteers were enrolled in this case-control study. According to the mortality within 30 days, severe sepsis patients were divided into survivor and non-survivor groups. The baseline characteristics and clinical data of all subjects are shown in Table 1. The average age and proportion of male among the severe sepsis, sepsis and healthy control groups did not show significant difference. The primary source of infection in severe sepsis patients was the lungs (69.9%), followed by abdomen (21.8%), blood stream (3.5%), urinary tract (2.5%) and others (2.3%). The overall 30-day mortality rate of severe sepsis patients was 36.1%. The mean APACHE II and SOFA score in non-survivor group was higher than that in survivor group (P<0.05).

Association Analyses of TNF, LTA, TNFRSF1A and TNFRSF1B SNPs with Susceptibility to Severe Sepsis

The genotyping success rates of all tested SNPs ranged from 95% to 99% and none of the ten SNPs diverged significantly from Hardy-Weinberg equilibrium (P>0.05) (Table 2). The allele and genotype distributions of all tested SNPs in severe sepsis patients, sepsis patients and healthy controls are listed in Table 3. Our results showed that rs1800629 (A allele) in the promoter region of TNF, was associated with significantly increased risk for severe sepsis. The frequency of rs1800629A in severe sepsis patients was significantly higher than that in both the healthy control subjects (P=0.00022, OR=2.08) and the sepsis patients (P=0.00035, OR=2.39), and the difference remained significant after Bonferroni correction. Moreover, in multivariate analyses after adjustment for covariates, rs1800629A was still significantly associated with the development of severe sepsis when compared with healthy control group (P=0.00046, OR=1.92) and sepsis group (P=0.002, OR=1.56). The genotype distribution of rs1800629 in the severe sepsis group was also significantly different from that in the healthy control group (P=0.003) and the sepsis group (P=0.004), and the significance remained after Bonferroni correction. However, the difference of the allele and genotype frequencies of rs1800629 between subjects with sepsis and healthy controls were not statistically significant (P>0.05). When we analyzed the allele and genotype distributions of the other nine SNPs (rs361525, rs17990724, rs1799964, rs767455, rs4149570, rs1061622, rs3397, rs1800630 and rs990253), no significant difference was found between the severe sepsis, sepsis and healthy control groups (Table 3).

Association Analyses of TNF, LTA, TNFRSF1A and TNFRSF1B SNPs with Severe Sepsis Outcomes

We next investigated the association between all tested SNPs and 30-day mortality. The overall 30-day mortality rate among severe sepsis patients was 36.1%. We compared the allele and genotype distributions of all tested SNPs between survivors and non-survivors of severe sepsis patients. No association was observed between TNF, LTA, TNFRSF1A and TNFRSF1B variants and 30-day mortality in the severe sepsis cohort in either the unadjusted or adjusted models (Table 4).

Rs1800629 Genotypes were Associated with Elevated TNF-α Concentrations

To determine whether rs1800629 genotypes influenced TNF-α production, we investigated TNF-α levels in culture supernatants of PBMCs obtained from 24 healthy volunteers. We observed a significant association between TNF-α levels and rs1800629 genotypes under the LPS-stimulated condition. AA+AG genotypes were associated with higher levels of TNF-α compared with GG genotype after LPS stimulation (P=0.007) (Figure 1). However, no significant association was observed under the unstimulated condition.

Furthermore, we measured TNF-α serum concentrations in 120 severe sepsis patients, including 104 patients with rs1800629GG genotype, 14 patients with GA genotype and 2 patients with AA genotype. Our results showed that rs1800629A allele was associated with higher TNF-α serum concentrations on the first day of severe sepsis. As shown in Figure 2, the serum concentration of TNF-α in severe sepsis patients with AA+AG genotypes was significantly higher than that of patients with GG genotype (550.4±73.6 pg/mL vs. 488.0±63.3 pg/mL, P=0.001). To control confounding variables, we used the possible confound-
Table 1. Demographic and clinical characteristics of the study subjects.

	Healthy controls	Sepsis patients	Severe sepsis patients	P^1 value	Survivor	Nonsurvivor	P^2 value
Number	624	384	432	N.A	276	156	N.A
Age (years)	68.5±9.3	62.1±10.8	65.1±11.8	0.12	63.4±10.8	68.1±14.2	0.09
Sex (Male/Female)	363/261	220/164	256/176	0.57	163/113	93/63	0.91
APACHE II score	N.A	10.2±3.2	18.6±4.9	0.008	14.8±2.9	25.3±7.2	0.013
Length of ICU stay (d)	N.A	8.6±2.3	15.4±8.6	0.006	14.6±7.2	16.8±8.9	0.02
Diabetes	N.A	35 (9.1%)	46 (10.6%)	0.47	30 (10.8%)	16 (10.2%)	0.84
Chronic liver disease	N.A	9 (2.3%)	15 (3.5%)	0.34	8 (2.9%)	7 (4.5%)	0.39
Chronic renal failure	N.A	14 (3.6%)	18 (4.2%)	0.70	12 (4.3%)	6 (3.8%)	0.80
Congestive heart failure	N.A	22 (5.7%)	28 (6.5%)	0.66	18 (6.5%)	10 (6.4%)	0.96
Chronic pulmonary disease	N.A	28 (7.3%)	37 (8.6%)	0.50	22 (8.0%)	15 (9.6%)	0.56
SOFA score	N.A	1.4±0.3	8.2±1.6	<0.001	6.9±1.8	10.5±1.9	0.011
Failing organs (score ≥2 in SOFA scale)	N.A	N.A	293 (67.8%)	N.A	156 (56.5%)	137 (87.8%)	<0.001
	N.A	N.A	252 (58.3%)	N.A	141 (51.1%)	111 (71.2%)	<0.001
	N.A	62 (25.9%)	112 (46.7%)	N.A	46 (16.7%)	66 (42.3%)	<0.001
	N.A	9 (17.3%)	59 (10.3%)	N.A	29 (10.5%)	30 (19.2%)	0.01
	N.A	42 (8.7%)	51 (25.9%)	N.A	18 (6.5%)	24 (15.4%)	0.003
	N.A	35 (8.1%)	35 (7.1%)	N.A	14 (5.1%)	21 (13.5%)	0.002
Infection insult	N.A	N.A	261 (68.0%)	N.A	277 (68.4%)	302 (69.9%)	0.55
	N.A	252 (58.3%)	94 (21.8%)	0.46	57 (20.7%)	37 (23.7%)	0.46
	N.A	11 (2.9%)	15 (3.5%)	0.62	7 (2.5%)	8 (5.1%)	0.16
	N.A	9 (2.3%)	11 (2.5%)	0.85	8 (2.9%)	3 (1.9%)	0.52
	N.A	11 (2.9%)	10 (2.3%)	0.62	6 (2.2%)	4 (2.6%)	0.80
Microbiology positive	N.A	153 (39.8%)	174 (40.3%)	0.90	101 (36.6%)	73 (46.8%)	0.04
Gram positive	N.A	63 (41.2%)	66 (37.9%)	0.55	41 (40.6%)	25 (34.2%)	0.39
Gram negative	N.A	73 (47.7%)	72 (41.4%)	0.25	43 (42.6%)	29 (39.7%)	0.71
Fungi	N.A	7 (1.8%)	17 (9.8%)	0.07	9 (8.9%)	8 (11.0%)	0.65
Mixed	N.A	10 (6.5%)	19 (10.9%)	0.16	8 (7.9%)	11 (15.1%)	0.14
Microbiology unknown	N.A	231 (60.2%)	258 (59.7%)	0.90	175 (63.4%)	83 (53.2%)	0.04

| | N.A, not applicable; APACHE, acute physiology and chronic health evaluation; SOFA, sequential organ failure assessment. P^1, sepsis group vs severe sepsis group. P^2, survivor group vs non-survivor group. doi:10.1371/journal.pone.0046113.t001 |

Table 2. Characteristics of all tested SNPs in TNF, LTA, TNFRSF1A and TNFRSF1B.

Gene	SNP	Location	Major/minor allele	HWE P value
TNF	rs361525 (−238)	promoter	C/T	0.46
	rs1800629 (−308)	promoter	G/A	0.18
	rs1799724 (−857)	promoter	G/A	0.67
	rs1800630 (−863)	promoter	C/A	0.39
	rs1799964 (−1031)	promoter	T/C	0.49
LTA (TNF-β)	rs909253 (−252)	intron	A/G	0.58
TNFRSF1A	rs767455 (A36G)	exon	A/G	0.22
	rs4149570 (G609T)	5’UTR	G/T	0.72
TNFRSF1B	rs1061622 (Met196Arg)	exon	T/G	0.31
	rs3397	3’UTR	G/A	0.44

SNP, single nucleotide polymorphism; HWE, Hardy-Weinberg equilibrium; UTR, untranslated region. doi:10.1371/journal.pone.0046113.t002
Table 3. Association analysis of SNPs in TNF, LTA, TNFRSF1A and TNFRSF1B between case and control groups.

Gene	SNP	Healthy controls	Sepsis patients	Severe sepsis patients	Allelic Comparison	Genotypic Comparison				
		P₁^{adj}	OR₁^{adj} 95% CI	P₂^{adj}	OR₂^{adj} 95% CI	P₁^{adj}	P₂^{adj}			
TNF	rs1800629									
	GG	560 (93.3%)	352 (93.9%)	369 (86.4%)	0.00046	1.92 (1.26-2.92)	0.002	1.56 (1.23-2.76)	0.003	0.004
	GA	38 (6.3%)	23 (6.1%)	56 (13.1%)						
	AA	2 (0.3%)	0 (0%)	2 (0.47%)						
	G	1158 (96.5%)	727 (96.9%)	794 (93%)						
	A	42 (3.5%)	23 (3.1%)	60 (7%)						
	rs361525				0.22	1.09 (0.98-1.87)	0.88	1.02 (0.84-1.42)	0.21	0.89
	CC	550 (92%)	333 (88.8%)	382 (89.3%)						
	CT	48 (8%)	42 (11.2%)	46 (10.7%)						
	C	1148 (96%)	708 (94.4%)	810 (94.6%)						
	T	48 (4%)	42 (5.6%)	46 (5.4%)						
	rs1799724				0.21	1.18 (0.98-2.01)	0.52	1.06 (0.86-1.46)	0.12	0.85
	GG	444 (73.6%)	263 (70.3%)	285 (67.9%)						
	GA	149 (24.7%)	107 (28.6%)	130 (31%)						
	AA	10 (1.7%)	4 (1.1%)	5 (1.2%)						
	G	1037 (86%)	633 (84.6%)	700 (83.3%)						
	A	169 (14%)	115 (15.4%)	140 (16.7%)						
	rs179964				0.62	1.02 (0.92-1.42)	0.56	1.12 (0.84-1.46)	0.87	0.52
	TT	384 (64.4%)	234 (62.2%)	265 (62.6%)						
	TC	188 (31.5%)	130 (34.6%)	140 (33.1%)						
	CC	24 (4%)	12 (3.2%)	18 (4.3%)						
	T	956 (80.2%)	598 (79.5%)	670 (79.2%)						
	C	236 (19.8%)	154 (20.5%)	176 (20.8%)						
	rs1800630				0.32	1.09 (0.81-1.40)	0.38	1.18 (0.72-1.43)	0.12	0.42
	CC	412 (69%)	262 (70.6%)	275 (66.3%)						
	AC	179 (30%)	102 (27.5%)	128 (30.8%)						
	AA	6 (1%)	7 (1.9%)	12 (2.9%)						
	C	1003 (84%)	626 (84.4%)	678 (81.7%)						
	A	191 (16%)	116 (15.6%)	152 (18.3%)						
LTA	rs909253				0.18	0.89 (0.79-1.21)	0.36	0.82 (0.58-1.26)	0.29	0.14
	AA	178 (29.7%)	103 (27.8%)	140 (33.6%)						
	AG	266 (44.4%)	181 (48.9%)	181 (43.5%)						
	GG	155 (25.9%)	86 (23.2%)	95 (22.8%)						
	A	622 (51.9%)	387 (52.3%)	461 (55.4%)						
	G	576 (48.1%)	353 (47.7%)	371 (44.6%)						
TNFRSF1A	rs767455				0.16	1.20 (0.82-1.68)	0.72	1.04 (0.76-1.23)	0.27	0.76
	AA	462 (76.4%)	276 (73.4%)	302 (71.4%)						
	GA	131 (21.7%)	90 (23.9%)	112 (26.5%)						
	GG	12 (2.0%)	10 (2.7%)	9 (2.1%)						
	A	1055 (87.2%)	642 (85.4%)	716 (84.6%)						
	G	155 (12.8%)	110 (14.6%)	130 (15.4%)						
	rs4149570				0.78	0.96 (0.67-1.09)	0.41	1.09 (0.82-1.34)	0.86	0.62
	GG	178 (29.3%)	118 (31.6%)	123 (29.2%)						
	GT	303 (49.9%)	192 (51.3%)	212 (50.4%)						
Table 3. Cont.

Gene	Healthy controls	Sepsis patients	Severe sepsis patients	Allelic Comparison	Genotypic Comparison
SNP	P<adj adj 95% CI	OR<adj adj 95% CI P<adj adj 95% CI		P<adj adj 95% CI	P<adj adj P<adj adj
TT	126 (20.8%)	64 (17.1%)	86 (20.4%)		0.32 0.92 (0.87–1.28)
					0.32 1.02 (0.91–1.46)
					0.35 0.38
G	659 (54.3%)	428 (57.2%)	458 (54.4%)		0.32 1.02 (0.91–1.46)
					0.35 0.38
T	555 (45.7%)	320 (42.8%)	384 (45.6%)		0.32 1.02 (0.91–1.46)
					0.35 0.38
TNFRSF1B	rs1061622				0.32 1.02 (0.91–1.46)
					0.35 0.38
rs3397					0.32 1.02 (0.91–1.46)
					0.35 0.38

SNP, single nucleotide polymorphism; OR, odds ratio; CI, confidence interval. P<adj and OR<adj came from multivariate logistic regression. P<adj and OR<adj, healthy control group vs severe sepsis group. P<adj and OR<adj, sepsis group vs severe sepsis group. A P-value of <0.005 (0.05/10) was considered statistically significant after Bonferroni correction.

doi:10.1371/journal.pone.0046113.t003

Discussion

Several genetic variants within genes involved in pro-inflammatory response have been associated with morbidity and mortality in patients with severe sepsis or septic shock, which is a complex and multifactorial syndrome [2]. TNF-α is an important pro-inflammatory cytokine involved in sepsis; several functional SNPs in TNF and LTA have been extensively studied in sepsis [29,37]. However, results from previous studies were inconsistent. Discrepancies among previous studies may have resulted from differences in the populations studied, sepsis phenotype or imprecise definition of phenotype and limited sample size [38]. Considering these factors that might affect the results, we designed the present study with large samples size to achieve greater statistical power. Furthermore, all the samples were recruited from central Chinese Han population, thus the ethnic heterogeneity could be eliminated.

To our knowledge, this was the first relatively large-scale study investigating associations of genetic variants within TNF, LTA, TNFRSF1A and TNFRSF1B with severe sepsis in Chinese Han population. Our results provided evidence that rs1800629, a functional SNP in the promoter region of TNF, was significantly associated with susceptibility to severe sepsis in Chinese Han population. The association between rs1800629 and severe sepsis risk may be explained by its influence on the expression of TNF-α. In this study, we found that the risk allele (rs1800629A) is associated with increased TNF-α production in PBMCs from healthy subjects after stimulation with LPS. Moreover, we found that TNF-α serum levels in severe sepsis patients with AA+AG genotypes for rs1800629 were significantly higher than those in the individuals with GG genotype. Previous studies also showed that rs1800629A allele was associated with a six fold higher expression of both basal and induced TNF mRNA [39,40]. Menges et al. found that the plasma TNF-α concentrations in patients with sepsis secondary to severe traumatic injury were significantly elevated in rs1800629A carriers on the first day after admission and for the following 14 days [41]. As TNF-α plays a pivotal role in the pathogenesis of severe sepsis in response to infection, it is reasonable to assume that patients with rs1800629A allele might produce a higher amount of TNF-α, and therefore become more susceptible to severe sepsis. In contrast to the TNF −308G/A polymorphism, the LTA +252A/G was not associated with the development of severe sepsis in our study. Our data showed that −308G/A of TNF and +252A/G of LTA were in weak linkage disequilibrium (LD) (D′ = 0.118) in Chinese Han population. The LD pattern is quite dissimilar to Caucasian population, which might result from the racial difference [24].

Rs1800629 was not associated with mortality among subjects with severe sepsis in our study. This was consistent with the study by Stuber et al., which demonstrated that the rs1800629 genotypes were not associated with poorer prognosis in severe sepsis. However, they did not find an association between rs1800629 genotypes and plasma TNF-α levels [26]. Recently, Teuffel et al. conducted a systematic review and meta-analysis, which also concluded that rs1800629 (TNF −308 AA/AG, TNF2) was associated with susceptibility to sepsis, but not with sepsis mortality [29].

Several studies have proposed that genetic variation in TNFRSF1A and TNFRSF1B was associated with susceptibility to inflammatory and autoimmune diseases, such as tuberculosis, systemic lupus erythematosus, rheumatoid arthritis and Crohn’s disease [32,33,34,35]. However, up to now, only one case control
Table 4. Association analysis of SNPs in TNF, LTA, TNFRSF1A and TNFRSF1B between survivors and non-survivors of severe sepsis patients.

Gene	Allelic Comparison	Genotypic Comparison							
SNP	Nonsurvior	Survior	P_adj	ORadj	95% CI	P_adj	ORadj	95% CI	P_adj
TNF	rs1800629	0.43	0.72 (0.58–1.32)	0.56					
	GG	137 (89%)	232 (85%)						
	GA	17 (11%)	39 (14.3%)						
	AA	0 (0%)	2 (0.7%)						
	G	291 (84.5%)	503 (92.1%)						
	A	17 (5.5%)	43 (7.9%)						
LTA	rs909253	0.26	0.82 (0.54–1.12)	0.38					
	AA	58 (37.4%)	82 (31.4%)						
	AG	62 (40%)	119 (45.6%)						
	GG	35 (22.6%)	60 (23%)						
	A	178 (57.4%)	283 (54.2%)						
	G	132 (42.6%)	239 (45.8%)						
TNFRSF1A	rs767455	0.16	1.26 (0.87–1.86)	0.55					
	AA	106 (69.7%)	196 (72.3%)						
	GA	41 (27%)	71 (26.2%)						
	GG	5 (3.3%)	4 (1.5%)						
	A	253 (83.2%)	463 (85.4%)						
	G	51 (16.8%)	79 (14.6%)						
	rs4149570	0.65	1.15 (0.86–1.56)	0.26					
	GG	48 (31.4%)	75 (28%)						
	GT	70 (45.6%)	142 (53%)						
The study investigated associations between \textit{TNFRSF1A} and \textit{TNFRSF1B} polymorphisms and sepsis susceptibility [36]. Four potentially functional SNPs in \textit{TNFRSF1A} and \textit{TNFRSF1B} were genotyped in our study. However, none showed association with susceptibility to or death from severe sepsis in Chinese Han population. Our findings were consistent with the results of Gordon et al. that five functional SNPs in \textit{TNFRSF1A} and \textit{TNFRSF1B} were not associated with susceptibility to or outcomes from sepsis in Caucasian population [36].

Potential limitations of this study should be addressed. First, although we knew that different pathogens had different impact on severity and outcomes of sepsis, we did not perform stratification.
analysis by different pathogens due to small number of cases with a
definite microbiologic diagnosis. Second, we did not resequence
these genes or select tag SNPs for genotyping. Instead, only ten
potentially functional SNPs in TNF, LTA, TNFRSF1A and
TNFRSF1B were included in our study, which was far from
comprehensive. Indeed, these four genes are highly polymorphic.
Therefore, it was possible that some important SNPs might be
missed or the observed association might be due to other
polymorphisms in LD with the studied ones. Additionally,
assuming the prevalence of 0.01 for severe sepsis and using a
significance level of 0.05, our study with 432 severe sepsis patients
and 624 healthy controls had about 80% power to detect a 5% risk
allele with an odds ratio of 1.63. Variant with an effect size smaller
than this cannot convincingly be excluded based on these results.
Therefore, our results cannot exclude variant associations with
weaker effects between severe sepsis and the other three candidate
genes (LTA, TNFRSF1A, TNFRSF1B). A more highly powered study
involving thousands of subjects may yet exclude the role of
these variants in severe sepsis susceptibility and outcomes.

In conclusion, our relatively large scale association study
demonstrated that individuals with a functional variant in the
promoter region of TNF may confer susceptibility to severe sepsis.
However, common functional genetic variants in TNF, LTA,
TNFRSF1A and TNFRSF1B were not associated with severe sepsis
mortality in Chinese Han population.

Materials and Methods

Ethics Statement

This study was approved by the Ethics Study Board of
Zhongshan Hospital, Fudan University, Shanghai, China (Record
no: 2006-23). Written informed consent was obtained from
patients or the next of kin, carers or guardians on the behalf of
the participants before enrollment.

Study Design and Enrollment

From May 2005 to March 2011, a total of 432 severe sepsis
patients, 384 sepsis patients and 624 ethnic-matched healthy
controls were enrolled in this study (Table 1). The severe sepsis
patients were those admitted to the Emergency, Surgical and
Respiratory ICU at Zhongshan Hospital. The sepsis patients were
those admitted to Zhongshan Hospital, but did not develop severe
sepsis during hospital stay. The sepsis patients were considered as
at risk controls for severe sepsis. Of 384 sepsis patients, 174
patients overlapped with that from our previous study [42].
Another 210 sepsis patients were collected between May 2008 and
March 2011, and these patients were not included in our previous
study. Sepsis patients recruited in the current study included multi-
trauma subjects and patients with a history of chronic heart, renal,
liver or pulmonary failure, thus they spent a long time (more than
8 days on average) on ICU (Table 1). Sex- and age-matched
patients were not associated with severe sepsis mortality in Chinese Han
population.

SNPs Selection and Genotyping

Previous studies found that several functional SNPs in TNF,
LTA, TNFRSF1A and TNFRSF1B were associated with inflamma-
tory and autoimmune diseases. In our study, SNPs in TNF, LTA,
and TNFRSF1A and TNFRSF1B were selected based on the
following criteria: (1) location within the gene region (promoter,
intron, exon, 3’UTR and 5’UTR); (2) association with inflamma-
tory and autoimmune diseases such as sepsis, asthma, tuberculosis,
systemic lupus erythematosus, rheumatoid arthritis and Crohn’s
disease in more than two studies. A total of ten SNPs were selected
and genotyped in our study. Location and characterization of all
selected SNPs were listed in Table 2.

Genomic DNA was extracted from whole blood with a
FlexiGene DNA Kit (Qiagen, Hilden, Germany) in accordance
with the protocol of the manufacturer. Six SNPs (rs1800629,
rs1799724, rs361525, rs1800630, rs1799964 and rs909253) in
TNF and LTA were selected and genotyped by direct sequencing.
The sequencing reactions were performed using Applied Biosys-
tems BigDye (version 3.1) chemistry (Applied Biosystem, Foster
City, CA, USA), and the sequences were resolved using an ABI
3730 Genetic Analyzer. Analyses of the sequence traces were
performed using the Staden package and were double scored by a
second operator. The primers and PCR protocols used were
shown in Table S1. Four SNPs in TNFRSF1A (rs767435,
rs4149570) and TNFRSF1B (rs1061622, rs3397) were selected
and genotyped on the GenomeLab SNPstream high-throughput
12-plex genotyping platform (Beckman Coulter, Fullerton, CA)
following the manufacturer’s instructions. The primers for PCR
and single base extension were performed with Beckman Coulter
Autoprimer software and shown in Table S2.

Isolation and Stimulation of Cells from Healthy Subjects

To determine the associations between rs1800629 genotypes and
TNF-α levels in PBMCs, we investigated 15 subjects with
rs1800629GG genotype, 8 subjects with GA genotype and 1
subject with AA genotype. PBMCs were derived by using Ficoll
density gradient centrifugation method. Isolated PBMCs were
plated at a density of 1 × 10^6 cells/ml in 24-well plates and cultured
in RPMI 1640 medium with 10% FBS at 37 °C with 5% CO₂.
The cells were then incubated for 6 hours in presence or absence
of 100 ng/ml Escherichia coli 0111:B4 LPS (Sigma, USA). After
incubation, supernatants were harvested and stored at −80°C
until use.

Serum Collection and TNF-α Level Measurement

Blood samples (3 mL) were collected within 24 hours of meeting
criteria for severe sepsis. Samples were centrifuged at 4°C for
10 min at 3200 rpm within 60 min after collection. Then the

Genetic Variation and Susceptibility to Sepsis
serum was stored at −80°C until use. TNF-α level was determined by human ELISA kit (R&D Systems, USA) according to the manufacturer’s protocol.

Statistical Analysis

The genotype data of cases and controls was analyzed for deviations from Hardy-Weinberg equilibrium by the Haploview v4.1 software [44]. The differences in allele and genotype distributions between severe sepsis and control groups were compared using χ²-test or Fisher’s exact test when appropriate. The test for association with genotypes used the global genotype test as implemented in the software. Allele frequencies of cases and controls were used to calculate the OR, and the 95% CI. Multivariate logistic regression was used to adjust for potential confounding factors. When comparing severe sepsis group to sepsis group, we entered the genotypes or alleles in the multivariate models controlling for the confounding variables including age, gender, history of diseases, source of infection, APACHE II and SOFA scores. When comparing severe sepsis patients to healthy controls, age and gender were included in the multivariate models. The Bonferroni method was used to correct for multiple comparisons where applicable. The power analysis was performed using the Genetic Power Calculator web tool [45]. A two-tailed P-value of <0.05 was considered statistically significant, whereas a value of corrected P<0.05/number of tests] was considered significant after Bonferroni correction. Continuous variables were described as either a mean ± standard deviation, or as a median with interquartile range. TNF-α serum levels between individuals with different rs1800629 genotypes (AA+GA vs. GG) were compared by Student’s t-test. To determine whether an association with rs1800629 genotypes might depend on other potential confounding factors for TNF-α serum levels, we investigated the association of rs1800629 genotypes by adding the polymorphisms to a linear regression model controlling for age, gender and APACHE II scores. The software used for statistical calculations was SPSS 13.0 (SPSS Inc., Chicago, IL, USA) unless specified.

Supporting Information

Table S1 Primers and PCR protocols for six SNPs in TNF and LTA.

(DOC)

Table S2 The primers of SNPs in TNFRSFIA and TNFRSF1B.

(DOC)

Acknowledgments

We gratefully thank Drs Jae Woo Lee, Keyong Li and Zhiqiang Dong for their helpful comments on this manuscript.

Author Contributions

Conceived and designed the experiments: CB CT Z. Song. Performed the experiments: Z. Song Y. Song Y. Shen CY Z. Sun JJ DZ YZ QS. Analyzed the data: Z. Song. Contributed reagents/materials/analysis tools: LG JY. Wrote the paper: Z. Song CT.

References

1. Martin GS, Mannino DM, Eaton S, Moss M (2003) The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 348: 1346–1354.
2. Dahmer MK, Randolph A, Vitali S, Quanney MW (2005) Genetic polymorphisms in sepsis. Pediatr Crit Care Med 6: 561–62.
3. Holmes CL, Russell JA, Walley KR (2003) Genetic polymorphisms in sepsis and septic shock: role in prognosis and potential for therapy. Chest 124: 1103–1115.
4. Song Z, Yin J, Yao C, Sun Z, Shao M, et al. Variants in the Toll-interacting protein gene are associated with susceptibility to sepsis in the Chinese Han population. Crit Care 13: R12.
5. Hamann L, Kumpf O, Schuring RP, Alpsoy E, Bedu-Addo G, et al. (2009) Low frequency of the TIRAP S180L polymorphism in Africa, and its potential role in malaria, sepsis, and leprosy. BMC Med Genet 10: 65.
6. Arcaroli J, Silva E, Maloney JP, He Q, Svetkauskaite D, et al. (2006) Variant in the human TNF-α receptor 1 (TNFRSF1B) gene is associated with increased nuclear factor-kappaB activation and worse outcomes in sepsis. Am J Respir Crit Care Med 175: 1335–1341.
7. Toubiana J, Courrine E, Pene F, Viallon V, Asfar P, et al. (2010) IRAK-1 functional genetic variant affects severity of septic shock. Crit Care Med 38: 2267–2294.
8. Fernerwa B, Alosso S, Banaban K, McCall MB, Gianazzio-Bourbounil EJ, et al. (2009) Functional and genetic evidence that the Mal/TIRAP allele variant S180L has been selected by providing protection against septic shock. Proc Natl Acad Sci U S A 106: 10272–10277.
9. Pino-Yanes M, Corrales A, Casula M, Blanco J, Muriel A, et al. (2010) Common variants of TLR1 associate with organ dysfunction and sustained pro-inflammatory responses during sepsis. PLoS ONE 5: e13759.
10. Barber RC, Aragaki CC, Rivera-Chavez FA, Purdue GF, Hunt JL, et al. (2004) TNF and TNF-α polymorphisms are associated with an increased risk for severe sepsis following burn injury. J Med Genet 41: 808–813.
11. Zheng X, Zheng H, Lan R, Ye C, Wang Y, et al. (2011) Identification of genes and genomic islands correlated with high pathogenicity in Streptococcus suis severe sepsis following burn injury. J Med Genet 48: 1265–1270.
12. Hampe J, Tisch R, Streiner D, Bahsali A, Kardinal D, et al. (2006) A functional tagSNP of the TLR2 gene is associated with severe sepsis. J Epimicrobiol 1: 3182–2244.
13. Reid CL, Perrey C, Pravica V, Hutchinson IV, Campbell IT (2002) Human lymphotoxin and tumor necrosis factor genes: structure, homology and chromosomal localization. Nucl Acids Res 13: 6361–6373.
14. Mira JP, Caruso A, Grilli F, Delclaux C, Losser MR, et al. (1999) Association of TNF2, a TNF-alpha promoter polymorphism, with septic shock susceptibility and mortality: a multi-center study. JAMA 282: 561–566.
15. Appoloni O, Dupont E, Vandersmissen M, Andrei M, Duchateau J, et al. (2001) Association of tumor necrosis factor-2 allele with plasma tumor necrosis factor-alpha levels and mortality from septic shock. Am J Med 110: 498–501.
16. O’Keefe GE, Hybki DL, Manford RS (2002) The G→A single nucleotide polymorphism at the −308 position in the tumor necrosis factor-alpha promoter increases the risk for severe sepsis after trauma. J Trauma 53: 817–825; discussion 825–826.
17. Calvano JE, Uom JT, Agnew DM, Halm SJ, Kumar A, et al. (2005) Influence of the TNF-alpha and TNF-beta polymorphisms upon infectious risk and outcome in surgical intensive care patients. Surg Infect (Larchmt) 6: 163–169.
18. Wang S, Wei M, Han Y, Zhang K, He L, et al. (2008) Roles of TNF-alpha gene polymorphisms in the occurrence and progress of SARS-CoV infection: a case-control study. BMC Infect Dis 8: 27.
19. Tang GJ, Huang SL, Yien HW, Chen WS, Chi CW, et al. (2000) Tumor necrosis factor gene polymorphism and septic shock in surgical infection. Crit Care Med 28: 2733–2736.
20. Duan ZX, Gu W, Zhang LY, Jiang DP, Zhou J, et al. (2011) Tumor necrosis factor alpha gene polymorphism is associated with the outcome of trauma patients in Chinese Han population. J Trauma 70: 954–958.
21. Majetschak M, Flehe S, Obertacke U, Schroder J, Stechbach K, et al. (1999) Relation of a TNF gene polymorphism to severe sepsis in trauma patients. Ann Surg 230: 207–214.
22. Stuber F, Udalova IA, Book M, Druskaya LN, Kuprash DV, et al. (1995) –308 tumor necrosis factor (TNF) polymorphism is not associated with survival in severe sepsis and is unrelated to lipopolysaccharide inducibility of the human TNF promoter. J Infamun 46: 42–50.
23. Garnacho-Montero J, Aldabao-Pallas T, Garnacho-Montero C, Cayuela A, Jimenez R, et al. (2006) Timing of appropriate antibiotic therapy is a greater determinant of outcome than are TNF and IL-10 polymorphisms in patients with sepsis. Crit Care Med 10: R111.
24. Duan ZX, Gu W, Zhang LY, Jiang DP, Zhou J, et al. (2011) Tumor necrosis factor alpha gene polymorphism is associated with the outcome of trauma patients in Chinese Han population. J Trauma 70: 954–958.
25. Teuffel O, Ethier MC, Beyene J, Sung L (2010) Association between tumor necrosis factor-alpha promoter –308 A/G polymorphism and susceptibility to
sepsis and sepsis mortality: a systematic review and meta-analysis. Crit Care Med 38: 276–282.
30. Secher T, Vaseur V, Poisson DM, Mitchell JA, Cunha FQ, et al. (2009) Crucial role of TNF receptors 1 and 2 in the control of polymicrobial sepsis. J Immunol 182: 7855–7864.
31. Ebach DR, Riel TE, Stenson WF (2005) Opposing effects of tumor necrosis factor receptor 1 and 2 in sepsis due to cecal ligation and puncture. Shock 23: 311–318.
32. Möller M, Flachsbart F, Till A, Thye T, Hortmann RD, et al. (2010) A functional haplotype in the 3′untranslated region of TNFRSF1B is associated with tuberculosis in two African populations. Am J Respir Crit Care Med 181: 388–393.
33. Horiiuchi T, Washio M, Kiyohara C, Tsukamoto H, Tada Y, et al. (2009) Combination of TNF-RII, CYP1A1 and GSTM1 polymorphisms and the risk of Japanese SLE findings from the KYSS study. Rheumatology (Oxford) 48: 1045–1049.
34. Waschke KA, Villani AC, Vermeire S, Dufrèse E, Chen KC, et al. (2005) Tumor necrosis factor receptor gene polymorphisms in Crohn’s disease: association with clinical phenotypes. Am J Gastroenterol 100: 1126–1133.
35. Constantin A, Dieude P, Lauwers-Cances V, Jamard B, Mazieres B, et al. (2004) Tumor necrosis factor receptor II gene polymorphism and severity of rheumatoid arthritis. Arthritis Rheum 50: 742–747.
36. Gordon AC, Lagan AL, Aganna E, Cheung L, Peters CJ, et al. (2004) TNF and TNFR polymorphisms in severe sepsis and septic shock: a prospective multicentre study. Genes Immun 5: 631–640.
37. Tiancha H, Huiqin W, Jiyong J, Jingfen J, Wei C (2011) Association between lymphotoxin-alpha intron +252 polymorphism and sepsis: a meta-analysis. Scand J Infect Dis 43: 436–447.
38. Clark MF, Baudouin SV (2006) A systematic review of the quality of genetic association studies in human sepsis. Intensive Care Med 32: 1706–1712.
39. Louis E, Franchimont D, Pirot A, Gevaert Y, Schaaf-Lafontaine N, et al. (1998) Tumour necrosis factor (TNF) gene polymorphism influences TNF-alpha production in lipopolysaccharide (LPS)-stimulated whole blood cell culture in healthy humans. Clin Exp Immunol 113: 481–486.
40. Huizinga TW, Westendorp RG, Bolten EI, Keijers V, Brinkman BM, et al. (1997) TNF-alpha promoter polymorphisms, production and susceptibility to multiple sclerosis in different groups of patients. J Neuroimmunol 72: 149–153.
41. Menguy T, Kouig IR, Housain H, Little S, Tchatalbachev S, et al. (2008) Sepsis syndrome and death in trauma patients are associated with variation in the gene encoding tumor necrosis factor. Crit Care Med 36: 1436–1462, e1451–1456.
42. Song Z, Tong C, Sun Z, Yao C, Shao M, et al. (2009) Association study of TLR4 polymorphisms with severe community-acquired pneumonia susceptibility and outcome. Chinese Journal of Emergency Medicine 18: 956–959.
43. (1992) American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference: definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med 20: 841–874.
44. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21: 263–265.
45. Purcell S, Cherny SS, Sham PC (2003) Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics 19: 149–150.