Isoform-specific mutation in Dystonin-b gene causes late-onset protein aggregate myopathy and cardiomyopathy

Nozomu Yoshioka1,2, Masayuki Kurose3, Masato Yano1, Dang Minh Tran1, Shujiro Okuda4, Yukiko Mori-Ochiai1, Masao Horie5, Toshihiro Nagai6, Ichizo Nishino7, Shinsuke Shibata6,8, Hirohide Takebayashi1,9*

1Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan; 2Transdisciplinary Research Programs, Niigata University, Niigata, Japan; 3Department of Physiology, School of Dentistry, Iwate Medical University, Iwate, Japan; 4Medical AI Center, School of Medicine, Niigata University, Niigata, Japan; 5Department of Nursing, Niigata College of Nursing, Jōetsu, Japan; 6Electron Microscope Laboratory, Keio University, Tokyo, Japan; 7Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan; 8Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan; 9Center for Coordination of Research Facilities, Niigata University, Niigata, Japan

Abstract Dystonin (DST), which encodes cytoskeletal linker proteins, expresses three tissue-selective isoforms: neural DST-a, muscular DST-b, and epithelial DST-e. DST mutations cause different disorders, including hereditary sensory and autonomic neuropathy 6 (HSAN-VI) and epidermolysis bullosa simplex; however, etiology of the muscle phenotype in DST-related diseases has been unclear. Because DST-b contains all of the DST-a-encoding exons, known HSAN-VI mutations could affect both DST-a and DST-b isoforms. To investigate the specific function of DST-b in striated muscles, we generated a Dst-b-specific mutant mouse model harboring a nonsense mutation. Dst-b mutant mice exhibited late-onset protein aggregate myopathy and cardiomyopathy without neuropathy. We observed desmin aggregation, focal myofibrillar dissolution, and mitochondrial accumulation in striated muscles, which are common characteristics of myofibrillar myopathy. We also found nuclear inclusions containing p62, ubiquitin, and SUMO proteins with nuclear envelope invaginations as a unique pathological hallmark in Dst-b mutation-induced cardiomyopathy. RNA-sequencing analysis revealed changes in expression of genes responsible for cardiovascular functions. In silico analysis identified Dst-b alleles with nonsense mutations in populations worldwide, suggesting that some unidentified hereditary myopathy and cardiomyopathy are caused by DST-b mutations. Here, we demonstrate that the Dst-b isoform is essential for long-term maintenance of striated muscles.

Editor's evaluation The authors demonstrate that isoform-specific Dystonin-b (Dst-b) mutant mice show significant myopathy in skeletal and cardiac muscle at older ages without the peripheral neuropathy or postnatal lethality that are commonly observed by loss of function of the DST gene. The study provides novel information about the role of the Dst-b isoform in maintaining skeletal and cardiac muscle health. In addition, the study suggests that isoform-specific mutations in Dst-b gene may cause some hereditary skeletal and cardiac myopathies.
Introduction
Skeletal and cardiac striated muscle fibers consist of a complex cytoskeletal architecture, and maintenance of the sarcomere structure is essential for muscle contraction. Dystonin (DST), also called bullous pemphigoid antigen 1 (BPAG1), is a cytoskeletal linker protein that belongs to the plakin family, which consists of DST, plectin, microtubule actin cross-linking factor 1 (MACF1), desmoplakin, and other plakins (Boyer et al., 2010a; Künzli et al., 2016; Horie et al., 2017). The DST gene consists of over 100 exons and generates tissue-selective protein isoforms through alternative splicing and different transcription initiation sites. At least three major DST isoforms exist, DST-a, DST-b, and DST-e, which are predominantly expressed in neural, muscular, and epidermal tissues, respectively (Leung et al., 2001). Although DST-a and DST-b share most of the same exons, DST-b contains five additional isoform-specific exons. Loss-of-function mutations in the DST locus have been reported to cause neurological disorders, hereditary sensory and autonomic neuropathy type 6 (HSAN-VI) (Edvardson et al., 2012), and the skin blistering disease epidermolysis bullosa simplex (Groves et al., 2010). DST-a is considered the crucial DST isoform in the pathogenesis of HSAN-VI because it is a neural isoform, and transgenic expression of Dst-a2 under the control of a neuronal promoter partially rescues disease phenotypes of Dst⁹ homozygous mice, which is a mouse model of HSAN-VI (Ferrier et al., 2014). HSAN-VI patients exhibit muscular and cardiac abnormalities, such as reduced muscular action potential amplitude, muscle weakness, and disrupted cardiovascular reflexes (Edvardson et al., 2012; Manganelli et al., 2017; Fortugno et al., 2019; Jin et al., 2020; Motley et al., 2020). Because all reported HSAN-VI mutations could disrupt both DST-a and DST-b, it is unknown whether these muscle manifestations are caused by cell-autonomous effects of DST-b mutation and/or secondary effects of neurological abnormalities caused by DST-a mutation. Thus, the impact of DST-b deficiency in skeletal and cardiac muscles on the manifestations of HSAN-VI patients has not been fully elucidated.

Dystonia musculorum (dt) is a spontaneously occurring mutant in mice (Duchén et al., 1964; Horie et al., 2016) that results in sensory neuron degeneration, retarded body growth, dystonic and ataxic movements, and early postnatal lethality. The Dst gene was identified as a causative gene in dt mice (Brown et al., 1995; Guo et al., 1995), and later, dt mice were used as mouse models of HSAN-VI (Ferrier et al., 2014). Dt mice have been reported to display muscle weakness and skeletal muscle cytoarchitecture instability (Dalpé et al., 1999). We have also reported masseter muscle weakness in Dst gene trap (Dst⁹) mice, neurodegeneration of the trigeminal motor nucleus, which innervates the masseter muscle, and muscle spindle atrophy in the masseter muscle (Hossain et al., 2018). Thus, known Dst mutant mice have mutations in both Dst-a and Dst-b, and exhibit abnormalities in neural and muscular tissues.

To investigate cell-autonomous functions of the Dst-b isoform in skeletal and cardiac muscles, we generated novel isoform-specific Dst-b mutant mice. Dst-b mutant mice displayed late-onset protein aggregate myopathy in skeletal and cardiac muscles without peripheral neuropathy and postnatal lethality. In this study, we first demonstrated the role of Dst-b in skeletal and cardiac muscle maintenance and that a Dst-b isoform-specific mutation causes protein aggregate myopathy, which has characteristics similar to myofibrillar myopathies (MFM). We also observed conduction disorders in the electrocardiograms (ECGs) of Dst-b mutant mice. RNA sequencing (RNA-seq) analysis revealed changes in the expression of genes that are important for maintenance of cardiovascular structures and functions. These results suggest that the myopathic manifestations of patients with HSAN-VI may be caused by disruption of DST-b, in addition to neurological manifestations caused by DST-a mutation. Furthermore, because we identified a variety of Dst-b mutant alleles with nonsense mutations worldwide using in silico analysis, it is possible that some unidentified hereditary myopathies and/or heart diseases are caused by isoform-specific mutations of the DST-b gene.

Results
Generation of novel isoform-specific Dst-b mutant mice
Among the three major Dst isoforms (Figure 1A), the Dst-a and Dst-b isoforms share the most exons, and the Dst-b isoform has five additional isoform-specific exons (Figure 1B). We generated a novel Dst-b mutant allele in which a nonsense mutation was introduced into a Dst-b-specific exon using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) genome editing method. The Dst-b mutant allele harbors a nonsense mutation followed by a
Restriction fragment length polymorphism (RFLP) analysis of PCR products was used to genotype mice (Figure 1C). Hereafter, this Dst-b mutant allele is referred to as the Dst-bE2610Ter allele. In the heterozygous cross, approximately one-fourth of the progeny were Dst-b homozygous (Dst-bE2610Ter/E2610Ter) mice, according to the Mendelian distribution. Western blotting was performed using an anti-Dst antibody that recognizes both Dst-a and Dst-b proteins. Dst-b bands were detected in tissue extracts from heart and skeletal muscle of wild-type (WT) mice, whereas shifted bands were observed in those of Dst-bE2610Ter homozygous mice (Figure 1D). We analyzed three independent Dst-bE2610Ter mouse lines, and similar truncations of the Dst protein were observed in the homozygotes.
(Figure 1—figure supplement 1). In brain tissue extracts, Dst-a bands were equally detected between WT and Dst-bE2610Ter/E2610Ter mice. Quantitative PCR (qPCR) analyses indicated that Dst-b mRNA was significantly reduced by approximately half in the cardiac tissues of Dst-bE2610Ter/E2610Ter mice compared with those of WT mice, while Dst-a mRNA expression was unchanged (Figure 1B). Among three distinct isoforms of Dst-b (Dst-b1, Dst-b2, and Dst-b3) differing in their N-terminus (Jefferson et al., 2006), the expression level of Dst isoform1 mRNA was remarkably reduced in the cardiac tissue of Dst-bE2610Ter/E2610Ter mice, whereas there was no significant change in the amounts of isoform 2 and isoform 3 mRNAs (Figure 1—figure supplement 2A). Similar changes in mRNA expression of Dst isoforms were observed in the soleus (Figure 1—figure supplement 3A). The frequency of exon usage was compared between cardiac and brain tissues (Figure 1—figure supplement 2B). Dst-b-specific exons were exclusively used in the heart and scarcely used in the brain. In the heart, the first exons of Dst isoform 1 and isoform 3 were more frequently used than those in the brain. However, Dst isoform 2 was predominantly used in the brain and weakly expressed in the heart. Thus, these findings suggest that Dst isoforms are differentially expressed among tissues and that the Dst-bE2610Ter allele affects each Dst isoform to a different degree.

Gross phenotypes of Dst-bE2610Ter/E2610Ter mice

Dst-bE2610Ter/E2610Ter mice had a normal appearance and seemed to have a normal life span. In the tail suspension test, 1-month-old Dst-bE2610Ter/E2610Ter mice maintained normal postures, while gene trap mutant (DstGt/Gt) mice with the dt phenotype displayed hindlimb clasping and dystonic movement (Figure 2A). Next, histological analysis was performed on the muscle spindles and dorsal root ganglia of 1-month-old mice, which are the main affected structures in dt mice. Dst-bE2610Ter/E2610Ter mice exhibited normal muscle spindle structure, although the muscle spindles were markedly atrophied in DstGt/Gt mice (Figure 2B). Similarly, neurofilament (NF) accumulation and induction of ATF3, a neural injury marker, were observed in the dorsal root ganglia of DstGt/Gt mice but not in those of WT and Dst-bE2610Ter/E2610Ter mice (Figure 2C–E). We also found that parvalbumin (Pvalb)-positive proprioceptive neurons were normally observed in Dst-bE2610Ter/E2610Ter mice (Figure 2F and G) but were markedly decreased in DstGt/Gt mice as previously described in other dt mouse lines (Carlsten et al., 2001). We next investigated the gross phenotypes of Dst-bE2610Ter/E2610Ter mice over an extended time. Dst-bE2610Ter/E2610Ter mice normally gained body weight until 1 year of age; then, they became lower body weight compared with WT mice after 1 year of age (Figure 2H). Some Dst-bE2610Ter/E2610Ter mice exhibited kyphosis (data not shown). We have reported that dt mice display impairment of motor coordination as assessed by the rotarod test and wire hang test (Horie et al., 2020); however, WT and Dst-bE2610Ter/E2610Ter mice older than 1 year exhibited normal motor coordination (Figure 2I). These data also support the idea that deficiency of the Dst-a isoform, but not the Dst-b isoform, is causative of dt phenotypes, including sensory neuron degeneration, abnormal movements, and postnatal lethality.

Late-onset skeletal myopathy and cardiomyopathy in Dst-bE2610Ter/E2610Ter mice

To further examine the skeletal muscle phenotype in aged Dst-bE2610Ter/E2610Ter mice, we performed histological analyses. In the soleus muscle of Dst-bE2610Ter/E2610Ter mice, small-caliber muscle fibers and centrally nucleated fibers (CNFs), which indicate muscle degeneration and regeneration, were frequently observed in mice at 16–23 months of age (Figure 3A) but were rare in 3–4-month-old Dst-bE2610Ter/E2610Ter mice (Figure 3—figure supplement 1A). The percentage of CNFs was significantly increased in the soleus, gastrocnemius, and erector spinae muscles, with different severities (Figure 3B, Figure 3—figure supplement 2). Muscle mass of soleus normalized by body weight was not significantly different between control and Dst-bE2610Ter/E2610Ter mice (control: 0.258 ± 0.012 mg/g body weight) vs. Dst-bE2610Ter/E2610Ter: 0.279 ± 0.015 mg/g body weight; control, n = 6 muscles from three mice; Dst-bE2610Ter/E2610Ter, n = 6 muscles from three mice; p=0.3056, Student’s t-test). Distribution of cross-sectional area in the soleus showed that small-caliber myofibers were abundant in Dst-bE2610Ter/E2610Ter mice compared with WT mice (Figure 3C). Masson’s trichrome staining indicated skeletal muscle fibrosis and, particularly, a marked increase in the connective tissue surrounding small-caliber muscle fibers (Figure 3D and E) in the soleus muscle of Dst-bE2610Ter/E2610Ter mice. Cardiac fibrosis was also observed in Dst-bE2610Ter/E2610Ter mouse hearts (Figure 3D and E) but was not observed in the hearts of 3–4-month-old Dst-bE2610Ter/E2610Ter mice (Figure 3—figure supplement 1B).
Figure 2. Characterizations of gross phenotypes of Dst-bE2610Ter homozygous mice. (A) Tail suspension test of WT, Dst-bE2610Ter/E2610Ter, and DstGt mice around 1 month old. WT and Dst-bE2610Ter/E2610Ter mice exhibited normal posture, whereas the DstGt mice showed hindlimb clasp. (B) Muscle spindle structure on the cross sections of soleus with H&E staining. Muscle spindles of Dst-bE2610Ter/E2610Ter mice appeared normal, while DstGt mice showed atrophy of the intrafusal muscle fiber in muscle spindles around 1 month old. (C) Double immunohistochemistry (IHC) of neurofilament (NF) and ATF3 on the section of dorsal root ganglia (DRG) around 1 month old. In only DstGt mice, NF was accumulated in some DRG neurons, and the neural injury marker, ATF3 was expressed. (D, E) Quantitative data of numbers of NF-accumulating cells (D) and ATF3-positive cells (E) in DRG of WT, Dst-bE2610Ter/E2610Ter, and DstGt mice. *** denotes statistically significant difference at p<0.005 (NF, WT vs. DstGt, p=0.0000; Dst-bE2610Ter vs. DstGt, p=0.0001; ATF3, WT vs. DstGt, p=0.0001; Dst-bE2610Ter vs. DstGt, p=0.0002), using ANOVA. (F) Parvalbumin (PV) ISH on the section of DRG around 1 month old. PV-positive proprioceptive neurons were greatly decreased in DRG of DstGt mice but not in that of Dst-bE2610Ter/E2610Ter mice. Dotted lines indicate the edge of DRG. (G) Quantitative data of number of PV-positive cells in DRG of WT, Dst-bE2610Ter/E2610Ter, and DstGt mice. *** denotes statistically significant difference at p<0.005 (PV, WT vs. DstGt, p=0.0000; Dst-bE2610Ter vs. DstGt, p=0.0000), using ANOVA. (H) Male Dst-bE2610Ter/E2610Ter mice normally gained body weight until 1 year old and then became lighter than male WT mice (n = 6 WT mice, n = 7 Dst-bE2610Ter/E2610Ter mice; two-way ANOVA, genotype effect: p=0.1213, age effect: p=0.0000, genotype x age interaction: p=0.0398). * and ** denote statistically significant difference at p<0.05 (13 months old, p=0.0197; 15 months old, p=0.0296) and p<0.01 (16 months old, p=0.0073). (I) Behavior tests to assess motor coordination and grip strength around 1 year old. Dst-bE2610Ter/E2610Ter mice showed normal motor coordination and grip strength (n = 11 WT mice, n = 10 Dst-bE2610Ter/E2610Ter mice). ns means not statistically significant (rotarod test, p=0.4126; fire hang test, p=0.0612), using Student’s t-test. Data are presented as mean ± standard error (SE). Scale bars: (B) 5 μm; (C, D) 50 μm.
Figure 3. Pathological alterations in skeletal and cardiac muscles of Dst-bE2610Ter mice. (A) H&E-stained cross soleus sections of WT and Dst-bE2610Ter/E2610Ter mice at 23 months of age. Dotted boxes in the soleus of Dst-bE2610Ter/E2610Ter include small-caliber and centrally nucleated fibers (CNFs, arrows) shown as insets. Histological analysis of soleus of Dst-bE2610Ter/E2610Ter mice at 3–4 months of age are shown in Figure 3—figure supplement 1. Histological

Figure 3 continued on next page
To assess the influence of the Dst-b mutation on cardiomyocytes, expression of the heart failure markers natriuretic peptide A (Nppa) and natriuretic peptide B (Nppb) (Sergeeva and Christoffels, 2013) was investigated. Nppa mRNA was markedly upregulated in the myocardium of the left ventricle in 16-month-old Dst-bE2610Ter/E2610Ter mice and was not increased in that of WT mice (Figure 3F). Nppb mRNA was also upregulated in the left ventricle myocardium in Dst-bE2610Ter/E2610Ter mice (Figure 3F). qPCR analysis also demonstrated increased expression of Nppa and Nppb mRNAs in the cardiac tissue of Dst-bE2610Ter/E2610Ter mice (Figure 3G). Expression of profibrotic cytokines, including transforming growth factor beta-2 (Tgfb2) and connective tissue growth factor (Ctgf) mRNAs, was also remarkably increased in Dst-bE2610Ter/E2610Ter mice (Figure 3H). At 3–4 months of age, the Nppa transcript was slightly upregulated in Dst-bE2610Ter/E2610Ter mouse hearts without obvious cardiac fibrosis (Figure 3—figure supplement 1B). To assess the cardiac function, ECGs were recorded from anesthetized WT and Dst-bE2610Ter/E2610Ter mice at 18–25 months of age. Dst-bE2610Ter/E2610Ter mice at 18–25 months of age (Figure 3J). Dst-bE2610Ter/E2610Ter mice exhibited remarkably prolonged QT intervals compared with those of WT mice (Figure 3J), which suggests abnormal myocardial repolarization. However, the RR interval and QRS duration were not different between WT and Dst-bE2610Ter/E2610Ter mice (Figure 3J). In addition, premature ventricular contractions (PVCs) were recorded in two of nine Dst-bE2610Ter/E2610Ter mice analyzed (Figure 3K). Individual Dst-bE2610Ter/E2610Ter mice harboring PVCs showed severe cardiac fibrosis and remarkable upregulation of Nppa mRNA in the ventricular myocardium (data not shown). Such ECG abnormalities were not observed in 3-month-old Dst-bE2610Ter/E2610Ter mice (RR of WT mice: 134.2 ± 26.6 ms vs. Dst-bE2610Ter/E2610Ter mice: 138.8 ± 33.5 ms; p=0.8234, Student’s t-test; QRS of WT mice: 17.3 ± 2.0 ms vs. Dst-bE2610Ter/E2610Ter mice: 17.4 ± 1.2 ms; p=0.9514, Student’s t-test; QT of WT mice: 31.7 ± 4.3 ms vs. Dst-bE2610Ter/E2610Ter mice: 31.2 ± 2.3 ms; p=0.8599, Student’s t-test; WT, n = 4 mice; Dst-bE2610Ter/E2610Ter, n = 5 mice). These data indicate that the Dst-b isoform-specific mutation causes late-onset cardiomyopathy and cardiac conduction disturbance.

Protein aggregations in myofibers of Dst-bE2610Ter/E2610Ter mice

MFM is a type of hereditary myopathy that is defined on the basis of common pathological features, such as myofibril disorganization beginning at the Z-disks and ectopic protein aggregation in myocytes (De Bleecker et al., 1996; Nakano et al., 1996). Desmin is an intermediate filament protein located in...
Z-disks, and aggregation of desmin and other cytoplasmic proteins is a pathological hallmark of MFM (De Blecker et al., 1996; Clemen et al., 2013; Batonnet-Pichon et al., 2017). First, we performed desmin immunohistochemistry (IHC) and found abnormal desmin aggregation in the skeletal muscle of Dst-bE2610Ter/E2610Ter mice at 16–23 months of age (Figure 4A and B). In the soleus of Dst-bE2610Ter/E2610Ter mice, desmin massively accumulated in the subsarcolemmal region, whereas in that of WT mice, desmin protein was predominantly located underneath the sarcolemma (Figure 4A). Desmin aggregates were also observed in the cardiomyocytes of Dst-bE2610Ter/E2610Ter mice older than 16 months (Figure 4—figure supplement 1). In longitudinal sections of Dst-bE2610Ter/E2610Ter soleus muscle, localization of desmin to the Z-disks was mostly preserved; however, displacement of Z-disks was occasionally observed in the muscle fibers bearing subsarcolemmal desmin aggregates (Figure 4C). At 3–4 months of age, desmin aggregates were scarcely observed in Dst-bE2610Ter/E2610Ter mouse soleus (Figure 3—figure supplement 1A).

Next, we investigated the molecular composition of the protein aggregates in Dst-bE2610Ter/E2610Ter mouse muscle fibers. We found that αB-crystallin was co-aggregated with desmin in the subsarcolemmal regions of the Dst-bE2610Ter/E2610Ter soleus (Figure 4D). αB-crystallin is a small heat shock protein that binds to desmin and actin and is known to accumulate in muscles of patients with MFMs (Clemen et al., 2013). In addition, plectin had also accumulated in desmin-positive aggregates of the Dst-bE2610Ter/E2610Ter soleus (Figure 4E). Plectin is a cytoskeletal linker protein that is normally located in the Z-disks. Because protein aggregates in muscles affected by MFM often contain the Z-disk protein encoded by the causative gene itself, we examined subcellular distribution of myotilin that is a Z-disk component encoded by a causative gene for MFM. We found that myotilin was accumulated in some myofibers of the Dst-bE2610Ter/E2610Ter soleus (Figure 4—figure supplement 2). Furthermore, we evaluated the subcellular distribution of truncated Dst proteins in the Dst-bE2610Ter/E2610Ter soleus. As expected, truncated Dst proteins accumulated in subsarcolemmal aggregates of desmin in the Dst-bE2610Ter/E2610Ter soleus (Figure 4F). In addition, some small-caliber myofibers exhibited cytoplasmic accumulation of truncated Dst proteins surrounding nuclei. Dst proteins were also distributed on Z-disks (Figure 4G), as reported in previous studies (Boyer et al., 2010a; Steiner-Champliaud et al., 2010). Truncated Dst proteins were also localized in normally shaped Z-disks in the Dst-bE2610Ter/E2610Ter soleus and were dispersed from disorganized Z-disks (Figure 4G). Taken together, these data indicate that protein aggregates in Dst-bE2610Ter/E2610Ter mouse muscles are composed of a variety of proteins, similar to aggregates found in muscles affected by other MFMs.

Mitochondrial structure and gene expression alterations in striated muscles of Dst-bE2610Ter mice

Mitochondrial abnormalities have also been reported in muscles of patients with MFMs and animal models (Joshi et al., 2014; Bührdel et al., 2015; Winter et al., 2016). We investigated the mitochondrial distribution using cytochrome C and Tom20 IHC and found abnormal accumulation of mitochondria underneath the sarcolemma in some fibers of Dst-bE2610Ter/E2610Ter soleus muscles (Figure 5A). Double staining with cytochrome C and desmin revealed that mitochondrial accumulation occurred in the same region as desmin aggregates (Figure 5C). We also found a strong phosphorylated PERK signal, an organellar stress sensor, in the subsarcolemmal spaces with accumulated mitochondria (Figure 5D).

Next, we quantified the mRNA expression levels of several genes responsible for oxidative phosphorylation (Ndufb8, Sdha, Uqcrcc2, Cox4i1, and Atp5a1) in the soleus (Figure 5E). The expression of several genes, including Ndufb8, Sdha, and Cox4i1, was significantly reduced in Dst-bE2610Ter/E2610Ter mice, suggesting mitochondrial dysfunction in the skeletal muscle of Dst-bE2610Ter/E2610Ter mice. Changes in genes responsible for oxidative phosphorylation suggest the possibility of muscle fiber type switch and/or oxidative stress (Bonnard et al., 2008; Zhang et al., 2017). However, quantification of expression levels of muscle fiber-type marker genes and oxidative stress-related genes showed no changes in the soleus of Dst-bE2610Ter/E2610Ter mice (Figure 1—figure supplement 3B and C). At 3–4 months of age, mitochondrial accumulation was already observed in soleus of Dst-bE2610Ter/E2610Ter mice before the appearance of CNF and desmin aggregates (Figure 3—figure supplement 1A). Therefore, mitochondrial abnormalities may precede protein aggregation and muscle degeneration.
Figure 4. Dst-\(b^{E2610Ter}\) mutation leads to protein aggregation myopathy. (A) Desmin immunohistochemistry (IHC) on the cross sections of soleus from WT and Dst-\(b^{E2610Ter/E2610Ter}\) mice at 23 months of age using anti-desmin antibody (RD301). Dotted boxes in Dst-\(b^{E2610Ter/E2610Ter}\) soleus indicate desmin aggregates underneath the sarcolemma (arrowheads) and in the sarcoplasmic region (arrow) shown as insets. Desmin IHC on heart of Dst-\(b^{E2610Ter/E2610Ter}\) mice is shown in Figure 4—figure supplement 1. (B) Quantitative data of the percentage of myofibers with desmin aggregates in soleus of WT and Dst-\(b^{E2610Ter/E2610Ter}\) mice is shown in Figure 4—figure supplement 1
Ultrastructural changes in skeletal and cardiac muscles of Dst-b\(^{E2610Ter/ E2610Ter}\) mice

Transmission electron microscope (TEM) analysis was performed to further investigate the ultrastructural features of skeletal and cardiac muscles of Dst-b\(^{E2610Ter/ E2610Ter}\) mice. In the Dst-b\(^{E2610Ter/ E2610Ter}\) soleus, focal dissolution of myofibrils and Z-disk streaming were observed at 22 months of age (Figure 6A). Subsarcolemmal regions of the Dst-b\(^{E2610Ter/ E2610Ter}\) soleus were often filled with accumulated mitochondria and granulofilamentous materials including focal accumulation of glycogen granules, electron-dense disorganized Z-disks, and electron-pale filamentous materials (Figure 6B). These observations have been reported as typical features of MFMs (Batonnet-Pichon et al., 2017). Furthermore, we found dysmorphic nuclei in the soleus of Dst-b\(^{E2610Ter/ E2610Ter}\) mice (Figure 6C).

Focal myofibrillar dissolution and mitochondrial accumulation were observed in Dst-b\(^{E2610Ter/ E2610Ter}\) mouse cardiomyocytes (Figure 6D). We often observed an invaginated nuclear envelope and a structure similar to the nucleoplasmic reticulum (Bezin et al., 2008; Malhas et al., 2011) with cytoplasmic components in the nucleus (Figure 6E). Interestingly, inclusions containing crystalline structures were frequently observed in dysmorphic nuclei, which were a unique feature of Dst-b\(^{E2610Ter/ E2610Ter}\) cardiomyocytes. Only a limited number of reports have described myopathy with intranuclear inclusions (Oteruelo, 1976; Oyer et al., 1991; Weeks et al., 2003; Ogasawara et al., 2020).

Abnormal nuclear structures in Dst-b\(^{E2610Ter}\) cardiomyocytes

The observation of unique nuclear inclusions in dysmorphic nuclei in heart tissue prompted us to perform detailed histological analyses of Dst-b\(^{E2610Ter/ E2610Ter}\) mouse cardiomyocytes. Upon H&E staining, eosinophilic structures were observed in Dst-b\(^{E2610Ter/ E2610Ter}\) cardiomyocyte nuclei (Figure 7A). Dysmorphic nuclei were clearly observed by lamin A/C IHC, showing a deeply invaginated nuclear envelope devoid of DNA (Figure 7B). In TEM observations, nuclear crystalline inclusions and cytoplasmic organelles, such as lysosomes surrounded by the nuclear envelope, were sometimes observed within one nucleus (Figure 7C). Crystalline inclusions were observed as lattice structures (Figure 7D). Some subcellular organelles, such as mitochondria, were frequently observed within the nucleus of Dst-b\(^{E2610Ter/ E2610Ter}\) cardiomyocytes as a result of nuclear invaginations (Figure 7E and F) because they were surrounded by the nuclear membrane. Moreover, vacuoles that seemed to contain liquid were observed in the nucleus. In some cases, endoplasmic reticulum and ribosomes were observed at higher densities within the nucleus of Dst-b\(^{E2610Ter/ E2610Ter}\) cardiomyocytes (Figure 7G), which is similar to the findings for the nucleoplasmic reticulum (Bezin et al., 2008; Malhas et al., 2011). Next, we investigated the molecular components of nuclear inclusions and found that the autophagy-associated protein p62 was deposited in Dst-b\(^{E2610Ter/ E2610Ter}\) cardiomyocyte nuclei (Figure 7H). The percentage of cell nuclei harboring p62-positive structures was remarkably increased in Dst-b\(^{E2610Ter/ E2610Ter}\) cardiomyocytes compared with that in WT cardiomyocytes (Figure 7I, WT mice: 0.55 ± 0.25% vs. Dst-b\(^{E2610Ter/ E2610Ter}\) mice: 14.3% ± 1.9%; n = 3 WT mice: 871 total nuclei, n = 4 Dst-b\(^{E2610Ter/ E2610Ter}\) mice: 860 total nuclei). We observed co-localization of p62 and ubiquitinated protein inside the nucleus.
Figure 5. Dst-bE2610Ter mutation leads mitochondrial alterations in skeletal muscle fibers. (A) Cytochrome C and Tom20 immunohistochemistry (IHC) on the serial cross sections of the soleus at 23 months of age. In WT soleus, mitochondria were mainly stained underneath the sarcolemma. Dst-bE2610Ter/E2610Ter soleus showed accumulated mitochondria in subsarcolemmal regions (arrowheads). (B) Quantitative data of the percentage of myofibers with accumulated mitochondria in soleus of WT and Dst-bE2610Ter/E2610Ter mice (n = 5 mice, each genotype, at 16–23 months old). * denotes statistically
significant difference at p<0.05 (p=0.0109), using Student’s t-test. (C) Double IHC of cytochrome C and desmin in cross sections of the soleus. Each protein was stained in subsarcolemmal spaces of WT soleus. In Dst-bE2610Ter/E2610Ter soleus, cytochrome C-positive mitochondria were accumulated at the same positions with desmin aggregates (arrowheads). (D) Double IHC of cytochrome C and phospho-PERK. Phospho-PERK signals were strongly detected in subsarcolemmal regions in which cytochrome C-positive mitochondria accumulated (arrowheads). (E) qPCR analysis of genes responsible for oxidative phosphorylation in the soleus (n = 3 mice, each genotype, 21 months of age). * and ** denote statistically significant difference at p<0.05 (Ndufb8, p=0.0191; Cox4i1, p=0.0335) and p<0.01 (Scfha, p=0.0001), respectively, and ns means not statistically significant (Uqcrcc2, p=0.2546; Atp5a1, p=0.0769), using Student’s t-test. Data are presented as mean ± SE. Scale bars: (A, C, D) 50 μm.

Using super-resolution microscopy (Figure 7J and Video 1). Small ubiquitin-related modifier (SUMO) proteins are major components of intranuclear inclusions in some neurological diseases, including neuronal intranuclear inclusion disease (NIID) (Mori et al., 2012; Pountney et al., 2003). SUMO proteins were also detected in the intranuclear structures of Dst-bE2610Ter/E2610Ter cardiomyocytes using anti-SUMO-1 and anti-SUMO-2/3 antibodies (Figure 7—figure supplement 1A and B). Because desmin and α-crystallin were absent from the intranuclear structures, protein aggregates in the nuclei were distinct from those in some molecular components of the cytoplasm (Figure 7—figure supplement 1C and D). The p62-positive structures inside nuclei were also devoid of LC3, which is an autophagy-associated molecule, whereas p62 and LC3 were co-localized in the cytoplasm (Figure 7—figure supplement 1E). Lamin A/C IHC also confirmed that the p62- and ubiquitin-positive structures were surrounded by or adjacent to lamin A/C-positive lamina (Figure 7—figure supplement 1F and G). Desmin IHC also confirmed cytoplasmic desmin in the space surrounded by highly invaginated nuclear membrane (Figure 7—figure supplement 1H). These results revealed that Dst-b gene mutations lead to dysmorphic nuclei and formation of nuclear inclusions containing p62, ubiquitinated proteins, and SUMO proteins in the Dst-bE2610Ter/E2610Ter myocardium.

Next-generation sequencing analysis of heart tissues from Dst-bE2610Ter/E2610Ter mice

To determine the molecular etiology of pathophysiological features of Dst-bE2610Ter/E2610Ter mouse hearts, we performed RNA-seq analysis of transcripts obtained from the ventricular myocardium of 14–19-month-old Dst-bE2610Ter/E2610Ter mice and age-matched WT mice. Principal component analysis (PCA) and hierarchical clustering of RNA-seq data showed that transcriptomic characteristics between WT and Dst-bE2610Ter/E2610Ter mouse hearts were different (Figure 8—figure supplement 1A and B). RNA-seq identified 728 differentially expressed genes with a false discovery rate (FDR) < 0.1 and p<0.01 (Figure 8A), including 481 upregulated genes and 247 downregulated genes in Dst-bE2610Ter/E2610Ter mouse hearts compared with those from WT mice. A volcano plot demonstrated that upregulated genes were associated with pro-fibrotic pathways (e.g., Ctgf, Tgfβ2, Crlf1), cytoskeletal regulation (e.g., Acta2, Cenpf, Ankrd1, Mybpc2, Myom2, Nefm), and metabolic control (Ucp2, Nmrk2, Tbx15) and that downregulated genes were associated with transmembrane ion transport (e.g., Scn4b, Cacng6, Ano5, Tmem150c, Cacna1s, Scn4a). The reliability of RNA-seq data was validated by using qPCR analysis (Figure 8—figure supplement 1C). The differentially expressed genes included several causative genes of congenital heart defects, hypertrophic cardiomyopathy, congenital long-QT syndrome, muscular dystrophy, and dilated cardiomyopathy (e.g., Acta2, Ankrd1, Scn4b, Ano5, Rpl3l, Cenpf) (Figure 8B). Gene Ontology (GO) analysis confirmed the following terms specific to the skeletal muscle and heart: biological process (e.g., upregulated: muscle contraction, heart development, skeletal muscle tissue development, sarcomere organization, and regulation of heart rate; downregulated: muscle organ development) and cellular components (e.g., upregulated: Z-disc, sarcolemma, myofibril, neuromuscular junctions, sarcoplasmic reticulum) (Figure 8C and D, Supplementary file 1A–E). Kyoto Encyclopedia of Genes and Genomics (KEGG) pathway analysis also indicated abnormal muscle pathways (e.g., upregulated: dilated cardiomyopathy, hypertrophic cardiomyopathy; downregulated: cardiac muscle contraction) (Figure 8E, Supplementary file 1C and F). These data provide a comprehensive landscape for cardiomyopathy in Dst-bE2610Ter/E2610Ter mice.

Mosaic analysis using conditional DstGt mice

Because truncated Dst-b proteins expressed from the Dst-bE2610Ter allele harbor an actin-binding domain (ABD) and a plakin domain, it is possible that they have a gain-of-function effect on the
Figure 6. Transmission electron microscopy (TEM) analyses on the soleus and heart of Dst-b^{E2610Ter} mice. (A–C) TEM images on longitudinal soleus ultrathin sections of WT and Dst-b^{E2610Ter/WT} mice at 22 months of age (n = 2 mice, each genotype). (A) Normal myofibril structure with well-aligned Z-disks (z) and mitochondria (m) in WT soleus. In Dst-b^{E2610Ter/E2610Ter} soleus, Z-disk streaming (arrows) was observed as displacements of Z-disks (less severe case) and focal myofibrillar dissolution (severe case). Dotted box in Dst-b^{E2610Ter/WT} soleus indicates the severely disrupted myofibrillar structures associated with abnormally thickened Z-disks (arrows) shown as the inset. (B) Subsarcolemmal accumulations of mitochondria and granulofilamentous material (gfm) in Dst-b^{E2610Ter/WT} soleus. Gfm consists of glycogen granule deposits (arrowheads) and filamentous materials with electron-dense Z-disk streaming (arrows) and filamentous pale area (asterisk). Accumulated mitochondria (ma) are adjacent to the gfm. Dotted box shows the enlarged structure of gfm. (C) Nuclear invaginations in Dst-b^{E2610Ter/WT} soleus. Dotted box in the cell nucleus (Nu) indicates the deeply invaginated nuclear structure of gfm.

Figure 6 continued on next page
envelope (NE, arrow) involving lysosomes (L) shown as the inset. (D, E) TEM images on heart ultrathin sections (n = 2 mice, each genotype). (D) Normal myofibril structure with well-aligned Z-disks (Z) and mitochondria (m) in WT cardiomyocytes (left panel). In Dst-bE2610Ter/E2610Ter cardiomyocytes, focal myofibrillar dissolution (double asterisks) was observed and accumulated mitochondria (ma) were evident there (right panel). (E) Abnormal shape of nucleus (Nu) and intranuclear inclusions were frequently observed in Dst-bE2610Ter/E2610Ter cardiomyocytes. Dotted box indicates that the NE (arrow) deeply invaginated and involved cytoplasmic components such as lysosomes (L) to form nucleoplasmic reticulum (NR) shown as inset. Dysmorphic nucleus harbored the crystalline inclusions in intranuclear and perinuclear regions (arrowheads). Scale bars: (A-E) 1 μm; (B (right magnified images)) 400 nm.

pathogenesis of Dst-bE2610Ter/E2610Ter mice. Therefore, we analyzed conditional DstGt mice (Figure 9A), in which both Dst-a and Dst-b are trapped within the N-terminal ABD and lose their function in a genetically mosaic manner. We crossed female DstE2610Ter/+ mice with male β-actin (Actb)-iCre; DstGt-DO/wt mice to generate Actb-iCre; DstGtDO/wt mice (mosaic mice, Figure 9B). More than half of the mosaic mice survived over several months and showed mild dt phenotypes, such as smaller body size and impairment of motor coordination (Figure 9C). Western blotting analysis indicated that the Dst-b protein was almost absent in cardiac extract from surviving mosaic mice; however, the Dst-a protein was detected at variable levels in brain extract (Figure 9D). Cardiac fibrosis was observed in hearts of 10-month-old mosaic mice (Figure 9E). In addition, increases in Nppa mRNA expression and p62 deposition were evident in the left ventricular myocardium of mosaic mice compared with control mice (Figure 9F). These data suggest that myopathy in Dst-bE2610Ter/E2610Ter mice is caused by a loss-of-function mutation of Dst-b.

DST mutant alleles with nonsense mutations in DST-b-specific exons

Next, we performed in silico screening for DST mutant alleles with nonsense mutations within DST-b-specific exons in a database containing normal human genomes. In a search of the dbSNP database, which contains information on single-nucleotide variations in healthy humans, we identified 58 different types of nonsense mutations (94 alleles total) in all five DST-b-specific exons (Table 1, Figure 10A). The alleles with nonsense mutations were found in different populations (European, Asian, African, and American, Figure 10B). In Japan, four alleles with nonsense mutations were found among 16,760 alleles in the ToMMo 8.3KJPN database (Tadaka et al., 2021), suggesting that homozygous or compound heterozygous mutants may exist in one per approximately 16 million people. We further investigated DST-b mutations in Japanese patients diagnosed with myopathy (Nishikawa et al., 2017). Although nonsense mutations were not identified in those patients, we identified two patients with myopathy who harbored compound heterozygous DST variants (Supplementary file 1G). All variants were predicted to be variants of uncertain significance (VUS); therefore, the involvement of these variants in myopathic manifestations needs to be carefully interpreted. Taken together, these data suggest that unidentified familial myopathies and/or cardiomyopathies caused by DST-b mutant alleles exist in all populations worldwide.

Discussion

In this study, we established the isoform-specific Dst-b mutant mouse as a novel animal model for late-onset protein aggregate myopathy. Myopathic alterations in Dst-b mutants were similar to those observed for MFMIs. We also found nuclear inclusion as a unique pathological hallmark of Dst-b mutant cardiomyocytes, which provided molecular insight into pathophysiological mechanisms of cardiomyopathy. Because the Dst-b-specific nonsense mutation resulted in myopathy without sensory neuropathy, and mutant DST alleles with nonsense mutations in DST-b-specific exons exist, our data suggest that unidentified human myopathy may be caused by these Dst-b mutant alleles. Our data also indicated that the sensory neurodegeneration, movement disorders, and lethality in dt mice and patients with HSAN-VI, which are caused by mutations of both the Dst-a (DST-a) and Dst-b (DST-b) isoforms, are actually caused by deficiency of the Dst-a (DST-a) isoform.

Isoform-specific Dst-b mutants result in late-onset protein aggregate myopathy

Isoform-specific Dst-b mutant mice exhibited late-onset protein aggregate myopathy with cardiomyopathy, which could be termed ‘dystoninopathy.’ Protein aggregates observed in the striated
Figure 7. Defects in nuclear structure and intranuclear inclusions in cardiomyocytes of Dst-b^{E2610Ter} mice. (A) H&E staining of cardiomyocyte nuclei. Eosinophilic structures (arrows) were observed inside the nucleus of Dst-b^{E2610Ter/E2610Ter} cardiomyocytes. (B) Nuclear lamina was immunolabeled with anti-lamin A/C antibody. In dysmorphic nuclei of Dst-b^{E2610Ter/E2610Ter} cardiomyocytes, invaginated nuclear lamina did not contain DAPI signals (arrowheads). (C–G) Transmission electron microscope (TEM) images of cardiomyocyte nuclei of Dst-b^{E2610Ter/E2610Ter} mice (n = 2 mice, each genotype). (C) Crystalline inclusions (asterisk) and cytoplasmic organelles such as lysosomes (L) surrounded by the nuclear envelope (NE, arrow) were observed inside nucleus (Nu). (D) Crystalline inclusions are lattice structure. (E) The NE surrounded various components such as organelles (arrow) or presumably liquid (arrowheads). There was a vacuole (V) seemed to contain liquid. (F) Dotted box (E) indicates mitochondria (m) surrounded by a membrane. (G) An organelle surrounded by the NE (arrow) contained endoplasmic reticulum and ribosomes. Such structure was discriminated as nucleoplasmic reticulum (NR). (H) Immunofluorescent images of heart sections labeled with anti-p62 and anti-lamin A/C antibodies. p62 was deposited inside nuclei surrounded by lamin A/C-positive lamina in Dst-b^{E2610Ter/E2610Ter} cardiomyocytes (arrowheads). (I) Quantitative data representing percentages of cardiomyocyte nuclei harboring p62-positive inclusions (n = 3 WT mice; n = 4 Dst-b^{E2610Ter/E2610Ter} mice). ** denotes statistically significant difference at p<0.01 (p=0.0062), using Student’s t-test. Data are presented as mean ± SE. (J) Super-resolution microscopy images showed co-localization of p62 and ubiquitin in the nucleus.
of Dst-bE2610Ter/E2610Ter cardiomyocytes. Immunohistochemistry (IHC) analysis of molecular features of nuclear inclusions are shown in Figure 7—figure supplement 1. Scale bars: (A, B, H (insets), J) 5μm; (C, G) 1μm; (D) 100nm; (E) 2μm; (F) 600 nm; (H) 50μm.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Histological features of intranuclear structures in Dst-bE2610Ter/E2610Ter cardiomyocytes.

Muscles of Dst-b mutant mice were composed of desmin, αB-crystallin, plectin, and truncated Dst-b. MFMs are major groups of protein aggregate myopathies and are caused by mutations of genes encoding Z-disk-associated proteins (e.g., DES, CRYAB, MYOT, ZASP, FLNC, BAG3, PLEC) (Keduka et al., 2012; Clemen et al., 2013; Batonnet-Pichon et al., 2017). It is plausible that Dst proteins are also aggregated in muscles affected by other MFM types. Because Dst-b encodes cytoskeletal linker proteins that are localized in the Z-disks, it is possible that mutations in Dst-b lead to Z-disk fragility, and repeated contraction may lead to myofibril disruption and induction of muscle regeneration. In line with this notion, we observed Z-disk streaming and CNFs, which reflect muscle degeneration and regeneration.

It is possible that protein quality control impairment through the unfolded protein response, autophagy, and the ubiquitin proteasome system is involved in protein aggregation in Dst-b mutant mouse muscles. Moreover, several genes responsible for the unfolded protein response, including heat shock proteins, were upregulated in Dst-b mutant mouse hearts. We also observed the accumulation of the autophagy-associated molecules p62 and ubiquitinated proteins in the muscles of Dst-b mutant mice. Co-aggregation of p62 and ubiquitinated proteins has been reported in autophagy-deficient neurons of Atg7 conditional knockout mice (Komatsu et al., 2007). In the sensory neurons of dt mutant, loss of Dst was reported to lead to disruption of the autophagic process (Ferrier et al., 2015; Lynch-Godrei et al., 2021). Autophagy was also reported to be involved in the pathogenesis of other types of MFMs; the CryAB R120G mutation (CryABR120G) increases autophagic activity, and genetic inactivation of autophagy aggravates heart failure in CryABR120G mice (Tannous et al., 2008), while enhanced autophagy ameliorates protein aggregation in CryABR120G mice (Bhuiyan et al., 2013). It would be interesting to investigate the involvement of autophagy and other protein degradation machinery in the process of protein aggregation myopathy in Dst-bE2610Ter/E2610Ter mutant mice.

Accumulated evidence strongly suggests that myofibrillar integrity is essential for the maintenance of mitochondrial function (Vincent et al., 2016). Mitochondrial dysfunctions have also been well recognized in some animal models of MFMs, such as desmin (Des), αB-crystallin (Cryab), and plectin (Plec) mutants (Winter et al., 2015; Winter et al., 2016; Diokmetzidou et al., 2016; Alam et al., 2020). Abnormal accumulation of mitochondria in the subsarcolemmal space was observed in Dst-bE2610Ter/E2610Ter mutant muscles. Mitochondrial dysfunction in Dst-bE2610Ter mouse cardiomyocytes was also suggested by RNA-seq data, including altered expression of genes responsible for oxidative phosphorylation and other metabolic processes. The altered heart functions characterized by long QT intervals and PVCs in Dst-b mutant mice may be explained by mitochondrial dysfunction, as well as altered expression of genes involved in transmembrane ion transport and muscle contraction.

Nuclear abnormalities in Dst-b mutation-induced myopathy and cardiomyopathy

Deep invaginations of the nuclear membrane were also a characteristic feature of Dst-b mutant muscle fibers. The linker of nucleuskeleton and cytoskeleton (LINC) complex is a protein complex that spans the inner and outer nuclear membrane to bridge the cytoskeleton in the cytoplasm to the nuclear lamina underlying the inner nuclear membrane (Stroud et al., 2014). Mutations in genes encoding LINC complex proteins are
Figure 8. RNA-seq-based transcriptome of hearts from Dst-bE2610Ter mice. RNA-seq analysis was performed in ventricular myocardium tissues from 14- to 19-month-old Dst-bE2610Ter/E2610Ter mice and WT mice (n = 3, each genotype). Principal component analysis (PCA) and hierarchical clustering of RNA-seq data are shown in Figure 8—figure supplement 1. (A) Among the 13,003 genes expressed in the heart, 481 genes were upregulated and 247 genes were downregulated. Thresholds were set at p < 0.01 and false discovery rate (FDR) < 0.1, respectively. (B) Volcano plot shows differentially expressed genes. Figure 8 continued on next page.
Figure 8 continued

Figure supplement 1. Transcriptomes of hearts from WT and Dst-L^{E2610Ter} mice.

genes. Red and blue dots represent genes upregulated and downregulated, respectively. Dots of highly changed genes were labeled with gene symbols. Changes of gene expressions were validated by qPCR in Figure 8—figure supplement 1. Bar graphs show Gene Ontology (GO) biological process (C), GO cellular component (D), and Kyoto Encyclopedia of Genes and Genomics (KEGG) pathway (E) enriched in genes that are upregulated and downregulated in the heart of Dst-L^{E2610Ter/E2610Ter} mice. Red and blue bars represent genes upregulated and downregulated, respectively. Items in red words are specific to skeletal muscle and heart. List of genes resulting from GO analysis and KEGG pathway analysis is shown in Supplementary file 1A–F. RNA-seq data can be accessed from the Gene Expression Omnibus under accession # GSE184101.

The online version of this article includes the following figure supplement(s) for figure 8:

Role of the Dst-b isoform in DST-related diseases

A wide variety of genetic diseases have been reported to be caused by DST mutations. Loss-of-function mutations in both DST-a and DST-b result in HSAN-VI, and loss-of-function mutations of DST-e result in the skin blistering disease epidermolysis bullosa simplex (Groves et al., 2010; Edvardson et al., 2012). Recently, DST was reported as a candidate gene of pulmonary atresia, a rare congenital heart defect (Shi et al., 2020). According to this study, it is possible that unidentified hereditary myopathies and heart disease caused by human DST-b-specific mutations exist. Because the causative gene is unidentified in almost half of MFM cases, it would be worthwhile to perform candidate gene screening on DST-b-specific exons in patients with MFMs.

Recently, HSAN-VI has been proposed to be a spectrum disease because of its varying disease severity and the diverse deficiency of DST isoforms (Lynch-Godrei and Kothary, 2020). DST-a2 seems to be a crucial isoform for HSAN-VI pathogenesis because DST-a2-specific mutations result in adult-onset HSAN-VI (Manganelli et al., 2017; Fortugno et al., 2019), and neuronal expression of Dst-a2 partially rescues the <i>dt</i> phenotype (Ferrier et al., 2014). We suggest that Dst-a1 and Dst-a2 play redundant roles because Dst^{gt} mice, in which both Dst-a1 and Dst-a2 are trapped, show a severe phenotype (Horie et al., 2014). Among three Dst-b isoforms, remarkable reduction of Dst-b1, but not Dst-b2 or Dst-b3, was observed in Dst-b^{E2610Ter/E2610Ter} mice, suggesting that reduced Dst-b1 expression is involved in myopathic phenotypes in Dst-b^{E2610Ter/E2610Ter} mice. It is possible that DST isoforms 1 and 2 may be important to different extents in neural and muscular tissues. Regarding this point of view, it would be interesting to compare muscle phenotypes between patients harboring DST-a1, -a2, -b1, and -b2 isoform mutations and patients with DST-a2 and -b2 isoform-specific mutations (Manganelli et al., 2017; Fortugno et al., 2019; Motley et al., 2020).
Figure 9. Cardiomyopathy in conditional Dst conditional gene trap (cGT) mice. (A) Scheme of mosaic analysis by cGT of Dst-a/b. The gene trap cassette contains splice acceptor (SA) sequence, the reporter gene βgeo, and poly-A (pA) termination signal. The gene trap cassette is flanked by pairs of inversely oriented target sites of FLP recombinase (Frt and F3: half circles) and Cre recombinase (loxP and lox5171: triangles). FLP- and Cre-mediated recombination induce irreversible inversion from mutant DstGt allele to untrapped DstGt-inv allele and DstGt-inv allele to mutant DstGt-DO allele, respectively. (B) For generation of Actb-iCre; DstGt-DO/Gt-inv (mosaic) mice, female DstGt-inv/Gt-inv mice were mated with male Actb-iCre; DstGt-DO/WT mice. (C) Body weight of Figure 9 continued on next page
male mosaic mice reduced than Ctrl mice in several months of age (n = 5 mice, each genotype; two-way ANOVA; genotype effect: p=0.0493; age effect: p=0.0000; genotype × age interaction: p=0.9126). Impairment of motor coordination in mosaic mice is shown by rotarod test (n = 8 Ctrl mice, n = 5 mosaic mice). * denotes statistically significant difference at p<0.05 (p=0.0110), using Student’s t-test. Mosaic mice displayed hindlimb clapping and twist movements during tail suspension. (D) Representative data of Western blot analysis showed a deletion of Dst band in heart lysates from mosaic mice, while residual Dst bands were detected in those brain lysates (n = 2 mice, each genotype, 5–7 months of age). (E) Masson’s trichrome staining showed extensive fibrosis in heart sections of mosaic mice at 10 months of age. (F) Nppa mRNA and p62-positive depositions (arrowheads) were evident in the left ventricular myocardium of mosaic mice than Ctrl mice. Data are presented as mean ± SE. Scale bars: (E, F) 50 μm.

Roles of plakin family proteins in muscles and other tissues

Members of the plakin protein family other than Dst, such as plectin and desmoplakin, are known to be expressed and play crucial roles in maintaining muscle integrity (Leung et al., 2002; Boyer et al., 2010b; Horie et al., 2017). Plectin is a Dst-associated protein and one of the most investigated members of the plakin protein family (Castañón et al., 2013). There are four alternative splicing isoforms of plectin in striated muscle fibers, which are localized in differential subcellular compartments: plectin 1 in nuclei, plectin 1b in mitochondria, plectin 1d in Z-disks, and plectin 1f in the sarcolemma (Mikhailovska et al., 2014; Staszewska et al., 2015; Winter et al., 2015). Plec deficiency is lethal in mice at the neonatal stage, and these mice exhibit skin blistering and muscle abnormalities (Andrä et al., 1997). Conditional deletion of Plec in muscle fibers leads to progressive pathological alterations, such as aggregation of desmin and chaperon protein, subsarcolemmal accumulation of mitochondria, and an abnormal nuclear shape (Konieczny et al., 2008; Staszewska et al., 2015; Winter et al., 2014; Winter et al., 2015), some of which are also observed in the muscles of aged Dst-b mutant mice.

Dst and plectin also have common features in other cell types. In keratinocytes, plectin and Dst-e localize to the inner plaque of hemidesmosomes and anchor keratin intermediate fibers to hemidesmosomes (Künzli et al., 2016). Conditional deletion of Plec from epidermal cells causes epidermal barrier defects and skin blistering (Ackerl et al., 2007), both of which is more severe than that observed in dt mice carrying Dst-e mutations (Guo et al., 1995; Yoshioka et al., 2020). Furthermore, we recently demonstrated that conditional deletion of Dst from Schwann cells in the peripheral nervous system leads to disorganization of the myelin sheath (Horie et al., 2020), similar to that observed for Plec-deficient Schwann cells (Walko et al., 2013). These studies suggest that Dst and plectin, which are plakin family proteins, have overlapping roles in different cell types.

Materials and methods

Animals

Dst-L^{E2610Ter} mice, Dst^{Gt(E182H05)} mice (MGI number: 3917429; Horie et al., 2014), and Actb-iCre mice (Zhou et al., 2018) were used in this study. Dst^{Gt(E182H05)} allele was abbreviated as Dst^{Gt}. Homozygous Dst-^bL^{E2610Ter} and Dst^{Gr} mice were obtained by heterozygous mating. For mosaic analysis, female Dst^{b_{Gt>Gr<wbr/>}inv}-inv_{-inv}-⁻ mice were crossed with male Actb<i>-_{iCre}-</i>Dst<sup>b_{Gt>Gr}inv_{-₋-<}-</sub> mice. Dst-b^{E2610Ter} mutant line was C57BL/6J. The Dst^{Gr} mutant line was backcrossed to C57BL/6NCrj at least 10 generations. Mice were maintained in groups at 23°C ± 3°C, 50% ± 10% humidity, 12 hr light/dark cycles, and food/water availability ad libitum. Both male and female mice were analyzed in this study. Genotyping PCR for the Dst^{Gr} allele was performed as previous described (Horie et al., 2014). For genotyping PCR of the Dst-b^{E2610Ter} allele, the following primer set was used to amplify 377 bp fragments: Dst-b forward: 5′-TGA GCG ATG GTA GCG ACT TG-3′ and Dst-b reverse: 5′-GCG ACA CAC CTT TAG TTG CC-3′. PCR was performed using Quick Taq HS DyeMix (Toyobo, Osaka, Japan) and a PCR Thermal Cycler Dice (TP650; Takara Bio Inc, Shiga, Japan), with the following cycling conditions: 94°C for 2 min, followed by 32 cycles of 94°C for 20 s, 61°C for 30 s, and 72°C for 30 s. PCR products were cut with XhoI, which produced two fragments (220 bp and 157 bp) for the mutant Dst-b^{E2610Ter} allele. For genotyping PCR for Actb-iCre knockin allele, the following primer set was used to amplify 540 bp fragments: iCre-F: CTC AAC ATG CTG CAC AGG AGA T-3′ and iCre-R: 5′-ACC ATA GAT CAG GCG GTG GGT-3′.
Table 1. List of identified nonsense mutations in DST-b.

No.	SNP_ID	DST-b specific exon (Ex40-Ex44)	Base substitution (NM_001374736.1)	Amino acid substitution (NP_001361651.1)	Database	Global frequency	Specific population frequency	
1	780727375	Ex40	c.5513_5514insTTAGA,	p.Ser1839_Lys1840insTer	ExAC	1/120712	European: 1/73330	
2	775037762	Ex40	c.5581C>T	p.Gln1861Ter	ExAC	1/120756	European: 1/73346	
3	267601090	Ex40	c.6106C>T	p.Gln2036Ter	None	None	None	
4	763489373	Ex40	c.6199C>T	p.Arg2067Ter	GnomAD_exome, GnomAD, ExAC, ALFA	5/248332	None	None
5	763489373	Ex40	c.6199C>T	p.Arg2067Ter	GnomAD_exome, GnomAD, ExAC, ALFA	1/120410	None	None
6	763489373	Ex40	c.6199C>T	p.Arg2067Ter	GnomAD_exome, GnomAD, ExAC, ALFA	0/10680	None	None
7	1416256967	Ex40	c.6907G>T	p.Glu2303Ter	None	None	None	
8	1563150977	Ex40	c.6952C>T	p.Gln2318Ter	None	None	None	
9	2098509730	Ex40	c.7045C>T	p.Gln2349Ter	None	None	None	
10	536128073	Ex40	c.7120C>T	p.Arg2374Ter	TOPMED, GnomAD_exome, GnomAD, ExAC, ALFA	1/264690	None	None
11	747917821	Ex40	c.7171C>T	p.Gln2391Ter	None	None	None	
12	1261702898	Ex40	c.7214C>G, c.7214C>A	p.Ser2405Ter	None	None	None	
13	757004287	Ex40	c.7316T>G	p.Leu2439Ter	None	None	None	
14	559852499	Ex40	c.7459C>T	p.Gln2487Ter	None	None	None	
15	1437052580	Ex40	c.7510C>T	p.Gln2504Ter	None	None	None	
16	751364829	Ex40	c.7531_7534del	p.Leu2510_Asn2511insTer	GnomAD_exome, ExAC	1/264798	None	None
17	1563144635	Ex40	c.7447_7534del	p.Ile2482_Gly2483insTer	GnomAD_exome	1/264798	None	None
18	747767227	Ex40	c.7552C>T	p.Gln2518Ter	None	None	None	
19	1243608666	Ex40	c.7578C>G	p.Tyr2526Ter	GnomAD_exome	1/264798	None	None
20	1190095913	Ex40	c.7627C>T	p.Gln2543Ter	None	None	None	
21	756643045	Ex40	c.8014C>T	p.Gln2672Ter	None	None	None	
22	1208663117	Ex40	c.8349C>T	p.Tyr2765Ter	GnomAD_exome	1/264798	None	None

Table 1 continued on next page
No.	SNP_ID	DSTa-specific exon (Ex40-Ex44)	Base substitution (NM_001374736.1)	Amino acid substitution (NP_001361651.1)	Database	Global frequency	Specific population frequency
24	Ex40 c.8485C>T	p.Gln2829Ter	TOPMED	GnomAD		1/264690	
25	Ex40 c.8623del	p.Arg2874_Val2877insTer	None	None		0/14050	
26	Ex40 c.8635C>T	p.Gln2879Ter	8.3KJPN	JAPANESE		1/16760	
27	Ex40 c.8900C>G	p.Ser2967Ter	None	None		0/14050	
28	Ex40 c.9076C>T	p.Gln3026Ter	TOPMED	ALFA		1/264690	
29	Ex40 c.9172G>T	p.Gly3058Ter	None	None		0/14050	
30	Ex40 c.9202G>T	p.Glu3068Ter	None	None			
31	Ex40 c.9227_9237del	p.Leu3075_Leu3076insTer	ExAC			1/119230	
32	Ex40 c.9439A>T	p.Ly1c147Ter	GnomAD	ALFA		1/140058	
33	Ex40 c.9549C>G	p.Tyr3183Ter	TOPMED	GnomAD_exome		1/247036	
34	Ex40 c.9580A>T	p.Ly1c194Ter	GnomAD_exome	ALFA		1/247422	
35	Ex40 c.9586del	p.Asp3195_3196insTer	None	None		0/10680	
36	Ex40 c.9818C>G	p.Ser3273Ter	TOPMED	TOPMED		2/264690	
37	Ex40 c.9824T>A	p.Leu3275Ter	GnomAD	ALFA		0/10680	
38	Ex40 c.10045C>T	p.Gln3349Ter	TOPMED	GnomAD_exome		1/247418	
39	Ex40 c.10114G>T	p.Glu3372Ter	None	None		1/33212	
40	Ex40 c.10166T>A	p.Leu3389Ter	TOPMED	TOPMED		1/264690	
41	Ex40 c.10271C>A	p.Ser3424Ter	GnomAD	ALFA		0/10680	
42	Ex40 c.10391del	p.Glu3463_Leu3464insTer	TOPMED	ALFA		1/11862	
43	Ex40 c.10516G>T	p.Glu3506Ter	8.3KJPN	JAPANESE		1/16760	
44	Ex40 c.10570G>T	p.Glu3524Ter	TOPMED	GnomAD		1/264690	
45	Ex40 c.10633C>T	p.Glu3545Ter	KOREAN	KOREAN		1/2922	
46	Ex40 c.10807C>T	p.Gln3603Ter	GnomAD			2/140068	
47	Ex40 c.10815T>A	p.Cys1605Ter	Korea1K	KOREAN		1/1832	
48	Ex40 c.10958_10959insTTA	p.Leu3553delinsPheTer	ALFA			0/11862	
49	Ex40 c.11071C>T	p.Gln3691Ter	GnomAD	ALFA		1/139940	
50	Ex40 c.11204C>G	p.Ser3735Ter	GnomAD	ALFA		0/10680	
We attempted to induce G→T (Glu to Stop) point mutation in the \textit{Dst-b}/\textit{Bpag1b} using a previously described procedure (Sato et al., 2018). The sequence (5′-GCT ATC AGG AAA GAA CAC GG-3′) was selected as guide RNA (gRNA) target. The gRNA was synthesized and purified by GeneArt Precision gRNA Synthesis Kit (Thermo Fisher Scientific, MA) and dissolved in Opti-MEM (Thermo Fisher Scientific). In addition, we designed a 102-nt single-stranded DNA oligodeoxynucleotide (ssODN) donor for inducing c.8058 G>T of the \textit{Dst-b1} (accession # NM_134448.4); the nucleotide T was placed between 5′- and 3′-homology arms derived from positions 8013–8057 and 8066–8114 of the \textit{Dst-b1} coding sequence, respectively. This ssODN was ordered as Ultramer DNA oligos from Integrated DNA Technologies (IA, USA) and dissolved in Opti-MEM. The pregnant mare serum gonadotropin (five units) and the human chorionic gonadotropin (five units) were intraperitoneally injected into female C57BL/6J mice (Charles River Laboratories, Kanagawa, Japan) with a 48 hr interval, and unfertilized oocyte were collected from their oviducts. We then performed in vitro fertilization with these oocytes and sperm from male C57BL/6J mice (Charles River Laboratories, Kanagawa, Japan) according to standard protocols. 5 hr later, the gRNA (5 ng/μl), ssODN (100 ng/μl), and GeneArt Platinum Cas9 Nuclease (Thermo Fisher Scientific) (100 ng/μl) were electroplated to zygotes by using NEPA21 electroporator (Nepa Gene, Chiba, Japan) as previously reported (Sato et al., 2018). After electroporation, fertilized eggs that had developed to the two-cell stage were transferred into oviducts in pseudo-pregnant ICR female and newborns were obtained. To confirm the G→T point mutation induced by CRISPR/Cas9, we amplified genomic region including target sites by PCR with the same primers used for PCR-RFLP genotyping. The PCR products were cut with \textit{XhoI} for genome editing validation, and then, sequenced by using BigDye Terminator v3.1 Cycle Sequencing Kit (Thermo Fisher Scientific). We analyzed three independent \textit{Dst-b} lines in this study: line numbers #1, #6, and #7.

Western blotting

Frozen heart, gastrocnemius muscle, and brain tissues were homogenized using a Teflon-glass homogenizer in ice-cold homogenization buffer (0.32 M sucrose, 5 mM EDTA, 10 mM Tris-HCl, and pH 7.4, phosphatase inhibitor cocktail tablet; Roche, Mannheim, Germany), centrifuged at 4500 rpm for 10 min at 4°C and the supernatants were collected. The protein concentration was determined using the bicinchoninic acid Protein Assay Reagent (Thermo Fisher Scientific). Lysates were mixed with an equal volume of 2x sodium dodecyl sulfate (SDS) sample buffer (125 mM Tris-HCl, pH 6.8, 4% SDS, 20% glycerol, and 0.002% bromophenol blue) for a final protein concentration of 2 μg/μl and denatured in the presence of 100 mM dithiothreitol at 100°C for 5 min. SDS-polyacrylamide gel electrophoresis (PAGE) was performed with 20 μg per lane on 5–20% gradient gels (197-15011; SuperSep Ace; FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan) running at 10–20 mA for 150 min. The gels were blotted onto an Immobilon-P transfer membrane (Millipore, Billerica, MA). After blocking
with 10% skim milk for 3 hr, blotted membranes were incubated with the following primary antibodies: rabbit polyclonal anti-Dst antibody (gifted from Dr. Ronald K Leim; 1:4000; Goryunov et al., 2007) that recognizes the plakin domain of Dst, and mouse monoclonal anti-glyceraldehyde-3-phosphate dehydrogenase (Gapdh) antibody (016-25523; clone 5A12, 1:10,000, Wako). Each primary antibody...
was incubated overnight at 4°C. Then membranes were incubated with peroxidase-conjugated secondary antibodies for 1 hr at room temperature: anti-rabbit immunoglobulin G (IgG) (AB_2099233; Cat# 7074, 1:2000, Cell Signaling Technology), anti-mouse IgG (AB_330924; Cat# 7076, 1:2000, Cell Signaling Technology). Tris-buffered saline (10 mM Tris-Cl, pH 7.5, 150 mM NaCl) containing 0.1% Tween-20 and 10% skim milk was used for the dilution of primary and secondary antibodies, and Tris-buffered saline containing 0.1% Tween-20 was used as the washing buffer. Immunoreactions were visualized with ECL (GE Healthcare, Piscataway Township, NJ) or ImmunoStar LD (FUJIFILM Wako Pure Chemical) and a Chemiluminescent Western Blot Scanner (C-Digit, LI-COR, Lincoln, NE). The signal intensity of each band was quantified using Image Studio software version 5.2 (LI-COR).

RNA extraction and real-time PCR
Total RNA was extracted from the heart, soleus, and brain using the RNeasy Mini Kit (QIAGEN, Hilden, Germany) including DNase digestion. 100 ng of RNA template was used for cDNA synthesis with oligo (dT) primers. Real-time PCR was performed using a StepOnePlus Real-Time PCR system (Thermo Fisher Scientific) and the following cycling conditions: 95°C for 2 min, followed by 40 cycles of 95°C for 15 s, 60°C for 40 s, and 95°C for 15 s. Gene expression levels were analyzed using the ΔΔCT method. Actb or Gapdh were used as internal controls to normalize the variability of expression levels. The primers used for real-time PCR are listed in Table 2.

RNA-seq analysis
RNA-seq analysis was performed as described in the previous study with slight modification (Bizen et al., 2022; Hayakawa-Yano et al., 2017; Hayakawa-Yano and Yano, 2019). mRNA libraries were generated from total RNA 5 μg/sample extracted from the heart using illumine TruSeq protocols for poly-A selection, fragmentation, and adaptor ligation. Multiplexed libraries were sequenced as 150-nt paired-end runs on an NovaSeq6000 system. Sequence reads were mapped to the reference mouse genome (GRCm38/mm10) with Olego. Expression and alternative splicing events were quantified with Quantas tool. Integrative Genomics Viewer (IGV) was used as visualization of alignments in mouse genomic regions (Thorvaldsdóttir et al., 2013). Statics of differential expression was determined with edseR (Robinson et al., 2010). Differentially expressed genes were corrected with threshold set at p<0.01 and FDR < 0.1. GO analysis and KEGG pathway analysis were performed using DAVID Bioinformatics Resources (Huang et al., 2009) (https://david.ncifcrf.gov/summary.jsp). The threshold of GO analysis and pathway analysis was set at p<0.01. Three highly changed genes, Xist, Tsix, and Bmp10, were excluded because the differences were due to extreme outliers in only one individual. In GO analysis, the terms of cytoplasm and membrane that contained more than 190 genes were excluded from the list. PCA and hierarchical clustering were performed and visualized with R software using the RNA-seq datasets obtained from three independent WT and DstᵇE2610Ter. PCA was conducted in the prcomp function in RStudio (version 2021.09.1 build 372). RNA-seq data can be accessed from the Gene Expression Omnibus under accession, GSE184101.

Behavioral tests
The rotarod test and wire hang test (O’Hara & Co., Tokyo, Japan) were performed to evaluate motor coordination as described in the previous study with slight modification (Horie et al., 2020). In the rotarod test, the latency to fall from a rotating rod (30 mm diameter) with an acceleration from 10 to 150 rpm was measured. Each trial was conducted for a period of 3 min. In each mouse, two trials were conducted in a day. In the wire hang test, mouse was placed on the top of the wire lid. The lid was slightly shaken several times to force the mouse to grip the wires. The lid was turned upside down. The latency to fall was measured.

Histological analysis
For tissue preparations, mice were euthanized via intraperitoneal injection with pentobarbital sodium (100 mg/kg body weight), and then perfused with 4% paraformaldehyde (PFA) in 0.1 M phosphate-buffered (PB) solution (pH 7.4). The tissues were fixed by cardiac perfusion with 0.01 M phosphate-buffered saline (PBS) followed by ice-cold 4% PFA in 0.1 M PB (pH 7.4). Dissected tissues were immersed in the same fixative overnight. To cut spinal cord and DRG sections, the specimens were rinsed with water for 10 min and decalcified in Morse solution (135-17071; Wako, Osaka, Japan)
Table 2. Primer list for qPCR.

Gene name	Forward (5’ to 3’)	Reverse (5’ to 3’)
Acta2	GTCCCAAGACATCGAGGAGTAA	TCGGATACCTCAGGGTCAGGA
Actb	GGCTGTATCCCCCTCCATCG	CCAATGCTGGAGAACATTCCAC
Ano5	TCCAAAGGACACGGCTTTCA	GTCGATCTGGCGAGATTCCAT
Atp5a1	TCTCCATGCCTTAACACTCG	CCAAGTCAACACGTCGTCAG
Cepf	GCACACAGATGTGACCAGG	CTCTGGTTCAGGTGGTACG
Cox4i	ATTGGCAGAGAAGCTTTTAC	CACCGCGATCGGCTAG
Ctgf	GGGCCCTCTTCCTGAGCT	ATTCAGAGGGAAGGATTTT
Dst-a	AACCCGACGAGAGTCAGGAGT	TGCCGCTCTCAACTCAAAG
Dst b	ACCGTGGAGGCTCTCCTG	ATTCACAGGCGCTTGGAGT
Dst isoform1	TCCAGCGCTATGAGGATTC	GAGAGGACGAGAACATTCC
Dst isoform2	AATTGCCCAACCATGAGAG	CGTCCCTACAGTCTCGTAG
Dst isoform3	CACCGCTCTCAGCTCACA	AGTTTCCCTCTCAGAGCA
Gapdh	AGGTCCGTTGTGAAACGGGATT	TGTAGACCATGTAGTTGGAGTCA
Gpx1	CCACCGGTGATCGGCTCTCC	AGAGAGACGACCTCAAT
Gpx4	GCCTGGATAAGTACAGGGGTT	CATGCGAGATCGACTGAG
Hmox1	AAGCCCGAGAAGCTGCTATTCA	GCCCGTGATAGTCTGCAAG
Hspa1l	TCACGCTGCGGCCGCTATTTC	CGTGGCCTAATGATTTCAG
Hspb1	CGTTCGCTGCCCAAGAAAATA	AGGGGATGGGAAAGGAGC
Myh7	ACTGTCAACACTAAAGAAGGGTCA	TTGGATGATTTAATTTGAGGAG
Mylk4	GGGCGTCTTGTGTCAGGATCAT	AGCCTGATCGTTCTCAGCA
Ndufb8	TTGTGCCGGGGCTATCCTTA	AGCATCGGAGTGCAGGATA
Nppa	GCATCCAGCGACATGAGAG	GGGGCGCACTCGCTCATC
Nppb	CATGATCGTCTGAGGTCAG	CCTCCAGAGCTGTCTCGG
Nqo1	AGCCTGCTTATGAGCAGTCC	AGTACAATCGGGGCTCTTC
Rpl3l	GAAGGCGCCGGGTGTAAAGG	AGCTCTGTACGGGTGCTG
Scn4a	AGTCCCTGCGGAGCCATGAGA	CCGCATGAGTGGGAGGGT
Scn4b	TGGTCCTACAATAAACAGCGAAC	ACTCTACGTGGGTGAC
Sdha	GAACACCTCCAAAAACAGACCT	CCACACGTTGGTTAGTAGAAG
Sod1	AACCAGTTGTGTTGTCAGGAC	CCACATGTTTTCTTAGAGGG
Tgfb2	TCGACATGCAGGTTTACTGAGC	CCCTGCGTACTGAGAG
Tnn1	ATGCCGGAAAGGTAAGGGAAA	TCCGAGAGTCAACGACCTT
Tnn2	AGACTGATGCTCGAGGAGGAC	AGAAGCGTGCTGCTCGA
Tnnt1	CCTGTGTTGGCTCTCATTGTT	TGGGTGCTTTTCTGCAATG
Tnnt3	GGAACCCGAGACAGTGGGAG	TGGAGAGAGCGCCTTTTCT
Uchl1	AGGAGAGAGAGTTAGCCCTTA	AGCTGCTGCTGCTACAGACA
Uqcr2c	AAAGTTGCCGGAAGGTGTTAA	GAGCATGTTTCCAGAAGGCA
overnight. Tissues were then dehydrated using an ascending series of ethanol and xylene washes, and then embedded in paraffin (P3683; Paraplast Plus; Sigma-Aldrich, St. Louis, MO). Consecutive 10-μm-thick paraffin sections were cut on a rotary microtome (HM325; Thermo Fisher Scientific), mounted on MAS-coated glass slides (Matsunami Glass, Osaka, Japan), and air-dried on a hot plate overnight at 37°C. Paraffin sections were deparaffinized in xylene, rehydrated using a descending series of ethanol washes, and then rinsed in distilled water. H&E staining and Masson’s trichrome staining were performed by standard protocols.

For IHC, deparaffinized sections were treated with microwave irradiation in 10 mM citric acid buffer, pH 6.0 for 5 min, and incubated overnight at 4°C with the primaries listed in Table 3. All primary antibodies were diluted in 0.1 M PBS with 0.01% Triton X-100 (PBST) containing 0.5% skim milk. Sections were then incubated in horseradish peroxidase-conjugated secondary antibody (1:200; MBL, Nagoya, Japan) diluted in PBST containing 0.5% skim milk for 60 min at 37°C. Between each step, sections were rinsed in PBST for 15 min. After rinsing sections in distilled water, immunoreactivity was visualized in 50 mM Tris buffer (pH 7.4) containing 0.01% diaminobenzidine tetrahydrochloride and 0.01% hydrogen peroxide at 37°C for 5 min. Sections were then dehydrated through an ethanol-xylene solution and placed on coverslips with Bioleit (23-1002; Okenshoji, Tokyo, Japan). Digital images were taken with a microscope (BX53; Olympus, Tokyo, Japan) equipped with a digital camera (DP74, Olympus), and the TIF files were processed with Adobe Photoshop software. Super-resolution images were recorded on the confocal laser scanning microscopy LSM 980 equipped with Airyscan 2 (Leica, Germany).

Table 3. Primary antibodies for immunohistochemistry.

Antigen name	Host	Dilution	Clone name	Source, Cat#, or reference
α-Actin	Mouse	1:200	Alpha Sr-1	BioLegend, MMS-467S
αB-Crystallin	Rabbit	1:1000		BioLegend, PRB-105P
ATF3	Rabbit	1:1000		Santa Cruz Biotechnology, sc-188
Cytochrome C	Mouse	1:500	A-8	Santa Cruz Biotechnology, sc-13156
Desmin	Mouse	1:100	RD301	Santa Cruz Biotechnology, sc-23879
Desmin	Rabbit	1:1000		Novus Biologicals, NBP1-85549
Dst	Rabbit	1:1000		Dr. Ronald K Liem, Goryunov et al., 2007
Lamin A/C	Mouse	1:100	E-1	Santa Cruz Biotechnology, sc-376248
LC3 A/B	Rabbit	1:1000	D3U4C	Cell Signaling Technology, #12741
Myotilin	Rabbit	1:500		ProteinTech, 10731-1-AP
NF-M	Mouse	1:200	1C8	Dr. Katsuhiko Ono, Horie et al., 2014
p62	Mouse	1:200	1B5,H9	BioLegend, MMS-5034
p62	Rabbit	1:400		ABlonal, A19700
Phospho-PERK	Rabbit	1:500		Abcam, ab192591
Plectin	Mouse	1:100	10F6	Santa Cruz Biotechnology, sc-33649
SUMO-1	Mouse	1:200	D-11	Santa Cruz Biotechnology, sc-5308
SUMO-2/3	Rabbit	1:200		ABlonal, A5066
Tom20	Rabbit	1:1000		Santa Cruz Biotechnology, sc-11415
Ubiquitin	Rabbit	1:1000		Dako; Agilent Technologies Z0458
ISH was performed on paraffin sections as described in previous studies (Takebayashi et al., 2000) using following mouse probes: PV, also known as parvalbumin (Pvalb, GenBank accession, NM_013645, nt 92-885), Nppa, also known as atrial natriuretic peptide (ANP, GenBank accession, BC089615, nt 124-529), and Nppb, also known as brain natriuretic peptide (BNP, GenBank accession, D16497, nt 42-752, without intron sequence) were used.

Electron microscope analysis

The detailed procedure for TEM analysis was described previously (Shibata et al., 2015). Briefly, the muscle samples for TEM were primary fixed with 2.5% glutaraldehyde for 24 hr at 4°C. Samples were washed in 50 mM HEPES buffer (pH 7.4) and were postfixed with 1.0% osmium tetroxide (TAAB Laboratories, England, UK) for 2 hr at 4°C. Samples were dehydrated with a series of increasing concentrations of ethanol (two times of 50, 70, 80, 90, 100% EtOH for 20 min each), soaked with acetone (Sigma-Aldrich) for 0.5 hr, and with n-butyl glycidyl ether (QY-1, Okenshoji Co. Ltd., Tokyo, Japan) two times for 0.5 hr, graded concentration of epoxy resin with QY-1 for 1 hr, and with 100% epoxy resin (100 g Epon was composed of 27.0 g MNA, 51.3 g EPOK-812, 21.9 g DDSA, and 1.1 ml DMP-30, all from Okenshoji Co. Ltd.) for 48 hr at 4°C, and were polymerized with pure epoxy resin for 72 hr at 60°C. Resin blocks with tissues were trimmed, semi-thin sliced at 350-nm thickness stained with toluidine blue, and were ultrathin-sectioned at 80-nm thickness with ultramicrotome (UC7, Leica) by diamond knife (Ultra, DiATOME, Switzerland). The ultrathin sections were collected on the copper grids and were stained with uranyl acetate and lead citrate. The sections were imaged with TEM (JEM-1400 Plus, JEOL, Japan) at 100 keV.

Measurements of ECG signal

Under anesthesia with 2–3% isoflurane (Pfizer Inc, NY), ECG signals were recorded. Three needle electrodes were inserted into right and left forelimbs as recording, and right hindlimb as grounding. The ECG signals were amplified using AC amplifier (band pass: 0.1–1 kHz), and the signals were digitized with A/D converter (Power 1401, Cambridge Electronic Design Ltd., Cambridge, UK).

Quantification and statistical analysis

Morphometric analysis was performed at least three sections per mouse. Quantifications of cross-sectional area and fibrosis were performed with MetaMorph software (Meta Series Software version 7.10.2; Molecular Devices, San Jose, CA). Unless otherwise noted, sample size (n) is the number of animals in each genotype. For statistical analysis, Student’s t-test and ANOVA were carried out. ANOVA was performed using ANOVA4 on the Web (https://www.hju.ac.jp/~kiriki/anova4/).

In silico screening of DST-b mutations

In silico screening was performed using dbSNP database (Sherry et al., 2001) (https://www.ncbi.nlm.nih.gov/snp/?cmd=search). After downloading the results of a search using the keyword "DST" in dbSNP in TSV format, we extracted the entries whose "function_class" was "stop_gained".

Compliance with ethical standards and study approval

All animal experiments were performed in accordance with the guidelines of the Ministry of Education, Culture, Sports, Science and Technology of Japan and were approved by the Institutional Animal Care and Use Committees of Niigata University (permit number: SA00521 and SA00621) and Tsukuba University (permit number: 17-078). Human study was approved by the ethical committees of the NCNP (permit number: A2019-123). The human materials used in this study were obtained for diagnostic purposes. The patients or their parents provided written informed consent for use of the samples for research.

Acknowledgements

We thank Dr. Seiya Mizuno and Dr. Satoru Takahashi (Laboratory Animal Resource Center, Tsukuba University) for their contribution to generate Dst-b mutant mice, Dr. Kenji Sakimura and Dr. Manabu Abe for the provision of Actb-iCre-ires-GFP mice, Dr. Kensuke Yamamura for electrophysiological apparatus, Dr. Ronald K H Liem for anti-Dst antibody, Dr. Keisuke Watanabe for Pvalb plasmid, and Dr. Riuko Ohashi and Mr. Kenji Oyachi (Histopathology Core Facility, Niigata University) for Masson's
trichrome staining. We also thank Dr. Norihisa Bizen for helpful discussion, Dr. Tomoko Shindo, Dr. Li Zhou, Mr. Yuya Imada, Ms. Satoko Yamagiwa, Ms. Yumi Kobayashi, Mr. Seiji Takahashi, Ms. Jitrapa Pinyomahakul, Ms. Aoba Shina, and Mr. Osamu Arai for technical assistances. We thank Lisa Kreiner, PhD, from Edanz (https://www.jp.edanz.com/ac) for editing a draft of this manuscript. This work was supported by grants from JSPS (15H04667, 18H02592, 21H02652 to HT, 20K15912 to YN), The Uehara Memorial Foundation (HT), Nagai N-S Promotion Foundation for Science of Perception (HT), The Nakatomi Foundation (NY), Setsuro Fujii Memorial, Osaka Foundation for Promotion of Fundamental Medical Research (NY), LEGEND Research Grant from BioLegend (NY), and Niigata University Interdisciplinary Research Grant (NY).

Additional information

Competing interests
Ichizo Nishino: IN held grants from Sanofi, Daiicji Sankyo, Medical & Biological Laboratories, CYTOO, and Avidity Biosciences and holds a patent on "Differentiating markers for inflammatory myopathies and methods to differentiate inflammatory myopathies" (Patent number 6531306). IN has received consultancy fees from Astellas, Sarepta, UCB Japan, Nobelpharma and Dyna Therapeutics, and has received honoraria payments for lectures from Sanofi, Japan Blood Products Organization, Daiichi Sankyo, Mitsubishi Tanabe Pharma Corporation, Kyowa Kirin, Biogen, Asahi Kasei Pharma and Nihon Pharma. IN has participated either on the Advisory Board, Vice President or on the Executive board of Horizon Therapeutics, Astellas, World Muscle Society, Asian Oceanian Myology Center, Japan Muscle Society, Japanese Society of Neuropathology, Japanese Society of Neurotherapeutics, and Japanese Society of Neurology. The author has no other competing interests to declare. The other authors declare that no competing interests exist.

Funding

Funder	Grant reference number	Author
Japan Society for the Promotion of Science	15H04667	Hirohide Takebayashi
Japan Society for the Promotion of Science	18H02592	Hirohide Takebayashi
Japan Society for the Promotion of Science	21H02652	Hirohide Takebayashi
Japan Society for the Promotion of Science	20K15912	Nozomu Yoshioka
Uehara Memorial Foundation	Research grant	Hirohide Takebayashi
Nagai N-S Promotion Foundation for Science of Perception	Research grant	Hirohide Takebayashi
Nakatomi Foundation	Research grant	Nozomu Yoshioka
Setsuro Fujii Memorial, Osaka Foundation for Promotion of Fundamental Medical Research	Research grant	Nozomu Yoshioka
BioLegend	LEGEND Research Grant	Nozomu Yoshioka
Niigata University	Interdisciplinary Research Grant	Nozomu Yoshioka

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Author contributions
Nozomu Yoshioka, Conceptualization, Data curation, Formal analysis, Funding acquisition, Validation, Investigation, Visualization, Writing - original draft, Project administration; Masayuki Kurose, Shujiro Okuda, Yukiko Mori-Ochiai, Toshihiro Nagai, Ichizo Nishino, Shinsuke Shibata, Investigation; Masato Yano, Data curation, Software, Investigation, Writing - review and editing; Dang Minh Tran, Validation, Investigation; Masashi Horie, Resources; Hirohide Takebayashi, Conceptualization, Resources, Supervision, Funding acquisition, Writing - original draft, Project administration

Author ORCIDs
Nozomu Yoshioka http://orcid.org/0000-0002-4425-5457
Shujiro Okuda http://orcid.org/0000-0002-7704-8104
Hirohide Takebayashi http://orcid.org/0000-0003-4493-6604

Ethics
Human study was approved by the ethical committees of the NCNP (Permit Number: A2019-123). The human materials used in this study were obtained for diagnostic purposes. The patients or their parents provided written informed consent for use of the samples for research. All animal experiments were performed in accordance with the guidelines of the Ministry of Education, Culture, Sports, Science and Technology of Japan and were approved by the Institutional Animal Care and Use Committees of Niigata University (Permit Number: SA00521 and SA00621) and Tsukuba University (Permit Number: 17-078).

Decision letter and Author response
Decision letter https://doi.org/10.7554/eLife.78419.sa1
Author response https://doi.org/10.7554/eLife.78419.sa2

Additional files
Supplementary files
• Supplementary file 1. (A) List of upregulated genes of Gene Ontology (GO) biological process, (B) list of upregulated genes of GO cellular component, (C) list of upregulated genes of Kyoto Encyclopedia of Genes and Genomics (KEGG) pathway, (D) list of downregulated genes of GO biological process, (E) list of downregulated genes of GO cellular component, (F) list of downregulated genes of KEGG pathway, and (G) variants of DST gene identified in Japanese patients with myopathy.
• Transparent reporting form

Data availability
RNA-seq data can be accessed from the Gene Expression Omnibus under accession, GSE184101.

The following dataset was generated:

Author(s)	Year	Dataset title	Dataset URL	Database and Identifier
Yoshioka N, Yano M,	2021	mRNAseq in control(WT) and Dst-b mutant mouse heart	https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE184101	NCBI Gene Expression Omnibus, GSE184101

The following previously published dataset was used:

Author(s)	Year	Dataset title	Dataset URL	Database and Identifier
Hayakawa-Yano Y,	2019	mRNAseq in control (WT) and Nes:Cre_Qk cKO	https://metadataplus.biothings.io/geo/GSE123927	NCBI Gene Expression Omnibus, GSE123927

Yoshioka et al. eLife 2022;11:e78419. DOI: https://doi.org/10.7554/eLife.78419
References

Ackerl R, Walko G, Fuchs P, Fischer I, Schmuth M, Wiche G. 2007. Conditional targeting of plectin in prenatal and adult mouse stratified epithelia causes keratinocyte fragility and lesional epidermal barrier defects. Journal of Cell Science 120:2435–2443. DOI: https://doi.org/10.1242/jcs.004481

Alam S, Abdullah CS, Ashwarya R, Morshed M, Nitu SS, Panchatcharam M, KEvil CG, ORr AW, BHuuyan MS. 2020. Dysfunctional mitochondrial dynamic and oxidative phosphorylation precedes cardiac dysfunction in R120G-aB-crystallin-induced desmin-related cardiomyopathy. Journal of the American Heart Association 9:e017195. DOI: https://doi.org/10.1161/JAHA.120.017195, PMID: 33208022

Andrä K, Lassmann H, Bittner R, SHorny S, Fässler R, Probst F, Wiche G. 1997. Targeted inactivation of plectin reveals essential function in maintaining the integrity of skin, muscle, and heart cytoarchitecture. Genes & Development 11:3143–3156. DOI: https://doi.org/10.1101/gad.11.23.3143

Banerjee I, Zhang J, Moore-Morris T, Pfeiffer E, Buchholz KS, Liu A, Ouyang K, Gerace L, Evans SM, McCulloch A, Chen J. 2014. Targeted ablation of nesprin 1 and nesprin 2 from murine myocardium results in cardiomyopathy, altered nuclear morphology and inhibition of the biomechanical gene response. PLOS Genetics 10:e1004114. DOI: https://doi.org/10.1371/journal.pgen.1004114, PMID: 24586179

Batonnet-Pichon S, Behin A, Cabet E, Delort F, Vicart P, Lilienbaum A. 2017. Myofibrillar myopathies: New perspectives from animal models to potential therapeutic approaches. Journal of Neuromuscular Diseases 4:1-15. DOI: https://doi.org/10.3233/JND-160203

Bezin S, Fossier P, Cancela JM. 2008. Nucleoplasmic reticulum is not essential in nuclear calcium signalling mediated by cdc34Prfobase in primary neurons. Pflugers Archiv 456:581–586. DOI: https://doi.org/10.1007/s00424-007-0435-8, PMID: 18197416

Bhuiyan MS, Bezin S, Fossier P, Cancela JM. 2008. Nucleoplasmic reticulum is not essential in nuclear calcium signalling mediated by cdc34Prfobase in primary neurons. Pflugers Archiv 456:581–586. DOI: https://doi.org/10.1007/s00424-007-0435-8, PMID: 18197416

Bhuiyan MS, Pattison JS, Osinska H, James J, Gulick J, McLendon PM, Hill JA, Sadoshima J, Robbins J. 2013. Dysfunctional mitochondrial dynamic and oxidative phosphorylation precedes cardiac dysfunction in R120G-aB-crystallin-induced desmin-related cardiomyopathy. Journal of the American Heart Association 9:e017195. DOI: https://doi.org/10.1161/JAHA.120.017195, PMID: 33208022

Bizen N, Bepari AK, Zhou L, Abe M, Sakamura K, Ono K, Takebayashi H. 2022. Ddx20, an Olig2 binding factor, governs the survival of neural and oligodendrocyte progenitor cells via proper Mdm2 splicing and p53 suppression. Cell Death and Differentiation 29:1028–1041. DOI: https://doi.org/10.1038/s41418-021-00915-8, PMID: 34974536

Bonnard C, Durand A, Peyrol S, Chanseaume E, Morio B, Vidal H, Rieusset J. 2008. Mitochondrial dynamics of heart in dystonia musculorum mice display altered nuclear morphology and inhibition of the biomechanical gene response. PLOS ONE 3:e870. DOI: https://doi.org/10.1371/journal.pone.000870, PMID: 18845435

Bonnard C, Durand A, Peyrol S, Chanseaume E, Morio B, Vidal H, Rieusset J. 2008. Mitochondrial dynamics of heart in dystonia musculorum mice display altered nuclear morphology and inhibition of the biomechanical gene response. PLOS ONE 3:e870. DOI: https://doi.org/10.1371/journal.pone.000870, PMID: 18845435

Boroughs JS, Bittner R, SHorny S, Fässler R, Probst F, Wiche G. 1997. Targeted inactivation of plectin reveals essential function in maintaining the integrity of skin, muscle, and heart cytoarchitecture. Genes & Development 11:3143–3156. DOI: https://doi.org/10.1101/gad.11.23.3143

Brenner SM, Bittner R, SHorny S, Fässler R, Probst F, Wiche G. 1997. Targeted inactivation of plectin reveals essential function in maintaining the integrity of skin, muscle, and heart cytoarchitecture. Genes & Development 11:3143–3156. DOI: https://doi.org/10.1101/gad.11.23.3143

Büchner JB, Hirth S, Kessler M, Westphal S, Forster M, Manta L, Wiche G, Szöllösi J, Schröder R, Clemens CS, Eichinger L, Fürst DO, van der Ven PFM, Rottbauer W, Just S. 2015. In vivo characterization of the human myofibrillar myopathy genes in zebrafish. Biochemical and Biophysical Research Communications 451:217–223. DOI: https://doi.org/10.1016/j.bbrc.2015.03.149, PMID: 25866181

Carlsten JA, Köthary R, Wright DE. 2001. Glial cell line-derived neurotrophic factor-responsive and neurotrophin-3-responsive neurons require the cytoskeletal linker protein dystonin for postnatal survival. The Journal of Comparative Neurology 432:155–168. DOI: https://doi.org/10.1002/cne.1094

Castañón MJ, Walko G, Winter L, Wiche G. 2013. Plectin-intermediate filament partnership in skin, skeletal muscle, and peripheral nerve. Histochemistry and Cell Biology 140:33–53. DOI: https://doi.org/10.1007/s00418-013-1102-0

Clemen CS, Herrmann H, Strelkov SV, Schröder R. 2013. Desminopathies: pathology and mechanisms. Acta Neuropathologica 125:47–75. DOI: https://doi.org/10.1007/s00401-012-1057-6

Dalpé G, Mathieu M, Comtois A, Zhu E, Wasiak S, De Repentigny Y, Leclerc N, Kothary R. 1999. Dystonin-mediated by cyclic ADPribose in primary neurons. Pflugers Archiv 456:581–586. DOI: https://doi.org/10.1007/s00424-007-0435-8, PMID: 18197416

Dalpé G, Mathieu M, Comtois A, Zhu E, Wasiak S, De Repentigny Y, Leclerc N, Kothary R. 1999. Dystonin-mediated by cyclic ADPribose in primary neurons. Pflugers Archiv 456:581–586. DOI: https://doi.org/10.1007/s00424-007-0435-8, PMID: 18197416

Duchen LW, Strich SJ, Falconer DS. 1964. Clinical and pathological studies of a hereditary neuropathy in mice (Dystonia musculorum). Brain: A Journal of Neurology 87:367–378. DOI: https://doi.org/10.1093/brain/87.2.367
Edvardsson S, Cinnamon Y, Jalas C, Shaaq A, Maayan C, Axelrod FB, Elpeleg O. 2012. Hereditary sensory autonomic neuropathy caused by a mutation in dystonin. *Annals of Neurology* **71**:569–572. DOI: https://doi.org/10.1002/ana.23524, PMID: 2252446

Ferrier A, Sato T, De Repentigny Y, Gibault S, Bhanot K, O'Meara RW, Lynch-Godrei A, Kornfeld SF, Young KG, Kohr K. 2014. Transgenic expression of neuronal dystonin isoform 2 partially rescues the disease phenotype of the dystonia musculorum mouse model of hereditary sensory autonomic neuropathy VI. *Human Molecular Genetics* **23**:2694–2710. DOI: https://doi.org/10.1093/hmg/ddt663, PMID: 24381311

Ferrier A, De Repentigny Y, Lynch-Godrei A, Gibault S, Eid W, Kuo D, Zha X, Kohr K. 2015. Disruption in the autophagic process underlies the sensory neuropathy in dystonia musculorum mice. *Autophagy* **11**:1025–1036. DOI: https://doi.org/10.1080/15548627.2015.1052207, PMID: 26043942

Fortugno P, Angelucci F, Cestra G, Camerota L, Ferraro AS, Cordisco S, Uccioi L, Castiglia D, De Angelis B, Kurth I, Kornak U, Brancati F. 2019. Recessive mutations in the neuronal isoforms of DST, encoding dystonin, lead to abnormal actin cytoskeleton organization and HSAN type VI. *Human Mutation* **40**:106–114. DOI: https://doi.org/10.1002/humu.23678, PMID: 30371979

Goryunov D, Adelbata A, Jefferss JJ, Leung CL, Messer A, Liem RK. 2007. Molecular characterization of the genetic lesion in Dystonia musculorum (dt-Alb) mice. *Brain Research* **1140**:179–187. DOI: https://doi.org/10.1016/j.brainsci.2006.04.068, PMID: 16725123

Groves RW, Liu L, Dopping-Hepenstal PJ, Markus HS, Lovell PA, Ozoemenla L, Lae-Cheong JE, Gawler J, Ovaribe K, Hashimoto T, Mellerio JE, Mee JB, McGrath JA. 2010. A homozygous nonsense mutation within the dystonin gene coding for the coiled-coil domain of the epithelial isoform of BPAG1 underlies A new subtype of autosomal recessive epidermolysis bullosa simplex. The *Journal of Investigative Dermatology* **130**:1551–1557. DOI: https://doi.org/10.1038/jid.2010.19

Gonzalez JF, Degenstein L, Dowling J, Yu QC, Wollmann R, Perman B, Fuchs E. 1995. Gene targeting of BPAG1: abnormalities in mechanical strength and cell migration in stratified epithelia and neurologic degeneration. *Cell* **81**:233–243. DOI: https://doi.org/10.1016/0092-8674(95)90333-x

Hayakawa-Yano Y, Suyama S, Nogami M, Yugami M, Koya I, Furukawa T, Zhou L, Abe M, Sakimura K, Takebayashi H, Nakanishi A, Okano H, Yano M. 2017. An RNA-binding protein, Qki5, regulates embryonic neural stem cells through pre-mRNA processing in cell adhesion signaling. *Genes & Development* **31**:1910–1925. DOI: https://doi.org/10.1101/gad.300822.117

Hayakawa-Yano Y, Yano M. 2015. An RNA switch of a large exon of ninein is regulated by the neural stem cell specific-RNA binding protein, Qki5. *International Journal of Molecular Sciences* **20**:E1010. DOI: 10.3390/ijms20051010, PMID: 30813567

Heffler J, Shah PP, Robison P, Phygo S, Veliz K, Uchida K, Bogush A, Rhoades J, Jain R, Prosser BL. 2020. A balance between intermediate filaments and microtubules maintains nuclear architecture in the cardiomyocyte. *Circulation Research* **126**:e10–e26. DOI: https://doi.org/10.1161/CIRCRESAHA.119.315582, PMID: 31822208

Heller SA, Shih R, Kalra R, Kang PB. 2020. Emery-Dreifuss muscular dystrophy. *Muscle & Nerve* **61**:436–448. DOI: https://doi.org/10.1002/mus.26782, PMID: 31840275

Horie M, Watanabe K, Bepari AK, Nashimoto JI, Araki K, Sano H, Chiken S, Takebayashi H. 2014. Disruption of actin-binding domain-containing Dystonin protein causes dystonia musculorum in mice. *The European Journal of Neuroscience* **34**:3458–3471. DOI: https://doi.org/10.1111/ejn.12711, PMID: 25195653

Horie M, Kehkada K, Sano H, Chiken S, Someya T, Saito K, Hossain MI, Name M, Abe K, Sakamaku K, Ono K, Nambu A, Yoshiki A, Takebayashi H. 2016. Characterization of novel dystonia musculorum mutant mice: Implications for central nervous system abnormality. *Neurobiology of Disease* **96**:271–283. DOI: https://doi.org/10.1016/j.nbd.2016.09.016, PMID: 27693510

Horie M, Yoshioka N, Takebayashi H. 2017. BPAG1 in muscles: Structure and function in skeletal, cardiac and smooth muscle. *Seminars in Cell & Developmental Biology* **69**:26–33. DOI: https://doi.org/10.1016/j.semcdb.2017.07.016, PMID: 28736206

Horie M, Yoshioka N, Kusumi S, Sano H, Kurose M, Watanabe-Iida I, Hossain S, Chiken S, Saito K, Abe M, Yamamura K, Sakimura K, Nambu A, Shibata M, Takebayashi H. 2020. Disruption of dystonin in Schwann cells results in late-onset neuropathy and sensory ataxia. *Glia* **68**:2330–2344. DOI: https://doi.org/10.1002/glia.23843, PMID: 32445516

Hossain MI, Horie M, Yoshioka N, Kurose M, Yamamura K, Takebayashi H. 2018. Motoneuron degeneration in the trigeminal motor nucleus innervating the masseter muscle in Dystonia musculorum mice. *Neurochemistry International* **119**:159–170. DOI: https://doi.org/10.1016/j.neuint.2017.10.009, PMID: 29061384

Huang DW, Sherman BT, Lempicki RA. 2009. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. *Nature Protocols* **4**:44–57. DOI: https://doi.org/10.1038/nprot.2008.211, PMID: 19131956

Jefferson JJ, Leung CL, Liem RK. 2006. Dissecting the sequence specific functions of alternative N-terminal isoforms of mouse bullous pemphigoid antigen 1. *Experimental Cell Research* **312**:2712–2725. DOI: https://doi.org/10.1016/j.yexcr.2006.04.025, PMID: 16797530

Jin JY, Wu PF, He JQ, Fan LL, Yuan ZZ, Pang XY, Tang YJ, Zhang LY. 2020. Novel compound heterozygous DST variants causing hereditary sensory and autonomic neuropathies VI in twins of a chinese family. *Frontiers in Genetics* **11**:492. DOI: https://doi.org/10.3389/fgene.2020.00492, PMID: 32528525

Joshi PR, Hauburger A, Kley R, Claes KG, Schneider I, Kress W, Woltenburg G, Weis J, Vorderg M, Deschauer M, Hanisch F. 2014. Mitochondrial abnormalities in myofibrillar myopathies. *Clinical Neuropathology* **33**:134–142. DOI: https://doi.org/10.5414/NP300693, PMID: 24361111
mutation in transcription factor MAFB causes focal segmental glomerulosclerosis with duane retraction syndrome. *Kidney International* **94**:396–407. DOI: https://doi.org/10.1016/j.kint.2018.02.025, PMID: 29779709

Sergeeva IA, Christoffels VM. 2013. Regulation of expression of atrial and brain natriuretic peptide, biomarkers for heart development and disease. *Biochimica et Biophysica Acta* **1832**:2403–2413. DOI: https://doi.org/10.1016/j.bbadis.2013.07.003, PMID: 23851052

Sherry ST, Ward MH, Khodolov M, Baker J, Phan L, Smigielski EM, Sirotkin K. 2001. dbSNP: the NCBI database of genetic variation. *Nucleic Acids Research* **29**:308–311. DOI: https://doi.org/10.1093/nar/29.1.308, PMID: 11125122

Shi X, Zhang L, Bai K, Xie H, Shi T, Zhang R, Fu Q, Chen S, Lu Y, Yu Y, Sun K. 2020. Identification of rare variants in novel candidate genes in pulmonary atresia patients by next generation sequencing. *Computational and Structural Biotechnology Journal* **18**:381–392. DOI: https://doi.org/10.1016/j.csbj.2020.01.011, PMID: 32128068

Shibata S, Murota Y, Nishimoto Y, Yoshimura M, Nagai T, Okano H, Siomi MC. 2015. Immuno-electron microscopy and electron microscopic in situ hybridization for visualizing piRNA biogenesis bodies in Drosophila ovaries. *Methods in Molecular Biology* **1328**:163–178. DOI: https://doi.org/10.1007/978-1-4939-2851-4_12, PMID: 26324437

Sone J, Tanaka F, Koike H, Inukai A, Katsuno M, Yoshida M, Watanabe H, Sobue G. 2011. Skin biopsy is useful for the antemortem diagnosis of neuronal intranuclear inclusion disease. *Neurology* **76**:1372–1376. DOI: https://doi.org/10.1212/WNL.0b013e318216e13, PMID: 21411744

Sone J, Mitsushashi S, Fujita A, Mizuguchi T, Hamanaka K, Mori K, Koike H, Hashiguchi A, Takashima H, Sugiyama H, Kohno Y, Takiyama Y, Maeda K, Doi H, Koyano S, Takeuchi H, Kawamoto M, Kohara N, Ando T, Ieda T, et al. 2019. Long-read sequencing identifies GGC repeat expansions in NOTCH2NLC associated with neuronal intranuclear inclusion disease. *Nature Genetics* **51**:1215–1221. DOI: https://doi.org/10.1038/s41588-019-0459-y, PMID: 31332381

Staszewska I, Fischer I, Wiche G. 2015. Plectin isoform 1-dependent nuclear docking of desmin networks affects myonuclear architecture and expression of mechanotransducers. *Human Molecular Genetics* **24**:7373–7389. DOI: https://doi.org/10.1093/hmg/ddv438, PMID: 26487297

Steiner-Champliaud MF, Schneider Y, Favre B, Paulhe F, Konieczny P, Faulkner G, Konieczny P, Raith M, Winter L, Staszewska I, Fischer I, Wiche G. 2015. Plectin isoform 1-dependent nuclear docking of desmin networks affects myonuclear architecture and expression of mechanotransducers. *Experimental Cell Research* **316**:297–313. DOI: https://doi.org/10.1016/j.yexcr.2014.11.101, PMID: 19932097

Stroud MJ, Banerjee I, Veevers J, Chen J. 2014. Linker of nucleoskeleton and cytoskeleton complex proteins in cardiac structure, function, and disease. *Circulation Research* **114**:538–548. DOI: https://doi.org/10.1161/CIRCRESAHA.114.301326

Tadaka S, Hishinuma E, Komaki S, Motoike IN, Kawashima J, Saigusa D, Inoue J, Takayama J, Okamura Y, Aoki Y, Shirato M, Otsuki A, Katsuoka F, Tamiya G, Koshiba S, Sasaki M, Yamamoto M, Kinoshita K. 2021. jMorp updates in 2020: large enhancement of multi-omics data resources on the general Japanese population. *Nucleic Acids Research* **49**:D536–D544. DOI: https://doi.org/10.1093/nar/gkaa1034, PMID: 33179747

Takebayashi H, Yoshida S, Sugimori M, Kosako H, Kominami R, Nakafuku M, Nishimoto Y, Mihailovska E, Fischer I, Wiche G. 2015. Plectin isoform P1b and P1d deficiencies differentially affect mitochondrial morphology and function in skeletal muscle. *Human Molecular Genetics* **24**:4530–4544. DOI: https://doi.org/10.1093/hmg/ddv184, PMID: 26019234
Winter L, Wittig I, Peeva V, Eggers B, Heidler J, Chevessier F, Kley RA, Barkovits K, Strecker V, Berwanger C, Herrmann H, Marcus K, Kornblum C, Kunz WS, Schröder R, Clemen CS. 2016. Mutant desmin substantially perturbs mitochondrial morphology, function and maintenance in skeletal muscle tissue. Acta Neuropathologica 132:453–473. DOI: https://doi.org/10.1007/s00401-016-1592-7, PMID: 27393313
Yoshioka N, Kabata Y, Kuriyama M, Bizen N, Zhou L, Tran DM, Yano M, Yoshiki A, Ushiki T, Sproule TJ, Abe R, Takebayashi H. 2020. Diverse dystonin gene mutations cause distinct patterns of Dst isoform deficiency and phenotypic heterogeneity in Dystonia musculorum mice. Disease Models & Mechanisms 13:dmm041608. DOI: https://doi.org/10.1242/dmm.041608, PMID: 32482619
Young KG, Kothary R. 2008. Dystonin/Bpag1 is a necessary endoplasmic reticulum/nuclear envelope protein in sensory neurons. Experimental Cell Research 314:2750–2761. DOI: https://doi.org/10.1016/j.yexcr.2008.06.021, PMID: 18638474
Zhang L, Zhou Y, Wu W, Hou L, Chen H, Zuo B, Xiong Y, Yang J. 2017. Skeletal muscle-specific overexpression of PGC-1α induces fiber-type conversion through enhanced mitochondrial respiration and fatty acid oxidation in mice and pigs. International Journal of Biological Sciences 13:1152–1162. DOI: https://doi.org/10.7150/ijbs.20132, PMID: 29104506
Zhou L, Hossain MI, Yamazaki M, Abe M, Natsume R, Konno K, Kageyama S, Komatsu M, Watanabe M, Sakimura K, Takebayashi H. 2018. Deletion of exons encoding carboxypeptidase domain of Nna1 results in Purkinje cell degeneration (pcd) phenotype. Journal of Neurochemistry 147:557–572. DOI: https://doi.org/10.1111/jnc.14591, PMID: 30225910