Non-Archimedean Radial Calculus: Volterra Operator and Laplace Transform

Anatoly N. Kochubei

Abstract. In an earlier paper (A. N. Kochubei, Pacif. J. Math. 269 (2014), 355–369), the author considered a restriction of Vladimirov’s fractional differentiation operator D^α, $\alpha > 0$, to radial functions on a non-Archimedean field. In particular, it was found to possess such a right inverse I^α that the appropriate change of variables reduces equations with D^α (for radial functions) to integral equations whose properties resemble those of classical Volterra equations. In other words, we found, in the framework of non-Archimedean pseudo-differential operators, a counterpart of ordinary differential equations. In the present paper, we begin an operator-theoretic investigation of the operator I^α, and study a related analog of the Laplace transform.

Mathematics Subject Classification. Primary 47G10, Secondary 11S80, 35S10, 43A32.

Keywords. Fractional differentiation operator, Non-Archimedean local field, Radial functions, Volterra operator, Laplace transform.

1. Introduction

The basic linear operator defined on real- or complex-valued functions on a non-Archimedean local field K (such as $K = \mathbb{Q}_p$, the field of p-adic numbers) is the Vladimirov pseudo-differential operator D^α, $\alpha > 0$, of fractional differentiation [19]; for further development of this subject see [1, 3, 8, 11, 12, 22]. Note also the recent publications devoted to applications in geophysical models and to the study of related nonlinear equations [9, 10, 17, 18].

It was found in [13] that properties of D^α become much simpler on radial functions. Moreover, in this case it was found to possess a right inverse I^α, which can be seen as a p-adic counterpart of the Riemann-Liouville fractional integral or, for $\alpha = 1$, the classical anti-derivative. The change of an unknown function $u = I^\alpha v$ reduces the Cauchy problem for an equation with the radial restriction of D^α to an integral equation with properties resembling those of classical Volterra equations. In other words, we found, in the
framework of non-Archimedean pseudo-differential operators, a counterpart of ordinary differential equations. In [13], we studied linear equations of this kind; nonlinear ones were investigated in [15]. Note that radial functions appear as exact solutions of the p-adic analog of the classical porous medium equation [9].

In this paper we study the operator I^1 on the ring of integers $O \subset K$ as an object of operator theory. The operator I^1 on $L^2(O)$ happens to be a sum of a bounded selfadjoint operator and a simple Volterra operator I^1_0 with a rank two imaginary part J, such that $\text{tr} \ J = 0$. The characteristic matrix-function $W(z)$ of I^1_0 is such that $W(z^{-1})$ is, in contrast to classical examples, an entire matrix function of zero order.

While the theory of Volterra operators and their characteristic functions is well-developed (see [4–6, 16, 21]), properties of the above operator are very different from those known for operators of classical analysis and their generalizations. Therefore, while I^1 and I^1_0 are just specific examples, they create a framework for future studies in this area.

Another subject touched in this paper is a version of the Laplace transform. The classical Laplace transform is based on the function $x \mapsto e^{-\lambda x}$ satisfying an obvious differential equation. A similar equation involving D^α has a unique radial solution [12]. This leads to a definition of the Laplace type transform in the above framework. We prove a uniqueness theorem and the inversion formula for this transform.

2. Preliminaries

2.1. Local Fields

Let K be a non-Archimedean local field, that is a non-discrete totally disconnected locally compact topological field. It is well known that K is isomorphic either to a finite extension of the field \mathbb{Q}_p of p-adic numbers (if K has characteristic 0), or to the field of formal Laurent series with coefficients from a finite field, if K has a positive characteristic. For a summary of main notions and results regarding local fields see, for example, [11].

Any local field K is endowed with an absolute value $| \cdot |_K$, such that $|x|_K = 0$ if and only if $x = 0$, $|xy|_K = |x|_K \cdot |y|_K$, $|x+y|_K \leq \max(|x|_K, |y|_K)$. Denote $O = \{x \in K : |x|_K \leq 1\}$, $P = \{x \in K : |x|_K < 1\}$. O is a subring of K, and P is an ideal in O containing such an element β that $P = \beta O$. The quotient ring O/P is actually a finite field; denote by q its cardinality. We will always assume that the absolute value is normalized, that is $|\beta|_K = q^{-1}$. The normalized absolute value takes the values q^N, $N \in \mathbb{Z}$. Note that for $K = \mathbb{Q}_p$ we have $\beta = p$ and $q = p$; the p-adic absolute value is normalized.

The additive group of any local field is self-dual, that is if χ is a fixed non-constant complex-valued additive character of K, then any other additive character can be written as $\chi_a(x) = \chi(ax)$, $x \in K$, for some $a \in K$. Below we assume that χ is a rank zero character, that is $\chi(x) \equiv 1$ for $x \in O$, while there exists such an element $x_0 \in K$ that $|x_0|_K = q$ and $\chi(x_0) \neq 1$.
The above duality is used in the definition of the Fourier transform over \(K \). Denoting by \(dx \) the Haar measure on the additive group of \(K \) (normalized in such a way that the measure of \(O \) equals 1) we write

\[
\tilde{f}(\xi) = \int_K \chi(x\xi)f(x)\,dx, \quad \xi \in K,
\]

where \(f \) is a complex-valued function from \(L_1(K) \). As usual, the Fourier transform \(\mathcal{F} \) can be extended from \(L_1(K) \cap L_2(K) \) to a unitary operator on \(L_2(K) \). If \(\mathcal{F}f = \tilde{f} \in L_1(K) \), we have the inversion formula

\[
f(x) = \int_K \chi(-x\xi)\tilde{f}(\xi)\,d\xi.
\]

Working with functions on \(K \) and operators upon them we often use standard integration formulas; see [11,19]. The simplest of them are as follows:

\[
\int_{|x|_K \leq q^n} dx = q^n; \quad \int_{|x|_K = q^n} dx = \left(1 - \frac{1}{q}\right)q^n.
\]

\[
\int_{|x|_K \leq q^n} |x|_K^{\alpha-1} dx = \frac{1 - q^{-1}}{1 - q^{-\alpha}} q^{\alpha n}; \quad \text{here and above } n \in \mathbb{Z}, \alpha > 0.
\]

A function \(f : K \to \mathbb{C} \) is said to be locally constant, if there exists such an integer \(l \) that for any \(x \in K \)

\[
f(x + x') = f(x), \quad \text{whenever } |x'| \leq q^{-l}.
\]

The vector space \(\mathcal{D}(K) \) of all locally constant functions with compact supports is used as a space of test functions in analysis on \(K \). Note that the Fourier transform preserves \(\mathcal{D}(K) \). There exists a well-developed theory of distributions on local fields; see [1,11,19].

2.2. Vladimirov’s Operator

On a test function \(\varphi \in \mathcal{D}(K) \), the fractional differentiation operator \(D^\alpha \), \(\alpha > 0 \), is defined as

\[
(D^\alpha \varphi)(x) = \mathcal{F}^{-1} \left[|\xi|_K^\alpha (\mathcal{F}(\varphi))(\xi) \right](x). \quad (2.1)
\]

Note that \(D^\alpha \) does not preserve \(\mathcal{D}(K) \); see [1] regarding the spaces of test functions and distributions preserved by this operator.

The operator \(D^\alpha \) can also be represented as a hypersingular integral operator:

\[
(D^\alpha \varphi)(x) = \frac{1 - q^\alpha}{1 - q^{-\alpha-1}} \int_K |y|_K^{-\alpha-1} \left[\varphi(x - y) - \varphi(x) \right] dy. \quad (2.2)
\]
In contrast to (2.1), the expression in the right of (2.2) makes sense for wider classes of functions. In particular, \(D^\alpha \) is defined on constant functions and annihilates them. Denote for brevity \(\theta_\alpha = \frac{1 - q^\alpha}{1 - q^{-\alpha - 1}} \).

Below we consider the operator \(D^\alpha \) on a radial function \(u = u(|x|_K) \); here we identify the function \(x \mapsto u(|x|_K) \) on \(K \) with the function \(|x|_K \mapsto u(|x|_K) \) on \(q^Z \). This abuse of notation does not lead to confusion.

The explicit expression of \(D^\alpha u \) for a radial function \(u \) satisfying some growth restrictions near the origin and infinity was found in [13]. If \(u = u(|x|_K) \) is such that

\[
\sum_{k=-\infty}^{m} q^k |u(q^k)| < \infty, \quad \sum_{l=m}^{\infty} q^{-\alpha l} |u(q^l)| < \infty, \tag{2.3}
\]

for some \(m \in \mathbb{Z} \), then for each \(n \in \mathbb{Z} \) the expression in the right-hand side of (2.2) with \(\varphi(x) = u(|x|_K) \) exists for \(|x|_K = q^n \), depends only on \(|x|_K \), and

\[
(D^\alpha u)(q^n) = \theta_\alpha \left(1 - \frac{1}{q} \right) q^{-(\alpha+1)n} \sum_{k=-\infty}^{n-1} q^k u(q^k) + q^{-\alpha n} \frac{q^{\alpha} + q - 2}{1 - q^{-\alpha - 1}} u(q^n) + \theta_\alpha \left(1 - \frac{1}{q} \right) \sum_{l=n+1}^{\infty} q^{-\alpha l} u(q^l). \tag{2.4}
\]

Under the conditions (2.3), the expression (2.4) agrees also with the definition of \(D^\alpha \) in terms of Bruhat-Schwartz distributions (see Chapter 2 of [19]).

2.3. The Regularized Integral

The fractional integral mentioned in Introduction, was defined in [13] initially for \(\varphi \in D(K) \) as follows:

\[
(I^\alpha \varphi)(x) = (D^{\alpha} \varphi)(x) - (D^{-\alpha} \varphi)(0) \tag{\ast}
\]

where \(D^{-\alpha} \) is the right inverse of \(D^\alpha \) introduced by Vladimirov [19]:

\[
(D^{-\alpha} \varphi)(x) = (f_\alpha * \varphi)(x) = \frac{1 - q^{-\alpha}}{1 - q^{\alpha - 1}} \int_K |x - y|_{K}^{\alpha - 1} \varphi(y) \, dy, \quad \alpha \neq 1,
\]

\[
(D^{-1} \varphi)(x) = \frac{1 - q}{q \log q} \int_K \log |x - y|_K \varphi(y) \, dy.
\]

\(D^{-1} \) is a right inverse to \(D^1 \) only on such functions \(\varphi \) that

\[
\int_K \varphi(x) \, dx = 0.
\]

On such a function \(\varphi \) we have also \(D^{-1} D^1 \varphi = \varphi \).

The above definition (\ast) leads to explicit expressions

\[
(I^\alpha \varphi)(x) = \frac{1 - q^{-\alpha}}{1 - q^{\alpha - 1}} \int_{|y|_K \leq |x|_K} (|x - y|_K^{\alpha - 1} - |y|_K^{\alpha - 1}) \varphi(y) \, dy, \quad \alpha \neq 1,
\]
and
\[(I^1 \varphi)(x) = \frac{1 - q}{q \log q} \int_{|y| K \leq |x| K} (\log |x - y| K - \log |y| K) \varphi(y) \, dy. \]

Note that the integrals are taken, for each fixed \(x \in K \), over bounded sets, and \((I^1 \varphi)(0) = 0\). These properties are different from those of the anti-derivatives \(D^{-\alpha} \) studied in [19].

Let \(u = u(|x| K) \) be a radial function, such that
\[
\sum_{k=-\infty}^{m} \max \left(q^k, q^{\alpha k} \right) |u(q^k)| < \infty, \quad \text{if } \alpha \neq 1,
\]
and
\[
\sum_{k=-\infty}^{m} |k| q^k |u(q^k)| < \infty, \quad \text{if } \alpha = 1,
\]
for some \(m \in \mathbb{Z} \). Then [13] \(I^\alpha u \) exists, it is a radial function, and for any \(x \neq 0 \),
\[
(I^\alpha u)(|x| K) = q^{-\alpha} |x|_K^\alpha u(|x| K) + \frac{1 - q^{-\alpha}}{1 - q^{\alpha - 1}} \int_{|y| K < |x| K} (|x|_K^{\alpha - 1} - |y|_K^{\alpha - 1}) u(|y| K) \, dy, \quad \alpha \neq 1,
\]
and
\[
(I^1 u)(|x| K) = q^{-1} |x|_K u(|x| K) + \frac{1 - q}{q \log q} \int_{|y| K < |x| K} (\log |x| K - \log |y| K) u(|y| K) \, dy. \quad (2.5)
\]

On an appropriate class of radial functions, \(I^\alpha \) is a right inverse to \(D^\alpha \) [13]. An important difference between \(D^{-\alpha} \) and \(I^\alpha \) is the bounded integration domain in the integral formulas for \(I^\alpha \).

2.4. Radial Eigenfunctions of \(D^\alpha \)

The operator \(D^\alpha \) defined initially on \(D(K) \) is, after its closure in \(L^2(K) \), a selfadjoint operator with a pure point spectrum \(\{ q^{\alpha N}, N \in \mathbb{Z} \} \) of infinite multiplicity and a single limit point zero.

It was shown in [12] that for each \(N \in \mathbb{Z} \), there exists a unique (up to the multiplication by a constant) radial eigenfunction
\[
v_N(|x| K) = \begin{cases}
1, & \text{if } |x| K \leq q^{-N}, \\
-\frac{1}{q - 1}, & \text{if } |x| K = q^{-N + 1}, \\
0, & \text{if } |x| K \geq q^{-N + 2},
\end{cases} \quad (2.6)
\]
corresponding to the eigenvalue \(\lambda = q^{\alpha N} \). Below we interpret this function as an analog of the classical exponential function \(x \mapsto e^{-\lambda x} \). Note that \(v_N \in \mathcal{D}(K) \); this is a purely non-Archimedean phenomenon reflecting the unusual topological property of \(K \), its total disconnectedness.
The operator \(D_{O}^{\alpha} \) in the space \(L^2(O) \) on the ring of integers (unit ball) \(O \) is defined as follows. Extend a function \(\varphi \in D(O) \) (that is a function \(\varphi \in D(K) \) supported in \(O \)) onto \(K \) by zero. Apply \(D^{\alpha} \) and consider the resulting function on \(O \). After the closure in \(L^2(O) \) we obtain a selfadjoint operator \(D_{O}^{\alpha} \) with a discrete spectrum \([11,19]\) (here we do not touch different definitions from \([2], [14]\)).

Denote by \(\mathcal{H} \) the subspace in \(L^2(O) \) consisting of radial functions. The functions \(v_N, N = 1, 2, \ldots \) belong to \(\mathcal{H} \), as well as the function \(v_0(|x|_K) \equiv 1, \ |x|_K \leq 1. \)

By the definition of \(D_{O}^{\alpha} \), the functions \(v_N \) are its eigenfunctions corresponding to the eigenvalues \(q^{\alpha N} \). As for \(v_0 \), it is also an eigenfunction, with the eigenvalue \(\mu_0 = \frac{q - 1}{q^{\alpha + 1} - 1} q^{\alpha} \) \([11,19]\). Therefore \(\{v_N\}_{N \geq 0} \) is an orthonormal system in \(L^2(O) \), hence in \(\mathcal{H} \).

We have \(\|v_0\| = 1 (\| \cdot \| \) is the norm in \(\mathcal{H} \),
\[
\|v_N\|^2 = \int_{|x|_K \leq q^{-N}} dx + (q - 1)^{-2} \int_{|x|_K = q^{-N+1}} dx
= q^{-N} + (q - 1)^{-2} q^{-N+1} (1 - \frac{1}{q}) = (q - 1)^{-1} q^{-N},
\]

\[
\int_{|x|_K \leq 1} v_N(|x|_K) \, dx = 0, \ N \geq 1.
\]

Therefore the functions
\[
e_0(|x|_K) \equiv 1; \ e_N(|x|_K) = (q - 1)^{1/2} q^{N/2} v_N(|x|_K), \ N \geq 1, \quad (2.7)
\]
form an orthonormal system in \(\mathcal{H} \).

Lemma 1. The system \(\{e_N\}_{N \geq 0} \) is an orthonormal basis in \(\mathcal{H} \).

Proof. Let \(u \in \mathcal{H} \) be orthogonal to all the functions \(e_N \). Then
\[
\int_{|x|_K \leq 1} u(|x|_K) \, dx = 0,
\]
so that
\[
\sum_{j=-\infty}^{0} u(q^j)q^j = 0 \quad (2.8)
\]
and
\[
\int_{|x|_K \leq q^{-N}} u(|x|_K) \, dx - (q - 1)^{-1} \int_{|x|_K = q^{-N+1}} u(|x|_K) \, dx = 0,
\]
so that
\[
\sum_{j=-\infty}^{-N} u(q^j)q^j - (q - 1)^{-1} u(q^{-N+1}) = 0, \ N = 1, 2, \ldots. \quad (2.9)
\]
Subtracting from (2.8) the equality (2.9) with \(N = 1 \), we find that
\[u(1) = 0. \]
Now the equality (2.9) with \(N = 1 \) takes the form
\[-\sum_{j=-\infty}^{-1} u(q^j)q^j = 0, \]
while (2.9) with \(N = 2 \) yields
\[-2 \sum_{j=-\infty}^{-2} u(q^j)q^j - (q-1)^{-1}u(q^{-1}) = 0. \]
Subtracting we obtain that
\[u(q^{-1}) = 0. \]
Repeating the above reasoning we find that
\[u = 0. \]
\[\square \]
Another (obvious) orthonormal basis in \(\mathcal{H} \) is
\[f_n(|x|_K) = \begin{cases}
(1 - \frac{1}{q})^{-1/2}q^n/2, & \text{if } |x|_K = q^{-n}; \\
0, & \text{elsewhere},
\end{cases} \quad n = 0, 1, 2, \ldots. \quad (2.10) \]

The next result is of some independent interest.

Proposition 1. The set of “polynomials”
\[u(|x|_K) = \sum_{n=1}^{N} a_n |x|^n_K, \quad a_n \in \mathbb{C}, \quad N \geq 1, \quad (2.11) \]
is dense in \(\mathcal{H} \).

Proof. Suppose that a function \(F \in \mathcal{H} \) is orthogonal to all the functions
\(X_l(|x|_K) = |x|^l_K, \ l \geq 1 \). Using the basis (2.10), write
\[F = \sum_{n=0}^{\infty} c_n f_n, \quad \{c_n\} \in l^2. \]
We have
\[\langle X_l, f_n \rangle = (1 - \frac{1}{q})^{-1/2}q^n/2 \int_{|x|_K = q^{-n}} |x|^l_K \ dx = (1 - \frac{1}{q})^{1/2}q^{-n/2-nl}, \]
so that
\[\langle F, X_l \rangle = (1 - \frac{1}{q})^{1/2} \sum_{n=0}^{\infty} c_n q^{-n/2-nl} = 0, \quad l = 1, 2, \ldots. \]
Denoting \(\beta = q^{-1}, \ b_n = c_n q^{-n/2} \), we see that the vector \((b_0, b_1, b_2, \ldots) \) \(\in l^2 \) is orthogonal in \(l^2 \) to each vector \((1, \beta^1, \beta^2, \ldots) \), \(l \geq 1 \). It is known ([7], Problem 6) that the set of all these vectors is total in \(l^2 \), so that \(F = 0. \) \(\square \)

In fact, the above reasoning proves the density of polynomials (2.11) in a wider weighted space determined by the condition \(\{c_n q^{-n/2}\} \in l^2. \)
3. Integration Operators

3.1. The Operator I^1

Let us study I^1 as an operator in \mathcal{H}, find its matrix representation with respect to the basis $\{e_N\}$ and investigate the spectrum of I^1.

Proposition 2. The operator I^1 has the matrix representation

$$I^1 = \begin{pmatrix}
0 & -(q - 1)^{1/2}q^{-1/2} & -(q - 1)^{1/2}q^{-1} & \ldots & -(q - 1)^{1/2}q^{-n/2} & \ldots \\
0 & q^{-1} & 0 & \ldots & 0 & \ldots \\
0 & 0 & q^{-2} & \ldots & 0 & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & q^{-n} & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots
\end{pmatrix}$$

(only the first row and the principal diagonal have nonzero elements). I^1 is a Hilbert-Schmidt operator. Apart from being a point of essential spectrum, $\lambda = 0$ is a simple eigenvalue. In addition, I^1 has simple eigenvalues $\lambda_m = q^{-m}$, $m = 1, 2, \ldots$.

Proof. Since the integral of each function e_N, $N \geq 1$, equals zero, we have $D^{-1}D^1e_N = e_N$. On the other hand, $D^1e_N = q^N e_N$, so that $D^{-1}e_N = q^{-N} e_N$, and by the definition (*) of I^1,

$$I^1e_N = q^{-N} e_N - (q - 1)^{1/2}q^{-N/2}e_0, \quad N = 1, 2, \ldots \quad (3.1)$$

Next, $(I^1e_0)(|x|\mathcal{K}), |x|\mathcal{K} \leq 1$, depends only on the values of e_0 for $|x|\mathcal{K} \leq 1$. Let $f(x) \equiv 1$, $x \in \mathcal{K}$. Then $I^1f = 0 \quad [13]$, so that

$$I^1e_0 = 0 \quad \text{in} \mathcal{H}. \quad (3.2)$$

The equalities (3.1) and (3.2) imply the required matrix representation, which implies the Hilbert-Schmidt property.

Let us find the eigenvalues of I^1. As we have seen, $I^1e_0 = 0$. Suppose that

$$u = \sum_{n=0}^{\infty} c_ne_n, \quad \{c_n\} \in l^2, \quad I^1u = \lambda u.$$

By (3.1) and (3.2),

$$I^1u = \sum_{n=1}^{\infty} q^{-n}c_ne_n - \left[\sum_{n=1}^{\infty} (q - 1)^{1/2}q^{-n/2}c_n \right] e_0,$$

and we find that

$$\lambda c_0 = -(q - 1)^{1/2} \sum_{n=1}^{\infty} q^{-n/2}c_n;$$

$$\lambda c_n = q^{-n} c_n, \quad n \geq 1. \quad (3.3)$$

A nonzero value of $c_n (n \geq 1)$ is possible only for a single index $n = m$, and in this case $\lambda = q^{-m}$. Then the first equation in (3.3) gives $c_m = -(q - 1)^{-1/2}q^{-m/2}c_0$, so that

$$u = c_0e_0 - (q - 1)^{-1/2}q^{-m/2}c_0e_m.$$
is the unique (up to the multiplication by a constant) eigenfunction. □

3.2. A Local Representation

The definition (*) of the operator I^α involves operators in $L^2(K)$; then we make restrictions to $L^2(O)$ and H. In this section we show, for the case where $\alpha = 1$, that a similar representation containing only operators in $L^2(O)$ is also possible.

Theorem 1. If $u \in L^2(O)$, then

$$(I^1 u)(x) = \left((D_O^1)^{-1} u \right) (x) - \left((D_O^1)^{-1} u \right) (0).$$

Proof. In [14], we found the resolvent $(D_O^1 - \mu + \mu_0)^{-1}$ where $\mu_0 = \frac{q}{q+1}$ (the first eigenvalue of D_O^1), $\mu > 0$. In [14], in connection with nonlinear equations, we considered operators in $L^1(O)$, but the result is valid for $L^2(O)$ too. For $\mu = \mu_0$,

$$(D_O^1)^{-1} u(x) = \int_{|\xi|_{K} \leq 1} \mathcal{K}(x - \xi)u(\xi) d\xi + \mu_0^{-1} \int_{|\xi|_{K} \leq 1} u(\xi) d\xi,$$

(3.5)

where for $|x|_K = q^m$, $m \leq 0$,

$$\mathcal{K}(x) = \int_{q \leq |\eta|_{K} \leq q^{-m+1}} |\eta|^{-1}_K \chi(\eta x) d\eta.$$

Using the well-known integration formula (see, for example, Sect. 1.5 in [11]), we get

$$\mathcal{K}(x) = \sum_{j=1}^{-m+1} q^{-j} \int_{|\eta|_{K} = q^j} \chi(\eta x) d\eta = (1 - \frac{1}{q}) \sum_{j=1}^{-m} 1 - q^{-1}$$

$$= -(1 - \frac{1}{q})^m q^{-1} = \frac{1 - q}{q \log q} \log |x|_K - q^{-1}.$$

By (3.5),

$$(D_O^1)^{-1} u(x) = \frac{1 - q}{q \log q} \int_{|\xi|_{K} \leq 1} \log |x - \xi|_K u(\xi) d\xi + \int_{|\xi|_{K} \leq 1} u(\xi) d\xi.$$

Comparing with the expression for I^1 and noticing that $|x - \xi|_K - |\xi|_K = 0$, if $|\xi|_K > |x|_K$, we obtain (3.4) □

3.3. The Volterra operator.

Let us consider the integral part of (2.5), the operator

$$(I^1_0 u)(x) = \frac{1 - q}{q \log q} \int_{|y|_K < |x|_K} (\log |x|_K - \log |y|_K) u(|y|_K) dy.$$

Recall [5] that a compact operator is called a Volterra operator, if its spectrum consists of the unique point $\lambda = 0$. An operator A is called simple, if A and A^* have no common nontrivial invariant subspace, on which these operators
coincide. It is known [5] that a Volterra operator A is simple, if and only if the equations $Af = 0$ and $A^*f = 0$ have no common nontrivial solutions.

The main technical tool in the study of I_0^1 is the identity [13]

$$\int_{|y| < |x|} (\log |x| - \log |y|) |y|^m_K \, dy = d_m |x|^{m+1}_K, \quad m = 0, 1, 2, \ldots, \quad (3.6)$$

where $0 < d_m \leq Aq^{-m}$, $A > 0$ does not depend on m.

Theorem 2. The operator I_0^1 in \mathcal{H} is a simple Volterra operator with a rank 2 imaginary part $J = \frac{1}{2i} (A - A^*)$, such that $\text{tr} J = 0$.

Proof. 1) Suppose that $I_0^1 u = \lambda u$, $u \in \mathcal{H}$, $\lambda \in \mathbb{C}$, $\lambda \neq 0$. Then for $|x|_K \leq 1$,

$$|u(|x|_K)| \leq \frac{c}{|\lambda|} \|u\|_{L^2(O)} \left[\int_{|y|_K < |x|_K} (\log |x| - \log |y|_K)^2 \, dy \right]^{1/2} \leq \frac{c}{|\lambda|} \|u\|_{L^2(O)} \left[q^{-1}|x|_K (\log |x|_K)^2 \right]^{1/2} \leq H$$

where $c = \frac{q - 1}{q \log q}$, H is a positive constant.

This implies the estimate

$$|u(|x|_K)| \leq \frac{cH}{|\lambda|} \int_{|y|_K < |x|_K} (\log |x| - \log |y|_K) \, dy,$$

and by the identity (3.6) with $m = 0$,

$$|u(|x|_K)| \leq \frac{cHA}{|\lambda|} |x|_K.$$

Similarly, the identity (3.6) with $m = 1$ gives

$$|u(|x|_K)| \leq \frac{c^2HA^2}{|\lambda|^2} q^{-1}|x|^2_K,$$

and we find by induction that

$$|u(|x|_K)| \leq \frac{c^{m+1}HA^{m+1}}{|\lambda|^{m+1}} q^{-1}q^{-2} \cdots q^{-m+1} |x|^{m+1}_K, \quad (3.7)$$

for an arbitrary natural number m.

Note that

$$q^{-1}q^{-2} \cdots q^{-m+1} = \left(\frac{1}{q} \right)^{m(m-1)/2}.$$

Together with (3.7), this shows that $u \equiv 0$.

2) It follows from the definition of I_0^1 that $\lambda = 0$ is an eigenvalue corresponding to the eigenfunction

$$u_0(|x|_K) = \begin{cases} 1, & \text{if } |x|_K = 1; \\ 0, & \text{if } |x|_K < 1. \end{cases} \quad (3.8)$$

Let us show that $\lambda = 0$ does not correspond to other eigenfunctions.
Suppose that $I_0^1 \varphi = 0$ for some $\varphi \in \mathcal{H}$, so that
\[\sum_{j=-\infty}^{n-1} (n-j)q^j \varphi(q^j) = 0, \quad n = 0, -1, -2, \ldots \tag{3.9} \]
Together with (3.9), consider a similar equality with $n - 1$ substituted for n, that is,
\[\sum_{j=-\infty}^{n-2} (n-1-j)q^j \varphi(q^j) = 0, \quad n = 0, -1, -2, \ldots \tag{3.10} \]
Subtracting (3.9) from (3.10) we find that
\[\sum_{j=-\infty}^{n-1} q^j \varphi(q^j) = 0, \quad n = 0, -1, -2, \ldots \]
that is, in particular,
\[q^{n-1} \varphi(q^{n-1}) + q^{n-2} \varphi(q^{n-2}) + \cdots = 0, \]
\[q^{n-2} \varphi(q^{n-2}) + q^{n-3} \varphi(q^{n-3}) + \cdots = 0, \]
Subtracting the second equality from the first one, we find that $\varphi(q^{-1}) = \varphi(q^{-2}) = \ldots = 0$, so that φ is proportional to the eigenfunction (3.8).

3) The imaginary part J has the following matrix representation with respect to the basis $\{e_N\}$:
\[J = \frac{(q-1)^{1/2}}{2i} \begin{pmatrix} 0 & -q^{-1/2} & -q^{-1} & \cdots & -q^{-N/2} & \cdots \\ -q^{-1/2} & 0 & 0 & \cdots & 0 & \cdots \\ -q^{-1} & 0 & 0 & \cdots & 0 & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ -q^{-N/2} & 0 & 0 & \cdots & 0 & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \end{pmatrix}. \tag{3.11} \]

It is easy to write an integral representation
\[(Ju)(|x|_K) = \frac{1 - q}{2iq \log q} \int_{|y|_K \leq 1} (\log |x|_K - \log |y|_K)u(|y|_K) dy, \tag{3.12} \]
that is
\[(Ju)(|x|_K) = \frac{1 - q}{2iq \log q} \langle u, 1 \rangle \log |x|_K - \langle u, \log |x|_K \rangle 1 \tag{3.13} \]
hence J is a rank 2 operator. We see from (3.11) that $\text{tr} \, J = 0$.

4) The only solution in \mathcal{H} (up to the multiplication by a constant) of the equation $I_0^1 u = 0$ is the eigenfunction u_0 given by (3.8). Suppose that $(I_0^1)^* u_0 = 0$. Then $J u_0 = 0$. However by (3.12),
\[(Ju_0)(|x|_K) = \frac{1 - q}{2iq \log q} \log |x|_K \int_{|y|_K = 1} dy = -\frac{(q - 1)^2}{2iq^2 \log q} \log |x|_K, \]
so that $Ju_0 \not\equiv 0$, and we have come to a contradiction. This proves that I_0^1 is a simple Volterra operator. \qed
Let us calculate the action of I_0^1 upon the basis $\{f_n\}$ defined in (2.10). We find for $|x|_K = q^{-j}, j \geq 0$, that

$$
(I_0^1 f_n) (|x|_K) = -\frac{(1 - q^{-1})^{1/2}}{\log q} q^{n/2} \int_{|y|_K < q^{-j}, |y|_K = q^{-n}} (\log |x|_K - \log |y|_K) \, dy
$$

$$
= (1 - q^{-1})^{1/2} q^{n/2} (j - n) \int_{|y|_K < q^{-j}, |y|_K = q^{-n}} dy
$$

$$
= \begin{cases}
(1 - q^{-1})^{3/2} q^{-n/2} (j - n), & \text{if } n > j; \\
0, & \text{if } n \leq j.
\end{cases}
$$

This implies the equality

$$
\langle I_0^1 f_n, f_j \rangle = 0 \text{ for } n \leq j,
$$

meaning that $\{f_n\}$ is a basis of triangular representation for the operator I_0^1.

Remark. The operator I_0^1 is S-real with respect to the involution S in \mathcal{H} given by the complex conjugation. Therefore it is S-unicellular ([5], Appendix, Theorem 5.5). It is not clear whether it is unicellular in the usual (complex) sense. However it is unicellular in a smaller space \mathcal{H}^p defined as a completion of the set of all “polynomials” $\varphi(|x|_K) = \sum_{j=0}^N c_j |x|^j_K$ with respect to the norm $\|\varphi\| = \{\sum |c_j|^p\}^{1/p}, 1 \leq p < \infty$. By virtue of (3.6), I_0^1 acts on the space \mathcal{H}^p (isomorphic to l^p) as a weighted shift, for which the unicellularity was proved by Yakubovich [20].

3.4. Characteristic Function

Following the notation in [6], let us write (3.13) in the form

$$
\frac{1}{i} \left(I_0^1 - (I_0^1)^* \right) u = \sum_{\alpha, \beta = 1}^2 \langle u, h_\alpha \rangle j_{\alpha \beta} h_\beta
$$

where $h_1(|x|_K) = \frac{q - 1}{iq \log q} (= \text{const}), \ h_2(|x|_K) = -\log |x|_K, x \in O, j = (0 1 1)$.

For the operator I_0^1, we consider the 2×2 characteristic matrix-function of inverse argument

$$
W(z^{-1}) = E + izj \left[\left((E - zI_0^1)^{-1} h_\alpha, h_\beta \right) \right]_{\alpha, \beta = 1}^2
$$

where E denotes both the unit operator in \mathcal{H} and the unit matrix.

For the Volterra operator $I_1^1, W(z^{-1})$ is an entire matrix-function.

Theorem 3. Matrix elements of $W(z^{-1})$ are entire functions of zero order.
Proof. For small values of $|z|$, the Fredholm resolvent $(E - zI_0^1)^{-1}$ is given by the Neumann series

$$(E - zI_0^1)^{-1} f = \sum_{n=0}^{\infty} (zI_0^1)^n f, \quad f \in \mathcal{H}.$$

In order to calculate the characteristic function, we have to compute the functions $(I_0^1)^n 1$ and $(I_0^1)^n \log |\cdot|_K$. The first of them is obtained easily from (3.6):

$$(I_0^1)^n 1 (|x|_K) = c^n \prod_{m=0}^{n-1} d_m \cdot |x|_K^n, \quad |x|_K \leq 1,$$

where $c = \frac{1 - q}{q \log q}$, $0 < d_m \leq Aq^{-m}$. Summing the progression we find that

$$(E - zI_0^1)^{-1} 1 (|x|_K) = \sum_{n=0}^{\infty} \rho_n z^n |x|_K^n, \quad |\rho_n| \leq C^n q^{-n^2/2}, \quad (3.14)$$

where $C > 0$ is a constant.

Let us consider $(I_0^1)^n \log |\cdot|_K$. We have

$$(I_0^1 \log |\cdot|_K) (|x|_K) = c \int_{|y|_K < |x|_K} (\log |x|_K - \log |y|_K) \log |y|_K dy.$$

Setting $y = xt$, $|t|_K < 1$, we obtain

$$(I_0^1 \log |\cdot|_K) (|x|_K) = -c |x|_K \int_{|t|_K < 1} \log |t|_K (\log |x|_K + \log |t|_K) dt$$

$$= -ca_0 |x|_K \log |x|_k - cb_0 |x|_K \overset{\text{def}}{=} \sigma_1 |x|_K \log |x|_K - \eta_1 |x|_K$$

where

$$a_0 = \int_{|t|_K < 1} \log |t|_K dt, \quad b_0 = \int_{|t|_K < 1} \log^2 |t|_K dt.$$

A similar calculation yields the expression

$$(I_0^1 (|\cdot|_K \log |\cdot|_K)) (|x|_K) = -ca_1 |x|_K^2 \log |x|_k - cb_1 |x|_K^2$$

where

$$a_1 = \int_{|t|_K < 1} |t|_K \log |t|_K dt, \quad b_1 = \int_{|t|_K < 1} |t|_K \log^2 |t|_K dt.$$

Together with (3.6), this implies the formula

$$\left((I_0^1)^2 \log |\cdot|_K\right) (|x|_K) = c^2 a_0 a_1 |x|_K^2 \log |x|_k + c^2 a_0 b_1 |x|_K^2 - cb_0 d_1 |x|_K^2$$

$$\overset{\text{def}}{=} \sigma_2 |x|_K^2 \log |x|_K + \eta_2 |x|_K^2.$$

$$\sigma_2 |x|_K^2 \log |x|_K + \eta_2 |x|_K^2.$$
Introducing similar constants for the next iterations,
\[a_n = \int_{|t|<1} |t|^n_K \log |t|_K dt, \quad b_n = \int_{|t|<1} |t|^n_K \log^2 |t|_K dt, \]
and noticing that \(|a_n|, |b_n| \leq Mq^{-n}\), we prove by induction that
\[(I_0^1)^n \log |\cdot|_K = \sigma_n |x|^n_K \log |x|_K + \eta_n |x|^n_K \tag{3.15} \]
where \(|\sigma_n|, |\eta_n| \leq C^n q^{-1} q^{-2} \cdots q^{-n+1} = C^n q^{-n(n-1)/2}.\]

It follows from (3.15) that
\[(E - zI_0^1)^{-1} \log |\cdot|_K (|x|_K) = \sum_{n=0}^{\infty} \sigma_n z^n |x|^n_K \log |x|_K + \sum_{n=0}^{\infty} \eta_n z^n |x|^n_K \]
where \(|\sigma_n|, |\eta_n| \leq C^n q^{-n^2/2}.

Now we can compute the matrix-function \(W(z^{-1})\). By (3.14),
\[\langle (E - zI_0^1)^{-1} h_1, h_1 \rangle = \text{const} \cdot \sum_{n=0}^{\infty} \rho_n z^n \int _{|x|_K \leq 1} dx = \sum_{n=0}^{\infty} \gamma_n z^n \]
where \(|\gamma_n| \leq C^n q^{-n^2/2},\) so that this matrix element is an entire function of zero order. Other matrix elements are estimated similarly on the basis of (3.15), by inserting 1 as an upper bound of \(|x|_K\) and taking into account the convergence of the integrals of \(\log |x|_K\) and \(\log^2 |x|_K\).

4. The Laplace Type Transform

4.1. Definition and Properties

Our definition of a Laplace type transform is based on the function \(v_N\) given by (2.6). It is essential that \(v_N \in \mathcal{D}(K)\). As we know, \(D^\alpha v_N = q^{\alpha N} v_N (\alpha > 0)\).

Let \(\xi \in K, \ |\xi|_K = q^N\). Then for any \(x \in K, v_N(|x|_K) = v_0(|x\xi|_K),\)
\[D^\alpha v_0(|x\xi|_K) = D^\alpha v_N(|x|_K) = q^{\alpha N} v_N(|x|_K) = |\xi|^\alpha_K v_0(|x|_K).\]

We call the function
\[\widehat{\varphi}(|\xi|_K) = \int_K v_0(|x\xi|_K) \varphi(|x|_K) \, dx \]
the Laplace type transform of a radial function \(\varphi \in L^1_{\text{loc}}(K)\). By the dominated convergence theorem, \(\widehat{\varphi}\) is continuous, bounded, and \(\widehat{\varphi}(|\xi|_K) \to 0, \ |\xi|_K \to \infty.\)

As a simple computation shows, if \(\varphi(|x|_K) \equiv \text{const},\) then \(\widehat{\varphi}(|\xi|_K) \equiv 0.\)

The above calculations, together with the selfadjointness of \(D^\alpha\) in \(L^2(K)\), show that
\[\widehat{D^\alpha \varphi}(|\xi|_K) = \int_K (D^\alpha v_0(|x\xi|_K))(|x|_K) \varphi(|x|_K) \, dx = |\xi|^\alpha_K \widehat{\varphi}(|\xi|_K), \quad \xi \in K.\]

Theorem 4. (uniqueness) If \(\widehat{\varphi}(|\xi|_K) \equiv 0,\) then \(\varphi(|x|_K) \equiv \text{const}.\)
Proof. By the definition,

\[\tilde{\varphi}(|\xi|_K) = \int_{|x|_K \leq |\xi|_K^{-1}} \varphi(|x|_K) \, dx - \frac{1}{q-1} \int_{|x|_K = q|\xi|_K^{-1}} \varphi(|x|_K) \, dx. \]

Let \(|\xi|_K = q^n, n \in \mathbb{Z} \). Then

\[\tilde{\varphi}(q^n) = (1 - \frac{1}{q}) \sum_{j=-\infty}^{-n} \varphi(q^j)q^j - \varphi(q^{-n+1})q^{-n}. \]

If we denote \(\tilde{\varphi}(q^n) = f_n \), then

\[f_{n+1} = (1 - \frac{1}{q}) \sum_{j=-\infty}^{-n-1} \varphi(q^j)q^j - \varphi(q^{-n})q^{-n-1}, \]

so that

\[f_n - f_{n+1} = q^{-n} \left[\varphi(q^{-n}) - \varphi(q^{-n+1}) \right]. \quad (4.1) \]

If \(\tilde{\varphi}(q^n) = 0 \) for all \(n \), then, by (4.1), \(\varphi(q^{-n}) = \varphi(q^{-n+1}) \) for all \(n \), so that \(\varphi(q^{-n}) \equiv \text{const.} \)

The identity (4.1) is of some independent interest, and we formulate it as a corollary.

Corollary 1. For all \(n \in \mathbb{Z} \),

\[\tilde{\varphi}(q^n) - \tilde{\varphi}(q^{n+1}) = q^{-n} \left[\varphi(q^{-n}) - \varphi(q^{-n+1}) \right]. \quad (4.2) \]

Corollary 2. A function \(\varphi \) is (strictly) monotone, if and only if \(\tilde{\varphi} \) is (strictly) monotone.

4.2. Inversion Formula

Theorem 5. For each \(m = 1, 2, \ldots, \)

\[\varphi(q^m) = \varphi(1) + \sum_{j=0}^{m-1} q^{-j} \left[\tilde{\varphi}(q^{-j+1}) - \tilde{\varphi}(q^{-j}) \right], \quad (4.3) \]

\[\varphi(q^{-m}) = \varphi(1) + \sum_{j=1}^{m} q^j \left[\tilde{\varphi}(q^j) - \tilde{\varphi}(q^{j+1}) \right], \quad (4.4) \]

Proof. According to (4.2),

\[\varphi(1) - \varphi(q) = \tilde{\varphi}(1) - \tilde{\varphi}(q), \]
\[\varphi(q) - \varphi(q^2) = q^{-1} \left[\tilde{\varphi}(q^{-1}) - \tilde{\varphi}(1) \right], \]
\[\varphi(q^2) - \varphi(q^3) = q^{-2} \left[\tilde{\varphi}(q^{-2}) - \tilde{\varphi}(q^{-1}) \right], \]

etc. Summing up the first \(m \) equalities we obtain (4.3).

Similarly, by (4.2),

\[\varphi(q^{-1}) - \varphi(1) = q \left[\tilde{\varphi}(q) - \tilde{\varphi}(q^2) \right], \]
\[\varphi(q^{-2}) - \varphi(q^{-1}) = q^2 \left[\tilde{\varphi}(q^2) - \tilde{\varphi}(q^3) \right], \]

etc, and the summation yields (4.4).
Acknowledgements
This work was funded in part under the research project “Markov evolutions in real and p-adic spaces” of the Dragomanov National Pedagogic University of Ukraine.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

[1] Albeverio, S., Khrennikov, A.Yu., Shelkovich, V.M.: Theory of p-Adic Distributions. Cambridge University Press, Cambridge (2010)

[2] Bendikov, A.D., Grigor’yan, A.A., Pittet, Ch., Woess, W.: Isotropic Markov semigroups on ultra-metric spaces. Russ. Math. Surv. 69, 589–680 (2014)

[3] Wu, Bo, Khrennikov, A.Yu.: p-Adic analogue of the wave equation. J. Fourier Anal. Appl. 25, 2447–2462 (2019)

[4] Brodskii, M.S.: Triangular and Jordan representations of Linear Operators. American Mathematical Society, Providence, R.I. (1971)

[5] Gohberg, I.C., Krein, M.G.: Theory and Applications of Volterra Operators in Hilbert Space. American Mathematical Society, Providence, R.I. (1970)

[6] Gubreev, G.M., Tarasenko, A.A.: Spectral decomposition of model operators in de Branges spaces. Sbornik Math. 201, 1599–1634 (2010)

[7] Halmos, P.R.: Hilbert Space Problem Book. Princeton, D. Van Nostrand (1967)

[8] Khrennikov, A.Yu., Kozyrev, S.V., Zúñiga-Galindo, W.A.: Ultrametric Pseudodifferential Equations with Applications. Cambridge University Press, Cambridge (2018)

[9] Khrennikov, A.Yu., Kochubei, A.N.: p-Adic analogue of the porous medium equation. J. Fourier Anal. Appl. 24, 1401–1424 (2018)

[10] Khrennikov, A.Yu., Kochubei, A.N.: On the p-adic Navier-Stokes equation. Appl. Anal. 99(8), 1425–1435 (2020)

[11] Kochubei, A.N.: Pseudo-Differential Equations and Stochastics over Non-Archimedean Fields. Marcel Dekker, New York (2001)

[12] Kochubei, A.N.: A non-Archimedean wave equation. Pacif. J. Math. 235, 245–261 (2008)

[13] Kochubei, A.N.: Radial solutions of non-Archimedean pseudodifferential equations. Pacif. J. Math. 269, 355–369 (2014)

[14] Kochubei, A.N.: Linear and nonlinear heat equations on a p-adic ball. Ukrainian Math. J. 70, 217–231 (2018)

[15] Kochubei, A.N.: Nonlinear pseudo-differential equations for radial real functions on a non-Archimedean field. J. Math. Anal. Appl. 483(1), 11 (2020). 123609

[16] Malamud, M.M.: Spectral theory of fractional order integration operators, their direct sums, and similarity problem to these operators of their weak perturbations. In: Kochubei, A.N., Luchko, Yu. (eds.) Handbook of fractional calculus with applications, vol. 1, pp. 427–460. De Gruyter, Berlin (2019)
[17] Oleschko, K., Khrennikov, A., Correa López, M.J.: p-Adic analog of Navier–Stokes equations: dynamics of fluid’s flow in percolation networks. Entropy 19, 14 (2017). Paper No. 161

[18] Pourhadi, E., Khrennikov, A., et al.: Solvability of the p-adic analogue of Navier–Stokes equation via the wavelet theory. Entropy 21, 1120 (2019). Paper No. 1129

[19] Vladimirov, V.S., Volovich, I.V., Zelenov, E.I.: p-Adic Analysis and Mathematical Physics. World Scientific, Singapore (1994)

[20] Yakubovich, D.V.: Invariant subspaces of weighted shift operators. J. Soviet Math. 37, 1323–1346 (1987)

[21] Zolotarev, V.A.: L. de Branges spaces and functional models of nondissipative operators. Mat. Fiz. Anal. Geom 9, 622–641 (2002). (Russian)

[22] Zúñiga-Galindo, W.A.: Pseudodifferential Equations over Non-Archimedean Spaces. Lect Notes Math, vol. 2174. Springer, Cham (2016)

Anatoly N. Kochubei

Institute of Mathematics
National Academy of Sciences of Ukraine
Tereshchenkivska 3
Kyiv 01024
Ukraine

e-mail: kochubei@imath.kiev.ua

Received: May 21, 2020.
Revised: September 28, 2020.