The observation of a 2-solar mass neutron star [1,2] hints that the equation of state (EoS) for compact stars needs to be sufficiently stiffer to accommodate the mass larger than 1.5-solar mass. We discuss the physical properties of a new stiffer EoS, which has been proposed recently using a new scaling law (called new-BR/BLPR) in medium. The mass and radius of compact stars are calculated under the condition of weak equilibrium of neutron, proton, electron and muon. We address the deformation of the compact star with the stiffer EoS and make an unequivocal prediction for the tidal deformability parameter λ (equivalently the Love number k_2) that could be readily confirmed or falsified by forthcoming aLIGO and aVirgo gravity-wave observations.

PACS numbers: 21.65.Cd,26.60.Kp,12.39.Dc,95.85.Sz

I. INTRODUCTION

The observation of 2-solar mass neutron stars [1,2] seems to indicate that the equation of state (EoS) for compact stars needs to be sufficiently stiffer to accommodate the mass larger than 1.5-solar mass. We discuss the physical properties of stellar matter with a new stiffer EoS, which has been proposed recently using a new scaling law (dubbed “new-BR/BLPR”) in medium [5].

When the BR scaling (referred to as “old-BR”) proposed in 1991 [3] is applied to the neutron-star calculation using realistic NN potentials [4], the mass is estimated to be in the range, $1.2M_\odot \sim 1.8M_\odot$, typically less than the massive stars, $\sim 2M_\odot$. New-BR/BLPR scaling has been proposed [5,6] to incorporate the change in topology of the crystal structure of dense skyrmions, skyrmion \to half-skyrmion [7]. Suppose the threshold density, $n_{1/2}$, is higher but not much higher than the normal nuclear density, n_0, then we expect such topology change to have nontrivial effects on nuclear matter at the density $n \geq n_{1/2}$. It turns out that the effect is drastic, specially in the symmetry energy. The change in the symmetry energy observed at the density $n_{1/2}$ [7,8] can be translated into the parameter changes of the effective Lagrangian, leading to a new scaling in physical quantities. One of the most dramatic effects of the parameter change is the modification of the nuclear tensor forces, thereby drastically affecting the symmetry energy at high density $n > n_{1/2}$. In a nutshell, what happens is that the contribution to the tensor forces by the exchange of the ρ meson gets strongly suppressed at $n_{1/2}$, thereby increasing the net tensor forces entering into the EoS. In [5], the newBR/BLPR scaling was incorporated into the V_{lowk}-implemented nuclear EFT and the mass-radius relation of a compact object of a pure neutron matter was calculated. It was found that the EoS got stiffer at $n_{1/2}$, giving rise to a star mass as large as $2.4M_\odot$, seemingly consistent with the recently observed high mass neutron stars.

In this work we take a more realistic approach for the compact star with electrons, protons and neutrons, which are believed to be in weak equilibrium, rather than pure neutron matter. Near the surface of star, which is supposed to be in lower density region, $n < 0.5n_0$, we adopt the equation of state used by K. Hebeler et al. [9].

It is assumed, in the range of density we are considering, that the energy density of asymmetric nuclear matter ($n_p \neq n_n$ or $x \neq 1/2$) can be described by the conventional form in terms of the symmetry energy factor, $S(n)$, as given by

$$\epsilon_{\text{nuc}}(n,x) = \epsilon_{\text{nuc}}(n,1/2) + n(1-2x)^2S(n), \quad (1)$$

where m_N is the mass of nucleon and $x \equiv n_p/n$ is the fraction of proton density. Then the symmetry energy factor $S(n)$ can be written as

$$S(n) = [\epsilon_{\text{nuc}}(n,0) - \epsilon_{\text{nuc}}(n,x=1/2)]/n \quad (2)$$

which is equivalent to the difference in the ground-state energy per nucleon between the symmetric nuclear matter $(x = 1/2)$ and the neutron matter $(x = 0)$. The pressure of nuclear matter is given by $p_{\text{nuc}} = n^2\partial(\epsilon(n)/n)/\partial n$. In this work, we use the corresponding ground-state energy and the symmetry energy factor obtained in [5] with the new scaling. The chemical potential difference between proton and neutron is then given by

$$\mu_n - \mu_p = 4(1-2x)S(n). \quad (3)$$

In the weak equilibrium, the proton fraction, x, is determined essentially by the chemical equilibrium condition together with the charge neutrality condition.

Now given an EoS for energy density, ϵ, and pressure, p, the radius R and mass $m(R)$ can be determined by integrating the Tolmann-Oppenheimer-Volkoff (TOV) equations [10,11]. The equations are integrated up to the radius of the star, R, where $p(R) = 0$, and the mass of the star is determined by $m(R)$. What we are particularly interested in is that the masses and radii, which depend on the equation of state, are important in predicting the gravitational waves emitted from the coalescing binary neutron stars. During the inspiral period of binary neutron stars, tidal distortions of neutron stars are expected and the resulting gravitational wave is expected to carry a clean imprint of the equation of states involved [12]. The tidal deformability of polytropic EoS, $\lambda = K\epsilon^{1+1/n}$, where K is a pressure constant and n is the polytropic index, were evaluated by Flanagan and Hinderer [13,14] and
by others in more detail \cite{15,16}. However, polytropes are known to be a rough approximation to the EoS. In this work, we calculate the mass-radius and the tidal deformability using the stiffer EoS, which has been recently proposed with the new scaling law (new-BR/BLPR) \cite{5}.

The equation of state of compact stars with neutrons, protons, electrons and muons in weak equilibrium and charge neutrality condition is discussed and the mass and radius are estimated. We then apply the new stiffer EoS to investigate the tidal deformation of compact stars. The results obtained are clear-cut, parameter-free and could be confirmed or falsified in forthcoming LIGO gravity-wave observations.

We use units in which $c = \hbar = 1$ and the notation in which Minkowski metric $\eta_{\mu\nu} = \text{diag}[-1, 1, 1, 1]$.

II. EQUATION OF STATE OF COMPACT STAR WITH NEUTRON, PROTON, ELECTRON AND MUON

The asymmetry of neutron and proton numbers at high density, dictated by the chemical potential difference, inevitably leads to the weak equilibrium configuration with electrons and muons with neutrinos escaped. It can be summarized by the relation between chemical potentials: the chemical potential difference between neutron and proton should be the same as the electron chemical potential, $\mu_n - \mu_p = \mu_e = \mu_\mu$, where the last equality is due to the muon emergence at higher density when the chemical potential difference from neutron and proton becomes larger than the muon mass. For the charge carriers, protons, electrons and muons with the local charge neutrality condition, $n_p = n_e + n_\mu$, one can get the carrier densities at a given density.

The total energy density and pressure are given by

$$\epsilon(n, x) = \epsilon_{nuc} + \epsilon_{lep}, \quad p(n, x) = p_{nuc} + p_{lep}. \quad (4)$$

The energy density, ϵ_{lep}, and the pressure, p_{lep}, are given by the degenerate Fermi gas of leptons (electron and muon) assuming a cold compact star ($T \sim 0$).

The resulting equation of state is shown as a pressure-energy density diagram in Fig. 1. The density dependence of proton fraction, x, is shown in Fig. 1(a). One can see that the proton fraction increases significantly as density increases. The causality limit, $c_s \leq c$, constrains the highest density, n_c, beyond which the stiffer EoS used is no longer valid. For the EoS used in this work, it is found to be $n_c \sim 5.7 n_0$.

For a static and spherically symmetric astrophysical compact star, the metric is given by

$$ds^2 = -e^{\Phi(r)}dt^2 + e^{\Lambda(r)}dr^2 + r^2 d\theta^2 + r^2 \sin^2 \theta d\phi^2, \quad (5)$$

where Λ can be expressed in terms of a radial-dependent mass parameter, $m(r)$; $e^{\Lambda(r)} = (1 - 2m(r)/r)^{-1}$. Assuming a perfect-fluid stellar matter, the relativistic hydrodynamic equilibrium is governed by Tolman-Oppenheimer-Volkov(TOV) equation

$$\frac{dm}{dr} = 4\pi r^2 \epsilon, \quad \frac{dp}{dr} = -(\epsilon + p) \frac{m + 4\pi r^3 p}{r(r - 2m)}, \quad (6)$$

$$\frac{d\Phi}{dr} = -\frac{1}{\epsilon + p} \frac{dp}{dr}, \quad (7)$$

where ϵ and p are energy density and pressure at r, respectively. $m(r)$ is the mass enclosed inside the radius r. We can calculate the mass of compact star, M, and its radius, R, by integrating the TOV equation up to $p(R) = 0$ and get the profiles of $\Phi(r), m(r)$ and $p(r)$.

The EoS of np asymmetric configuration is used to solve TOV equation resulting in the mass-radius curve shown in Figure 2. For np asymmetric configuration, the possible maximum mass is estimated to be $M \sim 2.1 M_\odot$ with the radius $R \sim 11$ km, where the central density is about $5.7 n_0$. For pure neutron matter \cite{5}, the possible maximum mass is approximately $M \sim 2.4 M_\odot$ with the radius $R \sim 12$ km and $n \sim 4.7 n_0$. In Figure 2, the filled-square, filled-circle and filled-triangle correspond to $M = 1.0 M_\odot$, $M = 1.5 M_\odot$ and $M = 2.0 M_\odot$, respectively. The compactness $C = M^{3/2}$ in the range of mass $1.0 - 2 M_\odot$ is found to be 0.12 - 0.26 and 0.14 for $1.4 M_\odot$.

![Graph](a)

![Graph](b)
III. TIDAL DEFORMATION: DEFORMABILITY PARAMETER (LOVE NUMBER)

When a compact star in a spherically symmetric configuration is placed in a static external field, it gets deformed by the external field. The asymptotic expansion of the metric at large distances r from the star defines the quadrupole moment, Q_{ij}, and the external tidal field, E_{ij}, as expansion coefficients [17] given by

\[\frac{1 + g_{00}}{2} = \frac{m}{r} + \frac{3}{2} Q_{ij} n^i n^j - \frac{1}{2} E_{ij} r^2 n^i n^j + \cdots, \tag{8} \]

where $n^i = x^i/r$ and Q_{ij} and E_{ij} are both symmetric and traceless [17]. The deformability parameter λ is defined by

\[Q_{ij} = -\lambda E_{ij}, \tag{9} \]

which depends on the EoS of baryonic matter and provides the information on how easily the star is deformed. The deformability parameter can be reexpressed by the dimensionless Love number, k_2, $\lambda = 2k_2/R$. In general, the linearized perturbation of the metric caused by an external field is given by [18],

\[g_{\mu\nu} = g_{\mu\nu}^{(0)} + h_{\mu\nu}, \tag{10} \]

where $g_{\mu\nu}^{(0)}$ is the unperturbed metric in Eq. (3). $h_{\mu\nu}$ is a linearized perturbation, which carries the information of Q_{ij} and E_{ij} in Eq. (8). Since we will be considering the early stage of binary inspiral before the merging stage, the leading order tidal effects with even parity, $l = 2$ and $m = 0$, are dominant [19]. The relevant component for tidal deformation, h_{00}, for the static and even-parity perturbation, can be written in the following form [14]

\[h_{00} = e^{2\Phi(r)} H(r) Y_{20}(\theta, \phi). \tag{11} \]

On the other hand, the non-vanishing components of the perturbation of stress-energy tensor, $\delta T_{\mu\nu}$, due to the tidal deformation corresponding to $l = 2, m = 0$ metric perturbation are given by

\[\delta T_{00}^0 = -\delta \epsilon(r) Y_{20}, \quad \delta T_{ij}^i = \delta p(r) Y_{20}. \tag{12} \]

Using the linearized Einstein equations, we obtain the differential equation for $H(r)$:

\[H'' + \left(\frac{2}{r} + \Phi' - \Lambda' \right) H' + \left\{ 2(\Phi'' - \Phi'^2) - \frac{6}{r^2} e^{2\Lambda} \right. \]

\[\left. + \frac{3}{r} \Lambda' + \frac{7}{r} \Phi' - 2 \Phi' \Lambda' + \frac{f}{r} (\Phi' + \Lambda') \right\} H = 0, \tag{13} \]

where the prime '$$'$ denotes the differentiation d/dr and $f(r) = d\epsilon/dr$. Using the continuities of $H(r)$ and $H'(r)$ at the boundary, $r = R$, both for interior and exterior solutions of Eq. (13), the deformability parameter, λ, can be written explicitly [14] in terms of the compactness $C = M/R$ and $y = RH'(R)/H(R)$,

\[\lambda = \frac{16}{15} R^5 C^5 (1 - 2C)^2 \left[2 + 2C(y - 1) - y \right] \]

\[\times \left\{ 2C[6 - 3y + 3C(5y - 8)]
ight. \]

\[\left. + 4C^3[13 - 11y + C(3y - 2) + 2C^2(1 + y)]
ight. \]

\[+ 3(1 - 2C)^2[2 - y + 2C(y - 1)] \]

\[\times \ln (1 - 2C) \right)^{-1}. \tag{14} \]

By solving TOV equation and Eq. (13) together, we can then calculate y and the compactness C for the interior solution to obtain λ or Love number, Eq. (14), as shown in Figure 3.

The deformability parameter for $1.4M_\odot$ is found to be 2.86. It can be compared with those of different EoS’s with only npeμ matter. For example, the EoS’s of SLy[20], AP3[21] and MPA[22] for the same mass give $\lambda = 1.70$, 2.22 and 2.79 respectively [12]. On the other hand, the slope of λ is found to be stiffer than those above in the mass range $1M_\odot - 2M_\odot$. In the lower mass region around $\lesssim 1M_\odot$, the deformability parameter is found to be relatively higher than those of above EoS’s ($\lambda < 3$), with the maximum value of 4.2 at $0.84M_\odot$.
IV. SUMMARY AND FURTHER REMARKS

We discussed the physical properties of stellar matter with a new stiffer EoS, which has been proposed recently using a new scaling law (new-BR/BLPR) in medium caused by topology change at high density \([5]\), by extending Dong et al.’s work for pure neutron matter to a realistic nuclear matter of \(n, p, e\) and \(\mu\). The mass-radius and the tidal deformability were calculated.

The calculated maximum mass of compact star is found to be about \(2M_\odot\) with its radius about 11 km. The radius for the mass range of \(1M_\odot - 2M_\odot\) is found to be 11.2 - 12.2 km. The calculated deformability parameter for the stiffer EoS employed in this work is in the range \(4.0 - 0.68\).

What characterizes the approach presented in this work is the stiffening of the EoS due to topology change predicted in the description of baryonic matter with skyrmions put on crystal background to access high density. The change is implemented in the properties of the parameters of the effective Lagrangian anchored on chiral symmetry and manifests in nuclear EFT formulated in terms of RG-implemented \(V_{lowk}\). Given that the approach describes fairly well the baryonic matter up to normal nuclear density, it is the changeover of skyrmions to half-skyrmions at a density \(\sim (2-3)n_0\) that is distinctive of the model used. This topology change involves no change of symmetries – and hence no order parameters, therefore it does not belong to the conventional paradigm of phase transitions. But it impacts importantly on physical properties as described in various places in a way that is not present in standard nuclear physics approaches available in the literature.

As has been discussed recently \([23, 24]\), there is another way to produce the stiffening in EoS to access the massive compact stars. It is to implement a smooth changeover from hadronic matter – more or less well-described – to strongly correlated quark matter, typically described in NJL model. By tuning the parameters of the quark model so as to produce a changeover at a density \(\gtrsim 2n_0\), it has been possible to reproduce the features compatible with the properties of observed massive stars.

At first sight, the hybrid hadron-quark model looks quite different from the above new-BR/BLPR model. However, it is not implausible that the two mechanisms share the same physical mechanism. In fact, as argued in \([25]\), topology can be traded in for quark degrees of freedom via boundary conditions, i.e., Cheshire cat phenomenon. One can then think of the skyrmion-half-skyrmion transition as depicting baryon-quark transition as one sees in the chiral bag model. In this connection, it would be interesting to see what the hybrid hadron-quark model predicts for the tidal deformation calculated here.

It has been demonstrated in Bayesian analysis that the tidal deformability can be measured to better than \(\pm 1 \times 10^{36} \text{ g cm}^2 \text{ s}^2\) when multiple inspiral events from three detectors of aLIGO-aVirgo network \([26, 27]\) are analyzed \([28]\). They also show that the neutron star radius can be measured to better than \(\pm 1 \text{ km}\). Thus the simultaneous measurement of mass, radius and deformability using gravitational wave detectors could present an exciting possibility to eventually pin down the highly uncertain EoS for the nuclear matter in the mass range of \(1M_\odot - 2M_\odot\). This would provide a probe for the state of baryonic matter at a density that is theoretically the most uncertain.

The authors would like to thank Won-Gi Paeng for helpful discussions. HKL and JL acknowledge the hospitality at APCTP where a part of this work was done. The work was supported in part by WCU project of Korean Ministry of Education, Science and Technology (Grant No. R33-2008-000-10087-0).

\begin{thebibliography}{99}
\bibitem{1} P. B. Demorest et al., Nature \textbf{467}, 1081 (2010)
\bibitem{2} J. Antoniadis et al., Science \textbf{340}, 123232 (2013)
\bibitem{3} G.E. Brown and M. Rho, Phys. Rev. Lett. \textbf{66}, 2720 (1991).
\bibitem{4} H. Dong, T.T.S Kuo, and R. Machleidt, Phys. Rev. C \textbf{80}, 065803 (2009)
\bibitem{5} H. Dong et al., Phys. Rev. C \textbf{87}, 054332 (2013)
\bibitem{6} H.K. Lee and M. Rho, Eur. Phys. J. A \textbf{50}, 14 (2014)
\bibitem{7} H.K. Lee, B.Y. Park and M. Rho, Phys. Rev. C \textbf{83}, 025206(2011)
\bibitem{8} H. K. Lee and M. Rho, Int. J. Mod. Phys. E \textbf{22}, 1330005 (2013)
\bibitem{9} K. Hebeler et al., Astrophys. J. \textbf{773}, 11 (2013)
\bibitem{10} R. C. Tolman, Phys. Rev. \textbf{55}, 364 (1939)
\bibitem{11} J. R. Oppenheimer and G. M. Volkoff, Phys. Rev. \textbf{55}, 374 (1939)
\bibitem{12} T. Hinderer et al., Phys. Rev. D \textbf{81}, 123016 (2010)
\bibitem{13} E. E. Flanagan and T. Hinderer, Phys. Rev. D \textbf{77}, 021502 (2008)
\bibitem{14} T. Hinderer, Astrophys. J. \textbf{677}, 1216 (2008)
\bibitem{15} T. Damour and A. Nagar, Phys. Rev. D \textbf{80}, 084035 (2009)
\bibitem{16} T. Binnington and E. Poisson, Phys. Rev. D \textbf{80}, 084018 (2009)
\bibitem{17} K. S. Thorne, Phys. Rev. D \textbf{58}, 124031 (1998)
\bibitem{18} K. S. Thorne and A. Campolattaro, Astrophys. J. \textbf{149}, 591 (1967)
\bibitem{19} T. Regge and J. A. Wheeler, Phys. Rev. \textbf{108}, 1063 (1957)
\bibitem{20} F. Douchin and P. Haensel, A&A \textbf{380}, 151 (2001)
\bibitem{21} A. Akmal, V. R. Pandharipande, and D. G. Ravenhall, Phys. Rev. C \textbf{58}, 1804 (1998).
\bibitem{22} H. Muther, M. Prakash, and T. L. Ainsworth, Physics Letters B \textbf{199}, 469 (1987).
\bibitem{23} K. Masuda, T. Hatsuda and T. Takatsuka, Astrophys. J. \textbf{764}, 12 (2013) [arXiv:1205.3621 [nucl-th]].
\bibitem{24} T. Kojo, P. D. Powell, Y. Song and G. Baym, “Phenomenological QCD equation of state for massive neutron stars,” arXiv:1412.1108 [hep-ph].
\bibitem{25} M. Rho, Nucl. Phys. A \textbf{928}, 144 (2014) [arXiv:1401.1741 [nucl-th]]; J. W. Holt, M. Rho and W. Weise, “Chiral symmetry and effective field theories for hadronic, nuclear and stellar matter,” arXiv:1411.6681 [nucl-th].
\bibitem{26} G. M. Harry and LIGO Scientific Collaboration, Classical and Quantum Gravity \textbf{27}, 084006 (2010).
\bibitem{27} F. Acernese, et al. (Virgo Collaboration), Advanced virgo baseline design, VIR-027A-09 (2009).
\bibitem{28} B.D. Lackey and L. Wade, arXiv:14108866.
\end{thebibliography}