The benzimidazole based drugs show good activity against *T. gondii* but poor activity against its proposed enoyl reductase enzyme target

Craig Wilkinson, Martin J. McPhillie, Ying Zhou, Stuart Woods, Gustavo A. Afanador, Shaun Rawson, Farzana Khaliq, Sean T. Prigge, Craig W. Roberts, David W. Rice, Rima McLeod, Colin W. Fishwick, and Stephen P. Muench

School of Biomedical Sciences, University of Leeds, Leeds, U.K

Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, U.K

Department of Ophthalmology and Visual Sciences, Pediatrics (Infectious Diseases), Committees on Genetics, Immunology, and Molecular Medicine, Institute of Genomics and Systems Biology, and The College, The University of Chicago, Chicago, Illinois 60637, United States

Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, U.K

Johns Hopkins School of Public Health Rm. E5132, 615 N. Wolfe St. Baltimore MD 21205, United States

School of Chemistry, University of Leeds, Leeds, U.K

Abstract

The enoyl acyl-carrier protein reductase (ENR) enzyme of the apicomplexan parasite family has been intensely studied for antiparasitic drug design for over a decade, with the most potent inhibitors targeting the NAD$^+$ bound form of the enzyme. However, the higher affinity for the NADH co-factor over NAD$^+$ and its availability in the natural environment makes the NADH complex form of ENR an attractive target. Herein, we have examined a benzimidazole family of inhibitors which target the NADH form of *Francisella* ENR, but despite good efficacy against *T. gondii*, the IC$_{50}$ for *T. gondii* ENR is poor, with no inhibitory activity at 1 μM. Moreover similar benzimidazole scaffolds are potent against fungi which lack the ENR enzyme and as such we believe that there maybe significant off target effects for this family of inhibitors.

Keywords

Enoyl reductase; Triclosan; Toxoplasma; benzimidazole

Fatty acid biosynthesis (FAS) is essential for cellular maintenance and survival making it an attractive target for drug design. Importantly, there are distinct differences between the
eukaryotic and prokaryotic FAS pathways. The Eukaryotic system, termed FAS I, uses one large polypeptide complex, but Prokaryotes use a series of discrete monofunctional enzymes termed the FAS II pathway to achieve the same goal. Enoyl acyl-carrier protein reductase (ENR), which carries out the final stage of FAS II synthesis, has been the main focus of drug development programs in this area. This has resulted in a range of potent ENR inhibitors being developed such as isoniazid, the diazaborine family and the common antibacterial triclosan. The potency and easy synthesis of triclosan has resulted in it being found in a range of common household items such as toothpastes, mouthwashes and chopping boards. Common to all of these potent ENR inhibitors is that they bind to the NAD\(^+\) complexed form of ENR, despite the NADH co-factor having a higher affinity than NAD\(^+\) for ENR and likely being equivalently prevalent in nature. Moreover, the NADH/NAD\(^+\) ratio has been shown to have a significant effect on the potency of isoniazid, an ENR inhibitor in *M. tuberculosis*. There are very few examples of inhibitors which have been designed against the NADH form of ENR. However, a benzimidazole family of inhibitors designed as such has modest activity against *Francisella tularensis* (*F. tularensis*) displaying an IC50 value of 300nM. The co-crystal structure of a benzimidazole/NADH/ENR complex shows the inhibitor makes no π-stacking interactions with the bound cofactor, a feature common to triclosan and its derivatives, but instead makes a hydrogen bond to the conserved catalytic Tyr and NADH cofactor. The potency of the benzimidazole family has been shown for *F. tularensis*, *E. coli*, *B. anthracis*, *Y. Pestis*, *S. aureus* and MRSA, but to date no antiparasitic testing has been carried out.

Despite its eukaryotic nature, *Toxoplasma gondii* (*T. gondii*) uses a typical FAS II pathway making it susceptible to inhibitors of ENR. This pathway is located in the apicoplast organelle and not surprisingly apicomplexan parasites that also retain an apicoplast such as *Plasmodium (species)* and *Eimeria (species)* possess this pathway and are known to be susceptible to ENR targeted drugs. Although FAS II and ENR play an important role in liver-stage development of *P. falciparum* it is not essential for the survival of blood stages where triclosan would therefore appear to have an off-target effect.

The development of a novel set of ENR/NADH inhibitors against *F. tularensis* has provided a new potential therapeutic avenue for the development of *T. gondii* inhibitors. Here we demonstrate the benzimidazole family of compounds shows no inhibition of *T. gondii* ENR (*TgENR*) at 1μM. However, the same inhibitors show promising activity with a MIC50 value of between 1 and 10μM against two different strains of *T. gondii* parasites cultured in vitro. The ability of these compounds to curtail *T. gondii* growth, but not affect ENR activity, suggests that they have an off-target effect. Consistent with this idea, a structurally similar compound Chlorimidazole is active against fungi which have a type I and not a type II fatty acid biosynthesis pathway and lack an ENR homologue, indicating an alternative primary target in fungi, most likely 14 alpha methylase. Although *T. gondii* lacks this enzyme, data mining of the PubChem compound library has shown a number of similar scaffolds with different targets which may explain some of the off-target affects evident against *T. gondii*.

Johnson *et al* reported that the 3,4-dichloro substituted benzimidazole 1 was potent against *F. tularensis* ENR (*FtENR*) complexed with NAD\(^+\). Hit compound 1 and two derivatives 2 and 3 were synthesized from commercially available 5,6-dimethylbenzimidazole and substituted benzyl bromides using NaH and KI in DMF, in moderate to good yields (scheme 1). HPLC determined purity to be > 95% for each compound.

The fibroblast host cell toxicity assays, inhibition assays and parasite replication assays were performed as previously described.
Cell toxicity assays were carried out in PC3-Luc cells. Confluent cells were incubated with compounds 1–3 at 10nM, 100nM, 1μM and 10μM concentration in phenol red free DMEM (supplemented with 10% FCS, 1% L-glutamine and 1% penicillin streptomycin). At 48 and 96 hours the cells were supplemented with 150μg/ml D-Luciferin potassium salt and imaged for 1 minute in an IVIS Spectrum (Perkinelmer, USA).

To investigate if the benzimidazole compounds had a similar binding mode in TgENR as described for FtENR, co-crystallisation experiments were conducted. In the first instance crystals were grown in the presence of 1.6mM inhibitor, which was more than sufficient for the FtENR/NADH/Benzimidazole crystal structure. However, this was insufficient to produce a TgENR/NADH/Benzimidazole crystal complex. Instead, 3.2mM of inhibitor was used and crystals were grown in the Morpheus crystal screen from Molecular Dimensions. Several different crystallisation conditions yielded diffracting crystals from which data was collected to identify any bound inhibitor. The highest diffracting crystals grew in condition G6 (0.1M Na-Formate, NH₄-Acetate, Na₃-Citrate, NaK-Tartrate, Na-Oxamate, 1M Sodium HEPES, MOPS pH7.5, 30% v/v P500MME_P20K). The crystals were flash frozen and data were collected on beamline I02 at the Diamond SRS. Full data collection and processing statistics are found in table 1. The coordinates have been deposited within the protein data bank, accession number 4O1M.

Iterative cycles of model building and refinement were carried out to 2.0 Å resolution in COOT and REFMAC5 with PDB_REDO optimizing the refinement procedure, with resulting R_{act} and R_{free} values of 0.17 and 0.20, respectively. The resulting, refined map showed clear and continuous electron density for the bound NADH cofactor. However, there was only a small region of strong positive \(F_{obs} - F_{calc} \) density within the proposed binding site (Figure 1A). Moreover, the position of this density is not consistent with the proposed binding site for the benzimide inhibitor (Figure 1B). The inhibitor could not be refined either in a similar position to that seen in FtENR or in an alternative conformation. The features seen within the \(F_{obs} - F_{calc} \) map within the ENR binding site are consistent with the density associated with water and bound crystallization additives (Figure 1C). Despite data for several crystallization conditions being collected and processed no evidence for benzimidazole binding could be seen, with all structures showing features consistent with those seen in Figure 1.

Since the inability to co-crystallise TgENR with the benzimidazole inhibitors is not in of itself evidence that the family are poor inhibitors, enzyme and cellular assays were used to investigate their potency. The enzyme assays showed no inhibitory activity even at 1μM concentration for compounds 1–3 which showed that the benzimidazole compounds are very poor inhibitors of TgENR.

This discrepancy between binding of benzimidazole to TgENR and FtENR was investigated by comparing the two binding sites. A number of sequence changes are observed including significant changes in the loop region Ser^{242}-Asp^{249} (TgENR numbering). A further change which may affect binding is the substitution of Met/Ala at the base of the binding pocket (Figure 1D). The Methionine residue in FtENR makes packing interactions with the bound inhibitor and appears to be important for stabilising the inhibitor (Figure 1D). The replacement with Ala in TgENR reduces the ability of this residue to co-ordinate benzimidazole binding. This is an important aspect of binding, as unlike with other ENR inhibitors the benzimidazole compound is not coordinated by forming stacking interactions with the bound cofactor. A further change is the presence of Phe242 (TgENR numbering) which creates steric hindrance within the binding site, however we have previously shown that this residue is capable of flipping out of the binding site, to remove the steric hindrance. These subtle changes will likely further reduce the potency of the
benzimidazole family of inhibitors which have been shown to have only modest activity >100,000nm-300nm against FtENR. In the absence of a crystal structure we conducted docking simulations using AutoDock 4.2 of compound 1 to see if it could bind in a mode similar to that observed in FtENR. The predicted binding mode of 1 within TgENR was similar to that of FtENR with no significant steric clashes when Phe242 is flipped out of the active site. However, it is clear from the enzyme assay data that this is not a potent interaction with 1 μM and 3.2mM being insufficient for inhibition and co-crystallisation, respectively.

In conjunction with TgENR enzyme assays, parasite replication assays were also conducted using the RH strain (type 1) and Pru strain (type 2) T. gondii stably transfected with the yellow fluorescence gene (RH-YFP). This allows for parasite viability to be directly recorded from the relative fluorescence intensity. The fluorescence intensities were measured after 72 hours using a Synergy H4 Hybrid Multi-Mode Microplate Reader with excitation/emission wavelength at 510/540nm. Compounds 1, 2 and 3 were effective against type 1 parasites with MIC50 values of 2.5μM, 4 μM and >10 μM, respectively (Figure 2A). Type 2 T. gondii were also inhibited with compounds 1 and 3 at 10μM ((p<0.005)(Figure 2B)). The difference in activity of compound 2 maybe due to subtle differences in the two types of strains used. This activity is far in excess of what was expected based on the effects of the same compounds on TgENR enzyme, suggesting that they have an additional off-target effect against T. gondii.

The promising parasite replication assay data shows that these compounds may be a promising lead for novel T. gondii inhibitors. To investigate their potential further, compounds 1, 2 and 3 were tested for cellular toxicity on both fibroblast and prostate cancer cells (Figure 2C, D). Importantly, none of the compounds showed significant toxicity, in either of the two different assays even at a concentration of 10μM against mammalian cells (Figure 2C, D). The low toxicity paired with the good MIC50 values make this family of inhibitors a promising avenue for inhibitor design, however the poor IC50 values makes TgENR an unlikely target. To further develop the benzamidazole family we looked for possible targets other than ENR in the PubChem database.

The PubChem search showed that similar small compound scaffolds have been developed which target Sterol 14 alpha-demethylase, Galanin receptor 3, Pteridine Reductase 1, transient receptor potential cation channel C4 (TRPC4) and aldosterone synthase (Table 2). The crystal structure for the Trypanosoma brucei Pteridine Reductase (3GN2) shows that the additional amine group of the bound inhibitor (4) is essential in the formation of two hydrogen bonds with Asp161 which is absent in the benzamidazole compound. This would make it an unlikely target within Toxoplasma. The Galanin receptor and TRPC4 have been shown to be targets of similar compounds (Table 1). However, these two proteins are not present within Toxoplasma, making them unlikely targets. A further target is sterol 14 alpha-demethylyase, which is inhibited by the antifungal drug Chlormidazole (6) (Table 2). Sterol 14 alpha-demethylyase is found in a range of fungi and bacteria such as Mycobacteria species as well as the Leishmania and Trypanosoma parasites. However, it is absent from apicomplexan parasites with BLAST searches revealing only poor matches to putative cytochrome P450 enzymes in T. gondii. Moreover, T. gondii, as well as other apicomplexan parasites lack a cholesterol biosynthesis pathway, instead relying on scavenging mechanisms. Further studies have found that different sterol 14 alpha-demethlyase targeting drugs were more effective against a different cytochrome P450 CYP121 in Mycobacteria. An additional sterol 14 alpha-demethylyase inhibitor itraconazole is effective against T. gondii, however, an additional off target has not been found and it has been hypothesized that there may be several general non-specific targets in T. gondii which account for the cellular activity. A similar scaffold has been shown to display activity
against steroid 11-beta-hydroxylase and aldosterone synthase (7,8). Taken together this would suggest that despite the benzimidazole inhibitor family offering potential as a novel inhibitor against *F. tularensis* ENR it has a likely off target effect which accounts for the good MIC50 value established against the parasite in vitro but poor IC50 value observed against *Toxoplasma* ENR.

Further studies will be required to determine the exact target of the benzimidazole family of inhibitors and establish a clear structure-activity relationship (SAR). However, they present the potential for novel *T. gondii* inhibitors given their good anti parasitic activity and low toxicity against both prostate and HFF cells.

Acknowledgments

The authors are grateful for the financial support provided by NIAID U01 AI082180-01 and the Rooney-Alden, Taub, Engel, Pritzker, Harris, Kapnick, Mussilami and Samuel families, the Mann-Cornwell Family Foundation, The Wellcome Trust and the Rhona Reid Charitable Trust. SPM is supported by an MRC Career Development fellowship (G1000567). SR was supported by a studentship from the Wellcome Trust (099752/Z/12/Z)

References and notes

1. Smith S. Faseb J. 1994; 8(15):1248. [PubMed: 8001737]
2. Magnuson K, Jackowski S, Rock CO, Cronan J, JE. Microbiol Rev. 1993; 57:522. [PubMed: 8246839]
3. Baldock C, Rafferty JB, Sedelnikova SE, Baker PJ, Stuitje AR, Slabas AR, Hawkes TR, Rice DW. Science. 1996; 274:2107. [PubMed: 8953047]
4. McMurry LM, Oethinger M, Levy SB. Nature. 1998; 394:531. [PubMed: 9707111]
5. Bhargava NH, Leonard PA. Am J Infect Control. 1996; 24:209. [PubMed: 8807001]
6. Rozwarski DA, Grant GA, Barton DH, Jacobs WR Jr, Sacchettini JC. Science. 1998; 279-98. [PubMed: 9417034]
7. Lin SJ, Guarente L. Curr Opin Cell Biol. 2003; 15:241. [PubMed: 12648681]
8. Vilchèze C, Weisbrod TR, Chen B, Kremer L, Hazbón MH, Wang F, Alland D, Sacchettini JC, Jacobs WR. Antimicrob Agents Chemother. 2005; 49:708. [PubMed: 15673755]
9. Hevener KE, Mubboob S, Su PC, Truong K, Bochi T, Deng J, Ghassemi M, Cook JL, Johnson ME. J Med Chem. 2012; 55:268. [PubMed: 22098466]
10. Mubboob S, Hevener KE, Truong K, Bochi T, Santarsiero BD, Johnson ME. J Med Chem. 2012; 55:5933. [PubMed: 22642319]
11. McLeod R, Muench SP, Rafferty JB, Kyle DE, Mui EJ, Kirisits MJ, Mack DG, Roberts CW, Samuel BU, Lyons RE, Dorris M, Milhous WK, Rice DW. Int J Parasitol. 2001; 31:109. [PubMed: 11239932]
12. Lu ZZ, Muench SP, Allary M, Campbell S, Roberts CW, Mui E, McLeod RL, Rice DW, Prigge ST. Parasitology. 2007; 134:1949. [PubMed: 17697396]
13. Surolia N, Surolia A. Nat Med. 2001; 7:167. [PubMed: 11175846]
14. Yu M, Kumar TR, Nkrumah LJ, Coppi A, Retzlaff S, Li CD, Kelly BJ, Moura PA, Lakshmanan V, Freundlich JS, Valderramos JC, Vilchez C, Siedner M, Tsai JH, Falkard B, Sidhu AB, Purcell LA, Gratraud P, Kremer L, Waters AP, Schiehser G, Jacobus DP, Janse CJ, Ager A, Jacobs WR Jr, Sacchettini JC, Heussler V, Sinden P, Fidock DA, Viswanathan L, Friedrich JS. Cell Host Microbe. 2008; 4:567. [PubMed: 19064257]
15. Spalding MD, Prigge ST. Cell Host Microbe. 2008; 4:509. [PubMed: 19064250]
16. Perozzo R, Kuo M, Sidhu Ab, Vaijayantee JT, Bittman R, Jacobs WR Jr, Fidock DA, Sacchettini JC. J Biol Chem. 2002; 277:13106. [PubMed: 11792710]
17. Fomovska A, Huang Q, El Bissati K, Mui EJ, Witola WH, Cheng G, Zhou Y, Sommerville C, Roberts CW, Bettis S, Prigge ST, Afanador GA, Hickman MR, Lee PJ, Leed SE, Auschitz JM, Pieroni M, Stec J, Muench SP, Rice DW, Kozikowski AP, McLeod R. Antimicrob Agents Chemother. 2012; 56:2666. [PubMed: 22354304]

Bioorg Med Chem Lett. Author manuscript; available in PMC 2015 February 01.
18. Fomovska A, Wood RD, Mui E, Dubey JP, Ferreira LR, Hickman MR, Lee PJ, Leed SE, Auschwitz JM, Welsh WJ, Sommerville C, Woods S, Roberts C, McLeod R. J Med Chem. 2012; 55:8375. [PubMed: 22970937]

19. Lai BS, Witola WH, El Bissati K, Zhou Y, Mui E, Fomovska A, McLeod R. Proc Natl Acad Sci USA. 2012; 109:14182. [PubMed: 22891343]

20. Cheng G, Muench SP, Zhou Y, Afanador GA, Mui EJ, Fomovska A, Lai BS, Prigge ST, Woods S, Roberts CW, Hickman MR, Lee PJ, Leed SE, Auschwitz JM, Rice DW, McLeod R. Bioorg Med Chem Lett. 2013; 23:2035–2043. [PubMed: 23453069]

21. Mushudov GN, Vagin AA, Dodson EJ. Acta Cryst D. 1997; 53:240. [PubMed: 15299926]

22. Emsley P, Cowtan K. Acta Cryst D. 2004; 60:2126. [PubMed: 15572765]

23. Joosten RP, Joosten K, Cohen SX, Vriend G, Perrakis A. Bioinformatics. 2011; 27:3392–3398. [PubMed: 22034521]

24. Muench SP, Stec J, Zhou Y, Afanador JA, McPhailie MJ, Hickman MP, Lee PJ, Leed SE, Auschwitz JM, Prigge ST, Rice DW, McLeod R. Bioorg Med Chem Lett. 2013; 23:2035. [PubMed: 23453069]

25. Goodsell DS, Morris GM, Olson AJ. J Mol Recognit. 1996; 9:1. [PubMed: 8723313]

26. Mpamhanga CP, Spinks D, Tulloch LB, Shanks EJ, Robinson DA, Collie IT, Fairlamb AH, Wyatt PG, Frearson JA, Hunter WN. J Med Chem. 2009; 52:4454. [PubMed: 19527033]

27. Coppens I, Sinai AP, Joiner KA. J Cell Biol. 2000; 149:167. [PubMed: 10747095]

28. McLean KJ, Marshall KR, Richmond A, Hunter IS, Fowler K, Kieser T, Gurcha SS, Besra GS, Munro AW. Microbiology. 2002; 148:2937. [PubMed: 12368427]

29. Martins-Duarte ES, De Souza W, Vommaro RCFEMS. Microbiol Lett. 2008; 282:290.

30. Laskowski RA, Macarthur MW, Moss DS, Thornton JM. J Appl Crystallog. 1993; 26:283.
Figure 1.
(A) Refined TgENR/NADH crystal structure with the $2F_{\text{obs}}-F_{\text{calc}}$ density map (blue) and $F_{\text{obs}}-F_{\text{calc}}$ density map (green) contoured at 1.6σ and 4.0σ, respectively. (B) The same view as in (A) but with the FtENR/NADH/benzimide complex superimposed in red to show the predicted position of the benzimide inhibitor. (C) Representative density of the refined TgENR/NADH structure with waters and glycerol modeled into the inhibitor binding site with the map contoured at 1.5σ. For AC, nitrogen, oxygen, chlorine, phosphorous and carbon are colored blue, red, green, orange and yellow (TgENR)/red(FtENR), respectively. (D) Overlay of FtENR (blue sidechains) and TgENR (green sidechains) inhibitor binding sites with bound inhibitor (yellow), NADH cofactor (green) shown in stick format. The position of the critical Tyr residue which forms a hydrogen bond to the bound inhibitor is shown along with those residues which are significant different between species.
Figure 2. Efficacy and toxicity of compound 1–3 against \textit{T. gondii}

(A) Growth of RH-YFP in human Foreskin fibroblasts (HFF) measured as fluorescence intensity. HFF were infected with differing numbers of RH-YFP tachyzoites as indicated, with uninfected control HFF also shown. HFF infected with 3200 RH-YFP tachyzoites treated with pyrimethamine/sulfadiazine (p/s) or 0.1% DMSO are additional positive and negative controls, respectively (left panel). The effect of compound 1–3 against \textit{Toxoplasma} tachyzoites was determined by measurement of RH-YFP fluorescence as shown in the right hand panel. HFF were infected with 3200 RH-YFP and treated with compounds 1–3 at the concentration indicated. Toxicity was measured using WST stain. (B) The effect of compounds 1–3 on \textit{Toxoplasma} growth was determined by infecting confluent fibroblasts with YFP expressing Pru strain \textit{T. gondii} tachyzoites and measuring YFP florescence at 72 hours. Compounds 1 and 3 effectively reduced parasite growth however at 10\(\mu\)M (p<0.005). (C) Compounds 1–3 were incubated with confluent luciferase expressing PC3-Luc cells to determine their toxicity against prostate cancer cells. 1% Triton X was included as a positive control for cytotoxicity. After 96 hours luciferin (150\(\mu\)g/ml) was added and cytotoxicity was determined by a reduction in bioluminescent activity from the cells. Neither compounds 1–3, nor the vehicle control resulted in a reduction of bioluminescent activity from the PC3-Luc cells. (D) The viability of host HFF cells was assessed by WST-1 staining after 72 hours of incubation of indicated compounds at 10\(\mu\)M concentration. Effect of various
concentrations of DMSO present in the HFF culture medium served as a standard toxicity curve.
Scheme 1.
Reagents and conditions: (a) NaH, KI, DMF, 0°C warming to RT, 16h, 40–60%.

1: R\(^1\) = Cl, R\(^2\) = Cl
2: R\(^1\) = H, R\(^2\) = Cl
3: R\(^1\) = OMe, R\(^2\) = H
Table 1

Data collection and refinement statistics

Data Collection statistics	**TgENR apo**
Space Group	C121
Wavelength used (Å)	0.97949
Resolution range (Å)	30.0-2.0 (2.03-2.0)
Unique reflections	129052 (6302)
Completeness of data (%)	99.7 (99.6)
Mean I/σ(I)	6.5 (2.8)
R_{merge} (%)	0.13 (0.5)

B. Refinement Statistics

Resolution limits (Å)	30.0 - 2.0
R_{cryst} (%)	16.9
R_{free} (%)	19.9

Rmsd values	
Bond length (Å)	0.015
Bond angle (deg.)	1.54

Ramachandran plot	
Most favoured (%)	97.9
Additionally allowed (%)	2.1
Generously allowed (%)	0.0
Disallowed (%)	0.0

Molecules in asymm. unit	6
Protein atoms	13302
Co-factor atoms	264
Water molecules	415

Mean B-values (Å^2)	
Protein Mainchain/sidechain	9/13
Co-factors	17
Water molecules	15
Data was collected at station I02 at the Diamond synchrotron to 2.0 Å. Values in parentheses are for the highest resolution shell. Ramachandran values were determined in PROCHECK.\(^{30}\)
Table 2
Activity data for the benzimidazole based scaffold inhibitors

Notebook ID	Structure	IC50	Target	Organism	T. gondii MIC50
1	![Structure](image1)	300nM	Enoyl-ACP Reductase	*Francisella tularensis* *T. gondii*	3μM
		>1000nM			
2	![Structure](image2)	>1000nM	Enoyl-ACP Reductase	*T. gondii*	4μM
3	![Structure](image3)	>1000nM	Enoyl-ACP Reductase	*T. gondii*	>10μM
4	![Structure](image4)	400nM	Pteridine Reductase 1	*Trypanosoma brucei*	ND
5	![Structure](image5)	140nM	Galanin Receptor 3	*Homo Sapiens*	ND
		668nM	Transient receptor potential cation channel C4 (TRPC4)	*Homo Sapiens*	ND
Notebook ID	Structure	IC50	Target	Organism	T. gondii MIC50
------------	-----------	-------	---------------------------------	---------------------------------------	----------------
6	![Image](image6.png)	ND	Sterol 14α-demethylase	Fungi, Mycobacteria, Leishmania & Trypanosoma	ND
		200nM	Galanin Receptor 3	Homo Sapiens	ND
7	![Image](image7.png)	635nM	Steroid 11-beta-hydroxylase	Homo Sapiens	ND
		107nM	Aldosterone synthase	Homo Sapiens	ND
8	![Image](image8.png)	188nM	Steroid 11-beta-hydroxylase	Homo Sapiens	ND
		632nM	Aldosterone synthase	Homo Sapiens	ND

1. Value for Ki_{app} not IC₅₀.
2. Value for EC₅₀ not IC₅₀.