EMBEDDINGS INTO ORLICZ SPACES VIA THE MODIFIED RIESZ POTENTIAL

PETTERI HARJULEHTO AND RITVA HURRI-SYRJÄNEN

ABSTRACT. L^1_{1}-functions which are defined in non-smooth domains in the n-dimensional Euclidean space can be estimated point-wise by the modified Riesz potential of their gradients. These point-wise estimates imply embeddings into Orlicz spaces from the space L^1_p, $1 \leq p < n$, where the functions are defined in bounded or unbounded domains with minimum requirement of the smoothness of the boundary. The results are sharp for L^1_{1}-functions.

1. INTRODUCTION

It is well known that a locally Lipschitz function can be estimated point-wise by the Riesz potential of its gradient in bounded John domains, [20, Theorem], [6, Theorem 10], and hence, especially, in Lipschitz domains and in convex domains, [5, Lemma 7.16]. By modifying the Riesz potential, point-wise estimates can be generalized for functions which are defined in more irregular domains than John domains, [11, Theorem 3.4], [10, Theorem 4.4]. More precisely, for every function u whose weak distributional partial derivatives are in $L^1(G)$, the pointwise estimate

$$|u(x) - u_D| \leq \int_G \frac{|
abla u(y)|}{\psi(|x - y|)^{n-1}} dy$$

holds for almost every $x \in G$. Here, G is a domain in the n-dimensional Euclidean space and the regularity of the boundary is controlled by the function ψ. Hedberg’s method [13, Lemma, Theorem 1] can be extended so that this point-wise estimate leads to the Sobolev-type inequality where an Orlicz-space is the target space. Hedberg’s method has been used by A. Cianchi and B. Stroffolini for the classical Riesz potential when functions are Orlicz functions, [3, Theorem 1, Corollary 1], and by the authors for the modified Riesz potential with a special Orlicz function, [11, Theorem 1.1] and [9, Theorem 1.1], and with a general Orlicz function in [10, Corollary 3.4, Corollary 5.4]. For other papers on Orlicz embeddings of Cianchi we refer to [11, 2].

Date: August 4, 2015.

2010 Mathematics Subject Classification. 31C15, 42B20, 26D10, 46E30, 46E35.

Key words and phrases. Riesz potential, point-wise estimate, Orlicz space, unbounded convex domain, non-smooth domain, Sobolev inequality, Poincaré inequality.
In the present paper we show that the optimal Orlicz function for the modified Riesz potential in (1.1) can be found as a function of ψ which depends on the geometry of the domain G. Our main theorem is the following theorem where we give the formula to the Orlicz function.

1.2. Theorem. Let $1 \leq p < n$. Let the continuous, strictly increasing function $\varphi : [0, \infty) \to [0, \infty)$ be such that $\varphi(0) = \lim_{t \to 0^+} \varphi(t) = 0$ and φ satisfies the Δ_2-condition and the inequality \[
\frac{\varphi(t_1)}{t_1} \leq \frac{\varphi(t_2)}{t_2} \text{ whenever } 0 < t_1 \leq t_2. \]

If

\[
\psi(t) = \begin{cases}
\varphi(t) & \text{when } 0 \leq t \leq 1; \\
\varphi(1)t & \text{when } t \geq 1,
\end{cases}
\]

then there exists an N-function H that satisfies the Δ_2-condition, and

\[
H^{-1}(t) \approx \frac{t^{p-1}}{\psi(t^{-\frac{1}{p}})^n} \text{ for } t > 0.
\]

With this function we obtain the following point-wise estimate.

1.4. Theorem. Let G be a domain in \mathbb{R}^n, $n \geq 2$. Let $1 \leq p < n$. If H is the function from Theorem 1.2 and $\|f\|_{L^p(G)} \leq 1$, then there exists a constant C such that the point-wise estimate

\[
H \left(\int_G \frac{|f(y)|}{\psi(|x-y|)^{n-1}} \, dy \right) \leq C(Mf(x))^p
\]

holds for every $x \in \mathbb{R}^n$. Here, Mf is the Hardy-Littlewood maximal operator of f and the constant C depends on n, p, and the Δ_2-constant of H only.

By this point-wise estimate we obtain embedding results for bounded and unbounded non-smooth domains. Examples of these domains are Lipschitz domains and convex domains, but also domains with suitable outward cusps are allowed.

We define a class of domains which are controlled by the function ψ from (1.3). We call these domains in Definition 2.2 as φ-cigar John domains, since our definition is a modification of [22, 2.1] where J. Väisälä has defined unbounded John domains with $\varphi(t) = t$. Hence, examples of φ-John domains are the classical bounded and unbounded John domains, but also so called s-John domains when $\varphi(t) = t^s$.

We have the following corollary which recovers some of the known results of the Poincaré inequality.

1.5. Corollary. If there exists $\alpha \in [1, n/(n - 1))$ such that $t^\alpha/\varphi(t)$ is increasing for $t > 0$ and if D is a bounded or an unbounded φ-cigar John domain with a constant c_J in \mathbb{R}^n, $n \geq 2$ and if $1 \leq p < n$, then with the function H in Theorem 1.2 there exists a constant C such that the inequality

\[
\inf_{b \in \mathbb{R}} \|u - b\|_{L^p(D)} \leq C\|\nabla u\|_{L^p(D)},
\]
holds for every $u \in L^1_{\text{loc}}(D)$ with $|\nabla u| \in L^p(D)$. Here the constant C depends on n, p, Δ_2-constants of H and φ, and John constant c_J only.

We point out that if D is a bounded s-John domain, then $\varphi(t) = t^s$, $t \geq 0$, and this corollary yields that the \((\frac{np}{n - np + np - 1}, p)\)-Poincaré inequality holds. If $p = 1$, the result is optimal. Thus the corollary recovers some of the known results of [21, Theorem 10], [7, Corollaries 5 and 6], and [17, Theorem 2.3], but our proof is completely different from the previous proofs.

Especially, in Section 6 we construct an example of an unbounded domain which shows that the Lebesque space cannot be the target space in this corresponding embedding if $\lim_{t \to 0^+} t/\varphi(t) = \infty$.

The outline of the paper is as following: We define the domains we consider in Section 2 and we call them φ-cigar John domains. We find the suitable Orlicz function in Section 3, prove embedding theorems in Section 4, recover some Poincaré inequalities in Section 5, and in Section 6 we construct an example of an unbounded φ-cigar domain.

2. John domains

Throughout the paper we let the function $\varphi : [0, \infty) \to [0, \infty)$ satisfy the following conditions

(1) φ is continuous,
(2) φ is strictly increasing,
(3) $\varphi(0) = \lim_{t \to 0^+} \varphi(t) = 0$,
(4) there exists a constant $C_\varphi \geq 1$ such that

$$\frac{\varphi(t_1)}{t_1} \leq C_\varphi \frac{\varphi(t_2)}{t_2}$$

whenever $0 < t_1 \leq t_2$,
(5) φ satisfies the Δ_2-condition i.e. there exists a constant $C_{\Delta_2} \geq 1$ such that $\varphi(2t) \leq C_{\Delta_2} \varphi(t)$ for every $t > 0$.

We write

$$\psi(t) = \begin{cases} \varphi(t) & \text{if } 0 \leq t \leq 1; \\ \varphi(1)t & \text{if } t \geq 1. \end{cases}$$ \quad (2.1)

Now, if φ satisfies the conditions (1)–(5), then ψ does, too, and the constant in (4) is the same for the functions φ and ψ, that is $C_\varphi = C_\psi$.

The definition of a bounded John domain goes back to F. John [16, Definition, p. 402] who defined an inner radius and an outer radius domain, and later this domain was renamed as a John domain in [18, 2.1].

We extend the definition of John domains following J. Väisälä [22, 2.1] in the classical case. Let E in \mathbb{R}^n, $n \geq 2$, be a closed rectifiable curve with endpoints a and b. The subcurve between $x, y \in E$ is denoted by
for all $x \in E$ we write
\[q(x) = \min \{ \ell(E[a, x]), \ell(E[x, b]) \}, \]
where $\ell(E[a, x])$ is the length of the subcurve $E[a, x]$.

2.2. Definition. A bounded or an unbounded domain D in \mathbb{R}^n is a φ-cigar John domain if there exists a constant $c_J > 0$ such that each pair of points $a, b \in D$ can be joined by a closed rectifiable curve E in D such that
\[\text{Cig } E(a, b) = \bigcup \left\{ B \left(x, \frac{\psi(q(x))}{c_J} \right) : x \in E \setminus [a, b] \right\} \subset D \]
where $B(x, r)$ is an open ball centered at x with a radius $r > 0$ and the function ψ is defined as in (2.1).

The set $\text{Cig } E(a, b)$ is called a cigar with core E joining a and b. We point out that if D is a φ-cigar John domain with $\varphi(t) = t^p$, $p \geq 1$, then it is a φ-cigar John domain with $\varphi(t) = t^q$ for every $q \geq p$. For the case $\psi(t) = \varphi(t) = t$ for all $t \geq 0$, in Definition 2.2, we refer to [22, 2.1] and [19] 2.11 and 2.13.

If D is a bounded domain then the following definition from [10] Definition 4.1 for a ψ-John domain gives an equivalent definition to a bounded φ-cigar John domain.

2.3. Definition. A bounded domain D in \mathbb{R}^n, $n \geq 2$, is a ψ-John domain if there exist a constants $0 < \alpha \leq \beta < \infty$ and a point $x_0 \in D$ such that each point $x \in D$ can be joined to x_0 by a rectifiable curve $\gamma : [0, \ell(\gamma)] \to D$, parametrized by its arc length, such that $\gamma(0) = x$, $\gamma(\ell(\gamma)) = x_0$, $\ell(\gamma) \leq \beta$, and
\[\psi(t) \leq \frac{\alpha}{\ell(\gamma)} \text{dist}(\gamma(t), \partial D) \quad \text{for all} \quad t \in [0, \ell(\gamma)]. \]
The point x_0 is called a John center of D and γ is called a John curve of x.

If the function ψ is defined as in (2.1) with the function φ, then a bounded domain is a ψ-John domain if and only if it is a φ-John domain. If $\psi(t) = t$, then our definition for bounded ψ-John domains coincides with the definition of the classical John domains. If $\psi(t) = t^s$, $s \geq 1$, then our definition for bounded ψ-John domains coincides with the definition of s-John domains.

2.4. Theorem. Let D be a bounded domain. If D is a ψ-John domain then D is a φ-cigar John domain. On the other hand, if D is a φ-cigar John domain with a constant c_J, then D is a ψ-John domain with constants
\[\alpha = \frac{c_J \varphi(1) \left(\max \left\{ 2, \frac{c_J \text{diam}(D)}{\varphi(1)} \right\} \right)^2}{\psi \left(\frac{1}{2c_J} \psi \left(\frac{1}{4} \text{diam}(D) \right) \right)}, \]
Note that when $\text{diam}(D) \to \infty$, then $\alpha \to \infty$ with the same speed as $\text{diam}(D)$.

Proof. Assume first that D is a ψ-John domain with a John center x_0. Let $a, b \in D$ and let the John curves γ_1 and γ_2 connect them to x_0, respectively. We may assume that $a, b \in D \setminus B(x_0, \text{dist}(x_0, \partial D))$, since inside the ball the points can be connect by two straight lines going via the center of the ball $B(x_0, \text{dist}(x_0, \partial D))$. Let $E = \gamma_1 \circ \gamma_2$. Then,

$$C_{ij} E(a, b) = \bigcup_{t \in (0, \ell(\gamma_1)]} B(\gamma_1(t), \frac{\psi(t)}{\alpha/\text{dist}(x_0, \partial D)}) \cup \bigcup_{t \in (0, \ell(\gamma_2)]} B(\gamma_2(t), \frac{\psi(t)}{\alpha/\text{dist}(x_0, \partial D)})$$

and thus D is a φ-cigar John domain.

Assume then that D is a φ-cigar John domain. Let us carefully choose a suitable John center so that the center is not too close to the boundary of D. Let $x, y \in D$ such that $|x - y| \geq \frac{1}{2} \text{diam}(D)$. Let E be a core of a John cigar that connects x and y. Then the length of E is at least $\frac{1}{2} \text{diam}(D)$. Let x_0 be the center of E. Then

$$\text{dist}(x_0, \partial D) \geq \frac{\psi(\frac{1}{4} \text{diam}(D))}{\frac{c_J}{\text{diam}(D)}}$$

so we choose $r = \psi\left(\frac{1}{4} \text{diam}(D)\right)/c_J$, and hence $B(x_0, r) \subset D$. From now on this r and the point x_0 are fixed in this proof.

For every $a \in D \setminus B(x_0, r)$ there exists a curve E such that $C_{ij} E(a, x_0) \subset D$. Let $\ell(E)$ be the length of E, then $\ell(E) \leq 2$ or by the definition

$$\text{diam}(D) \geq 2 \frac{\psi(\ell(E)/2)}{c_J} = 2 \frac{\psi(1)\ell(E)}{2c_J}$$

i.e. $\ell(E) \leq \max\left\{2, \frac{c_J \text{diam}(D)}{\phi(1)}\right\} = \beta$.

Figure 1. The cigar from a to x_0 (the solid line), the core E (the dotted line) and a new carrot given by the constant $c_J M$ (the dashed line).
Note that the length of E inside the ball $B(x_0, r)$ is at least r and thus for the points in $E \cap \partial B(x_0, r)$ the distance to the boundary is at least $\psi(r/2)$. Let us choose that

$$M = \frac{\psi(\beta)}{\psi(\ell(E))} = \frac{\varphi(1)\beta}{\psi(\ell(E))}.$$

Since $r \leq \ell(E) \leq \beta$ and ψ is increasing, we have $M \geq 1$.

Let $z_0 \in E$ be the first point from a that satisfies $z_0 \in \partial B(x_0, r)$. Let us replace $E[z_0, x_0]$ by the radius of the ball $B(x_0, r)$, if necessary. Let us denote this new arc by E. Let γ be an arc E parametrized by its curve length, such that $\gamma(0) = a$, $\gamma(\ell(E)) = x_0$. Since $\psi(\ell(E)) \leq \psi(\ell(E))$ we obtain that

$$\bigcup_{t \in [0, \ell(E))} B\left(\gamma(t), \frac{\psi(t)}{M c_j}\right) \setminus B(x_0, r) \subset \text{Cig}[a, x_0].$$

This yields that

$$\bigcup_{t \in [0, \ell(E))} B\left(\gamma(t), \frac{\psi(t)}{M c_j}\right) \subset D$$

and thus

$$\psi(t) \leq Mc_j \text{dist}(\gamma(t), \partial D) \leq \frac{Mc_j \beta}{\ell(E)} \text{dist}(\gamma(t), \partial D).$$

This yields that we may choose $\alpha = Mc_j \beta$. Thus, D is a ψ-John domain with these α and β. □

3. Point-wise estimates

We note that by the condition (4) of φ

$$\psi(t) \leq C \varphi(1) t \quad \text{for all } t \geq 0. \quad (3.1)$$

We recall a covering lemma from [10, 4.3. Lemma] which is valid for a bounded φ-John domain. For the previous versions in classical case we refer to [8, Theorem 9.3] and in a special case to [11, Lemma 3.5].

3.2. Lemma. [10, 4.3. Lemma]. Let φ satisfies the conditions (1)–(5). Let $\psi : [0, \infty) \to [0, \infty)$ be defined as in (2.1). Let D in $\mathbb{R}^n, n \geq 2$, be a bounded ψ-John domain with John constants α and β. Let $x_0 \in D$ the John center. Then for every $x \in D \setminus B(x_0, \varphi(\text{dist}(x_0, \partial D))$ there exists a sequence of balls $(B(x_i, r_i))$ such that $B(x_i, 2r_i)$ is in D for each $i = 0, 1, \ldots$, and for some constants $K = K(\alpha, \text{dist}(x_0, \partial D), \varphi(D), \varphi)$, $N = N(n)$, and $M = M(n)$

- $B_0 = B(x_0, \frac{1}{2} \text{dist}(x_0, \partial D))$;
- $\psi(\text{dist}(x, B_i)) \leq Kr_i$, and $r_i \to 0$ as $i \to \infty$;
- no point of the domain D belongs to more than N balls $B(x_i, r_i)$; and
3.3. **Remark.** (1) The constant K in the previous lemma can be taken to be $K = \max\{2\alpha/\text{dist}(x_0, \partial D), 2\varphi(1), \varphi(\text{diam}(D))/\text{diam}(D)\}$.

(2) If D is a φ-cigar John domain and the John center has been chosen as in Theorem 2.4, then

$$\frac{\alpha}{\text{dist}(x_0, \partial D)} \leq \frac{c_j^2 \varphi(1) \left(\max\left\{2, \frac{c \text{diam}(D)}{\varphi(1)}\right\} \right)^2}{\psi \left(\frac{1}{c_j^2} \varphi \left(\frac{1}{4} \text{diam}(D) \right) \right) \psi \left(\frac{5}{4} \text{diam}(D) \right)} \to \frac{32c_j^5}{\varphi(1)^4}$$

as $\text{diam}(D) \to \infty$.

We recall the following definitions. Let G be an open set of \mathbb{R}^n. We denote the Lebesgue space by $L^p(G)$, $1 \leq p < \infty$. By $L^1_p(G)$, $1 \leq p < \infty$, we denote those locally integrable functions whose first weak distributional derivatives belongs to $L^p(G)$ i.e. $L^1_p(G) = \{u \in L^{1}_\text{loc}(G) : |\nabla u| \in L^p(G)\}$. By $W^{1,p}(G)$, $1 \leq p < \infty$, we denote those functions from $L^p(G)$ whose first weak distributional derivatives belongs to $L^p(G)$ i.e. $W^{1,p}(G) = \{u \in L^p(G) : |\nabla u| \in L^p(G)\}$.

Theorem 2.4 and Lemma 3.2 give the following point-wise estimate which we recall from [10, 4.4. Theorem].

3.4. **Theorem.** Let φ satisfy the conditions (1)–(5). Let $\psi : [0, \infty) \to [0, \infty)$ be as defined in (2.1). Let D in \mathbb{R}^n, $n \geq 2$, be a bounded φ-cigar John domain with a John constant c_j. Then there exists a finite constant C and $x_0 \in D$ such that for every $u \in L^1(D)$ and for almost every $x \in D$ the inequality

$$|u(x) - u_{B(x_0, \text{dist}(x_0, \partial D))}| \leq C \int_D \frac{|\nabla u(y)|}{\psi(|x - y|)^{p-1}} dy$$

holds. Here

$$C = c \left(n, c_j, C_\varphi, C_\varphi^{\frac{1}{2}n}, \varphi(1), \min \left\{ \text{diam}(D), 1 \right\} \right).$$

We recall the definitions of N-functions and Orlicz spaces.

3.5. **Definition.** A function $H : [0, \infty) \to [0, \infty)$ is an N-function if

(N1) H is continuous,

(N2) H is convex,

(N3) $\lim_{t \to 0^+} \frac{H(t)}{t} = 0$ and $\lim_{t \to \infty} \frac{H(t)}{t} = \infty$.

Continuity and $\lim_{t \to 0^+} \frac{H(t)}{t} = 0$ yield that $H(0) = 0$. Let $0 < t < s$ by convexity

$$H(t) = H\left(\frac{t}{s} s + \left(1 - \frac{t}{s}\right) 0\right) \leq \frac{t}{s} H(s) + \left(1 - \frac{t}{s}\right) H(0)$$

and thus $\frac{H(t)}{t} \leq \frac{H(s)}{s}$ for $0 < t < s$.

This implies that H is a strictly increasing function.
By the notation $f \lessapprox g$ we mean that there exists a constant $C > 0$ such that $f(x) \leq C g(x)$ for all x. The notation $f \approx g$ means that $f \lessapprox g \lessapprox f$.

Two N-functions H and K are equivalent, which is written as $H \cong K$, if there exists $m \geq 1$ such that $H(t/m) \leq K(t) \leq H(mt)$ for all $t > 0$. Equivalent N-functions give the same space with comparable norms. We point out that $H \cong K$ if and only if for the inverse functions $H^{-1} \approx K^{-1}$.

We assume that H satisfies the Δ_2-condition, that is, there exists a constant $C_H^\Delta_2$ such that
\begin{equation}
H(2t) \leq C_H^\Delta_2 H(t) \quad \text{for all } t > 0.
\end{equation}

If an N-function satisfies the Δ_2-condition then the relations \cong and \approx are equivalent. The constant $C_H^\Delta_2$ is called the Δ_2-constant of H.

Let G in \mathbb{R}^n be an open set. The Orlicz class is a set of all measurable functions u defined on G such that
\[\int_G H(|u(x)|) \, dx < \infty. \]

We study the Orlicz space $L^H(G)$ which means the space of all measurable functions u defined on G such that
\[\int_G H(\lambda |u(x)|) \, dx < \infty \]
for some $\lambda > 0$.

Whenever the function H satisfies the Δ_2-condition, then the space $L^H(G)$ is a vector space and it is equivalent to the corresponding Orlicz class. We study these Orlicz spaces and call their functions Orlicz functions. The Orlicz space $L^H(G)$ equipped with the Luxemburg norm
\[\|u\|_{L^H(G)} = \inf \left\{ \lambda > 0 : \int_G \Phi \left(\frac{|u(x)|}{\lambda} \right) \, dx \leq 1 \right\} \]
is a Banach space.

We recall the following theorem from [10, 1.3. Theorem].

3.7. Theorem. Let φ satisfy the conditions (1)-(5). Let $\psi : [0, \infty) \to [0, \infty)$ be defined as in (2.1). Let $1 \leq p < n$ be given. Suppose that there exists a continuous function $h : [0, \infty) \to [0, \infty)$ such that
\begin{equation}
\sum_{k=1}^{\infty} \frac{(2^{-k}t)^n}{\psi(2^{-k}t)^{n-1}} \leq h(t) \quad \text{for all } t > 0.
\end{equation}

Let $\delta : (0, \infty) \to [0, \infty)$ be a continuous function and let $H : [0, \infty) \to [0, \infty)$ be an N-function satisfying the Δ_2-condition. Suppose that there exists a finite constant C_H such that the inequality
\begin{equation}
H \left(h(\delta(t))t + \psi(\delta(t))^{1-n}(\delta(t))^{n(1-\frac{1}{p})} \right) \leq C_H t^p
\end{equation}
is satisfied for all $t > 0$. Then
\begin{equation}
\sum_{k=1}^{\infty} \frac{(2^{-k}t)^n}{\psi(2^{-k}t)^{n-1}} \leq h(t) \quad \text{for all } t > 0.
\end{equation}
holds for all $t > 0$. Let G in \mathbb{R}^n be an open set. If $\|f\|_{L^p(G)} \leq 1$, then there exists a constant C such that the inequality

$$H \left(\int_G \frac{|f(y)|}{\psi(|x-y|)^{n-1}} dy \right) \leq C(Mf(x))^p$$

(3.10)

holds for every $x \in \mathbb{R}^n$. Here the constant C depends on n, p, C_φ, C_H, and the Δ_2-constants of φ and H only.

Our goal is to find a formula which would give all suitable functions H. Examples of some of these functions were given in [10, Section 6].

Here we do the preparations to find H. Assume that there exists $\alpha \in [1, n/(n-1))$ such that $t^\alpha/\varphi(t)$ is increasing for $t > 0$. This yields that $t^\alpha/\psi(t)$ is increasing, too. Under this condition inequality (3.8) holds: Since

$$\frac{(2^{-k}t)^n}{\varphi(t2^{-k})n-1} = \frac{(2^{-k}t)^n}{(2^{-k})n(n-1)} \frac{(2^{-k})t^{(n(n-1))}}{n-1} \leq (2^{-k}t)^{\alpha(n-1)} \frac{\varphi(t2^{-k})n-1}{\varphi(t)n-1} = 2^{-k(n-\alpha(n-1))} \frac{t^n}{\varphi(t)n-1},$$

we have

$$\sum_{k=1}^\infty \frac{(2^{-k}t)^n}{\varphi(t2^{-k})n-1} \leq C(n, \alpha) \frac{t^n}{\varphi(t)n-1}, \text{ where } C(n, \alpha) = \frac{2n-2n(n-1)}{2n-2(n-1)}.$$

Let us define the functions h and δ such that

$$h(t) = C(n, \alpha) \frac{t^n}{\varphi(t)n-1} \quad \text{and} \quad \delta(t) = t^{-\frac{n}{n-1}} \text{ for all } t > 0.$$

Then,

$$h(\delta(t)t) + \varphi(\delta(t))^{1-n}(\delta(t))^{n(1-\frac{1}{p})} = h \left(t^{-\frac{n}{n-1}} \right) t + \varphi \left(t^{-\frac{n}{n-1}} \right)^{1-n} \left(t^{-\frac{n}{n-1}} \right)^{n(1-\frac{1}{p})}$$

$$= \frac{C(n, \alpha) t^{-p}}{\varphi \left(t^{-\frac{n}{n-1}} \right)} \frac{t^{1-p}}{\varphi \left(t^{-\frac{n}{n-1}} \right)^{n-1}}$$

$$= \frac{(C(n, \alpha) + 1)t^{1-p}}{\varphi \left(t^{-\frac{n}{n-1}} \right)^{n-1}}.$$

If we choose

$$F^{-1}(t) = \frac{(C(n, \alpha) + 1)(t^{1/p})^{1-p}}{\varphi \left((t^{1/p})^{-\frac{n}{n-1}} \right)^{n-1}} = \frac{(C(n, \alpha) + 1)t^{1-\frac{n}{n-1}}}{\varphi \left(t^{-\frac{n}{n-1}} \right)^{n-1}}$$

and assume that the inverse function of F^{-1} exists, that is $(F^{-1})^{-1} = F$ exists, then

$$h(\delta(t)t) + \varphi(\delta(t))^{1-n}(\delta(t))^{n(1-\frac{1}{p})} = F^{-1}(t^p)$$

and thus

$$F \left(h(\delta(t)t) + \varphi(\delta(t))^{1-n}(\delta(t))^{n(1-\frac{1}{p})} \right) = F \left(F^{-1}(t^p) \right) = t^p.$$
Unfortunately, there is a problem with this function F to be a suitable function H; namely, the function F is not necessary convex. For example, if $n = 2$, $\varphi(t) = t^2$, and $p = 1.9$, then the function F is not convex, see Figure 2. The angle at the point $(1, F^{-1}(1))$ comes from the angle of ψ at the point $(1, \psi(1))$. Our main theorem, Theorem 1.2 in Introduction, corrects this point: we show that there exists an N-function H that is equivalent with F.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure2}
\caption{The function F is not necessary convex.}
\end{figure}

Proof of Theorem 1.2 Let us write that

$$F^{-1}(t) = \frac{t^{\frac{1}{p}-1}}{\psi \left(t^{\frac{1}{p}} \right)^{n-1}}$$

for $t > 0$ and $F^{-1}(0) = 0$. Let us first show that F^{-1} is strictly increasing. Assume then that $0 < s < t$. The inequality $F^{-1}(s) < F^{-1}(t)$ is equivalent to the inequality

$$\frac{\psi \left(\left(\frac{1}{s} \right)^{\frac{1}{p}} \right)^{n-1}}{\left(\frac{1}{s} \right)^{1-\frac{1}{p}}} < \frac{\psi \left(\left(\frac{1}{t} \right)^{\frac{1}{p}} \right)^{n-1}}{\left(\frac{1}{t} \right)^{1-\frac{1}{p}}}.$$

Recall that if φ satisfies the condition (4), then ψ does, too, and the constant is the same for both functions. Thus by the condition (4) and the inequality $p < n$ we obtain

$$\frac{\psi \left(\left(\frac{1}{s} \right)^{\frac{1}{p}} \right)^{n-1}}{\left(\frac{1}{s} \right)^{1-\frac{1}{p}}} < \frac{\psi \left(\left(\frac{1}{t} \right)^{\frac{1}{p}} \right)^{n-1}}{\left(\frac{1}{t} \right)^{1-\frac{1}{p}}} = \frac{\psi \left(\left(\frac{1}{t} \right)^{\frac{1}{p}} \right)^{n-1}}{\left(\frac{1}{t} \right)^{1-\frac{1}{p}}}.$$
Thus the function F^{-1} is strictly increasing. This yields that the function F exists and is strictly increasing.

Let us show that $\lim_{t \to 0^+} F^{-1}(t) = 0$. Since $p < n$ we obtain

$$\lim_{t \to 0^+} F^{-1}(t) = \lim_{t \to 0^+} \frac{t^{\frac{1}{2}-1}}{\psi \left(t^{\frac{1}{2}} \right)^{n-1}} = \lim_{t \to 0^+} \varphi(1)^{1-n} t^{\frac{1}{2}-1} = 0.$$

Let us show that $\lim_{t \to 0^+} F^{-1}(t) = \infty$. Since $t/\varphi(t)$ is decreasing, by the condition (4), and by $p < n$ we obtain

$$\lim_{t \to 0^+} F^{-1}(t) = \lim_{t \to 0^+} \frac{t^{\frac{1}{2}-1}}{\psi \left(t^{\frac{1}{2}} \right)^{n-1}} = \lim_{t \to 0^+} \frac{t^{\frac{1}{2}-1}}{\psi \left(t^{\frac{1}{2}} \right)^{n-1}} \geq \lim_{t \to 0^+} \varphi(1)^{n-1} = \infty.$$

We have shown that $F^{-1} : [0, \infty) \to [0, \infty)$ is bijective.

Let us then study the condition

$$(3.11) \quad \frac{F(s)}{s} < \frac{F(t)}{t} \quad \text{for} \quad 0 < s < t.$$

Since F^{-1} is a strictly increasing bijection, inequality (3.11) is equivalent to

$$\frac{s}{F^{-1}(s)} < \frac{t}{F^{-1}(t)}.$$

Since $t^\alpha/\varphi(t)$ is increasing, then $\varphi(t)/t^\alpha$ is decreasing and $\psi(t)/t^\alpha$ is decreasing, too. We note that $1 - \frac{\alpha(n-1)}{n} > 0$, since $\alpha < \frac{n}{n-1}$. We obtain

$$\frac{s}{F^{-1}(s)} = s^{1-\frac{\alpha}{p} + 1-\frac{\alpha(n-1)}{n}} \frac{\psi \left(s^{\frac{1}{n}} \right)^{n-1}}{\left(s^{\frac{1}{n}} \right)^{\alpha}} = s^{1-\frac{\alpha}{p} + 1-\frac{\alpha(n-1)}{n}} \frac{\psi \left(s^{\frac{1}{n}} \right)^{n-1}}{\left(s^{\frac{1}{n}} \right)^{\alpha}} < t^{1-\frac{\alpha}{p} + 1-\frac{\alpha(n-1)}{n}} \frac{\psi \left(t^{\frac{1}{n}} \right)^{n-1}}{\left(t^{\frac{1}{n}} \right)^{\alpha}} = \frac{t}{F^{-1}(t)}$$

and thus inequality (3.11) holds.

Let us then show that $F^{-1}(cs) \geq 2F^{-1}(s)$ for all $s \geq 0$ with $c = 2^{\frac{\alpha}{p}}$. The inequality $F^{-1}(cs) \geq 2F^{-1}(s)$ is equivalent to

$$\frac{\psi \left(\left(\frac{1}{c} \right)^{\frac{1}{n}} \right)^{n-1}}{\left(\frac{1}{c} \right)^{1-\frac{\alpha}{p}}} \leq \frac{\psi \left(\left(\frac{1}{c} \right)^{\frac{1}{n}} \right)^{n-1}}{\left(\frac{1}{c} \right)^{1-\frac{\alpha}{p}}}.$$
By the condition (4) of φ and the inequality $p < n$, we obtain
\[
2 \frac{\psi \left(\left(\frac{1}{c_s} \right)^\frac{1}{n-1} \right)}{\left(\frac{1}{c_s} \right)^{\frac{1}{n-1}}} = 2 \left(\psi \left(\left(\frac{1}{c_s} \right)^\frac{1}{n-1} \right) \right)^{n-1} = \left(\psi \left(\left(\frac{1}{c_s} \right)^\frac{1}{n-1} \right) \right)^{n-1} \left(\frac{1}{s} \right) \leq \left(\psi \left(\left(\frac{1}{c_s} \right)^\frac{1}{n-1} \right) \right)^{n-1} \left(\frac{1}{s} \right) = \frac{\psi \left(\left(\frac{1}{c_s} \right)^\frac{1}{n-1} \right)}{\left(\frac{1}{c_s} \right)^{\frac{1}{n-1}}}.
\]
The inequality $F^{-1}(cs) \geq 2F^{-1}(s)$ yields that F satisfies the Δ_2-condition.

Let us write $F(t) = s$. Then $F^{-1}(s) = t$. Since F is increasing, we have
\[
F(2t) = F(2F^{-1}(s)) \leq F(F^{-1}(cs)) = cs = cF(t).
\]

P. H"ast"o has shown in [15, Proposition 5.1] that if $f : [0, \infty) \to [0, \infty)$ satisfies the Δ_2-condition and $x \mapsto f(x)/x$ is increasing, then f is equivalent to a convex function. Since F satisfies inequality (3.11) and the Δ_2-condition, we obtain that F is equivalent to a convex function H.

Using $\lim_{t \to 0^+} F^{-1}(t) = 0$ and the bijectivity, we obtain
\[
\lim_{t \to 0^+} \frac{F(t)}{t} = \lim_{t \to 0^+} \frac{t}{F^{-1}(t)} = \lim_{t \to 0^+} \frac{t \psi \left(\left(\frac{1}{c_s} \right)^\frac{1}{n-1} \right)}{\left(\frac{1}{c_s} \right)^{\frac{1}{n-1}}} = \lim_{t \to 0^+} \varphi(1)^{n-1} t^{1-\frac{1}{p}+\frac{1}{n-1}} = 0
\]
and thus also $\lim_{t \to 0^+} \frac{H(t)}{t} = 0$. This gives that H is right continuous at the origin. Thus by convexity the function H is continuous on $[0, \infty)$.

Since $\varphi(t)/t^\alpha$ is decreasing and $\alpha < \frac{n}{n-1}$, we obtain
\[
\lim_{t \to \infty} \frac{F(t)}{t} = \lim_{t \to \infty} \frac{t}{F^{-1}(t)} = \lim_{t \to \infty} t^{1-\frac{1}{p}} \varphi \left(\left(\frac{1}{c_s} \right)^n \right)^{n-1} \geq \lim_{t \to \infty} t^{1-\frac{1}{p}+\frac{1}{n-1}} \left(\frac{\varphi(1)}{1^{\alpha}} \right)^{n-1} = \infty.
\]
Since the functions F and H are equivalent, this yields that
\[
\lim_{t \to \infty} \frac{H(t)}{t} = \infty.
\]
Thus we have shown that the function H satisfies the conditions (N1) – (N3).

\[\square\]

3.12. Remark. Later it is crucial to us that
\[
H^{-1}(t) \approx \frac{t^{\frac{1}{p}-1}}{\psi \left(\left(\frac{1}{c_s} \right)^{\frac{1}{p-1}} \right)} = \frac{t^{\frac{1}{p}-1}}{\varphi(1)^{\frac{1}{p-1}} \left(\frac{1}{c_s} \right)^{\frac{1}{p-1}}} = \varphi(1)^{1-\alpha} t^{\frac{1}{p-1}}
\]
for $0 < t \leq 1$. Namely, then for every φ the function H satisfies $H(t) \approx t^{\frac{1}{p-1}}$ whenever $0 < t \leq 1$.

3.13. Example. Functions \(\varphi(t) = t^\alpha / \log^\beta(e + 1/t) \), \(\alpha \in [1, \frac{n}{n-1}) \) and \(\beta \geq 0 \), satisfy the assumptions of Theorem 1.2.

Now, the proof for our second main theorem, Theorem 1.4 in Introduction, follows easily:

Proof of Theorem 1.4. Theorem 3.7 and Theorem 1.2. □

As a corollary we obtain from Theorem 1.4 and Theorem 3.4:

3.14. Corollary. Let \(1 \leq p < n \). Let the function \(H \) be as in Theorem 1.2. If \(D \) is a bounded \(\varphi \)-cigar John domain with a constant \(c_J \), then there exist a constant \(C \) and a point \(x_0 \in D \) such that the point-wise estimate

\[
H \left(|u(x) - u_{B(x_0, \text{dist}(x_0, \partial D))}| \right) \leq C(M|\nabla u(x)|)^p
\]

holds for all \(u \in L^1_p(D) \) with \(\|\nabla u\|_{L^p(D)} \leq 1 \) and for almost every \(x \in D \). Here the constant \(C \) depends on \(n, p, C_H, C^\Delta_2, C^\Delta_2, c_J, \varphi(1) \) and \(\min\{\text{diam}(D), 1\} \) only.

4. On embeddings

Corollary 3.14 is essential in the proofs of the following Theorem 4.1 and Theorem 4.3

4.1. Theorem (Bounded domain, \(1 < p < n \)). Assume that \(\varphi \) satisfies the conditions \((1)-(5)\), \(C^\varphi = 1 \) in the condition \((4)\), and there exists \(\alpha \in [1, \frac{n}{n(n-1)}) \) such that \(t^\alpha/\varphi(t) \) is increasing for \(t > 0 \). Let \(\psi \) be defined as in \((2.1)\). Let \(D \subset \mathbb{R}^n, n \geq 2 \), be a bounded \(\varphi \)-cigar John domain with a constant \(c_J \). Let \(1 < p < n \). Then there exists an \(N \)-function \(H \), that satisfies \(\Delta_2 \)-condition and

\[
H^{-1}(t) \approx \frac{t^{1/\alpha-1}}{\psi\left(t^{-\frac{1}{\alpha}}\right)^{n-1}} \text{ for all } t > 0,
\]

and there exists a constant \(C < \infty \) such that the inequality

\[
\|u - u_D\|_{L^p(D)} \leq C\|\nabla u\|_{L^p(D)},
\]

holds for every \(u \in L^1_p(D) \). Here the constant \(C \) depends on \(n, p, C_H, C^\Delta_2, C^\Delta_2, c_J, \varphi(1) \) and \(\min\{\text{diam}(D), 1\} \) only.

Proof. Assume that \(\|\nabla u\|_{L^p(D)} \leq 1 \). Corollary 3.14 yields that

\[
H \left(|u(x) - u_{B(x_0, \text{dist}(x_0, \partial D))}| \right) \leq C(M|\nabla u(x)|)^p,
\]
where the constant C depends on n, p, $C_{H}^{\Delta_2}$, $C_{\varphi}^{\Delta_2}$, c_J, and $\min\{\text{diam}(D), 1\}$ only. By integrating over D and using the fact that the maximal operator is bounded whenever $1 < p < n$, we obtain that

$$
\int_{D} H \left(\left| \frac{u(x) - u_{B(x_0, \text{dist}(x_0, \partial D))}}{\text{dist}(x_0, \partial D)} \right|^p \right) \, dx \leq C \int_{D} (M|\nabla u(x)|)^p \, dx
$$

$$
\leq C \int_{D} |\nabla u(x)|^p \, dx \leq C.
$$

This yields that the inequality

$$
\|u - u_{B(x_0, \text{dist}(x_0, \partial D))}\|_{L^\mu(D)} \leq C
$$

holds for every $u \in L^p_{\mu}(D)$ with $\|\nabla u\|_{L^p(D)} \leq 1$. By applying this inequality to the function $u/\|\nabla u\|_{L^p(D)}$ we obtain that

$$
\|u - u_{B(x_0, \text{dist}(x_0, \partial D))}\|_{L^\mu(D)} \leq C \|\nabla u\|_{L^p(D)}.
$$

We may assume w.l.o.g. that $\|\nabla u\|_{L^p(D)} \neq 0$. Let denote $B = B(x_0, \text{dist}(x_0, \partial D))$. By the triangle inequality

$$
\|u - u_B\|_{L^\mu(D)} \leq \|u - u_D\|_{L^\mu(D)} + \|u_B - u_D\|_{L^\mu(D)}.
$$

Here,

$$
\|u_B - u_D\|_{L^\mu(D)} = \|u_B - u_D\|_{L^\mu(D)} \leq \frac{\|1\|_{L^\mu(D)} \|u - u_B\|_{L^\mu(D)}}{|D|}
$$

$$
\leq C \frac{\|1\|_{L^\mu(D)} \|1\|_{L^{\mu'}(D)} \|u - u_B\|_{L^\mu(D)}}{|D|}
$$

where H^* is the conjugate function of H and C is the constant in Hölder’s inequality.

Next we show that $\|1\|_{L^\mu(D)} \|1\|_{L^{\mu'}(D)} \approx |D|$. Since the function H is continuous and strictly increasing, there exists a unique $\lambda > 0$ such that

$$
H \left(\frac{1}{\lambda} \right) |D| = \int_{D} H \left(\frac{1}{\lambda} \right) \, dx = 1
$$

i.e. $\lambda = \|1\|_{L^\mu(D)}$. By solving λ we obtain

$$
\|1\|_{L^\mu(D)} = \frac{1}{H^{-1} \left(\frac{1}{\lambda} \right)}.
$$

Similarly, we obtain

$$
\|1\|_{L^{\mu'}(D)} = \frac{1}{(H^*)^{-1} \left(\frac{1}{\lambda} \right)}.
$$

Since

$$
t \leq H^{-1}(t)(H^*)^{-1}(t) \leq 2t
$$

for all $t \geq 0$, see for example [4] Lemma 2.6, p. 56] , we obtain that

$$
\|1\|_{L^\mu(D)} \|1\|_{L^{\mu'}(D)} = \frac{1}{H^{-1} \left(\frac{1}{|D|} \right)(H^*)^{-1} \left(\frac{1}{|D|} \right)} \leq |D|.
$$
Hence, we have shown that
\[\|u - u_D\|_{L^p(D)} \leq C \|\nabla u\|_{L^p(D)} \]
for every \(u \in L^1_p(D) \).

\[\square \]

4.2. Example. Let us choose that \(\varphi(t) = t^s, \ s \in (1, \frac{n}{n-1}) \). We have calculated in Remark 3.12 that for every \(\varphi \) the function \(H \) satisfies \(H(t) \approx t^{\frac{np}{n-1}} \) whenever \(0 < t \leq 1 \). If \(t > 1 \), then
\[H^{-1}(t) \approx \frac{t^{\frac{1}{p}}}{\psi\left(t^{\frac{1}{n}}\right)^{n-1}} = \frac{t^{\frac{1}{p}}}{\varphi\left(t^{\frac{1}{n}}\right)^{n-1}} = t^{\frac{1}{p} - 1 \frac{n-1}{n}} = t^{\frac{1}{p} - 1 \frac{n-1}{n}} \]
and thus we have that \(H(t) \approx t^{\frac{np}{n-1} - 1} \) for \(t > 1 \).

4.3. Theorem (Bounded domain, \(p = 1 \)). Assume that the function \(\varphi \) satisfies the conditions (1)–(5), \(C_\varphi = 1 \) in the condition (4), and there exists \(\alpha \in [1, \frac{n}{n-1}) \) such that \(t^\alpha / \varphi(t) \) is increasing for \(t > 0 \). Let \(\psi \) be defined as in (2.7). Let \(D \subset \mathbb{R}^n \), \(n \geq 2 \), be a bounded \(\varphi \)-cigar John domain with a constant \(c_J \). Then there exists an \(N \)-function \(H \), that satisfies \(\Delta_2 \)-condition and
\[H^{-1}(t) \approx \frac{1}{\psi\left(t^{\frac{1}{n}}\right)^{n-1}} \text{ for all } t > 0, \]
such that the inequality
\[\|u - u_D\|_{L^1(D)} \leq C \|\nabla u\|_{L^1(D)}, \]
holds for some constant \(C \) and for every \(u \in L^1_p(D) \). Here the constant \(C \) depends on \(n \), \(C_\varphi^{\Delta_2} \), \(C_\varphi^{\Delta_2} \), and \(c_J \) only.

Proof. Let us consider functions \(u \in L^1_p(D) \) such that \(\|\nabla u\|_{L^1(D)} \leq 1 \). The center ball \(B(x_0, \text{dist}(x_0, \partial D)) \) is written as \(B \). In the proof of Theorem 2.4 we had chosen \(x_0 \) so that \(\text{dist}(x_0, \partial D) \geq \psi\left(\frac{1}{2} \text{diam}(D)\right)/c_J \). We show that there exists a constant \(C < \infty \) such that the inequality
\[\int_D H(|u(x) - u_D|) \, dx \leq C \]
holds whenever \(\|\nabla u\|_{L^1(D)} \leq 1 \). This yields the claim as in the proof of Theorem 4.1.

Since \(H \) is increasing, we first estimate
\[\int_D H(|u(x) - u_D|) \, dx \leq \sum_{j \in \mathbb{Z}} \int_{|x| \in D : 2^j \|u(x) - u_D| \leq 2^{j+1}} H(2^{j+1}) \, dx. \]
Let us define
\[v_j(x) = \max\left\{ 0, \min\{ |u(x) - u_D| - 2^j, 2^j \} \right\} \]
Thus for all $x \in D$. If $x \in \{x \in D : 2^j < |u(x) - u_B| \leq 2^{j+1}\}$, then $v_{j-1}(x) \geq 2^{j-1}$. We obtain

$$
\int_D H(|u(x) - u_B|) \, dx \leq \sum_{j \in \mathbb{Z}} \int_{\{x \in D : |v_j(x)| \geq 2^j\}} H(2^{j+2}) \, dx.
$$

(4.5)

By the triangle inequality we have

$$
v_j(x) = |v_j(x) - (v_j)_B + (v_j)_B| \leq |v_j(x) - (v_j)_B| + |(v_j)_B|.
$$

By the $(1, 1)$-Poincaré inequality in a ball B, [5, Section 7.8], there exists a constant $C(n)$ such that

$$
|(v_j)_B| = (v_j)_B = \int_B v_j(x) \, dx \leq \int_B |u(x) - u_B| \, dx \leq C(n)|B| \frac{1}{2^j} \int_B |\nabla u(x)| \, dx \leq C(n)|B| \frac{1}{2^j}.
$$

We continue to estimate the right hand side of inequality (4.5)

$$
\int_D H(|u(x) - u_B|) \, dx \leq \sum_{j \in \mathbb{Z}} \int_{\{x \in D : |v_j(x)| \geq 2^j\}} H(2^{j+2}) \, dx
$$

$$
\leq \sum_{j \in \mathbb{Z}} \int_{\{x \in D : |v_j(x)| \geq 2^j\}} H(2^{j+2}) \, dx + \sum_{2^j \leq C(n)|B| \frac{1}{2^j}} \int_D H(2^{j+2}) \, dx
$$

$$
\leq \sum_{j \in \mathbb{Z}} \int_{\{x \in D : |v_j(x)| \geq 2^j\}} H(2^{j+2}) \, dx + \sum_{j=-\infty}^{j_0} \int_D H(2^{j+2}) \, dx,
$$

where $j_0 = \lceil \log(C(n)|B| \frac{1}{2^j}) \rceil$.

Assume first that $\text{diam}(D)$ is so large that $j_0 \leq -2$. When $t < 1$, then $\psi(t^{-1/n}) = \varphi(1)t^{-1/n}$ by (2.1) and thus

$$
H^{-1}(t) = \frac{1}{\psi(t^{-1/n})} = \varphi(1)^{1-n}t^{1/n}.
$$

Thus for $t < 1$ we obtain that $H(t) \approx t^{\frac{1}{n-1}}$. This yields that

$$
\sum_{j=-\infty}^{j_0} \int_D H(2^{j+2}) \, dx \approx |D| \sum_{j=-\infty}^{\lceil \log(C)|B| \frac{1}{2^j} \rceil} 2^{n(j+2)} \leq C|D|2^{\frac{1}{n-1}} \frac{\log C|B| \frac{1}{2^j}}{n-1}
$$

$$
\leq C|D||B|^{\frac{1}{n-1}} = C|D||B|^{-1}
$$

$$
\leq C \frac{\text{diam}(D)^n}{\psi(\frac{1}{d} \text{diam}(D))/c_j^n}.
$$

This constant does not blow up when $\text{diam}(D) \to \infty$:

$$
\frac{\text{diam}(D)^n}{(\psi(\frac{1}{d} \text{diam}(D))/c_j^n) \to 4^ne_j^n \varphi(1)^n} \text{ as } \text{diam}(D) \to \infty.
$$
Assume then that \(\text{diam}(D) \) is small. This yields that for every \(j_0 \in \mathbb{Z} \) the sum \(\sum_{j=-2}^{j_0} H(2^{j+2}) \) is finite and depends on \(j_0 \). We obtain

\[
(4.8) \quad \sum_{j=-\infty}^{j_0} \int_D H(2^{j+2}) \, dx \leq \sum_{j=-\infty}^{-2} \int_D H(2^{j+2}) + \sum_{j=-2}^{j_0} H(2^{j+2}) < \infty.
\]

Then, we will find an upper bound for the sum

\[
\sum_{j \in \mathbb{Z}} \int_{\{x \in D : |\nabla v_j(x)| \geq 2^{j+1}\}} H(2^{j+2}) \, dx.
\]

Since \(\|\nabla v\|_{L^1(D)} \leq \|\nabla u\|_{L^1(D)} \leq 1 \), Corollary [3.14] yields that

\[
\sum_{j \in \mathbb{Z}} \int_{\{x \in D : |\nabla v_j(x)| \geq 2^{j+1}\}} H(2^{j+2}) \, dx = \sum_{j \in \mathbb{Z}} \int_{\{x \in D : H(2^{j+2}) \geq 2^{j+1}\}} H(2^{j+2}) \, dx
\]

\[
\leq \sum_{j \in \mathbb{Z}} \int_{\{x \in D : CM|\nabla v_j| \geq 2^{j+1}\}} H(2^{j+2}) \, dx.
\]

We choose for every \(x \in \{x \in D : \text{CM}|\nabla v_j| \geq 2^{j+1}\} \) a ball \(B(x, r_x) \), centered at \(x \) and with radius \(r_x \) depending on \(x \), such that

\[
C \int_{B(x, r_x)} |\nabla v_j(y)| \, dy \geq \frac{1}{2} H(2^{j-1})
\]

with the understanding that \(|\nabla v| \) is zero outside \(D \). By the Besicovitch covering theorem (or the \(\delta \)-covering theorem) we obtain a subcovering \(\{B_k\}_{k=1}^{\infty} \) so that we may estimate by the \(\Delta_2 \)-condition of \(H \)

\[
\sum_{j \in \mathbb{Z}} \int_{\{x \in D : |\nabla v_j(x)| \geq 2^{j+1}\}} H(2^{j+2}) \, dx \leq \sum_{j \in \mathbb{Z}} \sum_{k=1}^{\infty} \int_{B_k} H(2^{j+2}) \, dx
\]

\[
\leq \sum_{j \in \mathbb{Z}} \sum_{k=1}^{\infty} |B_k| H(2^{j+2}) \leq \sum_{j \in \mathbb{Z}} \sum_{k=1}^{\infty} C|B_k| H(2^{j+2}) \int_{B_k} |\nabla v_j(y)| \, dy
\]

\[
\leq C \sum_{j \in \mathbb{Z}} \int_D |\nabla v_j(y)| \, dy.
\]

Let \(E_j = \{x \in D : 2^j < |u(x) - u_{|\partial D}| \leq 2^{j+1}\} \). Since \(|\nabla v_j| \) is zero almost everywhere in \(D \setminus E_j \) and \(|\nabla u(x)| = \sum_j |\nabla v_j(x)| \chi_{E_j}(x) \) for almost every \(x \in D \), we obtain

\[
(4.9) \quad \sum_{j \in \mathbb{Z}} \int_{\{x \in D : |\nabla v_j(x)| \geq 2^{j+1}\}} H(2^{j+2}) \, dx \leq C \int_D |\nabla u(y)| \, dy \leq C.
\]

Estimates \((4.6), (4.7), (4.8) \) and \((4.9) \) imply inequality \((4.4) \). \(\square \)

4.10. Remark. Corollary [1.5] in Introduction follows from Theorem [4.1] and Theorem [4.3]
4.11. *Remark.* In Theorem 4.3 the N-function H is the best possible in a sense that it cannot be replaced by any N-function K that satisfies the Δ_2-condition and

$$
\lim_{t \to \infty} \frac{K(t)}{H(t)} = \infty.
$$

In [10, Theorem 7.2] we have shown that the corresponding embedding in Theorem 4.3 does not hold if

$$
\lim_{t \to 0^+} t^n K \left(\frac{1}{\varphi(t)^{n-1}} \right) = \infty.
$$

This is valid for this function K. By the definitions of H^{-1} and ψ we obtain that

$$
\lim_{t \to 0^+} t^n K \left(\frac{1}{\varphi(t)^{n-1}} \right) = \lim_{s \to \infty} \frac{1}{s} K \left(\frac{1}{\varphi \left(s^{\frac{n}{n-1}} \right)^{n-1}} \right) = \lim_{s \to \infty} \frac{K \left(H^{-1}(s) \right)}{H \left(H^{-1}(s) \right)} = \infty,
$$

and thus there does not exist a constant c such that

$$
\|u - u_D\|_{L^p(D)} \leq c \|\nabla u\|_{L^1(D)},
$$

for every $u \in L^1_p(D)$.

4.12. *Theorem* (Unbounded domain, $1 \leq p < n$). Assume that the function φ satisfies the conditions (1)–(5), $C_\varphi = 1$ in the condition (4), and there exists $\alpha \in [1, n/(n - 1))$ such that $t^\alpha / \varphi(t)$ is increasing for $t > 0$. Let the function ψ be defined as in (2.1). Let D in \mathbb{R}^n, $n \geq 2$, be an unbounded domain that satisfies the following conditions:

- (a) $D = \bigcup_{i=1}^\infty D_i$, where $|D_i| > 0$;
- (b) $D_i \subset D_{i+1}$ for each i;
- (c) each D_i is a bounded φ-cigar John domain with a constant c_J.

Let $1 \leq p < n$. Then, there exists an N-function H, that satisfies Δ_2-condition and

$$
H^{-1}(t) \approx \frac{t^{\frac{1}{p-1}}}{\psi \left(t^{\frac{n}{n-1}} \right)^{n-1}} \text{ for all } t > 0,
$$

and there exists a constant C such that the inequality

$$
\inf_{b \in \mathbb{R}} \|u - b\|_{L^p(D)} \leq C \|\nabla u\|_{L^p(D)},
$$

holds for every $u \in L^1_p(D)$. Here the constant C depends on n, p, C_Δ, C_Δ°, and c_J only.

The proof follows the proof of [14, Theorem 4.1].

Proof. By Theorems 4.1 and 4.3 there exists a constant C such that the inequality

$$
\|u - u_D\|_{L^p(D)} \leq C \|\nabla u\|_{L^p(D)},
$$

(4.13)
holds for each \(D_i \) and all \(u \in L^1_p(D) \). The constant \(C \) does not blow up when the diameter of \(D_i \) tends to infinity. In the case \(1 < p < n \) this is clear. In the case \(p = 1 \), we refer to the discussion after (4.7) in the proof of Theorem 4.3. The constant depends on \(D_1 \) but this does not cause a problem.

When \(\|\nabla u\|_{L^p(D)} \leq 1 \) inequality (4.13) yields that there exists a constant \(C < \infty \) such that the inequality

\[
\int_{D_i} H(|u(x) - u_{D_i}|) \, dx \leq C,
\]

holds; here the constant \(C \) is independent of \(i \).

Let us write

\[
u_i = \int_{D_i} u(x) \, dx = \frac{1}{|D_i|} \int_{D_i} u(x) \, dx.
\]

The triangle inequality yields that

\[
|\nu_i| \leq \int_{D_i} |u(x) - \nu_i| \, dx + \int_{D_i} |u(x)| \, dx.
\]

Since \(D_i \) satisfies inequality (4.13), we have \(u \in L^p(D_1) \subset L^1(D_1) \) and thus the second term is finite. Again, by inequality (4.13) we obtain that

\[
\int_{D_i} |u(x) - \nu_i| \, dx \leq \frac{C\|1\|_{L^p(D_1)}}{|D_i|} \|u - u_{D_i}\|_{L^p(D_1)} \leq \frac{C\|1\|_{L^p(D_1)}}{|D_i|} \|\nabla u\|_{L^p(D_1)} \leq \frac{C\|1\|_{L^p(D_1)}}{|D_1|} \|\nabla u\|_{L^p(D)} < \infty.
\]

Thus the real number sequence \((u_i) \) is bounded and hence there exists a convergent subsequence \((u_{i_j}) \) and \(b \in \mathbb{R} \) such that \(u_{i_j} \to b \).

Since \(H \) is continuous,

\[
\lim_{j \to \infty} \chi_{D_{i_j}} H(|u(x) - u_{i_j}|) = \chi_D H(|u(x) - b|).
\]

Fatou’s lemma and the modular form of (4.13) yield that

\[
\int_D H(|u(x) - b|) \, dx \leq \liminf_{j \to \infty} \int_D \chi_{D_{i_j}} H(|u(x) - u_{i_j}|) \, dx
\]

\[
= \liminf_{j \to \infty} \int_{D_{i_j}} H(|u(x) - u_{i_j}|) \leq \liminf_{j \to \infty} C = C
\]

for every \(u \in L^1_{\text{loc}}(D) \) with \(\|\nabla u\|_{L^p(D)} \leq 1 \). This yields that there exists a constant \(C \) such that the inequality

\[
\|u - b\|_{L^1(D)} \leq C
\]
holds for every \(u \in L^1_p(D) \) with \(\|\nabla u\|_{L^p(D)} \leq 1 \). The claim follows by applying this inequality to the function \(u/\|\nabla u\|_{L^p(D)}. \)

4.14. Example. Let the function \(\varphi \) be defined as in Theorem 4.12. The following unbounded domains satisfy the assumptions of Theorem 4.1:

(a) \(\{(x', x_n) \in \mathbb{R}^n : x_n \geq 0 \text{ and } |x'| < \psi(x_n)\}. \)

(b) \(\mathbb{R}^2 \setminus \{(x, \varphi(x)) \in \mathbb{R}^2 : 0 \leq x \leq 1\} \cup \{(x, -\varphi(x)) \in \mathbb{R}^2 : 0 \leq x \leq 1\}. \)

5. On Poincaré inequalities

As a special case we recover results for Poincaré domains. We recall that a bounded domain \(D \) is called a \((q, p)\)-Poincaré domain, where \(q, p \in [1, \infty) \), if there is a constant \(C < \infty \) such that the inequality

\[
(5.1) \quad \|u - u_D\|_{L^q(D)} \leq C\|\nabla u\|_{L^p(D)}
\]

holds for all \(u \in W^{1,p}(D) \). Inequality (5.1) is the \((q, p)\)-Poincaré inequality. We note that for a bounded domain \(D \) inequality (5.1) holds if and only the inequality

\[
\inf_{b \in \mathbb{R}} \|u - b\|_{L^q(D)} \leq C_1\|\nabla u\|_{L^p(D)}
\]

holds, the constants \(C \) and \(C_1 \) depend on each other and \(|D|\) only. Let us recall results for bounded \(\varphi \)-John domains in the case \(\varphi(t) = t^s \), for a fixed \(s \geq 1 \). A bounded \(t^s \)-John domain is usually called \(s \)-John domain. A bounded \(s \)-John domain is a \((p, p)\)-Poincaré domain whenever \(s \in \left[1, \frac{n}{n+1}\right) \). [24 Theorem 10]. So, a bounded \(s \)-John domain is a \((p, p)\)-Poincaré domain for all \(p \geq 1 \) if \(s \in \left[1, \frac{n}{n+1}\right) \). A bounded \(s \)-John domain is a \((1, p)\)-Poincaré domain if \(s \in \left(1, \frac{n}{n-1}\right) \), where \(\lambda \in [n-1, n] \) is the Minkowski dimension of the boundary of the domain, [22 Theorem 1.3]. A bounded \(s \)-John domain is a \((\frac{np}{n-1} - p, p)\)-Poincaré domain for every \(1 \leq p < s(n-1) + 1 \) if \(s \in \left[1, \frac{n}{n-1}\right] \). [7] Corollaries 5 and 6], [17 Theorem 2.3]. The exponent \(\frac{np}{s(n-1)-p+1} \) is the best possible in the class of bounded \(s \)-John domains, we refer to [7] p. 442. Our Theorems 4.1 and 4.3 with \(\varphi(t) = t^s \) give that a bounded \(s \)-John domain is a \((\frac{np}{n-1} - p, p)\)-Poincaré domain if \(1 \leq p < n \) and \(s \in \left[1, \frac{n}{n-1}\right) \). Thus our result is optimal in the case \(p = 1 \). On the other hand, our method does not cover the case \(s = \frac{n}{n-1} \). Note that our proof totally differs from the previous proofs in [21 Theorem 10], [7] Corollaries 5 and 6], and [17 Theorem 2.3].

6. Lebesgue space cannot be a target space

In this section we give an example which shows that for certain unbounded \(\varphi \)-cigar John domains the target space cannot be a Lebesgue space. The idea is that at near the infinity the target space should be \(L^{np/(n-p)} \) but local structure of the domain may not allow so good
integrability. We assume a priori that the function φ has the properties (1)–(5). Later on we give extra conditions to the function φ.

We construct a mushrooms-type domain. Let (r_m) be a decreasing sequence of positive real numbers converging to zero. Let Q_m, $m = 1, 2, \ldots$, be a closed cube in \mathbb{R}^n with side length $2r_m$. Let P_m, $m = 1, 2, \ldots$, be a closed rectangle in \mathbb{R}^n which has side length r_m for one side and $2\varphi(r_m)$ for the remaining $n-1$ sides. Let Q be the first quarter of the space i.e. all coordinates of the points in Q are positive. We attach Q_m and P_m together creating 'mushrooms' which we then attach, as pairwise disjoint sets, to the side $\{(0, x_2, \ldots, x_n) : x_2, \ldots, x_n > 0\}$ of Q so that the distance from the mushroom to the origin is at least 1 and at most 4, see Figure 3. We assume that a priori the function φ has the properties (1)–(5), but we have to assume here also that $\varphi(r_m) \leq r_m$. We need copies of the mushrooms. By an isometric mapping we transform these mushrooms onto the side $\{(x_1, 0, \ldots, x_n) : x_1, x_3, \ldots, x_n > 0\}$ of Q and denote them by Q_m^* and P_m^*. So again the distance from the mushroom to the origin is at least 1 and at most 4. We define

$$ G = \text{int} \left(Q \cup \bigcup_{m=1}^{\infty} \left(Q_m \cup P_m \cup Q_m^* \cup P_m^* \right) \right). $$

See Figure 3. We omit a short calculation which shows that G is a φ-cigar John domain.

Let us define a sequence of piecewise linear continuous functions $(u_k)_{k=1}^{\infty}$ by setting

$$ u_k(x) := \begin{cases} F(r_k) & \text{in } Q_k, \\ -F(r_k) & \text{in } Q_k^*, \\ 0 & \text{in } Q_0, \end{cases} $$

Figure 3. Unbounded φ-cigar John domain.
where the function F will be given in (6.2). Then the integral average of u_k over G is zero for each k.

The gradient of u_k differs from zero in $P_m \cup P_m^*$ only and

$$|\nabla u_k(x)| = \frac{F(r_m)}{r_m}, \text{ when } x \in P_m \cup P_m^*.$$

Note that

$$\int_G |\nabla u_k(x)|^p \, dx = 2 \int_{P_m} \left(\frac{F(r_m)}{r_m} \right)^p = 2r_m (\varphi(r_m))^{p-1} \frac{F(r_m)^p}{r_m^p}.$$

We require that

$$\int_G |\nabla u_k(x)|^p \, dx = 1.$$

Hence, we define

$$F(r_m) = \left(\frac{r_m^{p-1}}{2\varphi(r_m)^{p-1}} \right)^{1/p}.$$

Let H be an N-function. Then,

$$\inf_{b \in \mathbb{R}} \int_G H(|u_k(x) - b|) \, dx \geq \inf_{b \in \mathbb{R}} \left(|Q_m| \cdot |H(F(r_m) - b)| + |Q_m^*| \cdot |H(-F(r_m) - b)| \right) \geq r_m^p H(F(r_m)).$$

Hence, we have

$$r_m^p H(F(r_m)) = r_m^p H\left(\left(\frac{r_m^{p-1}}{2\varphi(r_m)^{p-1}} \right)^{1/p} \right) \geq r_m^p H\left(\frac{1}{2} \left(\frac{r_m^{p-1}}{\varphi(r_m^{p-1})} \right)^{1/p} \right).$$

Thus, there does not exist a positive constant C such that the inequality

$$\inf_{b \in \mathbb{R}} \|u - b\|_{L^p(G)} \leq C \|\nabla u\|_{L^p(G)}$$

could hold for all u from the appropriate space if

$$\lim_{t \to 0^+} t^p H\left(\frac{1}{2} \left(\frac{t^{p-1}}{\varphi(t)^{p-1}} \right)^{1/p} \right) = \infty.$$

Assume that $\lim_{t \to 0^+} t/\varphi(t) = \infty$. If $H(t) = t^q$, then we obtain that the inequality does not hold if

(6.3) $$q \geq \frac{np}{n - p}.$$

Assume then that we have a sequence (s_j) of positive numbers going to infinity. For each s_j we may choose points $x(j)$ and $y(j)$ such that the balls $B(x(j), s_j)$ and $B(y(j), s_j)$ are subsets of the first quadrant and $B(x(j), 3s_j) \cap B(y(j), 3s_j) = \emptyset$. We define a sequence of piecewise linear continuous functions $(v_j)_{j=1}^\infty$ by setting

$$v_j(x) := \begin{cases}
 s_j^{\frac{np}{n-p}} & \text{in } B(x_j^1, s_j), \\
 -s_j^{\frac{np}{n-p}} & \text{in } B(x_j^2, s_j), \\
 0 & \text{in } G \setminus \left(B(x_j^1, 2s_j) \cup B(x_j^2, 2s_j) \right).
\end{cases}$$
Now we have

$$\int_G |\nabla u|^p \, dx \leq C s_j \left(\frac{s_j - \frac{m}{p}}{s_j} \right)^p \leq C$$

for some constant C. On the other hand, for any $b \in \mathbb{R}$

$$\int_G H(|u_j(x) - b|) \, dx \geq C s_j H(|s_j - \frac{m}{p}| - b) + C s_j H(|s_j - \frac{m}{p}| - b)$$

$$\geq C s_j H(|s_j - \frac{m}{p}|) . $$

Thus, there does not exist a positive constant C_1 such that the inequality $\inf_b \|u - b\|_{L^q(G)} \leq C_1 \|\nabla u\|_{L^p(G)}$ could hold for all u from the appropriate space if

$$\lim_{s \to \infty} s^m H(s^{- \frac{m}{p}}) = \lim_{s \to \infty} s^m \frac{n}{p} H \left(\frac{1}{s} \right) = \infty .$$

By choosing $H(t) = t^q$, we obtain that the inequality does not hold if

$$(6.4) \quad q < \frac{np}{n - p} .$$

If $\lim_{t \to 0^+} t/\varphi(t) = \infty$ and if there were an embedding with the Lebesgue space L^q as a target space, then by (6.3) we would have $q < \frac{np}{n - p}$ and by (6.4) we would have $q \geq \frac{np}{n - p}$. Thus the target space cannot be a Lebesgue space. The target space can be L^q only if $\lim_{t \to 0^+} t/\varphi(t) < \infty$. And in this case $q = \frac{np}{n - p}$. Note that the limit $\lim_{t \to 0^+} t/\varphi(t)$ exists since φ is increasing and $\varphi \geq 0$. If $\lim_{t \to 0^+} t/\varphi(t) = m > 0$, then there exists $t_0 > 0$ such that $\frac{1}{2m} \varphi(t) \leq t \leq 2m \varphi(t)$. Thus, we have proved the following theorems.

6.5. Theorem. Let φ satisfy (1)–(5), and assume that $\lim_{t \to 0^+} t/\varphi(t) = \infty$. Let G be the unbounded φ-cigar John domain constructed in (6.1). Let $1 \leq p < n$. Then there do not exist numbers $q \in \mathbb{R}$ and $C \in \mathbb{R}$ such that the inequality

$$\inf_{b \in \mathbb{R}} \|u - b\|_{L^q(G)} \leq C \|\nabla u\|_{L^p(G)}$$

could hold for all $u \in L^1_p(G)$.

6.6. Theorem. Let φ satisfy (1)–(5), and assume that $\lim_{t \to 0^+} t/\varphi(t) = m < \infty$. Let G be the unbounded φ-cigar John domain constructed in (6.1). Assume that there exist numbers $q \in \mathbb{R}$ and $C \in \mathbb{R}$ such that the inequality

$$\inf_{b \in \mathbb{R}} \|u - b\|_{L^q(G)} \leq C \|\nabla u\|_{L^p(G)}$$

holds for all $u \in L^1_p(G)$. Then $q = \frac{np}{n - p}$ and there exists $t_0 > 0$ such that $\varphi(t) \approx t$ for all $t \in (0, t_0)$.

\[\]
References

[1] A. Cianchi, *A sharp embedding theorem for Orlicz-Sobolev spaces*, Indiana Univ. Math. J. 45 (1996), 39–65.

[2] A. Cianchi, *Strong and weak type inequalities for some classical operators in Orlicz spaces*, J. London Math. Soc. (2) 60 (1999), 187–202.

[3] A. Cianchi and B. Stroffolini, *An extension of Hedberg’s convolution inequality and applications*, J. Math. Anal. Appl. 227 (1998), 166–186.

[4] L. Diening, P. Harjulehto, P. Hästö, and M. Růžička, *Lebesgue and Sobolev spaces with variable exponents*, Lecture Notes in Mathematics, 2017. Springer-Verlag, Heidelberg, 2011.

[5] D. Gilbarg and N. S. Trudinger, *Elliptic Partial Differential Equations of Second Order*. Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2001.

[6] P. Hajlasz, *Sobolev inequalities, truncation method, and John domains*, Papers on Analysis: A volume dedicated to Olli Martio on the occasion of his 60th birthday. Edited by J. Heinonen, T. Kilpeläinen, and P. Koskela, Report Univ. Jyväskylä, 83, University of Jyväskylä, Jyväskylä, 2001, pp. 109–126.

[7] P. Hajlasz and P. Koskela, *Isoperimetric inequalities and imbedding theorems in irregular domains*, J. London Math. Soc. (2) 58 (1998), no. 2, 425–450.

[8] P. Hajlasz and P. Koskela, *Sobolev met Poincaré*, Mem. Amer. Math. Soc. 145 (2000), no. 688, x+101 pp.

[9] P. Harjulehto and R. Hurri-Syrjänen, *An embedding into an Orlicz space for L^1-functions from irregular domains*, to appear in Contemp. Math. ‘Complex Analysis and Dynamical Systems VI’, 2015.

[10] P. Harjulehto and R. Hurri-Syrjänen, *Pointwise estimates to the modified Riesz potential*, arXiv:1406:1358.

[11] P. Harjulehto, R. Hurri-Syrjänen, and J. Kapulainen, *An embedding into an Orlicz space for irregular John domains*, F. W. Gehring Memorial Volume, Comput. Methods Funct. Theory 14 (2014), 257–277.

[12] P. Harjulehto, R. Hurri-Syrjänen, and A. V. Vähäkangas, *On the $(1,p)$-Poincaré inequality*, Illinois J. Math. 56 (2012), 905–930.

[13] L. I. Hedberg, *On certain convolution inequalities*, Proc. Amer. Math. Soc. 36 (1972), 505–510.

[14] R. Hurri-Syrjänen, *Unbounded Poincaré domains*, Ann. Acad. Sci. Fenn. A. I. Math. 17 (1992), 409–423.

[15] P. Häästö, *The maximal operator on Musielak-Orlicz spaces*, preprint, 8/2014.

[16] F. John, *Rotation and strain*, Comm. Pure Appl. Math. 14 (1961), 391–413.

[17] T. Kilpeläinen and J. Malý, *Sobolev inequalities on sets with irregular boundaries*, Z. Anal. Angew. 19 (2000), 369–380.

[18] O. Martio and J. Sarvas, *Injectivity theorems in plane and space*, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 4 (1979), no. 2, 383–401.

[19] R. Näkki and J. Väisälä, *John disks*, Exposition. Math. 9 (1991), 3–43.

[20] Yu. G. Reshetnyak, *Integral representations of differentiable functions in domains with nonsmooth boundary* (Russian), Sibirsk. Mat. Zh 21 (1980), 108–116; translation in Sib. Math. J. 21 (1981), 833–839.

[21] W. Smith and D. A. Stegenga, *Hölder domains and Poincaré domains*, Trans. Amer. Math. Soc. 319 (1990), no. 1, 67–100.

[22] J. Väisälä, *Quasiconformal maps of cylindrical domains*, Acta Math. 162 (1989), 201–225.
