Effect of Dietary Fat Saturation and Cholesterol on Low Density Lipoprotein Degradation by Mononuclear Cells of Cebus Monkeys

Paul C. Kuo, M. Audrey Rudd, Robert Nicolosi, and Joseph Loscalzo

The mechanism by which dietary unsaturated fatty acids lower low density lipoprotein (LDL) cholesterol is unknown. Unsaturated fatty acids incorporated into the cell membrane can increase membrane fluidity and, as a result, dramatically alter membrane-dependent cell functions. Therefore, we examined the effect of long-term dietary consumption of corn oil and coconut oil with and without cholesterol in amounts equivalent to those of a typical Western diet on the degradation of human LDL by peripheral blood mononuclear cells in *Cebus albifrons* monkeys. Cellular LDL degradation was dramatically enhanced in the mononuclear cells isolated from animals fed corn oil in comparison with those from animals fed coconut oil. The addition of cholesterol to the diets resulted in a slight attenuation of LDL degradation in the corn oil group while no effect was noted in the coconut oil group. Crossover LDL binding and degradation experiments with LDL isolated from animals fed corn oil diets and coconut oil diets demonstrated increased binding and degradation of LDL in mononuclear cells from animals fed corn oil diets. Enhanced mononuclear cell LDL degradation was accompanied by increased cellular cis-unsaturated fatty acyl content, increased membrane fluidity, and decreased plasma cholesterol. Increased cellular cis-unsaturated fatty acyl content with its concomitant increase in membrane fluidity mirrored the dietary lipid profile of the host animal. A linear relationship was observed between cellular LDL degradation and both cellular cis-unsaturated fatty acyl content and membrane fluidity. These observations parallel results noted in whole-animal LDL catabolic studies with these same animals described elsewhere. These data suggest a novel mechanism by which dietary unsaturated fatty acids exert their LDL-lowering effect.

(Arteriosclerosis 9:919–927, November/December 1989)

Epidemiologic studies have linked diets rich in unsaturated fatty acids to a reduction in low density lipoprotein (LDL) cholesterol,1,2 but the molecular mechanism by which this phenomenon occurs remains poorly understood. A number of possible mechanisms have been suggested, including modification in: 1) de novo cholesterol synthesis, 2) cholesterol absorption from the small intestine, 3) physicochemical properties of the LDL surface coat or core, 4) cholesterol distribution between plasma and various intrahepatic pools, 5) fecal sterol or cholesterol excretion, 6) partitioning of cholesterol among "cellular" pools, 7) apolipoprotein metabolism, and 8) rates of LDL metabolism.3–7 Recent human and animal studies strongly support increased LDL metabolism as a major factor.3,4,7 The actual cellular mechanism by which LDL clearance is enhanced, however, remains unknown.

Alterations in the bulk physical properties of plasma membranes can produce changes in membrane-dependent cellular functions. Dietary fatty acids readily incorporate into cell membranes and can modify the physical properties of these membranes. Increasing cis-unsaturated fatty acyl composition increases membrane fluidity (or decreases microviscosity and order), while increasing the saturated fatty acyl composition decreases membrane fluidity. Similarly, increasing the cholesterol content of membranes decreases membrane fluidity and can produce perturbations in cellular functions. For example, capping of surface immunoglobulins in lymphocytes,8 platelet aggregability,9 erythropagocytosis by macrophages,10 and receptor binding of β-adrenergic, serotoninergic, or opiate ligands in liver cells11 are modulated by changes in membrane lipid content and fluidity.

We hypothesized that the reduction in LDL cholesterol produced by dietary unsaturated fatty acids is the result of their direct effect on membrane-mediated LDL clearance. Previous work by this laboratory has demonstrated that incorporation of cis-unsaturated fatty acids into peripheral blood mononuclear cells by brief exposure to free fatty acid enhances cellular clearance of LDL by increasing LDL
uptake and degradation. The present study was undertaken to investigate the effect of long-term dietary supplementation with unsaturated fatty acids in the form of corn oil or with saturated fatty acids in the form of coconut oil with and without added cholesterol in mononuclear cell LDL degradation in *Cebus albifrons* monkeys. Animals maintained on diets rich in unsaturated fatty acids are known to have increased hepatic fractional catabolic rates for LDL. Thus, in the ex vivo setting we studied LDL degradation, membrane fluidity, and fatty acyl content in peripheral blood mononuclear cells as functional equivalents of hepatocytes. Our results indicate that dietary unsaturated fatty acids enhance cellular LDL degradation and that this effect is accompanied by cellular enrichment in these fatty acids and decreased membrane microviscosity.

Methods

Materials

Na-125I was purchased from Amersham, Arlington Heights, IL. Sepraccell-MN was purchased from Sepratech, Oklahoma City, OK. 1,6-Diphenyl-1,3,5-hexatriene (DPH) was obtained from Sigma Chemical, St. Louis, MO. High-performance liquid chromatography-grade hexane, isopropanol, petroleum ether, methanol, acetyl chloride, and chloroform were obtained from Aldrich Chemical, Milwaukee, WI. Heptadecanoate and fatty acyl methyl ester gas chromatography standards were purchased from NuChek Prep, Elysian, MN. All other chemicals used were reagent grade or better.

Animals and Diets

Adult *Cebus* monkeys (*Cebus albifrons*) between the ages of 5 and 10 years were fed semi-purified diets containing 31% of calories as corn oil or coconut oil, with or without 0.1% cholesterol, for 3 to 10 years. Details of the diet compositions, as well as the fatty acid analyses, have been reported elsewhere. Plasma cholesterol values were measured from freshly isolated serum obtained from the same blood specimen from which mononuclear cells were isolated.

Low Density Lipoprotein Preparation and Iodination

Human LDL (density 1.006 to 1.063 g/ml) and monkey LDL (1.023 to 1.095 g/ml) were isolated from plasma by sequential ultracentrifugation in 50 mM tris-[hydroxymethyl]aminomethane (Tris), 5 mM disodium ethylenediaminetetraacetate (EDTA), pH 7.4.17 Potassium bromide was used to adjust the solvent densities. The LDL was then sequentially dialyzed with three changes of 50 mM Tris, pH 7.4. The total protein content was determined by the method of Lowry et al.18 LDL cholesterol was measured with a colorimetric method by using cholesterol oxidase, peroxidase, 4-hydroxybenzoate, and 4-amino-phenazone.19 Polyacrylamide gel electrophoresis (4.3%) was performed to ensure the purity of the LDL. LDL prepared in this manner typically had a cholesterol-to-total protein mass ratio of 1.3 to 1.7 for human LDL, 2.5 for LDL from monkeys fed coconut oil, and 1.2 for LDL from monkeys fed corn oil. LDL was radioiodinated by the iodine monochloride method of McFarlane, as modified by Langer and colleagues and Sheperd and coworkers. LDL iodinated in this fashion, LDL had a specific activity of 300 to 800 cpm/ng protein.

Mononuclear Cell Preparation

Whole blood was obtained from fasting monkeys and was anticoagulated with 100 U/ml heparin. Mononuclear cells were prepared by mixing 20 ml of whole blood with 20 ml of Sepraccell-MN solution. The suspension was then centrifuged at 1200 g for 20 minutes at 27°C. The mononuclear cells were harvested from the Sepraccell-MN meniscus. The cells were washed twice with Hanks' balanced salt solution containing 15 mM N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid, pH 7.4 (Hanks'-HEPES). Cellular concentrations were determined with a Coulter Counter, Model ZM, equipped with a 50 μm aperture tube. Cell counts ranged from 1 x 10⁶ cells/ml to 5 x 10⁶ cells/ml. Cell viability was determined by Trypan blue exclusion and was routinely greater than 95%. Mononuclear cell samples prepared in this fashion were comprised of 72% lymphocytes, 22% monocytes, and 4% neutrophils. The samples were maintained at room temperature for up to 30 minutes before use.

Low Density Lipoprotein Degradation

The amount of human 125I-LDL degraded by monkey mononuclear cells was determined according to published methods.14,25,26 An aliquot of freshly isolated mononuclear cells in Hanks'-HEPES (pH 7.4) was incubated with human 125I-LDL (80 μg/ml) in the presence or absence of a 20-fold excess of unlabeled human LDL at 37°C for 4 hours. Each assay was performed in the presence of 10 mM CaCl₂. After incubation, an aliquot was removed from each assay to determine the total counts. The samples were treated with 20% trichloroacetic acid to precipitate the degraded, protein-bound iodotyrosine. The precipitate was sedimented by centrifugation at 14 000 g for 3 minutes. The supernatant was counted to determine the amount of acid-soluble, ether-insoluble, radiolabeled material generated by the cells and released into the aqueous phase. Degradation values are expressed as specific degradation, i.e., the difference in degradation in the presence and absence of a 20-fold excess unlabeled LDL. Degradation is expressed as micrograms of 125I-LDL protein degraded per 10⁶ cells/4 hours.

Monkey Low Density Lipoprotein Crossover Binding and Degradation

Monkey mononuclear cells were incubated with monkey 125I-LDL in the presence or absence of a 20-fold excess of unlabeled monkey LDL at 4°C for 6 hours to determine specific binding. Each assay was carried out in the presence of 10 mM CaCl₂. All reagents were chilled to 4°C before use.

A range of monkey LDL concentrations from 10 μg/ml to 80 μg/ml was used to generate binding isotherms. After incubation, an aliquot from each vial was removed to determine total counts. Surface-bound LDL was separated from free LDL by centrifuging an aliquot of cells through a 0.15 M metrizamide cushion at 14 000 g for...
3 minutes at 4°C. The cell pellets were isolated by amputating the tip of the microfuge tube and counting the radioactivity in a gamma counter. The total and bound counts were measured, and specifically bound counts were expressed as micrograms of LDL protein bound per 10^6 cells. LDL degradation was performed as described above.

LDL binding and degradation were performed by using LDL isolated from monkeys fed corn oil and, again, with LDL isolated from monkeys fed coconut oil. Mononuclear cells from both the corn oil- and coconut oil-diet groups were used in this LDL crossover study.

Membrane Fluidity Measurements

Freshly isolated mononuclear cells or plasma membrane vesicles were incubated with DPH.27 at a concentration of 1 μM for 1 hour at 25°C, after which the suspension was washed twice with Hanks'-HEPES buffer, pH 7.4. Fluorescence measurements were performed with a Spex Fluorolog-2 spectrofluorimeter (Spex Industries, Edison, NJ) equipped with a thermostat-controlled cell holder and a polarization accessory. The steady-state fluorescence polarization was measured at 37°C by exciting the cell suspension at 360 nm and recording the emission at 430 nm. The polarization of fluorescence emission was calculated from the equation:

\[P = \left(I_v - G_w \right) / \left(I_v + G_w \right) \]

where P is polarization, I is the fluorescence intensity, and 1 = vertical, h = horizontal, and G = \(\ln(\pi) / \pi \).

Determination of Cellular Cholesterol and Fatty Acyl Content

Mononuclear cells were extracted with hexane-isopropanol (3:2, vol/vol).29 The samples were divided into two aliquots. A heptadecanoate internal standard was added to one aliquot of lipid extract. The fatty acyl groups were transesterified with methanolic-HCl and extracted into petroleum ether. The petroleum ether was then evaporated under nitrogen gas, and the lipids were re-solubilized in chloroform. Separation and identification of the fatty acid methyl esters were performed by gas-liquid chromatography by using a Chrompack CP Sil 88 capillary column in a Hewlett-Packard 5890A gas chromatograph with an automated injector, flame ionization detector, and Hewlett-Packard 3393 integrator. Separation was performed on the isothermal mode at 210°C with an injection volume of 5 μl, helium as the carrier gas, and a split ratio of 60:1. Fatty acid methyl ester gas chromatography standards were used to determine retention times.

The total cellular cholesterol content of the second aliquot was then determined by an enzymatic chromogenic system by using 4-hydroxybenzoate.19 Cholesterol ester/total cholesterol ratio was determined by using the p-hydroxyphenylacetic acid method of Gamble and coworkers.20

Determination of Plasma Membrane Fatty Acyl Content

Pooled mononuclear cell plasma membranes were prepared at 4°C by established methods.13 Mononuclear cell suspensions were sedimented at 200 g for 15 minutes and washed twice in 0.9% NaCl. Monocytes were resuspended in 15 ml of lysis medium (1 mM NaHCO₃, 0.5 mM CaCl₂, pH 7.4) and disrupted in a homogenizer (25 strokes). The cell lysate was diluted to 50 ml and centrifuged at 500 g for 20 minutes. The supernatant was removed and saved. The pellet was resuspended in 25 ml of lysis medium and was rehomogenized. This suspension was then centrifuged at 500 g for 20 minutes, and the supernatant was removed. The two supernatants were combined and sedimented at 12,500 g for 20 minutes. The pellet was resuspended in 10 ml lysis medium and was mixed with 30 ml of 53% sucrose prepared in lysis medium to yield a final concentration of 40% sucrose. Then 20 ml of the 40% sucrose was layered under 15 ml of a 30% sucrose solution. This sucrose step gradient was centrifuged at 55,000 g for 4 hours with a Ti70 rotor in a Beckman L8-70 ultracentrifuge. After centrifugation, the 10 ml fraction just above the interface was removed from the 30% sucrose layer and was diluted with 25 ml of lysis medium. This solution was then sedimented at 45,000 g for 1 hour. The pellet was extracted with hexane-isopropanol (3:2, vol/vol), and determination of the fatty acyl content was performed as described above. This method results in less than 5% contamination with endoplasmic reticular and mitochondrial membrane.13

Statistical Analysis

All results are presented as averages±standard deviations of the means. Analysis of variance, the Newman-Keuls variant analysis, and multivariate linear regression analysis were used for the comparisons.

Results

Effect of Diet on Plasma Cholesterol

Animals maintained on a corn oil-enriched diet without cholesterol (n=5) had an average plasma cholesterol of 139±26 mg/dl; in contrast, animals fed coconut oil-enriched diets without cholesterol (n=4) had an average plasma cholesterol of 342±44 mg/dl (p<0.01, corn oil vs. coconut oil). The addition of cholesterol to the corn oil diet (n=6) resulted in an average plasma cholesterol of 158±23 mg/dl, while the addition of cholesterol to the coconut oil diet (n=5) led to an average plasma cholesterol of 291±61 mg/dl (p<0.05, corn oil and cholesterol vs. coconut oil and cholesterol). A comparison of plasma cholesterol values within the corn oil groups and within the coconut oil groups showed that the addition of cholesterol to the diets did not affect the plasma cholesterol in a statistically significant manner.

Effect of Diet on Mononuclear Cell Fatty Acyl Content

The effect of diet on the unsaturated-saturated fatty acyl ratio (U/S) for nonhuman primate mononuclear cells...
is shown in Table 1. Animals fed a diet enriched with corn oil alone exhibited the highest U/S, 1.93±0.07, while those fed a diet enriched in coconut oil had a U/S of 0.95±0.04 (p<0.01). The addition of cholesterol to a corn oil-enriched diet decreased the U/S to 1.12±0.17, while the addition of cholesterol to a coconut oil-enriched diet resulted in a U/S of 0.83±0.09 (p<0.01). Cells from corn oil-fed animals without dietary cholesterol had a 72% greater U/S than those given cholesterol supplementation (1.93±0.07 vs. 1.12±0.17, p<0.01). In contrast, cells from animals fed coconut oil with or without cholesterol had U/S ratios that were not statistically different from one another (0.95±0.04 vs. 0.83±0.09).

The effect of diet on the fatty acyl profiles of monkey mononuclear cells is shown in Table 2. The values are averages±SD. The experiments were performed as described in the Methods section. For a discussion of the significant differences between and among groups, see the Results section.

Table 2. Mononuclear Cell Fatty Acyl Content

Diet addition	C12:0	C14:0	C16:0	C18:0	C20:0	C18:1	C18:2	C20:4
Corn oil (n=5)	0.9±0.8	3.5±1.0	15.9±0.6	13.8±0.5	—	12.6±1.4	42.1±1.9	11.2±4.1
Coconut oil (n=4)	1.6±0.3	5.3±1.5	25.1±5.2	20.2±2.9	—	20.6±1.5	16.7±4.8	11.5±4.8
Corn oil+cholesterol (n=6)	1.5±0.3	4.0±2.9	17.7±4.5	22.2±3.7	1.9±1.2	17.7±3.5	26.7±5.4	8.4±3.4
Coconut oil+cholesterol (n=6)	2.2±1.6	7.5±0.8	19.5±6.2	23.0±3.0	2.8±1.5	19.2±2.2	13.9±1.8	11.2±3.3

The values are averages±SD. The experiments were performed as described in the Methods section. For a discussion of the significant differences between and among groups, see the Results section.

Table 3. Mononuclear Cell Cholesterol Content

Cholesterol	Corn oil (n=4)	Corn oil+cholesterol (n=5)	Coconut oil (n=4)	Coconut oil+cholesterol (n=4)
Total cholesterol	1.25±0.34	1.94±0.36	2.43±0.53	2.52±0.56
Cholesterol ester	0.35±0.09	0.68±0.14	0.80±0.17	0.98±0.21

The values are averages±SD and are given as µg/10^6 cells. The experiments were performed as described in the Methods section. For a discussion of the significant differences between and among groups, see the Results section.

Effect of Diet on Cellular Cholesterol and Cholesteryl Ester Content

The effect of diet on total cellular cholesterol and cholesteryl ester content is shown in Table 3. Mononuclear cells isolated from animals maintained on a corn oil-enriched diet had an average cellular cholesterol content of 1.25±0.34 µg/10^6 cells; in contrast, animals fed coconut oil-enriched diets without cholesterol had an average mononuclear cell cholesterol content of 2.43±0.56 µg/10^6 cells (p<0.05). Addition of cholesterol to the corn oil diet resulted in an average mononuclear cell cholesterol content of 1.94±0.36 µg/10^6 cells, while addition of cholesterol to the coconut oil diet resulted in an average mononuclear cell cholesterol content of 2.52±0.56 µg/10^6 cells (p<0.05). Comparison of mononuclear cell cholesterol values with the corn oil group shows that the addition of cholesteryl to the diet resulted in a 55% increase in mononuclear cell cholesterol content (p<0.05). Addition of cholesteryl to the coconut oil diet did not affect the cholesteryl cellular content in a statistically significant manner.

Animals fed a corn oil-enriched diet had an average cholesteryl ester content of 0.35±0.09 µg/10^6 cells; in contrast, animals fed coconut oil-enriched diets had an average mononuclear cell cholesteryl ester content of 0.80±0.17 µg/10^6 cells (p<0.01). Addition of cholesteryl to the corn oil diet resulted in an average cellular cholesteryl ester content of 0.88±0.14 µg/10^6 cells, while addition of cholesteryl to the coconut oil diet resulted in an average cholesteryl ester content of...
The relationship between LDL degradation and plasma cholesterol content from pooled monkey mononuclear cells is shown in Table 4. In animals fed the corn oil diet, the mononuclear cell plasma membrane C18:2 content was 31% greater, while the C16:0 content was 19% less than that in animals fed the coconut oil diet. Addition of cholesterol to each diet resulted in a decreased C18:2 content and an increased C18:1 content in the plasma membranes. The addition of cholesterol to the corn oil diet resulted in a 5% decrease in plasma membrane C18:2 content and a 25% increase in C18:1 content. Similarly, the addition of cholesterol to the coconut oil diet resulted in a 21% decrease in membrane C18:2 levels and a 33% increase in the membrane content of C18:1. Interestingly, the addition of cholesterol resulted in a 37% decrease in plasma membrane C20:4 content in both the corn oil and coconut oil diet groups.

Table 4. Mononuclear Cell Plasma Membrane Fatty Acyl Content in Monkey Diet Groups

Diet additions	C12:0	C14:0	C16:0	C18:0	C18:1	C18:2	C20:4
Corn oil	0.271±0.012	0.288±0.011	0.292±0.034	0.330±0.034			
Coconut oil	0.257	0.265	0.277	0.277			
Corn oil+cholesterol	0.265	0.277	0.277	0.277			
Coconut oil+cholesterol	0.277	0.277	0.277	0.277			

The values are averages±SD. The experiments were performed as described in the Methods section. For the whole cell measurements, n=5 in the corn oil group, n=6 in the corn oil plus cholesterol group, n=4 in the coconut oil group, n=5 in the coconut oil plus cholesterol group. For the plasma membrane vesicle measurements, pooled samples from each diet group were used.

Effect of Diet on Plasma Membrane Fatty Acyl Content

The effect of diet on the plasma membrane fatty acyl content from pooled monkey mononuclear cells is shown in Table 4. In animals fed the corn oil diet, the mononuclear cell plasma membrane C18:2 content was 31% greater, while the C16:0 content was 19% less than that in animals fed the coconut oil diet. Addition of cholesterol to each diet resulted in a decreased C18:2 content and an increased C18:1 content in the plasma membranes. The addition of cholesterol to the corn oil diet resulted in a 5% decrease in plasma membrane C18:2 content and a 25% increase in C18:1 content. Similarly, the addition of cholesterol to the coconut oil diet resulted in a 21% decrease in membrane C18:2 levels and a 33% increase in the membrane content of C18:1. Interestingly, the addition of cholesterol resulted in a 37% decrease in plasma membrane C20:4 content in both the corn oil and coconut oil diet groups.

Effect of Diet on Mononuclear Cell DPH Fluorescence Polarization

The effect of diet on mononuclear cell DPH fluorescence polarization, a reflection of membrane fluidity, is shown in Table 5. A comparison of the corn oil diet group with the coconut oil diet group showed that corn oil-fed animals had a significantly lower mononuclear cell DPH fluorescence polarization value, indicating a more fluid membrane (p<0.05). The addition of cholesterol to each diet group was accompanied by increases in DPH fluorescence polarization, indicative of decreased membrane fluidity. The addition of dietary cholesterol to the corn oil diet resulted in an increase in the mononuclear cell DPH fluorescence polarization compared with that in cells from animals fed corn oil without cholesterol (p<0.05). The addition of dietary cholesterol to the coconut oil diet resulted in an increase in mononuclear cell DPH fluorescence polarization, which did not achieve statistical significance, compared with that in cells from animals fed coconut oil without cholesterol. DPH fluorescence polarization was significantly different for monkeys fed corn oil and cholesterol compared with those fed coconut oil and cholesterol (p<0.05).

DPH fluorescence polarization for plasma membrane vesicles prepared from pooled mononuclear cells followed the same pattern as that seen with the whole-cell preparations. The membrane vesicles from corn oil-fed animals had the lowest fluorescence polarization values followed by vesicles from the animals fed corn oil with cholesterol. The vesicles from coconut oil-fed animals had the greatest fluorescence polarization values, and the addition of cholesterol to the coconut oil diet did not alter these values.

Effect of Diet on Low Density Lipoprotein Degradation

The effect of diet on mononuclear cell LDL degradation of LDL is shown in Figure 1. Animals fed a diet enriched with corn oil degraded 13.6±3.6 ng LDL protein/10⁶ cells/4 hours, while animals fed a diet enriched with coconut oil degraded 2.5±0.6 ng LDL protein/10⁶ cells/4 hours (p<0.01). A corn oil-enriched diet to which cholesterol was added was associated with LDL degradation of 9.6±3.6 ng/10⁶ cells/4 hours, while a coconut oil-enriched diet with cholesterol resulted in LDL degradation of 2.7±1.0 ng/10⁶ cells/4 hours (p<0.01). Comparison of diet groups without cholesterol showed a 5.5-fold greater degradation of LDL in the corn oil-fed animals than in those fed coconut oil (p<0.01). Similarly, in the diet groups given supplemental cholesterol, the corn oil-fed monkeys exhibited 3.6-fold greater mononuclear cell LDL degradation than those fed coconut oil (p<0.01). Degradation of LDL was identical in both coconut oil diet groups (i.e., with and without cholesterol). Cells from the corn oil and cholesterol group degraded LDL 70% as well as those from animals fed corn oil alone (p<0.01).
The effect of diet on the specific binding of monkey LDL by mononuclear cells is shown in Figure 5. The estimated binding constants derived from the binding isotherms are shown in Table 6. The dissociation constant was increased by 43% in mononuclear cells isolated from animals fed a coconut oil diet compared to that in cells from animals fed a diet of corn oil. This increase occurred regardless of the source of the LDL ligand, that is, plasma from corn oil-fed monkeys or coconut oil-fed monkeys. In addition, maximal binding of either type of LDL ligand was dramatically decreased in mononuclear cells from animals fed coconut oil. The source of the LDL ligand did not affect the affinity.
of the ligand for its receptor. However, LDL isolated from animals fed coconut-oil diets had markedly decreased maximal binding to mononuclear cells isolated from either corn oil- or coconut oil-fed animals compared to the binding of LDL isolated from corn oil-fed animals.

The results of LDL degradation crossover studies are summarized in Table 7. These results parallel those found in LDL binding experiments. LDL isolated from the plasma of animals maintained on coconut oil diets was degraded 2.1-fold more efficiently by mononuclear cells from animals fed a corn oil diet than those from coconut oil-fed animals (p<0.05). Similarly, LDL isolated from animals fed corn oil-supplemented diets was degraded 2.4-fold more efficiently by mononuclear cells isolated from corn oil-fed animals than coconut oil-fed animals, although the difference was not statistically significant. Mononuclear cells from both coconut oil-fed animals and corn oil-fed animals degraded LDL isolated from corn oil-fed animals better, on average, than LDL from coconut oil-fed animals. Although this comparison was not statistically significant, a trend is apparent.

Discussion

In a number of whole-animal studies, the relationships between the major dietary lipids, whole-liver LDL metabolism, and plasma levels of LDL cholesterol have been investigated. From these studies, it is clear that feeding unsaturated fatty acids enhances hepatic receptor-dependent LDL uptake and decreases the concentration of plasma LDL cholesterol, while dietary saturated fatty acids suppress hepatic receptor-dependent LDL uptake and increase levels of plasma LDL. Similarly, feeding cholesterol alone also suppresses hepatic LDL uptake and increases plasma LDL cholesterol. The detrimental effects of feeding cholesterol or saturated fatty acids can be reversed by returning the experimental animal to a diet low in these lipids or to one rich in unsaturated fatty acids. The molecular and cellular correlates of these whole-animal and whole-organ studies are largely unknown.

Since cellular clearance of LDL is primarily mediated by the classic LDL receptor, a deficiency or dysfunction of this receptor leads to elevated circulating levels of LDL and, consequently, can promote atherogenesis. A number of steps in the processing of receptor-bound LDL can be defective. Investigators have described receptors with defective. Investigators have described receptors with decreased LDL affinity, alterations in receptor clustering in coated pits, changes in endosome production, and reduced rates of LDL degradation in lysosomes. All of these processes occur within the plasma membrane milieu and, therefore, could be affected by the lipid composition of the membrane and the lipid content of the host animal’s diet.

Using peripheral blood mononuclear cells isolated from Cebus monkeys, we have demonstrated increased LDL degradation in cells from animals fed corn oil compared to cells from animals fed coconut oil. With the addition of cholesterol to the diets, LDL degradation was slightly attenuated in the cells from corn oil-fed animals but essentially did not change in the cells from coconut oil-fed animals. Again, even in the presence of dietary cholesterol, the corn oil-fed animals demonstrated greatly enhanced cellular LDL degradation. Both plasma cholesterol values and total cellular cholesterol content paralleled the decremental changes in cellular LDL degradation as a function of the host animal’s maintenance diet. These observations in an ex vivo isolated cell system parallel findings in whole-animal LDL metabolism studies performed in these same monkeys described in a companion article.

Dietary cholesterol played a relatively minor role in the regulation of cellular LDL degradation in this study. The addition of cholesterol to both the corn oil and the coconut oil diets resulted in decreased membrane levels of C18:2 and increased levels of C18:0 and C18:1. Other investigators have also noted these changes in fatty acid levels with dietary cholesterol supplementation. Huang and coworkers have suggested the decreased activity of the desaturase enzyme in cholesterol-fed animals as a potential explanation. No significant effect was seen in U/S, membrane fluidity, cellular LDL degradation, total cellular cholesterol, or individual cellular fatty acyl components in mononuclear cells isolated from the coconut oil-fed groups. Cholesterol supplementation of corn oil-fed animals resulted in a small decrease in U/S, membrane fluidity, LDL degradation, total cellular cholesterol, and cellular content of linoleate. The explanation for these fluidity findings may be that fatty acyl packing in membranes of mononuclear cells from coconut oil-fed animals is highly ordered, reflecting the highly saturated fatty acyl content of coconut oil. The membrane order may already be near its maximal limit; hence, the addition of dietary cholesterol does not further increase the order of the membrane, possibly as a result of homeoviscous adaptation. Conversely, corn oil-fed ani-

| Table 6. Analysis of Low Density Lipoprotein Binding Crossover |
|----------------|----------------|----------------|----------------|
| | Corn LDL MNC | Corn LDL Coconut MNC | Coconut LDL MNC | Coconut LDL Coconut MNC |
| Estimated apparent Kd (µg/ml) | 20.0 | 28.0 | 22.0 | 32.0 |
| Bmax (ng/10^6 cells) | 13.9 | 4.8 | 3.8 | 0.97 |

LDL = low density lipoprotein, MNC = mononuclear cell, Kd = dissociation constant, Bmax = maximum binding.

| Table 7. Low Density Lipoprotein Degradation Crossover Study |
|----------------|----------------|
| MNC source | LDL source |
| Corn (n=4) | Coconut (n=4) |
| 29.6±26.5 | 10.4±3.8 |
| 12.3±8.5 | 5.0±3.3 |

The units are ng LDL protein/10^6 cells/4 hours. The values are averages±SD.

LDL = low density lipoprotein, MNC = mononuclear cell.

For a discussion of the significant differences between and among groups, see the Results section.
mals have cellular membranes that are highly disordered, reflecting the cis-unsaturated fatty acyl content of com oil. The addition of cholesterol to this diet, in contrast, results in increased membrane order as a result of an increased cholesterol/phospholipid ratio and, hence, a relative decrease in membrane fluidity. However, these changes associated with dietary cholesterol supplementation are small compared with the differences in mononuclear cell LDL degradation, plasma cholesterol, membrane fluidity, and U/S caused by modifying the dietary fatty acid composition. These observations are particularly pertinent since these animals are fed a diet equivalent in cholesterol content to that consumed daily by the average adult in American society: 550 mg. Certainly, in human studies, it has been noted that the elevation in serum cholesterol that occurs with isocaloric dietary substitution of saturated fatty acids for unsaturated fatty acids is much greater than that seen with dietary supplementation with cholesterol.

The effect of diet on the LDL particle itself and its binding and degradation were addressed in the crossover study with LDL from monkeys fed corn or coconut oil-supplemented diets. Again, the mononuclear cells from corn oil-fed animals degraded LDL more efficiently than did mononuclear cells from coconut oil-fed animals. Within each diet group, LDL isolated from corn oil-fed animals was bound and degraded more efficiently than was LDL from coconut oil-fed animals. This points to the possibility that dietary fats may also attenuate LDL metabolism as a result of changes in the LDL particle, although the primary and most significant effect in this study appears to be on receptor function. Interestingly, the Scatchard plots of the binding data demonstrate both increased affinity and increased maximum binding capacity of the LDL receptor when expressed on the surface of mononuclear cells from corn oil-fed animals. This occurred with LDL from both corn oil-fed animals and coconut oil-fed animals. This observation suggests that a simple increase in LDL receptor number, or coupled receptor function. With particular relevance to this study, our group has previously shown that LDL uptake and degradation is enhanced in human peripheral blood mononuclear cells when membrane cis-unsaturated fatty acyl content is enhanced by brief ex vivo incubation with free fatty acids. A number of hypotheses have been proposed to explain these observations. It has been suggested that cryptic functional sites or cryptic receptors exist as reservoirs for the adjustment of function in response to perturbations in membrane fluidity.

Others have suggested requirements for specific lipids within the receptor lipid annulus for optimal receptor or enzyme function. Based upon theoretical analyses, it has been implied that receptor turnover rate is directly proportional to membrane fluidity. Finally, the Optimal Fluidity Hypothesis suggests that the overt maximal velocity of receptor or enzyme function may possess a peak value at a specific membrane fluidity. The precise role of any of these potential mechanisms is currently unknown.

In this study, mononuclear cell LDL degradation varied in a linear manner with both cellular U/S ratio and membrane fluidity. LDL receptor binding affinity and maximal binding capacity were enhanced in mononuclear cells with increased membrane fluidity and cellular U/S. Both membrane fluidity and cellular U/S reflected the dietary lipid content of the host animals' maintenance diet. While the specific role of membrane fluidity and annular lipids in LDL receptor function are unknown, the possibilities include fluidity-induced changes in LDL receptor conformation toward a conformational state with greater ligand affinity or an absolute functional requirement for specific fatty acyl moieties in the LDL receptor lipid annulus. The effect of dietary cis-unsaturated fatty acids on cellular LDL metabolism in the context of the plasma membrane lipid microenvironment warrants further study. It remains to be seen whether enzymes involved in cellular cholesterol homeostasis, such as HMG-CoA reductase or acyl-CoA cholesterol acyltransferase, can also be affected by alterations in the membrane milieu either directly or through alterations in second messenger signal transduction.

This study demonstrates that cellular LDL metabolism can be dramatically altered by dietary modifications of both membrane fluidity and fatty acyl content. Dietary unsaturated fatty acids are readily incorporated into the mononuclear cell membrane, and cellular LDL binding and degradation are greatly enhanced in association with membrane enrichment with these fatty acids. Our results suggest a novel mechanism by which dietary fatty acids can alter LDL catabolism.

Acknowledgments

We thank Donna MacDonald and Nancy Beattie for their excellent technical assistance.

References

1. Ahrens EH Jr, Insel J Jr, Blomstrand R, Hirsch J, Talitas TT, Peterson ML. The influence of dietary fat on serum-lipid levels in man. Lancet 1957;2:943–953.
2. Hegsted DM, McGandy RB, Myers ML, Stare FJ. Quantitative effects of dietary fat on serum cholesterol in man. Am J Clin Nutr 1965;17:261–295.
3. Vega GL, Groszek E, Wolff R, Grundy SM. Influence of polyunsaturated fats on composition of plasma lipoproteins and apoproteins. J Lipid Res 1982;23:811–822.
4. Shepherd J, Packard CJ, Grundy S, Yeashurun D, Gotto AM Jr, Taunton OD. Effects of saturated and polyunsaturated fat diets on the chemical composition and metabolism of low density lipoproteins in man. J Lipid Res 1980;21:91–99.
5. Spritz N, Niahal MA. Effects of dietary fat on plasma lipids and lipoproteins: a hypothesis for the lipid lowering effect of unsaturated fatty acids. J Clin Invest 1965;45:80–88.
6. Grundy SM, Ahrens EH Jr. The effects of unsaturated dietary fats on absorption, excretion, synthesis and distribution of cholesterol in man. J Clin Invest 1970;45:1135–1152.
7. Spady DK, Dietachy JM. Interaction of dietary cholesterol and triglycerides in the regulation of hepatic low density lipoprotein transport in the hamster. J Clin Invest 1988;81:300–309.
8. Hoover RL, Bhalle DK, Yanovich S, Inbar M, Karnovsky MJ. Effects of linoleic acid on capping lactin mediated mitogenesis, surface antigen expression, and fluorescent...
polarization in lymphocytes and BHK cells. J Cell Physiol 1980;103:399–406
29. Macintyre DE, Hoover RL, Smith M, et al. Inhibition of platelet aggregation by cis-unsaturated fatty acids. Blood 1984; 63:848–857.
30. Lokesh BR, Wrann M. Incorporation of palmitic acid or oleic acid into macrophage membrane lipids exerts differential effects on the function of normal mouse peritoneal macrophages. Biochim Biophys Acta 1984;792:141–148
31. North RA, Peter S, Alteration of synaptic membrane cholesterol/phospholipid ratio using a lipid transfer protein. J Biol Chem 1983;258:1242–1253
32. Lloscalzo J, Freedman JM, Rudd MA, Vasserman IB, Vaughan DE. Unsaturation of fatty acids enhance low density lipoprotein uptake and degradation by peripheral blood mononuclear cells. Arteriosclerosis 1987;7:450–455
33. Scully SP, Segel GB, Lichtman MA. Plasma membrane vesicles prepared from unadhered monocytes: characterization of calcium transport and calcium ATPase. Cell Calcium 1982;3:515–530
34. Chait A, Henze K, Mazzone T, Jensen M, Hammond W. Low density lipoprotein receptor activity in freshly isolated human blood monocytes and lymphocytes. Metabolism 1982;31:721–733
35. Fogelman AM, Seager J, Edwards PA, et al. Cholesterol biosynthesis in human lymphocytes, monocytes and granulocytes. Biochem Biophys Res Commun 1977;76:167–173
36. Chong KS, Nicolosi RJ, Rodger RF, et al. Effect of dietary fat on rat plasma lipoproteins and high density lipoprotein metabolism of Rhesus monkeys. J Clin Invest 1987; 79:675–683
37. Havel RM, Eder HA, Bragon JD. The distribution and chemical composition of ultrafiltrarily separated lipoproteins in human serum. J Clin Invest 1985;73:1345–1353
38. Lowry OH, Rosebrough NR, Farr AL, Randall R. Protein measurement with the Folin reagent. J Biol Chem 1951; 193:265–275
39. Melattini F, Principe L, Bardelli F, Giannini G, Terli P. The 4-hydroxybenzoate/4-aminophenazone chromogenic system used in the enzymatic determination of serum cholesterol. Clin Chem 1978;24:2161–2165
40. McFarlane AS. Efficient trace-labeling of proteins with iodine. Nature 1958;182:53
41. Langen T, Strober W, Levy RI. The metabolism of low density lipoprotein in familial type II hyperlipoproteinemia. J Clin Invest 1972;51:1528–1536
42. Shepard J, Bradford DK, Morgan HG. Radiolabeling of human low-density lipoprotein: a comparison of four methods. Biochim Biophys Acta 1976;414:97–109
43. Boyum A. Isolation of mononuclear cells and granulocytes from human blood. Scand J Clin Lab Invest 1968;21(suppl 97):77–88
44. Shortman K. Physical procedures for the separation of animal cells. Annu Rev Biophys Bioeng 1972;1:93–130
45. Blomman EL, Stein O, Stein Y. Lipoprotein uptake and metabolism by rat aortic smooth muscle cells in tissue culture. Circ Res 1974;35:136–150
46. Ho YK, Brown MS, Bilheimer DW, Goldstein JL. Regulation of low density lipoprotein receptor activity in freshly isolated human lymphocytes. J Clin Invest 1978; 58:1455–1474
47. Klaauaner RD, Kleinfeld AM, Hoover RL, Karnovsky MJ. Lipid domains in membranes: evidence derived from structural perturbations induced by free fatty acids and lifetime heterogeneity analysis. J Biol Chem 1980;255:1286–1295
48. Shlinitzky M, Barenholz Y. Fluidity parameters of lipid regions determined by fluorescence polarization. Biochim Biophys Acta 1985;811:211–221
49. Hara A, Radin NS. Lipid extraction of tissues with a low-toxicity solvent. Anal Biochem 1978;90:420–426
50. Fiesa GM, Wissler RW, Scnau AM. Study of abnormal plasma low density lipoprotein in rhesus monkeys with diet-induced hyperlipidemia. Biochemistry 1976;15:5799–5805
51. Spady DK, Bilheimer DW, by cholesterol. Rates of receptor-dependent and independent low density lipoprotein uptake in the hamster. Proc Natl Acad Sci USA 1980;80:3499–3503
52. Spady DK, Turly SD, Detachey JM. Receptor independent low density lipoprotein transport in the rat in vivo. Quantitation, characterization, and metabolic consequences. J Clin Invest 1985;76:1113–1123
53. Brown MS, Kovanen PT, Goldstein JL. Regulation of plasma cholesterol by lipoprotein receptors. Science 1981; 212:828–835
54. Schneider WJ, Bealsiegi V, Goldstein JL, Brown MS. Purification of a low density lipoprotein receptor, an acidic glycophorin of 164,000 molecular weight. J Biol Chem 1982; 257:2664–2673
55. Goldstein JL, Brown MS, Anderson GW, Russell DW, Schneider WJ. Receptor mediated endocytosis: concepts emerging from the LDL receptor system. Annu Rev Cell Biol 1985;1:1–39
56. Tolleshaug H, Bobgood KK, Brown MS, Goldstein JL. The LDL receptor locus in familial hypercholesterolemia: multiple mutations disrupt the transport and processing of a membrane receptor. Cell 1983;32:941–951
57. Lehrman MA, Goldstein JL, Brown MS, Russell DW, Schneider WJ. Internalization defective LDL receptor produced by genes with nonsense frameshift mutations that truncate the cytoplasmic domain. Cell 1984;37:135–142
58. Zannis VI, Breslow JL. Genetic mutations affecting human lipoprotein metabolism. Adv Hum Genet 1985;14:125–215
59. Hobbs HH, Brown MS, Goldstein JL, Russell DW. Deletion of exon encoding crystalline rich repeat of low density lipoprotein receptor alters its binding specificity in a subject with familial hypercholesterolemia. J Biol Chem 1986; 261:13141–13120
60. Nicolosi R, Kowala M, Kargo W, Kuo P, Lloscalzo J, Schaefer E. Diet effects of low density lipoprotein metabolism in monkeys. Proc Eighth Int Symp Atherosclerosis 1988;8:661
61. Huang YS, Mankus MS, Horrobin DF. The effects of dietary cholesterol on blood and liver unsaturated fatty acids and on plasma cholesterol in rats fed various types of fatty acid diets. Lipide 1984;19:664–672
62. Huang YS, Horrobin DF, Mankus MS. Short term effects of dietary cholesterol on tissue n-6 fatty acids in fat deficient rats. Proc Soc Exp Biol Med 1985;178:209–214
63. McMurchnie EJ, Patten GS, Charnock JS, McPhers N. The interaction of dietary fat and cholesterol on catecholamine stimulated aminopropyl cyclase activity in the rat heart. Biochim Biophys Acta 1987;898:137–153
64. Stenmark N. Homeoviscous adaptation—a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc Natl Acad Sci USA 1974;71:522–525
65. Anderson JT, Granda F, Keys A. Independence of the effects of cholesterol and degree of saturation of the fat in the diet on serum cholesterol in man. Am J Clin Nutr 1976; 29:1184–1189
66. Tandon N, Harmon JT, Rodbard D, Jamieson GA. Thrombin receptors define responsiveness of cholesteryl modified platelets. J Biol Chem 1983;258:11840–11845
67. Popot JL, Semel RA, Sobel A, Van Deenen LLM, Changeux JP. Interaction of the acetylcholine receptor protein from Torpedo marmorota electric organ with organotypic layers of pure lipids. Eur J Biochem 1978;7:27–42
68. Shlinitzky M, ed. Physiology of membrane fluidity. Boca Raton: CRC Press, Inc., 1984
69. Fong TM, McNamee MG. Stabilization of acetylcholine receptor secondary structure by cholesterol and negatively charged phospholipids in membranes. Biochemistry 1987; 27:3671–3680

Index Terms: unsaturated fatty acid • low density lipoprotein • diet • cholesterol • atherogenesis
Effect of dietary fat saturation and cholesterol on low density lipoprotein degradation by mononuclear cells of Cebus monkeys.

P C Kuo, M A Rudd, R Nicolosi and J Loscalzo

Arterioscler Thromb Vasc Biol. 1989;9:919-927
doi: 10.1161/01.ATV.9.6.919

Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1989 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/9/6/919

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org//subscriptions/