ON FINITE TIMES DEGENERATE HIGHER-ORDER CAUCHY NUMBERS AND POLYNOMIALS

JOOHEE JEONG AND SEOG-HOON RIM

Abstract. Cauchy polynomials are also called Bernoulli polynomials of the second kind and these polynomials are very important to study mathematical physics. D. S. Kim et al. have studied some properties of Bernoulli polynomials of the second kind associated with special polynomials arising from umbral calculus.

T. Kim introduced the degenerate Cauchy numbers and polynomials which are derived from the degenerate function \(e^t\). Recently J. Jeong, S. H. Rim and B. M. Kim studied on finite times degenerate Cauchy numbers and polynomials.

In this paper we consider finite times degenerate higher-order Cauchy numbers and polynomials, and give some identities and properties of these polynomials.

1. Introduction

In the book [2] Comtet introduced Cauchy numbers, denoted by \(C_n\), by the integral of the following formula:

\[
C_n = \int_0^1 (x)_n \, dx = \int_0^1 x(x-1)\cdots(x-n+1) \, dx
\]

\[
= n! \int_0^1 \binom{x}{n} \, dx.
\]

From (1), we can derive the generating function as follows:

\[
\sum_{n=0}^{\infty} \frac{C_n}{n!} t^n = \sum_{n=0}^{\infty} \int_0^1 \binom{x}{n} \, dx \; t^n = \int_0^1 \sum_{n=0}^{\infty} \binom{x}{n} t^n \, dx
\]

\[
= \int_0^1 (1+t)^x \, dx = \frac{t}{\log(1+t)} \quad (\text{see } [2, 4, 6, 13–15]).
\]
As is well known, the higher-order Cauchy polynomials are given by the generating function.

\[(3) \quad \left(\frac{t}{\log(1 + t)} \right)^r (1 + t)^x = \sum_{n=0}^{\infty} C_n^{(r)}(x) \frac{t^n}{n!} \]

Thus we note that

\[(4) \quad \int_0^1 \cdots \int_0^1 (1 + t)^{x_1 + \cdots + x_r + x} \, dx_1 \cdots dx_r = \sum_{n=0}^{\infty} C_n^{(r)}(x) \frac{t^n}{n!} \quad \text{ (see \([2, 4]\))}, \]

From (4), we have

\[(5) \quad \int_0^1 \cdots \int_0^1 (x_1 + \cdots + x_r + x)^n \, dx_1 \cdots dx_r = \sum_{n=0}^{\infty} C_n^{(r)}(x) \quad (n \geq 0). \]

It is known that

\[(6) \quad \left(\frac{t}{\log(1 + t)} \right)^r (1 + t)^{x-1} = \sum_{n=0}^{\infty} B_n^{(n-r+1)}(x) \frac{t^n}{n!} \quad \text{ (see \([7, 9, 12]\))}, \]

where $B_n^{(r)}(x)$ are called the higher-order Bernoulli polynomials.

The Stirling number of the first kind is defined by

\[(7) \quad (x)_n = x(x-1) \cdots (x-n+1) = \sum_{l=0}^{n} S_1(n, l) x^l \quad \text{ (see \([1, 4, 12]\))}, \]

and the Stirling number of the second kind is given by

\[(8) \quad x^n = \sum_{l=0}^{n} S_2(n, l)(x)_l \quad \text{ (see \([4, 7, 8, 12]\))}. \]

Cauchy polynomials are also called Bernoulli polynomials of the second kind and these polynomials are very important to study mathematical physics (see \([5, 13]\)). In \([5, 13]\), D. S. Kim, T. Kim and T. Mansour have studied some properties of Bernoulli polynomials of the second kind associated with special polynomials arising from umbral calculus.

T. Kim introduced the degenerate Cauchy numbers and polynomials which are derived from the degenerate function e^t (see \([10, 13]\)). In this paper, we try to degenerate higher-order Cauchy numbers and polynomials k-times and investigate some properties of these k-times degenerate higher-order Cauchy numbers and polynomials.

Recently J. Jeong, S. H. Rim and B. M. Kim have studied on finite times degenerate Cauchy numbers and polynomials (see \([3]\)).

In this paper we consider finite times degenerate higher order Cauchy numbers and polynomials. We give some identities and properties of these polynomials.
2. \(k\)-times degenerate higher-order Cauchy numbers

\[t = \log e^t \]

\[\log\left(1 + \lambda t^k\right) \]

\[\int_1^0 \left(1 + \log\left(1 + \lambda t^k\right)^r\right)^n dx : C_{n,\lambda}^{(r)} \]

\[\text{(higher-order Cauchy number)} \]

\[\log\left(1 + \log\left(1 + \lambda t^k\right)^r\right)^n : C_{n,\lambda}^{(r)} \]

\[\text{(deg. Cauchy number of order } r \text{ (cf. [10])} \]

\[C_{n,\lambda}^{(k,r)} \]

\[\text{(k-times degenerate Cauchy number of order } r \text{ (cf. [2]))} \]

\[\log\left(1 + \log\left(1 + \lambda t^k\right)^r\right)^n \]

\[\int_1^0 \cdots \int_1^0 (x_1 + \cdots + x_r)^m dx_1 \cdots dx_r S_1(n, m) \lambda^n \]

\[C_{n,\lambda}^{(k,r)} \]

\[\text{(k-times degenerate Cauchy number of order } r \text{ (cf. [2]))} \]

\(C_{n,\lambda}^{(k,r)} \) means \(k\)-times degenerate Cauchy numbers of order \(r \).

In [10], T. Kim considered the degenerate Cauchy numbers of order \(r \) which are defined by the generating function

\[\sum_{n=0}^{\infty} C_{n,\lambda}^{(1,r)} \cdot \frac{t^n}{n!} = \int_0^1 \cdots \int_0^1 (1 + \log(1 + \lambda t^k)^r)^n dx_1 \cdots dx_r \]

\[= \left(\log(1 + \lambda t^k)^r \right)^n \]

When \(x = 0 \), \(C_{n,\lambda}^{(1,r)} = C_{n,\lambda}^{(1,r)}(0) \) are called the degenerate higher-order Cauchy numbers. And the following observations are given by T. Kim (see [10]).

Theorem 1. For \(n \geq 0 \), we have

(i) \(C_{n,\lambda}^{(1,r)}(x) = \sum_{l=0}^{n} \sum_{j=0}^{l} S_1(n, l) S_1(l, j) \lambda^{n-l} B_j^{(r)}(x) \).

(ii) \(C_{n,\lambda}^{(1,r)}(x) = \sum_{m=0}^{n} \int_0^1 \cdots \int_0^1 (x_1 + \cdots + x_r)_m dx_1 \cdots dx_r S_1(n, m) \lambda^{n-m} \).

(iii) \(C_{n,\lambda}^{(1,r)}(x) = \sum_{m=0}^{n} B_{m}^{(r)}(x) S_1(n, m) \lambda^{n-m} \).

(iv) \(C_{n,\lambda}^{(1,r)}(x) = \sum_{l=0}^{n} \sum_{m=0}^{l} \binom{n}{l} S_1(n, m) \lambda^{l-m}(x)_m C_{n-l,\lambda}^{(r)} \).
\((v)\) \[C_{n,\lambda}^{(1,r)}(x) = \sum_{l=0}^{n} C_{l}^{(1,r)}(x) \lambda^{n-l} S_{1}(n,l). \]

We degenerate one more time in (9), i.e., 2-times degenerate Cauchy polynomials of order \(r\):

\begin{align*}
\sum_{n=0}^{\infty} C_{n,\lambda}^{(2,r)}(x) \frac{l^{n}}{n!} \\
= \int_{0}^{1} \cdots \int_{0}^{1} \left(1 + \log \left(1 + \log(1 + \lambda t) \right)^{\frac{1}{r}} \right)^{x_{1} + \cdots + x_{r} + x} dx_{1} \cdots dx_{r} \\
= \left(\frac{\log \left(1 + \log(1 + \lambda t) \right)^{\frac{1}{r}}}{\log \left(1 + \log(1 + \lambda t) \right)^{\frac{1}{r}}} \right) \left(1 + \log \left(1 + \log(1 + \lambda t) \right)^{\frac{1}{r}} \right)^{x} \\
= \left(\log \left(1 + \log(1 + \lambda t) \right)^{\frac{1}{r}} \right) \left(1 + \log \left(1 + \log(1 + \lambda t) \right)^{\frac{1}{r}} \right)^{x} \\
\text{(see [11]).}
\end{align*}

When \(x = 0\), \(C_{n,\lambda}^{(2,r)} = C_{n,\lambda}^{(2,r)}(0)\) are called the 2-times degenerate Cauchy numbers of order \(r\).

Now we observe that

\begin{align*}
\sum_{n=0}^{\infty} C_{n,\lambda}^{(2,r)}(x) \frac{l^{n}}{n!} \\
= \sum_{j=0}^{\infty} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{\lambda^{-n} S_{1}(m,n) \log(1 + \lambda t)^{m} \lambda^{n}}{m!} \\
= \sum_{j=0}^{\infty} \left(\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \int_{0}^{1} \cdots \int_{0}^{1} (x_{1} + \cdots + x_{r} + x)_{a} dx_{1} \cdots dx_{r} \right) \frac{\lambda^{j-n} S_{1}(j,m) S_{1}(m,n)}{j!} S_{1}(n,m).
\end{align*}

Therefore, by (10) and (11), we obtain the following theorem.

Theorem 2. For \(j \geq 0\), we have

\[C_{j,\lambda}^{(2,r)}(x) = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \int_{0}^{1} \cdots \int_{0}^{1} (x_{1} + \cdots + x_{r} + x)_{a} dx_{1} \cdots dx_{r} S_{1}(j,m) S_{1}(m,n) \lambda^{j-n}. \]
Inductively we try k-times degenerate Cauchy polynomials of order r. Then we have the following result.

Theorem 3. For $n_i \geq 0$, $i = 1, \ldots, k + 1$,

$$C^{(k,r)}_{k+1,\lambda} = \sum_{n_k=0}^{n_{k+1}} \sum_{n_{k-1}=0}^{n_k} \cdots \sum_{n_1=0}^{n_2} \int_0^1 \cdots \int_0^1 (x_1 + \cdots + x_r + x)_n dx_1 \cdots dx_r$$

$$\times \prod_{i=1}^k S_1(n_{i+1}, n_i) \lambda^{n_{k+1} - n_1}$$

$$= \sum_{n_k=0}^{n_{k+1}} \sum_{n_{k-1}=0}^{n_k} \cdots \sum_{n_1=0}^{n_2} C^{(1,r)}_{n_1}(x) \prod_{i=1}^k S_1(n_{i+1}, n_i) \lambda^{n_{k+1} - n_1}.$$

Specially for the case $k = 1$ and $r = 1$, we have the following known result.

Corollary 4. For $m \geq 0$, and each $n_i \geq 0$ where $i = 0, 1, \ldots, k + 1$, we have

(i) $\sum_{n=0}^{m} \int_0^1 \cdots \int_0^1 (x_1 + \cdots + x_r + x)_n dx_1 \cdots dx_r S_1(m,n) \lambda^{m-n} = C^{(r)}_{m,\lambda}(x).$

(ii) $C^{(k)}_{n_{k+1},\lambda}(x) = \sum_{n_k=0}^{n_{k+1}} \sum_{n_{k-1}=0}^{n_k} \cdots \sum_{n_1=0}^{n_2} \lambda^{n_{k+1} - n_1} \left(\prod_{i=1}^k S_1(n_{i+1}, n_i) \right) C_{n_1}(x).$

Proof. (i) See [10, Theorem 2.1].

(ii) See [3, Theorem 7].

Remark 5. The following is well known in [10].

(i) $\int_0^1 \cdots \int_0^1 (x_1 + \cdots + x_r + x)_n dx_1 \cdots dx_r$

$$= \sum_{i=0}^{n} S_1(n,l) \int_0^1 \cdots \int_0^1 (x_1 + \cdots + x_r + x)^i dx_1 \cdots dx_r$$

$$= \sum_{i=0}^{n} S_1(n,l) B_i^{(r)}(x).$$

(ii) $\int_0^1 \cdots \int_0^1 e^{(x_1 + \cdots + x_r + x)} dx_1 \cdots dx_r = \left(\frac{t}{e^t - 1} \right)^r e^{xt} = \sum_{n=0}^{\infty} B_n^{(r)}(x) \frac{t^n}{n!}.$

(iii) $\int_0^1 \cdots \int_0^1 (x_1 + \cdots + x_r + x)^n dx_1 \cdots dx_r = B_n^{(r)}(x) \quad (n \geq 0).$

Therefore, from Theorem 3 and Remark 5(i) and (iii), we have the following corollary. □
Corollary 6. For \(n_i \geq 0, i = 1, \ldots, k+1 \), we have the following identity.

\[
C_{n_{k+1}, \lambda}^{(k+1)} = \sum_{n_k=0}^{n} \sum_{n_{k-1}=0}^{n_k} \cdots \sum_{n_1=0}^{n_{k-1}} \lambda^{n_{k+1} - n_1} \prod_{i=1}^{k} S_i(n_{i+1}, n_i) B_{n_i}^{(r)}(x).
\]

Specially for the case \(k = 1 \), we have the following corollary.

Corollary 7 ([10, Corollary 2.2]). For \(n \geq 0 \), we have

\[
C_{n, \lambda}^{(r)}(x) = \sum_{k=0}^{n} \sum_{j=0}^{k} S_1(n, k) \lambda^{n-k} S_1(k, j) B_j^{(r)}(x).
\]

By replacing \(t \) by \(\frac{1}{\lambda}(e^\lambda - 1) \) in (10), we get

\[
\sum_{n=0}^{\infty} C_{n, \lambda}^{(2, r)}(x) \frac{1}{n!} \left(\frac{e^\lambda - 1}{\lambda} \right)^n = \left(\frac{\log(1 + \lambda t) + \lambda t}{\log(1 + \log(1 + \lambda t))} \right)^r (1 + \log(1 + \lambda t)^\frac{1}{\lambda}).
\]

From (6), the right hand side of (12) becomes as follows:

\[
\left(\frac{\log(1 + \lambda t) + \lambda t}{\log(1 + \log(1 + \lambda t))} \right)^r (1 + \log(1 + \lambda t)^\frac{1}{\lambda}) x
\]

The left hand side of (12) becomes

\[
\sum_{n=0}^{\infty} C_{n, \lambda}^{(2, r)}(x) \frac{1}{n!} \lambda^{-n} \left(\frac{e^\lambda - 1}{\lambda} \right)^n
\]

Theorem 8. For \(m \geq 0 \), we have

\[
C_{m, \lambda}^{(1, r)}(x) = \sum_{n=0}^{m} B_n^{(r)}(x+1) \lambda^{m-n} S_1(m, n) = \sum_{n=0}^{m} C_{n, \lambda}^{(2, r)}(x) \lambda^{m-n} S_1(m, n).
\]
From 2-times degenerate Cauchy polynomials of order r in (10), we have

\[
(15) \quad \frac{\log(1 + \log(1 + \lambda t))}{\log(1 + \log(1 + \log(1 + \lambda t)))} \left(1 + \log(1 + \log(1 + \lambda t)) \right)^{x} \\
= \sum_{m=0}^{\infty} B_{m}^{(m-r+1)}(x+1) \frac{1}{m!} \left(\log(1 + \log(1 + \lambda t)) \right)^{m} \\
= \sum_{m=0}^{\infty} B_{m}^{(m-r+1)}(x+1) \sum_{l=m}^{\infty} \lambda^{-m} S_{1}(l, m) \frac{\log(1 + \lambda t)^{m}}{m!} \\
= \sum_{m=0}^{\infty} B_{m}^{(m-r+1)}(x+1) \sum_{l=m}^{\infty} \lambda^{-m} S_{1}(l, m) \sum_{n=l}^{\infty} S_{1}(n, l) \frac{\lambda^{n-m}}{n!} \\
= \sum_{n=0}^{\infty} \left(\sum_{l=0}^{n} \sum_{m=0}^{l} B_{m}^{(m-r+1)}(x+1) \lambda^{-m} S_{1}(n, l) S_{1}(l, m) \right) \frac{\lambda^{n}}{n!}.
\]

Thus by comparing the coefficients in (10) and (15), we have the following identity.

\[
C_{n, \lambda}^{(2, r)}(x) = \sum_{l=0}^{n} \sum_{m=0}^{l} B_{m}^{(m-r+1)}(x+1) \lambda^{-m} S_{1}(n, l) S_{1}(l, m).
\]

Inductively we have the following theorem, which represents k-times degenerate Cauchy polynomials of order r.

Theorem 9. For $n_i \geq 0$, $i = 1, 2, \ldots, k+1$, we have

\[
C_{n_{k+1}, \lambda}^{(k, r)}(x) = \sum_{n_k=0}^{n_{k+1}} \cdots \sum_{n_1=0}^{n_2} B_{n_1}^{(n_1-r+1)}(x+1) \lambda^{n_k-n_{k+1}} \prod_{i=1}^{k} S_{1}(n_{i+1}, n_i).
\]

From above Theorem 9, specially for the case $k = 1$ or $r = 1$, we have the following well-known results.

Corollary 10. For $n \geq 0$ and $n_i \geq 0$, $i = 1, \ldots, k+1$, we have

(i) $C_{n, \lambda}^{(r)}(x) = \sum_{m=0}^{n} B_{m}^{(m-r+1)}(x+1) S_{1}(n, m) \lambda^{n-m}$.

(ii) $C_{n_{k+1}, \lambda}^{(k)}(x) = \sum_{n_k=0}^{n_{k+1}} \cdots \sum_{n_1=0}^{n_2} B_{n_1}^{(n_1)}(x+1) \lambda^{n_k-n_{k+1}} \prod_{i=1}^{k} S_{1}(n_{i+1}, n_i)$.

In particular,

\[
C_{n_{k+1}, \lambda}^{(k)} = \sum_{n_k=0}^{n_{k+1}} \cdots \sum_{n_1=0}^{n_2} B_{n_1}^{(n_1)}(1) \lambda^{n_k-n_{k+1}} \prod_{i=1}^{k} S_{1}(n_{i+1}, n_i).
\]

Proof. (i) See [10, Theorem 2.4].

(ii) See [3, Theorem 8].
Observe that the generating function of 2-times degenerate Cauchy polynomials of order r in (10), we have the following identity.

\[
\sum_{n=0}^{\infty} C_{n,\lambda}^{(2,r)}(x) \frac{t^n}{n!} = \left(\sum_{l=0}^{\infty} C_{l,\lambda}^{(2,r)} \frac{t^l}{l!} \right) \left(1 + \log(1 + \log(1 + \lambda t))^{\frac{1}{\lambda}} \right)^x
\]

\[
= \left(\sum_{l=0}^{\infty} C_{l,\lambda}^{(2,r)} \frac{t^l}{l!} \right) \left(\sum_{m=0}^{\infty} (x)_m \frac{1}{m!} \left(1 + \log(1 + \log(1 + \lambda t))^{\frac{1}{\lambda}} \right)^m \right)
\]

\[
= \left(\sum_{l=0}^{\infty} C_{l,\lambda}^{(2,r)} \frac{t^l}{l!} \right) \left(\sum_{m=0}^{\infty} (x)_m \sum_{j=m}^{\infty} S_1(j, m) \lambda^{-m} \log(1 + \lambda t) \frac{1}{j!} \right)
\]

\[
= \left(\sum_{l=0}^{\infty} C_{l,\lambda}^{(2,r)} \frac{t^l}{l!} \right) \left(\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \sum_{m=0}^{\infty} (x)_m \lambda^{-m} S_1(i, j) S_1(j, m) \frac{t^i}{i!} \right). \]

Therefore by comparing the coefficients of (10) and (16), we obtain the following theorem.

Theorem 11. For $n \geq 0$, we have

\[
C_{n,\lambda}^{(2,r)}(x) = \sum_{i=0}^{n} \sum_{j=0}^{i} \sum_{m=0}^{j} (x)_m \left(\frac{n}{i} \right) \lambda^{-m} S_1(i, j) S_1(j, m) C_{n-i,\lambda}^{(2,r)}.
\]

We try k-times degenerate Cauchy polynomial of order r, inductively we have the following theorem.

Theorem 12. For $n_{k+1} \geq 0$, we have

\[
C_{n_{k+1},\lambda}^{(k,r)}(x) = \sum_{n_k=0}^{n_{k+1}} \sum_{n_{k-1}=0}^{n_k} \cdots \sum_{n_0=0}^{n_1} (x)_n \left(\frac{n_{k+1}}{n_k} \right) \lambda^{-n_k} S_1(n_k, 0) C_{n-k-1,\lambda}^{(k,r)} \prod_{i=0}^{k} S_1(n_{i+1}, n_i).
\]

Specially for the case $k = 1$ or $r = 1$ we have the following well-known result.

Corollary 13. For $n \geq 0$, and $n_i \geq 0$, $i = 1, 2, \ldots, k + 1$, we have

(i) $C_{n,\lambda}^{(r)}(x) = \sum_{k=0}^{n} \sum_{m=0}^{k} \left(\binom{n}{k} \right) S_1(k, m)(x)_m C_{n-k,\lambda}^{(r)}$ and

(ii) $C_{n_{k+1},\lambda}^{(k)}(x) = \sum_{n_k=0}^{n_{k+1}} \cdots \sum_{n_0=0}^{n_1} (x)_n \lambda^{-n_k} \prod_{j=0}^{k} S_1(n_{j+1}, n_j) C_{n_{k+1}-n_k,\lambda}^{(k)}$.

ON FINITE TIMES DEGENERATE HIGHER-ORDER CAUCHY

\[= \sum_{n_k=0}^{n_{k+1}} \cdots \sum_{n_0=0}^{n_{k+1}} (n_k+1)(x)_{n_k} \lambda^{n_k-n_{k+1}} \prod_{j=0}^{k} S_1(n_{j+1}, n_j) \times \alpha, \text{ where} \]

\[\alpha = \sum_{m_k=0}^{n_{k+1}-n_k} \sum_{m_{k-1}=0}^{m_k} \cdots \sum_{m_1=0}^{m_{k-1}} \lambda^{n_{k+1}-n_k-m_k} S_1(n_{k+1}-n_k, m_k) \prod_{i=0}^{k-1} S_1(m_{i+1}, m_i) \frac{1}{m_0+1}.\]

Proof. (i) See [10, Theorem 2.5].
(ii) See [3, Theorem 6]. □

T. Kim defined the degenerate Cauchy polynomials of the second kind of order \(r\) as follows:

\[
\int_0^1 \cdots \int_0^1 \left(1 + \log(1 + \lambda t)^{1/\lambda} \right)^{-x_1-\cdots-x_r+x} dx_1 \cdots dx_r
\]

\[= \left(\frac{\log(1 + \lambda t)^{1/\lambda}}{\log(1 + \log(1 + \lambda t)^{1/\lambda}) \left(\log(1 + \lambda t)^{1/\lambda} + 1\right)}\right)^r \left(\log(1 + \lambda t)^{1/\lambda} + 1\right)^x
\]

\[= \sum_{n=0}^{\infty} \tilde{C}_{n,r}(x) \frac{t^n}{n!} \text{ (see [10], equation (2.10)).} \]

Now we degenerate one more time the above (17) degenerated Cauchy polynomials of the second kind as follows:

\[
\int_0^1 \cdots \int_0^1 \left(1 + \log(1 + \log(1 + \lambda t)^{1/\lambda})^{1/\lambda} \right)^{-x_1-\cdots-x_r+x} dx_1 \cdots dx_r
\]

\[= \left(\frac{\log(1 + \log(1 + \lambda t)^{1/\lambda})^{1/\lambda}}{\log(1 + \log(1 + \log(1 + \lambda t)^{1/\lambda})^{1/\lambda}) \left(\log(1 + \log(1 + \lambda t)^{1/\lambda})^{1/\lambda} + 1\right)}\right)^r \times \left(\log(1 + \log(1 + \lambda t)^{1/\lambda})^{1/\lambda} + 1\right)^x
\]

\[= \sum_{n=0}^{\infty} \tilde{C}_{n,r}(x) \frac{t^n}{n!}. \]

Thus, by (18) and (6), we get

\[\tilde{C}_{n,r}(x) = \sum_{l=0}^{n} \sum_{m=0}^{l} \lambda^{n-m} B_{m}^{(m-r+1)}(x-r+1)S_1(n,l)S_l(l,m). \]

Inductively we degenerate \(k\)-times the degenerate Cauchy polynomials of the second kind with order \(r\), we get the following theorem.

Theorem 14. For \(n_i \geq 0, \text{ where } i = 0, 1, \ldots, k+1\), we have

\[\tilde{C}_{nk+1,r}(x) = \sum_{n_k=0}^{n_{k+1}} \cdots \sum_{n_1=0}^{n_k} \lambda^{n_{k+1}-n_k} B_{n_1}^{(n_{1}-r+1)}(x-r+1) \prod_{i=1}^{k} S_1(n_{i+1}, n_i). \]
In case $k = 1$ in Theorem 14, we have ([10], equation (2.10)) as follows.

$$
\tilde{C}_{n,\lambda}^{(r)}(x) = \sum_{l=0}^{n} \lambda^{n-l} B_{l}^{(l-r+1)}(x-r+1) S_{1}(n, l).
$$

In case $r = 1$ in Theorem 14 we have ([3], Theorem 11) as follows.

$$
\tilde{C}_{n+1,\lambda}^{(k)}(x) = \sum_{n_{k+1}=0}^{n_{k+1}} \cdots \sum_{n_{1}=0}^{n_{1}} \lambda^{n_{k+1}-n_{1}} \left(\prod_{i=1}^{k} S_{1}(n_{i+1}, n_{i}) \right) \tilde{C}_{n_{1},\lambda}^{(1)}(x)
$$

$$
= \sum_{n_{k}=0}^{n_{k}} \cdots \sum_{n_{1}=0}^{n_{1}} \lambda^{n_{k+1}-n_{1}} \left(\prod_{i=1}^{k} S_{1}(n_{i+1}, n_{i}) \right) B_{n_{1}}^{(n_{1})}(x).
$$

References

[1] A. Bayad and T. Kim, Identities involving values of Bernstein, q-Bernoulli, and q-Euler polynomials, Russ. J. Math. Phys. 18 (2011), no. 2, 133–143.

[2] L. Comtet, Advanced Combinatorics, Reidel, Doredecht, 1974.

[3] J. Jeong, S. H. Rim, and B. M. Kim, On finite times degenerate Cauchy numbers and polynomials, Adv. Difference Equ. 2015 (2015), 321, 12 pp.

[4] D. S. Kim and T. Kim, Higher-order Cauchy of the first kind and poly-Cauchy of the first kind mixed type polynomials, Adv. Stud. Contemp. Math. 24 (2013), no. 4, 621–636.

[5] D. S. Kim and T. Mansour, Umbral calculus associated with Frobenius-type Eulerian polynomials, Russ. J. Math. Phys. 21 (2014), no. 1, 36–45.

[6] T. Kim, Barnes’ type multiple degenerate Bernoulli and Euler polynomials, Appl. Math. Comput. 258 (2015), 556–564.

[7] T. Kim, On the degenerate Cauchy numbers and polynomials, Proc. Jangjeon Math. Soc. 18 (2015), no. 3, 307–312.

[8] T. Kim, Degenerate Euler zeta function, Russ. J. Math. Phys. 22 (2015), no. 4, 469–472.

[9] T. Kim, Higher-order Cauchy numbers and polynomials, Adv. Studies in Contemp. Math. 25 (2015), no. 3, 417–421.

[10] T. Kim and T. Mansour, Umbral calculus associated with Frobenius-type Eulerian polynomials, Russ. J. Math. Phys. 21 (2014), no. 4, 484–493.

[11] D. Merlini, R. Sprugnoli, and M. C. Verri, The Cauchy numbers, Discrete Math. 306 (2006), no. 16, 1906–1920.

[12] H. L. Saad, On the Cauchy polynomials, Int. Math. Forum 9 (2014), no. 3, 1695–1706.
Seog-Hoon Rim
Department of Mathematics Education
Kyungpook National University
Daegu 41566, Korea
E-mail address: shrim@knu.ac.kr