Chronic use of hydroxychloroquine did not protect against COVID-19 in a large cohort of patients with rheumatic diseases in Brazil

Gecilmara Salviato Pileggi1, Gilda Aparecida Ferreira2, Ana Paula Monteiro Gomides Reis3, Edgard Torres Reis-Neto4, Mirhelen Mendes Abreu5, Cleandro Pires Albuquerque3, Nafice Costa Araújo6, Ana Beatriz Bacchiega1, Dante Valdetaro Bianchi7, Blanca Bica5, Eloisa Duarte Bonfa8, Eduardo Ferreira Borba8, Danielle Christine Soares Egpyto Brito9, Ângela Luzia Branco Pinto Duarte10, Rafaela Cavalheiro Espírito Santo11, Paula Reale Fernandes12, Mariana Peixoto Guimarães13, Kirla Wagner Poti Gomes14, Adriana Maria Kakehasi2, Evandro Mendes Klumb15, Cristina Costa Duarte Lanna2, Claudia Diniz Lopes Marques10, Odirlei André Monticelo11, Lícia Maria Henrique Mota3, Gabriela Araújo Munhoz16, Eduardo Santos Paiva17, Helena Lucia Alves Pereira18, José Roberto Provenza19, Sandra Lucia Euzébio Ribeiro18, Laurindo Ferreira Rocha Junior20, Camila Santana Justo Cintra Sampaio21, Vanderson Souza Sampaio22,23,24, Emília Inoue Sato4, Thelma Skare25, Viviane Angelina de Souza12, Valeria Valim26, Marcus Vinícius Guimarães Lacerda22,23,24, Ricardo Machado Xavier11 and Marcelo Medeiros Pinheiro4

Abstract
Background: There is a lack of information on the role of chronic use of hydroxychloroquine during the SARS-CoV-2 outbreak. Our aim was to compare the occurrence of COVID-19 between rheumatic disease patients on hydroxychloroquine with individuals from the same household not taking the drug during the first 8 weeks of community viral transmission in Brazil.

Methods: This baseline cross-sectional analysis is part of a 24-week observational multi-center study involving 22 Brazilian academic outpatient centers. All information regarding COVID-19 symptoms, epidemiological, clinical, and demographic data were recorded on a specific web-based platform using telephone calls from physicians and medical students. COVID-19 was defined according to the Brazilian Ministry of Health (BMH) criteria. Mann–Whitney, Chi-square and Exact Fisher tests were used for statistical analysis and two binary Final Logistic Regression Model by Wald test were developed using a backward-stepwise method for the presence of COVID-19.

Results: From March 29th to May 17th, 2020, a total of 10,443 participants were enrolled, including 5166 (53.9%) rheumatic disease patients, of whom 82.5% had systemic erythematosus lupus, 7.8% rheumatoid arthritis, 3.7% Sjögren's syndrome and 0.8% systemic sclerosis. In total, 1822 (19.1%) participants reported flu symptoms within the 30 days prior to enrollment, of which 3.1% fulfilled the BMH criteria, but with no significant difference between

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

*Correspondence: gildaferreira9@gmail.com
2 Hospital das Clínicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
Full list of author information is available at the end of the article
Background
Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) is the etiological agent of COVID-19, a public health emergency with relevant challenges worldwide and different epidemic curves and mortality rates between countries [1, 2]. The disease has a heterogeneous clinical spectrum, from asymptomatic forms to severe systemic involvement, including pneumonia, cytokine storm syndrome, endotheliocyte damage, and thrombotic events [3–8].

Initial data have suggested that SARS-CoV-2 does not appear to cause more serious disease in immunosuppressed patients [9–11] and this clinical observation has drawn attention to a potential beneficial or ‘protective’ effect of medications used to control rheumatic diseases (RD) [12–15]. Chloroquine (CQ) and hydroxychloroquine (HCQ), immunomodulator drugs traditionally used to treat malaria and rheumatic diseases (RD), such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and primary Sjögren syndrome (pSS) [16–18], were pointed out as effective pharmacological strategies against COVID-19 in vitro and in anecdotal reports [19–21]. In addition, it could attenuate the cytokine storm observed in moderate or severe COVID-19 forms mitigating unfavorable outcomes. However, there are controversial data regarding their efficacy and safety to treat COVID-19 patients and a recent randomized controlled trial did not show any beneficial effect in patients hospitalized with mild-to-moderate disease when compared to standard care [22–27]. Gentry et al. did not found any significant difference regarding the incidence of active SARS-CoV-2 infection between patients with rheumatic diseases receiving hydroxychloroquine and patients without it [28].

Methods
Study design and participants
This study aimed to evaluate the frequency of COVID-19 in patients with RD in HCQ in comparison with their cohabitants during the SARS-CoV-2 pandemic in Brazil. This is a cross-sectional, observational, paired study, including adult volunteers (≥ 18 years of age), with a known previous diagnosis of RD, using HCQ for at least 30 days before the initial consultation. According to the previously defined classification criteria, the cohort included patients with SLE [29]; RA [30]; pSS [31]; systemic sclerosis [32]; inflammatory myopathies [33]; mixed connective tissue disease [34]; hand osteoarthritis [35, 36], and chikungunya-related arthropathy [37].

Household cohabitants aged over 18, without RD and not using antimalarials for any purpose, were chosen as the control group to ensure more homogeneous environmental exposure to the SARS-CoV-2 infection among participants during the community viral transmission, instead of including rheumatic disease patients not using antimalarials, who would probably present a different set of diseases and different epidemiological exposure.

All participants with a history of solid organ or bone marrow transplantation, neoplasm in the previous 12 months, immunoglobulin use in the previous 30 days, current kidney replacement therapy, thymus disease, other immunodeficiencies, or positive HIV status were excluded.

Twenty-two tertiary rheumatology centers, representing the five geographic regions of Brazil and thus encompassing most of the population variability, joined the task-force study. The inclusion period was the first 8 weeks of community transmission in Brazil. This manuscript is part of a larger prospective study with 24-week follow-up.

Procedures
Participants were enrolled in this multi-center study and included through phone calls performed by previously trained medical students and physicians. Details were obtained of epidemiological and demographic data, as well as RD status and current treatment data. In addition, specific information about the COVID-19 symptoms, hospitalization, need for intensive care, and death was recorded in both groups and represents the main risk factor significantly associated with a COVID-19 diagnosis was lung disease (OR 1.63; 95% CI 1.03–2.58); and for rheumatic disease patients were diagnosis of systemic sclerosis (OR 2.8; 95% CI 1.19–6.63) and glucocorticoids above 10 mg/day (OR 2.05; 95% CI 1.31–3.19). In addition, a recent influenza vaccination had a protective effect (OR 0.674; 95% CI 0.46–0.98).

Conclusion: Patients with rheumatic disease on hydroxychloroquine presented a similar occurrence of COVID-19 to household cohabitants, suggesting a lack of any protective role against SARS-CoV-2 infection.

Trial registration Brazilian Registry of Clinical Trials (ReBEC; RBR – 9KTWX6).

Keywords: COVID-19, Hydroxychloroquine, Rheumatic diseases
endpoints of this cohort. All the data are stored and managed using an electronic on-line platform (REDCap).

Patients taking other dosages of HCQ than 5 mg/kg/day (maximum 400 mg/day) or using CQ were not included in the final analysis.

**Outcomes**

The results presented in this manuscript are from a cross-sectional database analysis at baseline (first telephone interview-inclusion visit) with the main outcome being the occurrence of COVID-19, according to the Brazilian Ministry of Health (BMH), within 30 days prior to enrollment [38]. Confirmatory tests have not been routinely performed in Brazil for patients with mild symptoms of SARS-CoV-2 infection, only for moderate-severe cases.

**Outcome definitions**

Participants in this study were defined with COVID-19, according to the most recent criteria established by the Brazilian Ministry of Health (BMH) during the pandemic period. The BMH criteria was applied to symptomatic patients based on the clinical, epidemiological and laboratory criteria, were considered as COVID-19 (Fig. 1).

**Statistical analyses**

Descriptive statistics were expressed as mean, standard deviation, as well as frequency (%) and difference 95% confidence intervals (95% CI). The Kolmogorov–Smirnov test was used to verify a normal data distribution. Two binary Final Logistic Regression Model by Wald test were developed using a backward-stepwise method for the presence of COVID-19, including Odds Ratio (OR) and their respective 95% CI. The first model considered both groups (cases and controls) and was adjusted for age, sex, lung and kidney disease, hypertension, diabetes, and influenza vaccine within the previous 30 days. The second one included only RD patients, adjusted for lung disease, corticosteroids, systemic sclerosis, and influenza vaccine within the previous 30 days. Only variables with p value below 0.2 found in the first model was added to the second model. A P-value under 0.05 was considered significant. The statistical analysis was performed using IBM-SPSS v.20.0 software.

**Results**

From March 29th to May 17th, 2020 (8-week period), a total of 9589 participants from 97 Brazilian cities were enrolled at baseline, including 5166 (53.9%) patients with RD on HCQ (5 mg/kg/day, maximum dosage of 400 mg),

![Outcome definition](image)

**Fig. 1** Outcome definition: participants were classified according to the Brazilian Ministry of Health (BMH) criteria using the definition for COVID-19. Individuals with more than 3 days of influenza-like illness symptoms were considered for this analysis.
and 4423 (46.1%) cohabitants living in the same household. Of these, 854 (8.1%) individuals were excluded according to the eligibility criteria (Fig. 2).

Although statistically different, the difference between the mean age and frequency of contact with a confirmed case of COVID-19 were not clinically relevant. There was a higher frequency of females in the patients’ group and a higher frequency of males in the household cohabitants. All concomitant diseases evaluated were significantly more common in RD patients than the control group, except for diabetes. On the other hand, social distancing and influenza vaccination were reported more frequently by RD patients (Table 1).

Most of the RD patients had SLE (N = 4243; 82.5%), followed by RA (N = 402; 7.8%), and pSS (N = 192; 3.7%). Among the 5166 RD patients, 97.5% are using HCQ, of whom 522 (10.1%) take it as monotherapy and 4644 (89.9%) combined with other therapies, such as

---

**Fig. 2** Flowchart of participants enrolled in this study, considering influenza-like illness symptoms and a diagnosis of COVID-19, according to the Brazilian Ministry of Health criteria
corticosteroids (37.0%) and immunosuppressant drugs (48.9%). The remaining 2.5% from antimalarials users were taking other chloroquine salts, particularly diphosphate, and they were excluded from this final analysis (Table 2).

In total, 1822 (19.1%) participants reported influenza-like illness symptoms within the 30 days prior to enrollment, of whom 293 (3.1%) individuals fulfilled the BMH criteria for a COVID-19 diagnosis [38]. In general, the frequency of self-reported influenza-like illness symptoms was significantly higher in RD patients, including those with severe symptoms (such as shortness of breath), except fever and anosmia (Table 3).

Considering a COVID-19 diagnosis, there was no significant difference in the number of cases between RD patients (4.03%) and the control group (3.25%) (OR 0.78, −0.05; 1.60). Men (OR 0.71; 95% CI 0.52–0.98, p = 0.043) participants had lower likely of having the disease. On the other hand, individuals with previous lung disease (OR 1.63; 95% CI 1.03–2.58, p = 0.038) were more likely to present clinically confirmed COVID-19 in the final logistic regression model, after adjustments for multiple confounders, using the variables with p < 0.2 in the first (Table 4).

Considering only RD patients, having systemic sclerosis and current use of glucocorticoids (daily dosage above 10 mg) had a harmful effect for a COVID-19 diagnosis while a recent influenza vaccination had a protective role (OR 0.674; 95% CI 0.46–0.98), after multiple adjustments for sex, age, concomitant medication,

---

**Table 1** Epidemiological and clinical data between patients with rheumatic diseases and household contacts at baseline

| Variables                              | All          | RD patients  | Household co-habitants | Difference (CI 95%) | p*   |
|----------------------------------------|--------------|--------------|------------------------|---------------------|------|
|                                        | N = 9589     | N = 5166     | N = 4423               |                     |      |
|                                        | n (%)        | n (%)        | n (%)                  |                     |      |
| Age, years (SD)                        | 43.5 (14.9)  | 43.1 (13.9)  | 44.0 (16.1)            | 0.90 (0.29; 1.50)   | 0.039|
| Sex                                    |              |              |                        |                     |      |
| Women                                  | 6617 (69.4)  | 4772 (92.6)  | 1845 (42.2)            | 50.4 (48.8; 52.0)   | <0.001|
| Men                                    | 2912 (30.6)  | 382 (7.4)    | 2530 (57.8)            |                     |      |
| Schooling                              |              |              |                        |                     |      |
| Basic or illiterate                    | 2522 (26.5)  | 1296 (25.1)  | 1226 (28)              | 2.9 (1.1; 4.7)      | <0.001|
| High school                            | 4027 (42.2)  | 2166 (42)    | 1861 (42.6)            | 0.6 (−1.39; 2.6)    |      |
| College                                | 2983 (31.3)  | 1697 (32.9)  | 1286 (29.4)            | 3.5 (1.6; 5.4)      |      |
| Profession                             |              |              |                        |                     |      |
| Customer assistance                    | 1911 (20.2)  | 946 (18.5)   | 965 (22.2)             | 3.7 (2.1; 5.3)      | <0.001|
| Healthcare                             | 683 (7.2)    | 443 (8.7)    | 240 (5.5)              | 3.2 (2.2; 4.2)      |      |
| Safety professionals                   | 182 (1.9)    | 43 (0.8)     | 139 (3.2)              | 2.4 (1.8; 3.0)      |      |
| Education                              | 636 (6.7)    | 438 (8.6)    | 198 (4.6)              | 4.0 (3.0; 4.9)      |      |
| Housewife                              | 1662 (17.6)  | 1236 (24.2)  | 426 (9.8)              | 14.4 (12.9; 15.9)   |      |
| Others                                 | 4382 (46.3)  | 2011 (39.3)  | 2371 (54.6)            | 15.3 (13.3; 17.3)   |      |
| Contact with confirmed case of COVID-19|              |              |                        |                     |      |
| No                                     | 8136 (85.3)  | 4484 (86.9)  | 3652 (83.4)            | 3.5 (2.1; 4.9)      | <0.001|
| Yes                                    | 727 (7.6)    | 380 (7.4)    | 347 (7.9)              | 0.5 (−0.6; 1.6)     |      |
| Unknown                                | 673 (7.1)    | 294 (5.7)    | 379 (8.7)              | 3.0 (1.9; 4.1)      |      |
| Family unit in social distancing       | 5787 (60.7)  | 3235 (62.7)  | 2552 (58.4)            | 4.3 (2.3; 6.3)      | <0.001|
| Heart disease                          | 496 (5.3)    | 314 (6.2)    | 182 (4.3)              | 1.9 (1.0; 2.8)      | <0.001|
| Diabetes                               | 703 (7.5)    | 339 (6.7)    | 364 (8.5)              | 1.8 (0.7; 2.9)      | <0.001|
| Lung disease                           | 497 (5.3)    | 357 (7)      | 140 (3.3)              | 3.7 (2.8; 4.6)      | <0.001|
| Kidney disease                         | 602 (6.4)    | 565 (11.1)   | 37 (0.9)               | 10.2 (9.3; 11.1)    | <0.001|
| Hypertension                           | 2673 (28.6)  | 1692 (33.3)  | 981 (23)               | 10.3 (8.5; 12.1)    | <0.001|
| Influenza vaccine within last 30 days   | 2584 (27.2)  | 1527 (29.6)  | 1057 (24.2)            | 5.4 (3.6; 7.2)      | <0.001|

Bold values indicate statistical significance (p < 0.05)
The results are expressed as means, standard deviation and percentages
CI, confidence interval; RD, rheumatic diseases; COVID-19, Coronavirus disease 2019
* Chi-square test
Discussion

Our results showed patients with RD on HCQ had a similar likelihood of presenting a COVID-19 diagnosis, according to the BMH criteria, when compared to cohabitants living in the same household during the first 8 weeks of community transmission in Brazil. Considering that according to recent studies [12, 39], patients with RD present a similar incidence of COVID-19 to the general population but with a potentially more unfavorable outcome [40, 41] and higher mortality rate [42, 43], we were not able to confirm our preliminary hypothesis in demonstrating a potential beneficial effect of chronic HCQ use against SARS-CoV-2 [44] in a population that traditionally has a higher prevalence of respiratory diseases.

Moreover, our data showed a higher frequency of influenza-like illness symptoms, including those with greater severity, especially shortness of breath, in patients with RD when compared with controls, suggesting these individuals should maintain social distancing, especially those that work with customer assistance, such as healthcare, teaching, and safety professionals [12, 45–50]. However, it is worth highlighting that patients with RD may report more symptoms than controls due to different behavior in relation to the perception of signs and symptoms because of the information they receive about their underlying disease from healthcare professionals and the combination of disease activity, as well as that the immunosuppression may predispose them to more infectious diseases that cause influenza-like illness symptoms such as influenza, adenovirus, and others [51].

Although CQ has in vitro activity against influenza, HCQ use did not prevent infection or decrease the risk of influenza infection [52–57]. Thus, our data are supported by current evidence demonstrating a lack of association between HCQ and COVID-19 considering pre-exposure (PrEP) and post-exposure prophylaxis especially in individuals at risk, such as healthcare professionals, as well as more recent randomized clinical trials, including mild-moderate and severe forms of SARS-CoV-2 infection [22, 24, 26, 27, 58–62].

In our total sample, men had a lower risk of COVID-19 than women (OR 0.71; 95% CI 0.52–0.98). This aspect could be related to higher frequency of female in patients group than in the control group because of inclusion approach that prioritized household contact paired for age (husband and wife more frequently). Also, men participants had less comorbidities and used less glucocorticosteroids. The current literature has shown a similar incidence between men and women, but with a poorer outcome in the former [1, 63–65].

Patients with RD using a daily GC dosage above 10 mg/day (prednisone equivalent), particularly above 20 mg/day, presented a two times higher risk of COVID-19 in our cohort. These data confirm previous findings showing a harmful effect of GC on the infection rate in immune-mediated RD patients, especially lupus [66], hampering the immune response against several infectious agents.
Table 3  Self-reported influenza-like illness symptoms and a COVID-19 diagnosis in patients with rheumatic diseases and household contacts at baseline

| Symptoms                                | All N = 9589 n (%) | RD Patients N = 5164 n (%) | Household co-habitants N = 4378 n (%) | Difference (95% CI) | p*  |
|------------------------------------------|--------------------|-----------------------------|---------------------------------------|---------------------|-----|
| **Any**                                  | 1822 (19.1)        | 1135 (22)                   | 687 (15.7)                           | 6.3 (4.7; 7.9)      | <0.001|
| **Fatigue**                              | 531 (5.6)          | 328 (6.4)                   | 203 (4.6)                            | 1.8 (0.9; 2.7)      | <0.001|
| **Headache**                             | 734 (7.7)          | 453 (8.8)                   | 281 (6.4)                            | 2.4 (1.3; 3.5)      | <0.001|
| **Rhinorrhea**                           | 976 (10.2)         | 601 (11.6)                  | 375 (8.6)                            | 3.0 (1.8; 4.2)      | <0.001|
| **Dysgeusia**                            | 242 (2.5)          | 146 (2.8)                   | 96 (2.2)                             | 0.6 (0; 1.2)        | 0.049 |
| **Shortness of breath**                  | 266 (2.8)          | 188 (3.6)                   | 78 (1.8)                             | 1.8 (1.2; 2.4)      | <0.001|
| **Sore throat**                          | 704 (7.4)          | 455 (8.8)                   | 249 (5.7)                            | 3.1 (2.1; 4.1)      | <0.001|
| **Fever**                                | 486 (5.1)          | 276 (5.3)                   | 210 (4.8)                            | 0.5 (−0.4; 1.4)     | 0.225 |
| **Anosmia**                              | 209 (2.2)          | 120 (2.3)                   | 89 (2)                               | 0.3 (−0.3; 0.9)     | 0.333 |
| **Cough**                                | 910 (9.5)          | 579 (11.2)                  | 331 (7.6)                            | 3.6 (2.4; 4.8)      | <0.001|
| **Fever AND Shortness of breath**        | 123 (1.3)          | 80 (1.9)                    | 43 (1.2)                             | 0.7 (0.2; 1.2)      | 0.005 |
| **Fever AND Cough AND Shortness of breath** | 83 (0.9)      | 53 (1.3)                    | 30 (0.8)                             | 0.5 (0.1; 0.9)      | 0.034 |
| BMH COVID-19 criteria                    | 293 (3.1)          | 169 (4.03%)                 | 124 (2.85%)                          | 0.78 (−0.05; 1.60)  | 0.065 |

Bold values indicate statistical significance (p < 0.05)
The results are expressed as means, standard deviation and percentages
BMH, Brazilian Ministry of Health
* There are 45 missing data; **There are 2 missing

Table 4  Final logistic regression model considering all individuals enrolled at baseline

| Variables                                      | Binary analysis | Multivariate analysis |
|------------------------------------------------|-----------------|----------------------|
|                                                | No symptoms N = 7720 | Clinically Confirmed COVID-19 N = 293 | p | OR (95% CI) | P*** |
| Age (y), mean (SD); med. (min–max.)            | 43.9 (15.2); 42 (18–98) | 41.6 (13.0); 41 (18–90) | 0.028* | 0.989 (0.981; 0.997) | 0.008 |
| Group                                          |                 |                      | 0.065** | 1 | - |
| Household cohabitants                          | 3691 (47.8)     | 124 (42.3)           | 1.10 (0.83; 1.46) | 0.526 |
| RD patients                                    | 4029 (52.2)     | 169 (57.7)           | 0.01** | 1 | - |
| Sex                                            |                 |                      | 0.01** | 1 | - |
| Women                                          | 5259 (68.2)     | 218 (75.4)           | 0.01** | 1 | - |
| Men                                            | 2450 (31.8)     | 71 (24.6)            | 0.01** | 1 | - |
| Schooling                                      |                 |                      | 0.01** | 1 | - |
| Basic or illiterate                           | 2110 (27.4)     | 64 (21.8)            | 0.091** | 1 | - |
| High school                                    | 3280 (42.6)     | 139 (47.4)           | 0.07** | 1 | - |
| College                                        | 2317 (30.1)     | 90 (30.7)            | 0.091** | 1 | - |
| Family in social distancing                    | 4728 (61.3)     | 172 (58.9)           | 0.402** | 1 | - |
| Heart disease                                  | 398 (5.3)       | 17 (6)               | 0.570** | 1 | - |
| Diabetes                                       | 585 (7.7)       | 17 (6)               | 0.292** | 1 | - |
| Lung disease                                   | 367 (4.8)       | 21 (7.4)             | 0.048** | 1.63 (1.03; 2.58) | 0.038|
| Kidney disease                                 | 465 (6.1)       | 23 (8.2)             | 0.048** | 1.63 (1.03; 2.58) | 0.038|
| Hypertension                                   | 2165 (28.6)     | 78 (27.7)            | 0.730** | 1 | - |
| Influenza vaccine within 30 last days          | 2138 (27.8)     | 63 (21.6)            | 0.022** | 1 | - |

Bold values indicate statistical significance (p < 0.05)
Outcome is clinically confirmed COVID-19 diagnosis
Y, years; SD, standard deviation; med., median; min., minimum; max., maximum
* Mann–Whitney test; **Chi-square test; ***Wald test by final logistic regression model
including SARS-CoV-2 [67–70]. More recently, Gianfrancesco et al. also reported a higher risk of hospitalization in individuals using more than 10 mg/day (OR 2.05; 95% CI 1.06–3.96) and no significant association with HCQ, in agreement with our findings [41]. On the other hand, performing a sensitivity analysis excluding patients that received more than 10 mg/day of glucocorticoids from the RD group, and we observed quite similar findings (data not shown), suggesting that the risk for COVID-19 did not change when adjusted for corticosteroids (high vs. low dosage). It is important taking into consideration the low daily GC dosage (<10 mg in almost 75% of them) and low proportion of current pulse therapy (around 2% of cyclophosphamide or methylprednisolone).

In the final multivariate model, systemic sclerosis was the only RD related to COVID-19, regardless of interstitial lung disease or the use of HCQ, as pointed out by some authors [71–73]. Nonetheless, an Italian phone interview study did not find any association regarding a higher risk in SS patients [39].

Interestingly, some of the main comorbidities associated with an unfavorable outcome and increased risk of death, such as diabetes, and heart and kidney diseases [1, 39, 64] were not significantly associated with COVID-19 in our patients with RD. In addition, the self-reporting of fever and/or anosmia, more specific symptoms of COVID-19, was also not different between RD patients and controls [74].

Although post influenza vaccine side effects could also have been a potential confounding factor, we found the influenza vaccine had an independent protective role in RD patients (OR 0.674; 95% CI 0.463–0.979), reducing the diagnosis of COVID-19 during the beginning of national vaccination campaign. Our data reinforce the effectiveness and safety of this approach in RD patients [75]. In addition, it is noteworthy pointing out this potential protective effect could be related to some bias, especially some behavioral attitudes (social distancing, strict masking and other self-care measurements) that are more observed in immunosuppressed patients.

To the best of our knowledge, this is the largest epidemiological study designed to evaluate the preventive role of HCQ to development of COVID-19 in patients with RD using HCQ. Some strengths should be considered, such as sampling size, the control group with the same epidemiological setting, weekly data quality monitoring, specific platform to collect all the information using serial, with national representation in pandemic times.

### Table 5 Final logistic regression model regarding rheumatic disease patients enrolled at baseline

| Variables | Binary analyses | Multivariate analyses |
|-----------|-----------------|----------------------|
|           | No symptoms N = 4029 n (%) | Clinical Covid-19 N = 169 n (%) | p | OR (95% CI) | p**** |
| Influenza vaccine within last 30 days | 1235 (30.7) 39 (23.1) 0.034** | 0.676 (0.465; 0.984) 0.041 |
| IV Methylprednisolone (pulse) | 21 (0.5) 2 (1.2) 0.236*** |
| Glucocorticoids | No | 2555 (63.9) 97 (58.1) 0.004** 1 |
| < 10 mg/day | 1099 (27.5) 43 (25.7) 0.965 (0.662; 1.41) 0.854 |
| > = 10 mg/day | 343 (8.6) 27 (16.2) 2.07 (1.33; 3.22) 0.001 |
| scDMARDs | 1875 (46.5) 84 (49.7) 0.419** |
| Biological or tsDMARDs | 120 (3) 7 (4.1) 0.387** |
| RA | 317 (7.9) 16 (9.5) 0.466** |
| MCTD | 56 (1.4) 2 (1.2) > 0.99*** |
| SS | 39 (0.9) 4 (2.4) 0.042*** 3.81 (1.31; 11.05) 0.014 |
| SLE | 3304 (82) 134 (79.3) 0.414** |
| IM | 26 (0.6) 1 (0.6) 0.703*** |
| OA | 60 (1.5) 1 (0.6) 0.518*** |
| pSjS | 150 (3.79) 6 (3.6) 0.560*** |
| Another RD | 55 (1.4) 4 (2.4) 0.299*** |

Bold values indicate statistical significance (p < 0.05)

RA, Rheumatoid arthritis; SLE, Systemic lupus erythematosus; RD, Rheumatic diseases; MCTD, Mixed connective tissue disease; SS, Systemic sclerosis; IM, Inflammatory myopathies; OA, Osteoarthritis; pSjS, Primary Sjögren syndrome; sc, synthetic conventional; ts, target-specific; DMARDs, Disease Activity-Modifying Drugs; Model 3, Outcome is COVID-19 diagnosis, according to the Brazilian Ministry of Health criteria; y, years; SD, standard deviation; med., median; min., minimum; max., maximum

* Mann–Whitney test; **Chi-square test; ***Fischer’s exact test; ****Wald test by final logistic regression model.
On the other hand, it is worth emphasizing some limitations of the study that are inherent to the COVID-19 pandemic, including the need for social distancing and specific guidance for the patients to avoid seeking medical care unless absolutely necessary. Therefore, in such a large population, we have only self-reported data, and a small number of confirmatory lab tests (RT-PCR and serology) and information on disease activity. The BMH criteria for COVID-19 have several similarities with the US criteria to define COVID-19 [76].

Another limitation was the lack of patients with RD not using HCQ as another control group. However, this approach could present other prescription biases, as SLE patients without antimalarial treatment are quite uncommon, except in those with previous toxicity (maculopathy, allergy, long-term remission, among others). The strategy of prioritizing and enrolling the household cohabitants was chosen because of the relevant epidemiological impact of COVID-19. A relevant clinical consideration is related to the severity of RD in the patients included in this cohort, since there were few patients taking biological DMARDs and cyclophosphamide. However, more recently, Zhong et al., in a Chinese retrospective study involving 6228 patients with autoimmune diseases that were enrolled in just 10 days and during sharp decline of COVID-19 outbreak in Hubei found lower risk of infection than patients taking other DMARDs (OR 0.09 [95% CI 0.01–0.94]; p = 0.044) [77].

As future perspectives, the shortage of HCQ with potential effects after withdrawal [78–81] will be further explored during the 24-week follow-up, as well as hospitalization and mortality rate [82].

Conclusion
This study provides evidence of a non-protective role of chronic HCQ use (5 mg of the sulfate/kg/day) concerning uncomplicated COVID-19 in RD patients, regardless of comorbidities, immunosuppression therapy, and social distancing.

Abbreviations
BMH: Brazilian Ministry of Health; CI: Confidence intervals; CQ: Chloroquine; HCQ: Hydroxychloroquine; OR: Odds ratio; pSS: Primary Sjögren syndrome; RA: Rheumatic arthritis; RD: Rheumatic diseases; SLE: Systemic lupus erythematosus.

Acknowledgements
To the Brazilian Society of Rheumatology for technical support and rapid nationwide mobilization. To all the 395 interviewers (medical students and physicians) who collaborated in the study and the participants.

Authors’ contributions
MMP, GSP, LHHM, GAF, CDLM, AMK, RMX, APMGR, ESP, ETRN, defined as Steering Committee, and MVGL conceived the study, developed the protocol and wrote the manuscript with input from all other authors. In addition, all authors are responsible for collecting data and processing, management them and statistical analysis. All authors read and approved the final manuscript.

Funding
Support sponsored by the National Council for Scientific and Technological Development CNPQ.

Availability of data and materials
The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Declarations
Ethics approval and consent to participate
This protocol was approved by the Brazilian Committee of Ethics in Human Research – CONEP on March 27th, 2020 (CAAE 30246120.3.1001.5505). The informed consent process was conducted by phone, as CONEP waived the requirement for the written informed consent form due to the COVID-19 social distancing constraints. This study was registered at the Brazilian Registry of Clinical Trials (ReBEC; RBR – 9KTXW6). All sections are in accordance with STROBE guidelines.

Consent for publication
The consent of publication was given together with the consent of participation for all participants and Investigators.

Competing interests
The authors declare that they have no competing interests.

Author details
1. Rheumatology Unit of Escola Paulista de Medicina (Unifesp/ EPM), São Paulo, SP, Brazil. 2. Hospital das Clínicas, Universidade Federal de Minas Gerais (UFGM), Belo Horizonte, MG, Brazil. 3. Hospital Universitário de Brasília da Universidade de Brasília, EBBERH (HUB-UnB), Brasilia, DF, Brazil. 4. Hospital São Paulo da Universidade Federal de São Paulo, Escola Paulista de Medicina (Unifesp/ EPM), São Paulo, SP, Brazil. 5. Hospital Universitário Clementino Fraga Filho, Universidade Federal Do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brasil. 6. Hospital Do Servidor Público Estadual, Hospital do Menino Deus (HMSPE), São Paulo, SP, Brazil. 7. Santa Casa de Misericórdia Do Rio Janeiro (HCSCMRJ), Rio de Janeiro, Rio, Brazil. 8. Hospital Universitário Da Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil. 9. Hospital Universitário da Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, MG, Brazil. 10. Santa Casa de Misericórdia de Belo Horizonte, Belo Horizonte, MG, Brazil. 11. Hospital Geral de Fortaleza (HGF), Fortaleza, CE, Brazil. 12. Hospital Universitário Pedro Ernesto, Universidade Federal do Estado Do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil. 13. Irmandade da Santa Casa de Misericórdia de São Paulo (ISCMSP), São Paulo, SP, Brazil. 14. Universidade Federal Do Paraná (UFPB), João Pessoa, PB, Brazil. 15. Hospital das Clínicas da Universidade Federal do Pernambuco (UFPE), Recife, PE, Brazil. 16. Hospital de Clínicas de Porto Alegre, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil. 17. Hospital Universitário da Universidade Federal de São Paulo (UFESP), Araraquara, SP, Brazil. 18. Hospital Universitário Lauro Wanderley, Universidade Federal da Paraíba (UFPE), João Pessoa, PB, Brazil. 19. Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil. 20. Hospital Universitário Lauro Wanderley, Universidade Federal da Paraíba (UFPE), João Pessoa, PB, Brazil. 21. Instituto de Ensino e Pesquisa No Sírio Libanês, São Paulo, SP, Brazil. 22. Fundação de Vigilância Em Saúde Do Amazonas, Manaus, AM, Brazil. 23. Instituto Leônidas and Maria Deane, Fiocruz, Manaus, AM, Brazil. 24. Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brazil. 25. Hospital Universitário Evangélico Mackenzie (HUEM), Curitiba, PR, Brazil. 26. Hospital Universitário Getúlio Vargas Universidade Federal Do Amazonas, Manaus, AM, Brazil. 27. Pontifícia Universidade Católica de Campinas (PUC-CAMP), Campinas, SP, Brazil. 28. Instituto de Medicina Integral Professor Fernando Figueira (IMIP/ PE), Recife, PE, Brazil. 29. Instituto de Ensino E Pesquisa No Sírio Libanês, São Paulo, SP, Brazil. 30. Fundação de Vigilância Em Saúde Do Amazonas, Manaus, AM, Brazil. 31. Instituto Leônidas and Maria Deane, Fiocruz, Manaus, AM, Brazil. 32. Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brazil. 33. Hospital Universitário Evangélico Mackenzie (HU/M), Curitiba, PR, Brazil. 34. Hospital Universitário Sassuol Antonio de Moraes, Universidade Federal Do Espírito Santo, Vitória, ES, Brazil.

Received: 2 April 2021 Accepted: 14 September 2021
Published online: 07 October 2021

References
1. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–62.
2. Peeri NC, Shrestha N, Rahman MS, Zaki R, Tan Z, Bibi S, et al. The SARS, MERS and novel coronavirus (COVID-19) epidemics, the newest and biggest global health threats: what lessons have we learned? Int J Epidemiol. 2020;49(3):717–26.

3. Gupta A, Madhavan MV, Selag K, Nair N, Mahajan S, Sehrawat A, et al. Extrapolatory manifestations of COVID-19. Nat Med. 2020;26(7):1017–32.

4. Zheng KL, Feng G, Liu WY, Targher G, Byrne CD, Zheng MH. Extrapolatory complications of COVID-19: a multisystem disease? J Med Virol. 2020;93:323–35.

5. Yang W, Sirajuddin A, Zhang X, Liu G, Teng Z, Zhao S, et al. The role of cytokines including interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease. Autoimmun Rev. 2020;19(6):102537.

6. Vabret N, Britton GJ, Gruber C, Hegde S, Kim J, Kuksin M, et al. Cancer patients in SAR-CoV-2 infection: a nationwide analysis in China. Lancet Oncol. 2020;21(3):335–7.

7. Al-Qutierat OM, Amer AM. The impact of the COVID-19 pandemic on cancer patients. Am J Clin Oncol. 2020;43(6):452–5.

8. Johnson KM, Belfer JJ, Peterson GR, Boelkins MR, Dumkow LE. Managing COVID-19 in renal transplant recipients: a review of recent literature and case supporting corticosteroid-sparing immunosuppression. Pharmacotherapy. 2020;40(6):517–24.

9. Alarcon G, Appelrouth D, Bloch D, Borenstein D, Brandt KD, Cooke DV, et al. The American College of Rheumatology criteria for the classification and reporting of osteoarthritis of the hand. Arthritis Rheum. 1990;33(11):1601–10.

10. Shiboski CH, Shiboski SC, Seror R, Criswell LA, Labetoulle M, Lietman TM, et al. 2016 American College of Rheumatology/European League Against Rheumatism classification criteria for systemic lupus erythematosus. Ann Rheum Dis. 2016;75(11):2066–75.

11. Santos JE, Moreira VD, Bagnoli MA, Teresi M, Pitzalis MT, Amorim RS, et al. Remdesivir in severe COVID-19: a retrospective analysis. Travel Med Infect Dis. 2020;36:101791.

12. Bora MA, Val FFA, Sampaio VS, Alexandre MAA, Melo GC, Brito M, et al. Effect of high vs low doses of chloroquine diphosphate as adjuvant therapy for patients hospitalized with severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) infection: a randomized clinical trial. JAMA Netw Open. 2021;4(2):e2028857.

13. Doshi J, Kim S, Wu Z, Huang B, Wang W, Hallqvist J, et al. COVID-19 and the risk of lymphomas: a population-based cohort study in Sweden. J Intern Med. 2020;288(4):357–64.

14. Ouedraogo DD, Tiendrebeogo WJS, Kabore F, Ntsiba H. COVID-19, chronic conditions and risk of COVID-19 infection: a systematic review. Eur J Intern Med. 2020;77:102074.

15. Sanders JM, Monague ML, Jodlowski TZ, Cutrell JB. Pharmacologic treatments for patients hospitalized with severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) infection: a systematic review and meta-analysis. JAMA Netw Open. 2020;3(4):e2028857.

16. Dos Reis Neto ET, Kakehasi AM, de Medeiros PM, Ferreira GA, Marques CDL, da Mota LMH, et al. Revisiting hydroxychloroquine and chloroquine in COVID-19 patients with chronic immunity-mediated inflammatory rheumatic diseases. Adv Rheumatol. 2020;60(1):32.

17. Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO 3rd, et al. 2010 rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Ann Rheum Dis. 2010;69(9):1580–8.

18. Shiboski CH, Shiboski SC, Seror R, Criswell LA, Labetoulle M, Lietman TM, et al. 2016 American College of Rheumatology/European League Against Rheumatism classification criteria for primary Sjogren’s syndrome: a consensus and data-driven methodology involving three international patient cohorts. Ann Rheum Dis. 2017;76(1):9–16.

19. Hahn K, Jang JH, Lee JY, Park JH, Lee BE, Park JS, et al. COVID-19 and the risk of lymphomas: a population-based cohort study in Korea. J Intern Med. 2020;288(5):995–1003.

20. van den Hoogen F, Khanna D, Fransen J, Johnson SR, Baron M, Tyndall A, et al. 2013 classification criteria for systemic sclerosis: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheumatol. 2013;65(11):2737–47.

21. Lundberg IE, Tjarnlund A, Bottai M, Werth VP, Pilkington C, de Visser M, et al. 2017 European League Against Rheumatism/Amsterdam College of Rheumatology classification criteria for adult and juvenile idiopathic inflammatory myopathies and their major subgroups. Arthritis Rheumatol. 2017;69(12):2271–82.

22. Sharp GC, Irvin WS, Tam EM, Gould RG, Holman HR. Mixed connective tissue disease—an apparently distinct rheumatic disease syndrome associated with a specific antibody to an extractable nuclear antigen (ENA). J Med. 1972;52(2):148–59.

23. Altman R, Alarcon G, Appelrouth D, Bloch D, Borenstein D, Brandt K, et al. The American College of Rheumatology criteria for the classification and reporting of osteoarthritis of the hand. Arthritis Rheum. 1990;33(11):1601–10.

24. Altman RD, Block DA, Brandt KD, Cooke DV, Greenwald RA, Hochberg MC, et al. Osteoarthritis: definitions and criteria. Ann Rheum Dis. 1990;49(3):201.

25. Javelle E, Gautret P, Simon F, Huchon L, the emerging migratory epidemiology. Lancet Infect Dis. 2015;15(9):509–10.

26. MECB. Boletim Epidemiológico—Doença pelo Coronavirus 2019. Aplicação da Vigilância, Medidas não Farmacológicas e Descentralização do Diagnóstico Laboratorial. In: Saúde Md, editor Brasil 2020. 2020.

27. Zen M, Fuzzi E, Astorri D, Saccon F, Padoan R, Ienna L, et al. SARS-CoV-2 infection in patients with autoimmune rheumatic diseases in northeastern Italy: a cross-sectional study on 916 patients. J Autoimmun. 2020;121:102502.

28. Figuerola-Parrag G, Aguirre-Garcia GM, Gamboa-Alonzo CM, Camacho-Ortiz A, Galarza-Delgado DA. Are my patients with rheumatic diseases at higher risk of COVID-19? Ann Rheum Dis. 2020;79(6):839–40.
