ADAPTIVE SELF-TRAINING FOR FEW-SHOT NEURAL SEQUENCE LABELING

Yaqing Wang†, Subhabrata Mukherjee∗, Haoda Chu⋄, Yuancheng Tu⋄, Ming Wu⋄, Jing Gao†, Ahmed Hassan Awadallah∗
†SUNY Buffalo, ∗Microsoft Research AI, ⋄Microsoft AI
{yaqingwa, jing}@buffalo.edu,
{Subhabrata.Mukherjee, haochu, yuantu, mingwu, hassanam}@microsoft.com

ABSTRACT

Neural sequence labeling is an important technique employed for many Natural Language Processing (NLP) tasks, such as Named Entity Recognition (NER), slot tagging for dialog systems and semantic parsing. Large-scale pre-trained language models obtain very good performance on these tasks when fine-tuned on large amounts of task-specific labeled data. However, such large-scale labeled datasets are difficult to obtain for several tasks and domains due to the high cost of human annotation as well as privacy and data access constraints for sensitive user applications. This is exacerbated for sequence labeling tasks requiring such annotations at token-level. In this work, we develop techniques to address the label scarcity challenge for neural sequence labeling models. Specifically, we develop self-training and meta-learning techniques for few-shot training of neural sequence taggers, namely MetaST. While self-training serves as an effective mechanism to learn from large amounts of unlabeled data – meta-learning helps in adaptive sample re-weighting to mitigate error propagation from noisy pseudo-labels. Extensive experiments on six benchmark datasets including two massive multilingual NER datasets and four slot tagging datasets for task-oriented dialog systems demonstrate the effectiveness of our method with around 10% improvement over state-of-the-art systems for the 10-shot setting.

1 INTRODUCTION

Motivation. Deep neural networks typically require large amounts of training data to achieve state-of-the-art performance. Recent advances with pre-trained language models like BERT (Devlin et al., 2019), GPT-2 (Radford et al., 2019) and RoBERTa (Liu et al., 2019) have reduced this annotation bottleneck. In this paradigm, large neural network models are trained on massive amounts of unlabeled data in a self-supervised manner. However, the success of these large-scale models still relies on fine-tuning them on large amounts of labeled data for downstream tasks. This poses several challenges for many real-world tasks. Not only is acquiring large amounts of labeled data for every task expensive and time consuming, but in many cases, it is not feasible due to data access and privacy constraints. This issue is exacerbated for sequence labeling tasks that require annotations at token- and slot-level as opposed to instance-level classification tasks. For example, an NER task can have slots like B-PER, I-PER, O-PER marking the beginning, intermediate and out-of-span markers for person names, and similar slots for the names of location and organization. Similarly, language understanding models for dialog systems rely on effective identification of what the user intends to do (intents) and the corresponding values as arguments (slots) for use by downstream applications that perform the desired task. Therefore, fully supervised neural sequence taggers are very expensive to train for such tasks, given the requirement for thousands of annotations for hundreds of slots for the many different intents.

Semi-supervised learning (SSL) (Chapelle et al., 2010) is one of the promising paradigms to address labeled data scarcity by making effective use of large amounts of unlabeled data in addition to task-specific labeled data. Self-training (ST, III, 1965) as one of the earliest SSL approaches has recently shown state-of-the-art performance for image classification (Li et al., 2019; Xie et al., 2020) performing at par with supervised systems while using very few training labels. Despite their success
on instance-level classification, these methods may not be directly applicable to sequence labeling or may not yield the best results since sequence labeling tasks have dependencies between the slots demanding different design choices for instance- and slot-level loss optimizations.

For self-training, a base model (teacher) is trained on some amount of labeled data and used to pseudo-annotate (task-specific) unlabeled data. The original labeled data is augmented with the pseudo-labeled data and used to train a student model. The student-teacher training is repeated until convergence. Traditionally in self-training frameworks, the teacher pseudo-annotates unlabeled data without any sample selection. This may result in gradual drifts from self-training on noisy pseudo-labeled instances (Zhang et al., 2017). Sample selection leveraging teacher confidence has been studied in curriculum learning (Bengio et al., 2009), self-paced learning (Kumar et al., 2010) and more recently, for self-training (Li et al., 2019; Liang et al., 2020a). These works leverage the easiness of the samples to develop a learning schedule like training on easy concepts first followed by complex ones. Since it is hard to define the “easiness” of a sample, these works rely only on the model loss and therefore are prone to training set biases. To address such issues stemming from noisy labels and training set biases, learning to re-weight noisy examples (Ren et al., 2018) leverages a meta objective with the basic assumption that the best weighting strategy should minimize the loss on a held-out clean labeled validation set. We adopt a similar principle in our work and leverage meta-learning to re-weight pseudo-labeled examples from the teacher. While prior techniques for learning to re-weight examples have been developed for instance-level classification tasks, we extend them to operate at token-level for discrete text sequences for our sequence labeling tasks. Additionally, we develop an adaptive mechanism to create the validation set on the fly that reflects the uncertainty of the model and subsequently helps us in obtaining token-level weights for re-weighting pseudo-labeled examples from the teacher. While prior works on few-shot meta-learning for both image and text classification (Li et al., 2019; Sun et al., 2019; Bansal et al., 2020) leverage multi-task learning to improve a target classification task based on several similar tasks, in this work we focus on a single sequence labeling task – making our setup more challenging altogether.

Our task and framework overview. We focus on sequence labeling tasks with only a few labeled samples (e.g., $K = \{5, 10, 20, 100\}$) per slot type for training and large amounts of task-specific unlabeled data. Figure 1 shows an overview of our framework with the following components: (i) Self-training: Our self-training framework leverages a pre-trained language model as a teacher and co-trains a student model with iterative knowledge exchange (ii) Labeled data acquisition for validation set: Our few-shot learning setup assumes a small number of labeled training samples per slot type. We expose this data to the teacher and to the student model with two different views, namely, for supervised fine-tuning of the teacher model and as a held-out validation set for the student model. The labeled data from multiple slot types are not equally informative for the student model to learn from at different training iterations. Therefore, we leverage loss decay as a proxy for model uncertainty to adaptively select informative labeled samples for the student model to learn from in conjunction with the re-weighting mechanism in the next step. (iii) Meta-learning for sample re-weighting: Since pseudo-labeled samples from the teacher can be noisy, we employ meta-learning to re-weight them to improve the student model performance on the held-out validation set obtained from the previous step. In contrast to prior work (Ren et al., 2018) on sample re-weighting operating at instance-level, we incorporate the re-weighting mechanism at token-level for sequence labeling tasks – where the token weights are determined by the student model loss on the above
validation set. Finally, we learn all of the above steps jointly with end-to-end learning in the self-training framework. We refer our adaptive self-training framework with meta-learning based sample re-weighting mechanism as MetaST.

We perform extensive experiments on six benchmark datasets for several tasks including multilingual Named Entity Recognition and slot tagging for user utterances from task-oriented dialog systems to demonstrate the generalizability of our approach across diverse tasks and languages. We adopt BERT and multilingual BERT as encoder and show that its performance can be significantly improved by nearly 10% for low-resource settings with few training labels (e.g., 10-shot) and large unlabeled data. In summary, our work makes the following contributions. (i) Develops a self-training framework for neural sequence tagging with few labeled training samples. (ii) Leverages an adaptation strategy to adaptively select a validation set from the labeled set for meta-learning for the student model. (iii) Develops a meta-learning framework for re-weighting pseudo-labeled samples at token-level to reduce drifts from noisy teacher predictions. (iv) Integrates the aforementioned components into an end-to-end learning framework and demonstrates its effectiveness for neural sequence labeling across six benchmark datasets including diverse tasks and multiple languages.

2 BACKGROUND

Sequence labeling and slot tagging. This is the task of classifying each token in a sequence of observed values into pre-defined categories (also called slot types), such as names of person, organization, location, date, etc. Formally, given a sentence with \(N \) tokens \(X = \{x_1, ..., x_N\} \), an entity or slot value is a span of tokens \(s = [x_i, ..., x_j] (0 \leq i \leq j \leq N) \) associated with a type. This task assumes a pre-defined tagging policy like \(\text{BIO} \) (Tjong et al., 1999), where \(\text{B} \) marks the beginning of the slot, \(\text{I} \) marks an intermediate token in the span, and \(\text{O} \) marks out-of-span tokens.

Self-training. Consider \(f(\cdot; \theta_{tea}) \) and \(f(\cdot; \theta_{stu}) \) to denote the teacher and student models respectively in the self-training framework. The role of the teacher model (e.g., a pre-trained language model) is to assign pseudo-labels to unlabeled data that is used to train a student model. The teacher and student model can exchange knowledge and the training schedules are repeated till convergence. The success of self-training with deep neural networks in recent works [He et al., 2019; Xie et al., 2020] has been attributed to a number of factors including stochastic regularization with dropouts and data regularization with unlabeled data. Formally, given \(m \)-th unlabeled sentence with \(N \) tokens \(X^u_m = \{x^u_{1m}, ..., x^u_{Nm}\} \) and \(C \) pre-defined labels, consider the pseudo-labels \(\hat{Y}^u_m = \{\hat{y}^{(t)}_{m,1}, ..., \hat{y}^{(t)}_{m,N}\} \) generated by the teacher model at the \(t \)-th iteration where,

\[
\hat{y}^{(t)}_{m,n} = \arg\max_{c \in C} f_{n,c}(x^u_{m,n}; \theta^{(t)}_{tea}).
\]

The pseudo-labeled data set, denoted as \((X^u, \hat{Y}^{(t)}) = \{(X^u_m, \hat{Y}^{(t)}_m)\}_{M} \), is used to train the student model and learn its parameters as:

\[
\hat{\theta}^{(t)}_{stu} = \arg\min_{\theta} \frac{1}{M} \sum_{m=1}^{M} l(\hat{Y}^{(t)}_m, f(X^u_m; \theta^{(t-1)}_{stu})),
\]

where \(l(\cdot, \cdot) \) can be modeled as the cross-entropy loss.

3 ADAPTIVE SELF TRAINING

Given a pre-trained language model (e.g., BERT [Devlin et al., 2019]) as the teacher, we first fine-tune it on the small labeled data to make it aware of the underlying task. The fine-tuned teacher model is now used to pseudo-label the large unlabeled data. We consider the student model as another instantiation of the pre-trained language model that is trained over the pseudo-labeled data. However, our few-shot setting with limited labeled data results in a noisy teacher. A naive transfer of teacher knowledge to the student results in the propagation of noisy label information limiting the performance of the student model. To address this challenge, we develop an adaptive self-training framework to re-weight pseudo-labeled predictions from the teacher with a meta-learning objective that optimizes the token-level loss from the student model on a held-out labeled validation set. In standard meta-learning setup, such loss changes are estimated over a separate set of held-out clean
labeled data, which is used as the validation set. However, in order to make effective use of the initial small labeled data and focus on informative samples for different slots, we introduce an acquisition strategy to adaptively select the validation set consisting of labeled samples with high uncertainty.

3.1 Adaptive Labeled Data Acquisition

Instead of focusing on samples that the model already predicts with high confidence, or the converse where the model frequently makes a mistake – uncertainty sampling provides an alternative strategy for selecting samples that the model is confused about. Such strategies are commonly used for variance reduction in active learning settings (Settles 2009; Chang et al. 2017a). In this work, we leverage loss decay in the form of stochastic loss of the model in successive iterations as a proxy to obtain the uncertainty in its predictions. This enables the student model to focus more on samples on which it can learn better in contrast to outliers or very hard examples.

Consider the loss of the student model with parameters \(\theta_{stu}^{(t)} \) on the labeled data \((X_m^l, Y_m)\) in the \(t\)-th iteration as \(l(Y_m, f(X_m^l; \theta_{stu}^{(t)}))\). To measure the loss decay value, we need to calculate the difference between the current and previous loss values. Considering that these values may fluctuate across iterations, we adopt the moving average of the loss values for \((X_m^l, Y_m)\) in the latest \(R\) iterations as a baseline \(l_b^m\) for loss decay estimation. The baseline \(l_b^m\) is calculated as follows:

\[
l_b^m = \frac{1}{R} \sum_{r=1}^{R} l(Y_m, f(X_m^l; \theta_{stu}^{(t-r)})).
\] (3)

Since the loss decay values are estimated on the fly, we want to balance exploration and exploitation. To this end, we add a smoothness constant \(\delta\) to prevent the low loss decay samples from never being selected again. Considering all of the above factors, we obtain the sampling weight of labeled data \((X_m^l, Y_m^l)\) as follows:

\[
W_m \propto \max(l_b^m - l(Y_m, f(X_m^l; \theta_{stu}^{(t)})), 0) + \delta.
\] (4)

The smoothness constant \(\delta\) needs to be adaptive with dynamic training loss scale. In general, we can set the value of \(\delta\) as the average or maximum of the loss decay values among all the labeled samples in \((X^l, Y)\). However, to make our sampling mechanism more robust to extreme values, we use the maximum of the loss decay value as \(\delta\) in this paper and limit the maximum weight \((W_{max})\) to two times minimum \((W_{min})\).

The aforementioned acquisition function is re-estimated after a fixed number of steps to capture model changes. With labeled data acquisition, we can rely on informative uncertain samples to improve learning efficiency. The sampled mini-batches of labeled data \(\{B^l_s\}\) are used as a validation set for the student model in the next step for re-weighting pseudo-labeled data from the teacher model. Also, note that the labeled data is only used to compute the acquisition function and not used for the explicit training of the student model in this phase.

3.2 Re-weighting Pseudo-labeled Data

To mitigate error propagation from noisy pseudo-labeled instances from the teacher, we leverage meta-learning to adaptively re-weight samples based on the student model loss on a held-out validation set following (Ren et al. 2018). However, in contrast to prior work focusing on instance-level tasks like image classification – sequence labeling operates on discrete text sequences as input and assigns labels to each token in the sequence. Since teacher predictions vary for different slot labels and types, we adapt the meta-learning framework to re-weight samples at a token-level resolution.

Token Re-weighting. Consider the pseudo-labels \(\{\hat{y}_{m}^{(t)} = [\hat{y}_{m,1}^{(t)}, \ldots, \hat{y}_{m,N}^{(t)}]\}_{m=1}^{M}\) from the teacher in the \(t\)-th iteration with \(m\) and \(n\) indexing the instance and a token in the instance, respectively. In classic self-training, we update the student parameters leveraging pseudo-labels as follows:

\[
\hat{\theta}_{stu}^{(t)} = \hat{\theta}_{stu}^{(t-1)} - \alpha \mathcal{V} \left(\frac{1}{M} \sum_{m=1}^{M} l(\hat{y}_{m}^{(t)}, f(X_m^l; \hat{\theta}_{stu}^{(t-1)})) \right).
\] (5)

Now, to downplay noisy token-level labels, we leverage meta-learning to re-weight the pseudo-labeled data. To this end, we follow a similar analysis (Koh & Liang 2017; Ren et al. 2018) to
perturb the weight for each token in the mini-batch by ϵ as follows.

$$\hat{\theta}_{stu}^{(t)}(\epsilon) = \hat{\theta}_{stu}^{(t-1)} - \alpha \nabla \left(\frac{1}{M} \frac{1}{N} \sum_{m=1}^{M} \sum_{n=1}^{N} \epsilon_{m,n} \cdot l(\hat{y}_{m,n}^{(t)}, f(x_{m,n}^{u}; \hat{\theta}_{stu}^{(t-1)})) \right). \quad (6)$$

The token weights are obtained by minimizing the student model loss on a held-out validation set of clean labeled samples. Here, we employ the labeled data acquisition strategy from Eq. 4 to sample informative mini-batches of labeled data B^l locally at step t. To obtain a cheap estimate of the meta-weight at step t, we take a single gradient descent step for the sampled labeled mini-batch B^l_s:

$$u_{m,n,s} = \frac{\partial}{\partial \epsilon_{m,n,s}} \left(\frac{1}{|B^l_s|} \sum_{l=1}^{|B^l_s|} l(\hat{y}_{m,n}^{(t)}, f(x_{m,n}^{u}; \hat{\theta}_{stu}^{(t)}(\epsilon))) \right) |_{\epsilon_{m,n,s}=0} \quad (7)$$

Considering the diversity of slot types and their interactions in the sequence labeling task, we sample S mini-batches of labeled data $\{B^l_1, ..., B^l_S\}$ to get a stable gradient estimate. The impact of S is investigated in the experiments (refer to Appendix A.1). The overall meta-weight of pseudo-labeled token $(x_{m,n}^{u}, \hat{y}_{m,n})$ is obtained as:

$$w_{m,n} \propto \max \left(\sum_{s=1}^{S} u_{m,n,s}, 0 \right) \quad (8)$$

To further ensure the stability of the loss function in each mini-batch, we normalise the weight $w_{m,n}$. Finally, we update the student model parameters while accounting for token-level re-weighting as:

$$\hat{\theta}_{stu}^{(t)} = \hat{\theta}_{stu}^{(t-1)} - \alpha \nabla \left(\frac{1}{M} \frac{1}{N} \sum_{m=1}^{M} \sum_{n=1}^{N} w_{m,n} \cdot l(\hat{y}_{m,n}^{(t)}, f(x_{m,n}^{u}; \hat{\theta}_{stu}^{(t-1)})) \right). \quad (9)$$

3.3 Teacher Model Iterative Updates

At the end of every self-training iteration, we assign the student model as a new teacher model (i.e., $\theta_{tea} = \theta_{stu}^{(T)}$). Since the student model uses the labeled data only as a held-out validation set for meta-learning, we further utilize the labeled data (X^l, Y^l) to fine-tune the new teacher model $f(\cdot; \theta_{tea}^{(T)})$ with standard supervised cross-entropy loss minimization. We explore the effectiveness of this fine-tuning step via an ablation study in our experimental section 4. We further re-initialize the student model at the beginning of the self-training iteration. The overall training procedure is summarized in Algorithm 1.

Algorithm 1: MetaST Algorithm.

- **Input**: Labeled sentences (X^l, Y^l); Unlabeled Sentences (X^u); Pre-trained BERT model with randomly initialized token classification layer $f(\cdot; \theta^{(0)})$; Batches S; Number of self-training iterations T.

- **Initialize teacher model $\theta_{tea} = \theta^{(0)}$**

while not converged do

| Fine-tune teacher model on small labeled data (X^l, Y^l); |
| Initialize the student model $\theta_{stu}^{(0)} = \theta^{(0)}$; |
| Generate hard pseudo-labels $Y^{(t)}$ for unlabeled samples X^u with model $f(\cdot; \theta_{tea}^{(T)})$; |
| for $t = 1$ to T do |
| Compute labeled data acquisition function according to Eq. 2; |
| Sample S batches of labeled examples $\{B^l_1, ..., B^l_S\}$ from (X^l, Y^l) based on labeled data acquisition function; |
| Randomly sample a batch of pseudo-labeled examples B_u from $(X^u, Y^{(t)})$; |
| Compute token weights in B_u based on the loss on $\{B^l_1, ..., B^l_S\}$ according to Eq. 4 | |
| Train model $f(\cdot; \theta_{stu}^{(t)})$ on weighted pseudo-labeled examples B_u and update parameters $\theta_{stu}^{(t)}$; |
| end |
| Update the teacher: $\theta_{tea} = \theta_{stu}^{(T)}$ |
| end |

4 Experiments

Encoder. Pre-trained language models like BERT [Devlin et al. 2019], GPT-2 (Radford et al. 2019) and RoBERTa [Liu et al. 2019] have shown state-of-the-art performance for various natural
language processing tasks. In this work we adopt one of them as a base encoder by initializing the teacher with pre-trained BERT-base model and a randomly initialized token classification layer.

Datasets. We perform large-scale experiments with six different datasets including user utterances for task-oriented dialog systems and Named Entity Recognition tasks as summarized in Table 1. (a) **Email.** This consists of natural language user utterances for email-oriented user actions like sending, receiving or searching emails with attributes like date, time, topic, people, etc. (b) **SNIPS** is a public benchmark dataset (Coucke et al., 2018) of user queries from multiple domains including music, media, and weather. (c) **MIT Movie and Restaurant** corpus (Lu et al., 2013) consist of similar user utterances for movie and restaurant domains. (d) **CoNLL03** (Sang & Meulder, 2003) and **Wikiann** (Fan et al., 2017) are public benchmark datasets for multilingual Named Entity Recognition. CoNLL03 is a collection of news wire articles from the Reuters Corpus from 4 languages with manual annotations, whereas Wikiann comprises of extractions from Wikipedia articles from 41 languages with automatic annotation leveraging meta-data for different entity types like `ORG`, `PER`, `LOC` etc. For every dataset, we sample $K \in \{5, 10, 20, 100\}$ labeled instances from the training data for each slot type, and add the remaining to the unlabeled dataset. We repeatedly sample K labeled instances three times for multiple runs to report average performance.

Baselines. The first baseline we consider is the fully supervised BERT model trained on all available training data. Each of the other models are trained on K training labels per slot. We adopt several state-of-the-art semi-supervised methods as baselines: (1) **CVT** (Clark et al., 2018) is a semi-supervised sequence labeling method based on cross-view training; (2) **SeqVAT** (Chen et al., 2020) incorporates adversarial training with conditional random field layer for semi-supervised sequence labeling; (3) **Mean Teacher** (MT) (Tarvainen & Valpola, 2017) averages model weights to form an aggregated teacher; (4) **VAT** (Miyato et al., 2018) adopts virtual adversarial training to make the model robust to noise; (5) **classic ST** (III, 1965) is simple self-training method with hard pseudo-labels; (6) **BOND** (Liang et al., 2020b) employs simple self-training for sequence labeling. We implement our framework in Pytorch and use Tesla V100 gpus for experimentation. Hyper-parameter configurations with detailed model settings presented in Appendix.

Neural sequence labeling performance with few training labels. Table 2 shows the performance comparison among different models for the $K=10$ shot setting. The fully supervised BERT trained on thousands of labeled examples provides the ceiling performance for the few-shot setting. We observe our method MetaST to significantly outperform all methods across all datasets including the models that also use the same BERT encoder as ours like MT, VAT, Classic ST and BOND with corresponding average performance improvements as 14.22%, 14.90%, 8.46% and 8.82%. Non BERT models like CVT and SeqVAT are consistently worse than other baselines.

![Image](https://github.com/tensorflow/models/tree/master/research/cvt_text)
We also observe variable performance of the models across different tasks. More specifically the gap between the best few-shot model and the fully supervised model varies significantly. As such, MetaST can achieve close performance to the fully-supervised model in some datasets (e.g. SNIPS and Email) but has bigger room for improvement with others (e.g. CoNLL03 (EN) and Wikiann (EN)). This can be attributed to the following factors. (i) \textit{Labeled training samples and slots}. The total number of labeled training instances for our K-shot setting is given by $K \times \#\text{Slots}$. Therefore, for tasks with a higher number of slots and consequently more training labels, most of the models perform better including MetaST. Additionally, for sequence labeling tasks with inherent dependency between the slot structure, task-oriented systems with more slots and richer interactions benefit more than NER tasks. (ii) \textit{Task difficulty}: User utterances from task-oriented dialog systems for some of the domains like weather, music and emails contain predictive query patterns and limited diversity. In contrast, Named Entity Recognition datasets are comparatively diverse and require more training labels to generalize well. Similar observations are also depicted in Table 5 for multilingual NER tasks with more slots and consequently more training labels from multiple languages as well as richer interactions across the slots from different languages.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline
Dataset & #Lang & #Slots & Full Supervision & Few-shot Supervision & Few-shot supervision + unlabeled data \\
\hline
CoNLL03 & 4 & 16 & 87.67 & 70.77 & 76.34 & 67.63 & 72.69 & 72.79 & 76.41 (0.47) ($\pm 7.97\%$) & 79.67 (12.87\%) \\
Wikiann & 41 & 123 & 87.17 & 79.67 & 80.23 & 78.82 & 80.24 & 79.57 & 81.61 (0.14) ($\pm 2.42\%$) \\
\hline
\end{tabular}
\caption{F1 scores of different models for sequence labeling on multilingual benchmark datasets. All models use the same BERT-Multilingual-Base encoder. The F1 score of our framework for each task is followed by the standard deviation in parentheses and percentage improvement (\uparrow) over the BERT model with few-shot supervision.}
\end{table}

\textbf{Controlling for the total amount of labeled data.} In order to control for the variable amount of training labels across different datasets, we perform another experiment where we vary the number of shots for different slot types while keeping the total number of labeled instances for each dataset similar (ca. 200). Results are shown in Table 5. To better illustrate the effect of the number of training labels, we choose tasks with lower performance in Table 5 for this experiment. Comparing the results in Tables 3 and 5, we observe the performance of MetaST on all the tasks to improve with more training labels.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline
Dataset & BERT (Full Supervision) & BERT (Few-shot Supervision) & MetaST (%Improvement) \\
\hline
MIT Movie & 87.87 & 77.51 & 80.33 ($\pm 5.96\%$) \\
MIT Restaurant & 78.95 & 60.12 & 67.86 ($\pm 12.87\%$) \\
CoNLL03 (EN) & 92.40 & 77.48 & 81.61 ($\pm 5.33\%$) \\
Wikiann (EN) & 84.04 & 85.82 & 86.81 ($\pm 6.81\%$) \\
\hline
Average & 85.82 & 68.86 & 75.27 ($\pm 9.31\%$) \\
\hline
\end{tabular}
\caption{F1 scores of different models with 200 labeled samples for each task. The percentage improvement (\uparrow) is over the BERT model with few-shot supervision.}
\end{table}

\textbf{Effect of varying the number of few-shots K}. Table 5 shows the improvement in the performance of MetaST when increasing the number of labels for each slot type in the SNIPS dataset. Similar trends can be found on other datasets (results in Appendix). We observe that the performance of MetaST with only 100 labels per slot can match the fully supervised BERT performance trained on 13K labeled instances. As we increase the amount of labeled training instances, the performance of BERT also improves, and correspondingly the margin between MetaST and these baselines decreases although MetaST still improves over all of them. For example, while MetaST improves over BERT by 15% for the 5-shot setting, the corresponding improvement reduces to 2% for the 100-shot setting. This phenomenon indicates that MetaST is most impactful for the low-resource settings.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline
#Slots & Few-shot Supervision & Few-shot supervision + unlabeled data \\
\hline
1 & BERT & CVT & SeqVAT & MT & VAT & Classic ST & BOND & MetaST (%Improvement) \\
\hline
5 & 70.61 & 69.82 & 69.34 & 70.45 & 71.34 & 72.59 & 72.85 & 81.86 ($\pm 15\%$) \\
10 & 79.01 & 78.23 & 78.67 & 79.48 & 79.08 & 83.26 & 83.54 & 88.22 ($\pm 12\%$) \\
20 & 86.81 & 86.04 & 85.05 & 87.31 & 88.19 & 88.32 & 88.93 & 91.99 ($\pm 16\%$) \\
50 & 93.90 & 94.61 & 91.46 & 94.26 & 94.53 & 93.92 & 94.22 & 95.39 ($\pm 12\%$) \\
\hline
\end{tabular}
\caption{Variation in model performance on varying K labels / slot on SNIPS dataset with 39 slots. The percentage improvement (\uparrow) is over the BERT model with few-shot supervision.}
\end{table}
Ablation analysis. Table 6 demonstrates the impact of different MetaST components with ablation studies. We observe that using soft pseudo-labels may hurt the model performance compared to hard pseudo-labels, as also shown in recent work (Kumar et al., 2020). Such a performance drop may be attributed to soft labels being less informative compared to sharpened labels. Removing the iterative teacher fine-tuning step (Section 3.1) also hurts the overall performance.

Method	Datasets	
	SNIPS	CoNLL03 (EN)
Classic ST	83.26	70.99
MetaST (ours) w/ Hard Pseudo-Labels	88.23	76.65
MetaST w/ Soft Pseudo-Labels	86.16	75.84
MetaST w/o Iterative Teacher Fine-tune	85.64	72.74
MetaST w/o Labeled Data Acq.	86.63	75.02
Pseudo-labeled Data Re-weighting		
MetaST w/o Re-weighting	85.48	73.02
MetaST (Easy)	85.56	74.53
MetaST (Difficult)	86.34	68.06

Table 6: Ablation analysis of our framework MetaST with 10 labeled examples per slot.

Re-weighting strategies. To explore the role of re-weighting mechanism for the pseudo-labeled data discussed in Section 3.2, we perform an ablation study where we replace our meta-learning component with different sample selection strategies based on the model confidence for different tokens. One sampling strategy would choose samples uniformly without any re-weighting (referred to as MetaST w/o Re-weighting). A sampling strategy with weights proportional to the model confidence favors easy samples (referred to as MetaST-Easy), whereas the converse favors difficult ones (referred to as MetaST-Difficult). We observe the meta-learning based re-weighting strategy to perform the best. Interestingly, MetaST-Easy outperforms MetaST-Difficult significantly on CoNLL03 (EN) but achieves slightly lower performance on SNIPS. This may demonstrate that difficult samples are more helpful when the quality of pseudo-labeled data is relatively high, whereas the sample selection strategy focusing on difficult samples introduces noisy samples with lower pseudo-label quality. Therefore, sampling strategies may need to vary for different datasets, thereby, demonstrating the necessity of adaptive data re-weighting as in our framework MetaST.

Analysis of pseudo-labeled data re-weighting. To visually explore the adaptive re-weighting mechanism, we illustrate token re-weighting of MetaST on CoNLL03 (EN) dataset with K=10 shot at step 100 in Fig. 2. We include the re-weighting visualisation on SNIPS in Appendix A.1. We observe that the selection mechanism filters out most of the noisy pseudo-labels (colored in blue) even with high teacher confidence as shown in Fig. 2.

5 Related Work

Semi-supervised learning has been widely used for consistency training (Bachman et al., 2014; Rasmus et al., 2015; Laine & Aila, 2017; Tarvainen & Valpola, 2017; Miyato et al., 2018), latent variable models (Kingma et al., 2014) for sentence compression (Miao & Blunsom, 2016) and code generation (Yin et al., 2018). More recently, methods like UDA (Xie et al., 2019) leverage consistency training for few-shot learning of instance-classification tasks leveraging auxiliary resources like paraphrasing and back-translation (BT) (Sennrich et al., 2016).

Sample selection. Curriculum learning (Bengio et al., 2009) techniques are based on the idea of learning easier aspects of the task first followed by the more complex ones. Prior work leveraging self-paced learning (Kumar et al., 2010) and more recently self-paced co-training (Ma et al., 2017) leverage teacher confidence to select easy samples during training. Sample selection for image classification tasks have been explored in recent works with meta-learning (Ren et al., 2018; Li et al., 2019) and active learning (Panagiota Mastoropoulou, 2019; Chang et al., 2017b). However, all of these techniques rely on only the model outputs applied to instance-level classification tasks.

Semi-supervised sequence labeling. Miller et al. (2004); Peters et al. (2017) leverage large amounts of unlabeled data to improve token representation for sequence labeling tasks. Another line of research introduces latent variable modeling (Chen et al., 2019; Zhou & Neubig, 2017) to learn interpretable and structured latent representations. Recently, adversarial training based model SeqVAT (Chen et al., 2020) and cross-view training method CVT (Clark et al., 2018) have shown promising results for sequence labeling tasks.
6 CONCLUSIONS

In this work, we develop an adaptive self-training framework MetaST that leverages self-training and meta-learning for few-shot training of neural sequence taggers. We address the issue of error propagation from noisy pseudo-labels from the teacher in the self-training framework by adaptive sample selection and re-weighting with meta-learning. Extensive experiments on six benchmark datasets and different tasks including multilingual NER and slot tagging for task-oriented dialog systems demonstrate the effectiveness of the proposed method particularly for low-resource settings.

REFERENCES

Philip Bachman, Ouais Alsharif, and Doina Precup. Learning with pseudo-ensembles. In Zoubin Ghahramani, Max Welling, Corinna Cortes, Neil D. Lawrence, and Kilian Q. Weinberger (eds.), Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada, pp. 3365–3373, 2014.

Trapit Bansal, Rishikesh Jha, and Andrew McCallum. Learning to few-shot learn across diverse natural language classification tasks, 2020.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In Andrea Pohoreckyj Danyluk, Léon Bottou, and Michael L. Littman (eds.), Proceedings of the 26th Annual International Conference on Machine Learning, ICML 2009, Montreal, Quebec, Canada, June 14-18, 2009, volume 382 of ACM International Conference Proceeding Series, pp. 41–48. ACM, 2009. doi: 10.1145/1553374.1553380.

Haw-Shiuan Chang, Erik Learned-Miller, and Andrew McCallum. Active bias: Training more accurate neural networks by emphasizing high variance samples. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems 30, pp. 1002–1012. Curran Associates, Inc., 2017a.

Haw-Shiuan Chang, Erik G. Learned-Miller, and Andrew McCallum. Active bias: Training more accurate neural networks by emphasizing high variance samples. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, 4-9 December 2017, Long Beach, CA, USA, pp. 1002–1012, 2017b.

Olivier Chapelle, Bernhard Schlkopf, and Alexander Zien. Semi-supervised learning. 2010.

Luoxin Chen, Weitong Ruan, Xinyue Liu, and Jianhua Lu. Seqvat: Virtual adversarial training for semi-supervised sequence labeling. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 8801–8811, 2020.

Mingda Chen, Qingming Tang, Karen Livescu, and Kevin Gimpel. Variational sequential labelers for semi-supervised learning. arXiv preprint arXiv:1906.09535, 2019.

Kevin Clark, Minh-Thang Luong, Christopher D Manning, and Quoc V Le. Semi-supervised sequence modeling with cross-view training. arXiv preprint arXiv:1809.08370, 2018.

Alice Coucke, Alaa Saade, Adrien Ball, Théodore Bluche, Alexandre Caulier, David Leroy, Clément Doumouro, Thibault Gisselbrecht, Francesco Caltagirone, Thibaut Lavril, Maël Primet, and Joseph Dureau. Snips voice platform: an embedded spoken language understanding system for private-by-design voice interfaces. In Privacy in Machine Learning and Artificial Intelligence workshop, ICML2018, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186, 2019.
Junxian He, Jiatao Gu, Jiajun Shen, and Marc’Aurelio Ranzato. Revisiting self-training for neural sequence generation, 2019.

H. J. Scudder III. Probability of error of some adaptive pattern-recognition machines. *IEEE Trans. Inf. Theory*, 11(3):363–371, 1965. doi: 10.1109/TIT.1965.1053799.

Diehderik P. Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling. Semi-supervised learning with deep generative models. In Zoubin Ghahramani, Max Welling, Corinna Cortes, Neil D. Lawrence, and Kilian Q. Weinberger (eds.), *Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada*, pp. 3581–3589, 2014.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. *arXiv preprint arXiv:1703.04730*, 2017.

Ananya Kumar, Tengyu Ma, and Percy Liang. Understanding self-training for gradual domain adaptation. *arXiv preprint arXiv:2002.11361*, 2020.

M. P. Kumar, Benjamin Packer, and Daphne Koller. Self-paced learning for latent variable models. In J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta (eds.), *Advances in Neural Information Processing Systems 23*, pp. 1189–1197. Curran Associates, Inc., 2010.

Samuli Laine and Timo Aila. Temporal ensembling for semi-supervised learning. In *5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings*. OpenReview.net, 2017.

Xinzhe Li, Qianru Sun, Yaoyao Liu, Qin Zhou, Shibao Zheng, Tat-Seng Chua, and Bernt Schiele. Learning to self-train for semi-supervised few-shot classification. In *Advances in Neural Information Processing Systems 32*, pp. 10276–10286. Curran Associates, Inc., 2019.

Chen Liang, Yue Yu, Haoming Jiang, Siawpeng Er, Ruijia Wang, Tuo Zhao, and Chao Zhang. Bond: Bert-assisted open-domain named entity recognition with distant supervision. In *Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’20*, pp. 1054–1064, New York, NY, USA, 2020a. Association for Computing Machinery. ISBN 9781450379984. doi: 10.1145/3394486.3403149.

Chen Liang, Yue Yu, Haoming Jiang, Siawpeng Er, Ruijia Wang, Tuo Zhao, and Chao Zhang. Bond: Bert-assisted open-domain named entity recognition with distant supervision. In *Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*, pp. 1054–1064, 2020b.

J. Liu, Panupong Pasupat, D. Cyphers, and James R. Glass. Asgard: A portable architecture for multilingual dialogue systems. *2013 IEEE International Conference on Acoustics, Speech and Signal Processing*, pp. 8386–8390, 2013.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized BERT pretraining approach. *CoRR*, abs/1907.11692, 2019.

Fan Ma, Deyu Meng, Qi Xie, Zina Li, and Xuanyi Dong. Self-paced co-training. In Doina Precup and Yee Whye Teh (eds.), *Proceedings of the 34th International Conference on Machine Learning*, volume 70 of *Proceedings of Machine Learning Research*, pp. 2275–2284, International Convention Centre, Sydney, Australia, 06–11 Aug 2017. PMLR.

Yishu Miao and Phil Blunsom. Language as a latent variable: Discrete generative models for sentence compression. In Jian Su, Xavier Carreras, and Kevin Duh (eds.), *Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, EMNLP 2016, Austin, Texas, USA, November 1-4, 2016*, pp. 319–328. The Association for Computational Linguistics, 2016. doi: 10.18653/v1/d16-1031.

Scott Miller, Jethran Guinness, and Alex Zamanian. Name tagging with word clusters and discriminative training. In *Proceedings of the Human Language Technology Conference of the North American Chapter of the Association for Computational Linguistics: HLT-NAACL 2004*, pp. 337–342, 2004.
Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and Shin Ishii. Virtual adversarial training: a regularization method for supervised and semi-supervised learning. *IEEE transactions on pattern analysis and machine intelligence*, 41(8):1979–1993, 2018.

Xiaoman Pan, Boliang Zhang, Jonathan May, Joel Nothman, Kevin Knight, and Heng Ji. Cross-lingual name tagging and linking for 282 languages. In *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 1946–1958, Vancouver, Canada, July 2017. Association for Computational Linguistics.

Emmeleia Panagiota Mastoropoulou. Enhancing deep active learning using selective self-training for image classification. Master’s thesis, KTH, School of Electrical Engineering and Computer Science (EECS), 2019.

Matthew E Peters, Waleed Ammar, Chandra Bhagavatula, and Russell Power. Semi-supervised sequence tagging with bidirectional language models. *arXiv preprint arXiv:1705.00108*, 2017.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language models are unsupervised multitask learners. 2019.

Antti Rasmus, Mathias Berglund, Mikko Honkala, Harri Valpola, and Tapani Raiko. Semi-supervised learning with ladder networks. In Corinna Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi Sugiyama, and Roman Garnett (eds.), *Advances in Neural Information Processing Systems 28: Annual Conference on Neural Information Processing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada*, pp. 3546–3554, 2015.

Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urtasun. Learning to reweight examples for robust deep learning. *arXiv preprint arXiv:1803.09050*, 2018.

Erik F Tjong Kim Sang and Fien De Meulder. Introduction to the conll-2003 shared task: Language-independent named entity recognition. In *Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003*, 2003.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Improving neural machine translation models with monolingual data. In *Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers*. The Association for Computer Linguistics, 2016. doi: 10.18653/v1/p16-1009.

Burr Settles. Active learning literature survey. Computer Sciences Technical Report 1648, University of Wisconsin–Madison, 2009.

Q. Sun, Y. Liu, T. Chua, and B. Schiele. Meta-transfer learning for few-shot learning. In *2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 403–412, 2019.

Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results. In *5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Workshop Track Proceedings*. OpenReview.net, 2017.

Erik F Tjong, Kim Sang, and Jorn Veenstra. Representing text chunks. In *Ninth Conference of the European Chapter of the Association for Computational Linguistics*, 1999.

Qizhe Xie, Zihang Dai, Eduard Hovy, Minh-Thang Luong, and Quoc V. Le. Unsupervised data augmentation for consistency training, 2019.

Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V. Le. Self-training with noisy student improves imagenet classification. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, June 2020.

Pengcheng Yin, Chunting Zhou, Junxian He, and Graham Neubig. Structvae: Tree-structured latent variable models for semi-supervised semantic parsing. In Iryna Gurevych and Yusuke Miyao (eds.), *Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, ACL 2018, Melbourne, Australia, July 15-20, 2018, Volume 1: Long Papers*, pp. 754–765. Association for Computational Linguistics, 2018. doi: 10.18653/v1/P18-1070.
Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep learning requires rethinking generalization. In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

Chunting Zhou and Graham Neubig. Multi-space variational encoder-decoders for semi-supervised labeled sequence transduction. arXiv preprint arXiv:1704.01691, 2017.
A Appendix

A.1 Explorations on Unlabeled Data and Mini-batch S

Variation in model performance with unlabeled data. Table 12 shows the improvement in model performance as we inject more unlabeled data with diminishing returns after a certain point.

Variation in model performance with mini-batch S. We set the value of S in Eq. 8 to {1, 3, 5} respectively to explore its impact on the re-weighting mechanism. From Figure 3 we observe that the model is not super sensitive to hyper-parameter S but can achieve a better estimate of the weights of the pseudo-labeled data with increasing mini-batch values.

Ratio of Unlabeled Data	Datasets	SNIPS	CoNLL03
5%		84.47	72.92
25%		87.10	76.46
75%		87.50	76.56

Table 7: Varying proportion of unlabeled data for MetaST with 10 labels per slot.

A.2 Analysis of Re-weighting on SNIPS and CoNLL03

Analysis of pseudo-labeled data re-weighting. To visually explore the adaptive re-weighting mechanism, we illustrate token re-weighting of MetaST on CoNLL03 and SNIPS datasets with K=10 shot at step 100 in Fig. 4. Besides the observation in the experimental section, we observe that many difficult and correct pseudo-labeled samples (low teacher confidence) are selected according to Fig. 4.

Figure 4: Visualization of MetaST re-weighting examples on SNIPS and CoNLL03 (EN).

A.3 K-shots

Effect of varying the number of few-shots K. We show the performance changes with respect to varying number of few-shots K {5, 10, 20, 100} on Wikiann (en), MIT movie, MIT Restaurant, CoNLL2003 (En), Multilingual CoNLL and Multilingual Wikiann in Table 9-13. Since the number of labeled examples for some slots in Email dataset is around 10, we only show 5 and 10 shots for Email dataset in Table 8.
Table 8: Email Dataset.

Method	Shots		
	5	10	
Full-supervision			0.9444
BERT			
Few-shot Supervision			0.8211
BERT			0.8785
Few-shot Supervision + unlabeled data			
CVT	67.44	78.24	
SeqVAT	64.67	72.65	
Mean Teacher	84.10	89.53	
VAT	83.24	89.71	
Classic ST	86.88	90.70	
BOND	84.92	89.75	
MetaST	89.21	92.18	

Table 9: Wikiann (En) Dataset.

Method	Shots (3 Slot Types)				
	5 10 20 100				
Full-supervision	BERT	84.04			
Few-shot Supervision	BERT	37.01	45.61	54.53	67.87
Few-shot Supervision + unlabeled data	CVT	16.05	27.89	46.42	66.36
	SeqVAT	21.11	35.16	42.26	62.37
	Mean Teacher	30.92	41.43	50.61	67.16
	VAT	24.72	38.81	50.15	66.31
	Classic ST	32.72	46.15	54.41	68.64
	BOND	34.22	49.73	52.45	68.89
MetaST	55.04 66.11 60.38 73.20				

Table 10: MIT Restaurant Dataset.

Method	Shots (4 Slot Types)				
	5 10 20 100				
Full-supervision	BERT	78.95			
Few-shot Supervision	BERT	41.39	54.06	60.12	72.24
Few-shot Supervision + unlabeled data	CVT	33.74	42.57	51.33	70.84
	SeqVAT	41.94	51.55	56.15	71.39
	Mean Teacher	40.97	51.75	57.34	72.40
	VAT	41.29	53.34	59.68	72.65
	Classic ST	44.35	56.80	60.28	73.13
	BOND	43.01	55.78	59.96	73.60
MetaST	53.02 63.83 67.86 75.25				

Table 11: CoNLL2003 (EN)

Method	Shots (3 Slot Types)				
	5 10 20 100				
Full-supervision	BERT	87.67			
Few-shot Supervision	BERT	64.80	70.77	73.89	80.61
Few-shot Supervision + unlabeled data	Mean Teacher	64.55	68.34	73.87	79.21
	VAT	64.97	67.63	74.26	80.70
	Classic ST	67.95	72.69	73.79	81.82
	BOND	69.42	72.79	76.02	80.62
MetaST	73.34 76.65 77.01 82.11				

Table 12: Multilingual CoNLL03.

Method	Shots (12 Slot Types)				
	5 10 20 100				
Full-supervision	BERT	87.87			
Few-shot Supervision	BERT	62.80	69.50	75.81	82.49
Few-shot Supervision + unlabeled data	CVT	57.48	62.73	70.20	81.82
	SeqVAT	60.94	67.10	74.15	82.73
	Mean Teacher	58.92	67.62	75.24	82.20
	VAT	60.75	70.17	75.41	82.39
	Classic ST	63.39	71.88	76.58	83.06
	BOND	62.50	70.91	75.52	82.65
MetaST	72.57 77.67 80.33 84.35				

Table 13: Multilingual Wikiann
A.4 IMPLEMENTATIONS AND HYPER-PARAMETER

We do not perform any hyper-parameter tuning for different datasets. The batch size and maximum sequence length varies due to data characteristics and are as shown in Table 14. The hyper-parameters are as shown in Table 14.

Also, we retain parameters from original BERT implementation from https://github.com/huggingface/transformers

We implement SeqVAT based on https://github.com/jiesutd/NCRFpp

Dataset	Sequence Length	Labeled data sample size [S]	Unlabeled Batch Size	BERT Encoder
SNIPS	64	32	32	BERT-base-uncased
Email	64	32	32	BERT-base-uncased
Movie	64	32	32	BERT-base-uncased
Restaurant	64	16	32	BERT-base-uncased
CoNLL03 (EN)	128	16	8	BERT-base-uncased
Wikiann (EN)	128	16	8	BERT-base-uncased
CoNLL03 (multilingual)	128	16	32	BERT-multilingual-base-uncased
Wikiann (multilingual)	128	16	32	BERT-multilingual-base-uncased

Table 14: Batch size, sequence length and BERT encoder choices across datasets

Hyper-parameter	Value
BERT attention dropout	0.3
BERT hidden dropout	0.3
Latest Iteration R in labeled data acquisition	5
BERT output hidden size h	768
Steps for fine-tuning teacher model on labeled data	2000
Steps T for self-training model on unlabeled data	3000
Mini-batch S	5
Re-initialize Student	Y
Pseudo-label Type	Hard
Warmup steps	20
learning rate α	$5e^{-5}$
Weight decay	$5e^{-6}$

Table 15: Hyper-parameters.