Low-Powered Photodetector Based on Two-Dimensional InS\(_{0.3}\)Se\(_{0.7}\)/WS\(_2\) Heterostructure

Kaiting Zhang, Jie Chang, Chaoyang Tan and Hui Han *

Abstract: Photodetectors based on two-dimensional (2D) materials have great potential applications in the field of new energy, such as solar cells, fuel cells, and other fields. Van der Waals (vdW) heterojunction photodiodes are expected to be one of the promising applications of two-dimensional materials due to the photoelectric properties without consideration of lattice mismatch. High-efficiency photoelectric sensors based on two-dimensional materials have great significance to reducing the energy consumption of devices. Here, we build a complex vdW heterostructure by combining InS\(_{0.3}\)Se\(_{0.7}\) with another suitable 2D material WS\(_2\). Few-layer graphite was used as electrodes to enhance the optoelectronic performance of indium monochalcogenides. Evident photocurrent is observed in the InS\(_{0.3}\)Se\(_{0.7}\)/WS\(_2\) vdW heterostructure device arising from the formed p–n junction at the interface. The uniformity and photoresponse of the InS\(_{0.3}\)Se\(_{0.7}\)/WS\(_2\) vdW heterostructure has been further investigated by the photocurrent mapping. It shows that the entire photovoltaic current was originated from the InS\(_{0.3}\)Se\(_{0.7}\)/WS\(_2\) vdW heterojunction by scanning photocurrent microscope images. Furthermore, the response speed is enhanced at small bias voltage. The transient photoresponse can be well reproduced in almost 100 cycles, indicating the good repeatable optoelectronic performance. Our study indicates that the as-prepared InS\(_{0.3}\)Se\(_{0.7}\)/WS\(_2\) vdW heterostructures are attractive building blocks for photodetectors application. Our findings will open up a new way to further develop high-performance, low-power, and energy-efficient photodetectors based on indium monochalcogenides.

Keywords: 2D materials; photodetector; indium monochalcogenides; van der Waals heterostructure

1. Introduction

In recent years, the development of advanced semiconductors based on two-dimensional (2D) materials is expected to solve the energy problem, which is caused by the huge growth of the number of sensors bringing by high integration and smaller size of electronic devices [1–4]. 2D semiconductor devices with low power consumption and high performance can be widely used in new energy fields, such as photocatalysis, fuel cells, solar cells, and others [3,5–11]. Photodetectors are expected to be one of the promising applications of materials due to the photoelectric properties produced in single- or multilayer 2D materials. Especially, the low power photodetector with good visible light response, high stability, and fast photoresponse is very crucial for low-power applications, such as future internet of things, wearable electronics, and flexible electronics [12–16].

The complex heterostructures composed of different 2D layered materials open up a new platform for electronics and optoelectronics because of these novel and extraordinary properties, such as tunable bandgaps, passivated surfaces, and high mobility [12–14]. 2D materials usually possess different carrier polarities; when combining with different 2D materials to form the vdW heterostructures, the heterostructures can generate a pronounced photovoltaic effect [10,17,18]. In the past decade, various photodetectors based on 2D materials have been proven to have superior performance [19–22]. More recently, indium...
monochalcogenides InX (InS, InSe, or InS,Se1−x) have attracted much attention due to their excellent stability, high carrier mobility, and moderate band gap, showing promising applications in storage devices, optical sensors, thermoelectric devices, and low-cost and environmentally friendly solar cells [23–30]. Previous research on InS,Se1−x alloys shows that the bandgap shifts from ~1.27 to ~1.42 eV as S composition increases from 0 to 0.3 without changing crystal structure [31]. Interestingly, when InSe is fabricated from single-layer to multilayer with thickness larger than seven layers, its band structure changes from indirect gap to direct gap [23,28]. However, the photoelectric properties are significantly hindered by the little absorption of light induced by indirect band gap. On the other hand, tungsten disulfide (WS2) has inspired great efforts in optoelectronics because of their suitable and direct band gap [32–37]. Therefore, WS2 can act as one active absorber to construct many kinds of heterojunctions. Typically, the semiconductor heterojunctions possess three kinds of band arrangement, i.e., Type I—straddling, Type II—staggered, and Type III—broken-gap [20]. Type II possesses alternating band gap alignment between conduction bands and valence bands of the heterojunctions [20,37,38], and thus brings the decrease of the band gap and significantly increases carrier recombination rate because of the built-in electric field, leading to a wider detection wavelength range and faster response time. When the InSe layer and WS2 layer are stacked together, a Type-II band alignment will be formed [21,32,33]. This construction of vdW heterostructures can enhance the optoelectronic performance.

In this work, the photoelectric properties of a type II vdW heterostructure based on InS0.3Se0.7/WS2 were investigated. Graphene was used as electrodes by placing on the top of mechanically exfoliated few-layers InS0.3Se0.7 flakes and a single-layer WS2 flake. Graphene-on-semiconductor has been proven to be a quality heterojunction with efficient photoelectric conversion. Based on this hybrid heterostructure, we analyzed the performance of a photodetector. It can be responsive to the light, and the photoresponse region coincides with the overlapping area of InS0.3Se0.7 layers and WS2 single layer, which means all photovoltaic currents were originated from the InS0.3Se0.7 heterojunction. The photocurrent waveform with a chopping frequency of 5 Hz indicated a good repeatable optoelectronic performance.

2. Results and Discussion

From the Raman spectra of the InS0.3Se0.7 flakes, as shown in Figure S1 in Supporting Information, four typical Raman active modes at about 41 cm−1, 119 cm−1, 180 cm−1, and 220 cm−1, respectively, are observed in both areas, corresponding to the E₁1, A₁g, E₂g, and A₁g modes, which is also consistent with the previous reports [31]. The scanning electron microscopy (SEM) image (Figure S2a) of the as-synthesized InS0.3Se0.7 crystals are of layered structures, energy-dispersive X-ray spectroscopy (EDS) (Figure S2b–e) shows the elements of In, S, and Se evenly spread and the atomic ratio of In, S, and Se elements is estimated to be about 1:0.3:0.7. The photoluminescence spectra (PL) at different temperatures are also shown in Figure S3, indicating that the PL peak gradually shifts to a long wavelength for both WS2 flakes and InS0.3Se0.7 flakes with increasing temperature. Figure 1a shows the optical image of the InS0.3Se0.7/WS2 vdW heterostructure. The n-type monolayer of WS2 flakes was mechanically exfoliated from bulk crystal onto the SiO₂ substrates (marked by the green line in Figure 1a). The p-type InS0.3Se0.7 flakes with the thickness of several tens of nanometers (marked by the orange line in Figure 1a) were mechanically exfoliated onto the PDMS-based gel supplier and then were transferred on the selected areas of n-type monolayer WS2 flakes using a micromanipulator and digital camera to form the vdW p–n junction [38,39]. Afterwards, two pieces of few-layer graphite were transferred on InS0.3Se0.7 flake and WS2 flake, respectively, using the same processes, as marked by the black line in Figure 1a [40]. The Cr/Au electrodes were patterned on the few-layer graphite using the standard electron-beam lithography process in order to increase the response speed of the InS0.3Se0.7 and WS2 with high photoresponsivity, by using the transparent electrodes to modify the difference work function between the electrodes and the InS0.3Se0.7 flakes.
and WS$_2$ [22]. For example, for InSe/graphene, it can increase about 40 times faster than that of InSe/metal device [25,29]. This design of crystal/graphene electrical contacts could be important for high-performance optoelectronic devices.

Figure 1. (a) Optical image of InS$_{0.3}$Se$_{0.7}$/WS$_2$ heterostructure devices. The graphite flakes, WS$_2$ flakes, and InS$_{0.3}$Se$_{0.7}$ flakes are marked by black line, green line, and orange line, respectively. (b) Schematic diagram of the device. (c) Current–voltage (I–V) characteristics of the InS$_{0.3}$Se$_{0.7}$ and WS$_2$. (d) Current–voltage (I–V) characteristics of the InS$_{0.3}$Se$_{0.7}$/WS$_2$ heterostructure.

Figure 1b presents a schematic of the InS$_{0.3}$Se$_{0.7}$/WS$_2$ vdW heterostructure device. The electrodes on the thin WS$_2$ flake and the InS$_{0.3}$Se$_{0.7}$ flakes and SiO$_2$/Si substrate are defined as drain, source, and back gate, respectively. A schematic drawing of the band diagram of the InS$_{0.3}$Se$_{0.7}$/WS$_2$ heterostructures is shown in Figure S4. Figure 1c show the current–voltage (I–V) characteristics of the graphite on the InS$_{0.3}$Se$_{0.7}$ flakes and WS$_2$ flake, respectively. Those I–V curves are linear, the resistance of graphite on InS$_{0.3}$Se$_{0.7}$ flakes is about 1600 Ω, and it is about 750 Ω for graphite on WS$_2$. Whereas, the output curves of InS$_{0.3}$Se$_{0.7}$/WS$_2$ heterostructure show clearly non-linear asymmetrical I–V characteristics with a contact resistant, as show in Figure 1d. The output curve of the InS$_{0.3}$Se$_{0.7}$/WS$_2$ vdW heterostructure is measured in the bias potential range of \pm1 V in the dark condition and at zero gate voltage. The InS$_{0.3}$Se$_{0.7}$/WS$_2$ vdW heterostructures features a very low dark current down to 1 pA, which is originated from the depletion layer and the energy barrier of the p–n junction at the interface in the fabricated InS$_{0.3}$Se$_{0.7}$/WS$_2$ vdW heterostructure devices, as shown in the illustration in Figure 1b.

When the laser is illuminated on the p–n junction, the photogenerated electron–hole pairs can be effectively separated: electrons and holes reside preferably in the InS$_{0.3}$Se$_{0.7}$ and WS$_2$ layers, respectively [32,33], and finally result in the observation of open-circuit voltage (V_{oc}) and short-circuit current (I_{sc}). To explore the optoelectronic properties of the as-prepared InS$_{0.3}$Se$_{0.7}$/WS$_2$ vdW heterostructure devices, an argon green laser at 532 nm with different power density was adopted to irradiate the device. Figure 2a shows the I–V characteristics of the InS$_{0.3}$Se$_{0.7}$/WS$_2$ vdW heterostructure devices under the dark
condition and different laser power densities ($P = 1.5$, 2.5, and 3 mW). As can be seen, the magnitude of the V_{oc} and I_{sc} increases gradually with increasing laser power, as indicated by blue triangles and red triangles in Figure 2b. Such increment of the V_{oc} and I_{sc} is believed to originate from the increased number of photo-generated carriers under laser irradiation with increased power. Under 15.3 mW/cm^2 illumination with the conditions of $V_{ds} = -0.6 \text{ V}$, $V_g = 0 \text{ V}$, $\lambda = 532 \text{ nm}$, the values of responsivity, detectivity were 0.25 A/W, $1.8 \times 10^{10} \text{ Jones}$, respectively.

Figure 2. (a) $I-V$ characteristics of the InS$_{0.3}$Se$_{0.7}$/WS$_2$ heterostructure under dark condition and different laser power ($p = 1.5$, 2.5, and 3 mW). (b) The magnitude of the photocurrent (I_{sc}) and open-circuit voltage (V_{oc}) as a function of laser power.

To further study the optoelectronic properties of the InS$_{0.3}$Se$_{0.7}$/WS$_2$ vdW heterostructure devices, the photocurrent mapping is measured at zero bias potential and room temperature. The 2D plot of Figure 3 shows the intensity of photocurrent as a function of X and Y axis. By comparing with the optical image in Figure 3, it can be seen that the photocurrent is mainly generated at the overlap areas of the InS$_{0.3}$Se$_{0.7}$/WS$_2$ vdW heterostructure, as indicated by the blue dashed line. It is worth mentioning that no measurable photocurrent was observed in non-overlapping regions, with only the InS$_{0.3}$Se$_{0.7}$ layers or single-layer WS$_2$, demonstrating that the two graphene electrodes do enhance the photoresponse by contributing efficient carriers. This phenomenon further demonstrates that the measured photocurrent in our InS$_{0.3}$Se$_{0.7}$/WS$_2$ vdW heterostructure devices is originated from the p–n junction formed at the interface, in which the photo-generated electron–hole pairs are effectively separated by the built-in field of the p–n junction. As shown in Figure S4, the depletion zone (as indicated by the green area) is formed at the interface of the InS$_{0.3}$Se$_{0.7}$ flakes and WS$_2$ flakes. When the light is irradiated on the InS$_{0.3}$Se$_{0.7}$/WS$_2$ heterostructures, the photo-induced electron–hole will be separated at the interface. Electrons are driven to WS$_2$ side, while holes are driven to InS$_{0.3}$Se$_{0.7}$ side. Finally, the electrons and holes were collected by the drain and the source, respectively, resulting in negative I_{sc} and positive V_{oc}, as shown in Figure 2. In addition, the intensity of the photocurrent in the overlap area is almost the same, indicating the good uniformity of the as-prepared InS$_{0.3}$Se$_{0.7}$/WS$_2$ vdW heterostructure devices. Therefore, the whole photovoltaic current was originated from the heterojunction. This can eliminate the contingency of photoresponse and further determine the position of the photocurrent.

The transient photoresponse characteristics were evaluated employing a 532 nm constant wave laser with optical power of 3 mW, and a frequency-programmable chopper. The photocurrent waveform with a chopping frequency of 5 Hz is presented in Figure 4. When the laser is irradiated, the resolved transient photoresponse cycles is clearly observed. The transient photoresponse can be well reproduced in almost 100 cycles, indicating the good repeatable optoelectronic performance of the InS$_{0.3}$Se$_{0.7}$/WS$_2$ vdW heterostructure devices.
Figure 3. Photocurrent mapping of the InS$_{0.3}$Se$_{0.7}$/WS$_2$ vdW heterostructure device under 532 nm laser irradiation at zero bias potential. A photoresponse was observed in the heterostructure region. The blue dotted line indicates the reference line of the heterostructures center and the strongest part of the photocurrent.

Figure 4. The photocurrent waveform with a chopping frequency of 5 Hz.

3. Conclusions

The optoelectronic properties of InS$_{0.3}$Se$_{0.7}$/WS$_2$ vdW heterostructure devices was systemically investigated. The optoelectronic properties originate from the p–n junction formed at the InS$_{0.3}$Se$_{0.7}$/WS$_2$ vdW heterostructure. Furthermore, the response speed is enhanced at a small bias voltage. The uniformity and the repeatable photoresponse features at the interface make the InS$_{0.3}$Se$_{0.7}$/WS$_2$ vdW heterostructure device a promising candidate for the potential photodetector devices application. Our study indicates that the
InS$_{0.3}$Se$_{0.7}$/WS$_2$ vdW heterostructures are covered by graphene as electrodes are attractive building blocks in low-power photodetectors application, which could play an important role in the sustainable development of energy.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3390/su13126883/s1, Figure S1: Raman spectra of the InS$_{0.3}$Se$_{0.7}$ flakes, Figure S2: Scanning electron microscopy (SEM) image and Energy-dispersive X-ray spectroscopy (EDS) of the as-synthesized InS$_{0.3}$Se$_{0.7}$ crystals, Figure S3: Photoluminescence (PL) spectra of the InS$_{0.3}$Se$_{0.7}$/WS$_2$ heterostructures measured at indi-cated temperatures, Figure S4: Band diagram of the InS$_{0.3}$Se$_{0.7}$/WS$_2$ heterostructures.

Author Contributions: Conceptualization, H.H.; methodology, K.Z. and J.C.; software, C.T.; inves-tigation, J.C.; data curation, J.C. and H.H.; writing—original draft preparation, K.Z., J.C. and H.H.; writing—review and editing, K.Z., J.C., C.T. and H.H.; project administration, H.H.; funding acquisition, H.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China under Grant No. 11904004 and Key Laboratory Foundation of the Fifth Electronic Research Institute of MIIT under Grant No. 61428060101.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Miao, J.; Zhang, L.; Wang, C. Black phosphorus electronic and optoelectronic devices. *2D Mater.* 2019, 6, 032003. [CrossRef]
2. Shang, H.; Chen, H.; Dai, M.; Hu, Y.; Gao, F.; Yang, H.; Xu, B.; Zhang, S.; Tan, B.; Zhang, X.; et al. A mixed-dimensional 1D Se–2D InSe van der Waals heterojunction for high responsivity self-powered photodetectors. *Nanoscale Horiz.* 2020, 5, 564. [CrossRef] [PubMed]
3. Mondal, S.; Basak, D. Very high photoresponse towards low-powered UV light under low-biased condition by nanocrystal assembled TiO$_2$ film. *Appl. Surf. Sci.* 2018, 427, 814–822. [CrossRef]
4. Su, L.; Yang, W.; Cai, J.; Chen, H.; Fang, X. Self-Powered Ultraviolet Photodetectors Driven by Built-In Electric Field. *Small* 2017, 13, 1701687. [CrossRef]
5. Xu, Z.; Lin, S.; Li, X.; Zhang, S.; Wu, Z.; Xu, W.; Lu, Y.; Xu, S. Monolayer MoS$_2$/GaAs heterostructure self-driven photodetector with extremely high detectivity. *Nano Energy* 2016, 23, 89–96. [CrossRef]
6. Wang, H.; Chen, H.; Li, L.; Wang, Y.; Su, L.; Bian, W.; Li, B.; Fang, X. High Responsivity and High Rejection Ratio of Self-Powered Solar-Band Ultraviolet Photodetector Based on PEDOT:PSS/β-Ga2O3 Organic/Inorganic p–n Junction. *J. Phys. Chem. Lett.* 2019, 10, 6850–6856. [CrossRef]
7. Xiao, R.; Lan, C.; Li, Y.; Zeng, C.; He, T.; Wang, S.; Li, C.; Yin, Y.; Liu, Y. High Performance Van der Waals Graphene–WS$_2$–Si Heterostructure Photodetector. *Adv. Mater. Interfaces* 2019, 6, 1901304. [CrossRef]
8. Lan, C.; Li, C.; Wang, S.; He, T.; Zhou, Z.; Wei, D.; Guo, H.; Yang, H.; Liu, Y. Highly responsive and broadband photodetectors based on WS$_2$–graphene van der Waals epitaxial heterostructures. *J. Mater. Chem. C* 2017, 5, 1494–1500. [CrossRef]
9. Deilmann, T.; Thysgesen, S. Interlayer Trions in the MoS$_2$/WS$_2$ van der Waals Heterostructure. *Nano Lett.* 2018, 18, 1460–1465. [CrossRef]
10. Alamri, M.; Gong, M.; Cook, B.; Goul, R.; Wu, J.Z. Plasmonic WS$_2$ Nanodiscs/Graphene van der Waals Heterostructure Photodetectors. *ACS Appl. Mater. Interfaces* 2019, 11, 33390–33398. [CrossRef]
11. Yang, G.; Shao, Y.; Niu, J.; Ma, X.; Lu, C.; Wei, W.; Chuai, X.; Wang, J.; Cao, J.; Huang, H.; et al. Possible Luttinger liquid behavior of edge transport in monolayer transition metal dichalcogenide crystals. *Nat. Commun.* 2020, 11, 659–667. [CrossRef] [PubMed]
12. Hocheon, Y.; Keun, H.; Md. Hasan, R.; Seongjae, C. Recent Advances in Electrical Doping of 2D Semiconductor Materials: Methods, Analyses, and Applications. *Nanomaterials* 2021, 11, 832.
13. Deep, J.; Vinod, K.; Lincoln, J.; Tobin, J.; Mark, C. Emerging Device Applications for Semiconducting Two-Dimensional Metal Dichalcogenides. *ACS Nano* 2014, 8, 1102–1120.
14. Lu, Z.; Neupane, G.P.; Jia, G.; Zhao, H.; Qi, D.; Du, Y.; Lu, Y.; Yin, Z. 2D Materials Based on Main Group Element Compounds: Phases, Synthesis, Characterization, and Applications. *Adv. Funct. Mater.* 2020, 30, 2001127. [CrossRef]
15. Zhou, C.; Zhang, S.; Lu, Z.; Ma, Z.; Yu, C.; Feng, Z.; Chan, M. Self-driven WSe$_2$ photodetectors enabled with asymmetrical van der Waals contact interfaces. *NPJ 2D Mater. Appl.* 2020, 4, 46. [CrossRef]
Sustainability 2021, 13, 6883

16. Ning, J.; Zhou, Y.; Zhang, J.; Lu, W.; Dong, J.; Yan, C.; Wang, D.; Shen, X.; Feng, X.; Zhou, H.; et al. Self-driven photodetector based on a GaSe/MoSe2 selenide van der Waals heterojunction with the hybrid contact. Appl. Phys. Lett. 2020, 117, 163104. [CrossRef]

17. Tan, C.; Wang, H.; Zhu, X.; Gao, W.; Li, H.; Chen, J.; Li, G.; Chen, L.; Xu, J.; Hu, X.; et al. Self-Powered Photovoltaic Photodetector Based on a Lateral WSe2-WSe2 Heterojunction. ACS Appl. Mater. Interfaces 2020, 12, 44934–44942. [CrossRef]

18. Chen, J.; You, D.; Zhang, Y.; Zhang, T.; Yao, C.; Zhang, Q.; Li, M.; Lu, Y.; He, Y. Highly Sensitive and Tunable Self-Powered UV Photodetectors Driven Jointly by p-n Junction and Ferroelectric Polarization. ACS Appl. Mater. Interfaces 2020, 12, 53957–53965. [CrossRef]

19. Xu, Y.; Liu, C.; Guo, C.; Yu, Q.; Guo, W.; Lu, W.; Chen, X.; Wang, L.; Zhang, K. High performance near infrared photodetector based on in-plane black phosphorus p-n heterojunction. Nano Energy 2020, 70, 104518. [CrossRef]

20. Tan, C.; Yin, S.; Chen, J.; Lu, Y.; Wei, W.; Du, H.; Liu, K.; Wang, F.; Zhai, T.; Li, L. Broken-Gap PtS2/WSe2 van der Waals Heterojunction with Ultrahigh Reverse Rectification and Fast Photoresponse. ACS Nano 2021, 15, 8328–8337. [CrossRef]

21. Lei, S.; Ge, L.; Sina, N.; Antony, G.; Rajesh, K.; Lou, J.; Manish, C.; Hisato, Y.; Gautam, G.; Robert, V.; et al. Evolution of the Electronic Band Structure and Efficient Photo-Detection in Atomic Layers of InSe. ACS Nano 2014, 8, 1263–1272. [CrossRef]

22. Hao, Q.; Liu, J.; Dong, W.; Yi, H.; Ke, Y.; Tang, S.; Qi, D.; Zhang, W. Visible to near-infrared photodetector with novel optoelectronic performance based on graphene/S-doped InSe heterostructure on h-BN substrate. Nanoscale 2020, 12, 19259–19266. [CrossRef]

23. Guo, H.; Zhang, Z.; Huang, B.; Wang, X.; Niu, H.; Guo, Y.; Li, B.; Zheng, R.; Wu, H. Theoretical study on the photocatalytic properties of 2D InX(X = S, Se)/transition metal disulfide (MoS2 and WS2) van der Waals heterostructures. Nanoscale 2020, 12, 20025–20032. [CrossRef] [PubMed]

24. Hao, Q.; Yi, H.; Su, H.; Wei, B.; Wang, Z.; Lao, Z.; Chai, Y.; Wang, Z.; Jin, C.; Dai, J.; et al. Phase Identification and Strong Second Harmonic Generation in Pure ε-InSe and Its Alloys. Nano Lett. 2019, 19, 2634–2640. [CrossRef] [PubMed]

25. Yan, F.; Zhao, L.; Amalia, P.; Hu, P.; Wei, X.; Luo, W.; Zhang, D.; Lv, Q.; Feng, Q.; Shen, C.; et al. Fast, multicolor photodetection with graphene-contacted p-GaSe/n-InSe heterostructures. Nanotechnology 2017, 28, 27LT01. [CrossRef]

26. Hao, Q.; Liu, J.; Wang, G.; Chen, J.; Gan, H.; Zhu, J.; Ke, Y.; Chai, Y.; Lin, J.; Zhang, W. Surface-Modified Ultrathin InSe Nanosheets with Enhanced Stability and Photoluminescence for High-Performance Optoelectronics. ACS Nano 2014, 14, 11373–11382. [CrossRef]

27. Yang, Z.; Jie, W.; Mak, C.-H.; Lin, S.; Lin, H.; Yang, X.; Yan, F.; Lau, S.P.; Hao, J. Wafer-Scale Synthesis of High-Quality Semiconducting Two-Dimensional Layered InSe with Broadband Photoresponse. ACS Nano 2017, 11, 4225–4236. [CrossRef]

28. Dai, M.; Chen, H.; Wang, F.; Hu, Y.; Wei, S.; Zhang, J.; Wang, Z.; Zhai, T.; Hu, P. Robust Piezo-Phototronic Effect in Multilayer γ-InSe for High-Performance Self-Powered Flexible Photodetectors. ACS Nano 2019, 13, 7291–7299. [CrossRef] [PubMed]

29. Chen, Z.; Johan, B.; Abbay, S. A high performance graphene/few-layer InSe photo-detector. Nanoscale 2015, 7, 5981–5986. [CrossRef]

30. Nadine, L.; Jonas, G.R.; Guillaume, F.; Matthew, H.; Daniel, T.; Roman, G.; Richard, J.W. Optical second harmonic generation in encapsulated single-layer InSe. AIP Adv. 2018, 8, 105120.

31. Li, H.; Han, X.; Pan, D.; Yan, X.; Wang, H.-W.; Wu, C.; Cheng, G.; Zhang, H.; Yang, S.; Li, B.; et al. Bandgap Engineering of InSe Single Crystals through S Substitution. Cryst. Growth Des. 2018, 18, 2899–2904. [CrossRef]

32. Srinivasar, R.; Lu, Y.; Rajesh, K.; Raman, S.; Liao, C.; Karukanara, M.; Cheng, C.; Chou, F.; Chen, Y. High Performance and Bendable Few-Layered InSe Photodetectors with Broad Spectral Response. Nano Lett. 2014, 14, 2800–2806. [CrossRef]

33. Yang, L.-L.; Shi, J.-J.; Zhang, M.; Wei, Z.-M.; Ding, Y.-M.; Wu, M.; He, Y.; Cen, Y.-L.; Guo, W.-H.; Pan, S.-H.; et al. The 2D InSe/WS2 Heterostructure with Enhanced Optoelectronic Performance in the Visible Region. Chin. Phys. Lett. 2019, 36, 097301. [CrossRef]

34. Liang, R.; Zhao, X.; Hu, G.; Yue, W.; Yuan, X.; Ren, J. Electronic Structure and Optical Properties of a Mn-Doped InSe/WS2 van der Walls Heterostructure: First Principles Calculations. J. Korean Phys. Soc. 2020, 77, 587–591. [CrossRef]

35. Huang, F.; Li, J.Z.; Xu, Z.H.; Liu, Y.; Luo, R.P.; Zhang, S.-W.; Nie, P.B.; Lv, Y.F.; Zhao, S.X.; Su, W.T.; et al. A Bilayer 2D-WS2/Organic-Based Heterojunction for High-Performance Photodetectors. Nanomaterials 2019, 9, 1312. [CrossRef]

36. Lv, Q.; Yan, F.; Wei, X.; Wang, K. High-Performance, Self-Driven Photodetector Based on Graphene Sandwiched GaSe/WS2 Heterojunction. Adv. Opt. Mater. 2017, 5, 1700490. [CrossRef]

37. Ashima, R.; Raihan, A.; Dimple; Nityasagar, J.; Manish, K.M.; Abir, D.S. Solar Energy Harvesting in Type II van der Waals Heterostructures of Semiconducting Group III Monochalcogenide Monolayers. J. Phys. Chem. C 2019, 123, 12666–12675. [CrossRef]

38. Wu, F.; Xia, H.; Sun, H.; Zhang, J.; Gong, F.; Wang, Z.; Chen, L.; Wang, P.; Long, M.; Wu, X.; et al. AsP/InSe Van der Waals Tunneling Heterojunctions with Ultrahigh Reverse Rectification Ratio and High Photosensitivity. Adv. Funct. Mater. 2019, 29, 1900314. [CrossRef]

39. Zhong, F.; Wang, H.; Wang, Z.; Wang, Y.; He, T.; Wu, P.; Peng, M.; Wang, H.; Xu, T.; Wang, F.; et al. Recent progress and challenges on two-dimensional material photodetectors from the perspective of advanced characterization technologies. Nano Res. 2021, 14, 1840–1862. [CrossRef]

40. Dong, H.; Choi, S. Graphene-Based Semiconductor Heterostructures for Photodetectors. Micromachines 2018, 9, 350.