The present study examines the dose–response relationship for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) promotion of histologic and biochemical parameters by using a two-stage model for hepatocarcinogenesis in female Sprague-Dawley rats initiated with a single intraperitoneal dose of 175 mg of diethylnitrosamine (DEN)/kg body weight at 70 days of age. Starting 2 weeks after initiation, treatment groups of 8-10 rats were given TCDD by gavage in corn oil once a week for 30 weeks. Doses were 3.5, 10.7, 35.7, and 125 ng TCDD/kg body weight/day. A significant body weight reduction was present in the noninitiated group that received 125 ng TCDD. Relative liver weight was statistically increased in initiated rats treated with ≥ 10.7 ng TCDD and in noninitiated rats treated with ≥ 35.7 ng TCDD. Histopathologic evidence of cytoxicity was dose-related in all TCDD-treated groups. There was a statistically significant dose response in the bromoexudoridine (BrDU) S-phase labeling index (LI) in the DEN-initiated rats (p < 0.01) and a marginally significant trend in the saline-treated rats (p = 0.10). But proliferating cell nuclear antigen S-phase LI and growth fraction within altered hepatic foci showed no increase. Among the DEN-initiated groups there was a significant increase in glutathione S-transferase activity in the 125 ng TCDD group. This study demonstrates that dose–response relationships for TCDD’s effects on cell proliferation and growth of altered hepatic foci are different from previously reported effects on P450 gene expression, indicating that different biological or biochemical responses may exhibit different dose–response relationships. This implies that the shape of the dose–response curve for receptor-mediated carcinogens, such as TCDD, might not be predicted solely on the basis that a response is receptor mediated. Key words: cell proliferation, clinical chemotherapy, focus stereology, initiation, labeling index, liver foci, promotion. Environ Health Perspect 101:634–642 (1993)

Two-stage hepatocarcinogenesis models in rats are useful in identifying tumor-promoting activity of chemicals by stereologic quantification of altered hepatocellular foci (1,2). In addition, chemically induced cell proliferation may play a critical role in the development of cancer, especially for chemicals that appear to act by nongenotoxic mechanisms (3–6). 2,3,7,8-Tetra-chlorodibenzo-p-dioxin (TCDD), a hepatocarcinogen in female rats (7,8), is generally regarded as a nongenotoxic carcinogen (9–11) and has been identified as a potent tumor promoter in two-stage rat liver tumor models with negligible tumor-initiating potential (12–14). Risk assessments for estimating human health effects from TCDD exposure are derived from tumor incidence data in female rat liver (15).

Although mechanisms for the carcinogenic activity of TCDD and its structural analogs are unknown, many toxic and biochemical effects of TCDD appear to require the Ah receptor, including effects on signal transduction pathways possibly involving epidermal growth factor receptor (16,17) and estrogen receptor (18,19). Induction of liver tumors in female rats treated with TCDD is associated with enhanced hepatocyte proliferation and is modulated by ovarian hormones (20). Because cell proliferation may play a role in the carcinogenic process and because evaluation of altered hepatic foci (AHF) is useful in identifying hepatocarcinogens, information on dose–response relationships for these effects within the framework of a two-stage model for hepatocarcinogenesis may provide essential information for estimating cancer risks from dioxin exposure.

Unfortunately, there is no information in the literature on dose–response relationships for TCDD’s effects on cell proliferation either in hepatocytes or within AHF, although stereologic measures of enzyme-altered foci have been reported (12). However, there is considerable data on dose–response relationships for induction of two cytochrome P450 isozymes (CYP1A1 and 1A2) in rat liver (9,21–23). Although the mechanistic link between P450 induction and cell proliferation or cancer is not readily apparent, we have compared dose–response relationships for these different endpoints to evaluate relative sensitivities for various responses to TCDD within the framework of a tumor promotion model.

In the present studies, we used a two-stage model for hepatocarcinogenesis in female Sprague-Dawley rats to determine the dose response of TCDD promotion, as measured by histologic and biochemical parameters, after initiation with a single dose of diethylnitrosamine (DEN). After 30 weeks of TCDD treatment, several parameters were assessed including histopathology, AHF positive for the placental isozyme of glutathione S-transferase (PGST), hepatocyte proliferation, and liver TCDD concentrations. We evaluated dose–response relationships on the basis of both administered dose and target tissue dose of total (free plus bound) TCDD. Furthermore, dose–response relationships for PGST” foci and hepatocyte proliferation were compared to those for CYP1A1 and CYP1A2 induction in the same livers to determine if enzyme induction is correlated with effects on cell proliferation and size and number of PGST” foci. In addition, we compared cell proliferation rates in focal lesions to those in normal hepatocytes to assess TCDD’s effects on selective growth enhancement of putative precursors of neoplastic lesions. These studies revealed that there was considerable inter-individual variation in TCDD’s effects on hepatocyte proliferation, various parameters of PGST” foci, and histomorphologic alterations. It appears that these biological responses occur at higher TCDD exposures than previously reported for CYP1A1 and CYP1A2 induction in rat liver (22).

Materials and Methods

Female Sprague-Dawley rats, used because of a previous carcinogenicity bioassay (7) and liver tumor promotion studies (12,24), were obtained from Charles River Breeding Laboratories, Inc. (Raleigh, North Carolina), acclimatized for 2 weeks, and randomly distributed into 1 of 10 treatment groups on the basis of body weight. The treatment groups consisted of four separate doses of TCDD after initiation with DEN and appropriate noninitiated and vehicle controls as detailed in Table 1. At 70 days of age, 175 mg DEN/kg body weight was administered intraperitoneally as the initiating agent with 1 μl saline/g body weight as the DEN vehicle control. Starting 2 weeks after initiation, rats were given TCDD by gavage in corn oil once every 2 weeks for 30 weeks. Biweekly doses ranged from 49 to 1750 ng TCDD/kg and are considered equivalent to 3.5 to 125 ng TCDD/kg body weight/day. Rats were killed 7 days after the final treatment. There were 8–10 rats/group. The high dose was previously shown to promote liver tumors in DEN-initiated rats (24).

Address correspondence to R. R. Maronpot, NIEHS, PO Box 12233, Research Triangle Park, NC 27709 USA.
Received 14 June 1993; accepted 17 September 1993.

R. R. Maronpot,1 Julie F. Foley,1 K. Takahashi,1 T. Goldsworthy,2 G. Clark,1 A. Tritscher,1 C. Portier,1 and G. Lucier1

1National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 USA; 2Chemical Industry Institute of Toxicology, Research Triangle Park, NC 27709 USA.
Weighed the liver at necropsy and froze representative samples of the left and right median, left lateral, and right posterior lobes in liquid nitrogen or fixed them in 10% formalin for routine hematoxylin and eosin staining and histopathologic evaluation using published diagnostic criteria (25). A section of duodenum was also saved and embedded along with the fixed liver sections for a positive control for the cell proliferation studies. Histologic sections of liver were stained for PGST using an immunohistochemical procedure (26). A minimum of eight contiguous PGST+ hepatocytes was required for a PGST+ focus to be scored. Foci were quantified using computer-assisted image analysis (NIH Image V3.8 for the Macintosh by W. Rasband, NIH) and subjected to stereological analysis as described previously (27,28). We estimated the number and size of AHF in H&E-stained sections and the relative degree of toxicity based on a semiquantitative grading scale (see Table 3 for details).

Immediately before euthanizing the rats, blood was collected under carbon dioxide anesthesia by cardiac puncture using a 20-gauge needle and a 10-ml syringe. Blood was transferred to prelabeled serum separator tubes without anticoagulant, and sera were harvested from the clotted blood within 30 min of collection. The following clinical chemistry measurements were made using a Monarch 2000 (Instrumentation Laboratories, Inc., Lexington, Massachusetts) and commercially available reagents: alkaline phosphatase (AP), glucose, alanine aminotransferase (ALT), total cholesterol, triglycerides, sorbitol dehydrogenase (SDH), 5'-nucleotidase (5'-Nuc), and total bile acids. Sera were stored at 70°C between collection and measurements.

Replicative DNA synthesis (S-phase hepatocytes) was immunohistochemically quantified by identifying bromodeoxyuridine (BrdU) incorporation after subcutaneous implantation of a 7-day osmotic minipump (Alzet model 2ML1; 10 μl/h; Alzet Corp., Palo Alto, California) filled with 30 mg/ml BrdU in distilled water. We surgically implanted minipumps 7 days before sacrifice while rats were under methoxyflurane/oxygen inhalation anesthesia. Incorporation of BrdU was quantified in immunohistochemically stained sections (29) by counting labeled nuclei among at least 1000 hepatocytes in randomly selected fields. For determination of hepatic cell proliferation indices among various treatment groups, care was taken to avoid AHF in the fields counted. A labeling index was generated by dividing the number of labeled hepatocytes by the total number of hepatocytes counted, and the result was expressed as a percentage. Before counting, written criteria for scoring were used by four independent observers to determine the labeling index for three rats. There was close agreement in the independently determined labeling indices. The lobular distribution of S-phase hepatocytes was noted in most cases, although this was not done for some livers with only a small number of labeled cells.

Labeling indices determined from slides stained immunohistochemically for proliferating cell nuclear antigen (PCNA) (30,31) and counterstained with H&E were evaluated in 10–12 AHF from rats given DEN followed by corn oil or one of the TCDD treatment regimens. Positive staining was evaluated in 90–100% of the hepatocytes in each focal transection according to previously published criteria (30,31). All foci evaluated were clearly discernible and were randomly selected as representative medium-sized, clear-cell AHF (0.3–1.25 mm in diameter) as measured using a calibrated eyepiece reticle.

We calculated a PCNA S-phase labeling index plus a growth fraction (the proportion of cells in G1, S-phase, G2, and mitosis combined) for each AHF evaluated. We analyzed 1-g samples of liver for TCDD concentrations by GC-MS as previously reported (20).

Results

Body and Liver Weight

At the end of the study, body weight gain was statistically significantly lower than controls in the noninitiated group that received 125 ng TCDD/kg body weight/day. There was a nonsignificant treatment-related decreased trend in body weight in initiated rats (p = 0.18) and a significant decrease in body weight in the noninitiated rats (p = 0.004). Data are presented in Table 1 and illustrated in Figure 1. A continuous mathematical model was fit to these data to give an indication of TCDD-induced changes in overall body weight. A model which fit the data well is:

\[
W(t,d) = \frac{V_{\text{max}} E^{(\alpha t)}}{K_m + t} + C
\]

where \(W(t,d)\) is the expected weight of an animal exposed to dose level \(d\) of TCDD (ng/kg/day) at day \(t\). \(C\) is the expected weight at the start of the experiment, and \(V_{\text{max}}, K_m,\) and \(\alpha\) are parameters of the model. \(E\) (Euler’s constant) = 2.71828.

The estimated values of the model parameters are \(C = 237.3\) g (± 4.4 SE), \(V_{\text{max}} = 219.7\) (± 15.73), \(K_m = 116.3\) (± 22.94) days, and \(\alpha = -2.86 	imes 10^{-3} (± 3.57 	imes 10^{-4})\) (ng/kg/day)-1. The effect of dose (\(\alpha\)) is significantly different from 0 (p < 0.05).

There was a statistically significant effect of TCDD and initiation on absolute liver weight. This trend was obvious in the DEN initiated rats, but less notable in the saline-treated rats. When liver weight relative to body weight was analyzed, the effect of initiation disappeared and the TCDD dose response became apparent and effectively equal in the initiated and noninitiated groups. Relative liver weight was statistically increased over controls in rats treated with \(≥\) 10.7 ng TCDD/kg body weight/day in the initiated animals and in rats treated with \(≥\) 35.7 ng TCDD/kg body weight/day in the noninitiated animals. The ratio of liver weight to body weight can also be modeled using a simple form given by:

\[
R(d) = \frac{V_{\text{max}} d}{K_m + d} + C
\]

where \(R(d)\) is (liver weight/body weight) \(×\) 100% at dose \(d\) (ng/kg/day). \(C\) is the ratio in control animals and \(V_{\text{max}}\) and \(K_m\) are

Treatment group	Body weight (g)a	Liver weight (g)b	LW/BW (×100)c	LI(%)*
DEN/corn oil	391 ± 45	12.7 ± 1.4d	3.3 ± 0.3d	5.28 ± 2.22d
DEN/TCDD (3.5 ng/kg)	387 ± 43	13.3 ± 2.6	3.4 ± 0.4	2.26 ± 1.55*
DEN/TCDD (10.7 ng/kg)	390 ± 71	14.1 ± 2.4	3.8 ± 0.3	2.25 ± 2.91
DEN/TCDD (35.7 ng/kg)	355 ± 37	13.4 ± 1.1	3.8 ± 0.3	6.38 ± 3.62
DEN/TCDD (125 ng/kg)	362 ± 68	16.0 ± 2.4*	4.5 ± 0.3	14.35 ± 8.26*
Saline/corn oil	442 ± 47d	14.9 ± 2.1	3.4 ± 0.2d	3.41 ± 1.97
Saline/TCDD (3.5 ng/kg)	399 ± 38	13.9 ± 1.7	3.5 ± 0.2	2.22 ± 2.18
Saline/TCDD (10.7 ng/kg)	402 ± 67	14.3 ± 2.0	3.8 ± 0.3	4.87 ± 5.66
Saline/TCDD (35.7 ng/kg)	433 ± 38	16.5 ± 3.9	3.8 ± 0.5	5.33 ± 5.82
Saline/TCDD (125 ng/kg)	346 ± 34	15.1 ± 4.7	4.3 ± 1.2	7.09 ± 8.15

DEN, diethylhexylamine; TCDD, 2,3,7,8-tetrachlorodibenzop-dioxin.

* TCDD effect and initiation effect significant (p < 0.05) in analysis of variance.

** TCDD effect significant (p < 0.05) in analysis of variance.

† TCDD effect and interaction between TCDD and initiation significant (p < 0.05) in analysis of variance.

* p < 0.05 for trend test using a general linear model.

Statistically significant versus control as measured by two-tailed, unpaired Student’s t-test, p < 0.05.
parameters. For the data given here, estimates are \(C = 3.361 (\pm 0.0815\%) \), \(V_{\text{max}} = 1.792 (\pm 0.692\%) \), and \(K_m = 92.31 (\pm 80.16) \) ng/kg/day. The fit of this model to the data is illustrated in Figure 2. The value of \(V_{\text{max}} \) is significantly different from zero \((p < 0.05)\), indicating the significant effect of treatment on this ratio. The maximum change indicated by the model is 1.792% for a large treatment dose. At 125 ng TCDD/kg body weight/day, the change over control is 1.03%.

Gross Lesions
Livers from rats treated with either 35.7 or 125 ng TCDD/kg body weight/day were either uniformly darker than normal or had 2–5 mm irregularly round, dark areas on all natural surfaces. A 3-mm tan focus, diagnosed as a hepatocellular adenoma, was observed on a cut surface of the left median lobe of a rat in the DEN/TCDD (125 ng/kg) group, and a 10-mm tan nodule, diagnosed as focal fibrosis, was present on the left median lobe of a rat in the DEN/TCDD (35.7 ng/kg) group. Biliary cysts were present in the livers of two rats, one from the DEN/TCDD (10.7 ng/kg) group and the other from the DEN/TCDD (125 ng/kg) group. Livers from all other rats were macroscopically normal. The frequency of hepatocellular proliferative lesions is not significantly different from that which might be expected in controls at a 30-week time point. Biliary cysts commonly occur in TCDD-treated rats (unpublished observations). Based upon previous studies, liver tumor incidence was increased after a total of 60 weeks of treatment with TCDD (125 ng/kg/day) in DEN-initiated rats (24).

Clinical Pathology
Means, standard deviations, and the analysis of the serum chemistry data are presented in Table 2. Statistically significant dose–response changes due to TCDD were seen for AP, total cholesterol, triglycerides, SDH, and 5'-Nuc. In addition, significant effects of initiation were seen for AP and triglycerides and a marginally significant effect on SDH \((p = 0.058)\) was seen. There were no statistically significant interactions between DEN and TCDD for any of the serum chemistry measurements, although many of the measures showed similar high dose responses but significantly different control responses between initiated and noninitiated rats. ALT was marginally affected by TCDD \((p = 0.087)\) with a slight interaction between TCDD and DEN \((p = 0.073)\) and with statistically increased response over control in the two highest dose groups of initiated rats. Glucose and total bile acids were unaffected by either TCDD or DEN treatments. The elevations of ALT, AP, 5'-Nuc, and SDH are consistent with the cytotoxicity observed in histologic sections.

Histopathology
Histologic evidence of toxicity consisted of cytoplasmic vacuolization, fatty change, bile duct hyperplasia, and pigment in Kupffer cells and is documented for individual rats in Table 3. There was a dose-related increase in toxicity in both initiated and noninitiated rats, with somewhat greater severity of toxicity in noninitiated rats. An estimate of AHF as detected in H&E-stained sections based on number and size is also presented in Table 3 for individual rats. Rats initiated with DEN had more AHF in H&E-stained sections than noninitiated rats. Most AHF were clear cell, acidophilic, or basophilic. There was no strong positive or negative correlation between individual rat BrdU S-phase hepatocyte labeling index (LI) and H&E-stained AHF \((r = 0.321)\) for initiated and \(r = 0.433\) for noninitiated rats) or between labeling index and toxicity \((r = 0.533)\) for initiated and \(r = 0.451\) for noninitiated rats). Likewise, there was no clear corre-
Table 2. Serum clinical chemistry parameters from female Sprague-Dawley rats

Group	AP (IU/L)*	Glucose (mg/dl)	ALT (IU/L)	Total cholesterol (mg/dl)	Triglycerides (mg/dl)	SDH (IU/L)	5'-Nuc (IU/L)	TBA (µmol/l)
DEN/corn oil (35 ng/kg)	75.5 ± 25.9	150.0 ± 15.4	23.3 ± 5.6	102.6 ± 21.5	303.2 ± 129.7	17.1 ± 8.3	30.5 ± 6.0	40.98 ± 26.80
DEN/TCCD (10.7 ng/kg)	76.1 ± 21.8	154.7 ± 17.8	34.9 ± 25.0	118.7 ± 12.2	298.1 ± 92.9	22.9 ± 22.0	39.9 ± 17.9	29.71 ± 13.20
DEN/TCCD (125 ng/kg)	98.0 ± 25.8	149.0 ± 25.6	35.5 ± 12.1	134.4 ± 12.3	284.3 ± 79.7	29.6 ± 12.0	47.0 ± 26.6	41.34 ± 8.58
Saline/corn oil	151.7 ± 49.1	145.1 ± 14.2	41.4 ± 14.8	141.6 ± 25.9	208.0 ± 82.7	38.2 ± 11.0	48.8 ± 10.3	52.89 ± 28.14
Saline/TCCD (3.5 ng/kg)	99.0 ± 46.3	144.0 ± 8.6	37.7 ± 14.3	106.2 ± 17.2	432.7 ± 105.9	29.6 ± 15.4	35.2 ± 6.2	32.30 ± 13.15
Saline/TCCD (10.7 ng/kg)	104.0 ± 55.9	160.2 ± 18.1	32.9 ± 8.6	96.3 ± 10.8	354.9 ± 144.8	25.8 ± 14.9	32.9 ± 11.5	43.77 ± 24.34
Saline/TCCD (35.7 ng/kg)	98.3 ± 68.3	165.4 ± 22.0	34.9 ± 8.6	116.4 ± 22.9	403.1 ± 191.8	24.1 ± 9.8	32.7 ± 8.6	42.84 ± 25.51
Saline/TCCD (125 ng/kg)	117.0 ± 84.8	156.3 ± 13.2	35.2 ± 8.6	132.9 ± 33.9	486.3 ± 379.8	31.1 ± 12.3	51.0 ± 20.5	30.11 ± 7.04

AP, alkaline phosphatase; ALT, alanine aminotransferase; SDH, sorbitol dehydrogenase; 5'-Nuc, 5'-nucleotidase; TBA, total bile acids; DEN, diethylnitrosamine; TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin.

*TCDD effect and initiation effect significant (p < 0.05) in analysis of variance.

**TCDD effect significant (p < 0.05) in analysis of variance.

* p < 0.05 for trend test using a general linear model.

Statistically significant versus control as measured by two-tailed, unpaired Student's t-test, p < 0.05.

Discussion

The TCDD concentration was determined in rat livers where the rats were exposed to different doses of TCDD (20). In general, within the dose range used (3.5–125 ng TCDD/kg/day) there was a linear relationship between administered dose and liver concentration of TCDD. The TCDD levels were based on liver wet weight or liver lipid (Fig. 7) (22). Average values on a wet-weight basis were approximately 0.5 ppb in the 3.5 ng/kg dose group and approximately 20 ppb in the 125 ng/kg dose group.

The TCDD concentration in rat liver was increased and was especially evident in the 125 ng/kg dose group, where there were rats with a clearly elevated liver and other rats which were not different from controls (Fig. 3). This variability was also evident when individual rat livers were plotted against the liver concentration of TCDD (Fig. 4).

PCNA + S-phase hepatocyte LIs were enumerated within AHF evident in H&E-stained sections from DEN-initiated rats, and the results for individual AHF are presented along with the growth fraction and the AHF diameter in Table 4. It was apparent that most AHF had a higher S-phase LI and growth fraction than the surrounding nonfocal hepatocytes (data not presented). There was no clear correlation between AHF diameter and PCNA + S-phase LI (r = 0.157) or growth fraction (r = 0.217), whereas the correlation between PCNA + S-phase and growth fraction was r = 0.822. No significant treatment-related effect on either S-phase (p = 0.520) or growth fraction (p = 0.676) was found for AHF based on analysis of variance; thus, TCDD treatment did not increase the LI within AHF selected for evaluation.

Hepatic TCDD Concentrations

TCDD concentrations in liver were quantified only in DEN/TCCD-treated rats because previous studies had demonstrated that TCDD concentrations were similar in DEN-initiated and in noninitiated rats (20). In general, within the dose range used (3.5–125 ng TCDD/kg/day) there was a linear relationship between administered dose and liver concentration of TCDD. The TCDD levels were based on liver wet weight or liver lipid (Fig. 7) (22). Average values on a wet-weight basis were approximately 0.5 ppb in the 3.5 ng/kg dose group and approximately 20 ppb in the 125 ng/kg dose group.
Table 3. Bromodeoxyuridine S-phase labeling indices (BrDU LI), altered hepatic foci (AHF), and toxicity

Group	Animal ID	BrDU LI (%)	AHI	Toxicity	Group	Animal ID	BrDU LI (%)	AHI	Toxicity
DEN/corn oil	1-1	7.89r	2	0	Saline/corn oil	19-1	5.71c	0	0
	1-2	3.70r	3	0		19-2	4.59r	0	0
	1-3	2.30r	1	0		19-3	5.36r	1	0
	1-4	3.31r	2	0		20-1	0.97	0	0
	2-1	5.41r	1	0		20-2	2.45r	0	0
	2-2	4.32r	1	0		20-3	3.22r	0	0
	2-3	3.13r	1	0		21-1	5.61p	0	0
	3-1	8.48r	2	0		21-2	1.77	0	0
	3-2	7.03r	2	0		21-3	0.99	0	0
	3-3	7.38r	3	0					
DEN/3.5 ng TCDD/kg/day	4-1	3.34r	2	0	Saline/3.5 ng TCDD/kg/day	22-1	2.81m	0	0
	4-2	5.61r	2	0		22-2	0.82	0	0
	4-3	5.65r	1	0		22-3	1.75	0	0
	5-1	4.20r	3	1		23-1	0.98	0	0
	5-2	2.38r	3	2		23-2	1.81r	0	0
	5-3	2.66r	3	0		23-3	8.42r	0	0
	6-1	1.77	2	0		24-1	3.59	1	2
	6-2	2.32r	3	1		24-2	5.87r	1	2
	6-3	1.59	2	0		24-3	5.16p	0	0
DEN/10.7 ng TCDD/kg/day	7-1	1.96	1	0	Saline/10.7 ng TCDD/kg/day	25-1	19.29c	0	2
	7-2	0.2	2	0		25-2	2.57p	0	0
	7-3	10.10r	3	0		25-3	5.02p	0	0
	8-1	3.48r	0	1		26-1	1.86p	0	1
	8-2	2.89r	1	0		26-2	1.43p	0	1
	8-3	2.91r	3	1		26-3	4.41p	0	0
	9-1	1.90r	1	0		27-1	5.76m	0	2
	9-2	2.30r	3	0		27-2	0.85	0	0
	9-3	0.49	2	0		27-3	2.80p	0	2
DEN/35.7 ng TCDD/kg/day	10-1	5.11r	2	0	Saline/35.7 ng TCDD/kg/day	28-1	9.07r	0	4
	10-2	6.10r	3	0		28-2	3.28p	0	4
	10-3	1.37r	2	2		28-3	3.30p	0	4
	11-1	8.58r	1	3		29-1	0.34r	0	0
	11-2	3.82r	0	3		29-2	2.49m	0	1
	11-3	13.65r	2	3		29-3	0.14	0	0
	12-1	5.73r	3	3		30-1	0.53	1	2
	12-2	6.57r	3	3		30-2	14.86c	0	5
						30-3	13.96c	1	4
DEN/125 ng TCDD/kg/day	13-1	8.66r	3	3	Saline/125 ng TCDD/kg/day	31-1	23.64p	1	6
	13-2	21.36r	2	3		31-2	3.91c	0	3
	14-1	7.25r	3	2		31-3	4.41p	0	5
	14-2	21.35r	3	4		32-1	1.22	0	4
	14-3	5.91r	3	2		32-2	1.07p	0	3
	17-1	10.92r	3	2		32-3	9.20r	0	4
	17-2	5.98r	3	2		33-1	1.46p	0	2
	18-1	27.97r	3	2		33-2	1.57	0	2
	18-2	19.21r	3	4		33-3	17.28c	1	2

*a*Distribution of labeled nuclei: r, random; c, centrilobular; p, perportal; m, midlobular. For some low labeling indices, it was not possible to determine a clear distribution pattern of labeled nuclei.

*b*Altered hepatic focus response on hematoxylin & eosin stained sections: 0 = no foci; 1 = a few foci; 2 = moderate number of foci; 3 = many foci.

*c*Toxicity: Severity grades range from 0 = no toxicity to 6 = most severe toxicity observed. Toxicity characterized by cytoplasmic vacuolization, fatty change, bile duct hyperplasia, and/or pigment in Kupffer cells.

AHF (32). In rats, enzyme histochemical staining for the placental form of glutathione S-transferase is considered a reliable marker for preneoplastic lesions of hepatocytes (33). Enhancement of AHF in such initiation-promotion models could be considered a reflection of tumor promotion (34,35), as hepatic tumor promoters are known to accelerate the appearance of AHF (1) and are able to increase the number and/or size of AHF at a given time interval (34,36).

As has been previously demonstrated (20), initiation with a necrogenic dose of DEN followed by treatment with 125 ng TCDD/kg body weight/day resulted in development of PGSTfoci. Further confirmation that TCDD acted as a promoter

Figure 3. Effect of different doses of TCDD on the bromodeoxyuridine S-phase labeling index in normal hepatocytes.

Figure 4. Effect of liver concentrations of TCDD on the bromodeoxyuridine S-phase labeling index in normal hepatocytes.
of putative preneoplastic foci was evident from the significant dose-related increase in PGST1 AHF in the TCDD-treated rats as well as increased size and number of AHF noted in H&E-stained sections. Similar to previous results, few PGST1 or H&E-stained AHF were present in the TCDD-only treated groups. The increases in number of AHF in initiated rats and in noninitiated rats (less the high dose group) combined with the strong interaction term between TCDD and DEN suggest a complex effect of TCDD.

Previous studies (22,37,38) examined dose–response relationships for TCDD-mediated induction of cytochrome P450 isozymes (CYP1A1 and CYP1A2) within the framework of the same liver tumor promotion model described in the present paper. The conclusion, based on both experimental data and biologically based mathematical models for TCDD’s effects on gene expression, was that there appears to be a linear relationship between administered dose, liver TCDD concentrations, and cytochrome P450 induction, even in the low dose region used in this study. Therefore, growth and number of preneoplastic lesions appears to occur at a higher dose of TCDD than CYP1A1 or CYP1A2 induction and/or the methods for quantifying putative preneoplastic lesions are inherently less sensitive than are the methods used to quantify cytochrome P450 isozymes. CYP1A1 and IAD induction represents a much simpler response, whereas AHF induction takes significantly longer and reflects a more complicated process. This complexity of response for AHF could account for the discrepancy in dose responsiveness when compared to CYP1A1 and 1A2.

There was evidence of cytotoxicity in TCDD-treated groups as supported by histopathological changes, increase in relative liver weight, and alterations in serum clinical chemistry. The morphological evidence of hepatotoxicity was present in all TCDD-treated groups and was more marked in the higher dose groups. In general, hepatocytes were enlarged and vacuolated, without an obvious lobular pattern in the distribution of these changes. The morphological findings are supported by the dose-related increases in relative liver weight and by dose-related alterations in clinical chemistry measurements. Changes in serum cholesterol, AP, and 5′-Nuc are generally reflective of cholestatic changes, whereas changes in SDH and ALT are generally reflective of perturbations in hepatocyte membrane integrity and leakage of these enzymes into the blood. The increase in serum glucose in the noninitiated groups treated with TCDD may reflect perturbation in glucose mobilization in the

Treatment	ID	Mean focus diameter (mm)	PCNA LI (%)	PCNA growth fraction (%)
0 ng TCDD/kg/day	1-1a	0.50	10.71	19.64
	1-1b	0.45	1.47	5.88
	1-2a	0.69	2.42	9.58
	1-2b	0.43	12.70	42.86
	1-4a	0.75	30.43	32.54
	1-4b	0.48	18.92	20.95
	3-1	0.33	2.67	9.33
	3-2b	0.50	8.27	10.53
	3-3a	0.28	54.05	83.78
	3-3b	0.85	27.54	53.29
	3-3c	1.25	36.23	62.32
Mean		0.61	18.88	32.97
SE		0.08	4.61	7.03
3.5 ng TCDD/kg/day	4-1a	0.75	26.14	50.57
	4-1b	0.50	13.10	29.17
	5-1	0.63	26.53	52.38
	5-3a	0.40	11.58	22.96
	5-3b	0.50	8.22	11.84
	5-3c	0.85	23.63	47.26
	6-2a	0.50	3.39	6.56
	6-2b	0.55	16.13	24.73
	6-3a	0.35	10.91	19.09
	6-3b	0.35	21.88	27.08
Mean		0.54	16.15	28.16
SE		0.05	2.54	5.10
10.7 ng TCDD/kg/day	7-1	0.30	8.75	16.25
	7-3a	0.90	9.80	29.16
	7-3b	0.50	21.69	45.28
	7-3c	0.40	7.29	25.00
	8-2	0.50	39.88	53.18
	8-3a	0.45	18.87	39.62
	8-3b	0.35	23.36	49.42
	9-2a	0.45	1.72	13.79
	9-2b	0.40	0.00	7.69
	9-2c	0.85	3.14	6.48
	9-2d	0.30	0.00	11.76
	9-3	0.75	8.09	15.03
Mean		0.50	11.88	25.71
SE		0.05	3.45	4.34
35.7 ng TCDD/kg/day	10-2a	0.53	11.92	23.84
	10-2b	0.90	2.99	37.72
	10-2c	0.35	4.17	50.00
	10-3a	0.58	0.00	3.07
	10-3b	0.48	2.50	6.67
	10-3c	0.38	14.29	17.86
	11-1	0.60	16.78	26.57
	11-3	0.38	4.84	12.90
	12-1a	0.53	21.83	40.85
	12-1b	0.65	7.58	11.36
	12-1c	0.85	2.33	6.20
	2-1a	0.40	42.11	74.74
Mean		0.54	10.95	25.98
SE		0.04	3.44	6.19
125 ng TCDD/kg/day	13-1a	0.48	39.00	63.00
	13-1b	0.65	7.50	62.50
	14-1	0.55	44.88	71.49
	14-3a	0.70	4.39	8.77
	14-3b	0.45	3.16	24.21
	17-1	1.00	5.56	45.24
	17-2a	0.78	2.56	6.41
	17-2b	0.35	3.76	6.02
	18-1a	1.05	42.15	50.41
	18-1b	0.70	35.85	44.34
	18-2	0.95	10.53	30.70
Mean		0.70	18.10	37.55
SE		0.07	5.41	7.21

*All rats initiated with diethylnitrosamine followed by biweekly corn oil or 2,3,7,8- tetrachlorodibenzo-p-dioxin treatment.

*ID numbers reflect cage number, rat number; a,b,c,d indicate focus identification.

Volume 101, Number 7, December 1993
Table 5. Stereologic parameters for placental glutathione S-transferase-positive altered hepatic foci in female Sprague-Dawley rats

Group	Foci/cm³ö	Foci/cm³ø	Volume fraction (%)	Mean volume (µm³ × 10⁴)	Foci/liverò
DEN/corn oil	10.9 ± 0.7	242.2 ± 208.4	0.57 ± 0.44	13 ± 6	5748 ± 3923
DEN/TCDD (3.5 ng/kg)	18.4 ± 10.1	759.2 ± 452.0	0.85 ± 0.40	15 ± 12	10552 ± 7941
DEN/TCDD (10.7 ng/kg)	20.4 ± 10.9	791.7 ± 597.2	1.00 ± 1.16	11 ± 4	11842 ± 8870
DEN/TCDD (35.7 ng/kg)	15.8 ± 7.7	530.4 ± 294.8	0.33 ± 0.58	18 ± 7	7157 ± 3852
DEN/TCDD (125 ng/kg)	26.5 ± 15.7*	751.7 ± 428.4	2.23 ± 1.47*	30 ± 8*	11989 ± 6798*

Saline/corn oil | 0.4 ± 0.5 | 22.3 ± 29.0 | 0.01 ± 0.01 | 3 ± 3 | 327 ± 418 |
Saline/TCDD (3.5 ng/kg)	0.7 ± 1.0	35.9 ± 69.8	0.02 ± 0.02	6 ± 1	457 ± 112
Saline/TCDD (10.7 ng/kg)	0.6 ± 0.8	34.7 ± 49.9	0.02 ± 0.03	5 ± 3	447 ± 614
Saline/TCDD (35.7 ng/kg)	1.9 ± 2.7	102.8 ± 131.1	0.06 ± 0.11	5 ± 6	1533 ± 1794
Saline/TCDD (125 ng/kg)	1.1 ± 1.6	51.9 ± 69.5	0.04 ± 0.07	5 ± 3	693 ± 921

DEN, diethylnitrosamine; TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin.
*Statistically significant effects for TCDD and initiation with significant interaction between TCDD and DEN (p < 0.05) in analysis of variance.
1Statistically significant effect of DEN (p < 0.05), no significant effect of TCDD in analysis of variance.
2p < 0.05 for trend test using a general linear model.
3Trend is statistically significant when high dose is excluded (p < 0.05).
4Statistically significant versus control as measured by two-tailed, unpaired Student’s t-test, p < 0.05.

Figure 5. Effect of different doses of TCDD on size (µm³) of glutathione S-transferase-positive altered hepatic foci in rats initiated with diethylnitrosamine.

Figure 6. Effect of liver concentrations of TCDD on the size (µm³) of glutathione S-transferase-positive altered hepatic foci in rats initiated with diethylnitrosamine.

Figure 7. Relationship between administered dose and liver concentration of TCDD in rats initiated with diethylnitrosamine.

AHF. Because TCDD does provide a selective growth advantage for AHF as evidenced by increased size of PGST⁺ AHF (Table 5), it may be that this effect is a result of a decreased rate of cell death within AHF. Alternatively, the ratio of S-phase cells to growth fraction within AHF may be greater than that in non-AHF hepatocytes (not measured in the present study), imparting a selective growth advantage to AHF versus the surrounding hepatic parenchyma. The wide variability in individual AHF proliferative activity within any given experimental group as well as in a given rat suggests that the growth rate of AHF is neither uniform nor synchronized and that AHF may independently respond to positive or negative growth stimuli.

There has been considerable discussion on the advisability of using dose–response relationships for enzyme induction as a surrogate for TCDD’s effects on more coordinated biological responses such as cell proliferation or growth of putative preneoplastic lesions. Our data provide evidence that CYP1A1 and CYP1A2 induction may not be a reliable surrogate. First, chronic TCDD doses of 3.5 and 10.5 ng/kg/day produce pronounced increases in CYP1A1 and CYP1A2 protein concentrations and associated enzyme activity (22), whereas data reported here indicate less steep responses for replicative DNA synthesis rates in normal hepatocytes. Second, immunolocalization of hepatic CYP1A1 and CYP1A2 induction revealed that induction occurs primarily in the centrilobular region (22), whereas our data reveal that cell proliferation in response to TCDD occurred randomly or, in some noninitiated rats, preferentially in the perportal region. Consistent with our evidence on the disassociation between toxic responses and P450 enzyme induction is a recent report by Clark et al. (24) which showed that dexamethasone and tumor necrosis factor α blocked the lethal effects of TCDD without effect on the magnitude of P450 enzyme induction.

There was considerable heterogeneity in the cell proliferative responses as well as in AHF development among individual rats within each TCDD-treated group. For example, in the 125 ng TCDD/kg/day DEN-initiated group, approximately half of the rats exhibited markedly elevated LI (18–30%), whereas the other half were only slightly higher than controls (5–10%; Fig. 3). This difference was not correlated with differences in hepatic TCDD concentration, nor was it correlated with the magnitude of CYP1A1 or CYP1A2 induction or histologic evidence of cytotoxicity. Similarly, it is interesting to note that in the chronic bioassay for TCDD carcinogenicity in female Sprague-Dawley rats, approxi-
mately half (40%) the rats at a dose of 100 ng TCDD/kg/day developed hepatocellular neoplasms (7). Any differences in AHF response variability in the present study versus a similar previous initiation-promotion study (12,13) may be a reflection of differences in the initiation protocols. Although the mechanisms responsible for interindividual differences in TCDD-mediated increases in replicative DNA synthesis rates and AHF formation are not clear, there are some hints that signal transduction events associated with growth factor pathways may be playing a role. For example, TCDD does not induce cell proliferation nor modulate epidermal growth factor receptor actions in ovarietomized rats, whereas significant changes in these parameters are evident in intact female rats (20, 24). These findings suggest that TCDD and estrogen can act together to generate a mitogenic signal, a hypothesis that is supported by a recent study which demonstrated that TCDD and estrogen are co-mitogens in rat hepatocyte cultures (39).

Data presented in this report attempt to clarify the shape of the dose–response curve for TCDD-mediated increases in cell proliferation and PGST1 foci of cellular alteration within the framework of a rat liver tumor promotion model. Previous studies have demonstrated that TCDD is a potent promoter in two-stage models for liver (40) and skin (41) cancer and that chronic TCDD exposure enhances cell proliferation rates in hepatocytes of female rats (20). While an increase in cell proliferation as estimated by LI was noted in the DEN-initiated rats promoted with 125 ng of TCDD/kg/day, there was a decrease in LI in the 3.5 ng of TCDD/kg/day promoted group, suggesting inhibition of cell proliferation at this low dose. Inhibition of AHF formation at low doses of TCDD has been previous noted (12) and has also been reported for phenobarbital promotion in the rat (42). This is the first suggestion that a similar phenomenon may be occurring with respect to cell proliferation.

The dose range used in our studies is consistent with the doses given in chronic bioassays for carcinogenicity of TCDD (approximately 1–100 ng/kg/day) (7,8). Previous studies in our laboratory demonstrated that few liver tumors develop after 30 weeks of TCDD promotion (100 ng/kg/day) of DEN-initiated rats (22). However, after 60 weeks, approximately 50% of the female rats eventually developed tumors (both hepatocellular adenomas and carcinomas) (24). Data presented here are consistent with a previous study (7) which showed that exposure of rats to 100 ng/kg/day for 30 weeks produced increases in cell proliferation rates and enzyme-altered foci. We extended that finding by evaluating cell proliferation rates and foci of cellular alteration following lower chronic dosing with TCDD. Results indicate that increases in PGST1 foci (mean volume and the proportion of liver occupied by foci) and the LI were statistically significant only at a dose greater than 100 ng/kg/day. Likewise, Pitor et al. (12) have shown that significant increases in the volume of liver occupied by enzyme-altered foci were not detected at doses less than 100 ng TCDD/kg/day compared to controls.

Taken together, these and our previous studies (22,24) demonstrate that dose–response relationships for TCDD’s effects on cell proliferation and growth of AHF are different from those for effects on P450 gene expression. This finding is consistent with the conclusion that different biological or biochemical responses requiring the same receptor (Ah receptor) and the same ligand (TCDD or its structural analogs) may exhibit different dose–response relationships. Thus, the shape of the dose–response curve for receptor-mediated carcinogens may not be predicted solely on the basis that a response is receptor mediated.

REFERENCES

1. Goldsworthy TL, Hanigan MH, Pitor HC. Models of hepatocarcinogenesis in the rat—contrasts and comparisons. CRC Crit Rev Toxicol 17:61-89 (1986).
2. Leonard TB, Dent JG, Graichen ME, Lyght O, Popp JA. Comparison of hepatic carcinogen initiation-promotion systems. Carcinogenesis 7:1797-1803 (1982).
3. Grisham JW, Kaufmann WK, Kaufman DG. The cell cycle and chemical carcinogenesis. Surv Synth Path Res 1:49-66 (1983).
4. Cohen SM, Ellwein LB. Cell proliferation in carcinogenesis. Science 249:1007-1011 (1990).
5. Swenberg JA, Maronpot RR. Chemically induced cell proliferation as a criterion in selecting doses for long-term bioassays. In: Chemically induced cell proliferation: implications for risk assessment. (Butterworth BE, Slaga TJ, Farland W, McClain M, eds). New York:Wiley-Liss, Inc., 1991:245-251.
6. Butterworth BE, Popp JA, Connolly RB, Goldsworthy TL. Chemically induced cell proliferation in carcinogenesis. In: Mechanisms of carcinogenesis in risk assessment (Vainio H, Magee PN, McGregor DB, McMichael AJ, eds). Lyon:International Agency for Research on Cancer, 1992:279-305.
7. Kociba RJ, Keyes DG, Beyer JE, Carreon RM, Wade CE, Ditteren DA, Kalinski RP, Frauson LE, Park CN, Barnard SD, Hummel RA, Humiston CG. Results of a two-year chronic toxicity and oncogenicity study of 2,3,7,8-tetrachlorodibenzo-p-dioxin in rats. Toxicol Appl Pharmacol 46:279-303 (1978).
8. NTP. Bioassay of 2,3,7,8-tetrachlorodibenzo-p-dioxin for possible carcinogenicity (gavage study). Technical Report Series no. 102.
immunolocalization of CYP1A1 and CYP1A2 in the liver. Cancer Res 52:3436–3442 (1992).
23. Lucier GW, Rumbaugh RC, McCoy Z, Hass R, Harvan D, Albre P. Ingestion of soil contaminated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) alters hepatic enzyme activity in rats. Fundam Appl Toxicol 6:364–371 (1986).
24. Clark G, Trisler A, Maronpot R, Foley J, Lucier G. Tumor promotion by TCDD in female rats. In: Biological basis for risk assessment of dioxins and related compounds. (Gallo MA, Schepurein RJ, van der Heijden CA, eds). Banbury Report 35, Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1991; 389–404.
25. Maronpot RR, Montgomery CA Jr., Boorman GA, McConnell EE. National Toxicology Program nomenclature for hepatoproliferative lesions of rats. Toxicol Pathol 14:263–273 (1986).
26. Ito N, Tatsumi M, Hasegawa R, Tsuda H. Medium-term bioassay system for detection of carcinogens and modifiers of hepatocarcinogenesis utilizing the GST-P positive liver cell focus as an endpoint marker. Toxicol Pathol 17:630–641 (1989).
27. Campbell HA, Pitot HC, Potter VR, Lashes BA. Application of quantitative stereology to the evaluation of enzyme-altered foci in rat liver. Cancer Res 42:465–472 (1982).
28. Pugh TD, King JH, Koen H, Nyckha D, Chover J, Wahba G, He Y, and Goldfarb S. Reliable stereological method for estimating the number of microscopic hepatocellular foci from their transections. Cancer Res 43: 1261–1268 (1983).
29. Goldsworthy TL, Morgan KT, Popp JA, Butterworth BE. Guidelines for measuring chemically-induced cell proliferation in specific rodent target organs. In: Chemically-induced cell proliferation: implications for risk assessment (Butterworth BE, Slaga TJ, eds). New York: Wiley-Liss, 1991; 253–284.
30. Foley JF, Dietrich DR, Swenberg JA, Maronpot RR. Detection and evaluation of proliferating cell nuclear antigen (PCNA) in rat tissue by an improved immunohistochemical procedure. J Histotechnol 14:237–241 (1991).
31. Foley JF, Tuck PD, Ton TT, Frost M, Kari F, Anderson MW, Maronpot RR. Inhalation exposure to a hepatocarcinogenic concentration of methylene chloride does not induce sustained replicative DNA synthesis in hepatocytes of female B6C3F1 mice. Carcinogenesis 14: 811-818 (1993).
32. Schulte-Hermann R. Tumor promotion in the liver. Arch Toxicol 57:147–158 (1985).
33. Sato K. Glutathione S-transferase and hepatocarcinogenesis. Jpn J Cancer Res 79:556–572 (1988).
34. Goldsworthy TL, Pitot HC. The quantitative analysis and stability of histochemical markers of altered hepatic foci in rat liver following initiation by diethylnitrosamine administration and promotion with phenobarbital. Carcinogenesis 6:1261–1269 (1985).
35. Williams GM. The significance of chemically-induced hepatocellular altered foci in rat liver and application to carcinogen detection. Toxicol Pathol 17:663–674 (1989).
36. Xu Y-H, Campbell HA, Suller GL, Hendrich S, Maronpot R, Sato K, Pitot HC. Quantitative stereologic analysis of the effects of age and sex on multigene hepatocarcinogenesis in the rat by use of four cytochemical markers. Cancer Res 50:472–479 (1990).
37. Portier C, Trisler A, Kohn M, Sewall C, Clark G, Edler L, Hoel D, Lucier G. Ligand receptor binding of 2,3,7,8-TCDD: Implications for risk assessment. Fundam Appl Toxicol 20:48–56 (1993).
38. Kohn MC, Lucier GW, Clark G, Sewall G, Trisler AM, Portier CJ. A mechanistic model of effects of dioxin on gene expression in the rat liver. Toxicol Appl Pharmacol 120:138–154 (1993).
39. Schenk D, Karger A, Lipp H-P, Bock KW, 2,3,7,8-Tetrachlorodibenzo-p-dioxin and ethinylestradiol as co-mitogens in cultured rat hepatocytes. Carcinogenesis 13:453–456 (1992).
40. Dragan YP, Rizvi T, Xu Y-H, Hully JR, Bawa N, Campbell HA, Maronpot RR, Pitot HC. An initiation-promotion assay in rat liver as a potential complement to the 2-year carcinogenesis bioassay. Fundam Appl Toxicol 16:525–547 (1991).
41. Poland A, Palen D, Glover E. Tumor promotion by TCDD in skin of HRS/J mice. Nature 300:271–273 (1982).
42. Maekawa A, Onodera H, Ogasawara H, Matsushima Y, Mitsumori K, Hayashi Y. Threshold dose dependence in phenobarbital promotion of rat hepatocarcinogenesis initiated by diethylnitrosamine. Carcinogenesis 13: 501–503 (1992).

Smoking and Tobacco Control Monograph #1
Strategies to Control Tobacco Use in the United States:
A Blueprint for Public Health Action in the 1990's

The first monograph produced by the National Cancer Institute's Smoking and Tobacco Control Program, Strategies to Control Tobacco Use in the United States offers an overview of the components of an effective, comprehensive smoking control strategy. Drawing on over forty years of public health research, this monograph examines the efficacy of past and present smoking control strategies directed at individuals, target groups, and the public at large, and presents a compelling argument for the establishment of community based tobacco control plans. Strategies to counteract the disturbing trend of tobacco products being marketed to specific high risk groups, including women, blacks, Hispanics, and youth, are also discussed.

Single copies of this volume of Smoking and Tobacco Control Monographs are available at no charge form the International Cancer Information Center. To order, mail the form to Tobacco Monograph, Building 82, Room 123, Bethesda, MD 20892.

Order Form:
Smoking and Tobacco Control Monograph #1
Strategies to Control Tobacco Use in the United States:
A Blueprint for Public Health Action in the 1990's

Yes, please send me a copy of the publication indicated above.

Company or Personal Name ____________________________

Additional Address/Attention Line __________________________

Street Address __

City, State, ZIP Code _____________________________________

Daytime Telephone, including area code ______________________

Fax your order to: (301) 443-1105

Mail your order to: Tobacco Monograph, Building 82, Room 123, Bethesda, MD 20892.