In vivo creation of plasmid pCRT01 and its use for the construction of carotenoid-producing Paracoccus spp. strains that grow efficiently on industrial wastes

Anna Maj¹, Łukasz Dziewit², Łukasz Drewniak², Maciej Garstka³, Tomasz Krucon², Katarzyna Piatkowska², Katarzyna Gieczewska⁴, Jakub Czarnecki¹,⁵, Ewa Furmanczyk¹,⁶, Robert Lasek¹, Jadwiga Baj¹, Dariusz Bartosik¹*

¹Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; aniaklicka@poczta.fm (AM), jczarnecki@biol.uw.edu.pl (JC), e_furmanczyk@poczta.fm (EF), lasek@biol.uw.edu.pl (RL), bajja@biol.uw.edu.pl (JB), bartosik@biol.uw.edu.pl (DB)
²Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; ldziewit@biol.uw.edu.pl (LDz), ldrewniak@biol.uw.edu.pl (LDr), tkrucon@biol.uw.edu.pl (TK), kpiatkowska@biol.uw.edu.pl (KP)
³Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; garstka@biol.uw.edu.pl (MG)
⁴Department of Plant Anatomy and Cytology, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; kat.gieczewska@biol.uw.edu.pl (KG)
⁵Bacterial Genome Plasticity, Department of Genomes and Genetics, Institut Pasteur, Paris, France
⁶Department of Plant Protection from Pests, Research Institute of Horticulture, Skierniewice, Poland

*Corresponding author: bartosik@biol.uw.edu.pl
Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
Table S1. Absorbance and ESI* mass spectrometry data for carotenoids produced by *P. marcusii* OS22.

Retention time [min]	Estimated absorbance maxima [nm] (results accuracy ± 1 nm)	Estimated mass/charge ratio [m/z] (results accuracy 0.001 Da)	Molecular formula and compound name	Theoretical [m/z] ratio
41-46	475	745.4680 767.4556	C46H64O8H\(^+\) C46H64O8Na Adonixanlhin-β-D-glucoside	745.4680 767.4499
52-56	488	597.3955 619.3705	C40H52O4H\(^+\) C40H52O4Na Astaxanthin	597.3943 619.3763
74-76	470	583.4171 605.3943	C40H52O4H\(^+\) C40H52O4Na Adonixanlhin	583.4151 605.3971
87	480	581.3990 603.3816	C40H52O4H\(^+\) C40H52O4Na Adonirubin	581.3995 603.3814
115, 204	464	567.4224 589.3967	C40H54O2H\(^+\) C40H54O2Na Hydroxyechinenone	567.4202 589.4022
129, 139-144	467-470	565.4009 587.3895	C40H52O2H\(^+\) C40H52O2Na Canthaxanthin	565.4045 587.3865
225-227	460	551.4238 573.4035	C40H52OH\(^+\) C40H52ONa Echinone	551.4253 573.4072
240-247	447.475	553.4407	C40H52OH\(^+\) Cryptoxanthin	553.4409
252	451.478	536.446	C40H56 β-carotene	536.4382

Carotenoids were identified based on characteristic absorption maxima and molecular masses.
* Electro Spray Ionization with positive mode
Table S2. Predicted genes of plasmid pCRT01.

ORF no.	Coding region (gene orientation)	Protein size	Function	% of identity	Best BLASTP hits	GenBank accession no.
1	67-606 (→)	179	Resolvase	100	*Paracoccus aminophilus* JCM 7686 (plasmid pAMI2)	YP_003208111
2	1126-2001 (→)	291	Replication protein RepA	100	*P. aminophilus* JCM 7686 (plasmid pAMI2)	YP_001965061
3	2230-2889 (→)	219	Partitioning protein ParA	100	*P. aminophilus* JCM 7686 (plasmid pAMI2)	YP_001965062
4	2886-3224 (→)	112	Partitioning protein ParB	100	*P. aminophilus* JCM 7686 (plasmid pAMI2)	YP_001965063
5	3308-3685 (→)	125	Addiction system toxin (Tad)	100	*P. aminophilus* JCM 7686 (plasmid pAMI2)	YP_001965064
6	3666-4001 (→)	111	Addiction system antitoxin (Ata)	100	*P. aminophilus* JCM 7686 (plasmid pAMI2)	YP_001965065
7	4088-4657 (→)	189	Hypothetical protein	98	*P. aminophilus* JCM 7686 (plasmid pAMI2)	YP_001965066
8	4695-5573 (←)	292	Conjugation protein TraG	99	*P. aminophilus* JCM 7686 (plasmid pAMI2)	YP_003208112
9	5835-6083 (←)	82	Hypothetical protein	100	*P. aminophilus* JCM 7686 (plasmid pAMI2)	YP_003208113
10	6158-6487 (←)	109	Conjugation protein MobC	100	*P. aminophilus* JCM 7686 (plasmid pAMI2)	YP_003208114
11	6881-10474 (←)	1197	Conjugation protein TraA	99	*P. aminophilus* JCM 7686 (plasmid pAMI2)	YP_003208115
12	10501-11070 (←)	189	Hypothetical protein	100	*P. aminophilus* JCM 7686 (plasmid pAMI2)	YP_003208116
13	11382-12469 (←)	362	Transposase ISPam3	100	*P. aminophilus* JCM 7686 (plasmid pAMI2)	YP_003208117
14	13541-15829 (←)	762	*N,N-*dimethylformamidase, large subunit (DmfA2)	99	*P. aminophilus* JCM 7686 (plasmid pAMI2)	YP_003208118
15	15825-16250 (←)	141	N,N-dimethylformamidase, small subunit (DmfA1)	100	*P. aminophilus* JCM 7686 (plasmid pAMI2)	YP_003208119
16	16282-17316 (←)	344	Transcription regulator DmfR	100	*P. aminophilus* JCM 7686 (plasmid pAMI2)	YP_003208120
17	17766-18537 (→)	257	Transposase ISPam4	100	*P. aminophilus* JCM 7686 (plasmid pAMI2)	YP_003208121
18	18708-19079 (←)	123	Conjugation protein TraJ	100	Multispecies [Bacteria]	WP_008832110
19	19409-20014 (←)	201	Transposase IS903	99	*Escherichia coli* (plasmid pIS2)	YP_001687821
20	20151-20966 (→)	271	Kanamycin resistance gene	100	Multispecies [Bacteria]	WP_000018329
21	21667-22395 (→)	242	β-carotene oxygenase (CrtW)	99	*Paracoccus* sp. 228	KIX17004
	22392-22880 (→)	162	β-carotene hydroxylase (CrtZ)	100	*Paracoccus* sp. 228	KIX17005
22	22877-24037 (→)	386	lycopene cyclase (CrtY)	99	*Paracoccus haeundaensis*	TNH40827
23	24034-25539 (→)	501	phytoene desaturase (CrtI)	100	*Paracoccus* sp. 228	KIX17007
24	25536-26450 (→)	304	15-cis-phytoene synthase (CrtB)	100	*Paracoccus* sp. 228	KIX17008
25	26447-27328 (←)	293	geranylgeranyl diphosphate synthase (CrtE)	100	*Paracoccus* sp. 228	WP_052715286
26	28936-29271 (←)	111	Hypothetical protein	100	*Salmonella enterica* G8430 (plasmid pU302S)	YP_194804
27	29704-30475 (→)	257	Transposase ISPam4	100	*P. aminophilus* JCM 7686 (plasmid pAMI2)	YP_003208121
Table S3. Quantitative analysis of carotenoids identified in extracts of *Paracoccus* spp. cells.

Carotenoid	Carotenoids concentration [mol\%] in cell extracts of:		
	P. marcusii OS22	*P. aminophilus CRT1*	*P. kondratievae CRT2*
β-carotene	3.80 ± 1.72	72.18 ± 13.73	12.39 ± 4.37
Echinonone	22.79 ± 0.73	14.78 ± 12.27	18.87 ± 14.05
Cryptoxanthin	0.43 ± 0.16	5.45 ± 1.02	0.88 ± 0.24
Hydroxyechinenone	13.68 ± 0.08	3.10 ± 2.78	13.96 ± 9.24
Canthaxanthin	15.42 ± 2.70	1.65 ± 1.80	5.02 ± 2.79
Adonixanthin	22.19 ± 0.94	1.18 ± 1.18	38.45 ± 17.24
Adonirubin	11.33 ± 0.18	1.66 ± 1.30	4.21 ± 0.80
Astaxanthin	6.59 ± 0.42	0.00 ± 0.00	6.22 ± 3.59
Adonixanthin-β-D-glucoside	3.78 ± 0.45	0.00 ± 0.00	0.00 ± 0.00

Carotenoid concentrations were calculated from the calibration curve prepared for β-carotene. Absorption coefficients $\varepsilon = 139 / (\text{mM cm})$ at $\lambda = 453 \text{ nm}$ was used. The data show mean values ± SD for 3 to 4 experiments.
Table S4. The content of anions and elements in flue gas desulfurization (FGD) wastewater.

Anions (concentration [mg L\(^{-1}\)])	Element (concentration [µg L\(^{-1}\)])
NH\(_4^+\) (46.90); Br\(^-\) (16.20); Cl\(^-\) (840); NO\(_3^-\) (130);	Quantative: Al (477.52); As (7.31); Cr
SO\(_4^{2-}\) (7090); NO\(_2^-\) (<0.20); F\(^-\) (78.50); PO\(_4^{3-}\) (<2.50)	(1.56); Cu (15.15); Fe (720.62); Ni
	(383.46); Se (703.15); V (8.02); Zn
Table S5. Standard deviation (%) of growth parameters of *Paracoccus* spp. producing carotenoids.

Growth medium	*Paracoccus aminophilus* CRT1	*Paracoccus kondratievae* CRT2						
	Time of cultivation [h]	Time of cultivation [h]						
	0	24	48	72	0	24	48	72
pH								
M9/methanol	0.50	0.16	0.13	0.21	0.50	0.30	0.13	0.04
M9/molasses	0.50	0.10	3.79	4.91	0.50	0.86	4.50	8.03
M9	5.00	5.00	5.00	5.00	0.50	0.50	0.50	0.50
FGD/methanol	3.65	4.07	1.83	0.15	2.80	1.22	0.99	0.10
FGD/molasses	0.50	1.76	5.08	4.05	0.50	0.30	1.13	0.27
FGD	5.00	5.00	5.00	5.00	0.50	0.50	0.50	0.50
LB	5.00	5.00	5.00	5.00	0.50	0.50	0.50	0.50
CFU mL⁻¹								
M9/methanol	6.52	1.87	0.97	3.37	6.16	1.54	2.88	3.19
M9/molasses	0.99	5.50	2.16	2.76	0.25	0.83	0.82	0.90
M9	6.06	0.00	0.00	0.00	7.33	10.00	0.00	0.00
FGD/methanol	0.08	3.15	7.39	2.94	2.94	4.67	2.05	3.41
FGD/molasses	0.00	1.20	6.12	9.78	4.64	1.73	5.09	7.30
FGD	1.11	4.79	4.94	8.77	5.52	5.28	5.21	0.00
LB	43.69	3.74	1.27	0.00	3.87	0.00	0.00	0.00
sCOD [mg L⁻¹]								
M9/methanol	30.41	12.84	8.20	17.41	1.69	3.39	3.70	5.50
M9/molasses	5.96	11.27	3.61	9.62	11.35	9.26	3.90	15.59
M9	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
FGD/methanol	3.51	5.95	4.09	11.83	2.58	1.57	4.97	6.27
FGD/molasses	6.53	11.50	3.19	10.48	12.51	10.00	3.45	17.03
FGD	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
LB	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
Bacterial strains	Relevant characteristics/Genotype	Source						
-------------------	----------------------------------	--------						
Paracoccus marcusii OS22	Carotenoids producing environmental strain	[1]						
Paracoccus aminophilus JCM 7686R	Rif^r derivative of a wild type strain JCM 7686; contains native plasmid pAMI2	[2]						
Paracoccus kondratievae NCIBM 131773R	Rif^r derivative of a wild type strain NCIBM 131773	[3]						
Paracoccus versutus UW225	Rif^r derivative of a wild type strain UW1, deprived of native plasmid pTAV1	[4]						
E. coli DH5α	F[−] φ80lacZΔM15 Δ(lacZYA-argF)U169 recA1 endA1 hsdR17(λ[−], rK[−]) phoA supE44 lacZΔM15 Δ(lacZYA-argF)U169 zdg-232::Tn10 uidA::pir+	[5]						
E. coli DH5pir	endA1 hsdR17 glv44 (= supE44) thi-1 recA1 gyrA96 relA1	[6]						
E. coli S-17.1	Tp⁺ Sm⁺ recA, thi, pro, hsdR-M+RP4: 2- Tc: Mu: Km Tn7 λpir	[7]						
P. aminophilus CRT1	JCM 7686R containing pCRT01	this study						
P. kondratievae CRT2	NCIBM 131773R containing pCRT01	this study						

Plasmids	Description	Source
pABW1	Cloning vector; 4.5 kpz; Km⁺, ori pMB1, oriT RK2; lacZ[−]; MCS	this study
pABW1-crtW	pABW1 carrying OS22 *crtW* gene (amplified by PCR with primers CRTWL and CRTWR) inserted in XbaI site	this study
pABW1-crt	pABW1 carrying *crt* gene cluster of *P. marcusii* OS22	this study
pCRT01	Co-integrate plasmid containing pABW1-crt and pAMI2	this study
pCM132	Promoter probe vector; 11.3 kpz; Km⁺, ori pMB1, oriT RK2, lacZ[−] reporter gene	[8]
pCM-PW	pCM132 carrying upstream region of OS22 *crtW* gene (amplified with primers PCRTWE and PCRTWB) inserted in EcoRI and BglII sites	this study
pCM-PZ	pCM132 carrying upstream region of OS22 *crtZ* gene (amplified with primers PCRTZLE and PCRTZRB inserted in EcoRI and BglII sites	this study
pCM-PY	pCM132 carrying upstream region of OS22 *crtY* gene (amplified with primers PCRYPY and PCRTRB inserted in EcoRI and BglII sites	this study
pCM-PI	pCM132 carrying upstream region of OS22 *crtI* gene (amplified with primers PCRITIE and PCRITIRB inserted in EcoRI and BglII sites	this study
pCM-PB	pCM132 carrying upstream region of OS22 *crtB* gene (amplified with primers PCRTPBLE and PCRTBRB inserted in EcoRI and BglII sites	this study
pCM-PE	pCM132 carrying upstream region of OS22 *crtE* gene (amplified with primers PCRTELE and PCRTERB inserted in EcoRI and BglII sites	this study
pUT-Km	Tn5-based delivery plasmid with Km⁺, Ap⁺; oriγ R6K, oriT RK2, tnp⁺ gene of Tn5-IS50R	[9]
pDIY-Km Source of Km\(^r\) cassette; ori pMB1 [10]
pRK2013 Km\(^r\); helper plasmid carrying genes for conjugal transfer of RK2 [11]
pUToriγKm pUT-Km carrying Km\(^r\) cassette (derived from pDIY-KM) and oriγ of R6K inserted within transposition cassette

Oligonucleotides

Oligonucleotides	DNA Sequence (5’→3’)	Features
CRTWF	TCTAGAGCCCAATGGTCGCAACAC	XbaI
CRTWR	TCTAGAGTGCCGACGATCGAGAA	XbaI
FPUT	TGGTTGTAACACTGGCAGAG	
RPUT	AATCCGCGGCTCGAGGCAAGAG	
PCRTWE	GGGCAATTTGGGCGACGCGCAAT	EcoRI
PCRTWB	GGCAGATCTGATCATCCGCTGCTTGT	BglII
PCRTZLE	GGGCAATTTGGGCGACGCGCAAT	EcoRI
PCRTZRB	TGGATCCGGAAATAGGGCGTCAACCTCA	BamHI
PCRTYLE	GGCAGATCTGATCATCCGCTGCTTGT	EcoRI
PCRTYRB	TGGATCCGGAAATAGGGCGTCAACCTCA	BamHI
PCRTYLE	GGCAGATCTGATCATCCGCTGCTTGT	EcoRI
PCRTYRB	TGGATCCGGAAATAGGGCGTCAACCTCA	BamHI
PCRTYLE	GGCAGATCTGATCATCCGCTGCTTGT	EcoRI
PCRTYRB	TGGATCCGGAAATAGGGCGTCAACCTCA	BamHI
PCRTYLE	GGCAGATCTGATCATCCGCTGCTTGT	EcoRI
PCRTYRB	TGGATCCGGAAATAGGGCGTCAACCTCA	BamHI

References to Table S6

[1] Drewniak L, Styczek A, Majder-Lopatka M, Sklodowska A. Bacteria hypertolerant to arsenic in the rocks of an ancient gold mine, and their potential role in dissemination of arsenic pollution. Environ Pollut. 2008;156(3):1069-74.

[2] Dziewit L, Jazurek M, Drewniak L, Baj J, Bartosik D. The SXT conjugative element and linear prophage N15 encode toxin-antitoxin-stabilizing systems homologous to the tad-ata module of the Paracoccus aminophilus plasmid pAM12. J Bacteriol. 2007;189(5):1983-97.

[3] Dziewit L, Baj J, Szuplewska M, Maj A, Tabin M, Czyzkowska A, Skrzypczyk G, Adamczuk M, Sitarek T, Stawinski P et al. Insights into the transposable mobilome of Paracoccus spp. (Alphaproteobacteria). PLoS One. 2012;7(2):e32277.

[4] Bartosik D, Baj J, Plasota M, Piechucka E, Wlodarczyk M. Analysis of Thiobacillus versutus pTAV1 plasmid functions. Acta Microbiol Polon. 1993;39:5-15.

[5] Gibson TJ. Studies on Epstein-Barr genome. PhD thesis, University of Cambridge. 1984.

[6] Platt R, Drescher C, Park SK, Phillips GJ. Genetic system for reversible integration of DNA constructs and lacZ gene fusions into the Escherichia coli chromosome. Plasmid. 2000;43(1):12-23.

[7] Priefers UB, Simon R, Puhler A. Extension of the host range of Escherichia coli vectors by incorporation of RSF1010 replication and mobilization functions. J Bacteriol. 1985;163(1):324-30.

[8] Marx CJ, Lidstrom ME. Development of improved versatile broad-host-range vectors for use in methylotrophs and other Gram-negative bacteria. Microbiology. 2001;147(Pt 8):2065-75.

[9] de Lorenzo V, Herrero M, Jakubzik U, Timmis KN. Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J Bacteriol. 1990;172(11):6568-72.

[10] Dziewit L, Adamczuk M, Szuplewska M, Bartosik D. DIY series of genetic cassettes useful in construction of versatile vectors specific for Alphaproteobacteria. J Microbiol Methods. 2011;86(2):166-74.

[11] Ditta G, Stanfield S, Corbin D, et al. Broad host range DNA cloning system for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci USA. 1980;77:7347-51.