Search for lepton number and flavour violation in K^+ and π^0 decays

Sergey Kholodenko on behalf of the NA62 Collaboration
NRC «Kurchatov Institute» - IHEP, Protvino, Russia
Kaon decay experiments @ CERN

Jura mountains

France

Switzerland

Geneva airport

NA62: ∼ 300 participants from 31 institutes

NA31
1987 - 1989: K_L/K_S

NA48
1997 - 2001: K_L/K_S

NA48/1
2002: K_S/hyperons

NA48/2
2003-04: K^+/K^-

NA62 - Rk
2007-08: K^+e^- / K^-e^+

NA62
2014: pilot run
2015: commissioning run
2016 - 18: Physics Run 1
2021 - : Physics Run 2
The NA62 apparatus

Physics Goal: Measuring $\text{Br}(K^+ \rightarrow \pi^+ \nu \bar{\nu})$ with 10% precision

Kaon decay in flight technique

Unseparated hadron beam: (70% π^+, 24% p, 6% K^+)

Primary beam: 400 GeV/c protons from SPS, 3.5 s spill

Secondary beam: 75 GeV/c ($dp/p \sim 1\%$), 750 MHz rate

Detector paper: 2017 JINST 12 P05025

1y of operation: $\sim 10^{18}$ POT, 4×10^{12} K^+ decays

Single event sensitivity for K^+ decays: $\text{Br} \sim 10^{-12}$
Main goal: $K^+ \rightarrow \pi^+ \nu \bar{\nu}$

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ results:

2016 data (30 days, 2×10^{11} K^+ decays): PBL 791 (2019) 156

2017 data (160 days, 2×10^{12} K^+ decays): JHEP 11 (2020) 042

2018 data (217 days, 4×10^{12} K^+ decays): JHEP 06 (2021) 093

Run #1 (2016-18) fully analyzed

More details in Michal’s talk
Recent results

- $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ [talk by Michal Zamkovsky]
- $K^+ \rightarrow l^+ + \text{inv}$ [talk by Roberta Volpe]
- LNV / LFV
 - $K^+ \rightarrow \pi^\pm \mu^\mp e^\mp$ PRL 127 (2021) 131802
 - $K^+ \rightarrow \pi^+\pi^0$, $\pi^0 \rightarrow \mu^\pm e^\mp$
 - $K^+ \rightarrow \pi^+ l^+ l^+$ PLB797 (2019) 134794
 - $K^+ \rightarrow \pi^-\pi^0 e^+e^+$

This talk

- Precise measurements:
 - $K^+ \rightarrow \pi^0 e^+\nu\gamma$ decay [talk by Cristina Biino]
 - $K^+ \rightarrow \pi^+\mu^+\mu^-$ [to be published soon]
- HNL production: PLB 807 (2020) 135599; PLB 816 (2021) 136259.
- $\pi^0 \rightarrow \text{invisible}$: JHEP 02 (2021) 201.
- $K^+ \rightarrow \pi^+ X$: JHEP 06 (2021) 93; JHEP 03 (2021) 58
LFV and LNV in Kaon decays

Lepton number (L) and Lepton flavour (L_e, L_μ, L_τ) are foreseen in some BSM theories.

\[K^+ \rightarrow \pi^- l^+ l^+ \ (l = e, \mu) \]

Lepton number violation:
\[\Delta L = 2 \] via Majoranna neutrinos \(U \)
(analogue to 0ν2β decays)

\[K^+ \rightarrow \pi^\pm \mu^\pm e^+ \]
Lepton flavour violation: \(\Delta L_e = 1 \) and \(\Delta L_\mu = 1 \)
Mediated by a leptoquark

NPB 176 (1980) 135
JHEP 12 (2019) 089
JHEP 12 (2019) 089
PLB 491 (2000) 285
\[K^+ \rightarrow \pi^\pm \mu^\mp e^+ \]

- 2017 + 2018 data sample
- Blind Analysis
- Triggers: L0(hardware) + L1 (software) run simultaneously to \(\pi\nu\bar{\nu} \) trigger with downscaling factor > 1
 - MultiTrack (RICH&QX) / 100
 - MultiTrack (RICH&QX) & LKr10 & MUV3 / 8
 - MultiTrack (RICH&QX) & LKr20 / 8

MultiTrack trigger efficiency \(\varepsilon = (93.2 \pm 0.5) \% \)

	\(K^+ \rightarrow \pi^- \mu^+ e^+ \)	\(K^+ \rightarrow \pi^+ \mu^- e^+ \)	\(\pi^0 \rightarrow \mu^- e^+ \)
\(A_s \times 10^2 \)	4.90 ± 0.02	6.21 ± 0.02	3.11 ± 0.02
\(\varepsilon_{\text{LKr10}} \times 10^2 \)	97.5 ± 1.3	97.5 ± 1.3	92.9 ± 1.2
\(\varepsilon_{\text{LKr20}} \times 10^2 \)	74.1 ± 1.6	73.3 ± 1.6	45.3 ± 1.0
\(B_{\text{SES}} \times 10^{11} \)	1.82 ± 0.08	1.44 ± 0.05	13.9 ± 0.9
SES (Single Event Sensitivity)

- Normalization channel: $K^+ \rightarrow \pi^+ \pi^+ \pi^-$, $Br = (5.583 \pm 0.024)\%$
- $N_K = (1.33 \pm 0.02) \times 10^{12}$ number of K^+ decays in Fiducial Volume ($105\text{ m} < Z_{\text{vtx}} < 180\text{ m}$)
- $N_{K^3\pi} = 2.73 \times 10^8$ number of $K^+ \rightarrow \pi^+ \pi^+ \pi^-$ decays collected with MultiTrack trigger

\[
N_K = \sum_i N^i_K = \frac{1}{B(K_{3\pi}) A_n \varepsilon_n} \cdot \sum_i \left(N^i_{3\pi} D^i_{\text{MT}} \right) A_{n,s} \varepsilon_{n,s} \text{ acceptance} \]
\[
\varepsilon_{n,s} \text{ trigger efficiency} \]
\[
B^i_{\text{SES}} = \frac{1}{N^i_K A_s \varepsilon^i_s} = B(K_{3\pi}) \frac{A_n D^i_{\text{MT}}}{A_s N^i_{3\pi} D^i_{\text{MT}} \varepsilon_n} \varepsilon^i_s \text{ single event sensitivity} \]
\[
D^i_{n,s} \text{ trigger downscaling} \]

$SES \sim 10^{-10} \div 10^{-11}$
Background: particle misID

1. Particle misID:
 - $\pi^\pm \leftrightarrow e^\pm$ from E/p measurements
 - π^\pm: $E/p < 0.9$
 - e^\pm: $0.95 < E/p < 1.05$
 - $P(\pi^\pm \Rightarrow e^\pm) = (4 \div 5) \times 10^{-3}$
 - $P(e^\pm \Rightarrow \pi^\pm) = (1 \div 3) \times 10^{-2}$
 - $\pi^\pm \leftrightarrow \mu^\pm$ from (accidental) matching to MUV3
 - $P(\pi^\pm \Rightarrow \mu^\pm) = (2 \div 3) \times 10^{-3}$
 - $P(\mu^\pm \Rightarrow \pi^\pm) = 1.5 \times 10^{-3}$
 - $e^\pm \leftrightarrow \mu^\pm$
 - $P(e^\pm \Rightarrow \mu^\pm) = 10^{-8}$
 - e^\pm scattered & accidental activity in MUV3

2. Decay in flight
 - $\pi^\pm \rightarrow l^\pm \nu_l$ ($l = e, \mu$)
 - Dalitz π^0 decay: $\pi^0 \rightarrow e^+e^-\gamma$ ($e^\pm \Rightarrow \pi^\pm$ missID)
 - additional cut: $M(\pi^e^+) > 140$ MeV/c2
LFV $K \rightarrow \pi \mu e$: Background expectations

$K^+ \rightarrow \pi^- \mu^+ e^+$

Signal Region

- **CR1**
 - Expected: 5.50 ± 0.53
 - Observed: 8

- **CR2**
 - Expected: 1.95 ± 0.48
 - Observed: 4

Run 1 data

$K^+ \rightarrow \pi^+ \mu^- e^+$

Signal Region

- **CR1**
 - Expected: 3.50 ± 0.53
 - Observed: 8

- **CR2**
 - Expected: 1.95 ± 0.48
 - Observed: 4

Blinded

- Data ($K^+ \rightarrow \pi^+ \mu^- e^+$ selection)
- $K^+ \rightarrow \pi^+ \mu^- e^+$
- $K^+ \rightarrow \pi^- \mu^+ e^+$
- $K^+ \rightarrow \pi^- \mu^- e^+$
- $K^+ \rightarrow \pi^+ \mu^- \mu^+$
- $K^+ \rightarrow \pi^- \mu^- \mu^+$
- $K^+ \rightarrow \pi^+ e^+ \mu^+$
- $K^+ \rightarrow \pi^- e^- \mu^+$

Total uncertainty
LFV $K \rightarrow \pi\mu e$: signal regions open

$K^+ \rightarrow \pi^- \mu^+ e^+$

Signal Region

- CR1
- CR2

Observed in SR: 0

$K^+ \rightarrow \pi^+ \mu^- e^+$

Signal Region

- CR1
- CR2

Observed in SR: 2

Run 1 data
Results for $K^+ \rightarrow \pi^\pm \mu^\mp e^+$

	$K^+ \rightarrow \pi^- \mu^+ e^+$	$K^+ \rightarrow \pi^+ \mu^- e^+$	$\pi^0 \rightarrow \mu^- e^+$
Signal Acceptance	(4.90 ± 0.02)%	(6.21 ± 0.02)%	(3.11 ± 0.02)%
SES	$(1.82 \pm 0.08) \times 10^{-11}$	$(1.44 \pm 0.05) \times 10^{-11}$	$(13.9 \pm 1.0) \times 10^{-11}$
Bkgd. expectation	1.07 ± 0.20	0.92 ± 0.34	0.23 ± 0.15
Events observed	0	2	0
BR Upper limit @ 90%CL	4.2×10^{-11}	6.6×10^{-11}	3.2×10^{-10}
Previous result	5.0×10^{-10}	5.2×10^{-10}	3.4×10^{-9}

[PR 85 (2000) 2877]
2017 data: Search for $K^+ \rightarrow \pi^-\mu^+\mu^+$

SM: $M(\pi^+\mu^-\mu^+)$

- $K^+ \rightarrow \pi^+\pi^+\pi^-$
 (misID: $\pi \Rightarrow \mu$)

- $K^+ \rightarrow \pi^+\pi^-\mu^+\nu$
 (misID: $\pi \Rightarrow \mu$)

LNV: $M(\pi^-\mu^+\mu^+)$

- $K^+ \rightarrow \pi^+\pi^-\mu^+\nu$

Candidates: 8357

$N_{K^+} = (7.94 \pm 0.23) \times 10^{11}$

$BR = (0.962 \pm 0.025) \times 10^{-7}$

Candidates: 1

Exp. background: 0.91 ± 0.41

$BR < 4.2 \times 10^{-11}$ @ 90% CL
Run1 data: Search for $K^+ \rightarrow \pi^- e^+ e^+$

SM: $M(\pi^+ e^- e^+)$

Candidates: 11041

$N_{K^+} = (1.015 \pm 0.0032) \times 10^{12}$

$BR = (3.00 \pm 0.09) \times 10^{-7}$

Exp. background: 0.43 ± 0.09

$BR < 5.3 \times 10^{-11} @ 90\%$ CL

LNV: $M(\pi^- e^+ e^+)$

Candidates: 0

Signal region

0 events in SR

$K^+ \rightarrow e^+ \nu \pi^0_D$
Run1 data: Search for $K^+ \rightarrow \pi^- \pi^0 e^+ e^-$

Normalization channel $K^+ \rightarrow \pi^+ e^+ e^-$

Mode	Control region	Signal region
$K^+ \rightarrow \pi^+ \pi^0 \pi^0_D$	0.16 ± 0.01	0.019
$K^+ \rightarrow \pi^+ \pi^0_D \gamma$	0.06 ± 0.01	0.004
$K^+ \rightarrow \pi^0_D e^+ \nu \gamma$	0.05 ± 0.02	-
$K^+ \rightarrow \pi^+ \pi^0 e^+ e^-$	0.01	0.001
Pileup	0.20 ± 0.20	0.020 ± 0.020
Total	0.48 ± 0.20	0.044 ± 0.020
Data	1	0

Candidates: 0
Expected background: 0.044 ± 0.020 evt
$\text{BR} < 8.5 \times 10^{-10}$ at 90% CL
Summary

Decay	Previous BR UL [pdg]	NA62 BR UL @ 90% CL	Comment
$K^+ \to \pi^+ \mu^+ \mu^+$	8.6×10^{-11}	4.2×10^{-11}	Improved by factor of 2 [2017 data]
$K^+ \to \pi^- e^+ e^+$	6.4×10^{-10}	Preliminary 5.3×10^{-11}	Improved by factor of 12
$K^+ \to \pi^- \mu^+ e^+$	5.0×10^{-10}	4.2×10^{-11}	Improved by factor of 12
$K^+ \to \pi^+ \mu^- e^+$	5.2×10^{-10}	6.6×10^{-11}	Improved by factor of 8
$K^+ \to \pi^+ \mu^+ e^-$	1.3×10^{-11}	-	Not yet competitive
$\pi^0 \to \mu^- e^+$	3.4×10^{-9}	3.2×10^{-10}	Improved by factor of 11
$K^+ \to \pi^- \pi^0 e^+e^+$	-	Preliminary 8.5×10^{-10}	First search for this mode!

The NA62 has started the new data taking and will run till LS3 (~ 2025).
Thank you