1 Introduction

The connectivity \(\kappa(G) \) of a graph \(G \) is the minimum cardinality of a subset \(V' \) of vertices such that \(G - V' \) is disconnected or trivial. The edge-connectivity \(\lambda(G) \) of a graph \(G \) is the minimum cardinality of a subset \(E' \) of edges such that \(G - E' \) is disconnected. An equivalent definition of connectivity was given in [13]. For each 2-subset \(S = \{u, v\} \) of vertices of \(G \), let \(\kappa(S) \) denote the maximum number of internally vertex-disjoint \((u, v)\)-paths in \(G \). Then \(\kappa(G) = \min \{ \kappa(S) | S \subseteq V \text{ and } |S| = 2 \} \). Similarly, the edge-connectivity also has two equivalent definitions. Let \(\lambda(S) \) denote the maximum number of edge-disjoint \((u, v)\)-paths in \(G \). Then \(\lambda(G) = \min \{ \lambda(S) | S \subseteq V \text{ and } |S| = 2 \} \).
As a means of strengthening the connectivity, the tree connectivity was introduced by Hager [5, 6] (or generalized connectivity by Chartrand et al. [2]) to meet wider applications. Given a graph $G = (V, E)$ and a set $S \subseteq V(G)$ of size at least 2, an S-Steiner tree or a Steiner tree connecting S is such a subgraph $T = (V', E')$ of G that is a tree with $S \subseteq V'$. Two S-Steiner trees T and T' are said to be internally disjoint if $E(T) \cap E(T') = \emptyset$ and $V(T) \cap V(T') = S$. Let $\kappa_G(S)$ denote the maximum number of internally disjoint S-Steiner trees in G. The k-tree connectivity (or generalized k-connectivity) of G, denoted by $\kappa_k(G)$, is then defined as $\kappa_k(G) = \min\{\kappa_G(S) | S \subseteq V(G) \text{ and } |S| = k\}$, where $2 \leq k \leq n$. Clearly, when $k = 2$, $\kappa_2(G)$ is exactly the classical connectivity $\kappa(G)$.

As a natural counterpart of the tree-connectivity, the tree edge-connectivity (or generalized edge-connectivity) was introduced by Li et al. [10]. For $S \subseteq V(G)$ and $|S| \geq 2$, let $\lambda_G(S)$ denote the maximum number of edge-disjoint S-Steiner trees in G. The k-tree edge-connectivity (or generalized k-edge-connectivity) of G, denoted by $\lambda_k(G)$, is then defined as $\lambda_k(G) = \min\{\lambda_G(S) | S \subseteq V(G) \text{ and } |S| = k\}$, where $2 \leq k \leq n$. It is also clear that when $k = 2$, $\lambda_2(G) = \lambda(G)$.

There have been many results on the k-tree (edge-)connectivity, see [3, 7, 9, 10, 12] and a book [8].

The line graph $L(G)$ of G is the graph whose vertex set can be put in one-to-one correspondence with the edge set of G in such a way that two vertices of $L(G)$ are adjacent if and only if the corresponding edges of G are adjacent. The connectivity of the line graph of a graph G is closely related to the edge-connectivity of G.

Lemma 1.1 (Chartrand and Stewart [4]). *If G is a connected graph, then $\kappa(L(G)) \geq \lambda(G)$.*

Naturally, one would like to study the relationship between $\kappa_k(L(G))$ and $\lambda_k(G)$, for $k \geq 3$. In [10], Li et al. showed that if G is a connected graph, then $\kappa_3(L(G)) \geq \lambda_3(G)$. In [11], Li et al. showed that if a graph G is connected, then $\kappa_4(L(G)) \geq \lambda_4(G)$. Furthermore, they proved that if a connected graph G has at least k vertices and at least k edges, then $\kappa_k(L(G)) \geq \lceil \frac{3\lambda_k(G)}{4} \rceil - 1$ for any $k \geq 2$. However, they suspect that their result is not sharp and proposed the following conjecture:

Conjecture 1.1 (Li, Wu, Meng and Ma [11]). *Let $k \geq 2$ be an integer. If a connected graph G has at least k vertices and at least k edges, then $\kappa_k(L(G)) \geq \lambda_k(G)$.*

In this paper, we will confirm this conjecture and prove that the bound is sharp.
2 Main result

Before proving our main result, we first introduce some concepts. A maximal connected subgraph of G is called a component of G. A connected acyclic graph is called a tree. The vertices of degree 1 in a tree are called leaves. A connected graph G with $|V(G)| = |E(G)|$ is called a unicyclic graph. A spanning subgraph of a graph G is a subgraph whose vertex set is the entire vertex set of G. We refer the reader to [1] for the terminology and notations not defined in this paper.

By the definition of the tree edge-connectivity, the following result is obvious.

Observation 2.1 ([II]). For any integer $2 \leq s \leq t$, $\lambda_s(G) \geq \lambda_t(G)$.

Now, we give a confirmative solution to Conjecture 1.1.

Theorem 2.2. Let $k \geq 2$ be an integer. If a connected graph G has at least k vertices and at least k edges, then $\kappa_k(L(G)) \geq \lambda_k(G)$. Moreover, the bound is sharp.

Proof. Let v_e be the vertex of the line graph $L(G)$ corresponding to the edge e of G. Assume that $\lambda_k(G) = m$. For any k-subset $S_L = \{v_{e_1}, v_{e_2}, \ldots, v_{e_k}\}$ of $V(L(G))$, by the definition of κ_k, it suffices to show that $\kappa_{L(G)}(S_L) \geq m$.

Now, let $S_G = \{e_1, e_2, \ldots, e_k\}$ and then $S_G \subseteq E(G)$. Denote by $G[S_G]$ the edge-induced subgraph of G whose edge set is S_G and whose vertex set consists of all ends of edges of S_G.

We distinguish two cases:

Case 1: None of the components of $G[S_G]$ is a tree or unicyclic.

Therefore, for each component C_t of $G[S_G]$, $|E(C_t)| - |V(C_t)| \geq 1$ and so $|E(G[S_G])| = |S_G| = k \geq |V(G[S_G])| + 1$. Let $V(G[S_G]) = Q^*$. It follows that $|Q^*| \leq k - 1$. Since G has at least k vertices, we can take a vertex v^* in $V(G) \setminus Q^*$ and then let $Q = Q^* \cup \{v^*\}$. Now, because $|Q| \leq k$, by Observation 2.1 there are m edge-disjoint Q-Steiner trees T_1, T_2, \ldots, T_m in G.

Next, in each tree T_r ($1 \leq r \leq m$), we will assign a specific edge to each vertex of Q^*. To see this, we let v^* be the root and define the level $l(v)$ of a vertex v in T_r to be the distance from the root v^* to v. It is easy to see that, for each vertex $v_i \in Q^* = Q \setminus \{v^*\}$, there is a unique edge e connecting the vertex v_i and a vertex of level $l(v_i) - 1$. Assign the edge e to the vertex v_i. We say that the edge e is the corresponding edge of v_i in T_r and denoted by \hat{e}_i^r. Note that any two vertices of Q^* in T_r have different corresponding edges. More precisely, $\hat{e}_i^r \neq \hat{e}_j^r$ for any $1 \leq i \neq j \leq |Q^*$.
Now, for each tree \(T_r \) \((1 \leq r \leq m)\) and each edge \(e = v_i v_j \in S_G \), do the following operation. Note that, by Lemma 1.1, \(L(T_r) \) \((1 \leq r \leq m)\) is a connected subgraph of \(L(G) \). Moreover, since \(Q^* = V(G[S_G]) \), both ends of each edge in \(S_G \) belong to \(Q^* \) and so \(v_i, v_j \in V(T_r) \).

Operation A: If \(e \in E(T_r) \), it is done; otherwise \(e \notin E(T_r) \), that is \(v_e \notin V(L(T_r)) \). Note that, \(T_1, T_2, \ldots, T_m \) are edge-disjoint and so at most one of them contains the edge \(e \).

If \(e \in E(T_s) \), where \(1 \leq s \neq r \leq m \), then \(e \) is the corresponding edge of one of its ends in \(T_s \). Without loss of generality, assume that \(e \) is the corresponding edge of \(v_i \) in \(T_s \), that is, \(e^s_i = e \). Now, for \(T_r \), there is an edge \(e^r_j \) corresponding to the vertex \(v_j \), which is the other end of \(e \). Since \(e \) and \(e^r_j \) have the same end \(v_j \), they are adjacent and so \(v_e v^r_j \in E(L(G)) \). Add the vertex \(v_e \) and the edge \(v_e v^r_j \) to \(L(T_r) \).

Otherwise, none of the trees \(T_1, T_2, \ldots, T_m \) contains the edge \(e = v_i v_j \). In this case, we can add the vertex \(v_e \) and either the edge \(v_e v^r_i \) or the edge \(v_e v^r_j \) to \(L(T_r) \), where \(e^r_i \) and \(e^r_j \) are the corresponding edges of \(v_i \) and \(v_j \) in \(T_r \), respectively. \(\Box \)

Now, \(L(T_1), L(T_2), \ldots, L(T_m) \) are transformed into \(m \) connected subgraphs of \(L(G) \), each of which contains the vertex set \(S_L \). Next, for each of the obtained subgraphs of \(L(G) \), take a spanning tree \(T^*_r \) \((1 \leq r \leq m)\). Because \(V(T^*_r) \supseteq S_L \) \((1 \leq r \leq m)\), it remains to show that \(T^*_1, T^*_2, \ldots, T^*_m \) are internally disjoint. Note that if \(v_e \notin V(L(T_r)) \), for some \(e \in S_G \) and \(r \in \{1, 2, \ldots, m\} \), \(v_e \) must be a leaf of \(T^*_r \).

Since \(T_1, T_2, \ldots, T_m \) are edge-disjoint in \(G \), \(L(T_1), L(T_2), \ldots, L(T_m) \) are vertex-disjoint in \(L(G) \). Moreover, the vertices added to \(L(T_r) \) by Operation A are all from \(S_L \). Therefore, \(T^*_1, T^*_2, \ldots, T^*_m \) are vertex-disjoint except \(S_L \), that is, \(V(T^*_r) \cap V(T^*_s) = S_L \), for any \(1 \leq r < s \leq m \).

Now, assume that there are two trees \(T^*_r \) and \(T^*_s \) such that \(E(T^*_r) \cap E(T^*_s) \neq \emptyset \) \((1 \leq r < s \leq m)\). Let \(e^* \in E(T^*_r) \cap E(T^*_s) \). Since \(V(T^*_r) \cap V(T^*_s) = S_L \), both ends of \(e^* \) belong to \(S_L \). Thus, without loss of generality, let \(e^* = v_{e_1} v_{e_2} \). If \(L(T_r) \) contains neither \(v_{e_1} \) nor \(v_{e_2} \), by Operation A, both \(v_{e_1} \) and \(v_{e_2} \) are leaves of \(T^*_r \) and hence it is impossible that \(v_{e_1} v_{e_2} \in E(T^*_s) \). So is \(L(T_s) \). And \(L(T_r) \) and \(L(T_s) \) are vertex-disjoint \((T_r \text{ and } T_s \text{ are edge-disjoint})\). Thus, without loss of generality, suppose that \(v_{e_1} \in L(T_r) \) and \(v_{e_1} \in L(T_s) \), and so \(v_{e_1} \notin L(T_r) \) and \(v_{e_2} \notin L(T_s) \). Since \(v_{e_1} \) and \(v_{e_2} \) are adjacent in \(L(G) \), \(e_1 \) and \(e_2 \) are adjacent in \(G \). Assume that \(v_1 \) is the common end of \(e_1 \) and \(e_2 \) in \(G \) and let \(e_1 = v_i v_j \). Since \(v_{e_2} v_{e_1} \in E(T^*_s) \), we added the vertex \(v_{e_2} \) and the edge \(v_{e_2} v_{e_1} \) to \(L(T_s) \). So by Operation A, we know that \(e_1 \) is exactly the corresponding edge of \(v_i \) in \(T_s \), that is, \(e_1 = e^r_i \). Again by Operation A, since \(e_1 \notin E(T_r) \), we added the vertex \(v_{e_1} \) and the
edge $v_{e_1}v_{e_2}$ to $L(T_r)$, where e_1 and e_2 have the same end v_j. Since $e_1 \neq e_2$ and e_1 and e_2 have the same end v_i, it is impossible that $\tilde{e}_j = e_2$. Therefore, by Operation A, it is impossible that $v_{e_1}v_{e_2} = e^* \in E(T^*_r)$, a contradiction. It follows that $T^*_1, T^*_2, \ldots, T^*_m$ are edge-disjoint.

Thus, in this case, $T^*_1, T^*_2, \ldots, T^*_m$ are m internally disjoint trees connecting S_L in $L(G)$.

Case 2: There is a component of $G[S_G]$ which is either a tree or unicyclic.

For each component C_t of $G[S_G]$ which is neither a tree nor unicyclic, add all vertices of C_t to the vertex set Q_1 and add all edges of C_t to the edge set S^1_G. Clearly, if $Q_1 \neq \emptyset$, $|S^1_G| > |Q_1|$.

Next, for each component C_t of $G[S_G]$ which is either a tree or unicyclic, if C_t is unicyclic, choose an edge e_t from C_t such that $C_t - e_t$ is a tree and let one end of e_t as the root r_t; otherwise, select an arbitrary vertex as the root r_t. For C_t (if C_t is a tree) or $C_t - e_t$ (if C_t is unicyclic), define the level $l(v)$ of a vertex v to be the distance from the root r_t to v. Notice that each edge in the tree C_t (or $C_t - e_t$ if C_t is unicyclic) joins vertices on consecutive levels. Then, for each edge $e = uv$, where $l(u) + 1 = l(v)$, we assign the vertex v which has higher level to the edge e and say that the vertex v is the corresponding vertex of the edge e. If C_t is unicyclic, let the root r_t be the corresponding vertex of the remaining edge e_t. Now, each edge of C_t has a corresponding vertex. By the definition, it is obvious that any two edges of C_t have different corresponding vertices. Add the corresponding vertices of all edges of C_t to the vertex set Q_2 and add all edges of C_t to the edge set S^2_G. Clearly, $|S^2_G| = |Q_2|$.

Moreover, it is clear that $Q_1 \cap Q_2 = \emptyset$, $S^1_G \cap S^2_G = \emptyset$ and $S_G = S^1_G \cup S^2_G$. Let $S^1_L = \{v_e \in S^1_G\}$ and $S^2_L = \{v_e \in S^2_G\}$. Then $S_L = S^1_L \cup S^2_L$. Let $Q = Q_1 \cup Q_2$. We have $|Q| = |Q_1| + |Q_2| \leq |S^1_G| + |S^2_G| = |S_G| = k$. Since $Q \subseteq V(G)$, by Observation 2.1, there are m edge-disjoint Q-Steiner trees T_1, T_2, \ldots, T_m in G. Note that both ends of each edge in S^1_G belong to Q_1, but there may be an edge in S^2_G, only one end of which belongs to Q_2. Thus, we use different methods to deal with the edges in S^1_G and S^2_G.

For every edge of S^1_G, we take the same approach as Case 1. In each tree T_r ($1 \leq r \leq m$), since $Q_2 \neq \emptyset$ (it is possible that $Q_1 = \emptyset$), take an arbitrary vertex v^* in Q_2 as the root and define the level $l(v)$ of a vertex v in T_r to be the distance from the root v^* to v. For each vertex $v_i \in Q_1$ (if $Q_1 \neq \emptyset$), there is a unique edge e connecting the vertex v_i and a vertex of level $l(v_i) - 1$. Let the edge e be the corresponding edge of v_i in T_r, denoted by \tilde{e}^r_i. Any two vertices of Q_1 in T_r have different corresponding edges. Now, apply Operation A to each tree T_r ($1 \leq r \leq m$) and each edge $e = v_iv_j \in S^1_G$. Then, each
vertex of S^1_L is added to $L(T_r)$ ($1 \leq r \leq m$).

Next, for each edge e_i of S^2_G and each tree T_r ($1 \leq r \leq m$), do the following operation.

Operation B: If $e_i \in E(T_r)$, it is done; otherwise $e_i \notin E(T_r)$, that is $v_{e_i} \notin V(L(T_r))$. By the definitions of S^2_G and Q_2, there is a corresponding vertex v_i of e_i, and $v_i \in Q_2 \subseteq Q$ and so $v_i \in V(T_r)$. Thus, there exists an edge $\tilde{e}_i \neq e_i$ incident with v_i in the tree T_r. Since e_i and \tilde{e}_i have the same end v_i, they are adjacent and so $v_{e_i}v_{\tilde{e}_i} \in E(L(G))$. Add the vertex v_{e_i} and the edge $v_{e_i}v_{\tilde{e}_i}$ to $L(T_r)$.

Now, after applying Operations A and B, $L(T_1), L(T_2), \ldots, L(T_m)$ are transformed into m connected subgraphs of $L(G)$, each of which contains the vertex set $S_L = S^1_L \cup S^2_L$. For each of the obtained subgraphs of $L(G)$, take a spanning tree T^*_r ($1 \leq r \leq m$). Note that, if $v_e \notin V(L(T_r))$, for some $e \in S_G$ and $r \in \{1, 2, \ldots, m\}$, whether $e \in S^1_G$ or S^2_G, that is, whether Operation A or Operation B is applied, v_e must be a leaf of T^*_r. Because $V(T^*_r) \supseteq S_L$ for any $1 \leq r \leq m$, it remains to show that $T^*_1, T^*_2, \ldots, T^*_m$ are internally disjoint.

Since $L(T_1), L(T_2), \ldots, L(T_m)$ are vertex-disjoint in $L(G)$ and the vertices added to $L(T_r)$ by Operations A and B are all from S_L, $T^*_1, T^*_2, \ldots, T^*_m$ are vertex-disjoint except S_L, that is, $V(T^*_r) \cap V(T^*_s) = S_L$, for any $1 \leq r < s \leq m$.

To complete the proof, it remains to show that $T^*_1, T^*_2, \ldots, T^*_m$ are edge-disjoint. By contradiction, assume that there are two trees T^*_r and T^*_s such that $E(T^*_r) \cap E(T^*_s) \neq \emptyset$ ($1 \leq r < s \leq m$). Let $e^* \in E(T^*_r) \cap E(T^*_s)$. Since $V(T^*_r) \cap V(T^*_s) = S_L$, both ends of e^* belong to S_L. Thus, without loss of generality, let $e^* = v_{e_1}v_{e_2}$. If $L(T_r)$ contains neither v_{e_1} nor v_{e_2}, then whether apply Operation A or Operation B, both v_{e_1} and v_{e_2} are leaves of T^*_r, which is impossible. So is $L(T_s)$. And $L(T_r)$ and $L(T_s)$ are vertex-disjoint (T_r and T_s are edge-disjoint). Thus, without loss of generality, suppose that $v_{e_2} \in L(T_r)$ and $v_{e_1} \in L(T_s)$, and so $v_{e_1} \notin L(T_r)$ and $v_{e_2} \notin L(T_s)$. Since v_{e_1} and v_{e_2} are adjacent in $L(G)$, e_1 and e_2 are adjacent in G. Therefore, e_1 and e_2 belong to the same component of $G[S_G]$. Hence, by the definitions of S^1_G and S^2_G, both e_1 and e_2 belong to S^1_G. If both e_1 and e_2 belong to S^2_G, by Operation A, it is impossible that $v_{e_1}v_{e_2} = e^* \in E(T^*_r) \cap E(T^*_s)$. The proof is the same as that of Case 1.

If both e_1 and e_2 belong to S^2_G, since $e_1 \notin E(T_r)$, by Operation B, we added the vertex v_{e_1} and the edge $v_{e_1}v_{\tilde{e}_1}$ to $L(T_r)$, where the common end v_1 of e_1 and \tilde{e}_1 in G is the corresponding vertex of e_1. Similarly, since $e_2 \notin E(T_s)$, by Operation B, we added the vertex v_{e_2} and the edge $v_{e_2}v_{\tilde{e}_2}$ to $L(T_s)$, where the common end v_2 of e_2 and \tilde{e}_2 in G is the corresponding vertex of e_2. Since $v_1 \neq v_2$ by the definition of Q_2, at least one
of the equations $e_1^* = e_2$ and $e_2^* = e_1$ is not true. So $v_{e_1}v_{e_1^*} \neq v_{e_1}v_{e_2}$ or $v_{e_2}v_{e_2^*} \neq v_{e_1}v_{e_2}$. It is impossible that $e^* = v_{e_1}v_{e_2} \in E(T^*_r) \cap E(T^*_s)$, a contradiction. It follows that $T^*_1, T^*_2, \ldots, T^*_m$ are edge-disjoint.

Thus, in both cases, there always exist m internally disjoint trees connecting S_L in $L(G)$ and so $\kappa_{L(G)}(S_L) \geq m$. By the arbitrariness of S_L, we conclude that $\kappa_k(L(G)) \geq m$.

For a cycle C_n with $n \geq k$, since $L(C_n) = C_n$, $\kappa_k(L(C_n)) = \lambda_k(C_n) = 1$ for $k \geq 3$ and $\kappa_2(L(C_n)) = \lambda_2(C_n) = 2$. Thus, the bound is sharp. The proof is complete.

\textbf{Acknowledgments.}

The author’s work was supported by Zhejiang Provincial Natural Science Foundation of China (No. LY18A010002) and the Natural Science Foundation of Ningbo, China.

\textbf{References}

[1] J.A. Bondy and U.S.R. Murty, Graph Theory, GTM 244, Springer, 2008.

[2] G. Chartrand, S.F. Kapoor, L. Lesniak, D.R. Lick, Generalized connectivity in graphs, Bull. Bombay Math. Colloq. 2(1984), 1–6.

[3] G. Chartrand, F. Okamoto, P. Zhang, Rainbow trees in graphs and generalized connectivity, Networks 55(4)(2010), 360–367.

[4] G. Chartrand, M.J. Stewart, The connectivity of line-graphs, Math. Ann. 182(1969), 170–174.

[5] M. Hager, Pendant tree-connectivity, J. Combin. Theory 38(1985), 179–189.

[6] M. Hager, Path-connectivity in graphs, Discrete Math. 59(1986), 53–59.

[7] S. Li, X. Li, W. Zhou, Sharp bounds for the generalized connectivity $\kappa_3(G)$, Discrete Math. 310(2010), 2147–2163.

[8] X. Li, Y. Mao, Generalized Connectivity of Graphs, Springer Briefs in Mathematics, Springer, Switzerland, 2016.

[9] X. Li, Y. Mao, Nordhaus-Gaddum-type results for the generalized edge-connectivity of graphs, Discrete Appl. Math. 185(2015), 102–112.
[10] X. Li, Y. Mao, Y. Sun, On the generalized (edge-)connectivity of graphs, Australasian J. Combin. 58(2014), 304–319.

[11] H. Li, B. Wu, J. Meng, Y. Ma, Steiner tree packing number and tree connectivity, Discrete Math. 341(2018), 1945–1951.

[12] S. Lin, Q. Zhang, The generalized 4-connectivity of hypercubes, Discrete Appl. Math. 220(2017), 60–67.

[13] H. Whitney, Congruent graphs and the connectivity of graphs and the connectivity of graphs, Amer. J. Math. 54(1932), 150–168.