Implications of the Ganea Condition

NORIO IWASE
DONALD STANLEY
JEFFREY STROM

Abstract Suppose the spaces X and $X \times A$ have the same Lusternik-Schnirelmann category: $\text{cat}(X \times A) = \text{cat}(X)$. Then there is a strict inequality $\text{cat}(X \times (A \times B)) < \text{cat}(X) + \text{cat}(A \times B)$ for every space B, provided the connectivity of A is large enough (depending only on X). This is applied to give a partial verification of a conjecture of Iwase on the category of products of spaces with spheres.

AMS Classification 55M30

Keywords Lusternik-Schnirelmann category, Ganea conjecture, product formula, cone length

Introduction

The product formula $\text{cat}(X \times Y) \leq \text{cat}(X) + \text{cat}(Y)$ [1] is one of the most basic relations of Lusternik-Schnirelmann category. Taking $Y = S^r$, it implies that $\text{cat}(X \times S^r) \leq \text{cat}(X) + 1$ for any $r > 0$. In [5], Ganea asked whether the inequality can ever be strict in this special case. The study of the ‘Ganea condition’ $\text{cat}(X \times S^r) = \text{cat}(X) + 1$ has been, and remains, a formidable challenge to all techniques for the calculation of Lusternik-Schnirelmann category. In fact, it was only recently that techniques were developed which were powerful enough to identify a space which does not satisfy the Ganea condition [8] (see also [9, 12]). It is still not well understood exactly which spaces X do not satisfy the Ganea condition, although it has been conjectured that they are precisely those spaces for which $\text{cat}(X)$ is not equal to the related invariant $\text{Qcat}(X)$ (see [14, 17]).

Since the failure of the Ganea condition appears to be a strange property for a space to have, it is reasonable to expect that such failure would have useful and interesting implications. In this paper we explore some of the implications of the equation $\text{cat}(X \times A) = \text{cat}(X)$ for general spaces A, and for $A = S^r$ in particular.
A brief look at the method of the paper \cite{8} will help to put our results into proper perspective. The new techniques begin with the following question: if $Y = X \cup_f e^{t+1}$, the cone on $f : S^t \to X$, then how can we tell if $\text{cat}(Y) > \text{cat}(X)$? It is shown (see \cite{9} Thm. 5.2 and \cite{12} Thm. 3.6) that, if $t \geq \dim(X)$, then $\text{cat}(Y) = \text{cat}(X) + 1$ if and only if a certain Hopf invariant $H_s(f)$ (which is a set of homotopy classes) does not contain the trivial map \ast. It is also shown \cite{9} Thm. 3.8 that if $\ast \in \Sigma^r H_s(f)$, then $\text{cat}(Y \times S^r) \leq \text{cat}(X) + 1$. Thus Y does not satisfy Ganea’s condition if $\ast \notin H_s(f)$, but there is at least one $h \in H_s(f)$ such that $\Sigma^r h \simeq \ast$.

Of course, if $\Sigma^r h \simeq \ast$, then $\Sigma^{r+1} h \simeq \ast$ as well, and this suggests the following conjecture (formulated in \cite{8} Conj. 1.4):

Conjecture If $\text{cat}(X \times S^r) = \text{cat}(X)$, then $\text{cat}(X \times S^{r+1}) = \text{cat}(X)$.

In this paper we prove that this conjecture is true, provided r is large enough.

Theorem 1 Suppose X is a $(c-1)$-connected space and let $r > \dim(X) - c \cdot \text{cat}(X) + 2$. If $\text{cat}(X \times S^r) = \text{cat}(X)$, then

$$\text{cat}(X \times S^t) = \text{cat}(X)$$

for all $t \geq r$.

The conjecture remains open for small values of r.

Our main result is much more general: it shows how the equation $\text{cat}(X \times A) = \text{cat}(X)$ governs the Lusternik-Schnirelmann category of products of X with a vast collection of other spaces.

Theorem 2 Let X be a $(c-1)$-connected space and let A be $(r-1)$-connected with $r > \dim(X) - c \cdot \text{cat}(X) + 2$. If $\text{cat}(X \times A) = \text{cat}(X)$ then

$$\text{cat}(X \times (A \times B)) < \text{cat}(X) + \text{cat}(A \times B)$$

for every space B.

Here $A \times B = (A \times B)/B$ is the half-smash product of A with B. When A is a suspension, the half-smash product decomposes as $A \times B \simeq A \vee (A \wedge B)$ (see, for example, \cite{12} Lem. 5.9), so we obtain the following.

Corollary Under the conditions of Theorem 2, if A is a suspension, then

$$\text{cat}(X \times (A \wedge B)) = \text{cat}(X)$$
for every space B.

Our partial verification of the conjecture is an immediate consequence of this corollary: it the special case $A = S^r$ and $B = S^{s-r}$.

Organization of the paper In Section 1 we recall the necessary background information on homotopy pushouts, cone length and Lusternik-Schnirelmann category. We introduce an auxiliary space and establish its important properties in Section 2. The proof of Theorem 2 is presented in Section 3.

1 Preliminaries

In this paper all spaces are based and have the pointed homotopy type of CW complexes; maps and homotopies are also pointed. We denote by \ast the one point space and any nullhomotopic map. Much of our exposition uses the language of homotopy pushouts; we refer to [9] for the definitions and basic properties.

1.1 Homotopy Pushouts

We begin by recalling some basic facts about homotopy pushout squares. We call a sequence $A \to B \to C$ a cofiber sequence if the associated square

\[
\begin{array}{ccc}
A & \to & B \\
\downarrow & & \downarrow \\
\ast & \to & C
\end{array}
\]

is a homotopy pushout square. The space C is called the cofiber of the map f. One special case that we use frequently is the half-smash product $A \sma B$, which is the cofiber of the inclusion $B \to A \times B$.

Finally, we recall the following result on products and homotopy pushouts.

Proposition 3 Let X be any space. Consider the squares

\[
\begin{array}{ccc}
A & \to & B \\
\downarrow & & \downarrow \\
C & \to & D \\
\end{array}
\quad \text{and} \quad
\begin{array}{ccc}
X \times A & \to & X \times B \\
\downarrow & & \downarrow \\
X \times C & \to & X \times D
\end{array}
\]

If the first square is a homotopy pushout, then so is the second.

Proof This follows from Theorem 6.2 in [9].

Algebraic & Geometric Topology, Volume 4 (2004)
1.2 Cone Length and Category

A cone decomposition of a space \(Y \) is a diagram of the form

\[
\begin{array}{ccc}
L_0 & \longrightarrow & L_1 \\
\downarrow & & \downarrow \\
Y_0 & \longrightarrow & Y_1 \\
\downarrow & & \downarrow \\
\vdots & & \vdots \\
\downarrow & & \downarrow \\
Y_{k-1} & \longrightarrow & Y_k
\end{array}
\]

in which \(Y_0 = * \), each sequence \(L_i \rightarrow Y_i \rightarrow Y_{i+1} \) is a cofiber sequence, and \(Y_k \simeq Y \); the displayed cone decomposition has length \(k \). The cone length of \(Y \), denoted \(\text{cl}(Y) \), is defined by

\[
\text{cl}(Y) = \begin{cases}
0 & \text{if } Y \simeq * \\
\infty & \text{if } Y \text{ has no cone decomposition, and} \\
k & \text{if the shortest cone decomposition of } Y \text{ has length } k.
\end{cases}
\]

The Lusternik-Schnirelmann category of \(X \) may be defined in terms of the cone length of \(X \) by the formula

\[
\text{cat}(X) = \inf \{ \text{cl}(Y) \mid X \text{ is a homotopy retract of } Y \}.
\]

Berstein and Ganea proved this formula in [3, Prop. 1.7] with \(\text{cl}(Y) \) replaced by the strong category of \(Y \); the formula above follows from another result of Ganea — strong category is equal to cone length [7]. It follows directly from this definition that if \(X \) is a homotopy retract of \(Y \), then \(\text{cat}(X) \leq \text{cat}(Y) \). The reader may refer to [10] for a survey of Lusternik-Schnirelmann category.

The category of \(X \) can be defined in another way that is essential to our work. Begin by defining the \(n \)-th Ganea fibration sequence

\[
F_n(X) \longrightarrow G_n(X) \longrightarrow X,
\]

let \(\overline{G}_{n+1}(X) = G_n(X) \cup CF_n(X) \) be the cofiber of \(p_n \) and define \(\overline{p}_{n+1} : \overline{G}_{n+1}(X) \rightarrow X \) by sending the cone to the base point of \(X \). The \((n + 1)\)th Ganea fibration \(p_{n+1} : G_{n+1}(X) \rightarrow X \) results from converting the map \(\overline{p}_{n+1} \) to a fibration. The following result is due to Ganea (cf. Svarc).

Theorem 4 For any space \(X \),

(a) \(\text{cl}(G_n(X)) \leq n \),

(b) the map \(p_n : G_n(X) \rightarrow X \) has a section if and only if \(\text{cat}(X) \leq n \), and
(c) $F_n(X) \simeq (\Omega(X))^\ast(n+1)$, the $(n+1)$-fold join of ΩX with itself.

Proof Assertion (a) follows immediately from the construction. For parts (b) and (c), see [6]; these results also appear, from a different point of view, in [16].

2 An Auxiliary Space

Let \tilde{G}_n denote the homotopy pushout in the square

\[
\begin{array}{ccc}
G_{n-1}(X) & \xrightarrow{i_1} & G_{n-1}(X) \times A \\
\downarrow & & \downarrow \\
G_n(X) & \xrightarrow{p_n} & \tilde{G}_n.
\end{array}
\]

The maps $p_n : G_n(X) \to X$ and $1_A : A \to A$ piece together to give a map $\tilde{p}_n : \tilde{G}_n \to X \times A$. The space \tilde{G}_n and the map \tilde{p}_n play key roles in the forthcoming constructions; this section is devoted to establishing some of their properties.

2.1 Category Properties of \tilde{G}_n

We begin by estimating the category of \tilde{G}_n.

Proposition 5 For any noncontractible A and $n > 0$, $\text{cat}(\tilde{G}_n) < n + \text{cat}(A)$.

Proof For simplicity in this proof, we write F_i for $F_i(X)$ and G_i for $G_i(X)$. Let A be a retract of another space A' with $\text{cl}(A') = k$. Let $\tilde{G}_n = G_n \cup G_{n-1} \times A'$; clearly \tilde{G}_n is a homotopy retract of \tilde{G}_n' and so it suffices to show that $\text{cl}(\tilde{G}_n') < n + k$. Let

\[
\begin{array}{cccccc}
& L_0 & L_1 & \cdots & L_{k-1} & \\
A_0 & \xrightarrow{} & A_1 & \xrightarrow{} & \cdots & \xrightarrow{} & A_{k-1} & \xrightarrow{} & A_k
\end{array}
\]

be a cone decomposition of A'. We will also use the cone decomposition of G_n given by the cofiber sequences $F_{i-1} \to G_{i-1} \to G_i$. According to a result of Baues [2] (see also [13, Prop. 2.9]), for each i and j there is a cofiber sequence

\[
F_{i-1} \ast L_{j-1} \to G_i \times A'_{i-1} \cup G_{i-1} \times A'_j \to G_i \times A'_j.
\]
Now define subspaces $W_s \subseteq \tilde{G}'_n$ by the formula

$$W_s = \begin{cases}
\bigcup_{i+j=s} G_i \times A'_j & \text{if } s \leq n \\
G_n \times A'_0 \cup \left(\bigcup_{i+j=s, i<n} G_i \times A'_j \right) & \text{if } s > n
\end{cases}$$

with the understanding that $A'_j = A'_k$ for all $j \geq k$. The cofiber sequences guaranteed by Baues’ theorem can be pieced together with the given cone decompositions of A' and G_n to give the cofiber sequences

$$F_s \vee L_s \vee \left(\bigvee_{i<n} F_i \ast L_j \right) \rightarrow W_s \rightarrow W_{s+1}$$

for each $s < \min\{n, k\}$; when $s \geq n$ we alter the cobase of the cofiber sequence by removing the F_s summand, and when $s \geq k$ we must remove the summand L_s. Since $\tilde{G}'_n = W_{n+k-1}$, we have the result.

Next, we show that the map $\tilde{p}_n : \tilde{G}_n \rightarrow X \times A$ has one of the category-detecting properties of $p_n : G_n(X \times A) \rightarrow X \times A$.

Proposition 6 If $\text{cat}(X \times A) = \text{cat}(X) = n$, then \tilde{p}_n has a homotopy section.

Proof We follow [4] (see also [3] Thm. 2.7) and define

$$\tilde{G}'_n(X \times A) = \bigcup_{i+j=n} G_i(X) \times G_j(A).$$

There is a natural map $h : \tilde{G}'_n(X \times A) \rightarrow X \times A$ induced by the Ganea fibrations over X and A. According to [4] Thm. 2.3, $\text{cat}(X \times A) = n$ if and only if h has a homotopy section.

Each map $G_i(X) \times G_j(A) \rightarrow X \times A$ (with $j > 0$) factors through $G_i(X) \times A$ and these factorizations are compatible because p_{i+1} extends p_i. So h factors as $\tilde{G}'_n(X \times A) \rightarrow G_n \rightarrow X \times A$. Therefore, if $\text{cat}(X \times A) = n$, then h, and hence \tilde{p}_n, has a section. \qed

2.2 Comparison of \tilde{G}_n with $G_n(X) \times A$

Let $j : \tilde{G}_n \rightarrow G_n(X) \times A$ denote the natural inclusion map.

Proposition 7 Assume that X is $(c-1)$-connected and that A is $(r-1)$-connected. Then the homotopy fiber F of the map j is $(nc+r-2)$-connected.
Proof There is a cofiber sequence
\[\tilde{G}_n \to G_n(X) \times A \to \Sigma F_{n-1}(X) \wedge A. \]
Therefore the homotopy fiber of \(j \) has the same connectivity as the space \(\Omega(\Sigma F_{n-1}(X) \wedge A) \simeq \Omega(\Omega(X)^n * A) \), namely \(nc + r - 2 \). \(\square \)

Corollary 8 Assume \(\dim(Z) < nc + r - 2 \) and let \(f, g : Z \to \tilde{G}_n \). Then \(f \simeq g \) if and only if \(jf \simeq jg \).

The proof is standard, and we omit it.

2.3 New Sections from Old Ones

Suppose that \(\text{cat}(X) = \text{cat}(X \times A) = n \). By Proposition there is a section \(\sigma : X \times A \to \tilde{G}_n \) of the map \(\tilde{p}_n : \tilde{G}_n \to X \times A \). Define a new map \(\sigma' : X \to G_n(X) \) by the diagram

\[
\begin{array}{ccc}
X & \xrightarrow{\sigma'} & G_n(X) \\
\downarrow{\iota_1} & & \downarrow{\text{pr}_1} \\
X \times A & \xrightarrow{\sigma} & \tilde{G}_n \\
\end{array}
\]

\[
\begin{array}{ccc}
 & & \\
X \times A & \xrightarrow{j} & G_n(X) \times A \\
\end{array}
\]

We need the following basic properties of \(\sigma' \).

Proposition 9 If \(\text{cat}(X \times A) = \text{cat}(X) = n \), then

(a) \(\sigma' \) is a homotopy section of the projection \(p_n : G_n(X) \to X \), and

(b) if \(X \) is \((c - 1)\)-connected and \(A \) is \((r - 1)\)-connected with \(r > \dim(X) - nc + 2 \), then the diagram

\[
\begin{array}{ccc}
X & \xrightarrow{\sigma'} & G_n(X) \\
\downarrow{\iota_1} & & \downarrow{k} \\
X \times A & \xrightarrow{\sigma} & \tilde{G}_n \\
\end{array}
\]

commutes up to homotopy.
Proof First consider the diagram

\[
\begin{array}{ccc}
X & \xrightarrow{\sigma'} & G_n(X) \\
\downarrow{i_1} & & \downarrow{pr_1} \\
X \times A & \xrightarrow{\sigma} & \tilde{G}_n \\
\downarrow{1_{X \times A}} & & \downarrow{pr_1} \\
X \times A & \xrightarrow{\tilde{G}_n} & X \\
\end{array}
\]

The diagram of solid arrows is evidently commutative. Therefore, we have \(p_n \circ \sigma' \simeq pr_1 \circ 1_{X \times A} \circ i_1 \simeq 1_X \), proving (a).

To prove (b) we have to show that two maps \(X \to \tilde{G}_n \) are homotopic. Since \(\text{dim}(X) < n + r - 2 \), it suffices by Corollary \(\S \) to show that \(j \circ (\sigma \circ i_1) \simeq j \circ (k \circ \sigma') \). Since \(pr_2 \circ j \circ (\sigma \circ i_1) \simeq * \simeq pr_2 \circ j \circ (k \circ \sigma') \), it remains to show that \(pr_1 \circ j \circ (\sigma \circ i_1) \simeq pr_1 \circ j \circ (k \circ \sigma') \). But both of these maps are homotopic to \(\sigma' \).

3 Proof of the Main Theorem

Proof of Theorem \(\S \) We have \(n = \text{cat}(X) = \text{cat}(X \times A) \) by hypothesis. It follows from Proposition \(\S \) that there is a section \(\sigma : X \times A \to \tilde{G}_n \) of the map \(\tilde{p}_n : \tilde{G}_n \to X \times A \). We then get the section \(\sigma' : X \to G_n(X) \) that was constructed and studied in Section 2.3.

Consider the following diagram and the induced sequence of maps on the homotopy pushouts of the rows

\[
\begin{array}{ccc}
(X \times A) \times B & \xleftarrow{i_1 \times 1_B} & X \times B & \xrightarrow{pr_1} & X & \xrightarrow{pr_1} & X & \text{Y} \\
\downarrow{\sigma \times 1_B} & \simeq s & \downarrow{\sigma' \times 1_B} & \downarrow{\sigma'} & \text{homotopy pushout} & \text{P} \\
\tilde{G}_n \times B & \xrightarrow{k \times 1_B} & G_n(X) \times B & \xrightarrow{pr_1} & G_n(X) & \xrightarrow{pr_1} & G_n(X) & \text{Y} \\
\downarrow{\tilde{p}_n \times 1_B} & \downarrow{p_n \times 1_B} & \downarrow{p_n} & \downarrow{p_n} & \text{X} & \text{X} & \text{Y} & \text{Y} \\
(X \times A) \times B & \xrightarrow{i_1 \times 1_B} & X \times B & \xrightarrow{pr_1} & X & \text{X} & \text{X} & \text{X} & \text{X} \\
\end{array}
\]

Proposition \(\S \) implies that the upper left square commutes up to homotopy. Since \(i_1 \times 1_B \) is a cofibration, we can apply homotopy extension and replace the map \(\sigma \times 1_B : (X \times A) \times B \to \tilde{G}_n \times B \) with a homotopic map \(s \) which makes
that square strictly commute. All other squares are strictly commutative as they stand.

Since the composites \((\tilde{\rho}_n \times 1_B) \circ (\sigma' \times 1_B)\) and \(p_n \circ \sigma'\) are the identity maps and \((\tilde{\rho}_n \times 1_B) \circ s\) is a homotopy equivalence, each vertical composite in the modified diagram is a homotopy equivalence. Thus \(Y\) is a homotopy retract of \(P\), and consequently \(\text{cat}(Y) \leq \text{cat}(P)\).

The space \(Y\) is the homotopy pushout of the top row in the diagram, which is the product of the homotopy pushout diagram

\[
\begin{array}{ccc}
B & \longrightarrow & * \\
\downarrow & & \downarrow \\
A \times B & \longrightarrow & A \times B
\end{array}
\]

with the space \(X\). Therefore \(Y \simeq X \times (A \times B)\) by Proposition 3. Since \(Y\) is a homotopy retract of \(P\), it follows that

\[\text{cat}(X \times (A \times B)) \leq \text{cat}(P),\]

the proof will be complete once we establish that \(\text{cat}(P) < \text{cat}(X) + \text{cat}(A \times B)\). This is accomplished in Lemma 10 which is proved below.

Lemma 10 The space \(P\) constructed in the proof of Theorem 2 satisfies

\[\text{cat}(P) \leq \text{cl}(P) < \text{cat}(X) + \text{cat}(A \times B).\]

Proof The space \(\tilde{G}_n\) is defined by the homotopy pushout square

\[
\begin{array}{ccc}
G_{n-1}(X) & \longrightarrow & G_n(X) \\
\downarrow & & \downarrow \\
G_{n-1}(X) \times A & \longrightarrow & \tilde{G}_n.
\end{array}
\]

Take the product of this square with the space \(B\) and adjoin the homotopy pushout square that defines \(P\) to obtain the diagram

\[
\begin{array}{ccc}
G_{n-1}(X) \times B & \longrightarrow & G_n(X) \times B & \longrightarrow & G_n(X) \\
\downarrow & & \downarrow & & \downarrow \\
G_{n-1}(X) \times A \times B & \longrightarrow & \tilde{G}_n \times B & \longrightarrow & P.
\end{array}
\]

By [11, Lem. 13], the outer square

\[
\begin{array}{ccc}
G_{n-1}(X) \times B & \longrightarrow & G_n(X) \\
\downarrow & & \downarrow \\
G_{n-1}(X) \times A \times B & \longrightarrow & P
\end{array}
\]

is a homotopy equivalence.
is also a homotopy pushout square. The top map is the composite
\[G_{n-1}(X) \times B \xrightarrow{pr_1} G_{n-1}(X) \to G_n(X), \]
and so we have a new factorization into homotopy pushout squares:
\[\begin{array}{ccc}
G_{n-1}(X) \times B & \xrightarrow{pr_1} & G_{n-1}(X) \\
\downarrow & & \downarrow \\
G_{n-1}(X) \times A \times B & \to & L \\
\downarrow & & \downarrow \\
G_{n-1}(X) \times (A \times B) & \to & P.
\end{array} \]

To identify the space \(L \), observe that the left square is simply the product of the space \(G_{n-1}(X) \) with the homotopy pushout square
\[\begin{array}{ccc}
B & \to & * \\
\downarrow & & \downarrow \\
A \times B & \to & A \times B.
\end{array} \]

By Proposition 3, \(L \simeq G_{n-1}(X) \times (A \times B) \). Hence the right-hand square is the homotopy pushout square
\[\begin{array}{ccc}
G_{n-1}(X) & \to & G_n(X) \\
\downarrow & & \downarrow \\
G_{n-1}(X) \times (A \times B) & \to & P.
\end{array} \]

Therefore \(\text{cl}(P) \leq \text{cat}(X) + \text{cat}(A \times B) \) by Proposition 5.

References

[1] A. Bassi, *Su alcuni nuovi invarianti della varietà topologiche*, Annali Mat. Pura Appl. 16 (1935), 275–297. [MR0029165]

[2] H. Baues, *Iterierte Join-Konstruktion*, Math. Zeit. 131 (1973), 77–84. [MR0346784]

[3] I. Berstein and T. Ganea, *The category of a map and a cohomology class*, Fund. Math. 50 (1961/1962), 265–279. [MR0139168]

[4] O. Cornea, G. Lupton, J. Oprea and D. Tanré, *Lusternik-Schnirelmann category*, Mathematical Surveys and Monographs 103, Amer. Math. Soc. Providence, RI (2003). [MR1990857]

[5] T. Ganea, *Some problems on numerical homotopy invariants*, Symposium on Algebraic Topology (Battelle Seattle Res. Center, Seattle Wash., 1971), 23–30. Lecture Notes in Math., 249, Springer, Berlin, (1971). [MR0339147]
Implications of the Ganea Condition

[6] T. Ganea, *A generalization of the homology and homotopy suspension*, Comm. Math. Helv. 39 (1965) 295–322. MR0339147

[7] T. Ganea, *Lusternik-Schnirelmann category and strong category*, Ill. J. Math. 11 (1967) 417–427. MR0229240

[8] N. Iwase, *Ganea’s conjecture on Lusternik-Schnirelmann category*, Bull. London Math. Soc. 30 (1998), 623–634. MR1642747

[9] N. Iwase, *A∞ method in Lusternik-Schnirelmann category*, Topology 41 (2002) 695–723. MR1905835

[10] I. M. James, *On category, in the sense of Lusternik and Schnirelmann*, Topology 17 (1977), 331–348. MR0516214

[11] M. Mather, *Pull-backs in homotopy theory*, Canad. J. Math. 28 (1976), 225–263. MR0402694

[12] D. Stanley, *Spaces of Lusternik-Schnirelmann category n and cone length n + 1*, Topology 39 (2000), 985–1019. MR1763960

[13] D. Stanley, *On the Lusternik-Schnirelmann category of maps*, Canad. J. Math 54 (2002), 608–633. MR1900756

[14] H. Scheerer, D. Stanley and D. Tanré, *Fiberwise construction applied to Lusternik-Schnirelmann category*, Israel J. Math. 131 (2002), 333–359. MR1942316

[15] N. Steenrod, *A convenient category of topological spaces*, Mich. Math. J. 14 (1967), 133–152. MR0210075

[16] A. Švarc, *The genus of a fibered space*, Translations of the AMS, 55 (1966), 49 – 140. MR0154284

[17] L. Vandembroucq, *Fiberwise suspension and Lusternik-Schnirelmann category*, Topology 41 (2002), 1239–1258. MR1923222

Faculty of Mathematics, Kyushu University, Ropponmatsu 4-2-1
Fukuoka 810-8560, Japan

Department of Mathematics and Statistics, University of Regina, College West 307.14 Regina, Saskatchewan, Canada

Department of Mathematics, Western Michigan University, 1903 W. Michigan Ave
Kalamazoo, MI 49008, USA

Email: iwase@math.kyushu-u.ac.jp, stanley@math.uregina.ca, jeffrey.strom@wmich.edu

Received: 6 March 2004