Renormalization group analysis on emergence of higher rank symmetry and higher moment conservation

Hongchao Li1,2,* and Peng Ye1,†

1School of Physics and State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, 510275, China
2Department of Modern Physics, University of Science and Technology of China, Hefei, 230026, China

Higher rank symmetry and higher moment conservation have been drawn considerable attention from, e.g., subdiffusive transport to fracton topological order. In this paper, we perform a one-loop renormalization group (RG) analysis and show how these phenomena emerge at low energies. We consider a d-dimensional model of interacting bosons of d components. At higher-rank-symmetric points with conserved angular momentums, the a-th bosons have kinetic energy only along the \hat{e}^a direction. Therefore, the symmetric points look highly anisotropic and fine-tuned. By studying RG in a wide vicinity of the symmetric points, we find that symmetry-disallowed kinetic terms tend to be irrelevant within the perturbative regime, which potentially leads to emergent higher-rank symmetry and higher-moment conservation at the deep infrared limit. While non-perturbative analysis is called for in the future, by regarding higher-rank symmetry as an emergent phenomenon, the RG analysis presented in this paper holds alternative promise for realizing higher-rank symmetry and higher-moment conservation in experimentally achievable systems.

I. INTRODUCTION

The celebrated Noether’s theorem [1] relates a conservation law to an underlying continuous symmetry. For example, in a $U(1)$-symmetric Hamiltonian of bosons, bosonic operator $\hat{\Phi}(\mathbf{x})$ is changed to $e^{i\theta}\hat{\Phi}(\mathbf{x})$ under symmetry transformations where the real parameter θ doesn’t depend on coordinate $\mathbf{x} = (x^1, x^2, \ldots, x^d)$ in d-dimensional space. By means of Noether’s theorem, one can show that the total boson number, i.e., $\int d^d x \rho(x)$, is a conserved quantity, where particle number density $\rho(x) = \hat{\Phi}(\mathbf{x})\hat{\Phi}(\mathbf{x})^\dagger$. Apparently, $\rho(x)$ is just the zeroth order of conventional multipole expansions:

$$\rho, \rho \cdot x, p x^a x^b, \ldots$$

in a standard electromagnetism textbook [2]. In a particle-number-conserving system, higher moment conservation, e.g., conservation of dipoles and quadrupoles, is in principle allowed. Furthermore, if the density is vector-like with multi-components, denoted as $\rho = (\rho^1, \rho^2, \ldots, \rho^d)$, then we can define another set of multipole expansions:

$$\rho, \rho \cdot x, \sum_{c,f=1}^d e^{ab\cdots e} f^{c} \rho^c x^f, \ldots$$

where the third one is angular moment. $e^{ab\cdots e}$ is Levi-Civita symbol. If $d = 2, 3$, it can be rewritten in a compact form: $\mathbf{\rho} \times \mathbf{x}$. In $d = 2$, $\mathbf{\rho} \times \mathbf{x} = \rho^1 x^2 - \rho^2 x^1$.

Indeed, recently we have been witnesses to ongoing research progress on higher-moment conservation and the associated higher-rank version of global symmetry [3–9], especially in the field of fracton physics [3–69]. Some typical examples of research include subdiffusive transport at late times, non-ergodicity, Hilbert space fragmentation, and spontaneous symmetry breaking [31, 33, 41, 68–74]. In a simple scalar theory, the associated higher-rank symmetry transformations are parametrized by $\theta(\mathbf{x})$ that is a polynomial function of \mathbf{x} [8]. Inspired by the conventional correspondence between global symmetry and gauge symmetry, upon “gauging” higher-rank symmetry, higher-rank gauge fields can be obtained [5]. Here, the gauge fields are usually higher-rank symmetric tensor fields, which leads to generalized Maxwell equations [6] and exotic theory of spin systems in Yb-based breathing pyrochlores [75].

As a nontrivial consequence of higher moment conservation, the mobility of particles is inevitably restricted, either partially or completely. For example, it is quite intuitive that dipole conservation strictly forbids a single particle motion along all spatial directions. Such particles are called “fractons” or 0-dimensional particles [3, 4]. Similarly, one can define lineons (1-dimensional particle) that are movable within a stack of parallel straight lines and planons (2-dimensional particle) that are movable within a stack of parallel planes. Regarding these strange particles as bosons, we can consider their Bose-Einstein condensation, such that the spontaneous breaking of higher-rank symmetry occurs. As a result, a class of exotic quantum phases of matter dubbed fractonic superfluids [68, 69] is formed. In Ref. [69], a convenient notation $d\text{SF}^1$ was introduced to denote d-dimensional fractonic superfluids with i-dimensional particle condensation, e.g., $d\text{SF}^0$ with condensed fractons and $d\text{SF}^1$ with condensed lineons. The conventional superfluid phase corresponds to $d\text{SF}^0$ where bosons can freely move.

Higher-rank symmetric microscopic models often look quite unrealistic, highly anisotropic and fine-tuned [5]. For example, Hamiltonian does not have the usual kinetic
energy term [68]. And interaction is delicately designed [69]. However, as we’ve known, in many condensed matter systems, symmetry has been found to be significantly enhanced at low energies. For example, Lorentz symmetry emerge in graphene which is microscopically built by non-relativistic electrons. Thus, one may wonder whether it is possible that long-wavelength low-energy limit will conserve higher moments and respect higher-rank symmetry as an emergent phenomenon.

For this purpose, we may apply the traditional theoretical approach: renormalization group (RG). If there exists a phase region such that all models in the region can flow to symmetric points, we can regard higher-rank symmetry as an emergent symmetry. Theoretically, one advantage of such an emergent higher-rank symmetry is its robustness against symmetry-breaking perturbation. Practically, we expect that such a scenario holds promise for more flexible realization of exotic higher-rank symmetry and higher-moment conservation in both theoretical and experimental studies.

In this paper, we identify such a wide phase region that supports emergent higher-rank symmetry and conservation of angular moments, i.e., \(\int d^2p \times x = \int d^2x (\rho^2x^2 - \rho^2x^1) \) for a two-component boson fields in two dimensions. We start with a two-dimensional many-boson system in the normal state (i.e. without lineon condensation) of fractonic superfluids (denoted as 2FS). The Hamiltonian is a symmetric point in the parameter space where the a-th \((a = 1, 2)\) component bosons only have kinetic terms along a-th axis (dubbed “diagonal” kinetic terms). There also exists a weak inter-component scattering term allowed by higher-rank symmetry. We shall perform a RG analysis in the vicinity of the symmetric point by adding symmetry-disallowed kinetic terms (dubbed “off-diagonal” kinetic terms) as a perturbation. The one-loop calculation of \(\beta \)-function shows that there exists a finite phase region (Fig. 4) where off-diagonal kinetic terms tend to be irrelevant under RG iteration. In other words, the high-energy model, which is not symmetric but more realistic and less fine-tuned, has a tendency to flow to the symmetric point. As a result, higher-rank symmetry as well as conservation of angular moments emerges.

The remainder of this paper is organized as follows. In Sec. II, we introduce the d-component bosonic systems and its higher-rank symmetry. In Sec. III, we discuss the scaling and Feynman rules of the d-component bosonic systems. Further, we figure out the \(\beta \)-functions of parameters in the systems with renormalization group (RG) analysis and depict the global phase diagram. In Sec. IV, we summarize and provide our prediction on conditions of possible realization of the systems with higher-rank symmetry.

II. MODEL AND SYMMETRY

The symmetric point Hamiltonian for the d-component bosonic systems in real space [60] is given by \(\mathcal{H} = \mathcal{H}_0 + \mathcal{H}_1 \) with

\[
\mathcal{H}_0 = \sum_{a=1}^{d} \left[\frac{t_a}{2} (\partial_\alpha \dot{\Phi}_a^\dagger) (\partial_\alpha \dot{\Phi}_a) - \mu \dot{\Phi}_a \dot{\Phi}_a^\dagger \right],
\]

\[
\mathcal{H}_1 = \frac{1}{2} \sum_{a \neq b} K_{ab} \left(\dot{\Phi}_a^\dagger \partial_\alpha \Phi_b + \dot{\Phi}_b^\dagger \partial_\alpha \Phi_a + \dot{\Phi}_a \partial_\alpha \Phi_b^\dagger + \dot{\Phi}_b \partial_\alpha \Phi_a^\dagger \right),
\]

where \(\mathcal{H}_0 \) is free Hamiltonian and \(\mathcal{H}_1 \) is interaction Hamiltonian. Here \(t_a = m_a^{-1} \) stands for the inverse of mass along the a-th direction and \(\mu \) stands for the chemical potential. \(\Phi_a(x) \) and \(\Phi_a^\dagger(x) \) are respectively creation and annihilation operators of d-component bosons, and satisfy the bosonic commutation relations. The interaction strength \(K_{ab} \) is a symmetric matrix with vanishing diagonal elements, i.e., \(K_{aa} = 0, K_{ab} = K_{ba} \). Each term in \(\mathcal{H} \) is invariant under both the conventional global symmetry transformations \((\Phi_a \rightarrow e^{i\beta a} \Phi_a, \theta_a \in \mathbb{R}) \) and higher-rank symmetry transformations:

\[
(\Phi_a, \Phi_b) \rightarrow (\Phi_a e^{i\lambda_{ab} x^b}, \Phi_b e^{i\lambda_{ab} x^a})
\]

for each pair \((\phi_a, \phi_b)\) with \(\lambda_{ab} = -\lambda_{ba} \in \mathbb{R} \). According to the Noether’s theorem, the conventional global \(U(1) \) symmetry and the higher-rank symmetry correspond to conserved total charge (particle number) \(\dot{\mathcal{Q}}^a \) and conserved total angular moments \(\dot{\mathcal{Q}}^{ab} (\dot{\mathcal{Q}}^{ab} = -\dot{\mathcal{Q}}^{ba}) \).

In the coherent-state path-integral formulation with imaginary time, the Lagrangian density \(\mathcal{L} \) can be written as \(\mathcal{L} = \phi_a^\dagger \partial_\tau \phi_a + \mathcal{H} \) with action \(S = \int d\tau d^dx \mathcal{L} \). Here the bosonic fields \(\phi_a(x, \tau) \in \mathbb{C} \) are the eigenvalues of coherent-state operators \(\hat{\Phi}_a(x, \tau) \). With the Fourier transformation of the coherent state: \(\phi_a(r, \tau) = \frac{1}{\sqrt{2\pi}} \sum_n \int \frac{dk}{(2\pi)^d} e^{ikr} e^{-i\omega_n \tau} \phi_a(i\omega_n, \bm{k}) \) and its complex conjugate: \(\phi^*_a(r, \tau) = \frac{1}{\sqrt{2\pi}} \sum_n \int \frac{dk}{(2\pi)^d} e^{-ikr} e^{i\omega_n \tau} \phi^*_a(i\omega_n, \bm{k}) \) for \(a = 1, 2, \ldots, d \) with \(\beta = \frac{1}{\sqrt{\pi}T} \) where \(T \) represents the temperature of bosons. In the frequency-momentum space,

\[
S = \sum_{n,k} (-i\omega_n + \zeta_\alpha) \phi^*_\alpha \phi_\alpha + \sum_{a,b,c,d} \frac{K_{ab}}{2\beta} (k^2_a + k^2_b)(k^2_c + k^2_d)
\]

\[
\cdot \phi^*_{1a} \phi^*_{2b} \phi^*_{3b} \phi^*_{4c} \delta(1 + 2 - 3 - 4).
\]
In the first term on the r.h.s., the simplified notation \(\phi_a \) stands for \(\phi_a(\omega_n, k) \) which is the frequency-Matsubara image of the field \(\phi_a(T, r) \). \(\omega_n \) is a bosonic Matsubara frequency and \(k \) is a momentum vector: \(k = (k^1, k^2, \ldots, k^d) \). We use \(k^a \) to denote the \(a \)-th spatial component of momentum vector \(k \). \(\sum_k \) stands for \(\sum_{\omega_n} \int \frac{d^dk}{(2\pi)^d} \). In the second term, since there are four pairs of frequency and momentum, we introduce a new notation \(\phi_{ia} \) to compactly represent \(\phi_{ia}(\omega_n, k_i) \) where the label \(i = 1, 2, \ldots, 4 \). \(k_i^a \) stands for the \(a \)-th spatial component of momentum vector \(k_i \). The sum \(\sum_{1,2,3,4} \) denotes \(\sum_{i=1}^d \sum_{\omega_n} \int \frac{d^dk_i}{(2\pi)^d} \). Other notations like \(\sum_{1,2}, \sum_{2,3}, \ldots \) in the forthcoming texts are defined in the similar way. Besides, the kinetic energy with momentum \(k \) is defined as: \(\xi_a = \frac{1}{2}t_a(k^a)^2 - \mu \) (in the following text, we began to introduce anisotropic kinetic energy).

For momentum \(k_i \), the associated kinetic energy is \(\xi_{ia} = \frac{1}{2} \sum_{b=1}^d t_{ab}(k_i^b)^2 - \mu \). Last, we use \(\delta(1+2-3-4) \) to represent \(\delta(n_{a1}+n_{a2}, n_{a2}+n_{a3}, n_{a3}+n_{a4})/(2\pi)^d \delta(k_1 + k_2 - k_3 - k_4) \). \(\delta(n_{a1}+n_{a2}, n_{a2}+n_{a3}) \) is a dimensionless Kronecker symbol.

Before moving forward, we perturb the Lagrangian density by adding small "off-diagonal" kinetic terms that break higher-rank symmetry. They are the terms deviating the model from the symmetric point. As such, kinetic terms of both directions are present, which can be written as \(\sum_{a,b=1}^d \left[\frac{\lambda_{ab}}{2} \left(\partial_{ia} \phi^*_ia \right) \left(\partial_{ib} \phi^*_ib \right) \right] = \sum_{a=1}^d \left[\frac{\lambda_{aa}}{2} \left(\partial_{ia} \phi^*_ia \right) \right] + \sum_{a \neq b}^d \left[\frac{\lambda_{ab}}{2} \left(\partial_{ia} \phi^*_ia \right) \right] \). The kinetic parameter \(t_{ab} \) is rewritten as \(t_{ab} \) for the notational convenience. Those off-diagonal kinetic terms with nonzero \(t_{ab} \) (\(a \neq b \)) manifestly break higher-rank symmetry. Similarly, we can also understand these parameters as inverse of mass of field configuration \(\phi_a \) along other directions other than the \(a \)-th one: \(t_{ab} = 1/m_{ab} \). In this way, the kinetic energy with momentum \(k \) can be redefined as: \(\xi_a = \frac{1}{2} \sum_{a'=1}^d t_{a'a}(k^a')^2 - \mu \).

III. RENORMALIZATION GROUP ANALYSIS

A. Scaling and Feynman rules

We consider \(d = 2 \). We set the restriction of field configuration \(\phi_a \) as: \(\sum_{b=1}^d \frac{t_{ab}}{m_{ab}}(k^b)^2 \leq \Lambda^2 \) since our total kinetic energy is given by \(\sum_{b=1}^d \frac{t_{ab}}{m_{ab}}(k^b)^2 \). \(\Lambda \) is the cut-off of momentum here. The high-energy part corresponds to: \(\sqrt{\sum_{b=1}^d \frac{t_{ab}}{m_{ab}}(k^b)^2} \in [\Lambda/s, \Lambda] \), where the scaling parameter \(s \) is larger than \(k/\Lambda \). We also define \(s = e^i \) with \(l > 0 \). We consider the free part of the action \(\sum_n \int \frac{d^dk}{(2\pi)^d} \phi_a^* \left(-i\omega_n + \sum_b \frac{t_{ab}(k^b)^2}{2} \right) \phi_a \). In the following text, we also call it fast modes and denote it with \(\phi^* \). It is noticed that we do not take the part related to chemical potential into account since it must be relevant if we choose the kinetic part to be marginal. Suppose the scaling dimension of \(\phi \) is \(\Delta_\phi \), and we can assume the change of temperature and frequencies are described as: \(T \rightarrow s^{-\zeta}T, \) and \(\omega_n \rightarrow s^{\zeta} \omega_n, n \in \mathbb{Z} \) respectively.

Before moving forward, we perturb the Lagrangian density by adding small "off-diagonal" kinetic terms that break higher-rank symmetry.
calculating the average on fast modes, we have the form of the effective action. \(S_{\text{eff}}[\phi] = S_0[\phi] + S_{\text{int}}[\phi] = S_0[\phi] + \langle S_{\text{int}} \rangle [\phi] - \frac{1}{2} \langle (S_{\text{int}})^2 \rangle [\phi] \). The form of \(\langle S_{\text{int}} \rangle \) contributes to the \(\beta \)-functions of kinetic parameters, also named first-order correction. Further, \(\frac{1}{2} \langle (S_{\text{int}})^2 \rangle - \langle S_{\text{int}} \rangle^2 \) leads to the \(\beta \)-functions of the elements in the \(K \) matrix.

\[S_{\text{int}} = \frac{1}{2 \beta} \sum_{1,2,3,4} \sum_{a \neq b} K_{ab}(k_2^a + k_1^b)(k_3^a + k_4^b) \phi_{1a} \phi_{2b} \phi_{3b} \phi_{4a} \delta(1 + 2 - 3 - 4). \]

Below we determine the scaling of the \(K \) matrix. To be specific, we define the new momentum and frequency as: \(k' = sk, \omega_n' = s^2 \omega_n \) or \(T' = s^2 T \) with \(z = 2 \). We define the rescaled field: \(\phi'(i \omega_n', k') = s^{-\Delta} \phi(a(i \omega_n' s^{-z}, k')) \) with \(\Delta = \frac{d}{2} + 1 \). Then the scaling of parameters \(K_{ab} \) can be determined. With the form of interacting action (8), we obtain:

\[S_{\text{int}}' = \frac{1}{2 \beta} s^{-z} \sum_{i=1}^{4} \sum_{\omega_n} \int \frac{d^4 k_1'}{(2\pi)^4} s^{-4d} K_{ab}(k_2^a + k_1^b)(k_3^a + k_4^b) s^{-2} \cdot \phi_{1a}^*(i \omega_n, k_1') \phi_{2b}^*(i \omega_n, k_2') \phi_{3b}^*(i \omega_n, k_3') \phi_{4a}^*(i \omega_n, k_4') s^4 \delta(\omega_n + n_1', n_2', n_3', n_4') (2\pi)^d \delta(k_1' + k_2' - k_3' - k_4') s^d \]

\[= \frac{1}{2 \beta} s^{-2z-d} \sum_{i=1}^{4} \sum_{\omega_n} \int \frac{d^4 k_1'}{(2\pi)^4} \sum_{a \neq b} K_{ab}(k_2^a + k_1^b)(k_3^a + k_4^b) \phi_{1a}^*(i \omega_n, k_1') \phi_{2b}^*(i \omega_n, k_2') \phi_{3b}^*(i \omega_n, k_3') \phi_{4a}^*(i \omega_n, k_4') \delta(\omega_n + n_1', n_2', n_3', n_4') (2\pi)^d \delta(k_1' + k_2' - k_3' - k_4'). \]

Here the dimensionful \(\delta \)-function of momenta is also scaled \(\delta(k') = s^{-d} \delta(k) \) but the Kronecker symbol of Matsubara frequencies is dimensionless and invariant upon scaling. Therefore, the scaling of \(K_{ab} \) is given by \(K'_{ab} = K_{ab} s^{-d} \). It illustrates that the \(K \) matrix at tree level is irrelevant in perturbative RG.

Then, let us consider the first-order correction to \(T_1 \): \(\langle S_{\text{int}} \rangle \) contributing to the correction of kinetic parameters.

\[\langle S_{\text{int}} \rangle = \left\langle \frac{1}{2 \beta} \sum_{1,2,3,4} \sum_{a \neq b} K_{ab}(k_2^a + k_1^b)(k_3^a + k_4^b) \cdot \phi_{1a}^* \phi_{2b}^* \phi_{3b} \phi_{4a} \delta(1 + 2 - 3 - 4) \right\rangle. \]

To proceed further, we should split each momentum integration into slow part \((\langle \cdot \rangle) \) and fast part \((\cdot) \). In this way, the integration of four momenta \((k_1, k_2, k_3, k_4) \) is split to \(2^4 = 16 \) combinations. According to Wick’s theorem, for formulas of bare propagators, we conclude that either \(\phi_{1a}^* \) and \(\phi_{4a} \) must be paired or \(\phi_{2b}^* \) and \(\phi_{3b} \) must be paired. Other contractions vanish due to \(K_{ab} = 0 \) when \(a = b \). Therefore, in 16 combinations, only the following two are non-vanishing:

- **Case-I**: The momenta carried by \(\phi_{1a}^* \) and \(\phi_{4a} \), i.e., \(k_1 \) and \(k_4 \), are fast momenta\(^1\); \(k_1 = k_4 \) and \(\omega_n = \omega_n \) required by the formula of bare propagator;

- **Case-II**: The momenta carried by \(\phi_{2b}^* \) and \(\phi_{3b} \), i.e., \(k_2 \) and \(k_3 \), are fast momenta. \(k_2 = k_3 \) and \(\omega_n = \omega_n \) required by the formula of bare propagator.

By further considering \(\delta(1 + 2 - 3 - 4) \), we have:

- **Case-I**: The momenta carried by \(\phi_{1a}^* \) and \(\phi_{4a} \), i.e., \(k_1 \) and \(k_4 \), are fast momenta. \(k_1 = k_4 \) and \(\omega_n = \omega_n \); \(k_2 = k_3 \) and \(\omega_n = \omega_n \);

- **Case-II**: The momenta carried by \(\phi_{2b}^* \) and \(\phi_{3b} \), i.e., \(k_2 \) and \(k_3 \), are fast momenta. \(k_2 = k_3 \) and \(\omega_n = \omega_n \); \(k_1 = k_4 \) and \(\omega_n = \omega_n \).

These two contractions correspond to the Feynman diagram in Fig. 1. We firstly focus on case-I. When 1,4 are fast modes, the momentum conservation and Feynman rules will tell us: \(k_2 = k_3, k_1 = k_4; \omega_n = \omega_n \). Since we focus on the two-dimensional case \((d = 2) \), we set all off-diagonal \(K \)-matrix elements

\(^1\) By fast (slow) momentum, we mean that the kinetic energy corresponding to the momentum is large (small).
as: $K_{12} = K_{21} := K$. For further simplifying calculation, we assume $t_1 := t_{11} = t_2 := t_{22} := T_0$, $t_{12} = t_{21} := T_1$. In this way, $(S_{\text{int}})^I$ is given by:

\[
(S_{\text{int}})^I = \frac{1}{2\beta} \sum_{a \neq b} \sum_{1,2} \mathcal{K}(k_a^2 + k_b^2) \langle \phi_{1a} \phi_{1a} \rangle > \phi_{2b} \phi_{2b} \\
= \frac{1}{2\beta} \sum_{a \neq b} \sum_{1,2} \mathcal{K}(k_a^2 + k_b^2) \frac{1}{i\omega_n - \xi_{1a}} \phi_{2b} \phi_{2b} \\
= -\frac{1}{2} \sum_{a \neq b} \int \frac{d^2k_1}{(2\pi)^2} \mathcal{K}(k_a^2 + k_b^2) f_B(\xi_{1a}) \phi_{2b} \phi_{2b} \\
= -\frac{1}{2} \sum_{a \neq b} \int \frac{d^2k_1}{(2\pi)^2} \mathcal{K}(k_a^2 + k_b^2) f_B(\xi_{1a}) \phi_{2b} \phi_{2b}, \\
\tag{11}
\]

where k_1 and k_2 correspond to fast and slow momenta respectively. The bosonic Matsubara summation is applied: $\frac{1}{\beta} \sum_{\omega_n} \frac{1}{i\omega_n - \xi_{1a}} = -f_B(\xi_{1a}) = -\frac{1}{e^{\xi_{1a}} - 1}$. And the propagator $\langle \phi_{1a} \phi_{1a} \rangle$ is given by: $\langle \phi_{1a} \phi_{1a} \rangle = \frac{1}{i\omega_n - \xi_{1a}}$ with ξ_{1a} ($a = 1, b = 2$ or $a = 2, b = 1$):

\[
\xi_{1a} := \frac{T_0(k_1^2 + T_1(k_1^2)^2)}{2} - \mu. \tag{12}
\]

In the same way, we can give the form of case-II:

\[
(S_{\text{int}})^I = \frac{1}{2\beta} \sum_{a \neq b} \sum_{1,2} \mathcal{K}(k_a^2 + k_b^2) \langle \phi_{2b} \phi_{2b} \rangle > \phi_{1a} \phi_{1a} \\
= \frac{1}{2\beta} \sum_{a \neq b} \sum_{1,2} \mathcal{K}(k_a^2 + k_b^2) \frac{1}{i\omega_n - \xi_{2b}} \phi_{1a} \phi_{1a} \\
= -\frac{1}{2} \sum_{a \neq b} \int \frac{d^2k_2}{(2\pi)^2} \mathcal{K}(k_a^2 + k_b^2) f_B(\xi_{2b}) \phi_{1a} \phi_{1a} \\
= -\frac{1}{2} \sum_{a \neq b} \int \frac{d^2k_2}{(2\pi)^2} \mathcal{K}(k_a^2 + k_b^2) f_B(\xi_{2b}) \phi_{1a} \phi_{1a}.
\]

By observing these two actions, we find they are completely equivalent to each other by exchanging the indices ($a \leftrightarrow b, 1 \leftrightarrow 2$). Then we focus on the case-I and multiply it by 2, namely:

\[
(S_{\text{int}})_> = (S_{\text{int}})^I + (S_{\text{int}})^I = 2(S_{\text{int}})^I, \\
= -\sum_{a \neq b} \sum_{1,2} \int \frac{d^2k_1}{(2\pi)^2} \mathcal{K}(k_a^2 + k_b^2) f_B(\xi_{1a}) \phi_{2b} \phi_{2b} = (S_{\text{int}})^{(1)} > + (S_{\text{int}})^{(2)} > + (S_{\text{int}})^{(3)} >,
\]

where we arrange all terms into three parts:

\[
(S_{\text{int}})^{(1)} > := -\sum_{a \neq b} \sum_{2} \mathcal{K}(k_a^2) \int > \frac{d^2k_1}{(2\pi)^2} f_B(\xi_{1a}) \phi_{2b} \phi_{2b}, \\
(S_{\text{int}})^{(2)} > := -2 \sum_{a \neq b} \sum_{2} \mathcal{K}(k_a^2) \int > \frac{d^2k_1}{(2\pi)^2} f_B(\xi_{1a}) \phi_{2b} \phi_{2b}, \\
(S_{\text{int}})^{(3)} > := -\sum_{a \neq b} \sum_{2} \mathcal{K} \int > \frac{d^2k_1}{(2\pi)^2} f_B(\xi_{1a}) (k_1^b)^2 \phi_{2b} \phi_{2b}. \\
\tag{13}
\]

\[
\frac{\Lambda}{s} < (k_1^a)^2 + \frac{T_0}{T_0} (k_1^b)^2 < \Lambda^2 \\
\tag{16}
\]

The fast momentum $k_1 = (k_1^a, k_1^b)$ takes values in the elliptic shell (Λ is the momentum cut-off and the RG flow parameter $s = e^l$ with $s \to 1$ and $l \to 0$):

\[
\left(\frac{\Lambda}{s}\right)^2 < \langle \hat{k}^a \rangle^2 + \frac{T_0}{T_0} \langle \hat{k}^b \rangle^2 < \Lambda^2, \quad (\hat{k}^a)^2 < \hat{k}^2 < \Lambda^2. \quad \text{And Eq. (12) is changed to:}
\]

\[
\xi_{1a} := \frac{T_0 (k_1^a)^2 + T_1 (k_1^b)^2}{2} - \mu = \frac{T_0 k_1^a}{2} - \mu. \tag{17}
\]

Using the new momentum variables, we can work out the integral $\int >$ in $(S_{\text{int}})^{(1)} >$ in Eq. (13) ($s - 1$ is small enough):

\[
\int > \frac{d^2k_1}{(2\pi)^2} f_B(\xi_{1a}) = \sqrt{\frac{T_0}{T_1}} \int > \frac{d^2\tilde{k}}{(2\pi)^2} f_B(\xi_{1a}) \\
= \sqrt{\frac{T_0}{T_1}} \frac{1}{(2\pi)^2} \int_{\Lambda/s}^\Lambda 2\pi |\tilde{k}| d|\tilde{k}| \frac{1}{e^{\beta \xi_{1a}} - 1} \\
= \sqrt{\frac{T_0}{T_1}} \frac{1}{(2\pi)^2} \int_{\Lambda/s}^\Lambda 2 \frac{d|\tilde{k}|^2}{2} e^{\beta \xi_{1a}} - 1 \\
\approx \sqrt{\frac{T_0}{T_1}} \frac{1}{(2\pi)^2} \frac{2 \pi}{2} \frac{1}{e^{\beta \xi_{1a}} - 1} \left(\Lambda^2 - \left(\frac{\Lambda}{s}\right)^2\right) \\
\approx \sqrt{\frac{T_0}{T_1}} \frac{1}{(2\pi)^2} \frac{2 \pi}{2} \frac{1}{e^{\beta \xi_{1a}} - 1} 2 \Lambda^2 l = \sqrt{\frac{T_0}{T_1}} \frac{1}{2 \pi} e^{\beta \xi_{1a}} - 1 \Lambda^2 l,
\]

which defines the domain of integral $\int >$. Here we should focus on the integrated domain of fast momenta. It is only determined by the fields carrying those fast momenta. To be specific, we consider the fast momentum k_i carried by the fast mode ϕ_i or ϕ_i^* with the label $i = 1, 2, ..., 4$ defined above. Its integrated domain is given by $(\Lambda/s)^2 < \langle \hat{k}^a \rangle^2 < \frac{T_0}{T_0} \langle \hat{k}^b \rangle^2 < \Lambda^2$ for $b \neq a$. This conclusion will be used in the following text. To compute $(S_{\text{int}})^{(1)} >$ in Eq. (13), we may introduce a new momentum \tilde{k}: $k_1^a = \tilde{k}^a, \tilde{k}^b = \sqrt{\frac{T_0}{T_1}} k_1^b$. Then, Eq. (16) is changed to:

\[
\frac{\Lambda}{s} < (\tilde{k}^a)^2 + \frac{T_0}{T_1} (\tilde{k}^b)^2 < \Lambda^2, \quad \text{i.e.,} \quad (\Lambda/s)^2 < \tilde{k}^2 < \Lambda^2. \quad \text{And Eq. (12) is changed to:}
\]

\[
\xi_{1a} = \frac{T_0 (\tilde{k}^a)^2 + T_1 (\tilde{k}^b)^2}{2} - \mu = \frac{T_0 \tilde{k}_1^a}{2} - \mu. \tag{17}
\]
where we have considered infinitesimal $s-1$ and the definition of $s = e^t$. And, $\xi_0 \Lambda := \frac{L}{T} \Lambda^2 - \mu$. As a result,

$$\langle S_{int}\rangle^{(1)} = -S_2 f_B(\xi_0) \Lambda^2 \sum_{a \neq b} \sum_{k} \mathcal{K}(k)^2 \phi_{2a} \phi_{2b}, \quad \text{(18)}$$

where $S_2 := 2\pi \sqrt{\frac{L}{T}}$ and $f_B(\xi_0) := \frac{1}{e^\xi_0 - 1}$. Below, we will use dl to replace l since it is infinitesimal.

The second one $\langle S_{int}\rangle^{(2)}$ in Eq. (14) vanishes since it is an odd function of the integrated momentum k_1. The third term in Eq. (15) is directly connected to correction of the chemical potential. We just briefly give our results here for it is not our focus:

$$\langle S_{int}\rangle^{(3)} = -\frac{1}{2} \sum_{a \neq b} \Lambda^2 S_2 f_B(\xi_0) \mathcal{K} \phi_{2a} \phi_{2b} \left(1 - \frac{1}{8}\right).$$

Therefore, the only term that can renormalize T_1 is $\langle S_{int}\rangle^{(1)}$ in Eq. (18). The bare off-diagonal kinetic term is given by $\sum_{a \neq b} \sum_{k} \mathcal{K}(k)^2 \phi_{2a} \phi_{2b}$ in the frequency-momentum space. Hence, we have the β-function of the parameter T_1 by referencing the effective action: $S_{eff}[\phi_\xi] = S_0[\phi_\xi] + \langle S_{int}\rangle[\phi_\xi] - \frac{1}{2} \langle S_{int}\rangle - \langle S_{int}\rangle[\phi_\xi].$

$$\frac{dT_1}{dt} = -S_2 \mathcal{K} f_B(\xi_0) \Lambda^2 \frac{(2\pi)^2}{(2\pi)^2} - \sum_{a \neq b} \sum_{k} \mathcal{K} f_B(\xi_0) \Lambda^2 \frac{(2\pi)^2}{(2\pi)^2}. \quad \text{(19)}$$

This corresponds to Fig. 1. Besides, by referencing the term containing the chemical potential, we have the β-function of the chemical potential μ: $\frac{d\mu}{dt} = 2\mu - \frac{1}{2} \Lambda^4 \sum_{a \neq b} \sum_{k} \mathcal{K} f_B(\xi_0) \mathcal{K}$ with the term 2μ originating from the contribution from the tree-level diagrams.

C. Vertex correction to \mathcal{K}

We then turn to the vertex correction with all the contractions contained in $\langle S_{int}\rangle^{(2)}$:

$$\langle S_{int}\rangle^{(2)} = \frac{1}{4\beta^2} \sum_{a \neq b} \sum_{k} \sum_{1,2,3,4} 1'2',3',4' \cdot K_{ab} K_{a'k} \langle \phi_{1a} \phi_{2b} \phi_{3a} \phi_{4a} \phi_{1'a} \phi_{2'b} \phi_{3'a} \phi_{4'a} \rangle$$

$$\cdot (k^2 + k_1^2)(k_2^2 + k_3^2 + k_4^2)(k_2' + k_3' + k_4')$$

$$\cdot \delta(1 + 2 - 3 - 4) \delta(1' + 2' - 3' - 4')$$

$$= \langle S_{int}\rangle^{(1)} + \langle S_{int}\rangle^{(2)} \quad \text{(20)}$$

Since we only consider the loop-diagram contribution, only two kinds of contractions will not vanish under calculation. The first term $\langle S_{int}\rangle^{(1)}$ can be concluded as four cases:

- **Case 1**: The momenta k_1, k_2, k_3', and k_4' are fast momenta. $k_1 = k_3', \omega_{n_1} = \omega_{n_3'}; k_2 = k_4'$ and $\omega_{n_2} = \omega_{n_4'}.$

- **Case 2**: The momenta k_1, k_2, k_3' and k_4' are fast momenta. $k_1 = k_4', \omega_{n_1} = \omega_{n_4'}; k_2 = k_3'$ and $\omega_{n_2} = \omega_{n_3'}.$

- **Case 3**: The momenta k_1', k_2', k_3 and k_4 are fast momenta. $k_1' = k_4, \omega_{n_1'} = \omega_{n_4}; k_2' = k_3$ and $\omega_{n_2'} = \omega_{n_3}.$

- **Case 4**: The momenta k_1, k_2, k_3 and k_4 are fast momenta. $k_1 = k_4, \omega_{n_1} = \omega_{n_4}; k_2 = k_3$ and $\omega_{n_2} = \omega_{n_3}. $

These four cases correspond to the Feynman diagram in Fig. 2. Similarly, it can also be proved that these four cases are equal to one another by exchanging the indices. We directly take the Case 1 as an example and multiply it by 4 for simplicity. By further considering the delta functions in vertex correction, the relationships between momenta and frequencies are given by: $k_1 = k_3'; k_2 = k_4'; k_1 + k_2 = k_3 + k_4 = k_1' + k_2' = k_3' + k_4'; \omega_{n_1} = \omega_{n_3'}; \omega_{n_2} = \omega_{n_4'}; \omega_{n_3} + \omega_{n_4} = \omega_{n_1} + \omega_{n_2}.$ Hence, with the formula (20), we obtain that...
where we introduce the notation: \(\xi_{1+2',-a} = \sum_{n_2} \omega_{n_2} - \omega_{n_2} - \xi_{1+2',-a} \). This expression contains a sum of Matsubara frequencies \(n_2 \):
\[
\sum_{n_2} \omega_{n_2} - \omega_{n_2} - \xi_{1+2',-a} \cdot \omega_{n_2} - \xi_{2b} \cdot \beta^2 \sum_{a \neq b} \int \frac{d^2 k_2}{(2\pi)^2} \sum_{3,4} \frac{K^2}{k_0^2} \sum_{1,2'} K^2 (k_0^2 - k_0^2 + k_0^2) (k_0^2 + k_0^2) \times \\
\frac{1}{\omega_{n_1} + \omega_{n_2} - \omega_{n_2} - \xi_{1+2',-a}} \cdot \frac{1}{\omega_{n_2} - \xi_{2b}} \phi_{1\alpha}^* \phi_{2\beta} \phi_{3\delta} \phi_{4\alpha} \delta(1' + 2' - 3 - 4) \\
= \frac{1}{\beta^2} \sum_{a \neq b} 2 \sum_{3,4} \frac{K^2}{k_0^2} \sum_{1,2'} K^2 (k_0^2 - k_0^2 + k_0^2) (k_0^2 + k_0^2) \times \\
\frac{1}{\omega_{n_1} + \omega_{n_2} - \omega_{n_2} - \xi_{1+2',-a}} \cdot \frac{1}{\omega_{n_2} - \xi_{2b}} \phi_{1\alpha}^* \phi_{2\beta} \phi_{3\delta} \phi_{4\alpha} \delta(1' + 2' - 3 - 4),
\]

where the momenta \(k_{1'} \) and \(k_{2'} \) can be ignored in the expression since \(\phi_{1\alpha} \) and \(\phi_{2\beta} \) are both slow modes. The integrated region of the momentum \(k_{2b} \) in \(\langle S_{int}^2 \rangle \) is given by:
\[
\langle A/S \rangle^2 \leq \sum_{a(a \neq b)} (k_0^2)^2 \leq \Lambda^2 \text{ since the momentum } k_{2b} \text{ is carried by the field } \phi_{2b}. \]
With substitutions \(\delta(k_0 - \xi_2) = \delta(k_0 - \xi_2) \), we limit our integrated region on \(\langle A/S \rangle^2 \leq k_0^2 \leq \Lambda^2. \) Therefore, the contribution from the first type of contraction is given by:
\[
\langle S_{int}^2 \rangle^1 = \frac{A}{\beta^2} \sum_{a \neq b} \sum_{1,2'} \sum_{3,4} \frac{K^2}{k_0^2} \sum_{1,2'} K^2 (k_0^2 - k_0^2 + k_0^2) (k_0^2 + k_0^2) \times \\
\phi_{1\alpha}^* \phi_{2\beta} \phi_{3\delta} \phi_{4\alpha} \delta(1' + 2' - 3 - 4)dl,
\]

where the parameter \(A \) takes the form of:
\[
A = \frac{1}{dl} \int \frac{d^2 k_2}{(2\pi)^2} f_B(\xi_{2b}) + f_B(\xi_{2b}) + \frac{1}{\xi_{2b}^2} (k_2^2 - k_2^2)^2 \\
\approx \frac{1}{\beta^2} \sum_{a \neq b} \sum_{1,2'} \sum_{3,4} \frac{K^2}{k_0^2} \sum_{1,2'} K^2 (k_0^2 - k_0^2 + k_0^2) (k_0^2 + k_0^2) \times \\
\phi_{1\alpha}^* \phi_{2\beta} \phi_{3\delta} \phi_{4\alpha} \delta(1' + 2' - 3 - 4)dl,
\]

where we use analytic continuation here and replace the imaginary frequencies with \(\omega_1 \) and \(\omega_2 \). It is necessarily assume that the frequencies and momenta on the external lines can be ignored compared with \(\xi_{0A} \) and \(\Lambda \). It is obvious that the expression (24) is positive. In other words, \(A > 0 \). More calculations on \(A \) are shown in Appendix B. By comparing the form of (23) with the bare interaction vertex, we find that it will correct the interaction parameter \(K \) effectively. According to the effective action: \(S_{eff} = S_0 + S_{int} - \frac{1}{2} \langle S_{int}^2 \rangle - \langle S_{int} \rangle^2 \), we have the form of the \(\beta \)-function of parameter \(K \):
\[
\frac{dK}{dl} = -2K^2 \times A - 2K,
\]

where the term \(-2K^2\) originates from the rescaling of slow momenta carried by the slow modes in (9) above. We
have the general form of \(\mathcal{K}(l) \) and \(\mathcal{T}_1(l) \):

\[
\mathcal{K}(l) = \frac{2/A}{K(0) + 2/A e^{2l} - 1},
\]

\[
\mathcal{T}_1(l) = \left[\mathcal{T}_1(0)^{3/2} + \frac{3\Lambda^2}{4A\pi} f_B(\xi_0) \right.
\cdot \ln\left(-\mathcal{K}(0) A e^{-2l} + (2 + \mathcal{K}(0)) A \right) \left. \right]^{2/3},
\]

with the separatrix:

\[
\mathcal{T}_1(0) = \left(f_B(\xi_0) \sqrt{\frac{3\Lambda^2}{4A\pi}} \ln\left(\frac{2 + \mathcal{K}(0)}{2} \right) \right)^{2/3}.
\]

The second type of contraction \(\langle S_{int}^2 \rangle_\alpha^{(2)} \) contains overall eight cases presented below.

- **Case 5**: The momenta \(k_1, k_3, k_2' \) and \(k_4' \) are fast momenta. \(k_1 = k_4', \omega_{n_1} = \omega_{n_1}'; \quad k_3 = k_2' \) and \(\omega_{n_3} = \omega_{n_3}' \).

- **Case 6**: The momenta \(k_1, k_4, k_1' \) and \(k_4' \) are fast momenta. \(k_1 = k_4', \omega_{n_1} = \omega_{n_1}'; \quad k_4 = k_1' \) and \(\omega_{n_4} = \omega_{n_4}' \).

- **Case 7**: The momenta \(k_1, k_3, k_1' \) and \(k_3' \) are fast momenta. \(k_1 = k_3', \omega_{n_1} = \omega_{n_1}'; \quad k_3 = k_1' \) and \(\omega_{n_3} = \omega_{n_3}' \).

- **Case 8**: The momenta \(k_1, k_4, k_2' \) and \(k_3' \) are fast momenta. \(k_1 = k_4', \omega_{n_1} = \omega_{n_1}'; \quad k_4 = k_2' \) and \(\omega_{n_4} = \omega_{n_4}' \).

- **Case 9**: The momenta \(k_2, k_3, k_2' \) and \(k_3' \) are fast momenta. \(k_2 = k_3', \omega_{n_2} = \omega_{n_2}'; \quad k_3 = k_2' \) and \(\omega_{n_3} = \omega_{n_3}' \).

- **Case 10**: The momenta \(k_2, k_4, k_1' \) and \(k_3' \) are fast momenta. \(k_2 = k_3', \omega_{n_2} = \omega_{n_2}'; \quad k_4 = k_1' \) and \(\omega_{n_4} = \omega_{n_4}' \).

- **Case 11**: The momenta \(k_2, k_3, k_1' \) and \(k_4' \) are fast momenta. \(k_2 = k_4', \omega_{n_2} = \omega_{n_2}'; \quad k_3 = k_1' \) and \(\omega_{n_3} = \omega_{n_3}' \).

- **Case 12**: The momenta \(k_2, k_4, k_2' \) and \(k_3' \) are fast momenta. \(k_2 = k_3', \omega_{n_2} = \omega_{n_2}'; \quad k_4 = k_2' \) and \(\omega_{n_4} = \omega_{n_4}' \).

The Feynman diagrams related are presented in Fig. 3. After integrating the fast momenta, all of these terms will be turned into terms with constant coefficients. Therefore, integration from the two connected diagrams will be explained as corrections of other possible terms such as \(g|\phi_0|^4 \). We do not care about this parameter for it does no contribution to the parameters \(\mathcal{K} \) and \(\mathcal{T}_1 \). For simplicity, we do not present more details here.

![FIG. 4. RG flow for \(\mathcal{T}_1(l) = \mathcal{T}_1(l) \left(f_B(\xi_0) \sqrt{\frac{3\Lambda^2}{4A\pi}} \right)^{-2/3} \) and \(\mathcal{K}(l) = A \mathcal{K}(l)/2 \). Here the red line is a separatrix below which higher-rank symmetry emerges. The parameters \((\mathcal{T}_1(0), \mathcal{K}(0)) \) of these lines are (from above to below): \((2.57 \times 10^{-3}, 10^{-4}), (2.43 \times 10^{-3}, 10^{-4}), (2.30 \times 10^{-3}, 10^{-4}), (2.16 \times 10^{-3}, 10^{-4}), (2.01 \times 10^{-3}, 10^{-4}), (1.86 \times 10^{-3}, 10^{-4}), (1.70 \times 10^{-3}, 10^{-4}) \).](image)

D. Global phase diagram

In summary, we can see the first-order corrections only correct the kinetic terms on directions other than the \(\alpha \)-th one of field configurations \(\phi_0 \) [see definition below Eq. (7)]. In this way, the kinetic energy along the \(\alpha \)-axis will not be influenced by the contraction. We can directly prove that the higher-order correction will still contribute nothing to the parameter \(T_0 \). Hence, we have the \(\beta \)-function for parameter \(T_1 \) corresponding to Fig. 1, given by Eq. (19). We can safely come to the conclusion that if \(\mathcal{K} > 0 \), the parameter \(t_1 \) will reduce in the RG flow. This requires the parameter \(\mathcal{K} \) to be positive. Only with positive \(\mathcal{K} \) can parameter \(T_1 \) flow to zero in the RG analysis. Nevertheless, at this step, it is insufficient to tell whether the parameter \(T_1 \) is irrelevant here since the elements in the matrix \(\mathcal{K} \) will also flow to zero. What we need is further calculation on vertex correction, which has been given in Eq. (25).

A numerical result of beta functions (19) and (25) is shown in Fig. 4, where the red line is the separatrix (28). In the region below the line, all \(T_1(0) \) will flow to zero in RG flow, indicating the emergence of higher-rank symmetry in low-energy physics since those terms violating the higher-rank symmetry will vanish in the low-energy physics. In addition, after comparing the parameters \(T_1(0) \) and \(\mathcal{K}(0) \Lambda^2 \) near the separatrix, we have \(T_1(0) \ll \mathcal{K}(0) \Lambda^2 \ll T_0 \) with the approximation \(\frac{\xi_0}{2K_0} \gg 1 \), which can be realized in cold-atom systems. This tells us our calculation is consistent with our initial assumption above.

From the phase diagram, we can safely come to the conclusion that the higher-rank symmetry will emerge after integrating the high-energy modes since off-diagonal kinetic parameters are just perturbations to the system. However, it should be noted that our RG analysis is only
valid near the initial point \(l = 0 \). We here also do not take higher-order terms into account. Therefore, our calculation and results may be invalidated when \(l \to \infty \). The reason we do not just finish our RG analysis on the axis: \(T_l(0) = 0 \) is we only consider the lower-order corrections. If we start with an initial point on the horizontal axis: \(T_l(0) = 0 \), we have \(S_2 \to \infty \) in \(\frac{dS_2}{dl} \), which requires more higher-order terms since they contain expressions with higher order of \(S_2 \). We have to take all of them into account for accuracy, which is beyond the current perturbation calculations. Although our calculation cannot take all the higher-order corrections into account, it also exhibits the tendency of RG flow giving the accurate prediction near the region with \(l = 0 \). Alternatively, the exact flat “band” along one direction for a boson, in analogy to bosonic Landau level, leads to strong correlation effect even though interaction is not large. We also comment that the perturbation calculations fail completely if we instead study models \([68]\) with conserved dipole moments, where bosons are fractons that are immobile towards all directions. In such models, the Hamiltonian is intrinsically non-Gaussian with no kinetic terms at all. But analytic difficulty becomes much smaller when fracton condensation is considered as what Ref. \([68]\) did.

Above discussion is all about the \(\beta \)-functions of parameters of 2-component bosons in two-dimensional space. Similarly, we can extend the case to the \(d \)-dimensional space with \(d > 2 \). We here give the forms of \(\beta \)-functions of \(d \)-component bosonic systems for reference. The \(\beta \)-functions of \(t_{ab}(a \neq b) \) and \(K_{ab}(a \neq b) \) is given by:

\[
\begin{align*}
\frac{dt_{ab}}{dl} &= -S_d K_{ab} \int d\xi \langle \xi_0 \rangle \frac{\Lambda^2}{(2\pi)^2}, \quad \frac{dK_{ab}}{dl} = -A_d K_{ab}^2 - dK_{ab}, \quad \text{where} \ S_d \text{ represents the volume of} \ (2\pi)^d. \\
\end{align*}
\]

Above discussion is all about the \(\beta \)-functions of param-
eters of 2-component bosons in two-dimensional space. Similarly, we can extend the case to the \(d \)-dimensional space with \(d > 2 \). We here give the forms of \(\beta \)-functions of \(d \)-component bosonic systems for reference. The \(\beta \)-functions of \(t_{ab}(a \neq b) \) and \(K_{ab}(a \neq b) \) is given by:

\[
\begin{align*}
\frac{dt_{ab}}{dl} &= -S_d K_{ab} \int d\xi \langle \xi_0 \rangle \frac{\Lambda^2}{(2\pi)^2}, \quad \frac{dK_{ab}}{dl} = -A_d K_{ab}^2 - dK_{ab}, \quad \text{where} \ S_d \text{ represents the volume of} \ (2\pi)^d. \\
\end{align*}
\]

IV. SUMMAR Y AND OUTLOOK

In this paper, we study how higher-rank symmetry \((5)\) and angular moment conservation \((6)\) emerge at low energies through a RG analysis. In other words, we identify them as emergent phenomena rather than strict properties of microscopic models. A phase diagram is given in Fig. 4, in which a wide parameter region is found to support emergent phenomena. Despite the limitation of one-loop perturbation techniques, we argue that emergence occurs in the deep infrared regime. On the other hand, by regarding higher-rank symmetry as emergent symmetry, our work opens a door to new way of thinking on realization of such unconventional symmetry and higher moment conservation in more realistic models, e.g., in simple frustrated spin models near symmetric points. Recently, some higher-moment conserving 1D spin systems have been found to support anomalously slow, subdiffusive late-time transport \([74, 78]\). Thus, it is interesting to ask how emergent conservation of angular moments affect the late-time transport. Besides, the Hamiltonian can be reformulated on a square lattice. In an optical lattice of cold-atom experiments, one may choose lattice constant \(l = 700 nm, \Lambda \sim \frac{1}{\ell} = 1.43 \times 10^7 m^{-1}, m_0 = \frac{1}{\ell} = 8.22 \times 10^{-34} kg, T = 10 K. \) The condition \(\omega_0^2 = \frac{2m_0}{\hbar D} \sim 10^3 \) where the chemical potential is negative indicates the possibility for simulating the 2-component bosons on the optical lattice. For accuracy and extension, it will be interesting to further consider the correction from higher-order term with more loops in the Feynman diagram. Finally, it will be interesting to study symmetry-protected topological phases (SPTs) with such emergent higher-rank symmetry.

ACKNOWLEDGEMENTS

Discussions with Ruizhi Liu and Yixin Xu are acknowledged. This work of both authors was done in Guangzhou South Campus of Sun Yat-sen University (SYSU) with full financial support from SYSU talent plan, Guangdong Basic and Applied Basic Research Foundation under Grant No. 2020B1515120100, and National Natural Science Foundation of China Grant (No. 11847608 & No. 12074438).

Appendix A: On how the angular moment conservation affects single particle motion

In the main text, we introduce the following conserved quantities \((a, b = 1, 2, \cdots, d; a < b)\) in \(d \)-dimensional space:

\[
\hat{Q}^a = \int d^d x \hat{\rho}^a, \quad \hat{Q}^{ab} = \int d^d x \left(\hat{\rho}^a x^b - \hat{\rho}^b x^a \right). \quad (A1)
\]

For each \(a \), the conservation of \(\hat{Q}^a \) requires that all a-th component bosons are always in the \(d \)-dimensional space. The conserved quantities \(\hat{Q}^{ab} \) leads to the mobility restriction: a single a-th component boson is only allowed to move along a-th directions. To be more specific, we consider \(d = 2 \) and the following three quantities are conserved:

\[
\hat{Q}^1 = \int d^d x \hat{\rho}^1, \quad \hat{Q}^2 = \int d^d x \hat{\rho}^2, \quad \hat{Q}^{12} = \int d^d x \left(\hat{\rho}^1 x^2 - \hat{\rho}^2 x^1 \right). \quad (A2)
\]

\(\hat{Q}^1 \) and \(\hat{Q}^2 \) are the usual conserved charge (particle number) of bosons of the 1st and 2nd components, respectively. The conserved quantity \(\hat{Q}^{12} \) is the total angular moments formed by bosons. Suppose \(\hat{Q}^1 = N_1 \) and \(\hat{Q}^2 = N_2 \). We can use Dirac function to express \(\hat{\rho}^1 \) and \(\hat{\rho}^2 \) in the eigenbasis:

\[
\hat{\rho}^1(x) = \sum_i^{N_1} \delta(x-x_i), \quad \hat{\rho}^2(x) = \sum_j^{N_2} \delta(x-x_j). \quad (A3)
\]
It means that bosons of the 1st (2nd) component are located in x_i (x_j) with $i = 1, 2, 3, \cdots, N_1$ ($j = 1, 2, 3, \cdots, N_2$). Then, Q_{12}^2 are reduced to:

$$Q_{12}^2 = \sum_{i=1}^{N_1} x_i^2 - \sum_{j=1}^{N_2} x_j^2. \quad (A4)$$

From this expression, one can conclude that, if we move a 1st component boson, in order to keep Q_{12}^2 invariant, the boson is only allowed to be movable in the 1st direction such that its coordinate x^2 is unchanged. Of course, we can collectively move bosons of both components, such that the change in $\sum_{i=1}^{N_1} x^2_i$ can be canceled out by the change in $\sum_{j=1}^{N_2} x^2_j$ such that Q_{12}^2 is unaltered. This scenario is beyond the single particle movement and gives nontrivial effects when inter-component interaction (K-term) is involved.

Appendix B: Details of the parameter A

Here we focus on the specific value of the parameter A by taking some approximations here. By referencing the definition of \mathbf{k} above, we have:

$$A = \frac{1}{2d} \int_{\sqrt{4\Lambda^2}}^{\pi} \frac{d\theta}{(2\pi)^2} (\Lambda^2 - \frac{\Lambda}{s} f_B(\xi_{1\Lambda}) + f_B(\xi_{2\Lambda})) + \frac{1}{s} f_B(\xi_{2\Lambda}) + \frac{1}{s} f_B(\xi_{1\Lambda}) + \frac{1}{s} f_B(\xi_{2\Lambda}) \sqrt{\frac{T_0}{T_1}}.$$

This expression contains two integrals. The first one includes a trick. Since $\sqrt{4\Lambda^2} \ll 1$, the first integral becomes nontrivial only around the two points: $\theta = \frac{\pi}{2}$ and $\theta = \frac{3\pi}{2}$, which give the same value. Therefore, we can change our integration region as: $\int_0^{2\pi} \rightarrow 2 \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}}$. In addition, we have $\xi_{1\Lambda} = \frac{T_0}{T_0} \ll \xi_{2\Lambda}$ at $\theta = \frac{\pi}{2}$ and $\theta = \frac{3\pi}{2}$. In this way, the first integral given by:

$$\frac{4\Lambda^2}{T_0} \int_{\sqrt{4\Lambda^2}}^{\pi} \frac{d\theta}{(2\pi)^2} \frac{2k_B T}{T_0 \Lambda^2 T_1^2 \sin^2 \theta} \sqrt{\frac{T_0}{T_1}}$$

be figured out to be: $\frac{4\Lambda^2}{T_0} \frac{4k_B T}{(2\pi)^2} \frac{T_0}{T_1} \sqrt{\frac{T_0}{T_1}}$. The second one $\Lambda^4 \sqrt{\frac{T_0}{T_1}} \int_0^{2\pi} \frac{d\theta}{(2\pi)^2} \sqrt{\frac{T_0}{T_1}} \sqrt{\xi_{2\Lambda}(1 + \frac{T_0}{T_1} \cos^2 \theta + \frac{T_0}{T_1} \sin^2 \theta)}$ can be proved to be $\Lambda^2 \frac{T_0}{T_1} \sqrt{\frac{T_0}{T_1}} + 1 + f_B(\xi_{2\Lambda}) \sqrt{\frac{T_0}{T_1}}$. Combined
with these two results, the expression of A is given by:

$$A = \frac{\Lambda^2}{\pi T_0} \sqrt{\frac{T_0}{T_1(0)}} \left(\frac{4k_B T}{\pi T_0 \Lambda^2} + \frac{T_0}{T_1(0)} (1 + f_B(\xi_0 \Lambda)) \right)$$

$$\approx \frac{\Lambda^2}{\pi T_0} \sqrt{\frac{T_0}{T_1(0)}} \left(\frac{4k_B T}{\pi T_0 \Lambda^2} + 1 + f_B(\xi_0 \Lambda) \right) > 0 , \quad (B3)$$

[1] E. Noether, “Invariante variationsprobleme,” Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1918, 235–257 (1918).

[2] David J Griffiths, Introduction to electrodynamics; 4th ed. (Pearson, Boston, MA, 2013) re-published by Cambridge University Press in 2017.

[3] Rahul M. Nandkishore and Michael Hermele, “Fractons,” Annual Review of Condensed Matter Physics 10, 295–313 (2019), arXiv:1803.11196 [cond-mat.str-el].

[4] Michael Pretko, Xie Chen, and Yizhi You, “Fracton phases of matter,” International Journal of Modern Physics A 35, 2030003 (2020), arXiv:2001.01722 [cond-mat.str-el].

[5] Michael Pretko, “The fracton gauge principle,” Phys. Rev. B 98, 115134 (2018).

[6] Michael Pretko, “Generalized electromagnetism of sub-dimensional particles: A spin liquid story,” Phys. Rev. B 96, 035119 (2017).

[7] Michael Pretko, “Subdimensional particle structure of higher rank unitary spin liquids,” Phys. Rev. B 95, 115139 (2017).

[8] Andrey Gromov, “Towards classification of fracton phases: The multipole algebra,” Phys. Rev. X 9, 031035 (2019).

[9] Nathan Seiberg and Shu-Heng Shao, “Exotic $U(1)$ Symmetries, Duality, and Fractons in 3+1-Dimensional Quantum Field Theory,” SciPost Phys. 9, 46 (2020).

[10] Sagar Vijay, Jeongwan Haah, and Liang Fu, “A new kind of topological quantum order: A dimensional hierarchy of quasiparticles built from stationary excitations,” Phys. Rev. B 92, 235136 (2015).

[11] Sagar Vijay, Jeongwan Haah, and Liang Fu, “Fracton topological order, generalized lattice gauge theory, and duality,” Phys. Rev. B 94, 235157 (2016).

[12] Abhinav Prem, Jeongwan Haah, and Rahul Nandkishore, “Glassy quantum dynamics in translation invariant fracton models,” Phys. Rev. B 95, 155133 (2017).

[13] Claudio Chamon, “Quantum glassiness in strongly correlated clean systems: An example of topological overprotection,” Phys. Rev. Lett. 94, 040402 (2005).

[14] Wilbur Shirley, Kevin Slagle, and Xie Chen, “Foliated fracton order from gauging subsystem symmetries,” SciPost Phys. 6, 41 (2019).

[15] Han Ma, Ethan Lake, Xie Chen, and Michael Hermele, “Fracton topological order via coupled layers,” Phys. Rev. B 95, 245126 (2017).

[16] Jeongwan Haah, “Local stabilizer codes in three dimensions without string logical operators,” Phys. Rev. A 83, 042330 (2011).

[17] Daniel Bulmash and Maissam Barkeshli, “Gauging fractons: Immobile non-Abelian quasiparticles, fractals, and position-dependent degeneracies,” Phys. Rev. B 100, 155146 (2019), arXiv:1905.05771 [cond-mat.str-el].

[18] Abhinav Prem and Dominic Williamson, “Gauging permutation symmetries as a route to non-Abelian fractons,” SciPost Physics 7, 068 (2019), arXiv:1905.06309 [cond-mat.str-el].

[19] D. Bulmash and M. Barkeshli, “Generalized $U(1)$ Gauge Field Theories and Fractal Dynamics,” arXiv e-prints (2018), arXiv:1806.01855 [cond-mat.str-el].

[20] Kevin T. Tian, Eric Samperton, and Zhenghan Wang, “Haah codes on general three-manifolds,” Annals of Physics 412, 168014 (2020), arXiv:1812.02101 [quant-ph].

[21] Yizhi You, Daniel Litinski, and Felix von Oppen, “Higher-order topological superconductors as generators of quantum codes,” Phys. Rev. B 100, 054513 (2019), arXiv:1810.10556 [cond-mat.str-el].

[22] Han Ma, Michael Hermele, and Xie Chen, “Fracton topological order from the higgs and partial-confinement mechanisms of rank-two gauge theory,” Phys. Rev. B 98, 035111 (2018).

[23] Kevin Slagle and Yong Baek Kim, “Fracton topological order from nearest-neighbor two-spin interactions and dualities,” Phys. Rev. B 96, 165106 (2017).

[24] Gábor B. Halász, Timothy H. Hsieh, and Leon Balents, “Fracton topological phases from strongly coupled spin chains,” Phys. Rev. Lett. 119, 257202 (2017).

[25] Kevin T. Tian and Zhengan Wang, “Generalized Haah Codes and Fracton Models,” arXiv e-prints, arXiv:1902.04543 (2019), arXiv:1902.04543 [quant-ph].

[26] Wilbur Shirley, Kevin Slagle, and Xie Chen, “Foliated fracton order from gauging subsystem symmetries,” SciPost Phys. 6, 41 (2019).

[27] Wilbur Shirley, Kevin Slagle, and Xie Chen, “Fractional excitations in foliated fracton phases,” Annals of Physics 410, 167922 (2019), arXiv:1806.08625 [cond-mat.str-el].

[28] Kevin Slagle, David Aasen, and Dominic Williamson, “Foliated Field Theory and String-Membrane-Net Conden- sation Picture of Fracton Order,” SciPost Phys. 6, 43 (2019).

[29] Wilbur Shirley, Kevin Slagle, Zhengan Wang, and Xie Chen, “Fracton models on general three-dimensional manifolds,” Phys. Rev. X 8, 031051 (2018).

[30] Abhinav Prem, Sheng-Jie Huang, Hao Song, and Michael Hermele, “Cage-net fracton models,” SciPost Phys. X 9, 021010 (2019).

[31] Shriya Pai, Michael Pretko, and Rahul M. Nandkishore, “Localization in fractonic random circuits,” Phys. Rev. X 9, 021003 (2019).

[32] Shriya Pai and Michael Pretko, “Dynamical Scar States
in Driven Fracton Systems,” Phys. Rev. Lett. 123, 136401 (2019), arXiv:1903.06173 [cond-mat.stat-mech].

33] Pablo Sala, Tibor Rakovszky, Ruben Verresen, Michael Knap, and Frank Pollmann, “Ergodicity Breaking Arising from Hilbert Space Fragmentation in Dipole-Conserving Hamiltonians,” Physical Review X 10, 011047 (2020), arXiv:1904.04266 [cond-mat.str-el].

34] Ajesh Kumar and Andrew C. Potter, “Symmetry-enforced fractonility and two-dimensional quantum crystal melting.” Phys. Rev. B 100, 045119 (2019).

35] Leo Radzihovsky and Michael Hermele, “Fractons from Vector Gauge Theory,” Phys. Rev. Lett. 124, 050402 (2020), arXiv:1905.06951 [cond-mat.str-el].

36] Arpit Dua, Isaac H. Kim, Meng Cheng, and Dominic J. Williamson, “Sorting topological stabilizer models in three dimensions,” Phys. Rev. B 100, 155137 (2019), arXiv:1908.08049 [quant-ph].

37] Andrey Gromov, “Chiral topological elasticity and fracton order,” Phys. Rev. Lett. 122, 076403 (2019).

38] Jeongwan Haah, Lattice quantum codes and exotic topological phases of matter, Ph.D. thesis, California Institute of Technology (2013).

39] Yizhi You, Trithep Devakul, S. L. Sondhi, and F. J. Burnell, “Fractonic Chern-Simons and BF theories,” Physical Review Research 2, 023249 (2020), arXiv:1904.11530 [cond-mat.str-el].

40] John Sous and Michael Pretko, “Fractons from polarons and hole-doped antiferromagnets: Microscopic realizations,” arXiv e-prints, arXiv:1904.08424 (2019), arXiv:1904.08424 [cond-mat.str-el].

41] Vedika Khemani, Michael Hermele, and Rahul Nandkishore, “Localization from hilbert space shattering: From theory to physical realizations,” Phys. Rev. B 101, 174204 (2020).

42] Juven Wang and Kai Xu, “Higher-Rank Tensor Field Theory of Non-Abelian Fracton and Embeddon,” arXiv e-prints, arXiv:1909.13879 (2019), arXiv:1909.13879 [hep-th].

43] Juven Wang and Shing-Tung Yau, “Non-Abelian gauged fracton matter field theory: Sigma models, superfluids, and vortices,” Physical Review Research 2, 043219 (2020), arXiv:1912.13485 [cond-mat.str-el].

44] Shiroy Pai and Michael Pretko, “Fractonic line excitations: An inroad from three-dimensional elasticity theory,” Phys. Rev. B 97, 235102 (2018).

45] Michael Pretko and Rahul M. Nandkishore, “Localization of extended quantum objects,” Phys. Rev. B 98, 134301 (2018).

46] Dominic J. Williamson, Zhen Bi, and Meng Cheng, “Fractonic matter in symmetry-enriched u(1) gauge theory,” Phys. Rev. B 100, 125150 (2019).

47] Arpit Dua, Dominic J. Williamson, Jeongwan Haah, and Meng Cheng, “Compactifying fracton stabilizer models,” Phys. Rev. B 99, 245135 (2019).

48] Bowen Shi and Yuan-Ming Lu, “Deciphering the nonlocal entanglement entropy of fracton topological orders,” Phys. Rev. B 97, 144106 (2018).

49] Hao Song, Abhinav Prem, Sheng-Jie Huang, and M. A. Martin-Delgado, “Twisted fracton models in three dimensions,” Phys. Rev. B 99, 155118 (2019).

50] Han Ma and Michael Pretko, “Higher-rank deconfined quantum criticality at the lifshitz transition and the exciton bose condensate,” Phys. Rev. B 98, 125105 (2018).

51] Juven Wang, Kai Xu, and Shing-Tung Yau, “Higher-Rank Non-Abelian Tensor Field Theory: Higher-Moment or Subdimensional Polynomial Global Symmetry, Algebraic Variety, Noether’s Theorem, and Gauge,” arXiv e-prints, arXiv:1911.01804 (2019), arXiv:1911.01804 [hep-th].

52] Kevin Slagle, “Foliated Quantum Field Theory of Fracton Order,” arXiv e-prints, arXiv:2008.03852 (2020), arXiv:2008.03852 [hep-th].

53] Dominic J. Williamson and Trithep Devakul, “Type-II fractons from coupled spin chains and layers,” arXiv e-prints, arXiv:2007.07894 (2020), arXiv:2007.07894 [cond-mat.str-el].

54] Pranay Gorantla, Ho Tat Lam, Nathan Seiberg, and Shu-Heng Shao, “More Exotic Field Theories in 3+1 Dimensions,” arXiv e-prints, arXiv:2007.04904 (2020), arXiv:2007.04904 [cond-mat.str-el].

55] Dung Xuan Nguyen, Andrey Gromov, and Sergej Moroz, “Fracton-elasticity duality of two-dimensional superfluid vortex crystals: defect interactions and quantum melting,” arXiv e-prints, arXiv:2005.12317 (2020), arXiv:2005.12317 [cond-mat.quant-gas].

56] Michael Pretko, S. A. Paramaswaran, and Michael Hermele, “Odd Fracton Theories, Proximate Orders, and Parton Constructions,” arXiv e-prints, arXiv:2004.14393 (2020), arXiv:2004.14393 [cond-mat.str-el].

57] Dominic J. Williamson and Meng Cheng, “Designer non-Abelian fractons from topological layers,” arXiv e-prints, arXiv:2004.07251 (2020), arXiv:2004.07251 [cond-mat.str-el].

58] Nathan Seiberg and Shu-Heng Shao, “Exotic Z_N Symmetries, Duality, and Fractons in 3+1-Dimensional Quantum Field Theory,” arXiv e-prints, arXiv:2004.06115 (2020), arXiv:2004.06115 [cond-mat.str-el].

59] David T. Stephen, José Garre-Rubio, Arpit Dua, and Dominic J. Williamson, “Subsystem symmetry enriched topological order in three dimensions,” Physical Review Research 2, 033331 (2020), arXiv:2004.04181 [cond-mat.str-el].

60] Andrey Gromov, Andrew Lucas, and Rahul M. Nandkishore, “Fracton hydrodynamics,” Physical Review Research 2, 033124 (2020), arXiv:2003.09429 [cond-mat.str-el].

61] Juven Wang, “Non-Liquid Cellular States,” arXiv e-prints, arXiv:2002.12932 (2020), arXiv:2002.12932 [cond-mat.str-el].

62] Wilbur Shirley, “Fractonic order and emergent fermionic gauge theory,” arXiv e-prints, arXiv:2002.12026 (2020), arXiv:2002.12026 [cond-mat.str-el].

63] David Aasen, Daniel Bulmash, Abhinav Prem, Kevin Slagle, and Dominic J. Williamson, “Topological Defect Networks for Fractons of all Types,” arXiv e-prints, arXiv:2002.05166 (2020), arXiv:2002.05166 [cond-mat.str-el].

64] Xiao-Gang Wen, “A systematic construction of gapped non-liquid states,” arXiv e-prints, arXiv:2002.02433 (2020), arXiv:2002.02433 [cond-mat.str-el].

65] Ting Fung Jeffrey Poon and Xiong-Jun Liu, “Quantum phase transition of fracton topological orders,” arXiv e-prints, arXiv:2001.05937 (2020), arXiv:2001.05937 [cond-mat.str-el].

66] Meng-Yuan Li and Peng Ye, “Fracton physics of spatially extended excitations,” Phys. Rev. B 101, 245134 (2020).

67] Meng-Yuan Li and Peng Ye, “Fracton physics of spatially extended excitations. II. Polynomial ground
state degeneracy of exactly solvable models,” (2021), arXiv:2104.05735 [cond-mat.str-el].

[68] Jian-Keng Yuan, Shuai A. Chen, and Peng Ye, “Fractional superfluids,” Physical Review Research 2, 023267 (2020), arXiv:1911.02876 [cond-mat.str-el].

[69] Shuai A. Chen, Jian-Keng Yuan, and Peng Ye, “Fractional superfluids. ii. condensing subdimensional particles,” Phys. Rev. Research 3, 013226 (2021).

[70] Sanjay Moudgalya, B. Andrei Bernevig, and Nicolas Regnault, “Quantum many-body scars in a landau level on a thin torus,” Phys. Rev. B 102, 195150 (2020).

[71] S. R. Taylor, M. Schulz, F. Pollmann, and R. Moessner, “Experimental probes of stark many-body localization,” Phys. Rev. B 102, 054206 (2020).

[72] Sanjay Moudgalya, Abhinav Prem, Rahul Nandkishore, Nicolas Regnault, and B. Andrei Bernevig, “Thermalization and its absence within krylov subspaces of a constrained hamiltonian,” (2019), arXiv:1910.14048 [cond-mat.str-el].

[73] Tibor Rakovszky, Pablo Sala, Ruben Verresen, Michael Knap, and Frank Pollmann, “Statistical localization: From strong fragmentation to strong edge modes,” Phys. Rev. B 101, 125126 (2020).

[74] Johannes Feldmeier, Pablo Sala, Giuseppe De Tomasi, Frank Pollmann, and Michael Knap, “Anomalous diffusion in dipole- and higher-moment-conserving systems,” Phys. Rev. Lett. 125, 245303 (2020).

[75] Han Yan, Owen Benton, L. D. C. Jaubert, and Nic Shannon, “Rank-2 u(1) spin liquid on the breathing pyrochlore lattice,” Phys. Rev. Lett. 124, 127203 (2020).

[76] R. Shankar, “Renormalization-group approach to interacting fermions,” Reviews of Modern Physics 66, 129–192 (1994).

[77] Zohar Komargodski and Adam Schwimmer, “On renormalization group flows in four dimensions,” Journal of High Energy Physics 2011 (2011), 10.1007/jhep12(2011)099.

[78] Sanjay Moudgalya, Abhinav Prem, David A. Huse, and Amos Chan, “Spectral statistics in constrained many-body quantum chaotic systems,” (2021), arXiv:2009.11863 [cond-mat.stat-mech].