1-Loop improved lattice action for the nonlinear σ-model *

M. Bartels, G. Macka, and G. Palmab

aII. Institut für theoretische Physik, Universität Hamburg
D-22761 Hamburg, Luruper Chaussee 149, Germany

bDepartamento de Física, Universidad de Santiago de Chile,
Casilla 307, Correo 2, Santiago, Chile

In this paper we show the Wilson effective action for the 2-dimensional $O(N + 1)$-symmetric lattice nonlinear σ-model computed in the 1-loop approximation for the nonlinear choice of blockspin $\Phi(x)$, $\Phi(x) = C\phi(x)/|C\phi(x)|$, where C is averaging of the fundamental field $\phi(z)$ over a square x of side \tilde{a}.

The result for S_{eff} is composed of the classical perfect action with a renormalized coupling constant β_{eff}, an augmented contribution from a Jacobian, and further genuine 1-loop correction terms. Our result extends Polyakov’s calculation which had furnished those contributions to the effective action which are of order $\ln \tilde{a}/a$, where a is the lattice spacing of the fundamental lattice. An analytic approximation for the background field which enters the classical perfect action will be presented elsewhere [1].

1. Introduction

Effective lattice actions S_{eff} in the sense of Wilson are perfect actions in the sense that they reproduce the long distance behaviour of a theory with a much larger UV cutoff. Different approximations have been considered before [2–4].

Our computation of S_{eff} in 1-loop approximation identifies genuine 1-loop corrections beyond the appearance of a running coupling constant in the classical perfect action, when terms are included which are not $O(\ln \tilde{a}/a)$. Details and an analytical approximation for Ψ as a function of Φ are found in ref. [1].

2. Definitions

The model lives on a square lattice Λ of lattice spacing a with points typically denoted z, w, \ldots. We use lattice notations so that $\int_z (\ldots) \equiv a^2 \sum_z (\ldots) \rightarrow \int d^2 z (\ldots)$ in the continuum limit $a \rightarrow 0$; μ is the lattice vector of length a in μ-direction ($\mu = 1, 2$). The field $\phi(z) \in S^N$ is a $(N + 1)$-dimensional unit vector. The action of the model is

$$S[\phi] = \frac{\beta}{2} \int_z |\nabla_\mu \phi(z)|^2 = -\frac{\beta}{2} \int_z \phi \Delta \phi. \quad (1)$$

A block lattice $\hat{\Lambda}$ of lattice spacing $\hat{a} = s \cdot a$ is superimposed (s, a positive integer). Its points are typically denoted x, y, \ldots. They are identified with squares of sidelength \tilde{a} in Λ.

We define a blockspin $\Phi(x)$ which lives on the block lattice as a function $\Phi(x) = C\phi(x)$ of the fundamental field. $\Phi(x)$ is also a $(N+1)$-unit vector; therefore the operator C is necessarily nonlinear. We choose

$$\Phi(x) = C\phi(x) \equiv C\phi(x)/|C\phi(x)|. \quad (2)$$

The linear operator C averages over blocks,

$$C\phi(x) = \text{av}_{z \in x} \phi(z) \equiv \hat{a}^{-2} \int_{z \in x} \phi(z). \quad (3)$$

The Wilson effective action is defined by

$$e^{-S_{\text{eff}}[\Phi]} = \int D\phi \prod_x \delta(C\phi(x), \Phi(x)) e^{-S[\phi]}; \quad (4)$$

$$D\phi = \prod_z d\phi(z),$$

where $d\phi$ is the uniform measure on the sphere S^N, and δ is the N-dimensional δ-function on the sphere.
We consider a δ-function constraint because computation of expectation values of observables which depend on ϕ only through the blockspin Φ must then be identical whether computed with S or S_{eff}. This prepares best for stringent tests of the accuracy of the result.

Hasenfratz and Niedermayer showed numerically that much better locality properties of effective actions are obtained when a Gaussian is used in the definition of the effective action instead of a sharp δ-function. Therefore we admit the substitution $d\delta(C\phi(x), \Phi(x)) \Rightarrow J_0(C\phi(x))e^{-\frac{1}{2}\kappa ||C^-\Phi||^2}$ (5)

with $C^-\Phi(x) = C\phi(x) - \Phi(x) \cdot C\phi(x) = C\phi^\perp(x)$ and J_0 as in eq. (11) below. The δ-function is recovered for $\kappa = \infty$.

3. Background field and classical action

Given a blockspin configuration Φ, let $\Psi = \Psi[\Phi]$ be that field on the fine lattice Λ which extremizes S, resp. $S(\phi) + \frac{1}{2} \kappa \sum_x |C\phi^\perp(x)|^2$ for $\kappa < \infty$ subject to the constraints $|\Psi(z)|^2 = 1$ and $C\Psi = \Phi$.

Ψ is called the background field. The classical perfect action is

$$S_{\text{cl}}[\Phi] = S(\Psi[\Phi]) + \frac{\beta K}{2} \sum_x (C\phi^\perp(x))^2 \Rightarrow S(\Psi).$$

(7)

Here we wish to compute the 1-loop corrections. It is convenient to regard the full effective action as a function of Ψ. This is possible because Φ is determined by Ψ according to eq. (6).

For large enough blocks, the background field Ψ is smooth.

4. The 1-loop approximation

A perturbative calculation of the functional integral (11) for the effective action is not straightforward because the argument of the δ-function is a nonlinear function of the field.

To solve this problem, we find a parametrization $\phi(z) = \phi[\Psi, \zeta](z)$ of an arbitrary field ϕ on Λ in terms of the background field $\Psi = \Psi[\Phi]$ and a fluctuation field obeying $\zeta(z) \perp \Phi(x)$ for $z \in x$ such that the constraint becomes a linear constraint on ζ, viz. $C\zeta = 0$ for $\kappa = \infty$.

The background field is a smooth field. It represents the low frequency part of ϕ, while ζ adds the high frequency contributions. ζ takes its values in a linear space. We decompose $\phi(z)$ in components \perp and \parallel to $\Phi(x), (x \ni z)$ and put $\phi^\perp(z) = \Psi^\perp(z) + \zeta(z)$. Balaban has shown how to find a suitable parametrization for lattice gauge fields.

There is a jacobian J to the transformation, and the result has the form

$$e^{-S_{\text{cl}}[\Psi]} = \prod_z d\zeta(z) \delta(C\zeta) J(\Psi, \zeta) e^{-S(\Psi[\Psi])}$$

(8)

with a Gaussian in place of δ if $\kappa < \infty$.

The 1-loop approximation yields the effective action to order β^0. It is obtained by expanding the action to second order and the Jacobian to zeroth order in the fluctuation field. This approximates expression (11) by a Gaussian integral. The resulting $Tr \log$ formula is not particularly useful, though.

A first simplification is achieved by exploiting the fact that the background field Ψ is smooth. This is always true, for large enough blocks, because a 2-dimensional Heisenberg ferromagnet has no domain walls. Because of the smoothness of Ψ one can neglect terms of higher order than second in $\nabla \Psi$.

The exact 1-loop perfect action to this order is as follows:

$$S_{\text{eff}} = S_{\text{cl}} - \sum_x \ln J_0(C\Psi(x)) - \frac{1}{2} Tr \ln \Gamma_Q +$$

$$\frac{1}{2} \int \left(\nabla_\mu \Psi^T(z) \beta_{\text{eff}}^2(z) \nabla_\mu \Psi(z) + \beta_{\text{eff}}^2(z) \frac{\Phi(z)^T(\Delta)\Psi(z)}{\cos \theta(z)} \right)$$

$$+ \frac{S_{\text{eff}}(2)}{2} + \int_z tr J_\mu(z) \nabla_\mu \Psi^T(z) + \nabla_\mu \Psi(z) \Psi^T(z + \hat{\mu}) + \Psi^T \nabla_\mu \Psi^T(z + \hat{\mu}) \Psi(z)$$

(9)

$$j_\mu(z) = \Psi(z) \nabla_\mu \Psi^T(z) + \nabla_\mu \Psi(z) \Psi^T(z + \hat{\mu}) + \Psi^T \nabla_\mu \Psi(z + \hat{\mu}) \Psi(z)$$

(10)

2To save brackets, we adopt the notational convention that derivatives acts only on the factor immediately following it. We used vector notation, Ψ^T is the row vector transpose to Ψ. Note that $j_\mu(z)$ is a matrix.
where in the expression $\nabla_{\mu} \Gamma_Q(z, z+\hat{\mu})$ the derivative acts only on the first argument, $[z]$ is the block containing z, the Jacobian is
\[J_0(\mathcal{C}(x)) = \left(|\mathcal{C}(x)|^2 - \frac{1}{\beta_K} + \ldots \right)^{\frac{1}{2}} \] (11)
and $S_{\text{eff}}^{(2)}$ is a contribution from a renormalized 1-loop graph with 2 vertices as follows
\[S_{\text{eff}}^{(2)} = -\frac{1}{2} \int_z w \text{ tr} \left(\nabla_{\mu} \Gamma_Q(z, w) - \nabla_{\nu} j_{\mu}^T(w) \Gamma_Q(w, z) j_{\mu}(z) + \nabla_{\mu} \Gamma_Q(z, w) j_{\nu}(w) \nabla_{\nu} \Gamma_Q(w, z) j_{\mu}(z) + \delta_{\mu\nu} \delta_{z,w} j_{\mu}(z) \Gamma_Q(z, w) j_{\nu}(w) \right). \] (12)

We used the notation $z_\mu = z + \hat{\mu}$. The $\delta_{\mu\nu} \delta_{z,w} j_{\mu}$ term subtracts the part which diverges in the limit $a \to 0$. The last term in the definition (10) of j_{μ} can be dropped inside eq. (12) because its contribution is of higher order in $\nabla \Psi$.

Γ_Q is an $(N + 1) \times (N + 1)$ matrix propagator,
\[\Gamma_Q = (\mathcal{Q} + \kappa Q^T C^T C Q)^{-1}; \] (13)
\[Q(z) = 1 - \Psi(z) \Phi^T(z) + \Phi(z) \]
\[(\Psi^T(z)[1 + \cos \theta(z)] - \Phi^T(x)) \] (14)
with $\cos \theta(z) = \Psi(z) \cdot \Phi(x)$, $(x \ni z)$. Both coupling constant renormalizations β_1^{eff} and β_2^{eff} have a residual dependence on Ψ through Q, so they fluctuate somewhat with Ψ; to leading order the dependence is through $\cos \theta$. Note that β_1^{eff} is a $(N + 1) \times (N + 1)$ matrix, while β_2^{eff} is a scalar.

$\beta_1^{\text{eff}}(z) = \Gamma_Q(z, z)$, \hspace{1cm} (15)
$\beta_2^{\text{eff}}(z) = -\text{tr} \left[1 - \Psi \Phi^T(z) \right] \Gamma_Q(z, z)$. \hspace{1cm} (16)

Finally, the last term in eq. (10) is a lattice artifact.

If Φ is smooth enough, one may expand
\[-\frac{1}{2} \text{ Tr } \ln \Gamma_Q = \int_z w \mathcal{A}(z, w) \mathcal{C}(x, z) \mathcal{B}[\cos \theta(z) - 1] \]
\[+ \int_z w \int_{x,y} \Psi^T(z) \Phi^T(w) \]
\[- \Gamma_{KG}(z, w) \Delta \mathcal{A}(w, y) \mathcal{C}(y, z) \]
\[+ \mathcal{A}(z, x) \mathcal{C}(x, w) \mathcal{A}(w, y) \mathcal{C}(y, z) + \ldots \]
and substitute $\Gamma_{Qz} = 1 \equiv \Gamma_{KG} \mathbf{1}$ elsewhere.
\[\mathcal{A} = \kappa \Gamma_{KG} \mathcal{C}^{*} \]
has a finite limit as $\kappa \to \infty$.

5. Recovery of Polyakov’s result

Polyakov determined the contributions to the effective action which are of order $\ln a/a$. They do not depend on the detailed form of the block spin which fixes the infrared cutoff in the auxiliary theory with fields ζ. The presence of $\mathcal{M}^2 = \kappa Q^T C^T C Q$ in the high frequency propagator has the effect of an infrared cutoff. To get the result modulo details of the choice of infrared cutoff, we may therefore replace \mathcal{M} by a mass term \mathcal{M}^2, where $\mathcal{M} = O(\tilde{a}^{-1})$. Γ_Q then becomes translation invariant. One shows that $(\Phi(z)^T \Delta \Psi(z)) / \cos \theta(z) = \Psi^T(z) \Delta \Psi(z)$ by the extremality condition for Ψ. Polyakov’s result is now recovered because $\text{Tr } \ln \Gamma_Q$ becomes constant and neither in J_0 nor the last two terms in eq. (10) are of order $\ln a/a$.

Acknowledgement

This work was supported in part by Deutsche Forchungsgemeinschaft, by FONDECYT, Nr.1980608, and by DICYT, Nr.049631PA (Chile). G.P. wishes to thank W. Bietenholz for useful discussions.

REFERENCES

1. M. Bartels, G. Mack, and G. Palma, in preparation.
2. U. Kerres, G. Mack, G. Palma, Nucl. Phys. B467 (1996) 510.
3. M. Grießl, G. Mack, Y. Xylander, G. Palma, Nucl. Phys. B477 (1996) 878.
4. P. Hasenfratz, Nucl. Phys. Proc. Suppl. 63 (1998) 53.
5. P. Hasenfratz, F. Niedermayer, Nucl. Phys. B414 (1994) 785.
6. T. Balaban, Commun. Math. Phys 109 (1987) 249, esp. eq. (2.10); Commun. Math. Phys. 99 (1985) 75, Sect. E; Commun. Math. Phys. 102 (1985) 77, Sect. C.
7. M. Fischer, J. Appl. Phys. 38 (1967) 981.
8. R.L. Dobrushin, S.B. Shlosman, Commun. Math. Phys. 42 (1975) 31.
9. K. Gawedzki, A. Kupiainen, Commun. Math. Phys. 77, 31–64 (1980).
10. A.M. Polyakov, Phys. Letters 59B (1975) 79.