Weighing neutrinos in the presence of a running primordial spectral index

Bo Feng1, Jun-Qing Xia2, Jun’ichi Yokoyama1, Xinmin Zhang2 and Gong-Bo Zhao2

1 Research Centre for the Early Universe (RESCEU), Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
2 Institute of High Energy Physics, Chinese Academy of Science, PO Box 918-4, Beijing 100049, People’s Republic of China
E-mail: fengbo@resceu.s.u-tokyo.ac.jp, xiajq@mail.ihep.ac.cn, yokoyama@resceu.s.u-tokyo.ac.jp, xmzhang@mail.ihep.ac.cn and zhaogb@mail.ihep.ac.cn

Received 19 October 2006
Accepted 24 November 2006
Published 11 December 2006

Abstract. The three-year Wilkinson Microwave Anisotropy Probe observations, combined with other cosmological observations from galaxy clustering and type Ia supernovae, favour a non-vanishing running of the primordial spectral index independent of the low cosmic microwave background multipoles. Motivated by this feature we study a cosmological constraint on the neutrino mass, which is strongly dependent on what prior we adopt for the spectral shape of primordial fluctuations, taking possible running into account. As a result we find a more stringent constraint on the sum of the three neutrino masses, $m_\nu < 0.76 \text{ eV (2}\sigma)$, compared with $m_\nu < 0.90 \text{ eV (2}\sigma)$ for the case where a power law prior is adopted for the primordial spectral shape.

Keywords: cosmological neutrinos, inflation

ArXiv ePrint: astro-ph/0605742
The three-year Wilkinson Microwave Anisotropy Probe observations (WMAP3) [1]–[5] have marked another milestone in the precision cosmology of the cosmic microwave background (CMB) radiation. The simplest six-parameter power law ΛCDM cosmology is in remarkable agreement with WMAP3 together with the large scale structure (LSS) of galaxy clustering as measured by 2dF [6] and SDSS [7] and with the type Ia supernovae (SNIa) as measured from the Riess ‘gold’ sample [8] and the first-year SNLS [9]. This agreement between the above ‘canonical’ cosmological model and observations can be used to test a number of possible new physics features, such as the equation of state of dark energy, neutrino masses, time variation of fundamental constants, etc.

Among them, the constraint on the neutrino or hot dark matter mass can be obtained from the free-streaming modification of the transfer function of the matter power spectrum. We should note, however, that if one allowed any shape of primordial spectrum, the free-streaming effect could easily be compensated by some non-trivial shape of the primordial spectrum, so that one cannot obtain a sensible limit on the neutrino mass. That is, we can obtain a non-trivial bound on neutrino mass if and only if we adopt some prior on the shape of the primordial power spectrum such as a simple power law. From the above argument, we expect that as we allow more degrees of freedom on the primordial spectrum beyond a power law, the constraint on the neutrino mass will be less stringent in general.

As for the shape of the primordial power spectrum, it is noteworthy that a significant deviation has been observed in WMAP3 from the simplest Harrison–Zel’dovich spectrum, and that this feature is more prominent with the combination of all the currently available CMB, LSS and SNIa data (dubbed the ‘All’ case in [5]). Moreover, a non-trivial negative running of the scalar spectral index α_s, whose existence was studied even before the WMAP epoch [10,11], was favoured by the first-year WMAP papers [12]–[14]. But its favouring was somewhat diminished as corrections to the likelihood functions were made [15]. However, the new WMAP3 data favour again a negative running in the ‘All’ combination [5].

If confirmed, a non-vanishing running of α_s would not only constrain inflationary cosmology significantly [16]–[21], but also affect the cosmological constraint on the neutrino mass. In the LSS power spectrum, the effect of massive neutrinos may be compensated by a non-vanishing running of the primordial spectrum. On the other hand, if it is established that the running is negative, this will lead to even more stringent constraints on the neutrino mass compared with fittings in the constant scalar spectral index (n_s) cosmology, because they both lead to a damped power on small scales.

The actual problem, however, cannot be solved by the above simple one-to-one correspondence, because the effects of a non-vanishing neutrino mass on the CMB are much less dramatic than those of a non-vanishing running α_s. Alternatively, on the scales probed via the CMB, especially near the third peak, there is a large degeneracy between α_s and the matter density Ω_m [22]–[26].

Hence in the concordance analysis the correlation between the running and neutrino mass needs to be addressed in a combined study of CMB, LSS and SNIa data, where SNIa helps significantly to determine the matter density. We report the results of such a combined analysis in this paper using the Markov chain Monte Carlo method in constraining the total neutrino mass, $m_\nu = \sum_{i=1}^{3} m_{\nu i} = 94.4\Omega_\nu h^2$ eV. Here Ω_ν is the density parameter of the neutrino and h is the Hubble constant in units of 100 km s$^{-1}$ Mpc$^{-1}$.
Weighing neutrinos in the presence of a running primordial spectral index

Table 1. Mean with 1σ (2σ) constraints on the spectral index, the running, and the neutrino mass based on LSS and SNIa with WMAP3 (with/without \(l < 24 \) CMB contributions) and with/without introducing a running of the primordial spectral index \(\alpha_s \) and with/without massive neutrinos. The rows starting with \(\Delta \chi^2 \) show the corresponding reduction of \(\chi^2 \) values compared with the power law ΛCDM cosmology.

\(\nu \)	\(\alpha_s \)	\(\nu + \alpha_s \)
Normal WMAP3		
\(n_s \)	\(0.947^{+0.016}_{-0.016} \)	\(0.880^{+0.038}_{-0.037} \)
\(\alpha_s \)	Set to 0	\(-0.051^{+0.025}_{-0.025} \)
\(m_\nu \)	\(0.460^{+0.113}_{-0.100} \)	Set to 0
\(\Delta \chi^2 \)	2	-3.4

\(l < 24 \) dropped

\(n_s \)	\(0.942^{+0.021}_{-0.022} \)	\(0.862^{+0.049}_{-0.049} \)	\(0.899^{+0.058}_{-0.059} \)
\(\alpha_s \)	Set to 0	\(-0.072^{+0.043}_{-0.042} \)	\(-0.045^{+0.054}_{-0.050} \)
\(m_\nu \)	\(0.470^{+0.131}_{-0.130} \)	Set to 0	\(0.378^{+0.099}_{-0.099} \)
\(\Delta \chi^2 \)	1	-2.1	-2.2

To break possible degeneracy among the cosmological parameters, we make a global fit to the aforementioned current data with the publicly available Markov chain Monte Carlo package cosmomc [10, 27]. Our most general parameter space is

\[
p \equiv (\omega_b, \omega_c, \Theta_S, \tau, m_\nu, n_s, \alpha_s, \log[10^{10} A_s])
\]

where \(\omega_b = \Omega_b h^2 \) and \(\omega_c = \Omega_c h^2 \) are the physical baryon and cold dark matter densities relative to the critical density, \(\Theta_S \) characterizes the ratio of the sound horizon and angular diameter distance, \(\tau \) is the optical depth and \(A_s \) is defined as the amplitude of the initial power spectrum. The pivot scale for \(n_s \) and \(\alpha_s \) is chosen at \(k = 0.05 \) Mpc\(^{-1}\).

Assuming a flat Universe and in terms of the Bayesian analysis, we vary the above eight parameters and fit the theory to the observational data with the MCMC method. For CMB we have only adopted WMAP3. The bias factors of LSS have been used as nuisance parameters and hence essentially we have used only the shapes of 2dF and SDSS power spectra. As for the SNIa data, while the WMAP team uses both SNLS and the Riess sample simultaneously in their ‘All’ data set, here we adopt only one of them, namely, the Riess ‘gold’ sample, rather than combining with SNLS. This is because these two groups use somewhat different methods in their analysis and it would not be appropriate to put them together simply\(^3\).

Regarding the first-year WMAP data Bridle et al [28] found that the claimed favouring of a negative \(\alpha_s \) was merely due to the lowest WMAP multipoles. In order to probe the sensitivity of the running to the lower multipoles we analyse the running and neutrino properties using the CMB data with and without the contributions of lower multipoles

\(^3\) Currently the SNLS and Riess ‘gold’ sample are comparable in the determination of cosmological parameters, as shown in [5], and each data set has its own nice features. In the present work we use only the Riess sample.
Weighing neutrinos in the presence of a running primordial spectral index

Figure 1. Two-dimensional posterior constraints on the primordial spectral index versus its running at $k = 0.05 \text{ Mpc}^{-1}$, using 2dF, SDSS, SNIa and WMAP3 (with/without $l < 24$ CMB contributions) and with/without the presence of massive neutrinos.

which suffer from large cosmic variance. Specifically, we truncate naturally at $l = 24$ given the current likelihood of WMAP3 [1]–[3], [5].

As a result we find a more stringent constraint on the neutrino mass in the presence of running compared with the analysis with constant n_s. We also find that currently the favouring of a negative running is fairly independent of the WMAP3 low CMB quadrupoles and hence relatively robust.

In table 1 we show the mean 1σ (2σ) constrains on the relevant cosmological parameters combining 2dF, SDSS and the Riess ‘gold sample with WMAP3. We have addressed the cases with/without $l < 24$ CMB contributions, with/without introducing α_s and with/without massive neutrinos. The last row shows the corresponding reduction of χ^2 values compared with the power law ΛCDM cosmology. For normal LSS + SNIa + WMAP in the seven-parameter fittings we get $\alpha_s = -0.0512^{+0.0506}_{-0.0480}$ at 2σ. Our results are considerably less stringent than the ‘All’ combination of the WMAP team [5], as we have not included SNLS and other CMB observations. On the other hand the favouring of non-vanishing α_s is larger than 2σ in both cases. The favouring of negative running still remains even if we drop the WMAP3 $l < 24$ contributions, when we get $\alpha_s = -0.0717^{+0.0833}_{-0.0886}$ at 2σ. This may imply that a negative running is indeed preferred non-trivially in the combination of WMAP + LSS + SNIa, even without the presence of WMAP3 small l contributions. This can also be understood through the Akaike information criterion (AIC [29]), which is defined by

$$\text{AIC} = -2 \ln \mathcal{L} + 2k,$$

(2)
Weighing neutrinos in the presence of a running primordial spectral index

Figure 2. One-dimensional posterior constraints on the sum of neutrino masses, using 2dF, SDSS, SNIa and WMAP3 (with/without \(l<24 \) CMB contributions) and with/without introducing a running of the primordial spectral index \(\alpha_s \). Note that due to the non-Gaussian distribution of \(m_\nu \), LSS + SNIa + WMAP3 (black line) seems to indicate a non-zero neutrino mass, but this is not the case, as can be seen in table 1.

where \(\mathcal{L} \) is the maximum likelihood, \(k \) is the number of fitting parameters. This quantity gives a criterion for how many parameters we should use to fit a data set, and it implies that it is worth introducing a new parameter if \(\Delta \chi^2 \equiv -2\Delta \ln \mathcal{L} \) improves by more than 2. From table 1 we can find the reduction of \(\chi^2 \) is larger than 2 in the case of running compared with the simple power law \(\Lambda \)CDM cosmology; hence according to AIC, we should introduce the running.

The favouring of a negative running can also be obtained in the two-dimensional posterior contours of \(n_s - \alpha_s \), as depicted in figure 1. For the seven-parameter case with one additional parameter of \(\alpha_s \), although the contour without WMAP3 low \(l \) contributions is larger than that in the left panel, a constant \(n_s \) lies close to the \(2\sigma \) lines in both cases. The enlarged contour without \(l<24 \) is easily understood due to the \(n_s - \tau \) degeneracy.

The correlation between \(m_\nu \) and the shape of the primordial spectrum is obvious, as can be seen from table 1 and figure 1. In the presence of massive neutrinos the error bars on \(n_s \) and \(\alpha_s \) get increased with or without small \(l \) CMB contributions. And it is noteworthy that, in the presence of massive neutrinos, a scale-invariant primordial spectrum is consistent with the observations at \(\sim 2\sigma \) if we drop the small \(l \) WMAP3 contributions.

We find that, while almost all of the remaining parameters get less stringently constrained, the neutrino mass is an exception: a more tightened bound on \(m_\nu \) is achieved in the presence of a non-zero \(\alpha_s \) than for the case with constant \(n_s \), as shown in table 1, and for the one-dimensional constraints, as in figure 2. This has shown that running is indeed strongly correlated with neutrino mass, which is mainly due to the physics of LSS.

In figure 3 we display the two-dimensional posterior constraints on the sum of neutrino masses versus matter density in the same case as for figure 2. While the allowed
Weighing neutrinos in the presence of a running primordial spectral index

Figure 3. Two-dimensional posterior constraints on the sum of neutrino masses versus matter density, using 2dF, SDSS, SNIa and WMAP3 (with/without \(l < 24 \) CMB contributions) and with/without introducing a running of the primordial spectral index \(\alpha_s \).

Parameter space for \(\Omega_m \) is significantly enlarged in the presence of running, neutrino mass is constrained strongly in cases with non-zero \(\alpha_s \). The correlation between \(\Omega_m \) and \(m_\nu \) is rather strong and the accumulation of the observational data, such as SNAP, PLANCK and SDSS, will help significantly to break the degeneracy, for detecting the features of the primordial spectrum as well as the nature of neutrinos.

It has been claimed that a running of the spectral index will be excluded in the presence of SDSS Lyman \(\alpha \) observations [30]–[33]; the systematics of Lyman \(\alpha \) data are less constrained [1, 23] and we leave this to a separate investigation to be reported in [34], and detailed analysis with other additional possible degeneracies to [35].

For many years neutrinos have played a fundamental role in both physics and astrophysics, and provided areas of new physics such as parity violation and oscillations with tiny masses. Surely neutrinos will continue to play a crucial role in our understanding of the Universe. While the resulting reduction in neutrino mass in this paper is less than 0.2 eV, such an effect will one hopes help to change our understanding of the ultimate detection of neutrino mass with future cosmological surveys and the difference is already larger than the low limit on neutrino mass from oscillation experiments. On the other hand there are also some mild tensions in the determinations of the background cosmological parameters with current CMB, LSS and SNIa data. We may still need some better understanding of each data set before entering the precision cosmology arena [36], and in cases where all of the observations have similar tendencies in the favouring of a negative running we can, we hope, get more prominent effects in the probing of neutrino mass.
Weighing neutrinos in the presence of a running primordial spectral index

The distinctive feature probed in the current paper will also open new windows to relevant studies, such as probing neutrino mass with a non-zero running in gravitational lensing surveys, N-body simulations in the presence of running and massive neutrinos.

Acknowledgments

We acknowledge the use of the Legacy Archive for Microwave Background Data Analysis (LAMBDA). Support for LAMBDA is provided by the NASA Office of Space Science. We have performed our numerical analysis at the Shanghai Supercomputer Centre (SSC). We used a modified version of CAMB [37, 38] which is based on CMBFAST [39, 40]. We thank Steen Hannestad, Antony Lewis, Chris Lidman, Hiranya Peiris and Pengjie Zhang for helpful discussions. The work of JY is supported partially by the JSPS Grant-in-Aid for Scientific Research No 16340076 and BF by the JSPS fellowship programme. This work is supported in part by the National Natural Science Foundation of China under Grants Nos 90303004, 10530101 and 19925523 and by the Ministry of Science and Technology of China under Grant No NKBRSF G19990754.

References

[1] Spergel D N et al, Wilkinson Microwave Anisotropy Probe (WMAP) three year results: implications for cosmology, 2006 Preprint astro-ph/0603449
[2] Page L et al, Three year Wilkinson Microwave Anisotropy Probe (WMAP) observations: polarization analysis, 2006 Preprint astro-ph/0603450
[3] Hinshaw G et al, Three-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: temperature analysis, 2006 Preprint astro-ph/0603451
[4] Jarosik N et al, Three-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: beam profiles, data processing, radiometer characterization and systematic error limits, 2006 Preprint astro-ph/0603452
[5] Available at http://lambda.gsfc.nasa.gov/product/map/current/
[6] Cole S et al (The 2dFGRS Collaboration), The 2dF galaxy redshift survey: power-spectrum analysis of the final dataset and cosmological implications, 2005 Mon. Not. R. Astron. Soc. 362 505 [astro-ph/0501174]
[7] Tegmark M et al (SDSS Collaboration), The 3D power spectrum of galaxies from the SDSS, 2004 Astrophys. J. 606 702 [astro-ph/0310725]
[8] Riess A G et al (Supernova Search Team Collaboration), Type Ia supernova discoveries at z > 1 from the Hubble space telescope: evidence for past deceleration and constraints on dark energy evolution, 2004 Astrophys. J. 607 665 [astro-ph/0402512]
[9] Astier P et al, The supernova legacy survey: measurement of Ω_M, Ω_Λ and w from the first year data set, 2006 Astron. Astrophys. 447 31 [SPIRES] [astro-ph/0510447]
[10] Lewis A and Bridle S, Cosmological parameters from CMB and other data: a Monte-Carlo approach, 2002 Phys. Rev. D 66 103511 [SPIRES] [astro-ph/0205436]
[11] Feng B, Gong X and Wang X, Assessing the effects of the uncertainty in reheating energy scale on primordial spectrum and CMB, 2004 Mod. Phys. Lett. A 19 2377 [SPIRES] [astro-ph/0301111]
[12] Bennett C L et al, First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: preliminary maps and basic results, 2003 Astrophys. J. Suppl. 148 1 [astro-ph/0302207]
[13] Spergel D N et al (WMAP Collaboration), First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: determination of cosmological parameters, 2003 Astrophys. J. Suppl. 148 175 [astro-ph/0302209]
[14] Peiris H V et al, First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: implications for inflation, 2003 Astrophys. J. Suppl. 148 213 [astro-ph/0302225]
[15] See e.g. Slosar A, Seljak U and Makarov A, Exact likelihood evaluations and foreground marginalization in low resolution WMAP data, 2004 Phys. Rev. D 69 123003 [SPIRES] [astro-ph/0403073]
[16] Feng B, Li M z, Zhang R J and Zhang X m, An inflation model with large variations in spectral index, 2003 Phys. Rev. D 68 103511 [SPIRES] [astro-ph/0302279]
[17] Kawasaki M, Yamaguchi M and Yokoyama J, Inflation with a running spectral index in supergravity, 2003 Phys. Rev. D 68 023508 [SPIRES] [hep-ph/0304161]
Weighing neutrinos in the presence of a running primordial spectral index

[18] Yamaguchi M and Yokoyama J, *Chaotic hybrid new inflation in supergravity with a running spectral index*, 2003 Phys. Rev. D 68 123520 [SPIRES] [hep-ph/0307373]

[19] Yamaguchi M and Yokoyama J, *Smooth hybrid inflation in supergravity with a running spectral index and early star formation*, 2004 Phys. Rev. D 70 023513 [SPIRES] [hep-ph/0402282]

[20] Chen C-Y, Feng B, Wang X-L and Yang Z-Y, *Reconstructing large running-index inflaton potentials*, 2004 Class. Quantum Grav. 21 3223 [SPIRES] [astro-ph/0404419]

[21] Ballesteros G, Casas J A and Espinosa J R, *Running spectral index as a probe of physics at high scales*, 2006 J. Cosmol. Astropart. Phys. ICPAP03(2006)001 [SPIRES] [hep-ph/0601134]

[22] Hannestad S, *Primordial neutrinos*, 2006 Preprint hep-ph/0602058

[23] See e.g. Lesgourgues J and Pastor S, *Massive neutrinos and cosmology*, 2006 Preprint astro-ph/0603494

[24] Dodelson S, Gates E and Stebbins A, *Cold + hot dark matter and the cosmic microwave background*, 1996 Astrophys. J. 467 10 [SPIRES] [astro-ph/9509147]

[25] Ichikawa K, Fukugita M and Kawasaki M, *Constraining neutrino masses by CMB experiments alone*, 2005 Phys. Rev. D 71 043001 [SPIRES] [astro-ph/0409768]

[26] Fukugita M, Ichikawa K, Kawasaki M and Lahav O, *Limit on the neutrino mass from the WMAP three year data*, 2006 Preprint astro-ph/0605362

[27] Available from http://cosmologist.info

[28] Bridle S L, Lewis A M, Weller J and Efstathiou G, *Reconstructing the primordial power spectrum*, 2003 Mon. Not. R. Astron. Soc. 342 L72 [astro-ph/0302306]

[29] Akaike H, *A new look at the statistical model identification*, 1974 IEEE Trans. Auto. Control 19 716

[30] Seljak U et al, *SDSS galaxy bias from halo mass-bias relation and its cosmological implications*, 2005 Phys. Rev. D 71 043511 [SPIRES] [astro-ph/0406594]

[31] Goobar A, Hannestad S, Mortsell E and Tu H, *The neutrino mass bound from WMAP-3, the baryon acoustic peak, the SNLS supernovae and the Lyman-alpha forest*, 2006 Preprint astro-ph/0602155

[32] Viel M, Haehnelt M G and Lewis A, *The Lyman-alpha forest and WMAP year three*, 2006 Preprint astro-ph/0604310

[33] Seljak U, Slosar A and McDonald P, *Cosmological parameters from combining the Lyman-alpha forest with CMB, galaxy clustering and SN constraints*, 2006 Preprint astro-ph/0604335

[34] Feng B, Xia J Q and Yokoyama J, *Scale dependence of the primordial spectrum from combining the three-year WMAP, galaxy clustering, supernovae, and Lyman-alpha forests*, 2006 Preprint astro-ph/0608365

[35] Feng B et al, 2006 unpublished

[36] See e.g. Bridle S L, Lahav O, Ostriker J P and Steinhardt P J, *Precision Cosmology? Not Just Yet*, 2003 Science 299 1532 [astro-ph/0303180]

[37] Lewis A, Challinor A and Lasenby A, *Efficient Computation of CMB anisotropies in closed FRW models*, 2000 Astrophys. J. 538 473 [SPIRES] [astro-ph/9911177]

[38] Available at http://camb.info

[39] Seljak U and Zaldarriaga M, *A line of sight approach to cosmic microwave background anisotropies*, 1996 Astrophys. J. 469 437 [SPIRES] [astro-ph/9603033]

[40] Available at http://cmbfast.org/