Note

Diversity and distribution of fish fauna in the Ib River, a tributary of Mahanadi, India

REJANI CHANDRAN1, L. K. TYAGI1, A. K. JAISWAR2, SUDHIR RAIZADA1, SANGEETA MANDAL1, TRIVESH S. MAYEKAR1, AMIT SINGH BISHT1, SANJAY KUMAR SINGH3 AND W. S. LAKRA2

1ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, Dilkusha P. O., Lucknow - 226 002 Uttar Pradesh, India
2ICAR-Central Institute of Fisheries Education Versova, Mumbai - 400 061, Maharashtra, India
3Aquaculture Research and Training Unit, ICAR- National Bureau of Fish Genetic Resources, Chinhat Lucknow - 227 105, Uttar Pradesh, India
e-mail: tyagilk@gmail.com

ABSTRACT

Ichthyofaunal survey was conducted in the Ib River (21°44’ to 22°50’ N; 83°56’ to 83°54’ E), an important tributary of Mahanadi, to evaluate the diversity and distribution of freshwater fishes along six sites on seasonal basis between February, 2016 and January, 2017. A total of 55 species belonging to 42 genera, 21 families and 9 orders were recorded from the study area. Maximum number of species belonged to the Order Cypriniformes (41.8%) followed by Siluriformes (21.8%) and Perciformes (21.8%). Maximum value of species richness was observed in downstream areas; Sundargarh and Barghat and least in upper stretches of Pamsala. Shannon–Weiner diversity index ranged between 2.47 to 3.68 at the six sites of Ib River indicating healthy state of the river. Bray-Curtis similarity cluster analysis suggests that similarities between sites decrease with increasing distance, with highest similarity found between Sundargarh and Barghat sites. Baseline data on fish biodiversity has been generated in this study which can now be periodically monitored and form basis for future conservation plans.

Keywords: Fish diversity, Ib River, Mahanadi tributary, Species richness

India, being the home for about 11.72% of global fish biodiversity and with 4 of the 34 global biodiversity hotspots; plays a key role in the world’s biological resources (Lakra et al., 2011). Freshwater resources like rivers, streams, springs and headwaters are not only indispensable for the wellbeing of human life but also support a wide plethora of aquatic flora and fauna. Of the 3398 fish species reported in India, which includes 2936 native fishes and 462 exotic fishes, 936 are freshwater fish species (NBFGR, 2016). As the human interference is increasing in these water bodies, basic information on the occurrence, abundance and distribution is important to protect and conserve the existing fish diversity.

Mahanadi is one of the major rivers of India, flowing west to east and draining into the Bay of Bengal. It ranks third among the peninsular rivers, in water potential and flood producing capacity. Mahanadi drains an area of about 1,32,000 km² in Chhattisgarh, Odisha, Jharkhand and Maharashtra with a total length of 860 km (Singh et al., 2013). The principal tributaries of Mahanadi are the Jonk, Seonath, Hasdeo, Mand, Ib, Ong and Tel. River Ib is one of its important tributaries as it is the parent river along with Mahanadi for the longest dam in the world, the Hirakud Dam. Ib tributary assumes importance as it is the source of water for many industries along the basin and also supports the livelihood of many people along its bank. Increasing population, habitat alteration and degradation can significantly affect the biodiversity and sustainability of its resources. Ib valley being an important centre for mining activities, it is important to document and monitor aquatic biodiversity for conservation and management, but little has been reported on fish diversity from Ib River. Hence, the present investigation was undertaken to study the ichthyofaunal diversity of the river Ib.

The Ib tributary rises at an elevation of about 762 m in the Raigarh District of Chhattisgarh. The river traverses for about 251 km before falling into the Hirakud reservoir and has a total catchment area of about 12,447 km² (Jain et al., 2007). Being a rain-fed river, nearly 80% of runoff occurs during the monsoon months (June to October). Land and water uses include human settlement, agriculture, livestock and fishing. Many industries have
flourished on the banks of the river Ib due to which, the Ib valley area is counted as one of the most important industrial zones of Eastern India.

Based on a pre-field survey conducted in upstream, midstream and downstream areas; a total of 6 sites (Fig. 1.) including all habitat types along the stretches of Ib River were selected and GPS coordinates were recorded for the present study (Table1). Sampling was undertaken between February, 2016 and January, 2017 during pre-monsoon, monsoon and post-monsoon.

Fish specimens were collected using gillnet, cast net, drag net and local indigenous traps. Experimental fishing was carried out using the expertise of local fishermen. Fish markets and landing centres associated with the river system were also visited to record species not captured during experimental fishing. Fish specimens between February, 2016 and January, 2017 during pre-monsoon, monsoon and post-monsoon.

Fish specimens were collected using gillnet, cast net, drag net and local indigenous traps. Experimental fishing was carried out using the expertise of local fishermen. Fish markets and landing centres associated with the river system were also visited to record species not captured during experimental fishing. Fish specimens

![Map showing sampling sites in Ib River](image)

Fig. 1. Map showing sampling sites in Ib River

Site	Stream type	GPS Coordinates	Altitude (ft)
Barghat	Downstream	N 21° 51´ 49´´, E 83° 56´ 51´´	657
Sundargarh	Downstream	N 22° 8´ 4´´, E 84° 0´ 39´´	716
Bhogapalli	Midstream	N 22° 11´ 44´´, E 84° 6´ 2´´	774
Samdama	Midstream	N 22° 24´ 38´´, E 83° 57´ 46´´	935
Pamsala	Upstream	N 22° 29´ 6´´, E 83° 55´ 30´´	1175
Ranikombo	Upstream	N 22° 50´ 9´´, E 83° 54´ 9´´	1501

Table 1. Details of the study sites in Ib River
were immediately counted, photographed and identified to the lowest possible taxon. Species were identified and confirmed following standard literature (Talwar and Jhingran, 1991; Jayaram, 1999). Total number of species and total number of individuals were recorded from each location and representative samples were preserved in 10% formaldehyde for further study.

Information on fish assemblage structure was estimated by adopting different diversity indices namely; Shannon Weiner diversity index (1963), Simpson’s evenness index (1949), Margalef species richness index (1958), Berger Parker dominance index (1970) and Equitability index. To better understand the similarity of fish assemblage structure between sampling sites, dendrograms were constructed using Bray-Curtis similarity index employing non-transformed species abundance data. All the analyses and calculations of diversity indices were performed using PAST software 3.15 (Hammer et al., 2001).

A total of 3923 individuals were sampled and studied from all the sites along the stretches of river Ib. A total of 55 species belonging to 42 genera, 21 families and

Table 2. Fish diversity of river Ib

Taxon	Name of the species	Category: Food Fish/Ornamental Fish
Order: Cypriniformes Family: Cyprinidae	1. Catla catla	Food Fish
	2. Labeo calbasu	Food Fish
	3. Labeo gonius	Food Fish
	4. Labeo rohita	Food Fish
	5. Labeo bata	Food Fish
	6. Labeo boga	Food Fish
	7. Cirrhinus reba	Food Fish
	8. Cirrhinus mrigala	Food Fish
	9. Puntius sophore	Ornamental Fish
	10. Puntius phutunio	Ornamental Fish
	11. Pethia ticto	Ornamental Fish
	12. Systomus sarana	Food Fish
	13. Amblypharyngodon mola	Food Fish/ Ornamental fish
	14. Chela laubuca	Ornamental Fish
	15. Salmophasia phulo	Food Fish
	16. Barilius barila	Ornamental Fish/Food Fish
	17. Barilius bendilisis	Ornamental Fish/Food Fish
	18. Osteobrama cotio	Ornamental Fish/Food Fish
	19. Garra mullya	Ornamental Fish
	20. Garra gotyla	Ornamental Fish
	21. Rasbora daniconius	Ornamental Fish
	22. Lepidocephalichthys guntea	Food Fish/ Ornamental fish
	23. Neonemacheilus botia	Ornamental Fish
Order: Siluriformes Family: Siluridae	24. Ompok bimaculatus	Food Fish/ Ornamental Fish
	25. Wallago attu	Food Fish
	26. Ailia colita	Food Fish
	27. Clupisoma garua	Food Fish
	28. Silonia silondia	Food Fish
	29. Eutropiichthys vacha	Food Fish
	30. Rita chrysea	Food Fish
	31. Sperata seenghala	Food Fish
	32. Sperata aurella	Food Fish
	33. Mystus cavasius	Food Fish
	34. Mystus bleekeri	Food Fish/ Ornamental Fish
Family: Bagridae	35. Heteropneustes fossilis	Food Fish/ Ornamental Fish

(Conti....)
Taxon	Name of the species	Category: Food fish/Ornamental Fish
Order Perciformes	36. *Channa marulius*	Food Fish
Family: Channidae	37. *Channa punctatus*	Food Fish
Family Centropomidae	38. *Chanda nama*	Ornamental Fish
Family: Nandidae	39. *Nandus nandus*	Food Fish/Ornamental Fish
Family: Ambassidae	40. *Paraambassis lala*	Ornamental Fish
	41. *Paraambassis ranga*	Ornamental Fish
Family: Cichlidae	42. *Oreochromis niloticus*	Food Fish
	43. *Oreochromis mossambicus*	Food Fish
Family: Anabantidae	44. *Anabas testudineus*	Food Fish/Ornamental Fish
	45. *Colisa fasciata*	Ornamental Fish
Family: Sciaenidae	46. *Johnius coitor*	Food Fish
Family: Gobiidae	47. *Glossogobius giuris*	Food Fish/Ornamental Fish
Order: Synbranchiformes	48. *Mastacembalus armatus*	Food Fish/Ornamental Fish
Family: Mastacembalidae	49. *Macrognathus aral*	Food Fish/Ornamental Fish
Order: Beloniformes	50. *Xenentodon cancila*	Ornamental fish
Family: Belonidae	51. *Notoperus notopterus*	Food Fish/Ornamental Fish
Order: Osteoglossiformes	52. *Rhinomugil corsula*	Food Fish
Family: Notoperidiidae	53. *Gudusia chapra*	Food Fish
Family: Mugilidae	54. *Goniolosa manmina*	Food Fish
Order: Clupeiformes	55. *Tetraodon cutcutia*	Ornamental fish

9 orders were recorded from the study area (Table 2). Cypriniformes represented by 23 species was found to be the most dominant order (41.8%) followed by Siluriformes and Perciformes, both with 12 species each (21.8%). Cyprinidae was the richest family (21 species) followed by Bagridae (5 species) and Schilbidae (4 species).

The maximum population density of cyprinids was recorded from Barghat site. The most abundant genus recorded was *Labeo* (comprising *L. rohita*, *L. gonius*, *L. calbasu*, *L. bata* and *L. boga*). Two exotic species viz., *Oreochromis mossambicus* and *O. niloticus* were also recorded even though their distribution was limited to lower stretches of the river possibly due to its movement from Hirakud Reservoir and poor flow of water. *O. mossambicus* was recorded in very low density compared to *O. niloticus*. *Rita chrysea*, popularly known as 'Mahanadi rita', an endemic species to Mahanadi River (Menon, 1999), was also recorded. *R. chrysea* was recorded only in the lower and middle stretches of river I.b, possibly due to its amphidromous behaviour. Out of the 55 fish species reported, 27 species are food fishes, 15 have ornamental value while 13 species have both food and ornamental importance (Table 2). Though ornamental potential of the fishes was not exploited to the fullest, many such species (16 species) are consumed as food fish in the area. Maximum number of fishes were recorded from Barghat (1565), followed by Sundargarh (1296). The bulk of fishes from these sites were due to dominance of juveniles during the summer months because of indiscriminate fishing activity. Indigenous drag nets are operated intensely, capturing fingerlings and juveniles of *Osteobrama cotio*, *Chanda nama*, *Paraambassis lala* and *Gudusia chapra* which constituted major share. Forty nine species were recorded in the lower stretch; 22 in middle stretch and the least in upper stretch with 13 species. The number of species recorded from the sites Barghat, Sundargarh, Bhogapalli, Samdama, Pamsala and Ranikombo were 49, 48, 22, 20, 13 and 13, respectively (Table 3).

Large diversity and abundance of species recorded in the lower and middle stretches may be attributed to the availability of larger water volume due to development of artificial bundhs, migration of fish and wider river course. Being a rainfed river, water in the upper and middle stretches dries up eventually after the monsoon. To meet the water requirements, the water is held in bundh in the lower stretches which might be the possible reason for high abundance and diversity of species from this stretch. The increase in species richness along the upstream to downstream of the river can also be attributed to the presence of numerous pools along the stretch where diverse phyto and zooplankton dwell forming the
Table 3. Variation in diversity factors along the different sites of Ib River

Factor	Barghat	Sundargarh	Bhogapalli	Samdama	Pamsala	Ranikombo
Taxa	49	48	22	20	13	13
Individuals	1565	1296	373	284	209	196
Dominance Index	0.04221	0.02907	0.05373	0.06060	0.09073	0.08585
Simpson evenness index	0.9578	0.9709	0.9463	0.9394	0.9093	0.9142
Shannon-Weiner diversity index	3.544	3.689	2.995	2.888	2.475	2.502
Margalef richness index	6.526	6.558	3.546	3.363	2.246	2.274
Equitability index	0.9106	0.9530	0.9688	0.9641	0.9651	0.9756

preferred food for many species (Raghavan et al., 2008). The dominance of rocks and boulders in the upstream stretches inhibited the operation of dragnets and gillnets and hence fishing was carried out employing traps and cast nets in these areas. As drag nets sweep the bottom and perform indiscriminate fishing, the lack of usage of this gear may be responsible for the lower abundance of species recorded during the present study.

Mystus cavasius, *M. bleekeri*, *Cirrhinus reba*, *Labeo boga*, *Puntius sophore* and *Barilius bendelisis* were recorded from all three stretches of the river Ib. *M. cavasius* has been reported from a wide variety of habitats, including both fast and slow flowing rivers and streams (Nath and Dey, 2000) explaining its occurrence in all the three stretches of river Ib along with *M. bleekeri*. Ubiquitous distribution of cyprinids in all the three stretches (upper, lower and middle) was also recorded by Shahnawaz et al. (2010) in river Bhadra of Western Ghats. The Cyprinid fish species; *Garra gotyla*, *G. mullya*, *Lepidocephalichthys guntea*, *Neomochelichthys botia* and *Pethia ticto* were rare and were recorded only from the upper stretches, as they are known to occur in areas with boulders and rocks. A total of 27 fish species were recorded only from the lower stretches which were not recorded from the middle and upper stretches of the river. Maximum value of species richness was for Sundargarh site (6.558) followed by Barghat (6.526) and least for Pamsala (2.246). Higher richness was recorded in downstream areas and least in upper stretches.

The value of Shannon-Weiner diversity index calculated based on fish assemblage for the six sites of Ib River ranged between 2.475 to 3.689 (Table 3). Sundargarh exhibited highest value (3.689) while Pamsala, the least (2.475). Simpson index (1-D) values did not differ much and ranged between 0.90 in Pamsala to 0.97 in Sundargarh. This reveals that even though species richness is varying, the evenness of sample distribution among species is very high. High equitability values recorded (0.91-0.97) are reflecting a fish assemblage coexisting equitably in the river system. However, it was observed that the calculated Simpson’s dominance index were very low, ranging from 0.029 to 0.090. Similar results have been reported by many researchers (Ramasundar, 2005; Herder and Freyhoff, 2006; Higgins and Strauss, 2008; Corpuz et al., 2016). Low dominance and high evenness values indicate that, dominant and non-dominant fish species are occupying separate aquatic niches (Ramasundar, 2005), especially in Sundargarh and Barghat where lots of variations in river habitat were noticed. Highest similarity was seen between Sundargarh and Barghat (0.824), the lower stretch sites followed by Bhogapalli and Sundargarh. The lowest similarity index is between Ranikombo and Barghat (0.087). Based on the Bray-Curtis similarity cluster analysis, the species composition in Ib River basin exhibited two distinct clusters (Fig. 2); Pamsala and Ranikombo, representing upstream areas formed one cluster while the rest of the sites formed another cluster. The dendrogram trend suggests that as the distance between the sites increases the similarity decreases.

Many researchers have carried out studies on fish diversity of the Mahanadi River. Day (1889) reported 146 species; Hora (1940) 43; Job et al. (1955) 103, Jayaram and Majumdar (1976) 42, Desai and Shrivastava (2005) 48; Om Prakash et al. (2005) 65 and Tamboli and Jha...
The present study has documented the fish diversity of Ib River and revealed that the river is endowed with rich diversity of fish species. Like many other rivers, Ib River too, is facing threat due to anthropogenic activities and indiscriminate fishing activity, especially during the summer months. In order to ascertain the future of this river, conservation and management plans need to be formulated and the baseline data generated on fish diversity would be helpful in formulation of effective conservation strategies.

Acknowledgements

The authors are grateful to the Director, ICAR-NBFGR, Lucknow and Director, ICAR-CIFE, Mumbai for their support and guidance in this study.

References

Berger, W. H. and Parker, F. L. 1970. Diversity of planktonic foraminifera in deep sea sediments. Science, 168: 1345-1347.

Chauhan, B. S. 1947. Fish and fisheries of the Patna State, Orissa. Rec. Indian Mus., 45(2 & 3): 267-282.

Corpuz, M. C., Paller, V. V. and Ocampo, P. P. 2016. Diversity and distribution of freshwater fish assemblages in Lake Taal river systems in Batangas, Philippines. J. Environ. Sci. Manag., 19(1): 85-95.

Day, F. 1889. The Fauna of British India, including Ceylon and Burma. Taylor & Francis, London, 548 pp.

Desai, V. R. and Shrivastava, N. P. 2005. Ecology and fisheries of Ravishankar Sagar Reservoir. Bulletin No. 126. ICAR-Central Inland Fisheries Research Institute, Barrackpore, p.1-37.

Hammer, O., Harper, D. A. T. and Ryan, P. D. 2001. PAST: Paleontological Statistical software package for education and data analysis. Paleontol. Elecron., 4(1): 1-9. http://palaeoelectronica.org/2001_1/past/issue1_01.htm.

Herder, F. and Freyhof, J. 2006. Resource partitioning in a tropical stream fish assemblage. J. Fish Biol., 69: 571-589. doi:10.1111/j.1095-8649.2006.01126.x.

Higgins, C. L. and Strauss, R. E. 2008. Modelling stream fish assemblages with niche apportionment models: patterns, processes and scale dependence. T. Am. Fish. Soc., 137: 696-706. doi/10.1577/T07-061.1.

Hora, S. L. 1940. On collection of fish from the headwaters of the Mahanadi River, Raipur District, C. P. Rec. Indian Mus., 42(2): 365-374.

Jain, S. K., Agarwal, P. K. and Singh, V. P. 2007. Hydrology and water resources of India. Springer Publication, Netherlands, 354 pp.

Jayaram, K. C. 1999. The freshwater fishes of the Indian region, Narendra Publishing House, New Delhi, 551 pp.

Jayaram, K. C. and Majumdar, N. 1916. On a collection of fish from the Mahanadi. Rec. Zool. Surv. India, 69: 305-323.

Joh, T. J., David, A. and Das, A. K. 1955. Fish and fisheries of the Mahanadi in relation to the Hirakund Dam. Indian. J. Fish., 2(1): 1-36.

Lakra, W. S., Das, P. and Sarkar, U. K. 2011. Fish genetic resources and their conservation. In: Handbook of fisheries and aquaculture, Indian Council of Agricultural Research, New Delhi. p. 32-65.

Margalef, R., 1958. Temporal succession and spatial heterogeneity in phytoplankton. In: Buzzati-Traverso (Ed.), Perspectives in marine biology, University of California. Press, Berkeley, p. 323-347.

Menon, A. G. K. 1999. Check list - Fresh water fishes of India. Rec. Zool. Surv. India, Occ. Paper. No. 175: 366 pp.

Nath, P. and Dey, S. C. 2000. Conservation of fish germplasm resources of Arunachal Pradesh. In: Ponniah, A. G. and Sarkar, U. K. (Eds.) Fish biodiversity of North-east India. NBFGR. NATP Publ., p. 49-67.

NBFGR 2016. NBFGR Annual Report 2015-2016, ICAR-National Bureau of Fish Genetic Resources, Lucknow, India, 103 pp.

Om Prakash, Singh, S., Vardia, H. K. and Chari, M. S. 2005. Fish diversity in the basin of river Jomk National Symposium on Biodiversity: Current Status and Prospects. Pt. Ravishankar Shukla University, Raipur (C.G.), 88 pp.

Raghavan, R., Prasad, G., Ali, A. and Pereira, B. 2008. Fish fauna of River Chalakudy part of Western Ghats biodiversity hotspot (South India) - patterns of distribution, threats and conservation needs. Biodivers. Conserv., 17: 3119- 3131.

Ramsundar, H. 2005. The distribution and abundance of wetland ichthyofauna and exploitation of the fisheries in the Godineau Swamp, Trinidad - Case study. Revista. de Biologia. Tropica, 53(1): 13-23.

Shahnawaz, A., Venkateshwarlu, M., Somashekar, D. S. and Santosh, K. 2010. Fish diversity with relation to water quality in Bhadra River of Western Ghats (India). Environ. Monit. Assess., 161: 83-91. DOI: 10.1007/s10661-008-0729-0.

Shannon, C. E. and Wiener, W. 1963. The mathematical theory of communication. University Illinois Press, Urbana, 36 pp.
Simpson, E. H. 1949. Measurement of diversity. *Nature*, 163: 688 pp.

Singh, T. K., Guru, B. C. and Swain, S. K. 2013. Review of the research on the fish diversity in the river Mahanadi and identifying the probable potential ornamental fishes among them with reference to threats and conservation measures, *Res. J. Anim. Vet. Fish. Sci.*, 1(3): 16-24.

Talwar, P. K. and Jhingran, A. G. 1991. *Inland fishes of India and adjacent countries*, vol.1 and 2, 3rd edn. Oxford and IBH Co. Pvt. Ltd., New Delhi, 1158 pp.

Tamboli, R. K. and Jha, Y. N. 2010. Status of piscine diversity of river Mahanadi in Janjgir-Champa District, *Int. Res. J. Lab Land*, 2(6): 139-143.