Importance Shewanella spp., which are known to carry chromosomally located bla_{OXA}-55-like genes, have mainly been isolated from marine environments; however, they can also cause infections in humans. In this study, we compared the molecular characteristics of clinical isolates of Shewanella spp. with those originating from environmental sources. All 10 clinical isolates were genetically identified as members of the Shewanella algae clade (S. algae, S. chilikensis, and S. carassii); however, all but one of the 13 environmental isolates were identified as various Shewanella spp. outside the S. algae clade. Although all isolates of the S. algae clade commonly possessed an approximately 12,500-bp genetic region harboring bla_{OXA}-55-like, genetic structures outside this region were different among species. Among S. algae clade isolates, only one showed carbapenem resistance, and this isolate showed a high level of bla_{OXA}-55-like transcription and β-lactamase activity. Although this study documented the importance of the S. algae clade in human infections and the relationship between enhanced production of OXA-55-like and resistance to carbapenems in S. algae, further studies are needed to elucidate the generalizability of these findings.

Genetic Environment Surrounding bla_{OXA}-55-like in Clinical Isolates of Shewanella algae Clade and Enhanced Expression of bla_{OXA}-55-like in a Carbapenem-Resistant Isolate

Yuki Ohama, Koki Aoki, Sohei Harada, Tatsuya Nagasawa, Tomoo Sawabe, Lisa Nonaka, Kyoji Moriya, Yoshikazu Ishii, Kazuhiro Tateda

Department of Microbiology and Infectious Diseases, Toho University Graduate School of Medicine, Tokyo, Japan
Department of Infection Control and Prevention, The University of Tokyo Hospital, Tokyo, Japan
Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
Department of Nutritional Science, Faculty of Human Life Science, Shokei Gakuen, Kumamoto, Japan

ABSTRACT Although Shewanella spp. are most frequently isolated from marine environments; more rarely, they have been implicated in human infections. Shewanella spp. are also recognized as the origin of genes for carbapenem-hydrolyzing class D β-lactamases. Due to the spread globally among Enterobacteriales in recent years, risk assessments of both clinical and environmental Shewanella strains are urgently needed. In this study, we analyzed the whole-genome sequences of 10 clinical isolates and 13 environmental isolates of Shewanella spp. and compared them with those of Shewanella species strains registered in public databases. In addition, the levels of bla_{OXA}-55-like transcription and β-lactamase activity of a carbapenem-resistant Shewanella algae isolate were compared with those of carbapenem-susceptible S. algae clade isolates. All clinical isolates were genetically identified as S. algae clade (S. algae, Shewanella chilikensis, and Shewanella carassii), whereas all but one of the environmental isolates were identified as various Shewanella spp. outside the S. algae clade. Although all isolates of the S. algae clade commonly possessed an approximately 12,500-bp genetic region harboring bla_{OXA}-55-like, genetic structures outside this region were different among species. Among S. algae clade isolates, only one showed carbapenem resistance, and this isolate showed a high level of bla_{OXA}-55-like transcription and β-lactamase activity. Although this study documented the importance of the S. algae clade in human infections and the relationship between enhanced production of OXA-55-like and resistance to carbapenems in S. algae, further studies are needed to elucidate the generalizability of these findings.

Citation Ohama Y, Aoki K, Harada S, Nagasawa T, Sawabe T, Nonaka L, Moriya K, Ishii Y, Tateda K. 2021. Genetic environment surrounding bla_{OXA}-55-like in clinical isolates of Shewanella algae clade and enhanced expression of bla_{OXA}-55-like in a carbapenem-resistant isolate. mSphere 6:e00593-21. https://doi.org/10.1128/mSphere.00593-21.

Editor Patricia A. Bradford, Antimicrobial Development Specialists, LLC
Copyright © 2021 Ohama et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
Address correspondence to Yoshikazu Ishii, yishii@med.toho-u.ac.jp.
Received 28 June 2021
Accepted 23 September 2021
Published 13 October 2021
Shewanella spp. are oxidase-positive, catalase-positive, nonfermentative Gram-negative motile bacilli characterized by the production of hydrogen sulfide (1). Shewanella spp. are most frequently detected in marine environments but have also been isolated from extreme environments, such as polar (Shewanella livingstonensis and Shewanella frigidimarina) and high-pressure (Shewanella banthica and Shewanella violacea) environments (2). Shewanella spp. have also been implicated in human infections, but only infrequently. Shewanella spp. are susceptible to most antimicrobial agents, including β-lactams, but several clinical isolates resistant to carbapenems have been reported (3, 4).

Although only five species of Shewanella were recognized in 1998, this number had increased to 57 by 2011. Selection of an appropriate analytical method is known to be crucial for the accurate species identification of Shewanella isolates, and 16S rRNA and gyrB sequencing, which are common genetic analysis methods for species identification, do not have sufficient resolution to distinguish between Shewanella species (1). Therefore, the names of identified species reported in the academic literature and public databases are often unintentionally incorrect. In microbial identification in the clinical microbiology laboratory, distinguishing between the two clinically important species Shewanella algae and Shewanella putrefaciens is possible by examining whether they can grow in Salmonella-Shigella agar at 4 or 42°C or in the presence of 6.5% NaCl (1). However, reports show that it is difficult to accurately distinguish these species using the automated identification instruments commonly used in microbiology laboratories (3).

Since the early 2000s, Shewanella spp. have been acknowledged to possess genes for carbapenem-hydrolyzing class D β-lactamases. Based on the analysis of a limited number of strains, Shewanella oneidensis and S. algae have been shown to respectively carry blaOXA-54 and blaOXA-55. In their genomes (5, 6). The recent spread of the blaOXA-48 group among Enterobacterales prompted the search for the origin of these genes, and Shewanella xiamenensis has been identified as the progenitor (7, 8). The gene structures in the vicinity of blaOXA have been shown to be similar among a variety of Shewanella species, with a gene encoding “Peptidase_C15” protein upstream and a lysR gene downstream, but there is a scarcity of information on the broader genetic environment (8, 9).

Although recent genetic analysis studies have confirmed the presence of blaOXA-55 in S. algae isolates, the extent of the involvement of blaOXA-55 in β-lactam resistance, especially carbapenem resistance, in this species is unknown (4). In addition, whether the genetic environment of blaOXA is common to the different strains of S. algae and to closely related species of the S. algae clade, such as Shewanella carassii, Shewanella chilikensis, and Shewanella indica, is unconfirmed.

In this study, we analyzed whole-genome sequences of the collected clinical and environmental strains of Shewanella spp. and compared them with the genomes of Shewanella species type strains and other strains registered in GenBank. In particular, we genetically characterized the S. algae clade, which is of great clinical importance, by examining blaOXA-55-like and the genetic environment surrounding the gene, and we examined the relationship between the susceptibility of Shewanella spp. to β-lactams, including carbapenems, the levels of blaOXA-55-like transcription and OXA-55-like expression, and the amino acid sequences of the expressed proteins.

RESULTS

Species identification of study isolates by ANI of genome sequence. The whole-genome sequencing data obtained in this study and registered in GenBank were clustered based on an average nucleotide identity (ANI) of ≥95%, and the bacterial species were identified according to the presence of type strains in each cluster (Table 1; see
Strain name	Type	Provider	Isolation date	Source	Species	**bla**_{OXA} (% nucleotide identity)^a	**Other resistance gene(s)** (% nucleotide identity)^b	Accession no.	Reference	
TUM4442	No	Toho University Omori Medical Center	August 1998	Clinical isolate (blood)	Shewanella algae	bla_{OXA-SHE} (99.2)	qnrA7 (99.1)	AP024610.1	14	
TUM17377	No	The University of Tokyo Hospital	January 2012	Clinical isolate (blood)	Shewanella chilikensis	bla_{OXA-SHE} (95.9)	qnrA2 (100)	AP024611.0	This study	
TUM17378	No	The University of Tokyo Hospital	June 2014	Clinical isolate (biopsy specimen of soft tissue)	Shewanella algae	bla_{OXA-SHE} (99.2)	qnrA7 (99.2)	AP024612.1	This study	
TUM17379	No	The University of Tokyo Hospital	September 2014	Clinical isolate (drainage fluid from abdominal cavity)	Shewanella algae	bla_{OXA-SHE} (99.0)	qnrA3 (99.9)	AP024613.1	This study	
TUM17382	No	The University of Tokyo Hospital	July 2015	Clinical isolate (bile)	Shewanella algae	bla_{OXA-SHE} (99.0)	qnrA3 (99.4)	AP024614.1	This study	
TUM17383	No	The University of Tokyo Hospital	July 2015	Clinical isolate (drainage fluid from abdominal cavity)	Shewanella algae	bla_{OXA-SHE} (99.0)	qnrA3 (99.4)	AP024615.1	This study	
TUM17384	No	The University of Tokyo Hospital	July 2015	Clinical isolate (drained abscess from extremities)	Shewanella algae	bla_{OXA-SHE} (99.0)	qnrA3 (99.4)	AP024616.1	This study	
TUM17386	No	The University of Tokyo Hospital	September 2015	Clinical isolate (stool)	Shewanella algae	bla_{OXA-SHE} (99.2)	qnrA3 (99.7)	AP024617.1	This study	
TUM17387	No	The University of Tokyo Hospital	August 2016	Clinical isolate (biopsy specimen of intestinal mucosa)	Shewanella carassii	bla_{OXA-SHE} (95.7)	qnrA1 (96.0)	AP024618.1	This study	
ATCC 49138	Yes	National Collection of Type Cultures	Unknown	Clinical isolate	Shewanella algae	bla_{OXA-SHE} (99.7)	aadA7 (100)	qnrA3 (99.2)	AP024609.1	This study
JCM1561	Yes	National Research Institute of Fisheries Science	June 1998	Environmental isolate (black porgy intestine, Hiroshima, Japan)	Shewanella schlegeliana	None	None	BPXE00000000.1	22	
JCM1563	Yes	National Research Institute of Fisheries Science	June 1995	Environmental isolate (saury intestine, Pacific Ocean off Japan)	Shewanella sairae	None	None	BPEY00000000.1	22	
JCM21037 (=ATCC 51192)	Yes	Central Fisheries Research Institute	Unknown	Environmental isolate (red alga)	Shewanella algae	bla_{OXA-SHE} (99.3)	qnrA3 (99.9)	JAAXPX00000000.1	This study	
LMG23746	Yes	Central Fisheries Research Institute	1995-2001	Environmental isolate (marine fish in the Baltic Sea)	Shewanella algidipiscicola	None	None	BPFB00000000.1	23	

(Continued on next page)
Strain name	Type	Provider	Isolation date	Source	Species	Other resistance gene(s) (% nucleotide identity)	Accession no.	Reference	
T147	Yes	Central Fisheries Research Institute	1995-2001	Environmental isolate (marine fish in the Baltic Sea)	Shewanella glacialipiscicola	bla_{OXA-548} (81.2)	None	BPFC00000000.1	23
ATCC BAA-1207	Yes	Central Fisheries Research Institute	September 2001	Environmental isolate (marine fish)	Shewanella hafniensis	bla_{OXA-548} (98.3)	None	BPFD00000000.1	This study
ATCC BAA-642	No	Central Fisheries Research Institute	1997	Environmental isolate (marine invertebrate)	Shewanella colwelliana	None	None	BPFF00000000.1	This study
ATCC BAA-1206	No	Central Fisheries Research Institute	September 2001	Environmental isolate (marine fish)	Shewanella morhuae	bla_{OXA-551} (82.0)	None	BPFE00000000.1	This study
KT0246	No	Hokkaido University	April 2007	Environmental isolate (Apostichopus japonicus small intestine, Ainuma, Japan)	Shewanella sp. (unidentified)	None	None	BPEV00000000.1	24
c952	No	Hokkaido University	April 2007	Environmental isolate (Apostichopus japonicus small intestine, Ainuma, Japan)	Shewanella sp. (unidentified)	None	None	BPEW00000000.1	25
MBTL60-007	No	Ehime University	April 2004	Environmental isolate (sediment at aquaculture site along the coast of Seto Inland Sea)	Shewanella sp. (unidentified)	aadA2b (99.9) sul2 (100) sul1 (100) tet(M) (99.8) tet(C) (99.7) tet(B) (99.9) qacE (100) mph(G) (99.9) mef(C) (100) mph(F) (100)	BPET00000000.1	26	
MBTL60-112-B1	No	Ehime University	May 2004	Environmental isolate (sediment at aquaculture site along coast of Seto Inland Sea)	Shewanella sp. (unidentified)	None	None	BPEZ00000000.1	26
MBTL60-112-B2	No	Ehime University	May 2004	Environmental isolate (sediment at aquaculture site along coast of Seto Inland Sea)	Shewanella sp. (unidentified)	None	None	BPFA00000000.1	26
Strain name	Type strain	Provider	Isolation date	Source	Species	*bla*_{OXA} (% nucleotide identity)^a	Other resistance gene(s) (% nucleotide identity)^b	Accession no.	Reference
-------------	-------------	----------	---------------	--------	---------	----------------	---------------------------------	--------------	-----------
MBTL60-118	No	Ehime University	May 2004	Environmental isolate (sediment at aquaculture site along coast of Seto Inland Sea)	*Shewanella colwelliana*	None	tet(B) (99.8)	BPEU00000000.1	26

^aThe *bla*_{OXA} gene identified with ResFinder and the sequence similarity between the *bla*_{OXA} of each strain and the reference genes (e.g., *bla*_{OXA-55}, *bla*_{OXA-SHE}, etc.) are shown. Although *bla*_{OXA-55} and *bla*_{OXA-SHE} were separately registered as reference genes of ResFinder, nucleotide sequences of these genes have 99.0% similarity, and both were regarded as *bla*_{OXA-55}-like in this study.

^bPercentages indicate the nucleotide sequence similarity of each detected resistance gene to the reference genes in the ResFinder database.
Among the 22 isolates sequenced in this study, 14 formed a cluster with the type strains, and their bacterial species were determined. In addition, four isolates were type strains, and the remaining four isolates were either independent or clustered with other study isolates only: hence, the species could not be determined. Nine isolates were identified as *S. algae*, and all except one were clinical isolates, including ATCC 49138, a clinical isolate registered as *S. haliotis* by ATCC. In addition, two isolates respectively identified as *S. carassii* and *S. chilikensis* belonging to the *S. algae* clade were also clinically isolated. Taken together, all clinical isolates analyzed were identified as *S. algae* clade members, and all but one of the environmental isolates in this study were identified as *Shewanella* spp. outside the *S. algae* clade.

Core genome SNP-based phylogenetic analysis of *S. algae* clade isolates. The core genome of the *S. algae* clade, which covered 60.6% (2,977,854/4,909,921 bp) of the reference genome in the alignment, *S. algae* TUM17379 (accession no. AP024613.1). The numbers of SNPs are shown in the heat map. BrY was identified as *S. chilikensis* using the average nucleotide identity (Table S1).

Table S1 in the supplemental material). Among the 22 isolates sequenced in this study, 14 formed a cluster with the type strains, and their bacterial species were determined. In addition, four isolates were type strains, and the remaining four isolates were either independent or clustered with other study isolates only: hence, the species could not be determined. Nine isolates were identified as *S. algae*, and all except one were clinical isolates, including ATCC 49138, a clinical isolate registered as *S. haliotis* by ATCC. In addition, two isolates respectively identified as *S. carassii* and *S. chilikensis* belonging to the *S. algae* clade were also clinically isolated. Taken together, all clinical isolates analyzed were identified as *S. algae* clade members, and all but one of the environmental isolates in this study were identified as *Shewanella* spp. outside the *S. algae* clade.

Core genome SNP-based phylogenetic analysis of *S. algae* clade isolates. The core genome of the *S. algae* clade, which covered 60.6% (2,977,854 bp) of the genome of the reference isolate, was used for the single-nucleotide polymorphism (SNP)-based phylogenetic analysis. Isolates of the same species clustered into the same branch of the phylogenetic tree (Fig. 1). SNP differences ranged from 26,452 bp to 173,920 bp (median, 49,369 bp).

Comparison of **bla_{OXA} and the surrounding genetic environment.** We compared the 25,000-bp genetic regions surrounding $\text{bla}_{\text{OXA-55-like}}$ among the chromosomes of *S. algae* isolates. The genetic structures around $\text{bla}_{\text{OXA-55-like}}$ were almost identical, except for minor differences, which included the presence of a gene for an IS4 family transposase in three of the nine isolates (Fig. 2a). The comparison of a 40,000-bp genetic region surrounding $\text{bla}_{\text{OXA-55-like}}$ of *S. algae* clade isolates, including non-algae species (*S. chilikensis* and *S. carassii*), is shown in Fig. 2b. These three species shared an approximately 12,500-bp common genetic region around $\text{bla}_{\text{OXA-55-like}}$ including the adjacent C15 gene and lysR. However, beyond this shared region, the nucleotide sequences were unique to each species.
Antimicrobial susceptibilities of *S. algae* clade isolates and *E. coli* DH5α carrying *bla*_{OXA-55-like} from *S. algae* isolates. Among the *S. algae* clade isolates, only TUM17384 was nonsusceptible to piperacillin and imipenem, while all other isolates were susceptible to piperacillin, cefotaxime, ceftazidime, aztreonam, imipenem, and meropenem (Table 2). TUM17377 (*S. chilikensis*) and TUM17378 (*S. carassii*) had lower MICs for cefazolin compared to *S. algae* isolates and also showed low MICs for ampicillin and ampicillin/clavulanic acid.

While some *Escherichia coli* DH5α isolates carrying the pHSG298 vector with *bla*_{OXA-55-like} derived from *S. algae* isolates showed higher MICs for ampicillin, piperacillin, and cefazolin than DH5α isolates carrying pHSG298 without *bla*_{OXA-55-like} no isolates showed increased MICs for cefotaxime, ceftazidime, aztreonam, imipenem, or meropenem (Table 2).

Comparison of the transcription levels of *bla*_{OXA-55-like}. TUM17384 had an approximately 200-fold-higher level of *bla*_{OXA-55-like} transcription than TUM4442 (the reference isolate) (Fig. 3). The remaining isolates had *bla*_{OXA-55-like} transcription levels of 1.8- to 17.5-fold compared with that of TUM4442.

Comparison of β-lactamase activity in crude enzyme solution. We measured the β-lactamase activity of the crude enzyme solution of *S. algae* clade isolates. The hydrolytic activities for nitrocefin, benzylpenicillin, oxacillin, and meropenem of the crude enzyme solution of TUM17384, which had a high initial velocity of *bla*_{OXA-55-like} enzyme,
were approximately 55, 4, 26, and 9 times higher, respectively, than the average initial velocity of the remaining 10 isolates (Table 3).

Alignment of OXA-55-like β-lactamase amino acid. The amino acid sequences of the OXA-55-like from the 11 *S. algae* strains, OXA-55, and OXA-SHE were aligned, and one to eight amino acid substitutions were detected (Table 4). The amino acid sequences of OXA-55-like*TUM17378* and OXA-55-like*TUM17386* were identical, as were those of OXA-55-like*TUM4442*, OXA-55-like*TUM17379*, and OXA-55-like*TUM17382* (Table 4).

DISCUSSION

In this study, we analyzed the whole-genome sequences of *Shewanella* isolates recovered from clinical or environmental sources and publicly available *Shewanella* isolates and compared them with genomic data deposited in GenBank. All nine clinical isolates and one publicly available isolate originating from a clinical sample were identified as members of the *S. algae* clade. Although all isolates in the *S. algae* clade
shared an approximately 12,500-bp genetic region harboring blaOXA-55-like, the genetic structures outside this region differed among the species. Among the S. algae clade, only one S. algae isolate showed carbapenem resistance, and this strain had high levels of blaOXA-55-like transcription and β-lactamase activity.

The difficulties with the correct identification of species of Shewanella are universally recognized. All S. algae clade isolates that had been identified in the clinical setting (those isolated at University of Tokyo Hospital [UTH]), were incorrectly identified by automated instruments and matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS). In addition, some of the isolates’ draft whole-genome sequences, which were available in GenBank, were registered under the name of different Shewanella species. These results are expected, because it is difficult to identify Shewanella spp. using automated instruments and 16S rRNA sequencing (1, 3). Although misidentification by MALDI-TOF MS has been reported previously (10), it is assumed that this was partly due to the insufficient registration of reference

TABLE 2 Antimicrobial susceptibility of isolates

Isolate	MIC (µg/ml) of:								
	AMP	AMPC	PIP	CFZ	CTX	CAZ	ATM	IPM	MEM
S. algae TUM4442	64	64	1	>128	≤0.06	0.25	0.25	1	≤0.06
JCM21037 (=ATCC 51192)	8	8	1	>128	0.25	0.5	0.5	4	0.125
TUM17378	16	≤0.06	0.5	>128	0.125	0.5	0.5	1	0.125
TUM17379	0.25	0.06	0.5	>128	0.06	0.25	0.25	1	≤0.06
TUM17382	4	0.06	0.5	>128	0.125	0.25	0.25	2	≤0.06
TUM17383	16	≤0.06	1	>128	≤0.06	0.25	0.25	4	0.25
TUM17384	>128	>128	>128	>128	0.125	0.5	0.5	8	1
TUM17386	8	0.125	1	>128	≤0.06	0.25	0.25	2	≤0.06
ATCC 49138	0.5	≤0.06	0.5	64	≤0.06	0.125	0.25	0.5	≤0.06
S. chilikensis TUM17377	≤0.06	≤0.06	0.125	1	≤0.06	≤0.06	≤0.06	≤0.06	≤0.06
S. carassii TUM17387	≤0.06	≤0.06	0.25	8	≤0.06	0.125	0.125	0.125	≤0.06
E. coli DH5α(pHSG298-blaOXA_TUM4442)	16	2	4	8	≤0.06	≤0.06	≤0.06	0.125	≤0.06
DH5α(pHSG298-blaOXA_JCM21037 (=ATCC 51192))	16	2	4	2	≤0.06	≤0.06	≤0.06	0.125	≤0.06
DH5α(pHSG298-blaOXA_TUM17378)	16	2	1	4	≤0.06	≤0.06	≤0.06	0.125	≤0.06
DH5α(pHSG298-blaOXA_TUM17379)	16	2	2	4	≤0.06	≤0.06	≤0.06	0.125	≤0.06
DH5α(pHSG298-blaOXA_TUM17382)	16	2	2	2	≤0.06	≤0.06	≤0.06	0.125	≤0.06
DH5α(pHSG298-blaOXA_TUM17383)	4	1	1	2	≤0.06	≤0.06	≤0.06	0.125	≤0.06
DH5α(pHSG298-blaOXA_TUM17384)	32	4	8	8	≤0.06	≤0.06	≤0.06	0.125	≤0.06
DH5α(pHSG298-blaOXA_ATCC49138)	16	2	8	4	≤0.06	≤0.06	≤0.06	0.125	≤0.06
DH5α(pHSG298)	8	2	2	4	≤0.06	≤0.06	≤0.06	0.125	≤0.06

aAMP, ampicillin; AMPC, ampicillin-clavulanic acid; PIP, piperacillin; CFZ, cefazolin; CTX, cefotaxime; CAZ, ceftazidime; ATM, aztreonam; IPM, imipenem; MEM, meropenem.
The values shown are the mean ± SD from 3 measurements. The initial velocity of the enzyme was determined by measuring the following substrates at 30°C for 1 min under the following respective conditions: nitrocefin (Calbiochem, San Diego, CA) at 482 nm (Δε = −30,000 M−1 cm−1), benzylpenicillin (Sigma-Aldrich, St. Louis, MO, USA) at 233 nm (Δε = −775 M−1 cm−1), meropenem (Sigma-Aldrich) at 298 nm (Δε = −9,000 M−1 cm−1), oxacillin (Sigma-Aldrich) at 260 nm (Δε = +370 M−1 cm−1), and imipenem (Banyu Pharmaceutical) at 278 nm (Δε = −6,500 M−1 cm−1). The parameters are presented as the average from three independent measurements.

S. algae clade isolates independently rather than by nosocomial transmission. In the past, human Shewanella species infections were mainly caused by S. algae and S. putrefaciens; however, assuming they have been correctly identified, most cases in recent years appear to have been caused by S. algae (1, 3). The fact that all of our clinical isolates were S. algae clade supports this assumption.

TABLE 4 OXA-55-like β-lactamase amino acid alignment of S. algae clade isolates

β-Lactamase	Amino acid position in OXA-SHE	4	33	35	38	41	67	98	99	106	128	167	194	198	202	239	261	269	286			
OXA-SHE			G							A	K	V	R	D	R	V	S	S	Q			
OXA-55			G	T	S	C	S	L	P	E	A	K	V	R	D	R	V	S	S	Q		
OXA-55-like			G	E	T	S	C	S	L	P	E	A	E	V	R	R	D	V	S	S	Q	
OXA-55-like			G	E	T	C	G	S	I	P	E	A	D	V	R	D	R	V	S	S	Q	
OXA-55-like			G	E	T	S	G	S	I	P	E	A	A	D	V	R	D	R	V	S	S	Q
OXA-55-like			G	A	T	S	G	C	I	P	Q	A	Q	L	D	H	I	G	Q	Q		

The amino acid sequences in OXA-SHE and OXA-55 sequences were converted from nucleotide sequences obtained from GenBank to amino acid sequences. The GenBank accession numbers of blaOXA-SHE and blaOXA-55 are ABY066004 and ABY334393, respectively.

Of 13 OXA-type β-lactamase alignments, this table shows only the positions where amino acid substitution was detected. The amino acid position was counted from the initiation codon from OXA-SHE, including the estimated signal peptide. Boldface indicates the amino acid is different from OXA-SHE.

There were two silent mutations on blaOXA-55-like between TUM17378 and TUM17386.

There were two silent mutations on blaOXA-55-like between TUM4442 and TUM17379 and between TUM4442 and TUM17382. There were four silent mutations on blaOXA-55-like between TUM17379 and TUM17382.
While isolates of the \textit{S. algae} clade, other than \textit{S. algae} itself, have been mainly detected in environmental samples, there are sporadic reports of these being isolated from human specimens, including those suspected to contain causative pathogens of infectious disease (12, 13). It is unclear whether the clinical characteristics of these species differ from those of \textit{S. algae} due to the limited number of cases reported so far. However, the identification of an \textit{S. chilikensis} isolate from clinical samples in this study suggested the ability of this species to cause human infections. We also verified that \textit{bla}^{OXA-55-like} is shared among the \textit{S. algae} clade species, but the genetic structure surrounding \textit{bla}^{OXA-55-like} differs among species, except for in the vicinity of \textit{bla}^{OXA-55-like}. However, as the genomes of only a limited number of isolates, including those registered in GenBank, have been analyzed, it will be necessary to accumulate more information in the future.

The presence of \textit{bla}^{OXA-55-like} in \textit{S. algae} has been repeatedly documented by previous studies (5, 6). This study confirmed the universal occurrence of \textit{bla}^{OXA-55-like} in the chromosomes of \textit{S. algae} isolates, and the diversity of \textit{bla}^{OXA-55-like} nucleotide sequences among the isolates is suggestive of the stable long-term persistence of the gene. Although several carbapenem-resistant isolates of \textit{S. algae} have been reported, the mechanisms and the extent of involvement of \textit{bla}^{OXA-55-like} in carbapenem resistance are unknown (4, 14). In this study, we cloned \textit{bla}^{OXA-55-like} genes with slightly different nucleotide sequences from nine \textit{S. algae} isolates and introduced them into \textit{E. coli} DH5\textalpha{}, but no differences in the MICs of broad-spectrum cephalosporins or carbapenems were observed. Therefore, there was no evidence that the minor differences in the \textit{bla}^{OXA-55-like} possessed by \textit{S. algae} isolates have a direct effect on their susceptibility to carbapenems. However, the only carbapenem-resistant isolate showed high levels of \textit{bla}^{OXA-55-like} transcription and \beta-lactamase activity, indicating that the increased production of OXA-55-like contributes to carbapenem resistance via an unknown mechanism.

Imipenem had a higher MIC value than meropenem in the \textit{S. algae} clade isolates, but the crude enzyme hydrolysis activity of each \textit{S. algae} clade isolate for imipenem was not significantly different from that for meropenem. The lower affinity of imipenem for PBP2 of the \textit{S. algae} clade strains compared with meropenem is believed to have influenced the difference in MIC between imipenem and meropenem (Table 3). However, we have not been able to obtain data on the affinity of imipenem for PBP2. Even though the transcript level of \textit{bla}^{OXA-55-like} in strain ATCC 49138 was not high (Fig. 3), the strain’s benzylpenicillin hydrolytic activity was higher than those of the other strains, except TUM17384, but the amino acid sequence alignment of OXA-55-like did not reveal any amino acid substitutions characteristic of OXA-55-like in ATCC 49138 that would explain its hydrolytic activity.

There were several limitations to this study. First, only a small number of clinical isolates were analyzed, and most were collected from a single institution. Although all clinical isolates were \textit{S. algae} clade members, it was unclear whether this predominance is a general feature of \textit{Shewanella} species isolated in clinical settings. Because only one carbapenem-resistant isolate of \textit{S. algae} was analyzed, we are unsure whether the high production of OXA-55-like observed in this isolate is a common characteristic of carbapenem-resistant isolates of \textit{S. algae}. Second, clinical information on the patients was not available, and the detailed characteristics of the \textit{Shewanella} infections could not be analyzed. Third, the mechanism that leads to the high production of OXA-55-like in the carbapenem-resistant \textit{S. algae} isolate was not investigated. If \textit{bla}^{OXA-55-like} expression is regulated by other genes, differences in the genetic backgrounds of the different \textit{S. algae} clade species may affect the frequency of carbapenem resistance.

In conclusion, we performed whole-genome sequencing analysis of \textit{Shewanella} spp. detected in clinical and environmental samples and confirmed the dominance of the \textit{S. algae} clade in the clinical isolates. In addition, we found that \textit{S. algae} clade strains share an approximately 12,500-bp genetic region that harbors the gene \textit{bla}^{OXA-55-like}, but the genetic structures outside this region were different among the different clade species, and the expression of \textit{bla}^{OXA-55-like} was increased only in the carbapenem-resistant iso-
resistant isolate. To confirm the clinical significance and antimicrobial resistance mechanisms of \textit{S. algae} clade members, analysis involving more clinical isolates should be performed in the future.

MATERIALS AND METHODS

Bacterial isolates. Nine isolates of \textit{Shewanella} spp. were detected in different patients at the University of Tokyo Hospital (UTH) between November 2014 and August 2016, seven of which were stored at ~80°C and used in this study. The strains collected at the hospital did not have any information that could identify the patient, and only the year of isolation was recorded. All isolates were identified as \textit{S. putrefaciens} with the automated Microscan WalkAway system (Beckman Coulter, Brea, CA, USA) and as \textit{S. putrefaciens} or \textit{Shewanella} sp. by retest using the MALDI Biotyper with library version 9 (Bruker Daltonics, Bremen, Germany) at the hospital. Additionally, we used a clinical isolate that had been previously reported but not genetically analyzed (14). In total, nine clinical isolates, each detected from a different patient, from hospitals in Japan were analyzed in this study (Table 1).

In addition, a clinical isolate and 13 environmental isolates of \textit{Shewanella} spp., provided by institutions in Japan or purchased from the National Collection of Type Cultures, were included in the analysis (Table 1).

Whole-genome sequencing analysis and identification of bacterial species. Draft whole-genome sequencing analysis of the study isolates was performed with Illumina MiSeq (Illumina, Inc., San Diego, CA), except for \textit{S. algae} JCM 21037 (=ATCC 51192), for which the draft whole-genome sequence data have already been registered (GenBank accession no. JAAAPX000000000.1). Library preparation, sequencing, and de novo assembly for MiSeq were performed as previously reported (15).

For the purpose of comparison, we collected the whole-genome sequencing data of \textit{Shewanella} species isolates, including type strains, deposited in GenBank in October 2019. We employed whole-genome sequencing data in which the 16S rRNA gene nucleotide sequence was more than 1,300 bp and that were identified as \textit{Shewanella} sp. by BLAST search. As a result, whole-genome sequencing data of 20 type strains and 74 other isolates were adopted (Table S1).

The draft genome sequence of the study isolates and registered isolates were compared with fastANI (https://github.com/ParBLiSS/FastANI), and isolates with an average nucleotide identity (ANI) value of 95% or more were clustered (16). If a cluster of isolates included a type strain of a specific species, the isolates within the same cluster were designated species of the type strain.

Additionally, long-read nucleotide sequences were obtained using the MinION sequencer (Oxford Nanopore Technologies, Oxford, United Kingdom) for isolates identified as \textit{S. algae} clade members (\textit{S. algae, S. carassii, or S. chilikensis}) to determine the complete whole-genome sequences. DNA extraction, library preparation, sequencing, and de novo assembly for MinION were performed as previously published (17).

Comparison of bla\textsubscript{OXA} and the surrounding genetic environment. The bla\textsubscript{OXA} genes in the draft genome sequences of the study isolates were identified and compared with bla\textsubscript{OXA} reference sequences using ResFinder (version 4.1). The genetic environments surrounding bla\textsubscript{OXA-55-like} of \textit{S. algae} clade isolates identified in our analysis were compared with the reference \textit{S. algae} JCM 21037 (=ATCC 51192) (type strain) using EasyFig (version 2.2.2). Because only one strain each of \textit{S. carassii} and \textit{S. chilikensis} was identified in the study isolates, the draft whole-genome sequencing data registered in GenBank for these species (\textit{S. carassii, NZ_NGV000000000.1; S. chilikensis, NZ_MDA000000000.1}) and other isolates were also included in the analysis.

Core genome single-nucleotide-polymorphism-based phylogenetic analysis of \textit{S. algae} isolates. Core genome single nucleotide polymorphism (SNP)-based phylogenetic analysis was performed using the complete genome sequence of \textit{S. algae} TUM17379 (accession no. AP024613.1) as the reference. Core genome SNP analysis was performed as previously described (18).

Cloning of bla\textsubscript{OXA-55-like} genes. The bla\textsubscript{OXA-55-like} genes of \textit{S. algae} isolates were amplified by PCR using Platinum Taq DNA polymerase High Fidelity (Invitrogen, Carlsbad, CA, USA) with a bla\textsubscript{OXA-55-like} forward primer incorporating an EcoRI digestion site (5’-GATGCATGAGAATTCTGAGAAGGTTTGC-3’) and a bla\textsubscript{OXA-55-like} reverse primer incorporating a BamHI digestion site (5’-ATGGACACAGGATCCTCAAGGAGCGTATGC-3’). The PCR product was purified by the Wizard SV Gel and PCR Clean-Up system (Promega, Madison, WI) and cloned into pCR4-TOPO using the TOPO TA cloning kit for sequencing (Invitrogen) and One Shot TOP10 chemically competent \textit{E. coli}. (Invitrogen). The accuracy of the nucleotide sequences of the inserts was confirmed by Sanger sequencing using the M13 primer (Invitrogen). Subsequently, pCR4-TOPO carrying bla\textsubscript{OXA-55-like} were digested with EcoRI and BamHI (TaKaRa Bio Inc.) and ligated to the pHSG298 DNA plasmid (TaKaRa Bio Inc.) pretreated with EcoRI and BamHI. The resulting plasmids were chemically transformed into \textit{E. coli} DH5\textalpha. Transformants carrying pHSG298 harboring bla\textsubscript{OXA-55-like} were selected on agar plates containing 50 μg/ml of kanamycin at 37°C for 24 h, and the presence of bla\textsubscript{OXA-55-like} was confirmed with PCR. This experiment was approved by the Toho University Safety Committee for Recombinant DNA Experiment (approval no. 21-52-458).

Antimicrobial susceptibility testing. Antimicrobial susceptibility testing was performed for the \textit{S. algae} clade isolates and \textit{E. coli} DH5\textalpha isolates carrying bla\textsubscript{OXA-55-like} cloned from \textit{S. algae} isolates by the broth microdilution method using BBL Mueller-Hinton II broth, which was cation adjusted (Becton Dickinson and Co., USA) according to the Clinical and Laboratory Standards Institute (CLSI) guidelines (19). The following antimicrobial agents were used for antibiotic susceptibility testing: ampicillin, piperacillin, cefazolin, cefotaxime, ceftazidime (Sigma-Aldrich, St. Louis, MO, USA), aztreonam (Tokyo Chemical Industry Co., Ltd., Tokyo, Japan), imipenem (Banyu Pharmaceutical, Tokyo, Japan), clavulanic acid, and...
meropenem (Wako Pure Chemical Industry, Ltd., Tokyo, Japan). E. coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853 were used as quality control strains. The results were interpreted according to CLSI guidelines (20).

Quantitative RT-PCR for bla_{OXA-55}-<i>algae</i> Quantitative reverse transcription-PCR (RT-PCR) was performed for <i>S. algae</i> clade isolates to compare bla_{OXA-55} transcription levels. The isolates were grown in LB broth (Becton Dickinson and Co.) for 24 h at 37°C with shaking at 160 rpm and harvested at an optical density at 600 nm (OD₆₀₀) of 1.0. The RNA was extracted using the RNeasy minikit (Qiagen, Hilden, Germany), then used to generate cDNA with PrimeScript RT master mix (TaKaRa Bio Inc.). Quantitative PCR was performed using SYBR green PCR master mix (Applied Biosystems, Foster City, CA) with the primer pair bla_{OXA-55}-<i>algae</i>_Forward_Primer (5′-GTTGGTGGAGTGGAGGAC-3′) and bla_{OXA-55}-<i>algae</i>_Reverse_Primer (5′-TGCTTGAACCTGTCTTGAC-3′) on the Applied Biosystems 7500 Fast system (Applied Biosystems). Amplification of the <i>rpoB</i> gene was simultaneously performed with the <i>rpoB</i>_Forward_Primer (5′-TGGTACCCATCTGTTTGAC-3′) and <i>rpoB</i>_Reverse_Primer (5′-CC ACCAGAGCCTCTTGAC-3′). The <i>bla_{OXA-55}-<i>algae</i></i> transcription levels of the isolates were compared using the threshold cycle (ΔΔC_T) method (21). The amplification efficiency of the quantitative PCR for <i>rpoB</i> and <i>bla_{OXA-55}-<i>algae</i></i> was verified with 10-fold serially diluted TUM17384 total RNA ranging from 10⁻⁵ ng to 10⁻⁹ ng per assay, which demonstrated that the ratio of amplification efficiency of bla_{OXA-55}-<i>algae</i> to <i>rpoB</i> was 0.98.

β-Lactamase activity assay. β-Lactamase activity in the <i>S. algae</i> clade isolates was evaluated. First, the isolate of interest was inoculated into LB broth (Becton Dickinson and Co.) and incubated for 24 h at 37°C with shaking at 160 rpm and 37°C. After incubation, 10 ml of the culture medium was centrifuged at 3,500 × g for 15 min at 4°C. After the supernatant was discarded, the pellet was washed with 500 µl of phosphate-buffered saline (PBS) (pH 7.0) and recentrifuged at 13,000 × g for 1 min at 4°C. After resuspending the pellet in 500 µl of PBS, the crude enzyme solution was prepared by sonication and subsequent centrifugation at 13,000 × g for 30 min at 4°C. The protein concentration was measured by the Bradford method using bovine serum albumin (BSA) (Bio-Rad Laboratories, Inc., Hercules, CA) as a standard. The change in absorbance over time caused by the hydrolysis of β-lactam by β-lactamase was measured using a Shimadzu UV-2500 spectrophotometer (Shimadzu, Kyoto, Japan). The β-lactams used as the substrates for β-lactamase were adjusted to a final concentration of 100 µM in PBS. All reactions were performed in a Bandpass 10-mm cuvette with a total volume of 5 µl of enzyme added to 500 µl of substrate solution at 30°C.

Accession number(s). The draft whole-genome sequencing data were deposited in GenBank under accession no. AP024608.0 (C1 barcode), 16651444.1 (C2 barcode), and 17178471.1 (C3 barcode). The complete whole-genome sequence data were deposited as GenBank accession no. AP024609 to AP024618.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.

TABLE S1, XLSX file, 0.1 MB

ACKNOWLEDGMENTS

We thank Hiroyuki Yamamoto of the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) for help in collecting strains of <i>Shewanella</i> spp. We thank Suzanne Leech from Edanz (https://jp.edanz.com/ac) for editing a draft of the manuscript.

S.H. reports personal fees from BD, Meiji, Shionogi, Sumitomo Dainippon Pharma, MSD, Astellas, Beckman Coulter Diagnostics, Fujifilm Toyama Chemical, Daichi Sankyo, and Nissui Pharmaceutical, as well as grants from MSD, outside the submitted work. All other authors declare no conflict of interest.

This study was supported by Ministry of Health, Labor and Welfare, Food Safety Promotion Research Program Grant no. 30190801.

REFERENCES

1. Janda JM, Abbott SL. 2014. The genus <i>Shewanella</i>: from the briny depths below to human pathogen. Crit Rev Microbiol 40:293–312. https://doi.org/10.1080/1040841X.2012.726209.
2. Hau HH, Gralnick JA. 2007. Ecology and biotechnology of the genus <i>Shewanella</i>. Annu Rev Microbiol 61:237–258. https://doi.org/10.1146/annurev.micro.61.080706.093257.
3. Holt HM, Gahrn-Hansen B, Bruun B. 2005. <i>Shewanella algae</i> and <i>Shewanella putrefaciens</i>: clinical and microbiological characteristics. Clin Microbiol Infect 11:347–352. https://doi.org/10.1111/j.1469-0691.2005.01108.x.
4. Zago V, Veschetti L, Patuzzo C, Malerba G, Lleo MM. 2020. Resistome, mobilome and virulome analysis of <i>Shewanella algae</i> and <i>Vibrio</i> spp. strains isolated in Italian aquaculture centers. Microorganisms 8:572. https://doi.org/10.3390/microorganisms8040572.
5. Poirel L, Heritier C, Nordmann P. 2004. Chromosome-encoded Ambler class D β-lactamase of <i>Shewanella oneidensis</i> as a progenitor of carbapenem-hydrolyzing oxacillinase. Antimicrob Agents Chemother 48:348–351. https://doi.org/10.1128/AAC.48.1.348-351.2004.
6. Heritier C, Poirel L, Nordmann P. 2004. Genetic and biochemical characterization of a chromosome-encoded carbapenem-hydrolyzing ambi class D β-lactamase from <i>Shewanella algae</i>. Antimicrob Agents Chemother 48:1670–1675. https://doi.org/10.1128/AAC.48.5.1670-1675.2004.
7. Potron A, Poirel L, Nordmann P. 2011. Origin of OXA-181, an emerging carbapenem-hydrolyzing oxacillinase, as a chromosomal gene in <i>Shewanella xiamenensis</i>. Antimicrob Agents Chemother 55:4405–4407. https://doi.org/10.1128/AAC.00681-11.
8. Tacão M, Correia A, Henriques I. 2013. Environmental <i>Shewanella xiamenensis</i> strains that carry bla_{OXA-48} or bla_{OXA-24} genes: additional proof for
blaOXA-48-like gene origin. Antimicrob Agents Chemother 57:6399–6400. https://doi.org/10.1128/AAC.00771-13.

9. Zong Z. 2012. Discovery of blaOXA-48-like, a chromosome-based blaOXA-48-like variant, in Shewanella xianensis. PLoS One 7:e48280. https://doi.org/10.1371/journal.pone.0048280.

10. Byun J-H, Park H, Kim S. 2017. The Phantom Menace for patients with hepatobiliary diseases: Shewanella haliotis, often misidentified as Shewa-
nella algae in biochemical tests and MALDI-TOF analysis. Jpn J Infect Dis 70:177–180. https://doi.org/10.7883/yoken.JID.2015.658.

11. Yu K, Huang Z, Li Y, Fu Q, Lin L, Wu S, Dai H, Cai H, Xiao Y, Lan R, Wang D. 2021. Establishment and application of matrix-assisted laser desorption/ioni-
zation time-of-flight mass spectrometry for detection of Shewanella genus. Front Microbiol 12:625821. https://doi.org/10.3389/fmicb.2021.625821.

12. Fang Y, Wang Y, Liu Z, Lu B, Dai H, Kan B, Wang D. 2017. Shewanella caras-
ii sp. nov., isolated from surface swabs of crucian carp and faeces of a diarrhoea patient. Int J Syst Evol Microbiol 67:5284–5289. https://doi.org/10.
1099/ijs.0.002511.

13. Martín-Rodríguez AJ, Suárez-Mesa A, Artilles-Campelo F, Römling U, Hernández M. 2019. Multilocus sequence typing of Shewanella algae iso-
lates identifies disease-causing Shewanella chilensis strain 614. FEMS Microbiol Ecol https://doi.org/10.1093/femsec/fyy210.

14. Iwata M, Tateda K, Matsumoto T, Furuya N, Mizuiri S, Yamaguchi K. 1999. Pri-
mary Shewanella algae septicaemia in a patient on hemodialysis. J Clin Micro-
biol 37:2104–2105. https://doi.org/10.1128/JCM.37.7.2104-2105.1999.

15. Harada S, Aoki K, Yamamoto S, Ishii Y, Sekiya N, Kuriyama K, Doi A, Tochitani K, Kubo K, Yamaguchi Y, Narita M, Kaimiyama S, Suzuki J, Fukuchi T, Gu Y, Okinaka K, Shiiki S, Hayakawa K, Tachikawa N, Kasahara K, Nakamura T, Yokota K, Komatsu M, Takamiya M, Tateda K, Doi Y. 2019. Clinical and molecular characteristics of Klebsiella pneumoniae isolates causing bloodstream infections in Japan: occurrence of hypervirulent infections in health care. J Clin Microbiol 57:e01206-19. https://doi.org/10.
1128/JCM.01206-19.

16. Lee I, Ouk Kim Y, Park S-C, Chun J. 2016. OrthoANi: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 66:1100–1103. https://doi.org/10.1099/ijs.0.007670.

17. Hanai M, Aoki K, Ishii Y, Shimuta K, Ohnishi M, Tateda K. 2021. Molecular characterisation of Neisseria gonorrhoeae isolates collected through a national surveillance programme in Japan, 2013: evidence of the emergence of a ceftriaxone-resistant strain from a ceftriaxone-susceptible lineage. J Antimicrob Chemother https://doi.org/10.1093/jac/dkah104.

18. Aoki K, Takeda S, Miki T, Ishii Y, Tateda K. 2019. Antimicrobial susceptibility and molecular characterisation using whole-genome sequencing of Clostrioides difficile collected in 82 hospitals in Japan between 2014 and 2016. Antimicrob Agents Chemother 63:e01259-19. https://doi.org/10.
1128/AAC.01259-19.

19. Clinical and Laboratory Standards Institute. 2018. M07. Methods for dilu-
tion antimicrobial susceptibility tests for bacteria that grow aerobically, 11th ed. Clinical and Laboratory Standards Institute, Wayne, PA.

20. Clinical and Laboratory Standards Institute. 2021. M100. Performance standards for antimicrobial susceptibility testing, 31st ed. Clinical and Laboratory Standards Institute, Wayne, PA.

21. Jozeźczuk J, Adjaie J. 2011. Quantitative real-time PCR-based analysis of gene expression. Methods Enzymol 500:99–109. https://doi.org/10.1016/ B978-0-12-385118-5.00006-2.

22. Satomi M, Okawa H, Yano Y. 2003. Shewanella marinintestina sp. nov., Shewanella schlegheliana sp. nov. and Shewanella siraie sp. nov., novel eicosapentaenoic-acid-producing marine bacteria isolated from sea-animal intestines, Int J Syst Evol Microbiol 53:491–499. https://doi.org/10.1099/ijis.
0.02392-0.

23. Satomi M, Vogel BF, Venkateswaran K, Gram L. 2007. Description of Shewa-
nella glacialipiscicola sp. nov. and Shewanella algidipiscicola sp. nov., iso-
lated from marine fish of the Danish Baltic Sea, and proposal that Shewanella affinis is a later heterotypic synonym of Shewanella colwelliana. Int J Syst Evol Microbiol 57:347–352. https://doi.org/10.1099/ijis.0.64708-0.

24. Miyazaki M, Nogi Y, Usami R, Horikoshi K. 2006. Shewanella surugensis sp. nov., Shewanella kairetica sp. nov. and Shewanella abyssi sp. nov., iso-
lated from deep-sea sediments of Suruga Bay, Japan. Int J Syst Evol Micro-
biol 56:1607–1613. https://doi.org/10.1099/ijis.0.64173-0.

25. Eilers H, Pernthaler J, Glöckner FO, Amann R. 2000. Culturability and in situ abundance of pelagic bacteria from the North Sea. Appl Environ Microbiol 66:3044–3051. https://doi.org/10.1128/AEM.66.7.3044-3051.2000.

26. Nonaka L, Ikeno K, Suzuki S. 2007. Distribution of tetracycline resistance gene, tet(M), in Gram-positive and Gram-negative bacteria isolated from sediment and seawater at a coastal aquaculture site in Japan. Microbes Environ 22:355–364. https://doi.org/10.1264/jsme2.22.355.