A Planet in a Circular Orbit with a 6 Year Period

Brad D. Carter2, R. Paul Butler3, C. G. Tinney4, Hugh R. A. Jones5, Geoffrey W. Marcy6, Chris McCarthy3, Debra A. Fischer6, Alan J. Penny7
carterb@usq.edu.au

ABSTRACT

Precision Doppler velocity measurements from the 3.9-m Anglo-Australian Telescope reveal a planet with a 6 year period orbiting the G5 dwarf HD 70642. The a = 3.3 AU orbit has a low eccentricity (e = 0.1), and the minimum (M sin i) mass of the planet is 2.0 M_JUP. The host star is metal rich relative to the Sun, similar to most stars with known planets. The distant and approximately circular orbit of this planet makes it a member of a rare group to emerge from precision Doppler surveys.

Subject headings: planetary systems – stars: individual (HD 70642)

1. Introduction

Of the 77 extrasolar planets currently listed by the IAU Working Group on Extrasolar Planets8 (including planet candidates published in a refereed journals with M sin i < 10 M_JUP), only three systems have been found to harbor planets in circular orbits (e < 0.1)

1Based on observations obtained at the Anglo–Australian Telescope, Siding Spring, Australia
2Faculty of Sciences, University of Southern Queensland, Toowoomba, Queensland 4350, Australia
3Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road NW, Washington D.C. USA 20015-1305
4Anglo–Australian Observatory, P.O. Box 296, Epping, NSW 1710, Australia
5Astrophysics Research Institute, Liverpool John Moores University, Twelve Quays House, Egerton Wharf, Birkenhead CH41 1LD, UK
6Department of Astronomy, University of California, Berkeley, CA USA 94720 and at Department of Physics and Astronomy, San Francisco State University, San Francisco, CA, USA 94132
7Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, UK
8http://www.ciw.edu/boss/IAU/div3/wgesp/planets.shtml
orbits beyond 0.5 AU – 47 UMa (Fischer et al. 2002; Butler & Marcy 1996), HD 27442 (Butler et al. 2001), and HD 4208 (Vogt et al. 2002). With 13 “51 Peg–type” planets (P < 5 d), and ~60 eccentric planets (e > 0.1), the long period circular orbits are the rarest of the three types of planetary systems to emerge over the last 8 years.

With one exception, all the IAU Working Group List planets orbit within 4 AU of their host stars. As all these planets have been discovered via the precision Doppler technique, there is a strong selection bias toward discovering systems with small semimajor axes. Unsurprisingly, the only extrasolar planet so far found to orbit beyond 4 AU was detected by the precision Doppler survey that has been gathering data the longest (Marcy et al. 2002).

Perhaps the most critical question facing the field of extrasolar planetary science is “Are Solar System analogs (ie. systems with giants planets in circular orbits beyond 4 AU and small rocky planets orbiting in the inner few AU) ubiquitous, or rare?” Existing precision Doppler surveys will become sensitive to giant planets orbiting beyond 4 AU by the end of this decade, though only those programs with long term precision of 3 m s$^{-1}$ or better will be able to determine if the orbits of such planets are eccentric or circular (Butler et al. 2001, Figure 11).

We report here a new extrasolar planet in an approximately circular orbit beyond 3 AU, discovered with the 3.9m Anglo–Australian Telescope (AAT). The Anglo-Australian Planet Search program is described in Section 2. The characteristics of the host star and the precision Doppler measurements are presented in Section 3. A discussion follows.

2. The Anglo–Australian Planet Search

The Anglo-Australian Planet Search began in 1998 January, and is currently surveying 250 stars. Fourteen planet candidates with $M \sin i$ ranging from 0.2 to 10 M$_{JUP}$ have first been published with AAT data (Tinney et al. 2001; Butler et al. 2001; Tinney et al. 2002a; Jones et al. 2002a; Butler et al. 2002; Jones et al. 2002b; Tinney et al. 2003a; Jones et al. 2003), and an additional four planet candidates have been confirmed with AAT data (Butler et al. 2001).

Precision Doppler measurements are made with the University College London Echelle Spectrograph (UCLES) (Diego et al. 1990). An iodine absorption cell (Marcy & Butler 1992) provides wavelength calibration from 5000 to 6000 Å. The spectrograph PSF and wavelength calibration are derived from the embedded iodine lines (Valenti et al. 1995; Butler et al. 1996). This system has demonstrated long term precision of 3 m s$^{-1}$ (Butler et al. 2001), similar to (if not exceeding) the iodine systems on the Lick 3-m (Butler et al. 1996; 1997).
and the Keck 10-m (Vogt et al. 2000).

3. HD 70642

HD 70642 (HIP 40952, SAO 199126) is a nearby G5 dwarf, at a distance of 28.8 pc (Perryman et al. 1997), a V magnitude of 7.17, and an absolute magnitude of $M_V = 4.87$. The star is photometrically stable within Hipparcos measurement error (0.01 magnitudes). The star is chromospherically inactive, with log $R'(HK) = -4.90 \pm 0.06$, determined from AAT/UCLES spectra of the Ca II H&K lines (Tinney et al. 2003b; Tinney et al. 2002b). Figure 1 shows the H line compared to the Sun. The chromospherically inferred age of HD 70642 is ~ 4 Gyr.

Spectral synthesis (LTE) of our AAT/UCLES spectrum of HD 70642 yields $T_{\text{eff}} = 5670 \pm 20$ K and $V \sin i = 2.4 \pm 1$ km s$^{-1}$ consistent with its status as a middle-aged G5 dwarf. Like most planet bearing stars, HD 70642 is metal rich relative to the Sun. We estimate $[\text{Fe/H}] = +0.16 \pm 0.02$ from spectral synthesis, in excellent agreement with the photometric determination of Eggen (1998). While Ni tracks Fe for most G & K dwarfs, the $[\text{Ni/H}] = +0.22 \pm 0.03$ appears slightly high for HD 70642. The mass of HD 70642 estimated from $B-V$, M_{Bol}, and $[\text{Fe/H}]$ is 1.0 ± 0.05 M$_\odot$.

A total of 21 precision Doppler measurements of HD 70642 spanning more than 5 years are listed in Table 1 and shown in Figure 2. The solid line in Figure 2 is the best-fit Keplerian. The Keplerian parameters are listed in Table 2. The reduced χ^2_{ν} of the Keplerian fit is 1.4. Figure 3 is a plot of orbital eccentricity vs. semimajor axis for the planet orbiting HD70642, for extrasolar planets listed by the IAU Working Group on Extrasolar Planets, and Solar System planets out to Jupiter. HD 70642b joins 47 UMa c (Fischer et al. 2002) as the only planets yet found in an approximately circular ($e \leq 0.1$) orbit beyond 3 AU.

4. Discussion

Prior to the discovery of extrasolar planets, planetary systems were predicted to be architecturally similar to the Solar System (Lissauer 1995; Boss 1995), with giant planets orbiting beyond 4 AU in circular orbits, and terrestrial mass planets inhabiting the inner few AU. The landscape revealed by the first ~ 80 extrasolar planets is quite different. Extrasolar planetary systems have proven to be much more diverse than imagined, as predicted by Lissauer (1995), “The variety of planets and planetary systems in our galaxy must be immense and even more difficult to imagine and predict than was the diversity of the outer
planet satellites prior to the Voyager mission.”

The discovery here of a Jupiter–mass planet in a circular orbit highlights the existence, but also the rarity, of giant planets that seem similar to the original theoretical predictions. Review of all the known extrasolar planets, both those described in refereed, published journals (http://www.ciw.edu/boss/IAU/div3/wgesp/planets.shtml) and those in the larger list of claimed extrasolar planets (http://exoplanets.org) shows that ∼7% of extrasolar planets orbiting beyond 0.5 AU reside in circular orbits ($e < 0.1$). Further detections of planets beyond 1 AU are needed to determine if circular orbits are more common for planets that orbit farther from the host star.

Over the next decade precision Doppler programs will continue to be the primary means of detecting planets orbiting stars within 50 parsecs. By the end of this decade, Doppler programs carried out at precisions of 3 m s$^{-1}$ or better by our group, and by others (e.g., Mayor & Santos 2002), will be sensitive to Jupiter and Saturn–mass planets orbiting beyond 4 AU. The central looming question is whether these planets will commonly be found in circular orbits, or if the architecture of the Solar System is rare.

Of the greatest anthropocentric interest are planets in intrinsically circular orbits, as opposed to the short period planets in tidally circularized orbits. NASA and ESA have made plans for new telescopes to detect terrestrial mass planets. Transit missions such as COROT, Kepler and Eddington may be sensitive to terrestrial mass planets orbiting near 1 AU, providing valuable information on the incidence of such planets. As terrestrial planets make photometric signatures of 1 part in 10,000, these missions may be subject to interpretive difficulties that already challenge current ground–based transit searches for Jupiter–sized planets. Transit missions cannot determine orbital eccentricity, and thus cannot determine if planets are Solar System analogs. These space–based transit missions are targeting stars at several hundred parsecs, making follow–up by other techniques difficult.

Ground–based interferometric astrometry programs at Keck and VLT are projected to begin taking data by the end of this decade. These programs are complementary to existing precision Doppler velocity programs in that they are most sensitive to planets in distant orbits. Like Doppler velocities, astrometry needs to observe one or more complete orbits to make a secure detection and solve for orbital parameters. It is thus likely that the first significant crop of ground–based astrometry planets will emerge after 2015.

The NASA Space Interferometry Mission (SIM) is scheduled to launch in 2009. A key objective of the SIM mission is the detection of planets as small as 3 Earth–masses in 1 AU orbits around the nearest stars. SIM offers the promise of determining actual masses of terrestrial planets, thereby securing their status unambiguously. Simulations based
on the SIM measurement specifications, along with the proposed target stars, the 5 year mission lifetime, and a planet mass function extrapolated to the Earth–mass regime\(^9\), yield predictions that as many as \(\sim 5\) terrestrial planets could be found (Ford & Tremaine 2003). Giant planets orbiting 2–5 AU from the host stars are also detectable with SIM, though the orbital parameters will not be not well determined in a 5 year mission. A 10 year SIM mission yields significantly better orbital determination for Jupiter–analogs. Overall the detection capabilities of SIM are similar to existing precision Doppler programs with a precision of 3 m s\(^{-1}\) (Ford & Tremaine 2003), thereby providing confirmation of known planets and unambiguous masses.

Direct imaging missions such as the NASA Terrestrial Planet Finder (TPF) and the ESA DARWIN mission have the primary goal of detecting Earth–like planets and obtaining low resolution spectra that might reveal biomarkers. Such missions will not return dynamical information and hence will not directly reveal the masses of detected planets. Current plans call for the launching of such missions around 2015, perhaps optimistically. We expect that continued Doppler measurements, as well as future astrometric missions, will contribute significantly to the interpretation of the unresolved companions detected by TPF/DARWIN.

We acknowledge support by NSF grant AST-9988087, NASA grant NAG5-12182, and travel support from the Carnegie Institution of Washington (to RPB), NASA grant NAG5-8299 and NSF grant AST95-20443 (to GWM), and by Sun Microsystems. We also wish to acknowledge the support of the NASA Astrobiology Institute. We thank the Australian (ATAC) and UK (PATT) Telescope assignment committees for allocations of AAT time. We are grateful for the extraordinary support we have received from the AAT technical staff – E. Penny, R. Paterson, D. Stafford, F. Freeman, S. Lee, J. Pogson, and G. Schaffer. We would especially like to express our gratitude to the AAO Director, Brian Boyle. The AAT Planet Search Program was created and thrived under Brian’s tenure as Director in large measure because of his critical support and encouragement. The Australia Telescope National Facility (ATNF) is fortunate to have Brian as their new Director.

\(^9\)A power–law extrapolation admittedly fraught with uncertainty.
REFERENCES

Boss, A. P. 1995 Science, 267, 360
Butler, R. P., Marcy, G. W., Williams, E., McCarthy, C., Dosanjh, P., & Vogt, S. S. 1996, PASP, 108, 500
Butler, R. P. & Marcy, G. W. 1996, ApJ, 464, L153
Butler, R. P. & Marcy, G. W. 1997, “The Near Term Future of Extrasolar Planet Searches”, Brown Dwarfs and Extrasolar Planets, held on Tenerife, 17-21 March 1997, ed. R. Rebolo, E.L. Martin, & M.R. Zapatero Osorio, ASP Conference Series, Vol. 134, 162
Butler, R. P., Tinney, C. G., Marcy, G. W., Jones, H. R. A., Penny, A. J. & Apps, K. 2001, ApJ, 555, 410
Butler, R. P., Marcy, G. W., Vogt, S. S., Tinney, C. G., Jones, H. R. A., McCarthy, C., Penny, A. J., Apps, K. & Carter, B. D. 2002, ApJ, 578, 565
Diego, F., Charalambous, A., Fish, A. C., & Walker, D. D. 1990, Proc. Soc. Photo-Opt. Instr. Eng., 1235, 562
Eggen, O. J. 1998, AJ, 115, 2397
Fischer, D. A., Marcy, G. W., Butler, R.P., Laughlin, G. & Vogt, S. S. 2002, ApJ, 564, 1028
Ford, E. B. & Tremaine. S. 2003, PASP, in press
Jones, H. R. A., Butler, R. P., Tinney, C. G., Marcy, G. W., Penny, A. J., McCarthy, C., Carter, B. D. & Pourbaix, D. 2002a, MNRAS, 333, 871
Jones, H. R. A., Butler, R. P., Tinney, C. G., Marcy, G. W., Penny, A. J., McCarthy, C. & Carter, B. D. 2002b, MNRAS, 337, 1170
Jones, H. R. A., Butler, R. P., Tinney, C. G., Marcy, G. W., Penny, A. J., McCarthy, C. & Carter, B. D. 2003, MNRAS, 341, 948
Lissauer, J. J. 1995, Icarus, 114, 217
Marcy, G. W. & Butler, R. P. 1992, PASP, 104, 270
Marcy, G. W., Butler, R. P., Fischer, D. A., Laughlin, G., Vogt, S. S., Henry, G. W. & Pourbaix, D. 2002, ApJ, 581, 1375
Mayor, M. & Santos, N.C. 2002, “The Origins of Stars and Planets: The VLT View”. Proceedings of the ESO Workshop held in Garching, Germany, 24-27 April 2001, 373
Perryman, M. A. C., et al. 1997, A&A, 323, L49. The Hipparcos Catalog
Tinney, C. G., Butler, R. P., Marcy, G. W., Jones, H. R. A., Penny, A. J., Vogt, S. S., Henry, G. W. 2001, ApJ, 551, 507
Tinney, C. G., Butler, R. P., Marcy, G. W., Jones, H. R. A., Penny, A. J., McCarthy, C. & Carter, B. D. 2002a, ApJ, 571, 528
Tinney, C. G., McCarthy, C., Jones, H. R. A., Butler, R. P., Carter, B. D., Marcy, G. W. & Penny, A. J. 2002b, MNRAS, 332, 759
Tinney, C. G., Butler, R. P., Marcy, G. W., Jones, H. R. A., Penny, A. J., McCarthy, C., Carter, B. D. & Bond, J. 2003a, ApJ, 587, 423
Tinney, C. G., McCarthy, C., Jones, H. R. A., Butler, R. P., Carter, B. D., Marcy, G. W. & Penny, A. J. 2003b, MNRAS, in preparation
Valenti, J. A., Butler, R. P. & Marcy, G. W. 1995, PASP, 107, 966
Vogt, S. S., Marcy, G. W., Butler, R. P. & Apps, K. 2000, ApJ, 536, 902
Vogt, S. S., Butler, R. P., Marcy, G. W., Fischer, D. A., Pourbaix, D., Apps, K. & Laughlin, G. 2002, ApJ, 568, 352
Table 1. Velocities for HD 70642

JD	RV (m s$^{-1}$)	Uncertainty (m s$^{-1}$)
830.1082	-25.8	4.2
1157.2263	-36.4	4.4
1213.1051	-42.6	4.3
1236.0850	-37.5	5.2
1630.0095	-15.9	3.6
1717.8810	-9.4	3.9
1920.1348	15.0	4.8
1983.9687	13.7	5.8
2009.0210	13.2	4.6
2060.8744	27.7	3.4
2420.9072	12.7	3.1
2424.8981	11.4	3.1
2455.8416	20.0	2.8
2592.2229	12.7	2.9
2595.2255	15.2	3.4
2710.0700	0.8	3.0
2744.9571	0.3	3.1
2747.9155	-4.2	2.7
2749.9755	-7.4	2.2
2751.9384	-5.6	2.4
2785.9082	-3.4	2.4
Table 2. Orbital solution for HD 70642

Parameter	Value	Uncertainty
Orbital period P (days)	2231	400
Velocity semiamplitude K (m s$^{-1}$)	32	5
Eccentricity e	0.10	0.06
Periastron date (Julian Date)	2451749	300
ω (degrees)	277	75
$M_{\sin i}$ (M$_{\text{JUP}}$)	2.0	
Semimajor axis (AU)	3.3	
N_{obs}	21	
RMS (m s$^{-1}$)	4.0	
Fig. 1.— Ca II H line of HD 70642 (top) compared to the Sun. HD 70642 is a near solar twin in both mass and chromospheric activity. Chromospherically quiescent stars such as these are intrinsically stable at the 3 m s$^{-1}$ level.
Fig. 2.— Doppler velocities for HD 70642. The best-fit Keplerian is shown as a solid line, with period, $P = 6.1$ yr, semiamplitude, $K = 32$ m s$^{-1}$, eccentricity $e = 0.10$, yielding $M \sin i = 2.0$ M$_{\text{JUP}}$. The RMS to the Keplerian fit, 4.0 m s$^{-1}$, is consistent with measurement uncertainty.
Fig. 3.— Orbital eccentricity vs. semimajor axis for the planet orbiting HD70642 (asterisk), extrasolar planets listed by the IAU Working Group on Extrasolar Planets (filled circles), and Solar System planets out to Jupiter (diamonds with accompanying planetary symbols). HD 70642b joins 47 UMa c as the only planets yet found in an approximately circular (e ≤ 0.1) orbit beyond 3 AU.