C6orf10 Low-Frequency and Rare Variants in Italian Multiple Sclerosis Patients

Nicole Ziliotto*, Giovanna Marchetti2, Chiara Scapoli1, Matteo Bovolenta1, Silvia Meneghetti1, Andrea Benazzo1, Barbara Lunghi1, Dario Balestra1, Lorenza Anna Laino1, Nicolò Bozzini2, Irene Guidi1, Fabrizio Salvi2, Sofia Straudi4, Donato Gemmati5, Erica Menegatti6, Paolo Zamboni6 and Francesco Bernardi1

1 Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; 2 Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy; 3 IRCCS Institute of Neurological Sciences, Hospital Bellaria, Bologna, Italy; 4 Department of Neurosciences and Rehabilitation, S. Anna University Hospital, Ferrara, Italy; 5 Department of Biomedical & Specialty Surgical Sciences and Centre Haemostasis & Thrombosis, Section of Medical Biochemistry, Molecular Biology & Genetics, University of Ferrara, Ferrara, Italy; 6 Department of Morphology, Surgery and Experimental Medicine, Vascular Diseases Center, University of Ferrara, Ferrara, Italy

In light of the complex nature of multiple sclerosis (MS) and the recently estimated contribution of low-frequency variants into disease, decoding its genetic risk components requires novel variant prioritization strategies. We selected, by reviewing MS Genome Wide Association Studies (GWAS), 107 candidate loci marked by intragenic single nucleotide polymorphisms (SNPs) with a remarkable association (p-value $\leq 5 \times 10^{-6}$). A whole exome sequencing (WES)-based pilot study of SNPs with minor allele frequency (MAF) ≤ 0.04, conducted in three Italian families, revealed 15 exonic low-frequency SNPs with affected parent-child transmission. These variants were detected in 65/120 Italian unrelated MS patients, also in combination (22 patients). Compared with databases (controls gnomAD, dbSNP150, ExAC, Tuscany-1000 Genome), the allelic frequencies of C6orf10 rs16870005 and IL2RA rs12722600 were significantly higher (i.e., controls gnomAD, $p = 9.89 \times 10^{-7}$ and $p < 1 \times 10^{-20}$). TET2 rs61744960 and TRAF3 rs138943371 frequencies were also significantly higher, except in Tuscany-1000 Genome. Interestingly, the association of C6orf10 rs16870005 (Ala431Thr) with MS did not depend on its linkage disequilibrium with the HLA-DRB1 locus. Sequencing in the MS cohort of the C6orf10 3' region revealed 14 rare mutations (10 not previously reported). Four variants were null, and significantly more frequent than in the databases. Further, the C6orf10 rare variants were observed in combinations, both intra-locus and with other low-frequency SNPs. The C6orf10 Ser389Xfr was found homozygous in a patient with early onset of the MS. Taking into account the potentially functional impact of the identified exonic variants, their expression in combination at the protein level could provide functional insights in the heterogeneous pathogenetic mechanisms contributing to MS.

Keywords: multiple sclerosis, whole exome sequencing, low-frequency variants, rare variants, C6orf10
INTRODUCTION

Multiple Sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS), involving inflammatory-based mechanisms and characterized by demyelination, neurodegeneration and progressive accumulation of neurological dysfunction (Ciccarelli et al., 2014). The heterogeneous manifestation and clinical course of MS are explained by its complex multi-factorial nature, where the interaction of genetic, lifestyle, and environmental factors confer the susceptibility (Morandi et al., 2015; Olsson et al., 2017). The heritable contribution to MS risk is supported by investigations on families (Patsopoulos, 2018).

To date, the majority of genetic studies on MS have been focused on susceptibility variants. In particular, several genome-wide association studies (GWAS), and subsequent replication studies, have identified hundreds of variants within susceptibility gene loci (Bashinskaya et al., 2015).

The single nucleotide polymorphisms (SNPs) identified through GWAS are mainly located within non-coding regions of the genome, which could pinpoint the presence of disease-associated variants in linkage disequilibrium.

The very recent study, made by the International Multiple Sclerosis Genetics Consortium, provides for the first time the associated variants in linkage disequilibrium. A systematic review of the literature was performed for all years available through December 31, 2017. The primary source was the PubMed database1, for which search terms “GWAS” and “multiple sclerosis” were used. Further search included NHGRI-EBI GWAS catalog2. Variants identified by GWAS in MS were selected for being intragenic, non-HLA, and having p-value $< 5 \times 10^{-8}$. On the basis of these selected common variants, we generated the final gene reference list for the present study (Supplementary Table 1). The study design is schematically described in Figure 2.

Search Strategy and Selection Criteria of Candidate Genes

A systematic review of the literature was performed for all years available through December 31, 2017. The primary source was the PubMed database1, for which search terms “GWAS” and “multiple sclerosis” were used. Further search included NHGRI-EBI GWAS catalog2. Variants identified by GWAS in MS were selected for being intragenic, non-HLA, and having p-value $< 5 \times 10^{-8}$. On the basis of these selected common variants, we generated the final gene reference list for the present study (Supplementary Table 1). The study design is schematically described in Figure 2.

Whole-Exome Sequencing and Analysis

The genomic DNA (gDNA) was extracted from peripheral blood using the Wizard® Genomic DNA Purification Kit (Promega, Madison, WI, United States). WES was performed on eleven individuals, seven diagnosed with MS and four unaffected, from three independent families (Figure 1). Sequencing was performed by BGI (Shenzhen, China) using nanoarray-based short-read sequencing-by-ligation technology (cPAL™). Reads were mapped against the hg19 human reference sequence3 using SOAPaligner4. Variants calling was performed

1http://www.ncbi.nlm.nih.gov/pubmed/
2http://www.ebi.ac.uk/gwas
3http://genome.ucsc.edu/
4http://omictools.com/soapaligner-tool
Zilotto et al.

Variants in Multiple Sclerosis

FIGURE 1 | Pedigree of families (A–C) with multiple sclerosis and clinical characteristics of the affected family members, RR-MS, relapsing-remitting multiple sclerosis; SP-MS, secondary-progressive multiple sclerosis; PP-MS, primary progressive multiple sclerosis; EDSS, expanded disability status scale. EDSS ranges from 0 to 10 in 0.5-point increments; higher scores indicate more disability.

TABLE 1 | Demographic and clinical characteristics of the unrelated MS patients cohort.

Clinical phenotype	All MS	RR-MS	SP-MS	PP-MS	p-value
Sample size, n	120	44	53	23	
Female, n (%)	74 (61.7)	27 (61.4)	31 (58.5)	16 (69.6)	
Onset, mean y ± SD	34.5 ± 9.7	33.9 ± 9.3	32.9 ± 9.5	39.1 ± 9.8	0.032
EDSS at examination	6 [2–6.5]	2 [1–2.5]	6.5 [6–6.5]	6 [6–6.5]	<0.0001

RR-MS, relapsing-remitting multiple sclerosis; SP-MS, secondary-progressive multiple sclerosis; PP-MS, primary progressive multiple sclerosis; n, number; SD, standard deviation; y, years; EDSS, expanded disability status scale; IQR, inter quartile range. Descriptive analysis between RR-MS, SP-MS, and PP-MS was performed using ANOVA for age of onset, and Kruskal–Wallis test for EDSS at examination. Multiple comparison tests provided differences in age of onset between SP-MS and PP-MS (p = 0.031, Bonferroni’s test), and in EDSS of RR-MS with SP-MS and with PP-MS (both p < 0.0001, Dunn’s test).

The effects of new coding variations on protein structure and function were predicted using Provean/SIFT[^11], while the effects of low-frequency coding variations, already reported on databases as prediction by SIFT/PolyPhen, were extrapolated from Ensembl[^12]. The whole-exome sequencing dataset generated during the current study is available in the https://www.ncbi.nlm.nih.gov/sra (Access Number: PRJNA544162).

Mutation Screening

Low-frequency variants, identified through the filtering in MS families, were confirmed by Sanger sequencing (n = 13) or restriction analysis (n = 2, ADAMTS3 and GC). Primers to amplify the coding sequences containing the identified low-frequency variants were designed with Primer3 software v0.4.0[^13]. A total of 50 ng of gDNA was amplified by polymerase chain reaction (PCR) using a standard protocol with AmpliTaq Gold 360 DNA polymerase (Applied Biosystems, Foster City,

[^5]: http://www.completegenomics.com/documents/Small_Variant_Assembler_Me.pdf
[^6]: http://www.ncbi.nlm.nih.gov/projects/SNP/
[^7]: http://www.1000genomes.org/data
[^8]: http://exac.broadinstitute.org/
[^9]: https://gnomad.broadinstitute.org/
[^10]: http://software.broadinstitute.org/software/igv/
[^11]: http://sift.jcvi.org/www/SIFT_enst_submit.html
[^12]: http://www.ensembl.org/index.html
[^13]: http://bioinfo.ut.ee/primer3-0.4.0/
PCR conditions were set up as follows: an initial denaturation at 94°C for 5 minutes and then at 65°C for 3 minutes, followed by 35 cycles at 94°C for 30 seconds, specific temperatures for each couple of primers for 30 seconds, 72°C for 30 seconds or 1 minute, and a final elongation at 72°C for 7 minutes. Detailed primer sequences and PCR conditions used for Sanger sequencing are reported in Table 2. The PCR products were purified with CleanSweep™ PCR Purification (Applied Biosystems) prior to direct sequencing (Macrogen, Madrid, Spain). Sequences were analyzed using the software NovoSNP (Weckx et al., 2005). Size of PCR amplicons and restriction products were examined through agarose gel electrophoresis.

The presence of the selected low-frequency variants was investigated in a sample set of 120 Italian unrelated MS patients through Sanger sequencing (Table 2) or restriction analysis using the primer sequences and the restriction enzymes reported in Table 3.

Bio-Informatics Analysis of Nucleotide Changes

The prediction of mi-RNA targets was conducted by using the tool at www.mirdb.org exploiting the support vector machines (SVMs) procedures. The computational prediction of splice sites and splicing regulatory elements was conducted by using the www.umd.be/HSF/ online software.

Statistical Analysis

For populations comparison, we used MAFs obtained from: (i) the “dbSNP Build 150” (Homo sapiens Annotation Release 108) which combines all available frequencies from submitted SNPs clustered together into a reference SNP, (ii) the ExAC, which includes exome sequencing data from a wide variety of large-scale sequencing projects and in particular of European (not-Finnish) individuals, (iii) controls of gnomAD, which includes only samples from individuals who were not selected as a case in a case/control study of common disease, and (iv) 1000 Genome Project which contains allelic frequencies for a sample of 107 subjects from Tuscany, Italy, an optimal reference population for our MS individuals. The low prevalence (188 per 100’000 individuals) of MS in Tuscany (Bezzini et al., 2016) makes improbable the presence of individuals with MS in the Tuscany control sample.

TABLE 2 | Primer sequences and PCR conditions used for Sanger sequencing.

Gene	SNP position GRC37/hg19	SNP ID	Forward primer sequence (5’-3’)	Reverse primer sequence (5’-3’)	Tm (°C)	Length (bp)
ANKRD55	5;55407449	rs77017041	TTGTCACCTCCAGTCTAGCTT	CCGATGAGCAAGATGTGGAAT	60	850
C6orf10	6:32261153	rs16870005	TTTAGGCAATGGCTGGGATA	TGTGCCAAGAAGACAGGAATC	60	658
CD86	3:121774281	rs11575853	TCTTCTCAGGTGGTGGTTCAAAA	GCACCATCTCAGTCGACGC	60	297
ETV5	1:92979432	rs41286809	TGGCAATGTGAAATACGTTGG	CATGGAATCTGGTTGTGGGGG	60	595
IL2RA	10:6054766	rs12722600	ATACGACAGAAGGTGCGACTG	CCAAGAGCTGTGCCAGATAAA	66	468
IL7R	1:2530169	rs14724851	TAATCCCTCCATGGCCACACCG	GGCGCTGCTGGTGGTTGATT	65	353
IL10	5:191899319	–	GAATTCTGCAAAACCCCATG	AAATTTGACACAAATAATGGAAG	60	209
TET2	4:106156163	rs61744960	TATATCAGTGGTGTTTCTATG	CTTAGTGAAGAGCTAGCTGCTG	66	471
TOP3A	17:18279958	rs2230153	TGGCTCTGGATCTGGCTGT	TGGAGCTGATCTGCTGCTG	55	342
TRAF3	14:103371923	rs136543371	ATGGTGCGAGGTCGCTGACTCT	TCTGGAAGTCTGCTGCTGTTG	63	220
WWOX	16:78458807	rs7201883	AAGAAATTTTCTACCTTCCTGGAAGAG	CACCCACATGTCAGTCAGGAAG	60	444
To test the difference in MAFs between reference populations and the allelic frequencies observed in the study population, a two-proportion z-test, with a 0.05 two-sided significance level, was applied. A threshold of \(p < 0.0042 \), assuming the Bonferroni correction for multiple testing, was used for significance.

The potential enrichment of exonic low-frequency variants in MS patients was evaluated using a permutation approach based on the observed exonic polymorphisms. We first generated the null distribution of the number of low-frequency variants in a random sample of 107 genes, considering the exons composing the longest isoform of each gene, as defined by the human genome annotation (GRCh37/hg19). We took into account both the number and the length of exons, dividing the number of low-frequency variants by the total exon length, for each gene set. Then, we repeated the permutation process 1,000 times and the empirical \(p \)-value was defined as the proportion of replicates showing a number of variants higher than the observed value.

RESULTS

Selection of Candidate Genes

Since GWAS and classical linkage studies have extensively investigated the HLA locus, harboring the greatest genetic risk for MS (reviewed in Hollenbach and Oksenberg, 2015), HLA genes were not included in this study.

The review of GWAS in MS literature, reporting polymorphisms associated with MS in case-control studies, identified 141 variants which were selected for being intragenic and for having a \(p \)-value \(\leq 5 \times 10^{-6} \), an arbitrary threshold potentially highlighting genes with remarkable disease association. These common variants established the list of 107 genes used for the purpose of this study. Variants and corresponding genes are listed in the Supplementary Table 1.

Search for Low-Frequency Variants in MS Families by WES

WES was performed in three independent Italian families with at least two affected members in each pedigree (Figure 1).

A targeted analysis within the 107 MS susceptibility genes was conducted in all pedigree members. SNPs with MAF \(\leq 0.04 \) were taken into account when present in at least one affected family member. The selection of SNPs with MAF \(\leq 0.04 \) was aimed at filtering low-frequency variants which did not emerge in GWAS.

These filtering criteria revealed 17 exonic mutations (ten missense and seven synonymous) and three in the UnTranslated Regions (UTRs), all in the heterozygous condition (Table 4).

Among the 20 exonic and UTRs variants, nine were present only in the affected members of the families (rs77017041, ANKRD55; rs16870005, C6orf10; rs41286809, EVI5; rs76781122, GC; rs147248515, MMEL1; the new synonymous variant on STAT4; rs6174960, TET2; rs138943371, TRAF3; rs12720355, TYK2) and 14 variants were detected in at least two affected family members with parent-child transmission.

The number of low-frequency exonic variants in these families was investigated by a permutation test. No significant
difference was observed between our result and that expected by chance ($p = 0.231$).

Screening of WES-Selected Low Frequency Variants in Unrelated Multiple Sclerosis Patients

We focused our investigation on the 14 low-frequency variants with parent-child transmission and on the new variant of ADAMTS3 (Table 5). The 15 candidate SNPs were explored in a sample set of 120 Italian unrelated MS patients (Table 1).

The predicted effects of the 15 analyzed low-frequency variants, each on the main encoded transcript, are reported in Table 5. In addition to the mutation of the start codon (GC, Met1Ile), expected to reduce the amount of the translated protein, missense variants were predicted as damaging (ANKRD55 Ser376Pro; TET2 Gly355Asp) or potentially damaging (MMEL1 Pro368Thr). For the rs147248515 (MMEL1) the proline to threonine change produced discrepant predictions. Among the four SNPs predicted as benign, two cause noticeable changes in amino acid polarity and size (Arg to Gln in MALT1; Ala to Thr in C6orf10).

Aimed at prioritizing low-frequency variants that may contribute to the disease-risk, we compared the MAFs observed in the unrelated MS cohort with those reported in public databases (Table 5). The new variants on STAT4 and ADAMTS3 genes were not found in the cohort of unrelated MS. The allelic frequencies of C6orf10 rs16870005 and IL2RA rs12722600 resulted significantly higher in MS patients compared with all the databases (even after Bonferroni’s correction). Based on frequencies in the Control gnomAD, the OR for the rs1687005 risk T-allele was 4.57 (95% CI 2.33–8.97) and the odds ratios for the rs12722600 risk T-allele was 9.88 (95% CI 5.71–17.09), both highly significant (p-value < 0.001).

The TET2 rs61744960 and TRAF3 rs76781122 showed significant MAF differences between MS patients and public databases with the exception of a nominal borderline p-values with the Italian Tuscany population. On the other hand, TOP3A rs22230153 showed significant MAF differences between MS patients and public databases, with the exception of dbSNP150.

For two SNPs (CD86, rs11575853 and GC, rs76781122) significant differences were observed only in the comparison between MS patients and the dbSNP150 population. Of note, for the MALT1 rs74847855, and WWOX rs7201683 highly significant MAFs differences between MS and Tuscany subjects were observed, that may reflect increased frequency of low-frequency alleles in MS Italian patients.

Within the unrelated MS cohort, 17 patients were carriers of two low-frequency variants and five patients were carrier of three variants. The combinations repeatedly included the C6orf10, TET2, and IL2RA variants (Table 6). The variants detected in combination were always located on different chromosomes. The IL2RA rs12722600 and the TRAF3 rs138943371 were detected in the homozygous condition.

Table 4 | List of low-frequency variants identified in the MS families.

Gene	SNP position GRCh37/hg19	SNP ID	MAF % dbSNP150	MAF % ExAC European (not Finnish)	MAF % controls GnomAD European (not Finnish)	Mutation type	SNPs carriers
ADAMTS3	4:73178175	rs150270324	0.926	1.34	1.12	Missense	A-I-2+ A-I-3
ADAMTS3	4:73414590	–	0	0	0	Missense	B-I-1+ B-II-3+ B-II-4
ANKRDS5	5:55407449	rs77017041	0.427	0.63	0.71	Missense	C-I-2+C-I-3
BTLN2	6:32263893	rs28362679	1.825	–	0	Missense	B-I-1+ C-I-1+ C-I-2
C6orf10	6:32261153	rs16870005	1.250	1.43	0.85	Missense	B-I-2+ B-II-3
GC	4:72668661	rs76781122	1.611	3.35	2.77	Missense	B-I-2+ B-II-3
MALT1	18:56367823	rs74847855	3.734	4.28	4.20	Missense	B-I-2+ B-II-3+ B-II-4
MMEL1	1:2530169	rs147248515	0.022	0.028	0.037	Missense	B-I-2+ B-II-3
TET2	4:106156163	rs61744960	2.641	3.77	3.69	Missense	B-I-2+ B-II-3+ C-I-2+C-II-3+A-I-1+A-II-4
WWOX	16:78458807	rs7201683	1.989	1.23	1.11	Missense	B-I-2+ B-II-3+ B-II-4+C-I-2
EVI5	1:92979432	rs41286809	1.116	1.55	1.61	Synonymous	C-I-2+C-II-3+A-I-1+A-II-3+A-II-4
GC	4:72620788	rs76803094	1.799	2.56	2.14	Synonymous	B-I-1+ B-II-3+B-II-4
GEMIN2	14:39587220	rs150986614	0.251	0.37	0.37	Synonymous	A-I-2+ A-II-3+A-II-4
STAT4	2:191899319	–	–	–	–	Synonymous	C-I-2+C-II-3
TRAF3	14:103371923	rs138943371	0.245	0.30	0.36	Synonymous	C-I-2+C-II-3
TOP3A	17:18217968	rs2230153	1.692	0.46	0.36	Synonymous	C-I-2+C-II-3+A-I-2
TYK2	19:10472452	rs12720355	0.962	1.38	1.45	Synonymous	C-I-2+C-II-3
CD86	3:121774281	rs11575853	1.078	3.1	3.1	UTR 5’	B-I-2+ B-II-3+C-I-1
IL2RA	10:6054765	rs12722600	1.777	–	0.87	UTR 3’	B-I-2+ B-II-3+C-I-1+C-II-3
IFH5	11:14300827	–	–	–	–	UTR 3’	B-I-2+ B-II-4

In bold the genes including the exonic variants present only in affected family members defined as in Figure 1.
Gene	SNP position GRCh37/ hg19	SNP ID	Transcript (exon)	Amino acid change	SIFT/ PolyPhen prediction	Nucleotide change	MAF % in MS patients alleles n = 240 (n alleles)	MAF % 1000 GP (Tuscany) alleles n = 214	MAF % dbSNP150	MAF % ExAC European (not Finnish)	MAF % controls GnomAD European (not Finnish)	P-value* (Tuscany)	P-value* (dbSNP150)	P-value* (ExAC)	P-value* (controls GnomAD)
ADAMTS3	4:73414590 –	rs72017041	ENST00000286657	Lys57Glu	0.17/−0.01§	T > C	0 (0)	–	–	−	−	–	−	−	−
ANKR5S	5:55407449 –	rs77017041	ENST000003141048	Ser376Pro	0.01/−0.767	A > G	0 (0)	0.47	0.427	0.63	0.71	0.2871	0.3103	0.2174	0.1902
C6orf10	6:32261153 rs16870005	rs16870005	ENST000003533191	Ala431Thr	0.46/0.028	C > T	3.75 (9)	1.4	1.250	1.43	0.85	0.0019	0.00049	0.0025	9.89 × 10−7
CD86	3:121774281 rs11575853	ENST000003300540	(5′UTR)	n.a.	G > A	3.75 (9)	2.8	1.078	–	3.1	0.3723	6.1 × 10−5	–	0.5612	
EV5	1:92979432 rs41286809	rs41286809	ENST000005400033	Phe749Phe	0.08 (2)	G > A	1.16 (1)	1.55	1.61	1.61	–	0.4105	0.6768	0.3688	0.3391
GC	4:72669661 rs76781122	rs76781122	ENST000005341999	Met11e	0.2/0	Start codon	4.58 (11)	5.61	1.611	2.77	–	0.4895	0.00025	0.2883	0.0869
IL2RA	10:6054765 rs12722600	rs12722600	ENST000003217659	+ 70 from 273 stop	n.a.	G > A	7.92 (19)	4.21	1.777	–	0.87	0.0042	6.0 × 10−13	–	<1.0 × 10−22
MALT1	18:56367823 rs74847855	rs74847855	ENST000003348428	Arg217Gly	0.69/0	A > G	4.58 (11)	1.9	3.734	4.28	4.20	0.0019	0.4877	0.8164	0.7672
MMEL1	1:25310169 rs14724851	rs14724851	ENST000003374812	Pro368Thr	0.14/0.326	G > T	0 (0)	0	0.022	0.028	0.037	–	–	–	
STAT4	2:1919956198	ENST000003982420	(18′UTR)	Gin525Gln	–	A > G	0 (0)	–	–	–	–	–	–	–	
TET2	4:106156163 rs61744960	rs61744960	ENST000003545049	Gly355Asp	0.01/0.282	G > A	8.33 (20)	5.6	2.614	3.77	3.69	0.0667	2.8 × 10−66	0.00021	0.00014
TOP5A	17:18217958 rs2220153	rs2220153	ENST000003542570	Ala345Ala	–	G > A	1.66 (4)	0.47	1.692	0.46	0.36	0.0067	0.9757	0.0057	0.00073
TRAF3	14:1033711923 rs138943371	rs138943371	ENST000003347662	Ser417Ser	–	C > T	1.25 (3)	0.47	0.245	0.30	0.36	0.0773	0.00164	0.0071	0.02133
TYK2	19:10472452 rs12720355	rs12720355	ENST000003052621	Ile651Ile	–	C > T	1.66 (4)	1.4	0.962	1.38	1.45	0.7251	0.2634	0.7034	0.77887
WWOX	16:78485807 rs7201683	rs7201683	ENST000003566780	Leu216Val	0.19/0.04	C > G	2.08 (5)	0.47	1.989	1.23	1.11	0.00026	0.9166	0.2304	0.150086

The SIFT and PolyPhen scores (0.0 to 1.0) have opposite meanings. Prediction of the SIFT score ranges 0.0 to 0.05 deleterious; 0.05 to 1.0 tolerated. Prediction of the PolyPhen score ranges: 0.0 to 0.15, benign; 0.15 to 1.0 possibly damaging; 0.85 to 1.0 damaging, n.a., not applicable. *SIFT/Provean prediction for ADAMTS3 = (−0.01) neutral. **Investigated in 218 alleles. *Bonferroni’s correction p-value set to 0.0042. Significant p-values are in bold.
TABLE 6 | Unrelated multiple sclerosis patients carriers of at least 2 low-frequency variants.

ID	Gender	Age of MS onset	Phenotype at examination	C6orf10	CD86	EVI5	GC	IL2RA	MALT1	TET2	TOP3A	TRAF3	TYK2	WWOX
				rs16870005	rs11575853	rs41286809	rs76781122	rs12722600	rs74847855	rs61744960	rs2230153	rs138943371	rs12720355	rs7201683
132 ZM	F	20	RR		Het	Het								
159 ZM	M	26	RR		Het	Het								
173 ZM	F	31	RR		Het	Het								
194 ZM	F	31	RR		Het	Hom*								
27-WP3	M	31	SP	Het	Het									
43-WP3	F	31	PP	Het										
155 ZM	F	33	SP	Het	Het									
51-WP3	M	33	SP	Het										
109 ZM	F	37	SP	Het	Het									
63-WP3	F	37	SP	Het	Het									
115 ZM	F	38	SP	Het	Het									
69-WP3	M	40	SP	Het	Het									
111 ZM	F	41	RR	Het	Het									
48-WP3	F	42	PP	Het										
57-WP3	M	42	SP	Het	Het									
208 ZM	F	44	RR	Het	Het									
MS18	F	45	SP	Het	Hom*									
184 ZM	M	47	SP	Het										
192 ZM	F	48	RR	Het										
72-WP3	F	48	PP	Het	Het									
204 ZM	M	50	RR	Het	Het									
MS07	M	n.d.*	SP	Het	Het									

The heterozygous (Het) or homozygous (Hom*) condition of the variants is specified. In bold, patients with combination of 3 low-frequency variants. § Age of onset below 50 years old.
The comparison of age of MS onset between patients with or without the 15 investigated low-frequency variants did not provide significant differences.

Detection of Null Mutations in the 3′ Exon of C6orf10

The rs16870005 within C6orf10, a scarcely investigated locus, resulted in the only missense variant with a significantly increased frequency in our cohort compared to dbSNP-Build150, Tuscany of 1000 Genome Project, ExAC -European (not Finnish)- and Control gnomAD -European (not Finnish)-. (Table 5) and, in addition, it was frequently present in combination with other low-frequency variants (Table 6). Further, the nucleotide change C > T (rs16870005) in the 3′ region of the C6orf10 transcripts would substitute threonine for alanine in the carboxyl-terminal region of all the predicted proteins (reference transcript used for the study shown in Figure 3).

Based on these observations we sequenced the region chr6:32261295-32260757 in the 120 MS patients, which revealed the presence of 14 low-frequency mutations (MAF ≤ 0.04), 10 not previously reported (Table 7).

Of note, two mutations predicted premature termination of translation and two translational frameshift. Inspection of C6orf10 variants (Figure 3) pointed out that the four null mutations affected all C6orf10 transcripts. Among these, the ENST0000042822.6, after splicing, is shorter and encodes a different 3′ sequence. In the transcripts other than ENST0000442822.6, null mutations would remove a larger C-terminus portion (Figure 3) in which we detected several missense SNPs.

For missense changes the algorithms predicted discordant effects (Table 7), with the exception of the damaging Gly477Val (rs7751028).

Several databases were inspected for low-frequency (MAF ≤ 0.04) exonic variants within the full C6orf10 transcript ENST00000533191.5 (total length 80 Kb), and for the presence of null variants. In particular, (i) in the Control gnomAD database 301 variants were found, of which 24 were nonsense or frameshift, and (ii) in the ExAC database 271 variants were found, of which 20 were nonsense or frameshift. The proportion of null variants in the MS patients (4/14 within 538 bp) was higher than that in the Control gnomAD (p = 0.0254, Maximum Likelihood chi-square) and in the ExAC (p-value = 0.0184, Maximum Likelihood chi-square).

The distribution of the 14 low-frequency C6orf10 variants detected by Sanger sequencing in the unrelated MS patients is shown in Table 8. The frameshift mutations, of which the Ser389Xfr in the homozygous condition, were detected in two patients with young age of disease onset (21 and 25 years). Three patients were carriers of two/three missense C6orf10 mutations (Table 8). None of the 14 low-frequency variants was associated with the presence of the C6orf10 rs16870005.

Seven patients over the 11 carriers of the C6orf10 variants were also carriers of SNPs detected in the family WES study (Supplementary Table 2).

DISCUSSION

Taking into account the complex multi-factorial nature of MS, and the recently estimated contribution of low-frequency variants into disease risk, we aimed at investigating genetic risk components through combination of variant prioritization strategies. We explored by WES 107 candidate loci for exonic low-frequency variants in three Italian MS families with two or three affected members and validated the results in 120 unrelated
null variants. Furthermore, three patients showed combination among which 10 not previously reported and four potentially cohort, was found to contain 14 low-frequency mutations, variant rs16870005 which resulted associated with MS in our locus. The 3\(^\text{rd}\) frequency variants, we report several and novel findings in the public databases. The observed MAFs, higher in the Italian MS differences in the observed allelic frequencies as compared with (International Multiple Sclerosis Genetics Consortium, 2018). Noticeably, our screening identified a number of significant through different experimental approaches, focused on low-frequency variants in other candidate genes. Although anecdotal, finding the homozygous Ser389Xfr in a patient with early onset of the MS disease fosters further investigation in relation to the recent study suggesting that C6orf10 could be implicated in the age of onset of other neurodegenerative disease (Zhang et al., 2018).

The interpretation of potential functional consequences was hampered by the C6orf10 chromosomal location and structure. As a matter of fact, this ORF is located on chromosome 6p21.32, in the major histocompatibility complex region which contains the major MS-associated risk gene HLA-DRB1 (Bashinskaya et al., 2015). To evaluate if the signals of associations between the C6orf10 variants could reflect linkage disequilibrium (LD) with DRB1 SNPs reported in the literature (reviewed in Bashinskaya et al., 2015), the data from the 1000 Genome project were explored (Supplementary Table 3). The low LD of C6orf10 rs16870005 with C6orf10 rs3129934 (r\(^2\) 0.113), and with the HLA rs9271366 (r\(^2\) 0.055), suggests that the association between C6orf10 rs16870005 and MS does not simply reflect the LD with the HLA-DRB1 locus.

SNP position GRC37/hg19	SNP ID	Amino acid change	Provean/SIFT prediction	Nucleotide change	MAF % dbSNP150	ExAC European (not Finnish) MAF %	GnomAD European (not Finnish) MAF %	MAF % in 120 MS patients (n alleles)
6:32260761	–	Glu561Asp	(−1.16) neutral/ (0) damaging	C > G	–	–	–	0.42 (1)
6:32260769	–	Val559Leu	(−0.86) neutral/ (0.31) damaging	C > G	–	–	–	0.42 (1)
6:32260774	–	Lys557Ile	(−1.6) neutral/ (0.004) damaging	T > A	–	–	–	0.42 (1)
6:32260878*	–	Asp522Asp	neutral/tolerated	G > A	–	–	–	1.25 (3)
6:32260898*	–	Asp516Tyr	(−2.38) neutral/ (0.011) damaging	C > A	–	–	–	0.42 (1)
6:32260927*	–	Gln506Val	(−1.42) neutral/ (0.028) damaging	T > A	0.001	–	–	0.42 (1)
6:32260933*	rs766126891	Aasp04Val	(−2.42) neutral/ (0) damaging	T > A	–	–	–	0.42 (1)
6:32261014	rs7751028	Gln477Val	(−3.43) deleterious/ (0.006) damaging	C > A	2.480	0.98	0.99	0.42 (1)
6:32261075	–	Lys457stop	Damaging	T > A	–	–	–	0.42 (1)
6:32261084	–	Ser454Xfr	Damaging	A > insG	–	–	–	0.42 (1)
6:32261093	–	Gly451stop	Damaging	C > A	–	–	–	0.42 (1)
6:32261158	rs114543649	Thr429Ser	(1.30) neutral/ (1) tolerated	G > C	2.479	0.98	0.99	0.42 (1)
6:32261277	–	Ser389Xfr	Damaging	T > delT	–	–	–	0.83 (2)
6:32261291	–	Gln385Glu	(1.38) neutral/ (1) tolerated	G > C	2.482	0.98	0.99	0.42 (1)

The sequenced 3\(^{\text{rd}}\) exonic region spans chr6:32261295-32260757 (GRCh37/hg19). The reference transcript is ENST00000533191.5, and the reference protein is ENSP00000431199 (exon position 26/26). The Provean cut off: equal or below −2.5, deleterious; above −2.5, neutral. The SIFT score range prediction: 0.0 to 0.05 deleterious; 0.05 to 1.0 tolerated. All variants were detected in heterozygous condition with the exception of Ser389Xfr (homozygous condition, bold and black). *Position in repetitive regions.
TABLE 8 | Low-frequency variant genotypes in 3′ exon of C6orf10 within the unrelated MS patients.

ID	Gender	Age of MS onset	Phenotype at examination	C6orf10
138	ZM	21	RR	Ser454Xfr (Het)
221	ZM	22	RR	Val559Leu (Het)
150	ZM	25	RR	Ser389Xfr (Hom)
194	ZF	31	RR	Gly385Glu (Het)
106 ZM	M	32	SP	Asp504Val (Het)*
128 ZF	F	32	RR	Glu506Val (Het)*
109 ZM	F	37	SP	Asp522Asp (Het)*
115 ZF	F	38	SP	Lys557Ile (Het)
MS23	F	38	RR	Gly451stop (Het)
112 ZF	F	41	RR	Lys557Ile (Het)
25-WP3	F	51	PP	Asp167Tyr (Het)*
65-WP3	F	51	SP	Asp522Asp (Het)*

MS patients carrying low-frequency C6orf10 variants (within the region chr6:32261295-32260757) are reported. The heterozygous (Het) or homozygous (Hom) condition of the variants is specified. In bold and black, C6orf10 stop and frame shift variants. *C6orf10 variants in repetitive regions.

The C6orf10 structure comprises several transcripts, including three isoforms of a validated, but not characterized, long non-coding RNA (NR_136244.1, NR_136245.1, and NR_136246.1) and a pseudogene hnrRNp (HNRNPA1P2). Thus, the null mutations that we have found in the MS cohort would affect the C-terminal portion of several uncharacterized proteins expressed in brain and B cells both tissues of interest for MS.

The small sample size and the statistical power derived from our population do not permit an informative evaluation of the possible impact of the numerous newly detected C6orf10 variants on the disease onset or clinical course within an integrated multiple variants model.

Finding of the IL2RA 3′UTR low-frequency variant (rs12722600) (i) in two MS families, (ii) with a significantly higher frequency in the unrelated MS cohort than in the public databases, and (iii) in several combinations with the other low-frequency SNPs, is particularly intriguing. As for the other IL2RA polymorphisms previously associated with the risk of developing the disease (Matiello et al., 2011; Wang and Chen, 2018), the functional consequence of the rs12722600 can be only proposed (Maier et al., 2009) as affecting the post-transcriptional regulation of the IL2RA mRNA, of which little is known (Techasintana et al., 2017). Bio-informatics prediction of miRNA binding sites in the IL2RA 3′UTR did not reveal creation or disruption of regulatory sites produced by the rs12722600 nucleotide change. Interestingly, therapies for MS have been already developed to avoid the formation of the interleukin-2 receptor complex, and particularly targeting CD25 (Bielekova, 2018), the α-subunit encoded by the IL2RA. Our findings support further studies aimed at characterizing the IL2RA 3′UTR in patients undergoing this therapeutic approach.

The TET2 gene codifies for an enzyme that catalyzes the conversion of 5-methylcytosine to 5-hydroxymethylcytosine, thus modifying the DNA methylation pattern. As functional partner, TET2 may participate in histone modification (O-GlcNAcylation, Chen et al., 2013). Noteworthy, demethylation by TET2 is also actively involved in T cells differentiation and their cytokines production (Ichiyama et al., 2015; Wang et al., 2017). The presence of the low-frequency TET2 rs61744960 variant in MS patients of all the three families, and its frequency in unrelated MS patients cohort higher than in three databases support further investigation of this finding in relation to MS. It is of note that the SNP rs61744960 has been previously reported in an Italian study focused on leukemia, and two of the six patients, who carried this variant, had MS as a primary disease (Ottone et al., 2012).

For the TRAF3 rs138943371 we observed in the four databases a frequency pattern similar to that of TET2 rs61744960. TRAF3 gene codifies for tumor necrosis factor receptor-associated factor 3, a major regulator of innate immune response through different transduction signal pathways (Cullell et al., 2017). By “Human Splicing Finder” analysis, the rs138943371 C to T change, disrupting an exonic splicing enhancer, might create in the TRAF3 transcript a new exonic splicing silencer. Further investigation is needed to evaluate potential effects on transcription and splicing processes, that are strictly related and rely on regulatory elements in the 3′ gene region.

Although in the GWAS MS candidate genes we did not detect an increased number of low frequency variants in our MS families, those variants firstly found with parent-child transmission in MS families were detected in several combinations in unrelated patients, particularly in C6orf10, IL2RA and TET2. These observations further highlight the complexity of the MS genetic risk components.

Our study supports further investigation within genetics consortiums of multiple low-frequency risk variants in coding regions of MS candidate genes. Expression of specific protein variants, and their combinations, could provide functional insights in the heterogeneous pathogenetic mechanisms contributing to MS.

ETHICS STATEMENT
Written informed consent was obtained from all subjects, and the study was approved by the Ethical Committee of the S. Anna University-Hospital, Ferrara, Italy.

AUTHOR CONTRIBUTIONS
NZ, GM, CS, MB, PZ, and FB conceived and designed the study. NZ, GM, CS, and FB wrote the manuscript. NZ, SM, and LL performed the literature revision. NZ, SM, LL, BL, NB, and IG
carried out the lab experiments. NZ, CS, AB, and DB performed bio-informatic analyses of the data. FS, SS, DG, and PZ selected and recruited the patients, and performed their clinical evaluation. NZ, MB, SM, EM, and DG collected the samples and evaluated the pre-analytical variables. All authors critically evaluated the final version of the manuscript.

FUNDING

This study was partly supported by the grant 1786/2012 from the strategic 2010–2012 Research Program of the Emilia Romagna Region and the grant 2010XE5L2R_002 of the Italian Ministry of University and Research.

REFERENCES

Balestra, D., Scalet, D., Pagani, F., Rogalska, M. E., Mari, R., Bernardi, F., et al. (2016). An exon-specific U1snRNA induces a robust factor IX activity in mice expressing multiple human FIX splicing mutants. Mol. Ther. Nucleic. Acids 5:370. doi: 10.1038/mtna.2016.77

Ban, M., Caillet, S., Mero, I. L., Myhr, K. M., Celius, E. G., Aarseth, J., et al. (2013). No evidence of association between mutant alleles of the CYP27B1 gene and multiple sclerosis. Ann. Neurol. 73, 430–432. doi: 10.1002/ana.23833

Bashinskaya, V. V., Kulakova, O. G., Boyko, A. N., Favorov, A. V., and Favorova, O. O. (2015). A review of genome-wide association studies for multiple sclerosis: classical and hypothesis-driven approaches. Hum. Genet. 134, 1143–1162. doi: 10.1007/s00439-015-1601-2

Battaglia, M. A., and Bezzini, D. (2017). Estimated prevalence of multiple sclerosis in Italy in 2015. Neurol. Sci. 38, 473–479. doi: 10.1007/s10072-016-2801-9

Bernalles, C. Q., Encarnacion, M., Criscuoli, M. G., Yee, I. M., Trabousee, A. L., Sadovnick, A. D., et al. (2018). Analysis of NOD-like receptor NLRP1 in multiple sclerosis families. Immunogenetics 70, 205–207. doi: 10.1007/s00251-017-1034-2

Bezzini, D., Policardo, L., Meucci, G., Ulivelli, M., Bartalini, S., Profili, F., et al. (2016). Prevalence of multiple sclerosis in tuscany (Central Italy): a study based on validated administrative data. Neuroepidemiology 46, 37–42. doi: 10.1159/000441567

Bielekova, B. (2018). Daclizumab therapy for multiple sclerosis. Cold Spring Harb. Perspect. Med. 9:a034470

Chen, Q., Chen, Y., Bian, C., Fujiki, R., and Yu, X. (2013). TET2 promotes histone O-GlcNAcylation during gene transcription. Nature 493, 561–564. doi: 10.1038/nature11742

Ciccarelli, O., Barkhoff, F., Bodini, B., De Stefano, N., Golay, X., Nicolay, K., et al. (2014). Pathogenesis of multiple sclerosis: insights from molecular and metabolic imaging. Lancet Neurol. 13, 807–822. doi: 10.1016/S1474-4422(14)70101-2

Cullell, N., Muino, E., Carrera, C., Torres, N., Krupinski, J., and Fernandez-Cadenas, I. (2017). Role of TRAF3 in neurological and cardiovascular diseases: an overview of recent studies. Biomol. Concepts 8, 197–202. doi: 10.1515/bmc-2017-0008

Dyment, D. A., Cader, M. Z., Chao, M. J., Lincoln, M. R., Morrison, K. M., Disanto, G., et al. (2012). Exome sequencing identifies a novel multiple sclerosis susceptibility variant in the TYK2 gene. Neurology 79, 406–411. doi: 10.1212/WNL.801383.166464c

Garcia-Rosa, S., De Amorim, M. G., Valieris, R., Marques, V. D., Lorenzi, J. C. C., Toller, V. B., et al. (2017). Exome sequencing of multiple-sclerosis patients and their unaffected first-degree relatives. BMC Res. Notes. 10:735. doi: 10.1186/s13104-017-3072-0

Gemmati, D., Zeri, G., Orioli, E., De Gaetano, F. E., Salvi, F., Bartolomei, I., et al. (2012). Polymorphisms in the genes coding for iron binding and transporting proteins are associated with disability severity, and early progression in multiple sclerosis. BMC Med. Genet. 13:70. doi: 10.1186/1471-2350-13-70

ACKNOWLEDGMENTS

We thank Alberto Carriero for his technical support. We are grateful to the families and the patients who took part in this study. We also thank the Italian “Fondazione Il Bene Onlus” for their support in the MS research.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fgene.2019.00573/full#supplementary-material

International Multiple Sclerosis Genetics Consortium (2016). NR1H3 p.Arg415Gln Is not associated to multiple sclerosis risk. Neuron 92, 333–335. doi: 10.1016/j.neuron.2016.04.039

International Multiple Sclerosis Genetics Consortium (2018). Low-Frequency and Rare-Coding variation contributes to multiple sclerosis risk. Cell 175, 1679–1687. doi: 10.1016/j.cell.2018.09.049

Kempinnen, A. K., Baker, A., Liao, W., Fiddes, B., Jones, J., Compston, A., et al. (2014). Exome sequencing in single cells from the cerebrospinal fluid in multiple sclerosis. Mult. Scler. 20, 1564–1568. doi: 10.1177/1352458514529613

Kurtze, J. F. (1983). Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33, 1444–1452.

Maier, L. M., Anderson, D. E., Severson, C. A., Baecher-Allan, C., Healy, B., Liu, D. V., et al. (2009). Soluble IL-2RA levels in multiple sclerosis subjects and the effect of soluble IL-2RA on immune responses. J. Immunol. 182, 1541–1547.

Marchetti, G., Zilotti, N., Meneghetti, S., Baroni, M., Lunghi, B., Menegatti, E., et al. (2018). Changes in expression profiles of internal jugular vein wall and plasma protein levels in multiple sclerosis. Mol. Med. 24:42. doi: 10.1186/s10020-018-0043-4

Mattioli, M., Weinsenker, B. G., Atkinson, E. J., Schaefer-Klein, J., and Kantarci, O. H. (2011). Association of IL2RA polymorphisms with susceptibility to multiple sclerosis is not explained by missense mutations in IL2RA. Mult. Scler. 17, 634–636.

Mayer, A., Latvar, P., Ristic, S., Stopinske, S., Simic, S., Hovekar, K., et al. (2017). Identification of rare genetic variation of NLRP1 gene in familial multiple sclerosis. Sci. Rep. 7:3715. doi: 10.1038/s41598-017-03536-9

Mescheriakova, J. Y., Verkerk, A. J., Amin, N., Uitterlinden, A. G., Van Duijn, C. M., and Hintzen, R. Q. (2018). Linkage analysis and whole exome sequencing identify a novel candidate gene in a Dutch multiple sclerosis family. Mult. Scler. 25, 909–917. doi: 10.1177/1352458517772202

Minikel, E. V., and MacArthur, D. G. (2016). Publicly available data provide evidence against NR1H3 R415Q causing multiple sclerosis. Neuron 92, 336–338. doi: 10.1016/j.neuron.2016.09.054

Morandi, E., Tarlinton, R. E., and Gran, B. (2015). Multiple sclerosis between genetics and infections: human endogenous retroviruses in monococytes and macrophages. Front. Immunol. 6:647. doi: 10.3389/fimmu.2015.00647
Olsson, T., Barcellos, L. F., and Alfredsson, L. (2017). Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. *Nat. Rev.Neurol.* 13, 25–36. doi: 10.1038/nrneurol.2016.187

Ottone, T., Cicconi, L., Hasan, S. K., Lavorgna, S., Divona, M., Voso, M. T., et al. (2012). Comparative molecular analysis of therapy-related and de novo acute promyelocytic leukemia. *Leuk. Res.* 36, 474–478. doi: 10.1016/j.leukres.2011.10.015

Patsopoulos, N. A. (2018). Genetics of multiple sclerosis: an overview and new directions. *Cold Spring Harb. Perspect Med.* 8:a028951. doi: 10.1101/cshperspect.a028951

Polman, C. H., Reingold, S. C., Banwell, B., Clanet, M., Cohen, J. A., Filippi, M., et al. (2011). Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. *Ann. Neurol.* 69, 292–302. doi: 10.1002/ana.22366

Ramagopalan, S. V., Dyment, D. A., Cader, M. Z., Morrison, K. M., Disanto, G., Morahan, J. M., et al. (2011). Rare variants in the CYP27B1 gene are associated with multiple sclerosis. *Ann. Neurol.* 70, 881–886. doi: 10.1002/ana.22678

Sadovnick, A. D., Traboulsee, A. L., Zhao, Y., Bernales, C. Q., Encarnacion, M., Ross, J. P., et al. (2017). Genetic modifiers of multiple sclerosis progression, severity and onset. *Clin. Immunol.* 180, 100–105. doi: 10.1016/j.clim.2017.05.009

Techasintana, P., Ellis, J. S., Glascock, J., Gubin, M. M., Ridenhour, S. E., Magee, J. D., et al. (2017). The RNA-Binding protein HuR posttranscriptionally regulates IL-2 homeostasis and CD4(+)/Th2 differentiation. *Immunohorizons* 1, 109–123. doi: 10.4049/immunohorizons.1700017

Wang, X., and Biernacka, J. M. (2015). Assessing the effects of multiple markers in genetic association studies. *Front. Genet.* 6:66. doi: 10.3389/fgene.2015.00066

Wang, X., Wang, J., Yu, Y., Ma, T., Chen, P., Zhou, B., et al. (2017). Decitabine inhibits T cell proliferation via a novel TET2-dependent mechanism and exerts potent protective effect in mouse auto- and allo-immunity models. *Oncotarget* 8, 56802–56815. doi: 10.18632/oncotarget.18063

Wang, X. X., and Chen, T. (2018). Meta-analysis of the association of IL2RA polymorphisms rs2104286 and rs12722489 with multiple sclerosis risk. *Immunol. Invest.* 47, 431–442. doi: 10.1080/08820139.2018.1425699

Wang, Z., Sadovnick, A. D., Traboulsee, A. L., Ross, J. P., Bernales, C. Q., Encarnacion, M., et al. (2016). Nuclear receptor NR1H3 in familial multiple sclerosis. *Neuron* 90, 948–954. doi: 10.1016/j.neuron.2016.04.039

Weckx, S., Del-Favero, J., Rademakers, R., Claes, L., Cruts, M., De Jonghe, P., et al. (2005). novoSNP, a novel computational tool for sequence variation discovery. *Genome Res.* 15, 436–442.

Zhang, M., Ferrari, R., Tartaglia, M. C., Keith, J., Surace, E. I., Wolf, U., et al. (2018). A C6orf10/LOC101929163 locus is associated with age of onset in C9orf72 carriers. *Brain* 141, 2895–2907. doi: 10.1093/brain/awy238

Ziliotto, N., Baroni, M., Straudi, S., Manfredini, F., Mari, R., Menegatti, E., et al. (2018). Coagulation factor XII levels and intrinsic thrombin generation in multiple sclerosis. *Front. Neurol.* 9:245. doi: 10.3389/fneur.2018.00245

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The reviewer RA declared a past co-authorship with the authors PZ, FB, and DG.

Copyright © 2019 Ziliotto, Marchetti, Scapoli, Bovolenta, Meneghetti, Benazzo, Lunghi, Balestra, Laino, Boczini, Guidi, Salvi, Straudi, Gemmati, Menegatti, Zamboni and Bernardi. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.