Non-paradoxical action of automata groups on infinite words

Victoriia Korchemna
28.10.2018

Abstract
We show, that groups, defined by wide class of automata, including all polynomial ones, act on the set of infinite words not paradoxical.

1 Introduction and definitions

1.1 Rooted tree of words and it’s isomorphisms

Let X be a finite set, which will be called alphabet with elements called letters. We always suppose $|X| > 1$ (here $|X|$ denotes the cardinality of X). Let X^* be the free monoid generated by X. The elements of this monoid are finite words $x_1x_2...x_n$, $x_i \in X$, including the empty word \emptyset. Denote by X^w the set of all infinite words $x_1x_2...x_n...$, $x_i \in X$. For each $l \in \mathbb{N}$ and $w = w_1...w_l... \in X^w$ set $w[l] := w_1...w_l$. In other words, $w[l]$ is a finite word, formed by first l letters of w.

The set X^* is naturally a vertex set of a rooted tree, in which two words are connected by an edge if and only if they are of the form v and vx, where $v \in X^*$, $x \in X$. The empty word \emptyset is the root of the tree X^*.

A map $f : X \rightarrow X$ is an endomorphism of the tree X, if for any two adjacent vertices v, $vx \in X^*$ the vertices $f(v)$ and $f(vx)$ are also adjacent, so that there exist $u \in X^*$ and $y \in X$ such that $f(v) = u$ and $f(vx) = uy$. An automorphism is a bijective endomorphism.

1.2 Automata and automorphisms of rooted trees

An automaton A is a quadruple (X, Q, π, λ), where:

- X is an alphabet;
- Q is a set of states of the automaton;

*The author expresses her thanks to A. S. Oliynyk for introducing her to the topic of automata transformations"
• \(\pi : Q \times X \to X \) is a map, called the transition function of the automaton;

• \(\lambda : Q \times X \to X \) is a map, called the output function of the automaton.

An automaton is finite if it has a finite number of states. The maps \(\pi, \lambda \) can be extended on \(Q \times X^* \) by the following recurrent formulas:

\[
\begin{align*}
\pi(q, \emptyset) &= q, \quad \pi(q, xw) = \pi(\pi(q, x), w) \\
\lambda(q, \emptyset) &= \emptyset, \quad \lambda(q, xw) = \lambda(q, x)\lambda(\pi(q, x), w),
\end{align*}
\]

where \(x \in X, q \in Q, \) and \(w \in X^* \) are arbitrary elements. Similarly, the maps \(\pi, \lambda \) are extended on \(Q \times X^w \).

An automaton \(A \) with a fixed state \(q \) is called initial and is denoted by \(A_q \). Every initial automaton defines the automorphism \(\lambda(q, \cdot) \) of the rooted tree \(X^* \), which we also denote by \(A_q(\cdot) = \lambda(q, \cdot) \) (or \(q(\cdot) \) if it is clear, which automaton it belongs to). We denote by \(e \) a trivial state of automaton, i.e., such a state that defines a trivial automorphism of \(X^* \). The action of an initial automaton \(A_q \) can be interpret as the work of a machine, which being in the state \(q \) and reading on the input tape a letter \(x \), goes to the state \(\pi(q, x) \), types on the output tape the letter \(\lambda(q, x) \), then moves both tapes to the next position and proceeds further.

1.3 Moore diagrams

An automaton \(A \) can be represented (and defined) by a labelled directed graph, called the Moore diagram, in which the vertices are the states of the automaton and for every pair \((q, x) \in Q \times X\) there is an edge from \(q \) to \(\pi(q, x) \) labelled by \(x|\lambda(q, x) \).

Here is the Moore diagram of automaton, called the adding machine. Consider a word of length \(l \in \mathbb{N} \) as a binary number, with lower digits on the left side. If the automaton gets the word in state \(q \), it adds 1 modulo 2 to it.

1.4 Inverse automaton. Composition of automata

An automaton is called invertible, if for each \(q \in Q \) the mapping \(\lambda(q, \cdot) \) is a bijection. Suppose that we have the Moore diagram of invertible automaton \(A \). Let us swap all the left labels with right ones that correspond to them. After renaming the states \(q \to q^{-1} \) we get a Moore diagram of some automaton \(A^{-1} \), which is called the inverse automaton of \(A \). Notice that for each \(q \in Q \) the state \(q^{-1} \) of \(A^{-1} \) defines the automorphism of a rooted tree which is inverse to \(q \).

Further in the article we omit the word "invertible" and consider only invertible automata.
By giving the output of $A = (X, Q, \pi, \lambda)$ to the input of another automaton $B = (X, S, \alpha, \beta)$, we get an application which corresponds to the automaton called the composition of A and B and is denoted by $A \ast B$. This automaton is formally described as the automaton with the set of the states $Q \times S$ and the transition and output functions ϕ, ψ defined by

$$
\phi((q, s), x) = (\pi(q, x), \alpha(s, \lambda(q, x)))$$
$$\psi((q, s), x) = \beta(s, \lambda(q, x))$$

Notice that a state (q, s) of $Q \times S$ defines the automorphism of a rooted tree which is a superposition of ones defined by q and s.

1.5 Paradoxical actions of groups

Let G be a group acting on a set X and suppose $E \subseteq X$. G acts on E paradoxically (E is G-paradoxical) if for some positive integers m, n there are pairwise disjoint subsets $A_1, \ldots, A_n, B_1, \ldots, B_n$ of E and $g_1, \ldots, g_n, h_1, \ldots, h_n \in G$ such that $E = \bigcup g_i(A_i) = \bigcup h_i(B_i)$. Loosely speaking, the set E has two disjoint subsets, each of which can be taken apart and rearranged via G to cover all of E. Well known example is Banach-Tarski paradox, where subgroup of isometries of R^3 act’s on a sphere.
2 Automata, that "almost always" move to the trivial state

In the article we fix some alphabet X and consider words over X only. For arbitrary automata transformation g denote by \(NS(g, l) \) the number of words of length \(l \) which move \(g \) to the non-trivial state.

Proposition 1. \(NS(\bullet, \bullet) \) has the following properties:

1. \(NS(g, l) = NS(g^{-1}, l) \)
2. \(NS(gh, l) \leq NS(g, l) + NS(h, l) \),

where \(g, h \) are arbitrary automata transformations, \(l \in \mathbb{N} \)

Proof. (1) Let \(w \) be a word with a length \(l \) that doesn’t move \(g \) to the trivial state. Then \(g(w) \) is a word with a length \(l \) that doesn’t move \(g^{-1} \) to the trivial state. Since \(g \) is a bijective mapping on \(X^l \), \(g(w) \) are different for different \(w \). Therefore, \(NS(g^{-1}, l) \leq NS(g, l) \). After replacing \(g \rightarrow g^{-1} \), we get the opposite inequality.

(2) For arbitrary automata transformation \(q \) denote by \(S(q, l) \) the set of words of length \(l \) that move \(q \) to the trivial state; \(NS(q, l) := X^l \setminus S(q, l) \). Then \(|NS(q, l)| = NS(q, l), |S(q, l)| = |X|^l - NS(q, l) \).

As \(g \) is a bijection on \(X^l \), we have \(|g(NS(g, l))| = |NS(g, l)| = NS(g, l) \). If a word \(w \in X^l \) moves \(g \) to the trivial state and so does \(g(w) \) with \(h \), then \(w \) moves \(gh \) to the trivial state. Therefore:

\[
S(gh, l) \supseteq g(S(g, l)) \cap S(h, l) = X^l \setminus (g(NS(g, l)) \cup NS(h, l))
\]

\[
|S(gh, l)| \geq |X|^l - (NS(g, l) + NS(h, l))
\]

\[
NS(g, l) = |NS(gh, l)| \leq NS(g, l) + NS(h, l)
\]

\(\square \)

Denote by \(G_0 \) the set of all automata transformations \(g \) for which the following holds:

\[
NS(g, l) = o(|X|^l), l \rightarrow \infty
\]

To put it simply, "almost" all the words move the transformations to the trivial state.

(1) and (2) imply that \(G_0 \) is a group. Notice that \(G_0 \) includes all the polynomial automata. What do we know about it’s action on \(X^w \)?

Theorem 1. \(X^w \) is not \(G_0 \)-paradoxical.

Proof. Assume that \(X^w \) is \(G_0 \)-paradoxical. Then there are the elements \(h_1, ..., h_d \) of \(G_0 \) and the partition \(X^w = A_1 \sqcup \ldots \sqcup A_d \) with such property: Let initially every word from \(X^w \) have 1 coin. Then \(h_i \) moves a coin from every \(a_i \in A_i \) to \(h_i(a_i) \), \(1 \leq i \leq d \). After that every word from \(X^w \) has at least 2 coins.

For arbitrary \(l, s \in \mathbb{N} \), \(s \geq 8 \) consider the set of \(s \cdot |X|^l \) consecutive words \(F := \{w + 1, ..., w + s \cdot |X|^l\} \subset X^w \) and its superset of \((s + 2) |X|^l \) consecutive...
words

\[F' := \{ w + 1 - |X|^l, \ldots, w + (s + 1)|X|^l \}, \]

put \(\neg F' := X^w \setminus F' \). Split \(F \) into subsets of \(|X|^l\) consecutive words \(F = F_1 \sqcup \ldots \sqcup F_s \). Notice that in every such subset the beginnings (first \(l \) letters) of words form the set \(X^l \).

Fix an arbitrary \(i \in \{1, \ldots, d\} \). Let \(g_i = h_i^{-1} \). The number of words, which are moved by \(g_i \) from \(F \) to \(\neg F' \) is not greater then \(s \cdot NS(h_i, l) \). Actually, consider arbitrary \(F_j \subset F \), \(1 \leq j \leq s \). If for some \(v \in F_j \), \(g_i(v) \) is in \(\neg F' \), then \(g_i \) changes a letter with position number greater then \(l \) in word \(v \). It means that if \(g_i \) receives \(v[1..l] \) it doesn’t move to trivial state after reading it.

As \(\{v[1..l] \mid v \in F_j\} = X^l \), number of such words in \(F_j \) is not greater then \(NS(g_i, l) = NS(h_i, l) \). So in \(F \) this number is not greater then \(s \cdot NS(h_i, l) \).

The result can be reworded: the number of words in \(\neg F' \), from which \(h_i \) brings coins to \(F \), is not greater then \(s \cdot NS(h_i, l) \). So, for each \(i \in \{1, \ldots, d\} \), \(h_i \) brings not more then \(s \cdot NS(h_i, l) \) coins to \(F \) from \(\neg F' \). Then all \(h_i \) bring at most \(s \cdot \sum_{i=1}^{d} NS(h_i, l) \) coins. As \(NS(h_i, l) = o(|X|^l) \), \(l \rightarrow \infty \), we can get

\[s \cdot \sum_{i=1}^{d} NS(h_i, l) \leq \frac{1}{4}s|X|^l \]

by choosing large \(l \). Therefore, if \(|F|\) is quiet large, then the number of coins, which are moved from \(\neg F' \) to \(F \) is not greater then \(\frac{1}{4}|F| \). Since \(s \geq 8 \), \(2 \leq \frac{1}{4}s \), then at most \((s + 2)|X|^l \leq \frac{5}{2}s|X|^l = \frac{5}{2}|F| \) coins are moved to \(F \) from \(F' \) (in particular from \(F \)). Together, the number of coins at \(F \) becomes at most \(\frac{5}{2}|F| + \frac{1}{4}|F| = \frac{3}{2}|F| < 2|F| \). It means then some words of \(F \) get less then 2 coins. Contradiction. \(\square \)

Remark 1. There are transformations, defined by infinite and not polynomial automata, which satisfy conditions of Theorem 1. For example, all non-trivial states of the following automaton define such transformations:
Each finite word without 0 and 1 moves \(q_i, i \geq 1 \) to non-trivial state. On the other hand, every word that contains 0 moves them to the trivial state. Therefore,

\[2^l \leq NS(q_i, l) \leq 3^l, \]

where \(2^l \) is a number of words without 1 and 0, \(3^l \) - without 0 only. Since \(\frac{3^l}{2^l} \to 0 \), \(l \to \infty \), all the states \(q_i, i \geq 1 \) are acceptable.
3 Automata, that "almost always" move to cycles

Theorem 1 doesn’t cover some simple automata transformations, which act on \(X^w \) non-paradoxically, such as pictured below:

![Diagram](attachment:image.png)

In theorem 1, "most" of words must move the automaton to the trivial state. In fact, we can generalise the condition.

Definition 1. The states \(g_1, ..., g_n \) of the same automaton form an unconditional cycle (UC), if the transition functions \(\pi(g_i, \cdot) \), \(1 \leq i \leq n \) don’t depend on input data and have the form \(g_1 \rightarrow ... \rightarrow g_n \rightarrow g_1 \).

Apparently, a trivial state is an instance of UC. We will say that a word \(w \in X^w \cup X^* \) moves the automata transformation \(g \) of the automaton \(A \) to a UC in \(s \) steps, if \(A \), receiving \(w \) in \(g \), gets into one of the states of the UC after processing first \(s \) letters. Notice the following:

Proposition 2. Assume that \(w \in X^l \) moves \(g \) to an UC of length \(n \) and \(g(w) \) moves \(h \) to an UC of length \(m \). Then \(w \) moves \(gh \) to some UC of length \(\text{LCM}(n, m) \).

Proof. We consider \(gh \) as a state \((g, h)\) of \(A * B \). Let \(w \) move \(g \) to the UC \(g_1, ..., g_n \) in \(s \) steps and \(g(w) \) move \(h \) to the UC \(h_1, ..., h_m \) in \(t \) steps. Then after processing first \(\max\{s, t\} \) letters of \(w \) the state \((g, h)\) moves to the UC \((g_1, h_1), ..., (g_n, h_m)\) of length \(\text{LCM}(n, m) \).

For arbitrary automata transformation \(g \) denote by \(NC_g(l) \) a number of words with length \(l \) which don’t move \(g \) to any UC, and by \(NC(g, l) \) - a set of infinite words that start from them. In other words, \(NC(g, l) \subset X^w \) consists of words that don’t move \(g \) to any UC while processing the first \(l \) letters.

Proposition 3. \(NC(g, l) \) has the following properties:

1. \(NC(g, l) = NC(g^{-1}, l) \)
2. \(NC(gh, l) \leq NC(g, l) + NC(h, l) \),

where \(g, h \) are arbitrary automata transformations, \(l \in \mathbb{N} \).

Proof. (1’) We are going to show that if \(w \in X^l \) moves \(g \) to the UC \(g_1, ..., g_n \) then \(g(w) \in X^l \) moves \(g^{-1} \) to the UC \(g_1^{-1}, ..., g_n^{-1} \). Consider the Moore diagram of some automaton \(A \), that contains \(g \). Starting from \(g \) and moving along left labels that form the word \(w \), we achieve the UC \(g_1, ..., g_n \) in \(k \leq l \) steps. Let us swap all the left labels with right ones that correspond to them. After renaming the states \(h \rightarrow h^{-1} \) we get a Moore diagram of the automaton \(A^{-1} \).
This transformation keeps UC, moreover, starting from g^{-1} and moving along left labels that form $g(w)$, we achieve the UC $g_1^{-1},...,g_n^{-1}$ in k steps. So if $w \in X^l$ moves g to the UC $g_1,...,g_n$ then $g(w) \in X^l$ moves g^{-1} to the UC $g_1^{-1},...,g_n^{-1}$. As g is a bijection, we have $NC(g^{-1},l) \leq NC(g,l)$. Similarly an opposite inequality can be gotten.

(2') Assume that $w \in X^l$ moves g to some UC and $g(w)$ moves h to some (maybe another) UC. Then according to proposition 1 w moves gh to an UC. The rest of the proof is similar to one of (2). We just have to replace $NS \rightarrow NC$, $NS \rightarrow NC$, $S \rightarrow C$.

Now we can see that automata transformations g for which $NC(g,l) = o(|X|^l), l \rightarrow \infty$ form a group. Denote it by G_1. Generalising theorem 1, we are going to prove the next statement:

Theorem 2. X^w is not G_1-paradoxical.

We need two auxiliary lemmas. Let us say that a word $w \in X^w$ is l—almost periodic if it has the form $w = uv$ where $u \in X^l$ is arbitrary and v is periodic. Mentioning the period, we mean the shortest repeating word from X^*, that starts from $(l+1)th$ position of w. For example, word 123010101 as a 3—almost periodic word has period 01. But as a 4—almost periodic word it has period 10.

Lemma 1. Let w be l—almost periodic word with a period of length t. Assume that w moves an automata transformation g to UC of length c in at most l steps. Then $g(w)$ is l—almost periodic and the length of it’s period divides LCM(t,c).

Proof. When the automaton has already processed the first l letters of w, the following holds:

- Every c steps the automaton moves to the same state.
- Every t steps the automaton receives the same letter.

Therefore, every LCM(t,c) steps it receives the same letter in the same state, so gives the same data to the output.

Denote by P^l_n the set of all l—almost periodic infinite words with the length of period dividing $n!$.

Lemma 2. Let g be an automata transformation. Denote by $n(l)$ the maximal length of UC g can move to after processing a word of length l. For arbitrary $c \geq n(l)$ there holds:

$g(P^l_c \setminus NC(g,l)) \subseteq P^l_c$

Proof. Consider an arbitrary word $w \in P^l_c \setminus NC(g,l)$. Let the automaton A, containing g, receive w in the state g. After processing the first l symbols by A_g, the periodic part of w has already started. Besides that, A_g has already moved to the UC (by definition of NC(g,l)). Since $w \in P^l_c$, then the length of
it’s period divides $c!$. A length of the UC is not greater then $n(l) \leq c$, so it also divides $c!$. According to lemma 1, $g(w)$ is l–almost periodic and length of it’s period divides $\text{LCM}(c!, c!) = c!$. Therefore, $g(w) \in P^l_c$.

Now we are ready to start the proof of theorem 2.

Proof. Assume that X^w is G_1–paradoxical. Then there are the elements h_1, \ldots, h_d of G_1 and the partition $X^w = A_1 \sqcup \ldots \sqcup A_d$ with such property: Let initially every word from X^w has 1 coin. Then h_i moves a coin from every $a_i \in A_i$ to $h_i(a_i)$, $1 \leq i \leq d$. After that every word from X^w has at least 2 coins.

Consider the set P^l_N, where l will be defined later and $N = N(l)$ is the maximal length of UC that h_1, \ldots, h_d can move to while processing words of length l. Fix an arbitrary $i \in \{1, \ldots, d\}$. Denote $g_i = h_i^{-1}$. According to lemma 2, $g_i(P^l_N \setminus NC_{g_i}(l)) \subseteq P^l_N$. So g_i can move at most $|P^l_N \cap NC_{g_i}(l)|$ words from P^l_N outside it. Estimate the number. Let \mathbb{T}_N be the set of all periods $T \in X^*$ with length dividing $N!$. For each $T \in \mathbb{T}_N$ denote by $P^l_{(T)}$ the set of l–almost periodic infinite words with period T. Then we have:

\[P^l_N = \bigcup_{T \in \mathbb{T}_N} P^l_{(T)} \]

\[P^l_N \cap NC(g_i, l) = \bigcup_{T \in \mathbb{T}_N} (P^l_{(T)} \cap NC(g_i, l)) \]

Notice that for each $v \in X^l$ there is exactly 1 word starting from v in every $P^l_{(T)}$, $T \in \mathbb{T}_N$. Therefore $|P^l_{(T)}| = |X|^l$, in particular

\[|P^l_{(T)} \cap NC(g_i, l)| = NC(g_i, l) \]

\[|P^l_N \cap NC(g_i, l)| = \sum_{T \in \mathbb{T}_N} |P^l_{(T)} \cap NC(g_i, l)| = |\mathbb{T}_N| \cdot NC(g_i, l) \]

So, g_i moves $|\mathbb{T}_N| \cdot NC(g_i, l)$ words from P^l_N outside it. It means that h_i brings $|\mathbb{T}_N| \cdot NC(g_i, l)$ coins from $X^w \setminus P^l_N$ to P^l_N. Then all h_1, \ldots, h_d bring at most $|\mathbb{T}_N| \sum_{i=1}^d NC(g_i, l)$ coins from $X^w \setminus P^l_N$ to P^l_N. As there are $|\mathbb{T}_N| \cdot |X|^l$ words in P^l_N and $NC(g_i, l) = o(|X|^l), l \to \infty$, similarly to theorem 1 we have that h_1, \ldots, h_d don’t bring enough coins to P^l_N for large l. \qed
References

[1] Stan Wagon. The Banach-Tarski Paradox. Cambridge University Press, 1985.

[2] R. I. Grigorchuk, V. V. Nekrashevich, V. I. Sushchanskii. Automata, dynamical systems, and groups. Grigorchuk R. I. (ed.), Dynamical systems, automata, and infinite groups. Proc. Steklov Inst. Math. 231 (2000), 128-203.

[3] V. Nekrashevych. Self-similar groups. Math. Surveys and Monographs 117. Amer. Math. Soc., Providence, RI, 2005.

[4] I. Bondarenko. Groups Generated by Bounded Automata and Their Schreier Graphs. PhD Dissertation (Texas A&M Univ., College Station, TX, 2007).

[5] Andrzej Zuk. Automata groups. Paris 7