Quaternionic contact 4n + 3-manifolds and their 4n-quotients

Yoshinobu Kamishima

Received: 3 July 2020 / Accepted: 16 January 2021 / Published online: 3 March 2021
© The Author(s) 2021

Abstract
We study some types of qc-Einstein manifolds with zero qc-scalar curvature introduced by S. Ivanov and D. Vassilev. Secondly, we shall construct a family of quaternionic Hermitian metrics \((g_a, \{J_a\}_{a=1}^3)\) on the domain \(Y\) of the standard quaternion space \(\mathbb{H}^n\) one of which, say \((g_a, J_1)\) is a Bochner flat Kähler metric. To do so, we deform conformally the standard quaternionic contact structure on the domain \(X\) of the quaternionic Heisenberg Lie group \(\mathcal{M}\) to obtain quaternionic Hermitian metrics on the quotient \(Y\) of \(X\) by \(\mathbb{R}^3\).

Keywords Quaternionic contact structure · Quaternionic Hermitian structure · HyperKähler structure · Quaternionic Heisenberg Lie group · Spherical CR structure · Bochner geometry

Mathematics Subject Classification 53C55 · 57S25 · 51M10

1 Introduction
We study the quaternionic contact structure \([3]\) (qc-structure for short) on 4n + 3-manifolds \(X\) to construct quaternionic Hermitian 4n-manifolds as their quotients. In the previous paper \([2]\), we studied a qc-structure \((D, Q)\) whose \(\text{Im} \mathbb{H}\)-valued (globally defined) 1-form \(\omega\) representing \(D\) satisfies that each distribution defined by \(d\omega_a + 2\omega\beta \wedge \omega_\gamma = 0\) (\((\alpha, \beta, \gamma) \sim (1, 2, 3)\)) has the three-dimensional common kernel on \(X\). \((D, \omega, Q)\) is called a quaternionic CR-structure (cf. \([2, \text{Definition 2.1}]\)). It has shown in \([1, 2]\) that every positive definite quaternionic CR-structure \((X, (\omega, Q))\) induces a 3-Sasaki manifold. Then, \(X\) admits a (local) principal \(\text{Sp}(1)\)-bundle \(\text{Sp}(1) \to X \to X/\text{Sp}(1)\) over a quaternionic Kähler orbifold \(X/\text{Sp}(1)\). In particular, according to the results \([8, 9]\) of Biquard’s connection \([3]\), \(X\) is a qc-Einstein manifold with nonzero qc-scalar curvature. For the remaining case of vanishing qc-scalar curvature, there is no nondegenerate quaternionic CR-structure on \(X\) since the integrability of quaternionic CR-structure does not hold. Taking into account these results, we shall interpret a qc-Einstein manifold with vanishing qc-scalar curvature in terms of the
differentiable equations of the contact forms $\omega_a \ (a = 1, 2, 3)$. Given a quaternionic contact manifold X, let
\[E = \{ \xi \in TX \mid d\omega_1(\xi, v) = d\omega_2(\xi, v) = d\omega_3(\xi, v) = 0, \forall v \in TX \} \]
be the distribution on X. If E has the three-dimensional kernel, then we call (\mathcal{D}, ω, Q) a strict qc-structure on X.

When X is a qc-Einstein manifold with vanishing qc-scalar curvature, it follows from Lemma 6.4 [8] (also (1) of Proposition 6.3) that the Reeb fields $\{\xi_a\}_{a=1,2,3}$ of ω are Killing and generate a (local) abelian Lie group (that is, $[\xi_a, \xi_b] = 0$), it is easy to see that $E = \{\xi_a\}_{a=1,2,3}$. Thus, a qc-Einstein manifold with vanishing qc-scalar curvature is a strict qc-manifold. Conversely, if X is a strict qc-manifold, then we prove in Proposition 2.5 of Sect. 2 that E generates a three-dimensional local abelian Lie group \mathcal{K} and if \mathcal{K} extends to a global \mathbb{R}^3-action on X, then there is a principal bundle $\mathcal{M} \rightarrow X$ over the hyper-Kähler manifold X/\mathbb{R}^3. (This holds always locally over an appropriate neighborhood of X in case \mathcal{K} is a local qc-action.) Since X/\mathbb{R}^3 is hyperKähler (locally in general), using the pullback by ρ, both qc-Ricci tensor and qc-scalar curvature of X vanish by the definition (cf. [8]), so X is a qc-Einstein manifold with vanishing qc-scalar curvature. Thus, a strict quaternionic contact manifold is the same as a qc-Einstein manifold with vanishing qc-scalar curvature. Indeed, we owe a lot to the referee who pointed out this equivalence in our earlier draft.

If a Lie group G admits a left invariant strict qc-structure, then G is called a strict qc-group. An example is the quaternionic Heisenberg nilpotent Lie group \mathcal{M} with the standard qc-structure admitting a nontrivial central extension $\mathcal{M} \rightarrow \mathbb{R}^3 \rightarrow \mathcal{M}$ with $\mathcal{M} \times T^n$ where $k + \ell = n, T^n \leq \text{Sp}(n)$, (see Sect. 3.3, cf. [4]).

Theorem A If G is a contractible unimodular strict qc-group, then G is isomorphic to $\mathcal{M}(k, \ell)$.

A $4n + 3$-dimensional qc-manifold X is uniformizable (or spherical) if X is locally modeled over $(\text{PSp}(n + 1, 1), S^{4n+3})$. (This is the case $W_qc = 0$, see [10] also.) The pair $(\text{PSp}(n + 1, 1), S^{4n+3})$ is obtained from projective compactification of the complete simply connected quaternionic hyperbolic space \mathbb{H}^{n+1} with $\text{Isom}(\mathbb{H}^{n+1}) = \text{PSp}(n + 1, 1)$.

Denote by $\text{Aut}_{qc}(X)$ the group of qc-transformations of X. If there exists a discrete subgroup $\Gamma \leq \text{Aut}_{qc}(X)$ acting properly with compact quotient X/Γ, then X is said to be divisible (cf. Definition 4.3). The following result [13, Theorem 1.1] was proved for the compact case.

Theorem B Let M be a $(4n + 3)$-dimensional compact uniformizable strict qc-manifold. Then, M is qc-conformal to the quaternionic infranilmanifold \mathcal{M}/Γ (some finite cover of which is a principal T^3-bundle over the quaternionic flat torus T^6).

The following uniqueness theorem characterizes especially the noncompact case (cf. Theorem 4.4).

Theorem C Let $(X, \mathcal{D}, \omega, \{J_a\}_{a=1}^3)$ be a noncompact simply connected uniformizable strict qc-manifold. Put $E = \{\xi_1, \xi_2, \xi_3\}$. Suppose X is divisible by Γ.

\[\text{Annals of Global Analysis and Geometry (2021) 59:435–455} \]
(1) If $\text{Aut}_{qc}(X)$ leaves E invariant, then the developing pair reduces to the equivariant immersion:

$$(\rho, \text{dev}) : (\text{Aut}_{qc}(X), X) \to (\text{Aut}_{qc}(M), M).$$

In addition,

(2) For any $\gamma \in \Gamma$ and $\alpha = 1, 2, 3$, suppose $\gamma_s \xi_\alpha = \sum_{\beta=1}^{3} a_{\alpha\beta} \xi_\beta$ for some function $a_{\alpha\beta} : X \to \text{SO}(3)$. Then,

(i) $\text{dev} : X \to M$ is a qc-diffeomorphism so that $\mathcal{R} = \mathbb{R}^3$.

(ii) There exists a strict qc-structure $(\mathcal{D}, \eta, \{J_a\}_{a=1}^{3})$ qc-conformal to $(\omega, \{J_a\}_{a=1}^{3})$. The quotient $(X/\mathbb{R}^3, \{\Theta_a, \tilde{J}_a\}_{a=1}^{3})$ is a hyperKähler manifold isometric to \mathbb{H}^n.

For the difference between Theorem B and Theorem C, we remark that in Theorem B there is a T^3-action on X/Γ which lifts to X an \mathbb{R}^3-action centralizing Γ, while in Theorem C X is divisible by Γ, but the intersection $\mathbb{R}^3 \cap \Gamma$ is not necessarily uniform in \mathbb{R}^3, which does not imply to induce a T^3-action on X/Γ.

The second part of this paper treats the quaternionic Hermitian quotient in place of the hyperKähler quotient. We construct a noncompact qc-manifold to obtain a quaternionic Hermitian manifold $(Y, \tilde{\Omega}_a, \tilde{J}_a)_{a=1}^{3}$ such that one of $(\tilde{\Omega}_a, \tilde{J}_a)$’s is Kähler. (See Theorem 6.5, Theorem 7.2, Corollary 7.3.)

Theorem D There exists a uniformizable noncompact qc-manifold X whose quotient by the \mathbb{R}^3-action gives a $4n$-dimensional quaternionic Hermitian manifold $(Y, \hat{\tilde{\Omega}}, \{\hat{\tilde{J}}_a\}_{a=1}^{3})$. Moreover,

1. $(Y, \hat{\tilde{\Omega}}, \{\hat{\tilde{J}}_1\})$ is a Bochner flat complex Kähler manifold.
2. $(Y, \hat{\tilde{\Omega}})$ is not Einstein. In particular, Y is not isometric to any domain of the quaternionic euclidean space \mathbb{H}^n.
3. The quaternionic Hermitian isometry group $\text{Isom}_{g\mathbb{H}}(Y, \hat{\tilde{\Omega}}, \{\hat{\tilde{J}}_a\}_{a=1}^{3})$ is isomorphic to a k-torus T^k for some k where $n + 1 \leq k \leq 2n$.

The paper is organized as follows In Sect. 2, we give some basic facts on strict qc-structure. The fundamental property of strict qc-manifolds is proved in Proposition 2.5 which produces hyperKähler structures on their \mathbb{R}^3-quotients as mentioned. In Sect. 3, we review quaternionic Heisenberg nilpotent Lie group \mathcal{M} where the group structure and qc-structure are explained explicitly. We give a nontrivial strict qc-group as a qc manifold in Theorem 3.3. From another viewpoint, we discuss strict qc manifolds in connection with spherical (uniformizable) qc geometry $(\text{PSp}(n + 1, 1), S^{4n+3})$ in Sect. 4. Theorem 4.4 gives a sufficient condition for a divisible group Γ of the qc-automorphism group $\text{Aut}_{qc}(X)$ characterizing that the quotient X/\mathbb{R}^3 may be isometric to \mathbb{H}^n as the standard hyperKähler manifold. In Sect. 5, we relax the condition strict on E in order to get a quaternionic Hermitian structure $(\hat{\tilde{\Omega}}, \{\hat{\tilde{J}}_a\}_{a=1}^{3})$ on the quotient domain $Y = X/\mathbb{R}^3$ of \mathbb{H}^n. This can be achieved by the conformal change of the $\text{Im} \mathbb{H}$-valued one-form α_0, which represents the standard qc-structure on \mathcal{M}. We can show that one of them, say $(\hat{\tilde{\Omega}}, \hat{\tilde{J}}_1)$ is
a Kähler metric on Y. Moreover, in Sect. 6 a prominent property of this construction is that $(Y, \hat{\Omega}_1, \hat{J}_1)$ admits a Bochner flat Kähler structure. In particular, Y is not locally isometric to any domain of the flat space \mathbb{H}^n. In Sect 7, we discuss the quaternionic isometry group $\text{Isom}_{qH}(Y, \hat{g}, \{\hat{\omega}_1, \hat{J}_1\}_{a=1}^3)$. In course of discussion, we obtain a strictly pseudoconvex spherical pseudo-Hermitian structure $\{\hat{\omega}, \hat{J}\}$ on the $(4n + 1)$-quotient X/\mathbb{R}_q^2 such that the pseudo-Hermitian transformation group $\text{Psh}(X/\mathbb{R}_q^2)$ is isomorphic to $\mathbb{R} \times T^{2n}$. Theorem D is a consequence of the results of Sects. 6 and 7.1.

2 Strict quaternionic contact manifolds

The hypercomplex structure $\{J_a, J_\beta, J_\gamma\}$ on D is defined by the following equation $((\alpha, \beta, \gamma) \sim (1, 2, 3))$:

$$d\omega_a(u, v) = d\omega_\beta(J_a u, v) \quad (u, v \in D).$$ (2.1)

There is the reciprocity on D:

$$d\omega_a(J_a u, v) = d\omega_\beta(J_a u, v) = d\omega_\gamma(J_a u, v) \quad ((\alpha, \beta, \gamma) \sim (1, 2, 3)).$$ (2.2)

It is easy to see from (2.2)

$$d\omega_a(J_a u, J_a v) = d\omega_a(u, v) \quad (\alpha = 1, 2, 3).$$ (2.3)

2.1 Strict qc-manifolds

Let $(X, D, \omega, \{J_a\}_{a=1}^3)$ be a strict qc-manifold with distribution E (cf. (1.1)).

Lemma 2.1 E generates a three-dimensional local abelian Lie group \mathcal{R}.

Proof Since E is of dimension 3 and transverse to D, it follows $\omega(E) = \text{Im} \mathbb{H}$. There exist vector fields $\{\xi_a\}_{a=1, 2, 3} \subset E$ such that

$$\omega_a(\xi_a) = \delta_{a\beta}.$$ (2.4)

(Equivalently $\omega(\xi_a) = \omega_1(\xi_a)i + \omega_2(\xi_a)j + \omega_3(\xi_a)k = \delta_{1a}i + \delta_{2a}j + \delta_{3a}k$.) By (1.1), $2d\omega_a(\xi_\beta, \xi_\gamma) = -\omega_a([\xi_\beta, \xi_\gamma]) = 0$ and so $[\xi_\beta, \xi_\gamma] \in D$. For any $v \in D$, $0 = 2d\omega_a(\xi_\beta, v) = -\omega_a([\xi_\beta, v])$ ($\alpha = 1, 2, 3$) so $[\xi_\beta, v] \in D$ ($((\alpha, \beta, \gamma) \sim (1, 2, 3)$). Using the Jacobi identity,

$$2d\omega_a([\xi_\beta, \xi_\gamma], v) = -\omega_a([\xi_\beta, \xi_\gamma], v) = \omega_a([\xi_\beta, v], \xi_\gamma]) + \omega_a([v, \xi_\beta], \xi_\gamma)$$

$$= -2d\omega_a([\xi_\beta, v], \xi_\gamma) - 2d\omega_a([v, \xi_\beta], \xi_\gamma) = 0.$$

By the non-degeneracy of $d\omega_a$ on D, it follows $[\xi_\beta, \xi_\gamma] = 0$ for any β, γ. Thus, $E = \{\xi_a, \alpha = 1, 2, 3\}$ generates a local abelian Lie group.

Proposition 2.2 Denote by \mathcal{L}_ξ the Lie derivative of a vector field ξ on X.
\begin{enumerate}
\item $\mathcal{L}_x \omega_\beta = 0$, $\mathcal{L}_x \delta \omega_\beta = 0$ ($\alpha, \beta = 1, 2, 3$). In particular, $\mathcal{L}_x D = D$.
\item $\mathcal{L}_x J_\beta = 0$ ($\alpha, \beta = 1, 2, 3$).
\end{enumerate}

\textbf{Proof} First note that $\mathcal{L}_x \omega_\alpha = (d_\nu + \iota_\nu \, d)\omega_\alpha = \iota_\nu \, d\omega_\alpha = 0$, $\mathcal{L}_x \delta \omega_\beta = d\mathcal{L}_x \omega_\beta = 0$ from (2.4), (1.1). For any $v \in D$, $0 = (\mathcal{L}_x \omega)(v) = -\omega(\mathcal{L}_x v)$ so $\mathcal{L}_x v \in D$. Thus, $(\mathcal{L}_x J_\beta)v = \mathcal{L}_x (J_\beta v) - J_\beta (\mathcal{L}_x v) \in D$. For $u, v \in D$, $(\mathcal{L}_x \delta \omega)(J_\beta J_u, v) = 0$, which equals

$$
\mathcal{L}_x (\delta \omega)(J_\beta J_u, v) = \mathcal{L}_x (\delta \omega)(J_u, v).
$$

Similarly, it follows $\delta \omega_a((\mathcal{L}_x J_\beta) u, v) = 0$. By the non-degeneracy of $\delta \omega_a$ on D, it follows $\mathcal{L}_x J_u = 0$, $\mathcal{L}_x J_\beta = 0$.

Let \mathcal{R} denote the local abelian group obtained from Lemma 2.1.

\textbf{Proposition 2.3} Suppose that \mathcal{R} generates a global abelian group of a strict qc-manifold X. Then, \mathcal{R} acts properly on X as qc-transformations, that is a closed subgroup $\mathcal{R} \leq \text{Aut}_{qc}(X)$.

\textbf{Proof} By (1), (2) of Proposition 2.2, it follows $t^\ast \omega_a = \omega_a$, $t^\ast J_a = J_a$ for any $t \in \mathcal{R}$ ($\alpha = 1, 2, 3$). Define a Riemannian metric on X by

$$
g(A, B) = \sum_{i=1}^{3} \omega_i(A) \cdot \omega_i(B) + \delta \omega_1(J_1 A, B) + \delta \omega_2(J_2 A, B).
$$

(2.5)

(We may choose whichever $\delta \omega_a \circ J_a$ from the reciprocity $\delta \omega_1 \circ J_1 = \delta \omega_2 \circ J_2 = \delta \omega_3 \circ J_3$.) Then, note that $\mathcal{R} \leq \text{Isom}(X, g) \leq \text{Aut}_{qc}(X)$. If $\bar{\mathcal{R}}$ is the closure of \mathcal{R} in $\text{Isom}(X, g)$, then it acts properly on X. Let τ be a vector field induced by a one-parameter subgroup of $\bar{\mathcal{R}}$. Then, there is a sequence of vector fields $\{\xi^{(n)}\} \subset E$ such that $\delta \omega_1(\tau, A) = \lim_{n \to \infty} \delta \omega_1(\xi^{(n)}, A) = 0$ ($\xi A \in TX$) by (1.1). And so $\tau \in E$. This implies $\bar{\mathcal{R}} = \mathcal{R}$.

For example, if X is complete with respect to g of (2.5), then \mathcal{R} extends to a global action of X. If a strict qc-manifold $(X, \omega_a, D, \{J_a\}_{a=1}^{3})$ admits a global \mathbb{R}^3-action induced by E, then \mathbb{R}^3 acts properly by Proposition 2.3 and hence freely on X. There is a principal bundle over a 4n-dimensional manifold $Y = X/\mathbb{R}^3$; $\mathbb{R}^3 \to Y$ to \mathcal{R}. We will show that \mathcal{R} admits a hyperKähler metric. Since each $t \in \mathbb{R}^3$ satisfies $J_a \cdot t = t \cdot J_a$ on D by (2) of Proposition 2.2, \mathbb{R}^3 induces a well-defined almost complex structure J_a on Y such that $\pi_a \cdot J_a = J_a \cdot \pi_a : D \to TY$ at each point of X. $\{J_a\}_{a=1}^{3}$ constitutes a quaternionic structure on Y. Define a 2-form $\Omega_a (\alpha = 1, 2, 3)$ on Y to be

$$
\pi^a \Omega_a = \delta \omega_a.
$$

(2.6)

\textbf{Proposition 2.4} The 2-form Ω_a is a well-defined closed 2-form ($\alpha = 1, 2, 3$) satisfying the following equality:
\[\Omega_1(\hat{J}_1 \hat{A}, \hat{B}) = \Omega_2(\hat{J}_2 \hat{A}, \hat{B}) = \Omega_3(\hat{J}_3 \hat{A}, \hat{B}) \quad (\hat{A}, \hat{B} \in TY). \]

Moreover,
\[g(\hat{A}, \hat{B}) = \Omega_a(\hat{J}_a \hat{A}, \hat{B}) \quad (a = 1, 2, 3) \]
is a hyperKähler metric on \((Y, \{\hat{J}_a\}_{a=1,2,3})\).

Proof Let \(A = V + u, B = W + v \in TX \) \((^2 V, W \in \mathbb{E} = \mathbb{R}^3, \quad ^3 u, v \in \mathbb{D}). \) (Similarly, \(A' = V' + u', B' = W' + v' \)) Suppose \(\pi_a A_p = \pi_a A'_q, \pi_a B_p = \pi_a B'_q. \) Then, \(q = tp \in X \) for some \(t \in \mathbb{R}^3 \) in which \(A' = t_1 T + t_2 A, \quad B' = t_1 T' + t_3 B \) \((^3 T, T' \in \mathbb{R}^3 = \mathbb{E}_q). \) Since each element \(t \) leaves \(\omega_a \) invariant by (1) of Proposition 2.2, (1.1) shows \(d\omega_a(A', B') = d\omega_a(A, B), \) thus (2.6) is well-defined. In particular,
\[d\omega_a = 0 \text{ on } Y. \]
Furthermore, as \(V, W \in \mathbb{E}, d\omega_a(A, B) = d\omega_a(u, v). \) Since \(\hat{A} = \pi_a A = \pi_a u, \quad \hat{B} = \pi_a B = \pi_a v, \) it follows \(d\omega_a(J_a u, v) = \pi_a^* \Omega_a(J_a u, v) = \Omega_a(\hat{J}_a \hat{A}, \hat{B}). \)
Since \(d\omega_1(J_1 u, v) = d\omega_2(J_2 u, v) = d\omega_3(J_3 u, v) \) is positive definite on \(\mathbb{D} \) [cf. (2.2)], we have a positive definite 2-form on \(Y: \)
\[g(\hat{A}, \hat{B}) = \Omega_1(\hat{J}_1 \hat{A}, \hat{B}) = \Omega_2(\hat{J}_2 \hat{A}, \hat{B}) = \Omega_3(\hat{J}_3 \hat{A}, \hat{B}) \quad (\hat{A}, \hat{B} \in TY). \]
By (2.6), \(\Omega_a(\hat{J}_a \hat{A}, \hat{J}_a \hat{B}) = \Omega_a(\hat{A}, \hat{B}). \) It follows
\[g(\hat{J}_a \hat{A}, \hat{J}_a \hat{B}) = g(\hat{A}, \hat{B}) \quad \text{on } Y (a = 1, 2, 3). \]
By the definition, \(g \) is a hyperKähler metric on \(Y. \)

In summary, we obtain the result implied in Introduction.

Proposition 2.5 Let \((X, \mathcal{D}, (\omega, (J_a)_{a=1}^3))\) be a strict qc-manifold. Let \(\mathcal{R} \) be a local abelian group generated by the distribution \(\mathbb{E}. \) If \(\mathcal{R} \) extends to a global action of \(\mathbb{R}^3 \) on \(X, \) then the quotient manifold \(Y = X/\mathbb{R}^3 \) supports a hyperKähler structure \((g, (\Omega_a, \hat{J}_a)_{a=1}^3).\)

3 Quaternionic Heisenberg Lie group \(\mathcal{M} \)

3.1 Quick review of quaternionic parabolic geometry

We recall **parabolic quaternionic group** derived from the quaternionic hyperbolic group. The quaternionic hyperbolic space \(\mathbb{H}^{p+1} \) has a (projective) compactification whose boundary is diffeomorphic to \(S^{4n+3}. \) The isometric action of the quaternionic hyperbolic group \(\text{Isom}(\mathbb{H}^{p+1}) = \text{PSp}(n + 1, 1) \) extends to an analytic action on \(S^{4n+3}, \) which we may call a *quaternionic contact* action on \(S^{4n+3}. \) Let \(\infty \) be the point at infinity of \(S^{4n+3}. \) The standard sphere \(S^{4n+3} \) with \(\infty \) removed admits a qc-structure isomorphic to the quaternionic Heisenberg Lie group \(\mathcal{M} \) with \(\text{Aut}_{qc}(\mathcal{M}) = \mathcal{M} \rtimes (\text{Sp}(n) \cdot \text{Sp}(1) \times \mathbb{R}^+). \) Recall the definition of \(\mathcal{M} \) from [2]. Put \(t = (t_1, t_2, t_3), s = (s_1, s_2, s_3) \in \mathbb{R}^3 = \text{Im } \mathbb{H}, \) and \(z = (z_1, \ldots, z_n), w = (w_1, \ldots, w_n) \in \mathbb{H}^n \) and so on. Then, \(\mathcal{M} \) is the product \(\mathbb{R}^3 \times \mathbb{H}^n \) with group law:
(t, z) \cdot (s, w) = (t + s - \text{Im}(z, w), z + w)

where \(\langle z, w \rangle = i\bar{z}w\) is the Hermitian inner product. \(\mathcal{M}\) is a nilpotent Lie group such that the center is the commutator subgroup \([\mathcal{M}, \mathcal{M}] = \mathbb{R}^3\) consisting of elements \((t, 0)\).

Each element \(h = (t, v, \sqrt{\bar{u}A\bar{a}}) \in \text{Aut}_{qc}(\mathcal{M})\) acts on \(\mathcal{M}\) as

\[
h(s, z) = (t + uas\bar{a} - \text{Im}(v, \sqrt{uA\bar{a}}), v + \sqrt{uA\bar{a}}) \quad (s, z) \in \mathcal{M}).
\]

(3.1)

In particular, \(\text{E}(\mathcal{M}) = \mathcal{M} \rtimes (\text{Sp}(n) \cdot \text{Sp}(1))\) is a normal subgroup of \(\text{Aut}_{qc}(\mathcal{M})\) acting properly and transitively on \(\mathcal{M}\) in the manner of (3.1).

3.2 The \(qc\)-structure of \(\mathcal{M}\)

The \(\text{Im}\mathbb{H}\)-valued 1-form on \(\mathcal{M}\) is defined by

\[
\omega_0 = dt_1 + dt_2j + dt_3k + \text{Im}(z, dz).
\]

(3.2)

Put \(\omega_0 = \omega_1 + \omega_2j + \omega_3k\). Let \(D_0 = \bigcap_{i=1}^3 \ker \omega_i = \ker \omega_0\) which denotes the codimension 3-subbundle on \(\mathcal{M}\) satisfying \(T\mathcal{M} = D_0 \oplus \left\langle \frac{d}{dt_1}, \frac{d}{dt_2}, \frac{d}{dt_3}\right\rangle\). Let \(x_\alpha (\alpha = 1, \ldots, 4n)\) be a real number so that \(\mathbb{R}^{4n}\) is identified with \(\mathbb{H}^n = (x_1 + ix_2 + jx_3 + kx_4; \ldots, x_{4n-3} + ix_{4n-2} + jx_{4n-1} + kx_{4n})\). A direct calculation shows

\[
\omega_1 = dt_1 + (x_1dx_2 - x_2dx_1) + (x_3dx_4 - x_4dx_3) + \cdots
\]
\[
\cdots + (x_{4n-3}dx_{4n-2} - x_{4n-2}dx_{4n-3}) + (x_{4n}dx_{4n-1} - x_{4n-1}dx_{4n}),
\]
\[
\omega_2 = dt_2 + (x_1dx_3 - x_3dx_1) + (x_2dx_4 - x_4dx_2) + \cdots
\]
\[
\cdots + (x_{4n-3}dx_{4n-1} - x_{4n-1}dx_{4n-3}) + (x_{4n}dx_{4n-2} - x_{4n-2}dx_{4n-2}),
\]
\[
\omega_3 = dt_3 + (x_1dx_4 - x_4dx_1) + (x_2dx_3 - x_3dx_2) + \cdots
\]
\[
\cdots + (x_{4n-3}dx_{4n-2} - x_{4n-2}dx_{4n-3}) + (x_{4n-1}dx_{4n-2} - x_{4n-2}dx_{4n-1}).
\]

(3.3)

The hypercomplex structure \(\{J_1, J_2, J_3\}\) on \(D_0\) is given as in (2.1). Alternatively if \(\pi : \mathcal{M} \rightarrow \mathbb{H}^n\) is the canonical projection (homomorphism), then \(\pi_* : D_0 \rightarrow T\mathbb{H}^n\) is an isomorphism at each point of \(\mathcal{M}\) for which each \(J_\alpha\) on \(D_0\) is defined by the commutative rule:

\[
\pi_* \circ J_\alpha = I_\alpha \circ \pi_*
\]

(3.4)

where \(\{I_\alpha\}_{\alpha=1}^3\) of the right hand side is the standard quaternionic structure \(\{i, j, k\}\) on \(\mathbb{H}^n\), respectively.

Proposition 3.1 \((\mathcal{M}, (D_0, \omega_0, \{J_\alpha\}_{\alpha=1}^3))\) is a strict \(qc\)-manifold for which

1. \(E_0 = \left\langle \frac{d}{dt_1}, \frac{d}{dt_2}, \frac{d}{dt_3} \right\rangle\) generates the center \(\mathbb{R}^3\) of \(\mathcal{M}\), transverse to \(D_0\).
2. There is a principal bundle: \(\mathbb{R}^3 \rightarrow \mathcal{M} \xrightarrow{\pi} \mathbb{H}^n\) whose \(qc\)-structure \((\omega_0, \{J_\alpha\}_{\alpha=1}^3)\) induces the standard hyperKähler structure on \(\mathbb{H}^n\).
Proof It follows \(d\omega_a \left(\frac{d}{dt_\beta} \right) = \delta_{a\beta}, \ d\omega_a \left(\frac{d}{dt_\beta}, X \right) = 0 \) (\(X \in T\mathcal{M} \)) by (3.3). And so
\[
E_0 = \left\{ \frac{d}{dt_1}, \frac{d}{dt_2}, \frac{d}{dt_3} \right\}.
\]
The remaining follows from Proposition 2.5. Explicitly, if \(g_{\Omega} \) is the standard quaternionic euclidean metric on \(\mathbb{H}^n \), then (3.4), (3.2) show
\[
d\omega_a(J_aX, Y) = g_{\Omega}(\pi_+X, \pi_+Y) (\forall X,Y \in D_0).
\]
\[\square\]

Remark 3.2 There is a canonical equivariant Riemannian submersion:
\[
\mathbb{R}^3 \to (E(M), \mathcal{M}, g_\omega) \xrightarrow{\pi} (E(\mathbb{H}^n), \mathbb{H}^n, g_{\Omega})
\]
where \(g_\omega = \sum_{a=1}^3 \omega_a \cdot \omega_a + d\omega_a \circ J_1 \) is a Riemannian metric (cf. (2.5)). Note that this metric is not a 3-Sasaki metric globally defined on \(\mathcal{M} \). Here, \(E(\mathbb{H}^n) = \mathbb{H}^n \rtimes \text{Sp}(n) \cdot \text{Sp}(1) \) is the quaternionic isometry group Isom(\(\mathbb{H}^n, g_{\Omega} \)).

From (3.1) (cf. [2]), we see that any element \(h = (t, u, \sqrt{uA \cdot a}) \in \text{Aut}_{qc}(\mathcal{M}) \) satisfies
\[
h^* \omega_0 = u \cdot a \omega_0 \bar{a}
\]
which thus preserves \(D_0 \). Thus, for \(h \in \mathcal{M} \rtimes \text{Sp}(n) \), it follows
\[
h^* \omega_0 = \omega_0 \text{ on } \mathcal{M}, \ h_3 J_a = J_a h_3 \text{ on } D_0.
\]
(3.7)
In particular, note that \(t_3 J_a = J_a t_3 \) (\(\forall t \in \mathbb{R}^3 = C(\mathcal{M}) \)).

3.3 Strict qc-group

Let \((\mathbb{D}, \omega, \{J_a\}_{a=1}^3) \) be a qc-structure on \(X \). Put
\[
Psh_{qc}(X) = \{ h \in \text{Diff}(X) \mid h^* \omega = \omega, \ h_3 J_a = J_a h_3 \mid \mathbb{D}, \ a = 1, 2, 3 \}.
\]
(3.8)
It is a subgroup of \(\text{Aut}_{qc}(X) \). We apply the similar constriction for Sasaki groups (cf. [4]). Let \(\rho : \mathbb{H}^\ell \to \text{Sp}(k) \) be a non-trivial homomorphism (\(k + \ell = n \)). Define \(\mathbb{H}(k, \ell) \) to be the semidirect product \(\mathbb{H}^k \rtimes \rho \mathbb{H}^\ell \) which is canonically embedded to the group of hyperkähler isometries \(\mathbb{H}^n \rtimes \text{Sp}(n) \) of flat quaternionic space \(\mathbb{H}^n \). Since \(\rho(k, \ell) \) acts simply transitively on \(\mathbb{H}^n \), it is a flat hyperKähler group. (In fact, in view of [7, Theorem II], every flat hyperKähler Lie group contained in \(\mathbb{H}^n \rtimes \text{Sp}(n) \) may be conjugate to some \(\rho(k, \ell) \).) Let \(Psh_{qc}(\mathcal{M}) = \mathcal{M} \rtimes \text{Sp}(n) \) be the normal subgroup of \(E(\mathcal{M}) \). Take the pull-back \(\mathcal{M}(k, \ell) \) of \(\mathbb{H}(k, \ell) \) in the following central extension:
\[
1 \longrightarrow \mathbb{R}^3 \longrightarrow \mathcal{M} \rtimes \text{Sp}(n) \longrightarrow \mathbb{H}^n \rtimes \text{Sp}(n) \longrightarrow 1
\]
(3.9)
\[
1 \longrightarrow \mathbb{R}^3 \longrightarrow \mathcal{M}(k, \ell) \longrightarrow \mathbb{H}(k, \ell) \longrightarrow 1.
\]
Here, \(\mathcal{M}(n, 0) = \mathcal{M} \). Then, \(\mathcal{M}(k, \ell) \) is a simply connected solvable Lie group acting simply transitively by qc-transformations on the strict qc-manifold \(\mathcal{M} \). Thus, \(\mathcal{M}(k, \ell) \) admits a strict qc structure as a Lie group.

Theorem 3.3 Let \(G \) be a contractible unimodular strict qc Lie group. Then, \(G \) is isomorphic to \(\mathcal{M}(k, \ell) \).
Proof G is viewed as a strict qc-manifold endowed with a left invariant strict qc-structure $(\omega, \{J_a\}_{a=1}^3)$. Then, $G \leq \text{Psh}_{qc}(G)$ by (3.8). If \mathbb{R}^3 is the abelian group generated by $E = (\xi_\alpha, \alpha = 1, 2, 3)$, then $\mathbb{R}^3 \leq \text{Psh}_{qc}(G)$ by Proposition 2.2. Let $\text{Isom}_{h_\alpha}(G/\mathbb{R}^3) = \{ h \in \text{Diff}(G/\mathbb{R}^3) | h^*\Omega_\alpha = \Omega_\alpha, h_\alpha J_a = J_a h_\alpha, \alpha = 1, 2, 3 \}$ be a subgroup of $\text{Isom}_{h_\alpha}(G/\mathbb{R}^3)$ of the hyperKähler manifold G/\mathbb{R}^3 as in Proposition 2.5. Denote by $\text{Isom}_{h_\alpha}(G/\mathbb{R}^3) \{ h \in \text{Diff}(G/\mathbb{R}^3) | h^*\Omega = \Omega, h J_a = J_a h \}$ the holomorphic isometry group of G/\mathbb{R}^3 as a Kähler manifold. Recall that $\text{Psh}(G/\mathbb{R}^3) = \{ h \in \text{Diff}(G/\mathbb{R}^3) | h^* \omega = \omega, h_\alpha J_a = J_a h_\alpha \}$ is the group of strictly pseudo-convex pseudo-Hermitian transformations of $(G/\mathbb{R}^2, (\alpha_1, J_1))$. There is the commutative diagram of central group extensions (cf. [4, Proposition 3.4]):

\[
\begin{array}{ccc}
1 & \longrightarrow & \mathbb{R}^3 & \longrightarrow & \text{Psh}_{qc}(G) & \longrightarrow & \text{Isom}_{h_\alpha}(G/\mathbb{R}^3) \\
\text{\|} & \downarrow & \text{\|} & & \text{\|} & \downarrow \text{\|} & \\
1 & \longrightarrow & \mathbb{R}^3 & \longrightarrow & \text{Psh}(G/\mathbb{R}^2) & \longrightarrow & \text{Isom}_{h_\alpha}(G/\mathbb{R}^4) & \longrightarrow & 1
\end{array}
\]

(3.10)

It follows from [4, Theorem 2] that $\text{Isom}_{h_\alpha}(G/\mathbb{R}^3)^0 = (\mathbb{C}^k \rtimes U(k)) \times S_0$ for which S_0 is a semisimple Lie group of noncompact type. It acts transitively on the Kähler manifold G/\mathbb{R}^3 holomorphically isometric to the product $\mathbb{C}^k \times D$ where D is the bounded symmetric domain.

Consider (1) \mathbb{R}^3 is normal in G. Then, G/\mathbb{R}^3 is a flat hyperKähler group by Hano’s theorem [7] and so $G/\mathbb{R}^3 = \mathbb{H}(k, \varepsilon)$ as above. Then, the pull back of this in (3.10) gives $G = \mathcal{M}(k, \varepsilon)$. Otherwise, (2) \mathbb{R}^2 is normal in G, where $k = 0, 1, 2$. Case (i) If \mathbb{R}^2 is normal in G, then the quotient group $\tilde{G} = G/\mathbb{R}^2$ is a Sasaki group for which $S^1 = \mathbb{R}/\mathbb{Z} \rightarrow \tilde{G} = \tilde{G}/\mathbb{Z} \rightarrow G/\mathbb{R}^3$ is a pseudo-Hermitian (Sasaki) bundle. As in the proof of [4, Theorem 2], $G/\mathbb{R}^3 = G/S^3$ is a bounded symmetric domain so that $G/\mathbb{R}^3 = \mathbb{H}^2_3$ with $\tilde{G} = \text{PSL}(2, \mathbb{R})$. It is impossible for G/\mathbb{R}^3 to admit a quaternionic structure. Case (ii) If \mathbb{R} is normal in G, then put $\tilde{G} = G/\mathbb{R}$. The principal bundle $\mathbb{R}^2/\mathbb{Z}^2 \rightarrow \tilde{G} = \tilde{G}/\mathbb{Z}^2 \rightarrow G/\mathbb{R}^3$ becomes a principal bundle of homogeneous space $T^2 \rightarrow \tilde{G} \rightarrow G/\mathbb{R}^3$. As G/T^2 is a bounded symmetric domain, \tilde{G} is locally isomorphic to $\text{PSL}(2, \mathbb{R}) \rtimes \text{PSL}(2, \mathbb{R})$, which is impossible since $\tilde{G}/T^2 = \text{PSL}(2, \mathbb{R})/S^1 \times \text{PSL}(2, \mathbb{R})/S^1 = \mathbb{H}^2_\mathbb{R} \times \mathbb{H}^2_\mathbb{R}$ has a positive scalar curvature which is not hyperKähler. Finally, Case (iii) $\tilde{G} = G/\mathbb{Z}^3$ and $\mathbb{R}^3 = \mathbb{Z}^3/\mathbb{Z}^3$ such that $G/\mathbb{R}^3 = \tilde{G}/T^3$ is a bounded symmetric domain. Thus, \tilde{G} is locally isomorphic to $\text{PSL}(2, \mathbb{R}) \times \text{PSL}(2, \mathbb{R}) \times \text{PSL}(2, \mathbb{R})$ and $G/\mathbb{R}^3 = \mathbb{H}^2_\mathbb{R} \times \mathbb{H}^2_\mathbb{R} \times \mathbb{H}^2_\mathbb{R}$, which cannot be a quaternionic manifold.

\[\square\]

4 Spherical qc-manifolds

The following theorem is a supporting example to Proposition 2.5 which is implied by Schoen’s result [14]. (Compare [6, 12] for the proofs of the quaternionic case.)

Theorem 4.1 Let $(X, D, \{J_a\}_{a=1}^3)$ be a noncompact quaternionic contact manifold. If $\text{Aut}_{qc}(X)$ does not act properly on X, then X admits the spherical qc-structure qc-conformal to the quaternionic Heisenberg Lie group \mathcal{M}.

\[\circlearrowleft\] Springer
Let \((\tilde{\omega}, D_0, \{J_a\}_{a=1}^3)\) be the standard \(qCR\)-structure on \(S^{4n+3}\) such that \(\ker \tilde{\omega} = D_0\) (cf. [2]).

Definition 4.2 A \(qc\)-manifold \((M, D, (\omega, \{J_a\}_{a=1}^3))\) is spherical (or uniformizable) with respect to \((\text{PSp}(n + 1, 1), S^{4n+3})\) if there exists a \(\rho\)-equivariant developing immersion from the universal covering manifold \(X\) of \(M\):

\[
(\rho, \text{dev}) : (\text{Aut}_{qc}(X), X) \rightarrow (\text{PSp}(n + 1, 1), S^{4n+3})
\]

such that

(i) \(\text{dev}^* \tilde{\omega} = \lambda \cdot \omega \cdot \tilde{\lambda} = u \cdot a \omega \tilde{a}\) for some map \(\lambda = \sqrt{u} \cdot a : X \rightarrow \mathbb{R}^+ \times \text{Sp}(1)\) \((u \in \mathbb{R}^+, a \in \text{Sp}(1))\).

(ii) If the conjugate by the map \(a : X \rightarrow \text{Sp}(1)\) represents the matrix \((a_{\alpha \beta}) : X \rightarrow \text{SO}(3)\), then \(\text{dev}_* \circ J_a = \sum \rho J_\beta \circ \text{dev}_* : D \rightarrow D_0\).

(iii) \(\rho : \text{Aut}_{qc}(X) \rightarrow \text{PSp}(n + 1, 1)\) is the holonomy homomorphism such that \(\text{dev} \circ h = \rho(h) \circ \text{dev} \quad (\forall h \in \text{Aut}_{qc}(X))\).

Definition 4.3 A \(qc\)-manifold \(X\) is divisible if there exists a discrete subgroup \(\Gamma \leq \text{Aut}_{qc}(X)\) which acts properly discontinuously with compact quotient.

Theorem 4.4 Let \((X, D, (\omega, \{J_a\}_{a=1}^5))\) be a simply connected noncompact uniformizable strict \(qc\)-manifold. Put \(E = \{\xi_\alpha, \alpha = 1, 2, 3\}\). Suppose \(X\) is divisible by \(\Gamma\).

1. If \(\text{Aut}_{qc}(X)\) leaves \(E\) invariant, then the developing pair reduces to the equivariant immersion:

\[
(\rho, \text{dev}) : (\text{Aut}_{qc}(X), X) \rightarrow (\text{Aut}_{qc}(M), M).
\]

2. For any \(\gamma \in \Gamma\) and \(\alpha = 1, 2, 3\), suppose \(\gamma_* \xi_\alpha = \sum_{\beta=1}^5 a_{\alpha \beta} \xi_\beta\) for some function \(a_{\alpha \beta} : X \rightarrow \text{SO}(3)\). Then,

(i) \(\text{dev} : X \rightarrow M\) is a \(qc\)-diffeomorphism so that \(R = \mathbb{R}^3\).

(ii) There exists a \(qc\)-structure \((\eta, \{J'_a\}_{a=1}^3)\) \(qc\)-conformal to \((\omega, \{J_a\}_{a=1}^3)\). The quotient \((X/\mathbb{R}^3, \{\Theta_\alpha J'_a\}_{a=1}^3)\) is a hyperKähler manifold isometric to \(\mathbb{H}^n\).

The method of proof is based on that of [13] by taking into account the results of [14] (cf. [6, 12]).

Proof Put \(\text{Aut}_{qc}(X) = \text{Aut}(X)\). Let \(G = \rho(\text{Aut}(X)) \in \text{PSp}(n + 1, 1)\). We first show that (i) \(G\) is not compact.

Case 1. Suppose \(G\) is compact. If \(G\) has no fixed point on \(S^{4n+3}\), then \(G\) has the unique fixed point at the origin \(0\) in \(\mathbb{H}^{4n+1}\) where \(S^{4n+3} = \partial \mathbb{H}^{4n+1}\). As in the proof of [13], \(\text{dev} : X \rightarrow S^{4n+3}\) is shown to be an isometry, which is excluded by the non-compactness of \(X\). So \(G\) has the fixed point set \(F\) in \(S^{4n+3}\). We may assume that \(\text{Aut}(X)\) acts properly on \(X\) by Theorem 4.1, so \(\text{dev}\) misses \(F\). It reduces to an immersion \(\text{dev} : X \rightarrow S^{4n+3} - F\). As \(\text{Aut}(S^{4n+3} - F)\) acts properly on \(S^{4n+3} - F\) by the result of [14], there is a Riemannian
metric on $S^{4n+3} - F$ invariant under $\text{Aut}(S^{4n+3} - F)$. Since X is divisible, X is complete with respect to the pullback metric, $\text{dev} : X \to S^{4n+3} - F$ is a covering map. On the other hand, if we note that the action of G is linear on S^{4n+3}, F must be a subbundle $S^k (0 \leq k < 4n + 3)$ such that the complement $S^{4n+3} - F$ is unknotted, that is, homeomorphic to $\mathbb{R}^{k+1} \times S^{4n+2-k}$. Moreover, it is shown in [13, Lemma 3.1] (also [5, p.77]) that $S^{4n+3} - F$ is either one of the following:

1. $S^{4n+3} - S^{m-1}\, \text{ where } m \leq n + 1$.
 $\text{Aut}(S^{4n+3} - S^{m-1}) = P(O(m, 1) \cdot \text{Sp}(1) \times \text{Sp}(n - m + 1)).$
 $S^{4n+3} - S^{m-1} = \mathbb{H}^m_\mathbb{R}$ (1 $\leq m \leq n + 1$).

2. $S^{4n+3} - S^{2m-1}\, \text{ where } m \leq n + 1$.
 $\text{Aut}(S^{4n+3} - S^{2m-1}) = P(U(m, 1) \cdot U(1) \times \text{Sp}(n - m + 1)).$
 $S^{4n+3} - S^{2m-1} = \mathbb{H}^{2m}_\mathbb{C}$ (1 $\leq m \leq n + 1$).

3. $S^{4n+3} - S^{4m-1}\, \text{ where } m \leq n$.
 $\text{Aut}(S^{4n+3} - S^{4m-1}) = \text{Sp}(m, 1) \cdot \text{Sp}(n - m + 1).$
 $S^{4n+3} - S^{4m-1} = \mathbb{H}^{4m}_\mathbb{R}$ (1 $\leq m \leq n$).

4. $S^{4n+3} - S^2\, \text{ where } S^2 = \mathbb{H}^1_{\text{Im}}$.
 $\text{Aut}(S^{4n+3} - S^2) = \text{SL}(2, \mathbb{C}) \cdot \text{Sp}(n)$.

This case reduces to (3).

In particular, $S^{4n+3} - F$ is simply connected in each case. Hence, $\text{dev} : X \to S^{4n+3} - F$ is diffeomorphic, so ρ is an isomorphism. However, this case does not occur since $\text{Aut}(X)^0 \cong G = \rho(\text{Aut}(X)) = \text{Aut}(S^{4n+3} - F)^0$ which is noncompact (in fact $\text{Aut}(S^{4n+3} - F)^0$ contains a noncompact subgroup $O(m, 1)$, $U(m, 1)$ $(1 \leq m \leq n + 1)$, $\text{SL}(2, \mathbb{C})$ or $\text{Sp}(m, 1)$ $(1 \leq m \leq n)$, respectively.) As a consequence, the case G is compact does not occur.

Case 2. Suppose G is noncompact. Then, either G has a common fixed point $\{\infty\}$ in S^{4n+3} or G leaves invariant a totally geodesic subspace of $\mathbb{H}^{4n+1}_\mathbb{R}$. (See [5, Theorem 4.4.1].) In the latter case, G (possibly $\text{PSp}(n + 1, 1)$) is either one of the identity component of the above groups (1), (2), (3), (4). On the other hand, let \mathcal{R} be the local abelian group generated by E as before. The holonomy homomorphism ρ maps \mathcal{R} into $\text{PSp}(n + 1, 1)$. By Liouville’s theorem, $\rho(\mathcal{R})$ extends globally to a subgroup of $\text{PSp}(n + 1, 1)$ on S^{4n+3}. As $\text{Aut}_\text{dev}(X)$ leaves E invariant, $\text{Aut}(X)^0$ normalizes \mathcal{R}. Thus, G normalizes $\overline{\rho(\mathcal{R})}$ also. In particular, the radical of G is nontrivial, so G is not semisimple. On the other hand, G is *semisimple* except for the case $m = 1$ of (1) such that $\text{Aut}(S^{4n+3} - S^0)^0 = \text{SO}(1, 1)^0 \times \text{Sp}(1) \cdot \text{Sp}(n) \cong \mathbb{R}^+ \times \text{Sp}(n) \cdot \text{Sp}(1)$. For this case, G has exactly two fixed points $\{0, \infty\}$. Noting from Theorem 4.1, as in the argument of (i), $\text{dev} : X \to S^{4n+3} - \{0, \infty\}$ is $\mathbb{H}^1_{\mathbb{R}} \times \mathbb{R}^+$ is a diffeomorphism so that ρ maps the radical of $\text{Aut}(X)^0$ isomorphically onto the radical \mathbb{R}^+. Since the radical contains $\rho(\mathcal{R})$ of dimension three, it is impossible. As a consequence, by the non-ellipticity of elements in $\text{PSp}(n + 1, 1)$, G has a *unique* common fixed point $\{\infty\}$. Noting $\text{Aut}(X)$ acts properly on X, dev misses $\{\infty\}$. This proves (1).

(2) Suppose some $\rho(\gamma) \in \rho(\Gamma)$ has a nontrivial summand in $\mathbb{R}^+ \times \text{Aut}(\mathcal{M})$. It follows from (3.6) that $\rho(\gamma)^* \omega_0 = \nu \cdot b \omega_0$ where $\lambda = \sqrt{\nu} \cdot b \in \text{Sp}(1) \times \mathbb{R}^+$. On the other hand, by our hypothesis (2), $\gamma \cdot \xi_a = \sum_{\beta=1}^3 a_{\alpha \beta} \xi_\beta$ for some function $a_{\alpha \beta} : X \to \text{SO}(3)$. Put $\text{dev} \gamma \cdot \xi_a = \tilde{\xi}_a$ on \mathcal{M}. As $\text{dev} \gamma = \rho(\gamma) \cdot \text{dev}$, letting $(i, j, k) \sim (i_\alpha, i_\beta, i_\gamma)$, it follows

\[
\rho(\gamma) \cdot (\xi_a i_\alpha) = a(\xi_a i_\alpha) \tilde{a}\]

where the conjugate of a represents the matrix $(a_{\alpha \beta}) \in \text{SO}(3)$. Calculate

\[
\rho(\gamma)^* \omega_0(\xi_a i_\alpha) = a \omega_0(\xi_a i_\alpha) \tilde{a}\]

(4.1)
Taking the norm in \mathbb{H}, it follows
\[
|\omega_0(\xi_a i_a)| = |a\omega_0(\xi_a i_a)\tilde{a}| = |u \cdot b\omega_0(\xi_a i_a)\tilde{a}b| = u|\omega_0(\xi_a i_a)|.
\]
Hence, $u = 1$ on X. This implies $\rho(y) \in E(M)$ so that $\rho(T) \leq E(M)$. As usual, there is the $E(M)$-invariant Riemannian metric on M. Since X is divisible, X is complete with respect to the pullback metric. Thus, $(\rho, \text{dev}) : (\Gamma, X) \to (E(M), M)$ is an equivariant isometry. As $\rho : \text{Aut}_{qc}(X) \to \text{Aut}_{qc}(M)$ is an isomorphism, and R is normalized by $\text{Aut}_{qc}(X)$, so does $\rho(R)$ in $\text{Aut}_{qc}(M)$. By the action of (3.1) and the group structure of $\text{Aut}_{qc}(M)$ we note $\rho(R) = \mathbb{R}^3$ which is the center of M. This proves (i). In particular, $\text{dev}_s E = E_0$.

(ii). Let $(\omega_0, \{J_a^\beta\}_{a=1}^3)$ be the standard (spherical) qc-structure on M where $\omega_0 = \omega_j i + \omega_j j + \omega_j k$. By the definition, it satisfies $\text{dev}^* \omega_0 = u \cdot a\omega\tilde{a}$ for some $u \in \mathbb{R}^+$, $\alpha \in \text{Sp}(1)$. When a represents $(a_\beta) \in \text{SO}(3)$ as before, it follows $\text{dev}_s J_a = \sum_\beta a_\beta J_\beta \text{dev}_s$ (cf. Definition 4.2). Put
\[
\eta = \text{dev}^* \omega_0 (\eta_a = \text{dev}^* \omega_a), \ J_a' = \sum_{\beta=1}^3 a_\beta J_\beta, (\alpha = 1, 2, 3).
\]

We check $(\mathcal{D}, \eta, \{J_a'\}_{a=1}^3)$ is a qc-structure qc-conformal to $(\mathcal{D}, \omega, \{J_a\}_{a=1}^3)$. For this, let $X, Y \in \mathcal{D}$ so that $\text{dev}_s X, \text{dev}_s Y \in \mathcal{D}_0$. Note that $J_a \text{dev}_s = \text{dev}_s \sum_\mu a_\mu J_\mu$ as above. Let $\tilde{J}_\gamma = (d\eta_\gamma)^{-1} \text{dev}_s \eta_\gamma = (\text{dev}_s^* \omega_0)$. By calculation,
\[
d\eta_\gamma(J_s u, v) = d\eta_\gamma(\text{dev}_s u, \text{dev}_s v) = \text{dev}_s d\eta_\gamma(\sum_\mu a_\mu J_\mu u, \text{dev}_s v) = \text{dev}_s (d\eta_\gamma(J_s u, v)).
\]

Noting $d\eta_\gamma(J_s u, v) = d\eta_a(u, v)$, the non-degeneracy of $d\eta_\gamma$ implies $\tilde{J}_\gamma = J_s$. The equations $\text{dev}^* \omega_0 = \eta, \text{dev}_s E = E_0$ imply $d\eta(E, A) = 0 (\forall A \in TX)$. Thus, $(\mathcal{D}, \eta, \{J_a'\}_{a=1}^3)$ is a strict qc-structure. Noting that R acts properly and freely on X, we have a smooth manifold $Y = X/R$. As dev : $X \to M$ is ρ-equivariant, dev induces a diffeomorphism $\hat{\text{dev}} : Y \to H^n$ with the commutative diagram:

\[
\begin{array}{ccc}
X & \xrightarrow{\text{dev}} & M \\
\pi \downarrow & & \downarrow \pi \\
Y & \xrightarrow{\text{dev}} & H^n.
\end{array}
\]

Applying Proposition 2.5 (cf. (2.6)), the 2-form Θ_a on Y is defined by
\[
\pi^* \Theta_a = d\eta_a, (a = 1, 2, 3).
\]

A quaternionic structure $\{J_a'\}_{a=1}^3$ on Y is also induced by
\[
J_a' \pi_s = \pi_s J_a'.
\]

Using the reciprocity $J_\gamma = (d\eta_\gamma)^{-1} \text{dev}_s \eta_\gamma$, it follows for any $\hat{A}, \hat{B} \in TY$
\[
\Theta_a(J_a' \hat{A}, J_a' \hat{B}) = \Theta_a(\hat{A}, \hat{B}) \quad (\alpha = 1, 2, 3).
\]

Thus, Θ_a is a Kähler form on $(Y, \{J_a'\}_{a=1}^3)$. The quaternionic Hermitian metric
\[g(\hat{A}, \hat{B}) = \Theta_{\alpha}(\hat{J}^\alpha_1 \hat{A}, \hat{B}) = \Theta_{\beta}(\hat{J}^\beta_1 \hat{A}, \hat{B}) = \Theta_{\gamma}(\hat{J}^\gamma_1 \hat{A}, \hat{B}) \tag{4.5} \]

is a hyperKähler metric on \((Y, \{ \hat{J}^\alpha_1 \}_{a=1}^3) \). Let \((\mathbb{H}^n, g_{\mathbb{H}}, \{ I_a \}_{a=1}^3) \) be the standard euclidean metric as in Remark 3.2. Noting \(d\omega_0 \circ J^\alpha_1 = \pi^* g_{\mathbb{H}} \) and (4.2), a calculation shows

\[\text{dev}^* g_0 = g, \text{dev}_* \circ J^\alpha_1 = I_a \circ \text{dev}_*. \tag{4.6} \]

This gives an isometry of \((Y, g, \{ J^\alpha_1 \}_{a=1}^3) \) onto \((\mathbb{H}^n, g_{\mathbb{H}}, \{ I_a \}_{a=1}^3) \).

Remark 4.5 The new Kähler form \(\Theta_{\alpha} \) and \(\Theta = \Theta_{\alpha i} + \Theta_{\beta j} + \Theta_{\gamma k} \) are related to the original forms \(\Omega \) and \(\Omega_{\alpha} \) as follows. For some constant \(c > 0 \),

\[\Theta = c \cdot \alpha \Omega \bar{\alpha}, \Theta_{\alpha} = c \cdot \sum_{\beta=1}^3 \alpha_{\alpha \beta} \Omega_{\beta}. \]

In fact, as we put \(\eta = \text{dev}^* \omega_0 = u \cdot a \omega \bar{a} \), it follows \(d\eta = u \cdot a \cdot d\omega \circ \bar{a} \) so that \(\Theta = \hat{u} \cdot a \Omega \bar{a} \) where \(\hat{u}, \alpha \) are induced functions on \(Y \). As usual, \(\Theta^2 = \hat{u}^2 \Omega^2 \) which shows that \(\hat{u} \) is a constant \(c > 0 \). We have \(\Theta_{\alpha} = c \sum_{\beta=1}^3 \alpha_{\alpha \beta} \Omega_{\beta} \). (\(\pi^* \alpha = a \), \(\pi^* \alpha_{\alpha \beta} = a_{\alpha \beta} \)).

5 Quotient quaternionic Hermitian manifolds

For the strict qc-structure \((\mathcal{D}_{\xi}, \omega_0, \{ J_a \}_{a=1}^3) \) on the quaternionic Heisenberg Lie group \(\mathcal{M} \), we consider a qc-structure \(\eta = n_1 i + n_2 j + n_3 k \) which is qc-conformal to \(\omega \). Take a one-form, say \(\eta_1 \) to define a distribution:

\[E_1 = \{ \xi \mid d\eta_1(\xi, A) = 0, \forall A \in TX \}. \tag{5.1} \]

\(E_1 \) does not induce a distribution such as \(E \). When \(E_1 \) generates a three-dimensional abelian Lie group \(\mathcal{R} \), we shall show that there is an invariant domain \(X \) such that the quotient \(X/\mathcal{R} \) admits a special kind of quaternionic Hermitian structure.

Choose numbers \(a_1, \ldots, a_n \) such that

\[0 < a_1 < a_2 < \cdots < a_n. \tag{5.2} \]

Let \(A_1 \) be the diagonal matrix

\[\text{diag}(e^{i\alpha_1}, e^{i\alpha_2}, \ldots, e^{i\alpha_n}) \in T^n \leq \text{Sp}(n). \tag{5.3} \]

Define a homomorphism \(\rho_1 : \mathbb{R}^3 \to (\mathbb{R}^3, 0) \times \text{Sp}(n) \leq \mathcal{M} \times \text{Sp}(n) \) to be

\[\rho_1(t_1) = \left(((t_1, 0, 0), 0), A_{t_1} \right), \quad \rho_1(t_2) = \left(((0, t_2, 0), 0), I \right), \quad \rho_1(t_3) = \left(((0, 0, t_3), 0), I \right). \tag{5.4} \]

More precisely, this action is defined on \(\mathcal{M} = \mathbb{R}^3 \times \mathbb{H}^n \) as
\[\rho_1(t_1)((s_1, s_2, s_3), z_1, \ldots, z_n) = \left((s_1 + t_1), s_2, s_3, e^{i\theta t_1}z_1, \ldots, e^{i\theta t_1}z_n\right), \]

\[\rho_1(t_2)((s_1, s_2, s_3), z_1, \ldots, z_n) = \left((s_1, s_2 + t_2), s_3, z_1, \ldots, z_n\right), \]

\[\rho_1(t_3)((s_1, s_2, s_3), z_1, \ldots, z_n) = \left((s_1, s_2, (s_3 + t_3)), z_1, \ldots, z_n\right). \]

In view of (5.4), the group \((\rho_1(t_1), \rho_1(t_2), \rho_1(t_3))\) forms a 3-dimensional abelian Lie group \(\rho_1(\mathbb{R}^3)\). If \(\xi^1\) is the vector field induced by \(\{\rho_1(t_1)\}_{t_1 \in \mathbb{R}}\), then it follows

\[\xi^1 = \frac{\rho_1(t_1)}{dt} \Big|_{t_1=0} = \frac{d}{dt} + (a_1iz_1, \ldots, a_niz_n) = \frac{d}{dt} + \sum_{k=1}^n a_k(-x_{4k-2} + x_{4k-3}x_{4k-2} - x_{4k}x_{4k-1} + x_{4k-1}x_{4k}). \] (5.6)

Letting \(z_k = u_k + v_j = (x_{4k-3} + ix_{4k-2}) + (x_{4k-1} + ix_k)j \in \mathbb{H} \) \((k = 1, \ldots, n)\), a calculation using (3.3) shows that

\[\omega_1((\xi^1)_p) = 1 + \sum_{k=1}^n a_k(x_{4k-3}^2 + x_{4k-2}^2 - x_{4k}^2 - x_{4k-1}^2) \]

\[= 1 + \sum_{k=1}^n a_k(|u_k|^2 - |v_k|^2) \quad \text{at} \quad p = ((s_1, s_2, s_3), z_1, \ldots, z_n). \] (5.7)

The singular set \(S = \{p \in \mathcal{M} \mid \omega_1((\xi^1)_p) = 0\}\) is not entirely equal to \(\mathcal{M}\) from (5.7). Denote the domain of \(\mathcal{M}\) by

\[X = \{p \in \mathcal{M} \mid \omega_1((\xi^1)_p) \neq 0\} \] (5.8)

(if necessary taking the component containing the origin \((0, 0) \in \mathcal{M}\)). Since \(\rho_1(\mathbb{R}^3)\) leaves \(S\) invariant, so does \(X\). Put \(Y = X / \rho_1(\mathbb{R}^3)\). Then, there is a commutative diagram of principal bundles.

\[\rho_1(\mathbb{R}^3) \quad \longrightarrow \quad \mathcal{M} \quad \xrightarrow{\pi_1} \quad \mathbb{H}^n \]

\[\| \quad \cup \quad \cup \quad \| \] (5.9)

\[\rho_1(\mathbb{R}^3) \quad \longrightarrow \quad X \quad \xrightarrow{\pi_1} \quad Y. \]

The image \(\pi_1S = \{\pi_1(p) \in \mathbb{H}^n \mid \sum_{k=1}^n a_k(|u_k|^2 - |v_k|^2) = -1\}\) is a real hypersurface in \(\mathbb{R}^{4n} = \mathbb{H}^n\). Noting \(Y = \mathbb{H}^n - \pi_1S\), it follows each component of \(Y\) is simply connected in \(\mathbb{H}^n\).

5.1 Conformal change of \(\omega_0\)

Let \(\omega_0 = \omega_1i + \omega_2j + \omega_3k\) be the qc-form on \(\mathcal{M}\) (cf. Sect. 3.2). We introduce new 1-forms on \(X\):

\[\eta_a = \frac{1}{\omega_1(\xi^1)}\omega_a (\alpha = 1, 2, 3). \] (5.10)

Put \(\eta = \eta_1i + \eta_2j + \eta_3k\) on \(X\). Since \(\eta\) is conformal to \(\omega_0\), it follows \(\ker \eta = \ker \omega_0 = D_0\) on \(X\). As \(\rho_1(\mathbb{R}^3)\) leaves \(\omega_a\) invariant, so does \(\eta_a\). The hypercomplex structure of
\(\eta, \{ \hat{J}_a = \frac{d\eta}{d_0}|D_0 \}^{-1} \circ (d\eta_a|D_0) \}_{a=1}^3 \) coincides with \(\{ J_a \}_{a=1}^3 \) of \(\omega_0 \) on \(D_0 \). Noting
\[\rho_1(t) J_a = J_a \rho_1(t), \quad (t \in \mathbb{R}^3) \] from (3.7), \(\{ J_a \} \) induces a quaternionic structure \(\{ \hat{J}_a \}_{a=1}^3 \) on \(Y \) such that
\[\pi_1^* \hat{J}_a(v) = \hat{J}_a \pi_1^*(v) \quad (\forall \, v \in D_0). \tag{5.11} \]

Proposition 5.1 \(\{ \hat{J}_a \}_{a=1}^3 \) is a quaternionic Hermitian manifold.

Proof Define \(\hat{\Omega}_a (a = 1, 2, 3) \) to be
\[\hat{\Omega}_a(\pi_1^* u, \pi_1^* v) = d\eta_a(u,v)(\pi^* u, \pi^* v \in D_0). \tag{5.12} \]
Since \(\eta_a \) is \(\rho_1(\mathbb{R}^3) \)-invariant and the distribution by \(\rho_1(\mathbb{R}^3) \) is transverse to \(D_0 \), \(\hat{\Omega}_a \) is well-defined on \(Y \) (cf. Lemma 5.2). Put
\[\hat{g}(\hat{u}, \hat{v}) = \hat{\Omega}_a(\hat{J}_a \hat{u}, \hat{v}) \quad (\forall \, \hat{u}, \hat{v} \in TY). \tag{5.13} \]
As \(\hat{\Omega}_a \) is invariant under \(\hat{J}_a \), it follows \(\hat{\Omega}(\hat{J}_a \hat{u}, \hat{v}) = \hat{g}(\hat{u}, \hat{v}) \). Thus, \(\hat{g} \) is a quaternionic Hermitian metric on \(\{ \hat{J}_a \}_{a=1}^3 \).

As in (5.4), the distribution \[\left\{ \xi_1, \frac{d}{d t_2}, \frac{d}{d t_3} \right\} \] generates \(\rho_1(\mathbb{R}^3) \leq \mathcal{M} \rtimes \text{Sp}(n) \). Note from (3.3) that
\[\eta_1(\xi_1) = 1, \quad \eta_1(\frac{d}{d t_2}) = 0, \quad \eta_1(\frac{d}{d t_3}) = 0. \tag{5.14} \]

Lemma 5.2 \(E_1 = \langle \xi_1, \frac{d}{d t_2}, \frac{d}{d t_3} \rangle \).

Proof For any \(A \in TX \), we prove \(d\eta_1(\xi_1, A) = 0 \), \(d\eta_1(\frac{d}{d t_2}, A) = 0 \) \((\beta = 2, 3) \). If \(A \in D_0 \), then \([\xi_1, A] \in D_0 \). Since the distribution \(\langle \xi_1, \frac{d}{d t_2}, \frac{d}{d t_3} \rangle \) generates \(\mathbb{R}^3, [\xi_1, \frac{d}{d t_\beta}] = 0 (\beta = 2, 3) \).
Then, it is easy to see that \(d\eta_1(\xi_1, A) = d\eta_1(\xi_1, \frac{d}{d t_\beta}) = 0 \). As \(\frac{d}{d t_\beta} (\beta = 2, 3) \) are induced from the central subgroup \((0, \mathbb{R}^2) \) of \(\mathbb{R}^3 \), (5.14) shows \(d\eta_1(\frac{d}{d t_\beta}, B) = 0 \), \(d\eta_1(\frac{d}{d t_\beta}, \frac{d}{d t_\gamma}) = 0 \)
(\(B \in D_0 \)). \(\square \)

Lemma 5.3 Let \(\hat{\Omega}_1 \) be the 2-form on \(Y \) as in (5.12). Then, \(d\hat{\Omega}_1 = 0 \).

Proof It suffices to show
\[\pi_1^* \hat{\Omega}_1 = d\eta_1 \quad \text{on} \quad Y. \tag{5.15} \]
\(\pi_1^* \hat{\Omega}_1 = d\eta_1 \) on \(D_0 \) from (5.12). For any \(\xi \in E_1 \) and \(A \in TX \), \(d\eta_1(\xi, A) = 0 \) by Lemma 5.2.
As \(E_1 \oplus D_0 = TX \), it follows \(\pi_1^* \hat{\Omega}_1 = d\eta_1 \) on \(X \). \(\square \)
6 Pseudo-Hermitian structure

6.1 Heisenberg Lie group \(\mathcal{N} \)

Let \(\mathcal{N} \) be the \(4n + 1 \)-dimensional Heisenberg Lie group which has a central group extension \(1 \rightarrow \mathbb{R} \rightarrow \mathcal{N} \rightarrow \mathbb{C}^{2n} \rightarrow 1 \). A pseudo-Hermitian structure \((\omega_{\mathcal{N}}, J_{\mathcal{N}}) \) consists of a contact form

\[
\omega_{\mathcal{N}} = dt + 3(\langle (z, w), (dz, dw) \rangle) = dt + 3(\bar{z}dz + \bar{w}dw) \quad ((z, w) \in \mathbb{C}^{2n})
\]

together with a complex structure \(J_{\mathcal{N}} \) on \(\ker \omega_{\mathcal{N}} \) which is isomorphic to the standard complex structure on \(\mathbb{C}^{2n} \) at each point of \(\mathcal{N} \) (cf. [11]). As \(\mathbb{R}^2 = \{(0, t_2, t_3)\} \) is a central subgroup of \(\mathbb{R}^3 = C(M) \), there is a quotient nilpotent Lie group \(\mathcal{M}/\mathbb{R}^2 \) with central group extension \(1 \rightarrow \mathbb{R} \rightarrow \mathcal{M}/\mathbb{R}^2 \rightarrow \mathbb{H}^n \rightarrow 1 \). We shall find an explicit isomorphism to identify \(\mathcal{M}/\mathbb{R}^2 \) with \(\mathcal{N} \). For our use, let \(z + wj \in \mathbb{H}^n \) such that \(z, w \in \mathbb{C}^n \). Then, \(\mathcal{M}/\mathbb{R}^2 \) is the product \(\mathbb{R} \times \mathbb{H}^n \) with group law:

\[
(a, z + wj) \cdot (b, z' + w'j) = (a + b - 3(\bar{z}z' + \bar{w}w'), z + z' + (w + w')j).
\]

Define a diffeomorphism \(\varphi : \mathcal{M}/\mathbb{R}^2 = \mathbb{R} \times \mathbb{H}^n \rightarrow \mathcal{N} = \mathbb{R} \times \mathbb{C}^{2n} \) to be

\[
\varphi(a, (z + wj)) = (a, (z, \bar{w})).
\]

As we see that \(\varphi((a, z + wj) \cdot (b, z' + w'j)) = (a, (z, \bar{w})) \cdot (b, (z', \bar{w}')) \).

Lemma 6.1 \(\varphi \) is a Lie group isomorphism of \(\mathcal{M}/\mathbb{R}^2 \) onto \(\mathcal{N} \).

Consider the projection

\[
\mathbb{R}^2 = \mathbb{R}j + \mathbb{R}k \longrightarrow \mathcal{M} \xrightarrow{\rho_1} \mathcal{M}/\mathbb{R}^2
\]

for which the subbundle \(\left(\frac{d}{dt_2}, \frac{d}{dt_3} \right) \) is tangent to the fiber \(\mathbb{R}^2 \). For \(\omega_0 = \omega_1i + \omega_2j + \omega_3k \), noting (3.3), \(\omega_1 \) induces a 1-form \(\hat{\omega}_1 \) on \(\mathcal{M}/\mathbb{R}^2 \) such that

\[
\rho_1^*\hat{\omega}_1 = \omega_1 \quad \text{on} \quad \mathcal{M}.
\]

As \(\hat{\omega}_1 = dt_1 + 3(\langle (z, \bar{w}), (dz, d\bar{w}) \rangle) \) from (3.2) \((z + wj \in \mathbb{H}^n)\), (6.1) shows

\[
\varphi^*\omega_{\mathcal{N}} = \hat{\omega}_1 \quad \text{on} \quad \mathcal{M}/\mathbb{R}^2.
\]

Let \(\hat{\varphi} : \mathbb{H}^n \rightarrow \mathbb{C}^{2n} \) be a diffeomorphism defined by

\[
\hat{\varphi}(z + wj) = (z, \bar{w}),
\]

with the following commutative diagram from (6.1):

\[
\begin{array}{ccc}
\mathcal{M}/\mathbb{R}^2 & \varphi \rightarrow & \mathcal{N} \\
\hat{\varphi} & \downarrow & \rho \\
\mathbb{H}^n & \rightarrow & \mathbb{C}^{2n}.
\end{array}
\]
Take the standard complex structure J_1 on \mathbb{C}^n such that $J_1 u = u \bar{i}$. As $u \bar{w} = (z + wij)\bar{i} = (iz + iwj)$, it follows $\bar{i} \phi(u \bar{w}) = i \phi(u)$.

If we take the anti-complex structure J'_C on \mathbb{C}^{2n} such as $J'_C(v) = iv$, it follows

$$\phi_* \circ J_1 = J'_C \circ \phi_* : T\mathbb{C}^n \to T\mathbb{C}^{2n}. \quad (6.7)$$

As in (3.4) of Sect. 3.2, the almost complex structure J_1 on D_0 induces an almost complex structure J_1 on $p_{1*}D_0 = \ker \hat{\omega}_1$ such that

$$\hat{\pi}_* \circ J_1 = J_1 \circ \hat{\pi}_* : p_{1*}D_0 \to T\mathbb{C}^n. \quad (6.8)$$

Similarly, if J'_N is the anti-complex structure on $\ker \omega_N$ of N, it follows

$$p_* \circ J'_N = J'_C \circ p_* : \ker \omega_N \to T\mathbb{C}^{2n}. \quad (6.9)$$

Then, (6.7), (6.8) and (6.9) imply

$$\phi_* \circ J_1 = J'_N \circ \phi_* \quad \text{on } \ker \hat{\omega}_1 (= p_{1*}D_0). \quad (6.10)$$

In particular, J_1 is a complex structure on $p_{1*}D_0 = \ker \hat{\omega}_1$. We have the principal bundle induced from (5.9):

$$\rho_1(\mathbb{R}) \longrightarrow X/\mathbb{R}^2 \overset{\hat{\pi}_1}{\longrightarrow} Y. \quad (6.11)$$

There is a CR-structure (ker $\hat{\omega}_1, J_1$) on $X/\mathbb{R}^2 \subset M/\mathbb{R}^2$ as above. Let \hat{J}_1 be the almost complex structure on Y as in (5.11), that is $\hat{\pi}_1J_1 = \hat{J}_1 \hat{\pi}_1$: $\ker \hat{\omega}_1 \to TY$.

Lemma 6.2 \hat{J}_1 is integrable on Y.

Proof Let $\ker \hat{\omega}_1 \otimes \mathbb{C} = P^{1,0} \oplus P^{0,1}$ be the eigenspace decomposition for J_1. We have an isomorphism $\hat{\pi}_1 : \ker \hat{\omega}_1 \otimes \mathbb{C} \to TY \otimes \mathbb{C} = Q^{1,0} \oplus Q^{0,1}$ (the eigenspace decomposition for \hat{J}_1, respectively). Since J_1 is integrable, $[u, v] \in P^{1,0}$ for $u, v \in P^{1,0}$. Then, $\hat{\pi}_1([u, v]) = [\hat{\pi}_1(u), \hat{\pi}_1(v)]$. It follows $[\hat{\pi}_1(u), \hat{\pi}_1(v)] \in Q^{1,0}$. Thus, \hat{J}_1 is integrable. \qed

Combining this lemma with Lemma 5.3, we obtain

Proposition 6.3 $(Y, \{\hat{\omega}_1, \hat{J}_1\})$ is a Kähler manifold.

6.2 Bochner flat structure on (Y, \hat{J}_1)

Put $e^{iat}z = (e^{iat}z_1, \ldots, e^{iat}z_n)$ for short, similarly for $e^{-iat}w$ for $a = (a_1, \ldots, a_n)$ satisfying (5.2). Let \mathbb{R} act on \mathcal{N} by

$$\rho(t)(s, (z, w)) = (t + s, (e^{iat}z, e^{-iat}w)) \quad (6.12)$$

such that $\rho(\mathbb{R}) \leq \mathbb{R} \times U(2n) \leq \mathcal{N} \leq U(2n) \leq \text{Aut}_{CR}(\mathcal{N})$. There induces another principal bundle $\rho(\mathbb{R}) \to \mathcal{N} \to \mathbb{C}^{2n}$. By (6.1) and (5.5),
\[
\varphi(\rho_1(t)(s,(z+wj))) = \varphi(s + t, (e^{i\alpha} z + e^{i\alpha}wj)) = (s + t, (e^{i\alpha} z, e^{-i\alpha}w)) = \rho(t)\varphi(s, (z+wj)),
\]

there is the bundle isomorphism (cf. (5.9)):

\[
\begin{array}{ccc}
\rho_1(\mathbb{R}) & \longrightarrow & \rho(\mathbb{R}) \\
\downarrow & & \downarrow \\
\mathcal{M}/\mathbb{R}^2 & \xrightarrow{\varphi} & \mathcal{N} \\
\hat{\pi}_1 & \downarrow & q \\
\mathbb{H}^n & \xrightarrow{\hat{\varphi}} & \mathbb{C}^{2n}.
\end{array}
\]

Let \(\xi \) be the vector field induced by \(\rho(\mathbb{R}) \) on \(\mathcal{N} \). Put \(p_1*\xi_1 = \hat{\xi}_1 \) from (5.6), (6.2), which is the Reeb field of \((\mathcal{M}/\mathbb{R}^2, (\hat{\omega}_1, J_1)) \). We have \(\varphi_*\hat{\xi}_1 = \xi \). At \(p = ((s_1, s_2, s_3), z_1, \ldots, z_n) \in \mathcal{M} \) with \(z_k = u_k + v_kj \), (6.4), (6.3) and (5.7) imply

\[
\omega_\mathcal{N}(\xi) = \hat{\omega}_1(\hat{\xi}_1) = \omega_1(\xi_1) = 1 + \sum_{k=1}^{n} a_k(|u_k|^2 - |v_k|^2). \tag{6.14}
\]

Corresponding to \(X/\mathbb{R}^2 = \{ x \in p_1(X) \mid \hat{\omega}_1((\hat{\xi}_1)_x) \neq 0 \} \), the bundle isomorphism \(\varphi \) maps \(X/\mathbb{R}^2 \) onto the domain \(\mathcal{N}_1 = \{ z \in \mathcal{N} \mid \omega_\mathcal{N}(\xi_z) \neq 0 \} \) of \(\mathcal{N} \). As in (5.10), define the contact forms to be

\[
\hat{\eta}_1 = \frac{1}{\hat{\omega}_1(\hat{\xi}_1)} \hat{\omega}_1 \text{ on } X/\mathbb{R}^2, \quad \eta_{\mathcal{N}_1} = \frac{1}{\omega_\mathcal{N}(\xi)} \omega_\mathcal{N} \text{ on } \mathcal{N}_1. \tag{6.15}
\]

In particular, \(p_1*D_0 = \ker \hat{\eta}_1 \). Noting (6.14), (6.4) shows that

\[
\varphi^*\eta_{\mathcal{N}_1} = \hat{\eta}_1.
\]

Put \(J_{\mathcal{N}_1} = J_{\mathcal{N}/\mathcal{N}_1} \). Since \((\eta_{\mathcal{N}_1}, J_{\mathcal{N}_1}) \) represents a spherical pseudo-Hermitian structure on \(\mathcal{N}_1 \), this equation together with (6.10) implies (cf. [11])

Proposition 6.4 The pseudo-Hermitian structure \((X/\mathbb{R}^2, \hat{\eta}_1, J_1) \) is anti-holomorphically isomorphic to the spherical CR-structure \((\mathcal{N}_1, \eta_{\mathcal{N}_1}, J_{\mathcal{N}_1}) \).

The projection \(\hat{\pi}_1 : X/\mathbb{R}^2 \rightarrow Y \) of (6.11) induces the following from (5.15), (5.11):

\[
\begin{align*}
\hat{\pi}_1^*\hat{\Omega}_1 &= d\hat{\eta}_1 \text{ on } X/\mathbb{R}^2, \\
\hat{J}_a \circ \hat{\pi}_1^* &= \hat{\pi}_1 \circ J_a \text{ on } p_1*D_0 \ (a = 1, 2, 3). \tag{6.16}
\end{align*}
\]

Theorem 6.5 \((Y, \hat{\gamma}, (\hat{\Omega}_1, \hat{J}_1)) \) is an anti-holomorphic Bochner flat Kähler manifold for the quaternionic Hermitian manifold \((Y, \hat{\gamma}, (\hat{\Omega}_a, \hat{J}_a)_{a=1}^3) \).

Proof Since \(d\hat{\eta}_1 = \hat{\pi}_1^*\hat{\Omega}_1 \) from \(X/\mathbb{R}^2 \) by (6.16), \(\rho_1(\mathbb{R}) \rightarrow X/\mathbb{R}^2 \xrightarrow{\hat{\pi}_1} Y \) is a pseudo-Hermitian bundle with the Reeb field \(\hat{\xi}_1 \), the Bochner curvature tensor of the Kähler manifold \((Y, (\hat{\Omega}_1, \hat{J}_1)) \) coincides with the Chern–Moser curvature tensor on \((X/\mathbb{R}^2, \hat{\eta}_1, J_1) \) by the

\[\text{ Springer}\]
pull-back of \(\hat{\pi} \) in (6.16) (cf. [16]). As \(X/\mathbb{R}^2 \) is spherical CR by Proposition 6.4, the Chern–Moser curvature tensor is zero and thus \((Y, \{\hat{\Omega}_1, \hat{J}_1\}) \) is a Bochner flat manifold. \(\square \)

7 Pseudo-Hermitian group \(\text{Psh}(X/\mathbb{R}^2) \)

We determine the holomorphic isometry group \(\text{Isom}_h(Y) = \{ f \in \text{Diff}(Y) \mid f^*\hat{\Omega}_1 = \hat{\Omega}_1, f^*\hat{J}_1 = \hat{J}_1 \} \) of the Kähler manifold \((Y, (\hat{\Omega}_1, \hat{J}_1)) \). In order to do so, consider the pseudo-Hermitian group of the pseudo-Hermitian manifold \((X/\mathbb{R}^2, \hat{\eta}_1, J_1) \) (cf. [11]):

\[
\text{Psh}(X/\mathbb{R}^2) = \{ \tilde{f} \in \text{Diff}(X/\mathbb{R}^2) \mid \tilde{f}^*\hat{\eta}_1 = \hat{\eta}_1, \tilde{f}^*J_1 = J_1 \circ \tilde{f} \}.
\]

As \(H^1(Y; \mathbb{R}) = 0 \) (see the remark below (5.9)), it associates the exact sequence from [4, Proposition 3.4]:

\[
1 \longrightarrow \rho_1(\mathbb{R}) \overset{l}{\longrightarrow} \text{Psh}(X/\mathbb{R}^2) \overset{\varphi}{\longrightarrow} \text{Isom}_h(Y) \longrightarrow 1. \tag{7.1}
\]

Since \(\rho_1(\mathbb{R}) \) induces the Reeb field \(\hat{\xi}_1 \) of \(\hat{\eta}_1 \), \(\text{Psh}(X/\mathbb{R}^2) \) itself is the centralizer of \(\rho_1(\mathbb{R}) \) in \(\text{Psh}(X/\mathbb{R}^2) \) (cf. [4, 11]). If we recall the representation of \(\rho(\mathbb{R}) \) from (6.12):

\[
\rho(t) = (t, (e^{ia_1t}, \ldots, e^{ia_nt}, e^{-ia_1t}, \ldots, e^{-ia_nt})) \in \mathbb{R} \times U(2n) \leq \mathcal{N} \rtimes U(2n),
\]

under the equivariant diffeomorphism \(\varphi \) of (6.13), the condition (5.2) implies that

\[
\text{Psh}(X/\mathbb{R}^2) = \mathbb{R} \times T^n \times T^n \leq \mathbb{R} \times U(2n). \tag{7.2}
\]

We have from (7.1) that

Proposition 7.1 \(\text{Isom}_h(Y) = T^{2n} \).

Theorem 7.2 The quaternionic Hermitian manifold \((Y, \hat{g}, \{\hat{J}_a\}_{a=1}^3) \) is not Einstein. Moreover, it is never holomorphically isometric to any domain of the quaternionic euclidean space \(\mathbb{H}^n \).

Proof When the Bochner flat manifold \((Y, \hat{g}, (\hat{\Omega}_1, \hat{J}_1)) \) is Einstein, it is of constant holomorphic curvature by Tachibana’s result [15]. Thus, \(Y \) is locally holomorphically isometric to the flat space \(\mathbb{C}^{2n} \). We may assume that the origin \(0 \) belongs to \(Y \) (cf. (5.7)). Then, the stabilizer at \(0 \) is the maximal compact subgroup isomorphic to \(U(2n) \). Since \(T^{2n} \) is the full holomorphic isometry group of \((Y, \hat{g}, \hat{J}_1) \) by Proposition 7.1, it is impossible. \((Y, \hat{g}, \hat{J}_1) \) is not holomorphically isometric to any domain of \((\mathbb{H}^n, g_{\mathbb{H}}) \) with the standard euclidean metric \(g_{\mathbb{H}} \). \(\square \)

7.1 Quaternionic Hermitian isometry group of \((Y, \hat{g}) \)

The quaternionic Hermitian isometry group of the quaternionic Hermitian manifold \((Y, \hat{g}, (\hat{\Omega}_a, \hat{J}_a)_{a=1}^3) \) may be denoted naturally by the following:
Isom_{qH}(Y) = \{ \hat{h} \in \text{Diff}(Y) \mid \hat{h}^*\hat{\Omega}_a = \sum_{\beta=1}^3 \hat{\Omega}_\beta\hat{a}_\beta, \hat{h}_*\hat{J}_a = \sum_{\beta=1}^3 \hat{a}_\beta\hat{J}_\beta\hat{h}_* \},

where \((\hat{a}_\beta)_{a,\beta=1,2,3} : Y \longrightarrow \text{SO}(3)\) are smooth maps.

For the abelian group \(\rho_1(\mathbb{R}^3)\) defined by (5.4), let \(N_{\text{Aut}(\mathbb{M})}(\rho_1(\mathbb{R}^3))\) be the normalizer of \(\rho_1(\mathbb{R}^3)\) in \(\text{Aut}(\mathbb{M})\). By the formula (5.3) of \(A_i\), the normalizer of \(\{A_i\}\) in \(\text{Sp}(n)\) is isomorphic to \(T^n\). Since the only subgroup \(S^1 = \langle e^{i\theta} \rangle\) of \(\text{Sp}(1)\) normalizes \(\rho_1(\mathbb{R}^3)\) in view of the actions (3.1) and (5.4), it follows that

\[
N_{\text{Aut}(\mathbb{M})}(\rho_1(\mathbb{R}^3)) = (\mathbb{R}^3, 0) \times T^n \cdot S^1 \leq \mathbb{M} \rtimes \text{Sp}(n) \cdot \text{Sp}(1) \tag{7.3}
\]

where \(T^n \cdot S^1 = T^n \times_{\{\pm 1\}} S^1\). Recall every element of \(\text{Aut}(X)\) extends to an element of \(\text{Aut}(\mathbb{M})\). Since each element of \(N_{\text{Aut}(\mathbb{M})}(\rho_1(\mathbb{R}^3))\) preserves both \(\omega_1\) and \(\xi_1\) from (5.8), it follows \(N_{\text{Aut}(\mathbb{M})}(\rho_1(\mathbb{R}^3)) = N_{\text{Aut}(\mathbb{X})}(\rho_1(\mathbb{R}^3)).\)

Let \(\eta = \eta_i + \eta_j + \eta_k\) be as before (cf. (5.10)). Note \(h^*\eta = a \cdot \eta \cdot \hat{a}\) for \(h = ((t, 0), A \cdot a) \in N_{\text{Aut}(\mathbb{X})}(\rho_1(\mathbb{R}^3))\). By (7.3), the projection \(\pi_1 : \mathbb{X} \longrightarrow Y\) of (5.9) induces an element \(\hat{h} : Y \longrightarrow Y\). Since \(\pi_1^*\hat{\Omega} = d\eta\) for \(\hat{\Omega} = \hat{\Omega}_i + \hat{\Omega}_j + \hat{\Omega}_k\), we have \(h^*\hat{\Omega} = a \cdot \hat{\Omega} \cdot \hat{a}\) for \(a \in S^1\). Thus, it assigns an element \(\hat{h} \in \text{Isom}_{qH}(Y, \hat{\xi}, \{\hat{\Omega}_a, \hat{J}_a\}_{a=1}^3) = \text{Isom}_{qH}(Y)\). Letting \(a = (a_{ab})_{a,\beta=2,3} \in \text{SO}(2)\), \text{Isom}_{qH}(Y)\) can be described as

\[
\{ \hat{h} \in \text{Diff}(Y) \mid \hat{h}^*\hat{\Omega}_1 = \hat{\Omega}_1, \hat{h}_*\hat{J}_a = \hat{J}_1 \circ \hat{h}_*\}, \quad \hat{h}^*\hat{\Omega}_a = \sum_{\beta=2,3} \hat{\Omega}_\beta a_{ab}, \quad \hat{h}_*\hat{J}_a = \sum_{\beta=2,3} a_{ab}\hat{J}_\beta \circ \hat{h}_* \}. \tag{7.4}
\]

Setting \(\bar{\phi}(h) = \hat{h}\), (7.3) gives an exact sequence:

\[
1 \longrightarrow \rho_1(\mathbb{R}^3) \longrightarrow N_{\text{Aut}(\mathbb{X})}(\rho_1(\mathbb{R}^3)) \overset{\bar{\phi}}{\longrightarrow} T^n \cdot S^1 \leq \text{Isom}_{qH}(Y). \tag{7.5}
\]

If \(i : \text{Isom}_{qH}(Y) \longrightarrow \text{Isom}_h(Y) = T^{2n}\) (cf. Proposition 7.1) is the natural inclusion (that is, forgetting the quaternionic structure but leaving the holomorphic structure as it is), then under the equivariant diffeomorphism \(\bar{\phi}\) of (6.5), it follows \(i(T^n \cdot S^1) = \{(z_1, \ldots, z_n, \bar{z}_1, \ldots, \bar{z}_n) \times (e^{i\theta_1}, \ldots, e^{i\theta_n})\} \leq T^{2n}\) where \(z_i \in S^1 (i = 1, \ldots, n)\). We obtain

Corollary 7.3 The quaternionic Hermitian isometry group \(\text{Isom}_{qH}(Y)\) is isomorphic to the torus \(T^k\) for some \(k (n + 1 \leq k \leq 2n)\).

Remark 7.4 Since the forms \(\hat{\Omega}_2, \hat{\Omega}_3\) are not Kähler, the equation \(\pi_1^*\hat{\Omega}_a = d\eta_a\) does not hold on \(X\) (only on \(D_0\)), the method of [4, Propositions 3.4, 3.1, 3.2] cannot be applied to show the surjectivity of \(\bar{\phi}\) in (7.5).

Acknowledgements We thank the anonymous referee whose significant comments and suggestions greatly improved the exposition of the paper. This work was partially supported by the President Research Grants 2019 at Josai University.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
References

1. Alekseevsky, D.V., Kamishima, Y.: Quaternionic and para-quaternionic CR structure on $(4n+3)$-dimensional manifolds. Cent. Eur. J. Math. (Electron.) 2(5), 732–753 (2004)
2. Alekseevsky, D., Kamishima, Y.: Pseudo-conformal quaternionic CR structure on $(4n+3)$-dimensional manifolds. Ann. Mat. Pura Appl. 187(3), 487–529 (2008)
3. Biquard, O.: Métriques d’Einstein asymptotiquement symétriques. Astérisque 265, vi+109 (2000)
4. Baues, O., Kamishima, Y.: Locally homogeneous aspherical Sasaki manifolds. Differ. Geom. Appl. 70, 101607 (2020)
5. Chen, S.S., Greenberg, L.: Hyperbolic spaces. In: Ahlfors, L. (ed.) Contribution to analysis. A collection of papers dedicated to Lipman Bers, pp. 49–87. Academic Press, New York and London (1974)
6. Frances, C.: Sur le groupe d’automorphismes des éométries paraboliques de rang 1. Ann. Sci. École Norm. Sup. 40(5), 741–764 (2007)
7. Hano, J.: On Kaehlerian homogeneous spaces of unimodular Lie groups. Am. J. Math. 79, 885–900 (1957)
8. Ivanov, S., Minchev, I., Vassilev, D.: Quaternionic contact Einstein manifolds. Math. Res. Lett. 23(5), 1405–1432 (2016)
9. Ivanov, S., Vassilev, D.: Quaternionic contact manifolds with a closed fundamental 4-form. Bull. Lond. Math. Soc. 42, 1021–1030 (2010)
10. Ivanov, S., Vassilev, D.: Conformal quaternionic contact curvature and the local sphere theorem. J. Math. Pures Appl. 93(3), 277–307 (2010)
11. Kamishima, Y.: Heisenberg, spherical CR geometry and Bochner flat locally conformal Kähler manifolds. Int. J. Geom. Methods Mod. Phys. 3(5–6), 1089–1116 (2006)
12. Kamishima, Y.: Gometric flows on compact manifolds and global rigidity. Topology 35(2), 439–450 (1996)
13. Kamishima, Y., Udono, T.: Three-dimensional Lie group actions on compact $(4n+3)$-dimensional geometric manifolds. Differ. Geom. Appl. 21(1), 1–26 (2004)
14. Schoen, R.: On the conformal and CR automorphism groups. Geom. Funct. Anal. 5(2), 464–481 (1995)
15. Tachibana, S.: Natural science report. Ochanomizu University 18(1), 15–19 (1967)
16. Webster, S.: On the pseudo conformal geometry of a Kähler manifold. J. Math. Z. 157, 265–270 (1977)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.