Isolated Intramedullary Spinal Rosai–Dorfman Disease in a Child: A Case Report

Amgad Mohamed Abdelhady Moussa1 Mohamed Ismail Degheidy1 Noha Mohamed Osman1 Sara Makkeyah2 Shaimaa Abdel Sattar1

1Department of Radiodiagnosis, Faculty of Medicine, Ain Shams University, Cairo, Egypt 2Department of Pediatric, Hematology-Oncology Unit, Faculty of Medicine, Ain Shams University, Cairo, Egypt

Abstract

Keywords
► Rosai-Dorfman disease
► histiocytic disorder
► intramedullary spinal cord masses

Rosai–Dorfman disease (RDD) is an uncommon benign histiocytic proliferative disorder commonly involving the cervical lymph nodes and, less frequently, extranodal sites. The histological hallmark of RDD is emperipoleis displayed by lesional histiocytes. Central nervous system involvement is rare and usually intracranial; intramedullary spinal involvement is even less common and, to our knowledge, rarely reported in children. Herein, we report a case of RDD with isolated intramedullary spinal involvement in a child, which, to our knowledge, is the first case reported in an infant.

Introduction

Rosai–Dorfman disease (RDD), also known as sinus histiocytosis with massive lymphadenopathy, is an uncommon benign histiocytic proliferative disorder which was named after J. Rosai and R. F. Dorfman in 1969.1,2 However, an extensive search of the literature done by Gaitonde revealed that it was first reported by Destombes in 1965.3,4 Although RDD has been reported in all age groups, it most frequently presents in children and young adults, with a slight male predominance,5 and it is mainly observed in individuals of African and European descent rather than in Asian populations.6 It is generally characterized by bilateral, painless, massive cervical lymphadenopathy. In around 30% of cases, extranodal involvement can be found, including the skin, orbit, upper respiratory tract, and bones.7 Central nervous system (CNS) involvement has been described but is uncommon and is often intracranial. It usually manifests as dural-based masses, and intraparenchymal involvement is less common. Intramedullary spinal cord involvement is rare.8

We present an extremely rare case of isolated intramedullary spinal RDD. To our knowledge, there are only a handful of cases described in children, and this is the first case described in an infant.

Case Report

An 18-month-old previously healthy girl presented with forward head tilt, progressive cervical kyphosis, and difficulty in walking with frequent falling. She had no history of preceding trauma or infection and no constitutional symptoms. Family history was significant for breast cancer in her paternal grandmother and CNS tumors in the paternal side. Physical examination revealed a well appearing child with no skin rashes, abnormal pigmentation, or palpable lymphadenopathy. Her cardiac, respiratory, and abdominal examinations were normal. Neurologically, she had left lower limb weakness Grade 2/5, with Brisk reflexes, normal upper limbs and right lower limb examination, and no cranial nerve affection. Her laboratory investigations showed white blood cells 8.6 × 10³/µL, hemoglobin 13.3 g/dL, platelets 277 × 10³/µL, erythrocyte sedimentation rate 10 mm/hr, immunoglobulin A 85 mg/dL, immunoglobulin M 167 mg/dL, and immunoglobulin G 731 mg/dL.

Cervical magnetic resonance imaging (MRI) was done before referral to our institution revealing an oval, well-defined, intramedullary soft tissue lesion exerting fusiform cord expansion extending from C6 to D3 level surrounded by proximal and distal cord edema. The lesion displays
relatively intermediate signal on T1, as well as on T2 and short tau inversion recovery-weighted images and shows homogenous avid post-contrast enhancement on T1 post-contrast images (►Figs. 1–3). The lesion displayed no calcifications, necrosis, or cystic changes. The top differential diagnoses postulated were intramedullary astrocytoma, ependymoma, and ganglioglioma. Surgical intervention was done for trial of mass excision, but only open biopsy was performed. Histopathological examination revealed polymorphic population formed of lymphocytes, excess eosinophils, together with histiocytic aggregates having vesicular nuclei and eosinophilic cytoplasm. However, there was no evidence of emperipolesis. Moderate vascularity was also seen. Immunohistochemical staining was positive for protein S100 and CD68 and negative for CD1a, GFAP, and CD34. This picture was suggestive of RDD. However, further immunohistochemical and molecular analysis to confirm the diagnosis was not done due to logistical issues.

The patient was started on steroid treatment to decrease spinal cord edema with minimal improvement. One month later, a repeat cervical MRI was done showing similar findings with decreased spinal cord edema.

Discussion

Classical sporadic RDD typically involves lymph nodes. Extramodal disease is apparent in approximately 40% of all cases, and most commonly involves the skin, retro-orbital tissue, nasal cavity, bone, and soft tissue. RDD of the nervous system has been reported in less than 5% of all cases, most of which were in the brain. Involvement of the spine has been described in only 20% of those with CNS involvement, with the vast majority of cases being related to the Dura. A retrospective analysis showed that 210 cases of CNS involvement were reported ever since the description of...
the disease, of which only 24 were isolated spinal RDD. Most cases of isolated spinal RDD were extramedullary dural-based lesions; only two cases were intramedullary. Moreover, in children, isolated intramedullary spinal RDD is extremely rare and has only been reported twice in two 12 years old children, making our case the extremely rare and has only been reported twice in two over, in children, isolated intramedullary spinal RDD is calcifying point between RDD and meningiomas, which are tochemical and molecular analysis was not done due to poikilosis was not an evident feature and further immunohis-

ment. That shows distinct and homogenous contrast enhance-

tation still vary between cases and immunohistochemistry is still the only reliable basis for diagnosis. Further imaging studies need to be continued for better characterization of RDD spinal and brain lesions, thus guiding adequate curative management.

Conflict of Interest
None declared.

References
1. Sciacca S, Barkas K, Heptinstall L, McNamara C, Shetty R. Rosai-Dorfman disease with spinal cord compression: a diagnostic challenge. Eur Spine J 2015;24(Suppl 4):S529–S535
2. Rosai J, Dorfman RF. Sinus histiocytosis with massive lymphadenopathy. A newly recognized benign clinicopathological entity. Arch Pathol 1969;87(01):63–70
3. Gaitonde S. Multifocal, extramedullary sinus histiocytosis with massive lymphadenopathy: an overview. Arch Pathol Lab Med 2007;131(07):1117–1121
4. Destombes P. Adenitis with lipid excess, in children or young adults, seen in the Antilles and in Mali. (4 cases)]. Bull Soc Pathol Exot 1965;58(06):1169–1175
5. Kozak B, Talbott J, Uzelac A, Rehani B. Rosai-Dorfman disease isolated to the thoracic epidural spine. J Radiol Case Rep 2015;9(11):6–16
6. Liu G, Wang H, Yang Z, Tang T, Zhang S. Is it a metastatic disease: a case report and new understanding of Rosai-Dorfman disease? Am J Dermatopathol 2016;38(06):e72–e76
7. Huang BY, Liu HL, Yu CJ. Isolated intramedullary spinal Rosai-Dorfman disease: a case report and literature review. World Neurosurg 2016;88:694.e11–694.e15
8. Sandoval-Sus JD, Sandoval-Leon AC, Chapman JR, et al. Rosai-Dorfman disease of the central nervous system: report of 6 cases and review of the literature. Medicine (Baltimore) 2014;93(03):165–175
9. Estombes P, Destombes M, Martin L. [Pseudotumoral lymph node lipidic histiocytosis. Further case in a young Martinique woman]. Bull Soc Pathol Exot 1972;65(03):481–488
10. Vaiselbuh SR, Bryceson YT, Allen CE, Whitlock JA, Abba O. Updates on histiocytic disorders. Pediatr Blood Cancer 2014;61(07):1329–1335
11. Rocha-Maguey J, Felix-Torrenteguai JA, Cabrera-López M, Gutiérrez-Castro M, Montante-Montes de Oca D. A new case of cervical intramedullary sinus histiocytosis causing paraplegia and review of the literature. Surg Neurol Int 2016;7:694.e11–694.e15
12. Yao K, Li TF, Zhu MW, et al. An intramedullary cervical cord lesion in a 12-year-old girl. Neuropathology 2013;33(05):582–585
13. Huang BY, Zhang H, Zong WJ, Sun YH. Rosai-Dorfman disease of rare isolated spinal involvement: report of 4 cases and literature review. World Neurosurg 2016;85:367.e11–367.e16

Conclusion
Isolated spinal intramedullary RDD is an extremely rare disease, and the diagnosis is overwhelmingly difficult. Imaging characteristics still vary between cases and immunohistochemistry is still the only reliable basis for diagnosis. Further imaging studies need to be continued for better characterization of RDD spinal and brain lesions, thus guiding adequate curative management.
di Dio F, Mariotti I, Coccolini E, Bruzzi P, Predieri B, Iughetti L. Unusual presentation of Rosai-Dorfman disease in a 14-month-old Italian child: a case report and review of the literature. BMC Pediatr 2016;16:62

Vadivelu S, Mangano FT, Miller CR, Leonard JR. Multifocal Langerhans cell histiocytosis of the pediatric spine: a case report and literature review. Childs Nerv Syst 2007;23(01):127–131

Badalian-Very G, Vergilio JA, Degar BA, et al. Recurrent BRAF mutations in Langerhans cell histiocytosis. Blood 2010;116(11):1919–1923

Emile JF, Abla O, Fraitag S, et al; Histiocyte Society. Revised classification of histiocytoses and neoplasms of the macrophage-dendritic cell lineages. Blood 2016;127(22):2672–2681

Dalia S, Sagatys E, Sokol L, Kubal T. Rosai-Dorfman disease: tumor biology, clinical features, pathology, and treatment. Cancer Contr 2014;21(04):322–327

Garces S, Medeiros LJ, Patel KP, et al. Mutually exclusive recurrent KRAS and MAP2K1 mutations in Rosai-Dorfman disease. Mod Pathol 2017;30(10):1367–1377

El Molla M, Mahasneh T, Holmes SE, Al-Khawaja D. Rare presentation of Rosai-Dorfman disease mimicking a cervical intramedullary spinal cord tumor. World Neurosurg 2014;81(02):442.e7–442.e9