Topologically Distinct Collision-Free Periodic Solutions for the N-Center Problem

Roberto Castelli

Communicated by P. Rabinowitz

Abstract

This work concerns the planar N-center problem with homogeneous potential of degree \(-\alpha\) \((\alpha \in [1, 2))\). The existence of infinitely many, topologically distinct, non-collision periodic solutions with a prescribed energy is proved. A notion of admissibility in the space of loops on the punctured plane is introduced so that in any admissible class and for any positive \(h\) the existence of a classical periodic solution with energy \(h\) for the \(N\)-center problem with \(\alpha \in (1, 2)\) is proven. In case \(\alpha = 1\) a slightly different result is shown: it is the case that there is either a non-collision periodic solution or a collision-reflection solution. The results hold for any position of the centres and it is possible to prescribe in advance the shape of the periodic solutions. The proof combines the topological properties of the space of loops in the punctured plane with variational and geometrical arguments.

1. Introduction

The planar \(N\)-center problem with homogeneous potential of degree \(-\alpha\), \(\alpha \in [1, 2)\) consists in the equation

\[
\ddot{q} = \nabla V(q), \quad q \in \mathbb{R}^2,
\]

where the potential function is given by

\[
V(x) := \frac{1}{\alpha} \sum_{j=1}^{N} \frac{m_j}{|x - c_j|^\alpha}, \quad x \in \mathbb{R}^2 \setminus C,
\]

\(C \stackrel{\text{def}}{=} \{c_1, \ldots, c_N\}\) being the set of centres, \(c_j \in \mathbb{R}^2\) and \(m_j > 0\) for all \(j = 1, \ldots, N\). Following the terminology usually adopted in celestial mechanics, a non collision periodic solution is a \(C^2\) function \(q(t)\) so that \(q(t + T) = q(t)\) for some period \(T > 0\) and \(q(t) \notin C\) for all \(t\).
This paper studies the existence of non-collision, periodic solutions of (1) satisfying the energy constraint

$$\frac{1}{2}|\dot{q}|^2 - V(q) = h$$

(3)

for any $h > 0$.

The gravitational case, i.e. $\alpha = 1$, is surely the most interesting and widely studied case. When $N = 1$ it corresponds to the 2 body problem which is integrable and was solved by Newton. The 2-center problem, adopted as a model for one-electron molecules such as H_2^+ and He^{2+} [41], was shown by Euler to be integrable in elliptic coordinates [42]. Except for the cases $N = 1, 2$, the gravitational N-center problem is not integrable [6, 7]. In recent decades a quite broad literature has been produced dealing with the case $N \geq 3$, both for planar and spatial motion, but a complete review of all the existing results is beyond the scope of this introduction. However, we do assemble some remarkable quantitative and qualitative results related to ours. In [6, 8, 9] it was shown that for $N \geq 3$ the system is non-integrable on non-negative energy levels, and it has positive entropy. The authors introduced a topological (global) regularization by applying the local KS-regularization around each center. It results that the dynamics restricted on the energy level sets is a reparametrization of the geodesic flow on a non compact complete manifold. Homological properties of the space of loops of the regularized manifold allow us to estimate from below the geodesic and hence the topological entropy of the system. In [27, 28] it was proved that the set of bounded trajectories has a Cantor structure which is analysed using symbolic dynamics. The paper [29] concerns the non existence of an analytic independent integral for the $N \geq 3$ centre problem in the space, when the energy is larger than a threshold E_{th}. In the case of negative energy it has been proved that there exists chaotic dynamics for the 3-center problem on small negative energy level sets when one centre is far away from the other two [10] or when the mass of one of the centres is much smaller then the others [19]. Both of these results rely on perturbative methods.

Most of the quoted works consider a regularisation of the singularities. The question about regularisation of the singular potential problem and the possible extension for the collision solutions has been proposed and discussed by different authors. We mention [20, 30, 31] for $\alpha = 1$, and [4, 12, 32] for $\alpha \neq 1$, [13–15, 37] in case of logarithmic potential ($\alpha = 0$).

A different approach to the N-center problem and, in general, to singular lagrangian systems, is that of variational arguments. In this context, the major difficulty is to prove that the minimiser is collision free. The Strong force case $\alpha \geq 2$, treated for instance in [1, 5, 22, 24, 33], is relatively easier, compared to the weak force case $\alpha \in (0, 2)$, where there is no control on the value of the functional whose critical points may correspond to trajectories passing through the singularities, see [3, 18, 34, 35, 38, 39].

A variational technique has been exploited in [36] to prove the existence of infinitely many non collision periodic solutions with small negative energy for the N-center problem with $\alpha \in [1, 2)$. Also, the symbolic dynamics of trajecto-
ries having a prescribed topological characterisation with respect to the centres is discussed.

Motivated by this work, our contribution aims at answering the following question: which requirements, in terms of the shape of the orbit, are necessary to assure the existence of a collision-free solution? How many conditions are required when prescribing the behaviour of a non-collision periodic solution? By prescribing the shape of the solution we mean to select the homotopy class $[\gamma]$ in $\pi_1(\mathbb{R}^2 \setminus C)$ in which the solution belongs.

The answer to our question relies on Definition 2.15, where the concept of Admissible class is introduced, and on the notion of a collision-reflection solution.

Definition 1.1. A continuous function $q : S \subset \mathbb{R} \to \mathbb{R}^2$ is a collision-reflection solution of the Eq. (1) if:

- q has a finite number of collisions, i.e. there exists a finite set of instants $T_c = (\tau_1, \ldots, \tau_K) \subset S$ such that $q(\tau_i) \in C$ for any $i = 1, \ldots, K$;
- the restriction $q|_{S \setminus T_c}$ is a classical solution of $\ddot{q}(t) = \nabla V(q(t))$;
- the energy is preserved through collisions;
- at any collision instant the trajectory is reflected:

$$q(t + \tau_i) = q(\tau_i - t), \quad \forall \ i = 1, \ldots, K.$$

We prove the following:

Theorem 1.2. (Kepler case, $\alpha = 1$) Let $\alpha = 1$ and let $C = \{c_1, \ldots, c_N\}, c_i \in \mathbb{R}^2$, be any set of centres. Then, for any admissible class $[\gamma]$ and any $h > 0$, at least one of the following holds:

1. there exists a non-collision periodic solution $x(s)$ for the N-center problem with energy h and $x(s)$ parametrizes a curve in $[\gamma]$.
2. there exists a collision-reflection solution.

Theorem 1.3. [$\alpha \in (1, 2)$] Let $\alpha \in (1, 2)$ and let $C = \{c_1, \ldots, c_N\}, c_i \in \mathbb{R}^2$, be any set of centres. Then, for any admissible class $[\gamma]$ and any $h > 0$ there exists a non-collision periodic solution $x(s)$ for the N-center problem with energy h and $x(s)$ parametrizes a curve in $[\gamma]$.

Before proceeding further we acknowledge that the result of Theorem 1.2 is not new and a different proof can be found in [27].

As will be made clear during the exposition, the conditions for a homotopy class $[\gamma]$ to be admissible are weak enough to ensure, for any $h > 0$, the existence of infinitely many homotopically distinct periodic solutions with energy h whenever the number N of the centres is larger than 2. In case $N = 3$ it is admissible any homotopy class $[\gamma]$ where γ is, for instance, any of the paths depicted in Fig. 1.

Furthermore, we introduce a set of symbols to encode the behaviour of a loop γ, so that to any finite but arbitrarily long sequence of symbols satisfying a certain rule there corresponds an admissible homotopy class.
Fig. 1. Examples of curves $\gamma \in \mathbb{R}^2 \setminus C$ so that the homotopy class $[\gamma]$ is admissible

Following [36], the proofs of theorems 1.2, 1.3 are based on a constrained minimisation argument for the Maupertuis functional (the obstacle problem). Similar techniques have been exploited in the literature to solve minimisation problems in presence of singular potential, for instance in [11, 16, 17, 40]. The core of the method consists in the analysis, close to the singularities, of a particular minimising sequence $\{u_n\}_n$. In order to prove the existence of collision-free orbits, it is required that any u_n does not admit any loop enclosing one of the centres.

The occurrence of such a loop can be avoided by imposing symmetry constraints [40], or by performing the minimisation on spaces of intersection-free paths [16], or on spaces of paths whose vectors of winding numbers with respect to the centres have the same parity [36]. In any of the above mentioned cases, the periodic solution turns out to be intersection free. Instead of these assumptions, in this work the minimisation is performed on selected homotopy classes and we allow the minimisers to have self intersections and hence to design much more complicated dynamics around the centres.

The presence of self intersections on the minimising sequence represents a technical hurdle when applying the obstacle problem argument. Moreover, no information on the number and location of the self intersections of a loop γ, that is a local property, can be inferred by the knowledge of the homotopy class of γ; that is rather a global property.

In spite of this, it is possible to control the change in number of the self-intersections of a curve, and intersections between different curves, along the homotopies. This result, although weak, reveals itself to be enough for our purposes.

The paper is organised as follows. In Section 2 we deal with the topological properties of the space of loops and we introduce the definition of Admissible class. Section 3 concerns the variational setting: we introduce the Maupertuis’ functional \mathcal{M} and the space of loops $H_{[\gamma]}$, which is where to look for minima. Also, useful properties of the Maupertuis’ functional are discussed. In Section 4, by means of classical arguments we prove the existence of a minimiser for \mathcal{M} on $H_{[\gamma]}$ and, combining topological and variational arguments, we study geometrical features of the minimal path. Section 5 concerns the obstacle problem. We show the major steps of the procedure, while referring to [36] and [40] for the details. In Section 6 we provide the proofs of the theorems (1.2) (1.3). Finally, in Section 7 we discuss a method to generate, in terms of symbols, the admissible classes.

We hasten to remark that the dichotomy presented in Theorem 1.2 is easily solvable; indeed if the support of a collision-reflection solution does not belong to the boundary of the homotopy class $[\gamma]$, then the periodic solution is collision-free.
On the other side, the same variational method does not allow one to conclude the existence of non-collision solutions in the ultra-weak case $\alpha \in (0, 1)$, and nor does it for the logarithmic potential, $\alpha = 0$.

2. Topological Setting

Curves and Intersections

Let $\Omega \subset \mathbb{R}^2$ and $I \subset \mathbb{R}$ any interval. A curve in Ω is any continuous map $\gamma(t) : I \to \Omega$.

Definition 2.1. A loop is a closed curve; that is a curve $\ell : [a, b] \to \Omega$ such that $\ell(a) = \ell(b)$.

By identifying the endpoints of I, a loop is seen as a curve on $S_{a,b} = [a, b]/\{a, b\}$.

Definition 2.2. Let $\gamma : I \to \Omega$ be a curve where $I = [a, b]$ or $I = [a, b]/\{a, b\}$. We say that:

- γ is simple if γ is injective;
- γ has a self-intersection of order k at the point p_* if there exist $t_1, \ldots, t_k \in I$ such that $\gamma(t_j) = p_*$. If $k = 2$, for short, we simply refer to p_* by the name of self-intersection.

Definition 2.3. Let p_* be a self-intersection point for $\gamma \in C^1(I, \Omega)$. We say that the intersection is transversal if γ is C^1-transversal (in the sense of differential topology) at the point p_* as immersed manifold. We say that γ has a self-tangency at point p_* if the tangent space of γ at p_* is 1-dimensional.

Remark 2.4. If the path $\gamma : [a, b] \to \Omega$ is C^1 with everywhere non-vanishing derivative then the point $p_* = \gamma(t_1) = \gamma(t_2)$ is a transversal self-intersection if $\gamma'(t_1) \times \gamma'(t_2) \neq 0$.

Otherwise p_* is a self-tangency point.

Let $\gamma : I \to \Omega$ be a curve and $I_1 \subseteq I$ any subinterval. In the following we denote:

- by $\gamma|_{I_1}$ the restricted function, i.e. the curve $\gamma_1 : I_1 \to \Omega$, $\gamma_1(t) = \gamma(t)$, for all $t \in I_1$;
- and by $\gamma(I_1)$ the image of $\gamma(t)$ for $t \in I_1$.

For later purposes, we introduce the operation of the composition of curves: given two curves $\gamma : [a, b] \to \Omega$ and $\gamma_0 : [c, d] \to \Omega$ such that $\gamma(b) = \gamma_0(c)$, we denote by $\gamma \# \gamma_0$ the curve obtained by gluing γ with γ_0, that is

$$
\gamma \# \gamma_0 : [0, (b - a) + (d - c)] \to \Omega
$$

$$(\gamma \# \gamma_0)(t) = \begin{cases}
\gamma(a + t) & t \in [0, b - a] \\
\gamma_0(c + t - (b - a)) & t \in [b - a, (b - a) + (d - c)]
\end{cases}.
$$
Moreover we denote by $\text{inv}(\gamma)$ the curve

$$\text{inv}(\gamma)(t) = \gamma(b - t), \quad t \in [0, b - a].$$

When possible, in the following we adopt the notation γ^{-1} instead of $\text{inv}(\gamma)$.

Definition 2.5. Let $\gamma : S \rightarrow \Omega$ be a loop. A subloop of γ is any loop $\gamma' : S' \rightarrow \Omega$ such that $\gamma'(S') \subset \gamma(S)$. A subloop γ' of γ is said to be innermost if γ' does not admit any subloops. If γ is simple then we refer to γ itself as the innermost loop.

Lemma 2.6. A loop γ is innermost if and only if it is simple.

Proof. If γ is simple then, by definition, it is innermost. On the contrary, if $\gamma(b) = \gamma(c), b, c \in S$, then there is at least a sub-loop $\gamma' = \gamma|_{[b, c]}$. □

Loops in the Punctured Plane

Denote by $\mathbb{R}^2_\mathcal{C} = \mathbb{R}^2 \setminus \mathcal{C}$ the punctured plane, $S := [0, 1]/\{0, 1\}$ the unit circle parameterized by $t \in [0, 1]$ and let $\gamma_1, \gamma_2 \in \mathcal{C}^0(S, \mathbb{R}^2_\mathcal{C})$ be two loops in $\mathbb{R}^2_\mathcal{C}$. The two loops are said to be freely homotopic, and we write $\gamma_1 \sim \gamma_2$ if there exists a continuous function $F : S \times [0, 1] \rightarrow \mathbb{R}^2_\mathcal{C}$ such that $F(t, 0) = \gamma_1(t), F(t, 1) = \gamma_2(t)$ for all $t \in S$ and $F(S, s)$ is a loop for any $s \in [0, 1]$. The relation \sim is an equivalence relation. Denote by Λ the set of equivalence classes and indicate with $[\gamma]$ an element of Λ:

$$\Lambda \overset{\text{def}}{=} \mathcal{C}^0(S, \mathbb{R}^2_\mathcal{C}) / \sim, \quad [\gamma] = \{\gamma_1 \in \mathcal{C}^0(S, \mathbb{R}^2_\mathcal{C}) : \gamma_1 \sim \gamma\}.$$

The space $\mathbb{R}^2_\mathcal{C}$ is path connected; given a loop γ and a point x_0 in $\mathbb{R}^2_\mathcal{C}$, there always exists a loop $\tilde{\gamma}$ equivalent to γ and based in x_0. Because of this, we can define the composition of two classes $[\gamma], [\tau] \in \Lambda$: if γ and τ represent two equivalence classes, without loss of generality we can assume that γ and τ are based at the same point, so we may define the operation $[\gamma] \ast [\tau]$ as naturally done in $\pi_1(\mathbb{R}^2_\mathcal{C}, x_0)$. Indeed the elements of Λ correspond to conjugacy classes in the fundamental group $\pi_1(\mathbb{R}^2_\mathcal{C}, x_0)$, modulo changing of the base point x_0 and (Λ, \ast) is a group. Since the space $\mathbb{R}^2_\mathcal{C}$ is not simply connected, the set Λ is not trivial. More precisely, since $\pi_1(\mathbb{R}^2_\mathcal{C}, x_0) \cong \pi_0(\mathcal{C}^0(S, \mathbb{R}^2_\mathcal{C}), x_0)$, for any $N \geq 1$ (N is the cardinality of the set of centers \mathcal{C}), the set Λ has cardinality \mathbb{Z}^N and it is isomorphic to the free group of N generators.

The unity of this group is given by the class of null-homotopic loops, that is, those loops homotopic to a point.

For any loop $\gamma \in \mathcal{C}^0(S, \mathbb{R}^2_\mathcal{C})$, with the identification $\mathbb{R}^2 \cong \mathcal{C}$, it is well defined the index

$$\text{Ind}(\gamma) = \left(\frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z - c_1}, \ldots, \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z - c_N}\right) \in \mathbb{Z}^N.$$

The j-th component of $\text{Ind}(\gamma)$ is the index with respect to the centre c_j and it agrees with the winding number of γ with respect to c_j.

Remark 2.7. If a path γ is null-homotopic in \mathbb{R}^2_C then the winding number of γ with respect to any center is zero, i.e. $\text{Ind}(\gamma) = 0$.

Remark 2.8. If $\gamma \sim \nu$ then $\text{Ind}(\gamma) = \text{Ind}(\nu)$. Indeed, let $\Phi(t, s)$ be an homotopy such that $\Phi(t, 0) = \gamma(t)$ and $\Phi(t, 1) = \nu(t)$. Denote

$$\Psi(s) = \text{Ind}(\Phi(\cdot, s)) = \left(\frac{1}{2\pi i} \int_S \frac{dt}{\Phi(t, s) - c_1}, \ldots, \frac{1}{2\pi i} \int_S \frac{dt}{\Phi(t, s) - c_N}\right).$$

The homotopy $\Phi(t, s)$ is continuos in both the variable and $\Phi(t, s) \neq c_j$ for all $t \in S$, $s \in [0, 1]$ and $j = 1, \ldots, N$, thus the function $\Psi(s)$ is continuos. Since the index function takes values in \mathbb{Z}, it follows that $\Psi(s)$ is constant.

Remark 2.9. The contrary is not true. The condition $\text{Ind}(\gamma) = \text{Ind}(\nu)$ does not imply $\gamma \sim \nu$. For instance, there exist closed curves that have zero winding number with respect each of the center without being null homotopic in \mathbb{R}^2_C, see Fig. 2.

Definition 2.10. Let γ be a loop in \mathbb{R}^2_C. We say that γ has a:

i. singular 1-gon if there is a subinterval I of S such that γ identifies the end-points of I and $\gamma|_I$ defines a null-homotopic loop in \mathbb{R}^2_C (i.e. γ has a null-homotopic sub-loop);

ii. singular 2-gon if there are disjoint intervals I_1 and I_2 of S such that γ identifies the end-points of I_1 and I_2 and $\gamma|_{I_1} \# \gamma|_{I_2}$ defines a null-homotopic loop on \mathbb{R}^2_C.

With some abuse of terminology, we will say that the loop $\gamma|_I$ is the singular 1-gon (in the first case) and $\gamma|_{I_1} \# \gamma|_{I_2}$ is the singular 2-gon.

Definition 2.11.

- Define $\text{Int}([\gamma])$ as the minimal number of self-intersections of the elements of $[\gamma]$.
- A loop γ is said to be taut if it is an immersion and the number of self-intersections of γ is equal to $\text{Int}([\gamma])$, that is, γ has the minimal number of self-intersections in its homotopy class. If the immersion γ is not taut then we say that γ exceeds the number of self-intersections in $[\gamma]$.
Fig. 3. a The curve has a singular 1-gon pointed in \(p \). b The curve has two singular 1-gons, one pointed in \(p \), the other pointed in \(q \). The second is an innermost loop. c The curve admits a singular 2-gon with end-points \(p, q \). d The curve has a singular 2-gon and a singular 1-gon pointed in \(y \). The singular 1-gon is also an innermost loop.

Fig. 4. From the left, the first and the second loops are taut. The last figure on the top shows a loop that exceeds the number of self intersections. Below is a taut representative in the same homotopy class.

A criteria for determining whether or not a given loop is taut is provided by the following theorem, [25].

Theorem 2.12. If \(\gamma \) has excess self-intersections, then \(\gamma \) has a singular 1-gon or 2-gon.

Figure 4 depicts examples of taut and non taut loops. Moreover, the following results hold, [26]:

Theorem 2.13. Let \(\gamma \) and \(\gamma_1 \) be homotopic immersed curves each minimizing the number of self intersections in their common homotopy class. Then there exists a homotopy \(\Psi \) from \(\gamma \) to \(\gamma_1 \) such that \(\Psi_s = \Psi(\cdot, s) \) is self-transverse for all \(s \) and the number of self-intersections of \(\Psi_s \) is constant.

Theorem 2.14. Let \(\gamma \) be an immersed curve which does not minimize the number of self intersections in its homotopy class. Then there exists an homotopy \(\Psi \) from \(\gamma \) to a immersed curve \(\gamma_1 \) which is taut such that the number of self-intersections of the curve \(\Psi_s \) is not increasing with \(s \). \(\Psi \) is a regular homotopy except for a finite number of times when a small loop in the curve shrinks to a point.

We are now in the position to introduce the admissible classes.

Definition 2.15. Let \([\gamma] \in \Lambda \) be an homotopy class and let \(\hat{\gamma} \) be a taut representative of \([\gamma] \). We say that the homotopy class \([\gamma] \) is admissible if the following property holds:
For Lemma 2.6, any innermost loop ℓ of $\hat{\gamma}$ is simple, hence $[A]$ simply means that at least two centers are in the region bounded by ℓ. The existence of a taut representative is implicit in the definition of minimal intersection number of a homotopy class. However, for any primitive element $[\gamma]$ in Λ we can construct a taut representative as follows. We can think of small open balls B_i in place of the centers c_i and the configuration space $\mathbb{R}^2_B = \mathbb{R}^2 \setminus (\bigcup B_i)$. Any free homotopy class of \mathbb{R}^2_B contains exactly one geodesic and a primitive geodesic cannot have excess self intersections, see c.f. [21].

Moreover, the definition is well posed and does not depend on the particular taut representative. If γ and γ_1 are two taut curves in $[\gamma]$, for Theorem 2.13 the sup-loops of the two curves are in one-to-one correspondence with the property of enclosing the same centers.

Remark 2.16. If $[\gamma]$ is admissible then $[\gamma]$ is not null homotopic.

Before proceeding, let us recall the definition of tied loop introduced by Gordon in [23].

Definition 2.17. Let B be a closed non empty subset of \mathbb{R}^2. A loop γ in $\mathbb{R}^2 \setminus B$ is said to be tied to B if γ cannot be continuously moved off to infinity without either crossing B or having its arc length become infinite.

Lemma 2.18. Let γ be a not null-homotopic loop in \mathbb{R}^2_C. Then γ is tied to at last one of the center $c_j \in C$.

3. Variational Setting

The natural setting, when addressing the existence of periodic solutions of the system (1) by means of the variational methods, is that of the Sobolev space $H^1(S, \mathbb{R}^2)$, endowed with the scalar product and norm given, respectively, by

$$\langle u, v \rangle_1 = \int_0^1 \langle \dot{u}(t), \dot{v}(t) \rangle \, dt + \int_0^1 \langle u(t), v(t) \rangle \, dt$$

$$\|u\|_1^2 = \|\dot{u}\|_2^2 + \|u\|_2^2.$$

Introduce the space

$$H = \{ u \in H^1(S, \mathbb{R}^2) \},$$

and the open subspace $\hat{H} \subset H$ of collision free periodic functions

$$\hat{H} := \{ u \in H : u(t) \in \mathbb{R}^2_C \quad \forall t \in [0, 1] \}.$$
Since H is embedded into $C^0(S, \mathbb{R}^2)$, the condition $u(t) \in \mathbb{R}^2 \setminus C$ makes sense. Following the notations introduced by authors in [36], we define

$$ \text{Coll} := \{ u \in H : \exists t \in S : u(t) = c_j, \text{ for some } j \in \{1, \ldots, N\} \} \quad (5) $$

as the set of all colliding paths in $H^1(S, \mathbb{R}^2)$; clearly

$$ H = \text{Coll} \cup \hat{H}, $$

hence H is nothing but the weak H^1-closure of the space \hat{H}.

From now on, suppose $h > 0$ is fixed. We introduce the Maupertuiss functional $\mathcal{M} : H \to \mathbb{R} \cup \{\infty\}$ given by

$$ \mathcal{M}(u) := \int_S \frac{1}{2} |\dot{u}(t)|^2 \, dt \int_S (V(u) + h) \, dt. $$

Beside the space of periodic paths H and the functional \mathcal{M}, for any given couple of points p_1, p_2, let us introduce the spaces

$$ \hat{H}_{p_1, p_2}(a, b) \overset{\text{def}}{=} \left\{ u \in H^1([a, b], \mathbb{R}^2) : u(a) = p_1, u(b) = p_2, \right. $$

$$ \left. u(t) \in \mathbb{R}^2 \setminus C \forall t \in (a, b) \right\} \quad (6) $$

and $H_{p_1, p_2}(a, b)$ as its weak H^1 closure. Let us define the functional

$$ \mathcal{M}_{p_1, p_2} : H_{p_1, p_2}(a, b) \to \mathbb{R} \cup \{\infty\} \text{ given by } \mathcal{M}_{p_1, p_2}(u) $$

$$:= \int_a^b \frac{1}{2} |\dot{u}(t)|^2 \, dt \int_a^b (V(u) + h) \, dt. $$

If $\mathcal{M}(u) > 0$ (or $\mathcal{M}_{p_1, p_2}(u) > 0$), denote

$$ \omega^2 = \frac{\int_S (V(u) + h) \, dt}{\int_S \frac{1}{2} |\dot{u}(t)|^2 \, dt} \quad (7) $$

(with $[a, b]$ in place of S in the second case).

Let us now state some features of the Maupertuiss functional.

Lemma 3.1. $\mathcal{M}(u)$ and $\mathcal{M}_{p_1, p_2}(u)$ are invariant under time rescaling of u.

Proof. For any $\lambda \neq 0$, let $v(s) = u(\lambda s), s \in [0, 1/\lambda]$. Then

$$ \mathcal{M}(v) = \int_0^1 \frac{1}{2} |v'(s)|^2 \, ds \int_0^1 (V(v) + h) \, ds $$

$$ = \int_0^1 \frac{1}{2} \left| \frac{d}{ds} u(\lambda s) \right|^2 \, ds \int_0^1 (V(u(\lambda s)) + h) \, ds $$

$$ = \int_0^1 \frac{1}{2} |\dot{u}(t)|^2 \lambda \, dt \int_0^1 (V(u(t)) + h) \frac{1}{\lambda} \, dt = \mathcal{M}(u). \quad \square $$
Because of the invariance of Maupertuis functional under time rescaling, the choice of the length of the time interval used in the definition of H and of \mathcal{M} is irrelevant. In the above definition, the functional \mathcal{M} is defined on paths u with $\text{Supp}(u) = S$. However, although v is a path with $\text{Supp}(v) \neq S$, with some abuse of notation we write $\mathcal{M}(v) = \int_{\text{Supp}(v)} \frac{1}{2} |\dot{v}|^2 \, dt \int_{\text{Supp}(v)} (V(v) + h) \, dt$.

Unlike other functionals, for instance the Lagrange action functional or the Jacobi length functional, often used in addressing similar problems, the Maupertuis functional is not additive. Indeed if $u(t) = u_1 \# u_2$, we may have $\mathcal{M}(u) \neq \mathcal{M}(u_1) + \mathcal{M}(u_2)$. It is known that if $u(t), t \in [a, b]$ is a minimiser for an additive functional then u minimises locally. This means that any restriction $u_1 = u|_{[c, d]} \in [a, b]$ is the minimiser of the restricted functional among all paths that satisfy the end-points constraints. Nevertheless, although the Maupertuis functional is not additive, the minimisers still admit the same property.

Lemma 3.2. Let $u \in H$ be a non constant minimiser for \mathcal{M}. Let $[c, d] \subset S$ and set $p_1 = u(c), p_2 = u(d)$. Then $u|_{[c, d]}$ is a minimiser for \mathcal{M}_{p_1, p_2} in $H_{p_1, p_2}(c, d)$. Moreover suppose v is any minimiser for \mathcal{M}_{p_1, p_2} on $H_{p_1, p_2}(c, d)$. Then the path $w = v \# u|_{S \setminus [c, d]}$ is a minimiser of \mathcal{M} on H.

Proof. Denote by $u_1 = u|_{[c, d]}, u_2 = u|_{S \setminus [c, d]}$ so that $u = u_1 \# u_2$ and write

$$\mathcal{M}(u) = \left(\int_{[c, d]} \frac{1}{2} |\dot{u}_1|^2 \, dt + \int_{S \setminus [c, d]} \frac{1}{2} |\dot{u}_2|^2 \, dt \right) \times \left(\int_{[c, d]} V(u_1) + h \, dt + \int_{S \setminus [c, d]} V(u_2) + h \, dt \right) = (K_{u_1} + K_{u_2})(V_{u_1} + V_{u_2}).$$

Assume by contradiction that u_1 is not a minimiser for \mathcal{M}_{p_1, p_2} and let $v_1 \in H_{p_1, p_2}(c, d)$ be such that $\mathcal{M}_{p_1, p_2}(v_1) < \mathcal{M}_{p_1, p_2}(u_1)$. As before, let us write explicitly the kinetic and potential parts

$$\mathcal{M}_{p_1, p_2}(v_1) = \int_{c}^{d} \frac{1}{2} |\dot{v}_1|^2 \, dt \int_{c}^{d} V(v_1) + h \, dt = K_{v_1} V_{v_1}.$$

Hence $K_{v_1} V_{v_1} < K_{u_1} V_{u_1}$. Consider now $\eta(t) = v_1(\lambda t)$, for a proper λ, so that $K_{\eta} = K_{v_1}$. Since \mathcal{M}_{p_1, p_2} is invariant under rescaling, $K_{\eta} V_{\eta} = \mathcal{M}_{p_1, p_2}(\eta) = \mathcal{M}_{p_1, p_2}(v_1) < K_{u_1} V_{u_1}$. Up to time rescaling, define $\tilde{w} = \eta \# u_2$ so that $w \in H$. Then $\mathcal{M}(w) < \mathcal{M}(u)$, giving the contradiction.

To prove the second part of the statement, let us assume that $v_1 \in H_{p_1, p_2}(c, d)$ is a minimiser for \mathcal{M}_{p_1, p_2} different from u_1. Hence $K_{v_1} V_{v_1} = \mathcal{M}_{p_1, p_2}(v_1) = \mathcal{M}_{p_1, p_2}(u_1) = K_{u_1} V_{u_1}$. As before denote by η a proper time rescaling of v_1 so that $K_{\eta} = K_{u_1}$. It follows that $V_{\eta} = V_{u_1}$ and, denoting $\tilde{w} = \eta \# u_2$, we have $\mathcal{M}(\tilde{w}) = \mathcal{M}(u)$. Again for the invariance of \mathcal{M} under time rescaling, the path $w \in H$, obtained from \tilde{w} by rescaling is such that $\mathcal{M}(w) = \mathcal{M}(u)$. \hfill \Box

The Maupertuis functional is differentiable over \hat{H} and, up to reparametrization, its critical points are solutions to of the N-center problem.
Theorem 3.3. Let \(u \in \hat{H} \) be a critical point of \(\mathcal{M} \) at positive level and \(\omega \) as in (7). Then \(u \in \mathcal{C}^2(S) \) and solves the equation
\[
\omega^2 \ddot{u}(t) = \nabla V(u(t)), \quad \forall t \in S
\]
and the path \(x(t) \) defined as in (7) is a periodic classical solution of (1)–(3).

Similarly, let \(v \in \hat{H}_{p_1,p_2}(a, b) \) be a critical point of \(\mathcal{M}_{p_1,p_2} \) at positive level and \(\omega \) as in (7) (with \([a, b]\) in place of \(S\)). Then \(v \in \mathcal{C}^2((a, b)) \) and solves Eq. (9) for any \(t \in (a, b) \) and the function \(x(t) \) defined as in (7) is a classical solution of (1)–(3).

Proof. Let \(u \) be a critical point for \(\mathcal{M} \), that is \(\delta \mathcal{M}(u) = 0 \). Then \(\frac{1}{\varepsilon}(\mathcal{M}(u + \varepsilon v) - \mathcal{M}(u)) \to 0 \) as \(\varepsilon \to 0 \) for any \(v \in \mathcal{C}^0_\infty(S) \). Explicitly,
\[
\mathcal{M}(u + \varepsilon v) - \mathcal{M}(u) = \int_S \frac{1}{2} |\dot{u} + \varepsilon \dot{v}|^2 dt + \int_S V(u + \varepsilon v) + h dt - \int_S \frac{1}{2} |\dot{u}|^2 dt + \int_S V(u) + h dt
\]
\[
= \varepsilon \left(\int_S \frac{1}{2} |\dot{u}|^2 dt - \int_S \nabla V(u) \cdot v dt + \int_S \dot{u} \cdot \dot{v} dt + \int_S V(u) + h dt \right) + o(\varepsilon^2)
\]
\[
= \varepsilon \left(\omega^2 \int_S \dot{u} \cdot \dot{v} dt + \int_S \nabla V(u) \cdot v dt \right) + o(\varepsilon^2).
\]
Integrating by parts and letting \(\varepsilon \) to go to zero, it follows that
\[
\int_S (\omega^2 \ddot{u} - \nabla V(u)) \cdot v dt = 0, \quad \forall v \in \mathcal{C}^0_\infty(S),
\]
hence Eq. (9).

From \(x'(s) = \omega \dot{u}(ws) \) it descends that \(x(s) \) solves Eq. (1). The energy \(E(s) = \frac{1}{2} |x'(s)|^2 - V(x(s)) \) is constant and it is equal to \(E = \frac{1}{2} \omega^2 |\dot{u}|^2 - V(u) \). Therefore
\[
\int_S E dt = \omega^2 \int_S \frac{1}{2} |\dot{u}|^2 dt - \int_S V(u) dt = \int_S h dt
\]
and \(E = h \).

The same arguments apply for the fixed-end problem. \(\square \)

By regularity theory it turns out that a critical point \(u \in \hat{H} \) of \(\mathcal{M} \) is indeed a classical solution (at least \(\mathcal{C}^2 \)) of the differential equation in (1).

According to the previous lemma, we look for periodic solutions of the N-center problem as minimisers of the action functional \(\mathcal{M} \) in \(\hat{H} \). The existence of minimisers will be proved following the direct method of calculus of variations. Rather than \(\hat{H} \), which is not weakly closed, a suitable closed subspaces \(\mathcal{H} \subset H \) must be selected. Aiming at classical solutions, some topological constraints are required on the elements of \(\mathcal{H} \) so as to rule out the occurrence of collisions on the minimising paths.

Recalling the definition of \(\gamma \), let us introduce
\[
\hat{H}_{[\gamma]} = \hat{H} \cap [\gamma] = \{ u \in \hat{H} : u \sim \gamma \}
\]
as the space of paths in \(\hat{H} \) that belong to the homotopy class \([\gamma]\) and \(H_{[\gamma]} \) the closure of \(\hat{H}_{[\gamma]} \) in the weak \(H^1 \) topology.
Remark 3.4. We might be tempted to explicitly characterise the set $H_{[\gamma]}$, that is, to describe the elements of $\mathcal{Coll}_{[\gamma]} \subset \mathcal{Coll}$ so that

$$H_{[\gamma]} = \hat{H}_{[\gamma]} \cup \mathcal{Coll}_{[\gamma]}.$$

As suggested in [36], for $j \in \{1, \ldots, N\}$ define

$$\mathcal{Coll}_{[\gamma]}^j = \{u \in H : u \sim \gamma \text{ in } \mathbb{R}_C^2 \cup c_j, \text{ and it exists } t : u(t) = c_j\}$$

as the set of paths that collide in the centre c_j and that are homotopic to γ in \mathbb{R}_C^2 minus the other centres. Similarly, for any $J = (j_1, \ldots, j_m) \subseteq \{1, \ldots, N\}$, let us define

$$\mathcal{Coll}_{[\gamma]}^J = \left\{u \in H : u \sim \gamma \text{ in } \mathbb{R}_C^2 \bigcup_{i=1}^{m} c_{j_i}, \text{ and there exist } t_1, \ldots, t_m : u(t_m) = c_{jm}\right\}$$

and

$$\mathcal{Coll}_{[\gamma]} = \bigcup_{J \in \mathcal{P}(\{1,2,\ldots,N\})} \mathcal{Coll}_{[\gamma]}^J.$$

Although reasonable, this construction leads to a set $H_{[\gamma]}$ that is not the weak H^1 closure of $\hat{H}_{[\gamma]}$, as the counterexample depicted in Fig. (5) shows.

4. The Solution Curve

4.1. Existence of Minimizers

Theorem 4.1. Let $[\gamma] \in \Lambda$ be a not null homotopic class. Then, for any $h > 0$, \mathcal{M} achieves the minimum in $H_{[\gamma]}$.

Proof. Since $\int_0^1 (V(u) + h) \, dt > C > 0$, if $\|\dot{u}\|_2 \to \infty$, then $\mathcal{M}(u) \to \infty$. Also, for Lemma 2.18 and according to Gordon [23], there exists at least one center $c \in C$ so that the elements of $[\gamma]$ are tied to c. For the Cauchy-Schwarz inequality,

$$\text{arclength}(u) = \int_0^1 |\dot{u}| \, dt \leq \left(\int_0^1 |\dot{u}(t)|^2 \, dt \right)^{1/2} \leq C_1 \sqrt{\mathcal{M}(u)}$$
for a positive constant C_1, therefore $|\|u\||_2 \to \infty$ implies $\mathcal{M}(u) \to \infty$.

Let $(u_n)_n \subset H_{[y]}$ be a sequence $u_n \to u$ weakly in H^1. Then $\dot{u}_n \to \dot{u}$ weakly in L^2 and, u_n being a bounded sequence in H^1 for the Sobolev embedding, up to a subsequence, $u_n \to u$ uniformly. The lower semicontinuity of the L^2 norm and Fatou’s lemma imply

$$\mathcal{M}(u) \leq \lim inf_{n \to \infty} \mathcal{M}(u_n).$$

Hence \mathcal{M} is coercive and lower semicontinuous. By application of the direct method of calculus of variations, \mathcal{M} attains its minimum in $H_{[y]}$. □

Denote by \bar{u} a minimiser of \mathcal{M} on $H_{[y]}$:

$$\bar{u} : \mathcal{M}(\bar{u}) = \min_{u \in H_{[y]}} \mathcal{M}(u).$$

4.2. Properties of the minimisers

In this section some analytical and geometrical properties of the minimiser are described. Concerning the occurrence of collisions, introduce the set of collision times:

$$T_c(\bar{u}) \overset{\text{def}}{=} \{ t \in S : \bar{u}(t) = c_j, \text{ for some } j \in \{1, 2, \ldots, N\} \}.$$

Since V is infinite on collisions and the value $\mathcal{M}(\bar{u})$ is finite, it follows that $T_c(\bar{u}) = 0$ is closed and of null measure. Hence the complement $S \setminus T_c(\bar{u})$ is the union of a finite or countable number of open intervals.

Given a path $u(t)$, define the inertia of u with respect to the j-th centre as

$$I_j(u)(t) \overset{\text{def}}{=} |u(t) - c_j|^2.$$

Lemma 4.2. Suppose $u(t)$ is a solution of (9), possibly with collisions. Then for any $j \in \{1, 2, \ldots, N\}$ there exists $R_j > 0$ such that $\tilde{I}_j(u)(t) \geq 0$ whenever $|u(t) - c_j| \leq R_j$, $u(t) \neq c_j$.

Proof. For Theorem 3.3,

$$\frac{\omega^2}{2} \tilde{I}_j = 2h + \left(\frac{2}{\alpha} - 1\right) \frac{m_j}{|u(t) - c_j|^\alpha}$$

$$+ \sum_{k \neq j} \frac{m_k}{|u(t) - c_k|^\alpha} \left(\frac{2}{\alpha} - \frac{(u(t) - c_j) \cdot (u(t) - c_k)}{|u - c_k|^2}\right).$$

In the neighbourhood of c_j the first and the last term of the right hand side are bounded, while the second term tends to $+\infty$ as $|u(t) - c_j| \to 0$. Hence there exists R_j such that $\tilde{I}_j(u)(t) > 0$ for any t so that $|u(t) - c_j| \leq R_j$. □

The convexity of the inertia functionals in the neighborhood of the centers allows us to prove the following (see for instance [40]).
Lemma 4.3. The cardinality of $T_c(\bar{u})$ is finite.

Let $K = |T_c(\bar{u})|$ be the number of collisions of \bar{u} and denote by $0 < \tau_1 < \tau_2 < \cdots < \tau_K < 1$ the collision times. Denote by $J(\bar{u}) = (j_1, \ldots, j_K) \in \{1, \ldots, N\}^K$ the ordered sequence of the labels of the centers hit by \bar{u}, that is $\bar{u}(\tau_i) = c_{j_i}$. Out of the collision instants, the minimiser \bar{u} provides a classical solution for the N-center problem. More precisely, we have the following:

Proposition 4.4. For any $(a, b) \subset S \setminus T_c(\bar{u})$, the restriction $\bar{u}|_{(a, b)}$ is a C^2 path and solves the equation

$$\omega^2 \ddot{u}(t) = \nabla V(u).$$

Proof. As in the proof of Theorem 3.3, it is a consequence of the minimality of u with respect to variations with compact support in (a, b). \qed

In what follows the geometric properties of the minimiser are analysed, with particular emphasis on the possible occurrence of 1-gons and 2-gons. For this, let us first recall the notion of homotopy relative to the boundary.

Definition 4.5. Two elements $\gamma_1, \gamma_2 \in \hat{H}_{p_1, p_2}$ are said to be homotopic relative to the boundary, $\gamma_1 \sim_{rb} \gamma_2$, if there exists a continuous function $\Phi(t, s) : [a, b] \times [0, 1] \to \mathbb{R}^2$ such that:

- $\Phi(t, 0) = \gamma_1(t)$, $\Phi(t, 1) = \gamma_2(t) \ \forall t \in [a, b]$;
- $\Phi(0, s) = p_1$ and $\Phi(1, s) = p_2$ for any $s \in [0, 1]$;
- $\Phi(s, t) \in \mathbb{R}_C^2$ for any $s \in [0, 1], t \in (a, b)$.

Denote by

$$\Omega_{p_1, p_2} = \hat{H}_{p_1, p_2} / \sim_{rb}$$

the space of equivalence classes of \hat{H}_{p_1, p_2} with respect to the relative homotopy.

As for the space Λ, the space Ω_{p_1, p_2} has infinitely many elements. Using the same notation adopted in case of loops, for an equivalence class $[\gamma] \in \Omega_{p_1, p_2}$ we denote $\hat{H}_{[\gamma]} = \hat{H}_{p_1, p_2} \cap [\gamma]$ and $H_{[\gamma]}$ as its closure in the weak H^1 topology. Also, since $H_{[\gamma]}$ is weakly closed and \mathcal{M}_{p_1, p_2} is coercive and weakly lower semicontinuous, the direct method of calculus of variations assures the existence of a minimiser for \mathcal{M}_{p_1, p_2} in $H_{[\gamma]}$.

We remark that, up to time reparameterization, trajectories of the N-body problem with energy h are geodesics of the Jacobi-Maupertuis metric $g_h(u, \dot{u}) = 2(V(u) + h)|\dot{u}|^2$ on $\mathbb{R}^2 \setminus C$. For $h > 0$ the gaussian curvature K of g_h is negative, hence, by the Gauss–Bonnet theorem, the minimiser \bar{u} is unique, eventually with collisions, in any non-trivial homotopy class $[\gamma] \in \Lambda$. Since the minimiser \bar{u} is unique in the closure of its homotopy class $H_{[\gamma]}$, it follows that any arc $\bar{u}|_{(a, b)}$, joining $p_1 = \bar{u}(a)$ to $p_2 = \bar{u}(b)$, p_1, p_2 possibly singular points, is the unique minimiser for \mathcal{M}_{p_1, p_2} in the homotopy class $[\bar{u}|_{(a, b)}] \in \Omega_{p_1, p_2}$.

The minimality condition implies that the solution curve can only have transversal self intersections and the number of intersections is minimised, as stated in the next proposition.
Proposition 4.6. The minimizer \(\tilde{u} \) satisfies the following properties:

1. Let \(t_a \in (\tau_i, \tau_{i+1}) \) and \(t_b \in (\tau_j, \tau_{j+1}) \) be two non-collision instants. If \(\tilde{u} \) has a self tangency at point \(p = u(t_a) = u(t_b) \), then \(\tilde{u} \) has a tangency at any \(t \in (\tau_i, \tau_{i+1}) \) and \(t \in (\tau_j, \tau_{j+1}) \).

2. The loop \(\tilde{u} \) does not admit any singular 1-gon neither singular 2-gon in \(\mathbb{R}^2 \).

Proof. 1. Denote by \(\tilde{u}_1 = \tilde{u}|_{[\tau_i, \tau_{i+1}]} \) and \(\tilde{u}_2 = \tilde{u}|_{[\tau_j, \tau_{j+1}]} \). For Proposition 4.4 there exist \(v_1(t) \) and \(v_2(t) \), a suitable reparametrization of \(\tilde{u}_1, \tilde{u}_2 \), and both solutions of the \(N \)-center problem with energy \(h \). For the uniqueness of the solution of the initial value problem \(\tilde{u}(t) = \nabla V(u), u(0) = p, \tilde{u}(0) = v \) and the invariance of the differential equation under time reverse, it follows that \(v_1 \) and \(v_2 \) are tangential at any point.

2. Suppose that \(\tilde{u}(t_a) = \tilde{u}(t_b) \) and that \(\tilde{u}([t_a, t_b]) \) is a singular 1-gon. Consider the path \(v = \tilde{u}|_{S \setminus (a, b)} \) obtained from \(\tilde{u} \) by removing the singular 1-gon. Then \(v \in H_{\{\gamma\}} \) and \(\mathcal{M}(v) < \mathcal{M}(\tilde{u}) \). This contradicts the minimality of \(\tilde{u} \).

Suppose by contradiction that \(\tilde{u} \) has a singular 2-gon. Denote by \(\gamma_1 \) and \(\gamma_2 \) the two geodesic arcs and by \(\alpha, \beta > 0 \) the two angles formed at the intersection points. The region \(A \) bounded by the singular 2-gon is homeomorphic to a disc, hence for the Gauss–Bonnet theorem

\[
0 < \int_A K[A] = 2\pi - \pi + \alpha - \pi + \beta > 0.
\]

\[\square\]

Beside the singular 1-gon and singular 2-gon, we now discuss the possibility for the minimiser \(\tilde{u} \) to admits 1-gons and 2-gons whose edges intersect some of the centres.

Lemma 4.7. Let \(\tilde{u} \) be the minimal path for \(\mathcal{M} \) in \(H_{\{\gamma\}} \). Then \(\tilde{u} \) does not admit any sub loop \(\ell \) that intersects \(c_j \) and that is a singular 1-gon in \(\mathbb{R}^2 \cup \{c_j\} \) for one \(c_j \in \mathcal{C} \).

Proof. Arguing by contradiction, assume that \(\ell = \tilde{u}|_{[a, b]} \) is a singular 1-gon in \(\mathbb{R}^2 \cup c_j \) and one of the following occurs:

i. \(\tilde{u}(a) = \tilde{u}(b) = c_j \);

ii. \(\tilde{u}(a) = \tilde{u}(b) = p, p \neq c_j \) and it exists \(\tau \in (a, b) \) so that \(\tilde{u}(\tau) = c_j \).

In the case i consider \(\tilde{u} = \tilde{u}|_{S \setminus [a, b]} \). Since \(\ell \) is homotopic to the point \(c_j \), it follows that \(\tilde{u} \in H_{\{\gamma\}} \) and \(\mathcal{M}(\tilde{u}) < \mathcal{M}(\tilde{u}) \), hence the contradiction.

In the case ii denote by \(\gamma_1 = \tilde{u}|_{[a, \tau]} \) and \(\gamma_2 = \tilde{u}|_{[\tau, b]} \). Let \(\tilde{H}_{\{\gamma_1\}} \in \Omega_{p, c_j} \) be the homotopy class containing \(\gamma_1 \) and, up to time reversion, \(\gamma_2 \). Let \(v_1 \) be the unique minimiser of \(\mathcal{M}_{p, c_j} \) on \(H_{\{\gamma_1\}} \). Thus, for Lemma 3.2, the path \(\tilde{u} \) is given by \(\tilde{u} = v_1 \#(v_1)^{-1} \#u|_{S \setminus [a, b]} \). However \(\tilde{u} \) is not of class \(C^1 \) at \(p \), hence the contradiction. \[\square\]
The following corollaries concern a generalisation of the situations described in point i and ii of the previous lemma, see also Figure 6.

Corollary 4.8. Let \(\bar{u} \) be the minimal path for \(\mathcal{M} \) in \(H_{[\gamma]} \). Then \(\bar{u} \) cannot admit any sub loop \(\ell = \bar{u}|_{(a,b)} \) with the properties (see Fig. 6a):

- \(\bar{u}(a) = \bar{u}(b) = c_{j_0} \);
- there exist \(a < \tau_1 < \ldots < \tau_m < b \) such that \(\bar{u}(\tau_i) = c_{j_i}, \bar{u}(\tau_i) \neq c_{j_k} \) for all \(0 \leq k \neq i \leq m \);
- there exists \(\bar{\ell} \in \tilde{H}_{c_{j_0}, c_{j_0}} \) such that \(\bar{\ell} \) is null homotopic in \(\tilde{H}_{c_{j_0}, c_{j_0}} \) and the path \(\bar{u}|_{S^1 \setminus (a,b)} \# \bar{\ell} \) belongs to \(H_{[\gamma]} \).

Proof. By assumption both \(\bar{u} \) and \(\bar{u}|_{S^1 \setminus (a,b)} \# \bar{\ell} \) belong to \(H_{[\gamma]} \). Since \(\bar{\ell} \) is homotopic to \(c_{j_0} \), the path \(\bar{u} = \bar{u}|_{S^1 \setminus (a,b)} \) belongs to \(H_{[\gamma]} \) and \(\mathcal{M}(\bar{u}) < \mathcal{M}(\bar{u}) \). \(\square \)

Lemma 4.9. Let \(\bar{u} \) be the minimal path for \(\mathcal{M} \) in \(H_{[\gamma]} \). Then \(\bar{u} \) cannot admit any sub loop \(\ell = \bar{u}|_{(a,b)} \) with the properties (see Fig. 6b):

- \(\bar{u}(a) = \bar{u}(b) = p, p \notin C \) and it exists \(\tau_0 \in (a, b) \) such that \(\bar{u}(\tau_0) = c_{j_0} \);
- there exist \(a < \tau_1 < \ldots < \tau_m < b \) such that \(\bar{u}(\tau_i) = c_{j_i}, c_{j_i} \neq c_{j_k} \) for all \(0 \leq k \neq i \leq m \);
- there exist \(\gamma_1 \in \tilde{H}_{p, c_{j_0}} \) and \(\gamma_2 \in \tilde{H}_{c_{j_0}, p} \) such that \(\bar{\ell} = \gamma_1 \# \gamma_2 \) is a singular 1-gon in \(\mathbb{R}^2_+ \cup \{ c_{j_0} \} \) and the path \(\bar{u}|_{S^1 \setminus (a,b)} \# \bar{\ell} \) belongs to \(H_{[\gamma]} \).

Proof. Let \(\tilde{H}_{[\gamma_1]} \in \Omega_{p, c_{j_0}} \) be the homotopy class that contains \(\gamma_1 \) and denote by \(v \) the minimiser of \(\mathcal{M}_{p, c_{j_0}} \) in the closure of \(\tilde{H}_{[\gamma_1]} \). Hence, arguing as in the proof of point ii of Lemma 4.7, we obtain the contradiction. \(\square \)

Lemma 4.7 and related corollaries concern the presence of 1-gon on a minimal path. In practice, under certain assumptions, no 1-gon can be present on the minimal path.

The remainder of the section focuses on the occurrence of 2-gons. Under similar assumptions to those above, we prove that the 2-gons as well cannot be present in the minimal paths. Indeed the 2-gon is replaced by a geodesic arc covered twice.
Lemma 4.10. Let \([a, b], [c, d] \subset S\) and denote \(\gamma_1 = \tilde{u}|_{[a, b]}, \gamma_2 = \tilde{u}|_{[c, d]}\).

Suppose there exist \(c_j\) such that:

- \(\tilde{u}(a) = \tilde{u}(d) = c_j, \tilde{u}(b) = \tilde{u}(c) = c_j;\)
- \(\gamma_1((a, b)) \subset \mathbb{R}_{\mathcal{C}}^2, \gamma_2((c, d)) \subset \mathbb{R}_{\mathcal{C}}^2;\)
- \(\gamma_1 \sim_{rb} \gamma_2\) (up to a time rescale).

Then \(\gamma_1([a, b]) = \gamma_2([c, d])\).

Proof. Let \(v_1\) be the minimiser of \(\mathcal{M}_{c_j, c_j}\) on \(H_{[\gamma_1]}\). Therefore it must be that \(\tilde{u}|_{[a, b]} = v_1\) and \(\tilde{u}|_{[c, d]} = v_1^{-1}\).

We now generalise the previous result in the case when some centres are crossed by one or both the arcs \(\gamma_1, \gamma_2\), see Fig. 7.

Corollary 4.11. Let \(\tilde{u}\) be a minimizer for \(\mathcal{M}\) in \(H_{[\gamma]}\) and suppose there exist \(a < b \leq c < d\) and \(c_j \in \mathcal{C}\), (possibly equal), so that \(\tilde{u}(a) = \tilde{u}(d) = c_j\) and \(\tilde{u}(b) = \tilde{u}(c) = c_j\).

Then \(\tilde{u}\) cannot admit any 2-gon \(\gamma = \gamma_1 \# \gamma_2\) with the following properties:

- \(\gamma_1 = \tilde{u}|_{[a, b]}, \gamma_2 = \tilde{u}|_{[c, d]};\)
- \(\gamma_1(a, b) \cap \mathcal{C} = \mathcal{C}_1, \gamma_2(c, d) \cap \mathcal{C} = \mathcal{C}_2;\)
- there exist \(\eta_1 \in H_{c_j,c_j, c_j}((a, b)), \eta_2 \in H_{c_j,c_j, c_j}((c, d))\) such that \(\eta_1 \sim_{rb} \eta_2\) in \(\mathbb{R}_{\mathcal{C}}^2\) (up to reparameterization);
- the loop \(\eta_1 \# \tilde{u}|_{[b,c]} \# \eta_2 \# \tilde{u}|_{[a,d]}\) belongs to \(H_{[\gamma]}\).

Proof. Let \(v_1\) be the unique minimizer of \(\mathcal{M}_{c_j, c_j}\) in \(H_{[\eta_1]}\). Then \(v_1^{-1}\) is the unique minimizer of \(\mathcal{M}_{c_j, c_j}\) in \(H_{[\eta_2]}\). Therefore \(\tilde{u}\) is given by \(\tilde{u} = v_1 \# \tilde{u}|_{[b,c]} \# v_1^{-1} \# \tilde{u}|_{[a,d]}\). In particular the two arcs \(\gamma_1, \gamma_2\) cover the same path back and forth and intersect the same set of centres.

The above lemma concerns the case when the two arcs \(\gamma_1\) and \(\gamma_2\) join the points \(c_j\) in the opposite direction. By straightforward modification the same argument holds for the case when the two arcs have the same direction.
5. The Obstacle Problem

Recalling the definition of R_j given in Lemma 4.2, let us define a radius R such that

$$R < \min \left\{ \min_{j \in J} R_j, \frac{1}{2} \min_{i < j \in N} |c_i - c_j| \right\} \quad (10)$$

and the balls of radius R

$$B_j = B(c_j, R), \quad \forall j \in J,$$

around the centers where the collisions occur, with the property that whenever there exists $[a, b] \in S$ so that $\bar{u}(t) \in B_j$ for all $t \in [a, b]$, then $[a, b] \cap T_c(\bar{u}) \neq \emptyset$. Note that R is defined small enough so that anytime \bar{u} enters the ball B_j then \bar{u} collides with the centre c_j before leaving the ball.

For any $k = 1, \ldots, K$, being K the number of collisions, let us define

$$a_k = \max\{t < \tau_k : \bar{u}(t) \in B_{j_k}\}, \quad b_k = \min\{t > \tau_k : \bar{u}(t) \in B_{j_k}\}$$

as the instants when the path \bar{u} enters and leaves the ball B_{j_k} just before and after the collision time τ_k, and

$$p^1_k = \bar{u}(a_k), \quad p^2_k = \bar{u}(b_k) \quad (11)$$

as the points where the minimiser enters and leaves B_{j_k}.

Since for Lemma 4.2 the inertia $I_k(\bar{u})$ is strictly convex in (a_k, b_k), it follows that τ_k is the only collision time in the interval $[a_k, b_k]$ and $[a_k, b_k] \cap [a_j, b_j] = \emptyset$ for any $k \neq j$.

Lemma 5.1. Let \bar{u} be the minimizer for \mathcal{M} in $H[\gamma]$. Assume that \bar{u} has collisions. Then an the following holds: either \bar{u} is a collision reflection solution, or there is at least one k so that $p^1_k \neq p^2_k$.

Proof. Suppose \bar{u} does not reflect after the collision instant $\tau_k \in T_c$. Arguing by contradiction, assume $p^1_k = p^2_k$. Then, for Lemma 4.7, \bar{u} is not a minimiser. Otherwise, if a reflection occurs at any collision instants, then \bar{u} is a collision reflection solution according to Definition 1.1. \(\square\)

Let us sketch the plan of the proof of the Main theorem as it will be given in Section 6: by contradiction assume that \bar{u} has collisions but it is not a collision reflection solution. For Lemma 5.1 there is at least one k so that $p^1_k \neq p^2_k$ and \bar{u} is not a collision reflection solution within the ball B_k. The absurdity will arise by proving that p^1_k must be equal to p^2_k, that is, anytime a collision occurs, the path \bar{u} has to reflect. Therefore, either the minimizer \bar{u} is collision free or it is a collision reflection solution.

The core of the proof is based on the so called Obstacle problem, which allows one to analyse the behaviour of the minimisers of a given functional in the neighbourhood of the collisions. It turns out that, if certain hypothesis are satisfied, whenever the minimiser \bar{u} has a collision, it must be a collision reflection solution, at least locally.
In the following we briefly review the technique, mostly for the sake of stating the result and fixing the notation while referring to previous works for the details. Henceforth we assume that
\[\bar{u} \text{ has } K > 0 \text{ collisions, i.e. } |T_c| = K. \]

Without loss of generality, we apply the obstacle problem in the neighbourhood of \(\tau_1 \). Denote
\[\hat{K}_1 := \{ v \in H^1([a_1, b_1]; B_{j_1} \setminus c_{j_1}) : v(a_1) = p_1^1, v(b_1) = p_2^1 \} \]

and
\[\hat{K}_{[\gamma]} := \{ v \in \hat{K}_1 \text{ s.t. the path } \gamma_v(t) := \begin{cases} \bar{u}(t) & t \in S \setminus [a_1, b_1] \\ v(t) & t \in [a_1, b_1] \end{cases} \text{ belongs to } \hat{H}_{[\gamma]} \}. \]

Moreover let us define
\[\hat{K}_{[\gamma]} := \hat{K}_{[\gamma]} \cup \{ v \in K_1 : \gamma_v \in H_{[\gamma]} \} \]

and
\[\mathcal{M}_1 : K_{[\gamma]} \to \mathbb{R} \cup \{ +\infty \}, \quad \mathcal{M}_1(v) = \frac{1}{2} \int_{a_1}^{b_1} |\dot{v}|^2 dt \int_{a_1}^{b_1} (V(v) + h) dt. \]

Since \(K_{[\gamma]} \) is weakly closed and \(\mathcal{M}_1 \) is coercive and weakly lower semicontinuous, the direct method of the calculus of variations assures that \(\mathcal{M}_1 \) admits a minimum. Lemma 3.2 implies that the arc \(\bar{u}|_{[a_1, b_1]} \) is a minimizer of \(\mathcal{M}_1 \).

For \(\varepsilon > 0 \) let us define
\[d(\varepsilon) = \min \{ \mathcal{M}_1(v) : v \in K_{[\gamma]}, \min_{t \in [a_1, b_1]} |v_1(t) - c_{j_1}| = \varepsilon \}. \]

Since the weak convergence in \(H^1 \) implies the uniform convergence the set
\[\{ v \in K_{[\gamma]}, \min_{t \in [a_1, b_1]} |v(t) - c_{j_1}| = \varepsilon \} \]

is weakly closed, hence the function \(\varepsilon \mapsto d(\varepsilon) \) is well-posed. Moreover, by definition, \(d(0) \) is the minimum of \(\mathcal{M}_1 \) over those arcs \(v \) that collide with \(c_{j_1} \), thus the value \(d(0) \) is achieved by \(\bar{u}|_{[a_1, b_1]} \).

Lemma 5.2. The function \(\varepsilon \mapsto d(\varepsilon) \) is continuous at \(\varepsilon = 0 \).

Proof. Look at [40, Lemma 17]. □
Given $0 < \varepsilon_1 < \varepsilon_2$, we define

$$K_{[\gamma]}(\varepsilon_1, \varepsilon_2) := \left\{ v \in K_{[\gamma]} : \min_{t \in [a_1, b_1]} |v(t) - c_{j_1}| \in [\varepsilon_1, \varepsilon_2] \right\}. $$

For any $\varepsilon_1 < \varepsilon_2$, $K_{[\gamma]}(\varepsilon_1, \varepsilon_2)$ is a weakly closed subset of $K_{[\gamma]}$, so the restriction of \mathcal{M}_1 to $K_{[\gamma]}(\varepsilon_1, \varepsilon_2)$ has a minimum denoted by

$$m(\varepsilon_1, \varepsilon_2) := \min_{v \in K_{[\gamma]}(\varepsilon_1, \varepsilon_2)} \mathcal{M}_1(v).$$

Among all possible minimizers of \mathcal{M}_1 in $K_{[\gamma]}(\varepsilon_1, \varepsilon_2)$ we select the following:

$$\mathcal{M}(\varepsilon_1, \varepsilon_2) := \left\{ v \in K_{[\gamma]}(\varepsilon_1, \varepsilon_2) : \mathcal{M}_1(v) = m(\varepsilon_1, \varepsilon_2) \text{ and } \min_{t \in [a_1, b_1]} |v(t) - c_{j_1}| < \varepsilon_2 \right\}.$$

Lemma 5.3. Under the hypothesis (HYP), for any $\varepsilon > 0$ there exist $\varepsilon_1 < \varepsilon_2 < \varepsilon$ so that

$$\mathcal{M}(\varepsilon_1, \varepsilon_2) \neq \emptyset.$$

Proof. Arguing by contradiction, assume that there exists $\tilde{\varepsilon}$ such that for any $0 < \varepsilon_1 < \varepsilon_2 < \tilde{\varepsilon}$ it holds that $\mathcal{M}(\varepsilon_1, \varepsilon_2) = \emptyset$. Then, let us fix ε_2 and ε^*, $0 < \varepsilon_2 < \varepsilon^* < \tilde{\varepsilon}$, and define a sequence $\{\varepsilon_{1n}\}_n$ monotonically decreasing to zero so that $\varepsilon_{1n} < \varepsilon_2$ for any n. Denote by v_0 the element satisfying $\mathcal{M}_1(v_0) = m(\varepsilon_2, \varepsilon^*)$ and by $\{v_n\}_n$ the sequence such that $\mathcal{M}_1(v_n) = m(\varepsilon_{1n}, \varepsilon^*)$. Since $\mathcal{M}(\varepsilon_2, \varepsilon^*) = \emptyset$ and $\mathcal{M}(\varepsilon_{1n}, \varepsilon_2) = \emptyset$ for any n, it follows that $\min_{t \in [a_1, b_1]} |v_0(t) - c_{j_1}| = \varepsilon^*$, and, for any n, $\min_{t \in [a_1, b_1]} |v_n(t) - c_{j_1}| = \varepsilon_2$.

It follows that $d(\varepsilon^*) < d(\varepsilon_2)$ and $d(\varepsilon_2) < d(\varepsilon_{1n})$ for any n. The continuity of $d(\varepsilon)$ at $\varepsilon = 0$ implies that $d(\varepsilon^*) < d(0)$. This contradicts the fact that the minimum of \mathcal{M}_1 in $K_{[\gamma]}^1$ has a collision. \Box

As a direct consequence of the previous lemma, there exist two sequences $0 < \varepsilon_n < \bar{\varepsilon}_n$, both vanishing, and a sequence $\{v_n\}_n$ such that

$$v_n \in \bar{K}_{[\gamma]}, \quad \min_{t \in [a_1, b_1]} |v(t) - c_{j_1}| = \varepsilon_n$$

$$\mathcal{M}_1(v_n) = m(\varepsilon_n, \bar{\varepsilon}_n) = d(\varepsilon_n).$$

For any n, denote

$$T_n = \{ t \in [a_1, b_1] : |v_n - c_{j_1}| = \varepsilon_n \}.$$

The next proposition summarizes the properties of the sequence $\{v_n\}$. We refer to [36, 40] for the proof.
Proposition 5.4. For any n:

i. $v_n(t)$ is C^1;

ii. $v_n(t)$ is a C^2 function in any interval $I \subset (a_1, b_1) \setminus T_n$ and solves

$$w_n^2 \ddot{v}_n = \nabla V(v_n(t)), \quad w_n^2 = \frac{\int_{a_1}^{b_1} (V(v_n) + h) \, dt}{\int_{a_1}^{b_1} \frac{1}{2} |\dot{v}_n|^2 \, dt};$$

iii. the set T_n consists in an interval, $T_n = [c, d] \subset [a_1, b_1]$;

iv. the inertia $I(t) = |v_n(t) - c_{j_1}|^2$ is strictly convex for $t \in [a_1, c] \cup [d, b_1]$;

v. the energy of the function v_n is constant in $[a_1, b_1]$:

$$\frac{1}{2} |\dot{v}_n|^2 - \frac{V(v_n(t))}{w_n^2} = \frac{h}{w_n^2}, \quad \forall t \in [a_1, b_1]$$

and the sequence $\{w_n\}_n$ is bounded above and uniformly bounded below by a positive constant.

Moreover, writing $v_n(t) = c_{j_1} + \rho_n(t)e^{i \theta_n(t)}$, it holds that:

vi. the function $\theta_n(t)$ is C^2 and strictly monotone in T_n.

The convergence of the sequence $\{v_n\}_n$ is now discussed.

Lemma 5.5. Up to a subsequence, the sequence $v_n(t)$ uniformly converges to a path $\tilde{u}_1(t) \in K_{[\gamma]}$. The limit \tilde{u}_1 has a collision with c_{j_1} and $\mathcal{M}_1(\tilde{u}_1) = d(0)$.

Proof. Since $\mathcal{M}_1(v_n) = d(\varepsilon_n)$ and $\varepsilon_n \to 0$, from Lemma 5.2, it follows that $\mathcal{M}_1(\varepsilon_n) \to d(0)$. The coercivity of \mathcal{M}_1 implies that $\{v_n\}_n$ is bounded, hence, up to a subsequence still denoted by $\{v_n\}_n$, it is weakly convergent to a arc $\tilde{u}_1 \in K_{[\gamma]}$. The weak convergence in H^1 implies uniform convergence, thus \tilde{u}_1 has to collide with c_{j_1}. \qed

The last step of the obstacle problem technique consists in the analysis of the behaviour of the minimising sequence v_n and of the limit \tilde{u}_1. Again, we do not provide the detailed proof, since it is a small modification of the proof given in [36]. The argument is the following. Denote by Θ_n the total variation for $t \in [a_1, b_1]$ of the angular coordinate θ_n associated to v_n. One shows that $\Theta_n \geq \Delta_n$ for any n and $\Delta_n \to 2\pi \frac{a}{2 - \alpha}$ as $n \to \infty$, see also [38]. This means that for any $\alpha > 1$ the path v_n has to self intersect for n large enough. Therefore, it is enough to prove that all the v_n’s are simple to obtain the contradiction. The case $\alpha = 1$ is more delicate. Indeed, even under the hypothesis that v_n are simple, the limit \tilde{u}_1 could have the collision. However, if that happens, \tilde{u}_1 is proven to be a collision reflection solution. The idea is to combine the minimisation procedure with the Levi Civita regularisation [31]. In the neighbourhood of one of the centres, the potential $V(x)$ is a perturbation of the one-centre keplerian potential and, by means of the classical Levi-Civita change of coordinates, the singular dynamical system is related to a regular one defined on a Riemann surface. As a result, the minimising sequence $\{v_n\}_n$ is associated to a minimising sequence $\{q_n\}_n$ of an equivalent obstacle problem in the regularised system. The weak limit \tilde{q} of the sequence q_n is related to the arc \tilde{u}_1 as follows.
Assuming that the centre c_{j_1} has been mapped to the origin in the Levi-Civita plane and denoting with s_0 the time when $\tilde{q}(s_0) = 0$, if the limit \tilde{q} is a transmission solution, i.e. if $\tilde{q}(s_0 + s) = -\tilde{q}(s_0 - s)$, then the limit $\tilde{u}_1(t)$ is a collision reflection solution. The path \tilde{q} is a transmission solution if the angle swept by q_n on the obstacle is not larger than π or, equivalently, if the angle Θ_n covered by $v_n(t)$ is not larger than 2π. In the gravitational case, $\alpha = 1$, it is proved that $\Theta_n \leq 2\pi$ for any n, as wanted.

Summarising, the following holds.

Proposition 5.6. Case $\alpha = 1$. If for any n the path v_n is simple and the limit $\tilde{u}_1(t)$ has a collision, then $\tilde{u}_1(t)$ is a collision reflection solution within the ball B_1. In particular, $p_1^1 = p_1^2$.

Case $1 < \alpha < 2$. If for any n the path v_n is simple, then the limit $\tilde{u}_1(t)$ is collision-free.

Proof. The same proof as in [36] and [40]. □

6. Proof of the Theorems

We are now in the position to proof the Theorem 1.2. For clarity, let us recall the statement:

Theorem 1.2. Let $\alpha = 1$, $C = \{c_1, \ldots, c_N\}$, $c_i \in \mathbb{R}^2$, be any set of centres. Then, for any admissible class $[\gamma]$ and any $h > 0$, at least one of the following occurs:

1. there exists a non-collision periodic solution $x(s)$ for the N-center problem with energy h and $x(s)$ parametrizes a curve in $[\gamma]$;
2. there exists a collision reflection solution.

Proof. For Remark 2.16 and Theorem 4.1, let \tilde{u} be the minimiser for $\mathcal{M}_{[\gamma]}$ in $H_{[\gamma]}$. If \tilde{u} has not collisions, then for Theorem 3.3 the path $x(s) = \tilde{u}(ws)$ is a classical solution with energy h and $x(s)$ parametrizes a curve in $[\gamma]$, hence 1. holds.

Otherwise, suppose that \tilde{u} has collisions. We aim to prove that \tilde{u} parametrizes a collision reflection solution. Arguing by contradiction, suppose that \tilde{u} is not a collision reflection solution. Then, recalling the definitions (10) and (11) of R and B_j and of the couple (p_k^1, p_k^2), for Lemma 5.1 there exists at least one k^* so that $p_k^1 \neq p_k^2$. Without loss of generality, set $k^* = 1$. We now apply the obstacle problem in the neighbourhood of τ_1 as described in Section 5. Assume for the moment that for any n the arc v_n is simple. This fact will be proved afterwards in Theorem 6.3. According to Proposition 5.6, we conclude that $p_1^1 = p_1^2$, hence the contradiction. Therefore, if \tilde{u} has collisions, \tilde{u} reflects at any collision instants and the path $x(s) = \tilde{u}(ws)$ is a collision reflection solution with energy h of the N-centre problem. □

The proof of Theorem 1.3 is more immediate.

Theorem 1.3. Let $1 < \alpha < 2$, $C = \{c_1, \ldots, c_N\}$, $c_i \in \mathbb{R}^2$, be any set of centres. Then, for any admissible class $[\gamma]$ and any $h > 0$ there exists a non-collision periodic solution $x(s)$ for the N-center problem with energy h and $x(s)$ parametrizes a curve in $[\gamma]$.
Proof. As done in the proof of Theorem 1.2, let \(\bar{u} \) be a minimiser of \(\mathcal{M}_{[\gamma]} \) on \(H_{[\gamma]} \). If \(\bar{u} \) is collision free, then \(x(s) = \bar{u}(ws) \) provides the periodic solution of (1)–(3). Otherwise, assume by contradiction that \(\bar{u} \) has a collision and apply the obstacle problem around one of the collisions. Again, suppose that the paths \(v_n \) are simple, then Proposition 5.6 provides the absurd. \(\square \)

It remains to prove that for any \(n \) the arc \(v_n \) is simple. From Proposition 5.4 we remind that, for any \(n \), the path \(v_n \in C^1([a_1, b_1]; B_{j_1} \setminus c_{j_1}) \), \(\min_{t \in [a_1, b_1]} |v_n(t) - c_{j_1}| = \varepsilon_n > 0 \) and that \(|v_n(t) - c_{j_1}| = \varepsilon_n \) for \(t \in [c, d] \subset [a_1, b_1] \). Denote
\[
\begin{align*}
\gamma^1_n & \overset{\text{def}}{=} v_n|_{[a_1, c]}, & \gamma^2_n & \overset{\text{def}}{=} v_n|_{[d, b_1]}.
\end{align*}
\]
Moreover, define
\[
\gamma_n \overset{\text{def}}{=} \bar{u}|_{S \setminus [a_1, b_1]} \# v_n.
\] (13)

Lemma 6.1. we have that:

i. The arcs \(\gamma^1_n, \gamma^2_n \) are simple.

ii. The path \(v_n \) does not admit any singular 1-gon neither singular 2-gon.

iii. \(\gamma^1_n \) is nowhere tangent to \(\gamma^2_n \).

Proof. For point i in Proposition 5.4, the two arcs are simple. This excludes the possibility for \(v_n \) to perform singular 1-gon. Also, following the same arguments as in the proof of Proposition 4.6, the two arcs \(\gamma^1_n \) and \(\gamma^2_n \) don’t have any tangencies, neither they can intersect each other so to create singular 2-gon. \(\square \)

Hence, the possible self intersections of \(v_n \) are due to transversal intersections of \(\gamma^1_n \) with \(\gamma^2_n \) or to multiple covering of part of the obstacle (tangential self intersection). The remainder of this section aims at proving that both the transversal and tangential intersections cannot occur. The argument is based on the fact that the path \(\gamma_n \) given in (13) is in the closure of \(\bar{H}_{[\gamma]} \) and \([\gamma] \) is an admissible class.

First, let us construct a path \(\gamma^*_n \), free of collisions, without self tangencies, so that \(\gamma^*_n \in [\gamma] \) and \(\gamma^*_n \) visits the balls \(B_{j_1} \) in the same order as \(\gamma_n \).

If \(\tau_1 \) is the only collision time for \(\bar{u} \) then \(\gamma_n(t) \in \mathbb{R}^2_C \) and \(\gamma_n \in [\gamma] \). In that case, define \(\gamma^*_n = \gamma_n \). Otherwise, let \(\{\tau_2, \ldots, \tau_K\} \) and \(\{c_{j_2}, \ldots, c_{j_K}\} \) be, respectively, the collision instants for \(\gamma_n(t) \) and the centres where the collisions occur. Since \(H_{[\gamma]} \) is the weak \(H^1 \) closure of \(\bar{H}_{[\gamma]} \), for any \(0 < \rho < R \) small enough, there exists a collection of \(K - 1 \) arcs \(\{\hat{u}_i\}_{i=2}^K \) such that:

i. \(\hat{u}_i : [a_i, b_i] \to B_{j_i} \setminus B_{j_i}(\rho) \);

ii. \(\hat{u}_i(a_i) = p^1_i, \hat{u}_i(b_i) = p^2_i \);

iii. the path

\[\hat{u}_i \]
Topologically Distinct Collision-Free… 965

Fig. 8. The self-tangency is removed by homotopy. It results in two arcs that intersect, at most, once

\[\hat{\gamma}_n \equiv \begin{cases}
\hat{u}(t) & t \in S \setminus \bigcup_{i=1}^{K} [a_i, b_i] \\
\hat{u}_i(t) & t \in [a_i, b_i], \quad i = 2, \ldots, K \\
v_n(t) & t \in [a_1, b_1]
\end{cases} \]

belongs to \(\hat{H}_{[\gamma]} \).

Clearly the choice of the arc \(\hat{u}_i \) is not unique. Following [25], the arcs \(\hat{u}_i \) can be selected so that:

iv. for any \(i \) the arc \(\hat{u}_i \) does not have self tangencies and \(\hat{u}_i \) minimises the number of self intersections in its homotopy class (with respect to the relative homotopy);

v. for any \(i \neq k \) so that \(c_{ji} = c_{jk} \), if any, the arcs \(\hat{u}_i \) and \(\hat{u}_k \) do not intersect tangentially and they minimise the number of intersections;

vi. if \(c_{ji} = c_{j_1} \) for some \(i \in \{2, \ldots, K\} \), then \(\hat{u}_i \) is nowhere tangent to \(v_n \) and it minimises the number of intersections with \(v_n \).

Since \(\hat{\gamma}_n \) is equal to \(\hat{u} \) outside \(\bigcup_j B_j \), \(\hat{\gamma}_n \) inherits the self tangencies from \(\hat{u} \). As described in Proposition 4.6, Lemma 4.10 and Corollary 4.11, there may exist a set of indexes \(I_{tg} \subset \{(i, j) \in \{1, 2, \ldots, K\}^2 \} \) such that \(\hat{\gamma}_n|_{[b_i, a_{i+1}]} \) is tangent to \(\hat{\gamma}_n|_{[b_j, a_{j+1}]} \) for any \((i, j) \in I_{tg} \).

If \(I_{tg} \neq \emptyset \), say \(I_{tg} = \{(i_1, j_1), \ldots, (i_m, j_m)\} \), for \(\epsilon > 0 \) small enough define \(m \) homotopies relative to the boundaries,

\[\Phi_k(s, t) : [0, 1] \times [b_{i_k} - \epsilon, a_{i_k+1} + \epsilon] \cup [b_{j_k} - \epsilon, a_{j_k+1} + \epsilon], \]

to be applied to \(\hat{\gamma} \) in sequence, so that the tangent arcs are moved to a different configuration without tangencies and with the minimal number of transversal intersections, see Fig. 8. Indeed, the tangent arcs can be homotoped to two arcs with at most one intersection [2]. Also, the homotopies \(\Phi_k \) can be defined so that the number of intersections between the two arcs involved in the homotopy with the remaining part of the curve \(\hat{\gamma}_n \) does not change.

Denote by \(\gamma_n^*(t) \) the path resulting after applying all the homotopies \(\Phi_k \). By construction, \(\gamma_n^* \) satisfies the following properties:
Fig. 9. If Σ is a singular 1-gon, by shrinking the loop ℓ there results a path still belonging to $[\gamma]$. The new path is taut and contains an innermost loop enclosing only one centre.

Lemma 6.2.

- $\gamma_n^*(t) \in [\gamma]$;
- $\gamma_n^*[a_1, b_1] = v_n$;
- $\gamma_n^*(t)$ visits the same balls B_j in the same order as γ_n;
- $\gamma_n^*(t)$ has no tangential self intersection in $S \setminus [a_1, b_1]$.

Theorem 6.3. For any n, the arc v_n is simple.

Proof. Suppose by contradiction that for some n the path $v_n(t)$ is not simple, i.e., there exists at least one couple $t^* < t$ such that $v_n(t^*) = v_n(t)$.

For the moment assume that v_n does not have any self-intersection in the interval $[c, d]$ (later on we will come back to this eventuality). Hence, the self-intersections of v_n are due to intersections of v_1^1 with v_2^2. Denote by $a_1 < t_1^1 < \cdots < t_m^1 < c$, and $d < t_1^2 < \cdots < t_1^2 < b_1$ the instants of transversal intersections and by $I_{2i} = v_n(t_i^1) = v_n(t_i^2)$, $i = 1, \ldots, m$ the points where they occur. For Proposition 5.4 the angular velocity of v_1^1, v_2^2 is constant and v_1^1, v_2^2 have finite length. Thus, the number of intersections must be finite.

Consider the previously introduced path γ_n^*. For Lemma 6.2, γ_n^* belongs to an admissible class. Note that γ_n^* has an innermost loop $\gamma_n^*[t_1^1, t_1^2]$ enclosing only one centre. Therefore, by definition of the admissible class, γ_n^* is not taut. For Theorem 2.12, γ_n^* has a singular 1-gon or singular 2-gon, denoted by Σ. Since for Lemmas 6.1 and 6.2 the arcs v_1^1 and v_2^2 do not produce singular 1-gon nor 2-gon and γ_n^* has no self-tangencies, it follows that the point $p = v_n(t_1^1) = v_n(t_1^2)$ is necessarily one of the end-points of the singular object Σ whose boundary lies partially inside B_{j_1} and partially outside B_{j_1}. We show that whatever singular object Σ is (1-gon or 2-gon), a contradiction arises.

Let us first consider the case that Σ is a singular 1-gon and denote by $\ell = \gamma_n^*[t_1^2, t_1^1]$ the null homotopic loop that bounds Σ, as shown in Fig. 9. Shrinking ℓ to a point, we have that $v_n|_{[t_1^2, t_1^1]} \in [\gamma]$ and $v_n|_{[t_1^1, t_1^2]}$ is taut, since no singular 1-gon or 2-gon lies in B_{j_1}. This contradicts the definition of admissible class, since $v_n|_{[t_1^1, t_1^2]}$ has an innermost loop containing only one centre.
Suppose now that Σ is a singular 2-gon. Denote by q the second end-point (the first one is p) and by α and β the edges of Σ. For Lemma 6.1, at least one of the edges is not completely within the ball B_{j_1}. Without loss of generality, the case when one of the edges completely lies in the ball is depicted in Fig. 10a.

Looking at the definition of $\hat{\gamma}_n$, we see α as the composition of three arcs: $\alpha = \alpha_1 \# \alpha_2 \# \alpha_3$. The first of these is a portion of the arc v_n from the point p up to the point p^{2}_{1} on the boundary of B_{j_1}; the second is made by part of \tilde{u} and eventually some \tilde{u}_i up to the point $p^{j_1}_{p}$ where α is back on B_{j_1}; finally, α_3 is part of \tilde{u}_j. Consider the arc $\ell = \tilde{u}|_{[\tau_1, b_1]} \# \alpha_2 \# \tilde{u}|_{[\alpha_j, \tau_j]}$. The arc $\ell \in \hat{H}_{c_{j_1}, c_{j_1}}$ is homotopic to the point c_{j_1}, hence the loop $\tilde{u}|_{S \setminus [\tau_1, \tau_j]} \# \ell$ belongs to $H_{[\gamma]}$. This contradicts Lemma 4.7 or the associated Corollary 4.8.

Consider now the case when neither of the edges -α or -β lies completely in the ball B_{j_1}. Depending on whether q belongs to B_{j_1} (case 1), to B_{j_k}, $k \neq 1$ (case 2), or outside any of the balls B_j (case 3), the situation is depicted in the Fig. 11. Arguing as before, the same procedure leads to a configuration that contradicts Lemma 4.10 and related Corollary 4.11 in case 1 and case 2, and Lemma 4.9 in case 3.

It remains to consider the case when v_n has tangential self-intersections on the obstacle. The idea is to replace v_n with a homotopically equivalent path ν_n without self-tangencies and equal to $v_n(t)$ for those t where $v_n(t)$ is far away from the obstacle. The path ν_n has at least one self-intersection and it satisfies the properties stated in Lemma 6.1. Then, the same procedure as before can be applied.
Let us show how to construct \(v_n \). Remember from Proposition 5.4 that the angular coordinate \(\theta(t) \) is monotone for \(t \in [c, d] \). As depicted in Fig. 12, define \(\tilde{R} = |I_{1}^m - c_{j1}| \) as the distance between the centre \(c_{j1} \) and the transversal self-intersection point of \(v_n \) closest to the obstacle. (In case \(v_n \) does not have transversal self intersections, consider \(t_{1}^m = a_1, t_{2}^m = b_1 \) and \(\tilde{R} = R \).)

For a choice of \(\tilde{\varepsilon}_n \in (\varepsilon_n, \tilde{R}), \varepsilon_n \) being the radius of the obstacle, define
\[
\tilde{c} = \max \{ t < c : |v_n(t) - c_{j1}| = \tilde{\varepsilon}_n \} \quad \tilde{d} = \min \{ t > d : |v_n(t) - c_{j1}| = \tilde{\varepsilon}_n \}
\]
and denote \(A \) the annulus \(A = B_{c_{j1}}(\tilde{e}_n) \setminus B_{c_{j1}}(\varepsilon_n) \). Consider a homotopy \(\Phi : [0, 1] \times [\tilde{c}, \tilde{d}] \to A \) that fixes the end points and moves the arc \(v_n|_{[\tilde{c},\tilde{d}]} \) to the smooth arc \(\tilde{v} \), free of self-tangencies and with the minimal number of self-intersections. The monotonicity of \(\theta(t) \) implies that \(v_n \) turns on the obstacle for more than \(2\pi \).

This, together with the fact that \(v_n|_{[\tilde{c},c)}, v_n|_{(d,\tilde{d}]} \) are simple and disjoint, implies that \(\tilde{v} \) has at least one double point. Indeed, \(\tilde{v} \) has as many double points as the number of times \(v_n \) turns around the obstacle.

Denote by \(I_{i1}^g, \ldots, I_{s}^g \) the double points, labelled from the outermost to the innermost; see Fig. 12. Since \(\tilde{v} \) minimises the number of self-intersections, \(\tilde{v} \) does not admit singular 1-gon nor singular 2-gon, [25]. However, there could be a singular
2-gon whose end-points are given by I^m_{tr} and I^b_1. If that happens, the original path v_n would behave as depicted in Fig. 13 and the curve w_n drawn in Fig. 13 would be a minimiser like v_n, without being C^1, providing a contradiction.

Replace $v_n|_{[\tilde{c}, \tilde{d}]}$ by \tilde{v} and define $\nu_n = v_n|_{[a_1, \tilde{c}]}#\tilde{v}#v_n|_{[\tilde{d}, b_1]}$. □

7. Admissible Classes as a Sequence of Symbols

In the previous section we proved the existence of a periodic solution for the N centre problem in any admissible class $[\gamma]$. According to the Definition 2.15, to test whether a given class is admissible one has to count the number of centres in any innermost loop of a taut representative of the homotopy class. Such a test could be time consuming and tedious, however it is straightforward thanks Theorem 2.12.

Nevertheless, a natural question arises as to whether it is possible to prescribe sufficient conditions to a loop γ so that its homotopy class $[\gamma]$ is admissible. That is exactly the content of this section: given the centres in any position on the plane we propose a method to draw infinitely many closed curves, each of them belonging to a different admissible class. The idea is to consider a simple polygonal having the centres as vertices and to construct different closed curves whose sequence of consecutive crossings with the edges of the polygonal are prescribed in advance. Certain conditions on the sequence of the consecutive crossings will imply the co-existence of at least two centres in any innermost loop of a taut representative, hence the admissibility of the homotopy class.

Let us introduce the technique in the case where N centres are placed at vertices of a regular N-gon; then we will show how to extend to the general case.

Let P be a regular N-gon of unit radius centred in the origin of \mathbb{R}^2. Let c_1, c_2, \ldots, c_N be N-centres placed at the vertices of P and labelled in a counter-clockwise orientation, i.e. $c_i = (\cos(\frac{2\pi}{N}(i - 1)), \sin(\frac{2\pi}{N}(i - 1)))$. Denote by

$$L = \{l_1, l_2, \ldots, l_N\}$$

the set of the edges of P, where $l_i = \{\lambda c_i + (1 - \lambda)c_{i+1}, \lambda \in [0, 1]\}$ is the edge joining c_i and c_{i+1}, for $i = 1, \ldots, N$. To simplify the exposition we will always assume the cyclic action of the labels on a set of N elements, so that, for instance, $c_{N+1} = c_1$. Denote $\partial P = \bigcup l_i$. On \mathcal{L} we consider the Lee distance

$$d(l_i, l_j) = \min(|i - j|, N - |i - j|).$$

Clearly $d(l_i, l_j) = 0 \iff i = j$ and $d(l_i, l_j) = 1$ if and only if the edges l_i and l_j are adjacent. Moreover $\max_{1 \leq i, j \leq N} d(l_i, l_j) = \left\lfloor \frac{N}{2} \right\rfloor$, thus $d(l_i, l_j) \geq 2$ for some i, j, if and only if $N \geq 4$.

Thinking at l_i as letters, we introduce the words with alphabet \mathcal{L} as follows:

Definition 7.1. We define a word W with alphabet \mathcal{L} as any possible string

$$W = w_1w_2 \ldots w_M$$

where $w_k \in \mathcal{L}$ for any $1 \leq k \leq M$ and $M < \infty$. M is said to be the length of the word and we denote $M = |W|$.
In the next Definition we fix further notations and we introduce some useful operations.

Definition 7.2.

i. Denote by \(\mathcal{W} = \{ W : |W| < \infty \} \) the set of all possible words of finite length with alphabet \(\mathcal{L} \) and by \(\mathcal{W}_e = \{ W \in \mathcal{W} : |W| = 2n, n \in \mathbb{N} \} \) the set of words of even length;

ii. Given two words \(W^1 = w_1^1 w_2^1 \ldots w_k^1 \) and \(W^2 = w_1^2 w_2^2 \ldots w_k^2 \), we define the composition of \(W^1 \) and \(W^2 \) as the word \(W = W^1 W^2 = w_1^1 w_2^2 \ldots w_k^1 w_1^2 w_2^2 \ldots w_k^2 \);

iii. A word \(W \) is said to be a power of \(W_1 \) if there exists \(n > 1 \) such that \(W = W_1 W_1 \ldots W_1 \) \(n \)-times;

iv. A word \(W \) of length \(M \) is said to be irreducible if \(w_i \neq w_{i+1} \), for \(i = 1, \ldots, M-1 \) and \(w_M \neq w_1 \).

From now on we consider only irreducible words. Given a word \(W \), we associate with \(W \) a path \(\gamma(t) \) in the punctured plane so that the sequence of consecutive crossings of \(\gamma(t) \) with the edges of \(\mathcal{P} \) is exactly the one prescribed by \(W \).

Definition 7.3.

For any given word \(W \in \mathcal{W}_e \), define \(\gamma_W \) any closed path with the following properties:

i. \(\gamma_W \in \mathcal{C}^1([0,1], \mathbb{R}^2_\mathcal{C}) \), \(\gamma_W(0) = \gamma_W(1) \);

ii. \(\gamma_W \) is nowhere tangential to \(\partial \mathcal{P} \) and \(|\gamma_W([0,1]) \cap \partial \mathcal{P}| = |W| \);

iii. \(\gamma_W(t_i) \in w_i \) for any \(1 \leq i \leq |W| \), where \(\{ 0 \leq t_1 < t_2 < \cdots < t_{|W|} < 1 \} = \gamma_W^{-1}(\gamma_W \cap \partial \mathcal{P}) \).

Since we allow the path \(\gamma_W(t) \) to only have transversal intersections with \(\partial \mathcal{P} \) it turns out that \(\gamma_W(t) \) has an even number of crossings with \(\partial \mathcal{P} \). That is the reason why we consider only words of even length.

The above definition is well posed in the sense that for any given \(W \) of even length it is always possible to define a path with properties \(i), ii) \) and \(iii) \). Clearly the path \(\gamma_W \) is not unique, since, for instance, small perturbations produce paths with the same sequence of consecutive crossings with the edges of the polygon \(\mathcal{P} \). Furthermore, the same word \(W \) could produce paths \(\gamma_W \) belonging to different homotopy classes; indeed any time the path \(\gamma_W \) leaves \(\mathcal{P} \) crossing the edge \(w_i \), there are two different directions it can follow to reach the next edge \(w_{i+1} \), namely the clockwise or counterclockwise direction; it can even wind around the polygon \(\mathcal{P} \) many times before entering. In general, a different choice of directions produces non homotopic curves, see Fig.14. Nevertheless, the following result holds:

Theorem 7.4.

Let \(N \geq 4 \) centres be placed at the vertices of a regular \(N \)-gon and let \(W \) be any irreducible word of even length such that

\[
\begin{align*}
d(w_i, w_{i+1}) & \geq 2, \quad \forall 1 \leq i \leq |W|. \\
\end{align*}
\]

(15)

Let \(\gamma_W(t) \) be any path associated to \(W \) according to Definition 7.3. Then, the homotopy class \([\gamma_W] \) is admissible.
Proof. First note that the irreducibility of W implies that γ_W minimizes the number of possible intersections with $\partial \mathcal{P}$ in its homotopy class. Indeed suppose that there exists a homotopy ϕ_s that moves γ_W to $\phi_1(\gamma_W)$ with less crossings of $\partial \mathcal{P}$. Since the number of intersections between two closed curves only changes in correspondence to tangential crossings, the change of the number of crossings between $\phi_s(\gamma_W)$ and $\partial \mathcal{P}$ occurs only at instants s_i when $\phi_{s_i}(\gamma_W)$ is tangential to one of the edges l_j.

At the first of these instants, say s_1, suppose that $\phi_{s_1}(\gamma_W)$ is tangential to l_j. Then the path $\gamma_W = \phi_0(\gamma_W)$ has two consecutive crossings with l_j. This contradicts the irreducibility of the word W.

The definition of admissibility of class $[\gamma_W]$ relies on some conditions being satisfied by a taut path $\hat{\gamma} \in [\gamma_W]$. The constructed curve γ_W does not need to be taut, however there exists a taut path $\hat{\gamma}$ with the same sequence of crossings of $\partial \mathcal{P}$ as γ_W. As before, let ϕ_s be the homotopy that moves γ_W to $\hat{\gamma}$: at any s the number of crossings of $\phi_s(\gamma_W)$ with $\partial \mathcal{P}$ cannot be less then the number of crossings of γ_W and it can increase only at instants of tangencies with one of the l_j. Such tangencies could be avoided, since they produce null-homotopy 2-gons with the perimeter of \mathcal{P}.

Suppose first that $\hat{\gamma}$ is not simple and let $\hat{\gamma}(\alpha)$ be an innermost loop. For Lemma (2.6) $\hat{\gamma}(\alpha)$ is a simple closed curve and an alternative occurs: $\hat{\gamma}(\alpha)$ does not intersect $\partial \mathcal{P}$ or it has an even number of crossings corresponding to a part of the word W. In the former case all the centres lie in the region bounded by $\hat{\gamma}(\alpha)$ (it cannot be the opposite because $\hat{\gamma}(\alpha)$ is not null-homotopic) so condition A1 in the Definition 2.15 holds. In the latter case the set \mathcal{C} is split in two subsets \mathcal{C}_{int} and \mathcal{C}_{ext} of those centres that respectively lie in the bounded and unbounded regions of the plane separated by $\hat{\gamma}(\alpha)$. Condition (15) assures that both \mathcal{C}_{int} and \mathcal{C}_{ext} contain at least two centres, thus condition A1 is still satisfied.

In case that $\hat{\gamma}$ is simple, the innermost loop is given by the curve itself and the same argument as before applies. □

The above construction of the symbolic dynamic is based on the fact that the edges $\{l_i\}$, do not intersect with each other so it is possible to label them according to an orientation and to define the suitable distance. However the same theory applies anytime it is possible to define a simple polygonal joining the centres (i.e. a union of non-intersecting line segments that are joined pair-wise to form a closed path), no matter whethere or not it is a regular N-gon. Furthermore the edges $\{l_i\}$ need not be segments; they could be smooth arcs joining two of the centers.
Fig. 15. Labelling of the centres and construction of the curvilinear polygonal in case the centres are on the same line (a) or in general position (b)

This remark allows us to extend the construction of the symbolic dynamic to the general case, regardless of the location of the \(N \) centres. It is enough to draw a simple polygonal (even curvilinear) where each edge joins two of the centres.

Suppose first that all of the \(N \) centres are placed along a straight line \(r \), as in Fig. 15a: then we can label them according to the direction of the line and we can define the curvilinear polygonal \(\mathcal{P} \) with edges \(l_i = c_{i+1} - c_i \) for \(i = 1, \ldots, N - 1 \) and the edge \(l_N \) as any arc joining \(c_1 \) and \(c_N \) without crossing \(r \).

Suppose now that the \(N \) centres are not placed on the same straight line so that the interior of the convex hull \(H_C = \left\{ \sum_{i=1}^{N} \alpha_i c_i \bigg| c_i \in \mathcal{C}, \; \alpha_i \in \mathbb{R}^+ \cup \{0\}, \sum_{i=1}^{N} \alpha_i = 1 \right\} \) is not empty, Fig. 15b. Choose a point \(p \) in the interior of \(H_C \) so that no two centres are aligned with \(p \). (Such a point \(p \) always exists: indeed let \(S \) be the union of all possible straight lines passing through two of the centres and denote \(\hat{H}_C = H_C \setminus S \), \(\hat{H}_C \) being the interior of \(H_C \). Any point of \(\hat{O} \) satisfies the requirements for \(p \) and the set \(\hat{O} \) is not empty; indeed it is of full measure in \(\hat{H}_C \) being \(S \) a finite union of one dimensional differentiable objects.) Then, consider \(R \) large enough so that all the centres \(\{c_j\} \) lie in the ball \(B_R(p) \) centred at \(p \) and with radius \(R \), and define the map

\[
\varphi : \mathbb{R}^2 \setminus p \rightarrow \partial B_R(p)
\]

\[
x \mapsto p + R \frac{x - p}{|x - p|}.
\] \hspace{1cm} (16)

The set \(\varphi(\mathcal{C}) \) consists of \(N \) points on the circle \(\partial B_R(p) \) so they can be labelled accordingly with an orientation. Denote by \(\{\tilde{c}_j\} \) such points and construct the polygonal \(\hat{\mathcal{P}} \) with \(\{\tilde{c}_j\} \) as vertices and \(\hat{l}_j = \tilde{c}_{j+1} - \tilde{c}_j \) for \(j = 1, \ldots, N \) as edges. It turns out that \(p \) is within the convex hull of \(\varphi(\mathcal{C}) \) (indeed if \(p = \sum_i \alpha_i c_i, \sum \alpha_i = 1 \), it follows that \(p = \sum_j \beta_j \varphi(c_i) \) where \(\beta_i = \alpha_i |c_i - p| / \sum_j \alpha_j |c_j - p| \)) and in particular it is inside the polygonal \(\hat{\mathcal{P}} \). Thus, denoting by \((\rho, \theta) \) a system of polar coordinates centred at \(p \), it follows that any edge \(\hat{l}_j \) stays in a strip \((0, R) \times \Theta_j \) so that \(\hat{\Theta}_j \cap \hat{\Theta}_k = \emptyset \). Hence, labelling the centres \(\{c_j\} \) so that \(\varphi(c_j) = \tilde{c}_j \), the polygonal \(\mathcal{P} \) with edges \(l_j = c_{j+1} - c_j \) is simple because each \(l_j \) lives in the strip \((0, R) \times \Theta_j \).
For instance, let $C = \{c_1, \ldots, c_7\}$ be the set of seven centres, as in Fig. 15b. Then all of the following words:

$$W_1 = l_1l_3l_7l_4l_2l_6,$$

$$W_2 = l_2l_5l_3l_7,$$

$$W_3 = l_2l_6l_2l_7l_5l_1l_3l_5l_7,$$

$$W_4 = l_4l_2l_5l_3l_6l_1l_4l_1,$$

$$W_5 = l_3l_6l_7l_5l_1l_5l_1,$$

generate a curve γ_W so that $[\gamma_W]$ is admissible. Figure 16 depicts the loops γ_{W_1}, γ_{W_2} and γ_{W_3}.

Acknowledgements. The author is grateful to Alessandro Portaluri for the fruitful discussion they had about this work during his visit in BCAM, Bilbao, in the fall 2012. The author also thanks the anonymous referee for her/his helpful suggestions, which contributed to improving the quality of the paper.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. AMBROSETTI, A., COTI ZELATI, V.: Closed orbits of fixed energy for singular Hamiltonian systems, Arch. Rational Mech. Anal. 112, 339–362 (1990)
2. ARNOLD, V. I.: Plane curves, their invariants, perestroikas and classifications. In: Singularities and bifurcations, vol. 21. Adv. Soviet Math. Am. Math. Soc., Providence, RI, pp. 33–91 (1994) (With an appendix by F. Aicardi)
3. BAHRI, A., RABINOwITZ, P. H.: A minimax method for a class of Hamiltonian systems with singular potentials. J. Funct. Anal. 82, 412–428 (1989)
4. BELLETTINI, G., FUSCO, G., GRONCHI, G. F.: Regularization of the two-body problem via smoothing the potential. Commun. Pure Appl. Anal. 2, 323–353 (2003)
5. BENCi, V., GIANNONI, F.: Periodic solutions of prescribed energy for a class of Hamiltonian systems with singular potentials. J. Diff. Eqs. 82, 60–70 (1989)
6. BOLOTIN, S.V.: Influence of singularities of the potential energy on the integrability of dynamical systems. Prikl. Matem. i Mekhan., 48, 356–362 (1984)
7. BOLOTIN, S. V.: Nonintegrability of the problem of n centers for $n > 2$. (Russian) Vestnik Moskov. Univ. Ser. I Mat. Mekh 3, 65–68 (1984)
8. BOLOTIN, S. V., NEGRINI, P.: Regularization and topological entropy for the spatial n-center problem. Ergodic Theory Dynam. Systems 21, 383–399 (2001)
9. BOLOTIN, S. V., NEGRINI, P.: Global regularization for the n-center problem on a manifold. *Discrete Contin. Dyn. Syst.* **8**, 873–892 (2002)
10. BOLOTIN, S. V., NEGRINI, P.: Chaotic behavior in the 3-center problem. *J. Diff. Equ.* **190**, 539–558 (2003)
11. CASTELLI, R.: On the variational approach to the one and N-centre problem with weak forces. Ph.D Thesis, University of Milano-Bicocca, 2009
12. CASTELLI, R.: The monotonicity of the apsidal angle in power-law potential systems. *J. Math. Anal. Appl.* **428**, 653–676 (2015)
13. CASTELLI, R.: A study of the apsidal angle and a proof of monotonicity in the logarithmic potential case. *J. Math. Anal. Appl.* **413**, 727–751 (2014)
14. CASTELLI, R., PAPARELLA, F., PORTALURI, A.: Singular dynamics under a weak potential on a sphere. *NoDEA* **20**, 845–872 (2013)
15. CASTELLI, R., TERRACINI, S.: On the regularization of the collision solutions of the one-center problem with weak forces. *Discrete Contin. Dyn. Syst.* **31**, 1197–1218 (2011)
16. CASTELLI, R., TERRACINI, S.: On the regularization of the collision solutions of the one-center problem with weak forces. *Discrete Contin. Dyn. Syst.* **31**, 1197–1218 (2011)
17. CHEN, K.-C.: Existence and minimizing properties of retrograde orbits to the three-body problem with various choices of masses. *Ann. of Math.* **167**, 325–348 (2008)
18. CHEN, K.-C.: Variational constructions for some satellite orbits in periodic gravitational force fields. *Am. J. Math.* **132**, 681–709 (2010)
19. COTTI ZELATI, V., SERRA, E.: Multiple brake orbits for some classes of singular Hamiltonian systems. *Nonlinear Anal.* **20**, 1001–1012 (1993)
20. DIMARE, L.: Chaotic quasi-collision trajectories in the 3-centre problem. *Celest. Mech. Dyn. Astron.*, **107**, 427–449 (2010)
21. EASTON, R.: Regularization of vector fields by surgery. *J. Diff. Equ.* **10**, 92–99 (1971)
22. FREEDMAN, M.H., HASS, J., SCOTT, P.: Closed geodesics on surfaces. *Bull. Lond. Math. Soc.* **14**, 385–391 (1982)
23. GORDON, W.B.: Conservative Dynamical systems involving strong forces. *Trans. Am. Math. Soc.* **204**, 113–135 (1975)
24. GORDON, W.B.: A Minimizing Property of Keplerian Orbits. *Am. J. Math.* **99**, 961–971 (1977)
25. GRECO, C.: Remarks on periodic solutions, with prescribed energy, for singular Hamiltonian systems. *Comment. Math. Univ. Carolin.* **28**, 661–672 (1987)
26. HASS, J., SCOTT, P.: Intersections of curves on surfaces. *Israel J. Math.* **51**, 90–120 (1985)
27. HASS, J., SCOTT, P.: Shortening curves on surfaces. *Topology 33* **1**, 25–43 (1994)
28. KLEIN, M., KNauf, A.: Classical planar scattering by Coulombic potentials. Lecture notes in physics n.13, Berlin, Heidelberg, New York: Springer; 1992
29. KNauf, A.: The n-centre problem of celestial mechanics for large energies. *J. Eur. Math. Soc. (JEMS)* **4**, 1–114 (2002)
30. KNauf, A., TAIMANOV, I.A.: On the integrability of the n-centre problem. *Math. Ann.* **331**, 631–649 (2005)
31. KUSTAANHEIMO, P., STIEFEL, E.: Perturbation theory of Kepler motion based on spinor regularization. *J. Reine Angew. Math.* **218**, 204–219 (1965)
32. LEVI-CIVITTA, T.: Sur la régularisation du problème des trois corps. *Acta Math.* **42**, 99–144 (1920)
33. PISANI, L.: Periodic solutions with prescribed energy for singular conservative systems involving strong force. *Nonlinear Anal.* **21**, 167–179 (1993)
34. RABINOWITZ, P. H.: A note on periodic solutions of prescribed energy for singular Hamiltonian systems. *J. Comput. Appl. Math.* **52**(13), 147–154 (1993)
35. SERRA, E., TERRACINI, S.: Noncollision solutions to some singular minimization problems with Keplerian-like potentials. *Nonlinear Anal.* **22**, 45–62 (1994)
36. SOAVE, N., TERRACINI, S.: Symbolic dynamics for the N-centre problem at negative energies. *Discr. Contin. Dyn. Syst. A* **32**, 3245–3301 (2012)
37. **STOICA, C., FONT, A.**: Global dynamics in the singular logarithmic potential. *J. Phys. A* 36, 7693–7714 (2003)

38. **TANAKA, K.**: A prescribed energy problem for a singular Hamiltonian system with a weak force. *J. Funct. Anal.* 113, 351–390 (1993)

39. **TANAKA, K.**: A prescribed-energy problem for a conservative singular Hamiltonian system. *Arch. Rational Mech. Anal.* 128, 127–164 (1994)

40. **TERRACINI, S., VENTURELLI, A.**: Symmetric trajectories for the 2N-body problem with equal masses. *Arch. Ration. Mech. Anal.* 184, 3, 465–493 (2007)

41. **WAALKENS, H., DULLIN, H. R., RICHTER, P. H.**: The problem of two fixed centers: bifurcations, actions, monodromy. *Phys. D* 196(3-4), 265–310 (2004)

42. **WHITTAKER, E. T.**: A treatise on the analytical dynamics of particles and rigid bodies: with an introduction to the problem of three bodies. 4th ed. Cambridge University Press, New York, 1959

Roberto Castelli
VU University Amsterdam,
De Boelelaan 1081,1081 HV, Amsterdam,
The Netherlands
e-mail: r.castelli@vu.nl

(Received August 4, 2015 / Accepted October 12, 2016)
Published online October 25, 2016 – © The Author(s) (2016)
This article is published with open access at Springerlink.com