Hierarchically Porous, Biphasic, and C-Doped TiO₂ for Solar Photocatalytic Degradation of Dyes and Selective Oxidation of Benzyl Alcohol

R. Ragesh Nath, C. Nethravathi,* and Michael Rajamathi

ABSTRACT: Macroporous TiO₂ monoliths were synthesized by self-sustained combustion reactions of molded pellets made up of a mixture of TiCl₄ as a precursor, urea as a fuel, ammonium nitrate as an oxidizer, and starch as a binder. The porous TiO₂ monoliths were found to be a heterostructure of anatase and rutile phases, in addition to being doped with carbon. Variation in the amount of starch yielded porous monoliths of different anatase–rutile ratios (increasing rutile component from 0 to 40%) but comparable Brunauer–Emmett–Teller (BET) surface area (≈30 m² g⁻¹). The porous monoliths obtained, where the TiCl₄/starch mass ratio was 2.17, exhibit exceptional photocatalytic activity in the degradation of dyes (methylene blue and methyl orange) and selective oxidation of benzyl alcohol to benzaldehyde under natural sunlight. The synergistic combination of high surface area, porous network, lowered band gap due to heterostructured anatase–rutile mixtures are generally formed above 600 °C, yielding TiO₂ samples that deviate from nanoregime, and hence reduce the surface area, leading to a decrease in photocatalytic efficiency.6,26 It would be ideal to improve the efficiency of materials similar to Degussa P25.5,19 Major concerns in the preparation of compositions similar to Degussa are: (1) anatase–rutile mixtures are generally formed above 600 °C, yielding TiO₂ samples that deviate from nanoregime, and hence reduce the surface area, leading to a decrease in photocatalytic efficiency29 and (2) nitrogen doping stabilizes the anatase phase at higher temperatures, thus preventing the formation of a biphasic mixture.30

1. INTRODUCTION

TiO₂ photocatalysts1 have been of interest, as they facilitate the photocatalytic degradation of organic pollutants,2–6 selective organic transformations,7–11 and hydrogen generation by photocatalytic water splitting.12–14 Adsorbed radicals formed by photogenerated electron–hole pairs at the photocatalyst surface cause photocatalytic reactions.15,16 TiO₂ exists in three polymorphic forms—anatase, rutile, and brookite.1,15,16 The anatase phase has been found to exhibit higher photocatalytic efficiency.17,18 While anatase with a band gap of 3.2 eV is confined to absorption of UV light, rutile with a lower band gap (3.0 eV) can absorb visible light. However, low surface area, low redox potential, and faster electron–hole recombination render rutile ineffective.19 There has been immense interest to modify TiO₂ to enable it to absorb a wide range of wavelengths of solar energy,1,15,16 including the visible region.2,7,15,16,18 This has been achieved through various methods—metal20,21 or nonmetal doping,21,22 creating oxygen deficiency to form TiO₂−δ,23 dye sensitization15,16 or making TiO₂–quantum dots heterostructures.15,16,24 Factors such as the concentration and nature of the dopant, crystallite size, surface area, and anatase–rutile ratios2,4,6,14,19 control the photocatalytic efficiency of TiO₂.

Commercially available TiO₂ (Degussa P25) is a biphasic interfacial heterojunction of anatase–rutile (80:20).6,19,25 Bickley et al.25 were the first to propose a synergetic effect between anatase and rutile to be responsible for the relatively high photoreactivity of Degussa P25, in comparison to pure anatase or rutile.25 This is because the close proximity of anatase and rutile polymorphs results in two key processes:6,19,25–28 (1) the rutile phase with a lower band gap not only facilitates the production of charges in the visible light region but also transfers these charges to the conduction band of the anatase phase and eventually to the surface sites and (2) photogenerated holes from the valence band of anatase can be effectively transferred to that of rutile, thus leading to slow electron–hole recombination.6,26
anatase branched heterostructures were prepared by a combination of electrosprinning and the hydrothermal reaction.31 Patterned anatase–rutile junctions have been formed by calcination of patterned TiO\textsubscript{2} gel films.32 Pulsed-pressure MOCVD has been used to fabricate anatase–rutile heterojunctions.33 Porous films of TiO\textsubscript{2} mixtures have been prepared through plasma electrolytic oxidation (PEO).34 Heterogeneous nanostructures of anatase nanoparticles on rutile nanorods were synthesized through layer-by-layer, electrostatic deposition.34 Though the existing synthesis routes yield anatase–rutile mixtures/heterojunctions, in most cases, multistep reactions are involved and only a few of them yield porous products. While it is important to find simpler scalable methods for anatase–rutile mixtures of suitable ratios, it would also be of interest to obtain these in the form of light-weight porous monoliths so that these could be used as floats35 in water bodies for pollutant degradation applications. Our group has developed a self-sustained combustion synthesis of metal oxide foams using starch-based molded pellets.36,37 For example, t-ZrO\textsubscript{2} monolithic foams could be obtained by subjecting a pellet made up of ZrO(NO\textsubscript{3})\textsubscript{2}, urea, and starch.36,37 Adapting this method,36,37 in this work, we have synthesized macroporous monoliths of anatase–rutile TiO\textsubscript{2}. The excess of carbon in the reaction mixture ensured carbon doping (C-doping) of TiO\textsubscript{2}. These monoliths are found to be quite efficient in natural sunlight photocatalysis.

2. EXPERIMENTAL SECTION

2.1. Synthesis of Porous TiO\textsubscript{2} by the Combustion Method. Macroporous TiO\textsubscript{2} was prepared by the combustion method using TiCl\textsubscript{4} as a precursor, urea as a fuel, ammonium nitrate as an oxidizer and starch as a binder. Urea (0.011 mol, 0.7125 g) was mixed with 0.8435 g of ammonium nitrate (0.01 mol), starch, and 0.5 mL of TiCl\textsubscript{4} (0.86 g, 0.004 mol). The resulting mixture was ground into a dough-like consistency that could be molded into pellets of the desired shape. The mass of starch was varied from 100 to 2000 mg. The pellet was placed in a preheated crucible (800 °C) in an electric Bunsen. Instantly, a vigorous reaction was observed with the formation of an oxide foam. The oxide foam was heated in air at 800 °C for 20 min to burn away the organic remnants.

2.2. Photocatalytic Degradation of Dyes. Macroporous TiO\textsubscript{2} (10 mg) was dispersed in 100 mL of the dye solution (10 mg L-1). The solution was stirred in the dark for 1 h. After attaining the equilibrium, the solution wasirradiated with natural sunlight. Aliquots were collected periodically, and the catalyst was removed by centrifugation. The dye concentration was monitored by measuring the absorbance of methylene blue (MB) at 664 nm and that of methyl orange (MO) at 464 nm.

2.3. Photocatalytic Selective Oxidation of Alcohol. Macroporous TiO\textsubscript{2} (10 mg) and 10 μL of benzyl alcohol (0.1 mmol) were added to 1.5 mL of oxygen saturated benzo trifluoride (BTF). The solution was stirred in the dark for 0.5 h. The solution was then transferred into a Pyrex glass filled with oxygen. The solution was irradiated with direct sunlight. After the reaction, the catalyst was removed by centrifugation. High-performance liquid chromatography (HPLC) was used to monitor the oxidation of the alcohol.

2.4. Characterization. The samples were characterized by X-ray diffraction (XRD) using a PANalytical Xpert pro diffractometer (Cu K\textalpha radiation, secondary graphite mono-chromator, scanning rate of 1° 2θ/min). IR spectroscopic studies were carried out in a PerkinElmer FTIR spectrophotometer (spectra two) in the range from 4000 to 550 cm-1 with a resolution of 4 cm-1. X-ray photoelectron spectra (XPS) of the samples were recorded using a Kratos axis Ultra DLD. Scanning electron microscopy (SEM) images were recorded using a Zeiss, Ultra 55 field emission scanning electron microscope. A PerkinElmer LS 35 spectrometer was used to record the UV–visible spectra. The catalytic oxidation of benzyl alcohol was monitored by HPLC (Jasco) using a C18 column and a UV detector at 253 nm. A mixture of water and acetonitrile in a 70:30 volume ratio and 0.2 M phosphoric acid was used as the mobile phase. The mobile phase flow rate was maintained at 0.8 mL min-1. The nitrogen sorption analysis was performed in a Belsorp mini-II instrument at liquid nitrogen temperature. The surface area of the material was determined by employing the Brunauer–Emmett–Teller equation. The pore sizes and pore volumes of the materials were obtained by the Barrett–Joyner–Halenda (BJH) method.

3. RESULTS AND DISCUSSION

The processes involved in the formation of porous TiO\textsubscript{2} monoliths by the starch pellet combustion method are schematically depicted in Figure 1. Once the combustion is initiated, the pellet catches fire and grows into a voluminous cylindrical foamy product, with its radius comparable to the radius of the initial pellet, within a few seconds. Partial burning of starch leaves behind a lot of carbonaceous impurities at this stage. Further heating in air burns away these impurities leaving behind a porous monolith of TiO\textsubscript{2}.

3.1. Catalyst Characterization. The XRD patterns of macroporous TiO\textsubscript{2} obtained by combustion synthesis with varying amounts of starch are shown in Figure 2. All of the peaks could be assigned to the anatase phase in the case of TiO\textsubscript{2} prepared in the presence of 100 mg of starch (Figure 2a). Peaks due to the rutile phase of TiO\textsubscript{2} are observed on increasing the mass of starch to 250 mg and above (Figure 2b–g). With an
The chemical composition of TiO₂ was further probed using X-ray photoelectron spectroscopy (XPS). The Ti 2p spectrum (Figure 3a) shows peaks (458.77 and 464.47 eV) due to Ti⁴⁺. The core-level C 1s spectrum (Figure 3b) exhibits peaks at 284.95, 286.47, and 288.86 eV that are ascribed to adventitious carbon from the internal standard, –C–O, and –C≡O, respectively. No peaks due to Ti–C (281 eV) were observed, indicating that carbon is not in the substitutional lattice position. These features suggest that carbon could be in the interstitial position of the TiO₂ lattice or as carbonate species at the surface. The infrared spectrum (Figure S2, Supporting Information) further corroborates the existence of –C–O species along with strong –O–H stretching and bending absorptions, indicating the interaction of moisture with surface carboxylate species. The N 1s spectrum (not shown) indicates the absence of nitrogen in the sample. These observations are in accordance with the literature for C-doped TiO₂.

The visible absorbance spectrum (Figure 3c) of porous TiO₂ (350 mg of starch) exhibits a broad absorption range in the visible region with a band gap of 2.51 eV calculated from the Tauc plot (the inset of Figure 3c). In comparison to theoretical 3.00 and 3.20 eV for rutile and anatase, respectively, narrowing of the band gap in porous TiO₂ is due to anatase–rutile heterojunctions in addition to contributions of dopants and defects as indicated by XPS studies. The SEM images (Figure 4a,b) of TiO₂ (350 mg of starch) show an irregularly shaped, coral-like, highly porous network with macropores of diameters of ~1 μm. The porous nature is further corroborated by the BET surface area measurements (Figure 4e,f). The surface area is measured to be 33.4 m² g⁻¹ with a pore volume of 0.12 cm³ g⁻¹ and a mean pore diameter of 14.6 nm, suggesting that TiO₂ obtained using 350 mg of starch exhibits macro- and mesopores. In comparison, the SEM image of TiO₂ (2000 mg of starch) comprises sheets (Figure 4c,d) that are in μm size laterally without any visible macropores. The surface area is measured to be 28.5 m² g⁻¹, with a pore volume of 0.009 cm³ g⁻¹ and a mean pore diameter of 14.0 nm, indicating that the material is mesoporous.

3.2. Mechanism of Formation of Anatase–Rutile Biphasic Porous TiO₂

The anatase–rutile transformation is reconstructive, wherein the transformation involves the breaking and reforming of bonds. As suggested in the previous studies, the amount of starch and ΔG°(f) of the metal oxide are expected to control the porosity of the material. The
amount of gases evolved depends on the mass of starch used. The energy released (ΔG°) during the reaction decides the local temperature. All of the reactions, using different amounts of starch, have been carried out under similar heating conditions. During combustion, the internal temperature is expected to increase when a higher mass of starch is being burnt, thus resulting in anatase–rutile transformation. However, experimental observations suggest that the internal temperature decreases with increasing amounts of starch.37 With a higher amount of starch, burning of starch through self-sustained combustion is slow, resulting in the lowering of the overall temperature. The reason for lower rutile content in the products seems to be purely kinetic. The total reaction time is ~ 20 min, which is insufficient to convert the initially formed anatase into rutile. The increased rutile content with an increase in starch may be attributed to the reductive atmosphere created by starch. During combustion, starch is dehydrated to give carbon, which being reductive in nature results in oxygen vacancies, leading to an increased rate of transformation of anatase to rutile.42

As the ΔG° of TiO$_2$ is the same for reactions using 350 and 2000 mg of starch, the surface area and porosity solely depend on the nature of combustion of starch. With lower amounts of starch, the temperature is sufficient to cause high rates of the reaction, resulting in the local pressure build up and coral-like combusted products. As the starch content increases, the reaction proceeds at a lower rate, analogous to the smoldering of a cigarette stick.37 This is conducive to the formation of anisotropic products, as starch–sponge template could burn rapidly, uniformly leading to interconnected thin, porous sheets.

3.3. Photocatalytic Performance of Anatase–Rutile Biphasic Porous TiO$_2$ in Dye Degradation. The photocatalytic efficiency of porous TiO$_2$ prepared with varying amounts of starch was examined by monitoring the degradation of methylene blue under solar irradiation. The photocatalytic activity of porous TiO$_2$ summarized in Table 1 suggests that

Figure 4. Bright-field SEM images of porous TiO$_2$ prepared using 350 mg of starch (a, b) and 2000 mg of starch (c, d). Nitrogen adsorption–desorption isotherms of porous TiO$_2$ prepared using 350 mg of starch (e) and 2000 mg of starch (f). The insets in (e, f) are the corresponding BJH plots.
TiO₂ prepared with lower starch content degrade the dye with minimum adsorption in comparison to TiO₂ prepared using a higher amount of starch. The UV−visible spectra of the dye extracted from the catalytic sample indicate that the reaction in the dark is adsorption and not degradation. The increased adsorption with the use of increased amounts of starch could be attributed to the increased surface −O−H and −C−O as the starch content increases, though the surface areas of all of the samples are comparable.

The photocatalytic activity of porous TiO₂ (350 mg of starch) in the degradation of MB and MO was evaluated under direct solar light. In all of the cases, prior to photocatalytic degradation, adsorption−desorption equilibriu m in the dark indicates negligible or low adsorption. Figure 5a,b represents the time-resolved UV−visible absorption spectra of photocatalytic degradation of MB and MO, respectively. In both cases, the intensity of the prominent absorption decreases with time. The log (absorbance) versus time plots (insets of Figure 5a,b) of MB and MO degradation indicate pseudo-first-order kinetics with rate constants of 0.034 and 0.0511 min⁻¹, respectively. Over four degradation cycles (the inset of Figure 5c), porous TiO₂ (prepared with 350 mg of starch) exhibits consistent catalytic activity. Adsorbed water and oxygen on the surface of TiO₂ produce reactive •OH and •O₂⁻ in the presence of sunlight. Degradation takes place only in the presence of a catalyst and sunlight (Table S1, Supporting Information) due to the increased concentration of net oxidizing species in solution. Nonlinear dependency on the amount of the catalyst appears to be exponential with saturation beginning at 10 mg of the catalyst (Figure 5c).

One of the requisites of an ideal catalyst is its ability to catalyze the degradation of organics under all pH conditions. The effect of pH on the degradation of MB (Figure 5d) clearly indicates that porous TiO₂ effectively catalyze dye degradation in a wide range of pH values.

Table 1. Summary of the Solar Photocatalytic Degradation of Methylene Blue (100 mL, 10 ppm) using 10 mg of Porous TiO₂ Synthesized using Varying Amounts of Starch

starch (mg)	% composition	adsorption (%)	MB degradation	time (min)
100	100 anatase	0	0	120
250	96 anatase, 4 rutile	4	80	120
350	85 anatase, 15 rutile	6	100	80
500	82 anatase, 18 rutile	12	100	110
750	70 anatase, 30 rutile	19	100	120
1000	67 anatase, 33 rutile	30	100	120
2000	60 anatase, 40 rutile	42	100	120

Figure 5. Degradation of dyes (10 mg L⁻¹) was traced through UV−visible absorption spectra of reaction mixtures containing 10 mg of porous TiO₂ heterojunctions as a photocatalyst. Evolution of absorption spectra with time in the case of (a) MB and (b) MO, and the insets correspond to log (absorbance) versus time plots. Variation of the photocatalytic MB (100 mL, 10 mg L⁻¹) degradation efficiency with (c) mass of porous TiO₂ heterojunctions as a catalyst and (d) pH. Catalytic efficiency over repeated cycles in the case of MB degradation is shown as the inset in (c).
follows (Figure 6B). The conversion and selectivity were de-
conversion of 80% with 100% selectivity was achieved in 60 min
of the acid being zero at all times, indicating 100% selectivity. A
increase in the concentration of aldehyde with the concentration
decrease in the concentration of alcohol and a corresponding
alcohol.11,43
potential photocatalyst in selective oxidation of benzyl
molecules by optically excited TiO2 is thermodynamically
feasible at room temperature in the presence of oxygen.11 The
photogenerated holes with an oxidation potential of 3.0 V
renders TiO2 with considerable oxidizing capability.11,43
Benzaldehyde is a widely used raw material in pharmaceutical
industries. Benzaldehyde is synthesized through selective
oxidation of benzyl alcohol using liquid-phase chlorination, a
toxic and corrosive process.11,44 It is of importance to develop
alternative chlorine-free routes to produce benzaldehyde.44,45 In
the presence of noble metal46 or transition metal complexes47 as
catalysts, molecular oxygen has emerged as a primary oxidant in
the oxidation of alcohols to carbonyl compounds.11,44 In
Photocatalytic selective organic transformations,44–47 utilizing
renewable solar energy, have garnered interest as a greener and
efficient route.44–46 Environmentally benign, economically
viable, and naturally abundant TiO2 has been explored as a
potential photocatalyst in selective oxidation of benzyl
alcohol.11,43–47
Benzy alcohol interacts with the surface hydroxyl groups of
the photoexcited porous TiO2. The photogenerated holes in
TiO2 abstract the protons from benzyl alcohol, while the alcohol
loses an electron and gets oxidized to aldehyde. The longer
surface adsorption of the reactant (alcohol) or the product
(aldehyde) not only leads to a decrease in the photocatalytic
activity of TiO2 but also leads to further oxidation of aldehyde to
carboxylic acid, thus minimizing the selectivity of the oxidation process.
The porous TiO2 (prepared using 350 mg of starch)
heterostructure exhibits excellent photocatalytic activity toward
selective oxidation of benzyl alcohol to benzaldehyde. The
HPLC chromatograms of the aliquots of the reaction mixture
taken at different time intervals (Figure 6A) show a gradual
decrease in the concentration of alcohol and a corresponding
increase in the concentration of aldehyde with the concentration
of the acid being zero at all times, indicating 100% selectivity. A
conversion of 80% with 100% selectivity was achieved in 60 min
(Figure 6B). The conversion and selectivity are defined as follows
conversion percentage = (Co – Calk) / Co × 100

\[\text{selectivity percentage} = \frac{C_{\text{aldehyde}}}{(C_o - C_{\text{alcohol}})} \times 100 \]

C0 is the initial concentration of benzyl alcohol, Calk and
Caldehyde are the concentrations of benzyl alcohol and
benzaldehyde, respectively, at a given reaction time. However,
beyond 60 min, the progress of the reaction was quite slow and a
conversion percentage of 87 was observed after 120 min. The
catalyst could be recovered and reused to get similar results over
four cycles.

3.5. Reasons for the Enhanced Photocatalytic Per-
formance of Anatase–Rutile Biphasic Porous TiO2.
Adsorbed water and oxygen on the surface of porous TiO2
monoliths produce reactive *OH and *O2•− in the presence of
sunlight. These radicals cause degradation of the dye. The
porous monolith architecture of TiO2 facilitates the formation of
more heterojunctions, thereby increasing the activity. With the
conduction band edge of rutile ~0.2 eV lower than that of
anatase, the photoexcited electrons are effectively transferred
from the conduction band of rutile to that of anatase at the
interface between anatase and rutile.5,26 While this promotes
photoreduction at the anatase site (Figure 7), photooxidation
takes place either on the anatase or rutile surface.

Figure 7. Schematic of the processes involved in the sunlight
photocatalytic activity of porous biphasic C-doped TiO2 monoliths.

The photocatalytic performance of all of the porous TiO2
monoliths is higher than that of commercial Degussa P25. This
is attributed to the following reasons: (1) a porous network
provides channels for faster reactant diffusion and more active
catalytic sites, (2) anatase–rutile heterojunctions aid in
electron–hole separation and a wider range of solar energy
absorption, and (3) doped carbon not only contributes to the
lowering of the absorption band gap of TiO$_2$ but also renders the TiO$_2$ surface hydrophilic due to increased interaction with moisture through hydrogen bonding. The heterojunctions obtained using 350 mg of starch exhibit higher photocatalytic activity in comparison to all other TiO$_2$ monoliths (Table 2). The highest activity could be as a result of optimum anatase−rutile composition (85:15) and the presence of interstitial carbon as −C=O that aids in better wettability of the catalyst and thus faster interaction and degradation of organics.6,38,41 TiO$_2$ prepared using 100 and 200 mg of starch exhibit lower photoactivity (Table 1) due to the low percentage of anatase−rutile heterojunctions (Figure 2). On the other hand, increasing the percentage of anatase−rutile heterojunctions and carbon doping using higher starch content (Table 1) also does not improve the performance of porous TiO$_2$. Further, the surface areas of TiO$_2$ prepared using 350 and 2000 mg of starch are comparable. Therefore, the increased solar photocatalytic activity for the heterojunctions can be correlated to the combined effect of the porous network, band gap narrowing due anatase−rutile heterojunctions, and carbon doping. Porous TiO$_2$ prepared using 350 mg of starch shows better performance in dye degradation under solar light compared to the already known TiO$_2$-based catalysts (Table 2). In fact, its catalytic activity under sunlight is better than some of the catalysts under UV irradiation. For selective oxidation of benzaldehyde, our catalyst under sunlight performs better than known catalysts under UV light. The enhanced photocatalytic activity under ambient conditions in natural sunlight renders porous TiO$_2$ monoliths a superior catalyst and a desired material for environmental amelioration.

Table 2. Comparison of Photocatalytic Activities of Porous TiO$_2$ (350 mg of Starch) with other TiO$_2$ Catalysts Reported in the Literature

catalyst	BET surface area (m2 g$^{-1}$)	mass of the catalyst (mg)	pollutant conc. in ppm and (volume)	degradation	irradiation source	time (min)	% ref	
Methylene Blue Degradation								
porous TiO$_2$ (A/R = 85:15)	33.37	10	10 (100 mL)	sunlight	80	100	present work	
TiO$_2$ nanoflower (A/R = 99:1)	36.9	30	12.79 (150 mL)	UV light	30	100	17	
TiO$_2$ A/B nanoparticles	183.6	60	10 (600 mL)	UV light	180	97	48	
TiO$_2$ rods (A = 100%)	40.5	30	12.79 (150 mL)	UV light	40	80	49	
mesoporous TiO$_2$ (A/B = 80:20)	186	120	32 (200 mL)	UV light	70	100	50	
TiO$_2$ anatase/rutile nanoflowers	106.29	10	15 (20 mL)	350 W xenon lamp	120	72	51	
graphene-wrapped anatase−rutile hierarchical TiO$_2$ nanoflower	33.2	30	500 (40 mL)	500 W Hg lamp	30	100	52	
porous TiO$_2$ (A/R = 55:45)	–	–	1.28 (30 mL)	UV light	100	100	33	
TiO$_2$−N$_2$ heterojunction (A/R = 90:10)	79.6	60	3 (50 mL)	solar simulator	180	90	19	
TiO$_2$ (A = 100%)	159	1.6	10 (8 mL)	UV light	180	90	53	
nanocrystalline TiO$_2$(A = 100)	246	100	100 (100 mL)	sunlight	225	100	38	
TiO$_2$ (A = 100)	29	20	10 (40 mL)	UV light	180	100	18	
TiO$_2$ nanofilms (A = 100%)	–	100	4 (100 mL)	UV light	50	67	54	
Methyl Orange Degradation								
porous TiO$_2$ (A/R = 85:15)	33.37	10	10 (100 mL)	sunlight	105	91	present work	
core−shell rutile−anatase TiO$_2$	–	20	10 (150 mL)	UV light	150	100	55	
porous TiO$_2$−Pt−rGO	61.7	20	10 (20 mL)	300 W xenon lamp	120	80	56	
TiO$_2$ nanoflower (A/R = 82:18)	165	300	10 (300 mL)	500 W xenon lamp	60	98	57	
Benzyl Alcohol Oxidation								
catalyst	BET surface area (m2 g$^{-1}$)	mass of the catalyst (mg)	conc. of alcohol (mmol)	dehydration	irradiation source	time (min)	% conversion; selectivity	ref
porous TiO$_2$ (A/R = 85:15)	33.37	10	0.1	sunlight	60	80; 100	present work	
CdS/TiO$_2$	201	8	0.1	500 W xenon lamp	240	45; 97	8	
carbonate like doped TiO$_2$	160	16	0.1	300 W xenon lamp	360	80.6; 99	58	
TiO$_2$−CdS QDs	144	50	0.2	300 W xenon lamp	180	95; 100	9	
CdS/TiO$_2$ composites	42.9	8	0.1	300 W xenon lamp	240	22.3; 100	10	
TiO$_2$ (A = 100%)	210	53	0.1	100 W Hg lamp	240	51; 99	11	

aA = anatase; R = rutile; and B = brookite.

ACS Omega http://pubs.acs.org/journal/acsodf

https://doi.org/10.1021/acsomega.1c00825
ACS Omega 2021, 6, 12124−12132

12130
Solar light active macroporous C-doped TiO₂ heterojunction photocatalysts were prepared through simple, single-step, self-sustained combustion reactions. Porous monoliths of different anatase–rutile ratios (increasing rutile component from 0 to 40%) were obtained by varying the amount of starch. Monoliths with an anatase–rutile ratio of 85:15 exhibit exceptional photocatalytic activity in the degradation of dyes (methylene blue and methyl orange) and selective oxidation of benzyl alcohol to benzaldehyde under natural sunlight. The synthesis route could be used as a general strategy to synthesize economically viable TiO₂ monoliths with multiple features for efficient natural sunlight photocatalytic applications such as H₂ production and CO₂ conversion.

REFERENCES

(1) Chen, X.; Mao, S. S. Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications. Chem. Rev. 2007, 107, 2891–2959.

(2) Wang, Y.; Saitow, K.-I. Mechanochemical Synthesis of Red-Light-Active Green TiO₂ Photocatalysts with Disorder: Defect-Rich, with Polymorphs, and No Metal Loading. Chem. Mater. 2020, 32, 9190–9200.

(3) Ullatli, S. G.; Ramakrishnan, R. M. Defect-Rich Brown TiO₂-e Nanoporous Flower Aggregates: Selective Photocatalytic Reversibility for Organic Dye Degradation. ACS Appl. Nano Mater. 2018, 1, 4045–4052.

(4) Kaplan, R.; Erjavec, B.; Dražič, G.; Grsadolnik, J.; Pintar, A. Simple synthesis of anatase/rutile/brookite TiO₂ nanocomposite with superior mineralization potential for photocatalytic degradation of water pollutants. Appl. Catal., B 2016, 181, 465–474.

(5) Wang, W.-K.; Chen, J.-J.; Gao, M.; Huang, Y.-X.; Zhang, X.; Yu, H.-Q. Photocatalytic Degradation of Atrazine by Boron-Doped TiO₂ with a Tunable Rutile/Anatase Ratio. Appl. Catal., B 2016, 195, 69–76.

(6) Luo, Z.; Poyraz, A. S.; Kuo, C.-H.; Miao, R.; Meng, Y.; Chen, S.-Y.; Jiang, T.; Wenos, C.; Suib, S. L. Crystalline Mixed Phase (Anatase/Rutile) Mesoporous Titanium Dioxides for Visible Light Photocatalytic Activity. Chem. Mater. 2015, 27, 6–17.

(7) Fukui, M.; Koshida, W.; Tanaka, A.; Hashimoto, K.; Kominami, H. Photocatalytic hydrogenation of nitrobenzenes to anilines over noble metal-free TiO₂, utilizing methanol as a hydrogen donor. Appl. Catal., B 2020, 268, No. 118446.

(8) Hu, Z.; Quan, H.; Chen, Z.; Shao, Y.; Li, D. New insight into efficient visible-light-driven photocatalytic organic transformation over CdS/TiO₂ photocatalysts. Photochem. Photobiol. Sci. 2018, 17, 51–59.

(9) Li, X.; Wang, J.; Men, Y.; Bian, Z. TiO₂ mesocrystal with exposed (001) facets and CdS quantum dots as an active visible photocatalyst for selective oxidation reactions. Appl. Catal., B 2016, 187, 115–121.

(10) Qin, N.; Liu, Y.; Wu, W.; Shen, L.; Chen, X.; Li, Z.; Wu, L. One-Dimensional CdS/TiO₂ Nanofiber Composites as Efficient Visible-Light-Driven Photocatalysts for Selective Organic Transformation: Synthesis, Characterization, and Performance. Langmuir 2015, 31, 1203–1209.

(11) Zhang, M.; Wang, Q.; Chen, C.; Zang, L.; Ma, W.; Zhao, J. Oxygen Atom Transfer in the Photocatalytic Oxidation of Alcohols by TiO₂: Oxygen Isotope Studies. Angew. Chem., Int. Ed. 2009, 48, 6081–6084.

(12) Yamausithorn, K.; Kobielus, M.; Macyk, W. TiO₂ with Tunable Anatase-to-Rutile Nanoparticles Ratios: How Does the Photocatalytic Depend on the Phase Composition and the Nature of Photocatalytic Reaction? ACS Appl. Nano Mater. 2021, 4, 633–643.

(13) Zhu, J.; Zhu, S.; Kong, X.; Liang, Y.; Li, Z.; Wu, S.; Luo, S.; Chang, C.; Cui, Z. Rutile-Coated B-Phase TiO₂ Heterojunction Nanobelts for Photocatalytic H₂ Evolution. ACS Appl. Nano Mater. 2020, 3, 10349–10359.

(14) Gardecka, A. J.; Bishop, C.; Lee, D.; Corby, S.; Parkin, I. P.; Kafizas, A.; Krumdieck, S. High efficiency water splitting photoanodes composed of nano-structured anatase-rutile TiO₂ heterojunctions by pulsed-pressure MOCVD. Appl. Catal., B 2018, 224, 904–911.

(15) Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiiuchi, Y.; Anpo, M.; Bahnemann, D. W. Understanding TiO₂ Photocatalysis: Mechanisms and Materials. Chem. Rev. 2014, 114, 9910–9986.

(16) Pelaez, M.; Nolan, N. T.; Pillai, S. C.; Seery, M. K.; Falars, P.; Kontos, A. G.; Dunlope, P. S. M.; Hamiltone, J. W. J.; Byrne, J. A.; O’Shea, K.; Entezari, M. H.; Dionysiou, D. D. A Review On The Visible Light Active Titanium Dioxide Photocatalysts for Environmental Applications. Appl. Catal., B 2012, 125, 331–349.

(17) Harris, J.; Silk, R.; Smith, M.; Dong, Y.; Chen, W.-T.; Waterhouse, G. I. N. Hierarchical TiO₂ Nanoflower Photocatalysts with Remarkable Activity for Aqueous Methane Blue Photooxidation. ACS Omega 2020, 5, 18919–18934.

(18) Toyoda, M.; Nanbu, Y.; Nakazawa, Y.; Hirano, M.; Inagaki, M. Effect of crystallinity of anatase on photocatalytic activity for methylene blue decomposition in water. Appl. Catal., B 2004, 49, 227–232.

(19) Etacheri, V.; Seery, M. K.; Hinder, S. J.; Pillai, S. C.; Byrne, J. A.; O’Shea, K.; Entezari, M. H.; Dionysiou, D. D. A Review On The Visible Light Active Titanium Dioxide Photocatalysts for Environmental Applications. Appl. Catal., B 2012, 125, 331–349.

(20) Kumaravel, V.; Mathew, S.; Bartlett, J.; Pillai, S. C. Highly Visible Light Active TiO₂-N₂ Heterojunction Photocatalysts. Chem. Mater. 2010, 22, 3843–3853.

(21) Serpone, N. Is the Band Gap of Pristine TiO₂ Narrowed by Anion and Cation-Doping of Titanium Dioxide in Second-Generation Photocatalysts? J. Phys. Chem. B 2006, 110, 24287–24293.

(22) Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-Light Induced Photocatalysis in Nitrogen doped Titanium Dioxides. Science 2001, 293, 269–271.

ACKNOWLEDGMENTS

This work was supported by SERB, India (EMR/2015/001982).

AUTHOR INFORMATION

Corresponding Author

C. Nethravathi — Materials Research Group, Department of Chemistry, St. Joseph’s College, Bangalore 560027, India; Department of Chemistry, Mount Carmel College, Bangalore 560052, India; orcid.org/0000-0002-5000-7417; Email: nethravathic@gmail.com

Authors

R. Ragesh Nath — Materials Research Group, Department of Chemistry, St. Joseph’s College, Bangalore 560027, India

Michael Rajamathi — Materials Research Group, Department of Chemistry, St. Joseph’s College, Bangalore 560027, India; orcid.org/0000-0002-4975-1855

Complete contact information is available at: https://pubs.acs.org/doi/10.1021/acsomg.1c00825

Notes

The authors declare no competing financial interest.
Page 55, 533–536.

(28) Hurum, D. C.; Agrios, A. G.; Gray, K. A.; Rajh, T.; Thurnauer, M. C. Explaining the Enhanced Photocatalytic Activity of Degussa P25 Mixed-Phase TiO2 Using EPR. J. Phys. Chem. B 2003, 107, 4545–4549.

(29) Pillai, S. C.; Periyat, P.; George, R.; McCormack, D. E.; Seery, M. K.; Hayden, H.; Colceavy, J.; Corr, D.; Hinder, S. J.; Synthesis of High-Temperature Stabilized Anatase TiO2 Photocatalyst. J. Phys. Chem. C 2007, 111, 1605–1611.

(30) Sato, S.; Nakamura, R.; Abe, S. Visible-light sensitization of TiO2 photocatalysts by wet method N doping. Appl. Catal., A 2005, 284, 131–137.

(31) Wang, C.; Zhang, X.; Shao, C.; Zhang, Y.; Yang, J.; Sun, P.; Liu, X.; Liu, H.; Liu, X.; Xie, T.; Wang, D. Rutile TiO2 nanowires on anatase TiO2 nanoflours: A branched heterostructured photocatalysts via interface-assembled fabrication approach. J. Colloid Interface Sci. 2011, 363, 157–164.

(32) Kawahara, T.; Konishi, Y.; Tada, H.; Tohge, N.; Nishii, J.; Ito, S. A Patterned TiO2 (Anatase)/TiO2 (Rutile) Bilayer-Type Photocatalyst: Effect of the Anatase/Rutile Junction on the Photocatalytic Activity. Angew. Chem., Int. Ed. 2002, 41, 2811–2813.

(33) Su, R.; Bechstein, R.; So, L.; Yang, R. T.; Sillassenv, M.; Esbjornsson, B.; Palmqvist, A.; Besenbacher, F. How the Anatase-Rutile Ratio Influences the Photoactivity of TiO2. J. Phys. Chem. C 2011, 115, 24287–24292.

(34) Liu, Z.; Zhang, X.; Nishimoto, S.; Jin, M.; Tryk, D. A.; Murakami, T.; Fujishima, A. Anatase TiO2 Nanoparticles on Rutile TiO2 Nanorods: A Heterogeneous Nanostructure via Layer-by-Layer Assembly. Langmuir 2007, 23, 10916–10919.

(35) Xing, Z.; Zhang, J.; Cui, J.; Yin, J.; Zhao, T.; Kuang, J.; Xiu, Z.; Wan, N.; Zhou, W. Recent advances in floating TiO2-based photocatalysts for environmental application. Appl. Catal., B 2018, 225, 452–467.

(36) Venugopala, B. R.; Samuel, E. P.; Shivakumara, C.; Rajamathi, M. Macroporous metal oxide foams through self-sustained combustion reactions. J. Porous Mater. 2009, 16, 205–208.

(37) Venugopala, B. R.; Naik, S.; Antony, M.; Ramalingam, G.; Rajamathi, M.; Raghavan, S. Amorphous, Monoclinic, and Tetragonal Porous Zirconia Through a Controlled Self-Sustained Combustion Route. J. Am. Ceram. Soc. 2011, 94, 1747–1755.

(38) Nagaveni, K.; Hegde, M. S.; Ravishankar, N.; Subbanna, G. N.; Madras, G. Synthesis and Structure of Nanocrystalline TiO2 with Lower Band Gap Showing High Photocatalytic Activity. Langmuir 2004, 20, 2900–2907.

(39) Saktivel, S.; Kisch, H. Daylight Photocatalysis by Carbon-Modified Titanium Dioxide. Angew. Chem., Int. Ed. 2003, 42, 4908–4911.

(40) Khan, S. U. M.; Al-Shahry, M.; Inglet, W. B., Jr. Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2. Science 2002, 297, 2243–2245.

(41) Nagaveni, K.; Sivalingam, G.; Hegde, M. S.; Giridhar, M. Solar photocatalytic degradation of dyes: high activity of combustion synthesized nano TiO2. Appl. Catal., B 2004, 48, 83–93.