Possible pre-LEP200 SUSY threshold signals

V. Bargera, W.-Y. Keungb and R.J.N. Phillipsc

aPhysics Department, University of Wisconsin, Madison, WI 53706, USA
bPhysics Department, University of Illinois at Chicago, IL 60607-7059, USA
cRutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, UK

Abstract

If R-parity is not conserved, the SUSY-threshold production process $e^+e^- \to \chi_1^0\chi_1^0$ could be detectable with relatively low luminosity. Hence an interesting mass range for the lightest SUSY particle χ_1^0 could be explored at the CERN LEP collider during its intermediate energy development, even before the full LEP200 upgrade is completed. We present cross section formulas and discuss event rates and detection for the three distinct decay options: $\chi_1^0 \to 2$ charged leptons + neutrino, $\chi_1^0 \to$ lepton + 2 quarks, and $\chi_1^0 \to 3$ quarks.
The theoretical attractions of Supersymmetry (SUSY) still lack the direct experimental support that would come from discovering some of the predicted SUSY partners of Standard Model (SM) particles. Their non-appearance may be attributed to their masses being beyond the reach of experimental searches so far. Also, in the Minimal Supersymmetric Standard Model (MSSM)[1], the lightest SUSY partner (usually expected to be the lightest neutralino χ^0_1) is stable and weakly interacting so that the lowest-threshold SUSY process

$$e^+e^- \rightarrow \chi^0_1\chi^0_1$$

(1)
is completely invisible. But if χ^0_1 in fact decays visibly, as can happen if the conventional assumption of R-parity conservation is relaxed[2,3,4,5,7], this process will be detectable and in fact may have an appreciable cross section, depending on the mixture of electroweak gauginos and higgsinos in χ^0_1 and on the mass of the lightest selectron. (Strictly speaking, R-parity violation (RPV) also allows single-SUSY-partner production with lower thresholds than Eq.(1), but the corresponding production cross sections depend on unknown RPV-couplings that are either constrained[4,5,6] or suspected to be much smaller than the gauge and Yukawa couplings controlling Eq.(1)). In the present Letter we provide cross section formulas and numerical evaluations for Eq.(1), and discuss the types of signal that would be observable in an RPV scenario where χ^0_1 is the lightest SUSY partner (LSP). We also point out that these cross sections are big enough to enable significant SUSY-RPV searches during the gradual upgrade of the CERN e^+e^- collider LEP from CM energy $\sqrt{s} \approx 90$ GeV toward 200 GeV, even though the intermediate-energy running will not accumulate high luminosity. An experimental search has already been made for Eq.(1) at LEP[8], assuming that χ^0_1 is a pure photino and taking a specific RPV model[9]; it excludes a range of photino masses between 5 and 42 GeV in this model, provided the exchanged selectron is light enough. Also possible LEP200 τ-lepton signals from Eq.(1) have been considered in Ref.[6]. But other discussions of SUSY-RPV signals at e^+e^- colliders[2,3,10] usually neglect Eq.(1) in favor of processes such as slepton-pair or chargino-pair production, which may have larger cross sections eventually but also have higher thresholds.

With the MSSM particle content, the most general gauge- and SUSY-invariant Lagrangian includes the following Yukawa coupling terms[2,3]:

$$\mathcal{L}_{RPV} = \lambda_{ijk} L_i L_j E^c_k + \lambda'_{ijk} L_i Q_j D^c_k + \lambda''_{ijk} U_i D^c_j D^c_k,$$

(2)
where L_i and E_i^c are the (left-handed) lepton doublet and antilepton singlet chiral superfields (with generation index i), while Q_i and U_i^c, D_i^c are the quark doublet and antiquark singlet superfields. Antisymmetry gives $\lambda_{ijk} = -\lambda_{jik}$ and $\lambda'_{ijk} = -\lambda''_{ikj}$. The LLE^c and LQD^c terms violate lepton number L while the $U^cD^cD^c$ terms violate baryon number B.

In the MSSM these terms are all conventionally forbidden by a multiplicative symmetry called R-parity (R_p), with $R_p = 1$ for all SM particles and $R_p = -1$ for their SUSY partners, in order to prevent rapid proton decay. However, proton decay is prevented if either the L-violating or the B-violating terms are absent; this is an adequate restriction on RPV scenarios. Since χ^0_1 can couple to any of these superfields, each RPV term provides a possible decay channel into SM fermions (via sfermion exchanges) as follows:

\[\lambda_{ijk} \Rightarrow \chi^0_1 \rightarrow \ell^-_i \nu_j \ell^+_k, \quad (3) \]
\[\lambda'_{ijk} \Rightarrow \chi^0_1 \rightarrow \ell^-_i u_j d_k, \nu_i d_j \bar{d}_k, \quad (4) \]
\[\lambda''_{ijk} \Rightarrow \chi^0_1 \rightarrow \bar{u}_i \bar{d}_j d_k, \quad (5) \]

together with the charge-conjugate channels. In practical applications, it is customary to consider just one of the 45 independent couplings in Eq.(2) at a time, since it seems likely that one will be more important than the others. For example, the OPAL search\[8\] probed $\chi^0_1 \rightarrow e\nu_\tau, \nu_e\mu\tau$ signals\[9\] due to λ_{123}. (More complicated situations, where several λ_{ijk}, λ'_{lmn} contributions are comparable, are discussed however in Ref.[6]). The requirement that χ^0_1 decays within the detector (typically within 1 m) translates into\[3\]

\[\lambda \gtrsim 5 \times 10^{-6} \sqrt{\beta \gamma} (m_f) \lambda^2 (m_{\chi^0_1})^{-5/2}, \quad (6) \]

where λ denotes the dominant RPV coupling, $m_{\chi^0_1}$ and m_f are the masses of χ^0_1 and the dominant exchanged sfermion (in GeV), while $\beta \gamma = \sqrt{s/(4m_{\chi^0_1}^2)} - 1$ is the appropriate Lorentz factor for χ^0_1. For typical values of present interest $m_{\chi^0_1} \sim 50$, $m_f \sim 100$, $\beta \gamma \sim 1$, this gives a very weak lower bound $\lambda \gtrsim 3 \times 10^{-6}$. The alternative types of decay mode in Eqs.(3)–(5) give quite different final state decay signatures for Eq.(1), which we now discuss.

(a) LLE^c-mediated decays: Eq.(3). Each χ^0_1 decays to two charged plus one neutral lepton; e.g. the λ_{132} mode gives

\[\chi^0_1 \rightarrow e^-\nu_\tau \mu^+, \nu_e\tau^- \mu^+, e^+\bar{\nu}_\tau \mu^-, \bar{\nu}_e\tau^+ \mu^-, \quad (7) \]

with equal probabilities, assuming the contributing sfermion masses do not depend on the generation. In this case all final states contain two muons; 50% contain same-sign
12.5% contain same-sign dimuons plus same-sign dielectrons. In other cases the lepton flavors are distributed differently, but all have missing energy-momentum and same-sign dileptons among their signatures. Because of the missing neutrinos here, one cannot directly reconstruct the χ^0_1 mass, but it can in principle be inferred from the distribution of opposite-sign-dilepton invariant mass $m(\ell^+\ell^-)$ (with four entries per event, two of which have a common χ^0_1 parent and hence $m < m_{\chi^0_1}$).

(b) $LQDC^c$-mediated decays: Eq.(4). Each χ^0_1 decays to a charged or neutral lepton plus two quarks (i.e. potentially two jets); e.g. the λ'_{213} mode gives

$$
\chi^0_1 \rightarrow \mu^- \bar{u}b, \nu_\mu \bar{d}b, \mu^+ \bar{u}b, \bar{\nu}_\mu \bar{d}b,
$$

with comparable probabilities, that become equal if $\tilde{m}_{uL} = \tilde{m}_{\nu_\mu L}$, \tilde{m}_{dL} and χ^0_1 is a pure bino. In the latter case, 50% of final states have dimuons (plus jets plus no missing energy), 25% have same-sign dimuons. We can attempt to reconstruct the χ^0_1 mass as follows. We partition each $\ell\ell jjjj$ event into $(\ell jj)_1(\ell jj)_2$ clusters, with invariant masses m_1, m_2, in six different ways; each such partition represents a possible $(\chi^0_1)(\chi^0_1)$ reconstruction; the best reconstruction is the one with least difference between m_1 and m_2, and the best reconstructed χ^0_1 mass is the corresponding mean value $m(\ell jj) = (m_1 + m_2)/2$, with a distribution peaked near the true value $m_{\chi^0_1}$.

(c) $U^cD^cD^c$-mediated decays: Eq.(5). Each χ^0_1 decays to three quarks (i.e. potentially three jets) with no missing energy. There are 10 ways to partition 6 jets into two 3-jet clusters with masses m_1 and m_2, say, to provide candidate reconstructions; as before, the best reconstruction is the one with least difference between m_1 and m_2, and the best χ^0_1 mass estimate is the mean value $m(jjj) = (m_1 + m_2)/2$, with a distribution peaked near the true value $m_{\chi^0_1}$.

(d) Note finally that if λ happens to lie in the range $5 \times (10^{-4} - 10^{-6}) \sqrt{\beta\gamma} \ (\tilde{m}_f)^2 \ (m_{\chi^0_1})^{-5/2}$, giving mean decay lengths of order 0.1 mm–1 m, the two decay vertices will usually be detectably displaced from each other and from the beam-intersection spot, giving an important additional signature.

The cross section for Eq.(1) depends on the composition of χ^0_1 in terms of electroweak gauginos and higgsinos. The production proceeds via t- and u-channel exchanges of selectrons and an s-channel Z-pole. The couplings in the general case are

$$
\mathcal{L} = e\sqrt{2} \left(f_L \bar{e}_L \ell_L \chi^0_1 + f_R \bar{e}_R \ell_R \chi^0_1 + h.c. \right) + e c_a Z^{\mu\nu\gamma\delta} \chi^0_1 \gamma^\mu \gamma^\nu \gamma^\gamma \chi^0_1
$$

(9)
with the coefficients \(f_L, f_R \) and \(c_a \) determined by the gaugino and higgsino composition of the neutralino. For pure states these coefficients take the values

\(\chi \)	\(f_L \)	\(f_R \)	\(c_a \)
photino \(\tilde{\gamma} \)	1	1	0
zino \(\tilde{Z} \)	\(g^e_L \)	\(g^e_R \)	0
bino \(\tilde{\lambda}_0 \)	\(\frac{1}{2 \cos \theta_w} \)	\(\frac{1}{\cos \theta_w} \)	0
wino \(\tilde{\lambda}_3 \)	\(\frac{1}{2 \sin \theta_w} \)	0	0
higgsino \(\tilde{h} \)	0	0	\(-\frac{1}{4 \cos \theta_w \cos \theta_w} \)
higgsino \(\tilde{h}' \)	0	0	\(\frac{1}{4 \sin \theta_w \cos \theta_w} \)

where \(g^e_L = (1 - 2 \sin^2 \theta_w)/\sin 2 \theta_w \), \(g^e_R = -\tan \theta_w \), and \(\theta_w \) is the usual weak angle. The weak isospins \(T_3 \) of \(\tilde{h} \) and \(\tilde{h}' \) are \(\frac{1}{2} \) and \(-\frac{1}{2} \) respectively. In general,

\[
\begin{align*}
\mathcal{M}(e_L\bar{e}_R \rightarrow \chi_L\chi_R) &= -e^2 \cos^2 \frac{\theta}{2} \left[f^2_L \left(\frac{s(1 - \beta)}{t - \tilde{m}_{e_L}^2} - \frac{s(1 + \beta)}{u - \tilde{m}_{e_L}^2} \right) + \frac{4\beta c_a g^e_L s}{s - M^2_Z + i M_Z \Gamma_Z} \right] \\
\mathcal{M}(e_L\bar{e}_R \rightarrow \chi_R\chi_L) &= -e^2 \sin^2 \frac{\theta}{2} \left[f^2_L \left(\frac{s(1 - \beta)}{u - \tilde{m}_{e_L}^2} - \frac{s(1 + \beta)}{t - \tilde{m}_{e_L}^2} \right) + \frac{4\beta c_a g^e_L s}{s - M^2_Z + i M_Z \Gamma_Z} \right] \\
\mathcal{M}(e_L\bar{e}_R \rightarrow \chi_L\chi_L) &= -\mathcal{M}(e_L\bar{e}_R \rightarrow \chi_R\chi_R) = e^2 f^2_L \sin \theta \frac{m_{\chi_0}}{\sqrt{s}} \left(\frac{s}{t - \tilde{m}_{e_L}^2} - \frac{s}{u - \tilde{m}_{e_L}^2} \right) \\
\mathcal{M}(e_R\bar{e}_R \rightarrow \chi_R\chi_L) &= e^2 \cos^2 \frac{\theta}{2} \left[f^2_R \left(\frac{s(1 - \beta)}{t - \tilde{m}_{e_R}^2} - \frac{s(1 + \beta)}{u - \tilde{m}_{e_R}^2} \right) - \frac{4\beta c_a g^e_R s}{s - M^2_Z + i M_Z \Gamma_Z} \right] \\
\mathcal{M}(e_R\bar{e}_R \rightarrow \chi_L\chi_R) &= e^2 \sin^2 \frac{\theta}{2} \left[f^2_R \left(\frac{s(1 - \beta)}{u - \tilde{m}_{e_R}^2} - \frac{s(1 + \beta)}{t - \tilde{m}_{e_R}^2} \right) - \frac{4\beta c_a g^e_R s}{s - M^2_Z + i M_Z \Gamma_Z} \right] \\
\mathcal{M}(e_R\bar{e}_L \rightarrow \chi_R\chi_R) &= -\mathcal{M}(e_R\bar{e}_L \rightarrow \chi_L\chi_L) = e^2 f^2_R \sin \theta \frac{m_{\chi_0}}{\sqrt{s}} \left(\frac{s}{t - \tilde{m}_{e_R}^2} - \frac{s}{u - \tilde{m}_{e_R}^2} \right)
\end{align*}
\]
where \(s, t, u \) are the usual invariant squares of CM energy and momentum transfer, \(\theta \) is the polar scattering angle, and \(\beta = \sqrt{1 - 4m_{\chi_0}^2/s} \) is the CM velocity of \(\chi_1^0 \). Note that production from \(e_L \bar{e}_R (e_R \bar{e}_L) \) initial states involves \(\tilde{e}_L (\tilde{e}_R) \) exchanges; we assume no \(\tilde{e}_L, \tilde{e}_R \) mixing, which is expected to be an excellent approximation. The differential cross section is given by

\[
\frac{d\sigma}{d\cos \theta} = \frac{\beta}{128\pi s} \sum |M|^2.
\]

(19)

Since we have identical particles in the final state, the phase space is limited to the forward hemisphere, \(\cos \theta \geq 0 \). In the case that \(\chi_1^0 \) is a photino, we reproduce the cross section expression given in Ref.\[12\].

The decay amplitude is greatly simplified if we assume it is dominated by the exchange of the right-handed scalar partner. For the process \(\chi_h(p) \to \mu(q)e^+(l)\bar{\nu}_{\tau}(k) \), the \(R \)-parity violating coupling \(\lambda_{132} \) gives

\[
\mathcal{M} = \frac{e\sqrt{2}f_{R}\lambda_{132}}{(l+k)^2 - \tilde{m}_{\mu_R}^2} T_{+,h}(q,p)T_{-,+}(l,k) \sqrt{8l^0k^0q^0(p^0 - h|\mathbf{p}|)},
\]

(20)

where \(h = + \) or \(- \) denotes the helicity, \(R \) or \(L \), of the \(\chi \) state; the spinor product \(T \) is defined in Ref.\[13\]. We have assumed this form in our decay calculations. Generalization of this formula is straightforward. The full amplitude to a given final state is the product of contributing production and decay amplitudes summed over intermediate \(\chi_1^0 \) helicities; we have calculated distributions by Monte Carlo methods, in the narrow-\(\chi_1^0 \)-width approximation.

For our discussion, we focus particular attention on one interesting example with \(m_{\chi_1^0} = 48 \) GeV, light sleptons \(\tilde{m}_{\ell R} = 74 \) GeV and \(\tilde{m}_{\ell L} = 112 \) GeV (\(\ell = e, \mu, \tau \)) plus relatively heavy squarks; this is a typical SUSY-GUT solution from Ref.\[14\] in the top-Yukawa fixed-point region with \(\tan \beta = 1.5 \), where \(\chi_1^0 \) is almost a pure bino. We also focus attention on \(\sqrt{s} = 140 \) GeV, a likely energy for intermediate LEP running, where luminosity of order 20 pb\(^{-1} \) may be accumulated in late 1995.

Figure 1(a) gives the integrated cross section for the particular choice of energy and selectron masses above, but allowing the \(\chi_1^0 \) mass and composition to vary. We see that of order twenty \(e^+e^- \to \chi_1^0\chi_1^0 \) events could soon be produced at \(\sqrt{s} = 140 \) GeV if \(\chi_1^0 \) is light and bino-like (as in our example above) or photino-like or higgsino-like. Figure 1(b) illustrates the uncut angular distribution of \(\chi_1^0 \) production for \(m_{\chi_1^0} = 48 \) GeV, with the same choice of energy and selectron masses as before. For the interesting bino-like and
photino-like cases, we see that χ_1^0 production is preferentially at large polar angles θ, away from the beam-pipe region where detection is poor; however the higgsino-like case has less favorable dependence $d\sigma/d \cos \theta \sim 1 + \cos^2 \theta$, offsetting the higher integrated cross section here. Signals from LLE^c or LQD^c decay modes can in principle be detected by their exotic leptonic content (especially same-sign dileptons) and generally have small SM backgrounds [6]; a handful of such events should be enough to attract attention and provoke a detailed analysis. Six-jet signals from $U^cD^cD^c$ decays are less remarkable, since there are $e^+e^- \rightarrow q\bar{q}gggg$ and other QCD backgrounds; however, these backgrounds are expected to be of order $\alpha^2\alpha_s^4/s$ which is small compared to our illustrated signals of order $\alpha^2\alpha_s/\tilde{m}_{eR}^4 \sim \alpha^2/s$, and the signals contain a mass peak that we illustrate below. All RPV signals could also contain displaced vertices, as noted in (d) above.

To illustrate final-state invariant mass distributions, we impose gaussian smearing on energies, with $\Delta E/E = 0.8/\sqrt{E}$ for jets and $\Delta E/E = 0.2/\sqrt{E}$ for leptons, to simulate experimental resolution. We also impose loose semi-realistic cuts, requiring each of the visible leptons or quarks (=jets) to have energy $E > 6$ GeV, rapidity $|\eta| < 2$ and angular separations $\Delta \theta_{ij} > 15^\circ$. For $m_{\chi_1^0} = 48$ GeV, these cuts typically reduce the four-item (six-item) final state event rates by factors 0.5 (0.3), where item means charged lepton or jet. We then take the same energy and selectron masses as above, assume χ_1^0 to be a pure bino, and compare the case $m_{\chi_1^0} = 48$ GeV (from the SUSY-GUT example[14]) with the case $m_{\chi_1^0} = 60$ GeV, to illustrate the mass sensitivity.

Figure 2(a) illustrates the distributions of unlike-sign dilepton mass $m(\ell^+\ell^-)$ in four-lepton final states from LLE^c decays (four entries per event). The signal is at best a broad peak, because of the missing neutrino in each χ_1^0 decay, but there is also an intrinsic background here from the 50% of dilepton pairs that do not have the same χ_1^0 parent. Figure 2(b) shows the distribution of reconstructed χ_1^0 mass $m(\ell jj)$ in $\ell\ell jjjj$ final states from LQD^c decays; the background below the peak comes from the gaussian energy resolution, which smears the peak and also leads to some wrong choices for the best partitioning. Figure 2(c) shows the distribution of reconstructed χ_1^0 mass $m(jjjj)$ in $jjjjjj$ final states from $U^cD^cD^c$ decays (in the limit of large exchanged squark mass); here too the background outside the peak is due to energy smearing. In all three of these distributions, we see there is sensitivity to the χ_1^0 mass; in the latter two cases there is a clear mass peak showing high sensitivity.
To summarize, we have shown that the SUSY threshold process Eq.(1) could be recognizable and detectable at pre-LEP200 energies such as $\sqrt{s} = 140$ GeV, with modest luminosities such as 20 pb^{-1}, if R-parity is violated and χ_1^0 is the LSP. We have demonstrated that the production angular distribution may well be favorable to detection (Fig.1(b)). For the different possible RPV decay mechanisms, we have also illustrated — with semi-realistic energy resolution and acceptance — how appropriate final-state invariant mass distributions can be used to extract the χ_1^0 mass (Figs.2(a)–2(c)). Our results are complementary to those of Ref.[3], which also addressed RPV signals from Eq.(1) but calculated for $\sqrt{s} = 200$ GeV, focusing on τ-lepton channels from LLE^c and LQD^c decays, with no discussion of production angles nor final state invariant mass distributions nor possible displaced-vertex signatures.

Acknowledgments

This research was supported in part by the U.S. Department of Energy under Grants No. DE-FG02-95ER40896 and No. DE-FG02-84ER40173 and in part by the University of Wisconsin Research Committee with funds granted by the Wisconsin Alumni Research Foundation.

References

[1] For reviews see H.-P. Nilles, Phys. Rep. 110 (1984) 1; G.G. Ross, Grand Unified Theories, Benjamin Cummings (1985); H.E. Haber and G.L. Kane, Phys. Rep. 117 (1985) 75.

[2] C.S. Aulakh and R.N. Mohapatra, Phys. Lett. B119, 316 (1982); L.J. Hall and M. Suzuki, Nucl. Phys. B231 (1984) 419; F. Zwirner, Phys. Lett. B132 (1983) 103; R. Barbieri and A. Masiero, Nucl. Phys. B267 (1986) 679; S. Dimopoulos and L.J. Hall, Phys. Lett. B207 (1987) 210; L. Hall, Mod. Phys. Lett. A5, 467 (1990).

[3] S. Dawson, Nucl. Phys. B261 (1985) 297.

[4] V. Barger, G.F. Giudice and T. Han, Phys. Rev. D40 (1989) 2987.

[5] K. Enqvist, A. Masiero and A. Riotto, Nucl. Phys. B373 (1992) 95; G. Bhattacharya, J. Ellis, and K. Sridhar, CERN-TH.7530/94 [hep-ph/9503364]; G. Bhattacharya, D. Choudhury and K. Sridhar, CERN-TH-95-87 [hep-ph/9503364].
Figures

1. $e^+e^- \rightarrow \chi^0_1\chi^0_1$ production cross sections: (a) integrated cross section versus χ^0_1 mass $m_{\chi^0_1}$, and (b) CM differential cross section versus $|\cos \theta|$, for various cases. Solid, dashed, dot-dashed, short-long-dashed and short-short-long-dashed curves denote the cases where χ^0_1 is purely photino, bino, zino, neutral wino and higgsino, respectively. We here take CM energy $\sqrt{s} = 140$ GeV with exchanged selectron masses $\tilde{m}_{eL} = 112$ GeV and $\tilde{m}_{eR} = 74$ GeV.

2. Invariant mass distributions that can reveal the χ^0_1 mass $m_{\chi^0_1}$: (a) opposite-sign dilepton mass $m(\ell^+\ell^-)$ in four-lepton signals from LLE^c decays; (b) best-reconstructed lepton-plus-dijet mass $m(\ell jj)$ in two-lepton-plus-four-jet signals from LQD^c decays; (c) best-reconstructed trijet mass $m(jj\bar{j})$ in six-jet signals from $U^cD^cD^c$ decays. We assume the same energy and electron masses as in Fig.1, and compare the cases $m_{\chi^0_1} = 48, 60$ GeV for a pure bino χ^0_1.

[6] R. Godbole, P. Roy, and X. Tata, Nucl. Phys. B401, 67 (1993).

[7] H. Dreiner and G.G. Ross, Nucl. Phys. B365 (1991) 597; H. Dreiner and R.J.N. Phillips, Nucl. Phys. B367 (1991) 591; V. Barger et al., Phys. Rev. D50, 4299 (1994); H. Baer, C. Kao and X. Tata, Phys. Rev. D51 (1995) 2180.

[8] OPAL collaboration: P.D. Acton et al., Phys. Lett. B313 (1993) 333.

[9] K.S. Babu and R.N. Mohapatra, Phys. Rev. D42 (1990) 3778.

[10] H. Dreiner and S. Lola, Proc. of the Munich-Annecy-Hamburg Workshop on e^+e^- collisions at 500 GeV (ed. P.M. Zerwas), DESY 92-123B, p.707; L. Roszkowski, Waikaloa Workshop talk, hep-ph/9309208.

[11] H. Baer, V. Barger, D. Karatas and X. Tata, Phys. Rev. D36 (1987) 96; M. Drees, C.S. Kim and X. Tata, Phys. Rev. D37 (1987) 784.

[12] J. Ellis and J.G. Hagelin, Phys. Lett. 122B, 303 (1983).

[13] K. Hagiwara and D. Zeppenfeld, Nucl. Phys. B274 (1986) 1.

[14] V. Barger, M.S. Berger and P. Ohmann, Phys. Rev. D49 (1994) 4908; V. Barger et al., Phys. Rev. D50 (1994) 4299.
Figure 1(a)

$\sqrt{s} = 140$ GeV

\[\tilde{m}_{\ell_L} = 112 \text{ GeV} \]

\[\tilde{m}_{\ell_R} = 74 \text{ GeV} \]
Figure 1(b)

\(e^- e^+ \rightarrow \chi_1^0 \chi_1^0 \)

\(\sqrt{s} = 140 \text{ GeV (uncut events)} \)

\(\tilde{m}_{\ell_L} = 112 \text{ GeV} \)
\(\tilde{m}_{\ell_R} = 74 \text{ GeV} \)
\(m_{\chi_1^0} = 48 \text{ GeV} \)

\(\frac{1}{2} \times \text{higgsino} \)

\(\text{photino} \)

\(\text{bino} \)

\(\text{wino} \)

\(\text{zino} \)
$\sqrt{s} = 140$ GeV

$\tilde{m}_{\ell_L} = 112$ GeV

$\tilde{m}_{\ell_R} = 74$ GeV

$E_1 > 6$ GeV, $\Delta \theta_{ij} > 15^\circ$, $|\eta_1| < 2$

- $m_{\chi_1} = 48$ GeV
- $m_{\chi_1} = 60$ GeV
Figure 2(b)

$\sqrt{s}=140$ GeV

$\tilde{m}_{\ell_L}=112$ GeV

$\tilde{m}_{\ell_R}=74$ GeV

$E_i > 6$ GeV, $\Delta \theta_{ij} > 15^\circ, |\eta_i| < 2$

- $m_{\chi_1^0} = 48$ GeV
- $m_{\chi_1^0} = 60$ GeV
Figure 2(c)

\(\sqrt{s} = 140 \text{ GeV} \)
\(\bar{m}_{\ell_1} = 112 \text{ GeV} \)
\(\bar{m}_{\ell_2} = 74 \text{ GeV} \)

\(E_i > 6 \text{ GeV}, \Delta \theta_{ij} > 15^\circ, |\eta_i| < 2 \)

- \(m_{\chi^0_1} = 48 \text{ GeV} \)
- \(m_{\chi^0_1} = 60 \text{ GeV} \)

\(\text{dN/dM (arb. units)} \)

M (3 jets) (GeV)