Impact of COVID-19 to Neurosurgical Education: A Systematic Review

Muhamad Thohar Arifin*, Jacob Bunyamin, Yuriz Bakhtiar, Zainal Muttaqin

Department of Neurosurgery, Diponegoro University, Kariadi General Hospital, Semarang, Indonesia

Abstract

BACKGROUND: Coronavirus disease (COVID-19) has disrupted many aspects of healthcare and health education including medical education. Given that neurosurgical training requires direct patient contact, the social distancing policy due to COVID has impacted global neurosurgical education.

AIM: We are conducting a systematic review to determine the impact of COVID-19 on global neurosurgical education.

METHODS: This review adheres to the Preferred Reporting Items for Systematic Reviews and Meta-analyses protocols. We performed the literature search based on the MeSH terms (“neurosurgery education” OR “neurosurgical education” OR “neurosurgery training” OR “neurosurgical training” OR “neurosurgery residency” OR “neurosurgical residency”) AND (“COVID*” OR “coronavirus” OR “pandemic*”) keywords on PubMed, MedRxiv, and bioRxiv. The inclusion criteria included (1) peer-reviewed articles discussing the effect of COVID-19 pandemics to neurological education, (2) published in English, and (3) full-text articles were retrievable. We excluded studies discussing the neurological education pre-COVID-19, editorial letters, and narrative reviews. The literature search was performed by J.B. and all resulted articles were discussed and selected by two reviewers (J.B and M.T.A) to compile the final list of the articles.

Results

The initial search resulted in 54 articles which were then proceeded into duplicate removal, abstract, and full-text screening. After full-text screening, 13 articles were processed for the systematic review (see supplementary materials). Based on the data collection methods, we classified seven papers as based on
the residents’ perspectives and four papers on case volumes in academic centers. From seven papers on residents’ perspectives, we further analyzed three main themes which were the impact of COVID-19 to academic activity, COVID-19-related workload, and residents’ well-being.

Residents’ perspectives
Impact of COVID-19 to academic activity

The list of papers discussing the impact of COVID-19 to academic activity is presented in Table 1. Reduced case volumes tend to be the main negative sentiment among all studies analyzed, with a greater loss of reduction in elective cases compared to urgent or emergency cases in two papers. In the Southeast Asian study, the reduction of both types of surgery was significantly different among surveyed countries, which might be due to different governmental regulation and local hospital protocols. Four studies described that there was a concern of the negative impact of COVID-19 both to the ongoing education including the overall training experience, didactic program quality, and obtained surgical skills and the future prospect including difficulty in finding a fellowship post and delay of surgical milestones. Two studies reported that senior residents were significantly affected particularly in the reduced surgical activity and the overall education quality; however, seniority did not seem to have effect on concern of training quality in one study. Since social distancing measures were enforced in the workplaces, two studies reported difficulty in accessing the hospital and reduced physical time spent in the department. In a study from Africa, the actual impact of COVID-19 might be the hardest as nearly a fifth of respondent reported having their examination cancelled, while more than half reported having theirs postponed. Furthermore, a quarter of respondent had their rotations suspended. In Southeast Asia, the travel restriction imposed by the governments had resulted in missing of international educational experience, for example, conferences or exchanges.

Interestingly, COVID-19 also brought positive sentiments to six of seven studies. Three studies reported increased time for didactic activity, while two studies stated that online didactics were better than the conventional format. Two studies reported increased time for research and number of publication which might be attributable to the reduced case load and a work-from-home attitude due to social distancing. The increased personal time for publication and studying was significantly reported by the senior residents in one study. Regarding the resources for online didactics, almost all respondents reported having adequate access to required resources in the Southeast Asia study. However, the increased personal time for studying was not reported by the Middle-Eastern study as more than 80% of respondent answered reduced studying hours.

Impact of COVID-19-related clinical workload and work condition

The list of papers regarding the impact of COVID-19-related clinical workload and work condition is presented in Table 2. We divided the parameters into COVID-19 increasing risk and lowering risk activities. Five of seven studies had the residents cared or exposed to COVID-19 patients or deployed to COVID-19 units. Regarding the level of supervision, the Italian study described that the residents providing care for COVID-19 patients either under supervision or completely by their own. One study described that a third of the respondents were asked to provide care to non-neurosurgical COVID-19 patients, while another study asked the same question with zero response; however, the sample size was very small. However, 70% of the respondents stated that they felt comfortable in providing care to non-neurosurgical COVID-19 cases.

Two studies from Italy and Africa reported that the residents had inadequate personal protective equipment (PPE) with the number reaching more than half of respondents for both. One study reported that nearly third-quarter of the respondents did not receive proper PPE donning training, while two other papers reported PPE donning training received by nearly half of the participants. Other training provided to the residents including neurosurgical COVID-19 patient management in one study, non-neurosurgical/general COVID-19 patient management in two studies, and nasopharyngeal sample collection and hand hygiene in one study. Two studies from the US and Italy reported that the residents were screened for COVID-19 although the reported rate was different between them (75.0% vs. 35.9%).

Impact of COVID-19 to residents’ well-being

The list of papers discussing the impact of COVID-19 to residents’ well-being is presented in Table 3. The main negative sentiments of COVID-19 were mental health, future uncertainties, and financial aspects. One paper mentioned that COVID-19 affected more than ninety percent of respondents’ mental health particularly in PGY-1, PGY-3, and PGY-6 residents and all respondents answered that the pandemic has affected their social life. Another study revealed that around a quarter of respondents were having burnout, although the majority were in low level of emotional exhaustion and depersonalization. Concerns regarding uncertain futures were also described by the participants particularly in healthcare reform and potential income in the American study. Similarly, 12.2% of the African respondents also showed financial concern with nearly a quarter did not receive any formal income during their training.

A US-based study described that the work-from-home policy due to COVID-19 has resulted in the increased

https://oamjms.eu/index.php/mjms/index
Table 1: The impact of coronavirus disease-19 to residents’ academic activity

Number	Author	Year	Country	Sample size	PGY	Methods	Negative sentiments	Rate (%)	Desc.	Positive sentiments	Rate (%)	Desc.
1	Alhaj, et al.	2020	Canada, US, Kuwait, Saudi Arabia, Italy, Serbia	52	1–6	Cross-sectional questionnaire-based survey	Affected training at hospital	98.1	N/A	Reduced daily studying hours	80.8	N/A
2	Pelargos et al.	2020	US, Canada	197	1–7	Cross-sectional-based survey	Limited elective cases	99.0	Increased didactic hours	Encouraged to attend complementary online lectures	58.6	79.0
3	Khalafallah, et al.	2020	US	111	1–7	Cross-sectional-based survey	Reduced working hours	74.8	Increased time for didactic lectures	Increased time for clinical research	82.0	66.7
4	Chesserem, et al.	2020	Morocco, Algeria, Tunisia, Egypt, Libya, Niger, Mali, Senegal, Cote d’Ivoire, Ghana, Kenya, Nigeria, Cameroon, Sudan, Uganda, Mozambique, Malawi, Zimbabwe, Botswana, South Africa, Madagascar	129	Preresidency to fellow	Cross-sectional survey	Postponed examination	19.5	Significant differences among countries but not seniority	Significant differences among countries but not seniority	88.0	87.5
5	Wittayanakorn, et al.	2020	Indonesia, Malaysia, Thailand, Philippines, Singapore	298	1–6	Cross-sectional survey	Reduced research productivity	33.0	Having adequate access to technological resources	Missing international education opportunity	96.0	
6	Aljuboori et al.	2020	US	8	N/A	Cross-sectional questionnaire	Decreased case volume	100	Online didactics were better than face-to-face format	Increased time for research	50.0	87.5
7	Zoia, et al.	2020	Italy	192	1–5	Cross-sectional web-based survey	Reduced time in neurosurgery department	72.4	Significant differences in senior residents	Increased time for publication	55.7	62.5

COVID-19: Coronavirus disease 2019, N/A: Not available, PGY: postgraduate year.
family time, although another US and Canadian study showed that almost half of the respondents considered no effect of COVID to their personal lives. Both studies also revealed contradictory findings regarding career satisfaction in neurosurgery as the former showing that more than 70% of residents stating a positive answer, while a similar number in the latter describing no effect on career satisfaction. Another positive sentiments recorded in Italy showed that more than half of respondents received good support from their supervisors.

Discussion

Before COVID-19 pandemic, there has been disparities in the neurosurgical education condition among developed and developing countries, particularly in Asia and Africa in terms of educational facilities and human resources [7]. In addition, distribution inequality of neurosurgeons particularly in low- and middle-income countries (LMICs) hindered patients to receive adequate neurological treatments in those areas [8]. One of the initiatives to address this problem is by strengthening local neurosurgical training program and creates a localized curriculum to adjust with the available facilities and resources [9]. However, the COVID-19 pandemic has changed the global neurological education environment from various perspectives. Each reported country has its own neurological educational curriculum, healthcare system, socioeconomic condition, government policy and preparedness level, and also different stages of COVID-19 spread at the time of the writing of its respective article [10].

Table 2: Coronavirus disease-19-related residents' clinical workload and work condition

Number	Author	Year	Country	Sample size	Sample size	PGY	PGY	Methods	Increasing risk activity	Lowering risk activity	Rate (%)	Desc.	Rate (%)	Desc.
1	Alhaj, et al.	2020	Canada, US, Kuwait, Saudi Arabia, Italy, Serbia	52	1–6	Cross-sectional -based questionnaire	N/A	Receiving hand hygiene training	78.8	Significant differences between regions				
									Receiving PPE donning training	57.5				
									Knowing how to collect nasopharyngeal swab	50.0				
2	Pelargos et al.	2020	US, Canada	197	1–7	Cross-sectional based survey	Asked to provide nonneurosurgical care for COVID-19 patients	35.1	Higher in residents in highly affected states					
									Feeling comfortable in providing nonneurosurgical care for COVID-19 patients	70.0				
									Receiving training of nonneurosurgical care for COVID-19 patients	57.9				
3	Khalafallah, et al.	2020	US	111	1–7	Cross-sectional based survey	Cared for COVID-19 patients	91.9	N/A					
4	Chesarern, et al.	2020	Morocco, Algeria, Tunisia, Egypt, Libya, Niger, Mali, Senegal, Cote d'Ivoire, Ghana, Niger, Nigeria, Cameroon, Sudan, Uganda, Kenya, Tanzania, Mozambique, Malawi, Zimbabwe, Botswana, South Africa, Madagascar	129	Pre-residency to fellow	Cross-sectional survey	Lacking adequate PPE	61.8	Received training to manage neurological COVID-19 patients					
									Either under supervision or not	41.6				
									Received training to manage COVID-19 patients	41.0				
5	Wittayaanikorn, et al.	2020	Indonesia, Malaysia, Thailand, Philippines, Singapore	298	1–6	Cross-sectional survey	Being deployed to COVID-19 units	36.0	N/A					
6	Aljuboori et al.	2020	US	8	N/A	Cross-sectional questionnaire	Redeployed to COVID-19	0	Program tested residents for COVID-19					
									N/A					
7	Zoia, et al.	2020	Italy	192	1–5	Cross-sectional web-based survey	Did not receive PPE donning training	72.9	Screening rate for residents					
									Either under supervision or not	35.9				

COVID-19: Coronavirus disease 2019. PPE: Personal protective equipment, N/A: Not available, PGY: postgraduate year.
The impact of COVID-19 to neurosurgical education was mainly negative due to reduced volume of surgery and studying hours in hospital. This potentially led to reduced surgical skills and prolonged training time since neurosurgical residency requires a minimum amount of case portfolio and longer hands-on hours is essential to achieve better surgical dexterity. The plummeted case volumes in the academic centers hindered the training milestones including cancelled [14], [15], [16], [17], [18]. Some centers also suggested COVID-19 screening to all patients undergoing surgeries and only allowing consultant and senior neurosurgeons to perform the surgery to reduce the surgical duration and minimize the use of high-speed drill and electrocautery [17]. These measures, however, might create a gap in transfer of knowledge since the residents did not receive the opportunity to obtain the necessary skills. Several centers also introduced changes in resident rotation scheduling by deployment of smaller number of on-call residents; therefore, the exposure to cases became more limited [19]. The rise of technology utilization to provide remote-distance learning has been a common practice in many centers around the globe; however, this also poses a problem particularly since there is a difficulty to provide hands-on experience [20], [21]. Furthermore, securing a stable internet access to attend online teachings and conferences remain a problem particularly in LMICs, where the infrastructures were often less ready to support the didactic events.

In several countries, COVID-19 even hindered the training milestones including cancelled or suspended examinations or suspended rotations. Neurosurgery is one of the longest medical residency, for example, 5.5 years in Indonesia, 6 to 8 years in Egypt, and 7 years in the US; therefore, this delay might result in prolonged training duration and interruption to fulfill the community demand [22], [23]. COVID-19 also created future uncertainties for both residents and prospective medical students, although the type of

Table 3: The impact of coronavirus disease-19 to residents’ well-being

Number	Author et al.	Year	Country	Sample size	PGY	Methods	Negative sentiments	Rate (%)	Desc.	Positive sentiments	Rate (%)	Desc.	
1	Alhaj et al.	2020	Canada, US, Kuwait, Saudi Arabia, Italy, Serbia	52	1–6	Cross-sectional questionnaire-based survey	Affected mental health	90.4	Higher in PGY-1, PGY-3, PGY-6	N/A			
							Affected social life	100		No effect on perception of neurosurgery as a career	74.0		
2	Pelargos et al.	2020	US, Canada	197	1–7	Cross-sectional based survey	N/A		Career satisfaction on neurosurgery	73.9			
3	Khalafallah et al.	2020	US	111	1–7	Cross-sectional based survey	Overall burnout rate	26.1	Associated with altered elective and vacation, decision not to pursue neurosurgery	45.0			
4	Cheserem et al.	2020	Morocco, Algeria, Tunisia, Egypt, Libya, Niger, Mali, Senegal, Cote d'Ivoire, Ghana, Niger, Nigeria, Cameroon, Sudan, Uganda, Kenya, Tanzania, Mozambique, Malawi, Zimbabwe, Botswana, South Africa, Madagascar	129	Pre-residency to fellow	Cross-sectional survey	Low emotional exhaustion	51.4		Low level of personal accomplishment	78.4		
							Low level of personalization	67.6		Career satisfaction on neurosurgery	73.9		
							Uncertainty of future healthcare reform	79.3		High level of personal accomplishment	78.4		
5	Zoa et al.	2020	Italy	192	1–5	Cross-sectional web-based survey	Not receiving formal salary	23.6	Not receiving formal salary	12.2	Uncertainty of COVID-19 impact to finances	N/A	

COVID-19: Coronavirus disease 2019; N/A: Not available; PGY: postgraduate year.
concern was different between both groups. Residents were more concerned on the ongoing training quality and future prospects after graduate, while medical students were more concerned on the application for residency. Furthermore, the travel restriction due to COVID-19 has been reported to affect the international medical graduates to apply for neurosurgical residency in US hospitals [24]. Besides education quality, personal finances were also reported as an important concern either in the form of present salary or future earning prospect [25], [26].

Neurosurgical residents were also at risk of contracting COVID-19 since some centers redeployed residents to provide care to non-neurosurgical COVID-19-positive patients. However, this practice was not exclusive on neurosurgery as residents in OB/GYN, psychiatry, and pathology were also reported to be redeployed into COVID-19 units [27], [28], [29]. Some centers provided additional training in the management of COVID-19 patients including training on hand hygiene and nasopharyngeal swab collection technique; nevertheless, this policy has not been adopted by all education centers [30]. Issues on preventive measures including inadequate training on PPE donning and PPE shortage were also reported in several centers [25], [31]. Moreover, a pre-COVID-19 study reported that around 90% of health care workers did not follow the correct sequence of PPE doffing which might increase the risk of viral transmission if not performed properly [32]. Financial-wise, COVID-19 affected the worldwide healthcare system, in which the LMICs were hit the hardest compared to higher income countries, resulting in a greater challenge to implement preventive measures of COVID including supplying adequate PPEs [33]. Although the impact of COVID-19 was mainly negative, social distancing measures, for example, work-from-home policy has also brought positive impacts to the academic activity and residents’ wellbeing particularly in the manner of personal time utilization. Neurosurgical residency has been traditionally acknowledged as one of the most demanding specialty training; therefore, there might be less time for residents devoted to either didactic activity, research activity, or family. This has been supported by the findings that social connection and personal time availability is correlated with better wellbeing scores during residency [34]. It has been established that poor well-being and physician burnout correlated with patient safety [35]. Almost all but one studies reported the positive sentiments of COVID-19 toward the increased time allotment for clinical research and online didactics, while one described to have reduced studying hours. Due to the busy schedule in neurosurgical residency, performing clinical or basic research including academic writing often requires special time allocation which was easily available during COVID-19 pandemic. However, due to social distancing policy, a remote-oriented research strategy should be prioritized such as focusing on secondary data analysis, for example, bioinformatics, literature review, or grant application [36].

Based on the available data, we suggest that the national neurosurgical board to take action to minimize the negative impact of COVID-19 toward the overall educational experience on their respective country. The program directors should initiate the introduction of flexible policy to accommodate case reduction to meet the board standard and guard residents’ safety and well-being are required to ensure the sustainability of high quality neurosurgical education. There was a geographical discrepancy among studies on residents’ perspectives versus studies on case volumes and medical students’ perspectives. The former had a wide scope of participating countries from four continents which provide the impression of how COVID-19 pandemics impacted neurosurgical education globally. On the contrary, the latter studies were concentrated solely on the United States; therefore, this might not represent the condition on other countries, particularly in LMICs. Therefore, we highly recommend the national neurosurgical board to conduct studies observing the impact of COVID-19 from other world regions to improve our understanding regarding the current situation of global neurosurgical education.

Conclusion

The COVID-19 pandemic has impacted the global neurosurgical education from various perspectives. Although the main effect was largely negative, COVID-19-related social distancing policy also brought positive impact particularly to personal well-being and research activities. Flexible regulation and commitment to protect residents’ health and wellbeing are required to maintain high-quality neurosurgical education to meet the community demand of neurosurgical services particularly in LMICs.

References

1. Alsoufi A, Alsuyihili A, Mesherghi A, Ethadi A, Atiyah H, Ashini A, et al. Impact of the COVID-19 pandemic on medical education: Medical students’ knowledge, attitudes, and practices regarding electronic learning. PLoS One. 2020;15(11):e0242905. http://doi.org/10.1371/journal.pone.0242905 PMid:33237962

2. Hilburg R, Patel N, Ambruso S, Biewald MA, Farouk SS. Medical education during the coronavirus disease-2019 pandemic: Learning from a distance. Adv Chronic Kidney Dis. 2020;27(6):412-7. http://doi.org/10.1053/j.ackd.2020.05.017 PMid:33308507
3. Rose S. Medical student education in the time of COVID-19. JAMA. 2020;323(21):2131-2. https://doi.org/10.1001/jama.2020.5227
PMid:32232420

4. Ferrel MN, Ryan JJ. The impact of COVID-19 on medical education. Cureus. 2020;12(3):10-3. https://doi.org/10.7759/cureus.7492

5. Peters A, Rospleszcz S, Greiser KH, Dallavalle M, Berger K. The impact of the COVID-19 pandemic on self-reported health. Disch Arztebl Int. 2020;117(50):861-7. https://doi.org/10.3238/arztebl.2020.0861
PMid:32295275

6. Cucinotta D, Vanelli M. WHO declares COVID-19 a pandemic. Acta Biomed. 2020;91(1):157-60. https://doi.org/10.23750/abm.v91i1.9397
PMid:32191675

7. Kato Y, Liew BS, Sufianov AA, Rasulic L, Arnautovic KJ, Dong VH, et al. Review of global neurosurgery education: Horizon of neurosurgery in the developing countries. Chinese Neurosurg J. 2020;6(1):1-13. https://doi.org/10.1186/s41016-020-00194-1
PMid:32922948

8. Servadei F, Rossini Z, Nicolosi F, Morselli C, Park KB. The role of neurosurgery in end-of-life care: An Italian perspective. J Neurosurg. 2020;132(6):E1344-8. https://doi.org/10.3171/2020.4.FOCUS20037
PMid:32503122

9. Chen J, Low M, Visagan R, Perera A. Neurosurgical training during COVID-19 pandemic: British perspective. World Neurosurg. 2020;142:2-2. https://doi.org/10.1016/j.wneu.2020.04.178
PMid:32414670

10. Abbey EJ, Khalifa BA, Oduwole MO, Ayeh SK, Nudotor RD, Johnson JN, et al. Neurosurgical practice during coronavirus disease 2019 (COVID-19) pandemic: Experience from a Surabaya academic tertiary hospital. Neurosurg Focus. 2020;49(6):E5. https://doi.org/10.3171/2020.9.FOCUS20559
PMid:33260124

11. Lu V, Menendez I, Levi AD, Komotar RJ. Lessons to learn from the coronavirus disease 2019 (COVID-19) pandemic for international medical graduate applicants and United States neurosurgery residency programs. World Neurosurg. 2020;141:571-2. https://doi.org/10.1016/j.wneu.2020.06.202
PMid:32871735

12. Khosravi MH, Sisakht AM, Kiani D, Ahmadi S. Letter to the editor: How the pandemic is changing neurosurgical education in Morocco. World Neurosurg. 2020;141:571-2. https://doi.org/10.1016/j.wneu.2020.06.202
PMid:32302990

13. Pennington Z, Lubelski D, Khalafallah AM, Ehresman JJ, Sciubba DM, Witham TF, et al. Changes to neurosurgery resident education since onset of the COVID-19 pandemic. World Neurosurg. 2020;139:734-40. https://doi.org/10.1016/j.wneu.2020.05.139
PMid:32450312

14. Reddy V, Pettigrew L. Open Access Maced J Med Sci. 2022 Apr 07; 10(F):289-296.
30. Alhaj AK, Al-Saadi T, Mohammad F, Alabri S. Neurosurgery residents’ perspective on COVID-19: Knowledge, readiness, and impact of this pandemic. World Neurosurg. 2020;139:e848-58. https://doi.org/10.1016/j.wneu.2020.05.087
PMid:32426064

31. Zoia C, Raffa G, Somma T, Della Pepa GM, La Rocca G, Zoli M, et al. COVID-19 and neurosurgical training and education: An Italian perspective. Acta Neurochir (Wien). 2020;162(8):1789-94. https://doi.org/10.1007/s00701-020-04460-0
PMid:32556815

32. Phan LT, Malta D, Mortiz DC, Weber R, Fritzen-Pedicini C, Bleasdale SC, et al. Personal protective equipment doffing practices of healthcare workers. J Occup Environ Hyg. 2019;16(8):575-81. https://doi.org/10.1080/15459624.2019.1628350
PMid:31291152

33. Kaye AD, Okeagu CN, Pham AD, Silva RA, Hurley JJ, Arron BL, et al. Economic impact of COVID-19 pandemic on health care facilities and systems: International perspectives. Best Pract Res Clin Anaesthesiol. 2020;35(3):293-306. https://doi.org/10.1016/j.bpa.2020.11.009
PMid:34511220

34. Raj KS. Well-being in residency: A systematic review. J Grad Med Educ. 2016;8(5):674-84. https://doi.org/10.4300/JGME-D-15-00764.1
PMid:28018531

35. Hall LH, Johnson J, Watt I, Tsipa A, O'Connor DB. Healthcare staff wellbeing, burnout, and patient safety: A systematic review. PLoS One. 2016;11(7):e0159015. https://doi.org/10.1371/journal.pone.0159015
PMid:27391946

36. Clark VE. Impact of COVID-19 on neurosurgery resident research training. J Neurosurg Sci. 2020;133:12-3. https://doi.org/10.3171/2020.4.JNS201034
PMid:32330899