Direct observation of cosmic strings via their strong gravitational lensing effect – I. Predictions for high-resolution imaging surveys

M. Alice Gasparini,1⋆ Phil Marshall,1 Tommaso Treu,1 Eric Morganson2 and Florian Dubath3

1 Physics Department, University of California, Santa Barbara, CA 93106, USA
2 KIPAC, PO Box 20450, MS29, Stanford, CA 94309, USA
3 KITP, University of California, Santa Barbara, CA 93106, USA

Accepted 2007 October 29. Received 2007 October 15; in original form 2007 July 12

ABSTRACT
We use present theoretical estimates for the density of long cosmic strings to predict the number of strong gravitational lensing events in astronomical imaging surveys as a function of the angular resolution and survey area. We show that angular resolution is the single most important factor, and that interesting limits on the dimensionless string tension \(G\mu/c^2\) can be obtained by existing and planned surveys. At the resolution of the Hubble Space Telescope (HST) (0.14 arcsec), it is sufficient to survey of the order of a few square degrees – well within reach of the current HST archive – to probe the regime \(G\mu/c^2 \sim 10^{-7}\). If lensing by cosmic strings is not detected, such a survey would improve the limit on the string tension by a factor of two over that available from the cosmic microwave background. Future high resolution imaging surveys, covering a few hundred square degrees or more, either from space in the optical or from large-format radio telescopes on the ground, would be able to further lower this limit to \(G\mu/c^2 \sim 10^{-8}\). These limits will not be improved significantly by increasing the solid angle of the survey.

Key words: gravitational lensing – surveys – cosmology: observations.

1 INTRODUCTION
Superstrings of cosmic size (introduced by Kibble 1976) are a generic prediction of a number of string theory models (see e.g. Polchinski 2004; Davis & Kibble 2005, and references therein). Given their macroscopic nature, they are, in principle, detectable through astronomical observations. Therefore, they provide a perhaps unique opportunity for direct empirical tests of the physics of the very early Universe.

Considering strings whose only interactions are gravitational, all of their effects are controlled by the global constant dimensionless string tension \(G\mu/c^2\). Present limits on this parameter are given mainly by the properties of the cosmic microwave background (CMB) and by studies of pulsar timing. As far as the former is concerned, cosmic strings produce a smooth component in the CMB power spectrum and a non-Gaussian signature in the CMB anisotropy map (e.g. Lo & Wright 2005; Jeong & Smoot 2007). As far as the latter is concerned, strings produce a stochastic gravitational wave background, detectable in the time-series of pulsars (e.g. Kaspi, Taylor & Ryba 1994; Damour & Vilenkin 2005). Current limits are \(G\mu/c^2 \lesssim 3 \times 10^{-7}\) from the CMB (Pogosian, Wasserman & Wyman 2006), and perhaps one or two orders of magnitude more stringent from pulsar timing depending on the details of the statistical analysis and the assumed string loop size distribution. An up-to-date review of present observational limits is given by Polchinski (2007).

The idea of detecting cosmic strings by observing their gravitational lensing effect dates back to Vilenkin (1984). Briefly, cosmic strings produce a conical space–time resulting in a very clear strong lensing signature, that is, they produce identical (neither parity-flipped, nor magnified or sheared) offset replica images of background objects, separated by an angle proportional to the string tension. Thus, strong gravitational lensing provides an opportunity for the direct detection of cosmic strings, and even a single detected event would provide a measurement of the string tension, independent of the overall demographics of cosmic strings. A number of past studies have identified cosmic string lens candidates in optical surveys, but unfortunately none so far has withstood the test of higher resolution imaging (Agol, Hogan & Plotkin 2006; Sazhin et al. 2007).

In this paper, we use present theoretical knowledge about the abundance of cosmic strings to predict the number of lensing events as a function of \(G\mu/c^2\) for a realistic set of present and future imaging surveys. Our calculations show that, for sufficiently high angular resolution and sufficiently high (yet presently allowable) string...
2 Optical Depth

Let us consider a long string lens at an angular diameter distance $D_l(z_0)$ from the observer, and a source at a distance $D_s(z_s)$, and let us denote the angular diameter distance between the string and the source by $D_{ls}(z, z_s)$. For a flat universe dominated by matter and dark energy, we have that

$$D_{ls}(z, z_s) = \frac{c}{H_0(1 + z_s)} \int_z^{z_s} \frac{dz'}{\sqrt{\Omega_m(1 + z')} + \Omega_{\Lambda}}.$$ (1)

(And for D_l the same formula as for D_{ls} but with exchanged subscripts.) The source is lensed into a double image if it lies behind the lens and within a strip of width

$$d\beta_1 = 8\pi \frac{G\mu}{c^2} \frac{D_{ls}}{D_s} |\sin i|$$ (2)

centred on the string, where i is the angle between the tangent to the string direction and the optical axis Vilenkin (1984). This $d\beta_1$ is then the cross-section per unit apparent length of string, and we use the symbol β to denote positions in the source plane as usual. In order to find the lensing cross-section for a source at a distance D_s lensed by a string at a distance D_l, we need to know how many radians $d\beta_2$ of the long string are present at D_l.

The physical length of the long string lying in a shell of radius $D_{ls}(z)$ and depth $d z$, is given by the string mass in this shell $dM = \rho_{\text{str}} dV(z)$ divided by the string tension μ, and so $d\beta_2 = \frac{dM}{\mu D_s} |\sin i|$. Averaging over the inclination angle $i (|\sin^2 i| = 1/2)$, the lensing cross-section at a distance $D_{ls}(z)$ is given by

$$d\sigma = d\beta_1 d\beta_2 = \frac{dM}{\mu D_s} 4\pi \frac{G\mu}{c^2} \frac{D_{ls}}{D_s}.$$ (3)

In order to calculate the element of string mass dM, we assume that the mass density in long strings follows the density of ordinary (dark and baryonic) matter: $\rho_{\text{str}} = \rho_m 60 G\mu/c^2$ (Polchinski 2004). There is perhaps a factor of 2 uncertainty in this prefactor in this expression. For clarity of discussion, we choose to assert this formula and keep it in mind when interpreting our bounds on $G\mu/c^2$, rather than introducing an exact degeneracy between the string tension and the total string mass density.

Writing $\rho_m = \Omega_m \frac{H_0^2}{c^2}$ using the Friedmann equations for H^2, the volume element, and the distances (equation 1), one gets straightforwardly for equation (3) that

$$d\sigma = 4\pi 90 \frac{G\mu}{c^2} \frac{\Omega_m H_0}{c} \left(1 + z_s\right)^2 \frac{D_l D_{ls}}{D_s} d\chi_d.$$ (4)

Assuming that the cross-section overlaps are negligible with respect to the total cross-section (we will see below that this is the case), $\sigma_{\text{ls}}(z_s)$ for the string lensing of a source at a redshift z_s is given by the integral of equation (4) over all the possible string redshifts z_s such that the image separation is observable (e.g. Schneider 2006):

$$\sigma = \int_0^{\chi_d} \frac{\Theta(Z - z_d) d\sigma}{dz_d} dz_d.$$ (5)

We have here approximated the detection function as being the Heavside ‘step’ function, asserting that if the image separation is greater than the instrument angular resolution θ then it is observable. This would be the case for point-like sources – we return to the issue of image detectability in Section 3 below. The limiting redshift Z in equation (5) is that below which the image separation is observable, that is, such that the image separation

$$16 \frac{G\mu}{c^2} \frac{D_{ls}(Z, z_s)}{D_s} = \theta,$$ (6)

where we have again averaged over the inclination angle: $\langle |\sin i| \rangle = 2/\pi$. If the string is too close to the source, the image separation becomes too small to resolve – but the fact that the image separation is independent of the impact parameter means that cosmic strings act as lenses no matter how close they are to the observer, and this independence allows us to transform the angular resolution limit of the observation into a limiting redshift for observable strings. The optical depth for strong lensing ($\tau = \sigma/4\pi$) by long strings is then

$$\tau(z_s, \theta, G\mu/c^2) = 90 \frac{G\mu}{c^2} \frac{\Omega_m H_0}{c} \int_0^{\chi_d} \frac{(1 + z_d)^2}{\Omega_m(1 + z_d)^3 + \Omega_{\Lambda}} \frac{D_l D_{ls}}{D_s} \Theta(Z - z_d) d\chi_d,$$ (7)

which is easily computed numerically.

From equation (6) we can see that for each angular resolution we consider, there is a minimum string tension below which we would never be able to detect any lensing events (even with the maximally effective $z_d = 0$ string position), and the optical depth would be zero. This ‘angular resolution bound’ is $G\mu/c^2 = (\theta/16 \text{ rad}) \approx 3 \times 10^{-7} (\theta/\text{arcsec})$. From this we can already see that the limits from high-resolution (10–100 mas) imaging surveys will be interesting. The optical depth τ is a function of the source redshift z_s, of the string tension $G\mu/c^2$ and of the experiment resolution angle θ. Fig. 1 shows the optical depth as a function of z_s for different values of $G\mu/c^2$ for a fixed θ (left-hand panel), and for different values of θ for a fixed $G\mu/c^2$ (right-hand panel).

The assumption behind equation (7) is that the overlaps given by the intersections of the long string projections on the sky are negligible with respect to the total cross-section. We now show that this is a reasonable assumption. Let us suppose we have n such intersections, then the cross-section due to string intersections must be smaller than $\sim n (8 \pi m G\mu/c^2)^2$. This is true if we require this quantity to be much smaller than σ, or that $\tau \gg 16\pi m (G\mu/c^2)^2$. From Fig. 1, we can see that for realistic source redshift values ($z_s > 0.5$), the optical depth τ is of the order of $G\mu/c^2$. Therefore, the requirement is $n \ll (G\mu/c^2)^{-1}$.

Recalling that the range of observation is well inside the Hubble horizon and the fact that only a few dozen long strings per Hubble volume are expected (see e.g. Polchinski 2004), the only way to have $n \sim 10^6$ or bigger is through overlap of the cross-section of a string with itself. Furthermore, once inside the horizon, the long strings tend to straighten through gravitational wave emission and loop breaking (Polchinski & Roche 2007). As a consequence, one
may not be possible at the lowest angular resolution due to beam dilution, but as the steepness of Fig. 2 implies, it is the angular resolution of the individual lens image pairs that is critical to the detection of the lensing events. In the next section, we discuss the observational complications associated with detecting lensing by cosmic strings in practice.

4 OBSERVATIONAL ISSUES

We now turn briefly to the issue of practical lens system detectability. For a given string tension, and so image separation, the maximal detectability will be achieved with the sources as compact as possible, allowing them to be individually detected and flagged at the object catalogue level. However, if the angular resolution is such that the sources are well resolved, then the possibility of detecting the lensing effect using sharp edge-detection algorithms is opened up. If the sources are resolved, morphological and colour information can be used to verify the cosmic string lensing hypothesis.

This somewhat idealistic case is altered if the string is moving relativistically, if the string is not straight on the length-scale of the image separation in the plane of the string, or if the image is ‘cut’ by the string so that one image is of only part of its source. The detection of strings may also be affected by the imaging survey ‘footprint’ – thus far, we have effectively assumed that the sources are observed one by one. We briefly discuss these possibilities in the rest of this section.

4.1 Relativistic strings

The relativistic movement of a string can significantly alter its lensing image separation and cause an apparent redshift between the two images (Vilenkin 1986; Shlaer & Tye 2005). Both effects arise from Lorentz-transforming from the frame of the string, in which the lensing occurs, into the frame of the observer and source. A string with a velocity component parallel to the line of sight v_l will have cross-section modified via

$$d\beta^l_r = \frac{\gamma d\beta_l}{(1 - v_l/c)},$$

(9)

which tends to infinity for highly relativistic strings! A full statistical treatment of the optical depth due to a network of fast-moving strings is beyond the scope of this paper, but the above considerations remind us of two things: first, that moving strings may be detectable by their lensing effects as well, and secondly, that any bound on
$G\mu/c^2$ is dependent on the assumptions of the string network kinematics. In subsequent sections, we assume the non-relativistic limit, but note that present estimates based on numerical simulations give $(v/c)^2 \sim 0.35$ [i.e. $(v/c)^2 \sim 0.2$ and $\gamma \sim 1.5$] at the present time (Polchinski 2007), suggesting that our cross-sections are rather conservative. In any case, relativistic corrections will have to be taken into account in future studies in order to derive a precise limit for a field of view of a few arcmin2 (although see Fassnacht et al. 2006, sufficiently rare that one does not expect to find more than one in a region of a few arcmin2).

A relativistically moving string with significant velocity in the plane of the sky (v_\perp) will also produce a redshift between the two sources given by

$$\Delta z = \frac{v_\perp}{c},$$

where $d\beta_1$ is measured in radians. This redshift perturbation would cause an apparent colour difference between the two images, warning us against the use of overly-restrictive cuts when filtering catalogues. However, unless the string is highly relativistic, this redshift will be too small to be the dominant uncertainty in the relative image colour.

Bends in the string on the scale of the source size, and the ‘cutting’ of sources whose images cross the line of the string, produce geometrical and even brightness distortions. The presence of many string lensing events in a small region of space is really the robust signature of the phenomenon (Huterer & Vachaspati 2003; Oguri & Takahashi 2005), but quantifying the identifiability of complex lensing events with detailed image simulations is possible. We describe an initial foray into this matter in the next section.

4.2 Practical image pair detection

The lensing signal we are looking for is an overdensity of close pairs of (resolved) galaxy images, aligned such that a string could pass through each one. There are three possible types of false positive for the individual candidate lens systems: physical close galaxy pairs, line-of-sight projections, and non-string gravitational lenses. The latter do not concern us for three reasons. First, the characteristic patterns of curved and distorted images in conventional galaxy–galaxy strong lenses (see e.g. Bolton et al. 2006; Moustakas et al. 2007) are quite different from the translated and truncated images expected for a string lens (see e.g. Sazhin et al. 2007). Secondly, in optical images of galaxy–galaxy strong lenses the lens galaxies are usually brighter than the images of the source, confirming the nature of the lens. Thirdly, at a mean density of ~ 10 deg$^{-2}$ (Marshall, Blandford & Sako 2005), ordinary galaxy-scale strong lenses are sufficiently rare that one does not expect to find more than one in a field of view of a few arcmin2 (although see Fassnacht et al. 2006, for a notable counter-example).

The first two types of false positive – projected and physical close pairs of galaxies – can be rejected using high-quality follow-up data (as in the case of CSL-1, Sazhin et al. 2007). Alternatively, during a survey they can be dealt with statistically via the observed galaxy two-point angular correlation function, a topic of active research by our group (Morganson et al. in preparation). In simulated HST F606W-band images with limiting magnitude 28 (comparable to the GOODS survey, for example, and assumed to contain background sources at a number density of 240 arcmin$^{-2}$), we find (on average) four faint galaxy pairs separated by 0.5 arcsec in a 1 arcsec by 5 arcmin image strip. We can compare this result to images that have been lensed by simulated strings. For illustration, we consider a fiducial non-relativistic string of tension $G\mu/c^2 = 1.2 \times 10^{-7}$ at $z_d = 0.5$ lying in the plane of the sky, and a population of compact, faint sources at $z_s = 1.5$. This set-up leads to a convenient source plane cross-section of width $d\beta_1 = 0.5$ arcsec. We generated mock background scenes, and then overlaid the string and recomputed the surface brightness where lensing occurs, and then convolved the images with a mock HST point spread function (full width at half-maximum of approximately 0.14 arcsec) and added background and source Poisson noise consistent with the counts expected in an HST image of limiting magnitude 28.

In these simulated images, we are able to detect an average of 14 faint galaxy pairs separated by 0.5 arcsec in the same 1 arcsec by 5 arcmin strip (including 10 that are multiple images caused by the string). This number is consistent with that calculated by Sazhin et al. (2007). This simple observation of extra pairs is robust to moderate changes in colour, magnitude and morphology caused by non-ideal strings, and would, in principle, require only one deep HST image in the right patch of sky – the simulated detection described above has a significance of more than 3σ. Moreover, the condition that the image pairs be aligned perpendicular to the putative string, and the requirement that all background objects be lensed if they are positioned behind the string, will allow the rejection of the majority of false positives.

4.3 Survey geometry

The optical depth is most relevant to a source-oriented survey, where all the sources in the sky are observed. The deduced lens number density calculated above is therefore an average event rate. The usual cosmological assumptions of isotropy and homogeneity do not necessarily apply to cosmic string lensing events. The possibility of having only a few long strings is favoured by most models: the area around these strings could contain many detectable lensing events while the remaining (vast) expanse of the sky would contain none. In practice, observing costs limit us to imaging surveys of a fixed area of the sky, which will include blank sky as well as sources and will be composed of some number of finite contiguous fields. The survey geometry is therefore rather important when the survey area is small, as we now show with a simple geometrical example.

Let us assume that we have a survey of total solid angle A which is composed of a number of randomly distributed square fields each of side $2r$ rad, and area $a = 4r^2$ sr. Let us also assume that we have a single straight string of angular length L which will be detected if it is within r of the centre of one of our fields. The probability that any given field will detect our string is roughly the fraction of sky that is within r of the string:

$$P_{\text{field}} = \frac{1}{4\pi} \int_{-r}^{r} \int_{-r}^{r} \cos \theta_1 d\theta_1 d\theta_2 = \frac{2(L + 2r) \sin r}{4\pi} \approx \frac{L \sqrt{a}}{4\pi}.$$

(11)

The probability of the survey containing a string in at least one of the $N = A/a$ fields is then

$$P_{\text{survey}} = 1 - (1 - P_{\text{field}})^N \approx 1 - e^{-N L \sqrt{a}/4\pi} \approx 1 - e^{-4125 \text{arcdeg}^2}.$$

(12)

This holds, provided our many strings have cumulative length L sufficiently long that the individual strings are much longer than \sqrt{a}, so that their overlap region is not large (Section 2). Also, it is clear that the random distribution of the fields is an important assumption in this simple calculation. Non-randomly chosen fields would have to be treated with more care.
5 BOUNDS ON $G\mu/c^2$

If a single detection of string lensing was made, then the optical depth would not be zero, and a lower bound could be put on the string tension $G\mu/c^2$. This bound would be given by the angular resolution of the experiment, as described at the end of Section 2. It is a lower bound since the maximum image separation occurs when the string is right in front of the observer – moving the string to higher redshift would require a larger tension to keep the image separation as large as observed. If somehow the string redshift can be constrained, statistically or via the presence of foreground non-lensed objects, then the image separation provides direct measurement of the string tension.

On the other hand, if nothing is observed we cannot state that the upper bound on $G\mu/c^2$ is given by this ‘angular resolution bound’ argument. We expect the upper bound to be bigger than $\frac{\rho_s}{10}$, with the exact amount by which it is bigger dependent on the observed sky area Ω, and the source density distribution $\frac{dn}{d\Omega}$. Treating string lensing events as rare, and so using the Poisson distribution for the probability of their occurrence, given the predicted mean rate (previous section), then if no string lensing detections are made, we can state at 95 per cent confidence that the upper bound on $G\mu/c^2$ is given by the root of $N(G\mu/c^2, \theta) = 2.996$ (Gehrels 1986).

We now place our simple theoretical calculation in observational context, building on the discussion in Section 4. We anticipate requiring surveys covering large areas of sky, and observing high surface densities of faint galaxies at high angular resolution, but aim to show the link between what is possible now and what may be possible in the future, wide-field era. We investigate three representative angular resolutions, typical of ground-based optical imaging (0.7 arcsec), of space-based optical/infrared imaging (0.14 arcsec), and of planned radio surveys (0.028 arcsec). (This last resolution may also be achievable with next generation adaptive optics on large optical telescopes, although the area surveyed will be necessarily smaller.) We have purposely tried to be conservative in these angular resolutions. For simplicity, we do not account for the different survey depths. In most cases, the number of background sources will be irrelevant beyond some threshold, as will be the area of the surveys, since the factor dominating the sensitivity is the angular resolution. Fig. 3 shows the expected number of density string lensing events, as a function of $G\mu/c^2$ for our three fiducial survey resolutions.

Table 1 shows upper limits on $G\mu/c^2$ in the event of a null survey result for surveys of various solid angles (deg2). The first two choices of sky area (0.5 and 5 deg2) represent high-resolution surveys within present capabilities (e.g. the HST ACS archive, Marshall et al., in preparation). The larger survey areas, 1000 and 20000 deg2, represent reasonable expectations for the next generation of space- and ground-based surveys, respectively (see e.g. Aldering et al. 2004; Tyson et al. 2006).

Let us illustrate this table a little. For example, for a fixed resolution of $\theta = 0.14$ arcsec, choosing $\Omega_s = 5$ deg2 gives $G\mu/c^2 \leq 1.5 \times 10^{-7}$. This limit is about a factor of two lower than the most recent 95 per cent confidence bound from studies of the CMB (Pogosian et al. 2006; Seljak & Slosar 2006; Jeong & Smoot 2007), and is competitive with the pulsar-timing studies, by virtue of having different model dependencies (the reader is referred to Polchinski 2007 for a critical review of present observational bounds on $G\mu/c^2$).

Note that, because of the steep shape of the curve near this value (Fig. 3), observing a larger area of sky without (long) string lensing observations would not give a proportionate decrease in the bound on $G\mu/c^2$. Even though this may appear surprising at first, this is a simple consequence of the fact that the main limitation in fixing the bound comes from the angular resolution.

In other words, for any given resolution there is a maximum area that is worth exploring for strings, the exact value of which will depend on the survey geometry, the string correlation length and the image depth (i.e. on the number of available background source galaxies). For example, at ground-based optical image resolution (0.7 arcsec), a survey of 30 deg2 is sufficient to reach saturation – and even then the resulting upper limit on the string tension is above that available from a few deg2 of space-based resolution optical imaging. At the highest resolution considered here, this maximum area is correspondingly higher; however, we can see that the difference between 1000 deg2 and half the sky is small (a mere 20 per cent improvement in the bound on $G\mu/c^2$). To make progress, then, one needs better resolution first, and then more area.

This conclusion has two practical consequences. On the one hand, data already exist that can probe the $G\mu/c^2 \sim 10^{-7}$ regime, with a
suitably robust algorithm (Morganson et al., in preparation). On the other hand, we have not yet reached the maximum useful area for space-based optical string lens surveys: the turnover in Fig. 3 for 0.14 arcsec resolution at the same scale of survey will result in a gain of a further factor of five or so, ultimately providing sensitivity to string tensions of $G\mu/c^2 \sim 10^{-8}$.

6 CONCLUSIONS

We have used a robust prediction of theoretical work on cosmic string networks to predict, in a straightforward way, the expected number of strong gravitational lensing events visible in astronomical imaging surveys of varying angular resolution and sky coverage. From our simple analysis, we draw the following conclusions.

(i) Present-day high-resolution imaging surveys are capable of probing the putative cosmic string tension parameter to a factor of two lower than the current CMB limit, making lensing both competitive with, and complementary to, the pulsar-timing methods. As has been noted before, in the event of a detection, gravitational lensing would provide a direct measurement of the tension, and perhaps the velocity, of this string.

(ii) The main practical considerations in detecting string lensing events are two-fold: first, the expected faint pairs of images must first be carefully deblended and then understood in the context of neighbouring events; and secondly, the survey geometry should be such that the fields are large enough to contain the characteristic multiple neighbouring events, but sparsely distributed to ensure that the global, not local, lensing rate is being probed.

(iii) The upper bound on the tension, from the failure to detect a single string lensing event in a given survey, is principally determined by the available angular resolution. Relatively little is gained from studying an area of sky greater than some critical value: for typical ground-based optical image resolution, this critical survey size is a few tens of deg2. Likewise, string tensions of $G\mu/c^2 \sim 10^{-8}$ should be able to be investigated in future surveys with image resolutions of 10–100 mas covering a few hundred deg2.

ACKNOWLEDGMENTS

We thank Joe Polchinski for inspiring this work with a Blackboard Lunch Talk at the Kavli Institute for Theoretical Physics (KITP) and for numerous useful suggestions. We thank David Hogg and Roger Blandford for useful discussions. We are grateful for the comments of the anonymous referee, that led to a clearer explanation of our work. MAG, PM and TT would like to thank the KITP and its staff for the warm hospitality during the programmes ‘Applications of gravitational lensing’ and ‘String phenomenology’ when a significant part of the work presented here was carried out (KITP is supported by NSF under grant No. PHY99-07949). PM received support from the TABASGO foundation in the form of a research fellowship. TT acknowledges support from the NSF through CAREER award NSF-0642621, and from the Sloan Foundation through a Sloan Research Fellowship. The work of FD was supported by Swiss National Funds and by the NSF under grant No. PHY99-07949 (through KITP). This work was supported in part by the US Department of Energy under contract number DE-AC02-76SF00515.

REFERENCES

Agel E., Hogan C. J., Plotkin R. M., 2006, Phys. Rev. D, 73, 087302
Aldering G. et al., 2004, preprint (astro-ph/0405232)
Benitez N. et al., 2004, ApJS, 150, 1
Bolton A. S., Burles S., Koopmans L. V. E., Treu T., Moustakas L. A., 2006, ApJ, 638, 703
Damour T., Vilenkin A., 2005, Phys. Rev. D, 71, 063510
Davis A.-C., Kibble T., 2005, Contemp. Phys., 46, 313
Fassnacht C. D. et al., 2006, ApJ, 651, 667
Gehrels N., 1986, ApJ, 303, 336
Huterer D., Vachaspati T., 2003, Phys. Rev. D, 68, 041301
Jeong E., Smoot G. F., 2007, ApJ, 661, L1
Kaspi V. M., Taylor J. H., Ryba M. F., 1994, ApJ, 428, 713
Kibble T. W. B., 1976, J. Phys. A: Math. Gen., 9, 1387
Lo A. S., Wright E. L., 2005, preprint (astro-ph/0503120)
Mack K. J., Wesley D. H., King L. J., 2007, preprint (arXiv:astro-ph/0702648)
Marshall P., Blandford R., Sako M., 2005, New Astron. Rev., 49, 387
Moustakas L. A. et al., 2007, ApJ, 660, L31
Oguri M., Takahashi K., 2005, Phys. Rev. D, 72, 085013
Pogosian L., Wasserman I., Wyman M., 2006, preprint (astro-ph/0604141)
Polchinski J., 2004, in Lectures Presented at the 2004 Cargese Summer School
Polchinski J., 2007, in Kleinert R. J. H., Ruffini R., eds, Proc. Eleventh Marcel Grossmann Meeting, General Relativity. World Scientific, Singapore
Polchinski J., Rocha J. V., 2007, Phys. Rev. D, 75, 123503
Sazhin M. V., Khovanskaya O. S., Capaccioli M., Longo G., Paolillo M., Covone G., Grogin N. A., Schreier E. J., 2007, MNRAS, 376, 1731
Schneider P., 2006, in Meylan G., Jetzer P., North P., eds, Lecture Notes of the 33rd Saas-Fee Advanced Course, Gravitational Lensing, Strong, Weak & Micro. Springer-Verlag, Berlin, p. 1
Seljak U., Slosar A., 2006, Phys. Rev. D, 74, 063523
Shlaer B., Tye S.-H. H., 2005, Phys. Rev. D, 72, 043532
Tyson J. A. et al., 2006, http://www.lsst.org/Science/docs
Vilenkin A., 1984, ApJ, 282, L51
Vilenkin A., 1986, Nat, 322, 613
Vilenkin A., 1984, ApJ, 282, L51
Vilenkin A., 1986, Nat, 322, 613

This paper has been typeset from a TEX/\LaTeX\ file prepared by the author.