Dynamic regulation of GATA2 in fate determination in hematopoiesis: possible approach to hPSC-derived hematopoietic stem/progenitor cells

Ya Zhou, Bin Mao, Yijin Chen, Yuan Xue, Bo Chen, Yonggang Zhang, Feng Ma

Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China; State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, CAMS & PUMC, Tianjin 300020, China.

Abstract
GATA2, a principal member of the GATA family, plays important roles in the generation and maintenance of hematopoietic stem/progenitor cells. Among the three mRNA transcripts, the distal first exon of GATA2 (IS exon) is specific for hematopoietic and neuronal cells. GATA2 mutants with abnormal expression are often present in acute myeloid leukemia-related familial diseases and myelodysplastic syndrome, indicating the crucial significance of GATA2 in the proper maintenance of hematopoietic functions. This article offers an overview of the regulation dynamics and function of GATA2 in hematopoiesis, proliferation, differentiation, and function of hematopoietic stem cells in both mouse and human models. We acknowledge the current progress in the cell fate determination mechanism by dynamic GATA2 expression. The gene modification approaches for inspecting the role of GATA2 in definitive hematopoiesis demonstrate the potential for acquiring hPSC-derived hematopoietic stem cells via manipulated GATA2 regulation.

Keywords: GATA2, Hematopoiesis, Stem cells

1. INTRODUCTION

GATA2 has a fundamental impact on the generation and maintenance of hematopoietic stem/progenitor cells (HSPCs). Like other key transcription factors (TFs) such as FLII, ERG, RUNX1, SCL, LYL1, and LMO2, GATA2 not only marks the initiation of human hematopoietic stem cells (HSCs) but also exerts refined spatial/temporal control during the development and differentiation of HSPCs in various patterns. Despite much accumulated knowledge, its influence on transcriptomic regulation and its subtle yet dynamic expression patterns during hematopoietic development remain largely unexplored. This article summarizes the current data on the role of GATA2 TFs in the regulation of developmental hematopoiesis.

2. STRUCTURE AND PROPERTIES OF GATA2

Human GATA2 (13,760kb) is located on chromosome 3q14 (Fig. 1A). The gene is mainly expressed as two different mRNA transcripts of 3484 and 3263 base pairs. A recently identified GATA2 transcript variant of 3383bp has been included in the NCBI database (Fig. 1A). GATA2 mRNA transcription is initiated from two distinct first exons: IS (specific) and IG (general). The distal first exon of GATA2 (IS), which encodes a protein comprising 480 amino acids (50.5kDa), is essential for hematopoietic and neuronal cells with significant specificity, providing conserved N- and C-zinc finger regions, which include two transcriptional domains, a nuclear localization signal, and a negative regulatory domain.

GATA2 is highly expressed in bone marrow (BM) HSCs and downregulated during lineage commitment, and its mutations with abnormal expression are often found in acute myeloid leukemia-related familial diseases and myelodysplastic syndrome (Fig. 1C). The mutation often occurs in the DNA-binding C-finger. In contrast, GATA2 overexpression (OE) in acute myeloid leukemia can predict poor prognosis (Fig. 1C). To date, no distinct GATA2 mutations have been identified in hematological diseases. However, compared with healthy controls, significantly decreased GATA2 mRNA expression in CD34-positive cells was observed in patients with aplastic anemia. Taken together,
abnormal GATA2 activity is detrimental during lineage maturation and may lead to hematopoietic disorders.

3. **GATA2 PLAYS DISTINCT ROLES AT DIFFERENT STAGES OF HEMATOPOIETIC DEVELOPMENT**

GATA2 is initially expressed in the primitive streak, some endothelial cells (ECs) of the dorsal aorta, and vitelline/umbilical arteries of mouse embryos. In the course of endothelial–hematopoietic transition (EHT) and later the definitive HSPC formation in the aorta–gonad–mesonephros (AGM) region, GATA2 is expressed in hemogenic endothelium (HE) and intra-aortic hematopoietic cluster cells. These findings indicate that temporal and spatial regulation patterns may be key to demonstrating the specific functions of GATA2. Over the past two decades, various GATA2 mutations have been identified as the causes of inherited and sporadic hematopoietic disorders. The contribution of GATA2 to hematopoiesis in vivo and in vitro has been extensively investigated via genetic engineering. Genotype-phenotype correlations for GATA2 mutations in mice and humans have been summarized in Table 1.

3.1. **GATA2 is essential for EHT and HSC generation in the AGM region**

Gata−/− embryos die in midgestation when HSCs are generated in the AGM region at embryonic day (E) 10.5. (Fig. 2A). Gata2 heterozygous mutant (Gata2+/−) embryos with reduced expression of Gata2 are severely affected in the production of early hematopoietic progenitors with reduced HSC counts in the AGM region. Conditional knockout with Gata2 in mouse ECs showed deficiency of long-term repopulating HSCs with reduced HSC counts in the AGM region. Targeted deletion of Gata2 cis-element (+9.5 kb) with reduced Gata2 expression also abrogated the capacity of HE to generate HSC-containing clusters in the AGM region. Thus, Gata2 has distinct roles during the different stages of hematopoietic development and is a pivotal regulator of EHT and then HSC generation.

To further understand the requirement for Gata2 in normal hematopoietic development, a mouse model in which an expression impact-free fluorescent reporter for Gata2 (IRESVenus knock-in gene) was implemented (Fig. 2B). Through vital imaging of single cells in the mouse embryonic aorta (WT and Gata2 heterozygous mutant), the authors found that cell
states during EHT correlate with Gata2 reporter expression duration, levels (amplitude changes), and pulse periodicity\(^5\) (Fig. 2B), thereby demonstrating a wave-like expression pattern of Gata2.

Developmental hematopoiesis has been mainly studied in mouse models, human early hematopoiesis still remains poorly understood. The establishment of human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) has enabled new approaches for unveiling the mechanism underlying early hematopoiesis in humans.\(^21\)\(^-\)\(^25\) During the development of hPSCs to HSPCs in vitro, GATA2 is initially expressed in KDR\(^+\)APLNR\(^+\)CD34\(^+\) early hematopoietic precursors.\(^26\) GATA2/eGFP\(^+\) hESCs give rise to increased numbers of HSPCs.\(^27\) GATA2\(^{-/}\) hESCs exhibit significant defects in the EHT as well as consequential conversion into HSPCs, whereas the specification of HE remains unaffected.\(^28\) By contrast, enforced expression of GATA2 with ETV2 or TAL1 in hPSCs promotes HE with pan-myeloid or erythro-megakaryocytic potential.\(^29\) We previously reported an efficient coculture system with AGM-S3 cells that facilitates definitive hematopoiesis from hPSCs in vitro.\(^30,31\) More recently, we established an hESC line with inducible GATA2- OE by doxycycline (Dox) treatment in a PB-based Tet-on system to analyze the functional role of GATA2 with inducible GATA2- OE by doxycycline (Dox) treatment in a PB-based Tet-on system to analyze the functional role of GATA2.

Table 1

Type of gene manipulation	Species/type	Phenotype	References
Knockout (Gata2\(^{-/-}\))	Mouse/embryos	Fetal liver anemia and died at E10, just before the appearance of the first HSCs	[20]
Conditional knockout	Mouse/ECs	Deficiency of long-term repopulating HSCs	[21]
Knockout (Gata2\(^{-/-}\))	Mouse/embryos	Severely affected the production of early progenitors and greatly reduced the number of HSCs in the AGM region	[20,33]
Targeted deletion of Gata2 cis-element (+9.5)	Mouse/embryos	Abrogated the capacity of EHT in AGM	[22]
Targeted deletion of Gata2 cis-element(−77)	Mouse/embryos	Defective myeloid progenitor cell function	[11]
Gata2 Venus reporter Mouse/embryos	Human/ESCs	Cell states during EHT correlate with Gata2 reporter expression duration, levels, and pulse periodicity	[18,19]
Knockout (Gata2\(^{-/-}\))	Mouse/ESCs	Reduced EHT during blood differentiation	[38]
Knockout (Gata2\(^{-/-}\)) Human/ESCs	Mouse/bone marrow cells	Blocked both amplification and differentiation of HSCs	[35]
Enforced expression Mouse/bone marrow cells	Mouse/bone marrow cells	Enhanced self-renewal of myeloid progenitors in vitro and blocked lymphoid differentiation	[36]
Inducible GATA2 overexpression Human/CD34\(^+\) cord blood cells	Human/ESCs	Blocked hematopoietic reconstitution after transplantation	[34]
GATA2/eGFP reporter	Mouse/ESCs	Defective production of all hematopoietic lineages	[37]
Knockout (Gata2\(^{-/-}\))	Human/ESCs	Reduced EHT during blood differentiation	[38]
Knockout (Gata2\(^{-/-}\))	Mouse/bone marrow cells	Blocked both amplification and differentiation of HSCs	[35]
Leaky Gata2 overexpression Mouse/bone marrow cells	Mouse/bone marrow cells	Enhanced self-renewal of myeloid progenitors in vitro and blocked lymphoid differentiation	[36]
GATA2\(^{-/-}\) hESCs	Human/ESCs	Defective production of all hematopoietic lineages	[37]
Human/ESCs	GATA2\(^{-/-}\) hESCs cause an increased number of HSPCs	[27]	
Human/ESCs	GATA2- OE promotes EHT and maintains HSPCs by inducing cell cycle arrest	[32]	
Conditional GATA2 expression (Gata2\(^{-/-}\) hESCs)	Human/ESCs	dispensable for specification of HE but promotes EHT	[28]

3.2. GATA2 regulates the functional quality of HSPC fate

Previous studies have demonstrated that the intensity of GATA2 expression is important in regulating the quantity and function of HSCs.\(^33,34\) Besides, GATA2- OE promotes quiescence in human cord blood-HSCs, thereby sacrificing their reconstitution capabilities\(^31\) (Fig. 2D). Enforced expression of GATA2 also blocks the proliferation and differentiation of murine BM cells.\(^35\) Low-level enforced expression of GATA2 in mouse BM cells enhances self-renewal of myeloid progenitors in vitro, blocking lymphoid differentiation.\(^36\) Furthermore, HSCs in GATA2\(^{-/-}\) mice are less competitive than those in wild-type ones in hematopoietic reconstitution posttransplantation.\(^37\)

Both enforced and reduced expression of GATA2 lead to qualitative defects of HSCs (Fig. 2C). GATA2 appears to elicit a critical dose-dependent effect on the maintenance of HSCs during early and late hematopoiesis. In our system, a dual effect of GATA2- OE has been found to promote pre-HSPCs (typically CD34\(^+\)CD43\(^-\)CD45\(^-\)) through the EHT and later arrest hESC-derived HSPCs (CD34\(^+\)CD45\(^+\)) in a quiescent stage via cell cycle regulation (Fig. 2D).

This indicates that the expression duration, levels (amplitude changes), and pulse periodicity of GATA2 must be constrained within a physiological window. GATA2 is essential for multiple steps during hematopoiesis. It triggers HE to produce HSCs and regulates HSC activity as well as stimulates the proliferation, differentiation, and survival of myeloid progenitors. However, how GATA2 controls these different processes and to what extent it influences cell fate determination remains elusive.

4. MECHANISM OF CELL FATE DETERMINATION BY DYNAMIC GATA2 EXPRESSION

In mouse Gata2, cis-regulatory elements are located −77, −3.9, −2.8, −1.8, and +9.5 kb from the transcription start site of IS (Fig. 1). Mice lacking the −3.9, −2.8, or −1.8-kb upstream promoter-neighboring regions are born alive without significant hematopoietic abnormalities.\(^39,40\) Dysfunction of the −77-kb enhancer region decreases Gata2 expression in myeloidrymphoid
progenitors but not in HSCs.11 However, the deletion of a cis-element located +9.5-kb downstream of the Gata2 promoter in mice decreases Gata2 expression in HE in the AGM region and abrogates EHT.22 The cis-regulatory elements are important in the regulation of Gata2 expression and function in mice, and mutation of the cis-regulatory elements has also been reported in hematopoietic disorders in humans. However, how the cis-regulatory elements regulate GATA2 expression in early hematopoiesis in humans requires further exploration.

Few studies have explored the roles of miRNAs in the GATA2 signaling cascade. Recent reports have shown that upon miR-382-5p overexpression, GATA2 was downregulated in cord blood CD34+ HSPCs, causing a significant decrease in megakaryocyte precursor levels with increased granulocyte levels.41 A heptad of key TFs (FLI1, ERG, GATA2, RUNX1, SCL, LYL1, and LMO2) in human CD34+ HSPCs associated with differential microRNA expression was reported.42 The GATA2 TF activity is also modulated by posttranslational modifications, such as phosphorylation,43–45 sumoylation,46 ubiquitination,47 and acetylation.48 The mechanism of cell fate determination by dynamic GATA2 expression is complex, suggesting the existence of a multidimensional GATA2-centered network in hematopoiesis regulation.

5. TOOLS FOR INSPECTING THE ROLE OF GATA2 IN HEMATOPOIESIS

Exogenous, conditionally expressed GATA2 or its reporters are routinely used to investigate GATA2 function in mice and humans (Table 2). Various gene modification approaches offer unique advantages for expressing exogenous and endogenous GATA2 for distinguishable and reproducible phenotypes. Lentiviral and retrorviral systems were used to express exogenous GATA2 at high levels in mouse and human BM or CB cells.31,32 However, potential transgene integration into the promoter/enhancer or gene coding region and the laborious nature of virus production restrict the utility of retroviral and lentiviral vectors.49 Compared with retroviral or lentiviral systems, the PiggyBac system presents a promising option for the nonviral genetic engineering of hPSCs. The system comprises a PiggyBac
transposon vector and a transposase vector, which transiently expresses the transposase. Thus far, we have established hESCs lines utilizing such a system with a Dox induction to analyze the functional roles of GATA2 in cell subsets (mesoderm, EHT, HSPCs, and other hematopoietic cells)\(^{(28)}\) (data not shown). The relative expression of exogenous and endogenous GATA2 could also be distinctively detected by qRT-PCR.

Conventional gene-targeting methods via homologous recombination (HR) have been extensively used to specifically alter genes in mouse models. This approach has proven to be invaluable in its use in mouse ESCs to generate Gata2 knock-out, knock-down, and knock-in mice. A series of Gata2\(^{-/-}\), Gata2\(^{+/+}\), and site-specific Gata2\(^{-/-}\) mice was created through HR (Table 2); a Gata2Venus reporter model was also created with unperturbed Gata2 expression to examine its transcriptome profile and hematopoietic functions.\(^{(18,19)}\)

Nevertheless, the conventional HR method presents low efficiency and is laborious due to the requirement of targeting constructs with long homology arms and multiple drug selection rounds to isolate desired clones, raising challenges in hPSC constructs with long homology arms and multiple drug selection strategies.50 There is a need for improved efficacy in gene targeting for the manipulation of hPSCs. The novel genome-editing technology, also known as genome engineering, seeks to meet this demand by offering superior efficiency and specificity, ranging from single-nucleotide modifications to whole-gene additions or deletions. Transcription activator-like effector nucleases (TALENs) have been used to knock out GATA2 or knock-in eGFP-GATA2 reporter in hESCs.\(^{(24,38)}\) The CRISPR-Cas9 and PiggyBac transposon systems have been used in the conditional manipulation of GATA2 expression (IG2\(^{-/-}\), hESCs).\(^{(25)}\) The PiggyBac transposon system has been used to engineer an hESC line (H1) carrying a DOX-inducible GATA2 transgene. The CRISPR/Cas9 system has also been used to knock out endogenous GATA2 with targeted guide RNA sequences around exons 2 and 5.\(^{(23)}\) Hence, the emergence of the novel genome-editing technology has made it much easier to generate and investigate human cellular disease models with even greater speed and efficiency.

In further studies, a combined cocktail of GATA2 and other markers coexpressed during the development of HSPCs, such as KDR, CD34, CD43, and CD45, may be sought. The parallel introduction of fluorescence reporters in both mouse- and hPSC-derived cells may be used to fully elucidate the role of GATA2 in hematopoiesis.

6. IMPLICATIONS AND PERSPECTIVES

Several decades of research on the GATA2 protein family has provided a wealth of molecular and biological information concerning their roles in normal hematopoiesis; however, the phenotypes of these mouse models do not always correlate with the human phenotypes. However, analyses of mouse models have provided important insights for guiding human case analyses and have increased the understanding of the pathophysiological mechanisms underlying human diseases.

It is difficult to assess how the expression levels of GATA2 in engineered hematogenic cells and their transcriptome profiles resemble those of the HSCs in the AGM region, fetal liver, and BM under in vivo physiological circumstances. Realizing that it might not matter if the GATA2 expression is high to achieve the goal of generating multipotent hematopoietic cells, this might be an important parameter, especially given the failure thus far of research groups to demonstrate long-term repopulating activity of HSC-like cells induced by GATA2 in hESCs. The mechanisms via which GATA2 regulates the generation and maintenance of HSCs at different developmental stages must be further elucidated.

Using the newly implemented single-cell analysis method, a time-lapse image of single cells can be constructed, resolving the GATA2-expressing hematopoietic cell populations located in AGM, fetal liver, and BM. Such information can further map out the dynamic expression profile of GATA2 and its related TF assemblies and reshape the epigenetic landscape in the process. Transcriptomic and proteomic signatures acquired are expected to uncover the mechanisms underlying the inherent instability of hematopoietic cells. Taken together, these insights into GATA2 proteins may ultimately generate novel approaches to acquiring HSCs from hPSCs for both academic and clinical applications.

REFERENCES

1. Lee ME, Temizer DH, Clifford JA, Quertermous T. Cloning of the GATA-binding protein that regulates endothelin-1 gene expression in endothelial cells. J Biol Chem 1991;266:16188–16192.
2. Minegishi N, Ohta H, Yamagawa N, et al. The mouse GATA-2 gene is expressed in the para-aortic splanchnopleura and aorta-gonads and mesonephros region. Blood 1999;93:4196–4207.
3. Pan X, Minegishi N, Horigue H, et al. Identification of human GATA-2 gene distal IS exon and its expression in hematopoietic stem cell fractions. J Biochem 2000;127:105–112.
4. Minegishi N, Suzuki N, Yokomizo T, et al. Expression and domain-specific function of GATA-2 during differentiation of the hematopoietic precursor cells in midgestation mouse embryos. Blood 2003;102 (3):896–905.

Table 2

Levels of GATA2 expression	Tools for gene modulation	Species/type	References
Enforced	Retrovirus	Mouse/bone marrow cells	[35]
Low-level enforced	Retrovirus	Mouse/bone marrow cells	[36]
Inducible enforced	Lentivirus	Human/CD34+ cord blood cells	[34]
Inducible enforced	PiggyBac transposon system	Human/ESCs	[32]
None	HR	Mouse/embryos	[20]
None	HR	Mouse/endothelial cells	[21]
Reduced	HR	Mouse/embryos	[20.33,22]
Normal	HR	Mouse/embryos	[18,19]
None	TALEN	Human/ESCs	[38]
None	TALEN	Human/ESCs	[27]
Conditional overexpression of GATA2	PiggyBac transposon system and CRISPR/Cas9	Human/ESCs	[28]

CRISPR/Cas9 = CRISPR/Cas9 system, HR = homologous recombination, PB transposon = PiggyBac transposon system, TALEN = transcription activator-like effector nucleases
[5] Tong Q, Tsai J, Tan G, Dalgin G, Hatamisgil GS. Interaction between GATA and the CREB family of transcription factors is critical in GATA-mediated suppression of adipocyte differentiation. Mol Cell Biol 2005;25:706-715.

[6] Orlic D, Anderson S, Bieseker LG, Sorrentino BP, Bodine DM. Pluripotent hematopoietic stem cells contain high levels of mRNA for c-kit, GATA-2, p53, NF-E2, and c-myc and low levels of m RNA for c-fms and the receptors for granulocyte-colony-stimulating factor and interleukins 3 and 7. Proc Natl Acad Sci USA 1995;92 (10):4601-4605.

[7] Spinner MA, Sanchez LA, Hsu AP, et al. GATA2 deficiency: a protein disorder of hematopoiesis, lymphatics, and immune. Blood 2014;123 (6):809-821.

[8] Dickinson RE, Milne P, Jardine L, et al. The evolution of cellular pluripotent stem cell differentiation cultures. Cell Rep 2014;32:539-554.

[9] Vicente C, Vazquez I, Conchillo A, et al. Overexpression of GATA2 enhances development and maintenance of human embryonic stem cell-derived hematopoietic stem cell-like progenitors. Stem Cells Transl Med 2019;8:13-17.

[10] Katsumura KR, Bresnick EH. GATA Factor Mechanisms Group. The GATA factor revolution in hematology. Blood 2017;129:2092-2102.

[11] Robert-Moreno A, Espinosa L, delap0mpa JL, et al. Remote GATA2 hematopoietic enhancer drives leukemogenesis in inv(3)(q21;q26) by activating EVI1 expression. Cancer Cell 2014;25 (4):415-427.

[12] Zini R, Rossi C, Norfo R, et al. miR-382-5p controls hematopoietic stem cell differentiation, but not for erythroid and myeloid terminal differentiation. Blood 2019;133:2661-2672.

[13] Persons DA, Allay JA, Allay ER, et al. Enforced expression of the GATA-2 transcription factor blocks normal hematopoiesis. Blood 1999;93:488-499.

[14] Zeng W, Chen G, Kajigaya S, et al. Generation and analysis of GATA2-w/eGFP hematopoietic stem cell-like progenitors. Stem Cells Transl Med 2018;7:869-883.

[15] Wang H, Liu C, Liu X, et al. MEIS1 regulates hemogenic endothelial generation, megakaryopoiesis, and thrombopoiesis in human pluripotent stem cells by targeting TAL1 and FLI1. Stem Cells Transl Med 2018;10:447-460.

[16] Zhou Y, Zhang YG, Chen B, et al. Overexpression of GATA2 enhances survival and self-renewal of human embryonic stem cell-derived hematopoietic stem cell-like progenitors. Stem Cells Transl Med 2019;8:13-17.

[17] Loebischer MW, Hirabayashi S, Pastor V, et al. Prevalence, clinical characteristics, and prognosis of GATA2-related myelodysplastic syndromes in children and adolescents. Blood 2016;127:1387-1397.

[18] Tong Q, Tsai J, Tan G, Dalgin G, Hotamisligil GS. Interaction between GATA and the CREB family of transcription factors is critical in GATA-mediated suppression of adipocyte differentiation. Mol Cell Biol 2005;25:706-715.

[19] Orlic D, Anderson S, Bieseker LG, Sorrentino BP, Bodine DM. Pluripotent hematopoietic stem cells contain high levels of mRNA for c-kit, GATA-2, p53, NF-E2, and c-myc and low levels of mRNA for c-fms and the receptors for granulocyte-colony-stimulating factor and interleukins 3 and 7. Proc Natl Acad Sci USA 1995;92 (10):4601-4605.

[20] Spinner MA, Sanchez LA, Hsu AP, et al. GATA2 deficiency: a protein disorder of hematopoiesis, lymphatics, and immune. Blood 2014;123 (6):809-821.

[21] Dickinson RE, Milne P, Jardine L, et al. The evolution of cellular pluripotent stem cell differentiation cultures. Cell Rep 2014;32:539-554.

[22] Vicente C, Vazquez I, Conchillo A, et al. Overexpression of GATA2 predicts an adverse prognosis for patients with acute myeloid leukemia and it is associated with distinct molecular abnormalities. Leukemia 2012;26:330-354.

[23] Zeng W, Chen G, Kajigaya S, et al. Gene expression profiling in CD34 cells to identify differences between aplastic anemia patients and healthy volunteers. Blood 2014;103:325-332.

[24] Robert-Moreno A, Espinosa L, delap0mpa JL, Bigas A. RBP7/kappa-dependent Notch function regulates Gata2 and is essential for the formation of intra-embryonic hematopoietic hematopoietic cells. Development 2005;132:1117-1126.

[25] Kaimakis P, de Pater E, Eich C, et al. Functional and molecular characterization of mouse Gata2-independent hematopoietic progenitors. Blood 2016;127:1426-1437.

[26] Eich C, Arlt J, Vink CS, et al. In vivo single cell analysis reveals Gata2 dynamics in cells transitioning to hematopoietic fate. J Exp Med 2017;215:233-248.

[27] Tsai FY, Keller G, Kuo FC, et al. An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature 1994;371 (6494):221-226.

[28] de Pater E, Kaimakis P, Vink CS, et al. Gata2 is required for HSC generation and survival. J Exp Med 2013;210 (13):2843-2850.

[29] Mao B, Huang S, Lu X, et al. Early development of hematopoietic stem cells from human blastocysts. Sci Adv 2015;1 (8):e1500503.

[30] Zini R, Rossi C, Norfo R, et al. miR-382-5p controls hematopoietic stem cell differentiation through the downregulation of MXD1. Stem Cells Transl Med 2016;5 (19):1433-1443.

[31] Beck D, Thoms JA, Perera D, et al. Genome-wide analysis of transcriptional regulators in human HSPCs reveals a densely inter-connected network of coding and noncoding genes. Blood 2013;122 (14):e1-e22.

[32] Towatari M, May GE, Marais R, et al. Regulation of GATA2 phosphorylation by mitogen-activated protein kinase and interleukin-3. J Biol Chem 1995;270:4101-4107.

[33] Menghini R, Marchetti V, Cardellini M, et al. Phosphorylation of GATA2 by Akt increases adipose tissue differentiation and reduces adipose tissue-related inflammation: a novel pathway linking obesity to atherosclerosis. Circulation 2005;111:1946-1953.

[34] Koga S, Yamaguchi N, Abe T, et al. Cell-cycle-dependent oscillation of GATA-2 expression in hematopoietic cells. Blood 2007;109:4200-4208.

[35] Chiu TH, Ito H, Subramanian L, et al. Modification of GATA-2 transcriptional activity in endothelial cells by the SUMO E3 ligase Piasy. Circ Res 2009;92:1201-1208.

[36] Minegishi N, Suzuki N, Kawazumi Y, Shimizu R, Yamamoto M. Rapid turnover of GATA-2 via ubiquitin-proteasome protein degradation pathway. Genes Cells 2005;10:693-704.

[37] Hayakawa F, Towatari M, Ozawa Y, Tomita A, Privalsky ML, Saito H. Functional regulation of GATA-2 by acetylation. J Leukoc Biol 2004;75:529-540.

[38] Moianni A, Paleani Y, Sartori D, Mezzadra R, Miccio A, Cattoglio C, et al. Lentiviral vector integration in the human genome induces alternative cellular reprogramming. Stem Cell Reports 2018;11:197.

[39] Zhau HP, Thomson JA. Homologous recombination in human embryonic stem cells. Nat Biotechnol 2003;21:319-321.