Optimization of ABC Classification Method for Automobile Spare Parts based on DEA

Xiaoqing Wang
School of Economics and Management, Beijing Jiaotong University, Beijing, China
17125475@bjtu.edu.cn

Abstract. In recent years, the prospect of the Vehicle market is worrisome. The development of automotive aftermarket business has become the core of 4s stores. And the spare parts in stock are the key part of the aftermarket. Therefore, it is very important for the development of the aftermarket to make a good classification of spare parts. Aiming at the problem of the variety of spare parts and Improper management, this paper built ABC Classification method for Automobile spare parts based on DEA taking the 4s store of Beijing Citroen brand as an example to optimize the classification method of spare parts in 4s store. The rationality of the method is proved by comparing with the traditional / original method.

1. Introduction
With the rapid development of the automotive industry, the competition among automotive service companies has increased and many companies have made it difficult to make profits. The profits in the aftermarket come mainly from Vehicles’ sales and after-sales maintenance. Due to the competition in the new car market and control from Superior company, new car selling is difficult to earn more profits for the company, thus making automobile maintenance service a main incoming source which only consists 10% income but has a rate of 40% in profit contribution. So now a lot of enterprises focus on the after-sale maintenance as the main profit, and Spare parts and after-sales maintenance is inextricably linked. Extensive inventory management can create adverse effect to the company's operations. The stock backlog occupies a large amount of liquidity, ‘dead inventory’, out of stock and slow response resulting in a decline of customer satisfaction. The traditional ABC classification method is too rigid to consider the influencing factors comprehensively. Using the ABC classification method based on the DEA method can solve the single indicator problem and the inconsistent problem of the numerical dimension between multiple indicators of the traditional ABC classification to identify key spare parts and classify spare parts.

Domestic and foreign scholars have many discussions on the classification of parts and components: Guanghui Song [1] puts the research of 4S spares into the environment of the supply chain, studying the limitations of the traditional ABC taxonomy on auto parts management, and reclassifying auto parts according to the characteristics of 4S spares and giving ordering strategies for various parts and components.
Xiaosheng Ding [2] optimized the traditional ABC classification method, combined with the characteristics of spares, using two-dimensional classification, expounded the application of ABC classification in spares management. Xiaoyong Zou, Yingqiu Xu [3] improved the traditional ABC
method, combining with computer technology, the second use of ABC method to classify spares; Yu Zhao [4] combines AHP and ABC classification, first dividing the automobile parts into five parts: common spare parts, fixed maintenance spare parts, easily damaged spare parts, non-fragile spare parts, main spare parts, establishes the hierarchical structure model, and obtains the combined weight. On this basis, by multiplying the amount of capital occupied with the combined weight to get the weight of the capital occupation, taking the weighted capital occupation as the grade standard, the auto parts and components are divided. Nicola Saccani [5] classified components from the aspects of level of standardization, value, and degree of importance; Mohamed A. Sharaf [6] classified the components from the perspective of price, availability, lead-time spare part type, and life cycle. Xiong Junxing and Xia Fangchen introduced the BP neural network into the ABC classification of parts and components to obtain the BP-ABC classification model. In addition, some scholars introduced the mathematical envelopment analysis (DEA) into the component classification. First, the DEA model was introduced into the component classification, and the ABC classification method based on DEA was proposed. Nanfang Cui [7] first introduced the DEA model into the component classification, and proposed a component-based ABC classification method based on DEA.

2. Method introduction

2.1. ABC Classification

The ABC classification is based on the Pareto law. The most important part is only 20%, and the remaining is 80%. Using the ABC classification method to classify spare parts means that the spare parts are divided into three levels according to the variety and the value of the occupation [8]. Class A is important with the fewest number of types and the largest amount of funds; Class B is general with more varieties and less funds; Class C is secondary with the largest number of types and the least amount of funds.

2.2. DEA Method

Data Envelopment Analysis (DEA) is a systematic analysis method. This method is based on the concept of ‘relative efficiency evaluation’, and extends the concept of single-input-output engineering efficiency to the effectiveness evaluation of similar multi-input and multi-output decision-making units. This method greatly enriches the production function theory and application technology in microeconomics and has Superiority that cannot be underestimated in avoiding simplified algorithms, subjective factors, and reducing errors.

In the DEA model, every decision unit compares with other decision units and calculates an efficiency ratio of the decision unit, which is obtained by the ratio of resource input to product and service output. DEA allows multiple inputs and multiple outputs to get the efficiency ratios. On the one hand, it does not have requirement for the data of input and output. The input can be of any form and the output is only required to be beneficial as long as they are not affected by the data dimension; On the other hand, the model is a quantitative model so it can be transformed into linear programming. Therefore, many decision elements within the considered range can be compared. The complexity of the calculation is only a linear increase. With the support of the calculation software, the calculation efficiency is high. The calculation result is very intuitive and scientific that can actually reflect the comprehensive situation of the evaluation object and its potential competitiveness.

2.3. C^2R Model

C^2R model is the most representative DEA model in the DEA method theory system. The model integrates a group of comparable decision units and corresponding performance metrics into one model to solve the comprehensive efficiency and comparison problems among the group of decision units. The efficiency evaluation index calculation formula is:
The indicators consist of n evaluation units. Each evaluation unit can have m inputs and s outputs.

\[x_{ij} \] represents the input amount of the i-th input of the j-th decision unit.

\[y_{rj} \] represents the output of the r-th output of the j-th decision unit.

The input and output of the j-th decision unit are:

\[x_j = (x_{ij}, x_{2j}, ..., x_{mj})^T, j = 1,2, ..., n \]

\[y_j = (y_{ij}, y_{2j}, ..., y_{sj})^T, j = 1,2, ..., n \]

\[v_i \] represents the measure of the i-th input;

\[u_r \] represents the measure of the r-th output.

Looking for a certain combination of n decision units, the output can be reduced as much as possible without lowering the output of the j0th decision unit based on the basic idea of DEA.

The \(C^2R \) model is as follows:

\[
\begin{align*}
\max h_0 &= \frac{u^T y_0}{v^T x_0} = V_p \\
\frac{u^T y_j}{v^T x_j} &\leq l, j = 1,2, ..., n \\
\text{s.t.,} \quad &v \geq 0 \\
&u \geq 0
\end{align*}
\]

\[v = (v_1, v_2, ..., v_m)^T, u = (u_1, u_2, ..., u_s)^T \]

It is a fractional planning model. After transformation and dual conversion, an equivalent linear programming model can be obtained:

\[
\begin{align*}
\min \theta & \\
\text{s.t.,} \quad &\sum_{j=1}^{n} x_j \lambda_j \leq \theta x_0 \\
&\sum_{j=1}^{n} y_j \lambda_j \geq y_0 \\
&\lambda_j \geq 0, j = 1,2, ..., n
\end{align*}
\]

From the above formula, when evaluating a certain unit, the relative weight between the various indicators of the input and output units are determined by the optimization of the DEA model. Each unit has its goal planning (if there are n units, n goal planning need to be established), and the
corresponding restriction conditions are the same of these goal planning so the efficiency value is based on the same comparison. Therefore the efficiency value obtained by this method is fair and relative.

3. Build the model

3.1. Status of Spare Parts Classification

Beijing Jintai Kaisheng Automobile Sales & Service Co., Ltd. was established in August 2009, with an investment of 15 million yuan and an area of 2,300 square meters. It is the second Citroen 4s store established in Beijing Asian Games Village Market. Authorized by Dongfeng Citroen, it is an automotive service company integrating vehicle sales, spare parts supply, after-sales service, and information feedback. The company currently specializes in several major Citroen C3, C3-XL, C5, C4 Sega, classic Elysee, the new Elysee and other major models. In addition to the above models for the maintenance of models, Citroen, Dongfeng Peugeot 200, Dongfeng Peugeot 206, and Beijing Hyundai are also included [9]. Due to the excessive number of spare parts in stock, the current inventory managers are only empirically classified according to the value of spare parts.

3.2. ABC Classification Application

Considering the current situation, there are some spare parts that are out of date or have no sales. Therefore, the ABC classification is based on the monthly average outbound volume in 2017. The purpose is to directly classify the spare parts according to the demand.

First, monthly average outbound value is 387,366.87 yuan, and the outbound category is 530 and 530 kinds of spare parts are calculated based on the data. According to the value, the ABC classification of spare parts will be obtained as follows.

Spare parts name	Outbound amount	Number	Category
Engine Oil 4L TOTAL 7000/5W30	20332.57	1	A
Engine Oil 0W30 A5B5	18544.33	2	A
Dunlop 255/40R18 Mercedes-Benz	1328.21	72	A
Cylinder cover shroud without hole	1287.26	73	A
Lower skirt	1281.98	74	A
Rear bumper trim	1246.24	75	A
Left rear door glass	1220.51	76	A
Cooling System Cleaner (225ml) 225ML	1196.5	77	B
Bumper stiffener FXT	1184.6	78	B
Lower trim left	319.19	201	B
Plating wheel repair	314.09	202	B
Engine accessory harness	312.61	203	B
Front knuckle Left D82 Reinforced	306.46	204	B
Reed nut M6X1.00	304.56	205	B
Electronic fan	296.15	206	C
Tensioner	294.02	207	C
(MUL) with base nut	2.2	526	C
Retaining ring D24	1.97	527	C
Tie	1.68	528	C
Timing tensioner pad	1.01	529	C
Piston ring assembly (3)	-381.52	530	C
Total	387366.87		

Summarize the three types of ABC spare parts results as follows:
Table 2. The count of abc classification.

Spare Parts Category	Spare Parts Value (Yuan)	Value Proportion	The number of Spare Parts Categories	Proportion
A	276552.37	71.39%	76	14.33%
B	82114.6349	21.20%	129	24.34%
C	28699.8622	7.41%	325	61.33%
total	387366.87	100%	530	100%

3.3. Build the DEA Model

The DEA method has outstanding advantages in solving the ABC classification problem. Construct the DEA model of the effectiveness of spare parts, and solve the ABC classification problem of spare parts by classifying the relevant attributes of spare parts [10].

Figure 1. The process of building the model.

1. The value of θ in the model is set as the importance of spare parts. The larger the value of θ is, the more important of spare part is and the more attention should be paid to it.
2. Find indicator attributes related to the importance of spare parts. The unit price of spare parts will affect the occupation of inventory funds. Spare parts mobility represents the size of spare parts turnover. Particularity of spare parts describes the general degree of spare parts or the difficulty of obtaining spare parts. The regularity of spare parts demand indicates the difficulty of forecasting the demand of spare parts. Therefore, these four decision units consider the attributes of spare parts from different perspectives.
3. Determine the input DMU and output DMU. It can be seen that in order to make the efficiency as large as possible, when The smaller the input is and the greater the output is, the larger the value of θ will be, indicating that the decision unit is more effective from the influence of the input index and output index on the value of θ [11]. Therefore, according to this principle, relevant decision units are quantified. Get the answer:
Table 3. Input & output decision unit.

Input/output	Decision unit	Details
Input	Particularity of spare parts	The higher the specificity is, the more important the degree of importance is. Spare parts will be assigned as special parts, general parts and standard parts by the spare parts 1, 3, and 5 respectively.
	The regularity of spare parts demand	The smaller the regularity is, the higher the degree of importance is. The values of 1, 3, 5, and 7 are assigned according to the magnitude of regular strength.
Output	The unit price of spare parts	The higher the unit price of parts, the higher the degree of importance.
	The mobility of Spare parts	The larger the turnover, the more important the degree of spare parts. Mobility is defined 1, 3, 5, 7 respectively according to the range of the turnover rate.

(4) Because 504 spare part categories are not easy to calculate, according to the quantity ratio of ABC method, 7 kinds spare parts of A, 12 kinds spare parts of B and 31 kinds spare parts of C are randomly selected according to the ratio of 14: 24: 62. 50 kinds of spare parts were surveyed and acquired by purchasers and inventory managers. The following results were obtained:

Table 4. Input & output decision unit.

Spare parts name	Unit price	Mobility	Particularity	The regularity of demand
Oil filter FILTRAUTO	30	7	3	7
Spark plug	19.23	5	3	7
Pollen filter	54.29	5	3	7
Front lights Right	767.95	3	1	3
Front windscreen	762.82	3	1	3
Engine hood	1014.25	3	1	3
Goodyear tires	578.77	5	1	5
engine lubricant	59.83	7	3	7
Citroen logo	351.97	1	1	3
Front fender Left front	588.57	3	1	3
Rear bumper	484.62	3	1	3
Front cover beam	180.98	1	3	1
Engine air deflector	144.19	3	1	3
Sealing ring 14X24-1.5	8.97	3	3	5
Switches	347.59	1	3	3
Coolant 2L -35°C	28.85	5	5	7
Main bearing tile	46.07	1	3	1
Timing chain	180.98	1	3	1
Air filter assembly	57.05	5	3	5
Engine Oil (Mazda)	197.44	3	3	5
Wiper Blade Driving Side	59.63	3	1	3
Machine filter	35.9	5	3	5
Air conditioning filter	47.56	3	3	5
Air filter element	28.72	3	3	5
Item	Value	X	Y	Z
-----------------------------	-------	---	---	---
Button Battery	9.23	1	5	3
Bolt	3.95	3	3	3
Gear lever base HZD	16.99	1	3	3
Identification Right 1.8	16.99	3	1	3
Glass washing nozzle	16.68	3	1	5
Fork shaft lock	16.45	1	1	1
Electronic fan	296.15	3	3	3
Tensioner	147.01	3	3	3
Door seals	140.06	1	1	1
Engine timing gear	21.06	1	3	3
Tyres (215/60/R16)	272.22	3	1	5
Oil seal	235.9	3	3	3
Power steering oil	929.49	3	3	5
Glass washing nozzle	16.68	3	1	5
Fork shaft lock	16.45	1	1	1
Electronic fan	296.15	3	3	3
Tensioner	147.01	3	3	3
Door seals	140.06	1	1	1
Engine timing gear	21.06	1	3	3
Tyres (215/60/R16)	272.22	3	1	5
Oil seal	235.9	3	3	3
Power steering oil	929.49	3	3	5

5) Substitute the above results into MATLAB and use the programming language. X indicates the value of the input units; Y indicates the value of the output units. Get the θ and sort the θ [12], the following results are obtained:

\[
Y = [\];
X = [\];
n = size(X', 1); m = size(X, 1); s = size(Y, 1);
epsilon = 10^{-10};
f = [zeros(1, n) -epsilon*ones(1, m+s) 1];
A = zeros(1, n+m+s+1);
b = zeros(1);
LB = zeros(n+m+s+1, 1);
UB = [];
LB(n+m+s+1) = -Inf;
for i = 1:n;
 Aeq = [X eye(m) zeros(m, s) -X(:, i) Y zeros(s, m) -eye(s) zeros(s, 1)];
 beq = [zeros(m, 1) Y(:, i)];
 w(:, i) = linprog(f, A, b, Aeq, beq, LB, UB);
end
lambda = w(1:n,:)

7
s_minus = w(n+1:n+m,:)
s_plus = w(n+m+1:n+m+s,:)
theta = w(n+m+s+1,:)

Table 5. Input & Output Decision Unit.

Number	Before using DEA	After using DEA	θ	Number	Before using DEA	After using DEA	θ
50	C	A	1	36	C	C	0.64
7	A	A	1	32	C	C	0.636
6	A	A	1	38	C	C	0.636
4	A	A	0.97	26	C	C	0.636
5	A	A	0.969	46	C	C	0.636
10	B	A	0.947	30	C	C	0.636
11	B	A	0.934	2	A	C	0.614
21	C	B	0.913	3	A	C	0.614
28	C	B	0.913	29	C	C	0.6
45	C	B	0.913	35	C	C	0.6
13	B	B	0.913	37	C	C	0.564
1	A	B	0.86	16	C	C	0.522
8	B	B	0.86	24	C	C	0.467
39	C	B	0.825	20	C	C	0.467
40	C	B	0.822	14	B	C	0.467
42	C	B	0.797	23	C	C	0.467
43	C	B	0.778	17	B	C	0.38
19	B	B	0.778	41	C	C	0.369
49	C	B	0.765	9	B	C	0.347
12	B	C	0.666	15	B	C	0.343
18	B	C	0.666	47	C	C	0.257
33	C	C	0.656	27	C	C	0.212
44	C	C	0.646	34	C	C	0.212
31	C	C	0.645	25	C	C	0.163
48	C	C	0.644	22	C	C	0.156

3.4. Comparison

It can be concluded that the results of the classification of spare parts using the DEA method are very different from the results of the traditional ABC classification method by comparative analysis. It can be found that the value of θ for some spare parts of C is 1, which proved that the decision unit is valid for DEA, indicating that the importance degree of spare parts is very high. For some spare parts of A that the θ is 0.6, which proved that the decision unit is DEA invalid, indicating that the importance degree of spare parts is low.

For example, the bearings spare parts of No.50 are classified as C according to the traditional ABC classification method, but the value of θ is 1, which proved that the decision unit is valid for DEA. Because the unit price of the bearing is 72.39, the fluidity and particularity are general, but the demand forecast is very difficult, the bearings should be focused. Spare spark plug of No. 2 and spare pollen filter of No. 3 are classified into a according to the outbound value of the spare parts. However, their unit prices are very low and the liquidity and
specificity are general. The demand forecast has strong regularity so it is easy to forecast so they are less important.

From the arrangement of \(\theta \) values, it can be seen that the traditional ABC classification method has certain rationality in a degree. Because the factors considered are relatively single, the classification result is not comprehensive. The ABC based DEA classification method takes into account the various attributes so it is more scientific and reasonable.

4. Concision

This paper uses the DEA-based ABC spare parts classification method to classify the automobile spare parts of Beijing Jintai Kaisheng Automobile Sales and Service Co., Ltd. and compares it with the traditional ABC classification method. The ABC classification method based on the outbound value of spare parts only considers the amount of the spare part occupation liquidity. But the DEA-based ABC classification method comprehensively considers the unit price, liquidity, specificity and demand forecasting rules in terms of capital, turnover rate, availability and difficulty of demand forecasting. Then the input DMU and the output DMU are determined, the related data are collected, the efficiency value is obtained using MATLAB, and classification is finally determined [13]. The selection of special spare parts explains the difference in the results of the two classifications and proves the rationality of the ABC classification method based on DEA. At the same time, this article has some deficiencies. Because of the limited understanding of automotive spare parts, decision-making units are not considered comprehensively. Second, there is a degree of subjectivity on the data obtained by purchasers and Inventory managers.

References

[1] G.H. Song “Discussion on the Control and Optimization of Parts Inventory Based on Automobile 4S”, 2015(27).
[2] X.S. Yu “Application of ABC Classification Management Method in Automobile Maintenance Industry”, Logistics Technology, 2005(10):189-192.
[3] Y.Q. Xu “Comprehensive Application of ABC Method in 4s Inventory Management”, Logistics Technology, 2008(09):30-33.
[4] Y. Zhao “Study on Automobile Spare Parts Optimization Model and Order Decision-Making of Tongliao Dongfeng Yueda Kia 4S”, Jilin University of Finance and Economics, 2014.
[5] Nicola Saceani, Mareo Pna, Fredrik Persson”. Spare Parts classification and inventory Decisions A preliminary study”, 2015.
[6] Mohamed A. sharaf, Hussen AHelmv. A classification method for inventory management of spare parts. The international conference on Production engineering control and design: 499-510.
[7] C.X. Hu “Implementation and Improvement of ABC Taxonomy in Inventory Management”, Logistics Engineering and Management, 2010, 32(09):62-64.
[8] Y.N. Jiang “Research on the demand forecast of parts and components for A-car 4S stores”, Beijing Jiaotong University, 2017.
[9] N.F. Cui “Based on DEA spare parts ABC classification model”, Logistics Technology, 2007 (03):55-58.
[10] M.Q. Wang “Interval efficiency value of decision unit in CCR model and its ranking”, Systems Engineering, 2008(04):109-112.
[11] X.J. Li, B. Wang, J.Y. Xie “Application of DEA-CCR model in the evaluation of the efficiency of the use of scientific research funds in universities”, Education Science, 2015, 31 (02):79-85.
[12] F. Qi “DEA Model Based on MATLAB for Solving Weighted Limits”, Statistics and Decision, 2011(09):152-155.
[13] Y.W. Peng “Application of MATLAB in Data Envelopment Analysis” Journal of Southwest Nationalities College (Natural Science Edition), 2002 (02):139-140.