Study of the risk-adjusted pricing methodology model with methods of geometrical analysis

L.A. Bordag*

Halmstad University, Box 823, 301 18, Halmstad, Sweden

(Received 31 October 2009; final version received 26 April 2010)

Families of exact solutions are found to a nonlinear modification of the Black–Scholes equation. This risk-adjusted pricing methodology (RAPM) model incorporates both transaction costs and risk from a volatile portfolio. Using the Lie group analysis, we obtain the Lie algebra admitted by the RAPM equation. It gives us the possibility to describe an optimal system of subalgebras and the corresponding set of invariant solutions to the model. In this way, we can describe the complete set of possible reductions of the nonlinear RAPM model. Reductions are given in the form of different second-order ordinary differential equations. In all cases, we provide exact solutions to these equations in an explicit or parametric form. Each of these solutions contains a reasonable set of parameters which allows one to approximate a wide class of boundary conditions. We discuss the properties of these reductions and the corresponding invariant solutions.

Keywords: transaction costs; invariant reductions; exact solutions; singular perturbation

AMS Subject Classification: 35K55; 34A05; 22E60

1. Introduction

One of the most important problems at present is how to incorporate both the transaction costs (TC) and the risk from a (unprotected) volatile portfolio (VP) into the governing Black–Scholes equation. In the pioneering work of Leland [13], devoted to the problem of option pricing in the presence of TC, the idea of a periodic revision of a hedging portfolio was introduced. Leland assumed that the level of TC is constant, i.e. we have a market with proportional TC. He reduced this problem to a nonlinear partial differential equation with an adjusted volatility. Leland claimed that the terminal value of the portfolio approximates the payoff as the length of a revision interval tends to zero. Later, Kabanov and Safarian [9] proved that Leland’s conjecture based on approximate replication fails and his model has a non-trivial limiting hedging error relative to the simulated marked prices (see also the detailed discussion in [10]). Mathematical problems arise in the limiting cases as revisions become unboundedly frequent. As a practical matter, extremely frequent revisions will not be desirable and the average errors are less than one-half of one per cent of the price suggested by Leland’s formula [14]. Within the framework of the Leland’s model, Kratka [11] has suggested a mathematical method for pricing derivative securities in the presence of proportional TC and he additionally took into account the risk of

*Email: ljudmila.bordag@hh.se

ISSN 1744-2508 print/ISSN 1744-2516 online
© 2011 Taylor & Francis
http://dx.doi.org/10.1080/17442508.2010.489642
http://www.tandfonline.com
unprotected portfolio in between the revisions. Jandačka and Ševčovič [8] modified Kratka’s approach in order to derive a scale-invariant model.

In the model introduced in [8], the risk from the VP is described by the average value of the variance of the synthesized portfolio. The mathematical model was referred to as the risk-adjusted pricing methodology (RAPM) model. The RAPM model generalizes the famous Black–Scholes model for the pricing of derivative securities. In the model setting, both the TC and the unprotected portfolio risk depend on the time interval between the two transactions, and minimization of the total risk leads to the RAPM model. The model was studied recently with numerical methods in the case of European and American options [18]. Here, we briefly describe the model settings.

The authors of [8] assumed that the stock price dynamics is given by the geometric Brownian motion

\[S_t = S_0 \exp((\rho - \sigma^2/2)t + \sigma W_t), \]

where \(\{W_t, t \geq 0\} \) is the Wiener process, \(\rho \in \mathbb{R} \) is the drift and \(\sigma > 0 \) is the instantaneous volatility of the asset, where \(\rho \) and \(\sigma \) are constants. It is assumed that the risk-free bond earns at a continuously compounded constant rate \(r \).

The time steps \(\Delta t \) at which the portfolio can be hedged against the price change of the underlying asset \(S_t \) are non-infinitesimal and fixed. Additionally, the authors introduce the idea of a switching time \(t^* \) for the last revision of the portfolio. This means that the time interval \((0, T) \) is divided into two parts; in the first part \((0, t^*) \), the revisions of portfolio will be done regularly, and in the second one \((t^*, T) \), there are no revisions and correspondingly no TC. It is assumed that the interval \((t^*, T) \) is very small and in this interval the price of the contingent claim \(u(S, t), t \in [t^*, T] \) is defined as in the classical Black–Scholes formula (here \(T \) is the maturity time). It is assumed that the model (similar to Leland’s model) does not include the cost of establishing the initial investor’s portfolio composition.

At time \(t \), the value of the dynamically hedged portfolio \(V_t \) is \(V_t^\phi = \delta_t S_t + \beta_t B_t \), where \(\delta_t \) is the number of units of the stock (a constant on each time interval \(\Delta t \)), \(B_t \) is the value of the bond and \(\beta_t \) is the number of units of the bond. We can put \(B_0 = 1 \) without loss of generality and rewrite the previous relation in the form \(V_t^\phi = \delta_t S_t + \beta_t e^{rt} \). The pair \(\phi = (\delta_t, \beta_t) \) defines the self-financing hedging strategy that maintains the portfolio.

The change of \(V_t^\phi \) in any time step \(\Delta t \) is equal to \(\Delta V_t^\phi = V_{t+\Delta t}^\phi - V_t^\phi = \beta_t e^{rt}(e^{\sigma \Delta t} - 1) + \delta_t(S_{t+\Delta t} - S_t) - r_R S_t \Delta t \). The total risk premium \(r_R \) contains two parts, \(r_R = r_{TC} + r_{VP} \). The TC in this case are modelled by the expression

\[r_{TC} = \frac{C \sigma |u_{SS}|}{\sqrt{2\pi}}, \quad C = \frac{S_{ask} - S_{bid}}{S}, \]

where \(C \) is the round trip TC per unit dollar of transaction [6,12,13] and \(u(S, t) \) is the value function of the contingent claim with respect to the asset price \(S \) and time \(t \). During the time step \(\Delta t \), the portfolio is unprotected and the risk connected with a VP is modelled by

\[r_{VP} = \frac{1}{2} R \sigma^2 \bar{u}_{SS}^2 \Delta t, \]

where \(R \) is a risk premium coefficient introduced in [8,11] and represents the marginal value of the investor’s exposure to a risk. The total risk premium depends on the time lag \(\Delta t \), and it is a strong convex function between two consecutive portfolio revisions [18]. To obtain a risk-adjusted Black–Scholes equation, the authors minimized the total risk
premium \(r_R = r_{TC} + r_{VP} \). They then obtain for the optimal time lag, the following value:

\[
\Delta t_{opt} = \frac{C^{2/3}}{\sigma^2 (R \sqrt{2\pi} |S u_{SS}|)^{2/3}}.
\]

Using Ito’s formula, the authors of [8] finally obtained the RAPM model

\[
\frac{d}{dt} + \frac{1}{2} \sigma^2 u_{SS} (1 - \mu (S u_{SS})^{1/3}) - ru + r S u_S = 0, \quad \mu = 3 \left(\frac{C^2 R}{2 \pi} \right)^{1/3},
\]

where \(t \in (0, t^*) \) and the value \(t^* \) are determined by the implicit equation \(T - t^* = \min_{S > 0} \Delta t_{opt}(S, t^*) \). The equation represents a well-posed parabolic problem under the condition that

\[
S u_{SS}(S, t) < \left(\frac{3}{4 \mu} \right)^3.
\]

Condition (5) will not be fulfilled for the usual Call and Put options at \(S = E \) and \(t \to T^- \), where \(E \) is the strike price of the corresponding option. To avoid the singularities in the model, the authors introduced the switching time \(t^* \) such that condition (5) is satisfied by \(t = t^* \). The equation for \(t^* \), which can be reduced to the form \(T - t^* = CR^{-1} \sigma^{-2} \) (for European Call and Put options), has a positive solution and condition (5) is satisfied if

\[
\frac{C}{R} < \sigma^2 T, \quad CR < \frac{\pi}{8}.
\]

From the analytical point of view, this model is represented by a fully nonlinear parabolic differential equation (PDE). In addition, Equation (4) possesses a non-trivial singular perturbed algebraic structure.

One of the few methods that exist to study such fully nonlinear equations with a singular perturbed algebraic structure is the method of Lie group analysis. Our goal is to study the RAPM model with this method of analysis Equation (4).

The analytical solutions which we will obtain using this method can be used as a benchmark for numerical or other methods. We will show that the RAPM model possesses four-dimensional symmetry algebras both when \(r = 0 \) and \(r \neq 0 \); both algebras are isomorphic. We list in both cases the complete set of symmetry reductions of Equation (4). It is possible to provide exact solutions to all reduced equations in an explicit or parametric form. Due to the exact form of solutions, it is possible to compare different structures of these solutions in both the cases (where the interest rate is \(r = 0 \) and \(r \neq 0 \)).

From this, it can be seen that each case should be studied in their own right, and we cannot simply replace \(r \neq 0 \) by \(r = 0 \) in the formulae developed for the case \(r \neq 0 \). In addition to the value of the interest rate, each of these solutions contains two integration parameters and up to three free parameters which are non-trivially embedded in the solutions. The variation of these parameters can help to approximate different types of boundary conditions.

The same method of the Lie group analysis was used earlier in [1–4] to study the symmetry groups of nonlinear PDEs arising from the modelling of feedback effects of large traders on the market price of the underlying and on the price of the corresponding derivative product. In [1,4], we studied the symmetry properties of the model introduced by Frey in [5]. In [2,3], we studied the model introduced by Sircar and Papanicolaou in [19].
In all cases, it was possible to provide symmetry reductions and to study the properties of invariant solutions.

2. Symmetry properties

Equation (4) is the main subject of our investigations. The equation possesses a complicated analytical and algebraic structure. In this section, we provide the Lie group analysis of this equation with the goal of describing the complete set of symmetries of Equation (4) and obtaining possible reductions. Using the invariants of the subgroups of the symmetry group of the studied equation, we reduce the partial differential equation to ordinary differential equations (ODEs). Solutions to these ODEs give us the invariant solutions to the nonlinear RAPM model in an analytical form.

We obtain the symmetry group of the RAPM model in the way suggested by Sophus Lie which was developed further in [7,15,16]. We first find, using the Lie determining equations, the Lie algebra L_r of a dimension r admitted by the equation. Then, we use an exponential map $\exp: L_r \rightarrow G_r$ and obtain the transformations of the symmetry group G_r. To each subalgebra $h_i \subset L_r$, there corresponds a subgroup H_i of G_r [7,15,16]. In most cases, we do not need the explicit form of the group transformations and use directly the subalgebras h_i of L_r in order to reduce the RAPM model.

In this way, we prove the following theorem.

Theorem 2.1. Equation (4) admits a four-dimensional Lie algebra L_4 with the following infinitesimal generators:

$$U_1 = S \frac{\partial}{\partial S} + u \frac{\partial}{\partial u}, \quad U_2 = e^{\alpha t} \frac{\partial}{\partial u}, \quad U_3 = \frac{\partial}{\partial t}, \quad U_4 = S \frac{\partial}{\partial u}. \quad (7)$$

The commutator relations are

$$[U_1, U_2] = -U_2, \quad [U_2, U_3] = -r U_2, \quad (8)$$

$$[U_1, U_3] = [U_1, U_4] = [U_2, U_4] = [U_3, U_4] = 0. \quad (9)$$

The commutator relations (8) depend on the parameter r, i.e. on the interest rate included in the model. Depending on whether $r = 0$ or $r \neq 0$, we obtain different commutation relations for the algebra generators of the Lie algebra L_4. After the proper choice of generators, we obtain, in both the cases, isomorphic algebras.

All four-dimensional real Lie algebras were classified by Patera and Winternitzs [17]. We will use this classification and the corresponding notations for the generators of L_4. The algebra is spanned by the generators $L_4 = \langle e_1, e_2, e_3, e_4 \rangle$, which will have different meaning depending on the value of r. We denote a two-dimensional Lie algebra spanned by two operators e_1, e_2 with the unique non-trivial commutator $[e_1, e_2] = e_2$ as L_2. The algebra L_4 is a decomposable Lie algebra and can be written as a semi-direct sum

$$L_4 = L_2 \oplus e_3 \oplus e_4, \quad L_2 = \langle e_1, e_2 \rangle, \quad [e_1, e_2] = e_2. \quad (10)$$
Case. $r \neq 0$. In the case $r \neq 0$, the generators take the form

$$e_1 = (r - 1)U_1 + U_3 = (r - 1)S \frac{\partial}{\partial S} + (r - 1)u \frac{\partial}{\partial u} + \frac{\partial}{\partial t}, \quad e_2 = U_2 = e^u \frac{\partial}{\partial u},$$

$$e_3 = rU_1 + U_3 = rS \frac{\partial}{\partial S} + ru \frac{\partial}{\partial u} + \frac{\partial}{\partial t}, \quad e_4 = U_4 = S \frac{\partial}{\partial u}. \quad (11)$$

Case. $r = 0$. Using the previous notations, we can represent L_4 in the case $r = 0$ in the form

$$e_1 = -U_1 = -S \frac{\partial}{\partial S} - u \frac{\partial}{\partial u}, \quad e_2 = U_2 = \frac{\partial}{\partial u}, \quad e_3 = U_3 = \frac{\partial}{\partial t},$$

$$e_4 = U_4 = S \frac{\partial}{\partial u}. \quad (12)$$

Patera and Winternitzs [17] looked for classifications of the subalgebras into equivalence classes under their group of inner automorphisms. They also used the idea of normalization, which guarantees that the constructed optimal system of subalgebras is unique up to the isomorphisms.

This classification allows us to divide the invariant solutions into non-intersecting equivalence classes. In this way, it is possible to find the complete set of essential different invariant solutions to the equation under consideration. We use this classification and give a list of all non-conjugate one-, two- and three-dimensional subalgebras. The optimal normalized system of subalgebras to the algebra L_4 is listed in Table 1.

In Table 1, we use the operators e_1, e_2, e_3, e_4 given by (12) if $r = 0$, and by (11) if $r \neq 0$.

In correspondence with the set of subalgebras listed in Table 1, we obtain the complete set of invariant functions and reduce Equation (4) to different ODEs using these functions as dependent and independent variables.

3. Group-invariant reductions provided by the one-dimensional symmetry subgroups in the case $r \neq 0$

In this chapter, we study the symmetry reductions of the RAPM model (4), which we obtain using one of the one-dimensional symmetry subgroups $H_i, i = 1, \ldots, 4$. These symmetry subgroups $H_i \subset G_4$ are generated by the corresponding subalgebras

Table 1. [17] The optimal system of subalgebras h_i of the algebra L_4, where $a \in R, e = \pm 1, \phi \in [0, \pi]$.
Dimension

1
$h_4 = < e_2 + e_3(e_3 \cos(\phi) + e_4 \sin(\phi)) >$
2
$h_7 = < e_1 + a(e_3 \cos(\phi) + e_4 \sin(\phi)), e_3 \sin(\phi) - e_4 \cos(\phi) >$,
$h_8 = < e_2 + e_3(e_3 \cos(\phi) + e_4 \sin(\phi)), e_3 \sin(\phi) - e_4 \cos(\phi) >$,
$h_9 = < e_2, e_3 \sin(\phi) - e_4 \cos(\phi) >$
3
$h_{12} = < e_1 + a(e_3 \cos(\phi) + e_4 \sin(\phi)), e_3 \sin(\phi) - e_4 \cos(\phi), e_2 >$ |
$h_1, i = 1, \ldots, 4$ listed in Table 1 by a usual exponential map. We skip the study of invariant reductions to the two- and three-dimensional subgroups listed in Table 1 because they only give trivial results for the RAPM model.

Case. H_1. This one-dimensional subgroup H_1 is generated by the subalgebra

$$h_1 = < e_2 > = < e^n \frac{\partial}{\partial u} >.$$

It describes a gauge (or evolutionary) symmetry of the equation. It means that to each solution to Equation (4), we can add a term ae^{rt}, where a is an arbitrary constant. The new function $u(t, S) \rightarrow u(t, S) + ae^{rt}$ is then still a solution to the equation. This symmetry does not give rise to any invariant reductions of Equation (4).

Case. H_2. We look for the invariants of the subalgebra $h_2 = < e_3 \cos(\phi) + e_4 \sin(\phi) >$. In the variables (t, S, u), we obtain that h_2 has the form

$$h_2 = < \cos(\phi) \frac{\partial}{\partial t} + r \cos(\phi)S \frac{\partial}{\partial S} + (\cos(\phi)ru + \sin(\phi)S) \frac{\partial}{\partial u} >.$$

The invariants z, w of the corresponding subgroup $H_2 \subset G_4$ can be chosen in the form

$$z = Se^{-rt}, w = \frac{u}{S} - \frac{\tau}{r} \ln S, r \neq 0, \tau = \tan(\phi), \phi \in [0, \pi], \phi \neq \pi/2. \quad (14)$$

We take the invariants z, w as the new independent and dependent variables, respectively, and then the PDE (4) is reduced to the ODE of the following form:

$$\left(\tau + rz(zw_{zz} + 2w_z)(1 - \mu r^{-1/3}(\tau + rz(zw_{zz} + 2w_z))^{1/3}) + \frac{2r\tau}{\sigma^2} = 0, \right. \quad (15)$$

$$r \neq 0, \tau = \tan(\phi), \phi \in [0, \pi], \phi \neq \pi/2.$$

This second-order differential equation can be reduced to a first-order equation by the substitution $w_z(z) = v(z)$, which has the form

$$\left(\tau + r(z^2v)_z(1 - \mu r^{-1/3}(\tau + r(z^2v)_z)^{1/3}) + \frac{2r\tau}{\sigma^2} = 0. \right) \quad (16)$$

From this equation, it follows that the expression $(z^2v)_z$ is a constant. If we denote $(\tau + r(z^2v)_z)^{1/3} = p(z)$, then for the value $p(z)$, we obtain an algebraic equation of the fourth order

$$p^3(1 - \mu r^{-1/3}p) + \frac{2r\tau}{\sigma^2} = 0. \quad (17)$$

This equation has four roots $q_i, i = 1, \ldots, 4$. In dependence on the values of the constants μ and τ, some of these roots are real. We denote the real roots by k_i. To find solutions to the ODE (15), we just have to integrate two simple first-order differential equations

$$\tau + r(z^2v)_z = k_i^3, w_z(z) = v(z). \quad (18)$$
Then, to each root k_α, the corresponding solutions to Equation (15) are given as two parametric families of functions

$$u(S, t) = \frac{k_\alpha^3}{r} S \ln S - \left(\frac{k_\alpha^3}{r} - \tau\right) t S + c_1 S + c_2 e^{\alpha t},$$ \hspace{1cm} (19)

where $c_1, c_2 \in \mathbb{R}$, $r \neq 0$, $\tau = \tan(\phi)$, $\phi \in [0, \pi]$, $\phi \neq \pi/2$.

Case. H_3. The subalgebra h_3 is spanned by the generator $e_1 + a(e_3 \cos(\phi) + e_4 \sin(\phi))$. In the variables (t, S, u), it means that we consider the subalgebra of the form

$$h_3 = \langle 1 + a \cos(\phi) \frac{\partial}{\partial t} + ((r - 1) + a r \cos(\phi)) \frac{\partial}{\partial S} + ((r - 1) u + a \cos(\phi) ru + \sin(\phi) S) \frac{\partial}{\partial u} \rangle. $$ \hspace{1cm} (20)

The two first invariants of the corresponding subgroup H_3 are given by z, w which are connected to variables (t, S, u) by

$$z = S e^{-(r+\gamma)\eta}, u(S, t) = S w(z) + \xi S \log S,$$ \hspace{1cm} (21)

where the constants are $\gamma = (1 + a \cos(\phi))^{-1}$, $\xi = a \sin(\phi)/(r(1 + a \cos(\phi)) - 1)$, $a \in \mathbb{R}$, $\phi \in [0, \pi]$. Using these expressions we reduce the RAPM equation to an ordinary differential equation of the form

$$\frac{\sigma^2}{2} (zw)_{zz} + \xi(1 - \mu(zw)_{zz} + \xi)^{1/3} + r \xi - \gamma zw \eta = 0. $$ \hspace{1cm} (22)

The solutions to this equation can be given in the parametric form

$$z(\theta) = \exp\left(\int \frac{d\theta}{k_1(\theta)^{3/2} - \theta - \xi}\right), \quad w(\theta) = \int \frac{\theta d\theta}{k_1(\theta)^{3/2} - \theta - \xi}, $$ \hspace{1cm} (23)

where $\theta \in \mathbb{R}$ is a parameter and $k_1(\theta)$ is one of the real roots of the fourth-order algebraic equation

$$\frac{\sigma^2}{2} k_1(\theta)^{3}(1 - \mu k_1(\theta)) + r \xi - \gamma \theta = 0. $$ \hspace{1cm} (24)

Case. H_4. The subalgebra h_4 is spanned by the generator $e_2 + a(e_3 \cos(\phi) + e_4 \sin(\phi))$. In terms of the variables (t, S, u), it means that we are dealing with the subalgebra of the form

$$h_4 = \langle e \cos(\phi) \frac{\partial}{\partial t} + e r \cos(\phi) S \frac{\partial}{\partial S} + (e \alpha + e \cos(\phi)r + \sin(\phi)S) \frac{\partial}{\partial u} \rangle. $$ \hspace{1cm} (25)

The invariants of the corresponding subgroup H_4 are z and w, where

$$z = S e^{-\alpha t}, u(S, t) = S w(z) + \left(\frac{\tau}{r} + \frac{\epsilon}{r \cos(\phi)} \mu^{-1}\right) S \log S, $$ \hspace{1cm} (26)
with $\tau = \tan(\phi)$, $\phi \in [0, \pi], \phi \neq \pi/2$ and $\varepsilon = \pm 1$. We take these invariants as new invariant variables and reduce Equation (4) to an ODE of the following form:

$$\frac{\sigma^2}{2} \left((zw)_{zz} + \frac{\tau}{r} + \frac{\varepsilon}{rz \cos(\phi)} \right) \left(1 \mu \left((zw)_{zz} + \frac{\tau}{r} + \frac{\varepsilon}{rz \cos(\phi)} \right)^{1/3} \right)
+ \tau + \frac{\varepsilon}{z \cos(\phi)} = 0.$$ \hspace{1cm} (27)

If we denote $p(z) = \left((zw)_{zz} + \frac{\tau}{r} + \frac{\varepsilon}{rz \cos(\phi)} \right)^{1/3}$, then for the value $p(z)$, we obtain an algebraic equation of the fourth order

$$p^3(z)(1 - \mu p(z)) + \frac{2\tau}{\sigma^2} + \frac{2\varepsilon}{z\sigma^2 \cos(\phi)} = 0. \hspace{1cm} (28)$$

This equation has four roots which we denote as $q_i, i = 1, \ldots, 4$ as in the case of H_2.

Remark. The roots q_i in this equation differ from the roots of Equations (17) or (24). Still, we denote here (and later) all real roots of a fourth-order algebraic equation by k_i to show the similar structure of solutions.

Then, to each root $k_i(z)$, the corresponding solutions to Equation (4) are given as two-parametric families of functions

$$u(S, t) = e^\eta \left(\int \left(k_i(z)^3 \frac{dz}{z} \right) dz + S(\tau t + c_1) + e^\eta \left(\frac{\varepsilon}{\cos(\phi)} t + c_2 \right) \right), \hspace{1cm} (29)$$

where $\tau = \tan(\phi), z = Se^{-\eta}, \phi \in [0, \pi], \phi \neq \pi/2, c_1, c_2 \in \mathbb{R}$ and $\varepsilon = \pm 1$.

The special case of invariant solutions

In some cases, it is more rewarding not to take one of the classical representatives listed in Table 1 of the non-conjugated subalgebras, but rather turn to an equivalent one which gives us a simpler ODE. Let us take a one-dimensional subalgebra of the form $h = \langle e_1 + \alpha e_2 \rangle$, where e_1, e_2 are defined by (11). The invariants of the corresponding subgroup H are defined by the infinitesimal generator

$$U = e_1 + \alpha e_2 = (r - 1)U_1 + U_3 + \alpha U_2, \hspace{1cm} (30)$$

and can be chosen in the form

$$z = Se^{-(r-1)t}, \hspace{1cm} w = u(S, t)e^{-(r-1)t} - \alpha e'. \hspace{1cm} (31)$$

Remark. In the case $r = 1$, the dependence of the invariants z, w on t will be trivial. It means then that $z = S$ is an invariant and $w = u + \alpha e'$. On the other hand, the value $r = 1$ implies that on the market, 100 per cent interest rates are accepted. This is certainly a case which cannot be modelled with the RAPM model. We can, therefore, exclude the case $r = 1$.

340

L.A. Bordag
We use these invariant functions z and w to reduce the original Equation (4) to the ODE of the form

$$-w + zw_z + \frac{1}{2} \sigma^2 z^2 w_{zz}(1 - \mu(zw_{zz})^{1/3}) = 0. \quad (32)$$

It is easy to see that this equation does not depend on the arbitrary parameter α which is included in (30). The second-order ODE (32) can be reduced to a first-order one

$$v_z - \mu v_z^{4/3} = -\frac{2v}{\sigma^2 z}, \quad (33)$$

by the substitution

$$v(z, w) = zw_z - w. \quad (34)$$

Equation (33) has a parametric solution. We obtain this solution in the following way. We rewrite Equation (33) in the form

$$v(z) = -\frac{\sigma^2}{2} z (v_z - \mu v_z^{4/3}) = G(z, v_z), \quad (35)$$

then the parametric solution to this equation is given by the solution to the system of equations

$$v(\theta) = G(z(\theta), \theta), z_{\theta} = \frac{G_{\theta}(z, \theta)}{\theta - G_{z}(z, \theta)} = -\frac{\sigma^2}{2} \frac{z(1 - \frac{4}{3} \mu \theta^{1/3})}{\theta(1 - \frac{\sigma^2}{3}(1 - \mu \theta^{1/3}))}, \quad (36)$$

where $\theta \in \mathbb{R}$ is a parameter. System (36) and, correspondingly, Equation (33) have the following solution:

$$v(\theta) = -\frac{\sigma^2}{2} z(\theta)(\theta - \mu \theta^{4/3}), z(\theta) = c_1 \left(1 - \frac{\sigma^2}{2}(1 - \mu \theta^{1/3})\right)^{1+3\gamma} \theta^{-\gamma(\sigma^2/2)}, \quad (37)$$

where $\gamma = (1 - (\sigma^2/2))^{-1}$ and $c_1 = \text{const}$. Using the parametric solutions (37) to (33), we obtain the parametric solution to (32). We used substitution (34) which now takes the form

$$v(\theta) = z(\theta)w_z - w = (\ln z(\theta))^{-1}_{\theta} w_{\theta} - w. \quad (38)$$

This is a linear first-order differential equation for the function $w(t)$, and together with the parametric representation of $z(\theta)$ (37), the solution to this equation gives us the parametric solution to (32)

$$w(\theta) = z(\theta)(c_2 + g(\theta)), c_2 = \text{const}, \quad (39)$$
where the function $g(\theta)$ is given by

$$
g(\theta) = \frac{\sigma^2}{2\mu^2} \theta^{1/3} \left(-4 + \frac{\sigma^2}{2} (5 + 2\mu\theta^{1/3}) - \frac{\sigma^4}{4} \left(1 + \frac{\mu}{2}\theta^{1/3} + \frac{4}{3}\mu^2\theta^{2/3} \right) \
ight.
\left. - \frac{\mu^2\sigma^6}{8} \theta^{2/3} (1 - \mu\theta^{1/3}) \right) + \left(\frac{\mu\sigma^2}{2} \right)^{-3} \left(4 - \frac{\sigma^2}{2} \right) \left(1 - \frac{\sigma^2}{2} \right)^2
\times \ln \left(1 - \frac{\sigma^2}{2} (1 - \mu\theta^{1/3}) \right).
$$

Expressions (37) and (39) give a parametric representation of a solution $w(z)$ to Equation (32).

4. Group-invariant reductions provided by one-dimensional symmetry subgroups in the case $r = 0$

We repeat the procedure of constructing the invariant solutions to the RAPM model in the case $r = 0$. The general structure of the optimal system of subalgebras is the same in both the cases, but the form of infinitesimal generators differs. The invariants and reductions, therefore, take other forms.

Case H_0^1. The generator of the subalgebra h_0^1 has a very simple form $e_2 = \partial / \partial u$ in the case $r = 0$. This means that we are dealing with a subgroup of translations in the u-direction. Hence, to each solution to Equation (4) with $r = 0$, we can add an arbitrary constant without destroying the property of the function to be a solution.

This subgroup does not provide any reduction.

Case H_0^2. The subalgebra h_0^2 has the form $h_0^2 = \langle e_3 \cos(\phi) + e_4 \sin(\phi) \rangle$, which means that in terms of the variables (t, S, u), we have the subalgebra of the following type:

$$
h_0^2 = \langle \cos(\phi) \frac{\partial}{\partial t} + \sin(\phi) S \frac{\partial}{\partial u} \rangle.
$$

The invariants of the subgroup H_0^2 are given by

$$
z = S, \quad w = u(S, t) - \pi S, \quad \tau = \tan(\phi), \quad \phi \in [0, \pi], \quad \phi \neq \pi/2.
$$

If we use the variables z, w as new independent and dependent variables, we obtain the following reduction of the RAPM model (4) with $r = 0$:

$$
\frac{\sigma^2}{2} zw_{zz}(1 - \mu(zw_{zz})^{1/3}) + \tau = 0, \quad \tau = \tan(\phi), \quad \phi \in [0, \pi], \quad \phi \neq \pi/2.
$$

We denote $(zw_{zz})^{1/3} = p(z)$ and obtain for the value $p(z)$ an algebraic fourth-order equation

$$
p^3(1 - \mu p) + \frac{2\tau}{\sigma^2} = 0.
$$
As mentioned earlier, we denote the real roots of this equation by \(k_i \). To find solutions to the ODE (42), we just have to integrate twice

\[
zw_{zz} = k_i^3.
\] (44)

Then, the corresponding solutions to Equation (42) are given by

\[
u(S, t) = k_i^3 S (\ln S - 1) + \pi S + c_1 S + c_2,
\] (45)

where \(\tau = \tan(\phi) \), \(c_1, c_2 \in \mathbb{R} \), \(\phi \in [0, \pi] \), \(\phi \neq \pi/2 \).

Case. \(H_3^0 \). The subalgebra \(h_3^0 \) for \(r = 0 \) has the form

\[
h_3^0 = < a \cos(\phi) \frac{\partial}{\partial t} - S \frac{\partial}{\partial S} + (a \sin(\phi) S - u) \frac{\partial}{\partial u} >,
\] (46)

where \(a \in \mathbb{R} \), \(\phi \in [0, \pi] \) are the parameters. The invariants \(z, w \) of the group \(H_3^0 \) are given by the expressions

\[
z = Se^{\delta t}, \quad u(S, t) = Sw(z) + \zeta S \ln S,
\]

where the parameters are defined as

\[
\delta = (a \cos(\phi))^{-1}, \quad \zeta = a \sin(\phi), \quad a \in \mathbb{R}, \quad a \neq 0, \quad \phi \in [0, \pi], \quad \phi \neq \pi/2,
\] (47)

and the reduced equation takes the form

\[
\frac{\sigma^2}{2} (z w_{zz} + \zeta(1 - \mu(z w)_{zz} + \zeta^{1/3})) + \delta z w_z = 0.
\] (48)

The solutions to this equation can be represented in the parametric form (23), where \(k_i(v) \) is one of the real roots of the equation

\[
\frac{\sigma^2}{2} k_i(v)^3 (1 - \mu k_i(v)) + \delta v = 0,
\] (49)

and the parameter \(\delta \) is defined in (47).

Case. \(H_4^0 \). The subalgebra \(h_4^0 \) for \(r = 0 \) has the form

\[
h_4^0 = < \epsilon \cos(\phi) \frac{\partial}{\partial t} + (1 + \epsilon \sin(\phi) S) \frac{\partial}{\partial u} >,
\] (50)

where \(\epsilon = \pm 1 \), \(\phi \in [0, \pi] \) are the parameters.

The invariants \(z, w \) of this subgroup \(H_4^0 \) are given by the expressions

\[
z = S, \quad w(z) = u(S, t) - \pi S - \frac{\epsilon t}{\cos(\phi)}, \quad \tau = \tan(\phi),
\] (51)
and the RAPM model is reduced to the ODE of the form
\[
\frac{d^2}{dz^2} z^2 w_{zz}(1 - \mu(z w_{zz})^{1/3}) + \frac{\tau}{\cos(\phi)} = 0,
\] (52)
where \(\tau = \tan(\phi), \phi \in [0, \pi], \phi \neq \pi/2, \epsilon = \pm 1\). The structure of Equation (52) is similar to previous cases and we can use similar tools to solve it. We first substitute \((zw_{zz})^{1/3} = p(z)\). Then, for the function \(p(z)\), we obtain a fourth-order algebraic equation, but now its coefficients depend on the variable \(z\)
\[
p(z)^3(1 - \mu p(z)) + \frac{2\tau}{\alpha^2} + \frac{2\epsilon}{z\alpha^2 \cos(\phi)} = 0,
\] (53)
where \(\tau = \tan(\phi), \phi \in [0, \pi], \phi \neq \pi/2, \epsilon = \pm 1\). For each real root \(k_i(z)\) of this equation, we then have to solve a linear ODE
\[
zw_{zz} = k_i(z)^3.
\] (54)
The corresponding invariant solutions to (4) then have the form
\[
u(t, S) = \left[\left(\frac{k_i(S)^3}{S} \right) dS + \tan(\phi)tS + \frac{\epsilon}{\cos(\phi)} + c_1S + c_2,\right]
\] (55)
where \(c_1, c_2 \in \mathbb{R}, \phi \in [0, \pi], \phi \neq \pi/2, \epsilon = \pm 1\).

The expressions for these solutions are rather lengthy, and hence, are omitted here.

5. Conclusion

In the previous sections, we found the complete series of invariant reductions of the RAPM model. In each of these cases, the partial differential Equation (4) is reduced to an ODE. Using the optimal system of subalgebras (Table 1), we are able to present the complete set of non-equivalent reductions of Equation (4) up to the transformations of the group \(G_4\). The reductions and the corresponding invariant solutions are presented in Section 3 for \(r \neq 0\) and in Section 4 for \(r = 0\). In both the cases, we obtain three non-trivial reductions to ODEs. In all the six cases, it is possible to solve these ODEs and obtain explicit or parametric representations of exact invariant solutions to the RAPM model. We deal with the very seldom case that we can compare the structures of non-equivalent invariant solutions since they are given in explicit or parametric forms.

Each of these solutions contains two integration parameters and some free parameters connected with the corresponding subgroup. This reasonable set of parameters allows one to approximate a wide class of boundary conditions.

The RAPM model (4) possesses a non-trivial analytical and singular-perturbed algebraic structure. There exist rather few methods to study equations of such high complexity. An application of both analytical and numerical methods to singular-perturbed equations is a highly non-trivial task. The RAPM model was studied before in detail with numerical methods in [8,18]. The authors of [8] derived a robust numerical scheme for solving Equation (4) and performed extensive numerical testing of the model and compared the results to the real market data. Ševčovič [18] studied the free boundary problem for the RAPM model and provided a description of the early exercise boundary for American-style Call options. Using the same numerical method, he also provided
computational examples of the free boundary approximation for American style of Asian Call options with arithmetically average floating strike. He proposed a numerical method based on the finite difference approximation combined with an operator splitting technique for numerical approximation of the solution and computation of the free boundary condition position.

On the other hand the Lie group analysis of the RAPM model provided in this paper gives us a more general, alternative point of view on the structure of this equation. It opens the possibility to exploit the Lie algebraic structure of the equation and may be helpful to improve other methods of solution.

Acknowledgements
The author is grateful to Michael Nechaev and Alexandr Yanovski for helpful discussions.

References
[1] L.A. Bordag, *On option-valuation in illiquid markets: invariant solutions to a nonlinear model*, in *Proceedings of Workshop on Mathematical Control Theory and Finance*, April 10–14, 2007 CL Lisabon, PORTUGAL, A. Sarychev, A. Shiryaev, M. Guerra, and M.R. Grossinho, eds., Mathematical Control Theory and Finance, Springer, 2008, pp. 71–94.
[2] L.A. Bordag, *Symmetry reductions and exact solutions for nonlinear diffusion equations*, Int. J. Mod. Phys. A 24(8–9) (2008), pp. 1713–1716.
[3] L.A. Bordag, *Pricing options in illiquid markets: optimal systems, symmetry reductions and exact solutions*, Lobachevskii J. Math. (LJM) 31(1) (2010), pp. 90–99.
[4] L.A. Bordag and R. Frey, *Pricing options in illiquid markets: symmetry reductions and exact solutions*, chapter 3 in the book *Nonlinear Models in Mathematical Finance: Research Trends in Option Pricing*, Nova Science Publishers, Inc., New York, 2009, pp. 103–130.
[5] R. Frey, *Perfect option replication for a large trader*, Finance Stochastics 2 (1998), pp. 115–148.
[6] T. Hoggardt, A.E. Whalley, and P. Wilmott, *Hedging option portfolios in the presence of transaction costs*, Adv. Futures Options Res. 7 (1994), pp. 21–35.
[7] N.H. Ibragimov, *Elementary Lie Group Analysis and Ordinary Differential Equations*, John Wiley & Sons, Chichester, USA, 1999.
[8] M. Jandačka and D. Ševčovič, *On the risk-adjusted pricing-methodology-based valuation of vanilla options and explanation of the volatility smile*, J. Appl. Math. 3 (2005), pp. 253–258.
[9] Yu.M. Kabanov and M.M. Safarian, *On Leland’s strategy of option pricing with transaction costs*, Finance Stochast. 1 (1997), pp. 239–250.
[10] Yu.M. Kabanov and M.M. Safarian, *Markets with transaction costs*, Mathematical Theory, Series: Springer Finance, Springer, Berlin, Heidelberg, 2010.
[11] M. Kratka, *No mystery behind the smile*, Risk 9 (1998), pp. 67–71.
[12] Y.K. Kwok, *Mathematical Models of Financial Derivatives*, Springer, 1998.
[13] H.E. Leland, *Option pricing and replication with transaction costs*, J. Finance 40 (1985), pp. 1283–1301.
[14] H.E. Leland, Comments on “Hedging errors with Leland’s option model in the presence of transaction costs”, Finance Res. Lett. 4 (2007), pp. 200–202.
[15] P.J. Olver, *Application of lie groups to differential equations*, Springer, New York, 1986.
[16] L.V. Ovsiannikov, *Group analysis of differential equations*, Academic Press, New York, 1982.
[17] J. Patera and P. Winternitzs, *Subalgebras of real three- and four-dimensional Lie algebras*, J. Math. Phys. 18(7) (1977), pp. 1449–1455.
[18] D. Ševčovič, *Transformation methods for evaluating approximations to the optimal exercise boundary for linear and nonlinear Black–Scholes equations*, chapter 6 in the book *Nonlinear Models in Mathematical Finance: Research Trends in Option Pricing*, Nova Science Publishers, Inc., New York, 2009, pp. 173–218.
[19] R. Sircar and G. Papanicolaou, *General Black–Scholes models accounting for increased market volatility from hedging strategies*, Appl. Math. Finance 5 (1998), pp. 45–82.