Programmable deformation of patterned bimorph actuator swarm

Liangti Qu1,2

1 Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China; 2 Department of Chemistry, Tsinghua University, Beijing 100084, China
E-mail: lqu@mail.tsinghua.edu.cn

doi: 10.1360/TB-2020-0806

致动器是一种可以将各种环境刺激（例如湿度、光、电场、磁场、pH、溶剂等）转换成机械形变的自动化器件。在软体机器人、微机电系统（MEMS）和微流控芯片实验室等领域显示出了巨大的应用潜力[1]。传统的刺激响应致动器通常是基于双层或多层结构，靠不同材料在受到外界刺激时的性质变化差异来实现驱动。为了追求快速和大尺度的响应形变，研究者们不断地开发出许多新型的刺激响应材料，包括水凝胶、光热/电热型聚合物、相变材料等[2]。近年来，鉴于石墨烯高机械强度、透明性、导电/热性、生物兼容性等优良的物理、化学性质，基于石墨烯材料的碳基致动器一直备受关注[3]。石墨烯材料的出现大大促进了致动器领域的快速进步[4]。然而，现有致动器的研究主要聚焦在新型智能材料的研发，对其精细变形的控制却很少研究。已报道的石墨烯致动器也大多依赖于传统双层结构，只能实现弯曲、扭曲等简单形变[5]，限制了这类致动器的广泛应用。目前，对致动器复杂形变的程序化控制仍然是领域公认的难题。

吉林大学张永来教授课题组联合清华大学孙洪波教授课题组[6]针对上述难题展开了探索。他们受细胞集群耦合形变的启发，通过图案化制备惰性层阵列，研制了一种湿度响应的石墨烯致动器集群，利用个体致动器形变的耦合作用，实现了对整体智能薄膜复杂形变的程序化控制。

该石墨烯致动器是由具有特定几何形状和分布取向的光聚合物（SU-8）微图案阵列与石墨烯氧化物（GO）薄膜构成。其中单个的SU-8图案彼此独立，通过与GO层形成双层致动器结构，在外界刺激下可发生主动变形，致动器集群（致动器1，致动器2……致动器n）的形变相对独立又相互制约。这样，其整个结构的形变就可以通过SU-8图案的几何形状、分布和取向灵活控制（图1）。

图1（网络版彩色）(a) 制备流程示意图。 (b) 湿度刺激下，纸质模型可控变形示意图[4]

Figure 1 (Color online) (a) Schematic illustration of the fabrication of patterned SU-8/GO bilayer film using UV lithography. (b) The paper model of patterned SU-8/GO ribbon and its predictable moisture responsive deformation under humidity actuation[4]
将SU-8层图案化为具有不同几何结构、分布和方向的条纹，实现了各种复杂且可预测的变形，包括弯曲、扭转、卷曲以及两个或更多变形的组合(图2)。除此之外，通过将几何图形与非线性取向的SU-8条纹集成在一起，还可以实现可控的3D重构，例如褶皱形状、非对称弯曲、胶囊形状等等。

作为实例展示，该团队利用致动器群化原理制备了可以随着“音乐”翩翩起舞的舞蹈机器人和仿生毛毛虫机器人，充分展现出该方法对致动器形变的程序化控制。除了文中所示的例子之外，利用他们提出的这种方法，还有很大的空间来设计和制造各种形式的机器人。

该工作提出的石墨烯致动器群化设计方案为致动器复杂形变的程序化控制提供了新的思路，大大扩展了现有双晶片致动器在可穿戴智能设备、人造肌肉、柔性机器人等众多领域的潜在应用能力。

图2 (网络版彩色)通过设计不同的SU-8图案实现的复杂形变[4]

Figure 2 (Color online) Complex deformations of different patterned SU-8/GO bilayers[4]

参考文献

1 Rus D, Tolley M T. Design, fabrication and control of soft robots. Nature, 2015, 521: 467–475
2 Zhang J, Song L, Zhang Z, et al. Environmentally responsive graphene systems. Small, 2014, 10: 2151–2164
3 Liang S, Qiu X, Yuan J, et al. Multiresponsive kinematics and robotics of surface-patterned polymer film. ACS Appl Mater Interfaces, 2018, 10: 19123–19132
4 Ma J N, Zhang Y L, Han D D, et al. Programmable deformation of patterned bimorph actuator swarm. Natl Sci Rev, 2020, 7: 775–785

https://engine.scichina.com/doi/10.1360/TB-2020-0806