Binding stoichiometry and kinetics of the interaction of a human anthrax toxin receptor, CMG2, with protective antigen

Darran J. Wigelsworth*, Bryan A. Krantz*, Kenneth A. Christensen, D. Borden Lacy, Stephen J. Juris, R. John Collier†,§

§Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Ave., Boston, MA 02115.

*These authors contributed equally to this work.

†To whom correspondence should be addressed. Tel: (617) 432-1930; FAX: (617) 432-0115; Email: john_collier@hms.harvard.edu (R. J. C.)

Running Title: Binding studies of an anthrax toxin receptor

Keywords: anthrax toxin, protective antigen, toxin receptor, VWA-domain, MIDAS, binding kinetics.

Abbreviations: AF488, Alexa Fluor 488; AF546, Alexa Fluor 546; CMG2, capillary morphogenesis protein 2; CMG235-225, VWA-domain of CMG2 residues 35 to 225; CMG2C40, CMG2R40 with point mutations R40C and C175A; CMG2R40, CMG2 residues 40 to 217; CMG2C40-NEM, CMG2C40 modified by N-ethylmaleimide; DTA, diphtheria toxin A domain; EF, edema factor; FRET, fluorescence resonance energy transfer; ITC, isothermal titration calorimetry; k association rate constant; k dissociation rate constant; K equilibrium dissociation constant; LF, lethal factor; LFN, lethal factor amino-terminal domain (residues 1 to 263); MIDAS, metal ion-dependent adhesion site; SEC-MALLS, size exclusion chromatography multi-angle laser light scattering; PA83, monomeric protective antigen precursor; PA20, amino-terminal domain of PA83; PA63, individual monomer in the heptameric form of protective antigen; (PA63)7, heptameric protective antigen; TCEP, tris-(2-carboxyethyl)phosphine; VWA-domain, von Willebrand A domain; ∆∆G M2+, binding free energy change due to the presence of a divalent cation.
Abstract

The protective antigen (PA) moiety of anthrax toxin binds to cellular receptors and mediates entry of the two enzymatic moieties of the toxin into the cytosol. Two PA receptors, ATR/TEM8 and CMG2 (capillary morphogenesis protein 2), have been identified. We expressed and purified the von Willebrand A (VWA) domain of CMG2 and examined its interactions with monomeric and heptameric forms of PA. Monomeric PA bound a stoichiometric equivalent of CMG2, while the heptameric prepore form bound seven equivalents. The K_d of the VWA-domain:PA interaction is 170 pM when liganded by Mg$^{2+}$, reflecting a 1000-fold tighter interaction than most VWA-domains with their endogenous ligands. The dissociation rate constant is extremely slow, indicating a 30 hour lifetime for the CMG2:PA monomer complex. CMG2’s metal ion dependent adhesion site (MIDAS) was studied kinetically and thermodynamically. The association rate constant ($\sim 10^5$ M$^{-1}$s$^{-1}$) is virtually identical in the presence or absence of Mg$^{2+}$ or Ca$^{2+}$, but the dissociation rate of metal ion liganded complex is up to four orders of magnitude slower than metal ion free complex. Residual affinity (K_d ~960 nM) in the absence of divalent metal ions allowed the free energy for the contribution of the metal ion to be calculated as 5 kcal mol$^{-1}$, demonstrating that the MIDAS metal ion is directly coordinated by CMG2 and PA in the binding interface. The high affinity of the VWA-domain for PA supports its potency in neutralizing anthrax toxin, demonstrating its potential utility as a novel therapeutic for anthrax.
Introduction

The pathology of the anthrax bacillus, *B. anthracis*, is due, in part, to the production of anthrax toxin, an ensemble of three nontoxic monomeric proteins, which combine at the surface of host cells to form toxic noncovalent complexes (Fig. 1A). Two of these proteins are enzymes that modify cytosolic substrates. Lethal Factor (LF; 90 kD) is a Zn\(^{2+}\) protease that cleaves several mitogen-activated protein kinase kinases (1,2), and Edema Factor (EF; 89 kD) is a Ca\(^{2+}\)- and calmodulin-dependent adenylate cyclase (3). The third protein, Protective Antigen (PA\(_{83}\); 83 kD), binds to cellular receptors and transports LF and EF to the cytosol.

The initial step in the action of the toxin is the binding of PA to a cell surface receptor. Receptor-bound PA is cleaved into two fragments by a furin-family protease (4). Dissociation of the smaller fragment allows the larger fragment, which remains receptor-bound, to self-associate into ring shaped heptamers [(PA\(_{63}\)\(_7\), also referred to as prepore (5).] Prepore may then bind up to 3 molecules of LF and/or EF with nanomolar affinity (6,7). The resulting complexes are endocytosed to an acidic compartment (8,9), where the heptamers are converted from the prepore state to an integral membrane, ion-conductive pore (10). The process of translocating LF and EF into the cytosol is linked to the formation of pore, but the nature of this linkage is poorly understood. Within the cytosol these enzymatically active moieties may then disrupt normal cellular physiology.

Two anthrax toxin receptors, CMG2 (11) and ATR/TEM8 (anthrax toxin receptor/tumor endothelial marker 8) (12) are known. Each is a single peptide chain, consisting of an extracellular domain, a membrane spanning region, and a cytoplasmic tail. In their extracellular domains, there is an ~200 amino acid von Willebrand-type A (VWA) domain, which shows 60% amino acid identity between the two proteins (11).
This domain adopts a dinucleotide binding, or Rossmann, fold, which is composed of a sandwich of six to eight amphipathic α-helices that surround a hydrophobic β-sheet (Lacy et al., submitted; Fig. 1B). The VWA-domain fold is found in many cell adhesion proteins and generally promotes protein-protein interactions (13). Many VWA-domains contain a highly conserved metal ion-dependent adhesion site (MIDAS) that is often involved in ligand interactions (14). The metal ion adopts an octahedral geometry and is coordinated by residues from three of its loops as well as two to three ordered water molecules. Usually, a glutamic or aspartic acid side chain from the ligand completes this metal ion’s coordination sphere; therefore, the metal ion acts as a bridge between the ligand and VWA-domain. Consistent with a metal ion mediated interaction, both CMG2 and ATR have been shown to bind PA more tightly in the presence of divalent cations (11,12).

Here, we quantify the binding interaction of soluble CMG2 VWA-domain with PA$_{83}$ monomer and PA$_{63}$ heptamer. Monomeric PA bound a stoichiometric equivalent of CMG2, while the heptameric prepore form bound seven equivalents. The equilibrium dissociation constant for CMG2 VWA-domain’s interaction with monomeric PA$_{83}$ is very tight (170 pM), and the dissociation rate constant is extremely slow (~10$^{-5}$ s$^{-1}$). We show that the tight binding affinity relies on the presence and identity of the divalent MIDAS metal ion. Knowledge of the affinity and slow dissociation rate of CMG2:PA complexes supports the notion that CMG2 VWA-domain may be used clinically as an inhibitor of anthrax toxin.
Materials and Methods

Plasmid construction. A DNA sequence encoding residues 35 to 225 of CMG2’s VWA-domain (referred to as CMG2\(^{35-225}\)) was cloned into pGEX4T-1 (Amersham Pharmacia), using 5’ BamH I and 3’ Not I restriction sites. pGEX4T-1 includes a thrombin cleavable glutathione-S-transferase tag onto the N-terminus of the expressed protein. Two truncated versions of CMG2 were then generated using PCR and the same 5’ BamH I and 3’ Not I sites: (i) residues 38 to 218 (CMG2\(^{S38}\)) and (ii) residues 40 to 217 (CMG2\(^{R40}\)). The latter version eliminated the natural disulfide bond. To generate a version of CMG2 with a single, unique cysteine point mutation on the amino-terminus, two successive rounds of site directed mutagenesis were performed on CMG2\(^{R40}\). The C175A mutation was introduced to eliminate the remaining buried cysteine, and the R40C mutation created a unique cysteine residue on the more accessible amino-terminus, making CMG2\(^{C40}\).

Preparation of Proteins. Recombinant lethal factor amino-terminal domain (residues 1 to 263; LF\(_N\)) was purified as previously described (15). Recombinant PA was expressed in BL21(DE3) using pET22b-PA (Novagen), which directs expression to the periplasm. Growth and expression of PA was carried out in a 10 L Bioflo 110 fermenter (New Brunswick Scientific). Using ECPM1 growth media (16), cells were grown at 37 °C to ~5 OD\(_{600\text{nm}}\), sparged by a 60% air/O\(_2\) mixture, and induced at 30 °C using 1 mM IPTG. PA was extracted from the periplasm and further purified using Q sepharose anion-exchange chromatography (Pharmacia), in 20 mM Tris, pH 8.0 (Buffer A) and Buffer A + 1 M NaCl (Buffer B). The protein was further purified using an S-200 superdex gel filtration column (Pharmacia) in Buffer A. For fluorescence studies, PA\(_{83}\)
with either the K563C or E733C point mutation was purified as previously described (15) and stored at -80°C in 10 mg/ml aliquots in 10 mM dithiothreitol (DTT).

CMG2 VWA-domain variants were grown in a similar way except induction was carried out at 37 °C. Harvested bacteria were lysed by French press and sonication. GST-CMG2 was loaded onto a ~50 mL Glutathione Sepharose 4B column (Pharmacia), the column was washed in Buffer A, and bound fusion was cleaved from the immobilized GST using bovine α-thrombin (Sigma) overnight at room temperature. Thrombin was removed from the eluate with benzamidine sepharose, and CMG2 was further purified using an S-200 superdex column (Pharmacia). The purified stock protein solution was concentrated to 10 mg/ml, 10 mM DTT was added to protect the free thiol, and the solution was frozen at -80°C.

Fluorescence labeling and modification of PA and CMG2. Buffers A and B were purged by sparging with N2 for 5 minutes, and 0.5 mM TCEP was added to each buffer. An S-200 gel filtration column was pre-equilibrated with 15% Buffer B. Approximately 20 mg of either PA83 K563C, PA83 E733C or CMG2C40 was purified using gel filtration to remove excess DTT, which would react with the maleimide activated fluorophores. One mg of either maleimide thiol reactive fluorophore, Alexa Fluor 488 (AF488) or Alexa Fluor 546 (AF546), was added to each protein elutate in approximately a 10 ml volume (2 mg/ml final protein concentration) for 2 hours at room temperature. Two separate preparations of PA83 K563C were labeled with AF488 donor and AF546 acceptor; PA83 E733C was labeled with the donor AF488, making PA83 E733C-AF488; and CMG2C40 was labeled with the acceptor AF546, making CMG2C40-AF546. Following the completion of the reaction, unreacted dye reagent was blocked with 10
mM 2-mercaptoethanol; and labeled protein was subsequently purified from free dye by a second round of S-200 gel filtration, using 15% Buffer B in the absence of TCEP. Protein solutions were assessed for labeling efficiency using pre-determined extinction coefficients for the fluorophores at their respective absorbance maxima and 280 nm. Labeling efficiency was 95% or greater. Uniformly labeled PA heptamer, \((PA_{63})\), E733C-AF488, was generated as previously described (17). Using an identical procedure, \(CMG2^{C40}\) was blocked at the reactive cysteine by \(N\)-ethylmaleimide (NEM), creating \(CMG2^{C40}\)-NEM.

Isothermal titration calorimetry. Experiments were carried out using a VP-ITC calorimeter (Microcal) at 30 °C. \(PA_{83}\) monomer (5 µM) and \(CMG2^{35-225}\) (70 µM) were degassed using a preheated thermovac. Multiple injections of \(CMG2^{35-225}\) were made into the \(PA_{83}\) containing measurement cell under continuous stirring. Data were analyzed using Microcal’s Origin software.

Fluorescence equilibrium stoichiometry titration. \(PA_{83}\) E733C-AF488 was diluted to 1 µM in 2 mL of universal buffer, 10 mM each of Tris, 2-(N-morpholino)ethanesulfonic acid (MES), 2-[4-(2-Hydroxyethyl)-1-piperazine]ethanesulfonic acid (HEPES), and acetic acid and 0.1 mg/ml BSA, pH 8.0, which was supplemented with 1 mM MgCl\(_2\). 100 µL aliquots were iteratively removed after the addition of sub-stoichiometric quantities of \(CMG2^{C40}\)-AF546, thereby continually increasing the molar ratio of \(CMG2^{C40}\)-PA\(_{83}\) during the titration from 0.1 to 5.2. Each 100 µL aliquot was separately incubated for about 1-2 hours at room temperature to ensure complete binding.
Similarly, (PA₆₃)₇ E733C-AF488 was diluted to 16 nM; however, 0.5 µM of LFₜ was added to the reaction mix to minimize non-specific interactions with the PA:LF binding face. The molar ratio was varied as described for PA₈₃ except the range spanned 0.3 to 25.

Each aliquot was then analyzed in an ISS fluorimeter interfaced to an Ar⁺ laser. The 488 nm line was used for excitation of the donor fluorophore (AF488). Donor and acceptor emission were acquired at 520 and 570 (±10) nm, respectively. The apparent FRET signal was defined by the ratio of the acceptor to donor fluorescence emission. Aliquots were diluted to 2 mL in universal buffer. Fluorescence counts were recorded for 10 seconds, and all aliquots in a given titration were measured in triplicate.

Multi-angle Laser Light Scattering. Approximately 200 to 400 µg of protein was loaded in specific mixtures onto a Shodex KW-803 column at a flow rate of 0.5 mL min⁻¹ in 20 mM Tris-Cl, 200 mM NaCl, pH 8.5. The column was connected to a DAWN EOS 18-angle light scattering detector and an OPTILAB DSP interferometric refractometer (Wyatt Technology). Detectors 6-15 were used. A refractive index increment value (dn/dc) of 0.185 mL/g was used. Detectors were normalized to compensate for slight differences in electronic gain, using bovine serum albumin (BSA) as an isotropic scatterer. Data were analyzed using ASTRA software.

Kinetics of PA₆₃ heptamerization. The FRET-based kinetics assay was used to monitor the rate of heptamerization for PA₆₃. A reaction mixture of fluorescently labeled nicked PA₈₃ (50 nM each of donor, AF488, and acceptor, AF546) in 20 mM Tris-Cl, 150 mM NaCl, 1 mM Ca²⁺, 0.1 mg/ml BSA, pH 8.5 was either pre-incubated with no CMG₂₃⁵-²₂₅ or 1 µM CMG₂₃⁵-²₂₅ at 20 °C for 15 minutes. At time zero, each
heptamerization reaction was initiated by the addition of 100 nM LF$_N$. Control experiments were performed in the absence of LF$_N$. Kinetic profiles were recorded using the ISS fluorimeter (Ex: 488 nm), where the emission at 520 and 570 (±10) nm reflected the increase in apparent FRET upon heptamerization. Time points were taken automatically every 15 s for 7×10^3 s.

Surface Plasmon Resonance Analysis. All experiments were performed using the Biacore 2000 system sensor chips. For CM5 chips, the system was maintained at a constant flow rate of 5 µL min$^{-1}$ of HBS buffer (10mM HEPES, pH 7.4, 150mM NaCl) at 25 °C. Monomeric PA$_{83}$ was covalently linked to the carboxylated dextran matrix. Monomeric PA$_{83}$ was diluted to 2 µM in sodium acetate buffer, pH 4.5. The protein was injected onto the activated surface at a flow rate of 5 µL min$^{-1}$ until the desired baseline level of 2000-4000 RU was obtained (~5 minutes) and then blocked with ethanolamine.

CMG2 VWA-domain variants were diluted into HBS running buffer with either 1 mM CaCl$_2$ or 1 mM CaCl$_2$ plus 0.5 mM TCEP (tris-(2-carboxyethyl)phosphine), pH 7.4, and serial injections were made at 10 µL min$^{-1}$. Concentrations of protein ranged from 47 nM to 4.8 µM. CM5 baselines were regenerated with a 30 µL pulse of 0.5 M NaCO$_3$, pH 10.5, resulting in <1% loss of baseline per injection.

Binding kinetics using FRET. All kinetics experiments were conducted at 20 °C. Rates of association between CMG2 and PA were assessed using stopped-flow FRET. A Biologic SFM-400 stopped-flow was fitted to a custom two channel filter fluorimeter. An Ar$^+$ laser was used for excitation at 488 nm via a fiber optic cable. Two H5784-20 photosensor modules (Hamamatsu) were controlled via the manufacturer’s recommended resistance programming circuit; the photosensors collected fluorescent emission signal
after optical filtering (Omega) by a notch, bandpass filter (520 to 540 nm) in Channel #1 and a longpass filter (>560 nm) in Channel #2. These emission signals were then electronically filtered by an 11 pole elliptical function filter (TTE, Inc.) prior to being collected by the computer’s A/D card. During acquisition, the computer divided the signal in Channel #1 by the signal in Channel #2 to obtain an apparent FRET ratio.

For association kinetics experiments, all four syringes of the stopped-flow were used. Buffer solutions contained universal buffer, which was supplemented by either 2 mM MgCl₂ and 2 mM EGTA; 1 mM CaCl₂; or 2 mM each EDTA and EGTA. All protein solutions were diluted into modified universal buffer and incubated for 1 hour at room temperature. In all experiments, at least a 5-fold excess of CMG2 to PA₈₃ was delivered to maintain pseudo-first order reaction conditions. Total shot volumes were 300 µL. Flow rates ranged from 7-15 ml s⁻¹, and the dead time was estimated at 1-2 ms. Three to four kinetic transients were averaged per rate determination.

For ultra slow dissociation kinetics experiments (10⁴ to 10⁵ s), the ISS fluorimeter was used instead of the stopped-flow. Here a 1.6 mL sample was made in universal buffer, containing 50 nM PA₈₃ E733C-AF488 and 100 nM CMG2C⁴⁰-AF546. At time zero, 2 µM of CMG2C⁴⁰-NEM was manually added. FRET was monitored as stated above. Dissociation was reported by the loss of FRET signal due to the presence of a 20-fold excess of unlabeled CMG2C⁴⁰-NEM. Time points were taken automatically every 10 s over 3×10⁴ s for Ca²⁺-liganded complex. For Mg²⁺-liganded complex multiple time spacing were measured over several days: first every 100 s for 5×10⁴ s and then multiple time courses of 2000 s spaced points out to 2×10⁵ s.
Kinetic and equilibrium data analysis. Binding association and dissociation rate constants, k_a and k_d, respectively, were obtained by fitting to a mono-exponential model (Eq. 1a), whereas PA heptamerization kinetics were fit to a second order model (Eq. 1b),

$$A(t) = A \exp(-k_{obs} \times t) + C \\ \text{ (Eq. 1a)}$$

$$A(t) = A \left/ \left(1 + k_{obs} \times t\right) \right. + C \quad \text{ (Eq. 1b)}$$

where the amplitude at time zero, A, decays with respect to time, t. The offset, C, is the final value reached when the system achieves equilibrium. For binding association kinetics, pseudo-first-order conditions are maintained, i.e. CMG2 concentrations are $>$5-fold above the concentration of PA$_{83}$. Observed kinetic rate constants (k_{obs}) were separately fit or averaged to obtain association and dissociation rate constants. Equilibrium dissociation constants are calculated from kinetic measurements of the association and dissociation rate constants according to $K_D = k_d / k_a$.

Results

Expression and purification of CMG2 VWA-domain. Recombinant CMG2 VWA-domain (CMG2$^{35-225}$) was fused to the C-terminus of GST, and the resulting GST-CMG2 fusion protein was expressed in *E. coli*. The protein was affinity purified from bacterial extract on a glutathione sepharose column. The protein was cleaved on the column with thrombin, releasing the CMG2 VWA-domain into the fluid phase in almost pure form. After an additional size-exclusion chromatography step, the CMG2 VWA-domain was obtained in high purity as judged by SDS-PAGE (Fig. 1C).

PA$_{83}$ binds one stoichiometric equivalent of CMG2 VWA-domain. We measured the stoichiometry of CMG2 VWA-domain binding to PA$_{83}$ by three independent
methods: isothermal titration calorimetry (ITC), fluorescence resonance energy transfer (FRET) based titration, and size exclusion chromatography coupled with multi-angle laser light scattering (SEC-MALLS).

For ITC measurements, PA$_{83}$ was loaded into the measurement cell, and CMG$_{235-225}$ was added in small increments under continuous stirring. The concentration of PA$_{83}$ used was 5 µM—orders of magnitude above the K_d (see below)—allowing incremental sub-stoichiometric amounts of CMG$_{235-225}$ to bind PA$_{83}$ quantitatively up to the point of saturation. As shown in Fig. 2, saturation by CMG$_{235-225}$ was achieved at approximately a one-to-one molar ratio (1.03 ± 5×10$^{-3}$).

In a second approach, we used FRET to report on the binding of CMG2 VWA-domain and PA$_{83}$ under equilibrium conditions. A donor fluorophore (AF488) was attached to PA$_{83}$ via a unique, introduced cysteine (E733C), creating PA$_{83}$ E733C-AF488. A truncated version of CMG2, CMG$_{2R40}$, was modified on its amino-terminus to have a single cysteine (CMG$_{2C40}$), which served as a unique site for fluorescent dye attachment. CMG$_{2C40}$ was labeled by the acceptor fluorophore, AF546. The donor was excited by the 488 nm Ar$^+$ laser line, and binding was reported by sensitized emission from the acceptor. The Förster distance, R_o, for these two fluorophores is ~60 Å; distances up to ~100 Å generate enough signal to report binding. The degree of donor quenching indicated that the donor and acceptor in the PA:CMG$_{2C40}$ complex are ~60-70 Å apart (Fig. 3A). The concentration of PA used (1 µM), being far above the K_d, yielded a titration style plot (Fig. 3B). Successive additions of the acceptor CMG2 increased the FRET signal until all PA$_{83}$ acceptor was bound, and no additional FRET was observed.
upon further additions. The intersection of two lines, from separate linear fits to the substoichiometric and saturation data, defines a binding stoichiometry of 1.0 ± 0.1.

Using SEC-MALLS, the measured molecular mass of the PA83:CMG235-225 complex, isolated as a discrete peak, was 98 kDa, and agrees with the theoretical value, 104 kDa, for a one-to-one complex. Molecular mass values were constant across the peak, indicating homogeneity of the complex.

PA63 heptamer binds seven equivalents of CMG235-225. We performed a FRET binding titration assay similar to that carried out on monomeric PA83 to determine the number of CMG2 VWA-domains that bind uniformly labeled (PA63)7. Fluorescently labeled PA83 was treated with trypsin, and the PA63 fraction was isolated by anion exchange chromatography. This fraction was shown earlier to be heptameric by light scattering (7) and x-ray crystallography (18). For fluorescence titrations, successive substoichiometric additions of the acceptor CMG2 increased the FRET signal until all (PA63)7 binding sites were saturated. Subsequent additions revealed no additional FRET (Fig. 3C). The solution of the intersecting linear fits of data compiled from three separate titrations defines a binding stoichiometry of 7.1 ± 0.3 CMG2 VWA-domains per heptamer.

Mass estimates from SEC-MALLS showed that (PA63)7 binds at least 5 molecules of CMG235-225, but values of the masses were not sufficiently accurate to confirm the 7-fold stoichiometry offered by FRET. This approach suffered from the fact that the mass of each molecule of CMG235-225 (21 kD) that bound to (PA63)7 (441 kD) is equivalent to the measurement error for this method when working in the half-million Dalton range (±5%).
Does CMG2^{35-225} affect the rate of PA_{63} heptamerization? We developed a second novel FRET method to monitor (PA_{63})_{7} prepore formation in solution to test whether CMG2^{35-225} affected the assembly process. In this assay, donor (AF488) and acceptor (AF546) labeled PA_{83} were made by modifying a unique, solvent-accessible cysteine engineered at residue 563. Fluorescently labeled PA_{83} proteins were then nicked with trypsin. The heptamerization reaction mixture contained equimolar amounts of nicked donor and acceptor PA_{83} (50 nM each). At time zero, LF_{N} (LF’s amino-terminal domain) was added (100 nM) to initiate the reaction. Control experiments verified that LF_{N} accelerated the heptamerization reaction. The rate of heptamerization was reported by the increase in FRET due to the incorporation of donor and acceptor PA_{63} into the (PA_{63})_{7}:LF_{N} complex (Fig. 4). The kinetics fit to a second order rate expression with an observed rate constant of 8.8×10^{-4} s\(^{-1}\). We then compared the rate of heptamerization when the same equimolar mixture of nicked fluorescent PA_{83} was pre-bound by a 10-fold excess of CMG2^{35-225}. The rate constant for PA_{63} heptamerization, 7.8×10^{-4} s\(^{-1}\), was not significantly altered by the presence of CMG2^{35-225}.

Binding kinetics of CMG2 to PA_{83}. We used surface plasmon resonance (SPR) and fluorescence resonance energy transfer (FRET) to obtain association and dissociation rate constants. For SPR studies, PA_{83} was bound to the dextran surface of a CM5 chip by amine coupling. Serial injections of CMG2^{35-225} showed that it bound to the immobilized PA_{83}, and association kinetic traces were readily measured (Fig. 5A). Values of k_{a} and k_{d} measured with two different PA_{83} preparations and two different CM5 chips were similar. The average measured k_{a} for CMG2^{35-225} was $1.7 \times 10^{5} \pm 7 \times 10^{4}$ M\(^{-1}\)s\(^{-1}\), with R^2 values greater than 0.999. The value of k_{d} was $7 \times 10^{-5} \pm 5 \times 10^{-5}$ s\(^{-1}\). The slow dissociation rate
made accurate measurement difficult ($R^2 = 0.41$), as the baseline drifted over time, and
dissociation curve measurements (up to 150 s) had to be extrapolated to zero. From the
association and dissociation rate constants, we calculated the equilibrium dissociation
constant, K_d, to be $4 \times 10^{-10} \pm 2 \times 10^{-10}$ M.

Additional SPR measurements were made on CMG2R40, a truncated construct,
lacking the natural disulfide bond between Cys39 and Cys218. This association rate,
measured in the presence of Ca$^{2+}$, was found to be about 2-fold slower than CMG2$^{35-225}$
(Fig. 5C). Reduction of the disulfide bond in CMG2S38 similarly reduced the association
rate by a factor of two with respect to the oxidized form (Table 1).

Because of the inherent difficulties in measuring extremely slow dissociation rates
(lifetimes $>10^4$ s) using SPR, we developed a FRET-based binding system. Association
rates were initially estimated using stopped-flow to confirm the fidelity of the novel
VWA-domain binding assay. Blue laser light was used to excite the donor fluorophore
(AF488) on PA, which transferred energy to the acceptor fluorophore (AF546) on
CMG2C40, allowing binding kinetics to be observed (Fig. 5B). Association rate constants
(k_a) measured for this FRET based system ($1.1 \times 10^5 \pm 5 \times 10^3$ M$^{-1}$ s$^{-1}$) were similar to those
measured by SPR using CMG2R40 in the presence of Ca$^{2+}$ (Fig. 5C).

The dissociation rate was monitored using non-fluorescent CMG2C40-NEM
(where the reactive cysteine was blocked by N-ethylmaleimide). Here, PA$_{83}$ E733C-
AF488 and CMG2C40-AF546 were pre-incubated with 1 mM Ca$^{2+}$ buffer, and equivalent
amounts were mixed to form complex. The exchange reaction was initiated by adding 20-
fold excess of CMG2C40-NEM competitor. Kinetics, monitored over the course of 3×10^4
Taking advantage of this FRET system, we also measured the association rates of Mg$^{2+}$-bound CMG2. Here, protein solutions were pre-incubated with 2 mM MgCl$_2$ and 1 mM EGTA, reducing the effective concentration of even 1 µM contaminating Ca$^{2+}$ to less than 1 pM. Surprisingly, the association rate constant in the presence of Mg$^{2+}$, as compared with Ca$^{2+}$, is two times slower, at 5.3×104 ±9×102 M$^{-1}$s$^{-1}$. Nonetheless, the dissociation rate was 10-fold slower (9.2×10$^{-6}$ ±1×10$^{-7}$ s$^{-1}$; Fig. 5D), yielding a K_d of 1.7×10$^{-10}$ ±9×10$^{-13}$ M.

Finally, we conducted binding kinetics experiments in metal ion ‘free’ buffer that contains 2 mM EDTA and EGTA to chelate and sequester metal ions bound in the MIDAS motif and those contaminating the buffer solutions. The observed rate constants (k_{obs}), plotted in Fig. 5C, demonstrate a ‘non-linear’ CMG2 concentration-dependence (in the log-log plot), indicating that the [CMG2] used in the measurements is on the order of the K_d. The observed rate constant, k_{obs}, for binding is the sum of the association and dissociation rates,

$$k_{obs} = k_d + k_a \times [L]$$

(Eq. 2)

where only the association rate is dependent on the concentration of free ligand, [L]. The observed rates may then be fit by Eq. 2 to obtain both the association and dissociation rate constants, 9.3×104 ± 7×103 M$^{-1}$s$^{-1}$ and 8.6×10$^{-2}$ ± 4×10$^{-3}$ s$^{-1}$, respectively. This model fit well, with an R^2-value of 0.85, and generates a K_d of 9.6×10$^{-7}$ ± 8×10$^{-8}$ M.

Thermodynamic contribution of the metal ion site. Since the affinity of CMG2 for PA could be measured in both the presence and absence of metal ions, the energetic
contribution of the metal ion could be determined. This measurement is unique to our study of VWA-domain binding, because often the removal of metal ions from the MIDAS completely abrogates binding. Knowing the affinity in the absence of metal ions allows the calculation to be made according to

\[\Delta \Delta G^{M2+} = RT \ln \left(\frac{K_{d}^{M2+}}{K_{d}} \right) \]

(Eq. 3)

in which the equilibrium dissociation constant in the absence \((K_d) \) and presence of a metal ion \((K_{d}^{M2+}) \) are known. \(R \) and \(T \) are the gas constant and temperature, respectively. This model also assumes that the MIDAS is saturated, and the metal ion cannot freely exchange with the buffer, because it is buried in the binding interface. Estimates of \(\Delta \Delta G^{M2+} \) due to the presence of the bridging metal ion found in the MIDAS of CMG2 are -5.1 ± 0.05 and -4.2 ± 0.05 kcal mol\(^{-1}\) for Mg\(^{2+}\) and Ca\(^{2+}\), respectively.

Discussion

In the current study, we have prepared soluble CMG2 VWA-domain and quantitatively examined its interaction with monomeric and heptameric forms of PA. We studied the binding kinetics, the thermodynamics and the role of metal ion in the interaction.

Binding stoichiometry to monomeric and oligomeric forms of PA. We quantified the number of CMG2\(^{35-225}\) molecules bound to various forms of PA, using three independent methods. All revealed that one CMG2\(^{35-225}\) binds per PA\(_{83}\) monomer. CMG2’s binding stoichiometry for PA heptamer was measured using an identical FRET method to that used on PA\(_{83}\) monomer. Titrations of labeled CMG2\(^{C40}\) at concentrations 100-fold greater than the \(K_d \) demonstrate that seven CMG2\(^{C40}\) moieties bind per
heptamer. These results indicate that the heptamerized form of PA$_{63}$ does not preclude simultaneous occupancy of its seven individual CMG2 VWA-domain binding sites, for example by steric obstruction.

Correspondingly, FRET studies on the heptamerization of PA$_{63}$ (Fig. 4) reveal that the rate of complex assembly in solution is not significantly different when PA monomer is liganded by CMG2$^{35-225}$. This result supports the FRET binding stoichiometry studies on heptamer: if the heptameric form of PA could bind less than seven CMG2 VWA-domains due to steric constraints, then the rate of assembly, $\sim 10^{-3}$ s$^{-1}$, would be reduced, because CMG2 VWA-domains would have to dissociate at the slower rate, $\sim 10^{-5}$ s$^{-1}$, prior to assembly. In solution, the assembly of PA heptamer is not directly facilitated by the presence of CMG2 VWA-domain. The modest 11% reduction in rate may reflect some minor steric or electrostatic repulsion from CMG2 VWA-domain moieties in the assembly process.

Binding affinity of CMG2 to PA. SPR measurements with CMG2$^{35-225}$ yielded K_d values ~ 400 pM in the presence of Ca$^{2+}$. Stopped-flow FRET measurements on a truncated, disulfide-free version (CMG2C40) gave K_d of 780 pM in the presence of Ca$^{2+}$; however, when studied in the presence of a 1 mM effective concentration of Mg$^{2+}$, the K_d became significantly tighter, 170 pM (Table 1).

Our observation that the CMG2-PA binding interaction prefers Mg$^{2+}$ to Ca$^{2+}$ by 5-fold differs from a previous study (11). The ELISA-based assay used in that study may have more closely sensed the 2-fold slower association rate for Mg$^{2+}$ with respect to Ca$^{2+}$ that we observed, thereby underestimating the affinity as Mg$^{2+}$-bound complex dissociates 10-fold more slowly. Alternatively, the discrepancy may reflect differences in
the constructs used in the two studies; the construct used in the ELISA had 15 additional residues on the carboxy-terminus. Recent x-ray crystallographic studies of CMG2 reveal a coordinated Mg$^{2+}$ in the MIDAS (Fig. 1B; Lacy, et al., submitted). Other crystallographic studies have shown that many different divalent metal ions may be exchanged into a VWA-domain MIDAS (19), although the Ser and Thr side chains of the MIDAS generally disfavor direct Ca$^{2+}$ coordination (20).

Thermodynamic implications of CMG2’s MIDAS. By comparing K_d’s in the presence and absence of metal ions, we determined that the Mg$^{2+}$-bound form of CMG2 stabilizes the complex of PA and CMG2 by ~5 kcal mol$^{-1}$. This large increase in binding affinity argues strongly that the MIDAS motif directly coordinates PA via the metal ion. The coordination of the MIDAS metal often involves a glutamic or aspartic acid residue from the ligand (20). Consistent with this model, several studies have indicated that mutations at Asp683 in domain 4, the receptor binding domain of PA, compromise receptor binding (21-23), implicating this residue for that role. Also, if CMG2’s MIDAS metal ion is geometrically modeled to bind PA via Asp683, then the predicted distance between E733 on PA and the amino-terminus of CMG2 is ~60 Å—consistent with the distance calculated from the observed FRET efficiency (Fig. 3A).

Binding studies on other VWA-domains. Multiple ligand binding equilibrium and kinetics studies have been reported for the interactions of VWA-domains for their endogenous, physiological ligands. Association rates vary from 1 to 10^5 M$^{-1}$s$^{-1}$, dissociation rates vary from 10 s$^{-1}$ to 10^{-2} s$^{-1}$, and K_d’s range from millimolar to sub-micromolar (20,24-27). CMG2’s 170 pM affinity, however, is 1000-fold greater in
stability than the tightest of these reported physiological VWA-domain-ligand interactions.

The VWA-domains from α-integrins can augment their binding affinity via a conformational switch. This switch from an open (high affinity) to a closed (low affinity) conformation in α-integrin VWA-domains is thought to be important to their cellular function (20,24,26,27). The closed form involves an acidic side chain from the VWA-domain that directly coordinates the metal ion and competitively blocks access of the ligand. Such a mechanism would tend to reduce the association rate of the binding reaction according to the scheme,

\[
\text{Closed} \leftrightarrow \text{Open} \quad \text{(Eq. 4a)}
\]

\[
\text{Open} + \text{Ligand} \leftrightarrow \text{Complex.} \quad \text{(Eq. 4b)}
\]

The tight binding and rapid association rate (10^5 M^{-1}s^{-1}) for CMG2’s VWA-domain with PA suggest that CMG2 thermodynamically prefers to be in the open, high affinity state. Recent x-ray crystallographic studies on the CMG2 VWA-domain reveal two structures that align well with the open, high affinity forms of α-integrin (Lacy, et al., submitted). Proteins stabilized by specific engineered disulfides into the open conformation show association rates that plateau at about 2×10^5 M^{-1}s^{-1}, similar to that observed for CMG2^{35-225} (Fig. 5C; Table 1). The kinetic and structural observations suggest that CMG2’s VWA-domain, when liganded by divalent metal ion, either energetically favors the open, high affinity state or structurally is unable to occupy the closed form.

The natural disulfide in CMG2’s VWA-domain (Fig. 1B), however, does not significantly stabilize the open conformation. Either breaking the natural disulfide bond in CMG2^{538} with strong reductant or using a truncated version lacking the disulfide
showed only a 2-fold reduction in association rate (Table 1). The K_d of versions lacking the disulfide did not significantly decrease; and therefore, other features of CMG2’s VWA-domain structure must explain why it more heavily populates the open conformation.

Why is the affinity so tight? CMG2 VWA-domain’s rapid association rate is consistent with an open configuration (Eq. 4), yet the K_d is 1000-fold greater than the binding affinities of VWA-domains (sub-micromolar K_d’s), which were optimized by engineered disulfides. Therefore, the increased affinity in the PA:CMG2 interaction is not fully explained by CMG2’s thermodynamic preference for the open conformation, but rather the increase arises from its uncharacteristically slow dissociation rate. Furthermore, the observation of significant residual sub-micromolar affinity in the absence of metal ions supports the argument that the ligand, PA, contributes additional binding surface beyond the typical VWA-domain-ligand interface. Secondary determinants, outside of the MIDAS motif, may have evolved in PA to augment the stability of the interaction. Two possible structural models become apparent. (i) The burial of additional surface in and around the metal ion binding site, for example, may prevent water molecules from accessing and competing for the coordinating metal ion. (ii) Alternatively, or in conjunction with the previous model, additional hydrophobic surface burial or electrostatic contacts more distant from the MIDAS motif may provide a second source of increased binding energy.

Other tight binding VWA-domain host-pathogen interactions. The slow rate of dissociation observed for the CMG2:PA complex is uncharacteristic of many VWA-domain complexes with their physiological ligands, but it is not unique for a host-
pathogen interaction. The neutrophil inhibitory factor (NIF) of hookworm, *Ancylostoma canium*, which is a potent inhibitor of adhesion-dependent function in neutrophils (e.g. phagocytosis, chemotaxis, and spreading), binds to the VWA-domain of the integrin CR3 (CD11b) with ~1 nM affinity due to a slow dissociation rate, 10^{-5} s$^{-1}$ (28,29). The divalent metal ion dependency for NIF:CD11b was less significant, i.e. ~2- to 5-fold reduced in the absence of metal ions (28,29), whereas we observed a 6000-fold reduction in affinity for PA:CMG2. NIF and PA may bind their receptor VWA-domain in a metal ion independent manner, but to very different degrees, consistent with the model that a second MIDAS-independent binding surface is utilized by CMG2. The tight binding strategy adopted by NIF clearly aims to block and inhibit adhesion-dependent responses of the neutrophil by competitively binding host integrin VWA-domains (28).

CMG2’s role in toxin assembly and translocation. The high affinity and extremely slow dissociation rate of the PA:CMG2 VWA-domain interaction, on the other hand, facilitates toxin assembly and translocation (Fig. 1A). For monomeric PA, the average lifetime of the dissociation, $1/k_d$, for Mg$^{2+}$-liganded CMG2 VWA-domain is ~30 hours. Thermodynamically, when considering the 7-fold stoichiometry of CMG2 liganded heptamer, the additive metal ion binding free energy $\Delta \Delta G^{M2+}$ for seven independent PA:CMG2 interactions is 35 kcal mol$^{-1}$, favoring bound prepore heptamer to free by a factor of 10^{25}.

During anthrax intoxication, PA must remain bound initially to the extracellular membrane surface and subsequently to the inner surface of a vesicle during the translocation process. An initial role of the receptor may be to increase the cell surface concentration of PA monomer, thereby promoting heptamer formation. Secondly, the
receptor ensures that heptamer remains bound to the cell, allowing EF and LF to bind and assemble into complex. Finally, tight affinity presumably permits anthrax toxin to assemble and translocate active LF and EF proteins in the very earliest stages of the intoxication, even when these proteins are low in concentration.

CMG2’s ~200 pM affinity for PA may also be exploited therapeutically as a potent anti-toxin. The tight binding and slow dissociation kinetics indicate that CMG2’s VWA-domain may be delivered in soluble form to compete for the domain 4 binding site on monomeric PA$_{83}$, blocking PA’s ability to bind receptors, assemble, and translocate the enzymatic effectors, LF and EF, into target cells.

Acknowledgements. We thank L. Greene and R. Pimental for their assistance in purifying proteins; J. A. T. Young, H. Scobie and J. Rainey, for the CMG2 clone and critical comments on the manuscript; and T. Sosnick for his critical reading of the manuscript.
References

1. Duesbery, N. S., Webb, C. P., Leplla, S. H., Gordon, V. M., Klimpel, K. R., Copeland, T. D., Ahn, N. G., Oskarsson, M. K., Fukasawa, K., Paull, K. D., and Vande Woude, G. F. (1998) *Science* **280**, 734-737

2. Vitale, G., Pellizzari, R., Recchi, C., Napolitani, G., Mock, M., and Montecucco, C. (1998) *Biochem Biophys Res Commun* **248**, 706-711

3. Leplla, S. H. (1982) *Proc Natl Acad Sci U S A* **79**, 3162-3166

4. Molloy, S. S., Bresnahan, P. A., Leplla, S. H., Klimpel, K. R., and Thomas, G. (1992) *J Biol Chem* **267**, 16396-16402

5. Milne, J. C., Furlong, D., Hanna, P. C., Wall, J. S., and Collier, R. J. (1994) *J Biol Chem* **269**, 20607-20612

6. Elliott, J. L., Mogridge, J., and Collier, R. J. (2000) *Biochemistry* **39**, 6706-6713

7. Mogridge, J., Cunningham, K., and Collier, R. J. (2002) *Biochemistry* **41**, 1079-1082.

8. Friedlander, A. M. (1986) *J Biol Chem* **261**, 7123-7126

9. Abrami, L., Liu, S., Cosson, P., Leplla, S. H., and van der Goot, F. G. (2003) *J Cell Biol* **160**, 321-328

10. Blaustein, R. O., Koehler, T. M., Collier, R. J., and Finkelstein, A. (1989) *Proc Natl Acad Sci U S A* **86**, 2209-2213

11. Scobie, H. M., Rainey, G. J. A., Bradley, K. A., and Young, J. A. (2003) *Proc Natl Acad Sci U S A* **100**, 5170-5174

12. Bradley, K. A., Mogridge, J., Mourez, M., Collier, R. J., and Young, J. A. (2001) *Nature* **414**, 225-229

13. Whittaker, C. A., and Hynes, R. O. (2002) *Mol Biol Cell* **13**, 3369-3387

14. Lee, J. O., Rieu, P., Arnaout, M. A., and Liddington, R. (1995) *Cell* **80**, 631-638

15. Croney, J. C., Cunningham, K. M., Collier, R. J., and Jameson, D. M. (2003) *FEBS Lett* **550**, 175-178

16. Barnard, A., and Payton, M. (1995) in *Current Protocols in Protein Science* (Coligan, J. E., Dunn, B. M., Plough, H. L., Speicher, D. W., and Wingfield, P. T., eds) Vol. Chapter 5.3, John Wiley & Sons, Inc.

17. Cunningham, K., Lacy, D. B., Mogridge, J., and Collier, R. J. (2002) *Proc Natl Acad Sci U S A* **99**, 7049-7053.

18. Petosa, C., Collier, R. J., Klimpel, K. R., Leplla, S. H., and Liddington, R. C. (1997) *Nature* **385**, 833-838

19. Liddington, R., and Bankston, L. (1998) *Structure* **6**, 937-938

20. Shimaoka, M., Takagi, J., and Springer, T. A. (2002) *Annu Rev Biophys Biomol Struct* **31**, 485-516

21. Mourez, M., Yan, M., Lacy, D. B., Dillon, L., Bentsen, L., Marpoe, A., Maurin, C., Hotze, E., Wigelsworth, D., Pimental, R. A., Ballard, J. D., Collier, R. J., and Tweten, R. K. (2003) *Proc Natl Acad Sci U S A*

22. Bradley, K. A., Mogridge, J., Rainey, G. J. A., Batty, S., and Young, J. A. (2003) *J Biol Chem* **278**, 49342-49347

23. Rosovitz, M. J., Schuck, P., Varughese, M., Chopra, A. P., Mehr, V., Singh, Y., McGinnis, L. M., and Leplla, S. H. (2003) *J Biol Chem* **278**, 30936-30944

24. McCleverty, C. J., and Liddington, R. C. (2003) *Biochem J* **372**, 121-127
25. Lupher, M. L., Jr., Harris, E. A., Beals, C. R., Sui, L. M., Liddington, R. C., and Staunton, D. E. (2001) *J Immunol* **167**, 1431-1439
26. Shimaoka, M., Lu, C., Palframan, R. T., von Andrian, U. H., McCormack, A., Takagi, J., and Springer, T. A. (2001) *Proc Natl Acad Sci U S A* **98**, 6009-6014.
27. Shimaoka, M., Xiao, T., Liu, J. H., Yang, Y., Dong, Y., Jun, C. D., McCormack, A., Zhang, R., Joachimiak, A., Takagi, J., Wang, J. H., and Springer, T. A. (2003) *Cell* **112**, 99-111
28. Rieu, P., Ueda, T., Haruta, I., Sharma, C. P., and Arnaout, M. A. (1994) *J Cell Biol* **127**, 2081-2091
29. Muchowski, P. J., Zhang, L., Chang, E. R., Soule, H. R., Plow, E. F., and Moyle, M. (1994) *J Biol Chem* **269**, 26419-26423
Figure Legends

Figure 1. (A) Model of anthrax toxin entry into cells emphasizes the receptor’s important role in toxin complex assembly and internalization: 1, binding of PA$_{63}$ to its receptor (CMG2 or ATR/TEM8); 2, proteolytic activation of PA and dissociation of PA$_{20}$; 3, self-association of monomeric PA$_{63}$ to form the heptameric prepore; 4, binding of EF/LF to the prepore; 5, endocytosis of the receptor/PA$_{63}$/ligand complex; 6, pH-dependent insertion of PA$_{63}$ and translocation of the ligand. (B) X-ray crystal structure of CMG2’s VWA-domain revealing a Mg$^{2+}$ bound in the MIDAS (gray sphere) and a disulfide bridge (black ball-and-stick) linking its N- and C-termini (Lacy, et al., submitted). The coordinated Mg$^{2+}$ is believed to directly interact with the acidic side chain of Asp683 in PA. (C) CMG2 VWA-domain (CMG2$^{35-225}$) purified by GST-affinity chromatography, cleaved by thrombin, and further purified by size exclusion chromatography. Lane 1, MW markers. Lane 2, purified CMG2$^{35-225}$ (~20 kDa).

Figure 2. Isothermal titration calorimetry. PA$_{83}$ monomer (5 µM) was titrated with CMG2 (70 µM stock) at 30 °C. Molar ratio is defined as [CMG2]/[PA]. Data are fit using non-linear least squares, determining the binding stoichiometry to be 1.03 ± 5×10$^{-3}$ CMG2 per PA$_{83}$ monomer.

Figure 3. Fluorescence equilibrium stoichiometry titration assays. (A) FRET emission spectra (488 nm excitation) of (PA$_{63}$)$_7$ E733C-AF488 (solid line) and a stoichiometric complex of (PA$_{63}$)$_7$ E733C-AF488 and CMG2C40-AF546 (dashed line). The donor emission band at ~520 is quenched upon the addition of CMG2 acceptor due to binding, and the acceptor band (~570 nm) increases in intensity, indicating resonance energy transfer. Fluorescence equilibrium binding titration of PA$_{83}$ monomer (B) reveals
a stoichiometry of 1.0±0.1 CMG2R40 moieties per PA\textsubscript{83}, while heptamer (C) binds 7.1±0.3 CMG2R40 moieties. Molar ratio is defined as [CMG2]/[PA]. All experiments were conducted at 20 °C, and data were fit using linear least squares.

Figure 4. The kinetics of PA\textsubscript{63} heptamerization. For the FRET-based kinetics assay, a reaction mixture of fluorescent nicked PA\textsubscript{83} (50 nM each of donor, AF488, and acceptor, AF546), 1 mM Ca2+, 0.1 mg/ml BSA, pH 8.5 was either pre-incubated with no CMG235-225 (fit with a solid line) or 1 µM CMG235-225 (fit with a short dashed line) at 20 °C for 15 minutes. At time zero, each heptamerization reaction was accelerated by the addition of 100 nM LFN. The control reaction, in the absence of LFN, (fit by long dashed line) shows little increase in FRET. Kinetic profiles indicate an increase in FRET due to the incorporation of donor and acceptor PA\textsubscript{63} into the heptamer:LFN complex. Profiles fit to a second order rate expression (Eq. 1b) with rate constants of 8.8 × 10-4 s-1 and 7.8 × 10-4 s-1 in the presence and absence of CMG235-225, respectively.

Figure 5. SPR, stopped-flow FRET, and ultra-slow FRET kinetics measurements. (A) SPR was used to monitor rates of association of Ca2+-liganded CMG235-225 to surface-bound PA\textsubscript{83}. Representative traces fit to exponential decays at 1.19 µM, 357 nM and 119 nM (from fastest to slowest). (B) Stopped-flow FRET was used to monitor rates of association of Ca2+-liganded CMG2C40-AF546 to PA\textsubscript{83} E733C-AF488. Representative traces fit to exponential decays at 490 nM, 100 nM and 36 nM (from fastest to slowest). (C) Observed rate constants, \(k_{obs} \), from binding kinetics experiments as a function of CMG2 concentration for SPR and stopped-flow FRET. SPR \(k_{obs} \) for CMG235-225 in Ca2+ (red open triangle) and CMG2R40 in Ca2+ (black open circle). Stopped-flow FRET \(k_{obs} \)
for CMG2C40 in Ca2+ (black filled circle), Mg2+ (green filled square), and a ‘metal ion-
free’ condition of 2 mM each of EDTA and EGTA (blue filled diamond). Parameters of
curve fits using Eq. 2 are in Table 1: only association rate constants are fit for Ca2+- and
Mg2+-liganded complexes, since the dissociation rate constant is a fixed parameter from
that observed in separate dissociation experiments (see panel D); both the association and
dissociation rate constants are fit for the EGTA/EDTA, ‘metal ion-free’ complex. (D)
FRET based dissociation kinetics experiments in which fluorescently labeled complex
(50 nM) is competed with 2 \(\mu\)M of CMG2R40-NEM, where complex was either pre-
assembled in Ca2+ (black line) or Mg2+ (green line). Inset: FRET based dissociation
kinetics experiment (blue line) in which 200 nM of fluorescently labeled complex (200
nM labeled PA with 2 \(\mu\)M labeled CMG2C40) pre-assembled in 2 mM each of EDTA and
EGTA is diluted ~10-fold into buffer containing ~2 \(\mu\)M of CMG2R40-NEM using
stopped-flow. All dissociation kinetics data are fit to mono-exponentials. All metal ion
solution concentrations are effectively 1 mM, and all kinetics experiments were carried
out at 20 °C.
Table 1. Kinetic and thermodynamic parameters for binding of CMG2 to PA83.

Protein	Metal ion buffer	Method	k_a (M$^{-1}$ s$^{-1}$)	k_d (s$^{-1}$)	K_d (M)	$\Delta\Delta G^{M2+}$ (kcal mol$^{-1}$)
CMG2$^{35-225}$	1 mM Ca$^{2+}$	SPR	1.7×10^5	7×10^{-5}	4×10^{-10}	N.D. b
CMG2S38	1 mM Ca$^{2+}$	SPR	9.0×10^4	N.D.	N.D.	N.D.
CMG2R40	1 mM Ca$^{2+}$	SPR	8.1×10^4	4×10^{-5}	5×10^{-10}	N.D.
CMG2C40-AF546	1 mM Ca$^{2+}$	FRET	1.1×10^5	8.4×10^{-7}	7.8×10^{-10}	-4.2 ± 0.05
CMG2C40-AF546	2 mM Mg$^{2+}$	FRET	5.3×10^4	9.2×10^{-6}	1.7×10^{-10}	-5.1 ± 0.05
CMG2C40-AF546	2 mM EDTA	FRET	9.3×10^4	8.6×10^{-2}	9.6×10^{-7}	N.D.

a Equilibrium dissociation constant is calculated from kinetic measurements of the association and dissociation rate constants according to $K_D = k_d / k_a$.

b Not determined.

c Natural disulfide (Cys39-Cys218) is reduced by 0.5 mM TCEP.
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Binding stoichiometry and kinetics of the interaction of a human anthrax toxin receptor, CMG2, with protective antigen
Darran J. Wigelsworth, Bryan A. Krantz, Kenneth A. Christensen, D. Borden Lacy, Stephen J. Juris and R. John Collier

J. Biol. Chem. published online March 24, 2004

Access the most updated version of this article at doi: 10.1074/jbc.M401292200

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts