DECOMPOSING ELEMENTS OF A RIGHT SELF-INJECTIVE RING

FEROZ SIDDIQUE AND ASHISH K. SRIVASTAVA

Abstract. It was proved independently by both Wolfson [An ideal theoretic characterization of the ring of all linear transformations, Amer. J. Math. 75 (1953), 358-386] and Zelinsky [Every Linear Transformation is Sum of Non-singular Ones, Proc. Amer. Math. Soc. 5 (1954), 627-630] that every linear transformation of a vector space \(V \) over a division ring \(D \) is the sum of two invertible linear transformations except when \(V \) is one-dimensional over \(\mathbb{Z}_2 \).

This was extended by Khurana and Srivastava [Right self-injective rings in which each element is sum of two units, J. Algebra and its Appl., Vol. 6, No. 2 (2007), 281-286] who proved that every element of a right self-injective ring \(R \) is the sum of two units if and only if \(R \) has no factor ring isomorphic to \(\mathbb{Z}_2 \).

In this paper we prove that if \(R \) is a right self-injective ring, then for each element \(a \in R \) there exists a unit \(u \in R \) such that both \(a + u \) and \(a - u \) are units if and only if \(R \) has no factor ring isomorphic to \(\mathbb{Z}_2 \) or \(\mathbb{Z}_3 \).

All our rings are associative with identity element 1. Following Vámos \[19\], an element \(x \) in a ring \(R \) is called a \(k \)-good element if \(x \) can be expressed as the sum of \(k \) units in \(R \). A ring \(R \) is called a \(k \)-good ring if each element of \(R \) is a \(k \)-good element. Many authors including Chen \[2\], Ehrlich \[4\], Henriksen \[10\], Fisher-Snider \[5\], Khurana - Srivastava \([13, 14]\), Raphael \[17\], Vámos \([19, 20]\), Wiegand \[20\] and Wang - Zhou \[21\] have studied rings generated additively by their unit elements, in particular, 2-good rings. We refer the readers to \[18\] for a survey of rings generated by units.

In \[16\] a ring \(R \) is said to be a twin-good ring if for each \(x \in R \) there exists a unit \(u \in R \) such that both \(x + u \) and \(x - u \) are units in \(R \). Clearly every twin-good ring is 2-good. However, there are numerous examples of 2-good rings which are not twin-good. For example, \(\mathbb{Z}_3 \) is 2-good but not twin-good. We denote by \(J(R) \), the Jacobson radical of ring \(R \) and by \(U(R) \), the group of units of \(R \).

The following observations were noted in \[16\]. Their proofs are straightforward.

Lemma 1. If \(D \) is a division ring such that \(|D| \geq 4 \), then \(D \) is twin-good.

Lemma 2. For a ring \(R \), we have the following:

(i) If \(R \) is twin-good then for any proper ideal \(I \) of \(R \), the factor ring \(R/I \) is also twin-good.

(ii) If a factor ring \(R/I \) is twin-good and \(I \subseteq J(R) \), then \(R \) is twin-good. Thus, in particular, it follows that a ring \(R \) is twin-good if and only if \(R/J(R) \) is twin-good.

2000 Mathematics Subject Classification. 16U60, 16D50.

Key words and phrases. units, 2-Good rings, twin-good rings, von Neumann regular ring, right selfinjective ring, unit sum number.
(iii) If R is a direct product of rings R_i where each R_i is a twin-good ring, then R is also a twin-good ring.

1. Main Results

A ring R is called right self-injective if each right R-homomorphism from any right ideal of R to R can be extended to an endomorphism of R. As the ring of linear transformations is a right self-injective ring, the result of Wolfson and Zelinsky attracted quite a bit of attention toward understanding which right self-injective rings are 2-good.

Theorem 3. (Vámos [19]) A right self-injective ring R is 2-good if R has no non-zero corner ring that is Boolean.

Khurana and Srivastava [13] extended the result of Wolfson and Zelinsky to the class of right self-injective rings and proved the following

Theorem 4. (Khurana, Srivastava [13]) A right self-injective ring R is 2-good if and only if R has no factor ring isomorphic to \mathbb{Z}_2.

We will prove an analogue of this result for twin-good rings. But, first we have some definitions and useful lemmas.

We say that an $n \times n$ matrix A over a ring R admits a diagonal reduction if there exist invertible matrices $P, Q \in M_n(R)$ such that PAQ is a diagonal matrix. Following Ara et. al. [1], a ring R is called an elementary divisor ring if every square matrix over R admits a diagonal reduction. This definition is less stringent than the one proposed by Kaplansky in [11]. The class of elementary divisor rings includes unit-regular rings and von Neumann regular right self-injective rings (see [1], [9]).

If R is an elementary divisor ring, then clearly the matrix ring $M_n(R)$ is 2-good for each $n \geq 2$. In the case of twin-good rings, we have the following

Lemma 5. Let R be an elementary divisor ring. Then the matrix ring $M_n(R)$ is twin-good for each $n \geq 3$.

Proof. Let $n \in N$ such that $n \geq 3$. Let M be any arbitrary element of $M_n(R)$. Then there exist invertible matrices $E, F \in M_n(R)$ such that EMF is a diagonal matrix. Set $A = EMF$. Then $A \in M_n(R)$ is a diagonal matrix. Suppose

$$A = \begin{bmatrix}
 d_1 & 0 & 0 & \cdots & 0 & 0 \\
 0 & d_2 & 0 & \cdots & 0 & 0 \\
 0 & 0 & d_3 & \cdots & 0 & 0 \\
 0 & 0 & 0 & d_4 & \cdots & 0 \\
 \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
 0 & 0 & 0 & \cdots & d_{n-1} & 0 \\
 0 & 0 & 0 & \cdots & 0 & d_n
\end{bmatrix}.$$

We consider the first $(n-1)$ columns of the first row of A and call it P. Thus P is a $1 \times (n-1)$ matrix given by $P = \left[\begin{array}{cccc} d_1 & 0 & 0 & \cdots & 0 \end{array} \right]$. Similarly we consider the last $(n-1)$ rows of the last column of A and call it Q. Thus Q is a $(n-1) \times 1$
matrix given by \(Q = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ d_n \end{bmatrix} \). Now we consider the lower left \((n-1) \times (n-1)\) block in \(A \) and call it \(B \). Thus \(B = \begin{bmatrix} 0 & d_2 & 0 & 0 & \cdots & 0 \\ 0 & 0 & d_3 & 0 & \cdots & 0 \\ 0 & 0 & 0 & d_4 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & d_{n-1} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 0 \\ 1 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ d_n d_1 & 0 & 0 & 0 & \cdots & 1 \end{bmatrix} \).

Let \(T = QP + I_{(n-1)} \). Then \(T = \begin{bmatrix} O_1 & 1 \\ T & O_2 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 & 1 \\ 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ d_n d_1 & 0 & 0 & 0 & \cdots & 1 \end{bmatrix} \in M_{n-1}(R) \).

Now we create an \(n \times n \) matrix \(U = \begin{bmatrix} d_1 & 0 & 0 & \cdots & 0 & 1 \\ 1 & d_2 & 0 & \cdots & 0 & 0 \\ 0 & 1 & d_3 & \cdots & 0 & 0 \\ 0 & 0 & 1 & d_4 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ d_n d_1 & 0 & 0 & \cdots & 1 & d_n \end{bmatrix} \in M_n(R) \), where \(a_{i,j} = 1, a_{n-1,2} = -d_n d_1, a_{n,1} = 1, \) and \(a_{i,j} = 0 \) elsewhere.

Clearly \(U \) is a unit in \(M_n(R) \) whose inverse is given by \(U^{-1} = [a_{i,j}] \), where \(a_{i,i+1} = 1, a_{n-1,2} = -d_n d_1, a_{n,1} = 1, \) and \(a_{i,j} = 0 \) elsewhere.

Now we consider the matrices \(A + U, A - U \) in \(M_n(R) \) which are of the form

\[
\begin{bmatrix}
 d_1 & 0 & 0 & \cdots & 0 & 1 \\
 1 & d_2 & 0 & \cdots & 0 & 0 \\
 0 & 1 & d_3 & \cdots & 0 & 0 \\
 0 & 0 & 1 & d_4 & \cdots & 0 \\
 \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
 d_n d_1 & 0 & 0 & \cdots & 1 & d_n \\
\end{bmatrix}
\begin{bmatrix}
 d_1 & 0 & 0 & \cdots & 0 & -1 \\
 -1 & d_2 & 0 & \cdots & 0 & 0 \\
 0 & -1 & d_3 & \cdots & 0 & 0 \\
 0 & 0 & -1 & d_4 & \cdots & 0 \\
 \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
 -d_n d_1 & 0 & 0 & \cdots & -1 & d_n \\
\end{bmatrix}
\]

respectively.

It can easily be checked that \(A + U \) and \(A - U \) are invertible matrices. Thus we have shown that there exists an invertible matrix \(U \in M_n(R) \) such that both \(A + U \) and \(A - U \) are invertible matrices. Clearly \(E^{-1} UF^{-1} \) is also invertible in \(M_n(R) \) such that both \(E^{-1} AF^{-1} + E^{-1} UF^{-1} \) and \(E^{-1} AF^{-1} - E^{-1} UF^{-1} \) are invertible. Thus it follows that \(M \) is twin-good. Hence the matrix ring \(M_n(R) \) is twin-good for each \(n \geq 3 \). \(\square \)
It follows from the result of Wolfson and Zelinsky that any proper matrix ring \(\mathbb{M}_n(D) \) is 2-good where \(D \) is a division ring and \(n \geq 2 \). For twin-good rings, we have the following.

Lemma 6. If \(R \) is an abelian regular ring, then \(\mathbb{M}_2(R) \) is twin-good.

Proof. Let \(A \) be an arbitrary element of \(\mathbb{M}_2(R) \). As \(R \) is an elementary divisor ring, there exist invertible matrices \(P, Q \in \mathbb{M}_2(R) \) such that

\[
P AQ = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}
\]

for some \(a, b \in R \). Since \(R \) is abelian regular, there exist \(u, v \in U(R) \) and central idempotents \(e_1, e_2 \in R \) such that \(a = e_1 u, b = e_2 v \).

Then we can write \(PAQ = UE \) where

\[
U = \begin{bmatrix} u & 0 \\ 0 & v \end{bmatrix}
\]

and

\[
E = \begin{bmatrix} e_1 & 0 \\ 0 & e_2 \end{bmatrix}.
\]

Clearly \(U \) is a unit in \(\mathbb{M}_2(R) \) and \(E \) is an idempotent in \(\mathbb{M}_2(R) \). We consider \(V \in \mathbb{M}_2(R) \) of the form

\[
V = \begin{bmatrix} 0 & -1 \\ -1 & e_2 \end{bmatrix}.
\]

Clearly the matrix \(V \) is a unit with inverse

\[
V^{-1} = \begin{bmatrix} e_2 & -1 \\ -1 & 0 \end{bmatrix}.
\]

Now we have

\[
E - V = \begin{bmatrix} e_1 & 1 \\ 1 & 2e_2 \end{bmatrix}.
\]

Clearly \(E - V \) is a unit with its inverse given by

\[
(E - V)^{-1} = \begin{bmatrix} 4e_1e_2 - 2e_2 & 1 - 2e_1e_2 \\ 1 - 2e_1e_2 & 2e_1e_2 - e_1 \end{bmatrix}.
\]

We have

\[
E + V = \begin{bmatrix} e_1 & -1 \\ -1 & 0 \end{bmatrix}.
\]

Clearly \(E + V \) is a unit with its inverse given by

\[
(E + V)^{-1} = \begin{bmatrix} 0 & -1 \\ -1 & -e_1 \end{bmatrix}.
\]

Thus we have obtained a unit \(V \) such that both \(E - V \) and \(E + V \) are units. Clearly, then \(UV, UE - UV, UE + UV \) are units in \(\mathbb{M}_2(R) \). Thus \(PAQ - UV \) and \(PAQ + UV \) are units. Therefore \(PAQ \) is twin-good and consequently, multiplying by \(P^{-1} \) in left and \(Q^{-1} \) in right, we conclude that \(A \) is twin good. This shows that \(\mathbb{M}_2(R) \) is also twin-good. \(\square \)

Corollary 7. If \(R \) is an abelian regular ring, then the matrix ring \(\mathbb{M}_n(R) \) is twin-good for each \(n \geq 2 \).

In particular, if \(D \) is a division ring, then the matrix ring \(\mathbb{M}_n(D) \) is twin-good for each \(n \geq 2 \).
Proof. It is straightforward from Lemma 5 and Lemma 6. □

Remark 8. As a consequence of the above corollary, it follows that a semilocal ring R is twin-good if and only if R has no factor ring isomorphic to \mathbb{Z}_2 or \mathbb{Z}_3.

Now we are ready to prove our main theorem.

Theorem 9. A right self-injective ring R is twin good if and only if R has no factor ring isomorphic to \mathbb{Z}_2 or \mathbb{Z}_3.

Proof. Let R be a right self-injective ring such that R has no factor ring isomorphic to \mathbb{Z}_2 or \mathbb{Z}_3. We know that $R/J(R)$ is a von Neumann regular right self-injective ring. From the type theory of von Neumann regular right self-injective rings it follows that $R/J(R) \cong R_1 \times R_2 \times R_3 \times R_4 \times R_5$ where R_1 is of type I_f, R_2 is of type I_{∞}, R_3 is of type II_f, R_4 is of type II_{∞}, and R_5 is of type III (see [6, Theorem 10.22]). Taking $T = R_2 \times R_3 \times R_5$, we may write $R/J(R) \cong R_1 \times R_3 \times T$, where T is purely infinite. We have $T_f \cong nT_f$ for all positive integers n by [6, Theorem 10.16]. In particular, for $n = 3$, this yields $T \cong M_3(T)$. Since T is an elementary divisor ring, by Lemma 5 we conclude that $M_3(T)$ is twin-good and consequently T is twin-good.

Next we consider R_1. We know that $R_1 \cong \prod M_{n_i}(S_i)$ where each S_i is an abelian regular self-injective ring (see [6, Theorem 10.24]). Since each S_i is an elementary divisor ring, we know $M_{n_i}(S_i)$ is twin good whenever $n_i \geq 3$. If $n_i = 2$, then by Lemma 5 we have that $M_{n_i}(S_i)$ is twin-good.

Consider $n_i = 1$. Then we wish to prove that S_i is twin-good. This was shown in [16] but we present the proof here for the sake of completeness. Assume to the contrary that S_i is not twin-good. Then there exists an element $x \in S_i$ such that, for any $u \in U(S_i)$, either $x + u \notin U(S_i)$ or $x - u \notin U(S_i)$. Consider the set $S = \{I : I$ is an ideal of S_i such that $\overline{x} + \overline{u} \notin U(S_i/I)$ or $\overline{x} - \overline{u} \notin U(S_i/I)$, for each $u \in U(S_i)\}$. Clearly, S is a non-empty set. It may be shown that S is an inductive set and hence, by Zorn’s lemma, S has a maximal element, say M. Clearly then S_i/M is indecomposable as a ring and therefore it has no nontrivial central idempotent. Since S_i/M is an abelian regular ring, this yields that S_i/M has no nontrivial idempotent. Hence, S_i/M is a division ring. Therefore, by Lemma 1 it follows that $S_i/M \cong \mathbb{Z}_2$ or $S_i/M \cong \mathbb{Z}_3$. This yields a contradiction to our assumption. Hence, S_i is twin-good.

We now consider R_3. Since R_3 is of type II_f, we can write $R_3 \cong n(e_n R_3)$ for each $n \in \mathbb{N}$ where e_n is an idempotent in R (see [6, Proposition 10.28]). In particular, for $n = 3$ we have $R_3 \cong M_3(e_3 R_3 e_3)$. As $e_3 R_3 e_3$ is an elementary divisor ring, it follows that $M_3(e_3 R_3 e_3)$ is twin good by Lemma 5.

Thus $R/J(R)$, being a direct product of twin-good rings, is twin good. Hence, by Lemma 2, R is twin good.

The converse is obvious. □

As a consequence, we have the following

Corollary 10. For any linear transformation T on a right vector space V over a division ring D, there exists an invertible linear transformation S on V such that both $T - S$ and $T + S$ are invertible, except when V is one-dimensional over \mathbb{Z}_2 or \mathbb{Z}_3.

Consider the following three conditions on a module M:

C1: Every submodule of M.

C2: Every submodule of M if quasi-injective.

C3: If this hold only for A-module M.

Now we may adapt the techniques of [13] and generalize our main result to the endomorphism rings of several classes of modules. Recall that a module M is said to be N-injective if for every submodule N_1 of the module N, all homomorphisms $N_1 	o M$ can be extended to homomorphisms $N 	o M$. A right R-module M is injective if M is N-injective for every $N \in \text{Mod-}R$. A module M is said to be quasi-injective if M is M-injective.

Consider the following three conditions on a module M:

C1: Every submodule of M is essential in a direct summand of M.

C2: Every submodule of M isomorphic to a direct summand of M is itself a direct summand of M.

C3: If N_1 and N_2 are direct summands of M with $N_1 \cap N_2 = 0$ then $N_1 \oplus N_2$ is also a direct summand of M.

A module M is called a **continuous module** if it satisfies conditions C1 and C2. A module M is called **π-injective** (or **quasi-continuous**) if it satisfies conditions C1 and C3.

A right R-module M is said to satisfy the exchange property if for every right R-module A and any two direct sum decompositions $A = M' \oplus N = \oplus_{i \in I} A_i$ with $M' \cong M$, there exist submodules B_i of A_i such that $A = M' \oplus \left(\oplus_{i \in I} B_i \right)$. If this hold only for $|I| < \infty$, then M is said to satisfy the finite exchange property. A ring R is called an **exchange ring** if R_R satisfies the (finite) exchange property.

Now, we have the following for endomorphism ring of a quasi-continuous module

Corollary 12. Let S be any ring, M be a quasi-continuous right S-module with finite exchange property and $R = \text{End}(M_S)$. If no factor ring of R is isomorphic to \mathbb{Z}_2 or \mathbb{Z}_3, then R is twin-good.

Proof. This proof is almost identical to the proof of [13] Theorem 3] but we write it here for the sake of completeness. Let $\Delta = \{ f \in R : \ker f \subset M \}$. Then Δ is an ideal of R and $\Delta \subseteq J(R)$. By ([15], Cor. 3.13), $R = R/\Delta \cong R_1 \times R_2$, where R_1 is von Neumann regular right self-injective and R_2 is an exchange ring with no non-zero nilpotent element. We have already shown in Theorem 9 that R_1 is twin-good. Since, R_2 has no non-zero nilpotent element, each idempotent in R_2 is central. Now we proceed to show that R_2 is also twin-good. Assume to the contrary that there exists an element $a \in R_2$ which is not twin-good. Then as in the proof of Theorem 9 we find an ideal I of R_2 such that $x = a + I \in R_2/I$ is not twin-good in R_2/I and R_2/I has no central idempotent. This implies that R_2/I is an exchange ring without any non-trivial idempotent, and hence it must be local. If $S = R_2/I$ then $x + J(S)$ is not twin-good in $S/J(S)$, which is a division ring.
Therefore, $S/J(S) \cong \mathbb{Z}_2$, or \mathbb{Z}_3, a contradiction. Hence, every element of R_2 is twin-good. Therefore, every element of R is twin-good and hence R is twin-good. This completes the proof. □

Corollary 13. The endomorphism ring $R = \text{End}(M_S)$ of a continuous module M_S is twin-good if R has no factor isomorphic to \mathbb{Z}_2 or \mathbb{Z}_3.

Proof. It follows from the above corollary in view of the fact that a continuous module is quasi-continuous and also has exchange property. □

A module M is called cotorsion if every short exact sequence $0 \rightarrow M \rightarrow E \rightarrow F \rightarrow 0$ with F flat, splits. It is known due to Guil Asensio and Herzog that if M is a flat cotorsion right R-module and $S = \text{End}(M_R)$, then $S/J(S)$ is a von Neumann regular right self-injective ring (see [7]). As a consequence, we have the following

Corollary 14. The endomorphism ring $R = \text{End}(M_S)$ of a flat cotorsion (in particular, pure injective) module M_S is twin-good if R has no factor ring isomorphic to \mathbb{Z}_2 or \mathbb{Z}_3.

Consider the following conditions on a module N;

(D1): For every submodule A of N, there exists a decomposition $N = N_1 \oplus N_2$ such that $N_1 \subseteq A$ and $N_2 \cap A$ is small in N.

(D2): If A is a submodule of N such that N/A is isomorphic to a direct summand of N, then A is a direct summand of N.

A right R-module N is called a discrete module if N satisfies the conditions D1 and D2. It is well known that every discrete module is a Harada module.

Corollary 15. The endomorphism ring $R = \text{End}(M_S)$ of a Harada module M_S is twin-good if R has no factor ring isomorphic to \mathbb{Z}_2 or \mathbb{Z}_3.

Proof. It is known due to Kasch [12] that $R/J(R)$ is a direct product of right full linear rings and hence the corollary follows from Theorem 9. □

References

[1] P. Ara, K. R. Goodearl, K. C. O’Meara, E. Pardo, Diagonalization of matrices over regular rings, Linear Alg. and Appl. 265 (1997), 147-163.

[2] H. Chen, Exchange rings with artinian primitive factors, Algebras and Representation Theory, Vol. 2, No. 2 (1999), 201-207.

[3] H. Chen, Decompositions of linear transformations over division rings, Algebra Colloquium, Vol. 19, No. 3 (2012), 459-464.

[4] G. Ehrlich, Unit-regular rings, Portugal Math. 27 (1968), 209-212.

[5] J. W. Fisher, R. L. Snider, Rings generated by their units, J. Algebra 42 (1976), 363-368.

[6] K. R. Goodearl, von-Neumann Regular Rings, Krieger Publishing Company, Malabar, Florida, 1991.

[7] P. A. Guil Asensio, I. Herzog, left cotorsion rings, Bull. London Math. Soc. 36 (2004), 303-309.
[8] B. Goldsmith, S. Pabst and A. Scott, Unit sum numbers of rings and modules, Quart. J. Math. Oxford (2), 49 (1998), 331-344.
[9] M. Henriksen, On a class of regular rings that are elementary divisor rings. Arch. Math. (Basel) 24 (1973), 133-141.
[10] M. Henriksen, Two classes of rings generated by their units, J. Algebra 31 (1974), 182-193.
[11] I. Kaplansky, Elementary divisors and modules, Trans. Amer. Math. Soc. 66 (1949), 464-491.
[12] F. Kasch, Moduln mit LE-Zerlegung und Harada-Moduln, Lecture Notes, University of Munich, 1982.
[13] D. Khurana and A. K. Srivastava, Right Self-injective Rings in Which Each Element is Sum of Two Units, Journal of Algebra and its Applications, Vol. 6, No. 2 (2007), 281-286.
[14] D. Khurana and A. K. Srivastava, Unit Sum Numbers of Right Self-injective Rings, Bulletin of Australian Math. Soc., Vol. 75, No. 3 (2007), 355-360.
[15] S. H. Mohamed and B. J. Muller, Continuous and Discrete Modules, Cambridge University Press, 1990.
[16] S. L. Perkins, Masters thesis, Saint Louis University, St. Louis, MO, 2011.
[17] R. Raphael, Rings which are generated by their units, J. Algebra 28 (1974), 199-205.
[18] A. K. Srivastava, A Survey of Rings Generated by Units, Annales de la Faculté des Sciences de Toulouse Mathématiques, Vol. 19, No. S1 (2010), 203-213.
[19] P. Vámos, 2-Good Rings, The Quart. J. Math. 56 (2005), 417-430.
[20] P. Vámos, S. Wiegand, Block diagonalization and 2-unit sums of matrices over prüfer domains, Trans. Amer. Math. Soc. 363 (2011), 4997-5020.
[21] L. Wang, Y. Zhou, Decomposing Linear Transformations, Bull. Aust. Math. Soc. 83, 2 (2011), 256-261.
[22] K. G. Wolfson, An ideal theoretic characterization of the ring of all linear transformations, Amer. J. Math. 75 (1953), 358-386.
[23] D. Zelinsky, Every Linear Transformation is Sum of Nonsingular Ones, Proc. Amer. Math. Soc. 5 (1954), 627-630.

Department of Mathematics and Computer Science, St. Louis University, St. Louis, MO-63103, USA
E-mail address: fsiddiq2@slu.edu

Department of Mathematics and Computer Science, St. Louis University, St. Louis, MO-63103, USA
E-mail address: asrivas3@slu.edu