Evaluation of the geroprotective effects of withaferin A in *Drosophila melanogaster*

Liubov Koval¹, Nadezhda Zemskaia¹, Alexander Aliper², Alex Zhavoronkov², Alexey Moskalev¹

¹Institute of Biology, Komi Science Centre, the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Komi Republic, Russia
²Deep Longevity Ltd, Hong Kong Science and Technology Park, Hong Kong, China

Correspondence to: Alexey Moskalev; email: amoskalev@list.ru
Keywords: *Drosophila melanogaster*, lifespan, stress-resistance, stress response, withaferin A
Received: November 9, 2020 Accepted: January 4, 2021 Published: January 26, 2021

ABSTRACT

Withanolides are a class of compounds usually found in plant extracts which are an attractive geroprotective drug design starting point. We evaluated the geroprotective properties of Withaferin A (WA) *in vivo* using the *Drosophila* model. Flies were supplemented by nutrient medium with WA (at a concentration of 1, 10, or 100 μM dissolved in ethanol) for the experiment group and 30 μM of ethanol for the control group. WA treatment at 10 and 100 μM concentrations prolong the median life span of *D. melanogaster*’s male by 7.7, 9.6% (respectively) and the maximum life span (the age of death 90% of individuals) by 11.1% both. Also WA treatment at 1, 10 and 100 μM improved the intestinal barrier permeability in older flies and affected an expression of genes involved in antioxidant defense (*PrxV*), recognition of DNA damage (*Gadd45*), heat shock proteins (*Hsp68, Hsp83*), and repair of double-strand breaks (*Ku80*). WA was also shown to have a multidirectional effect on the resistance of flies to the prooxidant paraquat (oxidative stress) and 33° C hyperthermia (heat shock). WA treatment increased the resistance to oxidative stress in males at 4 and 7 week old and decreased it at 6 weeks old. It increased the male’s resistance to hyperthermia at 2, 4 and 7 weeks old and decreased it at 3, 5 and 8 weeks old. WA treatment decreased the resistance to hyperthermia in females at 1, 2 and 3 weeks old and not affected on their resistance to oxidative stress.

INTRODUCTION

One of the key challenges within life sciences is the search for the substances that can increase the resistance of living systems to various stress factors and contribute to their active longevity. The most promising direction of research in this aspect is the identification of such substances among the plant metabolites. Therefore, the properties of plant extracts are currently actively studied to find the optimal approach to include them in new pharmacological preparations. Among these compounds withanolides are considered as a promising class of candidates for the design of new drugs. Indeed, withanolides display a wide range of relevant pharmacological activities, good bio accessibility and a low risk of side effects. Currently, the preparations containing withanolides from *Withania somnifera* are used in the Ashwagandha composition as a sedative, hypnotic and antiseptic drug [1].

Withanolides are widely studied worldwide. For instance, PubMed contains more than 300 publications with the keyword “withanolides”. Withanolides attract a lot of interest for their potential use as inhibitors of apoptosis. They are also considered as therapeutic candidates for the treatment of neurodegenerative, autoimmune and inflammatory diseases. Their antitumor properties have also attracted a lot of interest for the development of novel cancer therapies. It is common knowledge that *Drosophila melanogaster* has notable advantages as a
model system for studying the effects of pharmacological interventions on aging [2]. In our study we hypothesized that the addition of a Withaferin A (WA) supplement to the diet of Drosophila melanogaster wild type Canton-S (CS) could have a beneficial effect on their health status, especially when they get older.

The first withanolide, “withaferin,” was found in the leaves of the Withania somnifera (Solanaceae) in 1962 [3]. This metabolite was a new type of steroid containing alpha, beta-unsaturated lactone linked to the C-17 of the sterane skeleton [4, 5]. However, this “withaferin” turned out to be 2,3-dihydro-3-methoxywithaferin A, which occurs in mixture with WA [5]. Independently, in 1965 Kupchan et al. found WA in the leaves of Acnistus arborescens (Solanaceae) [6]. Later, other representatives of this class of compounds were discovered in the plants of the Solanaceae family. Withanolides have been found in some Tacca species from the Dioscoreaceae family (taccanolides) and Ajuga sp. from the Lamiaceae family, as well as in some marine organisms [7, 8].

Today, the class of withanolides contains more than 400 chemical compounds. This includes closely related congeners that are found in the plants of Solanaceae [9–14]. They consist of C-28 steroidal lactones built on a sometimes modified framework of ergostane, which can form a six-membered lactone ring formed by the oxidation of C-22 - C-26 (Figure 1) [15].

The term “withanolide” is commonly used for 22-hydroxyergostane-26-acid-22,26-olide [4]. Its structural diversity is due to the modifications of the carbocyclic backbone or side chain. The other typical substitutions and modifications of the naturally occurring metabolites are as follows [16]: oxo group at C-1; instead, less commonly a hydroxyl group; double bond C-2 -> C-3; instead, less often the hydroxyl group at C-3; delta-lactone (26 -> 22O), often unsaturated (24, 25); a fragment of gamma-lactone (26 -> 23O) instead of delta-lactone, often also unsaturated; lactol part instead of lactone residue; high oxidation state in many positions of the entire molecule (for example, oxo groups, hydroxyl groups, epoxy substructures, hemicetals); oxidative degradation and or new cyclization of the molecule.

Biosynthesis of withanolides in plants is well studied and proceeds with isoprenoids as precursors [17–19].

WA (4β, 27-dihydroxy-1-oxo-5β, 6β-epoxywitha-2, 24-dienolide) (Figure 1) was first isolated from the Withania somnifera plant [4]. WA was also found in plants such as Withania artistata, Ajuga bracteosa, Vassobia breviflora, and Dunalia spinosa [20–23]. In plants, pure WA is found in relatively small quantities ranging around 0.2-0.3% of dry weight [24].

The stereochemistry of WA was determined in 1966 [25]. Its structure has five functional groups: an unsaturated ketone ring A, 2 hydroxyl groups, an

Figure 1. Basic skeleton of withanolides. Withaferin A R₁ = OH, R₂ = H, R₃ = H; Withaferin D R₁ = H, R₂ = OH, R₃ = H; 27-Deoxywithaferin A R₁ = H, R₂ = H, R₃ = H; 27-hydroxywithanolide D R₁ = OH, R₂ = OH, R₃ = H; Dihydrodeoxywithaferin A R₁ = H, R₂ = H, R₃ = H; Dihydrowithaferin A R₁ = H, R₂ = OH, 17-hydroxywithaferin A, R₁ = R₃ = OH, R₂ = H.
epoxide in ring B, a 6-carbon lactone ring, and an unsaturated carbonyl group (Figure 1). The double bond in ring A and the epoxy ring are responsible for the cytotoxicity of the compound. NMR spectral analysis identified C3 as a major nucleophilic target site for ethyl mercaptan, thiophenol, and ethyl L-cysteine in vitro [26]. These five functional groups allow WA to interact with multiple molecular targets leading to a wide range of biological activities.

Previous in vitro and in vivo studies showed that WA displays anti-tumor activity. It is well established that WA induces apoptosis in cancer cells via different mechanisms [27–30]. In most cancer cell lines, WA inhibits tumor cell proliferation by stopping the cell cycle during the G2/M checkpoint [31, 32] and inhibits nuclear factor kappa B (NF-κB) activation by interacting with the IKKγ subunit, which prevents IkB phosphorylation [33, 34]. A decrease in NF-κB activity leads to a decrease in the production of pro-inflammatory and stress response mediators [35]. Anti-tumor activity is also linked to ability of WA to promote oxidative stress. WA decreases the mitochondrial membrane potential and activates various caspases and proteases, which trigger the degradation of various substrates, such as cytoskeletal proteins and poly (ADP-ribose) polymerase [36, 37]. Also WA regulates the activity of antioxidant enzymes (such as superoxide dismutase) [38] and mRNA expression of antioxidant genes: erythroid 2-like 2 (NFE2L2), heme oxygenase 1 (HMOX1), glutathione-disulfide reductase (GSR), and NAD(P)H quinone dehydrogenase 1 (NQO1)) in cancer cells [39]. Also tumor activity of WA involves induction of heat shock response via Akt / mTOR and MAPK signaling pathways [40].

The anti-inflammatory and anti-fibrotic effects of WA have been demonstrated in an in vivo model of bleomycin-induced scleroderma. Daily intraperitoneal injections of WA over the span of 28 days cause reduced dorsal skin thickness in this model. The study has shown that WA suppresses the pro-inflammatory phase of fibrosis regulated by the TGF-β/Smad signaling cascade, and also significantly reduces the proportion of fibroblasts that turn into myofibroblasts. The authors have associated the antifibrotic effect with the inhibition of the FoxO3a-Akt-dependent NF-κB/IKK-mediated cascade, which is involved in the process of the fibrotic tissue transformation [41].

Due to its wide positive properties and availability, WA can be considered as a promising substance for improving health span and life span. In the present study, our hypothesis is that the addition of WA to the Drosophila’s feed would have a beneficial effect on its vitality, especially with age.

RESULTS

Effect of WA on the life span of Drosophila melanogaster wild type Canton-S

The effect of WA at concentrations of 1, 10, 100 µM on the life span of male and female Drosophila melanogaster of the wild type Canton-S was studied. WA at 10 and 100 µM concentrations increased the median life span in male by 7.7, 9.6% (respectively) (p<0.0001) and the maximum life span (the age of death 90% of individuals) by 11.1% both (Figure 2B). While we sighted significant shift of these group curves to the right relative to the control curve (Figure 2A). The 1 µM of WA treatment not affected on studied life span parameters. Also WA treatment not affected on studied lifespan parameters in Drosophila’s females (Figure 2C, 2D).

Effect of WA on stress resistance of Drosophila melanogaster wild type Canton-S

The effect of WA at 1, 10, 100 µM concentrations on the resistance of Drosophila to the action of paraquat (20 mM solution in 5% sucrose, oxidative stress) and hyperthermia (33° C, heat shock) at the age of 1 to 8 weeks (from young to old individuals) demonstrated in Tables 1, 2 and Supplementary Figures 1–4.

WA treatment had a different effect in response to studied stressors in males. It increased the resistance to paraquat only at the age of 4 and 7 week at 1 µM (by 16.7, 42.9 %% increased 25 percentiles respectively). At 6 weeks decreased 90 percentiles by 14.7% at 10 µM of WA. Also we observed shift in mortality distribution curves at 1 µM of WA in 1 and 8 weeks relative to the control curve. WA treatment increased the resistance of male’s to hyperthermia at 2 weeks after 100 µM of WA (by 9.7% increased 50 percentiles), at 4 weeks after 1 µM of WA (by 11.1% – 90 percentiles) and at 7 weeks after 100 µM of WA (by 26.9% – 90 percentiles). While it decreased the resistance to hyperthermia at 3 weeks after 1 and 10 µM (by 44.4, 52.0, 46.2%%; 66.7, 72.0, 61.5 % % decreased 25, 50, 75 percentiles respectively). At the age 5 weeks we found decreased by 42.9% in 25 percentiles after 1, 100 µM and by 6.9% in 90 percentiles after 10 µM WA treatments. And at the age 8 weeks decreased by 13.3, 15.0, 21.7 %% in 50, 75, 90 percentiles after 1 µM of WA. These data confirm by mortality distribution. We observed shift in mortality curves at 1 µM of WA in 3, 4 and 8 weeks, at 10 µM in 3 and 5 weeks, and at 100 µM at 7 and 8 weeks relative to the control curve. In other variants of the experiment WA not affected on studied survival parameters (Table 2 and Supplementary Figures 1, 2).

www.aging-us.com 1819 AGING
WA treatment not affected on female’s resistance to paraquat and reduced resistance to hyperthermia. At the age of 1 week at 10 μM (by 18.8, 16.4 %% decreased 25 and 50 percentiles respectively), of 2 weeks at 100 μM (by 26.3 %-- 50 percentiles) and of 3 weeks for 1 and 10 μM (40.0, 43.3,42.9; 56.0, 56.7, 54.3%%% - 25, 50 and 75 percentiles respectively). Also these data confirm mortality distribution. We observed shift 100 µM at 2 weeks and 1 µM and 10 µM at 3 weeks curves to the right relative to the control curve. In other variants of the experiment WA not affected on studied survival parameters (Table 2 and Supplementary Figures 3, 4).

Effect of WA on the intestinal barrier permeability of Drosophila melanogaster wild type Canton-S

Changes in the permeability of the intestinal barrier in Drosophila melanogaster wild type Canton-S at the age of 4, 6, 8 weeks were studied against the background of treatment of WA at concentrations of 1, 10, 100 μM.

In males at the age of 8 weeks, a decrease in the proportion of flies with the “smurfs” phenotype by 67, 61 and 89% was observed relative to the control when taking WA at concentrations of 1, 10, 100 μM,

Figure 2. Effect of Withaferin A on the life span in males (A, B) and females (C, D) of Drosophila melanogaster wild type Canton-S. Results of two independent repeats are combined. dM and d90% are the percentage of change in median life span and age of death of 90% of individuals (respectively); * p <0.01, ** p <0.001, *** p <0.0001.
Table 1. Effect of Withaferin A at concentrations of 1, 10, 100 µM on the resistance of *Drosophila melanogaster* wild type Canton-S males to paraquat (20 mM, oxidative stress) and hyperthermia (33°C, heat shock) at the age of 1 to 8 weeks.

Age	Experimental group	Oxidative stress	Survival, hours	Hyperthermia					
		25%	50%	75%	90%	25%	50%	75%	90%
1 week	control	64	69	86	92	66	71	81	89
	1 µM	52	67	82	86	63	73	79	83
	10 µM	61	69	79	91	70	81	85	90
	100 µM	48	56	74	86	63	72	81	90
2 weeks	control	41	51	60	73	26	31	33	36
	1 µM	39	52	59	71	28	33	35	41
	10 µM	42	52	62	75	28	32	36	37
	100 µM	42	47	54	71	30	34**	37	40
3 weeks	control	35	40	46	54	18	25	26	27
	1 µM	33	40	47	57	10*	12***	14**	15
	10 µM	32	40	48	56	6*	7*	10*	13
	100 µM	36	42	48	56	21	24	25	27
4 weeks	control	24	30	38	45	20	28	41	45
	1 µM	28**	34	39	46	29	36	45	50*
	10 µM	27	32	37	42	27	33	42	47
	100 µM	24	30	37	44	28	33	38	42
5 weeks	control	21	25	31	34	14	18	25	29
	1 µM	19	24	28	35	8*	11	22	29
	10 µM	21	25	27	31	7	14	20	27*
	100 µM	23	28	33	37	8*	12	22	27
6 weeks	control	21	25	30	34	27	32	35	38
	1 µM	19	24	29	33	23	31	39	41
	10 µM	19	23	27	29*	24	31	40	44
	100 µM	19	25	29	31	27	31	35	38
7 weeks	control	14	20	26	31	10	16	22	26
	1 µM	20***	23	29	32	10	14	22	29
	10 µM	16	21	26	30	12	15	23	27
	100 µM	17	20	25	31	9	19	25	33*
8 weeks	control	13	18	23	27	11	15	20	23
	1 µM	15	20	26	31	10	13*	17***	18*
	10 µM	14	18	23	28	10	14	17	21
	100 µM	13	17	23	26	9	13	17	20

Note: * p <0.01; ** p <0.001, *** p <0.0001. Three biological repeats were combined (32 flies in each). 25%, 50%, 75%, 90% - percentiles.

respectively (Figure 3C). Females also showed a decrease in the «smurfs» rate only at the age of 8 weeks. The proportion of flies with the «smurfs» phenotype was lower by 73, 42 and 61 %% relative to the control after WA at 1, 10, 100 µM concentrations, respectively (Figure 3F). Other group of the experiment showed no significant differences (Figure 3A, 3B, 3D, 3E).

Effect of WA on the expression of stress response genes in *Drosophila melanogaster* wild type Canton-S

Changes in the expression of genes involved in antioxidant defense (*catalase, Peroxiredoxin V*), metal detoxification (*frataxin*), recognition of DNA damage (*Gadd45*), heat shock proteins (*Hsp68, Hsp83*), and repair
Table 2. Effect of Withaferin A at concentrations of 1, 10, 100 µM on the resistance of Drosophila melanogaster wild type Canton-S females to the action of paraquat (20 mM, oxidative stress) and hyperthermia (33°C, heat shock) at the age of 1 to 8 weeks.

Age	Experimental group	Oxidative stress	Survival, hours	Hyperthermia					
		25%	50%	75%	90%	25%	50%	75%	90%
1 week	control	64	69	86	92	64	73	77	81
	1 µM	52	67	82	86	60	73	81	88
	10 µM	61	69	79	91	52	61	71	76
	100 µM	48	56	74	86	63	72	88	89
2 weeks	control	48	72	103	116	28	38	42	47
	1 µM	47	70	95	111	25	34	42	51
	10 µM	55	77	95	111	22	34	37	42
	100 µM	48	78	97	108	19	28	34	42
3 weeks	control	42	64	79	99	25	30	35	38
	1 µM	32	50	75	93	15	17	20	23
	10 µM	48	66	82	104	11	13	16	18
	100 µM	40	62	76	95	24	29	33	38
4 weeks	control	28	49	60	78	24	31	36	41
	1 µM	30	48	58	82	26	33	37	43
	10 µM	31	45	67	85	26	31	38	40
	100 µM	30	47	68	82	28	34	41	44
5 weeks	control	28	31	43	50	15	21	24	29
	1 µM	27	42	48	61	15	19	23	26
	10 µM	29	36	45	63	18	22	25	28
	100 µM	27	31	41	48	14	18	22	24
6 weeks	control	21	27	34	57	20	25	31	35
	1 µM	20	26	39	55	22	26	30	33
	10 µM	19	26	36	61	21	23	27	31
	100 µM	21	26	37	51	22	27	30	36
7 weeks	control	19	25	34	44	15	21	26	29
	1 µM	22	25	36	48	13	18	24	27
	10 µM	17	23	30	45	15	19	24	29
	100 µM	19	23	33	42	14	18	23	29
8 weeks	control	17	23	28	37	8	14	19	26
	1 µM	14	22	30	48	9	14	21	25
	10 µM	17	22	30	41	9	14	20	24
	100 µM	18	23	31	40	10	15	20	24

Note: * p <0.01; ** p <0.001, *** p <0.0001. Three biological repeats were combined (32 flies in each). 25%, 50%, 75%, 90% - percentiles.

of double-strand breaks (Ku80) studied. The combined results are presented in Figure 4 and considered. In males 1 µM WA affected on expression of Gadd45 (3.9-fold-increase), Hsp83 (1.5-fold-decrease) and PrxV (3.1-fold-increase) genes. The 10 µM and 100 µM of WA decreased the expression of only Hsp68 (2.3-, 1.4-fold respectively) gene (Figure 4). In females the 1 µM of WA treatment decreased the expression of Gadd45 (4.9-fold), Hsp68 (3.6-fold), Ku80 (3.9-fold) genes. The 100 µM WA treatment decreased the expression of only Gadd45 (2.7-fold) gene (Figure 4). The expression of other studied genes was not significantly changed.
Figure 3. Results of the intestinal barrier permeability test (smurf test) in males (A–C) and females (D–F) of *Drosophila melanogaster* wild type *Canton-S* at the age of 4, 6 and 8 weeks. * p <0.01, ** p <0.001.

Figure 4. Changing of stress response genes expression in males (A) and females (B) of *Drosophila melanogaster* wild type *Canton-S* after WA treatment. Results were normalized to control. * p <0.01, ** p <0.001, *** p <0.0001.
DISCUSSION

Currently, the identification of geroprotectors which could be used as a cure against aging constitutes an important area of research. Although there are around 400 compounds known to extend the life span of model organisms, only few of them meet the criteria to be used as potential geroprotectors [42]. Moreover, there is a lack of clinical studies which have been conducted to analyze the effects of these potential geroprotectors on humans. It should be emphasized that an ideal geroprotector should not only increase the average but also the maximum life span. Furthermore geroprotectors should contribute to shifting the entire mortality curve to the right so that extended life span would be associated with the extension of the active period of life.

Balanced nutrition is one of the most important factors promoting increased life span. Currently, rapamycin, metformin, Skulachev ions (SkQ), and some other compounds are known to be promising geroprotective substances [43–46]. The data available indicate that these geroprotective substances prolong the life in model organisms (Caenorhabditis elegans, D. melanogaster, Mus musculus, Rattus norvegicus, etc.). In many cases they also reduce the likelihood of aging-associated diseases. Metformin and rapamycin are two FDA-approved mTOR inhibitors. However, the use of metformin and rapamycin has various side effects. A. Aliper et al. [47] applied several bioinformatic approaches and deep learning techniques to a dataset from the Library of Integrated Network – based Cellular Signatures (LINCS) to find the substances that could emulate the genetic response to metformin and rapamycin. Using this approach, the authors predicted the safety of each selected compound. As a result of the analysis, many new candidate mimetics of metformin and rapamycin were identified, WA being one of them.

Effect of WA on the life span of Drosophila melanogaster wild type Canton-S

Life span is regulated by multiple interrelated phenotypic and genotypic factors and is a temporal characteristic of the damage-restoration process in the body, leading to old age and death [48–50]. In gerontology, it is important to make a distinction between chronological and biological age. Chronological age is measured as the period passed since the time of birth. In humans, chronological age is not a sufficient metric to evaluate the health and performance of an aging person. A more appropriate measure to this end is the biological age which aims to estimate how the progressive degradation occurring within the aging organism affect a combination of metabolic, structural, functional, regulatory features, and adaptive capabilities. These alterations affect vital functions of the organism, leading to the onset of age related diseases, an increase in the probability of death, or a decrease in life span [51–53]. It is well known that it is possible to delay aging and the onset of age-related diseases to prolong the period of active life. In our study, we have shown that WA at concentrations of 10, 100 µM increases the median and maximum life span of male CSs (Figure 2A, 2B). While WA treatment not affected on life span parameters in Drosophila’s females (Figure 2C, 2D).

Effect of WA on stress resistance of Drosophila melanogaster wild type Canton-S

There are a lot of articles in which plant materials have a positive influence on stress resistance of model organisms. For example it was shown in Drosophila melanogaster that the apple phlorizin [54], cloudberry extract [55], oil from Caryocar coriaceum (Pequi) [56] increase resistance to oxidative stress. Blueberry extract [57], Lonicera japonica extract [58] promote stress tolerance in Caenorhabditis elegans. Styphnolobium japonicum fruits [59], Rhodiola rosea root extract [60], Cotinus coggygria extract [61] increase stress resistance and exert antioxidant properties in mouse models. Therefore, we decided to check the effect of WA on the resistance of Drosophila’s flies to oxidative stress and hyperthermia.

Oxidative stress is caused by elevated intracellular levels of reactive oxygen species (ROS), which damage lipids in cell membranes, oxidize proteins, and damage DNA [62]. In our experiment we use paraquat as inductor of ROS [63]. It is known that WA can suppress oxidative stress [64–67]. In most variants of our experiment, WA not led to significant changes on studied survival parameters. WA treatment at 1 µM increased the resistance of males only at the age of 4 and 7 week. Negative effect was found after 10 µM treatment at the age 6 weeks. Also we observed shift in male’s survival curves at 1 µM of WA in 1 and 8 weeks relative to the control curve (Table 1 and Supplementary Figure 1). While WA treatment not affected on female’s resistance to paraquat (Table 2 and Supplementary Figure 3).

Prolonged or intense heat shock causes numerous changes in cell metabolism and disrupts the state of its structural units [68, 69]. Protein damage is the main type of damage during heat shock. Its downstream effects, higher metabolic rate and free radical production, lead to consequent DNA damage [70–72]. In our experiment, WA treatment had different effect in response to hyperthermia. Thus, it increased the male’s resistance to hyperthermia at 2 and 7 weeks after 100 µM of WA and at 4 weeks after 1 µM of WA. It decreased its resistance to hyperthermia at 3 weeks after 1 and 10 µM, at
5 weeks after 1, 10 μM, 100 μM and at 8 weeks after 1 μM of WA. Also we observed shift in male’s mortality curves at 1 μM of WA in 3, 4 and 8 weeks, at 10 μM in 3 and 5 weeks, and at 100 μM at 7 and 8 weeks relative to the control (Table 1 and Supplementary Figure 2). WA treatment reduced female’s resistance to hyperthermia at the age of 1 week after 10 μM, of 2 weeks after 100 μM and of 3 weeks after 1 and 10 μM. Also we observed shift 100 μM at 2 weeks and 1 μM and 10 μM at 3 weeks curves to the left relative to the control curve (Table 2 and Supplementary Figure 4). Thus, it has been shown that WA has a multidirectional effect on the resistance of CSs to the stress factors under study.

Effect of WA on the intestinal barrier permeability of Drosophila melanogaster wild type Canton-S

The gastrointestinal tract has a barrier function that prevents the penetration of food antigens, bacterial toxins, viruses and microorganisms into circulation [73, 74]. There are a lot of articles that have been written about positive role of plant extracts on intestinal microflora and intestinal epithelial barrier [75–79]. The disadvantage of these studies is that they were performed in vitro and do not take into account the effect of aging. The deregulation of the barrier function, which typically occurs in the elderly, can cause the development of pathological conditions [65, 80–82]. In order to prevent the development of such conditions, methods for diagnosing the violations of the permeability of the intestinal barrier are being intensively developed. Therefore, an analysis of the permeability of the intestinal barrier was performed. We have shown that WA at all studied concentration increases the strength of the intestinal barrier in old CSs (Figure 3C, 3F). The rate of flies with the «smurfs» phenotype was lower by 67, 61 and 89% relative to the control after WA at 1, 10, 100 μM concentrations, respectively in males, and by 73, 42 and 61 %% respectively in females. WA’s effects on the strength of the intestinal barrier have not been found in literature. But there is study in which authors did not succeed to increase the strength of intestinal barrier using plant materials in aging aspect: ursolic acid (triterpenoid) does not affect gut integrity in male D. melanogaster at the age 30 days [83]. And pectin supplementation was not affected by the intestinal barrier function in healthy young adults and in healthy elderly [83].

Effect of WA on the expression of stress response genes in Drosophila melanogaster wild type Canton-S

Genetic and epigenetic mechanisms and genes that are involved in the regulation of life span are highly interconnected and related to stress response [50]. Moreover, the overexpression of longevity genes listed in [84] as stress response genes almost exclusively resulted in life span extension. A wide-scale comparative analysis of the 1805 known longevity-associated genes across 205 species disclosed that these genes are consistently overrepresented across diverse taxa, compared with the orthologs of other genes, and this conservation is highly. Also in that study it was shown that longevity-associated genes were enriched in translational processes, energy metabolism and DNA repair genes [84]. The genes analyzed in our study play important roles in the following molecular and biological processes: antioxidant defense (Cat, PrxV), metal detoxification (fh), heat shock response (Hsp68, Hsp83), DNA damage recognition (Gadd45) and double-strand break repair (Ku80). More detailed information of these genes can be found in Supplementary Table 1.

Here in Drosophila’s male WA decreased heat shock proteins (Hsp68 or Hsp83) genes expression at all concentration and increased Gadd45 and PrxV genes expression at 1 μM of treatment. In Drosophila’s female found decreased expression of Gadd45, Hsp68 and Hsp83 genes after 1 μM of WA. The 100 μM of WA treatment decreased expression of only Gadd45 gene.

The effects of plant materials on gene regulation have been shown in numerous experiments on model organisms and cancer cell lines. It was shown that licorice and orange extract provoke enhancement of catalase activity and also extend Caenorhabditis elegans life span [85, 86]. Citrus and apple pectin’s have induced the expression of genes involved in DNA repair (D-Gadd, mei-9, spn-B), apoptosis (wrinkled/hid) and heat shock response (hsp70Aa) in Drosophila [87]. Overexpression of PrxV gene can abrogate shikonin-induced cell apoptosis in HT29 colon cancer cells [88]. Modulation of HSP 90 and HSP 70 genes expressions is a possible mechanism by which the Flueggea leucopyrus (Willd) decoction mediates cytotoxic effects in breast cell lines [89]. Anticancer property has also been studied in Glycyrrhiza glabra which inhibited proliferation in HT-29 cell line due to down-regulation of HSP90 gene expression which implied an ability to induce apoptosis [90]. Crude phenolic extracts from extra virgin olive oil directly up-regulated the expression of the Gadd45 gene family in JIMT-1 human breast cancer cell line that circumvent breast cancer resistance to HER1/HER2-targeting drug [91]. Protective role of Podophyllum hexandrum rhizomes and Myrtus communis leaves against DNA damage proved. Shown significant up-regulation of DNA-PKcs and Ku80 and downregulation of ATM and 53BP1 gene expressions in cell lines which were pre-treated with mixture of three active derivatives isolated from the rhizomes of Podophyllum hexandrum, and then irradiated [92]. Myricetin-3-O-galactoside and myricetin-3-O-rhamnoside, isolated from the leaves of...
Myrtus communis, modulated the expression patterns of cellular genes involved in DNA damaging repair (XPC, LIG4, RPA3, PCNA, DDIT3, POLD1, XRCC5, MPG) [93].

We have repeatedly observed gender specific reactions to WA treatment. Individuals of different genders can response differently to dietary restriction and distorted activity of nutrient-sensing pathways [94]. The main pathways and interventions that lead to sex-specific life span responses, include the growth-hormone/insulin-like growth factor 1 (GH-IGF1) axis, mechanistic target of rapamycin (mTOR) signaling, and nutritional and pharmacological interventions [95].

Thus, WA at concentrations of 10, 100 μM increases the median and maximum life span and shifts the curve to the right side in Drosophila’s male. Together with WA at all concentration decreased expression of genes involved in heat shock response (Hsp68 or Hsp83). The 1 μM of WA increased expression of DNA damage recognition (Gadd45) and antioxidant (PrxV) genes. WA treatment had no effect on life span parameters in Drosophila’s females. While 1 μM and 100 μM of WA decreased the expression of Gadd45 gene. And 1 μM of WA also decreased the expression of Hsp68 and Ku80 (double-strand breaks repair) genes. WA has also a multidirectional effect on the stress resistance of flies. The 1 μM of WA treatment increased the male’s resistance to oxidative stress only at 4 and 7 week old. Negative effects were found after 10 μM treatment in males at the age 6 weeks, while WA treatment did not affect the female’s resistance to oxidative stress. WA increased the male’s resistance to hyperthermia at 2 and 7 weeks after 100 μM of WA and at 4 weeks after 1 μM of WA. The 1 μM of WA decreased male’s resistance at 3, 5 and 8 weeks old. The 10 μM of WA decreased it resistance at 3 and 5 weeks old. Also 100 μM of WA decreased male’s resistance at the age 5 weeks. WA treatment reduced female’s resistance to hyperthermia at the age of 1 week after 10 μM, of 2 weeks after 100 μM and of 3 weeks after 1 and 10 μM. In contrast to this WA increases the permeability of the intestinal barrier of old flies both sexes.

MATERIALS AND METHODS

In our study, we used the wild type strain Canton-S (Bloomington, USA) Drosophila melanogaster (CS). All CSs were kept in Binder climate chambers (KBF720-ICH, 720l, Binder, Germany) at 25°C and a 12-hour illumination regime in 40ml tubes with 5ml of nutrient medium [96, 97].

To obtain the experimental CS flies, their parents were pre-planted in jars of nutrient medium in the amount of 10 pairs per tube and left for 24 hours to lay eggs. After the appearance of imago, flies were anesthetized using CO2 anesthesia (Genese Scientific, USA), were separated by sex and were placed in test tubes with nutrient with WA and without for further experiments. Non-virgin females were used. Males and females lived separately with 30 animals per tube. From day 1 of life, 30 μl of 1, 10 or 100 μM WA ethanol solution on top of the flies’ nutrient medium instilled. As a control, we used flies fed with a medium supplemented with 30 μl of ethanol. The final concentration of the drug in the media was 1, 10 or 100 μM. This concentration has shown its ability to increase life span in human fibroblast (internal preliminary tests) and represents a suitable concentration range for pro-longevity effects in invertebrates. To maintain these concentrations flies were transferred to a fresh nutrient medium twice a week [98–102].

Life span assay

To assess life span, 150 flies were selected for each experiment in a single repetition. Two biological repeats were made. Combined data are presented. Flies were placed in test tubes with nutrient medium (30 animals per tube). The counting of the number of dead flies was performed daily. The data were used to compute survival curves and the median, maximum life span, 90% death time were calculated. The Kolmogorov-Smirnov test was used to compare the distribution of mortality in survival curves and the Gehan-Breslow-Wilcoxon test was used to compare the differences in median life span. The significance of the differences in maximum life span was evaluated using the Wang-Allison test. In order to apply this method, animals in each variant of the experiment were divided into two groups: with a life span above the age of 90% mortality, or below the age of 90% mortality. Data were recorded in a 2x2 contingency table and compared using the chi-squared test. According to Bonferroni correction were considered significant differences at p less than 0.017. Analyses were performed using Statistica 6.1 (Stat Soft), and online application for survival analysis «Oasis2» (Structural Bioinformatics Lab).

Stress resistance analysis

The stress resistance of the flies was assessed every week up to 8 weeks of age. The DAM (Drosophila Activity Monitor) system (TriKinetics, USA) was used to look into stress resistance. For analyzing the resistance to oxidative stress, the flies were placed in glass tubes 5 mm in diameter with 20 mM paraquat (Methyl Viologen, Sigma) in 5% sucrose and kept at 25°C C until the complete death of flies’ cohort. To assess the resistance
Table 3. List of studied genes and their nucleotide sequence primers.

Target gene	Abbreviation	5'-3' sequences of forward / reverse primers
eukaryotic translation elongation factor 1 alpha 2	eEF1a2	AGGGCAAGAAGTAGCTGGTTTGC/GCTGCTACTACTGCGTGTTTGTG
β-Tubulin at 56D	Tubulin	GCAACTCCACTGCCATCC/CCTGCTCCTCCTGAACT
Ribosomal protein L32	RpL32	GAAGGCGACCAAGCATTTCATC/GGCCATTTGTGGCAGCTTAG
Catalase	Cat	CCCAAGAACTACTTTTGTGAGGTG/AGGAGAACAGACGACCCTGCAG
frataxin	fh	TTACAGCGATGGCGTGTTAACC/AGTGCCGACGAATTCGTATC
Growth arrest and DNA damage-inducible 45	Gadd45	GCAAACGCACAACAAACAC/GGCCATCAGCAGAAAG
Heat shock protein 68	Hsp68	TGGGCACATTCCATCTCCTACTGG/TAAAGCTGATGGCAGCTCC
Heat shock protein 83	Hsp83	AAGATGCCAGAAGAAGCAGAGACC/ATCTTGTCCAGGCGATCAGAAAG
Ku80	Ku80	GAGCTTCAGAATGTCGCAACTACC/GGAAATGCTGTTGAAATCGAGAGGC
Peroxiredoxin V	PrxV	CCCGATGACGTGAGTCCAAG/TTGCCGTTCTCACCACAGC

to hyperthermia, the flies were seated in glass tubes 5 mm in diameter with a standard medium and kept at 33°C until the complete death of flies’ cohort. The data were used to compute differences in survival distribution with age and in percentiles (25, 50, 75, 90) of death. Fisher’s exact test was used to calculate the statistical differences in percentiles of death. Log-rank criteria were used to assess the statistical significance in survival function distribution. Data were computed using «Oasis2» (Structural Bioinformatics Lab). According to Bonferroni correction were considered significant differences at p less than 0.017. The experiment was performed in three biological repetitions (32 flies in each).

Smurf test

We used 100 flies per variant of experiment. The smurf test was performed at 4, 6 and 8 weeks of age. For this, the test tubes were prepared with a nutrient medium stained with 2.5% (w / v) blue dye No. 1 (Sigma Aldrich, USA). The flies were moved to this medium for 9 hours. Then the number of «smurfs» and «non-smurfs» was counted. Flies were considered «smurfs» if they were blue outside the digestive system [103]. The data obtained were used to construct histograms of the distribution of «smurf» proportion in samples. Fisher’s exact test was used to assess the statistical significance of differences at p less than 0.017 using «Oasis2» (Structural Bioinformatics Lab).

Analysis of stress response gene expression

For each variant of the experiment, 60 flies were selected, separated into two groups of 30 and kept under standard conditions, (Genesee Scientific, USA). For each point of the experiment, 10 females and 20 males were used. Expression analysis was carried out 10 days after the emergence of adults. The experiment was carried out in two biological and three analytical replicates.

Gene expression was measured by “real-time” quantitative PCR with a reverse transcription step (RT-qPCR). RNA was isolated using an Aurum Total RNA mini kit (Bio-Rad, USA) according to the manufacturer’s instructions. The concentration of the resulting RNA was measured using a Quant-iT RNA Assay Kit (Invitrogen, USA). Next, cDNA was synthesized according to the iScript cDNA Synthesis Kit (Bio-Rad, USA). The reaction mixture for carrying out the PCR reaction was prepared according to the manufacturer’s instructions iTaq Universal SYBR Green Supermix (Bio-Rad, USA) and primers (Lumiprobe, USA) (Table 3). The polymerase chain reaction was carried out in a CFX96 amplifier (Bio-Rad), with a DNA melting step using the following program: 1) 95°C for 30 s, 2) 95°C for 10 s, 3) 60°C for 30 s, 4) steps 2-3 were repeated 40 times, 5) DNA melting cycles.

The expression of studied genes calculated relatively to the expression of the housekeeping genes Tubulin,
eEF1a2, RpL32 using the CFX Manager 3.1 software (Bio-Rad, USA).

AUTHOR CONTRIBUTIONS

Conceived the study: A.M., A. A., A. Z. Planned experiments: A.M., L.K., N.Z. Performed experiments and analyzed data: L.K. and N.Z. Writing - original draft preparation: L.K. Writing – review & editing, L.K., A.M., A. A., A. Z.

ACKNOWLEDGMENTS

We are grateful to the Bloomington stock center (Indiana University, USA) for providing the *Drosophila melanogaster* strains. We thank the Institute of Biology of the Komi Science Center for assistance in the experiments with *Drosophila melanogaster* and Insilico Medicine for the help with data analysis.

CONFLICTS OF INTEREST

Alex Aliper and Alex Zhavoronkov are employed by Insilico Medicine, Inc, a longevity biotechnology and artificial intelligence company. All other authors declare no conflicts of interest.

FUNDING

L.A. carried out the work within the Russian Science Foundation grant No. 19-75-00043 “Study of the geroprotective properties of the Krebs cycle metabolites using *Drosophila melanogaster* model”. N.Z., A.M. carried out the work within the framework of the state task on the theme “Molecular-genetic mechanisms of aging, life span, and stress resistance of *Drosophila melanogaster*”, state registration No. AAAA-A18-118011120004-5.

REFERENCES

1. Singh N, Bhalla M, de Jager P, Gilca M. An overview on ashwagandha: a rasayana (rejuvenator) of ayurveda. Afr J Tradit Complement Altern Med. 2011; 8:208–13. https://doi.org/10.4314/ajtcam.v8i5S.9 PMID:22754076
2. Lee S-H, Min K-J. Drosophila melanogaster as a model system in the study of pharmacological interventions in aging. Transl Med Aging. 2019; 3:98–103.
3. Yarden A, Lavie D. Constituents of Withania somnifera. Part I. The functional groups of withaferin. J Chem Soc., 1962; 2925–7. https://doi.org/10.1039/jr9620002925
4. Lavie D, Glotter E, Shvo Y. Constituents of Withania somnifera Dun. III. The side chain of withaferin A. J Org Chem. 1965; 30:1774–8. https://doi.org/10.1021/jo01017a015
5. Lavie D, Glotter E, Shvo Y. Constituents of Withania somnifera Dun. Part IV. The structure of withaferin A. J Chem Soc. 1965; 7517–31. https://doi.org/10.1039/jr9650007517
6. Kupchan SM, Doskotch RW, Bollinger P, Mcphail AT, Sim GA, Renauld JA. The isolation and structural elucidation of a novel steroidal tumor inhibitor from acnistus arborescens. J Am Chem Soc. 1965; 87:5805–06. https://doi.org/10.1021/ja00952a061 PMID:5845429
7. Khan PM, Malik A, Ahmad S, Nawaz HR. Withanolides from ajuga parviflora. J Nat Prod. 1999; 62:1290–92. https://doi.org/10.1021/jn990029k PMID:10514315
8. Huang Y, Liu JK, Mühlbauer A, Henkel T. Three novel taccalonolides from the tropical plant Taccia subflaellata. Helvetica chimica acta. 2002; 85:2553–8. https://doi.org/10.1002/1522-2675(200208)85:8<2553::AID-HHCA2553>3.0.CO;2-8
9. Stein A, Compera D, Karge B, Brönnstrup M, Franke J. Isolation and characterisation of irinans, androstanetype withanolides from *Physalis Peruviana* L. Beilstein J Org Chem. 2019; 15:2003–12. https://doi.org/10.3762/bjoc.15.196 PMID:31501667
10. Petreanu M, Maia P, da Rocha Pittarello JL, Loch LC, Monache FD, Perez AL, Solano-Arias G, Filho VC, de Souza MM, Niero R. Antidepressant-like effect and toxicological parameters of extract and withanolides isolated from aerial parts of Solanum capsioides all. (Solanaceae). Naunyn Schmiedebergs Arch Pharmacol. 2019; 392:979–90. https://doi.org/10.1007/s00210-019-01648-9 PMID:30982080
11. Niero R, Da Silva IT, Tonial GC, Santos Camacho BD, Gacs-Baitz E, Monache GD, Monache FD. Cilistepoxide and cilistadiol, two new withanolides from Solanum sisymbifolium. Nat Prod Res. 2006; 20:1164–68. https://doi.org/10.1080/14786410600888459 PMID:17127503
12. Zhu XH, Ando J, Takagi M, Ikeda T, Yoshimitsu A, Nohara T. Four novel withanolide-type steroids from the leaves of Solanum cilistum. Chem Pharm Bull (Tokyo). 2001; 49:1440–43. https://doi.org/10.1248/cpb.49.1440 PMID:11724324
13. Zhu XH, Takagi M, Ikeda T, Midzuki K, Nohara T. Withanolide-type steroids from Solanum cilistum. Phytochemistry. 2001; 56:741–45. https://doi.org/10.1016/s0031-9422(00)00487-8
14. Zhu XH, Ando J, Takagi M, Ikeda T, Nohara T. Six new withanolide-type steroidal from the leaves of Solanum cilistum. Chem Pharm Bull (Tokyo). 2001; 49:161–64. https://doi.org/10.1248/cpb.49.161 PMID:11217102

15. Alfonso D, Kapetanidis I. Withanolides from lochroma gesnerioides. Phytochemistry. 1994; 36:179–83. https://doi.org/10.1016/S0031-1872(00)70353-3

16. Eich E. (2008). Solanaceae and Convulvaceae: Secondary Metabolites. Biosynthesis, Chemotaxonomy, Biological and Economic Significance (A Handbook). Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978-3-540-74541-9

17. Tripathi S, Sangwan RS, Mishra B, Jadaun JS, Sangwan NS. Berry transcriptome: insights into a novel resource to understand development dependent secondary metabolism in Withania somnifera (Ashwagandha). Physiol Plant. 2020; 168:148–73. https://doi.org/10.1111/ppl.12943 PMID:30767228

18. Tripathi S, Sangwan RS, Narnoliya LK, Srivastava Y, Mishra B, Sangwan NS. Transcription factor repertoire in Ashwagandha (Withania somnifera) through analytics of transcriptomic resources: insights into regulation of development and withanolide metabolism. Sci Rep. 2017; 7:16649. https://doi.org/10.1038/s41598-017-14657-6 PMID:29192149

19. Kuzuyama T, Seto H. Two distinct pathways for essential metabolic precursors for isoprenoid biosynthesis. Proc Jpn Acad Ser B Phys Biol Sci. 2012; 88:41–52. https://doi.org/10.2183/pjab.88.41 PMID:22450534

20. Samadi AK, Tong X, Mukerji R, Zhang H, Timmermann BN, Cohen MS. Withaferin A, a cytotoxic sterol from vassobia breviflora, induces apoptosis in human head and neck squamous cell carcinoma. J Nat Prod. 2010; 73:1476–81. https://doi.org/10.1021/np100112p PMID:20726569

21. Gautam R, Jachak SM, Saklani A. Anti-inflammatory effect of ajuga bracteosa wall ex benth. Mediated through cyclooxygenase (COX) inhibition. J Ethnopharmacol. 2011; 133:928–30. https://doi.org/10.1016/j.jep.2010.11.003 PMID:21073945

22. Llanos GG, Araujo LM, Jiménez IA, Moujir LM, Bazzocchi IL. Withaferin a-related steroids from withania aristata exhibit potent antiproliferative activity by inducing apoptosis in human tumor cells. Eur J Med Chem. 2012; 54:499–511. https://doi.org/10.1016/j.ejmech.2012.05.032 PMID:22705001

23. Erazo S, Rocco G, Zaldivar M, Delporte C, Backhouse N, Castro C, Belmonte E, Delle Monache F, García R. Active metabolites from dunalia spinosa resinous exudates. Z Naturforsch C J Biosci. 2008; 63:492–96. https://doi.org/10.1515/znc-2008-7-804 PMID:18810990

24. Abraham A, Kirson I, Glotter E, Lavie D. A chemotaxonomic study of Withania somnifera (L.) dun. Phytochemistry. 1968; 7:957–62. https://doi.org/10.1016/S0031-9422(00)82182-2

25. Lavie D, Greenfield S, Glotter E. Constituents of Withania somnifera Dun. Part VI. The stereochemistry of withaferin A. J Chem Soc C. 1966; 1753–6. https://doi.org/10.1039/j39660001753

26. Vanden Berghe W, Sabbe L, Kaileh M, Haegeman G, Heyninck K. Molecular insight in the multifunctional activities of Withaferin A. Biochem Pharmacol. 2012; 84:1282–91. https://doi.org/10.1016/j.bcp.2012.08.027 PMID:22981382

27. Vyas AR, Singh SV. Molecular targets and mechanisms of cancer prevention and treatment by withaferin a, a naturally occurring steroidal lactone. AAPS J. 2014; 16:1–10. https://doi.org/10.1208/s12248-013-9531-1 PMID:24046237

28. Yan Z, Guo R, Gan L, Lau WB, Cao X, Zhao J, Ma X, Christopher TA, Lopez BL, Wang Y. Withaferin A induces apoptosis via activated Akt-mediated inhibition of oxidative stress. Life Sci. 2018; 211:91–101. https://doi.org/10.1016/j.lfs.2018.09.020 PMID:30213729

29. Xia S, Miao Y, Liu S. Withaferin A induces apoptosis by ROS-dependent mitochondrial dysfunction in human colorectal cancer cells. Biochem Biophys Res Commun. 2018; 503:2363–69. https://doi.org/10.1016/j.bbrc.2018.06.162 PMID:29966656

30. Cui ZG, Piao JL, Rehman MU, Ogawa R, Li P, Zhao QL, Kondo T, Inadera H. Molecular mechanisms of hyperthermia-induced apoptosis enhanced by withaferin a. Eur J Pharmacol. 2014; 723:99–107. https://doi.org/10.1016/j.ejphar.2013.11.031 PMID:24321857

31. Stan SD, Zeng Y, Singh SV. Ayurvedic medicine constituent withaferin a causes G2 and M phase cell cycle arrest in human breast cancer cells. Nutr Cancer. 2008 (Suppl 1); 60:51–60. https://doi.org/10.1080/01635580802381477 PMID:19003581

32. McKenna MK, Gachuki BW, Alhakeem SS, Oben KN,
Ranjan VR, Gupta RC, Bondada S. Anti-cancer activity of withaferin a in b-cell lymphoma. Cancer Biol Ther. 2015; 16:1088–98.
https://doi.org/10.1080/15384047.2015.1046651
PMID: 26020511

33. Kaileh M, Vanden Berghe W, Heyerick A, Horier J, Piette J, Libert C, De Keukeleire D, Essawi T, Haegeman G. Withaferin a strongly elicits IkappaB kinase beta hyperphosphorylation concomitant with potent inhibition of its kinase activity. J Biol Chem. 2007; 282:4253–64.
https://doi.org/10.1074/jbc.M606728200
PMID: 17150968

34. Grover A, Shandilya A, Punetha A, Bisaria VS, Sundar D. Inhibition of the NEMO/IKKβ association complex formation, a novel mechanism associated with the NF-κB activation suppression by Withania somniferasominfera’s key metabolite withaferin A. BMC Genomics. 2010 (Suppl 4); 11:S25.
https://doi.org/10.1186/1471-2164-11-S4-S25
PMID: 21143809

35. Martorana F, Guidotti G, Brambilla L, Rossi D. Withaferin a inhibits nuclear factor-kB-dependent pro-inflammatory and stress response pathways in the astrocytes. Neural Plast. 2015; 2015:381964.
https://doi.org/10.1155/2015/381964
PMID: 26266054

36. Bhattacharyya SK, Satyan KS, Ghosal S. Antioxidant activity of glycowithanolides from Withania somnifera. Indian J Exp Biol. 1997; 35:236–39.
PMID: 9332168

37. Aqil F, Munagala R, Agrawal A R Gupta. (2019). Chapter 10 - Anticancer Photocopied: Experimental and Clinical Updates. In: Khan MSA, Ahmad I, Chattopadhyay D, eds. New Look to Phytomedicine, Advancements in Herbal Products as Novel Drug Leads. Academic Press.
https://doi.org/10.1016/B978-0-12-814619-4.00010-0

38. Patel P, Julien JP, Kriz J. Early-stage treatment with withaferin a reduces levels of misfolded superoxide dismutase 1 and extends lifespan in a mouse model of amyotrophic lateral sclerosis. Neurotherapeutics. 2015; 12:217–33.
https://doi.org/10.1007/s13311-014-0311-0
PMID: 25404049

39. Yu TJ, Tang JY, Ou-Yang F, Wang YY, Yuan SF, Tseng K, Lin LC, Chang HW. Low concentration of withaferin a inhibits oxidative stress-mediated migration and invasion in oral cancer cells. Biomolecules. 2020; 10:777.
https://doi.org/10.3390/biom10050777
PMID: 32429564

40. Grogan PT, Sleder KD, Samadi AK, Zhang H, Timmermann BN, Cohen MS. Cytotoxicity of withaferin a in glioblastomas involves induction of an oxidative stress-mediated heat shock response while altering Akt/mTOR and MAPK signaling pathways. Invest New Drugs. 2013; 31:545–57.
https://doi.org/10.1007/s10637-012-9888-5
PMID: 23129310

41. Bale S, Pulivendula G, Godugu C. Withaferin a attenuates bleomycin-induced scleroderma by targeting FoxO3a and NF-κB signaling: connecting fibrosis and inflammation. Biofactors. 2018; 44:507–17.
https://doi.org/10.1002/biof.1446
PMID: 30367690

42. Moskalev A, Chernyyagina E, de Magalhães JP, Barardo D, Thoppil H, Shaposhnikov M, Budovsky A, Fraifeld VE, Garazha A, Tsvetkov V, Bronovitsky E, Bogomolov V, Sercbacov A, et al. Geroprotectors.org: a new, structured and curated database of current therapeutic interventions in aging and age-related disease. Aging (Albany NY). 2015; 7:616–28.
https://doi.org/10.18632/aging.100799
PMID: 26342919

43. Anisimov VN, Egorov MV, Krasilshchikova MS, Lyamzaev KG, Mansikih VN, Moshkin MP, Novikov EA, Popovich IG, Rogovin KA, Shabalina IG, Shekarova ON, Skulachev MV, Titova TV, et al. Effects of the mitochondria-targeted antioxidant SkQ1 on lifespan of rodents. Aging (Albany NY). 2011; 3:1110–19.
https://doi.org/10.18632/aging.100404
PMID: 22166671

44. Martin-Montalvo A, Mercken EM, Mitchell SJ, Palacios HH, Mote PL, Scheibye-Knudsen M, Gomes AP, Ward TM,Minor RK, Blobuin MJ, Schwab M, Pollak M, Zhang Y, et al. Metformin improves healthspan and lifespan in mice. Nat Commun. 2013; 4:2192.
https://doi.org/10.1038/ncomms3192
PMID: 23900241

45. Song J, Jiang G, Zhang J, Guo J, Li Z, Hao K, Liu L, Cheng Z, Tong X, Dai F. Metformin prolongs lifespan through remodeling the energy distribution strategy in silkworm, Bombyx mori. Aging (Albany NY). 2019; 11:240–48.
https://doi.org/10.18632/aging.101746
PMID: 30637624

46. Blagosklonny MV. Rapamycin for longevity: opinion article. Aging (Albany NY). 2019; 11:8048–67.
https://doi.org/10.18632/aging.102355
PMID: 31586989

47. Aliper A, Jellen L, Cortese F, Artemov A, Karpinsky-Semper D, Moskalev A, Swick AG, Zhavoronkov A. Towards natural mimetics of metformin and
48. Pal S, Tyler JK. Epigenetics and aging. Sci Adv. 2016; 2:e1600584.
https://doi.org/10.1126/sciadv.1600584
PMID: 27482540

49. Brunet A, Berger SL. Epigenetics of aging and aging-related disease. J Gerontol A Biol Sci Med Sci. 2014 (Suppl 1); 69:S17–20.
https://doi.org/10.1093/gerona/glu042
PMID: 24833581

50. Moskalev AA, Aliper AM, Smit-McBride Z, Buzzin A, Zhavoronkov A. Genetics and epigenetics of aging and longevity. Cell Cycle. 2014; 13:1063–77.
https://doi.org/10.4161/cc.28433
PMID: 24603410

51. Hamczyk MR, Nevado RM, Barettoni A, Fuster V, André V. Biological versus chronological aging: JACC focus seminar. J Am Coll Cardiol. 2020; 75:919–30.
https://doi.org/10.1016/j.jacc.2019.11.062
PMID: 32130928

52. Rida I, Macintyre CR, Lindley R, Gao Z, Sullivan JS, Yuan FF, McIntyre PB. Immunological responses to pneumococcal vaccine in frail older people. Vaccine. 2009; 27:1628–36.
https://doi.org/10.1016/j.vaccine.2008.11.098
PMID: 19100304

53. Jazwinski SM, Kim S. Examination of the dimensions of biological age. Front Genet. 2019; 10:263.
https://doi.org/10.3389/fgene.2019.00263
PMID: 30972107

54. Wang H, Sun Z, Liu D, Li X, Rehman RU, Wang H, Wu Z. Apple phlorizin attenuates oxidative stress in drosophila melanogaster. J Food Biochem. 2019; 43:e12744.
https://doi.org/10.1111/jfbc.12744
PMID: 31353567

55. Lashmanova EA, Kuzívanova OA, Dymova OV, Moskalev AA. [The effects of cloudberry extract on drosophila melanogaster lifespan and stress resistance]. Adv Gerontol. 2018; 31:958–65.
PMID: 30877828

56. Duavy SM, Ecker A, Salazar GT, Loreto J, Costa JG, Vargas Barbosa N. Pequi enriched diets protect Drosophila melanogaster against paraquat-induced locomotor deficits and oxidative stress. J Toxicol Environ Health A. 2019; 82:664–77.
https://doi.org/10.1080/15287394.2019.1642277
PMID: 31317820

57. Wang H, Liu J, Li T, Liu RH. Blueberry extract promotes longevity and stress tolerance via DAF-16 in caenorhabditis elegans. Food Funct. 2018; 9:5273–82.
https://doi.org/10.1039/c8fo01680a
PMID: 30238944

58. Yang ZZ, Yu YT, Lin HR, Liao DC, Cui XH, Wang HB. Lonicera japonica extends lifespan and healthspan in caenorhabditis elegans. Free Radic Biol Med. 2018; 129:310–22.
https://doi.org/10.1016/j.freeradbiomed.2018.09.035
PMID: 30266681

59. Thabit S, Handoussa H, Roxo M, Cestari de Azevedo B, El Sayed NS, Wink M. Stropholobium japonicum (L.) Schott Fruits Increase Stress Resistance and Exert Antioxidant Properties in Caenorhabditis elegans and Mouse Models. Molecules. 2019; 24:2633.
https://doi.org/10.3390/molecules24142633
PMID: 31331055

60. Dinel AL, Guinobert I, Lucas C, Blondeau C, Bardot V, Ripoche I, Berthomier L, Pallet V, Layé S, Joffre C. Reduction of acute mild stress corticosterone response and changes in stress-responsive gene expression in male Balb/c mice after repeated administration of a Rhodiola rosea L. Root extract. Food Sci Nutr. 2019; 7:3827–41.
https://doi.org/10.1002/fsn3.1249
PMID: 31763032

61. Matić Š, Stanić S, Bogojević D, Vidaković M, Grdović M, Čorović M, Jelić D, Grdović N, Arambašić J, Dinić S, Uskoković A, Poznanović G, Solujić S, Mladenović M, Marković J, Mihailović M. Extract of the plant cotinus coggyria scop. Attenuates pyrogallol-induced hepatic oxidative stress in wistar rats. Can J Physiol Pharmacol. 2011; 89:401–11.
https://doi.org/10.1139/y11-043
PMID: 21770795

62. Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol. 2014; 24:R453–62.
https://doi.org/10.1016/j.cub.2014.03.034
PMID: 24845678

63. Dinis-Oliveira RJ, Sarmento A, Reis P, Amaro A, Remião F, Bastos ML, Carvalho F. Acute paraquat poisoning: report of a survival case following intake of a potential lethal dose. Pediatr Emerg Care. 2006; 22:537–40.
https://doi.org/10.1097/01pec.0000223179.07633.8a
PMID: 16871121

64. Batumalaie K, Amin MA, Murugan DD, Sattar MZ, Abdullah NA. Withaferin a protects against palmitic acid-induced endothelial insulin resistance and dysfunction through suppression of oxidative stress and inflammation. Sci Rep. 2016; 6:27236.
https://doi.org/10.1038/srep27236
PMID: 27250532

65. Abu Bakar MH, Azmi MN, Shariff KA, Tan JS. Withaferin a protects against high-fat diet-induced obesity via attenuation of oxidative stress, inflammation, and insulin resistance. Appl Biochem Biotechnol. 2019; 188:241–59.
66. Su LJ, Zhang JH, Gomez H, Murugan R, Hong X, Xu D, Jiang F, Peng ZY. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid Med Cell Longev. 2019; 2019:5080843. https://doi.org/10.1155/2019/5080843
PMID:31737171

67. Forrester SJ, Kikuchi DS, Hernandes MS, Xu Q, Griending KK. Reactive oxygen species in metabolic and inflammatory signaling. Circ Res. 2018; 122:877–902. https://doi.org/10.1161/CIRCRESAHA.117.311401
PMID:29700984

68. Feder ME, Hofmann GE. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol. 1999; 61:243–82. https://doi.org/10.1146/annurev.physiol.61.1.243
PMID:10096689

69. Kedersha N, Anderson P. Stress granules: sites of mRNA triage that regulate mRNA stability and translatability. Biochem Soc Trans. 2002; 30:963–69. https://doi.org/10.1042/bst0300963
PMID:12440955

70. Sottile ML, Nadin SB. Heat shock proteins and DNA repair mechanisms: an updated overview. Cell Stress Chaperones. 2018; 23:303–15. https://doi.org/10.1007/s12192-017-0843-4
PMID:28952019

71. Kantidze OL, Velichko AK, Luzhin AV, Razin SV. Heat stress-induced DNA damage. Acta Naturae. 2016; 8:75–78. PMID:27437141

72. Richter K, Haslbeck M, Buchner J. The heat shock response: life on the verge of death. Mol Cell. 2010; 40:253–66. https://doi.org/10.1016/j.molcel.2010.10.006
PMID:20965420

73. Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014; 157:121–41. https://doi.org/10.1016/j.cell.2014.03.011
PMID:24679531

74. König J, Wells J, Cani PD, García-Ródenas CL, MacDonald T, Mercenier A, Whyte J, Troost F, Brummer RJ. Human intestinal barrier function in health and disease. Clin Transl Gastroenterol. 2016; 7:e196. https://doi.org/10.1038/ctg.2016.54
PMID:27763627

75. Yan Z, Yang F, Hong Z, Wang S, Jinjuan Z, Han B, Xie R, Leng F, Yang Q. Blueberry attenuates liver fibrosis, protects intestinal epithelial barrier, and maintains gut microbiota homeostasis. Can J Gastroenterol Hepatol. 2019; 2019:5236149. https://doi.org/10.1155/2019/5236149
PMID:31886154

76. Chi JH, Kim YH, Sohn DH, Seo GS, Lee SH. Ameliorative effect of alnus japonica ethanol extract on colitis through the inhibition of inflammatory responses and attenuation of intestinal barrier disruption in vivo and in vitro. Biomed Pharmacother. 2018; 108:1767–74. https://doi.org/10.1016/j.biopha.2018.10.050
PMID:30372880

77. Wang T, Yao W, Li J, Shao Y, He Q, Xia J, Huang F. Dietary garcinol supplementation improves diarrhea and intestinal barrier function associated with its modulation of gut microbiota in weaned piglets. J Anim Sci Biotechnol. 2020; 11:12. https://doi.org/10.1186/s40104-020-0426-6
PMID:32140225

78. Patra AK. Influence of plant bioactive compounds on intestinal epithelial barrier in poultry. Mini Rev Med Chem. 2020; 20:566–77. https://doi.org/10.2174/1389557520266191226111405
PMID:31878854

79. Valero MS, González M, Ramón-Gimenez M, Andrade PB, Moreo E, Les F, Fernandes F, Gómez-Rincón C, Berzosa C, García de Jalón JA, Arruebo MP, Plaza MA, Köhler R, et al. Jasminia glutinosa (L.) DC., a traditional herbal medicine, reduces inflammation, oxidative stress and protects the intestinal barrier in a murine model of colitis. Inflammopharmacology. 2020; 28:1717–34. https://doi.org/10.1007/s10787-019-00626-0
PMID:31410747

80. Dambroise E, Monnier L, Ruisheng L, Aguilaniu H, Joly JS, Triccoire H, Rera M. Two phases of aging separated by the smurf transition as a public path to death. Sci Rep. 2016; 6:23523. https://doi.org/10.1038/srep23523
PMID:27002861

81. Buford TW. (Dis)Trust your gut: the gut microbiome in age-related inflammation, health, and disease. Microbiome. 2017; 5:80. https://doi.org/10.1186/s40168-017-0296-0
PMID:28709450

82. Nagpal R, Mainali R, Ahmadi S, Wang S, Singh R, Kavanagh K, Kitzman DW, Kushugulova A, Marotta F, Yadav H. Gut microbiome and aging: physiological and mechanistic insights. Nutr Healthy Aging. 2018; 4:267–85. https://doi.org/10.3233/NHA-170030
PMID:29951588
83. Staats S, Wagner AE, Lüersen K, Künstner A, Meyer T, Kahns AK, Derer S, Graspeuntnner S, Rupp J, Busch H, Sina C, Ipharragueirre IR, Rimbach G. Dietary ursolic acid improves health span and life span in male drosophila melanogaster. Biofactors. 2019; 45:169–96. https://doi.org/10.1002/biof.1467 PMID:30496629

84. Yanai H, Budovsky A, Barzilay T, Tacutu R, Fraifeld VE. Wide-scale comparative analysis of longevity genes and interventions. Aging Cell. 2017; 16:1267–75. https://doi.org/10.1111/ace1.12659 PMID:28836369

85. Reigada I, Moliner C, Valero MS, Weinkove D, Langa E, Gómez Rincón C. Antioxidant and antiaging effects of licorice on the Caenorhabditis elegans model. J Med Food. 2020; 23:72–78. https://doi.org/10.1089/jmf.2019.0081 PMID:31545123

86. Wang J, Deng N, Wang H, Li T, Chen L, Zheng B, Liu RH. Effects of orange extracts on longevity, healthspan, and stress resistance in Caenorhabditis elegans. Molecules. 2020; 25:351. https://doi.org/10.3390/molecules25020351 PMID:31952185

87. Shaposhnikov M, Latkin D, Plyusnina E, Shilova L, Danilov A, Popov S, Zhavoronkov A, Ovodov Y, Moskalev A. The effects of pectins on life span and stress resistance in drosophila melanogaster. Biogerontology. 2014; 15:113–27. https://doi.org/10.1007/s10222-013-9484-x PMID:24305778

88. Chandimali N, Sun HN, Kong LZ, Zhen X, Liu R, Kwon T, Lee DS. Shikonin-induced apoptosis of colon cancer cells is reduced by peroxiredoxin V expression. Anticancer Res. 2019; 39:6115–23. https://doi.org/10.21873/anticanceres.13819 PMID:31704839

89. Mendis AS, Thabrew I, Samarakoon SR, Tennekoon KH. Modulation of expression of heat shock proteins and apoptosis by flueggea leucopuruv (wil) decoction in three breast cancer phenotypes. BMC Complement Altern Med. 2015; 15:404. https://doi.org/10.1186/s12906-015-0927-6 PMID:26553005

90. Nourazarian SM, Nourazarian A, Majidinia M, Roshaniasl E. Effect of root extracts of medicinal herb glycyrhriza glabra on HSP90 gene expression and apoptosis in the HT-29 colon cancer cell line. Asian Pac J Cancer Prev. 2015; 16:8563–66. https://doi.org/10.7314/apjcp.2015.16.18.8563 PMID:26745117

91. Oliveras-Ferraros C, Fernández-Arroyo S, Vazquez-Martín A, Lozano-Sánchez J, Cufí S, Joven J, Micó V, Fernández-Gutiérrez A, Segura-Carretero A, Menendez JA. Crude phenolic extracts from extra virgin olive oil circumvent de novo breast cancer resistance to HER1/HER2-targeting drugs by inducing GADD45-sensed cellular stress, G2/M arrest and hyperacetylation of histone H3. Int J Oncol. 2011; 38:1533–47. https://doi.org/10.3892/ijo.2011.993 PMID:21455577

92. Srivastava NN, Shukla SK, Yashavardhan MH, Devi M, Tripathi RP, Gupta ML. Modification of radiation-induced DNA double strand break repair pathways by chemicals extracted from podophyllum hexandrum: an in vitro study in human blood leukocytes. Environ Mol Mutagen. 2014; 55:436–48. https://doi.org/10.1002/em.21853 PMID:24500925

93. Hayder N, Bouhlel I, Skandrani I, Kadri M, Steiman R, Guiraud P, Mariotte AM, Ghedira K, Dijoux-Franca MG, Chekir-Ghedira L. In vitro antioxidant and antigenotoxic potentials of myricetin-3-o-galactoside and myricetin-3-o-rhamnoside from myrtus communis: modulation of expression of genes involved in cell defence system using cDNA microarray. Toxicol In Vitro. 2008; 22:567–81. https://doi.org/10.1016/j.tiv.2007.11.015 PMID:18222061

94. Regan JC, Partridge L. Gender and longevity: why do men die earlier than women? comparative and experimental evidence. Best Pract Res Clin Endocrinol Metab. 2013; 27:467–79. https://doi.org/10.1016/j.beem.2013.05.016 PMID:24054925

95. Garratt M. Why do sexes differ in lifespan extension? Sex-specific pathways of aging and underlying mechanisms for dimorphic responses. Nutrition and Healthy Aging. 2020; 5: 247–59. https://doi.org/10.3233/NHA-190067

96. He Y, Jasper H. Studying aging in drosophila. Methods. 2014; 68:129–33. https://doi.org/10.1016/j.ymeth.2014.04.008 PMID:24751824

97. Xia B, de Belle JS. Transgenerational programming of longevity and reproduction by post-eclosion dietary manipulation in drosophila. Aging (Albany NY). 2016; 8:1115–34. https://doi.org/10.18632/aging.100932 PMID:27025190

98. Shaposhnikov MV, Zemskaya NV, Koval LA, Schegoleva EV, Zhavoronkov A, Moskalev AA. Effects of N-acetyl-L-cysteine on lifespan, locomotor activity and stress-resistance of 3 Drosophila species with different lifespans. Aging (Albany NY). 2018; 10:2428–58. https://doi.org/10.18632/aging.101561 PMID:30243020
99. Shaposhnikov MV, Zemskaya NV, Koval LA, Minnikhanova NR, Kechko OI, Mitkevich VA, Makarov AA, Moskalev AA. Amyloid-β peptides slightly affect lifespan or antimicrobial peptide gene expression in drosophila melanogaster. BMC Genet. 2020 (Suppl 1); 21:65. https://doi.org/10.1186/s12863-020-00866-y PMID:33092519

100. Moskalev A, Shaposhnikov M, Zemskaya N, Belyi A, Dobrovolskaya E, Patova A, Guvatova Z, Lukyanova E, Snezhkina A, Kudryavtseva A. Transcriptome analysis reveals mechanisms of geroprotective effects of fucoxanthin in drosophila. BMC Genomics. 2018 (Suppl 3); 19:77. https://doi.org/10.1186/s12864-018-4471-x PMID:29504896

101. Danilov A, Shaposhnikov M, Shevchenko O, Zemskaya N, Zhavoronkov A, Moskalev A. Influence of non-steroidal anti-inflammatory drugs on drosophila melanogaster longevity. Oncotarget. 2015; 6:19428–44. https://doi.org/10.18632/oncotarget.5118 PMID:26305987

102. Proshkina E, Lashmanova E, Dobrovolskaya E, Zemskaya N, Kudryavtseva A, Shaposhnikov M, Moskalev A. Geroprotective and radioprotective activity of quercetin, (-)-epicatechin, and ibuprofen in Drosophila melanogaster. Front Pharmacol. 2016; 7:505. https://doi.org/10.3389/fphar.2016.00505 PMID:28066251

103. Martins RR, McCracken AW, Simons MJ, Henriques CM, Rera M. How to catch a smurf? - ageing and beyond... In vivo assessment of intestinal permeability in multiple model organisms. Bio Protoc. 2018; 8:e2722. https://doi.org/10.21769/BioProtoc.2722 PMID:29457041
Supplementary Figure 1. The effect of WA treatment on the resistance of *Drosophila melanogaster* to the action of paraquat (oxidative stress) in male at the age of 1 to 8 weeks. Results of three independent repeats are combined. * p < 0.01, ** p < 0.001, *** p < 0.0001.
Supplementary Figure 2. The effect of WA treatment on the resistance of *Drosophila melanogaster* to the action of hyperthermia (heat shock) in male at the age of 1 to 8 weeks. Results of three independent repeats are combined. * p <0.01, ** p <0.001, *** p <0.0001.
Supplementary Figure 3. The effect of WA treatment on the resistance of *Drosophila melanogaster* to the action of paraquat (oxidative stress) in female at the age of 1 to 8 weeks. Results of three independent repeats are combined. * p <0.01, ** p <0.001, *** p <0.0001.
Supplementary Figure 4. The effect of WA treatment on the resistance of *Drosophila melanogaster* to the action of hyperthermia (heat shock) in female at the age of 1 to 8 weeks. Results of three independent repeats are combined. * p <0.01, ** p <0.001, *** p <0.0001.
Supplementary Table 1. Role of studied genes in determining the stress response.

Target gene	Characteristics	Effects
Catalase (*Cat*)	Enzymes catalyzes the decomposition of hydrogen peroxide in cells [1].	Is involved in response to photooxidative [2], endoplasmic reticulum [3], oxidative stresses [4] and to hydrogen peroxide stimulus [5]. Overexpression of human catalase, which targets mitochondria, increases life span in *Mus musculus* by about 20% [6].
frataxin (*fh*)	Protein essential for iron-sulfur clusters synthesis, which are necessary for the production of ATP by the respiratory chain, as well as in other biological processes such as steroidogenesis [7–9].	Is involve in response to oxidative stress [7], to hydrogen peroxide stimulus [10], to iron ion homeostasis [9] and to the hypoxia-induced response [11]. Overexpression of frataxin in mitochondria increases the antioxidant capacity, resistance to oxidative stress, and life span in *Drosophila melanogaster* females [12].
Growth arrest and DNA damage-inducible 45 (*Gadd45*)	Participates in the regulation of the cell cycle and oviposition; required to activate MAPKKK, JNK activity [8, 13].	Is involved in response to oxidative, thermal and genotoxic stresses [14, 15]. Overexpression of the *D-Gadd45* gene in the nervous system leads to a significant increase in the life span in *Drosophila melanogaster* [16].
Heat shock protein 68 (*Hsp68*)	Protein necessary for response to temperature or stressing cell stimuli [17].	Is involved to starvation stimulus [18]. Overexpression in somatic cells led to an increase in the average life span of *Drosophila melanogaster* by 20% [18, 19].
Heat shock protein 83 (*Hsp83*)	Protein necessary for response to temperature or stressing cell stimuli [17] orthologous to human HSP90 gene (https://www.ncbi.nlm.nih.gov/gene/38389).	Is involved in response to heat, oxidative stresses and ionizing radiation [20–22], also in regulation of circadian sleep/wake cycle [23].
Ku80 (*Ku80*)	Ku70/Ku80 heterodimer, or Ku, is the central component of the nonhomologous end joining (NHEJ) pathway of double strand break repair [24]. Orthologous to human XRCC5 gene (https://www.ncbi.nlm.nih.gov/gene/7520).	Is involved in gamma radiation and X-ray responses [8, 25]. Deletion of Ku80 leads to signs of premature aging such as osteopenia, atrophic skin, hepatocellular degeneration, and age-related mortality in *Mus musculus* [26]. Also, *Mus musculus* showed a decrease in life span by 40% [27].
Peroxiredoxin V (*PrxV*)	Encodes an atypical member of the thiol-specific peroxidase family, which form intramolecular disulfide bonds during the catalytic cycle [28].	Is involved in response to oxidative stress, cell redox homeostasis and hydrogen peroxide catabolic process [8, 29]. Overexpression of PrxV caused an increase in the average and median life span in *Drosophila melanogaster* under normal conditions. Against the dPrxV mutants (-/-) were more susceptible to oxidative stress, had a higher incidence of apoptosis, and a shorter average life span [30].
1. Chelikani P, Iota I, Loewen PC. Diversity of structures and properties among catalases. Cell Mol Life Sci. 2004; 61:192–208. https://doi.org/10.1007/s00018-003-3206-5 PMID: 14745498

2. Orlandi VT, Martegani E, Bolognese F. Catalase a is involved in the response to photooxidative stress in pseudomonas aeruginosa. Photodiagnosis Photodyn Ther. 2018; 22:233–40. https://doi.org/10.1016/j.pdpdt.2018.04.016 PMID: 29709605

3. Wang L, Zeng X, Ryoo HD, Jasper H. Integration of UPRER and oxidative stress signaling in the control of intestinal stem cell proliferation. PLoS Genet. 2014; 10:e1004568. https://doi.org/10.1371/journal.pgen.1004568 PMID: 25166757

4. Ershova OA, Bairova TA, Kolesnikov SI, Kalyuzhnaya OV, Darencka MA, Kolesnikova LI. Oxidative stress and catalase gene. Bull Exp Biol Med. 2016; 161:400–03. https://doi.org/10.1007/s10522-016-3424-0 PMID: 27496033

5. Sun J, Tower J. FLP recombinase-mediated induction of Cu/Zn-superoxide dismutase transgene expression can extend the life span of adult Drosophila melanogaster flies. Mol Cell Biol. 1999; 19:216–28. https://doi.org/10.1128/mcb.19.1.216 PMID: 9858546

6. Schriner SE, Linford NJ, Martin GM, Treuting P, Ogburn CE, Emond M, Coskun PE, Ladiges W, Wolf N, Van Remmen H, Wallace DC, Rabinovitch PS. Extension of murine life span by overexpression of catalase targeted to mitochondria. Science. 2005; 308:1909–11. https://doi.org/10.1126/science.1106653 PMID: 15879174

7. Navarro JA, Ohmann E, Sanchez D, Botella JA, Liebisch G, Moltó MD, Ganfornina MD, Schmitz G, Schneuwly S. Altered lipid metabolism in a Drosophila model of Friedreich’s ataxia. Hum Mol Genet. 2010; 19:2828–40. https://doi.org/10.1093/hmg/ddq183 PMID: 20460268

8. Gaudet P, Livstone MS, Lewis SE, Thomas PD. Phylogenetic-based propagation of functional annotations within the gene ontology consortium. Brief Bioinform. 2011; 12:449–62. https://doi.org/10.1093/bib/bbr042 PMID: 21873635

9. Navarro JA, Botella JA, Metzendorf C, Lind MI, Schneuwly S. Mitoferrin modulates iron toxicity in a Drosophila model of Friedreich’s ataxia. Free Radic Biol Med. 2015; 85:71–82. https://doi.org/10.1016/j.freeradbiomed.2015.03.014 PMID: 25841783

10. Anderson PR, Kirby K, Orr WC, Hilliker AJ, Phillips JP. Hydrogen peroxide scavenging rescues frataxin deficiency in a Drosophila model of Friedreich’s ataxia. Proc Natl Acad Sci USA. 2008; 105:611–16. https://doi.org/10.1073/pnas.0709691105 PMID: 18184803

11. Guccini I, Serio D, Condò I, Rufini A, Tomassini B, Mangiola A, Maira G, Anile C, Fina D, Pallone F, Mongiardi MP, Levi A, Ventura N, et al. Frataxin participates to the hypoxia-induced response in tumors. Cell Death Dis. 2011; 2:e123. https://doi.org/10.1038/cddis.2011.5 PMID: 21368894

12. Runko AP, Griswold AJ, Min KT. Overexpression of frataxin in the mitochondria increases resistance to oxidative stress and extends lifespan in drosophila. FEBS Lett. 2008; 582:715–19. https://doi.org/10.1016/j.febslet.2008.01.046 PMID: 18258192

13. Peretz G, Bakhrat A, Abdu U. Expression of the drosophila melanogaster GADD45 homolog (CG11086) affects egg asymmetric development that is mediated by the c-Jun N-terminal kinase pathway. Genetics. 2007; 177:691–702. https://doi.org/10.1534/genetics.107.079517 PMID: 18039880

14. Liebermann DA, Hoffman B. Gadd45 in the response of hematopoietic cells to genotoxic stress. Blood Cells Mol Dis. 2007; 39:329–35. https://doi.org/10.1016/j.bcmd.2007.06.006 PMID: 17659913

15. Moskalev A, Plyusnina E, Shaposhnikov M, Shilova L, Kazachenok A, Zhavoronok A. The role of D-GADD45 in oxidative, thermal and genotoxic stress resistance. Cell Cycle. 2012; 11:4222–41. https://doi.org/10.4161/cc.22545 PMID: 23095639

16. Plyusnina EN, Shaposhnikov MV, Moskalev AA. Increase of drosophila melanogaster lifespan due to D-GADD45 overexpression in the nervous system. Biogerontology. 2011; 12:211–26. https://doi.org/10.1007/s10522-010-9311-6 PMID: 21153055

17. De Maio A, Heat shock proteins: facts, thoughts, and dreams. Shock. 1999; 11:1–12. https://doi.org/10.1097/00024382-199901000-00001 PMID: 9921710

18. Biteau B, Karpac J, Supoyo S, Degennaro M, Lehmann R, Jasper H. Lifespan extension by preserving
proliferative homeostasis in drosophila. PLoS Genet. 2010; 6:e1001159. https://doi.org/10.1371/journal.pgen.1001159 PMID:20976250

19. Wang MC, Bohmann D, Jasper H. JNK signaling confers tolerance to oxidative stress and extends lifespan in drosophila. Dev Cell. 2003; 5:811–16. https://doi.org/10.1016/s1534-7607(03)00323-x PMID:14602080

20. Neal SJ, Karunanithi S, Best A, So AK, Tanguay RM, Atwood HL, Westwood JT. Thermoprotection of synaptic transmission in a drosophila heat shock factor mutant is accompanied by increased expression of Hsp83 and DnaJ-1. Physiol Genomics. 2006; 25:493–501. https://doi.org/10.1152/physiolgenomics.00195.2005 PMID:16595740

21. Landis G, Shen J, Tower J. Gene expression changes in response to aging compared to heat stress, oxidative stress and ionizing radiation in drosophila melanogaster. Aging (Albany NY). 2012; 4:768–89. https://doi.org/10.18632/aging.100499 PMID:23211361

22. Singh MP, Reddy MM, Mathur N, Saxena DK, Chowdhuri DK. Induction of hsp70, hsp60, hsp83 and hsp26 and oxidative stress markers in benzene, toluene and xylene exposed Drosophila melanogaster: role of ROS generation. Toxicol Appl Pharmacol. 2009; 235:226–43. https://doi.org/10.1016/j.taap.2008.12.002 PMID:19118569

23. Shaw PJ, Franken P. Perchance to dream: solving the mystery of sleep through genetic analysis. J Neurobiol. 2003; 54:179–202. https://doi.org/10.1002/neu.10167 PMID:12486704

24. Postow L, Ghenoiu C, Woo EM, Krutchinsky AN, Chait BT, Funabiki H. Ku80 removal from DNA through double strand break-induced ubiquitylation. J Cell Biol. 2008; 182:467–79. https://doi.org/10.1083/jcb.200802146 PMID:18678709

25. Zhang C, Hong Z, Ma W, Ma D, Qian Y, Xie W, Tie F, Fang M. Drosophila UTX coordinates with p53 to regulate ku80 expression in response to DNA damage. PLoS One. 2013; 8:e78652. https://doi.org/10.1371/journal.pone.0078652 PMID:24265704

26. Vogel H, Lim DS, Karsenty G, Finegold M, Hasty P. Deletion of Ku86 causes early onset of senescence in mice. Proc Natl Acad Sci USA. 1999; 96:10770–75. https://doi.org/10.1073/pnas.96.19.10770 PMID:10485901

27. Holcomb VB, Rodier F, Choi Y, Busuttil RA, Vogel H, Vijg J, Campisi J, Hasty P. Ku80 deletion suppresses spontaneous tumors and induces a p53-mediated DNA damage response. Cancer Res. 2008; 68:9497–502. https://doi.org/10.1158/0008-5472.CAN-08-2085 PMID:19010925

28. Knoops B, Goemaere J, Van der Eecken V, Declercq JP. Peroxiredoxin 5: structure, mechanism, and function of the mammalian atypical 2-Cys peroxiredoxin. Antioxid Redox Signal. 2011; 15:817–29. https://doi.org/10.1089/ars.2010.3584 PMID:20977338

29. Poole LB, Hall A, Nelson KJ. Overview of peroxiredoxins in oxidant defense and redox regulation. Curr Protoc Toxicol. 2011; Unit7.9. https://doi.org/10.1002/0471140856.tb070s49 PMID:21818754

30. Radyuk SN, Michalak K, Klichko VI, Benes J, Rebrin I, Sohal RS, Orr WC. Peroxiredoxin 5 confers protection against oxidative stress and apoptosis and also promotes longevity in drosophila. Biochem J. 2009; 419:437–45. https://doi.org/10.1042/BJ20082003 PMID:19128239