Metallothionein 2A gene polymorphisms in relation to diseases and trace element levels in humans

Ankica Sekovanić, Jasna Jurasović, and Martina Piasek

Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia

[Received in October 2019; Similarity Check in October 2019; Accepted in March 2020]

Human metallothioneins are a superfamily of low molecular weight intracellular proteins, whose synthesis can be induced by essential elements (primarily Zn and Cu), toxic elements and chemical agents, and stress-producing conditions. Of the four known isoforms in the human body MT2 is the most common. The expression of metallothioneins is encoded by a multigene family of linked genes and can be influenced by single nucleotide polymorphisms (SNPs) in these genes. To date, 24 SNPs in the MT2A gene have been identified with the incidence of about 1% in various population groups, and three of them were shown to affect physiological and pathophysiological processes. This review summarises current knowledge about these three SNPs in the MT2A gene and their associations with element concentrations in the body of healthy and diseased persons. The most investigated SNP is rs28366003 (MT2A −5 A/G). Reports associate it with longevity, cancer (breast, prostate, laryngeal, and in paranasal sinuses), and chronic renal disease. The second most investigated SNP, rs10636 (MT2A +838G/C), is associated with breast cancer, cardiovascular disease, and type 2 diabetes. Both are also associated with several metal/metalloid concentrations in the organism. The third SNP, rs1610216 (MT2A −209A/G), has been studied for association with type 2 diabetes, cardiomyopathy, hyperglycaemia, and Zn concentrations. Metallothionein concentrations and MT2A polymorphisms have a potential to be used as biomarkers of metal exposure and clinical markers of a number of chronic diseases. This potential needs to be studied and verified in a large number of well-defined groups of participants (several hundreds and thousands) with a focus on particular physiological or pathological condition and taking into consideration other contributing factors, such as environmental exposure and individual genetic and epigenetic makeup.

KEY WORDS: metals and metalloids; rs28366003; rs10636; rs1610216; single nucleotide polymorphism

Pollution has been recognised as a major global health threat. Although exposure to various pollutants, including toxic metals or mixtures of environmental stressors is widespread, the development of diseases caused by direct environmental exposure is, luckily, limited. Whether the disease develops will depend on the causative agent, exposure levels and duration, the period of life when exposure occurs, age, and sex. Other factors that may contribute to the development and progression of a disease include other condition or disease, dietary habits, physical activity, medications taken, and variation in genetic susceptibility (1–3).

In the course of our continuing study of the exposure, health risks, and effects of the main toxic and essential elements lead (Pb), cadmium (Cd), mercury (Hg), arsenic (As), zinc (Zn), copper (Cu), iron (Fe), and selenium (Se), we recently came across increasing evidence of a link between the levels of these elements in the body of healthy and diseased persons and specific gene polymorphisms of metallothioneins (MTs). This motivated us to prepare an overview of the relationships between element levels and three most studied single nucleotide polymorphisms (SNPs) of the MT2A gene, namely rs28366003, rs1610216, and rs10636. For the purpose of this review, we searched PubMed database for articles indexed until the end of 2019 using this keyword combination: metallothionein AND polymorphism AND human. The query yielded 113 matches, and the first article on specific MT2A polymorphism was from 2005. We excluded 13 review articles, two letters to the editor, and 62 articles dealing with SNPs other than MT2A. This review has no intention whatsoever to present these gene polymorphisms as either the main or only contributing factors to element levels in the human body or to the development of chronic diseases, including malignancies, nor does it go into detail of the reported studies. Instead we compare their findings in a series of tables and comment on the relationships between rs28366003 and toxic metal levels in the human body only where we compare them with our own findings (4).

BIOLOGICAL SIGNIFICANCE OF METALLOTHIONEINS

Metallothioneins are a superfamily of cysteine-rich, intracellular, metal-binding proteins present in plants, vertebrates, invertebrates, eukaryotes, and prokaryotes.
Historically, the discovery of MTs has closely been related to the study of Cd. The earliest work in this area was reported in 1941 by Maliuga, whereas the data on Cd-binding protein isolated from equine renal cortex, later named metallothionein, were first reported by Margoshes and Vallee in 1957 (reviewed in 5–9). Since then, MT has been of great interest in many scientific disciplines, including toxicology, biological and physical chemistry, molecular biology, and various clinical and cancer studies with about 10,000 published papers (7–9). The characteristics of MTs are low molecular mass of 6–7 kDa, high cysteine content (about 30 %), no aromatic amino acid, and high binding affinity for metals, particularly for Zn, Cu, and Cd. The amounts and ratios of metals bound by the thiol (–SH, mercaptide) group will depend on the tissue; human liver MTs mostly contain Zn and small amounts of Cu, while renal cortex MTs mostly contain Cd, then Zn, and then Cu (reviewed in 5, 8–12).

In mammals, including humans, there are four main groups of MTs with different sequences, expression, and characteristics: MT1, MT2, MT3, and MT4. Isoforms MT1 and MT2 are expressed in almost all tissues. MT3 is expressed mainly in the brain, and to a lesser extent in the heart, kidneys, and reproductive organs (reviewed in 8–10, 13–15). MT4 is expressed in the epithelial cells of the skin and mucosa (16). MT molecules are single-chain polypeptides, which contain 61 to 68 amino acids, and 20 of them are cysteine, ordered in the sequences Cys–Cys, Cys–x–Cys, and Cys–x–y–Cys (x and y are amino acid which are not cysteine) (8–10, 17). Cysteine sulphur atoms are responsible for binding divalent metals in two clusters of MTs, connected with a sequence which does not contain cysteine. Amino acids 1 to 30 form a stable α-cluster (C-terminal) with four metal binding sites, whereas amino acids 31 to 68 form a reactive β-cluster (N-terminal) with three binding sites for divalent metals ions. Therefore, each MT molecule can bind up to seven divalent ions of Zn, Cd, Hg, and Pb, 12 of Cu, and 18 of Ag. Four metal ions first fill the α-cluster, and remaining three ions enter the β-cluster. Metals bound to the β-cluster are released more easily than metals bound to the α-cluster (8, 10, 13, 15, 18). The order of metal-binding affinities was tested by in vitro studies on rat liver in the 1980s and the reports are not uniform: 
\[ \text{Cd} > \text{P} > \text{Cu} > \text{Hg} > \text{Zn} > \text{Ag} > \text{Ni} > \text{Co} \ (19), \]
\[ \text{Hg} > \text{Cu} > \text{Cd} > \text{Zn} > \text{Ni} > \text{Co} \ (20), \]
\[ \text{Hg} > \text{Ag} > \text{Cu} > \text{Cd} > \text{Zn} \ (21). \]
Many metals have the affinity for MT but only Cu²⁺, Cd²⁺, Pb²⁺, Ag⁺, Hg²⁺, and Bi³⁺ can displace Zn²⁺ in MT, which was confirmed in the horse kidney in vitro (22) and in the rat liver in vivo studies (23). Exchanges between Zn and Cd happen rapidly in the β-cluster, contrary to their slow exchange in the α-cluster. Zinc readily dissociates from MT to make itself available for different biological functions and to stimulate further MT synthesis. Metallothioneins serve as metal ion donors to other ligands or proteins (reviewed in 13, 24, 25). Their degradation depends on metals bound, their distribution in MT molecules, and the medium. Acidic media are known to speed up metal dissociation from MTs. MTs completely saturated with metals are more resistant to degradation by lysosomal proteases than unsaturated MTs or apotithioneins (apo-MTs, that is MTs free of metals). In neutral media, MTs saturated with metals are less resistant to degradation than apo-MTs (25–28).

The synthesis of MTs is induced by numerous factors such as metals and metalloids, various chemical agents, including acetaminophen (paracetamol), cytokines, and many other stress-producing conditions, including oxidative stress, infection and inflammation. The peculiar chemical structure of MTs gives them their molecular stability and specificity and defines their role in various physiological and pathological conditions (8–11, 29–33). Their main biological function is to maintain the homeostasis of essential metals Zn and Cu (reviewed in 12). Studies conducted in vitro showed reactivation of apo-enzymes in which Zn or Cu were cofactors (alkaline phosphatase, superoxide dismutase and others) after incubation with Zn-MT or Cu-MT. The mechanism of Zn donation from MT to apo-enzyme is still unknown, but it is assumed that MT binds to an MT-releasing factor, which displaces Zn and makes it available to enzymes (8, 14). It has been shown that MTs participate in Zn regulation by intestinal absorption and excretion. When Zn intake is high, MTs may have a crucial role in restricting its absorption by storing it in the enterocytes and enabling its transfer back to the gut lumen, as confirmed by studies on knockout and transgenic mice (34–39). The induction of intestinal MT by Zn and its interaction with Cu is used in the therapy of patients with Wilson’s disease with Zn acetate, a US Food and Drug Administration-approved drug. Wilson’s disease is a rare autosomal recessive inherited disorder of Cu metabolism characterised by the accumulation of excessive amounts of Cu in the liver, brain, and eyes. The mechanism of Zn action as an anti-copper agent involves inhibition of both Cu absorption from the gastrointestinal tract and its transfer into the circulation by capturing the Cu-MT complex in the mucosal cell and its ultimate faecal excretion (40, 41).

Metallothioneins have multiple roles. Besides its main function to keep essential elements in balance, they protect the body against free radicals and toxic effects of metal ions (reviewed in 8–10, 13, 24, 42–46). High levels of MTs can be found in foetal and neonatal liver, but these drop to the levels found in adults during the postnatal period. Increased liver MT levels during prenatal period in all mammalian species are believed to protect against potentially toxic Zn and Cu ions before the intestinal control mechanisms develop (46–49). Another important role of MTs is to protect against oxidative stress caused by various environmental stressors, including toxic metals. Experimental studies showed lower acute hepatotoxicity of Cd due to induced MT synthesis and high Cd binding to cytosolic MT, which reduces exposure of target organelles to Cd (reviewed in 32). Studies conducted on knock out
mice showed that those without MT expression were more sensitive to Cd toxicity than control mice. The protective effects of MTs are generally clear against acute metal toxicity and carcinogenicity but not as much against chronic metal toxicity, to be addressed later in the text (8, 50–52). In general, large amounts of –SH groups in MT molecule enable reaction with numerous electrophilic chemicals, as they catch free radicals such as hydroxyl, superoxide or nitric oxide radicals produced during metabolism of xenobiotics (33, 53, 54–57).

Other important roles of MTs involve cell survival, inhibition of apoptosis, angiogenesis and vascular remodelling, and immunomodulation. Studies on human umbilical vascular endothelial cells (HUVECs) have shown that a homedomain protein HMBOX1, which acts as a transcription factor and is abundantly expressed in the cytoplasm of the endothelial cells, maintains cell survival by promoting autophagy and inhibiting apoptosis by interaction with MT2, which increases intracellular free Zn (58). This role of MTs in vascular remodelling is important in the development of atherosclerosis and malignant tumours. Furthermore, MTs seem to inhibit pro-inflammatory cytokines, such as interleukins IL-6 and IL-12 and tumour necrosis factor TNF-α, and can therefore suppress inflammation (59). Investigations on MT-null mice showed higher susceptibility to the hepatotoxic effects of the anti-inflammatory drug paracetamol (acetaminophen), which points to the protective role of MTs against chemically induced hepatotoxicity (60, 61). The protective antioxidant role of MTs against radiation-mediated immunosuppression and cell damage was confirmed in experiments on MT-null mice (62, 63).

REGULATION OF METALLOTHIONEIN SYNTHESIS AND MT2A POLYMORPHISMS

Synthesis of MTs in humans is encoded by a cluster of genes located in the q13 locus of chromosome 16 (16q13). Until now, 17 genes have been identified in this cluster, and at least 11 of them are functional; eight among MT1 isoforms (MT1A, MT1B, MT1E, MT1F, MT1G, MT1H, MT1M/MT1K, and MT1X), and the other three have only one functional gene (MT2A, MT3, and MT4) (reviewed in 8–12, 15, 45, 64–67). The genes consist of two to three exons and one to two introns. Elements that control MT transcription can be divided in basal and inducible. The basal elements of gene sequence are the TATA-box, GC-box, and at least two basal level enhancer (BLE) sequences. The promoter region of the MT1 and MT2 genes involve inducible elements that consist of different types of responsive elements: metal response elements (MREs), glucocorticoid response elements (GREs), and antioxidant response elements (AREs). The most investigated mechanism of MT gene transcription by metal ions is via several MREs located in 5’ untranslated region (UTR) of the gene (67–69). Early studies showed that metal transcription factor 1 (MTF-1) binds to MREs in the promoter regions of MT genes via Zn finger transcription (Cys2-His2) factor controlling the expression of the MT1 and MT2 genes. Besides Zn, MTF-1 can be activated by reactive oxygen species, tyrosine-specific protein kinase, protein kinase C, and c-Jun N-terminal kinase (68–72).

Metal ions other than Zn can induce MT synthesis by mechanisms different than the one described above. Toxic metals cannot activate MTF-1 and, due to high binding affinity for MT, they replace Zn ions in MT molecules and thus increase intracellular Zn levels (reviewed in 13–15, 24). Free Zn then stimulates further synthesis of MT by binding to MTF-1, which then binds to MRE and ultimately has impact on metal toxicity. In other words, under conditions of acute exposure to high doses of toxic metals such as Cd or Hg, higher MT expression may reduce their toxicity. However, in chronic exposure to either of the toxic metals (Cd or Hg), increased MT synthesis leads to prolonged retention of that metal in the body, which increases the risk of toxic effects. In addition, increased MT may capture essential elements in internal organs, primarily Zn in the liver, making them less available for their physiological roles such as transfer to the developing foetus through placenta during pregnancy (reviewed in 8, 73).

Metallothionein expression can be induced by oxidative stress when generated hydrogen peroxide (H$_2$O$_2$) radicals oxidise MT, and Zn is released, which then activates MTF-1 (64). Glucocorticoids also regulate MT transcription by binding to their response elements (GREs) in the promoter region of the MT genes (74). MT expression can be also induced also by tissue hypoxia (75), catecholamines (76), or hypothermia (77).

Single nucleotide polymorphisms (SNPs) are genetic variations characterised by the replacement of one nucleotide with another in a certain stretch of DNA, which occurs in at least 1 % of the population and differs between population groups. Given their location, SNPs can either be in the coding or non-coding gene region. Those in the coding region may affect amino acid arrangement or influence protein kinetics, mRNA structure, and stability, while SNPs in the promoter region or other regulatory gene regions affect protein production (reviewed in 67, 78). According to the National Center for Biotechnology Information (NCBI) database on polymorphism, dbSNP (79), 24 polymorphisms in the MT2A gene have been identified in humans, three of which may affect physiological and pathophysiological processes. The most studied SNP in MT2A was rs28366003 (−5A/G), followed by rs10636 (+838G/C), whereas rs1610216 (−209A/G) has been the least investigated. Only Starska et al. (80, 81) and Krześlak et al. (82) studied all three MT2A SNPs and their associations with several malignant tumours in a Polish population.

Below we describe these and other information about MT2A polymorphisms with the focus on reported relationships with trace elements. We set up three sets of
interrelated tables, in which we present the following groups of data for each SNP: 1) literature data on the related genotype frequencies; 2) reported associations with human diseases; and 3) reported associations with element concentrations in humans. Of the 36 selected references, 21 deal with relationships with elements (in healthy and diseased persons), 13 with diseases only, and two with genotype frequencies only.

**MT2A polymorphism rs28366003**

The rs28366003 (MT2A -5A/G) SNP is an A/G substitution that occurs in the core promoter region of the MT2A gene between the TATA box and the site where the transcription begins. As it occurs near 5' UTR, it can affect MT transcription through reduced MTF-1 binding on MRE (reviewed in 11, 67). A study on human embryonic kidney cells 293 (HEK 293) showed that substitution of the A allele with the G allele near 5'UTR reduced Cd-induced transcription. Reduced MT transcription can therefore affect element concentrations in the body and adversely affect health (46, 83).

Studies of the rs28366003 SNP were mostly conducted in Turkish and Polish populations, but several were also done in Japan and the United States, China, Thailand, Spain, and Croatia. Table 1 shows the frequencies of AA, AG, and GG genotypes reported in these studies. According to the literature data, the frequency of the AA genotype ranges from 84.0 % to 95.5 % in healthy Polish (80–82, 84–88), 86.0 % to 90.4 % in Turkish (89–94), and about 82 % in Japanese population (95, 96). The highest frequencies were found in a healthy Spanish population (97.9 %) (97), US black women (97.9 %) (98), Croatian women (93–94.0 %) (4, 99), and a healthy Chinese population (92.5 %) (100). The lowest frequency of 57.8 % and 53.4 % was found in healthy Iranian and Columbian populations, respectively (101, 102). The frequency of the AG ranged from 2.1 % in healthy Spanish population (97) and black US women (98) to 37.8 % and 43.6 % in Iranian and Columbian population, respectively (101, 102). We conducted the first study of that kind in Croatia and found that nearly 6 % of the healthy postpartum women were G allele carriers (4). Several authors reported higher percentages of G allele carriers in case study groups than controls (80, 84, 97, 100), and others reported no differences (88, 96). Higher frequency of AG genotype was reported among white (12.8 %) than black (2.1 %) women in the USA (98).

Table 2 summarises associations between the rs28366003 SNP and various clinical entities reported in literature. The associations were found for different types of cancers in the breast, prostate, paranasal sinus, larynx and stomach (31, 80–82, 84–87, 100, 101) and chronic diseases, such as type 2 diabetes mellitus, chronic kidney disease (95), and neovascular and dry forms of age-related macular degeneration (97). Several studies reported no association between rs28366003 SNP and prostate cancer (88), type 2 diabetes mellitus (103), or sporadic amyotrophic lateral sclerosis (96).

Table 3 summarises association between rs28366003 SNP and element levels in various healthy population groups or subjects with defined disease. These findings are controversial, as a number of studies found correlations with element concentrations in the human organism (84–86, 89–91, 104) and others did not (95, 99, 102, 105, 106).

In our recent study in healthy Croatian postpartum women (4) we found no significant association between rs28366003 and either Cd or Pb concentrations in the placenta and maternal and cord blood, although stepwise multiple regression analysis showed marginal contribution of this SNP to higher placental Cd and Pb, maternal Pb, and cord blood Cd concentrations. We did find lower placental Fe in non-smoking G allele carriers (persons with AG and GG genotype) than non-smoking persons with the wild AA genotype, which surprised us at first, as Fe-MT binding has mostly been underestimated in literature (reviewed in 107). This result can be at least partly explained by the links between MT and Fe. Conditions of an acidic lysosomal-like environment created in vitro can stimulate MT release of Zn or Cu, which increases MT expression and facilitates Fe-MT binding (108). Through this mechanism, MT may protect from lysosomal destabilisation due to Fe overload-induced oxidative stress (reviewed in 109). In contrast to our study in Croatian population (n=268), studies in Turkish population (89, 90) reported higher Cd (n=95) and Pb (n=91) concentrations in maternal blood, higher Fe in the umbilical cord blood, lower Cd in the placenta, and no difference in placental Fe concentrations in non-smoking G allele carriers vs. persons with the wild AA genotype. However, those studies report an odd discrepancy between high blood and low placental Cd levels. Blood Cd was much higher than reported earlier in non-smoking Turkish population (110) and placental Cd was at the lower end of the scale of the overall placental Cd levels ever measured and reported in literature between 1976 and 2011 (111). These findings point to an unidentified source of Cd and/or analytical error, which may have blurred the association between rs28366003 and metal concentrations. Since studies on the association between this SNP and toxic and essential elements in mother-newborn pairs are inconsistent, further research is needed with a large number of subjects (after either spontaneous delivery or Caesarean section) with defined sources of exposure to toxic metals, including cigarette smoking and dietary habits, as they all may overcome the influence on element levels of this or the other two discussed MT2A SNPs , which, as a rule, have low genotype frequency at the population level. Table 3 shows that population studies of the association between rs28366003 and element levels to date have included between 100 and 700 participants. The only exception is the Japanese study (95), which included >2700 participants. More such studies with large population samples are needed.
Table 1 Genotype frequencies of the rs28366003 (MT2A−5A/G) single nucleotide polymorphism in humans

| Authors and year of publication (reference No.) | Ethnicity | n | Study participants | Genotype frequencies (%) |
|-----------------------------------------------|----------|---|---------------------|-------------------------|
| Stajnko et al., 2019 (99)                      | Croatian | 136 | Pregnant women       | AA: 93.0\(^{a}\), AG: 7.0\(^{a}\) |
|                                               | Slovenian | 176 | Non-pregnant women   | AA: 95.0\(^{a}\), AG: 5.0\(^{a}\) |
| Shokrzadeh et al., 2019 (101)                  | Iranian  | 95  | Men and women with gastric cancer | AA: 46.4, AG: 41.0, GG: 12.6 |
|                                               |          | 90  | Control healthy men and women | AA: 57.8, AG: 37.8, GG: 4.4 |
| Sekovanić et al., 2018 (4)                     | Croatian | 268 | Mother-newborn pairs | AA: 94.0, AG: 6.0\(^{a}\) |
| González-Martínez et al., 2018 (102)           | Croatian | 101 | Men and women        | AA: 53.4, AG: 43.6, GG: 3.0 |
| Białkowska et al., 2018 (88)                   | Polish   | 197 | Men with prostate cancer | AA: 90.9, AG: 9.1\(^{b}\) |
|                                               |          | 197 | Control men without prostate cancer | AA: 89.3, AG: 10.7\(^{b}\) |
| Yang et al., 2017 (105)                        | Thai     | 677 | Men and women        | AA: 79.5, AG: 20.5, GG: 0.0 |
| Liu et al., 2017 (100)                         | Chinese  | 459 | Women with breast cancer (various types) | AA: 82.3, AG: 15.3, GG: 2.4 |
| García et al., 2017 (97)                       | Spanish  | 130 | Men and women with AMD | AA: 88.5, AG: 11.5, GG: 0.0 |
|                                               |          | 96  | Control healthy men and women | AA: 97.9, AG: 2.1, GG: 0.0 |
| Raudenska et al., 2017 (103)                   | Czech    | 70  | Men and women with type 2 diabetes mellitus | AA: 88.6, AG: 8.6, GG: 0.0 |
|                                               |          | 80  | Control healthy men and women | AA: 86.3, AG: 13.7, GG: 0.0 |
| Hattori et al., 2016 (95)                      | Japanese | 2774| Men and women       | AA: 81.8, AG: 17.4, GG: 0.8 |
| Adams et al., 2015 (104)                       | US       | 170 | Premenopausal women  | AA: 88.0, AG: 12.0, GG: 0.0 |
|                                               |          | 151 | Men and women       | AA: 84.0, AG: 15.0, GG: 1.0 |
| Starska et al., 2015 (80)                      | Polish   | 130 | Men and women with SIP | AA: 75.4, AG: 23.8, GG: 0.8 |
|                                               |          | 418 | Control men and women without head or neck tumour | AA: 95.5, AG: 4.1, GG: 0.0 |
| Starska et al., 2015 (84)                      | Polish   | 117 | Men and women with SIP | AA: 76.1, AG: 23.1, GG: 0.8 |
|                                               |          | 132 | Control men and women with normal sinonasal mucosa | AA: 87.9, AG: 12.1, GG: 0.0 |
| Starska et al., 2014 (85)                      | Polish   | 323 | Men and women with SCC | AA: 89.2, AG: 9.9, GG: 0.9 |
|                                               |          | 116 | Control men and women with normal laryngeal mucosa | AA: 84.5, AG: 14.6, GG: 0.9 |
| Starska et al., 2014 (81)                      | Polish   | 323 | Men and women with laryngeal cancer | AA: 89.2, AG: 9.9, GG: 0.9 |
|                                               |          | 418 | Control healthy men and women | AA: 84.0, AG: 16.0, GG: 0.0 |
| Krześlak et al., 2014 (82)                     | Polish   | 534 | Women with ductal breast cancer | AA: 87.1, AG: 12.3, GG: 0.6 |
|                                               |          | 556 | Control healthy women | AA: 92.8, AG: 7.2, GG: 0.0 |
| Krześlak et al., 2013 (86)                     | Polish   | 412 | Men with prostate cancer | AA: 76.0, AG: 21.1, GG: 2.9 |
|                                               |          | 67  | Control men without prostate cancer | AA: 88.0, AG: 12.0, GG: 0.0 |
| Wang et al., 2012 (106)                        | US       | 239 | Men and women       | AA: 89.1, AG: 10.1, GG: 0.8 |
| Forma et al., 2012 (87)                        | Polish   | 358 | Men with prostate cancer | AA: 76.8, AG: 20.9, GG: 2.3 |
|                                               |          | 406 | Control men without prostate cancer | AA: 88.9, AG: 10.6, GG: 0.5 |
| Tekin et al., 2012 (89)                        | Turkish  | 95  | Mother-newborn pairs | AA: 87.4, AG: 12.6, GG: 0.0 |
| Tekin et al., 2012 (90)                        | Turkish  | 91  | Mother-newborn pairs | AA: 86.8, AG: 13.2, GG: 0.0 |
| Kayaaltı et al., 2011 (91)                     | Turkish  | 616 | Men and women       | AA: 86.6, AG: 12.8, GG: 0.6 |
| Kayaaltı et al., 2011 (92)                     | Turkish  | 354 | Men and women       | AA: 90.4, AG: 9.0, GG: 0.6 |
| McElroy et al., 2010 (98)                      | US       | 142 | Black women         | AA: 97.9, AG: 2.1, GG: 0.0 |
|                                               |          | 149 | White women         | AA: 87.3, AG: 12.8, GG: 0.0 |
| Kayaaltı et al., 2010 (93)                     | Turkish  | 122 | Men and women (kidney samples) | AA: 88.5, AG: 10.7, GG: 0.8 |
|                                               |          | 186 | Men and women (blood samples) | AA: 86.0, AG: 13.4, GG: 0.6 |
| Kayaaltı et al., 2010 (94)                     | Turkish  | 114 | Men and women       | AA: 87.7, AG: 11.4, GG: 0.9 |
| Hayashi et al., 2006 (96)                      | Japanese | 37  | Patients with SALS  | AA: 75.7, AG: 24.3, GG: 0.0 |
|                                               |          | 206 | Control healthy men and women | AA: 82.5, AG: 17.0, GG: 0.5 |

n – sample size; AA – typical homozygote; AG – heterozygote; GG – atypical homozygote; AMD – age-related macular degeneration; SIP – sinonasal inverted papilloma (Schneiderian papilloma); SCC – squamous cell laryngeal carcinoma; SALS – sporadic amyotrophic lateral sclerosis; \(^a\)A allele frequency; \(^b\)G allele frequency; \(^c\)G allele carriers (AG plus GG genotype)
Table 2 Association between the rs28366003 (MT2A−5A/G) single nucleotide polymorphism and human diseases

| Authors and year of publication (reference No.) | Ethnicity | n   | Study participants                                   | Sample type | Findings                                                                 |
|-----------------------------------------------|-----------|-----|-------------------------------------------------------|-------------|--------------------------------------------------------------------------|
|  |
| Shokrzadeh et al., 2019 (101)                 | Iranian   | 95  | Men and women with gastric cancer                     | Leukocytes  | SNP MT2A −5A/G increase the risk of gastric adenocarcinoma               |
|  |
| Białkowska et al., 2018 (88)                  | Polish    | 197 | Men with prostate cancer                               | Whole blood  | No association was found between SNP MT2A −5A/G and prostate cancer      |
|  |
| Liu et al., 2017 (100)                        | Chinese   | 459 | Women with breast cancer                               | Whole blood  | SNP MT2A −5A/G was associated with different types of breast cancer      |
|  |
| García et al., 2017 (97)                      | Spanish   | 130 | Men and women with AMD                                 | Whole blood  | AG genotype subjects had 5.5-fold higher risk for AMD; G allele was associated with dry form of AMD |
|  |
| Raudenska et al., 2017 (103)                  | Czech     | 70  | Men and women with type 2 diabetes mellitus           | Whole blood  | No association was found between SNP MT2A −5A/G and type 2 diabetes mellitus |
|  |
| Hattori et al., 2016 (95)                     | Japanese  | 165 | Men and women with DM                                  | Serum        | GG genotype associated with CKD and AG genotype with DM; no association of MT2A −5A/G and HT |
|  |
| Starska et al., 2015 (80)                     | Polish    | 130 | Men and women with SIP                                 | Tissue of nasal cavities or paranasal sinuses | SNP MT2A −5A/G was related to SIP (Schneiderian papilloma); G allele increased 7.7-fold occurrence of SIP (Schneiderian papilloma); SNP MT2A −5A/G was associated with SLP phenotype |
|  |
| Starska et al., 2015 (84)                     | Polish    | 418 | Control men and women without head or neck tumour     | Tissue of nasal cavities or paranasal sinuses | Heterozygotes vs. homozygotes had increased risk of SLP                   |
|  |
| Starska et al., 2014 (81)                     | Polish    | 323 | Men and women with laryngeal cancer                   | Whole blood  | AG genotype subjects had 1.6-fold higher risk for laryngeal cancer development; Association between SNP MT2A −5A/G and tumour aggressiveness |
|  |
| Krześlak et al., 2014 (82)                    | Polish    | 534 | Women with ductal breast cancer                       | Whole blood  | SNP MT2A −5A/G was associated with ductal breast cancer                  |
|  |
| Krześlak et al., 2013 (86)                    | Polish    | 412 | Men with prostate cancer                               | Prostate tissue | AG genotype had higher risk for occurrence of prostate cancer            |
|  |
| Forma et al., 2012 (87)                       | Polish    | 358 | Men with prostate cancer                               | Prostate tissue | SNP MT2A −5A/G was associated with prostate cancer and Gleason score    |
|  |
| Kayaalty et al., 2011 (92)                    | Turkish   | 354 | Healthy men and women                                  | Whole blood  | SNP MT2A −5A/G was associated with longevity                           |
|  |
| Hayashi et al., 2006 (96)                     | Japanese  | 37  | Patients with SALS                                     | Whole blood  | No association between SNP MT2A −5A/G and SALS and progression rate     |

n – sample size; AG – heterozygote; GG – homozygote-atypical; MT2A – metallothionein 2A; AMD – age-related macular degeneration; CKD – chronic kidney disease; DM – diabetes mellitus; HT – hypertension; SIP – sinonasal inverted papilloma (Schneiderian papilloma); SALS – sporadic amyotrophic lateral sclerosis
| Authors and year of publication (reference No.) | Ethnicity | n | Study participants | Sample type | MT2A genotype | Findings |
|-----------------------------------------------|-----------|---|-------------------|-------------|---------------|----------|
| Authors and year of publication (reference No.) |           |   |                   |             | AA | AG | GG | As concentrations (µg/g creatine) |                       |
|Stajnko et al., 2019 (99) | Croatian | 136 | Pregnant women | Urine | 3.07* | 4.58* | No differences between genotypes |
|González-Martínez, et al., 2018 (102) | Colombian | 101 | Men and women | Urine | (Not available) | |
|Sekovanić et al., 2018 (4) | Croatian | 268 | Mother-newborn pairs | Maternal blood | 0.87±0.99* | 0.73±0.60* | No difference in either sample between genotypes |
|                    | | | | Cord blood | 0.06±0.03* | 0.05±0.03* |                       |
|                    | | | | Placenta | 10.1±5.1 | 8.80±3.70 |                       |
|Adams et al., 2015 (104) | US | 321 | Men and women | Serum (Graphical illustration: Cd ≥ 0.001*) | No association between As and SNP MT2A −5A/G |
|Hattori et al., 2016 (95) | Japanese | 2774 | Men and women | Serum (Graphical illustration) | ↓Cd in urine of G allele carriers |
|Starska et al., 2015 (84) | Polish | 117 | Men and women with SIP | Tissue of nasal cavities or paranasal sinuses (dry) | 116±79 | 376±126 | No differences between genotypes |
|Starska et al., 2014 (85) | Polish | 323 | Men and women with SCC | Tissue of laryngeal mucosa (dry) | 198±87 | 369±128 | 509±57 |
|Krzesłak et al., 2013 (86) | Polish | 412 | Men with prostate cancer | Prostate tissue (dry) | 720±330 | 970±460 | 1090±220 |
|Tekin et al., 2012 (89) | Turkish | 95 | Mother-newborn pairs | Maternal blood | 1.60±0.94* | 2.54±2.72* | No association between Cd and SNP MT2A −5A/G |
|Kayaalti et al., 2011 (91) | Turkish | 616 | Men and women | Whole blood | 1.60±1.44* | 2.09±1.85* | G allele carriers ↑Cd |
|Kayaalti et al., 2010 (94) | Turkish | 114 | Men and women | Kidney samples (dry) | 87.7±62.9† | 151±60† | 153† |
|Sekovanić et al., 2018 (4) | Croatian | 268 | Mother-newborn pairs | Maternal blood | 13.7±6.6* | 12.0±3.6* | No difference in either sample between genotypes |
|                    | | | | Cord blood | 8.3±5.5* | 7.1±4.0* |                       |
|                    | | | | Placenta | 6.9±4.9 | 5.5±2.8 |                       |
| Authors and year of publication (reference No.) | Ethnicity | n  | Study participants                  | Sample type     | MT2A genotype | Findings       |
|-----------------------------------------------|-----------|----|-------------------------------------|----------------|----------------|----------------|
| **Hg concentrations (µg/L* or µg/kg)**         |           |    |                                     |                |                |                |
| Sekovanić et al., 2018 (4)                    | Croatian  | 268 | Mother-newborn pairs                | Maternal blood | 13.7±6.6*      | No difference in either sample between genotypes |
|                                               |           |    |                                     | Cord blood     | 8.3±5.5*       |                |
|                                               |           |    |                                     | Placenta       | 6.9±4.9        |                |
| Wang et al., 2012 (106)                       | US        | 239 | Men and women                       | Urine          | 1.03*          | No difference between genotypes                    |
|                                               |           |    |                                     | Hair           | 440            |                |
|                                               |           | 247 | Men and women                       |                |                |                |
| **Fe concentrations (mg/L* or mg kg⁻¹)**      |           |    |                                     |                |                |                |
| Sekovanić et al., 2018 (4)                    | Croatian  | 268 | Mother-newborn pairs                | Maternal blood | 422±61*        | G allele carriers (AG+GG) vs AA genotype ↓Fe in placenta |
|                                               |           |    |                                     | Cord blood     | 552±61*        |                |
|                                               |           |    |                                     | Placenta       | 83±22          |                |
| Tekin et al., 2012 (89)                       | Turkish   | 95  | Mother-newborn pairs                | Maternal blood | 343±89*        | AG vs. AA genotype ↑Fe in cord blood                |
|                                               |           |    |                                     | Cord blood     | 271±130*       |                |
|                                               |           |    |                                     | Placenta       | 527±194        |                |
| **Zn concentrations (mg/L* or mg kg⁻¹)**      |           |    |                                     |                |                |                |
| Sekovanić et al., 2018 (4)                    | Croatian  | 268 | Mother-newborn pairs                | Maternal blood | 5.58±0.92*     | No difference in either sample between genotypes   |
|                                               |           |    |                                     | Cord blood     | 2.78±0.46*     |                |
|                                               |           |    |                                     | Placenta       | 13.7±3.0       |                |
| Raudenska et al., 2017 (103)                  | Czech     | 70  | Men and women with diabetics        | Whole blood    |                |                |
|                                               |           |    |                                     |                | (Graphical illustration: Zn ≈ 3* in AG vs. ~7.5* in AA) |
|                                               |           | 80  | Control healthy men and women       | Serum          |                | AG vs. AA genotype ↓Zn in blood in diabetics       |
|                                               |           |    |                                     |                | (Graphical illustration: Zn ≈ 5* in AG vs. ~6* in AA)   |
| Hattori et al., 2016 (95)                     | Japanese  | 2774| Men and women                       | Serum          |                | No differences between genotypes                    |
|                                               |           |    |                                     |                | (Graphical illustration: Zn ≈ 0.850*)                   |
| Adams et al., 2015 (104)                      | US        | 321 | Men and women                       | Urine          |                | Zn in urine of G allele carriers                     |
|                                               |           |    |                                     |                | (Graphical illustration)                                |
| Authors and year of publication (reference No.) | Ethnicity | n   | Study participants                          | Sample type                                      | $MT2A$ genotype | Findings                                                                 |
|-----------------------------------------------|-----------|-----|---------------------------------------------|-------------------------------------------------|-----------------|--------------------------------------------------------------------------|
| Starska et al., 2015 (84)                      | Polish    | 117 | Men and women with SIP                      | Tissue of nasal cavities or paranasal sinuses (dry) | AA 52.2±41.2 AG 127±76 GG 136 | AG vs. AA genotype ↑Zn in SIP tissue samples; No association between Zn and SNP $MT2A$ −5A/G in control samples |
| Starska et al., 2014 (85)                      | Polish    | 132 | Control men and women with normal sinonasal mucosa | Tissue of nasal cavities or paranasal sinuses (dry) | AA 199±44 AG 204±52 - | -                                                                         |
| Starska et al., 2014 (85)                      | Polish    | 116 | Control men and women with normal laryngeal mucosa | Tissue of laryngeal mucosa                      | AA 86.4±38.1 AG 184±57 GG 194±74 | AG vs. AA genotype ↑Zn in both sample types; GG vs. AA genotype ↑Zn in SCC samples |
| Krześlik et al., 2013 (86)                     | Polish    | 412 | Men with prostate cancer                     | Prostate tissue (dry)                           | AA 135±48 AG 239±80 GG 243.7±64.4 | AG vs. AA genotype ↑Zn in both sample types; GG vs. AA genotype ↑Zn in SCC samples |
| Krześlik et al., 2013 (86)                     | Polish    | 67  | Control men without prostate cancer          | Placenta                                        | AA 485±119 AG 927±317 - | -                                                                         |
| Tekin et al., 2012 (89)                        | Turkish   | 95  | Mother- newborn pairs                        | Maternal blood                                  | AA 4.33±1.13 AG 4.82±1.44 - | -                                                                         |
| Tekin et al., 2012 (89)                        | Turkish   | 95  | Mother- newborn pairs                        | Cord blood                                      | AA 1.32±0.55 AG 1.48±0.53 - | -                                                                         |
| Tekin et al., 2012 (89)                        | Turkish   | 95  | Mother- newborn pairs                        | Placenta                                        | AA 0.50±1.01 AG 46.1±7 - | -                                                                         |
| Kayaalti et al., 2011 (91)                     | Turkish   | 616 | Men and women                                | Plasma                                          | AA 1.01±0.48 AG 0.84±0.50 GG 0.39±0.33 | G allele carriers ↑Zn |
| Kayaalti et al., 2010 (94)                     | Turkish   | 114 | Men and women                                | Kidney tissue (dry)                             | AA 180.2±84.6 AG 192±115 GG 142 | No difference between genotypes |
| Sekovanić et al., 2018 (4)                     | Croatian  | 268 | Mother-newborn pairs                         | Maternal blood                                  | AA 1.52±0.30 AG 1.53±0.09 - | No difference in either sample between genotypes |
| Sekovanić et al., 2018 (4)                     | Croatian  | 268 | Mother-newborn pairs                         | Cord blood                                      | AA 0.59±0.09 AG 0.58±0.12 - | -                                                                         |
| Sekovanić et al., 2018 (4)                     | Croatian  | 268 | Mother-newborn pairs                         | Placenta                                        | AA 0.78±0.18 AG 0.74±0.08 - | -                                                                         |
| Adams et al., 2015 (104)                       | US        | 321 | Men and women                                | Urine (Graphical illustration)                 | AA 24.2±13.6 AG 27.1±11.6 GG 26.2 | ↓Cu in urine of G allele carriers |
| Starska et al., 2015 (84)                      | Polish    | 117 | Men and women with SIP                       | Tissue of nasal cavities or paranasal sinuses (dry) | AA 24.2±13.6 AG 27.1±11.6 GG 26.2 | No differences between genotypes in SIP tissue samples; AG vs. AA genotype ↑Cu in control samples |
| Starska et al., 2015 (84)                      | Polish    | 132 | Control men and women with normal sinonasal mucosa | Tissue of nasal cavities or paranasal sinuses (dry) | AA 11.0±2.98 AG 17.2±5.2 - | -                                                                         |
| Starska et al., 2014 (85)                      | Polish    | 323 | Men and women with SCC                       | Tissue of laryngeal mucosa                      | AA 14.4±7.83 AG 26.6±12.5 GG 29.7±0.72 | AG vs. AA genotype ↑Cu in both sample types; GG vs. AA genotype ↑Cu in SCC samples |

| Cu concentrations (mg/L or mg kg$^{-1}$)        |          |     |                                             |                                                |                 |                                                                            |
|------------------------------------------------|----------|-----|---------------------------------------------|-------------------------------------------------|-----------------|--------------------------------------------------------------------------|
| Sekovanić et al., 2018 (4)                      | Croatian | 268 | Mother-newborn pairs                         | Maternal blood                                  | AA 1.52±0.30* AG 1.53±0.09* | No difference in either sample between genotypes |
| Sekovanić et al., 2018 (4)                      | Croatian | 268 | Mother-newborn pairs                         | Cord blood                                      | AA 0.59±0.09* AG 0.58±0.12* | -                                                                         |
| Sekovanić et al., 2018 (4)                      | Croatian | 268 | Mother-newborn pairs                         | Placenta                                        | AA 0.78±0.18* AG 0.74±0.08* | -                                                                         |
| Adams et al., 2015 (104)                        | US       | 321 | Men and women                                | Urine (Graphical illustration)                 | AA 24.2±13.6 AG 27.1±11.6 GG 26.2 | ↓Cu in urine of G allele carriers |
| Starska et al., 2015 (84)                      | Polish   | 117 | Men and women with SIP                       | Tissue of nasal cavities or paranasal sinuses (dry) | AA 24.2±13.6 AG 27.1±11.6 GG 26.2 | No differences between genotypes in SIP tissue samples; AG vs. AA genotype ↑Cu in control samples |
| Starska et al., 2015 (84)                      | Polish   | 132 | Control men and women with normal sinonasal mucosa | Tissue of nasal cavities or paranasal sinuses (dry) | AA 11.0±2.98 AG 17.2±5.2 - | -                                                                         |
| Starska et al., 2014 (85)                      | Polish   | 323 | Men and women with SCC                       | Tissue of laryngeal mucosa                      | AA 14.4±7.83 AG 26.6±12.5 GG 29.7±0.72 | AG vs. AA genotype ↑Cu in both sample types; GG vs. AA genotype ↑Cu in SCC samples |
| Starska et al., 2014 (85)                      | Polish   | 116 | Control men and women with normal laryngeal mucosa | Tissue of laryngeal mucosa                      | AA 9.85±4.10 AG 12.7±3.56 GG 11.5 | -                                                                         |
MT2A rs1610216 polymorphism

The rs1610216 (MT2A −209A/G) SNP also occurs in the promoter region. Unlike rs28366003, however it has received considerably less attention and most of the studies were done in Polish population. Table 4 summarises its genotype frequencies. The frequencies of the AA, AG, and GG genotype in healthy Polish population ranged from 72.0 % to 73.9 %, 25.3 % to 27.8, and 0.2 % to 0.8 %, respectively (80–82, 87). Similar AA genotype frequencies were reported for healthy Italian population, while their GG genotype frequencies were somewhat higher, from 3.0 % to 3.7 % (112, 113). The highest AA genotype frequency of 90.5 % was reported in healthy Bulgarian population (114). The same study also reported higher percentage of the AG genotype in patients with type 2 diabetes mellitus and coronary artery disease than in healthy persons.

Table 5 shows the association between MT2A rs1610216 and human diseases. Studies conducted in Polish population found no association between rs1610216 and either Schneiderian papilloma or laryngeal cancer (80, 81). No associations were also reported for this SNP and breast or prostate cancers (82, 87), carotid artery stenosis and hypertension (112, 113), or coronary artery disease (114). Positive association was reported with type 2 diabetes mellitus (114) and subjects with the AA genotype ran a higher risk of ischaemic cardiomyopathy and hyperglycaemia (112). There are no data on association between the rs1610216 SNP and element concentrations in human organism, except the one study (112) dealing with an association between this SNP and Zn in plasma (Table 6).

MT2A rs10636 polymorphism

The rs10636 (MT2A +838G/C) SNP occurs in the 3’UTR. Genotype frequencies of this SNP are presented in Table 7. The frequencies of the GG genotype range from 42.9 % in Chinese (115) to 67.7 % in healthy Spanish population (97). Healthy Chinese population had the highest percentage of the CC genotype (9.7 %) (115), whereas the US and Polish populations had the lowest frequency (about 4.0 %) (82, 104). The only study that reported genotype frequencies of the rs10636 SNP in children was in boys and girls with the mean age of 10 years in Portugal, a country known for increased Hg intake through seafood/fish consumption and the risk of related neurotoxic effects in both sexes at young age (116).

Table 8 summarises the findings on associations between rs10636 and diseases. This polymorphism may be associated with higher incidence of neuropathy and hyperlipidaemia in patients with type 2 diabetes mellitus (115), coronary heart disease (117), and breast cancer (100). Krześ lak et al. (82) found no association with ductal breast cancer. No association was also reported between rs10636 and macular degeneration related to age (97), Schneiderian papilloma, or laryngeal cancer (80, 81). Giacconi et al. (113)
reported that in the C allele carriers carotid artery disease was more likely to progress to carotid artery stenosis.

The associations between this polymorphism and element concentrations in human organism are presented in Table 9. A weak association was reported for blood Cd in healthy women exposed to Cd (118). Although Hg was not associated with the CC genotype, a multivariate analysis indicated lower Hg in urine in subjects with the GG genotype (106). C allele indicated lower Hg in urine in subjects with the CC genotype, a multivariate analysis in healthy women exposed to Cd (118). Although Hg was not associated with the CC genotype, a multivariate analysis indicated lower Hg in urine in subjects with the GG genotype (106). C allele indicated lower Hg in urine in subjects with the GG genotype (106). C allele indicated lower Hg in urine in subjects with the GG genotype (106). C allele indicated lower Hg in urine in subjects with the GG genotype (106). C allele indicated lower Hg in urine in subjects with the GG genotype (106). C allele indicated lower Hg in urine in subjects with the GG genotype (106). C allele indicated lower Hg in urine in subjects with the GG genotype (106). C allele indicated lower Hg in urine in subjects with the GG genotype (106). C allele indicated lower Hg in urine in subjects with the GG genotype (106).

CONCLUDING REMARKS

There is strong evidence that MTs participate in physiological and pathological processes in the human body which involve the homeostasis of intracellular essential element, primarily Zn and Cu. They may chelate divalent toxic metals, such as Cd, Pb, Hg, or Pt with the –SH groups in cysteine and thus detoxify cells, scavenge free radicals, and protect cells against oxidative stress. They also have a role in cell survival and proliferation, angiogenesis, and inhibition of apoptosis. Emerging evidence confirms that MT insufficiency may lead to pathogenic processes and carcinogenesis. Single gene polymorphisms of MTs may be responsible for individual differences in reactions to harmful effects of external chemical and physical stressors and reactive oxygen species in the body.

Identification of individual MT isoforms in human cells and tissues can be applied in prospective tissue, plasma, and urine analyses or retrospectively, using fixed paraffin-embedded tissue samples. In the future, MTs may serve as biomarkers of environmental exposure to toxic metals, such as Cd, as already reported in biomonitoring studies on occupational exposure in humans (121–123) or environmental exposure in animals (124–126). MTs are also intensively studied as potential clinical biomarkers to be used in the diagnosis, prognosis, and selection of efficient therapy/ies for a number of malignant tumours, such as breast, thyroid, head, neck, lung, gallbladder, pancreas, colon, kidney, ovary, prostate, bone, and skin cancers, childhood solid tumours, and various types of leukaemia (29–32, 82, 86, 87, 94, 127–132). Exogenous MTs are already being investigated for the treatment of pathological processes in the central nervous system (59).

To date, the rs28366003, rs10636, and rs1610216 SNPs in the MT2A gene have been associated with various physiological and pathological conditions. These involve ageing and chronic diseases, such as metabolic syndrome (including type 2 diabetes mellitus and obesity), cardiovascular diseases, osteoporosis, and psychiatric disorders. They also seem to interfere with the effects of toxic drugs and pollutants. However, their use as risk predictors remains controversial. Identifying a single specific allelic variant associated with an individual trait, health or disease by gene-specific, candidate-driven studies (133) may fail to provide full information and risk assessment of certain diseases, which, as a rule, have

Table 4 Genotype frequencies of the rs1610216 (MT2A −209A/G) single nucleotide polymorphism in humans

| Authors and year of publication (reference No.) | Ethnicity | n     | Study population                      | Genotype frequencies (%) |
|-----------------------------------------------|-----------|-------|---------------------------------------|--------------------------|
| Starska et al., 2015 (80)                      | Polish    | 130   | Men and women with SIP                | AA 73.8                  |
|                                               |           |       |                                       | AG 25.4                  |
|                                               |           |       |                                       | GG 0.8                   |
| Starska et al., 2014 (81)                      | Polish    | 418   | Control men and women without head and neck tumours | AA 73.9                  |
|                                               |           |       |                                       | AG 25.3                  |
|                                               |           |       |                                       | GG 0.8                   |
| Krzešlak et al., 2014 (82)                    | Polish    | 534   | Women with breast cancer              | AA 76.4                  |
|                                               |           |       |                                       | AG 23.4                  |
|                                               |           |       |                                       | GG 0.2                   |
| Forma et al., 2012 (87)                       | Polish    | 358   | Men with prostate cancer              | AA 71.8                  |
|                                               |           |       |                                       | AG 27.6                  |
|                                               |           |       |                                       | GG 0.6                   |
| Kozarova et al., 2012 (114)                   | Bulgarian| 142   | Patients with CAD                     | AA 89.2                  |
|                                               |           |       |                                       | AG 9.4                   |
|                                               |           |       |                                       | GG 1.4                   |
|                                               |           | 101   | Patients with DM                      | AA 69.7                  |
|                                               |           |       |                                       | AG 28.3                  |
|                                               |           |       |                                       | GG 2.0                   |
|                                               |           | 61    | Control healthy volunteers            | AA 90.5                  |
|                                               |           |       |                                       | AG 0.0                   |
|                                               |           |       |                                       | GG 9.5                   |
| Giacconi et al., 2007 (113)                   | Italian   | 100   | CS patients                           | AA 75.0                  |
|                                               |           |       |                                       | AG 24.0                  |
|                                               |           |       |                                       | GG 1.0                   |
|                                               |           | 188   | CS patients without cerebrovascular episodes | AA 73.0                  |
|                                               |           |       |                                       | AG 25.0                  |
|                                               |           |       |                                       | GG 2.0                   |
|                                               |           | 218   | Control elderly volunteers            | AA 71.0                  |
|                                               |           |       |                                       | AG 26.0                  |
|                                               |           |       |                                       | GG 3.0                   |
| Giacconi et al., 2005 (112)                   | Italian   | 91    | Men and women with carotid stenosis   | AA 86.0                  |
|                                               |           |       |                                       | AG 14.0                  |
|                                               |           | 188   | Control elderly men and women         | AA 70.2                  |
|                                               |           |       |                                       | AG 26.1                  |
|                                               |           |       |                                       | GG 3.7                   |

n – sample size; AA – typical homozygote; AG – heterozygote; GG – atypical homozygote; SIP – sinonasal inverted papilloma (Schneiderian papilloma); CAD – coronary artery disease; DM – diabetes mellitus; CS – carotid artery stenosis.
| Authors and year of publication (reference No.) | Ethnicity | n   | Study participants | Sample type | Findings                                                                 |
|-----------------------------------------------|-----------|-----|---------------------|-------------|--------------------------------------------------------------------------|
| Starska et al., 2015 (80) Polish               | Polish    | 130 | Men and women with SIP | Tissue of nasal cavities or paranasal sinuses | No association between SNP MT2A −209A/G and SIP |
|                                               |           | 418 | Control men and women without head and neck tumours |              |                                                                           |
| Starska et al., 2014 (81) Polish               | Polish    | 323 | Men and women with laryngeal cancer | Tissue of squamous cell laryngeal cancer | No association between SNP MT2A −209A/G and development of laryngeal cancer |
|                                               |           | 418 | Control volunteers (men and women) |              |                                                                           |
| Krześłak et al., 2014 (82) Polish             | Polish    | 534 | Women with breast cancer | Whole blood  | No associations between SNP MT2A −209A/G                                 |
|                                               |           | 556 | Control healthy women |              |                                                                           |
| Forma et al., 2012 (87) Polish                | Polish    | 358 | Men with prostate cancer | Whole blood  | No association between SNP MT2A −209A/G and prostate cancer              |
|                                               |           | 406 | Control men without prostate cancer |            |                                                                           |
| Kozarova et al., 2012 (114) Bulgarian         | Bulgarian| 142 | Patients with CAD    | Leukocytes  | Positive association between G allele carriers and DM                     |
|                                               |           | 101 | Patients with DM     |              | No association between SNP MT2A −209A/G and CAD                          |
|                                               |           | 61  | Control healthy volunteers |            |                                                                           |
| Giacconi et al., 2007 (113) Italian           | Italian   | 100 | CS patients         | Blood       | No association between SNP MT2A −209A/G and CS or cerebrovascular episodes |
|                                               |           | 188 | CS patients without cerebrovascular episodes |            |                                                                           |
|                                               |           | 218 | Control elderly volunteers |            |                                                                           |
| Giacconi et al., 2005 (112) Italian           | Italian   | 91  | Men and women with carotid stenosis | Whole blood | No association between SNP MT2A −209A/G and hypertension; higher risk of ischaemic cardiomyopathy and hyperglycaemia in AA genotype subjects |
|                                               |           | 188 | Control elderly men and women |            |                                                                           |

n – sample size; AA – typical homozygote; AG – heterozygote; GG – atypical homozygote; MT2A - metallothionein 2A; DM – diabetes mellitus; CAD – coronary artery disease; SIP – sinonasal inverted papilloma (Schneiderian papilloma); CS – carotid artery stenosis
polygenic origins (134, 135) and therefore need genome-wide association studies (136, 137). More comprehensive studies are needed to determine the role and potential for the clinical use of specific MT2A gene polymorphisms. These should recruit a large number of participants (several hundreds and more) with well-defined pathological process and take into account other factors and risks, such as specific environmental exposure and personal habits, genetic characteristics, and epigenetic makeup.

Conflict of interests
None to declare.

Acknowledgement
Financial support for this work started during the research project “Exposure to metals and their effects in pregnancy and postnatal period” (Croatian Ministry of Science, Education and Sports’ grant 022-0222148-2135) and continued through the research project “Assessment of Daily Exposure to Metals and Maternal Individual Susceptibility as Factors of Developmental Origins of Health and Disease, METALORIGINS” (Croatian Science Foundation grant HRZZ-IP-2016-06-1998).

REFERENCES
1. Landrigan PJ, Fuller R, Hu H, Caravanos J, Cropper ML, Hanrahan D, Sandilya K, Chiles TC, Kumar P, Suk WA. Pollution and global health - An agenda for prevention. Environ Health Perspect 2018;126:084501. doi: 10.1289/EHP3141
2. Schwartz DA, Weis B, Wilson SH. The need for exposure health sciences. Environ Health Perspect 2005;113:A650. doi: 10.1289/ehp.113-1281298
3. Sexton K, Hattis D. Assessing cumulative health risks from exposure to environmental mixtures - Three fundamental questions. Environ Health Perspect 2007;115:825-32. doi: 10.1289/ehp.9333
4. Sekovanić A, Jurasović J, Piasek M, Pašalić D, Orct T, Grgec AS, Stasenko S, Čakanić KB, Jazbec A. Metallothionein 2A gene polymorphism and trace elements in mother-newborn pairs in the Croatian population. J Trace Elem Med Biol 2018;45:163-70. doi: 10.1016/j.jtemb.2017.10.011
5. Vallee BL. Metallothionein: historical review and perspectives. In: Kagi JHR, Norberg M, editors. Metallothionein. Experientia supplementum 34 / FEBS Symposia Series 59. Basel: Birkhäuser; 1979. p. 19-38. doi: 10.1007/978-3-0348-6493-0_1
6. Nordberg M. Metallothioneins: historical review and state of knowledge. Talanta 1998;46:243-54. doi: 10.1016/s0039-9140(97)00345-7
7. Capdevila M, Bofill R, Palacios Ò, Atrian S. State-of-the-art of metallothioneins at the beginning of the 21st century. Coordin Chem Rev 2012;256:46-62. doi: 10.1016/j.ccr.2011.07.006
8. Waalkes MP, Pérez-Ollé R. Role of metallothionein in the metabolism, transport and toxicity of metals. In: Zalups RK, Koropatnick J, editors. Molecular biology and toxicology of
Table 7 Genotype frequencies of the rs10636 (MT2A +838G/C) single nucleotide polymorphism in humans

| Authors and year of publication (reference No.) | Ethnicity | n      | Study participants                          | Genotype frequencies (%) |
|------------------------------------------------|-----------|--------|---------------------------------------------|--------------------------|
|                                                 |           |        |                                             | GG          | GC           | CC          |
| Yang et al., 2017 (105)                          | Thai      | 677    | Men and women                               | 52.4        | 41.6         | 6.0         |
| Liu et al., 2017 (100)                           | Chinese   | 459    | Women with breast cancer                     | 52.5        | 37.5         | 11.8        |
| García et al., 2017 (97)                         | Spanish   | 130    | Men and women with AMD                       | 56.9        | 36.9         | 6.2         |
| Fernandes et al., 2016 (119)                     | Brazilian | 221    | Workers in car battery factories             | 62.0        | 32.0         | 6.0         |
| Adams et al., 2015 (104)                         | US        | 170    | Premenopausal women                          | 54.0        | 42.0         | 4.0         |
| Starska et al., 2015 (80)                        | Polish    | 130    | Men and women with SIP                       | 44.6        | 43.1         | 12.3        |
| Starska et al., 2014 (81)                        | Polish    | 323    | Men and women with laryngeal cancer          | 45.8        | 46.1         | 8.1         |
| Yang et al., 2014 (117)                          | Chinese   | 287    | Men and women with CHD                       | 46.0        | 45.3         | 8.7         |
| Krześlak et al., 2014 (82)                       | Polish    | 534    | Women with breast cancer                      | 57.1        | 38.4         | 4.5         |
| Woods et al., 2013 (116)                         | Portuguese| 163    | Boys average age 10 years                    | 61.3        | 30.7         | 8.0         |
| Chen et al., 2012 (118)                          | Chinese   | 465    | Men and women                               | 52.3        | 39.5         | 8.2         |
| Wang et al., 2012 (106)                          | US        | 464    | Men and women                               | 54.1        | 36.8         | 9.1         |
| Forma et al., 2012 (87)                          | Polish    | 358    | Men with prostate cancer                     | 48.9        | 43.3         | 7.8         |
| Gundacker et al., 2009 (120)                     | Austrian  | 180    | Men and women                               | 58.4        | 33.3         | 8.3         |
| Yang et al., 2008 (115)                          | Chinese   | 182    | Men and women with DM                        | 46.7        | 42.9         | 10.4        |
| Giaccioli et al., 2007 (113)                     | Italian   | 100    | CS patients                                 | 73.0        | 22.0         | 5.0         |
|                                                 |           | 188    | CS patients without cerebrovascular episodes | 66.0        | 30.0         | 4.0         |

n – sample size; MT2A – metallothionein 2A; GG – typical homozygote; GC – heterozygote; CC – atypical homozygote; AMD – age-related macular degeneration; SIP – sinonasal inverted papilloma (Schneiderian papilloma); CHD – coronary heart disease; DM – diabetes mellitus; CS – carotid artery stenosis
| Authors and year of publication (reference No.) | Ethnicity |  n   | Study participants | Sample type | Findings                                                                 |
|------------------------------------------------|-----------|------|--------------------|-------------|--------------------------------------------------------------------------|
| Liu et al., 2017 (100)                          | Chinese   | 459  | Women with breast cancer | Whole blood | SNP MT2A +838 G/C was associated with breast cancer                      |
|                                                |           | 549  | Control healthy women |             |                                                                          |
| García et al., 2017 (97)                        | Spanish   | 130  | Men and women with AMD | Whole blood | No association between SNP MT2A +838 G/C and AMD                         |
|                                                |           | 96   | Control healthy men and women |             |                                                                          |
| Starska et al., 2015 (80)                       | Polish    | 130  | Men and women with SIP | Tissue of nasal cavities or paranasal sinuses | No association between SNP MT2A +838G/C and SIP                         |
|                                                |           | 418  | Control men and women without head and neck tumours |             |                                                                          |
| Starska et al., 2014 (81)                       | Polish    | 323  | Men and women with laryngeal cancer | Tissue of squamous cell laryngeal cancer | No association between SNP MT2A +838G/C and development of laryngeal cancer |
|                                                |           | 418  | Control healthy men and women |             |                                                                          |
| Yang et al., 2014 (117)                         | Chinese   | 287  | Men and women with CHD | Blood leukocytes | SNP MT2A +838G/C was associated with CHD                                |
|                                                |           | 226  | Control healthy men and women |             |                                                                          |
| Krześlak et al., 2014 (82)                      | Polish    | 534  | Women with breast cancer | Whole blood | No associations between SNP MT2A +838G/C and breast cancer               |
|                                                |           | 556  | Control healthy women |             |                                                                          |
| Yang et al., 2008 (115)                         | Chinese   | 397  | Men and women with DM | Whole blood | SNP MT2A +838G/C was associated with higher risk for hyperlipidemia and incidence of DM with neuropathy |
|                                                |           | 454  | Control men and women |             |                                                                          |
| Giaccon et al., 2007 (113)                      | Italian   | 100  | CS patients | Blood | SNP MT2A +838G/C promote the progression of carotid artery disease to CS |
|                                                |           | 188  | CS patients without cerebrovascular episodes |             |                                                                          |
|                                                |           | 218  | Control elderly volunteers |             |                                                                          |

n – sample size; MT2A – metallothionein 2A; AMD – age-related macular degeneration; SIP – sinonasal inverted papilloma (Schneiderian papilloma); CHD – coronary heart disease; DM – diabetes mellitus; CS – carotid artery stenosis
### Table 9 Association between the rs10636 ($MT2A$ +838G/C) single nucleotide polymorphism and element concentrations in humans

| Authors and year of publication (reference No.) | Ethnicity | n  | Study participants | Sample type | MT2A genotype | Findings |
|-----------------------------------------------|-----------|----|---------------------|-------------|---------------|----------|
| | | | | | | Cd concentrations (µg/L) |
| | | | | | | | |
| Adams et al., 2015 (104) | US | 321 | Men and women | Urine | GG | (Graphical illustration) | ↓Cd in urine of C allele carriers |
| Chen et al., 2012 (118) | Chinese | 311 | Women exposed to Cd | Blood/ Urine | GC | (Graphical illustration) | Trends of ↓Cd in blood of C allele carriers in highly polluted area; no difference of Cd in urine |
| Yang et al., 2017 (105) | Thai | 677 | Men and women | Whole blood | GG | 116±119 | No difference between genotypes |
| Nunes et al., 2016 (119) | Brazilian | 221 | Workers in car battery factories | Whole blood | GC | 121±121 | |
| Gundacker et al., 2009 (120) | Austrian | 122 | Men and women | Whole blood | CC | 124±141 | |
| | | | | | | Pb concentrations (µg/L) |
| | | | | | | | |
| Yang et al., 2017 (105) | Thai | 677 | Men and women | Whole blood | GG | 116±119 | No difference between genotypes |
| | | | | | GG | 121±121 | |
| | | | | | CC | 124±141 | |
| | | | | | | | |
| | | | | | Hg concentrations (µg/L or µg/kg*) |
| | | | | | | | |
| Woods et al., 2013 (116) | Portuguese | 96 | Boys of avg. age 10 years | Urine | GG | 2.17±1.25 | No difference between genotypes |
| Wang et al., 2012 (106) | US | 464 | Men and women | Urine | GC | 1.04 | No difference between genotypes |
| | | 473 | Men and women | Hair | CC | 500* | |
| | | | | | | Zn concentrations (µg/L) |
| | | | | | | | |
| Adams et al., 2015 (104) | US | 321 | Men and women | Urine | GG | (Graphical illustration) | ↓Zn in urine of C allele carriers |
| Giacconi et al., 2007 (113) | Italian | 288 | CS patients | Plasma | GC | 0.99±0.32 | C allele carriers had ↓Fe in plasma |
| | | | | | Erythrocytes | 50±120 | |
| | | | | | | | |
| | | | | | Cu concentrations (µg/L) |
| | | | | | | | |
| Adams et al., 2015 (104) | US | 321 | Men and women | Urine | GG | (Graphical illustration) | ↓Zn in urine of C allele carriers |
| Giacconi et al., 2007 (113) | Italian | 288 | Patients with CS | Plasma | GC | 0.74±0.15 | C allele carriers ↓Zn in erythrocytes |
| | | | | | Erythrocytes | 8.5±2.0 | |
| | | | | | | | |
| | | | | | Fe concentrations (mg/L) |
| | | | | | | | |
| Giacconi et al., 2007 (113) | Italian | 288 | Patients with CS | Plasma | GC | 0.74±0.15 | C allele carriers ↓Zn in erythrocytes |
| | | | | | Erythrocytes | 8.5±2.0 | |
| | | | | | | | |
| | | | | | | |

- **n** – sample size; **MT2A** – metallothionein 2A; **GG** – typical homozygote; **GC** – heterozygote; **CC** – atypical homozygote; **CS** – carotid artery stenosis; *C* allele carriers (GC plus CC genotype); ↑ – increased concentration; ↓ – decreased concentration
Metallothioneins. A promising tool for cancer diagnostics. Bratisl Lek Listy 2009;110:93-7. PMID: 19408840
31. Krizkova S, Fabrik A, Adam V, Hrabeta J, Eckschläger T, Kizek R. Metallothionein - a promising tool for cancer diagnostics. Bratisl Lek Listy 2009;110:93-7. PMID: 19408840
32. Si M, Lang J. The roles of metallothioneins in carcinogenesis. J Hematol Oncol 2018;11:107. doi: 10.1186/s13045-018-0645-x
33. Carpenè E, Andreani G, Isani G. Metallothionein functions and structural characteristics. J Trace Elem Med Biol 2007;21(Suppl 1):35-9. doi: 10.1016/j.jtemb.2007.09.013
34. Davis JJ, Hill HAO, Kurz A, Jacob C, Maret W, Vallee BL. A scanning tunneling microscopy study of rabbit metallothionein. PhysChemComm 1999;1:12-22. doi: 10.1039/A806057F
35. Richards MP, Cousins RJ. Mammalian zinc homeostasis: requirement for RNA and metallothionein synthesis. Biochem Biophys Res Commun 1975;64:1215-23. doi: 10.1016/0006-291x(75)90822-0
36. Richards MP, Cousins RJ. Metallothionein and its relationship to the metabolism of dietary zinc in rats. J Nutr 1976;106:1591-9. doi: 10.1093/jn/106.11.1591
37. Cousins RJ. Absorption, transport, and hepatic metabolism of copper and zinc: special reference to metallothionein and ceruloplasmin. Physiol Rev 1985;65:238-309. doi: 10.1152/physrev.1985.65.2.238
38. Kiela PR, Ghishan FK. Physiology of intestinal absorption and secretion. Best Pract Res Clin Gastroenterol 2010;34:145-59. doi: 10.1016/j.bpcg.2010.02.007
39. Lönnerdal B, Sandberg AS, Sandström B, Kunz C. Inhibitory effects of phytic acid and other inositol phosphates on zinc and calcium absorption in suckling rats. J Nutr 1989;119:211-4. doi: 10.1093/jn/119.2.211
40. Brewer GJ. Zinc acetate for the treatment of Wilson’s disease. Expert Opin Pharmacother 2001;2:1473-7. doi: 10.1517/14656566.2.9.1473
41. Ranucci G, Di Dato F, Spagnuolo MI, Vajro P, Iorio R. Zinc monotherapy is effective in Wilson’s disease patients with mild liver disease diagnosed in childhood: a retrospective study. Orphanet J Rare Dis 2014;9:41. doi: 10.1186/1750-1172-9-41
42. Miles AT, Hawskworth GM, Beattie JH, Rodilla V. Induction, regulation degradation, and biological significance of mammalian metallothioneins. Crit Rev Biochem Mol Biol 2000;35:35-70. doi: 10.1080/10409230091169168
43. McAleer MF, Tuan RS. Metallothionein overexpression in human trophoblastic cells protects against cadmium-induced apoptosis. In Vitro Mol Toxicol 2001;14:25-42. doi: 10.1089/109793301316882522
44. Skiatkova H, Babula P, Stiborova M, Eckschläger T, Trnkova L, Provanik I, Hubalek J, Kizek R, Adam V. Structure, polymorphisms and electrochemistry of mammalian metallothioneins - a review. Int J Electrochem Sci 2012;7:12415-31
45. Ruttkay-Nedecky B, Nejdl L, Gumulec J, Zitka O, Masarik M, Eckschlager T, Stiborova M, Adam V, Kizek R. The role of metallothionein in oxidative stress. Int J Mol Sci 2013;14:6044-66. doi: 10.3390/ijms14060440
46. Nordberg M, Nordberg GF. Toxicological aspects of metallothionein. Cell Mol Biol 2000;46:451-63. PMID: 10774933
47. Bakka A, Webb M. Metabolism of zinc and copper in the neonate: changes in the concentrations and contents of thionein-bound Zn and Cu with age in the livers of the newborn of various mammalian species. Biochem Pharmacol 1981;30:721-5. doi: 10.1016/0006-2952(81)90157-X
48. Naray NO, Banerjee D, Cherian MG. Immunohistochemical localization of metallothionein in cell nucleus and cytoplasm of fetal human liver and kidney and its changes during
Sekovanić A, et al. Metallothionein 2A gene polymorphisms in relation to diseases and trace element levels in humans
Arh Hig Rada Toksikol 2020;71:27-47

78. Collins FS, Brooks LD, Chakravarti A. A DNA polymorphism discovered in a polymorphic region of human chromosome 1. Genome Res 1990;8:1229-31. doi: 10.1101/gr.12299.

79. Sherry ST, Ward M-H, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 2001;29:308-11. doi: 10.1093/nar/29.1.308.

80. Starska K, Bryś M, Forma E, Olszewski J, Piekiewicz P, Lewy-Trenda I, Stasikowska-Kanicka O, Danilewicz M, Krzesłak A. Metallothionein 2A core promoter region genetic polymorphism and its impact on the risk, tumor behavior, and recurrences of sinonasal inverted papilloma (Schneiderian papilloma). Tumour Biol 2015;36:8559-71. doi: 10.1007/s13277-015-3616-7.

81. Starska K, Krzesiak A, Forma E, Olszewski J, Lewy-Trenda I, Osuch-Wójcikiewicz E, Bryś M. Genetic polymorphism of metallothionein 2A and risk of laryngeal cancer in a Polish population. Med Oncol 2014;31:75. doi: 10.1007/s12032-014-0075-8.

82. Krzesiak A, Forma E, Jóźwiak P, Szymczyk A, Smolarz M, Romanowicz-Makowska H, Różański W, Bryś M. Metallothionein 2A genetic polymorphisms and risk of ductal breast cancer. Clin Exp Med 2014;14:107-13. doi: 10.1007/s10238-012-0215-4.

83. Kita K, Miura N, Yoshida M, Yamazaki K, Ohkubo T, Imai Y, Naganuma A. Potential effect on cellular response to cadmium of a single-nucleotide A → G polymorphism in the promoter of the human gene for metallothionein IIA. Hum Genet 2006;120:553-60. doi: 10.1007/s00439-006-0283-6.

84. Starska K, Bryś M, Forma E, Olszewski J, Piekiewicz P, Lewy-Trenda I, Danilewicz M, Krzesiak A. The effect of metallothionein 2A core promoter region single-nucleotide polymorphism on accumulation of toxic metals in sinonasal inverted papilloma tissues. Toxicol App Pharmaco 2015;285:187-97. doi: 10.1016/j.taap.2015.04.008.

85. Starska K, Krzesiak A, Forma E, Olszewski J, Morawiec-Szandera A, Aleksandrowicz P, Lewy-Trenda I, Bryś M. The -5A/G singlenucleotide polymorphism in the core promoter region of MT2A and its effect on allele-specific gene expression and Cd, Zn and Cu levels in laryngeal cancer. Toxicol App Pharmaco 2014;280:256-63. doi: 10.1016/j.taap.2014.08.016.

86. Krzesiak A, Forma E, Chwatko G, Jóźwiak P, Szymczyk A, Wilkosz J, Różański W, Bryś M. Effect of metallothionein 2A gene polymorphism on allele-specific gene expression and metal content in prostate cancer. Toxicol App Pharmaco 2013;268:278-85. doi: 10.1016/j.taap.2013.02.013.

87. Forma E, Krzesiak A, Wilkosz J, Jóźwiak P, Szymczyk A, Rozański W, Bryś M. Metallothionein 2A genetic polymorphisms and risk of prostate cancer in a Polish population. Cancer Genet 2012;205:432-35. doi: 10.1016/j.cancergen.2012.05.005.

88. Biłakowska K, Marciniai W, Muszyńska M, Baszuk P, Gupta S, Jaworska-Bieniek K, Sukinnicki G, Durda K, Gromowski T, Prajzendiranc K, Cibulski C, Huzarski T, Gronwald J, Debiánik T, Scott RJ, Lubinski J, Jakubowska A. Association of zinc level and polymorphism in MMP-7 gene with prostate cancer in Polish population. PLoS One 2018;13:e0201065. doi: 10.1371/journal.pone.0201065.

89. Tekin D, Kayaa, Z, Aliev V, Söylemezoglu T. The effects of metallothionein 2A polymorphism on placental cadmium accumulation: Is metallothionein a modifying factor in transfer of micronutrients to the fetus? J Appl Toxicol 2012;32:270-5. doi: 10.1002/jat.1661.

90. Tekin D, Hayalift Z, Söylemezoglu T. The effects of metallothionein 2A polymorphism on lead metabolism: are pregnant women with a heterozygote genotype for metallothionein 2A polymorphism and their newborns at risk of having higher blood lead levels? Int Arch Occup Environ Health 2012;85:631-7. doi: 10.1007/s00420-011-0711-7.

91. Kayaalti Z, Sahiner L, Durakoglugil ME, Söylemezoglu T. Distributions of interleukin-6 (IL-6) promoter and metallothionein 2A (MT2A) core promoter region genetic polymorphisms and their associations with aging in Turkish population. Arch Gerontol Geriatr 2011;53:354-8. doi: 10.1016/j.archger.2011.01.001.

92. Kayaalti Z, Aliev V, Söylemezoglu T. The potential effect of metallothionein 2A -5AG single nucleotide polymorphism on blood cadmium, lead, zinc and copper levels. Toxicol App Pharmaco 2011;256:1-7. doi: 10.1016/j.taap.2011.06.023.

93. Kayaalti Z, Söylemezoglu T. The polymorphism of core promoter region on metallothionein 2A-metal binding protein in Turkish population. Mol Biol Rep 2010;37:185-90. doi: 10.1007/s11033-009-9586-3.

94. Kayaalti Z, Mergen G, Söylemezoglu T. Effect of metallothionein 2A core promoter region polymorphism on cadmium, zinc and copper levels in autopsy kidney tissues from a Turkish population. Toxicol App Pharmaco 2010;245:252-5. doi: 10.1016/j.taap.2010.03.007.

95. Hattori Y, Naito M, Sato M, Nakatochi M, Naito H, Kato M, Takagi S, Matsuenga T, Seiki T, Sasaki K, Suma S, Kawai S, Okada R, Hishida A, Hamajima N, Wakai K. Metallothionein MT2A A-5G polymorphism as a risk factor for chronic kidney disease and diabetes: cross-sectional and cohort studies. Toxicol Sci 2016;152:181-93. doi: 10.1093/toxsci/kfw080.

96. Hayashi Y, Hashizume T, Wakida K, Sato M, Uchida Y, Watabe K, Matsuyama Z, Kimura A, Inuzuka T, Hozumi I. Association between metallothionein genes polymorphisms and sporadic amyotrophic lateral sclerosis in a Japanese population. Amyotroph Lateral Scler 2006;7:22-26. doi: 10.1080/14660820600618766.

97. García M, Álvarez L, Fernández Á, González-Iglesias H, Escribano J, Fernández-Vega B, Villota E, Fernández-Vega Cueto I, Fernández-Vega Á, Coca-Prados M. Metallothionein polymorphisms in a Northern Spanish population with neovascular and dry forms of age-related macular degeneration. Ophthalmic Genet 2017;38:451-8. doi: 10.1080/14660820600618766.

98. McElroy JA, Bryda EC, McKay SD, Schnabel RD, Taylor JF. Genetic variation at a metallothionein 2A promoter single-nucleotide polymorphism in white and black females in Midwestern United States. J Toxicol Environ Health A 2010;73:1283-7. doi: 10.1080/15287394.2010.485067.

99. Stajnko A, Sljekovec Z, Mazej D, Francišek A, Stariš AS, Prcip I, Spircz M, Horvat M, Falnoga I. Arsenic metabolites; selenium; and AS3MT, MTHFR, AQP4, AQP9, SELENOP, INMT, and MT2A polymorphisms in Croato-Slovenian population from PHIME-CROME study. Environ Res 2019;170:301-19. doi: 10.1016/j.envres.2018.11.045.

100. Liu D, Wang M, Tian T, Wang XJ, Kang HF, Jin TB, Zhang SQ, Guan HT, Yang PT, Liu K, Liu XH, Xu P, Zheng Y, Dai ZJ. Genetic polymorphisms (rs10636 and rs28366003) in...
metallothionein 2A increase breast cancer risk in Chinese Han population. Aging (Albany NY) 2017;9:547-55. doi: 10.18629/aging.101177

101. Shokrzadeh M, Mohammadpour A, Ghassemi-Barghi N, Hoseini V, Abediankenari S, Tabari YS. Metallothionein-2A (rs1610216/rs28366003) gene polymorphisms and the risk of stomach adenocarcinoma. Arch Gastroenterol 2019;56:367-71. doi: 10.1590/S0004-2803.201900000-69

102. González-Martínez F, Sánchez-Rodas D, Cáceres DD, Martínez MF, Quíones LA, Johnson-Restrepo B. Arsenic exposure, profiles of urinary arsenic species, and polymorphism effects of glutathione-s-transferase and metallothioneins. Chemosphere 2018;212:927-36. doi: 10.1016/j.chemosphere.2018.08.139

103. Raudenska M, Dvorakova V, Pacal L, Chalasova K, Kratochvilova M, Gumulec J, Ruttikay-Nedecky B, Zitka O, Kankova K, Adam V, Masarik M. Levels of heavy metals and their binding protein metallothionein in type 2 diabetics with kidney disease. J Biochem Mol Toxicol 2017;31:e21891. doi: 10.1002/jbt.21891

104. Adams SV, Barrick B, Christopher EP, Shafer MM, Makar KW, Song X, Lampe JW, Vilchis H, Ulery A, Newcomb PA. Genetic variation in metallothionein and metal-regulatory transcription factor 1 in relation to urinary cadmium, copper, and zinc. Toxicol Appl Pharmacol 2015;289:381-8. doi: 10.1016/j.taap.2015.10.024

105. Yang CC, Chuang CS, Lin CI, Wang CL, Huang YC, Chuang HY. The association of the blood lead level and serum lipid concentrations may be modified by the genetic combination of the metallothionein 2A polymorphisms rs10636 GC and rs28366003 AA. J Clin Lipidol 2017;11:234-41. doi: 10.1016/j.jclnl.2016.12.010

106. Wang Y, Goodrich JM, Gillespie B, Werner R, Basu N, Franzblau A. An investigation of modifying effects of metallothionein single-nucleotide polymorphisms on the association between mercury exposure and biomarker levels. Environ Health Perspect 2012;120:530-4. doi: 10.1590/S0004-2803.201900000-69

107. Pavić M, Turčić P, Ljubojević M. Forgotten partners and metallothionein genetic polymorphism in old patients with type 2 diabetes and atherosclerosis: relationship with inflammation (IL-6) and zinc. Biogerontology 2005;6:407-13. doi: 10.1007/s10522-005-4907-y

108. Woods JS, Heyer NJ, Russo JE, Martin MD, Pillai PB, Farin FM. Modification of neurobehavioral effects of mercury by genetic polymorphisms of metallothionein in children. Neurotoxicol Teratol 2013;39:36-44. doi: 10.1016/j.ntt.2013.06.004

109. Yang XY, Sun JH, Ke HY, Chen YJ, Xu M, Luo GH. Metallothionein 2A genetic polymorphism and its correlation to coronary heart disease. Eur Rev Med Pharmacol Sci 2014;18:3747-53. PMID: 25555662

110. Chen X, Lei L, Tian L, Zhu G, Jin T. Bone mineral density and polymorphisms in metallothionein 1A and 2A in a Chinese population exposed to cadmium. Sci Total Environ 2012;423:12-7. doi: 10.1016/j.scitotenv.2012.02.020

111. Fernandes KC, Martins AC Jr, Oliveira AA, Antunes LM, Cólus IM, Barbosa F Jr, Barcelos GR. Polymorphism of metallothionein 2A modifies lead body burden in workers chronically exposed to the metal. Public Health Genomics 2016;19:47-52. doi: 10.1159/000441713

112. Gundacker C, Wittmann KJ, Kukuckova M, Komarnicki G, Hikkel I, Gencik M. Genetic background of lead and mercury metabolism in a group of medical students in Austria. Environ Res 2009;109:786-96. doi: 10.1016/j.envres.2009.05.003

113. Ganguly S, Taioi E, Baranski B, Cohen B, Toniolo P, Garte SJ. Human metallothionein gene expression determined by quantitative reverse transcription-polymerase chain reaction as a biomarker of cadmium exposure. Cancer Epidemiol Biomarkers Prev 1996;5:297-301. PMID: 8722222

114. Lu J, Jin T, Nordberg G, Nordberg M. Metallothionein gene expression in peripheral lymphocytes from cadmium-exposed workers. Cell Stress Chaperones 2001;6:97-104. doi: 10.1379/1466-1268(2001)006<0097

115. Chen L, Jin T, Huang B, Nordberg G, Nordberg M. Critical exposure level of cadmium for elevated urinary metallothionein - An occupational population study in China. Toxicol Appl Pharmacol 2006;215:93-9. doi: 10.1016/j.taap.2006.01.013

116. Huang ZY, Zhang Q, Chen J, Zhuang ZX, Wang XR. Bioaccumulation of metals and induction of metallothioneins in selected tissues of common carp (Cyprinus carpio L.) co-exposed to cadmium, mercury and lead. Appl Organomet Chem 2007;21:101-7. doi: 10.1002/aoc.1167

117. Figueira E, Branco D, Antunes SC, Gonçalves F, Freitas R. Are metallothioneins equally good biomarkers of metal and oxidative stress? Ecotoxicol Environ Saf 2012;84:185-90. doi: 10.1016/j.ecoenv.2012.07.012
Polimorfizmi gena metalotioneina 2A u ljudi i njihova povezanost s bolestima i razinama elemenata u tragu

Metalotioneini u ljudskom organizmu povezana su skupina niskomolekularnih unutarstaničnih proteina, čiju sintezu mogu pobuditi esencijalni elementi, ponajprije Zn i Cu, toksični elementi i druge kemijske tvari te razni uvjeti koji izazivaju stres u organizmu. Od četiriju poznatih izoformi metalotioneina u ljudskome tijelu, najčešći oblik je MT2. Izražaj metalotioneina kodira skupina povezanih gena i na to mogu utjecati polimorfizmi pojedinačnoga nukleotida u tim genima. Do sada su otkrivena 24 jednonukleotidna polimorfizma u području gena MT2A, s incidencijom od oko 1 % u raznim skupinama stanovništva, a za tri je takva polimorfizma utvrđeno da bi mogli utjecati na fiziološke i patofiziološke procese.

U preglednom radu prikazane su dosadašnje spoznaje o trima jednonukleotidnim polimorfizma u genu MT2A i njihove povezanosti s koncentracijama elemenata u zdravih i bolesnih osoba. Najviše istraživan jednonukleotidni polimorfizam gena MT2A do sada bio je rs28366003 (MT2A −5A/G) i za njega su pokazane povezanosti s duljinom života, nekoliko tipova karcinoma (u dojki, prostati, grkljanu i sinusima) i s bubrežnim bolestima. Za drugi najviše istraživani polimorfizam rs10636 (MT2A +838G/C) nađene su povezanosti s rakom dojke, bolestima srca i krvnih žila te dijabetesom tipa 2. Za obje te vrste polimorfizma nađene su povezanosti i s koncentracijama metala i polumetala u organizmu. U samo nekoliko istraživanja ispitivana je povezanost polimorfizma rs1610216 (MT2A −209A/G) sa dijabetesom tipa 2, kardiomiopatijom, hiperglikemijom i koncentracijama Zn. Podatci u literaturi upućuju na moguću praktičnu primjenu nalaza koncentracija metalotioneina i genskih polimorfizama MT2A kao bioloških pokazatelja izloženosti metalima i kliničkih pokazatelja brojnih kroničnih bolesti. Za tu svrhu potrebna su daljnja opsežna istraživanja u velikom broju dobro definiranih skupina ispitanika (nekoliko stotina ili tisuća), uzimajući u obzir druge čimbenike, kao što su okolišna izloženost, osobne životne navike te genetičke i epigenetičke značajke.

KLJUČNE RIJEČI: jednonukleotidni polimorfizam; metali; polumetali; rs28366003; rs10636; rs1610216