A COUNTEREXAMPLE TO A CONJECTURE ABOUT POSITIVE SCALAR CURVATURE

DANIEL PAPE AND THOMAS SCHICK

(Communicated by Daniel Ruberman)

Abstract. In his article in Proc. Amer. Math. Soc. 138 (2010), no. 5, 1621–1632, S. Chang conjectures that a closed smooth manifold M with non-spin universal covering admits a metric of positive scalar curvature if and only if a certain homological condition is satisfied. We present a counterexample to this conjecture, based on the counterexample to the unstable Gromov-Lawson-Rosenberg conjecture given in the second author’s article in Topology 37 (1998), no. 6, 1165–1168.

1. The Result

We give a counterexample to the following conjecture stated by Chang as [1, Conjecture 1], and attributed there to Rosenberg and Weinberger.

Conjecture 1.1. Suppose that M is a compact oriented manifold such that its universal covering does not admit a spin structure, with fundamental group Γ and of dimension $n \geq 5$. Let $f : M \to B\Gamma$ be the composition of the classifying map $c : M \to B\Gamma$ of the universal covering of M, and the natural map $B\Gamma \to B\Gamma$. Denote by $[M]$ the fundamental class of M in $H_n(M)$. Then M admits a metric of positive scalar curvature if and only if $f_*[M]$ vanishes in $H_n(B\Gamma)$.

Here $B\Gamma$ is the classifying space for the group Γ and $B\Gamma$ is the quotient of the universal space for proper actions, i.e. the quotient EG/Γ, where EG is a proper Γ-space such that for every finite subgroup $F \leq \Gamma$ the fixed point set EG^F is contractible (in particular, non-empty), but such that $EG^H = \emptyset$ for all other subgroups $H \leq \Gamma$, compare [1, p. 1623]. Our counterexample is based on the counterexample to the Gromov-Lawson-Rosenberg conjecture given in [5]. There, a 5-dimensional connected closed spin manifold M with fundamental group $\Gamma = \mathbb{Z}^4 \oplus \mathbb{Z}/3$ is constructed, whose Rosenberg index vanishes but which nevertheless does not admit a metric of positive scalar curvature. By taking the connected sum of this manifold M with a simply connected non-spin manifold N, we obtain a totally non-spin manifold X which has the same fundamental group as M. One has $B\Gamma = T^4 \times B\mathbb{Z}/3$ and analogously $B\Gamma = T^4$ by [1] (1) and (4), p. 1624. In particular, $H_n(B\Gamma) = 0$ for $n \geq 5$, so that the condition on $f_*[X]$ from Conjecture 1.1 is satisfied in the

Received by the editors August 9, 2013 and, in revised form, June 14, 2013.

2010 Mathematics Subject Classification. Primary 57R65.

The first author was supported by the German Research Foundation (DFG) through the Research Training Group 1493 “Mathematical structures in modern quantum physics”.

The second author was partially funded by the Courant Research Center “Higher order structures in Mathematics” within the German initiative of excellence.

©2015 American Mathematical Society
case at hand. The argument in [5] relies on the following observation and we will also make significant use of this result.

Lemma 1.2. Let X be a topological space and set for $n \in \mathbb{N}, n \geq 2$

$$H^+_n(X) := \{ f_*[M] \in H_n(X) ; f : M^n \to X \text{ and } M \text{ admits a metric with scal} > 0 \}.$$ Then for any class $u \in H^1(X)$ the map $u \cap : H_n(X) \to H_{n-1}(X)$, $x \mapsto u \cap x$

maps $H^+_n(X)$ into $H^+_{n-1}(X)$ if $3 \leq n \leq 8$.

Proof. See [5, Corollary 1.5] for $3 \leq n \leq 7$ and [3, Theorem 4.4] for $n = 8$. \hfill \Box

Our result reads now as follows.

Proposition 1.3. Let M be the manifold constructed in [5] (we recall its construction in Section 2) and N a simply connected manifold of dimension 5 which admits no spin structure. Then the manifold $X := M \# N$ has non-spin universal covering and admits no metric with positive scalar curvature.

This result is part of the first named author’s thesis [4].

2. The Proof

Proof of Proposition 1.3. First of all, if X is constructed as above, we have already noted that it has non-spin universal covering. To obtain an explicit simply connected non-spin 5-manifold N, one can start with $\mathbb{C}P^2 \times S^1$, which is non-spin as $\mathbb{C}P^2$ is, and then do surgery on the embedded S^1 to obtain the simply connected N. Because this surgery does not touch the embedded $\mathbb{C}P^1$ with its non-spin normal bundle, the resulting N remains a non-spin manifold. In order to see that X admits no metric of positive scalar curvature, we use the same argument as in [5].

To begin with, we choose the model $BG = T^4 \times B\mathbb{Z}/3$. Recall,

$$H_n(T^d) \cong \mathbb{Z}^d(n) , \quad d(n) = \left(\begin{array}{c} d \\ n \end{array} \right)$$

and

$$H_n(B\mathbb{Z}/k\mathbb{Z}) \cong \begin{cases} \mathbb{Z}, & n = 0; \\ \mathbb{Z}/k\mathbb{Z}, & n \text{ odd}; \\ 0, & n \text{ even}. \end{cases}$$

Together with the Künneth formula this gives

$$H_k(B\Gamma) = \bigoplus_{p_1 + \cdots + p_5 = k} H_{p_1}(X_1) \otimes \cdots \otimes H_{p_5}(X_5).$$

Here we have written $T^4 = X_1 \times \cdots \times X_4$ as product of four copies of S^1, and X_5 for $B\mathbb{Z}/3$.

Fix a basepoint $x = (x_1, \ldots, x_5) \in B\Gamma$ and let $p : S^1 \to B\mathbb{Z}/3$ be a map which induces an epimorphism on π_1 as in [5], as well as $f_j : X_j \to B\Gamma$ the map which includes X_j identically and basepoint-preserving. We denote by $[*] \in H_0(B\Gamma)$ the canonical generator. Next, choose for each $1 \leq j \leq 4$ generators $g_j \in H_1(X_j)$ and elements $g^*_j \in H^1(X_j)$ with $\langle g^*_j, g_j \rangle = 1$, and let $g_5 \in H_1(X_5)$ be $p_*[S^1]$ where $[S^1]$
is the standard generator for $H_1(S^1)$. Introduce the elements $v_j := (f_j)_*(g_j) \in H_1(B\Gamma)$ for $j = 1, \ldots, 5$ as well as $a_1, \ldots, a_4 \in H^1(B\Gamma)$ with

$$a_1 := (pr_1)^*(g_1^*) \times 1 \times 1 \times 1,$$
$$a_2 := 1 \times (pr_2)^*(g_2^*) \times 1 \times 1 \times 1,$$
$$a_3 := 1 \times 1 \times (pr_3)^*(g_3^*) \times 1 \times 1,$$
$$a_4 := 1 \times 1 \times 1 \times (pr_4)^*(g_4^*) \times 1.$$

Finally, set

$$w := v_1 \times \cdots \times v_4 \times v_5 \in H_5(B\Gamma)$$

and

$$z := [\ast] \times [\ast] \times [\ast] \times v_4 \times v_5 \in H_2(B\Gamma).$$

By the Künneth formula, $w \neq 0$ and $z \neq 0$. Furthermore,

$$(*) \quad z = a_1 \cap (a_2 \cap (a_3 \cap w)) \in H_2(B\Gamma).$$

For example one has

$$a_3 \cap w = \left((1 \times 1 \times (pr_3)^*(g_3^*)) \times (1 \times 1) \times \left((v_1 \times v_2 \times v_3) \times (v_4 \times v_5)\right)\right)$$

$$= \left((1 \times 1 \times (pr_3)^*(g_3^*)) \cap (v_1 \times v_2 \times v_3) \times (1 \times 1) \cap (v_4 \times v_5)\right)$$

$$= \left((1 \cap v_1) \times (1 \cap v_2) \times (pr_3)^*(g_3^*) \cap v_3\right) \times (1 \cap v_4) \times (1 \cap v_5)$$

$$= v_1 \times v_2 \times (pr_3)^*(g_3^*) \times v_3 \times v_4 \times v_5$$

$$= v_1 \times v_2 \times [\ast] \times v_4 \times v_5,$$

because of $(pr_3)^*(g_3^*) \cap (pr_3)^*(g_3) = (g_3^*, g_3)[\ast]$. Let $f : T^5 \to T^4 \times B\mathbb{Z}/3$ be given by $f = (f_1 \times f_2 \times f_3 \times f_4) \times (f_5 \circ p)$ and choose $(g_1 \times \cdots \times g_4) \times [S^1] =: [T^5]$ as fundamental class for T^5. Then $f_*[T^5] = w$. As in [5] one can construct a bordism in $\Omega_5^{\text{bin}}(B\Gamma)$ from f to a map $g : M \to B\Gamma$ which induces an isomorphism of fundamental groups. This defines the manifold M. Now let N be any simply connected closed non-spin manifold of dimension 5 and set $X := M \# N$.

Finally, assume that X admits a metric of positive scalar curvature. Then consider the map $h : M \sqcup N \to B\Gamma$ on the disjoint union of M and N, which equals g on M and sends N to a point. One has $h_*[M \sqcup N] = g_*[M] = w$ and since $M \sqcup N$ is bordant to $M \# N$, it follows that $w \in H_5^+(X)$. But then it follows from [6] as well as Lemma [1,2] that w is mapped to z under the following composition

$$H_5^+(B\Gamma) \xrightarrow{a_1 \cap \cdot} H_4^+(B\Gamma) \xrightarrow{a_2 \cap \cdot} H_3^+(B\Gamma) \xrightarrow{a_3 \cap \cdot} H_2^+(B\Gamma).$$

Hence $z = k_*[S^2]$ for some $k : S^2 \to B\Gamma$ since S^2 is the only orientable surface which admits a metric of positive scalar curvature. On the other hand, $\pi_2(B\Gamma) = 0$ so that k is null homotopic. This implies $z = 0$, which is a contradiction. \qed

Remark 2.1. The method described in this note produces a counterexample to Conjecture 1.1 with fundamental group Γ whenever Γ satisfies the following homological conditions:

- for $5 \leq m \leq 8$ there is a homology class $[M] \in H_m(B\Gamma; \mathbb{Z})$ represented by an m-dimensional closed oriented manifold M (with surgeries one can then arrange that $\pi_1(M) = \Gamma$)
• there are classes $\alpha_1, \ldots, \alpha_{m-2} \in H^1(B\Gamma; \mathbb{Z})$ such that $\alpha_1 \cap \cdots \cap (\alpha_{m-2} \cap [M]) \neq 0 \in H_2(B\Gamma; \mathbb{Z})$
• under the map $H_m(B\Gamma) \to H_m(B\Gamma)$ the class $[M]$ is sent to 0.

Note that this condition is similar, indeed much easier than the general homological condition for counterexamples to the Gromov-Lawson-Rosenberg condition derived in [2]. Unfortunately, its structure requires the group Γ to contain non-trivial torsion, to allow for a kernel of the map $H_*(B\Gamma) \to H_*(B\Gamma)$ (in contrast to [2]).

The assumption on $H^1(B\Gamma; \mathbb{Z})$ we have to make is very strong; it has to have rank at least $m-2$. In particular, the method tells us nothing about finite groups. Indeed, whether metrics with positive scalar curvature exist on general manifolds with finite fundamental group $(\mathbb{Z}/p\mathbb{Z})^k$ for p odd is completely open (in the totally non-spin case as well as in the spin case) and seems the first obstacle for a full understanding of this problem. Progress in this direction will require a completely new set of ideas.

References

[1] Stanley Chang, Positive scalar curvature of totally nonspin manifolds, Proc. Amer. Math. Soc. 138 (2010), no. 5, 1621–1632, DOI 10.1090/S0002-9939-09-09483-0. MR2587446 (2011b:53075)
[2] William Dwyer, Thomas Schick, and Stephan Stolz, Remarks on a conjecture of Gromov and Lawson, High-dimensional manifold topology, World Sci. Publ., River Edge, NJ, 2003, pp. 159–176, DOI 10.1142/9789812704443_0008. MR2048721 (2005f:53043)
[3] Michael Joachim and Thomas Schick, Positive and negative results concerning the Gromov-Lawson-Rosenberg conjecture, Geometry and topology: Aarhus (1998), Contemp. Math., vol. 258, Amer. Math. Soc., Providence, RI, 2000, pp. 213–226, DOI 10.1090/conm/258/04066. MR1778107 (2002g:53079)
[4] Daniel Pape, Index theory and positive scalar curvature, Ph.D. thesis, Georg-August-Universität of Göttingen, 2011.
[5] Thomas Schick, A counterexample to the (unstable) Gromov-Lawson-Rosenberg conjecture, Topology 37 (1998), no. 6, 1165–1168, DOI 10.1016/S0040-9383(97)00082-7. MR1632971 (99j:53049)