GLOBAL SYMPLECTIC COORDINATES ON GRADIENT KÄHLER–RICCI SOLITONS

ANDREA LOI, MICHELA ZEDDA

Abstract. A classical result of D. McDuff [14] asserts that a simply-connected complete Kähler manifold \((M,g,\omega)\) with non positive sectional curvature admits global symplectic coordinates through a symplectomorphism \(\Psi: M \rightarrow \mathbb{R}^{2n}\) (where \(n\) is the complex dimension of \(M\)), satisfying the following property (proved by E. Ciriza in [4]): the image \(\Psi(T)\) of any complex totally geodesic submanifold \(T \subset M\) through the point \(p\) such that \(\Psi(p) = 0\), is a complex linear subspace of \(\mathbb{C}^n \simeq \mathbb{R}^{2n}\). The aim of this paper is to exhibit, for all positive integers \(n\), examples of \(n\)-dimensional complete Kähler manifolds with non-negative sectional curvature globally symplectomorphic to \(\mathbb{R}^{2n}\) through a symplectomorphism satisfying Ciriza’s property.

1. Introduction

D. McDuff [14] (see also [1]) proved a global version of Darboux theorem for \(n\)-dimensional complete and simply-connected Kähler manifolds with nonpositive sectional curvature. She shows that there exists a diffeomorphism \(\Psi: M \rightarrow \mathbb{R}^{2n} = \mathbb{C}^n\) satisfying and \(\Psi^*(\omega_0) = \omega\), where \(\omega_0 = \sum_{j=1}^{n} dx_j \wedge dy_j\) is the standard symplectic form on \(\mathbb{R}^{2n}\). The interest for these kind of questions comes, for example, after Gromov’s discovery [9] of the existence of exotic symplectic structures on \(\mathbb{R}^{2n}\). E. Ciriza [4] (see also [3] and [5]) proves that the image \(\Psi(T)\) of any complete complex and totally geodesic submanifold \(T \subset M\) passing through the point \(p\) such that \(\Psi(p) = 0\), is a complex linear subspace of \(\mathbb{C}^n\). A global symplectomorphism satisfying this property has been constructed by the first author and A. J. Di Scala [7] (see also [8]) for Hermitian symmetric spaces of noncompact type and by the authors of the present paper for the Calabi’s inhomogeneous Kähler–Einstein metric on tubular domains (cfr. [12]). It is then natural and interesting to investigate the existence of positively curved complete Kähler manifolds globally symplectomorphic to \(\mathbb{R}^{2n}\) through a symplectomorphic satisfying the above Ciriza’s property. In this paper we construct explicit
global symplectic coordinates for the positively curved complete gradient Kähler–Ricci solitons built by H. D. Cao in [2]. Moreover, we exhibit, for all positive integers \(n \), an example of gradient Kähler–Ricci solitons (the product of \(n \) copies of the Cigar soliton) where Ciriza’s property holds true. Our results are summarized in the following two theorems (see next section for details and terminology).

Theorem 1. A gradient Kähler–Ricci soliton \((C^n, \omega_{RS})\) is globally symplectomorph to \((\mathbb{R}^{2n}, \omega_0)\).

Theorem 2. Let \((C^n, \omega_{C,n})\) be the product of \(n \) copies of the Cigar soliton. Then there exists a symplectomorphism \(\Psi_{C,n} : (C^n, \omega_{C,n}) \to (\mathbb{R}^{2n}, \omega_0) \), with \(\Psi_{C,n}(0) = 0 \), taking complete complex totally geodesic submanifolds through the origin to complex linear subspaces of \(C^n \cong \mathbb{R}^{2n} \).

The paper consists of two other sections containing respectively the basic material on gradient Kähler–Ricci solitons and the proofs of the main results.

2. Gradient Kähler–Ricci solitons

We recall here what we need about the gradient Kähler–Ricci solitons described by H-D. Cao in [2] (to whom we refer for references and further details). Let \(g_{RS} \) be the Kähler metric on \(C^n \) generated by the radial Kähler potential \(\Phi(z, \bar{z}) = u(t) \), where for all \(t \in (-\infty, +\infty) \), \(u \) is a smooth function of \(t = \log(||z||^2) \) and as \(t \to -\infty \) it has an expansion:

\[
u(t) = a_0 + a_1 e^t + a_2 e^{2t} + \ldots, \quad a_1 = 1.
\]

(1)

Denote by \(\omega_{RS} = \frac{i}{2} \partial \bar{\partial} \Phi \) the Kähler form associated to \(g_{RS} \). If \(u \) satisfies the equation:

\[(u')^{n-1} u'' e^u = e^{nt},\]

then the conditions:

\[u'(t) > 0, \quad u''(t) > 0, \quad \forall t \in (-\infty, +\infty),\]

(2)

\[
\lim_{t \to +\infty} \frac{u'(t)}{t} = n, \quad \lim_{t \to +\infty} u''(t) = n.
\]

(3)

are fulfilled and \((C^n, \omega_{RS})\) is a gradient Kähler–Ricci soliton. The metric \(g_{RS} \) is complete and positively curved and for \(n = 1 \) one recovers the Cigar metric on \(C \) whose associated Kähler form reads:

\[
\omega_C = \frac{dz \wedge d\bar{z}}{1 + ||z||^2},
\]

which was introduced by Hamilton in [10] as first example of Kähler–Ricci soliton on non-compact manifolds. Observe that a Kähler potential for \(\omega_C \) is given by (see also [15]):

\[
\Phi_C = \int_0^{||z||} \log(1 + s^2) \frac{ds}{s}.
\]
Furthermore, in this case the Riemannian curvature reads:

$$R = \frac{1}{(1 + |z|^2)^3}. \quad (4)$$

It is interesting observing that the Kähler metric $\omega_{C,n}$ on $\mathbb{C}^n = \frac{i}{2} \partial \bar{\partial} \Phi_{C,n}$ defined as product of n copies of Cigar metric ω_C, satisfies $\Phi_{C,n} = \Phi_C \oplus \cdots \oplus \Phi_C$ and it is still a complete and positively curved (i.e. with non-negative sectional curvature) gradient Kähler–Ricci soliton, namely it satisfies (1), (2) and (3) above. In particular its Riemannian tensor satisfies $R_{ijk\ell} = 0$ whenever one of the indexes is different from the others and by (4) it is easy to see that the nonvanishing components are given by:

$$R_{jjjj} = \frac{1}{(1 + |z|^2)^3}. \quad (5)$$

3. PROOF OF THE MAIN RESULTS

In [13] the first author of the present paper, jointly with F. Zuddas, proved the following result on the existence of a symplectomorphism between a rotation invariant Kähler manifold of complex dimension n and $(\mathbb{R}^{2n}, \omega_0)$. For the reader’s convenience, we summarize here that result and the proof in the case when the manifold is \mathbb{C}^n. This will be the main ingredient in the proof of our main results.

Lemma 3. Let $\omega_\Phi = \frac{i}{2} \partial \bar{\partial} \Phi$ be a rotation invariant Kähler form on \mathbb{C}^n i.e. the Kähler potential only depends on $|z_j|^2$, $j = 1, \ldots, n$.\footnote{Notice that the rotation invariant condition on the potential Φ is more general than the radial one which requires Φ depending only on $|z_1|^2 + \cdots + |z_n|^2$.} If

$$\frac{\partial \Phi}{\partial |z_k|^2} \geq 0, \quad k = 1, \ldots, n. \quad (6)$$

then the map:

$$\Psi : (M, \omega_\Phi) \to (\mathbb{C}^n, \omega_0), \quad z = (z_1, \ldots, z_n) \mapsto (\psi_1(z)z_1, \ldots, \psi_n(z)z_n),$$

where

$$\psi_j = \sqrt{\frac{\partial \Phi}{\partial |z_j|^2}}, \quad j = 1, \ldots, n,$

is a symplectic immersion. If in addition:

$$\lim_{z \to +\infty} \sum_{j=1}^n \frac{\partial \Phi}{\partial |z_j|^2} |z_j|^2 = +\infty, \quad (7)$$

then Ψ is a global symplectomorphism.
Proof. Assume condition (6) holds true. Let us prove first that $F^*\omega_0 = \omega$. We have:

$$
\begin{align*}
\Psi^*\omega_0 &= \frac{i}{2} \sum_{j=1}^{n} d\Psi_j \wedge d\bar{\Psi}_j \\
&= \sum_{j=1}^{n} \left(\frac{\partial \Psi_j}{\partial z_j} dz_j + \frac{\partial \Psi_j}{\partial \bar{z}_j} d\bar{z}_j \right) \wedge \left(\frac{\partial \bar{\Psi}_j}{\partial z_j} dz_j + \frac{\partial \bar{\Psi}_j}{\partial \bar{z}_j} d\bar{z}_j \right) \\
&= \sum_{j,k=1}^{n} \left(\left| \frac{\partial \Psi_j}{\partial z_j} \right|^2 - \left| \frac{\partial \Psi_j}{\partial \bar{z}_j} \right|^2 \right) dz_j \wedge d\bar{z}_j
\end{align*}
$$

Since

$$
\frac{\partial \Psi_j}{\partial z_j} = \frac{\partial \psi_j}{\partial z_j} z_j + \psi_j, \quad \frac{\partial \Psi_j}{\partial \bar{z}_j} = \frac{\partial \psi_j}{\partial \bar{z}_j} \bar{z}_j,
$$

and

$$
\frac{\partial \psi_j}{\partial z_j} = \frac{1}{2} \psi_j^{-1} \left(\frac{\partial^2 \Phi}{\partial |z_j|^4} \right) z_j,
$$

it follows:

$$
\begin{align*}
\Psi^*\omega_0 &= \sum_{j=1}^{n} \left(\left| \frac{\partial \psi_j}{\partial z_j} z_j + \psi_j \right|^2 - \left| \frac{\partial \psi_j}{\partial \bar{z}_j} \bar{z}_j \right|^2 \right) dz_j \wedge d\bar{z}_j \\
&= \sum_{j=1}^{n} \left(\left| \frac{\partial \psi_j}{\partial z_j} z_j + \frac{\partial \psi_j}{\partial \bar{z}_j} \bar{z}_j \right| \bar{z}_j + \psi_j^2 \right) dz_j \wedge d\bar{z}_j \\
&= \sum_{j=1}^{n} \left(\left(\frac{\partial^2 \Phi}{\partial |z_j|^4} \right) |z_j|^2 + \left(\frac{\partial \Phi}{\partial |z_j|^2} \right) \right) dz_j \wedge d\bar{z}_j \\
&= \sum_{j=1}^{n} \frac{\partial^2 \Phi}{\partial z_j \partial \bar{z}_j} dz_j \wedge d\bar{z}_j.
\end{align*}
$$

Observe now that since ω and ω_0 are non-degenerate, it follows by the inverse function theorem that Ψ is a local diffeomorphism. If in addition condition (7) holds true, then Ψ is a proper map and hence a global diffeomorphism.

We are now in the position of proving Theorem 1.

Proof of Theorem 1. Let $\Phi(z, \bar{z}) = u(t)$, where $u(t)$ is given by (1). Then for all $j = 1, \ldots, n$

$$
\frac{\partial \Phi}{\partial |z_j|^2} = \frac{\partial \Phi}{\partial ||z||^2} = \frac{u'(\log(||z||^2))}{||z||^2},
$$

which is greater than zero for all $||z||^2 \neq 0$ by (2), and evaluated at $||z||^2 = 0$ gives the value 1 by (5). Notice now that by the first of the limit conditions
given in \([3]\) it follows that condition \([7]\) in Lemma \([3]\) holds true. Therefore by Lemma \([3]\) the map:

\[
F : (\mathbb{C}^n, g_{RS}) \rightarrow (\mathbb{R}^{2n}, g_0), \quad z = (z_1, \ldots, z_n) \mapsto \frac{u'(\log(||z||^2))}{||z||^2}(z_1, \ldots, z_n),
\]

is the desired global symplectomorphism. \(\square\)

In order to prove Theorem \([2]\) we need the following lemma which classifies all totally geodesic submanifolds of \((\mathbb{C}^n, \omega_{C,n})\) through the origin.

Lemma 4. Let \(S\) be a totally geodesic complex submanifold (of complex dimension \(k\)) of \((\mathbb{C}^n, \omega_{C,n})\). Then, up to unitary transformation of \(\mathbb{C}^n\), \(S = (\mathbb{C}^k, \omega_{C,k})\).

Proof. Let us first prove the statement for \(n = 2\). For \(k = 0, 2\) there is nothing to prove, thus fix \(k = 1\). Let

\[
f : (S, \tilde{\omega}) \rightarrow (\mathbb{C}^2, \omega_{C,2}), \quad f(z) = (f_1(z), f_2(z)).
\]

be a totally geodesic embedding of a 1-dimensional complex manifold \((S, \tilde{\omega})\) into \((\mathbb{C}^2, \omega_{C,2})\). By \(\tilde{\omega} = f^* (\omega_{C,2})\) we get:

\[
\tilde{\omega} = \frac{i}{2} \left(\frac{1}{1 + |f_1(z)|^2} \left| \frac{\partial f_1}{\partial z} \right|^2 + \frac{1}{1 + |f_2(z)|^2} \left| \frac{\partial f_2}{\partial z} \right|^2 \right) dz \wedge d\bar{z}. \quad (8)
\]

Let \(\tilde{R}, R_C\) be the curvature tensor of \((S, \tilde{\omega})\) and \((\mathbb{C}^2, \omega_C)\) respectively. Since \((S, \tilde{\omega})\) is totally geodesic in \((\mathbb{C}^2, \omega_C)\) we have

\[
\tilde{R}(X, JX, X, JX) = R_C(X, JX, X, JX)
\]

for all the vector fields \(X\) on \(S\) (see e.g. \([11]\) p. 176). Taking \(X = \partial / \partial z\), we have:

\[
\tilde{R} \left(\frac{\partial}{\partial z}, \frac{\partial}{\partial z'}, \frac{\partial}{\partial z}, \frac{\partial}{\partial z'} \right) = -\frac{\partial^2 \tilde{g}}{\partial z \partial \bar{z}} + \tilde{g}^{-1}(z) \left| \frac{\partial \tilde{g}(z)}{\partial z} \right|^2,
\]

where \(\tilde{g}\) is the Kähler metric associated to \(\tilde{\omega}\), i.e.

\[
\tilde{g} = \left| \frac{\partial f_1}{\partial z} \right|^2 \frac{1}{1 + |f_1(z)|^2} + \left| \frac{\partial f_2}{\partial z} \right|^2 \frac{1}{1 + |f_2(z)|^2}.
\]

Further, since the vector field \(\frac{\partial}{\partial z}\) corresponds through \(df\) to \(\frac{\partial f_1}{\partial z} \frac{\partial}{\partial z} + \frac{\partial f_2}{\partial z} \frac{\partial}{\partial z'}\), by \([5]\) we get:

\[
R_C \left(\frac{\partial}{\partial z}, \frac{\partial}{\partial z'}, \frac{\partial}{\partial z}, \frac{\partial}{\partial z'} \right) = \left| \frac{\partial f_1}{\partial z} \right|^4 \frac{1}{(1 + |f_1(z)|^2)^3} + \left| \frac{\partial f_2}{\partial z} \right|^4 \frac{1}{(1 + |f_2(z)|^2)^3}.
\]

Since

\[
\frac{\partial \tilde{g}}{\partial z} = \sum_{j=1}^{2} \left(\frac{2}{1 + |f_j(z)|^2} \frac{\partial f_j}{\partial z} \frac{\partial^2 f_j}{\partial z^2} - \left| \frac{\partial f_j}{\partial z} \right|^2 \frac{\tilde{j}_j}{(1 + |f_j(z)|^2)^2} \frac{\partial f_j}{\partial z} \right),
\]

...
\[\frac{\partial^2 \tilde{g}}{\partial z \partial \bar{z}} = \sum_{j=1}^{2} \left[\left| \frac{\partial f_j}{\partial z} \right|^4 \frac{2 |f_j|^2}{(1 + |f_j(z)|^2)^3} + \left| \frac{\partial^2 f_j}{\partial z^2} \right|^2 \frac{1}{1 + |f_j(z)|^2} + \frac{1}{(1 + |f_j|^2)^2} \left(\tilde{f}_j \left(\frac{\partial f_j}{\partial z} \right)^2 \frac{\partial^2 f_j}{\partial z^2} + \left| \frac{\partial f_j}{\partial z} \right|^4 + f_j \left(\frac{\partial f_j}{\partial z} \right)^2 \frac{\partial^2 f_j}{\partial z^2} \right) \right] \]

after a long but straightforward computation, we get that \(\tilde{R} \left(\frac{\partial}{\partial z}, \frac{\partial}{\partial \bar{z}}, \frac{\partial}{\partial z}, \frac{\partial}{\partial \bar{z}} \right) - RC \left(\frac{\partial}{\partial z}, \frac{\partial}{\partial \bar{z}}, \frac{\partial}{\partial z}, \frac{\partial}{\partial \bar{z}} \right)\) assumes the form:

\[
-|A(f_1, f_2)|^2 \left(\frac{\partial f_1}{\partial z} \right)^2 (1 + |f_2|^2) + \left| \frac{\partial f_2}{\partial z} \right|^2 (1 + |f_1|^2) \right) (1 + |f_1|^2)^2 (1 + |f_2|^2)^2
\]

where

\[A(f_1, f_2) = \left(\frac{\partial^2 f_2}{\partial z^2} \frac{\partial f_1}{\partial z} - \frac{\partial^2 f_1}{\partial z^2} \frac{\partial f_2}{\partial z} \right) (1 + |f_1|^2)(1 + |f_2|^2) + \left(\frac{\partial f_1}{\partial z} \right)^2 \frac{\partial f_2}{\partial z} \tilde{f}_1 (1 + |f_2|^2) - \left(\frac{\partial f_2}{\partial z} \right)^2 \frac{\partial f_1}{\partial z} \tilde{f}_2 (1 + |f_1|^2).\]

Thus, \(\tilde{R} \left(\frac{\partial}{\partial z}, \frac{\partial}{\partial \bar{z}}, \frac{\partial}{\partial z}, \frac{\partial}{\partial \bar{z}} \right) - RC \left(\frac{\partial}{\partial z}, \frac{\partial}{\partial \bar{z}}, \frac{\partial}{\partial z}, \frac{\partial}{\partial \bar{z}} \right) = 0\) iff \(A(f_1, f_2) = 0\), i.e. iff

\[
\frac{\partial f_1}{\partial z} (1 + |f_2|^2) \left(\frac{\partial^2 f_2}{\partial z^2} (1 + |f_1|^2) + \frac{\partial f_1}{\partial z} \frac{\partial f_2}{\partial z} \tilde{f}_1 \right) = \frac{\partial f_2}{\partial z} (1 + |f_1|^2) \left(\frac{\partial^2 f_1}{\partial z^2} (1 + |f_2|^2) + \frac{\partial f_2}{\partial z} \frac{\partial f_1}{\partial z} \tilde{f}_2 \right),
\]

which is verified whenever one between \(f_1(z)\) and \(f_2(z)\) is constant (and thus zero since we assume \(f(0, 0) = 0\), or when \(f_1(z) = f_2(z)\)). In order to prove that these are the only solutions, write (9) as

\[
\frac{\partial f_1}{\partial z} (1 + |f_2|^2) \frac{\partial}{\partial z} \left(\frac{\partial f_2}{\partial z} (1 + |f_1|^2) \right) = \frac{\partial f_2}{\partial z} (1 + |f_1|^2) \frac{\partial}{\partial z} \left(\frac{\partial f_1}{\partial z} (1 + |f_2|^2) \right).
\]

Assuming \(f_1, f_2\) not constant, it leads to the equation:

\[
\left(\frac{\partial f_1}{\partial z} (1 + |f_2|^2) \right)' \frac{\partial f_2}{\partial z} (1 + |f_1|^2)^2 = 0,
\]

which implies that for some complex constant \(\lambda \neq 0\),

\[
\frac{\partial f_1}{\partial z} (1 + |f_2|^2) = \lambda \frac{\partial f_2}{\partial z} (1 + |f_1|^2),
\]

that is:

\[
\frac{\partial \log f_1}{\partial z} \tilde{f}_1 = \lambda \frac{\partial \log f_2}{\partial z} \tilde{f}_2.
\]

Comparing the antiholomorphic parts we get \(\tilde{f}_1 = \alpha \tilde{f}_2\), for some complex constant \(\alpha\). Substituting in (10) we get:

\[
\alpha (1 + |f_2|^2) = \lambda (1 + |\alpha|^2 |f_2|^2).
\]
Since \(f(0,0) = 0 \), from this last equality follows \(\alpha = \lambda \) and thus immediately \(|\alpha|^2 = 1 \). We have been proven that a totally geodesic submanifold of \((\mathbb{C}^2, \omega_{C,2})\) is, up to unitary transformation of \(\mathbb{C}^2\), \((\mathbb{C}, \omega_C)\) realized either via the map \(z \mapsto (f_1,0)\) (or equivalently \(z \mapsto (0, f_1)\)) or via \(z \mapsto (f_1(z), \alpha f_1(z))\), with \(|\alpha|^2 = 1\).

Assume now \(S\) to be a \(k\)-dimensional complete totally geodesic complex submanifold of \((\mathbb{C}^n, \omega_{C,n})\) and let \(\pi_j, j = 1, \ldots, n\), be the projection into the \(j\)th \(\mathbb{C}\)-factor in \(\mathbb{C}^n\), \(\pi_{jk} j, k = 1, \ldots, n\), the projection into the space \(\mathbb{C}^2\) corresponding to the \(j\)th and \(k\)th \(\mathbb{C}\)-factors. Since \(\pi_j(S), j = 1, \ldots, n\), is totally geodesic into \((\mathbb{C}, \omega_C)\), it is either a point or the whole \(\mathbb{C}\). Thus, up to unitary transformation of the ambient space, we can assume \(S\) to be of the form:

\[
(z_1, \ldots, z_k) \mapsto (0, \ldots, 0, h_{11}(z_1), \ldots, h_{1r}(z_1), \ldots, h_{k1}(z_k), \ldots, h_{ks}(z_k)).
\]

(11)

Since also the projections \(\pi_{jk}(S)\) have to be totally geodesic into \((\mathbb{C}^2, \omega_{C,2})\), by what we have proven for \(n = 2\), we can reduce (11) into the form:

\[
(z_1, \ldots, z_k) \mapsto (0, \ldots, 0, h_1(z_1), \ldots, \alpha_s h_1(z_1), \ldots, h_k(z_k), \ldots, \alpha_s h_k(z_k)),
\]

where \(|\alpha_t|^2 = 1\) for all \(t\) appearing above. Thus, either \(S = (\mathbb{C}^k, \omega_{C,k})\) or \(S\) is a \(k\)-dimensional diagonal, which with a suitable unitary transformation can be written again as \((\mathbb{C}^k, \omega_{C,k})\), and we are done.

Proof of Theorem The existence of a global symplectomorphism \(\Psi_{C,n} : (\mathbb{C}^n, \omega_{C,n}) \to (\mathbb{R}^{2n}, \omega_0)\) is guaranteed again by Lemma \(3\). In fact for all \(j = 1, \ldots, n\)

\[
\frac{\partial}{\partial |z_j|^2} \Phi_{C,n} = 2 \frac{\partial}{\partial |z_j|^2} \sum_{j=1}^n \int_0^{|z_j|} \frac{\log(1 + s^2)}{s} ds = \frac{1}{|z_j|} \frac{d}{d|z_j|} \int_0^{|z_j|} \frac{\log(1 + s^2)}{s} ds = \frac{\log(1 + |z_j|^2)}{|z_j|^2} > 0.
\]

Moreover, condition (7) in Lemma \(3\) is fulfilled by:

\[
\lim_{z \to +\infty} |z_j|^2 \sum_{j=1}^n \frac{\partial \Phi_{C,n}}{\partial |z_j|^2} = \lim_{z \to +\infty} \sum_{j=1}^n \log(1 + |z_j|^2) = +\infty.
\]

Thus by Lemma \(3\) the map:

\[
\Psi_{C,n} : (\mathbb{C}^n, \omega_{C,n}) \to (\mathbb{R}^{2n}, \omega_0), \ z = (z_1, \ldots, z_n) \mapsto (\psi_1(z_1)z_1, \ldots, \psi_n(z_n)z_n),
\]

with

\[
\psi_j = \sqrt{\frac{\log(1 + |z_j|^2)}{|z_j|^2}},
\]

is a global symplectomorphism.
In order to prove the second part of the theorem, let \(S \) be a \(k \) dimensional totally geodesic complex submanifold of \((\mathbb{C}^n, \omega_{\mathbb{C},n})\) through the origin, which by Lemma 4 is given by \((\mathbb{C}^k, \omega_{\mathbb{C},k})\). The image \(\Psi_{\mathbb{C},n}(S) \) is of the form:

\[
\left(\sqrt{\frac{\log(1 + |z_1|^2)}{|z_1|^2}} z_1, \ldots, \sqrt{\frac{\log(1 + |z_k|^2)}{|z_k|^2}} z_k, 0, \ldots, 0 \right) \cong \mathbb{C}^k,
\]

concluding the proof. \(\square \)

References

[1] F. Cuccu and A. Loi, *Global symplectic coordinates on complex domains*, J. Geom. Phys. 56 (2006), no. 2, 247–259.
[2] H. Cao *Existence of Gradient Kähler–Ricci Solitons*, Elliptic and Parabolic Methods in Geometry, AK Peters, 1996.
[3] E. Ciriza, *The local structure of a Liouville vector field*, Amer. J. Math. 115 (1993), 735-747.
[4] E. Ciriza, *On special submanifolds in symplectic geometry*, Diff. Geom. Appl. 3 (1993), 91-99.
[5] E. Ciriza, *Symplectomorphic codimension 1 totally geodesic submanifolds*, Diff. Geom. Appl. 5 (1995), 99-104.
[6] F. Cuccu, A. Loi, *Global symplectic coordinates on complex domains*, J. Geom. Phys. 56 (2006), 247-259.
[7] A. Di Scala, A. Loi, *Symplectic duality of symmetric spaces*, Advances in Mathematics 217 (2008), 2336-2352.
[8] A. Di Scala, A. Loi, G. Roos *The bisymplectomorphism group of a bounded symmetric domain*, Transform. Groups 13 (2008), no. 2, 283–304.
[9] M. Gromov, *Partial differential relations*, Springer–Verlag (1986).
[10] R. S. Hamilton, *The Ricci flow on surfaces*, Mathematics and general relativity (Santa Cruz, CA, 1986), 237–262, Contemp. Math., 71, Amer. Math. Soc., Providence, RI, 1988
[11] S. Kobayashi, K. Nomizu, *Foundations of Differential Geometry*, Vol. 2 (1963), Wiley-Interscience (published 1996 New edition).
[12] A. Loi, M. Zedda, *Calabi’s inhomogeneous Einstein manifold is globally symplectomorphic to \(\mathbb{R}^{2n} \)*, Diff. Geom. and its App. 30 (2012) 145–147.
[13] A. Loi, F. Zuddas, *Symplectic maps of complex domains into complex space forms*, J. Geom. Phys. 58 (2008), 888-899.
[14] D. McDuff, *The symplectic structure of Kähler manifolds of non-positive curvature*, J. Diff. Geometry 28 (1988), 467-475.
[15] O. Suzuki, *Remarks on continuation problems of Calabi’s diastatic functions*, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29 (1982), no. 1, 4549.

Dipartimento di Matematica e Informatica, Università di Cagliari, Via Os-pedale 72, 09124 Cagliari, Italy

E-mail address: loi@unica.it; michela.zedda@gmail.com