Emerging evidence implicating a role for neurexins in neurodegenerative and neuropsychiatric disorders

Katelyn Cuttler1, Maryam Hassan3, Jonathan Carr2,4, Ruben Cloete3 and Soraya Bardien1,4

1Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, and 2Division of Neurology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
3South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
4South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Cape Town, South Africa

Synaptopathies are brain disorders characterized by dysfunctional synapses, which are specialized junctions between neurons that are essential for the transmission of information. Synaptic dysfunction can occur due to mutations that alter the structure and function of synaptic components or abnormal expression levels of a synaptic protein. One class of synaptic proteins that are essential to their biology are cell adhesion proteins that connect the pre- and post-synaptic compartments. Neurexins are one type of synaptic cell adhesion molecule that have, recently, gained more pathological interest. Variants in both neurexins and their common binding partners, neuroligins, have been associated with several neuropsychiatric disorders. In this review, we summarize some of the key physiological functions of the neurexin protein family and the protein networks they are involved in. Furthermore, examination of published literature has implicated neurexins in both neuropsychiatric and neurodegenerative disorders. There is a clear link between neurexins and neuropsychiatric disorders, such as autism spectrum disorder and schizophrenia. However, multiple expression studies have also shown changes in neurexin expression in several neurodegenerative disorders, including Alzheimer’s disease and Parkinson’s disease. Therefore, this review highlights the potential importance of neurexins in brain disorders and the importance of doing more targeted studies on these genes and proteins.

1. Introduction

There is accumulating evidence to suggest that synaptic dysfunction is present in both neuropsychiatric disorders, such as autism spectrum disorders (ASDs), schizophrenia and bipolar disorder (BD), and neurodegenerative disorders, such as Parkinson’s disease (PD), Alzheimer’s disease (AD) and Huntington’s disease (HD) [1]. In fact, involvement of the synapse is such a prominent feature of the pathogenesis of various brain disorders that it has led to the coining of a specific term, ‘synaptopathies’. Indeed, in the case of PD, the involvement of synaptopathy as an initial and central event in the disease pathogenesis, which precedes neuronal damage, has been postulated [2]. Synaptic dysfunction can occur due to mutations that alter the structure and function of synaptic components or abnormal expression levels of a synaptic protein.

Synapses are specialized junctions between neurons that transmit information and they connect neurons into millions of ‘neural circuits’ that underlie all brain functions [3]. The information transmitted allows the nervous system to respond

© 2021 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
to external stimuli and controls bodily functions, behaviour, emotions and memories [4]. This system is tightly controlled and regulated, and even slight perturbations can lead to synaptic dysfunction. An important aspect of synapse biology is the cell adhesion molecules that connect pre- and post-synaptic compartments [5]. These interactions in the synaptic cleft help to maintain synapse structure by delineating mutual boundaries [6]. These proteins are also important in synapse plasticity as synaptic cell adhesion is able to regulate the remodelling of synapses [7]. Interestingly, they are also involved in trans-synaptic signalling [5]. Thus, these proteins are highly important in the organization of synaptic junctions and overall brain function.

Neurexins are one type of synaptic cell adhesion molecule. They are pre-synaptically localized and bind to neuroligins and other proteins in the post-synapse (figure 1). Neurexins and their common binding partners, neuroligins, have recently gained more pathological interest as variants in both have been associated with several neuropsychiatric disorders, including autism and schizophrenia [8]. This further suggests that synaptic dysfunction plays a role in the development of these disorders. Synaptic dysfunction is also known to occur in neurodegenerative disorders [9]; however, it was considered an endpoint of these disorders, due to the considerably later onset of clinical symptoms and progressive appearance of cognitive deficits. This dichotomy has, recently, been challenged by the creation of ‘disease-in-a-dish’ models for multiple central nervous system (CNS) pathologies [9]. This research has identified commonalities between developmental and degenerative disorders, at both the cellular and molecular level, with most of these common mechanisms meeting at the synapse level [9]. Indeed, our laboratory has, recently, found a novel variant (p.G849D) in the NRXN2 gene which may be implicated in PD [10]. Therefore, we believe it is important to investigate the potential role of neurexins in various neuropsychiatric and neurodegenerative disorders.

In this review, we summarize some of the key physiological functions of the neurexin protein family and the protein networks they are involved in. We also examine the available published literature to determine what research has been done on neurexins in neuropsychiatric and neurodegenerative disorders. This analysis provides an overview on what progress has been made in understanding the roles of synaptic functioning in these disorders and reveals the gaps in knowledge in this field.

2. Structure and biological functions of neurexins

Neurexins were first identified using affinity chromatography when neurexin 1α was found in rat brain extract on a column of α-latrotoxin [11]. α-Latrotoxin is a potent neurotoxin from black widow spider venom that stimulates synaptic vesicle exocytosis and induces massive neurotransmitter release [12]. This work has been continued by Südhof and co-workers [13] who have characterized the neurexin proteins [12]. This work has been continued by Südhof and co-workers [13] and their binding partners, the neuroligins [14].

In mammals, the neurexins are encoded by three NRXN genes (NRXN1-3), each of which has both an upstream promoter that is used to generate the α-neurexins, and a downstream promoter that is used to generate the shorter β-neurexins [13,15]. Neurexins also undergo extensive alternate splicing at five splice sites, generating significant diversity of more than 2000 potential variants [13,16]. The fact that neurexin splice insert sequences and their positions are well conserved among neurexin genes and between species supports the idea that alternative splicing has important functional roles.

The neurexins are transmembrane proteins that consist of an extracellular region responsible for trans-synaptic interactions, a transmembrane domain and a smaller cytoplasmic domain named PSD-95, DLG1, ZO-1 binding domain (PDZ) that is involved in intracellular protein interactions and signalling (figure 2) [13]. α-Neurexins are composed of six large extracellular laminin/neurexin/sex hormone-binding domain; LNS, laminin/neurexin/sex hormone-binding domain; PDZ, PSD-95, DLG1, ZO-1 domain; SP, signal peptide; TM, transmembrane domain.

Figure 1. Location of neurexins and their binding partners, neuroligins, in the synapse. Several neurexin–neuroligin pathway proteins are shown as well as synaptic vesicle-binding proteins. NMDAR, N-methyl-D-aspartate receptor; mGluR5, metabotropic glutamate receptor 5; PSD-95, post-synaptic density protein 95; Shank, SH3 and multiple ankyrin repeat domains protein.

Figure 2. Structural domain organization of the α and β forms of neurexin. (a) α-neurexin. (b) β-neurexin. EGF, epidermal growth factor-like region; LNS, laminin/neurexin/sex hormone-binding domain; PDZ, PSD-95, DLG1, ZO-1 domain; SP, signal peptide; TM, transmembrane domain.
hormone-binding (LNS) globulin domains with three interspersed epidermal growth factor (EGF)-like regions (figure 2). β-neurexins are shorter and only have the sixth extracellular LNS domain and no EGF-like regions (figure 2). Only neurexin 1 protein structures (both α and β forms) have been solved experimentally in *Mus musculus*, *Rattus norvegicus* and *Bos taurus*. However, these structures have not yet been solved in humans.

Neurexins are localized pre-synaptically and are distributed to both excitatory and inhibitory synapses [8]. Their functions are mediated by their binding to neuroligins (figure 1). Neuroligins have five known isoforms and are expressed post-synaptically [17]. Consequently, neurexins and neuroligins form synaptic complexes in the synaptic cleft and have been found to control synapse formation, maturation, validation and function [17]. Various combinations of the different neurexins and neuroligin binding partners at synapses may also help determine synapse specificity through differential interactions between multiple splice variants and isoforms of these proteins [8].

Primarily, neurexins function to maintain synaptic organization. Gene ontology (GO) analysis by WebGestalt (http://www.webgestalt.org) [18] of the three neurexins indicates that all they function in protein binding, ion binding and possess molecular transducer activity (figure 3). They are also involved in cellular component organization, developmental processes, response to stimuli, cell communication and biological regulation. These processes thus demonstrate how neurexins are able to maintain synaptic organization but also show their multi-functional nature. As such, it is conceivable that disruptions in neurexins could be detrimental to their various functions and affect overall neuronal function and integrity.

3. Biological pathways and interacting partners of neurexins

To understand the broader biological pathways that the neurexins are involved in, protein-protein interaction network analysis and co-expression analysis was performed using the tools, STRING (https://string-db.org) [19] and GeneMania (https://genemania.org) [20]. STRING finds related genes by accessing the STRING database which contains experimental data and computational predictions. Data in STRING are weighted and integrated and a confidence score of 0–1 is calculated for all interacting protein partners. GeneMANIA finds proteins related to neurexins by leveraging functional association data, such as interactions, pathways, co-expression, co-localization and protein domain similarity. All functional data for the proteins observed in these networks were obtained from UniProt (https://www.uniprot.org) [21], unless otherwise stated, while pathway data were obtained from KEGG (https://www.kegg.jp) [22].

3.1. String analysis

Weighted string analysis was conducted on neurexin 1, 2 and 3 individually to determine their binding partners (figure 4a–c). Based on this analysis, there is strong evidence that neurexin 1 interacts with 10 proteins including calcium/calmodulin-dependent serine protein kinase (CASK), leucine-rich repeat transmembrane neuronal protein 1 (LRRTM1), LRRTM2, LRRTM3, neuroligin 1, neuroligin 2, neuroligin 3, neuroligin 4X, SH3 and multiple ankyrin repeat domains protein 2 (SHANK2) and synaptotagmin-1 with scores of 0.987, 0.983, 0.985, 0.975, 0.998, 0.997, 0.997, 0.997, 0.975, 0.974, respectively. Similarly, neurexins 2 and 3 also have 10 interactors each. There is strong evidence that neurexin 2 interacts with CASK, discs large homologue 4 (DLG4), LRRTM1, LRRTM2, LRRTM3, neuroligin 1, neuroligin 2, neuroligin 3, neuroligin 4X and SHANK2 with scores of 0.979, 0.977, 0.984, 0.983, 0.972, 0.998, 0.998, 0.997, 0.997 and 0.969, respectively. There is strong evidence that neuroligin 3 interacts with CASK, DLG4, LRRTM1, LRRTM2, LRRTM3, neuroligin 1, neuroligin 2, neuroligin 3, neuroligin 4X and SHANK2 with scores of 0.978, 0.971, 0.979, 0.983, 0.971, 0.998, 0.997, 0.997 and 0.969, respectively. The STRING analyses performed on the three neurexins identified

![Figure 3. A summary of 60 terms associated with neurexins 1–3. (a) Biological processes. (b) Cellular components. (c) Molecular functions. All: total number of proteins analysed. The number above each bar indicates the number of proteins assigned to that category. Figure generated by WebGestalt (http://www.webgestalt.org) [18].](https://royalsocietypublishing.org/doi/10.1098/rsob.19.0422)
interacting proteins with very high confidence scores since the lowest score across the analyses was 0.969. This means that there is strong experimental evidence that these proteins interact with one or more of the neurexins.

Analysis of the identified neurexin binding partners revealed many proteins important in the maintenance and functioning of synapses. Notably, variants in several of these proteins are implicated in neuropsychiatric and developmental disorders. Variants in neuroligin 1 and SHANK2 have been implicated in susceptibility to autism [23,24], while variants in neuroligin 3 have been implicated in Asperger syndrome and autism [25]. Variants in neuroligin 4X have been implicated in X-linked forms of Asperger syndrome, autism susceptibility and mental retardation [25–27]. Variants in CASK have been implicated in FG syndrome 4, an X-linked genetic disorder and mental retardation [28–32], variants in DLG4 have been implicated in intellectual developmental disorder 62 [33,34] and variants in synaptotagmin-1 have been implicated in Baker–Gordon syndrome [35].

Furthermore, binding partners of these proteins as well as the pathways they occur in could also give insight into the development of disease. CASK binds to amyloid precursor protein and neuroligin 1 binds to amyloid-β, both of which are important in AD. LRRTM3 is also a known positive regulator of amyloid-β formation. Notably, LRRTM3 may be considered a candidate gene for late-onset AD as it promotes the processing of amyloid precursor protein which leads to toxic amyloid-β accumulation [36]. DLG4 is involved in dopamine receptor binding and synaptotagmin-1 regulates dopamine secretion. The loss of dopamine functioning is crucial in PD. Indeed, DLG4 is involved in several pathways of neurodegeneration (in multiple diseases), the HD pathway as well as cocaine addiction.

3.2. GeneMANIA

GeneMANIA analysis was performed on the neurexins to reveal further potential protein–protein interactions (figure 4d; electronic supplementary material, table S1). We performed the analysis by selecting only proteins with stronger evidence of neurexin interactions, such as interactions with physical evidence, and evidence from co-expression and co-localization studies.

All of the binding partners observed by STRING analysis were still present; however, more interacting proteins were also identified. These proteins have more diverse functions but still function in overall synapse maintenance.

This analysis further identified afadin (AFDN), Rho GTPase activating protein 10 (ARHGA10), cerebellin 1 (CBLN1), dystroglycan (DAG1), microtubule actin cross-linking factor 1 (MACF1), neurophilin-2, neurophilin-3, PDZ domain-containing protein 2 (PDZD2), proteolipid protein 1 (PLP1), syndecan binding protein 1 (SDCBP), SDCBP2, SH3 domain-containing GRB2-like protein 2 (SH3GL2), signal-induced proliferation-associated 1-like protein 1 (SIPA1L1), synaptotagmin-13 (SYT13) TAFA chemokine-like family member 1 (TAFA1), TUBB-like protein 1 (TULP1) and XK-related protein 4 (XKR4) as interactors of one or more neurexin proteins. AFDN, ARHGA10, MACF1 and SIPA1L1 are all involved in actin filament binding/organization, while PDZD2, SDCBP and SDCBP2 are involved in cell binding and cytoskeletal organization.
Dysregulation of any of these proteins could thus affect cell adhesion and binding at the synapse. In addition, variants in MACF1 have been implicated in lissencephaly 9 with complex brainstem malformation [37]. CBLN1 is essential for synapse integrity and plasticity and its disruption could lead to synapse dysfunction. DAG1 has multiple functions, such as laminin and basement membrane assembly, cell survival, peripheral nerve myelination, nodal structure and cell migration. Variants in DAG1 have been implicated in both type A and type C muscular dystrophy–dystroglycanopathy [38–41]. Muscular dystrophies are genetic disorders characterized by the degeneration of skeletal muscle. Type C muscular dystrophy–dystroglycanopathy affects the limbsphere area [40], while type C is congenital with brain and eye anomalies [39]. Neurexin-2 and neurexin-3 are both ligands for α-neurexins and are involved in the neuromodulation signalling pathway. Disruption of these proteins could, therefore, affect neurotransmitter release and the subsequent signalling. PLP1 is the major myelin protein in the CNS and is important for maintaining the structure of myelin. Disruption of this protein could, therefore, negatively affect the downstream myelination of neurons, as is seen in multiple sclerosis (MS). Interestingly, PLP1 is also involved in the development of the substantia nigra, the main brain region affected by PD. Therefore, PLP1 alterations could also lead to disruptions in this brain region. SH3GL2 has been implicated in synaptic vesicle endocytosis, while synaptotagmin-13 may be involved in transport vesicle docking to the plasma membrane. Dysregulation of these proteins could thus affect neurotransmitter functioning. TAF1 is involved in the modulation of neural stem cell proliferation and differentiation; therefore, dysregulation of this protein could result in developmental disorders. TULP1 is required for normal development of photoreceptor synapses. Variants in TULP1 are associated with Leber congenital amaurosis [42,43] and retinitis pigmentosa [42,44–47]. However, this protein is also involved in actin filament binding, therefore, its dysregulation could also affect cell adhesion and binding at the synapse. Not much is known about XKR4 except that it is involved in apoptosis and predicted that it was highly likely to be pathogenic. Also, XKR4 deletions were shown to segregate with several neuropsychiatric disorders in a study of a complex family [78]. The proband had SCZ and other members of his family had mental retardation, schizophreniaiform disorder and affective disorder [78]. After genotyping the proband and eight family members, they found two rare deletions upstream of the NRXN1 gene (2p16.3) that co-segregate with these disorders [78]. Notably, this shows that deletions in NRXN1 may manifest as multiple neuropsychiatric phenotypes.

Using microarray analyses on RNA extracted from brain tissue, Mirnics et al. [69] did not observe a difference in neurexin 1 expression between schizophrenia (SCZ) and control samples. However, since then, a link between neurexin 1 and SCZ has been reported in other studies. One study reported that NRXN1 deletions are more common in those with SCZ; however, it also found that there was incomplete penetrance of these deletions in families with SCZ [72]. Kirov et al. [70] observed a deletion in an SCZ patient at 2p16.3 that disrupts NRXN1 and predicted that it was highly likely to be pathogenic. Also, NRXN1 deletions were shown to segregate with several neuropsychiatric disorders in a study of a complex family [78]. The proband had SCZ and other members of his family had mental retardation, schizophreniaiform disorder and affective disorder [78]. After genotyping the proband and eight family members, they found two rare deletions upstream of the NRXN1 gene (2p16.3) that co-segregate with these disorders [78]. Notably, this shows that deletions in NRXN1 may manifest as multiple neuropsychiatric phenotypes.

Angiome et al. [64] implicated NRXN1 in epilepsy. They identified a 2p16.3 deletion in an 8-year-old male patient diagnosed with epilepsy showing symptoms of myoclonic-atonic seizures (EMAS) [64]. This deletion included the first five exons of the NRXN1 gene [64]. NRXN genes may also be involved in treatment response. In one study, it was found that variants in NRXN1 may affect the long-term treatment outcome of patients with BD by modulating the effects of antipsychotics [61]. In a study of Levetiracetam resistance, an antiepileptic drug, Grimminger et al. [63] found that neurexin 1 is differentially expressed in non-responder and responder patients with mesial temporal lobe epilepsy (mTLE), whereby lower levels of neurexin 1 were observed in responder patients.

4. Role of neurexins in neuropsychiatric disorders

Literature-based searches using neurexin as a search term identified several studies that reported an association of neurexins in various neuropsychiatric disorders. The main findings of these studies are reported in table 1 and are summarized below.

4.1. Human studies

NRXN1 has been well documented for its association with ASDs [54]. Several genetic analyses of families and populations of people with ASD have shown that copy number variations (CNVs) and de novo mutational events at the NRXN1 locus are enriched in ASD [48,49,51,52,54]. In one study, NRXN1 was sequenced in cases of ASD with mental retardation [50]. Mutations (c.–3G > T in the Kozak region, c.3G > T at the initiation codon (p.M1), p.R375Q and p.G378S) were found in the NRXN1β coding region thereby potentially implicate synapse dysfunction an important determinant in ASD [50].

The first evidence for a potential role of NRXN2 in ASD was provided by a report of a frameshift mutation within NRXN2 exon 12 (c.2733delT) in a boy with ASD and his father who had severe language delay [57]. This mutation results in a truncated neurexin 2α protein that lacks the binding sites for the established post-synaptic binding partners LRRTM2 and neurelin 2 [57]. Subsequently, a 21-year-old man with a clinical phenotype including autistic traits, such as speech and language deficits and pathological insistence on routine, was reported to have a 570 kb de novo deletion of 24 genes at chromosome 11q13.1, including NRXN2 [58].

Using microarray analyses on RNA extracted from brain tissue, Mirnics et al. [69] did not observe a difference in neurexin 1 expression between schizophrenia (SCZ) and control samples. However, since then, a link between neurexin 1 and SCZ has been reported in other studies. One study reported that NRXN1 deletions are more common in those with SCZ; however, it also found that there was incomplete penetrance of these deletions in families with SCZ [72]. Kirov et al. [70] observed a deletion in an SCZ patient at 2p16.3 that disrupts NRXN1 and predicted that it was highly likely to be pathogenic. Also, NRXN1 deletions were shown to segregate with several neuropsychiatric disorders in a study of a complex family [78]. The proband had SCZ and other members of his family had mental retardation, schizophreniaiform disorder and affective disorder [78]. After genotyping the proband and eight family members, they found two rare deletions upstream of the NRXN1 gene (2p16.3) that co-segregate with these disorders [78]. Notably, this shows that deletions in NRXN1 may manifest as multiple neuropsychiatric phenotypes.

Angiome et al. [64] implicated NRXN1 in epilepsy. They identified a 2p16.3 deletion in an 8-year-old male patient diagnosed with epilepsy showing symptoms of myoclonic-atonic seizures (EMAS) [64]. This deletion included the first five exons of the NRXN1 gene [64]. NRXN genes may also be involved in treatment response. In one study, it was found that variants in NRXN1 may affect the long-term treatment outcome of patients with BD by modulating the effects of antipsychotics [61]. In a study of Levetiracetam resistance, an antiepileptic drug, Grimminger et al. [63] found that neurexin 1 is differentially expressed in non-responder and responder patients with mesial temporal lobe epilepsy (mTLE), whereby lower levels of neurexin 1 were observed in responder patients.

4.1. Association studies

A genome-wide association study (GWAS) by Liu et al. [51] specifically examined NRXN1 in an autism cohort of the Chinese Han population and discovered 22 variants that were associated with ASD. In this cohort, one SNP (rs2303298) was also significantly associated with a risk of developing ASD [51]. Furthermore, a GWAS of SCZ in Spain showed that a NRXN1 single nucleotide polymorphism (SNP) (rs3850333) was close to the significance threshold [71], while another GWAS in American patients of European or African ancestry showed that NRXN1 is associated with antipsychotic
Table 1. List of studies that have implicated neurexin genes in neuropsychiatric disorders. AAV, adeno-associated virus; AGRE, Autism Genetic Resource Exchange; Array-CGH, array comparative genomic hybridization; CBDB, Clinical Brain Disorders Branch; CIBERSAM, Centro de Investigación Biomédica en Red de Salud Mental; CNV, copy number variation; EMAS, epilepsy with myoclonic-atonic seizures; GWAS, genome-wide association study; hESC, human embryonic stem cell; iN, induced neuron; iPSC, induced pluripotent stem cell; KO, knockout; LC-MS/MS, liquid chromatography mass spectrometry/mass spectrometry; mESC, mouse embryonic stem cell; mTLE, mesial temporal lobe epilepsy; NGS, next-generation sequencing; NIMH, National Institute of Mental Health; RT–PCR, reverse transcriptase–polymerase chain reaction; SNP, single nucleotide polymorphism; SSC, Simons Simplex Collection; STEP-BD, Systematic Treatment Enhancement Program for Bipolar Disorder; WT, wild-type.

disorder/disease process	neurexin gene	type of study	methods	main finding	reference
autism spectrum disorder (ASD)	NRXN1	genetic analysis	a de novo CNV in NRXN1 was discovered in a large cohort of families with a single ASD-affected child	[48]	
ASD	NRXN1	GWAS	rare de novo events/CNVs at NRXN1 are strongly associated with autism	[49]	
ASD	NRXN1β	genetic analysis	The coding sequence of the NRXN1β gene was analysed by PCR in cases with autism and mental retardation	[50]	
ASD	NRXN1	genetic analysis	22 variants in the NRXN1 gene were discovered in the Chinese Han population; one SNP (rs2303298) was significantly associated with a risk of autism in this cohort	[51]	
ASD	NRXN1	genetic analysis	recurrent CNVs in NRXN1 are enriched in autism.	[52]	
ASD	NRXN1, 2 and 3	cell culture	neuron 1, 2 and 3 mRNA is overexpressed in patient-derived iPSCs and differentiated organoids	[53]	
ASD	NRXN1	genetic analysis	NRXN1 is an ASD risk gene	[54]	
ASD	NRXN1 and 2	animal study	neuron 1 and 2 are downregulated in monoamine oxidase A KO mice	[55]	
ASD	α-NRXN6s	animal and cell culture study	changes in α-neurexin binding to α2δ-3 subunits of N-type calcium channels could be important in some forms of autism spectrum disorders	[56]	
ASD	NRXN2	genetic analysis	observed a frameshift mutation in NRXN2 exon 12 in a patient with ASD inherited from a father with severe language delay	[57]	

(Continued.)
disorder/disease process	neurexin gene	type of study	methods	main finding	reference
ASD	NRXN2	genetic analysis	recruited a patient with speech problems, autistic traits and pancreatic gastrinoma. performed array-CGH.	a de novo 0.57 Mb microdeletion was observed in chromosome 11q13.1, including NRXN2.	[58]
ASD	NRXN2	animal study	used previously collected human faecal samples from typically developing children and children with ASD. C57BL/6 J weanlings were colonized with human faecal samples. brain tissue RNA was extracted and sequenced.	mice colonized by microbiota from ASD patients showed differential splicing of NRXN2.	[59]
bipolar disorder (BD)	NRXN3	GWAS	obtained participants from a family study of mood disorders in Taiwan (2008–2012).	NRXN3 shows a significant association with bipolar disorder.	[60]
BD	NRXN1	genetic analysis	obtained patient genotyping and clinical data from STEP-BD. analysed data to determine the effect of individual markers on phenotypes.	NRXN1 may affect the long-term treatment outcome of bipolar disorder.	[61]
borderline personality disorder (BPD)	NRXN3	association study	1439 heroin-dependent BPD cases and 507 neighbourhood controls genotyped for NRXN3 SNPs and performed an association analysis.	several NRXN3 SNPs were nominally associated with BPD phenotype in heroin-dependent cases.	[62]
epilepsy	NRXN1	microarray analysis	obtained 53 biopsy specimens from mTLE patients. performed microarray analysis.	neurexin 1 is differentially expressed in non-responder and responder mTLE patients to the antiepileptic drug Levetiracetam.	[63]
epilepsy	NRXN1	genetic testing	77 patients were identified at Children’s Hospital Colorado. various genetic tests were conducted.	a 2p16.3 deletion, which includes the first five exons of the NRXN1 gene, was identified in an 8-year-old male EMAS patient.	[64]
epilepsy/seizures	NRXN2α	animal study	treated adult Wistar rats with kainite or pentyleneetrazole to induce seizures. extracted total RNA from whole-rat brains and hippocampi. performed RT–PCR to determine the levels of different NRXNs.	following kainite- and pentyleneetrazole-induced seizures in rats; neurexin 2α expression increased in the dentate gyrus of the hippocampus.	[65]
fragile X syndrome	NRXN3	animal study	used male and female WT and FMR1 KO mice (4–6 per experiment). analysed brain sections using riboprobes for NRXN1, 2 and 3 and NLGN 1, 2 and 3.	there is increased neurexin 3 mRNA in female fragile X mice, but decreased neurexin 3 mRNA in male fragile X mice.	[66]
major depressive disorder (MDD)	NRXN1, 2 and 3	animal study	81 healthy Sprague–Dawley rats were subjected to various mild stress factors. extracted proteins from hippocampal post-synaptic density fractions. analysis by LC-MS/MS.	neurexin 1, 2 and 3 were not differentially expressed in a rat chronic mild stress model of depression.	[67]
disorder/disease process	neurexin gene	type of study	methods	main finding	reference
--------------------------	--------------	--------------	---------	--------------	-----------
neuropsychiatric disorders	NRXN1	cell culture	cultured cortical neurons from NRXN1α KO mice	heterozygous NRXN1 mutations are able to selectively impair neurotransmitter release and increase the levels of the synaptic scaffolding protein, CASK in human iNs but not in the cortical neurons of NRXN1α KO mice	[68]
schizophrenia (SCZ)	NRXN1	microarray analysis	obtained brain tissue from 12 SCZ patients and 10 controls	the expression of neurexin 1 was not significantly different between the schizophrenic and control subjects	[69]
SCZ	NRXN1	genetic analysis	selected 45 male and 48 female proband-parent trios from a sample of 600 Bulgarian SCZ trios	observed a 0.25 Mb deletion on 2p16.3 in both the proband and affected sibling which disrupts NRXN1	[70]
SCZ	NRXN1	GWAS	3063 SCZ patients and 2847 controls from CIBERSAM	the rs3850333 SNP in the NRXN1 gene was close to the significant threshold in a GWAS of schizophrenia in Spain	[71]
SCZ	NRXN1	genetic analysis	obtained DNA of 635 SCZ patients and 635 controls from the CBDB Sibling Study	NRXN1 deletions are more frequent in schizophrenia patients	[72]
SCZ	NRXN1	genetic analysis	data from 572 SCZ patients and 551 controls were used to select genes for sequencing	there is incomplete penetrance of NRXN1 deletions in families with schizophrenia	
SCZ	NRXN1	cell culture	isolated primary rat neurons from hippocampi	overexpressing Caveolin-1, a potential therapeutic for schizophrenia, in neurons increased expression of proteins involved in synaptic plasticity (PSD95, synaptobrevin, synaptophysin, neurexin 1 and syntaxin 1) as well as DISC1	[74]
disorder/disease process	neurexin gene	type of study	methods	main finding	reference
--------------------------	--------------	--------------	---------	--------------	-----------
SCZ	NRXN1	animal study	generated iPSCs from 5 childhood-onset SCZ patients and 4 controls and differentiated iPSCs into glial cells, transplanted glial cells into mice via injection into the corpus callosum, performed molecular analyses on both the differentiated glial cells and chimeric mice	neurexin 1 was downregulated in chimeric mice produced from iPSCs derived from patients with childhood-onset schizophrenia	[75]
SCZ	NRXN1	GWAS	obtained genetic data and treatment response data of 302 SCZ patients treated with lurasidone and 117 SCZ patients treated with a placebo from two clinical SCZ trials and performed a GWAS	NRXN1 is associated with antipsychotic response to lurasidone in schizophrenia patients	[76]
SCZ	NRXN1	cell culture	generated iPSCs from 3 NRXN1 deletion SCZ patients and 3 controls and differentiated them into human iNs and generated mESCs from NRXN1 KO mice and analysed neuronal development, synapse formation and neurotransmitter release	heternzygous NRXN1 deletions impair neurotransmitter release and synaptic function and increase the levels of the synaptic scaffolding protein, CASK in human iNs but not mESCs generated from NRXN1 KO mice	[77]
SCZ and other neuropsychiatric disorders	NRXN1	genetic analysis	recruited a family with multiple neuropsychiatric disorders, the proband has SCZ, while other family members have mental retardation, schizophreniform disorder and affective disorder and genotyped the proband and eight family members	two rare deletions upstream of the NRXN1 gene (2p16.3) segregate with schizophrenia, schizophreniform disorder, and affective disorder in a family	[78]
response to lurasidone in SCZ patients [76]. Additionally, an association study on Spanish SCZ patients showed that nonsense mutations in NRXN1 may actually protect against susceptibility to SCZ [73].

In a Taiwanese GWAS study, a significant association between NRXN3 and BD was found [60]. And finally, an association study on Australian borderline personality disorder (BPD) patients showed that several NRXN3 SNPs were nominally associated with BPD in heroin-dependent cases [62].

4.2. In vitro and in vivo models of disease

Functional in vitro and in vivo studies have also found evidence for the roles of neurexins in ASD. Monoamine oxidase A knockout (KO) mice, which are an animal model for autism, exhibited downregulated levels of both neurexin 1 and neurexin 2 [55]. Furthermore, mice colonized with the microbiota of ASD patients showed differential splicing of NRXN2 [59]. Another animal study showed that changes in the binding of α-neurexins to N-type calcium channels could be important for some forms of ASD as it mediates synaptic inhibition [56]. Finally, a study using ASD patient-derived induced pluripotent stem cells (iPSCs) and differentiated organoids showed that neurexin 1, 2 and 3 mRNA is overexpressed in these samples [53].

One study examined neurexins in Fragile X syndrome, a genetic disorder with features similar to ASD, and characterized by the silencing of the FMR1 gene [79]. Individuals with Fragile X experience a range of neurodevelopmental problems, such as learning disabilities and cognitive impairment, and males are usually more severely affected. Using FMR1 KO mice, researchers probed brain sections to determine the levels of neurexin 1, 2 and 3 [66]. Interestingly, they found that neurexin 3 mRNA levels are increased in female mice but decreased in male mice and predicted that this may help explain the sex difference observed in this disorder [66].

In an animal study of SCZ, neurexin 1 was found to be downregulated [75]. This study generated iPSCs from patients with childhood-onset SCZ, differentiated them into glial cells and injected the glial cells into mice to form chimeric mice as a model organism [75]. Interestingly, an in vitro study of SCZ showed that overexpressing Calveolin-1, a potential therapeutic for SCZ, actually increased the levels of neurexin 1 as well as other proteins involved in synaptic plasticity [74].

Neurexin 2α has been implicated in epilepsy and, more specifically, in seizures. Researchers observed an increase in neurexin 2α expression in the dentate gyrus of the hippocampus in an induced-seizure mouse model [65]. Finally, in one study, a rat chronic mild stress model of depression was used to determine if neurexin expression was altered in major depressive disorder; however, no change in neurexin 1, 2 or 3 levels was observed [67].

So far, there have been two studies validating the effect of NRXNs in vitro, both by Pak et al. [68,77]. These studies cultured human stem cells as well as mice cells generated from NRXN1 KO mice. The first study introduced two conditional NRXN1 mutations previously seen in a range of neuropsychiatric disorders, including ASD and SCZ, into human embryonic stem cells (hESCs) using adeno-associated virus recombination and differentiated them into human-induced neurons (iNs) [68]. These cells were compared to cortical neurons generated from NRXN1α KO mice [68]. The second study generated iPSCs from three NRXN1 deletion SCZ patients and three controls, and again differentiated them into human iNs [77]. These cells were compared to mouse embryonic stem cells (mESCs) from NRXN1 KO mice [77]. Both studies showed that heterozygous NRXN1 deletions were able to impair neurotransmitter release and synaptic function, and increase the levels of the synaptic scaffolding protein, CASK, in human iNs but not in mice cells [68,77]. Therefore, these studies provide evidence that NRXN1 deletions exhibit a major synaptic transmission phenotype in humans and are thus meaningful at a pathophysiological level.

In summary, these studies demonstrate a link between NRXNs and neuropsychiatric disorders such as ASD and SCZ, especially involving full or partial deletions of these genes. NRXNs have also been associated with BD and BPD. In addition, protein expression studies have shown changes in neurexin expression in animal models of epilepsy/seizures and Fragile X syndrome.

5. Role of neurexins in neurodegenerative disorders

Additionally, literature-based searches provided proof for the involvement of neurexins in various neurodegenerative disorders, and these studies are listed in table 2 and discussed below.

5.1. Human studies

Studies examining cerebrospinal fluid (CSF) from AD patients have observed lowered expression of neurexin 1 [81], as well as neurexin 2α and neurexin 3α [85]. In addition, it was found that these changes precede the neurodegeneration markers as they were observed in the preclinical stage 1 of AD [85]. Moreover, Aβ42 fibrils in CSF were found to bind to neurexin 1, 2 and 3 as well as proteoglycans and growth factors [83]. Levels of the synaptic proteins neuronal pentraxin 2 (NPTX2), GluA4-containing glutamate (AMPA4), neuroligin 1 and neurexin 2α are also declined in plasma neuron-derived exomes and this decline was associated with AD progression [82]. Neurexin 3 protein expression has also been seen to be specifically downregulated in blood samples of AD patients [84].

Another expression analysis on CSF from MS patients identified neurexin 2α levels as a potential biomarker for the disorder [98], while a genetic analysis found that a mutant miRNA, MR8485, overexpresses neurexin, which leads to a calcium overload in pre-synapses [99]. It was hypothesized that this could induce neurodegeneration in MS [99].

A study examining gene expression in brain tissue samples of patients with PD found that genes related to nerve function, such as protocadherin-8 (PCDH8) and neurexin 3, were downregulated [109].

Two studies on mild cognitive impairment (MCI) found promising results. MCI is a milder form of dementia that is considered the intermediate state of cognitive decline between normal ageing and dementia [114]. Berchtold et al. [95] found that neurexin 1 and neurexin 2 are upregulated in MCI. In addition, neurexin 1 expression was found to be associated with longitudinal phenotypes in MCI, but not in AD [96].

One study examined neurexins in order to identify genes that are differentially regulated by HIV encephalitis [94]. This
Table 2. List of studies that have implicated neurexin genes in neurodegenerative disorders and ageing. 6-OHDA, 6-hydroxydopamine; ACP-RT–PCR, annealing control primer reverse transcriptase–polymerase chain reaction; ADNI, Alzheimer’s disease neuroimaging initiative; AMPA4, GluA4-containing glutamate; CSF, cerebrospinal fluid; EAE, experimental autoimmune encephalomyelitis; ELISA, enzyme-linked immunosorbent assay; FTD-GWAS, frontotemporal dementia genome-wide association study; GEO, gene expression omnibus; GWAS, genome-wide association study; HIV, human immunodeficiency virus; HYPERGENES, European Network for Genetic-Epidemiological Studies; LC-MS/MS, liquid chromatography mass spectrometry/mass spectrometry; LC-SRM, liquid chromatography single reaction monitoring; MAP, Rush Memory and Ageing Project; MR, magnetic resonance; MRI, magnetic resonance imaging; NPTX2, neuronal pentraxin 2; ONIND, other non-inflammatory neurological disease; PCDH8, protocadherin-8; PPMI, Parkinson’s Progression Markers Initiative; qRT-PCR, quantitative real-time PCR; RAP-PCR, reverse arbitrarily primed PCR; rMOG, rat myelin oligodendrocyte glycoprotein; RRMS, relapsing–remitting MS; RT–PCR, reverse transcriptase–PCR; SNP, single nucleotide polymorphism; UV-CLIP, ultraviolet cross-linking and immunoprecipitation; WES, whole-exome sequencing.

disorder/disease process	neurexin gene	type of study	methods	main finding	reference
Alzheimer’s disease (AD)	NRXN3	GWAS of brain structure	obtained neuroimaging and genetic data from 818 subjects as part of ADNI	NRXN3 (KIAA0743) is associated with temporal lobe structure in AD patients	[80]
AD	NRXN1	protein expression analysis	collected CSF samples from 10 AD patients and 15 healthy controls using LC-MS/MS	the concentrations of the synaptic proteins neurexin 1 and neuronal PTX1, as well as neurofascin, were significantly lowered in AD CSF	[81]
AD	NRXN2c	protein expression analysis	collected blood and CSF samples from 28 AD patients and 28 controls	significantly lower levels of the synaptic proteins NPTX2, AMPA4, neuroligin 1 and neurexin 2c proteins were quantified using ELISAs	[82]
AD	NRXN1, 2 and 3	protein expression analysis	collected CSF samples from six AD patients and five non-AD patients	Aβ42 fibrils in AD CSF are involved in binding to proteoglycans, growth factors and neuron-associated proteins, such as neurexin 1, 2 and 3	[83]
AD	NRXN3	transcriptome and RNA expression analysis	selected data from 263 AD patients and 151 non-demented controls sampled from the religious orders study	neurexin 3 expression is downregulated in AD	[84]
AD	NRXN2c and NRXN3c	protein expression analysis	collected CSF samples from AD patients and cognitively normal controls (three stage study with different n for each stage)	levels of neurexin 2c and neurexin 3c, as well as other synaptic proteins are decreased in preclinical AD CSF	[85]
AD and ageing	NRXN1, 2 and 3	microarray analysis	obtained frozen brain samples from 26 AD cases and 55 non-AD controls from National Institute on Ageing Alzheimer’s disease brain banks	SYNTAPTIC proteins, including neurexin 1, 2 and 3, undergo altered expression in ageing and AD	[86]
AD and ageing	NRXN3	animal study	mice were divided into four groups, with four mice in each group: memory intact AD-transgenic mice, memory impaired AD-transgenic mice, memory intact aged mice and memory impaired aged mice performed proteomics on the hippocampus of each mouse	neurexin 3 is downregulated in AD-transgenic mice with impaired memory, but not in normal aged mice with impaired memory	[87]

(Continued.)
Table 2. (Continued.)

disorder/disease process	neurexin gene	type of study	methods	main finding	reference
AD and ageing	NRXN1 and 3	microarray analysis	performed a microarray analysis on 47 post-mortem brain samples from cognitively intact aged individuals from the MAP study, identified 48 microarrays from the public GEO: 16 young cases, 18 cognitively intact aged cases and 14 AD cases, analysed data to identify genes related to physical activity, ageing and AD	neurexin 1 and 3 have decreased expression in ageing and AD but have increased expression in association with late-life physical activity	[88]
ageing	NRXN3	animal study	cerebella were removed from three adult CS78U/6 J mice and three aged CS78U/6hia mice, RNA was extracted and sequenced	neurexin 3 is downregulated in the cerebellum of aged mice	[89]
ageing	NRXN2	methylation analysis	monocytes were purified from PBMCs, analysis of methylation was performed on genomic DNA from monocytes (Gp6 sites associated with NRNP1, NRNX2 and miR-29b-2 are hypomethylated in monocytes during ageing)		[90]
ageing	NRXN1	animal study	28 Swiss albino mice were divided into four groups by age: young, adult, middle age and old, molecular techniques were used to analyse neurexin 1 and neuroligin 3 expression	neurexin 1 and neuroligin 3 are differentially expressed in cerebral cortex and hippocampus during different stages of ageing, which might be responsible for alterations in synaptic plasticity during ageing	[91]
ageing	NRXN2 and 3	transcriptome analysis	collected data of 2202 post-mortem human brain samples of neurologically healthy individuals with different ages, Calculated signal expression of genes	neurexin 2 and 3 are downregulated in ageing	[92]
amyotrophic lateral sclerosis (ALS)	NRXN1	cell culture and expression analysis	performed UV-CLIP experiments on SH-SY5Y cells to find TDP-43 targets, validated these results on lumbar spinal cords from 4 ALS patients and 4 controls using RT-PCR	neurexin 1 and other TDP-43 targets are dysregulated in ALS	[93]
HIV encephalitis	NRXN1	microarray analysis	received cortical brain tissue from 13 HIV patients: eight with HIV encephalitis and five without, extracted total RNA, performed microarray analysis	neurexin 1 is downregulated in HIV encephalitis	[94]
mild cognitive impairment (MCI)	NRXN1 and 2	microarray analysis	obtained frozen brain samples from 16 MCI cases, 25 AD cases and 24 aged controls from National Institute on Aging Alzheimer’s Disease brain banks, extracted total RNA, performed a microarray analysis	neurexin 1 and 2 are upregulated in MCI	[95]
Table 2. (Continued.)

disorder/disease process	neurexin gene	type of study	methods	main finding	reference
MCI and AD	NRXN1	association study	obtained brain MR images of 400 MCI subjects, 400 AD subjects and 200 aged controls from the ADNI database; obtained genotype data for 510 of these subjects from the ADNI database; performed an association study	neurexin 1 expression is associated with longitudinal phenotypes in MCI, but not in AD	[96]
multiple sclerosis (MS)	NRXN3	animal study	induced EAE in 17 rats by injecting rMOG; six control rats were treated with saline; extracted total RNA; used a cDNA expression array	neurexin 3 is downregulated in grey matter of EAE-induced rats	[97]
MS	NRXN2cx	protein expression analysis	collected CSF samples from 37 RRMS patients, 50 patients with ONIND and patients with non-neurological (orthopaedic) diseases; analysis using LC-MS/MS	neurexin 2cx in CSF is a potential biomarker for MS	[98]
MS	NRXN1	genetic analysis	collected blood from a female patient with RRMS; performed WES and screened for mutations	overexpression of neurexin 1 by mutant MIR8485 leads to calcium overload in pre-synapses. This could induce neurodegeneration in MS	[99]
MS	NRXN1	cell culture	treated THP-1 cells with ceramides to induce hypermethylation of DNA; isolated genomic DNA; measured levels of neurexin 1, FZD7 and TP63 using qRT-PCR	ceramide-induced hypermethylation of DNA was associated with decreased transcript levels of neurexin 1 in cultured human monocytes	[100]
neurodegeneration	NRXN3	animal study	45 DA(RT1av1) and 45 PVG(RT1c) adult rats; subjected rats to ventral root avulsion; extracted total RNA; used a cDNA expression assay and performed RT-PCR	neurexin 3 is downregulated in rats with axonal damage caused by ventral root avulsion	[101]
neurodegeneration	NRXN3	animal study	three experimental groups with five ICR mice each; injected kainic acid into ICR mice; extracted total RNA from the hippocampus; performed ACP-RT-PCR and sequenced the PCR products	neurexin 3 is downregulated in the hippocampus of mice treated with kainic acid, an inducer of neurodegeneration	[102]
neurodegeneration	NRXN1	bioinformatics and cell culture	analysed cross-linking, immunoprecipitation and sequencing data from the ArrayExpress archive to identify RNAs bound to TDP-43 in human and mouse brains; quantitative RT-PCR was used to measure miRNA expression	a novel TDP-43 binding miRNA, miR-NID1 (miR-8485), represses neurexin 1 expression and may play a role in neurodegeneration	[103]
disorder/disease	neurexin gene	type of study	methods	main finding	reference
------------------	---------------	---------------	---------	--------------	-----------
neurodegeneration	NRXN1β	cell culture	transfected rat hippocampal neurons to overexpress acetylcholinesterase performed a co-immunoprecipitation assay with neurexin 1 and acetylcholinesterase co-transfected HBK-293 cells to express neurexin 1β and neuroligin 1 and cultured these cells in acetylcholinesterase conditioned media performed a co-immunoprecipitation assay with neurexin 1β and neuroligin 1	excessive glycosylated acetylcholinesterase could competitively disrupt neurexin 1β-neuroligin junctions and impair the integrity of glutamatergic synapses	[104]
neurotoxicity	NRXN3β	animal study	groups of 3 Sprague–Dawley rats were treated with sarin via intramuscular injection rats were sacrificed 15 min or 3 months after sarin exposure dissected brains and extracted total RNA performed a microarray analysis	sarin exposure causes a persistent downregulation of neurexin 1β and breakdown of the blood–brain barrier	[105]
neurotoxicity	NRXN2α	animal study	wild-type zebrafish were repeatedly exposed to domoic acid via intracoelomic injection dissected brains and extracted total RNA performed a microarray analysis	neurexin 2α was upregulated in zebrafish two weeks after exposure to domoic acid, a neurotoxin	[106]
Parkinson's disease (PD)	NRXN1	cell culture	cultured SH-SY5Y cells and primary mouse mesencephalic cells treated cells with 6-OHDA performed RAP-PCR and analysed the PCR products using RT–PCR and qRT–PCR	downregulation of neurexin 1 mRNA and protein was observed in the 6-OHDA-induced cell culture models of PD	[107]
PD	NRXN2	animal study	transgenic mice were assigned to 4 treatment groups with 20 mice per group cholesterol oximes were administered in food pellets TH+ neurons were isolated from the substantia nigra and subjected to a transcriptome analysis	transgenic mice overexpressing α-synuclein have increased levels of neurexin 2 chronic administration of cholesterol oximes to these mice decreased neurexin 2 levels	[108]
PD	NRXN3	genetics analysis	obtained genomic data of 29 PD samples and 18 controls from the GEO database analysed the data to identify disease-related genes and differential gene expression	genes related to nerve function, such as PCDH8 and neurexin 3, are downregulated in PD brain tissue samples	[109]
disorder/disease process	neurexin gene	type of study	methods	main finding	reference
--------------------------	--------------	--------------	---------	--------------	-----------
PD	NRXN1	animal study	adult Wistar rats were divided into five treatment groups, with 6–8 rats in each group. Experimental groups had 6-OHDA brain injections with or without different concentrations of allopregnanolone. Western blots were performed to evaluate the levels of the synaptic proteins PSD95 and neurexin 1 in the striatum.	neurexin 1 is significantly decreased in the striatum of 6-OHDA-induced rats. Treatment with allopregnanolone attenuates this and other molecular changes.	[110]
PD	NRXN1	RNA expression analysis	MRI data from 149 PD patients and 64 healthy controls were obtained from the PPMI database. 17 genes of interest implicated in PD were selected for whole-brain expression analysis.	Neurexin 1 does not have an expression pattern that predicts regional atrophy in PD.	[111]
PD	NRXN1	animal study	adult Wistar rats were divided into seven treatment groups, with seven rats in each group. Experimental groups had 6-OHDA brain injections with or without different concentrations of apelin-13. Western blots were performed to evaluate the levels of the synaptic proteins PSD95, neurexin 1 and neuroligin in the striatum.	Neurexin 1 expression is decreased in the striatum of 6-OHDA-induced rats. 6-OHDA rats treated with apelin-13 showed increased neurexin 1 expression in the striatum.	[112]
spinal muscular atrophy (SMA)	NRXN2cx	animal study	used HB9:Db3cpv/MN-transgenic zebrafish and Smn−/−/SMN2 mice isolated total RNA from both models and performed a microarray analyses and qRT–PCR.	SMN-deficiency downregulates neurexin 2α expression and alters its splicing in zebrafish and mouse models of SMA.	[113]
microarray study showed that neurexin 1 is downregulated in HIV encephalitis.

Finally, González-Velasco et al. [92] showed that neurexin 2 and neurexin 3 mRNA levels are downregulated in ageing. Another study found that neurexin 1, 2 and 3 underwent altered expression in both AD and ageing [86]. A more recent study from the same group confirmed decreased expression of both neurexin 1 and neurexin 3 in AD and ageing [88]. Interestingly, they also found that late-life physical activity is associated with increased expression of these proteins [88].

5.1. Association study

A GWAS performed by Stein et al. [80] showed that the SNP rs7155434 within NRXN3 is associated with temporal lobe structure in AD patients. Temporal lobe volume deficits are a known risk factor for AD; therefore, this study potentially implicates NRXN3 with AD risk [80].

5.2. In vitro and in vivo models of disease

Several studies involving cell culture and/or rodent disease models have also shown differences in the expression of neurexin proteins. Three studies showed that neurexin 1 is downregulated in PD. One of these measured neurexin 1 mRNA in two 6-OHDA (6-hydroxydopamine)-induced cell culture models; one using human neuroblastoma (SH-SY5Y) cells and the other using primary mouse mesencephalic cells [107]. The other studies used a 6-OHDA-induced rat model of PD and both saw a decrease in neurexin 1 in the striatum [110,112]. In addition, these studies showed that treatment with apelin-13 [112] or allopregnanolone [110] is able to attenuate this change. Apelin-13 is an endogenous ligand for APJ [115] that has been investigated as a potential protective neuropeptide due to the role of the apelin-APJ system in neuronal survival [116], while allopregnanolone is a reduced metabolite of progesterone [117] and has reduced CSF levels in PD patients [118]. Freeze et al. [111], however, noted that the expression pattern of neurexin 1 does not predict regional atrophy in PD. This suggests that neurexin 1 is not a marker for PD; however, it does not exclude it as an important protein in PD pathogenesis. Another study in PD-TRANSGenic mice overexpressing α-synuclein found that neurexin 2 expression was also upregulated [108]. In addition, chronic administration of cholesterol oximes was able to increase the transcription of cytoprotective genes and undo transcriptome alterations, including the alteration of neurexin 2 expression [108].

Two studies using induced models of MS implicated neurexins in this disorder. One study induced experimental autoimmune encephalomyelitis (EAE) in rats and observed downregulation of neurexin 3 [97]. This is a commonly used model that mimics certain aspects of MS. The other study used an in vitro model of MS, cultured human monocytes, and observed an association between ceramide-induced hypermethylation of DNA and neurexin 1 mRNA [100].

An animal study performed by Neuner et al. [87] showed that neurexin 3 is downregulated in AD-transgenic mice, but not in normal aged mice with impaired memory. However, Popesco et al. [89] found that neurexin 3 is downregulated in the cerebellum of aged mice. Another study found that levels of both neurexin 1 and neuroligin 3 are differentially expressed in cerebral cortex and hippocampus of mice and that these expression levels change during different stages of ageing [91]. They predicted that this may be responsible for the changes in synaptic plasticity observed with age [91]. Finally, a DNA methylation study by Tserel et al. [90] showed that CpG sites associated with NRPI, NRXN2 and miR-29b-2 are hypomethylated in monocyes during ageing.

To date, only one study has examined neurexins in amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA). In a cell culture model of ALS, neurexin 1 and other RNA targets of TDP-43 were dysregulated [93]. TDP-43 is a component of the cytoplasmic inclusion bodies present in ALS patients [93]. Fragments of TDP-43 are ubiquitinated, hyperphosphorylated and then accumulate in neurons and glia [119]. In zebrafish and mouse KO models of SMA, the SMN-deficiency downregulated neurexin 2α expression and altered its splicing [113]. SMA is associated with mutation or deletions in the SMN gene [120] and lack of the SMN protein causes degeneration and results in anterior horn cell dysfunction.

5.3. Models of induced neurodegeneration and toxicity

Several studies investigated neurexins in models of neurodegeneration or toxicity instead of studying a specific neurodegenerative disease.

Four studies examined the role of neurexins in models of induced neurodegeneration. Two of these studies hypothesized that neurexin 1 could play a role in neurodegeneration. The first study showed that a novel TDP-43 binding miRNA, miR-NID1 (miR-8485) is able to repress neurexin 1 and predicted that this could play a role in neurodegeneration [103]. Xiang et al. [104] found in vitro that excessive glycosylated acetylcholinesterase could competitively disrupt the neurexin 1β-neuroligin junctions and impair the integrity of glutamatergic synapses, which could lead to neurodegeneration. The other two studies showed that neurexin 3 is downregulated in animal models of neurodegeneration [101,102]. Suh et al. [102] saw that neurexin 3 was downregulated in the hippocampus of mice treated with kainic acid, an inducer of neurodegeneration, while Swanberg et al. [101] found that neurexin 3 is downregulated in rats with axonal damage caused by ventral root avulsion.

Two studies were conducted in animal models of neurotoxicity. One study exposed zebrafish to chronic, low levels of the neurotoxin domoic acid and saw an upregulation of neurexin 2α after two weeks [106]. The other study exposed rats to acute doses of sarin, which caused a persistent downregulation of neurexin 1β and breakdown of the blood–brain barrier [105].

In summary, multiple studies have shown changes in neurexin expression in AD, ALS, MS, PD and SMA. Many of these studies have observed downregulation of protein expression for neurexin 1, 2 and 3 in these disorders. Similarly, downregulation of neurexin 1, 2 and 3 were observed in disorders such as HIV encephalitis and MCI and in studies on ageing, in models of neuronal toxicity, and animal models of MS and ALS.

6. Concluding remarks

A clear link between synaptic dysfunction and neurodegenerative as well as neuropsychiatric disorders has been established in recent years. Our literature-based searches revealed several
studies that have linked CNVs, deletions or expression changes in neurexins to different disorders. The evidence is most compelling for a role of neurexins in neuropsychiatric disorders, particularly in regard to the involvement of neurexin 1 in ASD and SCZ. Currently, there is comparatively less evidence for the involvement of neurexins in neurodegenerative disorders. Although there have been some studies that have suggested that neurexins may be important in these disorders, at this stage more experimental data are still needed to draw concrete conclusions. Therefore, it is apparent that more targeted studies in various disorders involving these genes as well as the proteins they encode are warranted. In terms of their broader biological and physiological functions, the neurexins function as molecular inducers, are involved in iron and protein binding, and play a role in cell-to-cell communication and response to stimuli, consequently making them critical for normal cell functioning. Furthermore, these proteins interact with various other proteins such as the neuroligins and the LRRTM proteins identified via protein interaction networks. This implicates the neurexins’ involvement in synaptic integrity and functioning making them promising candidates as disease genes for a wide range of brain pathologies.

In summary, this review serves to highlight the potential importance of the neurexin genes and proteins in human disease and recommends that more targeted studies on these genes and proteins are warranted. Furthermore, with the wealth of exomic and genomic sequences and genome-wide transcriptomic datasets now available, it has become plausible to interrogate them for their involvement in various human disorders, on a scale not previously possible. In addition, the human neurexin protein structures urgently need to be solved to understand the function and infer accurate protein–protein interactions as well as to understand the effect of mutations on the protein structure. Ultimately, improved knowledge on synapses and their individual components are necessary to develop novel therapeutic approaches for the emerging and exciting field of synaptopathies.

Data accessibility. This article has no additional data.

Authors’ contributions. K.C. performed the research and wrote the first draft of the manuscript. M.H. and R.C. assisted with some of the analysis. K.C. and S.B. conceptualized the study. All authors critically reviewed and edited the manuscript.

Competing interests. The authors declare that there are no competing interests.

Funding. This work is based on the research supported wholly/in part by the National Research Foundation of South Africa (NRF) (grant nos. 106056; 129249); the South African Medical Research Council (SAMRC) (self-initiated research grant); the Harry Crossley Foundation and Stellenbosch University, South Africa. SAMRC and The Higher Education Department, Next Generation of Academic Programme (nGAP), provided support for R.C. in the form of a full-time academic position and salary.

Acknowledgements. We acknowledge Minke Bekker for the drawing of figure 1. We also acknowledge the support of the NRF-DST Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town.

References

1. Torres VI, Vallejo D, Inestrosa NC. 2017 Emerging synaptic molecules as candidates in the etiology of neurological disorders. Neuroplast. 2017, 8081758. (doi:10.1155/2017/8081758)
2. Imbriani P, Schirinzi T, Meringolo M, Mercuri NB, Pisani A. 2018 Centrality of early synaptogenesis in Parkinson’s disease. Front. Neurol. 9, 103. (doi:10.3389/fneur.2018.00103)
3. Südhof TC. 2017 Synaptic neurexin complexes: a molecular code for the logic of neural circuits. Cell 171, 745–769. (doi:10.1016/j.cell.2017.10.024)
4. Lepepa K et al. 2016 Synaptopathies: synaptic dysfunction in neurological disorders—a review from students to students. J. Neurochem. 138, 785–805. (doi:10.1111/jnc.13713)
5. Missler M, Südhof TC, Biedermann T. 2012 Synaptic cell adhesion. Cold Spring Harb. Perspect. Biol. 4, a005694. (doi:10.1101/cshperspect.a005694)
6. Schikorski T, Stevens CF. 1999 Quantitative ultrastructural analysis of hippocampal excitatory synapses. J. Neurosci. 17, 5858–5867. (doi:10.1523/ jneurosci.17-15-05868.1997)
7. Toni N, Buchs PA, Nieuwenhuizen I, Bron CR, Muller D. 1999 LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature 402, 421–425. (doi:10.1038/ 46574)
8. Kroeger DD, Tuffy LP, Papadopoulous T, Brose N. 2012 The role of neurexins and neuroligins in the formation, maturation, and function of vertebrate synapses. Curr. Opin. Neurobiol. 22, 412–422. (doi:10.1016/j.conb.2012.02.012)
9. Tanukid K, Kourougi G, Zygogianni O, Matsas R. 2018 Synaptic dysfunction in neurodegenerative and neurodevelopmental diseases: an overview of induced pluripotent stem-cell-based disease models. Open Biol. 8, 180138. (doi:10.1098/rsob. 180138)
10. Sebata B, Czukier K, Cloete R, Britz M, Christoffels A, Williams M, Carr J, Bardien S. 2021 Prioritization of candidate genes for a South African family with Parkinson’s disease using in-silico tools. PLoS ONE 16, e0249324. (doi:10.1371/journal.pone.0249324)
11. Usikaryov YA, Petenino AG, Geppert M, Südhof TC. 1992 Neurexins: synaptic cell surface proteins related to the ε-latrotoxin receptor and laminin. Science 257, 50–56. (doi:10.1126/science.1621094)
12. Rosenthal L, Meldolesi J. 1989 ε-latrotoxin and related toxins. Pharmacol. Ther. 42, 115–134. (doi:10.1016/0163-7258(89)90024-7)
13. Missler M, Südhof TC. 1998 Neurexins: three genes and 1001 products. Trends Genet. 14, 20–26. (doi:10.1016/S0168-9525(97)01324-3)
14. Ichchchou K, Nguyen T, Südhof TC. 1996 Structures, alternative splicing, and neurexin binding of multiple neuroligins. J. Biol. Chem. 271, 2676–2682. (doi:10.1074/jbc.271.5.2676)
15. Rudenko G, Nguyen T, Chelliah Y, Su TC, Deisenhofer J, Hughes H. 1999 The structure of the ligand-binding domain of neurexin 1: regulation of LNS domain function. Cell 99, 93–101. (doi:10.1016/ S0092-8674(00)00605-3)
16. Tabuchi K, Südhof TC. 2002 Structure and evolution of neurexin genes: insight into the mechanism of alternative splicing. Genomics 79, 849–859. (doi:10.1006/geno.2002.6780)
17. Craig AM, Kang Y. 2007 Neurexin-neuroligin signaling in synapse development. Curr. Opin. Neurobiol. 17, 43–52. (doi:10.1016/j.conb.2007.01.011)
18. Liu Y, Wang J, Jiaocheng EJ, Shi Z, Zhang B. 2019 Webgestalt 2019: gene set analysis toolkit with revamped Uls and APIs. Nucleic Acids Res. 47, W199–W205. (doi:10.1093/nar/gkx401)
19. Szkarczyk D et al. 2019 STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, D607–D613. (doi:10.1093/nar/gkz1131)
20. Warde-Farley D et al. 2010 The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 38, W214–W220. (doi:10.1093/ nar/gk537)
21. The UniProt Consortium. 2021 UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 49, D408–D409. (doi:10.1093/nar/gkaa1100)
22. Kamehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M. 2021 KEGG: integrating viruses and cellular organisms. Nucleic Acids Res. 49, D545–D551. (doi:10.1093/nar/gkaa970)
domain cause defects in neuronal migration and with autism. *Neuron* 70, 863–885. (doi:10.1016/j.neuron.2011.05.002)

40. Dong M, Noguchi S, Endo Y, Hayashi YK, Yoshida S, Nonaka I, Nishino I. 2015 DAG1 mutations associated with asymptomatic hyperCrema and hypoglycosylation of α2-dystroglycan. *Neurology* 84, 273–279. (doi:10.1212/WNL.0000000000001162)

41. Geis T, Marquard K, Rödl T, Reihrle C, Schirmer V, Solle V, Bornemann A, Hehr U, Blankenburg M. 2013 Homozygous dystroglycan mutation associated with a novel muscle-eye-brain disease-like phenotype with multisystemic leukodystrophy. *Neurogenetics* 14, 205–213. (doi:10.1007/s10488-013-0749-0)

42. Hara Y et al. 2011 A dystroglycan mutation associated with limb-girdle muscular dystrophy. *N. Engl. J. Med.* 364, 939–946. (doi:10.1056/nejmoa106939)

43. Riemersma M et al. 2015 Absence of αα- and ζ- dystroglycan is associated with Walker-Warburg syndrome. *Neurology* 84, 2177–2182. (doi:10.1221/WNL.0000000000001615)

44. Hanein S et al. 2004 Leber congenital amaurois: comprehensive survey of the genetic heterogeneity, refinement of the clinical definition, and genotyping-phenotype correlations as a strategy for molecular diagnosis. *Hum. Mutat.* 23, 306–317. (doi:10.1002/humu.20010)

45. Matatia A, Schordeert DF, Chachoua L, Mossaialh M, Nouri MT, Barthelmes D, Borrut FX, Munier FL. 2007 Novel TULP1 mutation causing Leber congenital amaurois or early onset retinal degeneration. *Invest. Ophthalmol. Vis. Sci.* 48, 5160–5167. (doi:10.1167/iovs.06-1013)

46. Banerjee P et al. 1998 TULP1 mutation in two extended Dominican kindreds with autosomal recessive Retinitis pigmentosa. *Nat. Genet.* 18, 177–179. (doi:10.1038/ng299a-177)

47. Den Hollander AI, Van Lith-Verhoeven JJC, Arends ML, Strom TM, Cremers FPM, Hoyng CB. 2007 Novel TULP1 mutation causing Leber congenital amaurois. *Arch. Ophthalmol.* 125, 932–935. (doi:10.1001/archophthalmol.125.7.932)

48. Hagstrom SA, North MA, Nishima FM, Berson EL, Dryja TP. 1998 Recessive mutations in the gene encoding the tubby-like protein TULP1 in patients with Retinitis pigmentosa. *Nat. Genet.* 18, 174–176. (doi:10.1038/ng299a-174)

49. Kondo H, Qin M, Mizota A, Hayashi K, Hayashi K, Oshima K, Tahira T, Hayashi K. 2004 A homozygosity-based search for mutations in the Williams Syndrome region, are strongly associated with autism. *Neuron* 70, 863–885. (doi:10.1016/j.neuron.2011.05.002)

50. Camacho-Garcia RJ, Planelles ML, Margalef M, Pecero ML, Martinez-Leal R, Aguilara F, Villeda E, Martinez-Mir A, Scholl FG. 2012 Mutations affecting synaptic levels of neurolaxin-13 in autism and mental retardation. *Neurobiol. Dis.* 47, 135–143. (doi:10.1016/j.nbd.2012.03.031)

51. Liu Y et al. 2012 Mutation analysis of the NRXN1 gene in a Chinese autism cohort. *J. Psychiatr. Res.* 46, 630–634. (doi:10.1016/j.jpsychires.2011.10.015)

52. Girinjan S et al. 2013 Refinement and discovery of new hotspots of copy-number variation associated with autism spectrum disorder. *Am. J. Hum. Genet.* 92, 221–237. (doi:10.1016/j.ajhg.2012.12.016)

53. Mariani I et al. 2015 FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders. *Cell* 162, 375–390. (doi:10.1016/j.cell.2015.06.034)

54. Sanders SJ et al. 2015 Insights into autism spectrum disorder genomc architecture and biology from 71 risk loci. *Neuron* 87, 1215–1233. (doi:10.1016/j.neuron.2015.09.016)

55. Chen K, Kardy A, Chen Y, Flink S, Tabakoff B, Shih JC. 2017 Altered gene expression in early postnatal monoamine oxidase A knockout mice. *Brain Res.* 1669, 18–26. (doi:10.1016/j.brainres.2017.05.017)

56. Tong XJ, López-Soto EJ, Li L, Liu H, Nedeul D, Lipscombe D, Hu Z, Kaplan JM. 2017 Retinogena synaptic inhibition is mediated by α-neurexin binding to the c266 subunits of N-type calcium channels. *Neuron* 95, 326–340. (doi:10.1016/j.neuron.2017.06.018)

57. Gauthier I et al. 2017 Truncating mutations in NRXN1 and NRXN2 in autism spectrum disorders and schizophrenia. *Hum. Genet.* 130, 563–573. (doi:10.1007/s00439-011-1075-z)

58. Mohrman I, Gillesen-Kaesbach G, Siebert R, Caliebe A, Hellenbroich Y. 2011 A de novo 0.57 Mb microdeletion in chromosome 1q12.131 in a patient with speech problems, autistic traits, dysmorphic features and multiple endocrine neoplasia type 1. *Eur. J. Med. Genet.* 54, 6. (doi:10.1016/j ejmgen.2011.04.006)

59. Sharon G et al. 2019 Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice. *Cell* 177, 1600–1618. (doi:10.1016/j.cell.2019.05.004)

60. Kuo PH et al. 2014 Identification of novel loci for bipolar I disorder in a multi-stage genome-wide association study. *Prog. Neuro-Psychopharmacol. Biol. Psychiatry* 51, 58–64. (doi:10.1016/j.pnpbp.2014.01.003)

61. Fabbri C, Serretti A. 2016 Genetics of long-term treatment outcome in bipolar disorder. *Prog. Neuro-Psychopharmacol. Biol. Psychiatry* 65, 17–24. (doi:10.1016/j.pnpbp.2015.08.008)

62. Parasigopoulos VN et al. 2013 Examining the association of NRK3 SNPs with borderline personality disorder phenotypes in heroin dependent cases and socio-economically disadvantaged controls. *Drug Alcohol Depend.* 128, 187–193. (doi:10.1016/j.drugalcdep.2012.11.011)
63. Grimminger T et al. 2013 Levetiracetam resistance: synaptic signatures & corresponding promoter SNPs in epileptic hippocampi. Neurobiol. Dis. 60, 115–125. (doi:10.1016/j.nbd.2013.08.015)

64. Angione K, Eschbach K, Smith G, Joshi C, Damert S. 2019 Genetic testing in a cohort of patients with potential epilepsy with myoclonic-atonic seizures. Epilepsy Res. 150, 70–77. (doi:10.1016/j.eplepsyres.2019.01.008)

65. Górecki DC, Szklarczyk A, Lukasiuk K, Kaczmarek L, Simons JP. 1999 Differential seizure-induced and developmental changes of neurine expression. Mol. Cell. Neurosci. 13, 218–227. (doi:10.1006/mcne.1999.0740)

66. Lai JKY, Doering LC, Foster JA. 2016 Developmental expression of the neurilins and neurinins in fragile X mice. J. Comp. Neurol. 524, 807–828. (doi:10.1002/cne.23868)

67. Han X, Shao W, Liu Z, Fan S, Yu J, Chen J, Qiao R, Zhou J, Xie P. 2015 ITRAQ-based quantitative analysis of hippocampal postsynaptic density-associated proteins in a rat chronic mild stress model of depression. Neuroscience 298, 220–292. (doi:10.1016/j.neuroscience.2015.04.006)

68. Pak CH, Danko T, Zhang Y, Aoto J, Anderson G, et al. 2014 Genome-wide association studies of psychiatric diseases in a large schizophrenia case-control sample. Neuron 82, 316–328. (doi:10.1016/j.neuron.2014.07.002)

69. Mimics K, Middleton FA, Marquez A, Lewis DA, Levitt P. 2000 Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron 28, 53–67. (doi:10.1016/S0896-6273(00)00085-4)

70. Kovar G et al. 2008 Comparative genome hybridization suggests a role for NRXN1 and APBA2 in schizophrenia. Hum. Mol. Genet. 17, 458–465. (doi:10.1093/hmg/ddm323)

71. Ivona JL et al. 2014 Replication of previous genome-wide association studies of psychiatric diseases in a large schizophrenia case-control sample from Spain. Schizophr. Res. 159, 107–113. (doi:10.1016/j.schres.2014.07.004)

72. Todarello G, Feng N, Kolachani K, Simons JP. 2015 Incomplete penetrance of NRXN1 deletions in families with schizophrenia. Schizophr. Res. 155, 1–7. (doi:10.1016/j.schres.2014.02.023)

73. Suárez-Rama JJ et al. 2015 Resequencing and association analysis of coding regions at twenty candidate genes suggest a role for rare risk variation at AKAP9 and protective variation at NRXN1 in schizophrenia susceptibility. J. Psychiatr. Res. 66–67, 38–44. (doi:10.1016/j.gepsyche.2015.04.013)

74. Kassan A et al. 2017 Caveolin-1 regulation of disrupted-in-schizophrenia-1 as a potential therapeutic target for schizophrenia. J. Neurophysiol. 117, 436–444. (doi:10.1152/jn.00481.2016)

75. Windrem MS et al. 2017 Human iPSC glial mouse chimeras reveal glial contributions to schizophrenia. Cell Stem Cell 21, 195–208. (doi:10.1016/j.stem.2017.06.012)

76. Li J, Yoshikawa A, Brennan MD, Ramsey TL, Metzler HY. 2018 Genetic predictors of antipsychotic response to lurasidone identified in a genome wide association study and by schizophrenia risk genes. Schizophr. Res. 192, 194–204. (doi:10.1016/j.schres.2017.04.009)

77. Pak CH et al. 2021 Cross-platform validation of neurotransmitter release impairments in schizophrenia patient-derived NRXN1-mutant neurons. Proc. Natl. Acad. Sci. USA 118, 2021. (doi:10.1073/pnas.2025981118)

78. Duong LTT, Hofvding UK, Petersen KB, Knudsen CD, Thygesen JH, Klitten LL, Tommerup N, Ingason A, Werge T. 2015 Two rare deletions upstream of the NRXN1 gene (2p16.3) affecting the non-coding mRNA AK127244 segregate with diverse psychopathological phenotypes in a family. Eur. J. Med. Genet. 58, 650–653. (doi:10.1016/j.ejmg.2015.11.004)

79. Verkerk AJMH et al. 1991 Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65, 905–914. (doi:10.1016/0022-1094(91)90397-I)

80. Stein JL et al. 2010 Genome-wide analysis reveals novel genes influencing temporal lobe structure with relevance to neurodegeneration in Alzheimer’s disease. Neuroimage 51, 542–554. (doi:10.1016/j.neuroimage.2010.02.068)

81. Brachtold NC, Yi F, Wernig M, Südhof TC. 2015 Conditional deletion reveals synaptic transmission deficits caused by hypomethylated in monocytes during ageing. Neuron 82, 465–476. (doi:10.1016/j.neuron.2015.11.004)

82. Goetzl EJ, Abner EL, Jicha GA, Kapogiannis D, Toth AL, et al. 2016 Human glial cells display markers and transcriptional signatures of miRNA dysregulation in Alzheimer’s disease. J. Neuroimmunol. 298, 7–18. (doi:10.1016/j.jneuroim.2015.11.004)

83. González-Velasco O, Papy-García D, Le Douaron G, Frostholm A, Rotter A. 2008 Serial analysis of gene expression profiles of adult and aged mouse cerebellum. Neurobiol. Aging 29, 774–788. (doi:10.1016/j.neurobiolaging.2006.12.006)

84. Berchtold NC, Limbach M, Saare M, Kisdan K, Metspalu A, Milani L, Pettersen P. 2014 Cpg sites associated with NRIP1, NR2K2 and miR-29b-2 are hypomethylated in monocytes during ageing. Immun. Ageing 11, 1. (doi:10.1186/1742-4933-11-1)

85. Kumar D, Thakur MK. 2015 Age-related expression of neurexin1 and neurexin3 is correlated with presynaptic complexity in the cerebral cortex and hippocampus of male mice. Age (Omaha) 37, 17. (doi:10.1007/s11357-015-9752-6)

86. Berchtold NC, Sabbagh MN, Beach TG, Kim RC, Sánchez-Santos JM, de Las Rivas J. 2020 Transcriptomic landscape, gene signatures and regulatory profile of ageing in the human brain. Biochim. Biophys. Acta - Gene Regul. Mech. 1863, 194491. (doi:10.1016/j.bbagrm.2020.194491)

87. Xiao S et al. 2011 RNA targets of TDP-43 identified by UV-CLIP are deregulated in ALS. Mol. Cell. Neurosci. 47, 167–180. (doi:10.1016/j.mcn.2011.02.013)

88. Everall I, Salaria S, Roberts E, Corbel J, Sasak R, Fox H, Grant I, Masliah E. 2005 Methamphetamine stimulates interferon inducible genes in HIV infected brain. J. Neuroimmunol. 170, 158–171. (doi:10.1016/j.jneuroimmun.2005.09.009)

89. Berchtold NC, Sabbagh MN, Beach TG, Kim RC, Cribs DH, Cotman CW. 2014 Brain gene expression patterns differentiate mild cognitive impairment from normal aged and Alzheimer’s disease. Neurobiol. Aging 35, 1961–1972. (doi:10.1016/j.neurobiolaging.2014.03.011)

90. Vounou M, Janousova E, Wolz R, Stein JL, Thompson PM, Rueckert D, Montana G. 2012 Sparse reduced-rank regression detects genetic associations with voxel-wise longitudinal phenotypes in preclinical Alzheimer’s disease. Neuroimage 60, 700–716. (doi:10.1016/j.neuroimage.2011.12.029)

91. Zei T, Kinter J, Herre-Herenz E, Weissert R, Schaeren-Wiemers N. 2008 Gene expression analysis of normal appearing brain tissue in an animal model for multiple sclerosis revealed grey matter alterations, but only minor white matter changes.
