Supplementary Tables 1-32
Table of Contents

Tables

Table	Description	Page
S1	Accession numbers of deep sequencing datasets	3
S2	Description of KEGG classes	4
S3	Comparison of structural cluster predictions using different methods	5
S4	Structural clusters located in terminal regions of human chromosomes	6
S5	Analysis of reads overlapping miRNA/miRNA* in structural clusters I	7
S6	Analysis of reads overlapping miRNA/miRNA* in structural clusters II	8
S7	List of structural clusters predicted from reads and contained in a single deep sequencing dataset	8
S8	KEGG’s pathways and KEGG’s subclasses whose genes are covered by structural cluster regions with significant statistics	9-10
S9	Structural cluster regions and immune system diseases (subclass)	11
S10	Structural cluster regions and asthma (pathway)	12
S11	Structural cluster regions and sensory system (subclass)	13
S12	Structural cluster regions and taste transduction (pathway)	14
S13	Structural cluster regions and olfactory transduction (pathway)	15
S14	Structural cluster regions and immune system (subclass)	16
S15	Structural cluster regions and development (subclass)	17
S16	Structural cluster regions and axon guidance (pathway)	18
S17	Structural cluster regions and infectious diseases (subclass)	19
S18	Structural cluster regions and metabolic diseases (subclass)	20
S19	Structural cluster regions and neurodegenerative diseases (subclass)	21
S20	Structural cluster regions and thyroid cancer (pathway)	22
S21	Structural cluster regions and Wnt (pathway)	23
S22	Structural cluster regions and Notch (pathway)	24
S23	Structural cluster regions and Hedgehog (pathway)	25
S24	Structural cluster regions and transport and catabolism (subclass)	26
S25	Structural cluster regions and apoptosis (pathway)	27
S26	Structural cluster regions and replication and repair (subclass)	28
S27	Structural cluster regions and lipid metabolism (subclass)	29
S28	Structural cluster regions and xenobiots biodegradation and metabolism (subclass)	30
S29	KEGG’s pathways and KEGG’s subclasses whose genes are covered by structural cluster regions defined on non-isolated structural clusters, with significant statistics	31-34
S30	Coverage of fragile sites and structural cluster regions	35
S31	Coverage of genes associated to different biological pathways by structural cluster regions and fragile sites	36
S32	Comparison of cancer gene coverage between structural cluster regions and fragile sites	37
Table S1: **Accession numbers** of deep sequencing reads datasets from *H. sapiens* of Gene Expression Omnibus (GEO) and Sequence Read Archive (SRA) database at NCBI. These datasets were used to predict structural clusters from deep sequencing reads (red and green paths, Figure 1).

Database	Accession numbers	
GEO	GSE10829, GSE13483, GSE13370,	
	GSE14362	
SRA	SRR015446, SRR015447, SRR015448,	
	SRR038852, SRR038853, SRR038854,	
	SRR038855, SRR038856, SRR038857,	
	SRR038858, SRR038859, SRR038860,	
	SRR038861, SRR038862, SRR038863	
Class	# genes	subclasses
-------------------------------	---------	--
Cellular Processes	1154	413 Cell Communication
		305 Cell Growth and Death
		214 Cell Motility
		431 Transport and Catabolism
Environmental Information Processing	1548	68 Membrane Transport
		784 Signaling Molecules and Interaction
		907 Signal Transduction
Genetic Information Processing	699	279 Folding, Sorting and Degradation
		119 Replication and Repair
		192 Transcription
		128 Translation
Human Diseases	1216	380 Cancers
		181 Cardiovascular Diseases
		224 Immune System Diseases
		326 Infectious Diseases
		105 Metabolic Diseases
		323 Neurodegenerative Diseases
Metabolism	1486	262 Amino Acid Metabolism
		317 Carbohydrate Metabolism
		163 Energy Metabolism
		225 Glycan Biosynthesis and Metabolism
		339 Lipid Metabolism
		187 Metabolism of Cofactors and Vitamins
		23 Metabolism of Terpenoids and Polyketides
		186 Nucleotide Metabolism
		108 Xenobiotics Biodegradation and Metabolism
		104 Metabolism of Other Amino Acids
		11 Biosynthesis of Other Secondary Metabolites
Organismal systems	1890	197 Circulatory System
		150 Development
		423 Endocrine System
		13 Environmental Adaptation
		126 Excretory System
		801 Immune System
		213 Nervous System
		448 Sensory System

Table S2: Description of KEGG classes used for Figures 3, S1, S2. For each class (first column), the number of genes in the class (second column) and in the corresponding subclasses (third and fourth column) are reported.
Chromosome	#predictions with paralogs	#predictions from deep sequencing data	#predictions with paralogs / deep sequencing data combination						
	#total	in intronic regions	in intergenic regions	#total	in intronic regions	in intergenic regions	#total	in intronic regions	in intergenic regions
1	11	8	6	14	8	6	2	1	1
2	27	13	14	7	4	3	1	1	0
3	20	8	12	6	4	2	1	1	0
4	17	6	11	1	1	0	1	1	0
5	11	7	4	7	2	5	0	0	0
6	21	7	14	2	2	0	0	0	0
7	20	15	5	5	5	0	6	1	2
8	16	9	7	7	7	0	0	0	0
9	16	7	9	3	1	2	1	1	0
10	17	6	11	3	3	0	2	0	2
11	9	5	4	5	5	0	0	0	0
12	15	6	9	3	3	0	0	0	0
13	11	6	5	3	2	1	0	0	0
14	6	2	4	7	3	4	1	0	1
15	10	5	5	3	1	2	0	0	0
16	16	6	10	6	6	0	0	0	0
17	7	3	4	6	4	2	0	0	0
18	3	1	2	1	0	1	0	0	0
19	10	4	6	4	2	2	1	0	1
20	6	4	2	1	0	1	1	0	1
21	7	6	1	0	0	0	0	0	0
22	4	3	1	2	2	0	3	1	2
X	20	8	12	3	1	2	0	0	0
Total	300	142	158	99	66	35	20	10	10

Table S3: Predictions on human chromosomes: details of Table 1. For each human chromosome, the total number of predictions, the number of predictions in intronic regions and the number of predictions in intergenic regions obtained with the three kinds of input proposed by the algorithm are reported. Predictions made using the *ab initio* method (black path, Figure 1) are filtered with RepeatMasker and/or with EST data. All predictions are filtered with genomic information and do not overlap neither CDS nor exons (on either strands). (Notice that in genbank files, a gene, identified with "gene" tag, is derived by automated computational analysis using gene prediction methods and it is decomposed in exons ("exon" tags are used) or in CDSs ("CDS" tags).) When two structural clusters overlap on each strand, only one is counted in the table.
Chromosome	#SC in first 5% of chromosome	#SC in last 5% of chromosome	Percentage of SC in terminal chromosomal regions
1	8	1	33.33%
2	4	11	42.86%
3	3	8	40.74%
4	7	5	63.16%
5	4	5	50.00%
6	3	5	34.78%
7	9	9	58.06%
8	8	6	60.87%
9	1	3	20.00%
10	5	4	40.91%
11	4	0	28.57%
12	3	4	38.89%
13	0	8	57.14%
14	0	4	28.57%
15	0	0	0.00%
16	3	6	39.13%
17	3	4	53.85%
18	0	4	100.00%
19	1	2	20.00%
20	1	3	50.00%
21	0	4	57.14%
22	0	5	55.56%
X	11	0	52.38%

Table S4: Number of structural clusters (SC) located in terminal regions of human chromosomes. The number of SC located in the first 5% (second column) and last 5% (third column) of each chromosome are reported together with the corresponding percentage of SC located in terminal regions (fourth column).
Table S5: Analysis of reads overlapping miRNA/miRNA* in structural clusters. For each human chromosome, the number of reads overlapping miRNAs and miRNA*s (where a read and a miRNA/miRNA* share at least a nucleotide), the number of reads “contained” in stretched miRNAs and miRNA*s (where, following (Friedländer et al. 2008), the alignment can extend the miRNA or the miRNA* on the 5’-end by at most 2nt and the 3’-end by at most 5nt), the percentage of reads contained in stretched miRNAs or miRNA*s (computed as the sum of the fourth and fifth columns divided by the seventh column in this table), the number of reads in structural clusters (SC), and the mean number of reads in SCs are given. Notice that when a miRNA and its miRNA* are close to a loop and a read covers the loop, then it might overlap both sequences. The same might hold for miRNA1/miRNA1* and miRNA2/miRNA2* lying in the same structural cluster, where a read might overlap some nucleotides in both pairs. In chromosome 16, notice that there is a single miRNA overlapping many reads (3686) with a large part of them (2805) that include the miRNA. In chromosome 17, there is a structural cluster that contains essentially all reads of the chromosome overlapping some SC (that is more than 41000); such reads do not lie exactly on a miRNA but they overlap it. In particular, notice that our method chooses miRNA sequences based on best energy matching and not on reads multiplicity. We fall very close to reads accumulation nevertheless. The situation is analogous for chromosome 15 containing 2 structural clusters that behave as the one in chromosome 17.
Table S6: Analysis of reads overlapping miRNA/miRNA* in structural clusters. Analysis reported in Table S5, continued. The number of SCs overlapped by a variable number of reads is reported.

Chromosome	< 100	≥ 100& < 500	≥ 500& < 1000	≥ 1000& < 2000	≥ 2000& < 3000	≥ 3000& < 4000	≥ 4000& < 5000	≥ 5000
1	10	1	0	0	0	0	2	1
2	7	0	0	0	0	0	0	0
3	6	0	0	0	0	0	0	0
4	1	0	0	0	0	0	0	0
5	4	1	2	0	0	0	0	0
6	2	0	0	0	0	0	0	0
7	5	0	0	0	0	0	0	0
8	7	0	0	0	0	0	0	0
9	3	0	0	0	0	0	0	0
10	3	0	0	0	0	0	0	0
11	5	0	0	0	0	0	0	0
12	2	0	0	0	0	0	0	1
13	1	0	0	0	0	0	0	2
14	2	0	0	4	0	0	0	1
15	3	0	0	0	0	0	0	0
16	5	0	0	0	0	1	0	0
17	4	0	0	0	0	0	1	1
18	1	0	0	0	0	0	0	0
19	4	0	0	0	0	0	0	0
20	1	0	0	0	0	0	0	0
21	0	0	0	0	0	0	0	0
22	2	0	0	0	0	0	0	0
X	0	0	2	0	0	0	0	1
Total	**78**	**2**	**2**	**6**	**0**	**1**	**3**	**7**

Table S7: Structural clusters predicted from deep sequencing data and constituted by reads coming from the same experiment. The names refer to the nomenclature used in file SLSCs.xls where a description of their localisation along the chromosomes is given. File SLSCs.xls reports the experimental dataset where reads in a structural cluster were found.
class	subclass	pathway	# genes	% chromosomes	% covered genes	P-value
hsa04540 Cellular Processes	Cell Communication	Gap junction	90	42.69	72.22	0.008
hsa04210 Cellular Processes	Cell Growth and Death	Apoptosis	87	21.53	44.82	0.032
hsa04144 Cellular Processes	Transport and Catabolism	Endocytosis	201	24.78	45.77	0.014
hsa04142 Cellular Processes	Transport and Catabolism	Lysosome	121	42.69	69.42	0.028
	Cellular Processes	Transport and Catabolism	431	24.78	45.01	0.001
hsa04340 Environmental	Signal Transduction	Hedgehog signaling pathway	56	55.80	83.92	0.048
Information Processing						
hsa04330 Environmental	Signal Transduction	Notch signaling pathway	47	10.46	38.29	0.017
Information Processing						
hsa04310 Environmental	Signal Transduction	Wnt signaling pathway	150	27.86	52.66	0.015
Information Processing						
hsa03440 Genetic Information	Replication and Repair	Homologous recombination	28	42.69	75	0.082
Processing						
hsa03040 Genetic Information	Replication and Repair	all	119	48.79	73.1	0.058
Processing						
hsa05216 Human Diseases	Cancers	Thyroid cancer	20	33.52	68.96	0.055
hsa05416 Human Diseases	Cardiovascular Diseases	Viral myocarditis	70	27.86	68.57	<0.001
hsa05330 Human Diseases	Immune System Diseases	Allograft rejection	35	27.86	80	<0.001
hsa05310 Human Diseases	Immune System Diseases	Asthma	28	40.54	96.42	<0.001
hsa05332 Human Diseases	Immune System Diseases	Graft-versus-host disease	37	27.86	81.08	<0.001
hsa05322 Human Diseases	Immune System Diseases	Systemic lupus erythematosus	138	30.79	68.84	<0.001
hsa05130 Human Diseases	Immune System Diseases	all	224	36	65.17	<0.001
hsa05131 Human Diseases	Infectious Diseases	Pathogenic Escherichia coli infection	58	27.86	63.79	<0.001
hsa05131 Human Diseases	Infectious Diseases	Shigellosis	63	40.54	73.01	0.005
hsa04940 Human Diseases	Metabolic Diseases	Type 1 diabetes mellitus	41	27.86	73.17	<0.001
hsa05016 Human Diseases	Neurodegenerative Diseases	Huntington's disease	177	18.11	37.85	0.035
hsa0516 Human Diseases	Neurodegenerative Diseases	all	323	18.11	34.98	0.072

Table S8: KEGG’s pathways or KEGG’s subclasses whose genes are covered by structural cluster regions in a highly non random manner. For each pathway or subclass, the corresponding curve is reported in Figures S1. The P-value associated to the best point in the curve is given. The coordinates of this point are described. Only pathways or subclasses with associated P-values < 0.1 are listed.
class	subclass	pathway	# genes	% chromosomes	% covered genes	P-value	
hsa00053	Metabolism	Carbohydrate Metabolism	Ascorbate and aldarate metabolism	25	36	88	<0.001
hsa00051	Metabolism	Carbohydrate Metabolism	Fructose and mannose metabolism	34	33.52	67.64	0.007
hsa00049	Metabolism	Carbohydrate Metabolism	Pentose and glucuronate interconversions	28	40.54	89.28	<0.001
hsa00534	Metabolism	Glycan Biosynthesis and Metabolism	Glycosaminoglycan biosynthesis - heparan sulfate	26	33.52	65.38	0.092
hsa00511	Metabolism	Glycan Biosynthesis and Metabolism	Other glycan degradation	16	10.46	50	0.02
hsa00140	Metabolism	Lipid Metabolism	Steroid hormone biosynthesis	55	58.90	94.54	<0.001
hsa00860	Metabolism	Metabolism of Co-factors and Vitamins	Porphyrin and chlorophyll metabolism	42	40.54	69.04	0.055
hsa00830	Metabolism	Metabolism of Co-factors and Vitamins	Retinol metabolism	64	38.35	70.31	0.011
hsa00900	Metabolism	Metabolism of Terpenoids and Polyketides	Terpenoid backbone biosynthesis	15	14.46	53.33	0.029
hsa00230	Metabolism	Nucleotide Metabolism	Purine metabolism	159	30.79	52.83	0.093
hsa00982	Metabolism	Xenobiotics Biodegradation and Metabolism	Drug metabolism - cytochrome P450	72	52.46	84.72	<0.001
hsa00983	Metabolism	Xenobiotics Biodegradation and Metabolism	Drug metabolism - other enzymes	51	42.69	82.35	<0.001
hsa00980	Metabolism	Xenobiotics Biodegradation and Metabolism	Metabolism of xenobiotics by cytochrome P450	70	52.46	85.71	0.003
Metabolism	Metabolism	Xenobiotics Biodegradation and Metabolism	all	108	52.46	83.33	0.001
hsa04360	Organismal Systems	Development	Axon guidance	129	33.52	58.13	0.012
Organismal Systems	Development	all	150	33.52	56.66	0.041	
hsa04916	Organismal Systems	Endocrine System	Melanogenesis	101	42.69	69.3	0.064
hsa04962	Organismal Systems	Excretory System	Vasopressin-regulated water reabsorption	44	33.52	65.9	0.072
hsa04612	Organismal Systems	Immune System	Antigen processing and presentation	83	30.79	63.85	0.039
hsa04062	Organismal Systems	Immune System	Chemokine signaling pathway	189	42.69	66.66	0.063
hsa04610	Organismal Systems	Immune System	Complement and coagulation cascades	69	57.38	84.05	0.023
hsa04672	Organismal Systems	Immune System	Intestinal immune network for IgA production	46	36	76.08	0.001
hsa04660	Organismal Systems	Immune System	T cell receptor signaling pathway	108	63.02	85.18	0.094
Organismal Systems	Immune System	all	801	36	55.43	0.025	
hsa04740	Organismal Systems	Sensory System	Olfactory transduction	386	44.80	84.45	<0.001
hsa04742	Organismal Systems	Sensory System	Taste transduction	51	63.02	92.15	0.028

Table S8 continued.
Chr	# of genes	# of SCR(SC)	% of chromosome covered by SCR captured genes				
			captured	all	with genes	all	TSHB H3F3A IL10 C1QA C1QC C1QB FCER1A FCER1G FCGR2A FCGR3A FCGR2C FCGR3B FCGR2B HIST3H3 HIST3H2A HIST3H2BB
1	16	36	6(10)	16(27)	32.65		CD8A CD8B TPO CD28 CTLA4 ICOS
2	6	10	2(2)	15(27)	39.15		LOC644950 CD80 CD86
3	3	4	0(0)	11(19)	27.33		LOC651868 RNase3 ACTN3 TRIM21 PRG2
4	0	2	1(2)	10(18)	26.39		LOC651868 RNase3 ACTN3 TRIM21 PRG2
5	6	13	2(2)	10(18)	26.39		LOC651868 RNase3 ACTN3 TRIM21 PRG2
6	74	74	3(5)	15(23)	41.15		LOC651868 RNase3 ACTN3 TRIM21 PRG2
7	1	2	1(2)	10(31)	36.14		LOC651868 RNase3 ACTN3 TRIM21 PRG2
8	0	1	0(0)	10(23)	35.41		LOC644950 CD80 CD86
9	2	15	2(4)	12(20)	44.80		C5 C8G
10	4	5	3(3)	13(22)	45.38		DCLRE1C BLNK H2AFY2 PRF1
11	3	9	3(8)	8(14)	32.19		ACTN3 TRIM21 PRG2
12	9	12	2(4)	11(18)	42.27		GRIN2B HIST1H4H H2AFJ CD4 C1S C1R AICDA KLRD1 KLR1C
13	2	2	1(1)	5(14)	23.82		LOC644950 CD80 CD86
14	3	5	2(3)	7(14)	32.66		LOC644950 CD80 CD86
15	0	0	0(0)	9(13)	43.30		LOC644950 CD80 CD86
16	1	3	1(2)	9(23)	51.49		LOC644950 CD80 CD86
17	2	4	2(2)	8(13)	45.16		LOC644950 CD80 CD86
18	0	1	0(0)	1(4)	7.82		LOC644950 CD80 CD86
19	8	10	4(9)	8(15)	58.42		IL2RG C3 KIR2DL3 KIR2DL1 KIR3DL1 KIR3DL2 ACTN4 CD79A
20	2	3	2(2)	5(8)	41.28		SNRPB CD40
21	1	1	1(6)	2(7)	26.28		SNRPB CD40
22	1	3	1(1)	3(8)	32.99		SNRPB CD40
23	2	9	2(5)	9(23)	30.67		SNRPB CD40

Table S9: Immune System Diseases (subclass). For each chromosome, the list of genes belonging to the KEGG’s subclass and localized within structural cluster regions (SCR) are given. The SCRs correspond to the best point in the curve of Figs S1-8, whose coordinates are reported in Table S8. The total number of genes in the subclass, the number of genes covered by some SCR, the number of SCR capturing some gene in the subclass (the number of SCs covering these genes is reported in parenthesis), the number of SCRs within the chromosome (the total number of SCs is reported in parenthesis) and the list of genes in the class lying in some SCR are given.
Chr	# of genes	# of SCR(SC)	% of chromosome covered by SCR	captured genes
1	3	3(2)	37.39	FCER1A FCER1G IL10
2	0	0(0)	43.82	
3	0	0(0)	45.02	
4	0	0(0)	30.46	
5	5	5(1)	28.78	IL3 IL5 IL13 IL4 IL9
6	13	13(4)	47.00	TNF HLA-DRA HLA-DRB5 HLA-DRB1 HLA-DQA1 HLA-DQB1 HLA-DQA2 HLA-DOB HLA-DMB HLA-DMA HLA-DOA HLA-DPA1 HLA-DPB1
7	0	0(0)	39.91	
8	0	0(0)	39.46	
9	0	0(0)	48.62	
10	0	0(0)	52.66	
11	1	1(2)	37.75	PRG2
12	0	0(0)	46.05	
13	0	0(0)	27.77	
14	1	1(2)	36.89	RNASE3
15	0	0(0)	47.72	
16	0	0(0)	57.12	
17	2	2(2)	52.78	EPX CCL11
18	0	0(0)	8.48	
19	0	0(0)	63.13	
20	1	1(1)	47.57	CD40
21	0	0(0)	29.48	
22	0	0(0)	36.01	
X	1	1(4)	35.51	CD40LG

Table S10: Asthma (pathway). See Figure S1-7 and Table S8.
Chr	# of genes	# of SCR(SC)	% of chromosome covered by SCR	captured genes
1	63	65	6(15)	OR4F5 OR4F16 TAS1R3 GN1B CALML6 TAS1R1 OR2B11 OR2C3 OR2G2 OR2G3 OR13G1 OR6F1 OR1C1 OR5AT1 OR11L1 OR2W3 OR2T8 OR2L13 OR2L8 OR2AK2 OR2L2 OR2L3 OR2M5 OR2M2 OR2M3 OR2M4 OR2T33 OR2T32 OR2M7 OR5BF1 OR2T6 OR2T1 OR2T2 OR2T3 OR2T5 OR2T29 OR2T34 OR2T10 OR2T11 OR2T27 OR5BU1 GNT2 OR10J3 OR10J1 OR10J5 PKRCAB CLCA2 CLCA1 CLCA4 OR10T2 OR10K2 OR10K1 OR10R2 OR6Y1 OR1X1 OR10Z1 OR6K2 OR6K3 OR6K6 OR6N1 OR6N2
2	4	6	3(15)	OR1G3 OR1G2 OR1G1 OR1G10
3	8	9	4(5)	15(27)
4	2	4	2(3)	10(19)
5	5	6	2(6)	9(18)
6	18	19	2(5)	13(23)
7	2	28	5(2)	8(31)
8	0	1	0(0)	9(23)
9	24	27	4(8)	11(20)
10	3	5	3(4)	12(22)
11	135	161	6(12)	8(14)
12	32	32	3(7)	10(18)
13	1	1	1(8)	5(14)
14	22	22	3(4)	6(14)
15	2	7	2(3)	7(13)
16	6	6	3(12)	8(23)
17	15	18	4(10)	7(13)
18	0	1	0(0)	1(4)
19	22	23	3(4)	7(15)
20	2	2	2(4)	5(8)
21	0	0	0(0)	2(7)
22	1	2	1(1)	3(8)
X	3	3	3(16)	9(23)

Table S11: Sensory System (subclass). See Figure S1-9 and Table S8.
Chr	# of genes	# of SCR(SC)	% of chromosome covered by SCR	captured genes		
	captured	all	with genes	all		
1	5	5	3(10)	12(27)	62.05	TAS1R3 GNBI TAS1R1 TAS1R2 PRKACB
2	0	1	0(0)	12(35)	69.84	
3	0	0	0(0)	12(27)	70.86	
4	0	0	0(0)	7(19)	50.36	
5	0	1	0(0)	5(18)	37.13	
6	2	2	1(4)	11(23)	81.57	ITPR3 GRM4
7	9	10	3(13)	7(31)	64.47	TAS2R3 TAS2R4 TAS2R5 TAS2R38 TAS2R39 TAS2R40 TAS2R60 TAS2R41 GNAT3
8	0	1	0(0)	6(23)	54.91	
9	2	2	2(11)	6(20)	68.17	CACNA1B PRKACG
10	0	0	0(0)	9(22)	79.98	
11	2	2	2(7)	7(14)	57.61	GNG3 TRPM5
12	16	16	2(10)	6(18)	64.40	ADCY6 SCNN1A GNBI TAS2R7 TAS2R8 TAS2R9 TAS2R10 TAS2R13 TAS2R14 TAS2R50 TAS2R49 TAS2R48 TAS2R44 TAS2R46 TAS2R43 TAS2R42
13	0	0	0(0)	5(14)	53.39	
14	1	1	1(3)	5(14)	60.54	ADCY4
15	1	1	1(2)	4(13)	65.12	PLCB2
16	3	3	2(12)	6(23)	81.73	GNG13 SCNN1G SCNN1B
17	1	1	1(1)	7(13)	81.17	ACCN1
18	0	0	0(0)	1(4)	12.75	
19	2	2	1(6)	4(15)	80.96	CACNA1A PRKACA
20	2	2	2(4)	4(8)	78.80	KCNB1 GNAS
21	0	0	0(0)	2(7)	50.25	
22	0	0	0(0)	2(5)	55.63	
X	1	1	1(11)	8(23)	64.33	PRKX

Table S12: Taste transduction (pathway). See Figure S1-5 and Table S8.
Chr	# of genes	# of SCR(SC)	% of chromosome covered by SCR	captured genes
1	59	60	5(14)	15(27)
2	4	5	3(15)	18(35)
3	6	6	2(2)	15(27)
4	0	2	0(0)	10(19)
5	4	4	2(6)	9(18)
6	16	17	2(5)	13(23)
7	1	17	1(4)	8(31)
8	0	0	0(0)	9(23)
9	23	26	3(5)	11(20)
10	3	5	3(4)	12(22)
11	133	158	5(10)	8(14)
12	16	16	2(4)	10(18)
13	0	0	0(0)	5(14)
14	21	21	2(3)	6(14)
15	0	5	0(0)	7(13)
16	3	3	2(4)	8(23)
17	13	14	2(4)	7(13)
18	0	1	0(0)	1(4)
19	21	22	3(4)	7(15)
20	0	0	0(0)	5(8)
21	0	0	0(0)	2(7)
22	1	2	1(1)	3(8)
X	2	2	2(16)	9(23)

Table S13: Olfactory transduction (pathway). See Figure S1-5 and Table S8.
Chr	# of genes	# of SCR(SC)	% of chromosome covered by SCR	captured genes
1	56	99	16(27)	32.65
				AKT2 NRFL3 IL6R ADAR SHC1 CD1D CD1A CD1C CD1B CD1E AIM2 FCERL1 CD48 FCD44 F1R LFCER1 GFCGR2A HPAG FCGR3A FCGR2C FCGR5B FCGR2B SH2D1B TLR5 ISG15 GN1B PRKCCZ LOC646821 F3 CSF3 IRKBE RASSF5 IL10 P1GR C14B C14B PCB3 CS52 CR2 CR1 CD46 CD34 GNG5 BLC10 CLDN19 P1K3R3 RAP1A NRAS SKE CD247 XCL2 XCL1 C1QA C1QG C1QB DDEFL1 WASP2
2	22	40	14(30)	39.06
				IL8R8 IL8RA ARPC2 STATT1 NRCC1 CD26 CTLA4 ICOS CREB1 ADCY3 PDCD1 CD18 CD8B TPPO PRKCE INPP5D PROC CASP10 CASP8 NCX2 DDEF2 ROCK2
3	27	48	8(20)	39.15
				GP9 CD80 GSK3B CD86 ADCY5 CCR9 CXCR6 CCR1 CCR1 CCR3 FL173802 CCR5 TRELX1 RHN A2G2 GTP G1F2 PAK2 DLG1 ARPC4 RAI1 CCR4 MYD88 CX3CR1 CCR8 CTNBN1 THPO
4	17	42	7(9)	27.33
				TLR2 TXX TEC MYL5 SH3BP2 GRK1 TLR6 TLR6 FGB PGA FGG KIT CLDN22 CASP3 TLR3 KLB1 F11
5	20	32	6(18)	36.14
				F12 GRK6 CTNNA1 TMEM73 CD14 IL5 IL5 IL4 HS4P1A CXCL14 CSF1R CD74 IL12B CANX MAPK9 DOWN2 LCP2
6	45	63	8(15)	39.14
				CCR6 MLLT4 HLA-F HLA-G HLA-A HLA-E HLA-C HLA-D MICB LTA TWF NFCR3 HSA1PIL HSA1AP1 HSA1A HSA1B C2 CFB CFB4 C4A HLA-DRA HLA-DRB5 HLA-DRB1 HLA-DQA1 HLA-DQB1 HLA-DOB TAP2 TAP1 HLA-DMB HLA-DMA HLA-DOA HLA-DPA1 HLA-DBP1 TAPPB ATG5 FOXO3 E2R PLG RIPK1 MAP3K7 NFV A NCR2 POLR1C HSP90A1 NF2BE
7	20	32	6(18)	36.14
				ARFC1A ARPC1B GN2B EPO TRIPS SERPINE1 CLDN15 MYL2CPL NCF1 CCL26 CCL24 GNT1 GNT1 CLDN 3 CLDN 4LIMK1 CARD11 ACTB RAC1 IL6
8	12	18	6(13)	35.41
				PTK2 CDLN23 PLAT IRKBP PLOR3D P5P3CC TNCR1 NFCR3 HSA1PIL HSA1AP1 HSA1A HSA1B C2 CFB CFB4 C4A HLA-DRA HLA-DRB5 HLA-DRB1 HLA-DQA1 HLA-DQB1 HLA-DOB TAP2 TAP1 HLA-DMB HLA-DMA HLA-DOA HLA-DPA1 HLA-DBP1 TAPPB ATG5 FOXO3 E2R PLG RIPK1 MAP3K7 NFV A NCR2 POLR1C HSP90A1 NF2BE
10	12	22	5(5)	32.39
				BIRC3 BIRC2 SERPING1 CTNND1 IFTM1 IHRAS IRF7 TOLLIP CD81 GNG3 PLCB3 RASGRP2 SIPA1 RELA CFL1 ACTN3 ADRBK1 RPS6KB2 FADD F2
11	20	45	6(12)	32.19
				BIRC3 BIRC2 SERPING1 CTNND1 IFTM1 IHRAS IRF7 TOLLIP CD81 GNG3 PLCB3 RASGRP2 SIPA1 RELA CFL1 ACTN3 ADRBK1 RPS6KB2 FADD F2
12	23	38	4(8)	42.27
				TBK1 IRAK4 RAPGEF3 ADCY6 ITGB7 ITGA5 VWF CD9 LTBR CD4 GN B3 PTPN6 C1S C1R C3A1 AICDA A2M KLDR1 KLRK1 KLRK4 KLRC3 KLRC2 KLC1
13	5	11	2(9)	23.82
				RXFAP TNSRF13B F7 F10 GRK1
14	13	23	5(11)	32.66
				ARHGA5P CDF2 NFKB1A HSPA9A1 RAF1 P5P3CC TNCR1 NFCR3 HSA1PIL HSA1AP1 HSA1A HSA1B C2 CFB CFB4 C4A HLA-DRA HLA-DRB5 HLA-DRB1 HLA-DQA1 HLA-DQB1 HLA-DOB TAP2 TAP1 HLA-DMB HLA-DMA HLA-DOA HLA-DPA1 HLA-DBP1 TAPPB ATG5 FOXO3 E2R PLG RIPK1 MAP3K7 NFV A NCR2 POLR1C HSP90A1 NF2BE
15	13	16	5(7)	43.30
				MAP2K1 RASGRP1 PAK6 PLCB2 CHP PLAG24B PLAG4E PLA2G4D PLA2G4F PDLA3 C3K ANPEP PSTIP1
17	26	56	7(12)	45.16
				TNFRSF13B MAP2K3 TRIM25 TBKBP1 GNT2 ITGA3 CRK SERPIN2 ACTG1 RAC3 CD7 CCL5 CCL16 CCL14 CCL15 CCL23 CCL18 CCL3 CCL4 CCL53 CCL61 CCL63 CCL64 CCL62 CSF3 CCR7 SHP1K
18	1	6	1(4)	7.82
				NFATC1
19	43	57	7(14)	58.42
				PPAP2C SHC2 MADCAM1 CFD GNG7 PIK51C MAP2K2 TICAM1 CD37 FLT3L4 IRF3 CD33 PRKCCZ LILRB3 KIR3DL3 KIR2DL3 KIR2DL1 KIR2DL4 KIR3DL4 KIR2DL4S KIR2DL2 NCR1 IL11 DNM2 EPRO CALR PRKACA ACTN4 NFkB1B PAK4 AKT2 TGFBI CD79A GSK3A PLAUR C3 VAV1 FCE2L MAP2K7 CCL25 LOC646048 PIN1 ICAM1
20	8	15	4(5)	41.28
				MAV5 PLCB1 PLCB4 PK7 THBD MMP9 CD40 PREX1
21	2	10	1(6)	26.28
				ICOSLG ITG5B
22	11	18	3(8)	32.99
				MAPK12 MAPK1I GRAP2 PLOR3H TNFRSF13C BID CLDN5 GIP1BB SERPIN1 CRLK1 MAPK1
X	10	26	7(20)	30.67
				CXCR3 C5PS2RA IL3RA CD99 PRXK MAPK7IP3 CD40LG PK3 DDX3X CLDN2

Table S14: Immune System (subclass). See Figure S1-8 and Table S8.
Chr	# of genes	# of SCR(SC)	% of chromosome covered by SCR	captured genes
1	7	16	30.13	NRAS EFNA4 EFNA3 EFNA1 SEMA4A SRGAP2 EPHB2
2	6	10	36.30	DPYS5 NCK2 NGEF EP4A4 ROCK2 SEMA4F
3	13	18	35.89	GSK3B SEMA5B EPHA3 PXLNA1 PXLNB1 RHOA SEMA3F GNA12
				SEMA3B EPHA6 SRGAP3 PAK2
4	1	5	25.69	ABLM2
5	3	7	24.85	UNC5A SL1T3 ABLM3
6	2	4	38.22	EPHA7 NOTCH1
7	5	13	34.25	RAC1 CDK5 LIMK1 EPHB4 EGFR
8	4	5	33.01	DPYS2 PTK2 PWWIL2 PWWCC
9	3	5	41.99	ABL1 SEMA1D NOTCH1
10	7	8	41.69	ITGB1 NR1P1 CXCL12 SLIT1 UNC5B PWW3CB SEMA1G
11	3	9	29.40	HRAS CFL1 RHOD
12	6	7	39.96	RND1 ETV6 PWWIL1 PWWNC1 PNT4 SRGAP1
13	0	1	21.85	
14	2	3	30.55	NFATC4 CFL2
15	7	8	40.63	SEMA4B MAP2K1 CPEB1 FES PAK6 CHF SEMA7A
16	6	9	48.46	CHP2 NFATC3 NFAT5 MAPK3 NTN2L SPIRE2
17	1	2	41.36	RAC3
18	1	2	7.49	NFATC1
19	4	4	55.56	NOTCH3 EFNA2 SEMA6B PAK4
20	1	2	37.68	PAK7
21	0	1	24.68	
22	2	5	31.49	PLEXB2 MAPK1
X	1	5	28.25	PAK3

Table S15: Development (subclass). See Figure S1-8 and Table S8.
Chr	# of genes	# of SCR(SC)	% of chromosome covered by SCR	captured genes	
	captured	all with genes	all		
1	7	14 (4)	16 (27)	30.13	NRAS EFNA4 EFNA3 EFNA1 SEMA4A SRGAP2 EPHB2
2	6	9 (6)	19 (35)	36.30	DPYSL5 NCK2 NGEF EPHA4 ROCK2 SEMA4F
3	13	18 (8)	15 (27)	35.89	GSK3B SEMA5B EPHA3 PLXNA1 PLXNB1 RHOA SEMA3F GNA12 SEMA3B EPHB3 EPHA6 SRGAP3 PAK2
4	1	5 (1)	11 (19)	25.69	ABLIM2
5	3	7 (3)	10 (18)	24.85	UNC5A SLIT3 ABLIM3
6	1	2 (1)	15 (23)	38.22	EPHA7
7	4	12 (4)	10 (31)	34.25	RAC1 CDK5 EPHB4 LIMK1
8	3	4 (3)	11 (23)	33.01	DPYSL2 PTK2 PPP3CC
9	2	4 (2)	13 (20)	41.99	ABL1 SEMA1D
10	7	8 (5)	13 (22)	41.69	ITGB1 NRPI CXCL12 SLITI UNC5B PPP3CB SEMA1G
11	3	7 (2)	8 (14)	29.40	HRAS CFL1 RHOD
12	4	5 (3)	13 (18)	39.96	RND1 SRGAP1 PLXNC1 NTN4
13	0	1 (0)	5 (14)	21.85	
14	2	2 (1)	7 (14)	30.55	NFATC4 CFL2
15	5	6 (4)	9 (13)	40.63	PAK6 CHF SEMA4B SEMA7A FES
16	5	5 (4)	9 (23)	48.46	CHF2 NFATC3 NFAT5 MAPK3 NYT2L
17	1	3 (1)	8 (13)	41.36	RAC3
18	1	3 (1)	1 (4)	7.49	NFATC1
19	3	3 (1)	8 (15)	55.56	EFNA2 SEMA6B PAK4
20	1	2 (1)	5 (8)	37.68	PAK7
21	0	0 (0)	2 (7)	24.68	
22	2	4 (2)	3 (8)	31.49	PLXNB2 MAPK1
X	1	5 (1)	9 (23)	28.25	PAK3

Table S16: Axon guidance (pathway). See Figure S1-4 and Table S8.
Chr	# of genes	# of SCR(SC)	% of chromosome covered by SCR	captured genes
1	13	36	18.40	F11R, FCGR2A, FCGR3A, FCGR2C, FCGR3B, IL10, CD247, ARF1, ATP6V0B, PK3R3, SHC1, ARHGEF2, TLR5
2	14	24	22.33	STAT1, NCK2, IL8RB, IL8RA, ARPC2, TUBA1A, ADAM17, YWHAQ, ATP6V1C2, ROCK2, CFLAR, CASP8, PFN4, ADY3
3	7	19	21.90	SEC61A1, CTNNB1, PFN2, RHOA, HCLS1, CAV3, ARPC3
4	4	12	16.39	ATP6V0B, PIK3R3, SHC1, ARHGEF2, TLR5
5	13	17	15.85	TUBB2A, TUBB2B, TUBB, ATP6V1G2, TNF, HLA-DRA, HLA-DRB5, HLA-DRB1, HLA-DQA1, HLA-DQB1, HLA-DQB2, HLA-DOB, ATG5
6	13	27	24.27	IL6, NCF1, ACTB, ARPC1A, ARPC1B, SERPINE1, PDIA4, ATP6V0E2, RAC1, KDEL, SEC61G, EGRF
7	12	25	24.37	PPP2R2A, IKBKB, PPP2CB, PTK2, ATP6V1B
8	5	12	21.91	TUBB2C, PRKACG, TJP2, DN1M, ARPC5L, SHC3
9	6	16	27.90	TUBB2C, PRKACG, TJP2, DN1M, ARPC5L, SHC3
10	3	12	25.31	PPP2R2D, TUBB5, DOCK1
11	6	18	25.31	PLCB3, RELA, RHOG, CTTN, MUC2, KCNQ1
12	7	14	18.24	PLCB3, RELA, RHOG, CTTN, MUC2, KCNQ1
13	0	1	13.97	AKT1, NFKBIA, FOS
14	1	7	18.82	CSK, SMAD3, PLCB2, TJP1
15	4	11	26.65	CYBA, TUBB3, ATP6V0D1, CDH1, ATP6V0C, GNAO1, MAP3K, SEPT1
16	8	14	32.95	CRK, ACTG1
17	2	17	25.39	PLCB1, PLCB4
18	0	4	6.18	PLCB1, PLCB4
19	11	18	37.24	GNA11, GNA15, TICAM1, NFKBIA, AKT2, PPP2R1A, PRKCG, SHC2, CALR, PRKACA, THGB1
20	2	6	24.27	PLCB1, PLCB4
21	2	5	18.29	U2AF1, TTGB2
22	3	10	22.17	MAPK12, MAPK11, CLTCL1
X	0	6	17.75	MAPK12, MAPK11, CLTCL1

Table S17: Infectious Diseases (subclass). See Figure S1-8 and Table S8.
Chr	# of genes	# of SCR(SC)	% of chromosome covered by SCR	captured genes		
	captured	all	with genes	all		
1	3	8	3(10)	16(27)	24.66	PKLR PFK3R3 PRKCZ
2	3	10	3(3)	20(35)	29.42	HK2 PTPRN CD28
3	3	10	2(9)	15(27)	28.92	CD80 CD86 HES1
4	0	4	0(0)	11(19)	21.18	
5	3	4	3(6)	11(18)	20.74	IL12B HK3 MAPK9
6	20	20	2(4)	15(23)	31.98	HLA-F HLA-G HLA-A HLA-E HLA-C HLA-B LTA TNF HLA-DRA HLA-DRB5 HLA-DRB1 HLA-DQA1 HLA-DQB1 HLA-DQA2 HLA-DOB HLA-DMB HLA-DMA HLA-DOA HLA-DPA1 HLA-DPB1
7	3	7	3(13)	11(31)	30.17	PTPRN2 BHLHB8 MNX1
8	2	3	2(7)	11(23)	27.74	MAFA IKKB
9	1	1	1(3)	14(20)	35.34	CACNA1B
10	3	7	3(4)	13(22)	33.71	PRF1 HHEX GAD2
11	1	4	1(4)	8(14)	23.82	INS
12	2	5	2(2)	13(18)	33.38	CACNA1C IAPP
13	1	2	1(8)	5(14)	17.91	IHS2
14	1	2	1(1)	8(14)	25.59	GZMB
15	1	2	1(2)	10(13)	34.07	PFKM2
16	1	2	1(2)	10(23)	41.34	MAPK3
17	3	5	3(3)	8(13)	33.74	CACNA1G SOCS3 HNF1B
18	0	0	0(0)	2(4)	6.84	
19	2	4	2(3)	9(15)	48.48	CACNA1A INSR
20	2	3	1(1)	5(8)	30.47	NKKX2-2 FOXA2
21	0	0	0(0)	3(7)	21.49	
22	0	1	0(0)	4(8)	27.20	
X	0	1	0(0)	11(23)	23.24	

Table S18: Metabolic Diseases (subclass). See Figure S1-8 and Table S8.
Chr	# of genes captured	# of SCR(SC) all	% of chromosome covered by SCR	captured genes
1	9	30 (5)	15.26	CAPN2 UBE2J2 CALML6 NCSTN NDUFS2 TOMM40L SDHC ATP6 PSEN2
2	10	19 (7)	18.56	DCTN1 HTRA2 NDUFA10 POLR2D NDUFS1 ADAM17 COX7A2L NDUFS3 CASP8 ALS2
3	6	15 (4)	18.39	GSK3B NDUFB4 UQCRCl IFT57 AP2M1 POLR2H
4	3	15 (2)	13.78	CASP3 SLC25A4 HTT
5	8	17 (6)	13.33	LOC727947 SDHA SLC6A3 NDUFS6 NDUFA2 VDAC1 CLTB DCTN4
6	6	16 (5)	20.18	PRPH2 TBP TNF HSPA1A UBE2J1 SOD2
7	6	15 (5)	21.35	RAC1 HIP1 POLR2J POLR2J3 IL6 CYCS
8	5	12 (4)	18.49	PPP3CC VDAC3 NEFM NEPL CYC1
9	6	13 (5)	23.50	PRKAGC C5 NOTCH1 C8G GRIN1 HSPA5
10	4	11 (2)	20.88	IDE
11	8	26 (2)	15.45	POLR2L AP2A2 TH COX8A STIP1 PLCB3 BAD CAPN1
12	9	18 (7)	21.56	LRRK2 SP1 ATP5G2 GRIN2B NDUFA9 TNFRSF1A GAPDH APAF1 PRPH
13	0	1 (0)	12.00	
14	3	7 (3)	14.87	CALM1 DNAL1 RCOR1
15	4	7 (3)	22.17	COX5A SIN3A PLCB2 CHP
16	6	13 (4)	28.14	NDUFB10 DNH3 UQCRCl POLR2C ATP2A1 MAPK3
17	1	20 (1)	20.94	CDK5R1
18	0	5 (0)	5.85	
19	7	24 (4)	31.36	MAP2K2 CREB3L3 POLR2E ATP5D NDUFS7 COX6B2 NDUFA7
20	3	8 (2)	19.66	TAF4 PLCB1 PLCB4
21	3	8 (2)	16.23	UBE2G2 BACE2 NDUFV3
22	6	13 (3)	19.16	MAPK12 MAPK11 EP300 NDUFA6 CLTCL1 SEPT5
X	3	10 (2)	15.01	SLC25A6 SLC25A5 NDUFA1

Table S19: Neurodegenerative Diseases (subclass). See Figure S1-9 and Table S8.
Chr	# of genes	# of SCR(SC)	% of chromosome covered by SCR	captured genes	
	captured	all	with genes	all	
1	4	5	3(3)	16(27)	30.13 NRAS TPM3 NTRK1 RXRG
2	1	2	1(1)	19(35)	36.30 TCF7L1
3	3	3	3(7)	15(27)	35.89 PPARG CTNNB1 TFG
4	0	1	0(0)	11(19)	25.69
5	1	1	1(1)	10(18)	31.85 TCF7
6	1	1	1(2)	15(23)	38.22 RXRB
7	0	1	0(0)	10(31)	34.25
8	0	1	0(0)	11(23)	33.01
9	1	1	1(3)	13(20)	41.99 RXRA
10	2	4	2(2)	13(22)	41.69 RET NCOA4
11	2	2	2(5)	8(14)	29.40 CCND1 HRAS
12	0	1	0(0)	13(18)	39.96
13	0	0	0(0)	5(14)	21.85
14	0	0	0(0)	7(14)	30.55
15	1	1	1(1)	9(13)	40.63 MAP2K1
16	2	2	2(3)	9(23)	48.46 CDH1 MAPK3
17	0	1	0(0)	8(13)	41.36
18	0	0	0(0)	1(4)	7.49
19	1	1	1(2)	8(15)	55.56 MAP2K2
20	0	0	0(0)	5(8)	37.68
21	0	0	0(0)	2(7)	24.68
22	1	1	1(1)	3(8)	31.49 MAPK1
X	0	0	0(0)	9(23)	28.25

Table S20: Thyroid Cancer (pathway). See Figure S1-7 and Table S8.
Chr	# of genes	# of SCR(SC)	% of chromosome covered by SCR	captured genes
1	5	12	24.66%	WNT9A WNT3A VANGL2 DVL1 WNT2B
2	4	7	29.42%	ROCK2 FZD7 WNT6 WNT10A
3	6	10	28.92%	CTNNB1 DVL3 SENP2 RUVBL1 GSK3B RHOA
4	1	8	21.18%	CTBP1
5	8	10	20.74%	TCF7 SKP1 PPP2CA CAMK2A FBXW1 MAPK9 WNT8A NDK2
6	4	6	31.98%	CCND3 PPP2R5D CSNK2B MAP3K7
7	3	8	30.17%	RAC1 CUL1 FZD9
8	4	8	27.71%	PPP3CC PPP2CB SFRP1 DKK4
9	1	3	35.34%	PRKACG
10	9	12	33.71%	CTBP2 PPP3CB CAMK2G BTRC FZD8 DKK1 FRAT1 FRAT2 SFRP5
11	4	9	23.82%	PLCB3 PPP2R5B FOSL1 MMP7
12	6	9	33.38%	FZD10 WNT10B WNT1 LRP6 WNT3B CCND2
13	1	1	17.91%	
14	4	6	25.59%	PSEN1 PPP2R5C CHD8 NFATC4
15	3	3	23.82%	PLCB2 CHP SMAD3
16	5	9	41.34%	AXIN1 CREBBP NFATC3 NFAT5 CSNK2A2
17	1	9	33.71%	RAC9
18	1	4	6.84%	NFATC1
19	4	4	48.48%	PRKACA APC2 PPP2R1A PRKCG
20	2	4	30.17%	PLCB1 PLCB4
21	0	0	21.49%	
22	3	5	27.20%	RBX1 EP300 WNT7B
X	1	3	23.24%	PRKX

Table S21: Wnt (pathway). See Figure S1-4 and Table S8.
Chr	# of genes	# of SCR(SC)	% of chromosome covered by SCR	captured genes
1	4	4(8)	8.85	PSEN2 HES5 NCSTN DVL1
2	0	0(0)	10.46	
3	2	2(2)	10.66	DVL3 HES1
4	1	1(1)	8.08	CTBP1
5	1	1(2)	7.44	MAML1
6	2	2(2)	11.58	PTCRA DLL1
7	1	1(1)	13.40	LFNG
8	0	0(0)	10.89	
9	1	1(1)	12.74	NOTCH1
10	1	1(1)	11.87	CTBP2
11	0	0(0)	9.07	
12	0	0(0)	11.91	
13	0	0(0)	7.87	
14	1	1(3)	9.95	JAG2
15	1	1(1)	11.90	DLL4
16	0	0(0)	16.52	
17	1	1(4)	12.06	RFNG
18	0	0(0)	3.90	
19	2	2(4)	18.33	DLL3 NUMBL
20	0	0(0)	11.35	
21	0	0(0)	10.91	
22	0	0(0)	11.93	
X	0	0(0)	8.31	

Table S22: Notch (pathway). See Figure S1-4 and Table S8.
Chr	# of genes	# of SCR(SC)	% of chromosome covered by SCR	captured genes	
	captured	all	with genes	all	
1	8	8	6(10)	13(27)	53.45 BMP8A BMP8B PTCH2 WNT4 WNT9A WNT3A WNT2B PRKACB
2	4	6	1(2)	14(35)	60.73 STK36 WNT6 WNT10A IHH
3	3	3	3(6)	14(27)	64.32 GSK3B WNT7A WNT5A
4	0	1	0(0)	7(19)	43.01
5	4	4	4(13)	6(18)	35.34 FBXW11 CSNK1A1 WNT8A CSNK1G3
6	3	3	2(4)	11(23)	68.93 BMP5 RAB23 BMP6
7	1	5	1(10)	7(31)	55.03 SHH
8	0	0	0(0)	8(23)	52.22
9	3	3	2(10)	8(20)	62.06 PRKACG GAS1 PTCH1
10	3	3	2(4)	11(22)	72.52 SUFU WNT8B BTRC
11	1	1	1(1)	8(14)	52.96 WNT11
12	5	5	2(10)	6(18)	58.74 WNT5B WNT10B WNT1 DHH GLI1
13	1	2	1(1)	5(14)	43.54 CSNK1A1L
14	0	1	0(0)	5(14)	53.24
15	1	1	1(5)	5(13)	60.11 CSNK1G1
16	0	0	0(0)	6(23)	74.96
17	3	3	2(6)	7(13)	72.68 WNT3 WNT9B CSNK1D
18	0	0	0(0)	1(4)	11.11
19	2	2	1(6)	4(15)	76.69 CSNK1G2 PRKACA
20	2	2	2(4)	5(8)	66.79 BMP7 BMP2
21	0	0	0(0)	2(7)	42.26
22	2	2	1(7)	2(8)	48.09 CSNK1E WNT7B
X	1	1	1(11)	8(23)	54.22 PRKX

Table S23: Hedgehog (pathway). See Figure S1-4 and Table S8.
Chr	# of genes	# of SCR(SC)	% of chromosome covered by SCR	captured genes	
				all	
1	20	42	11(22)	16(27)	ATP6V0B PRDX1 SH3GLB1 PMVK GBA NTRK1 DDEF1 ATP4C HMGCL FUCAL LDLRAP1 ABCD3 ATG4C AP4B1 CTSE PEX19 HSPA6 RAB4A CENTB5 PRKCB1 PEX10
2	16	24	10(21)	20(35)	RAB11FIP5 STAMBP DDEF2 EHD3 XDH AGXT ATG3B ACSL3 AP1S3 CENTG2 VPS24 LAPTM4A IL8RB IL8RA SLC11A1 PEX13
3	14	28	8(18)	16(27)	RHOA CHMP2B ACOX2 LAMP3 AP2M1 EHHAHD RAB7A PIK3R4 GLB1 PDCD6IP CENTB2 TFRC CAV3 ATG7
4	8	16	6(11)	12(19)	GRK4 FSAPL1 ACOX3 IDUA FGFR3 ACSL1 CTSO CENTD1
5	8	22	4(8)	11(18)	FSD2 CENTD3 RUFY1 CSF1R GM2A CLTB FGFR4 GRK6
6	16	23	6(10)	15(23)	HLA-F HLA-G HLA-A PEX6 HLA-E HLA-C HLA-B HSAF1L HSPA1A HSPA1B NF1 PPT2 PEC1 SOD2 IGFR2 ATG5
7	5	13	3(7)	13(31)	RHOA CHMP2B ACOX2 LAMP3 AP2M1 EHHAHD RAB7A PIK3R4 GLB1 PDCD6IP CENTB2 TFRC CAV3 ATG7
8	4	18	4(10)	11(23)	GRK4 FSAPL1 ACOX3 IDUA FGFR3 ACSL1 CTSO CENTD1
9	9	27	6(9)	17(20)	GRK4 FSAPL1 ACOX3 IDUA FGFR3 ACSL1 CTSO CENTD1
10	6	15	6(9)	13(22)	GRK4 FSAPL1 ACOX3 IDUA FGFR3 ACSL1 CTSO CENTD1
11	14	29	5(9)	9(14)	FOLR3 FOLR1 FOLR2 CENTD2 PRDX5 EHD1 CTSW CTSF PEX16 HRAS AP2A2 CTSF INS TSG101
12	7	26	6(10)	13(18)	PEK5 ULC1 PXMP2 SLC11A2 M6PR ABCD2 IQSEC3
13	2	5	1(8)	5(14)	LAM1 GRK1
14	7	11	3(3)	8(14)	LAM1 GRK1
15	11	18	7(9)	10(13)	LAM1 GRK1
16	11	16	5(17)	10(23)	CLN3 GALNS DCER2 RAB11FIP3 GNPTG ATP6V0C ATP6V0D1 PARD6A PLA2G15 VPS4A MPV17L
17	9	31	5(8)	8(13)	GDNF Nepf SMAD6 SMAD7 SMAD4 AP3B2 SH3GL3
18	1	9	1(3)	2(4)	GDNF Nepf SMAD6 SMAD7 SMAD4 AP3B2 SH3GL3
19	14	25	8(14)	9(15)	NUDT19 ECH1 PEX1G MCOLN1 RAB11B ACP5 MAN2B1 DNASE2 PIK3K1 CH3GL1 NAPSA TGFBR1 EPN1 CHMP2A
20	3	11	3(5)	6(8)	ARFGAP1 CTS8 HAO1
21	0	1	0(0)	3(7)	ARFGAP1 CTS8 HAO1
22	6	10	3(6)	4(8)	SLC25A17 NAGA ARFGAP3 PEX26 CLTCL1 ARSA

Table S24: Transport and Catabolism (subclass). See Figure S1-9 and Table S8.
Chr	# of genes	# of SCR(SC)	% of chromosome covered by SCR	captured genes		
	captured	all with genes	all			
1	3	11	3(10)	16(27)	18.40	DFFB CAPN2 PIK3R3
2	3	7	1(1)	22(35)	22.33	CFLAR CASP10 CASP8
3	3	8	3(6)	17(27)	21.90	ENDOGL1 IRAK2 PRKAR2A
4	1	4	1(2)	12(19)	16.39	CASP3
5	0	2	0(0)	12(18)	18.85	
6	2	2	2(5)	16(23)	24.27	RIPK1 TNF
7	2	4	2(7)	15(31)	24.37	CYCS PRKAR1B
8	6	6	2(4)	11(23)	21.91	IKKBK PPP3CC TNFRSF10B TNFRSF10C TNFRSF10D TNFRSF10A
9	3	4	3(5)	17(20)	27.90	PRKACG ENDOG TRAF2
10	1	4	1(1)	13(22)	25.31	PPP3CB
11	5	8	2(3)	9(14)	18.24	BIRC3 BIRC2 BAD CAPN1 RELA
12	3	4	3(3)	14(18)	26.09	APAF1 TNFRSF1A IRAK4
13	0	0	0(0)	5(14)	13.97	
14	2	2	2(5)	8(14)	19.82	AKT1 NFKBIA
15	1	1	1(1)	11(13)	26.65	CHP
16	1	2	1(1)	11(23)	32.95	TRADD
17	0	4	0(0)	8(13)	26.28	
18	0	1	0(0)	2(4)	6.18	
19	2	4	2(3)	9(15)	37.24	AKT2 PRKACA
20	0	1	0(0)	6(8)	23.27	
21	0	0	0(0)	3(7)	18.89	
22	0	2	0(0)	4(8)	22.17	
X	1	6	1(11)	11(23)	17.75	IL3RA

Table S25: Apoptosis (pathway). See Figure S1-4 and Table S8.
Table S26: Replication and Repair (subclass). See Figure S1-9 and Table S8.
Chr	# of genes	# of SCR(SC)	% of chromosome covered by SCR	captured genes
1	29	38 (24)	58.81	CEPT1 ETNK2 HSD11B1 PLA2G2E PLA2G2A PLA2G5 PLA2G2D PLA2G2F PLA2G2C LYPLA2 HMGCCL PAFAH2 MECR DEGS1 GN-PAT AKR1A1 CYP4A11 CYP4A22 GPX7 SCP2 CPT2 ACOT7 GBA HSD1B7 ALDH9A1 PPAP2B CYP2J2 OXCT2 PPT1
2	25	28 (28)	66.66	HADHA HADHB SELI LYCAT SRD5A2 CYP1B1 NEU2 DGKD UGT1A8 UGT1A10 UGT1A9 UGT1A7 UGT1A6 UGT1A5 UGT1A4 UGT1A3 UGT1A1 NEU4 PECR CYP27A1 SGPP2 ACSL3 ACADL MBOAT2 SMPD4
3	13	15 (19)	68.35	MGLL GPD1L GLBI ACAA1 CYP8B1 GPX1 GLYCTK PTPLB PCYT1A BDHI ACOX2 EHHDH DGK
4	16	35 (16)	47.72	DGKQ ACOX3 UGT8 ENP16 ACSL1 SRD5A3 UGT2B17 UGT2B15 UGT2B10 UGT2A3 UGT2B7 UGT2B11 UGT2B8 UGT2B4 UGT2A1 SULT1E1
5	6	11 (15)	36.58	LPCAT1 SRD5A1 ALDH7A1 ACSL6 LTG1S GPX3
6	16	16 (18)	76.83	ACAT2 AGPAT4 ELOVL2 MBOAT1 SMPD2 PEC1 GPX6 GPX5 NEU1 CYP4A2 PPT2 AGPAT1 HSD1B8 CYP39A1 PLA2G7 ELOVL5
7	12	13 (18)	60.69	AKRIB1 AKRIB10 DGKI AKR1D1 TBXAS1 AGK CYP51A1 CYP53A5 CYP3A7 CYP3A4 CYP3A43 ACHE
8	11	14 (19)	54.22	CYP1B1 CYP1B2 DGAT1 FDFT1 LYPLA1 AGPAT6 CYP7A1 CYP7B1 ASAH1 LPL EPHX2
9	11	12 (15)	60.03	VGGC STPLC1 HSD17B3 BAAT ALDH1B1 PTGS1 PTGES2 PTGES CEL AGPAT2 PTGDS
10	25	30 (19)	77.02	ALOX5 ASAH2C ACADSB CHAT ASAH2 SGMS1 LIPF CH25H LIPA CYP2C18 CYP2C19 CYP2C9 CYP2CS SCD CYP17A1 SGPL1 PLA2G12B OLAH PTPLA AKR1C1 AKR1C2 AKR1C3 AKR1C4 ECHS1 CYP2E1
11	15	17 (12)	55.75	DAK ACAT1 FADS1 FADS2 TM7F2 CHKA CPT1A HSD1B12 DGRZ DHCR7 NEU3 DGAT2 PHCA PTDSS2 SMPD1
12	9	13 (13)	62.14	GPD1 SOAT2 DGKA HSD17B6 CYP2B1 MBOAT5 LTA4H CHPT1 ETK1
13	0	1 (0)	49.45	GALC CYP4A6I DEGS2 ACOT1 ACOT2 ACOT4 SPTLC2
14	7	9 (8)	58.18	GALT CYP4A6I DEGS2 ACOT1 ACOT2 ACOT4 SPTLC2
15	7	8 (10)	63.13	AGPAT7 PLA2G8B PLA2G4A LIPC CYP1A1 CYP1A2 PLA2G1A
16	10	10 (23)	79.48	LPCAT2 HSD17B2 CDIPT HSD3B7 HSD11B2 LCAT PLA2G15 SMPD3 PLA2G10 DCI
17	17	21 (13)	78.39	PEMT ALDH3A2 HSD17B1 PHOSPH01 ACOX1 SPHK1 PGSI ENP7 PCYT2 FASN ACACA DGKE PAFAH1B1 GGT6 ALOX5 PLD2 ALOX12
18	0	4 (0)	12.09	SULT2B1 SPHK2 CPT1C LEN4 SLC27A5 CYP2B6 PAFAH1B3 PPAP2C GPX4 ACER1 GCDH GPSN2 CYP4F3 CYP4F2
19	14	14 (14)	79.39	PTGIS CDS2 CRKL1
20	3	4 (2)	73.99	GPL15 CDS2 CRKL1
21	4	4 (6)	47.05	CBRI CBRI3 AGPAT3 LSS
22	10	13 (2)	52.62	PLA2G6 MCAT PNPLA3 CERK CPT1B CHKB ARSA COMT GGT1A1 GGT1
X	6	9 (15)	60.31	DGAT2L4 GLA ACSL4 PCY1T1B GK STS

Table S27: Lipid Metabolism (subclass). See Figure S1-8 and Table S8.
Chr	# of genes	# of SCR(SC)	% of chromosome covered by SCR	captured genes
1	14	15	6(12) 13(27)	49.81 MGST3 UCK2 DPYD GSTM4 GSTM2 GSTM1 GSTM5 GSTM3 EPHX1
2	12	13	4(10) 17(35)	56.62 CYP1B1 UGT1A8 UGT1A10 UGT1A9 UGT1A7 UGT1A6 UGT1A5 UGT1A4 UGT1A3 UGT1A1 XDH AOX1
3	2	3	2(4) 14(27)	60.41 UMPS IMPDH2
4	9	17	1(1) 8(19)	39.87 UGT2B17 UGT2B15 UGT2B10 UGT2A3 UGT2B7 UGT2B11 UGT2B28 UGT2B4 UGT2A1
5	0	0	0(0) 8(18)	34.22
6	6	6	2(3) 11(23)	63.67 TPMT GSTA2 GSTA1 GSTA5 GSTA3 GSTA4
7	4	8	1(5) 7(31)	51.25 CYP3A5 CYP3A7 CYP3A4 CYP3A3
8	2	3	1(3) 8(23)	49.72 NAT1 NAT2
9	1	1	1(3) 10(20)	59.21 UCK1
10	11	11	4(13) 11(22)	68.83 CYP2C19 CYP2C18 CYP2C29 CYP2C8 CYP2E1 AKR1C1 AKR1C2 AKR1C3 AKR1C4 GSTO1 GSTO2
11	3	3	1(2) 8(14)	50.14 GSTP1 ALDH3B2 ALDH3B1
12	1	1	1(4) 8(18)	56.45 MGST1
13	0	0	0(0) 5(14)	39.59
14	1	1	1(1) 5(14)	49.58 GSTZ1
15	2	3	1(3) 6(13)	57.73 CYP1A1 CYP1A2
16	4	4	2(3) 7(23)	71.58 TK2 CES2 CES1 CES7
17	2	2	2(6) 7(13)	68.87 ALDH3A1 TK1
18	0	0	0(0) 1(4)	10.45
19	7	7	2(8) 5(15)	73.56 CYP2A6 CYP2A7 CYP2B6 CYP2A13 CYP2F1 CYP2S1 DHDH
20	2	2	2(4) 5(8)	61.98 ITPA UCKL1
21	0	0	0(0) 2(7)	39.06
22	4	5	2(8) 2(8)	45.07 CYP2D6 ECGF1 GSTT2 GSTT1
X	3	3	2(5) 8(23)	50.02 MAOA MAOB HPRT1

Table S28: Xenobiotics Biodegradation and Metabolism (subclass). See Figure S1-9 and Table S8.
class	subclass	pathway	# genes	% chromosomes	% covered genes	P-value
hsa04210	Cellular Processes	Apoptosis	87	7.48	27.58	0.014
hsa04114	Cellular Processes	Oocyte meiosis	113	54.43	74.33	0.05
hsa04810	Cellular Processes	Regulation of actin cytoskeleton	214	11.31	28.97	0.029
hsa04144	Cellular Processes	all	214	11.31	28.97	0.029
hsa02010	Environmental Information Processing	Membrane Transport	44	49.68	75.00	0.082
hsa04020	Environmental Information Processing	Signal Transduction	178	60.84	81.46	<0.001
hsa04010	Environmental Information Processing	Signal Transduction	270	63.11	77.77	0.091
hsa04330	Environmental Information Processing	Signal Transduction	47	5.05	27.65	0.03
hsa04070	Environmental Information Processing	Signal Transduction	78	47.83	71.79	0.016
hsa04370	Environmental Information Processing	Signal Transduction	75	62.50	90.66	0.036
hsa04310	Environmental Information Processing	Signal Transduction	150	54.01	73.33	0.019
Environmental Information Processing	Signal Transduction	907	55.23	67.25	0.035	

Table S29-1: KEGG’s pathways or KEGG’s subclasses whose genes are covered by structural cluster regions, defined on non-isolated structural clusters as described in Methods, in a highly non random manner. For each subclass (corresponding to lines having “all” as pathway column), the corresponding curve is reported in Figs. S2. The P-value associated to the best point in the curve is given. The coordinates of this point are described. Only pathways or subclasses with associated P-values < 0.1 are listed. They belong to the classes “Cellular Processes” and “Environmental Information Processing”.
class	subclass	pathway	# genes	% chromosomes	% covered genes	P-value	
hsa05215	Human Diseases	Cancers	89	46.88	69.66	0.07	
hsa05416	Human Diseases	Cardiovascular Diseases	70	9.50	41.42	0.001	
	Human Diseases	Cardiovascular Diseases	all	33.12	53.59	0.061	
hsa05330	Human Diseases	Immune System Diseases	35	10.42	54.28	0.002	
hsa05310	Human Diseases	Immune System Diseases	28	28.83	82.14	<0.001	
hsa05320	Human Diseases	Immune System Diseases	50	10.42	38.00	0.022	
hsa05332	Human Diseases	Immune System Diseases	37	9.50	62.16	<0.001	
hsa05322	Human Diseases	Immune System Diseases	138	12.18	57.24	<0.001	
	Human Diseases	Immune System Diseases	all	11.31	43.75	<0.001	
hsa05140	Human Diseases	Infectious Diseases	70	11.31	42.85	0.003	
hsa05130	Human Diseases	Infectious Diseases	58	21.22	50.00	0.012	
hsa05131	Human Diseases	Infectious Diseases	63	9.50	36.50	0.012	
	Human Diseases	Infectious Diseases	all	326	9.50	27.30	0.002
hsa04940	Human Diseases	Metabolic Diseases	41	10.42	53.65	<0.001	
	Human Diseases	Metabolic Diseases	all	105	9.50	30.47	0.048
hsa05010	Human Diseases	Neurodegenerative Diseases	161	21.98	49.06	0.005	
hsa05014	Human Diseases	Neurodegenerative Diseases	53	41.26	71.69	0.026	
hsa05016	Human Diseases	Neurodegenerative Diseases	177	30.09	53.10	0.063	
hsa05012	Human Diseases	Neurodegenerative Diseases	118	29.46	51.69	0.074	
	Human Diseases	Neurodegenerative Diseases	all	323	21.98	44.27	0.002

Table S29-2 continued. Pathways or subclasses with associated P-values < 0.1 and belonging to the class "Human diseases" are listed.
class	subclass	pathway	# genes	% chromosomes	% covered genes	P-value	
hsa00330	Metabolism	Amino Acid Metabolism	Arginine and proline metabolism	54	79.26	94.44	0.078
hsa00290	Metabolism	Amino Acid Metabolism	Valine, leucine and isoleucine biosynthesis	11	59.82	90.90	0.071
hsa00232	Metabolism	Biosynthesis of Other Secondary Metabolites	Caffeine metabolism	7	15.57	100.00	<0.001
Metabolism	Biosynthesis of Other Secondary Metabolites	all	11	15.57	72.72	0.025	
hsa00053	Metabolism	Carbohydrate Metabolism	Ascorbate and aldarate metabolism	25	9.50	40.00	0.005
hsa00049	Metabolism	Carbohydrate Metabolism	Pentose and glucuronate interconversions	28	9.50	39.28	0.008
hsa00030	Metabolism	Carbohydrate Metabolism	Pentose phosphate pathway	27	65.40	81.48	0.097
hsa00511	Metabolism	Glycan Biosynthesis and Metabolism	Other glycan degradation	16	33.12	75.00	0.02
hsa00592	Metabolism	Lipid Metabolism	alpha-Linolenic acid metabolism	18	48.30	83.33	0.033
hsa00590	Metabolism	Lipid Metabolism	Arachidonic acid metabolism	57	48.30	71.92	0.073
hsa00561	Metabolism	Lipid Metabolism	Glycerolipid metabolism	49	51.90	73.46	0.051
hsa00564	Metabolism	Lipid Metabolism	Glycerophospholipid metabolism	78	48.30	70.51	0.028
hsa00591	Metabolism	Lipid Metabolism	Linoleic acid metabolism	28	12.18	46.42	0.01
hsa00140	Metabolism	Lipid Metabolism	Steroid hormone biosynthesis	55	24.17	58.18	<0.001
Metabolism	Lipid Metabolism	all	339	24.17	41.88	0.005	
hsa00860	Metabolism	Metabolism of Cofactors and Vitamins	Porphyrin and chlorophyll metabolism	42	40.20	59.52	0.036
hsa00830	Metabolism	Metabolism of Cofactors and Vitamins	Retinol metabolism	64	12.18	42.18	<0.001
hsa00903	Metabolism	Metabolism of Terpenoids and Polyketides	Limonene and pinene degradation	8	51.90	87.50	0.096
hsa00230	Metabolism	Nucleotide Metabolism	Purine metabolism	159	47.36	64.15	0.057
Metabolism	Nucleotide Metabolism	all	186	45.40	60.21	0.073	
hsa00982	Metabolism	Xenobiotics Biodegradation and Metabolism	Drug metabolism - cytochrome P450	72	12.18	34.72	0.011
hsa00983	Metabolism	Xenobiotics Biodegradation and Metabolism	Drug metabolism - other enzymes	51	9.50	39.21	<0.001
hsa00980	Metabolism	Xenobiotics Biodegradation and Metabolism	Metabolism of xenobiotics by cytochrome P450	70	18.84	47.14	<0.001
Metabolism	Xenobiotics Biodegradation and Metabolism	all	108	19.64	42.59	0.006	

Table S29-3 continued. Pathways or subclasses with associated P-values < 0.1 and belonging to the class "Metabolism" are listed.
class	subclass	pathway	# genes	% chromosomes	% covered genes	P-value
hsa04270	Organismal Sys-	Circulatory System	125	54.43	75.20	0.038
	tems	Vascular smooth muscle contraction				
hsa04920	Organismal Sys-	Circulatory System	197	56.01	75.12	0.042
	tems	all				
hsa04912	Organismal Sys-	Endocrine System	67	44.39	67.16	0.043
	tems	Adipokine signaling pathway				
hsa04910	Organismal Sys-	Endocrine System	137	48.77	72.26	0.006
	tems	Insulin signaling pathway				
hsa04962	Organismal Sys-	Endocrine System	44	34.77	68.18	0.006
	tems	Vasopressin-regulated water reabsorption				
hsa04612	Organismal Sys-	Immune System	83	10.42	45.78	<0.001
	tems	Antigen processing and presentation				
hsa04664	Organismal Sys-	Immune System	78	48.30	76.92	<0.001
	tems	Fc epsilon RI signaling pathway				
hsa04666	Organismal Sys-	Immune System	93	61.86	88.17	0.025
	tems	Fc gamma R-mediated phagocytosis				
hsa04649	Organismal Sys-	Immune System	85	18.04	41.17	0.092
	tems	Hematopoietic cell lineage				
hsa04672	Organismal Sys-	Immune System	46	16.40	50.00	0.007
	tems	Intestinal immune network for IgA production				
hsa04650	Organismal Sys-	Immune System	134	9.50	31.34	0.029
	tems	Natural killer cell mediated cytotoxicity				
hsa04660	Organismal Sys-	Immune System	108	8.51	26.85	0.078
	tems	T cell receptor signaling pathway				
		all	801	12.18	29.08	<0.001
hsa04720	Organismal Sys-	Nervous System	70	60.50	85.71	0.035
	tems	Long-term potentiation				
hsa04722	Organismal Sys-	Nervous System	126	53.19	72.22	0.059
	tems	Neurotrophin signaling pathway				
hsa04740	Organismal Sys-	Sensory System	386	21.98	65.02	<0.001
	tems	Olfactory transduction				
hsa04744	Organismal Sys-	Sensory System	29	35.86	68.96	0.024
	tems	Phototransduction				
hsa04742	Organismal Sys-	Sensory System	51	38.04	86.27	<0.001
	tems	Taste transduction				
		all	448	21.98	63.16	<0.001

Table S29-4 continued. Pathways or subclasses with associated P-values < 0.1 and belonging to the class "Organismal Systems" are listed.
	% of FS coverage	% of SCR coverage	FS-SCR overlapping	
			%FS	%SCR
chr1	56.00	23.16	21.10	51.01
chr2	27.72	27.74	26.20	26.19
chr3	11.93	27.23	30.34	13.29
chr4	22.32	20.88	21.01	23.39
chr5	33.21	19.63	23.63	39.98
chr6	17.92	30.27	40.41	23.90
chr7	38.80	29.94	53.63	71.95
chr8	23.16	26.43	18.52	16.23
chr9	19.11	33.63	10.84	6.16
chr10	38.63	31.76	35.14	42.75
chr11	24.99	23.67	30.00	33.35
chr12	34.64	31.66	23.93	26.18
chr13	24.88	16.96	17.82	26.13
chr14	12.69	24.35	0.00	0.00
chr15	9.47	32.39	41.86	12.23
chr16	16.21	39.44	46.04	18.92
chr17	6.85	31.91	0.00	0.00
chr18	22.86	6.68	0.00	0.00
chr19	72.89	45.96	60.60	96.11
chr20	10.09	28.74	46.99	16.50
chr21	0.00	20.72	0.00	0.00
chr22	32.99	26.00	58.91	74.76
chrX	14.60	21.68	0.00	0.00
Total	26.38	26.40	28.56	28.54

Table S30: Coverage of fragile sites (FS, first column) and of structural cluster regions (SCR, second column) on human chromosomes. The overlapping region is described by the proportion of FS shared with SCR (%FS) and the proportion of SCR shared by FS (%SCR). See also Figure S13. Notice that SCRs are defined with respect to a global chromosomal coverage of 26.40%.
Table S31: Coverage of genes associated to different biological pathways by structural cluster regions (SCR) and fragile sites (FS) on human chromosomes. Structural cluster regions cover 26.40% of the human genome (see Methods). We only consider those pathways that appeared to be statistically meaningful in the analysis, and whose corresponding curves are plotted in Figures S1. Bold values indicate best coverage (line by line). The number of genes for each pathway (third column) and the percentage of genes captured in regions where SCR and FS overlap (FS-SCR) (sixth column) are also indicated.
Table S32: Comparison of cancer gene coverage between structural cluster regions (SCR) and fragile sites (FS). Cancer gene datasets are analyzed with a similar chromosome coverage considered for SCR (26.40%, see Methods) and FS (26.38%). The percentage of cancer genes in the dataset located in SCR and FS is reported. Best values are indicated in bold. Regions where structural cluster regions and fragile sites overlap (FS-SCR) are also reported. Overlapping regions cover 7.53% of the human chromosomes. The number of genes contained in each dataset is also reported.