Key points

- Invasive and noninvasive ventilation (NIV) have become the cornerstone of the management for many forms of chronic respiratory failure in the home care setting.

- Although the difference between a “life support” and a “life sustaining” unit is somewhat unclear, highly sophisticated portable ventilators are in general considered more appropriate for life support.

- Knowledge of the basic working principles is helpful in choosing “the right” ventilator for “the right” patient.

- Clinical follow-up of ventilated patients is, nowadays, facilitated by the ability to record data through dedicated software.
Choosing a ventilator for home mechanical ventilation

Educational aims
- To discuss the basic principles of ventilator function
- To help the reader to recognise the different features of a home care ventilator
- To outline the advantages and drawbacks of the different home care ventilators
- To provide some recommendations to facilitate the clinical management of patients on home care ventilator

Summary
Mechanical ventilation, applied either invasively through a tracheotomy tube or noninvasively via a mask, is increasingly used for long-term management of many forms of severe chronic respiratory failure in the home setting. In recent years, the quality of the ventilators for long-term home mechanical ventilation has improved considerably and, concomitantly, the number of machines available has also increased. This broader range of commercially available machines is clearly an advantage; however, it makes the choice of the optimal device for a specific patient more difficult. The aim of the present article is to provide useful information to help and guide the choice of device for long-term mechanical ventilation in the home setting.

Mechanical ventilation, applied either invasively through a tracheotomy tube or noninvasively via a mask, is increasingly used for long-term management of many forms of severe chronic respiratory failure in the home setting [1–3].

A wide range of home care ventilators (HCV) are now available for long-term mechanical ventilation [4–7]. HCVs are heterogeneous with respect to technical performance and reliability [6, 8], and their user-friendliness for the operator [9, 10]. However, this extended range of commercially available machines makes the choice of the best device for different categories of patients more difficult [8]. Further, manufacturers often propose new ventilatory modes, but, as in the acute critical care setting [11], scientific evidence of their
effectiveness and clinical benefit is often lacking.

When choosing a HCV, clinicians rely on personal experience and on the results of observational trials [4, 6, 8, 10, 12–24]. Ideally, the process of choosing a ventilator should be based on a strong scientific rationale founded on predetermined requisites and scores as in the critical care area [25]. Because manufacturers’ specifications alone are of limited importance, they should not be a prominent factor in the decision-making process. Basic knowledge of the principles of ventilator functioning [26] may be helpful when choosing a HCV. This enables the physician or respiratory therapist to consider the HCV technical performance in relation to the patient’s clinical characteristics and underlying disease, the home care environment and the available financial resources [27]. The primary purpose of this guide is not to compare the individual features of each ventilator, but rather to provide general information about the technical aspects of such ventilators, which may help in the decision-making process.

Basic principles of ventilator function

Briefly, a mechanical ventilator can be considered as a series of consecutive functions that turn an input (energy) into a mechanical output (ventilatory variables, such as pressure, flow or volume). The ventilator can transfer energy by applying positive pressure to the airways, acting as a positive pressure ventilator, or by applying sub-atmospheric pressure externally to the chest, as in a negative pressure ventilator. This article will focus solely on positive pressure HCVs. It will not deal with HCVs delivering only continuous positive airway pressure (CPAP) or other ventilators used specifically to treat respiratory sleep disturbances.

There are several elements in a HCV as shown in table 1.

Table 1 Elements of a positive pressure ventilator
1. Respiratory circuit
2. Pneumatic system
3. Inspiratory and expiratory valves
4. Trigger, limit, cycling and control variables
5. Modes of mechanical ventilation
6. User interface
7. Safety and alarm systems
8. Monitoring system
9. Accessories

Double-limb respiratory circuit

The double-limb respiratory circuit is composed of an inspiratory and expiratory limb whose proximal ends are connected to the inspiratory and expiratory ports, respectively, of the ventilator (where the inspiratory and expiratory non-rebreathing valve are positioned), while the distal parts are connected to the so-called Y-piece ending in the patient interface (fig. 1). The effective compliance of the respiratory circuit is a combination of the tubing compliance and gas compressibility. Some HCVs provide automatic compensation for circuit compliance and resistances after a calibration manoeuvre (e.g. MEK-ICS Pneuma series, ResMed Elisse series). Others have the option of choosing between adult and paediatric circuit configurations (e.g. Philips Respironics Trilogy 100/200, Covidien PB 520/560 series). However, some HCVs still lack this automatic compensation. Although double-limb respiratory circuits usually measure inspiratory and expiratory tidal volume (VT), they can also be equipped with a proximal flow sensor (fig. 1b) that can be used either as a simple monitoring tool or to control some of the ventilator functions.

Single-limb circuit

Single-limb circuits are directly attached to the patient’s invasive or noninvasive interface. As use of a single tube for both inspiration and expiration would lead to
carbon dioxide rebreathing two different systems are used to avoid this problem (fig. 2 and 3).

A single respiratory circuit with a non-rebreathing expiratory valve (e.g. a mushroom valve driven by ventilator pressure) is usually labelled as a “non-vented” respiratory circuit. This valve (fig. 2) has an on–off function and often works as a positive end expiratory pressure (PEEP) valve (see the section on: inspiratory and expiratory valves and output variable control). This type of respiratory circuit allows complete elimination of carbon dioxide. Usually, if they do not have a proximal flow sensor, as shown in figure 1b for the double respiratory circuit, they provide only inspiratory VT measurement.

A single respiratory circuit without a “true” non-rebreathing valve is usually labelled as a “vented” respiratory circuit or intentional leak respiratory circuit (fig. 3). Carbon dioxide is vented out through different modalities, as shown in figure 3 [28–33] and may be affected by many factors (see part 4 of the recommendations). Inspiratory or expiratory VT are not directly measured but are calculated by an algorithm (see the section dedicated to the monitoring system).

Recommendations

1) Respiratory circuit features may be different in different ventilators. It may also be possible to use different circuits on the same ventilator according to the patient configuration chosen.

2) Physicians and respiratory therapists must be aware of compressed volume and dead space of respiratory circuits. In paediatric patients, where VT may be very small, respiratory circuit compliance during volume controlled ventilation may affect the real VT delivered to the patient. When automatic compliance compensation is not present, it must be manually calculated as described elsewhere [33].

3) Any connector placed between the Y-piece in a double respiratory circuit, or between the proximal “true non-rebreathing valve” or “vent system” in a single respiratory circuit (fig.s 2 and 3b–c), and the patient interface (e.g. tracheotomy tube) may affect physiological dead space.

4) When using a ventilator with a “vented” respiratory circuit, PEEP or end expiratory positive airway pressure (EPAP) level, the...
amount of intentional leak flowing out through the "vent" system, non-intentional leaks, and any supplemental oxygen into the mask may all affect the amount of rebreathing [20, 29–34].

2. Pneumatic system
All HCVs require electrical power either as alternating current external power or via a direct current internal battery. The gas source can be: 1) a piston or micro-pistons (e.g. Newport HT70, Flight Medical Flight 60); or 2) a turbine (e.g. Philips Respironics Trilogy series, Linde Garbin series, Wienmann Medical Technology Ventilologic LS, Breas/GE Vivo 50, Covidien PB 520/560, Air Liquide Medical System Monal T series, MEK-ICS Pneuma series, SIARE falco series, ResMed Elisèe series, Versamed/GE i-Vent 150 Hamilton C series, Hoffrichter Carat). Fast turbines ("dynamic blower systems", which change speed to reach the preset ventilator output) or turbines rotating at constant speed ("constant-revolution blower systems") driven by a proportional valve make the latest generation of turbine-driven HCVs as efficient as intensive care unit (ICU) ventilators, driven by high-pressure gas [16]. A recent study showed that, on average, turbine-based ventilators performed better than conventional ventilators [8]. From the standpoint of high responsiveness to the patient’s flow demand, "constant-revolution blower systems" with a proportional valve perform very well. However, although in the past these systems had a clear responsiveness advantage over "dynamic blower systems", recent developments show that dynamic blowers with a small blower wheel diameter and a very high revolution rate per minute are also extremely responsive to patient demand [7, 8].

Oxygen blending
Most HCVs only have a low-pressure oxygen inlet. Whatever the inspiratory oxygen fraction (FIO₂) that an internal or external oxygen sensor may read, oxygen delivery is not constant and FIO₂ cannot reach 100%. A few HCVs (e.g. Newport Medical Instruments HT70 plus, MEK-ICS Pneuma series, Hamilton C1, GE i-Vent 101 expert) have an option to work with oxygen at high pressure (4 atm or 400 kPa) and atmospheric air sucked from the environment [6, 23]. In this case, the preset oxygen tension is constant, whatever the minute volume. The simultaneous use of high-pressure oxygen and a sophisticated user interface make such HCVs suitable as step-down units or for patient transport [23].

Internal battery
All HCVs have a long-lasting (3–9 h) internal battery, usually with a short charging time [21]. However, battery life may depend on the parameter settings. Some HCVs have a "plug and play" battery system providing energy for up to 12 h or more. This can be very useful when patients are outside of their usual...
environment or in case of long lasting mains power energy failure. A 12 V car plug for battery recharging is often available.

Recommendations

1) Physicians and respiratory therapists must be aware of the differences in terms of gas input and type of control system when choosing HCVs.

2) When a low-pressure oxygen inlet is used, as in the home care setting, oxygen tension is never constant and depends on the parameters set on the ventilator.

3) When choosing HCVs with additional oxygen, oxygen consumption for a given minute ventilation must be taken into account. In some markets, oxygen may be a real cost issue [23].

4) The charge-life of the internal battery, as well as the possibility of using a supplemental battery, must be taken into account for patients who will spend many hours out of their home. This is also important in areas where mains power is frequently interrupted and where electrical back-up is inconsistent.

5) When switching to a mask that has a different intentional leak through the “vent” system, the pneumatic system may fail to deliver the same preset pressure or volume. Careful evaluation is needed to adjust the level of pressurisation [20, 34].

3. Inspiratory and expiratory valves and output variable control

The inspiratory valve is meant to control respiratory cycle phases, along with the expiratory valve. In most HCVs, the inspiratory valve only has an on–off function: pressure and flow both depend on the mechanical system (e.g. the piston or the rotational speed of the turbine [26, 33]). In some HCVs, the valve manages the output of the ventilator controlled by a proportional valve [26] (see also the section on: trigger, limit, cycling).

The expiratory valve can be a simple valve that is closed in counter-phase with the inspiratory one (a mushroom or diaphragm valve), or a proportional aperture valve. Usually, expiratory valves also control the baseline pressure, which can be atmospheric pressure or PEEP, also labelled as EPAP. The use of a microprocessor-controlled expiratory valve or an electromagnetic valve can optimise expiratory valve functioning [6, 26, 35].

As mentioned in above, “vented” respiratory circuits do not have a true non-rebreathing expiratory valve [29–34].

Recommendations

The “vent system or port” in an intentional leak respiratory circuit is often improperly called a “valve”. However, as described above this is not a “true” non-rebreathing valve. Nevertheless, in some ventilator instruction manuals and even in some scientific articles the term “vent system” is improperly replaced with the term “expiratory valve” generating confusion in operators.

4. Trigger, limit, cycling

According to the principle of intermittent positive pressure, a positive pressure breath can be defined by: the trigger variable that defines the beginning of inspiration; the limit variable that defines the limit that cannot be exceeded during inspiration; the cycling variable that defines the cycling-off criteria; or the control variable that defines whether the ventilator controls “flow and volume” or “airway pressure” [26, 33].

Trigger variable

The trigger variable defines how a mechanical breath is initiated. It can be initiated by: 1) pressure (assisted breath pressure-trigger initiated by the patient); 2) flow (assisted breath flow-trigger initiated by the patient); 3) volume (assisted breath volume-trigger initiated by the patient); 4) combining the features described in 1–3; 5) waveform algorithms (assisted breaths algorithms-trigger initiated by the patient); or 6) time (timed mandatory breaths initiated by the ventilator) [26].

The term “assisted” breath usually defines a breath that is initiated by the patient and cycled by the ventilator or is initiated according to some intrinsic property or action of the patient’s respiratory system (e.g. flow-cycled breath). In an “assisted” breath the pressure applied to the respiratory system is generated by patient’s respiratory muscles and by the ventilator. This makes it different from a “spontaneous” breath (e.g. a CPAP breath in a ventilator delivering in CPAP
mode), where the inspiratory pressure after patient’s triggering does not exceed the baseline pressure (in other words the pressure is negative during the inspiratory phase and positive during the expiratory phase). In addition, in a “spontaneous” breath the pressure applied to the respiratory system is only generated by the patient’s respiratory muscles. Cycling to expiration depends on the patient’s neural time and the patient’s respiratory mechanics. In fact “triggers”, as described in steps 1–5, detect any patient inspiratory effort and activate an “assisted” or “spontaneous” mechanical breath. The goal of a good inspiratory trigger is to reduce, as much as possible, the intensity of the muscular effort and the delay between inspiration beginning and the ventilator delivered breath starting, while avoiding auto-trigger effects (namely delivery of an inadvertent breath not initiated by the patient’s effort). It is considered that a trigger (independent of its algorithm, as described in steps 1–4) must have a response time \(<100\) ms. While pressure triggering allows detection of a pressure drop within the circuit due to the patient’s inspiratory effort, flow triggering is achieved by the measurement of flow variation using a flow sensor inside the ventilator or at the airway opening when a proximal flow sensor is used. Some flow triggers work with the “flow-by system”, which provides a continuous bias flow into the circuit with triggering occurring when the difference between the flow entering and exiting through the double-limb respiratory circuit equals the trigger sensitivity \([26]\). New trigger algorithms also aim to improve patient–ventilator interaction and prevent auto-triggering during sudden changes in flow or respiratory rate, or in the presence of air leaks during noninvasive ventilation (NIV) \([17, 36, 37]\). This can be achieved with a complex algorithm combining volume and pressure triggers with a flow waveform algorithm (e.g. Philips Respironics Auto-Trak).

The term timed “mandatory” breath defines a breath that is always initiated by the ventilator after a given time determined by the respiratory rate set by the operator and cycled by the ventilator. In a “mandatory” breath the pressure applied to the respiratory system is only generated by the ventilator. The inspiratory pressure, as in an “assisted” breath, always exceeds the baseline pressure (zero or a given level of PEEP). Timed breaths can be delivered in any ventilator mode that provides the possibility of setting a respiratory rate (e.g. in the so-called ACV (assisted/controlled volume mode) or APCV (assisted/pressure controlled ventilation) in timed (T) or spontaneous-timed modes). While in spontaneous-timed, or in assisted/controlled volume or pressure modes the mandatory breaths are only delivered when the patient’s spontaneous breathing rate is below the preset one, in timed mode the mandatory breaths are delivered independently from the patient’s rate, as during intermittent mandatory ventilation.

Recommendations

1) When ventilating paediatric patients, a systematic bench evaluation of the inspiratory trigger sensitivity is recommended for every ventilator proposed for home ventilation, in order to detect any dysfunction as well as to guide the choice of the appropriate ventilator for a specific patient \([18, 21]\).

2) HCVs provided with a “vented” respiratory circuit and, thus, working with intentional leak algorithms seem to allow better patient–ventilator synchrony \([38]\). However, high levels of intentional mask leaks through the “vent” port, in intentional leak respiratory circuits may interfere with inspiratory trigger sensitivity \([39]\).

3) Delay in triggering of assisted breaths can be corrected by varying inspiratory trigger sensitivity and the inspiratory rate of pressurisation (pressure rise-time).

Limit variable

This is the maximal or minimal limit manually set for a mechanical breath (e.g. maximal pressure or maximal inspiratory VT, maximal inspiratory time during flow-cycled breath). It should work as a safety limit variable.

Recommendations

1) Some ventilators give the possibility of setting a maximum inspiratory time (Tmax) beyond which there will always be a mandatory cycling after a “spontaneous breath” (e.g. pressure support ventilation (PSV), spontaneous and spontaneous-timed modes).
2) Other HCVs (e.g. Covidien PB520/540 series, Breas/GE Vivo series) also have, in addition to a T\textsubscript{max}, a minimum inspiratory time (T\textsubscript{min}) that always assures a minimum inspiratory time in a flow-cycled breath (e.g. spontaneous, spontaneous-timed and timed mode).

Cycling variable

A breath can be pressure, time, volume or flow-cycled [33]. A breath is defined as time-cycled when it is terminated after the given preset inspiratory time is reached (e.g. pressure-controlled time-cycled mandatory breaths). A breath is flow-cycled when the ventilator detects the very end of a patient’s inspiration through inspiratory flow measurement and terminates the breath (e.g. spontaneous and spontaneous-timed mode or PSV mode) [40–42]. Table 2 shows the criteria for a flow-cycled breath to cycle to baseline pressure (EPAP or PEEP) [14, 17, 26, 40].

Table 2 Criteria for a flow-cycled breath to cycle to baseline pressure

Criteria	Details
Flow reaches a predetermined percentage of inspiratory peak flow (usually 25%)	flow reaches a pre-set percentage of inspiratory peak flow (e.g. from 1% to 80%)
According to particular algorithms linked to flow value or waveform (e.g. Philips Respironics AutoTrak system)	
Educational questions

1) Which of the following is the correct definition of the respiratory circuit?
 a) The compressed volume is the volume compressed in the respiratory circuit due to respiratory circuit compliance
 b) The compressed volume is the volume due the ratio between patient tidal volume and the total volume of the respiratory circuit
 c) The compressed volume is the volume compressed in the non-invasive interface
 d) All the above mentioned
 e) None of the above

2) Which of the following defines the exhalation port of an intentional leak “vented” respiratory circuit?
 a) A system that can be compared to a non-rebreathing valve
 b) A system to deliver oxygen
 c) A system to reduce carbon dioxide rebreathing in intentional leak respiratory circuit
 d) All the above mentioned
 e) None of the above

5. Modes of ventilation

In the past there were ventilators which had only pressure or volume controlled modes. Today most ventilators for life support can work in either mode. HCVs may be provided with a rectangular, descending ramp in volume-targeted mode, or an adjustable pressure rise-time (namely the time needed to reach the preset pressure) and exponential decay in pressure targeted mode [26].

It is beyond the aim of the present article to explain in detail all modes of ventilation. Below we provide some brief information on sighs, mouth piece ventilation and modes of ventilation that switch from one control variable to another (e.g. from pressure to volume-targeted ventilatory support, so-called dual modes) [26, 33, 43–50].

Sighs

Despite the lack of a real evidence base about sighs, there is now an increased interest in the sigh option (e.g. Covidien PB 520/560 series, Air Liquide Medical System Monnal T50) and low insufflation programs (e.g. LIAM Wienmann Medical Technological Ventilologic series). Users may define volume or pressure based sighs, their frequency and multiples, as well as their amplitude (10–50% of VT or pressure setting). However, in most of the sigh settings, there is no possibility of setting the sigh time. Although there is no evidence in patients ventilated on a long-term basis, recent clinical studies have demonstrated improved oxygenation with the use of sighs as a recruitment manoeuvre in patients with acute respiratory failure [51].

Mouth-piece ventilation

Some ventilators have a ventilator mode dedicated to mouth-piece ventilation (e.g. Philips Respironics Trilogy 100/200 series, Linde Garbin II, GE i-Vent 101). Its utility has been demonstrated in some patients undergoing NIV 24 h a day (e.g. in patients with end-stage Duchenne Muscular Dystrophy).

Dual modes

Although pressure ventilatory support is able to compensate for non-intentional leaks better than volume support [52] a constant VT may not be guaranteed in the presence of changes in respiratory impedance. To overcome this problem, a tidal volume guaranteed (VTG) mode has recently been introduced in most ventilators, during pressure ventilatory support. This mode has been labelled as “dual mode of ventilation” (e.g. Philips Respironics VAPS) [43–48]. The physician or respiratory therapist must be aware that: 1) the VTG can be reached by increasing flow (e.g. ResMed Elise’e) or by increasing the pressure applied to the airway (e.g. Philips Respironics Trilogy, Linde Garbin, Covidien PB 520/560 series, Breas/GE Vivo 50, Wienmann Medical Technology Ventilologic LS); 2) VTG may be adjusted either within each breath (e.g. ResMed Elise’e) or by breath by breath (e.g. Philips Respironics Trilogy, Linde Garbin, Covidien PB 520/560 series, Breas/GE Vivo 50, Wienmann Medical Technology Ventilologic LS) [26, 43]; and 3) VTG may be adjusted either according to the measured inspiratory VT in double or single limb “non-vented” respiratory circuit configuration (Covidien PB 520/560 series, Breas/GE Vivo 50), the measured expiratory VT in double “non-vented” respiratory circuit configuration (Wienmann Medical Technology Ventilologic LS, Air Liquide Medical system Monnal T50) or according to an estimate of inspiratory or expiratory VT as in “vented” respiratory circuits (e.g. Philips Respironics Trilogy 100/200 series, Covidien PB 520/560 series, Breas/GE Vivo 50, Res Med Stellar).

A recent study [24] found that the ability of the VTG mode to compensate for
non-intentional leaks depends strictly on whether a “vented” or “non-vented” circuit configuration is used. Put simply, in the absence of non-intentional leaks in “vented” or “non-vented” respiratory circuit configuration, all HCVs increased the inspiratory pressure to guarantee the VTG. Conversely, in a “non-vented” respiratory circuit configuration, all tested ventilators targeting VTG on the measurement of the inspiratory VT showed a drop in inspiratory pressure in presence of leaks, resulting in a concomitant reduction in expiratory VT. This difference must be taken into account as a possible risk when a VTG mode is used in the presence of non-intentional linear or non-linear leaks [50]. Recently, a new mode of ventilation whose target is not the VT but a given alveolar ventilation (iVAPS ResMed) [46] has become commercially available.

Recommendations

The physician/respiratory therapist must be aware that: 1) in the presence of modifications of respiratory impedance, VTG mode is able to guarantee a preset volume independently from circuit configuration [49]; 2) there are differences between VTG delivered by “vented” versus “non-vented” single limb respiratory circuits in presence of non-intentional leaks [24, 50]; 3) when a patient’s ventilatory demand produces a VT higher than the preset one, the patient is no longer supported. For this reason, the minimum value of the preset pressure should be carefully set by the operator. Some HCVs allow a minimal default value of PSV (e.g. 5 cmH2O in Assisted Pressure regulated Volume Control (APRVC) GE i-Vent 101).

6. User interface

The control panel allows the user to interact with the ventilator in order to set ventilator parameters and verify them through monitoring the consequent ventilator pattern. Some parameters are set directly, whereas others are derived from measurements. With the current generation of HCVs, the user interface is commonly a touch pad and/or a rotary encoder with or without a touch-screen control. In most HCVs, a two-step process of changing and then accepting a given parameter is used. Most ventilators have the option of locking the ventilator settings to avoid inadvertent manipulation by the ventilator’s user. Others leave the care giver with the possibility of modifying some parameters within a given “window” (e.g. Breas/GE Vivo 50) set by the physician or respiratory therapist before patient discharge.

However, it has been hypothesised that the user-friendliness of the current home ventilators is questionable. A study that aimed to determine if common home ventilators were user-friendly for trained intensive care unit physicians, without practical experience in home mechanical ventilation, showed that the physicians were slower than the technicians to unlock the ventilator and change the ventilatory mode, with mistakes occurring in close to 50% of cases during the ventilatory mode and settings recognition test [10].

Recommendations

1) User interfaces vary significantly among HCVs. Unfortunately there is no consistency among manufacturers in terms of labelling ventilator functions, particularly ventilation modes.

2) The large number of ventilator modes can result in systems that are poorly designed, non-intuitive and almost impossible to remember, with the subsequent need for operators to refer to instruction manuals in order to interpret poorly labelled controls or to navigate multiple levels of software. As a consequence, the physician and respiratory therapist must be aware that there will often be a learning curve for any particular HCV.

3) Last, but not least, another practical consideration is whether the monitor displaying the settings, curves, alarms, etc., is easily readable.

7. Safety and alarm systems

Safety system

The ventilator safety system aims to avoid any damage to the patient due to ventilator malfunction. In case of electrical failure, there is a room-air inlet that will let the patient breathe through a simultaneous opening of the inspiratory and expiratory valves. This may be of little or no help, however, in patients who are not able to breathe spontaneously. Another safety system is the presence of an

3) The likelihood of carbon dioxide rebreathing through the exhalation port of an intentional leak “vented” respiratory circuit may depend on: a) Amount of PEEP/EPAP level? b) Amount of bleeding oxygen in the interface c) Amount of flow vented through the port d) Amount of patient’s end tidal carbon dioxide e) All the above mentioned

4) In a flow-cycled breath the ventilator detects: a) The end of patient’s own inspiration through inspiratory flow measurement b) The end of expiratory flow c) The presence of non-intentional leak d) The presence of the beginning of inspiratory flow e) None of the above

5) The algorithm governing the overall pressure applied to the airway opening is the same for all home care ventilators (HCVs)? a) Yes b) No, it depends on whether the HCV is driven by a piston or a turbine c) No, it depends on whether the HCV is in single or double-limb respiratory circuit configuration

Choosing a ventilator for home mechanical ventilation

| Breathe | September 2013 | Volume 9 | No 5 |

Choosing a ventilator for home mechanical ventilation
overpressure valve, positioned between the inspiratory and expiratory valves, which can unload any excess pressure in the circuit. In most ventilators, it is usually set to open above a 100 cmH2O threshold and, thus, it does not limit the risk of barotrauma. Safety systems also include the use of microprocessor-controlled functions, with automated responses for events such as retrograde ventilation in case of apnoea (back-up ventilation).

8. Monitoring system

The monitoring system is not a part of the ventilator itself and its absence will not jeopardise proper ventilator functioning. However, it is of the utmost importance in optimising ventilatory assistance in most patients. Direct visualisation of flow–time and pressure–time waveforms provides valuable information about the quality of ventilator–patient interaction (e.g. ineffective respiratory efforts, ventilator auto-triggering) [54]. In any ventilator, directly measurable variables are the pressure applied to the airway and the flow, while other parameters can be derived from the analysis of these signals.

Some HCVs display the amount of non-intentional leak in non-vented configuration. In “vented-circuit” configuration, where the amount of leak is always displayed, it is important to know that some ventilators give “figures” that also include the “intentional leaks”, while others display a number that refers only to the “non-intentional” leaks (e.g. Covidien PB 520/560 series).

Measured variables and derived parameters may be shown both on a graphical display, and as numerical data. Continuous display of airway pressure, flow and/or volume curves is available with some high performance HCVs. Volume calculation in “non-vented” and in “vented” respiratory circuit configurations may be different.

In “non-vented” respiratory circuits volume is usually calculated through the integration of flow delivered by the ventilator by an internal or proximal flow sensor. However, the accuracy of the volume displayed may vary among different ventilator units [21, 23, 55]. In presence of an intentional inspiratory leak, VT measurements can be confusing because the total flow and the derived volume provided by the ventilator equals the sum of the flow actually sent to the patient plus the leak. This, in turn, means that a higher VT is measured. However, if a double respiratory circuit is used, the expiratory VT is more representative of alveolar ventilation than the inspiratory VT. In a double limb respiratory circuit, leak magnitude can be estimated by calculating the difference between the two. This measurement is also featured in ventilators measuring flow proximally to the airways.

In “vented” respiratory circuits, inspiratory VT is not directly measured but is
calculated through algorithms that vary among HCVs based on the principle that the inspiratory total flow provided by the ventilator equals the sum of the flow actually sent to the patient plus the leak flow from the “vent” system. Some HCVs compute an estimate of the expiratory VT [56]. However, it has been shown that the accuracy of VT measurement by the intentional leak ventilator algorithms is not significantly different from that measured by the ventilator flow sensor with a ventilator with a double or single respiratory circuit and the expiratory valve in absence of non-intentional leaks [24, 39, 56]. However, in presence of a high linear or non-linear, intentional or non-intentional, inspiratory or expiratory leak most of this accuracy can be lost [39, 56].

Some ventilators allow continuous pulse oximetry monitoring and even end-tidal carbon dioxide monitoring as optional tools. These data and data stored in the ventilator by the ventilator software (tidal volume, leaks and the rate of inspiratory or expiratory triggering by the patient), may help the clinician by estimating ventilation, although further validation of these signals by independent studies is indicated [39, 57].

Recommendations

1) The physician or respiratory therapist should determine which monitoring capabilities will be used regularly in order to avoid purchasing an overly sophisticated HCV with monitoring systems that will seldom be needed. This should result in cost savings [3]. Basic monitoring should consist of VT, pressures and respiratory rate measurement.

2) It must be borne in mind that the flow sensor accuracy of many ventilators lacks proper validation and, thus, measured data may differ substantially from real values. This issue is very important in paediatric patients [21].

3) In adult patients, there may be no significant differences between the two sites of measurement, distal (inside the ventilator) or proximal (at the airway opening), except for a better detection of the start of inspiration and end of inspiratory effort. By contrast, during ventilation in paediatric patients, where patient flow is lower than in adults and non-intentional leaks are higher due to the use of uncuffed tracheostomy tubes, a proximal transducer may be advised.

4) Clinicians monitoring patients under home ventilation must be aware of differences in the estimation of leaks and VT by ventilator software and of different ways of reporting leaks according to the device used [39, 55].

Table 3 Home care ventilator alarms

1. Electrical failure
2. Patient disconnection from the ventilator
3. High non-intentional leaks
4. Apnoea in assisted modes
5. High and low and minimum patient rate
6. High pressure and low pressure limit (especially in volume-controlled mode)
7. Changes in VT (in pressure-targeted mode)
8. Changes in minute ventilation (in volume- or pressure-controlled modes)
9. Changes in FiO2, when used

9. Accessories

Heated humidifiers

Heated humidifiers are often sold separately. It is beyond the scope of the present article to discuss the utility of active or passive humidification in critical care [53, 58].

Brackets and carriers

Brackets are provided in order to mount the HCVs and an external battery connection, at the patient’s bedside or on the wheelchair.

Filters

HCVs are usually fitted with filters to protect patients and sensors from particulates in the air. Filters are usually disposable.

The patient’s point of view

There is an enormous range of equipment available, but there is little evidence pointing to the superiority of one device over another from the patient’s point of view. Another problem is the lack of adaptation of equipment for use by handicapped patients. The point of view of the patients is, thus, clinically relevant, because better patient well-being is related to a better treatment compliance [9, 59, 60], a critical issue in home ventilation especially in those undergoing NIV. However, data available
about patient satisfaction regarding mechanical ventilation are very scarce [5, 61]. There are perceived differences between ventilators, but there is no “perfect ventilator” [9]. Interestingly, one bench study [9] showed that the best ranked of the ventilators also exhibited the fastest pressure rise time. By contrast, some ventilators which were not well tolerated by patients had good bench performances. In spite of the fact that we do not know if the patient’s perception has a prognostic impact, good sense suggests that a patient who feels comfortable and relaxed with a particular home ventilator is more likely to comply well with treatment than a patient who does not [9]. Since in many cases the primary objectives of NIV are to alleviate dyspnoea and improve comfort, it does not seem reasonable to exclude the patient’s view on the treatment [9].

Recommendations

1) An assessment of the patient’s perception of the ventilator should be part of choosing a ventilator, because small technical characteristics are responsible for differences in patient’s perception.

2) In particular, patients selected for NIV should be given the opportunity to express their subjective perception of the ventilator and, if possible, to try several models of ventilator.

3) Patients who report that an established HCV has become difficult to tolerate for subjective reasons may benefit from trying another ventilator.

4) It is important to test several ventilators, as well as to change them, if the patients’ clinical situation changes over time.

Conclusions

Choosing a HCV should be based on a basic knowledge of machine specific functions and an understanding of the physiological rationale. It is important to understand how these functions interact with the operative environment and patients’ needs. Once this goal has been achieved, a ventilator may be chosen based on specific needs (particularly whether safety or comfort is the most important factor), constraints and costs.

There are ventilators that have been designed more for life support than for life sustaining assistance [23, 27]. From our viewpoint, we consider as “life support” units
Choosing a ventilator for home mechanical ventilation

only those highly sophisticated portable ventilators that feature, among other modes, volume controlled ventilation with a non-rebreathing expiratory valve. They must also be equipped with an internal long-life battery, alarms and safety systems to respond to ventilator malfunctioning (e.g. electrical failure) [23], but also allow patient mobility. The physician or respiratory therapist should determine whether the ventilator unit will be used as life support or life sustaining unit. The ventilatory mode chosen will be targeted to a patient’s needs in order to avoid purchasing sophisticated but essentially useless ventilatory mode options that will seldom be needed. This should result in cost savings. Some suggestions are given in Table 4.

Clinical studies and guidelines are required to validate new ventilators and modes of ventilation, to accommodate the increasing demand for treatment while at the same time maintaining high standards both during invasive and noninvasive ventilation [62, 63].

References

1. Windisch W. Quality of life in home mechanical ventilation study group. Impact of home mechanical ventilation health-related quality of life. Eur Respir J 2006; 28: 138–143.
2. Cuvelier A, Muir JF. Noninvasive ventilation and obstructive lung diseases. Eur Respir J 2001; 17: 1271–1281.
3. Janssens JP, Derivaz S, Breitenstein E, et al. Changing patterns of long term noninvasive ventilation: a 7-year prospective study in the Geneva Lake area. Chest 2003; 123: 67–79.
4. Lloyd-Owen SJ, Donaldson GC, Ambrosino N, et al. Patterns of home mechanical ventilation use in Europe: results from the Eurovent survey. Eur Respir J 2005; 25: 1025–1031.
5. Vitacca M, Barbano L, D’Anna S, et al. Comparison of five bilevel pressure ventilators in patients with chronic ventilatory failure: a physiologic study. Chest 2002; 122: 2105–2114.
6. Kacmarek RM, Malhotra A. Equipment required for home care ventilation. In: Tobin MJ, ed. Principles and Practice of Mechanical Ventilation. 2nd Edn. New York, McGraw-Hill, 2006, pp. 97–127.
7. Battisti A, Tassaux D, Janssen JP, et al. Performance characteristics of 10 home mechanical ventilators in pressure-support mode: a comparative bench study. Chest 2005; 127: 1784–1792.
8. Thille AW, Lyazidi A, Richard JC, et al. A bench study of intensive-care-unit ventilators: new versus old and turbine-based versus compressed gas-based ventilators. Intensive Care Med 2005; 35: 1368–1376.
9. Senet C, Lepaul-Ercol D, Chiner E, et al. Home mechanical ventilators: the point of view of the patients. J Eval Clin Pract 2010; 16: 832–834.
10. Gonzalez-Bermejo J, Laplanche V, Hussein FE, et al. Evaluation of the user-friendliness of 11 home mechanical ventilators. Eur Respir J 2006; 27: 1235–1243.
11. Branson RD, Johannigman JA. What is the evidence base for the newer ventilation modes? Respir Care 2004; 49: 742–760.
12. Lofaso F, Brochard L, Hang T, et al. Home versus hospital intensive care pressure support devices. Experimental and clinical comparison. Am J Respir Crit Care Med 1996; 153: 1591–1599.
13. Bunburaphong T, Imanaka H, Nishimura M, et al. Performance characteristics of bilevel pressure ventilators: a lung model study. Chest 1997; 111: 1050–1060.
14. Stell IM, Paul G, Lee KC, et al. Noninvasive ventilator triggering in chronic obstructive pulmonary disease. A test lung comparison. Am J Respir Crit Care Med 2001; 164: 1029–1035.
15. Highcock MP, Morrish E, Jamieson S, et al. An overnight comparison of two ventilators used in the treatment of chronic respiratory failure. Eur Respir J 2002; 20: 942–945.
16. Richard JC, Carlucci A, Breton L, et al. Benchmark testing of pressure support ventilation with three different generations of ventilators. Intensive Care Med 2002; 28: 1049–1057.
17. Miyoshi E, Fujino Y, Uchiyama A, et al. Effects of gas leak on triggering function, humidification, and inspiratory oxygen fraction during noninvasive positive airway pressure ventilation. Chest 2005; 128: 3651–3658.
18. Fauroux B, Leroux K, Desmarais G, et al. Performance of ventilators for noninvasive positive-pressure ventilation in children. Eur Respir J 2008; 31: 1300–1307.
19. Farré R, Navajas D, Prats E, et al. Performance of mechanical ventilators at the patient’s home: a multicentre quality control study. Thorax 2006; 61: 400–404.
20. Borel JC, Sabil A, Janssens JP, et al. Intentional leaks in industrial masks have a significant impact on efficacy of bilevel noninvasive ventilation: a bench test study. Chest 2009; 135: 669–677.
21. Blakeman TC, Rodrigo D Jr, Hanesman D, et al. Bench evaluation of 7 home-care ventilators. Respir Care 2011; 56: 1791–1798.
22. Oliveri C, Costa R, Conti G, et al. Bench studies evaluating devices for non-invasive ventilation: critical analysis and future perspectives. Intensive Care Med 2012; 38: 160–167.
23. Blakeman TC, Branson RD. Evaluation of 4 new generation portable ventilators. Respir Care 2013; 58: 264–272.
24. Carlucci A, Schreiber A, Mattei A, et al. The configuration of bi-level ventilator circuits may affect compensation for non-intentional leaks during volume-targeted ventilation. Intensive Care Med 2013; 39: 59–65.
25. Chatburn RL, Primiano FP Jr. Decision analysis for large capital purchases: how to buy a ventilator. Respir Care 2001; 46: 1038–1053.
26. Kacmarek RM, Chipman D. Basic principles of ventilator machinery. In: Tobin MJ, ed. Principles and

Suggested answers

1) a. The physician/respiratory therapist must be aware of compressed volume in the respiratory circuit. In paediatric patients ventilating in volume-targeted mode, respiratory circuit compliance should be always measured to compute the respiratory circuit compressed volume.
2) c. All intentional leak respiratory circuits (“vented respiratory circuit”) must be provided with an exhalation port system to wash out carbon dioxide.
3) e. Many factors can interfere with carbon dioxide rebreathing in a "vented" respiratory circuit. Among them the patient’s end tidal carbon dioxide may play a major role.
4) a. In a “flow” cycled breath (e.g. a PSV breath) the ventilator detects the very end of patient inspiration through inspiratory flow measurement.
5) d. The physician/respiratory therapist must be aware of the algorithm regulating the pressure applied to the airway opening, which can be either “absolute” (below EPAP/PEEP) or “relative” (above EPAP/PEEP).
Choosing a ventilator for home mechanical ventilation

25. 662–667. Chest

35. Lofaso F, Aslanian P, Richard JC, et al. Effect of manufacturer-inserted mask leaks on ventilator performance. Eur Respir J 2010; 35: 627–636.

37. Tassaux D, Strasser S, Fonseca S, et al. Comparative study of triggering, pressurization, and cycling between the home ventilator VPAP II and three ICU ventilators. Intensive Care Med 2002; 28: 1254–1261.

38. Carteaux G, Lyazidi A, Cordoba-Izquierdo A, et al. Patient-ventilator asynchrony during noninvasive ventilation: a bench and clinical study. Chest 2012; 142: 357–365.

39. Contal O, Vignaux L, Combescure C, et al. Monitoring of noninvasive ventilation by built-in software of home bilevel ventilators: a bench study. Chest 2012; 141: 469–476.

40. Calderini E, Confalonieri M, Puccio PG, et al. Patient-ventilator asynchrony during noninvasive ventilation: the role of expiratory trigger. Intensive Care Med 1999; 25: 662–667.

41. Tassaux D, Caiminier M, Battisti A, et al. Impact of expiratory trigger setting on delayed cycling and inspiratory muscle workload. Am J Respir Crit Care Med 2005; 172: 1283–1289.

42. Hess DR. Ventilator waveforms and the physiology of pressure support ventilation. Respir Care 2005; 50: 166–186.

43. Amato MB, Barbos CS, Bonassa J, et al. Volume-assured pressure support ventilation (VAPSV). A new approach for reducing muscle workload during acute respiratory failure. Chest 1992; 102: 1225–1234.

44. Storre JH, Seuthe B, Fiechter R, et al. Average volume-assured pressure support in obesity hypoventilation: a randomized crossover trial. Chest 2006; 130: 815–821.

45. Janssens JP, Metzger M, Sforza E. Impact of volume targeting on efficacy of bi-level non-invasive ventilation and sleep in obesity-hypoventilation. Respir Med 2009; 103: 165–172.