Novel small molecules that increase the susceptibility of Neisseria gonorrhoeae to cationic antimicrobial peptides by inhibiting lipid A phosphoethanolamine transferase

Christopher Mullally1†, Keith A. Stubbs2†, Van C. Thai1, Anandhi Anandan2, Stephanie Bartley1, Martin J. Scanlon3, Gary A. Jarvis4,5, Constance M. John4,5, Katherine Y. L. Lim1, Courtney M. Sullivan1, Mitali Sarkar-Tyson1, Alice Vrielink2 and Charlene M. Kahler1,6*

1The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Science, University of Western Australia, Perth, Australia; 2School of Molecular Sciences, University of Western Australia, Perth, Australia; 3Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia; 4Center for Immunochimistry, Veterans Affairs Medical Center, San Francisco, USA; 5Department of Laboratory Medicine, University of California, San Francisco, USA; 6Telethon Kids Institute, Perth Children’s Hospital, Perth, Australia

*Corresponding author. E-mail: charlene.kahler@uwa.edu.au
†Co-first authors.

Received 16 February 2022; accepted 19 May 2022

Objectives: Neisseria gonorrhoeae is an exclusively human pathogen that commonly infects the urogenital tract resulting in gonorrhoea. Empirical treatment of gonorrhoea with antibiotics has led to multidrug resistance and the need for new therapeutics. Inactivation of lipooligosaccharide phosphoethanolamine transferase A (EptA), which attaches phosphoethanolamine to lipid A, results in attenuation of the pathogen in infection models. Small molecules that inhibit EptA are predicted to enhance natural clearance of gonococci via the human innate immune response.

Methods: A library of small-fragment compounds was tested for the ability to enhance susceptibility of the reference strain N. gonorrhoeae FA1090 to polymyxin B. The effect of these compounds on lipid A synthesis and viability in models of infection were tested.

Results: Three compounds, 135, 136 and 137, enhanced susceptibility of strain FA1090 to polymyxin B by 4-fold. Pre-treatment of bacterial cells with all three compounds resulted in enhanced killing by macrophages. Only lipid A from bacterial cells exposed to compound 137 showed a 17% reduction in the level of decoration of lipid A with phosphoethanolamine by MALDI-TOF MS analysis and reduced stimulation of cytokine responses in THP-1 cells. Binding of 137 occurred with higher affinity to purified EptA than the starting material, as determined by 1D saturation transfer difference NMR. Treatment of eight MDR strains with 137 increased susceptibility to polymyxin B in all cases.

Conclusions: Small molecules have been designed that bind to EptA, inhibit addition of phosphoethanolamine to lipid A and can sensitize N. gonorrhoeae to killing by macrophages.

Introduction

Neisseria gonorrhoeae causes the sexually transmitted infection gonorrhoea, with a worldwide yearly estimate of >106 million infections.1 Empirical monotherapy has been used to treat gonorrhoea over the past 50 years, which has steadily resulted in the emergence of MDR strains that are resistant to all classes of antibiotics used in therapy.2 The emergence of XDR isolates that are resistant to the standard dual antibiotic therapy (azithromycin and ceftriaxone) has led to the prospect of untreatable infections increasing morbidity, and the rapid escalation of economic health costs to society is a serious public health concern.3,4 The WHO has recommended research into novel therapies to stem the spread and improve treatment of MDR and XDR infections. One approach that has gained momentum in the last decade is the development of antivirulence compounds, which are...
designed to inhibit a key determinant in pathogenesis, thus enabling the natural immune responses of the host to clear the infection. The virulence factor EptA (formerly termed lipid A phosphoethanolamine transferase, LptA), represents a promising target for antivirulence, as it is required for multiple aspects of gonococcal pathogenesis including colonization, inflammation and survival in neutrophils. In a competitive infection with WT bacteria, EptA mutants are attenuated in female mouse models of colonization of the urogenital tract and the urethra of male humans, implying that this factor has an essential role in the pathogenesis of disease. The loss of phosphoethanolamine (PEA) headgroups on lipid A increases susceptibility to complement-mediated killing mechanisms in serum and reduces the cytokine response by the TLR-4/MD-2 pathways. EptA mutants are unable to escape killing mechanisms in macrophages and neutrophils as they are unable to inhibit phagolysosome maturation and are exquisitely susceptible to cationic antimicrobial peptides (CAMPs) such as cathelicidins and LL-37 in these cells. Thus this enzyme represents an excellent target for the development of antivirulence compounds.

EptA catalyses the transfer of PEA from phosphatidylethanolamine (PtdE) to lipid A at the 1 and/or 4′ headgroup positions. The crystal structure of full-length EptA revealed that the N-terminal transmembrane (TM) domain is connected to the soluble domain (SD) by a bridging helix and an extended loop. The SD of EptA adopts a hydrolase-type fold with a bound Zn2+ ion at the enzyme active site near to the catalytic nucleophile, Thr280. Removal of the TM domain retards esterase activity required for cleavage of PtdE, but it is unable to function as a lipid A transferase in bacterial cells, suggesting that this domain is important for lipid A binding.

Due to the need for new therapies to treat gonococcal infections and the importance of EptA in the virulence of N. gonorrhoeae, we employed a pipeline-based methodology using saturation transfer difference (STD)-NMR to identify lead EptA-inhibiting compounds. Chemical modification of selected compounds improved their efficacy to reduce gonococcal resistance to the CAMP polymyxin B.

Materials and methods

Bacterial strains and growth conditions

FA1090 [Opa+, PilI+, PilP+] (containing a stop codon in pilP) was grown on gonococcal agar plates (GCA, Oxoid) supplemented with 1% (v/v) Deakin modified IsoVitalex (DMIV) and 32 mg/L polymyxin B (Sigma–Aldrich). Opa (opacity) proteins are adhesins and PilP is a pilus biogenesis protein important for the multimerization of the PilQ porin. Because of this, PilP− isolates have a higher intrinsic level of resistance to most compounds due to the reduction in PilQ porin. N. gonorrhoeae FA1090ΔeptA−pilP− (Opa+, PilI+, PilP−; see Supplementary materials and methods for construction, available as Supplementary data at JAC Online) was grown on GCA supplemented with 1% (v/v) DMIV and 50 mg/L kanamycin (Sigma–Aldrich). The 2008 WHO reference panel of MDR N. gonorrhoeae (MDR-NG) isolates was used to screen the compounds (N. gonorrhoeae 31536 to 31544).

Compounds

The library of 1137 compounds was obtained from Maybridge Chemicals. The analogues encompassing 1–5, namely 16–55, were obtained from eMolecules. Synthetic derivatives of 48, namely 56–178, were synthesized by SYNthesis Pharm. Characteristics of these molecules (1H NMR, HPLC (254 nm)) are detailed in the Supplementary materials and methods. All compounds were tested for identity, purity and solubility as we have described previously. All compounds are covered under the Australian Provisional Patent Application No. 2021903584.

Conditions for STD-NMR and Carr-Purcell-Melboom-Gill (CPMG)-NMR spectroscopy to identify compounds binding EptA

Compound binding to purified native EptA was first assessed by recording STD-NMR experiments in cocktails containing up to six individual fragments at a concentration of ~330 μM. Purified SD of EptA was prepared as described previously and was used at a concentration of 5 μM in 50 mM sodium phosphate buffer, 100 mM NaCl, pH 7.4, 10% D2O, 1% d4-DMSO. The fragments were combined to minimize overlap in their 1H–1H-NMR spectra and to allow facile identification of binders within each cocktail. STD-NMR experiments were conducted at 10°C and 600 MHz on a Varian Unity INOVA NMR spectrometer equipped with a cryogenically cooled probe. The magnitude of the signal in STD spectra was ranked by comparison with the most intense STD signal identified across all the STD spectra for EptA as previously described. The STD signal was categorized as strong where the intensity was ≥75% Imax, medium where the intensity was ≥50% Imax and <75% Imax, and weak where the intensity was ≥25% Imax and <50% Imax. Fragments showing the strongest STD signals from this analysis were validated by testing as singletons. Validation of these binders was conducted against recombiantly expressed and purified full-length EptA. Single fragments were tested at a concentration of 400 μM in a buffer containing 50 mM phosphate, 100 mM NaCl, 0.024% (w/v) n-dodecyl-β-D-maltoside (DDM), pH 7.5, 0.2% d4-DMSO. Fragments were tested for binding to full-length EptA, soluble EptA and buffer only (to exclude fragments that bound to the DDM micelles) by recording 1D STD and CPMG T2-weighted NMR experiments.

Microdilution assays to determine the effectiveness of small molecule inhibitors

Filter disc assays were used to identify the best hits that sensitized bacteria to subinhibitory concentrations of polymyxin B. The MICs of small molecule inhibitors of EptA were tested against strains FA1090 and FA1090ΔeptA using a 96-well plate-based microdilution format. For conditions, see Supplementary materials and methods.

Preparation of intact lipooligosaccharide (LOS) for analysis by MALDI-TTOF MS

LOS was extracted and purified by a modification of the hot phenol–water method. Conditions for MALDI-TTOF MS and negative-ion MALDI-TTOF MS of intact LOS are described in the Supplementary materials and methods.

Quantitative analysis of phosphorylated hexa-acylated lipid A ions in spectra of intact LOS

The quantitative analysis of phosphoethanolaminylation and phosphorylation of lipid A is enabled by observation of prompt Y-type reducing terminal fragment ions for the lipid A moieties of interest, including those that contained up to three phosphates and one PEA moiety in MALDI-TTOF MS analysis. The MALDI-TTOF spectra obtained on the SYNAPT G2 HDMS system were of high resolution, enabling detection of monoisotopic peaks for the lipid A species. Areas of the most abundant negative-ion peaks for hexa-acylated lipid A were determined for six to seven LOS spectra for each sample after using standard conditions for smoothing and correcting the baseline of the spectra using Mass Lynx...
Cytokine expression from THP-1 cells and survival in RAW macrophage cell assays

The measurement of TNF-α from THP-1 cells stimulated by purified LOS is described in the Supplementary materials and methods. Compounds were tested for toxicity against RAW 264.7 murine macrophages (RAW) before use in bacterial survival assays (Supplementary materials and methods).

Results

Identification of hit small molecule inhibitors of EptA

The pipeline for the down-selection of anti-EptA compounds is described in Figure S1. Using STD-NMR, the compounds were ranked based on the intensity of the signals in the screening experiments in groups of six and validated by first recording STD-NMR experiments on single compounds against the soluble domain of EptA, and subsequently by recording both STD-NMR and CPMG-NMR experiments against the full-length EptA. The top 15 ranked compounds by STD/CPMG-NMR, 1–15 (Figure S2), were then tested against nine MDR-NG isolates using a filter disc assay in the presence of the subinhibitory concentration of polymyxin B. The results for 1–15 (data not shown) demonstrated that five compounds, 1–5, resulted in zones of inhibition of 1 mm or greater for two or more MDR-NG isolates.

In order to generate preliminary structure/activity relationships for the top ranked hits 1–5, a series of analogues spanning the chemical space of these molecules 16–55 (40 in total, Figure S3) were obtained and then tested using the broth microdilution assay against strain FA1090, using two original hits, 1 and 3, as controls. The bacteria were incubated in the presence of compound, with and without polymyxin B, to enable at least three cycles of bacterial replication to occur. This ensures inhibition of EptA over the course of bacterial replication, which leads to the sequential reduction of lipid A decorated with PEA and subsequently increases susceptibility to subinhibitory concentrations of polymyxin B. In this assay, the ability of the compounds to sensitize strain FA1090 to 48 mg/L polymyxin B, 1.3-fold lower than the WT polymyxin B MIC of 64 mg/L, was tested. A nominal selectivity index of >20-fold [fold change in maximum effective concentration (MEC) of compound, with and without polymyxin B] was used to stratify the 40 analogues into compounds that were more likely to be selective agents with a mode of action against EptA, while the remainder were more likely to be non-selectively toxic. From this approach, nine analogues (26, 27, 28, 29, 35, 38, 45, 48 and 50) and 3, but not 1, were shown to be effective at increasing the susceptibility of strain FA1090 to polymyxin B (Table S2). To determine whether these compounds were binding better to EptA than parental hit 3, STD/CPMG-NMR binding to full-length EptA was performed with analogues that were either above (29, 48, 50) or below (21, 23, 34, 36, 37, 53) the selectivity threshold of 20-fold in the bacterial polymyxin B susceptibility screen (Table S3). The results demonstrated that 21 and 50 were moderately better and 29, 34 and 48 were significantly better binders to EptA when compared with 3. Compounds 29 and 34 were discarded from further analysis as they belong to the promiscuous 2-aminothiazoles (PraATs), which have been identified as frequent hits in binding assays of this type. In summary, 48 was chosen for further evaluation as the only hit that had a significantly higher affinity to EptA by STD/CPMG-NMR than 3 and also demonstrated a broad ability to sensitize MDR-NG to subinhibitory concentrations of polymyxin B (Table S3).

Elaboration of lead molecule 48

Lead molecule 48 was modified to gain insight into which groups were required for potency (Tables S4–S11). A library of variants was prepared where the amide moiety was modified (56–96). Next the carbonyl group was removed to understand the role of this moiety (97–106) and finally the effect of the N-linked cyclopentyl group was investigated, with this coupled to the effects of having a sulphone (107–122), sulphoxide (123–126) and thioether moiety (127–178).

To identify active compounds, compound at the MEC (a 2-fold dilution below the MIC of the compound) was incubated with strain FA1090 and a subinhibitory concentration of polymyxin B that did not affect growth (32 mg/L polymyxin B, a 2-fold dilution below the MIC of the WT) in the broth microdilution assay. A supplementary screen to test ‘off target’ cytotoxicity examined the effect of the compound on the mutant strain FA1090ΔeptA (which is resistant to 1 mg/L polymyxin B). Compounds that increased susceptibility of FA1090ΔeptA in the presence of 1 mg/L polymyxin B were considered to be ‘off target’ as these compounds had a mode of action independent of EptA expression. From these screens, a total of 44 compounds were considered to be ‘on target’ for EptA inhibition (Figure S4). In comparison to 48, which reduced the MIC of strain FA1090 2-fold from 64 to 32 mg/L (at a concentration of 200 μM), 26 compounds reduced the polymyxin B MIC of strain FA1090 2-fold, 14 compounds reduced the MIC 4-fold, and 4 compounds reduced the MIC 8-fold. Only four compounds, 56, 135, 136 and 137, exhibited the least bactericidal activity at 100 μM after 3 h incubation, and of these, 135, 136 and 137 reduced the polymyxin B resistance by 4-fold from WT levels. Therefore, 135, 136 and 137 (Figure 1) were considered to be improved hits derived from the parent scaffold 48 and were further investigated to determine whether they represented novel EptA inhibitors.

Pre-treatment of bacterial cells with compounds increases killing of N. gonorrhoeae by RAW macrophage cell lines

EptA mutants of N. gonorrhoeae are known to be highly susceptible to killing by macrophages due to the presence of defensins and cathelicidins in these cells. The improved compounds 135,
136 and 137 were shown to have no cytotoxicity towards macrophages at 300 μM using a lactate dehydrogenase activity assay (data not shown). Bacteria were pre-incubated with each compound at 50 μM and then exposed to the RAW macrophage cell line and total association was measured after 15 min. The viability of FA1090ΔeptA in the presence of RAW macrophages was significantly reduced by 2.4-fold compared with the WT control (Dunn’s multiple comparisons test; P = 0.0025) (Figure 2). Bacteria treated with either 135, 136 or 137 also showed reduced viability compared with WT of 1.9-fold, 2.6-fold and 2.2-fold, respectively (Dunn’s multiple comparison test; P = 0.0260, P = 0.0018, P = 0.0078).

Reduction of PEA decoration of lipid A from N. gonorrhoeae treated with 137

To confirm that the compounds were directly inhibiting EptA in bacteria and resulting in the polymyxin B-susceptible phenotype, strain FA1090 was grown in the presence of either 135, 136 or 137 and the abundance of lipid A phosphorylation assessed by MS of LOS extracted from broth-grown bacteria incubated at mid-log phase with 50 μM compound for 3 h (Figure 3 and Figure S5). Compound 137 significantly reduced the amount of PEA-decorated lipid A in the LOS relative to the LOS in control untreated bacterial cells and those bacterial cells treated with 135 and 136 (Figure 3a). As the level of phosphoethanolaminylation was reduced in 137-treated bacteria, the relative abundance of 2P phosphoforms increased (Figure 3b and c).

To further verify the reduction of PEA decoration of lipid A, the same purified lipid A extractions were used to induce cytokine responses from THP-1 cells (Figure 4). The LOS from FA1090ΔeptA and 137-treated bacteria induced significantly less TNFα expression by the THP-1 cells than untreated LOS (P < 0.05 and P < 0.001, respectively) while LOS from 135- and 136-treated bacteria were not significantly different from LOS from untreated bacteria.

The lead compound 137 has a higher binding affinity for EptA than the original hit compound 48

The binding of 137 to EptA was investigated by recording STD-NMR and CPMG experiments using a similar approach that was used to elucidate the original hit 48 and to gain insight into any improvement in binding (Figure 5). Compound 137 showed a significant increase in the intensity of the peaks in the STD difference spectrum, having an average STD intensity of 4.6% in comparison with the original hit 48, which showed an average STD intensity of 0.4% using the same experimental parameters.

Effectiveness of 137 in reducing the polymyxin B MIC for MDR-NG

Since the original screen to detect compound 137 was performed using the antibiotic-susceptible strain FA1090, the effectiveness of 137 to reduce the polymyxin B MIC of MDR-NG isolates was tested. In all instances, 50 μM 137 was able to reduce the MIC of polymyxin B for MDR isolates by 2-fold (Table S12). A kill curve in the presence of LL-37 defensin revealed a qualitative increase in the rate of killing for WHO-F, -K, -G and -L, but resulted in a 2-fold increase to defensin activity for WHO-L only (Figure S6). To determine whether the reduction of polymyxin B MIC by 137 had a synergistic or antagonistic effect on killing with other antibiotics, the assays were repeated with subinhibitory concentrations of penicillin, azithromycin, gentamicin and ceftriaxone.
We describe a successful pipeline for the detection of anti-EptA compounds using N. gonorrhoeae as the screening platform.

Discussion

We describe a successful pipeline for the detection of anti-EptA compounds using N. gonorrhoeae as the screening platform.
Substantialization of this hypothesis would require top-down MS/MS on the 137-treated and EptA mutant samples to examine the phosphate distribution at the 4′ and 1 positions of lipid A as it is the predominance of phosphorylation at the 4′ position that is associated with inflammatory potential. Pre-incubation of the bacteria with the compound was sufficient to phenocopy the FA1090ΔeptA mutant survival in macrophages. MDR-NG have mutations that lead to the derepressed overexpression of the MtrCDE efflux pump, which contributes to resistance to many antibiotics. All of the nine WHO isolates, including those with derepressed expression of MtrCDE efflux, were sensitized to polymyxin B by 2-fold. However, there was no substantial synergistic killing with the antibiotics penicillin, gentamicin, ceftriaxone or azithromycin, suggesting that the levels of phosphoethanolaminylation and pyrophosphorylation of lipid A did not result in exclusion of these antibiotics from the bacterial cell.

Overall, this work demonstrates that targeting EptA with small molecule inhibitors can sensitize N. gonorrhoeae to killing by CAMPs inside macrophages. Compound 137 is the first lead compound in the development of this class of novel therapeutic agents. Importantly, gonococcal EptA has a similar architectural structure to that of the mobile colistin resistance protein, Mcr-1, of Enterobacteriaceae. Future work will determine how these novel small molecules interact with the active site of this family of enzymes.

Acknowledgements

We would like to thank Dr Genevieve Evans who curated and dispensed the compounds necessary for this study.

Funding

This work was supported by the National Health and Medical Research Council (APP1003697 and APP1078642) awarded to C.M.K., A.V. and K.A.S. Portions of this work were supported by the Research Service of the United States Department of Veterans Affairs Merit Review Award (BX000727) awarded to G.A.J. G.A.J. is the recipient of a Research Career Scientist Award from the Research Service of the United States Department of Veterans Affairs. Australian Postgraduate Awards from the University of Western Australia supported C.M.S. and A.A. A top-up scholarship from the Amanda Young Foundation supported C.M. during his candidature.

Transparency declarations

The authors declare the following competing financial interest(s): Australian Provisional Patent Application No. 2021903584 has been filed, which covers the compounds described in this manuscript and their methods of use. The contents of this article are solely the responsibility of the authors and do not necessarily reflect the official views of the National Institutes of Health, the U.S. Department of Veterans Affairs, the United States government or the National Health and Medical Research Council of Australia.

Author contributions

C.M.K., A.V. and K.A.S. co-jointly designed the study. S.B. and C.M. performed the microbiology screening of the compounds. K.A.S. designed

Figure 5. Analysis of binding to purified EptA by STD-NMR spectroscopy.27 (a) Data generated for 48, where the bottom plot shows the aromatic region of the STD-NMR difference spectrum. The top plot shows the same region of the STD difference spectrum. (b) The same data as for (a) but for 137. In each case, the off-resonance experiment contains resonances that are consistent with the structure of the compound, which verifies the structure and confirms that it is present and soluble under the experimental conditions.

To examine whether the reduction of phosphoethanolaminylation by 137 treatment was biologically relevant, the ability of the purified lipid A from 137-treated WT bacteria to elicit a cytokine response from THP-1 cells was measured. Consistent with prior observations,10,11 the LOS from FA1090ΔeptA was less stimulatory for THP-1 cells than WT LOS. Even though the amount of PEA decoration was inhibited by 17%, the LOS of 137-treated WT bacteria demonstrated an almost 2-fold reduction in induction of cytokines compared with the untreated WT. However, concurrently with lipid A increased in 137-treated samples due to decreased levels of both 3P lipid A and 3P PEA lipid A, whereas the EptA mutant displayed decreased levels of 3P PEA lipid A only. These differences in the microheterogeneity of lipid A phosphorylation may affect the inflammatory potential of the sample, as discussed in a recent study by John et al.34
Inhibition of antimicrobial peptide resistance mechanism

the compounds. K.A.S. and A.V. managed the synthesis of the compounds. V.C.T. performed the defensin and antimicrobial susceptibility assays. A.A. prepared the enzyme for screening. M.J.S. performed the STD-NMR and CPMG-NMR spectroscopy. G.A.J. and C.M.J. performed the MALDI-TOF MS on the endotoxin and the cytokine assays. K.Y.L.L., C.M.S. and M.S.T. designed and performed the screening of the compounds in the macrophage assays. C.M. and C.M.K. co-wrote the draft of the manuscript and all participants edited the content for accuracy.

Supplementary data
Supplementary materials and methods, Figures S1 to S6 and Tables S1 to S13 are available as Supplementary data at JAC Online.

References
1 Kirkcaldy RD, Weston E, Segurado AC et al. Epidemiology of gonorrhoea: a global perspective. Sex Health 2019; 16: 401–11.
2 Unemo M, Del Rio C, Shafer WM. Antimicrobial resistance expressed by Neisseria gonorrhoeae: a major global public health problem in the 21st century. Microbiol Spectr 2016; 4, 10.1128/microbiolspec.E110-0009-2015.

3 Whiley DM, Jennison A, Pearson J et al. Genetic characterisation of Neisseria gonorrhoeae resistant to both ceftriaxone and azithromycin. Lancet Infect Dis 2018; 18: 717–8.
4 Lahra MM, Martin I, Demczuk W et al. Cooperative recognition of internationally disseminated ceftriaxone-resistant Neisseria gonorrhoeae strain. Emerg Infect Dis 2018; 24: 735–40.
5 Lim KYL, Mullally CA, Haese EC et al. Anti-virulence therapeutic approaches for Neisseria gonorrhoeae. Antibiotics (Basel) 2021; 10: 103.

6 Kahler CM, Nawrocki KL, Anandan A et al. Structure-function relationships of the neisserial EptA enzyme responsible for phosphoethanolamine decoration of lipid A: rationale for drug targeting. Front Microbiol 2018; 9: 1922.

7 Packiam M, Yedery RD, Begum AA et al. Phosphoethanolamine decoration of Neisseria gonorrhoeae lipid A plays a dual immunostimulatory and protective role during experimental genital tract infection. Infect Immun 2014; 82: 2170–9.
8 Hobbs MM, Sparling PF, Cohen MS et al. Experimental gonococcal infection in male volunteers: cumulative experience with Neisseria gonorrhoeae strains FA1909 and MS11mC. Front Microbiol 2011; 2: 123.

9 Lewis LA, Choudhury B, Balthazar JT et al. Phosphoethanolamine substitution of lipid A and resistance of Neisseria gonorrhoeae to cationic antimicrobial peptides and complement-mediated killing by normal human serum. Infect Immun 2009; 77: 1112–20.

10 John CM, Liu M, Phillips NJ et al. Lack of lipid A pyrophosphorylation and functional LptA reduces inflammation by Neisseria commensals. Infect Immun 2012; 80: 4014–26.

11 Liu M, John CM, Jarvis GA. Phosphory moieties of lipid A from Neisseria meningitidis and N. gonorrhoeae lipooligosaccharides play an important role in activation of both MyD88- and TRIF-dependent TLR4-MD-2 signaling pathways. J Immunol 2010; 185: 6974–84.

12 Johnson MB, Criss AK. Neisseria gonorrhoeae phagosomes delay fusion with primary granules to enhance bacterial survival inside human neutrophils. Cell Microbiol 2013; 15: 1323–40.

13 Hanning JW, Criss AK. The lipooligosaccharide-modifying enzyme LptA enhances gonococcal defence against human neutrophils. Cell Microbiol 2015; 17: 910–21.

14 Zughiero SM, Kandler JL, Balthazar JT et al. Phosphoethanolamine modification of Neisseria gonorrhoeae lipid A reduces autophagy flux in macrophages. PLoS One 2015; 10: e0144347.

15 Kandler JL, Joseph SJ, Balthazar JT et al. Phase-variable expression of lptA modulates the resistance of Neisseria gonorrhoeae to cationic antimicrobial peptides. Antimicrob Agents Chemother 2014; 58: 4230–3.

16 Tzeng YL, Ambrose KD, Zugahtier S et al. Cationic antimicrobial peptide resistance in Neisseria meningitidis. J Bacteriol 2005; 187: 5387–96.

17 Tzeng YL, Stephens DS. Antimicrobial peptide resistance in Neisseria meningitidis. Biochim Biophys Acta 2015; 1848: 3026–31.

18 Kahler CM, Sarkar-Tyson M, Kibble EA et al. Enzyme targets for drug design of new anti-virulence therapies. Curr Opin Struct Biol 2018; 53: 140–50.

19 Cox AD, Wright JC, Gidney MA et al. Identification of a novel inner-core lipooligosaccharide structure in Neisseria meningitidis lipooligosaccharide. Eur J Biochem 2003; 270: 1759–66.

20 Anandan A, Evans GL, Condic-Jurkic K et al. Structure of a lipid A phosphoethanolamine transferase suggests how conformational changes govern substrate binding. Proc Natl Acad Sci U S A 2017; 114: 2218–23.

21 Anandan A, Piek S, Kahler CM et al. Cloning, expression, purification and crystallization of an endotoxin-biosynthesis enzyme from Neisseria meningitidis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68: 1494–7.

22 Wanty C, Anandan A, Piek S et al. The structure of the neisserial lipooligosaccharide phosphoethanolamine transferase A (LptA) required for resistance to polymyxin. J Mol Biol 2013; 425: 3389–402.

23 Drake SL, Sandstedt SA, Koomey M. PiP, a novel MAGEL1-lipid phosphoprotein in Neisseria gonorrhoeae, affects expression of PiPQ as a high-molecular-mass multimer. Mol Microbiol 1997; 23: 657–68.

24 Zhao S, Tibosion DM, Hu M et al. The penC mutation conferring antibiotic resistance in Neisseria gonorrhoeae arises from a mutation in the PiQ secretin that interferes with multimer stability. Mol Microbiol 2005; 57: 1238–51.

25 Unemo M, Golparian D, Sanchez-Buso L et al. The novel 2016 WHO Neisseria gonorrhoeae reference strains for global quality assurance of laboratory investigations: phenotypic, genetic and reference genome characterization. J Antimicrob Chemother 2016; 71: 3096–108.

26 Dook BC, Morton CJ, Simpson JS et al. Design and evaluation of the performance of an NMR screening fragment library. Aust J Chem 2013; 66: 1465–72.

27 Mayer M, Meyer B. Characterization of lipid binding by saturation transfer difference NMR spectroscopy. Angew Chem Int Ed Engl 2013; 52: 1784–8.

28 Wielens J, Headey SJ, Rhodes DI et al. Parallel screening of low molecular weight fragment libraries: do differences in methodology affect hit identification? J Biomol Screen 2013; 18: 147–59.

29 Apicella MA, Griffiss JM, Schneider H. Isolation and characterization of lipooligosaccharides, lipooligosaccharides, and lipid A. Methods Enzymol 1994; 235: 242–52.

30 John CM, Liu M, Jarvis GA. Profiles of structural heterogeneity in native lipooligosaccharides of Neisseria and cytokine induction. J Lipid Res 2009; 50: 424–38.

31 Devine SM, Mulcair MD, Debono CO et al. Promiscuous 2-aminothiazole (PrATs): a frequent hitting scaffold. J Med Chem 2015; 58: 1205–14.

32 Piek S, Wang Z, Ganjly J et al. The role of oxidoreductases in determining the function of the neisserial lipid A phosphoethanolamine transferase required for resistance to polymyxin. PLoS One 2014; 9: e106513.

33 Touze T, Tran AX, Hankins JV et al. Periplasmic phosphorylation of lipid A is linked to the synthesis of undecaprenyl phosphate. Mol Microbiol 2008; 67: 264–77.

34 John CM, Phillips NJ, Jarvis GA. Prominent phosphorylation patterns in Neisseria meningitidis lipid A determined by top-down MS/MS. J Lipid Res 2020; 61: 1437–49.