Modeling missing transverse energy in V+jets at CERN LHC

Victor Pavlunin

Department of Physics, University of California, Santa Barbara, CA, USA, 93106-9530

(Dated: June 26, 2009)

I discuss a method to model the instrumental response of the CMS and ATLAS detectors at high missing transverse energy to dominant standard model V+jets backgrounds, where V is a Z, γ or W, using multi-jet QCD events. The method is developed for new physics searches in early data at the Large Hadron Collider (LHC) with minimal recourse to simulation.

PACS numbers: 12.60.-i, 13.85.Qk, 14.70.Fm, 14.70.Hp

I. INTRODUCTION

The LHC enters a new energy regime to explore the origin of the electroweak symmetry breaking, search for and study physics beyond the standard model (SM). At its design center-of-mass energy, new physics production cross sections may be significant so that a data sample of modest integrated luminosity, 100 pb$^{-1}$ or less, may contain a large number of new particles. The challenge is to distinguish events with new particles from those, many orders of magnitude more copious, attributed to the SM with limited understanding of the SM production rates and detector performance in early LHC data.

Missing transverse energy, E_T, has discriminating power to reveal new particles interacting weakly with ordinary matter produced via high energy parton collisions in laboratory conditions at the LHC. These weakly interacting particles may comprise the dark matter of our Universe. They are expected in new physics models, such as R-parity conserving super-symmetry and many others. Missing transverse energy allows to perform a broad search sensitive to the presence of such particles in collision data and is an observable that may lead to an early discovery at the LHC. At the same time, missing transverse energy is one of the most difficult observables to measure precisely and simulate accurately because it is measured by multiple detector sub-systems and subject to mis-measurements and backgrounds in any of them.

In this paper, I discuss a new method to predict backgrounds at high E_T for new physics searches in signatures consistent with SM V+jets and $t\bar{t}$+jets, where V is a Z, γ or W. I assume that new particles are heavy and decay to SM particles emitting multiple jets so that high sensitivity is expected at high E_T and a large number of jets. Since main sources of artificial E_T come from the system of jets, the detector and non-collision effects, I model the instrumental response to the system of jets in V+jets and other effects at high E_T in-situ using multi-jet QCD events. This method complements and extends the work of Ref. [8], where events with high rapidity objects are used to model SM V+jets and multi-jet backgrounds in new physics searches without heavy reliance on E_T. The emphasis of this work, as that of Ref. [8], is on robustness against imperfections of background modeling required for new physics searches in early LHC data.

II. OVERVIEW

Monte Carlo (MC) simulation capable of modeling the detector response to SM processes is a great asset in new physics searches. However, there are two challenges in searches of early LHC data based on MC simulation. First, the SM V+jets production rates are difficult to predict from first principles. MC techniques are unreliable in predicting backgrounds with a large number of jets and need to be tuned with high \sqrt{s} data. Theory calculations at sufficiently high order in many cases do not exist. The structure functions have significant uncertainties in the small x range accessible at the LHC. Second, significant uncertainties in the calibration of the experimental apparatus are expected in early data taking. Missing transverse energy is an observable that is particularly difficult to measure precisely and simulate accurately, since large jet energy fluctuations, detector artifacts, collision related and non-collision effects can produce non-Gaussian high E_T tails. These artificial E_T tails may resemble a signature of a new weakly interacting particle.

To introduce the method, let us consider an event with a Z boson reconstructed in the di-muon channel and four jets. The four-momentum of the Z is well-measured so that the system of the four jets and other effects unrelated to the di-muon system are the main source of E_T in this event. In order to develop a search in E_T based on MC simulation, one would need to identify, understand and simulate the detector response to each of these effects. Instead, I model these effects in-situ using multi-jet QCD events as follows. A sample of QCD events with four jets that have approximately the same configuration as the four jet system of the Z+jets event is selected. A E_T prediction, or a template, for this Z+jets event is obtained using the E_T distribution measured in the selected QCD sample and normalized to unity. This procedure is repeated for all other Z+jets events. The E_T templates are summed up to obtain a SM E_T prediction for the entire Z+jets sample.

The photon momentum in γ+jets is also well-measured so that the same procedure applies to ob-
tain a SM E_T prediction in the $\gamma + \text{jets}$ sample. In $W + \text{jets}$ and $tt + \text{jets}$ with one of the two top quarks decaying semileptonically, the $l + \text{jets} + E_T$ signature, there is genuine E_T from the undetected neutrino produced in W decays. To avoid reliance on MC and theory, I model the neutrino $|p_T|$ spectra using charged lepton $|p_T|$ spectra. If W bosons are not polarized in the transverse plane, the two spectra should be the same. Event selection and polarized W bosons produced in top quark decays lead to differences in the charged lepton and neutrino spectra. However, these differences are small and can be accounted for by corrections. A prediction for artificial neutrino spectra. If W bosons are not polarized in the transverse plane, the two spectra should be the same. Event selection and polarized W bosons produced in top quark decays lead to differences in the charged lepton and neutrino spectra. However, these differences are small and can be accounted for by corrections. A prediction for artificial neutrino $|p_T|$ spectrum to obtain a SM E_T prediction in the $l + \text{jets} + E_T$ final state.

Since higher sensitivity to new physics is expected in events with a large number of jets, the focus is to model high E_T region in $V + \text{jets}$ events with 3 or more jets. Events with 2 jets are valuable as a validation and calibration sample. This method is developed for searches in early LHC data. It will work best if the LHC startup is quick, new particles are strongly produced and not very heavy, e.g., such as squarks and gluinos in the low mass mSUGRA CMS and ATLAS benchmarks [6]. With this in mind, a prediction of SM backgrounds in high E_T tails to about 20% may be sufficient to reveal new physics. For this reason, an accuracy benchmark for this method is to predict SM backgrounds in high E_T and a large number of jets (3 jets or more) to about 20% or better in a data-driven manner.

III. EXPERIMENTAL ASPECTS

The CMS and ATLAS experiments use multi-purpose detectors at the European Organization for Nuclear Research (CERN). Detailed descriptions of the detectors can be found in Ref. [14]. The detectors are capable of reconstructing electrons and muons with high efficiencies and low fake rates for lepton $|p_T| > 20$ GeV in the $|\eta| < 2.5$ range [12]. (In this paper the symbol l is used to denote an e, μ, but not τ. Charge-conjugate modes are implied.) In both detectors, photons and jets can be reconstructed reliably within $|\eta| < 2.5$ and $|\eta| < 3.0$, respectively.

To study the method, mock data samples are generated for the following SM processes: $Z + \text{jets}$ (5.0 fb$^{-1}$, up to 5 partons, $Z \rightarrow ll'$), $W + \text{jets}$ (1.0 fb$^{-1}$, up to 5 partons, $W \rightarrow l\nu$, $tl + \text{jets}$ (1.0 fb$^{-1}$, up to 4 partons, $tt \rightarrow l\nu\bar{b}b\bar{j}j$), $\gamma + \text{jets}$ (400.0 pb$^{-1}$, up to 5 partons) and QCD jets (1.0 pb$^{-1}$, up to 5 partons) [14]. (The same samples are used in Ref. [8].) The integrated luminosity listed in parentheses is used everywhere in tests in this paper but section X. These samples are generated with ALPGEN [14] at the parton level. PYTHIA [15] is used for parton showering, hadronization, simulation of the underlying event and jet reconstruction. To model features of a new physics signal in search distributions, mock signal data samples for Minimal Supergravity (mSUGRA) benchmark points LM1 and LM4 [10, 17] are generated with PYTHIA.

Electrons and muons are required to have $|p_T|$ of at least 20 GeV in the $|\eta| < 2.5$ range. Photons are reconstructed above the $|p_T|$ threshold of 30 GeV in the $|\eta| < 2.5$ range. Jets are reconstructed using the PYCELL algorithm [15] and required to be within $|\eta| < 3.0$. A low jet $|p_T|$ threshold of 20 GeV is used in the E_T measurements in order to collect the energy deposited in the calorimeters to a fuller extent. Higher jet $|p_T|$ thresholds, 50 GeV or more, are used to measure other observables in a robust manner as indicated below. I require that the leading jet and E_T be not aligned in the transverse plane within 0.15 radians; $0.15 < |\Delta\phi_{\text{lead jet}-E_T}| < (\pi - 0.15)$. (The jet with the highest $|p_T|$ in an event is the leading jet of this event. Any other jet in this event is a non-leading jet.) It is assumed that the triggering and event reconstruction efficiency in each channel is 50%.

![FIG. 1: Top: the Gaussian contribution to the jet energy resolution as a function of true jet $|p_T|$ is shown in the solid line. The noise, stochastic and saturation contributions to the jet resolution function are shown separately. Bottom: the jet energy smearing functions for 500, 250, 100 and 50 GeV $|p_T|$ jets are shown in the solid, dashed, dot-dashed and dotted lines.](image-url)
with high precision compared to jets, their contribution to artificial E_T in events with a large number of jets is negligible. To emulate detector resolution effects for jets, jet energies measured by PYTHIA are smeared. The jet smearing function has three components: a) a Gaussian with

$$\sigma(|\vec{p}_T|)/|\vec{p}_T| = \sqrt{(7.0/|\vec{p}_T|)^2 + (1.2/|\vec{p}_T|)^2 + (0.04)^2},$$

where $|\vec{p}_T|$ is measured in GeV, b) an exponential low-side tail that stretches from $[1.0 - 2\sigma(|\vec{p}_T|)/|\vec{p}_T|]$ to 0.0 added to the Gaussian component 3% of the time, and c) similarly, an exponential high-side tail from $[1.0 + 2\sigma(|\vec{p}_T|)/|\vec{p}_T|]$ to infinity added to the Gaussian 1% of the time. Figure 1 shows the $|\vec{p}_T|$ dependence of the Gaussian smearing and the full smearing function with the non-Gaussian tails for a few fixed jet $|\vec{p}_T|$ values.

This jet smearing function is constructed based on studies of the CMS and ATLAS detectors [6, 11] to represent the jet response characteristic of the two detectors. Since the jet system tends to be the dominant source of artificial jets, their contribution to the jet system tends to be the dominant source of artificial jet energies measured by PYTHIA are smeared. The jet smearing function is constructed based on studies of the CMS and ATLAS detectors [6, 11] to represent the jet response characteristic of the two detectors.

The selection criteria used in the paper are not optimized to any new physics model. Instead, they are chosen to ensure robust detector performance and maintain sensitivity to a wide range of new physics models at high precision to ensure robust detector performance and maintain sensitivity to a wide range of new physics models at high E_T.

The resolution and other effects producing artificial jets are modeled by a large sample of QCD events so that mismodeled correlations are averaged out over this sample of QCD events. Second, E_T is measured for the entire V+jets sample so that mis-modeled correlations are averaged out over V+jets events as well. These averaging effects allow to develop a simple algorithm.

Multi-jet QCD events are selected using two variables: (1) N_J, number of jets above a high $|\vec{p}_T|$ threshold (50 GeV or higher), and (2) $J_T \equiv \sum |\vec{p}_T^{\text{jet}}|$ for jets above a low 20 GeV $|\vec{p}_T|$ threshold (the same jet threshold is used for E_T measurements) [8]. A QCD sample is selected for each pair $(N_J, J_T$ bin), the width of J_T bins is 10 GeV (100 GeV) below (above) 1 TeV. A E_T template is obtained for each of these samples as a E_T distribution in that sample normalized to unity. For each V+jets event, N_J and J_T are measured and used to select the E_T template with the same N_J in the corresponding J_T bin, which represents an artificial E_T prediction for this V+jets event. These templates are summed up over all V+jets events to obtain a E_T prediction for the entire V+jets sample.

Two sets of jet $|\vec{p}_T|$ thresholds are used to measure N_J. In the first set, the jet $|\vec{p}_T|$ threshold for N_J is 50 GeV. QCD events for this jet threshold can be collected using prescaled low $|\vec{p}_T|$ jet triggers. In the second set, the jet thresholds are equal to (or higher than) the jet $|\vec{p}_T|$ thresholds that can be used in unprescaled multi-jet triggers. For the second set, I use 140 GeV for $N_J = 2$, 80 GeV for $N_J = 3$ and 60 GeV for $N_J \geq 4$. These jet $|\vec{p}_T|$ thresholds can be changed depending on the trigger rates in data without significant effect.

The V momentum in Z+jets and γ+jets is well-measured so that the application of the algorithm is straightforward in these channels. A comparison of predicted and observed yields is shown in Figures 2 and 3 for Z+jets and γ+jets, respectively, where the top (bottom) row shows results for the 50 GeV (high) jet $|\vec{p}_T|$ thresholds for N_J. It is seen that the prediction (solid line) is very good for $N_J = 3$ and $N_J \geq 4$. For events with $N_J = 2$, the measurement (dashed line) is about 20% below the prediction at $E_T \leq 20$ GeV. The mechanism responsible for this bias is discussed in section V. Since new physics is not expected to contribute at small E_T, to remove this bias, the prediction is normalized to the measurement in the $E_T \in [50, 100]$ GeV interval. This is done for the E_T predictions in Z+jets and γ+jets events with $N_J = 2$ everywhere in the rest of the paper.

In W+jets and $t\bar{t}$+jets events reconstructed in the l+jets+E_T channel, there is genuine missing transverse energy from undetected neutrinos produced in W decays. To study only the effect of E_T mis-measurements, I consider the dominant $W \rightarrow l\nu$ and $t\bar{t} \rightarrow l\nu b\bar{b} j j$ contributions and assume that the neutrino spectra are known until section X. To model E_T resolution effects, the neutrino $|\vec{p}_T|$'s are smeared with the artificial E_T predictions obtained from multi-jet QCD events. This is done on an event-by-event basis assuming that the neutrino $|\vec{p}_T|$ and the artificial E_T interfere at a random an-

![Image](image-url)
FIG. 2: Algorithm performance in Z+jets for $N_J = 2, 3$ and ≥ 4 in the first, middle and third columns, respectively. The top row shows results for the 50 GeV jet $|\vec{p}_T|$ threshold for N_J. The bottom row is for the high jet $|\vec{p}_T|$ thresholds for N_J. The observed E_T distributions are shown in the dashed lines, their predictions obtained using multi-jet QCD events are the solid lines.

FIG. 3: Algorithm performance in γ+jets for $N_J = 2, 3$ and ≥ 4 in the first, middle and third columns. The top (bottom) row shows results for the 50 GeV (high) jet $|\vec{p}_T|$ threshold(s) for N_J. The observed E_T distributions are shown in the dashed lines, their predictions are the solid lines.

FIG. 4: Algorithm performance in t+jets+E_T for $N_J = 2, 3$ and ≥ 4 in the first, middle and third columns. The top (bottom) row shows results for the 50 GeV (high) jet $|\vec{p}_T|$ threshold(s) for N_J. The observed E_T distributions are shown in the dashed lines, their predictions are the solid lines.

gle ϕ distributed uniformly from 0 to π in the transverse plane. Figure 3 shows how well the method works for the
50 GeV (top row) and high (bottom row) jet $|\vec{p}_T|$ thresholds for N_J in the $t\bar{t}$+jets+E_T final state, where both W+jets and $t\bar{t}$+jets are included according to their expected production cross sections.

In section \[\text{IX}\] it is demonstrated that one can approximate the neutrino $|\vec{p}_T|$ spectra by the charged lepton $|\vec{p}_T|$ spectra. The contribution from $W \rightarrow \tau\nu$ in W+jets and $t\bar{t}$+jets is also considered in section \[\text{IX}\].

With these extensions, the method can be used to predict the E_T distribution in the $t\bar{t}$+jets+E_T final state, which has high sensitivity to a variety of new physics models with new weakly interacting particles in early data.

![Diagram](image)

FIG. 5: Ratios of observed and estimated integrated yields for Z+jets (top), γ+jets (middle), $t\bar{t}$+jets+E_T (bottom) obtained for the 50 GeV jet $|\vec{p}_T|$ threshold for N_J. In each plot three types of markers are shown for $N_J = 2$ (circles), 3 (squares) and ≥ 4 (triangles). The shaded markers for Z+jets and γ+jets show the ratios before the predictions are normalized at low E_T as described in the text. Note, the ratios are correlated since yields are integrated upwards.

For brevity, in the rest of the paper, I present results of studies for the 50 GeV jet threshold used to measure N_J. They have higher statistical precision than those for higher jet $|\vec{p}_T|$ thresholds for N_J. Ratios of observed and predicted yields, $N_{\text{observed}}/N_{\text{predicted}}$, are shown in Figure 5, where the yields in each E_T bin are integrals of the distributions shown in the top rows of Figures 2 through 4 from that bin’s E_T value to infinity. The algorithm performs at least as well when the set of higher jet $|\vec{p}_T|$ thresholds for N_J is used.

Since the QCD production cross section is very large at the LHC, only a small QCD sample is needed for this method to work, e.g., 1 pb$^{-1}$ of QCD is used to model E_T distributions in 5 fb$^{-1}$ of Z+jets in this paper. Again, the QCD sample for templates can be collected via prescaled small $|\vec{p}_T|$ jet triggers and unprescaled high $|\vec{p}_T|$ multi-jet triggers. Due to the large QCD production cross section, the relative contribution from electroweak processes with genuine E_T from neutrinos in this sample is negligible for searches in early data.

V. ROBUSTNESS

The goal of this method is to capture effects generating high artificial E_T in situ using multi-jet QCD events. For brevity, in the rest of the paper, I present results of studies for the 50 GeV jet threshold used to measure N_J. They have higher statistical precision than those for higher jet $|\vec{p}_T|$ thresholds for N_J. Ratios of observed and predicted yields, $N_{\text{observed}}/N_{\text{predicted}}$, are shown in Figure 5, where the yields in each E_T bin are integrals of the distributions shown in the top rows of Figures 2 through 4 from that bin’s E_T value to infinity. The algorithm performs at least as well when the set of higher jet $|\vec{p}_T|$ thresholds for N_J is used.

Since the QCD production cross section is very large at the LHC, only a small QCD sample is needed for this method to work, e.g., 1 pb$^{-1}$ of QCD is used to model E_T distributions in 5 fb$^{-1}$ of Z+jets in this paper. Again, the QCD sample for templates can be collected via prescaled small $|\vec{p}_T|$ jet triggers and unprescaled high $|\vec{p}_T|$ multi-jet triggers. Due to the large QCD production cross section, the relative contribution from electroweak processes with genuine E_T from neutrinos in this sample is negligible for searches in early data.
I find that the prediction is robust in the reconstruction on artificial E_T in γ+jets in the $N_J = 3$ bin for the jet p_T threshold of 50 GeV. The black line is a reference E_T distribution from Figure 3. Jet reconstruction inefficiencies (dashed grey), increased jet energy smearing (dotted grey) and extraneous energy (dot-dashed black) from the tests in section V and VI significantly increase artificial E_T.

Hot or noise cells or additional jets contribute extra energy and jets erroneously attributed to those produced in $V+$jets and QCD processes. Since additional jets have higher probability to be soft, I test the method’s ability to model such effects by adding extra jets with a soft uniform p_T spectrum from 0 to 50 GeV with a 20% probability to each $V+$jets or QCD event. These extra jets change J_T and E_T, but do not change N_J. I find that all predictions are good in this test.

I repeat the previous test with a uniform p_T spectrum of additional energy contributions covering the range from 0 to 100 GeV added with a 10% probability to $V+$jets and QCD events. This produces a strong effect on the E_T distribution shown for γ+jets with $N_J = 3$ in the dot-dashed line in Figure 6. Ratios of observed and estimated yields for the three $V+$jets processes in the $N_J = 3$ bin are in triangular (down) markers in Figure 7. I find that the prediction is robust in the $N_J = 3$ and ≥ 4 bins. In the $N_J = 2$ bin in $Z+$jets and $\gamma+$jets, a bias is observed. The origin of this bias stems from differences in N_J and J_T distributions between $V+$jets and QCD. I discuss it and more stringent tests with extraneous energy contributions in the next section.

The cross section ratios for $V+$jets and QCD processes: $\sigma^{V+jets}(n \text{ jets})/\sigma^{QCD}(n \text{ jets})$, $\sigma^{V+jets}(n+1 \text{ jets})/\sigma^{QCD}(n \text{ jets})$, $\sigma^{QCD}(n+1 \text{ jets})$, where n is equal to 2 or more, in LHC data are likely to differ from that of ALPGEN used in this study. There may also be differences in other differential distributions in the jet system of $V+$jets or multi-jet QCD events between LHC data and ALPGEN. To test how sensitive the method is to such differences, I vary the ALPGEN ratios $\sigma^{QCD}(n \text{ jets})/\sigma^{QCD}(n+1 \text{ jets})$, $n \geq 2$, by a factor of 1.5 up or down. Test results with reduced ratios.
for $N_J = 3$ are shown in Figure 7 in triangular (up) markers. The E_T predictions are good in this test because they are made on an event-by-event basis using QCD events with the same N_J and J_T. QCD events with other values of N_J and J_T are included only if they are misreconstructed, which is a second order effect, but it can become significant in regimes where distributions fall or rise steeply. Test results for distributions describing jets in QCD and di-jets, the jets come mainly from leading order parton interactions, while in V+jets, the jets are from higher order processes. Second, the averaging effects discussed in section IV are not as strong when the number of jets is small. Nevertheless, only two tests for $N_J = 2$ are biased in this section. Any other effect that generates artificial E_T in the same manner in the jet system of V+jets and multi-jet QCD events should be modeled in-situ by the method. I next discuss the method’s limitations revealed in more stringent tests.

VI. LIMITATIONS

I increase the degree of jet mis-reconstruction up to a point where the method becomes biased to explore the boundaries of the domain where the method works. This allows to understand in greater detail mechanisms that may lead to a bias. At the end of this section, I discuss how to avoid regimes where the method is biased.

The test with the jet veto cone introduced in the previous section is repeated with a modification such that leading jets falling into the veto cone are removed. This is a stringent test since leading jets are less likely to be undetected. Test results are shown in Figure 8 in circular markers, for brevity, only for γ+jets in the $N_J = 3$ bin. While the prediction partly takes into account the effect of undetected leading jets, it underestimates the background at high E_T in that N_J bin in Z+jets and γ+jets. The prediction is biased because in QCD events E_T is always less than J_T, by the definition of E_T in section III. In V+jets, V is a Z or γ here, E_T can be greater than J_T when the leading jet recoiling against an energetic V boson in the transverse plane is lost. The V+jets events with E_T larger than J_T can not be modeled by the algorithm in section IV. This bias is larger for $N_J = 2$, while in the $N_J \geq 4$ bin, the prediction is good for both Z+jets and γ+jets. In l+jets+E_T, W+jets and $t\bar{t}$+jets combined, due to a genuine E_T contribution from neutrinos to the full E_T, this bias does not appear.

![FIG. 8: Ratios of observed and estimated integrated yields in γ+jets for $N_J = 3$ and the 50 GeV jet $|p_T|$ threshold for N_J from tests in section V][16] Circles, squares, triangles-up and triangles-down are for tests with increased inefficiencies for leading jets, increased non-Gaussian jet energy fluctuations and extraneous energy contributing in jets or anywhere in the calorimeters. Note, these ratios are correlated as tests are made using events drawn from the same mock data samples, and yields are integrated upwards.

I repeat the test with increased jet energy mis-measurements after tripling the area of the lower non-Gaussian tail in the jet response function and reducing the magnitude of its slope on the logarithmic scale of the lower plot in Figure 7 by a factor of 2. The prediction is biased in the $N_J = 2$ bin for both Z+jets and γ+jets. The quality of the prediction improves in the $N_J = 3$ bin, shown in Figure 8 in square markers for γ+jets, and it is good for $N_J \geq 4$ in Z+jets and γ+jets. One should expect a bias for large low-side tails in the jet response function appearing via the same mechanism operating in the previous test. The V+jets events containing jets fluctuated down in $|p_T|$ can have J_T that is less than E_T. Such events can not be modeled by the algorithm of section IV. In the l+jets+E_T final state, the prediction of the full E_T, which includes the neutrino momentum, is good in all N_J bins. Note, for a large low-side tail in the jet response function, the jet energy scale may become biased. Effects due to a jet energy scale offset are discussed in section VIII.

I make two tests with a harder spectrum of additional energy contributions unrelated to γ+jets and QCD events. In these tests, the spectrum of additional energy is uniform in E_T from 0 to 1 TeV added with a 1% probability to both V+jets and QCD. Since there is no genuine E_T in γ+jets and QCD, the requirement on $|\Delta p_T^{\text{lead jet}} - E_T|$ (section III) that E_T and the leading jet be not aligned in the transverse plane removes a fraction of events with high E_T extraneous contributions. In the first test, additional energy depositions contribute only to jets that are above the $|p_T|$ threshold for N_J. The E_T distribution in γ+jets, $N_J = 3$, is shown in the dotted black line in Figure 8 with a large artificial high E_T tail. Ratios of observed and estimated yields are in triangu-
lar (up) markers in Figure [S]. In γ+jets, the prediction is good for $N_J = 3$ and ≥ 4, and it is biased in the $N_J = 2$ bin for the following reason. The J_T spectrum in QCD events tends to be softer than that in V+jets events with the same N_J. (This effect is most pronounced for $N_J = 2$.) The fraction of soft QCD multi-jet events promoted to higher J_T by extraneous energy depositions tends to be larger than that fraction in V+jets. Since such events have larger E_T due to the extraneous energy depositions unbalanced in the transverse plane, the level of background at high E_T is overestimated.

In the second test, extraneous energy contributions are added randomly in the $\eta - \phi$ plane so that N_J also tends to increase. Ratios of observed and estimated yields for γ+jets, $N_J = 3$, are in triangular (down) markers in Figure [S]. The prediction overestimates the background in all N_J bins. This happens because $\sigma_{QCD}(n \text{jets})/\sigma_{QCD}(n + 1 \text{jets})$, $n \geq 2$, is higher than $\sigma_{V+jets}(n \text{jets})/\sigma_{V+jets}(n + 1 \text{jets})$ in the mock data samples so that the fraction of events with $N_J = n$ reconstructed erroneously in the $N_J = (n + 1) \text{ bin due to an extra energy deposition is higher in QCD compared to that fraction in V+jets. (Again, this effect is most pronounced for } N_J = 2 \text{.) Since these mis-reconstructed events have larger } E_T \text{, the prediction overestimates the background.}

Test results with extraneous energy contributions for Z+jets are qualitatively similar to those for γ+jets. In $t+\bar{t}$+jets+E_T, the biasing effects discussed above are intertwined with additional effects due to the presence of a neutrino in the final state and the $t\bar{t}$+jets contribution. The genuine E_T from the neutrino makes the requirement on $|\Delta p_{T\ell}\text{jet}-p_T|$ less efficient in suppressing high E_T extraneous contributions. The $t\bar{t}$+jets events contribute to further differences in N_J and J_T spectra between W+jets and QCD. I find that in $t+\bar{t}$+jets+E_T the prediction tends to overestimate the background in the tests with extraneous energy depositions, and the quality of the prediction improves with N_J.

The explanation for biases with extraneous energy contributions can be generalized and applied to other sources of biases in the predictions of artificial E_T. Biases in this method can appear when two conditions are satisfied. First, an observable O_{jets} describing the jet system and related to E_T is severely mis-measured leading to increased artificial E_T and mismeasured N_J or J_T. Second, there are significant differences in the differential distribution of O_{jets} between multi-jet QCD and V+jets events on the scale associated with the misreconstruction. When these two conditions are satisfied, the fraction of events with mis-measured O_{jets} is different in QCD and V+jets for the same reconstructed N_J and J_T. If the mis-measured fraction of multi-jet QCD events is larger, the prediction overestimates the background. Otherwise, the predicted background is underestimated.

Regimes with severely misreconstructed events where the method may become biased need to be avoided. By imposing event quality criteria or improving the jet re-

construction, e.g., using the tracking systems, one can reduce the number of such events. Moderately misreconstructed events are modeled in-situ by the method.

The V+jets sample with $N_J = 2$ is the most challenging for this method. The method performs better at higher J_T and N_J, where the sensitivity to new physics is higher. There are several reasons for that: a) there are fewer differences between the hadronic systems in V+jets and QCD, b) the averaging effects over V+jets and QCD events are stronger and c) the jet reconstruction performs better at higher jet $|p_T|$.

VII. $t\bar{t}$+JETS

SM $t\bar{t}$+jets events, where $t\bar{t} \rightarrow l\nu b\bar{b}q\bar{q}$, constitute a dominant background in the $l+\text{jets}+E_T$ signature for $N_J \geq 3$. The shapes of N_J and J_T spectra in these events differ from those in QCD events collected for templates and from those in V+jets. The calorimeter response to b-jets in $t\bar{t}$+jets differs from that of light quark and gluon jets [21]. These effects lead to a bias in the prediction of artificial E_T in $t\bar{t}$+jets. To demonstrate this bias clearly, Figure [S](top) shows the artificial E_T in $t\bar{t}$+jets for $N_J \geq 4$ (dashed line), where the neutrino four-momentum is assumed to be measured so that it is included in the E_T calculation, and its prediction using QCD templates (solid line). Note, at large E_T, this bias is an order of magnitude smaller compared to the genuine E_T from the neutrino in the final state having the $|p_T|$ spectrum shown in the dot-dashed line in the same Figure. When the neutrino $|p_T|$ spectrum is combined with the artificial E_T in the full E_T prediction, the bias becomes insignificant as seen in Figure [S](bottom).

The artificial E_T is a dominant contributor in events with small genuine E_T. Figure [S](bottom) shows that the accuracy of its prediction is sufficient to model the full E_T distribution at small E_T. At high E_T, the missing momentum from the neutrino dominates over artificial E_T so that the accuracy of the full E_T prediction is highly dependent on how well the neutrino spectrum is modeled. The modeling of neutrino spectra is discussed in section [X].

Despite the fact that the bias in the artificial E_T prediction for $t\bar{t}$+jets is insignificant in the full E_T prediction in $l+\text{jets}+E_T$, it is instructive to examine how it behaves when selection criteria or the algorithm of section [V] are modified. Two observations can be made. First, the bias becomes smaller when the jet $|p_T|$ threshold for E_T and J_T is reduced or the η coverage for jets is increased since the total energy is collected to a fuller extent with more inclusive requirements. Optimal requirements on these variables can only be determined using data because at smaller $|p_T|$ and larger $|\eta|$ more noise and backgrounds are expected. Second, in $t\bar{t}$+jets, there tends to be more jets included in the E_T and J_T calculations that are below the jet $|p_T|$ threshold for N_J. Since the jet resolution improves as the jet $|p_T|$ grows, the
prediction can be improved by making E_T templates in coarse bins of $R(J_T) = J_T^{\text{high}} / J_T$, where J_T^{high} is a scalar sum of jet $|\vec{p}_T|$’s for jets above the $|\vec{p}_T|$ threshold for N_J. Alternatively, the same effect can be achieved by modifying the composition of the QCD sample used for templates.

VIII. JET ENERGY SCALE

Jet energy measurements can be systematically biased in early data. Let us consider a case when jet energies are under-measured uniformly in jet $|\vec{p}_T|$. Such mis-measurements cancel to first order in E_T measurements in QCD events. In V+jets, since the jet system recoils against the V, the jet energy mis-measurements add up coherently along the V direction in the transverse plane. To avoid a bias due to this difference, the jet energy scale needs to be calibrated. Since the method is capable to model large tails in the jet response function, a precise calibration of the jet energy scale as a function of η and ϕ (azimuthal angle) is not required. The jet energy scale can be calibrated with sufficient accuracy using standard techniques based on γ+jets and Z+jets ($N_J \leq 2$) processes in early data.

Figure 10 gives a comparison of E_T distributions in Z+jets (top) and l+jets+E_T (bottom) for $N_J = 3$ without (solid) and with a 10% (dashed) and 20% (dotted) jet energy scale offset. The energy scale offset downwards uniform in jet $|\vec{p}_T|$. The prediction becomes good for a 10% or smaller offset in Z+jets and γ+jets. One may reduce the effect from a residual jet energy scale offset on E_T in Z+jets and γ+jets by normalizing the predicted E_T shape to the observed distribution in the small E_T region, for example, for $E_T \in [50, 100]$ GeV. Demands on the precision of the jet energy calibration in l+jets+E_T are higher. Finally, even before the jet energy scale is calibrated, one can make a search in the projection of E_T on the axis perpendicular to the V direction (the l direction in l+jets+E_T) in the transverse plane, E_{TT}. Searches in E_{TT} are less sensitive to effects associated with the jet energy scale offset since those lead to a bias along the V direction.

IX. NEUTRINO SPECTRA IN W DECAYS

In the l+jets+E_T signature, dominated by W+jets and $t\bar{t}$+jets, there are one or more undetected neutrinos in the final state. To model E_T in these events, one needs a prediction or a measurement of the neutrino $|\vec{p}_T|$ spectra, which can be combined with E_T resolution predictions from QCD templates. The neutrino $|\vec{p}_T|$ spectra could be obtained from MC simulation. Or, the neutrino $|\vec{p}_T|$ spectra can be modeled in a data-driven manner using charged lepton $|\vec{p}_T|$ spectra as described in this section.
A. \(W \to \mu \nu \)

The solid and dashed lines in plot (a) of Figure 11 are the neutrino and charged lepton spectra in \(W+\text{jets}\) for \(N_J = 3, W \to b\nu\), where the requirement on the charged lepton \(|p_T|\) of at least 20 GeV is removed. Since \(W\) bosons are not polarized in the transverse plane in \(W+\text{jets}\), the neutrino and charged lepton \(|p_T|\) spectra are consistent. The application of a \(|p_T|\) threshold on the charged lepton makes its spectrum harder, while the neutrino spectrum becomes softer, which leads to a higher consistency between the two spectra seen in plot (b) of the same Figure. To model the neutrino spectrum using the reconstructed charged lepton spectrum in \(W+\text{jets}\), the effect of the charged lepton \(|p_T|\) threshold needs to be corrected for. The corrections need to be obtained from MC simulation.

The solid and dashed lines in plot (c) of Figure 11 are the neutrino and charged lepton spectra in \(t\bar{t}+\text{jets}\) for \(N_J = 3, t\bar{t} \to l\nu bqq\), without a threshold requirement on the charged lepton \(|p_T|\). In the SM, 30% of \(W^+\) bosons in top decays are produced in the transverse-minus helicity state (left-handed) and the rest are longitudinally polarized. \(^24\) Left-handed \(W^+\) bosons tend to produce charged leptons with a \(|p_T|\) spectrum that is softer compared to the neutrino \(|p_T|\) spectrum as seen in plot (c). Since the two spectra have similar shapes, it is possible to use the muon spectrum to model the neutrino spectrum in \(t\bar{t}+\text{jets}\). Again, when a charged lepton \(|p_T|\) threshold is applied, the charged lepton spectrum becomes harder while the neutrino spectrum becomes softer, which leads to a higher consistency between the two spectra seen in plot (d). Nevertheless, the effects of the \(W\) polarization in top decays and the event selection, mainly due to the charged lepton \(|p_T|\) threshold, in \(t\bar{t}+\text{jets}\), in general, need to be corrected.

In order to determine corrections to the charged lepton spectra for \(W+\text{jets}\) and \(t\bar{t}+\text{jets}\) from MC simulation, one needs to measure the shape of the \(|p_T|\) dependence of lepton reconstruction efficiencies and the relative fractions of \(W+\text{jets}\) and \(t\bar{t}+\text{jets}\) in the data sample. The former can be readily done via a standard technique based on \(Z \to l^+l^-\) decays. \(^22\) The latter should come from an independent measurement. With these two ingredients, corrections can be determined from MC simulation.

Since corrections to the charged lepton spectra are small, the reliance on details of MC simulation to determine the neutrino \(|p_T|\) spectra is minimized. For a 20 or 15 GeV threshold on charged lepton \(|p_T|\), no corrections are required to predict the \(E_T\) distributions in \(t\bar{t}+\text{jets}\) in all \(N_J\) bins to 20% or better in the mock data samples. Corrections are needed for \(W+\text{jets}\). The lower plot in Figure 11 shows the \(E_T\) distribution and its prediction in \(t\bar{t}+\text{jets}+E_T, W+\text{jets}\) and \(t\bar{t}+\text{jets}\) combined, for \(N_J \geq 4\) based on the charged lepton spectrum without corrections. Since \(t\bar{t}+\text{jets}\) dominates over \(W+\text{jets}\) in the \(N_J \geq 4\) \((N_J = 3)\) bin, the prediction is good to 15% (25%) at high \(E_T\) without corrections. The \(N_J \geq 4\) bin, where the prediction is the most robust, is likely to have the highest sensitivity to a new physics contribution compared to lower jet multiplicity events.

B. \(W \to \tau \nu \)

In the \(l+\text{jets}+E_T\) signature, there is background from taunonic \(W\) decays in \(W+\text{jets}\) and \(t\bar{t}+\text{jets}\). Taunonic \(W\) decays produce at least one additional neutrino that is a source of differences between the muon and neutrino spectra.

There are two types of taunonic \(W\) decays that contribute significant background: (1) \(W+\text{jets}\) and \(t\bar{t}+\text{jets}\,
Similarly, the application of event quality criteria are expected to reduce the number of severely misreconstructed events, which may lead to biases in the prediction of artificial \(\mathcal{L}_T \) predictions. (The tauonic background of type 2 can be suppressed by vetoing events with isolated single hadronic tracks.) The \(\tau \) branching fractions are well known. Therefore, the effects from \(W \rightarrow \tau \bar{\nu}_\tau \) on \(\mathcal{L}_T \) predictions can be well-modeled by an additional smooth correction to the muon \(|p_T^\mu| \) spectra that can be determined by MC simulation. Since the contribution from tauonic \(W \) decays is smaller compared to that from \(W \rightarrow l\nu_l \) decays, the relative contribution from new physics cannot be large in this sample. Therefore, these events can be used to validate the method’s performance and place an upper bound on its biases at higher \(N_j \) and jet \(|p_T^j| \). Similarly, the application of event quality criteria are expected to reduce the number of severely misreconstructed events that may lead to biases in the prediction of artificial \(\mathcal{L}_T \). By varying the event quality selection criteria, one can determine if the method is subject to such biases or estimate their size. An excess due to a new physics contribution should be stable under variations of these criteria.

In the \(l+\text{jets}+\mathcal{L}_T \) channel, lepton \(|p_T^\ell| \) spectra are used to model neutrino \(|p_T^\nu| \) spectra. There are several sources of the systematic uncertainty associated with this modeling as MC is used to obtain corrections to the charged lepton \(|p_T^\ell| \) spectra. Because these corrections are small, uncertainties due to MC used to extract them enter only at second order. They can be estimated by varying the composition of the MC samples used to measure them and the reconstruction efficiencies of leptons and jets within their uncertainties. The uncertainties in the composition of the MC samples should come from an independent measurement of the relative \(W+\text{jets} \) and \(t\bar{t}+\text{jets} \) cross sections for different \(N_j \). Note, in section \(\text{IXA} \) it is demonstrated that these corrections may be negligible for \(N_j \geq 4 \) to obtain a prediction at high \(\mathcal{L}_T \) to 20% or better in early data.

The QCD background to signal events with one or more fake leptons and cross-feeds among \(V+\text{jets} \) processes are not considered in this paper. These backgrounds need to be measured and accounted for in the \(\mathcal{L}_T \) distributions and their predictions \([22]\). A large new physics contamination to QCD at large \(\mathcal{L}_T \), in general, may bias the prediction at large \(\mathcal{L}_T \) and hide a new physics contribution to \(V+\text{jets} \). I find that under the most optimistic scenarios for new physics cross sections such a contamination does not lead to a significant bias.

Even though the reliance on MC is much reduced in this method, MC can be used to validate the method and constrain its systematic biases as is done in this paper. Nevertheless, a study of control data samples is needed to develop, optimize and validate the final algorithm and to quantify its systematic uncertainties.

XI. PREDICTIONS WITH SIGNAL

The algorithm’s performance with a new physics contribution is illustrated in Figure \(\text{[12]} \) in the \(Z+\text{jets} \) and \(l+\text{jets}+\mathcal{L}_T \) channels for the \(N_j = 3 \) and \(\geq 4 \). The integrated luminosity of the mock data samples in this Figure is 200 \(\text{pb}^{-1} \) for \(\sqrt{s} = 14 \text{ TeV} \). The jet \(|p_T^j| \) thresholds for \(N_j = 50 \text{ GeV} \). New physics contributions in the Figure are similar to those from mSUGRA benchmarks LM4 and LM1 \([17]\) for \(Z+\text{jets} \) and \(l+\text{jets}+\mathcal{L}_T \), respectively. The plots show SM backgrounds with new physics contributions (dashed) and their \(\mathcal{L}_T \) predictions (solid) from QCD templates. The dot-dashed lines represent SM backgrounds only to ease comparisons.

New physics events tend to have large \(\mathcal{L}_T \) and \(\mathcal{L}_T \). It is seen that the addition of a signal contribution with large \(\mathcal{L}_T \) does not bias the prediction significantly at high \(\mathcal{L}_T \). An excess of signal events above the background prediction stands out clearly in both channels. Since in \(l+\text{jets}+\mathcal{L}_T \) the neutrino spectrum is modeled based on the charged lepton spectrum in each \(N_j \) bin, the method works best in this signature when the charged lepton spectrum in new physics events is soft compared to the \(|p_T^\nu| \) spectrum produced by new weakly interacting particles \([24]\).

XII. CONCLUSION

I have presented a new method to predict SM backgrounds at high \(\mathcal{L}_T \) and a large number of jets, \(N_j \), within a context of a search for new phenomena in final states consistent with SM \(V+\text{jets} \): \(Z+\text{jets} \), \(\gamma+\text{jets} \) and \(W+\text{jets} \). The artificial \(\mathcal{L}_T \) in each \(V+\text{jets} \) event is modeled in-situ using multi-jet QCD events with a configuration of jets similar to that in the \(V+\text{jets} \) event. The genuine \(\mathcal{L}_T \) contribution from neutrinos in the \(l+\text{jets}+\mathcal{L}_T \) channel, dominated by \(W+\text{jets} \) and \(t\bar{t}+\text{jets} \), is modeled based on the charged lepton spectrum in each \(N_j \) bin.

The method performs reasonably well in robustness tests. I have identified mechanisms by which it may become biased, discussed systematic uncertainties in its background predictions and procedures to estimate them. A new physics contamination of the QCD sample does
with minimal recourse to MC simulation in early LHC running when robust data-driven SM background predictions play a key role in searches for new phenomena.

FIG. 12: Observed (dashed) and predicted (solid) SM Z+jets (top) and l+jets+\(E_T\) (bottom) for \(N_J = 3\) (left) and \(N_J \geq 4\) (right) with new physics contributions from mSUGRA benchmarks \cite{17}. The dot-dashed lines highlight the SM contributions. The \(|p_T|\) threshold for \(N_J\) is 50 GeV. The plots correspond to 200 pb\(^{-1}\) at \(\sqrt{s} = 14\) TeV.

not lead to a significant bias. The method has discriminating power to reveal a new physics contribution at high \(E_T\) and a large number of jets. It can be applied to data with minimal recourse to MC simulation in early LHC

[1] J. Dunkley et al. Astrophys. J. Suppl. Ser. 180, 306 (2009); G. Bertone, D. Hooper, J. Silk, Phys. Rep. 405, 279 (2005), and references therein.
[2] J. Wess and B. Zumino, Nucl. Phys. B 70, 39 (1974); Y.A. Golfand and E.P. Likhtman, JETP Lett. 13, 323 (1971); D.V. Volkov and V.P. Akulov, JETP Lett. 16, 438 (1972).
[3] For example, models of little Higgs with T-Parity: N. Arkani-Hamed, A.G. Cohen, H. Georgi, Phys. Lett. B 513, 232 (2001); H.C. Cheng and I. Low, J. High Energy Phys. 09 (2003) 051.
[4] Models with extra dimensions also lead to signatures with large \(E_T\) at the LHC: N. Arkani-Hamed, S. Dimopoulos, and G.R. Dvali, Phys. Lett. B 429, 263 (1998); L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999); T. Appelquist, H.-C. Cheng, B.A. Dobrescu, Phys. Rev. D 64, 035002 (2001).
[5] A. Abachi et al. (D0 Collaboration), Phys. Rev. Lett. 75, 618 (1995); B. Abbott et al. (D0 Collaboration), Phys. Rev. Lett. 82, 29 (1999); T. Affolder et al. (CDF Collaboration), Phys. Rev. Lett. 85, 1378 (2000); T. Affolder et al. (CDF Collaboration), Phys. Rev. Lett. 88, 041801 (2002).
[6] G.L. Bayatian et al. (CMS Collaboration), Report No. CMS TDR 8.2, CERN/LHCC 2006-021; G.L. Bayatian et al. (CMS Collaboration), Report No. CMS TDR 8.1, CERN/LHCC 2006-001; G. Aad et al. (ATLAS collaboration), arXiv:0901.0512.
[7] The W+jets and t\bar{t}+jets processes are studied in the l+jets+\(E_T\) signature and treated in the same manner in the paper. In a few places, where differences between the two processes are important, they are discussed separately.
[8] V. Pavlunin and D. Stuart, Phys. Rev. D 78, 035012 (2008).
[9] For a recent review see J. M. Campbell, J. W. Huston, W. J. Stirling, Hard Interactions of Quarks and Gluons: a Primer for LHC Physics, Rep. Prog. Phys. 70, 89 (2007). See also C. Anastasiou, L. J. Dixon, K. Melnikov and F. Petriello, Phys. Rev. D 69, 094008 (2004); C.F. Berger et al. Phys. Rev. Lett., 102, 222001 (2009).
[10] A. D. Martin, R. G. Roberts, W. J. Stirling and R. S. Thorne, Eur. Phys. J. C 14, 133 (2000).
[11] The CMS collaboration, S. Chatrchyan et al., 2008 JINST 3 S08004. The ATLAS collaboration, G. Aad et al., 2008 JINST 3 S08003.
[12] Pseudo-rapidity is \(\eta = -\ln[\tan(\theta/2)]\), where \(\theta\) is the particle’s polar angle to the beam line.
[13] The start-up \(\sqrt{s}\) of pp collisions at LHC is now expected to be 10 TeV but may change. For consistency with the previous study \cite{3}, I use the same ALPGEN samples for \(\sqrt{s}\) of 14 TeV that were used in Ref. \cite{3}.
13

[14] M. L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A. D. Polosa, JHEP 0307, 001 (2003); S. Mrenna and P. Richardson, JHEP 0405, 040 (2004).

[15] T. Sjöstrand, S. Mrenna and P. Skands, JHEP 0605, 026 (2006).

[16] A. H. Chamseddine, R. Arnowitt, and P. Nath, Phys. Rev. Lett. 49, 970 (1982).

[17] The Minimal Supergravity is a restricted model of supersymmetry characterized by only five free parameters defined at the grand unification scale: m_0, $m_{1/2}$, A_0, $\tan \beta$, $\text{sign}(\mu)$. For LM4 (LM1) benchmarks they are set to 210 (60) GeV, 285 (250) GeV, 0 (0), 10 (10), + (+). The total LM4 cross-section is 25.1 pb (NLO), with $\sigma[Z(l^+l^-)+\text{jets}] \sim 0.6$ pb. The total LM1 cross-section is 54.9 pb (NLO); about a third of it includes one or more leptons in the final state. For more information see G.L. Bayatian et al. (CMS Collaboration), Report No. CMS TDR 8.2, CERN/LHCC 2006-021.

[18] Energy depositions in the calorimeters from electrons $[Z(\ell\ell)+\text{jets}$ and $e+\text{jets+}\not{E}_T]$ and photons $(\gamma+\text{jets})$ are reconstructed as jets. Such jets are well-measured since most of their energy is collected by the electromagnetic calorimeter. In order to avoid double counting the energy depositions from electrons and photons in \not{E}_T, only jets are used in \not{E}_T for final states with electrons or photons. In J_T and N_J measurements, jets from electrons and photons are not used.

[19] This is a simple model of jet losses that allows to study how the method performs if there are other sources of jet inefficiency, for example, more uniform in η and ϕ.

[20] For a recent review of jet reconstruction and calibration see S.D. Ellis et al. Prog. Part. Nucl. Phys. 60, 484 (2008).

[21] The contribution from b-jets to the bias in artificial \not{E}_T prediction is smaller than that due to differences in N_J and J_T spectra between $t\bar{t}+\text{jets}$ and QCD. Resolution effects specific to higher track multiplicity b-jets are not simulated in this study.

[22] A. Abulencia et al. (CDF Collaboration), J. Phys. G: Nucl. Part. Phys. 34, 2457 (2007); D. Acosta et al. (CDF Collaboration), Phys. Rev. Lett. 94, 091803 (2005).

[23] G.L. Kane, G.A. Ladinski, C.P. Yuan, Phys. Rev. D 45, 124 (1992); M. Fischer, S. Groote, J.G. Korner and M.C. Mauser, Phys. Rev. D 63 031501 (2001); V.M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 100, 062004 (2008); T. Aaltonen et al. (CDF Collaboration), Phys. Lett. B 674, 160 (2009).

[24] More generally, in $l+\text{jets+}\not{E}_T$, one could develop a search for new physics by studying the consistency of the charged lepton $|p_T|$ spectrum with that of the neutrino.