Blockchain Infrastructure with Fragments Dependent Security Deposit Solution

R Jaya1*, R Thirukkumaran1, S Saravanan2, N Sivabalan1
1 Department of Computer Science and Engineering, New Horizon College of Engineering, Bengaluru, Karnataka, India
2 Department of Computer Science and Engineering, Agni College of Technology, Thalambur, Tamil Nadu, India
Email: *drjaya.nhce@gmail.com

Abstract. Blockchain is considered a shared ledger technology to be a viable alternative for heavily focused control process applications. However, most of the current blockchain networks are used for the proof of work called the Hash-Puzzle-Solving Consensus Protocol. The competition to solve the puzzle leads to high latency, leading directly to a lengthy cycle of transaction processing. One solution to this problem is the establishment of a shards blockchain network. In this article, we concentrate on the blockchain network and follow a consensus protocol on security deposits to explore the issue of how to reconcile the economic reward and incentive. The knowledge asymmetric dilemma between beacon and users is also posed by the intrinsic features of the blockchain, i.e. transparency and decentralization. The philosophy of the contract is used to describe the dilemma. The optimum incentives for the various types of validators as well as the required deposits will also be obtained. The flexible deposits may provide ample economic stimulus for participants relative to fixed deposits without sacrificing the safety incentives. Moreover, the results of simulation suggest that the contract theory strategy will optimize the effectiveness of the beacon chain and fulfill the participants' reward compatibility and individual rationality.

Keywords: MAC, CLMAC, LDCMAC, NS3, Bitcoin, Blockchain

1. Introduction
Blockchain was originally proposed by Nakamoto in the Bitcoin Project [1]. Subjects of major interest, both scholarly and business, have gained considerable respect [3] with characteristics of decentralization, resiliency, anonymity and auditing in many industries, including finance, transportation, Internet of subjects (iOT) etc. [2]. To date, many more popular platforms based on blockchains have been developed, for example for illustration. Ether [4]. One of the main problems of blockchain is how to organize unauthorized users as a variety of different technologies. Sometimes the blockchain struggles as a distributed public representative to synchronize trans behavior with double spending assaults. For all the considerations listed above, Nakamoto introduced a consensus Protocol in the [1], which would be called proof of work (PoW). This Protocol allows participants to solve a SHA-256-based hash brute force puzzle. The hashrate must be raised for each player in order to win the puzzle solving game. This means that all participants consume enormous computing capacity, resulting in massive loss of energy. The first suggestion for proof of stake (PoS) is to provide relief for this problem is the Bitcoin Forum [5]: the allocation of leaders is focused on the amount of bitcoins rather than on machine resource usage. Idko and others.
show the reasoning behind the PoS that stakeholders are more necessary to protect their protection to avoid system eroding losses. Based on the central notion of PoS, several structures have been suggested for a number of puzzle designs [7]. Although the most current blockchain technologies suffer from high latency and poor performance issues, the management of transaction transaction management is known as a promising solution for permission-free networks. As an example, take the Ethereum 1.0 which will only accommodate transfers between 7 and 15 seconds [8]. Increasing analysis thus focuses on low latency and high efficiency. A easy solution is to split the bodies into concurrent sub-groups (i.e., committees), which support the sub-groups (i.e., sharding). Sharding is a technique which can be added to the blockchain method to achieve the scalability of the distributed database [9].

High efficiency-friendly protocols such as [10] and [11] were proposed to help fulfill the blockchain network specifications for shards. A protocol on the finality of the PoS consensus, i.e. Casper [12], Vitalik and Virgil has proposed and should be incorporated at the top of any proposal. Several validators have been engaged to complete the blocks written by the committees. As a security deposit-based economic agreement [13], validators must make a certain amount of deposit to get access to the network. The authentication function is the size of a deposit not the number of validates.

![Basic Infrastructure](image)

Figure 1: Basic Infrastructure

Sharding and Casper in Ethereum 2.0 was combined to solve the problem of scalability. It determines the deposit at a fixed value (e.g., 32 ETH) [14] and notes that a proper insurance premium in a fixed deposit is slightly more than the earnings [12]. Figure 1 represents basic blockchain infrastructure. This is a beneficial provision. Therefore, the validators have to act lawfully. They have otherwise cut their deposits. The economic incentive will, however, be compromised to all validators with sales marginally below 32 ETHs. For those validators whose stake values are well above 32 ETH, the protection fee constraint is weakened. Therefore, an effective mechanism of economic stimuli is needed to allow various validates to alter their deposit values accordingly.

We evaluate problems in the blockchain paradigm before designing such a reward framework. First of all, all users ought to be paid with a blockchain network; else the decentralized network will be managed without any economic encouragement. Second, these participants’ stake values and performance are not regularly allocated, so rates and deposits are difficult to identify. Finally, although a light chain is available to trace administrative transactions, a blockchain network of parts is still faced with the problem of information asymmetry. The key challenge is two: a) the beacon chain cannot determine the precise worth of the validator stake and b), because of the anonymity of the
blockchain network and malfunctioning of the beacon chain, other validators' real computer resource is not known but for themselves. Which leads to issues with the design of the economic opportunity system?

This text takes into account all of these issues and uses the contract theory [17] to assess validator incentives and to guarantee that top-qualifier validator rewards are more compensated than low-calibers. In the different industrial scenarios, for example [15] and [16], based upon those payout designs. The proposed solution would merge incentive for protection with an economic stimulus for beacons and validators. It can be responsible for the beacon chain contract design with bad administration. The validators are listed accordingly and result in a variety of different ways. The deposit will then be tailored to the various incentives flexibly. Deposit above the incentives from the security incentive point of view is assured and a deposit calculated in compliance with the stake valuation of the validators is expected from an economic incentive perspective.

2. Related Work

By introducing tokens for financial rewards, a distributed reward system for allocating capital may be accomplished. Liu, among others proposed a new structure for Vehicle Ad Hoc Networks (VANETs) where each mobile cloud as well as moving power station could be viewed as an Electric Vehicle (EV). Electric power suppliers were introduced into the source pool for the versatile reallocation of energy, which was specifically affected by coins that were encrypted. The contribution of data between moving vehicles has been awarded by data coins followed by an agreement on Proof of Data Contribution (PoDC). Flop Coin was developed to provide the users with a reward mechanism to execute the offloaded task. The resource planning also discussed the mobility and prestige of participants. In order to take account of the pricing techniques of both fixed pricing and the auction systems, the relationships between resource suppliers and consumers were discussed.

Increased learning is commonly used in the resource distribution area because of the explosion of computer training technologies. Liu et al. implemented a common interface to use both profound improvement and smart learning to collect cloud data efficiently and protect the sharing of data. Xu etc. initially included improving learning algorithm in the intelligent contract in a follow-up analysis to ensure an efficient demand migration from peer to peer across the cloud data centre network. They fix the issue by recommending time gap learning (Q-leaning), which is both successful and analogous to the true migration dilemma, where motivations and the possibility of change have not been grasped.

Because of the economics of the blockchain, some blockchain based systems use tokens to assign resources. The tokenized sharing of cloud services could raise the share rate of resources that lowers the cost of storage. Some methods include an algorithm for improving learning in the blockchain method. This allows the capacity of the peer-to-peer cloud data centre network to be optimally distributed. Cloud resource planning based on Blockchain had no analysis. The next study theme should be paired with reward and optimal distribution approaches. In order to demonstrate substantial variations in different methods, we have mentioned some representative jobs. Although the protection, transparency and fault tolerance advantages of the blockchain framework, blockchain-based implementations often required strong backend help. First the majority of blockchain networks used PoW. The PoW blockchain does not deploy portable networking devices such as handheld smart phones because of its small processing power. In this case, the externalization of this cryptographic problem may be a solution. Secondly, the blockchain technology has poor throughput and high redundancy, which could result in immense local hardware storage costs by saving all data in chain. An choice to fix this problem was to apply a flexible outsourced storage service.

Since Bitcoin's invention, PoW has become an important method of consensus in blockchain. Miners scratch the right side of the box block with a cryptographic jigsaw solving mechanism PoW. While PoW provides high tolerance and protection for the mistake, each node in the blockchain network is computationally depleted. Therefore, edge systems containing capital are not able to afford such high measurement costs. Similarly, it was also an immense strain on resource-specific machines
to execute complex intelligent contracts [5]. The thesis suggested a new approach to maximizing job allocation in the intelligent grid by using intelligent contracts.

A smart agreement was adopted to control the electricity supply dynamically and automatically. The system used an approach to improving learning which could work in a rapidly evolving climate. Another work used the use of an intelligent contract to develop the IoT contractual routing protocol and also stressed the smart contract's auto control characteristics. In order to overcome this problem, some researchers have discharged computing work between computers and cloud servers. In several cases the offload approach has been built to optimize advantage in the PoW encryption game from a single viewpoint, e.g. from the point of view of mining and service providers. These works believe that an authority has set and pre-defined the unit price of oil. The problem of benefit optimization thus became a problem, which reduced overall costs and maximized the utility of measurement.

In order to increase the overall net income, the report suggested the mobile edge computing offloading and the information caching method, which was measured under the calculation that considered the work time and the energy usage. That was because the price of unit energy was stable and the issue of optimization discussed minimizations. For insensitive mine calculation activities, two mechanisms for the reloading were planned.

The whole mining project in the first solution, Source assignment was dependent on the number of toks in each EV, in compliance with the blockchain framework. A high-mount owner of the coins is a regular collective management contributor. High frequency owners could obtain a higher preference in the access to a resource pool of a lower price in order to incentivize high-frequency contributions.

3. Proposed System

In a blockchain network of shards, the beacon chain documents all administrative information of the commission. Therefore any manager of the lighting chain block may be called temporary representative for all types of validators and responsible for the creation of contracts. Validator v

Benefits from the validator are one of the protocols of POS consensuses where security is associated closely with the deposit and the validator's deposit adds to the benefit of the validator. Intuitively, the validators are grouped into separate divisions according to their stakes and outcomes. We suppose that the blockchain network prefers more stake validator and earns more opportunity. Set N types for all desired validators and the following form is given:

We addressed the mission offload and the distribution of capital to help smart phone users solve PoW puzzles in this section. We assumed that during the offloading three items had to be streamlined. Table VI provides a comparison of the PoW puzzle download based on our analysis.

From the viewpoint of miners, the plan for mining and PoW discharge activities were dynamically optimised in order to reach the overall revenue of miners. From the point of view of the service provider, gaming theory was used to find the right balance to ensure optimal value for the service provider. The auction process could optimize social welfare that reflects the overall utility in the scheme. The calculation of trade-offs between leveraging social gains and maximizing provider income, deep learning technology at costs and auctioning by multiple service providers are also covered in future work in this area. More and more challenges in the mining phase of blockchain.

The wasteful and space-consuming are deployment of mines on-site. Thanks to the advancement of visualization and parallel processing technologies, the cloud may be a scalable high-computation path. We focused on two technological aspects: latency and energy costs in this segment. It is displaying a cloud-based mining advantage, distinct from conventional Blockchain mining. The advantage was the centralization of the clouds, in order to maximize both reliability and energy saving performance by maximizing hardware resources. The computing capacity of the Cloud data centre has effectively defined its PoW performance.

Any research and products have also tried to improve the success of mining by improving the production and development of hardware [164]. CPU, GPU, FPGA and ASIC [165], [166] had been the four phases of hardware device enhancement in the cloud data centre. For example, Liu et al. proposed a secret hardware-assisted sharing method which extends the number of nodes in BFT
protocols. Table VII. Integrated Circuit Specific Application (ASIC) technology for manufacturing a tailored integrated device for a specific application of scenarios offers a differentiation in different hardware aspects. The ASIC miner will then be awarded the hashed value for its ideal character. A relatively low cost of energy may contribute to a high hash rate. Butterfly Laboratory (BFL)

In 2012 the ASIC miner was released on the basis of its FPGA miner. With a maximum speed of 1,500 GH/s, it was developed under 65nm technology. Avalon et al. suggested a 110-nm TSMC mine producer in 2013. With 60W of fuel, this product can hit 66Gh/s. The success of the ASIC mining business has exponentially been promoted in line with Moore law through the advancement of transistor manufacturing technology. The new Avalon Miner 852 product has been produced using 16-nm technology. With 100W/T energy efficiency it could reach 15TH/s. By 2019, 70% of the Bitmain output was mined on the market. They recommended a miner of 7nm first. With tolerable energy prices, it can hit 40TH/s.

We spoke about four different hardware generation for cloud mining. The initial approach is to CPU-based mining. During PoW consensus the mechanism was completely decentralized. The GPU miner offered high hash rate, though energy intensive. For any mining protocol, the FPGA miner was scalable and streamlined. But the machine capabilities of the FPGA miner were reduced. In order to tackle this problem, a defined, energy-efficient ASIC miner was developed and widely used since 2014. While ASIC miners can be as flexible as FPGA miners, they can bear in mind pace and efficiency. For the FPGA miners, as the consensus mechanism varies, FPGA’s rationale can be reset but the hardware will stay. However, after tape-out, the logic of ASIC cannot be modified. Therefore, it relied on the speed of consensus transition for the life cycle of ASIC miner. Moreover, cloud data centres could not carry out the mining task homogenously.

The ASIC cloud heterogeneity is attributable to various mining activities. The cloud data centre will preserve homology by using the FPGA. Consequently, tradeoffs between the homology and productivity of cloud data centers are worthy of potential research. Works, primarily the hash point of the file online, were discussed. Although this approach could shield the data from external temperatures, the data were not monitored by malicious insiders. To cope with this issue, [15] suggested an on-chain metadata controllable voting scheme. This activity dealt with colluding attacks when modifying the paper. Cloud servers supported consumer file storage as a service in this work.

This effort greatly increased blockchain storage performance. In the meantime, the framework was saved to make the blockchain system stable and controllable by three forms of temper-resistant metadata (e.g., voting record, file history update and modified threat data values. In this method, metadata in chain provide clear and traceable archives of document modifications that were formerly true and invalid. Therefore, users can easily track the modifications to the file. In contrast to the aforementioned works, the system was therefore controllable. Through choosing acceptable on-chain metadata, the tradeoff between storage availability and data protection was optimised. Extensive studies have demonstrated that the technique is secure, controllable, confidential and unforgivable.

4. Results and Discussion
In this section, the outcomes of the planned contractual scheme first are analyzed and the viability of such a scenario is demonstrated. Next the potential deposit value with the 32ETH fixed value is compared and debated. We assume that 10 forms are available for the parameters setting section.
Figure 2 shows incentives comparison. We set the $v(R_i) = R_i$ and $\hat{S}(R_i) = 2R_i$ without lack of generality. In addition, we have a converting function described. We set here $\pm(R_i) = 5R_i$ for additional $\cdot(R_i) = \text{CET H}$, which transforms the incentives into ETH. And in the following measures we present the numerical data. Firstly, the lightning chain serves as a contract designer and describes the various forms and the related time and incentives. The validators are then awarded the contracts and pick one for them. Finally, the beacon chain distributes fees to the validators who do their work on demand.

As seen in the diagram, validators of categories 2, 4, 6 and 8, who have different facilities for the various contracts? A lower deposit must be requested. Since their network benefits are too limited, and the large deposits do not give the validators any economic rewards, the lower expenditures relative to their income are appropriate. For higher-type validators, a number of deposits over 32 ETH should be treated. The fixed deposit 32 ETH cannot have an adequate network safety opportunity, as they can be more rewarding than other lower forms.

It then seems that only where the contract constructed by it proves the limit of the IC, validators are the maximum utilities. We may assume that the scheme provides a degree of security incentives and economic incentives for both sides. In addition, the two maximum benefits are positive and the IR constraint is justifiable. The motivation, investments and the fixed value of Ethereum are measured and analyzed in the following simulation. We set a 32ETH parameter by using the conversion function.

5. Conclusion
In this article, we recommend to reconcile the network and the security advantages and economic rewards of validators on a contract-based basis. We formulate the dilemma and organize the validators according to their outcomes and stakes in different ways according to the contract theory model. It would improve the economic benefit to less effective and stake-based validators and the network’s security encouragement by improving high-performance validator deposits and stakes. The proposed approach would overcome the asymmetry of blockchain characteristics imposed by knowledge. The validators are thus able to accumulate and apply their rewards in conformity with their category. In comparison, while higher level validators are expected to send higher deposits; the validators get more rewards to do so. The findings of the simulation show precisely that the best contract-based strategy will balance the motivation for security and the economic incentive.

References
[1] Nakamoto, S., & Bitcoin, A. (2008). A peer-to-peer electronic cash system. Bitcoin.—URL: https://bitcoin.org/bitcoin.pdf, 4.
[2] Zheng, Z., Xie, S., Dai, H. N., Chen, X., & Wang, H. (2018). Blockchain challenges and opportunities: A survey. International Journal of Web and Grid Services, 14(4), 352-375.
[3] Wang, W., Hoang, D. T., Hu, P., Xiong, Z., Niyato, D., Wang, P., & Kim, D. I. (2019). A survey on consensus mechanisms and mining strategy management in blockchain networks. IEEE Access, 7, 22328-22370.
[4] Ethereum, W. (2014). A secure decentralized generalised transaction ledger [J]. *Ethereum project yellow paper, 151*, 1-32.

[5] Quantum Mechanic. Proof of stake instead of proof of work. https://bitcointalk.org/index.php?topic=27787.0. June 11, 2011.

[6] Bentov, I., Gabizon, A., & Mizrahi, A. (2016, February). Cryptocurrencies without proof of work. In *International conference on financial cryptography and data security* (pp. 142-157). Springer, Berlin, Heidelberg.

[7] Kiayias, A., Russell, A., David, B., & Oliynykov, R. (2017, August). Ouroboros: A provably secure proof-of-stake blockchain protocol. In *Annual International Cryptology Conference* (pp. 357-388). Springer, Cham.

[8] Croman, K., Decker, C., Eyal, I., Gencer, A. E., Juels, A., Kosba, A., & Wattenhofer, R. (2016, February). On scaling decentralized blockchains. In *International conference on financial cryptography and data security* (pp. 106-125). Springer, Berlin, Heidelberg.

[9] Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S., & Saxena, P. (2016, October). A secure sharding protocol for open blockchains. In *Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security* (pp. 17-30).

[10] Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailey, N., Syta, E., & Ford, B. (2017). Omniledger: A secure, scale-out, decentralized ledger. *IACR Cryptology ePrint Archive, 2017*:406.

[11] Buterin, V., & Griffith, V. (2017). Casper the friendly finality gadget. *arXiv preprint arXiv:1710.09437*.

[12] Priyadarshini, J. K., Jayarin, P. J., & Visumathi, J. (2015). Countering Flood Attacks and Routing Misbehavior in DTN. In *Artificial Intelligence and Evolutionary Algorithms in Engineering Systems* (pp. 753-762). Springer, New Delhi.

[13] Suleman Basha, M., Mouleeswaran, S. K., & Rajendra Prasad, K. (2019). Cluster tendency methods for visualizing the data partitions. *Int J Innovative Technol Exploring Eng, 8*(11), 2978-2982.

[14] Gurusubramani, S., Anand, M. S., & Periasamy, J. K. (2018). Probabilistic Broadcast Protocol for Data Gathering using neighbour nodes in Mobile Iot. *Indian Journal of Public Health, 9*(3).

[15] Aruna, R., Subramanian, R., Sengottuvelan, P., & Shanthini, J. (2019). Optimized energy efficient route assigning method using related node discovery algorithm in MANET. *Cluster Computing, 22*(1), 469-479.

[16] Prakash, G., & Sivasankar, P. T. (2012, February). Food Distribution and Management System Using Biometric Technique (Fdms). In *International Conference on Advances in Communication, Network, and Computing* (pp. 444-447). Springer, Berlin, Heidelberg.

[17] Pandey, A., & Prakash, G. (2019). Deduplication with Attribute Based Encryption in E-Health Care Systems. *International Journal of MC Square Scientific Research, 11*(4), 16-24.