Hari, D. P., Hering, T., & König, B. (2014). The photoredox-catalyzed Meerwein addition reaction: intermolecular amino-arylation of alkenes. Angewandte Chemie - International Edition, 53(3), 725-728. https://doi.org/10.1002/anie.201307051

Publisher's PDF, also known as Version of record

License (if available):
CC BY

Link to published version (if available):
10.1002/anie.201307051

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via Wiley at https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201307051 . Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/
The Photoredox-Catalyzed Meerwein Addition Reaction: Intermolecular Amino-Arylation of Alkenes**

Durga Prasad Hari, Thea Hering, and Burkhard König*

Abstract: A variety of amides are efficiently accessible under mild conditions by intermolecular amino-arylation using a photo Meerwein addition with visible light. The reaction has a broad substrate scope, tolerates a large range of functional groups, and was applied to the synthesis of a 3-aryl-3,4-dihydroisoquinoline.

The Meerwein arylation is a valuable synthetic transformation based on aryl radical chemistry.[1] The classic Meerwein arylation has two alternative reaction pathways: a) Meerwein arylation–elimination, in which aryl–alkene cross-coupling products are formed exclusively, and b) Meerwein arylation–addition, in which the aryl radical and a halogen atom add to an olefinic substrate.[1b] The addition of atoms other than halogen has also been reported.[1b] However, photo Meerwein arylation has been applied so far only for the formation of aryl–alkene coupling products and have not been extended to the valuable alkene addition products[2] obtainable under classical Meerwein arylation conditions.[1] The challenge in obtaining the addition product is the competing reaction of the trapping reagent or nucleophile with the diazonium salt leading to undesired products (Scheme 1).[1b]

The Ritter-type amination reaction is a most useful transformation for the formation of C–N bonds and has been used in industrial processes for the synthesis of the anti-HIV drug Crixivan, the alkaloid aristotelone, and amantadine.[2a,4] We utilize the Ritter reaction conditions to trap the carbenium ion, which is generated during the photoredox Meerwein arylation, thus allowing the intermolecular amino-arylation of alkenes mediated by visible light.

Our initial studies began with the attempted reaction of diazonium salt 1a (0.25 mmol) with 5 equiv of styrene 2a using 2 mol % of [Ru(bpy)3]Cl2 in 1.0 mL of CH3CN containing 10 equiv of water under visible-light irradiation for 4 h at 20°C: the desired product 3a was obtained in 42% yield (Table 1, entry 1) along with 1,2-diphenylethanol as a byprod-

![Diagram](image_url)

Scheme 1. Types of photo Meerwein arylation reactions: a) photo Meerwein arylation–elimination, b) photo Meerwein arylation–addition.

Table 1: Optimizing reaction conditions.

Entry	Conditions	Yield [%]
1	[Ru(bpy)3]Cl2 (2 mol %), 2a (5 equiv)	42[a]
2	[Ru(bpy)3]Cl2 (2 mol %), 2a (5 equiv)	75
3	[Ru(bpy)3]Cl2 (2 mol %), 2a (5 equiv)	65[a]
4	[Ru(bpy)3]Cl2 (2 mol %), 2a (5 equiv)	74[a]
5	[Ru(bpy)3]Cl2 (0.5 mol %), 2a (5 equiv)	75
6	[Ru(bpy)3]Cl2 (0.5 mol %), 2a (2 equiv)	88
7	[Ru(bpy)3]Cl2 (0.5 mol %), 2a (1.1 equiv)	72
9	Eosin Y (0.5 mol %), 2a (2 equiv)	38
10	Ir(ppy)3 (0.5 mol %), 2a (2 equiv)	76
11	Rhodamine B (0.5 mol %), 2a (2 equiv)	5
12	Rose bengal (0.5 mol %), 2a (2 equiv)	37
13	C60H6CuF6N2OP3 (0.5 mol %), 2a (2 equiv)	21
14	no photocatalyst, 2a (2 equiv)	5
15	[Ru(bpy)3]Cl2 (0.5 mol %), 2a (2 equiv), no light	0

[a] Yield determined by GC using a calibrated internal standard. [b] The reaction was carried out with 10 equiv of H2O. [c] The reaction was carried out in 0.5 mL of CH3CN. [d] The reaction was carried out in 2.0 mL of CH3CN. Unless otherwise noted, in all other cases the reactions were carried out in 1.0 mL of CH3CN using 1 equiv of H2O.

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201307051.

A variety of amides are efficiently accessible under mild conditions by intermolecular amino-arylation using a photo Meerwein addition with visible light. The reaction has a broad substrate scope, tolerates a large range of functional groups, and was applied to the synthesis of a 3-aryl-3,4-dihydroisoquinoline.

*Corresponding author.

M. Sc. D. Prasad Hari, M. Sc. T. Hering, Prof. Dr. B. König
Department of Chemistry and Pharmacy, Universität Regensburg
Universitätsstrasse 31, 93040 Regensburg (Germany)
E-mail: burkhard.koenig@ur.de

(©) 2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Angew. Chem. Int. Ed. 2014, 53, 725–728

DOI: 10.1002/anie.201307051

Photo Meerwein Addition
of water results in the formation of the 1,2-diphenylethanol (Table 1, entry 1 vs. 2).

After having optimized the reaction conditions we screened different photocatalysts (Table 1, entries 6 and 9–13). [Ru(bpy)]_3Cl_2 was found to be the best one for this transformation. To prove the significance of the photoreaction, we carried out control experiments without the photocatalyst and without light. As expected, we observed little (5% yield) or no product, respectively (Table 1, entries 14 and 15). When we employed dichloromethane as a solvent and 10 equiv of acetonitrile in this photoreaction, product 3a was obtained in 70% yield. This shows that the use of the organic nitrile as a solvent is not required. In addition, we also replaced the photocatalyst and visible light by copper catalysts, which are commonly employed in Meerwein arylations. However, under these conditions the reaction does not proceed showing that the photoredox system is essential.

Furthermore, we investigated the scope of the diazonium salts for this photoreaction and the results are summarized in Table 2. Aryl diazonium salts bearing electron-withdrawing, -neutral, and -donating substituents react smoothly affording the corresponding products in good to excellent yields. Several functional groups including ester, nitro, halide, ether, and alkyl groups are tolerated in the photoreaction. In addition to aryl diazonium salts, heteroaryl diazonium salt 1j was used in this reaction giving the corresponding product 3j in 75% yield (Table 2, entry 10).

Carbon–halogen bonds remain intact during the photoreaction providing access to halogen-substituted amides in a single step (Table 2, entries 5 and 9). The halide functional groups can be used for further transformations in transition-metal-catalyzed or organometallic reactions.

Table 2: Scope of the aryl diazonium salts.

Entry	Substrate	Product	Yield [%]
1	1a	3a	82
2	1b	3b	92
3	1c	3c	70
4	1d	3d	82
5	1e	3e	76
6	1f	3f	70
7	1g	3g	73
8	1h	3h	87
9	1i	3i	50
10	1j	3j	75
11	1k	3k	70

[a] The reaction was performed with 1 (0.25 mmol), styrene 2a (2 equiv), [Ru(bpy)]_3Cl_2 (0.005 equiv), and 1 equiv of water in 1.0 mL of CH_3CN. [b] Yield of isolated product after purification by flash column chromatography using silica gel.

Table 3: Scope of nitriles.

Entry	Nitrile	Product	Yield [%]
1	CH_3CN	3b	92
2	CN	3b	84
3	CN	3m	65
4	CN	3n	71
5	CN	3o	80
6	CN	3p	72
7	CN	3q	60

[a] The reaction was performed with 1b (0.25 mmol), styrene 2a (2 equiv), [Ru(bpy)]_3Cl_2 (0.005 equiv), and 1 equiv of water in 1.0 mL of CH_3CN. [b] Yield of isolated product after purification by flash column chromatography using silica gel.
We then expanded the scope of the reaction by varying the nitrile, which proved to be of general applicability in the photoreaction. The products obtained from the reactions of diazonium salt 1b and styrene 2a with different nitriles are shown in Table 3. The results demonstrate that primary, secondary, and tertiary alkyl nitriles undergo the transformation cleanly providing the corresponding products in good to excellent yields. We were also pleased to find that cyclopropane carbonitrile was tolerated well affording the corresponding product 3m in 65% yield after 4 h of irradiation with blue light at room temperature (Table 3, entry 3).

Having established the scope of both diazonium salts and nitriles in this photoreaction, we investigated various alkenes. The results are summarized in the Table 4. Styrenes with electron-withdrawing, -neutral, and -donating substituents at the para position smoothly give the corresponding products in moderate to excellent yields upon irradiation for 4 h (Table 4, entries 1, 3, 6, and 7). In addition, this photoreaction could also be applied to internal alkenes. The reaction of diazonium salt 1b with trans-β-methylstyrene regioselectively provided the corresponding product 3u in 75% yield (d.r. 65:35).[2d] Notably, trans-stilbene, cinnamic acid ester, and benzalacetone can be used in this multicomponent photoreaction and afford the corresponding products as single regioisomers in moderate yields (Table 4, entries 2, 4, and 8).

We used the photoreaction product 3a for the synthesis of 3-aryl-3,4-dihydroisoquinoline to demonstrate its application and adopted a previously reported method by Larsen and co-workers (Scheme 2).[6] The reaction of diazonium salt 1a with styrene 2a under standard photoreaction conditions provided the corresponding product 3a, which was then further converted into 3-aryl-3,4-dihydroisoquinoline 4 using oxalyl chloride and FeCl₃.[6a]

The suggested mechanism of the photoreaction based on the trapping of intermediates and related literature reports is depicted in Scheme 3.[2d,3a,7] Aryl radical 5 is formed initially by a single-electron transfer from the excited state of the photocatalyst [Ru(bpy)₃]²⁺ to diazonium salt 1a. Addition of aryl radical 5 to alkene 2 yields the corresponding radical intermediate 6, which is then further oxidized to give carbenium intermediate 7.[3e] Finally, the intermediate 7 is attacked by a nitrile (R 3CN), followed by hydrolysis to give the amino-arylated product 3a.[2d] Radical intermediate 6 is either oxidized by the strong oxidant [Ru(bpy)₃]³⁺ to complete the photocatalytic cycle or by the diazonium salt 1a in a chain-transfer mechanism. Radical intermediates 5 and 6 were trapped with TEMPO, which supports radical intermediates during the photoreaction.[3c–e,5] In addition, the carbenium ion intermediate was also trapped with water and methanol; these results indicate the formation of intermediate 7 in the reaction.[5]

In conclusion, the reported protocol allows the formation of C(sp³)–N bonds by an intermolecular amino-arylation of alkenes mediated by visible light. It is, to the best of our knowledge, the first example of a photocatalytic Meerwein

Table 4: Scope of alkenes.

Entry	R¹	R²	Product	Yield [%]
1	H	H	3b	92
2	Ph	H	3r	53
3	H	Cl	3m	87
4	COOMe	H	3l	20
5	Me	H	3u	75*[c]
6	H	COOH	3v	97
7	H	Me	3w	55
8	COMe	H	3x	43

[a] The reaction was performed with 1b (0.25 mmol), alkene 2 (2 equiv), [Ru(bpy)₃]Cl₂ (0.005 equiv) and 1 equiv of water in 1.0 mL of CH₃CN.
[b] Yield of isolated product after purification by flash column chromatography using silica gel. [c] d.r. (65:35).
addition reaction. The multicomponent reaction gives efficient access to different types of amides under mild reaction conditions and tolerates a broad range of functional groups. The substrate scope of the diazonium salts, nitriles, and alkynes is broad. Many products of the photoreaction are not easily accessible by other methods and have, due to the presence of halide functional groups, the potential for further synthetic elaboration. For example, one photoreaction product was used for the synthesis of a 3-aryl-3,4-dihydroisoquinoline.

Proposed mechanism for the photo Meerwein addition reaction.

C23 2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Angew. Chem. Int. Ed. 2013, 52, 4734–4743; b) D. P. Hari, T. Hering, B. König, Chin. Oggii 2013, 31, 59–62; c) D. P. Hari, T. Hering, B. König, Org. Lett. 2012, 14, 5334–5337; d) D. P. Hari, P. Schroll, B. König, J. Am. Chem. Soc. 2012, 134, 2958–2961; e) P. Schroll, D. P. Hari, B. König, ChemistryOpen 2012, 1, 130–133; f) T. Hering, D. P. Hari, B. König, J. Org. Chem. 2012, 77, 10347–10352; g) F. Mo, G. Dong, Y. Zhang, J. Wang, Org. Biomol. Chem. 2013, 11, 1582–1593; h) D. Kalyani, K. B. McMurtrey, S. R. Neufeldt, M. S. Sanford, J. Am. Chem. Soc. 2011, 133, 18566–18569.

[4] a) J. J. Ritter, P. P. Minieri, J. Am. Chem. Soc. 1948, 70, 4045–4048; b) J. J. Ritter, J. Kaisl, J. Am. Chem. Soc. 1948, 70, 4048–4050; c) J. Clayden, N. Greeves, S. Warren, P. Wothers, Organic Chemistry, Oxford Press, New York, 2011; d) R. Vardanyan, V. J. Hruby, Synthesis of Essential Drugs, Elsevier, Amsterdam, 2006; e) L. Kurti, B. Czako, Strategic Applications of Named Reactions in Organic Synthesis, Elsevier/Academic Press, Burlington, 2005; f) M. Y. Lebedev, M. B. Erman, Tetrahedron Lett. 2002, 43, 1397–1399; g) H. Fernholz, H. J. Schmidt, Angew. Chem. 1969, 81, 496–496; Angew. Chem. Int. Ed. Engl. 1969, 8, 521–521; h) L. I. Krimen, D. J. Cota, Organic Reactions, Wiley, Hoboken, 2004; i) A. García Martínez, R. Martínez Alvarez, E. Teso Vilà, A. García Fraile, M. Hanack, L. R. Subramanian, Tetrahedron Lett. 1989, 30, 581–582.

[5] See the Supporting Information for more details.

[6] a) R. D. Larsen, R. A. Reamer, E. G. Corley, P. Davis, E. J. J. Schroll, D. P. Hari, T. Hering, B. König, Chin. Oggii 2013, 31, 59–62; c) D. P. Hari, T. Hering, B. König, Org. Lett. 2012, 14, 5334–5337; d) D. P. Hari, P. Schroll, B. König, J. Am. Chem. Soc. 2012, 134, 2958–2961; e) P. Schroll, D. P. Hari, B. König, ChemistryOpen 2012, 1, 130–133; f) T. Hering, D. P. Hari, B. König, J. Org. Chem. 2012, 77, 10347–10352; g) F. Mo, G. Dong, Y. Zhang, J. Wang, Org. Biomol. Chem. 2013, 11, 1582–1593; h) D. Kalyani, K. B. McMurtrey, S. R. Neufeldt, M. S. Sanford, J. Am. Chem. Soc. 2011, 133, 18566–18569.

Keywords: amino-arylation · aryl radicals · Meerwein addition · photocatalysis · visible light