Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Laboratory evaluation of SARS-CoV-2 in the COVID-19 pandemic

Bijal A. Parikh*, Christopher W. Farnsworth

Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, United States

Keywords: Molecular diagnostics, Serology, Clinical sensitivity, Analytical sensitivity, SARS-CoV-2, COVID-19

Abstract

Laboratory evaluation of SARS-CoV-2 involves the detection of viral nucleic acid, viral protein antigens, and the antibody response. Molecular detection of SARS-CoV-2 is the only diagnostic test currently available in acutely or recently infected individuals. In contrast, serological testing is typically performed once viral RNA has been cleared and symptoms have resolved. This leads to some confusion among clinicians as to which test to order and when each is appropriate. While SARS-CoV-2 assays can suffer from poor sensitivity, all FDA authorized assays to date are intended to be qualitative. Serological tests have multiple assay formats, detect various classes of immunoglobulins, and have a distinct role in seroprevalence studies; however, the association with long-term protection remains unclear. Both molecular and serological testing for SARS-CoV-2 have complementary roles in patient management, and we highlight the challenges faced by clinicians and laboratorians alike in the evaluation and interpretation of the currently available laboratory assays.

© 2021 Elsevier Ltd. All rights reserved.
Molecular diagnostics for SARS-CoV-2

Background

Coronavirus disease 2019 or COVID-19 is caused by the SARS-CoV-2 virus. SARS-CoV-2 is an enveloped virus with a single-stranded RNA genome belonging to the betacoronavirus genera [1]. Other members of this genera include Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus (SARS-CoV, 2002-3 strain), and the seasonal coronavirus strains OC43 and HKU1 (Fig. 1). Two other seasonal viruses, 229E and NL63, are members of the alphacoronavirus genera and together these two genera comprise all of the coronaviruses known to infect humans. The distinction between SARS-CoV-2 and the seasonal coronaviruses is important in terms of diagnostics for several reasons. First, since these viruses are highly related, molecular targets need to differentiate between the various pathogens. Second, since antibody production is a hallmark of an appropriate immune response following infection, serological testing also needs to distinguish between commonly circulating seasonal strains versus the pandemic strain. Interestingly, many of the molecular diagnostic assays available today contain targets that do not distinguish between SARS-CoV-2, MERS-CoV, and SARS-CoV; however, with the understanding that SARS-CoV has been eradicated [2] and the outbreaks of MERS-CoV have been geographically and clinically limited [3], these assays are effectively only identifying SARS-CoV-2.

Coronaviruses are members of the Order Nidovirales, which comprise the longest single-stranded RNA molecule known for viral pathogens, averaging anywhere from 26 to 33 kilobases in length [4]. A schematic of the genome (Fig. 2) demonstrates that over 70% of viral nucleic acid is dedicated to the gene ORF1ab, which encodes the essential replication-transcription complex [5]. The RNA-dependent RNA polymerase (RDRP) derived from ORF1ab has high fidelity [6], meaning that the transcriptional error rate is below what is typically observed in RNA viruses, a feature likely necessary to maintain such a long genome, while at the same time reducing the chance for rapid acquisition of mutations.

Molecular testing and the FDA emergency use authorization

In response to a variety of external pressures and the impending community-wide spread of SARS-CoV-2, on February 29, 2020, the FDA authorized local clinical and commercial laboratories to develop and use qualified molecular methods for the diagnostic detection of SARS-CoV-2 [7]. The FDA authorization allowed any clinical or commercial laboratory operating under the Clinical Laboratory Improvements Amendment of 1988 (CLIA ’88) to develop and provide clinical testing following review by

Fig. 1. SARS-CoV-2 belongs to the betacoronavirus genus. The relationship between other human pathogenic coronaviruses is shown. These similarities highlight the need for specific molecular and serologic detection assays.
the FDA. This review process served to grant the applicant with an Emergency Use Authorization or EUA. The first EUA was issued on Feb 4, 2020 to the CDC and was accessible to clinical laboratories after February 29, 2020.

The EUA process prescribes exactly how an assay must be performed in order to maintain regulatory compliance [8]. In essence, any deviation, including use of alternate thermal cyclers or extractors, negated the authority granted by the EUA. However, provisions were made to be able to “bridge” to related instrumentation if a laboratory could prove through paired sample analysis that the accuracy was not negatively affected. Furthermore, before any laboratory could issue positive or negative results, the first five patients with each result had to be independently verified by either the CDC or the local state laboratory. Until that time, patient results had to report out as “presumptive” positive or negative results. The basis for this requirement stems from the lack of actual patient samples to validate assay performance before the initial surge in COVID-19 patients. Many laboratories simply relied on SARS-CoV-2 RNA “spike-in” experiments, as cultured virus was available only to laboratories equipped with Biosafety Level 3 containment capabilities.

Once the EUA process allowed the entry of more commercial laboratories to clinical testing, a number of assays soon became widely available. The first commercial laboratory with an FDA-approved EUA Kit was ThermoFisher’s TaqPath COVID-19 Combo Kit on March 13, 2020. While like the CDC method, this kit required specific instrumentation for extraction and analysis, it broadened the number of laboratories able to participate in testing. This was followed quickly by another manual method, the Quidel Lyra SARS CoV-2 assay on March 17, 2020. Meanwhile, laboratories around the country were developing their own workflows that were not intended to be marketed as test kits for distribution. In March 2020, Labcorp, Quest, the Wadsworth Center, Avellino Labs, and the Yale Clinical Virology Lab were among the first to successfully earn EUA status for their in-house testing. The first two sample-to-answer (no independent extractions required) tests were the Panther Fusion SARS-CoV-2 assay by Hologic and the Abbott RealTime SARS-CoV-2 EUA test, by Abbott Molecular. Finally, testing that could be performed outside CLIA-accredited laboratories in the point-of-care (POC) setting began to appear, further increasing access to diagnostic testing. The first notable entry into the field was Abbott’s ID Now. As all of these testing options began to exponentially increase, clinicians were beginning to feel pressure to provide testing to an increasing number of patients who met the epidemiological criteria. However, understanding the challenges and limitations of molecular testing was underestimated by ordering physicians and the clinical laboratory alike.

Molecular detection of SARS-CoV-2

The molecular detection of SARS-CoV-2 requires an initial conversion of RNA into DNA as the substrate for the polymerase chain reaction (PCR)—dependent amplification. A reverse transcriptase or RT enzyme catalyzes this step prior to the PCR. Following the RT step, a fluorophore-dependent system (i.e., Taqman, Molecular Beacons, Scorpion probes, etc.) was used to determine whether viral nucleic acid is present. The strategy initially employed by the CDC assay was to target three different regions of the N gene along with a region of the human transcriptome, specifically the RNase P gene. This latter
gene served as a specimen adequacy control (SAC), meaning that if RNase P was not detected, either the PCR was inhibited by some unknown substance within the patient's sample or that the patient was inadequately sampled. As a result of the limited fluorophores that can be multiplexed, many tests have been developed that replace the SAC in favor of an extraction or processing control (PRC). Specifically, a known (nonhuman) RNA template is spiked into the patient sample prior to extraction and then detected with a unique molecular probe. In all molecular platforms, SARS-CoV-2 (or a control target) is detected if the cycle threshold or CT is crossed prior to the completion of 40 PCR cycles. However, when two targets are used to diagnose SARS-CoV-2, specific instructions must indicate how the discrepancy should be interpreted, as described below. Importantly, all EUA assays for the diagnosis of SARS-CoV-2 are independent of the actual CT value and more simply qualitative in nature. While a great deal of attention has been placed upon understanding the details of molecular detection methods, diagnosis of SARS-CoV-2 RNA is highly comparable to many of the available assays for other clinically important respiratory pathogens.

Targets detected by molecular assays

The first assays with EUA targeted a limited subset of genes on SARS-CoV-2, as specificity from other coronaviruses was important to rule in or out infection with the pandemic strain. The World Health Organization (WHO) and countries outside the US also maintained a list of target sites and some clinical and commercial laboratories adopted these target sequences [9]. However, due to intellectual property protections, the exact target sequence of many commercial assays is currently unknown. A list of SARS-CoV-2 genes targeted by EUA assays is shown in Fig. 2. Notably, the most commonly targeted gene is the N gene followed by the long ORF1ab gene. The differences in genes targeted and the region of those genes targeted among the individual assays complicate direct comparison of their performance. PCR efficiency, which is determined by the logarithmic increase in amplified products (amplicons), can markedly differ even within a single assay with two unique targets. Often, manufacturers will include highly sensitive gene targets that are less specific for SARS-CoV-2 (and can amplify SARS-CoV and MERS-CoV) along with highly specific but often less sensitive targets, however, as described earlier, given the lack of circulating SARS-CoV and MERS-CoV, during the current pandemic, a presumptive positive is clinically equivalent to a positive result.

Point-of-care molecular testing options

Rheumatologists in private practice have a variety of testing options to select from if they suspect their patient may have COVID-19. Testing that can be performed at the bedside is often preferred for a variety of reasons, including patient satisfaction, rapid turnaround time, and immediate guidance for clinical management. This type of testing parallels the efforts previously achieved with rapid Group A strep and Influenza testing, performed within minutes of sample collection. One of the first offerings in such POC testing included the EUA-approved Abbott ID Now and Cepheid GeneXpert tests for SARS-CoV-2. A laboratorian's visceral reaction to POC testing is often supported by difficulties encountered with the safe and effective deployment of testing outside a controlled laboratory environment. For molecular testing, these issues are “amplified” as even a slight lapse in strict controls can lead to disaster. The foremost issue is environmental contamination and the adherence to necessary mitigation strategies. The Abbot ID Now assay is an open system where the nasopharyngeal (NP) swab is placed directly into the instrument, mixed vigorously, and nucleic acid amplified. The vigorous mixing has a risk of generating aerosols that can lead to contamination of work surfaces, personnel, or the instrument itself. A dedicated biosafety cabinet can be used to minimize these risks, however, this is not common equipment found in physician offices. With these issues aside, the next obstacle is receiving a steady stream of testing equipment and reagents. The high demand for such testing limited and continues to limit access to POC instrumentation. Finally, the sensitivity of the POC assays has been scrutinized and widely debated, especially for the Abbott ID Now [10–13]. If used correctly, though, the sensitivity of the Abbott ID Now was still one of the poorest for all devices on the market with FDA approval (Table 1). For patients with low viral loads that lack the potential to mount sufficient protective responses (e.g., immunocompromised [14]) or those that can potentially spread an undiagnosed
Table 1
EUA assay sensitivity and instructions for SARS-CoV-2 molecular assays.

Company	Test Name	LOD copies/ mL	copies/ reaction	GE/ml TCID₅₀/ml	FDA LOD (NDU/mL)	IFU
Centers for Disease Control and Prevention's (CDC)	CDC 2019-Novel Coronavirus (2019-nCoV) Real-Time RT-PCR Diagnostic Panel (CDC)	3.2	18,000		[link](https://www.fda.gov/media/134922/download)	
Wadsworth Center, New York State Department of Public Health's (CDC)	New York SARS-CoV-2 Real-time Reverse Transcriptase (RT)-PCR Diagnostic Panel	25			[link](https://www.fda.gov/media/135847/download)	
Thermo Fisher Scientific, Inc. Laboratory Corporation of America (LabCorp)	TaqPath COVID-19 Combo Kit COVID-19 RT-PCR test	10	6250		[link](https://www.fda.gov/media/136112/download)	
Quidel Corporation	Lyra SARS-CoV-2 Assay	80	6000		[link](https://www.fda.gov/media/136820/download)	
Quest Diagnostics Infection Disease, Inc.	Quest SARS-CoV-2 rRT-PCR test	136	1800		[link](https://www.fda.gov/media/136231/download)	
Abbott Molecular	Abbott RealTime SARS-CoV-2 assay	100	5400		[link](https://www.molecular.abbott/sal/9N77-095_SARS-CoV-2_US_EUA_Amp_Pl.pdf)	
Hologic, Inc.	Panther Fusion SARS-CoV-2 assay	0.01	600		[link](https://www.fda.gov/media/136156/download)	
GenMark Diagnostics, Inc.	ePlex SARS-CoV-2 assay	10,000			[link](https://www.fda.gov/media/136282/download)	
DiaSorin Molecular LLC	Simplexa COVID-19 Direct assay	242	6000		[link](https://www.fda.gov/media/136286/download)	
Cepheid	Xpert Xpress SARS-CoV-2 test	250	5400		[link](https://www.fda.gov/media/136314/download)	
Mesa Biotech Inc.	AccuSars SARS-CoV-2 test	100			[link](https://www.fda.gov/media/136355/download)	
BioFire Defense, LLC	BioFire COVID-19 test	330	5400		[link](https://www.fda.gov/media/136353/download)	
PerkinElmer, Inc.	PerkinElmer New Coronavirus Nucleic Acid Detection Kit AvellinoCoV2 test	9.3	180		[link](https://www.fda.gov/media/136410/download)	
Avellino Lab USA, Inc.	cobas SARS-CoV-2	55,000	18,000		[link](https://www.fda.gov/media/136453/download)	
Roche Molecular Systems, Inc. (RMS)	ID Now COVID-19	125	300,000		[link](https://www.fda.gov/media/136049/download)	
Abbott Diagnostics Scarborough, Inc.	NeuMoDx SARS-CoV-2 Assay	150			[link](https://www.fda.gov/media/136525/download)	
NeuMoDx Molecular, Inc.	SARS-CoV-2 PCR test	2000			[link](https://www.fda.gov/media/136565/download)	
Yale New Haven Hospital, Clinical Virology Laboratory	COV-19 IDx assay	850			[link](https://www.fda.gov/media/136621/download)	

(continued on next page)
Company	Test Name	LOD copies/mL	LOD copies/reaction	LOD GE/mL	LOD TCID₅₀/mL	FDA LOD (NDU/mL)	Reference
Becton, Dickinson & Company (BD), BioGx	BioGX SARS-CoV-2 Reagents for BD MAX System SARS-Cov-2 Assay	100,000	40	1800	180,000	https://www.fda.gov/media/136653/download	[link](https://www.fda.gov/media/136653/download)
Diagnostic Molecular Laboratory – Northwestern Medicine							
Infectious Disease Diagnostics Laboratory - Children's Hospital of Philadelphia	SARS-CoV-2 RT-PCR test	20,000				https://www.fda.gov/media/136656/download	[link](https://www.fda.gov/media/136656/download)
Luminescence Corporation Co-Diagnostics, Inc.	Aries SARS-CoV-2 Assay	330			180,000	https://www.fda.gov/media/136693/download	[link](https://www.fda.gov/media/136693/download)
Massachutes General Hospital ScientCell Research Laboratories	MGH COVID-19 qPCR assay	5000				https://www.fda.gov/media/136691/download	[link](https://www.fda.gov/media/136691/download)
Viracor Eurofins Clinical Diagnostics	Gnomegen COVID-19 RT-Digital PCR Detection Kit	8				https://www.fda.gov/media/136738/download	[link](https://www.fda.gov/media/136738/download)
Gnomegen LLC							
InBios International, Inc Becton, Dickinson & Company							
DiaCarta, Inc	Smart Detect SARS-CoV-2 rRT-PCR Kit BD SARS-CoV-2 Reagents for BD MAX System	820			40	5400	https://www.fda.gov/media/136816/download
Stanford Health Care Clinical Virology Laboratory	QuantiVirus SARS-CoV-2 test	100				600	https://www.fda.gov/media/136809/download
Ati La BioSystems, Inc. Orig3n, Inc.							
University of North Carolina Medical Center Pathology/ Laboratory Medicine Lab of Baptist Hospital Miami	UNC Health SARS-CoV-2 real-time RT-PCR test COVID-19 RT-PCR Test	17.6			18,000	https://www.fda.gov/media/136944/download	[link](https://www.fda.gov/media/136944/download)

Table 1 (continued)
Company	Test Name	LOD copies/mL	copies/reaction	IFU GE/mL	TCID₅₀/mL	FDA LOD (NDU/mL)	FDA LOD Link
Integrity Laboratories	SARS-CoV-2 Assay	10,000					https://www.fda.gov/media/136942/download
Infectious Diseases Diagnostics Laboratory	Childrens-Altona-SARS-CoV-2 Assay	2300		18,000			https://www.fda.gov/media/136971/download
Boston Children’s Hospital							
Exact Sciences Laboratories	SARS-CoV-2 Test	125		6030			https://www.fda.gov/media/137036/download
Hackensack University Medical Center (HUMC)	CIDI Enhanced COVID-19 Test	4000		5400			https://www.fda.gov/media/137076/download
Molecular Pathology Laboratory							
CirrusDx Laboratories	CirrusDx SARS-CoV-2 Assay	78		1800			https://www.fda.gov/media/137034/download
Maccura Biotechnology (USA) LLC	SARS-CoV-2 Fluorescent PCR Kit	1000					https://www.fda.gov/media/137026/download
KorvaLabs Inc.	Curative-Korva SARS-CoV-2 Assay	200					https://www.fda.gov/media/137089/download
GenoSensor, LLC	GS COVID-19 RT-PCR Kit	1000					https://www.fda.gov/media/137093/download
Mayo Clinic Laboratories, Rochester, MN	SARS-CoV-2 Molecular Detection Assay	156					https://www.fda.gov/media/137163/download
Altona Diagnostics GmbH	RealStar SARS-CoV02 RT-PCR Kits			0.1			
Diatherix Eurofins Laboratory	SARS-CoV-2 PCR Test	1000		180,000			https://www.fda.gov/media/137255/download
Southwest Regional PCR Laboratory LLC, dba MicroGen DX	COVID-19 Key	500					https://www.fda.gov/media/137370/download
AIT Laboratories	SARS-CoV-2 Assay	1000					https://www.fda.gov/media/137374/download
Ultimate Dx Laboratory	UDX SARS-CoV-2 Molecular Assay	100					https://www.fda.gov/media/137372/download
Nationwide Children’s Hospital	SARS-CoV-2 Assay			12.5			https://www.fda.gov/media/137423/download
Biocerna	SARS-CoV-2 Test	250					https://www.fda.gov/media/137450/download
Rheonix, Inc.	Rheonix COVID-19 MDx Assay	625		1800			https://www.fda.gov/media/137489/download
Altru Diagnostics, Inc.	Altru Dx SARS-CoV-2 RT-PCR assay	625					https://www.fda.gov/media/137546/download
BioFire Diagnostics, LLC	BioFire Respiratory Panel 2.1	300					https://www.fda.gov/media/137583/download
Bio-Rad Laboratories, Inc.	Bio-Rad SARS CoV-2-ddPCR Test	625					https://www.fda.gov/media/137579/download
OPTI Medical Systems, Inc.	OPTI SARS-CoV-2 RT PCR Test	900					https://www.fda.gov/media/137739/download
Sherlock BioSciences, Inc.	Sherlock CRISPR SARS-CoV-2 Kit	6750		6000			https://www.fda.gov/media/137746/download

(continued on next page)
Company	Test Name	LOD	copies/ml	copies/reaction	GE/ml	TCID$_{50}$/ml	FDA LOD (NDU/mL)
Biocollections Worldwide, Inc.	Biocollections Worldwide SARS-CoV-2 Assay	1000					https://www.fda.gov/media/137897/download
Zymo Research Corporation	Quick SARS-CoV-2 rRT-PCR Kit	83					https://www.fda.gov/media/137780/download
Rutgers Clinical Genomics Laboratory at UCD	Rutgers Clinical Genomics Laboratory TaqPath SARS-CoV-2-Assay	200					https://www.fda.gov/media/137782/download
Gnomegen LLC	Gnomegen COVID-19-RT-qPCR Detection Kit	10					https://www.fda.gov/media/137985/download
Abbott Molecular Inc.	Alinity m SARS-CoV-2 assay	1000					https://www.fda.gov/media/137979/download
Columbia University Laboratory of Personalized Genomic Medicine	Triplex C1-CoV-1 rRT-PCR Test	280					https://www.fda.gov/media/137983/download
Applied DNA Sciences, Inc.	Linea COVID-19 Assay Kit	1250					https://www.fda.gov/media/138059/download
Fulgent Therapeutics LLC	Fulgent COVID-19 by RT-PCR Test	5000					https://www.fda.gov/media/138150/download
Color Genomics, Inc.	Color Genomics SARS-CoV-2 RT-LAMP Diagnostic Assay	750					https://www.fda.gov/media/138249/download
Hologic, Inc	Aptima SARS-CoV-2 assay	0.01					https://www.fda.gov/media/138178/download
Assurance	ASSURANCE SARS-CoV-2 PANEL	37					https://www.fda.gov/media/138056/download
Fulgent Therapeutics LLC	Fulgent COVID-19 by RT-PCR Test	5000					https://www.fda.gov/media/138154/download
Quidel Corporation	Lyra Direct SARS-CoV-2 Assay	34,000					https://www.fda.gov/media/138178/download
Seassen Biomaterials, Inc.	AQ-TOP COVID-19 Rapid Detection Kit	7000					https://www.fda.gov/media/138307/download
BioCore Co., Ltd.	Biocore 2019-nCoV Real Time PCR Kit	500					https://www.fda.gov/media/138290/download
P23 Labs, LLC.	P23 Labs TaqPath SARS-CoV-2 Assay	10,000					https://www.fda.gov/media/138297/download
Avera Institute for Human Genetics	Avera Institute for Human Genetics SARS-CoV-2 Assay	1600					https://www.fda.gov/media/138332/download
Exact Sciences Laboratories	Exact Sciences SARS-CoV-2 (N gene detection) Test	2600			800		https://www.fda.gov/media/138328/download
Company	Test Name	LOD copies/mL	copies/reaction	GE/mL	TCID_{50}/mL	FDA LOD (NDU/mL)	
--	--	---------------	----------------	-------	-------------	-----------------	
Express Gene LLC (dba Molecular Diagnostics Laboratory)	Express Gene 2019-nCoV RT-PCR Diagnostic Panel					https://www.fda.gov/media/138330/download	
dba SpectronRx	Hymon SARS-CoV-2 Test Kit	1200				https://www.fda.gov/media/138345/download	
PrivaPath Diagnostics, Inc.	LetsGetChecked Coronavirus (COVID-19) Test	0.01	7200			https://www.fda.gov/media/138406/download	
Aspirus Reference Laboratory	Aspirus SARS-CoV-2 rRT Assay	500				https://www.fda.gov/media/138526/download	
Gravity Diagnostics, LLC	Gravity Diagnostics COVID-19 19 Assay	2400	18,000			https://www.fda.gov/media/138530/download	
CSI Laboratories	CSI SARS-CoV-2 RT PCR Test	6250				https://www.fda.gov/media/138528/download	
Nebraska Medicine Clinical Laboratory	NEcov19 RT-PCR Assay	1000				https://www.fda.gov/media/138625/download	
Phosphorus Diagnostics LLC	Phosphorus COVID-19 RT-qPCR Test	5000				https://www.fda.gov/media/138654/download	
Euroimmun US Inc.	EURORelative SARS-CoV-2 Assay	150	1800			https://www.fda.gov/media/138761/download	
ChromaCode Inc.	HDPCR SARS-CoV-2 Assay	1000	5400			https://www.fda.gov/media/138786/download	
Illumina, Inc.	Illumina COVIDSeq Test	1000				https://www.fda.gov/media/138776/download	
Warrior Diagnostics, Inc.	Warrior COVID19 Test Diagnostics SARS-CoV-2 Assay	150,000				https://www.fda.gov/media/138790/download	
Cue Health Inc.	Cue COVID-19 Test	1300				https://www.fda.gov/media/138826/download	
Tide Laboratories, LLC	DTPM COVID-19 RT-PCR Test	22,000				https://www.fda.gov/media/138818/download	
Corneum Laboratory Services	Corneum SARS-CoV-2 Assay	2000				https://www.fda.gov/media/138934/download	
RTA Laboratories Biological Products Pharmaceutical and Machinery Industry	Diagnostic SARS-CoV-2 Real-Time PCR Kit	38				https://www.fda.gov/media/138928/download	
Kaiser Permanente Mid-Atlantic States	KPMAS COVID-19 Test					https://www.fda.gov/media/139067/download	
Applied BioCode, Inc.	BioCode SARS-CoV-2 Assay	0.0172	5400			https://www.fda.gov/media/139049/download	
Omnipathology Solutions Medical Corporation	Omni COVID-19 Assay by RT-PCR	1230				https://www.fda.gov/media/139292/download	
The Ohio State University Wexner Medical Center	OSUWMC COVID-19 19 RT-PCR test	250				https://www.fda.gov/media/139288/download	
University of Alabama at Birmingham	FRL SARS CoV-2 Test	125				https://www.fda.gov/media/139437/download	

(continued on next page)
Company	Test Name	LOD (copies/mL)	copies/reaction	GE/mL	TCID₅₀/mL	FDA LOD (NDU/mL)	
Fungal Reference Lab							
HealthQuest Esoterics	HealthQuest Esoterics TaqPath SARS-CoV-2 Assay	20				18,000	
University of Texas MD Anderson Cancer Center, Molecular Diagnostics Laboratory	MD Anderson High-throughput SARS-CoV-2 RT-PCR Assay	1670				[Download](https://www.fda.gov/media/139512/download)	
Diagnostic Solutions Laboratory, LLC	DSL COVID-19 Assay	10				[Download](https://www.fda.gov/media/139516/download)	
PreciGenome LLC	FastPlex Triplex SARS-CoV-2 detection kit (RT-Digital PCR)	571.4				[Download](https://www.fda.gov/media/139523/download)	
Inform Diagnostics, Inc.	Inform Diagnostics SARS-CoV-2 RT-PCR Assay	20,000				[Download](https://www.fda.gov/media/139572/download)	
Acupath Laboratories, Inc.	Acupath COVID-19 Real-Time (RT-PCR) Assay	25,000			18,000	[Download](https://www.fda.gov/media/139672/download)	
LifeHope Labs	LifeHope 2019-nCoV Real-Time RT-PCR Diagnostic Panel	2500				[Download](https://www.fda.gov/media/139623/download)	
Psomagen, Inc.	Psoma COVID-19 RT Test	1000			18,000	[Download](https://www.fda.gov/media/139676/download)	
CENTOGENE US, LLC	CentoFast-SARS-CoV-2 RT-PCR Assay	5000				[Download](https://www.fda.gov/media/139725/download)	
Laboratorio Clinico Toledo	Laboratorio Clinico Toledo SARS-CoV-2 Assay	203				[Download](https://www.fda.gov/media/139788/download)	
Enzo Life Sciences, Inc.	AMPiPROBE SARS-CoV-2 Test System	280			18,000	[Download](https://www.fda.gov/media/139828/download)	
Access Bio, Inc.	CareStart COVID-19 MDx RT-PCR	10			5400	[Download](https://www.fda.gov/media/139832/download)	
Gene By Gene	Gene By Gene SARS-CoV-2 Detection Test	6250				[Download](https://www.fda.gov/media/139836/download)	
Clinical Research Sequencing Platform (CRSP), LLC at the Broad Institute of MIT and Harvard	CRSP SARS-CoV-2 Real-time Reverse Transcriptase (RT)-PCR Diagnostic Assay	4000				[Download](https://www.fda.gov/media/139858/download)	
UCSF Health Clinical Laboratories, UCSF Clinical Labs at China Basin	SARS-CoV-2 RNA DETECTR Assay	20,000				[Download](https://www.fda.gov/media/139937/download)	
Boston Medical Center	BMC-CReM COVID-19 Test	10,000			5000	[Download](https://www.fda.gov/media/140007/download)	
Company	Test Name	LOD	copies/mL	copies/reaction	GE/mL	TCID₅₀/mL	FDA LOD (NDU/mL)
---------	-----------	-----	-----------	-----------------	-------	---------------------	------------------
Compass Laboratory Services, LLC	Compass Laboratory Services SARS-CoV2 Assay	250	5400				
Boston Heart Diagnostics	Boston Heart COVID-19 RT-PCR Test	15,000					
Access Genetics, LLC (dba Helix)	OraRisk COVID-19 RT-PCR Test	1000	1800				
Eli Lilly and Company	Lilly SARS-CoV-2 Assay	1000	18,000				
Sandia National Laboratories	SNL-NM 2019 nCoV Real-Time RT-PCR Diagnostic Assay CRL Rapid Response	250					
Clinical Reference Laboratory, Inc.	UCSD RC SARS-CoV-2 Assay	46					
Cleveland Clinic Robert J. Tomsich Pathology and Laboratory Medicine Institute	Cleveland Clinic SARS-CoV-2 Assay	10,000					
Ethos Laboratories	Ethos Laboratories SARS-CoV-2 MALDI-TOF Assay	1	5400				
ISPM Labs, LLC dba Capstone Healthcare	Genus SARS-CoV-2 Assay	40,000					
Poplar Healthcare	Poplar SARS-CoV-2 TMA Pooling assay	0.01					
Wren Laboratories LLC (dba Helix)	Wren Laboratories COVID-19 PCR Test	15,000					
Solaris Diagnostics	Solaris Multiplex SARS-CoV-2 Assay	10,000					
Biome, Inc.	Biome SARS-CoV-2 Real-Time RT-PCR Test	1800					
Pro-Lab Diagnostics	Pro-AmpRT SARS-CoV-2 Test	125					

(continued on next page)
infection to others, such testing may be inadequate. The challenge, of course, is to be able to predict which patients these are. While such low sensitivity has limited implementation of these assays in the hospital setting, it is clear that private practice groups may not be aware of these shortcomings or choose to simply ignore them as often any test is better than no test.

Sensitivity of molecular assays

Until very recently, it was unclear how individual assays performed against each other in terms of sensitivity. Case reports emerged early regarding specific platforms but a systematic analysis has been only recently performed [15]. For this comparison, the US FDA mailed out SARS-CoV-2 reference panels to laboratories who had been approved for clinical testing through the EUA process. As shown in Table 1, stated limits of detection (LODs) found in package inserts ranged in terms of units (copies/mL, copies/reaction, genome equivalents (GE)/mL, or TCID_{50}/mL) and value, while the FDA-confirmed LODs provided the first indication of relative sensitivity. The implications for these studies are still not fully understood and whether manufacturers or laboratories will be required to cease testing because of lower sensitivity is also unclear. The clinician is generally unaware of the multiple analytical platforms.

Table 1 (continued)

Company	Test Name	LOD	IFU
Yale School of Public Health, Department of Epidemiology of Microbial Diseases	SalivaDirect	6000	https://www.fda.gov/media/141192/download
DxTerity Diagnostics, Inc.	DxTerity SARS-CoV-2 RT-PCR Test Guardiant-19	50	https://www.fda.gov/media/141491/download
Texas Department of State Health Services, Laboratory Services Section	Texas Department of State Health Services (DSHS) SARS-CoV-2 Assay	20	https://www.fda.gov/media/141487/download
Fluidigm Corporation	Advanta Dx SARS-CoV-2 RT-PCR Assay	6250	https://www.fda.gov/media/141541/download
Cuur Diagnostics	Cuur Diagnostics SARS-CoV-2 Molecular Assay	25,000	https://www.fda.gov/media/141627/download
Patients Choice Laboratories, LLC	PCL SARS-CoV-2 Real-Time RT-PCR Assay	100,000	5400 https://www.fda.gov/media/141665/download
BayCare Laboratories, LLC	BayCare SARS-CoV-2 RT PCR Assay	46	https://www.fda.gov/media/141769/download
MiraDx	MiraDx SARS-CoV-2 RT-PCR assay	4000	https://www.fda.gov/media/141760/download
Mammoth Biosciences, Inc.	SARS-CoV-2 DETECTR Reagent Kit	20,000	https://www.fda.gov/media/141765/download
T2 Biosystems, Inc.	T2SARS-CoV-2 Panel	2000	https://www.fda.gov/media/141755/download
Detectachem Inc.	MobileDetect Bio BCC19 (MD-Bio BCC19) Test Kit	75,000	https://www.fda.gov/media/141791/download

LOD = Limit of Detection; GE = Genome Equivalent; TCID_{50} = Median Tissue Culture Infectious Dose; NDU= Nucleic acid-based amplification tests Detectable Units; IFU= Instructions For Use. Data current as of Sept 17, 2020.
their patient could have been tested on and will sometimes ask about the general sensitivity of the assay when a patient they are treating seems to have symptoms consistent with COVID-19 yet test negative. Often, clinicians will request the CT value to better understand the viral load in their patient. It is important to reiterate that there are no quantitative tests for SARS-CoV-2 currently approved by the FDA. Unlike blood-borne viral pathogens, including HIV-1 and HCV, it is impossible to standardize the specimen collection for any respiratory viral pathogen. While a high CT value (low viral load) may prompt a clinician to treat a patient less aggressively, the correlation between CT and severity has not been adequately established [16,17]. In fact, recent reports of asymptomatic individuals with high viral loads complicates our ability to predict severity from CT values [18]. Transmissibility, however, may be linked to viral load and studies are underway to investigate this further [19,20]. Until the clinical impact of acting upon CT values is better understood, clinicians are cautioned against using such information to guide patient management.

Clinical and analytical false negatives

There are many reasons why a patient may test negative unexpectedly. While the actual analytical sensitivity is an obvious reason (patient’s viral load may be too low to be detected by the chosen platform), other reasons include a more common preanalytical issue that challenges all areas of laboratory medicine (Fig. 3). First, specimen source can affect the outcome of testing. Various testing options available to the clinician for SARS-CoV-2 molecular testing may or may not include all possible specimen types (Table 2) [21]. We have observed patients in which the only positive specimens are retrieved from the lower respiratory tract despite multiple attempts at testing NP swabs [22]. This could reflect the biology of the virus in certain individuals or the clinical disposition of the patient. The emergence of saliva testing as an alternative to the uncomfortable NP swab procedure may impact the rate of false positives as well [23]. Inadequacy of specimen collection [24] cannot always be determined by the assay depending on whether a SAC was included (see Molecular Detection of SARS-CoV-2). Additionally, if patients self-medicate nasal passages with ointments or topical creams, the molecular testing may be inhibited, leading to either an invalid result or possibly a false negative. Other clinical factors impacting pretest probability include whether the patient was symptomatic for COVID-19 and/or had close contact with someone who was infected. The timing of collection relative to the onset of symptoms can also have an effect on test results, as can the time it takes from collection to laboratory testing [25]. Most SARS-CoV-2 molecular tests require refrigeration for no more than 72 h from collection and room-temperature storage for even less time. Beyond these timeframes, if the specimen is not frozen, degradation of the viral RNA can occur. Finally, as supply chain issues have plagued all areas of laboratory testing, collection devices are no exception. The lack of universal transport media (UTM) has necessitated the use of alternative transport media including viral transport media (VTM) containing various antibiotics, normal saline, and phosphate buffered saline (PBS) [26]. The equivalency of these alternative transport media needs to be confirmed by the individual laboratory if not already included in the manufacturer’s instructions for use. Even swabs have been in short supply, requiring clinicians to become creative with choice of swabs that are flexible enough to be used in NP sampling, without risking additional harm to patient or being incompatible with molecular testing altogether. In summary, negative results can occur even if the patient has an ongoing SARS-CoV-2 infection, and the laboratory testing component is but one factor in the entire process.

Future state of molecular diagnostic testing

One constant premise laboratories have leaned on is that molecular diagnostics for SARS-CoV-2 changes weekly, if not daily. For example, as regulatory guidance is developed and subsequently modified, the role of the EUA process and FDA oversight has become less clear [27]. While relevant, the complexities of regulatory bodies governing laboratory testing is beyond the scope of the current review, yet heavily influences the availability of quality testing products and suppliers [28]. While it is too early to predict their effectiveness, creative solutions are being considered for a variety of testing issues. These include surveillance testing where individual patient reports are not generated in favor of summary statistics [29]. Additional developments include the ability to pool
patient testing when prevalence is low, thus helping to conserve valuable and often limited testing resources [30]. Finally, as we approach the first influenza season, molecular diagnostics incorporating analytes for both COVID-19 and other respiratory infections are just now entering the market [31,32]. Depending on what the flu season will look like, these may become critical factors in discriminating the types of infections present and triaging to specific therapies. Ultimately, once vaccination is available and broadly dispersed, the role of molecular testing may be less critical, whereas sensitive serological or antigen tests may play a unique role in patient management. In summary, molecular detection of SARS-CoV-2, a single stranded RNA virus, has faced and will continue to be confronted by numerous logistical challenges unseen by the practicing clinician that rapidly impact options for patient testing.

Serology for SARS-CoV-2

Background

In contrast to molecular testing which has had clear diagnostic utility from the onset of the COVID-19 pandemic, the utility of serological assays has been more convoluted [33,34]. This is primarily due to the rapid emergence of serological assays, which has outpaced scientific understanding of their clinical utility. The rapid proliferation of serological assays for SARS-CoV-2 was due at least in part to the FDA’s initial decision to not require EUA for their distribution. The reasoning behind this was that these assays were not meant to be diagnostic and that the assays would be used primarily by high-complexity laboratories [35]. However, many of the assays distributed were from relatively unknown vendors using lateral flow devices that resemble pregnancy tests, many of which possessed poor performance characteristics [36]. However, potential for widespread misuse was perpetuated by calls from several entities including the White House Coronavirus Task Force [37] and from health policy experts in high-profile journals [38] arguing for widespread serological testing for SARS-CoV-2 to demonstrate immunity and allow for return to work, etc. However, other major entities including the CDC, WHO, Infectious Diseases Society of America (IDSA), and several laboratory experts have strongly cautioned against rapid and widespread implementation given the unknowns of serological testing including test performance, clinical utility, association with protection, mechanism of protection, and the duration of protection [33,34,39–41]. As a result, the FDA promptly reversed course on May 4, 2020 requiring all serological assays to have EUA and meet certain performance characteristics [42].

![Specimen Source](image)

Specimen Source
- Nasal “wash” = Nasopharyngeal (NP) = oropharyngeal (OP)
- Are lower respiratory specimens more sensitive?
- Is saliva an acceptable type?
- Was the patient symptomatic?
- Are inhibitory substances present?

![Collection Device](image)

Collection Device
- UTM = VTM + Saline = PBS?
- Dry swab alternative?
- Flocked vs Eswab, Cotton, or 3D-printed

![Pre-Analytical Issues](image)

Pre-Analytical Issues

![Collection Logistics](image)

Collection Logistics
- Physician vs. Patient collect
- Pooling of NP and OP swabs together
- Are both NP and OP required for increase sensitivity?
- Timing of collection

![Transport to Lab](image)

Transport to Lab
- From Satellite (distant) labs vs Hospital (local) sites
- Stability post collection at different temperatures

Fig. 3. Common pre-analytical issues faced by clinicians and the diagnostic lab stem from supply chain shortages and uncertain clinical case definitions of COVID-19.
Company	Test Name	Format	Date	Gene Target	Specimen Type
CDC	CDC 2019-Novel Coronavirus (2019-nCoV) Real-Time RT-PCR Diagnostic Panel (CDC)	Kit	4-Feb-20	X	X
Wadsworth Center, New York State Department of Public Health’s (CDC)	New York SARS-CoV-2 Real-time Reverse Transcriptase (RT)-PCR Diagnostic Panel	Lab	29-Feb-20	X	X
Thermo Fisher Scientific, Inc.	TaqPath COVID-19 Combo Kit COVID-19 RT-PCR test	Kit	13-Mar-20	X X X	X X X X X X
Laboratory Corporation of America (LabCorp)	Lyra SARS-CoV-2 Assay Quest SARS-CoV-2 rRT-PCR Lab	Kit	17-Mar-20	X	X X X X X X
Quest Diagnostics Infectious Disease, Inc.	Abbott RealTime SARS-CoV-2 assay	Kit	18-Mar-20	X X	X X X
Abbott Molecular	Panther Fusion SARS-CoV-2 assay	Kit	18-Mar-20	X X	X X
GenMark Diagnostics, Inc.	ePlex SARS-CoV-2 Test Simplexa COVID-19 Direct assay	Kit	19-Mar-20	Not specified	X
DiaSorin Molecular LLC	Xpert Xpress SARS-CoV-2 test	Kit	20-Mar-20	X X X	X X X
Mesa Biotech Inc.	Accula SARS-CoV-2 test PerkinElmer New Coronavirus Nucleic Acid Detection Kit	Kit	23-Mar-20	X ORF8	X X
BioFire Defense, LLC	BioFire COVID-19 test	Kit	23-Mar-20	X	X X
PerkinElmer, Inc.	ID Now COVID-19 Kit	Kit	25-Mar-20	X	X X X X
Avellino Lab USA, Inc.	NeuMoDx SARS-CoV-2 Assay	Kit	30-Mar-20	X X X	X X X

(continued on next page)
Company	Test Name	Format	Date	Gene Target	Specimen Type			
Yale New Haven Hospital, Clinical Virology Laboratory	SARS-CoV-2 PCR test	Lab	31-Mar-20	X	X			
Ipsum Diagnostics	COV-19 IDx assay	Lab	1-Apr-20	X	X			
Becton, Dickinson & Company (BD), BioGX	BioGX SARS-CoV-2 Reagents for BD MAX System	Kit	2-Apr-20	X	X			
Diagnostic Molecular Laboratory – Northwestern Medicine	SARS-Cov-2 Assay	Lab	2-Apr-20	X	X X X X X			
Infectious Disease Diagnostics Laboratory - Children’s Hospital of Philadelphia	SARS-CoV-2 RT-PCR test	Lab	2-Apr-20	X	X X X X X			
Luminex Corporation Co-Diagnostics, Inc.	Aries SARS-CoV-2 Assay	Kit	3-Apr-20	X X	X			
Massachusetts General Hospital	MGH COVID-19 qPCR assay	Lab	3-Apr-20	X	X X X X X			
ScienCell Research Laboratories	ScienCell SARS-CoV-2 Coronavirus Real-time RT-PCR (RT-qPCR) Detection Kit	Kit	3-Apr-20	X	X X X X X			
Viracor Eurofins Clinical Diagnostics	Coronavirus SARS-CoV-2 RT-PCR assay	Lab	6-Apr-20	X	X X X X X			
Gnomegen LLC	Gnomegen COVID-19 RT-Digital PCR Detection Kit	Kit	6-Apr-20	X	X X X X X			
InBios International, Inc	Smart Detect SARS-CoV-2 rRT-PCR Kit	Kit	7-Apr-20	X X	X X X X X			
Becton, Dickinson & Company	BD SARS-CoV-2 Reagents for BD MAX System	Kit	8-Apr-20	X	X X X X X			
DiaCarta, Inc	QuantViVirus SARS-CoV-2 test	Kit	8-Apr-20	X X	X X X X X			
Stanford Health Care Clinical Virology Laboratory	Stanford SARS-CoV-2 assay	Lab	8-Apr-20	X	X X X X X			
Atila BioSystems, Inc.	IAMP COVID-19 DETECTION KIT	Kit	10-Apr-20	X X	X X X X X			
Organization	Test Description	Date	Status1	Status2	Status3	Status4	Status5	Status6
--	---	------------	---------	---------	---------	---------	---------	---------
Orig3n, Inc.	Orig3n 2019 Novel Coronavirus (COVID-19) Test	10-Apr-20	X	X	X	X		
Specialty Diagnostic (SDI) Laboratories	SARS-CoV-2 Assay	10-Apr-20	X	X				
University of North Carolina Medical Center Pathology/Laboratory Medicine Lab of Baptist Hospital Miami	UNC Health SARS-CoV-2 real-time RT-PCR test	10-Apr-20	X	X	X	X		
Pathology/Laboratory Medicine Lab of Baptist Hospital Miami	COVID-19 RT-PCR Test	13-Apr-20	X	X	X	X		
Integrity Laboratories	SARS-CoV-2 Assay	13-Apr-20	X	X	X	X		
Infectious Diseases Diagnostics Laboratory (IDDL), Boston Children's Hospital	Children-Altona-SARS-CoV-2 Assay	14-Apr-20	X	X	X	X		
Exact Sciences Laboratories	SARS-CoV-2 Test	14-Apr-20	X	X	X	X		
Hackensack University Medical Center (HUMC) Molecular Pathology Laboratory	CDI Enhanced COVID-19 Test	15-Apr-20	X	X	X	X		
CirrusDx Laboratories	CirrusDx SARS-CoV-2 Assay	15-Apr-20	X	X	X	X	X	X
Maccura Biotechnology (USA) LLC	SARS-CoV-2 Fluorescent PCR Kit	15-Apr-20	X	X	X	X	X	X
KorvaLabs Inc.	Curative-Korva SARS-Cov-2 Assay	16-Apr-20	X					
GenoSensor, LLC	GS COVID-19 RT-PCR Kit	16-Apr-20	X	X	X	X	X	X
Mayo Clinic Laboratories, Rochester, MN	SARS-CoV-2 Molecular Detection Assay	20-Apr-20	X	X	X	X		
Altona Diagnostics GmbH	RealStar SARS-CoV02 RT-PCR Kits	22-Apr-20	X	X	X	X		
Diatherix Eurofins Laboratory	SARS-CoV-2 PCR Test	22-Apr-20	Not specified	X	X	X	X	
Southwest Regional PCR Laboratory LLC. dba MicroGen DX	COVID-19 Key	23-Apr-20	X	X	X	X		
AIT Laboratories	SARS-CoV-2 Assay	24-Apr-20	X	X	X	X	X	X
Ultimate Dx Laboratory	UDX SARS-CoV-2 Molecular Assay	24-Apr-20	X	X	X			
Nationwide Children’s Hospital	SARS-CoV-2 Assay	27-Apr-20	X	X	X	X		
Biocerna	SARS-CoV-2 Test	28-Apr-20	X	X	X	X	X	X
Rheonix, Inc.	Rheonix COVID-19 MDx Assay	29-Apr-20	X	X	X			

(continued on next page)
Company	Test Name	Format	Date	Gene Target	Specimen Type	Company	Test Name	Format	Date	Gene Target	Specimen Type
Altru Diagnostics, Inc.	Altru Dx SARS-CoV-2 RT-PCR assay	Lab	30-Apr-20	X	X	**BioFire Diagnostics, LLC**	BioFire Respiratory Panel 2.1	Kit	1-May-20	X	M
Bio-Rad Laboratories, Inc.	Bio-Rad SARS CoV-2-ddPCR Test	Kit	1-May-20	X	X	**OPTI Medical Systems, Inc.**	OPTI SARS-CoV-2 RT PCR Test	Kit	6-May-20	X	X
Sherlock BioSciences, Inc.	Sherlock CRISPR SARS-CoV-2 Kit	Kit	6-May-20	X	X	**Biocollections Worldwide, Inc.**	Biocollections Worldwide SARS-CoV-2 Assay	Lab	7-May-20	X	X
OPTI Medical Systems, Inc.	Bio-Rad SARS CoV-2-ddPCR Test	Kit	1-May-20	X	X	**Sherlock BioSciences, Inc.**	Sherlock CRISPR SARS-CoV-2 Kit	Kit	6-May-20	X	X
Biocollections Worldwide, Inc.	Biocollections Worldwide SARS-CoV-2 Assay	Lab	7-May-20	X	X	**Opti Medical Systems, Inc.**	OPTI SARS-CoV-2 RT PCR Test	Kit	6-May-20	X	X
Zymo Research Corporation	Quick SARS-CoV-2rRT-PCR Kit	Kit	7-May-20	X	X	**Biocollections Worldwide, Inc.**	Biocollections Worldwide SARS-CoV-2 Assay	Lab	7-May-20	X	X
Rutgers Clinical Genomics Laboratory at UCDR Infinite Biologies - Rutgers University Gnomegen LLC	Gnomegen COVID-19-19RT-qPCR Detection Kit	Kit	8-May-20	X	X	**Abbott Molecular Inc.**	Alinity m SARS-CoV-2 assay	Kit	11-May-20	X	X
Abbott Molecular Inc.	Alinity m SARS-CoV-2 assay	Kit	11-May-20	X	X	**Columbia University Laboratory of Personalized Genomic Medicine**	Triplex CII-CoV-1 rRT-PCR Test	Lab	12-May-20	X	X
Columbia University Laboratory of Personalized Genomic Medicine	Triplex CII-CoV-1 rRT-PCR Test	Lab	12-May-20	X	X	**Applied DNA Sciences, Inc.**	Linea COVID-19 Assay Kit SARS-CoV-2 Real-Time RT-PCR-Test	Kit	13-May-20	X	X
Applied DNA Sciences, Inc.	Linea COVID-19 Assay Kit SARS-CoV-2 Real-Time RT-PCR-Test	Kit	13-May-20	X	X	**One Health Laboratories, LLC**	SARS-CoV-2 Real-Time RT-PCR-Test	Lab	13-May-20	X	X
One Health Laboratories, LLC	SARS-CoV-2 Real-Time RT-PCR-Test	Lab	13-May-20	X	X	**Cedars-Sinai Medical Center, Department of Pathology and Laboratory Medicine**	SARS-CoV-2-Assay	Lab	13-May-20	X	X
Cedars-Sinai Medical Center, Department of Pathology and Laboratory Medicine	SARS-CoV-2-Assay	Lab	13-May-20	X	X	**Hologic, Inc**	Aptima SARS-CoV-2 assay	Kit	14-May-20	X	X
Hologic, Inc	Aptima SARS-CoV-2 assay	Kit	14-May-20	X	X	**Assurance**	ASSURANCE SARS-COV-2 PANEL	Lab	15-May-20	X	X
Assurance	ASSURANCE SARS-COV-2 PANEL	Lab	15-May-20	X	X	**Fulgent Therapeutics LLC**	Fulgent COVID-19 by RT-PCR Test	Lab	15-May-20	X	X
Fulgent Therapeutics LLC	Fulgent COVID-19 by RT-PCR Test	Lab	15-May-20	X	X	**Color Genomics, Inc.**	Lab	Lab	18-May-20	X	X
Company	Assay/Kit Description	Date	Xs								
---------------------------------	---	-------------	----								
Color Genomics	SARS-CoV-2 RT-LAMP Diagnostic Assay	18-May-20	X								
Quidel Corporation	Lyra Direct SARS-CoV-2 Assay	Kit	X								
Seasun Biomaterials, Inc.	AQ-TOP COVID-19 Rapid Detection Kit	Kit	X								
BioCore Co., Ltd.	BioCore 2019-nCoV Real Time PCR Kit	Lab	X								
P23 Labs, LLC.	P23 Labs TaqPath SARS-CoV-2 Assay	Lab	X								
Avera Institute for Human Genes	Avera Institute for Human Genetics SARS-CoV-2 Assay	Lab	X								
Exact Sciences Laboratories	Exact Sciences SARS-CoV-2 (N gene detection) Test	Lab	X								
Express Gene LLC (dba Mol Diagnostics Laboratory)	Express Gene 2019-nCoV RT-PCR Diagnostic Panel	Lab	X								
PrivaPath Diagnostics, Inc.	Hymon SARS-CoV-2 Test Kit	Kit	X								
Aspirus Reference Laboratory	Aspirus SARS-CoV-2 rRT Assay	Lab	X								
Gravity Diagnostics, LLC	Gravity Diagnostics SARS-CoV-2	Lab	X								
CSI Laboratories	CSI SARS-CoV-2 RT PCR Test	Lab	X								
Nebraska Medicine Clinical Lab	NEcov19 RT-PCR Assay	Lab	X								
Phosphorus Diagnostics LLC	Phosphorus COVID-19 RT-qPCR Test	Lab	X								
Euroimmun US Inc.	EURORealTime SARS-CoV-2 Assay	Kit	X								
ChromaCode Inc.	HDPCR SARS-CoV-2 Assay	Kit	X								
Illumina, Inc.	Illumina COVIDSeq Test	Kit	X								
Warrior Diagnostics, Inc.	Warrior Diagnostics SARS-CoV-2 Assay	Lab	X								
Warrior Diagnostics, Inc.	Cuen SARS-CoV-2 Assay	Kit	X								
Tide Laboratories, LLC	Tide COVID-19 Test	Kit	X								
Cormeum Laboratory Services	Cormeum SARS-CoV-2 Assay	Lab	X								
Cormeum Laboratory Services	Cormeum SARS-CoV-2 Assay	Kit	X								

(continued on next page)
Company	Test Name	Format	Date	Gene Target	Specimen Type
RTA Laboratories Biomedical Products Pharmaceutical and Machinery Industry	Diagnovital SARS-CoV-2 Real-Time PCR Kit	Lab	13-Jun-20	X	Nasopharyngeal
Kaiser Permanente Mid-Atlantic States	KPMAS COVID-19 Test	Lab	13-Jun-20	X	Other
Applied BioCode, Inc.	BioCode SARS-CoV-2 Assay	Kit	15-Jun-20	X	Upper Respiratory
1stPathology Solutions Medical Corporation	Omni COVID-19 Assay	Lab	17-Jun-20	X	Respiratory (URT), Other
The Ohio State University Wexner Medical Center	OSU WMC COVID-19 RT-PCR Test	Lab	17-Jun-20	X	Other
University of Alabama at Birmingham Fungal Reference Lab	FR1 SARS CoV-2 Test	Lab	23-Jun-20	X	Saliva
HealthQuest Esoterics	HealthQuest SARS-CoV-2 Esoteric	Lab	23-Jun-20	X	X
University of Texas MD Anderson Cancer Center, Molecular Diagnostics Laboratory	MD Anderson High-throughput SARS-CoV-2 RT-PCR Assay	Lab	24-Jun-20	X	X
Diagnostic Solutions Laboratory, LLC	DSL COVID-19 Assay	Lab	25-Jun-20	X	X
PriciGenome LLC	FastPlex SARS-CoV-2 detection kit (RT-Digital PCR)	Kit	25-Jun-20	X	X
Inform Diagnostics, Inc.	Inform Diagnostics SARS-CoV-2 RT-PCR Assay	Lab	26-Jun-20	X	X
Acupath Laboratories, Inc.	Acupath COVID-19 Real-Time (RT-PCR) Assay	Lab	29-Jun-20	X	X
LifeHope Labs	LifeHope 2019-nCoV Real-Time RT-PCR Diagnostic Panel	Lab	29-Jun-20	X	X
Psomagen, Inc.	Psoma COVID-19 RT Test	Lab	30-Jun-20	X	X
CENTOGENE US, LLC	CentroFast-SARS-CoV-2 RT-PCR Assay	Lab	1-Jul-20	X	X
Laboratorio Clinico Toledo	Laboratorio Clinico Toledo SARS-CoV-2 Assay	Lab	6-Jul-20	X	X
Enzo Life Sciences, Inc.	AMPIPROBE SARS-CoV-2 Test System	Kit	7-Jul-20	X	X
Access Bio, Inc.	CareStart COVID-19 MDx RT-PCR	Kit	7-Jul-20	X	X
Laboratory	Test Description	Lab Date	X		
--	---	----------	---		
Gene By Gene	SARS-CoV-2 Detection Test	7-Jul-20	X		
Clinical Research Sequencing Platform (CRSP), LLC at the Broad Institute of MIT and Harvard	CRSP SARS-CoV-2 Real-time Reverse Transcriptase (RT)-PCR Diagnostic Assay	8-Jul-20	X		
UCSF Health Clinical Laboratories, UCSF Clinical Labs at China Basin	SARS-CoV-2 RNA DETECTR Assay	9-Jul-20	X		
Boston Medical Center Compass Laboratory Services, LLC	BMC-CReM COVID-19 Test Compass Laboratory Services SARS-CoV2 Assay	10-Jul-20	X		
Boston Heart Diagnostics	Boston Heart COVID-19 RT-PCR Test	16-Jul-20	X		
Access Genetics, LLC	OraRisk COVID-19 RT-PCR	17-Jul-20	X		
Helix OpCo LLC (dba Helix)	Helix COVID-19 Test	23-Jul-20	X		
Eli Lilly and Company	Lilly SARS-CoV-2 Assay	27-Jul-20	X		
Sandia National Laboratories	SNL-NM 2019 nCoV Real-Time RT-PCR Diagnostic Assay	27-Jul-20	X		
Clinical Reference Laboratory, Inc. University of California San Diego Health	CRl Rapid Response	30-Jul-20	X		
Cleveland Clinic Robert J. Tomsich Pathology and Laboratory Medicine Institute	UCSD RC SARS-CoV-2 Assay	31-Jul-20	X		
Cleveland Clinic Robert J. Tomsich Pathology and Laboratory Medicine Institute	Cleveland Clinic SARS-CoV-2 Assay	3-Aug-20	X		
Cleveland Clinic Robert J. Tomsich Pathology and Laboratory Medicine Institute	Cleveland Clinic SARS-CoV-2 Assay	3-Aug-20	X		
Ethos Laboratories	Ethos Laboratories SARS-CoV-2 MALDI-TOF Assay	3-Aug-20	X		
ISPM Labs, LLC dba Capstone Healthcare Poplar Healthcare	Genus SARS-CoV-2 Assay	3-Aug-20	X		
Wren Laboratories LLC	Wren Laboratories COVID-19 PCR Test	3-Aug-20	X		
Helix OpCo LLC (dba Helix) George Washington University Public Health Laboratory	Helix COVID-19 NGS Test	6-Aug-20	X		
Helix OpCo LLC (dba Helix) George Washington University Public Health Laboratory	GWU SARS-CoV-2 RT-PCR Test	7-Aug-20	X		

(continued on next page)
Company	Test Name	Format	Date	Gene Target	Specimen Type	Upper Respiratory (%)	Lower Respiratory (%)	Saliva
Alpha Genomix Laboratories	Alpha Genomix TaqPath SARS-CoV-2 Combo Assay	Lab	10-Aug-20	X X X X	X X X X			
Solaris Diagnostics	Solaris Multiplex SARS-CoV-2 Assay	Lab	10-Aug-20	X	X X X X			
Biomeme, Inc.	Biomeme SARS-CoV-2 Real-Time RT-PCR Test	Kit	11-Aug-20	X X	X X X			
Pro-Lab Diagnostics	Pro-AmpRT SARS-CoV-2 Test	Lab	13-Aug-20	X	X X X			
Yale School of Public Health, Department of Epidemiology of Microbial Diseases	SalivaDirect	Lab	15-Aug-20	X				X
DxTerity Diagnostics, Inc.	DxTerity SARS-CoV-2 RT-PCR Test	Lab	21-Aug-20	X X X				X
Guardant Health, Inc.	Guardant-19	Lab	21-Aug-20	X	X X X			
Texas Department of State Health Services, Laboratory Services Section	Texas Department of State Health Services (DSHS) SARS-CoV-2 Assay	Lab	21-Aug-20	X X	X X X			
Fluidigm Corporation	Advanta Dx SARS-CoV-2 RT-PCR Assay	Kit	25-Aug-20	X				X
Cuur Diagnostics	Cuur Diagnostics SARS-CoV-2 Molecular Assay	Lab	26-Aug-20	X X X	X X X			
Patients Choice Laboratories, LLC	PCL SARS-CoV-2 Real-Time RT-PCR Assay	Lab	28-Aug-20	X X X	X X X			
BayCare Laboratories, LLC	BayCare SARS-CoV-2 RT PCR Assay	Lab	31-Aug-20	X X X				
MiraDx	MiraDx SARS-CoV-2 RT-PCR assay	Lab	31-Aug-20	X X X				
Mammoth Biosciences, Inc.	SARS-CoV-2 DETECTR Reagent Kit	Kit	31-Aug-20	X X X				
T2 Biosystems, Inc.	T2SARS-CoV-2 Panel MobileDetect Bio BCC19 (MD-Bio BCC19) Test Kit	Kit	31-Aug-20	Not specified	X X X			

Format = “Kit” is an in vitro diagnostic available for purchase by qualified labs, “Lab” indicates testing must be performed within that laboratory; Date = Date of EUA approval; LRT specimens include bronchoalveolar lavage fluid, tracheal aspirates, bronchial washings, and sputum. “URT other” specimens include nasal washes and mid-turbinate swabs. Data current as of Sept 17, 2020.
Assays

At time of writing, there are 41 serological assays available approved under the EUA in the United States [43]. For most clinical purposes, the assays that are available have comparable performance for the detection of antibodies to SARS-CoV-2. Despite this, the assay design varies considerably between manufacturers. Supply chain issues that have at times plagued molecular testing have not affected serological assays for SARS-CoV-2. This may be due to the lessened demand for serology relative to diagnostic testing.

Assay format

Commercially available assays may take several formats; 1) chemiluminescent immunoassays that are generally high throughput and run on large, commercially available analyzers available in most clinical laboratories, 2) enzyme-linked immunosorbent assays (ELISA) which are typically performed on 96-well plates in a manual or semi-automated fashion and 3) lateral flow assays which resemble pregnancy tests. There are potential benefits and detriments to each assay design. For example, chemiluminescent immunoassays generally have high reproducibility and larger throughput than other methods. However, they do not generate titers, which are the gold standard when assessing protection and response to infection [44]. ELISAs can be easily titered, but their lower throughput, especially when generating a titer is a major limitation in most clinical laboratories. Finally, lateral flow-based assays may potentially be useful, particularly in seroprevalence studies or in low-resource areas. However, these assays frequently lack sufficient clinical sensitivity and specificity for detection of antibodies to SARS-CoV-2 [36]. Importantly, only one serological assay has been cleared for use at POC at the time of writing [43]. Hospitals may use EUA lateral flow serological methods that are considered moderately complex at the bedside under a CLIA license. However, sites such as physicians’ offices that perform testing under a CLIA Certificate of Waiver are only authorized to perform lateral flow testing on devices authorized for POC testing [45]. Finally, neutralization assays, which detect the presence of neutralizing antibodies to SARS-CoV-2 have also been developed [46]. However, neutralization assays require either Biosafety level 3 facilities using relatively low-throughput methods or the creation of a pseudovirus-based assay. No neutralization assays have been approved by the FDA for clinical use at this time.

Classes of immunoglobulins detected

Available assays detect anti-SARS-CoV-2 IgG, IgM, IgA, or total antibody. When assessing previous exposure to SARS-CoV-2, there is currently no known benefits to any one specific assay design [47]. Frequently after exposure to a virus, seroconversion with IgM occurs several days to weeks before IgG leading some to speculate that IgM would provide enhanced sensitivity for detection of acute SARS-CoV-2 infections. However, this has not been proven to be true in patients with COVID-19. In a study of 26 patients tested longitudinally, 9/26 patients seroconverted IgG and IgM simultaneously and 10/26 seroconverted IgG prior to IgM [48]. Similarly, Zhao et al. observed near simultaneous median time to positivity of 12 days for IgM and 14 days for IgG using assays not yet available in the US [49]. Furthermore, total antibody assays which identify several classes of antibodies have similar clinical sensitivities for the detection of anti-SARS-CoV-2 antibodies relative to assays which only detect IgG. Tang et al. demonstrated comparable performance between the Roche anti-SARS-CoV-2 total immunoglobulin assay, the Abbott anti-SARS-CoV-2 IgG assay, and the EUROIMMUN anti-SARS-CoV-2 IgG assay at > 14 days post symptom onset and at < 14 days post symptom onset [50,51]. Similarly, Harb et al. observed comparable sensitivities in convalescent plasma between assays that target total anti-SARS-CoV-2 immunoglobulin and those that target IgG. These studies imply that neither total immunoglobulin nor the detection of IgM improve the sensitivity of serological assays for early detection of patients with COVID-19 infections. It is important to note that the IDSA recommends against the use of assays for SARS-CoV-2 IgA. This is primarily due to the low observed sensitivity and specificity [52]. The IDSA also recommends against the use of combination IgG or IgM tests, which are assessed separately, but wherein only one of the two are positive [53]. This is primarily due to concerns of enhanced cross reactivity of IgM and lower specificity relative to IgG, reducing overall specificity. Manufacturers’ claims for sensitivity and specificity can be found on the FDA website [43], but
independent studies have demonstrated lower sensitivities in hospitalized patients likely due to differences in patient populations.

Viral antigen targets

Commercially available serological assays for SARS-CoV-2 also detect antibodies to different viral antigens. The vast majority of assays detect antibodies directed against the nucleocapsid protein, the spike protein, or the receptor-binding domain (RBDR) region of the spike protein. While the nucleocapsid protein tends to be more highly immunogenic than the spike protein [47], studies have yet to demonstrate conclusive differences between clinical assays that target antibodies to different SARS-CoV-2 proteins [50,54]. Although the nucleocapsid protein is more highly conserved across coronaviruses than the spike protein, clinical assays have demonstrated similar specificities. As a result, the IDSA and the CDC make no recommendation at this point regarding the antigenic target used [29,53].

Utility

Despite the availability of serological assays for SARS-CoV-2 exceeding several months, the clinical utility is still relatively narrow. The proposed utilities include 1) diagnosis of acute infection, 2) seroprevalence studies and 3) determining protection after previous exposure.

Diagnosis of acute infection

Early in the course of the pandemic, serological assays were proposed to be an important supplement to diagnostic testing [55]. This was due to supply chain issues cited previously for diagnostic molecular methods and numerous appeals that serology may play a role for diagnosing acute infection [49,56]. However, serological assays have poor sensitivity for detection of antibodies to SARS-CoV-2 early after symptom onset. Theel et al. have previously demonstrated sensitivities of <50% and <11% at 8–14, and <8 days post symptom onset respectively using the Abbott, Epitope, EUROIMMUN, and Ortho-Clinical SARS-CoV-2 serological assays [54]. Similarly, Tang et al. demonstrated sensitivities of ~42% with Roche, ~31% with Abbott, and 33% with the EUROIMMUN SARS-CoV-2 assays in patients with <14 days post-symptom onset. As previously noted, detection of IgM antibodies to SARS-CoV-2 does not seem to provide enhanced clinical sensitivity. At our institution, patients with SARS-CoV-2 typically present to the ED within 3–4 days from symptom onset, well before seroconversion would be anticipated. Therefore, it is not advised to use SARS-CoV-2 serological assays for assessing the presence of acute infection [29,53]. However, some symptomatic patients may present a week or later after symptom onset and are persistently negative by PCR. The CDC recommends that serological testing is used as an adjunct to diagnostic molecular testing if a patient presents more than 9 days from symptom onset [29]. However, the IDSA recommends against the use of serology until 14 days after symptom onset, citing a pooled sensitivity of 68% in patients from 7 to 14 days [53]. Pediatric patients with a multisystem inflammatory syndrome, a disease presenting with Kawasaki-like features including fever and shock, may benefit from the use of serological assays to confirm diagnosis. In a study of 95 confirmed cases in NY, 47% were diagnosed by positive serology in the absence of positive molecular testing [57]. Thus, while serological assays should not be used for acute diagnosis, they have limited clinical utility in a subset of patients.

Unsurprisingly, patients that are immunocompromised often fail to seroconvert or have longer time to seroconversion relative to immunocompetent patients after SARS-CoV-2 infection. A study of 21 patients with chronic lymphoblastic leukemia revealed only 67% seroconversion to IgG at a minimum of 28 days following the symptom onset [58]. Similarly, studies have demonstrated lower seroconversion rates among SARS-CoV-2-infected cancer patients relative to health care workers [59]. However, little is available in the peer-reviewed literature among patients with rheumatic diseases. A case study of two patients with MS treated with ocrelizumab both failed to mount an immune response at 6 and 7 weeks after symptom onset [60]. Importantly, the presence of autoimmune diseases and potentially cross reacting antibodies does not seem to effect the specificity of serological assays for SARS-CoV-2 [50,54,61]. Further studies are needed to confirm the time to seropositivity in this potentially at-risk population and the sensitivity of commercially available assays in immunosuppressed patients. However, given the likelihood of a lower test sensitivity, negative results from a
serological assay should be interpreted with caution in patients receiving immune modulating therapies.

Seroprevalence studies

SARS-CoV-2 serological assays have been used to assess the seroprevalence within a population. These studies have important ramifications for public health policy including understanding the burden of disease particularly due to limited early testing by molecular methods and to quantitate the mortality rate among infected individuals. Several studies have demonstrated that the seroprevalence of SARS-CoV-2 is 2–10 times greater than the number of patients who have been reported positive by molecular methods [62,63]. For seroprevalence studies, it is crucial for the test to have high specificity and positive predictive value (PPV), particularly for an emerging virus with a relatively low prevalence [34]. For example, in a population of 1,000,000 people with a prevalence of 1%, a test with a sensitivity and specificity of 99% respectively would yield PPV of ~50%. Thus, one in two positive results would be a false positive. As a result, the CDC advocates for the use of an assay with a specificity >99.5% or an orthogonal approach by which all positive results are tested again using a secondary method [29]. While seroprevalence studies have limited clinical application for individual patients, many patients are interested in their serostatus. Likely as a result of marketing from manufacturers and underlying public interest, the vast majority of serological tests at our institution are performed in outpatient settings. However, in settings with low pretest probability and low prevalence (i.e., outpatient physician office in a patient with limited previous symptoms), a method with high specificity is required, similarly to seroprevalence studies. Therefore, it is important for clinicians to understand the limitations of the assay (i.e., known specificity) and the approximate prevalence in the area when serological assays are used for assessing previous exposure in asymptomatic patients.

Protection after previous exposure

If SARS-CoV-2 serological testing is performed, it is important to provide clear information to the patient regarding the utility of the result, particularly when positive. One of the most important discussions regarding COVID-19 serology is if a positive result equates to protection from future SARS-CoV-2 infections. This has been phrased as an “immunity passport,” which would permit previously infected patients with the presence of antibodies to travel, return to work, and generally resume life as normal with the presumption of immunity. However, the degree of protection and duration of immunity offered by previous exposure to SARS-CoV-2 is still relatively unknown. As a result, the CDC, IDSA, and WHO all recommend against the use of serological assays for determining immune status [29,53,64]. Nonetheless, there is mounting evidence that infection with SARS-CoV-2 confers some degree of protection. Rhesus macaques infected with SARS-CoV-2 were protected from reinfection 35 days following the initial exposure [65]. Interestingly, three fisherman who were previously infected with SARS-CoV-2 had no evidence of viral infection and experienced no symptoms after subsequent exposure from an outbreak on a fishing vessel [66]. Specimens from the exposed fisherman that were drawn prior to re-exposure all demonstrated the presence of neutralizing antibodies. This implies that exposure and the generation of neutralizing antibody titers are sufficient for protection from reinfection. However, there are several limitations with presuming that positive serological results for anti-SARS-CoV-2 assays equates to long-term immunity. For example, Tang et al. previously demonstrated that hospitalized patients that died or had worse outcomes had higher neutralizing antibody titers than hospitalized patients with improved outcomes, implying that neutralizing titers may not associate with improved outcomes or protection [67]. Furthermore, a study of convalescent plasma from 149 individuals revealed neutralizing titers <1:50 in 33% of patients [68]. In contrast, the early recommendation from the FDA was a minimum neutralizing titer of 1:160 with an ideal of 1:320 for convalescent plasma donors [69]. Moreover, neutralizing titers may not be the mechanism of protection, with several studies demonstrating the importance of T cells [70,71]. Another problem with inferring protection from future SARS-CoV-2 infection with serological assays is that they serve as an imperfect proxy for neutralization. One study found a negative percent agreement (NPA) of 55% or less using a neutralizing cutoff of 1:128 as positive compared to positive serological results from three high-
throughput, commonly used clinical assays [67]. Similarly, other authors demonstrated a NPA of 32% with neutralizing assays relative to a commercially available ELISA [72]. While there is a modest correlation between the signal generated on commercially available serological assays and neutralizing assays, most assays are qualitative. While quantitative SARS-CoV-2 serological assays are emerging, correlations are required with these assays relative to neutralizing antibody titers. Another remaining question is the durability of the immune response to SARS-CoV-2. Several studies have demonstrated that circulating antibody concentrations decrease considerably within the first 90 days from symptom onset, particularly in patients with mild and asymptomatic infections [73–75]. Importantly, longitudinal studies of seasonal coronaviruses have found that patients are frequently reinfected with the same coronavirus, often within 12 months of the previous infection. Longitudinal studies assessing the durability of antibodies to SARS-CoV-2 are needed.

Future role of serology

As the pandemic resumes, serological assays are being developed and used for various purposes. Serological assays have been implemented to identify convalescent plasma donors with presumably high titers of antibodies. Early results from the expanded access program for convalescent plasma have demonstrated that patients who receive convalescent plasma units with higher levels of antibody as identified by the Ortho-Clinical SARS-CoV-2 IgG assay have better outcomes relative to those with lower levels of antibodies [76]. Serological assays may also provide value in identifying vaccinated individuals and the sufficiency of the humoral response once a vaccine is available. Since vaccinations target portions of SARS-CoV-2 spike protein, it will be crucial for providers to know the antigenic target of the assay when used for this purpose. Finally, algorithm-based approaches using serological assays that target multiple antigens and immunoglobulin classes may be useful in future. An algorithmic approach is used for hepatitis B virus serology, which allows for discrimination between recent infection, previous infection, and immunity [77]. However, no such algorithm has been proposed or endorsed by professional societies for SARS-CoV-2.

Summary

SARS-CoV-2 is an RNA betacoronavirus that is responsible for the current COVID-19 pandemic. Laboratory evaluation for diagnosis and surveillance has been rapidly developed to assist treatment public health efforts to prevent its spread. However, with the heightened awareness that laboratory testing is crucial for this function, hundreds of platforms have been made available in a relatively short period of time. Many of these platforms have distinct advantages to offer, including turnaround time, sensitivity, types of specimens accepted, ease of use, availability, and cost. False-negative results can occur due to a number of factors. These can be analytical and also preanalytical, before the specimen even arrives in the laboratory. Molecular-based testing is the only diagnostic assay format authorized by the FDA, but it is still only qualitative, and can vary greatly in assay sensitivity. Serological testing is more useful for monitoring seroprevalence, while its role in assessing protective immunity is still under investigation. In addition to laboratory-based testing options, clinicians will continue to be presented with numerous point-of-care assays to choose from, and these will suffer from similar challenges faced by the central laboratory. While we have made tremendous progress in making effective testing available to those most in need of it, we continue to face unanswered questions related to the future role of molecular and serological testing. For example, we do not fully understand how viral load is associated with clinical outcomes and if a quantitative test would therefore be useful. Still unknown is how the durability of the serological response differs in natural infection compared to vaccination. Importantly, the humoral immune response to SARS-CoV-2 in patients with rheumatologic diseases and on immune modulating therapies requires further evaluation. Laboratory testing for SARS-CoV-2 will continue to be confronted by numerous logistical challenges that influence options for patient testing.
Practice points

- The sensitivity of FDA EUA molecular diagnostic assays varies widely and depending upon the platforms, it may not accurately capture individuals with low viral loads.
- False-negative test results can derive from issues within the laboratory or outside the clinical testing environment, such as inadequate sample quality.
- The clinical utility of serological assays for SARS-CoV-2 is currently relatively limited but may aid in diagnosis in rare cases.

Research agenda

- Prospective studies describing the association between quantitative molecular diagnostic results and outcomes are needed to interpret the significance of the viral load.
- Association between protection from future SARS-CoV-2 infections and serological assays positive for the presence of antibodies to SARS-CoV-2 requires further studies, particularly those that assess the durability of the serological response.
- The development of algorithm-based approaches to serological testing to assess for acute infection, chronic infection, and vaccination may provide enhanced value to serological testing to SARS-CoV-2.
- Further studies are required assessing the humoral immune response to SARS-CoV-2 in patients with rheumatologic diseases and on immune modulating therapies.

Funding statement

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors. Christopher receives unrelated research funding from Beckman Coulter, Abbott Diagnostics, NowDiagnostics, and Siemens Healthineers. He has also served as an advisor for Roche Diagnostics within the past year.

Declaration of competing interest

No conflicts of interest are declared by the authors.

References

[1] Gorbalenya AE, Baker SC, Baric RS, et al. The species Severe acute respiratory syndrome-related coronavirus : classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 2020;5:536–44. https://doi.org/10.1038/s41564-020-0695-z.
[2] Chew SK. SARS: how a global epidemic was stopped. Bull World Health Organ 2007;85:324. https://doi.org/10.2471/BLT.07.032763.
[3] Petersen E, Koopmans M, Go U, et al. Comparing SARS-CoV-2 with SARS-CoV and influenza pandemics. Lancet Infect Dis 2020;20:e238–44. https://doi.org/10.1016/S1473-3099(20)30484-9.
[4] Gorbalenya AE, Enjuanes L, Ziebuhr J, Snijder EJ. Nidovirales: evolving the largest RNA virus genome. Virus Res 2006;117:17–37. https://doi.org/10.1016/j.virusres.2006.01.017.
[5] Chen Y, Liu Q, Guo D. Emerging coronaviruses: genome structure, replication, and pathogenesis. J Med Virol 2020;92:418–23. https://doi.org/10.1002/jmv.25681.
[6] Pachetti M, Marini B, Benedetti F, et al. Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant. J Transl Med 2020;18:179. https://doi.org/10.1186/s12967-020-02344-6.
[7] Zhao X, Markensohn JF, Wolbensak DA, Laterza OF. Testing for SARS-CoV-2: the Day the World turned its attention to the clinical laboratory. Clin Transl Sci 2020;13:871–6. https://doi.org/10.1111/cts.12828.
[8] FDA. In Vitro diagnostics EUAs. In Vitro Diagnostics EUAs for COVID-19 Tests 2020. https://www.fda.gov/medical-devices/coronavirus-disease-2019-covid-19-emergency-use-authorizations-medical-devices/vitro-diagnostics-euas. [Accessed 20 September 2020].
[9] WHO. PCR Protocol- World Health Organization. 2020. https://www.who.int/docs/default-source/coronavirus/whoint-housepapers-y.pdf?v=svsn-de3a76aa-2. [Accessed 21 September 2020].

[10] Smithgall MC, Scherberkova I, Whittier S, Green DA. Comparison of Cepheid xpert xpress and Abbott ID now to Roche cobas for the rapid detection of SARS-CoV-2. J Clin Virol 2020;128:104428. https://doi.org/10.1016/j.jcv.2020.104428.

[11] Basu A, Zinger T, Inglima K, et al. Performance of Abbott ID now COVID-19 rapid nucleic acid amplification test using nasopharyngeal swabs transported in viral transport media and dry nasal swabs in a New York city academic institution. J Clin Microbiol 2020;58. https://doi.org/10.1128/JCM.01136-20.

[12] Lee S, Kim T, Lee E, et al. Rapid, point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection. Cochrane Database Syst Rev 2020. https://doi.org/10.1002/14651858.CD013705.

[13] Thwe PM, Ren P. How many are we missing with ID NOW COVID-19 assay using direct nasopharyngeal swabs? Findings from a mid-sized academic hospital clinical microbiology laboratory. Diagn Microbiol Infect Dis 2020;98:115123. https://doi.org/10.1016/j.diagmicrobio.2020.115123.

[14] Fung M, Babik JM. COVID-19 in immunocompromised hosts: what we know so far. Clin Infect Dis 2020. https://doi.org/10.1093/cid/ciaa683.

[15] FDA. SARS-CoV-2 reference panel comparative data. The FDA SARS-CoV-2 Reference Panel 2020. https://www.fda.gov/medical-devices/coronavirus-covid-19-and-medical-devices/sars-cov-2-reference-panel-comparative-data. [Accessed 17 September 2020].

[16] Lee S, Kim T, Lee E, et al. Clinical course and molecular viral shedding among asymptomatic and symptomatic patients with SARS-CoV-2 infection in a community treatment center in the Republic of Korea. JAMA Intern Med 2020. https://doi.org/10.1001/jamainternmed.2020.3862.

[17] Pujadas E, Chaudhry F, McBride R, et al. SARS-CoV-2 viral load predicts COVID-19 mortality. Lancet Respir Med 2020;8:e70. https://doi.org/10.1016/S2213-2600(20)30554-4.

[18] Yu X, Ran D, Wang J, et al. Unclear but present danger: an asymptomatic SARS-CoV-2 carrier. Genes Dis 2020. https://doi.org/10.1016/j.gendis.2020.07.010.

[19] Huang C-G, Lee K-M, Hsiao M-J, et al. Culture-based virus isolation to evaluate potential infectivity of clinical specimens tested for COVID-19. J Clin Microbiol 2020;58. https://doi.org/10.1128/JCM.00688-20.

[20] Bullard J, Dust K, Funk D, et al. Predicting infectious SARS-CoV-2 from diagnostic samples. Clin Infect Dis 2020. https://doi.org/10.1093/cid/ciaa638.

[21] AdVeritasDx. The SARS-CoV-2 test & controls database. AdVeritasDx; 2020. https://adveritasdx.com/test-database. [Accessed 15 September 2020].

[22] Parikh BA, Bailey TC, Lyons PG, Anderson NW. The brief case: “not positive” or “not sure”—COVID-19-negative results in a symptomatic patient. J Clin Microbiol 2020;58. https://doi.org/10.1128/JCM.01195-20.

[23] Test results of Patho25, Patho25. Pacheco VB, Berger TH, Saliva in the diagnosis of COVID-19: a review and new research directions. J Dent Res 2020. https://doi.org/10.1177/00220345209600670. 22034520960070.

[24] Higgins TS, Wu AW, Ting JY. SARS-CoV-2 nasopharyngeal swab testing-false-negative results from a pervasive anatomical misconception. JAMA Otolaryngol Head Neck Surg 2020. https://doi.org/10.1001/jamaoto.2020.2946.

[25] Liu M, Li Q, Zhou J, et al. Value of swab types and collection time on SARS-COV-2 detection using RT-PCR assay. J Virol Methods 2020;119374. https://doi.org/10.1016/j.jviromet.2020.119374.

[26] Garnett I, Bello A, Tran KN, et al. Comparison analysis of different swabs and transport mediums suitable for SARS-COV-2 testing following shortages. J Virol Methods 2020;285:113947. https://doi.org/10.1016/j.jviromet.2020.113947.

[27] U.S. Department of Health & Human Services. Rescission of guidances and other informal issuances. HHSGov 2020. https://www.hhs.gov/coronavirus/testing/rescission-guidances-informal-issuances-premarket-review-lab-tests/index.html. [Accessed 21 September 2020].

[28] Genzen JR. Regulation of laboratory-developed TestsA clinical laboratory perspective. Am J Clin Pathol 2019;152:122–31. https://doi.org/10.1093/ajcp/aqz096.

[29] CDC. Information for laboratories about coronavirus (COVID-19). Centers for Disease Control and Prevention; 2020. https://www.cdc.gov/coronavirus/2019-ncov/lab/pooling-procedures.html. [Accessed 21 September 2020].

[30] Mitchell SL, Ventura SE. Evaluation and comparison of the hologic aptima SARS-CoV-2 and the CDC 2019 nCoV real-time RT-PCR diagnostic panel using a four-sample pooling approach. J Clin Microbiol 2020. https://doi.org/10.1128/JCM.02241-20.

[31] Attwood LO, Francis MJ, Hamblin J, et al. Clinical evaluation of AusDiagnostics SARS-CoV-2 multiplex tandem PCR assay. J Clin Virol 2020;128:104448. https://doi.org/10.1016/j.jcv.2020.104448.

[32] Visseaux B, Le Hingrat Q, Collin G, Bouzid D, Lebourgeois S, Le Pluart D, et al. Evaluation of the qAstat-dx respiratory SARS-CoV-2 panel, the first rapid multiplex PCR commercial assay for SARS-CoV-2 detection. J Clin Microbiol 2020;58. https://doi.org/10.1128/JCM.00630-20.

[33] Theel ES, Slev P, Wheeler S, et al. The role of antibody testing for SARS-CoV-2: is there one? J Clin Microbiol 2020;58. https://doi.org/10.1128/JCM.00797-20.

[34] Farnsworth CW, Anderson NW. SARS-CoV-2 serology: much hype, little data. Clin Chem 2020;66:875–7. https://doi.org/10.1093/clinchem/hvaat107.

[35] FDA. Emergency Use authorizations. Emergency use authorizations for medical devices 2020. https://www.fda.gov/medical-devices/emergency-situations-medical-devices/emergency-use-authorizations. [Accessed 21 September 2020].

[36] Whitman JD, Hiatt J, Mowery CT, et al. Test performance evaluation of SARS-CoV-2 serological assays. MedRxiv 2020. https://doi.org/10.1101/2020.04.25.20074856.

[37] Remarks by President Trump. Vice president pence, and members of the coronavirus Task Force in press briefing. The White House; 2020. April 17, 2020. https://www.whitehouse.gov/briefings-statements/remarks-president-trump-vice-president-pence-members-coronavirus-task-force-press-briefing-april-17-2020/. [Accessed 16 September 2020].

[38] Weinstein MC, Freedberg KA, Hyle EP, Paltiel AD. Waiting for certainty on Covid-19 antibody tests — at what cost? N Engl J Med 2020;383:e57. https://doi.org/10.1056/NEJMmp2017739.

[39] WHO. World Health Organization, Q&A: serology and COVID-19 2020. https://www.who.int/news-room/q-a-detail/q-a-serology-and-covid-19. [Accessed 16 September 2020].
