Investigation of spectroscopic properties of LiNbO$_3$:Ho$^{3+}$ crystals

This content has been downloaded from IOPscience. Please scroll down to see the full text.
2016 J. Phys.: Conf. Ser. 672 012014
(http://iopscience.iop.org/1742-6596/672/1/012014)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 117.244.29.69
This content was downloaded on 22/02/2016 at 04:16

Please note that terms and conditions apply.
Investigation of spectroscopic properties of LiNbO$_3$:Ho$^{3+}$ crystals

Hasmik G Demirkhanyan
Department of Theoretical Physics and Physics Learning Methods, Armenian State Pedagogical University after Kh. Abovyan, 375010, Yerevan, Armenia

E-mail demirkhanyan_hasmik@yahoo.com,

Abstract. In this paper the Stark problem for Ho$^{3+}$ ion (4f10 electronic configuration) in LiNbO$_3$ crystal is solved. Main spectroscopic parameters induced by inter-Stark transitions are determined. Based on analysis of experimental and theoretical data of the main spectroscopic characteristics of LiNbO$_3$:Ho$^{3+}$ crystals, it’s perceptiveness as a material for optical cooling devices is shown.

1. Introduction
Lithium Niobate crystals LiNbO$_3$ (LN), doped by Rare Earth (RE$^{3+}$) are perspective materials for compact multifunction lasers in the infrared and visible regions of the spectrum[1,2], as well as for optical cooling systems and self-cooled lasers [3,4]. Optical spectra of impurity absorption and emission in LN-Ho$^{3+}$crystal are investigated in [5]. Particularly, the energetic scheme of Stark levels of 5I$_8$, 5I$_7$, 5I$_6$, and 5I$_5$ multiplets, standard Judd-Ofelt analysis is provided. At the same time, optical spectra of LN-Ho$^{3+}$crystal in 1.8 -2.2 μm wavelength range, caused by inter-Stark transitions of ground (5I$_8$) and first excited (5I$_7$) multiplets are little studied experimentally. Meanwhile, these transitions are interesting for LN-Ho$^{3+}$ optical cooling systems. Theoretical investigation of spectroscopic properties of LN-Ho$^{3+}$ crystal in 1.8 -2.2 μm wavelength range is given in [6].

In this work spectroscopic properties of LN-Ho$^{3+}$ crystal in 1.5-2.0 μm wavelength range in order to identify the possibility of establishing optical cooling systems and self-cooled lasers based on LN-Ho$^{3+}$ crystal are discussed.

2. Spectroscopic characteristics of LN-Ho$^{3+}$ crystal
It is well known, that in the crystal field (CF) of LN (point symmetry C$_{3v}$) ground (5I$_8$) and first excited (5I$_7$) multiplets of Ho$^{3+}$ ion are splitting to 11th and 10th Stark sublevels respectively [6], transitions between which are defined the spectroscopic properties of the LN-Ho$^{3+}$ crystal.

As known, the intensive lines of impurity absorption and emission spectra of RE$^{3+}$ doped crystals are caused by indirect electro-dipole (IED) and magneto-dipole (MD) transitions, thus the line straight of transition is determined by expression $S_{t\rightarrow f} = \chi_{ed} \cdot S^{(ied)}_{t\rightarrow f} + \chi_{md} \cdot S^{(md)}_{t\rightarrow f}$ (where $S^{(ied)}_{t\rightarrow f}$ and $S^{(md)}_{t\rightarrow f}$ are line straight of IED and MD transitions, χ is local field correction). Un-polarized line straights of inter-stark transitions are [6]: $S^{(ied)}_{t\rightarrow f} = \sum \Omega \cdot A_t(i,f) \cdot |J_f||U_t||I_i|^2$ and $S^{(md)}_{t\rightarrow f} = A_{md}(i,f) \cdot S_{md}$. Here $\Omega_2 = 4.3 \times 10^{-20}$, $\Omega_4 = 5.11 \times 10^{-20}$, $\Omega_6 = 1.58 \times 10^{-20}$ cm2 are Judd - Ofelt’s parameters [5].
\[\langle 5^7_l \| U_2 \| 5^7_h \rangle = -0.1477, \quad \langle 5^7_l \| U_4 \| 5^7_h \rangle = 0.3338, \quad \langle 5^7_l \| U_6 \| 5^7_h \rangle = -1.2852 \]

are reduced matrix elements of the irreducible unit operator \(U \), \(S^{(md)} = 51 \mu^2 / e^2 \) is line straight of multiplet-to-multiplet MD transition (\(\mu \) is Bohr’s magneton) [6]. Coefficients

\[
A_{t}^{(ied)}(i,f) = \sum_{m=1}^{1} \left| \sum_{j} (-1)^{J_f-M_f} a_{j,J_f,M_f}^{(i)} \left(\frac{J_f}{m} M_f \right) \right|^2 \tag{1}
\]

\[
A_{md}(i,f) = \sum_{m=1}^{1} \left| \sum_{j} (-1)^{J_f-M_f} a_{j,J_f,M_f}^{*(i)} a_{j,J_f,M_f}^{(i)} \left(\frac{J_f}{m} M_f \right) \right|^2 \tag{2}
\]

determine distribution of intensities of IED and MD transitions by Stark states. Here J is the total angular momentum, M is its projection, \(a_{j,J_f,M_f}^{(i)} \) are numerical coefficients in the wave functions of \(\nu^h \) Stark state [6], \(\langle . . . \rangle \) is 3j-symbols. Values of calculated line straights of actual transitions and main spectroscopic characteristics, such as absorption coefficients (\(\alpha \)), probabilities of spontaneous transitions (A), luminescence branching ratio (\(\beta \)), absorption efficiencies (\(\eta \)) are given in tables 1 and 2.

Table 1. Parameters of ASF spectra of LiNbO\(_3\):Ho\(^{3+}\) at \(T = 300K \).

transition	\(\lambda_{\text{um}}, \text{nm} \)	\(S \times 10^{21} \text{cm}^2 \)	\(A, \text{s}^{-1} \)	\(\delta = N/N_0 \)	\(\beta , \% \)
\(\mu_3 \rightarrow \nu_5 \)	2020	4.78368	41.8486	0.1244	1.5
\(\mu_4 \rightarrow \nu_5 \)	2013	4.3078	38.08	0.1146	1.3
\(\mu_5 \rightarrow \nu_5 \)	2008	4.93298	43.933	0.1082	1.4
\(\mu_6 \rightarrow \nu_6 \)	2021	7.64323	66.7652	0.1026	2.0

Table 2. Parameters of absorption spectra of LiNbO\(_3\):Ho\(^{3+}\) at \(T = 300K \).

transition	\(\lambda_{\text{p}}, \text{nm} \)	\(S \times 10^{21} \text{cm}^2 \)	\(\alpha, 10^{-26} \text{cm}^3 \)	\(N/N_0 \)	\(\eta_{\text{abs}}, \% \)
\(\nu_5 \rightarrow \mu_1 \)	2035	3.6653	1.4216	0.0754	0.8
\(\nu_6 \rightarrow \mu_1 \)	2053	5.1332	2.0086	1.0	
\(\rightarrow \mu_2 \)	2042	6.5145	2.5354	0.0617	1.2
\(\rightarrow \mu_3 \)	2037	4.0845	1.5858	0.8	

3. **LiNbO\(_3\):Ho\(^{3+}\) crystal as perspective optical cold material**

It is known that for determining the spectral region of expected optical cooling and evaluation of the efficiency of this effect by means of the anti-Stokes fluorescence (ASF) method it is useful to use the following expression [7]

\[
\gamma = n [1 - e^{-(\alpha_p + \alpha_h)k}] \frac{\lambda_p - \langle \lambda_f \rangle}{\langle \lambda_f \rangle} . \tag{3}
\]
Here γ is the efficiency of the optical cooling effect, η is the quantum yield of fluorescence from the excited level, α_p is the absorption coefficient at the optical excitation wavelength λ_p, α_b is the background absorption of the matrix, L is the thickness of the sample along optical excitation, and $\langle \lambda_f \rangle$ is the mean wavelength of fluorescence: $\langle \lambda_f \rangle = \int_0^\infty \lambda I_f(\lambda) d\lambda / \int_0^\infty I_f(\lambda) d\lambda$. ($I_f$ is the spectral intensity of fluorescence). By using values of spectroscopic characteristics calculated in [6], it is easy to obtain $\langle \lambda_f \rangle = 2002 \text{ nm}$. In figure 1 the absorption spectra of LN-Ho$^{3+}$ at 1.8 - 2.2 μm wavelength [5], the possible implementation of the optical cooling with CW pumping at wavelengths 2035 - 2053 nm are shown as well. Thus, the effect of optical cooling, on the basis of crystal LN-Ho$^{3+}$, can be obtained by ASF method at wavelengths $\lambda > 2002\text{nm}$. For estimation of efficiency of the optical cooling effect we assume that, first off, intensity of pumping are so far from saturation, second, $\alpha_b \ll \alpha_p$, and third, the probability of zero-phonon transition from 5I_7 multiplet is negligibly small, so the quantum yield from the excited Stark sublevel is mainly determined by the luminescence branching ratio. Then, assuming L=1cm and $N \approx 10^{21}\text{cm}^{-3}$, according to Tables 1 and 2, it is easy to estimate the value of γ for different schemes of pumping and emission wavelengths. Where in value of absorption coefficient $\alpha_p(\lambda)$ at λ wavelength is connected with value of α (Table 2) by expression $\alpha_p(\lambda) = \alpha(\lambda) N_i / \Delta \lambda$, where $N_i = \delta N$ is population of ν_i^{th} level (δ is Boltzmann factor). In numerical estimations we use the following values: $\Delta \lambda \approx 10\text{nm}$, $N \approx 10^{21}\text{cm}^{-3}$. Results of evaluation are given in Table 3. In Table 3 is given expected values of temperature decrease $\Delta T = \gamma (\varepsilon_{em} - \varepsilon_p) / k$ (ε_{em} is energy of anti-Stocks luminescence, ε_p is pump energy) as well. It is seen, that temperature of cooling of separate channel is varies in the range of 0.8 - 2.6 K and efficiency is 0.014 - 0.032%, which is comparable with the corresponding characteristics of other materials [8]. Since channels are independent to each other, the total efficiency will be: for 2035nm $\gamma = 0.154\%$ ($\Delta T = 10.83K$) and for 2050 nm $\gamma = 0.17\%$ ($\Delta T = 17.87K$).

Table 3. Temperature and efficiency of optical cooling at $T = 300K$.

transition	$\nu_5 \rightarrow \mu_1$	$\nu_6 \rightarrow \mu_1$	$\nu_6 \rightarrow \mu_2$	$\nu_6 \rightarrow \mu_3$				
$\mu_3 \rightarrow \nu_5$	0.83	0.016	2.02	0.018	1.75	0.023	1.27	0.021
$\mu_4 \rightarrow \nu_5$	1.07	0.014	2.05	0.015	2.11	0.021	1.53	0.018
$\mu_5 \rightarrow \nu_5$	1.40	0.015	2.46	0.016	2.6	0.022	2.04	0.020
$\mu_6 \rightarrow \nu_6$	1.08	0.022	2.52	0.023	2.35	0.032	1.61	0.028
4. Conclusion

Estimations show that the LN-Ho³⁺ crystal is perspective material for optical cooling systems. At the same time, it should be noted, that these estimations are rough enough. To get accurate values of efficiency of cooling, it is necessary to do more detailed experimental and theoretical investigations of spectroscopic characteristics of LN-Ho³⁺ crystal including the widths and shifts of spectral lines, as well as examination of their temperature dependences.

References

[1] Johnson L F and Ballman A A 1969 J. Appl. Phys. 40 297
[2] Cordova-Plaza A, Digonnet M and Shaw H J 1987 IEEE J. Quantum Electron. QE-13262
[3] Demirkhanyan G G, Kokanyan E P, Gruber J B, Sardar D K and Pokhrel M 2014 Proc. Conf. dedicated to the 90th anniversary of Armenian State Pedagogical University pp. 383-388 (in russian)
[4] Babajanyan V G 2013 Laser Phys. 23 126002
[5] Lorenzo A, Bausa L E, Sanz Garcia J A and Sole’ J G 1996 J. Phys.: Cond. Matter 8 5781
[6] Demirkhanyan G G, Kokanyan E P and Demirkhanyan H G 2015 J. of Cont. Phys. of Armenian Academy of Sciences 50(3) 318-329 (in russian)
[7] Melgaard S, Seletskiy D, Di Lieto A, Tonelli M and Sheik-Bahae M 2013 Opt. Lett. 38 1588
[8] Nemova G and Kashyap R 2010 Rep. Prog. Phys. 73 086501