Türk Neonatoloji Derneği yenidoğanda transfüzyon ilkeleri rehberi

Turkish Neonatal Society guideline on the transfusion principles in newborns

Merih Çetinkaya1, Begüm Atasay2, Yıldız Perk3

1 Sağlık Bilimleri Üniversitesi, İstanbul Kanuni Sultan Süleyman Eğitim ve Araştırma Hastanesi, Yenidoğan Eğitim Kliniği, İstanbul, Türkiye
2 Ankara Üniversitesi Tıp Fakültesi, Çocuk Sağlığı ve Hastalıkları Anabilim Dalı, Yenidoğan Bilim Dali, Ankara, Türkiye
3 İstanbul Üniversitesi Cerrahpaşa Tıp Fakültesi, Çocuk Sağlığı ve Hastalıkları Anabilim Dalı, Yenidoğan Bilim Dali, İstanbul, Türkiye

Cite this article as: Çetinkaya M, Atasay B, Perk Y. Turkish Neonatal Society guideline on the transfusion principles in newborns. Turk Pediatri Ars 2018; 53(Suppl 1): S101-S108.

Öz

Kan transfüzyonu anemisi olan özellikle prematüre ve cerrahi uygulanan yaşam kurtarıcı bir tedavidir. Yenidoğanda eritrosit, trombosit ve plasma transfüzyon endikasyonları, transfüzyon kararı veren eşik hemoglobin, trombosit değerleri merkezlere göre değişmekle birlikte, transfüzyonların olası yan etkileri ve prematüre morbiditeleri, mortalite ve nöro gelişimSEL etkileri ile ilgili kanalı bir süreç yeterli değildir. Burada, dizin bilgileri değerlendirilerek, eritrosit süspansiyonu, trombosit ve plasma transfüzyonu karar için klinik bulgulara göre önerilen eşik değerleri ve uygulamada dikkat edilecek konulardan özetleyen ülkemizdeki yoğun bakım birimlerinde kullanılmak üzere oluşturulmuş transfüzyon rehberinin sunulması amaçlanmıştır.

Anahtar Sözcükler: Anemi, eritrosit, plazma, rehber, transfüzyon, trombosit, yenidoğan

Abstract

Blood transfusions can be defined as a life-saving procedure in neonates, especially in premature infants and those undergoing surgery. The indications, threshold hemoglobin, and platelet levels for red cell, platelet, and plasma transfusions in neonates vary among centers and the evidence-based data for possible adverse effects, preterm morbidities, mortality and neurodevelopmental problems associated with transfusions are not adequate. Herein, we aimed to present the transfusion guideline that was designed to be used in neonatal intensive care units in our country, which summarizes clinical findings and threshold levels for red cell, platelet, and plasma transfusions, in addition to important practical points of transfusions according to a literature review.

Keywords: Anemia, erythrocyte, guideline, newborn, plasma, platelet, transfusion

Giriş

Başta çok düşük doğum ağrılığı (ÇDDA) prematüre bebekler olmak üzere hasta yenidoğanalara sıkılaş semptomatik anemi nedeni ile transfüzyon, hemolitik hastalığı tedavisinde kan değişimi, kanama ya da kanama riski nedenile trombosit ve plazma transfüzyonu uygulanmaktadır. Ancak eritrosit ve trombosit süspansiyon transfüzyonu için eşik hemoglobin ve trombosit değerleri net olarak tanımlanamamıştır. Benzer şekilde taze donmuş plazma süspansiyonu karar da yali endikasyonlar dışında uygulanmaktadır.

Yenidoğanlarda eritrosit transfüzyonu ilkeleri

Yenidoğanda, hemoglobin (Hb) ya da hematokrit (Hct) değerinin postnatal yaş için olan ortalamanın 2 SD sapma altında olması anemi olarak tanınır. Aneminin en sık nedenleri; kan kayı, eritrosit üreti-
minde azalma ve eritrosit yıkımında artıştır. Yenidoğanda, eritrositlerin ömrünün daha kısa süre olması, oksidan hasara daha duyarlı olması, artış dismorfik eritrosit oranı, yaşaman ilk günlerinde belirgin düşük endojen eritropoetin (EPO) düzeyleri ve kısıtlı eritropoez kapasitesi fizyolojik anemi gelişimine neden olmaktadır (1).

Yenidoğan bir bebekte doğumda ortalama 16,5 g/dL olan Hb konsantrazyonu ilk 24 saat içinde 18,4 g/dL’ye yükselip sonrası 3 aylık dönemde fizyolojik bir düşüşle 11,5 g/dL’ye inerken, bu düşüş prematüre bebeklerde daha belirgin olmaktadır. Bu durumu doğumdan hem sonra kan ve doku oksijen içerdiğinde artış nedeni ile EPO sentezinin baskalanması neden olmaktadır. Zamanında doğan bebeklerde 9,0-12,0 g/dL olan en düşük Hb değerleri postnatal 6-12. haftalarda gelir, sonrasında hipoksinin dokular tarafından algılanması ile endojen EPO salınım ve eritropoetin artışı ile Hb değerleri iki yaşa kadar yükselme göstermektedir. Zamanında doğmuş sağlıklı bebeklerde ise bu uppmatikın anemi gibi endojen ve genellikle tedavi gerektirmemektedir (2). Özellikle 32. gebelik haftasından önce fizyolojik anemi sıklıkla ve genellikle tedavi gerektirmektedir. Prematüre bebeklerde; kan testlerinin sık yapılmasının değeri, eritrosit oranı, yaşamın ilk günlerinde belirgin düşük olmasından dolayı, en az 100 ÇDDA’lı bebek kısıtlı ve liberal transfüzyon gerçekleştirmektedir (2, 3).

Çalışmalarında doğum ağırlığı <1 000 g olan aşırı düşük doğum ağırlıklı (ADDA) bebeklerin %60’sının yaşamının ilk iki haftasında ve %90’a yenidoğan yoğun bakım birimi (YDYBB) yatışı sırasında transfüzyon uygulandığı bildirilmiştir (1, 4).

Yenidoğanlardan en sık eritrosit transfüzyonu cerra- hi uygulamaları için olduğu anemi, hemorajik çok ve prematüre anemisi durumunda uygulanmaktadır. Ancak aneminin klinik bulguların değerlendirilmesindeki zorluklara ek olarak prematüre ya/ya da hasta yenidoğanlarda Hb/Hct değerlerin eritrosit kitesini tam yansıtamayacağı öngörüü, transfüzyonla ilgili endikasyonların ve eşik Hb değerlerinin net belirlenemezmesine neden olmaktadır. Bu nedenle günümüzde pek çok ülkede ve YDYBB’de farklı transfüzyon protokolleri kullanılmaktadır (5, 6). Transfüzyonda esas olarak doku oksijenizasyonunun düzeltilmesi amaçlanmalıdır. Doku oksijenizasyonu, kardiyak output, kanın ok- sijen taşma kapasitesi ile Hb konsantrasyonu belirlmektedir. Son yıllarda yenidoğan transfüzyon gereksinimini bilirmekle; Hb değerleri, kardiyak ve solunum durumuna ek olarak retikülosit sayısı, serum laktat düzeyi, eritrosit volümü, serum vasküler endoteliyal büyük faktörü (VEGF) gibi çeşitli belirteçlerin kullanılabilirliği belirttilse de, pratik uygulamada sınırlıdır (4). Teknolojik gelişmelerle birlikte özellikle near-infrared spectroscopy (NIRS) kullanılarak oksihemoglobin-deoksihemoglobin farkının ölçülmesi ile de doku oksijenizasyonunu belirlemektedir. Near-infrared spectroscopy yönteminde anionu kim büyük şokları ile birlikte gelişen serebral doku oksijenizasyonunun bozulduğu ve transfüzyon sonrası hızla düzeldiği gösterilmiştir (7). Ancak günümüzde doku oksijenizasyonunun değerlendirilmesi net bir belirteç olmadığı için klinik semptomların bilinmesi önem taşımaktadır. Taşikardi, takipne, solunum sıkıntısında ve oksijen gereksiniminde artış, apne, bradikardi, kilo alımı ve aktivite azalma, solukluk ve odem eritrosit transfüzyonu kararında en sık değerlendirilen klinik bulguları oluşturmaktadır.

Doku oksijenizasyonunun normal olarak sürdürülme- bildiği en düşük Hb değer kritik ya da eşik Hb değerleri olarak tanımlanmış olup, bu değerde eğilim eden klinik ve laboratuvar bulgularına göre transfüzyon kararı verilmektedir. Pratikte YDYBB’lerinde transfüzyon kararları yetersiz doku oksijenizasyonu ile ilişkili koşu özgünün olmayan semptomların olduğu Hb değerlerinde yapılmakta ancak hangi bebekte hangi Hb düzeyinde transfüzyon uygulanacağı ile ilgili net ve kesin veriler bulunmamaktadır. Daha düşük Hb düzeylerinde gerçekleştirdiren transfüzyonlar kısıtlı, daha yüksek Hb değerlerindeki transfüzyonlar ise liberal transfüzyon olarak tanımlanmıştır. Kısıtlı ve liberal transfüzyon uygu- lanımlarının klinik sonuçları iki büyük çalışmada de- tanımlanmıştır. Kısıtlı ve liberal transfüzyon uygulamalarının klinik sonuçları, iki büyük çalışmada değerlendirilmektedir. IOWA çalışmasıdırında transfüzyon sıkılığının arttılmaması amacıyla 100 ÇDDA’lı bebek kısıtlı ve liberal transfüzyon gruplarına randomize edilecek kar- şilaştırılmış, gruplar arasında transfüzyon sıkılığı değişmemiş ancak kısıtlı transfüzyon grubunda intraparan- kimal kanama, periventriküler lüksomalazi (PVL) ve apne sıkılığının daha fazla olduğu, bu bebeklerden 56’sının dahil edildiği uzun süreli izlemde ise liberal transfüzy- yon uygulanan grupta daha kötü nörokognitif sonuçlar ile daha yüksek beyn hacmi olduğu gösterilmiştir. Libe- ral gruptaki bebeklerde EPO salınımının baskalanması...
sonuç EPO’nun nöroprotekif etkinliğinin azalmasına ikinci kökü nörogelisimsel sonuçların geliştigi hipotezi öne sürülmüştür (8, 9). Aşırı düşük doğum ağırlığı 451 bebeğin altındaki “The Premature Infants in Need of Transfusion (PINT)” çalışmásında ise transfüzyona postnatal yaş ve solunumsal duruma göre karar verilmiştır ve kısıtlı grupta transfüzyon sıkılığının azaldığı ve 2 grup arasında sağ kalmış oranını, premature retinopatisi (ROP), bronkopulmoner displaz (BPD) ve beyin hasarı gibi morbiditeler açısından fark olduğu ancak kısıtlı grupta bebeklerde 18-21 aylık dönemde bilişsel gelişimin olduğu saptanmıştır (10). Bu çalışmalardan sonra 2011 yılında yayınlanan Cochrane meta-analizinde kısıtlı politikalara ilski transfüzyon sıkılığında azalma olduğu, daha düşük Hb düzeyleri ele edildiği, taburculukta ya da uzun dönem izlemde mortalite ve morbidite sıralarında artış olduğu saptanmıştır (11). Bu nedenle bu konuda daha geniş sayılırı randomize çalışmalara ihtiyaç duyulmaktadır.

Eritrosit transfüzyon önerileri

Tüm bu bilgiler ışığında, term ve preterm bebeklerde transfüzyon kararı vermek için net bir Hb değeri bulunmaktadır, bunun belirlenmesinde oksijen gereksinimi, mekanik ventilatörde olma durumu ve postnatal yaşın önemli olduğu düşünülmektedir. Pek çok kilavuzda term ve preterm bebekler için eritrosit transfüzyonu eşik Hb değerleri net olarak belirtilmemiştir. Ancak, term ya da premature bir bebekte %20’sinin üzerinde kan kaybı varsas, %10-%20 kan kaybına eşlik eden aksi doz gibi oksijen dahilinde yetersizlik durumunda ya da kanamanın devam ettiği akıt kan kaybı gibi gadet durumlarında acil transfüzyon uygulanmalıdır. Son dört günde >120 kcal/kg/gün alırken kilo alımı <10g/kg/gün ise, Laktat ≥2,5 mEq/L ya da akut metabolik asidoz (pH< 7.20) veya dört gündede >120 kcal/kg/gün alınan kilo alımı <10g/kg/gün ise, S103 72 saatte major cerrahi yapılacaksa, term ya da preterm bebekte klinik semptomlar ile birlikte doku oksijenlenmesinin acil düzeltilmesi gerektiğini durumlarda eşik değerden başmış transfüzyon düşünülmesi önerilmiştir. Benzer şekilde semptomatik anemi varlığında transfüzyon işleminin eşik Hb değerinden başmış gereksinimi belirtir. Endojen eritropoetin uygulanın hastalarda ise transfüzyon için aynı kilavuzun kullanılamasına ek olarak retickülosit sayısı, Hb düşük hızı, postnatal yaş, O₂ gereksinimi gibi ölçütlerin dikkate alınması önemi olmuştur.

Eritrosit transfüzyonu ile hedeflenen Hb/Hct değerlerinin sırası ile 12 g/dL ve %35 olması, anemi ne kadar derin ve semptomatikse o derece normal Hb değerinin hedeflenmesi gerektiğini belirtmiştir. Konjenital siyanoz hastalarında serum EPO'nun normal olduğu takdirde EPO'nun nöroprotekif etkinliği belirtilmiştir. Benzer şekilde engel oksijenli라고 düşünen hastaları term ve preterm bebeğin oksijen gereksinimi gibi ölçütlerin dikkate alınması önemlidir.

Tablo 1. Türk Neonatoloji Derneği eritrosit süsuspansiyonu transfüzyonu için eşik Hb değerleri

Postnatal yaş	Solunum desteği	Solunum desteği minimal ya da yok, Hb gr/dL
<1 hafta	12	10
1-2 hafta	11	9
2-3 hafta	10	8,5
≥ 4 hafta	9	7

Bu sınırların altındağı değerlerde hasta semptomlar açısından hasta başına kan transfüzyonu uygulanmalıdır.

Türkiye’de Türk Neonatoloji Derneği tarafından yenidoğanda transfüzyon ilkeleri rehberi (12)

Turk Neonatoloji Derneği tarafından yayınlanan “Kan Ürünleri Transfüzyon Rehberi Önerisi”ne göre:

Hastane yataşı santral Hct/Hb ölçümü, sonrasında gerekmedikçe rutin kan alınmaması, akut kan kaybı olmadıkça transfüzyon için viszitte ortak karar alınması,

Term ya da preterm bebek klinik semptomlara iliskili doku oksijenlenmesinin acil düzeltilmesi gerektiğini durumlarda eşik Hb değerinden başmış transfüzyon düşünülmesi önerilmiştir. Benzer şekilde semptomatik anemi varlığında transfüzyon işleminin eşik Hb değerinden başmış gereksinimi belirtir. Endojen eritropoetin uygulanın hastalarda ise transfüzyon için aynı kilavuzun kullanılamasına ek olarak retickülosit sayısı, Hb düşük hızı, postnatal yaş, O₂ gereksinimi gibi ölçütlerin dikkate alınması önemi olmuştur.

Eritrosit transfüzyonu ile hedeflenen Hb/Hct değerlerinin sırası ile 12 g/dL ve %35 olması, anemi ne kadar derin ve semptomatikse o derece normal Hb değerinin hedeflenmesi gerektiğini belirtmiştir. Konjenital siyanoz hastalarında serum EPO’nun normal olduğu takdirde EPO’nun nöroprotekif etkinliği belirtir. Benzer şekilde engel oksijenli olarak düşünen hastaları term ve preterm bebeğin oksijen gereksinimi gibi ölçütlerin dikkate alınması önemlidir.

Eritrosit transfüzyonu ile hedeflenen Hb/Hct değerlerinin sırası ile 12 g/dL ve %35 olması, anemi ne kadar derin ve semptomatikse o derece normal Hb değerinin hedeflenmesi gerektiğini belirtmiştir. Konjenital siyanoz hastalarında serum EPO’nun normal olduğu takdirde EPO’nun nöroprotekif etkinliği belirtir. Benzer şekilde engel oksijenli olarak düşünen hastaları term ve preterm bebeğin oksijen gereksinimi gibi ölçütlerin dikkate alınması önemlidir.
1. Işınlama sonrasında antiagüül ve ek solüsyon içeren steril torbalara alınmaktadır. Bu amaçla sıklağa glikoz, adenin ve bazı durumlarda mannotol karışımı içeren ek solüsyonlar kullanılmaktadır. Sitrat-fosfat-dekstroz içeren eritrosit süspansiyonlarının yarım ömrü 21 gün, sitrat-fosfat-dekstroz-adenin (CPDA-1) içerenlerin beş gün ve ek solüsyon içerenlerin ise 42 gündür. Toplamda 10 mL/kg CPDA-1 içeren eritrosit süspansiyonu transfüzyonu ile alıcı bebeğin Hct değerinde %9–10, ek solüsyon içeren eritrosit süspansiyonu transfüzyonu ile %7–8’lik artış olmaktadır. Hazırlanacak eritrosit süspansiyonunun Hct değeri %50–60 olmalıdır (12–14).

2. Yenidoğan bebeklerin transfüzyonunda lösositi azaltılması ve CMV pozitifliği yüksek oranda lökosit azaltılması işlemi uygulanmıştır. Bu işlem, enfeksiyon önlenmesi amaçlı olup, antikor taraması pozitif olan bebeklere uygulanan ve CMV enfeksiyonu nedeniyle önerilir. Ancak, potasyum yüklenmesinden korkulanların 42 gün içinde tüketilmesini önermektedir. Yıkanma işlemi sonrası oda ısısındaki potasyum kaçağı artmaktadır (5, 18).

3. Işınlama işleminden lenfosit viabilitesinin azaltılması ve CMV enfeksiyonu önlenmesi, eritrosit ve lökosit azaltılması ile sağlanmaktadır. Eritrosit azaltılması işlemi işlemekte ve CMV enfeksiyonu nedeniyle önerilir (5, 18).

4. Kan bileşenlerinin plasma ya da potasyum içeriğinin azaltılması amacıyla antiagüül ve ek solüsyonlar alınmaktadır. Genellikle lösositi azaltma işlemi “pre-deposı” olarak tanımlanır ve bu işlem kan alınmadan önce yapılaması önerilmektedir. Özellikle lösositi azaltma işlemi ile filtrasyonla sitomegalovirus (CMV) geçiş, febril reaksiyon, trombosit alloimmünizasyonu ve immun modülasyonun engellenmesi hedeflenmektedir. Özellikle lösositi azaltma işlemi ile donör lenfositleri inaktive edilerek, hedeflenen gelişimin engellenmesi hedeflenmektedir. Özellikle lösositi azaltma işlemi ile donör lenfositleri inaktive edilerek, hedeflenen gelişimin engellenmesi hedeflenmektedir (5, 18).

5. Kan bileşenlerinin plasma ya da potasyum içeriğinin azaltılması amacıyla antiagüül ve ek solüsyonlar alınmaktadır. Genellikle lösositi azaltma işlemi “pre-deposı” olarak tanımlanır ve bu işlem kan alınmadan önce yapılaması önerilmektedir. Özellikle lösositi azaltma işlemi ile filtrasyonla sitomegalovirus (CMV) geçiş, febril reaksiyon, trombosit alloimmünizasyonu ve immun modülasyonun engellenmesi hedeflenmektedir. Özellikle lösositi azaltma işlemi ile donör lenfositleri inaktive edilerek, hedeflenen gelişimin engellenmesi hedeflenmektedir (5, 18).

6. Antikor taraması negatif ise bebek 4 aylık oluncaya kadar hastane geç tarama yapılamasına gerek yoktur ve ABO ile Rh uygun eritrosit transfüzyonu uygulanmalıdır. Antikor taraması pozitif ise maternal antikorlar ile uyuşmuyor eritrosit süspansiyonu verilir. Özellikle ÇDDA’lı prematüre bebekler başta olmak üzere, tüm yenidoğan bebeklerin transfüzyonu için lösositi azaltılması, CMV enfeksiyonu, ABO ile Rh uyuşmuyor, eritrosit süspansiyonu ile transfüzyon uygulanmalıdır. A ya da B kan grubu olan yenidoğanlara O grubu eritrosit süspansiyonu verilmeden önce anti-A ve anti-B antikor içeren plazmanın ortamdan uzaklaştırılmalı, hemoliz riskinin azaltılması amacıyla transfüzyon öncesi santrifüj uygulanır (17, 18).
Yenidoğanlarda transfüzyon enjektör ya da torbalardaki kanın infüzyon sistemi ile 4 saatlik bir sürede, isıtma gerek olmadan, 10-20 ml/kg dozunda uygulanmalıdır. Özellikle prematüre bebeklere hastanede yatışları esnasında çok sayıda transfüzyon uygulandığı için, faza donör maruziyetini azaltmak için tek bir donörden çok sayıda küçük paketler şeklinde eritrosit süspansiyonu hazırlanmalıdır. Bu hazırlanan süspansiyonlar altı haftaya kadar güvenli bir şekilde saklanarak kullanılmaktadır. Son yıllarda kısıtlayıcı transfüzyon politikaları, enfeksiyona karşı testlerin uygulanması, lökosit filtresi ve ışınlama ve küçük hacimli (10-20 mL/kg) transfüzyon uygulaması ile ÇDDA'lı bebeklerde donör maruziyeti, transfüzyon sayıları ve reaksiyonların sıklığı belirgin azalmıştır (3, 14, 19).

Eritrosit transfüzyonu uygulamasında dikkat edilmesi gereken noktalar

1. Normal koşullar altında 15-20 mL/kg eritrosit süspansiyonu ile transfüzyon sonucu Hb değerinde 2-3 g/dL artış sağlanır. Aneminin düzeltilmesi için yaklaşık 15-20 mL/kg dozundaki transfüzyon yeterli iken, kanamanın düzeltilmesi için daha yüksek miktarlı transfüzyon uygulanabilir. Doğumda ortaya çıkan hemorajik şok tablosunda dozunun doblasyonu, huzura 10-20 mL/kg dozunda transfüzyon yeterli iken, kanamanın düzeltildiği için daha yüksek miktarlı transfüzyon uygulanabilir. Bu hastalarda belirgin kan kaybı (>90-20 kan volümü) öngörüldüğü ya da akut transfüzyona gerekşiminin işaret eden asidoz, oksijenлизasyon bozukluğu, kalp yetmezliği bulguları varsa, 15-20 mL/kg O Rh negatif eritrosit süspansiyonu uygulanmalıdır. Bu nedenle tüm prénatal merkezler acil kullanım için "cross-match" gerekliliği olan O Rh negatif eritrosit süspansiyonu bulundurmalıdır.

2. Transfüzyon sırasında vital bulgular başlangıçta, 15. dakikada, 1. saatte ve sonrasında ise saatlik olarak değerlendirilir, transfüzyon bitiminde ve 1 saat sonrasi tekrar bakılır. Transfüzyon özellikle prefatüre bebeklerde volüm yüküne yol açabileceği için, transfüzyonu edilen miktar toplam svi den düşülecek volüm yüklenmesi önerlenmelidir (3, 14, 19).

Eritrosit transfüzyonu ile ilişkili komplikasyonlar

Günümüzde uygun donör seçimi, tarama, "cross-match", patojen inaktivasyon işlemleri, lókosit filtreler ve şişlama işlemleri ile transfüzyon ilişkili riskler anlaşılmamış ve belirtilmiştir. İmmünomodülyasyon, al-loimmünizasyon, GVHH, transfüzyon ilişkili akciğer hasarasi (TRALI) gibi lókositlerle bağlı yan etkiler, transfüzyon ilişkili enfeksiyonlar, akut volüm ya da elektrolit bozuklukları ile yanış grupla transfüzyon en önemli riskleri oluşturur. Atış, titreme, flushing, ürtiker, taşikardi, hipotansiyon ve şok bulguları transfüzyon reaksiyonunu düşündürmeli, transfüzyon durumunda transfüzyon durdurulmalı, bebek stabilize edilmeli, olay kaydı alınmalı ve laboratuvara örnek gönderilmesi sağlanmalıdır (5, 20). Son yıllarda özellikle prematüre bebeklerde transfüzyon sonrası 48 saat içinde gelişen transfüzyon ilişkili NEK tablosunun sık olarak görüldüğü bildirilir. Benzer şekilde intraventriküler kanama, BPD ve ROP’un da transfüzyon ilişkili olabileceği yönündedir (19). Tüm bu riskler nedeniyle, kötü nörolojik sonuçların önüne geçmek ve bunu belirten belirtileri yaşandığı durumlar için, olayın kayıtlı olup, baby departments bilgilendirilir, örnek gönderilir (5, 21, 22). Tüm bu bilgilerin ışığında her birim; hastanın postnatal yaş, klinik bulguları, solunum/dolaşım desteği ile oksijen gereksinimi ve Hb düşme hızına göre belirlenmiş eşik Hb değerlerine göre konsensus oluşturularak ve uygun beslenme stratejileri gibi önlemlerle başta ÇDDA’lı prematüre bebekler olmak üzere yenidoğanlarda transfüzyon sikiliğinin düzenlenmesine yönelik önlemler birimler tarafından rutin pratik kullanılmaktadır (1, 21, 22).

Transfüzyonun alternatifi var mı?

Son yıllarda canlandırma gerekçesi göstermeyen tüm term ve prematüre doğumlarında kord klemlemelisinin en az 30 sn geciktirilmesi, otolog plasental transfüzyon uygulamaları, EPO ya da darbopoetin kullanımın, plasentadan yataşlarkan ilk kan örneklerinin gönderilmesi, flebotomi yolu ile olan iyatrojenik kan alınmanın azaltılması, kan örneklerinin çalıştırılması ve uygun beslenme stratejisi gibi önlemlerle başta ÇDDA’lı prematüre bebekler olmak üzere yenidoğanlarda transfüzyon sikiliğinin düzenlenmesine yönelik önlemler birimler tarafından genel актуaliteye alınmıştır. Özellikle enteral beslenme ilişkili artışın artması ve oksijen tüketiminin azalması, nitrik oksit aracılığıyla vazoaktive latenttablosunun sık olmaması ve bu bebeklerde mortalitenin daha yüksek olduğu bildirilir. Bu konuyla ilgili son çalışmalar tartışmalı bilgiler vermektedir. Özellikle enteral beslenme ilişkili artışın oksijen tüketiminin artması ve transfüzyonla ilgili tedavi şekilleri, transfüzyonla ilgili enfeksiyonlar, akut volüm ya da elektrasyon bozuklukları ile yanlış grupla transfüzyon en önemli riskleri oluşturmaktadır. Ateş, titreme, flushing, ürtiker, taşikardi, hipotansiyon ve şok bulguları transfüzyon reaksiyonunu düşündürmeli, transfüzyon durumunda transfüzyon durdurulmalı, bebek stabilize edilmeli, olay kaydı alınmalı ve laboratuvara örnek gönderilmesi sağlanması önerilmektedir.
Yenidoğanlarda trombosit transfüzyonu ilkeleri

Yenidoğanlarda transfüzyon amaçlı en sık kullanılan ikinci kan ürünü trombosit süspansiyonlarıdır. Yenidoğan yoğun bakım birimine başvuran hasta bebeklerin yaklaşık %20-35’inde trombositopeni saptanırken, ÇDDA’lı bebeklerde %70’lere varan oranlarda olacak şekilde ve eşlik eden kanama problemleri daha sık görülmektedir.

Trombosit sayısının 150 000/µL ’nin altında olması trombositopeni, 50 000/µL altındaki değerler ciddi trombositopeni olarak tanımlanmaktadır. Yaşamın ilk üç gününde gelişen trombositopeni erken başlangıçlı, dördüncü günden sonra ortaya çıkan ise geç başlangıçlı olarak sınıflandırılmaktadır. Erken başlangıçlı trombositopeninin en sık nedenleri maternal preeklampsi, gebelikin indüklediği hipertansiyon ya da diyabet, intrauterin büyüme geriliği, perinatal enfeksiyonlar, perinatal asfiksi, maternal allo- ya da oto-antikorların transplasental geçişidir. Geç başlangıçlı trombositopeniye en sık postnatal enfeksiyonlar ve nekrotizan enterokolit neden olmaktadır (23).

Ciddi trombositopenisi olan yenidoğanlarda en korkulan komplikasyon major kanama, esas olarak da intrakranial kanamaldır. Major intraventriküler ve periventriküler kanama sıçraması bebeklerde %30 olup, vakaların %75’inde kanama ilk 48 saat içinde gelişmektedir. Yaşıınızda bebeklerin çoğunudaki kanama öncesi trombositopeni olmaması, kanama sonrası trombositopeni ve koagülopati gelişimi tedaviye uygun bir değerdir. Geç başlangıçlı trombositopeniyi en sık postnatal enfeksiyonlar ve nekrotizan enterokolit neden olmaktadır (23).

Ciddi trombositopenisi olan yenidoğanlarda en korkulan komplikasyon major kanama, esas olarak da intrakranial kanamaldır. Major intraventriküler ve periventriküler kanama sıçraması bebeklerde %30 olup, vakaların %75’inde kanama ilk 48 saat içinde gelişmektedir. Yaşıınızda bebeklerin çoğunudaki kanama öncesi trombositopeni olmaması, kanama sonrası trombositopeni ve koagülopati gelişimi tedaviye uygun bir değerdir. Geç başlangıçlı trombositopeniyi en sık postnatal enfeksiyonlar ve nekrotizan enterokolit neden olmaktadır (23).

Yenidoğanda kullanılıacak trombosit süspansiyonu ile ilgili öneriler

1. Trombositopeni tedavisinde kullanılan trombosit süspansiyonları donörlerin tam kanından ayrılan havuzlanmış trombosit süspansiyonu ile donörlerden hücre ayırma tekniği ile elde edilen aferez trombosit süspansiyonu şeklindedir. Aferez yöntemi; bir donörden transfüzyon için yeterli trombosit sayısı ya da diyabet, intramedüller verilerine transplasental geçişidir. Geç başlangıçlı trombositopeniyi en sık postnatal enfeksiyonlar ve nekrotizan enterokolit neden olmaktadır (23).

2. Trombosit süspansiyonu hazırlarken lökosit azalmalıdır ve belirgin olsun. Trombosit ile alloimmünizasyon Riski, enfeksiyon ve reaksiyonların siklığında azalma elde edilmektedir.

3. Trombositlerin ışınlanması ile GVHH gelişimi önlenmektedir.

4. Hazırlanan trombosit konsanterleri beş gün boyunca 22°C’de ajitte saklanarak saklanmalıdır.

5. Eritrosit süspansiyonuna benzer şekilde trombosit süspansiyonları için de CMV seronegatif donör kullanılırlar. Viral hastalık bulaşıcı enfeksiyonları önlemek için tedavide edilebilecek分钟, minor enfeksiyonlarda sebebi letal hemolitik transfüzyon reaksiyonu gelişebilir ve en çok tutulan.

6. Donör taraması ve seroloji testleri normal, ABO ve Rh uyumlu trombosit süspansiyonu 10-20 ml/kg dozunda uygulanabilir. Ancak profilaktik trombosit uygulamasının net bir yaracağı belirlenememektedir, bu nedenle trombosit süspansiyonu ile ilişkili komplikasyonlar yerel durumda tedaviye uygun bir değerdir. Türk Neonatoloji Derneği tarafından trombosit transfüzyonu için önerilen eşik trombosit değerleri Tablo 2'de gösterilmiştir.

Trombosit transfüzyonu ile ilişkili komplikasyonlar

1. Aktif kanaması olan ve ciddi trombositopenisi bulunan yenidoğanlarda trombosit transfüzyonunun yararı tartışılmasız olsa da, günümüzde sıklıkla ciddi trombositopeni olan hastalarda major kanamaların önlenmesi amacı ile profilaktik trombosit transfüzyonu uygulanmaktadır. Ancak profilaktik trombosit uygulamasının net bir yaracağı belirlenememektedir, bu nedenle trombosit süspansiyonu ile ilişkili komplikasyonlar yerel durumda tedaviye uygun bir değerdir. Türk Neonatoloji Derneği tarafından trombosit transfüzyonu için önerilen eşik trombosit değerleri Tablo 2’de gösterilmiştir.

2. Trombositler kan merkezinden transfüzyondan hemmen önce uygulanmalıdır, gelir gelmez transfüzyona başlanmalıdır.

3. Transfüzyon öncesi, sırasında ve sonrası vital bulgular takip edilmelidir.

4. Trombosit transfüzyonu için ayrı bir damar yolu kullanılmalıdır. Yavaş infüzyon hızı ile yapılmalıdır, reaksiyon gelişmesi oldukça azorulur ve saf hastalarda 1 saat içinde tamamlanmalıdır. Transfüzyonunun etkinliği için 1 saat sonra ve 24 saat sonra olmak üzere en az iki defa trombosit sayısı kontrol edilmelidir.

Trombosit transfüzyonu ile ilişkili komplikasyonlar

Trombosit transfüzyonu ile ilişkili komplikasyonlar Trombosit transfüzyonu ile ilişkili önemli riskler enfeksiyon, alloimmünizasyon, ates, hemolitik ve alerjik...
reaksiyonlar, transfüzyon ilişkili akciğer ve bağırsak yaralanmalarıdır. Sıklıkla yanlış kan grubundan trombosit verilmesi ya da şişləmından uygulama gibi komplikasyonlar bildirilmiştir. En sık görülen komplikasyon bakteriyel enfeksiyon olup, trombosit süspansiyonunun oda ısısında saklanması nedeni ile eritrosit süspansiyonunu riski daha fazladır. Trombosit süspansiyonları platelet aktive edici faktör gibi biyoaktif faktörler içerdiği için inflamatuar hasara neden olabilir ya da var olan inflamatuarı artırabilir. Her bir trombosit süspansiyonu ile donör maruziyetinde artış vardır. Çoklu trombosit süspansiyonu transfüzyonunun artmış mortalite ile de ilişkili olduğu gösterilmiştir (25).

Günümüzde trombosit transfüzyonlarının büyük çoğunluğu profilaktik olarak uygulanmakta olup, bu yaklaşımın yarar ve zararları tartışmalıdır. Bu nedenle, belirtilen eşik trombosit sayılara ve hastanın klinik durumuna göre transfüzyonunun gerçekleştirilmesi, transfüzyon sıklığının azaltılması ve olası komplikasyonların önlenmesi amaçlanmalıdır. Trombosit sayısı yerine trombosit kitlesi kullanımı için daha fazla çalışmaya ihtiyaç duyulmaktadır.

Doz	Uygulanmamak gereken durumlar
<20 000/µL	Tüm bebekler
20 000-49 000/µL	<1 000 g ADDA'lı bebek*
	Hasta bebek
	Eğlilik eden koagülopati
	Ciddi morbidite (evre 3-4 IVK, NEK, sepsis)
	İnvasiv girişim
	Minör kanama
50 000-100 000/µL	Aktif/major kanama
	DİK
	Preoperatif/postoperatif
>100 000/µL	ECMO
	Nöroşirürji operasyonları

Doz	Endikasyon
10-15 ml/kg	Kanama ve koagülopati (K vitamini eksikliği, DİK, koagülasyon faktörlerinin konjenital eksiklikleri vb.),
	İnvasiv işlem uygulanacak ya da kanayan bir hastada PT, aPTT değerleri yaşa göre normal değerinden 1,5 kat daha fazla olduğu durumlar
	Uygulanmamasi
	Kanama olmaksızın pihtlaşma testlerinin düzeltmesi amacı ile,
	Sepsis ve RDS’de adjuvan tedavi,
	Hipotansiyonda volüm genişletici olarak,
	Polisitemide kısmi kan değişimi amacı ile,
	Hipotermi sırasında canan olmaksızın gelişen koagülopatide,
	IVK’ın önlenmesi için profilaksi amacı ile.

ADDAD: aşırı düşük doğum ağırlıklı; DİK: dissemine intravasküler koagülasyon; ECMO: “extracorporeal membrane oxygenation”; IVK: intraventriküler kanama; NEK: nekrotizan enterokolit

Tablo 3. Türk Neonatoloji Derneği taze donmuş plazma uygulama önerileri

Taze donmuş plazma (TDP); koagülasyon kaskındaki pek çok prokoagülen ve inhibitör bileşik, akut faz proteini, immunoglobulin ve albümin içermektedir. Çalışmalarda TDP’nin esas olarak aktif kanama ve ilişkili koagülopati durumunda faydalı olabileceği gösterilmiş olsa da, yenidoganların %60’ından fazlasında uygun olmayan endikasyon ile profilaktik amaçlı uygulanmaktadır (23). Son yıllarında dissemine intravasküler koagülasyon karaciğer yetmezliği gibi çok faktör eksikliği, tek bir pihtlaşma faktörü ya da K vitamini eksikliği ile seyreden koagülasyonu eşlik eden kanamalarda TDP verilmesi önerilmektedir. Premature bebeklerde morbidite ve mortalitenin önlenmesi, polisitemi amaçlı yapılan kısmi kan değişikliği, sepsis ya da RDS tedavisi, hipotansiyonda hacim replasmanı amacı ile TDP kullanımı önerilmektedir. Yenidoğanda anormal koagülasyon testleri klinik olmaksızın tek başına kanamanın belirtecisi olarak kullanılamamalıdır. Bu nedenle kanaması olmayan bebeklerde koagülasyon testlerinin düzeltmesi için TDP verilmesi de kanıtta dayalı bir uygulama değildir. Sonuçta, yenidoganlar TDP sadece kanama ve koagülopati varlığında kullanmalıdır (26).

Doz	Endikasyon
10-15 ml/kg	Kanama ve koagülopati (K vitamini eksikliği, DİK, koagülasyon faktörlerinin konjenital eksiklikleri vb.),
	İnvasiv işlem uygulanacak ya da kanayan bir hastada PT, aPTT değerleri yaşa göre normal değerinden 1,5 kat daha fazla olduğu durumlar
	Uygulanmamasi
	Kanama olmaksızın pihtlaşma testlerinin düzeltmesi amacı ile,
	Sepsis ve RDS’de adjuvan tedavi,
	Hipotansiyonda volüm genişletici olarak,
	Polisitemide kısmi kan değişimi amacı ile,
	Hipotermi sırasında kanama olmaksızın gelişen koagülpatide,
	IVK’ın önlenmesi için profilaksi amacı ile.

ADDAD: aşırı düşük doğum ağırlıklı; DİK: dissemine intravasküler koagülasyon; ECMO: “extracorporeal membrane oxygenation”; IVK: intraventriküler kanama; NEK: nekrotizan enterokolit
Söz konusu transfüzyonlar yenidoğanlarda sık olarak uygulanmaktadır. Kanıt dayalı verilerin tersiz olmasından dolayı eritrosit süspansiyonu için eşik Hb değerleri, klinik semptomlar ve doku oksijenizasyonuna göre, trombosit süspansiyonu için trombosit sayısı ya da kitlesi ile kanama bulgularına göre transfüzyona karar verilmelidir. Transfüzyonda mutlaka hasta açısından kar/zarar dengeye alınması gerekmektedir. Ülkemiz Transfüzyondaki mutlaka hasta açısından kar/zarar dengeye alınması ile YDYBB’lerdeki transfüzyon sayısının ve endikasyonlarının kısıtlanacağı düşünülmektedir. Ülkemiz Türk Neonatoloji Derneği Kan Ürünleri Transfüzyon Rehberi Önerilerinin her bir klinik tarafından uygulanması gerekmektedir. Ülkemiz Türk Neonatoloji Derneği Kan Ürünleri Transfüzyon Rehberi Önerilerinin her bir klinik tarafından uygulanması ile YDYBB’lerdeki transfüzyon sayısının ve endikasyonlarının kısıtlanacağı düşünülmektedir.

Çıkar Çatışması: Yazarlar çıkaran çatışması bildirmemeleridir.

Mali Destek: Yazarlar bu çalışma için mali destek almadıklarını beyan etmişleridir.

Conflict of Interest: No conflict of interest was declared by the authors.

Financial Disclosure: The authors declared that this study has received no financial support.

Kaynaklar

1. Colombatti R, Sainati L, Trevisanuto D. Anemia and transfusion in the neonate. Semin Fetal Neonatal Med 2016; 21: 2-9.
2. Strauss RG. Anemia of prematurity: pathophysiology and treatment. Blood Rev 2010; 24: 221-5.
3. Venkatesh V, Khan R, Curley A, New H, Stanworth S. How we decide when a neonate needs a transfusion. Br J Haematol 2013; 160: 421-33.
4. Banerjee J, Aladangady N. Biomarkers to decide red blood cell transfusion in newborn infants. Transfusion 2014; 54: 2574-82.
5. Nickel RS, Josephson DC. Neonatal transfusion medicine: five major unanswered research questions for the twenty-first century. Clin Perinat 2015; 42: 499-513.
6. Bowen JR, Patterson JA, Roberts CL, Isbister JP, Irving DO, Ford JB. Red cell and platelet transfusions in neonates: a population-based study. Arch Dis Child Fetal Neonatal Ed 2015; 100: 411-5.
7. van Hoften JC, Verhagen EA, Keating P, ter Horst HJ, Bos AF. Cerebral tissue oxygen saturation and extraction in preterm infants before and after blood transfusion. Arch Dis Child Fetal Neonatal Ed 2010; 95: F352-8.
8. Bell EF, Strauss RG, Widness JA, et al. Randomized trial of liberal versus restrictive guidelines for red blood cell transfusion in preterm infants. Pediatrics 2005; 115: 1685-91.
9. McCoy T, Conrad AL, Richman L, Lindgren S, Nopoulos P, Bell EF. Neurocognitive profiles of preterm infants randomly assigned to lower or higher hematocrit thresholds for transfusion. Clin Neuropsychol 2011; 17: 347-67.
10. Kirpalani H, Whyte RK, Andersen C, et al. The premature infants in need of transfusion (PINT) study: a randomized, controlled trial of a restrictive (low) versus liberal (high) transfusion threshold for extremely low birth weight infants. J Pediatr 2006; 149: 301-7.
11. Whyte R, Kirpalani H. Low versus high haemoglobin threshold for blood transfusion for preventing morbidity and mortality in very low birth weight infants. Cochrane Database Syst Rev 2011; 9: CD000512.
12. Fasano R, Luban NL. Blood component therapy. Pediatr Clin North Am 2008; 55: 421-45.
13. Strauss RG. Blood banking issues pertaining to neonatal red blood cell transfusions. Transfus Sci 1999; 21: 7-19.
14. Whyte RK, Jefferies AL, Canadian Pediatric Society, Fetus and Newborn Committee. Red blood cell transfusion in newborn infants. Paediatr Child Health 2014; 19: 213-22.
15. Galal SA. Therapeutic techniques. Selection of blood components for neonatal transfusion. NeoReviews 2005; 6: e351-5.
16. Girelli G, Antoncechi S, Casadei AM, et al. Recommendations for transfusion therapy in neonatology. Blood Transfus 2015; 13: 484-97.
17. Moroff G, Leitman SF, Luban NL. Principles of blood irradiation, dose validation and quality control. Transfusion 1997; 37: 1084-92.
18. des Santos AM, Trinande CE. Red blood cell transfusions in the neonate. NeoReviews 2011; 12: e13-9.
19. Hensch LA, Indrikovs AJ, Shattuck KE. Transfusion in extremely low birth weight premature neonates: current practice trends, risks and early interventions to decrease the need of transfusion. NeoReviews 2015; 16: e287-96.
20. Stainsby D, Jones H, Wells AW, Gibson B, Cohen H, SHOT Steering Group. Adverse outcomes of blood transfusion in children: analysis of UK reports to the serious hazards of transfusion scheme 1996-2005. Br J Haematol 2008; 141: 73-9.
21. Christensen RD, Carroll PD, Josephson CD. Evidence-based advances in transfusion practice in neonatal intensive care units. Neonatology 2014; 106: 245-53.
22. Ohls RK. Transfusions in the preterm infant. NeoReviews 2007; 8: e377-86.
23. Stanworth SJ. Thrombocytopenia, bleeding and use of platelet transfusions in sick neonates. Hematology Am Soc Hematol Educ Program 2012; 2012: 512-6.
24. Del Vecchio A, Motta M, Radicioni M, Christensen RD. A consistent approach to platelet transfusion in the NICU. J Matern Fetal Neonatal Med 2012; 25: 93-6.
25. Cremer M, Sallmon H, Kling PJ, Buhrer C, Dame C. Thrombocytopenia and platelet transfusion in the neonate. Semin Fetal Neonatal Med 2016; 21: 10-8.
26. Motta M, Del Veggio A, Chirico G. Fresh frozen plasma administration in the neonatal intensive care unit: evidence-based guidelines. Clin Perinat 2015; 42: 639-50.