Environmental Impacts on Male Reproductive Development: Lessons from Experimental Models

Anne Jorgensen\(^a\) Terje Svingen\(^b\) Harriet Miles\(^c\) Tarini Chetty\(^c\)
Jan-Bernd Stukenborg\(^d\) Rod T. Mitchell\(^c,e\)

\(^a\)Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark; \(^b\)Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark; \(^c\)Royal Hospital for Children and Young People, Edinburgh, UK; \(^d\)NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; \(^e\)MRC Centre for Reproductive Health, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, UK

Keywords

Endocrine disrupting chemicals · Endocrine disruptors · Male reproduction · Testis · Testicular dysgenesis syndrome · Disorders of sex development · Environment

Abstract

Background: Male reproductive development in mammals can be divided into a gonadal formation phase followed by a hormone-driven differentiation phase. Failure of these processes may result in Differences in Sex Development (DSD), which may include abnormalities of the male reproductive tract, including cryptorchidism, hypospadias, infertility, and testicular germ cell cancer (TGCC). These disorders are also considered to be part of a testicular dysgenesis syndrome (TDS) in males. Whilst DSDs are considered to result primarily from genetic abnormalities, the development of TDS disorders is frequently associated with environmental factors.

Summary: In this review, we will discuss the development of the male reproductive system in relation to DSD and TDS. We will also describe the experimental systems, including studies involving animals and human tissues or cells that can be used to investigate the role of environmental factors in inducing male reproductive disorders. We will discuss recent studies investigating the impact of environmental chemicals (e.g., phthalates and bisphenols), lifestyle factors (e.g., smoking) and pharmaceuticals (e.g., analgesics) on foetal testis development. Finally, we will describe the evidence, involving experimental and epidemiologic approaches, for a role of environmental factors in the development of specific male reproductive disorders, including cryptorchidism, hypospadias, and TGCC. **Key Messages:** Environmental exposures can impact the development and function of the male reproductive system in humans. Epidemiology studies and experimental approaches using human tissues are important to translate findings from animal studies and account for species differences in response to environmental exposures.

Development of Male Gonad and Reproductive Tract

In humans, development of the male gonads and the reproductive tracts takes place during 2 key phases: an initial phase of gonadal sex determination and testis dif-
Environmental Impacts on Male Reproductive Development

Testosterone promotes differentiation of the Wolffian duct into epididymis, vas deferens, and seminal vesicles and, along with INSL3, contributes to testicular descent [14]. Testosterone is converted to its more potent product dihydrotestosterone by the enzyme 5-alpha reductase in androgen-sensitive target tissues, where it acts on the androgen receptor to prompt masculinization of the external genitalia and the body more generally [15–17]. Testosterone is also important for development of secondary sexual characteristics during puberty and for supporting sperm production in adulthood. In humans and other primates, there is also a critical “backdoor pathway” where other organs such as the placenta contribute to androgen production [16, 18].

DSD and TDS

The descriptive term Differences in Sex Development (DSD) refers to a heterogeneous group of congenital conditions in which chromosomal, gonadal, or anatomical sex development is atypical [19]. Many conditions can be traced to specific gene mutations that cause the pathophysiological manifestations of a DSD.

The subcategory 46,XY DSD refers to a group of disorders characterized by an XY karyotype and includes the developmental disorders of testicular development, complete gonadal dysgenesis, partial gonadal dysgenesis, and testicular regression syndrome. Abnormal testicular development, termed testicular dysgenesis, affects the function of the gonad. Disturbed Leydig cell differentiation and function lead to decreased androgen production, ultimately affecting the development of the external genitalia and testicular descent, whilst impaired Sertoli cell function can result in the persistence of Mullerian structures due to a reduction in AMH. Disturbed Sertoli and Leydig cell function can also result in impaired germ cell maturation and subsequent infertility. In addition, individuals with 46,XY DSD have an increased risk of developing testicular germ cell cancer (TGCC) as a result of the presence of y-chromosome material [20].

Complete gonadal dysgenesis is characterized by normal female external genitalia, completely underdeveloped gonads, no sperm production, and the presence of normal Mullerian structures. Partial gonadal dysgenesis is characterized by external genitalia with mild to severe penoscrotal hypospadias with or without chordee, dysgenetic testis, reduced to no sperm production, and Mullerian structures that range from absent to fully developed uterus and fallopian tubes.
Causative genes involved in the developmental pathway of testicular formation have been identified in 46,XY DSD, including: SRY (deletion or sequence variant), NR5A1 (SF1; sequence variant), SOX9 (sequence variant), NROB1 (DAX1 duplication), and WNT4 (duplication) (reviewed in [21–24]). Genetic causes of DSD may also result in additional non-reproductive phenotypes as a result of additional systemic roles of the genes involved. Due to its role in chondrocyte differentiation, SOX9 loss of function mutations lead to a combined phenotype of 46,XY DSD gonadal dysgenesis and campomelic dysplasia, a syndrome characterized by various severe skeletal malformations [25–27]. A molecular diagnosis is typically made in <40% of cases of 46,XY DSD, although a recent report describes a molecular diagnosis in >60% of cases [24]. The impact of abnormalities in genes such as NR5A1 on phenotype can vary considerably even within families with the same mutation suggesting interplay between other factors such as modulating genes or environmental factors.

Testicular Dysgenesis Syndrome

Testicular dysgenesis syndrome (TDS) describes the observed association between poor semen quality, testicular cancer, undescended testis and hypospadias, and proposes a common link to disrupted foetal testis development or function [28]. Epidemiologic studies show that cryptorchidism, impaired spermatogenesis, hypospadias, and testicular cancer are associated as risk factors for one another [29], which may suggest a common origin. Testicular dysgenesis has been demonstrated in biop-

![Fig. 1. Overview of TDS and DSD. Genetic (including causative mutations and epigenetic factors) and in utero environmental factors may impact on the development of these common male reproductive disorders. Note the overlap in clinical features of these 2 entities. TDS, testicular dysgenesis syndrome; DSD, Differences in Sex Development.](image-url)
sies taken from the contralateral testis of men with testicular cancer and in some infertile men, which indicates a biological link between these disorders. TDS may be attributed to environmental exposure, genetic factors, intrauterine growth disorders, and lifestyle factors that affect testicular development [30]. There is evidence that the prevalence of TDS conditions are increasing, and Scandinavian databases have documented a decline in fertility and sperm quality [31] and an increasing demand for ICSI. Testicular cancer incidence has doubled every 20–30 years in many populations [32] and is associated with reduced fertility. Cryptorchidism and hypospadias are common genital birth defects, the incidence of which shows wide geographic variation and trends towards an increase in cases have been reported in several countries, as further discussed in later sections.

The overlap between clinical features of 46,XY DSD and individuals with TDS disorders suggest that there may be some common factors involved in their aetiology, and shared mechanisms that mediate disturbance of testicular development and function during foetal gonadal development. Furthermore, the phenotypic variation in individuals with the same XY DSD causing gene mutations, combined with the increasing prevalence of TDS, indicates that adverse environmental factors are likely to influence the development of DSD and TDS (Fig. 1).

Environmental Factors

Environmental factors are recognized to play an important part in the development of reproductive disorders in animals and human [33]. This may include exposure to ubiquitous environmental chemicals through direct contact or ingestion in food and drink (e.g., phthalates and bisphenols), exposures relating to lifestyle factors (e.g., maternal smoking), or exposure to medicinal agents (e.g., pharmaceuticals).

Environmental Chemicals, Pharmaceuticals, and Lifestyle Factors

Early descriptions of associations between exposure to environmental chemicals and impacts on reproductive development came largely from studies reporting effects on wildlife exposed to, for instance, persistent organic pollutants. Strong associations were demonstrated in several species of mammal, birds, and reptile (reviewed in [34]). As an example, evidence for endocrine disruption leading to male reproductive abnormalities was reported in alligators following a pesticide spill in Lake Apopka, Florida in 1980 [35]. Alligators exposed to pesticides had a 25% reduction in penile size and a 70% reduction in testosterone levels, compared with similar sized alligators from Lake Woodruff, also in Florida. Interestingly, subsequent studies on these alligator populations revealed that the size of the phallus was not correlated to the levels of the pollutants (pesticides and polychlorinated biphenyls) in the juvenile period, leading the authors to hypothesize that reproductive disorders may be the result of exposure to pollutants during foetal development [36]. In the following years, and further evidence for this hypothesis was provided by an increasing literature in laboratory settings, relying heavily on common mouse and rat strains. In the early 1990s, endocrine disrupting chemicals were proposed to contribute to the increasing incidences of male reproductive disorders [37]. Then, at the turn of the century, the mounting evidence for a causative link between early life exposure to endocrine disrupters and male reproductive disorders lead to the elaboration of the TDS hypothesis [28].

The importance of androgen signalling during foetal life in programming male reproductive development had been appreciated since the mid-1900s following seminal work by the late Alfred Jost. A more formalized and elaborate characterization of how and when androgen action is pivotal during development was highlighted by the identification of the masculinization programming window (MPW) in rats, limiting the influence of androgen signalling to key programming windows for specific target tissues [38]. By perturbing androgen production or action during the MPW in rats, which corresponds to e15.5–e19.5 (considered to correspond to around 8–14 weeks gestation in humans), the male offspring will present with male reproductive disorders [38, 39].

The number of chemicals now having been shown to induce male reproductive disorders in animal models is high and includes phthalates, bisphenols, pesticides, and more, as shown in Figure 2. In addition to these industrial chemicals, there has also been an increasing concern about pharmaceuticals, not least non-prescription drugs. This includes analgesics; the most commonly used pharmaceutical agents during pregnancy, many of which are available over the counter [40]. Also, there are increasing concern about anti-fungal medication (theazole fungicides), as they can be potent inhibitors of steroidogenic enzymes critical for testosterone production in the human foetal testis [41, 42]. A challenge with both non-prescription analgesics and fungicides is that their use is poorly monitored, with potential high exposure doses if used excessively during pregnancy. This is of concern in
itself, but increasingly so when considering the ubiquitous background exposure to environmental chemicals which potentially contribute to a high cumulative load of chemicals substances with shared modes of action and may cause detrimental health effects [43, 44].

Whilst the majority of studies investigating the effects of environmental factors on male reproductive development have focused on environmental chemicals, the impact of maternal lifestyle has also been implicated in the development of these disorders. This includes smoking, alcohol, diet, and obesity (Fig. 2). Although some of these lifestyle factors are also “chemical exposures” (e.g., smoking [39]), they nevertheless represent a complex parameter for possible external insults to male reproductive development. Much of the evidence for lifestyle factors is derived from human epidemiological studies, but there are also a number of studies on exposure to alcohol and components of cigarette smoke on human tissues (reviewed in [45]) and animal models. Studies investigating the impact of diet and obesity largely involve in vivo exposures or epidemiologic approaches, although distinguishing between specific dietary elements, chemicals used in food packaging (e.g., bisphenols) and the metabolic consequences of obesity, itself can be challenging when trying to determine causation for male reproductive disorders.

Evidently, the potential impact of specific environmental chemicals, lifestyle factors, and pharmaceutical exposures on male reproductive development are many and concerning. Thus, examples of studies examining effects of environmental factors and pharmaceuticals using experimental models will be discussed in more detail in subsequent sections of this review.

Models to Determine Impacts on Sex Development

Despite the similarities between human, mouse, and rat foetal testicular development and function – including processes of sex determination, sex-specific differentiation of gonads and germ cell development – there are also some important differences between rodent and human. This includes differences in regulation of foetal steroidogenesis, timing of testicular descent, and germ cell differentiation from gonocyte to spermatogonia [46–48]. It is therefore essential to validate findings from rodent studies, in relation to basic aspects of testicular development and function and consequences of exposure to environmental factors, using experimental systems that involve human tissues and cells. Several experimental models have been established in different species, including in vitro based models, such as cell lines, primary cell culture, and ex vivo culture of intact fragments of foetal testicular tissue. In addition, xenograft models can be used in which cells organoids or intact tissue fragments are transplanted.
Environmental Impacts on Male Reproductive Development

Experimental Models

In vitro Culture Systems

Testicular in vitro culture systems include the use of immortalized cell lines and dissociated primary testicular cell populations, which are most often set-up in a 2D-system, with cells growing either attached or in suspen-

Fig. 3. Illustration of research tools, involving humans, human tissues, or animal models to investigate environmental impacts on male reproductive development. Clinical outcome measures are indicated in red, whilst histologic and biochemical measures are indicated in blue. TDS, testicular dysgenesis syndrome.
sion. Alternatively, dissociated testicular cells can be cultured in vitro on a supportive matrix, such as soft agar, Matrigel, or artificial scaffolds in a 3D-system [49–51]. To date, in vitro culture systems have not been extensively used to study basic aspects of human foetal testis development and potential impact of environmental exposures. This is mainly due to (1) the lack of available immortalized cell lines from human foetal testis and (2) the limitations related to the loss of interactions between different testicular cell types, which are considered to be essential to investigate normal testicular development and function. In vitro cell culture of testicular cells in rodents and humans, including germ cells, Sertoli cells, Leydig cells, and peritubular myoid cells, as well as malignant germ cells, have all been reported with some studies using co-culture of several cell types to compensate for the lack of cell interactions [53–57]. Although, promising results could be obtained using dissociated testicular cell suspensions from juvenile rodents, showing the potential of these cells to reaggregate as testicular organoids, progression of germ cell differentiation has not been reported, whilst organoid formation was not obtained using tissue samples from adult animals [55, 56].

Another difficulty, besides the lack of a functional in vitro system, is that no well-characterized immortalized human foetal testicular cell lines exist. This is likely due to the general notion that testicular cells do not culture well in single-cell suspension even when isolated from foetal testis that are at a developmental time point where most testicular cell types are proliferating. This is particularly evident for germ cells that are difficult to culture outside the somatic niche, most likely providing an explanation for the unsuccessful attempts to establish immortalized cell lines of non-malignant human testicular germ cells.

In contrast to the difficulty in establishing non-malignant testicular germ cell lines, a number of immortalized human cell lines from testicular germ cell tumours (TGCT) have been established (reviewed in [58]). The majority originate from embryonal carcinoma (or metastasis thereof) although few seminoma-derived cell lines exist. Consequently, these cell lines preserve some embryonic germ cell characteristics that are due to the foetal origin of testicular germ cell tumour precursor cells, termed germ cell neoplasia in situ (GCNIS), which are considered to be developmentally arrested foetal gonocytes [59]. Consequently, studies have primarily relied on the embryonal carcinoma-derived cell lines as a proxy for human foetal gonocytes, which may be an acceptable strategy if cautiously interpreted. Several in vitro studies have examined the effects of environmental chemicals and pharmaceuticals in the embryonal carcinoma-derived cell line NTera2 as a proxy for human foetal germ cells. For example, cytotoxic effects of tributylin, which have been used as a biocide in anti-fouling paint, have been found in NTera2 cells. This includes inhibition of cell growth and differentiation [60], induced mitochondrial fragmentation [61], and G2/M cell cycle arrest [62] after exposure to nanomolar levels. Also, the effects of arsenic exposure (0.01–5 μM) have been examined in NTera2 cells, which resulted in altered RAR-dependent gene transcription [63]. NTera2 cells have also been used to examine effects of pharmaceutical drugs, including therapeutically relevant doses of the analgesic’s paracetamol (acetaminophen) and ibuprofen. This resulted in reduced numbers of NTera2 cells, reduced transcriptional expression of pluripotency factors, and altered expression of epigenetic regulators [64].

Importantly, the use of immortalized testicular cancer cells does not require access to fresh human foetal testis tissue, which can be challenging to obtain. However, there are a number of important limitations with this type of in vitro culture, including in particular the lack of signalling from the other cell types present within the testicular niche, ultimately resulting in loss of original cell type characteristics in these cell lines. Moreover, immortalized cell lines are often prone to acquisition of additional genetic mutations that favour proliferation with increasing time of culture. Thus, in vitro cell culture of dissociated primary cells obtained from foetal testis tissue constitutes an attractive alternative strategy. With this approach, an initial experimental step to dissociate the testicular tissue into a single cell suspension is required. The cells are then either cultured directly in cell medium or subjected to an enrichment step in order to isolate or increase the number of a specific cell type within the suspension. This can be achieved by fluorescent-activated cell sorting or by specifically optimizing culture conditions to propagate the cell type of interest. Few studies have used culture of single cell suspension from foetal testicular samples, including male germ cells [65] and Sertoli cells [66]. A recent study reported a co-culture system of dissociated human foetal Sertoli cells and germ cells isolated from second trimester foetal testes [67]. However, to the best of our knowledge these types of in vitro culture have not been used to examine the effects of environmental chemicals and pharmaceutical drugs. Together these studies demonstrate that dissociated foetal testicular cells could be maintained in in vitro culture and be used to examine effects of environmental chemicals.
and pharmaceuticals in future studies. However, culture of dissociated primary cells is generally considered unsustainable for longer culture periods with an overall time-dependent decay and gradual loss of unique cell characteristics in the surviving cell population, which should be considered in the experimental design.

In recent years, there has been an increased focus on in vitro generation of testicular cells (particularly germ cells) from human embryonic stem cells (ESCs) or from induced pluripotent stem cells (iPSCs). This includes the generation of human PGC-like or germ cell-like cells derived from human ESCs/iPSCs [68–72]. Also, 2 recent studies reported a model where human iPSC-derived PGC-like cells with rodent testicular cells were co-cultured [73, 74]. The study by Hwang et al. [74] reported the differentiation of hPGC-like cells into further differentiated germ cells expressing TFAP2C, DAZL, and DDX4, when co-cultured for up to 77 days with dissociated cell suspensions of foetal murine testes. Differentiation of human iPSC has also been differentiated into Sertoli-like cells [75] and PGC-like and Sertoli-like cells in co-culture [76–78]. Interestingly, Knarston et al. [79] recently reported the generation of human foetal gonad organoids from human iPSCs. These 3D gonadal structures were generated in a stepwise differentiation protocol to first obtain cells expressing bipotential cell markers and subsequently testicular Sertoli-like cells [79]. However, despite the progress made in the in vitro generation of foetal testicular-like cells from ESC/iPSC, these have so far not been used to examine the effects of environmental chemicals or pharmaceutical drugs.

Ex vivo Tissue Culture Approaches

Ex vivo culture of human foetal testicular tissue fragments has in recent years been extensively used to examine effects of environmental chemicals or pharmaceutical drugs, thereby providing important information about how these can affect human foetal testis development and function. Several types of ex vivo culture approach have been established, including culture on porous membranes, in “hanging drops,” and on agar blocks in the air-liquid interphase. These models have the same advantages and limitations overall. Limitations are mainly related to a relatively short culture period of up to 2 weeks and the need to culture small (~1 mm³) tissue fragments to avoid necrosis/apoptosis in the centre of the tissue. Advantages related to the preservation of testicular morphology, spatial organization, interactions between the different testicular cell types, paracrine signalling, and endocrine function within the intact foetal testicular fragments [80–85]. This ensures maintenance of the foetal testis tissue to support continued germ cell development, differentiation of the somatic cells, and endocrine function. This allows examination of functional outcomes following manipulations such as increased steroid hormone production observed when, for example, LH or hCG is added to the culture media [81, 82, 84]. Therefore, ex vivo culture approaches provide important advantages compared to in vitro culture of dissociated testicular cells and may be an attractive experimental option to examine human foetal testicular development and function following exposure to environmental chemicals and pharmaceutical drugs.

Culture of human testicular tissue on cell culture membranes has been successfully used by several laboratories to examine the effects of environmental chemicals and pharmaceutical drugs on human foetal testis development and function. This includes determining the effects of the alternative bisphenols S and F on testosterone production observed when, for example, LH or hCG is added to the culture media [81, 82, 84], but the number of germ cells were reduced as a result of increased apoptosis [84]. Also, the effects of bisphenols have been examined using this experimental approach. One study examined the effects of bisphenol A (BPA) and found that exposure to BPA at 10⁻⁸–10⁻⁵ M resulted in reduced testosterone production, whilst transcription of INSL3 was also reduced when tested at a single dose of 10⁻⁸ M [86]. Accordingly, similar effects of the alternative bisphenols S and F on testosterone production was observed in human foetal testis cultures [87]. Also, bisphenol A (10⁻⁶ M) has been reported to increase germ cell apoptosis [88].

Analgesics are used by the majority (55–80%) of pregnant women, with several analgesics (e.g., paracetamol) being available without prescription in many countries [64]. Culture of human foetal testis tissue on membranes has also been used to examine the effects of analgesics in several studies, including a study investigating the effects of indomethacin, aspirin, and paracetamol [85]. Paracetamol reduced the secretion of INSL3, while no effect was observed for indomethacin, and aspirin. Unexpectedly, indomethacin and aspirin stimulated testosterone production, particularly in cultures of more immature testis samples (GW 8–9) and aspirin-stimulated AMH production [85]. A more recent study also examined the effects of ibuprofen on human foetal testis and found suppressed testosterone and INSL3 production, but only in foetal testis tissue from GW 8–9 GW in which the transcription of steriodogenic enzymes was also reduced [89]. Ibuprofen also reduced secretion of AMH.
and transcription of AMH and germ cell markers but only in testicular samples from early first trimester [89].

Culture of human foetal testis tissue in “hanging drops” has so far mainly been used to examine signalling involved in regulation of meiosis [83] and sex-specific gonadal differentiation [90, 91]. However, a couple of studies used this experimental approach to examine the effects of pharmaceutical drugs [64, 92]. The effects of chemotherapy drugs (cisplatin and carboplatin) on human foetal testis development were also examined using this model and found to result in reduced germ cell numbers (affecting both the number of gonocytes and pre-spermatogonia) and reduced germ cell proliferation. The germ cell loss persisted for up to 12 weeks (after subsequent xenografting of exposed human foetal testis tissue fragments) [92]. Additionally, hanging drop culture of human foetal testis tissue was used to determine effects of analgesics (paracetamol and ibuprofen) on germ cell development [64]. This study found a reduced number of gonocytes and gonocyte proliferation after exposure, which was in accordance with results from other experimental models, including in vivo (rat), in vitro (NTera2 cells), and xenograft experiments [64].

Ex vivo culture of human testicular cells and tissue fragments maintains important paracrine signalling and cell interactions and this type of culture approach can therefore recapitulate some of the in vivo cellular processes, including cell proliferation, apoptosis and differentiation, secretion of factors from Sertoli cells, and production of steroid hormones in the Leydig cells. The model can also be used to determine the effects of modulating testicular development and function with exogenous factors and chemicals/pharmaceuticals. However, an important limitation is the failure of these systems to sustain cells over a long period. In particular, these models do not sustain germ cell differentiation and meiosis, nor do they continuously maintain the differentiation of testicular cells during development. Therefore, these culture systems do not support full spermatogenesis, which is in contrast to similar tissue culture approaches in mice where complete in vitro spermatogenesis has been achieved in several studies [93–95]. This suggests that species-specific differences exist in testicular function and germ cell differentiation, in particular related to the requirements needed to successfully support meiosis between human and mice. Indeed, all current in vitro models using human testicular cells and tissue fragments are valuable only for a limited duration and thereafter the Sertoli cells appear to de-differentiate and the germ cells are slowly but progressively lost. Methods that involve transplantation of human testicular cells or human testicular tissue into a host animal have therefore increasingly been used when examining human testicular development and function over a longer time period.

Xenograft Models and Transplantation Approaches

Transplantation of human foetal testicular cells or tissue fragments has in recent years been used to investigate the effects of environmental chemicals and pharmaceutical drugs. This involves transplantation into immunodeficient mice. The testicular cells or tissue fragments may have been exposed prior to transplantation or can be exposed via the host mouse. The advantages of this experimental strategy mainly relate to the possibility of longer culture periods and the establishment of blood supply to grafted tissue fragments, which allows for tissue growth without the development of a necrotic core within the tissue fragment. Limitations related to this approach include the difficulty in determining the dose to which the transplanted cells or tissue have been exposed (possible metabolism in other organs) and more practically the need for access to animal facilities where immunodeficient mice can be housed.

Germ Cell Transplantation

Germ cell transplantation involves the introduction of cells into the seminiferous tubules of immunodeficient male mice through direct injection via the rete testis or efferent duct [96]. Removal of the endogenous germ cell population is required and may be achieved by treating host mice with busulfan prior to transplantation [97], or by using a host mouse strain in which germ cells are lost as a result of a genetic mutation [98]. Cells for transplantation can be prepared from a spermatogonial stem cell (SSC) line [99], or following enrichment of germ cells (or SSCs) dissociated from foetal testicular tissue. This approach overcomes an important limitation of culturing SSCs in vitro, namely, the lack of a somatic niche. Hence, signalling between different testicular cell types and an endocrine environment are preserved, while phenotypic changes induced by long-term ex vivo culture may be avoided. However, to the best of our knowledge no studies have so far reported effects of environmental factors on human foetal testis development and function using this experimental approach.

Xenografting

This experimental approach involves the transplantation of human foetal testis fragments (~1 mm³) into castrated immunosuppressed mice either subcutaneously,
Environmental Impacts on Male Reproductive Development

Vesicle weights of host mice as a read out of testosterone can be measured in serum or by determining the seminal vesicle weight. The continued secretion of testosterone, which is evident by continued secretion of testosterone, thereby maintaining the germ cell compartment and the somatic cells of the foetal testes. The host animal provides conditions that resemble the original milieu, which includes the establishment of blood supply to the grafted human foetal testis fragments, thereby permitting extended culture periods and the possibility to examine human testis development and function as well as effects on these following exposures to environmental factors in a situation that mimics in vivo conditions. Exposure to environmental chemicals and pharmaceutical drugs can be performed either prior to grafting, for example, in ex vivo culture followed by subsequent grafting to examine long-term effects, or be administered via the host animal. This may provide a challenge in predicting the dose that reaches the grafted testicular tissue but has been successfully used to examine the effects of both environmental chemicals and pharmaceutical drugs.

Studies using xenograft models of human foetal testis tissue to examine effects of environmental factors on human foetal testis development and function have primarily studied tissue subcutaneously with overall high graft survival being reported [101]. Importantly, continued differentiation of both germ cells and somatic cells has been observed, and Leydig cell function is maintained as is evident by continued secretion of testosterone, which can be measured in serum or by determining the seminal vesicle weights of host mice as a read out of testosterone production [101]. The grafted human foetal testicular tissue responds to administration of hCG (to the host mice) by an increase in testosterone production, thereby demonstrating a functional response that mimics the in vivo situation [101, 102]. The effects of phthalates on human foetal testis development and function have been examined in several studies. Exposure to di-n-butyl phthalate (DBP) and monobutyl phthalate did not affect serum testosterone levels and seminal vesicle weight in the xenograft model, which was in contrast to DBP-mediated effects on seminal vesicle weight after xenografting of rat testis tissue [102]. Accordingly, a study by a different group found no reduction in expression of genes that regulate foetal testosterone biosynthesis in grafted human foetal testis tissue exposed to DBP [103]. Similarly, a study using a slightly different xenograft model (grafting of tissue into the renal subcapsular space) found that DBP did not affect testosterone production and weight of androgen-sensitive host organs, while these androgenic end points were reduced following treatment with CYP17A1-inhibitor abiraterone acetate [104]. A recent study also examined effects of BPA exposure using a xenograft model and found no effects on hCG-stimulated androgen production as evaluated by both plasma testosterone level and seminal vesicle weight in host mice following grafting of testicular tissue from both first and second trimester [88]. The xenografting approach has also been used to examine the effects of analgesics on second trimester human foetal testis, including paracetamol which was found to reduce plasma testosterone levels and seminal vesicle weight after exposure to clinically relevant doses and regimens [105]. Also, effects of ibuprofen were examined using the xenograft model but no effects on serum testosterone levels and seminal vesicle weight was reported [89]. The effects of paracetamol and ibuprofen on germ cells were also examined using the xenograft approach, which reported reduced numbers of germ cells after exposure to paracetamol and ibuprofen for 7 days and paracetamol exposure for 1 day [64].

Environmental Influences on Specific Disorders of Male Reproductive Development

Cryptorchidism

Cryptorchidism is a condition in which one (unilateral) or both (bilateral) of the testes fail to descend from the abdomen into the scrotum. Cryptorchidism is a common male reproductive disorder with an incidence rate of approximately 1/10–50 live male births and requires surgical correction if they fail to descend in the first 6 months of life [106]. Several epidemiologic factors suggest an environmental contribution to its pathogenesis. This includes the increasing incidence in recent decades and geographical variation in incidence [33]. The process of testicular descent can be divided into 2 phases, each of which is considered to be driven by 2 key Leydig cell-derived hormones. The trans-abdominal phase is largely under the control of insulin-like 3 (Ins1), whilst the inguinal phase is driven by testosterone [107]. As a result, factors that impact on production of these hormones in utero can be considered risk factors for cryptorchidism.

Several epidemiologic studies have provided evidence for a direct association between environmental factors and cryptorchidism. Phthalates are one of the most frequently studied environmental chemicals and an association between in utero exposure to phthalates and cryptorchidism has been reported in some studies, albeit with self-reporting of exposure [108], whilst others report no association based on measurement of phthalates in amni-
otic fluid [109], breast milk [110], or maternal urine [111]. Similarly, for BPA exposure, there are conflicting results regarding association with cryptorchidism (reviewed in [45]), which may also reflect study design and method for measurement of exposure. For pharmaceuticals, association between analgesic exposure and cryptorchidism in the offspring has been described in the majority of studies (reviewed in [112]), although one study did not report an association [113]. Positive associations between cryptorchidism and exposure to several other environmental agents including smoking [114], alcohol [115], and diethylstilboestrol (a synthetic oestrogen) [116] have also been reported. In addition to investigating associations between environmental exposures and cryptorchidism directly, anogenital distance (AGD) can also be used as an indicator of foetal testosterone production with several studies reporting associations between AGD and environmental exposures (reviewed in [45]). And perhaps more revealing, there are direct associations between a short AGD in boys and cryptorchidism [117, 118].

Experimental animal studies investigating the direct impact of environmental factors on cryptorchidism are restricted to in vivo approaches. The most frequently reported is the induction of a "TDS-like syndrome" (including cryptorchidism and hypospadias) in male rats exposed in utero to phthalates [119]. Animal studies may also be used to measure effects of exposure on testosterone production as an indirect indicator of potential for cryptorchidism, either by measuring testosterone or AGD in the offspring. Phthalates have been shown to reduce testosterone production in rat foetal testis in several studies [119–122]. However, conflicting results have been obtained with respect to effects of bisphenol [45] or analgesic exposures [112] on testosterone production in exposed rat foetal testis following either in vivo or in vitro exposure.

Experimental studies using human testis tissues to investigate potential association between environmental exposures and cryptorchidism primarily rely on the use of proxy measures (e.g., testosterone or InsL3 production) for the disorder after in vitro exposure of human foetal testis tissues. To date, all studies investigating the impact of phthalate exposure on either testosterone or InsL3 production in human foetal testis tissues have shown no effect [45], whilst effects of bisphenols on testosterone and InsL3 production have been reported only under specific conditions, dependent on the dose, timing and duration of exposure [123, 124]. For analgesic exposures, the majority of exposure conditions investigated to date do not report a reduction in either testosterone or InsL3 production [85, 89, 124]. An important limitation of the ex vivo systems is the lack of a physiologic exposure to the environmental agent. Recently, xenografting of human foetal testis tissues has been used to test, the impact of exposure on testosterone production by exposing the host animal to specific environmental chemicals or pharmaceuticals. Overall, using this approach, exposure to phthalates [82, 102–104, 125] and bisphenols [88] did not affect testosterone production, reflecting the ex vivo findings described above. However, analgesic (paracetamol) exposure resulted in a reduction in testosterone production following a prolonged (7 day) exposure [105]. The impacts of environmental exposures on hormone production from human foetal testis have recently been comprehensively reviewed [45].

Hypospadias

Hypospadias is a malformation of the penis in which the urethral opening (the meatus) is located distal to its normal position on the tip of the glans. It is the second most common birth defect of the male reproductive system and is estimated to occur in 1/150–300 live male births [126], albeit the prevalence varies greatly across countries and ethnicities [128]. The majority of cases present with anterior hypospadias (a relatively small displacement of the meatus), but with other patients presenting with more severe proximal hypospadias where the meatus is located somewhere along the underside of the penile shaft and surgical intervention may be required. Boys with hypospadias also present with additional urogenital abnormalities more frequently than healthy boys, not least cryptorchidism [129, 130].

Although several gene mutations have been linked to hypospadias, the aetiology of most cases remains unknown [128, 131]. This fact, alongside a reported rise in frequency across many parts of the world, would suggest an environmental influence. Since the development of the penis is highly sensitive to sex hormones [132], EDCs have been proposed to play a major role in the development of hypospadias [126, 128, 131, 133]. In humans, several pharmaceuticals and environmental chemicals have now been associated with an increased risk of hypospadias (recently reviewed in [131]) and include pharmaceuticals such as progestins, clomiphene, analgesics, antidepressants and diethylstilboestrol, and environmental chemicals such as pesticides, paints, detergents, cosmetics, valproic acid, flame retardants, and phthalates. To further substantiate this association between foetal exposure to EDCs and the development of hypospadias in humans, a growing number of animal studies lend support to a postulated cause-
effect relationship between foetal exposure to EDCs and the development of penile malformations.

Rodent studies have established that androgens play a central role in penis development, including urethral closure [134–137]. Interestingly, animal studies have also implicated a role for oestrogens in penis development, suggesting that the androgen-oestrogen balance may be important for proper genital differentiation (reviewed in [131]). This lends support to the abovementioned chemical substances that are associated with hypospadias in humans, as many of them are not classical anti-androgens in their mode of action. This does not detract from the central role that androgens (particularly dihydrotestosterone) play in penis development, but highlight the complex interplay between endocrine signalling pathways in target tissues.

There are several rat toxicity-studies that have shown a clear link between EDC exposure and hypospadias. Most of these studies indicate an anti-androgenic mode of action since male AGD was also shorter in male offspring. AGD is a retrospective biomarker for compromised androgen signalling during the MPW [15]. For instance, exposure to flutamide [135] or finasteride [138] induces hypospadias in rats. A combined foetal exposure to linuron and benzyl-butyl phthalate induced a high rate of hypospadias in rats [139], as do the combined exposure to vinclozolin, flutamide, and procymidone [140, 141], or a mixture of DEHP, vinclozolin, prochloraz, and finasteride [142]. Hypospadias has also been induced by even more complex mixtures of pesticides [143], mixture of 7 anti-androgenic compounds [144], and mixtures of phthalates and pesticides [145]. Together, these studies suggest an anti-androgenic mode of action as the primary cause of hypospadias, but they are not conclusive. Several of the chemicals included in the various mixtures may also affect other endocrine signalling pathways and cause general disruption to the hormonal milieu. Interestingly, recent studies have also shown that loss of oestrogen signalling during mouse development can induce hypospadias [146, 147]. Previously, it has been shown that exposure to the phytoestrogen genistein can induce hypospadias in mice [148, 149], so again, these studies strongly suggest the importance of maintaining a correct androgen-oestrogen balance, as seemingly both too little and too much oestrogen signalling can perturb urethral closure.

Testicular Germ Cell Cancer

Important evidence for adverse trends in male reproductive health comes from the observed increase in the incidence of TGCC. It is well-established that TGCC has a strong genetic component, including also a high risk of germ cell malignancies in a subset of DSD patients with gonadal/testicular dysgenesis and presence of Y-chromosome material [20]. In addition to the genetic component, there is evidence to suggest that environmental factors also contribute to the aetiology of TGCC. The rapid increase in the incidence of TGCC, initially observed in Western countries, suggests involvement of environmental and/or lifestyle factors [33, 150]. Accordingly, it has been reported in recent years that countries with a previous low incidence are now observing an increase [151, 152]. The involvement of environmental factors in the aetiology of TGCC is also supported by first-generation migrant studies indicating an increase in incidence after migration to countries with a high TGCC incidence [153, 154]. The association between environmental and lifestyle factors and the risk of developing TGCT have been investigated in a comprehensive study by McGlynn and Cook [155], although without the identification of major explanatory factors. Importantly, experimental studies examining the mechanisms, underlying the initiation, and progression of testicular cancer remain challenging due to the lack of suitable animal models, since mice and rats (or indeed any non-human species) do not develop the equivalent to human TGCT.

TGCT in humans derived from a common precursor cell, now termed germ cell neoplasia in situ (GCNIS) [156, 157]. This precursor cell has previously been known as carcinoma in situ (CIS) [156], intratubular germ cell neoplasia, unclassified (IGCNU) [158], or testicular intraepithelial neoplasia (TIN) [159]. GCNIS cells will, if left untreated within the testes, undergo malignant transformation by acquiring secondary genomic changes [160], become invasive and develop into a TGCT, although this may not occur until several years after detection in a testicular biopsy [161–163].

The hypothesis that GCNIS has a foetal origin is now widely accepted and is considered to be the result of arrest in the normal germ cell differentiation from gonocyte to pre-spermatogonia. Consequently, developmentally arrested gonocytes remain within the testis and continue to express pluripotency factors.

As mentioned above, experimental studies examining the mechanisms underlying the development of GCNIS cells and their progression to TGCT are challenged by the lack of animal models. However, ex vivo culture and xenografting of human foetal testis tissue now provide experimental options to examine the first step in the development of GCNIS cells, the arrest of germ cell develop-
ment from gonocyte to pre-spermatogonia. A recent study found that exogenous stimulation of Nodal signalling, which is normally downregulated in the transition from gonocyte to pre-spermatogonia, resulted in an increased number of gonocytes expressing pluripotency factors in ex vivo culture and persistence of gonocytes after subsequent xenografting of Nodal-stimulated testicular tissue, suggesting that dysregulation of Nodal signalling may be implicated in the pathogenesis of TGCC [91]. As mentioned above, several studies have examined effects of environmental factors, including exposure to smoking, phthalates, bisphenols, and analgesics on germ cells in human foetal testis in ex vivo and xenograft models, mainly reporting reduced proliferation and increased apoptosis of germ cells (reviewed in [45]). Thus, so far no experimental studies have established a direct link between exposure to environmental factors and the development of GCNIS cells and TGCT.

Conclusion

Testicular development and function may be influenced by environmental exposures resulting in male reproductive disorders. Understanding the role of environmental factors in the development of DSD and TDS requires appropriate experimental systems in which to test the effects of exposures, as well as the mechanisms involved. Over recent years, the range of experimental systems available has expanded from traditional methods of in vivo and in vitro studies to those that include 3D culture systems, testicular organoids, and xenografting. Combining the findings from epidemiologic and clinical studies with experimental studies to validate these findings and explore mechanisms is essential for understanding the impact that environmental factors have on male reproductive health. Whilst the role of environmental factors in the hormone dependent stage of male reproductive development is frequently explored, the impact of such factors on the early stages of gonadal differentiation and the pathogenesis of TDS and DSDs is a key area for future studies.

Acknowledgements

Figures were created with BioRender.com.

Conflict of Interest Statement

The authors have no conflicts of interest to declare.

Funding Sources

R.T.M. is supported by a UK Research and Innovation (UKRI) Future Leaders Fellowship (MR/S017151/1), and the work was undertaken in the MRC Centre for Reproductive Health funded by the MRC Grant MR/N022556/1. A.J. and T.S. received funding from the Danish Environmental Protection Agency for projects under the Centre on Endocrine Disruptors (CEHOS). J.-B.S. is supported by the Swedish Childhood Cancer Foundation (T)2020-0023.

Author Contributions

R.T.M. developed the concept for the manuscript. All authors wrote sections of the manuscript. All authors reviewed, edited, and approved the final version of the manuscript.

References

1 Bashamboo A, Eozenou C, Rojo S, McElreavey K. Anomalies in human sex determination provide unique insights into the complex genetic interactions of early gonad development. Clin Genet. 2017;91:143–56.
2 Wilhelm D, Palmer S, Koopman P. Sex determination and gonadal development in mammals. Physiol Rev. 2007;87:1–28.
3 Yang Y, Workman S, Wilson M. The molecular pathways underlying early gonadal development. J Mol Endocrinol. 2018 Jul 24. Epub ahead of print.
4 Morohashi K. The ontogenesis of the steroidogenic tissues. Genes Cells. 1997;2:95–106.
5 Hannema SE, Hughes IA. Regulation of Wolffian duct development. Horm Res. 2007;67:142–51.
6 Acien P. Embryological observations on the female genital tract. Hum Reprod. 1992 Apr;7:437–45.
7 Nicol B, Yao HH. Building an ovary: insights into establishment of somatic cell lineages in the mouse. Sex Dev. 2014;8:243–51.
8 Rotgers E, Jørgensen A, Yao HH. At the crossroads of fate-somatic cell lineage specification in the fetoal gonad. Endocr Rev. 2018;39:739–59.
9 Svingen T, Koopman P. Building the mammalian testis: origins, differentiation, and assembly of the component cell populations. Genes Dev. 2013;27:2409–26.
10 Koopman P, Münsterberg A, Capel B, Vivian N, Lovell-Badge R. Expression of a candidate sex-determining gene during mouse testis differentiation. Nature. 1990;348:450–2.
11 Sekido R, Lovell-Badge R. Sex determination and SRY: down to a wink and a nudge? Trends Genet. 2009;25:19–29.
12 Clarke TR, Hoshiya Y, Yi SE, Liu X, Lyons KM, Donahoe PK. Mullerian inhibiting substance signaling uses a bone morphogenetic protein (BMP)-like pathway mediated by ALK2 and induces SMAD6 expression. Mol Endocrinol. 2001 Jun;15:946–59.
Environmental Impacts on Male Reproductive Development

Horn Res Paediatr 2023;96:190–206
DOI: 10.1159/000519964

13 Barsoum IB, Bingham NC, Parker KL, Jorgensen JS, Yao HH. Activation of the Hedgehog pathway in the mouse fetal ovary leads to ectopic appearance of fetal Leydig cells and female pseudohermaphroditism. Dev Biol. 2009;329:96–103.

14 Ahmed SF, Bashamboo A, Lucas-Herald A, McElreavey K. Understanding the genetic etiology in patients with XY DSD. Br Med Bull. 2013;106:67–89.

15 Schwartz CI, Christiansen S, Vinggaard AM, Axelstad M, Hass U, Svingen T. Anogenital distance as a toxico logical or clinical marker for fetal androg en action and risk for reproductive disorders. Arch Toxicol. 2019;93: 253–72.

16 Auchus RJ. The backdoor pathway to dihydrotestosterone. Trends Endocrinol Metab. 2004;15:432–8.

17 Miller WL, Auchus RJ. The molecular biology, causation, and pathology of human steroidogenesis and its disorders. Endocr Rev. 2011;32:81–151.

18 Sharpe RM. Androgens and the masculinization programming window: human–rodent differences. Biochem Soc Trans. 2020;48:1725–35.

19 Hughes IA, Houk C, Ahmed SF, Lee PA. Consensus statement on management of intersex disorders. Arch Dis Child. 2006;91(7):554–63.

20 Jorgensen A, Lindhardt Johansen M, Juul A, Skakkebaek NE, Main KM, Raipert-De Meys E. Pathogenesis of germ cell neoplasia in testicular dysgenesis and disorders of sex development. Semin Cell Dev Biol. 2013;24:124–37.

21 Delot EC, Vilain E. Towards improved genetic diagnosis of human differences of sex development. Nat Rev Genet. 2021 Sept;22(9):588–602.

22 Eggers S, Sinclair A. Mammalian sex determination: insights from humans and mice. Chromosome Res. 2012;20:215–38.

23 Ono M, Harley VR. Disorders of sex development: new genes, new concepts. Nat Rev Endocrinol. 2013;9:79–91.

24 Jacobson TD, Willig LR, Gatti J, Strickland J, Egan A, Saunders C, et al. High molecular diagnos is rate in undermasculinized males with differences in sex development using a stepwise approach. Endocrinology. 2020 May 1;161:bgq015.

25 Foster JW, Dominguez-Steglich MA, Guioli S, Kwock C, Weller PA, Stevanovic M, et al. Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature. 1994;372:525–30.

26 Hanley NA, Hagan DM, Clement-Jones M, Ball SG, Strachan T, Salas-Cortés L, et al. SRY, SOX9, and DAX1 expression patterns during human sex determination and gonadal development. Mech Dev. 2000;91:403–7.

27 Wagner T, Wirth J, Meyer J, Zabel B, Held M, Zinner J, et al. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell. 1994;79:1111–20.

28 Skakkebaek NE, Raipert-De Meys E, Main KM. Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects. Hum Reprod. 2001;16:972–8.

29 Wohlfahrt-Veje C, Main KM, Skakkebaek NE. Testicular dysgenesis syndrome: foetal origin of adult reproductive problems. Clin Endocrinol. 2009;71:459–65.

30 King JS, Bai ZM. Is testicular dysgenesis syndrome a genetic, endocrine, or environmental disease, or an unexplained reproductive disorder? Life Sci. 2018;194:120–9.

31 Jorgensen N, Asklund C, Carlsen E, Skak kebaek NE. Coordinated European investigations of semen quality: results from studies of Scandinavian young men is a matter of concern. Int J Androl. 2006;29:54–61; discussion 105–108.

32 Akre O, Richardi L. Does a testicular dysgenesis syndrome exist? Hum Reprod. 2009;24: 2053–60.

33 Skakkebaek NE, Raipert-De Meys E, Buck Louis GM, Toppiani J, Andersson AM, Eisenberg ML, et al. Male reproductive disorders and fertility trends: influences of environment and genetic susceptibility. Physiol Rev. 2016;96:55–97.

34 Hamlin HJ, Guillette LJ Jr. Embryos as targets of endocrine disrupting contaminants in wildlife. Birth Defects Res C Embryo Today. 2011;93:19–33.

35 Guillette LJ Jr, Pickford DB, Crain DA, Rooney AA, Percival HF. Reduction in penis size and plasma testosterone concentrations in juvenile alligators living in a contaminated environment. Gen Comp Endocrinol. 1996;101:32–42.

36 Guillette LJ Jr, Brock JW, Rooney AA, Wood ard AR. Serum concentrations of various environmental contaminants and their relationship to sex steroid concentrations and phallus size in juvenile American alligators. Arch Environ Contam Toxicol. 1999;36:447–55.

37 Sharpe RM, Skakkebaek NE. Are oestrogens involved in falling sperm counts and disorders of the male reproductive tract? Lancet. 1993;341:1392–5.

38 Walsh M, Saunders PT, Fiskcn M, Scott HM, Hutchison GR, Smith LB, et al. Identification in rats of a programming window for reproductive tract masculinization, disruption of which leads to hypospadias and cryptorchidism. J Clin Invest. 2008;118:1479–90.

39 Fowlser PA, Bhattacharya S, Flannigan S, Drake AJ, O’Saughnessy PJ. Maternal cigarette smoking and effects on androgen action in male offspring: unexpected effects on second-trimester anogenital distance. J Clin Endocrinol Metab. 2011;96:E1502–6.

40 Kristensen DM, Mazaad-Guittot S, Gaudriault P, Lesné L, Serrano T, Main KM, et al. Analgesic use: prevalence, bio-monitoring and endocrine and reproductive effects. Nat Rev Endocrinol. 2016;12:381–93.

41 Mogensen DM, Pihl MB, Skakkebaek NE, Andersen HR, Juul A, Kyhl HB, et al. Prenatal exposure to antifungal medication may change anogenital distance in male offspring: a preliminary study. Environ Health. 2017;16:68.

42 Draskau MK, Rosenmai AK, Scholze M, Pedersen M, Boberg J, Christiansen S, et al. Human-relevant concentrations of the antifungal drug clotrimazole disrupt maternal and fetal steroid hormone profiles in rats. Toxicol Appl Pharmacol. 2021;422:115554.

43 Krikenkamp A. Which chemicals should be grouped together for mixture risk assessments of male reproductive disorders? Mol Cell Endocrinol. 2020;499:110581.

44 Svingen T, Vinggaard AM. The risk of chemical cocktail effects and how to deal with the issue. J Epidemiol Community Health. 2016;70:322–3.

45 Giskeczer AV, Mitchell RT. Effect of environmental and pharmaceutical exposures on fetal testis development and function: a systematic review of human experimental data. Hum Reprod Update. 2019;25:397–421.

46 Mitchell RT, Cowan G, Morris KD, Anderson RA, Fraser HM, Mckenzie KJ, et al. Germ cell differentiation in the marmoset (Callithrix jacchus) during fetal and neonatal life closely parallels that in the human. Hum Reprod. 2008;23:2755–65.

47 Picut CA, Ziejelewski MK, Stanslaus D. Comparative aspects of pre- and postnatal development of the male reproductive system. Birth Defects Res. 2018;110:190–227.

48 Scott HM, Mason JL, Sharpe RM. Steroidogenesis in the fetal testes and its susceptibility to disruption by exogenous compounds. Endocr Rev. 2009;30:883–925.

49 Alves-Lopes JP, Stuenkeng JB. Testicular organoids: a new model to study the testicular microenvironment in vitro? Hum Reprod Update. 2018;24:176–91.

50 Mulder CL, Zheng Y, Jan SZ, Struijk RB, Ripping S, Hamer G, et al. Spermatogonial stem cell autotransplantation and germline genomic editing: a future cure for spermatogenic failure and prevention of transmission of genomic diseases. Hum Reprod Update. 2016;22:561–73.

51 Pelzman DL, Orwig KE, Hwang K. Progress in translational reproductive science: testicular tissue transplantation and in vitro spermatogenesis. Fertil Steril. 2020;113:500–9.

52 Boije JP, Flachs EM, Rimborg S, Glazer CH, Gienowean A, Ramlaun-Hansen CH, et al. The epidemiologic evidence linking prenatal and postnatal exposure to endocrine disrupting chemicals with male reproductive disorders: a systematic review and meta-analysis. Hum Reprod Update. 2016;23:104–25.

53 Baert Y, De Kock J, Alves-Lopes JP, Söder O, Stuenkeng JB, Goossens E. Primary human testicular cells self-organize into organoids with testicular properties. Stem Cell Reports, 2017;8:30–8.
Jorgensen/Svingen/Miles/Chetty/
Stukenborg/Mitchell

Horm Res Paediatr 2023;96:190–206
DOI: 10.1159/000519964

62 Asanagi M, Yamada S, Hirata N, Itagaki H,
Yamada S, Kotake Y, Demizu Y, Kurihara M,
Pendergraft SS, Sadri-Ardekani H, Atala A,
Alves-Lopes JP, Söder O, Stukenborg JB. Tes-
edmonds ME, Woodruff TK. Testicular or-
Davey JC, Nomikos AP, Wungjiranirun M,
E1757–67.

60 Yamada S, Kotake Y, Demizu Y, Kurihara M,
Pendergraft SS, Sadri-Ardekani H, Atala A,
Sekino Y, Kanda Y. NAD-dependent isoci-
Kotake Y, Sekino Y, et al. Tributyltin induces
Kanda Y. Tributyltin induces mitochondrial

69 Kee K, Angeles VT, Flores M, Nguyen HN,
Kjartansdóttir KR, Lindh R, et al. Hormone

70 Panula S, Medrano JV, Kee K, Bergström R,
Kotake Y, Sekino Y, et al. Tributyltin induces

54 Pendergraft SS, Sadri-Ardekani H, Atala A,
Bishop CE. Three-dimensional testicular or-

55 Edmonds ME, Woodruff TK. Testicular or-

63 Davey JC, Nomikos AP, Wungjiranirun M,
Sherman JR, Ingram L, Batki C, et al. Arsenic

56 Edmonds ME, Woodruff TK. Testicular or-

65 Alves-Lopes JP, Söder O, Stukenborg JB.

57 Edmonds ME, Woodruff TK. Testicular or-

68 Aftaotianon B, Ruban L, Jones M, Aftaotianon
R, Fazeli A, Moore HD. In vitro post-miotic
germ cell development from human embry-

58 Nettersheim D, Jostes S, Schneider S, Schorle
H. Prolactin induces gonadotropin-releasing

61 Yamada S, Kotake Y, Nakano M, Sekino Y,
Kanda Y. Tributyltin induces mitochondrial

64 Hurtado-Gonzalez P, Anderson RA, Mac-
donald J, van den Driesche S, Kilcoyne K, Jør-
gensen A, et al. Effects of exposure to acet-
aminophen and ibuprofen on fetal germ cell
development in both sexes in rodent and hu-
man using multicline experimental germ cell
development and thyroid hormone-mediated
tail metamorphosis. Environ Health Perspect.
2008;116:165–72.

67 Tao K, Sun Y, Chao Y, Xing L, Leng L, Zhou
D, et al. Beta-estradiol promotes the growth of
primary human fetal spermagtonial stem
cells via the induction of stem cell factor in
Sertoli cells. J Assist Reprod Genet. 2021 Sep;
38:2481–90.

68 Aftaotianon B, Ruban L, Jones M, Aftaotianon
R, Fazeli A, Moore HD. In vitro post-miotic
germ cell development from human embry-

59 Pendergraft SS, Sadri-Ardekani H, Atala A,
Stukenborg JB. Testicular organoid generation by a novel in vitro
three-layer gradient system. Biomaterials.
2017;130:76–89.

53 Pendergraft SS, Sadri-Ardekani H, Atala A,
Alves-Lopes JP, Söder O, Stukenborg JB.

66 Xiao X, Zhou Y, Ouyang W, Zhang H, Li
I, et al. Beta-estradiol promotes the growth of
primary human fetal spermagtonial stem
cells via the induction of stem cell factor in
Sertoli cells. J Assist Reprod Genet. 2021 Sep;
38:2481–90.

65 Alves-Lopes JP, Söder O, Stukenborg JB.

64 Hurtado-Gonzalez P, Anderson RA, Mac-
donald J, van den Driesche S, Kilcoyne K, Jør-
gensen A, et al. Effects of exposure to acet-
aminophen and ibuprofen on fetal germ cell
development in both sexes in rodent and hu-
man using multicline experimental germ cell
development and thyroid hormone-mediated
tail metamorphosis. Environ Health Perspect.
2008;116:165–72.

60 Yamada S, Kotake Y, Demizu Y, Kurihara M,
Sekino Y, Kanda Y. NAD-dependent iso-
cstrate dehydrogenase as a novel target of tribu-
tyldin in human embryonic carcinoma cells. Sci Rep.
2014;4:5952.

61 Yamada S, Kotake Y, Nakano M, Sekino Y,
Kanda Y. Tributyltin induces mitochondrial
fission through NAD-IDH dependent mito-
fusin degradation in human embryonic carci-
noma cells. Metallomics. 2015;7:1240–6.

62 Asanagi M, Yamada S, Hirata N, Itagaki H,
Kotake Y, Sekino Y, et al. Tributyltin induces
G2/M cell cycle arrest via NAD(+) dependent
isocstrate dehydrogenase in human embry-
ony carcinoma cells. J Toxicol Sci. 2016;41:
207–15.

63 Davey JC, Nomikos AP, Wungjiranirun M,
Sherman JR, Ingram L, Batki C, et al. Arsenic
as an endocrine disruptor: arsenic disrupts retinoic acid receptor-and thyroid hormone receptor-mediated gene regulation and thy-
roid hormone-mediated amphibian tail meta-
morphosis. Environ Health Perspect. 2008;
116:165–72.

64 Hurtado-Gonzalez P, Anderson RA, Mac-
donald J, van den Driesche S, Kilcoyne K, Jør-
gensen A, et al. Effects of exposure to acet-
aminophen and ibuprofen on fetal germ cell
development in both sexes in rodent and hu-
man using multicline experimental germ cell
development and thyroid hormone-mediated
tail metamorphosis. Environ Health Perspect.
2018;126:074006.

65 Childs AJ, Cowan G, Kinnell HL, Anderson RA, Saunders RT. Retinoic acid signalling and the control of meiotic entry in the human fetal
gonad. PLoS One. 2011;6:e20249.

66 Cowan G, Childs AJ, Anderson RA, Saunders RT. Establishment of long-term monolayer cultures of somatic cells from human fetal tes-
tes and expansion of peritubular myoid cells in the presence of androgen. Reproduction. 2010;139:749–57.

79 Kinarston IM, Parchernegg S, Robevska G,
Ghobrial I, Er FX, Georges E, et al. An in vitro
differentiation protocol for human embryon-
ic bipotential gonad and testis cell develop-
ment. Stem Cell Reports. 2020;15:1377–91.

80 Albalushi H, Sahlin L, Åkesson E, Kurek M,
Kjartansdottir KR, Lindh R, et al. Hormone
production by human first-trimester gonads in a functional in vitro system. Endocrinology.
2019;160:133–42.

81 Fowler PA, Abramovich DR, Haites NE, Cash
P, Grotnes NF, Al-Qahtani A, et al. Human fetal
testis Leydig cell disruption by exposure to the pesticide dietedrin at low concentra-
tions. Hum Reprod. 2007;22:2919–27.

82 Hallmark N, Walker M, McKinnell C, Ma-
hood IK, Scott H, Bayne R, et al. Effects of
monobutyl and di(n-butyl) phthalate in vitro on
testosteroneogenesis and Leydig cell aggrega-
tion in fetal testis explants from the rat: com-
pared in vivo in the fetal rat and neonatal marmoset and in vitro in the human. Environ Health Perspect.
2007;115:390–6.

83 Jorgensen A, Nielsen JE, Perlman S, Lundvall D,
Mitchell RT, Juul A, et al. Ex vivo culture of
human fetal gonads: manipulation of meiosis sig-
nalling by retinoic acid treatment disrupts tests
t development. Hum Reprod. 2015;30:2351–63.

84 Lambrot R, Coffigny H, Painaud C, Donna-
dieu AC, Frydman R, Habert R, et al. Use of
organ culture to study the human fetal tests
development: effect of retinoic acid. J Clin End-
ocrinol Metab. 2006;91:2696–703.

85 Mazaud-Guittot S, Nicolas Nicolaz C, Des-
doits-Lethimonier C, Coiffe C, Iben Maamar
M, Balaguer P, et al. Paracetamol, aspirin, and
indomethacin induce endocrine disturbances in the human fetal tests capable of interfering with testicular descent. J Clin Endocrinol Metab. 2013;98:E1757–67.

86 N’Tumba-Byn T, Moison D, Lacroix M, Lecu-
reuil C, Lesage L, Prud’homme SM, et al. Dif-
erential effects of bisphenol A and diethylstil-
bestrol on human, rat and mouse fetal Leydig cell function. PLoS One. 2012;7:e51579.

87 Eladak S, Grisin T, Moison D, Guerquin MJ,
Eladak S, Grisin T, Moison D, Guerquin MJ,

88 Eladak S, Moison D, Guerquin MJ, Matilio-
nyte G, Kilcoyne K, N’Tumba-Byn T, et al. Ef-
facts of environmental Bisphenol A exposures on germ cell development and Leydig cell function in the human fetal tests. Plos One.
2018;13:e019134.

89 Ben Maamar M, Lesnè L, Hennig K, Desdoits-
Lethimonier C, Kilcoyne KR, Coiffe C, et al. Ibuprofen results in alterations of human fetal tests develop-
ment. Sci Rep. 2017;7:44184.

90 Harpelunde Poulsen K, Nielsen JE, Frederik-
sen H, Melau C, Juul Hare K, Langhoff Thue-
sen L, et al. Dysregulation of FGF5 signalling by a selective inhibitor reduces germ cell and sertoli cell function in human fetal gonads of both sexes and alters the somatic niche in fetal tests. Hum Reprod. 2019;34:2228–43.
Environmental Impacts on Male Reproductive Development

104 Spade DJ, Hall SJ, Saffarini CM, Huse SM, McDonnell EV, Boekelheide K. Differential response to abiraterone acetate and di-n-butyl phthalate in an androgen-sensitive human fetal testis xenograft bioassay. Toxicol Sci. 2014;138:148–60.

105 van den Driesche S, Macdonald J, Anderson RA, Johnston ZC, Cheeth T, Smith LB, et al. Prolonged exposure to acetaminophen reduces testosterone production by the human fetal testis in a xenograft model. Sci Transl Med. 2013;5:288ra80.

106 Boisen KA, Kaleva M, Main KM, Virtanen HE, Haavisto AM, Schmidt IM, et al. Difference in prevalence of congenital cryptorchidism in infants between two Nordic countries. Lancet. 2004;363:1264–9.

107 Ivell R, Hartung S. The molecular basis of cryptorchidism. Mol Hum Reprod. 2003;9:175–81.

108 Wagner-Mahler K, Kurzenne JY, Delattre I, Wagner-Koffmann L, et al. Comparative effects of di(n-butyl) phthalate exposure on fetal germ cell development in 6246 newborn boys from Nice area, France. Int J Androl. 2011;34:e499–510.

109 Jensen MS, Anand-Ivell R, Nørgaard-Pedersen B, Jonsson BA, Bonde JP, Hougaard DM, et al. Amniotic fluid phthalate levels and male fetal gonad function. Epidemiology. 2015;26:91–9.

110 Main KM, Mortensen GK, Kaleva MM, Boisen KA, Damgaard IN, Chellakooty M, et al. Human breast milk contamination with selected pharmaceuticals, pesticides to selected pharmaceuticals, pesticides and hormones to selected pharmaceuticals, pesticides. Fertil Steril. 1999;72:111–22.

111 Nagano M, Patrizio P, Brinster RL. Long-term survival of human spermatogonial stem cells in mouse testes. Nat Protoc. 2013;8:2098–104.

112 Ongoni N, Ogura A, et al. In vitro production of functional sperm in cultured neonatal mouse testes. Nature. 2011;471:504–7.

113 Hou J, Niu M, Liu L, Zhu Z, Wang X, Sun M, et al. Establishment and characterization of human germline stem cell line with unlimited proliferation potentials and no tumor formation. Cien Saude Colet. 2008;13:1601–18.

114 Mitchell RT, Childs AJ, Anderson RA, Johnston ZC, Chetty T, Smith LB, et al. Endocrine disruption in human fetal testis xenograft bioassay. Toxicol Sci. 2014;138:148–60.

115 Jain VG, Singal AK. Shorter anogenital distance correlates with undescended testis: a detailed genital anthropometric analysis in human newborns. Hum Reprod. 2013;28:2343–9.

116 Jiang DP, Geng HQ, Lin HW, Yu Xi-na, Zhang XW, Yang SL, et al. [Relationship between anogenital distance and cryptorchidism in human newborns]. Zhonghua Nan Ke Xue. 2015;21:432–5.

117 Fishner JS, Macpherson S, Marchetti N, Sharpe RM. Human "testicular dysgenesis syndrome": a possible model using in-uterine exposure of the rat to dibutyl phthalate. Hum Reprod. 2003;18:1383–94.

118 Habert R, Livera G, Rouiller-Fabre V. Man is not a big rat: concerns with traditional human risk assessment of phthalates based on their anti-androgenic effects observed in the rat foetus. Basic Clin Androl. 2014;24:14.

119 van den Driesche S, McKinney C, Calarao A, Kennedy L, Hutchison GR, Harbalkova L, et al. Comparative effects of di(n-butyl) phthalate exposure on fetal germ cell development in the rat. Toxicol Sci. 2000;58:339–49.

120 Jensen MS, Anand-Ivell R, Nørgaard-Pedersen B, Jonsson BA, Bonde JP, Hougaard DM, et al. Amniotic fluid phthalate levels and male fetal gonad function. Epidemiology. 2015;26:91–9.

121 Hurtado-Gonzalez P, Mitchell RT. Analgesic use in pregnancy and male reproductive development. Curr Opin Endocrinol Diabetes Obes. 2017;24:225–32.

122 Parks LG, Ostby JS, Lambright CR, Abbott BD, Klinefelter GR, Barlow NJ, et al. The plasticizer diethylhexyl phthalate induces malformations by decreasing fetal testosterone synthesis during sexual differentiation in the male rat. Toxicol Sci. 2000;58:339–49.

123 Ben Maamar M, Lesne L, Desdoits-Lethimonier C, Coiffe I,lasserguerre J, Lavoüé V, et al. An investigation of the endocrine-disruptive effects of bisphenol a in human and rat fetal testes. PLoS One. 2015;10:e0171226.

124 Gaudriault P, Mazaud-Guittot S, Lavoüé V, Coiffe I,lesne L, Dejucq-Raisinford N, et al. Endocrine disruption in human fetal testis explants by individual and combined exposures to selected pharmaceuticals, pesticides, and environmental pollutants. Environ Health Perspect. 2017;125:087004.

125 van den Driesche S, McKinney C, Calarao A, Kennedy L, Hutchison GR, Harbalkova L, et al. Comparative effects of di(n-butyl) phthalate exposure on fetal germ cell development in the rat and in human fetal testis xenografts. Environ Health Perspect. 2015;123:223–30.

126 Baskin LS, Himes K, Colborn T. Hypospadias and endocrine disruption: is there a connection? Environ Health Perspect. 2001;109:1175–83.

127 van der Zanden LF, van Rooij IA, Feitz WF, Franke B, Knoers NV, Roelveld N. Aetiology of hypospadias: a systematic review of genes and environment. Hum Reprod Update. 2012;18:260–83.

128 Nassar N, Bower C, Barker A. Increasing prevalence of hypospadias in Western Australia, 1980–2000. Arch Dis Child. 2007;92:580–4.

129 Akin Y, Ercan O, Telatar B, Tarhan F, Comert S, Hypospadias in Istanbul: incidence and risk factors. Pediatr Int. 2011;53:754–60.
130 Mattiske DM, Pask AJ. Endocrine disrupting chemicals in the pathogenesis of hypospadias: developmental and toxicological perspectives. *Curr Res Toxicol*. 2021;2:179–91.

131 Kalfa N, Sultan C, Baskin LS. Hypospadias: etiology and current research. *Urol Clin North Am*. 2010;37:159–66.

132 Kalfa N, Philibert P, Baskin LS, Sultan C. Hypospadias: interactions between environment and genetics. *Mol Cell Endocrinol*. 2011;335:89–95.

133 Welsh M, MacLeod DJ, Walker M, Smith LB, Sharpe RM. Critical androgen-sensitive periods of rat penis and clitoris development. *Int J Androl*. 2010;33:e144–52.

134 Sinclair AW, Cao M, Pask A, Baskin L, Cunha GR. Flutamide-induced hypospadias in rats: a critical assessment. *Differentiation*. 2017;94:37–57.

135 MacLeod DJ, Sharpe RM, Welsh M, Fisken M, Scott HM, Hutchison GR, et al. Androgen action in the masculinization programming window and development of male reproductive organs. *Int J Androl*. 2010;33:279–87.

136 Phillips TR, Wright DK, Gradie PE, Johnston LA, Pask AJ. A comprehensive atlas of the adult mouse penis. *Sex Dev*. 2015;9:162–72.

137 Bowman CJ, Barlow NJ, Turner KJ, Wallace DG, Foster PM. Effects of in utero exposure to finasteride on androgen-dependent reproductive development in the male rat. *Toxicol Sci*. 2003;74:393–406.

138 Hotchkiss AK, Parks-Saldutti LG, Ostby JS, Lambright C, Furr J, Van der Bekenberg JG, et al. A mixture of the “antiandrogens” linuron and butyl benzyl phthalate alters sexual differentiation of the male rat in a cumulative fashion. *Biol Reprod*. 2004;71:1852–61.

139 Christiansen S, Scholze M, Axelstad M, Boberg J, Kortenkamp A, Hass U. Combined exposure to anti-androgens causes markedly increased frequencies of hypospadias in the rat. *Int J Androl*. 2008;31:241–8.

140 Metzdorff SB, Dalgaard M, Christiansen S, Axelstad M, Hass U, Kiessgaard MK, et al. Dysgenesis and histological changes of genital and perturbations of gene expression in male rats after in utero exposure to antiandrogen mixtures. *Toxicol Sci*. 2007;98:87–98.

141 Christiansen S, Scholze M, Dalgaard M, Vinggaard AM, Axelstad M, Kortenkamp A, et al. Synergistic disruption of external male sex organ development by a mixture of four antiandrogens. *Environ Health Perspect*. 2009;117:1839–46.

142 Hass U, Boberg J, Christiansen S, Jacobsen PR, Vinggaard AM, Taxvig C, et al. Adverse effects on sexual development in rat offspring after low dose exposure to a mixture of endocrine disrupting pesticides. *Reprod Toxicol*. 2012;34:261–74.

143 Rider CV, Furr J, Wilson VS, Gray LE Jr. A mixture of seven antiandrogens induces reproductive malformations in rats. *Int J Androl*. 2008;31:249–62.

144 Rider CV, Furr JR, Wilson VS, Gray LE Jr. Cumulative effects of in utero administration of mixtures of reproductive toxicants that disrupt common target tissues via diverse mechanisms of toxicity. *Int J Androl*. 2010;33:443–62.

145 Cripps SM, Mattiske DM, Black JR, Risbridger GP, Govers LC, Phillips TR, et al. A loss of estrogen signaling in the aromatase deficient mouse penis results in mild hypospadias. *Differentiation*. 2019;109:42–52.

146 Govers LC, Phillips TR, Mattiske DM, Rashoo N, Black JR, Sinclair A, et al. A critical role for estrogen signaling in penis development. *FASEB J*. 2019;33:10385–92.

147 Ross AE, Marchionni L, Phillips TM, Miller RM, Hurley PJ, Simons BW, et al. Molecular effects of genistein on male urethral development. *J Urol*. 2011;185:1894–8.

148 Vilela ML, Willingham E, Buckley J, Liu BC, Agras K, Shiroyanagi Y, et al. Endocrine disruptors and hypospadias: role of genistein and the fungicide vinclozolin. *Urology*. 2007;70(3):618–21.

149 Howitz A, Shipley J, Huddart R. Testicular germ-cell cancer. *Lancet*. 2006;367:754–65.

150 Le Cornet C, Lortet-Tieulent J, Forman D, Pratesi G, Béranger R, Flechon A, Fervers B, et al. Testicular cancer incidence to rise by 25% by 2025 in Europe? Model-based predictions in 40 countries using population-based registry data. *Eur J Cancer*. 2014;50:831–9.

151 Znaor A, Lortet-Tieulent J, Jemal A, Bray F. International variations and trends in testicular cancer incidence and mortality. *Eur Urol*. 2014;65:1095–106.

152 Hemminki K, Li X. Cancer risks in Nordic immigrants and their offspring in Sweden. *Eur J Cancer*. 2002;38:2428–34.

153 Levine H, Afek A, Shamiis A, Derazne E, Tzur D, Zavdy O, et al. Risk of germ cell testicular cancer according to origin: a migrant cohort study in 1,100,000 Israeli men. *Int J Cancer*. 2013;132:1878–85.

154 McGlynn KA, Cook MB. Etiologic factors in testicular germ-cell tumors. *Future Oncol*. 2009;5:1389–402.

155 Skakkebaek NE. Possible carcinoma-in-situ of the testis. *Lancet*. 1972;2:516–7.

156 Ulbright TM, Amin MB, Balzer B, Berney D, Epstein JJ, Guo C, et al. Germ cell tumours. In: Moch H, Humphrey PA, Reuter VE, Ulbright TM, editors. *WHO classification of tumours of the urinary system and male genital organs*. 4th ed. Lyon: IARC Press; 2016.

157 Ulbright TM, Amin MB, Young RH, editors. Atlas of tumor pathology. In: *Tumors of the testis, adnexa, spermatic cord, and scrotum*. Washington, DC, USA: Armed Forces Institute of Pathology; 1999. p. 1–385.

158 Loy V, Dieckmann KP. Carcinoma in situ of the testis: intratubular germ cell neoplasia or testicular intraepithelial neoplasia? *Hum Pathol*. 1990;21:457–8.

159 Sonne SB, Alsmupr K, Dalgaard M, Juncker AS, Edsgard D, Ruban I, et al. Analysis of gene expression profiles of microdissected cell populations indicates that testicular carcinoma in situ is an arrested gonocyte. *Cancer Res*. 2009;69:5241–50.

160 Berthelsen JG, Skakkebaek NE, von der Maase H, Sorensen BL, Mogensen P. Screening for carcinoma in situ of the contralateral testis in patients with germinal testicular cancer. *Br Med J (Clin Res Ed)*. 1982;285:1683–6.

161 Dieckmann KP, Loy V. Prevalence of contralateral testicular intraepithelial neoplasia in patients with testicular germ cell neoplasms. *J Clin Oncol*. 1996;14:3126–32.

162 Skakkebaek NE, Berthelsen JG, Viskold J. Clinical aspects of testicular carcinoma-in-situ. *Int J Androl*. 1981;4(Suppl 4):153–60.