WELLPOSEDNESS OF BOUNDED SOLUTIONS
OF THE NON-HOMOGENEOUS INITIAL BOUNDARY
VALUE PROBLEM FOR THE OSTROVSKY-HUNTER EQUATION

GIUSEPPE MARIA COCLITE AND LORENZO DI RUVO

Abstract. The Ostrovy-Hunter equation provides a model for small-amplitude long waves in
a rotating fluid of finite depth. It is a nonlinear evolution equation. In this paper the wellposed-
ness of bounded solutions for a non-homogeneous initial boundary value problem associated to
this equation is studied.

1. Introduction

The non-linear evolution equation
\begin{equation}
\partial_x(\partial_t u + u\partial_x u - \beta \partial_x^3 u) = \gamma u,
\end{equation}
with $\beta, \gamma \in \mathbb{R}$, was derived by Ostrovsky [21] to model small-amplitude long waves in
a rotating fluid of finite depth. This equation generalizes the Korteweg-deVries equation (that corresponds to $\gamma = 0$) by the additional term induced by the Coriolis force. Mathematical properties of the Ostrovsky equation (1.1) were studied recently in many
details, including the local and global well-posedness in energy space [8, 14, 17, 26], sta-
bility of solitary waves [12, 15, 18], convergence of solutions in the limit, $\gamma \to 0$, of the
Korteweg-deVries equation [13, 18], and convergence of solutions in the limit, $\beta \to 0$, of
no high-frequency dispersion [4].

We shall consider the limit of no high-frequency dispersion $\beta = 0$, therefore (1.1) reads
\begin{equation}
\partial_x(\partial_t u + u\partial_x u) = \gamma u, \quad t > 0, \quad x > 0.
\end{equation}
It is deduced considering two asymptotic expansions of the shallow water equations, first
with respect to the rotation frequency and then with respect to the amplitude of the
waves (see [7, 10]). It is known under different names such as the reduced Ostrovsky
equation [22, 24], the Ostrovsky-Hunter equation [2], the short-wave equation [9], and the
Vakhnenko equation [19, 23].

We augment (1.2) with the boundary condition
\begin{equation}
u(t, 0) = g(t), \quad t > 0,
\end{equation}
and the initial datum
\begin{equation}
u(0, x) = u_0(x), \quad x > 0,
\end{equation}
on which we assume that
\begin{equation}
u_0 \in L^\infty(0, \infty) \cap L^1(0, \infty).
\end{equation}
On the function
\[P_0(x) = \int_0^x u_0(y)dy, \]
we assume that
\[\|P_0\|_{L^2(0,\infty)} = \int_0^{\infty} \left(\int_0^x u_0(y)dy \right)^2 dx < \infty. \]

On the boundary datum \(g(t) \), we assume that
\[g(t) \in W^{1,\infty}(0,\infty), \quad g(0) = 0. \]
Moreover, we assume that
\[\gamma > 0. \]

Integrating (1.2) on \((0, x)\) we gain the integro-differential formulation of the initial-boundary value problem (1.2), (1.3), (1.4) (see [16])
\[\begin{cases}
\partial_t u + u\partial_x u = \gamma \int_0^x u(t, y)dy, & t > 0, \quad x > 0, \\
u(t, 0) = g(t), & t > 0, \\
u(0, x) = u_0(x), & x > 0,
\end{cases} \]
that is equivalent to
\[\begin{cases}
\partial_t u + u\partial_x u = \gamma P, & t > 0, \quad x > 0, \\
\partial_x P = u, & t > 0, \quad x > 0, \\
u(t, 0) = g(t), & t > 0, \\
P(t, 0) = 0, & t > 0, \\
u(0, x) = u_0(x), & x > 0.
\end{cases} \]

Due to the regularizing effect of the \(P \) equation in (1.11) we have that
\[u \in L^\infty((0, T) \times (0, \infty)) \implies P \in L^\infty((0, T); W^{1,\infty}(0, \infty)), \quad T > 0. \]
Therefore, if a map \(u \in L^\infty((0, T) \times (0, \infty)), \, T > 0, \) satisfies, for every convex map \(\eta \in C^2(\mathbb{R}), \)
\[\partial_t \eta(u) + \partial_x q(u) - \gamma \eta'(u)P \leq 0, \quad q(u) = \int^u f'(\xi)\eta'(\xi) \, d\xi, \]
in the sense of distributions, then [6, Theorem 1.1] provides the existence of strong trace \(u_0^\tau \) on the boundary \(x = 0 \).

We give the following definition of solution (see [1]):

Definition 1.1. We say that \(u \in L^\infty((0, T) \times (0, \infty)), \, T > 0, \) is an entropy solution of the initial-boundary value problem (1.2), (1.3), and (1.4) if for every nonnegative test function \(\phi \in C^2(\mathbb{R})^2 \) with compact support, and \(c \in \mathbb{R} \)
\[\begin{align*}
\int_0^\infty \int_0^\infty \left(|u - c|\partial_t \phi + \text{sign} \, (u - c) \left(\frac{u^2}{2} - \frac{c^2}{2} \right) \partial_x \phi \right) dt \, dx \\
+ \gamma \int_0^\infty \int_0^\infty \text{sign} \, (u - c) P\phi dt \, dx \\
+ \int_0^\infty \text{sign} \, (g(t) - c) \left(\frac{(u_0^\tau(t))^2}{2} - \frac{c^2}{2} \right) \phi(t, 0) dt \\
+ \int_0^\infty |u_0(x) - c|\phi(0, x) \, dx \geq 0,
\end{align*} \]
where \(u^0(t) \) is the trace of \(u \) on the boundary \(x = 0 \).

The main result of this paper is the following theorem.

Theorem 1.1. Assume (1.3), (1.4), (1.5), (1.6), (1.7), (1.8) and (1.9). The initial-boundary value problem (1.2), (1.3), and (1.4) possesses an unique entropy solution \(u \) in the sense of Definition 1.1. Moreover, if \(u \) and \(v \) are two entropy solutions (1.2), (1.3), (1.4) in the sense of Definition 1.4 the following inequality holds

\[
\| u(t, \cdot) - v(t, \cdot) \|_{L^1(0, R)} \leq e^{C(T)t} \| u(0, \cdot) - v(0, \cdot) \|_{L^1(0, R + C(T)t)},
\]

for almost every \(0 < t < T, R > 0 \), and some suitable constant \(C(T) > 0 \).

A similar result has been proved in [3, 7] in the context of locally bounded solutions under the assumption \(g \equiv 0 \).

The paper is organized as follows. In Section 2 we prove several a priori estimates on a vanishing viscosity approximation of (1.11). Those play a key role in the proof of our main result, that is given in Section 3.

2. Vanishing viscosity approximation

Our existence argument is based on passing to the limit in a vanishing viscosity approximation of (1.11).

Fix a small number \(0 < \varepsilon < 1 \), and let \(u_\varepsilon = u_\varepsilon(t, x) \) be the unique classical solution of the following mixed problem [5]

\[
\begin{align*}
\partial_t u_\varepsilon + u_\varepsilon \partial_x u_\varepsilon &= \gamma P_\varepsilon + \varepsilon \partial^2_{xx} u_\varepsilon, & t > 0, \quad x > 0, \\
-\varepsilon \partial_{xx}^2 P_\varepsilon + \partial_x P_\varepsilon &= u_\varepsilon, & t > 0, \quad x > 0, \\
u_\varepsilon(t, 0) &= g_\varepsilon(t), & t > 0, \\
P_\varepsilon(t, 0) &= 0, & t > 0, \\
u_\varepsilon(0, x) &= u_{\varepsilon, 0}(x), & x > 0,
\end{align*}
\]

where \(u_{\varepsilon, 0} \) is a \(C^\infty \) approximation of \(u_0 \) such that

\[
\begin{align*}
\| u_{\varepsilon, 0} \|_{L^2(0, \infty)} &\leq \| u_0 \|_{L^2(0, \infty)}, & \| u_{\varepsilon, 0} \|_{L^\infty(0, \infty)} &\leq \| u_0 \|_{L^\infty(0, \infty)}, \\
\| P_{\varepsilon, 0} \|_{L^2(0, \infty)} ^2 &\leq \| P_0 \|_{L^2(0, \infty)} ^2, & \varepsilon^2 \| \partial_x P_{\varepsilon, 0} \|_{L^2(0, \infty)} &\leq C_0, \\
\| g_\varepsilon \|_{L^\infty(0, \infty)} &+ \| g_\varepsilon' \|_{L^\infty(0, \infty)} &\leq C_0, & g_\varepsilon(0) &= 0,
\end{align*}
\]

and \(C_0 \) is a constant independent on \(\varepsilon \).

Let us prove some a priori estimates on \(u_\varepsilon \) and \(P_\varepsilon \), denoting with \(C_0 \) the constants which depend on the initial data, and \(C(T) \) the constants which depend also on \(T \).

Lemma 2.1. For each \(t \in (0, \infty) \),

\[
P_\varepsilon(t, \infty) = \partial_x P_\varepsilon(t, \infty) = 0.
\]

Moreover,

\[
\varepsilon^2 \| \partial_{xx} P_\varepsilon(t, \cdot) \|_{L^2(0, \infty)} ^2 + \varepsilon (\partial_x P_\varepsilon(t, 0))^2 \\
+ \| \partial_x P_\varepsilon(t, \cdot) \|_{L^2(0, \infty)} ^2 = \| u_\varepsilon(t, \cdot) \|_{L^2(0, \infty)} ^2.
\]

Proof. We begin by proving that (2.3) holds true.

Differentiating the first equation of (2.1) with respect to \(t \), we have

\[
\partial_x (\partial_t u_\varepsilon + u_\varepsilon \partial_x u_\varepsilon - \varepsilon \partial_{xx}^2 u_\varepsilon) = \gamma \partial_x P_\varepsilon.
\]
For the the smoothness of u_ε, it follows from (2.1) and (2.5) that
\[
\lim_{x \to \infty} \partial_t u_\varepsilon + u_\varepsilon \partial_x u_\varepsilon - \varepsilon \partial_{xx}^2 u_\varepsilon = \gamma P_\varepsilon(t, \infty) = 0,
\]
\[
\lim_{x \to \infty} \partial_x (\partial_t u_\varepsilon + u_\varepsilon \partial_x u_\varepsilon - \varepsilon \partial_{xx}^2 u_\varepsilon) = \gamma \partial_x P_\varepsilon(t, \infty) = 0,
\]
which gives (2.3).

Let us show that (2.4) holds true. Squaring the equation for P_ε in (2.1), we get
\[
\varepsilon^2 (\partial_{xx}^2 P_\varepsilon)^2 + (\partial_x P_\varepsilon)^2 - \varepsilon \partial_x ((\partial_x P_\varepsilon)^2) = u_\varepsilon^2.
\]
Therefore, (2.4) follows from (2.1), (2.3) and an integration on $(0, \infty)$.

Lemma 2.2. For each $t \in (0, \infty)$,
\[
(2.6) \quad \int_{0}^{\infty} u_\varepsilon(t,x)dx = \varepsilon \partial_x P_\varepsilon(t,0),
\]
\[
(2.7) \quad \sqrt{\varepsilon} \| \partial_x P_\varepsilon(t, \cdot) \|_{L^\infty(0,\infty)} \leq \| u(t, \cdot) \|_{L^2(0,\infty)},
\]
\[
(2.8) \quad \int_{0}^{\infty} u_\varepsilon(t,x)P_\varepsilon(t,x)dx \leq \| u(t, \cdot) \|_{L^2(0,\infty)}^2.
\]

Proof. Integrating on $(0, \infty)$ the equation for P_ε in (2.1), for (2.3), we have
\[
\int_{0}^{\infty} u_\varepsilon(t,x)dx = \varepsilon \partial_x P_\varepsilon(t,0),
\]
that is (2.6).

Let us show that (2.7) holds true. Observe that
\[
0 \leq -\varepsilon \partial_{xx}^2 P_\varepsilon + \partial_x P_\varepsilon = \varepsilon^2 (\partial_{xx}^2 P_\varepsilon)^2 + (\partial_x P_\varepsilon)^2 - \varepsilon \partial_x ((\partial_x P_\varepsilon)^2),
\]
that is,
\[
(2.9) \quad \varepsilon \partial_x ((\partial_x P_\varepsilon)^2) \leq \varepsilon^2 (\partial_{xx}^2 P_\varepsilon)^2 + (\partial_x P_\varepsilon)^2.
\]

Integrating (2.9) in $(0, x)$, we have
\[
\varepsilon (\partial_x P_\varepsilon(t,0))^2 - \varepsilon (\partial_x P_\varepsilon(t,0))^2 \leq \varepsilon^2 \int_{0}^{x} (\partial_{xx}^2 P_\varepsilon)^2 dx \quad \text{(2.10)}
\]
\[
\leq \varepsilon^2 \int_{0}^{\infty} (\partial_{xx}^2 P_\varepsilon)^2 dx + \int_{0}^{\infty} (\partial_x P_\varepsilon)^2 dx.
\]

It follows from (2.4) and (2.10) that
\[
\varepsilon (\partial_x P_\varepsilon)^2 \leq \varepsilon^2 \int_{0}^{\infty} (\partial_{xx}^2 P_\varepsilon)^2 dx + \int_{0}^{\infty} (\partial_x P_\varepsilon)^2 dx + \varepsilon (\partial_x P_\varepsilon(t,0))^2 \leq \| u_\varepsilon(t, \cdot) \|_{L^2(0,\infty)}^2.
\]

Therefore,
\[
\sqrt{\varepsilon} |\partial_x P_\varepsilon(t,x)| \leq \| u_\varepsilon(t, \cdot) \|_{L^2(0,\infty)},
\]
which gives (2.7).

Finally, we prove (2.8). Multiplying by P_ε the equation for P_ε of (2.1), we get
\[
-\varepsilon P_\varepsilon \partial_{xx}^2 P_\varepsilon + P_\varepsilon \partial_x P_\varepsilon = u_\varepsilon P_\varepsilon.
\]

An integration on $(0, \infty)$ and (2.3) give
\[
\int_{0}^{\infty} u_\varepsilon P_\varepsilon dx = \frac{1}{2} \int_{0}^{\infty} \partial_x (P_\varepsilon)^2 dx - \varepsilon \int_{0}^{\infty} P_\varepsilon \partial_{xx}^2 P_\varepsilon dx
\]
\[
= -\varepsilon \int_{0}^{\infty} P_\varepsilon \partial_{xx}^2 P_\varepsilon dx = \varepsilon \int_{0}^{\infty} (\partial_x P_\varepsilon)^2 dx,
\]
Therefore, due to the Young’s inequality,
\[\int_0^\infty u_\varepsilon P_\varepsilon dx = \varepsilon \int_0^\infty (\partial_x P_\varepsilon)^2 dx. \]
Since \(0 < \varepsilon < 1 \), for (2.4), we have (2.8). \(\square \)

Let us consider the following function
\[v_\varepsilon(t, x) = u_\varepsilon(t, x) - g_\varepsilon(t)\chi(x), \]
where \(\chi \in C^\infty(0, \infty) \) is a cut-off function such that
\[\chi(0) = 1, \]
\[\|\chi\|_{L^\infty(0, \infty)}; \|\chi'\|_{L^\infty(0, \infty)} \leq C_0, \]
\[\|\chi\|^2_{L^2(0, \infty)}; \|\chi'|^2_{L^2(0, \infty)} \leq C_0. \]
Therefore, it follows from (2.11), (2.11) and (2.12) that
\[v_\varepsilon(t, 0) = g_\varepsilon(t) - g_\varepsilon(t) = 0. \]

For (2.2),
\[v_\varepsilon(0, x) = v_\varepsilon,0(x) = u_\varepsilon(0, x) = u_\varepsilon,0(x). \]

Therefore, again by (2.2),
\[\|v_\varepsilon,0\|_{L^2(0, \infty)} = \|u_\varepsilon,0\|_{L^2(0, \infty)}. \]

Moreover,
\[\partial_t u_\varepsilon = \partial_t v_\varepsilon + g_\varepsilon'(t)\chi, \]
\[\partial_x u_\varepsilon = \partial_x v_\varepsilon + g_\varepsilon(t)\chi', \]
\[\partial^2_{xx} u_\varepsilon = \partial^2_{xx} v_\varepsilon + g_\varepsilon(t)\chi''. \]

Thus, for (2.11), (2.11) and (2.13), we have
\[\partial_t v_\varepsilon + g_\varepsilon'(t)\chi + (v_\varepsilon + g_\varepsilon(t)\chi)(\partial_x v_\varepsilon + g_\varepsilon(t)\chi') = \gamma P_\varepsilon + \varepsilon(\partial^2_{xx} v_\varepsilon + g_\varepsilon(t)\chi''), \]
that is,
\[\partial_t v_\varepsilon + v_\varepsilon \partial_x v_\varepsilon + g_\varepsilon(t)v_\varepsilon \chi' + g_\varepsilon(t)\chi \partial_x v_\varepsilon = \gamma P_\varepsilon + \varepsilon(\partial^2_{xx} v_\varepsilon + g_\varepsilon(t)\chi'' - g_\varepsilon'(t)\chi - g_\varepsilon^2(t)\chi'). \]

Lemma 2.3. For each \(t > 0 \), we have that
\[\|u_\varepsilon(t, \cdot)\|^2_{L^2(0, \infty)} \leq 2 \|v_\varepsilon(t, \cdot)\|^2_{L^2(0, \infty)} + C_0, \]
\[\|\partial_x P_\varepsilon(t, \cdot)\|^2_{L^2(0, \infty)} \leq 2 \|v_\varepsilon(t, \cdot)\|^2_{L^2(0, \infty)} + C_0, \]
\[\int_0^\infty P_\varepsilon(t, x)v_\varepsilon(t, x)dx \leq C_0 \|v_\varepsilon(t, \cdot)\|^2_{L^2(0, \infty)} + C_0. \]

Proof. We begin by observing that, for (2.11), we get
\[u_\varepsilon = v_\varepsilon + g_\varepsilon(t)\chi. \]
Squaring (2.20), we have
\[u_\varepsilon^2 = v_\varepsilon^2 + 2g_\varepsilon(t)v_\varepsilon\chi + g_\varepsilon^2(t)\chi^2. \]
Due to the Young’s inequality,
\[2|g_\varepsilon(t)v_\varepsilon\chi| \leq v_\varepsilon^2 + g_\varepsilon^2(t)\chi^2. \]
Therefore,
\[u_\varepsilon^2 \leq 2v_\varepsilon^2 + 2g_\varepsilon^2(t)\chi^2. \]
In particular, we have
\[\int_0^\infty P_x v_x dx = \int_0^\infty P_x u_x dx - g_\varepsilon(t) \int_0^\infty P_x \chi dx
= \int_0^\infty P_x u_x dx + g_\varepsilon(t) \int_0^\infty \partial_x P_x \chi' dx. \]

Thanks to (2.2), (2.12) and Young’s inequality,
\[
\left| g_\varepsilon(t) \int_0^\infty \partial_x P_x \chi' dx \right| \leq |g_\varepsilon(t)| \int_0^\infty |\partial_x P_x \chi'| dx \leq \frac{C_0}{2} \|\partial_x P_x(t, \cdot)\|_{L^2(0, \infty)}^2 + \frac{C_0}{2} \|\chi'\|_{L^2(0, \infty)}^2
\leq C_0 \|\partial_x P_x(t, \cdot)\|_{L^2(0, \infty)}^2 + C_0.
\]

Hence, for (2.8), (2.17), (2.18) and (2.21),
\[
\int_0^\infty P_x v_x dx \leq 2 \|v_\varepsilon(t, \cdot)\|_{L^2(0, \infty)}^2 + C_0 + C_0 \|v_\varepsilon(t, \cdot)\|_{L^2(0, \infty)}^2 + C_0
\leq C_0 \|v_\varepsilon(t, \cdot)\|_{L^2(0, \infty)}^2 + C_0,
\]
that is (2.19). \hfill \square

Lemma 2.4. For each \(t > 0 \), the inequality holds
\[\|v_\varepsilon(t, \cdot)\|_{L^2(0, \infty)}^2 + \varepsilon e^{C_0 t} \int_0^t e^{-C_0 s} \|\partial_x v_\varepsilon(s, \cdot)\|_{L^2(0, \infty)}^2 ds \leq C_0 e^{C_0 t}(1 + t). \]

In particular, we have
\[\|u_\varepsilon(t, \cdot)\|_{L^2(0, \infty)}^2 \leq C_0 \left(e^{C_0 t}(1 + t) + 1 \right), \]
\[\varepsilon \int_0^t \|\partial_x u_\varepsilon(s, \cdot)\|_{L^2(0, \infty)}^2 ds \leq C_0 \left(e^{C_0 t}(1 + t) + t \right). \]

Moreover,
\[\varepsilon \|\partial_{xx} P_\varepsilon(t, \cdot)\|_{L^2(0, \infty)}, \|\partial_x P_\varepsilon(t, \cdot)\|_{L^2(0, \infty)} \leq \sqrt{C_0 \left(e^{C_0 t}(1 + t) + 1 \right)}, \]
\[\sqrt{\varepsilon} |\partial_x P_\varepsilon(t, 0)|, \sqrt{\varepsilon} \|\partial_x P_\varepsilon(t, \cdot)\|_{L^\infty(0, \infty)} \leq \sqrt{C_0 \left(e^{C_0 t}(1 + t) + 1 \right)}. \]

Proof. Let \(t > 0 \). Multiplying (2.10) by \(v_\varepsilon \), we have
\[
v_\varepsilon \partial_t v_\varepsilon + v_\varepsilon^2 \partial_x v_\varepsilon + g_\varepsilon(t)v_\varepsilon \chi' + g_\varepsilon(t)v_\varepsilon \chi \partial_x v_\varepsilon = \gamma P_x v_\varepsilon + \varepsilon v_\varepsilon \partial_{xx} v_\varepsilon + \varepsilon g_\varepsilon(t)v_\varepsilon \chi'' - g_\varepsilon(t)v_\varepsilon \chi - g_\varepsilon(t)v_\varepsilon \chi'.
\]

Since,
\[
\int_0^\infty v_\varepsilon \partial_t v_\varepsilon dx = \frac{1}{2} \frac{d}{dt} \|v_\varepsilon(t, \cdot)\|_{L^2(0, \infty)}^2, \\
g_\varepsilon(t) \int_0^\infty v_\varepsilon \chi \partial_x v_\varepsilon dx = -\frac{g_\varepsilon(t)}{2} \int_0^\infty v_\varepsilon^2 \chi' dx, \\
\varepsilon \int_0^\infty v_\varepsilon \partial_{xx} v_\varepsilon dx = -\varepsilon \|\partial_x v_\varepsilon(t, \cdot)\|_{L^2(0, \infty)}^2, \\
\varepsilon g_\varepsilon(t) \int_0^\infty v_\varepsilon \chi'' dx = -\varepsilon g_\varepsilon(t) \int_0^\infty \partial_x v_\varepsilon \chi' dx,
\]
where integrating (2.26) on \((0, \infty)\),

\[
\frac{1}{2} \frac{d}{dt} \| v_\varepsilon(t, \cdot) \|_{L^2(0, \infty)}^2 + \varepsilon \| \partial_x v_\varepsilon(t, \cdot) \|_{L^2(0, \infty)}^2 = -g_\varepsilon(t) \int_0^\infty v_\varepsilon^2 \chi \, dx + \frac{g_\varepsilon(t)}{2} \int_0^\infty v_\varepsilon^2 \chi' \, dx
\]

\[
+ \gamma \int_0^\infty P_\varepsilon v_\varepsilon \, dx - \varepsilon g_\varepsilon(t) \int_0^\infty \partial_x v_\varepsilon \chi' \, dx
\]

\[
- g_\varepsilon'(t) \int_0^\infty v_\varepsilon \chi \, dx - g_\varepsilon^2(t) \int_0^\infty v_\varepsilon \chi' \, dx.
\]

(2.27)

Due to (2.2), (2.12) and Young’s inequality,

\[
\varepsilon \left| g_\varepsilon(t) \int_0^\infty \partial_x v_\varepsilon \chi' \, dx \right| \leq \varepsilon |g_\varepsilon(t)| \int_0^\infty \left| \frac{\partial_x v_\varepsilon}{D_1} \right| |\chi' D_1| \, dx
\]

\[
\leq \varepsilon \frac{C_0}{2D_1^2} \| \partial_x v_\varepsilon(t, \cdot) \|_{L^2(0, \infty)}^2 + \frac{D_1^2}{2} \| \chi' \|_{L^2(0, \infty)}^2
\]

\[
\leq \varepsilon \frac{C_0}{2D_1^2} \| \partial_x v_\varepsilon(t, \cdot) \|_{L^2(0, \infty)}^2 + D_1^2 C_0,
\]

\[
|g_\varepsilon'(t) \int_0^\infty v_\varepsilon \chi \, dx| \leq |g_\varepsilon'(t)| \int_0^\infty |v_\varepsilon| |\chi| \, dx
\]

\[
\leq \frac{C_0}{2} \| v_\varepsilon(t, \cdot) \|_{L^2(0, \infty)}^2 + \frac{C_0}{2} \| \chi \|_{L^2(0, \infty)}^2
\]

\[
\leq C_0 \| v_\varepsilon(t, \cdot) \|_{L^2(0, \infty)}^2 + C_0,
\]

\[
g_\varepsilon^2(t) \left| \int_0^\infty v_\varepsilon \chi' \, dx \right| \leq g_\varepsilon^2(t) \int_0^\infty |v_\varepsilon| |\chi'| \, dx
\]

\[
\leq \frac{C_0 \| \chi' \|_{L^\infty(0, \infty)}^2 \left(\| v_\varepsilon(t, \cdot) \|_{L^2(0, \infty)}^2 + \| \chi \|_{L^2(0, \infty)}^2 \right)}{2}
\]

\[
\leq C_0 \| v_\varepsilon(t, \cdot) \|_{L^2(0, \infty)}^2 + C_0,
\]

where \(D_1\) is a positive constant that will be specified later.

Moreover, again by (2.2) and (2.12),

\[
\left| g_\varepsilon(t) \int_0^\infty v_\varepsilon^2 \chi \, dx \right| \leq |g_\varepsilon(t)| \int_0^\infty v_\varepsilon^2 |\chi| \, dx
\]

\[
\leq C_0 \| \chi \|_{L^\infty(0, \infty)} \| v_\varepsilon(t, \cdot) \|_{L^2(0, \infty)}^2 \leq C_0 \| v_\varepsilon(t, \cdot) \|_{L^2(0, \infty)}^2,
\]

\[
\left| \frac{g_\varepsilon(t)}{2} \int_0^\infty v_\varepsilon^2 \chi' \, dx \right| \leq \frac{g_\varepsilon(t)}{2} \int_0^\infty v_\varepsilon^2 |\chi'| \, dx
\]

\[
\leq C_0 \| \chi' \|_{L^\infty(0, \infty)} \| v_\varepsilon(t, \cdot) \|_{L^2(0, \infty)}^2 \leq C_0 \| v_\varepsilon(t, \cdot) \|_{L^2(0, \infty)}^2.
\]

It follows from (2.19) and (2.27) that

\[
\frac{d}{dt} \| v_\varepsilon(t, \cdot) \|_{L^2(0, \infty)}^2 + \varepsilon \left(2 \frac{C_0}{D_1^2} \right) \| \partial_x v_\varepsilon(t, \cdot) \|_{L^2(0, \infty)}^2
\]

\[
\leq \gamma C_0 \| v_\varepsilon(t, \cdot) \|_{L^2(0, \infty)}^2 + 8 C_0 \| v_\varepsilon(t, \cdot) \|_{L^2(0, \infty)}^2
\]

\[
+ 2 \gamma C_0 + C_0 + D_1^2 C_0.
\]
that is
\[
\frac{d}{dt} \|v_\varepsilon(t, \cdot)\|_{L^2(0, \infty)}^2 + \varepsilon \left(2 - \frac{C_0}{D_1^2} \right) \|\partial_x v_\varepsilon(t, \cdot)\|_{L^2(0, \infty)}^2 \\
\leq C_0 \|v_\varepsilon(t, \cdot)\|_{L^2(0, \infty)}^2 + C_0 + D_1^2 C_0.
\]
Choosing \(D_1^2 = C_0\), we get
\[
\frac{d}{dt} \|v_\varepsilon(t, \cdot)\|_{L^2(0, \infty)}^2 + \varepsilon \|\partial_x v_\varepsilon(t, \cdot)\|_{L^2(0, \infty)}^2 \leq C_0 \|v_\varepsilon(t, \cdot)\|_{L^2(0, \infty)}^2 + C_0.
\]
Gronwall's Lemma and (2.14) give
\[
\|v_\varepsilon(t, \cdot)\|_{L^2(0, \infty)}^2 + \varepsilon e^{C_0 t} \int_0^t e^{-C_0 s} \|\partial_x v_\varepsilon(s, \cdot)\|_{L^2(0, \infty)}^2 ds \\
\leq \|u_0\|_{L^2(0, \infty)} e^{C_0 t} + C_0 e^{C_0 t} \int_0^t e^{-C_0 s} ds \\
\leq \|u_0\|_{L^2(0, \infty)} e^{C_0 t} + C_0 te^{C_0 t},
\]
which gives (2.22).

Let us show that (2.24) holds true. We begin by observing that, (2.15) and an multiplication by \(\sqrt{\varepsilon}\) give
\[
\sqrt{\varepsilon} \partial_x u_\varepsilon = \sqrt{\varepsilon} \partial_x v_\varepsilon + \sqrt{\varepsilon} g_\varepsilon(t) \chi'.
\]
Squaring (2.24), we have
\[
\varepsilon (\partial_x u_\varepsilon)^2 = \varepsilon (\partial_x v_\varepsilon)^2 + 2 \varepsilon g_\varepsilon(t) \partial_x v_\varepsilon \chi' + \varepsilon g_\varepsilon^2(t) (\chi')^2.
\]
Due to Young’s inequality,
\[
2 \varepsilon |g_\varepsilon(t) \partial_x v_\varepsilon \chi'| \leq \varepsilon (\partial_x v_\varepsilon)^2 + \varepsilon g_\varepsilon^2(t) (\chi')^2.
\]
Therefore, since 0 < \(\varepsilon < 1\),
\[
\varepsilon (\partial_x u_\varepsilon)^2 \leq 2 \varepsilon (\partial_x v_\varepsilon)^2 + 2 g_\varepsilon^2(t) (\chi')^2.
\]
An integration on \((0, \infty)\), (2.2) and (2.12) give
\[
\varepsilon \|\partial_x u_\varepsilon(t, \cdot)\|_{L^2(0, \infty)}^2 \leq 2 \varepsilon \|\partial_x v_\varepsilon(t, \cdot)\|_{L^2(0, \infty)}^2 + C_0.
\]
Integrating (2.29) on \((0, t)\), we get
\[
\varepsilon \int_0^t \|\partial_x u_\varepsilon(s, \cdot)\|_{L^2(0, \infty)}^2 ds \leq 2 \varepsilon \int_0^t \|\partial_x v_\varepsilon(s, \cdot)\|_{L^2(0, \infty)}^2 ds + C_0 t
\]
(2.30)
\[
\leq 2 \varepsilon e^{C_0 t} \int_0^t e^{-C_0 s} \|\partial_x v_\varepsilon(s, \cdot)\|_{L^2(0, \infty)}^2 ds + C_0 t.
\]
(2.24) follows from (2.22) and (2.30).

Finally, (2.25) follows from (2.4), (2.7) and (2.24). \hfill \Box

Lemma 2.5. Let us consider the following function
\[
F_\varepsilon(t, x) = \int_0^x P_\varepsilon(t, y) dy \quad t > 0, \; x > 0.
\]
We have that
\[
\lim_{x \to \infty} F_\varepsilon(t, x) = \int_0^\infty P_\varepsilon(t, x) dx = \frac{\varepsilon}{\gamma} \partial_x^2 P_\varepsilon(t, 0) + \frac{\varepsilon}{\gamma} \partial_x u_\varepsilon(t, 0) - \frac{1}{2\gamma} g_\varepsilon^2(t).
\]
Proof. Integrating on \((0,x)\) the first equation of (2.1), we get
\[
\int_0^x \partial_t u_\varepsilon(t,y) dy + \frac{1}{2} u_\varepsilon^2(t,x) - \frac{1}{2} g_\varepsilon^2(t) - \varepsilon \partial_x u_\varepsilon(t,x) + \varepsilon \partial_x u_\varepsilon(t,0) = \gamma \int_0^x P_\varepsilon(t,y) dy.
\]
It follows from the regularity of \(u_\varepsilon\) that
\[
\lim_{x \to \infty} \left(\frac{1}{2} u_\varepsilon^2(t,x) - \varepsilon \partial_x u_\varepsilon(t,x) \right) = 0.
\]
For (2.33), we have that
\[
\lim_{x \to \infty} \int_0^x \partial_t u_\varepsilon(t,y) dy = \int_0^\infty \partial_t u_\varepsilon(t,x) dx = \frac{d}{dt} \int_0^\infty u_\varepsilon(t,x) dx = \varepsilon \partial_{t,x}^2 P_\varepsilon(t,0).
\]
(2.33), (2.34) and (2.35) give (2.32).

Lemma 2.6. Let \(0 < t < T\). There exists a function \(C(T) > 0\), independent on \(\varepsilon\), such that
\[
\|P_\varepsilon\|_{L^\infty(I_T)} \leq C(T),
\]
\[
\|P_\varepsilon(t,\cdot)\|_{L^2(0,\infty)} \leq C(T),
\]
\[
\varepsilon \|\partial_x P_\varepsilon(t,\cdot)\|_{L^2(0,\infty)} \leq C(T),
\]
\[
e^{2\gamma t} \int_0^t e^{-2\gamma s} \left(\varepsilon \partial_{t,x}^2 P_\varepsilon(s,0) + \varepsilon \partial_x u_\varepsilon(s,0) - \frac{1}{2} g_\varepsilon^2(s) \right)^2 ds \leq C(T),
\]
where
\[
I_T = (0,T) \times (0,\infty).
\]
In particular, we have
\[
\varepsilon \left| \int_0^t \int_0^\infty P_\varepsilon \partial_{t,x}^2 P_\varepsilon ds dx \right| \leq C(T), \quad 0 < t < T.
\]
Proof. Let \(0 < t < T\). We begin by observing that, integrating in \((0,x)\) the second equation of (2.1), we get
\[
P_\varepsilon(t,x) = \int_0^x u_\varepsilon(t,y) dy + \varepsilon \partial_x P_\varepsilon(t,x) - \varepsilon \partial_x P_\varepsilon(t,0).
\]
Differentiating with respect to \(t\), we have that
\[
\partial_t P_\varepsilon(t,x) = \frac{d}{dt} \int_0^x u_\varepsilon(t,y) dy + \varepsilon \partial_{t,x}^2 P_\varepsilon(t,x) - \varepsilon \partial_{t,x}^2 P_\varepsilon(t,0)
\]
\[
= \int_0^x \partial_t u_\varepsilon(t,x) + \varepsilon \partial_{t,x}^2 P_\varepsilon(t,x) - \varepsilon \partial_{t,x}^2 P_\varepsilon(t,0).
\]
It follows from (2.31) and (2.33) that
\[
\partial_t P_\varepsilon(t,x) = \gamma F_\varepsilon(t,x) - \frac{1}{2} u_\varepsilon^2(t,x) + \frac{1}{2} g_\varepsilon^2(t) + \varepsilon \partial_x u_\varepsilon(t,x)
\]
\[
- \varepsilon \partial_x u_\varepsilon(t,0) + \varepsilon \partial_{t,x}^2 P_\varepsilon(t,x) - \varepsilon \partial_{t,x}^2 P_\varepsilon(t,0).
\]
Multiplying (2.43) by \(P_\varepsilon - \varepsilon \partial_x P_\varepsilon \), we have that
\[
(P_\varepsilon - \varepsilon \partial_x P_\varepsilon) \partial_t P_\varepsilon = \gamma (P_\varepsilon - \varepsilon \partial_x P_\varepsilon) F_\varepsilon - \frac{1}{2} (P_\varepsilon - \varepsilon \partial_x P_\varepsilon) u_\varepsilon^2
\]
\[
+ \frac{1}{2} (P_\varepsilon - \varepsilon \partial_x P_\varepsilon) g_\varepsilon^2(t) - \varepsilon (P_\varepsilon - \varepsilon \partial_x P_\varepsilon) \partial_x u_\varepsilon(t, 0)
\]
\[
+ \varepsilon (P_\varepsilon - \varepsilon \partial_x P_\varepsilon) \partial_x u_\varepsilon + \varepsilon (P_\varepsilon - \varepsilon \partial_x P_\varepsilon) \partial_{xx}^2 P_\varepsilon
\]
\[
- \varepsilon (P_\varepsilon - \varepsilon \partial_x P_\varepsilon) \partial_{xx}^2 P_\varepsilon(t, 0).
\]

Integrating (2.44) on \((0, x)\), for (2.1), we get
\[
\int_0^x P_\varepsilon \partial_t P_\varepsilon dy - \varepsilon \int_0^x \partial_x P_\varepsilon \partial_t P_\varepsilon dy
\]
\[
= - \varepsilon \int_0^x \partial_x P_\varepsilon \partial_t P_\varepsilon dy = - \varepsilon \partial_x P_\varepsilon \partial_t P_\varepsilon + \varepsilon \int_0^x P_\varepsilon \partial_{xx}^2 P_\varepsilon dy.
\]

We observe that, for (2.1),
\[
- \varepsilon \int_0^x \partial_x P_\varepsilon \partial_t P_\varepsilon dy = - \varepsilon \partial_x P_\varepsilon \partial_t P_\varepsilon + \varepsilon \int_0^x P_\varepsilon \partial_{xx}^2 P_\varepsilon dy.
\]

Therefore, (2.45) and (2.46) give
\[
\int_0^x P_\varepsilon \partial_t P_\varepsilon dy + \varepsilon^2 \int_0^x \partial_x P_\varepsilon \partial_{xx}^2 P_\varepsilon dy
\]
\[
= \varepsilon P_\varepsilon \partial_t P_\varepsilon + \gamma \int_0^x P_\varepsilon F_\varepsilon dy - \varepsilon \int_0^x P_\varepsilon \partial_x P_\varepsilon dy
\]
\[
- \frac{1}{2} \int_0^x P_\varepsilon u_\varepsilon^2 dy + \frac{\varepsilon}{2} \int_0^x \partial_x P_\varepsilon u_\varepsilon^2 dy + \frac{1}{2} g_\varepsilon^2(t) \int_0^x P_\varepsilon dy
\]
\[
- \frac{\varepsilon}{2} g_\varepsilon^2(t) P_\varepsilon - \varepsilon \partial_x u_\varepsilon(t, 0) \int_0^y P_\varepsilon dx + \varepsilon^2 \partial_x u_\varepsilon(t, 0) P_\varepsilon
\]
\[
+ \varepsilon \int_0^x P_\varepsilon \partial_x u_\varepsilon dy - \varepsilon^2 \int_0^x \partial_x P_\varepsilon \partial_x u_\varepsilon dy - \varepsilon \partial_{xx}^2 P_\varepsilon(t, 0) \int_0^x P_\varepsilon dy
\]
\[
+ \varepsilon^2 \partial_{xx}^2 P_\varepsilon(t, 0) P_\varepsilon.
\]

Since
\[
\int_0^\infty P_\varepsilon \partial_t P_\varepsilon dx = \frac{1}{2} \frac{d}{dt} \int_0^\infty P_\varepsilon^2 dx,
\]
\[
\varepsilon^2 \int_0^\infty \partial_{xx}^2 P_\varepsilon \partial_x P_\varepsilon dx = \frac{\varepsilon^2}{2} \frac{d}{dt} \int_0^\infty (\partial_x P_\varepsilon)^2 dx,
\]
when \(x \to \infty \), for (2.3) and (2.47), we have that
\[
\frac{1}{2} \frac{d}{dt} \int_0^\infty P_\varepsilon^2 dx + \frac{\varepsilon^2}{2} \frac{d}{dt} \int_0^\infty (\partial_x P_\varepsilon)^2 dx \\
= \gamma \int_0^\infty P_\varepsilon F_\varepsilon dx - \varepsilon \gamma \int_0^\infty \partial_x P_\varepsilon F_\varepsilon dx - \frac{1}{2} \int_0^\infty P_\varepsilon u_\varepsilon^2 dx \\
+ \frac{\varepsilon}{2} \int_0^\infty \partial_x P_\varepsilon u_\varepsilon^2 dx + \frac{1}{2} \gamma^2(t) \int_0^\infty P_\varepsilon dx - \varepsilon \partial_x u_\varepsilon(t,0) \int_0^\infty P_\varepsilon dx \\
+ \varepsilon \int_0^\infty P_\varepsilon \partial_x u_\varepsilon dx + \varepsilon^2 \int_0^\infty \partial_x P_\varepsilon \partial_x u_\varepsilon dx - \varepsilon \partial_x^2 P_\varepsilon(t,0) \int_0^\infty P_\varepsilon dx.
\] (2.48)
Due to (2.31) and (2.32),
\[
2\gamma \int_0^\infty P_\varepsilon F_\varepsilon dx = 2\gamma \int_0^\infty F_\varepsilon \partial_\varepsilon F_\varepsilon dx = \gamma (F_\varepsilon(t,\infty))^2 \\
= \frac{1}{\gamma} \left(\varepsilon \partial_{tx}^2 P_\varepsilon(t,0) + \varepsilon \partial_x u_\varepsilon(t,0) - \frac{1}{2} \gamma g_\varepsilon^4(t) \right)^2,
\]
that is
\[
2\gamma \int_0^\infty P_\varepsilon F_\varepsilon dx = \frac{\varepsilon^2}{\gamma} (\partial_{tx}^2 P_\varepsilon(t,0))^2 + \frac{2\varepsilon^2}{\gamma} \partial_{tx}^2 P_\varepsilon(t,0) \partial_x u_\varepsilon(t,0) + \frac{\varepsilon^2}{\gamma} (\partial_x u_\varepsilon(t,0))^2 \\
+ \frac{1}{4\gamma} g_\varepsilon^4(t) - \frac{\varepsilon}{\gamma} \partial_{tx}^2 P_\varepsilon(t,0) g_\varepsilon^2(t) - \frac{\varepsilon}{\gamma} \partial_x u_\varepsilon(t,0) g_\varepsilon^2(t).
\] (2.49)
Again by (2.32),
\[
-2\varepsilon \partial_x u_\varepsilon(t,0) \int_0^\infty P_\varepsilon dx = -2 \frac{\varepsilon^2}{\gamma} (\partial_{tx}^2 P_\varepsilon(t,0)) \partial_x u_\varepsilon(t,0) \\
-2 \frac{\varepsilon^2}{\gamma} (\partial_x u_\varepsilon(t,0))^2 + \frac{\varepsilon}{\gamma} \partial_x u_\varepsilon(t,0) g_\varepsilon^2(t),
\] (2.50)
\[
-2\varepsilon \partial_{tx}^2 P_\varepsilon(t,0) \int_0^\infty P_\varepsilon dx = -2 \frac{\varepsilon^2}{\gamma} (\partial_{tx}^2 P_\varepsilon(t,0))^2 \\
-2 \frac{\varepsilon^2}{\gamma} \partial_{tx}^2 P_\varepsilon(t,0) \partial_x u_\varepsilon(t,0) + \frac{\varepsilon}{\gamma} \partial_{tx}^2 P_\varepsilon(t,0) g_\varepsilon^2(t),
\]
\[
g_\varepsilon^2(t) \int_0^\infty P_\varepsilon dx = \frac{\varepsilon}{\gamma} \partial_{tx}^2 P_\varepsilon(t,0) g_\varepsilon^2(t) + \frac{\varepsilon}{\gamma} \partial_x u_\varepsilon(t,0) g_\varepsilon^2(t) - \frac{1}{2\gamma} g_\varepsilon^4(t).
\]
Therefore, (2.48), (2.49) and (2.50) give
\[
\frac{d}{dt} \left(\int_0^\infty P_\varepsilon^2 dx + \varepsilon^2 \int_0^\infty (\partial_x P_\varepsilon)^2 dx \right) \\
= \frac{\varepsilon^2}{\gamma} (\partial_{tx}^2 P_\varepsilon(t,0))^2 + \frac{2\varepsilon^2}{\gamma} \partial_{tx}^2 P_\varepsilon(t,0) \partial_x u_\varepsilon(t,0) + \frac{\varepsilon^2}{\gamma} (\partial_x u_\varepsilon(t,0))^2 \\
+ \frac{1}{4\gamma} g_\varepsilon^4(t) - \frac{\varepsilon}{\gamma} \partial_{tx}^2 P_\varepsilon(t,0) g_\varepsilon^2(t) - \frac{\varepsilon}{\gamma} \partial_x u_\varepsilon(t,0) g_\varepsilon^2(t) \\
- 2\varepsilon \int_0^\infty \partial_x P_\varepsilon F_\varepsilon dx - \int_0^\infty P_\varepsilon u_\varepsilon^2 dx + \varepsilon \int_0^\infty \partial_x P_\varepsilon u_\varepsilon^2 dx \\
+ \frac{\varepsilon}{\gamma} \partial_{tx}^2 P_\varepsilon(t,0) g_\varepsilon^2(t) + \frac{\varepsilon}{\gamma} \partial_x u_\varepsilon(t,0) g_\varepsilon^2(t) - \frac{1}{2\gamma} g_\varepsilon^4(t)
\].
Hence, (2.51), (2.52) and (2.53) give

\[
\begin{align*}
&\frac{d}{dt} \left(\int_0^\infty P_\varepsilon(t,0)^2 \, dx + \varepsilon^2 \int_0^\infty (\partial_x P_\varepsilon(t,0))^2 \, dx \right) + \frac{1}{\gamma} \left(\varepsilon \partial_t^2 P_\varepsilon(t,0) + \varepsilon \partial_t u_\varepsilon(t,0) - \frac{1}{2} g_\varepsilon^2(t) \right)^2 \\
&\leq 2\gamma \| P_\varepsilon(t, \cdot) \|_{L^2(0, \infty)}^2 + \int_0^\infty P_\varepsilon u_\varepsilon^2 \, dx + \varepsilon \int_0^\infty \partial_x P_\varepsilon u_\varepsilon^2 \, dx \\
&+ 2\varepsilon \int_0^\infty u_\varepsilon \partial_x P_\varepsilon \, dx + 2\varepsilon^2 \int_0^\infty \partial_x P_\varepsilon \partial_x u_\varepsilon \, dx.
\end{align*}
\]

That is,

\[
(2.51)
\]

\[
\begin{align*}
-2 \varepsilon & \int_0^\infty \partial_x P_\varepsilon \, dx + 2\varepsilon \int_0^\infty \partial_x P_\varepsilon u_\varepsilon \, dx = \int_0^\infty \partial_x P_\varepsilon \, dx + \varepsilon \int_0^\infty \partial_x P_\varepsilon u_\varepsilon^2 \, dx \\
&+ 2\varepsilon \int_0^\infty u_\varepsilon \partial_x P_\varepsilon \, dx + 2\varepsilon^2 \int_0^\infty \partial_x P_\varepsilon \partial_x u_\varepsilon \, dx.
\end{align*}
\]

Thanks to (2.1), (2.3), (2.31) and (2.32),

\[
(2.52)
\]

while, for (2.1) and (2.3),

\[
(2.53)
\]

Hence, (2.51), (2.52) and (2.53) give

\[
\begin{align*}
&\frac{d}{dt} \left(\| P_\varepsilon(t, \cdot) \|_{L^2(0, \infty)}^2 + \varepsilon^2 \| \partial_x P_\varepsilon(t, \cdot) \|_{L^2(0, \infty)}^2 \right) \\
&+ \frac{1}{\gamma} \left(\varepsilon \partial_t^2 P_\varepsilon(t,0) + \varepsilon \partial_t u_\varepsilon(t,0) - \frac{1}{2} g_\varepsilon^2(t) \right)^2 \\
&\leq 2\gamma \| P_\varepsilon(t, \cdot) \|_{L^2(0, \infty)}^2 + \int_0^\infty P_\varepsilon u_\varepsilon^2 \, dx + \varepsilon \int_0^\infty \partial_x P_\varepsilon u_\varepsilon^2 \, dx \\
&+ 2\varepsilon \int_0^\infty u_\varepsilon \partial_x P_\varepsilon \, dx + 2\varepsilon^2 \int_0^\infty \partial_x P_\varepsilon \partial_x u_\varepsilon \, dx.
\end{align*}
\]

Thus,

\[
(2.54)
\]
For Young’s inequality,
\[
2\varepsilon \int_0^\infty |\partial_x P_\varepsilon||u_\varepsilon|dx = \int_0^\infty \left| \frac{u_\varepsilon}{\sqrt{\varepsilon}} \right| |2\varepsilon \sqrt{\gamma} \partial_x P_\varepsilon|dx \\
\leq 2\gamma \varepsilon^2 \|\partial_x P_\varepsilon(t,\cdot)\|_{L^2(0,\infty)}^2 + \frac{1}{2\gamma} \|u_\varepsilon(t,\cdot)\|_{L^2(0,\infty)}^2 , \\
2\varepsilon^2 \int_0^\infty |\partial_x P_\varepsilon||\partial_x u_\varepsilon| \leq \varepsilon^2 \|\partial_x P_\varepsilon(t,\cdot)\|_{L^2(0,\infty)}^2 + \varepsilon^2 \|\partial_x u_\varepsilon(t,\cdot)\|_{L^2(0,\infty)}^2 .
\]
Thus,
\[
\frac{d}{dt} G(t) + \frac{1}{\gamma} \left(\varepsilon \partial_t^2 P_\varepsilon(t,0) + \varepsilon \partial_x u_\varepsilon(t,0) - \frac{1}{2} g_\varepsilon^2(t) \right)^2 \\
\leq 2\gamma G(t) + \frac{1}{\gamma} \|u_\varepsilon(t,\cdot)\|_{L^2(0,\infty)}^2 + \int_0^\infty |P_\varepsilon|u_\varepsilon^2dx + \varepsilon \int_0^\infty |\partial_x P_\varepsilon|u_\varepsilon^2dx \\
+ \varepsilon^2 \int_0^\infty (\partial_x u_\varepsilon)^2dx + \varepsilon^2 \|\partial_x P_\varepsilon(t,\cdot)\|_{L^2(0,\infty)}^2 + \varepsilon^2 \|\partial_x u_\varepsilon(t,\cdot)\|_{L^2(0,\infty)}^2 ,
\]
that is
\[
\frac{d}{dt} G(t) - 2\gamma G(t) + \frac{1}{\gamma} \left(\varepsilon \partial_t^2 P_\varepsilon(t,0) + \varepsilon \partial_x u_\varepsilon(t,0) - \frac{1}{2} g_\varepsilon^2(t) \right)^2 \\
\leq \frac{1}{2\gamma} \|u_\varepsilon(t,\cdot)\|_{L^2(0,\infty)}^2 + \int_0^\infty |P_\varepsilon|u_\varepsilon^2dx \\
+ \varepsilon \int_0^\infty |\partial_x P_\varepsilon|u_\varepsilon^2dx + \varepsilon^2 \|\partial_x P_\varepsilon(t,\cdot)\|_{L^2(0,\infty)}^2 \\
+ \varepsilon^2 \|\partial_x u_\varepsilon(t,\cdot)\|_{L^2(0,\infty)}^2 ,
\]
where
\[
G(t) = \|P_\varepsilon(t,\cdot)\|_{L^2(0,\infty)}^2 + \varepsilon^2 \|\partial_x P_\varepsilon(t,\cdot)\|_{L^2(0,\infty)}^2 .
\]
We observe that, for (2.23),
\[
\int_0^\infty |P_\varepsilon|u_\varepsilon^2dx \leq C_0 \left(e^{C_0 t} + 1 \right) \|P_\varepsilon\|_{L^\infty(I_T)} ,
\]
where I_T is defined in (2.40).
Since $0 < \varepsilon < 1$, it follows from (2.23) and (2.25) that
\[
\varepsilon \int_0^\infty |\partial_x P_\varepsilon|u_\varepsilon^2dx \leq \varepsilon \|\partial_x P_\varepsilon(t,\cdot)\|_{L^\infty(0,\infty)} \|u_\varepsilon(t,\cdot)\|_{L^2(0,\infty)}^2 \\
\leq \sqrt{\varepsilon} C_0 \left(e^{C_0 t} + 1 \right)^{\frac{3}{4}} \leq C_0 \left(e^{C_0 t} + 1 \right)^{\frac{3}{4}} .
\]
Again by $0 < \varepsilon < 1$ and (2.25), we have that
\[
\varepsilon^2 \int_0^\infty (\partial_x P_\varepsilon)^2dx \leq \|\partial_x P_\varepsilon(t,\cdot)\|_{L^2(0,\infty)}^2 \leq C_0 \left(e^{C_0 t} + 1 \right) .
\]
Therefore, (2.23), (2.55), (2.57), (2.58) and (2.59) give
\[
\frac{d}{dt} G(t) - 2\gamma G(t) + \frac{1}{\gamma} \left(\varepsilon \partial_t^2 P_\varepsilon(t,0) + \varepsilon \partial_x u_\varepsilon(t,0) - \frac{1}{2} g_\varepsilon^2(t) \right)^2 \\
\leq \theta_1(t) + \theta_2(t) \|P_\varepsilon\|_{L^\infty(I_T)} + \varepsilon^2 \|\partial_x u_\varepsilon(t,\cdot)\|_{L^2(0,\infty)}^2 .
\]
where
\[\theta_1(t) = 2C_0 \left(e^{C_0t} (1 + t) + 1 \right) + C_0 \left(e^{C_0t} (1 + t) + 1 \right)^{3/2}, \]
\[\theta_2(t) = C_0 \left(e^{C_0t} (1 + t) + 1 \right), \]
are two continuous functions in \(t \).

Gronwall’s Lemma, (2.22) and (2.50) give
\[
\begin{align*}
\| P_\epsilon(t, \cdot) \|^2_{L^2(0, \infty)} &+ \epsilon^2 \| \partial_x P_\epsilon(t, \cdot) \|^2_{L^2(0, \infty)} \\
&+ \frac{e^{2\gamma t}}{\gamma} \int_0^t e^{-2\gamma s} \left(\epsilon \partial_{x_2}^2 P_\epsilon(s, 0) + \epsilon \partial_x u_\epsilon(s, 0) - \frac{1}{2} g_\epsilon^2(s) \right)^2 ds \\
&\leq \| P_0 \|^2_{L^2(0, \infty)} e^{2\gamma t} + \epsilon e^{2\gamma t} \int_0^t e^{-2\gamma s} \theta_1(s) ds + \| P_\epsilon \|_{L^\infty(I_T)} e^{2\gamma t} \int_0^t e^{-2\gamma s} \theta_2(s) ds \\
&+ \epsilon^2 e^{2\gamma t} \int_0^t e^{-2\gamma s} \| \partial_x u_\epsilon(s, \cdot) \|^2_{L^2(0, \infty)} ds \\
&\leq \| P_0 \|^2_{L^2(0, \infty)} e^{2\gamma t} + \| P_\epsilon \|_{L^\infty(I_T)} \gamma t e^{2\gamma t} + \| P_\epsilon \|_{L^\infty(I_T)} \| \theta_2 \|_{L^\infty(0, T)} \gamma t e^{2\gamma t} \\
&+ \epsilon^2 e^{2\gamma t} \int_0^t e^{-2\gamma s} \| \partial_x u_\epsilon(s, \cdot) \|^2_{L^2(0, \infty)} ds.
\end{align*}
\]

For (2.22),
\[
\epsilon^2 e^{2\gamma t} \int_0^t e^{-2\gamma s} \| \partial_x u_\epsilon(s, \cdot) \|^2_{L^2(0, \infty)} ds \\
\leq \epsilon e^{2\gamma t} \int_0^t \| \partial_x u_\epsilon(s, \cdot) \|^2_{L^2(0, \infty)} ds \leq \theta_3(t) \leq \| \theta_3 \|_{L^\infty(0, T)},
\]
where
\[\theta_3(t) = C_0 e^{2\gamma t} \left(e^{C_0t} (1 + t) + t \right). \]

Hence,
\[
\begin{align*}
\| P_\epsilon(t, \cdot) \|^2_{L^2(0, \infty)} &+ \epsilon^2 \| \partial_x P_\epsilon(t, \cdot) \|^2_{L^2(0, \infty)} \\
&+ \frac{e^{2\gamma t}}{\gamma} \int_0^t e^{-2\gamma s} \left(\epsilon \partial_{x_2}^2 P_\epsilon(s, 0) + \epsilon \partial_x u_\epsilon(s, 0) - \frac{1}{2} g_\epsilon^2(s) \right)^2 ds \\
&\leq \| P_0 \|^2_{L^2(0, \infty)} e^{2\gamma t} + \| P_\epsilon \|_{L^\infty(I_T)} \gamma t e^{2\gamma t} + \| P_\epsilon \|_{L^\infty(I_T)} \| \theta_2 \|_{L^\infty(0, T)} \gamma t e^{2\gamma t} + \| \theta_3 \|_{L^\infty(0, T)}
\end{align*}
\]
that is
\[
\begin{align*}
\| P_\epsilon(t, \cdot) \|^2_{L^2(0, \infty)} &+ \epsilon^2 \| \partial_x P_\epsilon(t, \cdot) \|^2_{L^2(0, \infty)} \\
&+ \frac{e^{2\gamma t}}{\gamma} \int_0^t e^{-2\gamma s} \left(\epsilon \partial_{x_2}^2 P_\epsilon(s, 0) + \epsilon \partial_x u_\epsilon(s, 0) - \frac{1}{2} g_\epsilon^2(s) \right)^2 ds \\
&\leq C(T) \left(\| P_\epsilon \|_{L^\infty(I_T)} + 1 \right).
\end{align*}
\]

Due to (2.1), (2.25), (2.61) and the Hölder inequality,
\[
\begin{align*}
P_\epsilon^2(t, x) &\leq \int_0^\infty | P_\epsilon | | \partial_x P_\epsilon | dx \\
&\leq \| P_\epsilon \|_{L^\infty(I_T)} \| \partial_x P_\epsilon(t, \cdot) \|^2_{L^2(0, \infty)} + \| P_\epsilon \|_{L^\infty(I_T)} \| \partial_x P_\epsilon(t, \cdot) \|^2_{L^2(0, \infty)} \\
&\leq 2 \sqrt{C(T) \left(\| P_\epsilon \|_{L^\infty(I_T)} + 1 \right)} \sqrt{C_0 \left(e^{C_0t} (1 + t) + 1 \right)} \\
&\leq C(T) \left(\| P_\epsilon \|_{L^\infty(I_T)} + 1 \right).
\end{align*}
\]
Therefore,
\begin{equation}
\|P_\varepsilon\|_{L^\infty(I_T)}^2 - C(T) \|P_\varepsilon\|_{L^\infty(I_T)} - C(T) \leq 0,
\end{equation}
which gives (2.36).

Let us show that (2.44) holds true. Multiplying (2.43) by \(P_\varepsilon\), an integration on \((0, \infty)\) gives
\begin{align*}
2\varepsilon \int_0^\infty P_\varepsilon \partial^2_{tx} P_\varepsilon dx &= \frac{d}{dt} \|P_\varepsilon(t, \cdot)\|_{L^2(0, \infty)}^2 \left(\|P_\varepsilon(t, \cdot)\|_{L^2(0, \infty)}^2 - 2\gamma \int_0^\infty P_\varepsilon F_\varepsilon dx + \int_0^\infty P_\varepsilon u_\varepsilon^2 dx \right) \\
&\quad - \varepsilon^2 \gamma \left(\int_0^{\infty} \int_0^{\infty} P_\varepsilon dx - 2\varepsilon \int_0^\infty P_\varepsilon \partial_x u_\varepsilon dx \right) \\
&\quad + 2\varepsilon \partial_x u_\varepsilon(t, 0) \int_0^\infty P_\varepsilon dx + 2\varepsilon \partial^2_{tx} P_\varepsilon(t, 0) \int_0^\infty P_\varepsilon dx.
\end{align*}

It follows from (2.31), (2.32), (2.49) and (2.50) that
\begin{align*}
2\varepsilon \int_0^\infty P_\varepsilon \partial^2_{tx} P_\varepsilon dx &= \frac{d}{dt} \|P_\varepsilon(t, \cdot)\|_{L^2(0, \infty)}^2 \left(\|P_\varepsilon(t, \cdot)\|_{L^2(0, \infty)}^2 - \frac{\varepsilon^2}{\gamma} \left(\partial^2_{tx} P_\varepsilon(t, 0)\right)^2 \right) \\
&\quad - \frac{2\varepsilon^2}{\gamma} \partial^2_{tx} P_\varepsilon(t, 0) \partial_x u_\varepsilon(t, 0) - \frac{\varepsilon^2}{\gamma} \left(\partial_x u_\varepsilon(t, 0)\right)^2 \\
&\quad - \frac{1}{4\gamma} g_\varepsilon^4(t) + \frac{\varepsilon}{\gamma} \partial^2_{tx} P_\varepsilon(t, 0) g_\varepsilon^2(t) + \frac{\varepsilon}{\gamma} \partial_x u_\varepsilon(t, 0) g_\varepsilon^2(t) \\
&\quad + \varepsilon \gamma \left(\partial^2_{tx} P_\varepsilon(t, 0)\right)^2 + 2\varepsilon \gamma \partial^2_{tx} P_\varepsilon(t, 0) \partial_x u_\varepsilon(t, 0) - \frac{\varepsilon}{\gamma} \partial^2_{tx} P_\varepsilon(t, 0) g_\varepsilon^2(t),
\end{align*}
that is,
\begin{align*}
2\varepsilon \int_0^\infty P_\varepsilon \partial^2_{tx} P_\varepsilon dx &= \frac{d}{dt} \|P_\varepsilon(t, \cdot)\|_{L^2(0, \infty)}^2 \\
&\quad + \frac{1}{\gamma} \left(\varepsilon \partial^2_{tx} P_\varepsilon(t, 0) + \varepsilon \partial_x u_\varepsilon(t, 0) - \frac{\gamma}{2} g_\varepsilon^2(t)\right)^2 \\
&\quad + \int_0^\infty P_\varepsilon u_\varepsilon^2 dx - 2\varepsilon \int_0^\infty P_\varepsilon \partial_x u_\varepsilon dx.
\end{align*}

An integration on \((0, t)\) gives
\begin{align*}
2\varepsilon \int_0^t \int_0^\infty P_\varepsilon \partial^2_{tx} P_\varepsilon ds dx &= \|P_\varepsilon(t, \cdot)\|_{L^2(0, \infty)}^2 - \|P_\varepsilon_{t, 0}\|_{L^2(0, \infty)}^2 \\
&\quad + \frac{1}{\gamma} \int_0^t \left(\varepsilon \partial^2_{tx} P_\varepsilon(s, 0) + \varepsilon \partial_x u_\varepsilon(s, 0) - \frac{\gamma}{2} g_\varepsilon^2(s)\right)^2 ds \\
&\quad + \int_0^t \int_0^\infty P_\varepsilon u_\varepsilon^2 dx - 2\varepsilon \int_0^t \int_0^\infty P_\varepsilon \partial_x u_\varepsilon ds dx.
\end{align*}
It follows from (2.2), (2.37) and (2.57) that
\[
2\varepsilon \int_0^{t} \int_0^{\infty} P_\varepsilon \partial_{xx}^2 P_\varepsilon \, ds \, dx \leq \|P_\varepsilon(t, \cdot)\|_{L^2(0, \infty)}^2 + \|P_\varepsilon(0, \cdot)\|_{L^2(0, \infty)}^2 \\
+ \frac{1}{\gamma} \int_0^t \left(\varepsilon \partial_{xx}^2 P_\varepsilon(s, 0) + \varepsilon \partial_x u_\varepsilon(s, 0) - \gamma(s) \right)^2 \, ds \\
+ 2\varepsilon \int_0^t \int_0^{\infty} |P_\varepsilon| |\partial_x u_\varepsilon| \, dx \, dx + C(T) \\
\leq \|P_0\|_{L^2(0, \infty)}^2 \\
+ \frac{e^{2\gamma t}}{\gamma} \int_0^t \left(\varepsilon \partial_{xx}^2 P_\varepsilon(s, 0) + \varepsilon \partial_x u_\varepsilon(s, 0) - \frac{1}{2} \gamma(s) \right)^2 \, ds \\
+ 2\varepsilon \int_0^t \int_0^{\infty} |P_\varepsilon| |\partial_x u_\varepsilon| \, ds \, dx + C(T) \\
\leq \|P_0\|_{L^2(0, \infty)}^2 + 2\varepsilon \int_0^t \int_0^{\infty} |P_\varepsilon| |\partial_x u_\varepsilon| \, ds \, dx + C(T)
\]

Due to (2.37) and Young’s inequality,
\[
2\varepsilon \int_0^\infty |P_\varepsilon| |\partial_x u_\varepsilon| \, dx = 2 \int_0^\infty |P_\varepsilon| |\varepsilon \partial_x u_\varepsilon| \\
\leq \|P_\varepsilon(t, \cdot)\|_{L^2(0, \infty)}^2 + \varepsilon^2 \|\partial_x u_\varepsilon(t, \cdot)\|_{L^2(0, \infty)}^2 \\
\leq C(T) + \varepsilon^2 \|\partial_x u_\varepsilon(t, \cdot)\|_{L^2(0, \infty)}^2
\]

Thus, for (2.24) and (2.63), we have that
\[
2\varepsilon \int_0^t \int_0^{\infty} |P_\varepsilon| |\partial_x u_\varepsilon| \, ds \, dx \leq \int_0^t \|P_\varepsilon(s, \cdot)\|_{L^2(0, \infty)}^2 \, ds + \varepsilon^2 \int_0^t \|\partial_x u_\varepsilon(s, \cdot)\|_{L^2(0, \infty)}^2 \, ds \leq C(T).
\]

Therefore,
\[
2\varepsilon \int_0^t \int_0^{\infty} P_\varepsilon \partial_{xx}^2 P_\varepsilon \, ds \, dx \leq \|P_0\|_{L^2(0, \infty)}^2 + C(T),
\]

which gives (2.41).

\[\square\]

Lemma 2.7. Let \(T > 0\). Then,
\[
\|u_\varepsilon\|_{L^\infty(I_T)} \leq \|u_0\|_{L^\infty(0, \infty)} + C(T),
\]
where \(I_T\) is defined in (2.40).

Proof. Due to (2.1) and (2.36),
\[
\partial_t u_\varepsilon + u_\varepsilon \partial_x u_\varepsilon - \varepsilon \partial_{xx}^2 u_\varepsilon \leq \gamma C(T).
\]

Since the map
\[
\mathcal{F}(t) := \|u_0\|_{L^\infty(0, \infty)} + \gamma C(T) t,
\]
solves the equation
\[
\frac{d\mathcal{F}}{dt} = \gamma C(T)
\]
and
\[
\max\{u_\varepsilon(0, x), 0\} \leq \mathcal{F}(t), \quad (t, x) \in I_T,
\]
the comparison principle for parabolic equations implies that
\[
u_\varepsilon(t, x) \leq \mathcal{F}(t), \quad (t, x) \in I_T.
\]
In a similar way we can prove that
\[u_\varepsilon(t, x) \geq -F(t), \quad (t, x) \in I_T. \]
Therefore,
\[|u_\varepsilon(t, x)| \leq \|u_0\|_{L^\infty(0, \infty)} + \gamma C(T)t \leq \|u_0\|_{L^\infty(0, \infty)} + C(T), \]
which gives (2.64).

\[\square \]

3. PROOF OF THEOREM 1.1

This section is devoted to the proof of Theorem 1.1. Let us begin by proving the existence of a distributional solution to (1.12), (1.13), (1.14) satisfying (1.14).

Lemma 3.1. Let \(T > 0 \). There exists a function \(u \in L^\infty((0, T) \times (0, \infty)) \) that is a distributional solution of (1.11) and satisfies (1.14).

We construct a solution by passing to the limit in a sequence \(\{u_\varepsilon\}_{\varepsilon > 0} \) of viscosity approximations (2.1). We use the compensated compactness method [25].

Lemma 3.2. Let \(T > 0 \). There exists a subsequence \(\{u_{\varepsilon_k}\}_{k \in \mathbb{N}} \) of \(\{u_\varepsilon\}_{\varepsilon > 0} \) and a limit function \(u \in L^\infty((0, T) \times (0, \infty)) \) such that
\[u_{\varepsilon_k} \to u \text{ a.e. and in } L^p_{loc}((0, T) \times (0, \infty)), \quad 1 \leq p < \infty. \]

Moreover, we have
\[P_{\varepsilon_k} \to P \text{ a.e. and in } L^p_{loc}(0, T; W^{1,p}_{loc}(0, \infty)), \quad 1 \leq p < \infty, \]
where
\[P(t, x) = \int_0^x u(t, y)dy, \quad t \geq 0, \quad x \geq 0, \]
and (1.14) holds true.

Proof. Let \(\eta : \mathbb{R} \to \mathbb{R} \) be any convex \(C^2 \) entropy function, and \(q : \mathbb{R} \to \mathbb{R} \) be the corresponding entropy flux defined by \(q' = f_0' \eta' \). By multiplying the first equation in (2.1) with \(\eta'(u_\varepsilon) \) and using the chain rule, we get
\[
\partial_\varepsilon \eta(u_\varepsilon) + \partial_x q(u_\varepsilon) = \varepsilon \partial_{xx} \eta(u_\varepsilon) - \varepsilon \eta''(u_\varepsilon) (\partial_x u_\varepsilon)^2 + \gamma \eta'(u_\varepsilon) P_{\varepsilon},
\]
where \(\mathcal{L}_{1, \varepsilon}, \mathcal{L}_{2, \varepsilon}, \mathcal{L}_{3, \varepsilon} \) are distributions.

Let us show that
\[\mathcal{L}_{1, \varepsilon} \to 0 \text{ in } H^{-1}((0, T) \times (0, \infty)), \quad T > 0. \]

Since
\[\varepsilon \partial_{xx} \eta(u_\varepsilon) = \partial_\varepsilon (\varepsilon \eta'(u_\varepsilon) \partial_x u_\varepsilon), \]
for (2.24) and Lemma 2.7,
\[
\| \varepsilon \eta'(u_\varepsilon) \partial_x u_\varepsilon \|_{L^2((0, T) \times (0, \infty))} \leq \varepsilon \| \eta' \|_{L^\infty(J_T)} \int_0^T \| \partial_x u_\varepsilon(s, \cdot) \|_{L^2(0, \infty)} ds \\
\leq \varepsilon \| \eta' \|_{L^\infty(J_T)} C(T) \to 0,
\]
where
\[J_T = \left(-\|u_0\|_{L^\infty(0, \infty)} - C(T), \|u_0\|_{L^\infty(0, \infty)} + C(T) \right). \]

We claim that
\[\{\mathcal{L}_{2, \varepsilon}\}_{\varepsilon > 0} \text{ is uniformly bounded in } L^1((0, T) \times (0, \infty)), \quad T > 0. \]
Again by (2.24) and Lemma 2.7
\[
\|\varepsilon\eta''(u_\varepsilon)(\partial_x u_\varepsilon)^2\|_{L^1((0,T) \times (0,\infty), J_T)} \leq \|\eta''\|_{L^\infty(J_T)} \varepsilon \int_0^T \|\partial_x u_\varepsilon(s,\cdot)\|^2_{L^2(0,\infty)} ds
\]
\[
\leq \|\eta''\|_{L^\infty(J_T)} C(T).
\]
We have that
\[
\{L_{3,\varepsilon}\}_{\varepsilon>0} \text{ is uniformly bounded in } L^1_{loc}((0,T) \times (0,\infty)), \ T > 0.
\]
Let \(K\) be a compact subset of \((0,T) \times (0,\infty)\). For Lemmas 2.6 and 2.7,
\[
\|\gamma\eta'(u_\varepsilon)P_\varepsilon\|_{L^1(K)} = \gamma \int_K |\eta'(u_\varepsilon)||P_\varepsilon|dt dx
\]
\[
\leq \gamma \|\eta''\|_{L^\infty(J_T)} \|P_\varepsilon\|_{L^\infty(J_T)} |K|.
\]
Therefore, Murat’s lemma [20] implies that
\[
(3.4) \quad \{\partial_t \eta(u_\varepsilon) + \partial_x \eta(u_\varepsilon)\}_{\varepsilon>0} \text{ lies in a compact subset of } H^{-1}_{loc}((0,T) \times (0,\infty)).
\]
The \(L^\infty\) bound stated in Lemma 2.7 (3.3), and the Tartar’s compensated compactness method [25] give the existence of a subsequence \(\{u_{\varepsilon_k}\}_{k \in \mathbb{N}}\) and a limit function \(u \in L^\infty((0,T) \times (0,\infty)), \ T > 0, \) such that (3.1) holds.
Let us prove that (3.2) holds true.
We show that
\[
(3.5) \quad \varepsilon \partial_x P_\varepsilon(t,x) \to 0 \text{ in } L^\infty(0,T;L^\infty(0,\infty)), \ T > 0.
\]
It follows from (2.24) that
\[
\varepsilon \|\partial_x P_\varepsilon\|_{L^\infty(0,T;L^\infty(0,\infty))} \leq \sqrt{\varepsilon} \sqrt{C_0 (e^{C_0 T} (1 + T) + 1)} = \sqrt{\varepsilon} C(T) \to 0,
\]
that is (3.3). Then, (2.32), (3.1), (3.5) and the Hölder inequality give (3.2).
Finally, we prove (1.14).
Let \(k \in \mathbb{N}, \ c \in \mathbb{R}\) be a constant, and \(\phi \in C^\infty(\mathbb{R}^2)\) be a nonnegative test function with compact support. Multiplying the first equation of (2.1) by \(\text{sign}(u_\varepsilon - c)\), we have
\[
\partial_t |u_{\varepsilon_k} - c| + \partial_x \left(\text{sign} (u_{\varepsilon_k} - c) \left(\frac{u_{\varepsilon_k}^2}{2} - \frac{c^2}{2} \right) - \gamma \text{sign} (u_{\varepsilon_k} - c) P_{\varepsilon_k} - \varepsilon_k \partial_{xx} |u_{\varepsilon_k} - c| \right) \leq 0.
\]
Multiplying by \(\phi\) and integrating over \((0,\infty)^2\), we get
\[
\int_0^\infty \int_0^\infty \left(|u_{\varepsilon_k} - c| \partial_t \phi + \left(\text{sign} (u_{\varepsilon_k} - c) \left(\frac{u_{\varepsilon_k}^2}{2} - \frac{c^2}{2} \right) \right) \partial_x \phi \right) dtdx
\]
\[
+ \gamma \int_0^\infty \int_0^\infty \text{sign} (u_{\varepsilon_k} - c) P_{\varepsilon_k} dtdx - \varepsilon_k \int_0^\infty \int_0^\infty \partial_x |u_{\varepsilon_k} - c| \partial_x \phi dtdx
\]
\[
+ \int_0^\infty |u_0(x) - c| \phi(0,x) dx + \int_0^\infty \text{sign} (g_{\varepsilon_k}(t) - c) \left(\frac{g_{\varepsilon_k}^2(t)}{2} - \frac{c^2}{2} \right) \phi(t,0) dt
\]
\[
- \varepsilon_k \int_0^\infty \partial_x |u_{\varepsilon_k}(t,0) - c| \phi(t,0) dt \geq 0.
\]
Since
\[
g_{\varepsilon_k}(t) \to g(t) \text{ in } W^{1,\infty}(0,\infty),
\]
thanks to Lemmas 2.4 2.6 and 2.7 when \(k \to \infty \), we have
\[
\int_0^\infty \int_0^\infty \left(|u - c| \partial_t \phi + \left(\text{sign} (u - c) \left(\frac{u^2}{2} - \frac{c^2}{2} \right) \right) \partial_x \phi \right) dt \, dx \\
+ \gamma \int_0^\infty \int_0^\infty \text{sign} (u - c) \, P \, dt \, dx + \int_0^\infty |u_0(x) - c| \phi(0,x) \, dx \\
- \lim_{\varepsilon_k \to 0} \varepsilon_k \int_0^\infty \partial_x |u_{\varepsilon_k}(t,0)| - c|\phi(t,0)| \, dt \\
= \int_0^\infty \text{sign} (g(t) - c) \left(\frac{g^2(t)}{2} - \frac{(u_0(t))^2}{2} \right) \phi(t,0) \, dt.
\]

We have to prove that (see \(\| \))
\[
\lim_{\varepsilon_k} \varepsilon_k \int_0^\infty \partial_x |u_{\varepsilon_k}(t,0)| - c|\phi(t,0)| \, dt
\]
\[(3.6) = \int_0^\infty \text{sign} (g(t) - c) \left(\frac{g^2(t)}{2} - \frac{(u_0(t))^2}{2} \right) \phi(t,0) \, dt.
\]

Let \(\{ \rho_{\nu} \}_{\nu \in \mathbb{N}} \subset C^\infty (\mathbb{R}) \) be such that
\[
0 \leq \rho_{\nu} \leq 1, \quad \rho_{\nu}(0) = 1, \quad |\rho_{\nu}'| \leq 1, \quad x \geq \frac{1}{\nu} \implies \rho_{\nu}(x) = 0.
\]

Using \((t,x) \to \rho_{\nu}(x) \phi(t,x) \) as test function for the first equation of (2.1) we get
\[
\int_0^\infty \int_0^\infty \left(u_{\varepsilon_k} \partial_t \phi_{\rho_{\nu}} + \frac{u_{\varepsilon_k}^2}{2} \partial_x \phi_{\rho_{\nu}} + \frac{u_{\varepsilon_k}^2}{2} \phi_{\rho_{\nu}}' \right) dt \, dx + \gamma \int_0^\infty \int_0^\infty P_{\varepsilon_k} \phi_{\rho_{\nu}} dt \, dx \\
- \varepsilon_k \int_0^\infty \int_0^\infty \partial_x u_{\varepsilon_k} \left(\partial_x \phi_{\rho_{\nu}} + \phi_{\rho_{\nu}}' \right) dt \, dx + \int_0^\infty u_0(x) \phi(0,x) \rho_{\nu}(x) \, dx \\
+ \int_0^\infty \frac{g_{\varepsilon_k}^2(t)}{2} \phi(t,0) \, dt - \varepsilon_k \int_0^\infty \partial_x u_{\varepsilon_k}(t,0) \phi(t,0) \, dt = 0.
\]

As \(k \to \infty \), we obtain that
\[
\int_0^\infty \int_0^\infty \left(u \partial_t \phi_{\rho_{\nu}} + \frac{u^2}{2} \partial_x \phi_{\rho_{\nu}} + \frac{u^2}{2} \phi_{\rho_{\nu}}' \right) dt \, dx + \gamma \int_0^\infty \int_0^\infty P \phi_{\rho_{\nu}} dt \, dx \\
+ \int_0^\infty u_0(x) \phi(0,x) \rho_{\nu} \, dx + \int_0^\infty \frac{g^2(t)}{2} \phi(t,0) \, dt \\
= \lim_{\varepsilon_k} \varepsilon_k \int_0^\infty \partial_x u_{\varepsilon_k}(t,0) \phi(t,0) \, dt.
\]

Sending \(\nu \to \infty \), we get
\[
\lim_{\varepsilon_k} \varepsilon_k \int_0^\infty \partial_x u_{\varepsilon_k}(t,0) \phi(t,0) \, dt = \int_0^\infty \left(\frac{g^2(t)}{2} - \frac{(u_0(t))^2}{2} \right) \phi(t,0) \, dt.
\]

Therefore, due to the strong convergence of \(g_{\varepsilon_k} \) and the continuity of \(g \) we have
\[
\lim_{\varepsilon_k} \varepsilon_k \int_0^\infty \partial_x |u_{\varepsilon_k}(t,0)| - c|\phi(t,0)| \, dt \\
= \lim_{\varepsilon_k} \int_0^\infty \partial_x u_{\varepsilon_k}(t,0) \text{sign} (u_{\varepsilon_k}(t,0) - c) \phi(t,0) \, dt \\
= \lim_{\varepsilon_k} \int_0^\infty \partial_x u_{\varepsilon_k}(t,0) \text{sign} (g_{\varepsilon_k}(t) - c) \phi(t,0) \, dt.
By arguing as in [1, 3, 7, 11], using the fact that the two solutions satisfy the same boundary conditions, we prove that

\[
\begin{align*}
\text{(3.9)}
\end{align*}
\]

\[
\int_0^\infty \text{sign} (g(t) - c) \left(\frac{g^2(t)}{2} - \frac{(u_0(t))^2}{2} \right) \phi(t,0) dt,
\]

that is (3.6).

Proof of Theorem 1.1. Lemma (3.2) gives the existence of entropy solution \(u(t,x)\) of (1.10), or equivalently (1.11).

Let us show that \(u(t,x)\) is unique, and that (1.15) holds true. Fixed \(T > 0\), since our solutions are bounded in \(L^\infty((0,T) \times \mathbb{R})\), we use the doubling of variables method.

Let \(u,v \in L^\infty((0,T) \times \mathbb{R})\) be two entropy solutions of (1.10), or equivalently of (1.11).

By arguing as in [1, 3, 7, 11], using the fact that the two solutions satisfy the same boundary conditions, we prove that

\[
\begin{align*}
\text{(3.10)}
\end{align*}
\]

\[
\partial_t(|u - v|) + \partial_x \left(\frac{u^2}{2} - \frac{v^2}{2} \right) \text{sign} (u - v) - \gamma \text{sign} (u - v) (P_u - P_v) \leq 0
\]

holds in sense of distributions in \((0,\infty) \times (0,\infty)\), where

\[
\begin{align*}
\text{(3.11)}
P_u(t,x) &= \int_0^x u(t,y) dy, \quad P_v = \int_0^x v(t,y) dy.
\end{align*}
\]

Let \(\phi(t,\tau,x,y) \in C^{\infty}(\mathbb{R}^4)\) be a non-negative test function such that \(\text{supp}(\phi) \subset (0,\infty)^4\). Since \(u,v\) are entropy solutions of (1.10), we have

\[
\begin{align*}
\text{(3.10)}
\end{align*}
\]

\[
\int_0^\infty \int_0^\infty |u(t,x) - v(\tau,y)| \partial_t \phi(t,\tau,x,y)
\]

\[
+ \left(\frac{u^2(t,x)}{2} - \frac{v^2(\tau,y)}{2} \right) \text{sign} (u(t,x) - v(\tau,y)) \cdot \partial_x \phi(t,\tau,x,y)
\]

\[
+ \gamma \text{sign} (u(t,x) - v(\tau,y)) P_u(t,x) \phi(t,\tau,x,y) dt dx \geq 0,
\]

\[
\int_0^\infty \int_0^\infty |v(\tau,y) - u(t,x)| \partial_t \phi(t,\tau,x,y)
\]

\[
+ \left(\frac{v^2(\tau,y)}{2} - \frac{u^2(t,x)}{2} \right) \text{sign} (v(\tau,y) - u(t,x)) \cdot \partial_x \phi(t,\tau,x,y)
\]

\[
+ \gamma \text{sign} (v(\tau,y) - u(t,x)) P_v(\tau,y) \phi(t,\tau,x,y) d\tau dy \geq 0.
\]

Integrating (3.10) with respect to \(\tau, y\), (3.11) with respect to \(t, x\), and adding these two results, we obtain

\[
\begin{align*}
\int_0^\infty \int_0^\infty \int_0^\infty \int_0^\infty |u(t,x) - v(\tau,y)| &| \partial_t \phi(t,\tau,x,y) + \partial_x \phi(t,\tau,x,y) |
\]

\[
+ \left(\frac{u^2(t,x)}{2} - \frac{v^2(\tau,y)}{2} \right) \text{sign} (u(t,x) - v(\tau,y)) \cdot \left(\partial_x \phi(t,\tau,x,y) + \partial_y \phi(t,\tau,x,y) \right)
\]

\[
+ \gamma \text{sign} (u(t,x) - v(\tau,y)) (P_u(t,x) - P_v(\tau,y)) \cdot \phi(t,\tau,x,y) dt d\tau dx dy \geq 0.
\]

Now, we choose a sequence of functions \(\{\delta_k\}_{k \geq 1}\), approximating the Dirac mass at the origin. More precisely, let \(\delta : \mathbb{R} \to [0,1]\) be a \(C^\infty\) function such that

\[
\int_{\mathbb{R}} \delta(z) dz = 1, \quad \delta(z) = 0, \quad \text{for all } z \notin [-1,1],
\]
We observe that (3.16) is positive if $c \not\in I$ where
\[t \quad \text{since the maps} \quad \delta \quad \text{is (3.8)}. \]

Let us consider the following test function
\[\phi_h(t, \tau, x, y) = \psi\left(\frac{t + \tau}{2}, \frac{x + y}{2}\right)\delta_h\left(\frac{\tau - t}{2}\right)\delta_h\left(\frac{y - x}{2}\right), \]
where $\psi \in C^\infty(\mathbb{R}^2)$ is a non-negative test function such that $\text{supp}(\psi) \subset (0, \infty)^2$.

Using (3.13) as test function in the previous inequality, we have
\[
\int_0^\infty \int_0^\infty \int_0^\infty \left\{ \delta_h\left(\frac{\tau - t}{2}\right)\delta_h\left(\frac{-x}{2}\right) [u(t, x) - v(t, y)] \partial_t \psi\left(\frac{t + \tau}{2}, \frac{x + y}{2}\right) \right. \\
+ \left(\frac{u^2(t, x)}{2} - \frac{v^2(t, y)}{2}\right) \text{sign} \left(u(t, x) - v(t, y) \right) \partial_x \psi\left(\frac{t + \tau}{2}, \frac{x + y}{2}\right) \\
+ \gamma \psi\left(\frac{t + \tau}{2}, \frac{x + y}{2}\right) \delta_h\left(\frac{\tau - t}{2}\right) \delta_h\left(\frac{y - x}{2}\right) \cdot \text{sign} \left(u(t, x) - v(t, y) \right) (P_u(t, x) - P_v(t, y)) \right\} dt d\tau dx dy \geq 0.
\]

We observe that $\delta_h \to \delta_0$ when $h \to 0$, where δ_0 is Dirac mass centered in $\{0\}$. Therefore, since the maps $t \to u(t, \cdot)$, $t \to v(t, \cdot)$ are continuous from $[0, \infty)$ into $L^1_{\text{loc}}(0, \infty)$, and $t \to P_u(t, \cdot)$, $t \to P_v(t, \cdot)$ are continuous from $[0, \infty)$ into $L^\infty_{\text{loc}}(0, \infty)$, it follows from the previous inequality that
\[
\int_0^\infty \int_0^\infty (|u - v| \partial_t \psi + \left(\frac{u^2}{2} - \frac{v^2}{2}\right) \text{sign} \left(u - v \right) \partial_x \psi dt dx \\
+ \gamma \int_0^\infty \int_0^\infty \text{sign} \left(u - v \right) (P_u - P_v) \psi dt dx \geq 0,
\]
that is (3.18).

Let us show that (1.15) holds true. Since u is an entropy solution of (1.10), then it satisfies the inequality (1.14). We write the boundary condition in this way (see [1]):

\[
\min_{c \in I(u_0^\tau(t), g(t))} \left\{ \text{sign} \left(u_0^\tau(t) - g(t) \right) \left(\frac{(u_0^\tau(t))^2}{2} - \frac{c^2}{2} \right) \right\} = 0,
\]
where $I(u_0^\tau(t), g(t))$ is the closed interval $[\min\{u_0^\tau(t), g(t)\}, \max\{u_0^\tau(t), g(t)\}]$.

Let us consider, now, the following product:
\[
\left(\frac{(u_0^\tau(t))^2}{2} - \frac{c^2}{2}\right) \text{sign} \left(u_0^\tau(t) - c \right) + \text{sign} (c), \quad c \in \mathbb{R}.
\]

We observe that (3.16) is positive if $c \not\in I(u_0^\tau(t), g(t))$. Instead, if we consider $c \in I(u_0^\tau(t), g(t))$, (3.16) coincides with (3.15). Therefore, for each $c \in \mathbb{R}$, we have that
\[
\left(\frac{(u_0^\tau(t))^2}{2} - \frac{c^2}{2}\right) \text{sign} \left(u_0^\tau(t) - c \right) + \text{sign} (c) \geq 0.
\]
Since (3.8) holds in the sense of distributions in \((0, \infty)^2\), we have that
\[
\int_0^\infty \int_0^\infty (|u - v| \partial_t \psi + \left(\frac{u^2}{2} - \frac{v^2}{2} \right) \text{sign} (u - v) \partial_x \psi) dt dx \\
+ \gamma \int_0^\infty \int_0^\infty \text{sign} (u - v) (P_u - P_v) \psi dt dx \\
\geq \int_0^\infty \text{sign} (u^*_0(t) - v^*_0(t)) \cdot
\left(\frac{(u^*_0(t))^2}{2} - \frac{(v^*_0(t))^2}{2} \right) \psi(t, 0) dt,
\]
where \(\psi \in C^\infty(\mathbb{R}^2)\) is a non-negative test function with compact support, and \(v^*_0(t)\) is the trace of \(v\) at \(x = 0\).

To determine the sign of the right-hand side of (3.18), for each \(t > 0\), we define the real number \(c(t)\) in the following way:
\[
c(t) = \begin{cases}
 u^*_0(t) & \text{if } u^*_0(t) \in I(g(t), v^*_0(t)), \\
 g(t) & \text{if } g(t) \in I(u^*_0(t), v^*_0(t)), \\
 v^*_0(t) & \text{if } v^*_0(t) \in I(u^*_0(t), g(t)).
\end{cases}
\]
From (3.19), it follows that
\[
\text{sign} (u^*_0(t) - v^*_0(t)) \left(\frac{(u^*_0(t))^2}{2} - \frac{(v^*_0(t))^2}{2} \right) \\
= \text{sign} (u^*_0(t) - c(t)) \left(\frac{(u^*_0(t))^2}{2} - \frac{c^2(t)}{2} \right) \\
+ \text{sign} (v^*_0(t) - c(t)) \left(\frac{(v^*_0(t))^2}{2} - \frac{c^2(t)}{2} \right).
\]

For (3.17), we get that the right-hand side of (3.18) is non-negative. Therefore, we have (3.14).

Let \(T, R > 0\), and let us consider the sets
\[
\Omega := \{(t, x) \in [0, T] \times [-R, R]; \quad 0 \leq s \leq t, \quad |x| \leq R + C(T)(t - s)\},
\]
\[
\Omega^+ := \Omega \cap (0, \infty)^2,
\]
where
\[
C(T) = \sup_{(0, T) \times \mathbb{R}} \left\{|u| + |v|\right\}.
\]
We define the following test function
\[
\phi_h(t, x) = [\alpha_h(s) - \alpha_h(s - t)] [1 - \alpha_h(|x| - R + C(T)(t - s))] \geq 0,
\]
where \(\alpha_h(z)\) is defined in (3.12).

We observe that the function \([\alpha_h(s) - \alpha_h(s - t)] [1 - \alpha_h(|x| - R + C(T)(t - s))\]

is an approximation of the characteristic function of \(\Omega\). Moreover, since \(u\) and \(v\) are in \(L^\infty((0, T) \times \mathbb{R})\), we have that
\[
|u^2(t, x) - v^2(t, x)| \leq C(T)|u(t, x) - v(t, x)|, \quad (t, x) \in \Omega^+.
\]
From (3.12), \(\alpha_h' = \delta_h \geq 0 \). Using \(\phi_h \) as test function in (3.14), we have
\[
\int_0^\infty \int_0^\infty \{|u - v| - \delta_h(s) - \delta_h(s - t)|[1 - \alpha_h(|x| - R + C(T)(t - s))]
+ (\alpha_h(s) - \alpha_h(s - t))\delta_h(|x| - R + C(T)(t - s)).
\cdot \text{sign}(u - v) \left(\frac{u^2}{2} - \frac{v^2}{2} \right) \text{sign}(x) - C(T)|u - v|] \cdot \gamma \text{sign}(u - v) (P_u - P_v)
\cdot [\alpha_h(s) - \alpha_h(s - t)] \geq \alpha_h(|x| - R + C(T)(t - s))] \} dsdx \geq 0.
\]
Therefore, it follows from (3.22) and the previous inequality that
\[
\int_0^\infty \int_0^\infty \{|u - v| - \delta_h(s) - \delta_h(s - t)|[1 - \alpha_h(|x| - R + C(T)(t - s))]
- \gamma \text{sign}(u - v) (P_u - P_v)
\cdot [\alpha_h(s) - \alpha_h(s - t)] \geq \alpha_h(|x| - R + C(T)(t - s))\}
\cdot (C(T)|u - v| - \text{sign}(u - v) \left(\frac{u^2}{2} - \frac{v^2}{2} \right) \text{sign}(x)) dsdx \geq 0.
\]
Since
\[
\delta_h \to \delta_0,
\]
\[
[\alpha_h(s) - \alpha_h(s - t)] \to \chi_{[\alpha_0, \alpha_1]},
\]
when \(h \to 0 \), where \(\delta_0 \) is Dirac mass, the continuity of \(u(t, \cdot), v(t, \cdot) \) from \([0, \infty) \) into \(L^1_{\text{loc}}(0, \infty) \), the continuity of \(P_u(t, \cdot), P_v(t, \cdot) \) from \([0, \infty) \) into \(L^1_{\text{loc}}(0, \infty) \), and the previous inequality give
\[
\|u(t, \cdot) - v(t, \cdot)\|_{L^1(0, R)} \leq \|u_0 - v_0\|_{L^1(0, R + C(T)t)}
+ \gamma \int_{\Omega^+} \text{sign}(u - v) (P_u - P_v) dsdx
\]
\[
\leq \|u_0 - v_0\|_{L^1(0, R + C(T)t)}
+ \gamma \int_0^t \int_{I(s)} \text{sign}(u - v) (P_u - P_v) dsdx,
\]
where
\[
I(s) = [0, R + C(T)(t - s)].
\]
In particular, we have
\[
I(t) = [0, R], \quad I(0) = [0, R + C(T)t].
\]
Therefore, it follows from (3.23) that
\[
\|u(t, \cdot) - v(t, \cdot)\|_{I(t)} \leq \|u_0 - v_0\|_{I(0)}
+ \gamma \int_0^t \int_{I(s)} \text{sign}(u - v) (P_u - P_v) dsdx.
\]
We observe that, for (3.9),
\[\gamma \int_{0}^{t} \int_{I(s)} \text{sign} (u - v) (P_{u} - P_{v}) dsdx \]
\[\leq \gamma \int_{0}^{t} \int_{I(s)} |P_{u} - P_{v}| dsdx \]
(3.27)
\[\leq \gamma \int_{0}^{t} \int_{I(s)} \left(\int_{0}^{x} |u - v| dy \right) dsdx \]
\[\leq \gamma \int_{0}^{t} \int_{I(s)} \left(\int_{I(s)} |u - v| dy \right) dsdx \]
\[= \gamma \int_{0}^{t} |I(s)| \| u(s, \cdot) - v(s, \cdot) \|_{L^{1}(I(s))} ds. \]

Thanks to (3.24), we have
(3.28)
\[|I(s)| = R + C(T)(t - s) \leq R + C(T)t \leq R + C(T). \]

Let us consider the following continuous function:
(3.29)
\[G(t) = \| u(t, \cdot) - v(t, \cdot) \|_{L^{1}(I(t))}, \quad t \geq 0. \]

Therefore, it follows from (3.26), (3.27), and (3.28) that
\[G(t) \leq G(0) + C(T) \int_{0}^{t} G(s) ds. \]

Gronwall’s Lemma, (3.25), and (3.29) give
\[\| u(t, \cdot) - v(t, \cdot) \|_{L^{1}(0, R)} \leq e^{C(T)t} \| u_{0} - v_{0} \|_{L^{1}(0, R+C(T)t)}, \]
that is (1.15). \qed

REFERENCES

[1] C. Bardos, A. Y. Leroux, and J. C. Nédélec. First order quasilinear equations with boundary conditions. Comm. Partial Differential Equations 4, 9:1017–1034, 1979
[2] J. Boyd. Ostrovsky and Hunter’s generic wave equation for weakly dispersive waves: matched asymptotic and pseudospectral study of the paraboloidal travelling waves (corner and near-corner waves). Euro. Jnl. of Appl. Math., 16(1):65–81, 2005.
[3] G. M. Coclite, L. Di Ruvo, and K. H. Karlsen. Some wellposedness results for the Ostrovsky-Hunter equation. To appear on Springer Proceedings in Mathematics & Statistics.
[4] G. M. Coclite and L. Di Ruvo. Convergence of the Ostrovsky Equation to the Ostrovsky-Hunter One. Submitted.
[5] G. M. Coclite, H. Holden, and K. H. Karlsen. Wellposedness for a parabolic-elliptic system. Discrete Contin. Dyn. Syst., 13(3):659–682, 2005.
[6] G. M. Coclite, K. H. Karlsen, and Y.-S. Kwon. Initial-boundary value problems for conservation laws with source terms and the Degasperis-Procesi equation. J. Funct. Anal., 257(12):3823–3857, 2009.
[7] L. Di Ruvo. Discontinuous solutions for the Ostrovsky–Hunter equation and two phase flows. Phd Thesis, University of Bari, Sicily, 1987.
[8] G. Gui and Y. Liu. On the Cauchy problem for the Ostrovsky equation with positive dispersion. Comm. Part. Diff. Eqs., 32(10-12):1895–1916, 2007.
[9] J. Hunter. Numerical solutions of some nonlinear dispersive wave equations. Computational solution of nonlinear systems of equations (Fort Collins, CO, 1988) Lectures in Appl. Math., 26, Amer. Math. Soc., Providence, RI, 301–316, 1990.
[10] J. Hunter and K. P. Tan. Weakly dispersive short waves Proceedings of the IVth international Congress on Waves and Stability in Continuous Media, Sicily, 1987.
[11] S. N. Kružkov. First order quasilinear equations with several independent variables. Mat. Sb. (N.S.), 81(123), 28:228–255, 1970.
[12] S. Levandosky and Y. Liu. Stability of solitary waves of a generalized Ostrovsky equation. SIAM J. Math. Anal., 38(3):985–1011, 2006.
[13] S. Levandosky and Y. Liu. Stability and weak rotation limit of solitary waves of the Ostrovsky equation. *Discr. Cont. Dyn. Syst. B*, 7(7):793–806, 2007.

[14] F. Linares and A. Milanes. Local and global well-posedness for the Ostrovsky equation. *J. Diff. Eqs.*, 222(2):325–340, 2006.

[15] Y. Liu. On the stability of solitary waves for the Ostrovsky equation. *Quart. Appl. Math.*, 65(3):571–589, 2007.

[16] Y. Liu, D. Pelinovsky, and A. Sakovich. Wave breaking in the Ostrovsky–Hunter equation. Preprint.

[17] Y. Liu and V. Varlamov. Cauchy problem for the Ostrovsky equation. *Discr. Cont. Dyn. Syst.*, 10(3):731–753, 2004.

[18] Y. Liu and V. Varlamov. Stability of solitary waves and weak rotation limit for the Ostrovsky equation. *J. Diff. Eqs.*, 203(1):159–183, 2004.

[19] A. J. Morrison, E. J. Parkes, and V. O. Vakhnenko. The N loop soliton solutions of the Vakhnenko equation. *Nonlinearity*, 12(5):1427–1437, 1999.

[20] F. Murat. L’injection du cône positif de H^{-1} dans $W^{-1, q}$ est compacte pour tout $q < 2$. *J. Math. Pures Appl. (9)*, 60(3):309–322, 1981.

[21] L. A. Ostrovsky. Nonlinear internal waves in a rotating ocean. *Okeanologiya*, 18:181–191, 1978.

[22] E. J. Parkes. Explicit solutions of the reduced Ostrovsky equation. *Chaos, Solitons and Fractals*, 31(3):602–610, 2007.

[23] E. J. Parkes and V. O. Vakhnenko. The calculation of multi-soliton solutions of the Vakhnenko equation by the inverse scattering method. *Chaos, Solitons and Fractals*, 13(9):1819–1826, 2002.

[24] Y. A. Stepanyants. On stationary solutions of the reduced Ostrovsky equation: periodic waves, compactons and compound solitons. *Chaos, Solitons and Fractals*, 28(1):193–204, 2006.

[25] L. Tartar. Compensated compactness and applications to partial differential equations. In *Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV*, pages 136–212. Pitman, Boston, Mass., 1979.

[26] K. Tsugawa. Well-posedness and weak rotation limit for the Ostrovsky equation. *J. Differential Equations* 247(12):3163–3180, 2009.

(Giuseppe Maria Coclite and Lorenzo di Ruvo)

Department of Mathematics, University of Bari, via E. Orabona 4, 70125 Bari, Italy

E-mail address: giuseppemaria.coclite@uniba.it, lorenzo.diruvo@uniba.it

URL: http://www.dm.uniba.it/Members/coclitem/