Molecular detection of pathogens in ticks and fleas collected from companion dogs and cats in East and Southeast Asia

Viet-Linh Nguyen¹, Vito Colella¹,², Grazia Greco¹, Fang Fang³, Wisnu Nurcahyo⁴, Upik Kesumawati Hadi⁵, Virginia Venturina⁶, Kenneth Boon Yew Tong⁷, Yi-Lun Tsai⁸, Piyanan Taweethavonsawat⁹, Saruda Tiwananthagorn¹⁰, Sahatchai Tangtrongsup¹⁰, Thong Quang Le¹¹, Khanh Linh Bui¹², Thom Do¹³, Malaika Watanabe¹⁴, Puteri Azaziah Megat Abd Rani¹⁴, Filipe Dantas-Torres¹,¹⁵, Lenaig Halos¹⁶, Frederic Beugnet¹⁶ and Domenico Otranto¹,¹⁷*

Abstract

Background: Ticks and fleas are considered amongst the most important arthropod vectors of medical and veterinary concern due to their ability to transmit pathogens to a range of animal species including dogs, cats and humans. By sharing a common environment with humans, companion animal-associated parasitic arthropods may potentially transmit zoonotic vector-borne pathogens (VBPs). This study aimed to molecularly detect pathogens from ticks and fleas from companion dogs and cats in East and Southeast Asia.

Methods: A total of 392 ticks and 248 fleas were collected from 401 infested animals (i.e. 271 dogs and 130 cats) from China, Taiwan, Indonesia, Malaysia, Singapore, Thailand, the Philippines and Vietnam, and molecularly screened for the presence of pathogens. Ticks were tested for *Rickettsia* spp., *Anaplasma* spp., *Ehrlichia* spp., *Babesia* spp. and *Hepatozoon* spp. while fleas were screened for the presence of *Rickettsia* spp. and *Bartonella* spp.

Result: Of the 392 ticks tested, 37 (9.4%) scored positive for at least one pathogen with *Hepatozoon canis* being the most prevalent (5.4%), followed by *Ehrlichia canis* (1.8%), *Babesia vogeli* (1%), *Anaplasma platys* (0.8%) and *Rickettsia* spp. (1%) [including *Rickettsia* sp. (0.5%), *Rickettsia asembonensis* (0.3%) and *Rickettsia felis* (0.3%)]. Out of 248 fleas tested, 106 (42.7%) were harboring at least one pathogen with *R. felis* being the most common (19.4%), followed by *Bartonella* spp. (16.5%), *Rickettsia asembonensis* (10.9%) and "Candidatus Rickettsia senegalensis" (0.4%). Furthermore, 35 *Rhipicephalus sanguineus* ticks were subjected to phylogenetic analysis, of which 34 ticks belonged to the tropical and only one belonged to the temperate lineage (*Rh. sanguineus* (sensu stricto)).

Conclusion: Keywords: Ticks, Fleas, Dogs, Cats, Companion animals, Asia, Vector-borne pathogens, Zoonotic

Background

Vector-borne diseases are caused by bacteria, viruses, protozoa and helminths transmitted by arthropod vectors, including ticks and fleas, worldwide [1]. For instance, *Rhipicephalus sanguineus* (sensu lato) ticks play an important role in the transmission of many pathogens to dogs (e.g. *Ehrlichia canis*, *Rickettsia conorii*, *Rickettsia rickettsia*, *Babesia vogeli* and *Hepatozoon canis*), some of...
which may also infect humans [2–4]. The cat flea *Ctenocephalides felis* is the primary vector of *Bartonella henselae*, the main causative agent of cat-scratch disease [5, 6], and is also considered as vector of *Rickettsia felis* [7].

East (EA) and Southeast Asia (SEA) are among the world’s fastest-growing economic regions [8], which also resulted in a rise in the number of companion dogs and cats [9]. Companion dogs and cats live in close association with humans, potentially carrying ticks and fleas into human settlements. A large-scale survey conducted in EA and SEA reported that 22.3% of dogs and 3.7% of cats were infested by ticks, while 14.8% of dogs and 19.6% of cats were infested by fleas [10]. The most common flea species parasitizing dogs and cats in EA and SEA is *C. felis*, with *Ctenocephalides orientis* being increasingly observed in dogs [10, 11]. *Rhipicephalus sanguineus* (s.l.), *Rhipicephalus haemaphysaloides* and *Haemaphysalis longicornis* represent the most common tick species reported in dogs and cats [10–14]. These tick species are responsible for the transmission of several species of apicomplexan protozoa of the genus *Babesia*. *Babesia vogeli* was reported in cats in Thailand and China [15, 16] and widely reported in dogs in EA and SEA, including China, Cambodia, Thailand, the Philippines and Malaysia [17–20]. Additionally, dogs from Taiwan, Malaysia, China, and Singapore [10, 21, 22] were also diagnosed with *Babesia gibsoni* infection. Other apicomplexan parasite commonly found in dogs across this region is *H. canis*, which is transmitted by ingestion of *R. sanguineus* (s.l.). This protozoan is commonly found in dogs from Thailand, Taiwan, China, Cambodia, Malaysia, Vietnam and the Philippines [10, 17, 18, 23–26] and in cats from Thailand and the Philippines [10, 24]. Of the tick-borne anaplasmataceae bacteria, *Anaplasma platys* was found in dogs from Malaysia [22] and cats from Thailand [27]. Apart from tick-borne pathogens, flea-borne pathogens are also increasingly recognized as important pathogenic agents to animals and humans. For instance, *R. felis*, the etiological agent of flea-borne spotted fever in humans, has been detected in dogs from Cambodia and China [18, 28] and in *C. felis* from Taiwan, Laos, and Malaysia [29, 30]. Other zoonotic flea-borne pathogens such as *B. henselae* and *Bartonella clarridgeiae*, agents of cat-scratch disease, were molecularly detected in cats and their fleas from the Philippines, Indonesia, Singapore, Thailand, Malaysia and China with the prevalence ranging from 10 to 60% [31–36].

Despite previous scientific investigations reported the circulation of vector-borne pathogens (VBPs) in dogs and cats in EA and SEA, there is a lack of similar studies conducted in their associated ticks and fleas. Therefore, the present study aimed to provide an overview of the pathogens circulating in ticks and fleas from companion dogs and cats in EA and SEA.

Methods

Samples collection and DNA isolation

Of the 2381 privately-owned animals examined (i.e. 1229 dogs and 1152 cats), ticks and fleas were collected from 401 infested animals (i.e. 271 dogs and 130 cats) from China, Taiwan, Indonesia, Malaysia, Singapore, Thailand, the Philippines and Vietnam under the context of a previous multicenter survey [10]. Ticks and fleas were collected and placed in labelled tubes individualized per host, containing 70% ethanol. Ticks and fleas (20%) were randomly selected from each tick/flea species and from each infested animal in all studied countries, giving a total number of 392 ticks (i.e. 377 *Rh. sanguineus* (s.l.), 3 *Rh. haemaphysaloides*, 7 *H. longicornis*, 2 *Haemaphysalis wellingtoni*, 1 *Haemaphysalis lystris*, 1 *Haemaphysalis campanulata* and 1 *Ixodes* sp.) from 248 animals (39 cats and 209 dogs) and 248 fleas (i.e. 209 *C. felis*, 38 *C. orientis* and 1 *Xenopsylla cheopis*) from 213 animals (104 cats and 109 dogs) were subjected to DNA isolation individually. Data on the molecular identification of these ticks and fleas are available elsewhere (see Table 4 in Colella et al. [10]) Genomic DNA was isolated according to the procedures previously described [10, 37].

Molecular detection and phylogenetic analysis of pathogens

Tick DNA samples were tested for the presence of apicomplexan protozoa (i.e. *Babesia* spp., *Hepatozoon* spp.), *Anaplasmataceae* (i.e. *Anaplasma* spp., *Ehrlichia* spp.) and *Coxiella burnetti* by conventional PCR (cPCR). Flea DNA samples were tested by using real-time PCR for *Bartonella* spp. The presence of *Rickettsia* spp. was also screened in both tick and flea samples. In particular, the first cPCR amplified a portion of citrate synthase (*gltA*) gene, which is presented in all members of the genus *Rickettsia*. Positive samples were then subjected to a second cPCR, which amplified a fragment of the outer membrane protein (*ompA*) of the spotted fever group (SFG) rickettsiae. All primers and PCR protocols used for the detection of VBPs are summarized in Table 1. For all reactions, DNA of pathogen-positive samples served as a positive control. Amplified cPCR products were examined on 2% agarose gels stained with GelRed (VWR International PBI, Milan, Italy) and visualized on a Gel-Logic 100 gel documentation system (Kodak, New York, USA). The cPCR amplicons were sequenced using the Big Dye Terminator v.3.1 chemistry in a 3130 Genetic analyzer (Applied Biosystems, California, USA). Nucleotide sequences were edited, aligned and analyzed using the BioEdit 7.0 software and compared with those available
in the GenBank database using Basic Local Alignment Search Tool (http://blast.ncbi.nlm.nih.gov/Blast.cgi).

To assess the genetic variation of *R. sanguineus* (s.l.) and *Rickettsia* spp., the mitochondrial 16S rDNA sequences of *Rh. sanguineus* (s.l.) ticks generated previously [10] as well as the *gltA* and *ompA* gene sequences of *Rickettsia* spp. generated herein were subjected to phylogenetic analysis. Phylogenetic relationship was inferred by Maximum Likelihood (ML) method after selecting the best-fitting substitution model. Evolutionary analysis was conducted on 8000 bootstrap replications using the MEGA 7 software [44].

Statistical analysis

The percentage of detected pathogens was calculated and 95% confidence intervals (95% CI) (by the modified Wald method) were estimated by using Quantitative Parasitology 3.0 software [45]. Fisher’s exact test was performed to analyze statistically significant differences in the detection of pathogens in fleas and ticks, and in the distribution of different *Rickettsia* spp. among different flea species using SPSS 16.0 software. Differences were considered significant at *P* < 0.05.

Results

The occurrence of VBPs has been detected in ticks and fleas, with a higher number of fleas in which at least one pathogen was detected compared to ticks (Fisher’s exact test, *P* < 0.001). Of the 392 ticks tested, 37 (9.4%; 95% CI: 6.9–12.8%) scored positive for at least one pathogen with *H. canis* being the most prevalent (5.4%; 95% CI: 3.5–8.1%), followed by *E. canis* (1.8%; 95% CI: 0.8–3.7%), *B. vogeli* (1%; 95% CI: 0.3–2.7%), *Rickettsia* spp. (1%; 95% CI: 0.3–2.7%) and *A. platys* (0.8%; 95% CI: 0.2–2.3%). Co-infection of *A. platys* and *B. vogeli* was detected in one *Rh. sanguineus* (s.l.), whereas none of the ticks tested positive for *C. burnetii* (Table 2).

Out of 248 fleas tested, 106 (42.7%; 95% CI: 36.7–49.0%) were harboring at least one pathogen with *R. felis* being the most common (19.4%; 95% CI: 14.9–24.8%), followed by *Bartonella* spp. (16.5%; 95% CI: 12.4–21.7%), *Rickettsia asembonensis* (10.9%; 95% CI: 7.6–15.4%) and “*Candidatus Rickettsia senegalensis*” (0.4%; 95% CI: < 0.0001–2.5%) (Table 3). *Rickettsia felis* was mostly detected in *C. felis*, whereas *C. orientis* mainly harbored *R. asembonensis* (*P* < 0.001).

Representative nucleotide sequences for each detected pathogen displayed 99.4–100% identity with those available in GenBank database. In particular, *A. platys* nucleotide sequences (*n* = 3) revealed 99.6–100% identity with KU500914 (host: *Canis lupus familiaris*; origin: Malaysia), *H. canis* (*n* = 20) 99.7–100% identity with DQ519358 (host: *C. lupus familiaris*; origin: Thailand), *E. canis* (*n* = 7) and *B. vogeli* (*n* = 4) 100% identical to MN227484 (host: *C. lupus familiaris*; origin: Iraq) and KX082917 (host: *C. lupus familiaris*; origin: Angola), respectively.

Table 1 Primers, target genes and PCR conditions used in this study

Pathogen	Primer (5’-3’)	Target gene	PCR protocol Reference
Babesia spp./Hepatozoon	Proplasmid-F: CCAGCAGCGCGGGTA ATTC	18S rRNA	95 °C for 10 min initial denaturation, followed by 35 cycles of 95 °C for 30 s, 64 °C for 20 s, 72 °C for 20 s, then 72 °C for 7 min for the final elongation [38]
Ehrlichia spp./Anaplasmia	EHR16SD: GGTACCCAGAACAGGAAGTCCC AGRCCTACGTC	16S rRNA	95 °C for 10 min initial denaturation, followed by 35 cycles of 95 °C for 30 s, 60 °C for 30 s, 72 °C for 30 s, then 72 °C for 10 min for the final elongation [39]
Coxiella burnetii	Trans-1: TATGTATCCACGCTAGCGCAGT	IS1117a	95 °C for 10 min initial denaturation, followed by 35 cycles of 95 °C for 30 s, 64 °C for 60 s, 72 °C for 60 s, then 72 °C for 7 min for the final elongation [40]
Bartonella spp.	rrA-F: GTCTATGTAATAGACAA TGAAATAA	rrA	95 °C for 2 min initial denaturation, followed by 45 cycles of 95 °C for 15 s, 60 °C for 60 s [41]
Rickettsia spp.	CS-70F: GCCAGTACGGAGAGTAAATGCTG	gltA	95 °C for 10 min initial denaturation, followed by 40 cycles of 95 °C for 30 s, 58 °C for 30 s, 72 °C for 40 s, then 72 °C for 7 min for the final elongation [42]
Spotted fever group	RI90.70F: ATGCCGTATTTTCTCAGAAA	ompA	95 °C for 10 min initial denaturation, followed by 35 cycles of 94 °C for 40 s, 58 °C for 30 s, 72 °C for 45 s, then 72 °C for 10 min for the final elongation [43]

In the GenBank database using Basic Local Alignment Search Tool (http://blast.ncbi.nlm.nih.gov/Blast.cgi).
For *Rickettsia* spp. detection in ticks, the *gltA* sequence identified in one tick showed 99.7% identity with *R. asembonensis* (GenBank: KY445723; host: *C. felis*; origin: Brazil) and another was identical to *R. felis* (100% nucleotide identity with MG845522 (host: *C. felis*; origin: Chile) and 99.4% nucleotide identity with *R. felis* strain URRWXCal2; GenBank: CP000053 (source: cultivation; origin: USA)).

Table 2 Pathogens detected in ticks according to their species, developmental stage, sex and host in East and Southeast Asia

Pathogen	Anaplasma platys	Ehrlichia canis	Rickettsia felis	Rickettsia asembonensis	Rickettsia sp.	Babesia vogeli	Hepatozoon canis
China (n = 28)					1		
C, Haemaphysalis longicornis (1L)							
D, Haemaphysalis campanulata (1L)							
D, Haemaphysalis longicornis (3L, 1N, 1F, 1M)							
D, Rhipicephalus sanguineus (s.l.) (3L, 7N, 5F, 5M)					1F		
Indonesia (n = 79)					2	1	1
C, Rhipicephalus sanguineus (s.l.) (2N, 6F, 2M)							
D, Rhipicephalus sanguineus (s.l.) (2L, 10N, 26F, 30M)					1F	1F	
D, Haemaphysalis wellingtoni (1N)							
Malaysia (n = 3)		kin			2	1	1
D, Rhipicephalus sanguineus (s.l.) (1F, 2M)					1F	1M	
The Philippines (n = 90)					2	1	12
C, Rhipicephalus sanguineus (s.l.) (6N, 8F, 13M)					1N, 1F	1N, 1M	
D, Rhipicephalus sanguineus (s.l.) (1L, 6N, 23F, 33M)					1M	1N, 2F, 7M	
Singapore (n = 4)							
C, Rhipicephalus sanguineus (s.l.) (1N, 1F, 2M)							
Taiwan (n = 25)					2	1	1
C, Ixodes sp. (1F)					1F	1M	
D, Rhipicephalus haemaphysaloides (1F, 2M)							
D, Rhipicephalus sanguineus (s.l.) (2N, 9F, 10M)					1M	1F	
Thailand (n = 46)					3		1
D, Haemaphysalis hystrics (1F)							
D, Haemaphysalis wellingtoni (1L)							
D, Rhipicephalus sanguineus (s.l.) (2L, 3N, 20F, 9M)					1F, 2M	1F	
Vietnam (n = 117)					3	6	5
D, Rhipicephalus sanguineus (s.l.) (18N, 48F, 51M)					2F, 1M	5F, 1M	
Total	3	7	1	1	2	4	21

Abbreviations: C, cat; D, dog; L, larva; N, nymph; M, adult male; F, adult female

* This female tick was reported as “Ixodes sp.” in [10]. Following reassessment of photomicrography images of this tick by one of the co-authors (F.D.-T.) the following morphological features were observed: auriculae and cornua present; porose area small, not contiguous, hypostome with a 2/2 dental formula on almost the entire hypostome; coxa I with slight internal spur; coxae III and IV each with external spur; syncoxae present on coxae I and II; trochanters lacking spurs. As such, this female shares several morphological features with *Ixodes ovatus* [46], but genetic data from a partial 16S rDNA sequence (percent identity: 90.7% with U95900) suggest that this may belong to a distinct species.
related (98.3%) to *Rickettsia rhipicephali* (GenBank: U43803; host: *C. felis*; origin: USA).

For *Rickettsia* spp. detection in fleas, amplification of a portion of the *gltA* gene was positive from 76 fleas. The partial sequence of the *ompA* gene was successfully obtained from 17 of the 76 *gltA*-positive *C. felis* fleas. All of those *ompA* gene sequences were 100% identical to *R. felis* strain URRWXCal2 (GenBank: CP000053; source: cultivation; origin: USA).

Sequence analysis of the *gltA* genes fragment from the other 59 *Rickettsia* positive *C. felis* fleas revealed that the 31 sequences obtained had 99.4% nucleotide identity with *R. felis* strain URRWXCal2 (GenBank: CP000053; source: cultivation; origin: USA), 27 sequences 99.7% with *R. asembonensis* (GenBank: KU45723; host: *C. felis*; origin: Brazil) and one 100% with “Ca. R. senegalensis” (GenBank: MK548197; host: *C. felis*; origin: Colombia).

The phylogenetic tree based on the partial *ompA* gene sequences showed that all *R. felis* isolated from fleas were assembled together in one cluster, whereas *Rickettsia* sp. isolated from ticks clustered with *R. rhipicephali* and *Rickettsia massiliae* (Fig. 1). In the *gltA* tree, phylogenetical analysis revealed that *R. felis*, *R. asembonensis* and “Ca. R. senegalensis” herein detected were formed together in a well-supported sister cluster include other *R. felis*-like organisms (RFLOs), close to the cluster of *Rickettsia australis* and *Rickettsia akari* (Fig. 2).

Table 3 Pathogens detected in fleas according to their species, developmental stage, sex and host in East and Southeast Asia

	R. felis	*R. asembonensis*	“Ca. R. senegalensis”
China	1		2
C, Ctenocephalides felis (8F, 2M)	1F		
D, Ctenocephalides felis (7F)			
Indonesia	12	9	21
C, Ctenocephalides felis (4F, 24M)	7F, 2M		
C, Xenopsylla cheopis (1M)	1M		
D, Ctenocephalides felis (6F, 1M)	2F		
D, Ctenocephalides orientis (9F, 3M)	1M, 7F, 2M		
Malaysia	1		
C, Ctenocephalides felis (4F, 1M)			
D, Ctenocephalides felis (2F)			
The Philippines	20	9	4
C, Ctenocephalides felis (24F, 9M)	4F, 3M		
D, Ctenocephalides felis (34F, 13M)	12F, 1M		1F
D, Ctenocephalides orientis (9F, 1M)	8F		
Singapore	1		
C, Ctenocephalides felis (1M)			
C, Ctenocephalides orientis (1F)	1F		
Taiwan	8		
C, Ctenocephalides felis (10F, 4M)	3F, 2M		
D, Ctenocephalides felis (6F, 3M)	3F		
D, Ctenocephalides orientis (1F)			
Thailand	1	4	1
C, Ctenocephalides felis (4F, 1M)			
D, Ctenocephalides felis (7F, 4M)	1F		
D, Ctenocephalides orientis (2F, 3M)	2F, 2M	1M	1F, 1M
Vietnam	6		3
C, Ctenocephalides felis (14F, 5M)	3F, 1M		
D, Ctenocephalides felis (8F, 3M)	2F		
D, Ctenocephalides orientis (7F, 2M)	4F, 1M		
Total	48	27	41

Abbreviations: C, cat; D, dog; F, female; M, male
The ML tree of 35 representative mitochondrial 16S rDNA sequences of *Rh. sanguineus* (s.l.) gene showed that 34 sequences were identical to each other and identified as belong to the tropical lineage of *Rh. sanguineus* (s.l.) (100% identity with GU553075; origin: Brazil). One sequence from a tick collected from a dog in Beijing (northeast China) clustered with *Rh. sanguineus* (sensu stricto) (100% identity with GU553078; origin: Argentina) (Fig. 3).

Representative sequences of pathogens detected in this study were deposited in the GenBank database under the accession numbers MT499354-MT499356 (*H. canis*), MT499357 (*B. vogeli*), MT499358 and MT499359 (*A. platys*), MT499360 and MT499361 (*E. canis*), MT499362 (*Rickettsia* sp.), MT499363-MT499367 (*R. felis*), MT499368-MT499370 (*R. asembonensis*) and MT499371 (“Ca. R. senegalensis”).

Discussion

The results of this study reveal the presence of several pathogens in ticks (e.g. *A. platys*, *B. vogeli*, *E. canis*, *H. canis* and *Rickettsia* spp.) and fleas (e.g. *Rickettsia* spp. and *Bartonella* spp.) collected from dogs and cats in EA and SEA. The relatively low occurrence of pathogens herein detected in ticks is consistent with previous surveys conducted in ticks infesting owned dogs in Asia [13, 26, 47-49]. Conversely, the occurrence of VBPs is higher in ticks collected from stray animals [24]. Although *B. gibsoni* was identified in dogs from China (2.3%; [10]), none of the tested ticks from these dogs was found positive for this parasite. The absence of *B. gibsoni* in tick populations is probably due to the low number of *H. longicornis* and *H. hystricis*, which are recognized as vectors of this pathogen [50, 51]. The infection of *E. canis* (14.8% by serology) and *H. canis* (1.6% by cPCR) in host populations [10], along with the detection of these pathogens
in *Rh. sanguineus* (s.l.) in the sampling areas support the vector role of this tick species in the transmission of these VBPs in this region [11, 14]. The finding of *A. platys* in dogs (7.1% by serology; [10]) and in *Rh. sanguineus* (s.l.) further suggests its vector competence for this pathogen. Additionally, the detection of *R. felis* and *R. asembenensis* in *Rh. sanguineus* (s.l.) is similar to previous results in Chile [52], Brazil [53] and Malaysia [54], consequently giving more concern about the role of *Rh. sanguineus* (s.l.) in the transmission of *Rickettsia* spp. other than *R. conorii*, *R. massiliae* and *R. rickettsii* [4, 55]. *Rickettsia* sp. sequences herein obtained from *Rh. haemaphysaloides* are identical to one previously generated from the same tick species in Taiwan (named *Rickettsia* sp. TwKM01) [56]. This genotype and its closest related species *R. rhipicephali* remain of unknown pathogenicity to mammals [56, 57]. Additionally, the vector role of *Rh. haemaphysaloides* needs further investigations since it was found harboring multiple pathogens such as *R. rhipicephali*, *A. platys*, *E. canis*, *B. gibsoni* [13, 58].

Of the detected VBPs, *R. felis* stood out as the most important due to its wide distribution, association with
various arthropods, and importance as an emerging zoonotic pathogen [59]. In Asia, the first human case of flea-borne spotted fever attributed to *R. felis* was detected in the Thai-Myanmar border [60], since then several cases of human infection have been documented in Taiwan [61], Thailand [62], Laos [63], Vietnam [64] and Indonesia [65]. Although *R. felis* was detected in many arthropods, including non-hematophagous insect (i.e. the book louse *Liposcelis bostrychophila*) [66], the distribution of this rickettsia is highly affiliated with the distribution of *C. felis* [59]. *Ctenocephalides felis* is the most well-recognized vector of this rickettsia, which is transmitted transovarially and transstadially in the fleas [67], with dogs as proven mammalian reservoir hosts [68]. The high occurrence of *R. felis* in *C. felis* along with the high relative frequency of this flea species in host populations (65.1% in dogs and 98.7% in cats) [10] emphasizes the risk of *R. felis* infection in animals and humans.

The detection of *R. asembonensis* only from fleas collected on dogs (mainly *C. orientis* but in one case in *C. felis*) may suggest that dogs could act as amplifying hosts of this rickettsia, as they do for *R. felis* [68]. *Rickettsia asembonensis* is the most well-characterized genotype of RFLOs [69]. This rickettsia was initially described in fleas from dogs and cats in Kenya [70] and was then reported in various arthropods worldwide [69]. In Asia, *R. asembonensis* was also found in *C. orientis* from dogs [54] and in macaques from Malaysia [71]. Additionally, *Rickettsia* sp. RF2125, a genotype highly related to *R. asembonensis*, was reported with high incidence in *C. orientis* from India and Thailand [72, 73], and was also found in a febrile patient from Malaysia [74]. Moreover, *R. felis*, *R. asembonensis* and “Ca. *R. senegalensis*” clustered in the SFG rickettsiae clade (Fig. 3), and while *R. felis* is a recognized
pathogen [67], the pathogenicity of other RFLOs is currently unknown.

Besides acting as vectors of Rickettsia spp., fleas have been well-recognized as vectors of Bartonella spp. [6, 75]. The occurrence of Bartonella-positive fleas in our study was slightly lower than previous investigations in Laos [30], Malaysia [35] and Thailand [76]. Nevertheless, the occurrence of the two common Bartonella spp. (i.e. B. henselae and B. claridgeiae) in dogs and cats from EA and SEA is relatively high; up to 60% [18, 31, 76, 77]. Additionally, B. henselae infection in humans is usually associated to previous exposure to cats or cat fleas [78], emphasizing the role of cat fleas in Bartonella spp. transmission between animals and humans.

In the present study, all tested tick specimens were negative for C. burnetii although this pathogen was detected in Rh. sanguineus (s.l.) from dogs in Malaysia [79], in dogs in Taiwan [80] and in humans from Thailand [81]. Additionally, Coxiella-like endosymbionts were strongly associated with Rh. sanguineus (s.l.) tropical lineage [82], although the role of these endosymbionts in the biology and vectoral capacity of this tick lineage needs further investigation.

Finally, the genetic lineage of Rh. sanguineus (s.l.) from EA and SEA was investigated based on the 16S rDNA sequences. The finding of Rh. sanguineus (s.s.) in Beijing, a cold area, along with the existence of the tropical lineage in warmer localities, agreed with previous studies, which indicated that the tropical lineage is present in areas with annual mean temperature > 20°C, whereas the temperate lineage occurs in areas with annual mean temperature < 20°C [83]. This information is also relevant from a pathogen transmission perspective, considering that different Rh. sanguineus (s.l.) lineages may present variable vector competence and/or capacity for different pathogens; for instance, E. canis is primarily vectored by Rh. sanguineus (s.l.) tropical lineage [84].

Conclusions
Data herein reported updates the list of pathogens occurring in ticks and fleas from companion dogs and cats in EA and SEA. By sharing the common environment with humans, these parasitic arthropods could be responsible for the transmission of pathogens to humans (i.e. R. felis). Strategies to prevent tick and flea infestations in these animals are fundamental to decrease the risk of transmission of VBP to animals and humans.

Acknowledgements
The authors would like to thank and acknowledge all collaborators from collected sites and animal owners for their participation in the study. In particular Do Yew Tan, Na Lu, Yin ZhiJuan, Jiangwei Wang, Xin Liu, Xinhui Chen, Dang Anh Thy, Junyan Dong, Isabelle Von Richthofen, Evonne Lim, Clair Chen, Michael Banawa, and Marielle Servonnet.

Authors’ contributions
DO and VC conceived the study. FF, WN, UKH, VV, KBYT, YLT, PT, STi, STA, TQL, KLB, TD, MW and PAMAR performed field works. VLN and GG performed the molecular identification of pathogens. VLN analyzed data. VLN and DO wrote the first draft of the manuscript. VC, FDT, LH and FB reviewed the manuscript. All authors read and approved the final manuscript.

Funding
This study was supported by Boehringer Ingelheim Animal Health, Global Technical Services, Companion Animals Parasitology (France) with a grant at the University of Bari, Italy (grant number: D17CTMEnial2 - Prog. C777 P Multi-center Study of Dogs and Cats Parasites in East and Southeast Asia”)

Availability of data and materials
All data generated or analyzed during this study are included in this published article. Representative newly generated sequences were submitted in the GenBank database under the accession numbers MT499354-MT499356 (H. canis), MT499357 (B. vogelli), MT499358 and MT499359 (A. platyi), MT499360 and MT499361 (E. canis), MT499362 (Rickettsia sp.), MT499363-MT499367 (R. felis), MT499368-MT499370 (r. asembonensis) and MT499371 (“R. senegalensis”).

Ethics approval and consent to participate
The protocol of this study was approved by the Ethical Committee of the Department of Veterinary Medicine of the University of Bari (Prot. no. 13/17). All animals’ owners have read, approved and signed an owner informed consent which contained information on study procedures and aims of this study.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Bari, Italy. 2 Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, Australia. 3 School of Animal Science and Technology, Guangxi University, Nanning, China. 4 Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta, Indonesia. 5 Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia. 6 College of Veterinary Science & Medicine, Central Luzon State University, Nueva Ecija, Philippines. 7 Animal & Avian Veterinary Clinic, Singapore, Singapore. 8 Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan. 9 Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand. 10 Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand. 11 Faculty of Animal Science & Veterinary Medicine, Nong Lam University, Ho Chi Minh city, Vietnam. 12 Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam. 13 Biodiversity Conservation and Tropical Disease Research Institute, Hanoi, Vietnam. 14 Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia. 15 Department of Immunology, Aggeu Magalhães Institute, Recife, Brazil. 16 Boehringer Ingelheim Animal Health, Lyon, France. 17 Faculty of Veterinary Sciences, Bu Ali Sina University, Hamedan, Iran.

Received: 12 June 2020 Accepted: 3 August 2020
Published online: 15 August 2020

References
1. Otranto D, Dantas-Torres F, Breitschwerdt EB. Managing canine vector-borne diseases of zoonotic concern: part one. Trends Parasitol. 2009;25:157–63.
2. Otranto D, Dantas-Torres F. Canine and feline vector-borne diseases in Italy: current situation and perspectives. Parasit Vectors. 2010;3:2.
3. Dantas-Torres F, Chomel BB, Otranto D. Ticks and tick–borne diseases: a one health perspective. Trends Parasitol. 2012;28:437–46.
4. Dantas-Torres F, Otranto D. Further thoughts on the taxonomy and vector role of Rhipicephalus sanguineus group ticks. Vet Parasitol. 2015;208:9–13.
5. Chomel BB, Kasten RW, Floyd-Hawkins K, Chi B, Yamamoto K, Roberts-Wilson J, et al. Experimental transmission of Bartonella henselae by the cat flea. J Clin Microbiol. 1996;34:1952–6.

6. Greco G, Branti E, Buonavoglia C, Carelli G, Pollmeier M, Schunack B, et al. Effectiveness of a 10% imidacloprid/45% flumethrin polymer matrix collar in reducing the risk of Bartonella spp. infection in privately owned cats. Parasit Vectors. 2019;12:69.

7. Hirunkanokpun S, Thepparit C, Foil LD, Macaluso KR. Horizontal transmission of Rickettsia felis between cat fleas, Ctenocephalides felis. Mol Ecol. 2011;20:4577–86.

8. International Federation Fund. Real GDP growth. https://www.imf.org/exter nal/datamapper/NGDP_RPCH@WEO/ADVEC/ADVEC/WEOWORLD. Accessed 2 Jun 2020.

9. The economist: Pet-ownership is booming across the world. https://www.economist.com/international/2019/06/22/pet-ownership-is-boom ing-across-the-world. Accessed 2 Jun 2020.

10. Colella V, Nguyen VL, Tan DX, Lu N, Fang F, Zhijuan Y, et al. Zoonotic vector-borne pathogens and ectoparasites of dogs and cats in Eastern and Southeast Asia. Emerg Infect Dis. 2020;26:1221–33.

11. Irwin PJ, Jefferies R. Arthropod-transmitted diseases of companion animals in Southeast Asia. Trends Parasitol. 2004;20:27–34.

12. Iwakami S, Ichikawa Y, Inokuma H. A nationwide survey of ixodid tick species recovered from domestic dogs and cats in Japan in 2011.Ticks Tick Borne Dis. 2014;5:371–9.

13. Zhang J, Liu Q, Wang D, Li W, Beugnet F, Zhou J. Epidemiological survey of ticks and tick-borne pathogens in pet dogs in south-eastern China. Parasite. 2017;24:35.

14. Petney TN, Saijuntha W, Boulanger N, Chitimia-Dobler L, Pfeffer M, Eamuang C, et al. Babesia gibsoni in stray cats of metropolitan Bangkok, Thailand. Vet Parasitol. 2010;173:70–5.

15. Xu D, Zhang J, Shi Z, Song C, Zheng X, Zhang Y, et al. Molecular detection of vector-borne pathogens in pets in dog in south-eastern China. Parasite. 2017;24:35.

16. Petney TN, Saifjunta W, Boulanger N, Chitimia-Dobler L, Pfeffer M, Eamuang C, et al. Babesia gibsoni in stray cats of metropolitan Bangkok, Thailand. Vet Parasitol. 2010;173:70–5.

17. Ybañez AP, Ybañez RHD, Talle MFG, Liu M, Moumouni PFA, Xuan X. First report on Babesia gibsoni and Babesia microti infection in domestic cats from the Philippines. Am J Trop Med Hyg. 1999;60:593–7.

18. Inpankaew T, Hii SF, Chimnoi W, Traub RJ. Canine vector-borne pathogens and Bartonella species in domestic dogs and cats in Thailand. Am J Trop Med Hyg. 2011;85:931–3.

19. Yau C, Zhu C, Wu Y, Pan X, Hua X. Bacteriological and molecular identification of Babesia species in cats from different regions of China. PLoS Negl Trop Dis. 2011;5:e1301.

20. Prakash BK, Low VL, Tan TK, Vinnie-Siow WY, Lim YA-L, Morvarid AR, et al. Babesia species infection in domestic cats in Malaysia. Trop Biomed. 2013;30:345–8.

21. Kernif T, Socolovschi C, Wells K, Lakim MB, Inthalad S, Slesak G, et al. Ticks and associated pathogens in dogs from Greece. Parasit Vectors. 2017;10:501.

22. Mokhtar AS, Lim SF, Tay ST. Molecular detection of Babesia gibsoni and Babesia microti in stray dogs from suspected clinical infections in Taiwan dog cases. J Agri Sci. 1991;173:1576–89.

23. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.

24. Neumann, subgen. nov.: identity, hosts, ecology, and distribution (Ixodida: Ixodidae). J Med Entomol. 2019;55:81–99.

25. Maruyama S, Sakai T, Morita Y, Tanaka S, Kabeya H, Boonmar S, et al. Prevalence of Bartonella species and 16S RNA gene types of Bartonella henselae from domestic cats in Thailand. Am J Trop Med Hyg. 2001;65:783–7.

26. Kernif T, Socolovschi C, Wells K, Lakim MB, Inthalad S, Slesak G, et al. Evidence for the transovarial passage of Haemaphysalis longicornis. J Vet Med Sci. 1991;53:139–42.

27. Higuchi S, Simomura S, Yoshida H, Hoshi F, Kawamura S, Yasuda Y. Development of Babesia gibsoni in the hemolymph of the vector tick, Haemaphysalis longicornis. J Vet Med Sci. 1991;53:491–3.

28. Zhang J, Lu G, Kelly P, Zhang Z, Wei L, Yu D, et al. First report of Rickettsia felis in China. BMC Infect Dis. 2014;14:682.

29. Aoki K, Hwang CG, Fang CT, Shyu PY, Huang JH, Wu PW. Prevalence of Rickettsia felis and the first identification of Bartonella henselae Fuzz/CAL-1 in cat fleas (Siphonaptera: Pulicidae) from Taiwan. J Med Entomol. 2011;48:445–52.

30. Lerut P, Fickel B, Grobet F, Novak T, Nigam S, et al. Prevalence of Bartonella henselae and Bartonella clarridgeiae in an urban Indonesian cat population. Clin Diagn Lab Immunol. 1999;6:41–4.

31. Fiez F, Bruch H, Balduini M, Schuitemaker L, Slesak G, et al. Babesia gibsoni infection in domestic cats from the Philippines. Am J Trop Med Hyg. 1999;60:593–7.

32. Prakash BK, Low VL, Vinnie-Siow WY, Lim YA-L, Morvarid AR, et al. Babesia gibsoni infection in domestic cats from different regions of China. PLoS Negl Trop Dis. 2011;5:e1301.

33. Petrov T, Socolovschi C, Wells K, Lakim MB, Inthalad S, Slesak G, et al. Ticks and associated pathogens in dogs from Greece. Parasit Vectors. 2017;10:501.

34. Maruyama S, Sakai T, Morita Y, Tanaka S, Kabeya H, Boonmar S, et al. Prevalence of Bartonella species and 16S RNA gene types of Bartonella henselae from domestic cats in Thailand. Am J Trop Med Hyg. 2001;65:783–7.

35. Mokhtar AS, Tay ST. Molecular detection of Rickettsia felis, Bartonella henselae, and Bartonella clarridgeiae in fleas from domestic dogs and cats in Singapore. Am J Trop Med Hyg. 2014;91:767–71.

36. Xu D, Zhang J, Shi Z, Song C, Zheng X, Zhang Y, et al. Molecular detection of vector-borne pathogens in pets in dog in south-eastern China. Parasite. 2017;24:35.

37. Prakash BK, Low VL, Tan TK, Vinnie-Siow WY, Lim YA-L, Morvarid AR, et al. Detection of Babesia spp. in dogs and their ticks from Peninsular Malaysia: emphasis on Babesia gibsoni and Babesia vogeli infections in Rhipicephalus sanguineus sensu lato (Acari: Ixodidae). J Med Entomol. 2018;55:1337–40.

38. Lee C-C, Hsieh Y-C, Huang C-C, Tsang C-L, Chung Y-T. Sequence and phylogenetic analysis of the thrombospondin-related adhesive protein (TRAP) gene of Babesia gibsoni isolates from dogs in Taiwan. J Vet Med Sci. 2010;72:1329–35.

39. Mokhtar AS, Lim SF, Tay ST. Molecular detection of Anaplasma phagocytophilum and Babesia gibsoni in dogs in Malaysia. Trop Biomed. 2013;30:345–8.

40. Prakash BK, Low VL, Tan TK, Vinnie-Siow WY, Lim YA-L, Morvarid AR, et al. Detection of Hepatozoon canis in the brown dog tick and domestic dogs in Peninsular Malaysia. J Med Entomol. 2018;55:1346–8.

41. Jittapalapong S, Rungphisuthiphongse O, Maruyama S, Schaefer JJ, Stich RW. Detection of Hepatozoon canis in stray dogs and cats in Bangkok, Thailand. Ann N Y Acad Sci. 2006;1081:479–88.

42. Hwang C, Tsang C. Molecular characterization on 18S RNA gene of Hepato zoon canis from suspected clinical infections in Taiwan dog cases. J Agri Fore. 2011;60:159–69.

43. Galay RL, Manalo AAL, Dolores SLD, Aguilar IPM, Sandalo KAC, Cruz KB, et al. Molecular detection of tick-borne pathogens in canine population and Rhipicephalus sanguineus (sensu lato) ticks from southern Metro Manila and Laguna, Philippines. Parasit Vectors. 2018;11:643.

44. Salakj C, Lertwatcharasarakul P, Salakj J, Nunklang K, Rattanakunupakarn J. Molecular characterization of Anaplasma platys in a domestic cat from Thailand. Comp Clin Pathol. 2012;21:345–8.
hystricis (Acari: Ixodidae) ticks from Taiwan: a novel vector for canine babesiosis. Parasit Vectors. 2018;11:134.

52. Abarca K, López J, Acosta-Jamett G, Martínez-Valdebenito C. Rickettsia felis in Rhipicephalus sanguineus from two distant Chilean cities. Vector Borne Zoonotic Dis. 2013;13:607–9.

53. Dall'Agnol B, Souza U, Webster A, Weck B, Stenzel B, Labruna M, et al. “Candidatus Rickettsia asemboensis” in Rhipicephalus sanguineus ticks, Brazil. Acta Trop. 2017;167:18–20.

54. Low VL, Prakash BK, Tan TK, Sofian-Azirun M, Anwar FH, Vinnie-Siow WY, et al. Pathogens in ectoparasites from free-ranging animals: infection with Rickettsia asemboensis in ticks, and a potentially new species of Ditylidium in fleas and lice. Vet Parasitol. 2017;245:102–5.

55. Brouqui P, Parola P, Fourrier PE, Raoult D. Spotted fever rickettsioses in southern and eastern Europe. FEMS Immunol Med Microbiol. 2007;49:2–12.

56. Tsai PY, Tsai KH, Weng MH, Hung YW, Liu YT, Hu KY, et al. Molecular detection and characterization of spotted fever group rickettsiae in Taiwan. Am J Trop Med Hyg. 2007;77:883–90.

57. Parola P, Paddock CD, Socolovici C, Labruna MB, Medianiokov O, Kerner T, et al. Update on tick-borne rickettsioses around the world: a geographic approach. Clin Microbiol Rev. 2013;26:657–702.

58. Hsu YM, Lin CC, Chomel BB, Tsai KH, Wu WJ, Huang CG, et al. Identification of Rickettsia felis in fleas but not ticks on stray cats and dogs and the evidence of Rickettsia rhipicephali only in adult stage of Rhipicephalus sanguineus and Rhipicephalus haemophysaloides. Comp Immunol Microbiol Infect Dis. 2011;34:513–8.

59. Angelakis E, Medianiokov O, Parola P, Raoult D. Rickettsia felis: the complex journey of an emergent human pathogen. Trends Parasitol. 2018;32:554–64.

60. Parola P, Miller RS, McDaniel P, Telford SR 3rd, Rolain JM, Wongprichanalai C, et al. Emerging rickettsioses of the Thai-Myanmar border. Emerg Infect Dis. 2003;9:592–5.

61. Tsai KH, Lu HY, Tsai JJ, Yu SK, Huang JH, Shu PY. Human case of Rickettsia felis infection, Taiwan. Emerg Infect Dis. 2009;14:1970–2.

62. Edouard S, Bhengsi S, Dowell SF, Watt G, Parola P, Raoult D. Two human cases of Rickettsia felis infection, Thailand. Emerg Infect Dis. 2014;20:1780–1.

63. Dittrich S, Phommasonke K, Anantatat T, Panyavitrong P, Slesak G, Blacksell SD, et al. Rickettsia felis infections and comorbid conditions, Laos, 2003–2011. Emerg Infect Dis. 2014;20:1402–4.

64. Le-Viet N, Le VN, Chung H, Phan DT, Phan QD, Cao TV, et al. Prospective molecular case-control analysis of the aetiologies of acute undifferentiated fever in Vietnam, Emerging Microbes Infect. 2019;8:539–52.

65. Moavuutu AH, Johar E, Anggraeni R, Feliana F, Bernadus JBB, SAFAN D, et al. Rickettsia felis identified in two fatal cases of acute meningococal septicaemia. PLoS Negl Trop Dis. 2020;14:e007893.

66. Behar A, McCormick LJ, Perlman SJ. Rickettsia felis infection in a common household insect pest, Liposcelis bostrychophila (Psocoptera: Liposcelidae). Appl Environ Microbiol. 2010;76:2280–5.

67. Parola P. Rickettsia felis: from a rare disease in the USA to a common cause of fever in sub-Saharan Africa. Clin Microbiol Infect. 2011;17:996–1000.

68. Ng-Nguyen D, Hii SF, Hoang MT, Nguyen VT, Rees R, Stenos J, et al. Domestic dogs are mammalian reservoirs for the emerging zoonosis flea-borne spotted fever, caused by Rickettsia felis. Sci Rep. 2020;10:4151.

69. Maina AN, Jiang J, Luce-Fedrow A, St John HK, Farm CM, Richards AL. Worldwide presence and features of flea-borne Rickettsia asemboensis. Front Vet Sci. 2019;5:334.