Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Annals of Medicine and Surgery 76 (2022) 103434

Contents lists available at ScienceDirect

Annals of Medicine and Surgery

journal homepage: www.elsevier.com/locate/amsu

Case Series

COVID-19 associated with pulmonary mucormycosis; a case series

Okba F. Ahmed a,1, Saoud Al-Neaimy b, Fahmi H. Kakamad c,d,e,*, Razhan k. Ali f,
Tomas M. Mikael c,e, Ahmed Gh Hamasaeed c,g, Shvan H. mohammed e, Rawezh Q. Salih c,e,
Abdulwahid M. Salh c,d, Muhammed Gh Hamasaeed d

a Mosul Cardiac Center, Mosul, Iraq
b Cardiothoracic and Vascular Surgery department, Tikrit Teaching Hospital, Iraq
c Smart Health Tower, François Mitterrand Street, Sulaimani, Kurdistan, Iraq
d College of Medicine, University of Sulaimani, Sulaimani, Kurdistan, Iraq
e Kscien Organisation, Hamdi Str., Asadi Mall, Sulaimani, Kurdistan, Iraq
f Kscien Organisation, Hamdi Str., Asadi Mall, Sulaimani, Kurdistan, Iraq
g Shar Hospital Sulaimani Kurdistan, Iraq

A R T I C L E I N F O

Keywords:
COVID-19
SARS-CoV2
Fungal infection
Mucormycosis
Pulmonary complication

A B S T R A C T

Introduction: Coronavirus disease 2019 (COVID-19) has evolved as a result of severe acute respiratory syndrome coronavirus 2 (SARS-CoV2). With the rise of cases worldwide, plenty of potential COVID-19 complications have emerged, including increased susceptibility to subsequent bacterial and fungal infections. This study aims to report four cases of COVID-19 associated with pulmonary mucormycosis.

Method: This is a multi-center case series study. Diagnosis of COVID-19 was confirmed by reverse transcriptase-polymerase chain reaction.

Result: A total of 4 patients infected with SARS-CoV2 were involved in this study. The majority of the cases were female, aged >42 years old. All patients developed severe symptoms. All of the patients had received steroids, half of them had co-morbidities. The most common computerized tomography (CT) scan findings were pulmonary cavitation and empyema. All of the cases were treated with a combination of surgery and antifungal treatment.

Conclusion: As the number of COVID-19 cases rises, enhanced surveillance for co-infections with unusual pathogens should be continued. Clinicians should raise awareness of these deadly infections, which can further aggravate severe COVID-19.

1. Introduction

Coronavirus disease 2019 (COVID-19) has evolved as a result of severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) [1]. It was initially detected in Wuhan, Hubei Province, China, and soon spread to other areas of the world, resulting in a global pandemic [2]. Until September 5, 2021, there have been more than 235 million verified cases with approximately 5 million deaths [3].

Most patients with SARS-CoV2 infection are asymptomatic or have very mild symptoms, such as fever and dry cough. However, in extreme situations, particularly in the elderly patients, hypertensive, and diabetic individuals, it can cause severe acute respiratory syndrome (SARS) [4]. SARS-CoV-2 is most commonly associated with a lung infection, resulting in pneumonia; but the latest researches have revealed that many other organ systems, including the cardiovascular, immunological, neurological, and gastrointestinal systems, can be involved [5].

With the rise of cases worldwide, plenty of potential COVID-19 complications have emerged, including increased susceptibility to subsequent bacterial and fungal infections [6]. Both Aspergillosis and Candida have been identified as the most common fungal infections associated with COVID-19 co-infection [7]. COVID-19 has generated an inflammatory storm that has weakened individuals’ immune system, resulting in the occurrence of mucormycosis [8]. COVID-19 associated with pulmonary mucormycosis is a rare condition with only a few cases reported [9].

This study aims to report four cases of critically ill COVID-19 patients associated with pneumonia and complicated by pulmonary mucormycosis. The article was reported in line with PROCESS 2020 guideline...
A 56-years-old female presented with fever, dyspnea, and cough for 5 days. She was confirmed as a case of COVID-19 by reverse transcriptase-polymerase chain reaction (RT-PCR).

On general examination, she was well-nourished (BMI:20.4 kg/m2), well oriented to time, place, and person, and was able to speak comfortably. Her vital signs at the time of presentation were as follows: Heart rate (HR) (98 beats/min), blood pressure (BP) (150/90 mmHg), respiratory rate (RR) (24 breaths/min) and oxygen saturation was 94% without oxygen supply. On systemic examination, she had decreased breath sounds over the left side of the lung with normal vesicular breath sounds over the right side. On cardiovascualr examination, there was nothing significant. Laboratory tests were significant for underlying infection with a total leucocyte count of (16,420) with neutrophils (88%) and lymphocytes (7%), hemoglobin (10.6 g/dL), and platelet count (328 x 109/L). The renal function test and coagulation profile were within the normal range. ECG showed normal sinus rhythm.

She was admitted to the ward and treated according to the local protocol (which contains steroids) but she hadn’t improved after two weeks. A high-resolution computerized tomography (HRCT) scan of the chest was performed. It showed right-sided empyema. The decision was made to perform decortication of the lung via a classical postero-lateral chest was performed. It showed right-sided empyema. The decision was made to carry on three segmentectomies to control the numerous air leaks facing the surgical team. The hertopa
decortication confirmed mucormycosis. She was kept on mechanical ventilation for 3 days and remained in the ICU for an additional 2 days. She was later transferred to the ward where she remained for a week. During that period, she was kept on strict glycemic control using soluble insulin subcutaneously which was crucial to her improved clinical condition and her eventual discharge from the hospital.

A 72-year-old woman with diabetes mellitus (DM) presented to the emergency department with shortness of breath. She was diagnosed with COVID-19 by RT-PCR one week prior. Chest CT revealed bilateral peripheral infiltrates and areas of consolidation. She was intubated because of respiratory failure caused by COVID-19 pneumonia in the intensive care unit and was treated with medications that included methylprednisolone (1000 mg), favipiravir, and RNA polymerase inhibitor. On admission, her clinical condition improved but was still dependent on a high concentration of oxygen.

New HRCT of the chest revealed collapse consolidation of both right middle and lower lobes in addition to empyema. The decision was made to do lung decortication. During surgery, both involved lobes were severely destructed and bi-lobectomy was done. Histopathological examination confirmed mucormycosis. She was kept on mechanical ventilation for 3 days and she was discharged on day three of admission. Four days after discharge, the CT showed bilateral cavitary lesion and empyema. She was henceforth referred to the cardiothoracic surgery department for possible decortication. After optimizing her medical condition, a thoracotomy was performed. The right lower lobe was found to be completely destructed by the cavitary lesion and had a very repulsive, strange odor. Air leak control and complete decortication were performed. Histopathology confirmed the diagnosis. She was then moved to the ICU department. Histopathological examination confirmed the diagnosis of pulmonary mucormycosis. Antifungal treatment was prescribed. She was kept on mechanical ventilation for two days. Four days after extubation, she was transferred to the ward.

The research was registered in Research Registry. The registration number is researchregistry7474. The link is Browse the Registry - Research Registry.
occur in the advanced stages of COVID-19 infection [16]. During COVID-19 recovery period, patients are immunocompromised due to viral infection, steroid usage, and the widespread use of broad-spectrum AB, and this may possibly be a risk factor [17]. COVID-19 possesses particular pathophysiologic characteristics that may allow secondary fungal infections, such as a tendency to produce severe lung disease and subsequent alveolar-interstitial pathology which may increase the risk of invasive fungal infections. Secondly, the immunological dysregulation associated with COVID-19, which includes lower numbers of T lymphocytes, CD4+ T cells, and CD8+ T cells, may affect innate immunity [18]. There has been an unexpected increase in COVID-19-associated mucormycosis, with the majority of patients displaying rhino-orbital involvement, whereas evidence on COVID-19-associated pulmonary mucormycosis is rare [9]. Mucormycosis has been found in less than 1% of hospitalized COVID-19 patients, with COVID-19-associated pulmonary mucormycosis accounting for 9% of all COVID-19-associated mucormycosis [9].

Seventy percent of rhino-orbital-cerebral mucormycosis patients have been observed to be diabetic individuals, the majority of whom had also experienced ketoacidosis at the time of presentation [19]. Half of the cases of this series had DM. Facial discomfort, nasal blockage or congestion, and bloody/brown/black discharge with or without local sensitivity or pain are early warning symptoms of COVID-19-associated mucormycosis. This is often accompanied by fever, nausea, and headache. Nasal ulcers or crusts that become black later in the course of the disease are frequently observed. Furthermore, when the maxillary, frontal, or ethmoidal paranasal sinuses are involved, patients may have facial numbness or edema. Palatal involvement can be seen as an ulcer over the upper palate that leads to a black necrotic region [20]. It may also manifest as toothache, loosening of maxillary teeth, and limitation of jaw mobility, which were not observed prior to COVID-19 [21]. Werthman-Ehrenreich reported a case with left-sided ptosis and ptosis with impaired sensorium [19].

Many radiological characteristics of pulmonary mucormycosis coincide with those of other fungal pneumonia, such as pulmonary aspergillosis, making the diagnosis challenging. Pulmonary mucormycosis is frequently accompanied by the reversed halo sign [22]. When there is a thick-walled lung cavity, numerous nodules, and pleural effusion, mucormycosis should be suspected [23]. The CT findings of this study were pulmonary cavitation and empyema in two patients and collapse consolidation in one patient. Histopathological analysis of tissues taken from various lesions can provide a definite diagnosis. They have distinctive wide aseptate or pauci-septate hyphae with hyphae folding to provide a ribbon-like appearance [rudramurthy2021]. The final diagnosis of all cases of this study was confirmed as COVID-19-associated pulmonary mucormycosis through histopathologic examination postoperatively.

The appropriate and timely antifungal medication, as well as surgical excision, when possible, are found to be crucial in the treatment of mucormycosis. The medication of choice is liposomal amphotericin B [21]. Triazoles, such as posaconazole and isavuconazole, are usually applied during the consolidation phase or as salvage treatment [23]. Evidence does not clearly support the role of combined antifungal therapy in mucormycosis, but the combination of surgery and antifungal treatment was linked to improved survival [12,21]. Cornely et al. stated that for local management of mucormycosis, early and vigorous surgical resection and debridement of the afflicted tissues is required [22]. In the current series, all cases were treated with a combination of surgery and antifungal treatment.

As stated in the previous studies, failure to identify and treat COVID-19 infection complications will most probably result in higher mortality [24]. Even with adequate treatment, rhino-orbital mucormycosis has a poor prognosis, with a mortality rate of up to 50% [19]. Because of its severe clinical course in pulmonary involvement, it has a mortality rate of up to 80% [25]. The high death rate in pulmonary localization may be due to diagnostic delays, an imbalanced immune system, and a poor host response, as well as the complexity of the treatment, which involves a combination of antifungal medication and a high-risk surgical operation [26]. In this study, three patients recovered from the disease and one died on the third postoperative day.

In conclusion, as the number of COVID-19 cases rises, enhanced surveillance for co-infections with unusual pathogens should be continued. Clinicians should raise awareness of these deadly infections, which can further aggravate severe COVID-19. Early, adequate and vigorous therapy is required for a favorable result of mucormycosis.

Provenance and peer review
Not commissioned, externally peer-reviewed.

Ethical approval
The manuscript approved by ethical committee of the University of Sulaimani.

Sources of funding for your research
No source to be stated.

Author contribution
Okba F. Ahmad, Saoud Al-Neaimy, Fahmi H. Kakamad: cardiothoracic surgeons who manages the cases, follow up, and final approval of the manuscript., Razhan k. Ali: literature review, writing the manuscript, final approval of the manuscript. Tomas M. Mikael, Ahmed Gh. Hamaseed, Shivan H. Mohammed, Rawezh Q. Salih, Muhammed Gh. Hamaseed: literature review and final approval of the manuscript. Abdulwahid M. Salih: major contribution of the idea, final approval of the manuscript.

Consent
Consent has been taken from the patients and the family of the patients.

Registration of research studies
Researchregistry7474.
Browse the Registry - Research Registry.

Guarantor
Fahmi Hussein Kakamad is Guarantor of this submission.

Declaration of competing interest
There is no conflict to be declared.

Appendix A. Supplementary data
Supplementary data to this article can be found online at https://doi.org/10.1016/j.amsu.2022.103434.

References
[1] S.A. Ahmad, K.H. Salih, S.F. Ahmad, F.H. Kakamad, A.M. Salih, M.N. Hassan, et al., Post COVID-19 transverse myelitic; a case report with review of literature, Ann. Med. Surg. (2021) 102749.
[2] E.J. Desai, A. Pandya, I. Upadhya, T. Patel, S. Banerjee, V. Jain, Epidemiology, clinical features and management of rhino orbital mucormycosis in post COVID 19 patients, Indian J. Otolaryngol. (2021) 1–5.
[3] World Health Organization, September 5, https://covid19.who.int/., 2020.
[4] F.H. Kakamad, S.O. Mahmood, H.M. Rahim, B.A. Abdulla, H.O. Abdullah, S. Othman, et al., Post covid-19 invasive pulmonary Aspergillosis: a case report, Int. J. Surg. Case Rep. 82 (2021) 105865.

[5] A. Baram, F.H. Kakamad, H.M. Abdullah, D.H. Mohammed-Saeed, D.A. Hussein, S. H. Mohammed, et al., Large vessel thrombosis in patient with COVID-19, a case series, Ann. Med. Surg. 60 (2020) 526–530.

[6] L. Selarka, S. Sharma, D. Saini, S. Sharma, A. Batra, V.T. Waghmare, et al., Mucormycosis and COVID-19: an epidemic within a pandemic in India, Mycoses 64 (10) (2021) 1253–1260.

[7] A.K. Singh, R. Singh, S.R. Joshi, A. Misra, Mucormycosis in COVID-19: a systematic review of cases reported worldwide and in India, Diabetes & Metabolic Syndrome: Clin. Res. Rev. 15 (4) (2021).

[8] L. Selarka, S. Sharma, D. Saini, S. Sharma, A. Batra, V.T. Waghmare, et al., Mucormycosis and COVID-19: an epidemic within a pandemic in India, Mycoses 64 (10) (2021) 1253–1260.

[9] M. Garg, N. Prabhakar, V. Muthu, S. Farookh, H. Kaur, V. Suri, et al., CT findings of COVID-19-associated pulmonary mucormycosis: a case series and literature review, Radiology (2021) 211583.

[10] R.A. Agba, C. Sohrabi, G. Mathew, T. Franchi, A. Kerwan, O’Neill N for the PROCESS group. The PROCESS 2020 guideline: updating consensus preferred reporting of Case series in surgery (PROCESS) guidelines, Int. J. Surg. 84 (2020) 231–235.

[11] V.U. Rao, G. Arakkeri, G. Madikeri, A. Shah, R.S. Oqpen, F.A. Brennan, COVID-19 associated mucormycosis (CAM) in India: a formidable challenge, Br. J. Oral Maxillofac. Surg. 59 (9) (2021) 1095–1098, https://doi.org/10.1016/j.bjoms.2021.06.013.

[12] W. Jeong, C. Kriegbey, R. Wolfe, W.L. Lee, M.A. Slavin, D.C. Kong, et al., The epidemiology and clinical manifestations of mucormycosis: a systematic review and meta-analysis of case reports, Clin. Microbiol. Infect. 25 (1) (2019) 26–34.

[13] E. Lin, T. Moua, A.H. Limper, Pulmonary mucormycosis: clinical features and outcomes, Infection 45 (4) (2017) 443–448.

[14] D. Pasero, S. Sanna, C. Liperi, D. Piredda, G.P. Branca, L. Casadio, et al., A challenging complication following SARS-CoV-2 infection: a case of pulmonary mucormycosis, Infection (2020) 1–6.

[15] O.A. Cornely, A. Alastruey-Izquierdo, D. Arenz, S.C. Chen, E. Dannaoui, R. Tyagi, et al., Global guideline for the diagnosis and management of mucormycosis: an initiative of the European confederation of medical mycology in cooperation with the mycoses study group education and research consortium, Lancet Infect. Dis. 19 (12) (2019) 405–421.

[16] F. Lamoth, D.P. Kontoyiannis, Therapeutic challenges of non-Aspergillus invasive mold infections in immunosuppressed patients, Antimicrob. Agents Chemother. 63 (11) (2019), 01244, 19.