Non-Asymptotic Analysis of Fractional Langevin Monte Carlo for Non-Convex Optimization

Thanh Huy Nguyen, Umut Şimşekli, Gaël Richard
LTCI, Télécom ParisTech, Université Paris-Saclay, 75013, Paris, France

Abstract

Recent studies on diffusion-based sampling methods have shown that Langevin Monte Carlo (LMC) algorithms can be beneficial for non-convex optimization, and rigorous theoretical guarantees have been proven for both asymptotic and finite-time regimes. Algorithmically, LMC-based algorithms resemble the well-known gradient descent (GD) algorithm, where the GD recursion is perturbed by an additive Gaussian noise whose variance has a particular form. Fractional Langevin Monte Carlo (FLMC) is a recently proposed extension of LMC, where the Gaussian noise is replaced by a heavy-tailed α-stable noise. As opposed to its Gaussian counterpart, these heavy-tailed perturbations can incur large jumps and it has been empirically demonstrated that the choice of α-stable noise can provide several advantages in modern machine learning problems, both in optimization and sampling contexts. However, as opposed to LMC, only asymptotic convergence properties of FLMC have been yet established. In this study, we analyze the non-asymptotic behavior of FLMC for non-convex optimization and prove finite-time bounds for its expected suboptimality. Our results show that the weak-error of FLMC increases faster than LMC, which suggests using smaller step-sizes in FLMC. We finally extend our results to the case where the exact gradients are replaced by stochastic gradients and show that similar results hold in this setting as well.

Contents

1 Introduction 2
1.1 Overview of the main result ... 4

2 Technical Background and Preliminaries 5
2.1 Notations and basic definitions ... 5
2.2 α-Stable Distributions and α-Stable Lévy Motion 6
2.3 Fractional Langevin Monte Carlo ... 6

3 Assumptions and the Main Result 7

4 Proof Overview 9

5 Additional Remarks 12
5.1 Comparison with ULA ... 12
5.2 Discussion on smoothness assumptions .. 12
1 Introduction

Diffusion-based Markov Chain Monte Carlo (MCMC) algorithms have become increasingly popular in the recent years due to their nice scalability properties and theoretical guarantees. The main aim in these approaches is to generate samples from a distribution which is only accessible by its unnormalized density function.

One of the most popular approaches in this field is based on the so-called Langevin diffusion, which is described by the following stochastic differential equation (SDE):

\[dX(t) = -\nabla f(X(t))dt + \frac{\sqrt{2/\beta}}{\beta} dB(t), \quad t \geq 0, \]

where \(X(t) \in \mathbb{R}^d \), \(f \) is a smooth function which is often non-convex, \(\beta \in \mathbb{R}_+ \) is called the ‘inverse temperature’ parameter, and \(B(t) \) is the standard Brownian motion in \(\mathbb{R}^d \).

Under some regularity conditions on \(f \), one can show that the Markov process \((X_t)_{t \geq 0} \), i.e. the solution of the SDE (1), is ergodic with its unique invariant measure \(\pi \), whose density is proportional to \(\exp(-\beta f(x)) \) [1]. An important feature of this measure is that, when \(\beta \) goes to infinity, its density concentrates around the global minimum \(x^* \triangleq \arg \min_{x \in \mathbb{R}^d} f(x) \) [2] [3]. This property implies that, if we could simulate (1) for large enough \(\beta \) and \(t \), the simulated state \(X(t) \) would be close to \(x^* \).
This connection between diffusions and optimization, motivates simulating (1) in discrete-time in order to obtain ‘almost global optimizers’. If we use a first-order Euler-Maruyama discretization, we obtain a ‘tempered’ version of the well-known Unadjusted Langevin Algorithm (ULA) [1]:

\[W_{ULA}^{k+1} = W_{ULA}^{k} - \eta \nabla f(W_{ULA}^{k}) + \sqrt{\frac{2\eta}{\beta}} \Delta B_{k+1}, \]

(2)

where \(k \in \mathbb{N}_+ \) denotes the iterations, \(\eta \) denotes the step-size, and \(\Delta B_n \) is a sequence of independent and identically-distributed (i.i.d.) standard Gaussian random variables. When \(\beta = 1 \), we obtain the classical ULA, which is mainly used for Bayesian posterior sampling. Theoretical properties of the classical ULA have been extensively studied [1, 4, 5, 6, 7].

When \(\beta \gg 1 \), the algorithm is called tempered and becomes more suitable for optimization. Indeed, one can observe that the noise term \(\Delta B_k \) in (2) becomes less dominant, and the overall algorithm can be seen as a ‘perturbed’ version of the gradient descent (GD) algorithm. The connection between ULA and GD has been recently established in [8] for strongly convex \(f \). Moreover, [9] and [10] proved non-asymptotic guarantees for this perturbed scheme\(^1\). Their results showed that, even in non-convex settings, the algorithm is guaranteed to escape from local minima and converge near the global minimizer. These results were extended in [12] and [13], which showed that the iterates converge near a local minimum in polynomial time and stay there for an exponential time. Recently, the guarantees for ULA were further extended to second-order Langevin dynamics [14, 15].

Another line of research has extended Langevin Monte Carlo by replacing the Brownian motion with a motion which can incur ‘jumps’ (i.e. discontinuities), such as the \(\alpha \)-stable Lévy Motion (see Figure 1) [16, 17]. Coined under the name of Fractional Langevin Monte Carlo (FLMC) methods, these approaches are motivated by the statistical physics origins of the Langevin equation (1). In such a context, the Langevin equation aims to model the position of a small particle that is under the influence of a force, which has a deterministic and a stochastic part. If we assume that the stochastic part of this force is a sum of many i.i.d. random variables with finite variance, then by the central limit theorem (CLT), we can assume that their sum follows a Gaussian distribution, which justifies the Brownian motion in (1).

The main idea in FLMC is to relax the finite variance assumption and allow the random pulses to have infinite variance. In such a case, the classical CLT will not hold; however, the extended CLT [18] will still be valid: the law of the sum of the pulses converges to an \(\alpha \)-stable distribution, a family of ‘heavy-tailed’

\[^1\]The results given in [9] are more general in the sense that they are proved for the Stochastic Gradient Langevin Dynamics (SGLD) algorithm [11], which is obtained by replacing the gradients in (2) with stochastic gradients.
distributions that contains the Gaussian distribution as a special case. Then, by using a similar argument to the previous case, we can replace the Brownian motion with the α-stable Lévy Motion \[19\], whose increments are α-stable distributed.

Based on an SDE driven by an α-stable Lévy Motion, \[16\] proposed the following iterative scheme that is referred to as Fractional Langevin Algorithm (FLA):

$$W^k_{\text{FLA}} = W^k_{\text{FLA}} - \eta c_\alpha \nabla f(W^k_{\text{FLA}}) + \left(\frac{\eta}{\beta}\right)^{\frac{1}{\gamma}} \Delta L^\alpha_k,$$

where $\alpha \in (1, 2]$ is called the characteristic index, c_α is a known constant, and $\{\Delta L^\alpha_k\}_{k \in \mathbb{N}}$ is a sequence of α-stable distributed random variables. As we will detail in Section 2, FLA coincides with ULA when $\alpha = 2$. Recently, \[17\] extended FLA to Hamiltonian dynamics. The experimental results in \[16\] and \[17\] showed that the use of the heavy-tailed increments can provide advantages in multi-modal settings, robustness to algorithm parameters. \[17\] further illustrated that in an optimization context their algorithm achieves better generalization in deep neural networks.

Even though asymptotic convergence properties of FLMC were established for decreasing step-sizes in \[16, 20\], these results do not explain the behavior of the algorithm for finite number of iterations. Besides, in practice, using a constant step-size often yields better performance \[21\], a situation which cannot be handled by the existing theory.

1.1 Overview of the main result

In this study, we analyze the non-asymptotic behavior of FLA for non-convex optimization. In particular, we analyze the expected suboptimality $\mathbb{E}[f(W^k_{\text{FLA}}) - f^⋆]$ where $f^⋆ \triangleq f(x^⋆)$. As we will describe in detail in Section 1, we decompose this suboptimality into four different terms, and we bound each of those terms one by one. Due to the choice of the α-stable Lévy motion, the standard tools for analyzing SDEs driven by a Brownian motion are not available for our use, and therefore, we cannot use the proof strategies developed for ULA as they are (such as \[9, 10, 22\]). Instead, we follow an alternative path, where we first relate the expected discrepancies to Wasserstein distance of fractional orders, and then, inspired by \[23\], we prove a result that expresses the Wasserstein distance between the laws of two SDEs (driven by α-stable Lévy motion) in terms of their drift functions.

Informally, we show that the expected suboptimality $\mathbb{E}[f(W^k_{\text{FLA}}) - f^⋆]$ is bounded by a sum of four terms, summarized as follows:

$$\mathbb{E}[f(W^k_{\text{FLA}}) - f^⋆] \leq A_1 + A_2 + A_3 + A_4,$$

where

$$A_1 = O\left(k^{1 + \max\{\frac{1}{\gamma}, \frac{2}{\beta}\} + \frac{1}{\gamma}}\right), \quad A_2 = O\left(\frac{k^{1 + \max\{\frac{1}{\gamma}, \frac{2}{\beta}\} + \frac{1}{\gamma}}}{\beta^{(\alpha - 1)\gamma}}\right),$$

$$A_3 = O\left(\beta + d\right) \exp\left(-\frac{\lambda_s k\eta}{\beta}\right), \quad A_4 = O\left(\frac{1}{\beta^{\gamma + 1}} + \frac{d}{\beta} \log(\beta + 1)\right).$$

Here $\gamma \in (0, 1)$ is the Hölder exponent of the gradients of f, and $q \in (1, \alpha)$, $\lambda_s > 0$ are some constants. This result has the following implications. For any $\varepsilon > 0$,
1. If $\frac{1}{q} > \gamma + \frac{2}{q}$ and $k \simeq \varepsilon^{-1}$ and $\eta < \varepsilon^{2q+1}$, then A_1 scales as $C\varepsilon$ and A_2 scales as $\varepsilon \text{Poly}(\beta, d)$.

2. If $\frac{1}{q} \leq \gamma + \frac{2}{q}$ and $k \simeq \varepsilon^{-1}$ and $\eta < \varepsilon^{2q+\gamma+q}$, then A_1 scales as $C\varepsilon$ and A_2 scales as $\varepsilon \text{Poly}(\beta, d)$.

3. If we choose $k\eta > \frac{\beta}{\lambda^2} \log\left(\frac{1}{\varepsilon}\right)$, then A_3 scales as $\varepsilon \text{Poly}(\beta, d)$.

Here, $\text{Poly}(\ldots)$ denotes a formal polynomial, i.e., an expression containing the real-ordered exponents of the variables, coefficients, and only the operations of addition, subtraction, and multiplication.

In Section 6, we extend our results in two directions: (i) obtaining guarantees for Bayesian posterior sampling and (ii) non-convex optimization where exact gradients are replaced with stochastic gradients. Our results imply that, in the context of global optimization, the error induced by FLA has a worse dependency on k and η, as compared to ULA. This suggests that one should use smaller step-sizes in FLA.

2 Technical Background and Preliminaries

2.1 Notations and basic definitions

In this section, we will define the basic quantities that will be used throughout the paper. We use $\langle \cdot, \cdot \rangle$ to denote the inner product between two vectors, $\|\cdot\|$ denotes the Euclidean norm, $E_\omega[\cdot]$ denotes the expectation with respect to the random variable ω, and $E[\cdot]$ denotes the expectation with respect to all the random sources. We will use the Wasserstein metric to quantify the distance between two probability measures.

Definition 1 (Wasserstein distance). Let μ and ν be two probability measures. For $\lambda \geq 1$, we define the λ-Wasserstein distance between μ and ν as follows:

$$W_\lambda(\mu, \nu) \triangleq (\inf \{E\|V - W\|^\lambda : V \sim \mu, W \sim \nu\})^{1/\lambda},$$

where the infimum is taken over all the couplings of μ and ν (i.e. the joint probability distributions whose marginal distributions are μ and ν).

From now on, we will denote W^k_{FLA} as W^k for notational simplicity. All the proofs are given in the supplementary document.

2.2 α-Stable Distributions and α-Stable Lévy Motion

Definition 2 (Symmetric α-stable random variables). The α-stable distribution appears as the limiting distribution in the generalized CLT [24]. A scalar random variable $X \in \mathbb{R}$ is called symmetric α-stable if its characteristic function has the following form:

$$E[e^{i\omega X}] = \exp(-\sigma|\omega|^\alpha)$$

where $\alpha \in (0, 2]$ and $\sigma > 0$. We denote $X \sim \mathcal{S}_\alpha \mathcal{S}(\sigma)$.

The parameter α is called the characteristic index or the tail index, since it determines the tail behavior of the distribution. Perhaps the most important special case of symmetric α-stable distributions is the Gaussian distribution: $\mathcal{S}_\alpha \mathcal{S}(\sigma) = \mathcal{N}(0, 2\sigma^2)$ when $\alpha = 2$. As we decrease α, the distribution becomes heavier-tailed. Moreover, when $X \sim \mathcal{S}_\alpha \mathcal{S}(\sigma)$, the moment $E[|X|^p]$ is finite if and only if $p < \alpha$. This implies that the distribution has infinite variance (i.e. the variance diverges) whenever $\alpha \neq 2$.

5
Definition 3 (Symmetric α-stable Lévy motion). A scalar symmetric α-stable Lévy motion $L^\alpha(t)$, with $0 < \alpha \leq 2$, is a stochastic process satisfying the following properties:

(i) $L^\alpha(0) = 0$, almost surely.
(ii) Independent increments: for $0 \leq t_1 < \ldots < t_n$, the random variables $L^\alpha(t_2) - L^\alpha(t_1), \ldots, L^\alpha(t_n) - L^\alpha(t_{n-1})$ are independent.
(iii) Stationary increments: for all $0 \leq s < t$, the random variables $L^\alpha(t) - L^\alpha(s)$ and $L^\alpha(t-s)$ have the same distribution as $S^\alpha S((t-s)^{1/\alpha})$.
(iv) Continuity in probability: for any $\delta > 0$ and $s \geq 0$, $P(\left|L^\alpha(s) - L^\alpha(t)\right| > \delta) \to 0$, as $t \to s$.

We illustrate S^α and $L^\alpha(t)$ in Figure 1. In the rest of the paper, $L^\alpha(t)$ will denote a d-dimensional Lévy process whose components are independent scalar symmetric α-stable Lévy motions as defined in Definition 3.

2.3 Fractional Langevin Monte Carlo

The FLMC framework is based on a Lévy-driven SDE, that is defined as follows:

$$dX(t) = \Psi(X(t-), \alpha)dt + (1/\beta)^{1/\alpha}dL^\alpha(t)$$

where $X(t-)$ denotes the left limit of the process at time t, $L^\alpha(t)$ denotes the d-dimensional Lévy motion as described in Section 2.2. FLMC is built up on the following result:

Theorem 1 ([16]). Consider the SDE (4) in the case $d = 1$, $\beta = 1$, and $\alpha \in (1, 2]$, where the drift Ψ is defined as follows:

$$\Psi(x, \alpha) \triangleq -D^\alpha - 2 \left(\phi(x) \frac{\partial f(x)}{\partial x}\right).$$

where D denotes the fractional Riesz derivative and is defined as follows for a function u:

$$D^\gamma u(x) \triangleq \mathcal{F}^{-1}\{|\omega|^\gamma \hat{u}(\omega)|\},$$

Here, \mathcal{F} denotes the Fourier transform and $\hat{u} \triangleq \mathcal{F}(u)$. Then, π is an invariant measure of the Markov process $(X(t))_{t \geq 0}$ that is a solution of the SDE given by (1).

This theorem states that if the drift (5) can be computed, then the sample paths of (4) can be considered as samples drawn from π. However, computing (5) is in general not tractable, therefore one needs to approximate it for computational purposes. If we use the alternative definition of the Riesz derivative given by [25], we can approximate the drift as follows [16, 17]:

$$-D^\alpha - 2 \left(\phi(x) \frac{\partial f(x)}{\partial x}\right) \approx -c_\alpha \frac{\partial f(x)}{\partial x},$$

where $c_\alpha \triangleq \Gamma(\alpha - 1)/\Gamma(\alpha/2)^2$ and Γ denotes the Gamma function. With this choice of approximation, in the d-dimensional case we obtain FLA, as given in (3). We can observe that, when $\alpha = 2$, (4) becomes the Langevin equation (1) and FLA becomes ULA.
We start by defining three different stochastic processes \(X_1(t), X_2(t), \) and \(X_3(t) \), which will be the main constructs in our analysis. We first informally define these processes as follows: \(X_2 \) is a continuous-time process that interpolates \(W^k \) in time and it will let us avoid dealing with the discrete-time process \(W^k \) directly. \(X_1 \) is the limiting process of \(X_2 \) when the step-size goes to zero. Finally, \(X_3 \) is a process whose law converges to the Gibbs measure \(\pi \).

In our approach, we will first relate \(X_2 \) to its limiting process \(X_1 \). Since it is more challenging to relate \(X_1 \) to \(x^* \), we will then relate \(X_1 \) to \(X_3 \), and \(X_3 \) to \(\pi \). By following a similar approach to \cite{9}, we will finally relate \(\pi \) to \(f^* \). Formally, we decompose the expected suboptimality in the following manner:

\[
\mathbb{E} f(W) - f^* = \left(\mathbb{E} f(X_2(k\eta)) - \mathbb{E} f(X_1(k\eta)) \right) + \left(\mathbb{E} f(X_1(k\eta)) - \mathbb{E} f(X_3(k\eta)) \right) + \left(\mathbb{E} f(X_3(k\eta)) - \mathbb{E} f(\hat{W}) \right) + \left(\mathbb{E} f(\hat{W}) - f^* \right),
\]

where \(X_i(k\eta) \) with \(i = 1, 2, 3 \) denotes the state reached by the three stochastic processes at time \(k\eta \), and \(\hat{W} \) is a random variable drawn from \(\pi \). We will now formally define the processes \(X_1, X_2, \) and \(X_3 \).

The first SDE is the continuous-time limit of the FLA algorithm given in (3) and defined as follows for \(t \geq 0 \):

\[
dX_1(t) = b_1(X_1(t-),\alpha)dt + \beta^{-1/\alpha}dL^\alpha(t),
\]

where the drift function has the following form:

\[
b_1(x,\alpha) \triangleq -c_\alpha \nabla f(x).
\]

The second SDE is a linearly interpolated version of the discrete-time process \(\{W^k\}_{k \in \mathbb{N}_+} \), defined as follows:

\[
dX_2(t) = b_2(X_2,\alpha)dt + \beta^{-1/\alpha}dL^\alpha(t),
\]

where \(X_2 \equiv \{X_2(t)\}_{t \geq 0} \) denotes the whole process and the drift function is chosen as follows:

\[
b_2(X_2,\alpha) \triangleq -c_\alpha \sum_{k=0}^{\infty} \nabla f(X_2(j\eta))(\mathbb{I}_{[j\eta,(j+1)\eta]})(t).
\]

Here, \(\mathbb{I} \) denotes the indicator function, i.e. \(\mathbb{I}_A(x) = 1 \) if \(x \in A \) and \(\mathbb{I}_A(x) = 0 \) if \(x \notin A \). It is easy to verify that \(X_2(k\eta) = W^k \) for all \(k \in \mathbb{N}_+ \) \cite{7,9}.

The last SDE is designed in such a way that its solution has the Gibbs distribution as the invariant distribution and is defined as follows:

\[
dX_3(t) = b(X_3(t-),\alpha)dt + \beta^{-1/\alpha}dL^\alpha(t),
\]

where the drift is a \(d \)-dimensional vector whose \(i \)-th component, \(i = 1, \ldots, d \), has the following form:

\[
(b(x,\alpha))_i \triangleq -\frac{\mathcal{D}_{x_i}^{\alpha} \left(\phi(x) \frac{\partial f(x)}{\partial x_i} \right)}{\phi(x)}.
\]

Here, \(\mathcal{D}_{x_i} \) denotes the Riesz derivative along the direction \(x_i \) \cite{26}. With this definition for the drift, we have the following result for the invariant measure of \(X_3 \), which is an extension of Theorem 1 to general \(d \) and \(\beta \).
Lemma 1. The SDE (9) with drift b defined by (10) admits π as an invariant distribution of its solution $(X_3(t))_{t \geq 0}$.

The process $\{X_3(t)\}_t$ will play an important role in our analysis, since it will enable us to relate W^k to the Gibbs measure π, whose samples will be close to the global optimum x^* with high probability [27].

We now state our assumptions that will imply our main result.

H1. There exists a constant $B \geq 0$ such that

$$c_\alpha \|\nabla f(0)\| \leq B.$$

H2. The gradient of f is Hölder continuous with constants $M > 0$, $0 \leq \gamma < 1$:

$$c_\alpha \|\nabla f(x) - \nabla f(y)\| \leq M \|x - y\|^\gamma, \quad \forall x, y \in \mathbb{R}^d.$$

H3. For some $m > 0$ and $b \geq 0$, f is (m, b, γ)-dissipative:

$$c_\alpha \langle x, \nabla f(x) \rangle \geq m \|x\|^{1+\gamma} - b, \quad \forall x \in \mathbb{R}^d.$$

The assumptions **H1**-**H3** are mild and when $\gamma = 1$, they become the standard Lipschitz and dissipativity conditions that are often considered in diffusion-based non-convex optimization algorithms [9, 10, 22]. However, due to the choice of the α-stable Lévy motion with $\alpha \in (1, 2)$, we need to consider a ‘fractional’ version of those assumptions and exclude the case where $\gamma = 1$.

In our analysis, we will make a repeated use of the Hölder and Minkowski inequalities, which require the following condition to hold:

H4. There exist positive real numbers p, q, p_1, q_1 such that

$$\frac{1}{p} + \frac{1}{q} = \frac{1}{p_1} + \frac{1}{q_1} = 1, \quad q < \alpha, \quad \gamma p < 1, \quad \gamma q_1 < 1 \quad \text{and} \quad (q - 1)p_1 < 1.$$

Even though this assumption looks rather technical, when combined with **H2** and **H3**, it will in fact impose smoothness constraints on f. We will discuss this observation in more detail in Section 5.

Next, we require an ergodicity condition on X_3.

H5. The distribution of $X_3(t)$ (9) exponentially converges to its unique invariant distribution of (9) in Wasserstein metric, i.e., for any $\lambda \geq 0$ such that $\lambda < \alpha$, there exist constants C and λ_* such that

$$\mathcal{W}_\lambda(\mu_{3t}, \pi) \leq C \beta e^{-\lambda^* t/\beta},$$

where μ_{3t} denotes the probability density of $X_3(t)$.

This assumption is also very common in SDE based MCMC algorithms [16, 28]. Recently, [29] has shown that the Hölder continuity and the fractional-dissipativity assumption with $\gamma = 1$ on b would be sufficient for proving geometric ergodicity. We believe that their results can be extended for the case where $\gamma < 1$ and we leave it as a future work. In the unadjusted Langevin algorithm ($\alpha = 2$), the constant λ_* turns out to be the uniform spectral gap associated with the Gibbs measure π and it has shown to scale exponentially with respect to the dimension d in the worst case [9]. We believe that a similar property holds in our case as well.

Our next assumption is on the approximation quality of the function b by b_1.

8
H6. There exists a constant $L > 0$ such that $L \leq m$ and

$$\sup_{x \in \mathbb{R}^d} \| c_\alpha \nabla f(x) + b(x, \alpha) \| \leq L,$$

where the function b is defined in (10).

In Corollary 2 of [16], it has been shown that $H6$ holds if the tails of π vanish sufficiently quickly. On the other hand, the gap between b and b_1 can be diminished even more if we consider a more sophisticated numerical approximation scheme, such as the one given in [30] (cf. Theorem 2 of [16]).

In our final condition, we assume that the fractional moments of π is uniformly bounded.

H7. There exists a constant $C > 0$ such that

$$\int_{\mathbb{R}^d} \| x \|^r \pi(dx) \leq C \frac{b + d/\beta}{m}$$

for all $0 \leq r \leq 2$.

Now, we are ready to state our main result.

Theorem 2. Under conditions $H1$-$H7$ and for $0 < \eta < \frac{m}{M^2}$, there exists a positive constant C independent of k and η such that the following bound holds:

$$\mathbb{E}[f(W^k)] - f^* \leq C \left\{ k^{1+\max\left\{ \frac{1}{q}, \frac{\gamma}{q} \right\}} \eta^{\frac{1}{q}} + \frac{k^{1+\max\left\{ \frac{1}{q}, \frac{\gamma}{q} + \frac{\gamma}{\alpha} \right\}} \eta^{\frac{1}{q}} + \frac{\beta b + d}{m} \exp(-\frac{\lambda_* k \eta}{\beta}) \right\} + \frac{M c^{-1}_\alpha}{\beta^{\gamma+1}(1 + \gamma)}$$

$$+ \frac{1}{\beta} \log \left(\frac{2e(b + \frac{d}{2})}{(dm)^{\frac{d}{2}}} \right) \cdot \frac{\Gamma\left(\frac{d}{2} + 1 \right) \beta^d}{(dm)^{\frac{d}{2}}}.\]

More explicit constants can be found in the supplementary document. Similar to ULA [9], our bound grows with the number of iterations k. We note that this result sheds light on the explicit dependency of the error with respect to the algorithm parameters (e.g. step-size) for a fixed number of iterations, rather than explaining the asymptotic behavior when k goes to infinity. In the next sections, we will provide an overview of the proof of this theorem along with some remarks and comparisons to ULA.

4 Proof Overview

Our proof strategy consists of bounding each of the four terms in (6) separately. Before bounding these terms, we first start by relating the expected discrepancies to the Wasserstein distance between two random processes. The result is formally presented in the following lemma and it extends the 2-Wasserstein continuity result given in [31] to Wasserstein distance with fractional orders.

Lemma 2. Let V and W be two random variables on \mathbb{R}^d which have μ and ν as the probability measures and let g be a function in $C^1(\mathbb{R}^d, \mathbb{R})$. Assume that for some $c_1 > 0, c_2 \geq 0$ and $0 \leq \gamma < 1$,

$$\| \nabla g(x) \| \leq c_1 \| x \|^\gamma + c_2, \quad \forall x \in \mathbb{R}^d$$

9
and \(\max \left\{ \left(\mathbb{E}[\|W\|^p]\right)^{\frac{1}{p}}, \left(\mathbb{E}[\|V\|^{\gamma p}]\right)^{\frac{1}{p}} \right\} < \infty \). Then, the following bound holds:

\[
\left| \int g \, d\mu - \int g \, d\nu \right| \leq C \, W_q(\mu, \nu),
\]

for some \(C > 0 \).

Lemma \(2\) lets us upperbound the first three terms of the right hand side of \(6\) by the Wasserstein distance between the appropriate stochastic processes, respectively \(W_q(\mu_{1t}, \mu_{2t}) \), \(W_q(\mu_{1t}, \mu_{3t}) \), and \(W_q(\mu_{3t}, \pi) \), where \(\mu_{it} \) denotes the law of \(X_i(t) \).

The term \(W_q(\mu_{3t}, \pi) \) is related to the ergodicity of the process \(9\) and it has been shown that this distance diminishes exponentially for a considerably large class of Lévy diffusions \(29, 32\). On the other hand, the term \(W_q(\mu_{1t}, \mu_{3t}) \) is related to the numerical approximation of the Riesz derivatives, which is analyzed in \(16\). Therefore, in this study, we use the assumptions \(H5 \) and \(H6 \) for dealing with these terms, and focus on the term \(W_q(\mu_{1t}, \mu_{2t}) \), which is related to the so-called ‘weak-error’ of the Euler scheme for the SDE \(7\). The existing estimates for such weak-errors are typically of order \(Cq^a \), where \(a < 1 \) and \(C \) is a constant that grows exponentially with \(t \) \([33]\). The exponential growth with \(t \) is prohibitive in our case and one of our main technical contributions is that, in the sequel, we will prove a bound that grows polynomially with \(t \), which substantially improves over the one with exponential growth.

We start by bounding \(W_q(\mu_{1t}, \mu_{2t}) \) and \(W_q(\mu_{1t}, \mu_{3t}) \). In order to do so, we prove the following lemma, which will be the key for our analysis.

Lemma 3. For \(\lambda \in (1, \infty) \), \(i, j \in \{1, 2, 3\} \) and \(i \neq j \), we have the following identity:

\[
W_\lambda(\mu_{it}, \mu_{jt}) = \inf \left\{ \left(\mathbb{E} \left[\int_0^t \lambda \| \Delta X_{ij}(s) \|^{\lambda - 2} \langle \Delta X_{ij}(s), \Delta b_{ij}(s-) \rangle ds \right] \right)^{1/\lambda} \right\},
\]

where the infimum is taken over the couplings whose marginals are \(\mu_{it} \) and \(\mu_{jt} \) and

\[
\Delta X_{ij}(s) \triangleq X_i(s) - X_j(s), \quad \Delta b_{ij}(s-) \triangleq b_i(X_i(s-), \alpha) - b_j(X_j(s-), \alpha).
\]

This result extends the recent study \([23]\) and lets us relate the Wasserstein distance between the distributions of the random processes to their drift functions.

By using Lemma \(3\), we start by bounding the Wasserstein distance between \(\mu_{1t} \) and \(\mu_{2t} \). The result is summarized in the following theorem.

Theorem 3. Assume that the following condition holds: \(0 < \eta \leq \frac{m}{\chi^2} \). Then, we have

\[
W_q^\eta(\mu_{1t}, \mu_{2t}) \leq Cq \text{ Poly}(k, \eta, \beta, d),
\]

for some \(C > 0 \).

The full statement of the proof and the explicit constants are provided in the supplementary document. By only considering the leading terms of the bound provided in Theorem \(3\), we obtain the following corollary.

Corollary 1. Suppose that \(0 < \eta < \min \{1, \frac{m}{\chi^2}\} \). Then, the bound for the Wasserstein distance between the laws of \(X_1(t) \) and \(X_2(t) \) can be written as follows:

\[
W_q^\eta(\mu_{1t}, \mu_{2t}) \leq C(k^2 \eta + k^2 \eta^{1+\gamma/\alpha} \beta - (q-1)\gamma/\alpha d).
\]
By combining Corollary 1 with Lemma 2, we obtain the following result, which provides an upperbound for the first term of the right hand side of (6).

Corollary 2. For \(0 < \eta < \frac{m}{M^2}\), there exists a constant \(C > 0\) such that the following bound holds:

\[
|E[f(X_1(k\eta))] - E[f(X_2(k\eta))]| \leq C \left(k^{1+\frac{1}{2}\eta^{2}} + k^{1+\frac{1}{2}\eta^{2}} + \frac{\eta}{M} \beta^{-\frac{(2-1)\eta}{\alpha}} d \right).
\]

Remark 1. For any \(\varepsilon > 0\), if we choose \(k \simeq \varepsilon^{-1} \text{Poly}(\beta, d)\) and \(\eta < \varepsilon^{2q+1} \text{Poly}(\beta, d)\), then the bound in Corollary 2 scales as \(\varepsilon^{\text{Poly}(\beta, d)}\).

Next, by using a similar approach, we bound the distance between \(\mu_{1t}\) and \(\mu_{3t}\). In the next theorem, we show that the error grows polynomially with the parameters.

Theorem 4. We have the following estimate:

\[
W_q^q(\mu_{1t}, \mu_{3t}) \leq C q \text{Poly}(k, \eta, \beta, d)
\]

By considering the leading terms of the bound in Theorem 4 and combining it with Lemma 2, we obtain the following corollaries.

Corollary 3. There exists a constant \(C \geq 0\) such that the following bound holds:

\[
W_q^q(\mu_{1t}, \mu_{3t}) \leq C(k^{\eta+\gamma} \eta + k^{\eta+\gamma} \eta^{\beta - \frac{q - 1}{\alpha}} d)
\]

Corollary 4. There exists a constant \(C \geq 0\) such that the following inequality holds:

\[
|E[f(X_1(k\eta))] - E[f(X_3(k\eta))]| \leq C \left(k^{\eta+\gamma} \eta^{\beta - \frac{q - 1}{\alpha}} d + k^{\eta+\gamma} \eta^{\frac{1}{2}} \right).
\]

Remark 2. For any \(\varepsilon > 0\), if we choose \(k \simeq \varepsilon^{-1} \text{Poly}(\beta, d)\) and \(\eta < \varepsilon^{2q+1} \gamma \text{Poly}(\beta, d)\), then the bound in Corollary 4 scales as \(\varepsilon^{\text{Poly}(\beta, d)}\).

We now pass to the term \(E[f(X_3(k\eta))] - E[f(\hat{W})]\) of (6). Since we already assumed that \(\mu_{3t}\) exponentially converges to \(\pi\) in Wasserstein distance (cf. H5), as a direct application of Lemma 2, we obtain the following result.

Lemma 4. Let \(\hat{W}\) be a random variable drawn from the invariant measure \(\pi \propto \exp(-\beta f)\) of (9). There exists a constant \(C \geq 0\) such that the following bound holds:

\[
|E[f(X_3(t))] - E[f(\hat{W})]| \leq C \frac{b\beta + d}{m} \exp(-\lambda_{*} \beta^{-1} t).
\]

Remark 3. For any \(\varepsilon > 0\), if we take \(k\eta > \frac{\beta}{\lambda_{*}} \log \left(\frac{1}{\varepsilon} \right)\), then the bound in Lemma 4 can be scaled as \(\varepsilon^{\text{Poly}(\beta, d)}\).

We finally bound the term \(E[f(\hat{W})] - f^{*}\), which is the expected suboptimality of a sample from \(\pi\). By following a similar proof technique presented in [8], we obtain the following result.

Lemma 5. For \(\beta > 0\), we have

\[
E[f(\hat{W})] - f^{*} \leq \beta^{-1} \log \left(\frac{2e(b + \frac{d}{2})^{d/2} \Gamma(\frac{d}{2} + 1) \beta^{d}}{(dm)^{d/2}} \right) + \frac{\beta^{-1} M e_{0}^{-1}}{1 + \gamma}.
\]

Combining Corollary 2, Corollary 3, Lemma 4, and Lemma 5 proves Theorem 2.
5 Additional Remarks

5.1 Comparison with ULA

Let us compare this result with those for ULA presented in [9], since they use a similar decomposition (as opposed to [10]). The last two terms of the right hand side of the bound in Theorem 2 have less importance as they can be made arbitrarily small by increasing β. Besides, for β large enough, the first two terms in our bound can be combined in a single term that scales in the order of $k^{1+\max\{\frac{1}{q},\gamma+\frac{1}{q}\}}\eta^{\frac{1}{q}}$. The corresponding term for ULA is given as follows: $k\eta^{5/4}$, cf. Section 3.1 of [9]. This observation shows that FLA has a worse dependency both on k and η, which is not surprising and indeed in-line with the existing literature [33].

5.2 Discussion on smoothness assumptions

In this section we will discuss Assumption H_4 and provide more intuition on its implications. Let us recall the four constraints given in H_4:

$$(1/p + 1/q) = (1/p_1 + 1/q_1) = 1, \quad \gamma p < 1, \quad \gamma q_1 < 1, \quad (q-1)p_1 < 1.$$

We will refer to these conditions as the first, second, third, and fourth conditions, respectively. Our aim is to find a condition on γ (more precisely, the maximum value of γ) such that there exist $p,q,p_1,q_1 > 0$ satisfying these four conditions.

First, suppose that $p > q_1$. Then, the maximum value of γ is decided by the second constraint. Since we want γ to be as large as possible, it is natural to choose a smaller p. We can observe that, as we decrease p, due to the first and the fourth constraints, the value of q_1 needs to be increased. If we continue decreasing p, then q_1 continues to be increased and soon becomes strictly greater than p. At this moment, the maximum value of γ is decided by the third constraint, not by the second constraint anymore, and from this point on, it is more plausible to decrease q_1.

By this intuition, it is reasonable to choose p to be equal to q_1, which implies that $p_1 = q$. Accordingly, the fourth constraint becomes: $(Q-1)q < 1$. By noting that $q > 1$, solving this constraint gives $1 < q < (1 + \sqrt{5})/2$. Then by the first constraint, we have $p > (3 + \sqrt{5})/2$, and the second constraint gives $\gamma < 1/p < (3 - \sqrt{5})/2$.

This upper bound for γ is a number between 0.38 and 0.39 and tells us that there exist p,q,p_1,q_1 satisfying the four constraints if and only if $0 \leq \gamma < (3 - \sqrt{5})/2$.

Let us take a closer look at Theorem 2. Since $\gamma(q+1) < (3 - \sqrt{5})(3 + \sqrt{5})/4 = 1$, we have $\gamma + \gamma/q = \gamma(q+1)/q < 1/q$. Hence, $1 + \max\{1/q, \gamma + \gamma/q\} = 1 + 1/q$.

Let ε_1 and ε_2 be positive numbers such that

$$1/q - \varepsilon_1 = 2/(1 + \sqrt{5}) = (\sqrt{5} - 1)/2,$$

$$\gamma + \varepsilon_2 = (3 - \sqrt{5})/2.$$

then, if $q = p_1$ is approximately equal to $(1 + \sqrt{5})/2$ and γ is approximately equal to $(3 - \sqrt{5})/2$, we imply
that \(\varepsilon_1 \) and \(\varepsilon_2 \) become very small and

\[
\begin{align*}
1/q & \approx (\sqrt{5} - 1)/2, \\
1/q + \gamma/(\alpha q) & \approx (\sqrt{5} - 1)/2 + (\sqrt{5} - 2)/\alpha, \\
(q - 1)\gamma/(q\alpha) & \approx (7 - 3\sqrt{5})/(2\alpha).
\end{align*}
\]

As a final remark on this smoothness condition, we note that similar constraints are imposed on Lévy-driven SDEs in other studies as well [16, 20]. This is due to the fact that such SDEs often require better-behaved drifts in order to be able to compensate the jumps incurred by the Lévy motion.

6 Extensions

6.1 Guarantees for Posterior Sampling

In this section, we will discuss the implications of our results in the classical Monte Carlo sampling context. If our aim is only to draw samples from the distribution \(\pi \), then, for a fixed \(\kappa \), we can bound the Wasserstein distance between the law of \(W^{\kappa} \) and \(\pi \). The result is stated as follows:

Corollary 5. For \(0 < \eta \leq \frac{m}{M^2} \), the following bound holds:

\[
W_q(\mu_2, \pi) \leq C \left(k^{\max\left\{2, q+\gamma\right\} - q} \eta^\frac{1}{q} + k^{\max\left\{2, q+\gamma\right\} - q} \eta^\frac{1}{q} + \frac{\gamma}{q\alpha} \beta^{-\gamma(\eta^{-1}) d^\frac{1}{q}} + \beta e^{-\lambda_\kappa \eta \eta \eta} \right).
\]

As a typical use case, we can consider Bayesian posterior sampling, where we choose \(\beta = 1 \) and

\[
f(X) = -(\log P(Y|X) + \log P(X)).
\]

Here, \(Y \) denotes a dataset, \(P(Y|X) \) is the likelihood, \(P(X) \) denotes the prior density, and the target distribution \(\pi \) becomes the posterior distribution with density \(P(X|Y) \).

6.2 Extension to Stochastic Gradients

In many machine learning problems, the function \(f \) to be minimized has the following form:

\[
f(x) \triangleq \frac{1}{n} \sum_{i=1}^{n} f^{(i)}(x),
\]

where \(i \) denotes different data points and \(n \) is the total number of data points. In large-scale applications, \(n \) can be very large, which renders the gradient computation infeasible. Therefore, at iteration \(k \), we often approximate \(\nabla f \) by its stochastic version that is defined as follows:

\[
\nabla f_k(x) \triangleq \frac{1}{n_s} \sum_{i \in \Omega_k} \nabla f^{(i)}(x),
\]

where \(\Omega_k \) is a random subset of \(\{1, \ldots, n\} \) with \(|\Omega_k| = n_s \ll n \). The quantity \(\nabla f_k(x) \) is often referred to as the ‘stochastic gradient’. If the stochastic gradients satisfy a moment condition, then we have the following results:
Theorem 5. Assume that for each i, the function $x \mapsto f^{(i)}(x)$ satisfies the conditions H_1-H_7. Let us replace ∇f by ∇f_k in (3). If, in addition, there exists $\delta \in [0,1)$ for any k, such that

$$E_{\omega_k} \|c_\alpha(\nabla f(x) - \nabla f_k(x))\|_{q_1} \leq \delta^q_1 M^q_1 \|x\|_{\gamma q_1},$$

for $x \in \mathbb{R}^d$, then we have the following bound:

$$W_q^q(\mu_1t, \mu_2t) \leq C(1 + \delta)(k^2 \eta + k^2 \eta^{1+\gamma/\alpha} \beta^{-\gamma(q-1)/\alpha} d).$$

Similar to our previous bounds, we can use Theorem 5 for obtaining a bound for the expected discrepancy, given as follows:

Corollary 6. Under the same assumptions as in Theorem 5, we have the following bound:

$$|E[f(X_1(k\eta))| - E[f(X_2(k\eta))]| \leq C(1 + \delta)\left(k^{1+\frac{1}{\gamma}} \eta^{\frac{1}{\gamma}} + k^{1+\frac{1}{\gamma}} \eta^{\frac{1}{\gamma} + \frac{\gamma}{\alpha} - \frac{(q-1)\gamma}{\alpha q}} d\right).$$

These results show that the guarantees for FLA will still hold even under the presence of stochastic gradients.

7 Conclusion

In this study, we focused on FLA, which is a recent extension of ULA, and can be seen as a perturbed version of the gradient descent algorithm with heavy-tailed α-stable noise. We analyzed the non-asymptotic behavior of FLMC for non-convex optimization and proved finite-time bounds for its expected suboptimality. Our results agreed with the existing related work, and showed that the weak-error of FLA increases faster than ULA, which suggests using smaller step-sizes in FLA. We finally extended our results to the case where exact gradients are replaced by stochastic gradients and showed that similar results hold in this setting as well. A clear future direction implied by our results is the investigation of the local behavior of FLA.

Acknowledgments

This work is partly supported by the French National Research Agency (ANR) as a part of the FBIMATRIX (ANR-16-CE23-0014) and KAMoulox (ANR-15-CE38-0003-01) projects, and by the industrial chair Machine Learning for Big Data from Télécom ParisTech.
References

[1] G. O. Roberts and O. Stramer. Langevin Diffusions and Metropolis-Hastings Algorithms. *Methodology and Computing in Applied Probability*, 4(4):337–357, December 2002.

[2] C. Hwang. Laplace’s method revisited: weak convergence of probability measures. *The Annals of Probability*, pages 1177–1182, 1980.

[3] S. B. Gelfand and S. K. Mitter. Recursive stochastic algorithms for global optimization in \mathbb{R}^d. *SIAM Journal on Control and Optimization*, 29(5):999–1018, 1991.

[4] D. Lamberton and G. Pages. Recursive computation of the invariant distribution of a diffusion: the case of a weakly mean reverting drift. *Stochastics and dynamics*, 3(04):435–451, 2003.

[5] A. Durmus and E. Moulines. Non-asymptotic convergence analysis for the unadjusted Langevin algorithm. *arXiv preprint arXiv:1507.05021*, 2015.

[6] A. Durmus and E. Moulines. High-dimensional Bayesian inference via the unadjusted Langevin algorithm. *arXiv preprint arXiv:1605.01559*, 2016.

[7] A. S. Dalalyan. Theoretical guarantees for approximate sampling from smooth and log-concave densities. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 79(3):651–676, 2017.

[8] A. S. Dalalyan. Further and stronger analogy between sampling and optimization: Langevin Monte Carlo and gradient descent. *Proceedings of the 2017 Conference on Learning Theory*, 2017.

[9] M. Raginsky, A. Rakhlin, and M. Telgarsky. Non-convex learning via stochastic gradient Langevin dynamics: a nonasymptotic analysis. In *Proceedings of the 2017 Conference on Learning Theory*, volume 65, pages 1674–1703, 2017.

[10] Pan Xu, Jinghui Chen, Difan Zou, and Quanquan Gu. Global convergence of langevin dynamics based algorithms for nonconvex optimization. In *Advances in Neural Information Processing Systems*, pages 3125–3136, 2018.

[11] M. Welling and Y. W Teh. Bayesian learning via stochastic gradient Langevin dynamics. In *International Conference on Machine Learning*, pages 681–688, 2011.

[12] Y. Zhang, P. Liang, and M. Charikar. A hitting time analysis of stochastic gradient langevin dynamics. In *Proceedings of the 2017 Conference on Learning Theory*, volume 65, pages 1980–2022, 2017.

[13] B. Tzen, T. Liang, and M. Raginsky. Local optimality and generalization guarantees for the langevin algorithm via empirical metastability. In *Proceedings of the 2018 Conference on Learning Theory*, 2018.

[14] X. Gao, M. Gürbüzbalaban, and L. Zhu. Global convergence of stochastic gradient Hamiltonian Monte Carlo for non-convex stochastic optimization: Non-asymptotic performance bounds and momentum-based acceleration. *arXiv preprint arXiv:1809.04618*, 2018.

[15] X. Gao, M. Gurbuzbalaban, and L. Zhu. Breaking reversibility accelerates Langevin dynamics for global non-convex optimization. *arXiv preprint arXiv:1812.07725*, 2018.
[16] U. Şimşekli. Fractional Langevin Monte Carlo: Exploring Levy driven stochastic differential equations for Markov chain Monte Carlo. In ICML, pages 3200–3209, 2017.

[17] N. Ye and Z. Zhu. Stochastic fractional Hamiltonian Monte Carlo. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-18, pages 3019–3025, 7 2018.

[18] P. Lévy. Théorie de l’addition des variables aléatoires. Gauthiers-Villars, Paris, 1937.

[19] V. V. Yanovsky, A. V. Chechkin, D. Schertzer, and A. V. Tur. Lévy anomalous diffusion and fractional Fokker–Planck equation. Physica A: Statistical Mechanics and its Applications, 282(1):13–34, 2000.

[20] F. Panloup. Recursive computation of the invariant measure of a stochastic differential equation driven by a Lévy process. The Annals of Applied Probability, 18(2):379–426, 2008.

[21] J. Baker, P. Fearnhead, E. B Fox, and C. Nemeth. sgmcmc: An R package for stochastic gradient Markov chain Monte Carlo. arXiv preprint arXiv:1710.00578, 2017.

[22] M. A. Erdogdu, L. Mackey, and O. Shamir. Global non-convex optimization with discretized diffusions. In Advances in Neural Information Processing Systems, pages 9693–9702, 2018.

[23] J. Gairing, M. Högele, and T. Kosenkova. Transportation distances and noise sensitivity of multiplicative Lévy sde with applications. Stochastic Processes and their Applications, 128(7):2153–2178, 2018.

[24] G. Samorodnitsky and M. S. Taqqu. Stable non-Gaussian random processes: stochastic models with infinite variance, volume 1. CRC press, 1994.

[25] M. D. Ortigueira. Riesz potential operators and inverses via fractional centred derivatives. International Journal of Mathematics and Mathematical Sciences, 2006, 2006.

[26] M. D. Ortigueira, T. M. Laleg-Kirati, and J. A. T. Machado. Riesz potential versus fractional Laplacian. Journal of Statistical Mechanics, (09), 2014.

[27] I. Pavlyukevich. Cooling down lévy flights. Journal of Physics A: Mathematical and Theoretical, 40(41):12299, 2007.

[28] C. Chen, N. Ding, and L. Carin. On the convergence of stochastic gradient MCMC algorithms with high-order integrators. In Advances in Neural Information Processing Systems, pages 2269–2277, 2015.

[29] Longjie Xie and Xicheng Zhang. Ergodicity of stochastic differential equations with jumps and singular coefficients. arXiv preprint arXiv:1705.07402, 2017.

[30] C. Çelik and M. Duman. Crank–Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. Journal of Computational Physics, 231(4):1743–1750, 2012.

[31] Y. Polyanskiy and Y. Wu. Wasserstein continuity of entropy and outer bounds for interference channels. IEEE Transactions on Information Theory, 62(7):3992–4002, 2016.

[32] H. Masuda. Ergodicity and exponential β-mixing bounds for multidimensional diffusions with jumps. Stochastic processes and their applications, 117(1):35–56, 2007.
[33] R. Mikulevičius and C. Zhang. On the rate of convergence of weak Euler approximation for nondegenerate SDEs driven by Lévy processes. *Stochastic Processes and their Applications*, 121(8):1720–1748, 2011.

[34] D Schertzer, M Larchevêque, J Duan, VV Yanovsky, and S Lovejoy. Fractional Fokker–Planck equation for nonlinear stochastic differential equations driven by non-Gaussian Lévy stable noises. *Journal of Mathematical Physics*, 42(1):200–212, 2001.

[35] Umut Şimşekli. Fractional Langevin Monte Carlo: Exploring Lévy Driven Stochastic Differential Equations for Markov Chain Monte Carlo. In *International Conference on Machine Learning*, 2017.

[36] Cédric Villani. Topics in optimal transportation, volume 58 of Graduate. *Studies in Mathematics*, 2003.

[37] Y. Nesterov. *Introductory lectures on convex optimization: A basic course*, volume 87. Springer Science & Business Media, 2013.

[38] Damodar N Shanbhag and Maddipatla Sreehari. On certain self-decomposable distributions. *Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete*, 38(3):217–222, 1977.

[39] Muneya Matsui, Zbyněk Pawlas, et al. Fractional absolute moments of heavy tailed distributions. *Brazilian Journal of Probability and Statistics*, 30(2):272–298, 2016.

[40] Jan Kallsen and Peter Tankov. Characterization of dependence of multidimensional Lévy processes using Lévy copulas. *Journal of Multivariate Analysis*, 97(7):1551–1572, 2006.
8 Appendix

S8.1 Proof of Lemma 1

Proof. Let \(q(X, t) \) be the probability density of \(X(t) \). By Proposition 1 in [34] (see also Section 7 of the same study), the fractional Fokker-Planck equation associated with (9) is given as follows:

\[
\partial_t q(X, t) = -\sum_{i=1}^{d} \frac{\partial[(b(X, \alpha_i)] q(X, t)}{\partial X_i} - \beta^{-1} \sum_{i=1}^{d} D^a_{X_i} q(X, t).
\]

Using definition \([10]\) of \(b \), we have

\[
\partial_t q(X, t) = -\sum_{i=1}^{d} \frac{\partial}{\partial X_i} \beta^{-1} D^a_{X_i} \left(-\beta \phi(X) \frac{\partial f(X)}{\partial X_i} \right) q(X, t) - \beta^{-1} \sum_{i=1}^{d} D^a_{X_i} q(X, t)
\]

\[
= -\sum_{i=1}^{d} \frac{\partial}{\partial X_i} \left[\beta^{-1} D^a_{X_i} \left(-\beta \pi(X) \frac{\partial f(X)}{\partial X_i} \right) \right] q(X, t) - \beta^{-1} \sum_{i=1}^{d} D^a_{X_i} q(X, t)
\]

\[
= -\sum_{i=1}^{d} \frac{\partial}{\partial X_i} \left[\beta^{-1} D^a_{X_i} \left(\frac{\partial \pi(X)}{\partial X_i} \right) \right] q(X, t) - \beta^{-1} \sum_{i=1}^{d} D^a_{X_i} q(X, t).
\]

Here, we used \(\pi(X) = \phi(X)/ \int \phi(X) dX \) in the second equality and \(-\beta \frac{\partial}{\partial X_i} f(X) = \beta \frac{\partial}{\partial X_i} \log \pi(X) = \frac{\partial \pi(X)/\partial X_i}{\pi(X)} \) in the third equality. Next, by replacing \(q \) by \(\pi \) on the right hand side of the above equality, we have:

\[
-\sum_{i=1}^{d} \frac{\partial}{\partial X_i} \left[\beta^{-1} D^a_{X_i} \left(\frac{\partial \pi(X)}{\partial X_i} \right) \right] \pi(X, t) - \beta^{-1} \sum_{i=1}^{d} D^a_{X_i} \pi(X, t)
\]

\[
= -\sum_{i=1}^{d} \frac{\partial}{\partial X_i} \left[\beta^{-1} D^a_{X_i} \left(\frac{\partial \pi(X)}{\partial X_i} \right) \right] - \beta^{-1} \sum_{i=1}^{d} D^a_{X_i} \pi(X, t)
\]

\[
= -\sum_{i=1}^{d} \frac{\partial^2}{\partial X_i^2} \left[\beta^{-1} D^a_{X_i} \left(\frac{\partial \pi(X)}{\partial X_i} \right) \right] - \beta^{-1} \sum_{i=1}^{d} D^a_{X_i} \pi(X, t)
\]

\[
= \sum_{i=1}^{d} D^a_{X_i} [\beta^{-1} \pi(X)] - \beta^{-1} \sum_{i=1}^{d} D^a_{X_i} \pi(X, t) = 0.
\]

Here, we used Proposition 1 in [35], \(D^2 u(x) = -\frac{\partial^2}{\partial x^2} u(x) \), and the semi-group property of the Riesz derivation \(D^a D^b u(x) = D^{a+b} u(x) \). This proves that \(\pi \) is an invariant measure of the Markov process \((X(t))_{t \geq 0} \). \(\square \)

18
S8.2 Proof of Lemma 2

In this section, we precise the statement of Lemma 2 and provide the proof.

Lemma S6. Let V and W be two random variables on \mathbb{R}^d which have μ and ν as the probability measures and let g be a function in $C^1(\mathbb{R}^d, \mathbb{R})$. Assume that for some $c_1 > 0, c_2 \geq 0$ and $0 \leq \gamma < 1$,

$$\|\nabla g(w)\| \leq c_1 \|w\|^\gamma + c_2, \quad \forall w \in \mathbb{R}^d$$

then the following bound holds:

$$\left| \int g d\mu - \int g d\nu \right| \leq \left(c_1 \left(\mathbb{E}_P \|W\|^\gamma \right)^{\frac{1}{p}} + c_1 \left(\mathbb{E}_P \|V\|^\gamma \right)^{\frac{1}{p}} + c_2 \right) \mathcal{W}_q(\mu, \nu).$$

Proof. We have

$$g(v) - g(w) = \int_0^1 \langle w - v, \nabla g((1 - t)v + tw) \rangle dt$$

$$\leq \int_0^1 \|w - v\| \|\nabla g((1 - t)v + tw)\| dt$$

(by Cauchy-Schwarz)

$$\leq \int_0^1 \|w - v\| (c_1((1 - t)\|v\| + t\|w\|)^\gamma + c_2) dt$$

(by the assumption on ∇g)

$$\leq \|w - v\| (c_1(\|v\| + \|w\|)^\gamma + c_2)$$

$$\leq \|w - v\| (c_1\|v\|^\gamma + c_1\|w\|^\gamma + c_2).$$

(by lemma S16)

Now let P be a joint probability distribution of μ and ν that achieves $\mathcal{W}_\lambda(\mu, \nu)$, that is, $P = \mathcal{L}((W, V))$ with $\mu = \mathcal{L}(W)$ and $\nu = \mathcal{L}(V)$. We have

$$\int g d\mu - \int g d\nu = \mathbb{E}_P [g(W) - g(V)]$$

$$\leq \left(\mathbb{E}_P (c_1\|W\|^\gamma + c_1\|V\|^\gamma + c_2)^{\frac{1}{p}} \|W - V\|^q \right)^{\frac{1}{2}}$$

$$\leq \left(c_1 \left(\mathbb{E}_P \|W\|^\gamma \right)^{\frac{1}{p}} + c_1 \left(\mathbb{E}_P \|V\|^\gamma \right)^{\frac{1}{p}} + c_2 \right) \mathcal{W}_q(\mu, \nu),$$

where we have used Holder’s inequality and Minkowski’s inequality. \(\square\)

S8.3 Proof of Lemma 3

Proof. We define a real function F_λ as follows:

$$F_\lambda(y) \triangleq \|y\|^\lambda.$$ \hspace{1cm} (S11)

It is clear that F_λ is a C^1 function. Let $Y(t) \triangleq X_1(t) - X_2(t)$. By the chain rule,

$$dF_\lambda(Y(t)) = \langle \nabla F_\lambda(Y(t)), b_1(X_1(t), \alpha) - b_2(X_2(t), \alpha) \rangle dt$$

$$= \lambda \|X_1(t) - X_2(t)\|^{\lambda-2} \langle X_1(t) - X_2(t), b_1(X_1(t), \alpha) - b_2(X_2(t), \alpha) \rangle dt. \hspace{1cm} (S12)$$
By integrating both sides of (S12) with respect to t, we arrive at

$$F_\lambda(Y(t)) = F_\lambda(Y(0)) + \int_0^t \lambda \|X_1(t) - X_2(t)\|^{\lambda - 2} \langle X_1(t) - X_2(t), b_1(X_1(t), \alpha) - b_2(X_2(t), \alpha) \rangle \, ds$$

$$= \int_0^t \lambda \|X_1(t) - X_2(t)\|^{\lambda - 2} \langle X_1(t) - X_2(t), b_1(X_1(t), \alpha) - b_2(X_2(t), \alpha) \rangle \, ds.$$

By definition of Wasserstein distance, we have

$$\mathcal{W}_\lambda(\mu_{1t}, \mu_{2t}) = \inf \{ (\mathbb{E}[F_\lambda(Y(t))])^{1/\lambda} \},$$

which is the desired result.

\[\square \]

S8.4 Proof of Theorem 3

In this section, we first precise the statement of Theorem 3 and then provide the corresponding proof.

Theorem S6. Let $\mathbb{E}\|L^\alpha(1)\|^{\lambda} \triangleq l_{\alpha, \lambda, d} < \infty$. We also define the following quantities:

$$P_1(\eta) \triangleq \left(\frac{c \eta}{\beta^{1/\alpha}} \right)^{\frac{1}{p_1}} + (c \eta)^{\frac{1}{r_1}} + (2 \eta(b + m))^{\frac{(q-1)}{2}} + 2^{\frac{(q-1)}{2}} (\eta B)^{(q-1)} + \left(\frac{\eta}{\beta} \right)^{\frac{(q-1)}{\alpha}} l_{\alpha, (q-1)p_1, d}$$

$$+ \eta^{q-1} M^{q-1} \left((2 \eta(b + m))^{\frac{(q-1)}{r_1}} + 2^{\frac{(q-1)}{2}} (\eta B)^{(q-1)} \right) \gamma + \left(\frac{\eta}{\beta} \right)^{\frac{1}{\alpha}} l_{\alpha, (q-1)p_1, d},$$

$$P_2(\eta) \triangleq M \left(\frac{c \eta}{\beta^{1/\alpha}} \right)^{\frac{1}{p_1}} + (c \eta)^{\frac{1}{r_1}} + (2 \eta(b + m))^{\frac{1}{2}} + 2^{\frac{1}{2}} (\eta B)^{(q-1)} + \left(\frac{\eta}{\beta} \right)^{\frac{1}{\alpha}} l_{\alpha, (q-1)p_1, d},$$

$$Q_1(\eta) \triangleq \left(\frac{c \eta}{\beta^{1/\alpha}} \right)^{\frac{1}{p_1}} + \eta^{q-1} \left(M^{q-1} \mathbb{E}\|X_2(0)\|^{(q-1)p_1} \right) \gamma + \left(\frac{\eta}{\beta} \right)^{\frac{1}{\alpha}} l_{\alpha, (q-1)p_1, d},$$

$$Q_2 \triangleq M \left(\mathbb{E}\|X_2(0)\|^{(q-1)p_1} \right)^{\frac{1}{p_1}} + M c^{\frac{1}{p_1}}.$$

Under additional assumption on the step-size: $0 < \eta \leq \frac{m}{M^2}$, we have

$$\mathcal{W}_q^2(\mu_{1t}, \mu_{2t}) \leq q \eta \left(k^2 P_1(\eta) P_2(\eta) + k^{1+1/p_1} P_1(\eta) Q_2 + k^{1+1/q_1} P_2(\eta) Q_1(\eta) + k Q_1(\eta) Q_2 \right).$$
Proof. From Lemma 3 we have

\[W_q^p(\mu_{1t},\mu_{2t}) = \mathbb{E} \left[\int_0^t q \|X_1(s) - X_2(s)\|^2 \left(X_1(s) - X_2(s), b_1(X_1(s), \alpha) - b_2(X_2(s), \alpha) \right) ds \right] \]

where we have used Cauchy-Schwarz inequality in the third line and Holder’s inequality in the last line.

Since \((q - 1)p_1 < 1\) by Assumption H, using Lemma S16 twice, we have:

\[\left(\mathbb{E}\|X_1(s) - X_2(s)\|^2 \right)^{\frac{1}{p_1}} \leq \left(\mathbb{E}\|X_1(s)\|^2 \right)^{\frac{1}{p_1}} + \mathbb{E}\|X_2(s)\|^2 \leq \left(\mathbb{E}\|X_1(s)\|^2 \right)^{\frac{1}{p_1}} + \left(\mathbb{E}\|X_2(s)\|^2 \right)^{\frac{1}{p_1}} \]

Then, by applying Lemma S9 and Lemma S12 for \(s \in [j\eta, (j + 1)\eta]\), we obtain:

\[\left(\mathbb{E}\|X_1(s) - X_2(s)\|^2 \right)^{\frac{1}{p_1}} \leq \left(\mathbb{E}\|X_1(s)\|^2 \right)^{\frac{1}{p_1}} + \left(\mathbb{E}\|X_2(s)\|^2 \right)^{\frac{1}{p_1}} \]

Next, using Lemma S16 the inequalities \(j < j + 1\) and \(s - j\eta \leq \eta\) for \(s \in [j\eta, (j + 1)\eta]\), we get

\[\left(\mathbb{E}\|X_1(s) - X_2(s)\|^2 \right)^{\frac{1}{p_1}} \leq \left(\mathbb{E}\|X_1(s)\|^2 \right)^{\frac{1}{p_1}} + \left(\mathbb{E}\|X_2(s)\|^2 \right)^{\frac{1}{p_1}} + \left(\mathbb{E}\|X_2(s)\|^2 \right)^{\frac{1}{p_1}} \]

\[\leq \left(\mathbb{E}\|X_1(s)\|^2 \right)^{\frac{1}{p_1}} + \left(\mathbb{E}\|X_2(s)\|^2 \right)^{\frac{1}{p_1}} + \left(\mathbb{E}\|X_2(s)\|^2 \right)^{\frac{1}{p_1}} + \left(\mathbb{E}\|X_2(s)\|^2 \right)^{\frac{1}{p_1}} + \left(\mathbb{E}\|X_2(s)\|^2 \right)^{\frac{1}{p_1}} \]

21
We note that $s < (j + 1)\eta$ and $q - 1 < \frac{1}{p_1}$ (from the assumptions). Hence,
\[
\left(c\left(s\left(\frac{d}{\beta^{1/\alpha}} + 1\right) + 1\right)\right)^{q-1} \leq \left(c\left((j + 1)\eta\left(\frac{d}{\beta^{1/\alpha}} + 1\right) + 1\right)\right)^{\frac{1}{p_1}} \\
\leq (j + 1)^{\frac{1}{p_1}} \left(c\eta\left(\frac{d}{\beta^{1/\alpha}} + 1\right)\right)^{\frac{1}{p_1}} + c^{\frac{1}{p_1}},
\]
where the last inequality is an application of Lemma S16. By replacing this inequality into the previous one and rearranging the terms, we have
\[
\begin{align*}
\left(\mathbb{E}\|X_1(s) - X_2(s)\|^{(q-1)p_1}\right)^{\frac{1}{p_1}} & \leq c^{\frac{1}{p_1}} + \mathbb{E}\|X_2(0)\|^{(q-1)p_1} \left(\mathbb{E}\|X_2(0)\|^{(q-1)p_1}\gamma\right)^{\frac{1}{p_1}} + B^{(q-1)} + \left(\frac{\eta}{\beta}\right)^{\frac{q-1}{\alpha}} \left(\mathbb{E}\|X_2(0)\|^{(q-1)p_1}\gamma\right)^{\frac{1}{p_1}} \left(\mathbb{E}\|X_2(0)\|^{(q-1)p_1}\gamma\right)^{\frac{1}{p_1}}
\end{align*}
\]
\[
\begin{align*}
+ & \left((j + 1)^{\frac{1}{p_1}} \left(c\eta\left(\frac{d}{\beta^{1/\alpha}} + 1\right)\right)^{\frac{1}{p_1}} + (2\eta(b + m))^{\frac{q-1}{2}} + 2^{\frac{q-1}{2}} (\eta B)^{q-1} + \left(\frac{\eta}{\beta}\right)^{\frac{q-1}{\alpha}} \left(\mathbb{E}\|X_2(0)\|^{(q-1)p_1}\gamma\right)^{\frac{1}{p_1}} \left(\mathbb{E}\|X_2(0)\|^{(q-1)p_1}\gamma\right)^{\frac{1}{p_1}}
\end{align*}
\]
\[
\begin{align*}
+ & \left((j + 1)^{\frac{1}{p_1}} \left(c\eta\left(\frac{d}{\beta^{1/\alpha}} + 1\right)\right)^{\frac{1}{p_1}} + (2\eta(b + m))^{\frac{q-1}{2}} + 2^{\frac{q-1}{2}} (\eta B)^{q-1} + \left(\frac{\eta}{\beta}\right)^{\frac{q-1}{\alpha}} \left(\mathbb{E}\|X_2(0)\|^{(q-1)p_1}\gamma\right)^{\frac{1}{p_1}} \left(\mathbb{E}\|X_2(0)\|^{(q-1)p_1}\gamma\right)^{\frac{1}{p_1}}
\end{align*}
\]
\[
\begin{align*}
+ & \left((j + 1)^{\frac{1}{p_1}} \left(c\eta\left(\frac{d}{\beta^{1/\alpha}} + 1\right)\right)^{\frac{1}{p_1}} + (2\eta(b + m))^{\frac{q-1}{2}} + 2^{\frac{q-1}{2}} (\eta B)^{q-1} + \left(\frac{\eta}{\beta}\right)^{\frac{q-1}{\alpha}} \left(\mathbb{E}\|X_2(0)\|^{(q-1)p_1}\gamma\right)^{\frac{1}{p_1}} \left(\mathbb{E}\|X_2(0)\|^{(q-1)p_1}\gamma\right)^{\frac{1}{p_1}}
\end{align*}
\]
\[
= Q_1(\eta) + (j + 1)^{\frac{1}{p_1}} P_1(\eta),
\]
Here, we have used Lemma S16 in the last inequality. Now, consider the following quantity
\[
\begin{align*}
\left[\mathbb{E}\|c_\alpha (\nabla f(X_1(s)) - \nabla f(X_2(j\eta)))\|^{q_1}\right]^{\frac{1}{q_1}} & \leq \left[\mathbb{E}\left(M\|X_1(s) - X_2(j\eta)\|\gamma\right)^{q_1}\right]^{\frac{1}{q_1}} \\
& \leq \left[\mathbb{E}\left(M\|X_1(s)\|\gamma + M\|X_2(j\eta)\|\gamma\right)^{q_1}\right]^{\frac{1}{q_1}} \\
& \leq \left[\mathbb{E}\left(M^{q_1}\|X_1(s)\|\gamma q_1\right)\right]^{\frac{1}{q_1}} + \left[\mathbb{E}\left(M^{q_1}\|X_2(j\eta)\|\gamma q_1\right)\right]^{\frac{1}{q_1}},
\end{align*}
\]
where we have used Assumption H2, Lemma S16 and Minkowski’s inequality. By Lemma S9 and Lemma S12 we have
\[
\begin{align*}
\left[\mathbb{E}\|c_\alpha (\nabla f(X_1(s)) - c_\alpha \nabla f(X_2(j\eta)))\|^{q_1}\right]^{\frac{1}{q_1}} & \leq M \left(c\left(s\left(\frac{d}{\beta^{1/\alpha}} + 1\right) + 1\right)\right)^{\gamma} + \left[M^{q_1}\left(\mathbb{E}\|X_2(0)\|\gamma q_1\right)\right]^{\frac{1}{q_1}} \\
& + M^{q_1} j \left((2\eta(b + m))^{\frac{q_1}{2}} + 2^{\frac{q_1}{2}} (\eta B)^{q_1} + \left(\frac{\eta}{\beta}\right)^{\frac{q_1}{\alpha}} \left(\mathbb{E}\|X_2(0)\|\gamma q_1\right)^{\frac{1}{q_1}} \right]^{\frac{1}{q_1}}.
\end{align*}
\]
By using Lemma [S16] and the inequality \(j < j + 1 \), we have

\[
\left[\mathbb{E}[c_\alpha \nabla f(X_1(s)) - c_\alpha \nabla f(X_2(j\eta)) \| q_1] \right]^\frac{1}{q_1} \leq M(\mathbb{E}\|X_2(0)\|^{q_1})^\frac{1}{q_1} + M(j + 1)\frac{1}{q_1} \left((c\eta \frac{d}{\beta^{1/\alpha} + 1})^\gamma \right)^\frac{1}{q_1} + (2\eta(b + m))^{\frac{1}{2}} + 2\frac{1}{2} (\eta B)^\gamma + \left(\frac{\eta}{\beta} \right)^\frac{1}{2} I_{a, q_1, d}^\gamma.
\]

We note that \(s < (j + 1)\eta \) and \(\gamma < \frac{1}{q_1} \) (from the assumptions). Hence,

\[
(c(s \frac{d}{\beta^{1/\alpha} + 1} + 1))^{\gamma} \leq (c(j + 1)\eta \frac{d}{\beta^{1/\alpha} + 1} + 1))^{\gamma} \frac{1}{q_1} + c^{\frac{1}{q_1}}.
\]

where the last inequality is an application of Lemma [S16] By replacing this inequality into the previous one and rearranging the terms, we have

\[
\left[\mathbb{E}[c_\alpha \nabla f(X_1(s)) - c_\alpha \nabla f(X_2(j\eta)) \| q_1] \right]^\frac{1}{q_1} \leq M(\mathbb{E}\|X_2(0)\|^{q_1})^\frac{1}{q_1} + M(j + 1)\frac{1}{q_1} \left((c\eta \frac{d}{\beta^{1/\alpha} + 1})^\gamma \right)^\frac{1}{q_1} + (2\eta(b + m))^{\frac{1}{2}} + 2\frac{1}{2} (\eta B)^\gamma + \left(\frac{\eta}{\beta} \right)^\frac{1}{2} I_{a, q_1, d}^\gamma = Q_2 + (j + 1)\frac{1}{q_1} P_2(\eta).
\]

Here, we have used Lemma [S16] in the last inequality. By combining the above inequalities, we get

\[
\mathbb{E} \left[\int_0^t q \|X_1(s) - X_2(s)\| q^{-2}(X_1(s) - X_2(s), b_1(X_1(s), \alpha) - b_2(X_2(s), \alpha))ds \right] \\
\leq \sum_{j=0}^{k-1} q\eta \left((j + 1) P_1(\eta) P_2(\eta) + (j + 1)\frac{1}{q_1} P_1(\eta) Q_2 + (j + 1)\frac{1}{q_1} P_2(\eta) Q_1(\eta) + Q_1(\eta) Q_2 \right) \\
\leq q\eta \left(k^2 P_1(\eta) P_2(\eta) + k^{1 + \frac{1}{q_1}} P_1(\eta) Q_2 + k^{1 + \frac{1}{q_1}} P_2(\eta) Q_1(\eta) + k Q_1(\eta) Q_2 \right).
\]

The final conclusion follows from this inequality. \(\square \)

S8.4.1 Proof of Corollary [1]

Proof. In order to get the results from the bound obtained by Theorem [S6] we take the max power of \(k \) and the min power of \(\eta \) among the terms containing \(k \) and \(\eta \) but not containing \(\beta \). For the terms containing \(\beta \), we take the max power of \(k \), min power of \(\eta \), min power of \(1/\beta \) and max power of \(d \). We get

\[
W_q^q(\mu_1, \mu_2) \leq C(k^2 \eta + k^2 \eta^{1+\min\{\gamma, q-1\}/\alpha} \beta^{-\gamma(\gamma - 1)/\gamma/\alpha} \alpha d).
\]
Since \(\gamma < 1/p = (q-1)/q < q-1 \), we finally obtain
\[
\mathcal{W}_q^\theta(\mu_{1t},\mu_{2t}) \leq C(k^2\eta + k^2\eta^{1+\gamma}/\alpha\beta^{-(q-1)/\gamma}d).
\]
Proof. From Lemma 3 we have

\[\mathcal{W}_q^q(\mu_{1t}, \mu_{3t}) = \mathbb{E} \left[\int_0^t q \| X_1(s) - X_3(s) \|^{q-2} \langle X_1(s) - X_3(s), q, b_1(X_1(s) - X_3(s), \alpha) - b(3(s), \alpha) \rangle ds \right] \]

\[= \int_0^t q \| X_1(s) - X_3(s) \|^{q-2} \langle X_1(s) - X_3(s), b_1(X_1(s) - X_3(s), \alpha) - b(3(s), \alpha) \rangle ds \]

\[\leq \mathbb{E} \left[\int_0^t q \| X_1(s) - X_3(s) \|^{q-1} \| c_\alpha \nabla f(X_1(s)) + b(X_3(s), \alpha) \| ds \right] \]

\[= q \int_0^t \mathbb{E} \left[\| X_1(s) - X_3(s) \|^{q-1} \| c_\alpha \nabla f(X_1(s)) + b(X_3(s), \alpha) \| \right] ds \]

\[\leq q \int_0^t \mathbb{E} \| X_1(s) - X_3(s) \|^{(q-1)p_1} \| c_\alpha \nabla f(X_1(s)) + b(X_3(s), \alpha) \|^{q_1} \] \[\frac{1}{q_1} ds, \]

where we have used Cauchy-Schwarz inequality in the third line and Holder's inequality in the last line.

Since \((q-1)p_1 < 1 \) by Assumption H4 using Lemma S16 twice, we have:

\[\left(\mathbb{E} \| X_1(s) - X_3(s) \|^{(q-1)p_1} \right)^{\frac{1}{q_1}} \leq \left(\mathbb{E} \| X_1(s) \|^{(q-1)p_1} + \mathbb{E} \| X_3(s) \|^{(q-1)p_1} \right)^{\frac{1}{q_1}} \]

\[\leq \left(\mathbb{E} \| X_1(s) \|^{(q-1)p_1} \right)^{\frac{1}{q_1}} + \left(\mathbb{E} \| X_3(s) \|^{(q-1)p_1} \right)^{\frac{1}{q_1}}. \]

Then, by applying Lemma S9 and Lemma S10 we obtain:

\[\left(\mathbb{E} \| X_1(s) - X_3(s) \|^{(q-1)p_1} \right)^{\frac{1}{q_1}} \leq \left(c \left(s \left(\frac{d}{\beta_1 / \alpha} + 1 \right) + 1 \right) \right)^{q_1} + \left(c_b \left(s \left(\frac{d}{\beta_1 / \alpha} + 1 \right) + 1 \right) \right)^{q_1}. \]

Now, consider the following quantity

\[\left[\mathbb{E} \| c_\alpha \nabla f(X_1(s)) + b(X_3(s), \alpha) \|^{q_1} \right]^{\frac{1}{q_1}} \]

\[\leq \left[\mathbb{E} \| c_\alpha \nabla f(X_1(s)) - c_\alpha \nabla f(X_3(s)) \| + \| c_\alpha \nabla f(X_3(s)) + b(X_3(s), \alpha) \|^{q_1} \right]^{\frac{1}{q_1}} \]

\[\leq \left[\mathbb{E} \| M \| X_1(s) - X_3(s) \|^{\gamma} + L \|^{q_1} \right]^{\frac{1}{q_1}} \]

\[\leq \left[\mathbb{E} \| M \| X_1(s) \|^{\gamma} + M \| X_3(s) \|^{\gamma} + L \|^{q_1} \right]^{\frac{1}{q_1}} \]

\[\leq \left[\mathbb{E} \left(M \| X_1(s) \|^{\gamma q_1} + M \| X_3(s) \|^{\gamma q_1} \right) \right]^{\frac{1}{q_1}} + L, \]

where we have used Assumption H2, Assumption H6, Lemma S16 and Minkowski's inequality. By Lemma S9 and Lemma S10 we have

\[\left[\mathbb{E} \| c_\alpha \nabla f(X_1(s)) + b(X_3(s), \alpha) \|^{q_1} \right]^{\frac{1}{q_1}} \leq M \left[c \left(s \left(\frac{d}{\beta_1 / \alpha} + 1 \right) + 1 \right) \right]^{\gamma} + M \left[c_b \left(s \left(\frac{d}{\beta_1 / \alpha} + 1 \right) + 1 \right) \right]^{\gamma} + L. \]
By combining the above inequalities, we get

\[
\mathbb{E} \left[\int_0^t q \|X_1(s) - X_3(s)\|^{q-2}(X_1(s) - X_3(s), b_1(X_1(s), \alpha) - b(X_3(s), \alpha)) \, ds \right]
\]

\[
\leq q \int_0^t \left((c(s\left(\frac{d}{\beta^{1/\alpha}} + 1 \right) + 1))^{q-1} + (c_b(s\left(\frac{d}{\beta^{1/\alpha}} + 1 \right) + 1))^{q-1} \right) \left(M(c(s\left(\frac{d}{\beta^{1/\alpha}} + 1 \right) + 1))^{\gamma} + M(c_b(s\left(\frac{d}{\beta^{1/\alpha}} + 1 \right) + 1))^{\gamma} + L \right) \, ds
\]

\[
= q \int_0^t \left(M(c^{q-1} + c_b^{q-1})(c^\gamma + c_b^\gamma) \left(s\left(\frac{d}{\beta^{1/\alpha}} + 1 \right) + 1 \right)^{q-1+\gamma} + L(c^{q-1} + c_b^{q-1}) \left(s\left(\frac{d}{\beta^{1/\alpha}} + 1 \right) + 1 \right)^{q-1} \right) \, ds
\]

\[
\leq q t \left(M(c^{q-1} + c_b^{q-1})(c^\gamma + c_b^\gamma) \left(t\left(\frac{d}{\beta^{1/\alpha}} + 1 \right) + 1 \right)^{q-1+\gamma} + L(c^{q-1} + c_b^{q-1}) \left(t\left(\frac{d}{\beta^{1/\alpha}} + 1 \right) + 1 \right)^{q-1} \right).
\]

The final conclusion follows from this inequality.

\[\square\]

S8.6.1 Proof of Corollary 3

Proof. First, we replace \(t \) by \(k \eta \). Then, by following the same lines of the proof of Corollary 1, we get

\[
W^q_{q}(\mu_{1t}, \mu_{3t}) \leq C(k^{q+\gamma} \eta + k^{q+\gamma} \eta^q \beta^{-\frac{2-\gamma}{\alpha}} d^{q-1+\gamma}).
\]

By assumption \(H_{11} \) \(q - 1 < 1/p_1 \) and \(\gamma < 1/q_1 \). It implies that \(d^{q-1+\gamma} < d^{1/p_1+1/q_1} = d \). Hence, we have

\[
W^q_{q}(\mu_{1t}, \mu_{3t}) \leq C(k^{q+\gamma} \eta + k^{q+\gamma} \eta^q \beta^{-\frac{2-\gamma}{\alpha}} d).
\]

\[\square\]

S8.6.2 Proof of Corollary 4

Proof. By Lemma 2, Lemma S9 and Lemma S10, we have

\[
c_a |\mathbb{E}[f(X_1(t))] - \mathbb{E}[f(X_3(t))]| \leq \left(M(\mathbb{E}\|X_1(t)\|^{\gamma p})^{\frac{1}{p}} + M(\mathbb{E}\|X_3(t)\|^{\gamma p})^{\frac{1}{p}} + B \right) W_q(\mu_{1t}, \mu_{3t})
\]

\[
\leq \left(M\left(c\left(t\left(\frac{d}{\beta^{1/\alpha}} + 1 \right) + 1 \right) \right)^{\gamma} + M\left(c_b\left(t\left(\frac{d}{\beta^{1/\alpha}} + 1 \right) + 1 \right) \right)^{\gamma} + B \right) W_q(\mu_{1t}, \mu_{3t}).
\]

Then by Theorem 4, we have

\[
c_a |\mathbb{E}[f(X_1(t))] - \mathbb{E}[f(X_3(t))]| \leq \left(M\left(c\left(t\left(\frac{d}{\beta^{1/\alpha}} + 1 \right) + 1 \right) \right)^{\gamma} + M\left(c_b\left(t\left(\frac{d}{\beta^{1/\alpha}} + 1 \right) + 1 \right) \right)^{\gamma} + B \right) \left(q t \left(M(c^{q-1} + c_b^{q-1})(c^\gamma + c_b^\gamma) \right) \left(t\left(\frac{d}{\beta^{1/\alpha}} + 1 \right) + 1 \right)^{q-1+\gamma} + L(c^{q-1} + c_b^{q-1}) \left(t\left(\frac{d}{\beta^{1/\alpha}} + 1 \right) + 1 \right)^{q-1} \right)^{\frac{1}{q}}.
\]

26
Applying Lemma S16 twice, we get
\[c_\alpha |\mathbb{E}[f(X_1(t))] - \mathbb{E}[f(X_3(t))]| \leq \left(M(c^\gamma + c_b^\gamma) \left(\frac{t^d}{b^{\gamma/q}} + t^{\gamma+1} \right) + B \right) \left((qt)^{1/q} \left(M^{1/q}(c^{q-1} + c_b^{q-1})^{1/q}(c^\gamma + c_b^\gamma)^{1/q} \
ight. \right. \]
\[\left. \left. \left(\frac{td}{b^{\gamma/q}} + t + 1 \right)^{(q-1+\gamma)/q} + L^{1/q}(c^{q-1} + c_b^{q-1})^{1/q} \left(\frac{td}{b^{1+\gamma}} + t + 1 \right)^{(q-1)/q} \right) \right) \]
\[\leq \left(M(c^\gamma + c_b^\gamma) \left(\frac{t^d}{b^{\gamma/q}} + t^{\gamma+1} \right) + B \right) \left((qt)^{1/q} \left(M^{1/q}(c^{q-1} + c_b^{q-1})^{1/q}(c^\gamma + c_b^\gamma)^{1/q} \left(\frac{(td)^{(q-1+\gamma)/q}}{(b^{1+\gamma})/(qa)} \right) \right. \right. \]
\[\left. \left. + t^{(q-1+\gamma)/q + 1} \right) + L^{1/q}(c^{q-1} + c_b^{q-1})^{1/q} \left(\frac{(td)^{(q-1)/q}}{(b^{(q-1)/qa})} + t^{(q-1)/q + 1} \right) \right) . \]

Now, by replacing \(t = k\eta \) we find that, among the terms containing \(b \), the largest power of \(d \), the largest power of \(k \) and the smallest power of \(\eta \) are \(\gamma + \frac{q-1}{q} \), \(\gamma + \frac{q-2}{q} \) and \(\gamma + \frac{1}{q} \), respectively. For the smallest power of \(b^{-1} \), we need to compare the following quantities: \(\gamma/\alpha \), \((q - 1 + \gamma)/(qa) \) and \((q-1)/qa \).

It is obvious that \((q - 1 + \gamma)/(qa) > (q - 1)/(qa) \). Next, from the relation \(\gamma < 1/p = (q-1)/q \), we have \(\gamma/\alpha < (q - 1)/(qa) \). Thus, the smallest power of \(b^{-1} \) is \(\gamma/\alpha \). Hence, we have the following bound:
\[c_\alpha |\mathbb{E}[f(X_1(t))] - \mathbb{E}[f(X_3(t))]| \leq C \left(k^{\gamma + \frac{q-1}{q}} \eta^{1/\gamma + \frac{1}{q}} b^{-\frac{1}{\gamma}} \gamma \left(d^{\gamma + \frac{q-1}{q} + \frac{1}{q}} + k^{\gamma + \frac{q-1}{q}} \eta^{\frac{1}{q}} \right) \right), \]
for some constant \(C > 0 \). For the power of \(d \), using that \(\gamma < 1/p \), \(q - 1 < 1/p1 \) and \(\gamma < 1/q1 \) we have
\[\gamma + \frac{q-1}{q} \leq 1/p + \frac{1/p1 + 1/q1}{q} \]
\[= 1/p + 1/q \]
\[= 1. \]

Finally, we have
\[c_\alpha |\mathbb{E}[f(X_1(t))] - \mathbb{E}[f(X_3(t))]| \leq C \left(k^{\gamma + \frac{q-1}{q}} \eta^{1/\gamma + \frac{1}{q}} b^{-\frac{1}{\gamma}} \gamma \left(d^{\gamma + \frac{q-1}{q} + \frac{1}{q}} + k^{\gamma + \frac{q-1}{q}} \eta^{\frac{1}{q}} \right) \right). \]

\[\square \]

S8.7 Proof of Lemma 4

Proof. By Lemma 2 we have
\[c_\alpha |\mathbb{E}[f(X_3(t))] - \mathbb{E}[f(\hat{W})]| \leq \left(M(\mathbb{E}\|X_3(t)\|^{\gamma})^{\frac{1}{p}} + M(\mathbb{E}\|\hat{W}\|^{\gamma})^{\frac{1}{p}} + B \right) \mathcal{W}_q(\mu_{3t}, \pi). \]

Assumption H7 says that \(\mathbb{E}\|\hat{W}\|^{\gamma} \) is bounded by a constant depending on \(b, m \) and \(\beta \). In addition, by Assumption H5, \(\lim_{t \to \infty} \mathcal{W}_{\gamma p}(\mu_{3t}, \pi) \to 0 \), and by Theorem 7.12 in [316], it follows that
\[\lim_{t \to \infty} \mathbb{E}\|X_3(t)\|^{\gamma} = \mathbb{E}\|\hat{W}\|^{\gamma}. \]
Thus, \(E\|X_3(t)\|_p \) is bounded by a constant independent of \(t \). Finally, since \(q < \alpha \), by Assumption H5 again, \(\mathcal{W}_q(\mu_3t, \pi) \leq C \beta e^{-\lambda_s t/\beta} \). Hence, using the bound in Assumption H7, there exists constant \(C \) such that

\[
|E[f(X_3(t))] - E[f(\hat{W})]| \leq C \beta \frac{b + d/\beta}{m} \exp(-\lambda_s \beta^{-1} t).
\]

S8.8 Proof of Lemma 5

Proof. The proof is adapted from [9], Section 3.5. First, we have the decomposition:

\[
E[f(\hat{W})] = \int_{\mathbb{R}^d} f(w) \frac{\exp(-\beta f(w))}{\int_{\mathbb{R}^d} \exp(-\beta f(v))dv} dw
= \frac{1}{\beta} \left(- \int_{\mathbb{R}^d} \frac{\exp(-\beta f(w))}{\int_{\mathbb{R}^d} \exp(-\beta f(v))dv} \log \frac{\exp(-\beta f(w))}{\int_{\mathbb{R}^d} \exp(-\beta f(v))dv} dw - \log \int_{\mathbb{R}^d} \exp(-\beta f(v))dv \right).
\]

The first term in the parentheses is the differential entropy of the probability density of \(\hat{W} \), which has a finite second moment (due to Assumption H7). Hence, it is upper-bounded by the differential entropy of a Gaussian density with the same second moment:

\[
- \int_{\mathbb{R}^d} \frac{\exp(-\beta f(w))}{\int_{\mathbb{R}^d} \exp(-\beta f(v))dv} \log \frac{\exp(-\beta f(w))}{\int_{\mathbb{R}^d} \exp(-\beta f(v))dv} dw \leq \frac{d}{2} \log \left(\frac{2\pi e(b + d/\beta)}{dm} \right).
\]

By Lemma S8, we have

\[
- \log \int_{\mathbb{R}^d} \exp(-\beta f(w))dw \leq \beta f(w^*) + \frac{\beta^{-\gamma} Mc^{-1}}{1 + \gamma} \log \left(\frac{\pi^{d/2} \beta^{-d}}{\Gamma(d/2 + 1)} \right).
\]

Then, it implies that

\[
E[f(\hat{W})] \leq \frac{d \beta^{-1}}{2} \log \left(\frac{2\pi e(b + d/\beta)}{dm} \right) + f(w^*) + \frac{\beta^{-\gamma} Mc^{-1}}{1 + \gamma} \log \left(\frac{(2e(b + d/\beta))^{d/2} \Gamma(d/2 + 1) \beta^d}{(dm)^{d/2}} \right),
\]

which leads to desired result.

\[
\]

S8.9 Proof of Corollary 5

Proof. By triangular inequality, we have

\[
\mathcal{W}_q(\mu_2t, \pi) \leq \mathcal{W}_q(\mu_2t, \mu_1t) + \mathcal{W}_q(\mu_1t, \mu_3t) + \mathcal{W}_q(\mu_3t, \pi).
\]

Then, using Corollary 1, Corollary 3 and assumption H5, we get

\[
\mathcal{W}_q(\mu_2t, \pi) \leq C \left((k^2 + k^2 \eta^{1+\gamma/\alpha} \beta^{-\gamma(q-1)/\alpha} d)^{1/q} + (k^2 + k^2 \eta^{q+\gamma} \beta^{-(q-1)/\alpha} d)^{1/q} + \beta e^{-\lambda_s \eta/\beta} \right)
\leq C \left(k^2 \eta^{1/q} + k^2 \eta^{1+\gamma/(q\alpha)} \beta^{-(q-1)/(q\alpha)} d^{1/q} + k^{1+\gamma/\eta} \beta^{-\gamma(q-1)/(q\alpha)} d^{1/q} + k^{1+\gamma/\eta} \beta^{-(q-1)/(q\alpha)} d^{1/q} + \beta e^{-\lambda_s \eta/\beta} \right),
\]

28
where, we have used Lemma \textbf{S16} for the second inequality. Then, similar to the proof of Corollary \textbf{1} we obtain
\[
\mathcal{W}_q(\mu_2, \pi) \leq C \left(k^{\max\{2,q+\gamma\}/q} \eta^{1/q} + k^{\max\{2,q+\gamma\}/q} \eta^{1/q+\gamma/(q\alpha)} \beta^{\gamma(q-1)/(q\alpha)} d^{1/q} + \beta e^{-\lambda\eta n/\beta} \right).
\]

\[\square\]

\textbf{S8.10 Proof of Theorem \textbf{5}}

\textit{Proof.} Since each function $x \mapsto f^{(i)}(x)$ satisfies assumptions \textbf{H1}[\textbf{H7}] it is easy to check that f_k also satisfies these assumptions (with the same constants and the same parameters) for all k. Then by repeating exactly the same lines as in the proof of Lemma \textbf{S12} we obtain the same estimates for the moments of X_2. Now by following the same steps as in the proof of Theorem \textbf{S6} we first have
\[
\mathcal{W}_q^2(\mu_1, \mu_2) \leq q \sum_{j=0}^{k-1} \int_{j\eta}^{(j+1)\eta} \left[E\|X_1(s) - X_2(s)\|^{(q-1)p_1} \right]^{\frac{1}{p_1}} \left[E\|c_\alpha(\nabla f(X_1(s)) - \nabla f_k(X_2(j\eta)))\|^{q_1} \right]^{\frac{1}{q_1}} ds,
\]
then
\[
\left(E\|X_1(s) - X_2(s)\|^{(q-1)p_1} \right)^{\frac{1}{p_1}} \leq c^{\frac{1}{p_1}} + (E\|X_2(0)\|^{(q-1)p_1})^{\frac{1}{p_1}} + \eta^{q-1} \left(M^{q-1}(E\|X_2(0)\|^{(q-1)p_1})^{\frac{1}{p_1}} + B^{(q-1)} \right) + \left(\frac{n}{\beta} \right)^{\frac{1}{q}} l^{\frac{1}{p_1}} l_{\alpha,(q-1)p_1,d}
\]
\[+ (j + 1)^{\frac{1}{p_1}} \left(\left(c\eta \left(\frac{d}{\beta^{1/\alpha}} \right) \right)^{\frac{1}{q}} + (c\eta)^{\frac{1}{p_1}} + (2\eta(b + m))^{\frac{(q-1)}{2}} + 2^{\gamma(q-1)\gamma} + \left(\frac{n}{\beta} \right)^{\frac{1}{q}} l^{\frac{1}{p_1}} l_{\alpha,(q-1)p_1,d} \right)
\]
\[= Q_1(\eta) + (j + 1)^{\frac{1}{p_1}} P_1(\eta),
\]
where $P_1(\eta)$ and $Q_1(\eta)$ are defined in Theorem \textbf{S6}. Now, by Minkowski’s inequality, we have
\[
\left[E\|c_\alpha(\nabla f(X_1(s)) - \nabla f_k(X_2(j\eta)))\|^{q_1} \right]^{\frac{1}{q_1}} = \left[E\|c_\alpha(\nabla f(X_1(s)) - \nabla f_k(X_2(j\eta))) + \nabla f_k(X_2(j\eta)) \right]^{\frac{1}{q_1}}
\]
\[\leq \left[E\|c_\alpha(\nabla f(X_1(s)) - \nabla f_k(X_2(j\eta)))\|^{q_1} \right]^{\frac{1}{q_1}} + \left[E\|c_\alpha(\nabla f_k(X_2(j\eta)))\|^{q_1} \right]^{\frac{1}{q_1}}.
\]
As in the proof of Theorem \textbf{S6} the following inequality holds:
\[
\left[E\|c_\alpha \nabla f(X_1(s)) - c_\alpha \nabla f(X_2(j\eta))\|^{q_1} \right]^{\frac{1}{q_1}} \leq M(E\|X_2(0)\|^{q_1})^{\frac{1}{q_1}} + M(c\eta)^{\frac{1}{q}} + (c\eta)^{\frac{1}{q}} + (2\eta(b + m))^{\frac{2}{2}} + 2\gamma(\eta B)^{\gamma} + \left(\frac{n}{\beta} \right)^{\frac{1}{q}} l^{\frac{1}{p_1}} l_{\alpha,\gamma q_1,d}
\]
\[= Q_2 + (j + 1)^{\frac{1}{p_1}} P_2(\eta),
\]
\[29\]
where $P_2(\eta)$ and Q_2 are defined in Theorem S6. Using the additional assumption, Lemma S12 and Lemma S16 we get

$$
\left[\mathbb{E} \left| c_{\alpha}(\nabla f(X_2(j\eta)) - \nabla f_k(X_2(j\eta))) \right|^{|q_1|} \right]^{\frac{1}{q_1}} \leq \delta \left[\mathbb{E} \left(M^{q_1} \| X_2(j\eta) \|^{\gamma q_1} \right) \right]^{\frac{1}{q_1}}
$$

$$
\leq \delta \left[M^{q_1} \left(\mathbb{E} \| X_2(0) \|^{\gamma q_1} \right) + M^{q_1} \left(2\eta(\eta + m) \right)^{\frac{\gamma q_1}{2}} + \left(\frac{\eta}{\beta} \right)^{\frac{\gamma q_1}{2}} l_{\alpha,\gamma q_1,d} \right]^{\frac{1}{q_1}}
$$

$$
\leq \delta M \left(\mathbb{E} \| X_2(0) \|^{\gamma q_1} \right)^{\frac{1}{q_1}} + \delta M (j + 1)^{\frac{1}{q_1}} \left(\left(2\eta(\eta + m) \right)^{\frac{1}{q_1}} + \left(\frac{\eta}{\beta} \right)^{\frac{1}{q_1}} l_{\alpha,\gamma q_1,d} \right).
$$

By combining the two above inequalities, we obtain

$$
\left[\mathbb{E} c_{\alpha} \nabla f(X_1(s)) - c_{\alpha} \nabla f(X_2(j\eta)) \right]^{|q_1|} \left(1 + \delta \right) M \left(\mathbb{E} \| X_2(0) \|^{\gamma q_1} \right)^{\frac{1}{q_1}} + M c_{\alpha}^{\frac{1}{q_1}} + M (j + 1)^{\frac{1}{q_1}} \left(\left(\frac{\eta}{\beta} \right)^{\frac{1}{q_1}} l_{\alpha,\gamma q_1,d} \right)
$$

$$
\leq Q_2^\prime + (j + 1)^{\frac{1}{q_1}} P_2^\prime(\eta).
$$

Finally, we have

$$
\mathcal{W}_q^\alpha(\mu_{1t}, \mu_{2t}) \leq \eta \left(k^2 P_1(\eta) P_2^\prime(\eta) + k^{1+1/q_1} P_1(\eta) Q_2^\prime + k^{1+1/q_1} P_2^\prime(\eta) Q_1(\eta) + k Q_1(\eta) Q_2^\prime \right).
$$

By considering the additional term δ, we arrive at the following bound:

$$
\mathcal{W}_q^\alpha(\mu_{1t}, \mu_{2t}) \leq C(1 + \delta) (k^2 \eta + k^{\frac{1}{q_1}} P_1(\eta) P_2^\prime(\eta) + k^{1+1/q_1} P_1(\eta) Q_2^\prime + k^{1+1/q_1} P_2^\prime(\eta) Q_1(\eta) + k Q_1(\eta) Q_2^\prime).
$$

S8.11 Proof of Corollary 6

Proof. By Lemma 2

$$
c_{\alpha} |\mathbb{E}[f(X_1(\eta))] - \mathbb{E}[f(X_2(\eta))]| \leq \left(M \left(\mathbb{E} \| X_1(\eta) \|^{\gamma p} \right)^{\frac{1}{p}} + M \left(\mathbb{E} \| X_2(\eta) \|^{\gamma p} \right)^{\frac{1}{p}} \right) + B \mathcal{W}_q(\mu_{1t}, \mu_{2t}).
$$

Then, by following the same proof as in Corollary S7 Corollary 1 and using Theorem 5 we get

$$
c_{\alpha} |\mathbb{E}[f(X_1(\eta))] - \mathbb{E}[f(X_2(\eta))]| \leq C(1 + \delta) \left(k^{\frac{1+1/q_1}{q_1}} \eta^\frac{1}{q_1} + k^{1+1/q_1} \eta^\frac{1}{q_1} + \eta^\frac{1}{q_1} \right).
$$
S8.12 Technical Results

Corollary S7. Along with $P_1(\eta), P_2(\eta), Q_1(\eta), Q_2$ in Lemma S6, we define, in addition, the following quantities:

$$P_3(\eta) \triangleq M \left(\left(c\eta \left(\frac{d}{\beta^{1/\alpha}} \right) \right)^{\frac{1}{p}} + (c\eta)^{\frac{1}{p}} + (2\eta(b + m))^{\frac{2}{p}} + 2^{\frac{2}{p}} (\eta B)^{\gamma} + \left(\frac{\eta}{\beta} \right)^{\frac{1}{p}} l_{\alpha, \gamma p, d} \right)$$

$$Q_3 \triangleq M \left(\mathbb{E} \left\| X_2(0) \right\|^{\gamma p} \right)^{\frac{1}{p}} + M \left(c^{\frac{1}{p}} \right) + B.$$

For $0 < \eta < \frac{m}{M^2}$, we have the following bound:

$$c_\alpha \left| \mathbb{E}[f(X_1(\eta))] - \mathbb{E}[f(X_2(\eta))] \right| \leq \left(M \left(\mathbb{E} \left\| X_1(\eta) \right\|^{\gamma p} \right)^{\frac{1}{p}} + M \left(\mathbb{E} \left\| X_2(\eta) \right\|^{\gamma p} \right)^{\frac{1}{p}} + B \right) W_{\eta}(\mu_{1\gamma}, \mu_{2\gamma}).$$

Proof. By Lemma S9 and Lemma S13, we have

$$\left(M \left(\mathbb{E} \left\| X_1(\eta) \right\|^{\gamma p} \right)^{\frac{1}{p}} + M \left(\mathbb{E} \left\| X_2(\eta) \right\|^{\gamma p} \right)^{\frac{1}{p}} + B \right) \leq M \left(c \left(d \left(\frac{\beta}{\alpha^{1/\alpha}} + 1 \right) + 1 \right) \right)^{\gamma} + M \left(\mathbb{E} \left\| X_2(0) \right\|^{\gamma p} \right)^{\frac{1}{p}} + B.$$

By using Lemma S16, we obtain:

$$M \left(c \left(d \left(\frac{\beta}{\alpha^{1/\alpha}} + 1 \right) + 1 \right) \right)^{\gamma} + M \left(\mathbb{E} \left\| X_2(0) \right\|^{\gamma p} \right)^{\frac{1}{p}} + M \left(2^{\frac{2}{p}} (\eta B)^{\gamma} + \left(\frac{\eta}{\beta} \right)^{\frac{2}{p}} l_{\alpha, \gamma p, d} \right)^{\frac{1}{p}} + B.$$

We note that $\gamma < \frac{1}{p}$. Hence,

$$\left(c \left(d \left(\frac{\beta}{\alpha^{1/\alpha}} + 1 \right) + 1 \right) \right)^{\gamma} \leq \left(c \left(d \left(\frac{\beta}{\alpha^{1/\alpha}} + 1 \right) + 1 \right) \right)^{\frac{1}{p}} \leq \left(c \left(d \left(\frac{\beta}{\alpha^{1/\alpha}} + 1 \right) + 1 \right) \right)^{\frac{1}{p}} + c^{\frac{1}{p}},$$

where the last inequality is an application of Lemma S16. By replacing this inequality into the previous one and rearranging the terms, we have
\[
\left(M\left(\mathbb{E}_P\|X_1(k\eta)\|^\gamma\right)\right)^{\frac{1}{p}} + M\left(\mathbb{E}_P\|X_2(k\eta)\|^\gamma\right)^{\frac{1}{p}} + B
\]
\[
\leq M(\mathbb{E}\|X_2(0)\|^\gamma)^{\frac{1}{p}} + Mc^{\frac{1}{p}} + B + M\left(c\eta\left(\frac{d}{\beta^{1/\alpha}} + 1\right)\right)^{\frac{1}{p}}
\]
\[
+ (2\eta(b + m))^\frac{q}{p} + 2^\frac{q}{q} (\eta B)^\gamma + \left(\frac{\eta}{\beta}\right)^{\frac{q}{p} l_{\alpha, \gamma p, d}}
\]
\[
\leq M(\mathbb{E}\|X_2(0)\|^\gamma)^{\frac{1}{p}} + Mc^{\frac{1}{p}} + B + M\left(c\eta\left(\frac{d}{\beta^{1/\alpha}}\right)\right)^{\frac{1}{p}}
\]
\[
+ (cn)^{\frac{1}{p}} + (2\eta(b + m))^\frac{q}{p} + 2^\frac{q}{q} (\eta B)^\gamma + \left(\frac{\eta}{\beta}\right)^{\frac{q}{p} l_{\alpha, \gamma p, d}}
\]
\[
= Q_3 + k^\frac{1}{q} P_3(\eta).
\]

Here, we have used Lemma S16 in the last inequality. Next, by Lemma S6 and Lemma S16,
\[
\mathcal{W}_\gamma(\mu_{1t}, \mu_{2t}) \leq (\eta)^{\frac{1}{\gamma}} \left(k^\frac{q}{p} (P_1(\eta)P_2(\eta)) + k^{q+1/q} (P_1(\eta)Q_2) + k^{q+1/q} (P_2(\eta)Q_1) + kQ_1(\eta)Q_2 \right)^{\frac{1}{q}}
\]
\[
\leq (\eta)^{\frac{1}{\gamma}} \left(k^\frac{q}{p} (P_1(\eta)P_2(\eta))^{\frac{1}{q}} + k^{q+1/q} (P_1(\eta)Q_2)^{\frac{1}{q}} + k^{q+1/q} (P_2(\eta)Q_1)^{\frac{1}{q}} + k^{q+1/q} (Q_1(\eta)Q_2)^{\frac{1}{q}} \right).
\]

By combining the above two inequalities, we get
\[
c_{\alpha}|f(x) - f(y) - \langle \nabla f(y), x - y \rangle| \leq \frac{M}{1 + \gamma} \|x - y\|^{1+\gamma}.
\]

Lemma S7. Under Assumption H, the following inequality holds for any \(x, y \in \mathbb{R}^d \):
\[
c_{\alpha}|f(x) - f(y)| \leq \frac{M}{1 + \gamma} \|x - y\|^{1+\gamma}.
\]

Proof. Let \(g(t) \triangleq c_{\alpha} f(y + t(x - y)) \). Then, \(g'(t) = c_{\alpha} \langle \nabla f(y + t(x - y)), x - y \rangle \) and \(\int_0^1 g'(t)dt = g(1) - g(0) = c_{\alpha}(f(x) - f(y)) \). We have
\[
c_{\alpha}|f(x) - f(y)| - \langle \nabla f(y), x - y \rangle| = \left| \int_0^1 g'(t)dt - c_{\alpha} \langle \nabla f(y), x - y \rangle \right|
\]
\[
= \left| c_{\alpha} \langle \nabla f(y + t(x - y)), x - y \rangle - c_{\alpha} \langle \nabla f(y), x - y \rangle \right|
\]
\[
= \left| c_{\alpha} \langle \nabla f(y + t(x - y)) - \nabla f(y), x - y \rangle \right| dt.
\]
By Cauchy-Schwarz inequality and Assumption H2, we have
\[
\begin{align*}
 c_\alpha |f(x) - f(y) - \langle \nabla f(y), x - y \rangle | &\leq \int_0^1 c_\alpha \| \nabla f(y + t(x - y)) - \nabla f(y) \| \| x - y \| dt \\
 &\leq \int_0^1 Mt^\gamma \| x - y \| \| x - y \| dt \\
 &= \frac{M}{1+\gamma} \| x - y \|^{1+\gamma}.
\end{align*}
\]

Lemma S8. The normalized factor of \(\pi \) is bounded below, i.e.,
\[
\log \int_{\mathbb{R}} \exp(-\beta f(w)) dw \geq -\beta f(w^*) - \frac{\beta^{-\gamma} Mc_\alpha^{-1}}{1+\gamma} + \log \left(\frac{\pi^{d/2}\beta^{-d}}{\Gamma(d/2+1)} \right).
\]

Proof. We start by writing:
\[
\log \int_{\mathbb{R}} \exp(-\beta f(w)) dw = -\beta f(w^*) + \log \int_{\mathbb{R}} \exp(-\beta(f(w) - f(w^*))) dw \\
\geq -\beta f(w^*) + \log \int_{\mathbb{R}} \exp\left(-\frac{\beta M c_\alpha^{-1}}{1+\gamma} \| w - w^* \|^{1+\gamma} \right) dw.
\]

Here, we used Lemma S7 with \(\nabla f(w^*) = 0 \). For the second term on the right hand side, we have
\[
\begin{align*}
 \int_{\mathbb{R}} \exp\left(-\frac{\beta M c_\alpha^{-1}}{1+\gamma} \| w - w^* \|^{1+\gamma} \right) dw &= \int_{\| w \| \leq \beta^{-1}} \exp\left(-\frac{\beta M c_\alpha^{-1}}{1+\gamma} \| w \|^{1+\gamma} \right) dw \\
 &\quad + \int_{\| w \| \geq \beta^{-1}} \exp\left(-\frac{\beta M c_\alpha^{-1}}{1+\gamma} \| w \|^{1+\gamma} \right) dw \\
 &\geq \int_{\| w \| \leq \beta^{-1}} \exp\left(-\frac{\beta M c_\alpha^{-1}}{1+\gamma} \beta^{-1-\gamma} \right) dw + 0 \\
 &= \exp\left(-\frac{\beta^{-\gamma} M c_\alpha^{-1}}{1+\gamma} \right) \int_{\| w \| \leq \beta^{-1}} 1 dw \\
 &= \exp\left(-\frac{\beta^{-\gamma} M c_\alpha^{-1}}{1+\gamma} \right) \frac{\pi^{d/2}\beta^{-d}}{\Gamma(d/2+1)}.
\end{align*}
\]

where, \(\Gamma \) denotes the Gamma function and \(\pi \) denotes Archimedes’ constant (here, it is not the invariant distribution). Hence,
\[
\log \int_{\mathbb{R}} \exp\left(-\frac{\beta M c_\alpha^{-1}}{1+\gamma} \| w - w^* \|^{1+\gamma} \right) dw \geq -\frac{\beta^{-\gamma} M c_\alpha^{-1}}{1+\gamma} + \log \left(\frac{\pi^{d/2}\beta^{-d}}{\Gamma(d/2+1)} \right).
\]

By combining the above inequalities, we have the desired result. \(\square \)

Lemma S9. For \(\lambda \in (0,1) \), there exists a constant \(c \) depending on \(m, b, \alpha \), such that
\[
E \left(\| X_1(t) \|^\lambda \right)^{\frac{1}{\lambda}} \leq c \left(t(d\beta^{-1/\alpha} + 1)^{1+1} \right), \quad \forall t > 0, \beta \geq 1, 1 < \alpha < 2.
\]
Proof. We follow exactly the same proof as Lemma 7.1 in [29], with some modifications. Let $h(x) \equiv (1 + \|x\|^2)^{1/2}$. By Itô’s formula, we have $dh(X_1(t)) = \left((b_1(X_1(t)), \nabla h(X_1(t)))
ight) + \int_{\mathbb{R}^d} \left(h(X_1(t) + \beta^{-1/\alpha}x) - h(X_1(t)) - I_{\|x\|<1} \langle \beta^{-1/\alpha}x, \nabla h(X_1(t)) \rangle \nu(dx) \right) dt + dM(t), \tag{S13}$ where $M(t)$ is a local martingale. Noticing that $\partial_t h(x) = x_i(1 + \|x\|^2)^{-1/2}/2$ and using Assumption H_3 we have

$$\langle b_1(x), \nabla h(x) \rangle = \langle b_1(x), x \rangle (1 + \|x\|^2)^{-1/2}/2$$

$$\leq (-m\|x\|^{1+\gamma} + b)(1 + \|x\|^2)^{-1/2}/2$$

$$= (-m(\|x\|^{1+\gamma} + 1) + m + b)(1 + \|x\|^2)^{-1/2}/2.$$

Since $(\|x\|^2 + 1)^{(1+\gamma)/2} \leq (\|x\|^{1+\gamma} + 1)$ by Lemma S16 it follows that

$$\langle b_1(x), \nabla h(x) \rangle \leq (-m(\|x\|^2 + 1)^{(1+\gamma)/2} + m + b)(1 + \|x\|^2)^{-1/2}/2$$

$$= (-m(\|x\|^2 + 1)^{\gamma/2} + m + b)(1 + \|x\|^2)^{-1/2}/2$$

$$\leq (-m(\|x\|^2 + 1)^{\gamma/2} + m + b)/2$$

$$= (-mh(x)^{\gamma} + m + b)/2.$$

On the other hand, observing that

$$|h(x + y) - h(x)| \leq \|y\| \int_0^1 \|\nabla h(x + sy)\| ds \leq \|y\|/2,$$

and

$$h(x + y) - h(x) - \langle y, \nabla h(x) \rangle \leq \|y\|^2/2,$$

we have

$$\int_{\mathbb{R}^d} \left(h(X_1(t) + x) - h(X_1(t)) - I_{\|x\|<1} \langle x, \nabla h(X_1(t)) \rangle \right) \nu(dx)$$

$$\leq \frac{1}{2\beta^{2/\alpha}} \int_{\|x\|<1} \|x\|^2 \nu(dx) + \frac{1}{2\beta^{1/\alpha}} \int_{\|x\|\geq 1} \|x\| \nu(dx)$$

$$\leq C \frac{d}{\beta^{1/\alpha}},$$

where the last inequality is due to Lemma S15. By integrating (S13) and combining the above inequalities, we have

$$h(X_1(t)) - h(X_1(0)) \leq \int_0^t \left((-mh(X_1(s))^{\gamma} + m + b)/2 + C \frac{d}{\beta^{1/\alpha}} \right) ds + M(t)$$

$$\leq \int_0^t \left((m + b)/2 + C \frac{d}{\beta^{1/\alpha}} \right) ds + M(t).$$
By Lemma 3.8 in [29], for \(\lambda \in (0, 1) \),
\[
E \left(\sup_{s \in [0,t]} h(X_1(s))^\lambda \right) \leq c_\lambda \left(Eh(X_1(0)) + \frac{(m + b)\beta}{2} + C \frac{d(\beta^{1/\alpha})}{\beta^{1/\alpha}} \right)^\lambda.
\]
This leads to the conclusion since \(h(x) \geq \|x\| \).

Lemma S10. For \(\lambda \in (0, 1) \), there exists a constant \(c_b \) depending on \(L, m, b, \alpha \), such that
\[
E \left(\|X(t)\|^\lambda \right) \leq c_b \left(t(d\beta^{-1/\alpha} + 1) \right),
\]
\(\forall t > 0, \beta \geq 1, 1 < \alpha < 2 \).

Proof. The proof is similar to the proof of Lemma S9.

Lemma S11. Let \(X \) be a scalar symmetric \(\alpha \)-stable distribution with \(\alpha < 2 \), i.e. \(X \sim S_\alpha S(1) \) (see Definition 3), then, for \(-1 < \lambda < \alpha \),
\[
E(|X|^{\lambda}) = \frac{2^\lambda \Gamma((1 + \lambda)/2)\Gamma(1 - \lambda/\alpha)}{\Gamma(1/2)\Gamma(1 - \lambda/2)}.
\]

Proof. The proof follows from Theorem 3 in [38] (see also equation (13) in [39]).

Corollary S8. The quantity \(l_{\alpha, \lambda, d} \triangleq E\|L^\alpha(1)\|^\lambda \) is finite for \(0 \leq \lambda < \alpha \). For details, we have

(a) If \(1 < \lambda < \alpha \), then
\[
E\|L^\alpha(1)\|^\lambda \leq \lambda \left(\frac{2^\lambda \Gamma((1 + \lambda)/2)\Gamma(1 - \lambda/\alpha)}{\Gamma(1/2)\Gamma(1 - \lambda/2)} \right).
\]

(b) If \(0 \leq \lambda \leq 1 \), then
\[
E\|L^\alpha(1)\|^\lambda \leq \lambda \left(\frac{2^\lambda \Gamma((1 + \lambda)/2)\Gamma(1 - \lambda/\alpha)}{\Gamma(1/2)\Gamma(1 - \lambda/2)} \right).
\]

Proof. Since \(L^\alpha(1) \), by definition, is a \(d \)-dimensional vector whose components are i.i.d symmetric \(\alpha \)-stable distributions \(L_i^\alpha(1) \) for \(i \in \{1, \ldots, d\} \), we have
\[
\|L^\alpha(1)\| \leq \sum_{i=1}^{d} |L_i^\alpha(1)|
\]

(a) \(1 < \lambda < \alpha \). By using Minkowski’s inequality and Lemma S11
\[
(\sum_{i=1}^{d} |L_i^\alpha(1)|)^{\lambda/\gamma} \leq \left(\sum_{i=1}^{d} |L_i^\alpha(1)| \right)^{\lambda/\gamma} \leq \sum_{i=1}^{d} \left(E\|L_i^\alpha(1)\|^\lambda \right)^{\lambda/\gamma} = d \left(\frac{2^\lambda \Gamma((1 + \lambda)/2)\Gamma(1 - \lambda/\alpha)}{\Gamma(1/2)\Gamma(1 - \lambda/2)} \right)^{\lambda/\gamma}.
\]
Thus, we have
\[E \| L^\alpha(1) \|^\lambda \leq d^\lambda \left(\frac{2^\lambda \Gamma((1 + \lambda)/2) \Gamma(1 - \lambda/\alpha)}{\Gamma(1/2) \Gamma(1 - \lambda/2)} \right). \]

(b) \(0 \leq \lambda \leq 1\). By using Lemma S16 and Lemma S11,
\[E \| L^\alpha(1) \|^\lambda \leq \mathbb{E} \left[\left(\sum_{i=1}^{d} |L_i^\alpha(1)| \right)^\lambda \right] \]
\[\leq \sum_{i=1}^{d} E|L_i^\alpha(1)|^\lambda \]
\[= d \left(\frac{2^\lambda \Gamma((1 + \lambda)/2) \Gamma(1 - \lambda/\alpha)}{\Gamma(1/2) \Gamma(1 - \lambda/2)} \right). \]

\[\square \]

Lemma S12. Let us denote the value \(E \| L^\alpha(1) \|^\lambda \) by \(l_{\alpha,\lambda,d} < \infty \). For \(0 < \eta \leq \frac{m}{M^2} \) and \(s \in [j\eta, (j+1)\eta)\), we have the following estimates:

(a) If \(1 < \lambda < \alpha \) and \(1 < \gamma \lambda < \alpha\) then
\[E \| X_2(j\eta) \|^{\lambda} \leq B_{j,\lambda} = \left(\left(E \| X_2(0) \|^\lambda \right)^{\frac{1}{\lambda}} + j \left((2\eta(b + m))^{\frac{1}{2}} + 2^{\frac{1}{2}} \eta B + \left(\frac{\eta}{\beta} \right)^{\frac{1}{\lambda}} l_{\alpha,\lambda,d}^{\frac{1}{\lambda}} \right)^{\lambda} \right), \]
\[E \| X_2(s) \|^{\lambda} \leq \left(B_{j,\lambda}^{\frac{1}{\lambda}} + (s - j\eta) \left(MB_{j,\gamma \lambda}^{\frac{1}{\lambda}} + B^{\lambda} \right) + \left(\frac{s - j\eta}{\beta} \right)^{\frac{1}{\lambda}} l_{\alpha,\lambda,d}^{\frac{1}{\lambda}} \right)^{\lambda}. \]

(b) If \(0 \leq \lambda \leq 1\) then
\[E \| X_2(j\eta) \|^{\lambda} \leq \bar{B}_{j,\lambda} = \mathbb{E} \| X_2(0) \|^\lambda + j \left((2\eta(b + m))^{\frac{1}{2}} + 2^{\frac{1}{2}} \eta B^{\lambda} + \left(\frac{\eta}{\beta} \right)^{\frac{1}{\lambda}} l_{\alpha,\lambda,d}^{\frac{1}{\lambda}} \right), \]
\[E \| X_2(s) \|^{\lambda} \leq \bar{B}_{j,\lambda} + (s - j\eta) \left(MB_{j,\gamma \lambda}^{\frac{1}{\lambda}} + B^{\lambda} \right) + \left(\frac{s - j\eta}{\beta} \right)^{\frac{1}{\lambda}} l_{\alpha,\lambda,d}^{\frac{1}{\lambda}}. \]

(c) If \(1 < \lambda < \alpha \) and \(0 \leq \gamma \lambda \leq 1\) then
\[E \| X_2(j\eta) \|^{\lambda} \leq B_{j,\lambda}, \]
\[E \| X_2(s) \|^{\lambda} \leq \left(B_{j,\lambda}^{\frac{1}{\lambda}} + (s - j\eta) \left(MB_{j,\gamma \lambda}^{\frac{1}{\lambda}} + B^{\lambda} \right) + \left(\frac{s - j\eta}{\beta} \right)^{\frac{1}{\lambda}} l_{\alpha,\lambda,d}^{\frac{1}{\lambda}} \right)^{\lambda}. \]

Proof. Starting from
\[X_2((j + 1)\eta) = X_2(j\eta) - \eta c_{\alpha} \nabla f(X_2(j\eta)) + \left(\frac{\eta}{\beta} \right)^{\frac{1}{\alpha}} L^\alpha(1), \]
we have either (by Minkowski, if \(\lambda > 1 \))
\[\left(\mathbb{E} \| X_2((j + 1)\eta) \|^\lambda \right)^{\frac{1}{\lambda}} \leq \left(\mathbb{E} \| X_2(j\eta) - \eta c_{\alpha} \nabla f(X_2(j\eta)) \|^\lambda \right)^{\frac{1}{\lambda}} + \left(\frac{\eta}{\beta} \right)^{\frac{1}{\alpha}} \left(\mathbb{E} \| L^\alpha(1) \|^\lambda \right)^{\frac{1}{\lambda}}, \]
(S14)
or (by Lemma \textit{S16} if $0 \leq \lambda \leq 1$)
\[
\mathbb{E}\|X_2((j + 1)\eta)\|^\lambda \leq \mathbb{E}\|X_2(j\eta)\| - \eta c_\alpha \nabla f(X_2(j\eta))\|^\lambda + \left(\frac{\eta}{\beta} \right)^\frac{\lambda}{\beta} \mathbb{E}\|L^\alpha(1)\|^\lambda. \quad (\text{S15})
\]

We have
\[
\|X_2(j\eta) - \eta c_\alpha \nabla f(X_2(j\eta))\|^\lambda \leq \|X_2(j\eta) - \eta c_\alpha \nabla f(X_2(j\eta))\|^\frac{2\lambda}{2}
= \left(\|X_2(j\eta)\|^2 - 2\eta c_\alpha (X_2(j\eta), \nabla f(X_2(j\eta))) + \eta^2 \|c_\alpha \nabla f(X_2(j\eta))\|^2 \right)^\frac{\lambda}{\beta}
\leq \left(\|X_2(j\eta)\|^2 - 2\eta (m\|X_2(j\eta)\|^{1+\gamma} - b) + \eta^2 (2M^2\|X_2(j\eta)\|^{2\gamma} + 2B^2) \right)^\frac{\lambda}{\beta},
\]
(S16)

where we have used assumption \textbf{H3} and Lemma \textit{S13}. For $0 < \eta \leq \frac{m}{M^2}$,
\[
2\eta m(\|X_2(j\eta)\|^{1+\gamma} + 1) \geq 2\eta^2 M^2\|X_2(j\eta)\|^{2\gamma}. \quad \text{(since } 1 + \gamma > 2\gamma \text{ and } \eta m > \eta^2 M^2)\]

Using this inequality we have
\[
\|X_2(j\eta) - \eta c_\alpha \nabla f(X_2(j\eta))\|^\lambda \leq \left(\|X_2(j\eta)\|^2 + 2\eta (b + m) + 2\eta^2 B^2 \right)^\frac{\lambda}{\beta}
\leq \|X_2(j\eta)\|^\lambda + (2\eta (b + m))^\frac{\lambda}{\beta} + 2 \left(\frac{b^2}{\eta} \right)^\frac{\lambda}{2} \lambda B. \quad \text{(by Lemma } \textit{S16}) \quad (\text{S17})
\]

Consider the case where $\lambda > 1$. By (\textit{S14}) and (\textit{S17}),
\[
\left(\mathbb{E}\|X_2((j + 1)\eta)\|^\lambda \right)^\frac{1}{\lambda} \leq \left(\mathbb{E}\|X_2(j\eta)\|^\lambda + (2\eta (b + m))^\frac{\lambda}{2} + 2 \left(\frac{b^2}{\eta} \right)^\frac{\lambda}{2} \lambda B \right)^\frac{1}{\lambda} + \left(\frac{\eta}{\beta} \right)^\frac{1}{\lambda} \left(\mathbb{E}\|L^\alpha(1)\|^\lambda \right)^\frac{1}{\lambda}
\leq \left(\mathbb{E}\|X_2(0)\|^\lambda \right)^\frac{1}{\lambda} + (j + 1) \left((2\eta (b + m))^\frac{\lambda}{2} + 2 \left(\frac{b^2}{\eta} \right)^\frac{\lambda}{2} \lambda B \right) + \left(\frac{\eta}{\beta} \right)^\frac{1}{\lambda} \lambda l_{\alpha,\lambda,d} \quad \text{(by Lemma } \textit{S16})
\]

For the case where $0 \leq \lambda \leq 1$, by (\textit{S15}) and (\textit{S17}),
\[
\mathbb{E}\|X_2((j + 1)\eta)\|^\lambda \leq \mathbb{E}\|X_2(j\eta)\|^\lambda + (2\eta (b + m))^\frac{\lambda}{2} + 2 \left(\frac{b^2}{\eta} \right)^\frac{\lambda}{2} \lambda B \left(\frac{\eta}{\beta} \right)^\frac{1}{\lambda} \lambda l_{\alpha,\lambda,d}
\leq \mathbb{E}\|X_2(0)\|^\lambda + (j + 1) \left((2\eta (b + m))^\frac{\lambda}{2} + 2 \left(\frac{b^2}{\eta} \right)^\frac{\lambda}{2} \lambda B \right) + \left(\frac{\eta}{\beta} \right)^\frac{1}{\lambda} \lambda l_{\alpha,\lambda,d} \quad \text{(by Lemma } \textit{S16})
\]

Now, from the identification, for $s \in [j\eta, (j + 1)\eta)$,
\[
X_2(s) = X_2(j\eta) + (s - j\eta) c_\alpha \nabla f(X_2(j\eta)) + \left(\frac{s - j\eta}{\beta} \right)^\frac{1}{\alpha} L^\alpha(1),
\]

37
we have
\[\|X_2(s)\| \leq \|X_2(j\eta)\| + (s - j\eta)c_\alpha\|\nabla f(X_2(j\eta))\| + \left(\frac{s - j\eta}{\beta}\right)^{\frac{1}{\alpha}}\|L^\alpha(1)\| \]
\[\leq \|X_2(j\eta)\| + (s - j\eta)(M\|X_2(j\eta)\|^{\gamma} + B) + \left(\frac{s - j\eta}{\beta}\right)^{\frac{1}{\alpha}}\|L^\alpha(1)\|. \]

For \(\lambda > 1, \)
\[\left(\mathbb{E}\|X_2(s)\|^\lambda\right)^{\frac{1}{\lambda}} \leq \left(\mathbb{E}\|X_2(j\eta)\|^\lambda\right)^{\frac{1}{\lambda}} + (s - j\eta)\left(M\mathbb{E}\|X_2(j\eta)\|^{\gamma\lambda} + B^\lambda\right) + \left(\frac{s - j\eta}{\beta}\right)^{\frac{1}{\alpha}}l_{\alpha,\lambda,d}. \]

For \(\lambda \leq 1, \)
\[\mathbb{E}\|X_2(s)\|^\lambda \leq \mathbb{E}\|X_2(j\eta)\|^\lambda + (s - j\eta)^\lambda\left(M^\lambda\mathbb{E}\|X_2(j\eta)\|^{\gamma\lambda} + B^\lambda\right) + \left(\frac{s - j\eta}{\beta}\right)^{\frac{1}{\alpha}}l_{\alpha,\lambda,d}. \]

By replacing the estimate of \(\mathbb{E}\|X_2(j\eta)\|^\lambda, \) we obtain the desired result.

Lemma S13. Under assumptions \(H_1^2 \) and \(H_2^2 \) we have
\[c_\alpha\|\nabla f(w)\| \leq M\|w\|^\gamma + B, \quad \forall w \in \mathbb{R}^d. \]

Proof. By assumption \(H_2^2 \) we have
\[c_\alpha\|\nabla f(w) - \nabla f(0)\| \leq M\|w - 0\|^\gamma. \]
Since \(c_\alpha\|\nabla f(0)\| \leq B \) by assumption \(H_1^1 \), the conclusion follows. \(\square \)

Lemma S14. For the function \(b \) defined in Lemma \(7 \) we have, for \(w \in \mathbb{R}^d, \)
\[\|b(w)\| \leq M\|w\|^\gamma + (B + L), \]
\[\langle w, b(w) \rangle \leq (L - m)\|w\|^{1+\gamma} + (b + L). \]

Proof. From assumption \(H_6 \) it implies that
\[\|b(w)\| \leq c_\alpha\|\nabla f(w)\| + L. \]
Then, by Lemma \(S13 \)
\[\|b(w)\| \leq M\|w\|^\gamma + (B + L). \]
Next, by Cauchy-Schwarz inequality and assumption \(H_6 \) we have
\[\langle w, b(w) + c_\alpha\nabla f(w) \rangle \leq \|w\|L. \]
Then, by assumption \(H_3 \)
\[\langle w, b(w) \rangle \leq -c_\alpha\langle w, \nabla f(w) \rangle + \|w\|L \]
\[\leq -m\|w\|^{1+\gamma} + b + \|w\|L \]
\[\leq -m\|w\|^{1+\gamma} + b + (\|w\|^{1+\gamma} + 1)L \]
\[= (L - m)\|w\|^{1+\gamma} + (b + L). \]
Here, we have used the inequality \(\|w\| \leq \|w\|^{1+\gamma} + 1. \) \(\square \)
Lemma S15. Let \(\nu \) be the Lévy measure of a \(d \)-dimensional Lévy process \(L^\alpha \) whose components are independent scalar symmetric \(\alpha \)-stable Lévy processes \(L^\alpha_1, \ldots, L^\alpha_d \). Then there exists a constant \(C > 0 \) such that the following inequality holds with \(\beta \geq 1 \) and \(2 > \alpha > 1 \):

\[
\frac{1}{\beta^{2/\alpha}} \int_{\|x\|<1} \|x\|^{2} \nu(dx) + \frac{1}{\beta^{1/\alpha}} \int_{\|x\|\geq1} \|x\| \nu(dx) \leq C \frac{d}{\beta^{1/\alpha}}.
\]

Proof. Using Lemma 4.1 in [40], we have

\[
\int_{\|x\|<1} \|x\|^{2} \nu(dx) = \sum_{i=1}^{d} \int_{|x_i|<1} |x_i|^2 \frac{1}{|x_i|^{1+\alpha}} dx_i = \frac{2}{2 - \alpha}.
\]

Similarly, we have

\[
\int_{\|x\|\geq1} \|x\| \nu(dx) = \sum_{i=1}^{d} \int_{|x_i|\geq1} \frac{1}{|x_i|^{1+\alpha}} dx_i = \frac{2d}{\alpha - 1}.
\]

Combining these two equalities, we have the desired conclusion.

Lemma S16. For \(a, b \geq 0 \) and \(0 \leq \gamma \leq 1 \), we have the following inequality:

\[
(a + b)^\gamma \leq a^\gamma + b^\gamma.
\]

Proof. If \(a = b = 0 \), the inequality is trivial. Hence, let us assume that \(a > b \geq 0 \). We have

\[
\left(1 + \frac{b}{a}\right)^\gamma \leq 1 + \frac{b}{a} \quad \text{(by Bernoulli’s inequality)}
\]

\[
\leq 1 + \frac{b}{a} \quad \text{(since } 0 \leq \gamma \leq 1 \text{ and } \frac{b}{a} \geq 0)\]

\[
\leq 1 + \left(\frac{b}{a}\right)^\gamma. \quad \text{(since } 0 \leq \gamma \leq 1 \text{ and } 0 \leq \frac{b}{a} \leq 1)
\]

By multiplying both sides by \(a^\gamma > 0 \), we have the conclusion.