A SIMPLE PROOF OF THE TREE-WIDTH DUALITY THEOREM

FRÉDÉRIC MAZOIT

Abstract. We give a simple proof of the “tree-width duality theorem” of Seymour and Thomas that the tree-width of a finite graph is exactly one less than the largest order of its brambles.

1. Introduction

A tree-decomposition $\mathcal{T} = (T, l)$ of a graph $G = (V, E)$ is tree whose nodes are labelled in such a way that
i. $V = \bigcup_{t \in V(T)} l(t)$;
ii. every $e \in E$ is contained in at least one $l(t)$;
iii. for every vertex $v \in V$, the nodes of T whose bags contain v induce a connected subtree of T.

The label of a node is its bag. The width of \mathcal{T} is $\max\{|l(t)| ; t \in V(T)\} - 1$, and the tree-width $\text{tw}(G)$ of G is the least width of any of its tree-decomposition.

Two subsets X and Y of V touch if they meet or if there exists an edge linking them. A set B of mutually touching connected vertex sets in G is a bramble. A cover of B is a set of vertices which meets all its elements, and the order of B is the least size of one of its covers.

In this note, we give a new proof of the following theorem of Seymour and Thomas which Reed [Ree97] calls the “tree-width duality theorem”.

Theorem 1 ([ST93]). Let $k \geq 0$ be an integer. A graph has tree-width $\geq k$ if and only if it contains a bramble of order $> k$.

Although our proof is quite short, our goal is not to give a shorter proof. The proof in [Die05] is already short enough. Instead, we claim that our proof is much simpler than previous ones. Indeed, the proofs in [ST93, Die05] rely on a reverse induction on the size of a bramble which is not very enlightening. A new conceptually much simpler proof appeared in [LMT10] but this proof is a much more general result on sets of partitions which through a translation process unifies all known duality theorem of this kind such as the branch-width/tangle or the path-width blockade Theorems. We turn this more general proof back into a specific proof for tree-width which we believe is interesting both as an introduction to the framework of [AMNT09, LMT10], and to a reader which does not want to dwell into this framework but still want to have a better understanding of the tree-width duality Theorem.

This research was supported by the french ANR project DORSO.
2. The proof

So let $G = (V, E)$ be a graph and let k be a fixed integer. A bag of a tree-decomposition of G is small if it has size $\leq k$ and is big otherwise. A partial ($< k$)-decomposition is a tree-decomposition T with no big internal bag and with at least one small bag. Obviously, if all its bags are small, then T is a tree-decomposition of width $< k$. If not, it contains a big leaf bag and the neighbouring bag $l(u)$ of any such big leaf bag $l(t)$ is small. The nonempty set $l(t) - l(u)$ is a k-flap of T.

Now suppose that X and Y are respectively k-flaps of some partial ($< k$)-decompositions (T_X, l_X) and (T_Y, l_Y), and that $S = N(X) \subseteq N(Y)$. Then by identifying the leaves of the two decompositions which respectively contains X and Y and relabelling this node S, then we obtain a new “better” partial ($< k$)-decomposition.

This gluing process is quite powerful. Indeed let $S \subseteq V$ have size $\leq k$ and let C_1, \ldots, C_p be the components of $G - S$. The star whose centre u is labelled $l(u) = S$ and whose p leaves v_1, \ldots, v_p are labelled by $l(v_i) = C_i \cup N(C_i)$ is a partial ($< k$)-decomposition which we call the star decomposition from S. It can be shown that if $\text{tw}(G) < k$, then an optimal tree-decomposition can always be obtained by repeatedly applying this gluing process from star decompositions from sets of size $\leq k$. But this process is not powerful enough for our purpose. We need the following lemma.

Lemma 1. Let X and Y be respectively k-flaps of some partial ($< k$)-decompositions (T_X, l_X) and (T_Y, l_Y) of some graph $G = (V, E)$. If X and Y do not touch, then there exists a partial ($< k$)-decomposition (T, l) whose k-flaps are subsets of k-flaps of (T_X, l_X) and (T_Y, l_Y) other than X and Y.

Proof. Since, X and Y no not touch, there exists $S \subseteq V$ such that no component of $G - S$ meet both X and Y (for example $N(X)$). Choose such an S with $|S|$ minimal. Note that $|S| \leq |N(X)| \leq k$. Let A contain S and all the components of $G - S$ which meet X, and let $B = (V - A) \cup S$.

Claim 1. There exists a partial ($< k$)-decomposition of $G[B]$ with S as a leaf and whose k-flaps are subsets of the k-flaps of (T_X, l_X) other than X.

Let x be the leaf of T_X whose bag contains X. Since $|S|$ is minimum, there exists $|S|$ vertex disjoint paths P_s from X to S ($s \in S$). Note that P_s only meets B in s. For each $s \in S$, pick a node t_s in T_X with $s \in l_X(t_s)$, and let $l'_X(t) = (l_X(t) \cap B) \cup \{s \mid t \in \text{path from } x \text{ to } t_s\}$ for all $t \in T$. Then (T_X, l'_X) is the tree-decomposition of $G[B]$. Indeed, since we removed only vertices not in B, every vertex and every edge of $G[B]$ is contained in some bag $l'_X(t)$. Moreover, for any $v \notin S$, $l'_X(t)$ contains v if and only if $l_X(t)$ does. And $l'_X(t)$ contains $s \in S$ if $l_X(t)$ does or if t is on the path from x to t_s. In other cases, the vertices $t \in V(T_X)$ whose bag $l'_X(t)$ contain a given vertex induce a subtree of T_X.

Now the size of a bag $l'_X(t)$ is at most $|l_X(t)|$. Indeed, since P_s is a connected subgraph of G, it induces a connected subtree of T_X, and this subtree contains the path from x to t_s. So for every vertex $s \in l'_X(t) \setminus l_X(t)$, there exists at least one other vertex of P_s which as been removed. The decomposition (T_X, l'_X) is thus indeed a partial ($< k$)-decomposition of $G[B]$. It remains to prove that the k-flaps of (T_X, l'_X) are contained in the k-flaps of (T_X, l_X) other than X. But by construction, the only leaf whose bag received new vertices is x and $l'_X(x) = S$ which is small. This finishes the proof of the claim.
Let \((T_Y,l'_Y)\) be obtained in the same way for \(G[A]\). By identifying the leaves \(x\) and \(y\) of \(T_X\) and \(T_Y\), we obtain a partial \((< k)\)-decomposition which satisfies the conditions of the lemma. \(\Box\)

We are now ready to prove the tree-width duality Theorem.

Proof. For the backward implication, let \(\mathcal{B}\) be a bramble of order \(> k\) in a graph \(G\). We show that every tree-decomposition \((T,l)\) of \(G\) has a part that covers \(\mathcal{B}\), and thus \(T\) has width \(\geq k\).

We start by orienting the edges \(t_1t_2\) of \(T\). Let \(T_i\) be the component of \(T \setminus t_1t_2\) which contains \(t_i\) and let \(V_i = \cup_{t \in V(T_i)} l(t)\). If \(X := l(t_1) \cap l(t_2)\) covers \(\mathcal{B}\), we are done. If not, then because they are connected, each \(B \in \mathcal{B}\) disjoint from \(X\) in \(G\) contained is some \(B \subseteq V_i\). This \(i\) is the same for all such \(B\), because they touch. We now orient the edge \(t_1t_2\) towards \(t_i\). If every edge of \(T\) is oriented in this way and \(t\) is the last vertex of a maximal directed path in \(T\), then \(l(t)\) covers \(\mathcal{B}\).

To prove the forward direction, we now assume that \(G\) has tree-width \(\geq k\), then any partial \((< k)\)-decomposition contains a \(k\)-flap. There thus exists a set \(\mathcal{B}\) of \(k\)-flaps such that

(i) \(\mathcal{B}\) contains a flap of every partial \((< k)\)-decomposition;
(ii) \(\mathcal{B}\) is upward closed, that is if \(C \in \mathcal{B}\) and \(D \supseteq C\) is a \(k\)-flap, then \(D \in \mathcal{B}\).

So far, the set of all \(k\)-flaps satisfies (i) and (ii).

(iii) Subject to (i) and (ii), \(\mathcal{B}\) is inclusion-wise minimal.

The set \(\mathcal{B}\) may not be a bramble because it may contain non-connected elements but we claim that the set \(\mathcal{B}'\) which contains the connected elements of \(\mathcal{B}\) is a bramble of order \(\geq k\). Obviously, its elements are connected. To see that its order is \(> k\), let \(S \subseteq V\) have size \(\leq k\). Then \(\mathcal{B}'\) contains a \(k\)-flap of the star-decomposition from \(S\), and \(S\) is thus not a covering of \(\mathcal{B}'\).

We now prove that the elements of \(\mathcal{B}\) pairwise touch, which finishes the proof that \(\mathcal{B}'\) is a bramble. Suppose not, then let \(X\) and \(Y\) \(\in \mathcal{B}\) witness this. Obviously, no subsets of \(X\) and \(Y\) can touch so let us suppose that they are inclusion-wise minimal in \(\mathcal{B}\). The set \(X\) being minimal, \(\mathcal{B} \setminus \{X\}\) is still upward closed and is a strict subset of \(\mathcal{B}\). There thus exists at least one partial \((< k)\)-decomposition \((T_X,l_X)\) whose only flap in \(\mathcal{B}\) is \(X\). Likewise, let \((T_Y,l_Y)\) have only \(Y\) as a flap in \(\mathcal{B}\). Let \((T,l)\) be the partial \((< k)\)-decomposition satisfying the conditions of Lemma[H] Since \(\mathcal{B}\) is upward closed and contains no \(k\)-flap of \((T_X,l_X)\) and \((T_Y,l_Y)\) other than \(X\) and \(Y\), it contains no \(k\)-flap of \((T,l)\), a contradiction. \(\Box\)

References

[AMNT09] Omid Amini, Frédéric Mazoit, Nicolas Nisse, and Stéphan Thomassé. Sumodular partition functions. *Discrete Mathematics*, 309(20):6000–6008, 2009.

[Die05] Reinhard Diestel. *Graph theory*, volume 173. Springer-Verlag, 3rd edition, 2005.

[LMT10] Laurent Lyaudet, Frédéric Mazoit, and Stéphan Thomassé. Partitions versus sets : a case of duality. *European journal of Combinatorics*, 31(3):681–687, 2010.

[Ree97] Bruce A. Reed. Tree width and tangles: A new connectivity measure and some applications. *Surveys in Combinatorics*, 241:87–162, 1997.

[ST93] Paul D. Seymour and Robin Thomas. Graph Searching and a Min-Max Theorem for Tree-Width. *Journal of Combinatorial Theory Series B*, 58(1):22–33, 1993.

E-mail address: Frederic.Mazoit@labri.fr

LABRI, UNIVERSITÉ DE BORDEAUX, 351 COURS DE LA LIBRAISON, F-33405 TALENCE CEDEX, FRANCE.