Ion acoustic mode in permeating plasmas

J. Vranjes and S. Poedts
Center for Plasma Astrophysics,
and Leuven Mathematical Modeling and Computational Science Research Centre (LMCC),
Celestijnenlaan 200B, 3001 Leuven, Belgium.
E-mail: jvranjes@yahoo.com; Stefaan.Poedts@wis.kuleuven.be

Abstract. In the presence of an electron drift relative to ions, the ion acoustic wave is subject to the kinetic instability which takes place if the directed electron speed exceeds the ion acoustic speed. The instability threshold is very different in the case of one quasi-neutral electron-ion plasma propagating through another quasi-neutral (target) plasma. The threshold velocity of the propagating plasma may be well below the ion acoustic speed of the static plasma.

1. Introduction
An electron drift (current) relative to static ions can make the ion acoustic wave growing due to the kinetic instability which takes place if the directed electron speed exceeds the ion acoustic speed. The growth rate of the instability is given by

$$\omega_i = \left(\frac{\pi}{8}\right)^{1/2} k c_s \left[\left(\frac{m_e}{m_i}\right)^{1/2} \left(\frac{v_{e0}}{c_s} - 1\right) - \tau^{3/2} \exp\left(-\frac{\tau}{2}\right)\right].$$

(1)

Here, $c_s = (\kappa T_e/m_i)^{1/2}$ is the ion sound speed, and $\tau = T_e/T_i$. The necessary condition $v_{e0} > c_s[1 + (m_i/m_e)^{1/2}\tau^{3/2}\exp(-\tau/2)]$ may imply a rather high electron current magnitude. The instability described by (1) is a purely kinetic, collision-less, electron inertia effect. Its two-fluid counterpart [1, 2], however, is a strictly electron-collision effect.

However, a much lower instability threshold may be obtained in the case of two interpenetrating (permeating) plasmas. This is then a current-less instability, where now the Doppler shift of ions appears to play the main role. Such permeating plasmas can be created in lab conditions, while in space this happens to be a rather frequent situation, for example in the case of colliding astrophysical clouds, in the propagation of plasmas originating from the explosions of novae and supernovae and moving through the surrounding plasmas, and also in the case of solar and stellar winds. In the case of the solar wind, one electron-ion quasi-neutral component is generated mainly in the polar regions (fast wind), while the other electron-ion quasi-neutral component (slow wind) originates from lower latitudes, yet at large distances from the origin there may be overlapping between the two. A most obvious example of such permeating plasmas is seen also in the solar atmosphere where plasma streams from lower layers are seen continuously propagating along magnetic field structures towards and through the solar corona. In all of these examples we have one fast flowing plasma whose parameters we shall denote by the subscript f, and one slow moving (target) plasma with the parameters denoted by the subscript s. In fact, the target plasma can be non-moving (or 'static', hence the same index
conditions b, wave v, where equation (4) describes the plasma (Langmuir) and the ion acoustic oscillations. Here, $1/\lambda_n$ where n is the other component $\vec{v}_{f0} = v_{f0}\hat{e}_z$ will be used to describe just the difference between the two.

2. Derivations and results

In the case of singly-charged ions, the quasi-neutrality conditions for the two plasmas in the equilibrium read:

$$n_{fi0} = n_{fe0} = n_{f0}, \quad n_{si0} = n_{se0} = n_{s0}.$$

(2)

In general $n_{s0} \neq n_{f0}$, and the same holds for the temperatures of the two separate quasi-neutral plasmas $T_{fe} \neq T_{se}, T_{fi} \neq T_{si}$. We use the plasma distribution function for the species j,

$$f_{j0} = \frac{n_{j0}}{(2\pi)^{3/2}v_{T_{j0}}^3} \exp\left\{ -\frac{1}{2}v^2_{Tj} \right\},$$

(3)

where $n_{j0} = \text{const}$, and $v^2_{Tj} = \kappa T_j/m_j$. From the linearized Boltzmann kinetic equation and for longitudinal electrostatic perturbations $\sim \exp(-i\omega + ikz)$, we obtain

$$f_{j1} = -\frac{i q_j}{m_j} \nabla_{\vec{v}} \frac{\partial f_{j0}}{\partial \vec{v}}.$$

Further, using the Ampère law $0 = \mu_0 \vec{j} + (1/c^2)\partial \vec{E}/\partial t$, and the expression for the macroscopic current $\vec{j} = \sum_j q_j \int \vec{v} f_{j0} d^3\vec{v}$, we arrive at

$$1 + \sum_j \frac{1}{k^2 \lambda_{dj}^2} \left[1 - Z(b_j) \right] = 0.$$

(4)

Here, $b_j = (\omega - kv_{j0})/(kv_{Tj}), \lambda_{dj} = v_{Tj}/\omega_{pj}, \omega_{pj}^2 = q_j^2 n_{j0}/(\varepsilon_0 m_j)$, and

$$Z(b_j) = \frac{b_j}{(2\pi)^{1/2}} \frac{1}{b_j - \zeta} \exp\left(-\frac{\zeta^2}{2} \right) d\zeta$$

is the plasma dispersion function, with the integration over the Landau contour c. The dispersion equation (4) describes the plasma (Langmuir) and the ion acoustic oscillations.

In the case $v_{sj0} = 0, v_{fj0} = v_{f0}$, expanding Eq. (4) in the ion acoustic frequency range on conditions

$$kv_{Tsi} \ll |\omega| \ll kv_{Tse}, \quad |\omega - kv_{f0}| \ll kv_{Tfe}, kv_{Tfi},$$

(5)

where $v^2_{Tsj} = \kappa T_{sj}/m_{j}, v^2_{Tjf} = \kappa T_{jf}/m_{j}$, we obtain the dispersion equation for the ion acoustic wave

$$\Delta(k, \omega) \equiv 1 + \frac{1}{k^2 \lambda^2_d} \left[\frac{\omega_{pse}^2}{\omega^2} - \frac{3k^2 v^2_{Tsi} \omega_{pse}^2}{\omega^4} \right] + i \left(\frac{\pi}{2} \right)^{1/2} \left[\frac{\omega_{pse}^2}{k^3 v^3_{Tse} c} + (\omega - kv_{f0}) \left(\frac{\omega_{pfe}^2}{k^3 v^3_{Tfe} c} + \frac{\omega_{pfi}^2}{k^3 v^3_{Tfi} b} \right) + \frac{\omega_{pse}^2}{k^3 v^3_{Tsi}} \exp \left(-\frac{\omega^2}{2k^2 v^2_{Tsi}} \right) \right] = 0.$$

(6)

Here, $1/\lambda^2_d = 1/\lambda^2_{dsi} + 1/\lambda^2_{dfc} + 1/\lambda^2_{dfi}$, and $\lambda_{dsi} = v_{Tse}/\omega_{pse}$ etc. In view of the conditions (5) the inertia of the ion acoustic (IA) mode is provided mainly by the ions of the static (target) plasma.
In standard electron-ion plasma with streaming electrons and for $T_i \ll T_e$ it yields

$$1 + \frac{1}{\lambda_{ei}^2 c^2} - \frac{\omega_{pe}^2}{\omega^2} + i(\pi/2)^{1/2} \left\{ \frac{\omega_{pe}^2 (\omega - kv_{ei})}{k^3 v_{Te}^3} + \frac{\omega_{psi}^2 \omega}{k^3 v_{Tsi}^3} \exp \left[-\omega^2/(2k^2 v_{Tsi}^2) \right] \right\} = 0. \quad (7)$$

From this one can further obtain the growth rate (1) and the frequency $\omega^2 \simeq k^2 c_s^2$.

The only terms in Eq. (6) that may produce a growing mode are those with the Doppler-shift, the two other terms in the imaginary part always give the Landau damping. The electron part in the Doppler-shifted term is usually negligible because $a/b = (T_{fi}/T_{fe})^{3/2}(m_e/m_i)^{1/2} \ll 1$.

Assuming also that

$$c/b(\omega - kv_{f0}) = |\omega/((\omega - kv_{f0})(n_s/n_{f0})(T_{fi}/T_{se})^{3/2}(m_e/m_i)^{1/2} \ll 1,$$

the dispersion equation becomes

$$1 + \frac{1}{\lambda_{ei}^2 c^2} - \frac{\omega_{psi}^2}{\omega^2} - \frac{3k^2 v_{Tsi}^2 \omega_{psi}}{\omega^4}
+i(\pi/2)^{1/2} \left\{ \frac{\omega_{psi}^2 (\omega - kv_{f0})}{k^3 v_{Tsi}^3} + \frac{\omega_{psi}^2 \omega}{k^3 v_{Tsi}^3} \exp \left[-\omega^2/(2k^2 v_{Tsi}^2) \right] \right\} = 0. \quad (8)$$

The frequency of the ion acoustic wave which follows from this is

$$\omega_i^2 = (k^2 \lambda_{ei}^2 \omega_{psi}^2/2)[1 + (1 + 12\lambda_{si}^2/\lambda_{ei}^2)^{1/2}]. \quad (9)$$

For an ordinary electron-ion plasma with s-species only, it takes the shape $\omega_i^2 = (kc_s^2/2)[1 + (1 + 12T_{si}/T_{se})^{1/2}].$

The growth rate from (8), $\omega_i \simeq -Im[k, \omega_i]/[\partial(Re\Delta)/\partial \omega]_{\omega=\omega_i}$, becomes

$$\omega_i = -\left(\frac{\pi}{8} \right)^{1/2} \frac{k^2 v_{Tsi}^2}{v_{Tfi}(1 + 6k^2 v_{Tsi}^2/\omega_i^2)} \left\{ \frac{\omega_i - kv_{f0} n_{f0}}{kv_{Tfi} n_s} + \frac{\omega_i}{kv_{Tsi} T_{fi} T_{si}} \exp \left[-\omega_i^2/(2k^2 v_{Tsi}^2) \right] \right\}. \quad (10)$$

In the limit $T_{fi} \gg T_{fi}, T_{se} \gg T_{si}$ and setting $\omega_i \simeq kc_{se}$, the growth rate becomes

$$\omega_i = \left(\frac{\pi}{8} \right)^{1/2} \frac{k c_{se}}{v_{Tfi} T_{fi}} \frac{T_{se}}{T_{si}} \left\{ \frac{v_{f0}}{c_{se}} - 1 \right\} \frac{n_{f0}}{n_s} \left[\frac{T_{fi}}{T_{si}} \right]^{3/2} \exp \left[-T_{se}/(2T_{si}) \right]. \quad (11)$$

From this the instability threshold is

$$v_{f0} > c_{se} \left[1 + \frac{n_{s0}}{n_{f0}} \left(\frac{T_{fi}}{T_{si}} \right) \frac{T_{se}}{2T_{si}}]^{3/2} \exp \left[-T_{se}/(2T_{si}) \right]. \quad (12)$$

Here, $c_{se}^2 = kT_{se}/m_i$. Equation (12) has a remarkable properties. It is seen that here the first temperature ratio contains only the two ion temperatures, and in addition the electron-ion mass ratio vanishes. In fact, the mass ratio can appear, yet in the present case it would contain the two ion masses (that are taken as equal). For the singly charged two ion species, instead of n_{s0}/n_{f0} in Eq. (12) we would have $(n_{s0}/n_{f0})(n_{f1}/n_{si})$. Consequently, in the present case the instability threshold may become considerably lower. This is particularly valid for a flowing plasma being accelerated into a less dense but hotter static target plasma. One example of that kind may be the plasma from the lower solar atmosphere propagating through hot upper layers (e.g., spicules, and flows along magnetic loops in general).
However, in the general case the threshold velocity v_{f0} for the currentless instability may in fact be below the sound velocity of the target plasma. As an example, the full Eq. (6) is solved numerically by taking the wavelength $\lambda = 0.3$ m, and $T_{se} = 10^9$ K, $T_{si} = 10^3$ K, $n_{f0} = 10^{17}$ m$^{-3}$, and n_{s0} is varied in the range shown in Fig. 1. The critical value of the flowing plasma velocity is shown for several values of the temperature of the flowing plasma. For the velocities above the given lines the IA mode becomes growing. For these parameters, in Eq. (9) the term $\lambda_d^2/\lambda_d^2 = 0.07$ and also $\lambda_d\omega_{psi} = 0.38c_{se}$. Therefore, contrary to Eq. (1) or (12), the instability threshold (c.f. Fig. 1) is in fact well below the IA speed of the static (target) plasma. For lower T_{fi} the instability threshold is reduced because of a lower Landau damping by the flowing ions.

The cases of dominant ion (or electron) terms discussed above are equivalent to studying also electron-ion plasmas containing an additional ion (or electron species) [3]-[5]. As special cases, these include also pair-ion [6]-[9], negative-ion [10], electron-positron-ion plasmas, and also dusty plasmas with opposite charges on grains [11]. Such plasmas have been extensively studied in the recent past. The general streaming kinetic instability presented above is directly applicable to all these plasmas as special cases.

Acknowledgments
The results presented here are obtained in the framework of the projects G.0304.07 (FWOVlaanderen), C 90347 (Prodex), GOA/2009-009 (K.U.Leuven). Financial support by the European Commission through the SOLAIRE Network (MTRN-CT-2006-035484) is gratefully acknowledged.

[1] Vranjes J, Tanaka M Y and Poedts S 2006 Phys. Plasmas 13 122103
[2] Vranjes J, Pandey B P and Poedts S 2007 Phys. Plasmas 14 032106
[3] Vu H X, Wallace J M and Bezzerides B 1996 Phys. Plasmas 1 3542
[4] Vranjes J, Petrovic D, Pandey B P and Poedts S 2008 Phys. Plasmas 15 072104
[5] Jones W D, Lee A, Gleman S M and Doucet H J 1975 Phys. Rev. Lett. 35 1349
[6] Oohara W and Hatakeyama R 2003 Phys. Rev. Lett. 91 205005
[7] Vranjes J and Poedts S 2005 Plasma Sources Sci. Technol. 14 485
[8] Saleem H 2007 Phys. Plasmas 14 014505
[9] Kourakis I, Esfandyari-Kalejahi A, Medhipoor M and Shukla P K 2006 Phys. Plasmas 13 052117
[10] Song B, D’Angelo N and Merlino R L 1991 Phys. Fluids B 3 284
[11] D’Angelo N 2001 Planet. Space. Sci. 49 1251