Materials Research Express

OPEN ACCESS

PAPER

Microstructural characterization and electrochemical properties of Nd$_{0.5}$Sr$_{0.5}$Co$_{0.5}$Mn$_{0.5}$O$_{3-\delta}$ as a novel cathode for SOFCs

Jie Song1, Xiufang Zhu2, Yuanzhi Song3, Pusu Zhao1, Fengxia Zhu1, Xiaoyan Liu1, Xiaojun Sun1 and Jiming Xu1

1 Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, 223300, People’s Republic of China
2 National & Local Joint Engineering Research Center for Deep Utilization Technology of Rock-salt Resource, Huaiyin Institute of Technology, Huaian, 223003, People’s Republic of China
3 E-mail: songjiesj@163.com

Keywords: SOFC, cathode material, microstructural characterization, electrochemical properties

Abstract

The microstructure and electrochemical properties of a novel cathode Nd$_{0.5}$Sr$_{0.5}$Co$_{0.5}$Mn$_{0.5}$O$_{3-\delta}$ were discussed in the paper. After calcination at 1000 °C, a perfect single crystal was obtained. Some diffraction streaks along [200] and [112] patterns in HR-TEM appeared for the ordering of oxygen vacancies, or as the overlap of B-site cations (Co$^{2+}$/Co$^{3+}$ and Mn$^{2+}$/Mn$^{3+}$) with stacking fault-derived scattering of ordering. Area-specific resistance (ASR) was 0.023 Ω · cm2 when Nd$_{0.5}$Sr$_{0.5}$Co$_{0.5}$Mn$_{0.5}$O$_{3-\delta}$ was deposited on the electrolyte as the electrode at 700 °C in air. The maximum power density and the maximum OCV were 592.80 mW cm$^{-2}$ at 650 °C and 0.89 V at 550 °C for a single cell, respectively. Hence, the material Nd$_{0.5}$Sr$_{0.5}$Co$_{0.5}$Mn$_{0.5}$O$_{3-\delta}$ could be considered as an air-electrode in Intermediate-temperature solid oxide fuel cells (IT-SOFC).

Introduction

Recently, more attention has been directed towards IT-SOFCs (Intermediate Temperature Solid Oxide Fuel Cells) for the shorter start-up time, the lower requirements as electrode materials and the low maintenance [1, 2]. However, lower operating temperatures raises some concerns, such as reducing kinetics of oxygen reduction reaction (ORR), which makes the catalytic activity of cathode materials poor [3, 4]. Hence, the most critical technology to develop IT-SOFC’s is searching for suitable electrode materials, especially those suitable for medium-temperature cathode materials [5, 6]. High conductivities of electronic and ionic are necessary for the cathode materials to ensure enough catalytic activity for ORR [7].

Among cathode materials, perovskite oxides [8–11] and Ruddlesden-Popper (R-P) series [12] attract significant attention and have been widely studied as promising electrode materials for IT-SOFC. Bu et al [13] and Tsvetkov et al [14] have reported that Nd replaced La in the LnSrCoMnO$_{6-\delta}$ and Ln$_{1-x}$Sr$_x$MnO$_3$ series of cathode materials (Ln represents the element from La to Gd) can obtain superior oxygen exchange activity. Kim et al [15–17] also proved that the addition of Nd at A-site could enhance the stability and improve the electrochemical performance of single cells. Electrode materials containing cobalt are considered to be the significantly promising since the element Co has three variable valences (Co$^{2+}$, Co$^{3+}$ and Co$^{4+}$) [18]. Double perovskites containing Co, such as PrBaCo$_2$O$_{5+\delta}$ and GdBaCo$_2$O$_{5+\delta}$ have exhibited excellent electrocatalytic activities for ORR at low temperatures [19–21]. However, some properties limit their applications, such as mismatch of thermal expansion coefficients, poor of long-term stabilities [22, 23]. Efforts have been made towards solving these problems. For example, Hong and Wang et al [24–26] proved that electrode materials mixed with Ce$_{0.8}$Sm$_{0.2}$O$_{1.9}$ (SDC) electrolyte in a certain ratio can decrease area specific resistance (ASR) and extend triple phase boundaries between fuel, electrode and electrolyte. Therefore, in this work, elements Nd and Sr were doped in A-site and Co and Mn were substituted with B-site to form Nd$_{0.5}$Sr$_{0.5}$Co$_{0.5}$Mn$_{0.5}$O$_{3-\delta}$ (NSCM). The electrolyte was SDC, and the cathode material was the mixture of SDC with NSCM.
Experimental sections

NSCM electrode material was prepared by the method of EDTA-citric acid-nitrates. Sr(NO₃)₂, Nd(NO₃)₃ · 6H₂O, Co(NO₃)₃ · 6H₂O and C₆H₁₂MnO₈ as the raw materials were mixed in stoichiometric amounts (According to the molar ratio of the elements in the formula) in a beaker, added to deionized water, and stirred until all salts dissolved. In a separate mixture, EDTA and NH₃·H₂O were mixed to obtain EDTA-NH₃ · H₂O. The molar ratio of citric acid as a chelating agent was added in the EDTA-NH₃ · H₂O and then the complex was dropped into the nitrate mixture. Ammonia was added to balance pH value. Heating and stirring the nitrate mixture at 80 °C until sol-gel was obtained. The sol-gel was placed in an oven and continually heated at 200 °C until dry bubble film was obtained. Finally, the film was ground to get powder by ball mill, and then the powder was shifted into a muffle furnace to calcine at different temperatures for 12 h in air.

X-ray diffraction (XRD, Bruker D8) using Cu Kα radiation at RT was carried out to affirm phase formation of the cathode materials after calcination at different temperatures. Diffraction peaks were captured with 2θ range from 10 to 80 degrees when the step size is 0.02 degree.

X-ray diffraction patterns of NSCM electrodes after calcination at different temperatures (Figure 1). (a) XRD patterns (2θ range from 10° to 80°) of Nd₀.₅Sr₀.₅Co₀.₅Mn₀.₅O₃₋ₓ after calcination at different temperatures and PDF#89-0789 corresponding to Powder Diffraction File for Orthorhombic perovskite structure of (Nd₀.₅Sr₀.₅)(MnO₃). (b) The amplification of XRD patterns 2θ range from 20° to 60° (the impurity peaks were labeled with * and the composition was SrMnO₃).

Results and discussion

XRD patterns at RT 2θ from 10° to 80° was seen for Nd₀.₅Sr₀.₅Co₀.₅Mn₀.₅O₃₋ₓ powder which were calcined at an interval of 50 °C from 800 °C to 1000 °C were shown in figure 1(a). Some impurity peaks at 2θ = 27.26°, marked with * . According to the analysis of Jade 5, the impurity phase was SrMnO₃ corresponding to PDF# 84-1612 appeared when the samples were calcined before 950 °C (including 950 °C) as shown in figure 1(b). A perfect single crystal perovskite structure was prepared after calcination at 1000 °C. As shown in figures 1(a) and (b), the NSCM sample after calcination in 1000 °C, has a perfect orthorhombic perovskite structure with space group Imma (74). The diffraction patterns of NSCM samples had three main diffraction peaks at 2θ = 33.08°, 47.53°, 59.1°, corresponding to (200), (202), and (321) for a phase (Nd₀.₅Sr₀.₅)(MnO₃) (PDF#: 89-0789), respectively. Diffraction peaks were shifted 0.29° to the left, caused by increased lattice parameter of NSCM due to the large ionic radius of Co (0.745 Å) replaced partly the smaller ion radius of Mn (0.46 Å). The average crystallite sizes and lattice parameters of NSCM after calcination at 800, 850, 900, 950 and 1000°C calculated are listed in table 1. According to Scherrer’s formula as shown as follow:
Table 1. Crystallite sizes and Lattice parameters of NSCMn calcined at different temperatures.

Calcination temperatures/°C	Crystallite sizes (degree)	D(nm)	a(Å)	Lattice (Å)	Parameters (Å)	V(Å³)	R(%)	
800	16.380	0.514	15.93	5.429	7.654	5.451	226.51	7.21
850	16.496	0.487	16.82	5.419	7.649	5.438	225.40	4.97
900	16.497	0.454	18.05	5.421	7.654	5.442	225.80	6.29
950	16.517	0.358	22.88	5.421	7.671	5.409	224.93	6.51
1000	16.538	0.298	27.50	5.418	7.665	5.402	224.33	7.21

\[D = \frac{K\lambda}{\beta \cos \theta} \]

Where \(D \) is the crystallite size, \(K \) is the Scherrer constant, \(\lambda \) is the x-ray radiation wavelength (Cu Kα; \(\lambda = 0.15406 \) Å), \(\theta \) is the Bragg angle, and \(\beta \) is the full width at half maxima. By fitting the Scherrer formula with equation (2), \(D \) can be obtained.

\[D = \frac{0.89 \times 0.15406}{(\beta - 0.09/180) \times \pi \times \cos \theta} \]

It is obvious that \(\beta \) and \(\theta \) for samples NSCM decreased with the raising of calcination temperatures while the particle sizes increased. Moreover, the lattice parameters of NSCM after calcination at 800, 850, 900, 950 and 1000 °C samples at room temperature extracted from Rietveld refinement of XRD data are included in table 1 [29]. These data were in good accordance with the XRD patterns, and they showed the low reliability factors (R).

Energy-dispersive x-ray spectroscopy (EDS) in TEM was used to analyze atomic resolution chemical mapping in the NSCM material as shown in figures 2(a)–(e). Element mapping images (figures 2(b)–(e)) and EDX curves (figure 2(f)) confirmed that the elements of Nd, Sr, Co, Mn in the as-prepared composite were evenly distributed. The microscopic details of the sample were determined by HRTEM. As depicted in figure 2(g), the microstructure of NSCM was cuboid varying in size. The distance of diffraction fringe was 2.749 Å as shown in HRTEM images of NSCM. The result conform to [200] planes. The indexed in orthorhombic lattice of the reflections in FTFs (fast Fourier transforms) can be judged from XRD patterns. The intensity streaks along [112] and [200] planes in (120) diffraction pattern could be found, which can be attributed to ordering of oxygen vacancies [31], or as the overlap of stacking derived fault scattering for B-site cations (Co(II) and Mn(III)) ordering [32, 33]. Generally, in perovskite structure oxides, B-site ionic ordering is based on the differences between charge and size of the two cations [24]. Thus, it has a bearing on the presence of Co^{2+}/Co^{3+} and Mn^{2+}/Mn^{3+} couples in NSCM.

Symmetrical cell NSCM-SDC/SDC/NSCM-SDC was used to assess the effects of the cathode material in the electrocatalytic activity. The symmetrical cell was operating at 450 °C–700 °C in air, and EIS was used to determine ASRs.

In the Impedance spectrum, there are two parts in terms of the frequency occupying low and high: Ohmic resistance (\(R_{\text{ohm}} \)) and cathode polarization resistance (\(R_p \)). \(R_{\text{ohm}} \) is the arc at high frequency which is considered from the connector resistances, electrolyte, the wire resistances, and other contactor’s resistances. \(R_p \) is the arc at an intermediate-to-low frequency, which has a bearing on the electrode process [34–36]. Figure 3(a) gives the curve of the relationship between \(R_p \) and temperature when the cell NSCM-SDC/SDC/NSCM-SDC was operating at different temperatures. With the temperature rising, semicircles formed by an arc intersecting a real axis associated with the cathode polarization process were obviously decreased; it was illustrated that \(R_p \) decreased with increasing of operating temperatures. According to the change of polarization resistance with temperature, it can be seen that the polarization resistance decreases with the increase of temperature, indicating that the higher the temperature is, the greater the surface exchange coefficient and volume phase diffusion coefficient are. In other words, the higher the temperature is, the faster the oxygen ion migration will be. \(R_p \) was 0.023 Ω · cm² at 700 °C. The result is lower than the value (0.18 Ω · cm²) at the same temperature reported from [37].

Commercial NiO was used as the anode material, and SDC with thickness about 19.6 μm was used as the electrolyte. NiO-SDC/SDC/NSCM-SDC (single cell with electrolyte for support) was fabricated to assess the electrochemical properties of cathode material NSCM. Figure 4 gave a cross section SEM image of electrode-electrolyte-electrode.

I-V and I-P curves were obtained under the operating conditions (operating temperatures at 450 °C to 650 °C; anode gas was 100% H₂ and cathode gas was O₂). The electrochemical performance results were provided in figure 5. The maximum power densities were 417.30 mWcm⁻², 565.45 mWcm⁻² and 592.80 mWcm⁻² at 550
Figure 2. (a) and (g) TEM of Nd$_{0.5}$Sr$_{0.5}$Co$_{0.5}$Mn$_{0.5}$O$_{3-\delta}$; (b)–(e) EDX elemental mappings of Nd, Sr, Co, Mn, (f) EDX spectrum of Nd$_{0.5}$Sr$_{0.5}$Co$_{0.5}$Mn$_{0.5}$O$_{3-\delta}$; and (i) HRTEM images of Nd$_{0.5}$Sr$_{0.5}$Co$_{0.5}$Mn$_{0.5}$O$_{3-\delta}$ along [120] plane and the corresponding optical Fourier transform (FT).

Figure 3. (a) ASR of Nd$_{0.5}$Sr$_{0.5}$Co$_{0.5}$Mn$_{0.5}$O$_{3-\delta}$ measured in air by AC impedance of symmetrical cell. (b) Electrochemical impedance spectroscopy (EIS) arcs of the symmetrical cells at 450 °C–700 °C. (c) EIS arcs were amplified at 650 °C and 700 °C.
°C, 600 °C and 650 °C, respectively. Corresponding maximum OCV values were 0.89 V, 0.85 V and 0.81 V. Hence, Nd0.5Sr0.5Co0.5Mn0.5O3-δ can be used as an air-electrode in IT-SOFC.

Conclusion

Nd0.5Sr0.5Co0.5Mn0.5O3-δ for IT-SOFC was successfully synthesized and investigated. A perfect single crystal structure (perovskite-type) was obtained at 1000 °C. Some streaks along [200] and [112] diffraction patterns were observed for the ordering of oxygen vacancies, or as the overlap of B-site cations (Co2+/Co3+ and Mn2+/Mn3+) with stacking fault-derived scattering of ordering. EIS of symmetrical cell elucidated that cathode polarization resistance was responsible for electrochemical degradation. The ARS was 0.023 Ω·cm² when operating temperature was 700 °C. Single cell was operated at 450 °C–650 °C with 100% H2 as anode gas and O2 as cathode gas, 592.80 mWcm⁻² was the maximum power density at 650 °C, and 0.89 V was the maximum OCV at 550 °C. Hence, Nd0.5Sr0.5Co0.5Mn0.5O3-δ can be used in IT-SOFC as an air-electrode.

Acknowledgments

This work was carried out with the support of the research foundation of Huaiyin Normal University (HSXT2-313), the National Natural Science Foundation of China (Grant No.51602118), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20160425, BK20160424), Foundation of Jiangsu Provincial Engineering Laboratory for Advanced Materials of Salt Chemical Industry (SF201409), Foundation of Huaiyin Institute of Technology (18HGZ005), Natural Science Fund for Colleges and Universities in Jiangsu Province of China (No.19KJA430015).
References

[1] Lee J G, Park J H and Shul Y G 2014 Tailoring gadolininium-doped ceria-based solid oxide fuel cells to achieve 2 W cm\(^{-2}\) at 550 °C Nat. Commun. 5 4045

[2] Bu Y F et al 2019 Synergistic interaction of perovskite oxides and N-doped graphene in versatile electrocatalyst J. Mater. Chem. A 7 2048–54

[3] Song K W and Lee K T 2011 Characterization of NdSrCo\(_{1-x}\)Fe\(_{6+x}\)O\(_{12}\) (0 ≤ x ≤ 1.0) intergrowth oxide cathode materials for intermediate temperature solid oxide fuel cells Ceram. Int. 37 573–7

[4] Souza R A and Kilner J A 1998 Oxygen transport in La\(_{1-x}\)Sr\(_{x}\)Mn\(_{1-y}\)O\(_{3}\) perovskites, Part I Oxygen tracer diffusion Solid State Ionics 106 175–87

[5] Bevilacqua M, Montini T, Tavagnacco C, Fonda E, Fornasiero P and Graziani M 2007 Preparation, characterization, and electrochemical properties of pure and composite LaNi\(_{0.6}\)Fe\(_{0.4}\)O\(_{3}\)-based cathodes for IT-SOFC Chem. Mater. 19 5926–36

[6] Fan L, Zhu B, Su P C and He C 2018 Nanomaterials and technologies for low temperature solid oxide fuel cells: recent advances, challenges and opportunities Nano Energy 45 148–76

[7] Su P C, Chao C C, Shimm J H, Fasching R and Prinz F B 2008 Solid oxide fuel cell with corrugated thin film electrolyte Nano Lett. 8 2289–92

[8] Bu Y F, Zhong Q, Chen D C, Chen Y, Lai S Y, Wei T, Sun H B, Ding D and Liu M 2016 A high-performance, cobalt-free cathode for intermediate-temperature solid oxide fuel cells with excellent CO\(_2\) tolerance J. Power Sources 319 178–84

[9] Bu Y F, Gwong O, Nam G, Jang H, Kim S, Zhong Q, Cho J and Kim G 2017 A highly efficient and robust cathode ordered perovskite oxides as a Bi-functional catalyst for rechargeable Zinc–Air batteries ACS Nano 11 11594–601

[10] Bu Y F, Chen Y, Wei T, Lai S, Ding D, Sun H B, Zhen D, Xiong X and Zhong Q 2016 Composites of single/double perovskites as cathodes for solid oxide fuel cells Energy Technol. 4 1–5

[11] Bu Y F, Zhong Q, Xu D D, Zhao X L and Tan W Y 2014 Performance of Y\(_{0.5}\)Sr\(_{0.5}\)Fe\(_{0.9}\)Ni\(_{0.1}\)O\(_{3}\)-based cathode as a sulfur-tolerant anode material for intermediate temperate solid oxide fuel cells J. Power Sources 250 143–51

[12] Aguedaro A, Alonso J A, Escudero M J and Daza L 2008 Evaluation of the La\(_{0.5}\)Ni\(_{0.5}\)Cu\(_{0.5}\)O\(_{4}\)-based system as SOFC cathode material with 8YSZ and LGSM as electrolytes Solid State Ionics 179 393–400

[13] Bu Y F, Kim S, Kwon O, Zhong Q and Kim G 2019 A composite catalyst based on perovskite for overall water splitting in alkaline conditions Chem. Electro. Chem. 6 1520–4

[14] Isvetkov N, Lu Q, Sun L, Crumlin E J and Yildiz B 2016 Improved chemical and electrochemical stability of perovskite oxides with less reducible cations at the surface Nat. Mater. 15 1010–6

[15] Kim S, Jun A, Kwon O, Kim J, Yoo S, Jeong H Y, Shin J and Kim G 2015 Nanostructured double perovskite cathode with low sintering temperature for intermediate temperature solid oxide fuel cells Chem. Sus. Chem. 8 3153–8

[16] Jun A, Yoo S, Ju W Y, Hyodo J, Choi S, Jeong H Y, Shin J, Ishihara T, Lim T and Kim G 2015 Correlation between fast oxygen kinetics and enhanced performance in Fe doped layered perovskite cathodes for solid oxide fuel cells J. Mater. Chem. A 3 15082–90

[17] Yoo S, Jun A, Ju W Y, Ohldhau D, Hyodo J, Jeong H Y, Park N, Shin J, Ishihara T and Kim G 2014 Development of double-perovskite compounds as cathode materials for low-temperature solid oxide fuel cells Angew. Chem. Int. Ed. 53 13064–7

[18] Shao Z P and Haile S M 2014 A high-performance cathode for the partial oxidation of solid oxide fuel cells Nature 431 170–3

[19] Zhang J K, Li S L, Xi T, Sun L P, Hsu I H and Zhao H 2018 Co-deficient PrBaCo\(_{2}\)O\(_{5.5}\) perovskites as cathode materials for intermediate-temperature solid oxide fuel cells: enhanced electrochemical properties and oxygen reduction kinetics Inter. J. Hydrogen Energy 43 3761–75

[20] Fu D W, Jin F J and He T M 2016 A-site calcium-doped Pr\(_{1}\)Ca\(_{x}\)Ba\(_{x}\)Co\(_{2}\)O\(_{5}\)-δ double perovskites as cathodes for intermediate-temperature solid oxide fuel cells J. Power Sources 313 134–41

[21] Enriquez E, Xu X, Bao S, Harrell Z, Chen C, Choi S, Jun A, Kim G and Whangbo M H 2015 Catalytic dynamics and oxygen diffusion in doped PrBaCo\(_{2}\)O\(_{5}\)-δ thin films ACS Appl. Mater. Interfaces 7 24553–9

[22] Wei B, Lu Z, Huang X, Miao J, Sha X, Xin X and Su W 2006 Crystal structure, thermal expansion and electrical conductivity of perovskite oxides Ba\(_{1-x}\)Sr\(_{x}\)Co\(_{0.9}\)Fe\(_{0.1}\)O\(_{3}\)-δ (0.3 ≤ x ≤ 0.71) J. Eur. Ceram. Soc. 26 2827–32

[23] Radovic M, Speakman S A, Allard J F, Payzant E A, Lara-Curzio E, Kriven W M, Lloyd J, Fegley L and Orlovskaya N 2008 Thermal, mechanical and phase stability of LaCoO3 in reducing and oxidizing environments J. Power Sources 184 77–83

[24] Gong Z L and Hong L 2011 Integration of air separation and partial oxidation of methane in the La\(_{0.8}\)Ba\(_{0.2}\)Fe\(_{0.9}\)Mn\(_{0.1}\)O\(_{3}\)-δ membrane reactor J. Membr. Sci. 380 81–6

[25] Sun M, Chen X W and Hong L 2013 Influence of the interfacial phase on the structural integrity and oxygen permeability of a dual-phase membrane ACS Appl. Mater. Interfaces 5 9067–74

[26] Wang S R, Oikawa E and Hashimoto T 2004 Structural analysis of Ce\(_{1-x}\)M\(_{x}\)O\(_{2}\)-δ (M = Gd, Sm, Y) by high temperature xrd under various oxygen partial pressures J. Electrochem. Soc. 151 E96–50

[27] Shin J F, Xu W, Zanella M, Dawson K, Savvin S N, Clariidge J B and Rosseinsky M J 2017 Self-assembled dynamic perovskite composite cathodes for intermediate temperature solid oxide fuel cells Nat. Energy 2 16214

[28] Zhu X F, Zhai L Z, Zhang L J, Zhang J D, Liu X M and Song J 2018 Palygorskite mixed with Ho-based perovskite as a promising cathode material for solid oxide fuel cell Appl. Clay Sci. 166 200–6

[29] Zhu X F, Zhai L Z, Gao Y X, Li A P and An H 2018 A novel cathode material Pr\(_{0.5}\)Sr\(_{0.5}\)Fe\(_{0.9}\)Ni\(_{0.1}\)O\(_{3}\)-δ for intermediate temperate solid oxide fuel cell Mater. Res. Exp. 5 026007

[30] Zhu X F, Zhong Q, Xu D D, Yan H and Tan W Y 2013 Further Investigation of Ce\(_{0.7}\)Sr\(_{0.3}\)Fe\(_{0.9}\)Co\(_{0.1}\)O\(_{4}\)-δ as anode for solid oxide fuel cell with H\(_{2}\) J. Solid State Alloys. Compd. 555 169–75

[31] Bucher E, Sitte W, Rom I, Papat I, Gogger W and Hofer F 2002 Microstructure and ionic conductivity of strontium–substituted lanthanum cobaltites Solid State Ionics 152 417–21

[32] Liu Q, Bugars D E, Xiao G L, Chimara M, Ma S G, Loyle H C, Amiridis M D and Chen F L 2011 Sr\(_{3}\)Fe\(_{1-x}\)Mn\(_{x}\)O\(_{3}\)-δ as a regenerative anode for solid oxide fuel cells J. Power Sources 196 9148–53
[33] Deng Z Q, Smit J P, Niu H J, Evans G, Li M R, Xu Z L, Claridge J B and Rosseinsky M J 2009 B cation ordered double perovskite Ba$_2$CoMo$_{0.5}$Nb$_{0.5}$O$_{6-\delta}$ as a potential SOFC cathode Chem. Mater. 21 5154–62

[34] Bauman F S, Fleig J, Habermeier H U and Maier J 2006 Impedance spectroscopic study on well-defined (La, Sr)(Co, Fe)O$_{3-\delta}$ model electrodes Solid State Ionics 177 1071–81

[35] Barbucci A, Bozzo R, Cerisola G and Costamagna P 2002 Characterization of composite SOFC cathodes using electrochemical impedance spectroscopy. Analysis of Pt/YSZ and LSM/YSZ Electrodes Electrochim. Acta 47 2183–8

[36] Seo K D, Kim Y J, Park J and Lim H T 2018 Investigating the effect of current collecting conditions on solid oxide fuel cell (SOFC) performance with additional voltage probes Int. J. Hydrogen Energy 43 2349–58

[37] Boulahya K, Gil D M, Hassan M, Martin S G and Amador U 2017 Structural and microstructural characterization and properties of new phases in the Nd–Sr–Co–Fe–O system as air-electrodes in SOFCs Dalton T. 46 1283–9