Advances in chemistry and bioactivity of the genus *Erythroxylum*

Yulian Lv1,2, Tian Tian1,2, Yong-Jiang Wang1,2, Jian-Ping Huang1,3 and Sheng-Xiong Huang1*

Abstract

Erythroxylum P. Browne is the largest and most representative genus of Erythroxylaceae family. It contains approximately 230 species that are mainly distributed in tropical and subtropical regions. Some species in this genus, such as *E. monogynum* and *E. coca*, have been used as folk medicines in India or South America for a long history. It is well known that *Erythroxylum* plants are rich in tropane alkaloids, and the representative member cocaine shows remarkable activity in human central nervous system. However, many other types of active compounds have also been found in *Erythroxylum* along with the broadening and deepening of phytochemical research. To date, a total of 383 compounds from *Erythroxylum* have been reported, among which only 186 tropane alkaloids have been reviewed in 2010. In this review, we summarized all remained 197 compounds characterized from 53 *Erythroxylum* species from 1960 to 2021, which include diterpenes, triterpenes, alkaloids, flavonoids, and other derivates, providing a comprehensive overview of phytoconstituents profile of *Erythroxylum* plants. In addition, the biological activities of representative phytochemicals and crude extracts were also highlighted.

Keywords: *Erythroxylum*, Natural products, Phytoconstituent, Bioactivity

Graphical Abstract

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

1 **Introduction**

In the long evolutionary process of nature, plants have acquired the ability to synthesize various compounds to better adapt to stimulations in the environment. The accumulation of practical experience has made human realize that these substances are also of significant importance for the treatment of human diseases and
the improvement of the quality of life. With the support of technology in compound extraction, separation and structural identification, the active substances in traditional herbs are gradually being discovered by humans. Therefore, modern medicine based on a single or several compounds has been developed. With the deepening of research on plant natural products, new biologically active compounds are constantly being discovered and further applied in medicine, health care and agriculture. Sorting out and summarizing the plant distribution, structure, and activity characteristics of these newly discovered phytochemicals will confer us effective information in rational use of plant resources.

Erythroxylaceae family, is especially well known for its phytoconstituents of tropane alkaloids (TAs), such as cocaine [1, 2]. Species of this genus are mainly distributed in tropical and subtropical regions including South America, South Africa, Southeast Asia and Australian flora [2]. As the largest genus of the Erythroxylaceae family, approximately 230 species are included in *Erythroxylum* [2], among which *E. coca* and *E. novogranatense* are the famous plant sources of cocaine. Before achieving the purification of cocaine from plants in 1859 [3], the leaves of *E. coca* or *E. novogranatense* had been chewed by the Indigenous South American as stimulant and hunger-suppressant for over a thousand years. The remarkable biological activity of cocaine in human central nervous system attracted widespread attention to compounds in plants of this genus. Accordingly, numerous of cocaine analogs (TAs), as well as other bioactive compounds have been found in *Erythroxylum* [4, 5].

To date, no comprehensive summary on chemical compositions found in *Erythroxylum* species and their bioactivities has been reported, though Oliveira et al. [6] presented an excellent review focusing on structures of TAs isolated from 1960 here, which is supposed to be essential for further effective development and utilization of plant resources in the genus in the future. Additionally, we also presented an overview of the biological activities of representative phytochemicals and crude extracts at the end of the review, providing medicinal and commercial application prospects of *Erythroxylum* species.

2 Chemical composition

Based on the published results dedicated to study chemical composition of *Erythroxylum* species, 383 compounds, including diterpenes, triterpenes, flavonoids, alkaloids, and other derivates, have been found in 67 *Erythroxylum* species. Among these, 186 TAs compounds identified in *Erythroxylum* plants before 2010 have been systematically reviewed by Oliveira et al. [6]. Therefore, here we summarized all remained 197 compounds characterized from 53 *Erythroxylum* species from 1960 to 2021, which include diterpenes, triterpenes, alkaloids, flavonoids, and other derivates.

According to the literature, *Erythroxylum* plants are rich in alkaloids. Especially *E. coca*, *E. coca var. coca*, and *E. novogranatense var. novogranatense*, the content of total alkaloids varies from 0.5% to 2.4% in leaves (dry mass, Table 1) [15]. Particularly, high cocaine content (0.13%-0.76% dry mass) was found in *E. coca* and *E. novogranatense* leaves [16]. In 2006, Stefan Bieri et al.

Tabel 1 The content of principal components in several *Erythroxylum* species

Species	Total alkaloids (dry leaves) (%)	Total phenols (dry leaves) (%)	Total tannins (dry leaves) (%)	Total flavonoids (dry leaves) (%)	Total diterpenes (dry stems) (%)	Refs.
E. coca	0.5–1.5					[15]
E. coca var. coca	1.05–2.26					[19]
E. novogranatense var. novogranatense	1.4–2.4					[19]
E. suberosum		17.97	6.31	3.87		[18]
E. tortuosum		10	8.4	0.064		[18]
E. deciduum		12.04	0.87	1.37		[18]
E. australis					1.8	[5]
E. pictum					0.09–1.1%	[20]
analyzed the cocaine distribution in 51 plant species and cocaine was detected only in 23 *Erythroxylum* species with the content less than 0.001% (dry leaves). High production of total phenols, total tannins and total flavonoids of up to 17.97%, 8.4%, and 3.87% (dry leaves), respectively, was reported in *E. suberosum*, *E. tortuosum*, and *E. deciduum* ([18](#)). Additionally, the total diterpenes content determined in stems of *E. australis* and *E. pictum* ranged from 0.09% to 1.8% (dry mass, Table 1).

2.1 Diterpenes

Plants of *Erythroxylum* are rich in diterpenoids, which have been extensively studied since the last century. In particular, Connolly [21–24] and Kapadi [25–27], who focused on investigating diterpenoids of *E. monogynum* in 1960s, provided the earliest knowledge of diterpenoids in *Erythroxylum* species. Using nuclear magnetic resonance (NMR) spectroscopy and chemical reactions, they and their coworkers elucidated the structures of 17 diterpenoids in *E. monogynum*. To date, about 11 types of diterpene skeletons (a–k) have been isolated and characterized from nine species of this genus in the past decades ([20, 31, 32](#)) (Table 2). Additionally, Ansell [20] et al. first found six 4,5-seco-rosane derivative diterpenoids (7–12) from *E. pictum* in 1993 (Table 2). Since these derivatives were shown to be characteristic of *E. pictum*, they named this novel bicyclic diterpene skeleton, 4,5-seco-rosane, as pictane. Later, they found one of these derivatives of pictane, *ent*-15ξ,16-dihydroxypictan-4(18)-en-5-one (7), was also present in other six species of *Erythroxylum* [31]. The distribution and structures of these bicyclic diterpenes are listed in Table 2 and Fig. 2, respectively.

2.1.1 Bicyclic diterpenes

Labdane is a typical bicyclic diterpene, which forms the structural skeleton for many diterpene compounds found in plants [28–30]. In *Erythroxylum*, six *ent*-labdane derivatives (1–6) have been isolated and characterized from nine species of this genus in the past decades ([20, 31, 32](#)) (Table 2). Additionally, Ansell [20] et al. first found six 4,5-seco-rosane derivative diterpenoids (7–12) from *E. pictum* in 1993 (Table 2). Since these derivatives were shown to be characteristic of *E. pictum*, they named this novel bicyclic diterpene skeleton, 4,5-seco-rosane, as pictane. Later, they found one of these derivatives of pictane, *ent*-15ξ,16-dihydroxypictan-4(18)-en-5-one (7), was also present in other six species of *Erythroxylum* [31]. The distribution and structures of these bicyclic diterpenes are listed in Table 2 and Fig. 2, respectively.

![Fig. 1](#) Skeletal structures of diterpenes found in *Erythroxylum* plants.
rosane-type compound (33) was found in E. barbatum by dos Santos [35].

2.1.3 Tetracyclic diterpenes

Erythroxylum is a prolific source of beyerene diterpenes [5, 24, 31]. More than 20 beyerene derivatives (34–59) have been identified from nine Erythroxylum species [5, 24, 25, 31, 37–40], while diterpenoids isolated from E. australe consisted preponderantly of beyerene derivatives [5, 24] (Fig. 4; Table 4). Importantly, in a recent research, auto-oxidation of the aldehyde group of ent-beyer-15-en-19-al (50) isolated from E. monogynum to a carboxylic acid group was observed, and this auto-oxidation could take place both with and without the concurrent epoxidation of the 15,16-double bond, indicating that some beyerene type diterpenoids identified previously may be artefacts arising from the auto-oxidation reaction [40]. Tetracyclic diterpene ent-kaurene is a critical intermediate in gibberellin hormones biosynthesis pathway in plants, and kaurene diterpenes are widely distributed in nature. Seven kaurene diterpenes (61–67) have been isolated and identified from Erythroxylum plants [5, 20, 31, 33, 41] (Fig. 4; Table 4), among which erythroxylisin A (64) and erythroxylisin B (65) obtained from roots of E. barbatum are unusual kaurene diterpenes with a cis-orientation of the C-20 methyl and the CH$_2$-15 methylene

Table 2 Bicyclic diterpenes isolated from Erythroxylum plants

No.	Compounds	Plant source	Refs.
1	ent-labda-8(17),14-dien-13R-ol	E. pictum, E. areolatum, E. cuneatum, E. rotundifolium	(20, 31)
2	ent-13R-hydroxylabda-8(17)-dien-3-one	E. pictum, E. betulaceum, E. cuneatum, E. rotundifolium	(20, 31, 32)
3	ent-labda-8(17),14-dien-3β,13R-diol	E. pictum, E. betulaceum, E. cuneatum, E. delagoense	(20, 31, 32)
4	ent-labda-8(17),14-dien-13R,18-diol	E. rotundifolium	(20, 31)
5	ent-labda-8(17),13E-dien-15-ol	E. pictum, E. deciduum, E. zambesiacum	(20, 31)
6	ent-labda-8(17),13E-dien-15,16-diol	E. argentimum	(31)
7	ent-15ξ,16-dihydroxypictan-4(18)-en-5-one	E. pictum, E. areolatum, E. cuneatum, E. delagoense, E. microphyllum, E. zambesiacum, E. rotundifolium	(20, 31)
8	ent-4,15ξ,16-trihydroxypictan-5-one	E. pictum	(20)
9	ent-15ξ,16-dihydroxy-4,18-epoxypictane-5-one	E. pictum	(20)
10	ent-4,15ξ,16,18-tetrahydroxypictan-5-one	E. pictum	(20)
11	ent-16-hydroxypictan-4(18)-ene-5,15-dione	E. pictum	(20)
12	ent-4,13α-dihydroxy-15ξ,16-bisnorpictan-5-one	E. pictum	(20)

Fig. 2 Chemical structures of bicyclic diterpenes (1–12) found in Erythroxylum plants
Devadarane is a tetracyclic diterpene skeleton completely different from the two mentioned above (Fig. 4; Table 4). Devadarane-type diterpenes (68–75) were first discovered in E. monogynum [21, 42]. However, the structure of triol Q (72) was not determined until McCrindle R [43] undertook an X-ray analysis two years later. Although devadarane-type diterpenes have been identified in five species of this genus, only eight devadarane derivatives (68–75) have been reported so far (Fig. 4; Table 4). Ryanodane diterpenes (76–77) [13] were originally isolated from ripe fruits of E. passerinum, and later ryanodanol (76) was also identified in E. nummularia leaves (Fig. 4; Table 4). This type of diterpenoids has a complicated skeleton. According to reports in the literature since 1960, only two compounds (76–77) of this type have been discovered in the genus Erythroxylum.

2.2 Triterpenoids
To date, a total of 19 triterpenoids have been identified in Erythroxylum plants (Fig. 5; Table 5), ten of which are fatty acid esters of triterpenes (78–86, 88) from E. nummularia [44], E. leal-costae [45], E. rimosum [46] or E. passerinum [47]. Lupenyl acetate (87) [45], α-amyrrin (89) [46], β-amyrrin (90) [44, 46, 47] and erythrodiol (91) [47] are other four triterpenoids found in E. leal-costae, E. nummularia, E. rimosum or E. passerinum (Fig. 5; Table 5). Besides, recent studies reported five triterpenes (92–96) from E. ovalifolium [14], E. daphnites [48] or E. macrocalyx [49]. Interestingly, all the triterpenoids identified in this genus are pentacyclic triterpenes.

2.3 Alkaloids
TAs are alkaloids with a tropane skeleton (8-azabicyclo[3.2.1]octane). As characteristic alkaloids widely
distributed in Erythroxylum species, TAs exhibit a range of pharmacological activities like vasorelaxation [50], antiproliferative [49], anesthesia [51], antimicrobial and anticancer [12]. In 2010, a fascinating review by Oliveira et al. [6] comprehensively summarized structures of 186 TAs found in 35 species of Erythroxylum. As an update, we here found 11 more new TAs reported in studies since then (Fig. 6; Table 6). Among these newly identified TAs, two members were isolated from E. rimosum [46]. Previous studies have also reported the isolation of non-TA alkaloids by GC–MS analysis [56–58]. However, since most of them were potential precursors or side products of TA biosynthetic pathway [56], we will not include them here. Readers interested in the details of these compounds are referred to the review by Brachet Anne and coworkers [56].

2.4 Flavonoids

Flavonoids are a large and complex group of constituents found in almost all plants. Flavonoid variation in thirteen species of Erythroxylum has been studied systematically by Plowman et al. in 1988 [59]. They found kaempferol, ombuin (7,4ʹ-dimethylquercetin), and quer cetin were predominant flavonoid aglycones in Erythroxylum plants analyzed. Besides, Johnson and coworkers [60–65], based on their work on flavonoids profiles of six species or variants and flavonoids that had been reported in Erythroxylum, proposed that some unique flavonoids could be used as chemotaxonomic markers for taxon. Overall, flavonoid aglycones in Erythroxylum mainly consist of quercetin, ombuin, fisetin, kaempferol, epicatechin, eriodictyol and taxifolin. In addition to these, isoflavone, isoflavanone and other flavone derivatives were also found in Erythroxylum. Chemical structures of flavonoid aglycones that had been found in Erythroxylum plants were summarized and presented in Fig. 7. Moreover, the major glycosides of these flavonoids include mono-glucosyl-rhamnossyl and dirhamnossyl-glucosides, as well as mono-galactosyl and mono-arabinosyl. In total, 73 flavonoids from 37 species of Erythroxylum have been

Table 3 Tricyclic diterpenes isolated from Erythroxylum plants

No.	Compounds	Plant source	Refs.
13	7-oxo-16-hydroxy-abiet-15(17)-en-19-al	E. suberosum	[33]
14	7-oxo-abiet-15(17)-en-16-ol	E. suberosum	[33]
15	7α,16-dihydroxy-abiet-15(17)-en-19-al	E. suberosum	[33]
16	ent-pimara-8(14),15-dien-3α-ol	E. cuneatum	[31]
17	ent-3α,11β-dihydroxy-pimara-8(14),15-diene	E. cuneatum	[31]
18	erythroxydiol Y (aldedevadarool)	E. monogynum	[5, 21, 22, 36]
18a	ent-dolabr-4(18)-ene-15S,16-diol	E. pictum, E. argentinum, E. delagoense, E. macrocarpum, E. rotundifolium, E. sideroxyloides	[20, 31]
19	ent-5β-dolabr-4(18)-ene-15R,16-diol	E. pictum	
20	ent-15,16-dihydroxydolabr-4(18)-ene-1-one	E. sideroxyloides	[31]
21	ent-1α-acetoxydolabr-4(18)-ene-11α,15β,16-triol	E. sideroxyloides	[31]
22	ent-dolabr-4(18)-ene-11α,15β,16-triol	E. macrocarpum, E. sideroxyloides	[31]
23	ent-11α-acetoxydolabr-4(18)-ene-15β,16-triol	E. sideroxyloides	[31]
24	ent-dolabr-4(18)-ene-7β,15β,16-triol	E. sideroxyloides, E. pictum	[20, 31]
25	ent-dolabr-4(18)-ene-7β,15β,16-triol	E. pictum	[20]
26	ent-5β-acetoxy-3α-10β,11β,15β,16-triol	E. zambesiaca	[31]
27	ent-11α-acetoxy-5α,6β-diol	E. zambesiaca	[31]
28	ent-2-α-10β,11β,15β,16-triol	E. zambesiaca	[31]
29	ent-rosane-5α,15β,16-triol	E. cuneatum, E. areolatum, E. sideroxyloides, E. pictum, E. zambesiaca	[20, 31]
30	ent-5α,16-dihydroxyrosan-15-one	E. pictum	[20]
31	ent-rosane-5α,16-diol	E. pictum	[20]
32	ent-ros-5-en-15β,16-diol	E. pictum	[20]
33	ent-rosan-1-one-5β,15β,16-triol	E. barbatum	[35]
studied (Table 7), though some structures lack NMR data support in the literature.

2.5 Other constituents
Norisoprenoid compounds (megastigmanes, 181–187) have been characterized in *E. cuneatum* [74] and *E. cambodianum* [72] by Kanchanapoom et al. (Fig. 8; Table 8). Phenolic derivatives and their glycosides were also obtained (Fig. 8; Table 8), which include two acetophenone diglycosides (188–189) isolated from *E. cambodi- anum* [72], neochlorogenic acid (190) and protocatechuic acid (191) extracted from *E. lucidum* [68], and scoparon (192) yielded from *E. barbatum* [76]. Additionally, five steroids (193–197) have been identified in this genus according to the previous studies [35, 44, 46–48, 76, 77] (Fig. 8; Table 8). Importantly, compounds 193 and 194...
Table 4 Tetracyclic diterpenes isolated from *Erythroxylum* plants

No.	Compounds	Plant source	Refs.
34	ent-beyer-15-ene		
((+)-hibaene)	*E. australe*, *E. monogynum*, *E. zambesiacum*	[5, 25, 31, 39]	
35	ent-beyer-15-en-19-ol		
(erythroxylol A)	*E. australe*, *E. zambesiacum*, *E. monogynum*	[5, 31, 37, 38]	
36	ent-beyer-15-en-17-ol	*E. australe*, *E. pictum*, *E. argentinum*, *E. rotundifolium*, *E. zambesiacum*, *E. monogynum*	[5, 20, 31, 38]
37	ent-beyer-15-en-17,19-diol	*E. monogynum*	[38]
38	ent-beyer-15-en-1α-ol	*E. australe*	[5]
39	ent-beyer-15-en-12β-ol	*E. zambesiacum*	[31]
40	ent-beyer-15-en-7-one	*E. argentinum*	[31]
41	ent-2,6-dihydroxybeyer-2,15-dien-1-one	*E. australe*	[5, 24]
42	ent-2,17-dihydroxybeyer-2,15-dien-1-one	*E. australe*, *E. pictum*, *E. microphyllum*, *E. argentinum*	[5, 20, 31]
43	ent-2,19-dihydroxybeyer-2,15-dien-1-one	*E. australe*, *E. microphyllum*	
44	ent-15,16-epoxy-beyer-1-one	*E. australe*	[5, 24]
45	ent-15,16-epoxy-beyerene	*E. zambesiacum*, *E. monogynum*	[31, 38, 39]
46	erythroxylol A epoxide	*E. monogynum*	[38]
47	erythroxylol A acetate epoxide	*E. monogynum*	[38]
48	4β-hydroxy-18-norhibaene	*E. monogynum*	[38]
49	4α-hydroxy-18-norhibaene	*E. monogynum*	[38]
50	ent-beyer-15-en-19-al	*E. monogynum*	[40]
51	ent-17-hydroxybeyer-15-en-1-one	*E. australe*, *E. pictum*, *E. areolatum*, *E. argentinum*, *E. microphyllum*, *E. rotundifolium*	[5, 20, 31]
52	ent-2α,17-dihydroxybeyer-15-en-1-one	*E. pictum*, *E. microphyllum*, *E. rotundifolium*	[20, 31]
53	ent-2α,19-dihydroxybeyer-15-en-1-one	*E. australe*, *E. betulaceum*, *E. microphyllum*	[5, 31, 32]
54	ent-beyer-15-en-1-one	*E. australe*, *E. argentinum*, *E. rotundifolium*, *E. zambesiacum*	[5, 24, 31]
55	ent-2α-Hydroxybeyer-15-en-1-one	*E. australe*	[24]
56	ent-19-Hydroxybeyer-15-en-1-one	*E. australe*	[5]
57	ent-1α-Hydroxybeyer-15-en-2-one	*E. australe*	[5]
58	ent-1α,17-dihydroxybeyer-15-en-2-one	*E. pictum*, *E. rotundifolium*	[20, 31]
59	ent-1α,19-dihydroxybeyer-15-en-2-one	*E. microphyllum*	[31]
60	isoatisirene	*E. monogynum*	[27]
61	atisirene	*E. monogynum*	[27]
62	ent-kauran-16-ol	*E. pictum*, *E. australe*	[5, 20]
63	ent-kauran-16,17-diol	*E. rotundifolium*, *E. pictum*	[20, 31]
64	erythroxylisin A	*E. barbatum*	[41]
65	erythroxylisin B	*E. barbatum*	[41]
66	ent-12β-hydroxy-kaur-16-en-19-al	*E. suberosum*	[33]
67	methylent-7β,15α-dihydroxy-kaur-16-en-19-oate	*E. suberosum*	[33]
68	(+)-devadarene	*E. monogynum*	[27]
69	ent-devadaran-15ε,16-diol	*E. monogynum*, *E. barbatum*, *E. macrocarpum*, *E. pictum*, *E. sideroxyloides*	[20, 31] [35, 36]
70	ent-devadaran-1α,11α,15ε,16-tetrol	*E. australe*, *E. areolatum*, *E. sideroxyloides*	[5, 20, 31]
71	ent-1α-acetoxydevadaran-11α,15ε,16-triol	*E. areolatum*	[31]
72	triol Q	*E. monogynum*	[49]
73	ent-11α-acetoxy-devadaran-15ε,16-diol	*E. barbatum*	[35]
74	ent-devadaran-11α,15ε,16-triol	*E. barbatum*	[35]
75	ent-devadaran-1β,15ε,16-triol	*E. barbatum*, *E. monogynum*	[35, 36]
76	ryanodanol	*E. passerinum*, *E. nummularia*	[13]
77	14-O-methyl-ryanodanol	*E. passerinum*	[13]
Fig. 5 Chemical structures of triterpenoids (78–96) found in *Erythroxylum* plants

Table 5 Triterpenoids isolated from *Erythroxylum* plants

No.	Compounds name	Plant source	Refs.
78	β-amyrtin palmitate and stearate	*E. nummularia, E. rimosum*	[44, 46]
79	erythrodiol palmitate and stearate	*E. nummularia*	[44]
80	oleanolic acid	*E. nummularia*	[44]
81	β-amyrtin palmitate	*E. passerinum, E. leal-costae*	[45, 47]
82	3β-hydroxy-11-oxoolean-12-enyl palmitate	*E. passerinum*	[47]
83	3β,11β-dihydroxyolean-12-enyl palmitate	*E. passerinum*	[47]
84	3β,28-dihydroxyolean-12-enyl palmitate	*E. passerinum*	[47]
85	3β-hydroxy-11,12-epoxy-friedoolean-14-enyl palmitate	*E. passerinum*	[47]
86	lupenyl palmitate	*E. leal-costae*	[45]
87	lupenyl acetate	*E. leal-costae*	[45]
88	α-amyrtin esters	*E. rimosum*	[46]
89	α-amyrtin	*E. rimosum*	[46]
90	β-amyrtin	*E. nummularia, E. passerinum, E. rimosum	[44, 46, 47]
91	erythrodiol	*E. passerinum*	[47]
92	lupeol	*E. macrocalyx, E. ovalifolium*	[14, 49]
93	lupenone	*E. macrocalyx, E. daphnites*	[48, 49]
94	friedelanol	*E. daphnites*	[48]
95	friedelan-3-one	*E. daphnites, E. subsessile*	[14, 48]
96	taraxerol	*E. macrocalyx*	[49]
showed significant anti-oxidant and anti-glycation activities in vitro [77].

3 Biological activities of natural products in Erythroxylum

3.1 Bioactivities of diterpenes, triterpenes and sterols
Pharmacological investigation of diterpenes isolated from Erythroxylum species are still scarce despite the large resource found. Diterpene 14-O-methyl-ryanodanol (77) showed insecticidal activity against Aedes aegypti larvae [13], as well as a dose-dependent cytotoxic effect to astrocytes (GL-15 cell line) [78]. Cytotoxicity activities against five tumor cell lines of devadarane derivatives (69, 73–75) were also investigated, but no activity was observed [35]. Exploring and evaluating bioactivities of the numerous diterpenoids found in Erythroxylum species will be essential for further effective utilization of these natural product resources in this genus. For triterpenes, compounds 93–95 were major constituents of the hexane extract of E. daphnites leaves which showed a cytotoxic effect against SCC-9 oral squamous cell carcinoma cell line [48]. Additionally, sterols (193, 194) isolated from E. monogynum possess good anti-oxidant and anti-glycation activities [77]. Additionally, although a large number of flavonoids have been found in Erythroxylum species, these compounds are not specifically distributed in this genus. Readers interested in the details of bioactive flavonoids are referred to the review by Shashank Kumar and coworkers [79].

3.2 Bioactivities of TAs
In Erythroxylaceae family, TAs specially occur in species of Erythroxylum. Until now, a total of 197 TAs compounds have been characterized in Erythroxylum plants. There are plenty of researches on pharmacology activities of TAs in Erythroxylum, especially cocaine. Ophthalmologist Carl Koller first demonstrated the ability of cocaine to induce local anesthesia in eyes [8].

No.	Compounds name	Plant source	Refs.
97	pungencine	E. pungens	[52]
98	6β-benzoyloxy-3α[(4-hydroxy-3,5-dimethoxybenzoyl) oxyl] tropane	E. caatingae	[53]
99	6β,7β-dibenzoyloxytropan-3α-ol	E. subsessilce	[54]
100	7β-acetoxy-6β-benzoyloxy-3α-hydroxytropane	E. macrocalyx	[49]
101	erythrobezerrine A	E. bezerae	[55]
102	erythrobezerrine B	E. bezerae	[55]
103	erythrobezerrine C	E. bezerae	[55]
104	erythrobezerrine D	E. bezerae	[55]
105	erythrobezerrine E	E. bezerae	[55]
106	erythrobezerrine F	E. bezerae	[55]
107	7β-acetoxy-3β,6β-dibenzoyloxytropane	E. rimosum	[46]

Fig. 6 Chemical structures of TAs (97–107) found in Erythroxylum plants after 2010
Fig. 7 Chemical structures of flavonoid aglycones found in Erythroxylum plants
Table 7 Flavonoids isolated from *Erythroxylum* plants

No.	Compounds name	Plant source	Refs.
108	ombuin	*E. nummularia*	[44]
109	ombuin-3-O-rutinoside	*E. alaternifolium, E. campestrum, E. barbatum, E. argentinum, E. tenue, E. daphnites, E. loefgrenii, E. engleri, E. cuneifolium, E. lucidum, E. pruinosum, E. pulchrum, E. squamatum, E. subracesomus, E. subractandum, E. vaccinifolium, E. novogranatense*	[59, 66–71]
110	ombuin-3-O-rutinoside-5-O-glucoside	*E. argentinum, E. cuneifolium, E. pulchrum, E. macroalyx*	[49, 67, 70, 71]
111	quercetin	*E. rimosum, E. lucidum, E. suberosum, E. ovalifolium*	[14, 46, 59]
112	quercetin-3-O-rutinoside	*E. argentinum, E. cambodianum, E. alaternifolium, E. engleri, E. loefgrenii, E. leaf-costae, E. lucidum, E. pruinosum, E. coca, E. suberosum, E. subracesomus, E. ovalifolium, E. rufum, E. ulei*	[4, 10, 14, 45, 59, 66–68, 72, 73]
113	quercetin-3-O-rhamnoside	*E. argentinum, E. cuneatum, E. ulei, E. rufum, E. subsessile, E. daphnites, E. loefgrenii, E. lucidum, E. leaf-costae, E. pruinosum, E. pulchrum, E. suberosum, E. vaccinifolium, E. launifolium, E. macrocarpum, E. hypericifolium*	[14, 45, 59, 67, 68, 73–75]
114	quercetin-3-O-glucoside	*E. daphnites, E. loefgrenii, E. pruinosum, E. rimosum, E. rufum, E. squamatum, E. suberosum, E. subracesomus, E. ulei, E. coca, E. vaccinifolium, E. novogranatense, E. launifolium, E. macrocarpum, E. hypericifolium*	[4, 10, 44, 46, 59, 67, 73, 75]
115	quercetin-3-O-arabinoside	*E. campestrae, E. cuspidifolium, E. pruinosum, E. rufum, E. ramosum, E. ulei, E. suberosum, E. vaccinifolium*	[46, 59, 73]
116	quercetin-3-O-xyloside	*E. campestrae, E. rufum, E. ulei, E. vaccinifolium*	[59, 73]
117	quercetin-3-O-galactoside	*E. rufum, E. ramosum, E. ulei, E. suberosum*	[46, 59, 73]
118	quercetin-3-O-glucosylxyloside	*E. campestrae, E. squamatum, E. suberosum*	[59]
119	quercetin-3-O-glucosylarabinoside	*E. campestrae, E. suberosum*	[59]
120	quercetin-3-O-glucosylglucoside	*E. vaccinifolium, E. ulei*	[59]
121	quercetin-3-O-rhamnoside-7-O-glucoside	*E. vaccinifolium, E. austrole*	[59, 65]
122	quercetin-3,7-O-dirhamnoside	*E. vaccinifolium*	[59]
123	quercetin-4',3-di-O-rhamnoside	*E. coca var. ipadu*	[64]
124	quercetin-4',7-di-O-rhamnoside	*E. ulei*	[63]
125	kaempferol	*E. ramosum*	[46]
126	kaempferol-3-O-glucoside	*E. barbatum, E. loefgrenii, E. rufum, E. squamatum, E. ulei, E. suberosum, E. subracesomus, E. tenue, E. vaccinifolium*	[59, 73]
127	kaempferol-3-O-arabinoside	*E. coca, E. vaccinifolium, E. rufum, E. ulei*	[46, 59, 73]
128	kaempferol-3-O-rhamnoside	*E. loefgrenii, E. pruinosum, E. rufum, E. subsessile, E. tenue, E. ulei, E. vaccinifolium*	[14, 54, 59, 73]
129	kaempferol-3-O-galactoside	*E. rufum, E. ulei, E. vaccinifolium*	[59, 73]
130	kaempferol-3-O-xyloside	*E. rufum, E. suberosum, E. ulei, E. vaccinifolium*	[59, 73]
131	kaempferol-3-O-glucosylxyloside	*E. barbatum, E. campestrae*	[59]
132	kaempferol-3-O-rutinoside	*E. rufum, E. ulei, E. subracesomus, E. tenue*	[59, 73]
133	kaempferol-3-O-arabinofuranoside	*E. ramosum*	[46]
134	kaempferol-3-O-glucosyl-rhamnoside	*E. cuneifolium, E. tenue, E. vaccinifolium*	[59, 71]
135	kaempferol-3-O-arabinoside-7-O-rhamnoside	*E. vaccinifolium*	[59]
136	kaempferol-3-O-rhamnoside-7-O-galactoside	*E. novogranatense var. novogranatense*	[60]
137	kaempferol-3,7-O-dirhamnoside	*E. cuneifolium*	[71]
138	kaempferol-3-O-triacetyltrhamnoside-7-O-triacetylgalactoside	*E. novogranatense var. novogranatense*	[60]
139	kaempferol-4',6'-ethoxy-7-O-galactoside	*E. novogranatense var. novogranatense*	[60]
140	kaempferol-4',6'-O-hamnmosylglucoside	*E. coca var. ipadu*	[64]
141	kaempferol-3,4'-di-O-rhamnoside	*E. coca var. ipadu*	[64]
it was extended to dentistry, urology, laryngology and other fields as a local anaesthetic [80]. In addition, a review by Drake [51] highlighted that cocaine could act as a psychomotor stimulant and also showed toxicity in coabuse and overdoses. Cocaine acts on the mesolimbic dopamine system whose origins begins in the ventral tegmental area and projects to the nucleus accumbens, the amygdala, the hippocampus, and the prefrontal cortex, resulting in a higher concentration of dopamine release into the nucleus accumbens and prefrontal cortex [81]. Previous study also showed that acute cocaine at a dose used by cocaine abusers for recreational purposes induced large increases in intracellular calcium in the cortex of the rat brain and the mechanism were related.
to the local anesthetic actions of cocaine and not its sympathomimetic effects [82]. The cardiovascular mitochondrial dysfunction induced by cocaine is involved in the mechanisms of oxidative stress [83]. Also, Ca\(^{2+}\)/calmodulin-dependent protein kinase II and inhibitory G-protein coupled receptor signaling are involved in the mechanism of the effect of cocaine- and amphetamine-regulated transcript in cocaine reward [84]. There are a number of excellent reviews on the bioactivity, toxicity, and biological mechanisms of cocaine [84–88], and therefore we will not repeat more details here. Additionally, for cocaine-producing *Erythroxylum* plants, cocaine could function as a natural insecticide to protect the leaves [89].

Pervilleine A (reviewed in ref. [6]) from *E. pervil- lei* demonstrated weak nonspecific anticholinergic and vascular antiadrenergic activities [90]. Catuabine B and 3α,6β-dibenzoyloxytropane from *E. vaccinifolium* [53] (reviewed in ref. [6]) showed antimicrobial activity on gram-positive bacteria and fungi [12]. It has also been demonstrated that the *E. cuneatum* leaf alkaloid extract possessed both antioxidative and anti-inflammatory properties [9]. Among the reported biological activities of TAs, cytotoxicity is also noticeable. Araújo Neto et al. [91] summarized the cytotoxic activity of 21 species of *Erythroxylum* against 45 different cell lines and found the species with presence of disubstituted TAs had the highest cytotoxic potentials. Recently, a newly identified tropane alkaloid (6β-benzoyloxy-3α[4-hydroxy-3,5-dimethoxybenzoyloxy] tropane) (98) was demonstrated to possess high antiproliferative activity on liver hepatocellular carcinoma cells (HepG2) with IC\(_{50}\) value of 3.66 μg mL\(^{-1}\). Meanwhile, it showed no cytotoxicity on human lymphoblast cell line [49]. In addition, erythrobezerrine C (103) showed moderate cytotoxicity activity on HCT-116 and NCI-H460, with IC\(_{50}\) values of 3.38 and 5.43 μM, respectively [55]. TAs with antimicrobial [12] and diuretic [92, 93] activities have also been reported. In 1984, Novak [94] reported the bioactivities of TAs from *E. coca* and *E. novogranatense* contained stimulant activity, inhibiting effect on dopamine uptake, and cholinolytic action.
Table 8 Other constituents isolated from *Erythroxylum* plants

No.	Compounds name	Plant source	Refs.
181	apocynol B	*E. cuneatum*	[74]
182	(6,9R)-roseoside	*E. cuneatum*	[74]
183	vomifoliol-9-O-arabinofuranosyl-glucopyranoside	*E. cuneatum*	[74]
184	inamoside	*E. cuneatum*	[74]
185	cuneatoside	*E. cuneatum*	[74]
186	citroside A	*E. cuneatum, E. cambodianum*	[72, 74]
187	(3S,5R,6R,7E,9S)-megastigman-7-ene-3,5,6,9-tetrol-3-O-β-glucopyranoside	*E. cambodianum*	[72]
188	erythroxylosides A	*E. cambodianum*	[72]
189	erythroxylosides B	*E. cambodianum*	[72]
190	neochlorogenic acid	*E. lucidum*	[68]
191	protocatechuic acid	*E. lucidum*	[68]
192	scoparon	*E. barbatum*	[76]
193	4-methyl ergosta-7,23-dien-3β-ol	*E. monogynum*	[77]
194	4-methyl ergosta-7,24(28)-dien-3β-ol	*E. monogynum*	[77]
195	steroids processerol	*E. barbatum*	[76]
196	β-sitosterol	*E. barbatum, E. daphnites, E. rimosum, E. nummularia, E. passerinum*	[44, 46–48, 76]
197	β-sitosterol-O-glucoside	*E. barbatum*	[35]

Table 9 Biological activities of crude extracts of *Erythroxylum* plants

Plant source	Extract Source	Crude extracts	Pharmacological activities	Refs.
E. monogynum	Leaves	Chloroform	Antidiabetic	[95]
E. delagoense	Leaves and bark	Acetonic; Methanol; Aqueous	Hepatoprotective effects; Nephroprotective effects	[95, 101]
E. emarginatum	leaves and stems	Acetonic; Methanol; Aqueous	Antimicrobial; Antioxidant	[95]
E. pictum	Leaves and stems	Acetonic; Methanol; Aqueous	Antiplasmodial; Cytotoxicity	[95, 102]
E. pungens	Roots	Ethanol	Antibacterial	[96]
E. caatingae	Leaves	Ethanol	Myorelaxant	[50]
E. caatingae	Stems	Methanol; Low-polarity fractions	Myorelaxing effect on smooth muscle tissue	[97, 103]
E. macrocarpum	Leaves	Acetone/water (70/30, v/v)	Antimicrobial activity; Cytotoxicity	[12, 53]
E. areolatum	Leaves	Hydroalcoholic	Acetylcholinesterase inhibition	[98]
E. confusum	Leaves	Hydroalcoholic	Antimicrobial activity	[99]
E. minutifolium	Leaves	n-Hexane	Antiherpetic activity	[99]
E. confusum	Leaves	n-Hexane	Hepatoprotective effects	[100]
E. ovalifolium	Stems	Ethanol	Hepatoprotective effects	[100]
E. subsessile	Stems	Ethanol	Neutralize toxicity of snake venom	[14]
E. subglandulifer	Leaves	n-Hexane	Neutralize toxicity of snake venom	[14]
E. daphnites	Leaves	n-Hexane	Anti-proliferative effects	[48]
3.3 Bioactivities of crude extracts

In addition to research on single compound, many studies have been carried out on the biological activities of crude extracts of Erythroxylum plants (Table 9). E. monogynum is rich in alkaloids and diterpenes. In 2019, Dhanunjaya et al. [95] summarized that crude extracts of this species had multiple bioactivities, such as antioxidant, antihyperlipidemic, antidiabetic, antiplasmodial and hepatoprotective. Particularly, leaf and bark extracts of E. delagoense, E. emarginatum, or E. pictum, showed great antibacterial activities [96]. Ethanolic extract obtained from the roots of E. pungens could induce dose-dependent hypotension and tachycardia in conscious rats, as well as vasorelaxation in mesenteric artery ring preparations in vitro [50]. Ethanolic extract of E. caatingae has a relaxant effect on ovine cervical contractions [97]. Besides, low-polarity fractions of this species showed significantly high cytotoxicity activity against the NCI-H292, HEP-2 and K562 cell lines [12]. Furthermore, acetone/water (70/30, v/v) extract of E. macrocarpum is a significant inhibitor of acetylcholinesterase [98]. Hydroalcoholic extracts of E. areolatum or E. confusum showed antinociceptive activity [99]. For the antitumor activity, when mice were treated with different doses of methanol extract of E. caatingae, a significant reduction in their tumor weight was observed [53]. Moreover, extracts of E. minutifolium or E. confusum showed hepatoprotective effects [100]. Crude extracts, fractions, or isolated products of E. ovalifolium or E. subsessile were demonstrated to inhibit toxic effects of the snake (Lachesis muta) venom, providing a new strategy for antivenom treatment [14].

4 Conclusions and prospecting

Based on the current progress in phytochemistry of the Erythroxylum [6], there is no doubt that TAs are the largest class of compounds found in this genus (197 of 383 compounds). In the past years, their remarkable pharmacological activities have made this class of compounds receive more attention than others [49, 52, 104]. However, many other types of active compounds have been found in Erythroxylum along with the broadening and deepening of phytochemical research. A summary of the structure and distribution of these compounds is essential for in-depth understanding and utilization of plant resources of this genus. Based on the literature, a total of 383 compounds from Erythroxylum have been reported, among which only 186 tropane alkaloids have been reviewed in 2010. In this review, we summarized all remained 197 compounds characterized from 53 Erythroxylum species from 1960 to 2021, including 11 skeleton-types of diterpenes (1-77) isolated from 18 Erythroxylum species, 19

Fig. 9 The proposed cocaine biosynthesis pathway in E. coca. The following enzymes are depicted in the figure above: ADC (arginine decarboxylase), ODC (ornithine decarboxylase), AIH (arginine iminohydrolase), PMT (putrescine methyltransferase), MPO (N-methylputrescine oxidase), PYKS (pyrrolidine ketide synthase), P450 (cytochrome 450), MT (methyltransferase), MecgoR (methylecgonone reductase), CS (cocaine synthase)
triterpenoids obtained from 8 Erythroxylum species, 11 TAs found in 6 species after 2010, 73 flavonoids from 37 Erythroxylum species, and 17 other constituents (norisoprenoids, phenolic derivatives and their glycosides, and steroids). Among these compounds, most diterpenes were isolated from the timber or roots of the plants, triterpenes were identified from aerial organs, flavonoids were distributed in leaves or branches, while others had no obvious tissue- or organ-specific distributions. Significant biological activities, including anaesthetic [8], anti-oxidative [9, 10], anti-inflammatory [9], cytotoxic [11], anticancer [12], and insecticidal activities [13], as well as neutralization of snake venom [14], have been demonstrated for isolated products or crude extracts from some species of Erythroxylum. However, potential activity of most compounds is still unknown. In-depth biological activity studies on compounds obtained will be the basis for exploring potential medicinal resources in this genus. Additionally, some of the diterpenes were suggested to serve as the defensive components to protect the Erythroxylum plants from herbivores, pathogens, or other environmental challenges. Therefore, they could be used as potential bioinsecticides in agriculture in the future.

Elucidation of natural product biosynthetic pathways has been proved to be highly useful for natural products discovery, structure identification and subsequent heterologous synthesis. In Erythroxylum plants, TAs and diterpenes are representative phytoconstituents. Biochemists and molecular biologists have long sought to identify the biosynthetic pathways of TAs, especially cocaine, through isotope labeled precursor feeding studies and gene cloning and characterization [105–110]. As a result, incomplete biosynthetic route of cocaine starting from arginine and ornithine and passing through putrescine, methyl-ecgonine, and methylecgonine has been established [7, 110] (Fig. 9), though further studies are still essential to elucidate the missing steps. Studies focusing on the biosynthesis pathway of diterpenes in Erythroxylum plants have not been reported till now. However, the kaurene-type (Fig. 1i) diterpene synthase that is responsible for the formation of ent-kaurene, the universal biosynthetic intermediate of gibberellin, has been identified in many other plants [111–113]. Besides, ent-beyerene synthase, which is the key diterpene cyclase required for generating ent-beyerene type diterpenes (Fig. 1h), has been characterized in monocotyledonous rice (Oryza sativa L.) [114]. Still, much more researches needed to be done for better understanding the biosynthetic mechanisms and diversity of diterpenes identified in Erythroxylum.

Acknowledgements
This research was supported by the National Key R&D Program of China (2018YFA0900600), the National Science Foundation of China (U1902212 and 32000239), the Foundations of Yunnan Province (2019FJ007 and 2019ZF011–2), the Strategic Priority Research Program of the CAS (XDB27020205), and the Key Research Program of Frontier Sciences of the CAS (QY2DB-SWW-SMCDS1).

Author contributions
YL, TT and Y-J W collected the related references and prepared chemical compounds structures; YL and J-P H wrote the manuscript; J-P H and S-X H reviewed and edited the manuscript. All authors read and approved the final manuscript.

Declarations
Competing interests
The authors declare no conflict of interest.

Author details
1 State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China. 2 University of Chinese Academy of Sciences, Beijing 100049, China. 3 State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.

Received: 3 January 2022 Accepted: 28 March 2022

Published online: 14 April 2022

References
1. Evans WC. The comparative phytochemistry of the genus Erythroxylon. J Ethnopharmacol. 1981;3:265–77.
2. Ploowman T, Hensold N. Names, types, and distribution of neotropical species of Erythroxylon (Erythroxylaceae). Brittonia. 2004;56:1–53.
3. Niemann A. Ueber eine neue organische base in den cocablätern. Arch Pharm (Weinheim). 1860;153:129–55.
4. Hegnauer R. Chemotaxonomy of Erythroxylaceae (including some ethnobotanical notes on old world species). J Ethnopharmacol. 1981;2:79–92.
5. Ansell SM, Pegel KH, Taylor DHA. Diterpenes from the timber of Erythroxylon austral. Phytochemistry. 1993;32:937–43.
6. Oliveira SL, da Silva MS, Tavares JF, Sena-Filho JG, Lucena HFS, Romero MAV, Barbosa-Filho JM. Tripane alkaloids from Erythroxylum genus: distribution and compilation of 13C-NMR spectral data. Chem Biodivers. 2010;7:302–26.
7. Restrepo DA, Saenz E, Jara-Munoz OA, Calixto-Botia IF, Rodriguez-Botia IF, Rodriguez-Suarez S, Zuleta P, Chavez BG, Sanchez JA, D’Auria JC. Erythroxylum in focus: an interdisciplinatory review of an overlooked genus. Molecules. 2019;24:3788.
8. Redman M. Cocaine: what is the crack? A brief history of the use of cocaine as an anesthetic. Anesth Pain Med. 2011;1:95–7.
9. Li LS, Chiroma SW, Hashim T, Adam SK, Mohd Moklas MA, Yusuf Z, Rahman MA. Antioxidant and anti-inflammatory properties of Erythroxylum cuneatum alkaloid leaf extract. Heliyon. 2020;6:e04191.
10. De I, Barros C, Leite B, Leite C, Fagg C, Gomes S, Resck I, Fonseca Y, Magalhães P, Silveira D. Chemical composition and antioxidant activity of extracts from Erythroxylum suberosum A.Sil HeLLeaves. J Appl Pharm Sci. 2017;7:88–94.
11. Satoh M, Satoh Y, Fujimoto Y. Cytotoxic constituents from Erythroxylum cuneatum isolation and cytotoxic activities of cinchonin. Nat Med. 2000;50:97–100.
12. Aquiras JS, Araujo RO, Rodrigues MD, Seita AX, Batista AM, Guerra MM, Oliveira SL, Tavares JF, Silva MS, Nascimento SC, da Silva TG. Antimicrobial, antiproliferative and proapoptotic activities of extract, fractions and isolated compounds from the stem of Erythroxylum caatingae Ploowman. Int J Mol Sci. 2012;13:4124–40.
13. Barreiro LS, David JP, David JM, Lopes LMX, de Sa MS, Costa JFO, Almeida MZ, de Queiroz LP, Sant’Ana AEG. Ryonodane diterpenes from two Erythroxylum species. Phytochemistry. 2007;68:1735–9.
14. Coriolano de Oliveira E, Alves Soares Cruz R, de Mello Amorim N, Guerra Santos M, Carlos Simas Pereira Junior L, Flores Sanchez ED, Pinho Fernandes C, Garrett R, Machado Rocha L, Lopes Fuly A. Protective effect of the plant extracts of *Erythroxylum* sp. against toxic effects induced by the venom of *Lachesis muta* snake. Molecules. 2016;21:1350.

15. Aynilian GH, Duke JA, Gentner WA, Farnsworth NR. Cocaine content of American *Erythroxylum* species. J Pharm Sci. 1974;63:1938–9.

16. Holmstedt B, Jaatmaa E, Leander K, Ploovman T. Determination of cocaine in some south American species of *Erythroxylum* using mass fragmentography. Phytochemistry. 1977;16:1753–5.

17. Bieri S, Bracht A, Veuthey JL, Christen P. Cocaine distribution in wild *Erythroxylum* species. J Ethnopharmacol. 2006;103:439–47.

18. Rodrigues GA, Souza WC, Godinho MGC, Ferreira HD, Vila Verde GM. Determinação de parâmetros farmacognósticos para as folhas de *Erythroxylum suberosum* A. St.-hilaire (*Erythroxylaceae*) coletadas no município de Goiânia, GO. Rev Bras de Plantas Med. 2013;17:1169–76.

19. Johnson EL, Foy CD. Biomass accumulation and alkaloid content in leaves of *Erythroxylum coca* and *Erythroxylum novogranatense* var. novogranatense grown in soil with varying pH. J Plant Physiol. 1994;149:444–50.

20. Ansell SM, Pegel KH, Taylor DAH. Diterpenes from the timber of *Erythroxylum* pictum. Phytochemistry. 1993;32:945–52.

21. Connolly JD, McCrindle R, Murray RDH, Overton KH. Constituents of *Erythroxylon monogynum* Roxb. II. *Erythroxylidols X and Y* and *X and Y* 2-0-skeletal types of diterpenoids. Tetrahedron Lett. 1964;5:1859–66.

22. Connolly JD, McCrindle R, Murray RDH, Renfrew AJ, Overton KH, Melera A. Constituents of *Erythroxylon monogynum* Roxb. II. *Erythroxylidols X, Y and Z* and 2-0-skeletal types of diterpenoids. J Chem Soc C. 1966:268–273.

23. Connolly JD, Gunn DM, McCrindle R, Murray RDH, Overton KH. Constituents of *Erythroxylon monogynum* Roxb. III. *Erythroxyltriols P and Q*. Tetrahedron Lett. 1966:2109–2113.

24. J.D. Connolly, A.E. Harding. Constituents of *Erythroxylum* species. VII. Diterpenoids from *Erythroxylum austrole*. J Chem Soc Perkin Trans 1. 1972:1996–2000.

25. Kapadi AH, Dev S. The diterpenoids of *Erythroxylum monogynum*. I Monogynol. Tetrahedron Lett. 1964;5:1171–80.

26. Kapadi AH, Dev S. The diterpenoids of *Erythroxylum monogynum*. III. Futher constituents, the absolute stereochemistry of monogynol, and hydroxymonogynol. Tetrahedron Lett. 1964;5:2751–7.

27. Kapadi AH, Sobti RR, Dev S. Diterpenoids of *Erythroxylum monogynum*. V. *Atisirene* osaisotiene and devadaene. Tetrahedron Lett. 1965;6:2729–35.

28. Nakatani N, Kikuzaki H, Yamaji H, Yoshio K, Kitoca C, Okada K, Padolina WG. Labdane diterpenes from *Hedychium sp.* against toxic effects induced by *Erythroxylum* extracts. Phytochemistry. 1994;37:1383–8.

29. Taisdemir D, Sticher OH, Calis I, Linden A. Further labdane diterpenoids isolated from *Leumurus persicus*. J Nat Prod. 1997;60:874–9.

30. Chimno M, Peuletoengpong S, Ngwusa L, Dechtrrit D, Chokhachamnanit D, Kunnawutmanothorn N, Mahidal C, Techasakul S. Labdane diterpenoids from the rhizomes of *Hedychium coronarium*. Nat Prod Res. 2008;22:1249–56.

31. Ansell SM, Pegel KH, Taylor DAH. Diterpenoids from the timber of 20 *Erythroxylum* species. Phytochemistry. 1993;32:953–9.

32. Ribeiro EMDO, Lima LS, David JM, da Vale AE, Lopes LMX, David JP. A new tropane alkaloid and other constituents of *Erythroxylum innoonus*. Phytochem Lett. 2013;6:232–5.

33. Ansel SJ, Mendo‐Junior LG, Mendes‐Junior LG, Anjos RM, Ribeiro TP, Barreiros ML. *Erythroxylum* monogynum. II. Devadarool, a new type in tetracyclic diterpenoids. Tetrahedron Lett. 1964;5:1181–5.

34. Ferguson G, Fulke JW, McCrindle R. The crystal structural and stereochemistry of triol Q from *Erythroxylum monogynum* Roxb. Chemical Commun (London). 1966:691–692.

35. Barreiros ML, David JM, de Queiroz LF, David JP. Flavoronoids and triterpenes from leaves of *Erythroxylum nummulatina*. Biochem Syst Ecol. 2005;33:537–40.

36. Chavez JP, DoSantos ID, Cruz FG, David JPM. Flavoronoids and triterpenester derivatives from *Erythroxylum leutei*. Phytochemistry. 1996:41941–41.

37. Ribeiro EMDO, Lima LS, David JM, do Vale AE, Lopes LMX, David JP. A new tropane alkaloid and other constituents of *Erythroxylum innoonus*. Phytochem Lett. 2013;6:232–5.

38. Martin A, Murray RDH. Constituents of *Erythroxylum monogynum* Roxb. IV. 2-nortriterpenoid tertiary alcohols and 3 diterpenoid epoxides. J Chem Soc C. 1968;2529–2533.

39. Kapadi AH, Dev S. The diterpenoids of *Erythroxylum monogynum*. III. Futher constituents, the absolute stereochemistry of monogynol and hydroxymonogynol. Tetrahedron Lett. 1964:2751–2757.

40. Tennakoon T, Gunaherath G, de Silva KTD, Padumadasa C, Wijesundara DSA, Ayubsekera AM. *Auto‐oxidation of ent‐beyer‐15‐en‐19‐al isolated from the essential oil of the heartwood of *Erythroxylum monogynum* Roxb.: formation of 15,16‐epoxy‐ent‐beyeran‐19‐ionic acid and other products*. BMC Chem. 2020;14:18.
58. Novak M, Salemink CA. The essential oil of Erythroxylum coca. Planta Med. 1987;53:113–113.

59. Bohm BA, Loo T, Nichols KW, Plowman T. Flavonoid variation in Erythroxylum. Phytochemistry. 1988;27:833–7.

60. Johnson EL, Schmidt WF, Norman HA. Leaf flavonoids as chemotaxonomic markers for two Erythroxylum taxa. Z Naturforsch (C). 1997;52:577–85.

61. Johnson EL, Schmidt WL, Norman HA. Leaf flavonoids as chemotaxonomic markers for two Erythroxylum taxa. Am J Bot. 1997;84:157–157.

62. Johnson EL, Schmidt WF, Norman HA. Flavonoids as markers for Erythroxylum taxa: E. coca var. jaspidi and E. novogranatense var. travillense. Biochem Syst Ecol. 1998;26:743–59.

63. Johnson EL, Schmidt WF. Flavonoids as chemotaxonomic markers for Erythroxylum ulei. Z Naturforsch (C). 1999;54:881–881.

64. Johnson EL, Schmidt WF, Cooper D. Flavonoids as chemotaxonomic markers for cultivated Amazonian coca. Plant Physiol Biochem. 2002;40:899–909.

65. Johnson EL, Schmidt WF. Flavonoids as chemotaxonomic markers for Erythroxylum austrole. Z Naturforsch (C). 2004;59:769–769.

66. Cordova WHP, Matos MG, Tabart J, Sipel A, Kevers C, Dommes J. In vitro characterization of antioxidant properties of cuban endemic varieties of Erythroxylum alaternifolium. J Chil Chem Soc. 2012;57:1340–3.

67. Inigo RPA, Pomilio AB. Flavonoids from Erythroxylon argenteum. Phytochemistry. 1985;24:347–9.

68. Guldbrandsen N, De Mieri M, Gupta M, Seiser T, Wiebe C, Dickhaut J, Bonefeld M, Friedrich H, Kolodziej H. (Erythroxylum coca). Phytochemistry. 1997;52:577–85.

69. Guldbrandsen N, De Mieri M, Gupta M, Seiser T, Wiebe C, Dickhaut J, Bonefeld M, Friedrich H, Kolodziej H. (Erythroxylum coca). Phytochemistry. 1997;52:577–85.

70. Inigo RPA, Pomilio AB. Flavonoids from Erythroxylon argenteum. Phytochemistry. 1985;24:347–9.

71. Inigo RPA, Pomilio AB. Flavonoids from Erythroxylon argenteum. Phytochemistry. 1985;24:347–9.

72. Kanchanapoom T, Noxana T, Thienthong P, Ottsuka H, Ruchirawat S. Acetophenone diglycosides from Erythroxylum cambodianum. Chem Pharm Bull. 2005;53:579–81.

73. Bohm BA, Phillips DW, Ganders FR. Flavonoids of Erythroxylum rufum and Erythroxylum ulei. J Nat Prod. 1981;44:676–9.

74. Kanchanapoom T, Srikasitchan J, Ottsuka H, Ruchirawat S. Cuneatoide, a new megastigmane diglycoside from Erythroxylum cuneifolium Blume. J Asian Nat Prod Res. 2006;8:747–51.

75. Gurb-Fakim A, Marie D, Narot F. The pharmacological properties of the isolated bioactive compounds from endemic medicinal plants of Mauritius. Paper Presented at the 3rd World Congress on Medicinal and Aromatic Plants (WOCMAP-III), Chiang Mai, Thailand, Feb 03–07, 2003.

76. dos Santos CC, Lima MAS, Silveira ER. Micromolecular secondary metabolites of Erythroxylum barbatum. Biochem Syst Ecol. 2003;31:661–4.

77. Bindu G, Surpeeddi RK. Development and validation of HPTLC method for identification and quantification of sterols from leaves of Erythroxylum novogranatense. J Ethnopharmacol. 2011;10:11511–4.

78. Ramhit P, Ragoo L, Bahorun T, Neergheen-Bhujun VS. Multi-targeted effects of untapped resources from the Mauritian endemic flora. S Afr J Bot. 2018;115:208–16.

79. Gonzalez-Guevara JL, Gonzalez-Lavaut JA, Pino-Rodriguez S, Garcia-Tejada. J Ethnopharmacol. 2013;153:33–119.

80. Syed SH, Namdeo AG. Hepatoprotective effect of leaves of Erythroxylum novogranatense Roxb. on paracetamol induced toxicity. Asian Pac J Trop Biomed. 2013;3:506–9.

81. Rodeiro I, Donato MT, Martiniz I, Hernandez J, Garrido G, Gonzalez-Lavaut JA, Menendez R, Laguna A, Castell JV, Gomez-Lechon MJ. Potential hepatoprotective effects of new Cuban natural products in rat hepatocytes culture. Toxicol In Vitro. 2008;22:1242–9.

82. Kohnen-Johannsen KL, Kayser O. Tropane alkaloids: chemistry, pharmacology, biosynthesis and production. Molecules. 2019;24:796.
105. Leete E. Biosynthesis of cocaine and cuscohygrine from [1-14C]-labeled acetate and [4-3H]-labeled phenylalanine in *Erythroxylum coca*. Phytochemistry. 1983;22:699–704.

106. Bjorklund JA, Leete E. Biosynthesis of the benzoxy moiety of cocaine from cinnamic acid via (R)-(+) 3-hydroxy-3-phenylpropionic acid. Phytochemistry. 1992;31:3883–7.

107. Newquist ML, Abraham TW, Leete E. Biosynthetic incorporation of ethyl (R)(-) 2,3-13C2,3-14C)-4-(1-methyl-2-pyrrolidinyl)-3-oxobutanoate into cuscohygrine in *Erythroxylum coca*. Phytochemistry. 1993;33:1437–40.

108. Docimo T, Reichelt M, Schneider B, Kai M, Kunert G, Gershenzon J, D’Auria JC. The first step in the biosynthesis of cocaine in *Erythroxylum coca*: the characterization of arginine and ornithine decarboxylases. Plant Mol Biol. 2012;78:599–615.

109. Schmidt GW, Jirschitzka J, Porta T, Reichelt M, Luck K, Torre JC, Dolke F, Varesio E, Hopfgartner G, Gershenzon J, D’Auria JC. The last step in cocaine biosynthesis is catalyzed by a BAHD acyltransferase. Plant Physiol. 2015;167:89–101.

110. Huang JP, Wang YJ, Tian T, Wang L, Yan YJ, Huang SX. Tropane alkaloid biosynthesis: a centennial review. Nat Prod Rep. 2021;38:1634–58.

111. Graebe JE. Gibberellin biosynthesis and control. Annu Rev Plant Physiol Plant Molec Biol. 1987;38:419–65.

112. Su P, Tong Y, Cheng Q, Hu Y, Zhang M, Yang J, Teng Z, Gao W, Huang L. Functional characterization of ent-copalyl diphosphate synthase, kaurene synthase and kaurene oxidase in the *Salvia miltiorrhiza* gibberellin biosynthetic pathway. Sci Rep. 2016;6:23057.

113. Zhou K, Xu M, Tiernan M, Xie Q, Toyomasu T, Sugawara C, Oku M, Usui M, Mitsuhashi W, Chono M, Chandler PM, Peters RJ. Functional characterization of wheat ent-kaurene-like synthases indicates continuing evolution of labdane-related diterpenoid metabolism in the cereals. Phytochemistry. 2012;84:47–55.

114. Tezuka D, Ito A, Mitsuhashi W, Toyomasu T, Imai R. The rice ent-kaurene synthase like 2 encodes a functional ent-beyerene synthase. Biochem Biophys Res Commun. 2015;460:766–71.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.