Error estimation in the histogram Monte Carlo method

M. E. J. Newman
Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501

R. G. Palmer
Department of Physics, Box 90305, Duke University, Durham, North Carolina 27708

(February 12, 2022)

We examine the sources of error in the histogram reweighting method for Monte Carlo data analysis. We demonstrate that, in addition to the standard statistical error which has been studied elsewhere, there are two other sources of error, one arising through correlations in the reweighted samples, and one arising from the finite range of energies sampled by a simulation of finite length. We demonstrate that while the former correction is usually negligible by comparison with statistical fluctuations, the latter may not be, and give criteria for judging the range of validity of histogram extrapolations based on the size of this latter correction.

I. INTRODUCTION

Monte Carlo simulations have a long and interesting history. As a tool for studying physical systems (rather than for performing integrals), they date back at least as far as the pioneering work on neutron diffusion by Enrico Fermi in the 1930s [1], but Monte Carlo methods really came to prominence in the fifties following the calculations on hard-sphere gases and other simple systems performed by Ulam, Metropolis, von Neumann and others using the early digital computers at Aberdeen and Los Alamos [2]. In the last three decades, with the availability of ever-increasing amounts of computer power, the Monte Carlo method has become one of the most important tools in the statistical physicist’s tool-box.

Although the name Monte Carlo covers a multitude of different ideas and techniques, we concentrate in this paper on the simulation of classical models in thermal equilibrium. All equilibrium Monte Carlo calculations revolve around the same fundamental idea. One generates a number of states $i = 1, \ldots, n$ of the system of interest and measures for each one the total energy E_i and any other quantities of interest X_i, Y_i, etc. Normally all states i are not generated equally probably, but with varying probabilities p_i, a technique known as importance sampling. The best estimate of the thermal average $\langle X \rangle$ of a quantity X is then given by

$$\langle X \rangle = \frac{\sum_i X_i p_i^{-1} e^{-\beta E_i}}{\sum_i p_i^{-1} e^{-\beta E_i}},$$

where $\beta = (kT)^{-1}$ is the inverse temperature and k is the Boltzmann constant. In some cases, particularly in systems which display symmetry- or ergodicity-breaking, we may not in fact wish to calculate an average over all states in this way [3]. For the purposes of this paper however, we assume that we are working with ergodic systems for which expectations of the form (1) are physically meaningful.

The most common choice by far for the probabilities p_i is to make them proportional to the Boltzmann weight of the corresponding state at the temperature of interest

$$p_i \propto e^{-\beta E_i},$$

in which case Equation (1) reduces to a simple average over the measurements X_i. Many other choices have been investigated however, including simple or uniform sampling [4] in which p_i is a constant independent of i, entropic sampling [5] in which p_i is proportional to the reciprocal of the density of states at energy E_i, and $1/k$ sampling [6] in which p_i is proportional to the reciprocal of the integrated density of states. In the present paper we investigate the case in which the states are sampled with probabilities proportional to their Boltzmann weights, but at a temperature T_0 different from the temperature at which we wish to calculate $\langle X \rangle$. In other words, we imagine performing a normal thermal Monte Carlo simulation at a temperature T_0, and then ask for the best estimate of the expectation of X at a different temperature T. Making the replacement $\beta \rightarrow \beta_0$ in Equation (2) and substituting into (1), we obtain

$$\langle X \rangle = \frac{\sum_i X_i e^{-(\beta - \beta_0) E_i}}{\sum_i e^{-(\beta - \beta_0) E_i}}.$$

This is not a new result. Already in 1972, Valleau and Card [4] pointed out that it is possible in theory to extract a value for $\langle X \rangle$ at any temperature from the results of a single thermal Monte Carlo simulation using an equation of this type. Their results were rediscovered and extended in 1988 by Ferrenberg and Swendsen [8], who dubbed this technique the “single histogram method”. The name is something of a misnomer, since the method’s application does not necessarily involve the construction of any histograms. Ferrenberg and Swendsen’s formulation however was in terms of histograms and, as we will see, it is often convenient to represent the method in this way.

Defining the double histogram $H(E, X)$ to be the number of states i sampled for which $E_i = E$ and $X_i = X$, we can rewrite Equation (3) in the form
If we define a set of weights

\[W \]

then Equation (4) can be rewritten as a weighted average over \(X \):

\[X = \frac{\sum_{E,X} X H(E,X) e^{-(\beta - \beta_0)E}}{\sum_{E,X} H(E,X) e^{-(\beta - \beta_0)E}}. \]

(6)

Note that \(W(E,X) \) and \(H(E,X) \) become equal when \(\beta = \beta_0 \). In effect, \(W(E,X) \) is an estimate of the value of the histogram \(H(E,X) \) at the temperature of interest.

It is possible to write an equation similar to (3) for parameters other than the temperature, allowing us to extrapolate the results of a single simulation to other values of any external field appearing in the Hamiltonian. It is also straightforward to generalize the histogram method to non-Boltzmann sampling schemes. Here however we concentrate on the simple case described above.

In this paper we explore the sources of error in histogram extrapolations. The statistical errors inherent in the method have been discussed at some length elsewhere [9], and it is not our intention to reproduce previous results here. We focus instead on two important sources of error which have been neglected in previous studies. In Section II we discuss errors introduced as a result of the finite range of energies sampled in a simulation of finite length, and show that in certain temperature regimes this, and not statistical fluctuation, is the dominant source of error. In Section II we discuss errors introduced by the correlation between fluctuations in the numerator and denominator of Equation (3). In Section II we discuss corrections to the normal expression for the statistical errors arising from the previous analysis and show that to leading order these corrections are negligible. In Section II we give our conclusions.

II. FINITE SAMPLE SIZE ERRORS

Suppose that we perform a single Monte Carlo simulation at temperature \(T_0 \) on some system of interest, and that this simulation samples \(n \) states of the system at intervals of \(\tau_s \) Monte Carlo steps. We assume in this paper that \(\tau_s \) is much greater than the correlation time \(\tau \) of the simulation algorithm used (also measured in Monte Carlo steps) so that the states may be considered to be statistically independent. More generally, if \(\tau_s \) and \(\tau \) are comparable, then the variance in a measured quantity is increased by a factor of \(1 + 2\tau / \tau_s \) over its value for uncorrelated samples [9]. All the results given in this paper can be generalized to this case in a straightforward manner; see Ref. [9] for a thorough exploration of this issue.

![FIG. 1. The weight function \(W(E) \) for a 32 \times 32 Ising ferromagnet on a square lattice in two dimensions, calculated at four different temperatures from a single simulation at the critical temperature \(T_c = 2.269 \) of the infinite system. The curves shown are (left to right) for \(T = T_c, 2.3, 2.4, \) and 2.6.](image)

In the limit of an infinite number of independent samples, \(n \to \infty \), Equation (3) is exact and correctly gives the value of \(\langle X \rangle \) at all temperatures. In practice, however, \(n \) is always finite, and this limits the range over which the extrapolation is valid. In Figure 1 we show an example of the use of the single histogram method to calculate the internal energy of a two-dimensional Ising model in zero field. The case of the internal energy is particularly simple, since the weight function \(W(E,X) \) reduces in this case to a function \(W(E) \) of a single variable \(E \), the energy of the states sampled in the simulation. The figure shows the calculated value of this function for a variety of different temperatures at distances increasingly far from the temperature \(T_0 \) of the original simulation. For small deviations from \(T_0 \) the calculated value of \(W(E) \) is a good approximation to the histogram \(H(E) \) which would be generated by a simulation performed at temperature \(T \). However as \(T \) strays farther from \(T_0 \), the value of \(W(E) \) becomes an increasingly poor representation of the correct histogram, as can be seen in the figure. The source of this problem is clear: a finite-\(n \) Monte Carlo simulation samples energies in only a rather narrow range around the value \(U(T_0) \) of the equilibrium internal energy of the system at \(T_0 \). Extrapolation of the results to temperatures \(T \) for which the true histogram \(H(E) \) would possess significant contributions at energies outside this range is therefore guaranteed to give poor results. In the particular case of the internal energy, it is clear that if the highest energy sampled by our simulation is \(E_+ \), then no reweighting of our histogram can ever produce an estimate of \(U(T) \equiv \langle E \rangle \) greater than \(E_+ \), regardless of the true value.

The usual rule of thumb for estimating the range of validity of the extrapolation is to require that the mean of the reweighted distribution \(W(E) \), which is just the
internal energy $U(T)$, should be less than σ_E away from the mean $U(T_0)$ of the histogram $H(E)$, where σ_E is the standard deviation of $H(E)$. Since σ_E is related to the specific heat C at T_0 according to $C(T_0) = \frac{k_B^2 \sigma_E^2}{E}$, we can also express this condition in terms of $C(T_0)$ as

$$ [U(T) - U(T_0)]^2 < kT_0^2 C(T_0). \quad (7) $$

Equation (7) can be simplified further if we make the derivative approximation

$$ U(T) - U(T_0) \approx (T - T_0) \frac{dU}{dT} \bigg|_{T_0} = \Delta T C(T_0), \quad (8) $$

where $\Delta T \equiv T - T_0$ is the temperature range over which we are extrapolating. Employing this approximation, our condition becomes

$$ \left(\frac{\Delta T}{T_0} \right)^2 < \frac{kT_0}{C(T_0)}. \quad (9) $$

This condition is intuitively easy to understand and in most cases is a reasonable guide for applying the histogram method. However, as we will demonstrate, the actual range of validity of the method can deviate arbitrarily far from the value of ΔT given by Equation (7), depending on the number n of samples generated by the Monte Carlo simulation.

We now construct a more accurate criterion for the extrapolation range. The basic idea is to make an estimate of the energy E_+ above which there are no samples, and then to approximate the error introduced into our extrapolation by assuming that the histogram is accurate up to E_+, and contains no samples thereafter. We do the same for the lower limit E_- of the histogram. A variation on this idea would be to restrict the extrapolation to a range of energies such that some prescribed fraction of the samples in the histogram fall within that range. However, since the tails of the histogram typically decay exponentially or faster, these two approaches give approximately the same results.

Consider the ideal histogram $H(E)$, which we define to be the value of the histogram $H(E)$ averaged, bin by bin, over an infinite number of simulations which generate n samples each. We then approximate the histogram resulting from a single simulation by

$$ H(E) = \begin{cases} \frac{n}{n'} H(E) & \text{if } E_- < E < E_+ \\ 0 & \text{otherwise}. \end{cases} \quad (10) $$

The factor n/n', where $n' = \int_{E_-}^{E_+} H(E) \, dE$, is a normalizing factor which ensures that the integral of $H(E)$ over E is correctly equal to n. The values of E_+ and E_- are defined naturally by

$$ H(E_{\pm}) = a, \quad (11) $$

where a is a constant of order unity.

Making this approximation, the extrapolated internal energy $U(T)$ can be written as

$$ \Delta U = U(T) - U(T_0) $$

$$ = \frac{\int E e^{(\beta - \beta_0)E} H(E) \, dE - \int E e^{(\beta - \beta_0)E} H(E) \, dE}{\int e^{(\beta - \beta_0)E} H(E) \, dE} $$

$$ - \frac{\partial}{\partial \beta} \log \int_{E_-}^{E_+} e^{(\beta - \beta_0)E} H(E) \, dE. \quad (12) $$

In order to proceed we make a Gaussian approximation for $H(E)$:

$$ H(E) \approx \frac{n}{\sqrt{2\pi} \sigma_E} \exp\left(-\frac{[E - U(T_0)]^2}{2\sigma_E^2}\right). \quad (13) $$

This assumption is an excellent guide for the behavior of most systems at temperatures well above $T = 0$. For instance, in the Ising system of Figure 1 it gives log $H(E)$ within a few percent over more than a hundred orders of magnitude of $H(E)$.

Using Equation (13) and another derivative approximation:

$$ (\beta - \beta_0) \sigma_E^2 = -\frac{\partial}{\partial \beta} \log H(E) \bigg|_{\beta_0} \approx U(T_0) - U(T), \quad (14) $$

we complete the square to obtain

$$ H(E) e^{-(\beta - \beta_0)E} \approx \frac{n}{\sqrt{2\pi} \sigma_E} f(\beta) \exp\left(-\frac{[E - U(T_0)]^2}{2\sigma_E^2}\right), \quad (15) $$

where

$$ f(\beta) = \frac{\exp\left(U^2(T) - U^2(T_0)\right)}{2\sigma_E^2}. \quad (16) $$

is a shorthand for all the terms in the exponential which depend on β but not on E. Substituting Equation (15) into (12) and performing the integral leads to

$$ \Delta U = \frac{\partial}{\partial \beta} \log \left[\frac{n}{\sqrt{2\pi} \sigma_E} \exp\left(-\frac{[E - U(T)]^2}{2\sigma_E^2}\right) \right]_{E_+} $$

$$ = \sqrt{2\sigma_E^2} \pi \exp(-x_+^2) - \exp(-x_-^2), \quad (17) $$

where $\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} \, dt$ is the Gaussian error function, and

$$ x_{\pm} = \frac{E_{\pm} - U(T)}{\sqrt{2\sigma_E^2}} = \pm \frac{\log n}{\sqrt{2\pi} \sigma_E} - \frac{\sigma_E \Delta T}{\sqrt{2kT_0}}, \quad (18) $$

using Equations (3), (11) and (13).

Between them, Equations (17) and (18) give us an estimate of the deviation of the extrapolation of U from its true value as a function of the number of samples n and the temperature range ΔT over which we extrapolate.
As a test of this calculation we have plotted in Figure 2 the value of ΔU measured in simulations of a 100×100 Ising model on a square lattice in two dimensions. The data points with error bars show the difference between the true internal energy (obtained from further independent simulations) and those calculated via Equation (3) from simulations with $n = 100$ samples at temperature $T_0 = 2.269$ (the critical temperature of the infinite system). These points are averaged over 1000 repetitions of the simulation at T_c. The solid line is from Equations (17) and (18) with the constant a chosen so as to best fit the data. As the figure shows, the agreement between the two is good.

In a typical Monte Carlo calculation we want to know the range of temperature ΔT over which we can extrapolate from a single histogram to a given degree of accuracy ΔU as a function of the sample size n. In the regime where $U(T)$ approaches either of the limits E_- or E_+, one or other of the terms on the top and bottom of Equation (17) becomes a constant (either zero or one) and the variation in ΔU resides entirely in the remaining terms. In this case a line of constant ΔU is also a line of constant x_+ or x_- (for ΔT positive or negative respectively) which means that

$$ \pm \sqrt{\frac{n}{2\pi\sigma_k a}} \frac{\sigma_k \Delta T}{\sqrt{2kT_0^2}} = b, \quad (19) $$

with the value of the constant b depending on the size of error ΔU we are willing to live with. Thus, for given ΔU, the temperature range ΔT over which the extrapolation is valid increases at most logarithmically with increasing sample size n.

In Figure 3 we demonstrate this formula for the 100×100 two-dimensional Ising model. The inset shows extrapolations from the critical temperature of the infinite system for sample sizes $n = 10, 20, 50, 100, 200, 500,$ and 1000, using Equation (3). The errors in these results are comparable to the widths of the lines. The dashed lines show an arbitrarily-chosen deviation of $\Delta U = \pm 100$ from the true value as our limit of acceptable accuracy—a relative error of about 0.7%. The intersections of the solid curves and dashed lines give the ranges ΔT over which simulations with different n give acceptable results. The main figure shows these ranges as points with error bars, the upper points corresponding to values $\Delta T > 0$ (i.e., extrapolation above T_0), the lower ones to $\Delta T < 0$. The solid lines are Equation (19) with the constants a and b chosen by a least squares fit to the data. As the figure shows, simulation and theory are in good agreement.

As an example of the use of Equation (19), consider the results of Münger and Novotny [11] who performed an extensive numerical study of the accuracy of the single histogram extrapolation method for the case of the $q = 3$ Potts ferromagnet in two dimensions. They concluded that the values of the specific heat predicted by the method show systematic deviations from the true values, and presented evidence indicating that the size of these deviations decrease with increasing n. In fact, a simple application of Equations (3) and (19) reveals immediately what the problem is. For the parameter values and sample sizes used in their calculations, the range over which they attempt to extrapolate satisfies the simple criterion (4), but falls outside the bounds of accuracy set by (19).

FIG. 2. The difference ΔU between the true internal energy of a 100×100 Ising ferromagnet and an extrapolation using Equation (3) of the same quantity from simulations with $n = 100$ samples performed at a single temperature $T_0 = 2.269$. The line is a fit using Equations (17) and (18). Energies are in units of the coupling constant J, and may be compared to $U(T_0) = -1.4 \times 10^4$.

FIG. 3. Inset: the difference between the true and extrapolated internal energies of a 100×100 Ising ferromagnet for a variety of different sample sizes n. Main figure: the range ΔT over which the extrapolation is accurate to ± 100, as a function of n. The points are the values from the simulations shown in the inset and the two solid lines are Equation (19), taking the $+$ and $-$ signs separately. The upper curve and points are for positive ΔT, the lower ones for negative ΔT.

ΔT
Münger and Novotny deliberately performed simulations with small values of n in order to investigate the inaccuracies of the histogram method. However, in normal use, the method is applied to simulations with large n, and in the region close to T_0 where the deviation ΔU is small. We can characterize this regime as one in which $|x_\pm| \gg 1$, in which case the value of the denominator in Equation (21) is close to 2 and the primary variation in ΔU comes from the Gaussians in the numerator:

$$\Delta U \simeq \sqrt{\frac{e^2}{2\pi}} \left\{ \exp(-x_+^2) - \exp(-x_-^2) \right\}. \quad (20)$$

Since E_+ and E_- are symmetrically distributed about $U(T_0)$, we have $x_+(T_0) = -x_-(T_0)$, and the two terms cancel to give $\Delta U = 0$ at $T = T_0$, as expected. The leading term in the expansion of ΔU about this point is linear in ΔT with coefficient

$$\frac{\partial \Delta U}{\partial T} \bigg|_{T_0} = \frac{2a\beta^2 \sigma^2}{n} \sqrt{n} \frac{n^2}{2\pi \sigma^4 n^2}. \quad (21)$$

Thus ΔU tends to zero roughly as $1/n$ to leading order, and the higher order terms vanish faster than this. As we will see in Section III, the statistical errors in extrapolated quantities fall off in the normal $1/\sqrt{n}$ fashion, so that in the region close to T_0, finite sample size errors always become negligible for sufficiently large n.

On the other hand, when we get far away from T_0, the extrapolated value of U becomes roughly equal to E_+ or E_- (depending on the direction in which we extrapolate) and hence approximately independent of n, since E_\pm only varies slowly with n. Thus the error ΔU is approximately n-independent in this regime and dominates over statistical errors for sufficiently large n. The point of crossover between the two regimes is given by Equation (13).

A similar argument can be made for the extrapolation of quantities other than the energy. The limiting extrapolated values of any quantity Y are set by the values Y_\pm corresponding to the highest and lowest energies sampled in the simulation, and since these energies are approximately n-independent, so normally will Y_\pm be.

Thus Equation (13) tells us for any quantity Y the point of crossover at which errors due to the finite number of samples in the histogram become the dominant source of inaccuracy in the histogram method.

III. DISTRIBUTION ERRORS

There is another source of systematic error in the estimates given by the single histogram method which has not, to our knowledge, been remarked upon before. Even ignoring the corrections discussed in the last section, which were due to the imperfect sampling of the histogram $H(E)$, Equation (3) is not in fact a correct expression for the best estimate of $\langle X \rangle$ for any finite n.

To understand this, consider again the hypothetical situation in which we perform a large number N of simulations of the system of interest, each one generating n statistically independent samples drawn from the Boltzmann distribution at T_0. For each one we calculate an estimate

$$\langle X \rangle_i = \frac{\sum_{j} X_{ij} e^{-(\beta-\beta_0)E_{ij}}}{\sum_{j} e^{-(\beta-\beta_0)E_{ij}}} = \frac{P_i}{Q_i}, \quad (22)$$

where $i = 1 \ldots N$ labels the different simulations and X_{ij} is the value of X in the jth state sampled by the ith simulation. The new quantities P and Q will provide a convenient shorthand for the numerator and denominator of this equation.

Now we want to compute the best estimate of $\langle X \rangle$ over all N simulations. Since the samples in each simulation were drawn from the same distribution, we can just as well regard them all as being one large set of samples of size nN drawn from a single simulation, in which case it is clear that in the limit of large N the correct answer for $\langle X \rangle$ is

$$\langle X \rangle = \frac{\sum_{ij} X_{ij} e^{-(\beta-\beta_0)E_{ij}}}{\sum_{ij} e^{-(\beta-\beta_0)E_{ij}}} = \frac{\bar{P}}{\bar{Q}}. \quad (23)$$

where \bar{P} and \bar{Q} indicate the averages of P_i and Q_i over all N simulations. (We use the barred notation to avoid confusion with the notation $\langle X \rangle$ for thermal expectation values.) This equation indicates that the best estimate of $\langle X \rangle$ is calculated by separately averaging the numerator and denominator of Equation (22) over our many simulations. In practice, one does not perform many simulations; one performs only one simulation with finite n and then calculates the ratio P/Q for that one simulation. The mean value of this ratio however is not the same as the ratio of the means, Equation (23), which gives the correct answer. This difference leads to a systematic error in the predictions of the single histogram method for finite sample sizes. In this section we calculate the size of this error.

Consider the double Taylor expansion of the quantity P/Q around \bar{P}/\bar{Q}:

$$\frac{P}{Q} = \frac{\bar{P}}{\bar{Q}} + \left(P - \bar{P} \right) \frac{1}{\bar{Q}} - \left(Q - \bar{Q} \right) \frac{\bar{P}}{\bar{Q}^2}$$

$$+ \left(Q - \bar{Q} \right)^2 \frac{\bar{P}}{\bar{Q}^2} - \left(P - \bar{P} \right) \left(Q - \bar{Q} \right) \frac{1}{\bar{Q}} + \ldots \quad (24)$$

Taking the average of both sides over many repetitions of the simulation, the linear terms vanish and to leading order we are left with

$$\bar{P}/\bar{Q} = \frac{\bar{P}}{\bar{Q}} \left[1 + \frac{\sigma_P^2}{\bar{Q}^2} - \frac{\text{cov}(P,Q)}{\bar{Q}^2} \right], \quad (25)$$

where σ_P^2 is the variance of P over simulations i and $\text{cov}(P,Q)$ is the covariance of P and Q. Thus the mean
value of the quantity P/Q, which is the quantity measured in our Monte Carlo calculations, differs from the true value of $\langle X \rangle = \frac{P}{Q}$ by the factor enclosed in the square brackets [...]. One should take this factor into account in order to correctly calculate the extrapolation of a quantity.

Given that in a typical situation we only perform one simulation of our system, what is the best estimate we can make of this factor from our Monte Carlo results? Clearly the best estimates of P and Q are simply the values of P and Q measured in the simulation: $\bar{P} = P$, $\bar{Q} = Q$. The best estimates of the variance and covariance terms are

$$\sigma_{\bar{Q}}^2 = \frac{1}{n-1} \left\{ \sum_j e^{-2(\beta-\beta_0)E_j} - \left[\sum_j e^{-(\beta-\beta_0)E_j} \right]^2 \right\},$$

(26)

and

$$\text{cov}(P, Q) = \frac{1}{n-1} \left\{ \sum_j X_j e^{-2(\beta-\beta_0)E_j} \right.$$

$$\left. - \sum_j X_j e^{-(\beta-\beta_0)E_j} \sum_j e^{-(\beta-\beta_0)E_j} \right\}.$$

(27)

Substituting these into Equation (25) we see that the correction term scales as $1/n$ with sample size. But, as shown below, statistical errors scale as $1/\sqrt{n}$, and therefore dominate for large n. Thus it should be safe to ignore errors of the type described by Equation (27) for simulations of sufficient length.

IV. STATISTICAL ERRORS

The third and final source of error which we consider is statistical fluctuation in the extrapolation due to the essential random nature of a Monte Carlo simulation. We can calculate the variance $\sigma^2_{\bar{P}/\bar{Q}}$ of the quantity \bar{P}/\bar{Q} by a technique similar to that used to derive Equation (25): we perform a Taylor expansion of \bar{P}^2/\bar{Q}^2 about \bar{P}/\bar{Q} and take the average over many simulations. Then we calculate the variance as $\sigma^2_{\bar{P}/\bar{Q}} = \bar{P}^2/\bar{Q}^2 - \bar{P}/\bar{Q}$. The variance $\sigma^2_{\bar{X}}$ of the best estimate of $\langle X \rangle$ is then $\sigma^2_{\bar{X}}/\langle X \rangle^2$ times the square of the correction factor in Equation (23). To leading order this gives

$$\frac{\sigma^2_{\bar{X}}}{\langle X \rangle^2} = \frac{\sigma^2_{\bar{P}}}{\bar{P}^2} + \frac{\sigma^2_{\bar{Q}}}{\bar{Q}^2} - 2 \frac{\text{cov}(P, Q)}{\bar{P}/\bar{Q}}.$$

(28)

This expression is identical to that given by Ferrenberg et al. [9], for the error on the uncorrected estimate \bar{P}/\bar{Q}.

Using Equations (26) and (27), along with the obvious extension

$$\sigma^2_P = \frac{1}{n-1} \left\{ \sum_j X_j^2 e^{-2(\beta-\beta_0)E_j} \right.$$

$$\left. - \left[\sum_j X_j e^{-(\beta-\beta_0)E_j} \right]^2 \right\},$$

(29)

it is clear that σ^2_P scales as $1/n$, and hence that $\sigma_{\bar{X}}$ scales as $1/\sqrt{n}$, as claimed earlier. This is a slower scaling than the $1/n$ of the previous section, but still much better than the approximately constant value of the finite sample size error of Section IV for large extrapolation range ΔT. This means that we must use an equation such as (29) to decide which of these two latter sources of error is the dominant one given circumstances.

V. CONCLUSIONS

In this paper we have examined in detail the sources of errors in the Monte Carlo extrapolation method known as the single histogram method. We have discussed three sources of error: finite sample size errors, systematic errors due to the approximations made in the calculation of the extrapolation, and finally statistical errors. The first two of these have not, to our knowledge been discussed previously, and in particular we find that the finite sample size errors are, under commonly encountered conditions, significantly larger than either of the other sources of error.

ACKNOWLEDGEMENTS

The authors would like to thank Gerard Barkema and Catherine Macken for useful discussions. This research was funded in part by the Santa Fe Institute and DARPA under grant number ONR N00014–95–1–0975.

[1] E. Segrè, From X-Rays to Quarks, Freeman, San Francisco (1980).
[2] N. Metropolis, J. Howlett and G.-C. Rota, A History of Computing in the Twentieth Century, Academic Press, New York (1980).
[3] R. G. Palmer, Adv. Phys. 31, 669 (1982).
[4] K. Binder and D. W. Heermann, Monte Carlo Simulation in Statistical Physics, Springer-Verlag, Berlin (1992).
[5] J. Lee, Phys. Rev. Lett. 71, 211 (1993).
[6] B. Hesselbo and R. B. Stinchcombe, Phys. Rev. Lett. 74, 2151 (1995).
[7] J. P. Valleau and D. N. Card, J. Chem. Phys. 57, 5457 (1972).
[8] A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 61, 2635 (1988).
[9] A. M. Ferrenberg, D. P. Landau, and R. H. Swendsen, Phys. Rev. E 51, 5092 (1995).
[10] H. Müller-Krumbhaar and K. Binder, J. Stat. Phys. 8, 1 (1973).
[11] E. P. Münger and M. A. Novotny, Phys. Rev. B 43, 5773 (1991).