Sensitivity analysis for stochastic user equilibrium traffic assignment with constraints

Kui Ji1,2, Jianxiao Ma1 and Wenyun Tang3

Abstract
A mathematical programming method for sensitivity analysis of the link-capacitated stochastic user equilibrium model is presented in this article. By the sensitivity matrices, the changes in the network flows can be easily obtained, while some links reach the capacity limits. By link-based stochastic user equilibrium model with link capacity constraints, it is possible to formulate an efficient algorithm for the sensitivity analysis. Two numerical examples are provided for demonstrating the correctness and implementability of the method finally. Since the link capacity is one of the constraints of the model, the method presented here can also be used for the basic model with other constraints.

Keywords
Stochastic user equilibrium, sensitivity analysis, link capacity constraints, traffic assignment, traffic flow

Date received: 24 August 2016; accepted: 21 March 2017

Academic Editor: Xiaobei Jiang

Introduction
Sensitivity analysis is to analyze the output variables of the model with the change of the input variables. It is important for traffic network equilibrium problems. Knowledge of how sensitive a conclusion is to changes in the network can help to identify which link need to pay more attention. And the information from the sensitivity analysis can also be applied to a variety of control problems, design, and optimal pricing in traffic networks.1,2

Tobin and Friesz3 demonstrated the uniqueness properties of a restricted formulation of the deterministic user equilibrium (DUE), and variational inequality method was developed for sensitivity analysis of DUE. Clark and Watling4 presented the mathematical programming method for sensitivity analysis of Probit-based stochastic user equilibrium (SUE) model. Then, in 2001, Ying and Miyagi5 conducted the study on sensitivity analysis of Logit-based SUE model, and the method is developed from a dual formulation of the SUE analysis, and it is more simple and more likely to be accepted relative to the variational inequality method.

Wardrop6 proposed user equilibrium (UE) assignment principle, and the following UE models are too sensitive to traffic cost. SUE assignment was proposed by Daganzo and Sheffi;7 Fisk’s8 model is a general model that unifies Wardropian equilibrium and the concept of the stochastic assignment, and the result of the SUE is more reasonable than UE. Considering in real world, link flow stops increasing when reaching the capacity, and Bell9 did study about Fisk’s model with queues. In this article, we present a mathematical programming method for sensitivity analysis of link-based SUE model with link capacity constraints.10 For the basic SUE model avoiding the path enumeration and benefit from it, more efficient algorithm can be developed for SUE assignment.11

1Nanjing Forestry University, Nanjing, P.R. China
2Jiangsu Institute of Urban Planning and Design, Nanjing, P.R. China
3Southeast University, Nanjing, P.R. China

Corresponding author: Jianxiao Ma, Nanjing Forestry University, Nanjing 210037, P.R. China. Email: jxmaedu@yeah.net

Creative Commons CC-BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
The second section of this article provides a concise review of the link-based SUE model with link capacity constraints. The sensitivity analysis method is formulated in the third section. In the fourth section, we provide two numerical examples for demonstrating the correctness and implementability of the method in detail. Finally, some concluding remarks are summarized in the fifth section.

Link-capacitated SUE model

Let a transportation network \(G = [N, A] \), where \(N \) and \(A \) denote the sets of nodes and links. \(O \) and \(D \) are the sets of origins and destinations, and we give positive demands \(q_{od} \) for origin–destination (O-D) flows. Let \(x_{ij} \) denote the link flow from node \(i \) to \(j \), \(C_{ij} \) denote the link capacity, \(t_{ij}(x_{ij}) \) denote the travel cost function which is a strictly monotone increasing function, reflecting the relation between cost and flow. \(x_{ij}^o \) is the flow of link \((i, j) \in A \) from \(o(i) \in O \). \(\theta \) is the dispersion parameter in the Logit model, \(\delta_{ok} \) and \(\delta_{dk} \) are switching functions. When \(k = o(k = d) \), \(\delta_{ok} = 1 (\delta_{dk} = 1) \); otherwise, \(\delta_{ok} = 0 (\delta_{dk} = 0) \).

According to the Logit-type SUE assignment, Akamatsu decomposed the entropy function into link variables, and Ji built the link-capacitated SUE model as follows10,11

\[
\min Z(x) = \sum_{(i,j)\in A} \int_0^{x_{ij}(w)} t_{ij}(w) dw - \frac{1}{\theta} \sum_{o\in O} \{HL(x^o) - HN(x^o)\}
\]

s.t. \(h_k(x^o) = \sum_i x_{ij}^o - \sum_j x_{ji}^o + \sum_d q_{od}\delta_{ok} - q_{od}\delta_{dk} = 0, \quad \forall o \in O, \forall d \in D, \forall k \in N \) \hspace{1cm} (2)

\(x_{ij} = \sum_{o} x_{ij}^o, \forall (i, j) \in A \) \hspace{1cm} (3)

\(x_{ij}^o \geq 0, \quad \forall o \in O, \forall (i, j) \in A \) \hspace{1cm} (4)

\(g_{a}(x) = C_{ij} - x_{ij} \geq 0, \quad \forall (i, j) \in A, \forall a \in A \) \hspace{1cm} (5)

where we define functions

\[
HL(x^o) = - \sum_j x_{ij}^o \ln x_{ij}^o
\]

\[
HN(x^o) = - \sum_j \left(\sum_i x_{ij}^o \right) \ln \left(\sum_i x_{ij}^o \right)
\]

Equation (5) was added to the basic link-based SUE model to limit the increase in the link flows unreality. The equivalent and uniqueness of the model above was proved by Ji et al.,10 and an effective algorithm for the assignment with constraints was also proposed, so it will not be repeated in this article.

Sensitivity matrices deduced

Let \(\mu_k \) and \(d_a \) be the Lagrangian multipliers for equations (2) and (5), respectively, and \(\varepsilon \) denotes the perturbations of variables. The Lagrangian function is

\[
L(x, \mu, d, \varepsilon) = \min_{x} Z(x, \varepsilon) + \sum_{k} \mu_k h_k(x^o, \varepsilon) - \sum_{a} d_a g_a(x, \varepsilon)
\]

(8)

From the Kuhn–Tucker conditions, and due to the work by Fiacco,12 we define the functions as follows

\[
G = \begin{cases}
\nabla L = 0 \\
\frac{d}{d_{a}} g_{a}(x, \varepsilon) = 0 \\
\frac{d}{d_{k}} h_{k}(x^o, \varepsilon) = 0 \\
y(\varepsilon) = \left[\begin{array}{c} x^o(\varepsilon) \\
d(\varepsilon) \\
u(\varepsilon) \end{array} \right]
\end{cases}
\]

(9)

(10)

When we get the optimum solution, we obtain

\[
\begin{bmatrix}
\nabla^2 L & -\nabla g^T & \nabla h^T \\
d\nabla g & \text{diag}(g) & 0 \\
h & 0 & 0 \\
\end{bmatrix}
\begin{bmatrix}
\nabla_y y \\
\nabla_y h \\
\end{bmatrix}
= 0
\]

(11)

In equation (11), the “\(\text{diag} \)” denotes a diagonal matrix with corresponding diagonal entries. We give matrices \(M \) and \(N \)

\[
M = \begin{bmatrix}
\nabla^2 L & -\nabla g^T & \nabla h^T \\
d\nabla g & \text{diag}(g) & 0 \\
h & 0 & 0 \\
\end{bmatrix}
\]

(12)

\[
N = [-\nabla^2 g^T, L^T, -d\nabla g^T, -\nabla h^T]^T
\]

(13)

According to equations (11)–(13), we obtain

\[
\begin{bmatrix}
\nabla_y y \\
\nabla_y h \\
\end{bmatrix}
= M^{-1}N
\]

(14)

A first-order approximation of the solution can be obtained as follows

\[
y(\varepsilon) = \begin{bmatrix} [x^o(0)] \\
[d(0)] \\
u(0) \end{bmatrix} + \left(M(0)^{-1}N(0) \right) \varepsilon + o(||\varepsilon||)
\]

(15)

where \(o(||\varepsilon||) \) represents a real-valued function, it means that \(o(||\varepsilon||) \rightarrow 0 \) as \(\varepsilon \rightarrow 0 \). We can get new assignment results by the initial flows.

According to equations (1), (6), (7), and (8), we obtain the core elements of the \(M \)

\[
\nabla^2 L = \begin{bmatrix}
\frac{\partial^2 L}{\partial x_{ij}^o \partial x_{gh}^o} \\
\frac{\partial^2 L}{\partial x_{ij}^o \partial g_h} \\
\end{bmatrix}
\]

(16)
where $\delta_{i^g, gh} = 1$ when link (g, h) is link (i, j), otherwise, $\delta_{i^g, gh} = 0$.

Considering the Kuhn–Tucker conditions, the function $d_{cg}(x_{ij}) = 0$. When the link flow $x_{ij} < C_{ij}$, $d_a = 0$; when the link flow x_{ij} over the link capacity, the method of augmented Lagrangian (ALM) can be used to make the assignment results more reasonable; then, we can obtain $g_a(x_{ij}) = 0$, so the M and N can be transformed as follows

$$M = \begin{bmatrix} \nabla^2 L & -\nabla g^T & \nabla h^T \\ d\nabla g & \text{diag}(g) & 0 \\ \nabla h & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -d & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$N = \begin{bmatrix} -\nabla^2 \varepsilon e L \\ -d\nabla g \\ -\nabla h \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -d & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -\nabla^2 \varepsilon e L \\ \nabla g \\ -\nabla h \end{bmatrix}$$

Thus

$$\nabla \chi y = M^{-1} N$$

where ε denotes the perturbations of variables, and the sensitivity analysis problem treated here is the small perturbation of the costs and flows, and by our method, the differences between them are reflected by N.

Let γ_{od} and λ_{ij} denote the perturbation of the travel demands q_{od} and free-flow link travel time t_{ij} when the link cost functions $t_{ij}(x_{ij})$ are of the bureau of public roads (BPR) form. We obtain the functions as follows

$$q_{od}(\gamma) = q_{od} + \gamma_{od}$$

$$t_{ij}(x_{ij}, \varepsilon_{ij}) = (t_{ij0} + \varepsilon_{ij}) \left[1 + 0.15 \left(\frac{x_{ij}}{C_{ij}} \right)^4 \right]$$

We obtain the core elements of the N

$$\nabla^2 \varepsilon e L = \frac{\partial(\nabla^2 e L)}{\partial q} \frac{\partial q}{\partial \gamma} = \frac{\partial(\nabla^2 e L)}{\partial q}$$

$$\nabla^2 \varepsilon e L = \frac{\partial(\nabla^2 e L)}{\partial \varepsilon}$$

According to the model, the value of equation (22) is zero. Therefore, the rest can be computed efficiently.

The link-based SUE model represents the SUE assignment as an optimization problem with only link variables; benefit from it, Lee et al.13 developed an efficient algorithm. It gave the CPU times needed by the conventional and modified method for Sioux Falls network; in the case of $\theta = 10$, the modified method performs more than five times faster than the conventional method.

An outline of the procedure for the sensitivity analysis is as follows:

Step 1. (Initialization) Compute the SUE by the linearization method.13

Step 2. (Checking the constraints) If the results satisfied, stop and obtain x_{ij} and x_{ij}. Otherwise ALM used to limit the link flows if necessary.10

Step 3. Compute the matrices M and N.

Step 4. Compute equation (14) or (19). If M cannot inverse for rank defect, giving up the last rows and columns which are uncorrelated with traffic flows can cope.

According to equation (15), we can obtain new assignment results quickly, while some links are closed because of the flows reaching the capacity.

Numerical examples

Example 1. Illustrate our method

It is a network with five nodes and six links which Ying and Miyagi5 used, as shown in Figure 1. The link cost functions are as follows

$$t_{ij} = (\alpha_{ij} + \varepsilon_{ij}^{(1)}) + (\beta_{ij} + \varepsilon_{ij}^{(2)}) x_{ij}^4$$

where $\varepsilon_{ij}^{(1)}$ and $\varepsilon_{ij}^{(2)}$ denote the uncertainty parameters in the functions. And the values of the parameters are assumed to be

$$\alpha_{12} = 4, \; \alpha_{14} = \alpha_{42} = 10, \; \alpha_{23} = 1, \; \alpha_{25} = \alpha_{53} = 15$$

$$\beta_{12} = 1, \; \beta_{14} = \beta_{42} = 2.5, \; \beta_{23} = 30, \; \beta_{25} = \beta_{53} = 0.5$$

The traffic demand is

$$q_{13} = 10 + \gamma_{13}$$

According to our method, link constraints are added to the basic model, and we give the constraints

$$C_{12} \leq 6, \; C_{14} \leq 5, \; C_{42} \leq 5, \; C_{23} \leq 6, \; C_{25} \leq 8, \; C_{53} \leq 8$$

For there is one origin in the network, we can obtain $x_{ij} = x_{ij}$. With $\theta = 0.001$, the link flows at SUE are

![Figure 1. Network of Example 1.](image-url)
Then, according to equations (22) and (23), the matrix N about demand and costs can be obtained. In order to compare it with Ying’s results, the sensitivity matrix is expressed as follows

$$
\begin{bmatrix}
\frac{\partial x_{12}}{\partial y_{13}} & \frac{\partial x_{12}}{\partial c_{12}^{(1)}} & \frac{\partial x_{12}}{\partial c_{12}^{(2)}} \\
\frac{\partial x_{14}}{\partial y_{13}} & \frac{\partial x_{14}}{\partial c_{12}^{(1)}} & \frac{\partial x_{14}}{\partial c_{12}^{(2)}} \\
\frac{\partial x_{23}}{\partial y_{13}} & \frac{\partial x_{23}}{\partial c_{12}^{(1)}} & \frac{\partial x_{23}}{\partial c_{12}^{(2)}} \\
\frac{\partial x_{25}}{\partial y_{13}} & \frac{\partial x_{25}}{\partial c_{12}^{(1)}} & \frac{\partial x_{25}}{\partial c_{12}^{(2)}} \\
\end{bmatrix}
\begin{bmatrix}
0.6335 \\
0.3665 \\
0.2580 \\
0.7420 \\
\end{bmatrix}
=
\begin{bmatrix}
-0.0004 & -0.4409 \\
0.0004 & 0.4409 \\
0 & 0 \\
0 & 0 \\
\end{bmatrix}
$$

This matrix agrees with that computed by Ying and Miyagi. Pay attention, when M is rank defect, we can give up the rows and columns which are uncorrelated with flows and costs.

In order to illustrate the method comprehensively, we closed the link (1, 2), and in the model, the constraint for x_{12} changes to $x_{12} \leq 5.8442$. According to the link flows, the value of the element g_{12} is zero, and by equation (19), the sensitivity matrices can be obtained. The new M matrix is

$$
M =
\begin{bmatrix}
869.5368 & -100 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 & 0 \\
-100 & 858.3622 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 717.7347 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & -1 & 0 \\
0 & 0 & 0 & 4002.296 & -100 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & -100 & 686.2777 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 640.0832 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & -1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
$$
Table 1 shows comparisons of estimated flows by our method with the actual solutions recomputed by the algorithm for capacitated SUE model, and the error between them is very small up to maximum 0.0005.

Example 2. A toy-size network example

Solutions of the link-based SUE model are \(x_{ij}^0 \), and we can get the knowledge of where the flows came from. A network with 2 origins, 13 nodes, 19 links, and 4 O-D pairs is considered to verify our method, as shown in Figure 2.

The link cost functions are of the BPR forms as equation (21), and the unperturbed parameters are assumed to be as in Table 2. Set \(\theta = 0.01 \), and the traffic demands are

\[q_{0102} = 400, \quad q_{0103} = 800, \quad q_{0402} = 600, \quad q_{0403} = 200. \]

Perturbations of parameters are as follows

\[\gamma_{0112}^{10} = 20, \quad \gamma_{0403}^{04} = 10, \quad \gamma_{0112}^{01} = 1, \quad \gamma_{0610}^{12} = -3. \]

We can get the initial solutions by the efficiency algorithm and ALM.\(^{13}\) Comparing the estimated flows with what obtained by the algorithm, the errors are small to the flow changes. The “estimation error” equals the actual flows minus the estimated flows.

Because the traffic flows of link (07, 08), link (05, 09), link (07, 11), and link (10, 11) reach the capacity limits, they would not increase by ALM. The same results are derived by the sensitivity analysis method, which verifies the proposed method. To save space, we give the results perturbed simultaneously by a set of parameter uncertainties in Table 3, and good results can be obtained by separate parameter uncertainty.

In practice, when roads are closed for heavy traffic, neither the origin-based flows nor the traffic flows would be changed. When the flows are checked, new constraints can be joined to the model, such as \(x_{0708} \leq 111.1220 \) and \(x_{0407} \leq 188.8780 \) for \(x_{0708} \leq 300 \) in Example 1. New solutions can be easily obtained by the proposed method.

Conclusion

This article has presented the method for sensitivity analysis of Logit-type SUE assignment model with link capacity constraints. By the method, we can estimate changes in traffic flows quickly and accurately when some roads closed for heavy traffic. Benefit from the
link-based basic model, the algorithm for our analysis can be efficient. Since the link capacity is one of the constraints of the model, the method presented here can also be used for the basic model adding other constraints.

Table 2. Network parameters in Example 2.

Link (i, j)	\(t_0 \)	\(C_j \)	Link (i, j)	\(t_0 \)	\(C_j \)
01–12	9	700	01–10	13	500
01–05	7	900	07–11	9	400
12–06	7	400	08–02	6	700
12–08	14	700	09–10	10	700
04–05	9	700	09–11	9	600
05–06	3	800	10–11	3	800
06–07	5	700	11–02	6	900
07–08	5	700	09–13	9	600
04–09	12	900	13–03	11	700
05–09	9	600			

Table 3. Traffic flows with a set of small perturbations in Example 2.

Origin-based link flows	Unperturbed flows	Perturbed flows	Estimation error
	Actual	Estimated	
x01	111.1220	112.4524	0.1855
x04	188.8780	187.5476	-0.1855
x07	439.8292	441.1404	-2.1138
x09	160.1708	158.8596	2.1138
x07	268.4733	267.1603	1.3820
x09	131.5267	132.8397	-1.3820
x07	352.6896	354.3937	2.8951
x09	347.3104	347.8652	-2.8951
x11	435.6262	450.2506	0.5926
x12	764.3738	769.7494	-0.5926
x09	324.5446	328.6091	1.5213
x12	300.4644	301.1215	1.3373
x07	379.5953	379.6127	0.5926
x13	135.1617	149.8737	-0.7528
x13	107.2759	102.0169	1.6039
x10	245.4137	250.1179	1.2912
x10	153.7163	158.4186	0.5926
x02	246.2837	261.5814	-0.5926
x02	332.5533	339.1235	3.7178
x03	476.4447	460.8765	3.7178
x13	600.8051	603.6127	-0.6210
x13	440.6344	444.7531	-2.7350
x10	320.4047	320.3873	-1.5675
x10	120.2297	124.3658	-1.1675
x12	227.0807	223.4994	-1.7276
x12	132.2849	141.7475	4.4626
x13	132.2849	141.7475	4.4626
x13	67.7151	68.2525	-4.4626
x10	199.1949	206.3873	0.6210
x04	188.8780	187.5476	-0.1855
x04	411.1220	412.4524	0.1855

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.
Funding
The author(s) received no financial support for the research, authorship, and/or publication of this article.

References
1. Yan H and Lam WHK. Optimal road tolls under conditions of queueing and congestion. Transport Res A: Pol 1996; 30: 319–332.
2. Yang H and Bell MGH. Traffic restraint, road pricing and network equilibrium. Transport Res B: Meth 1997; 31: 303–314.
3. Tobin RL and Friesz TL. Sensitivity analysis for equilibrium network flow. Transport Sci 1988; 22: 242–250.
4. Clark S and Watling D. Probit-based sensitivity analysis for general traffic networks. Transp Res Record 2000; 1733: 88–95.
5. Ying JQ and Miyagi T. Sensitivity analysis for stochastic user equilibrium network flows—a dual approach. Transport Sci 2001; 35: 124–133.
6. Wardrop JG. Some theoretical aspects of road traffic research. Oper Res Quart 1953; 4: 72–73.
7. Daganzo CF and Sheffi Y. On stochastic models of traffic assignment. Transport Sci 1977; 11: 253–274.
8. Fisk C. Some developments in equilibrium traffic assignment. Transport Res B: Meth 1980; 14: 243–255.
9. Bell MGH. Stochastic user equilibrium assignment in networks with queues. Transport Res B: Meth 1995; 29: 125–137.
10. Ji K, Cheng L and Tang W. Model and algorithm for link-based stochastic user equilibrium traffic assignment. In: Proceedings of the twelfth COTA international conference of transportation professionals, Beijing, China, 3–6 August 2012, pp.579–591. Reston, VA: ASCE.
11. Akamatsu T. Decomposition of path choice entropy in general transport networks. Transport Sci 1997; 31: 349–362.
12. Fiacco AV. Introduction to sensitivity and stability analysis in nonlinear programming. New York: Academic Press, 1983.
13. Lee DH, Meng Q and Deng W. Origin-based partial linearization method for the stochastic user equilibrium traffic assignment problem. J Transp Eng 2010; 136: 52–60.