Trends of climate parameters over Tanzania

K D Mikova1,2 and L C Msafiri3

1Perm State University, 15, Bukireva str., 614990, Perm, Russia
2Russian Federal Research Institute of Fisheries and Oceanography, Perm Branch, 3, Chernyshevskogo str., 614002, Perm, Russia
3Tanzania Meteorological Agency, Dodoma, Tanzania

mikovak@yandex.ru

Abstract. Analysis of the climate parameters over Tanzania were done for period 57-61 years. Rainfall and wind speed had greater variability than air temperatures. Positive significant trend of dry air temperature, maximal and minimal air temperatures were detected almost for all weather stations. As well positive trends of wind speed were detected just for stations Dodoma, Arusha, Mtwara and Mwanza. While rainfall trend analysis just for station Mtwara showed negative significant trend. In absolute values wind speed increased by 0.7-1.1 m/s, rainfall decreased by 89.3-136.1 mm, dry air temperature rise up 0.5-1.0 °C, maximal and minimal air temperatures values have grown by 2.0-3.6 °C.

1. Introduction
Tanzania is a country located in East Africa within the African Great Lakes region. It is bordered by Kenya and Uganda to the north, Rwanda and Burundi and the Democratic Republic of the Congo to the west (figure 1), Zambia, Malawi and Mozambique to the south and by the Indian Ocean to the east [1]. Country has two rainfall patterns which are bimodal and unimodal. In bimodal rainfall regime the first rainfall season started on March to May (MAM), and the second rainfall season started on October to December (OND), the rainfall amount are not the same for both seasons [2]. The OND season shows large interannual fluctuations and strongly related to large scale circulation anomalies in the Indian and Pacific oceans compared to the MAM season [3-6]. Even if the MAM season has not large interannual variability compared to OND season, MAM season contribute a large amount of the annual rainfall over Kenya and Tanzania compared to OND season [7, 8] and the unimodal rainfall regime started from November to April.

Variability of rainfall was associated with other factors, such as monsoon winds [9, 10], equatorial westerlies over the western Indian ocean and southeast trade winds over the south Indian Ocean [11], intraseasonal variability [8], Indian Ocean Dipole [12], Madden Julian Oscillation [13], Quasi-biennial Oscillation [14], Congo air mass [7, 9], Indian Ocean zonal mode [15], African jet streams [14], pressure gradient between Atlantic and Indian oceans, regional and local effects, tropical cyclones, easterly waves and westerly waves and sub-Tropical Anticyclones over the Indian ocean and Atlantic ocean [14]. Kruger and Shongwe [16] in their study of temperature trends in South Africa were used temporal and spatial trends for the period 1960 to 2003, shown that days and nights with relatively high temperatures have increased while the days and nights with relatively low temperature have decreased. Some studies related these changes with El Nino and la Nina events [17, 18, 19], whereby
during El Nino years, temperatures seem to be higher than during the La Nina years. However, other studies did not relate it with El Nino and La Nina events [16].

According to World Meteorological Organisation [22], the year 2013 was the warmest year on the continent since at least 1950 with more than above temperatures in most of the regions; however, Eastern Africa recorded almost average temperature in the same year. At the global scale, the annual mean surface air temperature indicated that year 2013 was the sixth warmest year since global records of temperatures began in 1850, and this warming among other reasons is due to the long-lived greenhouse gases, which is the strongest and the most certain warming effect on the climate [22]. Rainfall, temperature and wind are important variables in the climate studies. Increased temperature and changes in rainfall patterns as results of climate change were recognised in many areas include Tanzania [9, 23, 24, 25, 26]. Climate change has more effects in sub-Saharan Africa, where by the important economic activities is agriculture [27].

Weather and climate information are vital for protecting life and property during the severe rainfall and drought over Tanzania and Africa in general. However, many studies of the past and present patterns of climate over Tanzania have been derived from temperature and rainfall alone, this study attempt to fill this gap and use more parameters to investigate a long-term trend analysis of air temperature, maximum temperature, minimum temperatures, rainfall and wind speed over Tanzania.

2. Materials and methods

Data about rainfall, wind speed, dry, maximal and minimal air temperatures, and location of weather station was obtained from Tanzania Meteorological Agency (TMA) for whole period of observation. Nine long-term weather stations were selected for this study based on location, length and completeness of the records. The primary goal for the station selection was to represent as far as possible and as well as possible the variety of geographical areas in Tanzania. Instrumental records on the weather data in Tanzania for selected weather stations were available since 1950 up to nowadays. In average each weather station has data for 57-61 years. Just Kigoma station has data for 33 years due to its relocation in 1981-1982. Among methods were used data screening, infilling missing rainfall data and linear regression method.

3. Results and discussion

3.1. Long-term average

Verified and reconstructed data were used for calculation of the long-term average climate data (table 1). Such long-term average data gives an understanding about the average climate characteristic
over the study region. As rule the use of the whole data set available gives the most proper values of data, hence it longest and includes different climate cycles. For comparison of how is the long term average could change was calculated other averages for 10, 20, 30, 40, 50 and 60 years.

3.2. Trend estimation

Distribution of the studied parameters in historical perspective show that it varied from year to year. Some long-term fluctuations could be ordinary and do not demonstrate any tendencies. Others could show the different slope and direction. In order to differentiate between ordinary fluctuations with significant slope was used parameter \(a \) in equation \(y=ax+b \) and \(p\text{-value} < 0.005 \) (table 2). Results show that positive significant trend of maximal air temperature was detected for all selected weather stations in Tanzania. As well dry air temperature and minimal air temperature also shows similar positive trend. While for wind speed some positive tendencies were detected just for stations Dodoma, Arusha, Mtwara and Mwanza. In rainfall trend analysis just one station (Mtwara) had negative significant trend.

Table 1. Long-term average climate data.

Weather station	Annual dry air temperature, °C	Annual min air temperature, °C	Annual max air temperature, °C	Annual sum of rainfall, mm	Annual wind speed, m/s
Dodoma	23.5	16.8	29.0	563	4.8
Dar es Slaam	27.8	21.3	30.9	1096	4.2
Arusha	21.2	14.3	25.8	811	3.8
Songea	22.8	15.8	26.9	1096	4.1
Mtwara	27.2	21.1	30.2	1093	5.6
Mbeya	19.9	11.1	23.9	913	4.3
Kigoma	24.5	18.9	28.9	929	3.6
Tabora	24.7	17.1	29.7	944	3.0
Mwanza	24.1	17.6	28.0	1090	4.3

* - period of averaging.

Table 2. Parameter \(a \) and trend significance.

Weather station	V, m/s	X, mm	Tdry, °C	Tmax, °C	Tmin, °C
Dodoma	0.023	0.513	-0.002	0.021	0.008
Dar es Slaam	0.003	-1.416	0.015	0.023	0.018
Arusha	0.024	-1.617	0.021	0.019	0.016
Songea	0.006	-3.041	0.016	0.002	0.016
Mtwara	0.020	-1.940	0.014	0.008	0.008
Mbeya	0.006	-0.251	0.017	0.014	0.017
Kigoma	0.000	-0.167	0.014	0.003	0.014
Tabora	-0.009	0.301	0.019	0.019	0.018
Mwanza	0.012	2.085	0.017	0.001	0.021

Note: \(V \) - wind speed; \(X \) - Rainfall; \(Tdry \) - Dry air temperature; \(Tmin \) - minimal air temperature; \(Tmax \) - maximal air temperature. Values in bold and italic show significant trend.

Additionally was estimated trend size in absolute and relative values. The difference was calculated between first 10 years and last 10 years of the studied elements \(\Delta N_{10} \). This case can reflect the maximal increment or reduction of studied parameters. As well was calculated difference between
average values in first 20 (30) years and last 20 (30) years (ΔN_{20} and ΔN_{30}). Such difference could sow more appropriate results as it based on averaged data for longer period of years at beginning and end of the study period. Difference between data in first 10 (20 and 30) years and in last 10 (20 and 30) years was calculated (ΔN_{10}, ΔN_{20}, ΔN_{30}).

Results of the wind speed trend estimation (table 3) show that at the beginning of the studied period (first 10, 20 or 30 years) the wind speed was significantly lower than at the end of it (last 10, 20 and 30 years). Largest values in increment of the wind speed (table 3) were detected for weather stations with positive significant tendencies (table 2) such us Dodoma, Arusha, Mtwara and Mwanza. On average the values of the wind speed in last half of observed period has been increased by 0.7-1.1 m/s (13-30%).

Parameter	DOM	ARU	SONG	MTW	MBY	KIG	TAB	DAR	MWZ
ΔV_{10}, m/s	0.9	1.1	0.2	1.1	0.1	0.0	-0.2	0.3	0.7
ΔV_{20}, %	24	28	5	20	4	-1	-7	6	16
ΔV_{30}, m/s	+0.9	+1.1	+0.3	+0.8	+0.2	-0.1	-0.2	+0.2	+0.6
ΔV_{30}, %	+20	+30	+6	+15	+5	-2	-6	+4	+14

Rainfall (X, mm)

ΔX_{10}, mm	+12.2	+41.1	-92.7	-70.8	+34.5	+28.6	+95.6	-66.8	+245.5
ΔX_{20}, mm	+30.7	-94.4	-131.9	-113.8	+4.5	-3.9	+34.2	-107.4	+46.2
ΔX_{30}, mm	+6	-11	-12	-10	+0	+0	-4	+9	+4

Rainfall (X, mm)

| ΔX_{30}, % | +7 | -10 | -12 | -6 | -1 | -1 | -1 | -3 | +6 |

Dry air temperature (T_{dry}, °C)

ΔT_{10}, °C	+0.0	+1.0	+0.6	+0.7	+0.9	+0.5	+0.7	+0.9	+0.6
ΔT_{20}, %	+0	+5	+3	+3	+5	+2	+3	+3	+3
ΔT_{30}, °C	+0.0	+0.9	+0.7	+0.6	+0.7	+0.7	+0.9	+0.7	+0.8
ΔT_{30}, %	+0	+5	+3	+3	+2	+3	+4	+2	+3
ΔT_{30}, °C	-0.4	+0.8	+0.7	+0.5	+0.6	+0.5	+0.7	+0.5	+0.6
ΔT_{30}, %	-2	+4	+3	+3	+2	+3	+2	+3	+3

Maximal air temperature (T_{max}, °C)

ΔT_{10}, °C	+1.1	+0.7	-0.2	+0.3	-0.2	+0.3	+0.7	+1.3	+0.2
ΔT_{10}, %	+6	+5	-1	+1	-1	+2	+4	+6	+1
ΔT_{20}, °C	+1.0	+0.8	+0.2	+0.5	+0.7	+0.1	+0.9	+0.9	-0.1
ΔT_{20}, %	+6	+6	+2	+2	+6	+1	+6	+4	-1
ΔT_{30}, °C	+0.6	+0.7	+0.2	+0.2	+0.8	-0.1	+0.7	+0.8	-0.3
ΔT_{30}, %	+4	+5	+1	+1	+7	-1	+4	+4	-2

Minimal air temperature (T_{min}, °C)

ΔT_{10}, °C	+0.4	+0.6	+0.7	+0.3	+0.9	+0.6	+0.5	+1.1	+0.7
ΔT_{10}, %	+1	+2	+3	+1	+4	+2	+2	+3	+2
ΔT_{20}, °C	+0.3	+0.7	+0.7	+0.4	+0.7	+0.7	+0.8	+0.8	+1.1
ΔT_{20}, %	+1	+3	+3	+1	+3	+2	+3	+3	+4
ΔT_{30}, °C	+0.2	+0.6	+0.5	+0.3	+0.5	+0.4	+0.8	+0.5	+0.7
ΔT_{30}, %	+1	+2	+2	+1	+2	+1	+3	+2	+3

Where V - wind speed; X - Rainfall; T_{dry} - Dry air temperature; T_{min} - minimal air temperature; T_{max} - maximal air temperature.

Table 3. Calculated trend.
Some decreasing trends of rainfall were received for stations Arusha, Songea and Mtwara. On average in last 20-30 years areas received 89.3-136.1 mm (10-12%) of rainfall less than in 1950s-1970s. Tabora and Mwanza had an opposite trend of rainfall in first 10 and last 10 years, while in 20-years and 30-years period such trend become insignificant, hence not present in historical period.

Dry air temperature has grown by 0.5-1.0 °C in all weather stations. In relative values that number corresponds just for 2.0-5.0% (table 3) but those changes are significant and stable (table 2). Maximal and minimal air temperatures values have grown by 0.4-0.6% (2.0-3.6 °C). The information of climate change and its effects has been reviewed by Kruger and Shongwe [16], King’uyu et al. [18], Craparo et al. [26] and Levira [28] and showed significant increasing in temperature at several locations over Tanzania and Africa. Particularly Christy et al. [17] suggested that increase in minimum temperature might be due to the significant human development of the surface.

4. Conclusion

Results show that the positive significant trends of air temperatures of all selected weather stations have been detected. If relative values of the dry air temperature increase just by 2.0-5.0% in absolute values it become 0.5-1.0 °C. Maximal and minimal air temperatures values have grown even more than dry air temperature in absolute values 2.0-3.6 °C. Such value of air temperature grow can have negative effect on agriculture activities which vital in Tanzania. Trends of the wind speed demonstrate significant increment in relative values (13-30%) and on average it grew by 0.7-1.1 m/s. While rainfall trends revealed some reduction (89.3-136.1 mm) for stations Arusha, Songea and Mtwara. The results based on data 57-61 years indicated that climate become unfavorable for agricultural activities in Tanzania. If air temperature continue to grow, wind speed strengthen and rainfall just decrease it can reduce crop’s yield and animal’s production.

References

[1] Energy charter secretariat 2015 Tanzanian energy sector under the universal principles of the Energy Charter (Brussels July 2015) pp 70
[2] Zorita E and Tilya F F 2002 Rainfall variability in northern Tanzania in the march-may season (long rains) and its links to large scale climate forcing Clin. Res. 20 pp 31-40
[3] Ogallo L J 1989 The spatial and temporal patterns of the East African seasonal rainfall derived from principle component analysis Q J Roy Meteorol Soc p 145-167
[4] Hastenrath S, Nicklis A and Greischar L 1993 Atmospheric-hydrospheric mechanisms of climate anomalies in the western equatorial Indian Ocean J. Geophys Res 98:20219-20235
[5] Mutai C C, Ward M N and Colman A W 1998 Towards the prediction of the East African short rains based on sea-surface temperature atmosphere coupling Int J Clim 18 pp 975-997
[6] Camberlin P and Philippin N 2002 The East African March-May Rainy Season: Associated Atmospheric Dynamics and Predictability over the 1968-97 period Journal of Climate 15(9) pp 1002-1019
[7] Nicholson S E 1996 A review of climate dynamics and climate variability in Eastern Africa. In: Johnson TC, Odada EO (eds) The limnology, climatology and palaeoclimatology of East African Lakes (Gordon and Breach, Melbourne, Australia) pp 25-56
[8] Camberlin P, Okoola R E 2003 The onset and cessation of the ‘long rains’ in eastern Africa and their interannual variability Theor Appl Climatol 75 pp 43-54
[9] Chang’a L B, Pius Z Yanda and Ngana J 2010 Indigenous knowledge in seasonal rainfall prediction in Tanzania: A case of the South-western Highland of Tanzania Journal of Geography and Regional Planning vol 3(4) pp 66-72 [available online http://www.academicjournals.org/JGRP ISSN 2070-1845]
[10] Mbululo Y and Nyihirani F 2012 Climate Characteristics over southern Highland Tanzania Atmospheric and climate science 2 pp 454-463 http://dx.doi.org/10.4236/acs.2012.24039
[11] Mapande A T and Reason C J C 2005 Interannual Rainfall Variability over Western Tanzania International Journal of Climatology vol 25 No 10 pp 1355-1368 doi:10.1002/joc.1193
[12] Saji N H, Goswami B N, Vinayachandran P N and Yamagata T 1999 A dipole mode in the tropical Indian Ocean Nature 401 pp 360-363
[13] Pohln B and Camberlin P 2009 Influence of the Madden-Julian Oscillation on East African rainfall: 11. March-May season extremes and interannual variability Q.J.R meteorol. Soc 2006 B2 pp 2541-1558
[14] Kabanda T A and Jury M R 1999 Interannual Variability of Short Rains over Northern Tanzania Climate Research vol 13 No 3 pp 231-241 doi:10.3354/cr013231
[15] Webster P J, Loschnigg J P, Moore A M and Leben R R 1999 The great Indian Ocean warming of 1997-1998; evidence of coupled oceanic-atmospheric instabilities Nature 401 (6751) pp 356-360
[16] Kruger A C and Shongwe S 2004 Temperature Trends in South Africa: 1960-2003 International Journal of Climatology 24 pp 1929-1945 https://doi.org/10.1002/joc.1096
[17] Christy J R, Norris W B, McNider R T 2008 Surface Temperature Variations in East Africa and Possible Causes J. climate 22 p 3342
[18] King’uuyu S M, Ogillo L A and Anyamba E K 2000 Recent trends of minimum and maximum surface temperature over eastern Africa Journal of climate 13 pp 2876-2886
[19] Hansen J, M Sato, P Kharecha and K von Schuckmann 2011 Earth's energy imbalance and implications. Atmos. Chem. Phys 11 pp 13421-13449 doi:10.5194/acp-11-13421-2011
[20] Wikimedia commons 2017 [available online https://commons.wikimedia.org/wiki/File:Tanzania_in_Africa.png]
[21] Tanzania Guide 2017 [available online https://www.africaguide.com/country/tanzania]
[22] WMO Statement on the Status of the Global Climate 2017 [available online http://www.wmo.int/pages/prog/wcp/wcdmp/statement.php]
[23] Ajuaye A 2010 Analysis of farmer’s adaptation to climate change in Kilimanjaro, region [available online http://www.suaire.suanet.ac.tz:8080/xmlui/handle/123456789/175]
[24] Bezabil M, Chambwara M and Stage J 2011 Climate change and total factor productivity in the Tanzanian economy: A Computable General Equilibrium Analysis Environment for Development pp 25
[25] Munishi L K, Lema A A and Ndakidemi P 2015 decline in maize and beans production in the face of climate change at Hai district in Kilimanjaro Region, Tanzania International Journal of Climate Change Strategies and Management vol 7 No 1 pp 17-26 https://doi.org/10.1108/IJCCSM-07-2013-0094
[26] Craparo A C W, Van Asten P J A, P. Läderach P, Jassogne L T P and Grab S W 2015 Coffea arabica yields decline in Tanzania due to climate change: Global implications Agricultural and Forest Meteorology 207 pp 1-10
[27] Boko M, Niang I, Vogel C, Githeko A, Medany M, Osman-Elasha B, Tabo R and Yanda P 2007 Africa, in: Parry ML, Canziani OF, Palutikof J, van der Linden PJ, Hanson CE (eds.): Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge, UK) p 433-467
[28] Levira P W 2009 Climate change impact in agriculture sector in Tanzania and its mitigation measure. IOP Publishing IOP Conf. Series: Earth and Environmental Science 6 pp 37-42, available at: http://iopscience.iop.org/1755-1315/6/37/372049