Prevalence of mcr-type genes among colistin-resistant Enterobacteriaceae collected in 2014-2016 as part of the INFORM global surveillance program

Mark G. Wise1*, Mark A. Estabrook1, Daniel F. Sahm1, Gregory G. Stone2*, Krystyna M. Kazmierczak1

1 International Health Management Associates, Schaumburg, Illinois, United States of America,
2 AstraZeneca Pharmaceuticals, Waltham, Massachusetts, United States of America
* Current address: Pfizer, Inc., Groton, Connecticut, United States of America
mwise@ihma.com

Abstract

A set of 908 clinically derived colistin-resistant Enterobacteriaceae isolates collected worldwide in 2014–2016 were screened for the presence of the plasmid-borne mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5 genes. In total 3.2% (29/908) of the collection were positive for mcr, including 27 Escherichia coli, 1 Klebsiella pneumoniae and 1 Enterobacter cloacae. Twenty-four isolates possessed genes from the mcr-1 family, including the original mcr-1 (n = 22), as well as mcr-1.2 (n = 1) and mcr-1.5 (n = 1), which each differ from mcr-1 by encoding single amino acid variations. Genes from the mcr-3 family were found in isolates from Thailand, including mcr-3.1 (n = 3) and mcr-3.2 (n = 1). An E. coli isolated from a patient with a urinary tract infection in Colombia contained the recently discovered mcr-5. The full colistin-resistant collection was tested against a panel of antimicrobial agents with ceftazidime-avibactam and tigecycline exhibiting the highest activity.

Introduction

Use of colistin, which became clinically available in 1959, has historically played a minor role as an anti-infective therapy due to its nephrotoxicity, as well as the availability of alternative antimicrobial agents [1]. However, the recent proliferation of multi-drug resistant (MDR) Gram-negative pathogens in the clinical setting threatens the efficacy of antibiotics across all classes. To bolster the number of so called “last resort” antimicrobial agents, polymyxins such as colistin are once again being administered clinically due to their potential effectiveness against MDR infections [2]. Until 2015, all characterized colistin resistance mechanisms were chromosomally encoded and thus only limited vertical transmission of resistance was envisioned [3]. However, the discovery by Liu, et al. [4] of the plasmid-borne phosphoethanolamine transferase resistance determinant mcr-1 revealed a mechanism for horizontal spread. MCR-1 and MCR-2, a protein with 80.7% identity to MCR-1 [5], have now been reported in Enterobacteriaceae worldwide [6–8]. In 2017, three additional MCR protein variants have been...
Pharmaceuticals, LP, which also included compensation fees for manuscript preparation. AstraZeneca’s rights to ceftazidime-avibactam were acquired by Pfizer in December 2016. G.S. was an employee of and shareholder in AstraZeneca Pharmaceuticals at the time of the study, and is currently an employee of Pfizer. M.W., M.E., D.S. and K.K. are employees of IHMA which received funding from AstraZeneca for the conduct of the study and development of this manuscript. None of the IHMA authors have any personal financial interest in the study sponsor (AstraZeneca Pharmaceuticals at the time of the study, and is currently an employee of and shareholder in AstraZeneca Pharmaceuticals). To disclose. This does not alter our adherence to all PLOS ONE policies on sharing data and materials.

Material and methods

The INFORM (International Network for Optimal Resistance Monitoring) global surveillance program monitors antimicrobial resistance to a variety of pathogens isolated from intra-abdominal, urinary tract, skin/soft tissue, lower respiratory tract and, as of 2014, blood infections [12]. During 2014–2016, the program received a total of 44,407 isolates of Enterobacteriaceae including those collected by 87 medical center laboratories located in 18 countries in Europe (n = 21,461), 36 medical center laboratories in 9 countries in the Asia/Pacific region (n = 7,215), 24 medical center laboratories in 6 countries in Latin America (n = 7,180), 17 medical center laboratories in 5 countries in the Middle East/Africa region (n = 3,707) and 26 medical center laboratories in the United States (n = 4,844). All isolate species identifications were confirmed in the central laboratory by MALDI-TOF MS (Bruker Daltonics, Waltham, Massachusetts). Not including Serratia spp. and members of the tribe Proteaceae (genera Proteus, Providencia and Morganella), which are intrinsically colistin non-susceptible, 934 isolates were found to be resistant to colistin by broth microdilution [13] at an MIC ≥ 4 μg/mL, which is the EUCAST resistance breakpoint for the Enterobacteriaceae [14]. Of these, 908 isolates were available to screen, as no isolates could be obtained from China in 2014–2016 or Hong Kong in 2015–2016 due to export restrictions. The species composition of the complete set included Citrobacter freundii (n = 6), Citrobacter koseri (n = 3), Enterobacter aerogenes (n = 18), Enterobacter asburiae (n = 143), Enterobacter cancerogenus (n = 1), Enterobacter cloacae (n = 165), Enterobacter kobei (n = 11), Escherichia coli (n = 64), Hafnia alvei (n = 1), Klebsiella oxytoca (n = 13), Klebsiella pneumoniae (n = 481) and Klebsiella variicola (n = 2).

The collection was investigated for the presence of the colistin-resistance conferring mcr genes by several PCRs. The initial reaction utilized a custom primer set designed to amplify a 143 bp region common to both mcr-1 and mcr-2 (MCR-Univ-F: 5’-CTGTGCGGTGATGTTT CAGC-3’ and MCR-Univ-R: 5’-CACGCCTTTTGAGCTGAAT-3’). Primers that anneal to 16S rRNA gene (U341F, 5’-CCTACGGGRSGACGAG-3’; U519R 5’-GWATTACCGCGGC KTGG-3’) were included in the reaction as an internal positive control for amplification. Subsequently, a multiplex PCR was employed with primers MCR3-F and MCR3-R [9], and MCR-4 FW and MCR-4 RV [10] to detect the mcr-3 and mcr-4 genes, respectively. This reaction also included the 16S rDNA internal positive control. Finally, the screening for mcr-5 utilized MCR5-intern_fw and MCR5-intern_rev primers [11], along with the internal 16SrDNA control. As external positive controls, synthetic DNA constructs were employed for each of the mcr genes (IDT Inc., Coralville, Iowa). All screen-positive results were confirmed by PCR amplification using custom-designed primers flanking the coding region and sequencing the gene in full (mcr-1, exgenMCR1-F, 5’-CCGAAATTATCCACCGGT-3’ and exgenMCR1-R, 5’-CCCATGACAGGCCGATAC-3’; mcr-3, exgenMCR3-F, 5’-TCGTTAGAAAGTGATTGT TGGAC-3’ and exgenMCR3-R, 5’-CCTCTTCTGATTTGCCGCTG-3’; mcr-5, exgenMCR5 F, 5’-AACCGTTGAAGGACGAGA-3’ and exgenMCR5-R, 5’-CCATGAGCCTCGTG ATCCCC-3’). Sequence variants were assigned based upon comparison to sequences deposited in the NCBI databases. mcr-positive E. coli underwent multilocus sequence typing based on the partial sequences of adk, fumC, gyrB, icd, mdh, purA, and recA (https://enterobase. warwick.ac.uk/species/index/ecoli).
Results and discussion

In total, *mcr* was detected in 29 isolates (3.2%), and included 27 *E. coli*, 1 *K. pneumoniae* and 1 *E. cloacae* collected in 15 countries (Malaysia, 5; Thailand, 5; Spain, 3; Argentina, 2; Italy, 2; Colombia, 2; Germany, 2; Brazil, Hong Kong, Poland, Portugal, Russia, South Africa, Taiwan, and Venezuela, 1 each) as part of INFORM in 2014 (n = 14), 2015 (n = 11) and 2016 (n = 4) (Table 1). Twenty-two isolates harbored the original *mcr*-1 gene, one isolate carried the gene for the single amino acid variant (Q3L) MCR-1.2 [15], and one isolate carried *mcr*-1.5, that codes for another single amino acid variant, (H452Y). Four *E. coli* isolates, all originating from Thailand, were found to possess *mcr*-3, with three harboring the original *mcr*-3.1 [9] and one possessing the gene coding for the single amino acid variant, MCR-3.2 (T488I). An *E. coli* strain from Colombia was shown to carry the recently discovered *mcr*-5 gene [11]. No *mcr*-2 or *mcr*-4 genes were identified.

As part of the INFORM surveillance program, organisms non-susceptible to meropenem, resistant to ceftazidime, and/or positive for ESBL activity qualify for β-lactamase gene screening. Thirteen of the 29 *mcr* positive isolates qualified and were screened for genes encoding acquired ESBLs, AmpC β-lactamases, serine carbapenemases (*bla*KPC, *bla*OXA-48, *bla*GES), and metallo-β-lactamases by PCR and DNA sequencing, as previously described [16]. Nine *mcr*-positive isolates were found to carry CTX-M-type ESBLs either alone or in combination with AmpC-type β-lactamases and/or original-spectrum β-lactamases (OSBL) of the TEM or SHV type. Four possessed a CMY-2 AmpC-type enzyme either alone or with a TEM-OSBL, and in one case with a CTX-M-161 enzyme. None of the *mcr*-positive isolates carried carbapenemases. Of note, each of the four *mcr*-3 gene family-harboring isolates also carried the CTX-M-55 ESBL variant, known to be common in Asia especially in *E. coli* isolated from veterinary sources [17].

All *mcr* containing isolates were susceptible to meropenem (MIC < 2 μg/mL) and doripenem (MIC < 2 μg/mL), and 62.1% (18/29) were susceptible to both ceftazidime (MIC < 8 μg/mL) and aztreonam (MIC < 8 μg/mL) by CLSI breakpoints [18]. However, the addition of 4 μg/mL avibactam rendered 100% of the isolates susceptible (MIC < 8 μg/mL) to ceftazidime (using FDA recommended breakpoints [19]). All isolates harboring *mcr* were also susceptible (MIC ≤ 2 μg/mL) to tigecycline (using FDA recommended breakpoints [20]). The *in vitro* activity of several antimicrobials against the full set of 908 colistin-resistant isolates is given in Table 2. Ceftazidime-avibactam, along with tigecycline, were the most active agents against these isolates. The addition of avibactam to ceftazidime rendered 97.5% of the population susceptible (FDA breakpoints [19]), as compared to just 43.8% susceptibility with ceftazidime alone (CLSI breakpoints [18]).

The *mcr*-positive *E. coli* were distributed among several lineages, with the ST10 clonal complex (including ST167, ST744 and ST48) the most abundant (n = 6). *mcr*-harboring *E. coli* from this group has been reported on numerous occasions, for example ST10 from human clinical samples in China [21], ST744 from human and cattle-associated samples in Europe [22, 23], ST167 from human infections in Spain and China [24, 25], as well as ST48 from hospital sewage and human clinical samples, in China and Switzerland, respectively [26, 27]. Additional worldwide clones previously shown to harbor *mcr* were also confirmed here, and include ST641 [28], ST410 [29,30], and ST156 [31, 32]. Our screening identified two *mcr*-harboring ST117 *E. coli* (and a ST117 single-locus variant with a novel *fumC*), one of which carried the MCR-3.2 gene. ST117 is a clonal group associated with poultry disease [33] and *mcr*-type genes have only rarely been observed in this clone [27, 34]. Of particular interest, one isolate from Brazil typed as a single locus variant (novel *purA*) of the pathogenic *E. coli* ST131 [35]. ST131 often exhibits an extended spectrum β-lactamase (ESBL) phenotype and frequently possess CTX-M-15; however, this Brazilian isolate was susceptible to third-generation cephalosporins. In general, the fact that *mcr*-type genes have been found in *E. coli* of such diverse STs
from food, human and animal specimens suggests the spread of these genes is linked more to successful plasmids and mobile elements rather than single specific E. coli clones [27].

Overall, the prevalence of mcr observed here is in accordance with previous reports from large global surveillance studies. For example, Castanheira, et al. noted that 4.9% (19/390) of a

Table 1. mcr positive Enterobacteriaceae collected as part of the INFORM global surveillance program during 2014–2016.

Year	Country	Organism	Clinical Sample	MIC (µg/mL)*	MLST	mcr gene product	β-Lactamase content
2014	Colombia	Escherichia coli	Urine	4 0.25 32 0.06 0.25 CST CAZ AVI CAZ MEM TGC	ST641	MCR-5	CMY-2
2014	Germany	Escherichia coli	GI tract: appendix	>4 0.06 0.25 0.03 0.12 MCR-1	ST46		NC
2014	Hong Kong	Escherichia coli	Blood	4 0.06 0.12 0.03 0.25 MCR-1	ST10		NC
2014	Italy	Escherichia coli	Wound	4 0.12 0.25 0.015 0.25 MCR-1	ST744		NC
2014	Italy	Escherichia coli	Blood	4 0.12 0.25 0.015 0.25 MCR-1	ST453	MCR-1.2	NC
2014	Malaysia	Escherichia coli	Abscess	4 0.12 16 0.03 1 MCR-1	ST10		TEM-OSBL; CTX-M-15
2014	Malaysia	Escherichia coli	Gangrene	4 0.03 16 0.03 0.5 MCR-1	ST162		TEM-OSBL; CMY-2
2014	Portugal	Enterobacter cloacae	Wound >4 0.25 1 0.06 1 MCR-1	ST1167	MCR-1		TEM-OSBL; CTX-M-1
2014	Russia	Escherichia coli	Peritoneal fluid	>4 0.12 2 0.03 0.25 MCR-1	ST156		TEM-OSBL; CTX-M-1
2014	South Africa	Escherichia coli	Wound	4 0.03 0.5 0.03 0.25 MCR-1	ST602		NC
2014	Spain	Escherichia coli	Peritoneal fluid	>4 0.12 0.25 0.015 0.5 MCR-1	ST117		NC
2014	Spain	Escherichia coli	Blood	4 1 64 0.12 2 MCR-1	ST167		TEM-OSBL
2014	Taiwan	Escherichia coli	Wound	4 0.25 32 0.06 0.25 MCR-1	ST117	MCR-1	TEM-OSBL; CTX-M-161; CMY-2
2014	Thailand	Klebsiella pneumoniae	Wound	4 0.5 64 0.06 0.5 MCR-1	ST602		NC
2015	Argentina	Escherichia coli	Urine	4 0.12 0.5 0.03 0.25 MCR-1	ST48	MCR-1.5	NC
2015	Argentina	Escherichia coli	Peritoneal fluid	8 0.25 8 0.06 0.5 Novel	ST117	MCR-1	NC
2015	Colombia	Escherichia coli	Wound	4 0.12 0.25 0.03 0.5 MCR-1	ST744		NC
2015	Malaysia	Escherichia coli	Blood	4 0.03 0.25 0.03 0.5 MCR-1	ST2705		NC
2015	Malaysia	Escherichia coli	Wound	4 0.12 4 0.03 0.25 MCR-1	ST5907		TEM-OSBL; CTX-M-65
2015	Malaysia	Escherichia coli	Peritoneal fluid	4 0.06 0.12 0.03 0.12 MCR-1	ST97		NC
2015	Spain	Escherichia coli	Endotracheal aspirate	4 0.12 0.25 0.03 1 MCR-1	ST88		NC
2015	Thailand	Escherichia coli	Wound	4 0.5 >128 0.12 2 MCR-1	ST1193		NC
2015	Thailand	Escherichia coli	Blood	4 0.12 8 0.03 0.25 MCR-1	ST117	MCR-3.2	TEM-OSBL; CTX-M-55
2015	Thailand	Escherichia coli	Abscess	4 0.12 16 0.06 0.25 MCR-1	ST410	MCR-3.1	CTX-M-55
2015	Venezuela	Escherichia coli	Abscess	4 0.12 0.25 0.03 0.5 MCR-1	ST97		NC
2016	Brazil	Escherichia coli	Peritoneal fluid	4 0.12 0.25 0.03 0.25 Novel	ST117	MCR-1	NC
2016	Germany	Escherichia coli	Wound	4 0.12 0.25 0.03 0.25 MCR-1	ST175	MCR-1	NC
2016	Poland	Escherichia coli	Wound	4 0.12 0.25 0.06 0.25 MCR-1	ST12		NC
2016	Thailand	Escherichia coli	Blood	4 0.12 16 0.12 0.12 MCR-1	ST4546	MCR-3.1	TEM-OSBL; CTX-M-55

*MICs performed via broth microdilution (13); CST, colistin; CAZ, ceftazidime; CAZ-AVI, ceftazidime with 4 µg/mL avibactam; MEM, meropenem; TGC, tigecycline.

*As part of INFORM, meropenem non-susceptible, ceftazidime-resistant, and phenotypically positive ESBL isolates were screened for genes encoding acquired extended-spectrum β-lactamases (ESBLs), AmpC β-lactamases, serine carbapenemases (KPC, OXA-48, GES), and metallo-β-lactamases (MBL) by PCR and DNA sequencing as previously described (16).

*NC = not characterized

*OSBL = original spectrum β-lactamase (eg. TEM-1, SHV-1, SHV-11)

*Single-locus variant (novel fumC) of E. coli ST117

*Single-locus variant (novel purA) of pathogenic E. coli ST131

https://doi.org/10.1371/journal.pone.0195281.t001
Table 2. In vitro activity of selected antimicrobials against 908 colistin-resistant Enterobacteriaceae collected worldwide during 2014–2016.

Drug	MIC Interpretive criteria (S/I/R)	% Susceptible	% Intermediate	% Resistant	MIC_50 μg/mL	MIC_90 μg/mL	MIC Range μg/mL
Amikacin	≤16/32/≥64	78.6	11.3	10.1	2	>32	0.5 - >32
Ceftazidime	≤4/8/4/≥16	43.9	2.0	54.1	32	>128	≤0.015 - >128
Ceftazidime-avibactam	≤8 /na/≥16	97.7	na	2.3	0.25	2	≤0.015 - >128
Colistin	≤2 /na/≥4	0	na	100.0	8	>8	4 - >8
Levofloxacin	≤2/4/≥8	52.6	2.9	44.5	2	>8	0.015 - >8
Meropenem	≤2/4/≥8	70.4	3.2	26.5	0.12	>8	0.008 - >8
Tigecycline	≤2/4/≥8	95.6	4.0	0.4	0.5	2	0.03–8

^MICs were interpreted according to CLSI breakpoints [18], with the exception of ceftazidime-avibactam, for which MICs were interpreted using criteria according to the FDA [19], colistin for which EUCAST breakpoints were utilized [14] and tigecycline, for which MICs were interpreted using FDA criteria [20]; S, susceptible; I, intermediate; R, resistant; na, not applicable (no intermediate breakpoint).

^Avibactam concentration fixed at 4 μg/mL.

https://doi.org/10.1371/journal.pone.0195281.t002

worldwide colistin-resistant collection of E. coli and K. pneumoniae from the SENTRY program contained mcr-1, and 32.3% (19/59) of the resistant E. coli contained this gene [36]. mcr was also enriched in the colistin-resistant E. coli population examined here, as 42.2% (27/64) of the resistant isolates from this species harbored mcr with the remainder presumably possessing a chromosomally-encoded resistance determinant. It should be noted that mcr has been discovered in isolates susceptible to colistin [37], so the actual frequency of occurrence could be higher. In this study, mcr-1 was observed exclusively in E. coli except for an E. cloacae isolate originating from Portugal. Until recently, mcr-1 positive E. cloacae were only reported from Asia [38, 39]; however, the geographic range was expanded with the discovery of a clinical E. cloacae isolate with mcr-1 in France [40]. The mcr-5 harboring E. coli and K. pneumoniae from Thailand confirm the previous report of the presence of this gene in clinical isolates from this country [9]. Finally, finding mcr-5 in a Colombian E. coli clinical isolate expands both its geographic and host range, as at the time of this writing mcr-5 has only been confirmed in Salmonella enterica Paratyphi B isolated from food animals and food products in Germany, and in E. coli from porcine clinical specimens in Japan [41]. This gene was found in silico to be present the genome of a Cupriavidus gilardii from the U.S., and mcr-5 has been reported to be located on a unique Tn3-type transposon in both S. enterica Paratyphi B and C. gilardii [11]. Although we did not sequence this complete region, the forward mcr-5 flanking primer utilized to amplify the full coding region overlaps the 3’ end of the chromate reductase gene, chrB, directly upstream of mcr-5 in the Tn3-type transposon, and the reverse flanking primer anneals to the 5’ portion of the MFS-type transporter gene, immediately downstream of mcr-5 in the transposon arrangement [11], suggesting a similar genetic orientation in this Colombian strain.

In summary, this report confirms the global spread of mcr. Notably we did not find the coexistence of mcr with any carbapenemase genes, although co-carriage is being increasingly reported, including mcr-1 with blaNDM in Enterobacteriaceae from the U.S. and China [32, 42–46], as well as mcr-1 and blaKPC in isolates from Singapore [47]. Continual surveillance of this recently recognized threat to public health is warranted as MDR bacteria that acquire mcr will leave few treatment options.

Acknowledgments

We are grateful for the contribution of all laboratories that submitted isolates as part of the INFORM program.
Author Contributions

Conceptualization: Mark G. Wise, Daniel F. Sahm, Krystyna M. Kazmierczak.

Formal analysis: Mark G. Wise, Mark A. Estabrook.

Funding acquisition: Gregory G. Stone.

Investigation: Mark G. Wise, Mark A. Estabrook.

Methodology: Mark A. Estabrook.

Writing – original draft: Mark G. Wise.

Writing – review & editing: Mark G. Wise.

References

1. Falagas ME, Rafailidis PI. Nephrotoxicity of colistin: new insight into an old antibiotic. Clin Infect Dis. 2009; 48:1729–31. https://doi.org/10.1086/599226 PMID: 19436398

2. Izadpanah M, Khalili H. Antibiotic regimens for treatment of infections due to multidrug-resistant Gram-negative pathogens: An evidence-based literature review. J Res Pharm Pract. 2015; 4:105–14. https://doi.org/10.4103/2279-042X.162360 PMID: 26312249

3. Olaitan AO, Morand S, Rolain JM. Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. Front Microbiol. 2014; 5:643. https://doi.org/10.3389/fmicb.2014.00643 PMID: 25505462

4. Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2016; 16:161–8. https://doi.org/10.1016/S1473-3099(15)00424-7 PMID: 26603172

5. Xavier BB, Lammens C, Ruhal R, Kumar-Singh S, Butaye P, Goossens H, et al. Identification of a novel plasmid-mediated colistin-resistance gene, mcr-2, in Escherichia coli, Belgium, June 2016. Euro Surveill. 2016; 21(27).

6. Al-Tawfiq JA, Laxminarayan R, Mendelson M. How should we respond to the emergence of plasmid-mediated colistin resistance in humans and animals? Int J Infect Dis. 2016; 54:77–8. https://doi.org/10.1016/j.ijid.2016.11.415 PMID: 27915108

7. Schwarz S, Johnson AP. Transferable resistance to colistin: a new but old threat. J Antimicrob Chemother. 2016; 71:2066–70. https://doi.org/10.1093/jac/dkw274 PMID: 27342545

8. Poirel L JA, Nordmann P. Polymyxins: Antibacterial activity, susceptibility testing, and resistance mechanisms encoded by Plasmids or chromosomes. Clin Microbiol Rev. 2017; 30:557–96. https://doi.org/10.1128/CMR.00064-16 PMID: 28275006

9. Yin W, Li H, Shen Y, Liu Z, Wang S, Shen Z, et al. Novel Plasmid-Mediated Colistin Resistance Gene mcr-3 in Escherichia coli. MBio. 2017; 8(3).

10. Carattoli A, Villa L, Feudi C, Curcio L, Orsini S, Luppi A, et al. Novel plasmid-mediated colistin resistance mcr-4 gene in Salmonella and Escherichia coli. Italy 2013, Spain and Belgium, 2015 to 2016. Euro Surveill. 2017; 22(31).

11. Borowiak M, Fischer J, Hammerl JA, Hendriksen RS, Szabo I, Malorny B. Identification of a novel transposon-associated phosphoethanolamine transferase gene, mcr-5, conferring colistin resistance in d-tartrate fermenting Salmonella enterica subsp. enterica serovar Paratyphi B. J Antimicrob Chemother. 2017; Sep 18. https://doi.org/10.1093/jac/dkx327 PMID: 28962028

12. Karlowsky JA, Biedenbach DJ, Kazmierczak KM, Stone GG, Sahm DF. Activity of ceftazidime-avibactam against extended-spectrum- and AmpC beta-lactamase-producing Enterobacteriaceae collected in the INFORM Global Surveillance Study from 2012 to 2014. Antimicrob Agents Chemother. 2016; 60:2849–57. https://doi.org/10.1128/AAC.02286-15 PMID: 26926635

13. Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standards—Tenth Edition. CLSI Document M07-A10. Wayne, PA, 2015.

14. European Committee on Antimicrobial Susceptibility Testing (EUCAST). Clinical breakpoints. http://www.eucast.org/clinical_breakpoints. 2016.

15. Di Pilato V, Arena F, Tascini C, Cannatelli A, Henri-De Angelis L, Fortunato S, et al. mcr-1.2, a New mcr variant carried on a transferable plasmid from a colistin-resistant KPC carbapenemase-producing...
16. Lob SH, Kazmierczak KM, Badal RE, Hackel MA, Bouchillon SK, Biedenbach DJ, et al. Trends in susceptibility of Escherichia coli from intra-abdominal infections to ertapenem and comparators in the United States according to data from the SMART program, 2009 to 2013. Antimicrob Agents Chemother. 2015; 59:3606–10. https://doi.org/10.1128/AAC.01586-14 PMID: 25801558

17. Zhang J, Zheng B, Zhao L, Wei Z, Ji J, Li L, et al. Nationwide high prevalence of CTX-M and an increase of CTX-M-55 in Escherichia coli isolated from patients with community-onset infections in Chinese county hospitals. BMC Infect Dis. 2014; 14:659. https://doi.org/10.1186/s12879-014-0659-0 PMID: 25466590

18. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; twenty-sixth informational supplement. CLSI document M100-S26. Clinical and Laboratory Standards Institute, Wayne, PA. 2016.

19. Forest Pharmaceuticals, Inc. Avycaz: ceftazidime-avibactam prescribing information. Cincinnati, OH. 2014.

20. Pfizer Inc. Tygacil: tigecycline FDA prescribing information. Collegeville, PA. 2010.

21. Zhang Y, Liao K, Gao H, Wang Q, Wang X, Li H, et al. Decreased fitness and virulence in ST10 Escherichia coli harboring blaNDM-5 and mcr-1 against a ST4981 strain with blaNDM-5. Front Cell Infect Microbiol. 2017; 7:242. https://doi.org/10.3389/fcimb.2017.00242 PMID: 28642846

22. Haenni M, Beyrouthy R, Lupo A, Chatre P, Madec JY, Bonnet R. Epidemic spread of Escherichia coli ST744 isolates carrying mcr-3 and blaCTX-M-55 in cattle in France. J Antimicrob Chemother. 2018; 73 (2):533–6. https://doi.org/10.1093/jac/dkx418 PMID: 29182716

23. Tacco M, Tavares RDS, Teixeira P, Roxo I, Ramalheira E, Ferreira S, et al. mcr-1 and blaKPC-3 in Escherichia coli Sequence Type 744 after meropenem and colistin therapy, Portugal. Emerg Infect Dis. 2017; 23(8):1419–21. https://doi.org/10.3201/eid2308.170162 PMID: 28726622

24. He QW, Xu XD, Lan FJ, Zhao ZC, Wu ZY, Cao YP, et al. Molecular characteristic of mcr-1 producing Escherichia coli in a Chinese university hospital. Ann Clin Microbiol Antimicrob. 2017; 16(1):32. https://doi.org/10.1186/s12941-017-0207-z PMID: 28420384

25. Sanchez-Benito R, Iglesias MR, Quijada NM, Campos MJ, Ugarte-Ruiz M, Hernandez M, et al. Escherichia coli ST167 carrying plasmid mobilisable mcr-1 and blaCTX-M-15 resistance determinants isolated from a human respiratory infection. Int J Antimicrob Agents. 2017; 50(2):258–6. https://doi.org/10.1016/j.ijantimicag.2017.05.005 PMID: 28599866

26. Zhao F, Feng Y, Lu X, McNally A, Zong Z. Remarkable Diversity of Escherichia coli carrying mcr-1 from hospital sewage with the identification of two new mcr-1 variants. Front Microbiol. 2017; 8:2094. https://doi.org/10.3389/fmicb.2017.02094 PMID: 29118748

27. Zurfluh K, Nuesch-Inderbinen M, Klumpp J, Poirel L, Nordmann P, Stephan R. Key features of mcr-1-bearing plasmids from Escherichia coli isolated from humans and farm sources. Antimicrob Resist Infect Control. 2017; 6:91. https://doi.org/10.1186/s13756-017-0250-8 PMID: 28878890

28. Pulss S, Semmler T, Prenger-Berninghoff E, Bauerfeind R, Ewers C. First report of an Escherichia coli strain from swine carrying an OXA-181 carbapenemase and the colistin resistance determinant MCR-1. Int J Antimicrob Agents. 2017; 50(2):232–6. https://doi.org/10.1016/j.ijantimicag.2017.03.014 PMID: 28666753

29. Rocha IV, Andrade C, Campos TL, Rezende AM, Leal NC, Vidal CFL, et al. Ciprovofloxacacin-resistant and extended-spectrum beta-lactamase-producing Escherichia coli ST410 strain carrying the mcr-1 gene associated with bloodstream infection. Int J Antimicrob Agents. 2017; 49(5):655–6. https://doi.org/10.1016/j.ijantimicag.2017.03.001 PMID: 28302539

30. Falgenhauer L, Waezsada SE, Gwozdzinski K, Ghosh H, Doijad S, Bunk B, et al. Chromosomal locations of mcr-1 and blaCTX-M-15 in fluoroquinolone-resistant Escherichia coli ST410. Emerg Infect Dis. 2016; 22(9):1689–91. https://doi.org/10.3201/eid2209.160692 PMID: 27322919

31. Rossi F, Girardello R, Morais C, Cury AP, Martins LF, da Silva AM, et al. Plasmid-mediated mcr-1 in carbapenem-resistant Escherichia coli ST156 causing a blood infection: an unnoticeable spread of colistin resistance in Brazil? Clinics (Sao Paulo). 2017; 72(10):642–4.

32. Yang RS, Feng Y, Lv XY, Duan JH, Chen J, Fang LX, et al. Emergence of NDM-5 and MCR-1-producing Escherichia coli clone ST648 and ST156 from a single muscovy duck (Cairina moschata). Antimicrob Agents Chemother. 2016; 60:6899–6902. https://doi.org/10.1128/AAC.01365-16 PMID: 27550364

33. Ronco T, Stegger M, Olsen RH, Sekse C, Nordstoga AB, Pohjanvirta T, et al. Spread of avian pathogenic Escherichia coli ST117 O78:H4 in Nordic broiler production. BMC Genomics. 2017; 18(1):13. https://doi.org/10.1186/s12866-016-3415-6 PMID: 28049430

Klebsiella pneumoniae strain of sequence type 512. Antimicrob Agents Chemother. 2016; 60:5612–5. https://doi.org/10.1128/AAC.01075-16 PMID: 27401575
34. Yang YQ, Li YX, Song T, Yang YX, Jiang W, Zhang AY, et al. Colistin resistance gene \textit{mcr-1} and its variant in \textit{Escherichia coli} isolates from chickens in China. Antimicrob Agents Chemother. 2017; 61(5).

35. Nicolas-Chanoine MH, Bertrand X, Macac JY. \textit{Escherichia coli} ST131, an intriguing clonal group. Clin Microbiol Rev. 2014; 27(3):543–74. https://doi.org/10.1128/CMR.00125-13 PMID: 24982321

36. Castanheira M, Griffin MA, Deshpande LM, Mendes RE, Jones RN, Flierm RK. Detection of \textit{mcr-1} among \textit{Escherichia coli} clinical isolates collected worldwide as part of the SENTRY Antimicrobial Surveillance Program in 2014 and 2015. Antimicrob Agents Chemother. 2016; 60(9):5623–4. https://doi.org/10.1128/AAC.01267-16 PMID: 27401568

37. Terveer EM, Nijhuis RHT, Crobach MJT, Knetsch CW, Veldkamp KE, Goossens J, et al. Prevalence of colistin resistance gene (\textit{mcr-1}) containing \textit{Enterobacteriaceae} in feces of patients attending a tertiary care hospital and detection of a \textit{mcr-1} containing, colistin susceptible \textit{E. coli}. PLoS One. 2017; 12(6): e0178598. https://doi.org/10.1371/journal.pone.0178598 PMID: 28575076

38. Wong SC, Tse H, Chen JH, Cheng VC, Ho PL, Yuen KY. Colistin-resistant \textit{Enterobacteriaceae} carrying the \textit{mcr-1} gene among patients in Hong Kong. Emerg Infect Dis. 2016; 22(9):1667–9. https://doi.org/10.3201/eid2209.160091 PMID: 27532341

39. Zeng KJ, Doi Y, Patil S, Huang X, Tian GB. Emergence of the plasmid-mediated \textit{mcr-1} gene in colistin-resistant \textit{Enterobacter aerogenes} and \textit{Enterobacter cloacae}. Antimicrob Agents Chemother. 2016; 60(6):3862–3. https://doi.org/10.1128/AAC.00345-16 PMID: 26976876

40. Baron S, Bardet L, Dubourg G, Fichaux M, Rolain JM. \textit{mcr-1} plasmid-mediated colistin resistance gene detection in an \textit{Enterobacter cloacae} clinical isolate in France. J Glob Antimicrob Resist. 2017; 10:35–6. https://doi.org/10.1016/j.jgar.2017.05.004 PMID: 28576739

41. Fukuda A, Sato T, Shinagawa M, Takahashi S, Asai T, Yokota SI, et al. High prevalence of \textit{mcr-1}, \textit{mcr-3} and \textit{mcr-5} in \textit{Escherichia coli} derived from diseased pigs in Japan. Int J Antimicrob Agents. 2017.

42. Yu H, Qu F, Shan B, Huang B, Jia W, Chen C, et al. Detection of the \textit{mcr-1} colistin resistance gene in carbapenem-resistant \textit{Enterobacteriaceae} from different hospitals in China. Antimicrob Agents Chemother. 2016; 60(6):5033–5. https://doi.org/10.1128/AAC.00440-16 PMID: 27216058

43. Mediavilla JR, Patrawalla A, Chen L, Chavda KD, Mathema B, Vinnard C, et al. Colistin- and carbapenem-resistant \textit{Escherichia coli} harboring \textit{mcr-1} and blaNDM-5, causing a complicated urinary tract infection in a patient from the United States. MBio. 2016; 7(4).

44. Yao X, Doi Y, Zeng L, Lv L, Liu JH. Carbapenem-resistant and colistin-resistant \textit{Escherichia coli} co-producing NDM-9 and MCR-1. Lancet Infect Dis. 2016; 16(3):288–9. https://doi.org/10.1016/S1473-3099(16)00057-8 PMID: 26842777

45. Du H, Chen L, Tang YW, Kreiswirth BN. Emergence of the \textit{mcr-1} colistin resistance gene in carbapenem-resistant \textit{Enterobacteriaceae}. Lancet Infect Dis. 2016; 16(3):287–8. https://doi.org/10.1016/S1473-3099(16)00056-6 PMID: 26842776

46. Zhong LL, Zhang YF, Doi Y, Huang X, Zheng XF, Zeng KJ, et al. Co-production of MCR-1 and NDM-1 by colistin-resistant \textit{Escherichia coli} isolated from a healthy individual. Antimicrob Agents Chemother. 2016; 61: e01962–16. https://doi.org/10.1128/AAC.01962-16 PMID: 27821458

47. Teo JQ, Ong RT, Xia E, Koh TH, Khor CC, Lee SJ, et al. \textit{mcr-1} in Multidrug-Resistant blaKPC-2-producing clinical \textit{Enterobacteriaceae} isolates in Singapore. Antimicrob Agents Chemother. 2016; 60:6435–7. https://doi.org/10.1128/AAC.00804-16 PMID: 27503652