Sterically Controlled Reductive Oligomerisations of CO by Activated Magnesium(I) Compounds: Deltate vs. Ethenediolate Formation

K. Yuvaraj, Iskander Douair, Dafydd D. L. Jones, Laurent Maron and Cameron Jones

a School of Chemistry, PO Box 23, Monash University, VIC, 3800, Australia.
b Université de Toulouse et CNRS, INSA, UPS, UMR 5215, LPCNO, 135 Avenue de Rangueil, F-31077 Toulouse, France.

Electronic Supplementary Information (75 pages)

Contents

1. Experimental S2
2. X-Ray Crystallographic Studies S26
3. Computational Studies S34
4. References S74
1. Experimental

General considerations.

All manipulations were carried out using standard Schlenk and glove box techniques under an atmosphere of high purity dinitrogen. Pentane and diethyl ether were distilled over Na/K alloy (50:50), while hexane, cyclohexane, toluene and THF were distilled over molten potassium. 1H and 13C{1H} NMR spectra were recorded on Bruker Avance III 400 or Bruker Avance III 600 spectrometers and were referenced to the resonances of the solvent used or external SiMe$_4$. Mass spectra were collected using an Agilent Technologies 5975D inert MSD with a solid-state probe. FTIR spectra were collected for solid samples or Nujol mulls on an Agilent Cary 630 attenuated total reflectance (ATR) spectrometer. Microanalyses were carried out at the Science Centre, London Metropolitan University. Melting points were determined in sealed glass capillaries under dinitrogen, and are uncorrected. The compounds (TCHP)NH$_2$, and [(ArNacnac)Mg]$_2$ (Ar = Xyl2, Mes3 or Dep4), were prepared according to the literature procedures. CO gas was dried over P$_2$O$_5$ in prior to use. All other reagents were used as received.

Synthesis of TCHPNacnacH. 2,4,6-tricyclohexylaniline (10.0 g, 29.5 mmol), p-tolylsulfonic acid monohydrate (2.80 g, 14.7 mmol) and acetylacetone (1.50 mL, 14.7 mmol) were dissolved in toluene (150 mL) in a round bottom flask. A Dean-Stark apparatus was attached and the mixture heated at reflux for 72h. After cooling, NEt$_3$ (2.1 mL, 15.0 mmol) was added and the mixture allowed to stir for 1h. The organic phase was washed with water (2 x 30 mL), dried over MgSO$_4$ and evaporated to yield a dark red oil. Cold methanol was added to the oil to yield the title compound as an off-white solid after filtration and drying (9.16 g, 83%). Crystals suitable for X-ray crystallographic studies were obtained by slow evaporation of a solution of TCHPNacnacH in diethyl ether. M.p. 103-105 °C. 1H NMR (400 MHz, C$_6$D$_6$, 298 K): N.B. integration of resonances for cyclohexyl groups are estimated due to complex overlapping signals, and small amounts of unknown impurities. δ 1.21-2.03 (m, 60H, Cy-CH$_2$), 1.72 (s, 6H, NCCCH$_3$), 2.52-2.59 (m, 2H, Cy-CH), 2.98-3.05 (m, 4H, Cy-CH), 4.84 (s, 1H, NCCCH), 7.18 (s, 4H, ArH), 11.63 (br, 1H, NH); 13C{1H} (101 MHz, C$_6$D$_6$, 298 K): δ 21.4 (NCCCH$_3$), 26.9, 27.5, 27.6, 27.7, 34.5, 35.3, 39.3, 45.2 (Cy-C), 94.5 (NCCCH), 123.0, 139.5, 141.6, 144.6 (ArC), 161.4 (NCCCH$_3$); IR v/cm$^{-1}$ (ATR): 1654 (m), 1617 (m), 1545 (m), 1492 (m), 1117 (m), 1076 (w), 1029 (w), 949 (w), 920
(w), 861 (m), 797 (w), 777 (w), 744 (m), 699 (m); acc. mass/ESI m/z: calc. for [M+H]$^+$ 743.6238 found: 743.6231.

Figure S1. 1H NMR spectrum (400 MHz, 298 K, C$_6$D$_6$) of 15CH$_2$NacnacH.
Synthesis of [(TCHPNacnac)MgI(OEt\textsubscript{2})]. Mg turnings (78 mg, 3.33 mmol) were placed in a Schlenk flask and placed under vacuum. After 20 minutes, diethyl ether (5 mL) and a crystal of I\textsubscript{2} were added. After the iodine had been consumed, a reflux condenser was added and MeI (0.234 mL, 3.76 mmol) in diethyl ether (5 mL) was added. The resultant suspension was heated at reflux for 4h. The freshly prepared MeMgI solution was cooled and was subsequently added to a suspension of TCHPNacnacH (2.00 g, 2.69 mmol) in diethyl ether (20 mL), and the mixture stirred overnight. The resultant solution was filtered, concentrated \textit{in vacuo} and stored at −30 °C to yield colourless crystals of the title compound. A second crop of crystals could be obtained from further concentration and storage of the supernatant solution at −30 °C (1.44 g, 55 %). M.p. 162-165 °C (decomp): 1H NMR (400 MHz, C\textsubscript{6}D\textsubscript{6}, 298 K) N.B. integrations for cyclohexyl groups are estimated due to complex overlapping signals: δ 1.11 (t, \textit{J}_{HH} = 7.0 Hz, 6H, OCH\textsubscript{2}CH\textsubscript{3}), 1.32-1.45 (m, 11H, Cy-H), 1.48 (s, 6H, NCCCH\textsubscript{3}), 1.51-2.00 (m, 45H, cyclohexyl CH\textsubscript{2}), 2.27-2.31 (m, 4H, Cy-CH\textsubscript{2}), 2.69-2.74 (m, 2H, Cy-CH), 2.79-2.86 (m, 4H, Cy-CH), 3.26
(q, $J_{HH} = 7.0$ Hz, 4H, CH$_3$CH$_2$O), 4.64 (s, 1H, NCCH), 7.14 (s, 4H, ArH); 13C{1H} (101 MHz, C$_6$D$_6$, 298 K): δ 15.5 (CH$_3$CH$_2$O), 25.3 (NCCH$_3$), 26.9, 27.0, 27.7, 27.9, 28.3, 34.7, 35.2, 35.9, 40.1, 44.8 (Cy-C), 66.0 (CH$_3$CH$_2$O), 95.2 (NCCH), 123.1, 141.4, 142.8, 144.0 (ArC), 170.7 (NCCH); IR ν/cm$^{-1}$ (Nujol): 1618 (m), 1546 (s), 1143 (w), 1115 (w), 1086 (w), 1017 (w), 997 (w), 949 (w), 925 (w), 890 (w), 862 (m), 842 (w); EI/MS (70eV) m/z (%): 83.1 (Cy$^+$, 23), 364.3 Cy$_3$C$_6$H$_2$NCH$_3$+, 100), 659.6 (TCHP$^{+}$NacnacH–Cy$^+$, 13), 727.8 (TCHP$^{+}$NacnacH–CH$_3$+, 23), 742.8 (TCHP$^{+}$NacnacH$^+$, 13); anal. calc. for C$_{57}$H$_{87}$IMgN$_2$O: C 70.76 %, H 9.06 %, N 2.90 %; found: C 70.66 %, H 8.86 %, N 2.83 %.

Figure S3. 1H NMR spectrum (400 MHz, 298 K, C$_6$D$_6$) of [(TCHP$^{+}$Nacnac)MgI(OEt$_2$)].
Figure S4. 13C{1H} NMR spectrum (101 MHz, 298 K, C$_6$D$_6$) of [($^{\text{TCHP}}$Nacnac)MgI(OEt$_2$)].

Synthesis of [($^{\text{TCHP}}$Nacnac)Mg$_2$], 5. [($^{\text{TCHP}}$Nacnac)MgI(OEt$_2$)] (700 mg, 0.72 mmol) was dissolved in a 4:1 mixture of toluene/diethyl ether (20 mL/5 mL) and the solution stirred over a sodium mirror (120 mg, 7.2 mmol) at room temperature. The progress of the reaction was monitored by 1H NMR spectroscopy until all [($^{\text{TCHP}}$Nacnac)MgI(OEt$_2$)] was consumed (ca. 96h), after which the solution was filtered, the filtrate concentrated *in vacuo* and stored at −30 °C to yield yellow crystals of [($^{\text{TCHP}}$Nacnac)Mg$_2$]. A second crop was obtained from further concentration of the supernatant solution and storage at −30 °C (405 mg, 73 %). M.p. > 260 °C. 1H NMR (400 MHz, C$_6$D$_6$, 298 K) N.B. integration for cyclohexyl groups are estimated due to complex overlapping signals: δ 1.21-1.41 (m, 20H, Cy-CH_2), 1.44 (s, 12H, NCC$_3$H), 1.46-1.60 (m, 40H, Cy-CH_2), 1.67-2.01 (m, 52H, Cy-CH_2), 2.34-2.38 (br. m, 8H, Cy-CH_2), 2.69-2.77 (br. m, 12H, Cy-CH), 4.72 (s, 2H, NCCH), 7.12 (s, 8H, ArH); 13C{1H} NMR (101 MHz, C$_6$D$_6$, 298 K) δ 25.2 (NCC_3H), 26.9, 27.0, 27.7, 28.1, 28.5, 33.9, 35.1, 35.2, 39.9, 44.6 (Cy-C), 95.7
(NCCH), 123.0, 141.1, 143.3, 145.2 (ArC), 168.5 (NCCH₃); IR ν/cm⁻¹ (ATR): 1528 (m), 1115 (m), 1069 (m), 1028 (w), 992 (w), 920 (w), 727 (m), 695 (s); EI/MS (70eV) m/z (%): 83.1 (Cy⁺, 22), 364.3 Cy₃C₆H₂NCMe⁺, 100), 659.6 (TCHPＮacnacH–Cy⁺, 11), 727.8 (TCHPＮacnacH–CH₃⁺, 21), 742.8 (TCHPＮacnacH⁺, 13); anal. calc. for C₁₀₆H₁₅₄Mg₂N₄: C 83.05 %, H 10.13 %, N 3.65 %; found: C 82.88 %, H 9.92 %, N 3.55 %.

![Figure S5. 1H NMR spectrum (400 MHz, 298 K, C₆D₆) of [{(TCHP Nacnac)Mg}₂].](image)
Figure S6. 13C$\{^1$H$\}$ NMR spectrum (101 MHz, 298 K, C$_6$D$_6$) of [[$^{(TCHP}$Nacnac)Mg]$_2$].

Synthesis of [(XylNacnac)(DMAP)Mg–Mg(XylNacnac)], 6. [[$[^{(Xyl}$Nacnac)Mg]$_2$] (200 mg, 0.304 mmol) and DMAP (37 mg, 0.304 mmol) were dissolved in toluene (10 mL) at -78 °C. This resulted in an orange-red solution. The mixture was stirred for 1 h, warmed to room temperature, filtered, and the filtrate concentrated to ca. 3 mL in vacuo and layered with hexane. The filtrate was then placed at -30 °C for 2 d, after which time red-orange crystals of 6 had deposited. These were isolated and a second crop obtained from the mother liquor (129 mg, 54 %). M.p: 157-160 °C; 1H NMR (600 MHz, toluene-d_8, 298 K) δ 1.59 (s, 12H, NC$_3$H$_3$), 1.94 (s, 24H, ortho-CH$_3$), 2.19 (s, 6H, N(CH$_3$)$_2$), 4.85 (s, 2H, CH), 5.98 (d, 3J$_{HH}$ = 6.1 Hz, 2H, DMAP-ArH), 6.96-7.10 (m, 12H, ArH), 7.90 (d, 3J$_{HH}$ = 6.0 Hz, 2H, DMAP-ArH); 13C 1H NMR (151 MHz, toluene-d_8, 298 K) δ 20.1 (ortho-CH$_3$), 24.0 (NC$_3$H$_3$), 38.4 (N(CH$_3$)$_2$), 94.9 (CH), 106.5 (DMAP-ArC), 123.8, 128.7, 132.7, 149.8 (ArC), 150.5, 154.9 (DMAP-ArC), 165.4 (NC$_3$H$_3$); IR ν/cm$^{-1}$ (Nujol): 1610 (m), 1517 (m), 1266 (m), 1225 (m), 1178 (s), 1005 (m), 833 (m), 755 (s); MS (EI, 70 eV): m/z (%): 659.6 ([($^{(Xyl}$Nacnac)Mg]$_2$ $^+$), 5), 329.2 ([($^{(Xyl}$Nacnac)Mg] $^+$, 68), 146.1 (MeCNXyl $^+$, 100);
anal. calc. for C_{49}H_{60}Mg_{2}N_{6}: C 75.29 %, H 7.74 %, N 10.75 %; found: C 75.19 %, H 7.91 %, N 10.56 %.

Figure S7. Variable temperature 1H NMR spectra (400 MHz, toluene-d_8) of 6.
Figure S8. 1H NMR spectrum (600 MHz, 298 K, toluene-d_8) of 6.

Figure S9. 13C{1H} NMR spectrum (151 MHz, 298 K, toluene-d_8) of 6.
Synthesis of $\left\{\left(\text{XylNacnac}\right)\text{Mg}\left(\text{DMAP}\right)\right\}_2$. \left\{\left(\text{XylNacnac}\right)\text{Mg}\right\}_2$ (150 mg, 0.228 mmol) and DMAP (56 mg, 0.456 mmol) were dissolved in toluene (8 mL) at room temperature. This resulted in an intense red solution. The mixture was stirred for 1h, filtered, and the filtrate concentrated to ca. 4 mL in vacuo. The filtrate was then placed at -30 °C for 1 d, after which time dark red crystals of the title compound had deposited. These were isolated and a second crop obtained from the mother liquor (111 mg, 54 %). M.p. 148-151 °C; 1H NMR (400 MHz, C$_6$D$_6$, 298 K) δ 1.69 (s, 12H, NCC$_3$H$_3$), 2.02 (s, 24H, ortho-CH$_3$), 2.16 (s, 12H, N(C$_3$H$_3$)$_2$), 4.95 (s, 2H, CH), 6.04 (d, 3J$_{HH}$ = 6.0 Hz, 4H, DMAP-ArH), 7.00 (d, 3J$_{HH}$ = 1.7 Hz, 2H, ArH), 7.05 (d, 3J$_{HH}$ = 6.0 Hz, 4H, ArH), 7.11 (s, 6H, ArH), 8.23 (d, 3J$_{HH}$ = 5.9 Hz, 4H, DMAP-ArH); 13C\{1H\} NMR (101 MHz, C$_6$D$_6$, 298 K) δ 19.9 (ortho-CH$_3$), 23.9 (NCCH$_3$), 38.1 (N(CH$_3$)$_2$), 94.2 (CH), 106.4 (DMAP-ArC), 123.3, 128.1, 132.6 (ArC), 150.0 (DMAP-ArC), 150.9 (ArC), 154.3 (DMAP-ArC), 164.7 (NCCH$_3$); IR ν/cm$^{-1}$ (Nujol): 1610 (s), 1545, 1517 (w), 1268 (m), 1177 (m), 1092 (w), 1005 (m), 806 (s), 760 (m); MS (EI, 70 eV): m/z (%) = 329.2 (\{XylNacnac\}Mg$^+$, 28),
146.1 (MeCNXyl’, 100); anal. calc. for C₅₆H₇₀Mg₂N₈: C 74.42 %, H 7.81 %, N 12.40 %: found: C 74.12 %, H 7.96 %, N 12.22 %.

Figure S11. "H NMR spectrum (400 MHz, 298 K, C₆D₆) of [(XylNacnac)Mg(DMAP)]₂."
Figure S12. 13C{1H} NMR spectrum (101 MHz, 298 K, C$_6$D$_6$) of [($^{\text{Xyl}}$Nacnac)Mg(DMAP)$_2$].
Synthesis of [(DepNacnac)(DMAP)Mg—Mg(DepNacnac)], 8. [(DepNacnac)Mg]$_2$ (150 mg, 0.195 mmol) and DMAP (24 mg, 0.195 mmol) were dissolved in toluene (8 mL) at -78 °C. This resulted in an orange-red solution. The mixture was stirred for 1h, warmed to room temperature, filtered, and the filtrate concentrated to ca. 2 mL in vacuo and layered with hexane. The filtrate was then placed at -30 °C for 3 d, after which time red-orange crystals of 8 had deposited. These were isolated and a second crop obtained from the mother liquor (71 mg, 41 %). M.p. 124-127 °C; 1H NMR (400 MHz, C$_6$D$_6$, 298 K) δ 1.11 (t, 3J$_{HH}$ = 7.5 Hz, 24H, CH$_2$C$_3$H), 1.64 (s, 12H, NCCCH$_3$), 2.19 (s, 6H, N(CH$_3$)$_2$), 2.32 – 2.38 (m, 8H, CH$_2$CH$_3$), 2.43 – 2.50 (m, 8H, CH$_2$CH$_3$), 4.94 (s, 2H, CH), 6.02 (d, 3J$_{HH}$ = 6.0 Hz, 2H, DMAP-ArH), 7.15 (s, 12H, ArH), 7.99 (d, 3J$_{HH}$ = 6.1 Hz, 2H, DMAP-ArH); 13C {1H} NMR (101 MHz, C$_6$D$_6$, 298 K) δ 14.5 (CH$_2$CH$_3$), 24.1 (NCCH$_3$), 25.2 (CH$_2$CH$_3$), 38.1 (N(CH$_3$)$_2$), 95.0 (CH), 106.1 (DMAP-ArC), 123.9, 125.8, 137.6, 149.1 (ArC), 149.7, 154.5 (DMAP-ArC), 165.9 (NCCH$_3$); IR v/cm$^{-1}$ (Nujol): 1510 (s), 1520 (s), 1265 (m), 1226 (s), 1174 (s), 1003 (m), 796 (m), 755 (s); MS (EI, 70 eV): m/z (%) = 557.5
(\{^{\text{DepNacnac}}Mg\}_2-4\text{CH}_2\text{CH}_3^+, 49), 385.3 (\{^{\text{DepNacnac}}Mg^+, 82\}, 174.2 (\text{MeCNDep}^+, 100); \text{anal. calc. for } C_{57}H_{76}Mg_2N_6: C \text{ 76.59 }\% , H 8.57 \%, N 9.40 \%; \text{ found: } C 76.42 \%, H 8.63 \%, N 9.48 \%.

Figure S14. Variable temperature 1H NMR spectra (400 MHz, toluene-d_8) of 8.
Figure S15. Excerpt of variable temperature 1H NMR spectra (400 MHz, toluene-d_8) of 8.

Figure S16. 1H NMR spectrum (400 MHz, 298 K, C$_6$D$_6$) of 8.
Figure S17. 13C(1H) NMR spectrum (101 MHz, 298 K, C$_6$D$_6$) of 8.

Figure S18. HMQC spectrum (1H: 400 MHz; 13C: 101 MHz, 298 K, C$_6$D$_6$) of 8.
Synthesis of $\left[\text{[DepNacnac]Mg(DMAP)}\right]_2$. $\left[\text{[DepNacnac]Mg}\right]_2$ (200 mg, 0.259 mmol) and DMAP (63 mg, 0.518 mmol) were dissolved in toluene (8 mL) at room temperature. This resulted in an intense red solution. The mixture was stirred for 1 h, filtered, and the filtrate concentrated to ca. 4 mL in vacuo. The filtrate was then placed at -30 °C for 2 d, after which time dark red crystals of the title compound had deposited. These were isolated and a second crop obtained from the mother liquor (108 mg, 41 %). M.p. 145-148 °C; 1H NMR (400 MHz, C$_6$D$_6$, 298 K) δ 1.11 (t, 3J$_{HH} = 7.6$ Hz, 24H, CH$_2$CH$_3$), 1.68 (s, 12H, NCH$_3$), 2.20 (s, 12H, N(CH$_3$)$_2$), 2.20 – 2.38 (m, 8H, CH$_2$CH$_3$), 2.47 – 2.55 (m, 8H, CH$_2$CH$_3$), 4.98 (s, 2H, CH), 6.03 (br, 4H, DMAP-ArH), 7.14-7.18 (m, 12H, ArH), 8.19 (br, 4H, DMAP-ArH); 13C-1H NMR (101 MHz, C$_6$D$_6$, 298 K) δ 14.6 (CH$_2$CH$_3$), 24.3 (NCCH$_3$), 25.2 (CH$_2$CH$_3$), 38.2 (N(CH$_3$)$_2$), 94.8 (CH), 106.3 (DMAP-ArC), 123.7, 125.7, 137.8, 149.9 (ArC), 150.1, 154.3 (DMAP-ArC), 165.5 (NCCH$_3$); IR ν/cm$^{-1}$ (Nujol): 1608 (s), 1514 (s), 1268 (m), 1225 (m), 1173 (s), 1103 (w), 1002 (s), 927 (w), 799 (m), 760 (m); MS (EI, 70 eV): m/z (%) = 557.5 ($\left[\text{[DepNacnac]Mg}\right]_2$-4CH$_2$-CH$_3^+$, 43), 385.4 ($\text{[DepNacnac]Mg}^+$, 86), 174.2 (MeCNDep$^+$, 100); anal. calc. for C$_{64}$H$_{86}$Mg$_2$N$_8$: C 75.66 %, H 8.53 %, N 11.03 %; found: C 75.49 %, H 8.71 %, N 10.90 %.

Figure S19. 1H NMR spectrum (400 MHz, 298 K, C$_6$D$_6$) of $\left[\text{[DepNacnac]Mg(DMAP)}\right]_2$. S18
Figure S20. 13C{1H} NMR spectrum (101 MHz, 298 K, C$_6$D$_6$) of [{(DepNacnac)Mg(DMAP)}$_2$].

Figure S21. HMQC spectrum (1H: 400 MHz; 13C: 101 MHz, , 298 K, C$_6$D$_6$) of [{(DepNacnac)Mg(DMAP)}$_2$].
Comments on variable temperature 1H NMR spectroscopic studies of DMAP adduct complexes 6 and 8.

Similar to the previous report on 4,5 variable temperature NMR spectroscopic studies of the adducts 6 and 8 revealed fluxional behavior, which is believed to arise from rapid "hopping" of the DMAP ligand between the two Mg centers. This is rapid on the NMR timescale at room temperature, as evidenced by the presence of one set of β-diketiminate signals in their spectra. Cooling d_8-toluene solutions of 6 and 8 leads to their 1H NMR spectra resolving to exhibit two sets of ligand β-diketiminate signals, typically at temperatures below -20 °C.

Synthesis of [(DepNacnac)Mg(µ-C₃O₂)Mg(DMAP)(DepNacnac)]₂, 9. [(DepNacnac)Mg]₂ (150 mg, 0.195 mmol) and DMAP (24 mg, 0.195 mmol) were dissolved in toluene (7 mL) at -78 °C. This resulted in an orange-red solution. The mixture was stirred for 1h, then warmed to room temperature. The orange-red solution was cooled to -78 °C for 30 minutes, then the reaction vessel placed under vacuum, and backfilled with excess CO gas. The solution was stirred for 1h, warmed to room temperature, and left overnight to yield a dark red brown solution. The mixture was then filtered, and the filtrate concentrated to ca. 2 mL in vacuo, and layered with hexane in a long, thin Schlenk flask. This was then placed at -30 °C for 3 d, after which time colourless crystals of 9 had deposited. These were isolated and a second crop obtained from the mother liquor (36 mg, 19 %). M.p. 213-216 °C; 1H NMR (400 MHz, THF-d_8, 298 K) δ 0.90 (t, 3J$_{HH}$ = 7.6 Hz, 24H, CH$_2$CH$_3$), 1.11 (t, 3J$_{HH}$ = 7.6 Hz, 24H, CH$_2$CH$_3$), 1.45 (s, 12H, NCCH$_3$), 1.67 (s, 12H, NCCH$_3$), 2.40 (q, 3J$_{HH}$ = 7.5 Hz, 8H, CH$_2$CH$_3$), 2.46 – 2.53 (m, 8H, CH$_2$CH$_3$), 2.56 (q, 3J$_{HH}$ = 7.5 Hz, 16H, CH$_2$CH$_3$), 2.94 (s, 12H, N(CH$_3$)$_2$), 4.56 (s, 2H, CH), 4.89 (s, 2H, CH$_2$), 6.48 (d, 3J$_{HH}$ = 6.8 Hz, 4H, DMAP-ArH), 6.85 (s, 12H, ArH), 7.03 – 7.09 (m, 12H, ArH), 7.94 (d, 3J$_{HH}$ = 5.9 Hz, 4H, DMAP-ArH); 13C{1H} NMR (101 MHz, THF-d_8, 298 K) δ 14.7, 14.8 (CH$_2$CH$_3$), 23.7 (NCCH$_3$) 24.6, 24.7 (CH$_2$CH$_3$), 39.0 (N(CH$_3$)$_2$), 93.5, 94.9 (CH), 107.3 (DMAP-ArC), 124.1, 125.1, 125.9, 126.4, 137.5, 138.3, 147.5, 148.5 (ArC), 150.0, 155.6 (DMAP-ArC), 166.9, 169.0 (NCCH$_3$), C$_3$O$_2$ resonance not observed; IR ν/cm$^{-1}$ (Nujol): 1621 (s), 1526 (m), 1391 (m), 1267 (m), 1228 (w), 1176 (s), 1106 (w), 1011 (vs), 801 (m), 760 (m); MS (EI, 70 eV): m/z (%) = 362.3 (DepNacnacH$^+$, 31), 347.3 (DepNacnacH-CH$_3^+$, 36), 333.2 (DepNacnacH-CH$_2$CH$_3^+$, 25),
174.1 (MeCNDep⁺, 100). Due to persistent contamination with trace amounts of an unknown impurity, a satisfactory reproducible microanalysis could not be obtained.

Figure S22. ¹H NMR spectrum (400 MHz, 298 K, THF-d₈) of 9.
Figure S23. $^{13}\text{C}^{1\text{H}}$ NMR spectrum (101 MHz, 298 K, THF-d_8) of 9.

Figure S24. HMQC spectrum (^1H: 400 MHz; ^{13}C: 101 MHz, 298 K, THF-d_8) of 9.
Synthesis of \[\{(\text{XylNacnac})\text{Mg}\{\mu-\text{OC(H)=C(DMAP-H)}\text{O}\}\text{Mg(\text{XylNacnac})}\}\], 10.

\[\{(\text{XylNacnac})\text{Mg}\}\] (150 mg, 0.228 mmol) and DMAP (28 mg, 0.228 mmol) were dissolved in toluene (6 mL) at -78 °C. This resulted in an orange-red solution. The mixture was stirred for 1 h, then warmed to room temperature. The orange-red solution was cooled down to -78 °C for 30 minutes, then the reaction vessel was placed under vacuum, before being backfilled with excess CO gas. The solution was then stirred for 1 h, warmed to room temperature, and stirred overnight, yielding a dark red-brown solution with a colourless solid suspended. The colourless solid was isolated and extracted with hot THF (ca. 20 mL), then placed at -30 °C for 2 days, after which time a few colourless crystals of 10 had deposited. The dark red-brown filtrate was concentrated to ca. 3 mL in vacuo, placed at room temperature for 3 d, after which time colourless 10 deposited. The two crops of the title compound were then combined (71 mg, 37 %). N.B. Once crystallised, compound 10 has negligible solubility in THF-\(d_8\), so meaningful solution state spectroscopic data could not be obtained. M.p. > 260 °C; IR ν/cm\(^{-1}\) (Nujol): 1582 (s), 1513 (m), 1279 (m), 1202 (m), 1180 (w), 1094 (w), 1056 (w), 1008 (s), 904 (m), 836 (w), 763 (s); MS (EI, 70 eV): \(m/z\) (%) = 837.6 (M/2+H\(^+\), 19), 329.1 (\{(\text{XylNacnac})\text{Mg}\}\(^+\), 16), 146.1 (MeCNXyl\(^+\), 100); anal. calc. for \(\text{C}_{102}\text{H}_{120}\text{Mg}_4\text{N}_{12}\text{O}_4\): C 73.12 %, H 7.22 %, N 10.03 %; found: C 72.77 %, H 7.36 %, N 9.61 %.

Synthesis of \[\{(\text{MesNacnac})\text{Mg}\{\mu-\text{OC(H)=C(DMAP-H)}\text{O}\}\text{Mg(\text{MesNacnac})}\}\], 11.

\[\{(\text{MesNacnac})\text{Mg}\}\] (151 mg, 0.211 mmol) and DMAP (26 mg, 0.211 mmol) were dissolved in toluene (6 mL) at -78 °C. This resulted in an orange-red solution. The mixture was stirred for 1 h, then warmed to room temperature. The orange-red solution was cooled down to -78 °C for 30 minutes, then the reaction vessel was placed under vacuum, and backfilled with excess CO gas. The solution was then stirred for 1 h, warmed to room temperature, and stirred overnight, yielding a dark purple solution. This was filtered, and the filtrate concentrated to ca. 3 mL in vacuo, then layered with hexane. After 4 d at room temperature colourless crystals of 11 deposited. These were isolated and a second crop obtained from the mother liquor (78 mg, 41 %). N.B. Compound 11 is only partially soluble in THF-\(d_8\), and when dissolved, spectra unavoidably contain signals resulting from the β-diketimine, \(\text{MesNacnac}\)-H. M.p. > 260 °C; \(^1\)H NMR (600 MHz, THF-\(d_8\), 298 K) δ 0.84 (s, 12H, NCCH\(_3\)), 0.93 (s, 12H, ArCH\(_3\)), 1.43 (s, 12H, S23
NCC\textsubscript{3}), 1.63 (s, 12H, ArCH\textsubscript{3}), 1.94 (s, 12H, ArCH\textsubscript{3}), 2.12 (s, 24H, ArCH\textsubscript{3}), 2.31 (s, 12H, ArCH\textsubscript{3}), 2.97 (s, 12H, N(CH\textsubscript{3})\textsubscript{2}), 4.08 (s, 2H, CH), 4.91 (s, 2H, CH), 6.00 (d, J = 2.6 Hz, 2H, DMAP-ArH), 6.13 (dd, J = 6.6, 2.6 Hz, 2H, DMAP-ArH), 6.27 (s, 2H, OHC=COC), 6.61 (s, 4H, ArH), 6.62 (s, 4H, ArH), 6.66 (s, 4H, ArH), 6.67 (s, 4H, ArH), 8.26 (d, J = 6.5 Hz, 2H, DMAP-ArH); 13C1H NMR (151 MHz, THF-\textit{d}8, 298 K) δ 18.9, 19.0, 19.2, 19.4, 20.9, 21.6 (ArCH\textsubscript{3}), 22.9, 24.2 (NCH\textsubscript{3}), 39.1 (N(CH\textsubscript{3})\textsubscript{2}), 87.5 (CH), 94.5 (DMAP-ArC), 96.3 (CH), 103.4 (DMAP-ArC), 128.2, 129.4, 129.6, 130.1, 130.6, 131.1, 132.1, 133.1, 133.4, 134.0, 137.4 (ArC), 138.4 (OHC=COC), 147.4 (DMAP-ArC), 147.9 (ArC), 148.5, 154.8 (DMAP-ArC), 159.9 (OHC=COC), 168.8, 169.3 (NCH\textsubscript{3}); IR ν/cm-1 (Nujol): 1617 (w), 1576 (w), 1514 (w), 1278 (w), 1227 (m), 1193 (s), 1060 (m), 1005 (s), 904 (w), 852 (s), 798 (m), 728 (s); MS (EI, 70 eV): m/z (%) = 334.3 (14MeCNacnacH+, 21), 160.2 (MeCNMes+, 41); anal. calc. for C\textsubscript{110}H\textsubscript{136}Mg\textsubscript{4}N\textsubscript{12}O\textsubscript{4}: C 73.91 %, H 7.67 %, N 9.40 %; found: C 73.46 %, H 7.98 %, N 9.61 %.

Figure S25. 1H NMR spectrum (600 MHz, 298 K, THF-\textit{d}8) of 11 (FL denotes signal arising from co-crystallised 14MeCNacnacH).
Figure S26. $^{13}\text{C}\{^1\text{H}\}$ NMR spectrum (151 MHz, 298 K, THF-d_8) of 11 (FL denotes signal arising from co-crystallised Me^NacnacH).
Figure S27. HMQC spectrum (1H: 600 MHz; 13C: 151 MHz, 298 K, THF-d_8) of 11.

2. X-Ray Crystallographic Studies

Crystals suitable for X-ray structural determination were mounted in silicone oil. Crystallographic measurements were made using either an Rigaku Xtalab Synergy Dualflex diffractometer with a graphite monochromator with Mo Kα radiation ($\lambda = 0.71073$ Å) or Cu Kα radiation ($\lambda = 1.54180$ Å); or the MX2 beamline of the Australian Synchrotron ($\lambda = 0.71090$ Å). The software package Blu-Ice6 was used for synchrotron data acquisition, while the program XDS7 was employed for synchrotron data reduction. All structures were solved by direct methods and refined on F^2 by full matrix least squares (SHELX-168) using all unique data. Hydrogen atoms are typically included in calculated positions (riding model). Compound 5 co-crystallised with 1.7 % of the bridging iodide compound, $\{[(^{\text{TCHP}}\text{Nacnac})\text{Mg}(\mu-\text{I})]\}_2$, and 6.5 % of the bridging hydroxide compound, $\{[(^{\text{TCHP}}\text{Nacnac})\text{Mg}(\mu-\text{OH})]\}_2$. Repeated re-crystallisations could not remove these contaminants, as has been found previously in the synthesis of magnesium(I) compounds.3 Compound 10 crystallised with 4 molecules of heavily disordered THF in the asymmetric unit (8 THFs/molecule of 10). All attempts to model this disorder were
unsatisfactory. As a result, the SQUEEZE program9 was used to remove their contribution to the structure factors. The final refinement of the structure included the contribution of the THF molecules to the empirical formula and F(000). The relatively high R1 and wR2 values for the crystal structures of 9 and 10 are due to weak diffraction data above \(\theta \) angles of 23°. Despite this, the molecular connectivities of the compounds are unambiguous, and their presented metrical parameters are reliable within the calculated esd values. Crystal data, details of data collections and refinements for all structures can be found in their CIF files and are summarized in Table S1.
Table S1. Crystal data for 5, 6, 8-11, TCHPNaClH 1S, [(TCHPNaClH)MgI(OEt)] 2S, [(Xy1NaClH)Mg(DMAP)] 3S and [(DepNaClH)Mg(DMAP)] 4S.

	5·(toluene)_{4.5}	6	8	9·(cyclohexyl)_{4}·(toluene)	10·(THF)_{4}	11·(toluene)
empirical formula	C_{137.50}H_{189.63}Mg_{2}N_{4}O_{0.13}	C_{45}H_{60}Mg_{2}N_{6}	C_{57}H_{60}Mg_{2}N_{6}	C_{151}H_{208}Mg_{2}N_{12}O_{6}	C_{134}H_{184}Mg_{4}N_{12}O_{12}	C_{117}H_{144}Mg_{4}N_{12}O_{4}
formula weight	1953.69	781.65	893.85	2384.52	2252.16	1879.67
crystal system	monoclinic	monoclinic	monoclinic	triclinic	monoclinic	triclinic
space group	P_{2}/n	P_{2}/c	P_{2}/c	P-1	P_{2}/c	P-1
a (Å)	18.2067(10)	12.4858(2)	18.7194(2)	17.9190(6)	15.480(3)	15.1058(2)
b (Å)	26.32970(10)	12.0704(2)	11.31290(10)	19.6004(9)	15.114(3)	19.0783(2)
c (Å)	25.8355(2)	31.1338(2)	26.0645(3)	20.9467(7)	27.505(6)	20.0582(2)
α (°)	90	90	90	79.292(3)	90	85.7620(10)
β (°)	105.8060(10)	92.7620(10)	103.7910(10)	75.685(3)	103.08(3)	88.9090(10)
γ (°)	90	90	90	86.860(3)	90	66.9980(10)
V (Å³)	11916.66(13)	4686.68(13)	5360.57(10)	7004.0(5)	6268(2)	5306.17(11)
Z	4	4	4	2	2	2
T (K)	123(2)	123(2)	123(2)	123(2)	100(2)	123(2)
ρ_{calc} (g·cm⁻³)	1.089	1.108	1.108	1.131	1.193	1.176
μ (mm⁻¹)	0.623	0.743	0.704	0.687	0.094	0.767
F(000)	4278	1680	1936	2588	2432	2020
reflms collected	121487	45801	51963	137379	71723	100505
	1S·(Et₂O)	2S	3S·(toluene)₂	4S·(toluene)₂		
-------------------------	-----------	----	---------------	---------------		
empirical formula	C₅₇H₈₈N₂O	C₅₇H₆₇Mg₂N₂O	C₇₀H₆₈Mg₂N₈	C₇₁H₈₄Mg₂N₈		
formula weight	817.29	967.49	1154.54	1108.16		
crystal system	monoclinic	triclinic	monoclinic	monoclinic		
space group	P2₁/n	P-1	C2/c	P2₁/c		
a (Å)	16.2198(7)	10.4370(2)	18.7699(3)	12.8246(2)		
b (Å)	10.7700(6)	14.8235(4)	15.7829(2)	21.5786(3)		
c (Å)	28.9971(15)	18.7188(5)	22.8274(4)	24.2161(3)		
α (°)	90	84.547(2)	90	90		
β (°)	96.100(4)	75.886(2)	109.172(2)	103.4930(10)		
γ (°)	90	71.426(2)	90	90		
V (Å³)	5036.7(4)	2661.85(12)	6387.40(19)	6516.52(16)		
Z	4	2	4	4		
Parameter	Value 1	Value 2	Value 3	Value 4		
-----------------------------------	---------	---------	---------	---------		
T (K)	123(2)	123(2)	123(2)	123(2)		
ρ_{calc} (g·cm$^{-3}$)	1.078	1.207	1.131	1.130		
μ (mm$^{-1}$)	0.463	0.652	0.084	0.084		
F(000)	1808	1032	2344	2400		
reflns collected	41363	35036	33068	64489		
unique reflns	9509	9893	6275	11777		
R_{int}	0.1874	0.0522	0.0154	0.0216		
$R1$ [I > 2σ(I)]	0.0785	0.0375	0.0400	0.0518		
wR2 (all data)	0.1626	0.0951	0.1086	0.1362		
largest peak and hole (e·Å$^{-3}$)	0.331, -0.257	0.525, -0.755	0.351, -0.243	0.994, -0.409		
CCDC no.	1983483	1983484	1983485	1983487		
Figure S28. Molecular structure of 6 (25% thermal ellipsoids are shown; hydrogen atoms omitted; aryl substituents shown as wireframe for clarity). Selected bond lengths (Å) and angles (°): Mg(1)-N(3) 2.167(2), Mg(1)-Mg(2) 2.8925(9), N(2)-Mg(1)-N(1) 89.12(7), N(3)-Mg(1)-Mg(2) 115.31(5), N(6)-Mg(2)-N(5) 89.17(8).

Figure S29. Molecular structure of 10 (25% thermal ellipsoids are shown; hydrogen atoms, except alkenic protons, omitted; aryl substituents shown as wireframe for clarity). Selected bond lengths (Å) and angles (°): Mg(1)-O(1)’ 2.016(5), Mg(1)-O(1) 2.020(4), Mg(1)-O(2) 2.110(4), O(1)-C(22) 1.318(7), Mg(2)-O(2) 1.976(4), Mg(2)-N(3) 2.118(5), O(2)-C(23) 1.375(7), C(22)-C(23) 1.364(8), O(1)’-Mg(1)-O(1) 75.24(18), O(1)’-Mg(1)-O(2) 152.0(2), N(5)-Mg(2)-N(6) 91.3(2), O(2)-Mg(2)-N(3) 80.61(19).
Figure S30. Molecular structure of $\text{TCHP}_2\text{NacnacH}$ 1S (25% thermal ellipsoids are shown; hydrogen atoms, except amine proton, omitted; aryl substituents shown as wireframe for clarity). Selected bond lengths (Å): N(1)-C(28) 1.346(4), N(2)-C(25) 1.314(4), C(25)-C(27) 1.425(4), C(27)-C(28) 1.375(4).

Figure S31. Molecular structure of $[(\text{TCHP}_2\text{Nacnac})\text{MgI(OEt}_2)]$ 2S (25% thermal ellipsoids are shown; hydrogen atoms omitted; aryl substituents shown as wireframe for clarity). Selected bond lengths (Å) and angles (°): I(1)-Mg(1) 2.6700(8), Mg(1)-O(1) 2.0431(19), Mg(1)-N(2) 2.048(2), Mg(1)-N(1) 2.054(2), N(2)-Mg(1)-N(1) 96.98(8), O(1)-Mg(1)-I(1) 101.90(6).
Figure S32. Molecular structure of \([\{(\text{XylNacnac})\text{Mg(DMAP)}\}_2\] 3S (25% thermal ellipsoids are shown; hydrogen atoms omitted; aryl substituents shown as wireframe for clarity). Selected bond lengths (Å) and angles (°): Mg(1)-N(3) 2.2071(11), Mg(1)-Mg(1)' 2.9464(7), N(1)-Mg(1)-N(2) 88.31(4), N(3)-Mg(1)-Mg(1)' 111.28(3).

Figure S33. Molecular structure of \([\{(\text{DepNacnac})\text{Mg(DMAP)}\}_2\] 4S (25% thermal ellipsoids are shown; hydrogen atoms omitted; aryl substituents shown as wireframe for clarity). Selected bond lengths (Å) and angles (°): Mg(1)-N(3) 2.2229(14), Mg(1)-Mg(2) 3.0368(7), Mg(2)-N(7) 2.2226(18), N(1)-Mg(1)-N(2) 87.04(5), N(3)-Mg(1)-Mg(2) 109.69(4), N(6)-Mg(2)-N(5) 87.01(6), N(7)-Mg(2)-Mg(1) 113.76(4).
3. Computational Studies

Geometry optimizations were performed using Gaussian09 suite of programs10 using the Becke’s 3-parameter hybrid functional,11 combined with the non-local correlation functional provided by Perdew/Wang.12 The 6-311+G(d) all-electron basis set was used for the magnesium atoms and the 6-31G(d,p) for the remaining atoms.13 All stationary points have been identified for minimum (Nimag=0) or transition states (Nimag=1). Intrinsic Reaction Paths (IRPs)14 were traced from the various transition structures to obtain the connected intermediates.

Figure S34. HOMO (left) and NBO charges (right) of 7.
Figure S35. HOMO of TS1.
Figure S36. Fully labelled computed (B3PW91) enthalpy profile at 298 K for the formation of ethenediolate complex 11, or deltate complex 12, from magnesium(I)-adduct complex 7, and two or three molecules of CO, respectively.
Table S2. *Cartesian coordinates* of the optimized structures.

Complex 7	X	Y	Z
C	-0.050083	0.740164	-3.274967
C	1.090230	1.067130	-2.511932
C	2.242975	0.262290	-2.599533
C	2.234747	-0.845757	-3.451907
C	1.119043	-1.188863	-4.215889
C	-0.011686	-0.376364	-4.112603
N	1.035925	2.184443	-1.626603
C	1.359530	3.383383	-2.099716
C	1.919077	3.509728	-3.504413
C	3.478907	0.575186	-1.798247
C	1.125002	-2.406344	-5.104350
C	-1.300114	1.571661	-3.177963
Mg	0.366457	1.853085	0.375688
N	2.399918	1.880401	1.322421
C	2.842970	0.939620	2.173360
C	4.122950	0.910211	2.696522
C	5.047990	1.919598	2.344258
C	4.573573	2.910001	1.452295
C	3.275225	2.844943	0.983525
N	6.321945	1.938586	2.835257
C	6.781367	0.865912	3.695069
N	-0.086691	3.932670	0.561136
C	0.437790	4.863652	-0.231422
C	0.210108	6.307068	0.083893
C	-1.017119	4.341951	1.561256
C	-2.373904	4.511464	1.213268
C	-3.289243	4.880056	2.201508
C	-2.909358	5.075747	3.530841
C	-1.563588	4.895968	3.852369
C	-0.611350	4.529195	2.896972
C	-2.836422	4.288280	-0.201587
C	-3.922043	5.442628	4.850009
C	0.827396	4.353455	3.302949
C	7.251747	2.961291	2.398814
C	1.191443	4.597749	-1.395520
Mg	-1.352620	-0.329890	1.379975
N	-3.266835	-1.122348	0.950389
C	-3.961498	-0.526405	-0.143141
C	-3.825177	-1.057108	-1.440332
C	-4.516780	-0.452147	-2.493069
C	-5.322149	0.672309	-2.303597
C	-5.423269	1.191466	-1.010914
C	-4.754798	0.617563	0.072942
C	-2.948050	-2.254785	-1.693690
C	-6.035134	1.324610	-3.460292
C	-4.884326	1.206800	1.452219
C	-3.880384	-2.096590	1.620275
C	-5.275034	-2.526811	1.208679
C	-3.325337	-2.781506	2.718114
C	-2.078539	-2.613207	3.349956
Element	X	Y	Z
---------	-----------	-----------	-----------
C	-1.796296	-3.534890	4.515122
N	-1.162415	-1.714842	2.976577
C	0.050810	-1.662202	3.717766
C	0.161463	-0.799001	4.828618
C	1.357519	-0.770779	5.547837
C	2.452907	-1.565930	5.198510
C	2.335649	-2.377096	4.068321
C	1.157703	-2.434985	3.315516
C	-0.994168	0.076791	5.232646
C	1.075087	-3.308334	2.092009
C	3.707512	-1.563411	6.034788
H	-3.956255	-3.551868	3.147235
H	-0.902383	-4.142012	4.331802
H	-2.637757	-4.206708	4.700734
H	-1.600813	-2.963352	5.429537
H	-4.420977	-0.875515	-3.492279
H	-5.977071	-1.687308	1.267573
H	-5.644778	-3.332900	1.846981
H	-5.291870	-2.871011	0.168677
H	1.431590	-0.112695	6.412936
H	-1.252136	0.785115	4.434296
H	-0.751116	0.655643	6.129688
H	-1.900565	-0.504977	5.437577
H	-6.045477	2.068603	-0.836572
H	-3.914129	1.557411	1.828757
H	-5.257696	0.476318	2.180081
H	-5.567368	2.062161	1.448609
H	3.180333	-2.994838	3.764686
H	-1.892887	-2.019802	-1.502223
H	-3.030213	-2.583984	-2.734647
H	-3.203935	-3.102435	-1.047435
H	2.014447	-3.847586	1.931249
H	0.870336	-2.709848	1.193974
H	0.267453	-4.404659	2.163649
H	4.000315	-0.546364	6.322757
H	4.547516	-2.021765	5.501005
H	3.568041	-2.130104	6.965045
H	-6.999502	1.744548	-3.152698
H	-6.221920	0.611107	-4.270336
H	-5.443297	2.148435	-3.881625
H	2.907899	3.598742	0.290583
H	5.207508	3.722802	1.117981
H	1.563159	5.477952	-1.909327
H	4.384352	0.104955	3.371283
H	0.979593	4.671861	4.339869
H	1.140896	3.306466	3.222518
H	1.508170	4.930343	2.666256
H	3.134724	-1.456185	-3.521335
H	-4.332910	5.017114	1.920717
H	-1.236865	5.050638	4.880305
H	-0.895480	-0.615958	-4.702713
H	-2.044307	1.243922	-3.910182
H	-1.753410	1.479123	-2.182510
H	-1.104573	2.637955	-3.338778
H	3.330792	0.358635	-0.734166
Atom	X	Y	Z
------	-----------	-----------	-----------
H	4.327441	-0.023598	-2.146665
H	3.758082	1.632517	-1.863457
H	-2.658222	3.252996	-0.516257
H	-3.908419	4.488953	-0.296662
H	-2.308312	4.926887	-0.919544
H	1.150960	3.257496	-3.704274
H	2.262887	4.527723	-3.04274
H	2.749557	2.815838	-3.671467
H	6.883124	3.966776	2.639763
H	8.204008	2.823528	2.913494
H	7.439111	2.912682	1.316670
H	0.441260	6.551795	1.131540
H	0.821788	6.972443	-0.555488
H	-0.840959	6.603847	-0.066228
H	-4.733815	6.049337	4.168160
H	-4.380984	4.548430	5.028304
H	-3.463503	6.010298	5.40328
H	6.762121	-0.107411	3.184461
H	7.808888	1.067509	4.002056
H	6.168284	0.789669	4.602087
H	2.137488	-2.650428	5.444616
H	0.737995	-3.289088	-4.577270
H	0.498083	-2.259284	-5.991052
H	2.125510	0.167984	2.443845

Atom	X	Y	Z
131	C 1.157703	-2.434985	3.315516
	C 0.050810	-1.662202	3.717766
	C 0.161463	-0.799001	4.828618
	C 1.357519	-0.770779	5.547837
	C 2.452907	-1.565930	5.198510
	C 2.335649	-2.377096	4.068321
N	-1.162415	-1.714842	2.976577
	C -2.078539	-2.613207	3.343956
	C -1.796296	-3.534890	4.515122
	C -0.994168	0.076791	5.232646
	C 3.707512	-1.563411	6.034788
	C 1.075087	-3.308334	2.092009
	C -3.325337	-2.781506	2.718114
	C -3.880384	-2.096590	1.620275
	C -5.275034	-2.526811	1.208678
N	-3.266835	-1.122348	0.950389
	C -3.961497	-0.526405	-0.143141
	C -3.825176	-1.057108	-1.440332
	C -4.516779	-0.452147	-2.493070
	C -5.322148	0.672309	-2.303598
	C -5.423268	1.191466	-1.010915
	C -4.754797	0.617563	0.072941
	C -2.948049	-2.254785	-1.693690
	C -6.055133	1.324610	-3.460293
	C -4.884326	1.206800	1.452218
Mg	-1.352620	-0.329890	1.379975
Mg	0.366458	1.853085	0.375688
	X	Y	Z
---	---------	---------	---------
N	-0.339357	3.533596	-0.738813
C	-1.720953	3.876573	-0.655099
C	-2.613087	3.389777	-1.633882
C	-3.971013	3.699597	-1.531420
C	-4.481321	4.467256	-0.482602
C	-3.581058	4.931787	0.476843
C	-2.213501	4.648944	0.414801
C	-2.114586	2.538109	-2.770265
C	-5.955745	4.761195	-0.377363
C	-1.289913	5.181059	1.477595
N	2.052716	1.704756	-0.928799
C	2.456273	2.695934	-1.716656
C	1.766550	3.918054	-1.888512
C	0.444330	4.260798	-1.530626
C	-0.090095	5.544412	-2.139247
C	2.748637	0.460971	-0.990753
C	2.331709	-0.512990	-1.921888
C	2.986515	-1.745765	-1.957072
C	4.039709	-2.052281	-1.093242
C	4.434664	-1.073422	-0.181085
C	3.809162	0.174744	-0.108923
C	1.185145	-0.237405	-2.856137
C	4.281040	1.185877	0.902231
C	4.710323	-3.401558	-1.130467
C	3.722787	2.534611	-2.536502
N	1.418886	2.970087	2.011755
C	1.371704	2.620344	3.308256
C	2.082703	3.258429	4.308376
C	2.914513	4.355468	3.987051
C	2.955525	4.721957	2.621192
C	2.208225	4.014338	1.698964
N	3.634380	5.021866	4.936844
C	4.518539	6.103299	4.549928
C	3.609844	4.567937	6.313187
H	-3.956255	-3.551868	3.147235
H	-0.902383	-4.142012	4.331802
H	-2.637757	-4.206708	4.700734
H	-1.600813	-2.963352	5.429537
H	-4.420975	-0.875515	-3.492279
H	-5.977071	-1.687308	1.267572
H	-5.644778	-3.332900	1.846980
H	-5.291870	-2.871011	0.168676
H	1.431590	-0.112695	6.412936
H	-1.252136	0.785115	4.434296
H	-0.751116	0.655643	6.129688
H	-1.900565	-0.504977	5.437577
H	-6.045476	2.068603	-0.836573
H	-3.914129	1.557411	1.828756
H	-5.257696	0.476318	2.180080
H	-5.567368	2.062161	1.448608
H	3.180333	-2.994838	3.764686
H	-1.892886	-2.019802	-1.502223
H	-3.030212	-2.583984	-2.734647
H	-3.203934	-3.102435	-1.047435
H	2.014447	-3.847586	1.931249
H 0.870336 -2.709848 1.193974
H 0.267453 -4.046459 2.163649
H 4.000315 -0.546364 6.965045
H 4.547516 -2.021765 5.501005
H 3.568041 -2.130104 6.322757
H 4.000315 1.744548 -3.152699
H 6.221918 0.611107 -4.270337
H 5.443296 2.148435 -3.881626
H 2.242833 4.286091 0.646223
H 3.567151 5.546018 2.273167
H 5.261234 -1.281822 0.497703
H 4.650216 3.326534 -2.297172
H 3.949802 5.540742 1.301783
H 5.261234 -1.281822 0.497703
H 4.650216 3.326534 -2.297172
H 3.949802 5.540742 1.301783
H 5.261234 -1.281822 0.497703
H 4.650216 3.326534 -2.297172
C 0.172941 0.698343 -3.411410
H 3.554768 1.308441 1.713777
H 5.231269 0.872392 1.348032
H 4.422635 2.178320 0.460475
H 5.231269 0.872392 1.348032
H 4.422635 2.178320 0.460475
C 0.172941 0.698343 -3.411410
O 0.089624 -2.300485 -6.181046
131
INT1
C -0.561176 -1.424080 4.049770
C -0.463993 -2.520993 3.168996
C 0.720873 -3.280048 3.114699
C 1.776195 -2.950630 3.971143
C 1.698734 -1.880595 4.864193
C 0.521265 -1.128542 0.485628
N -1.535459 -2.820949 2.281213
C -2.444491 -3.727590 2.638187
C -3.501910 -1.880595 4.864193
C -0.521265 -1.128542 0.485628
C -4.995970 -4.554508 -0.123916
C -0.853559 -4.203046 2.140259
C -2.512121 -1.530039 5.770423
C -1.809757 -0.583395 4.093270
C -4.995970 -4.554508 -0.123916
C -0.853559 -4.203046 2.140259
C -2.512121 -1.530039 5.770423
C -1.809757 -0.583395 4.093270
Mg -1.619155 -1.763288 0.505101
C -0.729313 0.109515 0.010507
C -3.576689 -2.704771 -1.594567
C -2.997819 -3.455373 -2.636047
C -3.404540 -3.214491 -3.950740
C -4.361266 -2.246413 -4.264336
C -4.896073 -1.494437 -3.215619
C -4.519357 -1.699094 -1.885673
C -1.952161 -4.497656 -2.339276
C -5.105285 -0.851892 -0.787001
C -4.822160 -2.038366 -5.684446
O -1.911495 0.260076 0.485335
Mg 0.594469 1.770374 -0.661234
N 0.391890 3.797256 -0.154356
C 0.033253 4.106081 1.94093
C -1.312870 3.976344 1.601186
C -1.643697 4.233343 2.93016
C -0.688194 4.609810 3.879854
C 0.633591 4.731072 3.453904
C 1.014172 4.483798 2.130906
C -2.382158 3.549541 0.630969
C -1.078943 4.874236 5.311423
C 2.461851 4.619141 1.737177
C -2.360177 -4.361219 4.012206
N 2.510216 1.035004 0.074860
C 2.541203 -0.141336 0.731251
C 3.691946 -0.696483 1.258035
C 4.927069 -0.021707 1.120061
C 4.886597 1.211720 0.426038
C 3.682109 1.680009 -0.062161
N 6.088690 -0.527915 1.623222
C 7.335257 0.187231 1.432492
N 0.881660 2.211998 -2.690038
C 0.986020 1.098877 -3.577042
C 2.239175 0.647555 -4.034534
C 2.294459 -0.486614 -4.851037
C 1.151542 -1.196479 -5.216632
C -0.080581 -0.728859 -4.753123
C -0.186211 0.403979 -3.944956
C 3.518992 1.348001 -3.657367
C 1.240092 -2.436112 -6.069222
C -1.537238 0.882427 -3.484434
C 6.089213 -1.819175 2.283696
C 0.797240 3.439962 -3.197840
C 0.618588 4.613028 -2.436201
C 0.386736 4.779913 -1.054978
C 0.072093 6.194205 -0.607200
C 0.860609 3.627816 -4.700961
H -4.158824 -4.897094 2.267366
H -1.430548 -4.930462 4.127108
H -3.200502 -5.036233 4.189776
H -2.354337 -5.562825 1.971838
H -0.438323 -0.283400 5.562825
H -1.971838 -0.058086 3.144140
H -1.742171 0.170393 4.884136
H -2.705543 -1.189899 4.275203
H -5.631956 -0.722122 3.463139
H -4.331323 -0.250061 0.295418
H -5.576210 -1.459521 2.297369
H -5.862320 -0.168950 1.186108
H 2.681260 -3.557517 3.942543
H -1.068582 -4.050795 -1.864656
H -1.624305 -4.994165 -3.258356
H -2.319057 -5.267884 -1.650220
H 1.837197 -4.894742 2.223380
H 0.729385 -4.072243 1.105961
H 0.092723 -5.193983 2.297369
H 3.603828 -2.326067 5.786849
H 2.516964 -1.367697 6.802034
H 3.349505 -0.606413 5.446903
H -5.691805 -2.667729 -5.917657
H -4.036475 -2.931444 -6.404180
H -5.118282 -0.998851 -5.863156
H 3.644037 2.624907 -0.597647
H 5.780365 1.802151 0.263486
H 0.581284 5.528832 -3.015628
H 3.612600 -1.642325 1.779336
H 3.028598 5.138417 2.517529
H 2.925494 3.636321 1.591009
H 2.589176 5.171550 0.799811
H 3.266743 -0.822977 -5.210371
H -2.685578 4.137058 3.236909
H 1.398119 5.032133 4.169395
H -0.991652 -1.260667 -5.022482
H -2.332347 0.243584 -3.879348
H -1.618700 0.870597 -2.390297
H -1.734451 1.914141 -3.801593
H 3.863794 1.033755 -2.664589
H 4.315209 1.108440 -4.370767
H 3.406747 2.436079 -3.623983
H -2.345916 2.463170 0.463036
H -3.375704 3.785454 1.028336
H -2.279228 4.041971 -0.341875
H 0.041783 3.086002 -5.188829

S43
	X	Y	Z
H	0.787538	4.683276	-4.973390
H	1.789398	3.223507	-5.117735
H	7.295481	1.189661	1.878558
H	8.142411	-0.362734	1.918604
H	7.58643	0.292046	0.368278
H	0.732264	6.514762	0.205646
H	0.165216	6.902497	-1.433766
H	0.950565	-0.362734	1.918604
H	7.588643	0.292046	0.368278
H	0.732264	6.514762	0.205646
H	0.165216	6.902497	-1.433766
H	0.950565	-0.362734	1.918604
H	7.588643	0.292046	0.368278
H	0.732264	6.514762	0.205646
H	0.165216	6.902497	-1.433766
H	0.950565	-0.362734	1.918604

Adduct 1
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
Mg
O
C
C
O
Mg
N
C
Element

C
C
C
C
N
C
N
C
C
C
C
C
N
C
C
C
C
N
H
C
C
N
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
Atom

H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H

133
TS second inserion

Atom	X	Y	Z
C	0.584416	-2.725533	3.078801
C	-0.624519	-2.008782	3.192555
C	-0.706899	-0.884308	4.032949
C	0.418305	-0.509152	4.772924
C	1.620210	-1.213174	4.698744
C	1.678258	-2.318880	3.845926
Element	X	Y	Z
---------	-----------	-----------	-----------
C	-2.265893	3.321063	0.170824
C	-2.120609	4.126111	5.147741
C	2.185861	3.593666	2.586176
C	7.102848	-1.244650	2.171788
H	-4.254323	-4.596358	2.711549
H	-1.389966	-4.395374	4.327794
H	-3.141473	-4.578562	4.548808
H	-2.318726	3.070400	5.008450
H	-3.365108	-4.040695	-4.417438
H	-0.643436	-3.610999	-0.051142
H	-5.647898	-5.113015	1.148660
H	-4.930856	-5.150072	-0.475633
H	0.348120	0.360856	5.423586
H	-2.173497	0.469935	3.202444
H	-1.919676	0.648141	4.936022
H	-2.854782	-0.724304	4.309089
H	-6.117265	-0.949808	-3.307943
H	-4.764593	-0.125083	-0.315082
H	-5.911142	-1.362387	0.203607
H	-6.345777	-0.240833	-1.098728
H	2.604844	-2.888136	3.773962
H	-1.357730	-3.955692	-1.702885
H	-2.030162	-5.123163	-2.844073
H	-2.537439	-5.138360	-1.145782
H	1.625701	-4.458490	2.337900
H	0.776912	-3.541413	1.088042
H	-0.136167	-4.574911	2.188047
H	3.354947	-1.643251	5.920937
H	2.550764	-0.114628	6.312896
H	3.546799	-0.243625	4.859252
H	-4.498630	-2.674215	-6.164236
H	-5.650281	-1.409767	-5.702206
H	-6.127469	-3.108965	-5.638677
H	3.728141	2.668560	-0.537583
H	6.024095	2.253199	0.197692
H	1.631950	5.380288	-2.297547
H	4.620276	-1.531975	1.793561
H	2.582843	3.865993	3.569977
H	2.550945	2.589126	2.344226
H	2.622299	4.273001	1.845051
H	3.154963	-0.971098	-5.480487
H	-3.195465	3.736141	2.671425
H	0.568643	3.945546	4.706858
H	-1.089851	-0.402242	-5.575111
H	-2.137712	1.217609	-4.276408
H	-1.538023	1.071837	-2.619225
H	-1.192202	2.532381	-3.553192
H	3.826772	0.379447	-2.486651
H	4.528811	0.289439	-4.107669
H	3.952382	1.837637	-3.464847
H	-2.164848	2.285133	-0.183727
H	-3.328149	3.516652	0.354363
H	-1.934820	3.977705	-0.641794
H	0.805366	3.611341	-4.858210
H	1.997427	4.816869	-4.338396
Atom	X Coord	Y Coord	Z Coord
------	----------	----------	----------
H	2.497413	3.157925	-4.748848
H	7.728960	1.922597	1.712759
H	8.838781	0.545230	1.671234
H	8.072280	1.096554	0.172456
H	1.106918	5.875739	1.018735
H	1.072066	6.564463	-0.620905
H	-0.408527	5.950853	0.136976
H	-2.430944	5.175989	5.237539
H	-3.027395	3.517772	5.229932
H	-1.483471	3.901083	6.010002
H	6.877229	-2.101328	1.522407
H	8.160185	-1.290539	2.436498
H	6.518643	-1.347548	3.095682
H	1.813809	-1.926465	-7.337463
H	0.729171	-2.856332	-6.298693
H	0.063931	-1.655183	-7.409665
H	2.394928	-0.931146	0.979853

133

Atom	X Coord	Y Coord	Z Coord
INT2	0.084094	-1.023204	4.790467
C	-0.439459	-1.992658	3.914182
C	0.282164	-3.173034	3.647627
C	1.501010	-3.379353	4.297580
C	2.029377	-2.448111	5.194640
C	1.307855	-1.274067	5.416874
N	-1.670973	-1.747026	3.235723
C	-2.795738	-2.264167	3.733228
C	-2.746329	-3.011779	5.049955
C	-0.237488	-4.189995	2.665138
C	3.325784	-2.714032	5.916030
C	-0.649101	0.268741	5.036588
Mg	-1.689251	-0.463187	1.636370
N	-3.615010	-0.924461	1.084259
C	-4.443263	-1.575072	1.902447
C	-5.904439	-1.705024	1.524239
O	-0.081149	0.149012	0.607541
C	-0.698686	1.306142	1.191234
C	-0.340904	2.539075	1.356687
O	-0.232347	3.718901	1.554000
Mg	1.293165	0.498194	-0.713605
N	0.435622	1.897853	-2.111784
C	-0.802849	2.417831	-1.999970
C	-1.339090	3.313721	-2.904423
C	-0.577477	3.734560	-4.019172
C	0.719481	3.177396	-4.131299
C	1.164587	2.287091	-3.174850
N	-1.060828	4.625231	-4.931075
C	-2.375473	5.209596	-4.745520
N	3.185653	1.260022	-0.298377
C	4.204032	1.003279	-1.113783
C	5.535900	1.689823	-0.885555
C	3.429593	2.065542	0.860326
C	3.236188	3.459297	0.827353
C	3.463041	4.198436	1.990597
S52

C -2.478164 -2.429102 5.235496
C 0.678618 -3.225517 3.594011
C 2.838002 -0.265005 7.061047
C -1.388448 1.253933 4.765442
Mg -1.387263 -0.529399 1.422828
N -3.284587 -1.122550 0.944426
C -4.028721 -1.866815 1.763165
C -5.405939 -2.309375 1.316144
O 0.188317 0.189869 0.257653
C -0.447822 1.060562 0.243430
O -0.328199 2.140849 0.986343
O -0.527587 3.248183 1.379900
Mg 1.571809 -0.132300 -1.206967
N 0.392437 1.287585 -2.196249
C -0.860404 1.447311 -1.581746
C -1.594208 2.664304 -1.796262
C -0.999019 3.284587 -2.386881
C 0.335624 3.608850 -2.886324
C 0.936550 4.963629 -2.768388
N -1.668887 4.963629 -2.544584
C -2.903111 5.161918 -1.814526
N 3.491641 0.415361 -0.611247
C -4.582787 -0.157539 -1.109718
C 5.948725 0.293988 -0.626750
C 3.643899 1.360584 0.452519
C 3.842203 2.730795 0.205003
C 3.932119 3.606321 1.292824
C 3.821325 3.171895 2.611668
C 3.637215 1.804380 2.832513
C 3.549376 0.893281 1.780466
C 3.955238 3.290429 -1.189324
C 3.365888 -0.573844 2.060944
C 3.874002 4.144100 3.761367
C 4.582912 -1.196538 -2.064510
C 3.520418 -1.965659 -2.572951
N 2.227683 -1.776926 -2.287580
C 1.289142 -2.714661 -2.813221
C 0.977656 -3.875389 -2.076644
C 0.067018 -4.792677 -2.606431
C -0.552684 -4.590563 -3.841842
C -0.255235 -3.415123 -4.534473
C 0.650730 -2.469793 -4.045051
C 1.623967 -4.129568 -0.740221
C -1.490742 -5.619745 -4.419071
C 0.945239 -1.219298 -4.830551
C 3.915946 -3.102616 -3.495222
C -3.855840 -0.682773 -0.288996
C -4.582787 0.522858 -0.328342
C -5.111322 0.948170 -1.549453
C -4.924846 0.226892 -2.730920
C -4.188516 -0.957399 -2.663694
C -3.644419 -1.425390 -1.464607
C -4.775681 1.347240 0.917261
C -5.467370 0.730930 -4.042809
C -2.840334 -2.696722 -1.434997
Atom	X	Y	Z
C	-0.961023	6.130536	-3.026609
C	-3.635653	-2.268073	3.054628
H	-4.366558	-2.867404	3.584960
H	-6.059408	-1.445681	1.149383
H	-5.873644	-2.957928	2.061026
H	-5.354779	-2.847706	0.363440
H	0.751859	1.367342	6.404828
H	-1.611104	-3.062078	5.450706
H	-3.385542	-2.991212	5.466196
H	-2.415578	-1.575733	5.920697
H	-4.025907	-1.537266	3.570964
H	-1.789087	-2.502844	-1.186182
H	-2.848690	-3.188130	-2.411095
H	-3.215120	-3.407215	-0.688720
H	2.489300	-2.427311	5.433410
H	0.708610	-3.017637	2.517170
H	-0.216905	-3.833929	3.767643
H	1.552980	-3.836585	3.839126
H	-5.683530	1.874640	-1.576888
H	-1.301814	1.747967	3.788332
H	-1.304810	2.035670	5.527125
H	-2.396913	0.829251	4.822234
H	-5.406133	2.218890	0.714302
H	-3.814789	1.713103	1.301843
H	-5.241755	0.775992	1.728811
H	-4.729092	1.359518	-4.558137
H	-6.368525	1.337077	-3.899164
H	-5.719554	-0.094339	-4.717613
H	2.573966	-0.685526	8.040784
H	3.021355	0.804925	7.206475
H	3.780764	-0.730422	6.753231
H	1.933810	2.235656	-3.182239
H	0.865617	4.411183	-3.382925
H	5.566087	-1.501816	-2.404200
H	-2.617125	2.690469	-1.442656
H	0.390864	-1.214377	-5.774782
H	0.666273	-0.320793	-4.266619
H	2.012648	-1.126409	5.066137
H	4.090505	4.665757	1.093926
H	-0.159778	-5.693086	-2.036662
H	-0.736198	-3.226132	-5.493426
H	3.554570	1.432726	3.852459
H	3.350903	-0.763650	3.137567
H	2.416949	-0.936501	1.648139
H	4.161662	-1.182217	1.613555
H	2.992172	3.696961	-1.521771
H	4.684451	4.108245	-1.220710
H	4.258216	2.533173	-1.917602
H	1.437832	-3.304884	-0.041280
H	1.239815	-5.050657	-0.289893
H	2.714098	-4.222318	-0.818441
H	6.048116	0.130172	0.452570
H	6.748931	-0.249590	-1.134122
H	6.094465	1.366920	-0.791159
H	-0.512845	5.939466	-4.008238
Atom	X	Y	Z
------	--------	--------	--------
C	0.341807	0.116641	4.959951
C	0.358548	-1.071085	4.204248
C	0.683432	-2.009149	4.332029
C	1.706921	-1.758955	5.249047
C	1.736087	-0.601421	6.030188
C	0.707146	0.326622	5.858951
N	-1.427800	-1.312692	3.283218
C	-2.487492	-2.001749	3.727631
C	-2.489882	-2.511257	5.15942
C	0.700316	-3.262604	3.497462
C	2.827819	-0.374355	7.043910
C	1.429859	1.148763	4.812117
Mg	-1.360623	-0.602979	1.371908
N	-3.277049	-1.094334	0.890463
C	-4.031253	-1.846013	1.694848
C	-5.413519	-2.260275	1.238059
O	0.195561	-0.152623	0.276263
C	-0.386934	1.125851	0.159081
O	-0.249979	2.112946	1.037808
O	-0.325014	3.095105	1.686745
Mg	1.603601	-0.133649	-1.215192
N	0.397333	1.268238	-2.125629
C	-0.807542	1.468525	-1.342737
C	-1.519250	2.764002	-1.541815
C	-1.026547	3.743654	-2.351012
C	0.217809	3.507257	-3.054318
C	0.824532	2.292807	-2.898200
N	-1.715489	4.940574	-2.608172
C	-3.024599	5.091082	-2.016851
N	3.516392	0.387562	-0.591707
C	4.611008	-0.196457	-1.071799
C	5.973215	0.281893	-0.612329
C	3.659617	1.390545	0.416908
C	3.805001	2.750225	0.083973
C	3.888280	3.689523	1.117306
C	3.819865	3.328995	2.461972
C	3.681677	1.972344	2.766032
El	X	Y	Z
----	--------	--------	--------
C	3.600675	0.998542	1.770108
C	3.862997	3.221790	-1.345350
C	3.458504	-0.454217	2.136076
C	3.86915	4.368737	3.551415
C	4.608482	-1.265923	-1.992934
C	3.542861	-2.035170	-2.493502
N	0.989899	-3.918761	-1.992932
C	0.99740	-3.936561	-3.744732
C	-0.554444	1.276956	4.759263
C	-3.844809	-1.265777	-1.551359
H	4.380433	-2.888416	-3.490255
H	6.056728	-1.385240	1.091322
H	-0.009279	1.387316	-3.635724
H	-1.786922	2.438699	-1.314299
H	-2.895118	-3.104757	-2.503070
H	-3.208661	-3.265050	-0.771324
H	2.505361	-2.492325	5.353316
H	0.739386	-3.030760	2.425731
H	-0.194434	3.877907	3.650108
H	1.574964	-3.876271	3.734402
H	5.638684	1.989337	-1.561371
H	-1.355020	1.683387	3.856014
H	-1.359228	1.901387	5.603759
H	2.430561	0.704559	4.853382
H	5.370214	2.273343	0.734279
H	-3.803232	1.719762	1.341048
H	5.255146	0.799118	1.708774
H	-4.661793	1.549176	-4.543039
H	-6.309206	1.525069	-3.904336
H	-5.665903	0.111545	-4.758187
H	2.561298	-0.806123	8.018004
H 3.012669 0.693415 7.202613
H 3.770003 -0.837534 6.731520
H 1.737066 2.084542 -3.459471
H 0.593293 4.205891 -3.791916
H 5.591422 1.584258 -2.321159
H -2.458791 2.878843 1.013163
H 0.413684 -1.285021 5.712148
H 0.651523 -0.378605 -4.205936
H 2.022877 -1.172949 4.977274
H 4.007037 4.740055 0.854453
H 2.861099 3.473328 -1.716745
H 4.479494 4.123883 -1.429765
H 4.273257 2.462020 -2.016937
H 1.505092 -3.322433 0.021683
H 1.229910 -5.064915 0.184071
H 2.728564 -4.310163 -0.750725
H 6.081549 0.157141 0.471276
H 6.775407 -0.271398 -1.105929
H 6.106801 1.349904 -0.815528
H 0.019562 6.043779 -3.055527
H -1.494483 6.961689 3.100166
H -0.761590 6.519662 -1.536315
H 3.415835 -3.124674 3.611426
H 5.009648 -3.199931 -3.579657
H 3.648125 -4.151193 -2.957041
H -0.964041 -6.419678 4.898643
H -2.040608 -6.194946 -3.517947
H -2.243131 -5.205959 4.974281
H -2.998301 5.190561 -0.915554
H -3.498253 5.989581 2.427462
H -3.647354 4.227385 -2.269119
H 4.384639 5.275067 3.219012
H 2.855188 4.665451 3.858713
H 4.381235 3.994403 4.443908
H -1.496067 0.619797 -1.529177

Product TS2

C 16.680621 37.327027 25.239969
C 15.797790 36.232132 25.388961
C 15.024040 36.126461 26.564144
C 15.183509 36.048786 27.572540
C 16.069982 38.150804 27.458147
C 16.806490 38.251594 26.273987
N 15.636825 35.317750 24.311302
C 15.925899 34.025607 24.474351
C 15.465395 33.000882 23.613260
C 14.371430 33.031410 22.713616
C 13.788984 31.693485 22.308542

133
Element	X	Y	Z
C	13.998399	35.041295	26.773331
C	16.212774	39.178780	28.550321
C	17.476711	37.507261	23.978680
N	13.836468	34.154399	22.238651
Mg	15.081782	37.948417	22.376084
O	16.496122	36.001852	20.899616
Mg	18.14856	35.210867	20.149465
N	20.028085	34.913345	21.06474
C	20.382195	35.459332	23.39227
C	20.287928	34.642747	24.84985
C	20.624999	35.179549	24.729166
C	21.051754	36.501584	24.875539
C	21.14035	37.286173	23.72532
C	20.80175	36.795463	22.95242
C	19.838291	33.209653	23.37247
C	21.373615	37.06487	26.234527
C	20.919355	37.689075	21.252604
C	12.560729	34.117209	21.602990
C	11.392717	34.047191	22.39133
C	10.016989	34.133640	20.37667
C	11.85689	34.231329	19.618719
C	12.45407	34.235054	20.204747
C	11.473044	34.021043	23.394222
C	13.678434	34.373899	19.343377
C	8.65974	34.164586	19.719818
O	14.47543	37.590650	21.841517
C	15.038180	38.118614	20.822582
C	16.144989	37.198132	20.297231
C	17.099480	37.780244	19.355756
N	18.140921	36.972099	18.995518
C	18.975143	37.416013	18.029219
C	18.865747	38.632077	17.406361
C	17.818547	39.516878	17.809443
C	16.953685	39.076326	18.813936
N	17.684993	40.755221	17.243336
C	18.700804	41.260907	16.342378
N	18.332848	33.496245	18.973889
C	17.208803	32.824179	18.399443
C	16.645431	33.278017	17.191284
C	15.554951	32.589412	16.652368
C	14.999764	31.471044	17.275137
C	15.571451	31.045899	18.476460
C	16.661187	31.702516	19.054121
C	17.216768	34.467715	16.466898
C	13.806007	30.762820	16.689213
C	17.239342	31.207402	20.354022
C	16.653704	41.652098	17.728547
C	19.547414	33.046043	18.650079
C	20.753618	33.484888	19.234233
C	20.974440	34.250685	20.396723
C	22.400162	34.261848	20.912295
C	19.686323	31.949898	17.611891
C	16.775330	33.575494	25.645120
H	15.855437	32.011595	23.829846
Atoms	X	Y	Z
-------	---------	---------	---------
C	0.91603	4.20359	-3.30690
C	2.19946	3.60785	-3.41790
C	2.42499	2.39080	-2.81101
C	-0.78649	1.45477	-1.28110
C	-1.81150	2.46381	-3.41790
O	-2.14614	2.03385	0.57309
N	0.64064	5.42248	-3.85275
N	0.64064	5.42248	-3.85275
C	1.04302	2.15628	2.53490
C	0.23558	-1.46297	4.75019
C	5.72545	-1.27790	-0.48233
H	-0.78189	-3.27591	3.26382
H	-3.86240	-3.70208	2.37956
H	-2.29991	4.52994	2.28884
H	-3.12739	-3.98434	0.80734
H	-1.98786	2.38002	6.96593
H	0.97203	-0.67201	4.92111
H	0.75682	-2.41860	4.64548
H	-0.38519	-1.53642	5.65712
H	-5.11249	-2.00367	2.55634
H	-1.83868	-1.34887	1.34129
H	-2.77398	-2.17270	-2.60175
H	-2.20872	-3.05603	-1.18354
H	1.03952	4.04711	4.43907
H	0.42839	2.33561	1.64277
H	1.54950	1.19525	2.40364
H	1.80836	2.93810	2.55783
H	-7.20630	-0.85955	1.00213
H	-2.85304	-0.37750	4.67714
H	-3.45281	0.69171	5.95644
H	-2.21813	-0.50936	6.32148
H	-6.10558	-0.46711	3.00353
H	-4.46555	0.18445	2.83245
H	-4.69525	-1.49197	3.31476
H	-8.30694	-0.69831	-1.27836
H	-8.14321	-2.44472	-1.47865
H	-7.47052	-1.35396	-2.69511
H	0.69938	4.50054	7.27387
H	-1.05804	4.48938	7.56391
H	-0.37256	5.46687	6.25276
H	3.40280	1.91974	-2.87925
-----	-----	-----	
H	3.006107	4.080866	-3.964944
H	5.082255	-1.974995	-2.837978
H	-1.069110	3.840040	-2.438770
H	0.028171	-0.082072	-5.910053
H	0.113281	0.467357	-4.233484
H	1.545121	-0.203083	-4.997650
H	4.969585	2.260627	2.907935
H	-1.042589	-5.248857	-3.388758
H	-1.444470	-1.877957	-6.001404
H	3.659346	-1.621517	4.153691
H	3.018784	-3.248469	2.599317
H	1.545121	-0.203083	-4.997650
H	4.969585	2.260627	2.907935
H	5.725464	0.337307	1.552500
H	3.470107	2.343945	-0.166120
H	4.899091	2.932702	0.697613
H	5.052984	1.674408	-0.539433
H	0.823108	-3.682950	-0.899235
H	0.465725	-5.261479	-1.623500
H	1.998134	-4.439741	-1.961589
H	5.725464	0.337307	-1.961589
H	6.431232	-1.621755	-1.241785
H	6.091398	-0.337324	-0.059590
H	1.990967	5.589269	-5.479719
H	1.260734	7.100359	-4.914262
H	2.543227	6.339852	-3.962259
H	2.656026	-2.393077	-5.169908
H	4.262455	-2.873476	-4.576213
H	2.826585	-3.86375	-4.186476
H	-2.217066	-5.407443	-5.730984
H	-3.410459	-4.367648	-4.951865
H	-2.690978	-3.879066	-6.490670
H	-0.987859	6.097068	-2.683755
H	-0.714914	6.963043	-4.206735
H	-1.443883	5.345715	-4.228040
H	5.573535	1.346267	5.196552
H	3.857234	1.260582	5.604418
H	4.864293	-0.185866	5.734373
H	-1.460513	1.003722	-2.035514

133
Product TS3

C	16.639209	37.501777	25.160072
C	15.785605	36.391962	25.356502
C	15.029571	36.306684	26.545059
C	15.181192	37.298405	27.521302
C	16.046757	38.376722	27.363600
C	16.760723	38.459299	26.164735
N	15.630573	35.439891	24.310880
C	15.976763	34.167161	24.505819
C	15.554494	33.098791	23.678224
C	14.451537	33.056070	22.791126
C	13.935308	31.681839	22.417206
C	14.028905	35.207443	26.796177
C	16.212759	39.417501	28.440225
C	17.399614	37.668441	23.874916
N 13.854584 34.140623 22.302039
Mg 15.004164 35.862301 22.377290
O 16.479829 36.038217 20.899410
Mg 18.119213 35.180979 20.140788
N 19.963138 36.038217 20.899410
C 20.318916 35.364631 22.341656
C 20.219994 34.508756 23.457391
C 20.558191 34.999503 24.720449
C 20.988207 36.313822 24.915471
C 21.084335 37.137789 23.793817
C 20.752563 36.693373 22.510814
C 19.760833 33.083256 23.296089
C 21.308566 36.831421 26.294002
C 20.865560 37.633816 21.340492
C 12.575714 34.023182 21.684002
C 11.422083 33.891913 22.485564
C 10.171641 33.815734 21.869070
C 10.021139 33.883277 20.483009
C 11.173205 34.053355 19.714992
C 12.445525 34.131952 20.286969
C 11.518081 33.892444 23.987902
C 13.649777 34.346933 19.414305
C 8.663541 33.766611 19.839702
O 14.335339 37.555227 21.708552
C 15.061843 38.068279 20.744343
C 16.150137 37.227443 20.299003
C 17.156507 37.793233 19.349505
N 18.173387 36.967663 19.011425
C 19.085681 37.423472 18.131963
C 19.034780 38.685966 17.547826
C 17.972902 39.549709 17.890782
C 17.043974 39.082095 18.838034
N 17.867392 40.793574 17.341421
C 18.885221 41.278569 16.431620
N 18.262436 33.505390 18.919356
C 17.137880 32.845538 18.332079
C 16.552778 33.344058 17.152459
C 15.460321 32.667942 16.601762
C 14.922259 31.521727 17.187657
C 15.514209 31.053762 18.363071
C 16.607987 31.694837 18.949943
C 17.095067 34.574661 16.475212
C 13.723998 30.828671 16.593006
C 17.205698 31.156871 20.223746
C 16.795363 41.676964 17.760438
C 19.478450 33.078982 18.570622
C 20.685143 33.506817 19.162993
C 20.908143 34.228689 20.353674
C 22.334753 34.221143 20.866407
C 19.618709 32.025963 17.489116
C 16.854016 33.787575 25.680966
H 15.989876 32.134119 23.918385
H 12.961351 31.490302 22.881713
H 14.624988 30.899275 22.743330
H 13.789564 31.603439 21.334391
H 12.795740 31.154027 17.081006
H 13.624750 31.045344 15.524061
H 16.875262 41.939071 18.827844
H 16.838753 42.596993 17.178806
H 15.814411 41.215296 17.599587
H 20.401524 37.208303 26.789677
H 21.723151 36.045300 26.932993
H 22.026608 37.655465 26.257827
H 15.057350 37.415016 19.548396

TS4

C 0.069990 1.981665 3.914637
C -0.823440 0.895684 4.062254
C -1.624228 0.814214 5.221220
C -1.484752 1.789965 6.215339
C -0.587347 2.847716 6.3827
C 0.176242 2.923999 4.935422
N -0.970589 -0.033001 2.995207
C -0.662608 -1.317758 3.171171
C -1.088604 -2.354841 2.305894
C -2.163867 -2.347395 1.384985
C -2.691066 -3.697986 0.946173
C -2.656335 -0.265904 5.422915
C -0.437190 3.872405 7.198100
C 0.900388 2.131926 2.671613
N -2.723824 -1.234956 0.911992
Mg -1.518540 0.437170 1.051934
C -0.062252 0.796229 -0.377355
Mg 1.546562 -0.139200 -1.184319
N 3.392843 -0.490262 -0.279071
C 3.760522 0.022750 1.002965
C 3.660907 -0.814804 2.132643
C 4.016137 -0.308781 3.385009
C 4.465026 1.002841 3.555255
C 4.557394 1.809583 2.420685
C 4.207556 1.349826 1.147792
C 3.185019 -2.237371 1.996227
C 4.806166 1.535152 4.922736
C 4.321851 2.265363 0.04792
C -3.987767 -1.301541 0.258515
C -5.163242 -1.467274 1.022740
C -6.398258 -1.493755 0.372749
C -6.513507 -1.342703 -1.010519
C -5.341457 -1.137946 -1.738037
C -4.082200 -1.106192 -1.132191
C -5.108575 -1.552068 2.525100
C -2.855643 -0.854107 -1.963474
C -7.856185 -1.410500 -1.691049
O -2.186148 2.192300 0.509262
C -1.431438 2.639431 -0.446994
C -0.345629 1.946572 -0.940476
C 0.511359 2.437315 -1.991449
N 1.555078 1.619919 -2.325925
C 2.403293 2.019444 -3.291693

133
H 0.012977 -0.603169 -5.807856
H 0.374900 0.130688 -4.238311
H 1.589827 -0.852870 -5.630451
H 4.912468 2.834113 2.524568
H 3.254668 -2.761630 2.954656
H 2.140051 -2.281295 1.664946
H 3.768332 -0.963238 4.252688
H 3.254668 -1.509650 -5.147480
H 1.574294 -0.852870 -5.038596
H 4.912468 2.834113 2.524568
H 0.456528 -3.467343 -0.245406
H 0.120151 -5.112777 -0.802737
H 1.673706 -4.340875 -1.167248
H 5.826873 -1.742961 0.470678
H 6.428910 -1.619191 -0.838369
H 6.114599 -0.158351 -0.226420
H 2.112224 4.969431 -5.630451
H 1.707186 6.642312 -5.741744
H 3.020686 5.829257 -4.874029
H 2.465038 -3.054305 -4.730893
H 4.051268 -3.523363 -4.077092
H 2.564700 -4.287668 -3.481102
H 2.848291 -5.562691 -4.572492
H 3.822315 -4.134110 -4.216384
H 2.994505 -4.267017 -5.772221
H 0.060522 6.497116 -2.923341
H -0.021623 7.024116 -4.615622
H -1.009527 5.600440 -4.072822
H 3.906812 1.890362 5.442950
H 5.261310 0.763079 5.553257
H 5.504293 2.377057 4.863380
H -1.690169 3.618810 -0.861904

Adduct TS5
C -4.746595 1.255665 -0.210687
C -4.156105 -0.014642 -0.353818
C -3.953168 -0.560337 -1.638220
C -4.367509 0.165242 -2.755964
C -4.977834 1.417080 -2.641111
C -5.147807 1.944980 -1.360734
N -3.734224 -0.746609 0.796606
C -4.617255 -1.577162 1.366357
C -5.999804 -1.713572 0.759647
C -3.321185 -1.916712 -1.799532
C -5.459954 2.153457 -3.864892
C -4.968915 1.860145 1.151213
Mg -1.818984 -0.515875 1.530247
O -1.520395 2.045101 2.120391
C -0.449443 2.491117 2.415674
O -0.046474 -0.407232 0.702166
C 0.750708 0.411407 1.508619
C 1.563418 0.148844 2.508238

S66
H	-4.304514	-3.875408	4.549428
H	-3.223849	-2.815680	5.479198
H	-4.219751	-0.267442	-3.744736
H	-2.294973	-1.941694	-1.413917
H	-3.284522	-2.854645	4.658278
H	-2.294973	-1.941694	-1.413917
H	1.785187	-3.615749	4.651525
H	0.058736	-3.108275	1.762253
H	-1.015234	-4.232829	2.587543
H	0.740554	-4.420726	2.730350
H	-5.624946	2.917629	-1.244541
H	-2.186466	0.726189	-2.854645
H	-1.896534	0.589325	6.397957
H	-3.094701	-0.445010	5.603390
H	-5.499931	2.814234	1.069618
H	-4.022032	2.043930	1.670799
H	-5.558618	1.201974	1.800185
H	-5.796985	3.165944	1.355724
H	-6.305691	1.635233	-3.617205
H	-4.673163	2.233353	-4.625159
H	2.647008	-3.142740	6.948868
H	1.957234	-1.817034	7.902923
H	3.044808	-1.466136	6.554237
H	1.802389	1.306126	-3.358303
H	0.878407	2.934128	-4.929223
H	4.778967	-0.039208	-3.468044
H	-2.287344	3.637257	-2.043463
H	-0.873742	-2.164441	-4.224866
H	-0.433141	-0.874593	-3.091689
H	0.739422	-1.437053	-4.272424
H	3.546558	5.371416	1.355724
H	1.589696	-5.516904	-0.108615
H	-1.053202	-4.251685	-3.232603
H	5.745084	2.142750	3.109451
H	5.780637	0.033273	2.179027
H	4.250893	-0.444511	1.433663
H	5.636093	-0.066431	0.414699
H	1.466023	3.728925	-0.576752
H	2.505613	5.151923	-0.709241
H	2.785301	3.736027	-1.742149
H	2.821211	-2.449658	0.793003
H	3.298648	-4.150953	0.685946
H	3.970226	-2.953519	-0.436760
H	6.179276	1.666176	-1.157464
H	5.885841	1.718959	-2.904096
H	5.190381	2.953636	-1.824606
H	-0.580867	3.874266	-6.367340
H	-1.290011	5.488667	-6.257353
H	0.307559	5.183463	5.549178
H	2.682533	-2.636599	-4.130747
H	4.322311	-1.963371	-4.279256
H	3.933575	-3.129305	3.003371
H	-0.337339	-6.948909	2.559559
H	-0.140377	-7.003558	-0.802843
H	-1.590156	-6.278617	-1.513198
H -2.238705 5.805923 -3.143937
H -2.787166 5.881107 -4.829590
H -3.345395 4.567778 -3.786501
H 5.080426 5.829712 3.201896
H 4.505497 4.640721 4.376216
H 6.171385 4.565721 3.796327
H -1.214401 1.971660 -0.621940
135
TS5
C 0.410608 -2.809313 -2.621748
C 1.497593 -2.548079 -1.762921
C 1.917403 -3.529195 -0.845661
C 1.254462 -4.760048 -0.816414
C 0.185240 5.047886 -1.664421
C -0.220721 -4.053365 -2.558238
N 2.157353 -1.283245 -1.792076
C 3.188061 -1.141166 -2.628112
C 4.029047 -0.011739 -2.684768
C 4.195468 1.027725 -1.739993
C 5.429801 1.890109 -1.925545
C 3.062005 3.260540 0.094530
C -0.505026 -6.387420 -1.631125
C -0.063187 1.841495 -2.703588
N 3.378452 1.251433 -0.717316
Mg 1.494211 0.289564 -0.559913
O -0.046474 -0.407232 0.702166
Mg 2.118984 -0.515875 1.530247
N -2.125906 -1.717649 3.167839
C -1.067652 -1.852188 4.121074
C -1.025013 -1.005335 5.244893
C 0.041747 -1.129169 6.137508
C 1.065982 -2.057356 5.945559
C 0.996109 -2.885079 4.824117
C -0.047024 -2.795801 3.900306
C -2.105514 0.016102 5.489128
C 2.236428 -2.128536 6.890371
C -0.069757 3.686128 2.686198
C 3.826390 2.152627 0.301905
C 4.674559 1.664394 1.317705
C 5.096121 2.531381 2.325957
C 4.701622 3.869724 2.367442
C 3.865367 4.329623 1.351502
C 3.413900 3.497239 0.323039
C 5.112481 0.224279 1.333443
C 2.500584 4.056797 -0.734387
C 5.139871 4.774331 3.489807
N 0.343979 1.550812 -1.910942
C -0.782020 2.211552 -1.587725
C -1.380886 3.160063 -2.393584
C -0.810313 3.475319 -3.649094
C 0.363606 2.763301 -3.991362
C 0.887549 1.839436 -3.108436
N -1.356583 4.410220 -4.478459
C -0.689725 4.753089 -5.719779
C -2.485724 5.203291 -4.029439

S69
	X	Y	Z
C	0.750708	0.411407	1.508619
C	1.563418	0.418844	2.508239
O	2.337711	0.214538	3.404544
O	-1.579952	1.534283	2.002680
C	-0.509000	1.980299	2.297963
N	-3.734224	-0.746609	-0.796606
C	-4.156105	-0.014642	-0.353818
C	-3.953168	-0.560337	-1.638220
C	-4.367509	0.165242	2.755964
C	-4.977834	1.417080	3.404544
C	-5.147807	1.944980	2.397963
C	-4.746595	1.255665	-0.210687
C	-3.321185	-1.916712	-1.799532
C	-5.459954	2.153457	-3.864892
C	-4.968915	1.860145	1.151213
C	-4.617255	-1.577162	1.366357
C	-4.375265	-2.352315	2.512553
C	-3.242841	-2.416831	3.352059
C	-3.342879	-3.357582	4.534742
C	-5.999804	-1.713572	0.759647
C	3.549884	-2.272855	-3.571142
H	-5.200080	-2.987234	2.815043
H	-6.529011	-0.753929	0.771924
H	-6.599350	-2.443604	1.307656
H	-5.946169	-2.024397	-0.289521
H	0.076792	-0.469675	7.003398
H	-2.542505	-4.105259	4.504523
H	-4.304515	-3.875408	4.594282
H	-3.223850	-2.815680	5.479198
H	-4.219751	-0.267442	-3.744736
H	-2.94973	-1.941694	-1.413917
H	-3.284522	-2.204400	-2.854645
H	-3.872877	-2.693630	-1.257201
H	1.785187	-3.615748	4.651525
H	0.058736	-3.108275	1.762253
H	-1.015234	-4.232829	2.587543
H	0.740554	-4.420726	2.730350
H	-5.624946	2.917629	-1.244541
H	-2.186467	0.726189	4.658278
H	-1.896535	0.589325	6.397957
H	-3.094702	-0.445010	5.603390
H	-5.499931	2.814234	1.069618
H	-4.022032	2.043930	1.670799
H	-5.558618	1.201974	1.800185
H	-5.796985	3.165944	-3.617205
H	-6.305691	1.635233	-4.335370
H	-4.673163	2.233353	-4.625159
H	2.647008	-3.142739	6.948869
H	1.957234	-1.817033	7.902923
H	3.044807	-1.466135	6.554237
H	1.802389	1.306126	-3.358303
H	0.878407	2.934128	-4.929223
H	4.778967	-0.039208	-3.468044
H	-2.287344	3.637257	-2.043463
H	-0.873742	-2.164441	-4.224865
Product TS5

C 0.207237 -2.497812 -3.520227
C 1.098204 -2.497212 -2.429691
C 1.205434 -3.642036 -1.611915
C 0.418811 -4.759565 -1.896150
C -0.469542 -4.785489 -2.973835
C -0.551221 -3.645636 -3.773647
N 1.888804 -1.347041 -2.120478
C 3.128000 -1.290835 -2.624698
C 4.105202 -0.339435 -2.275495
C 4.127973 0.591717 -1.209465
C 5.475601 1.204240 -0.890141
C 2.176637 -3.673067 -0.462098
C -1.320321 -5.998134 -3.249495
C 0.066333 -1.299098 -4.420975
N 3.068338 0.919278 -0.479262
Mg 1.177643 0.249988 -0.989889
O 0.159915 0.279894 0.491295
Mg -1.657883 -0.059902 2.137770
N -1.507945 -1.465011 3.630871
Element	X	Y	Z
C	-0.338043	-1.521993	4.449288
C	-0.157764	-0.591713	5.493265
C	1.016861	-0.651938	6.247777
C	2.013174	-1.599687	6.004426
C	1.813837	-2.500860	4.956964
C	0.657725	-2.478358	4.172605
C	-1.208207	0.441786	5.803470
C	3.249551	-1.665333	6.864241
C	0.478507	-3.468410	3.052418
C	3.253631	1.742754	0.678875
C	3.459554	1.116741	1.924664
C	3.584390	1.906251	3.068643
C	3.509182	3.299828	3.014718
C	3.312974	3.893309	1.768564
C	3.174819	3.144945	0.595624
C	3.534905	-0.383234	2.028975
C	2.904611	3.856836	-0.703441
C	3.603346	4.132835	4.266692
N	0.362398	1.616917	-2.427266
C	-0.881425	2.133069	-2.411265
C	-1.333022	3.079296	-3.307506
C	-0.465114	3.571967	-4.308848
C	0.836489	3.013934	-4.331033
C	1.189296	2.068373	-3.390890
N	-0.857893	4.525947	-5.197871
C	0.085261	5.046059	-6.169085
C	-2.171989	5.129898	-5.074599
C	-0.374313	1.571172	0.828851
C	-0.499513	3.007406	0.738716
O	-0.304875	4.062336	0.154054
O	-1.839794	1.870899	2.806088
C	-1.087361	2.209700	1.806509
N	-3.426796	-0.778808	1.374684
C	-3.935482	-0.222798	0.163882
C	-3.650293	-0.860306	-1.061233
C	-4.108344	-0.283817	-2.247194
C	-4.836666	0.909745	-2.255893
C	-5.092471	1.526802	-1.031134
C	-4.657563	0.986126	0.184498
C	-2.867031	-2.144723	-1.087975
C	-5.344552	1.494629	-3.549376
C	-4.972514	1.682512	1.482370
C	-4.158309	-1.672049	2.039243
C	-3.755814	-2.313862	3.227986
C	-2.550851	-2.234194	3.953754
C	-2.472059	-3.095841	5.198139
C	-5.528178	-2.044785	1.510533
C	3.566359	-2.339791	-3.628568
H	-4.490881	-2.992022	3.646001
H	-6.172290	-1.161039	1.439706
H	-6.016108	-2.779562	2.154745
H	-5.459202	-2.460448	0.499169
H	1.152012	0.065204	7.056384
H	-1.642086	-3.808242	5.138642
H	-3.397658	-3.655125	5.350922

S72
H -2.287488 -2.478781 6.084758
H -3.891403 -0.785504 -3.189715
H -1.879134 -2.022065 -0.629020
H 2.715746 -2.493718 -2.113028
H -3.368591 -2.944313 0.529132
H 2.578954 -3.245552 4.740397
H 0.251363 -2.968650 2.103817
H -0.354382 -4.157891 3.240413
H 1.383305 -4.068837 2.915244
H 5.657130 2.457972 -1.011860
H 1.352982 1.139847 4.969955
H 0.927198 1.022991 6.687932
H -2.184788 0.017689 6.000354
H 5.542184 2.599467 1.299461
H -4.062487 1.948629 2.033400
H 5.568359 1.046272 2.149063
H -5.753112 2.499861 3.400250
H 0.490341 0.491209 3.932043
H 1.037131 0.879995 4.706152
H -0.493144 1.642860 -3.398895
H 5.049887 0.440673 2.806778
H -2.345787 3.445509 -3.190087
H 0.471957 1.560034 4.302080
H 1.560034 3.245552 4.740397
H 2.190549 1.642860 -3.398895
H 3.560593 -0.669274 7.198447
H 3.560593 -0.669274 7.198447
H -2.297479 5.876922 -5.859649
H -2.967437 4.382711 -5.190516
H 4.034802 5.118819 4.061788
H 2.610464 4.297610 4.705937
H 4.220321 3.644847 5.029443
H -1.546772 1.765743 -1.636730

References
1. R. Savka and H. Plenio, *Eur. J. Inorg. Chem.*, 2014, 6246.
2. S. J. Bonyhady, D. Collis, N. Holzmann, A. J. Edwards, R. O. Piltz, G. Frenking, A. Stasch and C. Jones, *Nat. Commun.*, 2018, 9, 3079.
3. S. J. Bonyhady, C. Jones, S. Nembenna, A. Stasch, A. J. Edwards and G. J. McIntyre, *Chem. Eur. J.*, 2010, 16, 938.
4. R. Lalrempuiia, C. E. Kefalidis, S. J. Bonyhady, B. Schwarze, L. Maron, A. Stasch and C. Jones, *J. Am. Chem. Soc.*, 2015, 137, 8944.
5. K. Yuvaraj, I. Douair, A. Paparo, L. Maron and C. Jones, *J. Am. Chem. Soc.*, 2019, 141, 8764.
6. T. M. McPhillips, S. McPhillips, H. J. Chiu, A. E. Cohen, A. M. Deacon, P. J. Ellis, E. Garman, A. Gonzalez, N. K. Sauter, R. P. Phizackerley, S. M. Soltis and P. Kuhn, *J. Synchrotron Rad.*, 2002, 9, 401.
7. W. J. Kabsch, *Appl. Cryst.*, 1993, 26, 795.
8. G.M. Sheldrick, *SHELX-16*, University of Göttingen, 2016.
9. A. L. Spek, *Acta Cryst.*, 2015, C71, 9.
10. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D.
Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, GAUSSIAN 09, Revision A.02; Gaussian, Inc., Wallingford CT, 2009.

11. A. D. Becke, *J. Chem. Phys.*, 1993, **98**, 5648.

12. J. P. Perdew and Y. Wang, *Phys. Rev. B*, 1992, **45**, 13244.

13. (a) A. D. McLean and G. S. Chandler, *J. Chem. Phys.*, 1980, **72**, 5639. (b) W. J. Hehre, R. Ditchfield and J. A. Pople, *J. Chem. Phys.*, 1972, **56**, 2257.

14. (a) C. Gonzalez and H. B. Schlegel, *J. Chem. Phys.*, 1989, **90**, 2154. (b) C. Gonzalez and H. B. Schlegel, *J. Phys. Chem.*, 1990, **94**, 5523.