Research Article

Global Existence and Blow-Up for the Classical Solutions of the Long-Short Wave Equations with Viscosity

Jincheng Shi and Shengzhong Xiao

1Department of Applied Mathematics, Guangzhou Huashang College, Guangzhou 510000, China
2Department of Mathematics, Guangdong AIB University, Guangzhou 510527, China

Correspondence should be addressed to Jincheng Shi; hning0818@163.com

Received 4 June 2021; Accepted 11 October 2021; Published 28 October 2021

Academic Editor: Nikos I. Karachalios

Copyright © 2021 Jincheng Shi and Shengzhong Xiao. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We are concerned with the global existence of classical solutions for a general model of viscosity long-short wave equations. Under suitable initial conditions, the existence of the global classical solutions for the viscosity long-short wave equations is proved. If it does not exist globally, the life span which is the largest time where the solutions exist is also obtained.

1. Introduction

In this paper, we studied the global well-posedness of the solutions for the long-short wave systems with viscosity which describes the coupling between nonlinear Schrödinger systems and the parabolical systems. In 1977, Benney [2] presented a general theory for deriving nonlinear partial differential equations in which both long and short wave solutions coexist and interact with each other nonlinearly.

\[
\begin{align*}
 iu_t + \Delta u &= F(t, x, u, v), \\
 v_t + C_g \nabla \cdot v &= G(t, x, u, v),
\end{align*}
\]

where \(u(t, x) \) denotes the envelope of the short wave, \(v(t, x) \) is the amplitude of the long wave, the quantity \(C_l \) is the long wave speed, and \(C_g \) is the group velocity of the short waves. This system arises in the study of surface waves with both gravity and capillary models presented [8] and also in plasma physics [21].

In [20], Tsutsumi and Hatanos studied the well-posedness of the Cauchy problems for one type of Benney equations

\[
\begin{align*}
 iu_t + \Delta u &= nu + |u|^2 u, \\
 v_t + [f(v)]_x &= |u|^2_x, \\
 u(0, x) &= \epsilon \varphi; v(0, x) &= \epsilon g,
\end{align*}
\]

and they got the well-posedness of the Cauchy problems of (2).

In [5, 6], the authors investigated the quasilinear Benney equations with the form,

\[
\begin{align*}
 iu_t + \Delta u &= nu + |u|^2 u, \\
 v_t + [f(v)]_x &= |u|^2_x,
\end{align*}
\]

In [5], they imposed the condition \(f(v) = av^2 - bv^3, a > 0, b > 0 \) and they established the existence of weak solutions for equation (3). In [6], they supposed that \(f \) is a polynomial real function, and they got the existence of local strong solutions for these versions of Benney equations. However, for the existence of the smooth solutions associated with an arbitrary flux-function \(f \) and the finite-time blow-up of these equations are still open. There are many papers that deal with the long-short wave equations, for example [1, 4, 14, 15, 17, 22, 23].

In the present paper, we extended the results to the viscosity long-short wave equations of the general form,

\[
\begin{align*}
 iu_t + \Delta u &= F(u, v), \\
 v_t - \eta \Delta v &= D_x([|u|^2 v) - D_x(f(v)), \\
 u(0, x) &= \varphi; v(0, x) = g,
\end{align*}
\]
where $x \in \mathbb{R}^n$, $t \geq 0$, $F = F(u, v)$, and $f = f(v)$ are nonlinear functions satisfying hypotheses: in a neighborhood of $\lambda = 0$, say, for $|\lambda| \leq 1$, $f(\lambda) = O(|\lambda|^{\alpha+\eta})$, and $F(\lambda) = O(|\lambda|^{\alpha})$ where α is an integer ≥ 1. $u(t, x) \in C$, $v(t, x) \in R$, and η is the viscosity coefficient.

Precisely, we are concerned with the viscosity long-short wave equations with the following form:

\[
\begin{align*}
 iu_t + \Delta u &= v^2 u + |u|^2 u + u^2 v + v^3, \\
 v_t - \eta \Delta v &= D_x (|u|^3 v) - D_x (f(v)),
\end{align*}
\]

(5)

Our purpose is to estimate the life span of solutions which is expressed explicitly in [11, 16]. We call the maximal solutions exist) with a more general can also get the life span (the largest time in which the existence of the global classical solutions for the viscosity long-short wave equations. If it does not exist globally, we can also get the life span (the largest time in which the solutions exist) with a more general $f(v)$ in \mathbb{R}^n. The studies about the life span are bound in literatures [3, 7, 9, 10, 12, 13, 18, 19]. Recently, some new results about these problems are founded in [24–36].

We state our main results as follows.

Theorem 1. Suppose that the nonlinear term f on the right-hand side of (5) satisfies (43) and

\[
\begin{align*}
 \phi &\in W^{S,1} (R^n) \cap H^{S+1} (R^n), \\
 g &\in W^{S,1} (R^n) \cap H^{S+1} (R^n),
\end{align*}
\]

(6)

Then, for any given integer $S \geq n + 5$, there exist positive constants c_0 and c_1 with $c_0 c_1 \leq 1$ such that, for any $\varepsilon \in (0, c_1)$, there exists a positive number $T = T(\varepsilon)$ such that Cauchy problem (5) admits on $[0, T(\varepsilon)]$ a unique classical solution $u \in X_{S,c(\varepsilon,T)}(...)$ where $T(\varepsilon)$ can be chosen as follows:

\[
\begin{align*}
 T(\varepsilon) &= +\infty, \quad \text{if } n > 2, \\
 T(\varepsilon) &= e^{a \varepsilon^{-1}} - 1, \quad \text{if } n = 2, \\
 T(\varepsilon) &= b e^{-2} - 1, \quad \text{if } n = 1,
\end{align*}
\]

(7)

where a, b are positive constants satisfying (148), (149), and (151). Moreover, with eventual modification on a set with zero measure in the variable t, we can obtain the results; for any finite T_0 with $0 < T_0 \leq T$, we have

\[
\begin{align*}
 u &\in L^2 (0, T_0; H^{S+2} (R^n)) \cap C([0, T_0]; H^{S+1} (R^n)), \\
 v &\in L^2 (0, T_0; H^{S+2} (R^n)) \cap C([0, T_0]; H^{S+1} (R^n)), \\
 u_t &\in L^2 (0, T_0; H^2 (R^n)) \cap C([0, T_0]; H^{S-1} (R^n)), \\
 v_t &\in L^2 (0, T_0; H^2 (R^n)) \cap C([0, T_0]; H^{S-1} (R^n)).
\end{align*}
\]

(8)

(9)

(10)

(11)

Moreover, by the Sobolev embedding theorems (observing that $S \geq n + 5$), it easily follows from (8)–(11) that the solutions are classical solutions to the Cauchy problem (5).

Remark 1. In this paper, we took the viscosity coefficient $\eta = 1$ for simplicity. For the case when $\eta \rightarrow 0$, we will discuss it in another paper.

The remainder of this paper is as follows: Section 2 is devoted to giving some useful estimates which will be used in Section 3. In Section 3, we consider the Cauchy problem for n-dimensional nonlinear evolution equations and we get our main results. In Section 4, conclusion is given.

2. Preliminary

First, we considered the following homogeneous equations:

\[
\begin{align*}
 iu_t + \Delta u &= 0, \\
 u(x, 0) &= \phi(x), \\
 v_t - \Delta v &= 0, \\
 v(x, 0) &= g(x).
\end{align*}
\]

(12)

(13)

It is well known that, by means of the Fourier transformation, the solutions to the Cauchy problem of equations (12) and (13) can be expressed in the following explicit form:

\[
\begin{align*}
 u(x, t) &= \frac{1}{(4\pi it)^{\frac{n}{2}}} \int_{\mathbb{R}^n} e^{i|x-y|^2/4t} \phi(y) dy,
\end{align*}
\]

(14)

and

\[
\begin{align*}
 v(x, t) &= \frac{1}{(4\pi it)^{\frac{n}{2}}} \int_{\mathbb{R}^n} e^{-i|x-y|^2/4t} g(y) dy,
\end{align*}
\]

(15)

where $y = (y_1, y_2, \ldots, y_n)$ and $|x - y|^2 = \sum_{i=1}^{n} (x_i - y_i)^2$.

For simplicity, we wrote (14) in the form,

\[
\begin{align*}
 u(x, t) &= S(t)\phi, \\
 v(x, t) &= R(t)g,
\end{align*}
\]

(16)

(17)

where

\[
\begin{align*}
 S(t): \phi &\mapsto u(t, \cdot), \\
 R(t): g &\mapsto v(t, \cdot).
\end{align*}
\]

(18)

Then, by Duhamel’s principle, the solutions to the Cauchy problem for inhomogeneous heat equations

\[
\begin{align*}
 iu_t + \Delta u &= F(t, x), \\
 v_t - \Delta v &= G(t, x), \\
 u(x, 0) &= \phi(x), \\
 v(x, 0) &= g(x)
\end{align*}
\]

(19)

can be denoted as

\[
\begin{align*}
 u &= S(t)\phi + \int_{0}^{t} S(t - \tau)F(\tau, \cdot) d\tau, \\
 v &= R(t)g + \int_{0}^{t} R(t - \tau)G(\tau, \cdot) d\tau.
\end{align*}
\]

(20)
and
\[v = R(t)g + \int_0^t R(t - r)G(r, \cdot)dr, \]

or precisely,
\[u(x,t) = \frac{1}{(4\pi)^{n/2}} \int_{\mathbb{R}^n} e^{-|x-y|^2/4t} \phi(y)dy \]
\[+ \frac{1}{(4\pi)^{n/2}} \int_0^t \int_{\mathbb{R}^n} \frac{1}{[1(t-r)]^{n/2}} e^{-|x-y|^2/4(t-r)} F(r, y)dydr, \]
\[v(x,t) = \frac{1}{(4\pi)^{n/2}} \int_{\mathbb{R}^n} e^{-|x-y|^2/4t} g(y)dy \]
\[+ \frac{1}{(4\pi)^{n/2}} \int_0^t \int_{\mathbb{R}^n} \frac{1}{[1(t-r)]^{n/2}} e^{-|x-y|^2/4(t-r)} G(r, y)dydr. \]

(22)

Now, we used the explicit expressions (14) and (15) to establish some decay estimates \(t \rightarrow \infty \) for solutions to Cauchy problem (12) and (13) for the \(n \)-dimensional homogeneous equations.

The following lemmas were employed by Li and Chen [16], but for completeness, we included them here without proving.

Lemma 1. Suppose that all norms appearing on the right-hand side below are bounded. For any integer \(N \geq 0 \), solutions (14) and (15) to the Cauchy problem (12) and (13) satisfy the following estimates:

\[
\| R(t)g \|_{W^{N,\infty}(\mathbb{R}^n)} \leq c_0 (1 + t)^{-n/2} \| g \|_{W^{N,n+1}(\mathbb{R}^n)},
\]

(23)

\[
\| R(t)g \|_{W^{N,1}(\mathbb{R}^n)} \leq \| g \|_{W^{N,1}(\mathbb{R}^n)}, \quad \forall t \geq 0,
\]

(24)

\[
\| S(t)\phi \|_{W^{N,\infty}(\mathbb{R}^n)} \leq c_0 (1 + t)^{-n/2} \| \phi \|_{W^{N,n+1}(\mathbb{R}^n)},
\]

(25)

and

\[
\| S(t)\phi \|_{H^N} = \| \phi \|_{H^N(\mathbb{R}^n)}. \]

(26)

Lemma 2. Suppose that \(\phi \in H^S(\mathbb{R}^n), F \in L^2(0,T; H^{S-1}) \), where \(S \geq 1 \) is an integer, then the Cauchy problem

\[
\left\{
\begin{array}{l}
u_t - \Delta u = F(t, x), \\
t = 0, \quad u = \phi(x),
\end{array}
\right.
\]

admits the following estimate:

\[
\int_0^t \sum_{|k| = 2} \| D^k_x u(t, \cdot) \|_{H^{S-1}}^2 dt \leq c_0 \left(\| \phi \|_{H^S}^2 + \int_0^t \| F(t, \cdot) \|_{H^{S-1}}^2 dt \right).
\]

(28)

where \(c_0 \) is a positive constant independent of \(t, k = (k_1, k_2, \ldots, k_n) \) is a multi-index, \(|k| = k_1 + k_2 + \cdots + k_n\), and \(D^k_x = \partial^{k_1} x_1 \partial^{k_2} x_2 \cdots \partial^{k_n} x_n \).

Lemma 3. Under assumption \(1/r = 1/p + 1/q \), if all norms appearing on the right-hand side below are bounded, then for any given integer \(S \geq 0 \), we have

\[
\| f g \|_{W^{S,1}(\mathbb{R}^n)} \leq c \left(\| f \|_{L^p(\mathbb{R}^n)} \| g \|_{W^{S,q}(\mathbb{R}^n)} + \| f \|_{W^{S,q}(\mathbb{R}^n)} \| g \|_{L^p(\mathbb{R}^n)} \right),
\]

(29)

Furthermore, suppose that \(F = F(u) \) is a sufficiently smooth function of \(u = (u_1, u_2, \ldots, u_N) \), satisfying that if \(|u| \leq v_0 \),

(30)

then

\[
F(u) = O(|u|^{1+\alpha}), \quad (\alpha \geq 1 \text{ integer}).
\]

(31)

For any given integer \(S \geq 0 \), if a vector function \(w = w(x) \) satisfies

\[
\| w \|_{L^\infty} \leq v_0,
\]

(32)

and such that all norms appearing on the right-hand side below are bounded, then

\[
\| F(w) \|_{W^{S,1}(\mathbb{R}^n)} \leq C_S \| w \|_{W^{S,q}(\mathbb{R}^n)} \prod_{i=1}^n \| w \|_{L^p(\mathbb{R}^n)},
\]

(33)

where \(C_S \) is a positive constant (depending on \(v_0 \)) and

\[
\frac{1}{r} = \sum_{i=1}^n \frac{1}{p_i} + \frac{1}{q}, \quad 1 \leq p_i (i = 1, \ldots, a), q, r \leq + \infty.
\]

(34)

In particular, we have

\[
\| F(w) \|_{W^{S,1}(\mathbb{R}^n)} \leq C_S \| w \|_{W^{S,q}(\mathbb{R}^n)} \| w \|_{L^p(\mathbb{R}^n)} \| w \|_{L^q(\mathbb{R}^n)}^{a-1},
\]

(35)

where \(C_S \) is a positive constant (depending on \(v_0 \)) and

\[
\frac{1}{r} = \frac{1}{p} + \frac{1}{q}, \quad 1 \leq p, q, r \leq + \infty.
\]

(36)

Lemma 4. Suppose that \(F = F(w) \) satisfies the same assumptions as in Lemma 3. If vector functions \(w = w(x) \) and \(\tilde{w} = \tilde{w}(x) \) satisfy (30), respectively, and such that all norms appearing on the right-hand side below are bounded, then for any given integer \(S \geq 0 \), let

\[
w^* = w - \tilde{w}.
\]

(37)

We have
\[\|F(u) - F(v)\|_{W^{r}(R^n)} \leq C \left\{ \left\| u^* \right\|_{L^p(R^n)} \left(\|v\|_{W^{r}(R^n)} + \|v\|_{W^{s}(R^n)} \right) + \|u^*\|_{W^{r}(R^n)} \left(\|v\|_{L^p(R^n)} + \|v\|_{L^{s}(R^n)} \right) \right\} \]

(38)

where \(p, q \) and \(r \) satisfy \(1/r = 1/p + 1/q \) and \(C_\delta \) is a positive constant (depending on \(v_0 \)).

3. The Proof of Theorem 1

In this section, we shall discuss the Cauchy problem for \(n \)-dimensional nonlinear evolution equations:

\[
\begin{align*}
 \frac{\partial u}{\partial t} + \Delta u &= v^2 u + |u|^2 u + u^2 v + v^3, \\
 v_t - \Delta v &= D_x \left(|u|^2 v \right) - D_x \left(f(v) \right),
\end{align*}
\]

(39)

where \(D_x u = (u_1, \ldots, u_n) = (u_i; i = 1, \ldots, n), \) and \(\varepsilon > 0 \) is a small parameter.

(40)

Let

\[
\lambda = (\lambda_1, \ldots, \lambda_n).
\]

For the nonlinear term \(f \) in (39), we give the following hypotheses: in a neighborhood of \(\lambda = 0 \), say, for \(|\lambda| \leq 1, f = f(\lambda) \) is sufficiently smooth and

\[
f(\lambda) = O(|\lambda|^{1+\alpha}),
\]

(43)

where \(\alpha \) is an integer \(\geq 1 \).

For any given integer \(S \) such that \(S \geq n + 5 \), and any positive numbers \(E, T \) \((0 < T \leq \infty) \), we introduce the following set of functions:

\[
X_{S,E,T} = \left\{ u = u(t,x); v = v(t,x) | D_{S,T} (u,v) \leq E \right\},
\]

(44)

where

\[
D_{S,T} (u,v) = \sup_{0 < t \leq T} \left(1 + t \right)^{n/2} \left\| \int_{t_0}^{t} D_x^k \left(\int_{t_0}^{\tau} \left\| D_x^l \left(\int_{t_0}^{\tau} \right) \right\|_{H^m} \right) \right\|_{H^m} + \sup_{0 < t \leq T} \left(1 + t \right)^{n/2} \left\| \int_{t_0}^{t} D_x^k \left(\int_{t_0}^{\tau} \right) \right\|_{H^m}.
\]

(45)

We now define a map

\[
(\tilde{u}, \tilde{v}) \rightarrow M(\tilde{u}, \tilde{v}) = (u, v),
\]

(46)

where \((u, v) \) are the solutions of the linear equations
We point out the fact that, if \(b \geq a \geq 0 \), then we have
\[
\int_0^t (1 + t - \tau)^{-a} (1 + \tau)^{-b} \, d\tau \leq c (1 + t)^{-a} \int_0^t (1 + \tau)^{-b} \, d\tau.
\] (59)

The proof of (59) was shown in [16], but to complete it, we include here. Let

\[
\begin{align*}
I_1 &= \int_0^{t/2} (1 + t - \tau)^{-a} (1 + t)^{-b} \, d\tau \leq \left(1 + \frac{t}{2}\right)^{-a} \int_0^{t/2} (1 + t)^{-b} \, d\tau, \\
I_2 &= \int_{t/2}^t (1 + t - \tau)^{-a} (1 + \tau)^{-b} \, d\tau \leq \left(1 + \frac{t}{2}\right)^{-b} \int_{t/2}^t (1 + t - \tau)^{-a} \, d\tau.
\end{align*}
\] (60)

Thus, from (58) and (59), we obtain

\[
\sup_{0 < t \leq T} (1 + t)^{-\alpha} \|v(t, \cdot)\|_{W^{\alpha, n, \infty}} \leq c \left(\varepsilon + E^{1+a} \int_0^t (1 + \tau)^{-\alpha} \, d\tau + E^3 \int_0^t (1 + \tau)^{-\alpha b^2} \, d\tau\right).
\] (62)

By (49) and (24), we also have

\[
\|v\|_{W^{\alpha, 1}} \leq c \left(\varepsilon g\|W^{\alpha, 1}\| + \int_0^t \left|D_x (f (\tilde{v}))\right|_{W^{\alpha, 1}} \, d\tau \right),
\] (63)

From (29) and (33), we have

\[
\|D_x (f (\tilde{v}))\|_{W^{\alpha, 1}} \leq c \|\tilde{v}\|_{H^1}^2 \|\tilde{v}\|_{W^{\alpha, 1}},
\] (64)

\[
\|D_x (\tilde{v})\|_{W^{\alpha, 1}} \leq c \|\tilde{v}\|_{H^1}^2 \|\tilde{v}\|_{W^{\alpha, 1}} + c \|\tilde{v}\|_{W^{\alpha, 1}} \|\tilde{v}\|_{W^{\alpha, 1}}.
\] (65)

Moreover, in fact,
On combining (63)–(65) and (67) and the definition of $X_{S,E,T}$, we obtain

\[
\sup_{0 < T - t} \|v\|_{W^{s-1,1}} \leq c \left[\epsilon + E^{1+\alpha} \left(1 + \frac{1}{2} \int_0^T (1 + \tau)^{-n/2} \, d\tau \right) + E^2 \int_0^T (1 + \tau)^{-n/2} \, d\tau \right].
\]

(68)

By (28), we have

\[
\int_0^T \sum_{|k|=2} \| D_x^{|k|} v \|_{H^{0,1}}^2 \, d\tau \leq c \epsilon^2 \| g \|_{H^{0,1}}^2.
\]

(69)

+ \int_0^T \| D_x (f(v)) (\tau, x) \|_{H^{0,1}}^2 \, d\tau + \int_0^T \| D_x [\tilde{u}^2] \|_{H^{0,1}}^2 \, d\tau.
\]

Noting the hypotheses of (43), it follows from (33) that

\[
\| D_x (f(v)) \|_{H^{0,1}} \leq c \| v \|_{H^{1,2}} \| v^2 \|_{H^{1,0}},
\]

\[
\| D_x [\tilde{u}^2] \|_{H^{0,1}} \leq c \| \tilde{u} \|_{H^{1,2}} \| \tilde{u}^2 \|_{H^{1,0}} + c \| v \|_{H^{1,2}} \| \tilde{u} \|_{H^{1,0}}.
\]

(70)

Using (67), $\int_0^T (1 + \tau)^{- (1 + 2\alpha)/2} \, d\tau \leq c$, and the definition of $X_{S,E,T}$, we obtain

\[
\left(\int_0^T \sum_{|k|=2} \| D_x^{|k|} v \|_{H^{0,1}}^2 \, d\tau \right)^{1/2} \leq \epsilon + E^{1+\alpha} + E \left(\int_0^T (1 + \tau)^{-n/2} \, d\tau + 1 \right).
\]

(71)

We can also get

\[
u = cS(t) + \int_0^t S(t - \tau) \left(\bar{\nu}^2 \tilde{u} + [\tilde{u}^2 \tilde{v} + \tilde{u}^2 \nu + \tilde{v}^2] \right) \, d\tau.
\]

(72)

By (25), we have

\[
\| u \|_{W^{s-3,\infty}} \leq c \epsilon (1 + t)^{-n/2} \| \phi \|_{W^{s-1,1}}.
\]

\[
+ c \int_0^t (1 + \tau)^{-n/2} \| \bar{u}^2 \|_{W^{s-2,1}} \, d\tau
\]

\[
+ c \int_0^t (1 + \tau)^{-n/2} \| [\tilde{u}^2] \|_{W^{s-2,1}} \, d\tau
\]

\[
+ c \int_0^t (1 + \tau)^{-n/2} \| \bar{u}^2 \|_{W^{s-2,1}} \, d\tau
\]

\[
+ c \int_0^t (1 + \tau)^{-n/2} \| [\tilde{u}^2] \|_{W^{s-2,1}} \, d\tau.
\]

(73)

By (29) and (33), we have

\[
\| v \|_{W^{s-1,1}} \leq c \| \bar{u} \|_{W^{s-1,1}} \| \bar{u}^2 \|_{W^{s-2,1}} + c \| [\tilde{u}^2] \|_{L^\infty} \| \bar{u}^2 \|_{W^{s-2,1}} + c \| [\tilde{u}^2] \|_{L^\infty} \| [\tilde{u}^2] \|_{W^{s-2,1}}.
\]

(77)

and

\[
\| v \|_{W^{s-1,1}} \leq c \| \bar{u} \|_{W^{s-1,1}} \| \bar{u}^2 \|_{W^{s-2,1}} + c \| [\tilde{u}^2] \|_{L^\infty} \| [\tilde{u}^2] \|_{W^{s-2,1}} \leq c E^3 (1 + t)^{-n}.
\]

(78)
On combining (73)–(78), we obtain

\[
\|u\|_{W^{n-1,\infty}} \leq c \epsilon (1 + t)^{-n/2} \|\phi\|_{W^{n-1,1}} + c E^3 (1 + t)^{-n/2} \left[\int_0^t (1 + \tau)^{-3n/4} d\tau + \int_0^t (1 + \tau)^{-n/2} d\right] + \int_0^t (1 + \tau)^{-n} d\tau. \tag{79}
\]

Thus,

\[
\sup_{0 \leq t \leq T} (1 + t)^{n/2} \|u\|_{W^{n-1,\infty}} \leq c \epsilon E^3 \left\{ \epsilon + \int_0^t (1 + \tau)^{-n/2} d\tau \right\}. \tag{80}
\]

Finally, from (26) and (72), we have

\[
\|u\|_{H^s} \leq c \epsilon \|\phi\|_{H^s} + c \epsilon \int_0^t \|\nabla^2 u\|_{H^s} d\tau + c \epsilon \int_0^t \|\nabla^2 \nabla^2 u\|_{H^s} d\tau + c \epsilon \int_0^t \|\nabla^2 \nabla^2 u\|_{H^s} d\tau \tag{81}
\]

On combining (75) and (81), we obtain

\[
\|u\|_{H^s} \leq c \epsilon E^3 \left\{ \epsilon + \int_0^t (1 + \tau)^{-n/2} d\tau \right\}. \tag{82}
\]

On combining the above discussions, we obtain

\[
D_{S,T} (u, v) \leq c_1 \epsilon E^3 \left\{ \epsilon + \int_0^t (1 + \tau)^{-n/2} d\tau \right\}. \tag{83}
\]

\[
\begin{align*}
\{ u_t^* + \Delta u^* = \nabla^2 u - \nabla^2 \nabla u + \nabla^2 \nabla \nabla u + \nabla^2 u - \nabla^2 \nabla v & - \nabla^2 \nabla v - \nabla^2 \nabla v \} - \Delta v^* = D_x \left(|\nabla|^2 v \right) - D_x \left(|\nabla|^2 \nabla \right) - D_x \left(f (v) \right) + D_x \left(f (\nabla v) \right), \tag{85}
\end{align*}
\]

\[
u^* (x, 0) = v^* (x, 0) = 0. \tag{86}
\]

Similar to (53), we have

\[
\|v^*\|_{W^{n-2,1,\infty}} \leq c \epsilon \int_0^t (1 + t - \tau)^{-n/2} \|D_x (f (v)) - D_x (f (\nabla v))\|_{W^{n-2,1}} d\tau + c \epsilon \int_0^t (1 + t - \tau)^{-n/2} \|D_x (|\nabla|^2 v) - D_x (|\nabla|^2 \nabla v)\|_{W^{n-2,1}} d\tau. \tag{87}
\]
Noting that $S \geq n + 5$, and the definition of $X_{S,E,T}$ and using the hypotheses (43) and (38) (in which we take $r = 1, p = +\infty, q = 1$), we get

\[
\|D_x(f(\bar{v}))-D_x(f(\bar{\nu}))\|_{W^{S-1,1}} \leq c\|p\|_{W^{S-1,1}} (\|\bar{v}\|_{W^{7,\infty}} + \|\bar{\nu}\|_{W^{7,\infty}})^{\alpha} \\
+ c\|p\|_{W^{S-1,1}} (\|\bar{v}\|_{W^{S-3,\infty}} + \|\bar{\nu}\|_{W^{S-3,\infty}})^{\alpha} \\
\leq c\|p\|_{W^{S-1,1}} (\|\bar{v}\|_{W^{S-3,\infty}} + \|\bar{\nu}\|_{W^{S-3,\infty}})^{\alpha-1},
\]

(88)

For we have

\[
\|D_x(\bar{u}^2(\bar{v}-\bar{\nu}))\|_{W^{S-1,1}} \leq c\|\bar{u}^2\|_{W^{S-1,1}} \|p\|_{W^{S-1,1}} + \|\bar{u}^2\|_{W^{S-1,1}} \|p\|_{W^{S-1,1}},
\]

\[
\leq c\|\bar{u}^2\|_{W^{S-1,1}} \|p\|_{W^{S-1,1}} + \|\bar{u}^2\|_{W^{S-1,1}} \|p\|_{W^{S-1,1}} \leq c(1+t)^{-n/2}E^2D_{ST}(h,p) + cE^2(1+t)^{-n}D_{ST}(h,p),
\]

(89)

\[
\|D_x([\bar{u}]^2-\bar{u}^2)\|_{W^{S-1,1}} \leq c\|D_x([\bar{u}] + [\bar{u}]h)\|_{W^{S-1,1}},
\]

\[
\leq c\|([\bar{u}] + [\bar{u}]h)\|_{W^{S-1,1}} \|p\|_{W^{S-1,1}} + c\|([\bar{u}] + [\bar{u}]h)\|_{W^{S-1,1}} \|p\|_{W^{S-1,1}}.
\]

(90)

Thus, we can get

\[
\|D_x([\bar{u}]^2-\bar{u}^2)\|_{W^{S-1,1}} \leq c(1+t)^{-n/2}E^2D_{ST}(h,p) + cE^2(1+t)^{-n}D_{ST}(h,p).
\]

(91)

\[
\sup_{0<\tau<T} (1+t)^{\alpha/2}\|v^*\|_{W^{S-3,\infty}} \leq cE\alpha D_{ST}(h,p) \int_0^t (1+t)^{-n/2}d\tau + cE^2D_{ST}(h,p) \int_0^t (1+t)^{-n}d\tau.
\]

(92)

Next, similar to (63), we have

\[
\|v^*\|_{W^{S-1,1}} \leq \int_0^t \|D_x(f(\bar{v}))-D_x(f(\bar{\nu}))\|_{W^{S-1,1}}d\tau
\]

\[
+ \int_0^t \|D_x([\bar{u}]^2-\bar{u}^2)\|_{W^{S-1,1}}d\tau.
\]

(93)

\[
\|D_x(f(\bar{v}))-D_x(f(\bar{\nu}))\|_{W^{S-1,1}} \leq c\|p\|_{H^S} (\|\bar{v}\|_{H^S} + \|\bar{\nu}\|_{H^S}) + \|p\|_{H^S} (\|\bar{v}\|_{H^S} + \|\bar{\nu}\|_{H^S}) (\|\bar{v}\|_{W^{7,\infty}} + \|\bar{\nu}\|_{W^{7,\infty}})^{\alpha-1}.
\]

(94)
By the definition of $\| \cdot \|_{H^1}$ and the definition of $D_{S,T}(h, p)$, we get
\[\| p \|^2_{H^1} \leq \| p \|^2_{H^1} = \| D_x p \|^2_{H^1} + \sum_{|k|=2} \| D_x^k p \|^2_{H^1} \leq c \| p \|_{W^{\infty, \infty}} \| p \|_{W^{1,1}} \]
\[+ \sum_{|k|=2} \| D_x^k p \|^2_{H^1} \leq c (1 + t)^{-n/2} D_{S,T}^2 (h, p) . \]
(95)

Moreover, we have
\[\| p \|^2_{H^1} \leq c \| p \|_{W^{1,1}} \| p \|_{W^{1,1}} \leq c (1 + t)^{-n/2} D_{S,T}^2 (h, p) . \]
(96)

Thus, we see
\[\int_0^t \| D_x (f_\tilde{v}) - D_x (f_\tilde{v}) \|_{W^{1,1}} \, dr \leq c E^\alpha \int_0^t (1 + r)^{-n/2} \, dr D_{S,T} (h, p) \]
\[+ c E^\alpha \int_0^t (1 + r)^{-(\alpha - 1)/2} \left(\sum_{|k|=2} \| D_x^k p \|^2_{H^1} \right)^{1/2} \, dr \]
\[+ c E^{\alpha - 1} D_{S,T} (h, p) \int_0^t (1 + r)^{-n(\alpha - 1)/2} \left(\sum_{|k|=2} \| D_x^k \tilde{v} \|^2_{H^1} + \sum_{|k|=2} \| D_x^k \tilde{v} \|^2_{H^1} \right)^{1/2} \, dr . \]
(102)

Noting that α is an integer ≥ 1, we have
\[\alpha - \frac{1}{2} \geq \frac{\alpha}{2} \]
(103)

\[\int_0^t \| D_x (f_\tilde{v}) - D_x (f_\tilde{v}) \|_{W^{1,1}} \, dr \leq c E^\alpha D_{S,T} (h, p) \left(1 + \int_0^t (1 + r)^{-n/2} \, dr \right) . \]
(104)

Similar to (91), we can get
\[\| D_x (\tilde{u}^2 \tilde{v}) - D_x (\tilde{u}^2 \tilde{v}) \|_{W^{1,1}} \leq c (1 + t)^{n/2} E^2 D_{S,T} (h, p) \]
\[+ c E^2 (1 + t)^{-n} D_{S,T} (h, p) . \]
(105)

On combining (93), (104), and (105), we get
\[\sup_{0 \leq t \leq T} \| \tilde{v} \|_{W^{1,1}} \leq c E^\alpha D_{S,T} (h, p) \left(\int_0^t (1 + r)^{-n/2} \, dr + 1 \right) \]
\[+ c E^2 D_{S,T} (h, p) \int_0^t (1 + r)^{-n/2} \, dr . \]
(106)

By means of (29), it comes from (85) that
\[\int_0^T \sum_{|k|=2} \| D_x^k \tilde{v} \|^2_{H^1} \, dr \leq c \int_0^T \| D_x (f_\tilde{v}) - D_x (f_\tilde{v}) \|^2_{H^1} \, dr \]
\[+ c \int_0^T \| D_x (\tilde{u}^2 \tilde{v}) - D_x (\tilde{u}^2 \tilde{v}) \|^2_{H^1} \, dr . \]
(107)

By (38) (in which we take $r = q = 2$ and $p = +\infty$), we get
\[\left\| D_\chi (f(\bar{v})) - D_\chi (f(\bar{\nu})) \right\|_{H^{r-1}} \leq c \left[\left\| p \right\|_{H^p} (\left\| \bar{v} \right\|_{W^{1,\infty}} + \left\| \bar{\nu} \right\|_{W^{1,\infty}}) + \left\| p \right\|_{W^{1,\infty}} (\left\| \bar{v} \right\|_{H^t} + \left\| \bar{\nu} \right\|_{H^t}) \right] \left(\left\| \bar{v} \right\|_{W^{1,\infty}} + \left\| \bar{\nu} \right\|_{W^{1,\infty}} \right)^{\alpha - 1}. \] (108)

Still using (97), (99), and (101) and notifying that
\[\left\| p \right\|_{W^{1,\infty}} \leq c D_{S,T}(h, p)(1 + t)^{\eta/2}, \] (109)

\[\int_0^T \left\| D_\chi (f(\bar{v})) - D_\chi (f(\bar{\nu})) \right\|_{H^{r-1}}^2 \, dr \leq c E^{2n} \int_0^T (1 + r)^{-1+2n/2n} \, dr D_{S,T}^2(h, p) + c E^{2n} \int_0^T (1 + r)^{\eta/2} \sum_{|k|=2} \left\| D_{\chi x}^k p \right\|_{H^{r-1}}^2 \, dr + c E^{2n} D_{S,T}(h, p)^2 \int_0^T (1 + r)^{-\eta/2} \left(\sum_{|k|=2} \left\| D_{\chi x}^k \right\|_{H^{r-1}}^2 + \sum_{|k|=2} \left\| D_{\chi x}^k \right\|_{H^{r-1}}^2 \right) \, dr. \] (110)

For we know that
\[\left\| D_\chi (\bar{v}^2) - D_\chi (\bar{\nu}^2) \right\|_{H^{r-1}} = \left\| D_\chi \left[(|\bar{v}|^2 - |\bar{\nu}|^2) \bar{v} + (|\bar{v}|^2 - |\bar{\nu}|^2) \bar{\nu} \right] \right\|_{H^{r-1}}, \]
\[\leq c \left(\left\| |\bar{v}|^2 + |\bar{\nu}|^2 \right\|_{L^1} + \left\| |\bar{v}|^2 + |\bar{\nu}|^2 \right\|_{L^\infty} \right) \left\| \bar{v} - \bar{\nu} \right\|_{H^{r-1}} \]
\[\leq c \left(\left\| |\bar{v}|^2 + |\bar{\nu}|^2 \right\|_{L^1} + \left\| |\bar{v}|^2 + |\bar{\nu}|^2 \right\|_{L^\infty} \right) \left\| \bar{v} - \bar{\nu} \right\|_{H^{r-1}} \]
\[\leq c E^2 (1 + t)^{-n} D_{S,T}(h, p) + c E (1 + t)^{-\eta/2} D_{S,T}(h, p) \left\| \bar{v} - \bar{\nu} \right\|_{H^{r-1}}. \] (111)

From (67) and (97), we obtain
\[\left\| D_\chi (\bar{v}^2) - D_\chi (\bar{\nu}^2) \right\|_{H^{r-1}} \leq c E^2 (1 + t)^{-n} D_{S,T}(h, p) + c E^2 (1 + t)^{-5n/4} D_{S,T}(h, p) \]
\[+ c E (1 + t)^{-\eta/2} D_{S,T}(h, p) \left(\sum_{|k|=2} \left\| D_{\chi x}^k \right\|_{H^{r-1}}^2 \right)^{1/2} + c E^2 (1 + t)^{-\eta/2} \left(\sum_{|k|=2} \left\| D_{\chi x}^k \right\|_{H^{r-1}}^2 \right)^{1/2}. \] (112)

Thus,
\[\int_0^T \left\| D_\chi (\bar{v}^2) - D_\chi (\bar{\nu}^2) \right\|_{H^{r-1}}^2 \, dr \leq c E^4 \int_0^T (1 + r)^{-2n} \, dr + c E^2 D_{S,T}^2(h, p) \int_0^T \left\| D_{\chi x}^k \right\|_{H^{r-1}}^2 \, dr + c E^4 \int_0^T \left(\sum_{|k|=2} \left\| D_{\chi x}^k \right\|_{H^{r-1}}^2 \right) \, dr, \]
\[\leq c E^4 D_{S,T}^2(h, p), \] (113)

in deriving (111), we have used \(\int_0^T (1 + r)^{-2n} \, dr \leq c \) and \((1 + t)^{-1} \leq 1. \)

On combining (107), (111), and (112) and using \((1 + t)^{-1} \leq 1, \) we obtain
\[\left(\int_0^T \sum_{|k|=2} \left\| D_{\chi x}^k \right\|_{H^{r-1}}^2 \, dr \right)^{1/2} \leq c E^2 D_{S,T}(h, p) + c E^2 D_{S,T}(h, p). \] (114)

Similar to (73), we obtain
We have from (38) that
\[
\|\tilde{u}^2 \bar{u} - \tilde{u}_0^2 \|_{W^{5.2.1}} \leq c \|h|^{2.5} \|_{H^{5.2.1}} + \|\tilde{u}_0^2 \|_{L^2} + \|\bar{u}_0^2 \|_{L^2},
\]
\[
\leq c E^2 D_{\xi T}(h, p)(1 + t)^{-n/2},
\]
(116)

We can obtain
\[
\|\tilde{u}^2 \bar{u} - \tilde{u}_0^2 \|_{W^{5.2.1}} \leq c E^2 (1 + t)^{-n/2} D_{\xi T}(h, p) + c E^2 (1 + t)^{-n/2} D_{\xi T}(h, p),
\]
(118)

and we also have
\[
\|\tilde{v}^2 \bar{u} - \tilde{v}_0^2 \|_{W^{5.2.1}} = \|\tilde{v}^2 \bar{u} - \tilde{v}_0^2 \|_{W^{5.2.1}} \leq \|\tilde{v} + \tilde{v}_0\|_{H^{5.2.1}} + \|\tilde{v}^2 \|_{H^{5.2.1}}.
\]
(119)

For we have
\[
\|\tilde{v}^2 \bar{u} - \tilde{v}_0^2 \|_{W^{5.2.1}} \leq c \|\tilde{v}^2 \bar{u} - \tilde{v}_0^2 \|_{W^{5.2.1}} + \|\tilde{v}_0^2 \|_{W^{5.2.1}}.
\]
(120)

Using (99), we obtain
\[
\|\tilde{v}^2 \bar{u} - \tilde{v}_0^2 \|_{W^{5.2.1}} \leq c \|\tilde{v}^2 \bar{u} - \tilde{v}_0^2 \|_{W^{5.2.1}} + \|\tilde{v}_0^2 \|_{W^{5.2.1}}.
\]
(121)

So, we have
\[
\int_0^t (1 + t - \tau)^{-n/2} \|\tilde{v}^2 \bar{u} - \tilde{v}_0^2 \|_{W^{5.2.1}} \|p\|_{L^2} \, d\tau \leq c E^2 (1 + t)^{-n/2} \int_0^t (1 + \tau)^{-3n/4} \|D_{\xi T}(h, p)\|_{H^{5.2.1}} \|p\|_{L^2} \, d\tau
\]
\[
+ c E \left(\int_0^t (1 + t - \tau)^{-n} (1 + \tau)^{-n/2} d\tau \right)^{1/2} \left(\int_0^t \|D_{\xi T}(h, p)\|_{H^{5.2.1}}^2 \, d\tau \right)^{1/2} D_{\xi T}(h, p),
\]
\[
\leq c E^2 (1 + t)^{-n/2} \int_0^t (1 + \tau)^{-3n/4} \|D_{\xi T}(h, p)\|_{H^{5.2.1}} \|p\|_{L^2} \, d\tau + c E^2 (1 + t)^{-n/2} \left[1 + \int_0^t (1 + t)^{n/2} \right].
\]
(122)

Following the same procedure as (122), we obtain
\[\int_0^t (1 + t - \tau)^{-n/2} \| p \|_{H^{s-2}} \| v \|_{H^{s-2}} \| \overline{v} \|_{L^\infty} \, d\tau \leq c E^2 (1 + t)^{-n/2} \int_0^t (1 + t)^{-3n/4} \, d\tau D_{S,T} (h, p) + c E^2 (1 + t)^{-n/2} \left[1 + \int_0^t (1 + t)^{-n} \, d\tau \right]. \]

(123)

We now begin to deal with \(\int_0^t (1 + t - \tau)^{-n/2} \| \overline{v} \|_{W^{s-2,1}} \, d\tau \).

We can easily get

\[\| \overline{v} \|_{H^{s-2,1}} \leq c \| \overline{v} \|_{H^{s-2,1}} \| v \|_{L^\infty} \leq c [1 + t]^{-n/4} E + c \left(\sum_{|k| = 2} \| D_{x}^{k} \overline{v} \|_{H^{s-1}}^2 \right)^{1/2}. \]

(124)

Thus, we have

\[\| \overline{v} \|_{W^{s-2,1}} \leq c \| \overline{v} \|_{H^{s-2,1}} \| v \|_{L^\infty} + c \| \overline{v} \|_{H^{s-2,1}} \| h \|_{L^\infty}, \]

\[\leq c E (1 + t)^{-n/2} D_{S,T} (h, p) \| \overline{v} \|_{H^{s-2}} + c (1 + t)^{-n/2} D_{S,T} (h, p) \| \overline{v} \|_{W^{s-2,1}}, \]

\[\leq c E^2 (1 + t)^{-n/2} D_{S,T} (h, p) + c (1 + t)^{-n/2} D_{S,T} (h, p) \left[E^2 (1 + t)^{-n/2} + \sum_{|k| = 2} \| D_{x}^{k} \|_{H^{s-1}}^2 \right]. \]

(125)

Now, we need to seek a new method to give a bound for

\[\int_0^t (1 + t - \tau)^{-n/2} (1 + \tau)^{-n/2} D_{S,T} (h, p) \sum_{|k| = 2} \| D_{x}^{k} \|_{H^{s-1}}^2 \, d\tau. \]

(126)

For we know that,

\[m (\tau) = (1 + t - \tau)^{-n/2} (1 + \tau)^{-n/2}, \]

(127)

is a continuous differentiable function in \([0, t]\), thus we have

\[m' (\tau) = \frac{n}{2} (1 + t - \tau)^{-n/2 - 1} (1 + \tau)^{-n/2 - 1} (2\tau - t). \]

(128)

We can easily get when \(\tau = t/2 \), we have \(m' (\tau) = 0. \)

\[\int_0^t (1 + t - \tau)^{-n/2} (1 + \tau)^{-n/2} D_{S,T} (h, p) \sum_{|k| = 2} \| D_{x}^{k} \|_{H^{s-1}}^2 \, d\tau \leq E^2 (1 + t)^{-n/2} D_{S,T} (h, p). \]

(131)

On combining (125)–(128), we obtain

\[\int_0^t (1 + t - \tau)^{-n/2} \| \overline{v} \|_{W^{s-2,1}} \, d\tau \leq c E^2 (1 + t)^{-n/2}, \]

\[\int_0^t (1 + \tau)^{-n/2} \, d\tau D_{S,T} (h, p) + c E^2 (1 + t)^{-n/2} \]

(132)

\[\int_0^t (1 + \tau)^{-n} \, d\tau D_{S,T} (h, p). \]

Using (38), we obtain
On combining (116)–(134), we obtain
\[\sup_{0 \leq t \leq T} (1 + t)^{-n/2} \| u^* \|_{W^{n-\lambda}+\lambda} \leq c E^2 D_{S,T} (h, p)
\]
Finally, applying (26), we have
\[\| u^* \|_{H^2} \leq c \left(\int_0^t \| \nabla^2 u^* - \nabla^2 \bar{u} \|_{H^1} \, dr + \int_0^t \| \nabla^2 \bar{u} - \nabla^2 \tilde{u} \|_{H^1} \, dr + \int_0^t \| \nabla^2 \tilde{u} - \nabla^2 \bar{h} \|_{H^1} \, dr + \int_0^t \| \tilde{u}^2 - \bar{u} \|_{H^1} \, dr \right) \]
From (38) (taking \(r = 2, p = \infty, q = 2 \)), we get
\[\| |u|^2 \bar{u} - |u|^2 \bar{u} \|_{H^1} \leq c \| h \|_{L^\infty} (\| \bar{u} \|_{H^5} + \| \bar{u} \|_{H^1}) + \| h \|_{H^1} (\| \bar{u} \|_{L^\infty} + \| \bar{u} \|_{L^2}) (\| \bar{u} \|_{L^\infty} + \| \bar{u} \|_{L^2}), \]
Thus, we can easily get
\[\int_0^t \| |u|^2 \bar{u} - |u|^2 \bar{u} \|_{H^1} \, dr \leq c \int_0^t (1 + t)^{-n} E^2 \, dr D_{S,T} (h, p). \]
Similar to (119), we also have
\[\| \nabla^2 u^* \|_{H^1} \leq c \| \nabla^2 u \|_{L^\infty} (\| \bar{u} \|_{H^5} + \| \bar{u} \|_{H^1}) + c \| \nabla^2 \bar{u} \|_{L^\infty} \| \bar{u} \|_{L^2} + c \| \nabla^2 \tilde{u} \|_{L^\infty} \| \tilde{u} \|_{L^2}, \]
\[\leq c (1 + t)^{-n/2} E^2 (1 + t)^{-n/2} D_{S,T} (h, p) + c (1 + t)^{-n/2} E^2 (1 + t)^{-n/2} D_{S,T} (h, p) + \left(\sum_{|k| \leq 2} \| D_x^k \|_{H^{1/2}}^2 \right)^{1/2} \]
\[+ c E D_{S,T} (h, p) (1 + t)^{-n/2} \left((1 + t)^{-n/4} E + \left(\sum_{|k| \leq 2} \| D_x^k \|_{H^{1/2}}^2 \right)^{1/2} \right). \]
We can get
\[\int_0^t \| \nabla^2 u^* \|_{H^1} \, dr \leq c \int_0^t (1 + t)^{-n} E^2 D_{S,T} (h, p) \, dr \]
\[+ c \int_0^t (1 + t)^{-3n/4} E^2 D_{S,T} (h, p) \, dr + c E^2 D_{S,T} (h, p). \]
We need only to give a bound for \(\int_0^t \| \nabla^3 h \|_{H^1} \, dr \).
and that for any \(\epsilon > 0 \), and let \(\epsilon_0 \) be so small that for any \(0 < \epsilon \leq \epsilon_0 \), (145) holds. In this case, we get the global solution.

(2) In the case that \(n = 2 \), since
\[
\int_0^T (1 + t)^{-1} \, dt = \ln (1 + T),
\]
(i) we can choose \(T(\epsilon) = +\infty \),
(ii) Thus, if \(\epsilon_0 \) is so small that
\[
2c_0^2 \epsilon_0 \leq 1,
\]
(145) holds. In that case, we get the so-called almost global solutions.

(3) In the case that \(n = 1 \), since
\[
\int_0^T (1 + t)^{-1/2} \, dt = \frac{1}{1 - n/2} \left[(1 + T)^{1/2} - 1 \right] \leq 2 (1 + T)^{1/2},
\]
we can choose \(T(\epsilon) = b \epsilon^{-2} - 1 \), where \(b \) is a positive constant that satisfies
\[
4b^{1/2} c_0^2 \leq 1.
\]
Thus, we still get (145), provided (153) holds.

On combining the above discussions, we get the desired Theorem 1.

4. Conclusion

In the present paper, the global existence and blow-up for the classical solutions of the long-short wave equations with
viscosity are studied. Using the method proposed in this paper, similar results can be obtained for other wave equations with different nonlinear terms. Our method is also valid for the weak solution. For the case when $\eta \to 0$, our method is no longer applicable. There may be difficulty in obtaining the energy estimates. We must seek new method to overcome this difficulty. We think it is interesting. We will discuss it in another paper.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] A. V. Babin and M. I. Vishik, "Attractors of partial differential evolution equations in a unbounded domain," Uspekhi Mat Nauk, vol. 232, no. 4, pp. 133–187, 1983.
[2] D. J. Benney, "A general theory for interactions between short and long waves," Studies in Applied Mathematics, vol. 56, no. 1, pp. 81-94, 1997.
[3] T. Cazenave, F. Dickstein, and F. B. Weissler, "Global existence and blowup for sign-changing solutions of the nonlinear heat equation," Journal of Differential Equations, vol. 246, no. 7, pp. 2669–2680, 2009.
[4] B. Daculic, O. Takayoshi, and P. Gustaro, "Interaction equations for short and long dispersive waves," Journal of Functional Analysis, vol. 158, no. 2, pp. 357–388, 1998.
[5] J. P. Dias and M. Figueira, "Existence of weak solutions for a quasilinear version of Benney equations," Journal of Hyperbolic Differential Equations, vol. 4, no. 3, pp. 555–563, 2007.
[6] J.-P. Dias, M. Figueira, and F. Oliveira, "Existence of local strong solutions for a quasilinear Benney system," Comptes Rendus Mathematique, vol. 344, no. 8, pp. 493–496, 2007.
[7] F. Dickstein, "Blowup stability of solutions of the nonlinear heat equation with a large life span," Journal of Differential Equations, vol. 223, no. 2, pp. 303–328, 2006.
[8] V. D. Djordjevic and L. G. Redekopp, "On two-dimensional packets of capillary gravity waves," Journal of Fluid Mechanics, vol. 79, no. 4, pp. 703–714, 1977.
[9] Y. Du and Y. Zhou, "The lifespan for nonlinear wave equation outside of a star-shaped obstacle in three space dimensions," Communications in Partial Differential Equations, vol. 33, no. 8, pp. 1455–1486, 2008.
[10] Y. Du, J. Metcalfe, C. D. Sogge, and Y. Zhou, "Concerning the Strauss conjecture and almost global existence for nonlinear dirichlet-wave equations in 4-dimensions," Communications in Partial Differential Equations, vol. 33, no. 8, pp. 1487–1506, 2008.
[11] L. C. Evans, Partial Differential Equations, American Math.-Society, Providence Rhode Island, 1998.
[12] H. Fujita, "On the blowing up of solutions of the Cauchy problem for $u_t = \Delta u + u^{1+\alpha}$," Journal of the Faculty of Science, University of Tokyo, vol. 13, pp. 109–124, 1966.
[13] T.-Y. Lee and W.-M. Ni, "Global existence, large time behavior and life span of solutions of a semilinear parabolic Cauchy problem," Transactions of the American Mathematical Society, vol. 333, no. 1, pp. 365–378, 1992.
[14] B. L. Guo, "The global solutions for one class of the system of long-short nonlinear wave interaction," Journal of Mathematical Research & Exposition, vol. 1, pp. 69–76, 1987.
[15] B. L. Guo and B. X. Wang, "The global solution and its longtime behavior for a class of generalized LS type equations," Progress in Natural Science, vol. 6, no. 2, pp. 533–546, 1996.
[16] T. T. Li and Y. Chen, Global Classical Solutions for Nonlinear Evolution Equations, Pitman Monographs and Surveys in Pure and Applied Mathematics, Wiley, NJ, USA, 1992.
[17] F. Mitsuaki and O. Masayuki, "The resonant interaction between a long internal gravity wave and a surface gravity wave packet," Journal of the Physical Society of Japan, vol. 52, no. 6, pp. 1982–1995, 1983.
[18] N. Mizoguchi and E. Yanagida, "Blowup and life span of solutions for a semilinear parabolic equation," SIAM Journal on Mathematical Analysis, vol. 29, no. 6, pp. 1434–1446, 1998.
[19] A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, and A. P. Mikhailov, Blow-up in Quasilinear Parabolic Equations, vol. 19, Walter de Gruyter Co., Berlin, Germany, 1995, de Gruyter Exp. Math..
and their applications,” Zeitschrift für Angewandte Mathematik und Physik, vol. 71, no. 2, 2020.

[32] Y. Liu, Y. Li, and J. Shi, “Estimates for the linear viscoelastic damped wave equation on the Heisenberg group,” Journal of Differential Equations, vol. 285, no. 3-4, pp. 663–685, 2021.

[33] N. H. Luc, D. Kumar, L. T. Diem Hang, and N. H. Can, “On a final value problem for a nonhomogeneous fractional pseudoparabolic equation,” Alexandria Engineering Journal, vol. 59, no. 6, pp. 4353–4364, 2020.

[34] N. D. Phuong, N. H. Tuan, Z. Hammouch, and R. Sakthivel, “On a pseudo-parabolic equations with a non-local term of the Kirchhoff type with random Gaussian white noise,” Chaos, Solitons & Fractals, vol. 145, Article ID 110771, 2021.

[35] N. A. T. Nguyen, Z. Hammouch, E. Karapinar, and N. H. Tuan, “On a nonlocal problem for a caputo time-fractional pseudoparabolic equation,” Mathematical Methods in Applied sciences, vol. 44, no. 12, , 2021, https://doi.org/10.1002/mma.7743.

[36] J. Manafian, S. A. Mohammed, A. Alizadeh, H. M. Baskonus, and W. Gao, “Investigating lump and its interaction for the third-order evolution equation arising propagation of long waves over shallow water,” European Journal of Mechanics-B: Fluids, vol. 84, pp. 289–301, 2020.