Identification and validation of heterotypic cell-in-cell structure as an adverse prognostic predictor for young patients of resectable pancreatic ductal adenocarcinoma

Running title: Heterotypic CICs are associated with poor PDAC survival

Hongyan Huang1†, Meifang He2†, Yanbin Zhang1†, Bo Zhang1,3†, Zubiao Niu3, You Zheng,3, Wen Li2, Peilin Cui4*, Xiaoning Wang5*, Qiang Sun5*

1Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, 10 Tieyi Road, Beijing 100038, China.

2Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China.

3Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, China.

4Department of Gastroenterology, Beijing Tiantan Hospital of Capital Medical University, Beijing, 100070, China.

5National Clinical Research Center of Geriatrics Diseases, Chinese PLA General Hospital, Beijing 100853, China; Institute of Life Sciences, South China University of Technology, Guangzhou 510006, China; and School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China.

†These authors contributed equally to this work.

*Correspondence:

Hongyan Huang
E-mail: hhongy1999@126.com

Peilin Cui
E-mail: cuipeilin@bjtth.org

Xiaoning Wang
E-mail: xnwang88@163.com

Qiang Sun
E-mail: sunq@bmi.ac.cn

The word count of this submission is 4,891.
CONFLICTS OF INTEREST

Guarantor of the article: Qiang Sun, MD, PhD.

Specific author contributions: Concept and design: QS and HH; Staining and imaging: QS, MH, BZ and ZN; Figures: QS and MH; Acquisition and analysis of data: HH, MH, QS, XW, BZ and YZ; Data interpretation and drafting of the manuscript: HH, QS, MH and PC; Statistical analysis: HH, MH, PC and WL; Funding: HH, QS, XW, YZ and MH. All authors have read and approved the final manuscript.

Financial support: The authors declare that they have no competing financial interests. This work was supported by the National Key Research & Development Program of China (2016YFC1303303 to QS, 2018YFA0900804 to YZ, 2019YFA09003801 to QS), and the National Natural Science Foundation of China (81572799 to HH, 31671432 to QS, 31770975 to XW, 81972483 to MH).

Acknowledgements: The authors appreciate the academic support from the AME Pancreatic Cancer Collaborative Group, and professional advice from Dr. Ryan M. Thomas (University of Florida, USA), Dr. Roberta Elisa Rossi (Università degli Studi di Milano, Italy), Dr. Paul Zarogoulidis (``Bioclinic`` Private Hospital, Thessaloniki, Greece), Dr. Benedetto Ielpo (University Hospital of Leon, Spain), Dr. Nicolas Jonckheere (Univ Lille, CNRS, Inserm, France), Dr. Marco Falasca (Curtin University, Australia), and Dr. Faustino Mollinedo (Consejo Superior de Investigaciones Científicas, Spain).

Conflicts of interest: The authors declare that they have no conflicts of interest.

Study Highlights

Prior knowledge

● The post-operation survival periods of resectable pancreatic ductal adenocarcinoma (PDAC) patients range widely, and the search for reliable prognostic biomarkers is warranted.

● Although profound local immune suppression is implicated in PDAC progression and poor patient survival, a prognostic marker to read immune evasion in situ is not yet available.

● The impact of subtyped cell-in-cell (CIC) structures, which target either tumor or immune cells for internalization and death, on PDAC patient survival is not clear.

Novelty of study

● This study presents the first CIC subtype profiling in PDAC, which is currently the largest of its type for human cancers.

● Subtyped CIC structures were identified and confirmed independently as a valuable prognostic factor for PDAC patients, with a performance comparable or superior to traditional variables such as tumor–node–metastasis (TNM) stage.

● The L/MiT heterotypic CIC subtype, surrogating a type of cellular immune evasion, could independently predict poor survival, particularly for young female patients of resectable PDAC.
Abstract

OBJECTIVES: A proportion of resectable pancreatic ductal adenocarcinoma (PDAC) patients display poorer survival due to profound local immune suppression. However, a pathological/morphological parameter that could functionally read out immune evasion and predict patient survival has not been defined. This study investigated the feasibility of heterotypic cell-in-cell (CIC) structures for immune cell cannibalism by tumor cells to serve as a parameter for survival prediction in resectable PDAC patients.

METHODS: A total of 410 samples from PDAC patients were examined using the methods of “EML” multiplex staining or immunohistochemistry (IHC). Prognostic CIC candidates were initially identified in samples plotted in tissue microarray (n=300), then independently validated in specimens from the First Affiliated Hospital of Sun Yat-Sen University (n=110). The Kaplan–Meier estimator and/or the Cox regression model were used for univariate and multivariate analysis. A nomogram was made using the Regression Modeling Strategies.

RESULTS: CICs were prevalent in cancerous (203/235) but not non-malignant tissues (15/147). Among the 4 CIC subtypes identified, 2 heterotypic subtypes with tumor cells internalizing CD45+ lymphocytes (LiT, mOS = 8 vs. 14.5 months, \(p = 0.008 \)) or CD68+ monocytes (MiT, mOS = 7.5 vs. 15 months, \(p = 0.001 \)), and overall CICs (oCIC, mOS = 10 vs. 27 months, \(p = 0.021 \)), but not homotypic CICs (TiT, \(p = 0.089 \)), were identified in univariate analysis as adverse prognostic factors of overall survival (OS) of PDAC. Notably, through cannibalism of immune cells by tumor cells, heterotypic CICs (L/MiT: LiT plus MiT) could independently predict shorter OS (HR = 1.85, \(p = 0.008 \)) in multivariate analysis, with a performance comparable or even superior to traditional clinicopathological parameters such as histological grade (HR = 1.78, \(p = 0.012 \)) and TNM stage (HR=1.64, \(p = 0.108 \)). This was confirmed in the validation cohort, where L/MiT (HR = 1.71, \(p = 0.02 \)) and tumor–node–metastasis (TNM) stage (HR = 1.66, \(p = 0.04 \)) were shown to be independent adverse prognostic factors. Moreover, L/MiT stood out as the most prominent contributor in nomogram models constructed for survival prediction (area under the curve = 0.696 at 14 months), the dropout of which compromised prediction performance (area under the curve = 0.661 at 14 months). Furthermore, stratification analysis indicated that L/MiT tended preferentially to impact young and female patients (HR = 11.61, \(p < 0.0001 \), and HR = 9.55, \(p = 0.0008 \), respectively) in particular with early-stage and low-grade PDAC (HR = 2.37, \(p < 0.0001 \), and HR = 2.19, \(p < 0.0001 \), respectively), while TNM stage demonstrated little preference.

CONCLUSION: This was the first CIC profiling to be performed in PDAC, and is currently largest for human tumors. Subtyped CICs, as a valuable input to the traditional variables such as TNM stage, represent a novel type of prognostic factor. The formation of heterotypic L/MiT may be a surrogate for local immune evasion and predict poor survival, particularly in young female patients of resectable PDAC.

KEYWORDS: Cell-in-cell structures; pancreatic ductal adenocarcinoma; EML staining; cell-in-cell profiling; prognostic predictor.
Introduction

Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis, with an overall 5-year survival rate of less than 10%, and a median survival time of less than 6 months if left untreated. The incidence of pancreatic cancer is higher in males than in females and related to smoking history. Surgical resection remains the only potentially curative treatment for pancreatic cancer and the addition of adjuvant chemotherapy has been shown to improve survival rates. There have been some optimistic results demonstrating a further improvement in survival with the administration of chemo-radiotherapy in the neo-adjuvant setting for the patients with local advanced disease. Between 20% and 30% of PDAC cases are resectable at diagnosis; however, patients’ post-operative survival periods vary widely, irrespective of active therapeutic interventions. Therefore, extensive efforts have been made to identify biomarkers that may identify patients with an improved prognosis. Although serological markers such as carbohydrate antigen 19-9 (CA19–9) and carcino-embryonic antigen (CEA) have demonstrated a predictive performance in some models, inconsistencies have been reported, and the inherent indirectness of serological markers still exists. This highlights the need to identify novel biomarkers, especially pathological/morphological markers that can directly and functionally predict malignancy.

The poor prognosis of PDAC was believed to be related to comprehensive local immunosuppression within tumor tissues, where complex interactions between tumor, stroma, and immune cells establish an immunosuppressive tumor microenvironment (TME), which promotes cancer growth and progression. This idea is supported by the fact that few immunotherapy approaches have succeeded with PDAC, although promising therapeutic efficacies have been demonstrated for other types of solid tumor. Also, enrichment for M2 macrophages was shown to be associated with patient survival by PDAC stratification analysis. Recent studies have indicated that, in addition to immunosuppressive factors such as cytokines and cell surface proteins, the interaction between tumor and immune cells could give rise to the so-called cell-in-cell structures (CICs) that might serve as a novel mechanism of immune evasion.

“CICs” refers to the presence of one or more cells inside a host cell, which generally leads to the death of inner cells. CICs are prevalent in a wide range of human tumors and have different subtypes, resulting from active interactions between certain types of TME cells, including homotypic CICs formed between tumor cells, and heterotypic CICs formed via internalization of mesenchymal stem cells or immune cells into tumor cells. Cell death via different types of CICs has been found to give rise to multiple mechanisms, such as the homotypic CIC-mediated entosis, heterotypic CIC-mediated cannibalism, and emperitosis. Therefore, CICs are ideal candidates for the functional readout of malignant progression. CICs have been identified in several types of cancers, and have been suggested to be related to either tumor suppression or progression. However, due to the lack of systematic analyses associating the presence of distinct types of CICs with patient clinicopathological history, their impact on patients’ prognosis remains to be elucidated. On these grounds, the contribution of different CICs, especially heterotypic CICs, to patient prognosis has yet to be established. The aim of this study was to explore the feasibility of using subtyped CICs as a kind of functional biomarker that can read out tumor malignancy and predict patient survival in PDAC.
Materials and methods

Human tumor tissue microarray and PDAC tissue
Two human tumor tissue microarrays (TMA) with paired samples of resectable cancer and non-malignant pancreas tissues from 153 PDAC patients were purchased from Shanghai Outdo Biotech Co. Ltd (HPan-Ade180Sur-01 and HPan-Ade120Sur-01). The Outdo Biotech is a leading company in human/animal tissue microarrays (TMA) and "clinical-type" gene chips (CTGCs) in China. All tissues were collected under the highest ethical standards with the donors being fully informed and their consent being obtained. The samples were collected from patients between 2004 and 2008 and stored and transported at -80°C. The cases were routinely followed up by professional doctors. The TMA slide was prepared from formalin-fixed, paraffin-embedded cancer and paired non-malignant tissue. In total, there were 300 cores on 2 slides, including 153 cases of pancreatic cancer tissues and 147 cases of non-malignant tissues (not plotted for 6 patients). The diameter of each core was 1.5 mm (1.76 mm²/core). For validation, tissue sections were collected from 110 resectable PDAC patients who had received surgery at the Department of Hepatobiliary Surgery, the First Affiliated Hospital of Sun Yat-sen University (Guangzhou, China), with the institutional research ethics committee reviewing and approving the research. All of the patients received ultrasound and computed tomography scans prior to surgery and none received systemic chemotherapy or radiotherapy preoperatively. All specimens were diagnosed by pathological examination after surgery.

TMA and tissue specimen staining, and antibodies
The “EML method”, a multiplexing method based on the technique of tyramide signal amplification (TSA) 16, was employed to subtype CICs. Through this method, tissues were simultaneously stained with antibodies against E-cadherin for epithelial cancer cells, CD45 for leukocytes, and CD68 for macrophages. Slides were routinely de-paraffinized with the xylene-ethanol method and baked at 65°C for 1.5 hours. Antigen retrieval was performed in citrate acid buffer by microwaving for 15 minutes after boiling, followed by 1 hour blocking in 5% bovine serum albumin (BSA) made in Tris-buffered saline (TBS). Samples were first stained with anti-CD45 antibody (mouse mAb from Boster, BM0091) at a dilution of 1:400 using Opal Multiplex tissue staining kit (Perkin Elmer, NEL791001KT) according to the manufacturer’s standard protocol. CD45 molecules were subsequently labeled with Cyanine 5 fluorophore. The slides were then incubated with mixed antibodies for E-Cadherin (1:200, mouse mAb from BD Biosciences, 610181) and CD68 (1:200, rabbit pAb from Proteintech, 25747–1-AP), followed by Alexa Fluor 568 secondary anti-rabbit antibody (Invitrogen, A11036) and Alexa Fluor 488 anti-mouse antibody (Invitrogen, A11029). Samples were also labeled with single fluorophore to acquire spectral signatures. All slides were counterstained with DAPI to show nuclei, before being mounted with Antifade reagent (Invitrogen, Carlsbad, CA, USA) and cover slips, and then sealed with clear nail polish. For validation, tissue sections were stained by hematoxylin and eosin (H&E) and immunohistochemistry (IHC) with each of the antibodies indicated above, following the protocol provided by Cell Signaling Technology (https://www.cellsignal.com/contents/resources-protocols/immunohistochemistry-protocol-paraffin-for-signalstain-boost-detection-reagent/ihc-paraffin-signalstain).
Multispectral imaging and analysis
Multispectral images were taken with TMA modules of Vectra® Automated Imaging System (Perkin Elmer) by a 20x objective lens (Figure S1A-C). A nuance system (Perkin Elmer) was used to build libraries of each spectrum (DAPI, 488, 568, and Cy5-650) and unmix multispectral images with high contrast and accuracy (Figure 1A-D). inForm automated image analysis software package (Perkin Elmer) was used for batch analysis of multispectral images based on specified algorithms.

CIC profiling and quantification
Cellular structures were scored as CICs where one or more cells morphologically were fully enclosed within another cell with a crescent nucleus. As CICs can result in inner cell death, we scored all structures displaying CIC morphology irrespective of whether inner cells were dead or live. Cell boundaries were identified by E-cadherin, which labels cell membranes, and/or CD68, which labels cell bodies. CIC subtypes were defined based on the types of cells involved: TiT for E-cadherin⁺ cells inside E-cadherin⁺ cells; TiM for E-cadherin⁺ cells inside CD68⁺ cells, MiT for CD68⁺ cells inside E-cadherin⁺ cells, LiT for CD45⁺ cells inside E-cadherin⁺ cells. For efficient quantification in TMA, CICs were usually first screened in a composite image of 4 fluorescent channels and then confirmed in unmixed channels. For quantification in validation specimens, subtyped CICs were counted based on IHC staining with reference to H&E staining (Figure S2). Double-blind reviews were performed for all the CIC quantifications.

Statistical analysis
Statistical analysis was performed using the SPSS 20.0 (IBM Corp., NY, USA) and EmpowerStats (http://www.empowerstats.com/) software systems, which wraps R software. Study data were collected on standard forms and checked for completeness. All data were described using median (min–max) for continuous variables like follow-up times, while frequencies (percent) were used for categorical variables. Overall survival (OS) was defined as time from the date of surgery to death or to the most recent contact or visit. Survival times were analyzed by the Kaplan–Meier method, and the differences in survival times were compared by the log-rank test. Univariate and multivariate survival analyses were performed using the Cox proportional-hazard models, and hazard ratios (HRs) (95% confidence interval) were calculated. The association between clinicopathological factors and the number of CICs was analyzed using the Chi-square test or Fisher’s exact test. The nomogram was formulated based on the results of multivariate logistic regression analysis by Regression Modeling Strategies, which proportionally converts each regression coefficient in multivariate logistic regression to a 0-to-100-point scale as described elsewhere. The area under the curve (AUC) calculation was performed and graphed with EmpowerStats software. For all analyses, a two-sided p value of less than 0.05 was considered statistically significant.

Results
Patient characteristics
In total, 410 specimens from 147 pair-matched cancer and non-malignant tissues and 116 cancer-only tissues, were included in this study. Out of these, 300 specimens, consisting of 147 case-matched non-malignant pancreas controls and 153 cancer tissues (note: only 125 cancer tissues were included
into the final analysis due to missing information or tissue detachment during staining), were plotted on TMA and used as the discovery cohort. The validation cohort consisted of additional 110 specimens collected from the First Affiliated Hospital of Sun Yat-sen University. As listed in Table 1, the clinical characteristics of the 235 patients included in the final analysis were generally comparable between the discovery and validation cohorts. Most of the patients were male (60%) and the median age of patients was 62 (27–78) years old. The majority of the PDAC cases occurred in the pancreas head (72%) and were diagnosed at an early stage (75% at TNM I+II; 69% at high and moderate differentiation), with only small proportion of patients having experienced distant metastasis (11%). All of the patients had follow-ups until their death or until their most recent contact or visit (November 30, 2014 for the discovery cohort, and March 30, 2011 for the validation cohort). At the time of their most recent contact, 72 of the 235 patients were still alive, and 163 patients had succumbed to their disease. Median follow-up time was 12.0 months (0.2–87.0 months) and 30.5 months (0.1–57.8 months) in the discovery cohort and validation cohort, respectively.

CIC profiling in PDAC tissues
The CICs in the discovery cohort of specimens were quantified as described in our previous study, and only the structures with inner cells fully enclosed were counted (Figure S1B). CICs were minimally detected in non-malignant tissues (15/147) but were prevalent in cancer tissues (97/125) \((p < 0.0001)\) (Figure S1D-E). Four CIC subtypes were identified (Figure 1E): tumor cells inside tumor cells (TiT), lymphocytes (CD45\(^+\)) inside tumor cells (CDs\(-\)) (LiT), tumor cells inside macrophages (TiM), and macrophages inside tumor cells (MiT). The subtype of TiT constituted the majority (70.1%) of overall CICs (oCICs) (Figure 2A-B). Out of the 3 heterotypic CICs, LiT accounted for 7.3%. The remaining 2 CIC subtypes were formed between tumor cells and macrophages (CD68\(^+\)), which mutually engulfed each other, generating MiT (19.3%) and TiM (3.6%) (Figure 2A-C). Identity analysis indicated that tumor cells were the major engulfer (96.4%) over macrophages (3.6%) (Figure 2D), and that both tumor cells (73.4%) and immune cells (7.3% CD45\(^+\) and 19.3% CD68\(^+\)) could be internalized as inner cells (Figure 2E). A similar CIC profile was identified in the validation cohort (Figure 2F-J).

Association of CICs with clinicopathological characteristics
In the discovery cohort, while the presence of oCICs was not significantly associated with the known clinicopathological characteristics, specific CIC subtypes did show associations (Table S1a). Homotypic TiT was more frequently detected in tissues of older patients (45/70 for < 60 years old vs. 45/55 for \(\geq 60\) years old, \(p = 0.03\)); however, this was not confirmed in the validation dataset. Heterotypic MiT and L/MiT (for LiT plus MiT) tended to be more frequently present in tumor tissues of a late TNM stage (35/109 vs. 11/16, \(p = 0.005\)) and low tumor differentiation (37/85 vs. 25/40, \(p = 0.048\)), respectively, which were confirmed in the validation cohort (Table S1b). When combining the discovery and validation datasets, the presence of homotypic TiT also demonstrated a significant association with late TNM stage (\(p = 0.0032\)) (Table S1c). These results are consistent with the notion that later stage tumor cells more frequently engage in cannibalistic activities.

The presence of heterotypic CICs is associated with shorter postoperative survival
Univariate analysis revealed that tumor grade, TNM stage, lymph node (LN) invasion, and distant metastasis were significantly associated with postoperative survival in the discovery cohort, the
validation cohort, and the combined cohort (Table 2 and S2). Of these traditional variables, TNM stage was likely, and expectedly, the most consistent and representative survival classifier (median overall survival time (mOS): 7 vs. 14 months; \(p < 0.0001 \)) across the 3 cohorts (Table 2 and Figure S3). Notably, the presence of oCICs was associated with a shorter OS with a better performance but bigger variation (mOS: 10 vs. 27 months; \(p = 0.021 \)) (Table 2 and Figure 3), which could be attributed to the different contributions of CIC subtypes as revealed by subtype analysis. As shown in Table 2 and Figure 3, while homotypic TiT was a weak classifier (mOS: 11 vs. 21 months; \(p = 0.089 \)), heterotypic L/MiT displayed a stronger prognostic power in predicting shorter postoperative survival (mOS: 8 vs. 31 months; \(p < 0.0001 \)), which was validated in the patients from The First Affiliated Hospital of Sun Yat-sen University. The adverse prognostic role of heterotypic CICs may have been specific for CICs of the tumor cell engulfer (L/MiT) as the presence of TiM, the heterotypic CIC subtype of macrophage engulfer, did not significantly impact patient survival (mOS: 7 vs. 13 months, \(p = 0.184 \)) (Table 2, S2, and Figure S3).

Heterotypic CICs are a prominent independent prognostic factor for PDAC
To analyze whether CICs and their subtypes could be independent prognostic factors for postoperative survival, we included all of the variables identified in univariate analysis (grade, TNM stage, LN invasion, distant metastasis, oCIC, TiT, LiM, MiT, and L/MiT) into multivariate survival analysis by using the Cox proportional hazards model. A stepwise selection process with these variables was performed. Unexpectedly, TNM stage was not an independent prognostic factor (HR = 1.642, 95%CI: 0.897–3.006, \(p = 0.108 \)) in the discovery cohort, whereas L/MiT was the strongest risk factor for a poor prognosis, with a death hazard ratio of 1.850 (95%CI: 1.175–2.915, \(p = 0.008 \)) (Table 3). Notably, the heterotypic L/MiT was the only variable that was consistently identified as an independent prognostic factor across the discovery, validation, and combined cohorts of patients (Table 3), suggesting that L/MiT could be a dominant contributor to a poor prognosis.

To directly evaluate L/MiT’s contribution to prognosis, we constructed a nomogram that incorporated all 5 independent prognostic factors identified (grade, N stage, M stage, TNM, and L/MiT). In the nomogram, each variable was assigned a score on a point scale based on its predictive power according to our multivariate analysis. As shown in Figure 4, despite the fluctuations in the performance of the traditional variables across the discovery, validation, and combined cohorts of patients, L/MiT consistently dominated over all the traditional factors in predicting patient survival (Figure 4A–C). By locating the total score from all variables on the total point scale, the probability of patient survival could be estimated at a specified time point (14.0 months). As shown in Figure 4D–F, incorporating L/MiT improved the prediction performance (AUC from 0.710 to 0.767 for the discovery cohort, 0.658 to 0.674 for the validation cohort, and 0.661 to 0.696 for the combined cohort) at the time point of 14.0 months. We also calculated the AUC values at earlier survival time points including Q1 (6 months) and median (10.6 months), which reported similar results as shown in Table S8.

Heterotypic CICs preferentially impact the survival of young female patients with resectable PDAC
Pearson’s chi-squared test indicated that heterotypic CICs were associated with a late TNM stage and a higher histological grade (Table S1), which suggests that they may not be able to independently predict
outcomes for late-PDAC patients. Instead, heterotypic L/MiT may, in specific cases, be an independent prognostic factor for resectable PDAC. To test this hypothesis, we stratified the combined cohort of patients by TNM stage (I+II vs. III+IV) or histological grade (1+2 vs. 3) for multivariate survival analysis. Traditional variables identified in univariate analysis (grade, N, M, and TNM stage) except for stratifiers, and all CICs (oCICs, TiT, LiT, MiT, TiM, and L/MiT), were examined by Cox proportional hazards model. As shown in Table 4, L/MiT was the only prognostic factor that could independently predict postoperative OS, specifically in patients of an early TNM stage, and the death hazard ratio increased (HR = 2.369, 95%:1.642–3.418; \(p < 0.0001 \)) in comparison with that of the unstratified cohort (HR = 1.738, 95%:1.276–2.369; \(p = 0.0005 \)) (Table 3). The selectivity of L/MiT was also applied to grade-stratified patients while TNM stage demonstrated a similar impact on patients of both low (1+2) and high (3) histological grade (Table 5). Further analysis indicated that L/MiT may specifically impact patients of TNM II (Table S3) and grade 2 (Table S4). Moreover, exhaustive analysis identified L/MiT as a highly selective predictor of a poor outcome in young (HR = 11.609, 95%: 3.872–34.81; \(p < 0.0001 \)) (Table 6) and female (HR = 9.546, 95%: 2.566–35.52; \(p = 0.0008 \)) (Table 7) patients while demonstrating no preference for tumor site, N stage, or M stage (Table S5–S7). The nomogram construction and AUC analysis confirmed that at 14 months, L/MiT was a selective prognostic classifier that predicts decreased survival in young female patients with resectable PDAC (Figure 5).

Discussion

Overall, our data support the hypothesis that subtyped CICs are promising prognostic markers for human PDAC, and that the presence of CICs is generally associated with a shorter survival time. Meanwhile, the prognostic performance of oCICs was profoundly affected by its subtype composition with the heterotypic CIC being a predominant factor. Furthermore, the active interactions between different CIC subtypes in patient prognosis were consistent with their intrinsically different biological functions. First, the presence of MiT or LiT may indicate that there is an even more malignant phenotype of tumor cell compared to TiT, as they (MiT and LiT) render tumor cells to kill macrophages, T cells, and/or natural killer cells that are designed to kill tumor cells, resulting in a form of immune evasion \(^{23}\). Consistent with this notion, the presence of either LiT, MiT, or L/MiT was significantly associated with shorter patient OS, which also reinforces the concept that compromised immunity drives PDAC progression \(^{9}\). Second, the presence of TiM may indicate the occurrence of immune activation, whereby tumor cells are eliminated by macrophage phagocytosis which has been shown to be a potential tumor therapy \(^{29,30}\). In agreement with this notion, a 65-year-old male patient, whose tumor tissue had a high level of TiM (12/core), survived for as long as 79 months as of his last visit, despite being diagnosed as histological grade 3. Our findings may also help to explain the unexpected protective role of CICs in PDAC metastasis, as reported in a study by Cano et al. \(^{25}\) in which CD68\(^+\) CICs were identified but were not quantitatively subtyped. On these grounds, we can speculate that perhaps a considerable presence of TiM actively prevents metastasis. Intriguingly, TiT by entosis, a non-apoptotic cell death mechanism \(^{21}\), was recently shown to be a mechanism of cell competition which promotes selection of malignant clones \(^{31-33}\). The data here therefore suggests that a similar competitive mechanism may work in heterotypic CICs, resulting in tumors evolving to become more immune-resistant \(^{33}\), and, as such, further functional validation is warranted.
Marker selection is an important part of CIC subtyping. Based on our preliminary study, E-cadherin, CD68, and CD45 are ideal for subtyping PDAC. This study, in line with previous research, found that, in comparison with adjacent non-cancerous tissues, downregulation of E-cadherin expression was common in the PDAC tissues. However, only 3 tissues saw a complete loss of E-cadherin expression (Figure S1F). In these cases, the cell morphology and CICs were identified by overexposure of background fluorescence assisted by H&E staining. Meanwhile, although CD163 was another accepted marker for macrophage, it was not a good marker for labeling macrophages participating in CIC formation. Instead, CD68 turned out to work well as an identifier of CICs in breast cancer, esophageal cancer (unpublished data), and pancreatic cancer as illustrated in this study.

An interesting finding of this work is that heterotypic L/MiT preferentially impacts certain groups of patients, specifically young women with early-stage PDAC (TNM I+II, or grade 1+2) (Table 4–7). In short, the presence of L/MiT in resectable PDAC tissues could independently predict poor outcomes for young female patients, whereas the survival of those without L/MiT was substantially longer. Though the underlying mechanisms warrant further investigation, this selective impact may reflect a dynamic role of a specified mechanism in different contexts. It is widely accepted that the development and progression of cancer is a net outcome of balance between driver and blocker factors. Each factor may dominate cancer progression in a defined context. We assumed that young and/or female PDACs were primarily promoted by the factors of active drivers, where simultaneous loss of blockers, such as immune surveillance by killing immune cells via L/MiT, would significantly potentiate cancer progression and predict poor prognosis. Therefore, our finding is not only informative and helpful for clinical practice but also provocative for further mechanistic investigations.

It is conceivable that the formation of heterotypic L/MiT may surrogate the occurrence of specific oncogenic mutations, which, despite being invisible to traditional pathology in resectable PDAC, confer cancer cells the ability to cannibalize immune cells. Hence, exploring the molecular mechanisms underlying heterotypic CIC formation may help identify novel therapeutic targets for resectable PDAC with L/MiT and may benefit patient survival.

One of the most important implications of this work is the application of CICs as a functional index for patient diagnosis and prognosis. Current histological diagnosis largely depends on traditional pathology or molecular pathology, which generally produce information focusing on individual cells or molecules. Because tumors are quite heterogeneous, both in terms of morphology and genetics, multiple histological parameters are generally required for a relative improvement in tumor malignancy and patient prognosis predictions. Therefore, simple functional parameters that could readout tumor malignancy would be favored by clinicians. CICs arise from active cell-cell interactions between different types of cells within heterogeneous tumor microenvironments. Formation of CICs generally leads to different functional outcomes of inner and outer cells, which can promote the growth of the outer cells while killing the inner cells. During CIC formation, the identities of inner or outer cells are genetically regulated, and oncogenic mutations such as Kras V12 are able to confer tumor cells outer/winner identity by inhibiting actomyosin contraction while genetic inactivation of tumor suppressor CDKN2a or activation of p53 signaling leads cells to be internalized as inner/loser. Thus, CIC is an ideal functional candidate to identify complex intercellular interactions and complicated intracellular signaling crosstalk. Consistent with this notion, our data in this work demonstrated that both oCICs and subtyped CICs (TiT, MiT, L/MiT) were able to predict patient...
prognoses with a performance comparable or even superior to traditional parameters such as TNM staging. Moreover, CICs were found to be a useful diagnostic indicator to differentiate benignity from malignancy in urothelial carcinoma, malignant mesothelioma, and effusion/urine cytology44-49. And a high number of CICs were identified as an adverse prognostic factor for overall survival of patients with head and neck cancers27, while in early breast cancer, CICs were found capable of selectively impacting patient survival in different categories and significantly contributing to the prediction of patient outcomes35. Accordingly, we propose CIC profiling as a promising method to assist with tumor diagnosis and patient prognosis. It may constitute an essential part of an emerging functional pathology that will improve the performance of both traditional and molecular pathology.

According to our findings above, PDAC patients with CIC-positive samples may be at a higher risk of succumbing to poor survival even though they are pathologically at a low histological grade and early TNM stage. For such cases, active treatments and more frequent follow-up should be adopted. It should be noted that our data suggests that L/MiT preferentially impacted young and female patients, particularly those at early-stage, but the predictive values of other CICs subtypes may not be underscored across the entire patient cohort considering the limitations of this study, which is discussed below. Therefore, we recommend that CIC profiling should be performed post-operatively for all PDAC patients together with traditional pathology by using the paraffin-imbedded tumor sections. The consequences of the study reported here, which could be extended to other cancer types, are two-fold, namely: a) the study provides a readout to assess immune evasion and predict prognosis in PDAC; b) the study also supports the notion that the presence of L/MiT associates with cancer progression and shorter survival in cancer patients.

Despite these implications, the impact of the present study was limited by several factors. First, the retrospective nature of this study needs further validation through a prospective study. Second, although this is currently the largest subtype-based CIC profiling of human cancers, the tissue sample size should be expanded in future studies for further confirmation. Third, since commercial TMA was used to explore the prognostic value of CICs in this study, some information, such as neoadjuvant chemotherapy, and subsequent treatments following surgery and date of first relapse, were not available; this prevents us from evaluating the effects various treatments have on both patient survival and disease-free survival (DFS). These considerations warrant further investigation in the future.

In summary, this study reported the first subtype-based CIC profiling in human PDAC, and identified oCICs and its heterotypic subtypes (LiT, TiM, and L/MiT) as valuable prognostic markers in predicting patient survival in a specified group. L/MiT was identified as a potent adverse prognostic marker impacting young female patients with early-stage PDAC. Our work also supports functional pathology with CIC profiling as a novel input for traditional pathology, and the promise it holds for improving clinical diagnosis and guiding cancer therapy.

References

1. Le N, Sund M, Vinci A, Pancreas Gogo. Prognostic and predictive markers in pancreatic adenocarcinoma. Digestive and liver disease : official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver 2016;48(3): 223-30.
2. Borazanci E, Sciolnik S, Amini A. Neo-adjuvant therapy for pancreatic cancer: hope for the future. Expert review of gastroenterology & hepatology 2019; 13(6): 579-89.
3. Johnson BA, 3rd, Yarchoan M, Lee V, Laheru DA, Jaffee EM. Strategies for Increasing Pancreatic Tumor Immunogenicity. Clin Cancer Res 2017; 23(7): 1656-69.
4. Martinez-Users J, Garcia-Foncillas J. Can Molecular Biomarkers Change the Paradigm of Pancreatic Cancer Prognosis? BioMed research international 2016; 2016: 4873089.
5. Humphries JL, Chang DK, Johns AL, et al. The prognostic and predictive value of serum CA19.9 in pancreatic cancer. Ann Oncol 2012; 23(7): 1713-22.
6. Aoki S, Motoi F, Muralakami Y, et al. Decreased serum carbohydrate antigen 19-9 levels after neoadjuvant therapy predict a better prognosis for patients with pancreatic adenocarcinoma: a multicenter case-control study of 240 patients. BMC Cancer 2019; 19(1): 252.
7. Zhou G, Liu X, Wang X, et al. Combination of preoperative CEA and CA19-9 improves prediction outcomes in patients with resectable pancreatic adenocarcinoma: results from a large follow-up cohort. OncoTargets and therapy 2017; 10: 1199-206.
8. Foucher ED, Ghigo C, Chouaib S, Galon J, Ivanna J, Olive D. Pancreatic Ductal Adenocarcinoma: A Strong Imbalance of Good and Bad Immunological Cops in the Tumor Microenvironment. Frontiers in immunology 2018; 9: 1044.
9. Balachandran VP, Beatty GI, Dougan SK. Broadening the Impact of Immunotherapy to Pancreatic Cancer: Challenges and Opportunities. Gastroenterology 2019; 156(7): 2056-72.
10. Knudsen ES, Veil P, Balaji U, et al. Stratification of Pancreatic Ductal Adenocarcinoma: Combinatorial Genetic, Stromal, and Immunologic Markers. Clin Cancer Res 2017; 23(15): 4429-40.
11. Salvesen GS. Dying from within: granzyme B converts entosis to emperitosis. Cell Death Differ 2014; 21(1): 3-4.
12. Chen Y-h, Wang S, He M-f, et al. Prevalence of heterotypic tumor/immune cell-in-cell structure in vitro and in vivo leading to formation of aneuploidy. PLoS One 2013; 8(3): e59418.
13. Wang S, Guo Z, Xia P, et al. Internalization of NK cells into tumor cells requires ezrin and leads to programmed cell-in-cell death. Cell Res 2009; 19(12): 1350-62.
14. Mackay HL, Muller PAJ. Biological relevance of cell-in-cell in cancers. Biochem Soc Trans 2019; 47(2): 725-32.
15. Martins I, Raza SQ, Voisin L, et al. Entosis: The emerging face of non-cell-autonomous type IV programmed death. Biomedical journal 2017; 40(3): 133-40.
16. Huang H, Chen A, Wang T, et al. Detecting cell-in-cell structures in human tumor samples by E-cadherin/CD68/CD45 triple staining. Oncotarget 2015; 6(24): 20278-87.
17. Huang H, Chen Z, Sun Q. Mammalian Cell Competitions, Cell-in-Cell Phenomena and Their Biomedical Implications. Current molecular medicine 2015; 15(9): 852-60.
18. Overholtzer M, Brugge JS. The cell biology of cell-in-cell structures. Nat Rev Mol Cell Biol 2008; 9(10): 796-809.
19. Chao K-C, Yang H-T, Chen M-W. Human umbilical cord mesenchymal stem cells suppress breast cancer tumorigenesis through direct cell-cell contact and internalization. Journal of cellular and molecular medicine 2012; 16(8): 1803-15.
20. Bartosh TJ, Ullah M, Zeitooni S, Beaver J, Prockop DJ. Cancer cells enter dormancy after cannibalizing mesenchymal stem/stromal cells (MSCs). Proc Natl Acad Sci U S A 2016; 113(42): E6447-E56.
21. Overholtzer M, Malleux AA, Mouneimne G, et al. A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion. Cell 2007; 131(5): 966-79.
22. Lugini L, Matarrese P, Tinari A, et al. Cannibalism of live lymphocytes by human metastatic but not primary melanoma cells. Cancer Res 2006; 66(7): 3629-38.
23. Wang S, He MF, Chen YH, et al. Rapid reuptake of granzyme B leads to emperitosis: an apoptotic cell-in-cell death of immune killer cells inside tumor cells. Cell death & disease 2013; 4: e856.
24. Wang X, Li Y, Li J, et al. Cell-in-Cell Phenomenon and Its Relationship With Tumor Microenvironment and Tumor Progression: A Review. Frontiers in cell and developmental biology 2019; 7: 311.
25. Cano CE, Sandi MJ, Hamidi T, et al. Homotypic cell cannibalism, a cell-death process regulated by the nuclear protein 1, opposes to metastasis in pancreatic cancer. EMBO Mol Med 2012; 4(9): 964-79.
26. Schenker H, Butter-Herold M, Fietkau R, Distel LV. Cell-in-cell structures are more potent predictors of outcome than senescence or apoptosis in head and neck squamous cell carcinomas. Radiat Oncol 2017; 12(1): 21.
27. Schwager M, Wirsing AM, Schenker HM, et al. Prognostic Value of Homotypic Cell Internalization by Nonprofessional Phagocytic Cancer Cells. BioMed research international 2015; 2015: 359392.
28. Steyerberg EW, Vergouwe Y. Towards better clinical prediction models: seven steps for development and an ABCD for validation. European heart journal 2014; 35(29): 1925-31.
29. Chao MP, Weissman IL, Majeti R. The CD47-SIRPalpha pathway in cancer immune evasion and potential therapeutic implications. Current opinion in immunology 2012; 24(2): 225-32.
30. Feng M, Chen JY, Weissman-Tsukamoto R, et al. Macrophages eat cancer cells using their own calreticulin as a guide: roles of TLR and Btk. Proc Natl Acad Sci U S A 2015; 112(7): 2145-50.
31. Sun Q, Luo T, Ren Y, et al. Competition between human cells by entosis. Cell Res 2014; 24: 1299-310.
32. Kroemer G, Perfettini J-L. Entosis, a key player in cancer cell competition. Cell Res 2014; 24(11): 1290-1.
33. Sun Q, Huang H, Overholtzer M. Cell-in-cell structures are involved in the competition between cells in human tumors. Mol Cell Oncol 2015; 2(4): e1002707.
34. Hong SM, Li A, Olin K, et al. Loss of E-cadherin expression and outcome among patients with resectable pancreatic adenocarcinomas. Mod Pathol 2011; 24(9): 1237-47.
35. Zhang X, Niu Z, Qin H, et al. Subtype-Based Prognostic Analysis of Cell-in-Cell Structures in Early Breast Cancer. Front Oncol 2019; 9: 895.
36. Liang J, Fan J, Wang M, et al. CDKN2A inhibits formation of homotypic cell-in-cell structures. Oncogenesis 2018; 7(6): 1-8.
37. Ruan B, Niu Z, Jiang X, et al. High Frequency of Cell-in-Cell Formation in Heterogeneous Human Breast Cancer Tissue in a Patient With Poor Prognosis: A Case Report and Literature Review. Front Oncol 2019; 9: 1444.
38. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144(5): 646-74.
39. Campbell PJ, Yachida S, Mudie LJ, et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 2010; 467(7319): 1109-13.
40. Waclaw B, Bozic I, Pittman ME, Hruban RH, Vogelstein B, Nowak MA. A spatial model predicts that dispersal and cell turnover limit intratumour heterogeneity. Nature 2015; 525(7568): 261-4.
41. Roberts NJ, Norris AL, Petersen GM, et al. Whole Genome Sequencing Defines the Genetic Heterogeneity of Familial Pancreatic Cancer. Cancer discovery 2016; 6(2): 166-75.
42. Fais S, Overholtzer M. Cell-in-cell phenomena in cancer. Nat Rev Cancer 2018; 18(12): 758-66.
43. Liang J, Niu Z, Yu X, et al. Counteracting Genome Instability by p53-dependent Mintosis. bioRxiv 2020; 2020.01.16.908954.
44. Watsiya K, Sato T, Miura T, et al. Cytologic difference between benignity and malignancy in suspicious cases employing urine cytodiagnosis using a liquid-based method. Anal Quant Cytol Histol 2011; 33(3): 169-74.
45. Bansal C, Tiwari V, Singh U, Srivastava A, Misra J. Cell Cannibalism: A cytological study in effusion samples. J Cytol 2011; 28(2): 57-60.
46. Ohsaki H, Hirakawa E, Kushida Y, et al. Can cytological features differentiate reactive renal tubular cells from low-grade urothelial carcinoma cells? Cytopathology 2010; 21(5): 326-33.
47. Kimura N, Dota K, Araya Y, Ishidate T, Ishizaka M. Scoring system for differential diagnosis of malignant mesothelioma and reactive mesothelial cells on cytology specimens. Diagn Cytopathol 2009; 37(12): 885-90.
48. Gupta K, Dey P. Cell cannibalism: diagnostic marker of malignancy. *Diagn Cytopathol* 2003; 28(2): 86-7.

49. Matsumoto S, Nabeshima K, Kamei T, et al. Morphology of 9p21 homozygous deletion-positive pleural mesothelioma cells analyzed using fluorescence in situ hybridization and virtual microscope system in effusion cytology. *Cancer Cytopathol* 2013; 121(8): 415-22.
Figures and legends

Figure 1. Identification of 4 subtypes of CIC structures in PDAC. (A) Unprocessed composite core multiplex stained with E-cadherin, CD68, CD45, and DAPI. (B) Unmixed composite core pseudo-colored with yellow for E-cadherin, green for CD68, red for CD45, and blue for DAPI. (C) Spectral parameters for image unmixing. Fluorescent signals for different targets were captured based on the spectra indicated. (D) Images of single or merged channels displaying the boxed region in (C). Scale bar: 20 μm. (E) Representative images for the 4 CIC subtypes as indicated; scale bars: 5 μm;

Figure 2. CIC profiling in discovery (A–E) and validation (F–J) cohorts. Profiles of CICs subtypes depicted for all CIC counts (A, F), for CIC counts normalized by core area (B, G), for patient percentages (C, H), for outer cell identities (D, I), and for inner cell identities (E, J).
Figure 3. Cell-in-cell structures associated with overall survival of PDAC patients. Kaplan–Meier plotting of overall survival curves for indicated variables across different cohorts of patients.

Figure 4. Contribution of heterotypic L/MiT to survival prediction by nomogram analysis. (A–C) Nomogram analysis with 5 independent prognostic factors identified (histological grade, N, M, and TNM stage, and L/MiT). L/MiT stands out as the dominant prognostic contributor across the discovery, validation, and combined cohorts of patients. (D–F) The AUC calculation for nomogram analysis of different cohorts of patients in the presence or absence of L/MiT.
Figure 5. L/MiT selectively impacts overall survival of certain groups of PDAC patients. Nomogram and AUC analysis in combined cohort of patients stratified by TNM stage (I+II vs. III+IV) (A–C), histological grade (1+2 vs. 3) (D–F), age (≤ 60 vs. > 60) (G–I), and sex (female vs male) (J–L). L/MiT plays dominant role in young female patients with resectable PDAC.
Figure S1. Detecting CIC structures in tissue microarray (TMA) of human PDAC. (A–C) Composite images of the whole TMA slide (A), a single representative cancer tissue core (B), and a non-malignant tissue core (C). Inserted images show a typical CIC structure or acinar. The arrow indicates the inner cell. E-cadherin staining (in yellow) indicates intercellular contact. (D) The profiles of all CICs detected are depicted as CIC number per core in cancer (CA) and non-cancerous (NC) tissues. (E) The CIC compositions of cancer (CA) and non-cancerous (NC) tissues. (F) E-cadherin expression profile in pancreatic cancerous tissue cores. “–” for negative, “****” for strongest expression comparable to the adjacent non-malignant tissues. n = 144.

Figure S2. Detecting CIC structures in human PDAC of the validation cohort. (A) CIC structures indicated by arrows in PDAC tissues stained by H&E. Boxed regions are zoomed in at the right. (B) CIC structures in PDAC tissues stained with antibodies for CD68 or CD45, respectively, by IHC. Boxed regions are zoomed in at the bottom. (C) Number of tissues positive in each CIC subtype. (D) The compositions of CIC subtypes in different TNM stages.
Figure S3. Kaplan–Meier plotting of overall survival curves for indicated variables across the different cohorts of patients.

LN for lymph node invasion; DM for distant metastasis.
Characteristics	Discovery cohort No (%)	Validation cohort No (%)	Entire cohort No (%)
	No, n = 125	No, n = 110	No, n = 235
Age at diagnosis			
<60	70 (56.0)	43 (39.1)	113 (48.1)
≥60	55 (44.0)	67 (60.9)	122 (51.9)
Sex			
Male	75 (60.0)	66 (60.0)	141 (60.0)
Female	50 (40.0)	44 (40.0)	94 (40.0)
Site			
Head	88 (70.4)	81 (73.6)	169 (71.9)
Neck/tail	37 (29.6)	29 (26.4)	66 (28.1)
Histologic grade			
I	3 (2.4)	14 (132.7)	17 (7.2)
II	82 (65.6)	63 (57.3)	145 (61.7)
III	40 (32.0)	33 (30.0)	73 (31.1)
TNM stage			
I	43 (34.4)	22 (20.0)	65 (27.7)
II	66 (52.8)	44 (40.0)	110 (46.8)
III	10 (8.0)	25 (22.7)	35 (14.9)
IV	6 (4.8)	19 (17.3)	25 (10.6)
T stage			
T1	11 (8.8)	11 (10.0)	22 (9.4)
T2	68 (54.4)	19 (17.3)	87 (37.0)
T3/T4	48 (38.4)	80 (72.7)	128 (54.5)
Lymph node invasion			
No	76 (60.8)	62 (56.4)	138 (58.7)
Yes	49 (39.2)	48 (43.6)	97 (41.3)
Distant metastasis			
M0	119 (95.2)	91 (82.7)	210 (89.4)
M1	6 (4.8)	19 (17.3)	25 (10.6)
Table 2 The univariate Kaplan–Meier survival analysis for PDAC patients

Characteristics	Discovery cohort	Validation cohort	Combined cohort					
	Median Survival (months; 95% CI)	p (KP)	n (110)	Median Survival (months; 95% CI)	p (KP)	n (235)	Median Survival (months; 95% CI)	p (KP)
Age								
<60	13(8.45-17.55)	0.828	43	12(8.63-19.37)	0.638	113	13(10.00-17.00)	0.6807
≥60	11(6.46-15.54)	0.208	67	11(7.70-15.63)	0.768	141	11(10.00-15.00)	0.4544
Gender								
Male	11(8.17-13.83)	0.028	66	11(6.92-15.22)	0.251	169	11(9.00-14.47)	0.1719
Female	14(2.78-25.25)	4.860	44	9(3.86-13.39)	9.180	94	12(8.63-21.03)	
Site								
Head	11(6.82-15.18)	0.557	81	11(7.20-13.81)	0.251	169	11(9.00-14.47)	0.1719
Body/tail	12(6.04-17.96)	0.010	29	13(1.17-24.57)	0.001	66	12(10.00-33.00)	
Grade								
I+II	18(4.10-31.90)	<0.0001	77	11(7.49-14.45)	0.929	181	13(10.20-18.17)	0.0189
III	12(9.12-14.88)	0.557	33	11(3.13-18.15)	0.001	54	9(7.00-14.00)	
TNM stage								
I+II	14(9.74-18.36)	<0.0001	66	16(6.84-21.76)	0.001	175	15(11.07-20.00)	<0.0001
III+IV	7(5.04-8.96)	0.164	44	6(4.85-7.61)	0.001	60	7(5.50-9.00)	
T stage								
T1+T2	13(8.70-17.30)	0.164	30	11(1.57-20.49)	0.073	107	14(10.50-18.43)	0.5315
T3+T4	11(8.28-13.72)	0.164	80	8(5.14-11.52)	0.073	128	10(8.03-13.00)	
LN invasion								
No	15(3.90-26.10)	0.013	62	11(8.09-12.91)	0.707	138	13(10.00-23.00)	0.0243
Yes	10(7.72-12.28)	0.005	48	12(3.81-19.39)	0.014	97	11(8.00-14.00)	
Distant metastasis								
M0	13(9.19-16.82)	0.005	91	13(8.97-16.77)	0.014	210	13(10.20-15.80)	<0.0001
M1	4(2.40-5.60)	0.021	19	4(0.87-6.93)	0.003	25	4(3.47-11.60)	
oC1Cs								
No	27(13-NA)	0.021	27	30(8.37-50.69)	0.003	55	30(14.63-NA)	0.0008
Yes	10(7.43-12.57)	0.089	83	9(6.80-11.86)	0.008	180	10(8.27-12.87)	
TIT								
No	21(3.84-38.16)	0.089	31	29(13.36-45.38)	0.008	66	21(12.27-NA)	0.0065
Yes	11(7.91-14.09)	0.089	79	9(5.83-12.83)	0.008	169	10(8.27-13.00)	
LIT								
No	14(5.54-22.46)	0.008	66	14(6.23-18.63)	0.011	158	14(10.97-21.00)	0.0003
Yes	8(6.12-9.88)	0.008	44	9(4.58-12.68)	0.008	77	9(7.00-13.00)	
MIT								
No	15(4.39-25.62)	0.001	86	13(8.96-16.78)	0.003	165	14(11.00-19.17)	0.0004
Yes	7(5.34-8.66)	0.008	24	7(1.81-12.73)	0.008	70	7(6.00-10.00)	
TIM								
No	13(8.38-17.09)	0.184	100	12(7.17-16.03)	0.346	214	12(10.00-15.63)	0.1101
Yes	7(2.95-11.05)	0.184	10	8(2.70-12.71)	0.184	21	8(7.00-28.00)	
L/MIT								
No	63(12.27-49.73)	<0.0001	64	14(8.69-19.17)	0.004	127	15(12.27-33.00)	<0.0001
Yes	62(8.07-9.93)	0.004	46	8(5.60-10.94)	0.004	108	8(7.00-10.50)	
Table 3 Multivariate analysis of prognostic parameters for PDAC

Prognostic parameter	Discovery cohort	Validation cohort	Combined cohort	
	HR (95% CI)	P	HR (95% CI)	P
Grade (I+II vs. III)	1.775 (1.133-2.781)	0.0122	1.414 (1.001-1.998)	0.0499
N stage (Yes vs. No)	1.598 (1.034-2.472)	0.0349	1.266 (0.927-1.730)	0.1374
M stage (Yes vs. No)	1.663 (0.898-3.080)	0.1056		
TNM stage (I+II vs. III+IV)	1.642 (0.897-3.006)	0.1080	1.658 (1.023-2.688)	0.0403
L/MiT (Yes vs. No)	1.850 (1.175-2.915)	0.0080	1.714 (1.086-2.705)	0.0207

Table 4 Multivariate analysis of prognostic parameters for PDAC stratified by TNM2

Prognostic parameter	TNM1/2 (n = 175)	TNM3/4 (n = 60)		
	HR (95% CI)	P	HR (95% CI)	P
L/MiT (Yes vs. No)	2.3692 (1.642-3.418)	<0.0001		

Table 5 Multivariate analysis of prognostic parameters for PDAC stratified by Grade2

Prognostic parameter	Grade1/2 (n = 181)	Grade3 (n = 54)		
	HR (95% CI)	P	HR (95% CI)	P
M stage (Yes vs. No)	1.9989 (1.060-3.769)	0.0323		
TNM stage (I+II vs. III+IV)	1.7839 (1.183-2.691)	0.0058	2.0366 (1.058-3.919)	0.0332
L/MiT (Yes vs. No)	2.1933 (1.521-3.163)	<0.0001		

Table 6 Multivariate analysis of prognostic parameters for PDAC stratified by age

Prognostic parameter	<=60 (n = 113)	>60 (n = 122)		
	HR (95% CI)	P	HR (95% CI)	P
Grade (I+II vs. III)	1.7430 (1.106-2.748)	0.0167	2.2319 (1.339-3.721)	0.0021
N stage (Yes vs. No)	2.6303 (1.527-4.531)	0.0005	2.3120 (1.460-3.661)	0.0004
TNM stage (I+II vs. III+IV)	2.8502 (1.468-5.533)	0.0020	2.0167 (1.101-3.694)	0.0231
L/MiT (Yes vs. No)	11.6097 (3.872-34.81)	<0.0001	2.0935 (1.149-3.812)	0.0157

Table 7 Multivariate analysis of prognostic parameters for PDAC stratified by sex

Prognostic parameter	Male (n = 141)	Female (n = 94)					
	HR (95% CI)	P	HR (95% CI)	P			
Grade (I+II vs. III)	1.7088 (1.098-2.659)	0.0176	1.5112 (0.868-2.632)	0.1145			
N stage (Yes vs. No)	2.8502 (1.468-5.533)	0.0020	2.2834 (1.227-4.249)	0.0092			
TNM stage (I+II vs. III+IV)	2.4337 (1.525-3.884)	0.0002	9.5464 (2.566-35.52)	0.0008			
Characteristics	n	αCIC (%)	TIT (%)	LIT (%)	MIT (%)	TM (%)	L/MIT (%)
------------------------	-----	----------	---------	---------	---------	--------	-----------
		-0 ≥1	-0 ≥1	-0 ≥1	-0 ≥1	-0 ≥1	-0 ≥1
Age							
<60	70	19(27.1)	51(72.9)	0.151	25(35.7)	45(64.3)	**0.030**
≥60	55	9(16.4)	46(83.6)	0.000	40(72.7)	15(27.3)	0.776
Gender							
Male	75	16(21.3)	59(75.7)	0.726	20(26.7)	55(73.3)	0.684
Female	50	12(24.0)	38(76.0)	0.219	36(72.0)	14(28.0)	0.844
Site							
Head	88	20(22.7)	68(77.3)	0.892	62(70.5)	26(29.5)	0.219
Neck/tail	37	8(21.6)	29(78.4)	0.875	30(81.1)	7(18.9)	0.876
Grade							
I+II	85	22(25.9)	63(74.1)	0.173	67(78.8)	18(21.2)	0.053
III	40	6(15.0)	34(85.0)	0.000	25(62.5)	15(37.5)	0.000
TNM stage							
I+II	109	25(22.9)	84(77.1)	0.957	80(73.4)	29(26.6)	1.000
III+IV	16	3(18.1)	13(81.3)	0.000	12(75.0)	4(25.0)	0.000
T stage							
T1+T2	77	17(22.0)	60(77.9)	0.912	52(67.5)	25(32.5)	0.051
T3+T4	48	11(22.9)	37(77.1)	0.051	40(83.3)	8(16.7)	0.051
LN metastasis							
No	76	17(22.4)	59(77.6)	0.992	56(73.7)	20(26.3)	0.097
Yes	49	11(22.4)	38(77.6)	0.097	36(73.5)	10(26.5)	0.097
Dist ant metastasis							
M0	119	27(22.7)	92(77.3)	1.000	87(73.1)	32(26.9)	0.036
M1	6	1(16.7)	5(83.3)	0.036	5(83.3)	1(16.7)	0.036
Nerve or lymphatic							
vessel invasion							
No	63	17(27.0)	46(73.0)	0.215	43(68.3)	20(31.7)	0.172
Yes	62	11(17.7)	51(82.3)	0.172	40(64.5)	22(35.5)	0.172
Table S1b: Association of CIC subtypes with clinicopathological characteristics for the validation dataset

Characteristics	oCIC (%)	TIT (%)	LIT (%)	MIT (%)	TM (%)	L/MIT (%)
Age						
≤60	13 (30.2)	30 (69.8)	0.2669	30 (69.8)	13 (30.2)	0.0939
>60	14 (20.9)	53 (79.1)		36 (53.7)	31 (46.3)	
Gender						
Male	20 (30.3)	46 (69.7)	0.086	38 (57.6)	20 (30.3)	0.057
Female	7 (15.9)	37 (84.1)		28 (63.6)	16 (36.4)	
Site						
Head	21 (25.9)	60 (74.1)	0.574	23 (29.6)	37 (40.9)	0.480
Neck/tail	6 (20.7)	23 (79.3)		19 (65.5)	10 (34.5)	
Grade						
I+II	27 (34.6)	51 (65.4)	<0.001	52 (67.5)	29 (32.5)	<0.001
III	0 (0.0)	33 (100.0)		14 (42.9)	8 (57.1)	
TNM stage						
I+II	23 (34.8)	43 (65.2)	0.002	42 (70.6)	29 (29.4)	<0.001
III+IV	4 (9.1)	40 (90.9)		28 (63.6)	16 (36.4)	
T stage						
T1+T2	10 (33.3)	20 (66.7)	0.190	24 (80.0)	6 (20.0)	0.009
T3+T4	17 (21.3)	63 (78.8)		59 (73.8)	21 (26.3)	
LN metastasis						
No	22 (35.5)	40 (64.5)	0.053	40 (64.5)	22 (35.5)	0.272
Yes	9 (18.8)	39 (81.3)		26 (54.2)	22 (45.8)	
Liver metastasis						
M0	30 (48.4)	32 (51.6)	<0.001	55 (80.4)	36 (19.6)	0.837
M1	15 (8.3)	18 (91.7)		13 (68.4)	6 (31.6)	

All rights reserved. No reuse allowed without permission.
Table 1c: Association of CIC subtypes with clinicopathological characteristics for the combined dataset

Characteristics	n	cCIC (%	TIT (%)	LIT (%)	MIT (%)	TM (%)	L/MIT (%)		
Age									
≤60	113	32 (28.32) 81 (71.68)	0.0868	82 (72.57) 31 (27.43)	0.0164	81 (71.68) 32 (28.32)	0.6356	106 (93.81) 7 (6.19)	0.1562
>60	122	23 (18.85) 99 (81.15)	0.3454	94 (86.67) 47 (33.33)	0.0205	96 (86.67) 45 (31.91)	0.3824	128 (90.78) 13 (9.22)	0.8519
Gender									
Male	141	36 (25.53) 105 (74.47)	0.3138	94 (68.67) 47 (33.33)	0.0205	96 (68.67) 45 (31.91)	0.3824	128 (90.78) 13 (9.22)	0.8519
Female	94	19 (20.21) 75 (79.79)	0.3500	64 (68.09) 30 (31.91)	0.1844	69 (73.40) 25 (26.60)	0.8649	86 (91.49) 8 (8.51)	0.52
Site									
Head	169	41 (24.26) 128 (75.74)	0.6199	110 (65.09) 54 (34.91)	0.0937	119 (70.41) 50 (29.59)	0.6356	108 (88.52) 14 (11.48)	0.6478
Neck/tail	66	14 (21.21) 52 (78.79)	0.3500	48 (72.73) 20 (27.27)	0.0937	46 (69.70) 20 (30.30)	0.52		
Grade									
I+II	181	44 (24.31) 137 (75.69)	0.5485	123 (67.96) 58 (32.04)	0.6660	131 (72.38) 50 (27.62)	0.1844	163 (90.06) 18 (9.94)	0.3211
III	54	11 (20.37) 73 (79.63)	0.3500	35 (64.81) 19 (35.19)	0.1844	34 (62.96) 20 (37.04)	0.51		
TNM stage									
I+II	175	99 (56.57) 76 (43.43)	0.1840	58 (33.14) 117 (66.86)	0.0032	122 (69.71) 53 (30.29)	0.7378	99 (56.57) 76 (43.43)	0.1840
III+IV	60	28 (46.67) 32 (53.33)	0.6199	33 (55.00) 27 (45.00)	0.5943	33 (55.00) 27 (45.00)	0.5943	61 (21.21) 52 (78.79)	0.3500
T stage									
T1+T2	107	27 (25.23) 80 (74.77)	0.5448	76 (71.03) 31 (28.97)	0.2572	74 (69.16) 33 (30.84)	0.7467	98 (91.59) 9 (8.41)	0.7965
T3+T4	128	28 (21.88) 100 (78.12)	0.5448	82 (64.06) 46 (35.94)	0.5448	91 (71.09) 37 (28.91)	0.1956	116 (90.62) 12 (9.38)	0.69
LN invasion									
No	138	34 (24.64) 104 (75.36)	0.5943	95 (68.48) 43 (31.16)	0.3138	101 (73.19) 37 (26.81)	0.2942	126 (91.30) 13 (8.70)	0.8775
Yes	97	21 (21.65) 76 (78.35)	0.4242	83 (64.98) 34 (35.02)	0.1956	84 (68.58) 33 (31.42)	0.8872	90 (90.72) 9 (9.28)	0.51
Distant metastasis									
M0	210	53 (25.24) 157 (74.76)	0.0543	63 (30.09) 147 (70.00)	0.0583	142 (67.62) 68 (32.38)	0.7155	151 (71.90) 59 (28.10)	0.1002
M1	25	2 (8.00) 23 (92.00)	0.3138	16 (64.00) 9 (36.00)	0.3138	14 (56.00) 11 (44.00)	0.3601	116 (54.21) 94 (44.79)	0.2465
Table S2 Univariate analysis of prognostic parameters for survival in PDAC patients by Cox regression analysis

Characteristics	n (125)	Discovery cohort	p(COX)	n (110)	Validation cohort	p(COX)	n (235)	Combined cohort	p(COX)
Age (≥60/<60)	55/70	0.956(0.629-1.453)	0.832	67/43	0.976(0.586-1.516)	0.807	122/113	1.020(0.753-1.383)	0.8962
Sex (Female/Male)	50/75	0.764(0.497-1.174)	0.219	44/66	1.070(0.682-1.679)	0.768	94/141	0.900(0.662-1.229)	0.5135
Site (Body+tail/Head)	37/88	0.875(0.555-1.381)	0.567	29/81	0.726(0.419-1.258)	0.253	66/169	0.801(0.565-1.313)	0.2122
Grade (III+I/II)	40/85	2.215(1.403-3.311)	<0.0001	33/77	1.022(0.637-1.640)	0.929	54/181	2.190(1.426-3.364)	0.0003
TNM stage (I+II+/III)	16/109	2.629(1.491-4.634)	0.001	44/66	1.070(0.682-1.679)	0.768	94/141	0.900(0.662-1.229)	0.5135
T stage (T3+T4/T1+T2)	48/77	0.738(0.476-1.145)	0.169	80/30	1.572(0.954-2.589)	0.076	128/107	1.032(0.757-1.407)	0.8417
LN invasion (Yes/No)	49/76	1.673(1.101-2.542)	0.016	48/62	1.088(0.701-1.688)	0.707	97/138	1.687(1.110-2.564)	0.0143
Distant metastasis (M1/M0)	6/119	3.075(1.329-7.114)	0.009	19/91	1.975(1.133-3.441)	0.016	25/210	3.172(1.372-7.336)	0.007
oCICs (Yes/No)	97/28	1.874(1.075-3.266)	0.027	83/27	2.431(1.313-4.499)	0.005	180/55	1.981(1.320-2.972)	0.001
TIT (Yes/No)	90/35	1.509(0.925-2.462)	0.099	79/31	2.063(1.190-3.573)	0.011	169/66	1.648(1.149-2.365)	0.0067
LIT (Yes/No)	33/92	1.798(1.149-2.812)	0.010	44/66	1.771(1.134-2.767)	0.012	77/158	1.701(1.240-2.333)	0.001
MIT (Yes/No)	46/79	1.932(1.268-2.943)	0.002	24/86	2.140(1.287-3.560)	0.003	70/165	1.971(1.294-3.002)	0.0016
TiM (Yes/No)	11/141	1.574(0.793-3.147)	0.198	10/100	1.395(0.695-2.709)	0.349	21/214	1.463(0.897-2.388)	0.1725
L/MiT (Yes/No)	62/63	2.249(1.470-3.441)	<0.0001	46/64	1.907(1.220-2.981)	0.005	108/127	1.984(1.464-2.688)	<0.0001

Table S3 Multivariate analysis of prognostic parameters for PDAC stratified by TNM

Prognostic parameters	TNM1 (n = 65)	TNM2 (n = 110)	TNM3 (n = 35)	TNM4 (n = 25)				
	HR(95%CI)	P	HR(95%CI)	P	HR(95%CI)	P	HR(95%CI)	P
Grade (I+II vs. III)	1.636	0.0678	1.636	0.0678	1.636	0.0678		
	(0.965-2.776)		(0.965-2.776)		(0.965-2.776)			
MIT (Yes vs. No)	1.704	0.0983	1.704	0.0983	1.704	0.0983		
	(0.906-3.205)		(0.906-3.205)		(0.906-3.205)			
LIT (Yes vs. No)	1.993	0.0005	1.993	0.0005	1.993	0.0005		
	(1.622-5.521)		(1.622-5.521)		(1.622-5.521)			
L/MiT (Yes vs. No)	1.904	0.0346	1.904	0.0346	1.904	0.0346		
	(1.048-3.461)		(1.048-3.461)		(1.048-3.461)			
Table S4 Multivariate analysis of prognostic parameters for PDAC stratified by grade

Prognostic parameters	Grade 1 (n = 36)	Grade 2 (n = 145)	Grade 3 (n = 54)			
	HR(95%CI)	P	HR(95%CI)	P	HR(95%CI)	P
N stage	0.3602 (0.145-0.894)	0.0276	1.4230 (0.939-2.156)	0.0863	2.0366 (1.058-3.919)	0.0322
(Yes vs. No)						
M stage	3.7783 (1.221-11.68)	0.0210	2.3037 (1.059-5.010)	0.0353	1.4230 (0.939-2.156)	0.0863
(Yes vs. No)						
TNM stage	1.8931 (1.165-3.076)	0.0100	2.0366 (1.058-3.919)	0.0322	2.0366 (1.058-3.919)	0.0322
(I+II vs. III+IV)						
L/MIT	2.2716 (1.517-3.402)	0.0001				
(Yes vs. No)						

Table S5 Multivariate analysis of prognostic parameters for PDAC stratified by site

Prognostic parameters	Head (n = 169)	Body/tail (n = 66)		
	HR(95%CI)	P	HR(95%CI)	P
Grade	1.3941 (0.937-2.075)	0.1014	2.6725 (1.334-4.968)	0.0483
(I+II vs. III)			1.4230 (1.059-5.010)	0.0353
N stage	2.5745 (1.334-4.968)	0.0048	2.3037 (1.059-5.010)	0.0353
(Yes vs. No)				
M stage	3.4845 (1.531-7.936)	0.0029	2.0366 (1.058-3.919)	0.0322
(Yes vs. No)				
TNM stage	2.1329 (1.443-3.152)	0.0001	2.6725 (1.334-4.968)	0.0483
(I+II vs. III+IV)			2.3037 (1.059-5.010)	0.0353
L/MIT	1.8276 (1.277-2.656)	0.0010	2.5390 (1.285-5.017)	0.0073
(Yes vs. No)				

Table S6 Multivariate analysis of prognostic parameters for PDAC stratified by N stage

Prognostic parameters	No (n = 138)	Yes (n = 97)		
	HR(95%CI)	P	HR(95%CI)	P
Grade	1.7555 (1.055-2.921)	0.0803	2.8227 (1.563-4.994)	0.0099
(I+II vs. III)				
M stage	2.3965 (1.225-4.689)	0.0107	2.6725 (1.334-4.968)	0.0483
(Yes vs. No)			2.3037 (1.059-5.010)	0.0353
TNM stage	2.1329 (1.443-3.152)	0.0001	2.6725 (1.334-4.968)	0.0483
(I+II vs. III+IV)			2.3037 (1.059-5.010)	0.0353
L/MIT	1.9835 (1.307-3.010)	0.0013	1.6502 (1.051-2.591)	0.0295
(Yes vs. No)			1.4230 (1.059-5.010)	0.0353

Table S7 Multivariate analysis of prognostic parameters for PDAC stratified by M stage

Prognostic parameters	No (n = 210)	Yes (n = 25)		
	HR(95%CI)	P	HR(95%CI)	P
Grade	1.4794 (1.007-2.173)	0.0610	1.4794 (1.007-2.173)	0.0610
(I+II vs. III)				
N stage	1.3054 (1.225-4.689)	0.1168	1.3054 (1.225-4.689)	0.1168
(Yes vs. No)				
TNM stage	1.8578 (1.230-2.805)	0.0032	1.8578 (1.230-2.805)	0.0032
(I+II vs. III+IV)				
L/MIT	1.6514 (1.183-2.306)	0.0032	1.6514 (1.183-2.306)	0.0032
(Yes vs. No)				

Table S8 AUC values calculated at different survival time points by ROC analysis

Time points	6 months	10.6 months	14 months			
	with w/o	with w/o	with w/o			
Discovery						
cohort	0.737	0.657	0.760	0.767	0.71	
Validation	0.725	0.719	0.672	0.668	0.674	0.658
Combined	0.710	0.653	0.698	0.653	0.696	0.661

w/o: without