INVERSION OF THE SPHERICAL RADON TRANSFORM ON SPHERES THROUGH THE ORIGIN USING THE REGULAR RADON TRANSFORM

SUNGHWAN MOON

Department of Mathematical Sciences,
Ulsan National Institute of Science and Technology, Ulsan 44919, Korea

(Communicated by Daoyuan Fang)

Abstract. A spherical Radon transform whose integral domain is a sphere has many applications in partial differential equations as well as tomography. This paper is devoted to the spherical Radon transform which assigns to a given function its integrals over the set of spheres passing through the origin. We present a relation between this spherical Radon transform and the regular Radon transform, and we provide a new inversion formula for the spherical Radon transform using this relation. Numerical simulations were performed to demonstrate the suggested algorithm in dimension 2.

1. Introduction. The Radon transform, an integral transform which maps a given function onto its integrals over the lines in two-dimensional space, was introduced in 1917 by Radon. The Radon transform has many applications to partial differential equations [13, 17], as well as to science, engineering, and medicine [2, 3, 30]. Once these applications were perceived, many mathematicians started to study generalizations of the Radon transform to integrations over various domains: spheres, ellipsoids, broken rays, and so on.

Among these, a Radon transform whose integral domain is a sphere is called a “spherical Radon transform.” More precisely, the spherical Radon transform assigns to a given function its integrals over a set of spheres. This transform is important in mathematics [11, 13, 27, 33], as well as in applications to tomography, including SONAR [5, 12, 23], seismic testing, and RADAR. There are many types of spherical Radon transforms: the centers of the spheres of integration are centered at any point in the whole space with a fixed radius [33], the centers are on a hyperplane and the radius is variable [1, 5, 18, 20, 24, 28, 32], or the centers are on a sphere and the radius is variable [6, 7, 8, 13, 14, 15, 16]. Here, we study another type of spherical Radon transform: the integrals over the set of all spheres passing through the origin in \(\mathbb{R}^n \). This transform provides the integral of a given function over each sphere. Cormack and Quinto discovered an inversion formula for this transform by using spherical harmonics, and this inversion formula implies a support restriction in [2, 4]. Rhee found a different inversion formula in odd
dimensions [29]. Also, Quinto discussed the null space and range for this spherical Radon transform in [25] and he presented how to recover a given function from the spherical Radon transform using a singular value decomposition in [26]. Yagle showed the spherical Radon transform is related to the back projection of the regular Radon transform, and using this fact, found a new inversion formula [31].

We introduce a map which transforms straight lines into circles through the origin. Using this map, we show that the spherical Radon transform can be reduced to the regular Radon transform. Using the relation, we provide a new inversion formula. Additionally, this spherical Radon transform becomes a circular-arc Radon transform in the 2-dimensional case when the given function has compact support in the upper half plane. In this case, it is related to Compton scattering tomography [21]. Some works [21, 22] have studied this circular-arc Radon transform by

\[\omega \in \mathbb{R}^n \]

where \(\omega = (\omega_1, \omega_2, \cdots, \omega_n) \in [0, 2\pi) \times [0, \pi]^{n-2} \)

We have

\[m_n^{-1}(x) = \frac{1}{x_n} \left(x', |x|^2 \right) \]

Proposition 1.

- The map \(m_n : \mathbb{R}^{n-1} \times \mathbb{R} \setminus \{0\} \rightarrow \mathbb{R}^{n-1} \times \mathbb{R} \setminus \{0\} \) is a bijection with the inverse map \(m_n^{-1} : \mathbb{R}^{n-1} \times \mathbb{R} \setminus \{0\} \rightarrow \mathbb{R}^{n-1} \times \mathbb{R} \setminus \{0\} \) defined by

\[m_n^{-1}(x) = \frac{1}{x_n} \left(x', |x|^2 \right) \]

- We have \(\{m_n^{-1}(x) \in \mathbb{R}^n : |x-u/2| = |u/2|, x_n \neq 0 \} = \{y \in \mathbb{R}^n : y \cdot (-u', 1) = u_n, y_n \neq 0 \} \).

If an \(n-1 \)-dimensional sphere intersects the \(x_n = 0 \) plane only at the origin, then \(m_n^{-1} \) transforms it into a hyperplane. On the other hand, if an \(n-1 \)-dimensional sphere intersects the \(x_n = 0 \) plane in an \(n-2 \)-dimensional sphere, \(m_n^{-1} \) transforms
it into a hyperplane missing an \(n - 2 \)-dimensional plane. Changing variables using this map \(m_n \) plays a critical role in reducing the spherical Radon transform to the regular Radon transform.

Proof. We can easily check that \(m_n^{-1} \circ m_n (x) = m_n \circ m_n^{-1} (x) = I(x) \) for \(x \in \mathbb{R}^{n-1} \times \mathbb{R} \setminus \{0\} \), so \(m_n : \mathbb{R}^{n-1} \times \mathbb{R} \setminus \{0\} \rightarrow \mathbb{R}^{n-1} \times \mathbb{R} \setminus \{0\} \) is a bijection.

Consider \(m_n^{-1}(x) \cdot (-u', 1) \) for \(x \in \mathbb{R}^{n-1} \times \mathbb{R} \setminus \{0\} \) with \(|x - u/2| = |u/2| \):

\[
m_n^{-1}(x) \cdot (-u', 1) = \frac{1}{x_n} (x', |x|^2) \cdot (-u', 1) = \frac{1}{x_n} (-x' \cdot u' + |x|^2).
\]

Since \(|x - u/2| = |u/2| \), \(|x|^2 - x \cdot u = 0 \) and thus (1) becomes

\[
m_n^{-1}(x) \cdot (-u', 1) = u_n.
\]

Since \(x_n \) is not zero, \(|x|^2/x_n \) is also not zero. \(\square \)

Let us define a function \(k(y) \) by

\[
k(y) = \frac{|y_n|^{n-2}}{(1 + |y'|^2)^{n-1}} f \circ m_n(y),
\]

where \(y = (y', y_n) \in \mathbb{R}^n \). Then we have for \(x_n \neq 0 \),

\[
f(x) = \frac{|x|^2}{x_n^n} k \circ m_n^{-1}(x).
\]

The regular \(n \)-dimensional Radon transform \(Rk(e_{\theta}, t) \) is defined by

\[
Rk(e_{\theta}, t) = \int_{e_{\theta}^\perp} k(e_{\theta} + \tau) d\tau.
\]

The next theorem shows that the spherical Radon transform \(R_S f \) can be reduced to the regular Radon transform \(R_k \).

Theorem 2. Let \(f \in C(\mathbb{R}^n) \) have compact support in \(\mathbb{R}^n \). Then we have for \(u_n \neq 0 \),

\[
2^{n-1} Rk \left((-u', 1)/\sqrt{1 + |u|^2}, u_n/\sqrt{1 + |u|^2} \right) = \sqrt{1 + |u|^2} |u|^{n-2} R_S f(u).
\]

Proof. Using the Dirac delta function, \(R_S f \) can be written as

\[
R_S f(u) = 2 \int_{\mathbb{R}^n} f \left(\frac{u}{2} + \frac{|u|}{2} x \right) \delta(|x|^2 - 1) dx.
\]

Changing the variables \(u/2 + |u|x/2 \rightarrow x \) gives us

\[
R_S f(u) = \int_{\mathbb{R}^n} f(x) \delta \left(\frac{2 |u|}{|u|^n} x - \frac{u}{|u|^n} \right) \frac{2^n}{|u|^n} dx
\]

\[
= \int_{\mathbb{R}^n} f(x) \delta \left(\frac{4|x|^2}{|u|^2} - \sum_{j=1}^n \frac{4x_j u_j}{|u|^2} \right) \frac{2^n}{u_n} dx
\]

\[
= 2^{n-1} \int_{\mathbb{R}^n} f(x) \delta (|x|^2 - x \cdot u) \frac{dx}{x_n |u|^{n-2}}
\]

\[
= 2^{n-1} \int_{\mathbb{R}^n} f(x) \delta \left(\frac{|x|^2}{x_n^2} - \left(\frac{x'}{x_n} \right) \cdot u \right) \frac{dx}{x_n |u|^{n-2}}.
\]

We change the variable \(m_n^{-1}(x) = y \), i.e.,

\[
y = \left(\frac{x'}{x_n}, \frac{|x|^2}{x_n} \right) \quad \text{and} \quad x = \left(\frac{y' y_n}{1 + |y'|^2}, \frac{y_n}{1 + |y'|^2} \right).
\]
Then we have
\[|u|^{-2} R_S f(u) = 2^{n-1} \int_{\mathbb{R}^n} f(x) \delta \left(\frac{|x|^2 - x' \cdot u'}{|x_n|} - u_n \right) \frac{dx}{|x_n|} \]
\[= 2^{n-1} \int_{\mathbb{R}^n} f(m_n(y)) \delta (y_n - y' \cdot u' - u_n) J(y) \frac{(1 + |y'|^2)dy}{|y_n|}, \]
where the Jacobian \(J(y) \) is
\[
J(y) = \det \begin{pmatrix}
 y_n(1 - y_1^2 + \sum_{j=2}^{n-1} y_j) & -2y_1y_2y_n & \cdots & y_1 \\
 \frac{1 + |y'|^2}{(1 + |y'|^2)^2} & \frac{y_n(1 + y_1^2 - y_2^2 + \sum_{j=3}^{n-1} y_j)}{(1 + |y'|^2)^2} & \cdots & \frac{y_2}{1 + |y'|^2} \\
 \vdots & \vdots & \ddots & \vdots \\
 \frac{1}{(1 + |y'|^2)^2} & \frac{-2y_1y_n}{(1 + |y'|^2)^2} & \cdots & 1
\end{pmatrix}
\]
\[= \frac{|y_n|^{n-1}}{(1 + |y'|^2)^{2n-1}} \det \begin{pmatrix}
 1 - y_1^2 + \sum_{j=2}^{n-1} y_j & -2y_1y_2 & \cdots & y_1 \\
 -2y_1y_2 & 1 + y_1^2 - y_2^2 + \sum_{j=3}^{n-1} y_j & \cdots & y_2 \\
 \vdots & \vdots & \ddots & \vdots \\
 -2y_1 & -2y_2 & \cdots & 1
\end{pmatrix}
\]
By the definition of \(k \), we have
\[|u|^{-2} R_S f(u) = 2^{n-1} \int_{\mathbb{R}^n} f(m_n(y)) \delta (y_n - y' \cdot u' - u_n) \frac{|y_n|^{n-2}}{(1 + |y'|^2)^{n-1}} dy' \]
\[= 2^{n-1} \int_{\mathbb{R}^{n-1}} k(y', y' \cdot u' + u_n) dy'. \]
We recognize the right hand side as the integral along the hyperplane perpendicular to \((-u', 1)/\sqrt{1 + |u'|^2}\) with (signed) distance \(u_n/\sqrt{1 + |u'|^2} \) from the origin. In this case, the measure for the hyperplane becomes \(\sqrt{1 + |u'|^2} dy' \).

Setting \(e_\theta = (-u', 1)/\sqrt{1 + |u'|^2} \) and \(t = u_n/\sqrt{1 + |u'|^2} \), we have our assertion.

Now we can prove our main theorem.

Theorem 3. Let \(f \in C^\infty(\mathbb{R}^n) \) have compact support in \(\mathbb{R}^n \). If \(g(u) = |u|^{-2} R_S f(u) \), then we have for \(x_n \neq 0 \),
\[f(x) = \frac{1}{(2\pi)^{n-2}} \frac{|x|^2}{|x_n|^n} \int_{\mathbb{R}^{n-1}} P.V. \frac{\partial_{u_n} g(u', u_n)}{(-u', 1) \cdot \left(\frac{x'}{x_n}, \frac{|x'|^2}{x_n} \right) - u_n} du_n du', \]
where P.V. means the Cauchy principal value.

Proof. From Theorem 2, we have
\[2^{n-1} R_k(e_{\theta'}, t) = |\sec \theta_{n-1}| g(-e_{\theta'} \tan \theta_{n-1}, t \sec \theta_{n-1}),\]
where for \(\theta' = (\theta_1, \theta_2, \cdots, \theta_{n-2}) \in [0, 2\pi) \times [0, \pi)^{n-3}, \)
\[e_{\theta'} = \begin{pmatrix}
 \sin \theta_1 \sin \theta_2 \cdots \sin \theta_{n-2}, \\
 \cos \theta_1 \sin \theta_2 \cdots \sin \theta_{n-2}, \\
 \cos \theta_2 \sin \theta_3 \cdots \sin \theta_{n-2}, \\
 \vdots \\
 \cos \theta_{n-3} \sin \theta_{n-2}, \\
 \cos \theta_{n-2}
\end{pmatrix} \in S^{n-2}.\]
(Note that \(e_\theta = (e_{\theta'} \sin \theta_{n-1}, \cos \theta_{n-1}) \in S^{n-1}. \) By the projection slice theorem for the regular Radon transform, we have
\[2^{n-1} \hat{k}(\sigma e_\theta) = 2^{n-1} \int_{\mathbb{R}} R_k(e_\theta, t) e^{-it\sigma} dt = \int_{\mathbb{R}} \frac{1}{|\sec \theta_{n-1}|} g(e_{\theta'} \tan \theta_{n-1}, t \sec \theta_{n-1}) e^{-it\sigma} dt = \hat{g}(e_{\theta'} \tan \theta_{n-1}, \sigma \cos \theta_{n-1}),\]
where \(\hat{k} \) is the \(n \)-dimensional Fourier transform of \(k \) and \(\hat{g} \) is the 1-dimensional Fourier transform of \(g \) with respect to \(u_n \). Thus we have
\[2^{n-1} \hat{k}(\alpha) = \hat{g}(-\alpha'/\alpha_n, \alpha_n) \quad \text{for} \quad \alpha = (\alpha', \alpha_n) \in \mathbb{R}^{n-1} \times \mathbb{R}.\]
We have for \(x_n \neq 0, \)
\[f(x) = k \left(\frac{x'}{x_n}, \frac{|x|^2}{x_n} \right) \left| \frac{x}{x_n} \right|^2 = \frac{1}{(2\pi)^n} \left| \frac{x}{x_n} \right|^n \int_{\mathbb{R}^n} \hat{k}(\alpha) e^{i\alpha \cdot \left(\frac{x'}{x_n}, \frac{|x|^2}{x_n} \right)} d\alpha = \frac{1}{(2\pi)^n \alpha_n} \int_{\mathbb{R}^n} \hat{g}(-\alpha'/\alpha_n, \alpha_n) e^{i\alpha \cdot \left(\frac{x'}{x_n}, \frac{|x|^2}{x_n} \right)} d\alpha = \frac{1}{(2\pi)^n \alpha_n} \int_{\mathbb{R}^{n-1}} |\alpha_n| \hat{g}(u', \alpha_n) e^{i\alpha_n \cdot (-u', 1) \cdot \left(\frac{x'}{x_n}, \frac{|x|^2}{x_n} \right)} du' d\alpha_n,\]
where in the second line, we used (3) and in the last line, we changed the variables \(-\alpha'/\alpha_n \rightarrow u'. \) The identity \(H \hat{h}(\sigma) = -i \text{sgn}(\sigma) \hat{h}(\sigma) \) where
\[H \hat{h}(s) = \frac{1}{\pi} P.V. \int_{\mathbb{R}} h(t)/(s - t) dt\]
completes our proof.

3. Numerical implementation. Here we discuss the results of 2-dimensional numerical implementations. Although many inversion formulas were derived in [2, 4, 25, 26, 31], neither these works nor any others in the literature present numerical results for these formulas.

In the experiments presented here we use the phantom shown in Figure 1 (a). The phantom, supported within the rectangle \([-0.5, 0.5] \times [0, 1]\), is the sum of multiples of characteristic functions of disks centered at \((0, 0.3), (0.1, 0.6), \) and \((0, 0.61)\) with radii 0.03, 0.05, and 0.1, whose values are 2, 1, and 0.5, respectively. (Actually, our phantom has support in \(\{ x = (x_1, x_2) \in \mathbb{R}^2 : (x_1^2 + (x_1^2 + x_2^2)^2)/x_2 < 1 \text{ and } x_2 > 0 \} \).)
This implies that the function k has support in the unit ball and this makes it sufficient to consider the range $[-1, 1]$ in t. The 128×128 images are used in Figure 1. To reconstruct the image in Figure 1 (b), we use 256×256 projections for θ and t in $2Rk(e_\theta, t) = |\sec \theta| R_S f(\tan \theta, t \sec \theta)$ obtained by Theorem 2. After obtaining the function k using the inversion code for the regular Radon transform, we reconstruct the function f using (2). All computations have been performed in MATLAB. While Figure 1 (b) demonstrates the image reconstructed from the exact data, Figure 1 (c) and (d) show the results of reconstruction from noisy data. The noise is modelled by normally distributed random numbers. In Figure 1 (c), the noisy data is modelled by adding the noise values scaled to 5% of the norm of the exact data to the exact data. In Figure 1 (d), the noisy data is modelled by adding to the exact data the noise value scaled to 10%. These reconstructions from the noisy data show the stability of our algorithm in the presence of noise. In Figure 2 the surface plots of all images in Figure 1 are provided.

In [25, Lemma 4.4], Quinto also found a relation similar to the one presented in Theorem 2: for $f \in C(\mathbb{R}^n)$ and $\mathbf{u} \in \mathbb{R}^n \setminus \{0\}$,

$$R_S f(\mathbf{u}) = \frac{1}{|\mathbf{u}|^{n-1}} R \hat{k} \left(\frac{\mathbf{u}}{|\mathbf{u}|} \frac{1}{|\mathbf{u}|} \right),$$

(4)
where

\[\bar{k}(y) = 2^{n-1}|y|^{2^{-2n}} f \left(\frac{y}{|y|} \right) = 2^{n-1}|y|^{2^{-2n}} f \circ \bar{m}_n(y). \]

Here \(\bar{m}_n(x) = x/|x|^2 \) is reflection with respect to the unit circle. Hence, if \(f \) has a nonzero value near the origin, the support of \(k \) is very large. This fact is a disadvantage in implementation because a large range of \(Rk \) in \(t \) is required.

In Figure 3, we reconstruct \(f \) using the relation (4). All images in Figure 3 are 128x128 as in Figure 1. The phantom, supported within the rectangle \([-0.5, 0.5] \times [0, 1] \), is the sum of multiples of characteristic functions of disks centered at \((0.4, 0.4)\), \((0.1, 0.6)\), and \((0, 0.61)\) with radii 0.03, 0.05, and 0.1, whose values are 2, 1, and 0.5, respectively. Here although we use disks with the same size as in Figure 1, the center of one disk is changed from \((0, 0.3)\) to \((0.4, 0.4)\) because of the support of \(\bar{k} \). If we had chosen the disk centered at \((0, 0.3)\), the support of \(\bar{k} \) would have been inside the disk centered at the origin with radius 100/33, so the required range of \(R\bar{k} \) in \(t \) is \([-100/33, 100/33]\). This is large, so to reduce the range we moved the center of one disk. Now it is enough to consider the range \([-2, 2]\) in \(t \). To reconstruct the image in Figure 3 (b), we use 256 \times 256 projections for \(\theta \) and \(t \) in
\[Rk(e_\theta, t) = R_Sf(e_\theta/t)/|t| \quad (n = 2), \]

obtained from (4), again. After obtaining the function \(k \), we reconstruct the function \(f \) using

\[f(x) = k(x/|x|^2)/(2|x|) \quad (n = 2). \]

In fact, although we use 256 \(\times \) 256 projections for \(\theta \) and \(t \) as in Figure 1, the distance between grid points in \(t \) is twice as large as in Figure 1 because \(t \) ranges from -2 to 2 rather than from -1 to 1 as before. Hence, to get the same resolution, we have to use 256 \(\times \) 512 projections for \(\theta \) and \(t \) and this increases the computational cost. We present the image reconstructed using 256 \(\times \) 512 projections in Figure 3 (c). Figure 3 (d) and (e) show the reconstructions from noisy data with the noise value scaled 10%. Although the numerical results look similar to ours, the closer the phantom is to zero, the bigger the range of \(t \) that is required, and thus the more computational cost is required to get the same resolution in this approach using the relation (4). In Figure 4 the surface plots of all images in Figure 3 are provided.

4. Conclusion. This paper is devoted to studying the spherical Radon transform, which is one of the classic problems in computed tomography: the spherical Radon transform mapping a given function to its integrals over the set of spheres passing through the origin. We suggest the reduction of this spherical Radon transform to the regular Radon transform and provide a new inversion formula for this transform. Also, we show numerical simulations to demonstrate our algorithm.

REFERENCES

[1] L. Andersson, On the determination of a function from spherical averages, SIAM Journal on Mathematical Analysis, 19 (1988), 214–232.
[2] A. M. Cormack, Representation of a function by its line integrals, with some radiological applications, Journal of Applied Physics, 34 (1963), 2722–2727.
[3] A. M. Cormack, Representation of a function by its line integrals, with some radiological applications. II, Journal of Applied Physics, 35 (1964), 2908–2913.
[4] A. M. Cormack and E. T. Quinto, A Radon transform on spheres through the origin in \(\mathbb{R}^n \) and applications to the Darboux equation, Transactions of the American Mathematical Society, 260 (1980), 575–581.
[5] J. Fawcett, Inversion of \(n \)-dimensional spherical averages, SIAM Journal on Applied Mathematics, 45 (1985), 336–341.
[6] D. Finch, M. Haltmeier and Rakesh, Inversion of spherical means and the wave equation in even dimensions, SIAM Journal on Applied Mathematics, 68 (2007), 392–412.
[7] D. Finch, S. Patch and Rakesh, Determining a function from its mean values over a family of spheres, SIAM Journal on Mathematical Analysis, 35 (2004), 1213–1240.
[8] D. Finch and Rakesh, Recovering a function from its spherical mean values in two and three dimensions, In Photacoustic Imaging and Spectroscopy (L. Wang ed.), Optical Science and Engineering, Taylor & Francis, 2009.
[9] S. Gindikin, J. Reeds and L. Shepp, Spherical tomography and spherical integral geometry, In Tomography, Impedance Imaging, and Integral Geometry: 1993 AMS-SIAM Summer Seminar on the Mathematics of Tomography, Impedance Imaging, and Integral Geometry, June 7-18, 1993, Mount Holyoke College, Massachusetts (E. T. Quinto, M. Cheney, P. Kuchment and American Mathematical Society eds.), Lectures in Applied Mathematics Series, pages 83–92. American Mathematical Society, 1994.
[10] M. Haltmeier, Exact reconstruction formula for the spherical mean Radon transform on ellipsoids, Inverse Problems, 30 (2014), 035001.
[11] S. Helgason, A duality in integral geometry: some generalizations of the Radon transform, Bulletin of the American Mathematical Society, 70 (1964), 435–446.
[12] H. Hellsten and L. E. Andersson, An inverse method for the processing of synthetic aperture radar data, Inverse Problems, 3 (1987), 111.
[13] F. John, Plane Waves and Spherical Means Applied to Partial Differential Equations, Dover Books on Mathematics Series. Dover Publications, 2004.
[14] L. A. Kunyansky, Explicit inversion formulae for the spherical mean Radon transform, Inverse Problems, 23 (2007), 373.
Figure 3. Reconstruction on $[-0.5, 0.5] \times [0, 1]$; (a) the phantom, (b) and (c) reconstructions from exact data using 256×256 and 256×512 projections, respectively, and (d) and (e) reconstructions from noisy data with the noise value scaled 10% using 256×256 and using 256×512 projections, respectively.

[15] L. A. Kunyansky, A series solution and a fast algorithm for the inversion of the spherical mean Radon transform, Inverse Problems, 23 (2007), S11.
[16] L. A. Kunyansky, Fast reconstruction algorithms for the thermoacoustic tomography in certain domains with cylindrical or spherical symmetries, Inverse Problems and Imaging, 6 (2012), 111–131.
Figure 4. Surface plots: (a) the phantom, (b) and (c) reconstructions from exact data using 256×256 and 256×512 projections, respectively, and (d) and (e) reconstructions from noisy data with the noise value scaled 10% using 256×256 and using 256×512 projections, respectively.

[17] D. Ludwig, The Radon transform on Euclidean space, *Communications on Pure and Applied Mathematics*, 19 (1966), 49–81.

[18] E. K. Narayanan and Rakesh, Spherical means with centers on a hyperplane in even dimensions, *Inverse Problems*, 26 (2010), 035014.

[19] F. Natterer, *The Mathematics of Computerized Tomography*, Classics in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia, 2001.
[20] F. Natterer and F. Wübbeling, Mathematical methods in image reconstruction, SIAM Monographs on mathematical modeling and computation. SIAM, Society of industrial and applied mathematics, Philadelphia (Pa.), 2001.

[21] M. K. Nguyen and T. T. Truong, Inversion of a new circular-arc Radon transform for Compton scattering tomography, Inverse Problems, 26 (2010), 065005.

[22] M. K. Nguyen, G Rigaud and T. T. Truong, A new circular-arc Radon transform and the numerical method for its inversion, In Aip Conference Proceedings, volume 1281, page 1064, 2010.

[23] C. J. Nolan and M. Cheney, Synthetic aperture inversion, Inverse Problems, 18 (2002), 221.

[24] S. J. Norton, Reconstruction of a reflectivity field from line integrals over circular paths, The Journal of the Acoustical Society of America, 67 (1980), 853–863.

[25] E. T. Quinto, Null spaces and ranges for the classical and spherical Radon transforms, Journal of Mathematical Analysis and Applications, 90 (1982), 408–420.

[26] E. T. Quinto, Singular value decompositions and inversion methods for the exterior radon transform and a spherical transform, Journal of Mathematical Analysis and Applications, 95 (1983), 437–448.

[27] E. Quinto, Singularities of the X-ray transform and limited data tomography in \mathbb{R}^2 and \mathbb{R}^3, SIAM Journal on Mathematical Analysis, 24 (1993), 1215–1225.

[28] N. T. Redding and G. N. Newsam, Inverting the circular Radon transform, DTOSO Research Report DTOSO-Ru-0211, August 2001.

[29] H. Rhee, A representation of the solutions of the Darboux equation in odd-dimensional spaces, Transactions of the American Mathematical Society, 150 (1970), 491–498.

[30] K. T. Smith, D. C. Solmon and S. L. Wagner, Practical and mathematical aspects of the problem of reconstructing a function from radiographs, Bulletin of the American Mathematical Society, 82 (1977), 1227–1270.

[31] A. E. Yagle, Inversion of spherical means using geometric inversion and Radon transforms, Inverse Problems, 8 (1992), 949.

[32] C. E. Yarman and B. Yazici, Inversion of the circular averages transform using the Funk transform, Inverse Problems, 27 (2011), 065001.

[33] L. Zalcman, Offbeat integral geometry, The American Mathematical Monthly, 87 (1980), 161–175.

Received July 2014; revised April 2015.

E-mail address: shmoon@unist.ac.kr