ESTIMATION OF MEASURED DATA OF MICROCHANNEL GAS FLOWS

Jing Fan, Ching Xie, and Jian-Zheng Jiang
Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080, China

ABSTRACT
The measured data of mass flow rates and streamwise pressure distributions at various experimental conditions of microchannels carried out by Pong et al (1994), Harley et al (1995), Shih et al (1996), Arkilic et al (1997, 2001), and Zohar et al (2002) are normalized by the kinetic factors M_c and p_k, respectively. The normalized data are compared each other, and they are in excellent agreement, except the few with the small differences. This demonstrates that the measured data available are generally accurate.

NOMENCLATURE

- h: microchannel height
- K_n: Knudsen number
- L: microchannel length
- M: mass flow rate
- M_c: normalized factor of mass flow rate
- p: pressure
- P: normalized pressure, $P = p/p_o$
- dp/dx: streamwise pressure gradient
- λ: mean free path
- θ: ratio of inlet to outlet pressure, $\theta = p_i/p_o$

Subscripts
- i: Inlet
- o: Outlet

INTRODUCTION

Many experimental studies [1-9] on gas flows through micro-channels were carried out to understand the microscale effects that are important for the design and optimization of MEMS devices. The mass flow rates and streamwise pressure distributions were measured at various conditions as shown in Table 1. The dimensions were about one micron high by several tens of microns wide and by several thousands microns long. The flow was driven by the pressure differences between the inlet and outlet, with a typical inlet velocity of about 0.2 m/s [10]. The flows are two dimensional because of the negligible spanwise effect for the large width-to-height ratio, while the isothermal assumption is valid under the low subsonic conditions without external heating.

Comparing these experimental data each other is helpful to assess their accuracy, and reveal the features of microchannel gas flows. Due to the differences between the experimental conditions, we have to normalize the measured data firstly. Let us image to slice up microchannels a cross section by cross section. Every cross section may be localized as the Poiseuille flow. The mass flow rate may be nicely related to the Knudsen number based on the channel height (see, e.g. Fig.6 in Ref. [11]) when a following normalization factor is used

$$M_c = \frac{2h^2 dp}{\nu_m dx},$$

where h is the channel height, $\nu_m = \sqrt{2RT}$ is the most probable thermal speed, and dp/dx is the pressure gradient.

Experiments [1,3,4,9] showed that the streamwise pressure distributions of gas flows through microchannel were nonlinear. This means that dp/dx is not constant, which differs from the Poiseuille flow. Therefore, we have to obtain the solution of dp/dx, before the normalized factor M_p may be extended to microchannels.
Table 1. Experimental conditions of microchannel gas flows

Source	Gas	Height	Width	Length
Pong et al [1]	N₂, He	1.2	40	3000
Harley et al [2]	N₂, He, Ar	0.51 ~ 19.79	100 ~ 200	10000
Shih et al [3,4]	N₂, He	1.2	40	4000
Arkilic et al [5-8]	He, Ar, N₂, CO₂	1.33	52.3	7490
Zohar et al [9]	He, Ar, N₂	0.53 ~ 0.97	40	4000

CONSERVATION OF MASS FLOW RATE THROUGH MICROCANCELS

Consider a cross section of microchannel. The mass flow rate through it may be written as

\[
M \cdot \frac{d}{dx} \ln \frac{M_{N-S}}{\phi(Kn)} = 0, \tag{2}
\]

with

\[
M_{N-S} = \frac{2h^3}{3\mu RT} \frac{dp}{dx}, \tag{3}
\]

is the non-slip Navier-Stokes solution of mass flow rate for the Poiseuille flows, and with

\[
\phi(Kn) \equiv 1 + 6\alpha Kn + \frac{12}{\pi} Kn \ln(1 + \beta Kn), \tag{4}
\]

where \(\alpha = 1.318889\), \(\beta = 0.387361\). \(\phi(Kn)\) reflects the local deviation from the N-S solution owing to the microscale effect. Eq. (4) is fitted based on the numerical solution of the linearized Boltzmann equation [12,13], under the tangential momentum accommodation coefficient \(\sigma = 1\).

The mass flow rate conservation through microchannels requires

\[
\frac{dM}{dx} = 0. \tag{5}
\]

Substituting Eq. (2) into (5) and eliminating the constant term \(2h^3/(3\mu RT)\) give rise to a simple relation between \(p\) and \(Kn\)

\[
\frac{d}{dx} \left[1 + 6\alpha Kn + \frac{12}{\pi} Kn \ln(1 + \beta Kn) \right] \frac{dp}{dx} = 0, \tag{6}
\]

or

\[
\left[1 + 6\alpha Kn + \frac{12}{\pi} Kn \ln(1 + \beta Kn) \right] \frac{dp}{dx} = C, \tag{7}
\]

where \(C\) is a constant undetermined, \(P = p/p_0\), \(X = x/L\), \(p_0\) is the outlet pressure, and \(L\) is the microchannel length.

Eq. (6) may be regarded alternatively as a special case of the generalized Reynolds equation with the bearing number \(\Lambda = 0\). The generalized Reynolds equation was firstly derived by Fukui and Kaneko [14] from the linearized Boltzmann equation, and it works quite well for air slider bearings. Recently C. Shen [15] suggested to apply it to microchannels. Eq. (6) is valid over the entire flow regime from continuum to free molecular, because its kernel \(\phi(Kn)\) is obtained based on the linearized Boltzmann equation.

NORMALIZED FACTORS OF PRESSURE AND MASS FLOW RATE

For hard-sphere molecules, the mean free path \(\lambda = kT/\sqrt{2\pi T \sigma_T}\), where the collision cross section \(\sigma_T\) is constant. Consequently, the Knudsen number along a microchannel may be expressed as follows

\[
Kn = \frac{\lambda}{h} = \frac{h_\circ}{h} - \frac{\lambda_\circ}{P}, \tag{8}
\]

where the subscript \(\circ\) denotes the outlet.

Substitution of Eq. (8) into (7) yields

\[
\left[P + 6\alpha Kn_\circ \frac{12}{\pi} Kn \ln(1 + \beta Kn_\circ) \right] \frac{dp}{dx} = Cdx, \tag{9}
\]

Integrating Eq. (9) from the inlet \(X=0\) and \(P = \vartheta = p_1/p_0\), we have

\[
\int_0^1 \frac{1}{2} P^2 + 6\alpha Kn_\circ \left[\ln(1 + \beta Kn_\circ) \right] + 12 \frac{Kn_\circ}{\pi} \alpha + \frac{1}{2} \frac{Kn_\circ}{\pi} \beta + \frac{1}{2} \frac{Kn_\circ}{\pi} \gamma + \frac{1}{2} \frac{Kn_\circ}{\pi} \delta = Cx, \tag{10}
\]

At the outlet \(X=1, P=1\), therefore

\[
C = \frac{1}{2} \left((1 - \vartheta^2) + 6\alpha Kn_\circ (1 - \vartheta) \right) + 12 \frac{Kn_\circ}{\pi} \left[\ln(1 + \beta Kn_\circ) \right] + \frac{1}{2} \frac{Kn_\circ}{\pi} \beta + \frac{1}{2} \frac{Kn_\circ}{\pi} \gamma + \frac{1}{2} \frac{Kn_\circ}{\pi} \delta. \tag{11}
\]

The normalized factor of mass flow rate \(M\) through microchannels may be obtained using Eqs. (1), (7) and (11)

\[
M = \frac{2h^2}{3\mu v_m} \frac{dp}{dx} = \frac{2h^2}{3\mu v_m} \frac{Cp_0^2}{\phi(Kn_1)p_1L}, \tag{12}
\]

where the subscript \(1\) denotes the inlet.

The kinetic solution of the streamwise pressure distribution \(p_1\) may be numerically solved from Eq. (10) that depends upon the parameters \(\vartheta\) and \(Kn_\circ\).

COMPARISON OF NORMALIZED MEASURED MASS FLOW RATES AND STREAMWISE PRESSURE DISTRIBUTIONS

Figure 1 compares the normalized mass flow rates at different conditions carried out by Harley et al [2], Shih et al
Generally they agree well each other, whereas the small differences between the helium cases of Shih et al [4] and Arkilic et al [6,7] are observed. A relation of the normalized mass flow rate to the inlet Kn_1 may be simply fitted as

$$M = M_e \left(a + bKn_1 + cKn_1^2 + dKn_1^3 + eKn_1^4 \right),$$

with $a=0.021998$, $b=12.48288$, $c=-87.95779$, $d=397.432$, and $e=-716.724$.

Table 2. The values of p_{exp}/p_k at different conditions.

Case	x (µm)	p_i (psig)	p_{exp}/p_k
A1	400	25	1.013
		1100	1.015
		1800	0.994
		2500	0.989
A2	400	20	1.005
		1100	1.018
		1800	1.010
		2500	1.013
A3	400	15	1.005
		1100	1.028
		1800	1.004
		2500	1.013
A4	400	10	1.006
		1100	1.012
		1800	0.907
		2500	1.030
A5	400	5	1.017
		1100	1.041
		1800	1.024
		2500	1.027
B1	400	19	1.006
		800	1.018
		1200	1.029
		1600	1.022
		2000	1.038
		2400	1.029
		3200	1.054
		3600	1.024
B2	400	13.6	1.003
		800	1.008
		1200	1.011
		1600	1.021
		2000	1.038
		2400	1.023
		2800	1.054
		3200	1.049
B3	400	8.7	0.997
		800	0.997
		1200	0.999
		1600	1.019
		2000	1.018

Figure 1. Comparison of normalized measured mass flow rates through microchannels versus the inlet Knudsen number.

Figure 2. Comparison of normalized measured streamwise pressure distributions.
2400	8.7	1.007	
2800	8.7	1.019	
3200	8.7	1.004	
3600	8.7	0.995	
C1	700	16.1	1.004
2000	16.1	1.045	
3300	16.1	1.039	
C2	700	26.4	0.992
2000	26.4	1.044	
3300	26.4	1.014	
C3	700	35.2	1.011
2000	35.2	1.032	
3300	35.2	1.036	
D1	700	13.2	1.016
1400	13.2	1.005	
2000	13.2	0.991	
2600	13.2	0.993	
3300	13.2	0.982	
D2	700	23.4	1.009
1400	23.4	0.979	
2000	23.4	0.997	
2600	23.4	1.015	
3300	23.4	1.035	
D3	700	33.7	0.987
1400	33.7	0.987	
2000	33.7	0.983	
2600	33.7	1.008	
3300	33.7	1.010	
D4	700	44.0	0.998
1400	44.0	0.983	
2000	44.0	1.010	
2600	44.0	1.012	
3300	44.0	1.092	

CONCLUSIONS

The measured data of mass flow rates and streamwise pressure distributions through microchannels at various experimental conditions are normalized by the kinetic factors M_c and p_k, respectively. The normalized comparison is satisfactory, except the few that show the small differences. This demonstrates that the measured data available are generally accurate. Consequently, the fitting formula of the measured mass flow rates and the kinetic solution of streamwise pressure distribution may be reliably applied to the design and optimization of MEMS devices.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science Foundation of China under grants 90205024 and 10425211.

REFERENCES

1. K. C. Pong, C. M. Ho, J. Q. Liu, and Y. C. Tai. Non-linear pressure distribution in uniform micro-channels. ASME-FED, 197, 51 (1994)
2. J. C. Harley, Y. Huang, H. Bau, and J. N. Zemel. Gas flow in micro-channels. *J. Fluid Mech.*, **248**, 257 (1995)
3. J. C. Shih, C. M. Ho, J. Liu, and Y. C. Tai. Non-linear pressure distribution in uniform microchannels. *ASME-AMD*, 238 (1995)
4. J. C. Shih, C. M. Ho, J. Q. Liu, and Y. C. Tai. Monatomic and polyatomic gas flow through uniform microchannels. *ASME-DSC*, 59, 197 (1996)
5. E. B. Arkilic, K. Breuer, and M. A. Schmidt. Gaseous slip flow in long micro-channels. *J. MicroElectroMechanical Systems*, **6**, 167 (1997)
6. E. B. Arkilic, M. A. Schmidt, and K. S. Breuer. Measurement of the TMAC in silicon microchannels. in Rarefied Gas Dynamics, edited by C. Shen, Peking University Press, p. 983 (1997)
7. E. B. Arkilic. Measurement of the mass flow and tangential momentum accommodation coefficient in silicon microchannels, Ph.D. thesis, MIT, FDRL TR 97-1 (1997)
8. E. B. Arkilic, K. S. Breuer and M. A. Schmidt. Mass flow and tangential momentum accommodation in silicon micromachined channels. *J. Fluid Mech.*, **437**, 29 (2001)
9. Y. Zohar, S. Y. K. Lee, W. Y. Lee, L. Jiang and P. Tong. Subsonic gas flow in a straight and uniform microchannel. *J. Fluid Mech.*, **472**, 257 (2002)
10. C. M. Ho and C. Y. Tai. Micro-electro-mechanical-systems (MEMS) and fluid flows. *Annu. Rev. Fluid Mech.*, **30**, 579 (1998)
11. J. Fan, and C. Shen, Statistical simulation of low-speed rarefied gas. *J. Comp. Phys.*, **167**, 393 (2001)
12. F. J. Alexander, A. L. Garcia, and B. J. Alder. Direct simulation Monte Carlo for thin-film bearings. *Phys. Fluids*, **6**, 3854 (1994)
13. S. Fukui, and R. Kaneko, A database for interpolation of Poiseuille flow rates for high Knudsen number lubrication problem. *J. Tribology*, **112**, 78 (1990)
14. S. Fukui, and R. Kaneko. Analysis of ultrathin gas film lubrication based on linearized Boltzmann equation: First report derivation of a generalized lubrication equation including thermal creep flow. *J. Tribology*, **110**, 253 (1988)
15. C. Shen. A strict kinetic solution of the finite length microchannel flow. to appear in the 3rd International Conference on Microchannels and Minichannels, June 13-15, 2005, Toronto, Ontario, Canada