ABSTRACT

As various databases of facial expressions have been made accessible over the last few decades, the Facial Expression Recognition (FER) task has gotten a lot of interest. The multiple sources of the available databases raised several challenges for facial recognition task. These challenges are usually addressed by Convolution Neural Network (CNN) architectures. Different from CNN models, a Transformer model based on attention mechanism has been presented recently to address vision tasks. One of the major issue with Transformers is the need of a large data for training, while most FER databases are limited compared to other vision applications. Therefore, we propose in this paper to learn a vision Transformer jointly with a Squeeze and Excitation (SE) block for FER task. The proposed method is evaluated on different publicly available FER databases including CK+, JAFFE, RAF-DB and SFEW. Experiments demonstrate that our model outperforms state-of-the-art methods on CK+ and SFEW and achieves competitive results on JAFFE and RAF-DB.

Keywords ViT · Squeeze and Excitation · Facial Expressions Recognition

1 Introduction

Year after year, human life is increasingly intertwined with Artificial Intelligence (AI)-based systems. As a result, there is a growing attention in technologies that can understand and interact with humans, or that can provide improved contact between humans. To that end, more researchers are involved in developing automated FER methods that can be summarised in three categories including Handcrafted, Deep Learning and Hybrid. Main handcrafted solutions[1, 2, 3] are based on techniques like local binary pattern (LBP), Histogram of Oriented Gradients (HOG) and Optical Flow (OF). They present good results on lab-made databases (CK+ [4] and JAFFE [5]), in contrast, they perform modestly on wild databases (SFEW [6] and RAF-DB [7]). Some researchers[8, 9, 10] have taken advantage of advancements in deep learning techniques, especially in CNN architectures, to outperform previous hand-crafted solutions. Others[11, 12]
propose solutions that mix the handcrafted techniques with deep learning techniques to address specific challenges in FER.

Impressive results [13, 14, 15] from Transformer models on Natural Language Processing (NLP) tasks have motivated the vision community to study the application of Transformers to computer vision problems. The idea is to represent an image as a sequence of patches in analogy of a sequence of words in a sentence in NLP domain. Transformers are made to learn parallel relation between sequence inputs through an attention mechanism which makes them theoretically suitable for both tasks NLP and image processing. The Transformer was firstly introduced by Vaswani et al. [13] as a machine translation model, and then multiple variants [13, 14, 15] were proposed to increase the model accuracy and overcome various NLP challenges. Recently, a Vision Transformer (ViT) is presented for different computer vision tasks from image classification [16], object detection [17] to image data generation [18]. The Transformer proves its capability and overcomes state-of-the-art performance in different NLP applications as well as in vision applications. However, these attention-based architectures are computationally more demanding than CNNs and training data hunger.

In this paper, we propose to alleviate the problem, that ViT has, caused by the lack of training data for FER with a block of SE. We also provide an internal representations analysis of the ViT on facial expressions. The contribution of this paper can be summarized in four-folds:

- Introduction of a SE block to optimize the learning of the ViT.
- Fine-tuning of the ViT on FER-2013 [19] database for FER task.
- Test of the model on four different databases (CK+ [4], JAFFE [5], RAF-DB [7], SFEW [6]).
- Analysis of the attention mechanism of the ViT and the effect of the SE block.

The remaining of this paper is organized as follows. Section 2 reviews the related work. Section 3 firstly gives an overview of the proposed method and then describes the details of the ViT and the SE block. Section 4 presents the experimental results. Finally, Section 5 concludes the paper.

2 Related Works

In this section, we briefly review some related works on ViT and facial expression recognition solutions.

2.1 Vision Transformer (ViT)

The ViT is first proposed by Dosovitskiy et al. [16] for image classification. The main part of the model is the encoder part of the Transformer as first introduced for machine translation by Vaswani et al. [13]. To transform the images into a sequence of patches they use a linear projection, and for the classification, they use only the token class vector. The model achieves state-of-the-art performance on ImageNet [20] classification using fine-tuning on JFT-300M [21]. From that and the fact that this model contains much more parameters (about 100M) than CNNs, we can say that ViT are data-hungry models. To address this heavily relying on large-scale databases, Touvron et al. [22] proposed DEIT model. It’s a ViT with two classification tokens. The first one is fed to a Multiple Layer Perceptron (MLP) head for the classification and the other one is used on the distillation process with a CNN teacher model pretrained on ImageNet [20]. The DEIT was only trained on ImageNet and outperforms both the ViT model and the teacher model. Yuan et al. [23] overcome the same limitation of ViT using novel tokenization process. The proposed T2T-ViT [23] model has two modules: 1) the T2T tokenization module that consists in two steps: re-structurization and soft split, to model the local information and reduce the length of tokens progressively, and 2) the Transformer encoder module. It achieves state-of-the-art performance on ImageNet [20] classification without a pretraining on JFT-300M [21].

2.2 Facial Expression Recognition

The FER task has progressed from handcrafted [1, 2, 3] solutions to deep learning [8, 24, 10, 25] and Hybrid [11, 12, 26] solutions. In 2014, Turan et al. [2] proposed a region-based handcrafted system for FER. They extracted features from the eye and mouth regions using Local Phase Quantization (LPQ) and Pyramid of Histogram of Oriented Gradients (PHOG). A Principal Component Analysis (PCA) is used as a tool for features selection. They fused the two groups of features with a Canonical Correlation Analysis (CCA) and finally, a Support Vector Machine (SVM) is applied as a classifier. More recent work [3], proposed an automatic FER system based on LBP and HOG as features extractor. A local linear embedding technique is used to reduce features dimensionality and a SVM for the classification part. They reached state-of-the-art performance for handcrafted solutions on JAFFE [5], KDEF [27] and RaFD [28]. Recently, more challenging and rich data have been made publicly available and with the progress of deep learning architectures, many deep learning solutions based on CNN models are revealed. Oterdout et al. [24] proposed to use Symmetric
Positive Definite (SPC) to replace the fully connected layer in CNN architecture for facial expression classification. Wang et al. [25] proposed a region-based solution with a CNN model with two blocks of attention. They perform different crop of the same image and apply a CNN on each patch. A self-attention module is then applied followed by a relation attention module. On the self-attention block, they use a loss function in a way that one of the cropped image may have a weight larger than the weight given to the input image. More recently, Farzaneh et al. [10] have integrated an attention block to estimate the weights of features with a sparse center loss to achieve intra-class compactness and inter-class separation. Deep learning based solutions have widely outperformed handcrafted solutions especially on wild databases like RAF-DB [7], SFEW[6], AffectNet [29] and others.

Other researchers have thought about combining deep learning techniques with handcrafted techniques into a hybrid system. Levi et al. [11] proposed to apply CNN on the image, its LBP and the mapped LBP to a 3D space using Multi Dimensional Scaling (MDS). Xu et al. [12] proposed to fuse CNN features with LBP features and they used PCA as features selector. Newly, many Transformer models have been introduced for different computer vision tasks and in that context Ma et al. [26] proposed a convolutional vision Transformer. They extract features from the input image as well as form its LBP using a ResNet18. Then, they fuse the extracted features with an attentional selective fusion module and fed the output to a Transformer encoder with a MLP head to perform the classification. To our knowledge, [26] is considered as the first solution based on Transformer architecture for FER. However, our proposed solution differs in applying the Transformer encoder directly on the image and not on the extracted features which may reduce the complexity of the proposed system and aid to study and analyse the application of ViT on FER problem as one of the interesting vision tasks.

Table 8 (presented in the Supplementary Material) summarizes some state-of-the-art approaches with details on the used architecture and databases. We can notice that different databases are used to address different issues and challenges. From these databases we selected 4 of them to study our proposed solution and compare it with state-of-the-art works. The selected databases are described in the experiments and comparison Section 4. In the next section we will describe our proposed solution.

3 Proposed Method

In this section, we introduce the proposed solution in three separate paragraphs: an overview, then some details of the ViT architecture and the attention mechanism, and finally the SE block.

3.1 Architecture overview

The proposed solution contains two main parts, a vision Transformer to extract local attention features and a SE block to extract global relation from the extracted features which may optimize the learning process on small facial expressions databases.

3.2 Vision Transformer

The vision Transformer consists of two steps: the tokenization and the Transformer encoder. In the tokenization step, the image is cropped onto L equal $(h \times h)$ dimension patches and then flattened to a vector. An extra learnable vector is added as a token for classification called "cls_tkn". Each vector is marked with a position value. To summarize, the input of the Transformer encoder is $L + 1$ vectors of length $h^2 + 1$.

As shown in Figure 1, the Transformer encoder is a sequence of N blocks of the attention module. The main part of the attention block is the Multi-Head Attention (MHA). The MHA is build with z heads of self-Attention, also called intra-attention. According to [13], the idea of the self-attention is to relate different positions of a single sequence in order to compute a representation of the sequence. For a given sequence, 3 layers are used: Q-layer, K-layer and V-layer and the self-attention function will be a mapping of a query (Q or Q-layer) and a set of key-value (K or K-layer; V or V-layer) pairs to an output. The self-attention function is summarized by Equation (1):

$$\text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V, \tag{1}$$

And so the MHA Equation (2) will be:

$$\text{MHA}(Q, K, V) = \text{Concat}(\text{head}_0, ..., \text{head}_z)W^O,$$

$$\text{head}_i = \text{Attention}(QW_i^O, KW_i^K, VW_i^V). \tag{2}$$

where the projections W^O, W_i^Q, W_i^K and W_i^V are parameters’ matrices.
Learning ViT with SE for FER

Figure 1: Overview of the proposed solution. The used ViT is the base version with 14 layers of Transformer encoder and patch dimension of (16×16). The ViT is already trained on JFT-300M [21] database and fine-tuned to ImageNet-1K [20] database.

3.3 Squeeze and Excitation (SE)

The Squeeze and Excitation block, shown on the right of the Figure 1, is also an attention mechanism. It contains widely fewer parameters than self-attention block as shown by Equation (3) where two fully connected layers are used with only one operation of pointwise multiplication. It is firstly introduced in [30] to optimize CNN architecture as a channel-wise attention module, concretely we use only the excitation part since the squeeze part is a pooling layer build to reduce the dimension of the 2d-CNN layers.

$$SE(cls_tkn) = cls_tkn \odot \text{Excitation}(cls_tkn),$$
$$\text{Excitation}(cls_tkn) = \text{Sigmoid}(FCL_{\gamma}(\text{ReLU}(FCL_{\gamma/4}(cls_tkn))))).$$

Equation (3)

where FCL_{γ} and $FCL_{\gamma/4}$ are fully connected layers with respectively γ neurons and $\gamma/4$ neurons, γ is the length of the cls_tkn which is the classification token vector and \odot is a pointwise multiplication. The idea of using SE in our architecture is to optimize the learning of the ViT by learning more global attention relations between extracted local attention features. Thus, the SE is introduced on top of the Transformer encoder more precisely on the classification token vector. Different from the self-attention block where it is used inside the Transformer encoder to encode the input sequence and extract features through cls_tkn, the SE is applied to recalibrate the feature responses by explicitly modelling inter-dependencies among cls_tkn channels.

4 Experiments and Comparison

In this section, we first describe the used databases, and then provide an ablation study for different contributions with other details on the proposed solution and an analysis of additional visualisation for in-depth understanding of the ViT applied on FER task. Finally, we present a comparison with state-of-the-art works.

4.1 FER Databases

CK+ [4]: published on 2010, and it is an extended version of Cohne-Kanade (CK) database. It contains 593 sequences taken in lab environment with two data formats (640×490) and (640×480). It encompasses the 7 basic expressions which are: Angry, Disgust, Fear, Happy, Neutral, sad and Surprise, plus the Contempt expression. In our case, we only worked on the 7 basic expressions to have a fair study with other databases and with most state-of-the-art solutions.

JAFFE [5]: The Japanese Female Facial Expression (JAFFE) database is a 213 gray scale images of acted Japanese female facial expressions. All the images are resized onto (256×256). It contains the 7 basic expressions.

FER-2013 [19]: The FER-2013 database, or sometimes referred as FERPlus, is almost 35k facial expressions database.
Learning ViT with SE for FER

on 7 basic expressions. Published in 2013 in a challenge on Kaggle plate-form\(^1\). The images are collected from the web converted to gray scale model and resized to \((48 \times 48)\). Theoretically, this database could suffer from mislabeling since a 68% \(\pm 5\%\) human accuracy is reported. However, since it is a large spontaneous databases of facial expressions we used it as a pre-training data for our model.

SFEW [6]: The Static Facial Expression in the Wild (SFEW) is a very challenging databases with images captured from different movies. It contains 1,766 RGB images with size of \((720 \times 576)\). It is also labeled with the 7 basic expressions.

RAF-DB [7]: The Real-world Affective Faces Database (RAF-DB) is a recent database with nearly 30K of mixed RGB and gray scale images collected from different internet websites. This database contains two separate sub-data: one with 7 basic expressions and the other with 12 compound facial expressions. In the experiments, we used the 7 basic expressions version.

Table 7 (presented in the Supplementary Material) summarizes previous presented databases with reference to the year and the publication conference and some other details. For FER task there are other publicly available databases that address different issues, but we restrained our choices on these databases because they are in the center of interest of major state-of-the-art solutions.

4.2 Architecture and training parameters

In all experiments, we use a pretrained ViT-B16-224 (weights\(^2\)), the base version of the ViT with \((16 \times 16)\) patch size and \((224 \times 224)\) input image size. Since ViT training needs large data to reach good performance we used the following list of data augmentation: Random Horizontal flip, Random GrayScale conversion, different values of brightness, contrast and saturation. All images are converted to 3 channels, resized to \((224 \times 224)\) and normalized. The regularisation methods we used in this work are Cutout [31] and Mixup [32]. The training is performed with categorical cross entropy as a loss function and AdamW [33] as an optimizer. The learning rate is fixed to \(1.6 \times 10^{-4}\) with a batch size of 16. When training on FER-2013 database, the number of epochs is fixed to 8 and for the rest of databases it is fixed to 10. The training process is carried-out on a Tesla K80 TPU with 8 cores using Pytorch1.7.

4.3 Ablation Study

In the ablation study, we assess the performance of the ViT architecture, the added SE block and the use of FER-2013 [19] as a pre-training data. Table 1 shows the result of different experiments on CK+, JAFFE, RAF-DB and SFEW. From first line, we can notice that ViT can reach state-of-the-art performance on lab-made databases like CK+ [4] and JAFFE [5], however on SFEW [6] the Transformer is less effective. In all cases, we can notice that there is a benefit of using SE and the pre-training phase on FER-2013 [19]. The two contributions may not be complementary on lab-made data (CK++ [4] and JAFFE [5]). For example, on CK++ [4] we can notice that the pre-training improves the performance only when combined with the SE. On JAFFE [5], the best solution is the one that relies on pre-training without the SE. Although, on wild databases (RAF-DB [7] and SFEW [6]) the added value of both contributions is more noticeable, specially on SFEW [6] we can obtain a 16% gain on accuracy compared to the ViT without a SE neither a pre-training on FER-2013 [19].

The confusion matrices of the proposed ViT+SE pre-trained on FER-2013 are reported in Figure 2, the left plot is for the validation set of RAF-DB [7] and the right plot is for the validation set of SFEW [6]. The Happy and Neutral expressions are the best recognized on the SFEW [6] database with respectively an accuracy of 69% and 57%. For RAF-DB [7], the Happy expression has the best accuracy with 93% followed by the Sad expression with 89% accuracy.

Table 1: Ablation Study

Model	Pre-train	CK+ [4]	JAFFE [5]	RAF-DB [7]	SFEW [6]
ViT	X*	0.9857	0.8823	0.8595	0.3828
ViT + SE	X*	0.9949	0.9061	0.8618	0.4084
ViT	FER-2013 [19]*	0.9817	\textbf{0.9483}	0.8703	0.5035
ViT + SE	FER-2013 [19]*	extbf{0.9980}	0.9292	\textbf{0.8722}	\textbf{0.5429}

* The used ViT model is already trained on ImageNet [20].

\(^1\)https://www.kaggle.com/msambare/FER-2013

\(^2\)https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
Learning ViT with SE for FER

Figure 2: Confusion matrices of ViT+SE on the validation set of RAF-DB (left) and the validation set of SFEW (right).

4.4 Transformer visualisation and analysis

In this section, we have conducted a various set of experiments in RAF-DB database. Specially, we evaluate the classification outputs of the model through t-SNE and we provide a visual analysis of the ViT model performance with the SE in comparison with CNN.

Figure 3 shows the t-SNE of the extracted features from the ViT, ViT+SE before and after the SE block and compared with t-SNE of ResNet50 [34] features trained also on RAF-DB. Based on t-SNE, the ViT architectures enable better separation of classes compared to CNN base-line architecture (ResNet50).
In addition, the SE block enhances ViT model robustness, as the intra-distances between clusters are maximized. Interestingly, the features before the SE form a more compact clusters with inter-distance lower than the features after the SE, which may interpret the features before SE are more robust than those after the SE. However, we tried to use the before SE features directly in the classification task and no performance gain has been reported. Figure 4 shows different maps of attention of the ViT, the ViT+SE and the ResNet50, using Grad-Cam [35], Score-Cam [36] and Eigen-Cam [37] tools. This visualisation shows that ViT architectures succeed to focus more locally which confirm the interest of using the self-attention blocks for computer vision tasks. Once again, we can notice the gain of using the SE block with different tools but mostly using Eigen-CAM [37].

Other investigations of the ViT architecture are presented in the Supplementary Material (Figure 5) that shows the evolution of the attention from first attention block to a deeper attention blocks and we can notice that the focus of the ViT goes from global attention to more local attention. This particular behaviour of the ViT on FER task is the motivation of using SE block on top of it to build a calibrated relation between different local focuses. In Figure 6 (Supplementary Material), we show the focus of the ViT compared to the ViT + SE for different facial expressions and it shows how the SE can rectify the local attention feature extracted with the ViT, by searching for a global attention relations.

4.5 Comparison with state-of-the-art

In this paper, we compare our proposed model ViT+SE pre-trained on FER-2013 [19] database with state-of-the-art solution on 2 lab-made databases (CK+ [4] and JAFFE [5]) and 2 wild databases (RAF-DB [7] and SFEW [6]). Table 2 shows that we have the highest accuracy on CK+ [4] with a 99.80% using a 10-fold cross-validation protocol. Table 5 shows that we set the new state-of-the-art performance for single models on SFEW [6] with 54.29% accuracy, however a higher accuracy (56.4%) is reported in [25] using ensemble models. Furthermore, in Table 3 the proposed solution have a good 10-fold cross validation accuracy on JAFFE [5] with 92.92%. To our knowledge, it is the highest performance with a deep learning based solution but still less by almost 3% than the highest obtained accuracy with newly handcrafted proposed solution [3]. Table 4 shows that our solution has a good result on RAF-DB [7] with an accuracy of 87.22%, to position as the third best solution among state-of-the-art on this database, less than the best record by nearly 3%.

Ref.	Model Type	Accuracy
[2] 2014	Handcrafted	0.9503
[9] 2020	Deep Learning	0.9759
[38] 2021	Deep Learning	0.9800
ViT + SE	Deep Learning	**0.9980**

Table 3: Comparison on JAFFE [5] with 10-fold cross validation.

Ref.	Model Type	Accuracy
[39] 2015	Handcrafted	0.9180
[3] 2020	Handcrafted	**0.9600**
[38] 2021	Deep Learning	0.9280
ViT + SE	Deep Learning	**0.9292**
5 Conclusion

In this work, we introduced the ViT+SE, a simple scheme that optimize the learning of the ViT by an attention block called Squeeze and Excitation. It performs impressively well for improving the performance of ViT in FER task. Furthermore, it also improves the robustness of the model as shown in the t-SNE representation of the extracted features and in the attention maps. We have presented the classification performance on lab-made databases (CK+ and JAFFE) and wild databases (RAF-DB and SFEW) to evaluate the gain of the SE block and the use of FER-2013 as a pre-training database. By comparing to different state-of-the-art solutions, we have shown that our proposed solution achieves the highest performance with a single model on CK+ and SFEW, and competitive results on JAFFE and RAF-DB. As future work, we aim to extend the ViT architecture to address the temporal aspect for a more competitive task like micro-expressions recognition.

References

[1] Y. Yacoob and L.S. Davis. Recognizing human facial expressions from long image sequences using optical flow. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 18(6):636–642, 1996.

[2] Cigdem Turan and Kin-Man Lam. Region-based feature fusion for facial-expression recognition. In *2014 IEEE International Conference on Image Processing (ICIP)*, pages 5966–5970, 2014.

[3] Y. Yaddaden, M. Adda, and A. Bouzouane. Facial expression recognition using locally linear embedding with lbp and hog descriptors. In *2020 2nd International Workshop on Human-Centric Smart Environments for Health and Well-being (IHSI)*, pages 221–226, 2021.

[4] P. Lucey, J. F. Cohn, T. Kanade, J. Saragih, Z. Ambadar, and I. Matthews. The extended cohn-kanade dataset (ck+): A complete dataset for action unit and emotion-specified expression. In *2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops*, pages 94–101, 2010.

[5] M. Lyons, S. Akamatsu, M. Kamachi, and J. Gyo. Coding facial expressions with gabor wavelets. In *Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition*, pages 200–205, 1998.

[6] A. Dhall, R. Goecke, S. Lucey, and T. Gedeon. Static facial expression analysis in tough conditions: Data, evaluation protocol and benchmark. In *2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops)*, pages 2106–2112, 2011.

[7] Shan Li, Weihong Deng, and JunPing Du. Reliable crowdsourcing and deep locality-preserving learning for expression recognition in the wild. In *2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 2584–2593. IEEE, 2017.

[8] J. Zhou, X. Zhang, Y. Liu, and X. Lan. Facial expression recognition using spatial-temporal semantic graph network. In *2020 IEEE Conference on Image Processing (ICIP)*, pages 1961–1965, 2020.

[9] Zijun Cui, Tengfei Song, Yuru Wang, and Qiang Ji. Knowledge augmented deep neural networks for joint facial expression and action unit recognition. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, *Advances in Neural Information Processing Systems*, volume 33, pages 14338–14349. Curran Associates, Inc., 2020.

[10] Amir Hossein Farzaneh and Xiaojun Qi. Facial expression recognition in the wild via deep attentive center loss. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)*, pages 2402–2411, January 2021.

[11] Gil Levi and Tal Hassner. Emotion recognition in the wild via convolutional neural networks and mapped binary patterns. In *Proceedings of the 2015 ACM on International Conference on Multimodal Interaction*, ICMI ’15, page 503–510, New York, NY, USA, 2015. Association for Computing Machinery.
Learning ViT with SE for FER

[12] Q. Xu and N. Zhao. A facial expression recognition algorithm based on cnn and lbp feature. In 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), volume 1, pages 2304–2308, 2020.

[13] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics.

[15] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach, 2019. cite arxiv:1907.11692.

[16] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

[17] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-end object detection with transformers. In European Conference on Computer Vision, pages 213–229. Springer, 2020.

[18] Yifan Jiang, Shiyu Chang, and Zhangyang Wang. Transgan: Two transformers can make one strong gan. arXiv preprint arXiv:2102.07074, 2021.

[19] Pierre-Luc Carrier, Aaron Courville, Ian J Goodfellow, Medhi Mirza, and Yoshua Bengio. Fer-2013 face database. Université de Montréal, 2013.

[20] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pages 248–255, 2009.

[21] Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. Revisiting unreasonable effectiveness of data in deep learning era. In 2017 IEEE International Conference on Computer Vision (ICCV), pages 843–852, 2017.

[22] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé Jégou. Training data-efficient image transformers & distillation through attention. arXiv preprint arXiv:2012.12877, 2020.

[23] Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Francis EH Tay, Jiashi Feng, and Shuicheng Yan. Tokens-to-token vit: Training vision transformers from scratch on imagenet. arXiv preprint arXiv:2101.11986, 2021.

[24] Naima Otberdout, Anis Kacem, M. Daoudi, Lahoucine Ballihi, and S. Berretti. Deep covariance descriptors for facial expression recognition. In BMVC, 2018.

[25] K. Wang, Xiaojiang Peng, Jianfei Yang, Debin Meng, and Yu Qiao. Region attention networks for pose and occlusion robust facial expression recognition. IEEE Transactions on Image Processing, 29:4057–4069, 2020.

[26] Fuyan Ma, Bin Sun, and Shutao Li. Robust facial expression recognition with convolutional visual transformers. ArXiv, abs/2103.16854, 2021.

[27] D. Lundqvist, A. Flykt, and A. Öhman. kdef, cd rom from department of clinical neuroscience,psychology section. karolinska institutet, 1998.

[28] Oliver Langner, Ron Dotsch, Gijsbert Bijlstra, Daniel H. J. Wigboldus, Skyler T. Hawk, and Ad van Knippenberg. Presentation and validation of the radboud faces database. Cognition and Emotion, 24(8):1377–1388, 2010.

[29] A. Mollahosseini, B. Hasani, and M. H. Mahoor. Affectnet: A database for facial expression, valence, and arousal computing in the wild. IEEE Transactions on Affective Computing, 10(01):18–31, Jan 2019.

[30] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7132–7141, 2018.

[31] Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks with cutout. arXiv preprint arXiv:1708.04552, 2017.
Learning ViT with SE for FER

[32] Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk minimization. *International Conference on Learning Representations*, 2018.

[33] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *ICLR*, 2019.

[34] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 770–778, 2016.

[35] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based localization. In *2017 IEEE International Conference on Computer Vision (ICCV)*, pages 618–626, 2017.

[36] Haofan Wang, Zifan Wang, Mengnan Du, Fan Yang, Zijian Zhang, Sirui Ding, Piotr Mardziel, and Xia Hu. Score-cam: Score-weighted visual explanations for convolutional neural networks. In *2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)*, pages 111–119, 2020.

[37] Mohammed Bany Muhammad and M. Yeasin. Eigen-cam: Class activation map using principal components. *2020 International Joint Conference on Neural Networks (IJCNN)*, pages 1–7, 2020.

[38] Shervin Minaee and AmirAli Abdolrashidi. Deep-emotion: Facial expression recognition using attentional convolutional network. *Sensors (Basel, Switzerland)*, 21, 2021.

[39] S L Happy and Aurobinda Routray. Automatic facial expression recognition using features of salient facial patches. *IEEE Transactions on Affective Computing*, 6(1):1–12, 2015.

[40] Jiawei Shi and Songhao Zhu. Learning to amend facial expression representation via de-albino and affinity. *ArXiv*, abs/2103.10189, 2021.

[41] Jie Cai, Zibo Meng, Ahmed-Shehab Khan, Zhiyuan Li, James O’Reilly, and Yan Tong. Island loss for learning discriminative features in facial expression recognition. *2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018)*, pages 302–309, 2018.

[42] M. Taini, G. Zhao, S. Z. Li, and M. Pietikainen. Facial expression recognition from near-infrared video sequences. In *2008 19th International Conference on Pattern Recognition*, pages 1–4, 2008.

[43] Abhinav Dhall, O.V. Ramana Murthy, Roland Goecke, Jyoti Joshi, and Tom Gedeon. Video and image based emotion recognition challenges in the wild: Emotiw 2015. In *Proceedings of the 2015 ACM on International Conference on Multimodal Interaction, ICMI ’15*, page 423–426, New York, NY, USA, 2015. Association for Computing Machinery.

[44] Deepali Aneja, Alex Colburn, Gary Faigin, Linda Shapiro, and Barbara Mones. Modeling stylized character expressions via deep learning. In *Asian conference on computer vision*, pages 136–153. Springer, 2016.

[45] Emad Barsoum, Cha Zhang, C. Canton-Ferrer, and Zhengyou Zhang. Training deep networks for facial expression recognition with crowd-sourced label distribution. *Proceedings of the 18th ACM International Conference on Multimodal Interaction*, 2016.
Learning Vision Transformer with Squeeze and Excitation for Facial Expression Recognition (Supplementary Material)

Abstract

In this supplementary material, we give further details on the conducted experiments and present a summary of the state-of-the-art solutions. In particular, we provide a visual illustrations attention maps for different expressions and at different attention layers. Besides, we support our set of experiments with confusion matrices on RAF-DB and cross database evaluation on CK+. Finally, we provide additional tables that summarize both state-of-the-art solutions and used databases.

1 Cross-database evaluation and visual illustrations

Cross-database evaluation: To verify the generalisation ability of our model, we conduct a cross-database evaluation on CK+. The results are summarized in Table 6. It shows that the ViT generalizes better than a baseline CNN (ResNet50), and the proposed ViT+SE model enables the best generalization from different training databases when tested on CK+. However, the generalization ability is still modest and we aim to improve it in a future work.

Table 6: Cross-database evaluation on CK+.

Model	Train	Test	Accuracy
ResNet50	CK+	CK+	0.9488
	RAF-DB	CK+	0.3517
	SFEW	CK+	0.2905
	FER2013	CK+	0.3456
ViT	CK+	CK+	0.9817
	RAF-DB	CK+	0.5443
	SFEW	CK+	0.3812
	FER2013	CK+	0.4098
ViT+SE	CK+	CK+	**0.9980**
	RAF-DB	CK+	**0.5576**
	SFEW	CK+	**0.5341**
	FER2013	CK+	**0.6514**

Attention Maps: In this work, we used Grad-Cam [35], Score-Cam [36] and Eigen-Cam [37] as tools to provide visual analysis of the proposed deep learning architectures. (code available in\(^3\)).

Grad-CAM [35]: the Gradient-weighted Class Activation Mapping (CAM) uses the gradient of any target following to the selected layer in the model to generate a heat map that highlight the important region in the image for predicting the target.

Score-CAM [36]: the Score-weighted CAM is a linear combination of weights and activation maps. The weights are obtained by passing score of each activation map forward on target class.

Eigen-CAM [37]: it computes the principal components of the learned features from the model layers.

Confusion matrices: Figure 7 shows the confusion matrices of the validation set of RAF-DB for ResNet50, ViT and ViT+SE. ViT and ViT+SE have better performance on all expressions except the Happy expression compared to ResNet50 performance. Although, the ViT+SE is 0.19% more accurate than ViT, it only outperforms in 4 facial expressions out of 7 basic expressions, which are Fear, Happy, Sad and Surprise. The ViT performs better in Angry, Disgust and Neutral expressions.

\(^3\)https://github.com/jacobgil/pytorch-grad-cam
Learning ViT with SE for FER

Figure 5: score-CAM maps and the guided back-propagation (GBP) at different layers of attention of the ViT for fear expression (image from the validation set of RAF-DB).

Figure 6: Attention maps based on GRAD-CAM for different expressions (images from the validation set of RAF-DB).

Figure 7: Confusion Matrices of RAF-DB for ResNet50 (0.8061), ViT (0.8703) and ViT+SE (0.8722).

2 State-of-the-art

Survey on the used databases: Table 7 shows an overview of the facial experiments databases that are used in our experiments.
Learning ViT with SE for FER

Summary of state-of-the-art: In Table 8 we summarize different proposed solutions in literature into 3 different approaches: Handcrafted, Hybrid and Deep Learning. The Table gives details about the year, the core of the proposed architecture and the databases used for the evaluation.

Table 7: Survey on databases of Macro-Expressions. BE: Basic Expressions, CE: Compound Expressions, Publ.: Publications, Condit.: Conditions.

Database	Publ. Year	Annotation	Condit.	Data format	Classes
CK+ [4]	CVPRW 2010	593 sequences*†	Lab	640 × 490, 640 × 480	8BE‡
JAFFE [5]	FG 1998	213 images†	Lab	256 × 256	7 BE
FER-2013 [19]	ICONIP 2013	35,887 images†	Web	48 × 48	7 BE
SFEW [6]	ICCV 2011	1,766 images*	Movie	720 × 576	7 BE
RAF-DB [7]	CVPR 2017	29,672 images†	Internet	256 × 256	7 BE

† Gray scale, * RGB, ‡ 7BE + Contempt

Table 8: Summary of representative approaches for facial expressions recognition.

Methods	Publ. Year	Architecture	Databases
Handcrafted			
[1] TPAMI 1996	OF	Private database	
[2] ICIP 2014	PHOG, LPQ	CK+ [4]	
[39] Trans. AC. 2015	LBP	JAFFE [5], CK+ [4]	
[3] IHSH 2020	LBP, HOG	JAFFE [5], KDEF [27], RafD [28]	
Deep learning			
[24] BMVC 2018	CNN	Oulu-CASIA [42], SFEW [6]	
[25] Trans. IP. 2020	CNN	FER-2013 [19], RAF-DB [7], SFEW [6], AffectNet [29]	
[10] WACV 2021	CNN	RAF-DB [7], AffectNet [29]	
[38] Sensors 2021	CNN	FER-2013 [19], CK+ [4], FERG [44], and JAFFE [5]	
Hybrid			
[11] ICMI 2015	LBP, CNN	EmotiW 2015 [43]	
[12] ITNEC 2020	LBP, CNN	FER-2013 [19]	
[26] arXiv 2021	CNN, ViT	FERPlus [45], RAF-DB [7], AffectNet [29], CK+ [4]	