Optimistic Policy Optimization is Provably Efficient in Non-stationary MDPs

Han Zhong∗ Zhuoran Yang† Zhaoran Wang‡ Csaba Szepesvári§

Abstract

We study episodic reinforcement learning (RL) in non-stationary linear kernel Markov decision processes (MDPs). In this setting, both the reward function and the transition kernel are linear with respect to the given feature maps and are allowed to vary over time, as long as their respective parameter variations do not exceed certain variation budgets. We propose the periodically restarted optimistic policy optimization algorithm (PROPO), which is an optimistic policy optimization algorithm with linear function approximation. PROPO features two mechanisms: sliding-window-based policy evaluation and periodic-restart-based policy improvement, which are tailored for policy optimization in a non-stationary environment. In addition, only utilizing the technique of sliding window, we propose a value-iteration algorithm. We establish dynamic upper bounds for the proposed methods and a matching minimax lower bound which shows the (near-) optimality of the proposed methods. To our best knowledge, PROPO is the first provably efficient policy optimization algorithm that handles non-stationarity.

∗Peking University. Email: hanzhong@stu.pku.edu.cn
†Princeton University. Email: zy6@princeton.edu
‡Northwestern University. Email: zhaoranwang@gmail.com
§DeepMind and University of Alberta. Email: csaba.szepesvari@ualberta.ca
1 Introduction

Reinforcement Learning (RL) (Sutton and Barto, 2018), coupled with powerful function approximators such as deep neural network, has demonstrated great potential in solving complicated sequential decision-making tasks such as games (Silver et al., 2016, 2017; Vinyals et al., 2019) and robotic control (Kober et al., 2013; Gu et al., 2017; Akkaya et al., 2019; Andrychowicz et al., 2020). Most of these empirical successes are driven by deep policy optimization methods such as trust region policy optimization (TRPO) (Schulman et al., 2015) and proximal policy optimization (PPO) (Schulman et al., 2017), whose performance has been extensively studied recently (Agarwal et al., 2019; Liu et al., 2019; Shani et al., 2020; Mei et al., 2020; Cen et al., 2020).

While classical RL assumes that an agent interacts with a time-invariant (stationary) environment, when deploying RL to real-world applications, both the reward function and Markov transition kernel can be time-varying. For example, in autonomous driving (Sallab et al., 2017), the vehicle needs to handle varying conditions of weather and traffic. When the environment changes with time, the agent must quickly adapt its policy to maximize the expected total rewards in the new environment. Meanwhile, another example of such a non-stationary scenario is when the environment is subject to adversarial manipulations, which is the case of adversarial attacks (Pinto et al., 2017; Huang et al., 2017; Pattanaik et al., 2017). In this situation, it is desired that the RL agent is robust against the malicious adversary.

Although there is a huge body of literature on developing provably efficient RL methods, most the existing works focus on the classical stationary setting, with a few exceptions include Jaksch et al. (2010); Gajane et al. (2018); Cheung et al. (2019a,c, 2020); Mao et al. (2020); Ortner et al. (2020); Domingues et al. (2020); Zhou et al. (2020c); Touati and Vincent (2020); Wei and Luo (2021). However, these works focus on value-based methods which only output deterministic/greedy policies, and mostly focus on the tabular case where the state space is finite. It is well-known that deterministic algorithms cannot tackle the adversarial rewards even in the bandit scenario (Lattimore and Szepesvári, 2020). In contrast, the policy optimization (EXP3-type) algorithms are ready to tackle the adversarial rewards in both bandits (Lattimore and Szepesvári, 2020) and RL (Cai et al., 2019; Efroni et al., 2020). Thus, motivated by the empirical successes and theoretical advantages of policy optimization
algorithms, it is desired to answer the following problem:

How can we design a provably efficient policy optimization algorithm for non-stationary environment in the context of function approximation?

There are five intertwined challenges associated with this problem: (i) non-stationary rewards with bandit feedback or even the adversarial rewards with full-information feedback. See Remark 3.2 for the reason why we only consider the full-information feedback adversarial rewards setting. (ii) non-stationary transition kernel, (iii) exploration-exploitation tradeoff that is inherent to online RL, (iv) incorporating function approximation in the algorithm, and (v) characterizing the convergence and optimality of policy optimization. Existing works merely address a subset of these four challenges and it remains open how to tackle all of them simultaneously. See Table 1 for detailed comparisons.

More importantly, these five challenges are coupled together, which requires sophisticated algorithm design. In particular, due to challenges (i), (ii) and (iv), we need to track the non-stationary or even adversarial reward function and transition kernel by function estimation based on the feedbacks. The estimated model is also time-varying and thus the corresponding policy optimization problem (challenge (v)) has a non-stationary objective function. Moreover, to obtain sample efficiency, we need to strike a balance between exploration and exploitation in the policy update steps (challenge (iii)).

In this work, we propose a periodically restarted optimistic policy optimization algorithm (PROPO) which successfully tackle the four challenges above. Specifically, we focus on the model of episodic linear kernel MDP (Ayoub et al., 2020; Zhou et al., 2020b) where both the reward and transition functions are parameterized by linear functions. Besides, we focus on the non-stationary setting and adopt the dynamic regret as the performance metric. Moreover, PROPO performs a policy evaluation step and a policy improvement step in each iteration. To handle challenges (i)–(iii), we propose a novel optimistic policy evaluation method that incorporates the technique of sliding window to handle non-stationarity. Specifically, based on the non-stationary bandit feedbacks, we propose to estimate the time-varying model via a sliding-window-based least-squares regression problem, where we only keep a subset of recent samples in regression. Based on the model estimator, we construct an optimistic value function by implementing model-based policy evaluation and adding an exploration bonus. Then, using such an optimistic value function as the update direction,
in the policy improvement step, we propose to obtain a new policy by solving a Kullback-Leibler (KL) divergence regularized problem, which can be viewed as a mirror descent step. Moreover, as the underlying optimal policy is time-varying (challenge (v)), we additionally restart the policy periodically by setting it to uniform policy every τ episodes. The two novel mechanisms, sliding window and periodic restart, respectively enable us to track the non-stationary MDP based on bandit feedbacks and handle the time-varying policy optimization problem.

Finally, to further exhibit effect of these two mechanisms, we propose an optimism-based value iteration algorithm, dubbed as SW-LSVI-UCB, which only utilize the sliding window
and does not restart the policy as challenge (v) disappears.

1.1 Our Contributions

Our contribution is four-fold. First, we propose PROPO, a policy optimization algorithm designed for non-stationary linear kernel MDPs. This algorithm features two novel mechanisms, namely sliding window and periodic restart, and also incorporates linear function approximation and a bonus function to incentivize exploration. Second, we prove that PROPO achieves a dynamic regret sublinear in $d, \Delta, H, T,$ and P_T. Here d is the feature dimension, Δ is the total variation budget, H is the episode horizon, T is the total number of steps, and P_T is the variation budget of adjacent optimal policies. Third, to separately demonstrate the effect of sliding window, we propose a value-iteration algorithm, SW-LSVI-UCB, which adopts sliding-window-based regression to handle non-stationarity. Such an algorithm is shown to achieve a similar sublinear dynamic regret. Finally, we establish a $\Omega(d^{5/6}\Delta^{1/3}H^{2/3}T^{2/3})$ lower bound on the dynamic regret, which shows the (near-)optimality of the proposed algorithms. To our best knowledge, PROPO is the first provably efficient policy optimization algorithm under the non-stationary environment.

1.2 Related Work

Our work adds to the vast body of existing literature on non-stationary MDPs. A line of work studies non-stationary RL in the tabular setting. See Jaksch et al. (2010); Gajane et al. (2018); Cheung et al. (2019a,c, 2020); Fei et al. (2020); Mao et al. (2020); Ortner et al. (2020) and the references therein for details. Recently, Domingues et al. (2020) consider the non-stationary RL in continuous environments and proposes a kernel-based algorithm. More related works are Zhou et al. (2020c); Touati and Vincent (2020), which study non-stationary linear MDPs, but their setting is not directly comparable with ours since linear MDPs cannot imply linear kernel MDPs. Moreover, Zhou et al. (2020c); Touati and Vincent (2020) do not incorporate policy optimization methods, which are more difficult because we need to handle the variation of the optimal policies of adjacent episodes and value-based methods only need to handle the non-stationarity drift of reward functions and transition kernels. Fei et al. (2020) also makes an attempt to investigate policy optimization algorithm for non-stationary environments. However, this work requires full-information feedback and
only focuses on the tabular MDPs with time-varying reward functions and time-invariant transition kernels.

As a special case of MDP problems with unit horizon, bandit problems have also been the subject of intense recent interest. See Besbes et al. (2014, 2019); Russac et al. (2019); Cheung et al. (2019a); Chen et al. (2019) and the references therein for details.

Another line closely related to our work is policy optimization. As proved in Yang et al. (2019); Agarwal et al. (2019); Liu et al. (2019); Wang et al. (2019a), policy optimization enjoys computational efficiency. Recently Cai et al. (2019); Efroni et al. (2020); Agarwal et al. (2020) proposed optimistic policy optimization methods which simultaneously attain computational efficiency and sample efficiency. Our work is also related to the value-based methods, especially LSVI (Bradtke and Barto, 1996; Jiang et al., 2017; Jin et al., 2019b; Wang et al., 2019b; Zanette et al., 2020; Wang et al., 2020; Ayoub et al., 2020; Zhou et al., 2020).

Broadly speaking, our work is also related to a line of research on adversarial MDPs (Even-Dar et al., 2009; Neu et al., 2010, 2012; Zimin and Neu, 2013; Rosenberg and Mansour, 2019; Jin et al., 2019a). But most of this work studies static regret, which is easier than the dynamic regret.

1.3 Notation

We denote by $\| \cdot \|_2$ the ℓ_2-norm of a vector or the spectral norm of a matrix. Furthermore, for a positive definite matrix A, we denote by $\| x \|_A$ the matrix norm $\sqrt{x^\top Ax}$ of a vector x. For any number a, we denote $\lceil a \rceil$ the smallest integer that is no smaller than a, and $\lfloor a \rfloor$ the largest integer no larger than a. Also, for any two numbers a and b, let $a \lor b = \max\{a, b\}$ and $a \land b = \min\{a, b\}$. For some positive integer K, $[K]$ denotes the index set $\{1, 2, \cdots, K\}$. When logarithmic factors are omitted, we use \tilde{O} to denote function growth.

2 Preliminaries

2.1 Non-stationary MDPs

An episodic non-stationary MDP is defined by a tuple $(\mathcal{S}, \mathcal{A}, H, P, r)$, where \mathcal{S} is a state space, \mathcal{A} is an action space, H is the length of each episode, $P = \{P^k_h\}^{K}_{(k,h)\in[K]\times[H]}$, $r =$
and the benchmark policy π is measured by its dynamic regret, which measures the difference between the agent’s policy $\pi^k = \{\pi_h^k\}_{h=1}^H$ and the optimal policy $\pi^* = \{\pi_h^*\}_{h=1}^H$.

We consider an agent which iteratively interacts with a non-stationary MDP in a sequence of K episodes. At the beginning of the k-th episode, the initial state s_1^k is a fixed state, and the agent determines a policy $\pi^k = \{\pi_h^k\}_{h=1}^H$. Then, at each step $h \in [H]$, the agent observes the state s_h^k, takes an action following the policy $a_h^k \sim \pi^k_h(\cdot | s_h^k)$ and receives a bandit feedback $r_h^k(s_h^k, a_h^k)$ or the full-information feedback $r_h^k(\cdot, \cdot)$. Meanwhile, the MDP evolves into next state $s_{h+1}^k \sim P_h^k(\cdot | x_h^k, a_h^k)$. The k-th episode ends at state s_{H+1}^k, when this happens, no control action is taken and reward is equal to zero. We define the state and state-action value functions of policy $\pi = \{\pi_h\}_{h=1}^H$ recursively via the following Bellman equation:

$$Q_{h}^{\pi,k}(s, a) = r_h^k(s, a) + (P_h^k \mathbb{V}_{h+1}^{\pi,k})(s, a), \quad V_{h}^{\pi,k}(s) = \langle Q_{h}^{\pi,k}(s, \cdot), \pi_h(\cdot | s) \rangle_{\mathcal{A}}, \quad V_{H+1}^{\pi,k} = 0,$$

where P_h^k is the operator form of the transition kernel $P_h^k(\cdot | \cdot, \cdot)$, which is defined as

$$(P_h^k f)(s, a) = \mathbb{E}[f(s') | s' \sim P_h^k(s' | s, a)]$$

for any function $f : \mathcal{S} \to \mathbb{R}$. Here $\langle \cdot, \cdot \rangle_{\mathcal{A}}$ denotes the inner product over \mathcal{A}.

In the literature of optimization and reinforcement learning, the performance of the agent is measured by its dynamic regret, which measures the difference between the agent’s policy and the benchmark policy $\pi^* = \{\pi_{h}^*\}_{h=1}^K$. Specifically, the dynamic regret is defined as

$$\text{D-Regret}(T, \pi^*) = \sum_{k=1}^K \left(V_{1}^{\pi^*}, k(s_1^k) - V_{1}^{\pi^*, k}(s_1^k) \right),$$

where $T = HK$ is the number of steps taken by agent and π_{h}^* is the benchmark policy of episode k. It is worth mentioning that when the benchmark policy is the optimal policy of each individual episode, that is, $\pi_{1}^* = \arg\max_{\pi} V_{1}^{\pi, k}(s_1^k)$, the dynamic regret reaches the maximum, and this special case is widely considered in previous works (Cheung et al., 2020; Mao et al., 2020; Domingues et al., 2020). Throughout the paper, when π^* is clear from the context, we may omit π^* from $\text{D-Regret}(T, \pi^*)$.

\footnote{Our subsequent analysis can be generalized to the setting where the initial state is sampled from a fixed distribution.}

\footnote{Bandit feedback means that the agent only observes the values of reward function $r_h^k(s_h^k, a_h^k)$ when visited state-action pair (s_h^k, a_h^k). Full-information feedback represents that the entire reward functions r_h^k is revealed after the h-th step of k-th episode.}
2.2 Model Assumptions

We focus on the linear setting of Markov decision process, where the reward functions and transition kernels are assumed to be linear. We formally make the following assumption.

Assumption 2.1 (Non-stationary Linear Kernel MDP). MDP \((\mathcal{S}, \mathcal{A}, H, P, r)\) is a linear kernel MDP with known feature maps \(\phi: \mathcal{S} \times \mathcal{A} \to \mathbb{R}^d\) and \(\psi: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \to \mathbb{R}^d\), if for any \((k, h) \in [K] \times [H]\), there exist unknown vectors \(\theta^k_h \in \mathbb{R}^d\) and \(\xi^k_h \in \mathbb{R}^d\), such that

\[
 r^k_h(s, a) = \phi(s, a) \cdot \theta^k_h, \quad P^k_h(s' | s, a) = \psi(s, a, s') \cdot \xi^k_h
\]

for any \((s, a, s') \in \mathcal{S} \times \mathcal{A} \times \mathcal{S}\). Without loss of generality, we assume that

\[
 \|\phi(s, a)\|_2 \leq 1, \quad \|\theta^k_h\|_2 \leq \sqrt{d}, \quad \|\xi^k_h\|_2 \leq \sqrt{d}
\]

for any \((k, h) \in [K] \times [H]\). Moreover, we assume that

\[
 \int_{\mathcal{S}} \|\psi(s, a, s')\|_2 ds' \leq \sqrt{d}
\]

for any \((s, a) \in \mathcal{S} \times \mathcal{A}\).

Our assumption consists of two parts. One is about reward functions, which follows the setting of linear bandits (Abassi-Yadkori et al., 2011; Agrawal and Goyal, 2013; Besbes et al., 2014, 2015; Cheung et al., 2019a,b). The other part is about transition kernels. As shown in Cai et al. (2019); Ayoub et al. (2020); Zhou et al. (2020b), linear kernel MDPs as defined above cover several other MDPs studied in previous works, as special cases. For example, tabular MDPs with canonical basis (Cai et al., 2019; Ayoub et al., 2020; Zhou et al., 2020b), feature embedding of transition models (Yang and Wang, 2019a) and linear combination of base models (Modi et al., 2020) are special cases. However, it is worth mentioning that Jin et al. (2019b); Yang and Wang (2019b) studied another “linear MDPs”, which assumes the transition kernels can be represented as \(P^k_h(s' | s, a) = \psi'(s, a) \cdot \mu_h(s')\) for any \(h \in [H]\) and \((s, a, s') \in \mathcal{S} \times \mathcal{A} \times \mathcal{S}\). Here \(\psi'(\cdot, \cdot)\) is a known feature map and \(\mu(\cdot)\) is an unknown measure. It is worth noting that linear MDPs studied in our paper and linear MDPs (Jin et al., 2019b; Yang and Wang, 2019b) are two different classes of MDPs since their feature maps \(\psi(\cdot, \cdot, \cdot)\) and \(\psi'(\cdot, \cdot)\) are different and neither class of MDPs includes the other.

To facilitate the following analysis, we denote by \(P_{h}^{k, \pi}\) the Markov kernel of policy at the \(h\)-step of the \(k\)-th episode, that is, for \(s \in \mathcal{S}\), \(P_{h}^{k, \pi}(\cdot | s) = \sum_{a \in \mathcal{A}} P^k_h(\cdot | s, a) \cdot \pi_h(a | s)\). Also,
we define
\[
\|\pi_h - \pi'_h\|_{\infty,1} = \max_{s \in S} \|\pi_h(\cdot | s) - \pi'_h(\cdot | s)\|_1,
\]
\[
\|P^{k,\pi}_h - P^{k,\pi'}_h\|_{\infty,1} = \max_{s \in S} \|P^{k,\pi}_h(\cdot | s) - P^{k,\pi'}_h(\cdot | s)\|_1.
\]

Next, we introduce several measures of change in MDPs. First, we denote by \(P_T\) the total variation in the benchmark policies of adjacent episodes:
\[
P_T = \sum_{k=1}^{K} \sum_{h=1}^{H} \|\pi^{s,k}_h - \pi^{s,k-1}_h\|_{\infty,1},
\] (2.4)
where we choose \(\pi^{s,0}_h = \pi^{s,1}_h\) for any \(h \in [H]\).

Next, we assume the drifting environment (Besbes et al., 2014, 2015; Cheung et al., 2019a; Russac et al., 2019), that is, \(\theta^k_h\) and \(\xi^k_h\) can change over different indexes \((k, h)\), with the constraint that the sum of the Euclidean distances between consecutive \(\theta^k_h\) and \(\xi^k_h\) are bounded by variation budgets \(B_T\) and \(B_P\). Formally, we impose the following assumption.

Assumption 2.2. There exists some variation budget \(B_T = O(T^{\nu_1})\) and \(B_P = O(T^{\nu_2})\) for some \(\nu_1 \in (0, 1]\) and \(\nu_2 \in (0, 1)\), such that
\[
\sum_{h=1}^{H} \sum_{k=1}^{K} \|\theta^{k-1}_h - \theta^k_h\|_2 \leq B_T, \quad \sum_{h=1}^{H} \sum_{k=1}^{K} \|\xi^{k-1}_h - \xi^k_h\|_2 \leq B_P, \quad \Delta = B_T + B_P,
\] (2.5)
where \(H\) is the length of each episode, \(K\) is the total number of episodes, and \(T = HK\) is the total number of steps taken by the agent. Here \(\Delta\) is the total variation budget, which quantifies the non-stationarity of a linear kernel MDP. We remark that when the reward functions are adversarially chosen, \(\nu_1\) can be 1.

3 Minimax Lower Bound

In this section, we provide the information-theoretical lower bound result. The following theorem shows a minimax lower bound of dynamic regret for any algorithm to learn non-stationary linear kernel MDPs.

Theorem 3.1 (Minimax lower bound). Fix \(\Delta > 0, H > 0, d \geq 2,\) and \(T = \Omega(d^{5/2} \Delta H^{1/2})\). Then, there exists a non-stationary linear kernel MDP with a \(d\)-dimensional feature map
and maximum total variation budget Δ, such that,
\[
\min_{\mathcal{A}} \max_{\pi^*} \text{D-Regret}(T, \pi^*) \geq \Omega(d^{5/6} \Delta^{1/3} H^{2/3} T^{2/3}),
\]
where \mathcal{A} denotes the learning algorithm which has only the access to the bandit feedback.

Proof sketch. As mentioned above, we only need to establish the lower bound of the dynamic regret when the benchmark policy is the optimal policy of each individual episode. The proof of lower bound relies on the construction of a hard-to-learn non-stationary linear kernel MDP instance. To handle the non-stationarity, we need to divide the total T steps into L segments, where each segment contains $T_0 = \lfloor \frac{T}{L} \rfloor$ steps and has $K_0 = \lfloor \frac{K}{L} \rfloor$ episodes. Within each segment, the construction of MDP is similar to the hard-to-learn instance constructed in stationary RL problems (Jaksch et al., 2010; Lattimore and Hutter, 2012; Osband and Van Roy, 2016). Then, we can derive a lower bound of $\Omega(dH\sqrt{T_0})$ for the stationary RL problem. Meanwhile, the transition kernel of this hard-to-learn MDP changes abruptly between two consecutive segments, which forces the agent to learn a new stationary MDP in each segment. Finally, by optimization L subject to the total budget constraint, we obtain the lower bound of $\Omega(d^{5/6} \Delta^{1/3} H^{2/3} T^{2/3})$. See Appendix B for details. \qed

Remark 3.2. This theorem states that the non-stationary MDP with $\Delta = \Omega(T)$ is unlearnable. Thus, when reward functions are adversarially chosen, there is no algorithm can efficient solve the underlying MDPs with only the bandit feedback. However, if we can obtain the full-information feedback, solving non-stationary MDPs with adversarial rewards is possible. In Section 4, we will show that, under the non-stationary environments, our policy optimization algorithm can tackle the adversarial rewards with full-information feedbacks.

4 Algorithm and Theory

4.1 PROPO

Now we present Periodically Restarted Optimistic Policy Optimization (PROPO) in Algorithm 1, which includes a policy improvement step and a policy evaluation step.

Policy Improvement Step. At k-th episode, Model-Based OPPO updates $\pi^k = \{\pi^k_h\}_{h=1}^H$ according to $\pi^{k-1} = \{\pi^{k-1}_h\}_{h=1}^H$. Motivated by the policy improvement step in NPG (Kakade,
2002), TRPO (Schulman et al., 2015), and PPO (Schulman et al., 2017), we consider the following policy improvement step

\[\pi^k = \arg\max_{\pi} L_{k-1}(\pi), \]

(4.1)

where \(L_{k-1}(\pi) \) is defined as

\[L_{k-1}(\pi) = \mathbb{E}_{\pi_{k-1}} \left[\sum_{h=1}^{H} (Q_{h}^{k-1}(s_h, \cdot), \pi_h(\cdot | s_h) - \pi_{k-1}^{k-1}(\cdot | s_h)) \right] \]

(4.2)

\[-\alpha^{-1} \cdot \mathbb{E}_{\pi_{k-1}} \left[\sum_{h=1}^{H} KL(\pi_h(\cdot | s_h) \| \pi_{k-1}^{k-1}(\cdot | s_h)) \right], \]

where \(\alpha > 0 \) is a stepsize and \(Q_{h}^{k-1} \) which is obtained in Line 10 of Algorithm 2 is the estimator of \(Q_{h}^{\pi_{k-1},k-1} \). Here the expectation \(\mathbb{E}_{\pi_{k-1}} \) is taken over the random state-action pairs \(\{(s_h, a_h)\}_{h=1}^{H} \), where the initial state \(s_1 = s^k_1 \), the distribution of action \(a_h \) follows \(\pi(\cdot | s_h) \), and the distribution of the next state \(s_{h+1} \) follows the transition dynamics \(P_{h}^{k}(\cdot | s_h, a_h) \). Such a policy improvement step can also be regarded as one iteration of infinite-dimensional mirror descent (Nemirovsky and Yudin, 1983; Liu et al., 2019; Wang et al., 2019a).

By the optimality condition, policy update in (4.1) admits a closed-form solution

\[\pi_{h}^{k}(\cdot | s) \propto \pi_{h}^{k-1}(\cdot | s) \cdot \exp\{\alpha \cdot Q_{h}^{k-1}(s, \cdot)\} \]

(4.3)

for any \(s \in S \) and \((k, h) \in [K] \times [H]\).

Policy Evaluation Step. At the end of the \(k \)-th episode, Model-Based OPPO evaluates the policy \(\pi^k \) based on the \((k-1)\) historical trajectories. Then, we show the details of estimating the reward functions and transition kernels, respectively.

(i) **Estimating Reward.** To estimate the reward functions, we use the sliding window regularized least squares estimator (SW-RLSE) (Garivier and Moulines, 2011; Cheung et al., 2019a, b), which is a key tool in estimating the unknown parameters online. At \(h \)-th step of \(k \)-th episode, we aim to estimate the unknown parameter \(\theta_{h}^{k} \) based on the historical observation \(\{(s_h^{\tau}, a_h^{\tau}, r_h^{\tau}(s_h^{\tau}, a_h^{\tau}))\}_{\tau=1}^{k-1} \). The design of SW-RLSE is based on the “forgetting principle” (Garivier and Moulines, 2011), that is, under non-stationarity, the historical observations far in the past are obsolete, and they do not contain relevant information for the evaluation of the current policy. Therefore, we could estimate \(\theta_{h}^{k} \) using only \(\{(s_h^{\tau}, a_h^{\tau}, r_h^{\tau}(s_h^{\tau}, a_h^{\tau}))\}_{\tau=1+\lfloor k-w \rfloor}^{k-1} \).
the observations during the sliding window \(1 \vee (k - w)\) to \(k - 1\),
\[
\hat{\theta}_h^k = \arg\min_{\theta} \left(\sum_{\tau=1 \vee (k-w)}^{k-1} (r_h^\tau(s_h^\tau, a_h^\tau) - \phi(s_h^\tau, a_h^\tau)^T \theta)^2 + \lambda \cdot \|\theta\|^2_2 \right),
\]
where \(\lambda\) is the regularization parameter and \(w\) is the length of a sliding window. By solving (4.4), we obtain the estimator of \(\hat{\theta}_h^k\):
\[
\hat{\theta}_h^k = (\Lambda_h^k)^{-1} \sum_{\tau=1 \vee (k-w)}^{k-1} \phi(s_h^\tau, a_h^\tau)r_h^\tau(s_h^\tau, a_h^\tau),
\]
where \(\Lambda_h^k = \sum_{\tau=1 \vee (k-w)}^{k-1} \phi(s_h^\tau, a_h^\tau)\phi(s_h^\tau, a_h^\tau)^T + \lambda I_d\).

(ii) Estimating Transition. Similar to the estimation of reward functions, for any \((k, h) \in [K] \times [H]\), we define the sliding window empirical mean-squared Bellman error (SW-MSBE) as
\[
M_h^k(\xi) = \sum_{\tau=1 \vee (k-w)}^{k-1} (V_{h+1}^\tau(s_{h+1}) - \eta_h^\tau(s_h^\tau, a_h^\tau)^T \xi)^2,
\]
where we denote \(\eta_h^\tau(\cdot, \cdot)\) as
\[
\eta_h^\tau(\cdot, \cdot) = \int_S \psi(\cdot, \cdot, s') \cdot V_{h+1}^\tau(s') ds'.
\]
By Assumption 2.1, we have
\[
\|\eta_h^\tau(\cdot, \cdot)\|_2 \leq H \sqrt{d}
\]
for any \((k, h) \in [K] \times [H]\). Then we estimate \(\xi_h^k\) by solving the following problem:
\[
\hat{\xi}_h^k = \arg\min_{w \in \mathbb{R}^d} (M_h^k(w) + \lambda' \cdot \|w\|^2_2),
\]
where \(\lambda'\) is the regularization parameter. By solving (4.7), we obtain
\[
\hat{\xi}_h^k = (A_h^k)^{-1} \left(\sum_{\tau=1 \vee (k-w)}^{k-1} \eta_h^\tau(s_h^\tau, a_h^\tau) \cdot V_{h+1}^\tau(s_{h+1}) \right),
\]
where \(A_h^k = \sum_{\tau=1 \vee (k-w)}^{k-1} \eta_h^\tau(s_h^\tau, a_h^\tau)\eta_h^\tau(s_h^\tau, a_h^\tau)^T + \lambda' I_d\).

The policy evaluation step is iteratively updating the estimated Q-function \(Q^k = \{Q_h^k\}_{h=1}^H\).
by
\[Q_h^k(\cdot, \cdot) = \min \{ \phi(\cdot, \cdot)^\top \tilde{\theta}_h^k + \eta_h^k(\cdot, \cdot)^\top \tilde{\xi}_h^k + B_h^k(\cdot, \cdot) + \Gamma_h^k(\cdot, \cdot), H - h + 1 \}^+, \tag{4.9} \]
\[V_h^k(s) = \langle Q_h^k(s, \cdot), \pi_h^k(\cdot | s) \rangle_A \]
in the order of \(h = H, H - 1, \ldots, 1 \). Here bonus functions \(B_h^k(\cdot, \cdot) : S \times A \rightarrow \mathbb{R}^+ \) and \(\Gamma_h^k(\cdot, \cdot) : S \times A \rightarrow \mathbb{R}^+ \) are used to quantify the uncertainty in estimating reward \(r_h^k \) and quantity \(P_h^k V_{h+1}^k \) respectively, defined as
\[B_h^k(\cdot, \cdot) = \beta (\phi(\cdot, \cdot)^\top (\Lambda_h^k)^{-1} \phi(\cdot, \cdot))^{1/2}, \quad \Gamma_h^k(\cdot, \cdot) = \beta' (\eta_h^k(\cdot, \cdot)^\top (A_h^k)^{-1} \eta_h^k(\cdot, \cdot))^{1/2}, \tag{4.10} \]
where \(\beta > 0 \) and \(\beta' > 0 \) are parameters depend on \(d, H \) and \(K \), which are specified in Theorem 4.2.

To handle the non-stationary drift incurred by the different optimal policies in different episodes, Algorithm 1 also includes a periodic restart mechanism, which resets the policy estimates every \(\tau \) episodes. We call the \(\tau \) episodes between every two resets a segment. In each segment, each episode is approximately the same as the first episode, which means that we can regard it as a stationary MDP. Then we can use the method of solving the stationary MDP to analyze each segment with a small error, and finally combine each segment and choose the value of \(\tau \) to get the desired result. Such a restart mechanism is widely used in RL (Auer et al., 2009; Ortner et al., 2020), bandits (Besbes et al., 2014; Zhao et al., 2020), and non-stationary optimization (Besbes et al., 2015; Jadbabaie et al., 2015).

The pseudocode of the PROPO algorithm is given in Algorithm 1.

Learning Adversarial Rewards. We remark that PROPO is an EXP3-type algorithm, and thus can naturally tackle the adversarial rewards with full information. Specifically, we only need to replace the previous policy evaluation step in (4.9) by
\[Q_h^k(\cdot, \cdot) = \min \{ r_h^k(\cdot, \cdot) + \eta_h^k(\cdot, \cdot)^\top \tilde{\xi}_h^k + \Gamma_h^k(\cdot, \cdot), H - h + 1 \}^+, \tag{4.11} \]
where \(\eta_h^k, \tilde{\xi}_h^k, \) and \(\Gamma_h^k \) are defined in (4.6), (4.8), and (4.10), respectively. For completeness, we provide the pseudocode in Appendix A. We remark that the value-based algorithm cannot tackle the adversarial rewards with full-information feedback with such a simple modification.
Algorithm 1 Periodically Restarted Optimistic Policy Optimization (PROPO)

Require: Reset cycle length τ, sliding window length w, stepsize α, regularization factors λ and λ', and bonus multipliers β and β'.

1: Initialize $\{\pi_h^0(\cdot | \cdot)\}_{h=1}^H$ as uniform distribution policies, $\{Q_h^0(\cdot, \cdot)\}_{h=1}^H$ as zero functions.
2: for $k = 1, 2, \ldots, K$ do
3: Receive the initial state s_1^k.
4: if $k \mod \tau = 1$ then
5: Set $\{Q_h^{k-1}\}_{h \in [H]}$ as zero functions and $\{\pi_h^{k-1}\}_{h \in [H]}$ as uniform distribution on A.
6: end if
7: for $h = 1, 2, \ldots, H$ do
8: $\pi_h^k(\cdot | \cdot) \propto \pi_h^{k-1}(\cdot | \cdot) \cdot \exp\{\alpha \cdot Q_h^{k-1}(\cdot, \cdot)\}$.
9: Take action $a_h^k \sim \pi_h^k(\cdot | s_h^k)$.
10: Observe the reward $r_h^k(s_h^k, a_h^k)$ and receive the next state s_{h+1}^k.
11: end for
12: Compute Q_h^k by SWOPE($k, \{\pi_h^k\}, \lambda, \lambda', \beta, \beta'$) (Algorithm 2).
13: end for

Algorithm 2 Sliding Window Optimistic Policy Evaluation (SWOPE)

Require: Episode index k, policies $\{\pi_h\}$, regularization factors λ and λ', and bonus multipliers β and β'.

1: Initialize V_h^{k+1} as a zero function.
2: for $h = H, H - 1, \ldots, 0$ do
3: $\eta_h^k(\cdot, \cdot) = \int_{s'} \psi(\cdot, \cdot, s') \cdot V_{h+1}^k(s') ds'$.
4: $\Lambda_h^k = \sum_{\tau=1}^{k-1} \phi(s_h^\tau, a_h^\tau) \phi(s_h^\tau, a_h^\tau)^\top + \lambda I_d$.
5: $\widehat{\theta}_h^k = (\Lambda_h^k)^{-1} \sum_{\tau=1}^{k-1} \phi(s_h^\tau, a_h^\tau) r_h^\tau(s_h^\tau, a_h^\tau)$.
6: $A_h^k = \sum_{\tau=1}^{k-1} \eta_h^\tau(s_h^\tau, a_h^\tau) \eta_h^\tau(s_h^\tau, a_h^\tau)^\top + \lambda I_d$.
7: $\widehat{\xi}_h^k = (A_h^k)^{-1} \left(\sum_{\tau=1}^{k-1} \eta_h^\tau(s_h^\tau, a_h^\tau) \cdot V_{h+1}^\tau(s_{h+1}^\tau) \right)$.
8: $B_h^k(\cdot, \cdot) = \beta(\phi(\cdot, \cdot)^\top (A_h^k)^{-1} \phi(\cdot, \cdot))^{1/2}$.
9: $\Gamma_h^k(\cdot, \cdot) = \beta'(\eta_h^k(\cdot, \cdot)^\top (A_h^k)^{-1} \eta_h^k(\cdot, \cdot))^{1/2}$.
10: $Q_h^k(\cdot, \cdot) = \min\{\phi(\cdot, \cdot)^\top \widehat{\theta}_h^k + \eta_h^k(\cdot, \cdot)^\top \widehat{\xi}_h^k + B_h^k(\cdot, \cdot) + \Gamma_h^k(\cdot, \cdot), H - h + 1\}^+$.
11: $V_h^k(s) = \langle Q_h^k(s, \cdot), \pi_h^k(\cdot | s) \rangle_A$.
12: end for
4.2 SW-LSVI-UCB

In this subsection, we present the details of Sliding Window Least-Square Value Iteration with UCB (SW-LSVI-UCB) in Algorithm 3.

Similar to Least-Square Value Iteration with UCB (LSVI-UCB) in Jin et al. (2019b), SW-LSVI-UCB is also an optimistic modification of Least-Square Value Iteration (LSVI) (Bradtke and Barto, 1996), where the optimism is realized by Upper-Confidence Bounds (UCB). Specifically, the optimism is achieved due to the bonus functions B^k_h and Γ^k_h, which quantify the uncertainty of reward functions and transition kernels, respectively. It is worth noting that in order to handle the non-stationarity, SW-LSVI-UCB also uses the sliding window method (Garivier and Moulines, 2011; Cheung et al., 2019a,b).

In detail, at k-th episode, SW-LSVI-UCB consists of two steps. In the first step, by solving the sliding window least-square problems (4.4) and (4.7), SW-LSVI-UCB updates the parameters Λ^k_h in (4.5), $\tilde{\theta}^k_h$ in (4.5), \hat{A}^k_h in (4.8), and $\hat{\xi}^k_h$ in (4.8), which are used to form the Q-function Q^k_h. In the second step, SW-LSVI-UVB obtains the greedy policy with respect to the Q-function Q^k_h gained in the first step. See Algorithm 3 for more details.

4.3 Regret Analysis

In this subsection, we analyze the dynamic regret incurred by Algorithms 1 and 3 and compare the theoretical regret upper bounds derived for these two algorithms. To derive sharper dynamic regret bounds, we impose the following technical assumption.

Assumption 4.1. There exists an orthonormal basis $\Psi = (\Psi_1, \cdots, \Psi_d)$ such that for any $(s,a) \in \mathcal{S} \times \mathcal{A}$, there exists a vector $z \in \mathbb{R}^d$ satisfying that $\phi(s,a) = \Psi z$. We also assume the existence of another orthonormal basis $\Psi' = (\Psi'_1, \cdots, \Psi'_d)$ such that for any $(s,a,k,h) \in \mathcal{S} \times \mathcal{A} \times [K] \times [H]$ such that $\eta^k_h(s,a) = \Psi'z'$ for some $z' \in \mathbb{R}^d$.

It is not difficult to show that this assumption holds in the tabular setting, where the state space and action space are finite. Similar assumption is also adopted by previous work in non-stationary optimization (Cheung et al., 2019a).

First, we establish an upper bound on the dynamic regret of PROPO. Recall that the dynamic regret is defined in (2.3) and d is the dimension of the feature maps ϕ and ψ. Also,
Algorithm 3 Sliding Window Least-Square Value Iteration with UCB (SW-LSVI-UCB)

Require: Sliding window length w, stepsize α, regularization factors λ and λ', and bonus multipliers β and β'.

1: Initialize $\{\pi^0_h(\cdot | \cdot)\}_{h=1}^H$ as uniform distribution policies, $\{Q^0_h(\cdot, \cdot)\}_{h=1}^H$ as zero functions.

2: for $k = 1, 2, \ldots, K$ do

3: Receive the initial state s^k_1.

4: Initialize V^k_{h+1} as a zero function.

5: for $h = H, H-1, \ldots, 0$ do

6: $\eta^k_h(\cdot, \cdot) = \int_S \psi(\cdot, \cdot, s') \cdot V^k_{h+1}(s') ds'$.

7: $\Lambda^k_h = \sum_{\tau=1}^{k-1} \phi(s^\tau_h, a^\tau_h) \phi(s^\tau_h, a^\tau_h)^\top + \lambda I_d$.

8: $\widehat{\theta}^k_h = (\Lambda^k_h)^{-1} \sum_{\tau=1}^{k-1} \phi(s^\tau_h, a^\tau_h)r^\tau_h(s^\tau_h, a^\tau_h)$.

9: $A^k_h = \sum_{\tau=1}^{k-1} \gamma^\tau_h(s^\tau_h, a^\tau_h) \eta^k_h(s^\tau_h, a^\tau_h)^\top + \lambda I_d$.

10: $\widehat{\xi}^k_h = (A^k_h)^{-1} \left(\sum_{\tau=1}^{k-1} \gamma^\tau_h(s^\tau_h, a^\tau_h) \eta^k_h(s^\tau_h, a^\tau_h)^\top + \lambda I_d \right)$.

11: $B^k_h(\cdot, \cdot) = \beta(\phi(\cdot, \cdot)^\top (\Lambda^k_h)^{-1} \phi(\cdot, \cdot))^{1/2}$.

12: $\Gamma^k_h(\cdot, \cdot) = \beta'(\eta^k_h(\cdot, \cdot)^\top (A^k_h)^{-1} \eta^k_h(\cdot, \cdot))^{1/2}$.

13: $Q^k_h(\cdot, \cdot) = \min \{ \phi(\cdot, \cdot)^\top \widehat{\theta}^k_h + \eta^k_h(\cdot, \cdot)^\top \widehat{\xi}^k_h + B^k_h(\cdot, \cdot) + \Gamma^k_h(\cdot, \cdot), H - h + 1 \}$.

14: $V^k_h(s) = \max_a Q^k_h(s, a)$.

15: $\pi^k_h(s) = \arg\max_a Q^k_h(s, a)$.

16: end for

17: end for

$|A|$ is the cardinality of A. We also define $\rho = \lceil K/\tau \rceil$ to be the number of restarts that take place in Algorithm 1.

Theorem 4.2 (Upper bound for Algorithm 1). Suppose Assumptions 2.1, 2.2, and 4.1 hold. Let $\tau = \Pi[1, K]\left[\left(\frac{T}{H(P_T + \sqrt{d} \Delta)}\right)^{2/3}\right]$, $\alpha = \sqrt{\rho \log |A|/(H^2K)}$ in (4.2), $w = \Theta(d^{1/3} \Delta^{-2/3} T^{2/3})$ in (4.4), $\lambda = \lambda' = 1$ in (4.4) and (4.9), $\beta = \sqrt{d}$ in (4.10), and $\beta' = C' \sqrt{d} \cdot \log(dT/\zeta)$ in (4.10), where $C' > 1$ is an absolute constant and $\zeta \in (0, 1]$. We have

$$D\text{-Regret}(T) \lesssim d^{5/6} \Delta^{1/3} HT^{2/3} \cdot \log(dT/\zeta)$$

$$+ \begin{cases}
\sqrt{H^3T \log |A|}, & \text{if } 0 \leq P_T + \sqrt{d} \Delta \leq \frac{\log |A|}{K}, \\
(H^2T \log |A|)^{2/3}(P_T + \sqrt{d} \Delta)^{1/3}, & \text{if } \sqrt{\frac{\log |A|}{K}} \leq P_T + \sqrt{d} \Delta \lesssim K \sqrt{\log |A|}, \\
H^2(P_T + \sqrt{d} \Delta), & \text{if } P_T + \sqrt{d} \Delta \gtrsim K \sqrt{\log |A|},
\end{cases}$$
with probability at least $1 - \zeta$.

Proof. See Section 5 for a proof sketch and Appendix E.1 for a detailed proof.

Then we discuss the regret bound throughout three regimes of $P_T + \sqrt{d}\Delta$:

- **Small $P_T + \sqrt{d}\Delta$:** when $0 \leq P_T + \sqrt{d}\Delta \leq \sqrt{\frac{\log |A|}{K}}$, restart period $\tau = K$, which means that we do not need to periodically restart in this case. Assuming that $\log |A| = O(d^{5/3}\Delta^{2/3}H^{-1}T^{1/3})$, Algorithm 1 attains a $\widetilde{O}(d^{5/6}\Delta^{1/3}HT^{2/3})$ dynamic regret. Combined with the lower bound established in Theorem 3.1, our result matches the lower bound in d, Δ and T up to logarithmic factors. Hence, we can conclude that Algorithm 1 is a near-optimal algorithm;

- **Moderate $P_T + \sqrt{d}\Delta$:** when $\sqrt{\frac{\log |A|}{K}} \leq P_T + \sqrt{d}\Delta \lesssim K\sqrt{\log |A|}$, restart period $\tau = (\frac{T\sqrt{\log |A|}}{H(P_T + \sqrt{d}\Delta)})^{2/3} \in [2, K]$. Algorithm 2 incurs a $\widetilde{O}(T^{2/3})$ dynamic regret if $\Delta = O(1)$ and $P_T = O(1)$;

- **Large $P_T + \sqrt{d}\Delta$:** when $P_T + \sqrt{d}\Delta \gtrsim K\sqrt{\log |A|}$, restart period $\tau = K$. Since the model is highly non-stationary, we only obtain a linear regret in T.

Notably, when the reward functions’ total variation budget Δ_T defined in Assumption 2.2 is linear in T, we know $\Delta \geq \Delta_T = \Omega(T)$, then the regret bound in Theorem 4.2 becomes vacuous. Under this scenario, if we have the access to the full-information feedback of rewards, we can obtain the following theorem.

Theorem 4.3 (Informal). For the MDPs with adversarial rewards and non-stationary transitions, if the full-information feedback of rewards is available, then the dynamic regret of PROPO is bounded by

\[
\text{D-Regret}(T) \lesssim d^{5/6}\Delta^{1/3}HT^{2/3} \cdot \log(dT/\zeta)
\]

\[
+ \begin{cases}
\sqrt{H^3T\log |A|}, & \text{if } 0 \leq P_T + \sqrt{d}\Delta_T \leq \sqrt{\frac{\log |A|}{K}}, \\
(H^2T\sqrt{\log |A|})^{2/3}(P_T + \sqrt{d}\Delta_T)^{1/3}, & \text{if } \sqrt{\frac{\log |A|}{K}} \leq P_T + \sqrt{d}\Delta_T \lesssim K\sqrt{\log |A|}, \\
H^2(P_T + \sqrt{d}\Delta_T), & \text{if } P_T + \sqrt{d}\Delta_T \gtrsim K\sqrt{\log |A|},
\end{cases}
\]

with probability at least $1 - \zeta$.

Proof. See Appendix A for detailed description and proof.
In the following theorem, we establish the upper bound of dynamic regret incurred by SW-LSVI-UCB (Algorithm 3).

Theorem 4.4 (Upper bound for Algorithm 3). Suppose Assumption 2.1, 2.2, and 4.1 hold. Let \(w = \Theta(d^{1/3} \Delta^{-2/3} T^{2/3}) \) in (4.4), \(\lambda = \lambda' = 1 \) in (4.4) and (4.9), \(\beta = \sqrt{d} \) in (4.10), and \(\beta' = C' \sqrt{d H^2 \cdot \log(dT/\zeta)} \) in (4.10), where \(C' > 1 \) is an absolute constant and \(\zeta \in (0, 1] \). We have

\[
\text{D-Regret}(T) \lesssim d^{5/6} \Delta^{1/3} H T^{2/3} \cdot \log(dT/\zeta)
\]

with probability at least \(1 - \zeta \).

Proof. See Appendix E.3 for a detailed proof.

Comparison. Compared with PROPO, SW-LSVI-UCB achieves a slightly better regret without the help of the periodic restart mechanism. Especially in the highly non-stationary case, that is \(P_T + \sqrt{d\Delta} \gtrsim K \sqrt{\log |A|} \), SW-LSVI-UCB achieves a \(\tilde{O}(T^{2/3}) \) regret, where PROPO only attains a linear regret in \(T \). However, PROPO achieves the same \(\tilde{O}(T^{2/3}) \) regret as SW-LSVI-UCB when \(P_T + \sqrt{d\Delta} \lesssim K \sqrt{\log |A|} \), which suggests that PROPO is provably efficient for solving slightly or even moderately non-stationary MDPs. Meanwhile, PROPO are ready to tackle the adversarial rewards with full-information feedback.

Optimality of the Bounds. There is only a gap of \(H^{1/3} \) between the sharper upper bound and the lower bound in Theorem 3.1. We conjecture that this gap can be bridged by using the “Bernstein” type bonus functions Azar et al. (2017); Jin et al. (2018); Zhou et al. (2020a). Since our focus is on designing a provably efficient policy optimization algorithm for non-stationary linear kernel MDPs, we do not use this technique for the clarity of our analysis.

Results without Assumption 4.1. As stated before, Assumption 4.1 is helpful to derive sharp regret bounds. Next, we show that our algorithm are also efficient even without Assumption 4.1. Detailed proofs are deferred to Appendix F.1.

Theorem 4.5 (Upper bound for Algorithm 1). Suppose Assumptions 2.1 and 2.2 hold. Let \(\tau = \Pi_{[1, K]}((T\sqrt{\log |A|})^{2/3}) \), \(\alpha = \sqrt{\rho \log |A|/(H^2 K)} \) in (4.2), \(w = \Theta(\Delta^{-1/4} T^{1/4}) \) in (4.4), \(\lambda = \lambda' = 1 \) in (4.4) and (4.9), \(\beta = \sqrt{d} \) in (4.10), and \(\beta' = C' \sqrt{d H^2 \cdot \log(dT/\zeta)} \) in (4.10),
where $C' > 1$ is an absolute constant and $\zeta \in (0, 1]$. We have

$$\text{D-Regret}(T) \lesssim d \Delta^{1/4} H T^{3/4} \cdot \log(dT/\zeta)$$

$$+ \begin{cases}
\sqrt{H^3 T \log |A|}, & \text{if } 0 \leq P_T + \sqrt{d \Delta} \leq \frac{\log |A|}{K}, \\
(H^2 T \sqrt{\log |A|})^{2/3} (P_T + \sqrt{d \Delta})^{1/3}, & \text{if } \frac{\log |A|}{K} \leq P_T + \sqrt{d \Delta} \lesssim K \sqrt{\log |A|}, \\
H^2 (P_T + \sqrt{d \Delta}), & \text{if } P_T + \sqrt{d \Delta} \gtrsim K \sqrt{\log |A|},
\end{cases}$$

with probability at least $1 - \zeta$.

Theorem 4.6 (Informal). For the MDPs with adversarial rewards and non-stationary transitions, if the full-information feedback is available, then the dynamic regret of PROPO is bounded by

$$\text{D-Regret}(T) \lesssim d \Delta^{1/4} H T^{3/4} \cdot \log(dT/\zeta)$$

$$+ \begin{cases}
\sqrt{H^3 T \log |A|}, & \text{if } 0 \leq P_T + \sqrt{d \Delta} \leq \frac{\log |A|}{K}, \\
(H^2 T \sqrt{\log |A|})^{2/3} (P_T + \sqrt{d \Delta})^{1/3}, & \text{if } \frac{\log |A|}{K} \leq P_T + \sqrt{d \Delta} \lesssim K \sqrt{\log |A|}, \\
H^2 (P_T + \sqrt{d \Delta}), & \text{if } P_T + \sqrt{d \Delta} \gtrsim K \sqrt{\log |A|},
\end{cases}$$

with probability at least $1 - \zeta$.

Theorem 4.7 (Upper bound for Algorithm 3). Suppose Assumptions 2.1 and 2.2 hold. Let $w = \Theta(\Delta^{-1/4} T^{1/4})$ in (4.4), $\lambda = \lambda' = 1$ in (4.4) and (4.9), $\beta = \sqrt{d}$ in (4.10), and $\beta' = C' \sqrt{d H^2 \cdot \log(dT/\zeta)}$ in (4.10), where $C' > 1$ is an absolute constant and $\zeta \in (0, 1]$. We have

$$\text{D-Regret}(T) \lesssim d \Delta^{1/4} H T^{3/4} \cdot \log(dT/\zeta)$$

with probability at least $1 - \zeta$.

Notably the term $\tilde{O}(d \Delta^{1/4} H T^{3/4})$ appears in both the results in Theorems 4.5, 4.6, and 4.7. Ignoring logarithmic factors, there is a gap $\tilde{O}(d^{5/6} \Delta^{-1/12} H^{1/3} T^{1/12})$ between our upper bounds and the lower bound $\Omega(d^{5/6} \Delta^{1/3} H^{2/3} T^{2/3})$ established in Theorem 3.1. We also remark that most existing work (Cheung et al., 2020; Zhao and Zhang, 2021; Zhao et al., 2020; Russac et al., 2019; Zhou et al., 2020c; Touati and Vincent, 2020) can only obtain the similar bound $\tilde{O}(T^{3/4})$ without additional assumption. The only exception is Wei and Luo (2021), which establishes the $\tilde{O}(T^{2/3})$ regret upper bound. However, their algorithms cannot tackle the adversarial rewards.
5 Proof Sketch of Theorem 4.2

In this section, we sketch the proof of Theorem 4.2.

To facilitate the following analysis, we define the model prediction error as

\[l_h^k = r_h^k + \mathbb{P}_h^k V_{h+1}^k - Q_h^k, \]

(5.1)

which characterizes the error using \(V_h^k \) to replace \(V_{\pi_h}^k \) in the Bellman equation (2.1).

5.1 Proof Sketch of Theorem 4.2

Proof Sketch of Theorem 4.2. First, we decompose the regret of Algorithm 1 into two terms

\[D\text{-Regret}(T) = R_1 + R_2, \]

where \(R_1 = \sum_{k=1}^K V_{1}^{\pi_*} (s_h^k) - V_{1}^i (s_h^k) \) and \(R_2 = \sum_{k=1}^K V_{1}^k (s_h^k) - V_{1}^{\pi_*} (s_h^k) \). Then we analyze \(R_1 \) and \(R_2 \) respectively. By Lemma \(C.1 \), we have

\[
R_1 = \sum_{i=1}^{\rho} \sum_{k=(i-1)\tau+1}^{i\tau} \sum_{h=1}^{H} \mathbb{E}_{\pi_*} \left[(Q_h^k (s_h, \cdot), \pi_h^{\star,k} (\cdot | s_h) - \pi_h^k (\cdot | s_h)) \right] \\
+ \sum_{i=1}^{\rho} \sum_{k=(i-1)\tau+1}^{i\tau} \sum_{h=1}^{H} \mathbb{E}_{\pi_*} [l_h^k (s_h, a_h)].
\]

Applying Lemma 5.2 to the first term, we obtain

\[
\sum_{i=1}^{\rho} \sum_{k=(i-1)\tau+1}^{i\tau} \sum_{h=1}^{H} \mathbb{E}_{\pi_*} \left[(Q_h^k (s_h, \cdot), \pi_h^{\star,k} (\cdot | s_h) - \pi_h^k (\cdot | s_h)) \right] \\
\leq \sqrt{2H^3T\rho \log |A| + \tau H^2 (P_T + \sqrt{d\Delta})}.
\]

Meanwhile, as shown in Lemma \(C.1 \), we have

\[
R_2 = M_{K,H,2} - \sum_{i=1}^{\rho} \sum_{k=(i-1)\tau+1}^{i\tau} \sum_{h=1}^{H} l_h^k (s_h^k, a_h^k).
\]

Here \(M_{K,H,2} \) is a martingale defined in Appendix C. Then by the Azuma-Hoeffding inequality, we obtain \(|M_{K,H,2}| \leq \sqrt{16H^3T} \cdot \log(4/\zeta) \) with probability at least \(1 - \zeta/2 \). Here \(\zeta \in (0, 1] \) is a constant.

Now we only need to derive the bound of the quantity \(\sum_{i=1}^{\rho} \sum_{k=(i-1)\tau+1}^{i\tau} \sum_{h=1}^{H} (\mathbb{E}_{\pi_*} [l_h^k (s_h, a_h)]) - l_h^k (s_h^k, a_h^k) \). Applying the bound of \(l_h^k \) in Lemma 5.3 to this quantity, it holds with probability
at least $1 - \zeta/2$ that
\[
\sum_{i=1}^{\rho} \sum_{k=(i-1)\tau+1}^{i\tau} \sum_{h=1}^{H} (\mathbb{E}_{\pi^*,h}[l^k_h(s_h, a_h)] - l^k_h(s_h, a_h^k))
\]
\[
\leq 2 \sum_{k=1}^{K} \sum_{h=1}^{H} (\sum_{i=1 \vee k-w}^{k-1} \|\theta^i_h - \theta^{i+1}_h\|_2 + \sum_{i=1 \vee k-w}^{k-1} \|\xi^i_h - \xi^{i+1}_h\|_2 + B^k_h(s, a) + \Gamma^k_h(s, a)).
\]
Then we apply Lemmas G.1 and G.2 to bound this quantity by $2w\Delta H\sqrt{d} + 8dT\sqrt{\log(w)/w} + 8C'\sqrt{dTH} \cdot \sqrt{\log(wH^2d)/w} \cdot \log(dT/\zeta)$, where C' is a constant specified in the detailed proof.

With the help of these bounds, we derive the regret bound in Theorem 4.2. \qed

5.2 Online Mirror Descent Term

In this subsection, we establish the upper bound of the online mirror descent term.

The following lemma characterizes the policy improvement step defined in (4.1), where the updated policy π^k takes the closed form in (4.3).

Lemma 5.1 (One-Step Descent). For any distribution π on A and $\{\pi^k\}_{k=1}^K$ obtained in Algorithm 1, it holds that
\[
\alpha \cdot \langle Q^k_h, \pi_h(\cdot | s) - \pi^k(\cdot | s) \rangle
\]
\[
\leq \text{KL}(\pi_h(\cdot | s) \| \pi^k_h(\cdot | s)) - \text{KL}(\pi_h(\cdot | s) \| \pi^{k+1}_h(\cdot | s)) + \alpha^2 H^2/2.
\]

Proof. See Appendix D.1 for a detailed proof. \qed

Based on Lemma 5.1, we establish an upper bound of online mirror descent term in the following lemma.

Lemma 5.2 (Online Mirror Descent Term). For the Q-functions $\{Q^k_h\}_{(k,h) \in [K] \times [H]}$ obtained in (4.9) and the policies $\{\pi^k_h\}_{(k,h) \in [K] \times [H]}$ obtained in (4.3), we have
\[
\sum_{i=1}^{\rho} \sum_{k=(i-1)\tau+1}^{i\tau} \sum_{h=1}^{H} \mathbb{E}_{\pi^*,h}[(Q^k_h(s_h, \cdot), \pi^*_{h,k}(\cdot | s_h) - \pi^k_h(\cdot | s_h))]
\]
\[
\leq \sqrt{2H^3T\rho \log |A|} + \tau H^2(P_T + \sqrt{d\Delta}).
\]

Proof. See Appendix D.2 for a detailed proof. \qed
5.3 Model Prediction Error Term

In this subsection, we characterize the model prediction errors arising from estimating reward functions and transition kernels.

Lemma 5.3 (Upper Confidence Bound). Under Assumptions 2.1 and 4.1, it holds with probability at least $1 - \zeta/2$ that

$$-2B^k_h(s, a) - 2\Gamma^k_h(s, a) - \sum_{i=1\land (k-w)}^{k-1} \|\theta^i_h - \theta^{i+1}_h\|_2 - H\sqrt{d} \cdot \sum_{i=1\land (k-w)}^{k-1} \|\xi^i_h - \xi^{i+1}_h\|_2$$

$$\leq l^k_h(s, a) \leq \sum_{i=1\land (k-w)}^{k-1} \|\theta^i_h - \theta^{i+1}_h\|_2 + H\sqrt{d} \cdot \sum_{i=1\land (k-w)}^{k-1} \|\xi^i_h - \xi^{i+1}_h\|_2$$

for any $(k, h) \in [K] \times [H]$ and $(s, a) \in S \times A$, where w is the length of a sliding window defined in (4.5), $B^k_h(\cdot, \cdot)$ is the bonus function of reward defined in (4.10) and $\Gamma^k_h(\cdot, \cdot)$ is the bonus function of transition kernel defined in (4.10).

Proof. See Appendix D.3 for a detailed proof.

Since our model is non-stationary, we cannot ensure that the estimated Q-function is “optimistic in the face of uncertainty” as $l^k_h \leq 0$ like the previous work (Jin et al., 2019b; Cai et al., 2019) in the stationary case. Thanks to the sliding window method, the model prediction error here can be upper bounded by the slight changes of parameters in the sliding window. Specifically, within the sliding window, the reward functions and transition kernels can be considered unchanged, which encourages us to estimate the Q-function by regression and UCB bonus, and thus achieve the optimism like the stationary case. However, reward functions and transition kernels are actually different in the sliding window, which leads to additional errors by parameter changes.

By giving the bound of the model prediction error l^k_h defined in (5.1), Lemma 5.3 quantifies uncertainty and thus realizes sample-efficient. In detail, uncertainty is because we can only observe finite historical data and many state-action pairs (s, a) are less visited or even unseen. The model prediction error of these state-action pairs may be large. However, as is shown in Lemma 5.3, the model prediction error l^k_h can be bounded by the variation of sequences $\{\theta^i_h\}_{i=1\land (k-w)}^{k-1}$ and $\{\xi^i_h\}_{i=1\land (k-w)}^{k-1}$, together with the bonus functions B^k_h and Γ^k_h defined in (4.10), which helps us to derive the bound of the regret. See Appendix E.1 for details.
6 Conclusion

In this work, we have proposed a probably efficient policy optimization algorithm, dubbed as PROPO, for non-stationary linear kernel MDPs. Such an algorithm incorporates a bonus function to incentivize exploration, and more importantly, adopts sliding-window-based regression in policy evaluation and periodic restart in policy update to handle the challenge of non-stationarity. Moreover, as a byproduct, we establish an optimistic value iteration algorithm, SW-LSVI-UCB, by combining UCB and sliding-window. We prove that PROPO and SW-LSVI-UCB both achieve sample efficiency by having sublinear dynamic regret. We also establish a dynamic regret lower bound which shows that PROPO and SW-LSVI-UCB are near-optimal. To our best knowledge, we propose the first provably efficient policy optimization method that successfully handles non-stationarity.

References

Abbasi-Yadkori, Y., Pál, D. and Szepesvári, C. (2011). Improved algorithms for linear stochastic bandits. In Advances in Neural Information Processing Systems.

Agarwal, A., Henaff, M., Kakade, S. and Sun, W. (2020). PC-PG: Policy cover directed exploration for provable policy gradient learning. arXiv preprint arXiv:2007.08459.

Agarwal, A., Kakade, S. M., Lee, J. D. and Mahajan, G. (2019). On the theory of policy gradient methods: Optimality, approximation, and distribution shift. arXiv preprint arXiv:1908.00261.

Agrawal, S. and Goyal, N. (2013). Thompson sampling for contextual bandits with linear payoffs. In International Conference on Machine Learning.

Akkaya, I., Andrychowicz, M., Chociej, M., Litwin, M., McGrew, B., Petron, A., Paino, A., Plappert, M., Powell, G., Ribas, R. et al. (2019). Solving rubik’s cube with a robot hand. arXiv preprint arXiv:1910.07113.

Andrychowicz, O. M., Baker, B., Chociej, M., Jozefowicz, R., McGrew, B., Pachocki, J., Petron, A., Plappert, M., Powell, G., Ray, A. et al. (2020). Learning dexterous in-hand manipulation. The International Journal of Robotics Research, 39 3–20.
Auer, P., Jaksch, T. and Ortner, R. (2009). Near-optimal regret bounds for reinforcement learning. In Advances in neural information processing systems.

Ayoub, A., Jia, Z., Szepesvari, C., Wang, M. and Yang, L. F. (2020). Model-based reinforcement learning with value-targeted regression. arXiv preprint arXiv:2006.01107.

Azar, M. G., Osband, I. and Munos, R. (2017). Minimax regret bounds for reinforcement learning. In International Conference on Machine Learning. PMLR.

Besbes, O., Gur, Y. and Zeevi, A. (2014). Stochastic multi-armed-bandit problem with non-stationary rewards. In Advances in neural information processing systems.

Besbes, O., Gur, Y. and Zeevi, A. (2015). Non-stationary stochastic optimization. Operations research, 63 1227–1244.

Besbes, O., Gur, Y. and Zeevi, A. (2019). Optimal exploration–exploitation in a multi-armed bandit problem with non-stationary rewards. Stochastic Systems, 9 319–337.

Bradtke, S. J. and Barto, A. G. (1996). Linear least-squares algorithms for temporal difference learning. Machine learning, 22 33–57.

Cai, Q., Yang, Z., Jin, C. and Wang, Z. (2019). Provably efficient exploration in policy optimization. arXiv preprint arXiv:1912.05830.

Cen, S., Cheng, C., Chen, Y., Wei, Y. and Chi, Y. (2020). Fast global convergence of natural policy gradient methods with entropy regularization. arXiv preprint arXiv:2007.06558.

Chen, Y., Lee, C.-W., Luo, H. and Wei, C.-Y. (2019). A new algorithm for non-stationary contextual bandits: Efficient, optimal and parameter-free. In Conference on Learning Theory. PMLR.

Cheung, W. C., Simchi-Levi, D. and Zhu, R. (2019a). Hedging the drift: Learning to optimize under non-stationarity. arXiv preprint arXiv:1903.01461.

Cheung, W. C., Simchi-Levi, D. and Zhu, R. (2019b). Learning to optimize under non-stationarity. In The 22nd International Conference on Artificial Intelligence and Statistics.
Cheung, W. C., Simchi-Levi, D. and Zhu, R. (2019c). Non-stationary reinforcement learning: The blessing of (more) optimism. Available at SSRN 3397818.

Cheung, W. C., Simchi-Levi, D. and Zhu, R. (2020). Reinforcement learning for non-stationary markov decision processes: The blessing of (more) optimism. arXiv preprint arXiv:2006.14389.

Dani, V., Hayes, T. P. and Kakade, S. M. (2008). Stochastic linear optimization under bandit feedback.

Domingues, O. D., Ménard, P., Pirotta, M., Kaufmann, E. and Valko, M. (2020). A kernel-based approach to non-stationary reinforcement learning in metric spaces. arXiv preprint arXiv:2007.05078.

Efroni, Y., Shani, L., Rosenberg, A. and Mannor, S. (2020). Optimistic policy optimization with bandit feedback. arXiv preprint arXiv:2002.08243.

Even-Dar, E., Kakade, S. M. and Mansour, Y. (2009). Online markov decision processes. Mathematics of Operations Research, 34 726–736.

Fei, Y., Yang, Z., Wang, Z. and Xie, Q. (2020). Dynamic regret of policy optimization in non-stationary environments. arXiv preprint arXiv:2007.00148.

Gajane, P., Ortner, R. and Auer, P. (2018). A sliding-window algorithm for markov decision processes with arbitrarily changing rewards and transitions. arXiv preprint arXiv:1805.10066.

Garivier, A. and Moulines, E. (2011). On upper-confidence bound policies for switching bandit problems. In International Conference on Algorithmic Learning Theory. Springer.

Gu, S., Holly, E., Lillicrap, T. and Levine, S. (2017). Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates. In 2017 IEEE international conference on robotics and automation (ICRA). IEEE.

Huang, S., Papernot, N., Goodfellow, I., Duan, Y. and Abbeel, P. (2017). Adversarial attacks on neural network policies. arXiv preprint arXiv:1702.02284.
Jadbabaie, A., Rakhlin, A., Shahrampour, S. and Sridharan, K. (2015). Online optimization: Competing with dynamic comparators. In *Artificial Intelligence and Statistics*.

Jaksch, T., Ortner, R. and Auer, P. (2010). Near-optimal regret bounds for reinforcement learning. *Journal of Machine Learning Research*, **11** 1563–1600.

Jiang, N., Krishnamurthy, A., Agarwal, A., Langford, J. and Schapire, R. E. (2017). Contextual decision processes with low bellman rank are pac-learnable. In *International Conference on Machine Learning*. PMLR.

Jin, C., Allen-Zhu, Z., Bubeck, S. and Jordan, M. I. (2018). Is q-learning provably efficient? In *Advances in Neural Information Processing Systems*.

Jin, C., Jin, T., Luo, H., Sra, S. and Yu, T. (2019a). Learning adversarial mdps with bandit feedback and unknown transition. *arXiv preprint arXiv:1912.01192*.

Jin, C., Yang, Z., Wang, Z. and Jordan, M. I. (2019b). Provably efficient reinforcement learning with linear function approximation. *arXiv preprint arXiv:1907.05388*.

Kakade, S. M. (2002). A natural policy gradient. In *Advances in neural information processing systems*.

Kober, J., Bagnell, J. A. and Peters, J. (2013). Reinforcement learning in robotics: A survey. *The International Journal of Robotics Research*, **32** 1238–1274.

Lattimore, T. and Hutter, M. (2012). Pac bounds for discounted mdps. In *International Conference on Algorithmic Learning Theory*. Springer.

Lattimore, T. and Szepesvári, C. (2020). *Bandit algorithms*. Cambridge University Press.

Liu, B., Cai, Q., Yang, Z. and Wang, Z. (2019). Neural trust region/proximal policy optimization attains globally optimal policy. In *Advances in Neural Information Processing Systems*.

Mao, W., Zhang, K., Zhu, R., Simchi-Levi, D. and Başar, T. (2020). Near-optimal regret bounds for model-free rl in non-stationary episodic mdps.
Mei, J., Xiao, C., Szepesvari, C. and Schuurmans, D. (2020). On the global convergence rates of softmax policy gradient methods. In *International Conference on Machine Learning*. PMLR.

Modi, A., Jiang, N., Tewari, A. and Singh, S. (2020). Sample complexity of reinforcement learning using linearly combined model ensembles. In *International Conference on Artificial Intelligence and Statistics*.

Nemirovsky, A. S. and Yudin, D. B. (1983). Problem complexity and method efficiency in optimization.

Neu, G., György, A. and Szepesvári, C. (2010). The online loop-free stochastic shortest-path problem. In *COLT*, vol. 2010. Citeseer.

Neu, G., Gyorgy, A. and Szepesvári, C. (2012). The adversarial stochastic shortest path problem with unknown transition probabilities. In *Artificial Intelligence and Statistics*. PMLR.

Ortner, R., Gajane, P. and Auer, P. (2020). Variational regret bounds for reinforcement learning. In *Uncertainty in Artificial Intelligence*. PMLR.

Osband, I. and Van Roy, B. (2016). On lower bounds for regret in reinforcement learning. *arXiv preprint arXiv:1608.02732*.

Pattanaik, A., Tang, Z., Liu, S., Bommannan, G. and Chowdhary, G. (2017). Robust deep reinforcement learning with adversarial attacks. *arXiv preprint arXiv:1712.03632*.

Pinto, L., Davidson, J., Sukthankar, R. and Gupta, A. (2017). Robust adversarial reinforcement learning. In *International Conference on Machine Learning*. PMLR.

Rosenberg, A. and Mansour, Y. (2019). Online convex optimization in adversarial markov decision processes. In *International Conference on Machine Learning*. PMLR.

Rusmevichientong, P. and Tsitsiklis, J. N. (2010). Linearly parameterized bandits. *Mathematics of Operations Research, 35* 395–411.

Russac, Y., Vernade, C. and Cappé, O. (2019). Weighted linear bandits for non-stationary environments. In *Advances in Neural Information Processing Systems*. 27
Sallab, A. E., Abdou, M., Perot, E. and Yogamani, S. (2017). Deep reinforcement learning framework for autonomous driving. *Electronic Imaging*, 2017 70–76.

Schulman, J., Levine, S., Abbeel, P., Jordan, M. and Moritz, P. (2015). Trust region policy optimization. In *International conference on machine learning*.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A. and Klimov, O. (2017). Proximal policy optimization algorithms. *arXiv preprint arXiv:1707.06347*.

Shani, L., Efroni, Y. and Mannor, S. (2020). Adaptive trust region policy optimization: Global convergence and faster rates for regularized mdps. In *Proceedings of the AAAI Conference on Artificial Intelligence*, vol. 34.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M. et al. (2016). Mastering the game of go with deep neural networks and tree search. *nature*, 529 484–489.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A. et al. (2017). Mastering the game of go without human knowledge. *nature*, 550 354–359.

Sutton, R. S. and Barto, A. G. (2018). *Reinforcement learning: An introduction*. MIT press.

Touati, A. and Vincent, P. (2020). Efficient learning in non-stationary linear markov decision processes. *arXiv preprint arXiv:2010.12870*.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik, A., Chung, J., Choi, D. H., Powell, R., Ewalds, T., Georgiev, P. et al. (2019). Grandmaster level in starcraft ii using multi-agent reinforcement learning. *Nature*, 575 350–354.

Wang, L., Cai, Q., Yang, Z. and Wang, Z. (2019a). Neural policy gradient methods: Global optimality and rates of convergence. *arXiv preprint arXiv:1909.01150*.

Wang, R., Salakhutdinov, R. and Yang, L. F. (2020). Provably efficient reinforcement learning with general value function approximation. *arXiv preprint arXiv:2005.10804*.

Wang, Y., Wang, R., Du, S. S. and Krishnamurthy, A. (2019b). Optimism in reinforcement learning with generalized linear function approximation. *arXiv preprint arXiv:1912.04136*. 28
Wei, C.-Y. and Luo, H. (2021). Non-stationary reinforcement learning without prior knowledge: An optimal black-box approach. In Conference on Learning Theory. PMLR.

Yang, L. F. and Wang, M. (2019a). Reinforcement leaning in feature space: Matrix bandit, kernels, and regret bound. arXiv preprint arXiv:1905.10389.

Yang, L. F. and Wang, M. (2019b). Sample-optimal parametric q-learning using linearly additive features. arXiv preprint arXiv:1902.04779.

Yang, Z., Chen, Y., Hong, M. and Wang, Z. (2019). On the global convergence of actor-critic: A case for linear quadratic regulator with ergodic cost. arXiv preprint arXiv:1907.06246.

Yao, A. C.-C. (1977). Probabilistic computations: Toward a unified measure of complexity. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977). IEEE.

Zanette, A., Lazaric, A., Kochenderfer, M. and Brunskill, E. (2020). Learning near optimal policies with low inherent bellman error. In International Conference on Machine Learning. PMLR.

Zhao, P. and Zhang, L. (2021). Non-stationary linear bandits revisited. arXiv preprint arXiv:2103.05324.

Zhao, P., Zhang, L., Jiang, Y. and Zhou, Z.-H. (2020). A simple approach for non-stationary linear bandits. In Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics, AISTATS, vol. 2020.

Zhou, D., Gu, Q. and Szepesvari, C. (2020a). Nearly minimax optimal reinforcement learning for linear mixture markov decision processes. arXiv preprint arXiv:2012.08507.

Zhou, D., He, J. and Gu, Q. (2020b). Provably efficient reinforcement learning for discounted MDPs with feature mapping. arXiv preprint arXiv:2006.13165.

Zhou, H., Chen, J., Varshney, L. R. and Jagmohan, A. (2020c). Nonstationary reinforcement learning with linear function approximation. arXiv preprint arXiv:2010.04244.

Zimin, A. and Neu, G. (2013). Online learning in episodic markovian decision processes by relative entropy policy search. In Neural Information Processing Systems 26.
A Learning Adversarial Rewards

A.1 Algorithm

Algorithm 4 PROPO (Adversarial Rewards with Full-information Feedback)

Require: Reset cycle length τ, sliding window length w, stepsize α, regularization factor λ', and bonus multiplier β'.

1: Initialize $\{\pi_h^0(\cdot|\cdot)\}_{h=1}^H$ as uniform distribution policies, $\{Q_h^0(\cdot,\cdot)\}_{h=1}^H$ as zero functions.
2: for $k = 1, 2, \ldots, K$ do
3: Receive the initial state s_k^1.
4: if $k \mod \tau = 1$ then
5: Set $\{Q_h^{k-1}(\cdot,\cdot)\}_{h=1}^H$ as zero functions and $\{\pi_h^{k-1}(\cdot)\}_{h=1}^H$ as uniform distribution on \mathcal{A}.
6: end if
7: for $h = 1, 2, \ldots, H$ do
8: $\pi_h^k(\cdot|\cdot) \propto \pi_h^{k-1}(\cdot|\cdot) \cdot \exp\{\alpha \cdot Q_h^{k-1}(\cdot,\cdot)\}$.
9: Take action $a_h^k \sim \pi_h^k(\cdot|s_h^k)$.
10: Observe the reward function $r_h^k(\cdot,\cdot)$ and receive the next state s_{h+1}^k.
11: end for
12: Compute Q_h^k by SWOPE($k, \{\pi_h^k\}, \lambda, \lambda', \beta, \beta'$) (Algorithm 5).
13: end for

Algorithm 5 SWOPE (Adversarial Rewards with Full-information Feedback)

Require: Episode index k, policies $\{\pi_h^k\}$, regularization factor λ', and bonus multiplier β'.

1: Initialize V_{H+1}^k as a zero function.
2: for $h = H, H-1, \ldots, 0$ do
3: $\eta_h^k(\cdot,\cdot) = \int_{s'} \psi(\cdot, \cdot, s') \cdot V_{h+1}^k(s') ds'$.
4: $A_h^k = \sum_{\tau=1}^{k-1} \eta_h^\tau(s_h^\tau, a_h^\tau) \eta_h^\tau(s_h^\tau, a_h^\tau)^\top + \lambda I_{d_h}$.
5: $\xi_h^k = (A_h^k)^{-1} (\sum_{\tau=1}^{k-1} \eta_h^\tau(s_h^\tau, a_h^\tau) \cdot V_{h+1}^\tau(s_{h+1}^\tau))$.
6: $\Gamma_h^k(\cdot,\cdot) = \beta' (\eta_h^k(\cdot,\cdot)^\top (A_h^k)^{-1} \eta_h^k(\cdot,\cdot))^{1/2}$.
7: $Q_h^k(\cdot,\cdot) = \min\{r_h^k(\cdot,\cdot) + \eta_h^k(\cdot,\cdot)^\top \xi_h^k + \Gamma_h^k(\cdot,\cdot), H-h+1\}^+$.
8: $V_h^k(s) = \langle Q_h^k(s, \cdot), \pi_h^k(\cdot|s) \rangle_\mathcal{A}$.
9: end for
A.2 Theoretical Results

Theorem A.1 (Formal Statement of Theorem 4.3). Suppose Assumptions 2.1, 2.2, and 4.1 hold. Let \(\tau = \Pi_{[1,K]}(\lceil \frac{T}{H(P_T + \sqrt{d}\Delta)} \rceil^{2/3}) \), \(\alpha = \sqrt{\rho \log |A|/(H^2 K)} \) in (4.2), \(w = \Theta(d^{1/3} \Delta^{-2/3} T^{2/3}) \) in (4.4), \(\lambda' = 1 \) in (4.9), and \(\beta' = C' \sqrt{d} H^2 \cdot \log(dT/\zeta) \) in (4.10), where \(C' > 1 \) is an absolute constant and \(\zeta \in (0,1] \). We have the dynamic regret bound of Algorithm 4 is bounded by

\[
D\text{-Regret}(T) \lesssim d^{5/6} \Delta^{1/3} HT^{2/3} \cdot \log(dT/\zeta)
\]

\[
+ \begin{cases}
\sqrt{H^3 T \log |A|}, & \text{if } 0 \leq P_T + \sqrt{d}\Delta_p \leq \sqrt{\frac{\log |A|}{K}}, \\
(H^2 T \sqrt{\log |A|})^{2/3} (P_T + \sqrt{d}\Delta_p)^{1/3}, & \text{if } \sqrt{\frac{\log |A|}{K}} \leq P_T + \sqrt{d}\Delta_p \lesssim K \sqrt{\log |A|}, \\
H^2 (P_T + \sqrt{d}\Delta_p), & \text{if } P_T + \sqrt{d}\Delta_p \gtrsim K \sqrt{\log |A|},
\end{cases}
\]

with probability at least \(1 - \zeta \).

Proof. See Appendix E.2 for a detailed proof.

Theorem A.2 (Formal Statement of Theorem 4.3). Suppose Assumptions 2.1 and 2.2 hold. Let \(w = \Theta(\Delta^{-1/4} T^{1/4}) \) in (4.4), \(\lambda' = 1 \) in (4.9), and \(\beta' = C' \sqrt{d} H^2 \cdot \log(dT/\zeta) \) in (4.10), where \(C' > 1 \) is an absolute constant and \(\zeta \in (0,1] \). We have

\[
D\text{-Regret}(T) \lesssim d^{1/4} HT^{3/4} \cdot \log(dT/\zeta)
\]

\[
+ \begin{cases}
\sqrt{H^3 T \log |A|}, & \text{if } 0 \leq P_T + \sqrt{d}\Delta_p \leq \sqrt{\frac{\log |A|}{K}}, \\
(H^2 T \sqrt{\log |A|})^{2/3} (P_T + \sqrt{d}\Delta_p)^{1/3}, & \text{if } \sqrt{\frac{\log |A|}{K}} \leq P_T + \sqrt{d}\Delta_p \lesssim K \sqrt{\log |A|}, \\
H^2 (P_T + \sqrt{d}\Delta_p), & \text{if } P_T + \sqrt{d}\Delta_p \gtrsim K \sqrt{\log |A|},
\end{cases}
\]

with probability at least \(1 - \zeta \).

Proof. See Appendix F.1 for a detailed proof.
\section*{B Proof of Theorem 3.1}

Figure 1: The hard-to-learn linear kernel MDP constructed in the proof of Theorem 3.1. Note that the probability of state x_0 to state x_1 depends on the choice of action a.

\textit{Proof.} To handle the non-stationarity, we divide the total T steps into L segments, where each segment has $K_0 = \lfloor \frac{K}{L} \rfloor$ episodes and contains $T_0 = HK_0 = H\lfloor \frac{K}{L} \rfloor$ steps. Now we show the construction of a hard-to-learn MDP within each segment, the construction is similar to that used in previous works (Jaksch et al., 2010; Lattimore and Hutter, 2012; Osband and Van Roy, 2016; Zhou et al., 2020b). Consider an MDP as depicted in Figure 1. The state space S consists of two states x_0 and x_1. The action space A consists of 2^{d-1} vectors $a \in \{-1,1\}^{d-1}$, where $d \geq 2$ is the dimension of feature map ψ defined in Assumption 2.1. The reward function does not depend on actions: state x_0 always gives reward 0, and state x_1 always gives reward 1, that is, for any $a \in A$,

$$r(x_0, a) = 0, \quad r(x_1, a) = 1.$$

Choosing,

$$\theta = (1/d, 1/d, \ldots, 1/d)^T \in \mathbb{R}^d, \phi(x_0, a) = (0, 0, \ldots, 0)^T \in \mathbb{R}^d, \phi(x_1, a) = (1, 1, \ldots, 1)^T \in \mathbb{R}^d,$$

for any $a \in A$, it follows that $r(s, a) = \phi(s, a)^T \theta$ for any $(s, a) \in S \times A$, and thus this reward is indeed linear. The probability transition P_ξ is parameterized by a $(d-1)$-dimensional vector $\xi \in \Xi = \{-(\epsilon/(d-1)), \epsilon/(d-1)\}^{d-1}$, which is defined as

\begin{align*}
P_\xi(x_0 \mid x_0, a) &= 1 - \delta - \langle a, \xi \rangle, & P_\xi(x_1 \mid x_0, a) &= \delta + \langle a, \xi \rangle, \\
P_\xi(x_0 \mid x_1, a) &= \delta, & P_\xi(x_1 \mid x_1, a) &= 1 - \delta,
\end{align*}

where $\delta > 0$ and $\epsilon \in [0, d-1]$ are parameters which satisfy that $2\epsilon \leq \delta \leq 1/3$. This MDP is indeed a linear kernel MDP with the d-dimensional vector $\tilde{\xi} = (\xi^T, 1)^T$. Specifically, we can
define the feature map $\psi(s, a, s')$ as
\[
\psi(x_0, a, x_0) = (-a^\top, 1 - \delta)^\top, \quad \psi(x_0, a, x_1) = (a^\top, \delta)^\top,
\]
\[
\psi(x_1, a, x_0) = (0^\top, \delta)^\top, \quad \psi(x_1, a, x_1) = (0^\top, 1 - \delta)^\top,
\]
and it is not difficult to verify that $P_\xi(s' \mid s, a) = \psi(s, a, s')^\top \tilde{\xi}$.

Now we are ready to establish the lower bound in Theorem 3.1. By Yao’s minimax principle (Yao, 1977), it is sufficient to consider deterministic policies. Hence, we assume that the policy π obtained by the algorithm maps from a sequence of observations to an action deterministically. To facilitate the following proof, we introduce some notations. Let N_0, N_1, N_0^a and $N_0^{d'}$ denote the total number of visits to state x_0, the total number of visits to x_1, the total number of visits to state x_0 followed by taking action a, and the total number of visits to state x_0 followed by taking an action in $\mathcal{A}' \subseteq \mathcal{A}$, respectively. Let $\mathcal{P}_\xi(\cdot)$ denote the distribution over \mathcal{S}^{T_0}, where $s^k_1 = x_0, s^k_{h+1} \sim P_\xi(\cdot \mid s^k_h, a^k_h), a^k_h$ is decided by π^k_h. We use \mathbb{E}_ξ to denote the expectation with respect to \mathcal{P}_ξ.

Now we consider a segment that consists of K_0 episodes and each episode starts from state x_0. Let s^k_h denote the state in the h-th state of the k-th episode. Fix $\xi \in \Xi$. We have,
\[
\mathbb{E}_\xi N_1 = \sum_{k=1}^{K_0} \sum_{h=2}^{H} \mathcal{P}_\xi(s^k_h = x_1) = \sum_{k=1}^{K_0} \sum_{h=2}^{H} \mathcal{P}_\xi(s^k_h = x_1, s^k_{h-1} = x_1) + \sum_{k=1}^{K_0} \sum_{h=2}^{H} \mathcal{P}_\xi(s^k_h = x_1, s^k_{h-1} = x_0)
\]
\[
= \sum_{k=1}^{K_0} \sum_{h=2}^{H} \mathcal{P}_\xi(s^k_h = x_1 \mid s^k_{h-1} = x_1) \mathcal{P}_\xi(s^k_{h-1} = x_1) + \sum_{k=1}^{K_0} \sum_{h=2}^{H} \mathcal{P}_\xi(s^k_h = x_1, s^k_{h-1} = x_0).
\]

(B.1)

By the construction of this hard-to-learn MDP, we have $\mathcal{P}_\xi(s^k_h = x_1 \mid s^k_{h-1} = x_1) = 1 - \delta$, which implies that
\[
(i) = (1 - \delta) \cdot \sum_{k=1}^{K_0} \sum_{h=2}^{H} \mathcal{P}_\xi(s^k_{h-1} = x_1)
\]
\[
= (1 - \delta) \cdot \mathbb{E}_\xi N_1 - (1 - \delta) \cdot \sum_{k=1}^{K_0} \mathcal{P}_\xi(s^k_H = x_1).
\]

(B.2)

Meanwhile, we have
\[
(ii) = \sum_{k=1}^{K_0} \sum_{h=2}^{H} \sum_{a} \mathcal{P}_\xi(s^k_h = x_1 \mid s^k_{h-1} = x_0, a^k_{h-1} = a) \cdot \mathcal{P}_\xi(s^k_{h-1} = x_0, a^k_{h-1} = a).
\]
By the fact that $P_{\xi}(s_k^H = x_1 | s_{k-1}^H = x_0, a_{k-1}^H = a) = \delta + \langle a, \xi \rangle$, we further obtain

$$(ii) = \sum_{k=1}^{K_0} \sum_{h=2}^{H} \sum_{a} (\delta + \langle a, \xi \rangle) \cdot P_{\xi}(s_k^H = x_0, a_k^H = a)$$

$$= \sum_{a} (\delta + \langle a, \xi \rangle) \cdot \left(\mathbb{E}_{\xi} N_0^a - \sum_{k=1}^{K_0} P_{\xi}(s_k^H = x_0, a_k^H = a) \right). \quad (B.3)$$

Plugging (B.2) and (B.3) into (B.1) and rearranging gives

$$\mathbb{E}_{\xi} N_1 = \sum_{a} (1 + \langle a, \xi \rangle / \delta) \cdot \mathbb{E}_{\xi} N_0^a - \sum_{k=1}^{K_0} \left(\frac{1 - \delta}{\delta} \cdot P_{\xi}(s_k^H = x_1) + \sum_{a} (1 + \frac{\langle a, \xi \rangle}{\delta}) \cdot P_{\xi}(s_k^H = x_0, a_k^H = a) \right)$$

$$= \mathbb{E}_{\xi} N_0 + \delta^{-1} \cdot \sum_{a} \langle a, \xi \rangle \mathbb{E}_{\xi} N_0^a - \Phi_{\xi}. \quad (B.4)$$

By (B.4) and the fact that $\langle a, \xi \rangle \leq \epsilon$, we further have

$$\mathbb{E}_{\xi} N_1 = \mathbb{E}_{\xi} N_0 + \delta^{-1} \cdot \sum_{a} \langle a, \xi \rangle \cdot \mathbb{E}_{\xi} N_0^a - \Phi_{\xi}$$

$$\geq \mathbb{E}_{\xi} N_0 - \frac{\epsilon}{\delta} \cdot \mathbb{E}_{\xi} N_0 - \sum_{k=1}^{K_0} \left(\frac{1 - \delta}{\delta} \cdot P_{\xi}(s_k^H = x_1) + \frac{1 + \epsilon}{\delta} \cdot P_{\xi}(s_k^H = x_0) \right)$$

$$= (1 - \frac{\epsilon}{\delta}) \cdot \mathbb{E}_{\xi} N_0 - \sum_{k=1}^{K_0} \left(\frac{1 - \delta}{\delta} + \frac{\epsilon + 2\delta - 1}{\delta} \right) \cdot P_{\xi}(s_k^H = x_0)$$

$$\geq (1 - \frac{\epsilon}{\delta}) \cdot \mathbb{E}_{\xi} N_0 - \frac{1 - \delta}{\delta} \cdot K_0, \quad (B.5)$$

where the second equality uses the fact that $P_{\xi}(s_k^H = x_0) + P_{\xi}(s_k^H = x_1) = 1$, and the last inequality holds since $\frac{\epsilon + 2\delta - 1}{\delta} \cdot P_{\xi}(s_k^H = x_0)$ is negative. Together with $N_0 + N_1 = T_0$, (B.5) implies that

$$\mathbb{E}_{\xi} N_0 \leq \frac{T_0 + (1 - \delta)/\delta \cdot K_0}{2 - \epsilon/\delta} \leq \frac{2T_0}{3} + \frac{2}{3\delta} K_0,$$

where the last inequality follows from $2\epsilon \leq \delta$ and $\delta > 0$. Meanwhile, note that Φ_{ξ} is non-negative because $\langle a, \xi \rangle \geq -\epsilon \geq -\delta$. Combined with the fact that $N_0 + N_1 = T_0$, (B.4) and $\Phi_{\xi} \geq 0$ imply that

$$\mathbb{E}_{\xi} N_1 \leq T_0/2 + \delta^{-1} \cdot \sum_{a} \langle a, \xi \rangle \cdot \mathbb{E}_{\xi} N_0^a / 2. \quad (B.6)$$
Hence, we have
\[\frac{1}{|\Xi|} \sum_\xi \mathbb{E}_\xi N_1 \leq \frac{T_0}{2} + \frac{1}{2\delta |\Xi|} \sum_\xi \sum_a \langle a, \xi \rangle \mathbb{E}_\xi N_0^a \]
\[\leq \frac{T_0}{2} + \frac{\epsilon}{2\delta (d-1)|\Xi|} \sum_{j=1}^{d-1} \sum_a \sum_\xi \mathbb{E}_\xi \left(\mathbf{1}\{\text{sgn}(\xi_j) = \text{sgn}(a_j)\} \right) N_0^a, \tag{B.7} \]
where \(\mathbf{1}\{\cdot\} \) is the indicator function. Here the last inequality uses the fact that \(\langle a, \xi \rangle \leq \frac{\epsilon}{d-1} \sum_{j=1}^{d-1} \mathbf{1}\{\text{sgn}(\xi_j) = \text{sgn}(a_j)\} \) for any \(a \in A \) and \(\xi \in \Xi \). Fix \(j \in [d-1] \). We define a new vector \(g(\xi) \) as
\[g(\xi)_i = \begin{cases} \xi_i, & \text{if } i \neq j, \\ -\xi_i, & \text{if } i = j. \end{cases} \]
Then, for any \(a \in A \) and \(\xi \in \Xi \), we have
\[\mathbb{E}_\xi \mathbf{1}\{\text{sgn}(\xi_j) = \text{sgn}(a_j)\} N_0^a + \mathbb{E}_g(\xi) \mathbf{1}\{\text{sgn}(g(\xi)_j) = \text{sgn}(a_j)\} N_0^a \]
\[= \mathbb{E}_g(\xi) N_0^a + \mathbb{E}_\xi \mathbf{1}\{\text{sgn}(\xi_j) = \text{sgn}(a_j)\} N_0^a - \mathbb{E}_g(\xi) \mathbf{1}\{\text{sgn}(\xi_j) = \text{sgn}(a_j)\} N_0^a. \tag{B.8} \]
Taking summation of (B.8) over \(a \) and \(\xi \), and because \(g(\xi) \) is uniformly distributed over \(\Xi \) when \(\xi \) is uniformly distributed over \(\Xi \), we have
\[2 \sum_a \sum_\xi \mathbb{E}_\xi \left(\mathbf{1}\{\text{sgn}(\xi_j) = \text{sgn}(a_j)\} \right) N_0^a \]
\[= \sum_\xi \sum_a \left(\mathbb{E}_g(\xi) N_0^a + \mathbb{E}_\xi \mathbf{1}\{\text{sgn}(\xi_j) = \text{sgn}(a_j)\} N_0^a - \mathbb{E}_g(\xi) \mathbf{1}\{\text{sgn}(\xi_j) = \text{sgn}(a_j)\} N_0^a \right) \]
\[= \sum_\xi \left(\mathbb{E}_g(\xi) N_0 + \mathbb{E}_\xi N_0^A_j - \mathbb{E}_g(\xi) N_0^A_j \right), \tag{B.9} \]
where \(A_j^x = \{a : \text{sgn}(\xi_j) = \text{sgn}(a_j)\}. \) By Lemma G.4 and the fact that \(N_0^A_j \leq T_0 \), we have
\[\mathbb{E}_\xi N_0^A_j - \mathbb{E}_g(\xi) N_0^A_j \leq \frac{cT_0}{16} \sqrt{\text{KL}(\mathcal{P}_g(\xi) \| \mathcal{P}_\xi)}, \tag{B.10} \]
where \(c = 8\sqrt{\log 2} \). Moreover, by Lemma G.5, we have
\[\text{KL}(\mathcal{P}_\xi \| \mathcal{P}_\xi) \leq \frac{16c^2}{(d-1)^2 \delta} \mathbb{E}_\xi N_0. \tag{B.11} \]
Plugging (B.8), (B.9), (B.10) and (B.11) into (B.7), we obtain

\[
\frac{1}{|\Xi|} \sum_{\xi} \mathbb{E}_\xi N_1 \leq \frac{T_0}{2} + \frac{\epsilon}{4\delta(d-1)|\Xi|} \sum_{j=1}^{d-1} \sum_{\xi} \left(\mathbb{E}_\xi N_0 + \frac{cT_0\epsilon}{2d\sqrt{\delta}} \sqrt{\mathbb{E}_\xi N_0} \right)
\]

\[
\leq \frac{T_0}{2} + \frac{\epsilon}{4\delta(d-1)|\Xi|} \sum_{j=1}^{d-1} \sum_{\xi} \left(\frac{2T_0}{3} + \frac{2}{3\delta} K_0 + \frac{cT_0\epsilon}{2d\sqrt{\delta}} \sqrt{\frac{2T_0}{3} + \frac{2}{3\delta} K_0} \right)
\]

\[
= \frac{T_0}{2} + \frac{\epsilon T_0}{6\delta} + \frac{\epsilon K_0}{6\delta^2} + \frac{cT_0\epsilon^2}{8d\delta\sqrt{\delta}} \sqrt{\frac{2T_0}{3} + \frac{2}{3\delta} K_0}.
\] (B.12)

Note that for a given ξ, whether in state x_0 or x_1, the optimal policy is to choose $a_\xi = [\text{sgn}(\xi_i)]_{i=1}^{d-1}$. Hence, we can calculate the stationary distribution and find that the optimal average reward is $\frac{\delta + \epsilon}{2\delta + \epsilon}$. Recall the definition of dynamic regret in (2.3), we have

\[
\frac{1}{|\Xi|} \sum_{\xi} \mathbb{E}_\xi \text{D-Regret}(T_0) \geq \frac{\delta + \epsilon}{2\delta + \epsilon} \cdot T_0 - \frac{1}{|\Xi|} \sum_{\xi} \mathbb{E}_\xi N_1
\]

\[
\geq \frac{\delta + \epsilon}{2\delta + \epsilon} \cdot T_0 - \frac{T_0}{2} - \frac{\epsilon T_0}{6\delta} - \frac{\epsilon K_0}{6\delta^2} - \frac{cT_0\epsilon^2}{8d\delta\sqrt{\delta}} \sqrt{\frac{2T_0}{3} + \frac{2}{3\delta} K_0}.
\] (B.13)

Setting $\delta = \Theta(\frac{1}{H})$ and $\epsilon = \Theta(\frac{d}{\sqrt{HT_0}})$, we have

\[
\frac{1}{|\Xi|} \sum_{\xi} \mathbb{E}_\xi \text{D-Regret}(T_0) \geq \Omega(d\sqrt{HT_0}).
\]

Recall that in our episodic setting, the transition kernels P_1, P_2, \ldots, P_H may be different. By the same argument in Jin et al. (2018) (consider H distinct hard-to-learn MDPs and set $\delta = \Theta(\frac{1}{H})$ and $\epsilon = \Theta(\frac{d}{\sqrt{T_0}})$), we obtain a dynamic regret lower bound of $\Omega(dH\sqrt{T_0})$ in the stationary linear kernel MDPs. For non-stationary linear kernel MDPs, the number of segments L is under budget constraint $2\epsilon HL/\sqrt{d} \leq \Delta$. By choosing $L = \Theta(d^{-1/3}\Delta^{2/3}H^{-2/3}T^{1/3})$, we have

\[
\frac{1}{|\Xi|} \sum_{\xi} \mathbb{E}_\xi \text{D-Regret}(T) \geq \Omega(L \cdot dH\sqrt{T/L}) = \Omega(d^{5/6}H^{1/3}T^{2/3}T^{2/3}),
\]

which concludes the proof of Theorem 3.1.
C Regret Decomposition

Recall the definition of model prediction error in (5.1)
\[l_h^k = s_h^k + \mathbb{P}_h^k V_{h+1}^k - Q_h^k. \]

Meanwhile, for any \((k, h) \in [K] \times [H]\), we define \(\mathcal{F}_{k, h, 1}\) as the \(\sigma\)-algebra generated by the following state-action sequence and reward functions,
\[\{(s_i^r, a_i^r)\}_{(r, i) \in [k-1] \times [H]} \cup \{r_{r'}\}_{r \in [k]} \cup \{(s_i^k, a_i^k)\}_{i \in [h]} \cup \{s_{h+1}^k\}. \]

Similarly, we define \(\mathcal{F}_{k, h, 2}\) as the \(\sigma\)-algebra generated by
\[\{(s_i^r, a_i^r)\}_{(r, i) \in [k-1] \times [H]} \cup \{r_{r'}\}_{r \in [k]} \cup \{(s_i^k, a_i^k)\}_{i \in [h]} \cup \{s_{h+1}^k\}, \]
where \(s_{h+1}^k\) is a null state for any \(k \in [K]\). The \(\sigma\)-algebra sequence \(\{\mathcal{F}_{k, h, m}\}\) is a filtration with respect to the timestep index \(t(k, h, m) = (k - 1) \cdot 2H + (h - 1) \cdot 2 + m.\)

It holds that \(\mathcal{F}_{k, h, m} \subseteq \mathcal{F}_{k', h', m'}\) for any \(t(k, h, m) \leq t(k', h', m').\)

Lemma C.1 (Dynamic Regret Decomposition). For the policies \(\{\pi^k\}_{k=1}^K\) obtained in Algorithm 1 and the optimal policies \(\pi^{*, k}\) in \(k\)-th episode, we have the following decomposition
\[
\text{D-Regret}(T) = \sum_{k=1}^{K} (V_{1}^{\pi^{*, k}, k}(s_1^k) - V_{1}^{\pi^{k}, k}(s_1^k)) \tag{C.1}
\]
\[
= \sum_{i=1}^{\rho} \sum_{k=(i-1)\tau+1}^{i\tau} \sum_{h=1}^{H} \mathbb{E}_{\pi^{*, k}}\left[Q_h^k(s_h, \cdot), \pi_h^{*, k}(\cdot | s_h) - \pi_h^k(\cdot | s_h)\right] + M_{K, H, 2} \tag{(ii)}
\]
\[
+ \sum_{i=1}^{\rho} \sum_{k=(i-1)\tau+1}^{i\tau} \sum_{h=1}^{H} \mathbb{E}_{\pi^{*, k}}[l_h^k|_{s_h, a_h}] + \sum_{i=1}^{\rho} \sum_{k=(i-1)\tau+1}^{i\tau} \sum_{h=1}^{H} -l_h^k|_{s_h, a_h}, \tag{(iii)}
\]

Proof. Recall the definition of dynamic regret in (2.3), we have
\[
\text{D-Regret}(T) = \sum_{k=1}^{K} (V_{1}^{\pi^{*, k}, k}(s_1^k) - V_{1}^{\pi^{k}, k}(s_1^k)) \tag{C.2}
\]
\[
= \sum_{i=1}^{\rho} \sum_{k=(i-1)\tau+1}^{i\tau} (V_{1}^{\pi^{*, k}, k}(s_1^k) - V_{1}^{\pi^{k}, k}(s_1^k)).
\]
Note that

\[V_1^{\pi^*,k}(s_1^k) - V_1^{\pi,k}(s_1^k) = V_1^{\pi^*,k}(s_1^k) - V_1^{k}(s_1^k) + V_1^{k}(s_1^k) - V_1^{\pi^*,k}(s_1^k). \]

(C.3)

Term (i): By Bellman equation we have

\[V_1^{\pi^*,k}(s) - V_1^{k}(s) = \langle Q_h^{\pi,k}(s, \cdot), \pi_h^{*,k}(\cdot | s) \rangle_A - \langle Q_h^{k}(s, \cdot), \pi_h^{*,k}(\cdot | s) \rangle_A \]

\[= \langle Q_h^{\pi,k}(s, \cdot) - Q_h^{k}(s, \cdot), \pi_h^{*,k}(\cdot | s) \rangle_A + \langle Q_h^{k}(s, \cdot) - \pi_h^{*,k}(\cdot | s) \rangle_A \]

(C.4)

for any \((s, h, k) \in \mathcal{S} \times [H] \times [K]\). Meanwhile, by the definition of the model prediction error in (5.1), we have

\[Q_h^{k} = r_h^{k} + \mathbb{P}_h^{k} V_{h+1}^{k} - I_h^{k}. \]

Combining with Bellman equation in (2.1), we further obtain

\[Q_h^{\pi,k} - Q_h^{k} = \mathbb{P}_h^{k} (V_{h+1}^{\pi,k} - V_{h+1}^{k}) + I_h^{k}. \]

(C.5)

Plugging (C.4) into (C.5), we obtain

\[V_1^{\pi^*,k}(s) - V_1^{k}(s) = \langle \mathbb{P}_h^{k}(V_h^{\pi,k} - V_h^{k})(s), \pi_h^{*,k}(\cdot | s) \rangle_A + \langle I_h^{k}(s, \cdot), \pi_h^{*,k}(\cdot | s) \rangle_A \]

\[+ \langle Q_h^{k}(s, \cdot) - \pi_h^{*,k}(\cdot | s) \rangle_A. \]

(C.6)

For notational simplicity, for any \((k, h) \in [K] \times [H]\) and function \(f : \mathcal{S} \times \mathcal{A} \to \mathbb{R}\), we define the operators \(\mathbb{P}_h^{k}\) and \(\mathbb{I}_{k,h}\) respectively by

\[(\mathbb{P}_h^{k}f)(s) = \langle f(x, \cdot), \pi_h^{*,k}(\cdot | s) \rangle, \quad (\mathbb{I}_{k,h}f)(s) = \langle f(x, \cdot), \pi_h^{k}(\cdot | s) \rangle. \]

(C.7)

Also, we define

\[\mu_h^{k}(s) = (\mathbb{P}_h^{k}Q_h^{k})(s) - (\mathbb{I}_{k,h}Q_h^{k})(s) = \langle Q_h^{k}(s, \cdot), \pi_h^{*,k}(\cdot | s) - \pi_h^{k}(\cdot | s) \rangle \]

(C.8)

With this notation, recursively expanding (C.6) over \(h \in [H]\), we have

\[V_1^{\pi^*,k} - V_1^{k} = \left(\prod_{h=1}^{H} \mathbb{P}_h^{k} \right) (V_{H+1}^{\pi^*,k} - V_{H+1}^{k}) + \sum_{h=1}^{H} \left(\prod_{i=1}^{h-1} \mathbb{P}_i^{k} \right) \mathbb{P}_h^{k} \mu_h^{k} + \sum_{h=1}^{H} \left(\prod_{i=1}^{h-1} \mathbb{P}_i^{k} \right) \mu_h^{k}, \]

where the last inequality follows from \(V_1^{\pi^*,k} = V_1^{k} = 0\). By the definitions of \(\mathbb{P}_h^{k}\) in (2.2),
\(\Pi_h^k \) in (C.7), and \(\mu_h^k \) in (C.8), we further obtain

\[
\text{Term(i)} = \sum_{h=1}^{H} \mathbb{E}_{\pi^*} \left[(Q_h^k(s_h, \cdot), \pi_h^k(s_h) - \pi_h^k(s_h, a_h)) \right] + \sum_{h=1}^{H} \mathbb{E}_{\pi^*}(l_h^k(s_h, a_h)). \tag{C.9}
\]

Term (ii): Recall the definition of value function \(V_h^{\pi_h^k} \) in (2.1), the estimated function \(V_h^k \) in (4.9) and the operator \(\Pi_h^k \) in (C.7), we expand the model prediction error \(l_h^k \) into

\[
l_h^k(s_h, a_h) = r_h^k(s_h, a_h) + (\Pi_h^k V_h^k)(s_h, a_h) - Q_h^k(s_h, a_h) = (r_h^k(s_h, a_h) + (\Pi_h^k V_h^k)(s_h, a_h) - Q_h^{\pi_h^k}(s_h, a_h) + Q_h^{\pi_h^k}(s_h, a_h) - Q_h^k(s_h, a_h) = (\Pi_h^k(V_h^k - Q_h^{\pi_h^k}))(s_h, a_h) + (Q_h^{\pi_h^k} - Q_h^k)(s_h, a_h),
\]

where the last equality follows from the Bellman equation in (2.1). Then we can expand \(V_h^k(s_h) - V_h^{\pi_h^k}(s_h) \) into

\[
V_h^k(s_h) - V_h^{\pi_h^k}(s_h) = (\Pi_h^k(Q_h^k - Q_h^{\pi_h^k}))(s_h) + l_h^k(s_h, a_h) = (\Pi_h^k(Q_h^k - Q_h^{\pi_h^k}))(s_h) + (Q_h^{\pi_h^k} - Q_h^k)(s_h) + (\Pi_h^k(V_h^k - Q_h^{\pi_h^k}))(s_h, a_h) - l_h^k(s_h, a_h).
\]

To facilitate our analysis, we define

\[
D_{k,h,1} = (\Pi_h^k(Q_h^k - Q_h^{\pi_h^k}))(s_h) - Q_h^k - Q_h^{\pi_h^k}, \tag{C.10}
\]

\[
D_{k,h,2} = (\Pi_h^k(V_h^k - V_h^{\pi_h^k}))(s_h, a_h) - (V_h^k - V_h^{\pi_h^k})(s_h+1).
\]

Hence, we have

\[
V_h^k(s_h) - V_h^{\pi_h^k}(s_h) = D_{k,h,1} + D_{k,h,2} + (V_h^k - V_h^{\pi_h^k})(s_h+1) - l_h^k(s_h, a_h). \tag{C.11}
\]

for any \((k, h) \in [K] \times [H]\). For any \(k \in [K]\), recursively expanding (C.11) across \(h \in [H]\) yields

\[
\text{Term(ii)} = \sum_{h=1}^{H} (D_{k,h,1} + D_{k,h,2}) - \sum_{h=1}^{H} l_h^k(s_h, a_h) + (V_h^k - V_h^{\pi_h^k})(s_h+1) = \sum_{h=1}^{H} (D_{k,h,1} + D_{k,h,2}) - \sum_{h=1}^{H} l_h^k(s_h, a_h). \tag{C.12}
\]

where the last equality uses the fact that \(V_h^k(s_h+1) - V_h^{\pi_h^k}(s_h+1) = 0 \). By the definitions of \(F_{k,h,1} \) and \(F_{k,h,2} \), we have the \(D_{k,h,1} \in F_{k,h,1} \) and \(D_{k,h,2} \in F_{k,h,2} \). Hence, for any \((k, h) \in \)
$[K] \times [H]$,

$$\mathbb{E}[D_{k,h,1}F_{k,h-1,2}] = 0, \quad \mathbb{E}[D_{k,h,2}F_{k,h,1}] = 0.$$

Notice that $F_{k,0,2} = F_{k-1,H,2}$ for any $k \geq 2$, which implies the corresponding timestep index $t(k, 0, 2) = t(k-1, H, 2) = 2H(k-1)$. Meanwhile, we define $F_{1,0,2}$ to be empty. Thus we can define the following martingale

$$M_{k,h,m} = \sum_{\tau=1}^{k-1} \sum_{i=1}^{H} (D_{\tau,i,1} + D_{\tau,i,2}) + \sum_{i=1}^{h-1} (D_{k,i,1} + D_{k,i,2}) + \sum_{\ell=1}^{m} D_{k,h,\ell} \quad \text{(C.13)}$$

where $t(k, h, m) = 2(k-1)H + 2(h-1) + m$ is the timestep index. This martingale is obviously adapted to the filtration $\{F_{k,h,m}\}_{(k,h,m)\in[K]\times[H]\times[2]}$, and particularly we have

$$M_{K,H,2} = \sum_{k=1}^{K} \sum_{h=1}^{H} (D_{k,h,1} + D_{k,h,2}). \quad \text{(C.14)}$$

Plugging (C.9) and (C.12) into (C.2), we conclude the proof of Lemma C.1.

D Proofs of Lemmas in Section 5

D.1 Proof of Lemma 5.1

Proof. For any $(k, h) \in [K] \times [H]$, let $z_k(s) = \sum_{a' \in A} p(a') \cdot \exp(\alpha \cdot \pi^k_h(a' | s))$. Since $z_k(s)$ is a constant function, it holds that, for any $s \in S$,

$$\langle \log z_k(s), \pi_h(\cdot | s) - \pi^{k+1}_h(\cdot | s) \rangle = 0$$

Hence, for any $s \in S$, it holds that

$$\text{KL}(\pi_h(\cdot | s) \| \pi^k_h(\cdot | s)) - \text{KL}(\pi_h(\cdot | s) \| \pi^{k+1}_h(\cdot | s))$$

$$= \langle \log(\pi^{k+1}_h(\cdot | s)/\pi^k_h(\cdot | s)), \pi_h(\cdot | s) \rangle$$

$$= \langle \log(\pi^{k+1}_h(\cdot | s)/\pi^k_h(\cdot | s)), \pi_h(\cdot | s) - \pi^{k+1}_h(\cdot | s) \rangle + \text{KL}(\pi^{k+1}_h(\cdot | s) \| \pi^k_h(\cdot | s))$$

$$= \langle \log z_k(s) + \log(\pi^{k+1}_h(\cdot | s)/\pi^k_h(\cdot | s)), \pi_h(\cdot | s) - \pi^{k+1}_h(\cdot | s) \rangle + \text{KL}(\pi^{k+1}_h(\cdot | s) \| \pi^k_h(\cdot | s))$$

40
Recall that $\pi_{k+1}^h(\cdot | \cdot) \propto \pi_{k}^h(\cdot | \cdot) \cdot \exp\{\alpha \cdot Q_{k}^h(\cdot | \cdot)\}$, we have

$$
\begin{align*}
&\text{KL}(\pi_{h}(\cdot | s) \| \pi_{h}^{k}(\cdot | s)) - \text{KL}(\pi_{h}(\cdot | s) \| \pi_{h}^{k+1}(\cdot | s)) \\
&\quad = \alpha \cdot \langle Q_{h}^{k}, \pi_{h}(\cdot | s) \rangle - \pi_{h}^{k+1}(\cdot | s) \rangle + \text{KL}(\pi_{h}^{k+1}(\cdot | s) \| \pi_{h}^{k}(\cdot | s)).
\end{align*}
$$

Thus,

$$
\alpha \cdot \langle Q_{h}^{k}, \pi_{h}(\cdot | s) - \pi_{h}^{k}(\cdot | s) \rangle \tag{D.1}
$$

\begin{align*}
&\leq \alpha \cdot \langle Q_{h}^{k}, \pi_{h}(\cdot | s) - \pi_{h}^{k+1}(\cdot | s) \rangle + \alpha \cdot \langle Q_{h}^{k}, \pi_{h}^{k+1}(\cdot | s) - \pi_{h}^{k}(\cdot | s) \rangle \\
&\quad \leq \text{KL}(\pi_{h}(\cdot | s) \| \pi_{h}^{k}(\cdot | s)) - \text{KL}(\pi_{h}(\cdot | s) \| \pi_{h}^{k+1}(\cdot | s)) - \text{KL}(\pi_{h}^{k+1}(\cdot | s) \| \pi_{h}^{k}(\cdot | s)) \\
&\quad \quad + \alpha \cdot \| Q_{h}^{k}(s, \cdot) \|_{\infty} \cdot \| \pi_{h}^{k}(\cdot | s) - \pi_{h}^{k+1}(\cdot | s) \|_{1},
\end{align*}

where the last inequality uses Cauchy-Schwartz inequality. Meanwhile, by Pinsker’s inequality, it holds that

$$
\text{KL}(\pi_{h}^{k+1}(\cdot | s) \| \pi_{h}^{k}(\cdot | s)) \geq \| \pi_{h}^{k}(\cdot | s) - \pi_{h}^{k+1}(\cdot | s) \|_{1}^{2}/2. \tag{D.2}
$$

Plugging (D.2) into (D.1), combined with the fact that $\| Q_{h}^{k}(s, \cdot) \|_{\infty} \leq H$ for any $s \in S$, we have

$$
\begin{align*}
&\alpha \cdot \langle Q_{h}^{k}, \pi_{h}(\cdot | s) - \pi_{h}^{k}(\cdot | s) \rangle \\
&\quad \leq \text{KL}(\pi_{h}(\cdot | s) \| \pi_{h}^{k}(\cdot | s)) - \text{KL}(\pi_{h}(\cdot | s) \| \pi_{h}^{k+1}(\cdot | s)) \\
&\quad \quad - \| \pi_{h}^{k}(\cdot | s) - \pi_{h}^{k+1}(\cdot | s) \|_{1}^{2}/2 + \alpha H \| \pi_{h}^{k}(\cdot | s) - \pi_{h}^{k+1}(\cdot | s) \|_{1} \\
&\quad \quad \leq \text{KL}(\pi_{h}(\cdot | s) \| \pi_{h}^{k}(\cdot | s)) - \text{KL}(\pi_{h}(\cdot | s) \| \pi_{h}^{k+1}(\cdot | s)) + \alpha^2 H^2/2,
\end{align*}
$$

which completes the proof of Lemma 5.1. \qed
D.2 Proof of Lemma 5.2

Proof. Recall that ρ = \lceil K/τ \rceil. First, we have the decomposition

\[
\sum_{i=1}^{\rho} \sum_{k=(i-1)\tau+1}^{i\tau} \sum_{h=1}^{H} \mathbb{E}_{\pi^{*},k} \left[\langle Q^k_h(s_h, \cdot), \pi^{*}_h(\cdot | s_h) - \pi^k_h(\cdot | s_h) \rangle \right]
+ \sum_{i=1}^{\rho} \sum_{k=(i-1)\tau+1}^{i\tau} \sum_{h=1}^{H} \mathbb{E}_{\pi^{*},(i-1)\tau+1} \left[\langle Q^k_h(s_h, \cdot), \pi^{*}_h(\cdot | s_h) - \pi^k_h(\cdot | s_h) \rangle \right]
\]

(A)

\[
+ \sum_{i=1}^{\rho} \sum_{k=(i-1)\tau+1}^{i\tau} \sum_{h=1}^{H} (\mathbb{E}_{\pi^{*},(i-1)\tau+1} \left[\langle Q^k_h(s_h, \cdot), \pi^{*}_h(\cdot | s_h) - \pi^k_h(\cdot | s_h) \rangle \right] - (E_{\pi^{*},(i-1)\tau+1} \left[\langle Q^k_h(s_h, \cdot), \pi^{*}_h(\cdot | s_h) - \pi^k_h(\cdot | s_h) \rangle \right]).
\]

(B)

We can further decompose Term A as

\[
\text{Term}(A) = \sum_{i=1}^{\rho} \sum_{k=(i-1)\tau+1}^{i\tau} \sum_{h=1}^{H} \mathbb{E}_{\pi^{*},(i-1)\tau+1} \left[\langle Q^k_h(s_h, \cdot), \pi^{*}_h,((i-1)\tau+1)(\cdot | s_h) - \pi^k_h(\cdot | s_h) \rangle \right]
\]

A₁

\[
+ \sum_{i=1}^{\rho} \sum_{k=(i-1)\tau+1}^{i\tau} \sum_{h=1}^{H} \mathbb{E}_{\pi^{*},(i-1)\tau+1} \left[\langle Q^k_h(s_h, \cdot), \pi^{*}_h,((i-1)\tau+1)(\cdot | s_h) - \pi^k_h,((i-1)\tau+1)(\cdot | s_h) \rangle \right].
\]

A₂

By Lemma 5.1, we have

\[
A₁ \leq \alpha KH^3/2 + \sum_{h=1}^{H} \sum_{i=1}^{\rho} 1/\alpha \times \sum_{k=(i-1)\tau+1}^{i\tau} \mathbb{E}_{\pi^{*},(i-1)\tau+1} \left[\right.
\left. \text{KL}(\pi^{*}_h,((i-1)\tau+1)(\cdot | s_h) \| \pi^k_h(\cdot | s_h)) - \text{KL}(\pi^{*}_h,((i-1)\tau+1)(\cdot | s_h) \| \pi^{k+1}_h(\cdot | s_h)) \right]\]
\]

\[
= \frac{1}{2} \alpha KH^3 + \sum_{h=1}^{H} \sum_{i=1}^{\rho} 1/\alpha \times \left(\mathbb{E}_{\pi^{*},(i-1)\tau+1} \left[\text{KL}(\pi^{*}_h,((i-1)\tau+1)(\cdot | s_h) \| \pi^{(i-1)\tau+1}_h(\cdot | s_h)) - \text{KL}(\pi^{*}_h,((i-1)\tau+1)(\cdot | s_h) \| \pi^{(i-1)\tau+1}_h(\cdot | s_h)) \right] \right)
\]

\[
\leq \frac{1}{2} \alpha KH^3 + \frac{1}{\alpha} \sum_{h=1}^{H} \sum_{i=1}^{\rho} \left(\mathbb{E}_{\pi^{*},(i-1)\tau+1} \left[\text{KL}(\pi^{*}_h,((i-1)\tau+1)(\cdot | s_h) \| \pi^{(i-1)\tau+1}_h(\cdot | s_h)) \right] \right). \tag{D.4}
\]

Here the second inequality is obtained by the fact that the KL-divergence is non-negative. Note that \(\pi^{(i-1)\tau+1}_h\) is the uniform policy, that is, \(\pi^{(i-1)\tau+1}_h(a | s_h) = \frac{1}{|A|}\) for any \(a \in A\). Hence,
for any policy \(\pi \) and \(i \in [\rho] \), we have

\[
\text{KL}(\pi_h(\cdot | s_h) \parallel \pi_h^{(i-1)\tau+1}(\cdot | s_h)) = \sum_{a \in \mathcal{A}} \pi_h(a | s_h) \cdot \log(\mathcal{A} \cdot \pi_h(a | s_h))
\]

\[
= \log |\mathcal{A}| + \sum_{a \in \mathcal{A}} \pi_h(a | s_h) \cdot \log(\pi_h(a | s_h)) \leq \log |\mathcal{A}|, \quad (D.5)
\]

where the last inequality follows from the fact that the entropy of \(\pi_h(\cdot | s_h) \) is non-negative.

Plugging (D.5) into (D.4), we have

\[
A_1 \leq \alpha H^3 K / 2 + \rho H \log |\mathcal{A}| / \alpha = \sqrt{2H^3 T \rho \log |\mathcal{A}|}, \quad (D.6)
\]

where the last inequality holds since we set \(\alpha = \sqrt{2\rho \log |\mathcal{A}| / (H^2 K)} \) in (4.2). Meanwhile,

\[
A_2 \leq \sum_{i=1}^{\rho} \sum_{k=(i-1)\tau+1}^{i\tau} \sum_{h=1}^{H} H \cdot \mathbb{E}_{\pi^*,(i-1)\tau+1} \left[H \cdot \| \pi_h^{*k}(\cdot | s_h) - \pi_h^{*(i-1)\tau+1}(\cdot | s_h) \|_1 \right]
\]

\[
\leq H \cdot \sum_{i=1}^{\rho} \sum_{k=(i-1)\tau+1}^{i\tau} \sum_{h=1}^{H} \sum_{k=(i-1)\tau+2}^{H} \mathbb{E}_{\pi^*,(i-1)\tau+1} \left[\| \pi_h^{*k}(\cdot | s_h) - \pi_h^{*k-1}(\cdot | s_h) \|_1 \right]
\]

\[
\leq H \cdot \sum_{i=1}^{\rho} \sum_{k=(i-1)\tau+1}^{i\tau} \sum_{h=1}^{H} \sum_{s \in \mathcal{S}} \max \| \pi_h^{*k}(\cdot | s) - \pi_h^{*k-1}(\cdot | s) \|_1
\]

\[
= H \tau \cdot \sum_{t=1}^{\rho} \sum_{h=1}^{H} \max_{s \in \mathcal{S}} \| \pi_h^{*t}(\cdot | s) - \pi_h^{*t-1}(\cdot | s) \|_1 = H \tau P_T, \quad (D.7)
\]

where the first inequality follows by Holder’s inequality and the fact that \(\|Q_h^k(s, \cdot)\|_\infty \leq H \), the second inequality follows from triangle inequality, and the last inequality is obtained by the definition of \(P_T \) in (2.4). Combining (D.6) and (D.7), we have

\[
\text{Term}(A) \leq \sqrt{2H^3 T \rho \log |\mathcal{A}|} + H \tau P_T. \quad (D.8)
\]

To derive an upper bound of Term (B), we need the following lemma.

Lemma D.1. It holds that

\[
\sum_{i=1}^{\rho} \sum_{k=(i-1)\tau+1}^{i\tau} \sum_{h=1}^{H} (\mathbb{E}_{\pi^*,k} - \mathbb{E}_{\pi^*,(i-1)\tau+1}) \left[\langle Q_h^k(s_h, \cdot), \pi_h^{*k}(\cdot | s_h) - \pi_h^k(\cdot | s_h) \rangle \right] \leq \tau H^2 (P_T + \Delta_P),
\]

where \(\Delta_P = \sum_{k=1}^{K} \sum_{h=1}^{H} \max_{(s,a) \in \mathcal{S} \times \mathcal{A}} \| P_h^k(\cdot | s, a) - P_h^{k+1}(\cdot | s, a) \|_1 \).

Proof. See Appendix D.4 for a detailed proof. \(\square\)
By Lemma D.1, we have
\[\text{Term}(B) \leq \tau H^2 (P_T + \Delta_P). \] (D.9)

Furthermore, by Assumption 2.1, we further obtain
\[
\Delta_P = \sum_{k=1}^K \sum_{h=1}^H \max_{(s,a) \in S \times A} \| P^k_h(\cdot | s, a) - P^{k+1}_h(\cdot | s, a) \|_1
\]
\[= \sum_{k=1}^K \sum_{h=1}^H \max_{(s,a) \in S \times A} \sum_{s' \in S} | P^k_h(s' | s, a) - P^{k+1}_h(s' | s, a) |
\]
\[= \sum_{k=1}^K \sum_{h=1}^H \max_{(s,a) \in S \times A} \sum_{s' \in S} | \psi(s, a, s') \top (\xi^k_h - \xi^{k+1}_h) |
\]
\[\leq \sum_{k=1}^K \sum_{h=1}^H \max_{(s,a) \in S \times A} \sum_{s' \in S} \| \psi(s, a, s') \|_2 \cdot \| \xi^k_h - \xi^{k+1}_h \|_2, \] (D.10)

where the last inequality follows from Cauchy-Schwarz inequality. Recall the assumption that $\sum_{s' \in S} \| \psi(s, a, s') \|_2 \leq \sqrt{d}$ for any $(s, a) \in S \times A$, we have
\[
\sum_{k=1}^K \sum_{h=1}^H \max_{(s,a) \in S \times A} \sum_{s' \in S} \| \psi(s, a, s') \|_2 \cdot \| \xi^k_h - \xi^{k+1}_h \|_2
\]
\[\leq \sqrt{d} \sum_{k=1}^K \sum_{h=1}^H \| \xi^k_h - \xi^{k+1}_h \|_2 = \sqrt{d} B_P \leq \sqrt{d} \Delta. \] (D.11)

Combining (D.8), (D.9), (D.10) and (D.11), we have
\[
\sum_{i=1}^\rho \sum_{k=(i-1)\tau + 1}^{i\tau} \sum_{h=1}^H \mathbb{E}_{\pi^*, k} \left[(Q^k_h(s_h, \cdot), \pi^*_{h,k}(\cdot | s_h) - \pi_h^k(\cdot | s_h)) \right] \leq \sqrt{2H^3 T \rho \log |A|} + \tau H^2 (P_T + \sqrt{d} \Delta),
\]
which concludes the proof.

\[\square \]

D.3 Proof of Lemma 5.3

Proof. We first derive the upper bound of $-l^k_h(\cdot, \cdot)$. As defined in (5.1), for any $(k, h) \in [K] \times [H]$ and $(s, a) \in S \times A$,
\[-l^k_h(s, a) = Q^k_h(s, a) - (r^k_h + \mathbb{P}^{k}_{h} \psi^k_{h+1})(s, a). \]
Meanwhile, by the definition of Q_h^k in (4.9), we have

$$Q_h^k(\cdot, \cdot) = \min\{\phi(\cdot, \cdot)\mathbf{T} \hat{\theta}_h^k + \eta_h^k(\cdot, \cdot)\mathbf{T} \hat{\xi}_h^k + B_h^k(\cdot, \cdot) + \Gamma_h^k(\cdot, \cdot), H - h + 1\}^+$$

$$\leq \phi(s, a)\mathbf{T} \hat{\theta}_h^k + \eta_h^k(s, a)\mathbf{T} \hat{\xi}_h^k + B_h^k(s, a) + \Gamma_h^k(s, a)$$

for any $(k, h) \in [K] \times [H]$ and $(s, a) \in S \times A$. Hence, we obtain

$$-l_h^k(s, a) = Q_h^k(s, a) - (r_h^k + \Pi_h^k V_{h+1}^k)(s, a)$$

$$\leq \phi(s, a)\mathbf{T} \hat{\theta}_h^k + \eta_h^k(s, a)\mathbf{T} \hat{\xi}_h^k + B_h^k(s, a) + \Gamma_h^k(s, a) - (r_h^k + \Pi_h^k V_{h+1}^k)(s, a)$$

$$= \phi(s, a)\mathbf{T} \hat{\theta}_h^k + B_h^k(s, a) - r_h^k(s, a) + \eta_h^k(s, a)\mathbf{T} \hat{\xi}_h^k + \Gamma_h^k(s, a) - \Pi_h^k V_{h+1}^k(s, a).$$

Term (i): By the definition of $\hat{\theta}_h^k$ in (4.5), we have

$$\hat{\theta}_h^k = \frac{1}{(\Lambda_h^k)^{-1}} \left(\sum_{\tau=1}^{k-1} \phi(s_h^\tau, a_h^\tau) r_h^\tau(s_h^\tau, a_h^\tau) \right) - \theta_h^k$$

$$= \left(\sum_{\tau=1}^{k-1} \phi(s_h^\tau, a_h^\tau) r_h^\tau(s_h^\tau, a_h^\tau) - \Lambda_h^k \theta_h^k \right)$$

$$= \left(\sum_{\tau=1}^{k-1} \phi(s_h^\tau, a_h^\tau) \phi(s_h^\tau, a_h^\tau)^\mathbf{T} (\theta_h^\tau - \theta_h^k) - \lambda \cdot \theta_h^k \right),$$

where the last equality is obtained by the definition of Λ_h^k in (4.5) and the assumption that $r_h^\tau(s_h^\tau, a_h^\tau) = \phi(s_h^\tau, a_h^\tau)^\mathbf{T} \theta_h^\tau$ for any $(\tau, h) \in [K] \times [H]$. Hence, for any $(k, h) \in [K] \times [H]$ and $(s, a) \in S \times A$, we have

$$|\phi(s, a)\mathbf{T} (\hat{\theta}_h^k - \theta_h^k)|$$

$$\leq \left| \phi(s, a) \mathbf{T} (\Lambda_h^k)^{-1} \left(\sum_{\tau=1}^{k-1} \phi(s_h^\tau, a_h^\tau) \phi(s_h^\tau, a_h^\tau)^\mathbf{T} (\theta_h^\tau - \theta_h^k) \right) \right| + |\phi(s, a)\mathbf{T} (\Lambda_h^k)^{-1} \lambda \cdot \theta_h^k|.$$ \hfill (D.12)

Then we derive the upper bound of term (i.1) and term (i.2), respectively.
Term (i.1): By Cauchy-Schwarz inequality, we have

\[
\left| \phi(s, a)^\top (\Lambda_h^k)^{-1} \left(\sum_{\tau=1}^{k-1} \phi(s^\tau_h, a^\tau_h) \phi(s^\tau_h, a^\tau_h)^\top (\theta^\tau_h - \theta^k_h) \right) \right|
\]

\[
\leq \|\phi(s, a)\|_2 \cdot \left\| (\Lambda_h^k)^{-1} \left(\sum_{\tau=1}^{k-1} \phi(s^\tau_h, a^\tau_h) \phi(s^\tau_h, a^\tau_h)^\top (\theta^\tau_h - \theta^k_h) \right) \right\|_2
\]

\[
\leq \left\| (\Lambda_h^k)^{-1} \left(\sum_{\tau=1}^{k-1} \phi(s^\tau_h, a^\tau_h) \phi(s^\tau_h, a^\tau_h)^\top (\theta^\tau_h - \theta^k_h) \right) \right\|_2,
\]

(D.13)

where the last inequality follows from the fact that \(\|\phi(s, a)\|_2 \leq 1\) for any \((s, a) \in S \times A\). Moreover, we have

\[
\left\| (\Lambda_h^k)^{-1} \left(\sum_{\tau=1}^{k-1} \phi(s^\tau_h, a^\tau_h) \phi(s^\tau_h, a^\tau_h)^\top (\theta^\tau_h - \theta^k_h) \right) \right\|_2
\]

\[
= \left\| (\Lambda_h^k)^{-1} \left(\sum_{\tau=1}^{k-1} \phi(s^\tau_h, a^\tau_h) \phi(s^\tau_h, a^\tau_h)^\top \left(\sum_{i=\tau}^{k-1} (\theta^i_h - \theta^{i+1}_h) \right) \right) \right\|_2,
\]

(D.14)

where the last equality follows from the fact that \(\theta^\tau_h - \theta^k_h = \sum_{i=\tau}^{k-1} (\theta^i_h - \theta^{i+1}_h)\). By exchanging the order of summation, we further have

\[
\left\| (\Lambda_h^k)^{-1} \left(\sum_{\tau=1}^{k-1} \phi(s^\tau_h, a^\tau_h) \phi(s^\tau_h, a^\tau_h)^\top \left(\sum_{i=\tau}^{k-1} (\theta^i_h - \theta^{i+1}_h) \right) \right) \right\|_2
\]

\[
= \left\| (\Lambda_h^k)^{-1} \left(\sum_{i=1}^{k-1} \sum_{\tau=1}^{i} \phi(s^\tau_h, a^\tau_h) \phi(s^\tau_h, a^\tau_h)^\top (\theta^i_h - \theta^{i+1}_h) \right) \right\|_2
\]

\[
\leq \sum_{i=1}^{k-1} \left\| (\Lambda_h^k)^{-1} \left(\sum_{\tau=1}^{i} \phi(s^\tau_h, a^\tau_h) \phi(s^\tau_h, a^\tau_h)^\top (\theta^i_h - \theta^{i+1}_h) \right) \right\|_2.
\]

(D.15)

By the fact that for any matrix \(A \in \mathbb{R}^{d \times d}\) and a vector \(x \in \mathbb{R}^d\), \(\|Ax\|_2 \leq \lambda_{\text{max}}(A^\top A)\|x\|_2\),
we have

\[
\sum_{i=1}^{k-1} \left\| (\Lambda_h^k)^{-1} \left(\sum_{\tau=1}^i \phi(s_h^\tau, a_h^\tau)\phi(s_h^\tau, a_h^\tau)^\top \right) (\theta_h^i - \theta_h^{i+1}) \right\|_2^2 \leq \sum_{i=1}^{k-1} \lambda_{\text{max}} \left(\left(\sum_{\tau=1}^i \phi(s_h^\tau, a_h^\tau)\phi(s_h^\tau, a_h^\tau)^\top \right) (\Lambda_h^k)^{-2} \left(\sum_{\tau=1}^i \phi(s_h^\tau, a_h^\tau)\phi(s_h^\tau, a_h^\tau)^\top \right) \right) \left\| (\theta_h^i - \theta_h^{i+1}) \right\|_2. \tag{D.16}
\]

Meanwhile, by Assumption 4.1, we assume \(\phi(s_h^\tau, a_h^\tau) = \Psi z_h^\tau \). For simplicity, we define \(M_1 = \sum_{\tau=1}^{k-1} (z_h^\tau)(z_h^\tau)^\top + \Lambda d \) and \(M_2 = \sum_{\tau=1}^{k-1} (z_h^\tau)(z_h^\tau)^\top \). Then, we have

\[
\lambda_{\text{max}} \left(\left(\sum_{\tau=1}^i \phi(s_h^\tau, a_h^\tau)\phi(s_h^\tau, a_h^\tau)^\top \right) (\Lambda_h^k)^{-2} \left(\sum_{\tau=1}^i \phi(s_h^\tau, a_h^\tau)\phi(s_h^\tau, a_h^\tau)^\top \right) \right) = \lambda_{\text{max}} \left(\Psi M_2 \Psi^\top (\Psi M_1 \Psi^\top)^{-2} \Psi M_2 \Psi^\top \right) = \lambda_{\text{max}} (M_2 M_1^{-2} M_2). \tag{D.17}
\]

Given the eigenvalue decomposition \(M_2 = P \text{diag} (\lambda_1, \cdots, \lambda_d) P^\top \) where \(P \) is an orthogonal matrix and \(\lambda_i \) is the \(i \)-th eigenvalue of \(M_2 \), we have \(M_1 = P \text{diag} (\lambda_1 + \lambda, \cdots, \lambda_d + \lambda) P^\top \). Thus \(M_2 M_1^{-2} M_2 = \text{diag} (\lambda_1^2/(\lambda_1 + \lambda)^2, \cdots, \lambda_d^2/(\lambda_d + \lambda)^2) \), which further implies that

\[
\lambda_{\text{max}} (M_2 M_1^{-2} M_2) \leq 1. \tag{D.18}
\]

Combined with (D.13), (D.14), (D.15), (D.16), and (D.17), we obtain

\[
|\text{Term}(i.1)| \leq \left\| \phi(s, a)^\top (\Lambda_h^k)^{-1} \left(\sum_{\tau=1}^{k-1} \phi(s_h^\tau, a_h^\tau)\phi(s_h^\tau, a_h^\tau)^\top (\theta_h^\tau - \theta_h^{\tau+1}) \right) \right\| \leq \sum_{i=1}^{k-1} \left\| \theta_h^i - \theta_h^{i+1} \right\|_2. \tag{D.19}
\]

Term (i.2): By Cauchy-Schwarz inequality, we obtain

\[
|\phi(s, a)^\top (\Lambda_h^k)^{-1}(\lambda \cdot \theta_h^k)| \leq \left\| \phi(s, a) \right\| (\Lambda_h^k)^{-1} \cdot \left\| \lambda \cdot \theta_h^k \right\| (\Lambda_h^k)^{-1}.
\]

Note the fact that \(\Lambda_h^k \succeq \Lambda d \), which implies \(\lambda_{\text{min}}((\Lambda_h^k)^{-1}) \geq \lambda. \) We further obtain

\[
\left\| \lambda \cdot \theta_h^k \right\| (\Lambda_h^k)^{-1} \leq \frac{1}{\lambda_{\text{min}}((\Lambda_h^k)^{-1})} \cdot \left\| \lambda \cdot \theta_h^k \right\|_2 \leq \frac{1}{\lambda} \cdot \lambda^2 d = \lambda d.
\]

Hence, we have

\[
|\phi(s, a)^\top (\Lambda_h^k)^{-1}(\lambda \cdot \theta_h^k)| \leq \sqrt{\lambda d} \cdot \left\| \phi(s, a) \right\| (\Lambda_h^k)^{-1}. \tag{D.20}
\]
Setting $\beta_k = \sqrt{\lambda_d}$ for any $k \in [K]$ in the bonus function B^k_h defined in (4.10). Plugging (D.19) and (D.20) into (D.12), we obtain

$$|\phi(s, a)\top (\hat{\theta}^k_h - \theta^k_h)| \leq B^k_h(s, a) + \sum_{i=1\vee(k-w)}^{k-1} ||\theta^i_h - \theta^{i+1}_h||_2 \tag{D.21}$$

for any $(k, h) \in [K] \times [H]$. Hence, for any $(s, a) \in S \times A$, we have

$$\phi(s, a)\hat{\theta}^k_h + B^k_h(s, a) - r^k_h(s, a) \leq 2B^k_h(s, a) + \sum_{i=1\vee(k-w)}^{k-1} ||\theta^i_h - \theta^{i+1}_h||_2. \tag{D.22}$$

Term (ii): Recall that η^k_h defined in (4.6) takes the form

$$\eta^k_h(\cdot, \cdot) = \int_S \psi(\cdot, \cdot, s') \cdot V^k_{h+1}(s') \, ds'$$

for any $(k, h) \in [K] \times [H]$ and $(s, a) \in S \times A$. Meanwhile, by Assumption 2.1, we obtain

$$\left(\mathbb{P}^k_h V^k_{h+1}\right)(s, a) = \int_S \psi(s, a, s')\top \xi^k_h \cdot V^k_{h+1}(s') \, ds' \tag{D.23}$$

for any $(k, h) \in [K] \times [H]$ and $(s, a) \in S \times A$. Recall the definition of A^k_h in (4.8), we have

$$\left(\mathbb{P}^k_h V^k_{h+1}\right)(s, a) = \eta^k_h(s, a)\top (A^k_h)^{-1} \left(\sum_{\tau=1\vee(k-w)}^{k-1} \eta^\tau_h(s^\tau_h, a^\tau_h) \eta^\tau_h(s^\tau_h, a^\tau_h)\top \xi^\tau_h + \lambda' \cdot \xi^k_h \right)$$

$$= \eta^k_h(s, a)\top (A^k_h)^{-1} \left(\sum_{\tau=1\vee(k-w)}^{k-1} \eta^\tau_h(s^\tau_h, a^\tau_h) \cdot (\mathbb{P}^k_h V^\tau_{h+1})(s^\tau_h, a^\tau_h) + \lambda' \cdot \xi^k_h \right)$$

for any $(k, h) \in [K] \times [H]$ and $(s, a) \in S \times A$. Here the second equality is obtained by (D.23). Recall the definition of ξ^k_h in (4.8), we have

$$\eta^k_h(\cdot, \cdot)\top \xi^k_h = (\mathbb{P}^k_h V^k_{h+1})(s, a)$$

$$= \eta^k_h(s, a)\top (A^k_h)^{-1} \left(\sum_{\tau=1\vee(k-w)}^{k-1} \eta^\tau_h(s^\tau_h, a^\tau_h) \cdot (\mathbb{P}^k_h V^\tau_{h+1})(s^\tau_h, a^\tau_h) - (\mathbb{P}^k_h V^\tau_{h+1})(s^\tau_h, a^\tau_h) \right) \tag{ii.1}$$

$$- \lambda' \cdot \eta^k_h(s, a)\top (A^k_h)^{-1} \xi^k_h \tag{ii.2}$$

for any $(k, h) \in [K] \times [H]$ and $(s, a) \in S \times A$.

48
Term (ii.1): We can decompose Term (ii) as

\[
\text{Term (ii.1)} = \eta_h^k(s, a)^\top(A_h^k)^{-1}\left(\sum_{\tau=1}^{k-1} \eta_h^\tau(s_h^\tau, a_h^\tau) \cdot (V_{h+1}^\tau(s_{h+1}^\tau) - (P_h^\tau V_{h+1}^\tau)(s_h^\tau, a_h^\tau))\right)
\]

(D.25)

\[
+ \eta_h^k(s, a)^\top(A_h^k)^{-1}\left(\sum_{\tau=1}^{k-1} \eta_h^\tau(s_h^\tau, a_h^\tau) \cdot ((P_h^\tau V_{h+1}^\tau)(s_h^\tau, a_h^\tau) - (P_h^k V_{h+1}^\tau)(s_h^\tau, a_h^\tau))\right)
\]

(iii.1.2)

By the definition of \(A_h^k\) in (4.8), \((A_h^k)^{-1}\) is a positive definite matrix. Hence, by Cauchy-Schwarz inequality,

\[
|\text{Term (ii.1.1)}| \leq \sqrt{\eta_h^k(s, a)^\top(A_h^k)^{-1}\eta_h^k(s, a)} \cdot \left\| \sum_{\tau=1}^{k-1} \eta_h^\tau(s_h^\tau, a_h^\tau) \cdot (V_{h+1}^\tau(s_{h+1}^\tau) - (P_h^\tau V_{h+1}^\tau)(s_h^\tau, a_h^\tau)) \right\|_{(A_h^k)^{-1}}
\]

(D.26)

for any \((k, h) \in [K] \times [H]\) and \((s, a) \in \mathcal{S} \times \mathcal{A}\). Under the event \(E\) defined in (G.4) of Lemma G.3, which happens with probability at least \(1 - \zeta/2\), it holds that

\[
|\text{Term (ii.1.1)}| \leq C'' \sqrt{dH^2 \cdot \log(dT/\zeta)} \cdot \sqrt{\eta_h^k(s, a)^\top(A_h^k)^{-1}\eta_h^k(s, a)}
\]

(D.27)

for any \((k, h) \in [K] \times [H]\) and \((s, a) \in \mathcal{S} \times \mathcal{A}\). Here \(C'' > 0\) is an absolute constant defined in Lemma G.3. Meanwhile, by (D.23), we have \((P_h^k V_{h+1}^\tau)(s, a) = \eta_h^\tau(s, a)^\top \xi_h^k\) and \((P_h^\tau V_{h+1}^\tau)(s, a) = \eta_h^\tau(s, a)^\top \xi_h^\tau\) for any \((s, a) \in \mathcal{S} \times \mathcal{A}\), which implies

\[
|\text{Term (ii.1.2)}| = \left\| \eta_h^k(s, a)^\top(A_h^k)^{-1}\left(\sum_{\tau=1}^{k-1} \eta_h^\tau(s_h^\tau, a_h^\tau) \eta_h^\tau(s_h^\tau, a_h^\tau)^\top (\xi_h^\tau - \xi_h^k)\right)\right\|
\]

\[
\leq \|\eta_h^k(s, a)\|_2 \cdot \left\| (A_h^k)^{-1}\left(\sum_{\tau=1}^{k-1} \eta_h^\tau(s_h^\tau, a_h^\tau) \eta_h^\tau(s_h^\tau, a_h^\tau)^\top (\xi_h^\tau - \xi_h^k)\right) \right\|_2
\]

\[
\leq H\sqrt{d} \cdot \left\| (A_h^k)^{-1}\left(\sum_{\tau=1}^{k-1} \eta_h^\tau(s_h^\tau, a_h^\tau) \eta_h^\tau(s_h^\tau, a_h^\tau)^\top (\xi_h^\tau - \xi_h^k)\right) \right\|_2,
\]

where the last inequality is obtained by Assumption 2.1. Then, by the same derivation of (D.19), we have

\[
|\text{Term (ii.1.2)}| \leq H\sqrt{d} \cdot \sum_{i=1}^{k-1} \|\xi_h^i - \xi_h^{i+1}\|_2.
\]

(D.28)
Plugging (D.27) and (D.28) into (D.25), we obtain
\[|\text{Term (ii.1)}| \leq C'' \sqrt{dH^2 \cdot \log(dT/\zeta)} \cdot \sqrt{\eta_k^k(s, a)^\top (A_h^k)^{-1} \eta_k^k(s, a)} + H \sqrt{d} \cdot \sum_{i=1 \lor (k-w)}^{k-1} \|\xi_h^i - \xi_h^{i+1}\|_2. \tag{D.29}\]

Term (ii.2): For any \((k, h) \in [K] \times [H]\) and \((s, a) \in S \times A\), we have
\[|\text{Term (ii.2)}| \leq \lambda' \cdot \sqrt{\eta(s, a)^\top (A_h^k)^{-1} \eta(s, a)} \cdot \|\xi_h^k\|_2 \tag{D.30}\]
\[\leq \sqrt{\lambda'} \cdot \eta(s, a)^\top (A_h^k)^{-1} \eta(s, a) \cdot \|\xi_h^k\|_2 \]
\[\leq \sqrt{\lambda} \cdot \eta(s, a)^\top (A_h^k)^{-1} \eta(s, a),\]
where the first inequality follows from Cauchy-Schwarz inequality, the second inequality follows from the fact that \(A_h^k \succeq \lambda' \cdot I_d\) and the last inequality is obtained by Assumption 2.1.

Plugging (D.29) and (D.30) into (D.24), we have
\[|\eta_k^k(s, a)^\top \hat{\xi}_h^k - (P_h^k V_{h+1}^k)(s, a)| \]
\[\leq C' \sqrt{dH^2 \cdot \log(dT/\zeta)} \cdot \sqrt{\eta_h^k(s, a)^\top (A_h^k)^{-1} \eta_h^k(s, a)} + H \sqrt{d} \cdot \sum_{i=1 \lor (k-w)}^{k-1} \|\xi_h^i - \xi_h^{i+1}\|_2 \tag{D.31}\]
for any \((k, h) \in [K] \times [H]\) and \((s, a) \in S \times A\). Here \(C' > 1\) is another absolute constant.

Setting
\[\beta' = C' \sqrt{dH^2 \cdot \log(dT/\zeta)}\]
in the bonus function \(\Gamma_h^k\) defined in (4.10). Hence, by (D.31), we have
\[|\eta_h^k(s, a)^\top \xi_h^k - (P_h^k V_{h+1}^k)(s, a)| \leq \Gamma_h^k(s, a) + H \sqrt{d} \cdot \sum_{i=1 \lor (k-w)}^{k-1} \|\xi_h^i - \xi_h^{i+1}\|_2 \tag{D.32}\]
for any \((k, h) \in [K] \times [H]\) and \((s, a) \in S \times A\) under event \(E\). Hence,
\[\eta_h^k(s, a)^\top \xi_h^k + \Gamma_h^k(s, a) - P_h^k V_{h+1}^k(s, a) \leq 2 \Gamma_h^k(s, a) + H \sqrt{d} \cdot \sum_{i=1 \lor (k-w)}^{k-1} \|\xi_h^i - \xi_h^{i+1}\|_2 \tag{D.33}\]
for any \((k, h) \in [K] \times [H]\) and \((s, a) \in S \times A\) under event \(E\). Combining (D.22) and (D.33),
we have
\[-l^k_h(s, a) = Q^k_h(s, a) - (r^k_h + \Pi^k_h V^k_{h+1})(s, a)\]
\[\leq 2B^k_h(s, a) + 2\Gamma^k_h(s, a) + \sum_{i=1}^{k-1} \|\theta^i_h - \theta^{i+1}_h\|_2 + H\sqrt{d} \cdot \sum_{i=1}^{k-1} \|\xi^i_h - \xi^{i+1}_h\|_2.\]
(D.34)

Then, we show that \(l^k_h(s, a) \leq \sum_{i=1}^{k-1} \|\theta^i_h - \theta^{i+1}_h\|_2 + H\sqrt{d} \cdot \sum_{i=1}^{k-1} \|\xi^i_h - \xi^{i+1}_h\|_2\) for any \((k, h) \in [K] \times [H]\) and \((s, a) \in \mathcal{S} \times \mathcal{A}\) under event \(\mathcal{E}\).

\[l^k_h(s, a) = (r^k_h + \Pi^k_h V^k_{h+1})(s, a) - Q^k_h\]
\[= (r^k_h + \Pi^k_h V^k_{h+1})(s, a) - \min \{\phi(s, a)\hat{\theta}^k_h + \eta^k_h(s, a)\top \hat{\xi}^k_h + B^k_h(s, a) + \Gamma^k_h(s, a), H - h + 1\}\]
\[= \max \{r^k_h(s, a) - \phi(s, a)\hat{\theta}^k_h - B^k_h(s, a) + (\Pi^k_h V^k_{h+1})(s, a) - \eta^k_h(\cdot, \cdot)\top \hat{\xi}^k_h - \Gamma^k_h(s, a),\]
\[\{r^k_h + \Pi^k_h V^k_{h+1})(s, a) - (H - h + 1)\}\].
(D.35)

By (D.21) and (D.32), we have
\[r^k_h(s, a) - \phi(s, a)\hat{\theta}^k_h - B^k_h(s, a) + (\Pi^k_h V^k_{h+1})(s, a) - \eta^k_h(\cdot, \cdot)\top \hat{\xi}^k_h - \Gamma^k_h(s, a)\]
\[\leq \sum_{i=1}^{k-1} \|\theta^i_h - \theta^{i+1}_h\|_2 + H\sqrt{d} \cdot \sum_{i=1}^{k-1} \|\xi^i_h - \xi^{i+1}_h\|_2.\]
(D.36)

Also, we note the fact that \(V^k_{h+1} \leq H - h\), it is not difficult to show that
\[(r^k_h + \Pi^k_h V^k_{h+1})(s, a) - (H - h + 1) \leq 0.\]
(D.37)

Plugging (D.36) and (D.37) into (D.35), we obtain
\[l^k_h(s, a) \leq \sum_{i=1}^{k-1} \|\theta^i_h - \theta^{i+1}_h\|_2 + H\sqrt{d} \cdot \sum_{i=1}^{k-1} \|\xi^i_h - \xi^{i+1}_h\|_2\]
(D.38)

for any \((k, h) \in [K] \times [H]\) and \((s, a) \in \mathcal{S} \times \mathcal{A}\) under event \(\mathcal{E}\). Combining (D.34) and (D.38), we finish the proof of Lemma 5.3.

\[\square\]

D.4 Proof of Lemma D.1

Proof. Our proof has some similarities with the proof of Lemma 4 in Fei et al. (2020). However, they only consider the stationary transition kernels, which makes the analysis easier. Our proof relies on the following lemma.
Lemma D.2. For any \((h, k') \in [H] \times [K], \{k_j\}_{j=1}^{h-1} \in [K], j \in [h - 1], (s_1, s_h) \in \mathcal{S} \times \mathcal{S},\) and policies \(\{\pi_i\}_{i \in [H]} \cup \{\pi'\},\) we have

\[
|P_{1}^{k_1, \pi(1)} \cdots P_{j}^{k_j, \pi(j)} \cdots P_{h-1}^{k_{h-1}, \pi(h-1)}(s_h \mid s_1) - P_{1}^{k'_1, \pi(1)} \cdots P_{j}^{k'_j, \pi'(j)} \cdots P_{h-1}^{k'_{h-1}, \pi(h-1)}(s_h \mid s_1)| \\
\leq \|\pi_j'(j) - \pi'_j\|_{\infty, 1} + \max_{(s,a) \in \mathcal{S} \times \mathcal{A}} |P_{j}^{k_j}(\cdot \mid s_j, a) - P_{j}^{k'_j}(\cdot \mid s, a)|_1.
\]

Proof. First, we have

\[
|P_{1}^{k_1, \pi(1)} \cdots P_{j}^{k_j, \pi(j)} \cdots P_{h-1}^{k_{h-1}, \pi(h-1)}(s_h \mid s_1) - P_{1}^{k'_1, \pi(1)} \cdots P_{j}^{k'_j, \pi'(j)} \cdots P_{h-1}^{k'_{h-1}, \pi(h-1)}(s_h \mid s_1)| \\
\leq |P_{1}^{k_1, \pi(1)} \cdots P_{j}^{k_j, \pi(j)} \cdots P_{h-1}^{k_{h-1}, \pi(h-1)}(s_h \mid s_1) - P_{1}^{k'_1, \pi(1)} \cdots P_{j}^{k'_j, \pi'(j)} \cdots P_{h-1}^{k'_{h-1}, \pi(h-1)}(s_h \mid s_1)| \\
+ |P_{1}^{k_1, \pi(1)} \cdots P_{j}^{k'_j, \pi'(j)} \cdots P_{h-1}^{k_{h-1}, \pi(h-1)}(s_h \mid s_1) - P_{1}^{k'_1, \pi(1)} \cdots P_{j}^{k'_j, \pi'(j)} \cdots P_{h-1}^{k'_{h-1}, \pi(h-1)}(s_h \mid s_1)|. \\
(D.39)
\]

By the definition of Markov kernel, we have

\[
|P_{1}^{k_1, \pi(1)} \cdots P_{j}^{k_j, \pi(j)} \cdots P_{h-1}^{k_{h-1}, \pi(h-1)}(s_h \mid s_1) - P_{1}^{k'_1, \pi(1)} \cdots P_{j}^{k'_j, \pi'(j)} \cdots P_{h-1}^{k'_{h-1}, \pi(h-1)}(s_h \mid s_1)| \\
\leq \sum_{s_2, s_3, \ldots, s_{h-1}} |P_{j}^{k_j, \pi(j)}(s_{j+1} \mid s_j) - P_{j}^{k'_j, \pi'(j)}(s_{j+1} \mid s_j)| \cdot \prod_{i \in [h-1] \backslash j} P_{i}^{k_i, \pi(i)}(s_{i+1} \mid s_i) \\
\leq \sum_{s_2, \ldots, s_j, s_{j+2}, \ldots, s_{h-1}} \sum_{s_{j+1}} |P_{j}^{k_j, \pi(j)}(s_{j+1} \mid s_j) - P_{j}^{k'_j, \pi'(j)}(s_{j+1} \mid s_j)| \cdot \max_{s_{j+1} \in \mathcal{S}} \prod_{i \in [h-1] \backslash j} P_{i}^{k_i, \pi(i)}(s_{i+1} \mid s_i) \\
\leq \sum_{s_2, \ldots, s_j, \ldots, s_{j+2}, \ldots, s_{h-1}} \max_{s_j} \sum_{s_{j+1}} |P_{j}^{k_j, \pi(j)}(s_{j+1} \mid s_j) - P_{j}^{k'_j, \pi'(j)}(s_{j+1} \mid s_j)| \cdot \sum_{s_j} \max_{s_{j+1} \in \mathcal{S}} \prod_{i \in [h-1] \backslash j} P_{i}^{k_i, \pi(i)}(s_{i+1} \mid s_i),
\]

where the last two inequalities is obtained by Hölder’s inequality. By the definition of Markov kernel, we further have

\[
|P_{j}^{k_j, \pi(j)}(s_{j+1} \mid s_j) - P_{j}^{k'_j, \pi'(j)}(s_{j+1} \mid s_j)| = \left| \sum_{a} \pi_j(j)(a \mid s_j)(P_{j}^{k_j}(s_{j+1} \mid s_j, a) - P_{j}^{k'_j}(s_{j+1} \mid s_j, a)) \right| \\
\leq \max_{a} \left| P_{j}^{k_j}(s_{j+1} \mid s_j, a) - P_{j}^{k'_j}(s_{j+1} \mid s_j, a) \right|. \\
(D.41)
\]
Hence, we obtain
\[
|P_1^{k_1, \pi(1)} \cdots P_j^{k_j, \pi(j)} \cdots P_{h-1}^{k_{h-1}, \pi(h-1)}(s_h | s_1) - P_1^{k_1, \pi(1)} \cdots P_j^{k_j', \pi(j)} \cdots P_{h-1}^{k_{h-1}', \pi(h-1)}(s_h | s_1)| \\
\leq \max_{(s_j, a) \in S \times A} \|P_j^{k_j} (\cdot | s_j, a) - P_j^{k'} (\cdot | s_j, a)\|_1 \cdot \sum_{s_{j+1} \in S} \max_{s_{j+1} \in S} \prod_{i \in [h-1] \setminus j} P_i^{k_i, \pi(i)}(s_{i+1} | s_i) \\
= \max_{(s_j, a) \in S \times A} \|P_j^{k_j} (\cdot | s_j, a) - P_j^{k'} (\cdot | s_j, a)\|_1 \times \sum_{s_{j+1} \in S} \max_{s_{j+1} \in S} \prod_{i = j+1}^{h-1} P_i^{k_i, \pi(i)}(s_{i+1} | s_i) \cdot \sum_{s_{2j} \in S} \prod_{i = 1}^{j-1} P_i^{k_i, \pi(i)}(s_{i+1} | s_i) \\
\leq \|P_j^{k_j} - P_j^{k'}\|_\infty, \tag{D.42}
\]
where the last inequality follows from the definition of \(\|P_j^{k_j} - P_j^{k'}\|_\infty\) and the facts that \(\sum_{s_{j+1} \in S} \max_{s_{j+1} \in S} \prod_{i = j+1}^{h-1} P_i^{k_i, \pi(i)}(s_{i+1} | s_i) \leq 1\) and \(\sum_{s_{2j} \in S} \max_{s_{j+1} \in S} \prod_{i = 1}^{j-1} P_i^{k_i, \pi(i)}(s_{i+1} | s_i) \leq 1\).

Moreover, by Lemma 5 in Fei et al. (2020), we have
\[
|P_1^{k_1, \pi(1)} \cdots P_j^{k_j', \pi(j)} \cdots P_{h-1}^{k_{h-1}', \pi(h-1)}(s_h | s_1) - P_1^{k_1, \pi(1)} \cdots P_j^{k_j', \pi(j)} \cdots P_{h-1}^{k_{h-1}, \pi(h-1)}(s_h | s_1)| \\
\leq \|\pi_j^{(i)} - \pi_j^{(i)}\|_{\infty, 1}. \tag{D.43}
\]

Plugging (D.42) and (D.43) into (D.39), we conclude the proof of Lemma D.2. \(\square\)

Back to our proof, for any \((k, t, h) \in [K] \times [K] \times [H]\), we have
\[
\left| \left(\mathbb{E}_{\pi^t} - \mathbb{E}_{\pi^{t-1}} \right)(1(s_h)) \right| \\
\leq \left\| P_1^{t, \pi^t} P_2^{t, \pi^t} \cdots P_{h-1}^{t, \pi^t} (\cdot | s_1) - P_1^{t-1, \pi^{t-1}} P_2^{t-1, \pi^{t-1}} \cdots P_{h-1}^{t-1, \pi^{t-1}} (\cdot | s_1) \right\|_\infty \\
\leq \sum_{j=1}^{h-1} \left\| P_1^{t-1, \pi^{t-1}} \cdots P_{j-1}^{t-1, \pi^{t-1}} P_j^{t, \pi^t} \cdots P_{h-1}^{t, \pi^t} (\cdot | s_1) \\
- P_1^{t-1, \pi^{t-1}} \cdots P_{j-1}^{t-1, \pi^{t-1}} P_j^{t-1, \pi^{t-1}} \cdots P_{h-1}^{t-1, \pi^{t-1}} (\cdot | s_1) \right\|_\infty \\
\leq \sum_{j=1}^{h-1} (\|P_j^t - P_j^{t-1}\|_\infty + \|\pi_j^{t} - \pi_j^{t-1}\|_\infty), \tag{D.44}
\]
where the second inequality uses the triangle inequality and the last inequality follows from
Lemma D.2. Then we know
\[
\sum_{i=1}^{\rho} \sum_{k=(i-1)r+1}^{ir} \sum_{h=1}^{H} (\mathbb{E}_{n^*,k} - \mathbb{E}_{n^*,(i-1)r+1}) \left[\langle Q_h^k(s_h, \cdot), \pi_h^*, k \cdot | s_h \rangle - \pi_h^k(\cdot | s_h) \right] \\
\leq \sum_{i=1}^{\rho} \sum_{k=(i-1)r+1}^{ir} \sum_{h=1}^{H} \sum_{t=(i-1)r+2}^{H} \sum_{j=1}^{h-1} \left(\| P_j^t - P_j^{t-1} \|_\infty + \| \pi^{*,t}_j - \pi^{*,t-1}_j \|_\infty \right) \\
\leq H \sum_{h=1}^{H} \left(\sum_{i=1}^{\rho} \sum_{k=(i-1)r+1}^{ir} \sum_{t=(i-1)r+1}^{H} \sum_{j=1}^{h-1} \left(\| P_j^t - P_j^{t-1} \|_\infty + \| \pi^{*,t}_j - \pi^{*,t-1}_j \|_\infty \right) \right),
\]
(D.45)
where the first inequality follows from (D.44). Together with the definitions of \(\Delta_P \) and \(P_T \), we have
\[
\sum_{i=1}^{\rho} \sum_{k=(i-1)r+1}^{ir} \sum_{h=1}^{H} (\mathbb{E}_{n^*,k} - \mathbb{E}_{n^*,(i-1)r+1}) \left[\langle Q_h^k(s_h, \cdot), \pi_h^*, k \cdot | s_h \rangle - \pi_h^k(\cdot | s_h) \right] \leq \tau H^2 (\Delta_P + P_T),
\]
which concludes the proof of Lemma D.1.

\[\square \]

E Proof of Main Results

E.1 Proof of Theorem 4.2

Proof. By Lemma C.1, we decompose dynamic regret of Algorithm 1 into four parts:
\[
\text{D-Regret}(T) = \sum_{k=1}^{K} (V_1^{\pi^*, k}(s_1^k) - V_1^{\pi^h, k}(s_1^k)) \tag{E.1}
\]
\[
= \sum_{i=1}^{\rho} \sum_{k=(i-1)r+1}^{ir} \sum_{h=1}^{H} (\mathbb{E}_{n^*,k} \left[\langle Q_h^k(s_h, \cdot), \pi_h^*, k \cdot | s_h \rangle - \pi_h^k(\cdot | s_h) \right] + \mathcal{M}_{K, H, 2}) \tag{ii}
\]
\[
+ \sum_{i=1}^{\rho} \sum_{k=(i-1)r+1}^{ir} \sum_{h=1}^{H} \mathbb{E}_{n^*,k} [l_h^k(s_h, a_h)] \tag{iii}
\]
\[
+ \sum_{i=1}^{\rho} \sum_{k=(i-1)r+1}^{ir} \sum_{h=1}^{H} -l_h^k(s_h, a_h), \tag{iv}
\]
Now we establish the upper bound of these four parts, respectively.
Upper Bounding (i): By Lemma 5.2, we have

\[\text{Term}(i) \leq \sqrt{2H^3T} \rho \log |A| + \tau H^2(P_T + \sqrt{d\Delta}). \]

(E.2)

Then we discuss several cases.

- If \(0 \leq P_T + \sqrt{d\Delta} \leq \frac{\log |A|}{K} \), then \(\tau = \Pi_{[1,K]}([\frac{T\sqrt{\log |A|}}{H(P_T + \sqrt{d\Delta})}]^{2/3}) = K \), which implies that \(\rho = 1 \). Then (E.2) yields

\[\text{Term}(i) \leq 2H^2K\log |A| + H^2\sqrt{K\log |A|} = 3\sqrt{H^3T\log |A|}. \]

(E.3)

- If \(\sqrt{\frac{\log |A|}{K}} \leq P_T + \sqrt{d\Delta} \leq 2^{-3/2} \cdot K\sqrt{\log |A|} \), we have \(\tau \in [2, K] \) and (E.2) yields

\[\text{Term}(i) \leq 2 \cdot \frac{1}{\sqrt{\tau}} H^2 K \sqrt{\log |A|} + \tau H^2 \sqrt{K\log |A|} \leq 5(H^2T \sqrt{\log |A|})^{2/3}(P_T + \sqrt{d\Delta})^{1/3}. \]

(E.4)

- If \(P_T > 2^{-3/2} \cdot K\sqrt{\log |A|} \), we have \(\tau = 1 \) and therefore \(\rho = K \). Then (E.2) implies

\[\text{Term}(i) \leq 2H^2K\sqrt{\log |A|} + H^2P_T \leq 9H^2(P_T + \sqrt{d\Delta}). \]

(E.5)

Combining (E.3), (E.4) and (E.5), we have

\[\text{Term}(i) \leq \begin{cases}
\sqrt{H^3T\log |A|}, & \text{if } 0 \leq P_T + \sqrt{d\Delta} \leq \frac{\log |A|}{K}, \\
(H^2T \sqrt{\log |A|})^{2/3}(P_T + \sqrt{d\Delta})^{1/3}, & \text{if } \sqrt{\frac{\log |A|}{K}} \leq P_T + \sqrt{d\Delta} \lesssim K\sqrt{\log |A|}, \\
H^2(P_T + \sqrt{d\Delta}), & \text{if } P_T + \sqrt{d\Delta} \gtrsim K\sqrt{\log |A|}.
\end{cases} \]

(E.6)

Upper Bounding (ii): Recall that

\[\mathcal{M}_{K,h,2} = \sum_{k=1}^{K} \sum_{h=1}^{H} (D_{k,h,1} + D_{k,h,2}). \]

Here the \(D_{k,h,1} \) and \(D_{k,h,2} \) defined in (C.10) take the following forms,

\[D_{k,h,1} = (\bar{\xi}_h^k(Q_h^k - Q_h^{\pi^k,k})) (s_h^k) - Q_h^k - Q_h^{\pi^k,k}, \]

\[D_{k,h,2} = (\bar{\xi}_h^k(V_{h+1}^k - V_{h+1}^{\pi^k,k})) (s_h^k) + (V_h^{k} - V_{h+1}^{\pi^k,k})(s_h^k). \]

By the truncation of \(\phi(\cdot, \cdot)\theta_h^k + \eta_h^k(\cdot, \cdot)^\top \xi_h^k + B^k(\cdot, \cdot) + \Gamma_h^k(\cdot, \cdot) \) into range \([0, H - h + 1]\) in (4.9), we know that \(Q_h^k, Q_h^{\pi^k,k}, V_h^k, V_{h+1}^{\pi^k,k} \in [0, H] \), which implies that \(|D_{k,h,1}| \leq 2H \) and \(|D_{k,h,2}| \leq 2H \) for any \((k, h) \in [H] \times [K]\). Applying the Azuma-Hoeffding inequality to the
martingale $\mathcal{M}_{K,H,2}$, we obtain
\[
P(|\mathcal{M}_{K,H,2}| > \varepsilon) \leq 2 \exp\left(\frac{-\varepsilon^2}{16H^3K}\right).
\]
For any $\zeta \in (0, 1)$, if we set $\varepsilon = \sqrt{16H^3K \cdot \log(4/\zeta)}$, we have
\[
|\mathcal{M}_{K,H,2}| \leq \sqrt{16H^2T \cdot \log(4/\zeta)} \tag{E.7}
\]
with probability at least $1 - \zeta/2$.

Upper Bounding (iii): By Lemma 5.3, it holds with probability at least $1 - \zeta/2$ that
\[
l_k(s, a) \leq \sqrt{d} \cdot \sum_{i=1}^{K \vee (k-w)} \left| \theta^i_h - \theta^{i+1}_h \right|_2 + H \sqrt{w} \cdot \sum_{i=1}^{K \vee (k-w)} \left| \xi^i_h - \xi^{i+1}_h \right|_2
\]
for any $(k, h) \in [K] \times [H]$ and $(s, a) \in S \times A$, which implies that
\[
\sum_{k=1}^{K} \sum_{h=1}^{H} \mathbb{E}_{\pi^*}[l_k^h(s_h, a_h) | s_1 = s_1^k]
\]
\[
\leq \sqrt{d} \cdot \sum_{k=1}^{K} \sum_{h=1}^{H} \sum_{i=1}^{K \vee (k-w)} \left| \theta^i_h - \theta^{i+1}_h \right|_2 + H \sqrt{w} \cdot \sum_{i=1}^{K \vee (k-w)} \sum_{i=1}^{K \vee (k-w)} \left| \xi^i_h - \xi^{i+1}_h \right|_2
\]
\[
eq \sqrt{d} \cdot \sum_{k=1}^{K} \sum_{h=1}^{H} \sum_{i=1}^{K \vee (k-w)} \left| \theta^i_h - \theta^{i+1}_h \right|_2 + H \sqrt{w} \cdot \sum_{i=1}^{K \vee (k-w)} \sum_{i=1}^{K \vee (k-w)} \left| \xi^i_h - \xi^{i+1}_h \right|_2
\]
\[
\leq \sum_{h=1}^{H} \sum_{k=1}^{K} w \cdot \left| \theta^k_h - \theta^{k+1}_h \right|_2 + H \sqrt{d} \cdot \sum_{h=1}^{H} \sum_{k=1}^{K} w \cdot \left| \xi^k_h - \xi^{k+1}_h \right|_2
\]
\[
\leq wB_T + wH\sqrt{d}B_P \leq w\Delta H\sqrt{d}. \tag{E.8}
\]
Here the last inequality follows from the definition of total variation budget in (2.5).

Upper Bounding (iv): As is shown in Lemma 5.3, it holds with probability at least $1 - \zeta/2$ that
\[
-l_k^h(s, a) \leq 2B^k_h(s, a) + 2\Gamma^k_h(s, a) + \sum_{i=1}^{K \vee (k-w)} \left| \theta^i_h - \theta^{i+1}_h \right|_2 + H \sqrt{d} \cdot \sum_{i=1}^{K \vee (k-w)} \left| \xi^i_h - \xi^{i+1}_h \right|_2
\]
for any $(k, h) \in [K] \times [H]$ and $(s, a) \in S \times A$. Meanwhile, by the definitions of Q^k_h and l_k^h in (4.9) and (5.1), we have that $|l_k^h(s, a)| \leq 2H$. Hence,
\[
-l_k^h(s, a) \leq 2B^k_h(s, a) + 2H \cdot 2\Gamma^k_h(s, a) + \sum_{i=1}^{K \vee (k-w)} \left| \theta^i_h - \theta^{i+1}_h \right|_2 + H \sqrt{d} \cdot \sum_{i=1}^{K \vee (k-w)} \left| \xi^i_h - \xi^{i+1}_h \right|_2,
\]
which further implies
\[
\sum_{k=1}^{K} \sum_{h=1}^{H} -l^k_h(s^k_h, a^k_h) \leq 2 \sum_{k=1}^{K} \sum_{h=1}^{H} B^k_h(s, a) + 2 \sum_{k=1}^{K} \sum_{h=1}^{H} H \wedge \Gamma^k_h(s, a)
\]
\[\tag{E.9}\]
\[+ \sum_{k=1}^{K} \sum_{h=1}^{H} \sum_{i=1}^{k-1} \|\theta_h^i - \theta_h^{i+1}\|_2 + H \sqrt{d} \cdot \sum_{k=1}^{K} \sum_{h=1}^{H} \sum_{i=1}^{k-1} \|\xi_h^i - \xi_h^{i+1}\|_2.\]

By Cauchy-Schwarz inequality, we have
\[
\sum_{h=1}^{H} \sum_{k=1}^{K} B^k_h(s^k_h, a^k_h) \leq \beta \cdot \sum_{h=1}^{H} \sum_{k=1}^{K} \sqrt{\phi(s^k_h, a^k_h) \top (\Lambda^k_h)^{-1} \phi(s^k_h, a^k_h)}
\]
\[\leq \beta \cdot \sum_{h=1}^{H} \left(K \cdot \sum_{k=1}^{K} \phi(s^k_h, a^k_h) \top (\Lambda^k_h)^{-1} \phi(s^k_h, a^k_h) \right)^{1/2}
\]
\[= \beta \sqrt{K} \cdot \sum_{h=1}^{H} \sqrt{\sum_{k=1}^{K} \|\phi(s^k_h, a^k_h)\|_{(\Lambda^k_h)^{-1}}}.
\]
\[\tag{E.10}\]

As we set \(\lambda = 1\), we have that \(\Lambda^k_h \succeq I_d\), which implies
\[\|\phi(s^k_h, a^k_h)\|_{(\Lambda^k_h)^{-1}} \leq \|\phi(s^k_h, a^k_h)\|_2 \leq 1\]
for any \((k, h) \in [K] \times [H]\) and \((s, a) \in S \times A\). By Lemma G.2, we further have
\[\sum_{k=1}^{K} \|\phi(s^k_h, a^k_h)\|_{(\Lambda^k_h)^{-1}} \leq 2d[K/w] \log((w + \lambda)/\lambda) \leq 4dK \log(w)/w.
\]
\[\tag{E.11}\]

Combining (E.10) and (E.11), we further obtain
\[
\sum_{h=1}^{H} \sum_{k=1}^{K} B^k_h(s^k_h, a^k_h) \leq 4dT \sqrt{\log(w)/w}.
\]
\[\tag{E.12}\]

Meanwhile, by the definition of \(\Gamma^k_h\) in (4.10), we have
\[
\sum_{h=1}^{H} \sum_{k=1}^{K} H \wedge \Gamma^k_h(s^k_h, a^k_h) = \beta' \cdot \sum_{h=1}^{H} \sum_{k=1}^{K} H/\beta' \wedge \sqrt{\eta^k_h(s^k_h, a^k_h) \top (\Lambda^k_h)^{-1} \eta^k_h(s^k_h, a^k_h)}.
\]

Recall that
\[\beta' = C' \sqrt{dH^2 \cdot \log(dT/\zeta)},\]
which implies that $\beta' > H$. Thus, we have
\[
\sum_{h=1}^{H} \sum_{k=1}^{K} H \wedge \Gamma^k_h(s^k_h, a^k_h) \leq \beta' \cdot \sum_{h=1}^{H} \sum_{k=1}^{K} 1 \wedge \sqrt{\eta^k_h(s^k_h, a^k_h)^\top (A^k_h)^{-1} \eta^k_h(s^k_h, a^k_h)}
\leq \beta' \cdot \sum_{h=1}^{H} \left(K \cdot \sum_{k=1}^{K} 1 \wedge \|\eta^k_h(s^k_h, a^k_h)\|_{(A^k_h)^{-1}}\right)^{1/2}, \tag{E.13}
\]
where the second inequality follows from Cauchy-Schwarz inequality. Note the facts that
\[A^1_h = \lambda' I_d\] and \[\|\eta^k_h(s, a)\|_2 \leq \sqrt{d}H\] for any \((k, h) \in [K] \times [H]\) and \((s, a) \in S \times A\). By the same proof of Lemma G.2, we have
\[
\sum_{k=1}^{K} 1 \wedge \|\eta^k_h(s^k_h, a^k_h)\|_{(A^k_h)^{-1}} \leq 2d[K/w] \log((wH^2d + \lambda')/\lambda') \leq 4dK \log(wH^2d)/w. \tag{E.14}
\]
Combining (E.13) and (E.14), we have
\[
\sum_{h=1}^{H} \sum_{k=1}^{K} \Gamma^k_h(s^k_h, a^k_h) \leq 2\beta' \sqrt{dT^2 \cdot \log(wH^2d)/w}
\leq 4C' dTH \cdot \sqrt{\log(wH^2d)/w \cdot \log(dT/\zeta)}. \tag{E.15}
\]
where $C' > 1$ is an absolute constant and $T = HK$. By the same proof in (E.8), we have
\[
\sum_{k=1}^{K} \sum_{h=1}^{H} \sum_{i=1 \vee (k-w)}^{k-1} \|\theta^i_h - \theta^{i+1}_h\|_2 + H\sqrt{d} \cdot \sum_{i=1 \vee (k-w)}^{k-1} \|\xi^i_h - \xi^{i+1}_h\|_2 \leq w \Delta H \sqrt{d}. \tag{E.16}
\]
Plugging (E.12), (E.15) and (E.16) into (E.9), we have
\[
\sum_{h=1}^{H} \sum_{k=1}^{K} -l^k_h(s^k_h, a^k_h) \leq w \Delta H \sqrt{d} + 4dT \sqrt{\log(w)/w} + 4C' dTH \cdot \sqrt{\log(wH^2d)/w \cdot \log(dT/\zeta)}.
\tag{E.17}
\]
Meanwhile, by (E.7), (E.8) and (E.17), it holds with probability at least $1 - \zeta$ that
\[
\text{Term(ii)} + \text{Term(iii)} + \text{Term(iv)} \leq \sqrt{16H^2T \cdot \log(4/\zeta)} + 2w \Delta H \sqrt{d}
+ 8dT \sqrt{\log(w)/w} + 8C' dTH \cdot \sqrt{\log(wH^2d)/w \cdot \log(dT/\zeta)} \lesssim d^{5/6} \Delta^{1/3} HT^{2/3} \cdot \log(dT/\zeta). \tag{E.18}
\]
Here we use the facts that $w = \Theta(d^{1/3} \Delta^{-2/3} T^{2/3})$. Plugging (E.6) and (E.18) into (E.1), we finish the proof of Theorem 4.2. \qed

58
E.2 Proof of Theorem A.1

Proof. Following the proof of Lemma 5.3, we can obtain
\[-2\Gamma_h^k(s, a) - H\sqrt{d} \cdot \sum_{i=1\vee(k-w)}^{k-1} \|\xi_h^i - \xi_h^{i+1}\|_2 \leq \sum_{i=1\vee(k-w)}^{k-1} \|\xi_h^i - \xi_h^{i+1}\|_2.\]

Notably, here the estimation error \(l_h^k\) only comes from the transition estimation. The remaining proof is the same as the Theorem 4.2 except that \(\Delta\) is replaced by \(\Delta_P\).

\[E.19\]

E.3 Proof of Theorem 4.4

Proof. Let \(\tau = K\) in Lemma C.1, we have
\[\text{D-Regret}(T) = \sum_{k=1}^{K} (V_{1}^{\pi^{*},k}(s_k^1) - V_{1}^{\pi^{*},k}(s_k^1)) \leq \sum_{k=1}^{K} \sum_{h=1}^{H} \mathbb{E}_{\pi^{*},h} \left[\langle Q_h^k(s_h, \cdot), \pi^*_h(\cdot \mid s_h) - \pi_h^k(\cdot \mid s_h) \rangle \right] + \sum_{k=1}^{K} \sum_{h=1}^{H} l_h^k(s_h, a_h) \leq \sum_{k=1}^{K} \sum_{h=1}^{H} \mathbb{E}_{\pi^{*},h} \left[\langle Q_h^k(s_h, \cdot), \pi^*_h(\cdot \mid s_h) - \pi_h^k(\cdot \mid s_h) \rangle \right] \leq 0. \]

By the same derivation of (E.18) in the proof of Theorem 4.2, we have
\[\text{Term(ii) + Term(iii) + Term(iv) \leq \sqrt{16H^2T} \cdot \log(4/\zeta) + 2w\Delta H\sqrt{d} + 8dT \sqrt{\log(w)} / w + 8C'' dTH \cdot \sqrt{\log(wH^2d) / w \cdot \log(dT / \zeta)} \lesssim d^{5/6} \Delta^{1/3} H^{2/3} \cdot \log(dT / \zeta).} \]

Here we uses the facts that \(w = \Theta(d^{1/3} \Delta^{-2/3} T^{2/3})\). Plugging (E.20) and (E.21) into (E.19), we finish the proof of Theorem 4.4.
F Results without Assumption 4.1

F.1 Missing Proofs

Without Assumption 4.1, we can obtain the following lemma, whose proof is deferred to Appendix F.2.

Lemma F.1 (Upper Confidence Bound). Under Assumption 2.1, it holds with probability at least $1 - \frac{\zeta}{2}$ that

$$-2B^k_h(s, a) - 2\Gamma^k_h(s, a) - \sqrt{dw} \cdot \sum_{i=1\vee(k-w)}^{k-1} \|\theta^i_h - \theta^{i+1}_h\|_2 - H d \sqrt{w} \cdot \sum_{i=1\vee(k-w)}^{k-1} \|\xi^i_h - \xi^{i+1}_h\|_2$$

$$\leq \hat{\mathbb{L}}^k_h(s, a) \leq \sqrt{dw} \cdot \sum_{i=1\vee(k-w)}^{k-1} \|\theta^i_h - \theta^{i+1}_h\|_2 + H d \sqrt{w} \cdot \sum_{i=1\vee(k-w)}^{k-1} \|\xi^i_h - \xi^{i+1}_h\|_2$$

for any $(k, h) \in [K] \times [H]$ and $(s, a) \in S \times A$, where w is the length of a sliding window defined in (4.5), $B^k_h(\cdot, \cdot)$ is the bonus function of reward defined in (4.10) and $\Gamma^k_h(\cdot, \cdot)$ is the bonus function of transition kernel defined in (4.10).

Compared with Lemma 5.3, Lemma F.1 shows that we can achieve optimism with slightly large bonus functions. Equipped with this lemma, we can derive slightly worse regret bounds for our algorithms.

Proof of Theorem 4.5. The proof is the same as the proof of Theorem 4.2 except that Lemma 5.3 is replaced by Lemma F.1. □

Proof of Theorem A.2. The proof is the same as the proof of Theorem A.1 except that Lemma 5.3 is replaced by Lemma F.1. □

Proof of Theorem 4.7. The proof is the same as the proof of Theorem 4.4 except that Lemma 5.3 is replaced by Lemma F.1. □

F.2 Proof of Lemma F.1

Proof. Following the notations in the proof of Lemma 5.3, we establish tighter bounds for Term (i.1) in (D.19) and Term (ii.1.2) in (D.28) (see the proof of Lemma 5.3 in §D.3).
For any \((k, h) \in [K] \times [H]\) and \((s, a) \in S \times A\), we have

\[
|\text{Term}(i.1)| = \left| \phi(s, a)^\top (\Lambda^k_h)^{-1} \left(\sum_{\tau=1}^{k-1} \phi(s^\tau_h, a^\tau_h) \phi(s^\tau_h, a^\tau_h)^\top (\theta^\tau_h - \theta^k_h) \right) \right|
\]

\[
\leq \sum_{\tau=1}^{k-1} |\phi(s, a)^\top (\Lambda^k_h)^{-1} \phi(s^\tau_h, a^\tau_h)| \cdot |\phi(s^\tau_h, a^\tau_h)^\top (\theta^\tau_h - \theta^k_h)|
\]

\[
\leq \sum_{\tau=1}^{k-1} \left| \phi(s, a)^\top (\Lambda^k_h)^{-1} \phi(s^\tau_h, a^\tau_h) \right| \cdot \|\phi(s^\tau_h, a^\tau_h)\|_2 \cdot \|\theta^\tau_h - \theta^k_h\|_2
\]

\[
\leq \sum_{\tau=1}^{k-1} \left| \phi(s, a)^\top (\Lambda^k_h)^{-1} \phi(s^\tau_h, a^\tau_h) \right| \cdot \sum_{i=\tau}^{k-1} \|\theta^i_h - \theta^{i+1}_h\|_2,
\]

where the second inequality is obtained by Cauchy-Schwarz inequality and the last inequality follows from the facts that \(|\phi(\cdot, \cdot)|_2 \leq 1\) and \(\|\theta^i_h - \theta^{i+1}_h\|_2 \leq \sum_{i=\tau}^{k-1} (\theta^i_h - \theta^{i+1}_h) \|_2 \leq \sum_{i=\tau}^{k-1} \|\theta^i_h - \theta^{i+1}_h\|_2\). Note that \(\sum_{\tau=1}^{k-1} \sum_{i=\tau}^{k-1} \sum_{\tau=1}^{k-1} \|\theta^i_h - \theta^{i+1}_h\|_2\), we further obtain that

\[
\sum_{\tau=1}^{k-1} \left| \phi(s, a)^\top (\Lambda^k_h)^{-1} \phi(s^\tau_h, a^\tau_h) \right| \cdot \sum_{i=\tau}^{k-1} \|\theta^i_h - \theta^{i+1}_h\|_2
\]

\[
= \sum_{i=1}^{k-1} \sum_{\tau=1}^{i} \left| \phi(s, a)^\top (\Lambda^k_h)^{-1} \phi(s^\tau_h, a^\tau_h) \right| \cdot \|\theta^i_h - \theta^{i+1}_h\|_2
\]

\[
\leq \sum_{i=1}^{k-1} \sqrt{\sum_{\tau=1}^{i} \|\phi(s, a)\|_2^2 (\Lambda^k_h)^{-1} \cdot \sum_{\tau=1}^{i} \|\phi(s^\tau_h, a^\tau_h)\|_2^2 (\Lambda^k_h)^{-1} \cdot \|\theta^i_h - \theta^{i+1}_h\|_2^2},
\]

Note that \(\Lambda^k_h \succeq I_d\), which further implies

\[
\sum_{\tau=1}^{i} \|\phi(s, a)\|_2^2 (\Lambda^k_h)^{-1} \leq \sum_{\tau=1}^{i} \|\phi(s, a)\|_2^2 \leq \sum_{\tau=1}^{i} 1 \leq w.
\]

Meanwhile, we have

\[
\sum_{\tau=1}^{i} \|\phi(s^\tau_h, a^\tau_h)\|_2^2 (\Lambda^k_h)^{-1} = \sum_{\tau=1}^{i} \text{Tr}\left(\phi(s^\tau_h, a^\tau_h)^\top (\Lambda^k_h)^{-1} \phi(s^\tau_h, a^\tau_h)\right)
\]

\[
= \text{Tr}\left((\Lambda^k_h)^{-1} \sum_{\tau=1}^{i} \phi(s^\tau_h, a^\tau_h) \phi(s^\tau_h, a^\tau_h)^\top\right).
\]
Similar to the derivation of (D.18), we have

$$\text{Tr} \left((A_h^k)^{-1} \sum_{\tau=1 \vee (k-w)}^i \phi(s_h^\tau, a_h^\tau) \phi(s_h^\tau, a_h^\tau)^\top \right) = \sum_{i=1}^d \frac{\lambda_i}{\lambda_i + \lambda} \leq d,$$ \hspace{1cm} (F.5)

where \(\lambda_i\) is the \(i\)-th eigenvalue of \(\sum_{\tau=1 \vee (k-w)}^i \phi(s_h^\tau, a_h^\tau) \phi(s_h^\tau, a_h^\tau)^\top\). Plugging (F.2), (F.3), (F.4) and (F.5) into (F.1), we have

$$|\text{Term}(i.1)| = \left| \phi(s, a)^\top (A_h^k)^{-1} \left(\sum_{\tau=1 \vee (k-w)}^{k-1} \phi(s_h^\tau, a_h^\tau) \phi(s_h^\tau, a_h^\tau)^\top (\theta_h^\tau - \theta_h^k) \right) \right|$$

$$\leq \sqrt{dw} \cdot \sum_{i=1 \vee (k-w)}^{k-1} \|\theta_h^i - \theta_h^{i+1}\|_2.$$

Similarly, for any \((k, h) \in [K] \times [H]\) and \((s, a) \in S \times A\), we have

$$|\text{Term}(ii.1.2)| = \left| \eta_h^k(s, a)^\top (A_h^k)^{-1} \left(\sum_{\tau=1 \vee (k-w)}^{k-1} \eta_h^\tau(s_h^\tau, a_h^\tau) \eta_h^\tau(s_h^\tau, a_h^\tau)^\top (\xi_h^\tau - \xi_h^k) \right) \right|$$

$$\leq H d \sqrt{w} \cdot \sum_{i=1 \vee (k-w)}^{k-1} \|\xi_h^i - \xi_h^{i+1}\|_2.$$

Plugging these two new bounds in the original proof of Theorem 4.2 (cf. §E.1), we can obtain the desired results.

\[\square\]

G Useful Lemmas

Lemma G.1.
Let \(\{\phi_t\}_{t=1}^\infty\) be an \(\mathbb{R}^d\)-valued sequence with \(\|\phi_t\|_2 \leq 1\). Also, let \(\Lambda_0 \in \mathbb{R}^{d \times d}\) be a positive-definite matrix with \(\lambda_{\text{min}}(\Lambda_0) \geq 1\) and \(\Lambda_t = \Lambda_0 + \sum_{j=1}^{t-1} \phi_j \phi_j^\top\). For any \(t \in \mathbb{Z}_+\), it holds that

$$\log \left(\frac{\det(\Lambda_{t+1})}{\det(\Lambda_1)} \right) \leq \sum_{j=1}^t \phi_j^\top \Lambda_j^{-1} \phi_j \leq 2 \log \left(\frac{\det(\Lambda_{t+1})}{\det(\Lambda_1)} \right).$$

Proof. See Dani et al. (2008); Rusmevichientong and Tsitsiklis (2010); Jin et al. (2019b); Cai et al. (2019) for a detailed proof. \[\square\]

Lemma G.2.
For the \(A_h^k\) defined in (4.5), we have

$$\sum_{k=1}^K 1 \wedge \|\phi(s_h^k, a_h^k)\|_{(A_h^k)^{-1}} \leq 2d [K/w] \log ((w + \lambda)/\lambda)$$
for any \(h \in [H] \).

Proof. First, we rewrite the sums as follows.

\[
\sum_{k=1}^{K} 1 \wedge \| \phi(s_h^k, a_h^k) \|_{(\Lambda^k_h)}^{-1} = \sum_{t=0}^{[K/w]-1} \sum_{k=tw+1}^{(t+1)w} 1 \wedge \| \phi(s_h^k, a_h^k) \|_{(\Lambda^k_h)}^{-1}.
\]

(G.1)

For the \(t \)-th block of length \(w \) we define the matrix

\[
W^{k,t}_h = \sum_{\tau=tw+1}^{k-1} \phi(s_h^\tau, a_h^\tau)\phi(s_h^\tau, a_h^\tau)^\top + \lambda I_d.
\]

Recall the \(\Lambda^k_h \) in (4.5)

\[
\Lambda^k_h = \sum_{\tau=1}^{k-1} \phi(s_h^\tau, a_h^\tau)\phi(s_h^\tau, a_h^\tau)^\top + \lambda I_d.
\]

Note that \(\Lambda^k_h \) contains extra terms which are positive definite matrices for any \((k, h) \in [tw, (t+1)w] \times [H] \), we have \(\Lambda^k_h \succeq W^{k,t}_h \) for any \((k, h) \in [tw, (t+1)w] \times [H] \). Hence,

\[
(\Lambda^k_h)^{-1} \preceq (W^{k,t}_h)^{-1}
\]

for any \((k, h) \in [tw, (t+1)w] \times [H] \), which implies that

\[
\sum_{t=0}^{[K/w]-1} \sum_{k=tw+1}^{(t+1)w} 1 \wedge \| \phi(s_h^k, a_h^k) \|_{(\Lambda^k_h)}^{-1} \leq \sum_{t=0}^{[K/w]-1} \sum_{k=tw+1}^{(t+1)w} 1 \wedge \| \phi(s_h^k, a_h^k) \|_{(W^{k,t}_h)}^{-1} \leq \sum_{t=0}^{[K/w]-1} 2 \log \left(\frac{\det(W^{(t+1)w+1,t}_h)}{\det(W^{tw,t}_h)} \right),
\]

(G.2)

where the last inequality follows from Lemma G.1. Moreover, we have \(\| \phi(s, a) \|_2 \leq 1 \) for any \((s, a) \in S \times A\), which implies

\[
W^{(t+1)w+1,t}_h = \sum_{\tau=tw+1}^{(t+1)w} \phi(s_h^\tau, a_h^\tau)\phi(s_h^\tau, a_h^\tau)^\top + \lambda I_d \preceq (w+\lambda) \cdot I_d
\]

for any \(h \in [H] \). It holds for any \(h \in [H] \) that

\[
2 \log \left(\frac{\det(W^{(t+1)w+1,t}_h)}{\det(W^{tw,t}_h)} \right) \leq 2d \log((w+\lambda)/\lambda).
\]

(G.3)

Plugging (G.3) and (G.2) into (G.1), we conclude the proof of Lemma G.2. \(\square \)

Lemma G.3. Let \(\lambda' = 1 \) in (4.9). For any \(\zeta \in (0, 1] \), the event \(E \) that, for any \((k, h) \in [H]\),
$$[K] \times [H],$$

\[\left\| \sum_{\tau=1}^{k-1} \eta_h^\tau(s_h^\tau, a_h^\tau) \cdot (V_h^{k+1}(s_h^{k+1}) - (P_h^V V_h^{k+1})(s_h^k, a_h^k)) \right\|_{(A_h^k)_{-1}} \leq C'' \sqrt{dH^2 \cdot \log(\frac{dT}{\zeta})} \quad (G.4) \]

happens with probability at least \(1 - \frac{\zeta}{2}\), where \(C'' > 0\) is an absolute constant that is independent of \(C\).

Proof. See Lemma B.3 of Jin et al. (2019b) or Lemma D.1 of Cai et al. (2019) for a detailed proof.

Lemma G.4 (Pinsker’s inequality). Denote \(s \in \{s_1, s_2, \ldots, s_T\} \in S\) be the observed states from step 1 to \(T\). For any two distributions \(P_1\) and \(P_2\) over \(S\) and any bounded function \(f : S^\top \rightarrow [0, B]\), we have

\[\mathbb{E}_1 f(s) - \mathbb{E}_2 f(s) \leq \frac{\sqrt{\log 2B}}{2} \cdot \sqrt{\text{KL}(P_2 || P_1)}, \]

where \(\mathbb{E}_1\) and \(\mathbb{E}_2\) denote expectations with respect to \(P_1\) and \(P_2\).

Proof. See Lemma 13 in Jaksch et al. (2010) or Lemma B.4 in Zhou et al. (2020b) for a detailed proof.

Lemma G.5. Suppose \(\xi\) and \(\xi'\) have the same entries except for \(j\)-th coordinate. We also assume that \(2\epsilon \leq \delta \leq 1/3\), then we have

\[\text{KL}(P_{\xi'} || P_{\xi}) \leq \frac{16\epsilon^2}{(d - 1)^2 \delta} \mathbb{E}_\xi N_0. \]

Proof. See Lemma 6.8 in Zhou et al. (2020b) for a detailed proof.