Continental-scale Consequences of Tree die-offs in North America: Identifying Where Forest Loss Matters Most

Abigail L. S. Swann1,2, Marysa Laguë1, Elizabeth S. Garcia1,3, Jason P. Field4, David D. Breshears4,5, David J. P. Moore4, Scott R. Saleska5, Scott C. Stark6, Juan C. Villegas7, Darin J. Law4, and David M. Minor6

1Department of Atmospheric Sciences, University of Washington, Seattle, USA
2Department of Biology, University of Washington, Seattle, USA
3Seattle Public Utilities, 700 5th Ave, Seattle, WA, USA
4School of Natural Resources and the Environment, University of Arizona, Tucson, USA
5Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, USA
6Department of Forestry, Michigan State University, East Lansing, USA
7Grupo GIGA, Escuela Ambiental, Universidad de Antioquia. Medellin, Colombia

ORCID for first author: https://orcid.org/0000-0001-8513-1074

Supplemental Information

Supplemental Tables S1 – S5

Supplemental Figures S1 – S6
Table S1. Table of Domain abbreviations, Domain names, area and forest information. From left to right, columns show the number of the Domain, as specified by NEON, followed by the abbreviation for the full Domain name, and the full name. The fourth column shows the total area of the Domain in km2, and the fifth shows the forest density in km2 of trees per km2 of total area. The sixth column shows the area of forest removed in each experiment in km2, and the seventh column shows the area of grass added in each experiment in km2. The two differ by the area of bare ground. The right most column shows the average change in annual mean GPP for the US outside of the modified Domain following forest loss in that Domain in units of gC/m2/yr.

Domain Name	Area of domain (km2)	Forest density (km2/km2)	Forest Area removed (km2)	Grass Area added (km2)	ΔGPP US (gC/m2/yr)
1 NE Northeast	424,910	0.67	283,146	286,361	11.86
2 MA Mid Atlantic	422,202	0.66	280,480	281,124	27.65
3 SE Southeast	401,944	0.56	224,494	225,553	3.43
5 GL Great Lakes	582,484	0.44	254,744	266,327	11.91
6 PP Prairie Peninsula	702,920	0.09	62,417	-	-
7 AP Appalachians / Cumberland Plateau	325,359	0.53	171,703	171,703	23.53
8 OZ Ozarks Complex	673,028	0.42	279,533	288,081	47.11
9 NP Northern Plains	854,989	0.07	57,345	-	-
10 CP Central Plains	412,947	0.05	20,321	-	-
11 SP Southern Plains	545,657	0.06	33,944	-	-
12 NR Northern Rockies	283,238	0.57	160,301	192,047	-12.94
13 SR Southern Rockies / Colorado Plateau	697,179	0.11	75,402	385,040	7.07
14 DS Desert Southwest	437,748	0.05	22,419	282,892	8.61
15 GB Great Basin	777,428	0.21	164,203	431,695	-3.51
16 PN Pacific Northwest	288,511	0.91	263,847	268,332	-7.38
17 PS Pacific Southwest	279,605	0.45	126,095	141,330	-27.14
18 TU Tundra	961,616	0.05	48,407	-	-
19 TA Taiga	830,962	0.31	254,160	351,419	-12.00
Table S2. Matrix of GPP response to forest loss for all Domains. Change in annual mean GPP in each Domain (rows) due to tree removal in a Domain (columns) in units of gC/m²/yr. Bold italicized values pass a statistical significance test at 95% confidence. For a key of Domain abbreviations see Table S1, and for a map of Domain locations see Fig. 5.

Domain in which trees were removed	NE	MA	SE	GL	AP	OZ	NR	SR	DS	GB	PN	PS	TA
NE	33.9	-13.4	-15.0	-18.8	-25.9	-19.9	-24.8	-17.6	-12.6	-24.6	-20.4	-7.7	-16.2
MA	-18.6	222.9	4.3	-15.4	-21.1	-13.0	-25.1	-16.6	-3.9	-25.8	-11.9	-10.4	-18.6
SE	24.3	-49.6	108.2	69.5	-55.4	24.5	28.9	50.3	14.0	-88.5	-57.7	-98.7	-58.0
GL	-27.7	9.4	-17.5	5.2	-15.6	-20.5	-60.5	-25.9	-34.4	-25.6	-45.4	-21.6	-25.7
PP	12.7	80.1	15.9	88.3	20.7	18.1	-48.8	-27.8	13.2	-19.2	45.8	-58.4	14.0
AP	6.3	25.8	20.2	-8.8	248.2	18.4	-37.5	-17.5	15.4	-26.5	10.4	-10.3	4.1
OZ	71.2	100.3	10.7	22.3	75.0	467.3	20.6	29.4	47.6	-26.4	54.6	-73.2	71.7
NP	3.0	6.1	-5.6	46.1	5.7	18.8	-44.8	-5.8	-61.4	-14.4	0.2	-20.3	-43.1
CP	1.4	17.1	9.3	7.8	23.7	12.6	9.3	16.1	3.0	20.2	-2.4	-12.3	12.7
SP	13.3	44.3	-15.2	13.0	85.4	52.3	-15.9	25.6	36.1	50.2	9.4	-73.6	33.5
NR	14.6	-14.5	-32.0	11.2	-41.3	-14.2	-112.1	-62.4	32.0	-43.1	-9.6	-26.7	-5.1
SR	-3.1	-15.7	-15.0	-16.3	30.2	6.3	2.0	57.6	2.4	31.1	-28.1	-13.1	-3.3
DS	5.7	-3.7	-0.6	-5.9	35.7	13.2	10.7	25.4	87.1	26.6	-21.0	-12.2	15.1
GB	15.7	12.9	1.1	8.8	21.3	18.9	7.4	15.0	16.8	-23.9	7.3	12.0	4.8
PN	-2.1	-3.9	-8.8	3.1	6.5	7.8	-8.9	5.4	-10.0	-4.4	-291.9	-8.0	-24.3
PS	9.7	38.1	3.5	49.8	66.3	17.4	37.1	71.8	24.2	42.0	8.9	-161.6	20.7
TU	5.2	12.2	6.1	13.4	8.6	15.8	8.9	23.6	11.9	24.2	2.5	2.2	-8.2
TA	5.5	15.7	8.9	17.4	16.6	21.6	9.3	24.5	13.7	22.5	5.6	-2.8	-130.2

Table S3. Matrix of Temperature response to forest loss for all Domains. Change in June-July-August average near surface air Temperature in each Domain (rows) due to tree removal in a Domain (columns) in units of degrees C. Bold italicized values pass a statistical significance test at 95% confidence. For a key of Domain abbreviations see Table S1, and for a map of Domain locations see Fig. 5.

Domain in which trees were removed	NE	MA	SE	GL	AP	OZ	NR	SR	DS	GB	PN	PS	TA
NE	-0.16	-0.12	-0.06	-0.11	-0.12	-0.01	0.05	-0.08	0.02	0.01	-0.09	0.13	-0.09
MA	-0.16	-0.11	0.05	0.06	-0.11	-0.03	0.00	-0.03	-0.07	0.08	-0.11	0.10	0.01
SE	-0.05	0.03	-0.05	0.19	0.06	-0.03	-0.08	0.15	-0.02	0.18	0.03	0.15	0.12
GL	-0.08	-0.18	-0.02	-0.18	-0.16	-0.03	0.19	-0.02	0.07	0.05	-0.10	0.22	-0.05
PP	-0.16	-0.29	-0.02	-0.27	-0.24	-0.20	0.11	0.03	-0.14	0.11	-0.28	0.26	-0.14
AP	-0.19	-0.23	-0.01	0.04	-0.13	-0.22	0.03	-0.06	-0.14	0.08	-0.18	0.08	-0.08
OZ	-0.25	-0.37	0.01	0.05	-0.31	-0.84	-0.05	-0.11	-0.24	0.19	-0.31	0.20	-0.25
NP	-0.04	-0.14	-0.06	-0.24	-0.08	-0.17	0.12	0.05	-0.05	0.09	-0.26	0.10	0.11
CP	-0.06	-0.11	-0.02	-0.01	-0.19	-0.13	-0.09	-0.11	-0.12	0.02	-0.16	0.06	-0.09
SP	-0.12	-0.18	0.13	0.13	-0.36	-0.27	-0.05	-0.13	-0.17	0.00	-0.13	0.08	-0.14
NR	0.05	-0.03	0.07	-0.18	0.12	0.04	0.20	0.28	-0.22	0.24	-0.20	0.02	0.14
SR	-0.10	-0.10	0.04	0.12	-0.30	-0.13	-0.18	-0.11	-0.26	-0.13	-0.05	-0.01	0.02
DS	-0.05	-0.09	-0.01	0.09	-0.23	-0.04	-0.17	-0.12	0.01	0.03	-0.06	-0.04	-0.07
GB	-0.08	-0.20	-0.03	-0.16	-0.15	-0.12	-0.20	0.00	-0.30	0.32	-0.24	-0.15	0.05
PN	0.13	0.16	0.03	-0.03	0.26	0.20	-0.03	0.32	0.21	0.33	0.07	-0.01	0.14
PS	-0.07	-0.16	-0.02	-0.08	-0.06	-0.04	-0.17	0.01	-0.16	0.07	-0.16	0.20	0.06
TU	0.10	0.20	0.16	0.20	0.23	0.27	0.09	0.27	0.17	0.38	0.05	-0.05	-0.04
TA	0.03	0.14	0.12	0.03	0.15	0.20	0.03	0.13	0.05	0.20	0.00	-0.20	-0.29
Table S4. **Matrix of Precipitation response to forest loss for all Domains.** Change in June-July-August average Precipitation in each Domain (rows) due to tree removal in a Domain (columns) in units of mm/yr. Bold italicized values pass a statistical significance test at 95% confidence. For a key of Domain abbreviations see Table S1, and for a map of Domain locations see Fig. 5.

Domain in which trees were removed	NE	MA	SE	GL	AP	OZ	NR	SR	DS	GB	PN	PS	TA
NE	-9.90	-8.97	-12.59	-10.08	10.18	-10.02	-21.90	-16.22	-12.60	8.41	-22.45	1.21	-6.84
MA	-18.37	-30.67	-5.22	-22.81	-56.89	-51.99	-46.69	-67.93	-10.23	-7.47	-27.98	-28.78	-11.03
SE	31.21	-0.72	-105.61	-41.74	-4.20	0.13	9.72	-21.36	29.92	-24.98	21.93	-11.75	-9.40
GL	-16.38	-3.18	-16.69	-13.36	-24.37	-0.97	-22.91	-23.36	-9.26	-2.63	-4.11	-21.18	-19.98
PP	3.33	46.59	4.37	40.85	31.56	33.99	-9.64	-6.41	25.25	12.25	36.22	-14.79	17.08
AP	8.19	79.01	51.40	37.26	24.78	20.54	-18.96	-14.13	44.18	12.81	44.76	11.06	39.75
OZ	34.13	81.22	-5.17	7.73	40.52	5.10	-0.62	23.23	68.61	-18.63	47.83	-8.55	49.98
NP	-1.00	5.35	-15.10	3.72	0.01	34.31	-14.23	-22.97	16.27	4.07	-5.53	-5.47	-22.96
CP	11.10	42.55	27.02	20.85	72.18	45.58	18.16	62.47	23.92	10.40	34.00	-23.32	53.14
SP	32.10	24.81	-38.27	-14.79	45.69	35.82	1.21	36.51	34.30	-29.29	33.40	7.03	32.03
NR	42.43	17.93	-0.57	-11.44	24.54	38.58	-5.79	-12.97	51.15	-5.98	2.92	8.38	-5.19
SR	5.17	-4.29	4.64	-28.43	14.62	-2.03	1.16	22.68	-2.23	21.30	-16.70	-10.80	2.51
DS	8.62	6.67	6.23	-14.46	21.37	0.63	16.58	29.20	0.82	17.68	2.14	1.21	17.56
GB	27.12	24.40	3.34	-0.28	21.34	24.15	12.52	-1.11	33.12	-9.95	-3.21	0.47	-0.94
PN	-1.73	-0.33	0.76	3.59	1.93	3.72	-2.32	5.72	1.14	-3.42	-4.30	-3.72	-8.15
PS	0.97	3.36	0.50	-0.81	1.21	3.19	-0.22	1.65	2.62	0.41	0.92	0.79	0.26
TU	-16.63	-11.97	9.89	-1.64	-28.41	-7.22	-23.64	-16.65	-12.36	-6.79	-34.73	6.30	-12.79
TA	39.02	31.14	20.40	15.93	0.74	32.34	15.98	24.05	28.28	22.19	6.87	42.30	19.88
Table S5. Matrix of low Cloud fraction response to forest loss for all Domains. Change in June-July-August average low Cloud fraction in each Domain (rows) due to tree removal in a Domain (columns). Bold italicized values pass a statistical significance test at 95% confidence. For a key of Domain abbreviations see Table S1, and for a map of Domain locations see Fig. 5.

Domain in which trees were removed	NE	MA	SE	GL	AP	OZ	NR	SR	DS	GB	PN	PS	TA
NE	0.0075	0.0021	-0.0047	-0.0044	-0.0011	0.0018	-0.0031	-0.0058	-0.0050	-0.0068	-0.0047	-0.0079	-0.0091
MA	0.0071	0.0120	-0.0058	-0.0067	-0.0002	0.0000	-0.0047	-0.0083	0.0029	-0.0070	0.0014	-0.0082	-0.0046
SE	0.0058	0.0135	0.0011	-0.0044	0.0032	0.0036	0.0021	-0.0003	0.0095	-0.0084	0.0052	-0.0064	-0.0022
GL	-0.0031	0.0057	-0.0026	0.0027	-0.0015	0.0059	-0.0073	-0.0057	-0.0011	-0.0095	-0.0031	-0.0152	-0.0066
PP	0.0043	0.0182	-0.0019	0.0138	0.0117	0.0208	-0.0034	-0.0014	0.0115	-0.0097	0.0120	-0.0126	0.0069
AP	0.0122	0.0250	0.0027	0.0020	0.0159	0.0181	0.0034	0.0005	0.0163	-0.0057	0.0152	-0.0029	0.0103
OZ	0.0093	0.0203	-0.0050	-0.0017	0.0133	0.0220	0.0055	0.0069	0.0154	-0.0064	0.0114	-0.0065	0.0090
NP	-0.0051	-0.0013	-0.0061	0.0035	-0.0083	0.0065	-0.0110	-0.0098	0.0001	-0.0158	0.0044	-0.0175	-0.0160
CP	0.0049	0.0092	0.0005	0.0070	0.0114	0.0123	-0.0011	0.0078	0.0057	0.0121	-0.0068	0.0080	
SP	0.0056	0.0058	-0.0092	-0.0053	0.0110	0.0097	0.0045	0.0075	0.0068	-0.0043	0.0036	0.0003	0.0039
NR	0.0040	0.0015	-0.0037	-0.0024	0.0004	0.0017	-0.0026	-0.0051	0.0068	-0.0082	0.0007	-0.0009	0.0089
SR	0.0006	0.0005	0.0004	-0.0024	0.0020	0.0007	0.0000	0.0019	0.0011	0.0015	0.0002	-0.0006	0.0002
DS	0.0021	0.0006	0.0012	-0.0023	0.0029	0.0007	0.0018	0.0028	-0.0010	0.0009	0.0013	0.0013	0.0021
GB	0.0026	0.0038	-0.0011	-0.0011	0.0021	0.0017	0.0001	-0.0023	0.0059	-0.0051	0.0009	0.0005	-0.0043
PN	-0.0045	-0.0041	-0.0021	-0.0039	-0.0153	-0.0036	-0.0080	-0.0216	-0.0024	-0.0166	-0.0032	-0.0066	-0.0149
PS	0.0046	0.0036	-0.0015	-0.0015	0.0010	0.0023	0.0003	-0.0011	0.0017	-0.0004	0.0001	0.0059	0.0008
TU	-0.0028	-0.0030	-0.0059	-0.0040	-0.0094	-0.0069	-0.0094	-0.0044	-0.0072	-0.0054	-0.0099	0.0016	-0.0008
TA	0.0028	-0.0017	-0.0010	-0.0013	-0.0043	-0.0013	-0.0076	-0.0030	-0.0008	-0.0012	-0.0025	0.0108	0.0086
Figure S1. Shared Modes of Variability. Spatial modes (maps) and weighting coefficients (bar plots) showing the shared modes of variability across all 13 experiments for (A) annual average GPP, (B) June-July-August average near surface air temperature (T_{JJA}), (C) June-July-August average near surface air temperature (Precip$_{JJA}$), (D) June-July-August average height of the 500mb surface, (E) June-July-August average low cloud fraction. Numbers in the lower left corner of the map show the total variance across all 13 experiments explained by that mode. The Domains are ordered from most negative overall impact on US average GPP on the left to most positive impact on the right as in Fig. 2.
Figure S2. Impacts of forest loss on summertime near surface air temperature across North America. The response of June-July-August averaged near surface air temperature in each simulated grid point due to forest loss in the domain highlighted in yellow, where red colors indicate higher temperatures and blue colors indicate lower temperatures. Each panel is labeled by the abbreviated name of the Domain where forest was lost. A map of Domain names is in Fig. 5D.
Figure S3. *Impacts of forest loss on summertime precipitation across North America.* The response of June-July-August averaged precipitation in each simulated grid point due to forest loss in the domain highlighted in yellow, where blue colors indicate higher precipitation and red colors indicate lower precipitation. Each panel is labeled by the abbreviated name of the Domain where forest was lost. A map of Domain names is in Fig. 5D.
Figure S4. Impacts of forest loss on summertime low cloud fraction across North America. The response of June-July-August averaged low cloud fraction in each simulated grid point due to forest loss in the domain highlighted in yellow, where blue colors indicate more clouds and red colors indicate fewer clouds. Each panel is labeled by the abbreviated name of the Domain where forest was lost. A map of Domain names is in Fig. 5D.
Figure S5. Impacts of forest loss on summertime pressure height across North America. The response of June-July-August averaged height of the 500mb pressure level in each simulated grid point due to forest loss in the domain highlighted in yellow, where red colors indicate more column heating and blue colors indicate less column heating. Each panel is labeled by the abbreviated name of the Domain where forest was lost. A map of Domain names is in Fig. 5D.
Figure S6. Response of low cloud cover to forest loss. The response of summertime low cloud cover is shown for each domain listed on the y-axis due to forest loss in each domain listed on the x-axis (as in Fig. 5). Domains are ordered from most overall negative impact on US GPP to most overall positive impact. Small white circles indicate that the change in a variable is considered significantly different from zero at 95% confidence.