Diluted magnetic semiconductors based on III-V compounds are attracting considerable attention due to their combination of magnetic and semiconducting properties, that may lead to spintronic applications [6], [7]. Ga$_{1-x}$Mn$_x$As is the most studied of these compounds with a maximum Curie temperature $T_C \approx 110$ K at low doping x, and with a carrier concentration $p=(n/x)<1$ due to the presence of As antisite defects [6] or Mn interstitials [8]. It is widely believed that this ferromagnetism is carrier-induced, with holes introduced by doping mediating the interaction between $S=5/2$ Mn-spins. This Zener mechanism operates in other materials as well [9].

In spite of the excitement around 110 K DMS, room temperature ferromagnetism should be achieved for potential applications, with logic and memory operations in a single device. For this reason, a goal of the present effort is to analyze the dependence of T_C on the parameters x, p, and J/t, helping in setting realistic expectations for DMS potential technological applications. This goal can only be achieved with good control over the many-body aspects of the problem, and for this purpose lattice Monte Carlo (MC) techniques are crucial, improving on previously employed MF approximations. Our results lead to an optimistic view in this respect, since T_C is found to increase linearly with x up to $x\sim 0.25$.

Our effort builds upon previous important DMS theoretical studies [2], [3], [7], [9], [10]. However, to analyze whether T_C can be substantially increased from current values, techniques as generic as possible are necessary. In particular, both the strong interactions and disorder must be considered accurately, with computational studies currently providing the best available tools. For these reasons, our work differs from previous approaches in important qualitative aspects: (1) Some groups use a continuum six-band description of DMS [9], (2) Other theories assume carriers strongly bounded to impurity sites [9], and employ Hartree-Fock approximations. (3) Dynamical MF theory (DMFT) [8] may not capture the percolative character of DMS, with a random impurity distribution and cluster picture [9], [8], (4) Other approaches use MF uniform states [8], or introduce a reduced basis in simulations [11]. While the previous work is important in describing current DMS materials, our goal is to establish the phase diagram of a DMS model avoiding MF approximations.

For the above mentioned reasons, here a generic MC study of a lattice spin-fermion model for DMS is reported. The Hamiltonian is

$$\hat{H} = -t \sum_{\langle ij \rangle, \sigma} \hat{c}_{i \sigma}^\dagger \hat{c}_{j \sigma} + J \sum_I \hat{S}_I \cdot \hat{\sigma}_I,$$

where $\hat{c}_{i \sigma}^\dagger$ creates a hole at site i with spin σ, and the hole spin operator interacting antiferromagnetically with the localized Mn-spin \hat{S}_I is $\hat{\sigma}_I = \hat{c}_{I \alpha}^\dagger \sigma_{\alpha,\beta} \hat{c}_{I \beta}$. The carrier can visit any site of the lattice (assumed cubic [11]) by hops introduced by doping mediating the interaction between $S=5/2$ Mn-spins. This Zener mechanism operates in other materials as well [9].

The MC technique used here is as in Mn-oxides investigations [1] show that an intermediate or large J/t plays a role analogous to a Hubbard U/t at any x [9], [11]. At low x, the probability of nearest neighbors (NN) Mn-spins is also low (0.0625 at $x=0.25$), justifying the neglect of an antiferromagnetic (AF) Mn-Mn coupling. The hole motion is described by a one-band tight-binding model, while a more realistic model should include many bands as well as spin-orbit interaction [1]. Despite this simplification, our study considers the underlying lattice, absolutely necessary for a qualitative understanding of the DMS phase diagram.

The MC technique used here is as in Mn-oxides investigations [1]: it includes the full Exact Diagonalization (ED) of the hole sector for each MC spin configuration, and density-of-states expansion calculations beyond mean-field approximations.
The latter allows us to reach clusters with up to $8^3 = 512$ sites if up to 40 terms are included, reaching an accuracy comparable to ED for smaller clusters. Both methods are nearly exact, and the error bars of our results mainly arise from intrinsic thermal fluctuations and averages over several random Mn-disorder configurations. Comparing estimations of different clusters and based on previous experience with similar models [9], T_C can be calculated within a $\sim 25\%$ accuracy, sufficient for our purposes [17]. The order parameter for the ferromagnetic-paramagnetic transition was taken to be the absolute value of the magnetization of the Mn-spins normalized to 1, namely $|M| = \frac{1}{N} \sum_{I,R} (\hat{S}_I \cdot \hat{S}_R)$. Size effects are better visualized in the zero-momentum spin structure factor $S(q=0) = \frac{1}{N} \sum_{I,R} (\hat{S}_I \cdot \hat{S}_R)$. Another useful quantity is the spin-spin correlation at distance d, $C(d) = \frac{1}{N(d)} \sum_{|I-R|=d} (\hat{S}_I \cdot \hat{S}_R)$, where $N(d)$ is the number of pairs of Mn moments separated by a distance d.

Typical results for small and intermediate J/t of our large-scale computational effort are in Fig.1a. There $S(q=0)$ and $|M|$ vs. temperature T are shown for three cluster sizes, $x = 0.1$, and $p = 0.4$. Note the small size dependence of the magnetization (inset), and the volume growth of $S(q=0)$ at fixed $T < T_C$. The estimated T_C/t is ~ 0.04, with an uncertainty 0.01 sufficiently small for our purposes. Even with just the 4^3 cluster, T_C could be estimated fairly well, as shown in Fig.1b. This is important to simplify our computational search for optimal T_C’s varying many parameters. In Fig.1b, the temperature where a deviation from the high-T limit is found is slightly larger than the $T_C/t = 0.04$ obtained from larger clusters (indicated). Studying the spin-spin correlation at the largest available distance, a nonzero value characteristic of an ordered ferromagnetic (FM) state was obtained at T just below 0.04. Figure 1c provides another example of our comprehensive T_C study, using just two cluster sizes at the $x-p$ location of our most optimal T_C, at fixed $J/t = 2$. Here the use of only 4^3 and 6^3 clusters provides once again a fairly accurate value $T_C = 0.08t$.

To understand the qualitative T_C trends, first consider the simplest case: the p dependence at fixed J and x. Using the results in Fig.2a contrasted against Fig.1b (same cluster size) T_C is found to change by a factor ~ 2, when p varies from 0.1 to 0.4. However, this tendency does not continue with increasing p, since at $p = 1$ or beyond, a FM state is not formed: the Pauli principle reduces drastically the carrier kinetic energy, leading instead to an AF state. An example at $p = 3$ and on an 8×8 cluster (results are qualitatively similar in two and three dimensions) is in Fig.2b, where the oscillations in the spin correlations indicate staggered order. In general, the optimal p is ~ 0.5, between the hole empty $p = 0$ and saturated $p = 1$ limits, as found with DMFT [7]. A similar result occurs in Mn-oxide models, recovered from Eq.(1) at $x = 1$. In that context, investigations at large Hund coupling, the analog of J for DMS, have shown that $p = 0.5$ optimizes T_C to a number $\sim 0.11 - 0.13$ [14, 15], likely an upper-bound on the T_C that could be achieved with Eq.(1).
Consider now the J/t dependence of T_C. The MF approximation suggests $T_C^{mf} \propto J^2$. However, this does not hold when more accurate methods are used in the calculations. In fact, for $J/t=\infty$ and a Mn dibute system, the holes are trapped in Mn-sites, reducing drastically the conductance and T_C. Small FM clusters of spins are formed at a temperature scale T^*, but there is no correlation between them, leading to a global vanishing magnetization [3]. These results cannot be obtained within a mean-field approximation. The large-J/t ideas can be tested in our MC simulation by monitoring the short- and long-distance behavior of the spin-spin correlations $C(d)$. In a “clustered” state (large J/t), $C(d)$ at the shortest distance can be robust at $T<T^*$, but $C(d)$ at the largest distance vanishes due to the uncorrelated nature of the magnetism between independent clusters (see Fig.2c). This subtle effect explains the incorrect MF prediction, since $T_C^{mf} \sim T^*$, which grows with J/t, rather than the true T_C (see also Fig.4a). Since both in the $J/t=0$ and $J/t=\infty$ limits T_C is suppressed, an optimal $J/t|_{opt}$ must exist where T_C is maximized. Simulation results as in Fig.2c indicate that the optimal J/t value is close to 2. This phenomenon is not captured in itinerant [4] or localized [5] limits nor by DMFT [6], but it is observed in the present generic MC simulations.

The existence of a $J/t|_{opt}$ can be illustrated just using two spins and one carrier in a finite cluster at $T=0$. For any fixed angle θ between the Mn-spins, assumed coplanar, the energy is found exactly. The ground state of this $p=0.5$ system is always at $\theta=0$ (FM), while the energetically worse state is $\theta=\pi$ (AF-configuration). Their energy difference ΔE is a crude estimation of the FM state stability (Fig.2d). An optimal J/t is found in all dimensions, with stability increasing with the coordination number [22]. The result Fig.2d is understood measuring the electronic density $n(i)$ of the same problem on a chain (Fig.3a). At small J/t, the delocalization manifests in the nearly uniform density, leading to weak FM. At large J/t, strong localization decouples the Mn-spins, producing again weak FM. However, there is an optimal value where the system takes advantage of J/t, but also allows for a nonzero effective coupling among separated classical spins, leading to a stronger FM.

Consider now the x dependence of T_C. For simplicity, $J/t=2$ is mainly studied, which is both close to optimal and experimentally realistic [22]. Fig.3b shows T_C vs. x at $p=0.4$, and for two reasonable values of t. Experiments [4] indicate a linear growth of T_C up to 5% (shown), as in the numerical results. The slope of T_C vs. x is in remarkable agreement with MC predictions, in a reasonable range of t. Regarding $x>0.05$, a reduction of T_C was originally reported in experiments [4]. However, recent data gathered with an optimized annealing treatment [23] indicate a T_C “plateau”. This still seems in contradiction with the linearly growing T_C of the MC results, but it suggests that even more refined thin-films may continue increasing T_C with increasing x. The MC results clearly indicate linear behavior up to $x \sim 0.25$ (Fig.3b). To the extent that our model describes DMS quantitatively, higher values of T_C could be expected experimentally. Regarding the presence of a T_C maximum at $x=0.25$: the origin of this effect is the growing probability with x of having both holes and Mn-spins at NN-sites. In this case, AF links are formed since $J/t=2$ is not so strong to keep the link FM, reducing T_C at large x even at $p=0.5$. As J/t grows, the effect diminishes and the maximum in T_C moves toward $x=1$, as naively expected. Reciprocally, as J/t decreases from 2 ($J/t=1$ shown in Fig.3b), the maximum in T_C moves toward smaller x’s, and only $t=0.5$ can provide high-T ferromagnetism. This illustrates the key role that the optimization of J/t plays in these models, effect not captured by MF approximations.

$|M|$ at $T=0$ is in Fig.3c. In agreement with experiments, the $x=0.1$ result indicates a magnetization $\sim 50\%$ of its maximum value. This nonsaturated behavior originates in the random distribution of Mn-spins, since Mn-clusters are formed providing a trap to holes. Nonclustered spins are not much visited by those holes, and their spins are not polarized. With growing x, holes are more itinerant, polarizing the entire sample (Fig.3c) [24].

In summary, MC investigations of a spin-fermion model for DMS unveils substantial differences with previously reported results employing MF techniques. The subtle regime of intermediate J/t appears the most relevant in these compounds. $T_C\sim 0.08K$ is an upper limit for the FM critical temperature, result close to those accepted for $x=1$ [4,23]. Our main results are summarized in Fig.4, that contain (a,b) the nontrivial J/t dependence of T_C and T^*, and (c) T_C with varying x and p, at optimal J/t. To the extent that the present model is ap-
This assumption is much used in Mn-oxide studies, where experimental value for Ga
between itinerant and localized regimes. (b) Schematic phase
T cluster, are comparable with results of Ref.[10]
T=340 K, and our simulations
refines the “true” transition
the form of uncorrelated clusters. T_C is the “true” transition
temperatures are similar. The optimal J/t is intermediate
between itinerant and localized regimes. (b) Schematic phase
diagram believed to be valid both in 2D and 3D, with the
clustered and FM states indicated. (c) Numerically obtained
cluster, that re-

temperature, defined as the T where
sizes are expected with realistic FCC lattices.

![Image](Image109x546 to 242x635)

FIG. 4: (a) MC phase diagram in 2D varying J/t, at fixed
x and p. At large J/t, a broad scale T^* corresponds to the
formation of uncorrelated clusters. T_C is the “true” transition

corresponds to the

$|J/t|_{opt}$∼2 must be intermediate between the itinerant and localized
limits (Fig.4a,b). This J/t, or larger, is expected to keep
the semiconducting nature of the state at $T>T_C$. Only
band calculations beyond our model can predict which
particular material will have such an optimal J/t. (ii) x
should be increased beyond 0.1. At $|J/t|_{opt}$, the best
value is x∼0.25. Currently, $x=0.14$ is the experimental
limit [20]. (iii) The number of antisite defects must
be controlled such that p∼0.5 (p∼1 would be detrimental
due to competing antiferromagnetism). (iv) As the
coordination number grows, T_C grows. (v) The simplest
procedure to increase T_C relies on increasing the
scale t. In fact, (Ga,Mn)As and (In,Mn)As have different
hybridization strengths [27], and this should be an
important consideration in studying new materials. Our
work also suggests formal analogies between DMS and
manganate models, with similar T_C’s, and a related
clustered state above ordering temperatures.

Work supported by NSF grant DMR-0122523 and by
MARTECH.

[1] H. Ohno, Science, 281, 951 (1998).
[2] T. Dietl, cond-mat/0201282.
[3] K. Yu et al., Phys. Rev. B65, 201303 (2002).
[4] E. Dagotto et al., Phys. Reports 344, 1 (2001).
[5] J. Schliemann and A. H. MacDonald, Phys. Rev. Lett. 88, 137201 (2002); J. Schliemann et al., Phys. Rev. B64, 165201 (2001); Appl. Phys. Lett. 78, 1550 (2001). Hybrid
MC studies in the latter are carried out in a continuum
formulation.
[6] M. Berciu and R. N. Bhatt, Phys. Rev. Lett. 87, 107203
(2001); M. P. Kennett et al., cond-mat/0203173. See also
C. Timm et al., cond-mat/0111504.
[7] A. Chattopadhyay et al., Phys. Rev. Lett. 87, 227202
(2001).
[8] A. Kaminski and S. Das Sarma, Phys. Rev. Lett. 88, 247202 (2002).
[9] M. Mayr et al., Phys. Rev. B65, 241202 (RC) (2002).
[10] M. J. Calderón et al., cond-mat/0203404.
[11] Our study shows the standard T_C increase with coordination
number. If a large T_C is reached with cubic, even
larger values are expected with realistic FCC lattices.
[12] This assumption is much used in Mn-oxide studies, where
a $S=3/2$ t_{2g}-spin is usually considered classical [3].
[13] J. Okabayashi et al., Phys. Rev. B58, 4211 (1998).
[14] S. Sanvito et al., Phys. Rev. B63, 165206 (2001).
[15] Potential disorder is neglected [10] (to be included in
future publications).
[16] N. Furukawa et al., Comp. Phys. Comm. 142, 410 (2001).
[17] Our results for $x=0.1, p=0.1$, $J/t=2$, with a $T_C/|t|_{opt}$<0.02
for an 8 cluster, are comparable with results of Ref.[10]
at $x=0.1$, $p=0.07$, $J/t=3$, using a 143 cluster, that report
$T_C/|t|_{opt}$<0.03. This reasonable agreement in the diffi-
cult regime of small x and p suggests that size effects are
under reasonable control in these studies.
[18] J. L. Alonso et al., Nucl. Phys. B 596, 587 (2001).
[19] The existence of a T^* is of much interest in manganites,
where the state between T_C and T^* is believed to cause
the colossal magnetoresistance (see J. Burgy et al., Phys.
Rev. Lett. 87, 277202 (2001)). Other doped magnetic sys-
tems, such as Eu$_{1-x}$Gd$_x$O, have a similar phenomenology
(H. Rho et al., Phys. Rev. Lett. 88, 127401 (2002)).
[20] The optimal J/t of this “toy” example is larger only by a
factor 2, compared with the realistic value Fig.2c.
[21] S. J. Potashnik et al., Appl. Phys. Lett. 79 1495 (2001).
[22] For $|t|_{opt}$>1 values, the optimal density for T_C would be
$x=1$, as in manganites.
[23] S. J. Potashnik et al., cond-mat/0204250.
[24] Note also that the nonsaturated low-T state can be fully
polarized with relatively small magnetic fields: in our
studies, fields of just 10 T are sufficient to raise $|M|$ from
0.5 to nearly 1.0, at $x=0.1$.
[25] La$_{1.87}$Sr$_{0.13}$MnO$_3$ has a T_C≈340 K, and our simulations
suggest that similar values could be reached for DMS.
[26] A. J. Blattner and B. W. Wessels, cond-mat/0205602.
[27] J. Okabayashi et al., cond-mat/0203054.