We have studied the shock-excited molecular regions associated with four supernova remnants (SNRs)—IC443C, W28, W44, and 3C391—and two Herbig-Haro objects—HH7 and HH54—using Spitzer’s Infrared Spectrograph (IRS). The physical conditions within the observed areas (roughly 1’ × 1’ in size) are inferred from spectroscopic data obtained from IRS and from the Short and Long Wavelength Spectrometers on board the Infrared Space Observatory (ISO), together with photometric data from Spitzer’s Infrared Array Camera. Adopting a power-law distribution for the gas temperature in the observed region, with the mass of gas at temperature T to $T+dT$ assumed proportional to $T^{-6}dT$, the H$_2$ S(0) to S(7) spectral line maps obtained with IRS were used to constrain the gas density, yielding estimated densities n(H$_2$) in the range of $\sim (2-4) \times 10^3$ cm$^{-3}$. The excitation of H$_2$ S(9) to S(12) and high-J CO pure rotational lines, however, require environments several times denser. The inconsistency among the best-fit densities estimated from different species can be explained by density fluctuations within the observed regions. The best-fit power-law index b is smaller than the value 3.8 predicted for a paraboloidal C-type bow shock, suggesting that the shock front has a “flatter” shape than that of a paraboloid. The best-fit parameters for SNRs and Herbig-Haro objects do not differ significantly between the two classes of sources, except that for the SNRs the ortho-to-para ratio (OPR) of hot gas ($T > 1000$ K) is close to the local thermal equilibrium value 3, while for HH7 and HH54 even the hottest gas exhibits an OPR smaller than 3; we interpret this difference as resulting from environmental differences between these classes of sources, molecular material near SNRs being subject to stronger photodissociation that results in faster para-to-ortho conversion. Finally, we mapped the physical parameters within the regions observed with IRS and found that the mid-lying H$_2$ emissions—S(3) to S(5)—tend to trace the hot component of the gas, while the intensities of S(6) and S(7) are more sensitive to the density of the gas compared to S(3) to S(5).

Key words: ISM: abundances – ISM: clouds – ISM: molecules – molecular processes – shock waves

Online-only material: color figures

1. INTRODUCTION

Interstellar shocks generated by violent stellar activities, such as supernova explosions and protostellar outflows, have profound effects on the surrounding interstellar medium. Shocks propagating into dense molecular clouds can heat the gas to several hundred or several thousand Kelvin and produce rich spectra in the infrared spectral region. Fast shocks with speeds larger than 40 km s$^{-1}$ are usually dissociative; they destroy molecules and ionize atoms, generating strong atomic fine-structure emissions. On the other hand, most molecules survive in slow shocks. Heating excites various molecular species via collisional processes, causing the gas to glow. A large number of molecular line features have been observed in association with shock-affected areas, including cooling lines from H$_2$, CO, HD, and H$_2$O. Due to its ability to reveal species that are difficult to observe within cold quiescent gas, a shock wave serves as a “searchlight” for the physical structure of molecular clouds.

Moreover, shocks alter the chemical composition of gas by driving many endothermic reactions, one of which is the conversion of para molecular hydrogen to ortho-hydrogen. In previous studies, it has been found that many sources exhibit H$_2$ ortho-to-para ratios (OPRs) markedly less than the equilibrium value ~ 3 (Neufeld et al. 1998; Cabrit et al. 1999; Neufeld et al. 2006, hereafter N06; Neufeld et al. 2007, hereafter N07). Adopting a two-component model containing a mixture of warm and hot gas, N06 and N07 found that for the sources we are studying in this paper—IC443C, W28, W44, 3C391, HH7, and HH54—the OPR values in the warm gas component ($T \sim 300–600$ K) are 2.42, 0.93, 1.58, 0.65, 0.21, and 0.41–0.48, respectively. They proposed that the non-local thermal equilibrium (non-LTE) OPR values obtained may correspond to the temperature at an earlier epoch, owing to the low efficiency of para-to-ortho conversion in non-dissociative shocks; this then can provide us with useful information on the evolution timescale.

In this paper, we investigate molecular shocks associated with four supernova remnants (SNRs)—IC443C, W28, W44, and 3C391—and two Herbig-Haro objects—HH7 and HH54. All six sources have extensive evidence for interaction with molecular clouds provided by multi-wavelength observations. A brief description of these sources is given below.

The four bright SNR sources IC443, W28, W44, and 3C391 have provided excellent laboratories for the study of the interaction between SNR shocks and the surrounding molecular gas. W28, W44, and 3C391 are prototypes of the “mixed-morphology” class, whose centrally concentrated X-ray morphologies contrast with the shell-like radio emission (Rho et al. 1994; Rho & Petre 1996, 1998). The radio and X-ray morphology of IC443 also shows similarities to the mixed-morphology class, although with additional X-ray components. X-ray observations show the four remnants to be filled with a large amount of hot gas, with density $n \sim 1–10$ cm$^{-3}$ according to the radiative model of Harrus et al. (1997) and Chevalier (1999); this implies an interaction with relatively dense environments—probably intercloud gas. More convincing evidence for the interaction with
dense clouds arises directly from the detection of various excited molecules at longer wavelengths. As summarized by Reach et al. (2005) and NO7 for each individual source in detail, this evidence includes broad line emissions in the millimeter-wave region, OH maser emission, near-infrared H2 emission observed mainly by ground-based observatories, and mid-infrared emissions from various molecular species including H2, CO, HD, H2O, polycyclic aromatic hydrocarbon (PAH), as well as atomic fine-structure lines. Most of the mid-infrared spectra have been recently provided by the Infrared Space Observatory (ISO) and the Spitzer Space Telescope. All the evidence mentioned above has been obtained for all four SNRs.

IC443C is one of the four areas in IC443 marked by Denoyer (1978), where bright condensations of H1 have been seen. Near-infrared observations reveal that IC443C is evolving in a complex environment, with the northeast rim dominated by atomic fine-structure lines including [Fe ii], [O i], etc., and the southern ridge dominated by molecular line emissions, especially H2 emissions (Rho et al. 2001). Rho et al. (2001) argued for the existence of fast shocks (Vg ~ 100 km s⁻¹) propagating in moderately dense gas (n ~ 10–10² cm⁻³) within the northeastern rim and slow shocks (Vg ~ 30 km s⁻¹) in the denser (n ~ 10⁴ cm⁻³) southern part. IC443C coincides with the peak of the H2 rovibrational emission in the southern rim.

HH7 is one of a chain of Herbig-Haro objects located in the star-forming region NGC 1333, separated by HH8–11 from the probable protostar SVS 13 (Strom et al. 1979). It has been investigated extensively through optical and infrared observations as summarized by NO6. HH7 exhibits a well-defined bow shock in the infrared. Smith et al. (2003) studied the image of H2 rovibrational emissions and found it can be well modeled by a paraboloidal bow shock with speed ~55 km s⁻¹ and pre-shock density ~8 × 10⁵ cm⁻³. HH54 is located at the edge of a star-forming cloud Cha II (Hughes & Hartigan 1992) and consists of a complex of arcsecond-scale bright knots (Graham & Hartigan 1988). The presence of warm molecular hydrogen was first reported by Sandell et al. (1987) and confirmed by Gredel (1994) with near-infrared observations. More infrared data come from observations with ISO and Spitzer (Cabrit et al. 1999; Neufeld et al. 1998; NO6; Giannini et al. 2006) with the detection of several molecular features from H2, HD, CO, H2O, as well as many ionic lines.

The structure of this paper is as follows: the observational data we employed are discussed in Section 2; our analysis method is described in Section 3 and the Appendix along with the shock model; results for each individual source and a discussion are presented in Sections 4 and 5; Section 6 serves as a brief summary of the paper.

2. OBSERVATIONS

In this paper, we analyze the physical conditions in interstellar areas affected by interstellar shocks with the use of spectroscopic data obtained from the Infrared Spectrograph (IRS) on board Spitzer and two spectrometers on board ISO, as well as photometric data from Spitzer’s Infrared Array Camera (IRAC).

2.1. IRS Observations of H2 and HD

Spanning a wide wavelength range from 5.2 to 37 μm, IRS on Spitzer provides access to pure rotational H2 lines from v = 0–0 S(0) to S(7) and a variety of fine-structure lines including [Fe ii], [S i], [Ne ii], etc. Spectral maps of the six sources were obtained using the Short–Low (SL), Short–High (SH), and Long–High (LH) modules of IRS. Most of the data we employ here come from observations performed as part of the Cycle 2 General Observer Program, in which the IRS slit was stepped one-half of its width perpendicular to its long axis and 4/5 of its length parallel to the axis to map fields of size ~1′ × 1′. In Cycle 3, we obtained additional LH data with integration times a factor of 14–60 longer than those obtained in Cycle 2 for the H2 S(0), HD R(3), and R(4) lines toward IC443C, HH7, and HH54, providing an improved signal-to-noise ratio. These Cycle 3 IRS observations in the LH module were carried out on 2007 April 22, November 11, May 1 and 3, and October 1, respectively, for IC443C, HH54, and HH7. For the new observations, 1′ × 1′ regions were mapped by stepping IRS slit one-half of its width perpendicular and 1/5 of its length parallel to its long axis. A detailed discussion of the data reduction procedures we adopted is given in NO6 and NO7.

In addition to H2, the two HD rotational lines R(3) and R(4) detected in the IRS LH module toward IC443C, HH54, and HH7 provide us with an extra diagnostic of gas densities and the HD abundance (NO6). A detailed discussion of our HD detections and abundance measurements will be presented in a future paper, which is in preparation. For each source, the line intensities for each H2 and HD transition are listed in Table 1, averaged over the rectangular regions enclosed within the solid line boxes in Figures 1–6 to avoid pixels with poor signal-to-noise ratios.

2.2. IRAC Observations and Comparison with IRS

In addition to the IRS spectroscopic observations, photometric observations with IRAC on Spitzer may also help us in studying H2. With four filters centered at 3.6, 4.5, 5.8, and 8 μm, IRAC covers a variety of rovibrational and pure rotational transitions of H2 (Reach et al. 2006; Neufeld & Yuan 2008, hereafter NY08), providing access to higher excitation levels than those observable by IRS. More specifically, IRAC band 1 (covering ~3.2–4.0 μm) is sensitive to the v = 1–0 S(5) to O(7) and v = 0–0 S(13) to S(17) transitions of H2; band 2 (3.8–5.1 μm) is sensitive to the v = 0–0 S(9) to S(12) transitions; band 3 (4.9 to 6.5 μm) is sensitive to the v = 0–0 S(6) to S(8) transitions; while band 4 (6.3–9.6 μm) is sensitive to the v = 0–0 S(4) and S(5) transitions. The contributions of H2 line emissions to each IRAC band are listed in Table 1 of NY08.

After comparing the IRS H2 spectral line maps pixel-by-pixel for IC443C with an IRAC map covering the same region obtained in Program 68, NY08 found that for this SNR source the IRAC band 3 (5.8 μm) and band 4 (8 μm) intensities are contributed almost entirely by H2 v = 0–0 S(4) to S(7) line emissions. The IRS spectrum for IC443C has been presented by NO7, averaged over a Gaussian beam with HPBW ~25′ centered at α = 6h17m44.2, δ = 22°21′49″ (J2000); this spectrum indicates that the H2 pure rotational lines are the only detectable features within the two bandpasses. Moreover, according to the excitation model of NY08, H2 S(8) emission accounts for only ~3% of the observed band 3 intensity. Following the approach adopted in NY08, we present in Figure 1 a comparison between the IRAC band maps and the spatial distributions of corresponding band intensities contributed by IRS-observed H2 lines only. These band intensities were calculated with the use of the IRAC spectral response functions presented by Fazio et al. (2004), in accord with Equations (1) and (2) in NY08. We found that the IRS-derived 5.8 μm and 8 μm H2 maps (based upon the H2 line strengths) could be brought into excellent agreement with the observed IRAC band maps if multiplied by correction factors of 1.17 and 1.10, respectively. A more detailed
comparison of the band intensities at each pixel is given in NY08's Figure 4. The difference between the IRAC maps and maps derived from IRS H₂ emissions may be caused by different background measurements and systematic errors in flux calibration. For IC443C, most IRS-mapped regions are free of pollution from point sources.

According to the excitation model, the IRAC 4.5 μm band should also be attributed mainly to H₂ v = 0–0 S(9) to S(12) line emissions. Significant contributions from other sources have been ruled out by ground-based spectroscopic observations for IC443C, including atomic hydrogen recombination lines (Brα at 4.05 μm and Pfβ at 4.65 μm; Burton et al. 1988), [Fe II] fine-structure lines and CO ν = 1–0 rovibrational transitions (Richter et al. 1995). Similarly, for IC443C, we expect the 3.6 μm channel to be dominated by H₂ ν = 1–0 rovibrational transitions (mainly ν = 1–0 O(5)). PAH continuum emissions, which are not detectable toward IC443C within the longer wavelength range in IRS, are expected to be unimportant in band 1. On the basis of the analysis above, IRAC band maps of IC443C provide another probe of the excitation conditions for H₂. Analysis of the IRS and IRAC maps for the other five sources will be given below. For cases where H₂ emission dominates, the IRAC band 2 brightness is used in conjunction with the spectroscopic data to constrain the excitation conditions for molecular hydrogen.

In the Spitzer archive, two W28 IRAC maps in Program 20201, and two W44 IRAC maps and two 3C391 IRAC maps in Program 186 are found to cover the same regions observed by IRS. IRAC maps for the same source are averaged to get better signal-to-noise ratio for each pixel. The comparison between the IRAC maps and the H₂ contributions for W28, W44, and 3C391 are shown in Figures 2, 3, and 4, respectively. The IRS spectra, averaged over a Gaussian beam with HPBW ∼ 25″ for each SNR source, are presented in N07. For all three SNRs, the PAH features are moderately strong within the IRAC 5.8 μm and 8 μm bands. Furthermore, all the IRAC maps are heavily polluted by point sources. For 3C391, the IRAS map shows bright [Fe II] 5.34 μm emission from the western knot.

The IRS spectra of HH7 and HH54 are shown in N06, which gives average spectra for 15″ diameter circular apertures. We have extracted three HH7 IRAC maps obtained in Programs 6, 178, and 30516 from the Spitzer archive. A comparison between the two sets of maps is shown in Figure 5. The IRAC band 4 (8 μm) intensity for HH7 appears to come mainly from H₂ S(4) and S(5) line emissions; by contrast, the peak intensity in IRAC band 3 (5.8 μm) is 50% stronger than that expected from the corresponding H₂ maps, which implies the presence of additional contributions from dust continuum emissions. The extraordinarily bright HH7 band 2 (4.5 μm) intensity (compared with the brightness of band 3 and band 4) implies that it is probably dominated by continuum emission rather than H₂ emissions.

Two HH54 IRAC maps were obtained in Program 176. The similarity of the IRAC and IRS H₂ spectral images is apparent; see Figure 6. We have applied the same analysis method as in NY08 and found that, as for IC443C, the two IRAC bands for HH54 (5.8 μm and 8 μm) are mainly accounted for by H₂ emissions. It should be noted that N06 detected a weak [Fe II] fine-structure line at 5.34 μm toward HH54, which should contribute less than 18% of the 5.8 μm band intensity for most positions in the map. The morphology of the HH54 4.5 μm band emission is similar to that of the IRS H₂ spectral line maps, though it is a little more clumpy, implying that the H₂ line emissions are also very important components within band 2. We are assuming here that for HH54, like IC443C, the IRAC 4.5 μm band (band 2) is also dominated by H₂ emissions.

Table 1

Species	IC443C	W28	W44	3C391	HH7	HH54	
H₂ S(0)	28.22 μm	0.14^d	0.37	0.079	0.13	0.093	0.058
H₂ S(1)	17.04 μm	3.45	2.55	1.16	0.69	0.39	0.40
H₂ S(3)	12.28 μm	4.42	3.45	1.39	0.96	1.65	1.79
H₂ S(3)	9.67 μm	19.95	6.35	3.44	1.88	2.04	2.75
H₂ S(4)	8.03 μm	8.05	2.06	2.47	1.60	2.16	2.95
H₂ S(5)	6.91 μm	23.57	6.34	8.46	8.88	2.71	3.61
H₂ S(6)	6.10 μm	5.08	⋯	⋯	⋯	1.10	1.80
H₂ S(7)	5.51 μm	11.38	2.22	4.51	3.51	1.48	1.89

Notes.

^d The unit of IRS H₂ and HD line intensities is 10⁻⁷ W m⁻² sr⁻¹.
^f For W28, W44, and 3C391, the IRS H₂ S(6) is blended with strong 6.2 μm PAH feature and cannot be measured.
^e The S(9)/S(3) ratios for W28, W44, and 3C391 are derived from the H₂ line fluxes measured by SWS observations (Reach & Rho 2000).
^g The unit of IRAC band intensity is MJy sr⁻¹ (10⁻²⁰ W m⁻² sr⁻¹ Hz⁻¹).
^h The unit of CO line fluxes for IC443C, HH54, and HH7 is 10⁻¹⁶ W m⁻².
^i The unit of CO line intensities for W28, W44, and 3C391 is 10⁻⁹ W m⁻² sr⁻¹.
Within the 80 observations of three CO lines, \(J \) has been reported for all six sources. Snell et al. (2005) presented detection of CO emission with \(J \) covering many high-lying CO pure rotational transitions. The spectroscopic observations in the range of 43–196.9 \(\mu \text{m} \) of 1.17 and 1.1, respectively, to correct the “relative uncertainties” existing between IRS and IRAC maps. The IRS H\(_2\) and HD line intensities in Table 1 are averaged over the region confined by the solid line box. The cross in the northeast marks the center of the 80° LWS beam observing the CO high-lying rotational lines.

The possibility of strong CO \(v=1–0 \) emission in the 4.5 \(\mu \text{m} \) band was shown to be unlikely by NY08. NY08 considered collisional excitation of CO \(v=1–0 \) transitions by H and H\(_2\) and found that even at an H/H\(_2\) ratio \(\sim 1 \) and a high density with \(n(\text{H}_2) = 10^6 \text{ cm}^{-3} \), the fractional contribution of CO emission to the 4.5 \(\mu \text{m} \) band is less than 20%. For gas with H/H\(_2\) \(\sim 10\% \) and \(n(\text{H}_2) = 10^4 \text{ cm}^{-3} \), the fraction would be less than 2%.

2.3. Additional Constraints Imposed by ISO Observations of CO and H\(_2\)

The two complementary spectrometers on ISO provide us with more molecular data for these shock-excited regions. The Long-Wavelength Spectrometer (LWS) is designed for spectroscopic observations in the range of 43–196.9 \(\mu \text{m} \) and covers many high-lying CO pure rotational transitions. The detection of CO emission with \(J > 14 \) in LWS observations has been reported for all six sources. Snell et al. (2005) presented observations of three CO lines, \(J = 15–14, J = 16–15, \) and \(J = 17–16, \) within the 80° LWS beam centered on IC443C from the ISO archive. In the LWS observations carried out by Reach & Rho (1998), four CO lines were detected toward 3C391, viz., \(J = 14–13, J = 15–14, J = 16–15, \) and \(J = 17–16. \) For W28, they detected only the CO \(J = 15–14 \) and \(J = 16–15 \) transitions. For W44, only the \(J = 16–15 \) line could be identified. Molinari et al. (2000) observed several locations along the HH 7–11 flow and detected four CO rotational lines within the LWS beam on HH7: \(J = 14–13, J = 15–14, J = 16–15, \) and \(J = 17–16. \) The LWS CO spectrum for HH54 was taken toward a position called HH54B, marked by the crosses in Figure 6. Six CO rotational features, \(J = 14–13, J = 15–14, J = 16–15, J = 17–16, J = 18–17, \) and \(J = 19–18, \) were reported by Nisini et al. (1996) and Liseau et al. (1996). With an improved Relative Spectral Response Function, Giannini et al. (2006) presented a new analysis of the spectra, leading to the detection of CO \(J = 20–19. \) For these observations, the measured line fluxes had calibration uncertainties estimated to be up to \(\sim 30\%. \) With larger critical densities of the order of \(10^7 \text{ cm}^2, \) these CO high-lying rotational lines can provide sensitive diagnostics for probing density in these regions.

Besides the CO emissions, Reach & Rho (2000) obtained spectra of the H\(_2\) \(S(9) \) and \(S(3) \) lines for W28, W44, and 3C391 within the \(14'' \times 20'' \) aperture of the Short-Wavelength Spectrometer (SWS) on ISO. The central positions of all these ISO observations are marked by the crosses in Figures 1–6. For W28, W44, and 3C391, the LWS and SWS observations share the same beam centers and are consistent with the (0, 0) positions of the IRS maps. The measured H\(_2\) \(S(9)/S(3) \) ratios are another valuable diagnostic tool and are used in our fits to constrain the best-fit parameters of the gas. The LWS measured CO line fluxes along with the 1σ errors and the SWS \(S(9)/S(3) \) ratios are all listed in Table 1.

Figure 1. Upper panels show the three IRAC bands for IC443C at 4.5, 5.6, and 8 \(\mu \text{m} \) and the lower panels show the IRS H\(_2\) line contributions in 5.6 \(\mu \text{m} \) and 8 \(\mu \text{m} \) bands calculated using Equations (1) and (2) in NY08. The horizontal and vertical axes represent offsets in arcsec relative to \(\alpha = 6^h17^m42^s, \delta = 22^\circ21'49" \) (J2000). IRAC band 3 (5.6 \(\mu \text{m} \)) is attributed mainly to H\(_2\) \(S(6) \) and \(S(7) \), while IRAC band 4 (8 \(\mu \text{m} \)) is dominated by \(S(4) \) and \(S(5) \). We multiply the lower H\(_2\) maps by a factor of 1.17 and 1.1, respectively, to correct the “relative uncertainties” exiting between IRS and IRAC maps. The IRS H\(_2\) and HD line intensities in Table 1 are averaged over the region confined by the solid line box. The cross in the northeast marks the center of the 80° LWS beam observing the CO high-lying rotational lines.

(A color version of this figure is available in the online journal.)
Figure 2. Similar as Figure 1 but for W28. The (0, 0) position is now at $\alpha = 18^h01^m52^s3.3$, $\delta = -23^\circ19'25''$ (J2000). The center of the ISO observation (both SWS and LWS) coincides with the (0, 0) position in the maps.

(A color version of this figure is available in the online journal.)

Figure 3. Similar as Figure 1 but for W44. The (0, 0) position is now at $\alpha = 18^h56^m28^s4.8$, $\delta = 01^\circ29'59''$ (J2000). The center of the ISO observation (both SWS and LWS) coincides with the (0, 0) position in the maps.

(A color version of this figure is available in the online journal.)
Figure 4. Similar as Figure 1 but for 3C391. The (0, 0) position is now at α = 18h49m21.9, δ = −0°57′22″ (J2000). The center of the ISO observation (both SWS and LWS) coincides with the (0, 0) position in the maps.

(A color version of this figure is available in the online journal.)

Figure 5. Similar as Figure 1 but for HH7. The (0, 0) position is now at α = 3h29m8.6, δ = 31°15′26.8″ (J2000). The center of the 80″ LWS beam observing the CO lines is marked by the crosses.

(A color version of this figure is available in the online journal.)
3. MOLECULAR EMISSION FROM C-TYPE SHOCKS

3.1. The Excitation Model

The H_2 emission spectrum is among the most important diagnostics needed to constrain conditions in shocked molecular gas as well as to distinguish between different shock models. Over the last several decades, it has been widely observed that the rotational diagrams of H_2 often exhibit positive curvatures. This kind of curvature cannot be accounted for by extinction effects only, which affect the $\text{H}_2 S(3)$ line much more strongly than the other rotational lines, and may imply the existence of a mixture of gas temperatures. N06 and N07 investigated the H_2 excitation diagrams for the six sources we are studying here, in which the molecular hydrogen emission was modeled with a combination of gas at two temperatures. In this paper, we adopt a power-law temperature distribution similar to that described by NY08, with the column density of gas at temperature between T and $T + dT$ assumed to be proportional to T^{-b}. Instead of the lower temperature limit $T_{\text{min}} = 300$ K adopted by NY08, we extend it to 100 K here because warm gas at 100–300 K can contribute significantly to those low-lying H_2 emissions accessible to IRS, especially for $v = 0$–0 $S(0)$ and $S(1)$. This power-law distribution is consistent with the prediction from the bow-shaped C-shock model developed by Smith et al. (1991; NY08). Smith et al. found that bow shocks can produce gas at a wide range of excitation temperatures and thus provide a way of explaining the H_2 line ratios observed for many sources, while planar shock models fail to reproduce the observed ratios.

Another interesting characteristic of the H_2 rotational diagrams lies in the zigzag pattern, corresponding to non-equilibrium H_2 OPRs. This phenomenon is especially notable for the five sources W28, W44, 3C391, HH7, and HH54 (N06; N07). With a closer look, it is quickly apparent that the zigzag tends to “diminish” for high-lying levels. Given the fact that low- and high-excitation lines are produced by different temperature components, N06 argued that the change in the degree of zigzag is caused by the strong temperature dependence of the para-to-ortho conversion efficiency. With this process dominated by collisions with atomic hydrogen in C-type shocks (Timmermann 1998; Wilgenbus et al. 2000), the current OPR is given by Equation (1) in Neufeld et al. (2009; hereafter N09), as a function of initial ratio OPR$_0$, atomic hydrogen density $n(\text{H})$, and shock-heating period τ. These three values along with the number and column density of H_2—$n(\text{H}_2)$ and $N(\text{H}_2)$—determine the H_2 emission spectrum.

3.2. Constraining the Physical Parameters

For an excitation model with the parameters discussed above, the molecular line intensities are easy to calculate if statistical equilibrium is achieved, which is an approximation widely adopted for modeling molecular emission in shocks. We have confirmed the validity of this approximation for transitions of the three species H_2, HD, and CO accessible in the infrared observations mentioned in this paper (see the Appendix). The rate equations are then simplified as

$$
\sum_{j'} (C_{j'\rightarrow j} + A_{j'\rightarrow j}) f_{j'} - f_j \sum_{j'} (C_{j\rightarrow j'} + A_{j\rightarrow j'}) = 0,
$$

(1)
where $f_{J'}$ represents the fractional population in state $J, A_{J' \rightarrow J}$ is the rate of spontaneous decay from state J' to J, and $C_{J' \rightarrow J}$ is the rate of collisionally induced transitions from J' to J. We consider collisional excitation (de-excitation) and spontaneous decay processes only, and for H_2 and HD we neglected optical depth effects. For the H_2 collisional rate coefficients, we used data computed by Flower & Roueff (1999), Flower et al. (1998), Flower & Roueff (1998a, 1998b), and Forrey et al. (1997). The rate coefficients for HD were adopted from Flower (1999), Roueff & Zeippen (1999), and Roueff & Flower (1999). For CO, we made use of collisional data from Flower (2001), Wernli et al. (2006), and Balakrishnan et al. (2002), together with the extrapolation presented by Schoier et al. (2005) for temperatures up to 2000 K and CO rotational states up to $J = 40$. For cases where optical depth effects may become non-negligible, specifically for the CO transitions, we applied the large-velocity-gradient (LVG) approximation and multiplied the radiative transition part in Equation (1) by a term β, which is called the escape probability for photons. Neufeld & Kaufman (1993) suggested an angle-averaged probability for planar shocks

$$\beta = \frac{1}{1 + 3\tau_s},$$

where τ_s is the Sobolev optical depth. An average velocity gradient of 2×10^{-10} cm s$^{-1}$ cm$^{-1}$ and an n($CO)/n$(H$_2$) abundance ratio of 5 \times 10$^{-3}$ are adopted in calculating the CO optical depth. We note, however, that the optical thickness of CO affects these highly excited rotational states measured in LWS observations by less than 10%.

We have adopted two approaches to find the best-fit parameters in the shock model using a χ^2 minimization method. In the first approach, we considered only the H_2 spectral lines $S(0)$–$S(7)$ observed by IRS; while in the second approach, we fitted all the available data, including the IRS H_2 intensities, the IRAC band 2 intensities—if dominated by high-lying H_2 rotational transitions (IC443C and HH54)—the HD $R(3)$ and $R(4)$ intensities, and the CO line fluxes obtained from the ISO archive. We decided not to use the IRAC 3.6 μm band intensities, which are attributable to H_2 vibrational emissions. The excitation of H_2 vibrational transitions, unlike the pure rotational lines we considered, is dominated by collisions with atomic hydrogen even with a small n(H)/n(H$_2$) ratio $\sim 3\%$ (NY08). Since the collisional dissociation processes for molecular hydrogen are more efficient within the hotter component of the shocked gas, the dependence of the H_2 vibrational emission upon temperature will be more complicated than what our model describes. Thus, we exclude IRAC band 1 (3.6 μm) in the fitting to avoid it affecting our estimate of the best-fit temperature distribution and density. For the other transitions mentioned above, the excitation processes should always be dominated by collisions with H_2 given the conditions in molecular shocks. In our calculation, we take into account collisional excitation by H_2 and helium. A helium abundance n(He)/n(H$_2$) of 0.2 is assumed. Errors introduced by neglecting collision with atomic hydrogen are largest for the CO lines and those high-lying H_2 transitions contributing to IRAC band 2, which are however still less than 15% given an average n(H)/n(H$_2$) ratio of 10%, which is the upper limit of the value for IC443C estimated by Burton et al. (1988) based on the Brγ intensity.

4. RESULTS

As mentioned in Section 3, we used two ways to derive the best-fit parameters. In the first approach, only IRS H_2 lines were considered. In the second approach, all available molecular data were included in the fitting process. In the case of IC443C and HH54, these data comprise the H_2 and HD line intensities observed by IRS, the IRAC band 2 intensity, and the CO line intensities observed by ISO/LWS. For W28, W44, and 3C391, we included the H_2 lines and SWS-measured $S(9)/S(3)$ ratios. For HH7, only the IRS-observed H_2 and HD lines were used. We found that the uncertainties in the LWS-measured CO line intensities for W28, W44, 3C391, and HH7 are too large to provide useful information about the physical conditions in the gas.

To deredden the IC443C line fluxes, we originally tried the extinction correction with $A_{2.12,\mu m} = 1.3$–1.6 by Richter et al. (1995) and the $R_V = 3.1$ extinction curves from Weingartner & Draine (2001), which ended up with an $S(3)$ intensity almost two times larger than expected given the other H_2 line intensities. Treating the extinction as a free parameter in our fit to the H_2 line intensities yielded an A_V close to zero. Thus, we applied no extinction correction for IC443C in the following calculations. For W28, we applied an extinction correction with $E_{B-V} = 1$–1.3 given by Long et al. (1991) derived from the $[S\ II]$ line ratios. This value is also consistent with the estimate by Bohigas et al. (1993) who obtained $E_{B-V} = 1.16$. For W44, the absorbing column density along the line of sight to this region is estimated to be $\sim 2 \times 10^{22}$ cm$^{-2}$ (Rho et al. 1994), corresponding to an $A_V \sim 10$. For 3C391, Reach et al. (2002) suggested a visual extinction of $A_V = 19$ for the IRS-observed region, which is denser than other parts of the cloud, based upon an upper limit on the foreground column density of $(2$–$3.6) \times 10^{22}$ cm$^{-2}$ inferred from a spectral analysis of the X-ray data (Rho & Petre 1996). For HH7, we adopted $E_{V-K} = 0.7$, as estimated by Gredel (1996) for the neighboring source HH 8, and for HH54 we assumed $A_V = 1.64$, following Gredel (1994).

The best fits to the H_2 and CO rotational diagrams are shown by the dotted lines (the first approach) and solid lines (the second approach) in Figures 7–12. In the case of H_2 $S(9)$, we assumed an $S(9)/S(3)$ line ratio equal to that measured by ISO/SWS for the sources W28, W44, and 3C391. For IC443C and HH54, we estimated the $S(9)$ line intensity from the IRAC band 2 intensity, assuming one-half of the emission in that band to result from H_2 $S(9)$, roughly consistent with the fractional contribution obtained by NY08 (62% for one specific excitation model with an assumed b of 4.5 and n(H$_2$) of 10^6 cm$^{-3}$ reported in their Table 1). Though the CO lines are excluded in the fits for 3C391 and HH7, the excitation diagrams of CO for these two sources were still presented in Figures 10 and 11. The best-fit parameters for each source are listed in Table 2. From this table, we can see that while the best-fit density determined from the H_2 pure rotational transitions alone is $\sim (2$–$4) \times 10^3$ cm$^{-3}$, a value several times larger provides the best fit to the complete data set including the H_2 $S(9)$, IRAC band 2, HD, and CO line intensities.

Although the IRS maps are smaller than the whole regions that contribute to the 80 μm LWS beam, we can place an upper limit on the average CO abundance by comparing the H_2 line fluxes obtained in each entire IRS map with the CO fluxes obtained with LWS. This method yields the upper limits n(CO)/n(H$_2$) $< 1.5 \times 10^{-3}$ and n(CO)/n(H$_2$) $< 5.5 \times 10^{-4}$ for IC443C and HH54, respectively. If we assume the distribution of CO emission to be similar to that measured in IRAC band 2, we obtain rough estimates of the CO abundance of $\sim (3$–$5) \times 10^{-3}$ for IC443C and $\sim (2$–$4) \times 10^{-3}$ for HH54.

Errors in the fitted parameters are evaluated by plotting χ^2 contours in multi-parameter spaces. The χ^2 values are computed.
Figure 7. Upper panel shows best fits to IC443C H$_2$ rotational diagram and the lower panel represents fits to the CO excitation diagram. We adopted two different approaches in the fitting. The dotted line represents fits computed with the IRS H$_2$ lines $S(0)$ to $S(7)$ only and solid lines represent fits to all features including IRS H$_2$ and HD lines, IRAC band 2 (4.5 μm) emission, and LWS CO fluxes $J=15$–14, $J=16$–15, and $J=17$–16. To show fit to IRAC band 2 (4.5 μm), we assume that half of the band 2 intensity comes from H$_2$ $S(9)$ and plot that false “$S(9)$” on the H$_2$ rotational diagram, represented by the red cross on the upper panel. The error bars for each line are plotted assuming 30% uncertainties for LWS CO fluxes and 25% for the rest.

(A color version of this figure is available in the online journal.)

Figure 8. Similar to Figure 7. The dotted line represents fits to the W28 H$_2$ rotational diagram computed with the IRS H$_2$ lines. The $S(6)$ line flux is excluded which cannot be measured reliably. The solid line shows fits calculated with both IRS H$_2$ lines and $S(9)/S(3)$ ratio obtained by the ISO SWS observation. The rightmost red cross shows $S(9)$ evaluated with IRS $S(3)$ intensity and the given SWS $S(9)/S(3)$ ratio.

(A color version of this figure is available in the online journal.)

assuming a fractional uncertainty of 30% for the CO line fluxes and 25% for all other line emissions. Figure 13 shows the 68.3% and 95.4% confidence regions in the b–n(H_2) plane for all six sources, with dotted lines for fits with IRS H$_2$ lines only and solid lines for fits with all reliable data included (the second approach discussed above). The elongated shape of the χ^2 contours in the b–n(H_2) plane arises because the two parameters are degenerate, as mentioned in N09, such that increasing the density or decreasing b (which raises the fraction of hot gas) has a similar effect on the excitation of mid- and high-lying transitions considered in the calculation. For HH7, including the HD $R(3)$ and $R(4)$ lines in our calculation does not significantly change the best-fit parameters. The two sets of contour plots for HH7 almost overlap with each other; as shown in Figure 13; this is because within the banana-shaped region constrained by the H_2 emission, the HD $R(3)$ to $R(4)$ ratio is not a sensitive function of the gas density or the power-law index, b.

The spatial distributions of the best-fit parameters—including the H_2 density, the power-law index, b, the column density of warm hydrogen above 100 K, and the average OPR—are shown in Figures 14–19. The contours of the brightest H_2 line, $S(5)$, are superposed. These parameter maps are obtained by fits to the H_2 IRS lines only, which have good signal-to-noise ratios. They are not intended to show the exact values of the parameters at each position but rather the spatial variations of the physical conditions in these regions. Here, we show only the averaged
Figure 11. Same as Figure 7 but for HH7. Solid lines represent fits to IRS H$_2$ and HD lines. Since the two fits are very close the dotted and solid lines overlap. Though fits to the CO rotational diagram are still shown in the lower panel, the CO fluxes observed in the LWS observation, including $J = 14–13$, $J = 15–14$, $J = 16–15$, and $J = 17–16$, are excluded in our computation due to large uncertainties. (A color version of this figure is available in the online journal.)

Figure 12. Same as Figure 7 but for HH54. The blue crosses in the lower panel represent observed CO fluxes at $J = 14–13$, $J = 15–14$, $J = 16–15$, $J = 17–16$, $J = 18–17$, and $J = 20–19$, respectively. (A color version of this figure is available in the online journal.)

Figure 13. χ^2 contours in the b–$n(H_2)$ plane for all six sources. Dotted lines show fits calculated with the IRS H$_2$ lines and solid lines for fits with all reliable features included. The best-fit b and $n(H_2)$ are marked by triangles and crosses for the two cases, respectively. The inner contours confine the 68.3% joint confidence interval and the outer contours confine the 95.4% confidence interval. For HH7, the two sets of contours almost overlap each other.

OPR over the column density of H$_2$ at every position, not OPR$_0$ and $n(H) \times \tau$ separately because these two parameters, like another pair of parameters, $n(H_2)$ and b, are degenerate in the parameter space. Increasing either of them will raise the resultant OPR of the gas. Thus, the confidence intervals are wide for these two parameters, especially for $n(H) \times \tau$. The much larger uncertainties in the line intensities at a single pixel, compared with the errors in the map-averaged intensities, make the derived OPR$_0$ and $n(H) \times \tau$ even more poorly constrained and unreliable. That is why we show the averaged OPR maps instead.

5. DISCUSSION

5.1. The Best-fit Density

From Table 1 and Figures 7–12, we see that the H$_2$ pure rotational emissions detected by IRS of all six sources are consistent with excitation conditions in gas with $n(H_2) \sim (2–4) \times 10^5$ cm$^{-3}$ and temperature index $b \sim 2.3–3.1$. In the case of W28, W44, and 3C391, the intensities of H$_2$S(9), however, suggest a denser region with $n(H_2)$ 2–2.5 times larger, and including the IRAC band 2 (4.5 μm) brightness—contributed mainly by H$_2$ S(9) to S(12)—as well as the CO highly excited rotational line fluxes, which are considered only in the case of...
Figure 14. Spatial distributions of the best-fit parameters for IC443C, including density \(n(H_2) \), power-law index \(b \), and column density of gas \(N(H_2) \) with \(100 \text{ K} < T < 5000 \text{ K} \), calculated with IRS \(H_2 \) line emissions only. Regions are selected with \(S(5) \) intensity larger than \(2 \times 10^{-7} \text{ W m}^{-2} \text{ sr}^{-1} \) so the signal-to-noise ratios for each \(H_2 \) line are good enough to yield reliable fits. The contours of the brightest \(H_2 \) line \(S(5) \) are superposed.

(A color version of this figure is available in the online journal.)

Table 2

Best-fit Parameters	IC443C	W28	W44	3C391	HH7	HH54
Fits to IRS \(H_2 \) lines only						
\(\log_{10}[n(H_2)/\text{cm}^{-3}] \)	3.36 (3.1–3.9)\(^a\)	3.42 (3.2–4.1)	3.63 (3.2–4.5)	3.62 (3.2–4.5)	3.39 (2.9–4.2)	3.30 (3.0–3.7)
Power-law index, \(b \)	2.29 (1.9–2.7)	3.07 (2.7–3.7)	2.47 (2–3)	2.48 (2–3.1)	2.54 (2.2–3.1)	2.17 (1.8–2.6)
\(\text{OPR}_0 \)	3\(^b\)	1.23 (\(\leq 2.7 \))	1.98 (\(\leq 3 \))	0.255 (\(\leq 1.8 \))	0.517 (0.2–1.1)	0.65 (\(\leq 1.2 \))
\(\log_{10}[n(H)/\tau/\text{cm}^{-3} \text{ yr}] \)	\(\cdots \)	4.43 (\(\cdots \))\(^a\)	3.88 (\(\cdots \))	6.38 (\(\geq 2.3 \))	3.25 (2.6–4.2)	3.01 (\(\leq 3.7 \))
\(\log_{10}[N(H_2)/\text{cm}^{-2}] \)	21.13	21.51	20.87	20.83	20.63	20.38
Fits to all reliable features						
\(\log_{10}[n(H_2)/\text{cm}^{-3}] \)	4.1 (3.2–4.7)	3.83 (3.2–4.4)	3.92 (3.4–4.4)	3.91 (3.5–4.4)	3.41 (2.9–4.2)	4.51 (3.4–5.5)
Power-law index, \(b \)	2.78 (2.2–3.2)	3.36 (2.8–3.9)	2.65 (2.2–3.1)	2.68 (2.2–3.1)	2.55 (2.2–3.1)	2.99 (2.4–3.3)
\(\text{OPR}_0 \)	3	1.44 (\(\leq 3 \))	2.23 (\(\leq 3 \))	0.493 (\(\leq 2 \))	0.520 (0.2–1.1)	0.787 (\(\leq 1.5 \))
\(\log_{10}[n(H)/\tau/\text{cm}^{-3} \text{ yr}] \)	\(\cdots \)	4.43 (\(\cdots \))	3.48 (\(\cdots \))	6.14 (\(\geq 3.3 \))	3.25 (2.6–4.2)	2.82 (\(\leq 3.6 \))
\(\log_{10}[N(H_2)/\text{cm}^{-2}] \)	21.32	21.61	20.95	20.92	20.63	20.69

Notes.

\(^a\) The 95.4% confidence intervals are shown in the parentheses.

\(^b\) The \(H_2 \) rotational diagram for IC443C shows no apparent departure from the equilibrium value of \(\text{OPR} \) and is consistent with \(\text{OPR} = 3 \).

\(^c\) The 95.4% confidence limit is not effective here—it covers the whole region where \(n(H) \times \tau/\text{cm}^{-3} \text{ yr} > 0 \).

IC443C and HH54, yields an even higher best-fit density with \(n(H_2) \sim (1–4) \times 10^4 \text{ cm}^{-3} \). The latter density range is closer to estimates from previous studies of emissions from various species. Snell et al. (2005) found that a pre-shock density of \(3 \times 10^4 \text{ cm}^{-3} \) for either a slow J-type or C-type shock in IC443 clump C can account for the observed \(H_2O, \text{CO, OH, and } H_2 \).
Figure 15. Same as Figure 14 but for W28. Parameter maps include density \(n(\text{H}_2)\), power-law index \(b\), and column density of gas \(N(\text{H}_2)\) with \(100 \text{ K} < T < 5000 \text{ K}\) and averaged OPR over the total column density. Regions are selected with \(S(5)\) intensity larger than \(7.5 \times 10^{-7} \text{ W m}^{-2} \text{ sr}^{-1}\).

(A color version of this figure is available in the online journal.)

2 \m\ line intensities. For the other three SNRs—W28, W44, and 3C391—the IRS regions coincide with the locations of the brightest 1720 MHz OH masers, the presence of which implies the existence of clumps of OH gas at moderate temperature \(50–125 \text{ K}\) and densities \(n(\text{H}_2) \sim 10^5 \text{ cm}^{-3}\) in C shocks (Lockett et al. 1999; Wardle & Yusef-Zadeh 2002). For HH54, the multi-species analysis done by Giannini et al. (2006) indicated that an 18 km s\(^{-1}\) J-type shock with a continuous precursor and a density \(n(\text{H}_2) \sim 10^4 \text{ cm}^{-3}\) matches the \(\text{H}_2\) vibrational and pure rotational lines, as well as the CO and H\(_2\)O emissions observed with \(\text{ISO}\). Molinari et al. (2000) studied the HH 7–11 outflow emissions using \(\text{ISO}\) and interpreted the \(\text{H}_2\), CO, and H\(_2\)O line emissions as emerging from a mixture of J- and C-type shocks propagating in gas of density \(n(\text{H}_2) \sim 10^4 \text{ cm}^{-3}\).

The inconsistency among the best-fit densities estimated from different molecular species, obtained in the calculations described above, can be explained by the density fluctuations within the observed regions. The clouds may be composed of both moderate density gas with \(n(\text{H}_2) \sim 10^3 \text{ cm}^{-3}\) and dense cores with \(n(\text{H}_2) \sim 10^5–10^6 \text{ cm}^{-3}\). Indeed, the density maps derived from the IRS \(\text{H}_2\) fluxes exhibit large variations within the small areas (~\(1' \times 1'\)) mapped, as shown in Figures 14–19. The higher critical densities for the \(\text{H}_2 S(9)\) to \(S(12)\) transitions, the CO high-\(J\) transitions as well as the H\(_2\)O lines, which we do not utilize here, make the line intensities more sensitive functions of density than those of the \(\text{H}_2\) IRS transitions. Thus, denser regions contribute more to the total emission for these transitions of high critical density, leading to larger density estimates. However, another possibility also exists that the low- and high-lying lines may actually trace different components of the shock. Reach et al. (2005) proposed that \(\text{H}_2 S(9)\) can arise largely from the dissociative part of shock, while \(\text{H}_2 S(3)\) is attributed almost entirely to the non-dissociative shock. In reality, these two situations may exist when part of the highly excited CO and \(\text{H}_2\) rotational lines come from warmer regions where the shock is partially dissociative and atomic hydrogen becomes an important collisional partner, an effect neglected in our model.

5.2. The Best-fit Temperature Distribution Index \(b\)

The best-fit power-law index \(b\), which represents the gas temperature distribution along the line of sight, is in the range 2.3–3.1 according to our fits to the IRS \(\text{H}_2\) emissions. If \(\text{H}_2 S(9)\) is also considered, \(b\) is enhanced by \(\sim 0.2\), and a further increase of 0.3–0.6 is needed if the IRAC 4.5 \m\ band flux or CO lines are included. The above effects are probably caused by the degeneracy of the two parameters—\(n(\text{H}_2)\) and \(b\)—as
Figure 16. Same as Figure 15 but for W44. Regions are selected with S(5) intensity larger than 8×10^{-7} W m$^{-2}$ sr$^{-1}$.

(A color version of this figure is available in the online journal.)

mentioned in Section 4; an increase in the best-fit density can be compensated for by a larger b (i.e., by assuming the presence of less gas at high temperatures). The best-fit b index for all six sources is smaller than predictions from a classical bow shock whose shape can be approximated as parabolic. According to Smith & Brand (1990), the effective shock surface area dA with a perpendicular shock velocity V_s is proportional to $V_s^{-4} dV_s$, which leads to a power-law index $b \sim 3.8$ if the relationship between the column density and shock velocity given by Equation (B6) in N06 is adopted: $N(H_2) \propto V_s^{-0.75}$ (NY08). A b index smaller than 3.8 can be caused by a dA which drops less steeply with velocity V_s than does a parabolic shock. This would require that the curvature of the shock front be smaller than that of a parabola, or more probably, that there exists an admixture of shocks with different geometries whose shapes vary from planar to bow.

5.3. The Covering Factors within the IRS Regions

The average column density of the shocked H$_2$ at $T > 100$ K within the rectangular areas marked in Figures 1–6 varies from 2×10^{20} cm$^{-2}$ to 4×10^{21} cm$^{-2}$, with the two Herbig-Haro objects the weakest sources of the total H$_2$ emissions. The length scale defined by $N(H_2)/n(H_2)$, which should be equal to the product of shock thickness and covering factor within the regions, is in the range of 10^{16} cm–10^{18} cm. All sources except HH54 show $N(H_2)/n(H_2)$ above 10^{17} cm. The thickness of the shocks in these regions, obtained from expressions (B6) and (B7) from N06, should be less than 10^{17} cm. The analysis above implies that the covering factor for all six sources except HH54 is larger than unity; for W28 it is even as large as ~ 6. The high covering factors are not surprising because we are probably not observing these shocks face-on. The filamentary structures appearing in part of the maps of W28 and W44 imply the existence of individual shock fronts seen close to edge-on, as suggested by Reach et al. (2005). Actually, for most of the sources except HH7, the complicated morphology of the maps suggests a combination of shocks with different geometry and seen from different angles. For HH7, the well-defined bow-shaped structure probably represents a simplified situation. Smith et al. (2003) proposed that a bow shock moving at an angle of $\sim 30^\circ$ to the line of sight is consistent with the H$_2$ line profiles observed at different positions in HH7.

5.4. The OPR and the Environmental Difference between SNRs and Herbig-Haro Objects

Though the physical sizes of the shock structures mapped by IRS for HH7 and HH54 are $\lesssim 0.1$ times smaller than those for SNRs, the best-fit density, index b, and H$_2$ column density do not significantly differ between these two classes of sources. We noted, however, that the OPR for hot gas ($T > 1000$ K) in HH7
and HH54 is lower than the LTE value ~3, while for all four SNRs the departure of the OPR from equilibrium is negligible at that high temperature. This phenomenon is also reflected in the H$_2$ rotational diagrams, where the zigzag pattern is more apparent for the two Herbig-Haro objects and is apparent even for the highest rotational levels. In our model, the equilibrium OPR of hot gas in the four SNRs requires a best-fit n(H) \times τ that is 0.6–3 orders of magnitude larger than that inferred for HH7 and HH54. This difference may be caused by a different atomic hydrogen density n(H) within gas around SNRs and Herbig-Haro objects. Fast SNR blast waves driving interstellar shocks with $V_s \geq 100$ km s$^{-1}$ can produce strong ultraviolet emissions that are responsible for the dissociation of H$_2$ in surrounding regions, while for Herbig-Haro objects the typical shock speeds are observed to be smaller (Herbig & Jones 1981; Cohen & Fuller 1985). Many high-excitation fine-structure lines which have been detected previously toward many SNRs are faint or absent toward Herbig-Haro objects. In addition to the UV field produced by nearby fast shocks, the X-ray emission from an SNR interior will also induce dissociation of pre-shock gas. These all imply that the molecular gas associated with Herbig-Haro objects probably is subject to weaker photodissociation, which results in less H and a lower efficiency of para-to-ortho conversion. We note, however, that for measurements of near-infrared H$_2$ rovibrational transitions toward Herbig-Haro objects, the OPR values obtained are in most cases consistent with 3 (Smith et al. 1997). With energy levels lying above 6000 K, these vibrationally excited lines originate mostly from the hottest part of the gas, which probably has a higher atomic fraction. These two factors—high temperature and high atomic H fraction—add up to a fast, efficient ortho-para conversion.

5.5. Maps of the Parameters

The maps of best-fit parameters in Figures 14–19 were derived from the IRS H$_2$ fluxes only. So, they may not represent the real average value at each pixel, but we expect that they carry useful information about spatial variations in the physical conditions in these regions. Maps of all six sources exhibit a spatial variation in n(H$_2$) larger than a factor of five, and a variation in b larger than one. The H$_2$ densities derived for a single pixel vary from 6×10^2 cm$^{-3}$ to 10^4 cm$^{-3}$, and the index b ranges from 1.6 to 3.3.

After comparing the IRS H$_2$ spectroscopic maps with the parameter maps, we found that the maps of the temperature distribution index b look most similar to the distributions of mid-lying H$_2$ emissions including S(3), S(4), and S(5). To show this similarity, we superpose the H$_2$ S(5) emission contours on these images. This fact implies that the emission in these mid-lying transitions is more strongly dependent on b than on the density.
In other words, these transitions, $H_2 S(3)\rightarrow S(5)$, trace mainly the hottest components of the gas. Since the gas temperature distribution at each position is determined largely by the shock velocity, these H_2 emissions may also serve as a good tracer of the local effective shock velocity. In HH7, for example, the $S(3)\rightarrow S(5)$ line intensities appear strongest near the head of the bow, where V_s reaches its maximum. On the other hand, although the $S(6)$ and $S(7)$ emissions are also strongly affected by the gas temperature, they show more dependence upon $n(H_2)$ compared to other lower-lying transitions. The critical densities for the excitation of $S(6)$ and $S(7)$ are higher than 10^5 cm^{-3} at the typical temperatures of relevance here. Thus, regions of enhanced density show up as clumpy features within the $S(7)$ map for HH7. Finally, we note that the derived column density of H_2 at $T > 100 \text{ K}$ is mostly determined by the intensities of the low-lying transitions, especially $S(0)$. The $S(0)$ emission arises mainly from lower temperature gas with $T < 500 \text{ K}$, which contributes the most to the total $N(H_2)$ for the power-law temperature distribution that we assume.

6. SUMMARY

1. We have studied the physical conditions within shock-excited molecular gas associated with IC443C, W28, W44, 3C391, HH7, and HH54. We mainly used the $H_2 S(0)$ to $S(7)$ spectral line maps obtained by IRS on Spitzer to constrain the best-fit parameters. IRS observations of HD emissions, IRAC band 2 (4.5 μm) intensity maps, and ISO measurements of the $H_2 S(9)/S(3)$ ratio and the CO high-lying rotational lines (from $J = 14\rightarrow13$ to $J = 20\rightarrow19$) are also used when available to provide additional constraints.

2. A comparison between the IRS H_2 emission distribution and the IRAC maps for IC443C shows that the IRAC band 2, 3, and 4 intensities are attributable almost entirely to H_2 pure rotational emissions. For HH54, the similarity between the IRS H_2 and IRAC maps implies that these IRAC band fluxes may come mostly from H_2 emissions as well. We assumed that the HH54 IRAC band 2 intensity is dominated by H_2 emissions and used it as an extra diagnostic in the model. For the other four sources, the IRAC maps show either a strong continuum component from PAHs or dust or are heavily polluted by point sources.

3. We adopted a power-law temperature distribution for the shocked gas, with the column density of gas at temperature between T and $T + dT$ assumed to be proportional to T^{-b}, where T ranges from 100 to 5000 K. The molecular line intensities are then modeled under the assumption of statistical equilibrium. We have checked the validity of this approximation for transitions of the three species H_2, HD,
and CO. Our calculations show that the departure from statistical equilibrium for those rotational states involved in our calculation is negligible under all plausible density conditions in molecular shocks.

4. The best-fit densities determined from the IRS H$_2$ pure rotational lines $S(0)$ to $S(7)$ for all six sources are consistent with the excitation conditions in gas with n(H$_2$) \sim $(2–4) \times 10^3$ cm$^{-3}$. The intensities of H$_2$ $S(9)$, however, require an environment 2–2.5 times denser. In the case of IC443C and HH54, where the highly excited CO rotational line intensities measured by ISO are reliable and IRAC 4.5 μm band fluxes were considered, we found the gas density determined by including all the data above is even larger: n(H$_2$) \sim $(1–4) \times 10^4$ cm$^{-3}$. This inconsistency can be explained by density fluctuations within the observed regions. However, it is also possible that the low- and high-lying lines originate from different components of the shock.

5. For all six sources, the best-fit power-law index b derived from IRS H$_2$ $S(0)$ to $S(7)$ is in the range of 2.3–3.1. If H$_2$ $S(9)$ is also considered, b is enhanced by \sim 0.2, and a further increase of 0.3–0.6 is needed if the CO lines or IRAC 4.5 μm band fluxes are also included. The best-fit b index is smaller than predictions from a classical parabolic bow shock, which leads to a power-law index \sim3.8. It can be understood if the average curvature of the shock front is smaller than that of a parabola—or if there exists an admixture of shocks whose shapes vary from planar to bow.

6. The OPR for hot gas ($T > 1000$ K) in all four SNRs is fairly close to the LTE value of 3, while for the two Herbig-Haro objects it is confirmed to be less than the LTE value even at $T > 1000$ K. This difference may be caused by different pre-shock atomic hydrogen densities n(H) within gas around SNRs and Herbig-Haro objects. SNRs may be subject to heavier UV photodissociation and therefore produce more atomic hydrogen in the gas, which is the dominant collisional partner in the para-to-ortho conversion process in molecular shocks.

7. Unlike the OPR, the best-fit density, power-law index b, and H$_2$ column density do not differ significantly between SNRs and Herbig-Haro objects. It should be noted that the acceptable ranges of the fitted parameters are actually large because they are degenerate in the parameter space (n(H$_2$) versus b and OPR$_0$ versus n(H) \times τ).

8. Given the observed IRS H$_2$ fluxes, we obtain an upper limit on the CO abundance—n(CO)/n(H$_2$)—within the 80$''$ ISO/LWS beam of 1.5×10^{-3} and 5.5×10^{-4} for IC443C and HH54, respectively. Assuming that the CO emission distribution is similar to that of the IRAC bands (or the H$_2$ emission), we derive a rough estimate for the CO abundance of n(CO)/n(H$_2$) \sim $(3–5) \times 10^{-5}$ for IC443C and n(CO)/n(H$_2$) \sim $(2–4) \times 10^{-5}$ for HH54.
Figure 20. Evolution of level populations of H$_2$, HD, and CO at density $n(H_2) = 10^4$ cm$^{-3}$. n_J denotes the level population density for level J and n_J-eq is the value at statistical equilibrium. The left panels are for $T = 400$ K and right panels for $T = 1000$ K, values which are consistent with typical temperatures of the warm and hot components (see the text).

(A color version of this figure is available in the online journal.)

9. Parameter maps derived from the H$_2$ $S(0)$ to $S(7)$ lines for all six sources exhibit a spatial variation in $n(H_2)$ larger than a factor of five and a variation in b larger than one. The density, $n(H_2)$, varies from 6×10^2 to 10^5 cm$^{-3}$, and the index b ranges from 1.6 to 3.3.

10. Our maps of the best-fit parameters indicate that the midlying H$_2$ emissions—$S(3)$ to $S(5)$—trace the hot component of the gas. On the other hand, the excitation of high-lying transitions, including $S(6)$ and $S(7)$, is more sensitive to the density of the gas compared to $S(3)$ to $S(5)$. The
spatial distribution of the H\textsubscript{2} column density with $T > 100$ K is determined mainly by the lowest-lying transitions, particularly $S(0)$.

APPENDIX

EVOLUTION OF LEVEL POPULATIONS OF H\textsubscript{2}, HD, AND CO FROM NON-EQUILIBRIUM STATE

We present here a simple analysis of the relaxation timescale for the three species in shocks by solving the time-dependent population transfer equations

$$\sum_{J'} (C_{J
ightarrow J'} + A_{J'
ightarrow J}) f_{J'} - f_J \cdot \sum_{J''} (C_{J''
ightarrow J} + A_{J
ightarrow J''}) = \frac{df_J}{dt},$$

(A1)

similar to Equation (1) but with a time-dependent term.

To solve the equations, all the molecules are assumed to be initially in the lowest quantum state. Here we treat ortho- and para-H\textsubscript{2} as distinct species due to the remarkably low efficiency of the para-to-ortho conversion processes, especially when compared with that of collisional and radiative transitions. Thus, all para-H\textsubscript{2}, HD, and CO are put at $J = 0$ and all ortho-H\textsubscript{2} are at $J = 1$ at the beginning. The time evolution of the level populations for the three molecules at constant density $n(H_2) = 10^4$ cm-3 and constant temperature $T = 400$ K or $T = 1000$ K (typical temperatures for the warm and hot components fitted by N06 and N07) are presented in Figure 20. The collisional partners were assumed to be molecular hydrogen and helium only. An average velocity gradient of 2×10^{-10} cm s-1 and an n(CO)/n(H\textsubscript{2}) ratio of 5×10^{-5} were adopted in calculating the CO optical depth. We note, however, that these values do not affect greatly the evolution timescale.

From Equation (A1), it is quite straightforward to see that the evolution depends on two processes—radiative decay and collisional excitation and de-excitation. We can define a characteristic time $t_{1/2}$, at which the population of a certain level J reaches one-half of that in statistical equilibrium. Apparently, at the low density limit where $n(H_2)$ is smaller than the critical density for the transition between the lowest two levels, radiative processes dominate. Here, $t_{1/2}$ will approach $1/A_{J, J-1}$. For the four species para-H\textsubscript{2}, ortho-H\textsubscript{2}, HD, and CO, the critical densities at 400 K are of the order of 10 cm-3, 102 cm-3, 105 cm-3, and 103 cm-3. By contrast, for extremely dense gas which is allowed to reach LTE, $t_{1/2}$ is determined by the inverse of the collisional excitation rate $\sim 1/C_{J, J-1}$, where $C_{J, J-1}$ is proportional to $n(H_2)$. In most cases with density between the low and high limits, $t_{1/2}$ lies between $1/A_{J, J-1}$ and $1/C_{J, J-1}$. More generally, the time required to reach equilibrium, however, is determined by the rotational state that reaches equilibrium most slowly. We define a relaxation time as the time required for all level populations to achieve values within 5% of those attained in statistical equilibrium. For this definition, we include the first 18 levels of H\textsubscript{2}, the first 8 levels of HD, and the first 21 levels of CO. From Figure 20, we see that at $n(H_2) = 10^4$ cm-3 and $T = 400$ K, H\textsubscript{2}, HD, and CO have relaxation times of 2.1 x 105 s, 3 x 103 s, and 4.6 x 105 s, respectively. For a hotter gas component with $T = 1000$ K, the relaxation times are reduced to 8 x 103 s, 1.6 x 105 s, and 3.3 x 105 s. Assuming a shock velocity in the range of 10–20 km s-1, and a typical H\textsubscript{2} column density of 3×10^{20} cm-2 given by Equation (B7) in N06 for planar shocks, the fluid will spend a flow time larger than 1.5 x 109 s passing through the whole shock-affected region, much longer than the relaxation timescale defined above.

If we assume a shocked H\textsubscript{2} column density proportional to $n(H_2)^{0.5}$ as given by Equation (B7) in N06, the flow time $t_{flow} \sim (n(H_2)/n(H_2))V_5$ will be proportional to $n(H_2)^{-0.5}$. Given a flow $\sim 1.5 \times 10^{10}$ s at $n(H_2) = 10^4$ cm-3, a comparison between relaxation times for H\textsubscript{2}, HD, and CO, and the flow time at various densities with a typical shock velocity ~ 20 km s-1 is given in Figure 21. It is apparent that, for modeling the molecular transitions accessible to infrared observatories including IRS, IRAC, and ISO, the departure from statistical equilibrium for those levels involved is always negligible under all possible density conditions in molecular shocks.

REFERENCES

Balakrishnan, N., Yan, M., & Dalgarno, A. 2002, ApJ, 568, 443
Bohigas, J., Ruiz, M. T., Carrasco, L., Salas, L., & Herrera, M. A. 1983, RevMexAA, 8, 155
Burton, M. G., Geballe, T. R., Brand, P. W. J. L., & Webster, A. S. 1988, MNRAS, 231, 617
Cabrit, S., et al. 1999, in Proc. ESA-SP 427, The Universe as Seen by ISO, ed. P. Cox & M. F. Kessler (Noordwijk: ESA), 449
Chevalier, R. A. 1999, ApJ, 511, 798
Cohen, M., & Fuller, G. A. 1985, ApJ, 296, 620
Denoyer, L. K. 1978, MNRAS, 183, 187
Fazio, G. G., et al. 2004, ApJS, 154, 10
Forrey, R. C., Balakrishnan, N., Dalgarno, A., & Lepp, S. 1997, ApJ, 489, 1000
Fazio, G. G., et al. 2004, ApJS, 154, 10
Flower, D. R., Roueff, E., & Zeippen, C. J. 1998, J. Phys. B, 31, 1105
Flower, D. R., & Roueff, E. 1999b, J. Phys. B, 31, L155
Flower, D. R., & Roueff, E. 1999, J. Phys. B, 32, 3399
Forrey, R. C., Balakrishnan, N., Dalgarno, A., & Lepp, S. 1997, ApJ, 489, 1000
Flower, D. R., Roueff, E., & Zeippen, C. J. 1998, J. Phys. B, 31, 1105
Forrey, R. C., Balakrishnan, N., Dalgarno, A., & Lepp, S. 1997, ApJ, 489, 1000
Flower, D. R., & Roueff, E. 1999b, J. Phys. B, 31, L155
Flower, D. R., Roueff, E., & Zeippen, C. J. 1998, J. Phys. B, 31, 1105
Forrey, R. C., Balakrishnan, N., Dalgarno, A., & Lepp, S. 1997, ApJ, 489, 1000
