Spin-orbit splitting of Be-9(Lambda) excited states studied with the SU6 quark-model baryon-baryon interactions

Fujiwara, Y; Kohno, M; Miyagawa, K; Suzuki, Y

Fujiwara, Y ...[et al]. Spin-orbit splitting of Be-9(Lambda) excited states studied with the SU6 quark-model baryon-baryon interactions. PHYSICAL REVIEW C 2004, 70(4): 047002.

Copyright 2004 American Physical Society
Spin-orbit splitting of $^9\Lambda$Be excited states studied with the SU$_6$ quark-model baryon-baryon interactions

Y. Fujiwara, M. Kohno, K. Miyagawa, and Y. Suzuki

Department of Physics, Kyoto University, Kyoto 606-8502, Japan
Physics Division, Kyushu Dental College, Kitakyushu 803-8580, Japan
Department of Applied Physics, Okayama Science University, Okayama 700-0005, Japan

Department of Physics, Niigata University, Niigata 950-2181, Japan

(Received 13 July 2004; published 29 October 2004)

The previous Faddeev calculation of the two-alpha plus Λ system for $^9\Lambda$Be is extended to incorporate the spin-orbit components of the SU$_6$ quark-model (QM) baryon-baryon interactions. We employ the Born kernel of the QM ΛN LS interaction and generate the spin-orbit component of the Λ potential by α-cluster folding. The Faddeev calculation in the jj-coupling scheme implies that the direct use of the QM Born kernel for the ΛN LS component is not good enough to reproduce the small experimental value $\Delta E_{\text{exp}}^{\text{LS}}=43\pm5$ keV for the $5/2^+\rightarrow 3/2^+$ splitting. This procedure predicts 3–5 times larger values in the models FSS and fss2. The spin-orbit contribution from the effective meson-exchange potentials in fss2 is argued to be unfavorable to the small ℓs splitting, through the analysis of the Scheerbaum factors for the single-particle spin-orbit potentials calculated in the G-matrix formalism.

DOI: 10.1103/PhysRevC.70.047002 PACS number(s): 21.45.+v, 13.75.Ev, 21.80.+a, 12.39.Jh

The study of hypernuclei based on the fundamental baryon-baryon interactions is important, since the available scattering data for the hyperon-nucleon (YN) interaction are very scarce. We have recently proposed a comprehensive quark-model (QM) description of general baryon-octet baryon-octet (B_B) interactions, which is formulated in the $(3g)$-$(3g)$ resonating-group method (RGM) using the spin-flavor SU$_6$ QM wave functions, a colored version of the one-gluon exchange Fermi-Breit interaction, and effective meson-exchange potentials (EMEPs) acting between quarks [1–3]. The early version, the model FSS [1], includes only the scalar (S) and pseudoscalar (PS) meson-exchange potentials as the EMEPs, while the renovated one fss2 [2,3] introduces also the vector (V) meson exchange potentials and the momentum-dependent Bryan-Scott terms for the S and V mesons. Owing to these improvements, the model fss2 in the NN sector has attained an accuracy comparable to that of one-boson-exchange potentials (OBEPs).

These QM interactions can now be used for various types of many-body calculations. In the previous paper [4], we have carried out Faddeev calculations of the two-alpha plus $\Lambda\alpha\Lambda$ system, in which a two-range Gaussian ΛN potential (called the SB potential), generated from the phase-shift behavior of the model fss2 [2,3] is employed. If we use the pure Serber-type ΛN potential with the Majorana exchange mixture parameter $\varrho=1$, this Faddeev calculation with the proper treatment of the Pauli principle in the $\alpha\alpha$ RGM kernel can reproduce the ground-state and excitation energies of the $^9\Lambda$Be hypernucleus within 100–200 keV accuracy.

Another important piece of experimental information from $^9\Lambda$Be is the small spin-orbit splitting of the $5/2^+$ and $3/2^+$ excited states, $\Delta E_{\text{exp}}^{\ell s}=43\pm5$ keV [5,6], measured from the recent Hyperball γ-ray spectroscopy. It is widely known that the single-particle (s.p.) spin-orbit interaction of the Λ hyperon seems to be extremely small, especially in light Λ hypernuclei. In the nonrelativistic models of the YN interaction, this is a consequence of the strong cancellation of the ordinary LS component and the antisymmetric LS component (LS^{-} force), the latter of which is a characteristic feature of baryon-baryon interactions between nonidentical baryons. For example, the SU$_6$ QM baryon-baryon interaction FSS [1] yields a strong LS^{-} component [7], which is about one-half of the ordinary LS component, with the opposite sign. We performed the G-matrix calculation in symmetric nuclear matter, using this QM baryon-baryon interaction [8], and calculated the so-called Scheerbaum factor S_{p}, which indicates the strength of the s.p. spin-orbit interaction [9]. The ratio of S_{p} to the nucleon strength $S_{\text{N}}\sim40$ MeV fm3 is $S_{\text{p}}/S_{\text{N}}\sim1/5$ and $S_{\text{p}}/S_{\text{N}}\sim1/2$ in the Born approximation. The G-matrix calculation of the model FSS modifies S_{p} to $S_{\text{p}}/S_{\text{N}}\sim1/12$. The significant reduction of S_{p} in the G-matrix calculation of FSS is traced back to the enhancement of the antisymmetric LS component in the diagonal ΛN channel, owing to the P-wave ΛN coupling.

Hiyama et al. [10] calculated the ΛN spin-orbit splitting in $^9\Lambda$Be and $^{13}\Lambda C$ in their cluster model, by using simple approximations of the Nijmegen one-boson-exchange ΛN interactions. They employed several two-range Gaussian LS potentials for the ΛN interaction, which simulate the LS and LS^{-} parts of the G-matrix interactions derived from Nijmegen model-D (ND), model-F (NF), and NSC97a-f interactions. For example, they obtained $\Delta E_{\text{LS}}^{\ell s}=0.16$ MeV for NSC97f. When the LS^{-} force is switched off, they obtained 0.23 MeV. Since these values are too large to compare with the experiment, they adjusted the strength of the LS^{-} potentials, guided by the relative strength of the QM LS^{-} force. Such a procedure, however, does not prove the adequacy of the QM spin-orbit interaction for the experimental data.

The purpose of this Brief Report is to show that, if we carry out more serious calculations starting from the the QM...
baryon-baryon interactions, the situation is not so simple as stated in Ref. [10]. Here we concentrate only on the spin-orbit interaction and use the QM exchange kernel directly, following our basic idea in other applications of our SU$_6$ QM baryon-baryon interactions [11–13]. The Λα spin-orbit interaction is generated from the Born kernel of the ΛN LS QM interaction, and the Faddeev equation is solved in the jj-coupling scheme, by using the central plus spin-orbit Λα interactions. We find that our model FSS yields spin-orbit splittings of almost 2/3 of the Nijmegen NSC97f result. We find a large difference between FSS and fss2 for the effect of the short-range correlations, especially in the way of the P-wave ΛN-ΣN coupling.

We assume that the ΛN LS interaction is given by the Born kernel of the ΛN QM interaction [9]:

$$u^L_{\Lambda N}(q_f,q_i) = \sum_{\Omega} \sum_{\tau} \Omega^L \cdot \Omega^{S^+} \cdot \Omega^{S^-} \cdot \Omega^T \cdot \Omega^S \cdot \Omega_D$$

where $\Omega=LS$, $L^-(\cdot)$ and $S^-(\cdot)$ are the three different types of spin-orbit operators $\Omega^L = in \cdot S$, $\Omega^{S^+} = in \cdot S^+$, and $\Omega^{S^-} = in \cdot S^-$, and Ω^T, Ω^S, Ω_D, and Ω stands for various interaction types originating from the quark antisymmetrization. Here we use the standard notation $n=(q_f \times q_i)$, $S=(\sigma_f + \sigma_i)/2$, $S^-=(-\sigma_f - \sigma_i)/2$, $S^+=(\sigma_f + \sigma_i)/2$, $P=(1+\sigma_f \cdot \sigma_i)/2$, etc. The up-down and strange spin-flavor factors are explicitly given in Refs. [7] and [9]. If we take the matrix element of Eq. (1) with respect to the spin-flavor functions of the Λα system, the nucleon spin operator part disappears due to the spin saturated property of the α cluster and we obtain the spin-flavor part as $X^L_{\Lambda N}$ and $X^S_{\Lambda N}$ with $X^L_{\Lambda N} = (\sigma_f + \sigma_i)/2$. $X^S = \left[(X^L_{\Lambda N})^{us} + (X^L_{\Lambda N})^{ds} \right] / 2$, and $X^S = \left[(X^L_{\Lambda N})^{us} + (X^L_{\Lambda N})^{ds} \right] / 2$. We therefore only need to calculate the spatial integrals of $f^L_{\Lambda N}(-\theta)$ and $f^S_{\Lambda N}$ with $\cos \theta = (q_f \cdot q_i)$. For this calculation, we can use a convenient formula Eq. (B6) given in Appendix B of Ref. [4]. The calculation is carried out analytically, since it only involves Gaussian integration. We finally obtain

$$V^L_{\Lambda N}(q_f,q_i) = \sum_{\tau} \left[T^L \cdot T^S \cdot d(q_f,q_i) + T^L \cdot T^S \cdot e(q_f,q_i) \right] \{ n \cdot S \}.$$

We calculate the spin-flavor factors and spatial integrals for each of the interaction types, $T=D_-, D_+$, and $S(S')$. From our previous paper [7], we find the spin-flavor factors given in Table I. Note that the most important knock-on term of the D_- type turns out to be zero in the Λα direct potential, because of the exact cancellation between the LS and L$^-$ factors in the up-down sector. As a result, the main contribution to the Λα spin-orbit potential in the present formalism comes from the strangeness exchange D_- term, which is non-local and involves a very strong momentum dependence. If the quark mass ratio $\lambda = (m_f/m_{ud})$ goes to infinity, all of these spin-flavor factors vanish, which is a well-known property of the spin-flavor SU$_6$ wave function of the Λ particle. Only the strange quark of Λ contributes to the spin-related quantities like the magnetic moment, since the up-down diquark is coupled in the spin-isospin zero for Λ. The explicit expressions of the spatial integrals $V^L_{\Lambda N}(q_f,q_i)$ and $V^S_{\Lambda N}(q_f,q_i)$ will be given elsewhere, since they are rather lengthy. The partial-wave components of Eq. (2) are calculated from the formula in Appendix C of Ref. [14] by using the Gaussian-Legendre 20-point quadrature formula. Since the model fss2 contains the LS components from the EMEPs, we should also include these contributions to the Λα spin-orbit interaction. A detailed derivation of the EMEP Born kernel for the Λα system is deferred to a separate paper.

For the Faddeev calculation, we use the same conditions as used in Ref. [4], except for the exchange mixture parameter u of the SB ΛN potential. We here use a repulsive ΛN odd interaction with $u=0.82$ in order to reproduce the ground-state energy of 9Be. This is because the 5/2$^+$–3/2$^+$ ℓs splitting is rather sensitive to the energy positions of these states, measured from the 9He-α threshold. We also use the Nijmegen-type ΛN potentials from Ref. [15]. The α RGM kernel is generated from the three-range Minnesota force with $u=0.946$ 87. The harmonic oscillator width parameter of the α cluster is assumed to be $\nu=0.257$ fm$^{-2}$. The partial waves up to $\lambda_{max}^\alpha = 10$ are included both in the α and Λα channels. The momentum discretization points are selected by $n_1-n_2-n_3=10-10-5$ with the midpoints p, $q=1$, 3, and 6 fm$^{-1}$. The Coulomb force is incorporated in the cutoff Coulomb prescription with $R_c=10$ fm.

Table II shows the results of Faddeev calculations in the jj-coupling scheme. First we note that the ground-state energies do not change much from the LS-coupling calculation, which implies the dominant S-wave coupling of the Λ hyperon. The final values for the ℓs splitting of the 5/2$^+$–3/2$^+$ excited states are $\Delta E_{\ell s}=137$ keV for FSS and 198 keV for fss2, when the SB force with $u=0.82$ is used for the ΛN central force. If we compare these results with the experimental value 43 ± 5 keV, we find that our QM predictions are 3–5 times too large. If we use the G-matrix-simulated NSC97f LS potential in Ref. [10], we obtain 209 keV for the same SB force with $u=0.82$. The difference from 0.16 MeV in Ref. [10] is due to the model dependence to the $\alpha\alpha$ and $\Lambda\alpha$ central interactions. We find that our QSS prediction for $\Delta E_{\ell s}$ is less than 2/3 of the NSC97f prediction, while fss2
TABLE II. The ground-state energy \(E_g (1/2^+), 5/2^+ , 3/2^+ \) excitation energies \(E_x (5/2^+), E_x (3/2^+) \), and spin-orbit splitting \(\Delta E_{\ell x} \) calculated by solving the Faddeev equations for the \(\alpha \Lambda N \) system in the \(jl \)-coupling scheme. The exchange interaction parameter of the SB \(\Lambda N \) force is assumed to be \(u=0.82 \). The \(\Lambda \alpha \) spin-orbit force is generated from the Born kernel of the FSS and fss2 \(\Lambda N LS \) interactions. For the fss2 \(LS \) interaction, the \(LS \) component from the EMEPs is also included.

\(u_{\Lambda N}^{LS} \)	\(u_{\Lambda N}^{C} \)	\(E_{g}^{(1/2^+)} \) (MeV)	\(E_{x}^{(5/2^+)} \) (MeV)	\(E_{x}^{(3/2^+)} \) (MeV)	\(\Delta E_{\ell x} \) (keV)
SB	-6.623	2.854	2.991	137	
NS	-6.744	2.857	2.997	139	
FSS	ND	-7.485	2.872	3.024	152
NF	-6.908	2.877	3.002	125	
JA	-6.678	2.866	2.991	124	
JB	-6.476	2.858	2.980	122	
SB	-6.623	2.828	3.026	198	
NS	-6.745	2.831	3.033	202	
fss2	ND	-7.487	2.844	3.064	220
NF	-6.908	2.853	3.035	182	
JA	-6.678	2.843	3.024	181	
JB	-6.477	2.834	3.012	178	
Expt. [6]	-6.62(4)	3.024(3)	3.067(3)	43(5)	

Figure 1 shows the comparison of the \(\Lambda \alpha \) spin-orbit potentials predicted by the Wigner transform of FSS with \(q=0, 1, 2, 3 \) fm\(^{-1}\) and \(\bar{R}q=0 \) (solid curves), the Scheerbaum potential with \(S^\ell_{\Lambda}=-10.12 \) MeV fm\(^5\) (dotted curve), and the G-matrix-simulated NSC97f-type potential [10] (dashed curve). An appropriate \(S^\ell_{\Lambda} \) is shown in Figure 1. The \(\Lambda N \) potential for this \(\Lambda N \) potential is calculated to be \(S_{\Lambda}=-10.34 \) MeV fm\(^5\) for \(\bar{q}=0.7 \) fm\(^{-1}\). If we use the Scheerbaum potential with \(S^\ell_{\Lambda}=-13.41 \) MeV fm\(^5\), we obtain \(\Delta E_{\ell x} = 194 \) keV, which is close to 209 keV.

Table III lists the results of G-matrix calculations for the Scheerbaum factors \(S_{\Lambda} \) in symmetric nuclear matter. The Fermi momentum \(k_F = 1.07 \) fm\(^{-1}\), corresponding to half of the normal density \(\rho_0 = 0.17 \) fm\(^{-3}\), is assumed. For solving G-matrix equations, the continuous prescription is used for intermediate spectra. Table III also shows the decompositions into various contributions and the results when the \(\Lambda N \)-\(\Sigma N \) coupling through the \(LS^{(-)} \) and \(LS^{(+)} \) \(\sigma \) forces is switched off (coupling off) in the G-matrix calculations. For FSS, we find a large reduction of \(S_{\Lambda} \) value from the Born value \(-7.8 \) MeV fm\(^5\), especially when this (dominantly) \(P \)-wave \(\Lambda N \Sigma N \) coupling is properly taken into account. When all

Model	\(LS \)	\(LS^{(-)} \)	\(LS^{(+)} \)
FSS	-17.36	-18.43	-18.37
	-0.38	0.22	0.26
	-19.70	8.37	0.30
total	-1.93	-10.77	
fss2	-19.97	-8.64	-11.26
	-0.14	0.21	-14.89
the \(\Lambda N-\Sigma N\) couplings, including those by the pion tensor force, are switched off, the \(LS^{-1}\) contribution is just a half of the \(LS\) contribution with the opposite sign (in the dominant odd partial waves), which is the same result as in the Born approximation. The \(1^{P_{2}}+1^{F_{2}}\) \(\Lambda N-\Sigma N\) coupling enhances the attractive \(LS\) contribution slightly, while the \(1^{P_{1}}+1^{F_{1}}\) \(\Lambda N-\Sigma N\) coupling enhances the repulsive \(LS^{-1}\) contribution largely. If we use this reduction of the \(S_{\Lambda}\) factor from \(-7.8\) to \(-1.9\) MeV fm\(^{5}\) in the realistic \(G\)-matrix calculation, we find that the present \(\Delta E_{\text{ls}}\) value \(-137\) MeV is reduced to an almost correct value \(-33\) keV. However, such a reduction of the Scheerbaum factor due to the \(\Lambda N-\Sigma N\) coupling is supposed to be hindered in the \(\Lambda\alpha\) system in the lowest-order approximation from the isospin consideration. On the other hand, the situation of \(\text{fss}2\) in Table III is rather different, although the cancellation mechanism between the \(LS\) and \(LS^{-1}\) components and the reduction effect of \(S_{\Lambda}\) factor in the full calculation are equally observed. When all the \(\Lambda N-\Sigma N\) coupling is neglected, the ratio of the \(LS^{-1}\) and \(LS\) contributions in the quark sector is still one-half. Since the EMEP contribution is mainly for the \(LS\) type, it amounts to about \(-6\) MeV fm\(^{3}\), which is very large and remains with the same magnitude even after the \(P\)-wave \(\Lambda N-\Sigma N\) coupling is included. Furthermore, the increase of the \(LS^{-1}\) component is rather moderate, in comparison with the FSS case. This is because the model \(\text{fss}2\) contains an appreciable EMEP contribution (~40\%) which has very few \(LS^{-1}\) contributions. As a result, the total \(S_{\Lambda}\) value in \(\text{fss}2\) \(G\)-matrix calculations is 3–6 times larger than the FSS value, depending on the Fermi momentum \(k_{F}=1.35\)–\(1.07\) fm\(^{-1}\). Such an appreciable EMEP contribution to the \(LS\) component of the \(YN\) interaction is not favorable to reproduce the negligibly small \(\ell s\) splitting of \(^{8}\)Be.

Summarizing this work, we have performed the \(jj\)-coupling Faddeev calculations for \(^{8}\)Be by incorporating \(\Lambda\alpha LS\) interactions generated from the Born kernel of the QM baryon-baryon interactions. This calculation corresponds to an evaluation of the Scheerbaum factors in the Born approximation. Since the \(P\)-wave \(\Lambda N-\Sigma N\) coupling is not properly taken into account, the present calculation using the FSS Born kernel yields too large spin-orbit splitting of the \(5/2^{+}\) and \(3/2^{+}\) excited states of \(^{8}\)Be by a factor of 3. In the model FSS, a reduction by a factor of \(1/2–1/4\) is expected in the \(G\)-matrix calculation of the Scheerbaum factor \(S_{\Lambda}\) [9], depending on the Fermi momentum \(k_{F}=1.35\)–\(1.07\) fm\(^{-1}\). In \(\text{fss}2\), the \(G\)-matrix calculation for the Scheerbaum factor yields a rather large value \(S_{\Lambda}\sim11\) MeV fm\(^{2}\), with very weak \(k_{F}\) dependence, due to the appreciable EMEP contributions. The QM baryon-baryon interaction with a large spin-orbit contribution from the meson-exchange potentials is, in general, unfavorable to reproduce the very small \(\ell s\) splitting observed in \(^{8}\)Be. It is a future problem how to incorporate the \(P\)-wave \(\Lambda N-\Sigma N\) coupling in cluster model calculations like the present one.

This work was supported by Grants-in-Aid for Scientific Research (C) from the Japan Society for the Promotion of Science (JSPS) (Nos. 15540270, 15540284, and 15540292).

[1] Y. Fujiwara, C. Nakamoto, and Y. Suzuki, Phys. Rev. Lett. 76, 2242 (1996); Phys. Rev. C 54, 2180 (1996).
[2] Y. Fujiwara, T. Fujita, M. Kohno, C. Nakamoto, and Y. Suzuki, Phys. Rev. C 65, 014002 (2002).
[3] Y. Fujiwara, M. Kohno, C. Nakamoto, and Y. Suzuki, Phys. Rev. C 64, 054001 (2001).
[4] Y. Fujiwara, K. Miyagawa, M. Kohno, Y. Suzuki, D. Baye, and J.-M. Sparenberg, Phys. Rev. C 70, 024002 (2004).
[5] H. Akikawa et al., Phys. Rev. Lett. 88, 082501 (2002).
[6] H. Tamura et al., in Proceedings of the VIII-th International Conference on Hypernuclear and Strangeness Particle Physics (HYPER2003), Jefferson Lab, Newport News, Virginia, 2003, Nucl. Phys. A (to be published).
[7] C. Nakamoto, Y. Suzuki, and Y. Fujiwara, Phys. Lett. B 318, 587 (1993).
[8] M. Kohno, Y. Fujiwara, T. Fujita, C. Nakamoto, and Y. Suzuki, Nucl. Phys. A674, 229 (2000).
[9] Y. Fujiwara, M. Kohno, T. Fujita, C. Nakamoto, and Y. Suzuki, Nucl. Phys. A674, 493 (2000).
[10] E. Hiyama, M. Kamimura, T. Motoba, T. Yamada, and Y. Yamamoto, Phys. Rev. Lett. 85, 270 (2000).
[11] Y. Fujiwara, K. Miyagawa, M. Kohno, Y. Suzuki, and H. Nenmura, Phys. Rev. C 66, 021001 (R) (2002).
[12] Y. Fujiwara, K. Miyagawa, M. Kohno, and Y. Suzuki, Phys. Rev. C 70, 024001 (2004).
[13] Y. Fujiwara, M. Kohno, K. Miyagawa, Y. Suzuki, and J.-M. Sparenberg, Phys. Rev. C 70, 037001 (2004).
[14] Y. Fujiwara, M. Kohno, T. Fujita, C. Nakamoto, and Y. Suzuki, Prog. Theor. Phys. 103, 755 (2000).
[15] E. Hiyama, M. Kamimura, T. Motoba, T. Yamada, and Y. Yamamoto, Prog. Theor. Phys. 97, 881 (1997).