Solution of the inverse kinetics problem for the catalytic cracking process based on a 16-component kinetic model

G Mananova¹, G Bikbova², E Gizzatova³

¹Institute of Petrochemistry and Catalysis of the Russian Academy of Sciences, Oktyabrya street 141, Ufa, Russia, 450075
²Ufa State Petroleum Technological University, Kosmonavtov street 1, Ufa, Russia, 450064
³Sterlitamak Branch of Bashkir State University, Zavodskaya street 6, Sterlitamak, Russia, 453103

Abstract. This article presents a 16-lump model of catalytic cracking of vacuum gasoil, which allows to take into account the quantity and quality of the main products of the process: gasoline, propane-propylene and butane-butylene fractions; and by-products of the process: light and heavy catalytic gasoil. To solve the direct problem of solving a system of differential equations, the Runge-Kutta method of order 4 is used, to solve the inverse problem of choosing the constants of the rate of chemical transformations, the method of direct search for minimizing the function of the sum of deviations of calculated values from experimental ones is applied. Thus, the reaction rate constants were chosen for the developed model.

1. Introduction
Catalytic cracking is the most important process for obtaining gasoline components, along with catalytic reforming. In refinery operations catalytic cracking allows to increase processing depth of oil refining at the expense of involvement in the process of heavy residue. The resulting component of gasoline is characterized by a high octane number, low content of aromatic compounds, which is very important for the production of an environmentally straight product [1]. In addition, the process products are the light propane – propylene fraction and butane-butylene fraction, which are valuable for petrochemical feedstock. Accordingly, the study and simulation of the mechanism of the process of catalytic cracking, as one of the increasing depth of oil refining, is an important and actual problem [2].

Prior to, we conducted research and analysis of existing models of the catalytic cracking process published in Russian and foreign literature [3]. Several models have been developed based on the information received [4]. This paper presents the general view and results of calculations for the sixteen lump model.

2. 16-lump kinetic model
The purpose of developing the kinetic model was to evaluate not only the quantity of the main product-catalytic cracking gasoline, but also its quality – structural, fractional composition, and octane number. Also, this model can be used to estimate the yield of valuable raw materials for petrochemical production: propane-propylene and butane-butylene fractions, as well as the quantity and quality
indicators of the fraction of light catalytic gasoil, which is a component of diesel fuel. 16-lump kinetic model

The transformation scheme used in the proposed model shown in figure 1.

![Figure 1. 16-lump kinetic model.](image)

The designations in this diagram are shown in table 1.

The marking	Component	The Average molecular weight, kg/kmol	Belonging to the product
Nh y₁	Heavy naphthenes (C₂₄⁻C₄₀)	400	Heavy catalytic gasoil
Ph y₂	Heavy paraffins (C₂₄⁻C₄₀)		
Ah y₃	Heavy aromatics (C₂₄⁻C₄₀)		
Nm y₄	Medium naphthenes (C₁₃⁻C₂₃)		
Pm y₅	Medium paraffins (C₁₃⁻C₂₃)	200	Light catalytic gasoil
Om y₇	Medium olefins (C₁₃⁻C₂₃)		
Am y₆	Medium aromatics (C₁₃⁻C₂₃)		
Ni y₈	Light naphthenes (C₅⁻C₁₂)		
n-Pl y₁₆	Light normal paraffins (C₅⁻C₁₂)		
Ol y₁₁	Light olefins (C₅⁻C₁₂)	100	Gasoline
Al y₁₀	Light aromatics (C₅⁻C₁₂)		
i-Pl y₉	Light isoparaffins (C₅⁻C₁₂)		
DG y₁₃	Dry gas	16	-
PPF y₁₄	Propane-propylene fraction	43	-
BBF y₁₅	Butane-butylene fraction	57	-
C y₁₂	Resin + coke	600	-
Differential equations of the kinetic model:
\[
\frac{dy_1}{dt} = -k_1[y_1] - k_0[y_1]
\]
\[
\frac{dy_2}{dt} = -k_2[y_2] - k_0[y_2]
\]
\[
\frac{dy_3}{dt} = -k_3[y_3] - k_{10}[y_3] - k_{15}[y_3]
\]
\[
\frac{dy_4}{dt} = k_1[y_1] - k_4[y_4] - k_{11}[y_4]
\]
\[
\frac{dy_5}{dt} = k_2[y_2] - k_5[y_5] - k_{12}[y_5] - k_{30}[y_5]
\]
\[
\frac{dy_6}{dt} = k_3[y_3] - k_6[y_6] - k_{13}[y_6] - k_{16}[y_6]
\]
\[
\frac{dy_7}{dt} = k_4[y_4] + k_9[y_9] + k_{10}[y_{10}] - k_7[y_7] - k_{14}[y_7]
\]
\[
\frac{dy_8}{dt} = k_5[y_5] + k_{18}[y_8] - k_9[y_9] - k_{20}[y_9]
\]
\[
\frac{dy_9}{dt} = k_6[y_6] + k_{17}[y_9] + k_{21}[y_{10}] - k_{22}[y_{10}]
\]
\[
\frac{dy_{10}}{dt} = k_{12}[y_{10}] - k_{24}[y_{10}] - k_{11}[y_{10}]
\]
\[
\frac{dy_{11}}{dt} = k_{15}[y_5] + k_{16}[y_6] + k_{17}[y_{10}]
\]
\[
\frac{dy_{12}}{dt} = k_{18}[y_8] + k_{21}[y_9] + k_{24}[y_{10}]
\]
\[
\frac{dy_{13}}{dt} = k_{27}[y_{11}]
\]
\[
\frac{dy_{14}}{dt} = k_{19}[y_6] + k_{22}[y_9] + k_{25}[y_{10}]
\]
\[
\frac{dy_{15}}{dt} = k_{20}[y_8] + k_{23}[y_9] + k_{26}[y_{10}]
\]
\[
\frac{dy_{16}}{dt} = k_{30}[y_5] - k_{31}[y_{16}]
\]

The separation of light paraffins into normal and isoparaffins will make it possible to estimate the octane number, since it directly depends on the structure of the carbon chain. For example, table 2 shows the values of octane numbers for normal and branched C₅–C₈ hydrocarbon structures.

Normal and low-branched paraffins	isoparaffins				
Title	**RON**	**MON**	**Title**	**RON**	**MON**
n-pentane	61.7	61.9	isopentane	92.3	90.3
n-hexane	24.8	26.0	neopentane	105.0	117.0
monomethylpentane	73.9	74.0	2,2-dimethylbutane	91.8	93.4
n-heptane	0.0	0.0	2,3-dimethylbutane	105.8	94.3
2-methylhexane	42.4	46.4	2,4-dimethylpentane	83.1	83.8
3-methylhexane	52.0	55.0	2,2-dimethylpentane	92.8	95.6
3-ethylpentane	65.0	69.3	3,3-dimethylpentane	80.8	86.6
n-octane	-15.0	-20.0	2,2,3-trimethylbutane	112.1	101.1
2-methylheptane	21.7	23.8	3-ethyl-2-methylpentane	87.3	88.1
3-methylheptane	26.8	35.0	3-ethyl-3-methylpentane	80.0	88.7
4-methylheptane	26.7	39.0	2,3,4-trimethylpentane	102.7	95.9
3-ethylhexane	33.5	52.4	2,2,4-trimethylpentane	100.0	100.0
2,5-dimethylhexane	55.5	55.7	2,2,3-trimethylpentane	109.6	99.9
2,4-dimethylhexane	65.2	69.9	2,3,3-trimethylpentane	106.1	99.4
2,3-dimethylhexane	71.3	78.9	2,2,3,3-tetramethylbutane	137.0	117.0
3,4-dimethylhexane	76.3	81.7			
2,2-dimethylhexane	72.5	77.4			
3,3-dimethylhexane	75.5	83.4			
3. The results of calculations on the 16-lump model

To calculate the speed constants of the 16-lump kinetic model, we used production data from the article [6], which relate to the section C-200 at the catalytic cracking unit KT-1/1 of JSC «Gazpromneft-Omsk oil refinery».

The process feedstock is a vacuum gas oil containing heavy naphthenic, paraffinic and aromatic compounds. Taking into account the production data, the initial concentrations of the components at the beginning of the reaction were calculated:
- heavy naphthenes: 0.1849 g/ml;
- heavy paraffins: 0.4065 g/ml;
- heavy aromatic compounds: 0.3129 g/ml.

Next, we calculated the concentration of products in the reaction mixture. The calculation results are given in table 3.

We used Matlab software in our calculations. The Runge-Kutta method of 4 orders (direct problem) was used to solve the Cauchy problem. The reaction rate constants were obtained from the minimum condition of the function
$$z(k_1, ..., k_{16}) = \sum_{i}^{16} |y_i - y_{exp_i}| / y_{exp_i},$$
where y_{exp_i} is the concentration value of the components in the reaction mixture obtained from production data. To find the minimum of this function (the inverse kinetic problem), the direct search method was used [7,8].

Component	Concentration, g/ml	Belonging to the product
C_{Nh}	0.0057	Heavy catalytic gasoil
C_{Ph}	0.0111	
C_{Ah}	0.0670	
C_{Nm}	0.0039	Light catalytic gasoil
C_{Pm}	0.0187	
C_{Am}	0.0802	
C_{Om}	0.0032	
C_{Ni}	0.0565	
C_{nP}	0.0236	Gasoline
C_{Al}	0.1850	
C_{pi}	0.1669	
C_{ol}	0.1024	
C_{KOKC}	0.0387	Coke
C_{DG}	0.0498	Dry gas
C_{PPF}	0.0458	Propane-propylene fraction
C_{BBF}	0.0506	Butane-butylene fraction

The calculation results are shown in tables 4, 5.

№	k_i, s$^{-1}$						
1	4.7941	9	0.0060	17	0.4423	25	0.0375
2	5.9952	10	0.0063	18	0.2698	26	0.0050
3	2.5975	11	6.5347	19	0.0792	27	0.1689
4	6.1575	12	1.9594	20	0.2225	28	0.8340
5	6.9948	13	0.0063	21	0.5010	29	0.6125
6	3.1510	14	1.2948	22	0.0375	30	3.2744
7	4.8916	15	0.1240	23	0.2250	31	9.5884
8	1.0049	16	0.2292	24	0.0010	32	9.9996
4. Discussion and conclusions
As a result of the review and analysis of the literature data, a kinetic model based on a 16-component scheme of chemical reaction of the catalytic cracking process was compiled. The model allows you to estimate the quantity of main products: gasoline, propane-propylene and butane-butylene fractions; and by-products: light and heavy catalytic gasoil, as well as their structural composition, and, as a result, quality indicators. The calculation based on production data showed good convergence of the new for 16-lump model. Thus, we can count, that this model can adequately describe the process of catalytic cracking, and in the future, it will be possible to research and develop ways to improve the process of catalytic cracking.

5. References
[1] Islamova G I and Gubaydullin I M 2019 Review and analysis of mathematical models catalytic cracking process Marchuk Scientific Readings 175-180 DOI: 10.24411/9999-016A-2019-10029.
[2] Zhu R, Shen B, Liu J and Chen X 2012 A Kinetic model for catalytic cracking of vacuum gas oil using a structure-oriented lumping method Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 34 2066-2072 DOI: 10.1080/15567036.2012.673052.
[3] Mannanova G I, Gubaydullin I M and Koledina K F 2019 Thirteen-lump kinetic model of catalytic cracking process Int. Scientific Conf. “Ufa Autumn Mathematical School” 142-144.
[4] Mannanova G, Gubaidullin I and Bikbova G 2019 Development of a fourteen-component kinetic model of catalytic cracking Mathematical modeling of processes and systems: Proceedings of the IX International youth scientific and practical conference 235-240.
[5] Smyshlyaeva Yu A 2011 Izvestiya Tomsk Polytechnic University (Tomsk Polytechnic University).
[6] Ivanchina E D, Ivashkina E N and Nazarova G Y 2017 Mathematical modelling od catalytic cracking riser reactor Chemical Engineering Journal 262-274 DOI: 10.1016/j.cej.2017.04.098.
[7] Koledina K F, Koledin S N and Gubaydullin I M 2018 VIII Int. youth scientific-practical conf. “Mathematical modeling of processes and systems” (Ufa: Bashkir State University).
[8] Koledin S N 2018 VIII Int. youth scientific-practical conf. “Mathematical modeling of processes and systems” (Ufa: Bashkir State University).