CHARACTERIZATION OF RV3868: AN ESSENTIAL HYPOTHETICAL PROTEIN OF THE ESX-1 SECRETION SYSTEM IN M. TUBERCULOSIS

Amit Luthra, Anjum Mahmood, Ashish Arora & Ravishankar Ramachandran*
Molecular & Structural Biology Division, Central Drug Research Institute, P.O. Box 173, Chattar Manzil, Mahatma Gandhi Marg, Lucknow-226001, India

Running title: Rv3868 from M. tuberculosis

*Address correspondence to: Dr. Ravishankar Ramachandran, Scientist, Molecular & Structural Biology Division, Central Drug Research Institute, Mahatma Gandhi Marg, Lucknow-226001, India. Phone. +91-522-2612411 ext 4442; Fax. +91-522-2623405; E-mail. r_ravishankar@cdri.res.in

Rv3868, a conserved hypothetical protein of the ESAT-6 secretion system of M. tuberculosis is essential for the secretion of at least four virulence factors. Each protein chain is ~63 kDa and assembles into a hexamer. Limited proteolysis demonstrates that it consists of two domains joined by a linker. The N-terminal domain is a compact, helical domain of Mr ~30 kDa and apparently functions to regulate the ATPase activity of the C-terminal domain and the oligomerisation. The nucleotide binding site is situated in the C-terminal domain which exhibits ATP-dependent self association. It is also the oligomerisation domain. Dynamic fluorescence quenching studies demonstrate that the domain is proximal to the C-terminal in the apo protein and exhibits a specific movement upon ATP binding. In silico modeling of the domains suggests that Arg429 of a neighboring subunit forms a part of the binding site upon oligomerisation. Mutational analysis of binding site residues demonstrates that the Arg429 functions as the important ‘sensor-arginine’ in AAA-ATPases. Protein NMR experiments involving CFP-10 and activity assays rule out a general chaperone-like function for Rv3868. On the other hand, ATP - dependent ‘open-close’ movements of the individual domains apparently enable it to interact and transfer energy to co-proteins in the ESX-1 pathway.

The Early secreted antigen 6 kilodaltons (ESAT-6) system 1 (ESX-1) is a critical secretion apparatus in M. tuberculosis and M. marinum which delivers at least four virulence factors viz. ESAT-6, Culture filtrate protein-10 (CFP-10), EspA and EspB to the host macrophages during infection (1-9). ESAT-6 and CFP-10 form a tight 1:1 complex (10) and our earlier work suggests that complex formation confers thermodynamic and biochemical stability (11). The proteins corresponding to this secretion system are encoded by genes of RD1 (region of difference 1) (1,2,4) and its surrounding region, together termed extRD1 (extended RD1) (6)(12,13) in M. tuberculosis and M. marinum. RD1 genes are absent in the M. bovis BCG vaccine strain (14-16). A defective ESX-1 secretory apparatus prevents the mutant pathogen from leaving the infected phagocyte and spreading to neighboring cells (17). Further work is necessary to identify the exact functions of the individual ESX-1 genes and proteins.

The proteins encoded by the system can broadly be divided into four groups based on the generated phenotypes upon inactivation of the respective genes (13). Knocking out the pe35 gene (Rv3872) impairs the expression of ESAT-6 (Rv3875) and CFP-10 (Rv3874) virulence factors. Inactivation of Rv3868 (the
characterization of which is reported here), \textit{Rv3869, Rv3870, Rv3871} and \textit{Rv3877} impair the ability of the pathogen to secrete the virulence factors although their expression itself was unimpaired. It has been shown that \textit{Rv3871}, a member of the SpoIIIE/FtsK ATPase family, recognizes a C-terminal signal sequence of CFP-10 \cite{18}. Inactivation of a third set of proteins does not impair the RDI-mediated virulence. Inactivation of a fourth group consisting of \textit{Rv3865} and \textit{Rv3866} attenuated RDI-mediated virulence although the secretion of ESAT-6 and CFP-10 factors was unimpaired.

\textit{Rv3868} is an essential component of the ESX-1 system \cite{13} in \textit{M. tuberculosis} and in the phylogenetically closely related strain \textit{M. marinum}. However, its exact role and functions are not characterized. Sequence and phylogeny analysis of \textit{Rv3868} shows that it is conserved among a small group of largely hypothetical proteins in mycobacteria (Maier et al., 2000). Based on yeast two-hybrid and genetic experiments it was proposed to interact with CFP-10 and also to the PPE-68 protein \textit{Rv3873} \cite{19}. It has also been hypothesized that it might mediate the formation of the recently observed homodimers \cite{4,10} and hetero-dimers in the ESAT-6 and CFP-10 proteins \cite{4,10}, a step that might require chaperone activity. The PPE-68 protein \textit{Rv3873} is suggested to be a gating component of the ESX-1 system and regulates the secretion of the ESAT-6–CFP-10 complex \cite{6}. \textit{Rv3868}, on the other hand, is hypothesized to be the chaperone or a source of energy (ATPase activity) required for the export of the factors. Structural and functional characterization of \textit{Rv3868} is important to understand its role in ESX-1 mediated secretion and to exploit its potential as a novel drug target.

Here, the protein has been shown to be a hexamer which exhibits ATPase activity. Each chain consists of two distinct domains and their individual roles have been dissected. Mutational analysis coupled to structural modeling has led to the identification of Arg429 as the functionally important ‘sensor-arginine’ \cite{20}. Its mutation abolishes conformational changes in the oligomer and leads to a large reduction in the binding affinity of the substrate nucleotide. Direct interactions hypothesized earlier with CFP-10, as also a general chaperone activity have been ruled out. The picture that emerges is that \textit{Rv3868} functions as a novel ATPase with a co-factor induced ‘open-close’ movement. It most likely interacts with other factors of the ESX-1 machinery to provide energy for the export of the ESAT-6–CFP-10 virulence factors. The detailed characterization of the protein reported here is the first for a protein from the CbxX/CfqX \cite{21} sub-family of AAA-ATPases.

\section*{Material and methods}

\textit{Phylogenetic tree and sequence analysis}

The sequence of \textit{Rv3868} was downloaded from the Tuberculist web site at http://genolist.pasteur.fr/Tuberculist/. The multiple sequence alignment and neighbour-joining phylogenetic tree (Dendrogram) for the different families of proteins was calculated using the ClustalX package \cite{22}. Sequences of proteins from different ATPase families were downloaded from the Swissprot database (http://www.expasy.ch/sprot/).

\textit{Cloning, expression and purification of \textit{Rv3868, C-terminal domain and CFP-10}}

The full-length \textit{Rv3868} gene from \textit{M. tuberculosis} H37Rv was amplified using
the pfx DNA polymerase (Invitrogen). The C-terminal domain of \textit{Rv3868} (330-481) (to be called CT-Rv3868) was amplified from the \textit{Rv3868} PCR product using the primers detailed in Supplementary Table 1. \textit{Rv3868} was cloned into \textit{pET23a} (Novagen) using NdeI and HindIII. CT-Rv3868 was cloned into \textit{pET23a} using BamHI and HindIII. The Ct-Rv3868 open reading frame of \textit{pET23a} was mutated by a site directed mutagenesis kit (stratagene) using the primers listed in Supplementary table 1. Full-length \textit{Rv3868}, CT-Rv3868 and mutants of CT-Rv3868 were expressed in BL-21 (DE3) cells (0.5 mM IPTG; O.D. 0.6; 30°C). The cells were harvested by centrifugation, resuspended in 40 ml lysis buffer A (50 mM Tris- HCl, 200 mM NaCl, pH 7.5) and lysed by sonication. Centrifugation at 14,000 rpm was followed by a filtration step using a 0.22µm filter before loading onto a 5 ml Ni-Hi Trap column equilibrated in buffer A. The column was initially washed with lysis buffer and subsequently with the same buffer containing 40 and 80 mM imidazole, respectively. The proteins were eluted with 15 ml buffer B containing 200 mM imidazole for \textit{Rv3868} and 400 mM imidazole for CT-Rv3868. The samples containing protein were pooled and dialyzed extensively against buffer (50 mM Tris- HCl, 200 mM NaCl, pH 7.5).

For the purification of CFP-10, the plasmid \textit{pET28b-cfp10} (11) was grown in M9 medium using (N15) ammonium sulphate as sole nitrogen source and purified as reported earlier (11). The protein was dialyzed against NMR buffer (20 mM NaH2PO4 50 mM NaCl, 0.1% NaN3, pH 6.5). About 10 mg of protein could be purified per liter of culture.

\textit{ATPase activity assays}
ATPase reactions were carried out in 30µl of ATPase buffer (25 mM Tris, pH 7.6; 5 mM MgCl2) at 30°C for different time periods. Each reaction mixture contained 0.5 µCi of [γ-32P] ATP. The reaction was stopped by the addition of 0.5 µl of 10%SDS. 1.0µl of each reaction was spotted on a TLC plate. The plate was developed in 0.5 M formic acid and 0.5 M LiCl and dried at 37°C. The percentage of ATP hydrolysis was calculated using the formula: \textit{Percentage of ATP hydrolysis = (23) x 100}. The ATP hydrolysis value was corrected for background by subtracting the value obtained for a reaction mixture containing no protein. Colorimetric assays (24) were performed to determine the ATPase activity of the CT-Rv3868. Except for specified variations, standard ATPase assays were carried out in the assay buffer containing 50 mM Tris-HCl (pH 8.0), 20 mM MgCl2, 1 mM dithiothreitol, 0.5 mM ATP, and amount of protein for 15 min at 37°C. Briefly, CT-Rv3868 was added to 100 µl of assay buffer, the reaction was carried out at 30°C for 15 min, then 200 µl of dye buffer containing 6 mM ammonium heptamolybdate, 120 µM malachite green, 0.06% polyvinyl alcohol, and 4.25% sodium citrate was added. After 20 min of incubation at room temperature, 200 µl from each reaction was transferred to a 96-well plate, and the absorbance at 630 nm was measured. Values from control reactions performed without protein were routinely subtracted from the respective experimental data. The inorganic phosphate released was calculated based on the absorbance standard curve established by KH2PO4 standards. CT-Rv3868 and NT-Rv3868 was purified by affinity chromatography to near homogeneity and used in the assays. All assays were repeated three times and the average activity is reported. Kinetic parameters, \textit{Km}, \textit{Vmax}, and Hill coefficient,
were derived using Prism 4.0 (Graph Pad Software, Inc.).

Limited proteolysis and ESI-MS

2.0 mg/ml protein was subjected to limited proteolysis using trypsin at a protease to protein ratio of 1:50 and 1:100 (w/w) and incubated for different time periods at 30°C. The protease reaction was stopped by adding PMSF to a final concentration of 1 mM in the reaction mixture, and the samples were analyzed on 12% SDS-PAGE. Digested product was purified by gel filtration chromatography and transferred to a PVDF membrane for N-terminal sequencing. The ESI-MS analysis was carried out using a MICRO-MASS QUATTRO II mass spectrometer (Micromass, Altricem, UK).

Tryptophan and Tyrosine fluorescence

Protein concentrations of 0.5, 1 μM for full length and purified domains respectively were used. Fluorescence spectra were recorded using a Perkin Elmer Life Sciences LS 50B instrument with samples placed in a 5 mm path length quartz cell at 25°C. Excitation wavelength of 285 nm was used and the spectra were recorded between 300 and 400 nm to monitor tryptophan fluorescence. Tyrosine fluorescence was monitored by using an excitation wavelength of 274 nM.

Analytical gel filtration and Dynamic light scattering

Gel filtration experiments were carried out using a Superdex 200 HR 10/300 column on an AKTA-FPLC system (M/s GE Healthcare). The column was calibrated using molecular weight standard markers (M/s GE Healthcare). All experiments were carried out using 50 mM Tris, pH 7.5. Other parameters like salt and nucleotide concentrations were varied for the experiments. Typically, 500 μl of the sample was loaded on the column and run at 25°C at a flow rate of 0.3 ml/min, with detection at 280 nm. The relative elution volume was calculated as:

\[K_w = V_e - V_o / V_g - V_o \]

Where \(V_e \) is the elution volume, \(V_o \) is the void volume determined by elution of Blue Dextran 2000 kDa and \(V_g \) is the geometric column volume. For deconvolution of gel filtration peaks, Peakfit (Systat Software, Inc.) software was used for determination of different oligomers in Rv3868.

The DLS experiments were carried out on a Zetasizer Nano ZS instrument (Malvern instruments). Data were acquired at 20°C over 10s, repeated 10 times and averaged. Ten such acquisitions were performed to give 1000 s of data. The inbuilt software was used to fit the autocorrelation function using the cumulants method and to extract the approximate molecular weight.

Steady state nucleotide binding

Binding of nucleotides to the proteins were determined by monitoring the change in protein fluorescence upon addition of ligand. Measurements were carried out using a Perkin Elmer Life Sciences LS 50B spectrofluorimeter, [excitation 280 nm; emission 330 nm; slit widths 5 nm] for Rv3868 and NT-Rv3868 where tryptophan fluorescence was followed. In the case of the CT-Rv3868, an excitation wavelength of 274 nm was used along with a 5 nM slit width. Tyrosine emission was followed at 304 or 340 nm for lower order and high order oligomeric forms of the domain. Tittrations were performed at 25 °C by the addition of ATP to 0.6 ml of 50 mM Tris (pH 7.5), 50 mM NaCl, and 5 mM MgCl₂ buffer containing different amounts of proteins. To avoid dilution effects, volume change during the titration
was limited to 3% of total volume. Control titrations with buffer alone did not produce any significant change in emission signal. The K_d value was calculated fitting the data to the equations 3 and 4. ΔF is the change in emission signal in the presence of ligand (L) and ΔF_{max} is the maximal change in signal. The corrected data were fitted to the following equations using Prism 4.0 (Graph Pad Software, Inc.).

\[
\Delta F = \Delta F_{\text{max}} [L] / K_d + [L] \quad (3)
\]

\[
\Delta F = \Delta F_{\text{max}} - K_d \Delta F / [L] \quad (4)
\]

The binding stoichiometry of nucleotides and C-terminal domain was determined by plotting the titration data as a mass action plot according to the following equation:

\[
r / [L]_{\text{free}} = n / K_d - r / K_d \quad (5)
\]

The fluorescently labeled ATP analog, N-methylantraniloyl-ATP (MANT-ATP) (Molecular Probes) was used to qualitatively substantiate the binding of the nucleotide to the proteins. All spectra were corrected for the inner filter and dilution effects. Nucleotide binding to CT-Rv3868 was followed by the changes in MANT-ATP emission at 450 nm, (excitation and emission wavelengths). 1 μM MANT-ATP was titrated with increased concentrations of the protein in the experiments.

Stern-Volmer co-efficients

Fluorescence quenching of tryptophan in the presence of increasing concentrations of acrylamide were monitored by following the emission at 340 nm after excitation at 285 nm. Samples were prepared in buffer consisting of 50 mM Tris, pH 7.5, 50 mM NaCl and 5 mM MgCl$_2$. Aliquots from a 2 M acrylamide stock solution were consecutively added in 5 mM steps to 1 ml reaction mixture. Experiments were performed in triplets and corrected for dilution effects. Quenching data were plotted as the ratio of fluorescence in absence of quencher (F_0) to the intensity in the presence of quencher (F) against quencher concentration. The resulting data were fit against dynamic parameters according to the Stern-Volmer equation (25).

\[
F_0 / F = 1 + (K_{SV} \times [Q])
\]

K_{SV} is the Stern-Volmer constant for quenching, given by the slope when data are plotted as F_0/F versus $[Q]$ where the latter parameter is the concentration of the quencher.

ANS binding

Titrations were performed to estimate the binding affinities of the proteins to 8-anilino-1-naphthalenesulfonic acid (ANS). Incremental amounts of ANS were added to a series of otherwise identical solutions of protein in buffer (50 mM Tris pH 7.5, 50 mM NaCl and 5 mM MgCl$_2$). The excitation wavelengths were set to 370 and the emission was measured from 410 nm to 600 nm respectively. For each measurement the fluorescence intensity was corrected by subtracting the fluorescence of the sample containing only ANS. The data were plotted against the total concentration of ANS. The apparent K_d was estimated by fitting the data to equation 7:

\[
F = F_{\text{max}}[\text{ANS}] / K_d + [\text{ANS}]
\]

Where F is the corrected fluorescence intensity, F_{max} is the fluorescence intensity upon saturation of the ANS binding sites, [ANS] is the total concentration of ANS and K_d is the apparent dissociation constant.

Glutaraldehyde cross-linking

The cross-linking of protein samples was carried out in the presence of 1% glutaraldehyde of CT-Rv3868 at a concentration of 0.2 mg/ml was used in the experiments. The molecular mass of
the cross-linked products were determined by 12% SDS-PAGE.

Protein modeling and NTP docking
Sequence analysis led to the identification of putative Walker A and B motifs at the C-terminal end. A model of the putative ATP binding site was generated by comparative modeling approaches and corresponds to residues 331-481 of CT-Rv3868. The NT-Rv3868 domain model (residues 18-250) was generated using PHYRE http://www.sbg.bio.ic.ac.uk/phyre following the fold prediction method. The initial models were minimized using the DISCOVER module implemented in Insight II (M/s Accelrys).

The AUTODOCK program was used in the in silico docking studies involving NTPs and CT-Rv3868. Partial charges were assigned using the CVFF force field. The grid maps consisting of 80 x 80 x 80 grid points were centered on the putative ligand-binding site (Walker A motif). The Lamarckian Genetic Algorithm was used for the calculations. Docked complexes were visualized using InsightII (Accelrys) and PYMOL (26).

The oligomer was modeled by superposing the C-terminal model structure onto the hexameric D2 domain of NSF (PDB code, 1NSF) (27).

NMR Spectroscopy
For the NMR experiments 15N-labeled CFP10 protein in 20 mm sodium phosphate (pH 6.5), 50 mm NaCl, 0.1% sodium azide and 5% (v/v) 2H2O was used as reported in earlier experiments by our group (11). The spectra were recorded on a Varian 600-MHz instrument equipped with a triple nuclei inverse probe, at 30 °C. 2D 15N-1H-HSQC spectra were recorded for the (15N-labeled CFP-10) as earlier as also for the (15N-labeled CFP-10-unlabeled Rv3868) protein. The HSQC spectrum for each experiment was acquired with 1024 and 128 complex points in the 1H and 15N dimensions, respectively.

Chaperone like activity assay
The assays were carried out using procedures similar to those described earlier (28) at 43°C using Hen egg white lysozyme (Sigma) and porcine mitochondrial citrate synthase (Sigma) as test substrates.

Results
Sequence and Phylogenetic analysis
Rv3868 consists of 573 amino acids with Mr ~63 kDa. The protein has been classified as a conserved hypothetical protein in the databases. Sequence analysis and the construction of a Phylogenetic tree using the neighbor-joining method supports that Rv3868 is a member of the CbxX/CfqX sub-family of AAA-ATPases (Supplementary Figure 1). The sister group of CbbX proteins are sporulation factors (29). The related proteins in mycobacteria like Rv3868 have apparently acquired alternate functions.

The hypothetical protein Rv3868 of M. tuberculosis encodes a hexameric ATPase
At first it was important to probe for the ATPase activity of the protein, if any, in view of the Walker motifs (Supplementary Figure 2) contained in the sequence. It became clear from the initial colorimetric assays that the full-length enzyme is a weak ATPase. The presence of bound nucleotide through the purification process was ruled out by extensive dialysis. The more sensitive radioactive assay involving [γ-32 P] ATP as a substrate was therefore used in subsequent experiments where the release of free phosphate was found to linearly increase over time (Fig. 1A). A
K_m of 0.8±0.1 µM and V_max of 139±8.8 fmol/min was derived from a Michaelis-Menten plot (Fig. 1B) following a non-linear regression analysis using Prism 4.0 (Graph Pad Software, Inc.).

Rv3868 was found to be a specific ATPase. The GTPase activity under similar assay conditions was only 20% as that observed with ATP (Fig. 1C). The ATPase assays were also carried out in the presence of casein, DNA, ESAT-6 and CFP-10. Casein and DNA (30,31) are known to variously stimulate ATPase activity in some AAA-proteins while ESAT6/CFP-10 have been postulated to interact with Rv3868 (19). No stimulatory or inhibitory effects on the activity were observed in the presence of these factors (data not shown). However the addition of 0.3M NaCl or 25mM EDTA abolished the activity (Fig. 1D). It is possible that NaCl could disrupt the oligomeric associations in the enzyme and these were investigated subsequently. EDTA apparently chelates out the Mg^{2+} ions which are necessary for the activity.

Analytical gel filtration experiments show that Rv3868 predominantly exists as a hexamer at protein concentrations up to ~3mg/ml and elutes at M.W. ~380 kDa (Fig.2A). At high concentrations the protein forms higher order oligomers with concomitant reduction in the hexamer population (Fig.2B). Dynamic light scattering experiments further support that the higher oligomeric state is a not an aggregate and that the protein exists as a multiple of hexamers (Supplementary Figure 3).

The quaternary associations are stabilized by ionic interactions. At NaCl concentration of ~0.5 M the protein is predominantly dimeric. Increasing the concentration to above 0.75 M resulted in the breakage of the dimers to monomers. Addition of ATP did not make any difference to the elution profiles in the experiments (Fig. 2B). Similar effects were observed in the case of GdmCl, a known disrupter of ionic interactions in proteins (data not shown).

Identification of a stable N-terminal domain

The vulnerability of a protein for proteolysis depends on parameters such as accessibility, segmental motion, and protrusions. Therefore limited proteolysis has been effectively used to identify structural domains in proteins, ligand-induced conformational changes, and protein folding/unfolding (32).

The incubation of Rv3868 with trypsin gave rise to mainly two fragments in the SDS-page gels (Fig. 3C). A fragment of Mr ~30 kDa was quite stable under the digestion conditions while the other fragment (Mr ~20 kDa) degraded with time. The former fragment could be purified from the reaction mixture by size exclusion chromatography as a monomer (Fig. 3D) and has a molecular weight of 29.9 kDa as deduced from ESI-MS. The fragment, unlike the full-length protein did not exhibit any concentration dependent self-association. Peptide sequencing established that this fragment/domain occurs in the N-terminus of the protein with starting sequence TDRLA (Fig. 3B).

Sequence analysis (Supplementary Figure2) had shown that only the N-terminal stretch contains a tryptophan while the C-terminal does not contain any. We could therefore exploit this fact in later spectroscopy experiments. Subsequent activity assays also revealed that the fragment, as expected, does not possess any ATPase activity observed in the full-length enzyme. The analysis therefore reveals that the N-terminal domain is compact, accounts for approximately half the sequence of the enzyme and is a
monomer in contrast to the hexameric association observed in the full-length protein.

Identification and characterization of the ATP-binding domain

Fold index (33) (Fig. 3A) calculations for Rv3868 suggests that residues between 330-481 in the C-terminus contain the Walker motifs/ATP binding site and should encode for an ~18 kDa fragment (Fig. 3A).

The C-terminal domain was accordingly cloned and purified separately. The domain associates predominantly as a dimer in the absence of ATP and forms higher order oligomers in the presence of the nucleotide (ATP) as deduced from gel filtration and glutaraldehyde cross-linking experiments (Fig. 4A). The results suggest that the C-terminal domain is largely responsible for oligomerisation.

Next, the CT-Rv3868 was tested for the ability to hydrolyze ATP using the malachite green assay. A linear release of phosphate was observed during the time course of the assay (Fig.4B). The activity was found to be maximal between 7.5-8.5 pH. The following parameters for the hydrolysis activity were also deduced: V_{max} of with a K_m of 73.39±20, k_{cat} of 2.541±0.23 and Hill coefficient (n) is 1.40 (Fig. 4C). The ATPase activity was found to be several fold higher compared to the full-length protein. It was also found to be co-operative as suggested from the Hill coefficient.

The co-operativity was also supported by following a plot of ATP hydrolysis versus protein concentration (Fig. 4D). The concave plot indicates that the activity is concentration dependent. The specific activity increases with increase in the enzyme concentration until a maximal activity of 50 nmol/min/mg.

Concentration-dependent activity is suggestive of cooperative association and has been identified for a number of characterized NTPases, including AAA-ATPases (34).

In silico modeling and docking studies

The characterization clearly suggests that the CT-Rv3868 is involved in oligomerisation. The domain also exhibits homology with the AAA-domain present in other structurally characterized AAA-proteins. We therefore modeled the hexameric association of the protein based on the D2 domain of N-ethylmaleimide sensitive factor (27) (PDB: 1NSF) (Fig. 5A). A detailed examination of the resultant model suggested that the binding pocket is lined by Pro336, Gly337, Thr338, Lys340 and Arg429, amongst other residues. We also carried out *in silico* docking experiments with different nucleotides including ATP, ADP, GTP, CTP and UTP to examine their respective binding modes. The ATP moiety has the highest affinity for the protein followed by GTP and supports the experimental results where the GTPase activity of the protein was found to be only 1/3rd of that of ATP (Table 1). The bound ATP lies in a defined area deep within the binding site eleft and the γ-phosphate is proximal to the side chains of Pro336, Gly337, Thr338, Lys340 and Arg429 (Fig.5B). The latter residue is from the neighboring subunit and we suspected from the spatial disposition that it might function as an arginine-finger/sensor-arginine (20) which senses the presence of the nucleotide in the binding site and gives rise to associated mechanochemical outcomes in AAA-ATPases. The modeling results were subsequently substantiated experimentally.
Orientation of bound nucleotides
We used the fluorescent ATP analog MANT-ATP where the fluorophore is attached to the ribose moiety to probe for the orientation of the nucleotide in the binding site. The binding of this analog close to a hydrophilic pocket causes a decrease in the fluorescence intensity (35, 36). Indeed a reduction in the fluorescence intensity was observed on titration of the nucleotide analog with increasing amounts of CT-Rv3868 (Supplementary Figure 4). An examination of the docked ATP-CT-Rv3868 complex reveals a hydrophilic pocket near the adenosine moiety (Fig. 5B). Hence the experiments with the fluorescent ATP analog support the orientation of the nucleotide suggested by the docking experiments.

Mutational analysis and identification of Arg429 as a sensor-arginine
We generated four mutants of CT-Rv3868 viz. P336A, T338A, K340A and R429A based on the modeling studies to probe for the roles of the residues in ATP binding and hydrolysis (Fig 5B). The first three mutants correspond to those residues that belong to the same subunit in the nucleotide binding site while the Arg residue is from a symmetry related subunit of the oligomer. Thr338 and Lys340 lie close to the γ-phosphate in the docked complex. Arg429 was chosen to examine its role as a probable sensor-arginine while the Pro residue was mutated to check for possible structural effects on the binding site architecture.

Table 2 lists the various parameters of the respective mutants. The wild-type protein has a catalytic efficiency of about 577 as suggested by the K_{cat}/K_m ratio. The Hill coefficient of 1.4 is indicative of the positive co-operativity in CT-Rv3868. The P336A mutant does not seem to distort the binding site architecture; the catalytic efficiency as also the V_{max} is only marginally reduced in the mutant. The Thr338 and Lys340 residues apparently perform different roles in the hydrolysis. Thr338 contributes to the binding and its mutation leads to ~7-fold decrease in the binding of the substrate as suggested by the K_m values. The catalytic efficiency also is reduced ~10-fold. The reduction in the affinity of ATP in this mutant is also supported by the positive change in the free energy. The K340A mutant does not affect the binding of the substrate and the K_m is relatively unaffected. But there is an approximately 35% reduction in the catalytic efficiency as also the V_{max} indicating that this residue has a rigorous role in the catalytic action as opposed to stabilizing the substrate. In the three mutations detailed above the co-operativity is relatively unaffected.

The R429A mutant exhibits a large increase in the K_m and a drastic reduction in the catalytic efficiency (Fig.5C). The positive free energy change also indicates a loss in the binding of the substrate. These parameters are similar to those seen in the T338A mutant. An important difference is that while the Thr mutation did not lead to loss in co-operativity, the R429A mutation almost abolishes the co-operativity as seen by the Hill co-efficient of 1.15. Binding and release of the nucleotide in AAA-ATPases are generally known to lead to changes in the conformation of the oligomer and gives rise to co-operative effects. Obviously the conformational adjustments necessary for the binding of the nucleotide are precluded in the mutant. These properties are consistent with the in silico prediction of Arg429 as a sensor-arginine.
Nucleotide binding and ATP-dependent self association of the mutants

The loss in the ATP binding affinity of the R429A mutant was further substantiated by the measurement of the dissociation constants using fluorescence spectroscopy (Fig.6A). We exploited the fact that CT-Rv3868 contains only 4 tyrosine residues, of which two are predicted by modeling to be close to the ATP binding (Fig.4C). On the other hand all 8 Trp residues of Rv3868 occur in the N-terminal domain and are quite accessible to the aqueous environment as delineated by experiments involving the full-length and NT-Rv3868 proteins (Supplementary Figure 5). The affinity of ATP for CT-Rv3868 was found to be 0.27 ± 0.5 mM while it reduces ~4-fold in the R429A mutant to 1.08±0.2 mM. The stoichiometry calculated through an analysis of the Scatchard plot (Fig.5A) was found to be ~1 ATP molecule per CT-Rv3868 chain as expected.

The above conclusions are supported by ATP-dependent self-association experiments. CT-Rv3868 as mentioned earlier exhibits ATP-dependent self-association and also shows co-operativity. All mutants except the Arg429 mutant exhibit ATP-dependent self-association and also the co-operativity is relatively unaffected. However, the Arg mutant loses the ability to self-associate in the presence of ATP and the co-operativity is also nearly abolished (Table 2 and Fig 6C).

N- and C-terminal domains exhibit relative conformational changes linked to nucleotide binding

We carried out a dynamic quenching study on the full-length protein and the NT-Rv3868 using acrylamide as a quencher. This moiety, on account of its polar nature interacts with tryptophan residues, which are exposed or partially buried, and leads to a quenching of the fluorescence. This approach gives insights into relative conformational changes between the domains based on the quenching of the tryptophan fluorescence as also reported earlier (37). Probing the individual accessibility of each Trp residue rigorously requires the determination of \(K_q \), the bi-molecular rate constant: \(k_q = K_{sv}. \tau_0 \), where \(K_{sv} \) and \(\tau_0 \) are the Stern-Volmer constant and fluorescence life-time respectively. However, the presence of 8 Trp residues impeded the determination of \(\tau_0 \) for the individual residues. As is generally accepted, the conformational changes can alternatively be studied by comparing the Stern-Volmer constants rather than the bi-molecular rate constants. The Stern-Volmer plots for the NT-Rv3868 and full length Rv3868 in the presence and absence of ATP are in Figure 7A. The \(K_{sv} \) for the N-terminal domain alone is 9.37 ± 0.53 M⁻¹. The \(K_{sv} \) corresponding to the full length protein in the absence of ATP is 5.12 ± 0.54 M⁻¹ while it is 4.11 ± 0.96 M⁻¹ in its presence. If the \(K_{sv} \) values for the full length protein and the NT-Rv3868 alone were similar it would suggest that the two domains in the protein are not in close proximity as the accessibility of the individual Trp residues is relatively unaffected. However the present experiments represent a direct evidence for the proximity of the two domains in the protein. A significant reduction was observed in the \(K_{sv} \) value for the ATP-bound enzyme compared to the unbound form. This clearly suggests that the two domains move closer to each other from a relatively ‘open’ to a ‘closed’ conformation on addition of the nucleotide. From the above results, it is straightforward to visualize that the binding of nucleotide co-factor and its release should be accompanied by a
concomitant change in the relative spatial dispositions of the N- and C-terminal domains.

The above results were independently corroborated by following the intrinsic fluorescence of the Trp residues in the presence of ATP. Addition of the nucleotide led to a reduction in the observed Trp fluorescence in the full-length protein. On the other hand, addition of the nucleotide aliquots to the NT-Rv3868 alone leaves the observed fluorescence relatively undisturbed. Since the Trp residues occur only in the N-terminal segment which has no nucleotide binding sites, the quenching can only be presumably due to the increased proximity of the two individual domains on addition of the nucleotide and corresponding reduction in the accessibility of surface exposed tryptophan residues. (Fig. 7B)

Rv3868 does not interact with CFP-10 and does not exhibit chaperone-like activity

Previously, it was suggested that Rv3868 might interact with CFP-10 or ESAT-6 proteins (13, 19). Other groups have suggested a chaperone function for the protein (6, 9, 13, 19). Since a predicted recognition motif is present in the C-terminal segment of CFP-10 (18), NMR studies were undertaken to identify possible interactions with the latter protein. Our own earlier NMR studies have suggested that complex formation confers thermodynamic stability (11). CFP-10 by itself is unstructured as reported earlier by others and us. The spectra show no change in the presence of unlabeled Rv3868 both in the presence and absence of ATP. The experiments clearly rule out any interactions of CFP-10 and therefore the C-terminal recognition motif with Rv3868 (Supplementary Figure 6).

Possible chaperone-like activities were also probed and ruled out using substrates like hen Egg white lysozyme and porcine citrate synthase where the possible disaggregation of the substrates in the presence of Rv3868 was monitored spectroscopically (Supplementary Figure 7).

In another set of experiments the presence of hydrophobic patches on the surface of the protein was probed using ANS or Bis-ANS binding studies. It is known that substrate polypeptides bind to large hydrophobic patches on the substrate binding domains in related AAA-ATPases like HslU, ClpA and Hsp with chaperone/Protease like activities (38,39). Since Rv3868 contains two domains, the N-terminal domain is expected to have hydrophobic patches to bind to substrates if it had a chaperone function. The C-terminal domain on the other hand has been shown to be the ATPase domain which is also involved in oligomerisation. The binding data reveal that the N-terminal domain has no hydrophobic patches and is compact while the full length and ATP binding domains have similar affinity for ANS (Supplementary Figure 8). Altogether these studies suggest that the enzyme is not likely to have a general chaperone like function. However, a specific chaperone activity in the presence of as-yet unidentified co-factors and/or unknown substrate proteins cannot be ruled out.

Discussion

The present work represents the first detailed characterization of a protein from the CbbX family of proteins. The protein has been shown to be a hexamer with each chain consisting of two domains. The C-terminal domain is the ATPase and oligomerisation domain while the N-terminal domain is compact and has no
significant sequence homology to characterized proteins. The full-length protein is a relatively weaker ATPase compared to the CT-Rv3868 alone. Analogous behavior has been observed in some other AAA-ATPases *eg.* *E. coli* ClpB, where the full-length enzyme hydrolyzed ATP with a lower rate compared to the ATP binding domain alone (30). Often the interactions of the substrate binding domain with target proteins or co-factors stimulate NTPase activity in the respective proteins. *Eg.* ClpB shows enhanced ATPase activity in the presence of casein. The target protein of Rv3868 is conjectured to be ESAT6/CFP10 or Rv3873 based on yeast two hybrid or genetic experiments (19). Our reported work apparently rules out direct interactions with the ESAT6/CFP10 proteins and their presence also does not stimulate the ATPase activity in the assays. A general chaperone activity was also probed. The protein also does not exhibit large hydrophobic patches on the surface which is a generally accepted characteristic of a chaperone.

Other groups have identified at least four substrates of the ESX-1 system *viz.* ESAT-6 CFP-10, EspA and EspB and it is known that disruption of the Rv3868 gene prevents secretion of the substrates although their expression is not impaired (13,14). This has led to a suggestion that the protein either affects the translocation or stability of the exported substrates. The lack of a general chaperone activity in Rv3868 as also interactions with CFP-10 suggests that it probably has a role in the translocation of the substrates rather than their stability. This then brings us to the question as to which are the likely interacting partners of Rv3868? One possibility, based on earlier work (13, 19) against the backdrop of the current characterization could be Rv3873 a gating protein. The interactions of Rv3868 with the gating protein would specifically modulate the secretion of the virulence factors in agreement with the essential role of Rv3868 in secretion but would not affect the expression of these factors. However, more genetic work is necessary to identify and characterize the interactions of these potential protein partners.

The other conjectured function of Rv3868 is to transfer energy to co-proteins of the ESX-1 system. AAA-ATPases normally translate the conformational changes effected by the ATPase motor to other domains of the protein to effect functional consequences. *Eg.* HslU(40) undergoes conformational changes upon ATP binding and release to unfold proteins destined for proteolysis. In the case of Rv3868 the two domains are in close proximity upon ATP-binding. The release of the nucleotide leads to a distinct relative conformational change between the domains where the N-terminal is more accessible to the environment. This ‘open-close’ movement apparently enables interactions with target proteins and is consistent with the behavior of other characterized AAA-ATPases like HslU or ClpB.

The *in silico* modeling and docking calculations has helped rationalize the observed activities and also the affinity of the protein for different nucleotides. An exciting outcome of these studies is the identification of Arg429 as a potential ‘sensor arginine’ (Ogura *et al.*, 2004). In the model of the monomer alone the residue is far from the nucleotide binding site. It comes close to the binding site of the neighboring subunit in the oligomer to form a part of the binding site. This residue is known to play a special role by transducing the ATP hydrolysis/binding event into a mechanochemical outcome in
AAA-ATPases. However the catalytic functions in the respective proteins are known to be different and they play a context-specific role in the ATPases. While the Thr338 and Lys340 mutants affect the binding of the nucleotide to varying degrees, they do not disrupt the observed co-operativity i.e the conformational changes in the oligomer that occur upon ATP binding are relatively undisturbed. The Arg429 mutant abolishes co-operativity and leads to a large reduction in binding of the nucleotide underscoring its role as a sensor-arginine.

In summary, this is the first detailed characterization of the hypothetical protein Rv3868, a critical component of the ESX-1 pathway in M. tuberculosis. The studies suggest a possible molecular mechanism involving co-factor induced relative conformational changes in the domains through which the protein can interact with other proteins of the pathway. The characterization, molecular modeling and mutational analysis of Rv3868 set the stage for the identification of novel inhibitors which can disrupt the export of critical tuberculosis virulence factors.

References

1. Pym, A. S., Brodin, P., Brosch, R., Huerre, M., and Cole, S. T. (2002) *Mol. Microbiol.* **46**, 709-717
2. Hsu, T., Hingley-Wilson, S. M., Chen, B., Chen, M., Dai, A. Z., Morin, P. M., Marks, C. B., Padiyar, J., Goulding, C., Gingery, M., Eisenberg, D., Russell, R. G., Derrick, S. C., Collins, F. M., Morris, S. L., King, C. H., and Jacobs, W. R., Jr. (2003) *Proc. Natl. Acad. Sci. U.S.A.* **100**, 12420-12425
3. Sassetti, C. M., and Rubin, E. J. (2003) *Proc. Natl. Acad. Sci. U.S.A.* **100**, 12989-12994
4. Stanley, S. A., Raghavan, S., Hwang, W. W., and Cox, J. S. (2003) *Proc. Natl. Acad. Sci. U.S.A.* **100**, 13001-13006
5. Guinn, K. M., Hickey, M. J., Mathur, S. K., Zakel, K. L., Grotzke, J. E., Lewinsohn, D. M., Smith, S., and Sherman, D. R. (2004) *Mol. Microbiol.* **51**, 359-370
6. Gao, L.-Y., Guo, S., McLaughlin, B., Morisaki, H., Engel, J. N., and Brown, E. J. (2004) *Mol. Microbiol.* **53**, 1677-1693
7. Fortune, S. M., Jaeger, A., Sarracino, D. A., Chase, M. R., Sassetti, C. M., Sherman, D. R., Bloom, B. R., and Rubin, E. J. (2005) *Proc. Natl. Acad. Sci. U.S.A.* **102**, 10676-10681
8. Xu, J., Laine, O., Masciocchi, M., Manoranjan, J., Smith, J., Du, S. J., Edwards, N., Zhu, X., Fenselau, C., and Gao, L.-Y. (2007) *Mol. Microbiol.* **66**, 787-800
9. McLaughlin, B., Chon, J. S., MacGurn, J. A., Carlsson, F., Cheng, T. L., Cox, J. S., and Brown, E. J. (2007) *PLoS Pathogens* **3**, e105
10. Renshaw, P. S., Panagiotidou, P., Whelan, A., Gordon, S. V., Hewinson, R. G., Williamson, R. A., and Carr, M. D. (2002) *J. Biol. Chem.* **277**(24), 21598-21603
11. Meher, A. K., Bal, N. C., Chary, K. V. R., and Arora, A. (2006) *FEBS J.* **273**, 1445-1462
12. Pym, A. S., Brodin, P., Majlessi, L., Brosch, R., Demangel, C., Williams, A., Griffiths, K. E., Marchal, G., Leclerc, C., and Cole, S. T. (2003) Nat. Med. 9, 533-539
13. Brodin, P., Majlessi, L., Marsollier, L., de Jonge, M. I., Bottai, D., Demangel, C., Hinds, J., Neyrolles, O., Butcher, P. D., Leclerc, C., Cole, S. T., and Brosch, R. (2006) Infect. Immun. 74, 88-98
14. Mahairas, G. G., Sabo, P. J., Hickey, M. J., Singh, D. C., and Stover, C. K. (1996) J. Bacteriol. 178, 1274-1282
15. Behr, M. A., Wilson, M. A., Gill, W. P., Salamon, H., Schoolnik, G. K., Rane, S., and Small, P. M. (1999) Science 284, 1520-1523
16. Lewis, K., Liao, R., Guinn, K., Hickey, M., Smith, S., Behr, M., and Sherman, D. (2003) J. Infect. Dis. 187, 117-123
17. Tan, T., Lee, W. L., Alexander, D. C., Grinstein, S., and Liu, J. (2006) Cellular Microbiology 8, 1417-1429
18. Champion, P. A. D., Stanley, S. A., Champion, M. M., Brown, E. J., and Cox, J. S. (2006) Science 313, 1632-1636
19. Teutschbeina, J., Schumannb, G., Möllmannb, U., Grableyc, S., Cole, S. T., and Munder, T. (2006) Microbiological Research
20. Ogura, T., Whiteheart, S. W., and Wilkinson, A. J. (2004). Journal of Structural Biology. 146, 106-112
21. Neuwald, A. F., Aravind, L., Spouge, J. L., and Koonin, E. V. (1999) Genome Research 9, 27-43
22. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G. (1997) Nucleic Acids Res. 25, 4876-4882
23. Lanzetta, P. A., Alvarez, L. J., Reinach, P. S., and Candia, O. A. (1979) Analytical Biochemistry 100, 95-97
24. Lakowicz, J. (1983), Principle of fluorescence spectroscopy 257-301
25. Marti-Renom, M. A., Stuart, A. C., Fiser, A., Sanchez, R., Melo, F., and Sali, A. (2000) Annual Review of Biophysics and Biomolecular Structure 29, 291-325
26. DeLano, W. L. (2002) The PyMOL molecular graphics system
27. Yu, R. C., Hanson, P. I., Jahn, R., and Brunger, T., (1998) Nat. Struct. Biol. 5, 803-811
28. Ferreira, R. M., de Andrade, L. R., Dutra, M. B., de Souza, M. F., Flosi Paschoalin, V. M., and Silva, J. T. (2006) Protein Exp. and Purification 47, 384-392
29. Maier, U.-G., Fraunholz, M., Zauner, S., Penny, S., and Douglas, S. (2000) Mol. Biol. Evol. 17, 576-583
30. Barnett, M. E., Zolkiewska, A., and Zolkiewski, M. (2000) J. Biol. Chem. 275, 37565-37571
31. Purkey, R. M., and Ebisuuzaki, K. (1977) Eur. J.Biochem. 75, 303-310
32. Hubbard, S. J. (1998) Biochim. Biophys. Acta 1382 191–206
33. Prilusky, J., Felder, C. E., Zeev-Ben-Mordehai, T., Rydberg, E. H., Man, O., Beckmann, J. S., Silman, I., and Sussman, J. L. (2005) Bioinformatics 21, 3435-3438
34. Pozidis, C., Chalkiadaki, A., Gomez-Serrano, A., Stahlberg, H., Brown, I., Tampakaki, A. P., Lustig, A., Sianidis, G., Politou, A. S., Engel, A., Panopoulos,
N. J., Mansfield, J., Pugsley, A. P., Karamanou, S., and Economou, A. (2003) *J. Biol. Chem.* **278**, 25816-25824

35. Nowak, E., Panjikar, S., Morth, J. P., Jordanova, R., Svergun, D. I., and Tucker, P. A. (2006) *Structure* **14**, 275-285

36. Toshiaki, H. (1983) *Biochim. Biophys. Acta* **742**, 496-508

37. Georlette, D., Blaise, V., Bouillenne, F., Damien, B., Thorbjarnardottir, S. H., Depiereux, E., Gerday, C., Uversky, V. N., and Feller, G. (2004) *Biophysical Journal* **86**, 1089-1104

38. Fu, X., Zhang, H., Zhang, X., Cao, Y., Jiao, W., Liu, C., Song, Y., Abulimiti, A., and Chang, Z. (2005) *J. Biol. Chem.* **280**, 6337-6348

39. Ramachandran, R., Hartmann, C., Song, H. K., Huber, R., and Bochtler, M. (2002) *Proceedings of the National Academy of Sciences* **99**, 7396-7401

40. Bochtler, M., Hartmann, C., Song, K., Bourenkov, P., Bartunik, D., and Huber, R. (2000) *Nature* **403**, 800-805

Footnotes

1This work is supported by an intramural grant MLP007 while computational support is from the *Council of Scientific and Industrial Research* (CSIR), India, grant CMM0017.

2AL is a UGC senior research fellow.

3The abbreviations used are: NT-Rv3868, N-terminal domain of Rv3868; CT-Rv3868, C-terminal ATP-binding domain of Rv3868; DLS, Dynamic light scattering; Gdmcl, guanidinium chloride; ANS, 8-anilino-1-naphthalenesulfonic acid;

4This is communication number 7469 from C.D.R.I.
Table 1: *In silico* docking energy and relative activity (%) of different nucleotides for CT-Rv3868

activity	Free Energy (Kcal/mol)	Relative (%)
ATP	-9.06	100
GTP	- 6.8	35
UTP	-5.61	N.D*
CTP	-5.92	N.D
ADP	-7.52	5

N.D. refers to ‘Not determined’
Table 2: Kinetic parameters of CT-Rv3868 and its mutants

	$V_{max}\, (\text{nmol/min/mg})$	$K_{cat}\, (\text{min}^{-1})$	$K_m\, (\mu\text{M})$	$K_{cat}/K_m\, (\text{M}^{-1}\text{S}^{-1})$	$n\, (\text{hill coefficient})$	ΔG_{ATP}^* (kcal/mol)
CT-Rv3868	141.2±12	2.541±0.23	73.39±20	577	1.40	0.0
P336A	130.9±12	2.357±0.23	79.97±21	491	1.37	0.096
T338A	87.33±30	1.572±0.5	524.3±70	49	1.34	1.47
K340A	117.2±15	2.110±0.28	92.29±30	380	1.31	0.256
R429A	106.4±25	1.914±0.5	439.8±60	72	1.15	1.244

*$\Delta G = -RT\ln\left([k_{cat}/k_m]_{\text{mut}}/[k_{cat}/k_m]_{\text{wt}}\right)$
Figure legends

FIGURE 1: Functional characterization of Rv3868
(A) The protein was incubated with [γ-32P] ATP for various time intervals to observe the ATPase activity. The amount of ATP hydrolyzed at each time point is shown as a percentage of the original [γ-32P] ATP before incubation at 30°C. Each point is the average of the values obtained from three independent experiments. The insets represent the autoradiography profiles taken from a TLC. (B) Michaelis-Menten plot of ATP hydrolysis by Rv3868. (C) Relative NTP hydrolysis (arbitrary units) when [γ-32P] ATP and [γ-32P] GTP were used as substrates of Rv3868.

FIGURE 2: Protein and salt concentration dependence of the oligomerisation in Rv3868
(A) Size exclusion chromatography profile of Rv3868 (~3µM) on a Superdex 200HR column in 25 mM Tris, 50 mM NaCl (pH 7.0) and at 25°C. Inset represents the calibration curve of the column. (B) Rv3868 at concentrations of ~7-15 µM (Red) and >15 µM (green) was incubated for 1 h at 25 °C before centrifugation and applied onto a Superdex 200HR column in 25 mM Tris buffer. The hexameric form is represented by I while II refers to a high order oligomeric form. The blue and cyan lines represent the elution profile in the presence of 500 mM and 750 mM NaCl respectively in the same buffer. Elution volumes corresponding to the Mr of standard proteins used in calibration are indicated by arrows.

FIGURE 3: Domain organization and limited proteolysis of Rv3868; purification of NT-Rv3868
(A) An estimate of the folded regions in Rv3868 calculated using the program Fold Index. Predicted folded regions are shown in green while unstructured regions are in red and clearly show the demarcation of the protein sequence into two distinct domains (B) A schematic depiction of the predicted domain boundaries and motifs of Rv3868. (C) SDS-PAGE analysis of Rv3868 digested with trypsin at a protease to protein ratio of 1:100 (w/w) and 1:50 (w/w). Lanes 2-5 as also lanes 6-9 represent the reactions after 5, 10, 15 and 30 min respectively (D) Size exclusion chromatography profile of Rv3868 after trypsin digestion for 30 min (NT-Rv3868). The protein was loaded onto column in 25 mM Tris, 50 mM NaCl (pH 7.0) and at 25°C. The inset in panel D depicts the SDS-PAGE analysis of the purified N-terminal domain Lanes 1-4 represent molecular weight markers, reaction after 0 min, after 30 min and purified protein following size exclusion chromatography respectively.

FIGURE 4: Purification and functional characterization of CT-Rv3868
(A) Size exclusion chromatography profiles of CT-Rv3868 in the absence (gray line) and presence of ATP (black line). The column was equilibrated with 25 mM Tris, 50 mM NaCl, pH 7.0, (+/- 2 mM ATP) and at 25°C. Inset represents relative ATPase activity of different forms. (B) Time dependence of ATPase activity of CT-Rv3868. The reactions were carried out at 30°C for the indicated time periods (min). (C) Michaelis-Menten plot of ATP hydrolysis by CT-Rv3868. The ATPase assays were carried out using 1.0 µg
protein and at the indicated concentrations of ATP. (D) Concentration dependence of ATP hydrolysis was analyzed using a plot involving specific activity (pmol min\(^{-1}\) mg\(^{-1}\)) versus CT-Rv3868 concentration (µg).

FIGURE 5: In silico modeling and mutational analysis of Rv3868

(A) Hexameric association in Rv3868. The nucleotide binding sites occur at the inter-subunit interfaces as in other AAA-ATPases. The arrows indicate movement of N-terminal domain predicted by the dynamic quenching and other experiments. The ATP-binding site is marked by a box. (B) Close-up of the ATP binding site in Rv3868. The residues corresponding to the Walker A motifs are indicated by cyan space-filled models. Two tyrosine residues (439 & 466) in the close vicinity of the nucleotide are depicted as red sticks. Arg 429, the predicted ‘sensor arginine’ from the modeling studies, is depicted as a yellow stick and is from a neighboring subunit. (C) Michaelis-Menten plots of ATP hydrolysis by CT-Rv3868 (□) and CT-Rv3868\(^{P336A}\) (○), CT-Rv3868\(^{T338A}\) (●), CT-Rv3868\(^{K340A}\) (△), CT-Rv3868\(^{R429A}\) (*).

FIGURE 6: Steady-state nucleotide binding of CT-Rv3868.

(A) Emission spectra of 1µM CT-Rv3868 (□) and in presence of eg. 0.1 mM (○), 0.2 mM (△), 0.5 mM (■), 0.7 mM (▲), 1.0 mM (+) ATP respectively. Inset represents the Scatchard plot of the titration of CT-Rv3868 (FormIII) and ATP according to Eq. (5) to determine the binding stoichiometry of the complex. (B) Steady-state binding of ATP to CT-Rv3868 (■) and CT-Rv3868\(^{R429A}\) (▲). Data are plotted as the percentage of fluorescence change versus ATP concentration (mM). (C) ATP-induced alterations in the molecular dimension of CT-Rv3868\(^{R429A}\) (upper panel) and CT-Rv3868 (lower panel). Size-exclusion chromatographic profiles for proteins (black) and on incubation with 2.0mM ATP (grey) on a Superdex-200 column at pH 7.0 and 25 °C. The columns were run with the same concentration of ATP in which the protein sample was incubated. The samples were incubated for 1 hr in ATP before column chromatography.

FIGURE 7: Trp fluorescence quenching studies of Rv3868 and NT-Rv3868 by acrylamide and ATP

The quenching of intrinsic fluorescence of the proteins was followed after addition of increasing concentrations of acrylamide or ATP. (A) Fluorescence quenching observed in Rv3868 (●) Rv3868+ATP (▲) and NT-Rv3868 (▲) proteins on addition of acrylamide. The Stern-Volmer quenching constants (K\(_SV\)) corresponding to plot slopes (Equation 6) (B) Relative decrease in TRP fluorescence upon the addition of ATP in 1 (Rv3868+ATP+MgCl\(_2\)), 2 (Rv3868+ATP) and 3 (NT-Rv3868+ ATP+MgCl\(_2\)) samples respectively.
Figure 1

A

B

C

D

Time (min)

ATP

Pi

ATP hydrolysis [% TLC]

V0 (fmol/min)

ATP (μM)

Relative NTPase activity (a.u.)

GTP

ATP

Control

+0.5M NaCl

+Casein

+EDTA

1 2 3 4 5
Figure 2
Figure 3
Figure 4

A. Elution profile of an unknown compound.

B. Time course of a reaction, showing a linear increase with time.

C. ATP concentration vs. enzyme activity, indicating a saturating curve.

D. Specific activity of a protein as a function of CT-Rv3368 concentration.
Figure 5
Figure 6

A

Fluorescence intensity (a.u.)

Wavelength (nm)

B

ΔF%

ATP (mM)

C

CT-Ro3868-R429A

CT-Ro3868
Figure 7

A

B

F_0/F

Acrylamide (M)

Δ Florescence (随意)

1 2 3
Characterization of Rv3868: An essential hypothetical protein of the ESX-1 secretion system in M. tuberculosis
Amit Luthra, Anjum Mahmood, Ashish Arora and Ravishankar Ramachandran

J. Biol. Chem. published online October 30, 2008

Access the most updated version of this article at doi: 10.1074/jbc.M807144200

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC’s e-mail alerts

Supplemental material:
http://www.jbc.org/content/suppl/2008/11/04/M807144200.DC1