Dosimetric Comparison of Robotic and Linear Accelerator Multi-Leaf Collimator-Based Stereotactic Radiosurgery for Arteriovenous Malformation

Venkatesan Kaliyaperumal, Susan Abraham, Maragatha Veni, Susovan Banerjee, S Tamilselvan, Deepak Gupta, K. Dayanithi, D. Manigandan, Saumyaranjan Mishra, Shyam Singh Bisht, Tejinder Kataria
Division of Radiation Oncology, Medanta Cancer Institute, Medanta The Medicity, Gurgaon, Haryana, India

Abstract

Purpose: To investigate the dosimetric comparison of different collimators which are used in robotic radiosurgery (cyberknife-CK) and linear accelerator (LINAC) in arteriovenous malformation (AVM). Materials and Methods: Twenty-five AVM patients were planned in CK using FIXED cone, IRIS collimator, and multi-leaf collimator (MLC) based in LINAC. Dosimetric comparison was performed using Paddick conformity index (CI_{Paddick}) and International Commission on Radiation Units and measurements (ICRU) homogeneity index (HI_{ICRU}), gradient score (GS), normal brain dose received by 10cc (D_{10cc}) and critical structure (brain stem, optic chiasma, optic nerves) doses. Paired sample t-test was used for statistical analysis. Results: Mean treatment volume was 3.16cc (standard deviation ± 4.91cc). No significant deviation (P =0.45, 0.237 for FIXED vs. IRIS and FIXED vs. MLC, respectively) was found in target coverage. For CI_{Paddick} the mean difference (MD) between FIXED- and MLC-based plans was 0.16 (P = 0.001); For HI_{ICRU} difference between FIXED and IRIS was insignificant (0.5, P = 0.823); but, when FIXED versus MLC, the deviation was 7.99% (P = 0.002). In FIXED- and MLC-based plans, significant difference was found in GS70 and GS40 (P < 0.041 and 0.005, respectively). MD between FIXED- and MLC-based plans for normal brain for 5Gy, 10Gy, 12Gy, and 20Gy were 36.08cc (P = 0.009), 7.12cc (P = 0.000), 5.84cc (P = 0.000) and 1.56cc (P = 0.000), respectively. AVM volume <0.7cc should be treated with CK FIXED and >0.7cc were treated by using FIXED or IRIS collimators. AVM volume > 1.4cc can be treated by either LINAC MLC-based SRS or CK. Conclusion: Our study shows CK collimator (IRIS and FIXED) could be able to treat brain AVMs in any size. Linac MLC-based SRS has some limitations in terms of conformity and low-dose spillage, and advantages like reduced treatment time and MU.

Keywords: Arteriovenous malformation, collimator, stereotactic radiosurgery

Received on: 03-09-2020 Review completed on: 29-03-2021 Accepted on: 29-03-2021 Published on: 05-05-2021

INTRODUCTION

Arteriovenous malformation (AVM) is a congenital vascular abnormality with abnormal communication between arteries and veins, resulting in arteriovenous shunting. This intervening network of abnormal vessels is called nidus. Curative AVM embolization achieves high obliteration rates with a low complication rate for carefully selected lesions.[1] Stereotactic radiosurgery (SRS) is preferred for AVMs located in eloquent locations or for smaller AVMs without any history of hemorrhage, or sometimes in combination with surgical interventions. SRS can be frame-based or frameless and can be delivered using Gamma Knife® (GK), Cyberknife (Accuray Incorporated, Sunnyvale, CA, USA) or by linear accelerators (LINAC). Most literature report results by using GK SRS (Elekta AB, Stockholm, Sweden).[2,3] CK-based frameless SRS is a safe and effective measure providing equal outcomes to traditional frame-based methods without stereotaxic frame.[4] Over time, LINAC-based radiation treatment has been modified in such a way that it is now being.
used more frequently for radiosurgery.\textsuperscript{[5,6]} Dose plans that have higher conformity index (CI) and gradient index (GI) produce a low local progression and minimal complication for brain metastasis SRS.\textsuperscript{[7]} High conformity is required in SRS plans, which emphasize the steep dose gradient and the reduction of the normal structure dose.\textsuperscript{[8]}

Uniformity of dose distribution inside the target volume is analyzed by using homogeneity index (HI); however, there is no consensus for the acceptable criteria.\textsuperscript{[9]} This plan quality metrics are needed for comparing the different modalities of SRS and its dose calculation algorithm.\textsuperscript{[10]} An earlier study, which compared CK and LINAC plans, was performed with a large volume AVM.\textsuperscript{[11]} The present study evaluated the dosimetric impact of three different collimators used in SRS. A comparison was made between FIXED cone (FIXED) and IRIS\textsuperscript{®} collimator in CK and multi-leaf collimator (MLC) beam modulator in Elekta LINAC. AVM volume and its dosimetric significance with these collimators were analyzed.

\section*{Materials and Methods}

\subsection*{Patient selection and target delineation}

Twenty-five patients, who were treated with single fraction radiosurgery between April 2014 and July 2020, were analyzed. Patient demography, prescription dose, and prescription isodose line are shown in Table 1. All the patients were treated with Cyberknife. After obtaining an informed consent, the patients were simulated with brain thermoplastic cast in chin neutral position. Planning computed tomography (CT) scan was performed with 1 mm slice thickness in Siemens Somatun® 64 slice CT scanner without any contrast enhancing agent. Magnetic resonance imaging (MRI) sequences were acquired with 1 mm axial slice thickness in T1 sequence (with contrast) in same planning simulation set up. CT angiography was done with digital subtraction angiography (CTDSA) and two-dimensional (2D) images were reconstructed volumetrically with the axial slice thickness of 1 mm. Planning CT was taken as the primary image in treatment planning system (TPS), MRI, and CTDSA was used as secondary imaging modality. Image fusion was done with rigid image registration algorithm for each imaging modality. AVM was delineated by a team of neuroradiologist, neurosurgeon, and radiation oncologist in MRI and CTDSA [Figure 1]. Normal structures such as brain, optic chiasma, optic nerves, and brainstem were delineated. Optimization was performed using Multiplan system and treatment delivery were done by Cyberknife VSI (Accuray, Sunnyvale, CA, USA). MLC-based SRS plans were generated in Monaco planning station.

\subsection*{CK treatment planning}

CK has variable IRIS and FIXED collimators system which can change between 5 mm and 60 mm at SSD of 80 cm. IRIS has two stacked banks of 6 tungsten segments that create a 12-sided variable aperture, which approximates a circular aperture and produces beam profiles similar to the FIXED collimators. The use of IRIS collimator can reduce overall treatment time and monitor units.\textsuperscript{[12]} FIXED collimator has 12 variable cones (5 mm, 7.5 mm, 10 mm, 12.5 mm, 15 mm, 20 mm, 25 mm, 30 mm, 35 mm, 40 mm, 50 mm, 60 mm defined at 80 cm source to axis distance (SAD), which can be interchanged. Six-dimensional skull tracking is the intra-fractional imaging method of correcting the rotational and translational errors from generated DRRs from projection of orthogonal X-ray’s imaging systems. The treatment planning was performed by using Multiplan\textsuperscript{®} (Accuray Incversion 4.3). Collimators were selected according to the size of AVM and the number of collimators was limited to three for FIXED. In IRIS, it can be chosen from 7.5 mm to 60 mm, but three to four apertures are preferably chosen. 6MV flattening filter free (FFF) beam was used with non-isocentric beam placements for planning. Planning parameters for the CK (FIXED and IRIS collimator) are shown in Table 2. Brain subtracted AVM was taken as the critical structure. Sequential optimization algorithm was used

\begin{table}[h]
\centering
\begin{tabular}{|l|l|}
\hline
\textbf{Isodose line (%)} & \textbf{n (\%)} \\
\hline
70-75 & 6 (24) \\
76-80 & 9 (36) \\
81-83 & 8 (32) \\
90-92 & 2 (8) \\
\hline
\end{tabular}
\caption{Patient characteristics, prescription dose and isodose lines}
\end{table}
to reduce the MU and obtain an optimal one. After desired dose distribution was achieved, the final dose calculation was performed using the ray-tracing algorithm [Figure 2]. Quality assurance was performed by using BB16-SDVP (Stereotactic Dose Verification Phantom-Standard Imaging, Madison WI, USA) was used for patient-specific quality assurance (PSQA) in CK for a specific plan to verify all the parameters such as robot position, MU delivery, and dose accuracy. Dimension of the phantom is 20 cm (length) × 20 cm (breath) × 10 cm (height) and it is made up of two 4 cm build-up slabs on top and bottom, as well as two interchangeable 2 cm test inserts in the middle. Density of the slab is 1.09 g/cc with nominal CT density is 70 and relative electron density to water is 1.055. Gold and lead fiducial markers were placed inside the phantom which provides further orientation and positional accuracy when performing PSQA. A16 Exradin microchamber (Standard Imaging, Madison WI, USA) was used for PSQA which has the volume of 0.007 cc and collecting diameter is 0.33 mm.

Multi-leaf collimator-based linear accelerator treatment planning

Volumetric modulated arc therapy (VMAT) planning was done in Monaco (Version 5.11, Elekta Instruments AB, Stockholm, Sweden) TPS. VMAT planning was done by using 4 Full/Semi/Partial arcs which includes coplanar and noncoplanar beams (for all plans) [Table 2]. Previously published papers were proposed that multiple noncoplanar and coplanar arc plans are superior plan quality compared to single coplanar arc plans. Based on this, number of arcs including coplanar and non-coplanar arc angle was chosen and the overlap in the skin surface was avoided. Elekta synergy® (beam modulator) had the 6MV flattening filter (FF) beam and a 4 mm MLC leaf width at the isocenter with a dose rate of 600MU/min. Shell structures were created around the AVM for achieving high conformity and dose constraints were provided to the TPS for reducing the brain-AVM dose. Two-stage optimizations were performed by using the inverse planning optimization algorithm the inverse planning algorithm was used for the most feasible solution to achieve the target coverage and reducing the critical structure (e.g., brainstem and optic chiasma) doses. The separation of the arcs was determined using the stage 1 optimization process. Once the desired fluence (high and low dose distribution) achieved then the segmentation process initiated. After the final dose calculation, the dose distribution around the target was evaluated. The above process was repeated for achieving the deliverable plan which satisfies the target conformity and normal structure doses. Finally, the Monte Carlo algorithm was used to perform the final dose calculation with 1.5 mm grid size and 1% statistical

Table 2: Volumetric modulated arc therapy and cyberknife planning parameters

| Arc specification               | Angles                  |
|---------------------------------|-------------------------|
| Arc 1 (coplanar) partial/semi arc| Start angle 270°-300°, Stop angle 90°-120° |
| Arc 2 (coplanar) (full arc)     | Start angle 179°, Stop angle 181° |
| Arc 3 (noncoplanar) couch-270°-320° | Start angle 180°, Stop angle 100° |
| Arc 4 (noncoplanar) couch-45°-90° | Start angle 270°-300°, Stop angle 90°-120° |

| Minimum segment width (cm)   | 0.5                      |
| Fluence smoothing            | Medium                   |
| Target margin                | Tight (2 mm)             |
| Number of segments           | Mean = 606 (range 293-997) |
| Avoidance margin             | Normal (8 mm)            |

| Cyberknife planning parameters | FIXED | IRIS |
|--------------------------------|-------|------|
| Number of node, mean (range)   | 84 (50-106) | 77 (34-99) |
| Number of beam, mean (range)   | 161 (61-240) | 150 (46-226) |
| Minimum MU, mean (range)       | 18.05 (3.7-82) | 8.4 (4.9-16) |
| Maximum MU, mean (range)       | 127.7 (69.5-205) | 127.8 (91-204) |

VMAT: Volumetric modulated arc therapy, MU: Monitor units
uncertainty [Figure 3]. RW3 plates® was used for plan specific quality assurance.

**Plan analysis**

**Target coverage**

Volume of AVM, which received 98% of prescription dose, was taken as target coverage.

**Paddick conformity index**

Radiation Therapy Oncology Group (RTOG) CI\[^{[15]}\] is defined as the ratio between the volume of reference dose (V\(_{RI}\)) and the target volume (TV). CI\(_{RTOG}\) does not quantify the reference dose that is going outside the target volume. It could lead to an acceptable CI, but reduced target dose coverage or prescription isodose going outside the target volume. Due to the above-mentioned issue in CI\(_{RTOG}\), Paddick developed the CI that includes a target coverage and volume outside the target, which is receiving the prescription dose.\[^{[16]}\]

- \( \text{CI}_{\text{paddick}} = \frac{TV_{\text{PIV}} \times TV_{\text{RI}}}{TV \times V_{\text{RI}}} \)
- \( TV_{\text{PIV}} = \text{volume of target which is receiving prescription isodose volume (PIV)} \)
- \( TV = \text{volume of target} \)
- \( V_{\text{RI}} = \text{volume of PIV} \)

In the above equation, target coverage and plan selectivity has been included. If the target coverage is adequate and the dose spillage is observed outside the target volume, then the indices will decrease. The dose spillage is less outside the target volume; at the same time, if the dose coverage is reduced inside the target volume, then the CI\(_{\text{paddick}}\) value is reduced. Ideally, the CI\(_{\text{paddick}}\) value is 1, if the target coverage is 100% prescription dose and the volume received outside the target is zero.

**International Commission on Radiation Units homogeneity index**

International Commission on Radiation Units (ICRU) homogeneity index (HI) defines the overdose and it cannot indicate the underdosage to the target. Therefore, ICRU 83\[^{[17]}\] recommends for the ratio of difference between the near minimum and the near maximum to the median dose. Therefore, ICRU homogeneity index (HI) defines the overdose and it cannot indicate the underdosage to the target. Therefore, ICRU homogeneity index (HI) defines the overdose and it cannot indicate the underdosage to the target.

**Gradient score**

In single fraction stereotactic treatments, low-dose region is also important to analyze normal tissue complication. In order to analyze the low dose, the GI is defined as the ratio of the volume of 50% isodose to the volume of prescription isodose.\[^{[18]}\]

\( \text{Gradient Score (GS)}_{50} = \frac{PIV_{40\%}}{PIV} \)

PIV\(_{40\%}\), volume of 50% prescription isodose; PIV.

The quality of the plan could be analyzed using further low doses (e.g., 40%, 30%) also. Although a GS of 40% was followed for the present study, 30% gradients were also extracted.

- \( \text{GradientScore}_{30} = \frac{PIV_{70\%}}{PIV} \)
- \( \text{GradientScore}_{40} = \frac{PIV_{80\%}}{PIV} \)
- \( \text{GradientScore}_{50} = \frac{PIV_{90\%}}{PIV} \)
- \( PIV = \text{volume of 50\% prescription isodose;} \)
- \( PIV_{70\%} = \text{volume of 70\% prescription isodose;} \)
- \( PIV_{40\%} = \text{volume of 40\% prescription isodose} \)
- \( PIV_{30\%} = \text{volume of 30\% prescription isodose} \)
- \( \text{Normal structure dose and image guidance.} \)

The normal brains receiving 5Gy (\( V_{40\%} \)), 10Gy (\( V_{10\%} \)), 12Gy (\( V_{12\%} \)), and 20Gy (\( V_{20\%} \)) were derived and compared among FIXED, IRIS and MLC-based plans. The dose received by normal brain volume of 10cc (\( D_{10\%} \)), Brainstem, Optic chiasma, and Optic nerves were compared for three different collimators. In Cyberknife, the intra-fractional motion is taken care by orthogonal 2D-kilo voltage imaging system. In LINAC frameless SRS, pretreatment volumetric CBCT was used for patient positioning verification. In this study, we evaluated the patient setup uncertainties in both Cyberknife and LINAC.

**Statistical analysis**

Statistical analysis was performed using IBM SPSS Statistics for Windows, version 24 (IBM Corp., Armonk, N.Y., USA). Descriptive statistics for planning parameters (Target volume, treatment time, etc.), dosimetric data (target conformity, target homogeneity, etc.), and normal structure doses were analyzed. Paired sample \( t \)-test (dependent sample \( t \)-test) was used to analyze the mean difference (MD) among the sets of data and its significance. In the above test, FIXED collimator was taken as a reference and its parameters were compared with IRIS and MLC-based planning parameters.

**Results**

The median age of the study cohort was 27 years (range 13–52 years). The mean treatment volume of AVM was
3.16cc (standard deviation [SD] 4.91cc) (range 0.124cc–22.19cc). The mean short axis and the long axis diameter was 13.7 mm (range 3–34.5 mm; SD ± 8.68 mm) and 21.1 mm (range 7–45 mm; SD ± 10.71 mm), respectively [Table 1]. The prescription isodose line was ranging from 70% to 92% with a mean value of 79% (SD ± 5.2%). No significant deviation was found in AVM dose coverage ($P = 0.45$ and 0.237 for FIXED vs. IRISs and FIXED vs. MLC, respectively) between the collimators. Dose conformity was better for CK plans, and the mean CI was comparable for FIXED and IRIS plans. When comparing CI$_{\text{Paddick}}$ no significant ($P = 0.188$) deviation was found between FIXED and IRIS. Mean CI$_{\text{Paddick}}$ was 0.67 (range 0.41–0.91, SD ±0.14) for FIXED plan and it was 0.51 (range 0.31–0.85, SD ± 0.18) in MLC-based plan (excluding the two smallest targets), and it was found statistically significant ($P = 0.001$). The mean CI$_{\text{Paddick}}$ for IRIS collimator was 0.63 (range 0.40–0.86, SD ± 0.12) and it was statistically insignificant ($P = 0.231$) when comparing FIXED collimator-based plans [Tables 3 and Figure 4].

The difference of HI$_{\text{ICRU}}$ between FIXED and IRIS was insignificant (MD = 0.5, $P = 0.823$), however, the deviation was 7.99% ($P = 0.002$) when the FIXED plan was compared with the MLC-based plan. The analysis of lowdose spillage was done by generating different gradient indices such as GS$_{70}$, GS$_{50}$, GS$_{40}$, and GS$_{30}$. CK plans showed lower GI values [Table 3] owing to appreciable sparing of normal brain volume receiving high doses. Comparing GSs (GS$_{70}$, GS$_{50}$, GS$_{40}$, and GS$_{30}$), an insignificant difference was found between FIXED and IRIS plans; however, a significant difference was found between GS$_{70}$ and GS$_{30}$ ($P = 0.041$ and 0.005, respectively) in FIXED and MLC-based plans. The mean GS$_{70}$ for the CK plan (Fixed) was 3.8, whereas a higher index of mean value of Linac plan is 7.3 resulting in statistical significance.

The MD between FIXED and MLC-based plans of $D_{10cc}$ received by normal brain was 3.5Gy and it was found to be significant ($P = 0.000$) [Table 4] in favor of CK. MD of $D_{10cc}$ of brain-AVM between FIXED and MLC-based plans were 36.08cc ($P = 0.009$), 7.12cc ($P = 0.000$), 5.84cc ($P = 0.000$), and 1.56cc ($P = 0.000$) for 5Gy, 10Gy, 12Gy, and 20Gy, respectively. Doses to brainstem, optic chiasma, and optic nerves were acceptable for both CK and MLC-based plans [Table 5]. Plans generated in CK using FIXED and IRIS collimators had comparable dosimetric quantities and MU values but significantly higher treatment time for FIXED collimator. The distance between 100% prescription dose to 80% and 50% was compared for anterior, posterior, lateral-medial, and superior-inferior directions for all three collimators [Table 6]. In all the targets, the distance between these two isodose line was lesser and comparable between FIXED and IRIS collimator when comparing MLC-based plans in all directions (except superior-inferior for some targets). Mean MU for delivering 15Gy to 22Gy to AVM was 11582 (SD ± 3649), 9999.4 (SD ± 3126.2), and 5870 (SD ± 1171.5) for FIXED, IRIS and MLC-based plans, respectively [Table 4]. Analysis of the LINAC plan shows a significantly lesser MU and shorter treatment times with respect to the CK plans. However, patient positional error during the delivery is a concern. In CI$_{\text{Paddick}}$, the maximum

![Figure 4: Arteriovenous malformation volume versus Paddick CI for multi-leaf collimator, FIXED and IRIS collimator-based plans. Above 1.5cc arteriovenous malformation volume, multi-leaf collimator and CK plans shows the small deviation](image-url)
Table 4: Mean, standard deviation, t and P value of normal brain $D_{10cc}$, $V_{5Gy}$, $V_{10Gy}$, $V_{12Gy}$ and $V_{20Gy}$

| Brain-AVM | Collimator | Mean ± SD (Gy) | t | P |
|-----------|------------|----------------|---|---|
| $D_{10cc}$ (Gy) | FIXED | 8.51±4.23 | | |
| | IRIS | 8.61±3.97 | −0.085 | 0.743 |
| | MLC | 12.04±3.52 | −3.204 | 0.000 |
| $V_{5Gy}$ (cc) | FIXED | 34.83±44.44 | | |
| | IRIS | 33.09±40.58 | 0.144 | 0.886 |
| | MLC | 70.91±73.43 | −2.846 | 0.009 |
| $V_{10Gy}$ (cc) | FIXED | 10.38±14.09 | | |
| | IRIS | 11.92±12.63 | −0.409 | 0.684 |
| | MLC | 17.50±15.56 | −11.324 | 0.000 |
| $V_{12Gy}$ (cc) | FIXED | 6.75±9.5 | | |
| | IRIS | 7.24±8.63 | −0.191 | 0.850 |
| | MLC | 12.59±12.20 | −7.242 | 0.000 |
| $V_{20Gy}$ (cc) | FIXED | 0.46±0.72 | | |
| | IRIS | 0.54±0.78 | −0.42 | 0.676 |
| | MLC | 2.02±2.38 | −3.958 | 0.001 |

$D_{10cc}$: Dose received by 10cc volume of normal brain, $V_{5Gy}$: Volume of normal brain receiving 5Gy, $V_{10Gy}$: Volume of normal brain receiving 10Gy, $V_{12Gy}$: Volume of normal brain receiving 12Gy, $V_{20Gy}$: Volume of normal brain receiving 20Gy, AVM: Arteriovenous malformation, SD: Standard deviation, MLC: Multi-leaf collimator

Table 5: Mean, standard deviation, t and P value of brainstem, optic chiasma, optic nerve left, optic nerve right, monitor units and treatment time for FIXED, IRIS and multi-leaf collimator-based plan

| Critical structure | Collimator | Mean ± SD (Gy) | t | P |
|--------------------|------------|----------------|---|---|
| Brain stem | FIXED | 5.28±4.35 | | |
| | IRIS | 5.71±4.75 | −0.906 | 0.374 |
| | MLC | 4.75±4.25 | 1.125 | 0.272 |
| Optic chiasma | FIXED | 2.23±2.14 | | |
| | IRIS | 1.89±1.84 | 2.45 | 0.022 |
| | MLC | 3.21±3.07 | −3.94 | 0.001 |
| Optic nerve left | FIXED | 1.25±1.64 | | |
| | IRIS | 1.22±1.75 | 0.203 | 0.841 |
| | MLC | 1.84±2.00 | −3.024 | 0.006 |
| Optic nerve right | FIXED | 0.98±1.10 | | |
| | IRIS | 1.00±1.09 | −0.156 | 0.878 |
| | MLC | 1.61±1.15 | −3.471 | 0.002 |
| MU | FIXED | 11.583±3650 | | |
| | IRIS | 9.999±5.316 | 1.648 | 0.106 |
| | MLC | 5.871±1172 | −7.451 | 0.000 |
| Delivery time (min) | FIXED | 50.56±9.69 | | |
| | IRIS | 37.12±8.33 | 5.259 | 0.000 |
| | MLC | 26.08±3.19 | −12.002 | 0.000 |

MU: Monitor units, MLC: Multi-leaf collimator, SD: Standard deviation

The absolute mean dose difference between planned and measured doses in phantoms were 1.66% (SD = 0.77%), 1.95% (SD =±0.87%), and 1.83% (SD=±1.02%) for Fixed, IRIS and MLC based plans, respectively.

**Discussion**

This study evaluated the plan quality comparison of FIXED and IRIS collimators in CK plans and MLC-based collimator in LINAC plans for SRS. Target coverage for the AVM was above 98% for all three collimator-based plans. Blamek et al.[19] studied the dosimetric comparison for large or critically located AVM plans, which were generated by CK and LINAC mMLC with a mean volume of 21.7cc (1.02cc to 146.45cc) for 15 patients. The mean CI$_{paddick}$ (it was denoted as conformation number-CN[19]) was 0.68, 0.58 for CK based and L-mMLC plans, respectively. They found, all the CK plans has the superior conformity over mMLC based linac plans and the conformity has been worsened if the volume was <1cc. Stanley et al.[20] compared the various indices for MLC-based SRS in brain metastasis patients and stated that the mean CI$_{paddick}$ value was 0.556 and the maximum CI value was observed at 0.12 cc. In our study, the same pattern was observed with above study but in single large volume target (CI$_{paddick}$ = 0.505 for 2.627 cc) has the worst conformity. It shows the conformity is not always depends on the volume, but it is also depending on the shape of target which is the scope of future research especially in vast irregular (nidus volume) targets like AVM. In single largest target (22.19cc), the CI$_{paddick}$ value shows the better conformity in MLC based plan and it was due to number of arcs and high intensity modulation were provided the better conformity than cyberknife-based plan.

Conformity and gradient (high dose and low dose spillage) are also depending on coplanar and non-coplanar arrangements of the beam. Clark et al.[13] studied the single-isocenter VMAT plan feasibility for multiple brain metastasis and stated that moderate dose spill (GS) is reduced when multiple non-co-planar arcs are used. Multiple noncoplanar arcs could provide a better GS where the targets are close to the critical structures. Hanna et al.,[21] evaluated VMAT based image guided radiosurgery for multiple (range 2–9) brain metastasis with the volume in the range of 0.89—65.05 cc. They have used multiple noncoplanar which has 3–4 couch angles (~0°, 60°, and 300°) with co-planar arcs for all the patients and elucidated the multiple nonplanar arcs could provide more conformity and sparing of normal brain than co-planar arcs. In our study, all the patients were planned with coplanar and noncoplanar arcs (at least two noncoplanar) for achieving less normal brain dose. The clinical advantage of high dose inside the target is preferable for SRS and it could lead to excellent local control of the tumor and reduces the radio necrosis in brain. Due to this, the prescription isodose kept at the periphery is 60%–80% (relative to maximum dose) range.[22]

In this study, the HI$_{ICRU}$ for CK-based plans were in the range of 18%–32% except one AVM which was inside the
Table 6: Distance between prescription isodose to 80% and 50% isodose for anterior, posterior, right, left, superior and inferior directions—FIXED, IRIS and multi-leaf collimators for small, medium, large volume targets

| Target Volume | Distance (100%−80% dose) (mm) | Distance (100%−50% dose) (mm) |
|---------------|-------------------------------|-------------------------------|
| Small volume  | FIXED | IRIS | ML | FIXED | IRIS | ML |
| Anterior      | 2.75 | 5.1  | 1.21 | 2.2 | 4.6  | 5.05 |
| Posterior     | 3.66 | 5.1  | 4.5  | 2.2 | 4.6  | 5.05 |
| Right         | 2.74 | 3.58 | 1.07 | 1.2 | 1.12 | 1.87 |
| Left          | 3.1  | 3.74 | 1.21 | 1.1 | 1.15 | 1.65 |
| Superior      | 2.8  | 4.58 | 2.5  | 1.1 | 1.45 | 1.2 |
| Inferior      | 2.77 | 3.5  | 5.4  | 1.1 | 1.31 | 2.9 |

Mean distance was estimated based on all the planned AVMs. AVM: Arteriovenous malformation; MLC: Multi-leaf collimator.

The mean GS$_{10}$ of MLC-based plan was 1.92 times higher than that of the FIXED CK plan. The above-mentioned effect was observed for GS$_{50}$ (1.31 times), GS$_{10}$ (2.42 times), and GS$_{50}$ (1.98 times) also (excluding the smallest volume target). Above 1.5cc volume, GS$_{50}$ and GS$_{10}$ were comparatively less (GS$_{50}$ MD = 0.39 [P < 0.14], GS$_{10}$ MD = 0.27 [P < 0.368]) and they were insignificant when compared with the FIXED- and MLC-based plans [Figure 6]. It was observed in MLC-based plans that the irregularity of the AVM could increase the D$_{98%}$V$_{10Gy}$ to the brain. Below 0.7cc volume, GS$_{50}$ and GS$_{10}$ were comparatively less (GS$_{50}$ MD = 1.49 [P < 0.006], GS$_{10}$ MD = 2.77 [P < 0.002], GS$_{50}$ MD = 4.9 [P < 0.015]) and they were significant when compared to the FIXED and the IRIS plans [Figure 7]. Han et al. [28] studied dosimetric comparison of fractionated radiosurgery using Gamma knife, CK and linac based plans for multiple large brain metastases. They stated the average sparing of normal brain volume receiving 12Gy and 20Gy has been reduced by ~20% for GK and CK based plans when comparing linac plans. In CK, the collimator resolution is ranging from 2.5 to 10 mm and it could provide the steeper dose gradient and increased conformity. However, in linac based MLC has the resolution of 4 mm in longitudinal axis has the limitation for improving the conformity and dose gradient even with the increasing the number of coplanar/ noncoplanar arcs in linac-based plans. Decreasing trend was observed when increasing the AVM volume for all three collimators [Figure 8]. FFF beam could provide increased clinical efficiency. [27] Penumbral width for the FFF beam and the FF beam is also a factor for dose gradient and the FFF beam requires a less modulation when compared to the FF beam. [28] FFF beam requires more MU when compared to the FF beam because of the conical shape profile, which crosses a steep dose gradient between the central and the peripheral areas of the target. It increases better conformity and steep dose gradient. Furthermore, leaf width and modulation of the...
beam are the crucial factors to conform the dose within the target while reducing the higdose spillage.

In CK, the SSD was changed to target and the collimator size was changed for performing the modulation. The advantage of CK beam delivery is that FFF beams with conical shaped collimators provide a sharper dose fall-off. In our results, the target conformity is more in CK-based plans for both FIXED and IRIS collimators, and it was superior in the FIXED collimator where a 5 mm cone was used. A 5 mm cone is not recommended in IRIS,[12] due to the dosimetric straggling effect and the poor reproducibility of shape. In this study, VMAT was showing lesser delivery time due to the minimum segment size being comparatively bigger than the CK collimator size (e.g., 5 mm). In CK, a higher degree of freedom to manipulator movement provides better conformity, which leads to more treatment time. Increased MU in CK is due to the higher number of positions for the manipulator and the changing of collimator for the same position. Where available FFF beam delivery could reduce the treatment time further in VMAT plans, when compared to FF beams used by us. Kang et al.[29] studied dosimetric characteristics of small MU settings and observed 10% of error when a small MU segment was used. In LINACbased cranial SRS, a small segment, and a low MU could lead to dosimetric uncertainty in beam delivery. If dose delivery uncertainty was <1% in <5MU and it is considered dosimetrically acceptable.[30] In our study, the mean MU per segment is 4.2 (SD ± 2.8) and it is dosimetrically feasible to deliver (acceptable tolerance <1%). Podder et al.[31] studied the leakage measurement for synergy beam modulator and the mean and maximum leakage was found to be 0.9% ±0.014% and 1.6% ±0.07%, respectively. The maximum leakage of FIXED and IRIS is 0.05% and 0.12%, respectively. The two-bank tungsten design in this collimator could reduce the leakage, which is less than that of the FIXED collimator.[12] The brain-PTV dose is less in CKbased plans due to less leakage and small pencil beams.

Studies previously published from our institution show that it is possible to achieve an intra-fractional variation <1 mm in translational shift and an intra-fractional variation 1° in rotational shift.[32,33] Some studies show that in LINACbased SRS, the comparison between online CBCT (pre-treatment
and post-treatment) and Exact track® (Brainlab) demonstrated that orthogonal 2D-imaging verification (something missing) was <1.01 mm and translational shift was < 0.95°, and the deviation should not be avoided. Mechanical accuracy is an important parameter to provide the margin around the gross target. Isocenter tolerance in synergy is <2 mm diameter and 1 mm for CK. Margin is needed for LINAC SRS, which leads to an increase in normal brain dose. Jhaiveri et al.[34] studied the impact of margin with local recurrence and symptomatic radiation necrosis. They found that expanding the PTV margin more than 1 mm could increase the risk of symptomatic necrosis and not associated with recurrence. In our study GS (GS50) was inverse to target volume and in small volume it has more statistical uncertainty [Figure 8].

CONCLUSION
In cranial SRS, volume of normal brain and surrounding critical structures are crucial if the volume of target is small. Suitable collimators of choice could provide a better conformity and a steep dose gradient to the target, without increasing the dose to the critical structures. In our study, small volume (<0.7cc) targets should be treated with CK FIXED and volumes > 0.7cc could be treated by using either FIXED collimator or IRIS collimator. AVM volume >1.4 cc can be treated with either LINAC MLC-based SRS (with stringent plan analysis with volumetric image guidance) or CK. Linac MLC-based SRS has some limitations when compared to CK in terms of conformity and low-dose spillage, and it shows some advantages like reduced treatment time and MU that could reduce the setup uncertainty. If the tolerances are achieved for the organs-at-risk in MLC-based LINAC plan, it could be delivered with volumetric image guidance.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

REFERENCES
1. Zaki Ghali MG, Kan P, Britz GW. Curative embolization of arteriovenous malformations. World Neurosurg 2019;129:467-86.
2. Pan DH, Guo WY, Cheng WY, Shiau CY, Chang YC, Wang LW. Gamma knife radiosurgery as a single treatment modality for large cerebral arteriovenous malformations. Neurosurgery 2000;93 Suppl 3:113-9.
3. Foh S, Ma L, Gupta N, Sahgal A, Nakamura JL, Barani I, et al. High-precision volume-staged Gamma Knife surgery and equivalent hypofractionation dose schedules for treating large arteriovenous malformations. J Neurosurg 2012;117 Suppl: 115-9.
4. Oermann EK, Murthy N, Chen V, Baimed A, Sasaki-Adams D, McGarill K, et al. A multicenter retrospective study of frameless robotic radiosurgery for intracranial arteriovenous malformation. Front Oncol 2014;4:298.
5. Friedman WA. Linear accelerator radiosurgery. Clin Neurosurg 1992;38:445-71.
6. Rahman M, Murad GJ, Bova F, Friedman WA, Mocco J. Stereotactic radiosurgery and the linear accelerator: Accelerating electrons in neurosurgery. Neurosurgery Focus 2009;27:E13.
7. Aiyama H, Yamamoto M, Kawabe T, Watanabe S, Koiso T, Sato Y, et al. Clinical significance of conformity index and gradient index in patients undergoing stereotactic radiosurgery for a single metastatic tumor. J Neurosurg 2018;129:103-10.
8. Feuvret L, Noël G, Mazeron JJ, Bey P. Conformity index: A review. Int J Radiat Oncol Biol Phys 2006;64:333-42.
9. Kataria T, Sharma K, Subramani V, Karrhick KP, Bishit SS. Homogeneity index: An objective tool for assessment of conformal radiation treatments. J Med Phys 2012;37:207-13.
10. Menon SV, Paramu R, Bhasi S, Nair RK. Evaluation of plan quality metrics in stereotactic radiosurgery/radiotherapy in the treatment plans of arteriovenous malformations. J Med Phys 2018;43:214-20.
11. Hummel S, Gratziadil A, Mizeczyk L. Robotic radiosurgery versus micro-multileaf collimator: A dosimetric comparison for large or critically located arteriovenous malformations. Radiat Oncol 2013;8:205.
12. Cyberknife treatment planning manual; (Accuracy Incorporated, Sunnyvale, CA, USA); 2011.
13. Clark GM, Popple RA, Young PE, Fievas JB. Feasibility of single-isocenter volumetric modulated arc radiosurgery for treatment of multiple brain metastases. Int J Radiat Oncol Biol Phys 2010;76:296-302.
14. Yuan Y, Thomas EM, Clark GA, Markert JM, Fievas JB, Popple RA. Evaluation of multiple factors affecting normal brain dose in single-isocenter multiple target radiosurgery. J Radiosurg SBRT 2018;5:131-44.
15. Zaki Ghali MG, Kan P, Britz GW. Cure of arteriovenous malformations. J Neurosurg 2012;117 Suppl: 115-9.
16. Cyberknife treatment planning manual; (Accuracy Incorporated, Sunnyvale, CA, USA); 2011.
17. Clark GM, Popple RA, Young PE, Fievas JB. Feasibility of single-isocenter volumetric modulated arc radiosurgery for treatment of multiple brain metastases. Int J Radiat Oncol Biol Phys 2010;76:296-302.
18. Stanley J, Breitman K, Dunscombe P, Spencer DP, Lau H. Evaluation of stereotactic radiosurgery conformity indices for 170 target volumes in patients with brain metastases. J Appl Clin Med Phys 2011;12:3449.
19. Hanna SA, Mancini A, Dal Col AH, Asso RN, Neves-Junior WF. Frameless image-guided radiosurgery for multiple brain metastases using VMAT: A review and an institutional experience. Front Oncol 2019;9:703.
20. Van’t Riet A, Mack AC, Moerland MA, Elders LH, van der Zee W. A conformation number to quantify the degree of conformationality in brachytherapy and external beam irradiation: Application to the prostate. Int J Radiat Oncol Biol Phys 1997;37:731-6.
21. Blonigen BJ, Steinmetz RD, Levin L, Ryon SL, et al. Evaluation of stereotactic radiosurgery conformity indices for 170 target volumes in patients with brain metastases. J Appl Clin Med Phys 2011;12:3449.
22. Ref. Prescribing, Recording and Reporting of Stereotactic Treatments with Small Photon Beams – ICRU Report No. 91; 2017.
23. Flickinger JC, Kondziolklo D, Lunsford LD, Kassam A, Phuong LK, Liscak R, et al. Development of a model to predict permanent symptomatic post radiosurgery injury for arteriovenous malformation patients. Arteriovenous Malformation Radiosurgery Study Group. Int J Radiat Oncol Biol Phys 2004;60:1414-8.
24. Blonigen BJ, Steinmetz RD, Levin L, Lamba MA, Warnick RE, Breneman JC. Irradiated volume as a predictor of brain radionecrosis after linear accelerator stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 2000;46:1134-8.
25. Han EY, Wang H, Luo D, Li J, Wang X. Dosimetric comparison of robotic and Linac based SRS for AVM.
Flattening filter-free accelerators: A report from the AAPM Therapy Emerging Technology Assessment Work Group. J Appl Clin Med Phys 2015;16:5219.

29. Kang SK, Cheong KH, Hwang T, Cho BC, Kim SS, Kim KJ, et al. Dosimetric characteristics of linear accelerator photon beams with small monitor unit settings. Med Phys 2008;35:5172-8.

30. Kemikler G, Acun H. Beam characteristics of megavoltage beams at low monitor unit settings. Phys Med 2011;27:203-8.

31. Podder TK, Bednarz G, Yu Y, Galvin JM. Physical characterization and comparison of two commercially available micro-MLCs. Phys Med 2011;27:52-7.

32. Kataria T, Narang K, Gupta D, Bisht SS, Abhishek A, Goyal S, et al. Analysis of intrafraction motion in CyberKnife-based stereotaxy using mask based immobilization and 6D-skull tracking. J Radiosurg SBRT 2016;4:203-12.

33. Kataria T, Gupta D, Karrthick KP, Bisht SS, Goyal S, Abhishek A, et al. Framebased radiosurgery: Is it relevant in the era of IGRT? Neurol India 2013;61:277-81.

34. Jhaveri J, Chowdhary M, Zhang X, Press RH, Switchenko JM, Ferris MJ, et al. Does size matter? Investigating the optimal planning target volume margin for postoperative stereotactic radiosurgery to resected brain metastases. J Neurosurg 2018;130:797-803.