I. INTRODUCTION

Carbon is the fourth most abundant element by mass in the solar system [1] after hydrogen, helium, and oxygen, and 12C is its most abundant (98.9%) isotope. Thus, it has been used as a target material in the form of organic liquid scintillators in many large-scale neutrino experiments designed to detect low-energy neutrinos (E_{ν}<100 MeV) [2-6]. These detectors must be massive to compensate the extremely small neutrino cross section ($\approx 10^{-42}$ cm2). One of the most interesting applications is the detection of neutrinos from supernova explosion in our Galaxy [7][8]. The main reaction for neutrino detection is the charged-current (CC) anti-neutrino reaction with a proton ($\bar{\nu}_e + p \rightarrow e^+ + n$), also known as the inverse β-decay reaction (IBD). Of special interest is the neutral-current (NC) neutrino or anti-neutrino inelastic scattering with 12C, followed by the emission of γ rays that can be observed with the detector [9]. This process is of a special interest because the cross section is significant enough to be detected and is independent of neutrino oscillations.

The first observation of 12C(ν, ν')12C* (15.11 MeV, 1+, $T = 1$) reaction with 15.11-MeV γ ray came from the KARMEN experiment [4][5] with a neutrino beam. The observation was based on the detection of the electromagnetic decay of 12C excited by neutral current interactions. The γ-ray emission probability (Γ_{γ}/Γ) of excited states of 12C below the proton separation energy ($S_p = 16.0$ MeV) has been well measured [10]. However, the giant resonances appear above the separation energy and they decay mainly hadronically via particle emission (p, n, d and α) to the daughter nuclei. Although they decay mainly to the ground state of the daughter nuclei (11B, 11C, etc.), some of these decays are to excited states. If these excited states are below the particle emission threshold in 11B ($S_{p'} = 11.2$ MeV) or 11C ($S_{p'} = 8.7$ MeV), they decay by γ-ray emissions. Kolbe et al. and Langanke et al. [11][12] proposed the above decay mechanism of giant resonances and estimated the NC neutrino and anti-neutrino reaction cross sections for 12C and 16O.

They stressed the importance of measuring NC events, since they are more sensitive to ν_τ and $\bar{\nu}_\tau$ neutrinos than to ν_μ neutrinos. However, there are no experimental measurements of γ rays from the giant resonances of 12C.

In this paper, we report the first measurement of γ rays from the excited states of 12C, including giant resonances in the energy region $E_\gamma = 16$-32 MeV.

II. EXPERIMENT

The experiment (E398) to measure the γ rays emitted from giant resonances in 12C was carried out at the Research Center for Nuclear Physics (RCNP), Osaka University. An unpolarized proton beam at 392 MeV bombarded a natural carbon (natC) target with a beam bunch interval of 59 ns. The scattered protons were measured around 0° and were analyzed by the high-resolution magnetic spectrometer Grand Raiden (GR) [13]. The layout...
of Grand-Raiden is shown in Fig. 1.

A. Grand Raiden magnetic spectrometer

Two multi-wire drift chambers (MWDC) were placed at the focal plane of the GR system followed by two plastic scintillators (PS 1 and 2). Each of PS1 and PS2 was coupled with two photo-multiplier tubes (PMT) from each side. A fast trigger (PS trigger) was generated by the coincidence of the discriminator signals of PS1 and PS2 for the data-acquisition (DAQ) system. Signals from the MWDCs were pre-amplified and discriminated by a LeCroy 2735DC board and the timing information of the wires was digitized by LeCroy 3377 time-to-digital converter (TDC). The details of the DAQ system were described elsewhere [16] and only the components necessary for the present paper are described here. The MWDCs measure a charged-particle track at the focal plane of the GR spectrometer and were used to measure the excitation energy of the target nucleus \(E_x = E_p - E_{p'} \) and the scattering angle of protons \(\theta_p \) at the target position. The spectrometer covered the scattering angle range of \(0^\circ < \theta_p < 3.5^\circ \). The beam current was monitored by a Faraday cup located at the beam dump and the typical beam intensity was 0.5-1.5 nA. An energy resolution of 120 keV (FWHM) was achieved at \(E_x = 15.1 \text{ MeV} \). Details of the GR spectrometer have been described elsewhere [14, 15].

B. \(\gamma \)-ray detector

A \(\gamma \)-ray detector was made from an array of 5×5 NaI(Tl) counters. One NaI(Tl) counter was made up of a 5.1 cm×5.1 cm×15.2 cm crystal and a photo-multiplier (Hamamatsu R980) whose photo cathode (3.8 cm in diameter) was attached to one end of the crystal. The crystal was contained in an air-tight 1mm-thick aluminum case and a thin white reflective sheet was inserted between the crystal and aluminum case. Thus, one NaI(Tl) counter has a total size of 5.6 cm×5.6 cm×34.5 cm. Each photo-multiplier was covered by a \(\mu \) metal. The \(\gamma \)-ray detector array was placed at \(\theta = 90^\circ \) with respect to the beam direction and at a distance of 10 cm from the target. The front face and sides of the detector were covered by a 2-mm thick iron plate to suppress low-energy beam-induced and ambient \(\gamma \) rays less than 200 keV. Two 3-mm thick plastic scintillators (veto counters) were attached in front of the iron plate and the NaI(Tl) counters to separate the background caused by charged particles directly entering the \(\gamma \)-ray detector. The scintillation light was measured from one end of the scintillator by a photo-multiplier (Hamamatsu H6410) through an acrylic light guide.

For each PS trigger, both the ADC (charge information) and TDC (time information) of each PS counters were recorded. The GAM signal is defined as the sum of discriminator signals of all NaI counters. A GAM trigger was generated by taking the coincidence of the PS trigger and the GAM signal, and was used for the data acquisition of ADC and TDC of NaI counters and veto counters. Those signals were digitized and recorded by LeCroy FERA and FERET systems.

While the initial energy calibration for all NaI(Tl) counters was performed using a \(^{60} \text{Co} \) source before the experiment, the energy response of the NaI(Tl) counters decreased gradually under the exposure of beam due to irradiation by beam-induced particles. Therefore, we
C. Scattered proton and \(\gamma\)-ray coincidence measurement

The main feature of this experiment is to measure both the excitation energy \(E_x\) by the GR spectrometer and the \(\gamma\)-ray energy \((E)\) by the NaI(Tl) counters. We define the \(\gamma\)-ray energy \((E)\) as the sum of the pulse height measured in the upstream 10 NaI(Tl) counters. Thus, we study both the cross section \(\sigma_{p,p'} = \frac{d^2\sigma}{d\Omega dE_x}\) and the \(\gamma\)-ray emission probability \(R_{\gamma}(E_x) = \frac{\sigma_{p,p'}\eta}{\sigma_{p,p'}}\) from the giant resonances. Figure 2 presents the spectra of the excitation energy \((E_x)\) and the measured \(\gamma\)-ray energy \((E)\) for the coincidence events between the PS trigger and the GAM trigger.

By taking a typical \(\gamma\) ray 15.11 MeV, we explain in the following how we measured the \(\gamma\)-ray energy \((E)\) and estimated the accidental background using both ADC and TDC informations for each \(E_x\) interval. The time difference between the GAM trigger and the PS trigger is plotted in Fig. 4 for \(\gamma\) rays from \(^{12}\text{C}\)(15.11 MeV, \(1^+, T = 1\)). Events in the prominent first peak (red) were selected as coincidence events between the two triggers, whereas those in the other peaks were selected as accidental background. Pulse intervals of 59 ns correspond to the bunch structure of the beam. Thus, we obtained the energy deposit \(E\) for the signal (red line) and the background (blue line) for \(E_x=15.11\) MeV in Fig. 4b. The details of the analysis will follow in Sections III and IV.

III. ANALYSIS OF SCATTERED PROTONS

A. \((p,p')\) differential cross section

Variable	Value
Tracking efficiency \((\eta)\)	1%
Solid angle \((\Omega)\)	3%
Beam charge \((Q)\)	3%
Target thickness \((t)\)	2%
Background subtraction	3%
Total	6%

TABLE I. Systematic uncertainties in the measurement of differential cross section.

The double differential cross section is given as

\[
\sigma_{p,p'} \equiv \frac{d^2\sigma}{d\Omega dE_x} = J \frac{N_{E_x}}{\Omega L \eta Q N_A \rho} \frac{1}{\Delta E_x} e A, \tag{1}
\]

where \(J\) is the Jacobian for the transformation from laboratory frame to c.m. (center of mass) frame \((0,1)\), \(\eta\) is the tracking and trigger efficiency \((0.91)\), \(L\) is the DAQ live time, \(e\) is the elementary charge \((C)\), \(Q\) is the total beam charge \((C)\), and \(N_{E_x}\) are the number of excitation events in the energy range \(E_x\) and \(E_x + \Delta E_x\).
obtained after subtracting the background. The detailed procedure for background subtraction was provided in Ref. [15]. Furthermore, A is the atomic weight (g/mol), N_A is Avogadro constant, and ρ is the areal density (36.3 mg/cm2). The spectrometer acceptance was not symmetrical with respect to the horizontal and vertical directions (-9 mrad $\leq \theta_x \leq 0$ mrad, $|\theta_y| \leq 43$ mrad). The events were chosen within a solid angle (Ω) of 0.77 msr.

The measured cross section of 12C(p,p') is shown in Fig. 3. Giant resonances are clearly seen in the spectrum. We list the excitation energies E_x, spin-parities (J^π), and isospin (T) of the known resonances in Table II. We show the differential cross section with those of previous experiments performed with the same GR spectrometer at the same beam energy [17, 18]. Our cross section measurements of 16O(11.5 MeV, $2^+, T=0$) were performed during the same experiment with a cellulose ($C_6H_{10}O_5$) target. Both of our measured cross sections are consistent with those measured in previous experiments within the systematic uncertainty of 6%.

B. Decomposition of the cross section into spin-flip and non-spin-flip components

We now discuss the energy spectra shown in Fig. 3 in more details. In a previous experiment [17], the polarization transfer (PT) observables were measured for 12C(p,p') at the same beam energy and 0° in the GR spectrometer, in which the excitation strengths were decomposed into a spin-flip part ($\Delta S = 1$) and a non-spin-flip part ($\Delta S = 0$). Figure 6(a) shows the cross section $d^2\sigma/d\Omega dE_x$ (solid line), the same as that in Fig. 3 and the spin-flip cross section $\Sigma d^2\sigma/d\Omega dE_x$ (shaded region), where the total spin transfer Σ is unity for spin-flip transitions ($\Delta S = 1$) and zero for non-spin-flip transitions ($\Delta S = 0$). We used the Σ values measured in the previous experiment [17], whereas the cross sections $d^2\sigma/d\Omega dE_x$ are our measurements. In the spin-flip cross section, excited states at $E_x = 18.35, 19.4, 22-23,$ and 25 MeV were observed whereas the non-spin-flip cross section was dominated by broad resonances at $E_x = 22-24$ MeV.
FIG. 6. (a) Spin flip component $\Sigma \frac{d^2\sigma}{d\Omega dE_x}$ (shaded region) compared with $\frac{d^2\sigma}{d\Omega dE_x}$ (black line). The spin flip cross section for $^{12}\text{C}(p,n)^{12}\text{N}$ reaction (blue data points) and the contribution of quasifree process (green curve) to the spin flip cross section obtained from Ref. [19]. The sum of $^{12}\text{C}(p,n)^{12}\text{N}$ spin flip cross section and quasifree contribution is shown by red data points. (b) Non spin flip component $(1-\Sigma) \frac{d^2\sigma}{d\Omega dE_x}$ (shaded region) compared with $\frac{d^2\sigma}{d\Omega dE_x}$ (black line). The calculation of Coulomb excitation using the $^{12}\text{C}(\gamma,\text{total})$ photo-absorption cross section (red points). The bin width is 0.2 MeV.

and 25-26 MeV.

C. Comparison of spin-flip cross sections with charge exchange reaction

We now compare our $\Sigma \frac{d^2\sigma}{d\Omega dE_x}$ (Fig. 6(a) shaded region) with the $T = 1$ charge-exchange $^{12}\text{C}(p,n)^{12}\text{N}$ spin-flip cross section measured at $E_p = 296$ MeV [19], which is multiplied by a factor of 0.5 to account for the $T = 1$ Clebsch-Gordan coefficients between the $^{12}\text{C}(p,p')$ and $^{12}\text{C}(p,n)^{12}\text{N}$ reactions. Moreover, the excitation energy was shifted for the case of the $^{12}\text{C}(p,n)^{12}\text{N}$ reaction by 15.1 MeV.

The $T = 1$ charge-exchange $^{12}\text{C}(p,n)^{12}\text{N}$ spin-flip cross section was also measured at $E_p = 135$ MeV by Anderson et al. [20] and both data agree within the given errors. Both observed resonances at $E_x = 19.4 (2^-, 22-23 (2^-)$, and $25 (1^-)$ MeV. Our spin-flip cross sections (shaded region) agree with the $T = 1$ charge-exchange spin-flip cross sections, except for a small disagreement in the region $E_x = 18-19.4$ MeV. This obvious disagreement arises from the fact that our data also includes isoscalar resonance at $E_x = 18.35$ MeV, which is not observed in the charge exchange reaction. This comparison primarily indicates that the (p,p') spin-flip cross sections are mostly dominated by the $T = 1$ component, and the contribution of $T = 0$ is small. Indeed, analysis of the effective interaction (V) based on the $N-N$ t-matrix using the experimentally observed nucleon-nucleus scattering over a wide energy range by Ref. [21, 22] suggests that the spin-isospin term ($V_{\sigma\tau}$) in the effective interaction is independent of the beam energy in the range of 100-800 MeV and that the spin-isospin term ($V_{\sigma\tau} (T = 1)$) is much stronger than the spin term ($V_{\sigma} (T = 0)$). The isovector spin-flip excitations in ^{12}C were also studied for ($^6\text{Li},^6\text{Li^*}$) reaction [23].

D. Comparison of non-spin-flip cross sections with $^{12}\text{C}(\gamma,\text{total})$ reaction

FIG. 7. Double differential cross section for the giant resonance region in ^{12}C fitted with various resonances [32] and a quasifree continuum (green dotted curve). The red curve shows the overall fit obtained from the sum of all contributions.
E. Decomposition of different excited states

It is clearly seen that the energy region $E_x = 16$-32 MeV consists of many overlapping resonances with different spin-parities and isospins. In order to unfold these resonances, we fit the cross section with known resonances \(\text{C} \) and a quasifree continuum. The resonances were assumed to have Lorentzian distributions and the quasifree cross section was assumed to have a smooth functional form as described in Ref. [33] (also shown in Fig. 6(a)). The overall fitting function was thus given as

$$f(E_x) = \sum_m \frac{\sigma_m(E_x)}{1 + \left[(E_x - E_m)^2 / E_m^2 \right]^{\mu}} + \mu N \frac{1}{1 + [(E_x - E_QF)/W_L]^2}, \tag{2}$$

where E_m and Γ_m are the peak energy and the resonance width, respectively, for the \(m \)th resonance. Their values were taken from Ref. [32] and kept fixed during the fitting. The values of N (0.2 mb/sr MeV), E_QF (27 MeV), W_L (55 MeV), E_0 (16 MeV), and T (6 MeV) were determined from fitting to the \(\text{C} \) cross section and were kept fixed during this fit. The parameters σ_m (peak cross section) and μ were determined to reproduce the data in the region of $E_x = 18$-32 MeV and are tabulated in Table II. The fit is shown in Fig. 7.

F. Angular distribution in comparison with DWBA calculations

We also present the differential cross section for the \(\text{C}(p,p') \) reaction as a function of scattering angle in various E_x regions (Fig. 8). Some of the angular distributions were compared with DWBA calculations.

The DWBA calculations were performed with the program DWBA07 [44]. The single particle wave functions for the bound particles were of harmonic oscillator form. For the giant resonance region, the harmonic oscillator parameter $b = 1.64$ fm was adopted [37, 40]. The distorted wave was derived using an optical potential. The optical potential parameters were taken from Ref. [36], as determined from 398-MeV proton scattering from \(\text{C} \) and are listed in Table IV. The effective NN interaction derived by Franey and Love [21] at $E_p = 425$ MeV was used. The transition densities were obtained from shell model calculations using SFO (Suzuki-Fujimoto-Otsuka) Hamiltonians [37, 38] and are tabulated in Table IV.

In Fig. 6(a), it is clearly seen that the energy region $E_x = 19$-20 MeV is dominated by spin-flip cross section, and the data shown in Fig. 8(a) shows a clear angular dependence. The shape is well reproduced by the DWBA

E_m (MeV)	$J^\pi;T$	Γ_m (MeV)	σ_m (mb/sr MeV)
18.35**	2⁺;0	0.35±0.05	0.35±0.03
19.40	2⁻;1	0.49±0.03	0.90±0.05
20.00	2⁺	0.38±0.10	0.39±0.04
20.50**	1⁺;0	0.30±0.05	0.15±0.03
21.60	2⁺;0	1.20±0.15	0.18±0.02
21.99	1⁻;1	0.61±0.11	0.19±0.06
22.37	1⁻;1	0.29±0.04	0.01±0.06
22.65	1⁻;1	3.20±0.20	0.84±0.1
22.68*	1⁻;1	0.40±0.04	0.19±0.13
23.52	1⁻;1	0.24±0.02	0.06±0.06
23.99	1⁻;1	0.57±0.12	0.04±0.01
24.38	2⁺;0	0.67±0.06	0.00±0.00
24.41	-	1.30±0.30	0.00±0.00
24.90	-	0.90±0.20	0.00±0.00
25.30	1⁻;1	0.51±0.10	0.19±0.04
25.40	1⁻	2.00±0.20	0.00±0.00
25.96	2⁺	0.70±0.20	0.14±0.02
27.00	1⁻;1	1.40±0.20	0.11±0.03
28.20	1⁻;1	1.60±0.20	0.06±0.01
28.83	-	1.54±0.09	0.09±0.01
29.40	2⁺;1	0.80±0.20	0.02±0.01
30.29	2⁻;1	1.54±0.09	0.04±0.01
31.16	-	2.10±0.15	0.07±0.01
32.29	-	1.32±0.23	0.01±0.01

TABLE II. Resonance energy (E_m), resonance width (Γ_m), spin-parity, and isospin obtained from Ref. [32], and σ_m obtained from fit. * E_m and Γ_m were obtained from Ref. [24-25]. ** Spin-parity and isospin were obtained from Ref. [17-29].
TABLE III. Optical model parameters used in DWBA calculations taken from Ref. [36].

E_p (MeV)	V (MeV)	r_0 (fm)	a_0 (fm)	W_p (MeV)	r_0' (fm)	a_0' (fm)	V_{LS} (MeV)	r_{LS} (fm)	a_{LS} (fm)	W_{LS} (MeV)	r_{LS}' (fm)	a_{LS}' (fm)	ρ_C
398	-2.51	1.08	0.48	21.6	1.13	0.64	3.21	0.93	0.57	-2.79	1.00	0.53	1.05

TABLE IV. Transition matrix elements used in DWBA calculations. The superscript (a) denotes transition matrix elements from Cohen and Kurath [36] and (b) denotes matrix elements obtained from SFO Hamiltonian [37, 38]. The amplitude for the component $l_i l_j$ represents an excitation from the l_j hole state to the l_i particle state. The subscripts on the single-particle orbitals represent the quantity $2j$. Here, the $2s_1/2$ orbital is designated as s_1.

FIG. 8. Differential cross section as a function of scattering angle at various excitation energies in the giant resonance region of 12C. Dotted and solid black lines show the result of DWBA calculations (see text). (a) A data point (red) from another experiment [36] is also shown.

calculation results for the transitions to $E_x = 19.4$ MeV ($J^T = 2^-, T = 1$). For the energy region $E_x = 22-24$ MeV, which is dominated by Coulomb excitations, the calculation results for the transitions to $E_x = 22.8$ MeV ($J^T = 1^-, T = 1$) also reproduce the shape of angular distribution shown in Fig. 8(c). For $E_x > 24$ MeV, no clear angular dependence was observed.

We also tested DWBA for the cross section calculations of the 15.1-MeV state. The harmonic oscillator parameter was chosen [30, 39] to match the prominent maxima of longitudinal and transverse form factors ($F_L(q)$ and $F_T(q)$) measured in a previous electron scattering experiment [40]. Two types of transition densities were used for the calculations of the 15.1-MeV state (Table IV), the transition densities obtained from shell model calculations with SFO Hamiltonians [37, 38] and 1-p shell transition densities from Cohen and Kurath [35, 36]. The comparison between calculations for these two different transition densities is shown in Fig. 8(a), along with the measured cross section. The dashed line represents the calculated cross section for transition densities from SFO Hamiltonians, and the solid line was obtained with Cohen and Kurath transition densities and was scaled by a factor of 1.15 [36].
FIG. 9. Measured γ-ray spectrum (black) after background subtraction and response function (red line) for the (a) 15.11-MeV state \((J^\pi = 1^+) \) of \(^{12}\)C (b) 6.9-MeV state \((J^\pi = 2^+) \) of \(^{16}\)O (see text for details).

IV. ANALYSIS OF EMITTED γ-RAYS

A. Definition and generation of response function \(P(E_\gamma; E) \)

The response functions of the γ-ray detector were generated by Monte Carlo simulations (MC) using version 9.6 patch 04 of the Geant4 toolkit. The response function \(P(E_\gamma; E) \) is defined as the probability for a γ ray of energy \(E_\gamma \) irradiated uniformly upon the target position to be measured as energy \(E \) by the γ-ray detector, and

\[
\int_{E_{\text{th}}}^{E_{\text{max}}} P(E_\gamma; E) dE = \eta(E_\gamma),
\]

where \(\eta(E_\gamma) \) is the detection efficiency for a γ ray of energy \(E_\gamma \). For the present case, the threshold \((E_{\text{th}}) \) for the γ-ray detectors was chosen to be 1.5 MeV. The detector geometry and the effect of the materials between the target and detector were taken into account during the detector simulation. The accuracy of the response functions was tested by comparison with the γ-ray spectra of 15.1 MeV and 6.9 MeV measured during the experiment.

To generate the response function of a 15.1-MeV γ-ray, cascade γ rays from the 15.1-MeV state \(\text{[32]} \), 10.66, 7.45, 4.8, 4.4 and 2.4 MeV, were also taken into account, along with their respective branching ratios. The response function was then normalized by the 15.1-MeV excitation counts measured by the spectrometer in the energy range of \(E_x = 14.9-15.4 \) MeV. Further, we determined the correction factor (0.88) for the response function to account for the dead time of the γ-ray detector by normalizing the data to reproduce the well-measured 15.1-MeV γ-ray emission probability \((\Gamma_\gamma/\Gamma = 0.96 \pm 0.04) \).

The response function for a 15.1-MeV γ-ray is shown in Fig. 9(a) (red line) along with the γ-ray energy spectrum measured from the \(^{12}\)C (15.1 MeV, 1\(^+\)) (black data points) after subtracting the background spectrum. The procedure for measuring the γ-ray spectrum and background subtraction was described previously and shown in Fig. 4. The photo peak and single- and double-escape peaks appear as one broad peak due to the resolution of the γ-ray detector. This correction factor (0.88) was used to scale the response function of all the other γ rays.

B. Validation of response function \(P(E_\gamma; E) \)

We show in Fig. 9(b) the γ-ray spectrum (after background subtraction), as measured from \(E_x (^{16}\text{O}) = 6.9-7.3 \) MeV. Within this range, two states of \(^{16}\)O, 6.9 MeV and 7.1 MeV were excited. These states decay to the ground state by emitting 6.9-MeV and 7.1-MeV γ rays, respectively, with 100% emission probability. The response functions were generated for 6.9 MeV and 7.1 MeV and weighted according to their contribution. A comparison with the response function normalized by excitation counts in the same \(E_x \) range is shown in Fig. 9(b). When the value of data/MC for 15.1 MeV was normalized to 1.0 with the correction factor (0.88), the same factor yields data/MC = 0.98 ± 0.02 for 6.9 MeV (including 7.1 MeV). The efficiency \((\eta(E_\gamma)) \) was evaluated to be 2.3% for \(E_\gamma = 2.0 \) MeV and 5.9% for \(E_\gamma = 15.1 \) MeV.

For the lower γ-ray energy range, the consistency was checked off-beam using a \(^{60}\)Co source that emits two simultaneous γ rays with energies of 1.13 and 1.33 MeV. The response function generated for \(^{60}\)Co reproduced the data within an uncertainty of 3%. The consistency between data and response function within the systematic uncertainty of 5% validates our measurement of γ-ray emission probability for the energy range from 1.1 to 15.1 MeV.
V. γ RAYS FROM THE GIANT RESONANCES

A. γ-ray energy spectra for each E_x bin

The γ-ray energy spectra from the giant resonances were measured for various E_x values with a 2-MeV energy step. Figure 10 (left) shows the measured γ-ray energy spectrum (black line) and background spectrum (red line). The decay scheme of excited 12C is also shown.

As E_x reaches the proton separation energy ($S_p = 16.0$ MeV), the 12C state decays hadronically to the ground state of 11B by emitting a proton. No γ-ray emission is possible until E_x exceeds the threshold ($S_p + 2.1 = 18.1$ MeV) for proton decay to the first excited state of 11B*(2.1 MeV). This feature was confirmed experimentally as no γ rays were observed from the region $E_x = 16-18$ MeV (shown in Fig. 10(a)). The same feature can be seen in Fig. 10(b) where we observed only a 2.1-MeV γ ray, as the 2.1-MeV state of 11B is the only energetically accessible state at $E_x = 18-20$ MeV. As E_x reaches 21 MeV, the 12C state can decay to the 2nd (4.4 MeV) and 3rd (5.0 MeV) excited states of 11B or to the first excited state of 11C*(2.0 MeV), after neutron emission ($S_n + 2.0 = 20.7$ MeV, $S_n = 18.7$ MeV). As a result, we observed nearly doubled γ-ray emission rate in Fig. 10(c). With increasing E_x, the larger γ-ray emission rate and higher energy γ rays were observed until the excitation energy reached 27.2 MeV, which is the separation energy of daughter nuclei 11B ($S_{p'} = 11.2$ MeV) and 11C ($S_{p'} = 8.7$ MeV). For $E_x > 27.2$ MeV, the 12C state can decay via 3-body decay to lighter nuclei. As far as hadronic decays are concerned, no γ rays with $E_\gamma > 11$ MeV were observed. These features agree qualitatively with the theoretical predictions of Langanke et al. [11, 12], which states that the γ rays from the giant resonances are emitted from excited states of daughter nuclei after hadronic decay. We will further analyze the γ-ray emissions quantitatively.

B. Extraction of the γ-ray emission probability $R_i(E_x)$ from the fit to the γ-ray spectra

In order to obtain the γ-ray emission probability from the giant resonances of 12C, we fit the data with γ-ray response functions generated for the excited states of daughter nuclei, which can be defined as

$$P_i(E) = b_0 P_i(0; E) + \sum_{j=1}^{n} b_j P_i(E_j - E_i; E), \quad (4)$$

where $P_i(E)$ is the response function for the i^{th} state of the daughter nuclei at energy E, b_0 is the probability for the i^{th} state to decay directly to the ground state by

The study of electromagnetic decay of giant resonances in 12C, emitting γ rays of $E_\gamma > 11$ MeV, will be reported elsewhere.
emitting a γ ray of energy E_i^γ, and b_j is the probability for the i^{th} state to decay to a lower energy state (E_j^γ) by emitting a γ ray of energy $E_i^\gamma - E_j^\gamma$ and then decay to the ground state by emitting a γ ray of energy E_j^γ. For example, the first and the second excited states of 11B decay directly to the ground state, emitting single γ rays with energies of 2.12 and 4.4 MeV, respectively, with $b_0 = 1$. Hence, their response functions are given as $P(2.12\text{ MeV}; E)$ and $P(4.4\text{ MeV}; E)$. The third excited state of 11B decays to the ground state by emitting a 5.02-MeV γ ray with a probability of 0.85 (b_0) and to the 2.12-MeV state by emitting a 2.9-MeV γ ray (5.02 – 2.12 MeV) with a probability of 0.15 (b_1) followed by further decay to the ground state by the emission of a 2.12-MeV γ ray. The response function for this state is given as $0.85P(5.0\text{ MeV}; E)+0.15P(2.9, 2.12\text{ MeV}; E)$. Similarly, the response function for all of the other excited states of daughter nuclei (11B and 11C) were generated using the γ emission probabilities (b_0 and b_j) given in Ref. [10] and are listed in Table V. Once all of the response functions are generated, the efficiency (η_i) for the detection of γ rays emitted from the i^{th} state of a daughter nucleus can be given as

$$\int_{E_{th}}^{E_{max}} P_i(E) dE = \eta_i. \quad (5)$$

The total γ-ray emission probability in each E_x region of 12C can be written as

$$R_x(E_x) = \frac{\sigma_{p,p'\gamma}}{\sigma_{p,p'}} = \frac{N_0^\gamma}{N_{E_x}}, \quad (6)$$

where N_{E_x} is the total number of excited states of 12C in that E_x region and N_0^γ is the total number of γ rays emitted from these states. The contribution from the individual excited states (r_i) of daughter nuclei (after particle decay) to the total γ-ray emission probability can be given as

$$r_i = \frac{N_0^\gamma}{N_{E_x}} = \frac{N_i/\eta_i}{N_{E_x}}, \quad (7)$$

where N_0^γ is the total number of γ rays emitted from the i^{th} state of a daughter nucleus from the target and N_i is the number of events detected. The quantity r_i can also be interpreted as the probability for 12C excited at E_x to decay to the i^{th} state of a daughter nuclei and emit a γ ray. Furthermore, r_i can be decomposed as

$$r_i = C_{GR} \tilde{r}_i + C_{QF} r_{QF}, \quad (8)$$

where C_{GR} and C_{QF} are the fractions of giant resonances (GR) and quasifree (QF) cross section in the total cross section obtained from Eq. (2), with

$$C_{GR} + C_{QF} = 1.0. \quad (9)$$
Table V. Energy states, γ-ray energies and emission probabilities of the daughter nuclei, where we follow the notation used in Table of Isotope [10]. Energy of the deexciting transition is preceded by γa where a is energy of the level populated by that transition. The transition probabilities of one energy state (given in parentheses) are normalized to 1.0 [32].

Energy state ^{11}B (MeV)	γ-ray energy (^{11}C) (MeV)	Energy state ^{11}C (MeV)	γ-ray energy (Prob.)
2.12	2.00	2.00	2.00 (1.0)
4.44	4.32	4.32	4.32 (1.0)
5.02	4.80	4.80	4.80 (1.0)
6.79	7.97	8.56	6.90 (0.99)
	8.56		4.80 (1.0)
	9.27		4.80 (1.0)

C. Estimation of γ-ray emission probability from quasifree processes

The probability (r_{QF}^{2}) after quasifree nucleon knockout can be obtained as follows. A proton knockout from the $1p$ shell of ^{12}C leads to the $3/2^-$ ground state, the $1/2^-$ state at 2.1 MeV, and the $3/2^-$ state at 5.02 MeV in ^{11}B. The spectroscopic factors for $1p$ and $1s$ knockout from ^{12}C were experimentally determined from $^{12}\text{C}(e,e'p)$ data and are listed in Ref. [11,12]. Using $1p$ spectroscopic factors, the probabilities for daughter nuclei (^{11}B) to be in 2.1-MeV and 5.02-MeV states were estimated to be $(r_{QF}^{21} = 4\%)$ and $(r_{QF}^{25} = 3\%)$, respectively. It should be noted that for $E_x < 21$ MeV, only the 2.1-MeV state is energetically accessible with a probability of 4%, but as E_x exceeds 21 MeV, the 5.02-MeV state is also accessible. Similarly, a neutron knockout can also occur with equal probability and will lead to almost the same γ-ray response as that from a proton knockout. The only difference is that the threshold for neutron knockout is greater than that for proton knockout by 2.7 MeV.

For $E_x > 27.2$ MeV, $1s$ nucleon knockout can also occur. Using $1s$ spectroscopic factors and statistical model calculations (described in the next section), the γ-ray emission probability was estimated to be less than 1% for $E_x = 27.32$ MeV and was therefore ignored.

Although 2.9-MeV γ rays are expected from the decay of several states ($5.02, 7.28$ MeV, etc) and is included in their response functions, we found that an independent response function for 2.9 MeV must be added to Eq. (10) to obtain a good fit. Furthermore, during the fit, 6.74-MeV ($7/2^-$) and 6.79-MeV ($1/2^+$) states of ^{11}B and 6.48-MeV ($7/2^-$) and 6.34-MeV ($1/2^+$) states of ^{11}C were merged because these states lie close to each other and were assumed to have the same γ-ray response function. Some of the fitted spectra are shown in Fig. [11].

The total γ-ray emission probability in different E_x regions can be written as

$$ R_{\gamma}(E_x) = \sum_i r_i = C_{GR} \sum_i \tilde{r}_i + C_{QF} \sum_j r_{QF}^j, \quad (12) $$

This can be equivalently written as

$$ R_{\gamma}(E_x) = \frac{(N_{\gamma} - N_{bg})/\bar{\eta}}{N_{E_x}}, \quad (13) $$

where N_{γ}, N_{bg}, and N_{E_x} are the number of γ-ray events, background events, and excitation events, respectively, and $\bar{\eta}$ is the weighted average efficiency in a particular E_x region and $\bar{\eta}$ is given as

$$ \bar{\eta} = \frac{1}{\sum_i \tilde{r}_i} \sum_i \tilde{r}_i \eta_i $$

$$ = \frac{1}{C_{GR} \sum_i \tilde{r}_i + C_{QF} \sum_j r_{QF}^j} \left(C_{GR} \sum_i \tilde{r}_i \eta_i \right) $$

where $N_{bg}(E)$ and N_{E_x} are the background spectrum and the number of excitation events, respectively. The quantities r_i and the background normalisation factor (α) were set as free parameters in the fit.
TABLE VI. The probability (r_i) obtained from the fit and the total γ-ray emission probability ($R_\gamma(E_x)$) with systematic errors. Numbers in the parentheses represent the error in the least significant digit.

\[
+ C_{QF} \sum_j r_j^{QF} \eta_j \]

The total γ-ray emission probability and the probability (r_i) obtained from the fit are shown in Table VI for all E_x regions.

VI. RESULTS OF γ-RAY EMISSION PROBABILITY ($R_\gamma(E_x)$) AND DISCUSSION

A. γ-ray emission probability

The γ-ray emission probability ($R_\gamma(E_x)$) as a function of excitation energy (E_x) is shown in Fig. [12] along with both statistical and systematic errors. The systematic uncertainties include the errors in the determination of excitation events (2-3%), γ-ray background subtraction (1-3%), and detection efficiency (5-7%). The errors due to statistical uncertainty were 0.7-3%. The γ-ray emission probability increases with the increasing excitation energy, starting from zero at $E_x = 16$ MeV and reaches a maximum value of 53.3 ± 3.9% at $E_x = 27$ MeV, where the first and second uncertainties are statistical and systematic, respectively. For $E_x > 27$ MeV, the emission probability gradually decreases with the increasing excitation energy. This feature is discussed later in detail. The most dominant contributions to the emission probability come from the 2.1 and 2.0-MeV states (first excited states of 11B and 11C, respectively). For $E_x > 26$ MeV, the contributions of 8-9-MeV states of daughter nuclei also become significant (Table VI).

The γ-ray emission probability was also measured as a function of scattering angle for different E_x regions and no strong angular dependence was observed (Fig. [14]).

![FIG. 12. Total γ-ray emission probability ($R_\gamma(E_x)$) as a function of E_x. The error bars include both statistical and systematic uncertainties.](image-url)
B. Comparison with decay model prediction

A statistical model calculation based on the Hauser-Feshbach formalism \cite{43,44} was used to predict the γ-ray emission probability from the giant resonances of 12C and is described as follows. The transmission coefficient from an excited nucleus (E_x) to the i^{th} energy state of daughter nucleus $A(J_{A},\pi_{A})$ by the emission of particle a is given by the summation over all quantum mechanically allowed partial waves,

$$T(E_x \rightarrow a + (A, i)) = \sum_{J_{A}+s_{a}} \sum_{S=|J_{A}-s_{a}|}^{J_{A}+S} T_{L}^{a}(\epsilon_{a}),$$

where $T_{L}^{a}(\epsilon_{a})$ is the individual transmission coefficient of the particle a with kinetic energy ϵ_{a} given by $E_x - E_{A} -$ separation energy, spin s_{a}, and orbital angular momentum L. The summation over L is restricted by the parity conservation rule $\pi_{x} = \pi_{a}\pi_{A}(-1)^{L}$. These individual transmission coefficients were obtained by solving the Schrödinger equation with the optical potential for the particle nucleus interaction \cite{43,44}. We employed global optical potential parameters given in Ref. \cite{47-50} for the calculations.

The decay of an excited nucleus can proceed via different channels $a = p, n, d, t$ and α. Then, the probability for an excited nucleus (E_{x}) to decay to the i^{th} state of daughter nuclei can be given as

$$\bar{c}_{i} = \frac{\beta_{a} T(E_{x} \rightarrow a + (A, i))}{\sum_{a,i} \beta_{a} T(E_{x} \rightarrow a + (A, i))},$$

where β_{a} is the isospin Clebsch Gordan coefficient \cite{51,52}. By using the spin-parity information from Table II, the calculated γ-ray spectrum $N_{\gamma}^{calc}(E)$ from 12C* in different E_{x} regions, corresponding to $N_{\gamma}(E)$ in Eq. (11), can be written as

$$N_{\gamma}^{calc}(E) = N_{E_{x}}[C_{GR} \sum_{i} \bar{c}_{i} P_{i}(E) + C_{QF} \sum_{j} r_{QF}^{j} P_{j}(E)] + \alpha N_{bg}(E).$$

It should be noted that \bar{c}_{i} in Eq. (11) is replaced by \bar{c}_{i} in Eq. (17). Accordingly, the calculated γ-ray emission probability $R_{\gamma}^{calc}(E_{x})$ can be determined as

$$R_{\gamma}^{calc}(E_{x}) = C_{GR} \sum_{i} \bar{c}_{i} + C_{QF} \sum_{j} r_{QF}^{j}.$$

This probability is also shown in Fig. 13 as a red dashed line. The γ-ray emission probability from the quasifree process is also shown (blue line).

The main contribution to the total γ-ray emission probability ($R_{\gamma}^{calc}(E_{x})$) comes from the decay of giant resonances. For $E_{x} = 16-27$ MeV, $R_{\gamma}^{calc}(E_{x})$ increases because C_{GR} dominates in this energy region and the number of accessible states of daughter nuclei also increases. For $E_{x} > 27$ MeV, C_{GR} begins to decrease and so does the γ-ray emission probability, while the contribution of C_{QF} becomes nearly equal to C_{GR}. The red band in Fig. 13 shows the uncertainty in the calculation due to the uncertainty in C_{QF} ($\mu = 1.27 \pm 0.25$).

The statistical model calculations predicted a higher decay probability to the excited states by 30-40% as compared to the measured values in the energy region $E_{x} = 20-24$ MeV. The same feature was observed, when we compared calculations with the measurement of 12C(γ, total) and 12C(γ, n_{0}) cross sections \cite{24}.

For $E_{x} > 27.2$ MeV, the 3-body decay threshold is reached, and the decay involving two-nucleon emission ($p + p + ^{10}$Be) also starts. Although the decay via 3-body process was significant ($\approx 6\%$), it gave negligible contribution ($<1\%$) to the γ-ray emission probability.

VII. CONCLUSION

We measured the double differential cross section $(d^{2}\sigma/dE_{dO})$ for the 12C(p,p') inelastic reaction at 392 MeV and 0° for the energy range $E_{x} = 7-32$ MeV. Furthermore, the cross section was decomposed into spin-flip ($\Delta S = 1$) and non-spin-flip ($\Delta S = 0$) components by using polarization transfer (PT) observables measured previously at the same beam energy \cite{17}. The spin-flip cross section was observed to be dominated by isovector reso-
FIG. 14. The γ-ray emission probability as a function of scattering angle at various excitation energies in the giant resonance region of 12C.

nances and the non-spin-flip cross section was dominated by 1^- resonances and agreed well with recent calculations of Coulomb excitations [24].

For the measurements of γ rays from the giant resonances, the absolute values of the γ-ray emission probability ($R_\gamma(E_x)$) and the response functions were verified with in-situ γ rays (15.1 and 6.9 MeV) with an accuracy of $\pm 5\%$ during the experiment. This calibration procedure made it possible to measure $R_\gamma(E_x)$ reliably as a function of the excitation energy of 12C in the energy range $E_x = 16-32$ MeV. We found that the measured value of $R_\gamma(E_x)$ starts from zero at $E_x = 16$ MeV (the threshold of $p + ^{11}$B decay) and increases to $53.3\pm0.4\pm3.9\%$ at $E_x = 27$ MeV and begins to decrease with further increase in E_x.

We compared the measurements of γ-ray emission probability with a statistical model calculation to understand our measured values. For $E_x = 16-27$ MeV, the γ-ray emission probability increases with excitation energy because this energy region is dominated by giant resonances and the number of accessible states of daughter nuclei also increases. For $E_x > 27$ MeV, the dominance of giant resonances ceases and we observe the decrease in the γ-ray emission probability. In this energy region, the contribution from quasifree process to the total cross section becomes nearly equal to that of giant resonances. We also found that the contribution of 3-body decay process to the γ-ray emission probability was negligible. Quantitatively, we observed a 30-40% lower γ-ray emission probability in the energy region $E_x = 20-24$ MeV than that predicted by the statistical model calculation.

The γ-ray emission probability was also measured as a function of scattering angle, but no strong angular dependence was observed.

The present results are very important for understanding the γ-ray emission probability of the giant resonances of a typical light nucleus (12C) and for the neutrino detection in liquid scintillator detectors through neutral-current interactions. A similar analysis of the 16O($p, p'\alpha$) reaction is ongoing and will be presented elsewhere. An experiment using a Germanium detector such as that of the CAGRA spectrometer at RCNP [23] will significantly improve the current understanding of the γ-ray emission and decay of giant resonances by separating γ rays emitted from the daughter nuclei after proton and neutron decays.

ACKNOWLEDGEMENTS

We gratefully acknowledge the outstanding efforts of the RCNP cyclotron staff for providing a clean and stable beam for our experiment. We would like to thank Prof. H. Toki, the former Director of RCNP, for encouraging us at the early stage of this experiment. We also thank Profs. M.N. Harakeh, Y. Suda, H. Chiba, and H. Sagawa for valuable discussions. This work was supported by JSPS Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area) No. 26104006.

* e-mail adress: mandeepsingh@okayama-u.ac.jp
† M.Sakuda: sakuda-m@okayama-u.ac.jp
‡ A. Tamii: tamii@rcnp.osaka-u.ac.jp

[1] E. Anders and N. Grevesse, Geochim. Cosmochim. Acta 53, 197 (1988).
[2] F. Reines and C. L. Cowan, Phys. Rev. 92, 830 (1953); F. Reines and C. L. Cowan, Nature 178, 446 (1956).
