Searching for constituents from plants in geographically characterized areas, Egypt, Madagascar, and Okinawa

Sachiko Sugimoto

Received: 31 March 2022 / Accepted: 5 July 2022 / Published online: 12 August 2022
© The Author(s) 2022

Abstract
Secondary metabolites may not be produced under some conditions, and in most cases, their function and significance in the producing organisms is unknown. Conversely, there are some that are produced for readily understood reasons, for example, toxic substances as defensive substances against invaders, or volatile substances that attract other species of organisms. These secondary metabolites also contribute to our health. However, there has not been sufficient research to evaluate them from a pharmacological perspective, and much progress is expected in this area in the future. About 90% of the existing plants have not been studied for their chemical components and biological activities (Kazuki Saito in Bunshun shinsho 1119, pp. 119–126. ISBN 978-4-16-661119-5, 2017). On this basis, we have been searching for the constituents of unknown plants, and whose constituents have not been studied extensively. In this paper, the authors have reviewed some of their previous searching for constituents from plants in geographically characterized areas, Egypt, Madagascar, and Okinawa.

Keywords Ixora undulata · Onopordum alexandrinum · Entada phaseoloides · Cinnamosma fragrans · Grevillea robusta · Dodonaea viscosa

Introduction
Today, research on the discovery of biologically active substances from natural products is being actively conducted in many countries around the world, greatly contributing to humanity through the development of lead compounds for pharmaceuticals and pharmacological reagents that exhibit a specific mechanism of action. The researchers are investigating various natural medicines, marine organisms, microorganisms, tropical plants and animals, and so on. Among them, natural products, such as Japanese and Chinese herbal medicines, have been handed down to the present generation through experiential knowledge by application to humans since ancient times. These herbal medicines are deemed as pharmaceutical materials with proven efficacy, and some of their components can become lead pharmaceutical compounds. However, many of these natural products have not been examined for their constituents. Thus, it is important to elucidate the active ingredients from natural products and investigate their pharmacological aspects.

The authors have isolated several novel compounds from plants of unknown composition native to Egypt [2, 3], Madagascar [4–6], Thailand [7, 8], and Okinawa [9–12], and determined their chemical structures. We have also found various pharmacological actions of the isolated compounds.

Egyptian plant constituent exploration

Isolation of sulfur-containing alkaloids from Ixora undulata [1]

Ixora is a genus in the family Rubiaceae, which contains tropical evergreens and shrubs. Over 400 Ixora species exist in tropical Asia, where people widely use it for ornamental and medicinal purpose. I. chinensis, one of the most common native species found in southern China, has been previously reported that its leaves contain iridoid glucosides [13]. Similarly, I. coccinea, a dense shrub, which is native to India, is commonly used in traditional medicine.
Interestingly, *I. undulata*, which is collected in Egypt, is popularly used in religious ceremonies and as an ornamental plant. However, its constituents are unknown. We isolated a crystalline sulfur-containing alkaloid glycoside and determined its absolute configuration using X-ray crystallographic analysis. 1-(R)-phenyl ethanol β-gentiobioside (1) and 2-methylphenylmethanol β-gentiobioside (2) have a relatively rare aglycone, which contains three heteroatoms, such as oxygen, nitrogen, and sulfur (Fig. 1). We also found that megastigmane glycosides exhibited glycosylation inhibitory activity. Advanced glycation endproducts (AGEs), which readily form and accumulate with sustained hyperglycemia, contribute to the development of diabetic complications and are considered a potential therapeutic target. Corchoinoside C (3) showed strong inhibitory activity toward AGEs formation with an IC₅₀ value of 86.0 μM. The inhibitory activity of a positive control, aminoguanidine, was 2.48 mM. Aminoguanidine once entered the phase II clinical trials but was withdrawn due to its side effects [15].

Our results indicate that one megastigmane glucoside was clearly more efficient in inhibiting the formation of AGEs than the positive control. Thus, these data warrant further detailed investigation of these compounds as potential therapeutic agents for diabetic complications and related diseases.

Isolation of sesquiterpene-amino acid conjugates from Onopordum alexandrinum

Onopordum alexandrinum Boiss. (family: Asteraceae) is naturally distributed in the state of Israel, the Hashemite Kingdom of Jordan, and Egypt. The consumption of its tuberous roots by the natives of the western Egyptian desert causes hallucination and even death in some cases at high doses [16, 17]. *O. alexandrinum* is a biennial, short-lived perennial plant with coarse, spiny leaves and conspicuous spiny-winged stems. The genus *Onopordum* comprises ~ 50
species, which are distributed across Europe, North Africa, and Southwest Asia. *Onopordum* species have been chemically and biologically studied [18]. Sesquiterpenoids and lignans have been isolated from *O. laconicum* and *O. acanthium*, respectively [18, 19], and cyanaric, a quinic acid ester with anti-oxidant activity, was isolated from *O. illyricum* [20]. However, detailed phytochemical investigation of the whole aerial parts of *O. alexandrinum*, including leaves, stems, and flower buds, is yet to be conducted. We isolated four new sesquiterpene-amino acid conjugates, onopornoids A–D (4–7) (three elemans and one germacrane) (Fig. 1). These amino acids were also identified as L-proline using acid hydrolysis with 1 M HCl followed by HPLC analysis with a chiral detector [21]. Asteraceae plants are rich in sesquiterpenes, but sesquiterpene-amino acid conjugates are unusual.

Madagascaran plants’ constituents’ exploration

Entada phaseoloides (L.) Merrill is a liana of the Fabaceae family and is native to the tropical areas. Kernel nuts of *Entada* species possess anti-inflammatory activity [22] and are used as a substitute of soap due to high content of saponins. A set of unique sulfur-containing amides, entadamides A–C (8–10), were isolated from *E. phaseoloides* [23–25] along with entadamide A glucoside [26] (Fig. 2). Our study on the constituents of kernel nuts of *E. phaseoloides*, collected in Veco Pacca, Madagascar, highlighted four new N-acetylglucosamine-containing saponins, named entadosides A–D (11–14) (Fig. 2). Compounds 12 and 14 showed strong cytotoxicity against in the human carcinoma cell line, A549 (IC_{50}: 10.5 ± 1.9 μM and 17.3 ± 6.6 μM, respectively.

![Structures of entadamides (A–C) (8–10) and entadosides (A–D) (11–14)](image-url)
whereas other two saponins, 11 and 13, showed moderate activity (IC\textsubscript{50}: 31.9 ± 3.0 μM and 56.7 ± 11.6 μM, respectively). Acetylation onto 6″-alcohol remarkably enhanced the activity and as a general trend, xylopyranosides to the 2″″-position of ester-linked glucose were more effective than apiofuranosides.

Sesquiterpene lactam obtained from *Cinnamosma fragrans* [5, 6]

Cinnamosma fragrans Baillon (Canellaceae) is an endemic plant in the northwestern and east central areas of Madagascar. A decoction of the bark of *C. fragrans* is traditionally used for treating malarial symptoms [27]. *C. fragrans* contains fragrant essential oils, 1,8-cineol and linalool, as antimicrobial agents [28], and the isolation of extremely bitter drimane-type sesquiterpenes has also been previously reported [29–31]. Three C-glycosides (15–17), two coloratane-type sesquiterpene glycosides (18, 19), one triterpene (20), and four drimane-type sesquiterpene lactams (21–24) were isolated and structurally determined as new compounds from this plant (Fig. 3). Compounds 21, 22, and 24, which have a tyramine residue and a methoxy substituent at position 7, showed anti-multidrug resistance activity and 44.2 ± 3.3, 37.5 ± 2.8, and 56.1 ± 3.4% inhibition at 100 μM, respectively (24: IC\textsubscript{50} = 41.5 ± 3.5 μM). Of these, the drimane-type sesquiterpene lactam was unusual structure. Sesquiterpene lactams have rarely been found in nature; the ones found include cespilactam A from a soft coral, *Cespitularia hypotentaculata* [32], and curdionolide C from *Curcuma wenyujin* (Zingiberaceae) [33]. Nitrogen atoms in these sesquiterpenes result in imperfect-type alkaloids.

![Fig. 3 Structures of isolated compounds (15–24) from *C. fragrans*](image-url)
Haumanamide (from *Spongia* sp.) is the only known isolated diterpene lactam conjugated with phenethylamine. [34].

Okinawan plant constituent exploration

This paper introduces two species of Okinawan plants from the studies we have conducted on their constituents.

Isolation of arbutin derivatives exhibiting inhibitory activity on melanin production from *Grevillea robusta* [9, 10]

Grevillea robusta, which belongs to the Proteaceae, originates from subtropical areas of eastern Australia and is planted in Japan for ornamental purposes. It is an evergreen tree between 20 and 35 m in height, with dark green delicately dented bipinnatifid leaves reminiscent of fronds. The leaves are 15–30 cm long with gray–white or rusty undersides. A phytochemical investigation of the same plant, collected in Egypt, has been reported and several phenolic glucosides were isolated [35]. Cytotoxic 5-alkylresorcinol metabolites were also isolated from this plant [36], and a MeOH extract of its timber exhibited potent leishmanicidal activity [37]. Our laboratory has also isolated and reported several 5-alkylresorcinol derivatives from the same plant [38]. Additionally, *G. robusta* was a rich source of arbutin derivatives in our study. The compounds isolated in this study were assayed for their melanogenesis inhibitory activity using mouse melanoma cells (B16). Significant melanogenesis inhibitory activity was observed for some arbutin derivatives using B16 melanoma cells. Then, we further confirmed using a high melanin-producing clone, B16Y24, established in this study. Although B16Y24 is a potent melanin producer, grevilloside O (26) and robustaside D (27)

Fig. 4 Structures of Isolated Compounds from Okinawan Plants and dodoviscin A (29)
inhibited melanogenesis moderately, and grevilloside M (25) and graviquinone (28) possessed potent inhibitory activity toward it (Fig. 4, Table 1). Notably, their strong melanogenesis inhibitory activity showed almost no association with cytotoxicity. Considering the structure and activity relationship, these compounds possesses a common ester moiety, i.e., 3-(1-hydroxy-4-oxocyclohexa-2,5-dien-1-yl) acrylate or (E)-3-(1,6-dihydroxy-4-oxocyclohex-2-en-1-yl) acrylate.

Table 1 Melanogenesis inhibitory activity

Compound	Melanogenesis IC₅₀ (µM)	Cytotoxicity IC₅₀ (µM)
25	7.5 ± 3.1	>30
26	52.9 ± 2.5	>100°
27	20.7 ± 1.8	>30
28	11.3 ± 0.1	>30
Arbutin	175.1 ± 3.4°	>300°

Each value represents the mean ± S.D. for quadruple experiments. *The dose was increased up to 100 or 300 µM to determine the IC₅₀ values.*

Research on the constituents of Dodonaea viscosa [12]

Dodonaea viscosa Jacquin (family: Sapindaceae) is a small evergreen tree (around 3–5 m in height) that is naturally distributed in Japan (Nansei Islands and Ogasawara Islands), Australia, New Zealand, and other tropical to subtropical regions of the world. It is an oval-shaped tree that branches from the lower section of the aerial part of the plant. Its leaves are glossy green and alternately oblong at all edges. From March to April, it forms short panicles to produce inconspicuous yellow–green flowers. Several parts of *D. viscosa* have been used in traditional medicine to treat several diseases in East Africa. As part of our research to find the constituents of Okinawan plants, we performed a search for the constituents of methanol extract of this plant. We describe the isolation of three new diterpenes and known compounds. Dodoviscin A (29) (Fig. 4), a compound isolated from *D. viscosa*, inhibits melanin production [39]. However, a detailed investigation of this plant species is yet to be conducted. Collagen is a major component of the dermis that keeps the skin elastic and firm. On the other hand, collagenase is an enzyme that breaks down the collagen and causes skin aging (e.g., as wrinkles). 5,7,4’-trihydroxy-3’-(4-hydroxy-3-methylbutyl)-5’-(3-methylbut-2-enyl)-3,6-dimethoxyflavone (30) showed the most potent collagenase inhibitory activity (IC₅₀ = 42.9 ± 6.0 µM), while dodoviscin C (31) showed almost the same activity as the positive control (caffeic acid), IC₅₀ = 94.5 ± 17.7 µM, 89.7 ± 4.8 µM, respectively. Similar to, compounds 30, 31 were prenylated flavonoids (Fig. 4). Taken together, these results suggest that compound 30 would be the best candidate for use as a cosmetic agent.

Conclusion

In this paper, the authors have reviewed some of their previous studies on the search for bioactive substances from unexplored plants, including those from Egypt, Madagascar, and Okinawa. The chemical structures of the compounds obtained from these plants are highly diverse. It is hoped that further exploration of compounds useful to mankind will lead to the discovery of new drugs.

Acknowledgements The author is indebted to Professor Hideaki Otsuka at Hiroshima University for helpful suggestions on this research. The author also thanks Professor Katsuyoshi Matsumani for his efforts and cooperation. These studies were carried out in collaboration with many co-workers at Prof. Otsuka’s laboratory, whose names are cited in the references.

Declarations

Conflict of interest The author declares no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. You may not use the material for commercial purposes. If you republish this article, please indicate your source and link to the licence. Find out more about CC licences at creativecommons.org/licenses/by/4.0/.

References

1. Kazuki Saito (2017) Bunshun shinsho 1119, pp.119–126. ISBN978-4-16-661119-5
2. Sugimoto S, Wanas AS, Mizuta T, Matsumani K, Kamel MS, Otsuka H (2014) Chemical and biological studies of secondary metabolites isolated from the leaves of *Ixora undulata*. Phytochemistry 108:189–195
3. Sugimoto S, Yamano Y, Desoukey SY, Katakawa K, Wanas AS, Otsuka H, Matsumani K (2019) Isolation of sesquiterpene-amino acid conjugates, Onopornoids A-D, and a flavonoid glucoside from *Onopordum alexandrinum*. J Nat Prod 82:1471–1477
4. Iwamoto Y, Sugimoto S, Harinantenaina L, Matsumani K, Otsuka H (2012) Entadosides A-D, triterpene saponins and a glucoside of the sulphur-containing amide from the kernel nuts of *Entada phaseoloides* (L.) Merrill. J Nat Prod 66:321–328
5. Nomoto Y, Harinantenaina L, Sugimoto S, Matsumani K, Otsuka H (2013) C-Glycosyl flavonoids and coloratane-type sesquiterpene
glucosides from the water-soluble fraction of a leaf extract of a Malagasy endemic plant, *Cinnamosma fragrans* (Canellaceae). J Nat Med 67:503–511

6. Nomoto Y, Harinantenain L, Sugimoto S, Matsunami K, Otsuka H (2014) 3,4-seco-24-homo-28-nor-cycloartane and drimane-type sesquiterpenes and their lactams from the EtOAc-soluble fraction of a leaf extract of *Cinnamosma fragrans* and their biological activity. J Nat Med 68:513–521

7. Sugimoto S, Matsunami K, Otsuka H (2012) Medicinal plants of Thailand. II: chemical studies on the seed kernels of *Entada rheedei* Sprengel. J Nat Med 66:552–557

8. Katsui H, Sugimoto S, Matsunami K, Otsuka H, Lheochoiphant S (2017) Lignan diesters of canangafurtricoside a from the leaves of *Cananga odorata var. odorata*. Chem Pharm Bull 65:97–101

9. Yamashita-Higuchi Y, Sugimoto S, Matsunami K, Otsuka H (2012) Reinvestigation of structures of robustasides B and C, and isolation of (E)-2,5-Dihydroxycinnamic acid esters of arbutin and glucose from the leaves of *Grevillea robusta*. Chem Pharm Bull 60:1347–1350

10. Yamashita-Higuchi Y, Sugimoto S, Matsunami K, Otsuka H, Nakai T (2014) Grevillosides J-Q, arbutin derivatives from the leaves of *Grevillea robusta* and their melanogenesis inhibitory activity. Chem Pharm Bull 62:364–372

11. Asami S, Sugimoto S, Matsunami K, Otsuka H, Kawakami S, Shinzato T (2018) Alkylated benzoquinones: ardisiaquinones A-H from the leaves of *Ardisia quinquegona* and their anti-Leishmania activity. Chem Pharm Bull 66:757–763

12. Sagara T, Sugimoto S, Yamano Y, Meira T, Masuda K, Otsuka H, Matsunami K (2021) Isolation of three new diterpenes from *Onopordon illyricum*. Planta Med 81:1270–1276

13. Reddy VP, Beyaz A (2006) Inhibitors of the maillard reaction and their anti-inflammatory activity. J Nat Med 60:1347–1350

14. Dontha S, Kamurthy H, Mantripragada B (2015) Phytochemical and pharmacological profile of *Ixora*: a review. IJPSR 6:567–584

15. Reddy VP, Beyaz A (2006) Inhibitors of the maillard reaction and AGE breakers as therapeutic multiplexes. Drug Discov Today 11:646–654

16. Mammadov SM, Refaat FJ, Sugimoto S, Otsuka H, Matsunami K, Kamel MS (2017) Chodationisides A and B: two new megastigmane glycosides from *Chorista chodatii*. J Nat Med 71:321–328

17. Moaty EL, Wanas AS, Radwan MM, Dusoukey SY (2016) Glycosides of *Onopordon alexandrinum* Boiss. And its central nervous system (CNS) and some biological activities. IJPPR 8:1088–1098

18. Lazari D, Garcia B, Scalitsa H, Pedro JR, Harinantenaina L, Takaoka S (2006) Cinnafagrins A-C, dimeric and trimeric drimane sesquiterpenoids from *Cinnamosma fragrans*, and structure revisions of capsicodendrin. J Nat Prod 69:1193–1197

19. Lin YC, Abd El-Razek MH, Shen TC (2010) Verticillane-type diterpenoids and a eudesmanolide-type sesquiterpen from formosan soft coral *Cespitularia hypotentaculata*. Helv Chim Acta 93:281–289

20. Lou Y, Zhao F, Wu Z, Peng KF, Wei XC, Chen LX, Qui F (2009) Germacrane-type sesquiterpenes from *Curcuma wenyujin*. Helv Chim Acta 92:1665–1672

21. Pham AT, Carney JR, Yoshida WY, Scheuer PJ (1992) Haumamide, a nitrogenous spongian derivative from a *Spongia sp*. Tetrahedron 48:1088–1098

22. Okajima KA, Kamisaka K, Harinantenaina L, Takaoka S (2004) Chodatiionosides A and B: two new megastigmane glycosides from the water-soluble fraction of a leaf extract of *Chorista chodatii*. J Nat Med 67:503–511

23. Ikegami F, Shibasaki I, Ohmiya S, Ruangrungsi N, Murakoshi I (1985) Entamide A, a new sulfur-containing amide from *Entada phaseoloides* seeds. Chem Pharm Bull 33:5153–5154

24. Ikegami F, Ohmiya S, Ruangrungsi N, Sakai SI, Murakoshi I (1987) Entamide B a second new sulphur-containing amide from *Entada phaseoloides*. Phytochemistry 26:1525–1526

25. Ikegami F, Sekine T, Duangteraprecha S, Matsushita N, Matsuda N, Ruangrungsi N, Murakoshi I (1989) Entamide C, a sulphur-containing amide from *Entada phaseoloides*. Phytochemistry 28:881–882

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.