Effects of dietary intake and genetic factors on hypermethylation of the hMLH1 gene promoter in gastric cancer

Hong-Mei Nan, Young-Jin Song, Hyo-Yung Yun, Joo-Seung Park, Heon Kim

HONG-MEI NAN, MD, PhD, Professor, Department of Preventive Medicine, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea

Young-Jin Song, HYO-YUNG YUN, Departments of Surgery, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea

Joo-Seung Park, Department of Surgery, Eulji University, School of Medicine, Daegun, Republic of Korea

Heon Kim, MD, PhD, Professor, Department of Preventive Medicine, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea

INTRODUCTION

Gastric cancer is the most common cancer among Koreans. Environmental factors including cigarette smoking and dietary intake have been implicated in the etiology of gastric cancer[1-4]. Genetic polymorphisms of xenobiotic-metabolizing enzymes can also affect susceptibility to cancer. Several studies have reported that the genetic polymorphisms of metabolic enzymes, such as cytochrome p450 2E1 (CYP2E1)[7], glutathione S-transferase mu 1 (GSTM1)[8], glutathione S-transferase theta 1 (GSTT1)[9], aldehyde dehydrogenase 2 (ALDH2)[10], and L-myc proto-oncogene, and mutations of p53[11] and Ki-ras[12] genes are associated with the development of gastric cancer.

Promoter hypermethylation is an alternative mechanism of gene inactivation in carcinogenesis[13]. Several studies have suggested that aberrant methylation of the promoter causes transcriptional silencing of some important suppressor genes, such as p16[13], E-cadherin[14], and von Hippel Lindau (VHL) gene[15], and this has been implicated in the carcinogenic process in many cancers[16]. In addition, it was recently shown that hypermethylation of gene promoters increases along
the pathway of development from chronic gastritis, intestinal metaplasia, and adenomas to carcinomas of the stomach[16,17].

The hMLH1 protein, a mismatch repair enzyme, maintains the fidelity of the genome during cellular proliferation. It has no known enzymatic activity and probably acts as a ‘molecular matchmaker’, recruiting other DNA-repair proteins to the mismatch repair complex[18]. Dysfunction of a mismatch repair system such as hMLH1 and hMSH2 could alter microsatellites, short tandem repetitive sequences[19]. Several reports have suggested that hypermethylation of the hMLH1 promoter correlates with a loss of expression of the gene, resulting in microsatellite instability in gastric cancer[20,21].

There is evidence that diet may be associated with hypermethylation of the hMLH1 gene promoter in gastric cancer. Aberrant hypermethylation of the hMLH1 gene promoter is frequently observed in cancers of digestive organs such as the colon, rectum, and stomach[21,22], and decreased levels of folate, vitamin C, and niacin can induce hypermethylation of gene promoters[23]. These facts led us to hypothesize that genetic polymorphisms and environmental factors, such as cigarette smoking, alcohol consumption, and diet, may interact during the hypermethylation of the hMLH1 gene promoter and in the carcinogenesis of gastric cancer. We studied the association between hypermethylation of the hMLH1 gene promoter and environmental factors, genetic polymorphisms of major metabolic enzymes, genetic mutation of p53 and Ki-ras genes, and microsatellite instability in gastric cancer.

MATERIALS AND METHODS

Subjects

One hundred and ten individuals with gastric cancer and 220 age-matched (within 3 years) and sex-matched controls were enrolled in this study. Cases of cancer were all histologically confirmed from February 1997 to June 2002 at Chungbuk National University Hospital and Eulji University Hospital, Korea. Control subjects were selected from patients newly diagnosed with diseases other than cancer at the same hospitals or from individuals receiving routine medical examinations in Chungbuk National University Hospital. Table 1 shows the age and gender distribution of the subjects according to hypermethylation of the hMLH1 gene promoter. The mean±SD ages were 59.81±11.23 years for cases and 59.60±11.03 years for controls. This study was conducted in accordance with the recommendations outlined in the Declaration of Helsinki and all subjects provided written informed consent.

Analysis of genetic polymorphisms

Genomic DNA was isolated from peripheral leukocytes by proteinase K digestion and phenol-chloroform extraction. A multiplex polymerase chain reaction (PCR) method[25] was used simultaneously to detect the presence or absence of the GSTM1 and GSTT1 genes with slight modification. The primers used were 5'-GAA GGT GGC CTC CTC CTT GG-3' and 5'-AAT TCT GGA TTG TAG CAG AT-3' for GSTM1, 5'-TTC CT TTT CAT GGT CCT CAC ATC TC-3' and 5'-TCA CCG GAT CAT GGC CAG CA-3' for GSTT1, and 5'-CAG CAT CCA CCG TCA CC-3' and 5'-GAA GAG CCA AGG ACA GT TAC-3' for B-globin, the internal reference gene. The PCR reactions were performed in 25 µL of a solution containing 50 ng of genomic DNA, 1× PCR buffer [50 mmol/L KCl, 10 mmol/L Tris-HCl (pH 9.0), 1.5 mmol/L MgCl2, and 0.1% Triton X-100], 5 pmoL of each primer, 80 µmol/L each dNTP, and 2.0 units Taq polymerase (Promega, Madison, WI). Amplifications were carried out in a thermocycler (MJ Research, Watertown, MA) as follows: 5 min of denaturation at 94 °C, followed by 35 cycles consisting of denaturation at 94 °C for 1 min, annealing at 58 °C for 1 min, and extension at 74 °C for 1 min. PCR products were separated on 2% agarose gels with ethidium bromide. GSTM1 and GSTT1 genotypes were not scored unless the PCR product of the B-globin gene was evident.

The A4889G polymorphism in exon 7 of the CYP1A1 gene was analyzed for each subject as described previously[26]. Briefly, PCR was performed using the primers 5'-GAA GGT GGC CTC CTC CTT GG-3' and 5'-TTC CT TTT CAT GGT CCT CAC ATC TC-3' and 5'-TCA CCG GAT CAT GGC CAG CA-3' for GSTM1 and GSTT1 genotypes were

Exposure to environmental factors

Trained interviewers interviewed subjects using a structured questionnaire within a month after the diagnosis of gastric cancer or benign diseases or at the time of the hospital visit for control subjects undergoing routine medical examination. The questionnaire included questions on demographic factors, smoking habits, alcohol consumption, and diet. Dietary data were collected using a semiquantitative food frequency table previously evaluated for validity and reliability[24]. All subjects were asked about their average frequency of consumption and portion size of 89 common food items during the year preceding the interview. These items were classified into 21 food groups having similar ingredients. The 21 food groups were as follows: cereals; potato; nuts; breads and cakes; vegetables; mushrooms; fruits; meats; eggs; fishes and shellfishes; stews; chicken; kimchi; soybean foods; soybean pastes; milk and dairy products; butter, cheeses, and margarine; jams, honey, candies, and chocolates; coffee and tea; seaweeds; and alliums.

The amount of calories, nutrients, vitamins, and minerals consumed for each food item was estimated by multiplying the intake amount of the food item and its nutrient value. The total intake of calories, nutrients, vitamins, and minerals was calculated for each subject by summing the respective calories, nutrients, vitamins, and minerals for each food item[23]. The intake amounts of these factors were adjusted for caloric intake using the method of Willett et al.[26].

Table 1 Gender and age distribution of cases and controls

Gender	Cases	Controls
Male	70	140
Female	40	80
Age (yr)		
<39	6	12
40–49	11	22
50–59	34	68
60–69	40	80
70–	19	38
reaction was slightly modified. After initial denaturation for 5 min at 94 °C, a thermal cycle consisting of denaturation for 90 s at 94 °C, annealing for 30 s at 53 °C, and extension for 30 s at 74 °C, was repeated 35 times. The PCR products (187-bp fragments) were digested with HincII restriction enzyme at 37 °C overnight and subjected to electrophoresis on 12% polyacrylamide gels. PCR analysis resulted in the following genotype classification: a predominant homozygote (Ile/Ile), a heterozygote (Ile/Val), and a rare homozygote (Val/Val).

The 5'-flanking region polymorphism of the \textit{CYP2E1} gene was analyzed using procedures described previously\cite{28}. Briefly, PCR was performed using the primers 5'-CCA CAG GTC TCT ACA TTG TCA-3' and 5'-TTC ATT CTG TCT CCT TCT TCT AAC TGG-3'. Initial denaturation was performed at 94 °C for 5 min, followed by 35 thermal cycles consisting of denaturation for 1 min at 94 °C, annealing for 1 min at 53 °C, and extension for 30 s at 74 °C. The 410-bp PCR product was digested with \textit{RsaI} at 37 °C overnight and subjected to electrophoresis on 2% agarose gels. The genotypes of \textit{CYP2E1} were classified as follows: a predominant homozygote (c1/c1), a heterozygote (c1/c2), and a rare homozygote (c2/c2).

The \textit{MboII} polymorphism of \textit{ALDH2} was identified using a PCR-RFLP method\cite{30} with slight modification. Briefly, PCR was performed using the primers 5'-CCA CAC TCA CAG TTT TCT CTT-3' and 5'-AAA TTA CAG GGT CAA CTG CT-3'. We used the same PCR conditions as in the \textit{CYP1A1} gene analysis. The 134-bp amplicon was digested with \textit{MboII} restriction enzyme at 37 °C overnight and subjected to electrophoresis on 15% polyacrylamide gels. The genotypes of \textit{ALDH2} were identified as the predominant homozygote (NN), the heterozygote (ND), and the rare homozygote (DD).

The polymorphism of the \textit{L-myc} gene was analyzed using procedures described previously\cite{29}. Briefly, PCR was performed using the primers 5'-ACG GCT GGT GGA GTG GTA GA-3' and 5'-AAG CTT GAG CCC CTT TGT CGA-3' for the methylated reaction and 5'-TTT TGA TGT AGA TGT TTT ATT AGG GTT GT-3' and 5'-ACC ACC TCA TCA TAA CTA CCC ACA-3' for the unmethylated reaction (124-bp), and 5'-ACG TAG ACG TTT TAT TAG GGT CGC-3' and 5'-CCT CAT CGT AAC TAC CGG CG-3' for the methylated reaction (115-bp)\cite{31}. PCR was performed in a thermocycler (MJ Research) as follows: 5 min of denaturation at 95 °C, then 35 cycles consisting of denaturation at 95 °C for 30 s, annealing at 55 °C for 30 s, and extension at 72 °C for 30 s. PCR products were separated on 6% polyacrylamide gels with ethidium bromide. DNA from blood samples was used as a negative control for hypermethylated \textit{hMLH1}.

Microsatellite instability

Microsatellite instability (MSI) was examined using BAT25 and BAT26 mononucleotide microsatellite markers. PCR was performed in a 25 µL reaction volume containing 50 ng of genomic DNA, 1× PCR buffer, 5 pmoL of each primer, 80 µmol/L each dNTP, 2.0 units Taq polymerase (Takara, Shiga, Japan), and 0.2 µCi of α-32P-labeled dCTP. Amplifications were carried out as follows: 5 min of denaturation at 95 °C, then 35 cycles consisting of denaturation at 95 °C for 50 s, annealing at 58 °C for 90 s, and extension at 72 °C for 90 s. Two microliters of PCR product was electrophoresed on 6% denaturing polyacrylamide gels containing 6 mol/L urea at room temperature. The gels were dried and autoradiographed on X-ray film. MSI-positive results were identified when the mobility of the microsatellite fragment amplified from tumor DNA differed from the corresponding blood DNA. Tumors were considered microsatellite instability-positive (MSI+) if they manifested instability at one or two loci or microsatellite instability-negative (MSI-) if no unstable microsatellite was found.

Sequencing of \textit{p53} and \textit{Ki-ras} genes

Reverse transcription (RT)-PCR and direct sequencing methods were used to detect mutations in \textit{p53} and \textit{Ki-ras} genes. Briefly, tissues from gastric cancer patients were homogenized and RNA was isolated using TRizol solution (Invitrogen Life Technologies, Grand Island, NY). RT-PCR to amplify \textit{p53} and \textit{Ki-ras} cDNA were performed using reagents purchased from Promega. Specific primers synthesized by Bioneer Company (Cheongju, South Korea), \textit{Ex Taq} polymerase (Takara), dNTPs, MgCl\textsubscript{2}, PCR buffer, and cDNA template were mixed and then amplified for 40 cycles at 95 °C for 30 s and at 72 °C for 1 min. The cDNA regions were amplified using primers 5'-TCT AGA GCC ACC GTC CAG GGA G-3' and 5'-AAC CTC AGG CGG CTC ATA GGG CA-3' for the +2+810 region of \textit{p53}, and 5'-ACC AGG GCA GCT ACC GGT TCC GTT CGG-3' and 5'-TCA GTC GTA ATC AGG CCC TCT TGG-3' for the +443+3 317 region of \textit{p53}. Exons 1 and 2 of the \textit{Ki-ras} gene were amplified using primers 5'-GAC TGA ATA TAA ACG TGT GGT AG-3' and 5'-ACT GGT CCC TCA TTT G.
CAC TG-3’. Before the RT-PCR products were sequenced by cycle sequencing, a PCR purification kit (Boehringer Mannheim, Indianapolis, IN) was used to remove unwanted reagents from the PCR reaction. The purified PCR products were then directly cycle-sequenced using an ABI PRISM 3100 Avant Genetic Analyzer (Applied Biosystems, Foster City, CA) according to the manufacturer’s instructions.

Data analysis

Calorie-adjusted intakes of foods, nutrients, vitamins, and minerals were categorized into low- and high-intake groups based on the median values of the control population. Alcohol consumption per week was calculated from questions about the types, frequency, and average amount of alcohol consumed. Alcohol consumption was categorized into three groups: none, ≤280 g of alcohol/week, and >280 g of alcohol/week. Subjects who had smoked 20 cigarettes or more during their life were classified as smokers and those who had not were considered nonsmokers. Pack-year was used as an index of cumulative smoking.

The purpose of the study was to determine if dietary factors, genetic polymorphisms, MSI, and mutations of p53 and Ki-ras genes were associated with hypermethylation of the hMLH1 gene promoter. We used unconditional logistic analysis to compare the risk of exhibiting or not exhibiting hypermethylation of the hMLH1 promoter in tumors and controls using the SAS System for Windows (Release 8.1). P-values less than 0.05 were considered significant.

RESULTS

There were significant differences according to the smoking history, pack-years, and higher weekly alcohol intake between patients with gastric cancers with hypermethylation of the hMLH1 promoter and controls (Table 2). As the amount of cigarette smoking or alcohol drinking increased, the risk of gastric cancer with the hMLH1 promoter hypermethylation (Table 3).

High consumption of potatoes and butter, cheese, and margarine was associated with lower risk of gastric cancer with hypermethylation of the hMLH1 promoter. In contrast, consumption of vegetables was associated with higher risk of gastric cancer with hypermethylation of the hMLH1 promoter. High intake of mushrooms and fruits and low intake of cereals and butter, cheese and margarine were associated with higher risk of gastric cancer without hypermethylation of the hMLH1 promoter (Table 4). Among the nutrients, vitamins, and minerals evaluated, high intake of protein, phosphorus, potassium, vitamin C, zinc, and calcium was associated with higher risk of gastric cancer without hypermethylation of the hMLH1 gene promoter. However, the intake of nutrients, vitamins, and minerals

Table 2 Interaction between cigarette smoking and alcohol intake, and hMLH1 gene promoter hypermethylation in gastric cancer

Smoking history	Controls (n)	Cases without hMLH1 promoter hypermethylation (n)	Cases with hMLH1 promoter hypermethylation (n)	\(\chi^2 \) adj
Non-smoker	102	27	13	3.827
Smoker	117	42	24	
Odds ratio	Referent (1.00)	1.16 (0.62–2.17)	3.04* (1.29–7.19)	
Alcohol drinking				
Never	95	26	15	1.327
Ever	124	43	22	
Odds ratio	Referent (1.00)	1.07 (0.57–2.01)	2.11 (0.90–4.98)	

Odds ratio was adjusted for age and sex. *P<0.05 vs others.

Table 3 Interaction between amount of cigarette smoking and alcohol intake, and hMLH1 gene promoter hypermethylation in gastric cancer

Cumulative smoking	OR (95% CI)	OR (95% CI)	\(\chi^2 \) adj	
0	1.00	1.00		
1–15	0.96 (0.38–2.41)	0.86 (0.22–3.41)		
16–34	0.92 (0.44–1.93)	0.75 (0.24–2.38)		
35–	0.39* (0.16–0.93)	3.17* (1.20–8.42)		
Ethanol uptake (g/wk)			1.202	6.344*

Odds ratio was estimated using a conditional logistic analysis. *Confidence interval. *P<0.05 vs others.

Table 4 Distribution of controls and cases with or without promoter hypermethylation of the hMLH1 gene according to their intake of food groups which were statistically significant

Cereal	Low	110	45	17
	High	109	24	20
Odds ratio	Referent (1.00)	0.56* (0.32–0.99)	0.94 (0.45–1.96)	
Potato	Low	109	36	27
	High	110	33	10
Odds ratio	Referent (1.00)	1.00 (0.57–1.74)	0.30* (0.14–0.67)	
Vegetable	Low	110	29	12
	High	109	40	25
Odds ratio	Referent (1.00)	1.42 (0.82–2.46)	2.17* (1.03–4.58)	
Mushroom	Low	110	26	18
	High	109	43	19
Odds ratio	Referent (1.00)	1.85* (1.05–3.27)	0.89 (0.43–1.83)	
Fruit	Low	110	25	13
	High	109	44	24
Odds ratio	Referent (1.00)	1.86* (1.06–3.27)	1.69 (0.81–3.54)	
Butter, cheese, and margarine	Low	110	49	24
	High	109	20	13
Odds ratio	Referent (1.00)	0.45* (0.24–0.81)	0.44* (0.20–0.93)	

Odds ratio was adjusted for age and sex. *P<0.05 *P<0.01 vs others.
DISCUSSION

Cigarette smoking and alcohol consumption have been identified as risk factors for gastric cancer in some studies, although others have not found a causal relationship between these factors. Data from our unconditional logistic models showed that both cigarette smoking and alcohol consumption play dominant roles in the development of gastric cancer with hypermethylation of the hMLH1 promoter, but not in the development of cancer without hypermethylation of the promoter. This finding suggests that smoking- or alcohol-related biological pathways leading to the development of gastric cancer involve hypermethylation of the hMLH1 promoter. Although it is unclear whether smoking induces hypermethylation of the hMLH1 gene promoter in humans, recent reports indicate an association between DNA methylation and tobacco carcinogens in animal models. Previous studies have also shown that smoking and alcohol consumption increase the risk of developing microsatellite-unstable tumors.

The exact mechanism of DNA hypermethylation by alcohol is unknown. However, it has been hypothesized that

GSTM1	Controls (n)	Cases without hMLH1 promoter hypermethylation (n)	Cases with hMLH1 promoter hypermethylation (n)
Undeleted	90	21	13
Deleted	130	48	25
Odds ratio	Referent (1.00)	1.67 (0.93–3.00)	1.18 (0.56–2.47)
GSTT1			
Undeleted	117	32	17
Deleted	103	37	21
Odds ratio	Referent (1.00)	1.32 (0.76–2.29)	1.47 (0.72–2.98)
CYP1A1			
c1/c1	129	44	25
Odds ratio	Referent (1.00)	0.89 (0.51–1.56)	0.76 (0.37–1.59)
ALDH2			
NN	139	38	26
ND+DD	79	31	11
Odds ratio	Referent (1.00)	1.45 (0.83–2.52)	0.73 (0.34–1.56)
L-myc			
Low	52	20	9
High	164	48	29
Odds ratio	Referent (1.00)	1.59 (0.86–2.92)	1.56 (0.61–3.99)

Odds ratio was adjusted for age and sex.

Gene	hMLH1 promoter hypermethylation	OR (95%CI)	X²	P	
	Yes (%)	No (%)			
P53					
No	31 (81.58)	46 (65.71)	1.00	4.199	0.041
Yes	7 (18.42)	24 (34.29)	0.34 (0.12–0.95)		
Ki-ras					
No	37 (97.37)	58 (93.55)	1.00	0.407	0.524
Yes	1 (2.63)	4 (6.45)	0.47 (0.05–4.72)		
MSI					
No	28 (73.68)	66 (92.86)	1.00	7.458	0.006
Yes	10 (26.32)	4 (7.14)	6.19 (1.67–22.88)		

Odds ratio was adjusted for age and sex. Confidence interval. Microsatellite instability.
alcohol could influence carcinogenesis by influencing mucosal cell proliferation and related histological changes. These changes have been associated with mucosal hyper-regeneration, which may make the mucosa more susceptible to the action of other carcinogens such as cigarette smoke. Therefore, alcohol consumption might increase the bio-availability of DNA-binding smoke components in the mucosa of the upper digestive tract, increasing the plasma levels of these compounds, or might modify the metabolism of pro-carcinogenic compounds by inducing specific metabolic pathways involving an aberrant mismatch repair system.

Folate deficiency is associated with hypermethylation of the H-cadherin promoter. However, we found no significant association between folate intake and hypermethylation of the hMLH1 promoter. Su and Arab reported that low folate intake is aggravated by high alcohol intake, probably because folate is degraded by acetaldehyde, an intermediate metabolite of alcohol, van Engeland et al, suggested that intake of folate and alcohol is associated with changes in promoter hypermethylation in colorectal cancer. Our data showing that alcohol intake increased the risk of gastric cancer with hypermethylation of the hMLH1 promoter are consistent with these previous reports.

Most dietary factors, nutrients, vitamins, and minerals are not associated with gastric cancer with hypermethylation of the hMLH1 promoter, although we found that a high intake of vegetables and low intake of potato and butter, cheese, and margarine were associated with increased likelihood of gastric cancer without hypermethylation of the hMLH1 promoter, and high intake of mushrooms and fruits and low intake of cereals and butter, cheese and margarine were associated with higher risk of gastric cancer without hypermethylation of the hMLH1 promoter. We cannot be certain that these results did not occur by chance, given the low number of comparisons. However, we observed that different dietary factors selectively affected the pathways to gastric cancer with or without hypermethylation of the hMLH1 promoter. For example, a high intake of butter, cheese, and margarine was associated with a lower risk of gastric cancers either with or without hypermethylation of the hMLH1 promoter. These findings agree with epidemiological data showing a relatively low incidence of gastric cancer in countries with consumption of high butter, cheese, and margarine. Based on these facts, it could be suggested that butter, cheese and margarine decrease the risk of gastric cancer regardless of the hMLH1 promoter hypermethylation.

It has been reported that vitamin C can induce hypermethylation of gene promoters. However, a higher intake of vitamin C is associated with an increased risk of gastric cancer in this present study. One of the main vitamin C sources for Koreans is kimchi, which has been reported as a potent risk factor for gastric cancer in some Korean epidemiologic studies. Therefore, kimchi intake increases vitamin C intake amount, and, at the same time, the risk of gastric cancer.

Few epidemiological studies on gastric cancer have included genetic polymorphisms in the analysis or evaluated the association between genetic polymorphisms and hypermethylation of the hMLH1 gene promoter. Several studies have reported an independent, increased risk of gastric cancer for the GSTM1 null, GSTT1 null, CYP2E1 c1/c2 or c2/c2, *2-allele containing ALDH2 genotypes, and shorter (s) allele-containing L-myc genotypes. However, other studies have not found any association between gastric cancer and these genotypes. We found no significant association between polymorphisms of GSTM1, GSTT1, CYP1A1, CYP2E1, ALDH2, and L-myc and the risk of gastric cancer with or without hypermethylation of the hMLH1 promoter. These findings suggest that the genetic polymorphisms of the GSTM1, GSTT1, CYP1A1, CYP2E1, ALDH2, and L-myc genes might not be independent risk factors, but could act as effect modifiers of the risk of gastric cancer through environmental factors, such as dietary intake.

We examined the mononucleotide repeats BAT25 and BAT26 to detect genuine MSI because these repeats are considered as ideal diagnostic markers. Mononucleotide repeats are sufficient for the diagnosis of true MSI. A consensus mononucleotide locus, BAT26 is altered in all tumors with genuine MSI. We found that 10 of the 14 MSI+ gastric cancer cases (71%) in our patients were hypermethylated in the promoter region of hMLH1. We found a significant association between hypermethylation of the hMLH1 promoter and MSI+ gastric carcinoma (P = 0.006), which is consistent with previous reports.

Point mutations in the p53 tumor suppressor gene and ras oncogene are frequently found in human and rodent tumors. Mutations of the p53 and Ki-ras genes were detected in 28.2% and 4.9% of our patients with gastric cancer, respectively. We also found a significant inverse association between hypermethylation of the hMLH1 gene promoter and p53 mutations. Previous studies have reported a significantly lower incidence of p53 gene alterations in MSI+ gastric cancer, in MSI+ colorectal cancers, and in colorectal cancer cell lines than in MSI- gastric cancer. Together, these data confirm the existence of alternative genetic pathways for gastric cancer, such as the classical ‘tumor suppressor’ pathway and the ‘mismatch repair’ pathway.

In conclusion, despite its limited size, this study suggests that cigarette smoking and alcohol consumption are significantly associated with higher risk of gastric cancer having hypermethylation of the hMLH1 promoter. Polymorphisms of GSTM1, GSTT1, CYP1A1, CYP2E1, ALDH2, and L-myc genes were not associated with gastric cancers either with or without hypermethylation of the hMLH1 promoter, suggesting that these polymorphisms operate along disease pathways other than those involving the mismatch repair system in gastric cancer. Our data also highlight the importance of aberrant methylation of the hMLH1 gene promoter in causing MSI in gastric cancer. The negative association between hypermethylation of the hMLH1 gene promoter and p53 mutations suggests that there could be two or more different molecular pathways in the development of gastric cancer, such as tumor suppression mechanisms and DNA mismatch repair.

REFERENCES

1. Kim JP, Park JG, Lee MD, Han MD, Park ST, Lee BH, Jung
SE. Co-carcinogenic effects of several Korean foods on gastric cancer induced by N-methyl-N'-nitro-N-nitrosoguanidine in rats. Jpn J Surg 1985; 15: 427-437
2 Yun TK, Choi SY. Preventive effect of ginseng intake against various human cancers: a case-control study on 1987 pairs. Cancer Epidemiol Biomarkers Prev 1995; 4: 401-408
3 Lee JK, Park BJ, Yoo KY, Ahn YO. Dietary factors and stomach cancer: a case-control study in Korea. Int J Epidemiol 1995; 24: 33-41
4 Ahn YO. Diet and stomach cancer in Korea. Int J Cancer 1997; 70: 7-9
5 Nishimoto IN, Hanaoka T, Sugimura H, Nagura K, Ihara M, Li XJ, Arai T, Hamada GS, Kowalski LP, Tsugane S. Cytochrome P450 2E1 polymorphism in gastric cancer in Brazil: case-control studies of Japanese Brazilians and non-Japanese Brazilians. Cancer Epidemiol Biomarkers Prev 2000; 9: 675-680
6 Setiawan VW, Zhang ZP, Yu GP, Li YL, Lu ML, Tsai CJ, Cordova D, Wang MR, GU CH, Yu SZ, Kurtz RC, GSTT1 and GSTM1 null genotypes and the risk of gastric cancer: a case-control study in a Chinese population. Cancer Epidemiol Biomarkers Prev 2000; 9: 73-80
7 Harada S, Misawa S, Nakamura T, Tanaka N, Ueno E, Nozoe M. Detection of GSTT1 gene deletion by the polymerase chain reaction and its possible correlation with stomach cancer in Japanese. Hum Genet 1992; 90: 62-64
8 Yokoyama A, Muramatsu T, Ohmori T, Yokoyama T, Okuyama Y, Takahashi H, Hasegawa Y, Higuchi S, Maruyama K, Shirakura K, Ishii H. Alcohol-related cancers and aldehyde dehydrogenase-2 in Japanese alcoholics. Carcinogenesis 1998; 19: 1383-1387
9 Shibuta K, Mori M, Haraguchi M, Yoshikawa K, Ueo H, Akiyoshi T. Association between restriction fragment length polymorphism of the L-myc gene and susceptibility to gastric cancer. Br J Surg 1998; 85: 681-684
10 Siha SH, Rugge M, Correa P, Lehmann HP, Scheer WD. p53 alteration in gastric precancerous lesions. Am J Pathol 1994; 144: 511-517
11 Craenen ME, Blok P, Top B, Boergerink L, Dekker W, Offerhaus GJ, Tytgat GN, Rodenhuis S. Absence of ras gene mutations in early gastric carcinomas. Gut 1995; 37: 758-762
12 Baylin SB, Herman JG, Graff JR, Vertino EM, Issa JP. Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res 1998; 72: 141-196
13 Mello A, Herman JG, Mao L, Lee DJ, Gabrielson E, Burger PC, Baylin SB, Sidransky D. CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat Med 1995; 1: 686-692
14 Graff JR, Herman JG, Lapidus RG, Chopra H, Xu R, Jarrard DF, Isaacs WB, Pitka PM, Davidson NE, Baylin SB. E-cadherin expression is silenced by DNA hypermethylation in human breast and prostate carcinomas. Cancer Res 1995; 55: 5195-5199
15 Herman JG, Latif F, Weng Y, Lerman MI, Zbar B, Liu S, Samid D, Duan DS, Gnarr JR, Linehan WM, Baylin SB. Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci USA 1994; 91: 9700-9704
16 Kang GH, Shim YH, Jung HY, Kim WH, Ro JY, Ryu MG. CpG island methylation in premalignant stages of gastric carcinoma. Cancer Res 2001; 61: 2847-2851
17 Fleisher AS, Esteller M, Tamura G, Suzuki H, Yin J, Zou TT, Abraham JM, Kong D, Smolinski KN, Shi YQ, Ryu MG, Powell SM, James SP, Wilson KT, Herman JG, Meltzer SJ. Hypermethylation of the hMLH1 gene promoter in human gastric cancers with microsatellite instability. Cancer Res 1999; 59: 1090-1095
18 Cunningham JM, Christensen ER, Tester DJ, Kim CY, Roche PC, Burgart LJ, Thibodeau SN. Hypermethylation of the hMLH1 promoter in colon cancer with microsatellite instability. Cancer Res 1998; 58: 3455-3460
19 Singh SM, Murphy B, O’Reilly RL. Involvement of gene-diet/drug interaction in DNA methylation and its contribution to complex diseases: from cancer to schizophrenia. Clin Genet 2003; 64: 451-460
20 Kim MK, Lee SS, Ahn YO. Reproducibility and validity of a self-administered semiquantitative food frequency questionnaire among middle-aged men in Seoul. J Korean Commun Nutr 1996; 1: 376-394
21 The Korean Nutrition Society. Recommended dietary allowance for Koreans, 7th Revision. The Korean Nutrition Society, Seoul, 2000
22 Willett W, Stampfer MJ. Total energy intake: implications for epidemiologic analyses. Am J Epidemiol 1986; 124: 17-27
23 Chen H, Sandhir OP, Taylor JR, Shore DL, Liu E, Bloomfield CD, Bell DA. Increased risk for myelodysplastic syndromes in individuals with glutathione transferase theta 1 (GSTT1) gene defect. Lancet 1996; 347: 295-297
24 Oyama T, Mitsudomi T, Kawamoto T, Ogami A, Osaki T, Kodama Y, Yasumoto K. Detection of CYPIA1 gene polymorphism using designed RFLP and distributions of CYPIA1 genotypes in Japanese. Int Arch Occup Environ Health 1995; 67: 257-256
25 Kawamoto T, Koga M, Murata K, Matsuda S, Kodama Y. Effects of ALDH2, CYPIA1, and CYPIE2I genetic polymorphisms and smoking and drinking habits on tolune metabolism in humans. Toxicol Appl Pharmacol 1995; 133: 295-304
26 Harada S, Zhang S. New strategy for detection of ALDH2 mutant. Alcohol Alcohol Suppl 1993; 1A: 11-13
27 Yaylin I, Isbir T, Ozurtok O, Turna A, Ismtangil T, Zonuzi F, Camlica H. Is there any correlation between restriction fragment polymorphism of the L-MYC gene and metastasis of human non-small cell lung cancer? Cancer Genet Cytogenet 2002; 118: 118-122
28 Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 1996; 93: 9821-9826
29 Bjain M, Choi NW, Fodor JG, Pfeiffer CJ, Howe GR, Harrison LW, Craib KJ, Miller AB. Dietary factors and the incidence of cancer of the stomach. J Epidemiol 1985; 5: 345-350
30 You WC, Blot WJ, Chang YS, Ershaw AG, Yu ZT, An Q, Henderson B, Xu GW, Fraumeni JF Jr, Wang TG. Diet and high risk of stomach cancer in Shandong, China. Cancer Res 1988; 48: 3518-3523
31 McLaughlin JK, Hrubec Z, Blot WJ, Fraumeni JF Jr. Stomach cancer and cigarette smoking among U.S. veterans, 1954-1980. Cancer Res 1990; 50: 3804
32 Kabat GC, Ng SK, Wynder EL. Tobacco, alcohol intake, and diet in relation to adenocarcinoma of the esophagus and gastric cardiac. Cancer Causes Control 1993; 4: 123-132
33 Pollack ES, Nomura AM, Heilbrun LK, Stammernann GN, Green SB. Prospective study of alcohol consumption and cancer. N Engl J Med 1984; 310: 617-621
34 Nomura A, Grove JS, Stammernann GN, Severson RK. A prospective study of stomach cancer and its relation to diet, cigarettes, and alcohol consumption. Cancer Res 1990; 50: 627-631
35 Swafford DS, Middleton SK, Palmisano WA, Nikula KJ, Tesfaigzi J, Baylin SB, Herman JG, Belinsky SA. Frequent
aberrant methylation of p16INK4a in primary rat lung tumors. Mol Cell Biol 1997; 17: 1366-1374
40 Lee YW, Klein CB, Kargacin B, Salnikow K, Kitahara J, Dowjat K, Zhitkovich A, Christie NT, Costa M. Carcinogenic nickel silences expression by chromatin condensation and DNA methylation: a new model for epigenetic carcinogens. Mol Cell Biol 1995; 15: 2547-2557
41 Slattery ML, Curtin K, Anderson K, Ma KN, Ballard L, Edwards S, Schaffer D, Potter J, Leppert M, Samowitz WS. Associations between cigarette smoking, lifestyle factors, and microsatellite instability in colon tumors. J Natl Cancer Inst 2000; 92: 1831-1836
42 Slattery ML, Anderson K, Curtin K, Ma KN, Schaffer D, Samowitz W. Dietary intake and microsatellite instability in colon tumors. Int J Cancer 2001; 93: 601-607
43 Kune GA, Vitetta L. Alcohol consumption and the etiology of colorectal cancer: a review of the scientific evidence from 1957 to 1991. Nutr Cancer 1992; 18: 97-111
44 Izzotti A, Balansky RM, Blagoeva PM, Mircheva ZI, Tulimiero L, Cartiglia C, De Flora S. DNA alterations in rat organs after chronic exposure to cigarette smoke and/or ethanol ingestion. FASEB J 1998; 12: 753-758
45 Jhaveri MS, Wagner C, Trepel JB. Impact Impact of extracellular folate levels on global gene expression. Mol Pharmacol 2001; 60: 1288-1295
46 Su LJ, Arab L. ArabNutritional status of folate and colon cancer risk: evidence from NHANES I epidemiologic follow-up study. Ann Epidemiol 2001; 11: 65-72
47 Homann N, Tillonen J, Salaspuro M. Microbially produced acetaldehyde from ethanol may increase the risk of colon cancer. Cancer Res 2001; 61: 601-607
48 van Engeland M, Weijenberg MP, Roemen GM, Brink M, de Bruine AP, Goldbohm RA, van den Brandt PA, Baylin SB, de Goeij AF, Herman JC. Effects of dietary folate and alcohol intake on promoter methylation in sporadic colorectal cancer: the Netherlands cohort study on diet and cancer. Cancer Res 2003; 63: 3133-3137
49 Stadllander CT, Waterbor J.W. Molecular epidemiology, pathogenesis and prevention of gastric cancer. Carcinogenesis 1999; 20: 2195-2208
50 Gao C, Takezaki T, Wu J, Li Z, Wang J, Ding J, Liu Y, Hu X, Xu T, Tajima K, Sugimura H. Interaction between cytotoxic P-450 2E1 polymorphisms and environmental factors with risk of esophageal and stomach cancers in Chinese. Cancer Epidemiol Biomarkers Prev 2002; 11: 29-34
51 Kato S, Onda M, Matsukura N, Tokunaga A, Matsuda N, Yamashita K, Shields PG. Genetic polymorphisms of the cancer related gene and Helicobacter pylori infection in Japanese gastric cancer patients. An age and gender matched case-control study. Cancer 1996; 77: 1654-1661
52 Deakin M, Elder J, Hendrickse C, Peckham D, Baldwin D, Pantin C, Wild N, Leopard P, Bell DA, Jones P, Duncan H, Brannigan K, Alldersea J, Fryer AA, Strange RC. Glutathione S-transferase GSTT1 genotypes and susceptibility to cancer: studies of interactions with GSTM1 in lung, oral, gastric and colorectal cancers. Carcinogenesis 1996; 17: 881-884
53 Dlugosz A, Adler G, Ciechanowicz A, Jaroszewicz-Heigelmann H, Starzyńska T. EcoRI polymorphism of the Lmyc gene in gastric cancer patients. Eur J Gastroenterol Hepatol 2002; 14: 1231-1235
54 Boland CR, Thibodeau SN, Hamilton SR, Sidransky D, Eshleman JR, Burt RW, Meltzer SJ, Rodriguez-Bigas MA, Fodde R, Ranzani GN, Srirastava S. National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 1998; 58: 5248-5257
55 Yamamoto H, Itoh F, Fukushima H, Adachi Y, Itoh F, Hinoda Y, Imai K. Frequent Bax frameshift mutations in gastric cancer with high but not low microsatellite instability. J Exp Clin Cancer Res 1999; 18: 103-106
56 Yamamoto H, Perez-Pileira J, Yoshida T, Terada M, Itoh F, Imai K, Peruchó M. Gastric cancers of the microsatellite mutator phenotype display characteristic genetic and clinical features. Gastroenterology 1999; 116: 1348-1357
57 Leung SY, Yuen ST, Chung LP, Chu KM, Chan AS, Ho JC. hMLH1 promoter methylation and lack of hMLH1 expression in sporadic gastric carcinomas with high-frequency microsatellite instability. Cancer Res 1999; 59: 159-164
58 Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers. Science 1991; 253: 49-53
59 Levine AJ, Momand J, Finlay CA. The p53 tumor suppressor gene. Nature 1991; 351: 453-456
60 Sukumar S, Notario V, Martin-Zanca D, Barbacid M. Induction of mammary carcinomas in rats by nitrosomethylurea involves malignant activation of H-ras-1 locus by single point mutations. Nature 1983; 306: 658-661
61 Zarbl H, Sukumar S, Arthur AV, Martin-Zanca D, Barbacid M. Direct mutagenesis of Ha-ras-1 oncogenes by N-nitrosomethylurea during initiation of mammary carcinogenesis in rats. Nature 1985; 315: 382-385
62 Olschwang S, Hamelin R, Laurent-Puig P, Thulliez B, De Rycke Y, Li YJ, Muzeau F, Girodet J, Salmon RJ, Thomas G. Alternative genetic pathways in colorectal carcinogenesis. Proc Natl Acad Sci USA 1997; 94: 12122-12127
63 Cotto PH, Muzeau F, Estreicher A, Flejou JF, Iggo R, Thomas G, Hamelin R. Inverse correlation between RER+ status and p53 mutation in colorectal cancer cell lines. Oncogene 1996; 13: 2727-2730
64 Strickler JG, Zheng J, Shu Q, Burgart LJ, Alberts SR, Shibata D. p53 mutations and microsatellite instability in sporadic gastric cancer: when guardians fail. Cancer Res 1994; 54: 4750-4755
65 Yamamoto H, Perez-Pileira J, Yoshida T, Terada M, Itoh F, Imai K, Peruchó M. Gastric cancers of the microsatellite mutator phenotype display characteristic genetic and clinical features. Gastroenterology 1999; 116: 1348-1357