Investigation of cryogenic soaking period on flank wear in turning using Response Surface Methodology

C Ramesh Kannan1, S Manivannan 2, J Vairamuthu 3, Samuel Tilahun 4, M D Vijayakumar 5 and B Stalin6

1Department of Mechanical Engineering, PET Engineering College, Tirunelveli, Tamil Nadu, India.
2Department of Mechanical Engineering, Karpagam Academy of Higher Education, Coimbatore -21, Tamil Nadu, India.
3Department of Mechanical Engineering, Sethu Institute of Technology, Pulloor- 626 115, Kariapatti, Tamil Nadu, India.
4Department of Mechanical Engineering, School of Mechanical and Automotive Engineering, College of Engineering and Technology, Dilla University, Dilla, Ethiopia.
5Department of Mechanical Engineering, Chennai Institute of Technology, Kundrathur, Chennai-600 069, Tamil Nadu, India.
6Department of Mechanical Engineering, Anna University, Regional Campus Madurai, Madurai-625 019, Tamil Nadu, India.

* Corresponding author: crkannanmech@gmail.com

Abstract. In this investigation, the effects of cryogenic soaking time on cutting insert were investigated. Cryogenic treatments were carried out at -196°C for various soaking times of 12, 24, and 48 hours followed by tempering at 200°C for 2 hours. The Scan Electron Microscope image and X-Ray Diffraction pattern analysis validate the structure of \(\eta\)-carbide on the surfaces of the inserts. The hardness result revealed that the deep cryogenic treatment improved the surface rigidity of the inserts. The speed, feed rate and depth of cut are preferred as input parameters of the experiment. The out response of the tool wear is measured the flank wear of the inserts. As a result, increase in soaking time of deep cryogenic treatment imports superior tool wear resistance of the inserts.

1. Introduction
Cryogenic treatment is a auxiliary process to develop the phenomenon of metals that has been revitalization in modern year. Tool wear is the primary troubles in machining and which is extensively influenced with the aid life of the tool. A range of strategies particularly PVD and CVD coatings, are on hand to extend the device lifestyles by using improving the surface plane of the tool. Solic et al. [1]. To investigate the effects of cryogenic treatment with three classes of the hot-work device metal have been grew to become in the machinability research there are conventional heat treated, cryogenic treated and cryogenic treated and tempered [2]. AISI4340 steel is a lofty tensile alloy steel popular for its wear opposition property and also high strength properties. The applications of AISI4340 steel is propeller, gear, connectingrod and aircraft components Ramesh Kannan [3]. Kamran Amini [4] studied the effect of holding time on tool steel during the treated insert the microstructure changes, carbide distribution, carbide percentage, and microhardness.
The bought consequences confirmed that there is an choicest maintaining period in which the carbides showcase a most proportion and the most homogenous distribution as in contrast to the different soaking durations. Simranpreet Singh Gill [5] evaluated the machining recital of treated AISI M2 elevated speed tool steel at two levels shallow treatment and cryo treatment. The criterion selected for formative the turning presentation was based on the highest flank wear. Vengatesh et al. [6] analysis the machining characteristics of an insert. Das et al. [7] find out the soaking time of maximum wear resistance. The duration of cryogenic processing is to maximize wear resistance of AISI D2 steel. N.B. Dhokey et al. [8] Hui-Bo He et al. [9] observe the influence of cryogenic processing on method of carbide growth in soaking period of treatment followed by soft tempering. The cryogenic treatment improves the wear resistance. Very few researchers have deliberated the influence of cryogenic soaking time on insert CNMG120408 SMRH13A in tuning operation. Ramesh Kannan, et al. [10] Evaluated the effect of cryogenic soaking time in machining of AISI4343 steel. It is noted that the cryogenic soaking time improve the wear resistance. Suprapto [11] have studied the effect of speed, feed and depth of cut in machining of AISI 1234 steel. It has exposed that the machining is the most considerable aspect in minimization of wear (Prathap) [12]. Many analyses focused at the response surface methodology (RSM), Taguchi procedure and variance analysis to predict the optimum performances of mechanical, wear, corrosion behaviours of composites and mechanical/structural analysis of machine elements in automotive industry [18-48].

The main intention of this investigation is the effect of cryogenic soaking time on tool wear in machining of AISI4340 steel. The effect of turning parameters on the flank wear on the cryogenic soaked inserts at selected range is not yet studied. However, there is limited published data on understanding tool wear mechanism with cryogenic soaking time. The work expresses experimental information of cryogenic treatment and machining. It includes selection the selection of work specimen, cryogenic treatment of elected inserts, machining setup, and turning details. The second part comprises the characterization of cryogenic treated insert surfaces in various soaking time. The last one is machining details, result and discussion.

2. Experimental detail

2.1. The work piece and tool material selection

AISI4340 alloy steel used to be chosen as a experiments and its chemical composition is distinct in Table 1. It purchased from sun metal Ltd, in the structure of rod 32mm diameter and 200mm length. After sizing, the work portions are polished by 400grit emery papers [13].

Material (%)	C	Si	Mn	S	P	Cr	Mo	Ni	Fe
AISI4340	0.36	0.35	0.6	0.04	0.03	1.4	0.35	1.7	bal

The CNMG120408SMRH13A inserts are chosen for deep cryogenic treatment with different soaking time.

2.2. Machining details

The cryogenic treated inserts were fixed on the tool holder device (ECLNL-2525M12). The AISI4340 steel specimens were machined by the cryogenic treated inserts at length of 100mm. The speed is varied from 50m/min to 150m/min, the feed rate is varied from 0.1mm/rev to 0.5mm/rev and depth of cut is varied from 0.1mm to 0.5mm.

2.3. Response Surface Modeling

For three independent variables x_1, x_2 and x_3 the response Y can be represented as a function of x_1, x_2, and x_3 as follows
\[Y = f(x_1, x_2, x_3) + \varepsilon \]

Where, \(\varepsilon \) represents an error component.

\[Y = \beta_0 + \sum_{i=1}^{k} \beta_i x_i + \sum_{i,j}^{k} \beta_{ij} x_i x_j + \varepsilon \]

where \(\beta_i (i=0,1,2,\ldots,k) \) are coefficients that have to be predictable and \(\varepsilon \).

3. Investigation Plan

This work was planned to be conceded the steps:

- Identifying the process parameters
- Introduce the upper and lower limit
- Developing the design of matrix
- Conduct the experimentation
- Development of mathematical models
- Result and Analysis

3.1. Identification of key factors

Selected input with respective levels are created to the model [14]. The response investigated were the flank and crater wear. The Table 2 represents the parameter levels.

Sl. No	Parameter/notations/units	Parameter Levels				
		-1.633	-1	0	1	1.633
1	Cutting Speed(N) in m/min	0.050	0.075	0.100	0.125	0.150
2	Feed rate (f) in mm/rev	0.1	0.2	0.3	0.4	0.5
3	Depth of cut(D) in mm	0.50	0.75	1.00	1.25	1.50

The coded values are framed using the Response Surface Methodology in Mini Tab Software. The five levels and the three parameters are designed and formed the actual value of experimental work.

Coefficients	Flank wear			
	UT	12 hrs	24 hrs	48 hrs
\(\beta_0 \)	0.07890	0.12820	0.09990	0.06132
\(\beta_1 \)	0.00070	0.00121	0.00091	0.00051
\(\beta_2 \)	0.18520	0.29651	0.23430	0.14391
\(\beta_3 \)	0.07560	0.13990	0.09571	0.05880
\(\beta_{11} \)	0.000003	0.00004	0.00003	0.00002
\(\beta_{22} \)	0.15761	0.25321	0.19930	0.12251
\(\beta_{33} \)	0.025219	0.05732	0.03182	0.01961
\(\beta_{12} \)	0.001118	0.00171	0.00141	0.00080
\(\beta_{13} \)	0.000447	0.00070	0.00052	0.00032
\(\beta_{23} \)	0.111771	0.17872	0.14131	0.08682
Estimated t-values for parameters and their interactions of flank wear are given in the Table 5.

Table 4. Estimated t-values for parameters and their interactions of flank wear

Soaking Time (hrs)	UT	t_0	t_1	t_2	t_3	t_11	t_22	t_33	t_12	t_13	t_23
12	1.37	-1.87	0.78	0.31	10.20	2.21	0.32	-2.21	-0.25	0.19	-1.15
24	0.10	3.86	-0.57	-1.07	-0.42	2.27	1.77	1.06	0.35	-0.56	-0.56
48	3.00	-3.14	1.11	-2.20	4.40	1.14	2.81	2.30	2.30	-1.15	-1.15

The linear, square and the interaction terms of cryogenically treated insert flank wear are tabulated. General structure of proposed model

\[Y = \beta_0 + \beta_1 N - \beta_2 f + \beta_3 D + \beta_4 N^2 - \beta_5 f^2 + \beta_6 D^2 + \beta_7 Nf - \beta_8 ND + \beta_9 fD \]

Table 5. Analysis of variance in flank wear

Source of variation	DF	Adj SS	Adj MS	F-test	Probability (α)	F (Table Value)
Untreated						
Regression	9	0.2213	0.0245	393.76	0.000	
Linear	3	0.00003	0.00001	0.17	0.915	
square	3	0.00184	0.00061	9.83	0.003	2.42
Interaction	3	0.00186	0.00062	9.95	0.002	
Pure Error	10	0.0006	0.00062	-	-	
Total	19	-	-	-	-	
Cryogenic soaking 12 hours						
Regression	9	0.2394	0.0266	166.6	0	
Linear	3	0.2218	0.0003	2.15	0.164	
square	3	0.01683	0.0056	35.16	0	2.48
Interaction	3	0.0007	0.0002	1.66	0.244	
Pure Error	9	0.00143	0.0001	-	-	
Total	18	-	-	-	-	
Cryogenic soaking 24 hours						
Regression	9	0.1743	0.0193	1993.92	0	
Linear	3	0.0026	0.0008	8.82	0.004	
square	3	0.0008	0.0002	2.77	0.097	2.42
Interaction	3	0.0001	0.00005	0.52	0.676	
Pure Error	10	0.0009	0.0001	-	-	
Total	19	-	-	-	-	
Cryogenic soaking 48 hours						
Regression	9	0.0375	0.0041	110.60	0	
Linear	3	0.0006	0.0002	5.81	0.016	
square	3	0.0008	0.0003	7.70	0.006	2.42
Interaction	3	0.0004	0.00015	3.98	0.042	
Pure Error	10	0.0003	0.00038	-	-	
Total	19	-	-	-	-	
Significant at the 5% level, SS-Sum of squares, DF-Degrees of freedom, MS-Mean Square, F-ratio = M.S lack of fit/M.S of error

Prediction of wear of proposed model

\[\text{Untreated} = Y_1 = 0.100374 - 0.000518N - 0.076276f - 0.027629D + 0.000113N^2 - 0.356515f^2 + 0.03926D^2 + 0.0004599Nf - 0.000968ND - 0.320820fD \]

12 hours \[Y_2 = 0.036970 - 0.00063N + 0.22550f - 0.026858D + 0.000024N^2 - 0.0226600f^2 + 0.023090D^2 + 0.0001471Nf - 0.00491ND - 0.109032fD \]

24 hours \[Y = -0.188952 + 0.004148N + 0.246248f + 0.095453D - 0.000015N^2 - 0.076857f^2 - 0.023954D^2 + 0.000080Nf + 0.078480fD \]

48 hours \[Y_4 = 0.197626 - 0.002189N + 0.17377f - 0.128385D + 0.000008N^2 + 0.12674f^2 + 0.053355D^2 + 0.002500Nf + 0.00100ND - 0.150028fD \]

The checking the adequacy of the developed models and analysis of variance in flank wear are as shown in Table 6.

Table 8 shows to obtain from fitting a 2nd order regression representation and formulated by using Minitab 17 software. It consists of the linear term, the rectangular term, the interaction time period and lack of match term. The device wears are basically influenced by way of interaction term and the calculated regression value of the ‘F’ ratio of the model developed does no longer exceed the tabulated value.

From Table 9, conformation test to conduct number of values [16]. Results showed that tool wear model like flank wear are accumulate analysis of wear prediction.

Parameters	soaking time(Hrs)	Flank wear	Error %	
Speed (N) = 125 m/min	UT	0.407	0.387	4.914
Feed rate (f) =0.4mm/rev	12	0.525	0.515	1.904
Depth of cut (D) =1.25mm	24	0.437	0.427	2.341
	48	0.170	0.168	1.173

3.2. Characterization of cryogenic treated inserts

The inserts are characterized by micro hardness test, XRD and SEM techniques. The micro hardness variation of untreated and cryogenic treatment is shown in Figure 3.

The hardness estems on the treated and untreated supplement surface had been estimated by utilizing smaller scale hardness analyzer the utilization of Vickers scale at a heap of 200g. The normal hardness estimations of untreated and cryogenic dousing time treated addition are1320Hv, 1385Hv, 1530Hv and
1650Hv individually. It uncovers that the cryogenic treatment altogether improves the hardness estimation of the dousing time on cryogenic treated addition.

![Graph showing hardness values on treated and untreated inserts](image)

Figure 1. The hardness values on the treated and untreated insert

The XRD example of cryogenic treated dousing time tests is appeared in Figure 4. It uncovers that estimated time of arrival carbide (Fe2C) is framed on the supplements because of cryogenic treatment. The pinnacle places of 16, 25, 27 and 28.445 are affirmed the arrangement of estimated time of arrival η-carbide. The estimated time of arrival carbide has on orthorhombic precious stone structure which imports high wear obstruction by improving the hardness [17]. The pinnacle places of 7, 12, 20, and 22 are affirmed the development of chromium iron η-carbides and the pinnacle places of 17 and 21.6 are affirmed the arrangement of aluminum titanium nitrate and titanium aluminum carbides on the cryogenic treated addition surfaces which gives on astounding wear opposition on the cryogenic treated supplement surface. The cryogenic drenching season of 48 hours is the prevalent estimated time of arrival - η-carbide arrangement followed by the 24, 12 hours and untreated cutting apparatus embed.
Figure 2. The XRD pattern of cryogenic soaking time insert

The SEM images are taken by QUANTA 200FEG and its resolution and magnification range is 1.2 nanometers gold particle separation on a carbon substrate and minimum 12 X to more than 100,000X. The SEM images shown in Figure 5 prove that the It reveals that the cryogenic treatment reduces the flank and crater wear with respect to soaking time than untreated inserts. Cryogenic treatment significantly improves the high hardness by the formation of η-carbides on the insert increase the tool wear resistance.

Figure 3. The SEM images of flank wear on the cryogenic treated inserts

4. Results and Discussion

4.1. Direct effect of cryogenic soaking time on flank wear with speed
The deviation of flank with admiration to speed is shown in Fig.5. The effects of cryogenic soaking time and selected responses at different levels are obviously shown. It is observed that the selected
parameters have an increasing trend against the flank wear. The percentage between soaking times clearly describe the level of influence.

It is clear from Fig. 5 (S1), the untreated and cryogenically treated insert on soaking time of flank wear had a percentage difference of 3.295% for 12 hours, 11.977% for 24 hours, 2.920% for 48 hours, percentage between 12 hours and 24 hours is 8.977%, percentage between 12 hours and 48 hours is 15.727% and percentage between 24 and 48 hours is 7.415% respectively.

From Fig. 5 (S13), the untreated and cryogenically treated insert on soaking time of flank wear had a percentage difference of 12.935% for 12 hours, 19.037% for 24 hours, 24.709% for 48 hours, percentage between 12 hours and 24 hours is 7.008%, percentage between 12 hours and 48 hours is 13.524% and percentage between 24 and 48 hours is 7.006% respectively.

Observed from Fig. 5 (S25), the untreated and cryogenically treated insert on soaking time of flank wear had a percentage difference of 10.515% for 12 hours, 22.194% for 24 hours, 41.420% for 48 hours, percentage between 12 hours and 24 hours is 12.992%, percentage between 12 hours and 48 hours is 34.454% and percentage between 24 and 48 hours is 24.711% respectively.

4.2. Direct effect of cryogenic soaking on flank wear with feed rate
Figure 4. The Direct effect of cryogenic soaking time on flank wear

The variety of flank wear concerning feed rate is appeared in Fig.5 (F1, F13 and F25). It is seen that the impacts of cryogenic drenching time and chose boundaries on the reactions at various levels are plainly appeared. It uncovers that the chose boundaries have on expanding pattern against the flank wear. Rate between the dousing time are plainly portrays the degree of impact.
It is clear from Fig. 5 (F1), the percentage difference between untreated and cryogenically treated insert on soaking time of flank wear for 12 hours 5.644%, 24 hours is 9.830%, 48 hours is 12.406%, percentage between 12 hours and 24 hours is 4.488%, percentage between 12 hours and 48 hours is 7.271% and percentage between 24 and 48 hours is 2.913% respectively. The untreated and cryogenically treated insert on soaking time of flank wear had a percentage difference of 13.957% for 12 hours, 22.231% for 24 hours, 26.556% for 48 hours, percentage between 12 hours and 24 hours is 9.616%, percentage between 12 hours and 48 hours is 14.643% and percentage between 24 and 48 hours is 5.562% are shown in Fig.5 (F13).

From Fig.5 (F25), The untreated and cryogenically treated insert on soaking time of flank wear had a percentage difference of 15.718% for 12 hours, 34.141% for 24 hours, 36.003% for 48 hours, percentage between 12 hours and 24 hours is 21.859%, percentage between 12 hours and 48 hours is 24.068% and percentage between 24 and 48 hours is 2.826% respectively.

From the above results, it is identified the flank increased with increase in feed rate. The tools wear decreases with increase in cryogenic soaking time.

4.3. Direct effect of cryogenic soaking on flank wear with depth of cut

The variety of flank wear regarding profundity of cut is appeared in Fig.5 (D1, D13 and D25). It is seen that the impacts of cryogenic dousing time and chose boundaries on the reactions at various levels are unmistakably appeared. It uncovers that the chose boundaries have on expanding pattern against the flank wear. Rate between the drenching time are plainly depicts the degree of impact.

It is clear from Fig.6 (D1), the untreated and cryogenically treated insert on soaking time of flank wear had a percentage difference of 8.534% for 12 hours, 14.814% for 24 hours, 32.984% for 48 hours, percentage between 12 hours and 24 hours is 6.866%, percentage between 12 hours and 48 hours is 26.731% and percentage between 24 and 48 hours is 21.329% respectively.

From Fig.6 (D13), the untreated and cryogenically treated insert on soaking time of flank wear had a percentage difference of 11.280% for 12 hours, 20.398% for 24 hours, 31.000% for 48 hours, percentage between 12 hours and 24 hours is 10.277%, percentage between 12 hours and 48 hours is 22.227% and percentage between 24 and 48 hours is 13.319% respectively.

From Fig.6 (D25), the untreated and cryogenically treated insert on soaking time of flank wear had a percentage difference of 10.041% for 12 hours, 21.219% for 24 hours, 26.300% for 48 hours, percentage between 12 hours and 24 hours is 12.425%, percentage between 12 hours and 48 hours is 18.073% and percentage between 24 and 48 hours is 6.449% are shown in Fig.6 (D25).

From the above results, it is identified the flank increased with increase in depth of cut. The tools wear decreases with increase in cryogenic soaking time.

4.4. Interaction effect of cryogenic soaking on flank wear

The interaction effects of cryogenic soaking on flank wear with parameters are presented following figures.

The effect of an increase in cutting speed and feed rate, depth of cut with flank wear for tool is presented graphically in Fig.5 (A1-C4). From Fig.6 (A1) it is determined that with expand in reducing speed, there is exceptionally enlarge in wear. But extend in feed rate minimum vary of increasing. The end result confirmed that cutting velocity performed a tremendous position in device wear of untreated insert. Based on the end result obtained, it is recommended that slicing speed have to continue to be low when turning of AISI4340 steel increase to attain most vary and reducing overall performance of the insert equipment investigated. It is found from the Fig.6 (B1), that there is augment in flank wear as the least grow of feed rate and recognizably enhance top to bottom of cut. Increment in the profundity of lessen reasons an extend in chip gadget contact territory in this manner quickening the wear. Besides, it is pleasantly recognized the huge is the profundity of cut expanded is the temperature age, and thusly higher is the gadget wear withminimum fluctuate of wear. From Fig. 6 (C1), the association between profundity of decrease with flank wear, that there is enhance in wear as the expansion inside and out of diminish and speed. Moreover, it is
appropriately perceived the huge is the profundity of cut bigger is the temperature age, and thus the
gadget put on is controlled through the cryogenic treatment.
From Fig.6 (A2) it is found that with extend in cutting velocity and feed rate, there is extend in put on of 12 hours cryogenically treated insert. The end result confirmed that reducing velocity performed a big function in device wear. Based on the end result obtained, it is counselled that reducing velocity have to continue to be low when turning of AISI4340 steel make bigger to attain most of wear vary and reducing overall performance of the insert equipment investigated. It is found from the Fig.6 (B2), that there is grow in flank wear as the least amplify of feed cost and incredibly increment top to bottom of cut. Increment in the profundity of lessen causes an enhance in chip gadget contact place subsequently quickening the wear. Besides, it is appropriately perceived the huge is the profundity of lessen expanded is the temperature age, and thus expanded is the gadget wear.
From the Fig.6 (C2), the interplay between depth of reduce with flank wear, that there is expand in wear as the increase in depth of reduce and speed. Furthermore, it is properly acknowledged the large is the depth of reduce higher is the temperature generation, greater wear vary and consequently the device wear is managed by the cryogenic treatment of soaking periods.
From Fig.6 (A3) it is found that with extend in cutting pace, there is somewhat increment in wear. Be that as it may, increment in feed cost insignificant scope of expanding. The final product affirmed that lessening pace played out a huge situation in gadget wear. In view of the final product acquired, it is prescribed that decreasing speed need to stay low when turning of AISI4340 steel increment to get most wear shift and diminishing generally speaking execution of the supplement hardware investigated. It is seen from the Fig.6 (B3), that there is develop in flank wear as the least grow of feed cost and really increment inside and out of cut. Increment in the profundity of lessen reasons an extend in chip gadget contact area in this way quickening the wear. Moreover, it is all around recognized the huge is the profundity of lessen expanded is the temperature age, and subsequently higher is the gadget wear. The over the top wear shift of absorbing length as demonstrated Fig.6 (C3), the exchange between profundity of diminish with flank wear, that there is intensify in put on as the develop top to bottom of decrease and speed. Besides, it is pleasantly recognized the enormous is the profundity of diminish bigger is the temperature age, and thus the gadget wear is overseen by methods for the cryogenic treatment.
From Fig. 6 (A4) it is found that with increase in slicing speed, there is exceedingly extend in wear. But amplify in feed rate minimum vary of increasing. The end result confirmed that reducing velocity performed a substantial position in device wear. Based on the end result obtained, it is counselled that slicing pace ought to stay low when turning of AISI4340 metal amplify to attain most wear vary and reducing performance of the insert equipment investigated. It is discovered from the Fig.6 (B4), that there is make bigger in flank wear as the least make bigger of feed price and exceptionally expand in depth of cut. Increase in the depth of reduce motives an make bigger in chip device contact place thereby accelerating the wear. Furthermore, it is properly acknowledged the large is the depth of reduce larger is the temperature generation, and consequently increased is the device wear.
From the Fig. 6 (C4), the interchange between profundity of diminish with flank wear, that there is make greater in wear as the make greater inside and out of decrease and speed. Besides, it is pleasantly perceived the enormous is the profundity of cut higher is the temperature age, and subsequently the gadget wear is oversee by the cryogenic treatment.
5. Conclusions
The Tool wear on cryogenic treated with different soaking periods 12 hours, 24 hours and 48 hours of cutting tool has been validated:
Increments of cryogenic splashing periods builds hardness and η-carbides. At the 48 hours cryogenically treated supplements were accomplished the most extreme estimation of hardness 1650 Hv. The SEM examination presumes that the flank wear protections of cryogenically treated carbide embeds are higher one because of presents of estimated time of arrival η-carbides in the small scale.
structure. It is additionally presumed that the impact of cryogenic dousing periods has expanded the size of the carbide particles of the supplement. The XRD investigation reasons that the presents of estimated time of arrival carbides in the cutting apparatus embed CNMG120408SMRH13A. The force estimations of pinnacles are fundamentally expanded supplements in their separate diffraction edges. The flank wear diminishes with increment in cryogenic treatment and dousing times of cutting apparatus embeds. The impact of splashing time of cryogenic treatment with speed expanded the flank wear additionally expanded (13%), flank wear expanded with increment in feed rate and profundity of cut (19%) (12%).

Accordingly, it is discovered that the expansion in cryogenic dousing period strikingly increment the wear opposition of CNMG120408SMRH13A carbide embed in turning of AISI4340 steel. In light of the tests, unmistakably RSM approach is an effective method of count of hardware wear can be followed during the modern machining measure with the equivalent tooling and set up.

6. References

[1] S.Solic et al, (2013) Influence of deep cryogenic treatment of high speed steel substrate on TiAlN coating properties, Mat.-wiss. u. Werkstofftech 44, No. 12.

[2] Suprapto, Agus, Agus Iswantoko, and Ike Widyastuti. "Impact of Cryogenic Treatment and Temper to carbide toollife on turning process for Al T-6061." International Journal of Applied Engineering Research 9.24 (2014): 30643-30650.

[3] Ramesh Kannan, C. and Lawrance Paul, A., 2017. Investigate the effect of tool nose radius on tool chatter in metal cutting process. Int J Adv Res Basic Eng Sci Technol, 3, pp.116-123.

[4] Adem Cicek (2013) evaluation of machinability of hardened and cryo-treated AISI H13 hot work tool steel with ceramic inserts, Int. Journal of Refractory Metals and Hard Materials 41, 461–469.

[5] Ibrahim Gunes (2014) Effect of Deep Cryogenic Treatment on Wear Resistance of AISI 52100 Bearing Steel, Trans Indian Inst Met.

[6] Ramesh Kannan.C, Venkatesh and Milon Selvam Dennison, “The outcome of Turning Factors on the machining Characteristics While Turning 655M13 Steel Alloy using TiAlN Coated Carbide Insert”, International Journal of Engineering and Advanced Technology, Vol 9, ISSUE 3, (Feb. 2020), ISSN: 2249 - 8958, pp.1251-1260.

[7] Simranpreet Singh Gill (2012) Machining Performance of Cryogenically Treated Aisi M2 High Speed Steel Tools, Journal of Engineering Research and Studies, Vol.03, Issue 2, 45-49.

[8] Paolo Baldissera and Cristiana Delprete (2010) Deep cryogenic treatment of AISI 302 stainless steel: Part II – Fatigue and corrosion, Materials and Design 31, 4731–4737.

[9] D. Das et al (2009) Optimization of the duration of cryogenic processing to maximize wear resistance of AISI D2 steel, Cryogenics 49, 176–184.

[10] Ramesh Kannan C, and P.Padmanabhan, “Analysis of the Tool Condition Monitoring System Using Fuzzy Logic and Signal Processing”, Circuits and Systems, Vol.7, (2016), pp. 2691–2701.

[11] Simranpreet Singh Gill et al, (2011) Flank Wear and Machining Performance of Cryogenically Treated Tungsten Carbide Inserts, Materials and Manufacturing Processes, 26: 1430–1441.

[12] Ramesh Kannan C, Prathap J and Pamanabhan P, “Experimental investigation of tool wear in turning of Inconel718 Material using RSM”, International Journal of Advance Engineering and Research Development, Vol.2, Issue 9, September (2016), ISSN: 2348-8360, pp. 37- 44.

[13] Hui-Bo He et al, (2014) Effect of Deep Cryogenic Treatment on Machinability and Wear Mechanism of TiAlN Coated Tools during Dry Turning, International Journal of Precision Engineering and Manufacturing Vol. 15, No. 4, pp. 655-660.

[14] K. N. Pande et al. (2012) Effect of the Cryogenic Treatment on Polyamide and Optimization of Its Parameters for the Enhancement of Wear Performance, Trans Indian Inst Met 65(3):313–319.
[15] D. Senthilkumar et al. (2011) Influence of shallow and deep cryogenic treatment on the residual state of stress of 4140 steel, Journal of Materials Processing Technology 211, 396–401.

[16] Chidambaram, R.K. and Palani, P., 2017. Modelling and Analysis of Tool Wear on a Cryogenically Treated CNMG120408SMRH13A Insert in the Turning of AISI4340 Steel Using Response Surface Methodology. Transactions of FAMENA, 41(1), pp.63-80.

[17] Dagmar Jandova (2015) Microstructure of Tool Steel X37CrMoV5 after Cryogenic Treatment and its Effect on Wear Resistance, Key Engineering Materials Vol. 647, pp 23-37.

[18] J.Rajaparthiban, M.Ravichandran, B.Stalin, P.Ramesh Kumar, V.Mohanavel (2020), "Machining of EN31 Steel Using Carbide Insert – A Statistical Approach", Materials Today: Proceedings, Vol.22, pp. 2559–2564.

[19] C. Ramesh Kannan, T. Srirenga Karthi, P. Padmanabhan and B. Stalin (2017), “Noise Analysis of Titanium Carbide Insert in Manufacturing of BS817M40 Steel” Advances in Natural and Applied Sciences, Vol.11, no.4, pp.612-619.

[20] K. Arun, C. Ramesh Kannan, B. Stalin (2020), The effect of cryogenically treated drilling tool on GFRP composite drilling holes-A comparative study, Mater. Today:. Proc. https://doi.org/10.1016/j.matpr.2020.07.579

[21] K. Ansal Muhammed, C. Ramesh Kannan, B. Stalin (2020), Performance analysis of wind turbine blade materials using nanocomposites, Mater. Today:. Proc. https://doi.org/10.1016/j.matpr.2020.07.578

[22] B. Stalin, M. Ravichandran, S. Jasper, C. Ramesh Kannan (2020), "Synthesis and characterization of brass–AlN composites synthesized by ball milling", Materials Today: Proceedings, Vol.22, pp.2573–2581.

[23] K. Ansal Muhammed, C. Ramesh Kannan, B. Stalin, M. Ravichandran (2020), “Experimental investigation on AW 106 Epoxy/E-Glass fiber/ Nano clay composite for wind turbine blade”, Materials Today: Proceedings, Vol.21, pp. 202–205, DOI: 10.1016/j.matpr.2019.04.221.

[24] C. Ramesh Kannan, B. Stalin, M. Ravichandran and K. Sathiya Moorthi , “Performance Analysis of SS304 Steel Hat Stringer on the Chassis Frame”, In: S. Hiremath, N. Shanmugam, B. Bapu (eds) Advances in Manufacturing Technology, Lecture Notes in Mechanical Engineering, Springer, Singapore, 2019, pp.289-296. DOI: 10.1007/978-981-13-6374-0_34

[25] B. Stalin, M. Ravichandran, C. Ramesh Kannan and K. Sathiya Moorthi , “Design and Analysis of Stringer on the Chassis Frame in Load Carrying Vehicle”, In: S. Hiremath, N. Shanmugam, B. Bapu (eds) Advances in Manufacturing Technology, Lecture Notes in Mechanical Engineering, Springer, Singapore, 2019, pp.219-225. DOI: 10.1007/978-981-13-6374-0_26

[26] B. Stalin, M. Ravichandran, K. Sathiya Moorthi and C. Ramesh Kannan (2018), “Experimental Investigations of Stringer on Chassis Frame in TATA 2516 TC Truck”, International Journal of Advanced Technology and Engineering Exploration, Vol.5, no.43, pp.118-123. (ISSN: 2394-7454)

[27] G. Baskaran, I. Daniel Lawrence, C. Ramesh Kannan, B. Stalin (2015), “Characterization of Aluminium Based Metal Matrix Composite Reinforced with TiC and TiO2”, International Journal of Applied Engineering Research, Vol.10, No.51, pp. 682–687.

[28] Marichamy S, Ravichandran M, Stalin B and Sridhar Babu B 2019 FME Trans. 47 116

[29] Dhinakaran V, Stalin B, Swapna Sai M, Vairamuthu J, Marichamy S 2020 Recent developments of graphene composites for energy storage devices Mater. Today:. Proc. https://doi.org/10.1016/j.matpr.2020.08.631

[30] Arravind R, Sankar V, Marichamy S and Stalin B 2020 Abrasive water jet experimentation on zirconium boride and boron carbide reinforced molybdenum metal matrix Mater. Today:. Proc. https://doi.org/10.1016/j.matpr.2020.07.667
[31] Malini T, Sudha R, Anantha Christu Raj P and Stalin B 2020 The role of RTD and liquid sensors in electric arc furnace for melting of aluminium Mater. Today.: Proc. https://doi.org/10.1016/j.matpr.2020.08.371

[32] Sudha G T, Stalin B and Ravichandran M 2019 Mater. Res. Express 6 096520 https://doi.org/10.1088/2053-1591/ab2cef

[33] Vairamuthu J, Senthil Kumar A, Stalin B and Ravichandran M 2020 Optimization of powder metallurgy parameters of TiC and B4C reinforced aluminium composites by Taguchi method Trans. Can. Soc. Mech. Eng. https://doi.org/10.1139/tcsme-2020-0091

[34] Rajaparthiban J, Saravanavel S, Ravichandran M, Vijayakumar K and Stalin B 2020 Mater. Today.: Proc. 24 1282 https://doi.org/10.1016/j.matpr.2020.04.443

[35] Stalin B, Sudha G T and Ravichandran M 2020 Mater. Today.: Proc. 22 2622 https://doi.org/10.1016/j.matpr.2020.03.393

[36] Alagarsamy S V, Ravichandran M, Raveendran P and Stalin B 2019 J. Balk. Tribol. Assoc. 25(3) 730

[37] Stalin B, Ramesh Kumar P, Ravichandran M, Siva Kumar M and Meignanamoorthy M 2019 Mater. Res. Express 6 106590 https://doi.org/10.1088/2053-1591/ab3d90

[38] Athijayamani A, Stalin B, Sidhardhan S and Boopathi C 2016 J. Compos. Mater. 50(4) 481 https://doi.org/10.1177/0021998315576555

[39] Stalin B, Ravichandran M, Vadivel K and Vairamuthu J 2020 Mater. Today.: Proc. 21 237 https://doi.org/10.1016/j.matpr.2019.04.226

[40] Saravanan S, Ravichandran M, Stalin B, Saravanavel S, Sukumar S, Optimization of Process Parameters of Electrochemical Machining of TiC-Reinforced AA6063 Composites, In: S. Hiremath, N. Shanmugam, B. Bapu (eds) Advances in Manufacturing Technology, Lecture Notes in Mechanical Engineering, Springer, Singapore, 2019, pp.281-287. https://doi.org/10.1007/978-981-13-6374-0_33

[41] Stalin B, Sudha G T and Ravichandran M 2018 Silicon 10 (6) 2663 https://doi.org/10.1007/s12633-018-9803-6

[42] Marichamy S, Stalin B, Ravichandran M and Sudha G T 2020 Mater. Today.: Proc. 24 1400 https://doi.org/10.1016/j.matpr.2020.04.458

[43] Stalin B and Athijayamani A 2016 Int. J. Mater. Eng. Innov. 7(1) 15 https://doi.org/10.1504/IJMATEI.2016.077312

[44] Stalin B, Ramesh Kumar P, Ravichandran M and Saravanan S 2018 Mater. Res. Express 5(10) 106502 https://doi.org/10.1088/2053-1591/aad99c

[45] Marichamy S, Saravanan M, Ravichandran M and Stalin B 2017 Int. J. Mech. Mech. Eng. 21(1) 57

[46] Stalin B, Ravichandran M, Mohanavel V, Praveen Raj L 2020 J. Min. Metall. Sect. B. 56(1) 99 https://doi.org/10.2298/JMJB190315047S

[47] Pritima D, Vairamuthu J, Gopi Krishnan P, Marichamy S, Stalin B and Sheeba Rani S 2020 Response analysis on synthesized aluminium-scandium metal matrix composite using unconventional machining processes Mater. Today.: Proc. https://doi.org/10.1016/j.matpr.2020.07.672

[48] Balasubramanian M, Stalin B, Marichamy S, Anandan K and Ram Subbiah 2020 Assessment of weld joint strengths on dissimilar alloys of Inconel 625 and aluminium 7068 using FSW process Mater. Today.: Proc. https://doi.org/10.1016/j.matpr.2020.08.315