Narrow-band imaging optical chromocolonoscopy: Advantages and limitations

Fabian Emura, Yutaka Saito, Hiroaki Ikematsu

Fabric Emura, Advanced Digestive Endoscopy, EmuraCenter, LatinoAmerica & Emura Foundation for the Promotion of Cancer Research, and Universidad de La Sabana Medical School, Bogotá DC, Colombia
Yutaka Saito, Endoscopy Division, National Cancer Center Hospital, Tokyo 104-0045, Japan
Hiroaki Ikematsu, Endoscopy Division, National Cancer Center Hospital East, Chiba 277-8577, Japan

Author contributions: All authors contributed significantly in the paper; Emura F contributed to scientific design and paper work; Saito Y contributed to manuscript edition and critical scientific concepts; Ikematsu H contributed to figures draft and data analysis.

Correspondence to: Yutaka Saito, MD, PhD, Endoscopy Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan. ytsaito@ncc.go.jp
Telephone: +81-3-35422511 Fax: +81-3-35423815
Received: April 18, 2008 Revised: June 30, 2008
Accepted: July 7, 2008
Published online: August 21, 2008

Abstract

Narrow-band imaging (NBI) is an innovative optical technology that modifies the center wavelength and bandwidth of an endoscope’s light into narrow-band illumination of 415 ± 30 nm. NBI markedly improves capillary pattern contrast and is an in vivo method for visualizing microvessel morphological changes in superficial neoplastic lesions. The scientific basis for NBI is that short wavelength light falls within the hemoglobin absorption band, thereby facilitating clearer visualization of vascular structures. Several studies have reported advantages and limitations of NBI colonoscopy in the colorectum. One difficulty in evaluating results, however, has been non-standardization of NBI systems (Sequential and non-sequential). Utilization of NBI technology has been increasing worldwide, but accurate pit pattern analysis and sufficient skill in magnifying colonoscopy are basic fundamentals required for proficiency in NBI diagnosis of colorectal lesions. Modern optical technology without proper image interpretation wastes resources, confuses untrained endoscopists and delays inter-institutional validation studies. Training in the principles of “optical image-enhanced endoscopy” is needed to close the gap between technological advancements and their clinical usefulness. Currently available evidence indicates that NBI constitutes an effective and reliable alternative to chromocolonoscopy for in vivo visualization of vascular structures, but further study assessing reproducibility and effectiveness in the colorectum is ongoing at various medical centers.

© 2008 The WJG Press. All rights reserved.

Key words: Narrow-band imaging; Colonoscopy; Sequential system; Non-sequential system; Polyps; Chromoendoscopy

Peer reviewer: Peter L Lakatos, MD, PhD, Assistant Professor, 1st Department of Medicine, Semmelweis University, Koranyi S 2A, Budapest H1083, Hungary

Emura F, Saito Y, Ikematsu H. Narrow-band imaging optical chromocolonoscopy: Advantages and limitations. World J Gastroenterol 2008; 14(31): 4867–4872 Available from: URL: http://www.wjgnet.com/1007-9327/14/4867.asp DOI: http://dx.doi.org/10.3748/wjg.14.4867

INTRODUCTION

In 1971, Folkman proposed that all tumor growth was angiogenesis-dependent. This was the foundation for the development of angiogenic research and helped to stimulate investigation that is now being pursued by scientists in many different fields worldwide[4]. New blood vessel creation favors a transition from hyperplasia to neoplasia (i.e., the passage from a state of cellular multiplication to a state of uncontrolled proliferation characteristic of tumor cells)[2]

An in vivo means for visualizing angiogenesis or microvessel morphological changes in superficial neoplasms would constitute a promising method for the diagnosis of early gastrointestinal tumors. Narrow-band imaging (NBI) is an innovative optical technology developed in Japan that modifies the center wavelength and bandwidth of an endoscope’s light into a narrow-band illumination of 415 ± 30 nm. By utilizing this narrow spectrum, contrast in the capillary pattern of the superficial layer is markedly improved[3], thereby facilitating clearer visualization of vascular structures during gastrointestinal endoscopy[5].

The first clinical study of the NBI system for the diagnosis of gastrointestinal tumors was reported by Sano et al[6] in 2001. Their promising observations resulted in the first pilot colorectal study in which the NBI system demonstrated better vascular pattern...
visualization than conventional colonoscopy in the diagnosis of colorectal polyps. These early studies opened the way for subsequently using NBI in the diagnosis of pre-malignant and malignant lesions of the hypopharynx, esophagus and stomach.

This review focuses on the current advantages and limitations of using the NBI system in the diagnosis of colorectal lesions.

SCIENTIFIC BASIS FOR NBI

Video endoscopes use white light from a xenon source for illumination. In order to understand the reflectance spectrum of any tissue, both the scattering process and absorption must be taken into account. Based on the Monte Carlo simulation, several investigations into the mechanism of scattering from tissue structures have determined that the penetration depth of the light depends on the wavelength. The depth of penetration into the gastrointestinal tract mucosa is superficial for the blue band, intermediate for the green band and deep for the red band (penetration depth range: 0.15 to 0.30 mm). As a result, NBI systems use optical filters for green and blue sequential illumination and narrow the bandwidth of spectral transmittance (Figure 1).

The scientific basis for the NBI system is that light with a short wavelength falls within the hemoglobin absorption band, so that blood vessels may be more clearly seen due to sufficient contrast.

IMAGE RECONSTRUCTION FROM REFLECTED LIGHT

Two different types of NBI systems are used to reconstruct images from the reflected light. The non-sequential system (Exera II), also referred to as the “color chip system”, uses a color charge coupled device (CCD) in which pixels are selectively assigned to specific wavelength ranges. The CCD captures the full range of the white light and transfers it in a single step to the processor in order to reconstruct natural color on the video monitor (Figure 2).

In contrast, the sequential system (Lucera Spectrum) uses a monochrome CCD in which pixels are not selectively attributed to specific colors, but transferred sequentially in the RGB bands to the processor. A rotating RGB interference filter is interposed after the white light source and the mucosa is illuminated alternately in each of the three RGB bands (Figure 3).

Although the concept and basic design is the same for both the NBI sequential and non-sequential systems, a difference in color images exists due to differences in the color spectral characteristics of the RGB rotary filters used in the Lucera Spectrum and the color CCD used in the Exera II. There is considerable potential for further development, however, by improving NBI technology in the non-sequential endoscopic video system.

ARE YIELDS OF SMALL AND FLAT ADENOMAS HIGHER WITH NBI?

An interesting Japanese study involving 48 patients in which conventional white light colonoscopy was first performed followed later by blind NBI colonoscopy on the same patients found that the total number of neoplastic lesions detected by NBI was significantly higher than the total number of neoplastic lesions detected using conventional colonoscopy (P = 0.02). Based on macroscopic appearance, location and tumor
size, flat lesions < 5 mm located in the right colon in particular were more frequently diagnosed using NBI[12]. Although no Western study has as yet validated those Japanese results, a recent report indicated that adenomas were detected more frequently in the NBI group (23%) than in the control group (17%), but the difference was not statistically significant (P = 0.129)[13]. In contrast, it has also been recently reported that NBI did not result in better detection of adenomas. In that particular study, a colonoscopist with a known high detection rate using white light colonoscopy conducted patient examinations with high-definition colonoscopes using either white light or NBI[14].

The fact that differences still exist between Japan and Western countries demonstrates that prospective studies are needed to determine which of these early reports are valid.

NBI FOR NON-NEOPLASTIC AND NEOPLASTIC LESIONS

For lesions < 10 mm, it is generally accepted that hyperplastic polyps and other non-neoplastic colorectal lesions do not require endoscopic treatment because they are benign and have no malignant potential[15,16]. In contrast, adenomatous polyps should be removed to prevent progression of the adenoma-carcinoma sequence[17].

Magnified chromocolonoscopy (MCC) has been presented as the best means for in vivo selective management of colorectal polyps[18,19] and it is suggested that colorectal polyps should not be treated only on the basis of polyp size, but also with respect to the underlying histological characteristics observed during MCC[20]. The NBI system has been proposed for optical image-enhanced endoscopy because it features a simple one-touch button for changing from white light to NBI and does not require indigo carmine dye spraying.

An early study of an NBI prototype used for differentiating non-neoplastic from neoplastic lesions in 34 patients with 43 lesions reported better visualization of the mucosal vascular network and lesion compared to conventional endoscopy. Chromocolonoscopy and NBI both had a sensitivity of 100% and a specificity of 75%[21]. Thereafter, the effectiveness of conventional colonoscopy, chromoendoscopy and the NBI system in distinguishing between non-neoplastic and neoplastic colonic polyps was assessed in 78 patients with 110 lesions. No significant difference existed between the NBI system and chromoendoscopy, but the sensitivity, specificity and accuracy of conventional colonoscopy were significantly lower (82.9%, 80.0% and 81.8%, respectively) compared to both chromoendoscopy and the NBI system (95.7%, 87.5% and 92.7%, respectively)[21].

More recently, a classification of colorectal polyps based on the presence or absence of superficial meshed capillary vessels and their diameter, observed under NBI (CP type I-III) was proposed in Japan by Sano et al[22]. Although a promising and exciting alternative to differentiate the nature of colorectal polyps, Western prospective studies, however, are needed for its standardization worldwide.

NBI FOR INVASIVE AND NON-INVASIVE COLORECTAL CANCER

There is growing evidence to support the theory that lesions with submucosal (sm) invasion < 1000 μm (sm1) without lympho-vascular invasion or a poorly differentiated component do not involve lymph node metastases[23]. In Japan, analysis of the pit pattern types proposed by Kudo et al[24] has been proven effective in predicting the level of sm invasion. In practice, however, limitations have been reported using the V_i pit pattern to discriminate between mucosal (m), slight submucosal (sm1) and, deep submucosal (sm2) or deeper invasion[25]. The invasive pattern proposed by Fujii et al[26-28] (distorted and irregular crypts and a demarcated area) has also been reported to be effective in predicting sm2.

One promising area for NBI is in the accurate estimation of invasive depth for early colorectal cancers. Hirata et al[29] analyzed 148 colorectal lesions and recently reported a high degree of correspondence between pit pattern analysis by NBI and chroendoendoscopy although the correspondence between MCC and NBI in evaluating the V_i pit pattern of 48 early carcinomas...
was only 78%. Diagnosis using the type V pit pattern was possible by also evaluating various capillary features including vessel diameter, irregularity and the capillary network observed during NBI and not by relying solely on the pit pattern.

Two other promising studies on predicting the depth of invasion of early colorectal cancer by analyzing the microvascular architecture were published recently. Using NBI with magnification, Fukuzawa et al.[30] observed several microvascular architecture characteristics in 61 early colorectal lesions (m-sm1: 37; sm2-3: 24). Univariate analysis showed that wide caliber, irregular caliber, tortuosity, irregularity, short length and non-dense arrangement were significantly more frequent in sm2-3 lesions compared to m-sm1 lesions ($P < 0.001$). Multivariate analysis, however, revealed that irregularity and non-dense arrangement were the remaining independent factors[30] (Figure 4). Horimatsu et al.[31] analyzed the presence of “meshed brown capillary vessels” in 27 colorectal lesions (m-sm1: 12; sm2: 15) also using NBI colonoscopy with magnification. The overall diagnostic accuracy, sensitivity, and specificity of microvessel density and the lack of uniformity in microvessel diameters for distinguishing between sm1 and sm2 lesions was 82.4% (14/17), 93.3% (14/15) and 75.0% (9/12), respectively[31] (Figure 4).

DETECTION OF DYSPLASTIC AREAS IN ULCERATIVE COLITIS

Although patients with longstanding ulcerative colitis are at increased risk of developing colorectal cancer, endoscopic detection of early neoplasia is difficult because these lesions can be subtle and even macroscopically invisible at times. A laborious protocol has been proposed involving not only target biopsies from suspicious lesions, but also two to four random biopsies taken every 10 cm of the colon[35]. MCC has emerged as the best method currently available for identifying dysplastic lesions in an inflammatory bowel disease setting[33,34].

In terms of NBI research, the limitations of the first NBI prototype were recently shown in a prospective randomized crossover study of 42 patients with longstanding ulcerative colitis. In that study, the sensitivity of NBI for the detection of neoplasia was merely comparable to conventional colonoscopy although a larger number of suspicious lesions were found during NBI colonoscopy[35]. A more positive report on the effectiveness of a third generation NBI prototype plus magnification indicated that just as NBI reveals fine superficial blood vessels whose diameters and densities are increased in neoplastic lesions compared with normal mucosa, dysplastic lesions observed using NBI also have a darker capillary vascular pattern compared with normal mucosa[36].

WILL CONVENTIONAL CHROMOCOLONOSCOPY BE REPLACED BY NBI?

It is still too early to answer this question. In Japan,
chromocolonoscopy has demonstrated its effectiveness in the differentiation between adenomatous and hyperplastic polyps and is a promising method for distinguishing superficial from deep submucosal cancers, but it is regarded as an inconvenient and difficult procedure in Western countries[17]. Indigo carmine dye spraying is inexpensive and differs in practice from the NBI system in that it does not target superficial vascular patterns, but instead accentuates lesion contours and highlights the pit pattern of colonic crypts[23]. It is interesting to note that indigo carmine dye spraying is not recommended before an NBI examination because it might obscure blood vessel visualization.

In contrast, NBI even without magnification when using the non-sequential system provides accurate definition of vascular vessels throughout the entire colonic mucosa and more clearly defines the borders of a lesion without the necessity of using dye spraying. The recently developed NBI system requires an expensive new processor, however, so the cost-benefit issue requires further analysis[38]. In addition, the diagnostic accuracy of NBI is affected by the learning curve and extra time may be needed to perform the examination.

USELESS TECHNOLOGY IN UNQUALIFIED HANDS

The acquisition and use of NBI technology is increasing in many countries, but it should be emphasized that accurate analysis of the pit pattern types and familiarity with MCC are basic fundamentals necessary to become proficient in NBI diagnosis of colorectal lesions. Modern optical technology without proper image interpretation wastes valuable resources, can cause confusion for inadequately trained endoscopists and may result in the delay of inter-institutional validation studies. Training general endoscopists in the principles and applications of optical image-enhanced endoscopy as practiced in Japan (i.e., stereomicroscopy, conventional chromoendoscopy, magnifying endoscopy and pit pattern analysis)[20,24-26] in approved centers by qualified experts will be required to narrow and, hopefully, close the existing gap between the latest advancements in optical technology and their clinical usefulness.

CONCLUSION

Several studies have previously reported on the advantages and limitations of NBI optical image-enhanced colonoscopy in the diagnosis of colorectal diseases. One difficulty in evaluating the results, however, has been non-standardization of the NBI systems and prototypes used in the research. Despite this shortcoming, there seems to be considerable potential for further development by improving NBI technology in the non-sequential endoscopic video system by modifying the characteristics of the interference filters.

In practice, the latest technological advancements incorporated into third generation NBI prototypes appear to offer a clear advantage over conventional chromocolonoscopy. Additional validation studies are needed, however, to confirm the effectiveness of NBI for screening colonoscopy, identification of adenomatous polyps, determining depth of invasion of early colorectal cancers, evaluating free margins after endoscopic resection and detection of dysplastic lesion in an inflammatory bowel disease setting.

A number of other questions remain unsolved that deserve additional examinations including whether NBI is less time-consuming, its cost effectiveness, whether magnification is absolutely required and whether the NBI system should completely replace chromocolonoscopy. Further studies assessing these issues are ongoing at various medical centers worldwide.

At the present time, NBI constitutes an effective and reliable alternative to chromocolonoscopy for in vitro visualization of vascular structures. Due to widespread incorporation of NBI technology outside Japan, however, there is an increasing need to train general endoscopists in the basic principles and applications of advanced optical image-enhanced endoscopy.

ACKNOWLEDGMENTS

We are grateful to Dr. Kazuhiro Gono (Olympus Corp, Tokyo, Japan) for his contribution to the revision of the “Scientific Basis for NBI” section and to Christopher Dix for his assistance in the editing of this manuscript.

REFERENCES

1. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med 1971; 285: 1182-1186
2. Folkman J, Watson K, Ingber D, Hanahan D. Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 1989; 339: 58-61
3. Gono K, Obi T, Yamaguchi M, Ohyama N, Machida H, Sano Y, Yoshida S, Hamamoto Y, Endo T. Appearance of enhanced tissue features in narrow-band endoscopic imaging. J Biomed Opt 2004; 9: 568-577
4. Muto M, Katada C, Sano Y, Yoshida S. Narrow band imaging: a new diagnostic approach to visualize angiogenesis in superficial neoplasia. Clin Gastroenterol Hepatol 2005; 3: S16-S20
5. Sano Y, Saito Y, Fu KI, Matsuda T, Uraoka T, Kobayashi N, Ito H, Machida H, Iwasaki J, Emura F, Hanafusa M, Yoshino T, Kato S, Fujii T. Efficacy of Magnifying chromoendoscopy for the differential diagnosis of colorectal lesions. Dig Endosc 2005; 17: 105-116
6. Machida H, Sano Y, Hamamoto Y, Muto M, Kozu T, Tajiri H, Yoshida S. Narrow-band imaging in the diagnosis of colorectal mucosal lesions: a pilot study. Endoscopy 2004; 36: 1094-1098
7. Sharma P, Bansal A, Mathur S, Wani S, Cherian R, McGregor D, Highbee A, Hall S, Weston A. The utility of a novel narrow band imaging endoscopy system in patients with Barrett’s esophagus. Gastrointest Endosc 2006; 64: 167-175
8. Nakayoshi T, Tajiri H, Matsuda K, Kaise M, Ikegami M, Sasaki H. Magnifying endoscopy combined with narrow band imaging system for early gastric cancer: correlation of vascular pattern with histopathology (including video). Endoscopy 2004; 36: 1080-1084
Gono K, Yamazaki K, Doguchi N, Nonami T, Obi T, Yamaguchi M, Ohyama N, Machida H, Sano Y, Yoshida S, Hamamoto Y, Endo T. Endoscopic Observation of Tissue by Narrowband Illumination. *Opt Rev* 2003; 10: 211-215

Gono K, Igarashi M, Obi T, Yamaguchi M, Ohyama N. Multiple-discriminant analysis for light-scattering spectroscopy and imaging of two-layered tissue phantoms. *Opt Lett* 2004; 29: 971-973

Kuznetsov K, Lambert R, Rey JF. Narrow-band imaging: potential and limitations. *Endoscopy* 2006; 38: 76-81

Uraoka T, Saito Y, Matsuda T, Ikehara H, Mashimo Y, Kikuchi T, Saito H, Sano Y and Saito D. Detectability of Colorectal Neoplastic Lesions Using Narrow-Band Imaging (NBI) System: A Prospective Pilot Study. *J Gastroenterol Hepatol* 2008; 23: 1810-1815

Adler A, Pohl H, Papanikolaou IS, Abou-Rebeey H, Schachtschgal G, Veltzke-Schlieker W, Khalifa AC, Setka E, Koch M, Wiedemann B, Rosch T. A prospective randomised study on narrow-band imaging versus conventional colonoscopy for adenoma detection: does narrow-band imaging induce a learning effect? Gut 2008; 57: 59-64

Rex DK, Helbig CC. High yields of small and flat adenomas with high-definition colonoscopes using either white light or narrow band imaging. *Gastroendoscopy* 2007; 133: 42-47

Bond JH. Polyp guideline: diagnosis, treatment, and surveillance for patients with colorectal polyps. Practice Parameters Committee of the American College of Gastroenterology. *Am J Gastroenterol* 2000; 95: 3053-3063

Tung SY, Wu CS, Su MY. Magnifying colonoscopy in differential diagnosis of neoplastic and nonneoplastic lesions. *Am J Gastroenterol* 2001; 96: 2628-2632

Morson BC. Factors influencing the prognosis of early cancer of the rectum. *Proc R Soc Med* 1966; 59: 607-608

Fu KI, Kato S, Sano Y, Fuji T. Magnification with chromoendoscopy is the most reliable method to determine whether colorectal lesions are neoplastic or not. *Endoscopy* 2007; 39: 476; author reply 477

Hurlstone DP, Cross SS, Adam I, Shorthouse AJ, Brown S, Sanders DS, Lobo AJ. Efficacy of high magnification chromoscopic colonoscopy for the diagnosis of neoplasia in flat and depressed lesions of the coloreum: a prospective analysis. Gut 2004; 53: 284-290

Emura F, Saito Y, Taniguchi M, Fuji T, Tagawa K, Yamakado M. Further validation of magnifying chromoscopy for differentiating colorectal neoplastic polyps in a health screening center. *J Gastroenterol Hepatol* 2007; 22: 1722-1727

Su MY, Hsu CM, Ho YP, Chen PC, Lin CJ, Chiu CT. Comparative study of conventional colonoscopy, chromoendoscopy, and narrow-band imaging systems in differential diagnosis of neoplastic and nonneoplastic colonic polyps. *Am J Gastroenterol* 2006; 101: 2711-2716

Sano Y, Yoshida S. Optical chromoendoscopy using NBI during screening colonoscopy: usefulness and application. In: Cohen J editor. Comprehensive Atlas of High Resolution Endoscopy and Narrowband Imaging. Oxford: Blackwell Publishing, 2007: 123-148

The Paris endoscopic classification of superficial neoplastic lesions: esophagus, stomach, and colon: November 30 to December 1, 2002. *Gastrointest Endosc* 2003; 58: 53-543

Kudo S, Rubio CA, Teixeira CR, Kashida H, Kogure E. Pit pattern in colorectal neoplasia: endoscopic magnifying view. *Endoscopy* 2001; 33: 367-373

Kato S, Fujii T, Koba I, Sano Y, Fu KI, Parra-Blanco A, Tajiri H, Yoshida S, Rembacken B. Assessment of colorectal lesions using magnifying colonoscopy and mucosal dye spraying: can significant lesions be distinguished? *Endoscopy* 2001; 33: 306-310

Matsuda T, Fujii T, Saito Y, Nakajima T, Uraoka T, Kobayashi N, Ikehara H, Ikematsu T, Fu K-I, Emura F, Ono A, Sano Y, Shimoda T, Fujimori T. Efficacy of the invasive/ non-invasive pattern by magnifying estimate the depth of invasion of early colorectal neoplasms. *Am J Gastroenterol* 2008; 103: 2700-2706

Saito Y, Emura F, Matsuda T, Saito D and Fuji T. Invasive pattern is an indication for surgical treatment. Gut online 2004; Available from URL: http://gut.bmj.com/cgi/eletters/53/2/284

Saito Y, Uraoka T, Matsuda T, Emura F, Ikehara H, Mashimo Y, Kikuchi T, Fu KI, Sano Y, Saito D. Endoscopic treatment of large superficial colorectal tumors: a case series of 200 endoscopic submucosal dissections (with video). *Gastrointest Endosc* 2007; 66: 966-973

Hirata M, Tanaka S, Oka S, Kaneko I, Yoshida S, Yoshihara M, Chayama K. Magnifying endoscopy with narrow band imaging for diagnosis of colorectal tumors. *Gastrointest Endosc* 2007; 65: 988-995

Fukuzawa M, Saito Y, Matsuda T, Uraoka T, Horimatsu T, Ikematsu H, Sano Y, Parra-Blanco A, Saito D. The Efficiency of Narrow Band Imaging with Magnification for the Estimation of Invasion Depth Diagnosis in Early Colorectal Cancer-A Prospective Study. *Gastrointest Endosc* 2007; 65: AB342

Horimatsu T, Ikematsu H, Sano Y, Katagiri A, Fu K, Ohtsu A, Yoshida S. A Micro-Vascular Architecture with NBI Colonoscopy Is Useful to Predict Invasiveness and Allow Patients to Select for Endoscopic Resection Or Surgical Resection. *Gastrointest Endosc* 2007; 65: AB270

Itzkowitz SH, Present DH. Consensus conference: Colorectal cancer screening and surveillance in inflammatory bowel disease. *Inflamm Bowel Dis* 2005; 11: 314-321

Ando T, Takahashi H, Watanabe O, Maeda O, Ishiguro K, Ishikawa D, Hasegawa M, Omiya N, Niwa Y, Goto H. Magnifying chromoscopy, a novel and useful technique for colonoscopy in ulcerative colitis. *World J Gastroenterol* 2007; 13: 2523-2528

Hurlstone DP, Sanders DS, McAlindon ME, Thomson M, Cross SS. High-magnification chromoscopic colonoscopy in ulcerative colitis: a valid tool for in vivo optical biopsy and assessment of disease extent. *Endoscopy* 2006; 38: 1213-1217

Dekker E, van den Broek FJ, Reitsma JB, Hardwick JC, Offerhaus GJ, van Deventer SJ, Hommes DW, Fockens P. Narrow-band imaging compared with conventional colonoscopy for the detection of dysplasia in patients with longstanding ulcerative colitis. *Endoscopy* 2007; 39: 216-221

East JE, Suzuki N, von Herbay A, Saunders BP. Narrow band imaging with magnification for dysplasia detection and pit pattern assessment in ulcerative colitis surveillance: a case with multiple dysplasia associated lesions or masses. *Gut* 2006; 55: 1432-1435

Gross SA, Wallace MB. Hold on Picasso, narrow band imaging is here. *Am J Gastroenterol* 2006; 101: 2717-2718

Kaltenbach T, Sano Y, Friedland S, Soetikno R. American Gastroenterological Association (AGA) Institute technology assessment on image-enhanced endoscopy. *Gastroenterology* 2008; 134: 327-340