The starch hydrolysis by α-amylase Bacillus spp.: an estimation of the optimum temperatures, the activation and deactivation energies

Justyna Miłek1 · Jan Lamkiewicz1

Received: 29 December 2021 / Accepted: 19 October 2022 / Published online: 20 November 2022 © The Author(s) 2022

Abstract
Amylases have potential application, inter alia, in processes with starch hydrolysis. The present paper reports the estimation of the optimum temperatures, the activation and deactivation energies of starch hydrolysis by α-amylase Bacillus spp. The literature activity of α-amylase Bacillus spp. versus temperature curves was analyzed. The mathematical model presented the activity of α-amylase Bacillus spp. and the starch hydrolysis. Both the starch hydrolysis and the deactivation process of α-amylase were analyzed by the first-order equations according to the enzyme concentration. Determined optimum temperatures T_{opt} were in the range from 323.67 ± 1.48 K to 354.00 ± 2.27 K, activation energies E_r were in the range from 18.01 ± 7.22 kJ mol$^{-1}$ to 102.85 ± 20.53 kJ mol$^{-1}$, and the values of deactivation energies E_d were in the range from 79.76 ± 8.77 kJ mol$^{-1}$ to 162.85 ± 32.23 kJ mol$^{-1}$. The present study is related to the starch hydrolysis by α-amylase Bacillus spp. The obtained results might find application in the industry hydrolysis of starch.

Keywords Deactivation energy · Activation energy · Optimum temperature · α-amylase Bacillus spp

Introduction
Amylases are hydrolytic enzymes that hydrolyze the glycosidic bonds present in starch molecules and produce dextrins and oligosaccharides [1]. Generally, amylases are classified into the following three subtypes: α, β and γ. The enzyme α-amylase (E.C. 3.2.1.1) catalyzes the hydrolysis (biodegradation) of α-1,4-glycosidic bonds present in starch, glycogen and other related carbohydrates to low molecular weight products, such as glucose, maltose and maltotriose [2]. The optimum pH for α-amylase is found to be 7.0. β-Amylase (EC 3.2.1.2) catalyzes the hydrolysis of the non-reducing α-1,4-glycosidic linkages to yield successive maltose units. β-Amylase has a maximally active range of 4.0–5.5 pH. In turn, γ-amylase (EC 3.2.1.3) catalyzes the hydrolysis α-1,6-glycosidic bonds, unlike other amylases and also hydrolyze the amylose and amylpectin non-reducing α-1,4-glycosidic linkages and produces glucose [1, 2]. The optimum pH of γ-amylase is equal to 3 [3]. α-Amylase will be discussed later in this paper.

α-Amylase can be isolated from microorganisms, plants and animals [4] and has extensive applications in industry in textiles, detergent, fermentation and the food industry. Moreover, it is used in baking, brewing [4–13] and medicine [14–16]. The activity of α-amylase is important in each of the mentioned branches and particular in the industrial hydrolysis of starch by α-amylase.

Bacillus spp. are a source of enzymes characterized by wide availability, work safety and ease of cultivation, obtaining an economic enzyme in production. Among the bacterial species, the most widely used source for commercial production of α-amylases are B. amyloliquefaciens and B. licheniformis. It has been reported that these α-amylases are stable at extreme thermal conditions [1].

An important point which should be noted is that with the discovery of new bacterial strains, it is necessary to determine the optimum temperature T_{opt}, the activation energy E_r and the deactivation energy E_d for α-amylase Bacillus spp. Importantly, based on literature review, it can be concluded...
that activation energy E_r and the deactivation energy E_d for α-amylase Bacillus spp. were presented in previous studies [17–19] for α-amylase Bacillus licheniformis.

Starch hydrolysis by α-amylase Bacillus spp. is usually carried out at optimum temperatures higher than 50 °C [5–12] and even 100 °C [20, 21]; thus, a significant deactivation of the enzyme may occur.

The study aimed to determine parameters of the optimum temperatures T_{opt}, the activation energies E_r and the deactivation energies E_d of starch hydrolysis by α-amylase Bacillus spp. such as α-amylases from B. subtilis, B. amyloliqufaciens and B. licheniformis. The obtained values can be used in industrial design process and modeling of starch hydrolysis.

Methods

Measurement of α-amylase Bacillus spp. activity

Literature data [5–12] for α-amylase Bacillus spp. from different origins were analyzed. α-Amylase Bacillus spp. activity is most often determined by Bernfeld [5, 7–10, 12, 22]. According to this method determination of the α-amylase activity, the reaction mixture containing 1% (v/v) starch and buffer solutions was prepared. After adding the appropriate amount of enzyme, the reaction solution should be incubated for different times (min) at 90 °C. The reaction was stopped by the addition of a 3, 5-dinitrosalicylate acid (DNS). During the breakdown of starch by α-amylase, maltose is formed, the amount of which was determined spectrophotometrically. The unit of α-amylase was defined as the amount of enzyme which produced 1 μmol of reducing sugar as glucose in 1 min under specified conditions. The quantity of reducing sugar was measured spectrophotometrically at 540 nm. Also to determination of activity α-amylase is used Fuwa’s colorimetric method [23] of iodine-starch color reaction [6, 11].

Parameters: Optimum temperatures T_{opt}, activation energies E_r and the deactivation energies E_d of starch hydrolysis by α-amylase Bacillus spp. were estimated from the activity change curves at temperature effect [5–12].

α-amylase Bacillus spp. activity versus temperature

The values of activation energies E_r and E_d can be determined of the dependence of the logarithm of the reaction rate (ln ν) on the reciprocal of temperature (1/T), the so-called Arrhenius dependence [17, 18]. It has been shown that the determined values of E_r and E_d by application of the Arrhenius relationship is burdened with an error [19, 24–26].

When studying the starch hydrolysis by α-amylase Bacillus spp., it is assumed that the change a substrate concentration C_S during reaction time t and change dimensionless activity a [17, 19] are described by the first-order equations

$$\frac{dC_S}{dt} = -k_1C_E$$

(1)

$$\frac{da}{dt} = -k_2a$$

(2)

where k_1, k_2 are the enzymatic reaction and deactivation process kinetic constants, respectively (min$^{-1}$) and C_E is the concentration of the active enzyme (M). Dimensionless activity of enzyme a is expressed by the equation

$$a = \frac{C_E}{C_{E0}}$$

(3)

where C_{E0} is the active enzyme initial concentration (M).

Considering equation describing the dimensionless activity of enzyme a and Eq. (1) in Eq. (2), it was obtained

$$\frac{dC_S}{dt} = -k_{i0} \exp\left(\frac{-E_i}{RT}\right)$$

(4)

Kinetic constants k_1 and k_2 are dependent on temperature T according to the Arrhenius equations in general form

$$k = k_{i0} \exp\left(\frac{-E_i}{RT}\right)$$

(5)

where i is equal to r or d, depending on whether the enzymatic reaction or the deactivation process is analyzed, E_i is the activation energy for the enzymatic reaction (kJ mol$^{-1}$), while E_d is the activation energy of the deactivation process (kJ mol$^{-1}$), R is the gas constant equals (8.315 J mol$^{-1}$ K$^{-1}$), and T is the temperature (K).

Substituting Eq. (5) into Eq. (4) leads to

$$\frac{dC_S}{dt} = -k_{i0} \exp\left(\frac{-E_i}{RT}\right) C_{E0} \exp\left(-k_{i0} \exp\left(\frac{-E_d}{RT}\right) t\right)$$

(6)

Integration of Eq. (6) leads to the following relation

$$\int_0^{C_S} dC_S = -k_{i0} \exp\left(\frac{-E_i}{RT}\right) C_{E0} \left[\exp\left(-k_{i0} \exp\left(\frac{-E_d}{RT}\right) t\right) - 1 \right]$$

(7)

for the bonds condition $C_S(t = 0) = 0$ and $C_S(t = 0) = C_{S0}$.

The substrate concentration C_S is calculated after integrating Eq. (7)

$$C_S = -k_{i0} \frac{E_d - E_r}{k_{d0}} C_{E0} \left(\exp\left(-k_{i0} \exp\left(\frac{-E_d}{RT}\right) t\right) - 1 \right)$$

(8)
It is well known that the activity of the enzyme changes with temperature. In the first stage, the activity of the enzyme increases with increasing temperature. At a certain temperature, referred to as \(T_{\text{opt}} \), the activity of the enzyme is maximal. When the \(T_{\text{opt}} \) is exceeded, the activity of the enzyme decreases. The dimensionless enzyme activity \(a \) can be described as follows:

\[
a(T) = \frac{C_d(T)}{C_S(T_{\text{opt}})} \tag{9}
\]

Dependence of the change in the dimensionless activity of the enzyme versus the temperature measurement \(T \) is presented in the following

\[
a(T) = \exp \left(\frac{(T_{\text{opt}} - T)(E_d - E_{\text{a}})}{RT_{\text{opt}}} \right) \cdot \left(\frac{\exp \left(-k_{\text{d}} \exp \left(\frac{E_d}{RT_{\text{opt}}}\right)T\right) - 1}{\exp \left(-k_{\text{d}} \exp \left(\frac{E_d}{RT_{\text{opt}}}\right)\right) - 1} \right) \tag{10}
\]

The maximum activity is determined by calculate the necessary condition, i.e.

\[
\frac{da(T)}{dT} = 0 \tag{11}
\]

Considering account the described assumption Eq. (11), the effect of temperature on the dimensionless activity \(a \) of the enzymes describes the equation:

\[
a = \frac{\exp \left(\frac{(T_{\text{opt}} - T)E_d}{RT_{\text{opt}}}\right) \cdot \left(1 - \exp \left(-\beta \exp \left(\frac{(T_{\text{opt}} - T)E_d}{RT_{\text{opt}}}\right)\right)\right) - 1}{\exp \left(-\beta \right) - 1} \tag{12}
\]

where \(T_{\text{opt}} \) is the optimum temperature for \(\alpha \)-amylase Bacillus spp. and dimensionless parameter \(\beta \) is determined by the equation

\[
\beta = t_a k_{\text{d0}} \exp \left(\frac{E_d}{RT_{\text{opt}}}\right) = t_a k_{\text{d}} (T_{\text{opt}}) \tag{13}
\]

where \(t_a \) is time of assay \(\alpha \)-amylase Bacillus spp. activity (min).

The transformation of Eq. (13) allows to determine the value of the parameter deactivation constant \(k_{\text{d}} \) at optimum temperature \(T_{\text{opt}} \)

\[
k_{\text{d}} (T_{\text{opt}}) = \frac{\beta}{t_a} \tag{14}
\]

With the values of the dimensionless parameter \(\beta \) and the deactivation process energy \(E_d \), it is possible to calculate the value of the activation energy \(E_r \) with the following relationship

\[
E_r = E_d - \frac{\beta E_d}{\exp \beta - 1}. \tag{15}
\]

Based on Eq. (12), the \(T_{\text{opt}} \), \(\beta \) and \(E_d \) parameters were estimated by the Levenberg-Marquardt procedure [26–30], calculated in SigmaPlot 14.5 the minimum sum of squared errors SSE defined by the equation

\[
\text{SSE}(T_{\text{opt}}, E_d, \beta) = \sum_{i=0}^{n} \left(\frac{1}{a_{\exp}^2} \cdot \left(a_{\exp} - a(T_{\text{opt}}, E_d, \beta) \right) \right)^2 = \min
\]

where \(a_{\exp} \) is \(\alpha \)-amylase Bacillus spp. dimensionless activity determined experimentally and \(a(T_{\text{opt}}, E_d, \beta) \) is \(\alpha \)-amylase Bacillus spp. activity calculated from Eq. (12).

Equations from Eq. (12) to Eq. (15) were used to determine optimum temperatures and the activation energies inter alia of starch hydrolysis by \(\alpha \)-amylase Bacillus licheniformis [23], \(\alpha \)-amylase from porcine pancreas [27], inulin hydrolysis by exo-inulinases Aspergillus niger [28] and recombinant exo-inulinases [29] and olive oil hydrolysis by porcine pancreas lipase [26].

Results

Literature data [5–12] for \(\alpha \)-amylase Bacillus spp. from different origins were analyzed. Table 1 presents the conditions for measuring \(\alpha \)-amylase activity during the hydrolysis of starch with the various buffer pH and the various measurement times [5–12]. The activity of \(\alpha \)-amylase Bacillus spp. at a specified temperature was determined in the pH range from 6.5 to 7.2.

\(\alpha \)-Amylase Bacillus sp. B-10 used by Singh et al. [5] was purified from bacterial strains isolated from soil samples. These were collected from different agricultural farms, with

Source	**pH phosphate buffer**	**t/min**	**References**
Bacillus sp. B-10	7.2	30	[5]
Bacillus sp. PS-7	6.5	10⁶	[6]
B. subtilis	7.0	3	[7]
B. amyloliquiﬁcans BH072	7.0	3	[8]
B. amyloliquiﬁcans TSWK1 − 1	7.0	20	[9]
B. licheniformis SKB4	6.5	5	[10]
B. licheniformis A120	7.0	10⁶	[11]
Bacillus sp. 12B	7.0	30	[12]

[*] \(t \) is the reaction time of \(\alpha \)-amylase Bacillus spp. activity

^a method of iodine-starch (\(\lambda \) equals 660 nm)
kitchen waste and compost from Bijnor (U.P.), India, and which were mixed properly. The next amylolytic bacterial strains named Bacillus sp. PS-7 was isolated from a hot spring of Manikaran, HP, India [6]. B. subtilis isolated from fermented banana waste was selected by Shula and Kar for α-amylase production [7]. B. amyloliquefaciens BH072 was isolated from honey [8]. B. amyloliquifaciens TSWK1 − 1 was collected from the hot water reservoir at Tulsi Shyam, Gujarat, India [9]. α-Amylase B. licheniformis SKB4 studied by Samanta et al. [10] was purified from bacterial strains isolated from soil isolate. The bacterial strain used in the work Abdel-Fattah et al. [11] named B. licheniformis Al20 was isolated from garden soil samples collected from Indonesia. In turn, α-amylase Bacillus sp. 12B presented by Božić et al. [12] was isolated from wild-type strains of Bacillus sp. from some regions of Serbia.

Based on experimental data showing the change in the activity of α-amylase Bacillus spp. [5–12] in function of temperature, values of the optimum temperatures T_{opt}, deactivation energies E_d and β parameters were determined from Eq. (12). Figures 1–8 present the experimental data of α-amylase activity as a function of temperature and the activity curves plotted by Eq. (12) for the values estimated parameters T_{opt}, E_d and β presented in Table 2.

Table 2 presents the value of parameters T_{opt}, E_d and β for α-amylase Bacillus spp. by the increasing value of optimum temperatures. The next step was to calculate deactivation constants k_d at optimum temperature T_{opt} and the activation energy parameter E_r values based on Eq. (14) and Eq. (15), respectively. The calculated $k_d(T_{opt})$ and E_r values are placed in Table 2.

Table 3 presents statistical data calculated for the estimated the parameters of α-amylase Bacillus spp. High values of regression coefficient (R^2 above 0.95) in most of the
The starch hydrolysis by α-amylase Bacillus spp.: an estimation of the optimum temperatures,…

analyzed cases were noted. The sum of squared errors SSE below 0.20 was obtained. The F-Fisher test values and low probability value were calculated. The statistical data confirmed the accuracy of the estimated values parameters.

Additionally, Figs. 1–8 present standard deviation errors for experimental data with the 95% confidence bands. The statistical data confirmed that the application Eq. (12) when determining parameters is justified.

Discussion

This work aimed to identify the values of the activation energy E_a and the deactivation energy E_d and the optimum temperature of starch hydrolysis by T_{opt} of starch hydrolysis α-amylase Bacillus spp. based on the literature activity versus temperature. The obtained values can be used in works focused on industrial designed and modeling of the process starch hydrolysis by α-amylase Bacillus spp.

The values of optimum temperature T_{opt}

The determined values of the optimum temperature T_{opt} of starch hydrolysis by α-amylase Bacillus spp. were in the range from 323.67 ± 1.48 K to 354.00 ± 2.27 K (Table 2) and are different by about thirty degrees. The highest value of T_{opt} was calculated for α-amylase Bacillus sp. 12B, with a long 30 min measurement time. It is worth noting that in an earlier work [19], a T_{opt} of starch hydrolysis (pH 8.9) by α-amylase Bacillus licheniformis EMS-6 was determined and equal to 339.76 ± 0.95 K for the measurements presented by Haq et al. [17]. The presented values of the optimum temperature T_{opt} in Table 2 are acceptable, when we know that optimum temperatures could be even 100 °C [20, 21].
The values of activation energy E_r

Results obtained in this work have demonstrated that the values of the activation energy E_r of starch hydrolysis by α-amylase Bacillus spp. are in the range from 18.01 ± 7.22 kJ mol$^{-1}$ to 102.85 ± 20.53 kJ mol$^{-1}$. It should be noted that the lowest value was obtained for the α-amylase Bacillus sp. 12B, with a long 30 min measurement time [12]. This fact, together with a high T_{opt} value, proves the very good parameters of α-amylase Bacillus spp. 12B.

The value of the activation energy E_r determined in an earlier paper [19] for the hydrolysis of starch by an α-amylase Bacillus licheniformis EMS-6 was within the range of values reported in Table 2 and amounted to 27.16 ± 6.89 kJ mol$^{-1}$. In turn, the value of the activation energy E_r determined by Samanta et. al. [10] for the hydrolysis of starch (pH 8.9) by α-amylase Bacillus sp. was 31.53 kJ mol$^{-1}$ and this value is over two twice lower than the calculated value from Eq. (15) and shown in Table 2. According to the calculations for the measurement of Božić et al. [12], the energy activation value E_r for Bacillus sp. 12B was four times lower compared to the E_r values obtained for α-amylase B. licheniformis SKB4 by Samanta et al. [10]. The observed difference may be due to the different times in which the α-amylase activity is determined.

Comparing the value of activation energy E_r for α-amylase Bacillus spp. of different origins for the starch hydrolysis time and equal to 30 minutes, the value of E_r for α-amylase Bacillus sp. B-10 is higher about 60% than the value of E_r for α-amylase Bacillus sp. 12B. On the other hand, when comparing the values of E_r for α-amylase B. licheniformis of different origins, the value of E_r for α-amylase B. licheniformis A120 [11] is lower about 60% than the value of E_r for α-amylase B. licheniformis SKB4 [10].

The values of deactivation energy E_d

The obtained values of the deactivation energy were in the range from 79.76 ± 8.77 kJ mol$^{-1}$ to 162.85 ± 32.23 kJ mol$^{-1}$
(Table 2). Short measuring times result in lower E_d values. In an earlier work [19], the E_d value of hydrolysis of starch by α-amylase Bacillus licheniformis EMS-6 was found as equal to 143.54 ± 13.31 kJ mol$^{-1}$.

The difference in the obtained the activation energy of the deactivation process E_d can be used by the different times in which the α-amylase activity is determined.

Comparing the value of deactivation energy E_d for α-amylase Bacillus spp. of different origins and thus the starch hydrolysis time of 30 minutes, the value of E_d for α-amylase Bacillus sp. B-10 is lower about 30% than the value of E_d for α-amylase Bacillus sp. 12B. On the other hand, when comparing the values of E_d for α-amylase B. licheniformis of different origins, the value of E_d for α-amylase B. licheniformis AI20 [11] is higher about 40% than the value of E_d for α-amylase B. licheniformis SKB4 [10]. The reason for the differences in the obtained values E_d may be due to the longer measurement time for B. licheniformis AI20 [11], and then process deactivation was apparent.

The values of deactivation constant $k_d(T_{opt})$

The calculated from Eq. (14) values of the deactivation constant k_d at optimum temperature T_{opt} were in the range from 0.01 ± 0.003 min$^{-1}$ to 1.37 ± 0.16 min$^{-1}$ (Table 2). The highest $k_d(T_{opt})$ value, proving the thermostability of α-amylase, was obtained for α-amylase Bacillus subtilis at a temperature equal to 335.85 ± 2.46 K, while the lowest $k_d(T_{opt})$ value was obtained for α-amylase Bacillus sp. 12B at a temperature equal to 354.00 ± 2.27 K.

The knowledge the values $k_d(T_{opt})$ and transform Eq. (5) allows to calculate the values of k_d0.

Conclusions

The study aimed to identify a parameter for α-amylase Bacillus spp., which has never been determined by other researchers before, i.e., the energy deactivation E_d. Additionally, the parameters of the optimum temperatures T_{opt} and activation energies E_r of starch hydrolysis by α-amylase from the different origins of Bacillus spp. the family were determined.

The lower deactivation energy values E_d were obtained for those α-amylases for which the measurement time was shorter, i.e., up to 10 minutes. The exception is amylase α-amylase Bacillus sp. 12B. Also, shorter measurement times resulted in higher values of T_{opt} in α-amylases Bacillus from a given genus.

The differences in the obtained values E_r, E_d and T_{opt} are, above all, different origins of Bacillus spp. The noted differences in values of parameters can be caused by the various duration of the α-amylase Bacillus spp. activity assay.

To sum up, it should be pointed out that the obtained values of the E_r, E_d and T_{opt} can be used to design and optimize starch hydrolysis by α-amylase Bacillus spp. in the industry where the saccharification of the processed starch was used.

Authors’ contributions

JM was involved in the conception and design of the study. JM and JL were involved in the review literature. JM and JL were involved in analysis and interpretation of data. JM was involved in drafting the article. JM was involved in the final approval of the version to be submitted. All authors read and approved the final manuscript.

Declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Sundarra M, Pandurangappa T, Murthy K. α-Amylase production and applications: a review. J Appl Environ Microbiol. 2014;2:166–75. https://doi.org/10.12691/jaem-2-4-10.
2. Couto SR, Sanromán MÁ. Application of solid-state fermentation to food industry—a review. J Food Eng. 2006;76:291–302. https://doi.org/10.1016/j.jfoodeng.2005.05.022.
3. Mehta D, Satyanarayana T. Bacterial and archaea α-amylases: diversity and amelioration of the desirable characteristics for industrial applications. Front Microbiol. 2016;7(1129):1–21. https://doi.org/10.3389/fmicb.2016.01129.
4. Balakrishnan D, Kumar SS, Sugathan S. Chapter 11 Amylases for food applications-updated information. In: Parameswaran B, Raveendran S, Varjani S, editors. Green bio-processes. Enzymes in industrial food processing. Singapore: Springer; 2019. p. 199–228.
5. Singh RN, Bahuguna A, Chauhan P, Sharma VK, Kaur S, Singh SK, Khan A. Production, purification and characterization of thermostable α-amylase from soil isolate Bacillus sp. strain B-10. J BioSci Biotechnol. 2016;5(1):37–43. http://www.jb.uni-plovdiv.bg/documents/27807/1703624/jbb_2016-5.
6. Sodhi HK, Sharma K, Gupta JK, Soni SK. Production of a thermostable α-amylase from Bacillus sp. PS-7 by solid state fermentation and its synergistic use in the hydrolysis of malt starch for alcohol production. Proc Biochem. 2005;40:525–34. https://doi.org/10.1016/j.procbio.2003.10.008.
7. Shukla J, Kar R. Potato peel as a solid state substrate for thermostable α-amylase production by thermophilic Bacillus isolates.
World J Microbiol Biotechnol. 2006;22:417–22. https://doi.org/10.1007/s11274-005-9049-5.
8. Du R, Song Q, Zhang Q, Zhao F, Kim R-C, Zhou Z, Han Y. Purification and characterization of novel thermostable and Ca independent α-amylase produced by Bacillus amyloliquefaciens BH072. Int J Biol Macromol. 2018;115:1151–6. https://doi.org/10.1016/j.ijbiomac.2018.05.004.
9. Kikani BA, Singh SP. Single step purification and characterization of a thermostable and calcium independent α-amylase from Bacillus amyloliquefaciens TSWK1-1 isolated from Tulsi Shyam hot spring reservoir, Gujarat (India). Int J Biol Macromol. 2011;48:676–81. https://doi.org/10.1016/j.ijbiomac.2011.02.010.
10. Samanta S, Das A, Halder SK, Jana A, Kar S, Mohapatra PKD, Pati BR, Mondal KC. Thermodynamic and kinetic characteristics of an α-amylase from Bacillus licheniformis SKB4. Acta Biol Szeged. 2014;58(2):147–56.
11. Abdel-Fattah YR, Soliman NA, El-Toukhy NM, El-Gendi H, Ahmed RS. Production, purification, and characterization of thermostable α-amylase produced by Bacillus licheniformis isolate AI20. J Chem. 2013;673173:1–11. https://doi.org/10.1155/2013/673173.
12. Božić N, Slavić MS, Gavrilović A, Vujčić Z. Production of raw-starch-digesting α-amylase isoform from Bacillus sp. under solid-state fermentation and biochemical characterization. Bioprocess Biosyst Eng. 2014;37:1353–60. https://doi.org/10.1007/s00449-013-1105-1.
13. Farooq MA, Ali S, Hassan A, Tahir HM, Muntaz S, Muntaz S. Biosynthesis and industrial applications of α-amylase: a review. Archiv Microbiol. 2021;203:1281–92. https://doi.org/10.1007/s00203-020-02128-y.
14. Quoq A, Kassim NK, Ismail A, Latif MAM, Shariq K, Tan DC, Lim PC. Identification of dipeptidyl peptidase-4 and α-amylase inhibitors from Melicope glabra (Blume) T. G. Hartley (Rutaceae) using liquid chromatography tandem mass spectrometry, in vitro and in silico methods. Molecules. 2021;26:1–16. https://doi.org/10.3390/molecules2610001.
15. Stotz M, Bartha D, Riedl JM, et al. The lipase/amylase ratio (LAR) in peripheral blood might represent a novel prognostic marker in patients with surgically resectable pancreatic cancer. Cancers. 2020;12(1798):1–10. https://doi.org/10.3390/cancers12071798.
16. Azzopardi E, Lloyd C, Teixeira SR, Conlan RS, Whitaker I. Clinical applications of amylase: novel perspectives. Surgery. 2016;160:26–37. https://doi.org/10.1016/j.surg.2016.01.005.
17. Pancha I, Jain D, Shrivastav A, Mishra SK, Shethia B, Mishra S, Mohandas VP, Jha B. A thermostable α-amylase from a Bacillus sp. isolated from CSACRI salt farm. Int J Biol Macromol. 2010;47:288–91. https://doi.org/10.1016/j.ijbiomac.2010.04.006.
18. Lim SJ, Hazwani-Osland SN, Osland SN. Purification and characterization of thermostable α-amylases from microbial sources. BioResources 2020;15(1):2005–2029. https://www.bioresearches.cn.ncsu.edu/resources/purification-and-characterisation-of-therm-ostable-α-amylases-from-microbial-sources.
19. Bernfield P. Amylases, α and γ. Methods Enzymol. 1955;1:149–58. https://doi.org/10.1016/0076-6879(55)10021-5.
20. Fuwa H. A new method for microdetermination of amylase activity by the use of amylase as the substrate. J Biochem. 1954;41(5):583–603. https://www.jstage.jst.go.jp/article/biochememistry1922/41/5/41_5_583/pdf.
21. Haq I-U, Javed MM, Hameed U, Adnan F. Kinetics and thermodynamic studies of α-amylase from Bacillus licheniformis mutant. Pak J Bot. 2010;42:3507–3516. http://www.pakjbs.org/pjbot/PDFs/42(5)/PJ4B2(5)3507.pdf.
22. Tabassum R, Khaliq S, Rajokia MI, Agblevor F. Solid state fermentation of a raw starch digesting alkaline α-amylase from Bacillus licheniformis RT7PE1 and its characteristics. Biomed Res Int. 2014;495384:1–8. https://doi.org/10.1155/2014/495384.
23. Milek J. Determination the optimum temperature and activation energy for the hydrolysis of starch catalyzed by α-amylase Bacillus licheniformis. Przem Chem. 2020;99(6):880–881. https://www.sigma-not.pl/publikacja-126672-wyznaczanie-energii-aktywnosci-azor-ozaj-optimyaltnej-temperatur-dla-reakcji-hydozlyzy-skrobikatalizowanej-przez-alfa-amylaze-z-bacillus-licheniformis-przem-ysl-chemiczny-2020-6.html.
24. Ghaderi F, Nemati M, Siah-Shadbagh MR, Valizadeh H, Monajjmezadeh F. Evaluation of activation energy conformity derived from modelfree non-isothermal predictions and Arrhenius isothermal results. J Therm Anal Calorim. 2017;130:1417–27. https://doi.org/10.1007/s10973-017-6279-3.
25. Simon P, Dubaj T, Cibulková Z. Equivalence of the Arrhenius and non-Arrhenian temperature functions in the temperature range of measurement. J Therm Anal Calorim. 2015;120:231–8. https://doi.org/10.1007/s10973-015-4531-2.
26. Milek J. The activation energies and optimum temperatures of olive oil hydrolysis by lipase porcine pancreas. Ecol Chem Eng S. 2021;28(3):389–98. https://doi.org/10.2478/eces-2021-0026.
27. Milek J. Determination of activation energies and the optimum temperatures of starch hydrolysis by α-amylase from porcine pancreas. Molecules. 2021;26(4117):1–9. https://doi.org/10.3390/molecules26144117.
28. Milek J. Application of the new method to determine the activation energies and optimum temperatures of inulin hydrolysis by exo-inulinase Aspergillus niger. J Therm Anal Calorim. 2022;147:1371–77. https://doi.org/10.1007/s10973-020-10495-3.
29. Milek J. The inulin hydrolysis by recombinant exo-inulinase: determination the optimum temperatures and activation energies. J Therm Anal Calorim. 2022;147:8061–7. https://doi.org/10.1007/s10973-021-11086-6.
30. Maleki A, Haghighi A, Shahrestani MI, Abdelmalek Z. Applying different types of artificial neural network for modeling thermal conductivity of nanofluids containing silica particles. J Therm Anal Calorim. 2021;144:1613–22. https://doi.org/10.1007/s10973-020-09941-x.
31. Kayran S, Doyraz I. Determination of drying kinetics and physicochemical characterization of apri cot pomace in hot-air dryer. J Therm Anal Calorim. 2017;130:1163–70. https://doi.org/10.1007/s10973-017-6504-0.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.