Hiding the Higgs Boson from Prying Eyes

Ernest Ma

Department of Physics and Astronomy, University of California,
Riverside, California 92521, USA

Abstract

There are two simple ways that the Higgs boson H of the Standard Model (SM) may be more difficult to observe than expected at the Large Hadron Collider (LHC) or the Tevatron. One is well-known, i.e. H decays invisibly, into dark-matter scalar particles for example. The other is that H mixes with a heavy singlet scalar S which couples to new colored fermions and scalars. Of the two mass eigenstates, the light one could (accidentally) have a suppressed effective coupling to two gluons, and the heavy one could be kinematically beyond the reach of the LHC.
The one Higgs boson H of the Standard Model (SM) of particle interactions is expected to be produced by gluon-gluon fusion at the Large Hadron Collider (LHC) and be observed through its decay into ZZ, WW, and other channels. Recent reported data [2, 3, 4] have excluded the following mass ranges at 95% confidence level:

\[
\begin{align*}
\text{ATLAS} & : & 146 - 232, & 256 - 282, & 296 - 466 \text{ GeV} \\
\text{CMS} & : & 145 - 216, & 226 - 288, & 310 - 340 \text{ GeV} \\
\text{TEVATRON} & : & 156 - 177 \text{ GeV}
\end{align*}
\]

Combined with the LEPII bound [5] of $m_H > 114.4$ GeV, this leaves only a small window for its observation. Whereas more data could eventually find H through its rare decay mode to two photons, it is perhaps a good time now to consider how H may be hidden from view because of either its decay or its production.

A first possibility is that H decays significantly into invisible channels, thereby diminishing its branching fractions into observable final states. This is a very old idea [6] and has many different model realizations. One recent example is the model of a dark (inert) scalar doublet [7], where the Standard Model is extended to include a second scalar doublet, which is odd under an exactly conserved Z_2 symmetry [8]. If the neutral member $\eta^0 = (\eta_R + i\eta_I)/\sqrt{2}$ of this doublet is split so that $m_R < m_I$ by at least the order of 100 keV, then η_R is a good dark-matter candidate [9, 10]. For the latest discussion on this model, see Ref. [11]. If $2m_R < m_H$, then the invisible decay of H into these dark-matter scalars will suppress its branching fractions to other particles, as already discussed in detail a few years ago [12]. The effect is especially significant below the WW threshold and could suppress the $\gamma\gamma$ branching fraction by as much as a factor of three.

A second possibility is a new proposal. The idea is very simple. Suppose there is a scalar singlet S which couples to new colored fermions and scalars. In that case, both H and S will couple to two gluons through loops. Let the Hgg amplitude be A_H and the Sgg amplitude be
A_S, then A_H is dominated by the t-quark loop, and A_S comes from the new colored fermions and scalars. Take for example $A_S = 3A_H$. Now if H mixes with S, the linear combination $H' = (3H - S)/\sqrt{10}$ would not couple to two gluons, and would not be produced at the LHC by gluon-gluon fusion. If H' also happens to be a mass eigenstate, then it could hide from being seen at the LHC even if its mass is 170 GeV (above the WW threshold). The orthogonal combination $S' = (3S + H)/\sqrt{10}$ has an enhanced coupling to two gluons, but it is presumably heavy because it is mostly a singlet, and could be kinematically beyond the reach of the LHC.

Consider the scalar potential of the SM doublet $\Phi = (\phi^+, \phi^0)$ and a real singlet S:

$$V = \mu_1^2 \Phi^\dagger \Phi + \frac{1}{2} \lambda_1 (\Phi^\dagger \Phi)^2 + \frac{1}{2} \mu_2^2 S^2 + \frac{1}{3} \mu_3 S^3 + \frac{1}{4} \lambda_2 S^4 + \mu_4 S \Phi^\dagger \Phi + \frac{1}{2} \lambda_3 S^2 \Phi^\dagger \Phi. \quad (4)$$

Let $\langle \phi^0 \rangle = v$ and $\langle S \rangle = u$, then the minimum of V is determined by

$$0 = v(2\mu_1^2 + 2\lambda_1 v^2 + \lambda_3 u^2 + 2\mu_4 u), \quad (5)$$
$$0 = u(\mu_2^2 + \lambda_2 u^2 + \lambda_3 v^2 + \mu_3 u) + \mu_4 v^2. \quad (6)$$

The 2×2 mass-squared matrix spanning the physical scalars H and S is given by

$$M^2 = \begin{pmatrix} 2\lambda_1 v^2 & \sqrt{2}(\lambda_3 u + \mu_4) v \\ \sqrt{2}(\lambda_3 u + \mu_4) v & 2\mu_2^2 u^2 + \mu_3 u - \mu_4 v^2/u \end{pmatrix}. \quad (7)$$

Let the mass eigenstates of the above be $H' = H \cos \theta - S \sin \theta$ and $S' = S \cos \theta + H \sin \theta$, with eigenvalues m_1^2 and m_2^2, then Eq. (7) may be rewritten as

$$M^2 = \begin{pmatrix} m_1^2 \cos^2 \theta + m_2^2 \sin^2 \theta & (m_2^2 - m_1^2) \sin \theta \cos \theta \\ (m_2^2 - m_1^2) \sin \theta \cos \theta & m_1^2 \sin^2 \theta + m_2^2 \cos^2 \theta \end{pmatrix}. \quad (8)$$

As an example, let $\sin \theta = 1/\sqrt{10}$, $\cos \theta = 3/\sqrt{10}$, $u = 2\sqrt{2}v = 492.4$ GeV, where $v = 174.1$ GeV, we then obtain $m_1 = 170$ GeV and $m_2 = 500$ GeV for the choice $\lambda_1 = 0.84$, $\lambda_2 = 0.47$, $\lambda_3 = 0.55$, and $\mu_3 = \mu_4 = 0$. This demonstrates the numerical viability of this proposal.

It has been assumed that S couples to new colored fermions and scalars. This is of course model-dependent, but a necessary condition is to have $A_S = A(S \to gg)$ a few times larger
than $A_H = A(H \to gg)$. Now A_H is dominated by the t quark which is a fundamental triplet under $SU(3)_C$ and is proportional to $(\sqrt{2} v)^{-1}$. Suppose A_S comes from a colored fermion octet Q with the coupling $S\bar{Q}Q$, then it is proportional to u^{-1} but its color factor of 3 is 6 times that of the t quark. Hence for the above choice of $u = 2\sqrt{2} v$, $A_S \simeq 3 A_H$ is realized. The allowed mass term $\bar{Q}Q$ would change the details of the above, but may be forbidden by a Z_2 symmetry under which S and Q_L are odd, but Q_R is even.

More realistically, H' is unlikely to decouple from gg entirely. In that case, the suppression (or enhancement if $\sin \theta < 0$) factor in H' production at the LHC is $(\cos \theta - (A_S/A_H) \sin \theta)^2$. On the other hand, depending on the choice of new colored fermions and scalars, there is also a contribution from $A(S \to \gamma\gamma)$ to H' decay. This means that the branching fraction of H' to $\gamma\gamma$ would also not be the same as in the SM. If a particle is discovered at the LHC in the $\gamma\gamma$ channel below 145 GeV, but with a branching fraction different from what is expected from the SM, especially if it is greater, it may be due to this effect. The presence of the octet Q may also be relevant in gauge-coupling unification [13] without supersymmetry.

In conclusion, the existence of the Higgs boson may be hidden from view at present because of a variety of scenarios, some of which have been discussed recently [14, 15, 16, 17]. In this paper, two simple ways are considered: the presence of light dark-matter scalars which affects the decay or an accidental cancellation between $A(H \to gg)$ and $A(S \to gg)$ in $H - S$ mixing which affects the production. In the latter case, an increase from the present $E_{cm} = 7$ TeV to 14 TeV at the LHC in the future would produce S' easily, and the decay $S' \to H'H'$ would be a spectacular signature for discovering H'.

I thank Bohdan Grzadkowski and Maria Krawczyk for a stimulating “Scalars 2011” Conference in Warsaw (August 2011) which led to this work. My research is supported in part by the U. S. Department of Energy under Grant No. DE-AC02-06CH11357.
References

[1] For a review, see for example A. Djouadi, Phys. Rep. 457, 1 (2008).

[2] A. Nisati, Talk at the XXV International Symposium on Lepton Photon Interactions at High Energies (Mumbai, India), August 2011.

[3] V. Sharma, Talk at the XXV International Symposium on Lepton Photon Interactions at High Energies (Mumbai, India), August 2011.

[4] M. Verzocchi, Talk at the XXV International Symposium on Lepton Photon Interactions at High Energies (Mumbai, India), August 2011.

[5] Particle Data Group: K. Nakamura et al., J. Phys. G: Nucl. Part. Phys. 37, 075021 (2010).

[6] R. E. Shrock and M. Suzuki, Phys. Lett. B110, 250 (1982).

[7] E. Ma, Phys. Rev. D73, 077301 (2006).

[8] N. G. Deshpande and E. Ma, Phys. Rev. D18, 2574 (1978).

[9] R. Barbieri, L. J. Hall, and V. S. Rychkov, Phys. Rev. D74, 015007 (2006).

[10] L. Lopez Honorez, E. Nezri, J. F. Oliver, and M. H. G. Tytgat, JCAP 0702, 028 (2007).

[11] L. Lopez Honorez and C. E. Yaguna, JCAP 1101, 002 (2011).

[12] Q.-H. Cao, E. Ma, and G. Rajasekaran, Phys. Rev. D76, 095011 (2007).

[13] E. Ma, Phys. Lett. B625, 76 (2005).

[14] F. Bonnet, M. B. Gavela, T. Ota, and W. Winter, arXiv:1105.5140 [hep-ph].

[15] K. Ghosh, B. Mukhopadhyaya, and U. Sarkar, Phys. Rev. D84, 015017 (2011) [arXiv:1105.5837 [hep-ph]].

[16] X.-G. He and G. Valencia, arXiv:1108.0222 [hep-ph].

[17] X.-G. He and J. Tandean, arXiv:1109.1277 [hep-ph].