Evodia suavoelense’s Repellent Action against Aedes aegypti from Entering a Room

A Sulianti* and M A Ramdhani

UIN Sunan Gunung Djati Bandung, Jl. A.H. Nasution No. 105 Bandung, West Java, Indonesia.

*ambarsulianti@uinsgd.ac.id

Abstract. Evodia suavoelense have been extensively studied to repel dengue’s mosquitos’ vectors that still become health problem in Indonesia. However there has not been any research yet that shows number of E. suavoelens plants needed to repel mosquitoes from the room. This study aims to find the minimum number of E. suavoelens plants required per cubic meter to make room free from Aedes aegypti mosquitoes. This was an experimental study using two rooms size 36 m3 each connected by a door. The first room contained Ae. aegypti while another room contained rabbit lived in large-sized cages with 4 CCTVs installed in every corner. E. suavoelens plants placed in the rabbit’s room. The door connecting those rooms was oppened so that Ae. aegypti entered the rabbit’s room. We placed E. suavoelens plants in the rabbit’s room and measured how many E. suavoelens plants needed to avoid Ae. aegypti from bitting the rabbit. The result of research using regression analysis showed $Y = 67.321 - 3.411X$. Thus, it takes at least 20 E. suavoelens plants per 36 m3 or 0.55 E. suavoelens plant per m3 to repel Ae. aegypti mosquitoes entering a room.

1. Introduction

Aedes aegypti mosquito is the main vector of Dengue Haemorrhagic Fever disease (DHF). Various attempts have been made to control these mosquitos by using insecticides from various classes, but cases of DHF are reported to remain high in various countries around the world.

Long term insecticide use will cause resistance. Ae. Aegypti resistances against insecticides have been reported in various countries such as Thailand [1], Saudi Arabia [2], Viet Nam [3], Mexico [4,5], Pakistan [6], Sri Lanka [7], India [8], Latin America [9], Europe [10], Malaysia [11-13], and Indonesia [14,15].

Along with that, studies on the use of natural-based repellent which is safer for ecosystem are much developed. Various plants have been studied to produce odours / scents that can repel mosquitoes [16-34].

Many industries that operate in this field produce various repellent in the form of lotion and spray to be applied on exposed skin in order to avoid the mosqui to bites. The weakness of research results on the use of lotion or spray repellents is that they easily fade with sweat or water thereby decreasing the effectiveness and efficiency of its use. It turns out to be a problem coupled with the habit of Ae. Aegypti to lay eggs around humans [35] and the habit of this mosqui to suck the blood intermittently (intermittent feeding) [36]. For that reason, it is required to conduct research on the method that can keep Ae. Aegypti out of a room with human and also environment-friendly.

One of the plants that thrives in Indonesia and has been researched to have the ability to repellent Ae. Aegypti is Evodia suavoelense which is known as Zodia [37]. E. suavoelense leaf extract that is applied...
on the hands is reported capable to protect the hands from mosquitoes. Aside from being a mosquito repellent, *E. suavoelense* has fresh green leaves, a fresh and sweet aroma, and a medium size to be conveniently placed in a vase as a decorative plant. This study aims to find the repellent power of *E. suavoelense* to keep *Ae. Aegypti* out of the room.

2. Methods
2.1. Research Design
This research is an experimental research with time series design.

2.2. Objects and Materials Research
The object of this research is *Ae. Aegypti* as the main disseminator of Dengue Hemorrhagic Fever in Indonesia. About 200 adult *Ae. Aegypti* mosquitoes aged 5-7 days were bred from larvae *Ae. Aegypti* from Bandung. Identification of mosquito larvae and adult stage refers to Atlas of tropical medicine and parasitology [38]. To count the mosquito bites, two shaved rabbits were used. The research material is a 6-8-week *E. suavoelens* planted in pots.

2.3. Research Procedure
The study used two closed rooms with a connecting door. Each room’s size is 3x4x3 m³ and has 2 x 2, 6 m² transparent glass on two walls. The walls of the room were covered with gauze for extra precaution to prevent the possibility of escaped mosquitoes. The first room (Room A) was filled with *Ae. Aegypti* in mosquito coops. The second room (Room B) contains rabbits in a full condition, already shaved, and located in a hutch with a 2x3 cm² hole. The rabbit hutch was placed in the middle of the room B. In the four corners of the rabbit hutch, CCTV was installed with enlargement capability up to 640x and has auto infra-red so it can record clearly even in dark room. No lights were used in the room during the experiment.

The mosquito coop in room A was opened then the door between room A and room B was opened so that the mosquito entered room B containing the rabbits. CCTV in rabbit hutch in room B monitored the number of mosquitoes for 24 hours. This procedure is aimed at obtaining the initial condition (control) of the study. Furthermore, 8 pots of *E. suavoelens* were spread in room B. The CCTV in rabbit hutch in room B monitored the number of mosquitoes on the first rabbit for 24 hours. Then *E. suavoelens* in room B was added to 10 pots and performed the same procedure. And so on with the number of *E. suavoelens* pots of 12, 14, 16, 18 and 20 fills in the room B. In the condition of the room with 20 pots, *E. suavoelens* was not added because there were no mosquitoes bit the rabbit. The same steps were performed on the second rabbit with a 3x 24-hour observation time gap of the first rabbit.

2.4. Statistical Analysis
The data obtained from this study were analysed using linear regression analysis using SPSS program.

3. Results and discussion
The results of linear regression analysis are shown in Table 1.

Coefficients	Unstandardized Coefficients	Standardized Coefficients			
Model	B	Std. Error	Beta	t	Sig.
1 (Constant)	67.321	1.855	36.286	.000	
Evodia suavoelens	-3.411	.127	-.992	-26.767	.000

a. Dependent Variable: Number of insect bite 24 hours

Linear regression equation of research:

\[Y = 67.321 - 3.411X \]
This means to produce insect bite 0, it takes 19.7 pots of *Evodia suaveolens* aged 6-8 weeks for a 36m³ room. As a result, 0.55 pots of *Evodia suaveolens* are required per m³.

The results of this study indicate that by putting twenty pots of *E. suaveolens* in a 36m³ room can keep out *Ae.aegypti* of the room. In other words, it takes at least 2 pots of *E. suaveolens* per m³ to protect the room from *Ae.aegypti*. In getting food, the female *Ae. Aegypti* relies heavily on the clues obtained from smell to find the source of blood as food. In this case the role of olfactory and sensilla organs are very important. Sensory distributions are widely reported in antenna, labial palp, maxillary palp, tarsus of the feet, and mosquito ovipositor. Antenna is the principal place of chemoreceptor that serves to detect and distinguish various airborne odor stimuli and guide mosquitoes to blood food sources. The sensilla antenna is assumed to be the main living guide for finding food sources [39].

Odorants (smells) that is the guiding force of the mosquito are hydrophobic and must pass through the lymph glands before they are linked with their trans-membrane receptors. Olfaction is mediated by specific receptor proteins that are expressed on the sensory neuron membrane. The dendrites of these neurons are immersed in sensory lymph nodes containing odorant-binding proteins (OBPs). OBPs play an important role in odor acceptance for binding and dissolving odorants around the sensillum [40]. Recent studies have provided compelling evidence that OBP insects are required for proper olfactory performance. OBPs are an attractive target strategy to disrupt the chemoreception system in insects. The complex odor of OBP moves to the membrane-bound receptor, where the OBP will release its ligand. Experiments on the Drosophila gene, by changing one of the OBPs result in changes in insect behavior. The same results are also obtained by diluting specific olfactory receptors. This indicates that both the OBP and the receptor are required for the olfaction [41].

In the mosquito antenna lobe, there is an olfactory receptor neurons / ORNs tasked with synapses to a small number of secondary neurons called projection neurons (PN). Changes in the physiological ability of the source of blood supply cause changes in female *Ae. Aegypti* behavior. This is consistent with the study of Siju et al that alters the olfactory receptor neurons (ORNs) that control sensitivity over the lactic acid produced by hospes and the study by Davis that alters the peripheral ORN sensitivity in mosquito antennas [35].

Carbon dioxide, lactic acid, and ammonia in sweat and other excretory products in warm-blooded animals (in this study is rabbit) act as odorants of interest to female mosquitoes [31,42]. The perception of the odor is delivered through the chemoreceptor available in the mosquito antenna. However, the odor generated by two pots of *E. suaveolens* per m³ is able to block the OBP and ORN in catching the odor produced by the rabbit, consequently the mosquito lost contact with its host. Thus *Ae. aegypti* do not know the existence of the source of blood food and do not touch hospes, in this case the rabbit as the object of research.

5. Conclusion

E. suaveolens has the ability to repellent against *Ae. aegypti*. It takes at least 0.55 pots containing *E. suaveolens* aged 6-8 weeks per m³ room to keep *Ae aegypti* out of the room containing the host.

References

[1] Sirisopa P and Thanispong K 2014 Resistance to Synthetic Pyrethroids in Aedes aegypti (Diptera: Culicidae) in Thailand *Kasetsart J. Nat*
[2] Alsheikh A and Mohammed W 2016 Studies on Aedes aegypti resistance to some insecticides in the Jazan District, *Saudi Arabia J.*
[3] Duong T, Dung N Van, Chinh V and Trung H 2016 Mapping Insecticide Resistance in Dengue Vectors in the Northern Viet Nam, 2010-2013 *Vector Biol J*
[4] Flores A E, Ponce G, Silva B G, Gutierrez S M, Bobadilla C, Lopez B, Mercado R and Black IV W C 2013 Wide spread cross resistance to pyrethroids in Aedes aegypti (L.) from Veracruz State Mexico *J Econ Entomol.* 106 959–69
[5] Aponte H, Penilla R and Dzul-Manzanilla F 2013 The pyrethroid resistance status and mechanisms in Aedes aegypti from the Guerrero state, *Mexico Pestic. Biochem.*
[6] Anon 2010 Perceived stress, sources and severity of stress among medical undergraduates in a Pakistani medical school *BMC Med.*

[7] Karunaratne S, Weeraratne T and Perera M 2013 Insecticide resistance and, efficacy of space spraying and larviciding in the control of dengue vectors *Aedes aegypti* and *Aedes albopictus* in Sri Lanka *Pestic. Biochem.*

[8] Kumar K, Sharma A, Sarkar M and Chauhan A 2014 Surveillance of *Aedes aegypti* (L.) mosquitoes in Mumbai international seaport (India) to monitor potential global health risks *J.*

[9] Fernández-Salas I, Danis-Lozano R and Casas-Martínez M 2015 Historical inability to control *Aedes aegypti* as a main contributor of fast dispersal of chikungunya outbreaks in Latin America *Antiviral Res.*

[10] Bal dacchino F, Caputo B and Chandre F 2015 Control methods against invasive *Aedes* mosquitoes in Europe: a review *Pest Manag.*

[11] Ho L, Loh T and Yam L 2014 Surveillance and resistance status of *Aedes* population in two suburban residential areas in Kampar town, Perak, Malaysia. *Trop. Biomed.*

[12] Ishak I H, Kamgang B, Ibrahim S S, Riveron J M, Irving H and Wondji C S 2017 Pyrethroid Resistance in Malaysian Populations of Dengue Vector *Aedes aegypti* Is Mediated by CYP9 Family of Cytochrome P450 Genes *PLoS Negl. Trop. Dis.*

[13] Ishak I 2014 Characterisation of mechanisms of insecticide resistance in Malaysian populations of the arbovirus vectors *Aedes aegypti* and *Aedes albopictus* *Malathion and Int. J. Mosq.*

[14] Putra R, Ahmad I, Prasetyo D and Susanti S 2016 Detection of insecticide resistance in the larvae of some *Aedes aegypti* (Diptera: Culicidae) strains from Java, Indonesia to Temephos, Malathion and *Int. J. Mosq.*

[15] Astuti E, Ipa M and Pradani F 2014 Resistance detection of *Aedes aegypti* larvae to cypermethrin from endemic area in Cimahi City West Java *Journal Vector.* ...

[16] Liu X, Liu Q, Chen X, Liu Q and Liu Z 2015 Larvicidal activity of the essential oil of *Youngia japonica* aerial parts and its constituents against *Aedes albopictus* *für Naturforsch. C*

[17] Bansal S, Singh K and Sharma S 2012 Laboratory observations on the larvicidal efficacy of three plant species against mosquito vectors of malaria, dengue/dengue hemorrhagic fever (DF/DHF) and *J.*

[18] Benelli G, Canale A and Conti B 2013 Eco-friendly control strategies against the Asian tiger mosquito, *Aedes albopictus* (Diptera: Culicidae): repellency and toxic activity of plant essential oils and *Pharmacologyonline*

[19] Kalita B, Bora S and Sharma A 2013 Plant essential oils as mosquito repellent-a review.

[20] Ghosh A, Chowdhury N and Chandra G 2012 Plant extracts as potential mosquito larvicides *Indian J. Med.*

[21] Rathy M, Sajith U and Harilal C 2015 Plant diversity for mosquito control: A preliminary study *Int J Mosq Res*

[22] Baluselvakumar G and Elumalai K 2012 Mosquito larvicidal activity of *Oxystelma esculentum* plant extracts against *Anopheles stephensi* (Diptera: Culicidae) *Int. J. Recent. Sci.*

[23] Prathibha K, Raghavendra B and Vijayan V 2014 Larvicidal, ovicidal, and oviposition-deterrent activities of four plant extracts against three mosquito species *Environ. Sci.*

[24] Ali S, Anuradha V and Yogananth N 2015 Green synthesis of Silver nanoparticle by *Acanthus ilicifolius* mango seed plant against *Armigeressubalbatus* and *Aedes aegypti* mosquito larvae *J. Nano ...*

[25] Mallick S, Banerjee R and Chandra G 2015 Mosquito larvicidal potential of ethanol leaf extract of the plant, *Annona reticulata* L. against *Aedes aegypti* L. and *Culex quinquefasciatus* Say (Diptera: Culicidae) *J. Mosq. Res.*

[26] Baluselvakumar G and Elumalai K 2012 Mosquito ovicidal and repellent activity of *Melothria maderaspatana* plant leaf extracts against *Aedes aegypti* (Diptera: Culicidae) *Int J Recent*

[27] Manimaran A, Cruz M, Muthu C and Vincent S 2013 Repellent activity of plant essential oils formulation against three diseases causing mosquito vectors *J. Agric.*
[28] Stone C M, Jackson B T and Foster W A 2012 Effects of plant-community composition on the vectorial capacity and fitness of the malaria mosquito Anopheles gambiae Am. J. Trop. Med. Hyg. 87 727–36
[29] Benelli G 2016 Plant-mediated synthesis of nanoparticles: A newer and safer tool against mosquito-borne diseases? Asian Pac. J. Trop. Biomed. 6 353–4
[30] Aina S A, Banjo A D, Lawal O A and Jonathan K 2009 Efficacy of Some Plant Extracts on Anopheles gambiae Mosquito Larvae Acad. J. Entomol. 2 31–5
[31] Patel E, Gupta A and Oswal R 2012 A review on: mosquito repellent methods IJPCBS
[32] Conti B, Benelli G, Flamini G, Cioni P and Profeti R 2012 Larvicidal and repellent activity of Hyptis suaveolens (Lamiaceae) essential oil against the mosquito Aedes albopictus Skuse (Diptera: Culicidae) Parasitology
[33] Solomon B, Sahle F, Gebre-Mariam T and Asres K 2012 Microencapsulation of citronella oil for mosquito-repellent application: formulation and in vitro permeation studies Eur. J.
[34] Deletre E, Martin T, Campagne P and Bourguet D 2013 Repellent, irritant and toxic effects of 20 plant extracts on adults of the malaria vector Anopheles gambiae mosquito PLoS
[35] Siju K, Hill S, Hansson B and Ignell R 2010 Influence of blood meal on the responsiveness of olfactory receptor neurons in antennal sensilla trichodea of the yellow fever mosquito, Aedes aegypti J. Insect Physiol.
[36] Liesch J, Bellani L L and Vosshall L B 2013 Functional and Genetic Characterization of Neuropeptide Y-Like Receptors in Aedes aegypti PLoS Negl. Trop. Dis. 7
[37] Widawati M 2013 The effectiveness of fixative addition on Zodia (Evodia suaveolens S.) and rosemary (Rosmarinus officinalis l.) gel against Aedes aegypti Heal. Sci. J. Indones. 4 103–6
[38] Peters W and Pasvol G 2007 Atlas of tropical medicine and parasitology
[39] Seenivasagan T and Sharma K 2009 Surface morphology and morphometric analysis of sensilla of Asian tiger mosquito, Aedes albopictus (Skuse): an SEM investigation J. vector
[40] Carey A F and Carlson J R 2011 Insect olfaction from model systems to disease control. Proc. Natl. Acad. Sci. U. S. A. 108 12987–95
[41] Li S, Picimbon J, Ji S, Kan Y and Chuanling Q 2008 Multiple functions of an odorant-binding protein in the mosquito Aedes aegypti Biochem.
[42] Matthews B and McBride C 2016 The neurotranscriptome of the Aedes aegypti mosquito BMC