Soluble stroma-related biomarkers of pancreatic cancer

Andrea Resovi1,*, Maria Rosa Bani1,*, Luca Porcu2, Alessia Anastasia3, Lucia Minoli3, Paola Allavena4, Paola Cappello5,6,7†, Francesco Novelli5,6,7, Aldo Scarpa8, Eugenio Morandi9, Anna Falanga10, Valter Torri2, Giulia Taraboletti1,*, Dorina Belotti1,*,† & Raffaella Giavazzi14,*,†

Abstract

The clinical management of pancreatic ductal adenocarcinoma (PDAC) is hampered by the lack of reliable biomarkers. This study investigated the value of soluble stroma-related molecules as PDAC biomarkers. In the first exploratory phase, 12 out of 38 molecules were associated with PDAC in a cohort of 20 PDAC patients and 16 healthy subjects. A second confirmatory phase on an independent cohort of 131 PDAC patients, 30 chronic pancreatitis patients, and 131 healthy subjects confirmed the PDAC association for MMP7, CCN2, IGFBP2, TSP2, sICAM1, TIMP1, and PLG. Multivariable logistic regression model identified biomarker panels discriminating respectively PDAC versus healthy subjects (MMP7 + CA19.9, AUC = 0.99, 99% CI = 0.98–1.00) (CCN2 + CA19.9, AUC = 0.96, 99% CI = 0.92–0.99) and PDAC versus chronic pancreatitis (CCN2 + PLG + FN + Col4 + CA19.9, AUC = 0.94, 99% CI = 0.88–0.99).

Five molecules were associated with PanIN development in two GEM models of PDAC (PdxCre/LSL-KrasG12D and PdxCre/LSL-KrasG12D/LSL-Trp53R172H+), suggesting their potential for detecting early disease. These markers were also elevated in patient-derived orthotopic PDAC xenografts and associated with response to chemotherapy. The identified stroma-related soluble biomarkers represent potential tools for PDAC diagnosis and for monitoring treatment response of PDAC patients.

Keywords circulating biomarkers; early diagnosis; pancreatic cancer; treatment evaluation; tumor microenvironment

Subject Categories Biomarkers & Diagnostic Imaging; Cancer; Post-translational Modifications, Proteolysis & Proteomics

Introduction

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive epithelial malignancies, with a 5-year survival rate of 6% (Tempero et al., 2013). Although progression from tumor initiation to advanced invasive cancer may take up to about 10 years (Yachida et al., 2010), PDAC is often diagnosed at an advanced stage, because of non-specific symptomatology, the absence of effective imaging tests to identify early disease, and the lack of specific and sensitive diagnostic circulating biomarkers (Korc, 2007).

Late diagnosis of PDAC leads to a limited therapeutic time window during which serological markers capable of monitoring treatment effectiveness could change the fate of PDAC patients.

The biomarker CA19.9, currently used to detect and monitor PDAC, is not sufficiently sensitive and specific to have reliable diagnostic value. In addition, it is not expressed in approximately 20% of the Lewis antigen-negative population. There are also racial and sex variations in CA19.9 expression with the highest levels in Caucasians (Tempero et al., 2013). Recent proteomic studies have identified circulating molecules or autoantibodies that are up-regulated in PDAC, but few have been investigated further as a serological diagnostic or prognostic biomarker for the disease (Brand et al., 2011; Capello et al., 2013, 2017; Chan et al., 2014; Shaw et al., 2014; Zhang et al., 2014; Balasenthil et al., 2017).

1 Laboratory of Biology and Treatment of Metastasis, Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Bergamo and Milan, Italy
2 Laboratory of Methodology for Research, Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
3 Mouse and Animal Pathology Lab, Fondazione Filarete and Department of Veterinary Pathology, University of Milan, Milan, Italy
4 Department of Immunology and Inflammation, IRCCS-Humanitas Clinical and Research Center, Rozzano, Italy
5 CERMS, ADU Città della Scienza, Turin, Italy
6 Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
7 Molecular Biotechnology Center, Turin, Italy
8 Department of Pathology and Diagnostic, University and Hospital Trust of Verona, Verona, Italy
9 Chirurgia IV, Presidio Ospedaliero di Rho, ASST Rhodense, Milano, Italy
10 Department of Immunohematology and Transfusion Medicine, Thrombosis and Hemostasis Center, Hospital Papa Giovanni XXIII, Bergamo, Italy
*Corresponding author. Tel: +39 035 42131; Fax: +39 035 310531; E-mail: dorina.belotti@marionegri.it
†Corresponding author. Tel: +39 02 39014732; Fax: +39 02 39014734; E-mail: raffaella giavazzi@marionegri.it
**Corresponding author. Tel: +39 02 39014732; Fax: +39 02 39014734; E-mail: raffaella giavazzi@marionegri.it
1 These authors contributed equally to this work as first authors
2 These authors contributed equally to this work as senior authors
PDAC is notable for its desmoplastic stromal reaction and prominent extracellular matrix (ECM) deposition (Whatcott et al., 2015). Stromal elements and extracellular matrix remodeling have a role in PDAC progression and, ultimately, chemotherapy delivery and activity (Feig et al., 2012). The microenvironment changes from normal to a tumor-supportive state, favoring tumor growth and invasion. It has been suggested that desmoplasia might have a prognostic role since fibrosis, stromal abundance, and reactivity have been correlated with shorter survival in patients with resected PDAC (Erkan, 2013). The abundant stroma is one of the main reasons for the limited drug response of PDAC (Neesse et al., 2013), as well as in patient-derived PDAC xenografts (PDAC-PDX), where their levels correlated with tumor burden.

Based on these observations, we hypothesized that the tumor microenvironment might be a source of circulating molecules exploitable as diagnostic biomarkers and as endpoints of target therapies. Since stromal modifications occur early in tumorigenesis and persist in advanced tumors, stroma-related circulating molecules might have great potential for the diagnosis of PDAC identified at a stage in which the disease is still operable.

In this study, we combined multiple approaches to investigate circulating stroma-related molecules as PDAC diagnostic biomarkers and as endpoints for assessing the effectiveness of treatment. Thirty-eight stroma-associated potential circulating biomarkers, including extracellular matrix proteins and proteolytic fragments, matrix-degrading enzymes and their inhibitors, growth factors, angiogenesis regulatory factors, and adhesion molecules, were selected from previous proteomic analyses (Yu et al., 2005; Bloomston et al., 2006; Faca et al., 2008; Kojima et al., 2008; Fiedler et al., 2009; Rong et al., 2010; Xue et al., 2010; Pan et al., 2011) and measured in the plasma of PDAC patients, healthy controls, and chronic pancreatitis patients. Selected candidate molecules were further validated in genetically engineered mouse models of PDAC with mutated Kras (KC mice) or with mutated Kras and TP53 (KPC mice) and associated with PDAC initiation and progression (PanIN-PDAC) (Hingorani et al., 2003, 2005; Capello et al., 2013), as well as in patient-derived PDAC xenografts (PDAC-PDX), where their levels correlated with tumor burden and response to treatment.

Results

Selection of candidate PDAC stroma-related biomarkers

Tumor-stroma-associated PDAC biomarkers were selected from eight proteomic studies on circulating proteins that are differentially expressed in PDAC and healthy subjects (Yu et al., 2005; Bloomston et al., 2006; Faca et al., 2008; Kojima et al., 2008; Fiedler et al., 2009; Rong et al., 2010; Xue et al., 2010; Pan et al., 2011). Thirty-eight candidates were selected because they were found in at least two independent analyses and/or were related to tumor/stroma interaction by Gene Ontology. These data were integrated with manually curated additional information from the literature. The selected molecules are listed in Table EV1 and include extracellular matrix proteins and proteolytic fragments, matrix-degrading enzymes and their inhibitors, growth factors, angiogenesis regulatory factors, and adhesion molecules.

Analysis of circulating PDAC stroma-related biomarkers in patients

First exploratory phase

The levels of the 38 selected candidate biomarkers were analyzed in the plasma of patients with histologically verified PDAC (n = 25) and in healthy controls (n = 16) (cohort no. 1 in Table 1). The concentrations are shown in Table EV2.

We identified six clusters of biomarkers that are as correlated as possible with each other and as uncorrelated as possible with biomarkers in other clusters (Table 2). The plasma levels of the molecules in these clusters are shown in Fig 1. At univariate logistic regression, three clusters (clusters 3, 4, and 6) were significantly associated with the presence of PDAC (respectively P = 0.007, P = 0.005, and P = 0.07).

Molecules in these clusters (with the exception of Lam-P1 for which commercially available kits had been discontinued) were selected for further analysis.

Second confirmatory phase

Molecules in clusters 3, 4, and 6 (TIMP1, sICAM1, MMP7, PICP, PLG, TSP2, IGFBP2, FN, PINP, CCN1, CCN2, Col4) were further analyzed in a larger independent cohort of PDAC patients (n = 131), pancreatitis patients (n = 30), and sex-matched healthy individuals (n = 131) (cohort no. 2 in Table 1). The distribution of the twelve molecules in the second cohort of patients is shown in Table EV3.

Seven (TIMP1, sICAM1, MMP7, TSP2, PLG, IGFBP2, and CCN2) of the 12 molecules were significantly up-regulated in PDAC patients compared to healthy controls (P < 0.001) (Fig 2A; Tables EV3 and EV4). The differences between PDAC and healthy subjects were excellent for MMP7 (AUC = 0.98) and good for CCN2 (AUC = 0.86), which demonstrated a discriminatory ability similar to CA19.9 (AUC = 0.87), while IGFBP2 and TIMP1 (AUC = 0.82), TSP2 (AUC = 0.78), sICAM1 (AUC = 0.77), and PLG (AUC = 0.66) had a weaker discriminatory ability (Fig EV1 and Table EV4). The seven molecules were confirmed to be significantly up-regulated also at early stages (stages IA, IB, and IIA) when tumor is confined to the pancreas and is not spread to nearby lymph nodes (ND) or to distant lymph nodes.

Table 1. Clinical characteristics of the study population.
Number of cases
Cohort 1 (Exploratory phase)
Healthy
PDAC
Cohort 2 (Confirmatory phase)**
Healthy
Chronic pancreatitis
PDAC

ND, not determined; M, males; F, females.
CA19.9 in PDAC versus healthy subjects and PDAC versus CP. In developed biomarker panels that improved the discovery power of Table EV4). In CP was significantly lower than in PDAC (Fig 2B). No correlation was found between these molecules and multivariable logistic regression model, adjusted for age effect (data not shown). No correlation was found between each selected biomarker and PDAC, as assessed by a patient’s age and the presence of PDAC, as assessed by a multivariable logistic regression model, adjusted for age effect (data not shown). No correlation was found between these molecules and multivariable logistic regression model, adjusted for age effect (data not shown).

Using a multivariable logistic regression model, we then developed biomarker panels that improved the discovery power of CA19.9 in PDAC versus healthy subjects and PDAC versus CP. In accordance with the statistical procedure adopted, the resulting panel consisting of MMP7 and CA19.9 statistically better discriminated PDAC versus healthy subjects with an AUC of 0.99 (99% CI = 0.98–1.00) compared with CA19.9 (AUC = 0.87, 99% CI = 0.81–0.93). Similarly, the panel consisting of CCN2 and CA19.9 with an AUC of 0.96 (99% CI = 0.92–0.96) discriminated PDAC versus healthy subjects better than CA19.9 (Fig 2B). Multivariable models defined in the overall population were evaluated by stage. As reported in Appendix Table S2, they confirmed their optimal predictive accuracy without significant interaction between stages.

Table 2. Clusters of biomarkers associated with PDAC.

Cluster No.	Molecules	\(R_n^{2a} \)	\(R_m^{2b} \)	\((1 - R_n^{2a})/(1 - R_m^{2b}) \)	P value^c
1	MMP12	0.810	0.087	0.208	0.364
	MMP13	0.790	0.117	0.238	
	IGFBP4	0.864	0.316	0.199	
	IGFBP5	0.726	0.266	0.373	
	SPARC	0.656	0.206	0.433	
2	ES	0.581	0.086	0.459	0.176
	PDGF-BB	0.776	0.253	0.299	
	FGF-2	0.848	0.087	0.166	
	VEGFA	0.948	0.098	0.057	
3	TIMP1	0.836	0.181	0.200	0.007
	sClCAM1	0.535	0.210	0.588	
	MMP7	0.648	0.056	0.373	
	PICP	0.244	0.067	0.810	
	PLG	0.249	0.126	0.859	
	TSP2	0.772	0.333	0.342	
4	IGFBP2	0.573	0.232	0.556	0.005
	FN	0.231	0.053	0.812	
	PINP	0.121	0.024	0.900	
	CCN1	0.587	0.294	0.585	
	CCN2	0.627	0.097	0.413	
5	sVCAM1	0.606	0.042	0.412	0.332
	NGAL	0.606	0.024	0.404	
6	Col4	0.715	0.085	0.311	0.070
	Lam-P1	0.715	0.063	0.304	

^aSquared correlation coefficient between a given biomarker and its own cluster.
^bThe next highest squared correlation coefficient between a given biomarker and any other cluster.
^cP value from 1 df Wald \(\chi^2 \) for association with outcome.

The next higher table and the subsequent text provides more detailed information about the clusters of biomarkers associated with PDAC. The clusters are numbered from 1 to 6, with each cluster containing various molecular markers such as MMP12, MMP13, IGFBP4, IGFBP5, SPARC, ES, PDGF-BB, FGF-2, VEGFA, TIMP1, sClCAM1, MMP7, PICP, PLG, TSP2, IGFBP2, PINP, CCN1, CCN2, sVCAM1, NGAL, Col4, and Lam-P1. Each cluster is identified by a specific combination of biomarkers, and the table includes statistical parameters such as \(R_n^{2a} \), \(R_m^{2b} \), and \((1 - R_n^{2a})/(1 - R_m^{2b}) \), which are used to assess the predictive accuracy of each biomarker.

Circulating stroma-related molecules in mouse models of PDAC

High TIMP1, MMP7, TSP2, CCN2, and ICAM1 in Kras\(^{G12D}\) and p53\(^{R172H}\)-driven PanIN development

We used KC mice expressing the mutation of Kras (Kras\(^{G12D}\)) in pancreatic progenitor cells and progressing from a healthy condition to different grades of PanIN (PanIN-1A–1B–2–3) (Hingorani et al, 2003; Cappello et al, 2013) and KPC mice, carrying Kras\(^{G12D/\ast}\) and p53\(^{R172H/\ast}\) mutations and developing PanINs that ultimately progresses to overt carcinoma (Hingorani et al, 2005) to study the importance of the selected biomarkers during PDAC induction.

Plasma was collected at 60, 120, 180, 240, and 330 days of age from KC mice and at 30, 90, and 150 days of age from KPC mice. We measured those biomarkers for which reliable ELISA was commercially available.

Plasma TIMP1, MMP7, and TSP2 levels rose significantly over time in relation to PanIN development in both KC and KPC mice (Fig 3A). At death of KC mice on day 330, when histological analysis of the pancreas confirmed the presence of PanIN-1A, PanIN-1B, and PanIN-2 in, respectively, 2, 2, and 4 lesions (Appendix Fig S2A), MMP7 and TSP2 plasma levels were significantly higher than control PdxCre mice (Fig 3B; KC).

TIMP1, MMP7, and TSP2 levels were also significantly higher in KPC than PdxCre mice at 150 days of age (Fig 3B; KPC).

None of the three molecules were elevated in the plasma of mice with caerulein-induced chronic pancreatitis after 7 weeks of treatments confirming the specific association of high levels of TIMP1, MMP7, and TSP2 with neoplastic transformation (Fig 3B and Appendix Fig S3).

Pancreatic RNA expression analysis was performed for CCN2, IGFBP2, ICAM1, and PLG for which ELISA kits to measure mouse proteins were not available, and for TIMP1, MMP7, and TSP2. Real-time PCR with mouse-specific probes showed that TIMP1, MMP7, TSP2, CCN2, and ICAM1 (\(P < 0.05 \)) were more expressed...
in KC than in control PdxCre mice at 330 days of age (Appendix Fig S2B). TIMP1, MMP7, TSP2, and CCN2 expression in PanIN lesions was confirmed by immunohistochemistry. TIMP1, MMP7, TSP2, and CCN2 staining was typically low in PdxCre pancreas, while a more intense staining was observed in PanIN lesions (Fig 3C).

TIMP1, MMP7, TSP2, and CCN2 are elevated in mice with patient-derived PDAC xenografts

We measured TIMP1, MMP7, and TSP2 using mouse-specific ELISA in three PDAC-PDX (HuPa4, HuPa8, and HuPa11) growing orthotopically in the pancreas of SCID mice. These tumors are characterized by relevant amounts of host murine stroma (Appendix Fig S4) supporting their use for stroma-derived biomarker validation. In all the PDAC-PDX models, circulating mouse TIMP1, MMP7, and TSP2 levels were significantly higher than in healthy mice ($P < 0.05$) (Fig 4A) paralleling the tumor growth in the pancreas as shown by the significant correlation with tumor burden measured by MRI (TIMP1, $r = 0.68$; MMP7, $r = 0.60$ and TSP2, $r = 0.82$) (Fig 4B).

TIMP1, TSP2, and CCN2 but not MMP7 mRNA was highly expressed in HuPa4, HuPa8, and HuPa11 (PDAC-PDX versus healthy...
mice $P < 0.05$ (Fig 4C). In agreement, immunohistochemical analysis highlighted a strong expression of TIMP1, TSP2, and CCN2 proteins in the tumor stroma (Fig 4D). ICAM1 was more expressed in all the three PDAC-PDX compared to healthy mice ($P < 0.05$) while IGFBP2 mRNA levels were significantly higher only in HuPa4 ($P < 0.05$), and PLG was not increased in PDAC-PDX (Fig 4C).
Figure 3.

Stroma-related biomarkers in PDAC

Andrea Resovi et al
TIMP1, MMP7, and TSP2 as biomarkers of treatment response in PDAC-PDX models

TIMP1, MMP7, and TSP2 increased over time in plasma of mice bearing HuPa8 (Fig 5A). To analyze the relevance of the selected stroma-related molecules as markers of drug response, we treated HuPa8-bearing mice with gemcitabine monotherapy or combined with albumin-bound paclitaxel (NAB-P) to reproduce clinical studies using stroma-related molecules as diagnostic and prognostic markers in hampering drug response have suggested possibilities for remodeling in determining PDAC initiation, growth, and metastasis in an initial environment involving not only cancer cells, but also stroma and pancreatitis (Leask, 2009). Soluble CCN2 in plasma, serum, and urine has been promising applicability as biomarker in different types of chronic diseases with fibrosis-related complications (Dendooven et al., 2011; Park et al., 2012; Nixon et al., 2013; Poruk et al., 2014; Jenkins et al., 2015); however, our study is the first one to measure and compare all these molecules together in order to select the best candidate biomarkers. From this large number of candidates, TIMP1, sICAM1, MMP7, IGFBP2, CCN2, TSP2, and PLG emerged as PDAC biomarkers, being associated with the presence of PDAC in two independent cohorts of patients and two autonomous sequential analyses.

The fact that in the second confirmatory phase the seven selected molecules were significantly higher in PDAC patients than in healthy individuals validates the statistical approach based on the clustering method used in the first exploratory phase of the study. Here, the principal components-based clustering method used (Black & Watanabe, 2011) was chosen as a data reduction method to control type I and type II error rates better than univariate analysis of individual markers, when analyzing multiple molecules in a small cohort of patients.

Multivariable logistic regression model identified MMP7 plus CA19.9 and CCN2 plus CA19.9 as the circulating biomarker panels that better discriminate PDAC patients from healthy subjects. MMP7, also known as matrilysin, is a well-established inducer of acinar-to-ductal metaplasia (Crawford et al., 2002; Sawey et al., 2007), and it was found focally up-regulated in PanIN lesions of the Kras-driven GEM model of PDAC (Hingorani et al., 2003). Although MMP7 involvement in PDAC initiation and progression has been reported (Fukuda et al., 2011), our results showing high MMP7 plasma levels in association with early tumor progression in PDAC-GEM models and in patients with PDAC at stages IA, IB, and IIA confirm its value as a potential early diagnostic biomarker. CCN2, also known as connective tissue growth factor (CTGF), is overexpressed by activated pancreatic stellate cells in the earliest stages of PDAC. It promotes local desmoplasia, tumor survival, and metastasis (Leask, 2009). Soluble CCN2 in plasma, serum, and urine has promising applicability as biomarker in different types of chronic diseases with fibrosis-related complications (Dendooven et al., 2011). While CCN2 has been shown up-regulated in PDAC tumors, stroma interaction. The individual relationship of each of these molecules with PDAC has previously been shown (Lekstan et al., 2012; Park et al., 2012; Nixon et al., 2013; Poruk et al., 2014; Jenkins et al., 2015); however, our study is the first one to measure and compare all these molecules together in order to select the best candidate biomarkers. From this large number of candidates, TIMP1, sICAM1, MMP7, IGFBP2, CCN2, TSP2, and PLG emerged as PDAC biomarkers, being associated with the presence of PDAC in two independent cohorts of patients and two autonomous sequential analyses.

The fact that in the second confirmatory phase the seven selected molecules were significantly higher in PDAC patients than in healthy individuals validates the statistical approach based on the clustering method used in the first exploratory phase of the study. Here, the principal components-based clustering method used (Black & Watanabe, 2011) was chosen as a data reduction method to control type I and type II error rates better than univariate analysis of individual markers, when analyzing multiple molecules in a small cohort of patients.

Multivariable logistic regression model identified MMP7 plus CA19.9 and CCN2 plus CA19.9 as the circulating biomarker panels that better discriminate PDAC patients from healthy subjects. MMP7, also known as matrilysin, is a well-established inducer of acinar-to-ductal metaplasia (Crawford et al., 2002; Sawey et al., 2007), and it was found focally up-regulated in PanIN lesions of the Kras-driven GEM model of PDAC (Hingorani et al., 2003). Although MMP7 involvement in PDAC initiation and progression has been reported (Fukuda et al., 2011), our results showing high MMP7 plasma levels in association with early tumor progression in PDAC-GEM models and in patients with PDAC at stages IA, IB, and IIA confirm its value as a potential early diagnostic biomarker. CCN2, also known as connective tissue growth factor (CTGF), is overexpressed by activated pancreatic stellate cells in the earliest stages of PDAC. It promotes local desmoplasia, tumor survival, and metastasis (Leask, 2009). Soluble CCN2 in plasma, serum, and urine has promising applicability as biomarker in different types of chronic diseases with fibrosis-related complications (Dendooven et al., 2011). While CCN2 has been shown up-regulated in PDAC tumors,
Figure 4.
our study for the first time demonstrates its utility as a circulating PDAC biomarker in patients (Bennewith et al., 2009; Neesse et al., 2011).

Both MMP7 and CCN2 have been associated with poor prognosis in different types of cancer (Klupp et al., 2016; Sun et al., 2017) and with fibrotic or inflammatory diseases (Dendooven et al., 2011; Irvine et al., 2016). However, our results suggest that an improvement in the specificity of MMP7 and CCN2 results from the inclusion of additional biomarkers. In particular, it needs to be emphasized that the proposed panels of molecules confirmed...
greater potential as diagnostic biomarkers for PDAC than any single molecule. MMP7 and CCN2 complemented well the performance of CA19.9 in distinguishing PDAC from healthy subjects. Further addition of PLG, FN, and Col4 to the CCN2 and CA19.9 panel increased the performance of CA19.9 in distinguishing PDAC from CP.

The identification of early diagnostic biomarkers for PDAC is hampered by the fact that most of the clinical samples come from patients with advanced high-grade lesions. The use of in vivo preclinical models that faithfully reproduce the complexity of the stroma in PDAC early development is therefore fundamental for biomarker discovery and drug testing.

GEM models of PDAC are unique tools to analyze proteins associated with pre-neoplastic and early-phase tumors, integrating data obtained from patients (Ligat et al., 2015). Our findings that tissue TIMP1, MMP7, TSP2, and CCN2 and plasma TIMP1, MMP7, and TSP2 were elevated in association with PanIN development, in both KC and KPC mice, suggest that they appear in the early pre-invasive stage of the disease and can truly detect PDAC prior to the development of clinical symptoms and in lesions with different mutational status.

The value of TIMP1, MMP7, and TSP2 as circulating biomarkers was corroborated in PDAC-PDX-bearing mice where the plasma levels of these molecules reflected the high levels found in the corresponding patient’s plasma (data not shown) and correlated with tumor burden over time. Immunostaining with specific anti-mouse antibodies and probes allowed to clarify the origin of these biomarkers and revealed that tissue TIMP1 and TSP2 paralleled their plasma level. Notably, no increase in MMP7 expression was detected by RT–PCR, suggesting that the increased levels of MMP7 detected in the plasma of tumor-bearing mice might reflect a systemic response of the host to the tumor, in line with the known association of MMP7 with inflammation (Fukuda et al., 2011).

This also indicates that the host stroma, in both GEM and PDAC-PDX models, reproduces the complexity of the human PDAC microenvironment, undergoing a profound re-organization during tumor progression. Our data in mouse models also indicate that stroma-derived biomarkers can be useful not only for early detection, as evidenced in GEM models, but also for monitoring tumor growth, as evidenced in PDAC-PDX where their levels correlated with tumor burden.

Chronic pancreatitis (CP) is a risk factor for PDAC in humans (Lowenfels et al., 1993) and favors the development of PanIN and PDAC in Kras-driven mouse models (Guerra et al., 2007). The presence of inflammatory cytokines and high fibrosis create a permissive microenvironment for PanIN. These common pathological features justify the high levels of many of our stroma-related molecules found in the plasma of patients with CP. For example, MMP7 is activated via the Stat3 pathway in CP and involved in PDAC initiation and progression in GEM models of PDAC (Fukuda et al., 2011).

Nonetheless, we found three markers, FN, Col4, and PLG, significantly different in PDAC versus pancreatitis. The combination of these three markers with CCN2 and CA19.9 had a significant capability to discriminate between PDAC and CP. Notably, herein the identified CCN2 + PLG + FN + Col4 + CA19.9 panel appeared to have a higher capability in discriminating PDAC from pancreatitis (AUC = 0.94) than the recently proposed TIMP1 + LRG1 + CA19.9 panel (AUC = 0.89) (Capello et al., 2017).

Differently from patients, plasma levels of TIMP1, MMP7, and TSP2 were not increased in the mouse model of caerulein-induced CP and were significantly lower than PanIN. This might be explained by the different pathogenic mechanisms causing CP in patients and mouse model: in patients, usually it takes several years for permanent changes and CP symptoms to occur, for example, after a long-standing overuse of alcohol, while in mice CP is pharmacologically induced and complete damage occurs after few weeks of caerulein treatment.

Patient-derived tumor xenographs that reproduce the morphological and molecular characteristics of the original tumor are being used for drug development (Tentler et al., 2012; Ricci et al., 2014; Gao et al., 2015). Here, we show that TIMP1, MMP7, and TSP2 plasma levels correlated with the response to a Nab-paclitaxel–gemcitabine combined treatment in the PDAC-PDX HuPa8. Stroma-disrupting effects of Nab–paclitaxel in pancreatic cancer have been proposed as marker of drug activity (Alvarez et al., 2013). The value of stroma-related molecules as biomarker of response to drugs, particularly those expected to modify the tumor microenvironment (Neesse et al., 2013; Masso-Valles et al., 2015; Hingorani et al., 2016), needs to be further studied.

In conclusion, a PDAC signature of seven circulating stroma-related molecules has been identified and confirmed in two independent cohorts of patients, supporting our hypothesis that stroma remodeling leads to the release of circulating biomarkers. The association of at least five of them with PanIN in mouse models confirmed their potential to detect early lesions. A prospective confirmatory clinical study is required to characterize them as diagnostic PDAC biomarkers complementing CA19.9. Their correlation with tumor burden and drug response in PDAC-PDX models suggests they may also be useful as biomarkers for treatment efficacy in patients.

Materials and Methods

Patients

Plasma samples were isolated from peripheral venous blood collected from two independent cohorts of patients with PDAC diagnosed at the Policlinico G.B. Rossi Borgo Roma, Verona (first exploratory phase), and at the Humanitas Research Hospital, Rozzano, Milano (second confirmatory phase). Patients’ main characteristics are listed in Table 1. The collection and use of blood samples was approved by the local scientific ethics committees, and patients gave written consent. Criteria for inclusion in the study were as follows: histological diagnosis of PDAC, no previous chemotherapy, and no history of other invasive cancer. Control groups consisted of plasma samples from patients with chronic pancreatitis (CP) and healthy volunteers with no concomitant illnesses. Plasma samples were aliquoted and stored at –80°C until processing.

Mice and models

Six-week-old female and male PdxCre/LSL-KrasG12D (KC) mice (Hingorani et al., 2003), PdxCre/LSL-KrasG12D+/−/LSL-Trp53R172H/+
(KPC) mice (Hingorani et al., 2005; Capello et al., 2013), and PdxCre control mice were maintained at Biogem (Ariano Irpino, Avellino, IT). Chronic pancreatitis was induced in 10-week-old sex-matched C57BL/6 mice (Envigo, Correzzana, Italy) as previously described (Neuschwander-Tetri et al., 2000). Briefly, mice were injected intraperitoneally with 50 μg/kg of caerulein (AnaSpec, Fremont, CA, USA) 6 times over 5 consecutive hours, three times a week for 7 weeks. The severity of acute injury was initially verified by measuring plasma pancreatic α-amylase using Reflotron tests (Roche, Mannheim, Germany). Pancreatic tissue atrophy and fibrosis were detected by Sirius Red staining at sacrifice.

Three patient-derived PDAC xenografts (HuPa4, HuPa8, and HuPa11) were engrafted in 6- to 8-week-old male severe combined immunodeficiency (SCID) mice (Envigo, Correzzana, Italy) by orthotopic intrapancreas transplantation (manuscript in preparation). The PDAC-PDX models were molecularly and biologically characterized and found to be similar to the original tumor patient. PDAC-PDX were used within the third passage after their first engraftment.

PDAC-PDX growth in the pancreas was monitored by abdominal palpation and by magnetic resonance imaging (MRI) using 7-Tesla BioSpec AVIII system (Bruker Biospin). T2-weighted high-resolution palpatation and by magnetic resonance imaging (MRI) using 7-Tesla. PDAC-PDX were used within the third passage after their first engraftment.

PDAC-PDX growth in the pancreas was monitored by abdominal palpation and by magnetic resonance imaging (MRI) using 7-Tesla BioSpec AVIII system (Bruker Biospin). T2-weighted high-resolution sequences were analyzed using ImageJ software to calculate tumor volume (Cesca et al., 2016).

Nab-paclitaxel (Abraxane®, Celgene; 25 mg/kg i.v.) and gemcitabine (Gemcitabina Teva, Teva, 150 mg/kg i.v.) (HDE: 75 and 450 mg/m², respectively) were given as single treatment or in combination, on days 1 and 8 of each 21-day cycle for a total of 8 treatments.

Mice were maintained under specific pathogen-free conditions, housed in isolated vented cages, and handled using aseptic procedures. Procedures involving animals and their care were conducted in conformity with institutional guidelines that comply with national (Lgs 26/2014) and EU directives laws and policies (EEC Council Directive 2010/63), in line with guidelines for the welfare and use of animals in cancer research (Workman et al., 2010). Animal studies were approved by the Mario Negri Institute Animal Care and Use Committee and by Italian Ministry of Health (DM 85/2013-B and Authorization no. 601/2016-PR).

Biomarker analysis in blood samples

EDTA platelet-poor plasma samples were processed within 30 min of blood drawing, aliquoted, and stored at −80°C until further use. Circulating levels of tumor markers were measured using Luminex-based assays and commercially available ELISA (Millipore S.p.A., Vimodrone, Italy; R&D Systems, Inc., Minneapolis, MN, USA; Cusabio, Wuhan, P.R. China) (Appendix Table S1). Tests were run according to the manufacturer’s instructions. Each sample was analyzed in duplicate. Species specificity of the assays for human and murine analytes was verified by the absence of cross-reactivity for, respectively, murine and human plasma.

Histological and immunohistochemical analysis

PanIN lesions from GEM and tumor specimens from PDAC-PDX were collected, fixed in 10% phosphate-buffered formalin, and embedded in paraffin. Samples were cut into 4-μm-thick sections, and serial sections from each sample were histochemically stained with H&E, Alcian Pas, and Sirius Red. Samples from GEM were histologically classified at the appropriate stage of tumor progression according to Hingorani et al. (2003) and graded by the highest-grade component of the lesions. For immunohistochemical analysis, anti-vimentin EPR3776 1:500 (ab92547; Abcam, marker of mesenchymal cells of both human and murine origin), anti-vimentin Sp20 1:500 (RM 92120; Thermo Scientific, marker of mesenchymal cells of human origin), anti-human HLA-A 1:500 (ab52922; Abcam, marker of cells of human origin), anti-TIMP1 1:300 (AF980; R&D), anti-MMP7 1:50 (3801S; Cell Signaling), anti-TSP2 1:25 (PA5-50843; Thermo Scientific), and anti-CCN2 1:100 (ab6992; Abcam) were used.

Real-time PCR

Total tumor RNA was extracted with TRIzol (Invitrogen), purified, and then reverse-transcribed with the High-Capacity cDNA Archive kit (Applied Biosystems, Monza, Italy), according to the manufacturer’s instructions. TIMP1, MMP7, TSP2, CCN2, ICAM1, IGBPBP2, and PLG gene expression was analyzed by real-time qRT–PCR using PrimeTime® Gene Expression Master Mix and murine-specific PrimeTime Std qPCR Assay (Mm.PT.58.30682575 (TIMP1); Mm.PT.58.8806069 (MMP7); Mm.PT.58.31508589 (TSP2)) (IDT, Castenaso, Italy Biosystems) and TaqMan Gene Expression Assay (Mm00516023_m1 (CCN2); Mm00447087_m1 (ICAM1); Mm00492632_m1 (IGFBP2); Mm01192931_g1 (PLG)) (Applied Biosystems), normalized against the geometric median of GAPDH (Mm99999915_g1) and β-actin (Mm.PT.53a.3177) and expressed as 2−ΔΔCT.

Study design and statistical analysis

This study adheres to the guidelines to the Reporting Recommendations for Tumor Marker Prognostic Studies (REMARK; http://www.equator-network.org/reporting-guidelines/reporting-recommendations-for-tumour-marker-prognostic-studies-remark/) (McShane et al., 2005). The experiments conformed to the principles set out in the WMA Declaration of Helsinki and the Department of Health and Human Services Belmont Report.

Patients

A two-phase design was used to identify the most promising biomarkers associated with PDAC, as a secondary objective, the statistical association between the most promising individual biomarkers and pancreatitis was established. In the first exploratory phase, biomarkers from a small sample of PDAC patients and healthy individuals were screened. In the second confirmatory phase, screened biomarkers were evaluated from a larger independent sample of PDAC patients, pancreatitis patients, and healthy individuals. Patients with PDAC were matched by sex at a 1:1 ratio to healthy individuals. The statistical procedures applied to each phase are explained as follows:

First exploratory phase

Variable clustering was used to identify subsets of biomarkers showing an association with PDAC. It was applied in order to control the type I and II error rates with regard to univariate analysis of individual biomarkers.
Biomarkers were processed in four steps:

1. Screen out the candidate biomarkers with more than 10% of value missing (outBks).
2. Apply a principal components-based clustering method (Black & Watanabe, 2011) to the remaining variables with a 60% explained locus variance threshold.
3. Test cluster scores for PDAC association in a simple logistic regression framework.
4. Test singular outBks for PDAC association in a simple logistic regression framework.

In case of complete or almost-complete separation in the variable logistic regression models, the Wilcoxon rank-sum test to test cluster scores or outBks for PDAC association was used. A P-value < 0.10 was taken as indicating a significant association between clusters or outBks and PDAC; only clusters or outBks reaching statistical significance were evaluated in the confirmatory phase.

Second confirmatory phase
Screened biomarkers were tested for their association with PDAC in univariate analysis using a logistic regression model stratified by sex; a P-value < 0.01 was taken as confirming a significant association between an individual biomarker and PDAC. A multivariable logistic regression model adjusted for age effect was evaluated in the confirmatory phase. A multivariable logistic regression model was also developed to improve the discovery power of CA19.9. A forward selection procedure including CA19.9 in every model was used. A prospective power analysis was performed to determine the sample size of the confirmatory phase. Using a control-to-case ratio of 1:1, 248 patients were necessary to detect relative odds per standard deviation unit equal to 1.61 with an overall two-sided alpha level of 0.01 and power of 0.80. The Shieh–O’Brien approximation was used for power calculations. Assuming an attrition rate of 5%, 262 cases were enrolled.

Statistical analysis was done using SAS version 9.2 (SAS Institute, Cary, NC, USA); the SAS programming code used for the orthogonal principal components-based clustering approach was reported by Black and Watanabe (2011).

Mouse models
The statistical significance of the differences in plasma biomarker levels was assessed with one-way ANOVA (GEM models) or two-way ANOVA (PDAC-PDX models) followed by Tukey’s multiple comparison test. The correlation of biomarker levels with tumor volume was assessed using the Pearson correlation coefficient test. A P-value < 0.05 was considered significant. Statistical analysis was performed using GraphPad Prism version 7 software (GraphPad, La Jolla, CA).

Expanded View for this article is available online.

Acknowledgements
We thank Edoardo Micotti for MRI analyses, Roberta Curto for KC and KPC PCR screening and plasma collection, and Judit Baggot and Kerstin Mierke for editing the manuscript. This study was supported by the Italian Association for Cancer Research (AIRC SX1000 no. 12182 and IG 18853 to RG and IG 16833 to GT), University of Turin-Progetti Ateneo 2014-Compagnia di San Paolo (PANTHER to P.C. and PC-METAIMMUNOTHER to F.N.), and Fondazione Ricerca Molinette. AR is the recipient of a fellowship from AIRC and was supported by Fondazione E. Morandi ONLUS, per lo studio e la cura dei tumori del pancreas.

Author contributions
AR conducted biomarker analysis in blood samples and performed GEM studies and chronic pancreatitis induction in mice; MRB and AA performed PDAC-PDX studies; LP and VT designed clinical studies and performed statistical analysis; LM performed histological and immunohistochemical analysis; PA, AS, and AF provided human plasma samples; PC and FN provided KC and KPC mice; EM provided human tumor specimens for PDAC-PDX; AR, MB and GT interpreted the data and revised the manuscript; and DB and RG designed the study, supervised the experiments and wrote the manuscript.

Conflict of interest
The authors declare that they have no conflict of interest.

References
Alvarez R, Musteanu M, Garcia-Garcia E, Lopez-Casas PP, Megias D, Guerra C, Munoz M, Quijano Y, Cubillo A, Rodriguez-Pascual J et al (2013) Stromal disrupting effects of nab-paclitaxel in pancreatic cancer. Br J Cancer 109: 926–933
Balansethi S, Huang Y, Liu S, Marsh T, Chen J, Stass SA, KuKuruga D, Brand R, Chen N, Frazier ML et al (2017) A plasma biomarker panel to identify surgically resectable early-stage pancreatic cancer. J Natl Cancer Inst 109: djw341
Bennewith KL, Huang X, Ham CM, Graves EE, Erler JT, Kambham N, Feazell J, Yang GP, Koong A, Giaccia AJ (2009) The role of tumor cell-derived connective tissue growth factor (CTGF/CCN2) in pancreatic tumor growth. Cancer Res 69: 775–784
Goldstein D, El-Maraghi RH, Hammel P, Heinemann V, Kunzmann V, Sasst J, Scheithauer W, Siena S, Tabernero J, Teixeira L et al (2015) nab-Paclitaxel plus gemcitabine for metastatic pancreatic cancer: long-term survival from a phase III trial. *J Natl Cancer Inst* 107: dju413

Guerra C, Schuhmacher AJ, Canamero M, Grippo PJ, Verdaguer L, Perez-Gallego L, Dubus P, Sandgren EP, Barbacid M (2007) Chronic pancreatitis is crucial for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. *Cancer Cell* 11: 291–302

Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, Jacobetz MA, Ross S, Conrads TP, Veenstra TD, Hitt BA et al (2003) Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. *Cancer Cell* 4: 437–450

Hingorani SR, Wang L, Multani AS, Combs C, Deramaudt TB, Hruban RH, Rustgi AK, Chang S, Tuveson DA (2005) Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. *Cancer Cell* 7: 469–483

Hingorani SR, Harris WP, Beck JT, Berdov BA, Wagner SA, Pshvelotsky EM, Tjulandin SA, Gladkov OA, Holcombe RF, Korn R et al (2016) Phase Ib study of pegylated recombinant human hyaluronidase and gemcitabine in patients with advanced pancreatic cancer. *Clin Cancer Res* 22: 2848–2854

Irving KM, Wockner LF, Hoffmann I, Horsfall LU, Fagan KJ, Bijin V, Lee B, Clouston AD, Lampe G, Connolly JE et al (2016) Multiplex serum protein analysis identifies novel biomarkers of advanced fibrosis in patients with chronic liver disease with the potential to improve diagnostic accuracy of established biomarkers. *PLoS ONE* 11: e0167001

Jenkinson C, Elliott V, Menon U, Apostolidou S, Fourkala OE, Gentry-Maharaj A, Pereira SP, Jacobs I, Cox TF, Greenhalf W et al (2015) Evaluation in pre-diagnosis samples discounts ICAM-1 and TIMP-1 as biomarkers for earlier diagnosis of pancreatic cancer. *J Proteomics* 113: 400–402

Klupp F, Neumann L, Kahlert C, Diers J, Halama N, Franz C, Schmidt T, Dirsch O, Micotti E, Giordano S et al (2016) Bexacizumab-induced inhibition of angiogenesis promotes a more homogeneous intratumoral distribution of paclitaxel, improving the antitumor response. *Mol Cancer Ther* 15: 125–135

Chan A, Prassias I, Dimitromanolakis A, Brand RE, Serra S, Diamandis EP, Blasutig IM (2014) Validation of biomarkers that complement CA19.9 in detecting early pancreatic cancer. *Clin Cancer Res* 20: 5787–5795

Crawford HC, Scoggins CR, Washington MK, Matsrian LM, Leach SD (2002) Matrix metalloproteinase-7 is expressed by pancreatic cancer precursors and regulates acinar-to-ductal metaplasia in excrine pancreas. *J Clin Invest* 109: 1437–1444

Dendooven A, Gerritsen KG, Nguyen TQ, Kok RJ, Goldschmeding R (2011) Connective tissue growth factor (CTGF/CCN2) ELISA: a novel tool for monitoring fibrosis. *Biomarkers* 16: 289–301

Erkan M (2013) Understanding the stroma of pancreatic cancer: co-evolution of the microenvironment with epithelial carcinogenesis. *J Pathol* 231: 4–7

Faca VM, Song KS, Wang H, Zhang Q, Krasnoselsky AL, Newcomb LF, Plentz RR, Gurumurthy S, Redston MS, Pitteri SJ et al (2008) A mouse to human search for plasma proteome changes associated with pancreatic tumor monitoring fibrosis. *BMC Cancer* 8: 289

Feig C, Copinathan A, Neeesse A, Chan DS, Cook N, Tuveson DA (2012) The pancreas cancer microenvironment. *Cancer Res* 18: 4266–4276

Fiedler GM, Leichtle AB, Kase J, Baumann S, Ceglarek U, Felix K, Conrad T, Witzigmann H, Weichert W, Schutte C et al (2009) Serum peptide profiling revealed platelet factor 4 as a potential discriminating Peptide associated with pancreatic cancer. *Cancer Res* 15: 3812–3819

Fukuda A, Wang SC, Morris JP IV, Folas AE, Liou A, Kim GE, Akira S, Boucher KM, Firpo MA, Mulvihill SJ et al (2011) Stat3 and MMP7 contribute to pancreatic ductal adenocarcinoma initiation and progression. *Cancer Cell* 19: 441–455

Gao H, Korn JM, Ferretti S, Monahan JE, Wang Y, Singh M, Zhang C, Schnell C, Yang G, Zhang Y et al (2015) High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. *Nat Med* 21: 1318–1325
Stroma-related biomarkers in PDAC Andrea Resouvi et al

Shaw VE, Lane B, Jenkinson C, Cox T, Greenhalf W, Halloran CM, Tang J, Sutton R, Neoptolemos JP, Costello E (2014) Serum cytokine biomarker panels for discriminating pancreatic cancer from benign pancreatic disease. Mol Cancer 13: 114
Sun Y, Chen Y, Li S, Lei Y, Xu D, Jiang N, Zhang Y, Cao J, Ke Z (2017) NanoVelcro-captured CTC number concomitant with enhanced serum levels of MMP7 and MMP9 enables accurate prediction of metastasis and poor prognosis in patients with lung adenocarcinoma. Int J Nanomedicine 12: 6399–6412
Temporo MA, Klimstra D, Berlin J, Hollingsworth T, Kim P, Merchant N, Moore M, Pleskow D, Wang-Gillam A, Lowy AM (2013) Changing the way we do business: recommendations to accelerate biomarker development in pancreatic cancer. Clin Cancer Res 19: 538–540
Tentler JJ, Tan AC, Weekes CD, jimen G, Leong S, Pitts TM, Arcaroli JJ, Messersmith WA, Eckhardt SG (2012) Patient-derived tumour xenografts as models for oncology drug development. Nat Rev Clin Oncol 9: 338–350
Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M, Seay T, Tjulandin SA, Ma WW, Saleh MN et al (2013) Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med 369: 1691–1703
Whatcott CJ, Diep CH, Jiang P, Watanabe A, LoBello J, Sima C, Hostetter G, Shepard HM, Von Hoff DD, Han H (2015) Desmoplasia in primary tumors and metastatic lesions of pancreatic cancer. Clin Cancer Res 21: 3561–3568
Workman P, Abagyan EO, Balkwill F, Balmain A, Bruder G, Chaplin DJ, Double JA, Everitt J, Farningham DA, Glennie MJ et al (2010) Guidelines for the welfare and use of animals in cancer research. Br J Cancer 102: 1555–1577
Xue A, Scarlett CJ, Chung L, Butturini G, Scarpa A, Gandy R, Wilson SR, Baxter RC, Smith RC (2010) Discovery of serum biomarkers for pancreatic adenocarcinoma using proteomic analysis. Br J Cancer 103: 391–400
Yachiida S, Jones S, Bozic I, Antal T, Leary R, Fu B, Kamiyama M, Hruban RH, Eshleman JR, Nowak MA et al (2010) Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467: 1114–1117
Yu KH, Rustgi AK, Blair IA (2005) Characterization of proteins in human pancreatic cancer serum using differential gel electrophoresis and tandem mass spectrometry. J Proteome Res 4: 1742–1751
Zhang P, Zou M, Wen X, Gu F, Li J, Liu G, Dong J, Deng X, Gao J, Li X et al (2014) Development of serum parameters panels for the early detection of pancreatic cancer. Int J Cancer 134: 2646–2655

License: This is an open access article under the terms of the Creative Commons Attribution 4.0 License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.