Day 30 SUV_{max} Predicts Progression in Lymphoma Patients Achieving PR/SD After CAR T-cell Therapy

Tracking no: ADV-2021-006715R1

Ajlan Al Zaki (The University of Texas MD Anderson Cancer Center, United States) Lei Feng (UT MD Anderson Cancer Center, United States) Grace Watson (MD Anderson Cancer Center, United States) Sairah Ahmed (University of Texas, MD Anderson Cancer Center, United States) Haleigh Mistry (MD Anderson Cancer Center, United States) Loretta Nastoupil (UT MD Anderson Cancer Center, United States) Mischa Hawkins (MD Anderson Cancer Center, United States) Ranjit Nair (MD Anderson Cancer Center, United States) Swaminathan Iyer (MD Anderson Cancer Center, United States) Hun Lee (MDACC, United States) Raphael Steiner (MD Anderson Cancer Center, United States) Christopher Flowers (University of Texas MD Anderson Cancer Center, United States) Elizabeth Shpall (MD Anderson, United States) Partow Kebriaei (University of Texas MD Anderson Cancer Center, United States) Sattva Neelapu (The University of Texas MD Anderson Cancer Center, United States) Jason Westin (The University of Texas M.D. Anderson Cancer Center, United States) Paolo Strati (UT MD Anderson Cancer Center, United States)

Abstract:
About 70% of patients with large B-cell lymphoma (LBCL) treated with axicabtagene ciloleucel (axi-cel) who achieve a partial response (PR) or a stable disease (SD) on day 30 (D30) PET-CT scan progress, but predictive factors of progression are unknown. This a retrospective study of patients with LBCL treated with axi-cel at MD Anderson Cancer Center between 01/2018 and 02/2021. Among 50 patients with D30 PR/SD, 13 (26%) converted to complete response (CR). Among 95 patients with D30 CR, 72 (76%) remained in CR. On univariate analysis, the only day -5 characteristic associated with conversion from D30 PR/SD to subsequent CR was a higher platelet count ($p=0.05$). The only D30 factor associated with conversion from D30 PR/SD to subsequent CR was lower D30 SUV_{max} ($p<0.001$), and all patients with and D30 $SUV_{max} \geq 10$ progressed. After a median follow-up of 12 months, no significant difference in median progression-free survival was observed when comparing patients who converted from D30 PR/SD to subsequent CR to those who had been in CR since D30 ($p=0.19$). Novel predictive and prognostic markers based on tissue biopsy and non-invasive diagnostic assays are needed to more effectively identify these patients and characterize the biology of their residual disease.

Conflict of interest: COI declared - see note

COI notes: PS is a consultant for Roche-Genentech, Hutchinson MediPharma and TG Therapeutics, and received research funds from Astrazeneca-Acerta. RS receives research support from Seagen, BMS, Rafael Pharmaceuticals, and GSK. SA has received research funding from Seattle Genetics, Merck, Xencor, and Tessa Therapeutics and has membership on Tessa Therapeutic's advisory committee. LJN reports honoraria from Celgene, Genentech, Gilead, Janssen, Juno, Novartis, Spectrum, TG Therapeutics and research support from Celgene, Genentech, Janssen, Karus Therapeutics, and Merck. SSN served as consultant to Kite, a Gilead Company, Merck, Bristol-Myers Squibb, Novartis, Celgene, Pfizer, Allogene Therapeutics, Cell Medica/Kuur, Incyte, Precision Biosciences, Legend Biotech, Adicet Bio, Calibr, and Unum Therapeutics; received research support from Kite, a Gilead Company, Bristol-Myers Squibb, Merck, Poseida, Collectis, Celgene, Karus Therapeutics, Unum Therapeutics, Allogene Therapeutics, Precision Biosciences, and Aertea; received royalties from Takeda Pharmaceuticals, and has intellectual property related to cell therapy.

Preprint server: No;
Author contributions and disclosures: AAZ analyzed data, and wrote the paper; JRW, SAA, LJN, MH, RN, SPI, HJL, RES, CRF, EJS, PK, and SSN provided clinical care to patients and coauthored the paper; GB and HM and collected clinical data and coauthored the paper; LF provided statistical support and coauthored the paper; PS designed the study, analyzed the data, provided clinical care to patients, and wrote the paper.

Non-author contributions and disclosures: No;

Agreement to Share Publication-Related Data and Data Sharing Statement: N/A

Clinical trial registration information (if any):
Day 30 SUV\textsubscript{max} Predicts Progression in Lymphoma Patients Achieving PR/SD

After CAR T-cell Therapy

Running title: CAR T-cells and D30 PR/SD

Ajlan Al Zaki1, Lei Feng2, Grace Watson1, Sairah A Ahmed1, Haleigh Mistry1, Loretta J Nastoupil1, Misha Hawkins1, Ranjit Nair1, Swaminathan P Iyer1, Hun J Lee1, Raphael Steiner1, Christopher R Flowers1, Elizabeth J Shpall3, Partow Kebriaei3, Sattva S Neelapu1, Jason R Westin1\#, Paolo Strati1\#

1Department of Lymphoma and Myeloma, 2Department of Biostatistics, 3Department of Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center, Houston, TX.

#: these authors have equally contributed

Running title: CAR T-cells and D30 PR/SD

Correspondence:

Paolo Strati, MD

Department of Lymphoma and Myeloma, Department of Translational Molecular Pathology
Division of Cancer Medicine. The University of Texas MD Anderson Cancer Center
1515 Holcombe Boulevard, Unit 429 Houston, TX 77030, USA.

E-mail: pstrati@mdanderson.org; Telephone: (713) 792-0084; Fax: (713) 794-4297

Data sharing statement: For data sharing, contact the corresponding author: pstrati@mdanderson.org.

Prior presentation: Presented in abstract form at the 63rd American Society of Hematology Annual Meeting occurred in December 2021.

Abstract: 200; Text: 1205; Tables/Figures: 1/1; References: 24

Scientific Category: Lymphoid neoplasia
Key Points

- Patients with D30 PR/SD with subsequent conversion to CR experience similar early outcomes as patients who achieved CR by D30.
- SUV_{max} of 10 or higher may help identify patients with D30 PR/SD at risk of subsequent progression.
Abstract
About 70% of patients with large B-cell lymphoma (LBCL) treated with axicabtagene ciloleucel (axi-cel) who achieve a partial response (PR) or a stable disease (SD) on day 30 (D30) PET-CT scan progress, but predictive factors of progression are unknown. This a retrospective study of patients with LBCL treated with axi-cel at MD Anderson Cancer Center between 01/2018 and 02/2021. Among 50 patients with D30 PR/SD, 13 (26%) converted to complete response (CR). Among 95 patients with D30 CR, 72 (76%) remained in CR. On univariate analysis, the only day -5 characteristic associated with conversion from D30 PR/SD to subsequent CR was a higher platelet count (p=0.05). The only D30 factor associated with conversion from D30 PR/SD to subsequent CR was lower D30 SUV$_{\text{max}}$ (p<0.001), and all patients with D30 SUV$_{\text{max}}$ \geq10 progressed. After a median follow-up of 12 months, no significant difference in median progression-free survival was observed when comparing patients who converted from D30 PR/SD to subsequent CR to those who had been in CR since D30 (p=0.19). Novel predictive and prognostic markers based on tissue biopsy and non-invasive diagnostic assays are needed to more effectively identify these patients and characterize the biology of their residual disease.
Introduction

Approximately 40% of patients with relapsed or refractory large B-cell lymphoma (LBCL) treated with chimeric antigen receptor (CAR) T-cell therapy will achieve a durable remission, with similar rates reported across all three products approved by the Food and Drug Administration (FDA).1-4 Patients who are refractory to CAR T-cell therapies, either detected with early clinical or radiological progression observed on day 30 (D30) positron emission tomography (PET)-computed tomography (CT) scan experience very poor outcomes, with an estimated survival of less than 6 months.5 In addition, 70% of patients who achieve either a partial response (PR) or stable disease (SD) on D30 PET-CT will eventually have disease progression, experiencing an equally poor outcome.6 Therefore, a deeper clinical and biological characterization of these patients with D30 PR is necessary to help identify those at risk for progression and to develop optimal consolidation strategies.
Methods

This is a single center retrospective study of all patients with relapsed and/or refractory LBCL achieving PR or SD on D30 PET-CT scan after receiving standard of care axi-cel at MD Anderson Cancer Center (MDACC) between 01/2018 and 02/2021. Data cut-off was 04/2021. The study was approved MDACC Institutional Review Board and conducted in accordance with our institutional guidelines and the principles of the Declaration of Helsinki.

The clinical characteristics and laboratory features before lymphodepleting chemotherapy (D-5) and at time of first PET-CT restaging (D30) were confirmed by review of the medical records. Response status was determined by Lugano 2014 classification. Maximum standardized uptake volume (SUV$_{\text{max}}$) was calculated as previously described, and lesions suspicious for alternative etiologies were excluded from the analysis. The receiver operating characteristic (ROC) method was used for identification of optimal SUV$_{\text{max}}$ thresholds.

Association between categorical variables was evaluated using χ^2 test or Fisher’s exact test. The difference in a continuous variable between patient groups was evaluated by the Mann-Whitney test. Progression-free survival (PFS) was defined as the time from axi-cel to progression of disease, death, or last follow-up (whichever occurred first). Overall survival (OS) was defined as the time from axi-cel infusion to death or last follow-up. PFS and OS were calculated using Kaplan-Meier estimates and compared using the log rank test. A p-value of \leq0.05 (two-tailed) was considered statistically significant. Statistical analyses were completed using SPSS 24 and GraphPad Prism 8.
Results and Discussion

On D30, 204 out of 206 treated patients were evaluable for response, and 2 were lost to follow-up. Among the 204 evaluable patients, 102 (50%) achieved CR, 49 (24%) PR, 8 (4%) SD, and 45 (22%) experience either clinical or radiological progressive disease (PD). Among the 57 patients who achieved PR/SD on D30 PET-CT scan, 50 were evaluable for response at D90 or beyond, and were included in the final analysis, 5 were lost to follow-up, and 2 died of unrelated cause before restaging. Among the 50 evaluable patients with D30 PR/SD, 13 (26%) converted to CR on subsequent restaging without additional therapy, and 37 (74%) had progressive disease. Among the 102 patients with D30 CR, 7 were lost to follow-up. In the remaining 95 evaluable patients, 72 (76%) remained in CR at day 90 restaging, and 13 (24%) progressed (Figure 1A).

Baseline characteristics (on D-5) are shown in Table 1. On univariate analysis, the only baseline characteristic associated with conversion from D30 PR/SD to subsequent CR was a higher platelet count (median, 193 vs 128 ×10⁹/L, p=0.05), as a surrogate marker for bone marrow reserve; a trend for association with lower C-reactive protein was also observed (13.7 vs 36 mg/L, p=0.06)(Figure 1B and Supplementary Table 1). No difference in baseline characteristics was observed when comparing patients in CR at D30 to those with PR at D30 who subsequently converted to CR (Supplementary Table 2).

Laboratory, clinical and radiological characteristics collected on D30 are shown in Table 1. On univariate analysis, the only D30 factor associated with conversion from D30 PR/SD to subsequent CR was lower D30 SUV max; median, 5.8 vs 9.8, p<0.001)(Supplementary Table 3). At D30, patients with SUV max < 6, 8/14 (57%) eventually converted to CR, in contrast with patients with SUV max of ≥6 in which 5/36 (14%) converted to CR. All patients with D30 SUV max
≥ 10 had subsequent progressive disease (Figure 1C), and the latter was identified as the optimal threshold (sensitivity 100%, specificity 52%).

After a median follow-up of 12 months (95% CI, 11-13 months), no significant difference in median PFS was observed when comparing the 13 patients with D30 PR/SD and subsequent CR to the 72 patients with D30 CR (1-year PFS rate, 100% vs 84%, p=0.19) (Figure 1D).

Furthermore, no significant difference in median PFS was observed in a landmark analysis at 90 days (p=0.19).

PR/SD on D30 PET-CT scan, defined by a Deauville score of 4-5, can present with a variable range of fluorodeoxyglucose (FDG) avidity, commonly summarized by SUVmax. Other PET-based parameters relevant to patients with active disease include tumor burden, measured as total metabolic tumor volume (TMTV), and the combination of FDG avidity and tumor burden, measured as total lesion glycolysis (TLG). SUVmax, TMTV and TLG have shown prognostic and predictive value in patients with LBCL and among those treated with CAR T-cell therapy, as also shown in this study.9-12 While the availability of TMTV and TLG remains limited, SUVmax is commonly and easily calculated, and may be of significant value in the management of patients with D30 PR/SD, and further investigation of the clinical utility of early intervention among patients treated with CAR T-cell therapy is warranted.

Along with radiological parameters, other non-invasive techniques are currently being developed to identify high-risk patients. For example, circulating tumor DNA detection within the first 30 days of CAR T-cell therapy may allow for early identification of patients who will develop refractory disease; and if still detectable at D30 is associated with poor outcomes.13,14
While the approaches outlined above may help identify patients with D30 PR/SD at risk for progression, the optimal consolidation strategy for these patients remains unknown. Limited data is available regarding the use of third line FDA-approved agents for LBCL patients after CAR T-cell therapy. In this patient population, a response rate of 42-44% has been reported with the use of loncastuximab tesirine and polatuzumab vedotin, respectively.15,16 There are no data regarding the efficacy of other third line agents such as tafasitamab and selinexor in this setting.17,18 Other promising potential consolidations strategies have been reported with the off-label use of agents that enhance CAR T-cell activity and favorably impact the host tumor immune environment, including ibrutinib, lenalidomide, pembrolizumab and radiation therapy.13,19-24

We acknowledge multiple limitations of this study, including its small sample size, its single center and retrospective nature, and lack of central review for SUV\textsubscript{max} measurements and of more objective measurement, such as TMTV and TLG.

In conclusion, patients with D30 PR/SD that subsequently convert to CR experience similar early outcomes as patients that achieve CR by D30. PET-associated parameters, such as SUV\textsubscript{max} of 10 or higher, may help identify patients with D30 PR/SD at risk of subsequent progression, who may benefit from clinical trials of consolidation therapy. Novel predictive and prognostic markers based on tissue biopsy for patients with D30 PR/SD as well as non-invasive diagnostic assays are needed to more effectively identify these patients and characterize the biology of their residual disease.
Acknowledgments

This research is supported in part by The University of Texas MD Anderson Cancer Center Support Grant from National Institutes of Health (P30 CA016672).

PS salary is supported by the Lymphoma Research Foundation Career Development Award and by the R21 NIH grant.

Authorship Contributions

AAZ analyzed data, and wrote the paper; JRW, SAA, LJN, MH, RN, SPI, HJL, RES, CRF, EJS, PK, and SSN provided clinical care to patients and coauthored the paper; GW and HM and collected clinical data and coauthored the paper; LF provided statistical support and coauthored the paper; PS designed the study, analyzed the data, provided clinical care to patients, and wrote the paper.

Disclosure of Conflict of Interest

PS is a consultant for Roche-Genentech, Hutchinson MediPharma and TG Therapeutics, and received research funds from Astrazeneca-Acerta.

RES has received research funding from Seagen, BMS, Rafael Pharmaceuticals and GSK
SA has received research funding from Seattle Genetics, Merck, Xencor, and Tessa Therapeutics and has membership on Tessa Therapeutic’s advisory committee.

LJN reports honoraria from Celgene, Genentech, Gilead, Janssen, Juno, Novartis, Spectrum, TG Therapeutics and research support from Celgene, Genentech, Janssen, Karus Therapeutics, and Merck.

SSN served as consultant to Kite, a Gilead Company, Merck, Bristol-Myers Squibb, Novartis, Celgene, Pfizer, Allogene Therapeutics, Cell Medica/Kuur, Incyte, Precision Biosciences,
Legend Biotech, Adicet Bio, Calibr, and Unum Therapeutics; received research support from Kite, a Gilead Company, Bristol-Myers Squibb, Merck, Poseida, Cellectis, Celgene, Karus Therapeutics, Unum Therapeutics, Allogene Therapeutics, Precision Biosciences, and Acerta; received royalties from Takeda Pharmaceuticals, and has intellectual property related to cell therapy.
References

1. Abramson JS, Palomba ML, Gordon LJ, et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. *Lancet*. 2020;396(10254):839-852.

2. Locke FL, Ghobadi A, Jacobson CA, et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1-2 trial. *Lancet Oncol*. 2019;20(1):31-42.

3. Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma. *N Engl J Med*. 2017;377(26):2531-2544.

4. Schuster SJ, Bishop MR, Tam CS, et al. Tisagenlecleucel in Adult Relapsed or Refractory Diffuse Large B-Cell Lymphoma. *N Engl J Med*. 2019;380(1):45-56.

5. Spiegel JY, Dahiya S, Jain MD, et al. Outcomes of patients with large B-cell lymphoma progressing after axicabtagene ciloleucel therapy. *Blood*. 2021;137(13):1832-1835.

6. Nastoupil LJ, Jain MD, Feng L, et al. Standard-of-Care Axicabtagene Ciloleucel for Relapsed or Refractory Large B-Cell Lymphoma: Results From the US Lymphoma CAR T Consortium. *J Clin Oncol*. 2020;38(27):3119-3128.

7. Cheson BD, Fisher RI, Barrington SF, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. *J Clin Oncol*. 2014;32(27):3059-3068.

8. Pinnix CC, Ng AK, Dabaja BS, et al. Positron emission tomography-computed tomography predictors of progression after DA-R-EPOCH for PMBCL. *Blood Adv*. 2018;2(11):1334-1343.

9. Dean EA, Mhaskar RS, Lu H, et al. High metabolic tumor volume is associated with decreased efficacy of axicabtagene ciloleucel in large B-cell lymphoma. *Blood Advances*. 2020;4(14):3268-3276.

10. Vercellino L, Cottereau A-S, Casasnovas O, et al. High total metabolic tumor volume at baseline predicts survival independent of response to therapy. *Blood*. 2020;135(16):1396-1405.

11. Sirous R, Bukhari AA, Chaer FE, et al. Early imaging biomarker assessment to predict long-term responses for large B-cell lymphoma (LBCL) after CAR-T therapy. *Journal of Clinical Oncology*. 2019;37(15_suppl):7560-7560.

12. Schöder H, Polley M-YC, Knopp MV, et al. Prognostic value of interim FDG-PET in diffuse large cell lymphoma: results from the CALGB 50303 Clinical Trial. *Blood*. 2020;135(25):2222-2234.

13. Deng Q, Han G, Puebla R, et al. Characteristics of anti-CD19 CAR T cell infusion products associated with efficacy and toxicity in patients with large B cell lymphomas. *Nat Med*. 2020;26(12):1878-1887.

14. Frank MJ, Hossain N, Bukhari A, et al. Detectable Circulating Tumor DNA 28 Days after the CD19 CAR T-Cell Therapy, Axicabtagene Ciloleucel, Is Associated with Poor Outcomes in Patients with Diffuse Large B-Cell Lymphoma. *Blood*. 2019;134(Supplement_1):884-884.

15. Caimi PF, Ai W, Alderuccio JP, et al. Loncastuximab tesirine in relapsed or refractory diffuse large B-cell lymphoma (LOTIS-2): a multicentre, open-label, single-arm, phase 2 trial. *Lancet Oncol*. 2021;22(6):790-800.

16. Strati P, Watson G, Horowitz SB, et al. Clinical Efficacy of Polatuzumab Vedotin in Patients with Relapsed/Refractory Large B-Cell Lymphoma after Standard of Care Axicabtagene Ciloleucel. *Blood*. 2020;136.

17. Salles G, Duell J, Gonzalez Barca E, et al. Tafasitamab plus lenalidomide in relapsed or refractory diffuse large B-cell lymphoma (L-MIND): a multicentre, prospective, single-arm, phase 2 study. *Lancet Oncol*. 2020;21(7):978-988.

18. Kalakonda N, Maerevoet M, Cavallo F, et al. Selinexor in patients with relapsed or refractory diffuse large B-cell lymphoma (SADAL): a single-arm, multinational, multicentre, open-label, phase 2 trial. *Lancet Haematol*. 2020;7(7):e511-e522.
19. Fraietta JA, Beckwith KA, Patel PR, et al. Ibrutinib enhances chimeric antigen receptor T-cell engraftment and efficacy in leukemia. *Blood*. 2016;127(9):1117-1127.

20. Goy A, Ramchandren R, Ghosh N, et al. Ibrutinib plus lenalidomide and rituximab has promising activity in relapsed/refractory non–germinal center B-cell–like DLBCL. *Blood*. 2019;134(13):1024-1036.

21. Thieblemont C, Chevret S, Allain V, et al. Lenalidomide Enhance CAR T-Cells Response in Patients with Refractory/Relapsed Large B Cell Lymphoma Experiencing Progression after Infusion. *Blood*. 2020;136(Supplement 1):16-17.

22. Osborne W, Marzolini M, Tholouli E, et al. Phase I Alexander study of AUTO3, the first CD19/22 dual targeting CAR T cell therapy, with pembrolizumab in patients with relapsed/refractory (r/r) DLBCL. *Journal of Clinical Oncology*. 2020;38(15_suppl):8001-8001.

23. Chong EA, Svoboda J, Dwivedy Nasta S, et al. Sequential Anti-CD19 Directed Chimeric Antigen Receptor Modified T-Cell Therapy (CART19) and PD-1 Blockade with Pembrolizumab in Patients with Relapsed or Refractory B-Cell Non-Hodgkin Lymphomas. *Blood*. 2018;132(Supplement 1):4198-4198.

24. Pinnix CC, Gunther JR, Dabaja BS, et al. Bridging therapy prior to axicabtagene ciloleucel for relapsed/refractory large B-cell lymphoma. *Blood Adv*. 2020;4(13):2871-2883.
Tables and Figures

Total (N=50)	Number (%), median [range]	
	Day -5	Day 30
DLBCL/HGBCL	41 (82%)	--
Age (years)	61.5 [18-84]	--
Male	36 (72%)	--
ECOG performance status 3-4	1 (2%)	--
Ann Arbor Stage III-IV	40 (80%)	--
Extra-nodal sites > 1	31 (62%)	--
IPI score 3-5	26 (52%)	--
Absolute neutrophil count (10^9/L)	2.77 [0-17.36]	1.43 [0-9.97]
Absolute lymphocyte count (10^9/L)	0.61 [0.02-3]	0.43 [0-2.5]
Absolute monocyte count (10^9/L)	0.475 [0-1.11]	0.41 [0-1.05]
Hemoglobin (g/dL)	10.4 [7.2-14.7]	10.45 [5.7-15.2]
Platelet count count (10^9/L)	140 [6-390]	66.5 [1-270]
C-reactive protein (mg/L)	29.6 [0.37-175]	2.57 [0.15-211]
Ferritin (mg/L)	661 [33-9694]	947 [7.14-30833]
Lactate dehydrogenase (U/L)	336.5 [128-5323]	214 [107-3693]
Previous therapies (n)	3 [2-7]	--
Bridging therapy use	21 (42%)	--
Bridging: chemotherapy	14 (28%)	--
Radiation therapy	4 (8%)	--
Biological therapy	3 (6%)	--
None	29 (58%)	--
Refractory disease	42 (84%)	--
Previous autologous SCT	9 (18%)	--
Previous allogeneic SCT	1 (2%)	--
SUV_{max}	24.9 [3.5-77.7]	7.75 [2.6-35.1]

Table 1. Baseline characteristics (on day -5 and on day 30)

DLBCL, diffuse large B-cell lymphoma; HGBCL, high grade B-cell lymphoma; IPI, internal prognostic index; LDH, lactate dehydrogenase; SCT, stem cell transplant.

Pre-CART SUV_{max} was reported only for patients who had a PET-CT performed before lymphodepleting chemotherapy, without interposed bridging therapy.
Figure 1. Factors associated with conversion of D30 PR/SD to subsequent CR. A. Rates of conversion to CR among patients with D30 CR and D30 PR/SD; B. Baseline characteristics associated with conversion of D30 PR/SD to D90 CR; C. Association between D30 SUVmax and conversion of D30 PR/SD to D90 CR; D. PFS among patients converting from D30PR to CR as compared to those achieving D30 CR.

None of the patients that converted from D30 PR/SD to subsequent CR experienced progression. All patients with D30 PR and SUV$_{\text{max}}$ of 10 or higher subsequently progressed.

CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease; PFS, progression-free survival; SUV$_{\text{max}}$, maximum standardized uptake volume