ON BOTT-CHERN COHOMOLOGY AND FORMALITY

DANIELE ANGELLA AND ADRIANO TOMASSINI

Abstract. We study a geometric notion related to formality for Bott-Chern cohomology on complex manifolds.

INTRODUCTION

Cohomological properties of complex manifolds X are encoded in several cohomological invariants. On the one side, the de Rham cohomology $H^\bullet_{dR}(X; \mathbb{C})$ is a topological invariant. On the other side, the Dolbeault cohomology $H^\bullet_{\bar{\partial}}(X)$ is not directly naturally linked with the de Rham cohomology. In a sense, Bott-Chern and Aeppli cohomologies,

$$H^\bullet_{BC}(X) := \ker \partial \cap \ker \overline{\partial} \quad \text{and} \quad H^\bullet_{A}(X) := \ker \overline{\partial} / \text{im} \overline{\partial} + \text{im} \partial,$$

provide a kind of bridge connecting Dolbeault and de Rham cohomologies. In fact, the identity induces natural maps

$$H^\bullet_{BC}(X) \to H^\bullet_{dR}(X; \mathbb{C}) \to H^\bullet_{\bar{\partial}}(X; \mathbb{C}) \to H^\bullet_{A}(X)$$

of (bi-)graded vector spaces. Initially introduced in [5] and [1], they naturally arose in several problems in complex analysis, complex geometry, and theoretical physics.

There are two complementary directions in studying Bott-Chern cohomology. On the one side, one can be interested in studying its relation with de Rham cohomology. The very special property that the natural map $\bigoplus_{p+q=k} H^p_{BC}(X) \to H^k_{dR}(X; \mathbb{C})$ is injective, (and hence an isomorphism, [8, Lemma 5.15, Remark 5.16, 5.21],) is called $\partial\overline{\partial}$-Lemma property, [8], and it holds for compact Kähler manifolds, [8, Main Theorem]. In this view, in [4, Theorem A, Theorem B], we studied an inequality à la Fröhlicher for Bott-Chern cohomology of compact complex manifolds of complex dimension n, which provides a characterization of $\partial\overline{\partial}$-Lemma: for any k in \mathbb{Z},

$$\Delta^k := \sum_{p+q=k} (\dim_{\mathbb{C}} H^p_{BC}(X) + \dim_{\mathbb{C}} H^{n-q,n-p}_{BC}(X)) - 2b_k \geq 0,$$

and the equality holds for any k in \mathbb{Z} if and only if X satisfies the $\partial\overline{\partial}$-Lemma. Note that, for compact complex surfaces, the cohomologically-Kählerness expressed by the $\partial\overline{\partial}$-Lemma property is in fact equivalent to Kählerness, as a consequence of the Kählerness characterization in terms of the first Betti number being even. More precisely, for compact complex surfaces, one has that the only degree of non-Kählerness is $\Delta^2 \in 2\mathbb{N}$, [2, Theorem 1.1].

2010 Mathematics Subject Classification. 32Q99, 53C55, 32C35.

Key words and phrases. complex manifold, Hermitian metric, formality, cohomology, Bott-Chern cohomology.

The first author is granted with a research fellowship by Istituto Nazionale di Alta Matematica INdAM, and is supported by the Project PRIN “Varietà reali e complesse: geometria, topologia e analisi armonica”, by the Project FIRB “Geometria Differenziale e Teoria Geometrica delle Funzioni”, and by GNSAGA of INdAM. The second author is supported by the Project PRIN “Varietà reali e complesse: geometria, topologia e analisi armonica”, by Project FIRB “Geometria Differenziale Complessa e Dinamica Olomorfa”, and by GNSAGA of INdAM.
On the other side, one can focus on the algebraic structure of $H_{BC}^\bullet(X)$ in relation with $\wedge^\bullet X$. In fact, $H_{BC}^\bullet(X)$ has a structure of algebra, induced by the wedge product, and $H_{A}^\bullet(X)$ has a structure of $H_{BC}^\bullet(X)$-module.

Let us consider the de Rham cohomology $H_{dR}^\bullet(X; \mathbb{R})$ of a compact differentiable manifold X. It has a structure of algebra given by the cap product, induced by the wedge product on the space $\wedge^\bullet X$ of differential forms. But, in general, it is not possible to choose a basis of representatives having a structure of algebra. In [22, §3.1], the space of harmonic forms over a compact Riemannian manifold is endowed with a structure of A_∞-algebra in the sense of Stasheff, [19, II, Definition 2.1]. The first linear maps of this structure are $m_1 = 0$ and $m_2 = (\cdot \wedge \cdot)^H$, where $(\cdot)^H$ denotes the projection onto the space of harmonic forms with respect to the fixed Riemannian metric. In [15, Theorem 3.1, Corollary A.5], it is proven that, for any $n \in \mathbb{N} \setminus \{0, 1, 2\}$, for any x_1, \ldots, x_n harmonic forms, the element $m_n(x_1, \ldots, x_n)$ is a representative of the nth Massey product of $[x_1], \ldots, [x_n]$.

As firstly considered by Sullivan, [20, page 326], there is an “incompatibility of wedge products and harmonicity of forms” on a compact differentiable Riemannian manifold. This leads to the notion, introduced and studied by D. Kotschick, of formal metric, [14, Definition 1], namely, a Riemannian metric such that the space of harmonic forms has a structure of algebra. Note that, by definition, if the fixed Riemannian metric is formal in the sense of Kotschick, then, instead of $(\cdot \wedge \cdot)^H$, one has just the wedge product between harmonic forms, letting the A_∞ structure being in fact an algebra. The existence of such a metric is a stronger condition than formality: see, for example, the obstructions provided in [14, Theorem 6, Theorem 7, Theorem 9].

D. Sullivan introduced the notion of formality, see [20, §12]. It provides a way to relate the algebra structure of the complex of forms and the algebra structure of the de Rham cohomology. A differentiable manifold X is called formal in the sense of Sullivan [20] if the minimal model of its associated differential graded algebra $(\wedge^\bullet X, d)$ and of the de Rham cohomology $(H_{dR}^\bullet(X; \mathbb{R}), 0)$ coincide, [20, page 315]. In other words, we have a diagram

$$
\begin{array}{ccc}
(M^\bullet, d_M) & \xrightarrow{f} & (\wedge^\bullet X, d) \\
\downarrow{g} & & \downarrow{\cup} \\
(H_{dR}^\bullet(X; \mathbb{R}), 0)
\end{array}
$$

of differential \mathbb{Z}-graded algebras with f and g quasi-isomorphisms. This means that the rational homotopy of X “can be computed formally from” the cohomology ring $H_{dR}^\bullet(X; \mathbb{R})$. In particular, if X is formal in the sense of Sullivan, [20], then all the Massey products vanish. A geometrically formal compact differentiable manifold, (that is, a compact differentiable manifold admitting a formal Riemannian metric,) is formal in the sense of Sullivan, [14, §1].

In this note, we are interested in notions of formality strictly related to complex structures. To this aim, recall the work by J. Neisendorfer and L. Taylor on Dolbeault formality, [17]. They study Dolbeault formal manifolds, that is, complex manifolds for which the double complex of differential forms is formal as a differential \mathbb{Z}-graded algebra with respect to the $\overline{\partial}$ operator. This happens, for example, for compact Kähler manifolds, or, more in general, for compact complex manifolds satisfying the $\overline{\partial}\overline{\partial}$-Lemma, [17, Theorem 8]. See also [21].

But the above formality theory, valid for both de Rham and Dolbeault cohomology, seems not to work exactly for Bott-Chern cohomology, due to technical reasons. For example, note that the Bott-Chern cohomology is not computed as the cohomology of a differential graded algebra. We try to start here the “algebraic” study of the Bott-Chern cohomology by investigating the notion of geometrically-Bott-Chern-formal metrics on compact complex manifolds, namely, Hermitian metrics for which the product of harmonic forms with respect to the Bott-Chern Laplacian, [13, 18], is still harmonic. (Here, harmonic is intended in the sense of the Hodge theory developed by M. Schweitzer for Bott-Chern and Aeppli cohomologies in [18].) This seems, as far as we know, a first attempt to understand a possible notion of formality related to Bott-Chern cohomology.

More precisely, we introduce Aeppli-Bott-Chern-Massey products, see §2.1. We show that they provide an obstruction to the existence of geometrically-Bott-Chern-formal metrics.

Theorem 2.5. Aeppli-Bott-Chern-Massey products vanish on compact complex geometrically-Bott-Chern-formal manifolds.
Several examples are studied explicitly in Section 3, here including Iwasawa manifold, compact complex surfaces diffeomorphic to solvmanifolds, Calabi-Eckmann structures on \(S^1 \times S^3 \) and on \(S^3 \times S^3 \), holomorphically-parallelizable Nakamura manifold.

Acknowledgments. The authors would like to thank Hisashi Kasuya, Sara Torelli, Nicoletta Tardini, José Ignacio Cogolludo Agustín, Georges Dloussky, Giovanni Bazzoni for several discussions.

1. Bott-Chern cohomology and formality

Let \(X \) be a compact complex manifold of complex dimension \(n \). We first recall the definition of Bott-Chern cohomology and some results on Hodge theory. Then we introduce the notion of geometrically-Bott-Chern-cohomology.

1.1. Bott-Chern cohomology. The Bott-Chern cohomology, \([5]\), is the \(\mathbb{Z}^2 \)-graded algebra

\[
H_{BC}^{\cdot \cdot}(X) := \frac{\ker \partial \cap \ker \overline{\partial}}{\text{im } \partial \partial}.
\]

The Aeppli cohomology, \([1]\), is the \(\mathbb{Z}^2 \)-graded \(H_{BC}(X) \)-module

\[
H_A^{\cdot \cdot}(X) := \frac{\ker \partial \overline{\partial}}{\text{im } \partial + \text{im } \overline{\partial}}.
\]

For a given Hermitian metric \(g \) on \(X \), consider the 4th order self-adjoint elliptic differential operators, \([13, \text{Proposition } 5]\), \([18, \text{§ } 2.b]\),

\[
\Delta_{BC}^g := (\partial \overline{\partial}) (\partial \overline{\partial})^* + (\overline{\partial} \partial) (\overline{\partial} \partial)^* + (\overline{\partial} \partial) (\overline{\partial} \partial)^*(\overline{\partial} \partial) + (\partial \overline{\partial}) (\partial \overline{\partial})^*,
\]

and, \([18, \text{§ } 2.c]\),

\[
\Delta_A^g := \partial \partial^* + \overline{\partial} \overline{\partial}^* + (\partial \overline{\partial})^*(\partial \overline{\partial}) + (\partial \overline{\partial}) (\partial \overline{\partial})^*(\partial \overline{\partial}) + (\partial \overline{\partial}) (\partial \overline{\partial})^*.
\]

Consider the inclusions

\[
\iota_{BC}^g : \ker \Delta_{BC}^g \hookrightarrow \bigwedge^{\cdot \cdot} X \quad \text{and} \quad \iota_{A}^g : \ker \Delta_A^g \hookrightarrow \bigwedge^{\cdot \cdot} X.
\]

By \([18, \text{Corollaire } 2.3, \text{§ } 2.c]\), one has that

\[
H_{BC}(\iota_{BC}^g) \quad \text{and} \quad H_A(\iota_{A}^g) \quad \text{are isomorphisms of vector spaces}.
\]

For a Hermitian metric \(g \), the \(\mathbb{C} \)-linear Hodge-\(* \)-operator \(*_g : \bigwedge^{\cdot \cdot} X \to \bigwedge^{n-\cdot \cdot} X \) induces the isomorphism

\[
*_g : H_B^{\cdot \cdot}(X) \cong H_A^{n-\cdot \cdot}(X).
\]

1.2. Geometrically-Bott-Chern-formality. Inspired by \([14]\), we consider the following notion, concerning Hermitian metrics for which \(\ker \Delta_{BC}^g \) has a structure of algebra.

Definition 1.1. A Hermitian metric \(g \) on a compact complex manifold \(X \) is called geometrically-Bott-Chern-formal if it yields the inclusion \(\iota_{BC}^g : (\ker \Delta_{BC}^g, 0, 0) \hookrightarrow (\bigwedge^{\cdot \cdot} X, \partial, \overline{\partial}) \) of bi-differential \(\mathbb{Z}^2 \)-graded algebras, such that \(H_{BC}(\iota_{BC}^g) \) is an isomorphism.

Definition 1.2. A compact complex manifold \(X \) is called geometrically-Bott-Chern-formal if there exists a Hermitian metric \(g \) on \(X \) being geometrically-Bott-Chern-formal.

2. Aeppli-Bott-Chern-Massey products

In this section, we define Aeppli-Bott-Chern-Massey products on complex manifolds, and we show that they provide obstructions to geometrically-Bott-Chern-formality.
2.1. Aeppli-Bott-Chern-Massey products on complex manifolds. We recall that, on a compact complex manifold \(X \), the Bott-Chern cohomology \(H^{\bullet}_{BC}(X) \) has a structure of algebra. The Aeppli cohomology \(H^{\bullet}_{A}(X) \) has a structure of \(H^{\bullet}_{BC}(X) \)-module. We start by giving the following definition and by proving its coherency.

Definition 2.1. Let \((A^{\bullet}, \partial, \overline{\partial})\) be a bi-differential \(\mathbb{Z}^2 \)-graded algebra. Take
\[
\alpha_{12} = [\alpha_{12}] \in H^{p,q}_{BC}(A^{\bullet}), \quad \alpha_{23} = [\alpha_{23}] \in H^{r,s}_{BC}(A^{\bullet}), \quad \alpha_{34} = [\alpha_{34}] \in H^{u,v}_{BC}(A^{\bullet}),
\]
such that \(\alpha_{12} \sim \alpha_{23} = 0 \) in \(H^{p+r+q+s}_{BC}(A^{\bullet}) \) and \(\alpha_{23} \sim \alpha_{34} = 0 \) in \(H^{r+s+u+v}_{BC}(A^{\bullet}) \):
\[
(\overline{\partial} - 1)^{p+q} \alpha_{12} \wedge \alpha_{23} = (\overline{\partial} - 1)^{r+s} \alpha_{23} \wedge \alpha_{34} = \overline{\partial} \overline{\partial} \alpha_{24}.
\]

The **triple Aeppli-Bott-Chern-Massey product** \(\langle \alpha_{12}, \alpha_{23}, \alpha_{34} \rangle_{ABC} \) is defined as
\[
\langle \alpha_{12}, \alpha_{23}, \alpha_{34} \rangle_{ABC} := \left[(-1)^{p+q} \alpha_{12} \wedge \alpha_{23} - (\overline{\partial} - 1)^{r+s} \alpha_{12} \wedge \alpha_{34} \right] + \left[(-1)^{q+r} \alpha_{23} \wedge \alpha_{34} - (\overline{\partial} - 1)^{p+q+s+v} \alpha_{23} \wedge \alpha_{34} \right] \in H^{p+r+q+s+u+v-1}_{A}(A^{\bullet}).
\]

Proof. We have to prove that the form \((\overline{\partial} - 1)^{p+q} \alpha_{12} \wedge \alpha_{23} - (\overline{\partial} - 1)^{r+s} \alpha_{12} \wedge \alpha_{34} \) is \(\overline{\partial} \overline{\partial} \)-closed, and that its class in the quotient depends neither on the chosen representatives of \(\alpha_{12}, \alpha_{23}, \alpha_{34} \), nor on the chosen elements \(\alpha_{13}, \alpha_{24} \).

First of all, note that, since \(\alpha_{12} \) and \(\alpha_{34} \) are \(\partial \)-closed and \(\overline{\partial} \)-closed, then
\[
\overline{\partial} \left((\overline{\partial} - 1)^{p+q} \alpha_{12} \wedge \alpha_{23} - (\overline{\partial} - 1)^{r+s} \alpha_{12} \wedge \alpha_{34} \right) = (\overline{\partial} - 1)^{p+q} \partial \alpha_{24} - (\overline{\partial} - 1)^{r+s} \overline{\partial} \alpha_{13} \wedge \alpha_{34}
\]
\[
= (\overline{\partial} - 1)^{q+r+s} \alpha_{12} \wedge \alpha_{23} + (\overline{\partial} - 1)^{p+q+s+v} \alpha_{12} \wedge \alpha_{23} \wedge \alpha_{34} = 0.
\]
Hence the form \((\overline{\partial} - 1)^{p+q} \alpha_{12} \wedge \alpha_{23} - (\overline{\partial} - 1)^{r+s} \alpha_{12} \wedge \alpha_{34} \) defines a class in \(H^{p+r+q+s+u+v-1}_{A}(A^{\bullet}) \).

Now, suppose, for example, that \(\alpha_{12} = 0 \) in \(H^{p,q}_{BC}(A^{\bullet}) \): let \(\alpha_{12} = \overline{\partial} \xi \). Then we can take \(\alpha_{13} = (\overline{\partial} - 1)^{p+q} \xi \wedge \alpha_{23} \). Therefore we get
\[
(\overline{\partial} - 1)^{p+q} \alpha_{12} \wedge \alpha_{23} - (\overline{\partial} - 1)^{r+s} \alpha_{12} \wedge \alpha_{34} = (\overline{\partial} - 1)^{q+r+s} \xi \wedge \alpha_{24} - (\overline{\partial} - 1)^{p+q+s+v} \xi \wedge \overline{\partial} \alpha_{24}
\]
\[
= \partial ((\overline{\partial} - 1)^{q+r+s} \xi \wedge \alpha_{24} + \overline{\partial} (\xi \wedge \alpha_{24})),
\]
which is a null term in the Aeppli cohomology.

Finally, suppose, for example, that \(\alpha_{13} \in \ker \partial + \ker \overline{\partial} \). Then the form \(\alpha_{13} \) defines a class in \(H^{p+r+q+s+u+v-1}_{A}(A^{\bullet}) \), and the term \(\alpha_{13} \wedge \alpha_{34} \) is null in the quotient \(\left(H^{p+r+q+s+u+v-1}_{A}(A^{\bullet}) \right) / \left(\alpha_{12} \sim H^{p+r-1,q+s+u+v-1}_{A}(A^{\bullet}) + H^{r+q-1,p+q+s+v-1}_{A}(A^{\bullet}) \sim \alpha_{34} \right) \).

Definition 2.2. Let \(X \) be a complex manifold. The **triple Aeppli-Bott-Chern-Massey products**, (shortly, **Aeppli-Bott-Chern-Massey products**), are defined as the triple Aeppli-Bott-Chern-Massey products of the bi-differential \(\mathbb{Z}^2 \)-graded algebra \((\wedge^{\bullet, \bullet} X, \partial, \overline{\partial}) \).

2.2. Aeppli-Bott-Chern-Massey products and formality. We prove that Aeppli-Bott-Chern-Massey products provides obstructions to geometrically-Bott-Chern-formality for compact complex manifolds.

The following lemma is straightforward.

Lemma 2.3. Let \(f : (A^{\bullet}, \partial_A, \overline{\partial}_A) \rightarrow (B^{\bullet}, \partial_B, \overline{\partial}_B) \) be a morphism of bi-differential \(\mathbb{Z}^2 \)-graded algebras. For any \(\alpha_{12} \in H^{p,q}_{BC}(A^{\bullet}), \alpha_{23} \in H^{r,s}_{BC}(A^{\bullet}), \alpha_{34} \in H^{u,v}_{BC}(A^{\bullet}) \) such that \(\alpha_{12} \sim \alpha_{23} = 0 \) and \(\alpha_{23} \sim \alpha_{34} = 0 \), it holds
\[
(H_A(f)) \langle \alpha_{12}, \alpha_{23}, \alpha_{34} \rangle_{ABC} = \langle (H_{BC}(f)) \alpha_{12}, (H_{BC}(f)) \alpha_{23}, (H_{BC}(f)) \alpha_{34} \rangle_{ABC}.
\]
Theorem 2.5. Aeppli-Bott-Chern-Massey products vanish on compact complex geometrically-Bott-Chern-H is a morphism of algebras yielding the isomorphism
\[\phi : (\ast \ast \ast) \to (\ast \ast \ast) \]
\[H_a \text{ endowed with the product induced by matrix multiplication, is the 3-dimensional Heisenberg group over } \mathbb{R}. \]

Proposition 3.1. Iwasawa manifold.

We show a non-zero Aeppli-Bott-Chern-Massey product on the Iwasawa manifold.

Proof. Consider \(a_{12} = [\alpha_{12}], a_{23} = [\alpha_{23}], a_{34} = [\alpha_{34}], \) and \((-1)^{p+q} \alpha_{12} \wedge \alpha_{23} = \partial \alpha_{13}, (-1)^{p+q} \alpha_{23} \wedge \alpha_{34} = \partial \alpha_{24}. \) We have

\[(H_a(f)) (\langle a_{12}, a_{23}, a_{34} \rangle_{ABC}) = (H_a(f)) (\langle (-1)^{p+q} \alpha_{12} \wedge \alpha_{23} - (-1)^{r+s} \alpha_{13} \wedge \alpha_{34} \rangle) \]
\[= ([(-1)^{p+q} f(\alpha_{12}) \wedge f(\alpha_{23}) - (-1)^{r+s} f(\alpha_{13}) \wedge f(\alpha_{34})]) \]
\[= \langle [f(\alpha_{12})], [f(\alpha_{23})], [f(\alpha_{34})] \rangle_{ABC} \]
\[= \langle (H_{BC}(f)) (a_{12}), (H_{BC}(f)) (a_{23}), (H_{BC}(f)) (a_{34}) \rangle_{ABC}. \]

Indeed, note that \((-1)^{p+q} (H_{BC}(f)) (a_{12}) \sim (H_{BC}(f)) (a_{23}) = (-1)^{p+q} [f(\alpha_{12})] \sim [f(\alpha_{23})] = (-1)^{p+q} [f(\alpha_{12} \wedge \alpha_{23})] = [\partial \alpha_{13}] \) and \((-1)^{r+s} (H_{BC}(f)) (a_{23}) \sim (H_{BC}(f)) (a_{34}) = [\partial \alpha_{24}]. \]

We now apply the above lemma to the case of geometrically-Bott-Chern-formal manifolds.

Proposition 2.4. Let \(X \) be a compact complex manifold. Suppose that there exists a morphism \(f : (\ast \ast \ast, 0, 0) \to (\ast \ast \ast, 0, 0) \) of bi-differential \(\mathbb{Z}^2 \)-graded algebras such that \(H_{BC}(f) \) is an isomorphism. Then the Aeppli-Bott-Chern-Massey products of \(X \) vanish.

Proof.

Theorem 2.5. Aeppli-Bott-Chern-Massey products vanish on compact complex geometrically-Bott-Chern-formal manifolds.

Proof. Let \(g \) be a geometrically-Bott-Chern-formal metric on the compact complex manifold \(X. \) In particular, \(\ker \Delta^p_{BC} \) has a structure of algebra and the inclusion \(i^p_{BC} : (\ker \Delta^p_{BC}, 0, 0) \to (\ast \ast \ast, 0, 0) \) is a morphism of algebras yielding the isomorphism \(H_{BC}(i^p_{BC}). \)

For any \(a_{12} \in H_{BC}^p(X), a_{23} \in H_{BC}^p(X), a_{34} \in H_{BC}^p(X) \) such that \(a_{12} \sim a_{23} = 0, \) by Lemma 2.3 one has
\[(a_{12}, a_{23}, a_{34})_{ABC} = (H_a(f)) (H_{BC}(f))^{-1} (a_{12}), H_{BC}(f)^{-1} (a_{23}), H_{BC}(f)^{-1} (a_{34}) \]
\[= (H_a(f)) (0) = 0. \]

Indeed, note that Aeppli-Bott-Chern-Massey products vanish in \(\mathbb{Z}^2 \)-graded algebras with zero differentials.

3. Examples

In this section, we provide some examples of (non-)geometrically-Bott-Chern-formal manifolds.

3.1. Iwasawa manifold. We show a non-zero Aeppli-Bott-Chern-Massey product on the Iwasawa manifold, which is one of the simplest example of non-Kähler complex nilmanifolds. Hence, by Theorem 2.5, we get the following.

Proposition 3.1. The Iwasawa manifold is not geometrically-Bott-Chern-formal.

Proof. The Iwasawa manifold is \(\mathbb{I}_3 := \mathbb{H}(3; \mathbb{Z}[i]) \setminus \mathbb{H}(3; \mathbb{C}) \), where the connected simply-connected complex 2-step nilpotent Lie group
\[\mathbb{H}(3; \mathbb{C}) := \left\{ \begin{pmatrix} 1 & z^1 & z^3 \\ 0 & 1 & z^2 \\ 0 & 0 & 1 \end{pmatrix} \in GL(3; \mathbb{C}) : z^1, z^2, z^3 \in \mathbb{C} \right\}, \]

endowed with the product induced by matrix multiplication, is the 3-dimensional Heisenberg group over \(\mathbb{C}. \) and \(\mathbb{H}(3; \mathbb{Z}[i]) := \mathbb{H}(3; \mathbb{C}) \cap GL(3; \mathbb{Z}[i]) \) is a lattice in \(\mathbb{H}(3; \mathbb{C}). \)

One gets that \(\mathbb{I}_3 \) is a 3-dimensional holomorphically-parallelizable complex nilmanifold, endowed with a \(\mathbb{H}(3; \mathbb{C}) \)-left-invariant complex structure inherited by the standard complex structure on \(\mathbb{H}(3; \mathbb{C}). \)

A \(\mathbb{H}(3; \mathbb{C}) \)-left-invariant co-frame for the space of \((1,0)\)-forms on \(\mathbb{I}_3 \) is given by
\[\varphi^1 := dz^1, \]
\[\varphi^2 := dz^2, \]
\[\varphi^3 := dz^3 - z^1 dz^2. \]
and the corresponding structure equations are

\[
\begin{align*}
\frac{d \varphi^1}{=} & 0 \\
\frac{d \varphi^2}{=} & 0 \\
\frac{d \varphi^3}{=} & - \varphi^1 \wedge \varphi^2
\end{align*}
\]

Consider

\[
a_{12} := [\varphi^1 \wedge \varphi^2] \in H_{BC}^2(\mathbb{L}_3), \quad a_{23} := [\varphi^1 \wedge \varphi^2] \in H_{BC}^2(\mathbb{L}_3), \quad a_{34} := [\varphi^1] \in H_{BC}^1(\mathbb{L}_3).
\]

Since \(\partial \bar{\partial} (\varphi^3) = \varphi^1 \wedge \varphi^2 \wedge \varphi^3 \), we take

\[
\alpha_{13} = - \varphi^1 \wedge \varphi^3 \quad \text{and} \quad \alpha_{24} = 0.
\]

By noting that, \([18, \S 1.c]\),

\[
\frac{H_{BC}^1(X)}{H_A^1(X)} \approx a_{34} = \langle [\varphi^1 \wedge \varphi^2 \wedge \varphi^3], [\varphi^2 \wedge \varphi^3 \wedge \varphi^3], [\varphi^3 \wedge \varphi^1 \wedge \varphi^3], [\varphi^3 \wedge \varphi^2 \wedge \varphi^3] \rangle,
\]

we get that

\[
a_{1234} := \langle a_{12}, a_{23}, a_{34} \rangle_{ABC} = [\alpha_{12} \wedge \alpha_{24} - \alpha_{13} \wedge \alpha_{34}] = [\varphi^3 \wedge \varphi^1 \wedge \varphi^3]
\]

is a non-trivial Aeppli-Bott-Chern-Massey product.

\(\square\)

3.2. Compact complex surfaces

Compact complex non-Kähler surfaces diffeomorphic to solvmanifolds are studied by K. Hasegawa in [9]. They are Inoue surface of type \(S_M \), primary Kodaira surface, secondary Kodaira surface, and Inoue surface of type \(S^k \), and are endowed with left-invariant complex structures. In [2], their Dolbeault and Bott-Chern cohomology is studied. It turns out that the Dolbeault and Bott-Chern cohomologies of such manifolds can be fully recovered by the sub-double-complex of left-invariant forms, see [2, Theorem 4.1].

More precisely, if the compact complex surface \(X \) is diffeomorphic to the solvmanifold \(\Gamma \setminus G \), then the inclusion \(\iota: (\wedge^\bullet g^*, \partial, \bar{\partial}) \to (\wedge^\bullet X, \partial, \bar{\partial}) \) yields the isomorphisms \(H^*_g(i) \) and \(H^*_BC(i) \), where \(g \) denotes the Lie algebra associated to \(G \).

We show here that compact complex surfaces diffeomorphic to solvmanifolds are geometrically-Bott-Chern-formal. (Furthermore, except possibly in the case of primary Kodaira surface, they are also geometrically-Dolbeault-formal. Here, by geometrically-Dolbeault-formal, we mean that \(X \) admits a Hermitian metric with respect to which \(\ker \Delta^2 \) is an algebra, where \(\Delta^2 := \left[\overline{\partial}, \overline{\partial} \right] \) is the Dolbeault Laplacian.)

Proposition 3.2

Let \(X \) be either an Inoue surface of type \(S_M \), or a primary Kodaira surface, or an Inoue surface of type \(S^k \), or a secondary Kodaira surface. Then \(X \) is geometrically-Bott-Chern-formal.

Proof. Explicit representatives for the cohomologies are provided in [2, Table 1, Table 2]. More precisely, a left-invariant Hermitian metric \(g \) is fixed. The harmonic representatives with respect to such a metric, and in terms of a left-invariant orthonormal co-frame \(\{ \varphi^1, \varphi^2 \} \) for the holomorphic co-tangent bundle, are the following:

- **for Inoue surface of type \(S_M \):**
 \[
 \ker \Delta^2_g = \wedge^\bullet (\mathbb{C} (1) \oplus \mathbb{C} \langle \varphi^2 \rangle \oplus \mathbb{C} \langle \varphi^1 \wedge \varphi^2 \wedge \varphi^1 \rangle),
 \]
 and
 \[
 \ker \Delta^1_{BC} = \wedge^\bullet (\mathbb{C} (1) \oplus \mathbb{C} \langle \varphi^2 \wedge \varphi^3 \rangle \oplus \mathbb{C} \langle \varphi^1 \wedge \varphi^2 \wedge \varphi^1 \rangle) \\
 \oplus \mathbb{C} \langle \varphi^1 \wedge \varphi^1 \wedge \varphi^3 \rangle \oplus \mathbb{C} \langle \varphi^1 \wedge \varphi^1 \wedge \varphi^2 \rangle;
 \]

- **for primary Kodaira surface:**
 \[
 \ker \Delta^2_g = \mathbb{C} (1) \oplus \mathbb{C} \langle \varphi^1 \rangle \oplus \mathbb{C} \langle \varphi^1, \varphi^2 \rangle \\
 \oplus \mathbb{C} \langle \varphi^1 \wedge \varphi^2 \rangle \oplus \mathbb{C} \langle \varphi^1 \wedge \varphi^2, \varphi^2 \wedge \varphi^1 \rangle \oplus \mathbb{C} \langle \varphi^1 \wedge \varphi^2 \rangle \\
 \oplus \mathbb{C} \langle \varphi^1 \wedge \varphi^2 \wedge \varphi^1, \varphi^1 \wedge \varphi^2 \wedge \varphi^2 \rangle \oplus \mathbb{C} \langle \varphi^2 \wedge \varphi^2 \wedge \varphi^2 \rangle \oplus \mathbb{C} \langle \varphi^1 \wedge \varphi^2 \wedge \varphi^1 \wedge \varphi^2 \rangle,
 \]

\[
\frac{\mathbb{H}^{1,2}(X)}{\mathbb{H}^1(X)} \approx a_{34} = \langle [\varphi^1 \wedge \varphi^2 \wedge \varphi^3], [\varphi^2 \wedge \varphi^3 \wedge \varphi^3], [\varphi^3 \wedge \varphi^1 \wedge \varphi^3], [\varphi^3 \wedge \varphi^2 \wedge \varphi^3] \rangle,
\]

we get that

\[
a_{1234} := \langle a_{12}, a_{23}, a_{34} \rangle_{ABC} = [\alpha_{12} \wedge \alpha_{24} - \alpha_{13} \wedge \alpha_{34}] = [\varphi^3 \wedge \varphi^1 \wedge \varphi^3]
\]

is a non-trivial Aeppli-Bott-Chern-Massey product.

\(\square\)
Theorem 3.3. Let \(\Delta_{BC} \) be the Hopf surface endowed with the Calabi-Eckmann complex structure. Then \(X \) is both geometrically-Hodge-formal and geometrically-Bott-Chern-formal.

Proof. In fact, see [2, Proposition 2.4], for a fixed Hermitian metric \(g \) and a fixed left-invariant co-frame of the holomorphic cotangent bundle, one computes the following harmonic representatives:

\[
\ker \Delta_{BC}^2 = \wedge^{\bullet, \bullet} \left(\mathbb{C} \langle 1 \rangle \oplus \mathbb{C} \langle \varphi^1 \rangle \oplus \mathbb{C} \langle \varphi^2 \rangle \oplus \mathbb{C} \langle \varphi^1 \wedge \varphi^2 \rangle \oplus \mathbb{C} \langle \varphi^1 \wedge \varphi^3 \rangle \right),
\]

and

\[
\ker \Delta_{BC}^2 = \wedge^{\bullet, \bullet} \left(\mathbb{C} \langle 1 \rangle \oplus \mathbb{C} \langle \varphi^1 \rangle \oplus \mathbb{C} \langle \varphi^2 \rangle \oplus \mathbb{C} \langle \varphi^1 \wedge \varphi^2 \rangle \right),
\]

proving the statement. \(\square \)

3.3. Calabi-Eckmann structure on \(S^3 \times S^3 \). E. Calabi and B. Eckmann constructed in [6] a complex structure on the manifolds \(M_{u,v} \) diffeomorphic to \(S^{2u+1} \times S^{2v+1} \), where \(u, v \in \mathbb{N} \). More precisely, \(M_{u,v} \) is the total space of an analytic fibre bundle with fibre a torus and base \(\mathbb{C}P^{u} \times \mathbb{C}P^{v} \). It is also the total space of an analytic fibre bundle with fibre \(M_{0,v} \) and base \(\mathbb{C}P^{v} \). In the case \(uv = 0 \), the manifold \(M_{u,v} \) is called Hopf manifold.

We show the following, concerning \(S^3 \times S^3 \).

Proposition 3.4. The manifold \(S^3 \times S^3 \) endowed with the Calabi-Eckmann complex structure is geometrically-Bott-Chern-formal.

Proof. Consider the differentiable manifold \(X := S^3 \times S^3 \). View \(S^3 = SU(2) \) as a Lie group: it has a global left-invariant co-frame \(\{ e^1, e^2, e^3 \} \) such that

\[
d e^1 = -2e^2 \wedge e^3, \quad d e^2 = 2e^1 \wedge e^3, \quad \text{and} \quad d e^3 = -2e^1 \wedge e^2.
\]
Hence, we consider a global left-invariant co-frame \(\{ e^1, e^2, e^3, f^1, f^2, f^3 \} \) for \(TX \) with structure equations

\[
\begin{align*}
 \text{d}e^1 &= -2e^2 \wedge e^3 \\
 \text{d}e^2 &= 2e^1 \wedge e^3 \\
 \text{d}e^3 &= -2e^1 \wedge e^2 \\
 \text{d}f^1 &= -2f^2 \wedge f^3 \\
 \text{d}f^2 &= 2f^1 \wedge f^3 \\
 \text{d}f^3 &= -2f^1 \wedge f^2
\end{align*}
\]

Endow \(X \) with the left-invariant almost-complex structure \(J \) defined by the \((1,0) \)-forms

\[
\begin{align*}
 \varphi^1 &= e^1 + i e^2 \\
 \varphi^2 &= f^1 + i f^2 \\
 \varphi^3 &= e^3 + i f^3
\end{align*}
\]

By computing the complex structure equations,

\[
\begin{align*}
 \partial \varphi^1 &= i \varphi^1 \wedge \varphi^3 \\
 \partial \varphi^2 &= \varphi^2 \wedge \varphi^3 \\
 \partial \varphi^3 &= 0
\end{align*} \quad \text{and} \quad \begin{align*}
 \overline{\partial} \varphi^1 &= i \varphi^1 \wedge \overline{\varphi^3} \\
 \overline{\partial} \varphi^2 &= -\varphi^2 \wedge \overline{\varphi^3} \\
 \overline{\partial} \varphi^3 &= -i \varphi^1 \wedge \varphi^3 + \varphi^2 \wedge \overline{\varphi^2}
\end{align*}
\]

we note that \(J \) is in fact integrable.

The manifold \(X \) is a compact complex manifold not admitting any Kähler metric. (Indeed, the second Betti number is zero.) The above complex structure coincides with the structures that have been studied by E. Calabi and B. Eckmann on the products \(S^{2p+1} \times S^{2q+1} \) as clarifying examples in non-Kähler geometry, [6].

Consider the Hermitian metric \(g \) whose associated \((1,1) \)-form is

\[
\omega := \frac{i}{2} \sum_{j=1}^{3} \varphi^j \wedge \overline{\varphi^j}.
\]

As for the de Rham cohomology, from the Künneth formula we get

\[
H^*_R(X; \mathbb{C}) = \mathbb{C} \langle 1 \rangle \oplus \mathbb{C} \langle \varphi^{131} - \varphi^{113}, \varphi^{232} + \varphi^{223} \rangle \oplus \mathbb{C} \langle \varphi^{123123} \rangle,
\]

(there, here and hereafter, we denote, e.g., \(\varphi^{131} := \varphi^1 \wedge \varphi^3 \wedge \overline{\varphi^1} \).

By [11, Appendix II, Theorem 9.5], one has that a model for the Dolbeault cohomology is given by

\[
H^{\bullet, \bullet}_\partial(X) \simeq \mathbb{C} \langle (1,1) \rangle \big/ \left(\left((y^{11,1})^2 \right) \otimes \Lambda^{\bullet, \bullet} \left(\mathbb{C} \langle (z)^{(2,1)} \rangle \oplus \mathbb{C} \langle (x)^{(0,1)} \rangle \right) \right),
\]

where superscripts denote bi-degree. In particular, we recover that the Hodge numbers are

\[
\begin{align*}
 h^{0,0}_\partial &= 1 \\
 h^{1,0}_\partial &= 0 \\
 h^{2,0}_\partial &= 0 \\
 h^{3,0}_\partial &= 0 \\
 h^{1,1}_\partial &= 1 \\
 h^{2,1}_\partial &= 0 \\
 h^{3,1}_\partial &= 0 \\
 h^{1,2}_\partial &= 1 \\
 h^{2,2}_\partial &= 0 \\
 h^{3,2}_\partial &= 0 \\
 h^{1,3}_\partial &= 1 \\
 h^{2,3}_\partial &= 1 \\
 h^{3,3}_\partial &= 1
\end{align*}
\]

Consider the sub-complex

\[
\iota : \langle \varphi^1, \varphi^2, \varphi^3, \varphi^1, \varphi^2, \varphi^3 \rangle \hookrightarrow \Lambda^{\bullet, \bullet} X.
\]

Since it is closed for the \(\mathbb{C} \)-linear Hodge-\(\ast \)-operator associated to \(g \), \(H^*_\partial(X) \) is injective, see, e.g., [7, Lemma 9], compare also [3, Theorem 1.6, Remark 1.9]. By knowing the Hodge numbers, we note that it is also surjective. Therefore \(H^*_\partial(X) \) is an isomorphism. More precisely, we get

\[
\begin{align*}
 H^{\bullet, \bullet}_\partial(X) &= \mathbb{C} \langle 1 \rangle \oplus \mathbb{C} \langle [\varphi^3] \rangle \oplus \mathbb{C} \langle [i \varphi^{11} + \varphi^{12}] \rangle \oplus \mathbb{C} \langle [\varphi^{232} + i \varphi^{131}] \rangle \oplus \mathbb{C} \langle [i \varphi^{113} + \varphi^{223}] \rangle \\
 &\oplus \mathbb{C} \langle [i \varphi^{232} + \varphi^{131}] \rangle \oplus \mathbb{C} \langle [\varphi^{123123}] \rangle \oplus \mathbb{C} \langle [\varphi^{123123}] \rangle,
\end{align*}
\]
where we have listed the Δ^g-harmonic representatives.

Note that the Hermitian metric associated to ω is not geometrically-H_π-formal: indeed, $(i \varphi^{11} + \varphi^{22}) \wedge (i \varphi^{11} + \varphi^{22}) = -2i \varphi^{1212}$ is not Δ^g-harmonic. On the other hand, X is Dolbeault formal in the sense of Neisendorfer and Taylor as proven in [17, page 188].

By [3, Theorem 1.3, Proposition 2.2], we have also that $HaugeBC(\iota)$ is an isomorphism. In particular, we get

$$H_{augeBC}(X) = C \langle 1 \rangle \oplus C \langle [\varphi^{11}] \rangle \oplus C \langle [\varphi^{22}] \rangle \oplus C \langle [\varphi^{231} + i \varphi^{131}] \rangle \oplus C \langle [\varphi^{223} - i \varphi^{113}] \rangle \oplus C \langle [\varphi^{123} + \varphi^{123}] \rangle ,$$

where we list the harmonic representatives with respect to the Bott-Chern Laplacian of the Hermitian metric associated to ω.

In particular, the Bott-Chern numbers are

$$h_{augeBC}^{0,0} = 1 \quad h_{augeBC}^{0,1} = 1 \quad h_{augeBC}^{0,2} = 0 \quad h_{augeBC}^{1,0} = 0 \quad h_{augeBC}^{1,2} = 1 \quad h_{augeBC}^{2,0} = 0 \quad h_{augeBC}^{2,1} = 1 \quad h_{augeBC}^{3,0} = 1 \quad h_{augeBC}^{2,2} = 1 \quad h_{augeBC}^{3,1} = 0 \quad h_{augeBC}^{3,2} = 1 .$$

Note that the product of Bott-Chern harmonic forms is still Bott-Chern harmonic, hence ω is a geometrically-Bott-Chern-formal metric on X.

3.4. Holomorphically-parallelizable Nakamura manifold. Consider the holomorphically-parallelizable Nakamura manifold, [16, §2], namely, $X := \Gamma \backslash G$ where

$$G := \mathbb{C} \ltimes \phi \mathbb{C}^2 \quad \text{with} \quad \phi(z) := \begin{pmatrix} e^z & 0 \\ 0 & e^{-z} \end{pmatrix} ,$$

and Γ is a lattice in G. In [12, Example 2], respectively [3, Example 2.26], the Dolbeault, respectively Bott-Chern, cohomology of X is computed, depending on the lattice, by using the techniques developed by H. Kasuya in [12], and the results in [3]. More precisely, [12, Corollary 1.3, Corollary 4.2] provides a differential \mathbb{Z}^2-graded algebra

$$\iota : (\mathcal{B}auge\ast \mathcal{C}, \partial) \hookrightarrow (\wedge \ast X, \partial) ,$$

being finite-dimensional as a \mathbb{C}-vector space, such that $Hauge(\iota)$ is an isomorphism. In fact, as remarked to us by H. Kasuya, $(\mathcal{B}auge\ast \mathcal{C}, \partial, \partial)$ has a structure of bi-differential \mathbb{Z}^2-graded algebra. As for Bott-Chern cohomology, by [3, Corollary 2.15], the inclusion

$$\iota : (Cauge\ast \mathcal{C}, \partial, \partial) \hookrightarrow (\wedge \ast X, \partial, \partial) \quad \text{where} \quad Cauge\ast \mathcal{C} := Bauge\ast \mathcal{C} + \mathcal{B}auge\ast \mathcal{C}$$

of bi-differential \mathbb{Z}^2-graded \mathbb{C}-vector spaces is such that $Hauge(\iota)$ is an isomorphism.

We show that the natural Hermitian metric on the holomorphically-parallelizable Nakamura manifold is not geometrically-Bott-Chern-formal, but it is geometrically-Dolbeault-formal.

Proposition 3.5. Let $X = \Gamma \backslash G$ be the holomorphically-parallelizable Nakamura manifold. The Hermitian metric $g := d z_1 \otimes d z_1 + e^{-2z_1} d z_2 \otimes d z_2 + e^{2z_1} d z_3 \otimes d z_3$ is geometrically-Dolbeault-formal but non-geometrically-Bott-Chern-formal.

Proof. To describe explicitly the cohomologies of the holomorphically-parallelizable Nakamura manifold, depending on the lattice, consider a set $\{z_1, z_2, z_3\}$ of local holomorphic coordinates, where $\{z_1\}$ and $\{z_2, z_3\}$ give local holomorphic coordinates on \mathbb{C} and, respectively, \mathbb{C}^2. (As a matter of notation, we shorten, e.g., $e^{-z_1} d z_1 := e^{-z_1} d z_1 \wedge d z_2$.) The lattice is of the form

$$\Gamma = \{ Z (a + \sqrt{-1} b) + Z (c + \sqrt{-1} d) \} \ltimes \phi \Gamma''$$

where Γ'' is a lattice of \mathbb{C}^2, and $a + \sqrt{-1} b \in \mathbb{C}$ and $c + \sqrt{-1} d \in \mathbb{C}$ are such that $Z(a + \sqrt{-1} b) + Z(c + \sqrt{-1} d)$ is a lattice in \mathbb{C} and $\phi(a + \sqrt{-1} b) + \phi(c + \sqrt{-1} d)$ are conjugate to elements of $SL(4; \mathbb{Z})$, where we regard $SL(2; \mathbb{C}) \subset SL(4; \mathbb{R})$, see [10]. We distinguish the following two cases.
case (a): Suppose that
\[b \in \pi \mathbb{Z} \quad \text{and} \quad d \in \pi \mathbb{Z} . \]
In this case, the Dolbeault cohomology of \(X \) is computed by means of the bi-differential \(\mathbb{Z}^2 \)-graded algebra
\[
B^{\bullet,\bullet}_T = \land^{\bullet,\bullet} \left(\mathbb{C} \langle d z_1, e^{-z_1} d z_2, e^{z_1} d z_3 \rangle \oplus \mathbb{C} \langle d z_1, e^{-z_1} d \bar{z}_2, e^{z_1} d \bar{z}_3 \rangle \right),
\]
see [12, Example 2, page 446]. Note that
\[
\overline{\partial} |_{B^{\bullet,\bullet}_T} = 0
\]
and that \(B^{\bullet,\bullet}_T \) is closed for the Hodge-\(* \)-operator associated to the metric \(g := d z_1 \odot d \bar{z}_1 + e^{-z_1} d z_2 \odot d \bar{z}_2 + e^{z_1} d z_3 \odot d \bar{z}_3 \). Therefore we have
\[
H^{\bullet,\bullet}_T(X) \simeq \ker \Delta^g_T = B^{\bullet,\bullet}_T,
\]
see [12, Example 2, page 446]. In particular, \(X \) is geometrically-Dolbeault-formal.

As for the Bott-Chern cohomology, consider the \(\mathbb{Z}^2 \)-graded vector space \((C^{\bullet,\bullet}, \partial, \overline{\partial}) \) as in [3, Table 7]. (Note that \(C^{\bullet,\bullet} \) has in fact a structure of algebra.) Since \(C^{\bullet,\bullet} \) is closed for the Hodge-\(* \)-operator associated to the metric \(g \), it allows to compute the \(\Delta^g_{BC} \)-harmonic representatives of the Bott-Chern cohomology as done in [3, Table 8]. Note that, e.g.,
\[
e^{-z_1} d z_{12} \quad \text{and} \quad e^{z_1} d z_{31}
\]
are \(\Delta^g_{BC} \)-harmonic forms but their product
\[
e^{-z_1} d z_{12} \land e^{z_1} d z_{31} = e^{-2i \text{Im} z_1} d z_{1231}
\]
is not. In particular, the metric \(g \) on \(X \) is not geometrically-Bott-Chern-formal.

case (b): Suppose that
\[b \notin \pi \mathbb{Z} \quad \text{or} \quad d \notin \pi \mathbb{Z} . \]
In this case, the Dolbeault cohomology of \(X \) is computed by means of the bi-differential \(\mathbb{Z}^2 \)-graded algebra
\[
B^{\bullet,\bullet}_T = \land^{\bullet,\bullet} \left(\mathbb{C} \langle d z_1, e^{-z_1} d z_2, e^{z_1} d z_3 \rangle \oplus \mathbb{C} \langle d \bar{z}_1 \rangle \oplus \mathbb{C} \langle d \bar{z}_2 \land d z_3 \rangle \right),
\]
see [12, Example 2, page 447]. Note that
\[
\overline{\partial} |_{B^{\bullet,\bullet}_T} = 0
\]
and that \(B^{\bullet,\bullet}_T \) is closed for the Hodge-\(* \)-operator associated to the metric \(g := d z_1 \odot d \bar{z}_1 + e^{-z_1} d z_2 \odot d \bar{z}_2 + e^{z_1} d z_3 \odot d \bar{z}_3 \). Therefore we have
\[
H^{\bullet,\bullet}_T(X) \simeq \ker \Delta^g_T = B^{\bullet,\bullet}_T,
\]
see [12, Example 2, page 447]. In particular, \(X \) is geometrically-Dolbeault-formal.

As for the Bott-Chern cohomology, consider the \(\mathbb{Z}^2 \)-graded vector space \((C^{\bullet,\bullet}, \partial, \overline{\partial}) \) as in [3, Table 10]. (Note that \(C^{\bullet,\bullet} \) does not have a structure of algebra: for example, \(e^{-z_1} d z_2 \in C^{1,0} \) and \(e^{-z_1} d z_2 \in C^{0,1} \) but \(e^{-z_1} d z_2 \land e^{-z_1} d z_2 = e^{-2 \text{Re} z_1} d z_{22} \notin C^{1,1} \).) Since \(C^{\bullet,\bullet} \) is closed for the Hodge-\(* \)-operator associated to the metric \(g \), it allows to compute the \(\Delta^g_{BC} \)-harmonic representatives of the Bott-Chern cohomology as done in [3, Table 11]. Note that, e.g.,
\[
e^{-z_1} d z_{12} \quad \text{and} \quad e^{z_1} d z_{12}
\]
are \(\Delta^g_{BC} \)-harmonic forms but their product
\[
e^{-z_1} d z_{12} \land e^{-z_1} d z_{12} = e^{-2 \text{Re} z_1} d z_{1212}
\]
is not. In particular, the metric \(g \) on \(X \) is not geometrically-Bott-Chern-formal.

This proves the statement. \(\square \)
References

[1] A. Aeppli, On the cohomology structure of Stein manifolds, *Proc. Conf. Complex Analysis (Minneapolis, Minn., 1964)*, Springer, Berlin, 1965, pp. 58–70. (Cited on p. 1, 3.)

[2] D. Angella, G. Dloussky, A. Tomassini, On Bott-Chern cohomology of compact complex surfaces, arXiv:1402.0000v1 [math.DG], to appear in *Ann. Mat. Pura Appl.*. (Cited on p. 1, 6, 7.)

[3] D. Angella, H. Kasuya, Bott-Chern cohomology of solvmanifolds, 1212.5708v3 [math.DG]. (Cited on p. 8, 9, 10.)

[4] D. Angella, A. Tomassini, On the $\partial\bar{\partial}$-Lemma and Bott-Chern cohomology, *Invent. Math.* 192 (2013), no. 1, 71–81. (Cited on p. 1.)

[5] R. Bott, S. S. Chern, Hermitian vector bundles and the equidistribution of the zeroes of their holomorphic sections, *Acta Math.* 114 (1965), no. 1, 71–112. (Cited on p. 1, 3.)

[6] E. Calabi, B. Eckmann, A class of compact, complex manifolds which are not algebraic, *Ann. of Math. (2)* 58 (1953), no. 3, 494–500. (Cited on p. 7, 8.)

[7] S. Console, A. Fino, Dolbeault cohomology of compact nilmanifolds, *Transform. Groups* 6 (2001), no. 2, 111–124. (Cited on p. 8.)

[8] P. Deligne, Ph. A. Griffiths, J. Morgan, D. P. Sullivan, Real homotopy theory of Kähler manifolds, *Invent. Math.* 29 (1975), no. 3, 245–274. (Cited on p. 1.)

[9] K. Hasegawa, Complex and Kähler structures on compact solvmanifolds, Conference on Symplectic Topology, *J. Symplectic Geom.* 3 (2005), no. 4, 749–767. (Cited on p. 6.)

[10] K. Hasegawa, Small deformations and non-left-invariant complex structures on six-dimensional compact solvmanifolds, *Differ. Geom. Appl.* 28 (2010), no. 2, 220–227. (Cited on p. 9.)

[11] F. Hirzebruch, *Topological methods in algebraic geometry*, Translated from the German and Appendix One by R. L. E. Schwarzenberger, With a preface to the third English edition by the author and Schwarzenberger, Appendix Two by A. Borel, Reprint of the 1978 edition, Classics in Mathematics, Springer-Verlag, Berlin, 1995. (Cited on p. 8.)

[12] H. Kasuya, Techniques of computations of Dolbeault cohomology of solvmanifolds, *Math. Z.* 273 (2013), no. 1-2, 437–447. (Cited on p. 9, 10.)

[13] K. Kodaira, D. C. Spencer, On deformations of complex analytic structures. III. Stability theorems for complex structures, *Ann. of Math. (2)* 71 (1960), no. 1, 43–76. (Cited on p. 2, 3.)

[14] D. Kotschick, On products of harmonic forms, *Duke Math. J.* 107 (2001), no. 3, 521–531. (Cited on p. 2, 3.)

[15] D.-M. Lu, J. H. Palmieri, Q.-S. Wu, J. J. Zhang, A-infinity structure on Ext-algebras, *J. Pure Appl. Algebra* 213 (2009), no. 11, 2017–2037. (Cited on p. 2.)

[16] I. Nakamura, Complex parallelisable manifolds and their small deformations, *J. Differ. Geom.* 10 (1975), no. 1, 85–112. (Cited on p. 9.)

[17] J. Neisendorfer, L. Taylor, Dolbeault homotopy theory, *Trans. Amer. Math. Soc.* 245 (1978), 183–210. (Cited on p. 2, 9.)

[18] M. Schweitzer, Autour de la cohomologie de Bott-Chern, arXiv:0709.3528v1 [math.AG]. (Cited on p. 2, 3, 6.)

[19] J. D. Stasheff, Homotopy associativity of H-spaces. I, II, *Trans. Amer. Math. Soc.* 108 (1963), no. 2, 275–292, 293–312. (Cited on p. 2.)

[20] D. Sullivan, Infinitesimal computations in topology, *Inst. Hautes Études Sci. Publ. Math.* 47 (1977), 269–331 (1978). (Cited on p. 2.)

[21] A. Tomassini, S. Torelli, On Dolbeault formality and small deformations, to appear in *Internat. J. Math.* (2014). (Cited on p. 2.)

[22] J. Zhou, Hodge theory and A_∞-structures on cohomology, *Internat. Math. Res. Notices* 2000 (2000), no. 2, 71–78. (Cited on p. 2.)

(Daniele Angella) ISTITUTO NAZIONALE DI ALTA MATEMATICA
Current address: Dipartimento di Matematica e Informatica, Università di Parma, Parco Area delle Scienze 53/A, 43124, Parma, Italy

E-mail address: daniele.angella@gmail.com

(Adriano Tomassini) DIPARTIMENTO DI MATEMATICA E INFORMATICA, UNIVERSITÀ DI PARMA, PARCO AREA DELLE SCIENZE 53/A, 43124, PARMA, ITALY

E-mail address: adriano.tomassini@unipr.it