Hot topics in biodiversity and climate change research

ARTICLE in F1000 RESEARCH SEPTEMBER 2015
DOI: 10.12688/f1000research.6508.1

2 AUTHORS, INCLUDING:

Damien A Fordham
University of Adelaide
70 PUBLICATIONS 830 CITATIONS

Available from: Damien A Fordham
Retrieved on: 09 November 2015
Hot topics in biodiversity and climate change research [version 1; referees: 2 approved]

Barry W. Brook¹, Damien A. Fordham²

¹School of Biological Sciences, Private Bag 55, University of Tasmania, Hobart, 7001, Australia
²The Environment Institute and School of Earth and Environmental Sciences, University of Adelaide, Adelaide, SA, 5005, Australia

Abstract

With scientific and societal interest in biodiversity impacts of climate change growing enormously over the last decade, we analysed directions and biases in the recent most highly cited data papers in this field of research (from 2012 to 2014). The majority of this work relied on leveraging large databases of already collected historical information (but not paleo- or genetic data), and coupled these to new methodologies for making forward projections of shifts in species’ geographical ranges, with a focus on temperate and montane plants. A consistent finding was that the pace of climate-driven habitat change, along with increased frequency of extreme events, is outpacing the capacity of species or ecological communities to respond and adapt.
Introduction
It is now halfway through the second decade of the 21st century, and climate change impact has emerged as a “hot topic” in biodiversity research. In the early decades of the discipline of conservation biology (1970s and 1980s), effort was focused on studying and mitigating the four principal drivers of extinction risk since the turn of the 16th century, colourfully framed by Diamond as the “evil quartet”: habitat destruction, overhunting (or overexploitation of resources), introduced species, and chains of extinctions (including trophic cascades and co-extinctions). Recent work has also emphasised the importance of synergies among drivers of endangerment. But the momentum to understand how other aspects of global change (such as a disrupted climate system and pollution) add to, and reinforce, these threats has built since the Intergovernmental Panel on Climate Change reports of 2001 and 2007 and the Millennium Ecosystem Assessment in 2005.

Scientific studies on the effects of climate change on biodiversity have proliferated in recent decades. A Web of Science (webofscience.com) query on the term “biodiversity AND (climate change)”, covering the 14 complete years of the 21st century, shows the peer-reviewed literature matching this search term has grown from just 87 papers in 2001 to 1,377 in 2014. Figure 1 illustrates that recent scientific interest in climate change-related aspects of biodiversity research has outpaced—in relative terms—the baseline trend of interest in other areas of biodiversity research (i.e., matching the query “biodiversity NOT (climate change)”), with climate-related research rising from 5.5% of biodiversity papers in 2001 to 16.8% in 2014.

Interest in this field of research seems to have been driven by a number of concerns. First, there is an increasing societal and scientific consensus on the need to measure, predict (and, ultimately, mitigate) the impact of anthropogenic climate change, linked to the rise of industrial fossil-fuel combustion and land-use change. Biodiversity loss and ecosystem transformations, in particular, have been highlighted as possibly being amongst the most sensitive of Earth’s systems to global change. Second, there is increasing attention given to quantifying the reinforcing (or occasionally stabilising) feedbacks between climate change and other impacts of human development, such as agricultural activities and land clearing, invasive species, exploitation of natural resources, and biotic interactions. Third, there has been a trend towards increased accessibility of climate change data and predictions at finer spatio-temporal resolutions, making it more feasible to do biodiversity climate research.

What are the major directions being taken by the field of climate change and biodiversity research in recent years? Are there particular focal topics, or methods, that have drawn most attention? Here we summarise major trends in the recent highly cited literature of this field.

Filtering and categorising the publications
To select papers, we used the Web of Science indexing service maintained by Thomson Reuters, using the term “biodiversity AND (climate change)” to search within article titles, abstracts, and keywords. This revealed 3,691 matching papers spanning the 3-year period 2012 to 2014. Of these, 116 were categorised by
Essential Science Indicators (esi.incites.thomsonreuters.com) as being “Highly Cited Papers” (definition: “As of November/December 2014, this highly cited paper received enough citations to place it in the top 1% of [its] academic field based on a highly cited threshold for the field and publication year”), with five also being classed as “Hot Papers” (definition: “Published in the past two years and received enough citations in November/December 2014 to place it in the top 0.1% of papers in [its] academic field”). The two academic fields most commonly associated with these selected papers were “Plant & Animal Science” and “Environment/Ecology”.

Next we ranked each highly cited paper by year, according to its total accumulated citations through to April 1 2015, and then selected the top ten papers from each year (2012, 2013 and 2014) for detailed assessment. We wished to focus on data-oriented research papers, so only those labelled “Article” (Document Type) were considered, with “Review”, “Editorial”, or other non-research papers being excluded from our final list. Systematic reviews that included a formal meta-analysis were, however, included. We then further vetted each potential paper based on a detailed examination of its content, and rejected those articles for which the topics of biodiversity or climate change constituted only a minor component, or where these were only mentioned in passing (despite appearing in the abstract or key words).

The final list of 30 qualifying highly cited papers is shown in Table 1, ordered by year and first author. The full bibliographic details are given, along with a short description of the key message of the research (a subjective summary, based on our interpretation of the paper). Each paper was categorised by methodological type, the aspect of climate change that was the principal focus, the spatial and biodiversity scale of the study units, the realm, biome and taxa under study, the main ecological focus, and the research type and application (the first row of Table 1 lists possible choices that might be allocated within a given categorisation). Note that our choice of categories for the selected papers was unavoidably idiosyncratic, in this case being dictated largely by the most common topics that appeared in the reviewed papers. Other emphases, such as non-temperature-related drivers of global change, evolutionary responses, and so on, might have been more suitable for other bodies of literature. We also did not attempt to undertake any rigorous quantification of effect sizes in reported responses of biodiversity to climate change; such an approach would have required a systematic review and meta-analysis, which was beyond the scope of this overview of highly cited papers.

Analysis of trends, biases and gaps
Based on the categorisation frequencies in Table 1 (counts are given in the n columns adjacent to each category), the “archetypal” highly cited paper in biodiversity and climate change research relies on a database of previously collated information, makes an assessment based on future forecasts of shifts in geographical distributions, is regional in scope, emphasises applied-management outcomes, and uses terrestrial plant species in temperate zones as the study unit.

Many papers also introduced new methodological developments, studied montane communities, took a theoretical-fundamental perspective, and considered physiological, population dynamics, and migration-dispersal aspects of ecological change. Plants were by far the dominant taxonomic group under investigation. By contrast, relatively few of the highly cited paper studies used experimental manipulations or network analysis; lake, river, island and marine systems were rarely treated; nor did they focus on behavioural or biotic interactions. Crucially, none of the highly cited papers relied on paleoclimate reconstructions or genetic information, despite the potential value of such data for model validation and contextualisation. Such data are crucial in providing evidence for species responses to past environmental changes, specifying possible limits of adaptation (rate and extent) and fundamental niches, and testing theories of biogeography and macroecology.

At the time of writing, 5 of the 30 highly cited papers listed in Table 1 (16%) also received article recommendations from Faculty of 1000 experts (f1000.com/prime/recommendations) with none of the most recent (2014) highly cited papers having yet received an F1000 Prime endorsement.

Key findings of the highly cited paper collection for 2012–2014
A broad conclusion of the highly cited papers for 2012–2014 (drawn from the “main message” summaries described in Table 1) is that the pace of climate change-forced habitat change, coupled with the increased frequency of extreme events and synergisms that arise with other threat drivers and physical barriers, is typically outpacing or constraining the capacity of species, communities, and ecosystems to respond and adapt. The combination of these factors leads to accumulated physiological stresses, might have already induced an “extinction debt” in many apparently viable resident populations, and is leading to changing community compositions as thermophilic species displace their more climate-sensitive competitors. In addition to atmospheric problems caused by anthropogenic greenhouse-gas emissions, there is mounting interest in the resilience of marine organisms to ocean acidification and altered nutrient flows.

Although models used to underpin the forecasts of climate-driven changes to biotic populations and communities have seen major advances in recent years, as a whole the field still draws from a limited suite of methods, such as ecological niche models, matrix population projections and simple measures of change in metrics of ecological diversity. However, new work is pushing the field in innovative directions, including a focus on advancements in dynamic habitat-vegetation models and improved frameworks for projecting shifts in species distributions and how this might be influenced by competition or predation, and analyses that seek to identify ecological traits that can better predict the relative vulnerability of different taxa to climate change.

In terms of application of the research to conservation and policy, some offer local or region-specific advice on ecosystem management and its integration with other human activities (e.g., agriculture, fisheries) under a changing climate. However, the majority of the highly cited papers used some form of forecasting to predict the consequences of different climate-mitigation scenarios (or business-as-usual) on biodiversity responses and extinctions, so as to illustrate the potentially dire consequences of inaction.
Table 1. Summary information on the 30 most highly cited papers related to climate change effects on biodiversity, for the period 2012–2014. Summary of the ten most highly cited research papers from 2012 to 2014, as determined in the ISI Web of Science database. Filters: Reviews, commentaries, and opinion pieces were excluded, as were papers for which climate change was not among the focal topics of the research. The first row of the Table is a key that shows the possible categorisations that were open to selection (more than one description might be selected for a given paper); n is the number of times a category term was allocated.

Authors	Year	Title	Journal/Volume/Pg	DOI	Prediction method	Scale	System	Taxon	Use	Ecological Focus													
Author 1	2012	Article title	Publication details	Digital Object Identifier	Key findings of the paper	n	Climate Change	Spatial Scale	Biodiversity	Realm	n	n	n	n									
Author 2	2013																						
Author 3	2014																						
Authors	Main Message	Type	Use	DOI	Projecting the future distribution of tree species in Europe based on a systematic review and meta-analysis of vegetation types in the Northern Hemisphere.																		
---------	--------------	------	-----	-----	--																		
Hauke, T., Vohland, K., Feehan, J., Pringle, C.S., Martin, T.G., Rhodes, J.R., Schloss C.A., Lawler, J.J., Hickler, T., Martin, T. G., Vohland, K., and Feehan, J.	New model	Meta-analysis, Database	Database	10.1111/j.1466-8238.2010.00613.x																			
Mendonça, M.C., Tewksbury, J.J., Sheldon, K.S., Tewksbury, J.J., Sheldon, K.S., and Mendonça, M.C.	In synergy with climate and habitat loss, effects on biodiversity: results from a meta-analysis.	Meta-analysis, Database	Database	10.1111/j.1365-2009.01818.x																			
Dulvy, N.K., Shuligin, A., and Urban, M.C.	Thermal tolerance and dispersal in marine, but also in freshwater, will be unable to migrate fast enough to track climate change.	Database, Statistical	Database	10.1073/pnas.1116791109																			
Bates, A.E., Pringle, C.S., Martin, T.G., Rhodes, J.R., Schloss C.A., Lawler, J.J., Hickler, T., Martin, T. G., Vohland, K., and Feehan, J.	On a collision course: competition and dispersal differences create no-analogue communities and cause extinctions.	Meta-analysis, Database	Database	10.1093/geo/279/6-8																			
Sunday J.M., Urban, M.C., Tewksbury, J.J., Sheldon, K.S., Tewksbury, J.J., Sheldon, K.S., and Sunday J.M.	The range of the Western Hemisphere will be unable to migrate fast enough to track climate change.	Database, Statistical	Database	10.1016/j.biocon.2015.10.019																			
Hickler, T., Vohland, K., Feehan, J., Pringle, C.S., Martin, T.G., Rhodes, J.R., Schloss C.A., Lawler, J.J., Wickham, J., and Sunday J.M.	Interactions between climate-driven and habitat loss effects on biodiversity: a systematic review and meta-analysis.	Meta-analysis, Database	Database	10.1111/j.1365-2196.2010.04365.x																			
Mendonça, M.C., Tewksbury, J.J., Sheldon, K.S., Tewksbury, J.J., Sheldon, K.S., and Mendonça, M.C.	Many species in the Western Hemisphere will be unable to migrate fast enough to track climate change.	Database, Statistical	Database	10.1016/j.biocon.2015.10.019																			
Dulvy, N.K., Shuligin, A., and Urban, M.C.	Thermal tolerance and dispersal in marine, but also in freshwater, will be unable to migrate fast enough to track climate change.	Database, Statistical	Database	10.1073/pnas.1116791109																			
Bates, A.E., Pringle, C.S., Martin, T.G., Rhodes, J.R., Schloss C.A., Lawler, J.J., Hickler, T., Martin, T. G., Vohland, K., and Feehan, J.	On a collision course: competition and dispersal differences create no-analogue communities and cause extinctions.	Meta-analysis, Database	Database	10.1093/geo/279/6-8																			
Sunday J.M., Urban, M.C., Tewksbury, J.J., Sheldon, K.S., Tewksbury, J.J., Sheldon, K.S., and Sunday J.M.	The range of the Western Hemisphere will be unable to migrate fast enough to track climate change.	Database, Statistical	Database	10.1016/j.biocon.2015.10.019																			
Mendonça, M.C., Tewksbury, J.J., Sheldon, K.S., Tewksbury, J.J., Sheldon, K.S., and Mendonça, M.C.	Many species in the Western Hemisphere will be unable to migrate fast enough to track climate change.	Database, Statistical	Database	10.1016/j.biocon.2015.10.019																			
Dulvy, N.K., Shuligin, A., and Urban, M.C.	Thermal tolerance and dispersal in marine, but also in freshwater, will be unable to migrate fast enough to track climate change.	Database, Statistical	Database	10.1073/pnas.1116791109																			
Authors	Year	Title	Journal/Vol/Pg	DOI	Main Message	Type	n	Climate Change	n	Spatial Scale	n	Biodiversity Scale	n	Realm	n	Biome	n	Taxon	n	Use	n	Ecological Focus	n
---------	------	-------	---------------	-----	--------------	------	---	----------------	---	--------------	---	---------------	---	---------	---	-------	---	-------	---	-----------------	---		
Zhu, K., Woodall, C.W., Clark, J.S.	2012	Failure to migrate: lack of tree range expansion in response to climate change	Global Change Biology/18(10):1430–1432	10.1111/j.1365-2486.2011.02571.x	Tree species in the US showed a pattern of climate-related contraction in range, or a northward shift, with <5% expanding. No relationship between climate velocity and rate of seedling spread	Database	Observed	Regional	Population	Terrestrial	Montana, Temperate, Subtropical	Plant	Theoretical-Fundamental	Distribution	Migratory-dispersal	5	7	13	7	3	16		
Anderegg, W.R.L., Plavcová, L., Anderegg, L.D., et al.	2013	Drought’s legacy: multiyear hydraulic deterioration underestimates widespread aspen forest die-off and portends increased future risk	Global Change Biology/19(1):188–196	10.1111/gcb.12100	Accumulation of drought-induced hydraulic damage to trees over multiple years leads to increased forest mortality rates and increased vulnerability to extreme events	New field data, Experiment	Observed	Experimental	Local	Population	Terrestrial	Temperate	Plant	Theoretical-Fundamental	Physiology	Population dynamics	5	7	13	7	3	16	
Baitus, A., Albrecht, S., Bakker, K., et al.	2013	Export of algal biomass from the melting Arctic sea ice	Science/339(6168):1431–1432	10.1126/science.123456	Anomalous melting of summer Arctic sea ice enhanced the export of algal biomass to the deep-sea, leading to increased sequestration of carbon to oceanic sediments	New field data	Observed	Regional	Ecosystem	Marine	Polar, Pelagic, Benthic	Plant	Theoretical-Fundamental	Global change	13	7	12	7	3	16			
Foden W.B., Burchart, S.H.M., Stiat, S.N., et al.	2013	Identifying the World’s Most Climate Change Vulnerable Species: A Systematic Trait-Based Assessment of all Birds, Amphibians, and Corals	PLoS ONE/9(6):e105427	10.1371/journal.pone.005427	Species traits associated with heightened sensitivity and low adaptive capacity to climate change can be used to identify the most vulnerable species and regions	Database, Methods development	Future forecast	Global	Species	Terrestrial, Marine	Any	Amphibian, Invertebrate, Bird	Applied-Management, Strategic-Policy	Threatened species, Distribution, Trail	13	7	12	7	3	16			
Authors	Title	DOI	Journal/Vol/Pg	Year	Type	Climate Change	Terrestrial Regions	Species	Distribution	Scale	Habitat	Focus	Methods	Observed	POPULATION	Retrospective	Prospective	Metabolic	Trait, Physiology, Biogeography				
---------	-------	-----	----------------	------	------	----------------	---------------------	--------	-------------	-------	---------	-------	----------	----------	-------------	----------------	----------------	----------	-----------------	----------------			
David, F.W., Ikegami, M., et al.	Plant distribution and amount under climate change: how current climate change will have a substantial impact on suitable habitat for viticulture, and warming effects on the interactive responses of marine organisms are affected by ocean acidification and warming	10.1073/pnas.1008423110	Proc. Natl. Acad. Sci. USA	2010	Multiscale, Meta-analysis, Database	New model, New field data	Marine, Other, Biotic interactions	Pelagic, Pelagic, Pelagic, Pelagic, Pelagic, Pelagic	Future forecast, Future forecast, Future forecast, Future forecast, Future forecast, Future forecast	Local, Local, Local, Local, Local, Local	All, All, All, All, All, All	Climate	New model, New field data	35980, 35980, 35980, 35980, 35980, 35980	Trait, Physiology, Biogeography								
Harvey, E.L., Bates, T.S., et al.	Predicting realised and envisaged changes in future global vegetation distribution and amount	10.1002/ece3.51	Ecology and Evolution	2013	Multiscale, Meta-analysis, Database	New model, New field data	Global, Global, Global, Global	Experimental, Experimental, Experimental, Experimental	Future forecast, Future forecast, Future forecast, Future forecast	Global, Global, Global, Global	Other, Other, Other, Other	Climate	New model, New field data	35980, 35980, 35980, 35980	Trait, Physiology, Biogeography								
Moore, P.J, Higgins, S.I., et al.	Describes new dynamic global vegetation models: how current global limits could be addressed by integrating new model, New field data	10.1011/jb.2010	Global change and climate	2013	Multiscale, Meta-analysis, Database	New model, New model, New model	Global, Global, Global	Future forecast, Future forecast, Future forecast	Global, Global, Global	Global, Global, Global	Climate	New model, New model, New model	35980, 35980, 35980	Trait, Physiology, Biogeography									
Scheiter, S., Fink, W., et al.	Next-generation strategic and policy measures for Mediterranean biodiversity under climate change: a changing biodiversity	10.10000000	Nature Climate Change	2013	Multiscale, Meta-analysis, Database	New model, New model, New model	Marine, Marine, Marine	Experimental, Experimental, Experimental	Future forecast, Future forecast, Future forecast	Marine, Marine, Marine	Marine, Marine, Marine	Climate	New model, New model, New model	35980, 35980, 35980	Trait, Physiology, Biogeography								
Authors	Year	Title	Journal/Wol/Pg	DOI	Main Message	Type	Climate Change	Spatial Scale	Biodiversity Scale	Realm	Biome	Taxon	Use	Ecological Focus									
---------	------	-------	----------------	-----	--------------	------	---------------	--------------	-----------------	--------	-------	-------	-----	-----------------									
Smale, D.A., Wernberg, T.	2013	Extreme climatic event drives range contraction of a habitat-forming species	*Nature Climate Change* 3:378–382	10.1038/nclimate1878	Extreme warming events can cause population extirpation leading to distribution shifts	New field data, Experiment	Observed	Regional	Species	Marine	Benthic	Plant	Applied-Management	Distribution, Physiology									
Warren, R., VanDeWaal, J., Proia, J., et al.	2014	Resilience and signatures of tropicalisation in protected reef fish communities	*Nature Climate Change* 4:432–437	10.1038/nclimate2062	Protection from fishing buffers fluctuations in reef fish diversity and provides resistance to climate change	New field data, Statistical	Future forecast	Global	Species	Terrestrial	Global	All	Strategic-Policy	Distribution									
Bates, A.E., Barrett, N.S., Sturt-Smith, R.D., et al.	2014	Geographical limits to species-range shifts are suggested by climate velocity	*Nature* 507:492–496	10.1038/nature12978	Global and regional maps of future climate velocity can be used to infer shifts in species distributions	Methods development	Reconstruction, Future forecast	Global	Species	Terrestrial	Global	All	Strategic-Policy	Migration-dispersal, Distribution									
Burrows M.T., Scheffer, D.S., Richardson, A.J., et al.	2014	Short-term metabolic and growth responses of the cold-water coral Lophelia pertusa to ocean acidification	Deep-Sea Research Part II-Topical Studies in Oceanography/ 99/27–35	10.1016/j.dsr2.2013.07.005	Increased levels of atmospheric carbon dioxide will negatively influence the respiration rates, but not calcification rates, of cold-water corals	Experiment	Future forecast	Local	Population	Marine	Benthic	Invertebrate	Theoretical-Fundamental	Physiology									
Hemming, S.J., Wicks, L.C., Kammenos, N.A., et al.	2014	Quantifying the benefit of early climate change mitigation in avoiding biodiversity loss	*Proceedings of the Royal Society B* 280:212829	10.1098/rspb.2012.2829	Analysis of a range of future climate change scenarios shows that over 1/3 plant species and 1/2 mammals likely to lose >50% of range by 2080s; mitigation cuts this substantially	Database, Statistical	Future forecast	Global	Species	Marine	Benthic	Fish	Applied-Management	Global change									

Notes:
- DOI: Digital Object Identifier
- **Main Message** highlights the key findings of the paper.
| Authors | Year | Title | Journal/Volume/Page | DOI | Main Message | Type | Climate Change | Spatial Scale | Biodiversity Scale | Taxon | Use | Ecological Focus | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Jantz, P., Geisz, S., Lapointe, N. | 2014 | Carbon stock corridors to mitigate climate change and promote biodiversity in the tropics | Nature Climate Change 4:136–142 | 10.1038/nclimate2103 | If corridors were established strategically, they could connect tropical forest reserves, thereby providing a dual benefit of facilitating dispersal and capturing 15% of currently unprotected carbon stocks. | Statistical | Future forecast | Regional | Ecosystem | Terrestrial | Plant | Applied-Management | Networks, Migration-dispersal |
| Pearson, R.G., Stanton, J.C., Shoomaker, K., et al. | 2014 | Life history and spatial traits predict extinction risk due to climate change | Nature Climate Change 4:217–221 | 10.1038/nclimate2113 | Extinction risk from climate change can be predicted using spatial and demographic variables that have already been used in species conservation assessments. | Methods development, Database | Future forecast | Regional | Population, Species | Terrestrial | Montane, Temperate, Subtropical, Desert, Riverine | Amphibian, Reptile | Applied-Management | Trait, Population dynamics, Distribution, Migration-dispersal, Threatened species |
| Redshaw, A., Anderson, R.P. | 2014 | Making better MAXENT models of species distributions: complexity, overfitting, and evaluation | Journal of Biogeography 41:629–643 | 10.1111/j.1365-2699.2013.02548.x | Application of MAXENT is a threatened mouse species to illustrate how specific-specific tuning can improve model fit and reduce overfitting. | Statistical, Methods development | Retrospective validation | Regional | Species | Terrestrial | Montane | Amphibian, Reptile | Theoretical-Fundamental |
| Schaffers, B.R., Edwards, D.P., Oviedo, A., et al. | 2014 | Microhabitats reduce animal’s exposure to climate extremes | Global Change Biology 20:485–503 | 10.1111/gcb.12439 | Microhabitats decrease the vulnerability of species and communities to climate change. | New field data, Experiment | Future forecast | Local | Species | Terrestrial | Montana | Amphibian, Reptile | Applied-Management | Physiology |
| Authors | Year | Title | Journal/Vol/Pg | DOI | Main Message | Type | Climate Change | Spatial Scale | Biodiversity Scale | Realm | Biome | Taxon | Use | Ecological Focus |
|-------------------------------|------|---|----------------|------------------------------|--|-----------------------|----------------|---------------|-------------------|--------|-------------|-------|----------------|---------------------------|
| Schmitz, O.J., Barton, B.T. | 2014 | Climate change effects on behavioral and physiological ecology of predator-prey interactions: | Biological Control/75:87-96 | 10.1016/j.bior.2013.07.001 | Key findings of the paper Methods development retrospective validation | Development | Observed | Local | Population, Community, Ecosystem | Terrestrial, Marine, Other | Montana, Polar, Boreal, Temperate, Subtropical, Tropical, Desert, Island, Riverine, Lacustrine, Pelagic, Benthic, Abyssal, Global, Any | Plant, Invertebrate, Amphibian, Reptile, Bird, Fish, Mammal, All | Strategic, Policy |
| Shoo, L.P., O'Mara, J., Pothea, K., et al. | 2014 | Moving beyond the conceptual specificity in regional climate change adaptation actions for biodiversity in South East Queensland, Australia | Regional Environmental Change/14/123-447 | 10.1002/10.001 | Future forecast Local Community Terrestrial Any All | Database Future forecast | Observed Regional Species Terrestrial, Subtropical, Tropical, Desert, Island, Riverine, Lacustrine, Pelagic, Benthic, Abyssal, Global, Any | Plant, Amphibian, Reptile, Bird, Fish, Mammal, All | Applied, Management |
| Zhu, K., Woodall, C.W., Ghosh, S., et al. | 2014 | Dual impacts of climate change: forest migration and turnover through life history | Global Change Biology/20/5:1-264 | 10.1011/j.gob.12382 | Tree species in eastern US are not migrating sufficiently to track climate change, and are instead responding with faster turnover rates in warm and wet climates | Database, New model | Observed Regional Species Terrestrial Subtropical, Tropical, Desert, Island, Riverine, Lacustrine, Pelagic, Benthic, Abyssal, Global, Any | Plant, Amphibian, Reptile, Bird, Fish, Mammal, All | Strategic, Policy |

The table lists papers with information on climate change effects, methods development, and future forecast. It includes details on the type of study, the climate change n, spatial scale, biodiversity scale, realm, biome, taxon, use, and ecological focus.
Future directions

The current emphasis on leveraging large databases for evidence of species responses to observed (recent) climate change is likely to wane as existing datasets are scrutinised repeatedly. This suggests to us that future research will be forced to move increasingly towards the logistically more challenging experimental manipulations (laboratory, mesocosm, and field-based). The likelihood of this shift in emphasis is reinforced by the recent trend towards mechanistic models in preference to correlative approaches. Such approaches arguably offer the greatest potential to yield highly novel insights, especially for predicting and managing the outcomes of future climate-ecosystem interactions that have no contemporary or historical analogue. Along with this work would come an increasing need for systematic reviews and associated meta-analysis, to summarise these individual studies quantitatively and use the body of experiments to test hypotheses.

Technological advances will also drive this field forward. This includes the development of open-source software and function libraries that facilitate and standardise routine tasks like validation and sensitivity analysis of projection or statistical models, as well as improved access to data layers from large spatio-temporal datasets like ensemble climate forecasts and palaeoclimatic hindcasts. An increasing emphasis on cloud-based storage and use of off-site high-performance parallel computing infrastructure will make it realistic for researchers to undertake computationally intensive tasks from their desktop.

These approaches are beginning to emerge, and a few papers on these topics already appear in the highly cited paper list (Table 1). This includes the innovative exposure of coral populations to varying carbon dioxide concentrations, and the meta-analyses of tundra plant response to experimental warming and marine organisms to ocean chemistry. Such work must also be underpinned by improved models of the underlying mechanisms and dynamic processes, ideally using multi-species frameworks that make use of ensemble forecasting methods for improved incorporation of scenario and climate model uncertainty. Such an approach can account better for biotic interactions via individual-based and physiologically explicit “bottom-up” models of adaptive responses. Lastly, there must be a greater emphasis on using genetic information to integrate eco-evolutionary processes into biodiversity models, and on improving methods for making the best use of retrospective knowledge from palaeoecological data.

Competing interests

The authors declare that they have no disclosures or conflicts of interest.

Grant information

This work was supported by Australian Research Council Discovery Grant DP120101019 (Brook) and Future Fellowship FT140101192 (Fordham).

References

1. Diamond JM: “Normal” extinctions of isolated populations. In Extinctions, MH Hitecki (Ed.), Chicago University Press, 1984; 191–246. Reference Source

2. Brook BW, South NS, Bradshaw CJ: Synergies among extinction drivers under global change. Trends Ecol Evol. 2008; 23(8): 453–460. PubMed Abstract | Publisher Full Text

3. IPCC. Intergovernmental Panel on Climate Change: Fourth (AR4) and Fifth (AR5) Assessment Reports: Working Group II Report on Impacts, Adaptation, and Vulnerability. 2001, 2007. Reference Source

4. MEA, Millennium Ecosystem Assessment: Ecosystems and Human Well-being: Scenarios. Island Press, 2005. Reference Source

5. Urban MC: Accelerating extinction risk from climate change. Science. 2015; 348(6234): 571–573. Publisher Full Text | F1000 Recommendation

6. Brook BW, Rowley N, Flannery TF: Kyoto: doing our best is no longer enough. Nature. 2007; 456(7219): 478–478. PubMed Abstract | Publisher Full Text

7. Dawson TP, Jackson ST, House JL, et al.: Beyond predictions: biodiversity conservation in a changing climate. Science. 2011; 332(6025): 53–58. PubMed Abstract | Publisher Full Text | F1000 Recommendation

8. Pereira HM, Navarro LM, Martins IS: Global biodiversity change: The bad the good, and the unknown. Annu Rev Environ Resour. 2012; 37: 25–50. Publisher Full Text | F1000 Recommendation

9. Martyka-Pringle CS, Martin TG, Rhodes JR: Interactions between climate and habitat loss effects on biodiversity: a systematic review and meta-analysis. Glob Chang Biol. 2012; 18(4): 1239–1252. Publisher Full Text

10. Fordham DA, Wigley TML, Brook BW: Strengthening forecasts of climate change impacts with multi-model ensemble averaged projections using MAGICC/SCENGEN 5.3. Ecography. 2012; 35(1): 4–6. Publisher Full Text

11. Hijmans RJ, Cameron SE, Parra JL, et al.: Very high resolution interpolated climate surfaces for global land areas. Int J Climatol. 2005; 25(15): 1965–1978. Publisher Full Text | F1000 Recommendation

12. Fordham DA, Brook BW, Moritz C, et al.: Better forecasts of range dynamics using genetic data. Trends Ecol Evol. 2014; 29(8): 436–443. PubMed Abstract | Publisher Full Text

13. Sunday JM, Bates AE, Dulvy NK: Thermal tolerance and the global redistribution of animals. Nat Clim Chang. 2012; 2: 686–690. Publisher Full Text

14. Zhu K, Woolday CW, Clark JS: Failure to migrate: lack of tree range expansion in response to climate change. Glob Chang Biol. 2012; 18(3): 1042–1052. Publisher Full Text

15. Anderegg WR, Plavcova L, Anderegg LD, et al.: Drought’s legacy: multyear hydraulic deterioration underlies widespread aspen forest die-off and portends increased future risk. Glob Chang Biol. 2013; 19(4): 1188–1196. PubMed Abstract | Publisher Full Text | F1000 Recommendation

16. Boetsius A, Albrecht S, Bakker K, et al.: Export of algal biomass from the melting arctic sea ice. Science. 2013; 339(6166): 1430–1432. PubMed Abstract | Publisher Full Text | F1000 Recommendation

17. Smale DA, Werneburg T: Extreme climatic event drives range contraction of a habitat-forming species. Proc Biol Sci. 2013; 280(1764): 20122829. PubMed Abstract | Publisher Full Text | Free Full Text

18. Bates AE, Barrett NS, Stuart-Smith RD, et al.: Resilience and signatures of tropicalisation in protected reef fish communities. Nat Clim Chang. 2014; 4(1):...
19. Jantz P, Goetz S, Laporte N: Carbon stock corridors to mitigate climate change and promote biodiversity in the tropics. Nat Clim Chang. 2014; 4: 138–142.

20. Burrows MT, Schoeman DS, Richardson AJ, et al.: Geographical limits to species-range shifts are suggested by climate velocity. Nature. 2014; 507(7493): 492–495.

21. Warren R, Van Der Wal J, Price J, et al.: Quantifying the benefit of early climate change mitigation in avoiding biodiversity loss. Nat Clim Chang. 2013; 3(7): 678–682.

22. Scheffers BR, Edwards DP, Diesmos A, et al.: Microhabitats reduce animal’s exposure to climate extremes. Glob Chang Biol. 2014; 20(2): 495–503.

23. Dullinger S, Gattringer A, Thuiller W, et al.: Extinction debt of high-mountain plants under twenty-first-century climate change. Nat Clim Chang. 2012; 2: 619–622.

24. Shoo LP, O’Mara J, Perhans K, et al.: Moving beyond the conceptual: specificity in regional climate change adaptation actions for biodiversity in South East Queensland, Australia. Reg Environ Change. 2014; 14(2): 439–447.

25. Zhu K, Woodall CW, Ghosh S, et al.: Dual impacts of climate change: forest migration and turnover through life history. Glob Chang Biol. 2014; 20(1): 251–64.

26. Gottfried M, Pauli H, Futschik A, et al.: Continent-wide response of mountain vegetation to climate change. Nat Clim Chang. 2012; 2(2): 111–115.

27. Harvey BP, Gwynn-Jones D, Moore PJ: Meta-analysis reveals complex marine biological responses to the interactive effects of ocean acidification and warming. Ecol Evol. 2013; 3(4): 1016–1030.

28. Hennige SJ, Wicks LC, Kamenos NA, et al.: Short-term metabolic and growth responses of the cold-water coral Lophelia pertusa to ocean acidification. Deep Sea Res Part II To Stud Oceanogr. 2014; 99: 27–35.

29. Radosevíc A, Anderson RP: Making better MAXENT models of species distributions: complexity, overfitting and evaluation. J Biogeogr. 2014; 41(4): 629–643.

30. Franklin J, Davis FW, Iqegami M, et al.: Modeling plant species distributions under future climates: how fine scale do climate projections need to be? Glob Chang Biol. 2013; 19(2): 473–483.

31. Scheiter S, Langan L, Higgins St: Next-generation dynamic global vegetation models: learning from community ecology. New Phytol. 2013; 198(3): 957–969.

32. Hickler T, Vorhland K, Feehan J, et al.: Projecting the future distribution of European potential natural vegetation zones with a generalised, tree species-based dynamic vegetation model. Global Ecol Biogeogr. 2012; 21(1): 50–63.
Open Peer Review

Current Referee Status: ✔ ✔

Version 1

Referee Report 01 October 2015

doi:10.5256/f1000research.6984.r10635

Bernhard Schmid
Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, CH-8057, Switzerland

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Competing Interests: No competing interests were disclosed.

Referee Report 01 October 2015

doi:10.5256/f1000research.6984.r10634

Jonathan Rhodes
Landscape Ecology and Conversation Group, University of Queensland, Brisbane, Qld, Australia

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Competing Interests: No competing interests were disclosed.