Vitamin D supplementation to treat SARS-CoV-2 positive patients. Evidence from meta-analysis

Luiza Szarpak1,2, Krzysztof J. Filipiak3, Aleksandra Gasecka4,5, Wladyslaw Gawel2,6, Dorota Koziel7, Milosz J. Jaguszewski8, Jaroslaw Chmielewski9, Anatolii Gozhenko10, Karol Bielski11, Pawel Wroblewski12, Ivan Savytskyi10, Lukasz Szarpak2,13, Zubaid Rafique14
1Institute of Outcomes Research, Polonia University, Czestochowa, Poland; 2Outcomes Research Unit, Polish Society of Disaster Medicine, Warsaw, Poland; 3Institute of Outcomes Research, Maria Sklodowska-Curie Medical Academy, Warsaw, Poland; 4Laboratory of Experimental Clinical Chemistry, Amsterdam University Medical Center, Amsterdam, the Netherlands; 51st Chair and Department of Cardiology, Medical University of Warsaw, Poland; 6Department of Surgery, The Silesian Hospital in Opava, Czech Republic; 7Jan Kochanowski University, Kielce, Poland; 81st Department of Cardiology, Medical University of Gdansk, Poland; 9College of Rehabilitation, Warsaw, Poland; 10International European University, Kiev, Ukraine; 11Emergency Medical Service and Medical Transport Dispatcher, Warsaw, Poland; 12Department of Emergency Medical Service, Wroclaw Medical University, Wroclaw, Poland; 13Maria Sklodowska-Curie Bialystok Oncology Center, Bialystok, Poland; 14Henry JN Taub Department of Emergency Medicine, Baylor College of Medicine Houston, TX, United States

Abstract

Background: Vitamin D is a likely candidate for treatment as its immune modulating characteristics have effects on coronavirus disease 2019 (COVID-19) patients. It was sought herein, to summarize the studies published to date regarding the vitamin D supplementation to treat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) positive patients.

Methods: A systematic review and meta-analysis were performed following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. The primary outcome were 14-day and in-hospital mortality reported as an odds ratio (OR) with the associated 95% confidence interval (CI).

Results: Eight articles were included in the review with a combined total of 2,322 individual patients, 786 in the vitamin D supplementation group and 1,536 in the control group. The use of vitamin D compared to the group without vitamin D supplementation was associated with a lower 14-day mortality (18.8% vs. 31.3%, respectively; OR = 0.51; 95% CI: 0.12–2.19; p = 0.36), a lower in-hospital mortality (5.6% vs. 16.1%; OR = 0.56; 95% CI: 0.23–1.37; I² = 74%; p = 0.20), the rarer intensive care unit admission (6.4% vs. 23.4%; OR = 0.19; 95% CI: 0.06–0.54; I² = 77%; p = 0.002) as well as rarer mechanical ventilation (6.5% vs. 18.9%; OR = 0.36; 95% CI: 0.16–0.80; I² = 48%; p = 0.01).

Conclusions: Vitamin D supplementation in SARS-CoV-2 positive patients has the potential to positively impact patients with both mild and severe symptoms. As several high-quality randomized control studies have demonstrated a benefit in hospital mortality, vitamin D should be considered a supplemental therapy of strong interest. Should vitamin D prove to reduce hospitalization rates and symptoms outside of the hospital setting, the cost and benefit to global pandemic mitigation efforts would be substantial. (Cardiol J 2022; 29, 2: 188–196)

Key words: COVID-19, SARS-CoV-2, vitamin D, calciferol, systematic review, meta-analysis

This paper was guest edited by Prof. Togay Evrin
Introduction

In March of 2020, the respiratory disease caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) — coronavirus disease 2019 (COVID-19) was declared a worldwide pandemic by the World Health Organization (WHO). Since then, COVID-19 has infected hundreds of millions of people and pushed hospital systems to the brink of collapse. Now, more infectious variants of COVID-19 are threatening to cause surges in hospitalizations and again put pressure on hospitals systems [1]. As the WHO has issued masking, social distancing, vaccination and other preventative measures, some countries have even required their citizens to wear N95 respirators in public, as this has been found to dramatically reduce the risk of getting infected by SARS-CoV-2 [2–4]. While these measures serve as a model for what can be done, this measure is likely to be impractical for many countries and governments to implement and enforce. As the immediate goal of these interventions has been to decrease hospitalizations, identifying a biologically active agent that could reduce or shorten hospitalizations, limit severity of disease, or alleviate symptoms would be similarly important [5]. As the vast majority of hospitalizations for COVID-19 are due to acute respiratory symptoms leading to acute respiratory distress syndrome (ARDS) and respiratory failure [6–8], known immunomodulating candidates that interact with respiratory monocytes are of particular interest [9]. Vitamin D is likely the best studied candidate as its immune modulating characteristics and effects on pulmonary parenchyma have been well documented [10]. Studies have also indicated that there is a correlation between the susceptibility to COVID-19 and lower vitamin D levels [11]. Additionally, the incidence of vitamin D toxicity is almost non-existent, and this over-the-counter supplement has been shown to specifically stimulate type II pneumocytes [12], which are a prime target of the SARS-CoV-2 [13]. This meta-analysis was conducted in order to investigate the possibility of adding vitamin D supplementation to the existing recommended COVID-19 prevention and mitigation strategies.

Methods

The present study involved a systematic literature review and meta-analysis of the impact of vitamin D supplementation in SARS-CoV-2 positive patients. The focus was on measuring the impact this interven-

tion has had on mortality outcomes according to the Preferred Reporting Items for Systemic Reviews and Meta-Analyses (PRISMA) statement [14].

Search methods

Applying a predetermined search strategy, two independent reviewers (L.S. and M.P.) searched PubMed, EMBASE, Web of Science, Cochrane Collaboration Databases and Scopus electronic databases from databases inception till July 10th 2021. The search was performed using the following terms: “vitamin D” OR “25-hydroxyvitamin D” OR “calcifediol” AND “SARS-CoV-2” OR “COVID-19”.

Inclusion and exclusion criteria

Studies included in this meta-analysis met the following PICOS criteria: (1) Participants; patients > 18 years of age with SARS-CoV-2 positive result, (2) Intervention; vitamin D supplementation, (3) Comparison; non-vitamin D supplementation, (4) Outcomes; detailed information for mortality, (5) Study design; randomized controlled trials and observational studies. Excluded reviews were simulation trials, animal studies, letters, conference papers and case studies. Studies were also excluded if the full paper was not available in English.

Data extraction

Two independent reviewers (L.S. and M.P.) performed data extraction. All disagreements were resolved by referral to a third author (F.C.) as necessary. From all eligible studies, extracted the following information: the name of the first author, year of publication, country of research, study design, patient characteristics, and mortality characteristics. Data from included studies were recorded using a Microsoft Excel (Microsoft Corporation, Redmond, WA, USA) specific report form. When data about the primary outcomes were missing, contacting the corresponding author of the original study was planned.

Outcomes

Primary end points were 14-day and in-hospital mortality. Secondary end points were intensive care unit (ICU) admission, need of mechanical ventilation, radiological improvement and secondary infection incidence.

Assessment for risk of bias

The risk of bias (RoB) of the included studies was independently assessed by all three authors (L.S., K.B. and A.G.) according to the Cochrane
risk-of-bias tool for randomized trials (RoB 2 tool) and the Risk of Bias In Non-randomized Studies — of the Interventions (ROBINS-I). All disagreements were resolved by referral to the third author (M.J.J.) if necessary. The overall RoB 2 and ROBINS-I judgment at domain and study level was attributed according to the criteria specified in the ROBVIS tool.

Statistical analysis

All analyses were performed with the Review Manager software version 5.4 (Nordic Cochrane Center, Cochrane Collaboration), and Stata software, version 15.0 (College Station, TX, USA). The significance level for all statistical tests was \(p < 0.05 \) (two-tailed). For dichotomous data, odds ratios (ORs) were used as the effect measure with 95\% confidence intervals (CIs) and for continuous data mean differences (MDs) were used with 95\% CI. When the continuous outcome was reported in a study as median, range, and interquartile range, estimated means and standard deviations were used using the formula described by Hozo et al. [15]. For meta-analysis the random effects model (assuming a distribution of effects across studies) was used to weigh estimates of studies in proportion to their significance [16]. Heterogeneity was interpreted as not observed when \(I^2 = 0\% \), low when \(I^2 = 25\% \), medium when \(I^2 = 50\% \) and high when \(I^2 = 75\% \).

Results

Search results and study selection

The systematic research, selection and reasons for exclusion are summarized in Figure 1. The literature search yielded 3,612 articles. After the removal of duplicated articles, 1,558 were included in the analysis. After excluding articles based on predetermined criteria, 8 articles were included.
included in the review with a combined total of 2,322 individual patients, 786 in the vitamin D supplementation group and 1,536 in the control group. These studies originated in Spain (n = 4), France (n = 1), Italy (n = 1), Brazil (n = 1) and Singapore (n = 1). Of those, 2 articles were randomized clinical trials [17, 18], and 5 of them were non-randomized trials [19–24]. Mean age of COVID-19 patients treated with vitamin D was 62 (15.2) years compared to 64.8 (15.4) years for COVID-19 patients treated without vitamin D (MD = –0.29; 95% CI: –2.33 to 1.74; I² = 78%; p = 0.78; Suppl. Table 1). Detailed characteristics of the studies included in the meta-analysis are presented in Table 1.

Assessment of risk of bias

The detailed methodological description and risk of bias can be found in Figure 2. The risk of bias judgements summary is presented in Figure 3. In both randomized trials, overall risk of bias was rated as low. In the non-randomized trial two of them were rated as low, and three as moderate risk of bias.

Meta-analysis outcomes

Detailed characteristics of the meta-analysis outcomes are presented in Table 2. 14-day mortality was reported in only 1 study and was 18.8% for patients with vitamin D supplementation compared to 31.3% for the group without vitamin D supplementation (OR = 0.51; 95% CI: 0.12–2.19; p = 0.36). Seven studies stated in-hospital mortality. Pooled analysis of in-hospital mortality in the vitamin D vs. non-vitamin D groups show a significant difference in mortality rate, 5.6% vs. 16.1%, respectively (OR = 0.56; 95% CI: 0.23–1.37; I² = 74%; p = 0.20).

The need for ICU care was statistically lower in the group in which vitamin D was administered orally compared to the control group without vitamin D (6.4% vs. 23.4%; OR = 0.19; 95% CI: 0.06–0.54; I² = 77%; p = 0.002).

The implementation of vitamin D supplementation in patients with COVID-19 compared to patients who did not receive vitamin D was associated with less frequent use of mechanical ventilation (6.5% vs. 18.9%; OR = 0.36; 95% CI: 0.16–0.80; I² = 48%; p = 0.01).

The use of vitamin D was also associated with radiological improvement (10.5% vs. 28.4%; OR = 0.30; 95% CI: 0.07–1.32; p = 0.11) and secondary infection incidence (10.5% vs. 22.3%; OR = 0.41; 95% CI: 0.09–1.84; p = 0.24).

Table 1. Characteristics of included studies.

Study	Country	Study design	Vitamin D supplementation group	Non-vitamin D supplementation group	
Alcázar-Díaz et al., 2021	Spain	Retrospective, multicenter cohort study	79	69 ± 15 (53.2%)	42 (42.1%)
Annweiler et al., 2020	France	Quasi-experimental study	16	58.4 ± 7	11 (68.8%)
Castillo et al., 2020	Spain	Parallel pilot randomized open label, double-masked clinical study	50	56.8 ± 14.2	27 (54.2%)
Cereda et al., 2021	Italy	Cohort observational study	38	68.8 ± 10.6	16 (42.1%)
Hernández et al., 2020	Spain	Retrospective case–control study	19	63.5 ± 4.6	7 (36.8%)
Murai et al., 2021	Brazil	Multicenter, double-blind, randomized, placebo-controlled study	120	53.1 ± 10.8	70 (58.3%)
Nogues et al., 2021	Spain	Observational cohort study	447	61.8 ± 15.5	264 (58.9%)
Tan et al., 2020	Singapore	Cohort observational study	17	89.8 ± 1.5	11 (64.7%)
Figure 2. A plot of the distribution of review authors’ judgements across; randomized controls trials (A) and non-randomized controls trials (B) studies for each risk of bias item.

Figure 3. A summary table of review authors’ judgements for each risk of bias item for each randomized controls trials (A) and non-randomized controls trials (B).
Table 2. Study outcomes.

Parameter	No. of studies	Events/participants	Events	Heterogeneity between trials	P-value for differences across groups			
		Vitamin D supplementation	Non-vitamin D supplementation	Odds ratio	95% CI	P-value	I² statistic	
Mechanical ventilation	2	9/139 (6.5%)	60/317 (1.9%)	0.38	0.17 to 0.86	0.48	0%	0.02
Radiological worsening	1	2/19 (10.5%)	56/197 (28.4%)	0.30	0.07 to 1.32	NA	NA	0.11
Secondary infection	1	2/19 (10.5%)	44/197 (22.3%)	0.41	0.09 to 1.84	NA	NA	0.24
Thrombotic events	1	1/19 (5.3%)	10/197 (5.1%)	1.04	0.13 to 8.58	NA	NA	0.97
ICU admission	5	42/653 (6.4%)	178/760 (23.4%)	0.19	0.06 to 0.54	0.002	77%	0.002
Mortality:								
14 days mortality	1	3/16 (18.8%)	10/32 (31.3%)	0.51	0.12 to 2.19	NA	NA	0.36
In-hospital mortality	7	42/750 (5.6%)	220/1,370 (16.1%)	0.56	0.23 to 1.37	0.002	74%	0.20

CI — confidence interval; ICU — intensive care unit; NA — not applicable

Discussion

Though global vaccination against the SARS-CoV-2 virus has been ongoing since late 2020 and the various vaccines continue to be effective at preventing hospitalizations [25], more infectious variants of SARS-CoV-2 are fueling a rebound in infections among the unvaccinated [26]. As most countries will not achieve herd immunity from vaccination efforts until well into 2022, COVID-19 will likely continue to occupy hospital systems in countries all over the world [27]. Treatment for hospitalized COVID-19 patients will also limit access to essential medical services for people suffering from chronic and degenerative diseases [28]. As a consequence, research into potential therapeutic agents such as azithromycin and chloroquine have made headlines [29, 30], however these strategies proved futile and even dangerous [31, 32]. Additionally, the use of lopinavir, ritonavir, remdesivir, oseltamivir, favipiravir, chloroquine, and hydroxychloroquine may reduce the length of hospitalization and mortality [33, 34]. At this time, vitamin D, which has immunomodulating characteristics and has been shown to be associated with better outcomes in upper respiratory tract infections [35, 36], is a candidate of interest in mitigating COVID-19 [37]. This inexpensive and readily available supplement could be rapidly and widely implemented with minimal risk of detriment to the general public. The implementation of which could result in decreased ICU admissions and treatment, and a reduction of symptoms [38]. It has been hypothesized that the benefits of vitamin D in patients suffering from ARDS are due to the activation of the vitamin D receptor pathway [38], resulting in a decrease of cytokine expression [39], a central cause of rapid deterioration [39]. Additionally, vitamin D deficiency in ICU patients is common [40] and may indicate that other complications in COVID-19 infections are the result of this deficiency [13]. When a combination of vitamin D and other supplements are the result of this deficiency, the benefits of vitamin D in patients suffering from ARDS are due to the activation of the vitamin D receptor pathway [38], resulting in a decrease of cytokine expression [39], a central cause of rapid deterioration [39]. Additionally, vitamin D deficiency in ICU patients is common [40] and may indicate that other complications in COVID-19 infections are the result of this deficiency [13].
D/magnesium/vitamin B12 were administered the older patients, this combination was found to reduce the need for the more advanced procedures without adding significant costs. The rationale for this combination lies in the fact that magnesium enhances vitamin D activity and plays a pivotal role in the immune system [41, 42]. Additionally, vitamin B12 stabilizes the gut microbiota, which has also played a pivotal role in a patient’s overall health [43, 44]. These observations are reinforced by other studies where vitamin D administered in frail elderly patients was associated with better survival rate and less severe COVID-19 course [45].

However, other studies have found that the administration of vitamin D in COVID-19 patients conveyed no clinical benefit in terms of severity of disease, while also being associated with a twofold increase in mortality rate [21]. It can be hypothesized that late administration of vitamin D in the presence of severe inflammation could impair the metabolism of vitamin D [46], resulting in a buildup of the metabolites. The last study included in this review found that the administration of vitamin D administration had no effect on the severity of the course of COVID-19 infections [47]. It should be noted that the protocol of this trial included the administration of a onetime dose of 200,000 IU of vitamin D among hospitalized patients with moderate or severe disease. It is not clear if this one dose regimen is sufficient as many patients with upper respiratory tract conditions display, e.g., asthma, impaired function of the CYP2R1 (vitamin D 25-hydroxylase) [48] which is an enzyme that catalyzes the formation of vitamin D3 to 25-hydroxyvitamin D3 (25(OH)D3), which reduces the biologically active form of vitamin D.

Conclusions

Vitamin D supplementation in SARS-CoV-2 positive patients has the potential to positively impact patients with both mild and severe symptoms. As a number of high-quality randomized control studies have demonstrated a benefit in hospital mortality, vitamin D should be considered a supplemental therapy of strong interest. At the same time, should vitamin D prove to reduce hospitalization rates and symptoms outside of the hospital setting, the cost and benefit to global pandemic mitigation efforts would be substantial. It can be concluded that further multicenter investigation of vitamin D in SARS-CoV-2 positive patients is urgently warranted at this time.

Acknowledgments

The study was supported by the ERC Research Net and by the Polish Society of Disaster Medicine.

Funding

This work was supported by the Ministry of Science and Higher Education (project No. 024/RID/2018/19 entitled “Regional Initiative Excellence in 2019–2022”).

Conflict of interest: None declared

References

1. da Silva FC, Barbosa CP. The impact of the COVID-19 pandemic in an intensive care unit (ICU): Psychiatric symptoms in healthcare professionals. Prog Neuropsychopharmacol Biol Psychiatry. 2021; 110: 110899, doi: 10.1016/j.pnpbp.2021.110899, indexed in Pubmed: 33716842.
2. Wang X, Pan Z, Cheng Z. Association between 2019-nCoV transmission and N95 respirator use. J Hosp Infect. 2020; 105(1): 104–105, doi: 10.1016/j.jhin.2020.02.021, indexed in Pubmed: 32142885.
3. Barycka K, Szarpak L, Filipaik KJ, et al. Comparative effectiveness of N95 respirators and surgical/face masks in preventing airborne infections in the era of SARS-CoV2 pandemic: A meta-analysis of randomized trials. PLoS One. 2020; 15(12): e0242901, doi: 10.1371/journal.pone.0242901, indexed in Pubmed: 33320847.
4. Szarpak L, Smerka J, Filipaik KJ, et al. Cloth masks versus medical masks for COVID-19 protection. Cardiol J. 2020; 27(3): 218–219, doi: 10.5603/CJ.a2020.0054, indexed in Pubmed: 32285928.
5. Saban M, Shachar T. The silent effect of COVID-19 on emergency departments: How to avoid complacency? Disaster Emerg Med J. 2020; 5: 224–226, doi: 10.5602/demj.a2020.0035.
6. Alfano V, Ercolano S. The efficacy of lockdown against COVID-19: a cross-country panel analysis. Appl Health Econ Health Policy. 2020; 18(4): 509–517, doi: 10.1007/s40258-020-00596-3, indexed in Pubmed: 32495607.
7. Gibson PG, Qin L, Puah SH. COVID-19 acute respiratory distress syndrome (ARDS): clinical features and differences from typical pre-COVID-19 ARDS. Med J Aust. 2020; 213(2): 54–56, e1, doi: 10.5694/mja2.50674, indexed in Pubmed: 32572965.
8. Ruetzler K, Szarpak L, Filipaik K, et al. The COVID-19 pandemic — a view of the current state of the problem. Disaster Emerg Med J. 2020; 5: 106–107, doi: 10.5602/demj.a2020.0015.
9. Nurminen V, Seuter S, Carlberg C. Primary vitamin D targets genes of human monocytes. Front Physiol. 2019; 10, doi: 10.3389/fphys.2019.00184.
10. Medrano M, Carrillo-Cruz E, Montero I, et al. Vitamin D: effect on haematopoiesis and immune system and clinical applications. Int J Mol Sci. 2018; 19(9), doi: 10.3390/ijms19092663, indexed in Pubmed: 32495607.
11. Szarpak L, Rafique Z, Gaszeka A, et al. A systematic review and meta-analysis of effect of vitamin D levels on the incidence of COVID-19. Cardiol J. 2021; 28(5): 647–654, doi: 10.5603/CJ.a2021.0072, indexed in Pubmed: 34308537.
12. Rehan VK, Torday JS, Peleg S, et al. 1 Alpha,25-dihydroxy-3-epi-vitamin D3, a natural metabolite of 1alpha,25-dihydroxy vitamin D3: production and biological activity studies in pulmonary al-
Luiza Szarpak et al., Vitamin D supplementation in COVID-19

25. Xing K, Tu XY, Liu M, et al. Efficacy and safety of COVID-19

20. Annweiler G, Corvaisier M, Gautier J, et al. Vitamin D supple

18. Murai I, Fernandes A, Sales L, et al. Effect of vitamin D3 supple

24. Tan CW, Ho LP, Kalimuddin S, et al. Cohort study to evaluate the

14. Page M, McKenzie J, Bossuyt P, et al. The PRISMA 2020 state

01696-3, indexed in Pubmed: 34158664.

2021; 23(3): 221–228, indexed in Pubmed: 33691913.

ment and COVID-19-related outcomes. J Clin Endocrinol Metab. 2021; 106(3): e1343–e1353, doi: 10.1097/clinem.100000000000041, indexed in Pubmed: 24776607.

Singh AK, Gupta R, Ghosh A, et al. Diabetes in COVID-19: Prev

37. Singh AK, Gupta R, Ghosh A, et al. Diabetes in COVID-19: Prev

36. Town JA, Churpek MM, Yuen TC, et al. Relationship between ICU

35. Bradley R, Schloss J, Brown D, et al. The effects of vitamin D on

34. Szarpak Ł, Dzieciątkowski T, Jaguszewski MJ, et al. Is remdesivir

33. Schwartz RA, Suskind RM. Azithromycin and COVID-19: Prompt

32. Ho TC, Wang YH, Chen YL, et al. Cholesterol and hydrocortiso

31. Kow CS, Hasan SS. Azithromycin in patients with COVID-19: Fren

30. Borba MG, Val FF, Sampaio VS, et al. Effect of high vs low doses

29. Schwartz RA, Suskind RM. Azithromycin and COVID-19: Prompt

28. Tang Lu, Yin Z, Hu Yu, et al. Controlling cytokine storm is vital

27. Li R, Rivers C, Tan Q, et al. The demand for inpatient and ICU

26. Callaway E. Delta coronavirus variant: scientists brace for im

22. Hernández JL, Nan D, Fernandez-Ayala M, et al. Vitamin D Stat

21. Cereda E, Bogliolo L, Lobascio F, et al. Vitamin D supplementation

23. Nogues X, Ovejero D, Pineda-Moncusi M, et al. Calcified treatmen

24. Tan CW, Ho LP, Kalimuddin S, et al. Cohort study to evaluate the

20. Annweiler G, Corvaisier M, Gautier J, et al. Vitamin D supple

13. Quezada-Gomez JM, Entrenas-Castillo M, Bouillon R. Vitamin D

receptor stimulation to reduce acute respiratory distress syn

drome (ARDS) in patients with coronavirus SARS-CoV-2 infec

tions: Revised Ms SBMB 2020 166. J Steroid Biochem Mol Biol.

2020; 202: 105719, doi: 10.1016/j.jsbmb.2020.105719, indexed in

1057151.

16. Cochrane. Cochrane Handbook for Systematic Reviews of Interven

tions; 2019. www.training.cochrane.org/handbook (Access: 1 July 2019).

17. Castillo ME, Costa LE, Barrios JV, et al. Effect of calcifiede treatmen

and best available therapy versus best available therapy on intensi

fication associated to better survival in hospitalized frail elderly

COVID-19 patients: the GERIA-COVID quasi-experimental study. Nutrients. 2021; 13(6), doi: 10.3390/nu13061760, indexed in Pubmed: 33671315.

38. Szarpak Ł, Dzieciątkowski T, Jaguszewski MJ, et al. Is remdesivir

important in clinical practice as a treatment of COVID-19? A study

based on meta-analysis data. Pol Arch Intern Med. 2021; 131(1): 96–97, doi: 10.20452/pamw.15686, indexed in Pubmed: 33231938.

39. Mata-Granados JM, Vargas-Vasserot J, Ferreiro-Vera C, et al. Evaluation of vitamin D endocrine system (VDES) status and

metabolism influence vitamin D status and metabolism: re

view. Adv Integr Med. 2020; 75(6): 710–716, indexed in Pubmed: 33219182.

30. Borba MG, Val FF, Sampaio VS, et al. Effect of high vs low doses

of chloroquine diphosphate as adjunctive therapy for patients

hospitalized with severe acute respiratory syndrome coronavi

rus 2 (SARS-CoV-2) infection: a randomized clinical trial. JAMA Intern Med. 2021; 131(1): 98–99, doi: 10.1001/jama.2020.0701, indexed in

dexed in Pubmed: 32841856.

26. Callaway E. Delta coronavirus variant: scientists brace for im

pact. Nature. 2021; 595(7865): 17–18, doi: 10.1038/s41586-021-01696-3, indexed in Pubmed: 34158664.

27. Li R, Rivers C, Tan Q, et al. The demand for inpatient and ICU beds for COVID-19 in the US: lessons from Chinese cities. medRxiv. 2020, doi: 10.1101/2020.03.09.20033241, indexed in Pubmed: 32511447.

28. The Lancet Rheumatology. Too long to wait: the impact of COV

ID-19 on elective surgery. Lancet Rheumatol. 2021; 3(2): e63, doi: 10.1016/s2665-9913(21)00001-1.

29. Schwartz RA, Suskind RM. Azithromycin and COVID-19: Prompt ear

ly COVID-19 patients in adults and children, an approach worthy of consideration. Dermatol Ther. 2020; 33(4): e15785, doi: 10.1111/dth.13785, indexed in Pubmed: 32510734.

33. Schwartz RA, Suskind RM. Azithromycin and COVID-19: Prompt ear

ly COVID-19 patients in adults and children, an approach worthy of consideration. Dermatol Ther. 2020; 33(4): e15785, doi: 10.1111/dth.13785, indexed in Pubmed: 32510734.

22. Hernández JL, Nan D, Fernandez-Ayala M, et al. Vitamin D Status in Hospitalized Patients with SARS-CoV-2 Infection. J Clin Endocrinol Metab. 2021; 106(3): e1343–e1353, doi: 10.1210/clinem/dgaj733, indexed in Pubmed: 33154940.

23. Nogues X, Ovejero D, Pineda-Moncusi M, et al. Calcifiede treatment and COVID-19-related outcomes. J Clin Endocrinol Metab. 2021; 106(10): e4017–e4027, doi: 10.1210/clinem/dgab405, indexed in Pubmed: 34097036.

24. Tan CW, Ho LP, Kalimuddin S, et al. Cohort study to evaluate the
effect of vitamin D, magnesium, and vitamin B in combination on progres
sion to severe outcomes in older patients with coronavi

rus (COVID-19). Nutrition. 2020; 79-80: 111017, doi: 10.1016/j.

58664.

1249–1258, doi: 10.1093/ajcn/nqy274, indexed in Pubmed: 30541089.
42. Sassi F, Tamone C, D’Amelio P. Vitamin D: nutrient, hormone, and immunomodulator. Nutrients. 2018; 10(11), doi: 10.3390/nu10111656, indexed in Pubmed: 30400332.

43. Lurz E, Horne RG, Määttänen P, et al. Vitamin B12 deficiency alters the gut microbiota in a murine model of colitis. Front Nutr. 2020; 7: 83, doi: 10.3389/fnut.2020.00083, indexed in Pubmed: 32582756.

44. Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020; 30(6): 492–506, doi: 10.1038/s41422-020-0332-7, indexed in Pubmed: 32435995.

45. Annweiler C, Hanotte B, Grandin de l’Eprevier C, et al. Vitamin D and survival in COVID-19 patients: A quasi-experimental study. J Steroid Biochem Mol Biol. 2020; 204: 105771, doi: 10.1016/j.jsbmb.2020.105771, indexed in Pubmed: 33065275.

46. Reijven PLM, Soeters PB, Reijven PLM, et al. Vitamin D: A magic bullet or a myth? Clin Nutr. 2020; 39(9): 2663–2674, doi: 10.1016/j.clnu.2019.12.028, indexed in Pubmed: 31959477.

47. Murai IH, Fernandes AL, Sales LP, et al. Effect of a single high dose of vitamin D3 on hospital length of stay in patients with moderate to severe COVID-19: a randomized clinical trial. JAMA. 2021; 325(11): 1053–1060, doi: 10.1001/jama.2020.26848, indexed in Pubmed: 33595634.

48. Jolliffe DA, Stefanidis C, Wang Z, et al. Vitamin D metabolism is dysregulated in asthma and chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2020; 202(3): 371–382, doi: 10.1164/rccm.201909-1867OC, indexed in Pubmed: 32186892.