Mutations outside the YMDD motif in the P protein can also cause DHBV resistant to Lamivudine

Jin-Yang He, Yu-Tong Zhu, Rui-Yi Yang, Li-Ling Feng, Xing-Bo Guo, Feng-Xue Zhang, Hong-Shan Chen

INTRODUCTION

More than 400 million people worldwide are chronically infected by HBV[9]. HBV infections, the 10th leading cause of death worldwide, result in 500,000 to 1.2 million deaths per year caused by chronic hepatitis, cirrhosis, and hepatocellular carcinoma[5]. Lamivudine had been considered to be a great progress in the area of anti-virus drug. It can make the blood HBV DNA of more than 90% of patients changed negative when administrated for 1 year by 100 mg/d[1,2,3]. But it can also lead to YMDD mutant and cause Lamivudine resistance. YMDD mutations developed in 12.1%, 49.7% and 70.5% of the patients respectively at year 1, 2, and 3[4]. So the searching of Lamivudine-resistant problem is very important. It is believed consistently that the cause of Lamivudine resistance is HBV gene mutation. The main mutant motif is the YMDD in the P protein of HBV[6-8]. But there are no animal and cell models of Lamivudine-resistant HBV which can be conveniently used, which cause very little progress that has been the problem of Lamivudine-resistant HBV.

After the finding of the DHBV by Summers et al.[9,10], the process of replication and genome sequence of DHBV had been discovered rapidly. These facilitated the understanding of the related aspects of HBV. Because of the similarity of the DHBV and HBV in the replicating manner and pathogenesis, the duck hepatitis B model had been used as animal model of anti-HBV drug screening and HBV pathogenesis searching. When we persistently used the congenitally infected duck as animal model to screen anti-HBV drug, one congenitally infected duck had been found to have the character of Lamivudine resistance. We named it Lamivudine-resistant duck (LRD). The LRD-infected virus was named as DHBV; Lamivudine-resistant DHBV (LRDHBV). We proved the character of Lamivudine resistance of LRDHBV in embryo duck liver cell model and postnatally infected duck model. Then the complete genome of LRDHBV and Lamivudine-susceptive DHBV were cloned and sequenced. The LRDHBV-related mutant points were analyzed.

MATERIALS AND METHODS

Animals

One-day-old Guangdong brown ducks were obtained from Guangzhou University of Traditional Chinese Medicine, Guangzhou 510405, Guangdong Province, China. The ducks were housed in a conventional animal facility. The animals were kept in groups of 5-6 birds in cages measuring 200 cm × 100 cm × 90 cm at a temperature of 25°C. After the finding of the DHBV by Summers et al.[9,10], the process of replication and genome sequence of DHBV had been discovered rapidly. These facilitated the understanding of the related aspects of HBV. Because of the similarity of the DHBV and HBV in the replicating manner and pathogenesis, the duck hepatitis B model had been used as animal model of anti-HBV drug.
a duck factory on the Shi-Jing town of Guangzhou city. Congenitally DHBV-negative ducks were chosen by dot blot assay to be experimental animals. The ducks were fed a standard duck diet and water according to the guidelines approved by the China Association of Laboratory Animal Care.

Primary hepatocytes

Guangdong brown duck eggs were purchased from a commercial supplier. The eggs were incubated for 20 d in the environment of 37.6 °C and 50-60% humidity. The eggs were opened and were proved to be congenitally DHBV-negative by PCR method. The duck embryo liver was plucked out and digested with 0.2% collagenase (type II, Gibco) in 3 mL of serum-free William E medium (Sigma) supplemented with 2 mol/L L-glutamine, 15 mol/L HEPES (N-2-hydroxyethylpiperazine-N'-2-ethane-sulfonic acid [pH 7.2]), 100 U of penicillin per mL, 100 µg of streptomycin, 10-5 mol/L hydrocortisone, 1 µg of insulin per mL, and 1.5% dimethyl sulfoxide (all from Sigma, Germany) for 30 min at 37 °C. After washing twice with 5 mL of medium, the cells from one liver were suspended in 20-24 mL of medium, seeded onto 10-12 tissue culture dishes (60-mm diameter; 2 mL per dish, the density is 5×10² cells per well), and cultivated at 37 °C and 50-60% humidity. The environment of 37.6 °C and 50-60% humidity. The medium was added.

Amplification of the DHBV complete genome

Three samples of LRDHBV DNA were extracted from the serum of LRD which was the same as the LRDHBV serum used to infect the congenitally DHBV-negative ducks and duck embryo liver cells. Two samples of Lamivudine-susceptive DHBV DNA were extracted from serum of two ducks that were susceptive to Lamivudine. One pair of primers was designed to amplify the complete genome of DHBV. The primer sequences are: P1 -5'-GGG CTT TCC AAG ATA CTG GAG CCC AA-3' (sense) and P2 -5'-CTG GAT GGG CCG TCA GCA GGA TTA TA-3' (anti-sense). The PCR condition is: 94 °C 30 s, 55 °C 30 s, 72 °C 1 min, 30 cycles. One pair of primers was designed to amplify the complete genome of DHBV. The primer sequences are: Q1 -5'-ACC CCT CTC TCG AAA GCA ATA-3' (sense) and Q2 -5'-GCG CTT TCC AAG ATA CTG GAG CCC AA-3' (anti-sense). The LAPCR condition is: 94 °C 30 s, 52 °C 1 min; 72 °C 3.5 min, after 30 cycles, another 72 °C 5 min was supplemented. One percent agarose gel was used to analyze the LAPCR product.

Statistical analysis

Results were expressed as mean±SD. Statistical comparisons between the groups were done using Nemenyi method. P values less than 0.05 were considered statistically significant.

RESULTS

Lamivudine could not inhibit LRDHBV in duck animal model

We first examined if the LRDHBV could be inhibited in body of the other duck. We injected the LRDHBV-positive serum to the congenitally DHBV-negative ducks. These ducks were infected with LRDHB and treated with Lamivudine. Lamivudine were used in large and small dosage groups. The feeding was maintained for 10 d. Serum samples were collected at four time points from 1 d before administration to 3rd d post stopping of administration. The DHBV in the...
serum samples were quantified by dot blot assay. After 10 d of Lamivudine administration, the quantity of Lamivudine-susceptive DHBV in the duck blood markedly got down. But 3 d after stopping of administration, the quantity of susceptive DHBV rose up to former level. No significant effect was observed when the large and small dosage of Lamivudine was fed to the LRDHBV-infected ducks (Table 1 and Figure 1). So it can be concluded that the LRDHBV can also show the character of Lamivudine resistance in the ducks postnatally infected with the LRDHBV.

Table 1 and Figure 1 showed that no significant effect was observed when the large and small dosage of Lamivudine was fed to the LRDHBV-infected ducks. While the 10-d Lamivudine administration could make the Lamivudine-susceptive DHBV markedly get down in the duck model.

The dynamic change of the DHBV quantity in the blood before and after lamivudine administration

![Figure 1](image1.png)

Figure 1

- A: Lamivudine-susceptive DHBV control group; B: LRDHBV control group; C: LRDHBV-infected group administrated by large dose Lamivudine group; D: LRDHBV-infected group administrated by small dose Lamivudine group; E: Lamivudine-susceptive DHBV-infected group administrated by small dose Lamivudine group.

Lamivudine could not inhibit LRDHBV in the duck embryo liver cells

We inoculated the LRDHBV to the primary duck embryo liver cells and administrated Lamivudine according to the divided groups to observe if the LRDHBV have the Lamivudine-resistant character in the liver cells. Lamivudine administration was started from 3rd d post DHBV inoculation and maintained for 9 d. The liver cells were collected at four time points from 3 to 12 d post DHBV inoculation. The total DHBV in the cells was extracted immediately after cell collection. The DHBV quantity was tested by dot blot assay. The results showed that the Lamivudine-susceptive DHBV got down markedly at the time points of 6th, 9th, and 12th d post DHBV inoculation, while both the small and large dosage Lamivudine have no significant effect on the LRDHBV in the duck embryo liver cells (Figure 3). So the LRDHBV showed Lamivudine-resistant character in the duck embryo liver cells too. We also tested the cytotoxicity of Lamivudine to the embryo liver cells. However, no significant cytotoxicity was detected in liver cells cultured with different concentrations of Lamivudine for 9 d by daily microscope examination (Figure 2) and by MTT method.

Lamivudine-susceptive DHBV was inhibited markedly at the time points of 6th, 9th, and 12th d post DHBV inoculation, while both the small and large dosage Lamivudine have no significant effect on the LRDHBV in the duck embryo liver cells.

Figure 2

Duck embryo liver cells (5 d after DHBV inoculation, optic microscope x40). They have no significant effect of Duck embryo liver cells infected with DHBV or LRDHBV.

Figure 3

- A: Lamivudine-susceptive DHBV control; B: LRDHBV control; C: LRDHBV-infected cells administrated by large dosage Lamivudine; D: LRDHBV-infected cells administrated by small dosage Lamivudine; E: Lamivudine-susceptive DHBV-infected cells administrated by small dosage Lamivudine.

DHBV complete genomes were successfully amplified and cloned

We designed two pairs of primer to amplify the DHBV complete genome. One was designed according to the method

Groups	D0	D5	D10	P3
Lamivudine-susceptive DHBV control	0.96±0.02	0.87±0.05	0.97±0.03	0.97±0.02
LRDHBV control	0.99±0.03	0.95±0.01	0.87±0.05	0.95±0.04
LRDHBV-infected group administrated by large dose Lamivudine	0.96±0.03	0.94±0.02	0.97±0.05	0.97±0.03
LRDHBV-infected group administrated by small dose Lamivudine	0.96±0.02	0.88±0.02	0.87±0.01	0.90±0.05
Lamivudine-susceptive DHBV-infected group administrated by small dose Lamivudine	0.96±0.05	0.78±0.07	0.22±0.03	0.69±0.02

p<0.01 group A vs group E.
of Gunther to amplify the HBV complete genome\cite{17}. It covered the DR1 of DHBV genome. Another pair of primer covered the DR2 of DHBV genome and LAPCR was used to amplify. We found that the primer covering the DR1 could not amplify the DHBV genome after optimizing the LAPCR condition. However, when we used the primer covering the DR2, the complete genome of DHBV was easily amplified (Figure 4). So we amplified three strains of LRDHBV and two strains of Lamivudine-susceptive DHBV complete genome. Then we inserted these DHBV complete genomes into the pMD18-T vector and transformed them to the JM 109 competent cells (Figure 4). Then the \textit{E. coli} that included the five DHBV complete genomes were sent to the TAKARA to sequencing. The five complete sequences of DHBV complete genomes were submitted to the GenBank. Three strains of LRDHBV are AY521226, AY521227, and AY433937. Two strains of Lamivudine-susceptive DHBV are AY392760 and AY536371.

![Electrophoresis graph of the amplification of DHBV complete genome](image)

Figure 4 Electrophoresis graph of the amplification of DHBV complete genome and enzyme cutting of the recombinant. Lanes 1 and 7: \textit{λ}-EcoT14I digest marker; lane 2: the LAPCR product of DHBV complete genome; lane 3: the cloning product of DHBV complete genome; lane 4: EcoRI enzyme cutting product of DHBV complete genome recombinants; lane 5: loop product of pMD18-T vector; lane 6: EcoRI enzyme cutting product of loop product of pMD18-T vector.

Analyze the related mutant points in the LRDHBV genome

Firstly, we compared the complete nucleotide sequences of the AY521226, AY521227, and AY433937, and the identity is the same 98%. The identity of the AY392760 and the AY536371 is also 98%. But comparing the nucleotide sequences of the LRDHBV (AY521226, AY521227, and AY433937) with the Lamivudine-susceptive DHBV (AY392760 and AY536371), the identity in the nucleotide level is the same 92%. So it seems that there are marked differences between LRDHBV and the Lamivudine-susceptive DHBV in nucleotide level. As the HBV or DHBV P protein is the target of Lamivudine, we turned to the P protein sequences of these DHBV. We initially aligned the P protein sequences of AY521226, AY521227, AY433937 with AY392760, AY536371. There were too many mutant points to analyze which points were related to the Lamivudine-resistant character. As the identities of AY392760 and AY433937 is only 88%, alignment should be done in a wider range. We downloaded all the DHBV protein sequences and aligned with the three Lamivudine-resistant sequences AY521226, AY521227, and AY433937. We found that there were two mutational points in the P protein. The two mutational points are KorR86Q and AorE591T (Figures 5A and B). We have not found any significant mutational points in S or C protein sequences. The KorR86Q is located in the TP (terminal protein) domain, and the AorE591T is located in the RT (reverse transcriptase) domain. So we guessed that these two mutational points were related to the character of Lamivudine resistance.

DISCUSSION

We referred to Gunther's method\cite{17} when we designed the primers of amplifying the DHBV complete genome. This method noted that only the primers cover the DR1 sequence of HBV, the HBV genome can be wholly amplified. We first used one pair of primers that cover the DR1 of DHBV to amplify DHBV complete genome. Though all kinds of methods of optimizing the PCR condition were tested, the DHBV complete genome could not be amplified. So we guessed that the DR2 of DHBV sequence is also an important obstacle of amplifying the DHBV complete genome. In our experience, it is very hard to get the target products when the primers are located at both sides of the DR2. Additionally, the DR2 is located at the terminal of DHBV-positive strand. There is nick part followed by DR2 in the positive strand of DHBV. So we designed one pair of primers to cover the DR2 to amplify the whole DHBV genome. To our surprise, the complete genomes of DHBV were easily amplified. This phenomenon may be because the genome structure of DHBV is different to the HBV.

If Lamivudine-resistant character of LRDHBV was caused by unusual metabolism of Lamivudine in the duck body and did not correlate with virus genome mutation, it should not have the Lamivudine-resistant character in duck embryo liver cells and other ducks infected with the LRDHBV. Our results showed that the LRDHBV resistant to the Lamivudine appeared both in duck embryo liver cells and in duck body. So we concluded that the Lamivudine-resistant character is caused by DHBV mutation.

To our present knowledge, most of the Lamivudine-resistant phenomena of HBV are related to the YMDD motif mutation\cite{6,8,18}. Similar to HBV, mutagenesis \textit{in vitro} in the YMDD motif of DHBV can also cause Lamivudine resistance\cite{19}. So we speculate that the mutational points were also located in the YMDD motif of LRDHBV. But the sequencing results denied this speculation.

After we obtained the five DHBV complete sequences, we found that there are no YMDD motif mutations in the P protein sequences of the three LRDHBV sequences. Then we aligned the P protein sequences of three LRDHBV with the two Lamivudine-susceptive DHBV P protein sequences. There were too many different points to analyze the mutational points related to the character of Lamivudine resistance. So we planned to align these three LRDHBV P protein sequences with more DHBV P protein sequences. There should be a prerequisite that the DHBV P protein sequences aligned with the three LRDHBV P protein sequences come from the DHBV which are susceptible to Lamivudine. Because it was never reported that there was a naturally occurred LRDHBV and we found only one strain of DHBV that have the Lamivudine-resistant character in so many years of laboratory work, we believed that the LRDHBV that occurred naturally is very few. So we
Figure 5 A: KorR86Q mutant point in the P protein of the LRDHBV; B: AorE591T mutant point in the P protein of the LRDHBV.
presumed that the DHBV sequences in the GenBank up to now come from DHBV that are susceptible to Lamivudine. So we downloaded all the DHBV sequences in the GenBank and aligned the P protein sequences of these DHBV. The results showed that there were two mutational points that occurred in the P protein sequences of LRDHBV. It is KorR86Q in the TP domain and AorE591T in the RT domain. The TP domain of DHBV P protein mainly acts as a primer to originate the synthesis of DHBV-negative strand[32]. But it is the tyrosine residue in 96aa of TP domain that primed the reverse transcription of negative strand[31,32]. AorE591T is located in the lower reaches of YMDD motif. So the roles of KorR86Q and AorE591T in the Lamivudine-resistant phenomenon need deeper research.

For both hepadnaviruses and HIV, the mechanism of action of Lamivudine requires phosphorylation to 3TC-TP, which in turn specifically inhibits the action of Lamivudine requires phosphorylation to 3TC-5’-triphosphate (3TC-TP), which in turn specifically inhibits the polymerase activity of Lamivudine. The specificity is conferred by the much lower affinity of 3TC-TP for the cellular α- and β-polymersase[29,27]. The mechanism of inhibition of hepadnavirus involves inhibition of the viral polymerase[29,27,28]. Acting as a chain terminator for the DNA polymerase activities, the Lamivudine inhibits the reverse transcriptase in a manner that resembles competitive inhibition with respect to dCTP[33]. The side groups of isoleucine and valine of the YMDD motif sterically prevent Lamivudine from appropriately configuring into the nucleotides binding site of the reverse transcriptase[34]. This can cause Lamivudine resistance. Can the KorR86Q and AorE591T mutants also prevent Lamivudine from appropriately configuring into the nucleotides binding site of the reverse transcriptase? It needs more research.

A 4-year clinical research showed that YMDD mutants only could explain the 75% of Lamivudine resistances. Polymerase gene mutations were observed in 82.5% of virological breakthroughs but also in 75% of the non-responders[35]. So the mutations outside the YMDD motif in the P protein can independently cause DHBV resistant to Lamivudine is not very strange.

REFERENCES
1 Lin KW, Kirchner JT. Hepatitis B. Am Fam Physician 2004; 69: 75-82
2 Lavanchy D. Hepatitis B virus epidemiology, disease burden, treatment, and current and emerging prevention and control measures. J Viral Hepat 2004; 11: 97-107
3 Nevens F, Main J, Honkop P, Tyrrell DL, Barber J, Sullivan MT, Favery J, De Man RA, Thomas HC. Lamivudine therapy for chronic hepatitis B: α six month randomized does-ranging study. Gastroenterology 1997; 113: 1258-1263
4 Yao G, Wang B, Cui Z. Long-term effect of Lamivudine treatment in chronic hepatitis B virus infection. Chin J Hepatol 1999; 7: 80-83
5 Yao GB, Wang BE, Cui ZY, Yao JL, Zeng MD. The long-term efficacy of Lamivudine in chronic hepatitis B: interim analysis of 3-year’s clinical corse. Chin J Intern Med 2003: 42: 382-387
6 Allen MI, Deslauriers M, Andrews CW, Tipples GA, Walters KA, Tyrrell DL, Brown N, Condrey LD. Identification and characterization of mutations in hepatitis B virus resistant to Lamivudine. Lamivudine Clinical Investigation Group. Hepatology 1998; 27: 1670-1677
7 Honkop P, Niesters HG, de Man RA, Osterhaus AD. Schalm SW. Lamivudine resistance in immunocompetent chronic hepatitis B. Incidence and patterns. J Hepatol 1997; 26: 1393-1395
8 Fu L, Cheng YC. Role of additional mutations outside the YMDD motif of hepatitis B virus polymerase in L-Sddc(3TC) resistance. Biochem Pharmacol 1998; 55: 1567-1572
9 Summers J, Mason WS. Replication of the genome of a hepatitis B-like virus by reverse transcription of an RNA intermediate. Cell 1982; 20:403-415
10 Mason WS, Seal G, Summers J. Virus of Pekin ducks with structural and biological relatedness to human hepatitis B virus. J Virol 1980; 36: 829-836
11 Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983; 65: 55-63
12 Alley MC, Scudiere DA, Monks A, Hursey ML, Czerwinski MJ, Fine DL, Abbott BJ, Mayo JG, Shoemaker RH, Boyd MR. Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res 1988; 48: 589-601
13 Lambert V, Fernhols D, Sprengel R, Fourel I, Deleage G, Wildner G, Peyret C, Trepo C, Cova L, Will H. Virus-neutralizing monoclonal antibody to a conserved epitope on the duck hepatitis B virus pre-S protein. J Virol 1990; 64: 1290-1297
14 Kock J, Schlitt HJ. Analysis of the earliest steps of hepadnaviral replication: genome repair after infectious entry into hepatocytes does not depend on viral polymerase activity. J Virol 1991; 67: 4876-4874
15 Mandel M, Higa A. Calcium-dependent bacteriophage DNA infection. J Mol Biol 1970; 53: 154
16 Cohen SN, Chang AC, Hsu L. Nonspecific monomeric antibody resistance in bacteria: Genetic transformation of Escherichia coli by R-factor DNA. Proc Natl Acad Sci USA 1972; 69: 2110
17 Gunther S, Li BC, Miska S, Kruger DH, Meisel H, Will H. A novel method for efficient amplification of whole hepatitis B virus genomes permits rapid functional analysis and reveals deletion mutants in immunosuppressed patients. J Virol 1995; 69: 5437-5444
18 Niesters HG, Honkop P, Haagema EB, de Man RA, Schalm SW, Osterhaus AD. Identification of more than one mutation in the hepatitis B virus polymerase gene arising during prolonged Lamivudine treatment. J Infect Dis 1998; 177: 1382-1385
19 Seignerees B, Augeuse-Germon S, Pichoud C, Vuillermore J, Jamard C, Trepo C, Zoulmin F. Duck hepatitis B virus polymerase gene mutants associated with resistance to Lamivudine have a decreased replication capacity in vitro and in vivo. J Hepatol 2001; 34: 114-122
20 Wang GH, Seeger C. The reverse transcriptase of hepatitis B virus acts as a protein primer for viral DNA synthesis. Cell 1992; 71: 663-670
21 Weber M, Bronsema V, Bartors H, Bosserhoff A, Bartenschlager R, Schaller H. Hepadnavirus P protein utilizes a tyrosine residue in the Tpdomain to primer reverse transcription. J Virol 1994; 68: 2994-2999
22 Zoulmin F, Seeger C. Reverse transcription in hepatitis B viruses is primed by a tyrosine residue of the polymerase. J Virol 1994; 68: 6-13
23 Cummack N, Rouse P, Marr CL, Reid PJ, Boehme RE, Coates JA, Penn CR, Cameron JM. Cellular metabolism of (+)- and (-)-2'-deoxy-3'-thiacytidin. Biochem Pharmacol 1992; 43: 2509-2604
24 Chang CN, Skalski V, Zhou JH, Cheng YC. Biochemical pharmacology of (+) - and (-) -2'- deoxy-3' -thiacytidine as anti-hepatitis B virus agents. J Biol Chem 1992; 267: 22414-22420
25 Hao ZD, Cooney DA, Hartman NR, Perno CF, Fridland A, DeVico AL, Sarngadharan MG, Broder S, Johns DG. Factors determining the activity of 2'-deoxy-3'-dideoxynucleosides in suppressing human immunodeficiency virus in vitro. Mol Pharmacol 1988; 34: 431-435
26 Coates JA, Cummack N, Jenkinson HJ, Mutton JM, Pearson BA, Storer R, Cameron JM, Penn CR. The separated enanti-
omers of 2'-deoxy-3'-thiacytidine (BCH189) both inhibit human immunodeficiency virus replication in vitro. Antimicrob Agents Chemother 1992; 36: 202-205

27 Hart GJ, Orr DC, Penn CR, Figueiredo HT, Gray NM, Boehme RE, Cameron JM. Effects of (-) 2',3'-dideoxy-3'-thiacytidine (3TC) 5'-triphosphate on human immunodeficiency virus reverse transcriptase and mammalian DNA polymerase alpha, beta and gamma. Antimicrob Agents Chemother 1992; 36: 1688-1694

28 Chang CN, Doong SL, Zhou JH, Beach JW, Jeong LS, Chu CK, Tsai CH, Cheng YC, Liotta D, Schinazi R. Deoxycytidine deaminase-resistant stereoisomer is the active form of (+)-2', 3'-dideoxy-3'-thiacytidine in the inhibition of hepatitis B virus replication. J Biol Chem 1992; 267: 13938-13942

29 Coates JA, Cammack N, Jenkinson HJ, Jowett AJ, Jowett MJ, Pearson BA, Penn CR, Rouse PL, Viner KC, Cameron JM. (-)-2'-dideoxy-3'-thiacytidine is a potent, highly selective inhibitor of human immunodeficiency virus type 1 and type 2 replication in vitro. Antimicrob Agents Chemother 1992; 36: 733-739

30 Severini A, Liu XY, Wilson JS, Tyrrell DL. Mechanism of inhibition of duck hepatitis B virus polymerase by (-)-α-L-2', 3'-dideoxy-3'-thiacytidine. Antimicrob Agents Chemother 1995; 39: 1430-1435

31 Doo E, Liang TJ. Molecular anatomy and pathophysiologic implications of drug resistance in hepatitis B virus infection. Gastroenterology 2001; 120: 1000-1008

32 Gaia S, Marzano A, Smedile A, Barbon V, Abate ML, Olivero A, Lagget M, Paganin S, Fadda M, Niro G, Rizzetto M. Four years of treatment with Lamivudine: clinical and virological evaluations in HBs antigen-negative chronic hepatitis B. Aliment Pharmacol Ther 2004; 20: 281-287