Supporting Information

DNA delivery systems based on peptide-mimicking cationic lipids – the effect of the co-lipid on the structure and DNA binding capacity

Stephanie Tasslera*, Bodo Dobnerb, Lisa Lambb, Robert Ziółkowskic, Elżbieta Malinowska, Christian Wölk and Gerald Brezesinskia

a Max Planck Institute of Colloids and Interfaces, Science Park Potsdam-Golm, Am Mühlenberg 1, 14476 Potsdam, Germany

b Martin-Luther-University (MLU) Halle-Wittenberg, Institute of Pharmacy, Wolfgang-Langenbeck-Straße 4, 06120 Halle (Saale), Germany

c Warsaw University of Technology, Faculty of Chemistry, Department of Microbioanalytics, The Chair of Medical Biotechnology, ul. Noakowskiego 3, 00-664 Warszawa, Poland

Corresponding authors:

S.T. stephanie.tassler@web.de

C.W. christian.woelk@pharmazie.uni-halle.de
Table of Contents:

1. Calculation of the theoretical mass for QCM-D
2. IRRA spectra of OO4 on bromide containing buffer and ct-DNA containing bromide buffer (CH$_2$ and PO$_2^-$ stretching vibration region)
3. QCM-D of DMPC
4. Specular X-Ray Reflectivity curves of OO4 on bromide containing buffer
5 Cubic Mesophases
6. SAXS/WAXS of DOPE and DPPE in bromide containing buffer
7. Additional SAXS/WAXS data of OO4, DOPE and DPPE in MES buffer at 20 °C and 37 °C
8. TEM image
1. Calculation of the theoretical mass for QCM-D

The measured data were compared with theoretically calculated values obtained by the assumption that a lipid bilayer consist of the monolayers, which means that two molecules in a bilayer (one above the other) require the same area such as one molecule in a monolayer. In this case, the molecular mass M is twice the value for a monolayer. According to the lateral pressure obtained in biological membranes, the molecular area A_M was taken from the π-A-isotherms at a surface pressure of 30 mN/m in order to estimate a theoretical mass deposition $m_{\text{theoretical}}$. Since the number of molecules at one cm2 can be calculated from its molecular mass and the molecular area via the basic relations below:

$$c \cdot V = \frac{m}{M}$$

Equation S1

Equation S1 represents in principle the lipid solution spread on the Langmuir trough with c being the concentration of the lipid solution [mM] and V being the spreading volume [µL]. M is the molecular mass [g/mol] and m [mg] is the weighted sample, both were needed to prepare the lipid solution.

The theoretical mass deposition $m_{\text{theoretical}}$ [ng/cm2] can be obtained from the mass of a single m_M molecule and its required molecular area A_M [$Å^2=10^{-16}$ cm2] by using equation S2.

$$m_{\text{theoretical}} = \frac{m_M}{A_M}$$

Equation S2

The mass of a single molecule is defined by its molecular mass M [g/mol = 10^9 ng/mol] and the Avogadro constant ($N_A = 6.0221412927\cdot10^{23}$ mol$^{-1}$) as shown in equation S3.

$$m_M = \frac{M}{N_A}$$

Equation S3

Finally, the theoretical mass deposition $m_{\text{theoretical}}$ can be used to interpret the results gained by QCM. In literature, a frequency shift of 13 Hz indicates a lipid monolayer, consequently, but also proofed, a lipid bilayer causes a frequency shift of 26 Hz, and for vesicle adsorption a frequency shift of 90 Hz was reported. In this study the well-investigated phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) was used as a reference for evaluation of obtained results.

The theoretical mass of calf thymus DNA was estimated assuming the DNA double-helix as a cylinder with the curved surface area A_{cs} by using equation S4.

$$A_{cs} = \pi \cdot d_{DNA} \cdot h$$

Equation S4

Here r is the radius of the cylinder and h is the height. Calf thymus DNA is B-Form DNA with a diameter $d_{DNA} = 20$ Å and a distance of 3.4 Å between base pairs. Referring to the provider (Sigma-Aldrich, St. Louis (MO), United States of America) the used calf thymus DNA (Typ 1) consists of > 13 kb (thirteen thousand base pairs). Hence this approach was used for the height h. Since the cylindrical DNA only attaches the lipid bilayer with on side, while the other side faces the aqueous solution, just half of the value for A_{cs} was taken into account for the calculation of the theoretical mass deposition of DNA (25.7 ng/cm2).

According to Günter Sauerbrey, the weighting sensitivity of a quartz crystal with an electrode diameter of 4 mm in the center of the vibration region is about 10^{10} Hz/g. Taking an error bare for
the frequency measurement ($\Delta f = 1 \, Hz$) into account the weighting accuracy can be determined to 0.1 ng.

2. IRRA spectra of OO4 on bromide containing buffer and ct-DNA containing bromide buffer (CH$_2$ and PO$_2^-$ stretching vibration region)

Figure S1: OO4 at 30 mN·m$^{-1}$ on bromide containing buffer (straight lines) and ct-DNA containing bromide buffer (dashed lines) A) asymmetric and symmetric CH$_2$ stretching vibration region and B) asymmetric PO$_2^-$ stretching vibration region

3. QCM-D of DMPC

Figure S2: A) $\Delta f(t)$ and B) $\Delta D(t)$ of DMPC (1 mg/mL) in bromide containing buffer (2 mM, pH 3) at 20 °C. Supported DMPC bilayer is formed without observing a critical density of vesicles on the surface (Θ_c). The 3rd overtone is shown.
4. Specular X-Ray Reflectivity curves of OO4 on bromide containing buffer

![Graph A: X-ray reflectivity](image1)

Figure S3: A) X-ray reflectivity of OO4 at room temperature on bromide containing buffer (2 mM) at 30 mN·m⁻¹ (BW1, HASYLAB at DESY in Hamburg, Germany) and B) electron density profile from a box-model fit of the reflectivity curve.

Table S1: structural data obtained from fits of the specular X-ray reflectivity curves of OO4 on bromide containing (2 mM) buffer pH 3 and pH 10, 20 °C, 30 mN·m⁻¹.

	chain	head group							
	z [Å]	ρ [e-/Å⁻³]	e⁻/Å²	theoretical number of electrons	z [Å]	ρ [e-/Å⁻³]	e⁻/Å²	theoretical number of electrons	measured numbers of electrons
pH 3	13.492	1.24	3.421	286	11.267	1.332	5.029	194	413
pH 10	14.606	1.207	3.412	286	10.872	1.27	4.617	194	294

10 e⁻ for H₂O; 36 e⁻ for Br⁻
5. Cubic Mesophases:

Fm3m phase

Table S2: The indexed reflexes of the micellar cubic Fm3m lattice (Q^{225}_a) and their Miller indices.

index reflections $(h^2+k^2+l^2)^{0.5}$	Miller Indices	Fm3m lattice (Q^{225}_a)
$\sqrt{3}$	(111)	
$\sqrt{4}$	(200)	
$\sqrt{8}$	(220)	
$\sqrt{11}$	(311)	
$\sqrt{12}$	(222)	
$\sqrt{16}$	(400)	
$\sqrt{19}$	(331)	
$\sqrt{20}$	(420)	
$\sqrt{24}$	(422)	
$\sqrt{27}$	(333)	

Ia3d phase

Table S3: The indexed reflexes of the bicontinuous cubic Ia3d lattice (Q^{230}_a) and their Miller indices.

index reflections $(h^2+k^2+l^2)^{0.5}$	Miller Indices	Ia3d lattice (Q^{230}_a)
$\sqrt{6}$	(221)	
$\sqrt{8}$	(220)	
$\sqrt{14}$	(321)	
$\sqrt{16}$	(400)	
$\sqrt{20}$	(420)	
$\sqrt{22}$	(332)	
$\sqrt{24}$	(422)	
$\sqrt{34}$	(433)	
$\sqrt{41}$	(443)	

Pm3n phase

Table S4: The indexed reflexes of the micellar cubic Pm3n lattice (Q^{223}_a) and their Miller Indices.

index reflections $(h^2+k^2+l^2)^{0.5}$	Miller Indices	Pm3n lattice (Q^{223}_a)
$\sqrt{2}$	(110)	
$\sqrt{4}$	(200)	
$\sqrt{5}$	(210)	
$\sqrt{6}$	(211)	
$\sqrt{8}$	(220)	
$\sqrt{10}$	(310)	
$\sqrt{12}$	(222)	
6. SAXS/WAXS of DOPE and DPPE in bromide containing buffer

Figure S4: A) SAXS and B) WAXS of DOPE and DPPE as 10 wt% lipid dispersion in bromide containing buffer (2 mM, pH 3) at 25 °C.
7. Additional SAXS/WAXS data of OO4, DOPE and DPPE in MES buffer at 20 °C and 37 °C

Figure S5: A) SAXS and B) WAXS of OO4 (black line), DOPE (green line) and DPPE (red line) in MES buffer (pH 6.5) at 20 °C and 37 °C.

Figure S6: A) SAXS and B) WAXS of OO4/DOPE (black line) and OO4/DOPE/DNA (red line) in MES buffer (pH 6.5) at 20 °C and 37 °C.

Figure S7: A) SAXS and B) WAXS of OO4/DPPE (black line) and OO4/DPPE/DNA (red line) in MES buffer (pH 6.5) at 20 °C and 37 °C.
8. TEM image

Figure S8: TEM images of negatively stained samples prepared from an aqueous **OO4/DOPE 1:3 (n:n)** lipoplex dispersion at N/P5 (c = 0.05 mg/mL in MES buffer pH 6.5).

The lipoplex dispersions were diluted with MES to a concentration of 0.05 mg/mL. The negatively stained samples were prepared by spreading the dispersion (5 μL) onto a Copper grid coated with a Formvar film (Plano, Wetzlar, Germany). After 1 min, excess liquid was removed by blotting with filter paper and 1% aqueous uranyl acetate (5 μL) was placed onto the grid and drained off after 1 min. The dried specimens were examined using an EM 900 transmission electron microscope (Carl Zeiss Microscopy GmbH, Oberkochen, Germany). Micrographs were acquired using a SSCCD SM-1k-120 camera (TRS, Moorenweis, Germany).
References

1. Marsh, D., Lateral pressure in membranes. *Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes* 1996, 1286, (3), 183-223.

2. Keller, C. A.; Kasemo, B., Surface Specific Kinetics of Lipid Vesicle Adsorption Measured with a Quartz Crystal Microbalance. *Biophysical Journal* 1998, 75, (3), 1397-1402.

3. Symietz, C.; Schneider, M.; Brezesinski, G.; Möhwald, H., DNA Alignment at Cationic Lipid Monolayers at the Air/Water Interface. *Macromolecules* 2004, 37, (10), 3865-3873.

4. Watson, J. D.; Crick, F. H. C., Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid. *Nature* 1953, 171, 737.