Circular Peaks and Hilbert Series

Pierre Boucharda \quad Jun Mab* \quad Yeong-Nan Yehc,†

June 5, 2008

a Dépt. de mathématiques, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville Montréal, Canada H3C 3P8

b,cInstitute of Mathematics, Academia Sinica, Taipei, Taiwan

Abstract

The circular peak set of a permutation σ is the set $\{\sigma(i) \mid \sigma(i-1) < \sigma(i) > \sigma(i+1)\}$. Let \mathcal{P}_n be the set of all the subset $S \subseteq [n]$ such that there exists a permutation σ which has the circular set S. We can make the set \mathcal{P}_n into a poset \mathcal{P}_n by defining $S \leq T$ if $S \subseteq T$ as sets. In this paper, we prove that the poset \mathcal{P}_n is a simplicial complex on the vertex set $[3, n]$. We study the f-vector, the f-polynomial, the reduced Euler characteristic, the M"{o}bius function, the h-vector and the h-polynomial of \mathcal{P}_n. We also derive the zeta polynomial of \mathcal{P}_n and give the formula for the number of the chains in \mathcal{P}_n. By the poset \mathcal{P}_n, we define two algebras $A_{\mathcal{P}_n}$ and $B_{\mathcal{P}_n}$. We consider the Hilbert polynomials and the Hilbert series of the algebra $A_{\mathcal{P}_n}$ and $B_{\mathcal{P}_n}$.

Keyword: Circular peak; Hilbert Polynomial; Hilbert series; Permutation; Poset; Simplicial complex;

*Email address of the corresponding author:majun@math.sinica.edu.tw

†Partially supported by NSC 96-2115-M-006-012
1 Introduction

Throughout this paper, let \([m, n] := \{m, m + 1, \cdots, n\}\), \([n] := [1, n]\) and \(\mathfrak{S}_n\) be the set of all the permutations in the set \([n]\). We will write permutations of \(\mathfrak{S}_n\) in the form \(\sigma = (\sigma(1)\sigma(2)\cdots\sigma(n))\).

We say that a permutation \(\sigma\) has a circular descent of value \(\sigma(i)\) if \(\sigma(i) > \sigma(i + 1)\) for any \(i \in [n - 1]\). The circular descent set of a permutation \(\sigma\), denoted \(CDES(\sigma)\), is the set \(\{\sigma(i) \mid \sigma(i) > \sigma(i + 1)\}\). For any \(S \subseteq [n]\), define a set \(CDES_n(S)\) as \(CDES_n(S) = \{\sigma \in \mathfrak{S}_n \mid CDES(\sigma) = S\}\) and use \(cdes_n(S)\) to denote the number of the permutations in the set \(CDES_n(S)\), i.e., \(cdes_n(S) = |CDES_n(S)|\). In a join work [1], Hungyung Zhang et al. derive the explicit formula for \(cdes_n(S)\). As a application of the main results in [1], they also give the enumeration of permutation tableaux according to their shape and generalizes the results in [3]. Moreover, Robert J.Clarke et al. [2] gave the conceptions of linear peak and cyclic peak and studied some new Mahonian permutation statistics. In this paper, we are interested in the circular peaks of permutations. A permutation \(\sigma\) has a circular peak of value \(\sigma(i)\) if \(\sigma(i - 1) < \sigma(i) > \sigma(i + 1)\) for any \(i \in [2, n - 1]\). The circular peak set of a permutation \(\sigma\), denoted \(CP(\sigma)\), is the set \(\{\sigma(i) \mid \sigma(i - 1) < \sigma(i) > \sigma(i + 1)\}\). For example, the circular peak set of \(\sigma = (48362517)\) is \(\{5, 6, 8\}\). Since \(\sigma\) has no circular peaks when \(n \leq 2\), we may always suppose that \(n \geq 3\). For any \(S \subseteq [n]\), define a set \(CP_n(S)\) as \(CP_n(S) = \{\sigma \in \mathfrak{S}_n \mid CP(\sigma) = S\}\). Obviously, if \(\{1, 2\} \subseteq S\), then \(CP_n(S) = \emptyset\).

Example 1.1

\[
CP_5(\{4, 5\}) = \{14253, 14352, 24153, 34152, 24351, 34251, 15243, 15342, 25143, 35142, 25341, 35241\}
\]

Suppose that \(S = \{i_1, i_2, \cdots, i_k\}\), where \(i_1 < i_2 < \cdots < i_k\). We prove that the necessary and sufficient conditions for \(CP_n(S) \neq \emptyset\) are \(i_j \geq 2j + 1\) for all \(j \in [k]\).
Let $\mathcal{P}_n = \{S \mid CP_n(S) \neq \emptyset\}$. we can make the set \mathcal{P}_n into a poset \mathcal{P}_n by defining $S \leq T$ if $S \subseteq T$ as sets. We draw the Hasse diagrams of \mathcal{P}_3, \mathcal{P}_4 and \mathcal{P}_5 as follows.

![Hasse diagrams](image)

Fig.1. the Hasse diagrams of \mathcal{P}_3, \mathcal{P}_4 and \mathcal{P}_5

There is a very interesting results: \mathcal{P}_n is a simplicial complex on the vertex set $[3, n]$. It is easy to obtain that the dimension of the simplicial complex \mathcal{P}_n is $\left\lfloor \frac{1}{2}(n-1) \right\rfloor - 1$. As we will see, the number of the elements in \mathcal{P}_n involves in the left factors of Dyck paths of length $n-1$, counted by the $(n-1)$-th central binomial coefficients b_{n-1} (see Cori and Viennot [4]), where $b_{n-1} = \binom{n-1}{\frac{n-1}{2}}$; the number $p_{n,i}$ of the faces of dimension i in \mathcal{P}_n equals the number of the left factors of Dyck paths from $(0,0)$ to $(n-1,n-2i-3)$, counted by $b_{n-1,i+1} = \binom{n-2i-2}{i}$ [4].

We derive the recurrence relations for the poset \mathcal{P}_n: $\mathcal{P}_{n+1} \cong 2 \times \mathcal{P}_n$ if n is even; $\mathcal{P}_{n+1} \cong (2 \times \mathcal{P}_n) \setminus \{\{1\} \times \mathcal{P}_{n,\left\lfloor \frac{n-1}{2} \right\rfloor - 1}\}$ if n is odd, where the notation \mathcal{n} denotes a poset formed by the set $[n]$ with its usual order.

It is very important to obtain the f-vector, the f-polynomial and the reduced Euler characteristic of a simplicial complex. The integral sequence $(p_{n,-1}, p_{n,0}, \cdots, p_{n,\left\lfloor \frac{n-1}{2} \right\rfloor - 1})$ is called the f-vector of \mathcal{P}_n. The f-polynomial of \mathcal{P}_n is defined to be the polynomial $P_n(x) = \sum_{i=0}^{\left\lfloor \frac{n-1}{2} \right\rfloor} p_{n,i} x^{\left\lfloor \frac{n-1}{2} \right\rfloor - i}$. We give the recurrence relations for the f-vector and the f-polynomial of \mathcal{P}_n. Let $P(x,y) = \sum_{n=3}^{\infty} P_n(x) y^n$, then $P(x,y) = \frac{xy^2(x+2)-xy^2C(y^2) 1+y+xy}{x-(x+1)y^2} \frac{1}{x+1} - y^2$, where $C(y) = \frac{1-\sqrt{1-4y}}{2y}$. The reduced Euler characteristic $\tilde{\chi}(\mathcal{P}_n)$ of \mathcal{P}_n satisfies that $\tilde{\chi}(\mathcal{P}_n) = 0$ if n is odd; $\tilde{\chi}(\mathcal{P}_n) = \frac{2(-1)^n}{n} \left(\frac{n-2}{(n-2)} \right)$ if n is even. As a corollary, the zeta poly-
nomial of \mathcal{P}_n is $(m - 1)^{\lfloor \frac{n-1}{2} \rfloor} \mathcal{P}_n(\frac{1}{m-1})$, which is the number of multichains $S_{n,1} \preceq S_{n,2} \preceq \cdots \preceq S_{n,m-1}$ in \mathcal{P}_n for any $m \geq 2$. The number of the chains $S_{n,1} \prec S_{n,2} \prec \cdots \prec S_{n,i}$ in \mathcal{P}_n equals

$$\sum (d_1, d_2, \ldots, d_{i+1}) \frac{2d_{i+1} - n}{n},$$

where the sum is over all (d_1, \ldots, d_{i+1}) such that $\sum_{k=1}^{i+1} d_k = n$, $d_1 \geq 0$, $d_k \geq 1$ for all $2 \leq k \leq i$ and $d_{i+1} \geq n - \lfloor \frac{n-1}{2} \rfloor$.

We are interested in the h-vector and the h-polynomial of the simplicial complex \mathcal{P}_n. We obtain the explicit formula for h-vector and give the recurrence relations for the h-vector and the h-polynomial of \mathcal{P}_n.

We fix a field \mathbb{K} and let $m = \left\lfloor \frac{n-1}{\frac{n}{2} - (n-1)} \right\rfloor$ and all the elements of \mathcal{P}_n be $S_{n,1}, S_{n,2}, \ldots, S_{n,m}$ for any $n \geq 3$. Let $I_{\mathcal{P}_n}$ be the ideal of the polynomial ring $\mathbb{K}[x_1, \ldots, x_m]$ which is generated by all polynomials $x_i x_j$ such that $S_{n,i}$ and $S_{n,j}$ are incomparable in the poset \mathcal{P}_n. Let $J_{\mathcal{P}_n}$ be the ideal of the polynomial ring $\mathbb{K}[x_1, \ldots, x_m]$ which is generated by all polynomials $x_i x_j$ such that $S_{n,i}$ and $S_{n,j}$ are incomparable in \mathcal{P}_n and the polynomials x_i^2 for all $i \in [m]$. Define the two algebras $A_{\mathcal{P}_n}$ and $B_{\mathcal{P}_n}$ as the quotients $A_{\mathcal{P}_n} = \mathbb{K}[x_1, \ldots, x_m]/I_{\mathcal{P}_n}$ and $B_{\mathcal{P}_n} = \mathbb{K}[x_1, \ldots, x_m]/J_{\mathcal{P}_n}$, respectively. We study the Hilbert polynomials and the Hilbert series of the algebras $A_{\mathcal{P}_n}$ and $B_{\mathcal{P}_n}$.

This paper is organized as follows. In Section 2, we give the necessary and sufficient conditions for $CP_n(S) \neq \emptyset$. In Section 3, we prove that the poset \mathcal{P}_n is a simplicial complex and study its properties. In Section 4, we define the two algebras $A_{\mathcal{P}_n}$ and $B_{\mathcal{P}_n}$ and consider their Hilbert polynomial and Hilbert series.
The Necessary and Sufficient Conditions for $CP_n(S) \neq \emptyset$

In this section, we will give the necessary and sufficient conditions for $CP_n(S) \neq \emptyset$ for any $n \geq 3$ and $S \subseteq [n]$.

Theorem 2.1 Suppose that n is an integer with $n \geq 3$. Let $S = \{i_1, i_2, \ldots, i_k\}$ be a subset of $[n]$, where $i_1 < i_2 < \cdots < i_k$. Then the necessary and sufficient conditions for $CP_n(S) \neq \emptyset$ are $i_j \geq 2j + 1$ for all $j \in [k]$.

Proof. First, we suppose that $CP_n(S) \neq \emptyset$ and let $\sigma \in CP_n(S)$. For any $j \in [k]$, since all the numbers i_1, i_2, \ldots, i_j are peaks of σ, we have $i_j - j \geq j + 1$, hence, $i_j \geq 2j + 1$.

Conversely, when $i_j \geq 2j + 1$ for all $j \in [k]$, let $T = [i_k] \setminus S$, then the set T has at least $k + 1$ elements. So, suppose that $T = \{a_1, a_2, \ldots, a_m\}$ with $a_1 < a_2 < \cdots < a_m$. We consider $\sigma = a_1 i_1 a_2 i_2 \cdots a_k i_k a_{k+1} \cdots a_m (i_k + 1) \cdots n$. Obviously, $CP(\sigma) \subseteq S$. If $CP(\sigma) \neq S$, then there exists a minimal $j \in [k]$ such that i_j is not a circular peak of σ. So, $a_{j+1} > i_j$. This implies that $i_j = 2j$, a contradiction. Hence, $CP(\sigma) = S$ and $CP_n(S) \neq \emptyset$.

Corollary 2.1 Suppose that n is an integer with $n \geq 3$ and $S \subseteq [n]$. If $CP_n(S) \neq \emptyset$, then $|S| \leq \lfloor \frac{n-1}{2} \rfloor$.

Proof. Suppose that $S = \{i_1, i_2, \ldots, i_k\}$ with $i_1 < i_2 < \cdots < i_k$. Since $CP_n(S) \neq \emptyset$, Theorem 2.1 tells us that $i_k \geq 2k + 1$. $i_k \leq n$ implies that $k \leq \lfloor \frac{n-1}{2} \rfloor$.

Corollary 2.2 Let $n \geq 3$ and $S \subseteq [n]$. Suppose that $CP_n(S) \neq \emptyset$. Then when $|S| < \lfloor \frac{n-1}{2} \rfloor$, we have $CP_{n+1}(S \cup \{n + 1\}) \neq \emptyset$; when $|S| = \lfloor \frac{n-1}{2} \rfloor$, we have $CP_{n+1}(S \cup \{n + 1\}) \neq \emptyset$ if n is even; otherwise, $CP_{n+1}(S \cup \{n + 1\}) = \emptyset$.

Proof. Suppose that \(k = |S| \). \(k < \left\lfloor \frac{n-1}{2} \right\rfloor \) implies that \(2(k + 1) + 1 \leq 2\left\lfloor \frac{n-1}{2} \right\rfloor + 1 < n + 1 \). So, \(CP_{n+1}(S \cup \{n + 1\}) \neq \emptyset \) when \(|S| < \left\lfloor \frac{n-1}{2} \right\rfloor \). For the case \(k = \left\lfloor \frac{n-1}{2} \right\rfloor \), we have

\[
2(k + 1) + 1 = \begin{cases} n + 1 & \text{if } n \text{ is even} \\ n + 2 & \text{if } n \text{ is odd} \end{cases}
\]

By Theorem 2.1, \(CP_{n+1}(S \cup \{n + 1\}) \neq \emptyset \) if \(n \) is even; otherwise, \(CP_{n+1}(S \cup \{n + 1\}) = \emptyset \).

3 The Simplicial Complex \(\mathcal{P}_n \)

In this section, we will prove that the poset \(\mathcal{P}_n \) is a simplicial complex on the vertex set \([3, n]\) for any \(n \geq 3 \), and then study the properties of the Simplicial Complex \(\mathcal{P}_n \). Following [5], we define a simplicial complex \(\Delta \) on a vertex set \(V \) as a collection of subsets of \(V \) satisfying:

(1) If \(x \in V \), then \(\{x\} \in \Delta \), and

(2) if \(S \in \Delta \) and \(T \subseteq S \), then \(T \in \Delta \).

Theorem 3.1 Let \(n \geq 3 \). Then \(\mathcal{P}_n \) is a simplicial complex of the set \([3, n]\) and has the dimension \(\left\lfloor \frac{n-1}{2} \right\rfloor - 1 \).

Proof. Obviously, \(\emptyset \in \mathcal{P}_n \). For any \(3 \leq x \leq n \), Theorem 2.1 implies that \(\{x\} \in \mathcal{P}_n \).

Noting that if \(CP_n(T) = \emptyset \) then \(CP_n(S) = \emptyset \) for any \(S \supseteq T \), we have if \(S \in \mathcal{P}_n \) and \(T \subseteq S \) then \(T \in \mathcal{P}_n \). Hence, \(\mathcal{P}_n \) is a simplicial complex of the set \([3, n]\).

An element \(S \in \mathcal{P}_n \) is called a face of \(\mathcal{P}_n \), and the dimension of \(S \) is defined to be \(|S| - 1 \). In particular, the void set \(\emptyset \) is always a face of \(\mathcal{P}_n \) of dimension \(-1\). Also define the dimension of \(\mathcal{P}_n \) by \(\dim \mathcal{P}_n = \max_{S \in \mathcal{P}_n} (\dim S) \).

Theorem 3.2 The simplicial complex \(\mathcal{P}_n \) has the dimension \(\left\lfloor \frac{n-1}{2} \right\rfloor - 1 \).

Proof. Taking \(S = \{3, 5, \cdots, 2\left\lfloor \frac{n-1}{2} \right\rfloor + 1\} \), by Theorem 2.1, we have \(S \in \mathcal{P}_n \). From Corollary 2.1 it follows that the dimension of \(\mathcal{P}_n \) is \(\left\lfloor \frac{n-1}{2} \right\rfloor - 1 \).
There are very close relations between the number of the elements of \mathcal{P}_n and the number of left factor of Dyck path of length n. An n-Dyck path is a lattice path in the first quadrant starting at $(0, 0)$ and ending at $(2n, 0)$ with only two kinds of steps—rise step: $U = (1, 1)$ and fall step: $D = (1, -1)$. We can also consider an n-Dyck path P as a word of $2n$ letters using only U and D. Let $L = w_1w_2 \cdots w_{n-1}$ be a word, where $w_j \in \{U, D\}$ and $n \geq 0$. If there is another word R which consists of U and D such that LR forms a Dyck path, then L is called an n-left factor of Dyck path. Let \mathcal{L}_n denote the set of all n-left factor of Dyck paths.

It is well known that $|\mathcal{L}_n|$, the cardinality of \mathcal{L}_n, equals the nth Central binomial number $b_n = \binom{n}{\lfloor n/2 \rfloor}$. In the following lemma, we give a bijection ϕ from the sets \mathcal{P}_n to \mathcal{L}_{n-1}.

Lemma 3.1 There is a bijection ϕ between the sets \mathcal{P}_n and \mathcal{L}_{n-1} for any $n \geq 3$. Furthermore, the number of the elements in \mathcal{P}_n is $\binom{n-1}{\lfloor n/2 \rfloor}$.

Proof. For any $S \in \mathcal{P}_n$, we construct a word $\phi(S) = w_1w_2 \cdots w_{n-1}$ as follows:

$$w_i = \begin{cases} D & \text{if } i + 1 \in S \\ U & \text{if } i + 1 \notin S \end{cases}$$

for any $i \in [n - 1]$. Theorem 2.1 implies that $\phi(S)$ is a $(n - 1)$-left factor of Dyck path. Conversely, for any a n-left factor of Dyck path $w_1w_2 \cdots w_{n-1}$, let $S = \{i + 1 \mid w_i = D\}$, then $CP_n(S) \neq \emptyset$. Hence, the mapping ϕ is a bijection. Note that the number of $(n - 1)$-left factor of Dyck path is $\binom{n-1}{\lfloor n/2 \rfloor}$. Hence, $|\mathcal{P}_n| = \binom{n-1}{\lfloor n/2 \rfloor}$.

Now, we are in a position to obtain the number $p_{n,i}$ of the faces of dimension i in \mathcal{P}_n. For any $i \geq 0$, let $\mathcal{L}_{n,i}$ denote the set of all n-left factor of Dyck paths from $(0, 0)$ to $(n, n - 2i)$. Define a set $\mathcal{P}_{n,i}$ as the set of all the faces of dimension i in \mathcal{P}_n, i.e., $\mathcal{P}_{n,i} = \{S \in \mathcal{P}_n \mid |S| = i + 1\}$ for any $-1 \leq i \leq \lfloor \frac{n-1}{2} \rfloor - 1$. Clearly, $p_{n,i} = |\mathcal{P}_{n,i}|$.

Corollary 3.1 Let $n \geq 3$. There is a bijection between the sets $\mathcal{P}_{n,i}$ and $\mathcal{L}_{n-1,i+1}$ for any
\[-1 \leq i \leq \lfloor \frac{n-1}{2} \rfloor - 1. \] Furthermore, we have
\[
p_{n,i} = \begin{cases}
1 & \text{if } i = -1 \\
\frac{n-2i-2}{i+1} \binom{n-1}{i} & \text{if } 0 \leq i \leq \lfloor \frac{n-1}{2} \rfloor - 1
\end{cases}
\]

Proof. We just consider the case with \(i \geq 0 \). For any \(S \in P_{n,i} \), \(|S| = i + 1 \) implies that the number of letter \(D \) in the word \(\phi(S) \) is \(i + 1 \). Hence, \(\phi(S) \) is a left factor of Dyck path from \((0, 0)\) to \((n-1, n-2i-3)\). So, \(\phi(S) \in L_{n-1,i+1} \).

If \(P \) and \(Q \) are posets, then the direct product of \(P \) and \(Q \) is the poset \(P \times Q \) on the set \(\{(x, y) \mid x \in P \text{ and } y \in Q\} \) such that \((x, y) \leq (x', y') \) in \(P \times Q \) if \(x \leq x' \) in \(P \) and \(y \leq y' \) in \(Q \). Recall that the poset \(n \) is formed by the set \([n] \) with its usual order. By Corollary 2.2, we obtain a method for constructing the poset \(P_{n+1} \) from \(P_n \).

Theorem 3.3 \(P_{n+1} \cong 2 \times P_n \) if \(n \) is even; \(P_{n+1} \cong (2 \times P_n) \setminus (\{1\} \times P_{n,\lfloor \frac{n-1}{2} \rfloor}) \) if \(n \) is odd.

By Theorem 3.3, it is easy for us to obtain the Möbius function, the recurrence relations for the \(f \)-vector and the \(f \)-polynomial of the poset \(P_n \).

Corollary 3.2 Let \(\mu_{P_n} \) be the Möbius function of the poset \(P_n \). Then
\[
\mu_{P_n}(S, T) = (-1)^{|T|-|S|}
\]
for any \(S \preceq T \) in \(P_n \).

Proof. Obviously, \(\mu_{P_3}(\emptyset, \{3\}) = -1 \). By induction for \(n \), we assume that \(\mu_{P_n}(S, T) = (-1)^{|T|-|S|} \) for any \(S \preceq T \) in \(P_n \). Lemma 3.3 tells us that \(P_{n+1} \cong 2 \times P_n \) if \(n \) is even; \(P_{n+1} \cong (2 \times P_n) \setminus (\{1\} \times P_{n,\lfloor \frac{n-1}{2} \rfloor}) \) if \(n \) is odd. We conclude from the product theorem that
\[
\mu_{P_{n+1}}(S, T) = \begin{cases}
\mu_{P_n}(S \setminus \{n+1\}, T \setminus \{n+1\}) & \text{if } n+1 \in S \cap T \\
\mu_{P_n}(S, T) & \text{if } n+1 \notin S \cup T \\
-\mu_{P_n}(S, T \setminus \{n+1\}) & \text{if } n+1 \notin S \text{ and } n+1 \in T
\end{cases}
\]
for any $S \prec T$. Note that $\mu_{\mathcal{P}_n}(S \setminus \{n+1\}, T \setminus \{n+1\}) = (-1)^{|T| - 1 - |S| - 1} = (-1)^{|T| - |S|}$ and $-\mu_{\mathcal{P}_n}(S, T \setminus \{n+1\}) = -(-1)^{|T| - |S|} = (-1)^{|T| - |S|}$. Hence, $\mu_{\mathcal{P}_{n+1}}(S, T) = (-1)^{|T| - |S|}$.

Corollary 3.3 Let $n \geq 3$. The sequence $p_{n,i}$ satisfies the following recurrence relation: when n is even,

$$p_{n+1,i} = \begin{cases}
p_{n,i} & \text{if } i = -1 \\
p_{n,i-1} + p_{n,i} & \text{if } i = 0, 1, \ldots, \frac{n}{2} - 2 \\
p_{n,i-1} & \text{if } i = \frac{n}{2} - 1 \end{cases}$$

when n is odd,

$$p_{n+1,i} = \begin{cases}
p_{n,i} & \text{if } i = -1 \\
p_{n,i-1} + p_{n,i} & \text{if } i = 0, 1, \ldots, \frac{n-3}{2} \end{cases}$$

with initial conditions $(p_{3,-1}, p_{3,0}) = (1, 1)$.

Proof. First, we consider the case with n even. It is easy to check that $p_{n+1,-1} = p_{n-1} = 1$. For any $S \in \mathcal{P}_{n+1,\frac{n}{2}-1}$, Corollary 2.2 tells us that $n+1 \in S$. Note that $S \in \mathcal{P}_{n+1,\frac{n}{2}-1}$ if and only if $S \setminus \{n+1\} \in \mathcal{P}_{n,\frac{n}{2}-2}$. Hence, $p_{n+1,\frac{n}{2}-1} = p_{n,\frac{n}{2}-2}$. Let $0 \leq i \leq \frac{1}{2}n - 2$, obviously, $\mathcal{P}_{n,i} \subseteq \mathcal{P}_{n+1,i}$. For any $S \in \mathcal{P}_{n+1,i}$ with $n+1 \in S$, $S \setminus \{n+1\}$ can be viewed as a element of $\mathcal{P}_{n,i-1}$. Conversely, for any $S \in \mathcal{P}_{n,i-1}$, Corollary 2.2 implies that $S \cup \{n+1\} \in \mathcal{P}_{n+1,i}$. Hence, $p_{n+1,i} = p_{n,i-1} + p_{n,i}$. Similarly, we can consider the case with n odd.

Theorem 3.4 The f-polynomial $\mathcal{P}_n(x)$ of the simplicial complex \mathcal{P}_n satisfy the following recurrence relation: when n is even, then

$$\mathcal{P}_{n+1}(x) = (1 + x)\mathcal{P}_n(x),$$

and when n is odd, then

$$x\mathcal{P}_{n+1}(x) = (1 + x)\mathcal{P}_n(x) - \frac{2}{n+1} \binom{n-1}{\frac{n}{2}}.$$

for any $n \geq 3$, with initial condition $\mathcal{P}_3(x) = x + 1$.

9
Let $P(x, y) = \sum_{n\geq 3} P_n(x)y^n$. Then
\[
P(x, y) = \frac{xy^2(x+2) - xy^2C(y^2)}{x - (x+1)y^2} \frac{1 + y + xy}{x + 1} - y^2,
\]
where $C(y) = \frac{1-\sqrt{1-4y}}{2y}$.

Proof. Obviously, $P_3(x) = x + 1$. When n is odd, we suppose that $n = 2i + 1$ with $i \geq 1$. Corollary 3.3 implies that
\[
xP_{2i+2}(x) = (1 + x)P_{2i+1}(x) - \frac{1}{(i+1)} \binom{2i}{i}.
\]
Similarly, when n is even, we suppose that $n = 2i$ with $i \geq 2$. By corollary 3.3, we have
\[
P_{2i+1}(x) = (1 + x)P_{2i}(x).
\]
Let $P_{\text{odd}}(x, y) = \sum_{i \geq 1} P_{2i+1}(x)y^{2i+1}$ and $P_{\text{even}}(x, y) = \sum_{m \geq 2} P_{2i}(x)y^{2i}$, then $P_{\text{odd}}(x, y) = (x + 1)y^3 + (x + 1)yP_{\text{even}}(x, y)$ and $P(x, y) = P_{\text{odd}}(x, y) + P_{\text{even}}(x, y)$. It is easy to check that $xP_{2i+3}(x) = (1 + x)^2P_{2i+1}(x) - \frac{1}{(i+1)} \binom{2i}{i}x$. So, P_{odd} satisfies the following equation
\[
xP_{\text{odd}}(x, y) = (x + 1)^2y^2P_{\text{odd}}(x, y) + x(x + 2)y^3 - xy^3C(y^2),
\]
where $C(y) = \frac{1-\sqrt{1-4y}}{2y}$. Equivalently,
\[
P_{\text{odd}}(x, y) = \frac{xy^3(x + 2) - xy^3C(y^2)}{x - (x+1)y^2}.
\]
Hence,
\[
P(x, y) = \frac{xy^2(x + 2) - xy^2C(y^2)}{x - (x+1)y^2} \frac{1 + y + xy}{x + 1} - y^2.
\]

Define the reduced Euler characteristic of P_n by $\tilde{\chi}(P_n) = \sum_{i=0}^{\lfloor \frac{1}{2}(n-1) \rfloor} (-1)^{i-1}p_{n,i-1}$.

Corollary 3.4 For any $n \geq 3$, $\tilde{\chi}(P_n) = \begin{cases} 0 & \text{if } n \text{ is odd} \\ \frac{2(-1)^{\frac{n}{2}}n^{-1}(n-2)}{\left(\frac{n}{2}\right)^{n-1}} & \text{if } n \text{ is even} \end{cases}$
Proof. Clearly, \(\mathcal{P}_3(-1) = 0 \). Theorem 3.4 tells us that

\[
\mathcal{P}_{n+1}(-1) = \begin{cases}
0 & \text{if } n \text{ is even} \\
\frac{2}{n+1} \binom{n-1}{\frac{1}{2}(n-1)} & \text{if } n \text{ is odd}
\end{cases}
\]

for any \(n \geq 4 \). Since \(\tilde{\chi}(\mathcal{P}_n) = (-1)^{\frac{n-1}{2}} - 1 \mathcal{P}_n(-1) \), we have

\[
\tilde{\chi}(\mathcal{P}_n) = \begin{cases}
0 & \text{if } n \text{ is odd} \\
\frac{2(-1)^{\frac{n-2}{2}}}{n} \binom{n-2}{\frac{1}{2}(n-2)} & \text{if } n \text{ is even}
\end{cases}
\]

Let \(P \) be a finite poset. Define \(Z(P, i) \) to be the number of multichains \(x_1 \leq x_2 \leq \cdots \leq x_{i-1} \) in \(P \) for any \(i \geq 2 \). \(Z(P, i) \) is called the zeta polynomial of \(P \). We state Proposition 3.11.1a and Proposition 3.14.2 in [5] as the following lemma.

Lemma 3.2 Suppose that \(P \) is a poset. (1) Let \(d_i \) be the number of chains \(x_1 < x_2 < \cdots < x_{i-1} \) in \(P \). Then \(Z(P, i) = \sum_{j \geq 2} d_j \binom{i-2}{j-2} \).

(2) If \(P \) is simplicial and graded, then \(Z(P, x+1) \) is the rank-generating function of \(P \).

Corollary 3.5 Let \(n \geq 3 \) and \(m \geq 2 \). Then \(Z(\mathcal{P}_n, i) = (i - 1)^{\frac{n-1}{2}} \mathcal{P}_n\left(\frac{1}{i-1}\right) \) for any \(i \geq 2 \). Furthermore, \(Z(\mathcal{P}_n, i) \) satisfies the recurrence relations: \(Z(\mathcal{P}_{n+1}, i) = iZ(\mathcal{P}_n, i) - \varepsilon(n) \frac{2(i-1)^{\frac{n-1}{2}}(n+1)}{n+1} \binom{n-1}{\frac{1}{2}(n-1)} \), where \(\varepsilon(n) = 0 \) if \(n \) is even; \(\varepsilon(n) = 1 \) otherwise, with initial condition \(Z(\mathcal{P}_3, i) = i \).

Proof. Let \(\mathcal{P}_n(x) \) be the f-polynomial of \(\mathcal{P}_n \), then the rank-generating function of \(\mathcal{P}_n \) is \(x^{\frac{1}{2}(n-1)}] \mathcal{P}_n\left(\frac{1}{x}\right) \). Lemma 3.2(2) implies that \(Z(\mathcal{P}_n, i) = (i - 1)^{\frac{n-1}{2}} \mathcal{P}_n\left(\frac{1}{i-1}\right) \). The recurrence relations for \(Z(\mathcal{P}_n, i) \) follows Theorem 3.4.

Let \(d_{\mathcal{P}_n,i} \) be the number of the chains \(S_{n,1} \prec S_{n,2} \prec \cdots \prec S_{n,i} \) of \(\mathcal{P}_n \).

Theorem 3.5 For any \(i \geq 1 \),

\[
d_{\mathcal{P}_n,i} = \sum_{d_1, d_2, \ldots, d_{i+1}} \binom{n}{d_1, d_2, \ldots, d_{i+1}} \frac{2d_{i+1} - n}{n},
\]
where the sum is over all \((d_1, \ldots, d_{i+1})\) such that \(\sum_{k=1}^{i+1} d_k = n\), \(d_1 \geq 0\), \(d_k \geq 1\) for all \(2 \leq k \leq i\) and \(d_{i+1} \geq n - \left\lfloor \frac{n-1}{2} \right\rfloor\).

Proof. Let \(i \geq 1\) and \(S_{n,1} \prec S_{n,2} \prec \cdots \prec S_{n,i}\) be a chain of \(\mathcal{P}_n\). Suppose that \(|S_{n,k}| = \lfloor \frac{n-1}{2} \rfloor\) for any \(k \in [i]\), then \(0 \leq j_1 < j_2 < \cdots < j_i \leq \lfloor \frac{n-1}{2} \rfloor\). There are \(p_{n,j_{i-1}}\) ways to obtain the set \(S_{n,i}\). Given \(S_{n,k}\) with \(k \geq 2\), there are \(\binom{j_k - 1}{k - 1}\) ways to form the subset \(S_{n,k-1} \subseteq S_{n,k}\). Hence,

\[
d_{\mathcal{P}_{n,i}} = \sum_{0 = j_0 \leq j_1 < j_2 < \cdots < j_i \leq \lfloor \frac{n-1}{2} \rfloor} \prod_{k=0}^{i-1} \binom{j_{k+1} - 1}{j_k} p_{n,j_{i-1}} = \sum \binom{n}{d_1, d_2, \ldots, d_{i+1}} \frac{2d_{i+1} - n}{n},
\]

where the sum is over all \((d_1, \ldots, d_{i+1})\) such that \(\sum_{k=1}^{i+1} d_k = n\), \(d_1 \geq 0\), \(d_k \geq 1\) for all \(2 \leq k \leq i\) and \(d_{i+1} \geq n - \left\lfloor \frac{n-1}{2} \right\rfloor\).

Corollary 3.6 For any \(n \geq 3\),

\[
\mathcal{P}_n(x) = \sum_{i=2}^{\left\lfloor \frac{n-1}{2} \right\rfloor + 2} x^{i} \frac{i-2}{(i-2)!} \left(1 - \frac{2}{x} \right) \sum_{j=1}^{n} \binom{n}{d_1, d_2, \ldots, d_i} \frac{2d_i - n}{n}
\]

where the second sum is over all \((d_1, \ldots, d_i)\) such that \(\sum_{k=1}^{i} d_k = n\), \(d_1 \geq 0\), \(d_k \geq 1\) for all \(2 \leq k \leq i - 1\) and \(d_i \geq n - \left\lfloor \frac{n-1}{2} \right\rfloor\).

Proof. Lemma 3.2(1) implies that \(Z(\mathcal{P}_n, i) = \sum_{j=2}^{\left\lfloor \frac{n-1}{2} \right\rfloor + 2} d_{\mathcal{P}_{n,j-1}} \binom{i-2}{j-2}\). By Corollary 3.5 we have

\[
\mathcal{P}_n \left(\frac{1}{i-1} \right) = \left(\frac{1}{i-1} \right)^{\left\lfloor \frac{n-1}{2} \right\rfloor + 2} \sum_{j=2}^{\left\lfloor \frac{n-1}{2} \right\rfloor + 2} d_{\mathcal{P}_{n,j-1}} \binom{i-2}{j-2}
\]

for any \(i \geq 2\). Note that

\[
x^{i} \frac{i-2}{(i-2)!} \sum_{j=2}^{\left\lfloor \frac{n-1}{2} \right\rfloor + 2} d_{\mathcal{P}_{n,j-1}} \binom{i-2}{j-2} = \sum_{j=2}^{\left\lfloor \frac{n-1}{2} \right\rfloor + 2} x \frac{j-2}{(j-2)!} \prod_{k=1}^{\left\lfloor \frac{n-1}{2} \right\rfloor + 2-j} (1 - kx) d_{\mathcal{P}_{n,j-1}}
\]

is a polynomial. Hence, \(\mathcal{P}_n(x) = \sum_{j=2}^{\left\lfloor \frac{n-1}{2} \right\rfloor + 2} x \frac{j-2}{(j-2)!} \prod_{k=1}^{\left\lfloor \frac{n-1}{2} \right\rfloor + 2-j} (1 - kx) d_{\mathcal{P}_{n,j-1}}\).

\[\text{12}\]
Let $H_n(x) = P_n(x-1) = \sum_{i=0}^{\lfloor \frac{1}{2}(n-1) \rfloor} h_{n,i} x^{\lfloor \frac{1}{2}(n-1) \rfloor - i}$, then $H_n(x)$ is called h-polynomial of P_n and the sequence $(h_{n,0}, h_{n,1}, \ldots, h_{n,\lfloor \frac{n}{2} \rfloor})$ h-vector of P_n.

Corollary 3.7 The h-polynomial $H_n(x)$ of the simplicial complex P_n satisfies the recurrence relation: when n is even,

$$H_{n+1}(x) = xH_n(x),$$

and when n is odd,

$$(x-1)H_{n+1}(x) = xH_n(x) - \frac{2}{n+1} \left(\frac{n-1}{n-1} \right),$$

for any $n \geq 3$, with initial condition $H_3(x) = x$.

Let $H(x, y) = \sum_{n \geq 3} H_n(x) y^n$, then

$$H(x, y) = \frac{[(x^2 - 1)y^2 - (x - 1)y^2C(y^2)](1 + xy)}{x(x - 1 - xy^2)} - y^2.$$

Furthermore, let $(h_{n,0}, h_{n,1}, \ldots, h_{n,\lfloor \frac{n}{2} \rfloor})$ be the h-vector of P_n, then

$$h_{n,i} = \frac{\lfloor \frac{n}{2} \rfloor - i}{\lfloor \frac{n}{2} \rfloor + i} \left(\frac{\lfloor \frac{n}{2} \rfloor + i}{2} \right).$$

Proof. Since $H_n(x) = P_n(x-1)$, by Theorem 3.4 we easily obtain that if n is even, then

$$H_{n+1}(x) = xH_n(x),$$

and if n is odd, then

$$(x-1)H_{n+1}(x) = xH_n(x) - \frac{2}{n+1} \left(\frac{n-1}{n-1} \right),$$

for any $n \geq 3$, with initial condition $H_3(x) = x$.

Since $H(x, y) = P(x - 1, y)$, we have

$$H(x, y) = \frac{[(x^2 - 1)y^2 - (x - 1)y^2C(y^2)](1 + xy)}{x(x - 1 - xy^2)} - y^2.$$
Corollary 3.8 Let the sequence \((h_{n,0}, h_{n,1}, \cdots, h_{n,\lfloor \frac{n-1}{2} \rfloor})\) be h-vector of \(\mathcal{P}_n\). Then the sequence \(h_{n,i}\) satisfies the following recurrence relation:

\[
\begin{align*}
 h_{n+1,0} &= h_{n,0} \\
 h_{n+1,i} &= h_{n,i} + \varepsilon(n)h_{n+1,i-1} \quad \text{if} \quad 1 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor - 1 \\
 h_{n+1,\lfloor \frac{n}{2} \rfloor} &= \varepsilon(n)c_{\lfloor \frac{n}{2} \rfloor}
\end{align*}
\]

where \(c_m = \frac{1}{m+1} \binom{2m}{m}\) and \(\varepsilon(n) = 0\) if \(n\) is even; otherwise, \(\varepsilon(n) = 1\), with initial conditions \((h_{3,0}, h_{3,1}) = (1, 0)\). Equivalently,

\[h_{n,i} = \left\lfloor \frac{n}{2} \right\rfloor - i \left(\frac{n}{2} + i \right).
\]

Proof. By comparing with the coefficient in Corollary 3.7, we can obtain the desired recurrence relations. Consider \(t_{n,i} = \left\lfloor \frac{n}{2} \right\rfloor - i \left(\frac{n}{2} + i \right)\). Note that \(t_{n,i}\) satisfies the above recurrence relations as well. Hence,

\[h_{n,i} = t_{n,i} = \left\lfloor \frac{n}{2} \right\rfloor - i \left(\frac{n}{2} + i \right).
\]

Remark 3.1 Let \(n \geq 3\). The number of left factor of Dyck path from \((0, 0)\) to \((\left\lfloor \frac{n}{2} \right\rfloor + i - 1, \left\lfloor \frac{n}{2} \right\rfloor - i - 1)\) equals \(\left\lfloor \frac{n}{2} \right\rfloor \left(\frac{n}{2} + i \right)\) for any \(0 \leq i \leq \left\lfloor \frac{n-1}{2} \right\rfloor\).

4 The Algebras \(A_{\mathcal{P}_n}\) and \(B_{\mathcal{P}_n}\) from the Poset \(\mathcal{P}_n\)

In this section, we will consider the properties of the algebras \(A_{\mathcal{P}_n}\) and \(B_{\mathcal{P}_n}\).

Let \(m = \binom{n-1}{\lfloor \frac{n-1}{2} \rfloor}\). We list all the elements of \(\mathcal{P}_n\) as \(S_{n,1}, S_{n,2}, \cdots, S_{n,m}\). For any a sequence \(S_{n,j_1}, S_{n,j_2}, \cdots, S_{n,j_t}\) in the poset \(\mathcal{P}_n\), let \(r(S_{n,j_1}, S_{n,j_2}, \cdots, S_{n,j_t}) = (r_1, \cdots, r_m)\) be a vector such that \(r_j = |\{k \mid S_{n,j_k} = S_{n,j}\}|\). Furthermore, we can obtain a monomial

\[m(S_{n,j_1}, S_{n,j_2}, \cdots, S_{n,j_i}) = x_1^{r_1}x_2^{r_2} \cdots x_m^{r_m}.
\]
A sequence $S_{n,j_1}, S_{n,j_2}, \ldots, S_{n,j_i}$ of elements in the poset \mathcal{P}_n forms a multichain if and only if the monomial $m(S_{n,j_1}, S_{n,j_2}, \ldots, S_{n,j_i})$ is nonvanishing in the algebra $A_{\mathcal{P}_n}$.

For a monomial ideal I, the set of all monomials that do not belong to I is a basis of the quotient of the polynomial ring modulo I, called the standard monomial basis. Thus the monomials $m(S_{n,j_1}, S_{n,j_2}, \ldots, S_{n,j_i})$, where $(S_{n,j_1}, S_{n,j_2}, \ldots, S_{n,j_i})$ ranges over the multichains of the poset \mathcal{P}_n, form the standard monomial basis of the algebra $A_{\mathcal{P}_n}$. The algebra $A_{\mathcal{P}_n}$ is graded. For a graded algebra $A = A^0 \oplus A^1 \oplus A^2 \cdots$, the Hilbert series of the algebra A, is the formal power series in x given by

$$Hilb A = \sum_{i \geq 0} x^i \dim A^i;$$

there exists a polynomial $P_A(x)$ with rational coefficients (called the Hilbert polynomial of A) such that $P_A(k) = \dim A^i$ for all sufficiently large i.

Theorem 4.1 The Hilbert polynomial $P_{A_{\mathcal{P}_n}}(x)$ of the algebra $A_{\mathcal{P}_n}$ is $x^\left\lfloor \frac{1}{2}(n-1) \right\rfloor \mathcal{P}_n(\frac{1}{x})$.

Proof. Note that the number of the multichains $S_{n,j_1} \preceq S_{n,j_2} \preceq \cdots \preceq S_{n,j_i}$ in \mathcal{P}_n is equal to the dimension of A^i_n. Corollary 3.5 implies that $\dim A^i_n = i^\left\lfloor \frac{n-1}{2} \right\rfloor \mathcal{P}_n(\frac{1}{i})$ for any $i \geq 1$. Since $\deg(\mathcal{P}_n(x)) = \left\lfloor \frac{n-1}{2} \right\rfloor$, we have $P_{A_{\mathcal{P}_n}}(x) = x^\left\lfloor \frac{1}{2}(n-1) \right\rfloor \mathcal{P}_n(\frac{1}{x})$.

Theorem 4.2 For any $n \geq 3$, the Hilbert series $Hilb A_{\mathcal{P}_n}(x)$ of the algebra $A_{\mathcal{P}_n}$ satisfies the following recurrence: when n is even,

$$Hilb A_{\mathcal{P}_{n+1}}(x) = xHilb A'_{\mathcal{P}_n}(x) + Hilb A_{\mathcal{P}_n}(x);$$

when n is odd,

$$Hilb A_{\mathcal{P}_{n+2}}(x) = xHilb A'_{\mathcal{P}_{n+1}}(x) + Hilb A_{\mathcal{P}_{n+1}}(x) + \frac{4n}{n+3}xHilb A'_{\mathcal{P}_{n+1}}(x)$$

$$- \frac{8n}{n+3}xHilb A'_{\mathcal{P}_n}(x) - \frac{4n}{n+3}x^2Hilb A''_{\mathcal{P}_n}(x),$$

where the notation "'" denotes differentiation of functions, with the initial condition $Hilb A_{\mathcal{P}_3}(x) = \frac{1}{(1-x)^2}$ and $Hilb A_{\mathcal{P}_4}(x) = \frac{1+x}{(1-x)^3}$.
Proof. By Theorem 4.1, we have \(\text{Hilb} A_{\mathcal{P}_n}(x) = 1 + \sum_{i \geq 1} i^{\frac{n-1}{2}} \mathcal{P}_n \left(\frac{1}{i} \right) x^i \). The results follow Theorem 3.4.

In general, we may suppose that \(\text{Hilb} A_{\mathcal{P}_n}(x) = \frac{A_{\mathcal{P}_n}(x)}{(1-x)^{\frac{n-1}{2}}} \), where \(A_{\mathcal{P}_n}(x) \) is a polynomial.

Corollary 4.1 For any \(n \geq 3 \), \(A_{\mathcal{P}_n}(x) \) satisfies the following recurrence: when \(n \) is even,

\[
A_{\mathcal{P}_{n+1}}(x) = x(1-x)A'_{\mathcal{P}_n}(x) + \left[\frac{1}{2}n - 1 \right] A_{\mathcal{P}_n}(x);
\]

when \(n \) is odd,

\[
(1-x)A_{\mathcal{P}_{n+3}}(x) = x(1-x)A'_{\mathcal{P}_{n+2}}(x) + \frac{(n+1)x + 2}{2} A_{\mathcal{P}_{n+2}}(x) + \frac{4n}{n+3} x(1-x)A'_{\mathcal{P}_{n+1}}(x) \\
+ \frac{2n(n+1)}{n+3} x(1-x)A_{\mathcal{P}_{n+1}}(x) - \frac{4n}{n+3} x(1-x)[(n-1)x + 2] A'_{\mathcal{P}_n}(x) \\
- \frac{n(n+1)}{n+3} x[(n-1)x + 4] A_{\mathcal{P}_n}(x) - \frac{4n}{n+3} x^2 (1-x)^2 A''_{\mathcal{P}_n}(x)
\]

with the initial conditions \(A_{\mathcal{P}_3}(x) = 1 \) and \(A_{\mathcal{P}_4}(x) = 1 + x \).

Proof. By Theorem 4.2, we immediately obtain the desired results after simple computations.

Note that a sequence \(S_{n,i_1}, S_{n,i_2}, \ldots, S_{n,i_j} \) of elements in the poset \(\mathcal{P}_n \) forms a chain if and only if the monomial \(x_{i_1} x_{i_2} \cdots x_{i_j} \) is nonvanishing in the algebra \(B_{\mathcal{P}_n} \).

Theorem 4.3 For any \(n \geq 3 \), the Hilbert series \(\text{Hilb} B_{\mathcal{P}_n}(x) \) of the algebra \(B_{\mathcal{P}_n} \) is

\[
\text{Hilb} B_{\mathcal{P}_n}(x) = 1 + \sum_{i=1}^{\lfloor \frac{1}{2}(n-1) \rfloor + 1} \sum_{j=1}^{n} \left(d_1, d_2, \ldots, d_{i+1} \right) \frac{2d_{i+1} - n}{n} x^i,
\]

where the second sum is over all \((d_1, \ldots, d_{i+1}) \) such that \(\sum_{k=1}^{i+1} d_k = n \), \(d_1 \geq 0 \), \(d_k \geq 1 \) for all \(2 \leq k \leq i \) and \(d_{i+1} \geq n - \lfloor \frac{n-1}{2} \rfloor \).

Proof. Note that the number of the chains \(S_{n,j_1} \prec S_{n,j_2} \prec \cdots \prec S_{n,j_i} \) in \(\mathcal{P}_n \) is equal to the dimension of \(B_{\mathcal{P}_n}^j \). Theorem 3.5 implies that \(\dim B_{\mathcal{P}_n}^j = \sum_{d_1, d_2, \ldots, d_{i+1}} \frac{2d_{i+1} - n}{n} \) for any
\[i \geq 1, \text{ where the sum is over all } (d_1, \cdots, d_{k+1}) \text{ such that } \sum_{k=1}^{i+1} d_k = n, d_1 \geq 0, d_k \geq 1 \text{ for all } 2 \leq k \leq i \text{ and } d_{i+1} \geq n - \lfloor \frac{n-1}{2} \rfloor. \] This completes the proof. \qed

References

[1] Hungyung Chang, Jun Ma, Yeong-Nan Yeh, Enumerations of Permutations by Circular Descent Sets

[2] Robert J. Clarke, Einar Steingrímsson, Jiang Zeng, New Euler-Mahonian permutation statistics, *Sm. Lothar. Combin. 35 (1995), Art. B35c, approx. 29 pp. (electronic).*

[3] Michael Domaratzki, Combinatorial Interpretations of a Generalization of the Genocchi Numbers, *Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.6*

[4] Cori, R. and X. G. Viennot, A synthesis of bijections related to Catalan numbers, unpublished, 1983.

[5] Richard P. Stanley, Enumerative Combinatorics, Cambridge ; New York : Cambridge University Press, c1997-1999

[6] J. R. Stembridge, Enriched P-partitions, *Trans. Amer. Math. Soc. 349 (1997), no. 2, 763-788.*