A self-dual poset on objects counted by the Catalan numbers

Miklós Bóna

School of Mathematics
Institute for Advanced Study
Princeton, NJ 08540

December 21, 2021

Abstract

We examine the poset \(P \) of 132-avoiding \(n \)-permutations ordered by descents. We show that this poset is the "coarsening" of the well-studied poset \(Q \) of noncrossing partitions. In other words, if \(x \prec y \) in \(Q \), then \(f(y) \prec f(x) \) in \(P \), where \(f \) is the canonical bijection from the set of noncrossing partitions onto that of 132-avoiding permutations. This enables us to prove many properties of \(P \).

1 Introduction

There are more than 150 different objects enumerated by Catalan numbers. Two of the most carefully studied ones are noncrossing partitions and 132-avoiding permutations. A partition \(\pi = (\pi_1, \pi_2, \ldots, \pi_t) \) of the set \([n] = \{1, 2, \ldots, n\}\) is called noncrossing \cite{2} if it has no four elements \(a < b < c < d \) so that \(a, c \in \pi_i \) and \(b, d \in \pi_j \) for some distinct \(i \) and \(j \). A permutation of \([n]\), or, in what follows, an \(n \)-permutation, is called 132-avoiding \cite{4} if it does not have three entries \(a < b < c \) so that \(a \) is the leftmost of them and \(b \) is the rightmost of them.

Noncrossing partitions of \([n]\) have a natural and well studied partial order: the refinement order \(Q_n \). In this order \(\pi_1 \prec \pi_2 \) if each block of \(\pi_2 \) is the union of some blocks of \(\pi_1 \). The poset \(Q_n \) is known to be a lattice, and it is graded, rank-symmetric, rank-unimodal, and \(k \)-Sperner \cite{6}. The poset \(Q_n \) has been proved to be self-dual in two steps \cite{2}, \cite{5}.

In this paper we introduce a new partial order of 132-avoiding \(n \)-permutations which will naturally translate into one of noncrossing partitions. In this poset, for two 132-avoiding \(n \)-permutations \(x \) and \(y \), we define \(x \prec y \) if the descent set of \(x \) is contained in that of \(y \). (We will provide a natural equivalent, definition, too.) We will see that this new partial order \(P_n \) is a coarsening of the dual of \(Q_n \). In other words, if for two noncrossing partitions \(\pi_1 \) and \(\pi_2 \) we have \(\pi_1 \prec \pi_2 \) in \(Q_n \), then we also

*This paper was written while the author’s stay at the Institute was supported by Trustee Ladislaus von Hoffmann, the Arcana Foundation.
have \(f(\pi_2) < f(\pi_1) \) in \(P_n \), where \(f \) is a natural bijection from the set of noncrossing partitions onto that of 132-avoiding permutations. This will enable us to prove that \(P_n \) has the same rank-generating function as \(Q_n \), and so \(P_n \) is rank-unimodal, rank-symmetric and \(k \)-Sperner. Furthermore, we will also prove that \(P_n \) is self-dual in a somewhat more direct way than it is proved for \(Q_n \).

2 Our main results

2.1 A bijection and its properties

It is not difficult to find a bijection from the set of noncrossing partitions of \([n]\) onto that of 132-avoiding \(n \)-permutations. However, we will exhibit such a bijection here and analyze its structure as it will be our major tool in proving our theorems. To avoid confusion, integers belonging to a partition will be called \emph{elements}, while integers belonging to a permutation will be called \emph{entries}. An \(n \)-permutation \(x = x_1x_2\cdots x_n \) will always be written in the one-line notation, with \(x_i \) denoting its \(i \)th entry.

Let \(\pi \) be a noncrossing partition of \([n]\). We construct the 132-avoiding permutation \(p = f(\pi) \) corresponding to it. Let \(k \) be the largest element of \(\pi \) which is in the same block of \(\pi \) as 1. Put the entry \(n \) of \(p \) to the \(k \)th position, so \(p_k = n \). As \(p \) is to be 132-avoiding, this implies that entries larger than \(n - k \) are on the left of \(n \) and entries less than or equal to \(n - k \) are on the right of \(n \) in \(q \).

Then we continue this procedure recursively. As \(\pi \) is noncrossing, blocks which contain elements larger than \(k \) cannot contain elements smaller than \(k \). Therefore, the restriction of \(\pi \) to \(\{k + 1, k + 2, \cdots, n\} \) is a noncrossing partition, and it corresponds to the 132-avoiding permutation of \(\{1, 2, \cdots n - k\} \) which is on the left of \(n \) in \(\pi \) by this same recursive procedure.

We still need to say what to do with blocks of \(\pi \) containing elements smaller than or equal to \(k \). Delete \(k \), and apply this same procedure for the resulting noncrossing partition on \(k - 1 \) elements. This way we obtain a 132-avoiding permutation of \(k - 1 \) elements, and this is what we needed for the part of \(p \) on the left of \(n \), that is, for \(\{n - k + 1, n - k + 2, \cdots, n - 1\} \).

So in other words, if \(\pi_1 \) is the restriction of \(\pi \) into \([k - 1]\) and \(\pi_2 \) is the restriction of \(\pi \) into \(\{k + 1, k + 2, \cdots, n\} \), then \(f(\pi) \) is the concatenation of \(f(\pi_1) \), \(n \) and \(f(\pi_2) \), where \(f(\pi_1) \) permutes the set \(\{n - k + 1, n - k + 2, \cdots, n - 1\} \) and \(f(\pi_2) \) permutes the set \([n - k] \).

To see that this is a bijection note that we can recover the largest element of the block containing the entry 1 from the position of \(n \) in \(p \) and then proceed recursively.

Example 1 If \(\pi = (\{1, 4, 6\}, \{2, 3\}, \{5\}, \{7, 8\}) \), then \(f(\pi) = 64573812 \).

Example 2 If \(p = (\{1, 2, \cdots, n\}) \), then \(f(p) = 12 \cdots n \).
Example 3 If \(p = (\{1\}, \{2\}, \cdots, \{n\}) \), then \(f(p) = n \cdots 21 \).

The following definition is widely used in the literature.

Definition 1 Let \(p = p_1 p_2 \cdots p_n \) be a permutation. We say the \(i \) is a descent of \(p \) if \(p_i > p_{i+1} \). The set of all descents of \(p \) is called the descent set of \(p \) and is denoted \(D(p) \).

Now we are in a position to define the poset \(P_n \) of 132-avoiding permutations we want to study.

Definition 2 Let \(x \) and \(y \) be two 132-avoiding \(n \)-permutations. We say that \(x \prec_P y \) (or \(x < y \) in \(P_n \)) if \(D(x) \subset D(y) \).

Clearly, \(P_n \) is a poset as inclusion is transitive. It is easy to see that in 132-avoiding permutations, \(i \leq 1 \) is a descent if and only if \(p_{i+1} \) is smaller than every entry on its left, (such an element is called a left-to-right minimum). So \(x \prec_P y \) if and only if the set of positions in which \(x \) has a left-to-right minimum is a proper subset of that of those positions in which \(y \) has a left-to-right minimum. The Hasse diagram of \(P_4 \) is shown on the Figure below.

![Figure 1: The Hasse diagram of \(P_4 \).](image)

The following proposition describes the relation between the blocks of \(x \) and the descent set of \(f(x) \).

Proposition 1 The bijection \(f \) has the following property: \(i \in D(f(x)) \) if and only if \(i + 1 \) is the smallest element of its block.
Proof: By induction on n. For $n = 1$ and $n = 2$ the statement is true. Now suppose we know the statement for all positive integers smaller than n. Then we distinguish two cases:

1. If 1 and n are in the same block of x, then the construction of $f(x)$ simply starts by putting the entry n to the last slot of $f(x)$, then deleting the element n from x. Neither of these steps alters the set of minimal elements of blocks or that of descents in any way. Therefore, the algorithm is reduced to one of size $n - 1$, and the proof follows by induction.

2. If the largest element k of the block containing 1 is smaller than n, then as we have seen above, f constructs the images of x_1 and x_2 which will be separated by the entry n. Therefore, by the induction hypothesis, the descents of $f(x)$ are given by the minimal elements of the blocks of x_1 and x_2, and these are exactly the blocks of x. There will also be a descent at k (as the entry n goes to the kth slot), and that is in accordance with our statement as $k + 1$ is certainly the smallest element of its block.

We point out that this implies that P_n is equivalent to a poset of noncrossing partitions in which $\pi_1 < \pi_2$ if the set of elements which are minimal in their block in π_1 is contained in that of elements which are minimal in their block in π_2.

2.2 Properties of P_n

Now we can prove the main result of this paper.

Theorem 1 The poset P_n is coarser than the dual of the poset Q_n of noncrossing partitions ordered by refinement. That is, if $x < y$ in Q_n, then $f(y) < f(x)$ in P_n.

Proof: If $x < y$, then each block of x is a subset of a block of y. Therefore, if z is the minimal element of a block B of y, then it is also the minimal element of the block E of x containing it as $E \subseteq B$. Therefore, the set of elements which are minimal in their respective blocks in x contains that of elements which are minimal in their respective blocks in y. By Proposition 1 this implies $D(f(y)) \subset D(f(x))$. ◊

Now we apply this result to prove some properties of P_n. For definitions, see [7].

Theorem 2 The rank generating function of P_n is equal to that of Q_n. In particular, P_n is rank-symmetric, rank-unimodal and k-Sperner.

Proof: By proposition 1, the number of 132-avoiding permutations having k descents equals that of noncrossing partitions having k blocks, and this is known to be the (n,k) Narayana-number $\frac{1}{n} \cdot \binom{n}{k} \frac{n}{k-1}$.

4
Therefore P_n is graded, rank-symmetric and rank-unimodal, and its rank generating function is the same as that of Q_n, as Q_n too is graded by the number of blocks (and is self-dual). As P_n is coarser than Q_n, any antichain of P_n is an antichain of Q_n, and the k-Sperner property follows. \hfill \diamond

We need more analysis to prove that P_n is self-dual, that is, that P_n is invariant to “being turned upside down”. Denote $\text{Perm}_n(S)$ the number of 132-avoiding n-permutations with descent set S. The following lemma is the base of our proof of self-duality. For $S \subseteq [n - 1]$, we define $\alpha(S)$ to be the “reverse complement” of S, that is, $i \in \alpha(S) \iff n - i \notin S$.

Lemma 1 For any $S \subseteq [n - 1]$, we have $\text{Perm}_n(S) = \text{Perm}_n(\alpha(S))$.

Proof: By induction on n. For $n = 1, 2, 3$ the statement is true. Now suppose we know it for all positive integers smaller than n. Denote t the smallest element of S.

1. Suppose that $t > 1$. This means that $x_1 < x_2 < \cdots < x_t$, and that x_1, x_2, \ldots, x_t are consecutive integers. Indeed, if there were a gap among them, that is, there were an integer y so that $y \neq x_i$ for $1 \leq i \leq t$, while $x_1 < y < x_t$, then x_1, x_t, y would be a 132-pattern. So once we know x_1, we have only one choice for x_2, x_3, \ldots, x_t. This implies

$$\text{Perm}_n(S) = \text{Perm}_{n-(t-1)}(S - (t-1)), \tag{1}$$

where $S - (t-1)$ is the set obtained from S by subtracting $t-1$ from each of its elements.

On the other hand, we have $n - t + 1, n - t + 2, \ldots, n - 1 \in \alpha(S)$, meaning that $x_{n-t+1} > x_{n-t+2} > \cdots > x_n$, and also, we must have $(x_{n-t+1}, x_{n-t+2}, \ldots, x_n) = (t-1, t-2, \ldots, 1)$, otherwise a 132-pattern is formed. Therefore,

$$\text{Perm}_n(\alpha(S)) = \text{Perm}_{n-(t-1)}(\alpha(S)|n - (t-1)) \tag{2}$$

where $\alpha(S)|n - (t-1)$ is simply $\alpha(S)$ without its last $t-1$ elements. Clearly, $\text{Perm}_{n-(t-1)}(S - (t-1)) = \text{Perm}_{n-(t-1)}(\alpha(S)|n - (t-1))$ by the induction hypothesis, so equations (1) and (2) imply $\text{Perm}_n(S) = \text{Perm}_n(\alpha(S))$.

2. If $t = 1$, but $S \neq [n - 1]$, then let u be the smallest index which is not in S. Then again, x_u must be the smallest positive integer a which is larger than x_{u-1} and is not equal to some x_i, $1 \leq u - 1$, otherwise $x_{u-1} x_u a$ would be a 132-pattern. So again, we have only one choice for x_u. On the other hand, the largest index in $\alpha(S)$ will be $n - (u - 1)$. Then as above, we will only have once choice for x_{n-u}. Now we can delete u from S and $n - u$ from $\alpha(S)$ and proceed by the induction hypothesis as in the previous case.

3. Finally, if $S = [n - 1]$, then the statement is trivially true as $\text{Perm}_n(S) = \text{Perm}_n(\alpha(S)) = 1$.

So we have seen that $\text{Perm}_n(S) = \text{Perm}_n(\alpha(S))$ in all cases. \hfill \diamond

Now we are in position to prove our next theorem.
Theorem 3 The poset P_n is self-dual.

Proof: It is clear that in P_n permutations with the same descent set will cover the same elements and they will be covered by the same elements. Therefore, such permutations form orbits of $Aut(P_n)$ and they can be permuted among each other arbitrarily by elements of $Aut(P_n)$. One can think of P_n as a Boolean algebra B_{n-1} in which some elements have several copies. One natural anti-automorphism of a Boolean-algebra is “reverse complement”, that is, for $S \subseteq [n-1]$, $i \in \alpha(S) \iff n - i \notin S$. To show that P_n is self-dual, it is therefore sufficient to show that the corresponding elements appear with the same multiplicities in P_n. So in other words we must show that there are as many 132-avoiding permutations with descent set S as there are with descent set $\alpha(S)$. And that has been proved in the Lemma. ◇

2.3 Further directions

It is natural to ask for what related combinatorial objects we could define such a natural partial order which would turn out to be self-dual and possibly, have some other nice properties. *Two-stack sortable permutations* [8] are an obvious candidate. It is known [1] that there are as many of them with k descents as with $n - 1 - k$ descents, however, the poset obtained by the descent ordering is not self-dual, even for $n = 4$, so another ordering is needed. Another candidate could be the poset of the recently introduced noncrossing partitions for classical reflection groups [3], some of which are self-dual in the traditional refinement order.

References

[1] B. Jacquard, G. Schaeffer, A bijective census of nonseparable planar maps. J. Combin. Theory Ser. A 83 (1998), no. 1, 1–20.

[2] G. Kreweras, Sur les partitions non croisées d’un cycle, Discrete Math. 1 (1972), no. 4, 333–350.

[3] V. Reiner, Non-crossing partitions for classical reflection groups. Discrete Math. 177 (1997), no. 1-3, 195–222.

[4] R. Simion, F. W. Schmidt, Restricted Permutations, European Journal of Combinatorics, 6 (1985), 383-406.

[5] R. Simion, D. Ullman, On the structure of the lattice of noncrossing partitions, Discrete Math. 98 (1991), no. 3, 193–206.

[6] P. Edelman, R. Simion, Chains in the lattice of noncrossing partitions. Discrete Math. 126 (1994), no. 1-3, 107–119.

[7] R. Stanley, Log-concave and unimodal sequences in algebra, combinatorics, and geometry. Graph theory and its applications: East and West (Jinan, 1986), 500–535, Ann. New York Acad. Sci., 576, New York Acad. Sci., New York, 1989.

[8] D. Zeilberger, A proof of Julian West’s conjecture that the number of two-stack-sortable permutations of length n is $2(3n)!/((n+1)!(2n+1)!)$, Discrete Math. 102 (1992), no. 1, 85–93.