Research Article

Analysis and Improvement on an Authentication Protocol for IoT-Enabled Devices in Distributed Cloud Computing Environment

Baoyuan Kang ¹, Yanbao Han, Kun Qian, and Jianqi Du ²

School of Computer Science and Technology, Tiangong University, Tianjin 300387, China

Correspondence should be addressed to Baoyuan Kang; baoyuankang@aliyun.com

Received 27 November 2019; Accepted 28 May 2020; Published 23 June 2020

Academic Editor: Haipeng Peng

Copyright © 2020 Baoyuan Kang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Recently, a number of authentication protocols integrated with the Internet of Things (IoT) and cloud computing have been proposed for secure access control on large-scale IoT networks. In this paper, we carefully analyze Amin et al.’s authentication protocol for IoT-enabled devices in distributed cloud computing environment and find that Amin et al.’s protocol is vulnerable to several weaknesses. The main shortcoming of Amin et al.’s protocol is in authentication phase; a malicious cloud server can counterfeit the cloud server chosen by a user, and the control server cannot find this counterfeit. To overcome the shortcomings of Amin et al.’s protocol, we propose an improved protocol. In the registration phase of the improved protocol, the pseudoidentity and real identity of a user or a cloud server are bundled up with the control server’s secret numbers. This measure can effectively prevent impersonation attack. We also compare the improved protocol with several existing authentication protocols in security and computational efficiency.

1. Introduction

With the development of the Internet technology, people’s life and production have been greatly improved by Internet of Things (IoT) [1]. But, IoT also faces problems of efficiency due to its sensors with low memory and low power. Using powerful cloud services [2] can improve the efficiency of IoT. Now, authentication protocols integrated with the IoT and cloud computing attract people’s attention.

The first suggested authentication protocol was proposed by Lamport [3]. Then, many password-based authentication protocols were proposed [4–8]. Recently, people discuss authentication protocols for multiserver in IoT and cloud environment [9–16]. Amin et al. [13] showed security vulnerabilities of two authentication protocols in multiserver cloud environment proposed by Xue et al. [11] and Chuang and Chen [12]. Then, Amin et al. [13] proposed an authentication protocol for IoT-enabled devices in distributed cloud computing environment. They claimed that the proposed protocol is protected against all possible security threats. However, in this paper, we find that Amin et al.’s protocol is vulnerable to several weaknesses. Firstly, during the registration phase of Amin et al.’s protocol, it is unreasonable for a user to register with a pseudoidentity. Secondly, the main shortcoming of Amin et al.’s protocol is that, in its authentication and key agreement phase, although the control server can identify a cloud server is legal, the control server cannot tell if this cloud server is the one chosen by a user. So, in Amin et al.’s protocol, a malicious server can counterfeit the server chosen by a user.

On the basis of analyzing the shortcomings of Amin et al.’s protocol, we propose an improvement on Amin et al.’s protocol. In the registration phase of the improved protocol, the pseudoidentity and real identity of a user or a cloud server are bundled up with the control server’s secret numbers. This measure can effectively prevent impersonation attacks. We also compare the improved protocol with two existing protocols [11, 12] in security and computational efficiency.
2. Amin et al.’s Protocol and Its Weaknesses

This section briefly reviews the Amin et al.’s protocol [13] and shows its weaknesses. In Amin et al.’s protocol, there are three types of entity such as user \(U_i \), service provider server \(S_m \), and control server (CS). The CS is a trusted third party responsible for registration and authentication of users and service providing servers. The \(S_m \) provides set of services to \(U_i \). The notations used in this article are recorded in Table 1.

2.1. Amin et al.’s Protocol. Amin et al.’s protocol [13] contains five phases: registration, login, authentication and key agreement, password change, and identity update. For the sake of brevity, password change and identity update phases are not revised.

2.1.1. Registration Phase. During cloud server registration, the cloud server \(S_m \) sends \((\text{SID}_m, d)\) to CS. After receiving it, the CS computes \(\text{PSID}_m = h(\text{SID}_m, d) \) and \((\text{BS}_m = h(\text{PSID}_m, y)\) and sends \(\text{BS}_m \) to \(S_m \) securely. Finally, \(S_m \) stores secret parameter \((\text{BS}_m, d)\) into his memory.

During user registration, the user \(U_i \) computes \(A_i = h(P_i, b_i) \) and \(\text{PID}_i = h(\text{ID}_i, b_i) \), and sends \((A_i, \text{PID}_i)\) to the CS securely. On getting \((A_i, \text{PID}_i)\), the CS calculates \(C_i = h(A_i, \text{PID}_i) \), \(D_i = h(\text{PID}_i, x) \), and \(E_i = D_i \oplus A_i \). Finally, the CS prepares and delivers a smartcard for each \(U_i \) after recording \((C_i, E_i, h(\cdot))\) in the smartcard and transports it to \(U_i \) through private communication. After getting it, \(U_i \) records \((D, b_i)\) in the smartcard, where \(D = h(\text{ID}_i, P_i) \oplus b_i \). Finally, the smartcard holds \((C_i, E_i, D, b_i, h(\cdot))\).

2.1.2. Login Phase. For accessing server resources, a legal user \(U_i \) first punches the smartcard into card reader and inputs \(\text{ID}_i \) and \(P_i \) to the terminal. Then, the card reader calculates \(b_i^* = DP \oplus h(\text{ID}_i, P_i) \), \(A_i^* = h(P_i, b_i^*) \), \(b_i^* = b_i \oplus A_i^* \), \(\text{PID}_i^* = h(\text{ID}_i, b_i^*) \), and \(C_i^* = h(A_i^* \oplus \text{PID}_i^*) \). Then, the card reader checks the condition \(C_i^* = C_i \). If \(C_i^* = C_i \), it means that \(\text{ID}_i = \text{ID}_i \) and \(P_i = P_i \). The card reader produces a random number \(N_i \) and computes \(D_i = E_i \oplus A_i, G_i = h(\text{PID}_i, \text{SID}_m, N_i, \text{TS}_j, D_i, F_i = D_i \oplus N_i, Z_i = \text{SID}_m \oplus h(D, N_i) \), where \(\text{SID}_m \) is the cloud server’s identity chosen by the user \(U_i \). Then, the CR transmits the login messages \((G_i, F_i, Z_i, \text{PID}_i, \text{TS}_j)\) to \(S_m \) publicly.

2.1.3. Authentication and Key Agreement Phase. This phase is necessary for performing mutual authentication as well as key agreement among \(U_i, S_m \), and CS. The detail explanation of this phase is as follows:

Step 1: the \(S_m \) first checks the condition whether \(TS_m - TS_i < \Delta T \) holds or not on receiving the login message, where \(TS_m \) and \(\Delta T \) are the cloud server’s current timestamp and expected valid time interval for transmission delay, respectively. If the condition is not true, the \(S_m \) terminates the connection; otherwise, the \(S_m \) produces a random number \(N_m \) and computes \(J_i = \text{BS}_m \oplus N_m \) and \(K_i = h(N_m \oplus \text{PSID}_m) \). Finally, \(S_m \) sends \((J_i, K_i, \text{PSID}_m, G_i, F_i, Z_i, \text{PID}_i, TS_i, TS_m)\) to the CS publicly.

Step 2: on getting messages from \(S_m \), \(CS \) first checks the time interval, i.e., \(TS_CS - TS_i < \Delta T \), where \(TS_CS \) and \(\Delta T \) are the CS’s current timestamp and expected valid time interval for transmission delay, respectively. If the verification holds, CS computes \(D_i = h(\text{PID}_i, x) \), \(N_i^* = F_i \oplus D_i, \text{SID}_m^* = Z_i \oplus h(D_i, N_i^*), \) and \(G_i^* = h(\text{PID}_i, \text{SID}_m^* \oplus N_i^*), \) and \(D_i \). After that, the CS checks the condition \(G_i^* = G_i \). If \(G_i^* = G_i \), the CS thinks that the \(U_i \) is legal; otherwise, the procedures are terminated. After that, the CS computes \(\text{BS}_m = h(\text{PSID}_m, y) \), \(N_m^* = \text{BS}_m \oplus J_i \), and \(K_i^* = h(\text{BS}_m, N_m^*) \). Again, the CS checks the condition \(K_i^* = K_i \). If \(K_i^* = K_i \), the CS thinks that \(S_m \) is legal; otherwise, the procedure is terminated. After that, the CS chooses a random number \(N_CS \) and computes \(P_CS = N_m \oplus N_CS \oplus h(N_i, D_i), R_CS = N_m \oplus N_CS \oplus h(\text{BS}_m, N_m^*), SK_CS = h(N_m, N_m \oplus N_CS), Q_CS = h(N_m, N_m \oplus N_CS) \text{SK} \), and \(V_CS = h(N_m \oplus N_CS) \text{SK} \text{CS} \), where \(SK_CS \) is the secret session key. Finally, the CS sends \((P_CS, R_CS, Q_CS, V_CS)\) to \(S_m \) for achieving mutual authentication of the protocol through public communication.

Step 3: on getting reply messages from CS, \(S_m \) computes \(W_m = h(\text{BS}_m, N_m) \), \(N_i \oplus N_CS = R_CS \oplus W_m, SK_m = h(N_i, N_CS \oplus N_m), \) and \(V_CS = h((N_i \oplus N_CS) \text{SK} \text{CS}) \). Then, the \(S_m \) checks the condition \(V_CS = V_CS \) or not. If \(V_CS = V_CS \), the session is terminated; otherwise, messages \((P_CS, Q_CS)\) are sent to the \(U_i \) publicly.

Step 4: on obtaining messages from \(S_m \), the \(U_i \) calculates \(L_i = h(N_i, D_i), N_m \oplus N_CS = P_CS \oplus E_i, SK_m = h(N_m \oplus N_CS, N_i), \) and \(Q_CS = h((N_m \oplus N_CS) \text{SK} \)). Then, the \(U_i \) checks the condition \(Q_CS = Q_CS \), and if \(Q_CS = Q_CS \), it
proves the authenticity of S_m and CS. Finally, the proposed protocol achieves mutual authentication among U_i, S_m, and CS. Now, the U_i and the S_m can exchange their secret information securely using $SK_m = SK_i$.

2.2. The Weaknesses of Amin et al.’s Protocol. This section shows that Amin et al.’s protocol [13] has some security drawbacks.

2.2.1. Weaknesses in User Registration Phase. During registration in CS, the user U_i sends (A_i, PID_i) to the CS. But, $A_i = h(P_i || b_i)$ and $PID_i = h(ID_i || b_i)$.

PID_i is just a pseudoidentity. It is unreasonable for a user to register with a pseudoidentity.

2.2.2. Weaknesses in Authentication and Key Agreement Phase. In authentication and key agreement phase, when the CS receives messages $(J_i, K_i, PSID_m, G_i, F_i, Z_i, PID_i, TS_i, TS_m)$ from the cloud server S_m, although CS can know the identity SID_m of the server chosen by the user from following calculation,

$$
D_i = h(PID_i || x),
N_i = F_i \oplus D_i,
SID_m = Z_i \oplus h(D_i || N_i),
G_i^* = h(PID_i || SID_m || N_i || TS_i || D_i),
$$

and verifying $G_i^* = G_i$.

CS also can know the server with pseudoidentity $PSID_m$, and the secret value BS_m is a legal server by following calculation:

$$
BS_m = h(PSID_m || y),
N_m = BS_m \oplus J_i,
K_i^* = h(BS_m || N_m || G_i || TS_m),
$$

and verifying $K_i^* = K_i$.

But, the CS cannot tell if the server with pseudoidentity $PSID_m$ and the secret value BS_m is the one the user chose with real identity SID_m.

Due to the above weaknesses, a malicious server can counterfeit the server chosen by the user, and the CS cannot see through him.

2.2.3. Puzzling Question of the User. Due to the weaknesses in Section 2.2.2, the user cannot be convinced that the session key SK_i is shared with his chosen server.

3. The Improved Protocol

To overcome the shortcomings of Amin et al.’s protocol, in this section, an improved protocol is proposed. Also, for the sake of brevity, only the registration, login, and authentication key agreement phases are described.

3.1. Registration Phase. Suppose the control server CS is a trusted third party responsible for registration and authentication of users and cloud servers. CS chooses two random secret numbers x and y.

In registration phase, any cloud server and user can register with CS. When one cloud server S_m wants register with CS, it chooses its identity SID_m and a random number d. Then, it sends (SID_m, d) to the control server CS. After CS receives (SID_m, d), CS computes

$$
PSID_m = h(SID_m || d),
$$

$$
BS_m = h(PSID_m || SID_m || y),
$$

and sends BS_m to the cloud server S_m through the secure channel. Once S_m receives BS_m, S_m stores secret parameters (BS_m, d).

When one user U_i registers with CS, U_i chooses its identity ID_i and password P_i. Then, U_i calculates $A_i = P_i \oplus h(B_i)$. Here, B_i is his biometric. Finally, U_i submits (ID_i, A_i) to the CS through the secure channel. On receiving the message, CS chooses a random number b_i and computes

$$
PID_i = h(ID_i || b_i),
C_i = h(ID_i || A_i),
D_i = h(PID_i || x),
E_i = D_i \oplus A_i,
\Delta_i = h(PID_i || ID_i || x),
\Omega_i = b_i \oplus A_i,
$$

and issues a smart card containing the information $(C_i, \Omega_i, \Delta_i, E_i, h(\cdot))$ to the user U_i.

3.2. Login Phase. After punching his smart card, a user U_i provides ID_i^*, P_i^*, and B_i^* to the card reader. The card reader computes

$$
A_i^* = P_i^* \oplus h(B_i^*),
C_i^* = h(ID_i^* || A_i^*),
$$

Then, the card reader checks whether $C_i^* = C_i$ or not. When $C_i^* = C_i$, $ID_i^* = ID_i$, $P_i^* = P_i$, and $B_i^* = B_i$, $A_i^* = A_i$. Then, the card reader chooses a random number N_i and computes

$$
b_i = \Omega_i \oplus A_i,
PID_i = h(ID_i || b_i),
D_i = E_i \oplus A_i,
\Delta_i = ID_i \oplus D_i,
G_i = h(ID_i || SID_m || N_i || TS_i || D_i),
F_i = \Delta_i \oplus N_i,
Z_i = SID_m \oplus h(D_i || N_i),$$
where SID$_m$ is the identity of the cloud server S$_m$ chosen by the user U$_i$. Then, the card reader sends the login messages (G$_i$, F$_i$, Z$_i$, O$_i$, PID$_i$, TS$_i$) to the cloud server S$_m$ publicly. TS$_i$ is the U$_i$'s current timestamp.

3.3. Authentication Key Agreement Phase

This phase includes four steps. It is also illustrated in Figure 1.

Step 1: once S$_m$ receives the login message, S$_m$ checks the condition whether TS$_m$ − TS$_i$ < ΔT holds or not. If the condition is true, S$_m$ chooses a random number N$_m$ and computes

\[
J_i = BS_m \oplus N_m,
\]

\[
K_i = h(N_m || BS_m || PID_i || G_i || TS_m).
\]

Then, the S$_m$ submits (J$_i$, K$_i$, PID$_i$, G$_i$, F$_i$, Z$_i$, O$_i$, TS$_i$, PID$_i$, TS$_m$) to the CS. Here, TS$_m$ and ΔT are the cloud server's current timestamp and expected time interval for transmission delay, respectively.

Step 2: on receiving the messages from S$_m$, CS first checks whether TSCS − TS$_m$ < ΔT holds or not, where TSCS and ΔT are the similar meanings mentioned before. If the verification holds, CS calculates

\[
D_i = h(PID_i || x),
\]

\[
ID_i = O_i \oplus D_i,
\]

\[
N_i = F_i \oplus h(PID_i || ID_i || x),
\]

\[
SID_m = Z_i \oplus h(D_i || N_i),
\]

\[
G_i^* = h(ID_i || SID_m || N_i || TS_i || D_i).
\]

Then, the CS checks whether $G_i^* = G_i$ holds or not. If $G_i^* = G_i$, the CS believes the U$_i$ with real ID$_i$ is legal. Then, the CS computes

\[
BS_m = h(PSID_m || SID_m),
\]

\[
N_m = BS_m \oplus J_i,
\]

\[
K_i^* = h(N_m || BS_m || PID_i || G_i || TS_m).
\]

Then, the CS checks the condition $K_i^* = K_i$. If $K_i^* = K_i$, the CS believes S$_m$ with real SID$_m$ is legal and chosen by the user U$_i$. Then, the CS produces a random number N$_CS$ and computes

\[
P_{CS} = N_m \oplus N_{CS} \oplus h(N_i || D_i || F_i),
\]

\[
R_{CS} = N_i \oplus N_{CS} \oplus h(BS_m || N_m),
\]

\[
SK_{CS} = h(N_i \oplus N_m \oplus N_{CS}),
\]

\[
Q_{CS} = h((N_m \oplus N_{CS}) || SK_{CS}),
\]

\[
V_{CS} = h((N_i \oplus N_{CS}) || SK_{CS}).
\]

Figure 1: Authentication key agreement phase.

Then, the CS sends (P$_{CS}$, R$_{CS}$, Q$_{CS}$, V$_{CS}$) to the S$_m$ publicly.

Step 3: on receiving the reply messages from the CS, S$_m$ computes
\[W_m = h(BS_m \| N_m), \]
\[N_m \oplus N_{CS} = R_{CS} \oplus W_m, \]
\[SK_m = h(N_i \oplus N_{CS} \oplus N_m), \]
\[V_{CS} = h((N_i \oplus N_{CS}) \| SK_m). \]

Then, the \(S_m \) checks the condition \(V_{CS} = V_{CS'} \). If \(V_{CS} = V_{CS'} \), \(S_m \) sends messages \((P_{CS}, Q_{CS})\) to the \(U_i \) publicly.

Step 4: on receiving messages from \(S_m \), the \(U_i \) calculates
\[L_i = h(N_i \| D_i \| F_i), \]
\[N_m \oplus N_{CS} = P_{CS} \oplus L_i, \]
\[SK_i = h(N_m \oplus N_{CS} \oplus N_i), \]
\[Q_{CS}^* = h((N_m \oplus N_{CS}) \| SK_i). \]

Next, the \(U_i \) checks whether \(Q_{CS}^* = Q_{CS} \). If \(Q_{CS}^* = Q_{CS} \), \(U_i \) believes the authenticity of \(S_m \) and \(CS \) and shares a session key \(SK_i (= SK_m) \) with the cloud server \(S_m \).

4. Security Analysis and Comparisons

4.1. Security Analysis. This section shows that the improved protocol is well protected against relevant security threats. Firstly, like Amin et al.’s protocol [13], the improved protocol is user anonymous and protected against password guessing attack, replay attack, insider attack, and session key discloser attack. For the shortcomings of Amin et al.’s protocol, the following analysis is focused on the improved protocol against impersonation attack.

In cloud server registration phase of the improved protocol, the cloud server \(S_m \) with identity \(SID_m \) and pseudoidentity \(PSID_m \) has secret value
\[BS_m = h(PSID_m \| \| SID_m \| y), \]
computed by the control server \(CS \). So, in the authentication phase, if one cloud server \(S_m^* \) not chosen by the user \(U_i \) counterfeits \(S_m \), \(S_m^* \) intercepts the login messages \((G_i, F_i, Z_i, O_i, PID_i, TS_i)\) from \(U_i \) and computes
\[J_i = BS_m^* \oplus N_m^*, \]
\[K_i = h(N_m^* \| BS_m^* \| PID_i \| G_i \| TS_m^*), \]
where \(BS_m^* = h(PSID_m^* \| \| \| SID_m^* \| y) \). Then, \(S_m^* \) sends
\[(J_i, K_i, PSID_m^*, G_i, F_i, Z_i, O_i, PID_i, TS_i, TS_m^*), \]
to the \(CS \) publicly. But, \(CS \) obtains the identity \(SID_m \) of the cloud server \(S_m \) chosen by the user \(U_i \) from \(Z_i \) and computes
\[BS_m^* = h(PSID_m^* \| \| SID_m^* \| y), \]
\[N_m^* = BS_m^* \oplus J_i, \]
\[K_i^* = h(N_m^* \| BS_m^* \| PID_i \| G_i \| TS_m^*). \]

Obviously, due to \(BS_m^* \neq BS_m \), then \(K_i^* \neq K_i \). So, \(S_m^* \) cannot pass the \(CS \)’s verification.

4.2. Comparisons. In this section, the comparison of the improved protocol with other protocols [11,13] is shown. The comparison results of the security features and computation costs are shown, respectively, in Tables 2 and 3.

From Table 2, the improved protocol is superior to the protocols [11,13] in terms of security. Furthermore, in Table 3, the comparison of computation costs is shown between the improved protocol and the relatively good protocol [11]. From Table 3, the total computation cost of the protocol [11] is 37H + 32X, but the total computational cost of the improved scheme is 30H + 30X. The computation cost of the improved protocol is significantly less than the protocol [11].

5. Conclusion

In this paper, we find that Amin et al.’s authentication protocol is vulnerable to several weaknesses. To overcome the shortcomings of Amin et al.’s protocol, we propose an improved protocol. We also compare the improved protocol with several existing authentication protocols in security and computational efficiency. The improved protocol not only
completely overcomes the shortcomings of Amin et al.’s protocol but also has less computation cost.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Acknowledgments

This work was supported by the Applied Basic and Advanced Technology Research Programs of Tianjin (no. 15JCYBJC15900) and the National Natural Science Foundation of China (no. 61972456).

References

[1] L. Atzori, A. Iera, and G. Morabito, ”The internet of things: a survey,” Computer Networks, vol. 54, no. 15, pp. 2787–2805, 2010.
[2] G. Ateniese, R. Burns, R. Curtmola et al., ”Provable data possession at untrusted stores,” in Proceedings of the 14th ACM Conference on Computer and Communications Security (CCS’07), pp. 598–609, Virginia, VA, USA, November 2007.
[3] L. Lamport, ”Password authentication with insecure communication,” Communications of the ACM, vol. 24, no. 11, pp. 770–772, 1981.
[4] A. K. Awashti and S. Lal, ”An enhanced remote user authentication scheme using smart cards,” IEEE Transaction on Consumer Electronics, vol. 50, no. 2, pp. 583–586, 2004.
[5] M. K. Khan, S. Kumari, and M. K. Gupta, ”More efficient key-hash based fingerprint remote authentication scheme using mobile device,” Computing, vol. 96, no. 9, pp. 793–816, 2013.
[6] M. Kumar, M. K. Gupta, and S. Kumari, ”An improved efficient remote password authentication scheme with smart-card over insecure networks,” International Journal of Network Security, vol. 13, no. 3, pp. 167–177, 2011.
[7] B. Kang, J. Han, and Q. Wang, ”Cryptanalysis and improvement on an IC-card-based remote login mechanism,” in Proceedings of the 2010 2nd International Conference on Computer Engineering and Technology, vol. 1, pp. 65–68, Bali Island, Indonesia, April 2010.
[8] B. Kang and J. Han, ”Cryptanalysis and improvement on three-party protocols for password authenticated key exchange,” in Proceedings of the 2010 2nd International Conference on Education Technology and Computer, vol. 5, pp. 5197–5201, Shanghai, China, June 2010.
[9] S. K. Sood, A. K. Sarje, and K. Singh, ”A secure dynamic identity based authentication protocol for multi-server architecture,” Journal of Network and Computer Applications, vol. 34, no. 2, pp. 609–618, 2011.
[10] X. Li, Y. Xiong, J. Ma, and W. Wang, ”An efficient and security dynamic identity based authentication protocol for multi-server architecture using smart cards,” Journal of Network and Computer Applications, vol. 35, no. 2, pp. 763–769, 2012.
[11] K. Xue, P. Hong, and C. Ma, ”A lightweight dynamic pseudonym identity based authentication and key agreement protocol without verification tables for multi-server architecture,” Journal of Computer and System Sciences, vol. 80, no. 1, pp. 195–206, 2014.
[12] M.-C. Chuang and M. C. Chen, ”An anonymous multi-server authenticated key agreement scheme based on trust computing using smart cards and biometrics,” Expert Systems with Applications, vol. 41, no. 4, pp. 1411–1418, 2014.
[13] R. Amin, N. Kumar, G. P. Biswas, R. Iqbal, and V. Chang, ”A light weight authentication protocol for IoT-enabled devices in distributed Cloud Computing environment,” Future Generation Computer Systems, vol. 78, pp. 1005–1019, 2018.
[14] L. Zhou, X. Li, K. Yeh, C. Su, and W. Chiu, ”Lightweight IoT-based authentication scheme in cloud computing circumstance,” Future Generation Computer Systems, vol. 91, pp. 1244–1251, 2019.
[15] K.-H. Wang, C.-M. Chen, W. Fang, and T.-Y. Wu, ”A secure authentication scheme for internet of things,” pervasive and Mobile Computing, vol. 42, pp. 15–26, 2017.
[16] O. Ruan, N. Kumar, D. He, and J.-H. Lee, ”Efficient provably secure password-based explicit authenticated key agreement,” Pervasive and Mobile Computing, vol. 24, pp. 50–60, 2015.