Introduction

Cancer is one of the leading causes of mortality worldwide. Opportunities to help reduce the death rate from cancer through the discovery of new drugs are benefiting from the increasing advances in technology and enhanced knowledge of human neoplastic disease. However, translation of these new drugs into clinical practice has been far slower than expected. Drug development requires an average of 13 years research. In addition to design and production, it is necessary to examine the efficacy, toxicity, and pharmacokinetic and pharmacodynamic profiles of the drug in cell- and animal-based studies. Bringing a single new drug from bench to bedside is expensive, with costs of bringing a new chemical entity to market being estimated at ~USD2–3 billion.

A key step in drug development is testing the safety and efficacy in human subjects in clinical trials that normally comprise four phases. Phase I clinical trials test the new drug for the first time in a small group of people (e.g., 20–80) to evaluate safety (e.g., to determine a safe dosage range and identify side effects). Phase II clinical trials study intervention in a larger cohort (several hundred) to determine efficacy and to further evaluate drug safety. In phase III studies efficacy is then studied in large groups of trial participants (from several hundred to several thousand) comparing the new intervention to other standard or experimental interventions (or to non-interventional standard care). Phase III studies also monitors adverse effects and collects further information that will allow the intervention to be used safely. Phase IV studies occur after the drug has been marketed. These studies are designed to monitor the effectiveness of the approved intervention in the general population and to collect information about any adverse effects associated with widespread use over longer periods of time.

INTERTWINING OF NON-ONCOLOGY DRUGS TO TREAT CANCER

Drug repurposing (alternatively called “new uses for old drugs”) is a strategy for identifying new uses for approved or investigational drugs that are outside the scope of the original medical indication. Increasingly, researchers and clinicians are considering this strategy to alleviate the dilemma of drug shortage for finding new cancer therapies. The major advantage of this approach is that the pharmacokinetic, pharmacodynamic, and toxicity profiles of drugs have been already established in the
Overcoming cancer therapeutic bottleneck by drug repurposing

Zhang et al.

NON-Oncology DRUGS IN DRUG REpURPosING

Increasing attention is now being paid to precision medicine, which allows healthcare to be finely tuned to each individual based on molecular profiling instead of the “on drug fits all model” currently used. This has consequently driven the generation of a biologically compelling lists of genes and proteins based on a systematic analysis of drug discovery for cancer therapy emerging from large-scale multi-omics initiatives.39-41 Drug repurposing can target this to find druggable cancer-associated proteins.28,42,43 However, a major challenge in cancer drug discovery is to maximize the probability that drugs discovered by either biochemical or phenotypic methods will lead to clinical efficacy and improved disease management.8,30,44,45 It should be realized that cell-based models frequently do not accurately represent the true in vivo situation and cancer hallmark-targeting drugs may afford better opportunities for drug repurposing.40-48 Key hallmarks of malignancy are clearly not regulated by a single signaling pathway.37,49 Hence, mono- or multi-hallmark-targeting drugs have advantages since they may target several supporting pathways pharmacologically, thereby partially avoiding the progression of adaptive resistance.37,50 We now summarize non-oncology compounds used for cancer therapy that target the hallmarks of cancer, and distinguish between those agents suitable for monotherapy or as drug combinations (Fig. 2).

Non-oncology drugs suitable for cancer monotherapy

Many newly identified non-oncology drugs repurposed for cancer therapy act by inhibiting proliferation and inducing cell death as indicated by a large body of data from in vitro and in vivo experiments or clinical trials.51-53 In addition, these drugs, which have previously been used for other indications, already have reliable drug safety data and are often inexpensive (especially if they are available as generics).54 Some of these drugs are summarized below.

Non-oncology drugs which work by inhibiting proliferative signaling. A fundamental trait of cancer cells is their ability to maintain chronic proliferation. Cancer cells can therefore master their own destiny, becoming self-sufficient with respect to growth signaling.55 Based on an understanding of the underlying cancer biology, various molecular targeting agents, like receptor tyrosine kinase inhibitors, have been developed with excellent success as cancer therapeutics. However, relatively few drugs targeting these pathways have been discovered by drug repurposing.56,57 Remarkably, cancer cells may also circumvent pathways that need ligand-mediated receptor induction to sustain proliferative signal, instead relying heavily on three important pro-survival...
Rapamycin: Rapamycin allosterically inhibits mTORC1 by binding to treat cancer by effective inhibition of these pathways. Increasing number of non-oncology drugs have been repurposed has limited in

gene expression with only mild side effects in most patients. In addition, rapamycin also showed effective anticancer activation in drug resistant chronic myeloid leukemia. However, more recent studies are highlighting some defects of rapamycin for single-agent therapy. First, the inhibition of mTOR1 induces negative feedback regulation and activation of PI3K-AKT signaling causing survival of cancer cells. Second, proteins downstream of mTOR such as 4EBP1, a translation repressor protein can be reactivated to drive the proliferation of cancer cells under long-term rapamycin treatment. In addition, rapamycin has limited influence on the activation of mTORC2, which plays an active role in tumorigenesis as an important part of the PI3K–mTORC2–Akt axis. However, some combinatorial strategies of mTOR inhibitors in the clinic have proved beneficial. For instance, the combination of insulin like growth factor 1 receptor (IGF1R) inhibitors with semisynthetic rapamycin analogs inhibits the proliferation of breast and prostate cancers and myelomas. Similar encouraging results come from other growth factor receptor antagonists, including the epidermal growth factor receptor (EGFR). Recently, an Akt inhibitor, perifosine, was used to treat multiple myeloma cells and potentiate the anticancer activity by combination with nanoparticle bound rapamycin. Furthermore, several clinical trials, in which a RAF pathway inhibitor, sorafenib, or histone deacetylase inhibitor, vorinostat, combined with rapamycin, are underway. It is worth noting that temsirolimus, a rapamycin analog with better solubility and pharmacokinetic properties, has been recommended for the treatment of renal cell carcinoma in 2007.

Prazosin: Prazosin was approved for the clinical treatment of hypertension over 40 years ago. The current use of prazosin has been extended to treat multiple clinical indications, such as benign prostatic hyperplasia, Raynaud’s disease and congestive heart failure. Pharmacologically, prazosin is known to be a non-selective inhibitor of α1-adrenergic receptor and can selectively inhibit α2B-adrenergic receptor. Prazosin, showing potential anticancer effects, has been recommended for the

Fig. 2 Identification of drug candidates targeting the hallmarks of the cancer cell using drug repurposing enabled by recapitulative signaling networks. The complex signaling interactions contributing to the hallmarks of cancer cells can be orchestrated, rationalizing the complexities of neoplastic disease. Drug candidates interfering with cancer capabilities are shown. CAFs cancer-associated fibroblasts, CTLs cytotoxic T lymphocytes, ECM extracellular matrix, MDSCs myeloid-derived suppressor cells, NK cells natural killer cells, Tregs regulatory T cells

Overcoming cancer therapeutic bottleneck by drug repurposing

Zhang et al.
treatment of pheochromocytoma.\textsuperscript{90,91} In addition, Desniotis et al. reported that doxazosin and terazosin, quinazoline-based agents, induced apoptosis by activating the TGF-\(\beta\) signaling pathway rather than adrenergic receptor associated pathways in prostate cancer, suggesting prazosin related drugs, with a well-established and documented clinical record, have potential for cancer therapy by off-target associated drug repurposing.\textsuperscript{92} A recent study indicated that prazosin also induced growth inhibition in a concentration-dependent manner in patient-derived glioblastoma-initiating cells (GICs). Interestingly, there was an off-target mechanism of prazosin in GIC treatment, evidenced by preferential toxicity among other quinazoline-related antagonists of a-adrenergic receptor and activation of the MAPK/ERK signaling pathway followed a-adrenergic receptor blockade. They found that prazosin inhibited GIC proliferation by inhibiting the PKC\(\delta\)-dependent AKT signaling pathway, but rarely influenced AKT-dependent growth of neural stem cells due to a paucity of PKC\(\delta\) compared with GICs.\textsuperscript{93} Taken together, these studies imply drug repurposing of prazosin holds promise for clinical cancer treatment.

Indomethacin: Indomethacin is a non-steroidal anti-inflammatory drug (NSAID) used for rheumatic disease treatment regimens due to its antiinociceptive action.\textsuperscript{94,95} Interestingly, multiple clinical studies have found patients undergoing long term NSAID treatment have a lower risk of developing cancers.\textsuperscript{96,97} In addition, there are an increasing number of reports indicating the antineoplastic effect of indomethacin and indomethacin-based prodrugs against a wide range of cancers by the inhibition of Cox-1/2-dependent angiogenesis.\textsuperscript{98,99} Furthermore, indomethacin has also been shown to reduce the migration and invasion of cancer cells by interfering with calcium-associated signaling and formation of focal complexes.\textsuperscript{100} Several recent studies have uncovered a Cox-independent mechanism of action for the antiproliferative effect of indomethacin, as evidenced by the inhibition of cell proliferation in indomethacin treated colorectal cancer cell lines that do not express Cox-1/2.\textsuperscript{101-103} Recently, Lin et al. suggested that the antiproliferative effect of indomethacin resulted from the inhibition of MAPK-related pathways.\textsuperscript{104} They executed drug repurposing using a library of existing drugs with computational screening. Using binding to the phosphotyrosine binding (PTB) domain of adapter protein Shc (Shc\textsuperscript{105}) as a readout, indomethacin was confirmed to have a direct interaction with Shc\textsuperscript{106}. They further showed that indomethacin competed with EGFR-bound Shc\textsuperscript{107} for the survival receptor EGFR, resulting in disruption of the ERK-binding site, resulting in a failure of EGFR to recruit Shc to induce aberrant signaling due to the release of ERK. In addition to targeting MAPK pathways, indomethacin also inhibits the proliferation of cancer cells by impairment of PKC\(\gamma\)-p38-DRP1 axis-dependent mitochondrial dynamics or downregulation of Wnt/\(\beta\)-catenin signaling.\textsuperscript{108} Various NSAIDs including indomethacin, have now been proposed as anticancer chemo-preventive drugs.\textsuperscript{109} With further understanding of the detailed mechanisms involved in their antineoplastic effect, the clinical application of indomethacin shows much promise.

Non-oncology drugs work by inducing cell death. Apoptosis, which causes cell death once the cell is damaged or faces various physiologic stresses, is a natural barrier for tumorigenesis.\textsuperscript{110} In cancer, deregulated apoptotic signaling, particularly activation of antiapoptotic systems, allows cancer cells to escape this program resulting in uncontrolled proliferation, tumor survival, therapeutic resistance and cancer recurrence.\textsuperscript{111} However, even if tumor cells operate multiple strategies to antagonize or circumvent apoptosis, other programmed cell death modalities, like lethal-autophagy and ferroptosis, could provide alternative strategies for cancer treatment.\textsuperscript{112} Increasingly, non-oncology drugs are being repurposed for the treatment of apoptotic resistant cancers by triggering cell death mechanisms. Artemisinin: Artemisinin (ARS) is the active ingredient of artemisia annua L and is used to treat malaria, the world’s most prevalent disease affecting over 600 million people each year.\textsuperscript{113} Artemisinin and its derivatives have caught worldwide attention over the past years, and artemisinin-based therapies of malaria are now the established clinical standard.\textsuperscript{114-116} The main mechanism by which artemisinin kills plasmodia is by blocking conversion of hemoglobin to the non-toxic hemozoin in malaria parasites, resulting in accumulation of reactive oxygen species (ROS) from heme-iron.\textsuperscript{117-120}

Interestingly, Youyou Tu, who was honored with the Nobel Prize in Physiology or Medicine for first extracting dihydroartemisinin (DHA), found that patients with lupus erythematosus-related nephritis might benefit from DHA due to inhibition of the NF-\(\kappa\)B signaling pathway.\textsuperscript{121} In addition, increasing studies reported ARS-related drugs had an unexpected therapeutic effect against viruses (human cytomegalovirus), schistosomiasis and trypanosomiasis.\textsuperscript{122-124} Recent results indicated ARS and its derivatives also had anticancer activity attributed to inducing non-apoptotic programmed cell death.\textsuperscript{125,126} For instance, artesunate (ART)-based agents stimulated ROS generation and promoted the lysosome degradation of ferritin instead of autophagic degradation, resulting in system Xc\textsuperscript{-}/GPX4 axis-mediated ferroptosis in cancer cells.\textsuperscript{127} Similarly, Chen et al. found that DHA sensitized cancer cells to ferroptosis by autophagic independent degradation of ferritin, inducing free iron accumulation and subsequently iron homeostasis dysregulation due to binding to the iron-responsive element sequences of iron-regulatory proteins.\textsuperscript{128} In contrast, Du et al. reported DHA-induced cell death associated with autophagic-dependent degradation of ferritin (ferroptosis) in acute myeloid leukemia cells.\textsuperscript{129} In addition, several targets involved in autophagy of ARS and its derivatives were identified.\textsuperscript{124} Dihydroartemisinin-37 induced autophagic cell death by activating high mobility group box 1 and releasing Beclin 1 from Bcl-2.\textsuperscript{130} Other types of nonapoptotic programmed cell death, including oncosis (ischemic cell death) and anoikis (anchorage-dependent cell death), have also been observed in cancer cells following ARS-based treatment.\textsuperscript{131-133} In recent clinical trials, DHA treatment for advanced cervical carcinoma patients appeared encouraging as clinical symptoms of these patients were relieved and thus survival increased.\textsuperscript{134} In addition, artesunate administered orally in patients with colorectal cancer showed anticancer effects and was generally well tolerated.\textsuperscript{135} 23 artesunate administered orally in patients with colorectal cancer showed anticancer effects and was generally well tolerated.\textsuperscript{135} In recent clinical trials, DHA treatment for advanced cervical carcinoma patients appeared encouraging as clinical symptoms of these patients were relieved and thus survival increased.\textsuperscript{134} In addition, artesunate administered orally in patients with colorectal cancer showed anticancer effects and was generally well tolerated. All these trials showed much promise.

Chloroquine: Chloroquine (CQ) and its derivative hydroxychloroquine (HCQ), which are antimalarial agents in common clinical use, also have therapeutic effect on rheumatoid arthritis and discoid and systemic lupus erythematosus.\textsuperscript{136-138} CQ or HCQ, the only FDA-approved autophagy flux inhibitors, have been used to treat pancreatic and other cancers.\textsuperscript{139} Mechanically, CQ or HCQ blocked autophagosome-lysosome fusion through blocking STX17 incorporation by LC3-positive autophagosomes, or impairment of Golgi and endosomal functions, rather than decreasing lysosomal acidity.\textsuperscript{140} Recently, a novel CQ derivative DC661 was reported to have a deacetylfying function toward lysosome and had distinct advantages in inhibition of autophagy flux compared with HCQ.\textsuperscript{141} DC661, and other CQ-based drugs, can target and inactivate palmitoyl-protein thioesterase 1 (PPT1), which mediates depalmitoylation to stabilize the v-ATPase subunits located in lysosome. The v-ATPase complex not only maintains the acidity of lysome for catabolism, but contributes to the localization and
subsequent activation of mTOR. In addition, high expression of PPT1 in a variety of cancers was identified using the The Cancer Genome Atlas (TCGA) database, and indicated poor survival. These findings further confirm the specific targets of CQ-based drugs and broaden the clinical application of CQ-based drugs to patients with tumors exhibiting PPT1-high expression. CQ-related clinical cancer trials started as early as 1998 when CQ was used for treating glioblastoma multiforme patients showing enhanced patient survival. Subsequently, CQ or HCQ was used alone or in combination with standard treatments for multiple myeloma, lung cancer, pancreatic cancer, and sarcoma. Drug repurposing of CQ shows considerable promise for autophagy-dependent malignant tumors, including pancreatic cancer and drug resistant cancer mediated by protective autophagy.

**Non-oncology drugs which work by regulation of cellular metabolism.** Reprogramming energy metabolism is ubiquitous in cancer cells, and primarily supports malignancy by sustaining key hallmarks of cancer, including uncontrolled cell proliferation, evading growth suppressors, and resisting cell death. Cancer cells exhibit anomalous energy metabolism, termed aerobic glycolysis, which generates the glycolytic intermediates to facilitate the production of macromolecules and organelles by various biosynthetic pathways. Accordingly, increased aerobic glycolysis significantly enhances glucose uptake and utilization in order to provide essential components required for cell assembly regardless of relatively poor efficiency for ATP generation. In general, reprogramming energy metabolism as a proliferation-inducing phenotype fuels chronic and abnormal cell growth and division. Notably, changes in metabolic patterns may lead to hyper-activation of certain metabolic enzymes that detoxify endogenous xenobiotics derived from abnormal energy metabolism in cancer cells, resulting in the malignant phenotype including resisting cell death and drug resistance. Repurposing existing drugs to target cellular metabolism for cancer treatment is therefore a useful strategy.

**Metformin:** Metformin was approved by the FDA in 1994 for treating obese type 2 diabetes. Generally, patients with diabetes are more prone to several types of cancer, probably due to chronic and increased glycemia contributing in part to tumor development. A number of studies have shown that diabetes, especially type 2 diabetes, is closely related to the development of pancreatic, bladder, colorectal cancer, and non-Hodgkin’s lymphoma. Long-term metformin treatment has been shown to substantially lower the risk of breast cancer in women with type 2 diabetes and to date, more than 100 ongoing clinical trials are investigating the anticancer activity of metformin, using those doses typically used for diabetes, for cancer therapy. Mechanically, metformin can lower elevated levels of insulin, which activates the PI3K-mTOR signaling pathway, leading to proliferative inhibition of those cancers with insulin receptor expression. Furthermore, metformin has been reported to activate AMPK, a key energy sensor in cellular metabolism, to inhibit cancer cell growth by the negative regulation of mTOR involved in tumor survival. In contrast, studies have indicated metformin inhibition of mTOR signaling dependent on Ras-related GTPase but independent of AMPK. Wu et al. further showed that metformin protected tumor suppressor TET2 phosphorylation at serine 99 by activating AMPK, thereby avoiding the destabilization of TET2 and dysregulation of 5-hydroxymethylcytosine. Furthermore, metformin has been shown to induce energetic stress by partially inhibiting oxidative phosphorylation, resulting in repression of some high-energy consumption processes, such as mRNA translation and biomacromolecule synthesis, ultimately contributing to cytostatic or cytotoxic effects. Recently, Liu et al. reported that metformin mediated tumor cell-intrinsic mitochondrial metabolism in ovarian cancer. Subsequently, a mitochondrial metabolism-related protein, BTF and CNC homolog Y (BACH1), was found to increase expression in triple-negative breast cancer, leading to poor glucose utilization and down-regulated transcription of electron transport chain genes. This study showed that targeting BACH1 sensitized breast cancer to metformin treatment. Taken together, metformin used in cancer therapy is one of the most successful cases of drug repurposing and several clinical trials, which have advanced to Phase III and Phase IV, are currently investigating the therapeutic potential of metformin in oral, prostate, breast, endometrial, and pancreatic cancers.

**Disulfram:** Disulfram was originally used in rubber vulcanization, but subsequently has been used for more than 60 years as an alcohol-aversion drug to treat alcohol abuse. Mechanistically, disulfram inhibits the activation of acetaldehyde dehydrogenase (ALDH), triggering severe nausea and vomiting symptoms contributing to abstinence. In the past years, disulfram has attracted increasing attention for its anticancer activity both as monotherapy and combinational therapies. Notably, numerous studies have reported on mechanisms of action of disulfram that are closely associated with ALDH-related processes of cellular metabolism. For example, Tacconi et al. identified disulfram-mediated acetaldehyde metabolism as a potential therapeutic target for BRCA1/2-deficient cancer cells, resulting from endogenous acetaldehyde-induced DNA damage. Furthermore, Choi et al. reported that disulfram reduced the metabolism of ALDH-positive atypical teratoid/rhabdoid tumor cells. They further showed that the disulfram-induced change of the nicotinamide adenine dinucleotide ratio of NAD+/NADH mediated the function of some NAD+-dependent proteins, like SIRT1, which controlled various important processes in cancer cells including apoptosis, cell differentiation and metabolism. Disulfram can also mediate formaldehyde metabolism by the blockage of formaldehyde oxidation due to inhibition of ALDH, potentially contributing to the induction of apoptosis in various cancer cells. Disulfram has also been reported to play a key role in maintaining the stemness of cancer cells, therefore explaining the anticancer effect of disulfram in stem-like cancer cells. In addition to ALDH-related processes, disulfram regulates copper- or zinc-dependent metabolism processes in cancer cells. More and more evidence is indicating that disulfram-mediated oxidative metabolism partially contributes to its anticancer activity. Notably, clinical trials of disulfram are ongoing, or have already been completed, for treating patients with melanoma, glioblastoma, breast, prostate, and non-small cell lung cancers (NCT02101008) (NCT0118741) (NCT00312819) (NCT01907165).

**Infectious disease vaccines:** Vaccines act by stimulating the body’s defense mechanisms against infection to produce the
corresponding antibodies. Recently, mounting evidence has indicated that intratumoral administration of certain infectious disease vaccines exert an anticancer effect by largely eliciting or potentiating tumor immune responses usually manifested as recruitment and activation of immunocytes. For example, Shekarian et al. reported that rotavirus vaccines activated NK cells and type I interferon pathways in a retinoic acid induced gene 1-mediated manner instead of a Toll-like receptor-dependent manner. Furthermore, rotavirus vaccines elicited tumor immune responses by enhancing the infiltration of CTLs, NK, and CD4+ Th1 helper T cells while the intratumoral administration induced immunogenic cell death, evidenced by ATP release. They also identified the sensitization of rotavirus vaccines to overcome anti-CTLA-4 cancer immunotherapy resistance. In addition, a prophylactic vaccine of yellow fever (live 17D) was shown to exert anticancer activity against cancer cells by the regulation of CTLS and reduction of Tregs. Interestingly, a previous case–control study reported that anti-influenza vaccines could improve the protective efficacy against cutaneous melanoma, suggesting immune-mediated antitumor activity. To date, there have been more than 200 clinical trials that utilize vaccines for cancer therapy and an increasing amount of these have advanced into Phase III and Phase IV clinical trials (https://clinicaltrials.gov/). Taken together, attenuated viral vaccines for intratumoral immunotherapy from drug repurposing play a key role in exerting immunostimulatory and oncolytic properties in tumor immunotherapy. Furthermore, it can accelerate the clinical development based on documented safety records. Notably, these approved and marketed agents have shown promising for treating infants and children with cancers.

Non-oncology drugs suitable for drug combination therapy In addition to those mentioned above, other compounds may be neglected by researchers for drug repurposing screening due to their low anticancer activity at known tolerated plasma drug doses described in previous indications, hindering their application and development. Fortunately, drugs that may be effective at higher dosage still have a chance to be realized. Indeed, drug combination therapy may be able to utilize such effects and repurpose these drugs, producing a synergistic effect by targeting alternative signaling pathways associated with certain cancer hallmarks, therefore sensitizing cancer cells to other cytotoxic agents. In addition, drug combination therapy may result in reduced doses of the individual agents. Notably, neoplastic disease has been identified with multifactorial and polycyclic pathologies, suggesting the requirement to target cancer-related signaling networks using drug combination therapy. Indeed, drug combinations of two or more compounds is now common practice in the clinic utilizing their diverse mechanisms of action. These drugs will be summarized below.

Non-oncology drugs which work by reactivating growth suppressors. Cancer cells can evade mechanisms mediated by the action of tumor suppressor genes. Notably, RB (retinoblastoma-associated) and p53 proteins are two main tumor suppressors, operating in various ways to modulate cells to maintain homeostasis. Defects in function of the RB pathway result in persistent cell proliferation due to dysregulation of gatekeepers of cell-cycle progression. By contrast, p53 senses intracellular stress, such as energy stress, genotoxic stress, and oxidative stress, preventing further cell-cycle progression until homeostasis returns to normal. In addition, p53 can induce apoptosis when irreparable damage occurs. Accumulating evidence indicates a lack of crucial tumor suppressors (including, but not limited, to RB and p53) stimulating progression to neoplasia. More and more non-oncology drugs are being repurposed to target cancer cells evading growth suppressors.

Quinacrine: Quinacrine is an antimalarial drug discovered in the 1920s. It is used to treat giardiasis as an antimicrobial, rheumatoid arthritis, or systemic lupus erythematosus as an anti-inflammatory and pneumothorax as a pleural sclerosing agent. In addition, the clinical evaluation of quinacrine for treatment of Creutzfeldt–Jakob disease is in progress. Quinacrine has a convincing drug safety record for long-term clinical use compatible with drug repurposing for cancer treatment. Indeed, previous studies have indicated quinacrine brings benefits for the treatment of multiple cancers, and its anticancer effects are mediated by p53 activation. Using small molecule screening on renal cell carcinoma cells, quinacrine was shown to induce p53 expression. In addition, data indicates the cytotoxicity of quinacrine corresponds with increased p53 levels. Subsequent studies suggested that quinacrine-induced p53 expression was possibly mediated by the Facilitates Chromatin Transcription (FACT) protein complex, which is trapped onto the chromatin thereby inducing CK2-mediated phosphorylation of p53. In contrast a recent study reports the inconsistent result that p53 knockdown enhances the quinacrine effect in MCF-7 cells compared with controls. Regardless, these studies indicate that quinacrine cytotoxicity in cancer cells depends, at least partially, on the p53 status. Reports of quinacrine acting as an anticancer agent in clinical trials are increasing. For instance, the scientists of Fox Chase Cancer Center currently combined quinacrine with capcetabine for treating colorectal adenocarcinoma in a Phase I, Phase II clinical trial (NCT01844076). Quinacrine has also been combined with erlotinib for the treatment of recurrent or late-stage non-small cell lung cancer in a Phase I clinical trial (NCT01839555). Collectively, quinacrine as an anticancer agent has major potential for cancer therapy and the mechanism may be closely related to activation of p53, a key growth suppressor dysregulated in multiple cancers.

Ritonavir: Ritonavir is a protease inhibitor widely used in highly active anti-retroviral therapy (HAART) to treat human immunodeficiency virus (HIV) infection. HAART, in which protease or integrase inhibitors are combined with reverse transcriptase inhibitors, can substantially slow progression of the AIDS virus rendering it manageable. Interestingly, use of HAART can also result in a reduction in tumor incidence, as evidenced by a Swiss HIV cohort study that reported a decreased incidence of Kaposi sarcoma with HAART treatment. Other research groups subsequently reported similar conclusions on the potential anticancer effect of HAART. In fact, ritonavir as a key component of HAART had already been shown to have anticancer activity in several cancers by inducing apoptosis. The underlying mechanisms of ritonavir in cancers is controversial but appears to be closely related to key growth suppressors. Gaedicke et al. observed the anticancer activities of ritonavir and accumulation of p53 in ritonavir-treated cancer cells. A previous study indicated that ritonavir induced cell death of ovarian cancer. Downregulation of CDKs, which inactivate RB through phosphorylation, was observed in the gene profiles of ritonavir treated cells, resulting in RB dephosphorylation and subsequent cell cycle arrest and apoptosis. A similar outcome of ritonavir-induced G0/G1 arrest was observed in lung adenocarcinoma, associated with downregulation of RB phosphorylation. Batchu et al. also suggested that ritonavir induced apoptosis in pancreatic cancer, attributing this to inhibition of AKT pathways mediated RB activation and formation of the E2F–1/RB complex. In a recent phase II study clinical trial, ritonavir combined with lopinavir was used for treating patients with high-grade glioma. However, compared with standard therapeutic regimes, a patient with complete remission showed no improvement in progression-free survival. The authors proposed that the blood brain barrier probably played a key role in the limited efficacy. Ritonavir as a clinically approved HIV drug has potential for adjuvant therapy of
cancer by drug repositioning, although some challenges ahead remain.

Non-oncology drugs which work by interfering with replication. In the normal cell lineages, the cell growth and division cycle are controlled by senescence and crisis/apoptosis. In cancer cells, the specialized DNA polymerase, telomerase, which is related to telomere maintenance, is expressed at high levels to counteract cells, the specialized DNA polymerase, telomerase, which is related to telomere maintenance, is expressed at high levels to counteract this.240–242 In addition, TERT, a catalytic subunit of the enzyme telomerase acts as a cofactor to amplify Wnt signaling pathways causing cancer cells to revert to a pre-differentiated stem-like phenotype, eventually exhibiting unlimited replicative potential and substantial stress adaptability.243–245 Notably, the Hippo signaling pathways, which control organ size and are dysregulated in cancer, orchestrate Wnt signaling pathways via reciprocal crosstalk with each other by a series of mechanisms.246–248 Accordingly, repurposing of drugs which target telomerase to mediate canonical or noncanonical function (influencing Wnt/ Hippo signaling pathways), is an actionable and available strategy for improving efficacy of cancer therapeutics.

Curcumin: Turmeric, belonging to the ginger family that is widely used in the Asian region as a cooking spice has been used to treat dermatological diseases.249,250 Curcumin, the major active ingredient of turmeric, possesses antioxidant, anti-inflammatory, and even anticancer properties.251,252 Recently, the influence of curcumin on telomerase has received widespread attention. It has been proposed as a telomerase inhibitor with substantial potential for cancer therapy by drug repurposing. Curcumin has been reported to down-regulate hTERT at the level of transcription to mediate telomerase activity in breast cancer cells.253–255 In addition, another study indicated that curcumin inhibited telomerase activity by induction of the dissociation of hTERT from p23, leading to cytoplasmic retention of hTERT and subsequent HSP90-mediated proteasome degradation.256 Aravindan et al. showed that curcumin profoundly inhibited telomerase activity by repressing NF-κB binding to the promoter region of the TERT gene following treatment of human neuroblastoma cells with ionizing radiation.257 Similarly, a synthetic curcumin analog was shown to affect cancer stemness and telomerase in colorectal cancer. The drug deactivated STAT3 and NF-κB so that the interaction with the hTERT promoter was decreased, resulting in the inhibition of non-canonical functions of telomerase contributing to stemness.258 Further studies have confirmed the effects of curcumin on the Wnt/β-catenin and Hippo/YAP signaling pathways, inhibiting stemness or proliferation in multiple cancers.259–265 Although limited bioavailability and stability hamper the application of curcumin in clinical cancer therapy,266–268 curcumin has been used for treating patients with pancreatic cancer in clinical trials due to its anticancer activity and safety profile.269,270 Drug repurposing of curcumin could prove beneficial for clinical translation using highly bioavailable forms of curcumin (e.g., micro- and nano-formulations of curcumin with greatly enhanced absorption) to target telomerase.

Genistein: Genistein is an isoflavone found in legumes offering low cost, safe, and dietary accessibility treatment for various pathologies including menopause, osteoporosis, and obesity.271–274 Notably, genistein has been used as a phytoestrogen mimic of 17β-estradiol to treat breast cancer.274 Subsequently, genistein has been shown to inhibit telomerase activity and related oncosignaling pathways giving potential for treatment of multiple cancers.275,276 It has been reported to inhibit transcriptional activation of hTERT by partially attenuating c-Myc in prostate cancer cells.277 Genistein inhibits hTERT nuclear translocation posttranslationally, as evidenced by the downregulation of hTERT phosphorylation mediated by AKT in prostate cancer cells.278 Genistein has also been reported to inhibit glioblastoma, head and neck and other cancers in a telomerase-dependent manner.279–281 In addition, Li et al. discovered genistein-induced telomerase repression due to crosstalk between genetic and epigenetic mechanisms. They indicated that genistein decreased the expression of DNA methyltransferases DNMT1, DNMT3a, and DNMT3b, leading to the hypomethylation of the E2F-1 (repressor) recognition site in hTERT and increased binding of E2F-1 and hTERT. Genistein-induced hTERT reduction has been attributed to increases of the inactive chromatin marker trimethyl-H3K9 and decreases of the active marker dimethyl-H3K4 to the hTERT promoter.282 Recently, genistein was reported to inhibit Wnt/β-catenin signaling by regulation of related genes, microRNA, DNA methylation and histone modification, inducing inhibition of proliferation or apoptosis in various cancers.283–285 Furthermore, genistein also inhibited stemness, which is closely related to the developmental pathways including Wnt/β-catenin and GDF15, in renal and other cancers.286–288 Clinical trials of genistein in cancer therapy have been conducted, including in breast cancer (NCT00244933) (NCT00290758), in breast or endometrial cancer (NCT00099008), in bladder cancer (NCT00118040), and in prostate cancer (NCT00005827). However, clinical applications of genistein are still limited due to the poor solubility and bioavailability regardless of its potential anticancer activity by drug repurposing.289 Interdisciplinary studies, leading to improved formulation and drug delivery may extend the potential of genistein for clinical anticancer treatments.

Non-oncology drugs which work by decreasing angiogenesis. Tumor cells stimulate angiogenesis to generate neovasculature, an important mechanism by which tumors obtain nutrients and evacuate waste products. By contrast, benign neoplasias are relatively dormant, which is attributed to insufficient blood supply.289,290 However, when dormant tumor cells are activated by angiogenesis, secreted growth factors induce endothelial cells to bud, leading to a chemotactic response and an angiogenic switch.291,292 Antiangiogenesis therapies rely on reducing blood vessel density resulting in tumor starvation.289,293 However, antiangiogenic agents are still deficient and usually stimulate cancer to develop stress resistance states.294 Accordingly, the identification of more effective drugs with antiangiogenic activity by drug repurposing is important for improving cancer therapy.

Thalidomide: Thalidomide is a glutamic acid derivative originally proposed as a sedative in 1957 and was later used as an antiemetic for treating the symptoms of morning sickness in pregnant women. With an improved understanding of the mechanisms of action of thalidomide, it was found to have immunomodulatory, anti-inflammatory, angiogenesis and cell proliferation inhibitory properties suitable for treating various diseases.295–298 Notably, thalidomide in combination with dexmethasone was approved by the FDA for treating multiple myeloma in 2006.299 Further studies have indicated thalidomide has marked anticancer activity in various cancers by mediating angiogenesis.300 Nowadays, thalidomide is widely recognized as an antiangiogenic agent that inhibits VEGF, bFGF, tumor necrosis factor-alpha (TNF-α), and various other pro-angiogenic factors.301 Thalidomide has been reported to stimulate nuclear export of β-Arrestin1 and trigger aberrant localization of HIF-1α, causing the inhibition of HIF-1α-dependent transcription of VEGF-A in breast carcinoma cells.301 In addition, thalidomide has been reported to activate sphinomyelinase to generate ceramide, which plays a key role in VEGF-induced angiogenesis, resulting in repression of VEGF receptor expression.302 Thalidomide also regulates TNF-α, which could contribute to the decreased squamous cell carcinoma incidence observed in a hamster model.303 Furthermore, treatment with thalidomide caused suppression of proliferation, inflammation, and angiogenesis due to inhibition of NF-κB pathways, which were linked to angiogenesis-related cytokine
transcription. However, response to thalidomide treatment for solid malignancies, including AIDS-related Kapozi’s sarcoma, gliomas, and renal carcinoma, was modest. In androgen-dependent prostate cancer, thalidomide showed a significant antiangiogenic effect, with promising performance in a Phase III clinical trial. Cancer-related clinical trials of thalidomide have been undertaken, regardless of its toxicity issues, while awaiting the development of thalidomide-based analogs with better bioavailable and lower toxicity.

Itraconazole: Itraconazole is an FDA-approved traditional antifungal agent with an excellent safety profile. Unexpectedly, data from preclinical or clinical studies of itraconazole indicated potential anticancer activity in mono- or combination therapies. The anticancer mechanisms of itraconazole probably involve inhibition of resistant protein P-glycoprotein, interference with the tumor microenvironment and mediation of other tumor development-associated signaling pathways. Notably, the antiangiogenesis activity of itraconazole was identified by drug repurposing screening which accelerated its potential use for clinical cancer therapy. In addition, growing studies are suggesting itraconazole has a multi-target antiangiogenesis effect by regulating various angiogenic signaling pathways. For example, a study has suggested that itraconazole-induced mTOR inhibition could inhibit angiogenesis via the cholesterol trafficking pathway. Head et al. further demonstrated that itraconazole directly targeted the mitochondrial protein VDAC1 to regulate AMPK and mTOR, while itraconazole was found to bind to the sterol-sensing domain of NPC1, a lysosomal protein closely associating with cholesterol trafficking, resulting in comprehensive inhibition of cell proliferation and angiogenesis. Recently, Chen et al. showed that itraconazole significantly inhibited angiogenesis in infantile hemangioma by downregulation of the PDGF/PI3K/Akt/mTOR pathway. Such studies have led to increased itraconazole-based clinical usage in the past few years. Studies have implied that itraconazole treatment has benefited many patients with ovarian, pancreatic and other cancers. Interestingly, a Phase II clinical study demonstrated that itraconazole combined with standard chemotherapy (pemetrexed) significantly promoted both progression free and overall survival of lung cancer patients, suggesting that the antiangiogenic properties contribute to satisfactory outcomes. However, some studies have implied certain contraindications for itraconazole, especially interference with other cancer drugs, like rituximab. Despite this, itraconazole is still a promising anticancer agent for clinical application because of existing preclinical or clinical data and drug safety profiles.

Non-oncology drugs which work by suppression of invasion and metastasis. Tumor invasion is the mechanism by which tumor cells spread to the surrounding environment, while tumor metastasis is where cancer cells leave the primary tumor and migrate to a new location where they generate new (secondary) tumors. These activities involve regulating existing cellular mechanisms, such as adherens junction signal transduction pathways. In contrast, defects in these processes can systemically cause tissue abnormalities and disrupt homeostasis, leading to genetic abnormalities or invasion and metastasis of tumors. Accordingly, more and more existing drugs with potent activity against metastatic cancer are being identified by drug repurposing, with the potential of greatly improving the survival of critically ill patients.

Berberine: Berberine is an isouquinoline alkaloid present in plants. It is a traditional Chinese medicine and was originally used for the treatment of bacterial diarrhea. With an increased understanding of berberine, its effect on down-regulation of lipid levels was found to relate to the inhibition of HMG-CoA reductase with benefits for patients with nonalcoholic fatty livers. In addition, berberine was reported to reduce glycemic index by enhancing insulin action or restoring insulin sensitivity, by inhibiting AMPK activation, or upregulating InsR expression, respectively. Recently, numerous studies have indicated that berberine exerted antiangiogenic activity by preventing invasion and metastasis in breast and colorectal cancer and other malignancies. For example, a previous study indicated that berberine modulated ephrin-B2 and inhibited MMP-2 and MMP-9 expression by downregulating TGF-β1, resulting in repression of cell proliferation and metastasis in breast cancer. A similar outcome from a parallel study showed that berberine inhibited the expression of MMP2 and MMP9 by the regulation of the COX-2/PGE2–JAK2/STAT3 axis. In addition, berberine inhibited EMT by the inhibition of the RAR/β-mediated PI3K/AKT signaling pathway in melanoma. In endometrial cancer, berberine was shown to inhibit migration, invasion and metastasis by transcriptionally upregulating miR-101, resulting in inhibition of COX-2/prostaglandin E2 (PGE2) signaling pathways. Interestingly, berberine can also mediate angiogenesis, whose activation is closely linked to cancer metastasis, by directly reducing VEGF mRNA expression, inhibiting HIF-1α-induced VEGF expression or compromising the PI3K/AKT signaling pathway. Berberine has been used in clinic as an antiangiogenic or hypolipidemic agent that has attracted substantial attention. Regardless of poor bioavailability by oral administration, drug repurposing of berberine as a potential anticancer agent is being currently investigated in clinical trials (NCT032821096) (NCT03333265).

Niclosamide: Niclosamide is an FDA-approved anthelmintic drug that has been listed as one of the most crucial drugs by the World Health Organization (WHO). Mechanistically, niclosamide treatment can inhibit glucose uptake and anaerobic metabolism of cells, suggesting a potential effect against cancer cells by targeting tumor metabolism. Recently, niclosamide has been shown in a number of studies to exert anticancer activity in colorectal, breast and ovarian cancer, and other malignancies. The mechanisms of the niclosamide-induced anticancer effect may be related to multiple signaling pathways, such as Wnt/β-catenin, STAT3, and NF-kB, contributing to cancer invasion and metastasis. In colorectal cancer, a calcium-binding protein S100A4 was found to be upregulated and to promote cancer metastasis. Niclosamide can inhibit liver metastasis of colorectal cancer cells by downregulation of S100A4, causing abrogation of the Wnt/β-catenin signaling pathway. Consistent with this, niclosamide has been shown to reduce lung cancer invasion by inhibition of the S100A4/NF-kB/MMP9 axis. A similar study reported that niclosamide impaired pulmonary metastases of breast cancer cells by reduction of the STAT3-FAK-Src axis. In addition, niclosamide can reduce the metastatic potential of lapatinib-resistance breast cancer cell by inhibiting EMT and alleviating stemness phenotype. Niclosamide in enzalutamide-resistant advanced prostate cancer cells reversed drug resistance, migration and invasion by inhibiting IL6-STAT3-AR signaling pathways. Data from prostate cancer cells following niclosamide treatment indicated that it inhibited tumor invasion by promoting juxtanuclear lysosome aggregation mediated by lysosome acidification. An increasing number of studies have shown niclosamide has an anti-metastasis effect in oral squamous cell carcinoma, hepatocellular carcinoma, melanoma, and human thyroid cancer. A Phase II clinical trial of niclosamide, in which the drug was applied to patients with colorectal cancer metastases, has been conducted to assess the drug safety and efficacy (NCT02519582). Clinical trials have also been conducted for the treatment of prostate cancer (NCT02532114) (NCT03123978). However, the poor water solubility and bioavailability of niclosamide has hindered its further clinical development for cancer therapy. Systemic intravenous administration of niclosamide may improve future applications in the clinic.
Non-oncology drugs which work by disruption of DNA damage response. Genome instability is one of the major characteristics of malignancy, allowing certain favorable mutant tumor genotypes to survive under stress conditions. Recently, epigenetic regulation, such as DNA, RNA, and histone modification, have also been shown to enable tumors to acquire growth advantages leading to genome instability. Traditional cancer therapies are still focused on chemotherapy and radiotherapy, which induce genotoxic stress by triggering DNA damage. However, these therapies result in severe side effects and can stimulate tumors to develop drug resistance or cancer metastasis even if there is brief tumor dissipation. These worse outcomes result from genome instability, inducing abnormal activation of caretaker genes required for DNA maintenance, which are involved in detection and repair of DNA damage. Accordingly, a method for enhancing the therapeutic index of traditional cancer therapies could be repurposing of drugs as sensitizers of genotoxic therapy to directly inhibit DNA damage response.

Spironolactone: Spironolactone, an aldosterone inhibitor originally used as an effective diuretic for the treatment of high blood pressure and edema, was subsequently shown to benefit patients with heart failure. Increasingly, studies have shown the anticancer properties of spironolactone on prostate and breast cancer. Regulation of DNA damage response appears to be the key mechanism of spironolactone in cancer treatment. For example, spironolactone was identified as an effective nucleotide excision repair inhibitor by drug repurposing, promoting chromosensitivity in cancer cells treated with platinum-based drugs. This is due to spironolactone reversibly inducing the degradation of XBP1 in a ubiquitin-activating enzyme- and proteasome-dependent manner, impairing both basal and activated mRNA transcription of the transcription/repair factor TFIIH. In agreement with this, a recent study also demonstrated that spironolactone could inhibit SIRT2-mediated transcription-coupled nucleotide excision repair, disturbing cisplatin-induced DNA crosslinks in lung cancer. In addition, the function of spironolactone on reducing homology directed repair frequencies was confirmed. Goldman et al. found that spironolactone promoted activity of various drugs targeting DNA damage, such as Poly (ADP-ribose) polymerase (PARP) inhibitor and chemotherapeutic drugs involved in DNA cross-linking, by the impairment of Rad51 foci formation. They also identified that spironolactone could influence DNA double-strand break repair in cancer stem cells. Interestingly, Guilhotin et al. showed another diuretic drug, triamterene, was active against DNA mismatch repair-deficient tumors. They reported that triamterene increased reactive oxygen species (ROS)-mediated DNA double strand breaks by regulating folate synthesis enzyme and thymidylate synthase. To date, clinical trials of both spironolactone and triamterene, based on mediating DNA damage response, are rare. However, population-wide data from the Prostate Cancer Data Base Sweden indicated a close relationship between spironolactone treatment and reduced prostate cancer risk. Taken together, spironolactone and triamterene identified by drug repurposing have shown favorable potential for clinical trials using monotherapy or combinational treatment, mediating DNA damage response for cancer therapy.

Mebendazole: Mebendazole, a synthetic benzimidazole, was approved by the FDA for treating intestinal helminthiasis by targeting tubulin polymerization. In the early 2000s, mebendazole was report to act against non-small cell lung cancers by tubulin depolymerization-induced cell cycle arrest. Subsequently, tubulin polymerization, the original target of mebendazole, was proposed as its main mechanism of action against glioblastoma and gastric cancer. Importantly, it was shown that mebendazole sensitized cancer cells to radiotherapy by regulating DNA damage response proteins. Markowitz et al. reported that mebendazole inhibited the translocation of Chk2 and Nbs1, mediators of DNA double-strand break repair, to the nucleus, resulting in an increasing effect of radiotherapy. In addition, mebendazole was shown to have radio-sensitizing activity in breast cancer, and decreased the fraction of stem-like cells via the hedgehog pathway, probably regulating glioma-associated oncogene homolog 1 (GLI1) (the downstream effector of the hedgehog pathway) to respond to DNA damage. Further agreement, a recent study reported that mebendazole reduced GLI1 expression in advanced thyroid cancer. Mebendazole was also shown to have anticancer activity and enhanced cisplatin-induced DNA damage, by inhibition of DNA double-strand break repair, in head and neck squamous cell carcinoma. Interestingly, benzimidazole derivatives were reported as potential dual inhibitors for PARP-1 and DHODH, two key proteins involved in DNA replication and repair mechanisms, respectively. To date, several clinical trials investigating the use of mebendazole for cancer therapy have addressed brain tumors, such as high-grade glioma, medulloblastoma, and astrocytoma (NCT02644291) (NCT01729260), which were mainly treated by radiotherapy or chemotherapy. In addition, a clinical trial using combinational treatment with chemotherapeutic agents (vincristine and carboplatin) and mebendazole was conducted for treating pediatric gliomas in Cohen Children’s Medical Center of New York (NCT01837862). A similar clinical trial was run for patients with colorectal cancer (NCT03925662). These studies confirmed the potential effect of mebendazole on inhibiting DNA damage repair-related mechanisms. Two case reports of mebendazole treatment in adenocortical carcinoma and colon cancer have now been published. These data showed marked remission of cancer metastasis with mebendazole treatment with no obvious adverse effects. The safety, low price, and proven anticancer effect of mebendazole support the feasibility of its clinical application as an adjuvant therapy in multiple cancers.

Non-oncology drugs which work by targeting tumor-promoting inflammation. Inflammation is typically associated with the whole process of tumorigenesis, supporting and accelerating the progression of the incipient neoplasm into a malignant tumor by generating various bioactive molecules that can influence the microenvironment around the cancer cells. In general, growth or survival factors, which maintain an active state of tumor growth by inducing proliferative signaling or reducing cell death are released. In addition, both angiogenic factors and metastasis-related proteins support angiogenesis, invasion and metastasis, resulting from the induction of inflammation. Inflammation can also induce the generation of chemicals, like ROS, which may act as a second messenger to mediate certain signaling pathways in cancer cells, accelerating their genetic evolution, and facilitating their acquisition of the basic hallmarks of cancer. Regulation of inflammation is therefore an actionable strategy for delaying tumor development and improving cancer therapy efficacy. Many existing drugs identified by drug repurposing exert their anticancer properties by mediating inflammation processes.

Aspirin: Acetylsalicylic acid, commonly known as aspirin, is a non-steroidal anti-inflammatory drug (NSAID) approved by the FDA for the treatment of pain and fever and subsequently in the treatment of stroke and cardiovascular disease. Aspirin has also attracted attention for its potential use in cancer therapy. The first suggestion that aspirin may have potential anticancer effects was reported almost 50 years ago, as evidenced by the reduction of lung metastases in aspirin-treated tumor-bearing mice. Multiple studies have investigated the anticancer effect of aspirin in various cancers, and explained the properties by multiple molecular mechanisms. For example, studies have indicated that aspirin has inhibitory effects on COX-1/2, which are closely

Signal Transduction and Targeted Therapy (2020) 5:113
associated with cancer-related inflammation by stimulating the synthesis of various prostaglandins, such as PGE2.\textsuperscript{401,402} Subsequently, aspirin was demonstrated to kill melanoma, prostate, ovarian and other cancers by inhibition of PGE2 expression.\textsuperscript{403–406} Aspirin was also reported to mediate tumor-promoting inflammation in a COX independent manner, mainly by regulating the NF-κB signaling pathway, which was initially shown as a key event relating to chronic inflammation and increased cancer risk.\textsuperscript{407} Zhang et al. showed that some aspirin-based drugs exerted anticancer activity in colon and pancreatic cancer cells by inducing ANXA1, which could prevent NF-κB binding to DNA leading to increased apoptosis and decreased proliferation.\textsuperscript{408} Furthermore, Huo et al. recently found that aspirin prevented NF-κB activation and CDX2 expression stimulated by acid and bile salts in esophageal squamous cells from patients with Barrett’s esophagus.\textsuperscript{409} Aspirin treatment was also reported to enhance COMMD1 acetylation, regulating the ubiquitylation and nucleolar translocation of the RelA NF-κB subunit.\textsuperscript{410} Aspirin can also mediate the production of inflammatory cytokines, such as MCP-1 adipokine and interleukin (IL)-6.\textsuperscript{411,412} Interestingly, Reuter et al. reported that aspirin-triggered resolvins and lipoxins, as the specialized pro-resolving mediators, induce tumor cell debris degradation by macrophage phagocytosis and antagonize macrophage-secreted pro-inflammatory cytokines.\textsuperscript{413} Taken together, stimulating preclinical studies supports the notion that drug repurposing of aspirin as an anticancer agent for cancer prevention or treatment has potential. However, aspirin intake must be carefully controlled as it can cause intracerebral and gastrointestinal bleeding, a barrier to the widespread use of aspirin.\textsuperscript{414} Recently, Stegeman et al. demonstrated that people between age 40 and 85 would benefit from aspirin treatment designed to prevent a primary cancer.\textsuperscript{415} In addition, a previous study indicated that a protective effect against gastrointestinal, esophageal, pancreatic, brain, and lung cancer was associated with a low dose of aspirin (75 mg/day).\textsuperscript{416} Subsequently, several studies suggested a favorable effect of aspirin on colorectal cancer.\textsuperscript{417,418} Notably, Li et al. indicated patients with colorectal cancer, especially with positive PTGS2 (COX-2) expression and PIK3CA mutation, would benefit post-diagnosis aspirin therapy, evidenced by improved overall survival.\textsuperscript{419} Clinical trials on the use of aspirin in cancer therapy are becoming increasingly common worldwide, suggesting uptake of the routine clinical application of aspirin for cancer therapy.

**Thiocolchicoside:** Thiocolchicoside is a semisynthetic colchicoid derived from Gloriosa superba (Liliaceae) and is clinically approved for treating rheumatologic and orthopedic disorders due to an analgesic and anti-inflammatory effect.\textsuperscript{420} Interestingly, several studies have recently mentioned the anticancer properties of thiocolchicoside. For example, Reuter et al. reported that thiocolchicoside exerted significant anticancer activity in multiple cancers, including leukemia, myeloma, and squamous cell carcinoma. Their results indicated that thiocolchicoside reduced the activation of NF-κB and COX-2 by inducing ubiquitination degradation of IκBα, a key inhibitor of the NF-κB signaling pathway mediating IKK status and p65 nuclear translocation.\textsuperscript{421} Subsequently, they further identified the effect of thiocolchicoside on inhibition of cancer-induced bone metastasis with the ability of suppressing receptor activator of NF-κB ligand and the NF-κB signaling pathway.\textsuperscript{422} Notably, several pharmaceutical companies, provide thiocolchicoside (e.g., Muscoril and Myoril) as a

---

**Fig. 3** Signaling pathways mediated by aspirin. Multiple signaling pathways regulated by aspirin is shown, acting on diverse hallmarks of cancer including tumor-promoting inflammation, deregulating energy metabolism, angiogenesis, cancer metastasis and immune evasion, are shown.

---

**Table 1** Summary of drug repurposing and cancer treatment.

| Drug          | Hallmark of Cancer | Treatment |
|---------------|--------------------|-----------|
| Aspirin       | Tumor-promoting inflammation | Prevention/Treatment |
| Thiocolchicoside | Energy metabolism | Prevention |
|               | Angiogenesis       | Prevention |
|               | Cancer Metastasis  | Prevention |
|               | Immune Evasion     | Prevention |
myorelaxant and promote its application as an anti-inflammatory and analgesic drug. In addition, some clinical trials confirmed the drug safety of thiocolchicoside in the treatment of acute lower back pain. Thiocolchicoside, now a half-century old drug, therefore has substantial potential for cancer therapy by drug repurposing regardless of the few clinical trials to date investigating its anticancer activity. Interestingly, clinical trials of colchicine, which is closely related to thiocolchicoside, have been conducted in Kaohsiung Medical University Hospital to investigate its anticancer effect on invasion and metastasis in patients with hepatocellular carcinoma (NCT01935700) (NCT04264260).

Undeniably, specially targeted drugs with powerful anticancer activity and relatively few off-target effects are responsible for improved patient survival in the clinic. However, multiple lines of evidence suggest that most of these molecular agents show a transitory tumor therapeutic effect ultimately leading to relapse, because several alternative parallel signaling pathways supporting malignancy can be activated attributing to adaptation of therapy pressure. In this section, we summarize the potential existing drugs, that were investigated for cancer therapy in ongoing or forthcoming clinical trials, based on the hallmarks of cancer.

![Fig. 4](image.png)

**Fig. 4** Signaling pathways mediated by metformin. Direct or indirect protein targeting by Metformin is shown. These influences diverse hallmarks of cancer including regulating cell proliferation, self-renewal, cancer metastasis, angiogenesis and energy metabolism.
agents (ciclopirox olamine, ketoconazole and itraconazole), antiparasitic drug (ivermectin), anthelminthic drug (pyrvinium), antibiotic agent (brefeldin A), and natural products (quercetin, 3′-epi-12β-hydroxyfroside and toxicarioside O), showing potential promises for drug repurposing in future cancer therapy (Fig. 5). For example, brefeldin A, a macrolide antibiotic, showed significant autophagic cell death both in vitro and in vivo in colorectal cancer. Mechanistically, brefeldin A provoked endoplasmic reticulum stress-mediated upregulation of binding immunoglobulin protein (Bip), therefore promoting to increased Bip/Akt interaction resulting in decreased Akt phosphorylation, which usually activates autophagy. Another study found that ketoconazole, a traditional antifungal drug, induced PINK1/Parkin-mediated mitophagy by downregulating COX-2, which resulted in the acceleration of apoptosis, thereby inhibiting the growth of HCC. Ivermectin, a broad-spectrum antiparasitic drug sweep the 2015 Nobel prize for physiology or medicine, displayed anticancer activity against breast cancer cells by inducing PAK1/Akt regulated cytostatic autophagy. Interestingly, recent studies demonstrate that ivermectin also inhibits the replication of SARS-CoV-2 in vitro, although the paper by Caly et al. has elicited two letters to the editor to question the clinic use for human therapy. In summary, our previous findings, together with others, have laid a solid basis for repurposed non-oncology drugs for cancer treatment. We believe this strategy will achieve great success in cancer drug development.

Fig. 5 Partially repurposed drugs emanating from our laboratory. In addition to itraconazole, ivermectin, ketoconazole and brefeldin A which target brain, breast, liver and colon cancer, respectively, antifungal agent ciclopirox olamine, anthelminthic drug pyrvinium, and natural products quercetin, 3′-epi-12β-hydroxyfroside and toxicarioside O have also been studied
TECHNOLOGICAL APPROACHES TO DRUG REPURPOSING FOR CANCER THERAPY

Before an old drug can be selected for evaluation as an anticarcinogen with effectiveness and therapeutic potential, a mechanistic assessment of the drug effect in preclinical models is critical and requires systematic approaches.\(^{109,436}\) These approaches can be broadly divided into computational and experimental approaches, which employ existing data or biochemical experiments respectively to analyze the possibility that the “old drugs can treat tumors with new tricks”.\(^{437,438}\) In fact, success in drug repurposing typically depends on a flexible and collaborative use of both experimental and computational approaches to screen multi-targeted agents (Fig. 6).\(^{439,440}\)

Computational approaches based on molecular theory (MOT)
Understanding a drug at the molecular level, and matching it with clinical symptoms of neoplasms different from those for which it was originally approved or developed, is key for computational approaches based on MOT leading to drug repurposing.\(^{441–443}\) Such approaches involve comprehensive analysis of experimental data, such as chemical or protein structure, gene or protein expression, and various omics data, which assist researchers to put forward a repurposing hypothesis.\(^{444–447}\)

Molecular structure analysis. Using high-throughput computational structural analysis is an efficient way to predict binding site complementarity between the ligand and the target.\(^{439,448}\) Docking studies are the main algorithmic approach for predicting the orientation of a ligand into a cavity of the target protein.\(^{449,450}\)

High-quality structural data of known receptor targets involved in cancer can accurately predict specific drug targets using drug libraries.\(^{451,452}\) As an exemplar, bromovinyldeoxyuridine (BVDU) is a thymidine analog used for the treatment of herpes zoster infection, which interacts with viral thymidine kinase using several specific noncovalent binding sites.\(^{453,454}\) Heinrich et al. found that heat shock protein HSP27 was a potential target of BVDU, based on a predicted binding site to a viral thymidine kinase and identified some kinase inhibitors targeting HSP27 by in silico docking of a targeted library.\(^{455,456}\) Following up on these findings, Salentin et al. used the Protein Data Bank, which contains structural data for more than one thousand different drug–target pairs, which have similar interactions with BVDU and thymidine kinase.\(^{457,458}\) The anti-malarial drug amodiaquine was found to inhibit HSP27 chaperone function and reverse tumor drug resistance in multiple myeloma cell lines. Binding site comparisons are also a popular approach to predict similar pharmacological drugs.\(^{459}\) Lim et al. predicted the heart failure drug levosimendan as an inhibitor of RIOK1 and other kinases by using ligand binding site comparison and protein-ligand docking. They went on to show that levosimendan had anticancer effects by directly inhibiting RIOK1 and RNA processing enzymes.\(^{459}\)

Signature or pathway matching. Various omics studies of cancer not only deepen our understanding of tumor hallmarks at the molecular level, but also provide big data for supporting drug repurposing by applying advanced bioinformatics.\(^{460,461}\) A detailed framework constructed by computer processing can integrate the mechanisms of drug action, phenotypes and
molecular biological characteristics of cancer to identify novel drug–disease relationships and indicate potential drug repurposing possibilities.439,444 The novel associations between genes and cancer found by Genome-Wide Association Studies and Phenome-Wide Association Studies have expanded our knowledge of new targets for existing drugs.462–464 Drugs targeting cancer are inferred by overlapping cancer-associated genes and drug-targeted genes from DrugBank, a freely accessible database comprising over 13,000 drugs and related pathways or targets (https://www.drugbank.ca/).465–467 Medication Indication Resource (MEDI), another freely-available, computable MEDI can be used to confirm the plausibility of inferred drug indications, which have clinical potential.468,469 Following this approach, alosetron was discovered to have genetic correlation with bladder cancer although originally used to treat irritable bowel syndrome.470,471 Bezafibrate, a lipid regulating agent, was also suggested to have anticancer properties for melanoma.472 In a similar approach, Xu et al. utilized The Cancer Genome Atlas (TCGA) transcriptomes to construct non-tissue-specific core signatures, which were used to identify drugs whose perturbation signatures mimicked a single gene mutation.473 Combined with the use of the drug treatment profiles and an in silico screen, results indicated that several psychiatics drugs (such as trifluoperazine) and antihypertensive calcium channel blockers (such as perhexiline) might have anticancer potential by inhibition of the TGF-β pathway or modulation of AKT and AMPK phosphorylation, respectively.474,475

Computational approaches based on Real World Data (RWD). RWD, as its name suggests, is mainly composed of the real electronic health records (EHRs) of patients characterized by large and complex datasets.475–477 EHRs are the systematized collection of electronically-stored patient and population health information in a digital format478 and contain large amounts of data on patient outcomes.479,480 These are divided into diagnostic and pathophysiological data, including experimental data, drug prescribing data, disease phenotype, and imaging data.475,481 Both structured and unstructured data from patients have considerable value as a source for drug repurposing by identifying consistent signals.482 Moreover, the plentiful amount of EHR data allows for significant statistical significance.483,484 Retrospective clinical analysis is the most commonly used computational approach based on RWD and the data are mainly obtained from EHRs.485,486 A classic case of repurposing a noncancer drug for cancer treatment from retrospective clinical analysis is that of metformin which can decrease cancer mortality in a dose dependent manner.487,488 Smith et al. designed a clinical cohort from 15 years of EHRs from Vanderbilt University Medical Center and Mayo Clinic. In the independent populations, data from over 100,000 patients with a cancer diagnosis were used in the study and were validated with beneficial effects of metformin for cancer survival, including breast, colorectal, lung, and prostate cancers.489 Valproate, previously approved for use in epilepsy, also has been successfully repurposed arising from retrospective clinical analyses for the treatment of acute myeloid leukemia and glioblastoma.490–492

Experimental approaches based on intermolecular interactions. Proteomic techniques using affinity chromatography combined with mass spectrometry, showing protein interactions based on intermolecular force have been widely used for target validation, facilitating drug repurposing due to an experimentally based pharmacological analysis.493,494 In this approach, cells or animals are treated with drugs followed by deep proteome analysis to differentially quantify proteins changes that occurred.495,496 With the development of labeling (including metabolic labeling and chemical labeling) or label-free approaches, proteins targeted by the drug can be detected in an unbiased fashion.497,498 Gefitinib, an epidermal growth factor receptor kinase inhibitor was identified to have more than 20 targets by incubating cancer cells with a covalently modified gefitinib followed by mass spectrometry.499 The Cellular Thermo Stability Assay, based on the principle of altered protein thermal stabilization/distabilization in response to ligand binding enables the identification of drug targets by estimating the interaction of target proteins and drug-like ligands.500,501 By combining this with thermal proteome profiling, which can be applied in living cells without requiring compound labelling, cellular targets can be confirmed in an unbiased manner.502–504 Approaches based on chemical genetics are also dependent on intermolecular forces, and can help explain the relationship between binding and drug efficacy.505,506 An example of the success of this technique comes from Karaman et al. They evaluated several kinase inhibitors against pathologically significant human protein kinases using a competition binding assay in vitro. Interaction maps for 38 kinase inhibitors across a panel of 317 kinases representing ≥50% of the predicted human protein kinase generated a heat map of 3175 binding interactions. Surprisingly, some drugs including but not limited to sorafenib showed higher affinity to other targets than the published known targets. In addition, different targets of existing drugs, such as the anthelmintic drug niclosamide to treat Zika virus infection, are becoming increasingly recognized due to the development of chemical genetics suggesting repurposing opportunities for cancer.507

Experimental approaches based on phenotypic screening. Phenotypic screening is a direct way of drug repurposing by analyzing the relative effects in a designed model even if previous studies have not identified the candidate drugs targets.508,509 Typically, a series of cell based in vitro assays in 96- or 384-well format are used in phenotypic screening.508 For example, Iljin et al. identified disulfiram used for alcohol abuse as an antineoplastic agent by conducting high-throughput cell-based screening, using proliferation as the phenotypic criteria, with a library of 4910 druggable small molecules against four prostate cancer and two nonmalignant prostate epithelial cell lines. Subsequently, they validated the anticancer effect of disulfiram using genome wide-gene expression studies.509 Recently, Corsello et al. reported their studies on drug repurposing from a viability evaluation of 578 human cancer cell lines of diverse tumor types treated with more than 4500 drugs including hundreds of non- oncology compounds. They utilized a novel method named “PRISM” (profiling relative inhibition simultaneously in mixtures), which tracks the proliferation of mixtures of cancer cell lines during treatment with the candidate drug using unique molecular barcodes. If a particular drug has efficacy, proliferation of cell lines will decrease, resulting in depletion of a specific molecular barcodes. Using a bead-based assay, the relative abundance of each barcode was determined and anticancer activity profiles generated.49 49 non-oncology drugs had an unexpectedly high rate of anticancer activity.510,511 Whole animal screening assays can also be utilized in drug repurposing. Whole organism phenotypic assays not only identified candidate drugs effective against cancer, but additionally yielded pharmacokinetic and organ-toxicity results compared with cell-based screening.512–515 Ridges et al. used genetically engineered T-cell reporter zebrafish as a platform to evaluate over 26,000 small molecules for efficacy against leukemia and found 1H-indole-3-carbaldehyde 8-quinolinylhydrazone, termed lenaldekar, showed significant activity against various hematologic malignancies, including T-acute lymphoblastic leukemia and chronic myelogenous leukemia.513,514

**CHALLENGES IN THE DEVELOPMENT OF DRUG REPURPOSING**

Drug repurposing, aiming to repurpose old compounds for new indications, is already in widespread use in cancer therapy. However, few repurposed drugs are officially included in the
published cancer clinical practice guidelines. In spite of advantages such as demonstrated anticancer pharmacokinetic properties, and acceptable safety and tolerability in humans, there is (as in all drug development) still a possibility of failure in later stages of clinical trials because of competition from successful drugs involved in 190 registered clinical trials, <5% are sponsored by the pharmaceutical companies with the non-profit organizations represented by universities or hospitals supporting the remainder. For drugs that are off-patent, a new method-of-use patent can be obtained for a new indication. However, the patent application process is strict, requiring detailed data showing proof of credible treatment for the concerned indication, probably using unique formulations and dosage forms. Furthermore, if the generic manufacturer challenges those patents, lengthy and costly delays may ensue. Consequently, patent consideration-induced market exclusivity has been identified as a key hurdle in drug repurposing. Recently, the Off-Patent Drugs Bill 2015–16, was put before the UK Parliament to address this. It was supported by a number of medical charities but failed to pass into legislation.

Patent considerations
A repurposed product for cancer therapy could bring substantial profit to the patentee. However, the intellectual property status of these candidates is usually ambiguous and unpatentable as the scientific literature or clinical practice is prior art. Accordingly, only non-profit organizations are interested in developing such drugs as returns on investment could be low. In the Repurposing Drugs in Oncology (ReDo) project that includes 72 drugs, it was supported by a number of medical charities but failed to pass into legislation.

### Table 1. A total panel of repurposed drugs mentioned in this review

| Cancer hallmarks  | Repurposed drug            | Original application                                      | Reported targets/pathways                                      | Clinical trials of cancer |
|-------------------|-----------------------------|-----------------------------------------------------------|----------------------------------------------------------------|---------------------------|
| Sustaining proliferative signaling | Rapamycin                  | Immunosuppressant, anti-restenosis agent                  | mTOR and associated signaling networks                          | Rectum, breast, prostate cancer etc. |
| Sustaining proliferative signaling | Prazosin                   | Hypertension                                              | PKC-ε-dependent AKT signaling pathway                          | Adrenal incidentalomas    |
| Sustaining proliferative signaling | Indomethacin              | Rheumatic disease                                         | Shc-ERK axis, PKCζ-p38-DRP1 axis, Wnt/β-catenin                 | Colorectal, esophageal, ovarian cancer etc. |
| Evasive growth suppressors     | Quinacrine                 | Malaria, giardiasis, rheumatoid arthritis                | p53, FACT-C2-p53 axis                                          | Prostatic, non-small cell lung cancer etc. |
| Evasive growth suppressors     | Ritonavir                  | Human immunodeficiency virus                              | p53, CDK-β/Rb axis, AKT-E2F-1-Rb axis                         | Breast cancer, Kaposi’s sarcoma etc. |
| Resisting cell death           | Artemisin and related-derivatives | Malaria                                                   | Ferroptosis, autophagy, oncogenic, anokis                      | Breast, colorectal, lung cancer etc. |
| Resisting cell death           | Chloroquine and related-derivatives | Malaria, rheumatoid arthritis                         | Autophagy, PPT1                                                | Pancreatic, breast cancer, chondrosarcoma etc. |
| Enabling replicative immortality | Curcumin                  | Dermatological diseases                                   | hTERT, Wnt/β-catenin, Hippo/YAP                                | Breast, prostate cancer, multiple myeloma etc. |
| Enabling replicative immortality | Genistein                | Menopause, osteoporosis, obesity                          | hTERT, Wnt/β-catenin                                           | Colorectal, bladder, breast cancer etc. |
| Inducing angiogenesis          | Thalidomide                | Sedative, antiemetic                                       | Various proangiogenic factors, VEGF receptor, NF-κB            | Prostate, ovarian, colorectal cancer etc. |
| Inducing angiogenesis          | Itraconazole               | Antifungal agent                                          | mTOR-cholesterol trafficking, VDAC1, PDGF-Akt-mTOR axis        | Prostate, lung cancer etc. |
| Activating invasion and metastasis | Berberine                | Bacterial diarrhea                                        | Ephrin-B2, MIP-2/MMP-9, EMT, miR-101, VEGF                    | Gastric, colorectal, lung cancer etc. |
| Activating invasion and metastasis | Niclosamide               | Antihelminthic drug                                       | Wnt/β-catenin, STAT3, NF-κB                                    | Colorectal, prostate cancer etc. |
| Genome instability and mutation | Triamterene               | Diuretic                                                  | Nucleotide excision repair, thymidylate synthase             | Acute myelocytic leukemia etc. |
| Genome instability and mutation | Mebendazole and related-derivatives | Intestinal heminhsynthesis                               | Chk2, Nbs1, PARP-1, DHODH                                     | Medulloblastoma, glioma, astrocytoma etc. |
| Tumor-promoting inflammation | Aspirin                    | Pain, fever                                               | COX-1/2, ANXA1-NF-κB axis, CDX2, COMMD1–RelA axis             | Gastrointestinal, esophageal cancer etc. |
| Tumor-promoting inflammation | Thiocolchicoside           | Rheumatologic, orthopedic disorders                      | NF-κB-related pathways, COX-2                                 | None                       |
| Reprogramming energy metabolism | Metformin                 | Obese type 2 diabetes                                     | AMPK, PI3K-mTOR pathways, BACH1                                | Prostate, breast, colorectal cancer etc. |
| Reprogramming energy metabolism | Disulfiram                 | Alcohol-aversion drug                                     | ALDH, NAD–dependent proteins                                 | Prostate, breast cancer, melanoma etc. |
| Evading immune destruction     | Rotavirus vaccines, Live 17D | Infectious disease                                        | NF-κB, Type I interferon pathways, CTLs, Tregs                 | None                       |

This table lists existing non-oncology agents for cancer therapy in this review, including targeting cancer hallmarks, original application, reported targets or pathways and related clinical trials in cancer treatment [https://clinicaltrials.gov/].
Inequitable prescription
Theoretically, drugs prescribed by physicians should take into account scientific evidence based on clinical trials, generic or repurposed drugs should be prescribed where appropriate. However, the pharmaceutical industry can influence this by spending large amounts of money on drug promotion, marketing to physicians and advertising to consumers. Thalidomide, discussed above, is an excellent example of problems that can occur. Originally prescribed as a sedative or an antiemetic with low-cost and safe properties, it was recently repurposed to treat multiple myeloma. In two randomized clinical trials, the therapeutic regimen melphalan–prednisone–lenalidomide was compared with that of melphalan–prednisone–thalidomide, and showed no survival advantage.19,520 However, lenalidomide rather than thalidomide was approved as the standard therapy even if its approximate cost is 43-fold times higher than thalidomide. Obviously, prescribing cheaper drugs, with equivalent activity to the expensive ones, benefits patients rather than biopharma.

CONCLUSIONS AND FUTURE PERSPECTIVES
Cancer is still the second leading cause of death globally (around 9.6 million deaths in 2018) in spite of extensive studies to find new treatment regimens and more effective drugs.1 However, the cost of cancer treatment is increasing, largely due to the expense of taking drugs through clinical trials (typically around $2.6 billion according to a recent study) where there is only a low rate of success (around 12%)521. Therefore there exists an urgent need to develop effective, safe, cheaper, and readily available anticancer agents. Theoretically, drug repurposing could break the current drug shortage bottleneck. Importantly, our understanding of cancer biology and the associated hallmarks of cancer is increasing.37,238,426,427 This, coupled with repurposing studies that apply systematic screening of the entire pharmacopeia coupled with advanced bioinformatics, should identify new drugs and their targets. In addition, the use of non-oncology drugs, that account for the bulk of our medications, has the potential to further accelerate the progress of drug repurposing. In this review we have overviewed the most commonly used approaches for drug repurposing, addressing both phenotypic-based and target-based strategies. Based on widespread recognition of these concepts and related studies of drug repurposing over the last decade, we have summarized and evaluated old non-oncology drugs as potential candidates for drug repurposing (Table S1). We have discussed how some of these drugs effectively regulate at least one hallmark of cancer, often induced by multiple parallel signaling pathways, while others exert comprehensive anticancer effects by regulating multiple targets mediated by various alternative signaling routes. Their potential for mono- or drug combination therapy is discussed with respect to the key hallmarks of cancer.

However, there are some key points that deserve attention. Firstly, cancer is governed by multiple, complex cellular pathways, that could ultimately inhibit the effort of a specific targeted therapy. It is not trivial to replace inoperative targeted drugs with suitable multi-targeted non-oncology drugs, as evidenced by the few regimes currently used to treat cancer patients. So where do we go next? Drug combination therapies, an alternative strategy, should be considered which might have a higher success rate in clinical application. Drug combination therapies usually target multiple mechanisms, including downstream off-target, parallel pathways or compensatory signaling that contribute to tumorigenesis. Next, current cancer treatments mainly focus on directly killing cancer cells in both de novo drug discovery and drug repurposing. This direction seems rationale because increasing programmed cell death, like lethal-autophagy, ferroptosis, pyroptosis etc., are comprehensively studied and can provide alternative strategies for apoptosis-resistant cancer. Nevertheless, residual cancer cells (known as minimal residual disease), often remain after treatment, and are warning that “what does not kill me, makes me stronger”. Thus, using non-oncology drugs that have the potential to target the multiple hallmarks of cancer and the related cancer biology, instead of directly killing the cancer cells per se heralds them as a key complement to the new paradigm of personalized/precision medicine in the coming future. Meanwhile, the ever-increasing availability of biomedical data from public databases coupled with combined advances in techniques and analytical methods forms a sound basis for the accurate identification of repurposing candidates. In this respect, the PRISM public resource repurposing dataset, an unbiased multi-platform approach recently generated by Corsello et al., will prove a starting point for many future orientation studies.

In summary, drug repurposing that opened a window for drug discovery is a trend for including, but not limited to, cancer therapy, regardless of many failures. As Nobel laureate in physiology and medicine, James Black, once said: “the most fruitful basis for the discovery of a new drug is to start with an old drug.”522 We totally concur with this concept.

ACKNOWLEDGEMENTS
This work was supported by grants from the Chinese NSFC (nos. 81821002, 81790251, and 81773143), and Guangdong Basic and Applied Basic Research Foundation (2019B030302012).

ADDITIONAL INFORMATION
Competing interests: The authors declare no competing interests.

REFERENCES
1. Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018).
2. Torre, L. A. et al. Global cancer statistics, 2012. CA Cancer J. Clin. 65, 87–108 (2015).
3. Kirsch, J. et al. Biosensor technology: recent advances in threat agent detection and medicine. Chem. Soc. Rev. 42, 8733–8768 (2013).
4. Shaked, Y. The pro-tumorigenic host response to cancer therapies. Nat. Rev. Cancer 19, 667–685 (2019).
5. Eder, J., Sedrani, R. & Wiesmann, C. The discovery of first-in-class drugs: origins and evolution. Nat. Rev. Drug Discov. 13, 577–587 (2014).
6. Munos, B. Lessons from 60 years of pharmaceutical innovation. Nat. Rev. Drug Discov. 8, 959–968 (2009).
7. Mullard, A. Partnering between pharma peers on the rise. Nat. Rev. Drug Discov. 10, 561–562 (2011).
8. Moffat, J. G., Rudolph, J. & Bailey, D. Phenotypic screening in cancer drug discovery—past, present and future. Nat. Rev. Drug Discov. 13, 588–602 (2014).
9. Su, M. et al. Availability, cost, and prescription patterns of antihypertensive medications in primary health care in China: a nationwide cross-sectional survey. Lancet 390, 2559–2568 (2017).
10. Nosengo, N. Can you teach old drugs new tricks? Nature 534, 314–316 (2016).
11. Kurzrock, R., Kantarjian, H. M., Kesselheim, A. S. & Sigal, E. V. New drug approvals in oncology. Nat. Rev. Clin. Oncol. 17, 140–146 (2020).
12. Paul, S. M. et al. How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat. Rev. Drug Discov. 9, 203–214 (2010).
13. Petkis, G. A. When failure should be the option. BMC Biol. 8, 61 (2010).
14. Bedard, P. L., Hyman, D. M., Davidi, M. S. & Shi, L. Small molecules, big impact: 20 years of targeted therapy in oncology. Lancet 395, 1078–1088 (2020).
15. Shibue, T. & Weinberg, R. A. EMT, CSCl, and drug resistance: the mechanistic link and clinical implications. Nat. Rev. Clin. Oncol. 14, 611–629 (2017).
16. Pushpakom, S. et al. Drug repurposing: progress, challenges and recommendations. Nat. Rev. Drug Discov. 18, 41–58 (2019).
17. P nastzik, P. Scientific advice—is drug repurposing missing a trick? Nat. Rev. Clin. Oncol. 14, 455–456 (2017).
18. Corsello, S. M. et al. The Drug Repurposing Hub: a next-generation drug library and information resource. Nat. Med. 23, 405–408 (2017).
19. Clohessy, J. G. & Pandolfi, P. P. Mouse hospital and co-clinical trial project—from bench to bedside. Nat. Rev. Clin. Oncol. 12, 491–498 (2015).
145. Goldberg, S. B. et al. A phase I study of erlotinib and hydroxycycloquine in advanced non-small-cell lung cancer. J. Thorac. Oncol. 7, 1602–1608 (2012).

146. Karasic, T. B. et al. Effect of gemcitabine and nab-paclitaxel with or without hydroxycycloquine on patients with advanced pancreatic cancer: a Phase 2 randomized clinical trial. JAMA Oncol. 5, 993–998 (2019).

147. Wolpin, B. M. et al. Phase II and pharmacodynamic study of autophagy inhibition using hydroxycycloquine in patients with metastatic pancreatic adenocarcinoma. Oncologist 19, 637–638 (2014).

148. Chi, M. S. et al. Double autophagy modulators reduce 2-deoxyglucose uptake in sarcoma patients. Oncotarget 6, 29808–29817 (2015).

149. Pavlova, N. N. & Thompson, C. B. The emerging hallmarks of cancer metabolism. Cell Metab. 23, 27–47 (2016).

150. Gatesby, R. A. & Gillis, J. J. Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer 4, 891–899 (2004).

151. Koppenol, W. H., Bounds, P. L. & Dang, C. V. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat. Rev. Cancer 11, 325–337 (2011).

152. Martinez-Outschoorn, U. E. et al. Cancer metabolism: a therapeutic perspective. Nat. Rev. Clin. Oncol. 14, 11–31 (2017).

153. Stine, Z. E. et al. MYC, metabolism, and cancer. Cancer Discov. 5, 1024–1039 (2015).

154. Desbats, M. A., Giacomini, I., Prayer-Galetti, T. & Montopoli, M. Metabolic plasticity in chemotherapy resistance. Front Oncol. 10, 281 (2020).

155. Morandi, A. & Indraccolo, S. Linking metabolic reprogramming to therapy resistance in cancer. Biochim. Biophys. Acta Rev. Cancer 1868, 1–6 (2017).

156. Fennica, I. & Korbonits, M. Metformin-mode of action and clinical implications for diabetes and cancer. Nat. Rev. Endocrinol. 10, 143–156 (2014).

157. Brown, J. B., Nichols, G. A. & Perry, A. The burden of treatment failure in type 2 diabetes. Diabetes Care. 27, 1535–1540 (2004).

158. Rao Kondapally Seshasai, S. et al. Diabetes mellitus, fasting glucose, and risk of cause-specific death. N. Engl. J. Med. 364, 829–841 (2011).

159. Peeray, K. S. et al. Diabetes mellitus and breast cancer outcomes: a systematic review and meta-analysis. J. Clin. Oncol. 29, 40–46 (2011).

160. Gallagher, E. J. & LeRoith, D. Obesity and diabetes: the increased risk of cancer-cause-specific death. Nat. Rev. Endocrinol. 7, 363–374 (2011).

161. Pollak, M. Overcoming drug development bottlenecks with repurposing: repurposing biguanides to target energy metabolism for cancer treatment. Nat. Med. 20, 591–594 (2014).

162. Bronsveld, H. K. et al. The association of diabetes mellitus and insulin treatment with expression of insulin-related proteins in breast tumors. BMC Cancer 18, 224 (2018).

163. Howell, J. J. et al. Metformin inhibits hepatic mTORC1 signaling via dose-dependent mechanisms involving AMPK and the TSC complex. Cell Metab. 25, 463–471 (2017).

164. Kalender, A. et al. Metformin, independent of AMPK, inhibits mTORC1 in a RAG GTPase-dependent manner. Cell Metab. 11, 390–401 (2010).

165. Wu, D. et al. Glucose-regulated phosphorylation of TE2 by AMPK reveals a pathway linking diabetes to cancer. Nature 559, 637–641 (2018).

166. Liu, X. et al. Metformin targets central carbon metabolism and reveals mitochondrial requirements in human cancers. Cell Metab. 24, 728–739 (2016).

167. Lee, J. et al. Effective breast cancer combination therapy targeting BACH1 and mitochondrial metabolism. Nature 568, 254–258 (2019).

168. Mark, M. et al. Impact of addition of metformin to abiraterone in metastatic prostate cancer patients with disease progressing while receiving abiraterone treatment (MetAbPro): phase 2 pilot study. Clin. Genitourin. Cancer 17, e323–e328 (2019).

169. Zhang, Z. J. et al. The effect of metformin on biomarkers and survivals for breast cancer- a systematic review and meta-analysis of randomized clinical trials. Pharm. Res. 141, 551–555 (2019).

170. Petchsila, K. et al. Effect of metformin for decreasing proliferative marker in women with endometrial cancer: a randomized double-blind placebo-controlled trial. Asian Pac. J. Cancer Prev. 21, 733–741 (2020).

171. Bhav-Luximon, A. & Bumry, D. Metformin in pancreatic cancer treatment: from clinical trials through basic research to biomarker quantification. J. Cancer Res Clin. Oncol. 142, 2159–2171 (2016).

172. Hald, J. & Jacobsen, E. A drug sensitizing the organism to ethyl alcohol. Lancet 2, 1001–1004 (1948).

173. Suh, J. J., Pettinati, H. M., Kampman, K. M. & O’Brien, C. P. The status of disulram and its ram and metabolites. Pharmacother. 31, 511–518 (1997).
208. Xu, X. L. et al. Rb suppresses human cone-precursor-derived retinoblastoma tumours. Nature 514, 385–388 (2014).

209. Van Dyke, K., Lantz, C. & Szustkiewicz, C. Quinacrine: mechanisms of antimarial action. Science 169, 492–493 (1970).

210. Requena-Mendez, A. et al. The use of quinacrine in nitroimidazole-resistant giardia duodenalis: an old drug for an emerging problem. J. Infect. Dis. 215, 946–953 (2017).

211. Egorin, M. J., Trump, D. L. & Wainwright, C. W. Quinacrine ochronosis and rheumatoid arthritis. JAMA 236, 385–386 (1976).

212. Larrieu, A. J. et al. Intraperitoneal instillation of quinacrine for treatment of recurrent spontaneous pneumothorax. Ann. Thorac. Surg. 28, 146–150 (1979).

213. Geschwind, M. D. et al. Quinacrine treatment trial for sporadic Creutzfeldt-Jakob disease. Neurology 81, 2015–2023 (2013).

214. Mall, S. et al. DNA binding small-molecule drugs mediating the anticancer cytotoxicity of DNA-binding small-molecule drugs. Cancer Res. 78, 1431–1443 (2018).

215. Gasparian, A. V. et al. Curcumin: anticancer compounds that simultaneously suppress NF-kappaB and activate p53 by targeting FACT. Sci. Transl. Med. 3, 93ta74 (2011).

216. Park, S. et al. Therapeutic effect of quinacrine, an antiprotozoan drug, by selective suppression of p-CHK1/2 in p53-negative malignant cancers. Mol. Cancer Res. 16, 935–946 (2018).

217. Preet, R. et al. Ch1 kinase inhibitors synergizes quinacrine mediated apoptosis in breast cancer cells by compromising the base excision repair cascade. Biochem. Pharmacol. 105, 23–33 (2016).

218. Mohapatra, P. et al. Quinacrine-mediated autophagy and apoptosis in colon cancer cells is through a p53- and p21-dependent mechanism. Oncol. Res. 20, 81–91 (2012).

219. Hede, K. Antimalaria drug offers antitumor strategies. J. Natl Cancer Inst. 103, 1490–1491 (2011).

220. Markowitz, M. et al. A preliminary study of ritonavir, an inhibitor of HIV-1 protease, to treat HIV-1 infection. N. Engl. J. Med. 333, 1534–1539 (1995).

221. Gallant, J. E. Strategies for long-term success in the treatment of HIV infection. JAMA 283, 1329–1334 (2000).

222. Simon, V., Ho, D. D. & Abdooll Karim, Q. HIV/AIDS epidemiology, pathogenesis, prevention, and treatment. Lancet 368, 489–504 (2006).

223. Eggleton, J. S. & Nagali, S. in SkinPharm (2020).

224. Franceschi, S. et al. Kaposi sarcoma incidence in the Swiss HIV Cohort Study before and after highly active antiretroviral therapy. Br. J. Cancer 99, 800–804 (2008).

225. Franceschi, S. et al. Changing patterns of cancer incidence in the early- and late-HAART periods: the Swiss HIV Cohort Study. Br. J. Cancer 103, 416–422 (2010).

226. Rengan, R. et al. Effect of HIV on survival in patients with non-small-cell lung cancer in the era of highly active antiretroviral therapy: a population-based study. Lancet Oncol. 13, 1203–1209 (2012).

227. Liu, S. T. et al. AIDS-related Burkitt’s lymphoma versus diffuse large-cell lymphoma in the pre-highly active antiretroviral therapy (HAART) and HAART eras: significant differences in survival with standard chemotherapy. J. Clin. Oncol. 23, 4430–4438 (2005).

228. Chiao, E. Y., Giordano, T. P., Richardson, P. & El-Serag, H. B. Human immunodeficiency virus-associated squamous cell cancer of the anus: epidemiology and outcomes in the highly active antiretroviral era. J. Clin. Oncol. 26, 474–479 (2008).

229. Chow, W. A., Jiang, C. & Guan, M. Anti-HIV drugs for cancer therapeutics: back to the future? Lancet Oncol. 10, 61–71 (2009).

230. Gaeddcke, S. et al. Antitumor effect of the human immunodeficiency virus protease inhibitor ritonavir: induction of tumor-cell apoptosis associated with perturbation of proteasomal proteolysis. Cancer Res. 62, 6901–6908 (2002).

231. Kumar, S. et al. Ritonavir blocks AKT signaling, activates apoptosis and inhibits migration and invasion in ovarian cancer cells. Mol. Cancer 8, 26 (2009).

232. Srinagar, A. et al. The human immunodeficiency virus protease inhibitor ritonavir inhibits lung cancer cells, in part, by inhibition of survivin. J. Thorac. Oncol. 6, 661–670 (2011).

233. Batchu, R. B. et al. Ritonavir-mediated induction of apoptosis in pancreatic cancer occurs via the RB/E2F-1 and AKT pathways. Pharmacology 7, 46–57 (2014).

234. Ahluwalia, M. et al. Phase II trial of ritonavir/lopinavir in patients with progressive or recurrent high-grade gliomas. J. Neurooncol. 102, 317–321 (2011).
Kim, H. S. et al. Berberine-induced AMPK activation inhibits the metastatic progression of colon cancer cells through increasing insulin receptor expression. *Metabolism* **59**, 285–292 (2010).

Ma, W. et al. Berberine inhibits the proliferation and migration of breast cancer cells through the downregulation of hypoxia-inducible factor-1, VEGF, and pro-inflammatory mediators. *Drug Chem. Toxicol.* **35**, 57–70 (2012).

Kim, S. et al. Berberine suppresses TPA-induced fibroblastin expression through the inhibition of VEGF secretion in breast cancer cells. *Cell Physiol. Biochem.* **32**, 547–554 (2012).

Bouwman, P. & Jonkers, J. The effects of deregulated DNA damage signalling on genome instability. *Nat. Rev. Mol. Cell Biol.* **18**, 175–186 (2017).

Ye, T. et al. Niclosamide induces apoptosis through mitochondrial intrinsic pathway and inhibits migration and invasion in human thyroid cancer in vitro. *Biochem. Pharmacol.* **169**, 113610 (2019).

Tubbs, A. Nussenzwerg, A. & Endogenous, D. N. A. Damage as a source of genomic instability in cancer. *Cell* **168**, 644–656 (2017).

Kim, J., Bretz, C. L. & Lee, S. Epigenetic instability of imprinted genes in human colon cancer. *Nat. Rev. Mol. Cell Biol.* **18**, 579–598 (2017).

Oxlund, C. S. et al. Low dose spironolactone reduces blood pressure in patients with resistant hypertension and type 2 diabetes mellitus: a double blind randomized clinical trial. *J. Hypertens.* **31**, 2094–2102 (2013).

Patibandla, S., Heaton, J. & Kyaw, H. in *StatPearls* (2020).

Manolis, A. A., Manolis, T. A., Melita, H. & Manolis, A. S. Spotlight on spironolactone oral suspension for the treatment of heart failure: focus on patient selection and perspectives. *Vasc. Health Risk Manag.* **15**, 571–579 (2019).

Bouwman, P. & Jonkers, J. The effects of deregulated DNA damage signalling on cancer chemotheraphy response and resistance. *Nat. Rev. Cancer* **12**, 587–598 (2012).

Liu, J. et al. Niclosamide inhibits epithelial-mesenchymal transition and tumor growth in latiparin-resistant human epidermal growth factor receptor 2-positive breast cancer. *Int. J. Biochem. Cell Biol.* **71**, 12–23 (2016).

Guo, C. et al. Targeting androgen receptor versus targeting androgens to suppress castration resistant prostate cancer. *Cancer Lett.* **397**, 133–143 (2017).

Circu, M. L. et al. A novel high content imaging-based screen identifies the anti-helminthic niclosamide as an inhibitor of lysosome anterograde trafficking and prostate cancer cell invasion. *PLoS ONE* **11**, e0146931 (2016).

Wang, L. H. et al. The anthelmintic niclosamide inhibits cancer stemness, extracellular matrix remodeling, and metastasis through dysregulation of the nuclear beta-catenin/c-Myc axis in OSCC. *Sci. Rep.* **8**, 12776 (2018).

Chien, M. H. et al. Niclosamide, an oral anthelmintic drug, exhibits antimetastatic activity in hepatocellular carcinoma cells through downregulating Twist-mediated CD10 expression. *Environ. Toxicol.* **33**, 659–669 (2018).

Zhu, Y. et al. Repurposing of the anti-helminthic drug niclosamide to treat melanoma and pulmonary metastasis via the STAT3 signaling pathway. *Biochem. Pharmacol.* **169**, 113610 (2019).

Yu, K. et al. Niclosamide induces apoptosis through mitochondrial intrinsic pathway and inhibits migration and invasion in human thyroid cancer in vitro. *Biochem. Pharmacol.* **92**, 403–411 (2017).

Chen, H. et al. Discovery of O-alkylamino tethered niclosamide derivatives as potent and orally bioavailable anticancer agents. *ACS Med. Lett. Chem.* **4**, 180–185 (2013).

Ye, T. et al. Niclosamide inhibits the growth of cancer stem cells by inducing the degradation of TFIIH and the chemosensitization of tumor cells to cisplatin-induced injury by enhancing nucleotide excision repair. *BMJ Cancer* **11**, 159–160 (2017).

Chen, H. et al. Niclosamide inhibits epithelial-mesenchymal transition and tumor growth in latiparin-resistant human epidermal growth factor receptor 2-positive breast cancer. *Int. J. Biochem. Cell Biol.* **71**, 12–23 (2016).

Guo, C. et al. Targeting androgen receptor versus targeting androgens to suppress castration resistant prostate cancer. *Cancer Lett.* **397**, 133–143 (2017).

Circu, M. L. et al. A novel high content imaging-based screen identifies the anti-helminthic niclosamide as an inhibitor of lysosome anterograde trafficking and prostate cancer cell invasion. *PLoS ONE* **11**, e0146931 (2016).

Wang, L. H. et al. The anthelmintic niclosamide inhibits cancer stemness, extracellular matrix remodeling, and metastasis through dysregulation of the nuclear beta-catenin/c-Myc axis in OSCC. *Sci. Rep.* **8**, 12776 (2018).

Chien, M. H. et al. Niclosamide, an oral anthelmintic drug, exhibits antimetastatic activity in hepatocellular carcinoma cells through downregulating Twist-mediated CD10 expression. *Environ. Toxicol.* **33**, 659–669 (2018).

Zhu, Y. et al. Repurposing of the anti-helminthic drug niclosamide to treat melanoma and pulmonary metastasis via the STAT3 signaling pathway. *Biochem. Pharmacol.* **169**, 113610 (2019).

Yu, K. et al. Niclosamide induces apoptosis through mitochondrial intrinsic pathway and inhibits migration and invasion in human thyroid cancer in vitro. *Biochem. Pharmacol.* **92**, 403–411 (2017).

Chen, H. et al. Discovery of O-alkylamino tethered niclosamide derivatives as potent and orally bioavailable anticancer agents. *ACS Med. Lett. Chem.* **4**, 180–185 (2013).

Ye, T. et al. Niclosamide inhibits the growth of cancer stem cells by inducing the degradation of TFIIH and the chemosensitization of tumor cells to cisplatin-induced injury by enhancing nucleotide excision repair. *BMJ Cancer* **11**, 159–160 (2017).

Chen, H. et al. Discovery of O-alkylamino tethered niclosamide derivatives as potent and orally bioavailable anticancer agents. *ACS Med. Lett. Chem.* **4**, 180–185 (2013).

Ye, T. et al. Niclosamide inhibits the growth of cancer stem cells by inducing the degradation of TFIIH and the chemosensitization of tumor cells to cisplatin-induced injury by enhancing nucleotide excision repair. *BMJ Cancer* **11**, 159–160 (2017).

Chen, H. et al. Discovery of O-alkylamino tethered niclosamide derivatives as potent and orally bioavailable anticancer agents. *ACS Med. Lett. Chem.* **4**, 180–185 (2013).

Ye, T. et al. Niclosamide inhibits the growth of cancer stem cells by inducing the degradation of TFIIH and the chemosensitization of tumor cells to cisplatin-induced injury by enhancing nucleotide excision repair. *BMJ Cancer* **11**, 159–160 (2017).

Chen, H. et al. Discovery of O-alkylamino tethered niclosamide derivatives as potent and orally bioavailable anticancer agents. *ACS Med. Lett. Chem.* **4**, 180–185 (2013).

Ye, T. et al. Niclosamide inhibits the growth of cancer stem cells by inducing the degradation of TFIIH and the chemosensitization of tumor cells to cisplatin-induced injury by enhancing nucleotide excision repair. *BMJ Cancer* **11**, 159–160 (2017).
411. Hsieh, C. C. & Huang, Y. S. Aspirin breaks the crosstalk between TNF-L1 adipocytes and 4T1 breast cancer cells by regulating cytokine production. PLoS ONE 11, e0147161 (2016).

412. Hsieh, C. C. & Wang, C. H. Aspirin disrupts the crosstalk of angiogenic and inflammatory cytokines between 4T1 breast cancer cells and macrophages. Mediators Inflamm. 2018, 6380643 (2018).

413. Gilligan, M. M. et al. Drug-triggered proresolving mediators stimulate resolution in cancer. Proc. Natl Acad. Sci. USA. 116, 6292–6297 (2019).

414. Kraus, S., Sion, D. & Arber, N. Can we select patients for colorectal cancer prevention with aspirin? Curr. Pharm. Des. 21, 5127–5134 (2015).

415. Stegeman, J. et al. Aspirin for primary prevention of cardiovascular disease and cancer; a benefit and harm analysis. PLoS ONE 10, e0127194 (2015).

416. Rothwell, P. M. Effect of dual aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet 377, 31 (2001).

417. Drew, D. A., Cao, Y. & Chan, A. T. Aspirin and colorectal cancer: the promise of precision chemoprevention. Nat. Rev. Cancer 16, 173–186 (2016).

418. Liao, X. et al. Aspirin use, tumor PI3KCA mutation, and colorectal-cancer survival. N. Engl. J. Med. 367, 1596–1606 (2012).

419. Li, P. et al. Aspirin use after diagnosis but not before diagnosis improves established colorectal cancer survival: a meta-analysis. Gut 64, 1419–1425 (2015).

420. Tuzun, F. et al. Multicenter, randomized, double-blinded, placebo-controlled trial of thiocolchicoside in acute low back pain. J. Bone Spine 70, 356–361 (2003).

421. Reuter, S. et al. Thiocolchicoside exhibits anticancer effect through down-regulation of NF-kappaB pathway and its regulated gene products linked to inflammation and cancer. Cancer Prev. Res. (Phila.). 3, 1462–1472 (2010).

422. Reuter, S., Gupta, S. C., Phromnoi, K. & Aggarwal, B. B. Thiocolchicoside suppresses osteoclastogenesis induced by RANKL and cancer cells through inhibition of inflammatory pathways: a new use for an old drug. Br. J. Pharmacol. 165, 2127–2139 (2012).

423. Micheau, O., Dufour, F. & Walczak, H. Thiocolchicoside a semi-synthetic derivative of the Glory Lily: a new weapon to fight metastatic bone resorption? Br. J. Pharmacol. 165, 2124–2126 (2012).

424. Sprovi, E. et al. Efficacy and safety of a fixed combination of intramuscular diclofenac 75 mg + thiocolchicoside 4 mg in the treatment of acute low back pain: a phase III, randomized, double blind, controlled trial. Eur. J. Phys. Rehabil. Med. 54, 654–662 (2018).

425. Tao, R. et al. Clinical comparative study: efficacy and tolerability of tolterodine and thiocolchicoside in acute low back pain and spinal muscle spasticity. Asian Spine J. 6, 115–122 (2012).

426. Russo, M. et al. Adaptive mutability of colorectal cancers in response to targeted therapies. Science 366, 1473–1480 (2019).

427. Wicki, A. et al. Acquired resistance to clinical cancer therapy: a twist in physiological signaling. Physiol. Rev. 96, 805–829 (2016).

428. Sleire, L. et al. Drug repurposing in cancer. Pharm. Res. 124, 79–91 (2017).

429. Saini, N. & Yang, X. Metformin as an anticancer agent: actions and mechanisms targeting cancer stem cells. Acta Biochim. Biophys. Sin. 50, 133–148 (2019).

430. Jiao, Y., Hannafon, B. N. & Ding, W. Q. Disulfiram’s anticancer activity: evidence and mechanisms. Anticancer Agents Med. Chem. 16, 1378–1384 (2016).

431. Zhou, L. et al. Brefeldin A inhibits colorectal cancer growth by triggering Bip/GRP78-mediated autophagy. FASEB J. 33, 5520–5534 (2019).

432. Chen, Y. et al. Ketoconazole exacerbates mitophagy to induce apoptosis by downregulating cycloxygenase-2 in hepatocellular carcinoma. J. Hepatol. 70, 66–77 (2019).

433. Dou, Q. et al. Ivermectin induces cytoskeletal autophagy by blocking the PAK1/Akt axis in breast cancer. Cancer Res. 76, 4457–4460 (2016).

434. Bray, M., Rayner, C., Noel, F., Jans, D. & Wagstaff, K. Ivermectin and COVID-19: a potential for repurposing for cancer therapy: approaches and opportunities to challenge anticancer targets. Semin. Cancer Biol. https://doi.org/10.1016/j.semcancer.2019.09.023 (2019).
24

23

440. Palve, V., Liao, Y., Remsing Rix, L. L. & Rix, U. Turning liabilities into opportunities: off-target based drug repositioning in cancer. Semin. Cancer Biol. https://doi.org/10.1016/j.semcancer.2020.02.003 (2020).

441. Guneey, E., Menche, J., Vidal, M. & Barabasi, A. L. Network-based in silico drug efficacy screening. Nat. Commun. 7, 10331 (2016).

442. Li, Y. & Jones, S. J. Drug repositioning for personalized medicine. Genome Med. 6, 40 (2014).

443. Issa, N. T., Stathias, V., Schurer, S. & Dakshanamurthy, S. Machine and deep learning approaches for cancer drug repositioning. Semin. Cancer Biol. https://doi.org/10.1016/j.semcancer.2019.12.011 (2020).

444. Nowak-Sliwinska, P., Scapozza, L. & Ruiz, I. A. Drug repositioning in oncology: compounds, pathways, phenotypes and computational approaches for color- ocal cancer. Biochim. Biophys. Acta. Rev. Cancer 1871, 434–454 (2019).

445. Jones, L. H. & Bunnage, M. E. Applications of chemogenomic library screening in drug discovery. Nat. Rev. Drug Discov. 16, 285–296 (2017).

446. Kuhlman, B. & Bradley, P. Advances in protein structure prediction and design. Nat. Rev. Mol. Cell Biol. 20, 681–697 (2019).

447. Niu, B. et al. Protein-structure-guided discovery of functional mutations among 19 cancer types. Nat. Genet. 48, 827–837 (2016).

448. Knapp, S. New opportunities for kinase drug repositioning and target discovery. Br. J. Cancer 118, 936–937 (2018).

449. Ma, D. L., Chan, D. S. & Leung, C. H. Drug repositioning by structure-based virtual screening. Chem. Sci. Rev. 42, 2130–2141 (2013).

450. Gorgulla, C. et al. An open-source drug discovery platform enables ultra-large virtual screens. Nature 580, 663–668 (2020).

451. Honarpourvar, B. et al. Integrative approach to structure-based enzymatic drug design: molecular modeling, spectroscopy, and experimental bioactivity. Chem. Rev. 114, 493–537 (2014).

452.bero, T. L. et al. Oncogenic protein interfaces: small molecules, big challenges. Nat. Rev. Cancer 14, 248–262 (2014).

453. Salentín, S. et al. From malaria to cancer: computational drug repositioning of amodiaquine using PLP interaction patterns. Sci. Rep. 7, 11401 (2017).

454. Congiuati, C., Brancala, A. & McGuigan, C. Molecular modelling studies on the binding of some protides to the putative human phosphoramidase Hint1. Nucleosides Nucleotides Nucleic Acids 26, 1121–1124 (2007).

455. Heinrich, J. C. et al. New HSP27 inhibitors efficiently suppress drug resistance development in cancer cells. Oncotarget 7, 68156–68169 (2016).

456. Heinrich, J. C. et al. RP101 (brivudine) binds to heat shock protein HSP27 (HSPB1) and enhances survival in animals and pancreatic cancer patients. J. Cancer Res. Clin. Oncol. 137, 1349–1361 (2011).

457. Stular, T. et al. Discovery of mycobacterium tuberculosis InhA inhibitors by binding sites comparison and ligands prediction. J. Med. Chem. 59, 11069–11078 (2016).

458. Salentinen, S. et al. PUP: fully automated protein-ligand interaction profiler. Nucleic Acids Res. 43, W443–W447 (2015).

459. Lim, H. et al. Rational discovery of dual-indication multi-target PDE5/Kine inhibitor for precision anticancer therapy using structural systems pharmacolog- y. PLoS Comput. Biol. 15, e1006619 (2019).

460. Fernandez-Banet, J. et al. OASIS: web-based platform for exploring cancer multi- entity data. Nat. Methods 13, 9–10 (2016).

461. Chen, B. B. et al. Harnessing big “omics” data and AI for drug discovery in hepa- tocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol. 17, 238–251 (2020).

462. Sud, A., Kinnerley, B. & Houlston, R. S. Genome-wide association studies of cancer: current insights and future perspectives. Nat. Rev. Cancer 19, 692–704 (2017).

463. Kim, J. et al. Systems pharmacology-based approach of connecting disease genes to genome-wide association studies with traditional Chinese medicine. Int. J. Genom. 2018, 769356 (2018).

464. Zhang, J. et al. Use of genome-wide association studies for cancer research and drug repositioning. PLoS ONE 10, e0116477 (2015).

465. Mei, S. Zhang, K. A Multi-label learning framework for drug repositioning. Pharmacology 11 (2019).

466. Singh, V. K. et al. Drug repositioning for chronic myeloid leukemia: in silico and in vitro investigation of DrugBank database for allosteric Bcr-Abl inhibitors. J. Biomat. Sci. Drug. Dyn. 35, 1833–1848 (2017).

467. You, J., McLeod, R. D. & Hu, P. Predicting drug-target interaction network using deep learning model. Comput. Biol. Chem. 80, 90–101 (2019).

468. Wei, W. Q., Mosley, J. D., Bastarache, L. & Denny, J. C. Validation and enhancement of a computational medication indication resource (MEIe) using a large practice-based dataset. AMIA Annu. Symp. Proc. 2013, 1448–1456 (2013).

469. Bejan, C. A., Wei, W. Q. & Denny, J. C. Assessing the role of a medication- indication resource in the treatment relation extraction from clinical text. J. Am. Med Inform. 22, e162–e176 (2015).

470. Bielefeldt, K. Ischemic collitis as a complication of medication use: an analysis of the federal adverse event reporting system. Dig. Dis. Sci. 61, 2655–2665 (2016).
501. Martinez Molina, D. et al. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science 341, 84–87 (2013).
502. Mateus, A. et al. Thermal proteome profiling for interrogating protein interactions. Mol. Syst. Biol. 16, e9232 (2020).
503. Franken, H. et al. Thermal proteome profiling for unbiased identification of direct and indirect drug targets using multiplexed quantitative mass spectrometry. Nat. Protoc. 10, 1567–1593 (2015).
504. Perrin, J. et al. Identifying drug targets in tissues and whole blood with thermal shift profiling. Nat. Biotechnol. 38, 303–308 (2020).
505. Kong, F., Cheung, A. K. & Huang, S. M. Chemical genetics-based target identification in drug discovery. Annu Rev. Pharm. Toxicol. 52, 57–78 (2012).
506. Wong, L. H. et al. Reverse chemical genetics: comprehensive fitness profiling reveals the spectrum of drug target interactions. PLoS Genet. 12, e1006275 (2016).
507. Karaman, M. W. et al. A quantitative analysis of kinase inhibitor selectivity. Nat. Biotechnol. 26, 127–132 (2008).
508. Sala, C. et al. Simple model for testing drugs against nonreplicating Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 54, 4150–4158 (2010).
509. Iljin, K. et al. High-throughput cell-based screening of 4910 known drugs and drug-like small molecules identifies disulfiram as an inhibitor of prostate cancer cell growth. Clin. Cancer Res. 15, 6070–6078 (2009).
510. Corsello, S. M. et al. Discovering the anticaner potential of non-oncology drugs by systematic viability profiling. Nat. Cancer 1, 235–248 (2020).
511. Beijersbergen, R. L. Old drugs with new tricks. Nat. Cancer 1, 153–155 (2020).
512. Yadav, A. K., Sriridh, S. & Gupta, S. C. Cancer drug development using drophiola as an in vivo tool: from bedside to bench and back. Trends Pharm. Sci. 37, 789–806 (2016).
513. Clements, W. K. & Traver, D. Fish pharming: zebrafish antileukemia screening. Blood 119, 5614–5615 (2012).
514. Ridges, S. et al. Zebrafish screen identifies novel compound with selective toxicity against leukemia. Blood 119, 5621–5631 (2012).
515. Baxendale, S., van Eeden, F. & Wilkinson, R. The power of zebrafish in personalised medicine. Adv. Exp. Med. Biol. 1007, 179–197 (2017).

Overcoming cancer therapeutic bottleneck by drug repurposing
Zhang et al.

516. Gonzalez-Fierro, A. & Duenas-Gonzalez, A. Drug repurposing for cancer therapy, easier said than done. Semin. Cancer Biol. https://doi.org/10.1016/j.semcancer.2019.12.012 (2019).
517. Breckenridge, A. & Jacob, R. Overcoming the legal and regulatory barriers to drug repurposing. Nat. Rev. Drug Discov. 18, 1–2 (2019).
518. Pantziarka, P. et al. The repurposing drugs in oncology (ReDO) project. Eancermedicalsscience 8, 442 (2014).
519. Stewart, A. K. et al. Melphalan, prednisone, and thalidomide vs melphalan, prednisone, and lenalidomide (ECOG E1A06) in untreated multiple myeloma. Blood 126, 1294–1301 (2015).
520. Zweegman, S. et al. Melphalan, prednisone, and lenalidomide versus melphalan, prednisone, and thalidomide in untreated multiple myeloma. Blood 127, 1109–1116 (2016).
521. Sullivan, T. A tough road: cost to develop one new drug is $2.6 billion; approval rate for drugs entering clinical development is less than 12%. https://www.policymed.com/2014/12/a-tough-road-cost-to-develop-one-new-drug-is-26-billion-approval-rate-for-drugs-entering-clinical-de.html (2019).
522. Raju, T. N. The Nobel chronicles. 1988: James Whyte Black, (b 1924), Gertrude Elion (1918–99), and George H Hitchings (1905–98). Lancet 355, 1022 (2000).