Large Zeeman Splitting in Out-of-Plane Magnetic Field in a Double-Layer Quantum Point Contact

Daiju Terasawa1, Shota Norimoto2, Tomonori Arakawa2,3, Meydi Ferrier2,4, Akira Fukuda1, Kensuke Kobayashi2,5, and Yoshiro Hirayama6

1Department of Physics, Hyogo College of Medicine, Nishinomiya 663-8501, Japan
2Graduate School of Science, Department of Physics, Osaka University, Toyonaka 560-0043, Japan
3Center for Spintronics Research Network, Osaka University, Toyonaka, Osaka 560-8531, Japan
4Laboratoire de Physique des Solides, CNRS, Université Paris-Sud, Université Paris Saclay, 91405 Orsay Cedex, France
5Institute for Physics of Intelligence and Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan
6Graduate School of Science and CSIS, Tohoku University, Sendai 980-8578, Japan

In this study, we observe that the conductance of a quantum point contact on a GaAs/AlGaAs double quantum well depends significantly on the magnetic field perpendicular to the two-dimensional electron gas. In the presence of the magnetic field, the subband edge splitting due to the Zeeman energy reaches 0.09 meV at 0.16 T, thereby suggesting an enhanced g-factor. The estimated g-factor enhancement is 17.5 times that of the bare value. It is considered that a low electron density and high mobility makes it possible to reach a strong many-body interaction regime in which this type of strong enhancement in g-factor can be observed.

1. Introduction

Tunnel-coupled double-layer two-dimensional electron gas (2DEG) systems exhibit several interesting phenomena due to two internal degrees of freedom, spin and pseudospin (layer index). A well-known phenomenon in single-layer systems, such as quantum Hall effect (QHE), reveals further richness in double-layer systems.1–7 For example, a prediction of Kosterlitz-Thouless transition in association with the dissociation of pseudospin vortices ("meron"s) is discussed.8–11 Interestingly, these topologically protected pseudospin quasi-particles are considered to be non-Abelian. Furthermore, recent theoretical studies on topo-
logical quantum computing explored double-layer QHE systems that can host numerous non-Abelian quasiparticles. However, the role of spins in double-layer QHE systems is unclear, because controlling spin and pseudospin degrees of freedom individually is difficult. This difficulty in controlling the spin and pseudospin degrees of freedom hampers precise identification of QHE ground states and topological quasiparticles. Therefore, the development of a selective spin filtering technique is required for double-layer systems.

For this purpose, using a quantum point contact (QPC) is a feasible technique. A previous double-layer QPC study suggests that the system has an excessive interaction regime, in which a strong potential gradient produces an enhanced spin-orbit interaction and effective screening, as a result of high mobility electrons with a very low density. This strong interaction regime possibly leads to an enhanced Landé’s g-factor because the low electron density and strong confinement increases the electron-electron interaction, and thereby increases the exchange interaction. Such a situation is preferable for manipulating spins using the Zeeman effect. In the aforementioned study, we used in-plane magnetic fields and observed a g-factor of twice that of the bare GaAs value. Enhancements in g-factor for in-plane fields are also observed in previous studies. However, g-factor is not isotropic. Thus far, only a few conductance measurements in the presence of out-of-plane magnetic fields are conducted to date, and there is a paucity of reports on double-layer QPCs. In the experiments above, enhancements in g-factor were reported that deserved theoretical attention.

Thus, we believe that further elaborated studies for double-layer GaAs/AlGaAs QPC systems in the presence of an out-of-plane magnetic field will provide valuable information on spin manipulation and spin filtering.

In this study, we fabricated a QPC in a double-layer 2DEG of GaAs/AlGaAs double quantum well (DQW) sample and examined a small out-of-plane magnetic field effect on it. To explore the possibility of manipulating electron spins, we determined the remaining basic spin-splitting properties of a double-layer QPC system by investigating the Zeeman gap based on the g-factor in the out-of-plane direction. Owing to the magnetic confinement, subband edges (SBEs) are parabolically bended towards higher energy. We observe a strong perpendicular field dependence of SBEs. Furthermore, the Zeeman gap splitting of SBEs clearly appears at 0.1 T, and becomes 0.09 meV at 0.16 T. From the magnetic field dependence of the Zeeman splitting, we derive an enhanced g-factor of 7.7 (17.5 times the bare value). We discuss the possible contribution of electron-electron interaction to the enhancement of the g-factor. The results are promising for spintronics and quantum computation.

The remainder of this paper is organized as follows. In Section 2, the sample structure and
Fig. 1. (Color online) Schematic illustration of the DQW sample.

the experimental methods are described. In Section 3, the experimental results and discussion are presented. Finally, brief concluding remarks are presented in Section 4.

2. Experimental Details

The sample used in the study is identical to the sample that was used in another literature. Figure 1 shows a schematic illustration of the sample layer sequence. The DQW
heterostructure is grown by molecular beam epitaxy on the GaAs (100) surface in NTT Basic Research Laboratories. Epitaxial layers with DQW (two 20-nm-wide GaAs quantum wells separated by a 3-nm-wide AlAs barrier layer) is located 605 nm below the surface, and is doped from both sides via 1×10^{12} Si δ-dopings that are 200 nm away from each side of DQW. The electron density in the symmetric state corresponds to 0.64×10^{11} cm$^{-2}$ and that in the anti-symmetric state corresponds to 0.56×10^{11} cm$^{-2}$, with an energy gap of 0.29 meV between them.30 The low temperature electron mobility is approximately 2.5×10^6 cm2/Vs. A standard Hall bar is fabricated with AuGe/Ni ohmic electrodes in contact with both layers. A pair of split gates with a width of 500 nm and a length of 100 nm is fabricated at the center of the Hall bar via electron beam lithography technique. The sample is mounted upside-down on the cold finger of the mixing chamber of a dilution refrigerator with a base temperature corresponding to 20 mK.

Figure 2 shows a scanning electron microscopy image of the split gates and schematic image of the measurement. Two-terminal differential conductance $G = dI_{sd}/dV_{sd}$ (where I_{sd} and V_{sd} denote the source-drain current and voltage, respectively) and transconductance dG/dV_g (V_g denotes the gate voltage applied to the split gates) are simultaneously measured using two lock-in amplifiers. First, G is measured via the first lock-in amplifier with a frequency of 387 Hz and amplitude of $V_{ac}^{sd} = 10 \mu$V r.m.s., and a small AC gate modulation $V_{ac}^{ac} = 4$ mV r.m.s. is simultaneously applied via the second lock-in amplifier with a frequency of 13 Hz. The output signal of the first lock-in amplifier (which includes the AC modulation signal from V_{ac}^{ac}) is input to the second lock-in amplifier. This method enables precise direct measurement of transconductance. However, conductance slightly becomes noisy. Therefore, conductance changes that are not supported by concurrent transconductance changes can possibly be experimental noise. A DC gate voltage V_{g}^{dc} is also applied to the sample, and thus the total voltage applied to the split gate V_g is $V_g = V_g^{dc} + V_g^{ac}$. Additionally, we apply a DC voltage to the source to cancel the voltage of the Seebeck effect and to induce a nonequilibrium bias. Hence, the total voltage applied to the source V_{sd} is $V_{sd} = V_{sd}^{ac} + V_{sd}^{dc}$, where V_{sd}^{dc} denotes the total DC voltage applied to the sample. In the graphs and image plots, we ignore the AC component of V_g and V_{sd} for practical reasons. The x, y, and z-directions are as follows: x-direction is perpendicular to the current and in-plane to 2DEG (see also Fig. 1); y-direction is parallel along the current and in-plane to 2DEG; and z-direction is perpendicular to 2DEG. A z-directional magnetic field B_z is applied using a superconductor (vector) magnet, with the maximum field of $B_z = 8$ T.
3. Results and Discussion

Figure 3 (a) shows G in the unit of $G_0 = 2e^2/h$ (e is elementary charge, and h is Planck’s constant) as a function of V_g for different B_z values ranging from 0 to 0.8 T (0.05 T step). Fundamental conductance properties are similar to those of the single-layer GaAs 2DEGs.56,57 The energy level of electrons becomes quantized due to nanometer-scale lateral confinement at QPC, and thus, the conductance is described by the Landauer-Büttiker model.58,59 A clear conductance plateau at $G \approx 0.5G_0$ is observed at $B_z = 0$ T (bold line). In addition, a plateau at $G \approx 1.5G_0$ gradually develops as B_z increases. As subsequently demonstrated, the $1.5G_0$ plateau pertains to Zeeman splitting, and thus we focus on its subsequent change. When we increase B_z, the G_0 plateau shifts for larger V_g values and the plateau region is extended. Further, conductance exhibits many small plateau-like features for $G < G_0$.

These features are also evident in the measurement of dG/dV_g. Figure 3 (b) shows the dG/dV_g profile as a function of V_g for $B_z = 0$ to 0.30 T by 0.05 T. In the dG/dV_g plot, the plateau in G and the crossing of SBEs correspond to minima and maxima, respectively. With respect to $B_z = 0$ T, we observed two peaks for the first integer SBE (SBE1), which
Fig. 3. (Color online) (a) G in the unit of $2e^2/h (= G_0)$ as a function of V_g for several B_z values from 0 (bold line) to 0.8 T by 0.05 T step. The dashed line indicates G for $B_z = 0.3$ T. The black arrow indicates a signature of $1.5G_0$ plateau. (b) dG/dV_g as a function of V_g for $B_z = 0$ (bold line) to 0.3 T (dashed line) by 0.05 T step. Each trace is offset for clarity. * mark indicates the minimum of $1.5G_0$ plateau. The dotted lines are visual guide lines. (c) Image plot of dG/dV_g as a function of B_z and V_g for $V_{sd} = 0$ V. The numerical numbers express the corresponding plateaus in the unit of G_0. The dash-dotted line divides $G \geq G_0$ and $G < G_0$ regions. The dotted lines indicate SBE peaks of interest in Fig. 5. The dashed line indicates the corresponding B_z value for the next figure, Fig. 4.
soon resolved into three peaks (see ref. \(^{30}\)), and a broad peak for the second integer SBE (SBE2) and the third integer SBE (SBE3). These peaks were resolved into two Gaussian peaks as shown in Fig. 5 (a). Specifically, a small minimum appears in the \(dG/dV_g\) profile for \(G = 1.5G_0\) (indicated by *) at \(B_z = 0.1\) T, thereby indicating spin splitting due to the opening of the Zeeman gap.

Figure 3 (c) shows an image plot of \(dG/dV_g\) as a function of \(V_g\) and \(B_z\). SBEs show a rapid increase relative to \(V_g\) as \(B_z\) increases. Apparently, SBE2 and SBE3 split into the two main peak lines indicated by dotted lines. As shown later in Fig. 5 (a), the broad peak consists of two smaller peaks at \(B_z = 0\), which indicates the existence of other spin-splitting contributions to this system. The \(dG/dV_g\) bifurcation that corresponds to the 1.5\(G_0\) plateau in Fig. 3 (a) is clearly observed near a small field of \(B_z \geq 0.1\) T. This result should be noted because previous experiments such as \(^{46}\) require \(B_z = 1\) T to split the second integer SBE, although the material used in the reference is different, namely, a GaAs heavy hole system that is considered to yield a larger Zeeman splitting. The parabolic dependence of the SBEs is typically described as an additional effective confinement due to the cyclotron motion,\(^{55}\) that is, \(\frac{m^*}{2}\omega^2x^2\), where \(\omega^2 = \omega_0^2 + \omega^2 (\omega = eB_z/m^*)\), at the center of the QPC region. In this system, a strong potential gradient along the \(z\) direction is expected, and this gradient in the potential causes electrons to populate in one layer (back layer) of the DQW.\(^{30}\) Hence, the low electron density of this sample (~ 0.6 x 10\(^{11}\) cm\(^{-2}\) per layer) accelerates the depopulation from the higher energy in the presence of a magnetic confinement. Consequently, this sample embodies one of the lowest density regime in the QPC region in which a strong electron-electron interaction is expected.

However, in the \(G < G_0\) region, as \(B_z\) increases, the peak lines that belong to SBE1 show complicated bifurcations. These lines have features that are not easily associated with the spin-resolved SBE lines. As discussed later, these features are probably attributable to either Fabry-Pérot resonances\(^ {44,60}\) or transmission resonances,\(^ {61}\) or to spin-dependent transmissions due to many-body interactions. Although these observations are interesting and may broaden our understanding of a previous study,\(^ {44}\) it is difficult to discuss the Zeeman splitting of SBE1 based on these lines. Therefore, we focus on the SBE2 and SBE3 peaks.

We use the non-equilibrium bias effect to convert the peak separation in \(V_g\) into Zeeman energy. Figure 4 shows \(dG/dV_g\) as a function of \(V_{sd}\) and \(V_g\) for \(B_z = 0.16\) T. We connect the maxima (SBE) in \(dG/dV_g\) and draw solid lines for integer series and dash-dotted lines for split SBEs. As shown in Fig. 3 (b), we observe three split SBE lines for \(G \leq G_0\). Importantly, a small diamond that corresponds to the 1.5\(G_0\) plateau appears due to the increase in Zeeman...
energy (indicated by the white arrow). From this diamond pattern, the estimated magnitude of Zeeman splitting, along with the contributions of other spin splitting factors, corresponds to 0.09 meV. The bare Zeeman energy $\epsilon_Z = |g|\mu_B B$ with $|g| = 0.44$, is calculated as ~ 0.004 meV for $B_z = 0.16$ T, where g denotes the Landé g-factor, and μ_B denotes the Bohr magneton.

Subsequently, we extract the Zeeman splitting peak positions and estimate the enhancement in g-factor. Figure 5 (a) shows an example of two-peak Gaussian curve fit for two convolved peaks. Then the extracted peak positions (approximately, the broken lines in Fig. 3) are converted into energies using the relationship between the energy gap and the diamond width at $B_z = 0.16$ T. In addition, it is necessary to consider the “lever-arm” correction to compare diamonds in different V_g value regions (Appendix A). The result is shown in Figure
5 (b) that depicts energy gaps ΔE_Z for SBE2 and SBE3 as a function of B_z. As shown in the figure, ΔE_Z for both SBEs remain finite at $B_z = 0$ T. With respect to the lower B_z region ($B_z \lesssim 0.17$ T), if we express effective Zeeman energy E_z in the following form:

$$E_z = \sqrt{E_0^2 + (g^* \mu_B B_z)^2}, \quad (1)$$

where E_0 represents the spin-splitting contributions of the effective magnetic fields other than the z-directional applied field; this includes the contribution of the spin-orbit interaction, strong confinement, and electron-electron interaction, which are presumably oriented in the x-direction.30 g^* denotes the g-factor in the z-direction. Then, the fit using the above equation (the solid lines in Fig. 5 (b)) yields $E_0 = 0.060 \pm 0.002$ meV and $g^* \mu_B = 0.45 \pm 0.02$ meV/T for SBE2, and $E_0 = 0.050 \pm 0.002$ meV and $g^* \mu_B = 0.17 \pm 0.03$ meV/T for SBE3. The magnitude of the enhanced g-factor g^* extracted from the fit for SBE2 is $g^* \approx 7.7$, which is approximately 17.5 times the bare value, and $g^* \approx 2.9$ (≈ 6.5 times the bare value) for SBE3. These values are greater than the previously reported enhancement values in GaAs 2DEG systems ($0.4 \lesssim g^* \lesssim 1.3$ in33 and $3.8 \lesssim g^* \lesssim 4.4$ in43) and GaAs two-dimensional hole systems ($3 \lesssim g^* \lesssim 7.2$ in46). As previously reported,$^{33-37}$ the g^* value decreases as the subband index increases, because the 1D confinement becomes stronger for lower subbands. In addition, the difference in g^* between SBE2 and SBE3 is probably attributed to the density difference.31 With respect to the higher B_z region ($B_z > 0.17$ T), the data deviate from the fit, which indicates a further enhancement in the g^* value. As we can approximate $dE_Z/dB_z \approx g^* \mu_B$ for the higher B_z region, we obtained a considerably higher value of $g^* \mu_B = 0.96 \pm 0.08$ meV/T from the slope (the dashed line in Fig. 5 (b)). Such large values were obtained using the density functional theory.31 For this region, the parabolic confinement due to B_z contributes to the apparent enhancement in the splitting.31,50

We consider that the electron-electron many-body interaction is the underlying cause of the enhanced g-factor. In an earlier experiment, Thomas et al.62 observed 0.5 plateau that suggests a spin polarized state in zero magnetic field, in which the lower density enhances the many-body interaction. Considering that the low electron density and high mobility, the sample used in this experiment offers a unique opportunity to realize a state with significant many-body interaction effects. Nuttinck et al.63 also indicated a 0.5 plateau at zero magnetic field along with a 0.7 shoulder. Considering that the present sample has the quality that is comparable to the sample used by Nuttinck et al., a similar regime in terms of impurity effect is realized in the experiment. Subsequently, the large Zeeman gap and 0.5 plateau should be attributed to a large electron-electron exchange interaction, as proposed in
Ref.\(^{33,62,63}\) and theoretically indicated in Ref.\(^{31,49–51}\) Along with the exchange interaction, the Zeeman gap can have the contribution of the spin-orbit interaction, as speculated in our previous work.\(^{30}\) However, as Ref.\(^{31}\) shows that a large g-factor enhancement is accountable from the exchange contribution, we infer that the spin-orbit interaction contributes less to the z-directional g-factor enhancement than the contribution by exchange interaction. It is immediately observed that the enhanced value is larger than that of a single-layer system (\(g^* \lesssim 1.3\) in\(^{33}\)). Regarding this result, the DQW constriction may constructively affect the g-factor enhancement; however, no theoretical studies to support this idea exist to date. Additionally, we observed Zeeman splitting approximately corresponding to 0.09 meV in the presence of an in-plane and perpendicular-to-current magnetic field \(B_x\) of 2.0 T.\(^{30}\) In this case, the value is approximately twice the bare Zeeman splitting, and thus the difference between \(x\) and \(z\)-directions is evident, as observed in two-dimensional hole systems.\(^{46,64}\) As discussed in Ref.\(^{32}\) this remarkable difference in the g-factor is attributed to the difference in the electric confinement between the \(x\)- and \(z\)-directions.

Further, the strong many-body interaction may affect the conductance. As shown in Fig. 3 (a) and (c), we observe the conductance plateaus for \(G < G_0\) and \(dG/dV_g\) peak lines for \(B_z \geq 0.3\) T [for further details, see Appendix B]. These features may relate to the spin and pseudospin degrees of freedom in double-layer systems; however, the numerical simulation
results suggest the deficient involvement of the pseudospin degree of freedom.30) Theoretically, the possibility of forming a quasi-bound state of electrons in the strong interaction regime was discussed.65–70) If this is the case, the transmission coefficient depends on the spin configuration of the quasi-bound state whether the quasi-bound state is singlet or triplet. Further investigation is required to clarify the relationship between the conductance and spin configurations.

4. Concluding Remarks

In conclusion, the results of the study indicate a rapid and strong SBE dependence on B_z in a double-layer QPC. The results reveal that the Zeeman gap opening begins to appear at $B_z = 0.10\,\text{T}$. It is important to note that the estimated enhancement in the g-factor is 17.5 times the bare value. We attribute the g-factor enhancement to a strong electron-electron interaction due to low electron density and high mobility. We believe that the results are profitable to manipulate spins in double-layer systems.

Acknowledgment

The authors express their gratitude to K. Muraki and T. Saku of the NTT basic research laboratories and A. Sawada for providing a high-mobility sample. This study was supported by the JSPS KAKENHI (JP15K17680, JP15H05854, JP18H01815, JP19H05826, JP19H00656).

Appendix A: “Lever Arm” Corrections

As shown in a certain reference,43) the V_g dependence between subband edges (the difference between dG/dV_g maxima) can be converted into energy gaps by using the corresponding V_{sd} differences. However, the conversion coefficient A (termed as the “lever arm”) varies depending on V_g, and thus it needs corrections as a function of V_g. We deduced this lever arm correction in A from the slopes of subband edge lines dV^n_g/dV_{sd}. Specifically, V^n_g denotes the n-th integer SBE line. Figure A·1 shows deduced dV^n_g/dV_{sd} as a function of V_g at 0 T. The slopes are derived from $-0.5 < V_{sd} < -0.1\,\text{mV}$ region. From a line fit, we obtain $dV_g/dV_{sd} = \alpha_0 + \alpha_1 V_g$, and subsequently the lever arm coefficient as follows:

$$A(V_g) = \frac{A_0}{\alpha_0 + \alpha_1 V_g}, \quad (A·1)$$

where $\alpha_0 = 1.56$ and $\alpha_1 = 0.54\,\text{V}^{-1}$. Thus, the Zeeman gap ΔE_Z is modified as follows:

$$\Delta E_Z = A \cdot \Delta P, \quad (A·2)$$

where ΔP denotes observed V_g gaps (between two dG/dV_g peaks in V_g).
Fig. A·1. (Color online) Slope correction of the subband edge lines dV_g/dV_{sd} as a function of V_g.

Appendix B: Conductance at $B_z = 0.30$ T

For further information on conductance change at $B_z = 0.3$ T, we append two image plots. Figures B·1 (a) and (b) show image plots of dG/dV_g and G at $B_z = 0.3$ T as a function of V_{sd} and V_g where equi-conductance contour lines are incorporated. The black-and-white scale in (a) starts from -10, and thus dark black regions indicate decreases in the conductance. As shown in the figure, G increases by approximately $0.2G_0$ at each dG/dV_g maxima (SBE) line for the $G < G_0$ region.
Fig. B-1. (Color online) (a) and (b) Image plot of dG/dV_g and G as a function of V_{sd} and V_g with incorporated equi-conductance lines.
References

1) Z. F. Ezawa: *Quantum Hall Effects: Field Theoretical Approach and Related Topics, 2nd ed.* (World Scientific, Singapore, 2008).

2) J. Eisenstein: Annu. Rev. Cond. Matt. Phys. 5 (2014) 159.

3) A. Sawada, Z. F. Ezawa, H. Ohno, Y. Horikoshi, Y. Ohno, S. Kishimoto, F. Matsukura, M. Yasumoto, and A. Urayama: Phys. Rev. Lett. 80 (1998) 4534.

4) N. Kumada, K. Muraki, and Y. Hirayama: Science 313 (2006) 329.

5) A. Fukuda, D. Terasawa, M. Morino, K. Iwata, S. Kozumi, N. Kumada, Y. Hirayama, Z. F. Ezawa, and A. Sawada: Phys. Rev. Lett. 100 (2008) 016801.

6) D. Terasawa, S. Kozumi, A. Fukuda, M. Morino, K. Iwata, N. Kumada, Y. Hirayama, Z. F. Ezawa, and A. Sawada: Phys. Rev. B 81 (2010) 073303.

7) J. I. A. Li, T. Taniguchi, K. Watanabe, J. Hone, and C. R. Dean: Nat. Phys. 13 (2017) 751.

8) K. Yang, K. Moon, L. Zheng, A. H. MacDonald, S. M. Girvin, D. Yoshioka, and S.-C. Zhang: Phys. Rev. Lett. 72 (1994) 732.

9) K. Moon, H. Mori, K. Yang, S. M. Girvin, A. H. MacDonald, L. Zheng, D. Yoshioka, and S.-C. Zhang: Phys. Rev. B 51 (1995) 5138.

10) T. S. Lay, Y. W. Suen, H. C. Manoharan, X. Ying, M. B. Santos, and M. Shayegan: Phys. Rev. B 50 (1994) 17725.

11) D. Terasawa, A. Fukuda, T. Morikawa, Y. D. Zheng, A. Sawada, and Z. F. Ezawa: Phys. Rev. B 86 (2012) 165320.

12) J. Alicea, O. I. Motrunich, G. Refael, and M. P. A. Fisher: Phys. Rev. Lett. 103 (2009) 256403.

13) E. Ardonne, F. J. M. van Lankvelt, A. W. W. Ludwig, and K. Schoutens: Phys. Rev. B 65 (2002) 041305(R).

14) M. R. Peterson and S. Das Sarma: Phys. Rev. B 81 (2010) 165304.

15) A. Vaezi and M. Barkeshli: Phys. Rev. Lett. 113 (2014) 236804.

16) S. Geraedts, M. P. Zaletel, Z. Papić, and R. S. K. Mong: Phys. Rev. B 91 (2015) 205139.

17) M. Calixto and E. Pérez-Romeo: J. Phys.: Condens. Matter 26 (2014) 485005.

18) M. Barkeshli and X.-L. Qi: Phys. Rev. X 2 (2012) 031013.
19) M. Barkeshli and X.-L. Qi: Phys. Rev. X 4 (2014) 041035.
20) M. Barkeshli: Phys. Rev. Lett. 117 (2016) 096803.
21) W. Zhu, Z. Liu, F. D. M. Haldane, and D. N. Sheng: Phys. Rev. B 94 (2016) 245147.
22) D. Terasawa, M. Morino, K. Nakada, S. Kozumi, A. Sawada, Z. F. Ezawa, N. Kumada, K. Muraki, T. Saku, and Y. Hirayama: Physica E 22 (2004) 52.
23) N. Kumada, K. Muraki, K. Hashimoto, and Y. Hirayama: Phys. Rev. Lett. 94 (2005) 096802.
24) S. Luin, V. Pellegrini, A. Pinczuk, B. S. Dennis, L. N. Pfeiffer, and K. W. West: Phys. Rev. Lett. 97 (2006) 216802.
25) S. Tsuda, M.-H. Nguyen, D. Terasawa, A. Fukuda, Z. F. Ezawa, and A. Sawada: Phys. Rev. B 88 (2013) 205103.
26) P. Debray, S. M. S. Rahman, J. Wan, R. S. Newrock, M. Cahay, A. T. Ngo, S. E. Ulloa, S. T. Herbert, M. Muhammad, and M. Johnson: Nature Nanotech. 4 (2009) 759.
27) K. Hitachi, M. Yamamoto, and S. Tarucha: Phys. Rev. B 74 (2006) 161301(R).
28) M. Hashisaka, N. Hiyama, T. Akiho, K. Muraki, and T. Fujisawa: Nat. Phys. 13 (2017) 559.
29) K. Zimmermann, A. Jordan, F. Gay, K. Watanabe, T. Taniguchi, Z. Han, V. Bouchiat, H. Sellier, and B. Sacépé: Nat. Commun. 8 (2017) 14983.
30) D. Terasawa, S. Norimoto, T. Arakawa, M. Ferrier, A. Fukuda, K. Kobayashi, and Y. Hirayama: Phys. Rev. B 101 (2020) 115401.
31) C.-K. Wang and K.-F. Berggren: Phys. Rev. B 54 (1996) R14257.
32) E. I. Ivchenko, A. A. Kiselev, and M. Willander: Solid State Commun. 102 (1997) 375.
33) K. J. Thomas, J. T. Nicholls, M. Y. Simmons, M. Pepper, D. R. Mace, and D. A. Ritchie: Phys. Rev. Lett. 77 (1996) 135.
34) K. J. Thomas, J. T. Nicholls, N. J. Appleyard, M. Y. Simmons, M. Pepper, D. R. Mace, W. R. Tribe, and D. A. Ritchie: Phys. Rev. B 58 (1998) 4846.
35) T. P. Martin, A. Szorkovszky, A. P. Micolich, A. R. Hamilton, C. A. Marlow, H. Linke, R. P. Taylor, and L. Samuelson: Applied Physics Letters 93 (2008) 012105.
36) T. P. Martin, A. Szorkovszky, A. P. Micolich, A. R. Hamilton, C. A. Marlow, R. P. Taylor, H. Linke, and H. Q. Xu: Phys. Rev. B 81 (2010) 041303(R).
37) T.-M. Chen, A. C. Graham, M. Pepper, F. Sfigakis, I. Farrer, and D. A. Ritchie: Phys. Rev. B 79 (2009) 081301(R).
38) A. Malinowski and R. T. Harley: Phys. Rev. B 62 (2000) 2051.
39) Y. A. Nefyodov, A. V. Shchepetilnikov, I. V. Kukushkin, W. Dietsche, and S. Schmult: Phys. Rev. B 83 (2011) 041307(R).
40) Y. A. Nefyodov, A. V. Shchepetilnikov, I. V. Kukushkin, W. Dietsche, and S. Schmult: Phys. Rev. B 84 (2011) 233302.
41) B. J. van Wees, L. P. Kouwenhoven, H. van Houten, C. W. J. Beenakker, J. E. Mooij, C. T. Foxon, and J. J. Harris: Phys. Rev. B 38 (1988) 3625.
42) K. J. Thomas, M. Y. Simmons, J. T. Nicholls, D. R. Mace, M. Pepper, and D. A. Ritchie: Appl. Phys. Lett. 67 (1995) 109.
43) C. Rössler, S. Baer, E. de Wiljes, P.-L. Ardelt, T. Ihn, K. Ensslin, C. Reichl, and W. Wegscheider: New Journal of Physics 13 (2011) 113006.
44) S. Baer, C. Rössler, E. C. de Wiljes, P.-L. Ardelt, T. Ihn, K. Ensslin, C. Reichl, and W. Wegscheider: Phys. Rev. B 89 (2014) 085424.
45) F. Lu, N. Tang, L. Shang, H. Guan, F. Xu, W. Ge, and B. Shen: Sci. Rep. 7 (2017) 42974.
46) F. Nichele, S. Chesi, S. Hennel, A. Wittmann, C. Gerl, W. Wegscheider, D. Loss, T. Ihn, and K. Ensslin: Phys. Rev. Lett. 113 (2014) 046801.
47) H. Overweg, A. Knothe, T. Fabian, L. Linhart, P. Rickhaus, L. Wernli, K. Watanabe, T. Taniguchi, D. Sánchez, J. Burgdörfer, F. Libisch, V. I. Fal’ko, K. Ensslin, and T. Ihn: Phys. Rev. Lett. 121 (2018) 257702.
48) R. Kraft, I. V. Krainov, V. Gall, A. P. Dmitriev, R. Krupke, I. V. Gornyi, and R. Danneau: Phys. Rev. Lett. 121 (2018) 257703.
49) K. Aryanpour and J. E. Han: Phys. Rev. Lett. 102 (2009) 056805.
50) G. Vionnet and O. P. Sushkov: Phys. Rev. Lett. 116 (2016) 126801.
51) A. D. Klironomos, J. S. Meyer, and K. A. Matveev: Euro. Phys. Lett. 74 (2006) 679.
52) H. Bruus, V. V. Cheianov, and K. Flensberg: Physica E 10 (2001) 97.
53) K. Yang: Phys. Rev. Lett. 93 (2004) 066401.
54) L. I. Glazman and A. V. Khaetskii: J. Phys.: Condens. Matter 1 (1989) 5005.
55) K. F. Berggren, T. J. Thornton, D. J. Newson, and M. Pepper: Phys. Rev. Lett. 57 (1986) 1769.
56) B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. P. Kouwenhoven, D. van der Marel, and C. T. Foxon: Phys. Rev. Lett. 60 (1988) 848.

57) D. A. Wharam, T. J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J. E. F. Frost, D. G. Hasko, D. C. Peacock, D. A. Ritchie, and G. A. C. Jones: Journal of Physics C: Solid State Physics 21 (1988) L209.

58) M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas: Phys. Rev. B 31 (1985) 6207.

59) M. Büttiker: Phys. Rev. B 41 (1990) 7906.

60) C. G. Smith, M. Pepper, H. Ahmed, J. E. F. Frost, D. G. Hasko, R. Newbury, D. C. Peacock, D. A. Ritchie, and G. A. C. Jones: J. Phys.: Condens. Matter 1 (1989) 9035.

61) E. Tekman and S. Ciraci: Phys. Rev. B 39 (1989) 8772.

62) K. J. Thomas, J. T. Nicholls, M. Pepper, W. R. Tribe, M. Y. Simmons, and D. A. Ritchie: Phys. Rev. B 61 (2000) R13365.

63) S. Nuttinck, K. Hashimoto, S. Miyashita, T. Saku, Y. Yamamoto, and Y. Hirayama: Jpn. J. Appl. Phys. 39 (2000) L655.

64) A. Srinivasan, D. S. Miserev, K. L. Hudson, O. Klochan, K. Muraki, Y. Hirayama, D. Reuter, A. D. Wieck, O. P. Sushkov, and A. R. Hamilton: Phys. Rev. Lett. 118 (2017) 146801.

65) T. Rejec, A. Ramšak, and J. H. Jefferson: Phys. Rev. B 62 (2000) 12985.

66) T. Rejec, A. Ramšak, and J. H. Jefferson: J. Phys.: Condens. Matter 12 (2000) L233.

67) V. V. Flambaum and M. Y. Kuchiev: Phys. Rev. B 61 (2000) R7869.

68) T. Rejec, A. Ramšak, and J. H. Jefferson: Phys. Rev. B 67 (2003) 075311.

69) I. A. Shelykh, N. G. Galkin, and N. T. Bagraev: Phys. Rev. B 74 (2006) 085322.

70) Y. Meir, K. Hirose, and N. S. Wingreen: Phys. Rev. Lett. 89 (2002) 196802.