Extending silted algebras to cluster-tilted algebras

Hanpeng Gao †
Department of Mathematics, Nanjing University, Nanjing 210093, P.R. China
Department of Mathematics, University of Connecticut, Storrs 06269, USA

Abstract
It is well known that the relation-extensions of tilted algebras are cluster-tilted algebras. In this paper, we extend the result to silted algebras and prove some extension of silted algebras are cluster-tilted algebras.

2010 Mathematics Subject Classification: 16G20, 13F60.
Keywords: Silted algebras, Cluster-tilted algebras, Tilted algebras, Relation-extension.

1 Introduction
Cluster-tilted algebras were introduced by Buan, Marsh, Reiten and et al. [3], and also in [7] for type A. Let A be a triangular algebra whose global dimension is at most two over an algebraically closed field k. The trivial extension of A by the A-A-bimodule Ext^2_A(DA, A) is called the relation-extension [1] of A, where D=Hom_k(−, k) is the standard duality. It is proved that the relation-extension of every tilted algebra is cluster-tilted, and every cluster-tilted algebra is of this form in [1].

The concept of silting complexes originated from [13] and 2-term silting complexes are of particular interest and important for the representation of algebra. In [6], the endomorphism algebras of 2-term silting complexes were introduced by Buan and Zhou. They also defined the concept of the silted algebra [5] which is the endomorphism algebras of 2-term silting complex over the derived category of hereditary algebras and proved that an algebra is silted if and only if it is shod [8] (projective dimension or injective dimension of every indecomposable module is at most one). In particular, tilted algebras are silted, indeed, the minimal projective presentation of a tilting module T over the hereditary algebra H gives rise to a 2-term silting complex P in K^b(proj H), and that there is an isomorphism of algebras End_H(T) ≅ End_{D^b(H)}(P).

As a generalization of tilting modules, support τ-tilting modules were introduced by Adachi, Iyama and Reiten [2]. They also shown that there is a bijection between support τ-tilting modules and 2-term silting complexes(see, [2, Theorem 3.2]). This result provided that every silted algebra can be described as the triangular matrix algebra \left(\begin{array}{cc} B & 0 \\ M & H_1 \end{array} \right) \right) where B is a tilted algebra, H_1 is a hereditary algebra and M is a H_1-B-bimodule (see, Proposition 3.2). It is a natural question whether silted algebras can be extended to cluster-tilted algebras.

In this paper, we give a positive answer and construct cluster-tilted algebras from silted algebras. We call a silted algebra A with respect to (T, P) for some hereditary algebra H if

E-mail: hpgao07@163.com
*This work was partially supported by NSFC (Grant No. 11971225).
†Corresponding author.
there exists a 2-term silting complex P in $\mathcal{D}^b(H)$ which corresponding to the support τ-tilting pair (T, P) in $\text{mod} \, H$ such that $A \cong \text{End}_{\mathcal{D}^b(H)}(P)$. Our main results as follows.

Theorem 1.1. Let $A = \begin{pmatrix} B & 0 \\ M & H_1 \end{pmatrix}$ be a silted algebra with respect to (T, P) for some hereditary algebra H. Then the matrix algebra $\begin{pmatrix} B \otimes \text{Ext}^1_H(T, \tau^{-1}T) & \text{Hom}_H(P, \tau^{-1}T) \\ M & H_1 \end{pmatrix}$ is a cluster-tilted algebra.

As a consequence, we have the following result.

Theorem 1.2. Let $A = \begin{pmatrix} B & 0 \\ M & H_1 \end{pmatrix}$ be a silted algebra with respect to (T, P) for some hereditary algebra H. If $\text{Hom}_H(P, \tau^{-1}T) = 0$, then the triangular matrix algebra $\begin{pmatrix} B \otimes \text{Ext}^2_B(DB, B) & 0 \\ M & H_1 \end{pmatrix}$ is a cluster-tilted algebra.

Note that a tilted algebra is exactly silted algebra with respect to $(T, 0)$ for some hereditary algebra H, we can easy get the relation-extension of every tilted algebra is cluster-tilted.

Throughout this paper, all algebras are finite dimensional algebras over an algebraically closed field k. For an algebra A, we denoted by $\text{mod} \, A$ the category of finitely generated right A-modules and $\text{proj} \, A$ the category of finitely generated projective right A-modules. $K^b(\text{proj} \, A)$ will stand for the bounded homotopy category of finitely generated projective right A-modules and $\mathcal{D}^b(A)$ is the bounded derived category of finitely generated right A-modules. For a A-module M, $|M|$ is the number of pairwise non-isomorphic direct summands of M. All modules considered basic.

2 Preliminaries

2.1 Tilted algebras

Let A be an algebra. An A-module T is called tilting if (1) the projective dimension of T is at most one, (2) $\text{Ext}^1_A(T, T) = 0$ and (3) $|T| = |A|$. The endomorphism algebra of a tilting module over a hereditary algebra is called a tilted algebra [10]. The following result is very useful.

Theorem 2.1. [9] Let H be a hereditary algebra, T a tilting H-module and $B = \text{End}_H(T)$ the corresponding tilted algebra. Then we have

1. The derived functor $\text{RHom}_H(T, -) : \mathcal{D}^b(H) \to \mathcal{D}^b(B)$ is an equivalence which maps T to B.

2. $\text{RHom}_H(T, -)$ commutes with the Auslander-Reiten translations and the shifts in the respective categories.

2.2 Silted algebras

Definition 2.2. ([2, Definition 0.1]) Let $T \in \text{mod} \, A$.

1. T is called τ-rigid if $\text{Hom}_A(T, \tau T) = 0$.

2. T is called τ-tilting if it is τ-rigid and $|T| = |A|$.
(3) T is called support τ-tilting if it is a τ-tilting A/eA-module for some idempotent e of A.

Sometimes, it is convenient to view support τ-tilting modules and τ-rigid modules as certain pairs of modules in $\mod A$.

Definition 2.3. ([2] Definition 0.3) Let (T, P) be a pair in $\mod A$ with $P \in \proj A$.

1. (T, P) is called a τ-rigid pair if M is τ-rigid and $\Hom_A(T, M) = 0$.

2. (T, P) is called a support τ-tilting pair if T is τ-rigid and $|T| + |P| = |A|$.

It was showed in [2] Proposition 2.3] that (T, P) is a support τ-tilting pair in $\mod A$ if and only if T is a τ-tilting A/eA-module with $eA \cong P$.

Let P be a complex in $K^b(\proj A)$. Recall that P is silting if $\Hom_{K^b(\proj A)}(P, P[i]) = 0$ for $i > 0$, and if P generates $K^b(\proj A)$ as a triangulated category. Moreover, P is called 2-term if it only has non-zero terms in degree 0 and -1.

The next result show that the relationship between support τ-tilting modules and 2-term silting complexes. For convenience, we denote by $st\tau$-$tilt$ A all support τ-tilting modules over the algebra A and 2-silt A all 2-term silting complexes over $K^b(\proj A)$.

Theorem 2.4. ([2] theorem 3.2] There exists a bijection between $st\tau$-$tilt$ A and 2-silt A given by $(T, P) \in st\tau$-$tilt A \rightarrow P_1 \oplus P \rightarrow P_0 \in 2$-$silt$ A and $P \in 2$-$silt$ $A \rightarrow H^b(P) \in st\tau$-$tilt$ A, where $P_1 \rightarrow P_0$ is a minimal projective presentation of T.

We call an algebra A is silted if there is a hereditary algebra H and $P \in 2$-$silt$ H such that $A \cong \End_{D^b(H)}(P)$.

2.3 Cluster-tilted algebras

The cluster category \mathcal{C}_H of a hereditary algebra H is the quotient category $\mathcal{D}^b(H)/F$ where $F = \tau^{-1}_{\mathcal{D}}[1]$ and $\tau^{-1}_{\mathcal{D}}$ is the inverse of the AuslanderReiten translation in $\mathcal{D}^b(H)$. The space of morphisms from \tilde{X} to \tilde{Y} in \mathcal{C}_H is given by $\Hom_{\mathcal{C}_H}(\tilde{X}, \tilde{Y}) = \oplus_{i \in \mathbb{Z}} \Hom_{\mathcal{D}^b(H)}(X, F^iY)$. It is shown that \mathcal{C}_H is a triangulated category. An object $\tilde{T} \in \mathcal{C}_H$ is called tilting if $\Ext_{\mathcal{C}_H}^1(\tilde{T}, \tilde{T}) = 0$ and the number of isomorphism classes of indecomposable summands of \tilde{T} equals $|H|$. The algebra of endomorphisms $C = \End_{\mathcal{C}_H}(T)$ is called cluster-tilted. It is proved that the relation-extension of every tilted algebra is cluster-tiled, and every cluster-tilted algebra is of this form in $[1]$.

3 Main results

In this section, we prove our main results and give an example to illustrate our results.

Definition 3.1. We call a silted algebra A with respect to (T, P) for some hereditary algebra H if there exists $P \in 2$-$silt$ H which corresponding to $(T, P) \in st\tau$-$tilt$ H such that $A \cong \End_{D^b(H)}(P)$.

Proposition 3.2. Let A be a silted algebra with respect to (T, P). Then A is a triangular matrix algebra $\begin{pmatrix} B & 0 \\ M & H_1 \end{pmatrix}$ where B is a tilted algebra, H_1 is a hereditary algebra and M is a H_1-B-bimodule.
Proof. Suppose that there is a hereditary algebra H and $P \in 2$-silt H which corresponding to $(T, P) \in s\tau$-tilt H such that $A \cong \text{End}_{\mathcal{D}^b(H)}(P)$, then we have

$$A \cong \text{End}_{\mathcal{D}^b(H)}(P) \cong \text{End}_{\mathcal{D}^b(H)}(T \oplus P[1]) \text{(by Theorem 2.4)}$$

Take $H' = H/HeH$, we have H' is a hereditary algebra, where $eH \cong P$. Therefore, T is a tilting H'-module and $B = \text{End}_{\mathcal{D}^b(H)}(T) \cong \text{End}_H(T) \cong \text{End}_{H'}(T)$ is a tilted algebra. Moreover, $H_1 = \text{End}_{\mathcal{D}^b(H)}(P[1]) \cong \text{End}_H(P) \cong eHe$ is a hereditary algebra. Note that $\text{Hom}_{\mathcal{D}^b(H)}(P[1], T) = 0$ since P is projective and $M = \text{Hom}_{\mathcal{D}^b(H)}(T, P[1]) \cong \text{Ext}_H(T, P)$ is a H_1-B-bimodule, we have A is a triangular matrix algebra.

Lemma 3.3. Let \mathcal{C}_H be a cluster category of a hereditary algebra H and $T \in \text{mod} H$. Then we have

$$\text{End}_{\mathcal{C}_H}(\tilde{T}, \tilde{T}) \cong \text{End}_{\mathcal{D}^b(H)}(T) \ltimes \text{Hom}_{\mathcal{D}^b(H)}(T, FT),$$

where \ltimes stand for the trivial extension.

Proof. It follows from [1, Lemma 3.3].

Theorem 3.4. Let $A = \left(\begin{array}{cc} B & 0 \\ M & H_1 \end{array} \right)$ be a silted algebra with respect to (T, P) for some hereditary algebra H. Then the matrix algebra $\left(\begin{array}{cc} B \ltimes \text{Ext}_H^1(T, \tau_H^{-1}T) & \text{Hom}_H(P, \tau_H^{-1}T) \\ M & H_1 \end{array} \right)$ is a cluster-tilted algebra.

Proof. Let $A = \left(\begin{array}{cc} B & 0 \\ M & H_1 \end{array} \right)$ be a silted algebra with respect to (T, P) for some hereditary algebra H. Then $\tilde{T} \oplus \tilde{P}[1]$ is a cluster-tilting object in \mathcal{C}_H. For any two H-modules X and Y, we have $\text{Hom}_{\mathcal{D}^b(H)}(X, Y[i]) = 0$ for all $i \geq 2$ since H is hereditary. Hence, we have

$$\text{End}_{\mathcal{C}_H}(\tilde{T} \oplus \tilde{P}[1]) \cong \left(\begin{array}{cc} \text{End}_{\mathcal{C}_H}(\tilde{T}) & \text{Hom}_{\mathcal{C}_H}(\tilde{P}[1], \tilde{T}) \\ \text{Hom}_{\mathcal{C}_H}(\tilde{T}, \tilde{P}[1]) & \text{End}_{\mathcal{C}_H}(\tilde{P}[1]) \end{array} \right)$$

which is a cluster-tilted algebra.

As a consequence, we have the following result.

Corollary 3.5. Let A be a silted algebra with respect to (T, P) for some hereditary algebra H. If T is injective, then A is hereditary. In particular, a tilted algebra which induced by a injective tilting module is hereditary.
Proof. Since T is injective, we have $\tau^{-1}_H T = 0$. By Theorem 3.4, A is a cluster-tilted algebra whose global dimension is at most three. Note that every cluster-tilted algebra is 1-Gorenstein \cite{12}. Since the projective dimension of every module over a 1-Gorenstein algebra is at most one or infinite, we get the global dimension of A is at most one, and so A is hereditary.

\[\text{Theorem 3.6.} \] Let $A = \begin{pmatrix} B & 0 \\ M & H_1 \end{pmatrix}$ be a silted algebra with respect to (T, P) for some hereditary algebra H. If $\text{Hom}_H(P, \tau^{-1}_H T) = 0$, then the triangular matrix algebra $\begin{pmatrix} B \times \text{Ext}^2_B(DB, B) & 0 \\ M & H_1 \end{pmatrix}$ is a cluster-tilted algebra.

Proof. Take $H' = H/eH$, we have $\tau^{-1}_H T$ is a H'-module since $\text{Hom}_H(P, \tau^{-1}_H T) = 0$ where $eH \cong P$. Therefore, we have

\[
\text{Ext}^1_H(T, \tau^{-1}_H T) \cong \text{Ext}^1_H(T, \tau^{-1}_H T) \\
\cong \text{Hom}_{\mathcal{D}^b(H')}(T, F'T) \\
\cong \text{Hom}_{\mathcal{D}^b(B)}(B, F''B)\text{(by Lemma 2.1)} \\
\cong \text{Hom}_{\mathcal{D}^b(B)}(\tau_{\mathcal{D}^b(B)}B[1], B[2]) \\
\cong \text{Hom}_{\mathcal{D}^b(B)}(DB, B[2]) \\
\cong \text{Ext}^2_B(DB, B)
\]

where $F' = \tau^{-1}_{\mathcal{D}^b(H')}[1]$ and $F'' = \tau^{-1}_{\mathcal{D}^b(B)}[1]$ is the functor corresponding to F' in the derived category $\mathcal{D}^b(B)$.

Note that a tilted algebra is exactly silted algebra with respect to $(T, 0)$ for some hereditary algebra H, we can easy get the following result.

\[\text{Corollary 3.7.} \] The relation-extension of every tilted algebra is cluster-tilted.

\[\text{Example 3.8.} \] Let H be a hereditary algebra given by the following quiver,

\[\begin{array}{c}
1 \\
\downarrow \\
3 \quad 4 \\
\downarrow \\
2
\end{array} \]

The support τ-tilting pair $(T, P) = (P_4 \oplus P_1 \oplus S_1, P_2)$ corresponding to the 2-term silting complex $0 \to P_4 \oplus 0 \to P_1 \oplus P_3 \to P_1 \oplus P_2 \to 0$ which induced a silted algebra given as follows,

\[1 \xleftarrow{\gamma} 2 \xrightarrow{\beta} 3 \xrightarrow{\alpha} 4 \]

with the relations $\alpha \beta = 0$ and $\beta \gamma = 0$. Note that

\[\dim_k \text{Ext}^1_H(T, \tau^{-1}_H T) = 2, \quad \dim_k \text{Hom}_H(P, \tau^{-1}_H T) = 1. \]
(in fact, $\dim_k \text{Ext}^1_H(S_1, \tau_H^{-1}P_1) = 1$, $\dim_k \text{Ext}^1_H(S_1, \tau_H^{-1}P_1) = 1$, $\dim_k \text{Hom}_H(P_2, \tau_H^{-1}P_1) = 1$.)

By Theorem 3.4, we can construct a cluster-tilted algebra given by the following quiver,

\[\begin{array}{c}
1 \\
\delta \\
\beta \\
\gamma \\
\alpha \\
\beta \\
\epsilon \\
\delta \\
2 \\
3 \\
4 \\
\end{array} \]

with relations $\gamma \delta = \epsilon \alpha, \alpha \beta = 0, \beta \gamma = 0, \beta \epsilon = 0, \delta \beta = 0$.

Acknowledgements

The author would like to thank professor Ralf Schiffler and professor Zhaoyong Huang for helpful discussions. He also thanks the referee for the useful and detailed suggestions. This work was partially supported by the National natural Science Foundation of China (No. 11571164).

References

[1] I. Assem, T. Brüstle and R. Schiffler, Cluster-tilted algebras as trivial extensions, Bull. London Math. Soc. 40 (2008), 151–162.
[2] T. Adachi, O. Iyama and I. Reiten, τ-tilting theory, Compos. Math. 150 (2014), 415–452.
[3] A. B. Buan, R. Marsh, M. Reineke, I. Reiten, G. Todorov, Tilting theory and cluster combinatorics, Adv. Math. 204 (2) (2006), 572–618.
[4] A. B. Buan, R. Marsh and I. Reiten, Cluster-tilted algebras, Trans. Amer. Math. Soc. 359 (2007), 323–332.
[5] A. B. Buan and Y. Zhou, Silted algebras, Adv. Math. 303 (2016), 859–887.
[6] A. B. Buan and Y. Zhou, Endomorphism Algebras of 2-term Silting Complexes, Algebr. Represent. Theory 21 (2018), 181–194.
[7] P. Caldero, F. Chapoton and R. Schiffler, Quivers with relations arising from clusters (\mathbb{A}_n case), Trans. Amer. Math. Soc. 358 (3) (2006), 1347–1364.
[8] F. U. Coelho and M. Lanzilotta, Algebras with small homological dimensions, Manuscripta Mathematica 100 (1999), 1–11 Soc. 358 (3) (2006), 1347–1364.
[9] D. Happel, Triangulated categories in the representation theory of finite dimensional algebras, London Mathematical Society Lecture Note Series 119 (Cambridge University Press, Cambridge, 1988).
[10] D. Happel and C. M. Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274(2) (1982), 399–443.
[11] B. Keller, On triangulated orbit categories, Documenta Math. 10 (2005), 551–581.
[12] B. Keller and I. Reiten, *Cluster-Tilted Algebras Are Gorenstein and Stably Calabi-Yau*. Adv. Math. 211(1) (2007), 123–151.

[13] B. Keller and D. Vossieck, *Aisles in derived categories*, Bull. Soc. Math. Belg. Sér. A 40(2) (1988), 239–253.