Response of SWCNTs/KPG5-modified carbon electrode on dopamine, uric acid and ascorbic acid

Ardi Rofiansyah¹, Masato Tominaga², Fredy Kurniawan¹*
¹Laboratory of Instrumentation and Analytical Sciences, Chemistry Department,
Faculty of Sciences, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
²Department of Chemistry and Applied Chemistry, Graduate School of Science and
Engineering, Saga University, Saga 840-8502, Japan

The corresponding author’s e-mail: fredy@chem.its.ac.id

Abstract. SWCNTs/KPG5-modified carbon electrode as electrochemical sensor have been successfully fabricated. The sensor was prepared by dropping the modification material, i.e. SWCTs and KPG5 in the surface of carbon electrode. The performance of the sensor was investigated in medical samples such as dopamine, uric acid, and ascorbic acid. The concentration of all tested samples was 10 mM. The electrochemical experiments were analysed using cyclic voltammetry method from -0.8 until +0.8 V with scan rate of 50 mV/s at acidic condition (pH 4) in room temperature. The best response of SWCNTs/KPG5-modified carbon electrode was obtained during dopamine measurement. No response detected from uric acid and ascorbic acid. The result was proved that SWCNTs and KPG5 have a good potential as modified material for selective electrochemical sensor in determination of medical samples.

1. Introduction
The detection and quantification of electrochemical active compounds such as blood and urine are important to diagnose and monitor several diseases [1]. Dopamine (DA) is one of the important component in human body [2,3]. This component includes in the catecholamine group and plays an important role in the function of central nervous, renal, hormonal and cardiovascular systems and normal level in blood is very low (from 0.01 to 1 µmol.L⁻¹) [3–6]. The deficiency of this component causes brain disorders such as Alzheimer, Parkinson’s disease or schizophrenia [2,7,8]. Ascorbic Acid (AA) also called vitamin C, is a vital component in human diet. High concentrations of ascorbic acid, i.e. 34-85 µmol.L⁻¹ and 570-3400 µmol.L⁻¹, can be found in human plasma and urine, respectively. Uric Acid (UA) and other oxipurines are the major catabolize of purines breakdown (guanine and adenine), being an important physiological component that is associated to symptoms of some diseases, most notably gout, hyperuricemia and Lesch–Nyhan syndrome. Its normal concentration in the blood is in range of 120-450 mol.L⁻¹ and in urine about 2 mmol.L⁻¹ [1]. This reason makes researchers compete to develop a fast method for determining dopamine, uric acid and ascorbic acid levels in the human body. Recently, the considerable efforts were made in determining those samples by electrochemical biosensor.

Basically, the electrochemical biosensor comes from coupling the ligand-receptor binding reaction to the transducer signal [6–10]. One of the first electrochemical study of DA was reported by Ralph Adams and his team at University of Kansas in 1967 [8]. They was found that the oxidation mechanism of DA depending on the pH conditioning. Sensor for determined of DA, AA, UA has been reported, modified electrode with multi-walled carbon nanotubes and single-walled carbon nanotubes doped to glassy and carbon paste electrode. The performance of the sensor were not maximum, while needed the sensor with high performance, low cost, simply, and fast. Developing of selective and sensitive electrochemical biosensor for DA, AA, UA detection is still challenging task. To overcome this challenge, modification of electrodes by several materials have been reported [1,9–12]. New
nanomaterial, i.e. carbon nanotubes was shown good performance for DA, UA and AA detection as described in previous studies [1,5,8,9,13–17].

Single-walled carbon nanotubes (SWCNTs) belongs to carbon materials that is attached any attention. This material have advantages as sensors compared to other materials. High electrical conductivity, high surface area, chemical stability and significant mechanical strength are unique characteristics [18–21]. Because of its unique characteristic, the electron transfer reaction between other materials and molecules can work well. The SWCNTs has combined particles to form nodular aggregates [22,23]. During the dispersion process, the aggregate does not break up and there is a spread process consisting of the breakdown of large agglomerates. Suspense that occurs in carbon particles shows the conductivity of conductive networks that have graphite structure on the surface [13,24]. Performance of SWCNTs can be improved by the addition of a binder. The binder must have high mechanical strength, good chemical resistance and good thermal stability and resistance.

In the present work, we modify the carbon electrode by SWCNTs and KPG5. The adding of modification materials aim to improve the performance of the electrode as electrochemical sensor. All modification materials was dropped in the surface of carbon electrode. The performance of the sensor was investigated in medical samples such as dopamine, uric acid and ascorbic acid. All measurement was analyzed using cyclic voltammetry method at acidic condition (pH 4) in room temperature.

2. Experiments

2.1. Chemical and Materials
Dopamine (C$_8$H$_{11}$NO$_2$, 98%) and uric acid (C$_5$H$_4$N$_4$O$_3$, 99%) were bought from Sigma-Aldrich Co. (St. Louis, MO, USA). L(+)-Ascorbic acid (C$_6$H$_8$O$_6$) was purchased from Merck KGaA (Darmstadt, Germany). All chemicals were used without any purification. The solution of acetate buffer (pH 4) was prepared from a cetate acid (CH$_3$COOH, Merck, Germany) and sodium acetate (CH$_3$COONa, Merck, Germany). KPG5 as binder was supplied from Saga University, Japan. Carbon disk electrode was obtained from eDAQ with dimensions of 3 mm diameter x 65 mm long and 1 mm diameter of carbon disk. Demineralized water was used for chemical preparation and cleaning.

2.2. Instrumentation
Electrochemical measurement were using a potentiostat from eDAQ (potentiostat E161 and e-corder 410, equipped with e-chem software version 2.1.13) and an electrochemical analyzer (model 700B, equipped with ALS/CHI700B software).

2.3. Preparation of SWCNTs
SWCNTs was prepared at Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Japan. SWCNTs was synthesized by CVD method as from our previous work [18,19].

2.4. Fabrication of SWCNTs/KPG5-modified carbon electrode
The modified carbon electrode was prepared by adding of SWCNTs and KPG5. All modification materials with composition 1:1 were mixed until homogeneous under sonication condition. The mixed material was attached to the surface of the carbon electrode by dropping method. The modified electrode was dried at 50°C for 3 hours. Furthermore, the modified electrode was cooled at room temperature prior to use.

2.5. Performance of SWCNTs/KPG5-modified carbon electrode
Electrochemical experiments were observed using the cyclic voltammetry method as our previous work [4,5]. All experiments were carried out using three-electrode cell system. The system uses platinum wire as counter electrode (CE), Ag/AgCl (KCl 3 M) as reference electrode (RE), and the modified carbon electrode as working electrode (WE). The potential was swept from -0.8 to 0.8 V vs. Ag/AgCl (KCl 3
M), with 20 seconds of rest time before being measured and scan rate of 50 mV/s. A 10 mM samples were prepared by dissolving dopamine, urea acid and ascorbic acid, each in acetate buffer solution (pH 4).

3. Result and Discussion

Performance of sensor based on SWCNTs/KPG5-modified carbon electrode

The performance of sensor based on SWCNTs/KPG5-modified carbon electrode against DA, UA and AA were shown in Figure 1, 2, and 3, respectively. The modified electrode shows different response for DA, UA and AA. DA was observed two oxidation peaks and two reduction peaks (Figure 1). Potential of dopamine oxidation was appeared at -0.152 V (Ipa = 2.928 µA) and +0.261 V (Ipa = 1.066 µA), while the potential reduction was 0.057 V (Ipc = -2.193 µA) and -0.442 V (Ipc = -5.344 µA). The cycles shows that the sensor surface fouling effect by the presence of DA. Both oxidation and the formation of reduction peaks during measurement prove that the sensor can be used to detect DA. Dopamine has good electrochemical activity and easily oxidized because two electrons undergo an irreversible reaction process by transferring two protons [25]. Dopamine is weakly basic with a pKb value of 8.87, thus affecting the dopamine equilibrium reaction [8]. The optimum peak current occurs at pH 4 because in this acid pH dopamine is protonated so that the dopamine oxidation reaction can occur perfectly. Protonation occurs in the amine group (-NH₂ to -NH₃⁺) in dopamine [4,5,25].

Figure 1. Response of electrochemical sensor based on SWCNTs/KPG5-modified carbon electrode in acetate buffer, pH 4 (A) and 10mM dopamine in acetate buffer, pH 4 (B).

Different response from electrochemical sensor based on SWCNTs/KPG5-modified carbon electrode was found during UA and AA measurement at pH 4. Oxidation and reduction reaction of UA was disappeared (Figure 2). Whereas, the modified sensor give one oxidation peak without formed a reduction peak during AA testing (Figure 3). The response of the sensor on UA and AA were also observed irreversible. The irreversible behavior of the sensor can be caused by several changes in the multilayer structure, desorption and loss of material in oxidation adsorption or reduction of both samples which cannot be reversed on the sensor surface. So that in Figure 2 there is no reduction and oxidation peaks which show that there is no adsorption of UA particles on the sensor surface. The peak current that occurs is smaller than the solvent used. It is clear that the electrochemical reaction of this species to the sensor cannot be changed, indicating that the electron transfer kinetic is slow in this compound. Another possible thing in this species is the distribution of molecules in the solvent that is not maximum
attached to the sensor so that fouling occurs on the sensor surface. This observation is supported by results that have been reported that UA cannot be oxidized and completely reduced at pH 4 [21].

Figure 2. Response of electrochemical sensor based on SWCNTs/KPG5-modified carbon electrode in acetate buffer, pH 4 (A) and 10mM uric acid in acetate buffer, pH 4 (B).

Increasing of oxidation current peak was occurred in the electroactive area of the sensor against AA which increased significantly. The oxidation potential of AA was observed at +0.254 V with \(I_{pa} = 8.158 \) µA. The oxidation peak means there is interactions between species with sensor surfaces. This interaction not produce perfect electrocatalytic activity. The distribution of AA species occurs maximally with the electrode surface at range pH from 4.5 to 8. The AA signal shifted to more cathodic potentials as the pH increases. The current peak for AA oxidation increased and shifted to more positive potentials with increase in pH [26].

Figure 3. Response of electrochemical sensor based on SWCNTs/KPG5-modified carbon electrode in acetate buffer, pH 4 (A) and 10mM ascorbic acid in acetate buffer, pH 4 (B).

According to the response from the electrochemical sensor based on SWCNTs/KPG5-modified carbon electrode, it can be seen that the measurement of dopamine give anodic and cathodic peaks. The SWCNTs used in sensor fabrication are carbon materials that can function as catalysts in measurement activities [5]. So that the electron transfer between the sensor and tested molecules can work well. The use of binders in sensor fabrication also adds the power of the sensor to bind molecules to dopamine. Selection of the right binder can improve sensor performance. In this study, we shows that KPG5 has a good potential for binder because it can improve the response of the sensor.
4. Conclusion
The performance of SWCNTs/KPG5-modified carbon electrode was successfully studied for medical samples. The modified electrode gives the best response during DA measurement at pH 4 in room temperature. DA was oxidised at potential of -0.152 V and +0.261 V, while the potential reduction of DA was observed at 0.057 V and -0.442 V. This response not interfered by the presence of UA and AA.

Acknowledgments
We acknowledge the Indonesian Government, especially the Indonesia Endowment Fund for Education, for their financial support and Japan-Asia Youth Exchange Program in Science (Sakura Science), Japan Science and Technology Agency (JST) for the joint research program.

References
[1] da Silva R P, Lima A W O and Serrano S H P 2008 Simultaneous voltammetric detection of ascorbic acid, dopamine and uric acid using a pyrolytic graphite electrode modified into dopamine solution Analytica Chimica Acta 612 89–98
[2] Greenwood B N 2018 The Role of Dopamine in Overcoming Aversion with Exercise Brain Research
[3] van Galen K A, ter Horst K W, Booij J, la Fleur S E and Serlie M J 2018 The role of central dopamine and serotonin in human obesity: lessons learned from molecular neuroimaging studies Metabolism 85 325–39
[4] Kurniawan F, Tsakova V and Mirsky V M 2009 Analytical Applications of Electrodes Modified by Gold Nanoparticles: Dopamine Detection Journal of Nanoscience and Nanotechnology 9 2407–12
[5] Kurniawan F, Al Kiswiyah N S, Madurani K A and Tominaga M 2017 Single-Walled Carbon Nanotubes-Modified Gold Electrode for Dopamine Detection ECS Journal of Solid State Science and Technology 6 M3109–12
[6] Hasanzadeh M, Shadjou N and Guardia M de la 2017 Current advancement in electrochemical analysis of neurotransmitters in biological fluids TrAC Trends in Analytical Chemistry 86 107–21
[7] Ferapontova E E 2017 Electrochemical Analysis of Dopamine: Perspectives of Specific In Vivo Detection Electrochimica Acta 245 664–71
[8] Ribeiro J A, Fernandes P M V, Pereira C M and Silva F 2016 Electrochemical sensors and biosensors for determination of catecholamine neurotransmitters: A review Talanta 160 653–79
[9] Liu Z, Zhou F, Wu J, Yao Y, Guo Y, Liao X, Gao F and Qian Y 2018 Dual molecular recognition strategy for highly sensitive electrochemical detection of dopamine based on amplification of DNA–Au bio–bar codes Journal of Electroanalytical Chemistry 823 253–60
[10] Mei X, Wei Q, Long H, Yu Z, Deng Z, Meng L, Wang J, Luo J, Lin C-T, Ma L, Zheng K and Hu N 2018 Long-term stability of Au nanoparticle-anchored porous boron-doped diamond hybrid electrode for enhanced dopamine detection Electrochimica Acta 271 84–91
[11] Lin J, Huang B, Dai Y, Wei J and Chen Y 2018 Chiral ZnO nanoparticles for detection of dopamine Materials Science and Engineering: C 93 739–45
[12] Kim Y-R, Bong S, Kang Y-J, Yang Y, Mahajan R K, Kim J S and Kim H 2010 Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes *Biosensors and Bioelectronics* 25 2366–9

[13] Zhexembekova A, Akhmetova N, Molkenova A, Bakenov Z and O’Hare D 2017 Thiol-modified activated carbon material for sensor technology *Materials Today: Proceedings* 4 4599–602

[14] Kurniawan F, Kiswiyah N S A, Madurani K A and Tominaga M 2018 Electrochemical Sensor Based on Single-Walled Carbon Nanotubes-Modified Gold Electrode for Uric Acid Detection *Journal of The Electrochemical Society* 165 B515–22

[15] Zhang L and Jiang X 2005 Attachment of gold nanoparticles to glassy carbon electrode and its application for the voltammetric resolution of ascorbic acid and dopamine *Journal of Electroanalytical Chemistry* 583 292–9

[16] Wang C, Du J, Wang H, Zou C, Jiang F, Yang P and Du Y 2014 A facile electrochemical sensor based on reduced graphene oxide and Au nanoplates modified glassy carbon electrode for simultaneous detection of ascorbic acid, dopamine and uric acid *Sensors and Actuators B: Chemical* 204 302–9

[17] Li Y and Lin X 2006 Simultaneous electroanalysis of dopamine, ascorbic acid and uric acid by poly (vinyl alcohol) covalently modified glassy carbon electrode *Sensors and Actuators B: Chemical* 115 134–9

[18] Tominaga M, Sakamoto S and Yamaguchi H 2012 Jungle-Gym Structured Films of Single-Walled Carbon Nanotubes on a Gold Surface: Oxidative Treatment and Electrochemical Properties *The Journal of Physical Chemistry C* 116 9498–506

[19] Tominaga M, Sasaki A and Togami M 2015 Laccase Bioelectrocatalyst at a Steroid-Type Biosurfactant-Modified Carbon Nanotube Interface *Analytical Chemistry* 87 5417–21

[20] Hwang H-C, Woo J S and Park S-Y 2018 Flexible carbonized cellulose/single-walled carbon nanotube films with high conductivity *Carbohydrate Polymers* 196 168–75

[21] Chen M, Qin X and Zeng G 2017 Biodegradation of Carbon Nanotubes, Graphene, and Their Derivatives *Trends in Biotechnology* 35 836–46

[22] Shen L, Ding H, Cao Q, Jia W, Wang W and Guo Q 2012 Fabrication of Ketjen black-high density polyethylene superhydrophobic conductive surfaces *Carbon* 50 4284–90

[23] Yang X, Xu Y, Zhang H, Huang Y, Jiang Q and Zhao C 2013 Enhanced high rate and low-temperature performances of mesoporous LiFePO4/Ketjen Black nanocomposite cathode material *Electrochimica Acta* 114 259–64

[24] Wang G, Sun G, Wang Q, Wang S, Guo J, Gao Y and Xin Q 2008 Improving the DMFC performance with Ketjen Black EC 300J as the additive in the cathode catalyst layer *Journal of Power Sources* 180 176–80

[25] Quan D P, Tuyen D P, Lam T D, Tram P T N, Binh N H and Viet P H 2011 Electrochemically selective determination of dopamine in the presence of ascorbic and uric acids on the surface of the modified Nafion/single wall carbon nanotube/poly(3-methylthiophene) glassy carbon electrodes *Colloids and Surfaces B: Biointerfaces* 88 764–70
[26] Özcan L, Sahin M and Sahin Y 2008 Electrochemical Preparation of a Molecularly Imprinted Polypyrrole-modified Pencil Graphite Electrode for Determination of Ascorbic Acid Sensors 8 5792–805