Two different \(R \) gene loci co-evolved with \(Avr2 \) of \textit{Phytophthora infestans} and confer distinct resistance specificities in potato

C. Aguilera-Galvez\(^1\), N. Champoureut\(^1,3\), H. Rietman\(^1,4\), X. Lin\(^1\), D. Wouters\(^1\), Z. Chu\(^2,5\), J.D.G. Jones\(^2\), J.H. Vossen\(^1\), R.G.F. Visser\(^1\), P.J. Wolters\(^1\), and V.G.A.A. Vleeshouwers\(^1,7\)

\(^1\)Plant Breeding, Wageningen University and Research, Drouwendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands; \(^2\)The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK

Abstract: Late blight, caused by the oomycete pathogen \textit{Phytophthora infestans}, is the most devastating disease in potato. For sustainable management of this economically important disease, resistance breeding relies on the availability of resistance (\(R \)) genes. Such \(R \) genes against \textit{P. infestans} have evolved in wild tuber-bearing \textit{Solanum} species from North, Central and South America, upon co-evolution with cognate avirulence (\(Avr \)) genes. Here, we report how effectormics screens with \(Avr2 \) of \textit{P. infestans} revealed defense responses in diverse \textit{Solanum} species that are native to Mexico and Peru. We found that the response to \(Avr2 \) in the Mexican \textit{Solanum} species is mediated by \(R \) genes of the \(R2 \) family that resides on a major late blight locus on chromosome \(IV \). In contrast, the response to \(Avr2 \) in Peruvian \textit{Solanum} species is mediated by \(Rpi-\text{mcq1} \), which resides on chromosome IX and does not belong to the \(R2 \) family. The data indicate that \(Avr2 \) recognition has evolved independently on two genetic loci in Mexican and Peruvian \textit{Solanum} species, respectively. Detached leaf tests on potato cultivar ‘Desirée’ transformed with \(R \) genes from either the \(R2 \) or the \(Rpi-\text{mcq1} \) locus revealed an overlapping, but distinct resistance profile to a panel of 18 diverse \textit{P. infestans} isolates. The achieved insights in the molecular \(R – Avr \) gene interaction can lead to more educated exploitation of \(R \) genes and maximize the potential of generating more broad-spectrum, and potentially more durable control of the late blight disease in potato.

Key words: \(Avr \) gene, Co-evolution, Late blight, \textit{Phytophthora infestans}, Potato, \(R \) gene, Resistance, \textit{Solanum}.

Available online 7 February 2018; https://doi.org/10.1016/j.simyco.2018.01.002.

INTRODUCTION

Potato (\textit{Solanum tuberosum} L.) is the most important non-cereal crop consumed worldwide and is affected by the destructive late blight disease. The oomycete pathogen \textit{Phytophthora infestans} is the causal agent of the disease, which destroys leaves, stems and tubers from growing potato plants (\textit{Fry} 2009). In Ireland, late blight destroyed a large portion of the crop and led to the Irish potato famine between 1845 and 1849, causing the death of over one million people and the emigration of one million more (\textit{Zadoks} 2008). Currently, late blight is the major threat to potato production, responsible for yield losses of around 16 \% of the global crop and representing an annual financial loss of approximately € 6 billion (\textit{Haverkort} et al. 2016).

Johanna Westerdijk believed that studying mechanisms that underlie plant immunity would help the breeding of resistant genotypes. In her inaugural lecture in 1917, when she became Professor of Phytopathology at Utrecht University, she described that diseases were most severe when pathogens or hosts are introduced in novel environments. She argued that co-evolution of hosts and pathogens is required for the evolution of resistance (\textit{Westerdijk} 1917). In the meantime, significant progress has been made in understanding plant immunity, and this knowledge has led to the development of resistant plants. Several \(R \) genes conferring resistance to \textit{Phytophthora infestans} (\(Rpi \)) have been introgressed into potato cultivars from \textit{Solanum} species native to Mexico (\textit{Malcolmson} & \textit{Black} 1966). The Toluca Valley in Mexico is a center of diversity for \textit{P. infestans} and suggested to be its center of origin (\textit{Goodwin} et al. 1992, \textit{Fry} et al. 1993, \textit{Grunwald} & \textit{Flier} 2005). The Mexican resistance (\(R \)) genes include \(R1-R11 \) from \textit{Solanum demissum}, \(Rpi-bib1 \), \(Rpi-bib2 \) and \(Rpi-bib3 \) from \textit{Solanum bulbocastanum}, \(Rpi-sto1 \) and \(Rpi-pta \) from \textit{Solanum stoloniferum}, \(Rpi-amr3 \) from \textit{Solanum americanum}, \(Rpi-mch1 \) from \textit{Solanum micranthum} and \(Rpi1 \) from \textit{Solanum pinnatisectum} (\textit{Kuhl} et al. 2001, \textit{Hein} et al. 2009, \textit{de Vetten} et al. 2011, \textit{Vleeshouwers} et al. 2011b, \textit{Jo} et al. 2015, \textit{Witek} et al. 2016, \textit{Sliwka} et al. 2012b). Some of these Mexican \(R \) genes belong to large gene families, such as \(R2 \) that occurs at a major late blight resistance locus (MLB) on chromosome \(IV \) (\textit{Park} et al. 2005a, \textit{Lokossou} et al. 2009). In the Andean region in South America, the other center of genetic diversity of tuber-bearing \textit{Solanum} (\textit{Hijmans} & \textit{Spooner} 2001, \textit{Spooner} et al. 2004) as well as \textit{P. infestans} (\textit{Abad} & \textit{Abad} 1997, \textit{Alpizar-Gomez} et al. 2007), additional \(R \) genes have been identified. These include \(Rpi-mcq1 \), \(Rpi-vnt1 \), \(Rpi-ber \), \(Rpi-chc1 \), \(Rpi-tar1 \) and \(Rpi-rzc1 \) from \textit{Solanum mochiquense}, \textit{Solanum venturii}, \textit{Solanum berthaultii},
RESULTS

AVR2 induces cell death responses in *Solanum* species from Mexico and Peru

To identify plants that recognize AVR2 of *P. infestans*, functional screens were performed on a highly diverse set of 80 wild *Solanum* genotypes that belong to nine different taxonomic series (Table 1) (Hawkes 1990, Vleeshouwers et al. 2011a). AVR2 was transiently expressed in leaves by agroinfiltration and responses were scored at 3–4 days post infiltration (dpi). Specific cell death responses to AVR2 were observed in twelve wild *Solanum* genotypes. These belong to *Solanum schenckii* (Snk) 213-1 and 212-5, *Solanum edinense* (Edn) 151-1 and 150-4, *Solanum hjertingii* (HjH) 349-3, 350-1 and 640-1 and *Solanum bulbocastanum* (Blb) 520-21 that all occur in the central highlands of Mexico (Champouret 2010), but also in *S. mochiquense* (Mqz) 717-3 and 186-2 and *Solanum huancabambense* (Hcb) 353-8 and 354-1, which originate from Peru (Table 1, Fig. 1A). These results indicate that AVR2 is specifically recognized in various wild *Solanum* species, which reside in two geographically distinct locations (Fig. 1B).

Genetic diversity of Mexican and South American *Solanum* genotypes

The *Solanum* species for which an AVR2 response was detected, belong to taxonomically separate series. The AVR2-responding Mexican genotypes belong to Demissia, *Longipedicellata* and *Bulbocastanum*, whereas the Peruvian genotypes belong to *Yungasensa* and *Tuberosa* (Table 1). To further determine the genetic relationship between the 12 AVR2-recognizing *Solanum* genotypes on the DNA level, we classified them using the division described by Bonierbale et al. (1990) and Spooner et al. (2014). Genomic DNA from all functionally screened *Solanum* genotypes (Table 1) was subjected to AFLP analysis according to the method described by Jacobs et al. (2008), and subsequently, a tree was constructed using Bayesian inference. The tree shows that the AVR2-responding *Solanum* genotypes from Mexico and Peru cluster in separate groups (Fig. 2), and suggests a different evolutionary origin of the Mexican vs. Peruvian AVR2-responding *Solanum* species.

Two R gene clusters from Mexico and Peru mediate AVR2 recognition

R proteins of the nucleotide-binding leucine-rich repeat (NLR) class have a conserved region ARC, which was found in *Apafl* in humans, *R* proteins in plants and CED4 in *Caenorhabditis elegans* (van der Biezen & Jones 1998). The nucleotide binding (NB) and ARC domains are contiguous and the combined domain is known as the NB-ARC, which activation triggers cell death (Raidan & Moffett 2006). To investigate the relationship between previously identified *R* genes against late blight (Vleeshouwers et al. 2011a), we aligned their full NB-ARC domains. In total, 27 NB-ARC domains of *Rpi* proteins were used in the alignment and a phylogenetic tree was constructed based on these data (Fig. 3). Additionally, all of the *Rpi* proteins contain a coil–coil domain in the N-terminus and belong to the CNL family. The *Rpi* proteins were classified in different CNL clades (Jupe et al. 2012) (Fig. 3, Supplemental Table 1).

The *R2* family from MLB locus show chromosome IV is present in various Mexican *Solanum* spp. including *S. demissum*, *S. bulbocastanum*, *S. edinense*, *S. schenckii* and *S. hjertingii*, which are, respectively, the donors of R2, *Rpi-bb3*, *Rpi-edn1.1* *Rpi-snk1.1*, *Rpi-snk1.2*, *Rpi-hjt1.1*, *Rpi-hjt1.2* and *Rpi-hjt1.3* (Lokossou et al. 2009, Champouret 2010). Also, functional members of the *R* gene clusters on chromosome IV, V, VI, VII, VIII, IX, and XI, containing *Rpi-amr3*, R1, *Rpi-bb2*, *Rpi-mch1* and *Rpi1*, *Rpi-bb1*, R8 & R9a, (plus its allelic variants) and R3a/R3b, respectively, seem to be restricted to *Solanum* species of Mexican origin.

R genes from South American origin are *Rpi-vnt1* and its allelic variants from *S. venturi* from Argentina (Foster et al. 2009, Pel et al. 2009), *Rpi-chc1* from *S. chaacense*, *Rpi-bcr* from *S. berthaultii* and *Rpi-tar1* from *S. tarijense* from Bolivia, (Vossen et al. 2009), *Rpi-rrc1* from *Solanum sparsipilum* from Bolivia and Peru (Sliwka et al. 2012a) and *Rpi-mcq1* from *S. mochiquense*
Table 1. List of *Solanum* genotypes used in this study.

Series	Genotype	GenBank accession	Agro infiltration	Accession origin				
			pK7WG2:AVR2	pK7WG2: empty	R3a/AVR3a	Country	Collection site	
II. Bulbocastana								
	S. bulbocastanum partitum	GLKS 35322	120-2	-	-	+	Guatemala	
	S. bulbocastanum	CGN 23075	525-1	-	-	+	Guatemala	
	S. bulbocastanum	CGN 23074	949-1	-	-	+	Guatemala	
	S. bulbocastanum	CGN 23074	949-5	-	-	+	Guatemala	
	S. bulbocastanum	CGN 22732	950-5	-	-	+	Guatemala	
	S. bulbocastanum	CGN 17693	331-2	-	-	+	Mexico	
	S. bulbocastanum	CGN 17689	945-2	-	-	+	Mexico	
	S. bulbocastanum	CGN 22698	517-1	-	-	+	Mexico	
	S. bulbocastanum	GLKS 31741	522-1	-	-	+	Mexico	
	S. bulbocastanum	CGN 22367	946-1	-	-	+	Mexico	
	S. bulbocastanum	PI 275199	541-2	-	-	+	Mexico	
	S. bulbocastanum	GLKS 30099	539-2	-	-	+	Mexico	
	S. bulbocastanum	CGN 18326	337-2	-	-	+	Mexico	
	S. bulbocastanum	CGN 18326	337-1	-	-	+	Mexico	
	S. bulbocastanum	CGN 18326	335-10	-	-	+	USA	
	S. bulbocastanum	GLKS 31586	355-1	-	-	+	USA	
	S. bulbocastanum	CGN 18346	355-1	-	-	+	USA	
	S. bulbocastanum	CGN 18346	674-1	-	-	+	USA	
III. Pinnatisecta								
	S. brachistotrichum	CGN 17681	325-3	-	-	+	Mexico	
	S. brachistotrichum	GLKS 32714	118-22	-	-	+	Mexico	
	S. cardiophyllum	CGN 18325	336-1	-	-	+	Mexico	
	S. cardiophyllum	CGN 18326	337-2	-	-	+	Mexico	
	S. cardiophyllum	GLKS 30099	124-1	-	-	+	Mexico	
	S. cardiophyllum	GLKS 31741	522-1	-	-	+	Mexico	
	S. cardiophyllum	GLKS 32714	539-2	-	-	+	Mexico	
	S. cardiophyllum	PI 275199	775-1	-	-	+	Mexico	
	S. cardiophyllum	GLKS 31586	204-1	-	-	+	Mexico	
	S. cardiophyllum	GLKS 31586	882-4	-	-	+	Mexico	
	S. cardiophyllum	PI 545742	229-2	-	-	+	Mexico	
	S. cardiophyllum	PI 545742	229-3	-	-	+	Mexico	
	S. jayesi	CGN 18349	355-10	-	-	+	USA	
	S. jayesi	CGN 18349	355-1	-	-	+	USA	
	S. jayesi	CGN 18346	674-1	-	-	+	USA	
IV. Polyadenia								
	S. desteri	CGN 18337	358-2	-	-	+	Mexico	
	S. desteri	CGN 18337	358-4	-	-	+	Mexico	
	S. polyadenium	CGN 17749	376-4	-	-	+	Mexico	
VI. Circaeifolia								
	S. capsicibaccatum	CGN 18254	335-10	-	-	+	Bolivia	
	S. capsicibaccatum	CGN 22388	536-1	-	-	+	Bolivia	
	S. circaeifolium	CGN 18133	564-2	-	-	+	Bolivia	
	S. circaeifolium	CGN 18133	564-3	-	-	+	Bolivia	
	S. circaeifolium	CGN 18158	567-1	-	-	+	Bolivia	
IX. Yungasensa								
	S. chacoense	CGN 18365	544-5	-	-	+	Bolivia	
	S. chacoense	CGN 23986	4-11	-	-	+	Bolivia	
	S. huancambense	CGN 18306	353-8	-	-	+	Peru	
	S. huancambense	CGN 18306	354-1	-	-	+	Peru	
	S. huancambense	CGN 18306	354-2	-	-	+	Peru	
	S. huancambense	CGN 17719	354-10	-	-	+	Peru	
	X. Megistacroloba	S. astleyi	GLKS 32836	114-4	-	-	+	Bolivia
	X. Tuberosa	S. verrucosum	CGN 17768	393-10	-	-	+	Mexico
	S. verrucosum	CGN 17770	912-2	-	-	+	Mexico	
	S. mochiquense	GLKS 32319	186-1	-	-	+	Peru	
	S. mochiquense	CGN 18263	717-3	-	-	+	Peru	
	S. mochiquense	GLKS 32319	186-2	-	-	+	Peru	
	S. avilesii	CGN 18255	477-1	-	-	+	Bolivia	
	S. avilesii	CGN 18256	478-2	-	-	+	Bolivia	
	S. berthaultii	CGN 18190	481-3	-	-	+	Bolivia	

(continued on next page)
Table 1. (Continued).

Series	Solanum species	GenBank accession	Genotype	Agro infiltration	Accession origin
			pK7WG2:AVR2	pK7WG2: empty	Country
			R3a/AVR3a		Collection site

S. gourlayi vidaurei	CGN 23045	626-2	–	–	+	Argentina
S. microdontum gigantophyllum	CGN 18200	712-6	–	–	+	Bolivia
S. microdontum gigantophyllum	CGN 23050	714-1	–	–	+	Argentina
S. microdontum gigantophyllum	CGN 18295	956-1	–	–	+	Argentina
S. microdontum gigantophyllum	CGN 18049	963-3	–	–	+	Argentina
S. okade	PI 458368	283-1	–	–	+	Argentina
S. okade	CGN 18109	366-1	–	–	+	Argentina
S. okade	CGN 18108	367-1	–	–	+	Argentina
S. okade	CGN 17998	368-6	–	–	+	Argentina
S. okade	CGN 19279	741-1	–	–	+	Argentina

XVIII. Longipedicellata

Genotype Agro infiltration	Accession origin						
pK7WG2:AVR2	pK7WG2: empty						
R3a/AVR3a							
	Collection site						
S. fendleri	CGN 18116	596-2	–	–	+	USA	
S. papita	CGN 17830	369-7	–	–	+	Mexico	
S. papita	CGN 18303	765-1	–	–	+	Mexico	
S. papita	CGN 18732	370-5	–	–	+	Mexico	
S. stoloniferum	CGN 18333	842-9	–	–	+	Mexico	
S. stoloniferum	CGN 17606	837-2	–	–	+	Mexico	
S. stoloniferum	CGN 18333	842-6	–	–	+	Mexico	
S. stoloniferum	CGN 18348	832-5	–	–	+	Peru	
S. hjertingii	CGN 22370	640-1	+	–	+	Mexico	5
S. hjertingii	CGN 17718	350-1	+	–	+	Mexico	6
S. hjertingii	CGN 17717	349-3	+	–	+	Mexico	7
S. polytrichon	CGN 17750	378-2	–	–	+	Mexico	

XIX. Demissa

Genotype Agro infiltration	Accession origin						
pK7WG2:AVR2	pK7WG2: empty						
R3a/AVR3a							
	Collection site						
S. edinense	PI 611104	150-4	+	–	+	Mexico	1
S. edinense	PI 607474	151-1	+	–	+	Mexico	2
S. schenkii	GLKS 30659	213-1	+	–	+	Mexico	3
S. schenkii	GLKS 30658	212-5	+	–	+	Mexico	4
S. hougasii	CGN 21361	655-1	–	–	+	Mexico	

The 80 genotypes are derived from wild Solanum accessions native to diverse geographic locations and belong to 9 taxonomic series of Solanum section Petota (Hawkes 1990). Plants were subjected agro-infiltration and occurrence of cell death responses (+) or no responses (−) is indicated. The pK7WG2 empty vector and agro-co-infiltration with R3a/AVR3a were included as negative and positive controls, respectively. Collection sites 1–12 correspond to Figs 1 and 2.

from Peru (Smilde et al. 2005, Jones et al. 2014a), the same Solanum species as was found to respond to AVR2 (Fig. 1, Table 1). To test whether Rpi-mcq1 can recognize AVR2 (Fig. 4). Specific cell death responses occurred in leaf panels co-infiltrated with AVR2 and the R2 homolog Rpi-blb3 or Rpi-mcq1, respectively. This indicates that AVR2 recognition can be mediated by both Rpi-blb3 and Rpi-mcq1. These R genes are localized at different chromosomes (Supplemental Table 1) and different phylogenetic clades (Fig. 3), which supports the theory of different evolutionary origin between R2/Rpi-blb3 and Rpi-mcq1 genes.

Transgenic Désirée-Rpi-blb3 and Désirée-Rpi-mcq1 display a different resistance spectrum to P. infestans isolates

Transgenic potato cv. ‘Désirée’ were generated that express Rpi-blb3 and Rpi-mcq1, respectively, under the control of their native promoters. To functionally analyze the R gene activity, leaves of Désirée-Rpi-blb3 and Désirée-Rpi-mcq1 were agroinfiltrated with Agrobacterium tumefaciens carrying the pK7WG2 vector harboring AVR2. Infiltrations using pK7WG2: empty vector and co-infiltration of R3a/AVR3a were included as negative and positive controls, respectively. In both transformants, cell death responses were observed in AVR2 infiltration sites and with the positive control at 4 dpi (Supplemental Fig. 1), confirming that Rpi-mcq1 and Rpi-blb3 are functional in these plants and lead to the recognition of AVR2.

The resistance spectrum of Désirée-Rpi-blb3, Désirée-Rpi-mcq1 and wild type ‘Désirée’ control was investigated by performing detached leaf assays with 18 P. infestans isolates (Supplemental Table 2). Macroscopic observations were carried out at 6 dpi. The susceptible ‘Désirée’ control was infected by all tested isolates, but three distinct resistance patterns (I−III) were observed on Désirée-Rpi-blb3 and Désirée-Rpi-mcq1 (Fig. 5). Group I contains seven isolates that are avirulent on both Désirée-Rpi-blb3 and Désirée-Rpi-mcq1, whereas Group III
contains eight isolates that are virulent on these plants. Interestingly, group II consists of three isolates that display a distinct virulence profile on D/C19cesir/C19ee-Rpi-blb3 compared with D/C19cesir/C19ee-Rpi-mcq1. All of the three isolates are avirulent on D/C19cesir/C19ee-Rpi-blb3 but virulent on D/C19cesir/C19ee-Rpi-mcq1. Considering the virulence pattern observed, D/C19cesir/C19ee-Rpi-blb3 displays a slightly broader and partly overlapping disease resistance spectrum as compared to D/C19cesir/C19ee-Rpi-mcq1.

DISCUSSION

This manuscript presents a study of AVR2 effector recognition in a wide diversity of wild *Solanum* species. We detected AVR2 responses in *Solanum* genotypes from two different geographical locations, Mexico and Peru, which are both recognized as centers of diversity of *P. infestans* (Goodwin et al. 1992, Fry et al. 1993, Abad & Abad 1997, Grunwald & Flier 2005, Alpizar-Gomez et al. 2007). The recognition in Mexican *Solanum* species is conferred by genes from the R2 family that resides at an MLB locus on the short arm of chromosome IV (Lokossou et al. 2009, Champouret 2010, Lokossou et al. 2010). In contrast, the AVR2 response in Peruvian *Solanum* species is conferred by Rpi-mcq1 or allelic variants, which exhibits distinct resistance specificities to a range of *P. infestans* isolates. Rpi-mcq1 belongs to the CNL4 family (Fig. 3) and is located on chromosome IX (Smilde et al. 2005).

The AVR2-responding *Solanum* species identified in this study occur in separate groups based on geographic origin (Fig. 1), taxonomic classification (Table 1) and phylogenetic analysis using AFLP data (Fig. 2). Several studies point the origin of *P. infestans* to Mexico and to the Andes, and as a consequence, Mexican and South American *Solanum* may have independently evolved distinct R genes to adapt to local pathogen populations (Westerdijk 1917, Grunwald & Flier 2005, Alpizar-Gomez et al. 2007, Goss et al. 2014). The fact that Rpi genes from Mexican and Peruvian *Solanum* species are present in different loci and belong to different classes (Fig. 3), supports the hypothesis that recognition of AVR2 has evolved independently in those geographic regions and has led to the evolution of two different R genes that mediate AVR2-based resistance to *P. infestans*. Comparably, in *Phytophthora sojae*, two distinct genes conferring resistance to *Phytophthora sojae* (Rps genes), Rps3a and Rps5, were found to mediate recognition of the product of the AVR3a/5 alleles from *P. sojae*. These Rps genes are located on different chromosomes (Li et al. 2016) and specific residues of AVR3a/5 were identified that are required for recognition by Rps5, but not Rps3a (Dong et al.
suggesting that Rps3a and Rps5 evolved independently. Research using other systems show that the recognition of an AVR protein by multiple, unrelated, R proteins is sometimes also observed in other plant-pathogen systems (Feyter et al. 1993, Ashfield et al. 2004, Anh et al. 2015). Recently, it was found that distinct immune receptors can be involved in the recognition of conserved molecules like bacterial flagellin as well (Hind et al. 2016).

\[\text{R gene specificity is known to be determined by specific recognition of AVR proteins of pathogens. The largely overlapping resistance spectra mediated by Rpi-mcq1 and R2/Rpi-bib3 can be explained by Avr2, which was found to be the} \]

\[\text{Clade 1} \]

\[\text{Mexican and Central American species} \]

\[\text{Clade 3} \]

\[\text{Ecuador and Northern Peru} \]

\[\text{Clade 4} \]

\[\text{S. verrucosum in Mexico} \]

\[\text{South American diploids exclusive of clade 3} \]

\[\text{Complex clade} \]

\[\text{Clade 1 + 4} \]

\[\text{Complex clade} \]

\[\text{Clade etuberosum} \]
cognate Avr for both R genes (Gilroy et al. 2011). AVR2 is a member of a highly diverse gene family (Champouret 2010, Vleeshouwers et al. 2011b) and the difference in resistance specificity between Rpi-bib3 and Rpi-mcq1 might be explained by differential recognition of other AVR2 family members, or additional alleles of AVR2. It has been demonstrated in P. sojae that recognition of the same effector is not always linked with the same race specificity and the differential specificities in effector recognition may be attributed to the presence of additional alleles or paralogs of the effector (Kaitany et al. 2001, Dong et al. 2011). Therefore, the study of recognition of AVR2 family members and their allelic variants in diverse P. infestans isolates by Rpi-bib3 and Rpi-mcq1 could contribute to better understanding of race-specific resistances and subsequently contribute to more educated deployment of respective R genes.

According to the Achilles’ heel theory (Homer 1999), proteins that fulfill essential functions for a pathogen are less likely to become mutated or lost from the invaders genome. Therefore, targeting such proteins is expected to lead to more broad-spectrum, and even more sustainable disease resistance (Laugé et al. 1998). AVR2 interacts with the host target StBSL1, a putative phosphatase that acts as a positive regulator of the brassinosteroid (BR) pathway. Enhanced BR-signaling results in up-regulation of the basic-Helix-Loop-Helix transcription factor StCHL1, which acts as a negative regulator of immunity (Saunders et al. 2012, Turnbull et al. 2017). AVR2 was found to contribute to virulence of P. infestans (Gilroy et al. 2011). The fact that two independent R gene families have evolved in Solanum to detect AVR2, supports the idea that AVR2 is an important effector of P. infestans. Avr2 thus seems an important target for obtaining resistance.

Besides targeting important or conserved effectors, it has been proposed that the stacking of R genes can contribute to obtaining a broader and more durable type of resistance (Pink & Puddephat 1999). In the past, some breeders have used the geographic origin of the resistant genotypes as a criterion to decide which resistance sources to include in their breeding program. However, since allelic variants of R genes are found across Solanum spp., e.g. like Rpi-bib1, Rpi-sto1 and Rpi-pta1 from S. bulbocastanum and S. stoloniferum (Vleeshouwers et al. 2008, Champouret et al. 2009) and the members of R2 from S. demissum, from at least 5 Mexican Solanum species (Park et al. 2005a, Park et al. 2005b, Park et al. 2005c, Vleeshouwers et al. 2008, Lokossou et al. 2009, Champouret 2010), this appears not a very robust criterion. In more modern breeding approaches, breeders select R genes by locus, as it has been proposed that R genes that originate from different R gene clusters recognize different effectors and are thus preferred (Zhu et al. 2012). Marker-assisted breeding is then considered efficient for breeding, although R gene activity by functional effector assays seems the best method to distinguish between mechanistically different R genes (Vleeshouwers et al. 2011b, Jo et al. 2016). In this study however, we show that R genes that recognize the same effector (AVR2) can still confer different
Fig. 4. *Rpi-mcq1* and *Rpi-blb3* confer response to AVR2. Leaves of potato cv. ‘Bintje’ were co-infiltrated with AVR2 and *Rpi-mcq1* (A) and *Rpi-blb3* (B) as a cell death control trigger by AVR2. Single infiltrations of AVR2, *Rpi-mcq1*, *Rpi-blb3* and empty vector were included as negatives controls and co-infiltration of R3a/AVR3a was included as positive control. Each effector is tested twice on three leaves, over two plants and two biological replicates. Representative photographs of cell death symptoms were taken at 4 dpi.

Fig. 5. Disease index on ‘Desirée’, ‘Desirée-*Rpi-mcq1*’ and ‘Desirée-*Rpi-blb3*’ with isolates from group I–III. (A) Representative pictures of isolates from group I to III tested in ‘Desirée’ (WT), ‘Desirée-*Rpi-mcq1*’ (*Rpi-mcq1*) and ‘Desirée-*Rpi-blb3*’ (*Rpi-blb3*) are displayed. Pictures were taken after 6 dpi. (B) Disease symptoms were scored on a scale from 1 to 9: 1 represents intensive sporulation; 2–3, macroscopically visible sporulation, but to a less extend as 1. 4–5, represent sporulation only visible under the binocular; 6–7 represent necrotic lesion ≥ 10 mm of diameter and between 4–10 mm, respectively; 8, small necrotic lesion not exceeding 4 mm and 9 represents no symptoms. The percent of each category is shown with isolates of group I–III.
resistance patterns, which further nuances the strategy to discriminate race-specificity of R genes.

To conclude, the effectoromics approach can aid identification of R genes with new resistance specificities and facilitates the detailed characterization of R genes. A better understanding of how R genes contribute to resistance is essential to select the best genes for resistance breeding. This information can be the basis for an educated breeding effort, which will contribute to the goal of obtaining broad-spectrum and durable resistance against *P. infestans*.

MATERIALS AND METHODS

Plant material

The wild *Solanum* plant material used in functional effector screening for cell death responses to AVR2 is listed in Table 1 (Vleeshouwers et al. 2011a). Plant genotypes were maintained *in vitro* in sterile jars containing MS20 medium (Murashige & Skoog 1962) at 24 °C under 16/8h day/night regime. Top shoots were transferred to fresh medium for rooting, and 2 weeks later transferred to pots containing sterilized soil in climate regulated greenhouse compartments within the temperature range of 18–22 °C and under 16 h/8 h day/night regime.

Agroinfiltration

AVR2 from *P. infestans* (NCBI Genbank code XM_002902940.1) was previously cloned in the pK7WG2 vector (Karimi et al. 2002) and was transiently expressed in *Solanum* plants using Agro-infiltrations (Vleeshouwers & Rietman 2008). Single infiltrations of pK7WG2: empty were included as a negative control and R3a/AVR3a were co-expressed as a positive control. Agro-infiltration was performed on 4-week-old potato plants using a suspension of *A. tumefaciens* strain AGL1 containing MS20 medium (Murashige & Skoog 1962) at 24 °C under 16/8h day/night regime. Top shoots were transferred to fresh medium for rooting, and 2 weeks later transferred to pots containing sterilized soil in climate regulated greenhouse compartments within the temperature range of 18–22 °C and under 16 h/8 h day/night regime.

Phylogenetic data analysis

A phylogenetic tree of 80 screened *Solanum* genotypes and *Solanum tuberosum* (Etb) 594-2, 591-3, 591-4, 591-5, 595-5 and 593-2 was constructed by MrBayes v3.2.6 (Huelsenbeck & Ronquist 2001) using 224 AFLP markers scored as presence/absence of polymorphisms (Jacobs et al. 2008). Mesquite v3.3 (Maddison & Maddison 2017) was used for formatting data and 1000 generations from four chains run for 10 000 000 generations with a temperature setting for the heated chains of 0.25. *Solanum tuberosum* genotypes represented the outgroup.

A Maximum-Likelihood (ML) tree was generated with the NB-ARC domains of 27 Rpi proteins obtained by InterProScan (Jones et al. 2014b) (Supplementary Table 1). The domain sequences were aligned using Muscle (Edgar 2004) and the resulting alignment was used for phylogenetic analysis. The ML tree was built in PhyML v3.0 (Guindon et al. 2010) using the nearest Neighbor Interchange (NNI) as the heuristic method for finding the best tree topology. The tree was rooted using Gro1.4 (NCBI Genbank code AAP44390.1) and was visualized by Figtree v1.4.3 (Rambaut 2009).

Generation of transgenic Rpi-blb3 and Rpi-mcq1 potato cv. ‘Désirée’

Stable transformation of potato cv. ‘Désirée’ (event A03-142) was previously performed using *A. tumefaciens* strain AGL1 harboring pBINPLUS: Rpi-blb3 under the control of native expression elements (Zhu et al. 2012). For Rpi-mcq1 transformation to Désirée, Rpi-mcq1 was subcloned from the library clone pSLJ2115 (Jones et al. 2007) into the binary vector pBINPLUS under the control of native regulatory elements and was transferred to *A. tumefaciens* strain AGL1. The transformation of potato cv. ‘Désirée’ was performed using routine transformation protocols (Filatti et al. 1987, Hoeckema et al. 1991). Among 35 independent primary transformants, the resistant event A31-47 was selected after growth under greenhouse conditions (18–22 °C, 16 h of light and 8 h of dark) and field condition.

Phytophthora infestans isolates, culture conditions and inoculum preparation

The *P. infestans* isolates used in this study are listed in Supplemental Table 2 and were retrieved from our in-house collection. Isolates were routinely grown in the dark at 15 °C on solid rye sucrose medium prior to the disease test (Caten & Jinks 1968). To isolate zoospores for plant inoculations, sporulating mycelium was flooded with cold water and incubated at 4 °C for 1–3 h.

Disease test

Leaves from 6–8-week-old plants grown in greenhouse conditions (18–22 °C, 16 h of light and 8 h of dark) were detached and placed in water-saturated oasis in trays. The leaves were spot-inoculated at the abaxial leaf side with 10 μl droplets containing 5*10^4 zoospores per ml. 12 inoculations in each leave, three leaves per isolate and 3 independent experiments were performed. After inoculation, the trays were incubated in a climate chamber at 15 °C with a 16 h photoperiod. Development of lesions and presence of sporulation was determined at 5 dpi (Vleeshouwers et al. 1999, Champouret 2010). Disease index was estimated using a scale ranging from 1 to 9 scale, where 1 corresponds to expanding lesions with massive sporulation (susceptible), 7–8 to occurrence of the hypersensitive response (resistant) and 9 to no symptoms (fully resistant).

ACKNOWLEDGEMENTS

This work was supported by NWO-VIDI grant 12378 (V.G.A.A.V), COLCIENCIAS doctoral grant 617-2013 (C.A-G), The Veenhuizen Tulp Fund (C.A-G), COST action FA1208 (V.G.A.A.V, C.A-G, and P.J.W). We thank Gert Kessel, Francine Govers and David Cook for providing Phytophthora isolates, Gert van Arkel, Gerard Bijsterbosch, and Anniene van Lierop for technical assistance and Marjan Bergervoet and Isolde Pereira for plant transformation and maintenance.
Appendix A. Supplementary Data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.simyco.2018.01.002.

References

Abad ZG, Abad JA (1997). Another look at the origin of late blight of potatoes, tomatoes, and pear mear in the Andes of South America. Plant Disease 81: 682–688.

Alpizar-Gomez L, Carbone I, Ristaino JB (2007). An Andean origin of Phytophthora infestans inferred from mitochondrial and nuclear gene-encoding. Proceedings of the National Academy of Science of the United States of America 104: 3306–3311.

Ahn VL, Ahn NT, Tagle AG, et al. (2015). Rmg8, a new gene for resistance to Triticum isolates of Pyricularia oryzae in hexaploid wheat. Phytopathology 105: 1568–1572.

Ashfield T, Ong LE, Nobuta K, et al. (2004). Convergent evolution of disease resistance gene specificity in two flowering plant families. Plant Cell 16: 309–318.

Bonierbale M, Ganal W, Tanksley SD (1990). Applications of restriction fragment length polymorphisms and genetic mapping in potato breeding and molecular genetics. In: The molecular and cellular biology of the potato (Vayda MEPW, ed). CAB International, Wallingford, U.K.: 13–24.

Caten CE, Jinks JL (1968). Spontaneous variability of single isolates of Phytophthora infestans. I. Cultural variation. Canadian Journal of Botany 46: 329–348.

Champouret N, Bouwmeester K, Rietman H, et al. (2009). Phytophthora infestans isolates lacking class I or x0 variants are virulent on Rpi-bt1 potato. Molecular Plant Microbe Interactions 22: 1535–1545.

Champouret N (2010). Functional genomics of Phytophthora infestans effectors and Solanum resistance genes. Ph.D. Dissertation. Experimental Plant Sciences, Wageningen University, The Netherlands.

Dong S, Yu D, Cui L, et al. (2011). Sequence variants of the Phytophthora sojae RXLR effector Avr3a/5 are differentially recognized by Rps3a and Rps5 in soybean. PLoS One 6: 1–8.

Edgar R (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792–1797.

Feyer RD, Yang Y, Gabriel DW (1993). Gene-for-genes interactions between cotton R genes and Xanthomonas campestris pv malvacearumavr genes. Plant Molecular Microbe Interactions 6: 225–237.

Fillatti JJ, Kiser J, Rose R, et al. (1987). Efficient transfer of a glyphosate tolerance gene into tomato using a binary Agrobacterium Tumefaciens vector. Bio/Technology 5: 726–730.

Foster SJ, Park TH, Pell M, et al. (2009). Rpi-int1.1, a 1m-22 homolog from Solanum venturii, confers resistance to potato late blight. Molecular Plant Microbe Interactions 22: 589–600.

Fry W, Goodwin SB, Dyer AT, et al. (1993). Historical and recent migrations of Phytophthora infestans: chronology, pathways, and implications. Plant Disease 77: 635–661.

Fry W (2008). Phytophthora infestans: the plant (and R gene) destroyer. Molecular Plant Pathology 9: 385–402.

Giliy EM, Breen S, Whitson SC, et al. (2011). Presence/absence, differential expression and sequence polymorphisms between PIAVR2 and PIAVR2-like in Phytophthora infestans determine virulence on R2 plants. New Phytopathologist 191: 763–776.

Goodwin SB, Spielman LJ, Matuszak JM, et al. (1992). Clonal diversity and genetic differentiation of Phytophthora infestans populations in northern and central Mexico. Phytopathology 82: 955–961.

Goss EM, Tabima JF, Cooke DEL, et al. (2014). The Irish potato famine pathogen Phytophthora infestans originated in central Mexico rather than the Andes. Proceedings of the National Academy of Sciences 111: 8791–8796.

Grunwald NJ, Flie WO (2005). The biology of Phytophthora infestans at its center of origin. Annual Review of Phytopathology 43: 171–190.

Guindon S, Dufayard JF, Lefort V, et al. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59: 307–328.

Haas BJ, Kamoun S, Zody MC, et al. (2009). Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature 461: 393–398.

Haverkort AJ, Ong LE, Nobuta K, et al. (2004). Convergent evolution of disease resistance gene specificity in two flowering plant families. Plant Cell 16: 309–318.

Hawkes JG (1990). The potato: evolution, biodiversity, and genetic resources. Belhaven Press, United Kingdom.

Hein I, Birch PRJ, Danan S, et al. (2009). Progress in mapping and cloning quantitative and qualitative resistance against Phytophthora infestans in potato and its wild relatives. Potato Research 52: 215–227.

Hijmans RJ, Spooner DM (2001). Geographic distribution of wild potato species. American Journal of Botany 88: 2101–2112.

Hind SR, Stickler SR, Boyle PC, et al. (2016). Tomato receptor FLAGELLIN-SENSING 3 binds fglr-28 and activates the plant immune system. Nature 2: 1–8.

Hoellman A, Husman MJ, Willink DP-L, et al. (1991). Transgenic potato cultivars resistant to potato virus X. In: Plant Molecular Biology 2 (Herrmann RG, Larkins BA, eds). Springer US, Boston, MA: 183–192.

Horner (1999). The iliad. Harvard University Press, Cambridge, MA.

Huelsenberck JP, McVeigh EW, et al. (2015). MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17: 754–755.

Jacobs MM, van der Berg RG, Veleshousers VGAA, et al. (2008). AFLP analysis reveals a lack of phylogenetic structure within Solanum section Petota. BMC Evolutionary Biology 8: 145.

Jo K-R, Visser RGF, Jacobsen E, et al. (2015). Characterisation of the late blight resistance in potato differential MaR9 reveals a qualitative resistance gene, Rta, residing in a cluster of Tm-22 homologs on chromosome IX. Theoretical and Applied Genetics 128: 931–941.

Jo K-R, Zhu S, Bai Y, et al. (2016). Problematic crops: 1. Potatoes: towards sustainable potato late blight resistance by cysgenic R gene pyramiding. In: Plant pathogen resistance biotechnology. John Wiley & Sons, Inc: 171–191.

Jones JDG, Foster SJ, Chu Z, et al. (2007). Late blight resistance genes and methods. US Patent WO 2009013468 A2. Published by the world intellectual property organization 20 July 2007.

Jones P, Birns D, Chang HY, et al. (2014b). InterProScan 5: genome-scale protein function classification. Bioinformatics 30: 1236–1240.

Jones JDG, Witek K, Verweij W, et al. (2014a). Elevating crop disease resistance with donated genes. Philosophical Transactions of the Royal Society Biological Science 369: 20130087.

Jupe F, Pritchard L, Etherington G, et al. (2012). Identification and localisation of the NB-LRR gene family within the potato genome. BMC Genomics 13: 75–89.

Jupe F, Witek K, Verweij W, et al. (2013). Resistance gene enrichment sequencing (RenSeq) enables reannotation of the NB-LRR gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations. The Plant Journal 76: 530–544.

Kaitany RC, Hart LP, Safrir GR (2001). Virulence composition of Phytophthora sojae in Michigan. Plant Disease 85: 1103–1106.

Karimi M, Inzi D, Depicker A (2002). GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends in Plant Science 7: 193–195.

Kuh JC, Hannemann REJ, Havery MJ (2001). Characterization and mapping of RP1, a late blight resistance locus from diploid (1EBN) Mexican Solanum pinnatisectum. Molecular genetics and genomics 265: 977–985.

Larget B, Simon D (1999). Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Molecular Biology and Evolution 16: 750–759.

Laure Ra, Boosten NMAJ, Haanstra JPW, et al. (1998). Successful search for a resistance gene in tomato targeted against a virulence factor of a fungal pathogen. Proceedings of the National Academy of Science of the United States of America 95(15): 9014–9018.

Li L, Lin F, Wang W, et al. (2016). Fine mapping and candidate gene analysis of two loci conferring resistance to Phytophthora sojae in soybean. Theoretical and Applied Genetics 129: 2379–2386.

Lokoskoo AA, Vansvuski TA, van Arkel G, et al. (2009). Exploiting knowledge of R/Avr genes to rapidly clone a new L2-NBS-LRR family of late blight resistance genes from potato linkage group IV. Molecular plant-microbe interactions 22: 630–641.

Lokoskoo AA, Rietman H, Wang M, et al. (2010, 1206–1216). Diversity, distribution, and evolution of Solanum bulbocastanum late blight resistance genes. Molecular plant microbe interactions 23.

Maddison WP, Maddison DR (2017). Mesquite: a modular system for evolutionary analysis. Version 3.3. http://mesquiteproject.org/.

Malcolmson AJ, Black W (1966). New genes in Solanum demissum Lindl. and their complementary races of Phytophthora infestans (Mont.) de Bary. Euphytica 15: 199–203.
Murashige T, Skoog F (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. *Physiologia Plantarum* 15: 473–497.

Park TH, Gros J, Sikkema A, et al. (2005a). The late blight resistance locus Rpi-bbl3 from *Solanum bulbocastanum* belongs to a major late blight R gene cluster on chromosome 4 of potato. *Molecular Plant Microbe Interactions* 18: 722–729.

Park TH, Vleeshouwers VG, Huigen DJ, Sliwka J, Jakuczun H, Chmielarz M, Saunders DGO, Breen S, Win J, Murashige T, Skoog F (2005b). Characterization and high-resolution mapping of a late blight resistance locus similar to R2 in potato. *Theoretical Applied Genetics* 111: 591–597.

Park TH, Vleeshouwers VG, Hutten RC, et al. (2005c). High-resolution mapping and analysis of the resistance locus Rpi-abp1 against *Phytophthora infestans* in potato. *Molecular Breeding* 16: 33–43.

Park TH, Foster S, Brigneti G, et al. (2009). Two distinct potato late blight resistance genes from *Solanum berthaultii* are located on chromosome 10. *Euphytica* 165: 269–278.

Pel MA, Foster SJ, Park T-H, et al. (2009). Mapping and cloning of late blight resistance genes from *Solanum venturii* using an interspecific candidate gene approach. *Molecular Plant Microbe Interactions* 22: 601–615.

Pink D, Puddephat I (1999). Deployment of disease resistance genes by plant transformation – a ‘mix and match’ approach. *Trends in Plant Science* 4: 71–75.

Rainard GJ, Moffett P (2006). Distinct domains in ARC region of the potato resistance protein Rx mediate LRR binding and inhibition of activation. *The Plant Cell* 18: 2082–2093.

Rambaut A (2009). FigTree V1.4.3. Computer program and documentation distributed by the author at: http://tree.bio.ed.ac.uk/software/.

Saunders DGO, Breen S, Win J, et al. (2012). Host Protein BS1 associates with *Phytophthora infestans* RXLR effector AVR2 and the *Solanum demissum* Immune Receptor R2 to mediate disease resistance. *The Plant Cell* 24: 3420–3434.

Sliwka J, Jakuczun H, Chmielarz M, et al. (2012a). Late blight resistance gene from *Solanum ruiz-cellulosii* is located on potato chromosome X and linked to violet flower colour. *BMC Genetics* 13: 1–12.

Sliwka J, Jakuczun H, Chmielarz M, et al. (2012b). A resistance gene against potato late blight originating from *Solanum microaconum* maps to potato chromosome VII. *Theoretical and Applied Genetics* 124: 397–406.

Smilde WD, Brigneti G, Jagger L, et al. (2005). *Solanum mochienque* chromosome IX carries a novel late blight resistance gene Rpi-moc1. *Theoretical Applied Genetics* 110: 252–258.

Spooner DM, Ghislain M, Simon R, et al. (2014). Systematic, diversity, genetics and evolution of wild and cultivated potato species. *The Botanical Review* 80: 238–383.

Spooner DM, van den Berg RG, Rodriguez A, et al. (2004). Wild potato species (*Solanum* section Petota) of North and central America. In: *Systematic botany monographs*.

Turnbull D, Yang L, Naqvi S, et al. (2017). RXLR effector AVR2 Up-regulates a brassinosteroid-responsive bHLH transcription factor to suppress immunity. *Plant Physiology* 174: 356–369.

van der Biezen EA, Jones JDG (1998). The NB-ARC domain: a novel signalling motif shared by plant resistance gene products and regulators of cell death in animals. *Current Biology* 8: 226–228.

de Vetten NCMH, Verzaux EC, Vossen JH, et al. (2011). Cloning and exploitation of a functional R-gene from *Solanum x edinense*. US patent 20140041072 A1, Published by the world intellectual property organization, 6 February 2014.

Vleeshouwers VGAA, van Dooijeweert W, Paul Keizer LC, et al. (1999). A Laboratory assay for *Phytophthora infestans* resistance in various *Solanum* species reflects the field situation. *European Journal of Plant Pathology* 105: 241–250.

Vleeshouwers VGAA, Rietman H (2008). In planta expression systems. In: *Oomycete genetics and genomics*. John Wiley & Sons, Inc.: 455–475.

Vleeshouwers VGAA, Rietman H, Krenk P, et al. (2008). Effector genomics accelerates discovery and functional profiling of potato disease resistance and *Phytophthora infestans* avirulence genes. *PLoS One* 3: 1–10.

Vleeshouwers VGAA, Finkers R, Budding D, et al. (2011a). SolRgene: an online database to explore disease resistance genes in tuber-bearing *Solanum* species. *BMC Plant Biology* 11: 1–9.

Vleeshouwers VGAA, Raffaele S, Vossen JH, et al. (2011b). Understanding and exploiting late blight resistance in the age of effectors. *Annual Review Phytopathology* 49: 507–531.

Vossen JH, Nijenhuis M, Arends-de Reuver MJB, et al. (2009). Cloning and exploitation of a functional R gene from *Solanum chacoense*. US Patent WO 2011034433 A1. Published by the world intellectual property organization 18 September 2009.

Westerdijk J (1917). *De nieuwe wegen van het phytopathologisch onderzoek*. Inaugurele Rede. J.H de Bussy, Utrecht (NL): 1–38.

Witek K, Jupe F, Witek AI, et al. (2016). Accelerated cloning of a potato late blight-resistance gene using RenSeq and SMRT sequencing. *Nature Biotechnology* 34: 656–660.

Zadoks JC (2008). The potato murrain on the European continent and the revolutions of 1848. *Potato Research* 51: 5–45.

Zhu S, Li Y, Vossen JH, et al. (2012). Functional stacking of three resistance genes against *Phytophthora infestans* in potato. *Transgenic Research* 21: 89–99.