Case report

A fatal case of early prosthetic valve endocarditis caused by multidrug-resistant (MDR) – *Sphingomonas paucimobilis*

Aninka Saboea,*, Yudri Adrianb, Leonards Widyatmokob, Melawatihanac, Charlotte Johanna Coola, Yovita Hartantri, Andri Reza Rahmadic, Rama Nusjirwanb, Mohammad Rizki Akbara

a Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Padjadjaran, Dr. Hasan Sadikin General Hospital, Bandung, Indonesia
b Clinical Microbiology Division, Department of Clinical Pathology, Faculty of Medicine, Universitas Padjadjaran, Dr. Hasan Sadikin General Hospital, Bandung, Indonesia
c Cardiothoracic Surgery Division, Department of Surgery, Faculty of Medicine, Universitas Padjadjaran, Dr. Hasan Sadikin General Hospital, Bandung, Indonesia

Article history:
Received 21 March 2021
Received in revised form 4 May 2021
Accepted 4 May 2021

Keywords:
Perivalvular extension
Multivalvular involvement
Valve dehiscence
Septic arthritis
Sphingomonas paucimobilis

Abstract

Sphingomonas paucimobilis (*S. paucimobilis*) is a low-pathogenicity, gram-negative bacillus (GNB) that are previously known as an opportunist microorganism. Recent studies have shown that *S. paucimobilis* is an emerging pathogen causing various infections. Multidrug-resistant GNB has emerged as a major clinical and therapeutic dilemma in various hospital-associated infections.

Although rare, *S. paucimobilis* could be associated with infective endocarditis (IE). Prosthetic valve endocarditis (PVE) is the most severe type of IE, which has high mortality rates despite diagnostic and treatment advances. We report a fatal case of early PVE associated with multidrug-resistant (MDR) – *S. paucimobilis* complicated with perivalvular abscess, complete heart block, valve detachment, and septic arthritis.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Early prosthetic valve endocarditis (PVE) is a life-threatening condition. Rapid treatment with antibiotic therapy and early surgery are the treatment of choice in managing this disease. However, the mortality rate remained high [1].

Sphingomonas paucimobilis is a Gram-negative bacillus (GNB) with low pathogenicity that could present in the community or hospital settings. Severe infection and septic shock caused by *S. paucimobilis* have been described in immunodeficient patients [2]. Only a few recorded cases of *S. paucimobilis* associated with infective endocarditis (IE) exist, and to our knowledge, this is the first case report describing early PVE due to multidrug-resistant (MDR) – *S. paucimobilis*.

Case presentation

A 53 years old man presented to the emergency department with dyspnea and fever one week ago. He also complained of pain and swelling in his right knee. He had a history of coronary artery bypass graft (CABG), mitral valve (MV) replacement with a prosthetic valve, and tricuspid valve (TV) repair four weeks before admission. The post-operative period was complicated with hemolytic anemia, hospital-acquired pneumonia, and gout arthritis. He was treated with intravenous cefazedime and levofloxacin for pneumonia and intraarticular triamcinolone for arthritis. His condition was improved and discharged with colchicine, methylprednisolone, acetylsalicylic acid, warfarin, and atorvastatin. Echocardiography before discharged showed good prosthetic MV position and functions (Fig. 1).

On examination, his vital signs were stable. Remarkable physical examinations were pale conjunctiva, rales, and systolic murmur grade 3 at the cardiac apex with the absence of mechanical clicking sound. Initial laboratory findings reported hemoglobin 7.8 g/dL, leukocyte 27,990/mm³, INR 1.12, thrombocyte 369,000/mm³ and high C-reactive protein (13.80 mg/dL) and procalsitonin (1.23 ng/mL) levels. Electrocardiography (ECG) revealed a junctional rhythm with ventricular extrasystole.
Transthoracic and transesophageal echocardiography showed prosthetic mechanical MV with mild perivalvular leakage and periannular abscess (Fig. 2a,b,c). Vegetations were visualized at the edges of prosthetic MV, cusps of aortic valves (AoV), and leaflets of TV. The synovial fluid examination results are yellowish opaque in color, a leukocyte count of 23,372 cells/μL, polymorphonuclear cells of 83%, and negative gram staining and culture.

The patient was diagnosed with early prosthetic endocarditis (PVE) with multivalvular involvement, perivalvular extension (abscess) and septic arthritis. We planned for urgent surgery, but the patient was refused. He was treated with IV furosemide and empiric antibiotic therapy with IV vancomycin and IV gentamycin.

On Day-6 hospitalization, the patient complained of worsening dyspnea. His blood pressure was 90/60 mmHg, heart rate 38 bpm, SpO₂ 88%, and bilateral rales on physical examination. ECG revealed atrial fibrillation with complete heart block. Serial echocardiography revealed detachment of prosthetic MV with left ventricular inflow obstruction (Fig. 2D). The patient was managed with mechanical ventilation, temporary pacemaker, IV vasopressor, and IV inotropic.

On Day-7 hospitalization, multidrug-resistant (MDR) S. paucimobilis was grown in three consecutive blood cultures, only susceptible to tigecycline (Table 1). Tigecycline was started immediately; however, the patient's condition worsened, and he passed away. (Timeline of the patient's medical history, present illness, treatment, and the outcome is in Fig. 3)

Discussion

PVE is one of the most complicated forms of Infective Endocarditis (IE) due to difficulties in its management. Although rare, it is a life-threatening condition, which occurs in 1–6% of patients with prosthetic valves with a mortality rate ranging from 20% to 80%. PVE can be classified into two categories based on time of onset after valve surgery, whereas early PVE is within 12 months and late is after 12 months [1].

Previous studies have described risk factors for early PVE, including pre-operative active endocarditis, higher NYHA heart failure class, poor oral hygiene, prolonged CPB time, multi-valvular surgery, and post-operative fever or infection [3,4]. Tanioka et al. also reported a case of early PVE associated with immunosuppressive therapy [5]. Immunocompromised condition is also associated with S. paucimobilis infection [2,6]. In our case, the patient was diagnosed with early PVE four weeks after cardiac surgery. He had several risk factors, such as multi-valvular surgery, congestive heart failure, and steroid usage. Also, he had a fever during post-operative periods, which could be related to bacteremia. Ivanovic et al. described PVE within two months after cardiac surgery could be caused by hematogenic dissemination in post-operative periods or direct invasion of microorganisms during valve surgery [7].

The mechanism of PVE is intricate, particularly regarding biofilm formation. Biofilm formation creates a complex and unique environment, which organisms can thrive and attach to the
prosthetic material’s surface while protected under the biofilm. Hence, making it more difficult for the immune cells and antimicrobial agents to saturate the biofilm [8]. Moreover, the prosthetic valve’s endothelization process is still incomplete during early post-operative conditions; thus, microorganisms could directly access the suture pathways to the prosthesis-annulus and paravalvular tissue interface, causing abscess and valvular dehiscence [7]. Erosive anatomical destruction by abscess or extension of inflammation and edema could affect the cardiac conduction system, leading to heart block, as in our case [9].

Osteoarticular manifestations in IE are relatively rare. Anis et al. described osteoarticular involvement occurs in 6.8 % of IE cases, in which spondylohistitis and septic arthritis are the most common presentations, and Staphylococcus aureus is the most common pathogen [10]. Septic arthritis usually affecting large joints, such as the knee, as in our case [10,11]. Several studies have described septic arthritis associated with S. paucimobilis; which the mechanisms is presumably due to hematogenous spreading in systemic infection or contiguous spreading from the surrounding structure [6,12].

S. paucimobilis is a single-flagellum, yellow-pigmented, GNB. Although considered as low pathogenicity bacteria, several infections and fatal cases associated with S. paucimobilis had been increasingly reported. In community settings, S. paucimobilis is frequently found in water reservoirs and soil. While in hospital settings, S. paucimobilis could cause hospital-associated infection by transmission from intravenous fluid, implanted indwelling catheters, ventilators, nebulizers, and other various hospital devices [6,13]. In our case, S. paucimobilis was yielded from three consecutive blood cultures. Previous studies have reported IE associated with S. paucimobilis; however, early PVE associated with S. paucimobilis has never been described [14–17].

Typically, S. paucimobilis is resistant to penicillin and first-generation cephalosporins. This is caused by the synthesis of chromosomally encoded beta-lactamase by the bacteria. Further, S. paucimobilis is usually sensitive to carbapenems, aminoglycosides, trimethoprim-sulfamethoxazole, and piperacillin/tazobactam with variable susceptibility to fluoroquinolones and third-generation cephalosporins [18]. Nonetheless, MDR-S. paucimobilis was

Table 1
The blood culture and susceptibility tests. MDR- S. paucimobilis was yielded in blood cultures and susceptible only to tigecycline.

Blood Culture 1, 2, and 3	Isolate: Sphingomonas paucimobilis
Antibiotics susceptibility and resistance test	
Ceftriaxone	Resistant
Gentamycin	Resistant
Amikacin	Resistant
Piperacillin/Tazobactam	Resistant/Resistant
Cefazolin	Resistant
Ceftazidime	Resistant
Cefepime	Resistant
Ciprofloxacin	Resistant
Cotrimoxazole	Resistant
Tigecycline	Sensitive
Aztreonam	Resistant
Meropenem	Resistant

Fig. 2. (A) Echocardiography reveals multiple large vegetation at the edges of prosthetic MV (arrow); (B) Small vegetation at aorta (arrow); (C) multiple small undulating mass attached to septic tricuspid leaflet (arrow); and (D) MV detachment with left ventricular inflow obstruction (arrow).
yielded on antibiotic susceptibility testing in our case (Table 1). Mechanisms of antimicrobial resistance in GNB could be caused by the enzymatic and non-enzymatic processes. Additionally, mutations in chromosomal genes, loss of outer membrane porins resulting in increased permeability alterations, and various intrinsic mechanisms could also contribute to antimicrobial resistance [19]. To date, there is no uniformity on antibiotic therapy in S. paucimobilis infection, which imposes the need for individualized, case-by-case management, as in our case, which only sensitive to tigecycline.

We recommended early valve surgery, which is based on recommendations of current IE guidelines, including mobile vegetation > 10 mm, sign and symptoms of heart failure resulting from valve dehiscence, severe prosthetic valve dysfunction, and IE complicated by heart with annular abscess, as in our patient [20]. Unfortunately, our patient refused. A paravalvular abscess is an independent predictor of in-hospital mortality, with a 27 % mortality rate. If left untreated without surgical intervention, the mortality rate of paravalvular infection is expected to be 100 % [2,21]. Nevertheless, the risk of surgery in PVE with perivalvular extension is also high; prior studies have shown the operative mortality rates of 10–30 % with experienced cardiac surgeons [21].

Finally, in this case, we conclude that MDR - S. paucimobilis could cause early PVE, particularly in the immunocompromised patient. Even though early surgery is associated with a high mortality rate, it should be proposed to prevent death.

Limitation

We did not perform any cultures of solutions or devices from the OR environment.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Consent

Informed consent was obtained from all individual participants included in the study.

CRediT authorship contribution statement

Aninka Saboe: Conceptualization, Data curation, Writing - original draft, Writing - review & editing, Supervision. Yudri Adrian: Conceptualization, Writing - original draft, Data curation. Leonarus Widyatmoko: Conceptualization, Writing - original draft, Data curation. Melawati Hasan: Writing - review & editing, Data curation. Charlotte Johanna Cool: Writing - review & editing. Yovita Hartantri: Writing - review & editing. Andri Reza Rahmati: Writing - review & editing. Rama Nusjirwan: Writing - review & editing. Mohammad Rizki Akbar: Writing - review & editing.

Declaration of Competing Interest

The authors declare that they have no conflict of interest.

Acknowledgments

We would like to express our sincere gratitude to Erwinanto, MD; Triwedya Indra Dewi, MD; and Giky Karwiky, MD; for contributing in the case management.
References

[1] Siciliano RF, Randi BA, Gualandro DM, Sampaio RO, Bittencourt MS, da Silva Pelaes CE, et al. Early-onset prosthetic valve endocarditis definition revisited: prospective study and literature review. Int J Infect Dis 2018;67:3–6.

[2] Lin J-N, Lai C-H, Chen Y-H, Lin H-L, Huang C-K, Chen W-F, et al. Sphingomonas paucimobilis Bacteremia in humans: 16 case reports and a literature review. J Microbiol Immunol Infect 2010;43(1):35–42.

[3] Grover FL, Cohen DJ, Oprian C, Henderson WG, Sethi G, Hammermeister KE. Determinants of the occurrence of and survival from prosthetic valve endocarditis. Experience of the Veterans Affairs Cooperative Study on Valvular Heart Disease. J Thorac Cardiovasc Surg 1994;108(2):207–14.

[4] Fariñas MC, Pérez-Vázquez A, Fariñas-Álvarez C, García-Palomo JD, Bernal JM, Revuelta JM, et al. Risk factors of prosthetic valve endocarditis: a case-control study. Ann Thorac Surg 2006;81(4):1284–90.

[5] Tanioka H, Iwata K, Marumoto A, Kaneko M. Prosthetic valve endocarditis using immunosuppressive agent for atopic dermatitis: report of a case. Kyobu Geka 2015;68(5):383–6.

[6] El Beaino M, Fares J, Malek A, Hachem R. Sphingomonas paucimobilis-related bone and soft-tissue infections: a systematic review. Int J Infect Dis 2018;77:68–73.

[7] Ivanovic B, Trifunovic D, Matic S, Petrovic J, Sacic D, Tadic M. Prosthetic valve endocarditis – a trouble or a challenge? J Cardiol 2019;73(2):126–33.

[8] Carpenter JL. Perivalvular extension of infection in patients with infectious endocarditis. Rev Infect Dis 1991;13(1):127–38.

[9] Kunis RL, Sherrid MV, McCabe JB, Grieco MH, Dwyer Jr EM. Successful medical therapy of mitral annular abscess complicating infective endocarditis. J Am Coll Cardiol 1986;7(4):953–5.

[10] Anis HK, Miller EM, George J, Shrestha NK, Klika AK, Kamath AF, et al. Incidence and characteristics of osteoarticular infections in patients with infective endocarditis. Orthopedics 2020;43(1):24–9.

[11] Savaliya, IMV. Septic arthritis. [updated 5 February 2021; cited 2021 18 Mar]. Available from: StatPearls Publishing; 2021. https://www.ncbi.nlm.nih.gov/books/NBK538176/.

[12] Dischereit G, Burk M, Storck-Müller K, Lange U. [Septic monarthritis caused by Sphingomonas paucimobilis]. Z Rheumatol 2013;72(8):822–6.

[13] Toh H-S, Tay H-T, Koar W-K, Weng T-C, Tang H-J, Tan C-K. Risk factors associated with Sphingomonas paucimobilis infection. J Microbiol Infect Dis 2011;44(4):289–95.

[14] Yang F, Zhang B, Yu J, Shao L, Zhou P, Zhu L, et al. Epidemiology and the prognosis of healthcare-associated infective endocarditis in China: the significance of non-nosocomial acquisition. Emerg Microbes Infect 2015;4(1):1–6.

[15] Lin Y-C, Zheng J-F, Lin Y-C. Clinical features and risks associated with in-hospital mortality in patients with infective endocarditis at a medical center in Central Taiwan from 2012 to 2016: A retrospective analysis. J Internal Med Taiwan 2018;29(5):309–16.

[16] Falcone M, Tiseo G, Durante-Mangoni E, Ravasio V, Barbaro F, Ursi MP, et al. Risk factors and outcomes of endocarditis due to non-HACEK gram-negative bacilli: data from the prospective multicenter Italian endocarditis study cohort. Antimicrob Agents Chemother 2018;62(4):e02208–17.

[17] Rognrud K, Diaz AM, Hill C, Kershaw MA. Bacterial endocarditis caused by Sphingomonas paucimobilis: a case report and literature review. Case Rep Infect Dis 2020;2020:7185384.

[18] Hardjio Lugito NP, Cucunawangsih, Kurniawan A. A lethal case of Sphingomonas paucimobilis bacteraemia in an immunocompromised patient. Case Rep Infect Dis 2016;2016:3294639.

[19] Ruppé É, Woerther PL, Barbier F. Mechanisms of antimicrobial resistance in Gram-negative bacilli. Ann Intensive Care 2015;5(1):61.

[20] Baddour LM, Wilson WR, Bayer AS, Fowler Jr. VC, Zeigler IM, Rybak MJ, et al. Infective endocarditis in adults: diagnosis, antimicrobial therapy, and management of complications: a scientific statement for healthcare professionals from the American Heart Association. Circulation 2015;132(15):1435–86.

[21] Hill EE, Herregods MC, Vanderschueren S, Claus P, Peetersmans WE, Herijgers P. Management of prosthetic valve infective endocarditis. Am J Cardiol 2008;101(8):1174–8.