A Novel Species of *Penicillium* With Inhibitory Effects Against *Pyricularia oryzae* and Fungal Pathogens Inducing Citrus Diseases

Li-Juan Liang¹, Rajesh Jeewon²*, Pem Dhandevi³, Siva Sundara Kumar Durairajan⁴, Hongye Li¹, Fu-Cheng Lin¹ and Hong-Kai Wang¹*

¹ State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China, ² Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit, Mauritius, ³ Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand, ⁴ Division of Mycobiology & Neurodegenerative Disease Research, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India

A novel species of *Penicillium*, proposed as *P. linzhiense* sp.nov was isolated from soil collected in Linzhi Town, Linzhi County, Tibet Autonomous Region, China. DNA sequence analyses from eight different gene regions indicate that the isolate represents a novel species and most closely related to *P. janczewskii*. The phylogenetic analysis based on a concatenated dataset of three genes, ITS, CaM, and BenA, also confirmed the placement of the novel species within the Canescentia section of the genus *Penicillium*. Differences in morphology among similar species are detailed and single gene phylogenies based on ITS, CaM and BenA genes as well as a multi-loci gene phylogeny are presented. Cultural studies were performed to study inhibitory activities on plant pathogens. The results reveal a notable antifungal activity against *Pyricularia oryzae* causing rice blast with an inhibition rate up to 77%, while for other three citrus pathogens, *Diaporthe citri*, *Phyllosticta citrichinaensis*, and *Colletotrichum gloeosporioides*, inhibition rate was 40, 50, and 55% respectively. No noticeable effects were observed for *Fusarium graminearum*, *Botryosphaeria kuwatsukai*, and *Rhizoctonia solani*. Interestingly, unlike other reported members of Canescentia, *P. linzhiense* showed no antagonistic effect on root rotting fungi. The new taxon isolated here has the potential to be used as a biocontrol agent especially for economically important phytopathogens or emerging pathogens on diseases occurring on citrus or rice.

Keywords: Canescentia, antifungal activity, *Pyricularia oryzae*, citrus diseases, taxonomy, multigene phylogeny, plant pathology

INTRODUCTION

Orange is widely planted and consumed, but its production is threatened by a variety of pathogens during production, resulting in huge economic loss every year. To reduce the loss caused by pathogens, a large amount of pesticides have been applied to protect citrus from plant pathogens. Usage of these pesticides is harmful to the environment and human health (Nicolopoulou-Stamati
et al., 2016; Bisht et al., 2019). For example, mancozeb, an effective fungicide applied widely to inhibit D. citri on citrus in China (Chen et al., 2010; Jiang et al., 2012; Liu et al., 2018), is carcinogenic, teratogenic, and mutagenic after degrading to ethylene thiourea (ETU). Besides, with increasing pesticide abuse, pathogens are easily subjected to resistance to pesticides, leading to failure of disease control. Therefore, it is important to screen beneficial fungi for potential biological control leading to the safe production of citrus.

Some fungi are considered as biocontrol agents for inhibiting plant pathogens, but very few are associated with members of the genus *Penicillium*. Studies have reported that conidia or culture filtrate of *P. janczewskii* can induce systemic resistance of melon and tobacco to inhibit *Rhizoctonia solani* (Madi and Katan, 1998; Nicoletti et al., 2007), and one of its main secondary metabolites, psueotrin A, reveals moderate inhibition against *Erwinia carotovora* and *Pseudomonas syringae* (Schmeda-Hirschmann et al., 2008).

Penicillium is much more ubiquitous in the environment than other species of fungi and they also exist as endophytes inside plant tissues (Rashmi et al., 2019). Due to a paucity of morphological characteristics, overlap of morphs among different species and largely similar cultural characteristics, traditional morphological classification somehow been somehow unreliable to delineate species in this genus (Houbraken et al., 2014). With the development of modern molecular based phylogeny, the concept of multi-loci sequence typing (MLST) for phylogenetic species was proposed in the classification of *Penicillium*, thus making identification of strains more precise (Rakeman et al., 2002). MLST is a typing method initially used for distinguishing bacterial mutations by directly determining the nucleotide sequences of multiple housekeeping genes that are highly conservative and usually stably expressed in all cells. It was first applied by Maiden et al. (1998) in typing of the bacterial pathogen (*Neisseria meningitidis*), gradually implemented to other bacteria and fungi predominantly in epidemiology and taxonomy. Based on multiple gene locus sequence information to identify species, Visagie et al. (2014a) came up with a short standardized gene region namely DNA barcoding which was used in the identification of *Penicillium*. Up to now, there are DNA barcodes for more than 370 species accepted for *Penicillium*. Currently, the internal transcribed spacer rDNA regions (ITS) is widely sequenced as an official DNA barcode when discriminating species for fungi (Schoch et al., 2012; Lücking et al., 2020). However, ITS is not robust enough to identify species in *Penicillium* and alternative barcodes are needed to assist proper identification (Skouboe et al., 1999; Seifert et al., 2007; Visagie et al., 2014a; Nilsson et al., 2018; Tekpinar and Kalmer, 2019). The β-tubulin gene (*BenA*), the calmodulin gene (*CaM*), and the RNA polymerase II second largest subunit gene (*RPB2*) combined with ITS have been successfully employed in species-level identification of *Penicillium* (Houbraken et al., 2014; Visagie et al., 2016a; Visagie et al., 2016b; Wang et al., 2017; Diao et al., 2019). They, however, have certain limitations sometimes, such as difficulties in amplifying specific gene regions and sequence analyses due to ambiguously aligned sites and these lead to problems in resolving species concepts (Giraud et al., 2010; Houbraken et al., 2012; Chen et al., 2013; Wang and Wang, 2013; Visagie et al., 2014a; Visagie et al., 2016b). In this study, multi gene phylogenetic analyses were performed based on ITS, *BenA*, and *CaM* following the recommendations of Visagie et al. (2016b).

During the screening of fungi for potential biocontrol agents on *Citrus*, a fungal strain, Z863, was isolated from soil by selective medium dilution plate method (Houbraken and Samson, 2011). Morphological examinations and DNA sequence analyses reveals that Z863 is a new species belonging to *Penicillium* sect. *Canescentia*. Members of section *Canescentia* are soil inhabitants and there exist several studies demonstrating their potential antifungal activity predominantly related to the inhibition of soil-borne pathogens (Madi and Katan, 1998; Nicoletti et al., 2007; Schmeda-Hirschmann et al., 2008; Houbraken and Samson, 2011; Urooj et al., 2018). The aim of this paper is to introduce this taxon collected from China as a new species based on morphology supported by phylogenetic analyses of a combined dataset from ITS, *BenA*, and *CaM* genetic data. In addition, we also report results based on its potential inhibitory activities on plant pathogens.

MATERIALS AND METHODS

Sampling and Isolations

Soil samples were collected in Linzhi Town, Linzhi County, Tibet Autonomous Region (29.60146 N, 94.41736 E), China. The fungal samples were separated based on selective medium dilution plate method, in which 10 g soil to 90 ml distilled water, were shaken for 10 min at 120 rpm and diluted twice to 10^{-1} and 10^{-2} of the original concentration. Potato dextrose agar (PDA) as an isolation medium was prepared with 200 g potato, 20 g glucose, 18 g agar, 0.3 g chloramphenicol in 1,000 ml ddH$_2$O and sterilized at 121°C for 30 min. Three concentrations of diluent of 0.1 ml were separately pipetted into polystyrene Petri dish with 15 ml coagulated PDA and then the sterile coater was used to homogenize the diluent with three replicates for each concentration. After cultured at 25°C for 3 d, colonies were observed and mycelia (through hyphal typing) were transferred to a new PDA plate and once colonies grow up to 3 cm, they were transferred to new plates again.

Morphological Identification

Macromorphological characters were checked from Czapek’s agar (CZ), Czapek yeast autolysate agar (CYA), malt extract agar (MEA), and yeast extract sucrose agar (YES) media. The medium’s preparation, strain’s inoculation manner, and incubation conditions were performed following the protocols of Visagie et al. (2014b).

After incubation at 25°C for 7 d, plates were checked, observed and colony’s morphology was recorded. The descriptions of color are based on NBS ISCC color name notation. Afterward, 60% lactic acid was used as a floating agent for making slides, and
mycelia and conidia were examined under the microscope.
Macromorphological and micromorphological details were also examined and recorded by EOS 600D Camera (Canon, China, Beijing) and Leica Microscope DM750 (Leica, China, Shanghai) with an ICC50 Camera and arrangement of photos was done in Adobe Photoshop CC 2018.

DNA Extraction and PCR
DNA of the samples was extracted by Rapid Fungi Genomic DNA Isolation Kit (Sangon Biotech, Shanghai, China), 2
arranged and corrected by BioEdit Sequence Alignment Editor.
PCR amplifications of the ITS, BenA, CaM, RPB2, translation elongation factor 1-α (TEF) regions and the small subunit (LSU) and the large subunit (SSU) of ribosomal DNA gene and tubulin gene were performed with corresponding primers listed in Table 1. One amplification reaction consisted of 25 μl Green Taq Mix (Vazyme, Nanjing, China), 2 μl of each primer (10 μM), 2 μl template DNA (30 ng μl⁻¹), and 19 μl ddH₂O in reaction system according to manufacturer’s instructions. PCR reactions were performed by an MG96G PCR instrument (LongGene, Hangzhou, China) with the following procedure: pre-denaturing at 94°C for 2 min; subsequent 35 cycles with denaturing at 94°C for 30 s, annealing at 55°C for 40 s, extending at 72°C for 1 min; the final extension at 72°C for 10 min. After PCR reaction, products were detected by 1% agarose gel electrophoresis. Purification of products was conducted by the DNA gel purification kit (Axygen Biotech, Hangzhou, China).

DNA Sequencing and Sequence Analyses
Purified and recovered target DNA fragments were sent to be directly sequenced in an ABI PRISMA377 automatic sequencer (Sangon Biotech, Shanghai, China). Once DNA sequences were directly sequenced in an ABI PRISMA377 automatic sequencer.

Table 1 | Primers for sequence amplification used in the PCR reaction.

Locus	Primer’s name	Sequence (5’→3’)	Reference
ITS	ITS1	TCCGTAGTGAAACCTGCGG	(White et al., 1990)
	ITS4	TCCCTCGGTTATGATAGTGC	(White et al., 1990)
BenA	Bt2a	GGTAACCAAATCGGTGCTGCTT	(Glass and Donaldson, 1995)
	Bt2b	ACCCTCAGTGTAGTGACCCTTGGC	(Glass and Donaldson, 1995)
CaM	CMD5	CGGAGTAGAGGPGGCTTTC	(Liu et al., 1999)
	CMD6	CGATGAGGCTATACGTTGG	(Hong et al., 2006)
RPB2	5F	GAYGAMGYGAATCAYTTYGG	(Lu et al., 1999)
	7CR	CCCATRGGCTTGYGTRCCCAT	(Lu et al., 1999)
TEF	CEFF2	GGCTTCAAGTGAAAGAACG	(Castlebury et al., 2004)
	CEFR1	CGGTGKCAARCCRGAGATGG	(Castlebury et al., 2004)
LSU	LR5	ATCCCTAGGGAAACCTTC	(White et al., 1990)
	LROR	ACGCGCTGAACTTAAAGC	(White et al., 1990)
SSU	NS1	GTAATGATATGGCTGTCCT	(White et al., 1990)
	NS4	CTCCTGCAAATTCTTTAAG	(White et al., 1990)
Tubulin	T12	TAACAACGTGCGGGCCAAGGCTAC	(Donnell and Oigelinik, 1997)
	T22	TCTGATGTTGTTGGAATTCC	(Donnell and Oigelinik, 1997)

A week later, the growth radius was measured (recorded as R) of the control group and the inhibition culture group (recorded as r). Each replicate was measured three times and the average was calculated. The inhibition rate of pathogen radius (abbreviated as IR) was calculated out according to the following formula:

\[
IR = \frac{R - r}{R} \times 100\%
\]

RESULTS

Isolation and Morphology
Twenty isolates with white color colony on PDA medium plate were isolated. The morphology of these isolates was
identical when examined under microscope, suggesting that they belong to the same species. One isolate, Z863 was used as representative for further studies. Results of microscopic examination showed that it is characterized by morphologies of the genus *Penicillium*. Based on phenotypic characters, this taxon belongs to the *Canescentia* section of the genus *Penicillium*. The morphological descriptions are provided in the taxonomy section.

Taxonomy

Penicillium linzhiense H-K. Wang & R. Jeewon, sp. nov. – Mycobank MB#838576; **Figures 1, 2.**

In subgenus *Penicillium*, section *Canescentia*.

Barcodes: ITS-MT461156; BenA-MT461157; CaM-MT461162;

Etymology. Latin, *linzhiense*, named after Linzhi, China, location where the isolates were collected.

Type strain examined: Linzhi Town, Linzhi County, Tibet Autonomous Region (29.60146 N, 94.41736 E), China, 20 Aug. 2016, collected by H-K Wang, CCTCC no: M2019870. Deposited in China typical culture preservation center located in Wuhan University, Wuhan, China.

After incubation at 25°C for 7 d on different medium plates, colonies of *P. linzhiense* displayed remarkable differences in morphology (**Figure 1**). Colonies on CYA after 7 d approached 30–32 mm, covered with many radial sulcate, thicker at the center without sulcate; margin entire to somewhat irregular; texture usually flocculent or velvet; mycelia white, moderate yellowish pink (SICC-NBS 29); center white to pinkish white (SICC-NBS 9) with exudate on the surface; soluble pigment absent. Colonies on MEA after 7 d approached 20–30 mm, uneven, navel-like bulge at the center; margin entire to somewhat irregular; mycelia white, texture velutinous; somewhat vivid pink at the center with exudate on the surface; soluble pigment absent. Colonies on CZ after 7 d approached 16–18 mm, low and plane; margin irregular; mycelia (SICC-NBS 184) very pale blue; texture fluffy; exudate and soluble pigment absent. Colonies on YES after 7 d approached 42–44 mm, covered with many radial wrinkles, thicker without radial wrinkles at the center; margin entire; mycelia white, yellowish white (SICC-NBS 92) to pale greenish yellow (SICC-NBS 104); texture mostly flocculent or velvet; exudate and soluble pigment absent.

Microscopic characters were also examined on MEA, conidiophore (**Figure 2C**), 20–100 × 2–2.5 μm, occurred in aerial or dragging hyphae with smooth walls. Broom branches (**Figure 2A**) are predominantly single-whorled, with fewer double-whorls and solitary pedicels with enlarged apices. It grew two to eight or more bottle pedicels (6–8 × 2.0–2.5 μm) per whorl, typically flask-shaped, with short and distinct necks (**Figures 2D–E**). Conidia were spherical or subshperical in shape, 2.6–4.5 μm, markedly spiny and rough (**Figure 2F**), each in a

TABLE 2 | Strains used for phylogenetic analysis.

Species name	Strain number	GenBank accession numbers
Penicillium canescens	CBS300.48^T	ITS: AF033493; BenA: JX140946; CaM: KJ867009
Penicillium yarmokense	CBS410.69^T	ITS: K041775; BenA: KJ834502; CaM: KJ867013
Penicillium radiatolobatum	CBS340.79^T	ITS: K041774; BenA: KP016620; CaM: KP016825
Penicillium murcianum	CBS161.81^T	ITS: KP016684; BenA: KP016624; CaM: KP016824
Penicillium jensenii	CBS237.59^T	ITS: AY143470; BenA: JX140954; CaM: AY443490
Penicillium janczewskii	CBS221.28^T	ITS: AY157487; BenA: KJ834460; CaM: KJ867001
Penicillium dunedinense	CBS138218^T	ITS: KJ775678; BenA: KJ775171; CaM: KJ775405
Penicillium echinatum	NRRL917^T	ITS: KP016840; BenA: KJ869694; CaM: KJ867021
Penicillium griseoazureum	CBS162.42^T	ITS: KC411679; BenA: KP016919; CaM: KP016823
Penicillium nigricans	CBS354.48^T	ITS: KC411755; BenA: KJ866965; CaM: KJ867012
Penicillium corvorum	DAOMC250517^T	ITS: KJ887875; BenA: KJ887936; CaM: KJ887797
Penicillium novaseelandiae	CBS137.41^T	ITS: JN176898; BenA: KJ834477; CaM: KJ866966
Penicillium coralligenum	CBS123.65^T	ITS: JN176667; BenA: KJ834444; CaM: KJ866994
Penicillium atrovenenum	CBS241.56^T	ITS: AF033492; BenA: JX140494; CaM: KJ867004
Penicillium antarticum	CBS100492^T	ITS: KJ834503; BenA: KJ834432; CaM: KP016826
Penicillium brevumcompactum	CBS257.29^T	ITS: AY148912; BenA: AY647437; CaM: AY484813
Penicillium nucicola	DAOMC250522^T	ITS: KJ887860; BenA: KJ887821; CaM: KJ887782
Penicillium janczewskii	CBS166.81	ITS: KC411682; BenA: KJ869667; CaM: KJ866998
Penicillium janczewskii	CBS413.68	ITS: KP016838; BenA: KJ869669; CaM: KJ867014
Penicillium janczewskii	CBS279.47	ITS: KP016837; BenA: KJ869668; CaM: KJ867008

FIGURE 1 | Morphology of *Penicillium linzhiense* after incubation at 25°C on different medium for 7 days. bottom row: reverse plate.
bottle stem or free (Figure 2B). Conidial chains were loose, nearly cylindrical, or irregular.

Morphology of conidiophore and conidia of *P. linzhiense* are similar to *P. janczewskii*. The strain differs from *P. janczewskii* in that *P. linzhiense* has a light colony on CYA and is grayish-white without becoming grayish-green within 2 weeks; the conidiophore branching pattern is predominantly monoverticillate, with fewer biverticillate, and conidiophore are solitary. However, colonies of *P. janczewskii* change from grayish-green to grayish-black on CYA medium; conidiophore branching patterns of *P. janczewskii*, *P. dunedinense*, *P. echinatum*, *P. griseoazureum*, *P. nigricans* are mainly biverticillate, with terverticillate, or few monoverticillate, with two to four metula per conidiophore. This novel species can be distinguished from *P. corvianum* by the spiny conidia.

Sequencing and Phylogenetic Analyses

Eight gene fragments of strain Z863 were obtained using PCR according to the primer pairs in Table 1. All the sequences were uploaded to GenBank with the following accession numbers (ITS: MT461156; *BenA*: MT461157; LSU: MT461158; SSU: MT461159; TEF: MT461160; *RPB2*: MT461161; *CaM*: MT461162; beta-tubulin (*Tub*): MT461163).

Phylogenetic analysis (Maximum Likelihood, ML) based on a combined ITS, *CaM*, and *BenA* dataset of 21 taxa (with 1,238 characters and 130 parsimony informative characters) with *P. brevicompactum* as outgroup resulted in one tree shown in Figure 3A (TL = 513, CI = 0.789, RI = 0.738, RC = 0.583, HI = 0.211). Phylogeny depicts that Z863 is a new species as it constitutes a strongly supported independent lineage basal to...
The Maximum Parsimony (MP) phylogenetic tree derived from the combined dataset shown in Figure 3B is based on 1,238 characters with best model GTR+G+I. The phylogenetic position of Z863 is the same in the ML tree. This result also confirmed that Z863 is a new species in Penicillium sect. Canescentia. During our initial ITS sequence BLAST search in GenBank, the similarity between our strain and P. janczewskii (MK179261), P. arizonense (MH492021), P. canescens (KX359603), P. murcianum (NR_138358), and P. echinatum (KPI016839) was 100%. This confirms that our species is undoubtedly a Penicillium species and belongs to Penicillium sect. Canescentia. However, one cannot rely on ITS alone for proper identification and establishing new species, especially for taxonomically complex genera (Jeewon and Hyde, 2016). Even
our single gene phylogenetic analyses based on ITS alone also shows that the tree is unresolved with weak branch support and the affinities of *P. linzhiense* to *P. corvianum* (KT887875), *P. canescens* (AF033493), and *P. yarmokense* (KC411757) are not clear (Figure 3C). However single gene datasets based on CaM and BenA genes provided better resolution (Figures 3D, E).

Inhibition of *Penicillium linzhiense* on Plant Pathogens

Comparing inhibition culture group and control group, *P. linzhiense* showed inhibitory effects against *Py. oryzae* (Figure 4A), *D. citri* (Figure 4B), *Ph. citrichinaensis* (Figure 4C), and *C. gloeosporioides* (Figure 4D). However, the strain did not exhibit significant effect on *F. graminearum* (Figure 4E) and had no inhibition against *B. kuwatsukai* (Figure 4F) and *R. solani* (Figure 4G). The inhibition rate of pathogen radius (IR) is showed in Figure 5.

DISCUSSION

Penicillium is widely distributed in the environment and easily isolated from air and soil. To date many published reports have reported a ubiquitous and high frequency of *Penicillium* in soil samples from different climatic conditions and geographical regions (Grishkan and Nevo, 2004; Sharma et al., 2011; Cruz et al., 2013; Kalashnikova et al., 2016; Cecchi et al., 2019) and these species are associated with important soil function. Despite their important roles, the traditional morphological delineation of species has always been a taxonomic dilemma and currently DNA based sequence data from a combination of different genes especially ITS, BenA, and CaM should be analyzed for accurate identification. In our study, we isolated a new species, *Penicillium linzhiense* and its morphological details, ability to restrict growth of fungal pathogens and evolutionary relationships are discussed.

Our multigene phylogeny reveals that *P. linzhiense* is close to *P. jancezwskii*, *P. dunedinense*, *P. echinata*, *P. griseoaureum*, and...
P. nigricans. However, *P. linzhiense* is distinct from species mentioned above particularly in morphs with distinctly thinner mycelium on CZ medium and with single-whorled broom branches mainly accompanied by few double-whorled one. With respect to *P. janczewskii*, *P. linzhiense* mainly differs in the color of colony after two weeks’ culture and the broom branches (at the start, there is gray-white and mainly monoverticillate, with fewer biverticillate, with solitary conidiophore, and with time turns grayish green to grayish black and mainly biverticillate, with terverticillate or few monoverticillate, with two to four metula per conidiophore). When the cultural characteristics of *P. dunedinense* are compared against *P. linzhiense* at 25°C after 7 d, clear differences can be observed. On CYA medium, wrinkles of *P. linzhiense* look denser than *P. dunedinense*; on MEA, *P. dunedinense* is sultate but *P. linzhiense* is not; on YES, *P. dunedinense* is grayish orange but *P. linzhiense* is white (Visagie et al., 2014b). As for *P. echinata*, its conidiophores have diaphragms, conidial chains that are relatively tighter than *P. linzhiense* and its broom branches are single-whorled (Matsushima, 1972), but conidiophores of *P. linzhiense* have no diaphragms and there exist few double-whorls of broom branches in *P. linzhiense*. As is shown in *Manual and Atlas of the Penicillia* (Ramirez and Martinez, 1982), both *P. grisaoazureum* and *P. nigricans* on CYA and on MEA do not have any exudate but *P. linzhiense* possesses yellowish brown exudate on the colonies on CYA and MEA.

Phylogenetic analyses of a combined ITS, CaM, and BenA sequence dataset (Figures 3A, B) in the study show that *P. linzhiense* forms a distinct lineage, basal to *P. nigricans* CBS 354.48 with high bootstrap support in ML analysis (84% ML). Based on the recommendations for the establishment of new species proposed by Jeewon and Hyde (2016), we also compared % differences across all genes amplified. Comparison of ITS, CaM, and BenA nucleotides between *P. linzhiense* and *P. nigricans* CBS 354.48 reveals 0, 2, and 3 base pair differences, respectively. In the phylogram generated from maximum likelihood analysis based on ITS sequence data, *P. linzhiense* was observed to be closely related to *P. yarmokense* (CBS 410.69), *P. corvianum* (KT887875), and *P. canescens* (AF033493) (Figure 3C) but this relationship is unstable and unresolved. Furthermore, a comparison of DNA sequences of the ITS regions sequences between *P. linzhiense* and *P. yarmokense* shows 0 (0%) base pair differences. Although ITS barcodes play an important role in the taxonomy of *Penicillium* species, this gene region is not powerful enough to discriminate species due to their low variability (Skouboe et al., 1999; Seifert et al., 2007; Stielow et al., 2015). Upon analysis of the BenA sequences data, *P. linzhiense* was found to be a sister taxon to *P. echinatum* (NRRL917) (Figure 3E) and nucleotide comparison reveals 3 (0.8%) base pair differences between these two taxa. Thus, based on the phylogenetic analyses of the concatenated dataset and phenotypic differences and following the guidelines proposed by Jeewon and Hyde (2016), we hereby introduce *P. linzhiense* as a new species in the genus *Penicillium*.

In the inhibition studies, as we expected, *P. linzhiense* shows a distinct inhibitory effect against three important pathogenic fungi causing citrus diseases. Results also show a stronger inhibition against *Pyricularia oryzae* causing rice blast (Figure 4). It is recommended to perform further pathogenicity studies on *P. linzhiense*, including field experiments and the effect of metabolites to assess to what extent the latter can be used as a potential biological control agent in integrated disease management strategies. The discovery of *P. linzhiense* provides one more possibility to control citrus diseases and rice blast.

Members of *Penicillium* sect. *Canescencia* are well known as soil-borne fungi (Houbraken and Samson, 2011) and some studies pointed out they possess distinct inhibitory effect against root rotting fungi and even able to promote growth of plants (Madi and Katan, 1998; Nicoletti et al., 2007; Schmeda-Hirschmann et al., 2008; Urooj et al., 2018). Interestingly, as a member of *Penicillium* sect. *Canescencia*, *P. linzhiense* shows little inhibition against common soil-borne pathogens unlike other reported members mentioned above. Instead, *P. linzhiense* reveals its suppression on pathogens triggering plant disease aboveground. As revealed in this study, results demonstrate that *P. linzhiense* can be a potential biocontrol agent for *Py. oryzae* which causes damage to the leaves, stems, and ears of rice; *D. citri* which causes diseases at the tip of trees, new leaves, and fruits of citrus; *Ph. citrininaensis* which is often found associated with fruits of citrus (Baayen et al., 2002); and *C. gloeosporioides* which is detrimental to leaves, branches, flowers, fruits, and fruit stalks of citrus.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found below: https://www.ncbi.nlm.
AUTHOR CONTRIBUTIONS

RJ, HL, F-CL, and H-KW designed the study. LL did the sample collection and laboratory work. LL, RJ, PD, SSKD and H-KW are involved in the project MRC/RUN/1705.

REFERENCES

Baeyen, R. P., Bonants, P. J. M., Verkley, G., Carroll, G. C., van der Aa, H. A., de Weerdt, M., et al. (2002). Nonpathogenic isolates of the citrus black spot fungus, Guignardia citricarpa, identified as a cosmopolitan endophyte of woody plants, G. mangiferae (Phylllosticta capitalensis). Phytopathology 92, 461–477. doi: 10.1094/PHYTO.2002.92.5.464

Bisht, J., Palni, I. M. S., and Harsh, N. S. K. (2019). “Pesticide contamination and human health,” in Handbook of Research on the Adverse Effects of Pesticide Pollution in Aquatic Ecosystems. (IGI Global). 137–149. doi: 10.4018/978-1-5225-6111-8.ch008

Castlebury, L. A., Rossman, A. Y., Sung, G.-H., Hyten, A. S., and Spatafora, J. W. (2004). Multigene phylogeny reveals new lineage for Stachybotrys chartarum, the indoor air fungus. Mycol. Res. 108, 864–872. doi: 10.1017/S0953756204000607

Cecchi, G., Marescotti, P., Di Piazza, S., Zappatore, S., and Zotti, M. (2019). Fungal richness in the extreme environments of the Libioda mine (eastern Liguria, Italy): correlations among microfungi, lithology, mineralogy, and contaminants. Environ. Earth Sci. 78, 1–12. doi: 10.1007/s12665-019-8553-0

Chen, G., Jiang, L., Xu, F., and Li, H. (2010). In vitro and in vivo screening of fungicides for controlling citrus melanose caused by Diaporthe citri. J. Zhejiang Univ. 36, 440–444. doi: 10.3785/jissn.1008-9209.2010.04.014

Chen, A. J., Tang, D., Zhou, Y. Q., Sun, B. D., Li, X. J., Wang, L. Z., et al. (2013). Identification of ochratoxin A producing fungi associated with fresh and dry liquorice. PLoS One 8, e78285. doi: 10.1371/journal.pone.0078285

Cruz, R., Santos, C., de Lima, J. S., Moreira, K. A., and de Souza-Motta, C. M. (2013). Diversity of Penicillium in soil of Caatinga and Atlantic Forest areas of Pernambuco, Brazil: an ecological approach. Nova Hedwigia 97, 543–556. doi: 10.1127/0029-5035/2013/0127

Diao, Y.-Z., Chen, Q., Jiang, X.-Z., Houbraken, J., Barbosa, R. N., Cai, L., et al. (2019). Penicillium section Lanata-divaricata from acidic soil. Cladistics 35, 514–549. doi: 10.1111/clad.12365

Giraud, F., Giraud, T., Aguilera, G., Fournier, E., Samson, R., Cruaud, C., et al. (2010). Microsatellite loci to recognize species for the cheese starter and contaminating strains associated with cheese manufacturing. Int. J. Food Microbiol. 137, 204–213. doi: 10.1016/j.ijfoodmicro.2009.11.014

Glass, N. L., and Donaldson, G. C. (1995). Development of primer sets designed for use with the PCR to amplify conserved genes from Filamentous ascomycetes. Appl. Environ. Microbiol. 61, 1323–1330. doi: 10.1128/AEM.61.4.1323-1330.1995

Grishkan, I., and Nevo, E. (2004). Soil microfungi of Nahal Meitsar, Golan Heights. Plant Biosyst. 138, 21–26. doi: 10.1080/112635004001684080

Hong, S.-B., Cho, H.-S., Shin, H.-D., Frisvad, J. C., and Samson, R. A. (2006). Novel Nesartorya species isolated from soil in Korea. Int. J. Syst Evol Microbiol. 56, 477–486. doi: 10.1099/ijs.0.63980-0

Houbraken, J., and Samson, R. A. (2011). Phylogeny of Penicillium and the segregation of Trichoconaceae into three families. Stud. Mycol. 70, 1–51. doi: 10.3114/sim.2011.70.01

Houbraken, J., Frisvad, J. C., Seifert, K. A., Overy, D. P., Tuthill, D. M., Valdez, G., et al. (2012). New penicillin-producing Penicillium species and an overview of section Chrysogena. Persoonia 29, 78–100. doi: 10.3767/003135812X660571

Houbraken, J., Visagie, C. M., Meijer, M., Frisvad, J. C., Busby, P. E., Pitt, J. I., et al. (2014). A taxonomic and phylogenetic revision of Penicillium section Aspergilloides. Stud. Mycol. 78, 373–451. doi: 10.1016/smycos.2014.09.002

Jeewon, R., and Hyde, K. D. (2016). Establishing species boundaries and new taxa among fungi: recommendations to resolve taxonomic ambiguities. Mycosphere 7, 169–1677. doi: 10.5943/mycosphere/7/11/4

Jiang, L., Xu, F., Huang, Z., Huang, F., Chen, G., and Li, H. (2012). Occurrence and control of citrus melanose caused by Diaporthe citri. Acta Agric Zhejiangensis 24, 647–653.

Kalashnikova, K. A., Konovalova, O. P., and Alexandrova, A. V. (2016). Soil-inhabiting microfungi of the monsoon dipterocarp forest (the natural reserve Dong Nai, south Vietnam). Mikologia i Fitopatologiya 50, 97–107.

Liu, Y. J., Whelen, S., and Hall, B. D. (1999). Phylogenetic relationships among Ascomycetes: evidence from an RNA polymerase II subunit. Mol. Biol. Evol. 16, 1799–1808. doi: 10.1093/oxfordjournals.molbev.a026092

Liu, X., Wang, M., Mei, X., Jiang, L., Han, G., and Li, H. (2018). Sensitivity evaluation of Diaporthe citri populations to mancozeb and screening of alternative fungicides for citrus melanose control. Acta Phytophylacica Sin. 45, 373–381.

Lücking, R., Aime, M. C., Robbertse, B., Miller, A. N., Ariyawansa, H. A., Aoki, T., et al. (2020). Unambiguous identification of fungi: where do we stand and how accurate and precise is fungal DNA barcoding? IMa Fungus 11, 1–32. doi: 10.1186/s43008-020-00033-a

Madi, L., and Katan, J. (1998). Penicillium janczewskii and its metabolites, applied to leaves, elicits systemic acquired resistance to stem rot caused by Rhizoctonia solani. Physiol. Mol. Plant Pathol. 53, 163–175. doi: 10.1006/ppmm.1998.0174

Maiden, M. C. J., Bygraves, J. A., Feil, E., Morelli, G., Russell, J. E., Urwin, R., et al. (1998). Multilocus sequence typing: A portable approach to the identification of clones within populations of pathogenic microorganisms. Proc. Natl. Acad. Sci. U. S. A. 95, 3140–3145. doi: 10.1073/pnas.95.6.3140

Matsushima, T. (1972). Microfungi of the Solomon Islands and Papua-New Guinea. Mycologia 64, 1208–1209. doi: 10.2307/3758096

Nicolletti, R., Lopez-Gresa, M. P., Manzo, E., Carella, A., and Ciavatta, M. L. (2007). Production and fungitoxic activity of Sch 642305, a secondary metabolite of Penicillium canescens. Mycopathologia 163, 295–301. doi: 10.1007/s11046-007-9015-x

Nicolopoulou-Stamati, P., Maipas, S., Kotampasi, C., Stamatis, P., and Hens, L. (2016). Chemical pesticides and human health: The urgent need for a new concept in agriculture. Front. Public Health 4, 148. doi: 10.3389/fpubh.2016.00148

Nilsson, R. H., Taylor, A. F. S., Adams, R. I., Baschien, C., Johan, B.-P., Cangren, P., et al. (2018). Taxonomic annotation of public fungal ITS sequences from the built environment – a report from an April 10-11, 2017 workshop (Aberdeen, UK). Mycokeys 28, 65–82. doi: 10.3897/mycokeys.28.20887
O’Donnell, K., and Cigelnik, E. (1997). Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus *Fusarium* are nonorthologous. *Mol. Phylogenet. Evol.* 7, 103–116. doi: 10.1006/mpye.1996.0376

Rakeman, J. L., Bui, U., Lafe, K., Chen, Y. C., Honeycutt, R. J., and Cookson, B. T. (2005). Multilocus DNA sequence comparisons rapidly identify pathogenic molds. *J. Clin. Microbiol.* 43 (7), 3324–3333. doi: 10.1128/JCM.43.7.3324-3333.2005

Ramirez, C., and Martinez, A. T. (1982). *Manual and atlas of the Penicillia* (New York; Amsterdam: Elsevier Biomedical Press).

Rashmi, M., Kushveer, J. S., and Sarma, V. V. (2019). A worldwide list of endophytic fungi with notes on ecology and diversity. *Mycosphere* 10, 798–1079. doi: 10.5943/mycosphere/10/1/19

Schmeda-Hirschmann, G., Hormazabal, E., Rodriguez, J. A., and Theoduloz, C. (2008). Cycloaspeptide A and pseurotin A from the endophytic fungus *Penicillium janczewskii*. *Z. Fur Naturforschung - Sec C J. Biosci.* 63, 383–388. doi: 10.1515/znc-2008-5-612

Schoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Spouge, J. L., Levesque, C. A., Rashmi, M., Kushveer, J. S., and Sarma, V. V. (2019). A worldwide list of endophytic fungi with notes on ecology and diversity. *Mycosphere* 10, 798–1079. doi: 10.5943/mycosphere/10/1/19

Tekpinar, A. D., and Kalmer, A. (2019). Utility of various molecular markers in fungal identification and phylogeny. *Nova Hedwigia* 109, 187–224. doi: 10.1127/nova_hedwigia/2019/0528

Urooj, F., Farhat, H., Ali, S. A., Ahmed, M., Sultana, V., Shams, Z. I., et al. (2018). Role of endophytic *Penicillium* species in suppressing the root rotting fungi of *Salvadora persica*. *Pakistan J. Bot.* 50, 1621–1628.

Visagie, C. M., Houbraken, J., Frisvad, J. C., Hong, S. B., Klaassen, C. H. W., Perrone, G., et al. (2014a). Identification and nomenclature of the genus *Penicillium*. *Stud. Mycol.* 78, 343–371. doi: 10.1016/j.studmycol.2014.09.001

Visagie, C. M., Hirooka, Y., Tanney, J. B., Whitfield, E., Mwange, K., Meijer, M., et al. (2014b). *Aspergillus*, *Penicillium* and *Talaromyces* isolated from house dust samples collected around the world. *Stud. Mycol.* 78, 63–139. doi: 10.1016/j.studmycol.2014.07.002

Visagie, C. M., Houbraken, J., Dijkstra, J., Seifert, K. A., Jacobs, K., and Samson, R. A. (2016a). A taxonomic review of *Penicillium* species producing conidiophores with solitary phialides, classified in section *Toralomyces*. *Mycosphere* 36, 134–155. doi: 10.3767/003158516X690952

Visagie, C. M., Renaud, J. B., Burgess, K. M., Malloch, D. W., Clark, D., Ketich, L., et al. (2016b). Fifteen new species of *Penicillium*. *Persoonia* 36, 247–280. doi: 10.3767/003158516X691627

Wang, B., and Wang, L. (2013). *Penicillium kongii*, a new tertiervicillate species isolated from plant leaves in China. *Mycologia* 105, 1547–1554. doi: 10.3852/13-022

Wang, X.-C., Chen, K., Zeng, Z.-Q., and Zhuang, W.-Y. (2017). Phylogeny and morphological analyses of *Penicillium* section *Sclerotiora* (fungi) lead to the discovery of five new species. *Sci. Rep.* 7, 8233. doi: 10.1038/s41598-017-08697-1

White, T. J., Bruns, T., Lee, S., and Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. *PCR Protoc: A Guide to Methods Appl.* 18, 315–322. doi: 10.1016/B978-0-12-372180-8.50042-1

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.