Polyglutamylation of tubulin’s C-terminal tail controls pausing and motility of kinesin-3 family member KIF1A

Dominique V. Lessard¹, Oraya J. Zinder¹, Takashi Hotta², Kristen J. Verhey², Ryoma Ohi², Christopher L. Berger¹∗

From the ¹ Department of Molecular Physiology & Biophysics, University of Vermont, Burlington, VT 05405 and the ² Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109

Running Title: Novel regulation of KIF1A motility

*To whom correspondence should be addressed: Christopher L. Berger, Ph.D., Department of Molecular Physiology & Biophysics, University of Vermont, 122 HSRF, 149 Beaumont Avenue, Burlington, Vermont 05405, Telephone: (802) 656-5707; Fax: (802) 656-0747; Email: cberger@uvm.edu

Keywords: molecular motor, single-molecule biophysics, kinesin, posttranslational modification (PTM), microtubule, KIF1A, polyglutamylation, cytoskeleton, neuron, K-loop

ABSTRACT

The kinesin-3 family member KIF1A plays a critical role in site-specific neuronal cargo delivery during axonal transport. KIF1A cargo is mislocalized in many neurodegenerative diseases, indicating that KIF1A’s highly efficient, superprocessive motility along axonal microtubules needs to be tightly regulated. One potential regulatory mechanism may be through posttranslational modifications (PTMs) of axonal microtubules. These PTMs often occur on the C-terminal tails of the microtubule tracks, act as molecular “traffic signals” helping to direct kinesin motor cargo delivery, and include C-terminal tail polyglutamylation important for KIF1A cargo transport. KIF1A initially interacts with microtubule C-terminal tails through its K-loop, a positively charged surface loop of the KIF1A motor domain. However, the role of the K-loop in KIF1A motility and response to perturbations in C-terminal tail polyglutamylation is underexplored. Using single-molecule imaging, we present evidence that KIF1A pauses on different microtubule lattice structures, linking multiple processive segments together and contributing to KIF1A’s characteristic superprocessive run length. Furthermore, modifications of the KIF1A K-loop or tubulin C-terminal tail polyglutamylation reduced KIF1A pausing and overall run length. These results suggest a new mechanism to regulate KIF1A motility via pauses mediated by K-loop/polyglutamylated C-terminal tail interactions, providing further insight into KIF1A’s role in axonal transport.

Axonal transport is a critical process for neuronal viability and function involving the highly-choreographed, long-distance trafficking of cargo. This process is facilitated in part by members of the kinesin superfamily of motors that utilize the mechanochemical coupling of ATP-hydrolysis [1] to carry motor-specific cargo in the anterograde direction along axonal microtubules.

The neuron-specific kinesin-3 family member KIF1A [2] is a key mediator of axonal transport, delivering neuronal cargo, such as dense core vesicles [3] and synaptic vesicle proteins [2], in a spatiotemporally regulated manner along axonal microtubules [4, 5]. Upon cargo-mediated dimerization and release of steric autoinhibition, KIF1A motors are reported to exhibit “superprocessive” motility behavior, traveling comparatively long distances on microtubules when compared to conventional kinesin [6, 7]. The discovery of this superprocessive behavior supports KIF1A as an important player in long distance axonal transport, providing further insight into KIF1A’s role in many neuronal processes such as synaptogenesis [8] and neurogenesis [9]. The importance of tightly regulated KIF1A cargo
delivery is highlighted in neurodegenerative diseases where irregular KIF1A cargo accumulation is observed [10-12]. However, our understanding of this disease-state presentation is limited by the gap in knowledge of the mechanisms that regulate KIF1A motility.

Beyond serving as tracks for kinesin motors, microtubules can direct subcellular trafficking by providing directional cues for motor specificity on select microtubule populations. These “traffic signs” are frequently introduced via microtubule posttranslational modifications (PTMs), often on the C-terminal tails of microtubules [13, 14]. While there are many recent discoveries of how microtubule PTMs regulate different kinesin families [15-17], how this concept can be extended to kinesin-3 motors such as KIF1A is relatively unexplored. One potential PTM regulating KIF1A trafficking is the heavy polyglutamylation of both α- and β-tubulin subunits in neurons [18] via the tubulin tyrosine ligase-like family of enzymes [19, 20]. KIF1A’s dependence on optimal levels of polyglutamylation has been observed in the ROSA22 mouse model, characterized by a loss of neuronal α-tubulin polyglutamylation leading to altered KIF1A cargo trafficking and reduced KIF1A affinity for microtubules [21]. These physiological repercussions of altered KIF1A function highlight the importance of further studying interactions between KIF1A and the polyglutamylation of C-terminal tails of tubulin at the molecular level.

Polyglutamylation may impact KIF1A motility via a lysine-rich surface loop (loop-12) that is characteristic of the kinesin-3 motor family [22, 23]. Previous work has demonstrated that this “K-loop” is a critical component for optimal KIF1A function. From a catalytic perspective, it is thought that the K-loop is necessary for KIF1A’s structural interaction with the microtubule during the ATP-hydrolysis cycle [24]. Furthermore, it is known that the K-loop interacts electrostatically with the glutamic acid-rich C-terminal tail of tubulin [25, 26], tethering the motor to the microtubule track [22]. This K-loop/C-terminal tail relationship, combined with the physiological detriment of reduced microtubule polyglutamylation, illustrates that specific interactions between the KIF1A K-loop and C-terminal tails of tubulin are essential for optimal KIF1A function. Therefore, we hypothesized that C-terminal tail polyglutamylation regulates KIF1A motility and behavior on microtubules mediated by interactions with the KIF1A K-loop structure. Using single-molecule total internal reflection fluorescence microscopy, we first tested our hypothesis by quantifying the motility and behavioral response of KIF1A on various microtubule lattices and then specifically perturbed the K-loop/C-terminal tail interaction. Our findings demonstrate that KIF1A pauses on the microtubule lattice, and suggest that this behavior is caused by a polyglutamylation-sensitive K-loop/CTT interaction.

Results

KIF1A exhibits pausing behavior and superprocessive motility on taxol-stabilized and GMPCPP microtubules assembled from brain tubulin.

Initial single molecule TIRF microscopy observations revealed that dimeric KIF1A motors possess the novel ability to pause during a run on taxol-stabilized microtubules (Figure 1A, Movie S1). While pausing, the dimeric motor appears to be spatially constrained as it does not exhibit the highly diffusive behavior of the KIF1A monomer [26]. While other kinesin motors have been shown to exhibit transient pauses [27, 28], the high pause frequency (Table 1) and substantial number of pauses per distance (Figure 2F) of KIF1A has not been previously characterized, leading us to investigate this behavior further.

The discovery of this novel pausing behavior led us to redefine our nomenclature of KIF1A motility by dissecting KIF1A motility into three segments (Figure 1A). First, we define the continuous run length as segments where, within a single event, KIF1A is moving at a constant velocity. Next, continuous run lengths are connected by pauses that occur at the beginning of continuous runs, in between continuous runs, or after continuous runs. To characterize KIF1A pausing, we have quantified both the pause frequency (# of pauses/overall run) and pauses per distance (# of pauses/µm microtubule). While representative KIF1A kymographs include long pauses (Figure 1C, 2A, 2B), it is important to note that the majority of pausing events are less than 1.5 seconds and occur at stochastic locations on the microtubule (Figure 1C, Table 1). Lastly, we define the overall run length as the sum of continuous run
lengths during a single motility event on the microtubule. KIF1A pausing behavior (Figure 1B, 1C) is best revealed at motor concentrations lower than those utilized in previous work [22].

To confirm that this behavior was not dependent on the facilitated dimerization of our leucine zipper construct (KIF1A-LZ-3xmCitrine), we repeated our single molecule experiments with a non-leucine zipper construct (KIF1A-GFP). We confirmed that in the absence of the leucine zipper, KIF1A exhibits extensive pausing behavior and superprocessive motility (Figure S1). Additionally, we observed an increase in purely diffusive events with this construct (Figure S1A), likely resulting from KIF1A monomers [6, 7]. Our results demonstrate that the KIF1A-LZ-3xmCitrine construct is an appropriate model for dimeric KIF1A behavior. As our current investigations are focused on the processive, dimeric KIF1A motor, we performed all other experiments with the LZ construct.

We next investigated KIF1A’s pausing on GMPCPP microtubules, which contain tubulin subunits in the GTP state rather than the GDP state and are known to have more protofilaments than taxol-stabilized microtubules [29-31]. KIF1A pausing occurred on both microtubule lattices (Figure 2A, B) with similar frequencies of 0.95 pauses/overall run (Taxol [n=165]) versus 1.02 pauses/overall run (GMPCPP [n=171]) and pauses per distance of 0.14 pauses/μm (Taxol) versus 0.16 pauses/μm (GMPCPP) (Figure 2F, Table 1). However, there was a 46% decrease in pause duration from 1.23 sec (Taxol) to 0.66 sec (GMPCPP) (Figure 2D, 2E, Table 1). With respect to other motility characteristics, we observed no significant change in overall run length (6.24 ± 2.09 μm [n=165] and 6.01 ± 2.17 μm [n=171]) or continuous run length (2.95 ± 1.07 μm [n=282] and 2.81 ± 0.61μm [n=305]) along taxol-stabilized versus GMPCPP microtubules, respectively (Figure 2C, Table 1). We also observed no change in the overall speed (1.35 ± 0.41 μm/s and 1.27 ± 0.28 μm/s, respectively; Table 1, Figure S2) or continuous speed (2.01 ± 0.53 μm/s and 2.06 ± 0.54 μm/s, respectively; Table 1, Figure S3) along taxol-stabilized versus GMPCPP microtubules, respectively. However, there was a significant decrease in KIF1A’s ability to land on GMPCPP microtubules in motility buffer with the presence of ADP with 4.86 ± 0.88 events/μm/min [n=958] compared to 7.93 ± 1.25 events/μm/min [n=1152] on taxol-microtubules (Figure 7, Table 1). Thus, while KIF1A displays a decrease in pause duration and a decreased landing rate on GMPCPP microtubules (Table 1), these results confirm that KIF1A’s unique pausing behavior occurs on microtubules of varying protofilament and nucleotide composition.

Interaction with tubulin C-terminal tails mediates KIF1A pausing behavior, landing rate, and superprocessive motility.

To investigate a potential mechanism facilitating KIF1A pausing, we considered the known interaction of KIF1A’s lysine-rich K-loop with tubulin’s glutamate-rich C-terminal tail projections [22, 23]. Previous work has shown that the positively-charged surface loop-12 (K-loop) of the KIF1A motor domain interacts with the microtubule C-terminal tails, helping to anchor KIF1A to the microtubule [25] and mediate KIF1A landing on the microtubule [22]. We thus asked if subtilisin-mediated proteolytic removal [32] (Figure 3A) of the tubulin C-terminal tails could influence KIF1A motility and pausing behavior. On subtilisin-treated microtubules, we observed a 47% reduction of KIF1A overall run length (3.31 ± 1.34 μm [n=171]) when compared to untreated microtubules (Figure 3B, 3C, Table 1). Subtilisin treatment did not significantly change the continuous run length (2.91 ± 1.16 μm [n=205]) of KIF1A (Figure 3C, Table 1), however we did observe a 45% decrease in pause duration (1.23 sec to 0.68 sec), a 79% reduction in pause frequency (0.95 pauses/overall run to 0.18 pauses/overall run), and an 85% reduction in pauses per distance (0.14 pauses/μm to 0.02 pauses/μm) (Figure 3D, 3E, Table 1). Due to the decreased pausing events, KIF1A’s overall speed increased on subtilisin-treated microtubules from 1.35 ± 0.41 μm/s (untreated) to 1.58 ± 0.38 μm/s (Table 1, Figure S2). However, continuous speed remained relatively unchanged between untreated and subtilisin-treated microtubules (2.01 ± 0.53 μm/s and 1.94 ± 0.50 μm/s, respectively) (Table 1, Figure S3).

It has been previously reported that the perturbation of KIF1A’s interaction with the C-terminal tail reduces the motor’s landing rate [22].
Novel Regulation of KIF1A motility

Measuring KIF1A landing rate in ADP-containing motility buffer confirms the necessity of this interaction, showing that subtilisin-treatment of microtubules reduces the landing rate of KIF1A by 65% (7.93 ± 1.25 events/μm/min to 2.80 ± 0.42 events/μm/min, Figure 7, Table 1). Taken together, these results expose KIF1A’s reliance on the microtubule C-terminal tail to engage with the microtubule, initiate pausing behavior, and generate superprocessive overall run lengths.

Conserved lysine residues of the K-loop are key mediators in KIF1A pausing and motility.

Given the influence of the tubulin C-terminal tails on KIF1A pausing behavior, we further investigated the influence of the electrostatic interaction between the KIF1A K-loop and the microtubule C-terminal tails. First, we assessed the dependence of KIF1A pausing on the local electrostatic environment by increasing the salt concentration of our motility buffer from 12 mM to 80 mM PIPES. We observed a decrease in pause duration (1.23 sec to 0.78 sec, Figure 4C) with no significant changes in pause frequency (0.90 pauses/overall run), pauses per distance (0.14 pauses/μm) or any motility parameters (Figure 4A, 4B, S2, S3). Furthermore, in 80 mM PIPES we observed a decrease in KIF1A landing rate to 3.28 ± 0.61 events/μm/min [n=592] (Figure 7, Table 1).

Second, we investigated how positively-charged residues within the K-loop contribute to KIF1A pausing and motility. It has been previously reported that mutating all six lysines of the K-loop to alanine residues abolishes KIF1A motility and interaction with the microtubule [22], highlighting the importance of the K-loop/microtubule interaction to the intrinsic motility properties of KIF1A. Therefore, we mutated the three lysines most conserved across the kinesin-3 family to maintain the ability of KIF1A motors to engage with the microtubule surface (Figure 5A). The KIF1A K-loop mutants (Tri-Ala KIF1A) displayed a marked reduction in both motility and pausing behavior (Figure 5B-E). Specifically, both the overall run length (2.41 ± 1.42 μm [n=173]) and continuous run length (2.00 ± 1.11 μm [n=207]) were significantly reduced by 61% and 32%, respectively, when compared to WT KIF1A on taxol-stabilized microtubules (Figure 5C, Table 1). Due to fewer pausing events, there was a 23% increase in overall speed (1.66 ± 0.45 μm/s) and a continuous speed of 1.72 ± 0.45 μm/s (Table 1, Figure S2, Figure S3). Tri-Ala KIF1A mutants also exhibited impaired pausing behavior quantified by a 62% reduction in pause duration (1.23 sec to 0.47 sec), a 75% decrease in pause frequency (0.95 pauses/overall run to 0.23 pauses/overall run, and a 64% decrease in pauses per distance (0.14 pauses/μm to 0.05 pauses/μm) (Figure 5D,E, Table 1). As expected from previous work [22], the Tri-Ala KIF1A mutant also had a dramatic, 92% reduction in landing rate when compared to WT KIF1A on taxol-stabilized microtubules (0.64 ± 0.14 events/μm/min [n=527] for Tri-Ala and 7.93 ± 1.25 events/μm/min [n=1552] for WT) in motility buffer supplemented with ADP (Figure 7, Figure S7, Table 1) but no change in microtubule interaction in motility buffer supplemented with AMPPNP (1.47 ± 0.34 events/μm/min [n=574] for Tri-Ala and 2.01 ± 0.49 events/μm/min [n=917] for WT (Figure S7). These results confirm that the KIF1A K-loop/microtubule C-terminal tail interaction plays a critical role not only in the landing rate as previously described [22], but also for the pausing behavior of KIF1A.

Microtubule C-terminal tail polyglutamylation regulates KIF1A pausing behavior and motility.

We next aimed to identify a specific property of the tubulin C-terminal tail that could influence KIF1A pausing and motility. It has been previously established that reduced levels of α-tubulin polyglutamylation result in improper KIF1A localization and insufficient cargo delivery in hippocampal and superior cervical ganglia neurons of ROSA22 mice [21]. As neuronal microtubules are subjected to extensive C-terminal polyglutamylation [18], we hypothesized that this posttranslational modification is important for regulation of KIF1A motility behavior including pausing. We thus assessed KIF1A’s pausing and superprocessivity on tubulin purified from HeLa cells, which are known to contain markedly less polyglutamylation than neuronal tubulin (Figure 6A) due to low expression of the tubulin tyrosine-like ligase enzymes [33-35]. It is important to note that this change in tubulin polyglutamylation alters the local charge of the microtubule surface as compared to neuronal tubulin. KIF1A overall run length was reduced by 34% on taxol-stabilized...
HeLa microtubules (4.12 ± 1.48 µm [n=164]) when compared to taxol-stabilized neuronal microtubules with no significant reduction in continuous run length (Figure 6C, Table 1). In regards to pausing behavior, we observed a 58% reduction in pause frequency (0.95 pauses/overall run to 0.40 pauses/overall run), a 50% reduction in pauses per distance (0.14 pauses/µm to 0.07 pauses/µm), and a 51% decrease in pause duration (1.23 sec to 0.59 sec) (Figure 6B, 6D-E, Table 1). Due to the reduction in pausing events, the overall speed of KIF1A on HeLa tubulin (1.70 ± 0.41 µm/s) increased by 26% when compared to KIF1A on neuronal microtubules, while continuous speed decreased by only 7% (Table 1, Figure S2, Figure S3). We also observed a substantial, 94% reduction in KIF1A landing rate on HeLa microtubules when compared to neuronal microtubules (7.93 ± 1.25 events/µm/min [n=1552] versus 0.49 ± 0.13 events/µm/min [n=429]) (Figure 7, Table 1). Taken together, these results confirm that microtubule C-terminal tail polyglutamylation dictates KIF1A’s ability to pause and thus mediates superprocessive behavior.

Discussion

The superprocessivity of the kinesin-3 family member KIF1A has been previously established [7], supporting its known role in long-distance axonal transport [3, 10]. Here we present a novel molecular mechanism that influences KIF1A’s superprocessive motion. First, we demonstrate that KIF1A engages in previously unreported pauses on the microtubule lattice. KIF1A walks a superprocessive distance (~3 µm on average) before initiating a pause, supporting the notion that although pausing is rare, it is related to the superprocessive nature of the motor itself. Pausing has several effects on the overall motility of dimeric KIF1A motors. Pauses enable KIF1A to string together multiple continuous runs to generate a longer overall run. Of note, even in the absence of pauses, KIF1A remains a superprocessive motor, with continuous run lengths of ~3 µm. KIF1A’s overall speed is also decreased in the absence of pauses, with no effect on continuous speed. This response is expected, considering that a reduction in pause frequency will reduce a slower population of motors undergoing pauses.

Furthermore, we show that pauses are mediated by interactions between the KIF1A K-loop and tubulin C-terminal tails. When the K-loop/C-terminal tail interaction is interrupted (e.g., subtilisin treatment, K-loop mutation), KIF1A shows a reduced pause frequency and duration on the microtubule lattice. Disruption of the K-loop/C-terminal tail interaction also results in a dramatic reduction in the landing rate of dimeric KIF1A motors, consistent with previous work [22]. The K-loop is also critical for monomeric KIF1A motors to diffuse along the surface of microtubules [23]. In addition, cellular work has shown that loop-12 is important for regulation of KIF1A dendritic cargo sorting [36]. As the K-loop is conserved across members of the kinesin-3 family, our newly-identified pausing mechanism is likely to be a conserved feature of this class of motor.

Finally, we demonstrate that polyglutamylation of the tubulin C-terminal tail is a posttranslational modification that regulates KIF1A pausing behavior and subsequent motility. Along HeLa microtubules, which lack polyglutamylation, KIF1A displayed significantly reduced landing rate, pause frequency, and pause duration. Electrostatic interactions between the K-loop and C-terminal tail play an important role as increasing the salt concentration in our motility buffer resulted in a reduced landing rate and pause duration. That the increased salt concentration did not influence pause frequency suggests that the factor that influence pausing are not completely based on electrostatics. That tubulin C-terminal tail polyglutamylation influences KIF1A behavior at the single molecule level provides a mechanistic understanding of how polyglutamylation can regulate KIF1A cargo trafficking [21]. The levels of tubulin C-terminal tail polyglutamylation are highly tuned during neural development [18, 37] and could also influence KIF1A during synaptogenesis [38] and interkinetic nuclear migration [39]. Compartmentalizing neuronal tubulin polyglutamylation into localized hotspots [40] may contribute an advantageous level of regulation to fine-tune KIF1A function during these developmental processes.

With a molecular regulatory mechanism identified in regards to KIF1A pausing and motility, a question still remains: how is KIF1A able to pause in between processive segments (continuous runs)? Our proposed mechanism states that pausing is
mediated in part by a KIF1A/C-terminal tails interaction. A structural mechanism responsible for KIF1A pausing can be proposed based on past work examining the flexibility and structural confirmation of the K-loop during ATP hydrolysis [24]. This study demonstrated that when KIF1A is bound to AMPPNP, loop-12 is positioned up and away from the microtubule surface whereas when KIF1A is bound ADP, loop-12 adopts a “downward” position to interact with the C-terminal tails on the microtubule surface. From this, we propose that pauses are initiated by loop-12 interaction with the microtubule C-terminal tail when KIF1A is in the ADP state. Importantly, a pause would happen when both motor domains are in the same nucleotide state at the same time, making this a catalytically rare event and explaining why pausing occurs on the magnitude of every ~3 µm. We speculate that with both loop-12’s in a downward position, KIF1A exhibits a spatially-constrained form of diffusion close to the resolution limit of our TIRF microscope as compared to the previously observed highly diffusive behavior of the KIF1A monomer [26].

The mechanistic importance of loop-12 positioning is further supported by our data comparing the landing rate of WT and Tri-Ala motors in the presence of ADP or AMPPNP in the motility buffer. Under ADP conditions, the landing rate of the K-loop mutant (Tri-Ala) is significantly reduced when compared to WT KIF1A (Figure S7), consistent with previous work [22]. However, under AMPPNP conditions, there is no significant difference in landing rates between WT and Tri-Ala KIF1A motors (Figure S7). These findings support our proposed structural mechanism of pausing in which the “downward” positioning of KIF1A loop-12 when bound to ADP enables loop-12 to interact with the microtubule C-terminal tails and facilitate pausing. Furthermore, the significant reduction of Tri-Ala KIF1A pausing and continuous run length in motility assays (Figure 5C, 5E) highlight the importance of the K-loop for KIF1A motility. Further testing how KIF1A catalytic activity and structural states influence pausing is an enticing future direction beyond the scope of this current study.

Our results demonstrate that KIF1A responds not only to posttranslational modification of the microtubule surface but also to the state of the microtubule. Specifically, we demonstrate that KIF1A has a reduced landing rate (Figure 7) and pause duration (Figure 2D, Table 1) on GMPCPP microtubules as compared to taxol-stabilized microtubules. This is potentially due to a nucleotide-specific difference in positioning of the C-terminal tails on the microtubule surface. Whether the motor is influenced by protofilament number and/or nucleotide state of the GMPCPP lattice will require further study. Recent compelling work has demonstrated that microtubule associated proteins (MAPs) and septins can also influence KIF1A motility and function [36, 41-43]. Pausing may allow KIF1A to navigate around MAPs and other obstacles on the microtubule. The necessity to regulate kinesin cargo transport through pausing is a pre-established concept on a cellular level, as many neuronal cargo have been observed to halt processive movement in order to navigate around obstacles in the crowded cellular environment [44-47]. On the other hand, microtubule C-terminal tail polyglutamylation can regulate the microtubule affinity of MAPs such as MAP1A, MAP1B, MAP2, and Tau [48, 49]. For example, Tau interacts with tubulin C-terminal tails in a unique diffusive behavior that is important for Tau function on a cellular and systemic level [50]. Tau could thus compete with KIF1A for microtubule C-terminal tails and thereby regulate KIF1A pausing and motility. This concept is a compelling topic for further study.

Understanding the mechanisms responsible for KIF1A motility is critical when one considers the extensive range of axonal cargo that KIF1A transports along neuronal microtubules [3, 9, 11, 51-57]. Furthermore, until we advance our understanding of KIF1A regulation, we are limited in our ability to address the disease state manifestations of altered KIF1A function. The regulatory capabilities of Tau’s binding behavior on KIF1A cargo transport are critical to understanding KIF1A’s role in in diseases known for impaired axonal transport, such as frontotemporal dementia (FTD), where changes in Tau isoform expression have been correlated to disease progression [58]. For example, pathological overexpression [59-61] of the more diffusive Tau isoforms [62] and reduced transport of cargo known to be transported by KIF1A are observed in FTD [11, 12, 63]. As we speculate that the diffusive binding state of Tau may compete with KIF1A for the microtubule C-terminal tail, this is an enticing concept for further
Investigation on a molecular and cellular levels. In summary, our discovery of a microtubule C-terminal tail polyglutamylation-mediated mechanism for regulation of KIF1A motility provides crucial insight as to how KIF1A cargo delivery is regulated during axonal transport and how this process may become altered in the disease state.

Experimental Procedures

Tubulin isolation, microtubule preparation and labelling

Neuronal tubulin was isolated from bovine brains donated from Vermont Livestock Slaughter & Processing (Ferrisburgh, VT) using a high molarity PIPES buffer (1 M PIPES, pH 6.9 at room temperature, 10 mM MgCl₂, and 20 mM EGTA) as previously described [64]. Purified tubulin was clarified using ultracentrifugation for 20 minutes at 95,000 rpm at 4°C in an Optima TLX Ultracentrifuge (Beckman, Pasadena, CA). After clarification, tubulin concentration was calculated using the tubulin extinction coefficient of 115,000 cm⁻¹ M⁻¹ and read at 280nm in the spectrophotometer.

Tubulin was purified from HeLa Kyoto cells with TOG affinity column chromatography using gravity-flow setup [65, 66]. Cells were resuspended in BRB80 (80 mM PIPES, 1 mM EGTA, 1 mM MgCl₂ pH 6.8) supplemented with 1 mM DTT and protease inhibitors (cOmplete, Mini, EDTA-free [Sigma-Aldrich, St. Louis, MO] and 0.2 mM PMSF) and sonicated. Cleared lysate was loaded onto a TOG column, in which approximately 15 mg of bacterially purified GST-TOG1/2 protein was conjugated with 1 ml of NHS-activated Sepharose 4 Fast Flow resin (GE Healthcare; Marlborough, MA). Wash, elution, desalting and concentration was carried out as described in Hotta et al, 2016 [66]. Glycerol was not added to the purified tubulin. Aliquotted tubulin was snap frozen in liquid nitrogen and stored at -80°C.

Clarified tubulin was supplemented with 1mM GTP (Sigma-Aldrich) or guanosine-5′-[(α,β)-methyleno]triphosphate sodium salt (GMPCPP; Jena Biscience, Jena, Germany). To label microtubules, unlabeled tubulin was mixed with rhodamine-labeled tubulin (Cytoskeleton, Denver, CO) at a ratio of 100:1. Microtubules were stabilized with GMPCPP following previously reported methods[67] or polymerized at 37°C for 20 minutes and stabilized with 20 µM paclitaxel (taxol; Sigma-Aldrich) in DMSO. Microtubules were diluted to a working concentration of 1 µM in P12 Buffer (12mM PIPES, 1mM MgCl₂, 1 mM EGTA, pH 6.8 supplemented with 20 µM paclitaxel) [22].

Plasmids, mutagenesis, and cell lysate motor expression

KIF1A(1-393)-LZ-3xmCitrine plasmid was a generous gift of Kristen Verhey (University of Michigan, Ann Arbor, MI) and the KIF1A(1-396)-GFP (Addgene plasmid # 45058) mammalian plasmid were a gift from Gary Banker (Oregon Health & Science University). TriAla-KIF1A-LZ-3xmCitrine was generated from the KIF1A(1-393)-LZ-3xmCitrine plasmid using the QuikChange II XL Site-Directed Mutagenesis Kit (Agilent Technologies, Santa Clara, CA). COS-7 monkey kidney fibroblasts (American Type Culture Collection, Mensburg, VA) were cultured in DMEM-GlutaMAX™ with 10% fetal bovine serum (FBS) at 37°C with 5% CO₂. Cells were transfected with 1 µg of either WT KIF1A-LZ-3xmCitrine, Tri-Ala KIF1A-LZ-3xmCitrine, or KIF1A-GFP mammalian plasmid using the Lipofectamine 2000 delivery system (Thermo Fisher Scientific, Waltham, MA) and incubated in Opti-MEM™ (Thermo Fisher Scientific) media with 4% FBS. The next day, cells were harvested, pelleted, and washed with DMEM GlutaMAX™. The pellet was vigorously resuspended in lysis buffer (25mM HEPES, 11mM K⁺ Acetate, 5mM Na⁺ Acetate, 1mM PMSF, 1mg/ml pepstatin, 10 µg/ml leupeptin, 5 µg/ml aprotinin) and centrifuged at room temperature for 15 minutes at 14,000 rpm. Relative amounts of protein between preps and motor constructs was determined using densitometry, and supernatant containing expressed motor protein was aliquoted and stored at -80°C until further use.

Subtilisin treatment

To remove C-terminal tails, 5 µM paclitaxel stabilized microtubules were treated with 0.05µM Subtilisin A (Sigma Aldrich), resuspended in P12 Buffer, for 45 minutes at 25°C. The reaction was stopped by the addition of 5 mM...
phenylmethanesulfonyl fluoride. Subtilisin treatment was confirmed by Coomassie staining of SDS-PAGE denaturing gel. Tubulin concentration was determined as previously described.

In vitro single-molecule TIRF

Flow chambers used in *in vitro* TIRF experiments were constructed as previously described [68]. Flow chambers were incubated with monoclonal anti-β III (neuronal) antibodies at 33 µg/ml for 5 minutes, then washed twice with 0.5 mg/ml bovine serum albumin (BSA; Sigma Aldrich) and incubated for 2 minutes. 1 µM of microtubules (any experimental condition) were administered and incubated for 8 minutes. Non-adherent microtubules were removed with a P12 wash supplemented with 20 µM paclitaxel. Kinesin motors in Motility Buffer consistent with past literature (MB; 12 mM PIPES, 1 mM MgCl₂, 1 mM EGTA, supplemented with 20 µM paclitaxel, 10 mM DTT, 10 mg/ml BSA, 2 mM ATP and an oxygen scavenger system [5.8 mg/ml glucose, 0.045 mg/ml catalase, and 0.067 mg/ml glucose oxidase; Sigma Aldrich]) [22], or a High Salt Motility Buffer (same as Motility Buffer, with the only change being PIPES concentration raised to 80 mM), supplemented with 2 mM ATP, were added to the flow cell just before image acquisition. For landing rate assays, *in vitro* KIF1A motility assays were prepared as described above, with the only change being MB was supplemented with 2 mM ADP. Control *Drosophila melanogaster* biotin-tagged kinesin-1 motors were labeled with streptavidin-conjugated Qdot 655 (Life Technologies, Carlsbad, CA) at a 1:4 motor:Qdot ratio as previously described [68, 69].

Total internal reflection fluorescence (TIRF) microscopy was performed at room temperature using an inverted Eclipse Ti-E microscope (Nikon, Melville, NY) with a 100x Apo TIRF objective lens (1.49 N.A.) and dual iXon Ultra Electron Multiplying CCD cameras, running NIS Elements version 4.51.01. Rhodamine-labeled microtubules were excited with a 561 and a 590/50 filter. KIF1A-LZ-3xmCitrine (WT or Tri-Ala) motors were excited with a 488 laser and a 525/50 filter. Qdot 655 conjugated kinesin-1 motors were excited with a 640 laser and 655 filter. All movies were recorded with an acquisition time of 200 msec for 500 frames (100 sec observation).

Photobleaching assay

As an additional control, a photobleaching assay was performed to confirm that KIF1A run lengths were not underestimated due to photobleaching of the C-terminal 3xmCitrine tag (Figure S6). Motors were adhered to microtubules in the presence of adenylylimidodiphosphate (AMPPNP; Sigma-Aldrich) and washed once to remove unattached motors. Using Image J, a region of interest (ROI) was drawn around each fluorescent spot and the average intensity of each pixel within the ROI was measured over time. Intensity was background corrected and a motor was considered photobleached when the ROI average intensity was 0.

Western blot analysis

Purified tubulin protein was separated by electrophoresis on Mini-PROTEAN™ TGX™ gels (Bio-Rad, Hercules, CA) and transferred to a polyvinylidene fluoride membrane (Bio-Rad). Membranes were blocked in in a 1:1 solution of phosphate-buffered saline (PBS; 155 mM NaCl, 3 mM Na₂HPO₄, and 1 mM KH₂PO₄, pH 7.4) and Odyssey® blocking reagent (Li-COR, Lincoln, NE). A mouse anti-polyglutamylated tubulin antibody (1:8,000; GT335, AdipoGen, San Diego, CA) or a mouse anti-alpha tubulin antibody (1:10,000; DM1A, Sigma-Aldrich) was administered to membrane, followed by a secondary DyLight 800 anti-mouse IgG antibody (1:10,000; Thermo Fisher Scientific). Secondary antibody fluorescence was detected using an Odyssey CLx (Li-COR).

Data analysis

Motility events were analyzed as previously reported [69, 70]). In brief, overall run length motility data was measured using the ImageJ MTrackJ plug-in, for a frame-by-frame quantification of KIF1A motility. Pauses are defined as segments in where the average velocity is less than 0.2 µm/s over three frames or more. Continuous events were identified at the boundaries of pausing events. Average overall/continuous speed were plotted as a histogram, with mean and SD are reported in Table 1. KIF1A pause duration events were fit to a single exponential decay, represented as cumulative frequency plots with confidence intervals (CI) of 95%. Pause duration is
reported as the inverse of the decay rate, representing the lifetime of pause duration events.

Kymographs of motor motility were created using the MultipleKymograph ImageJ plugin, with a set line thickness of 3. To correct for microtubule track length effects on motor motility, overall/continuous run length data was resampled to generate cumulative frequency plots (99% CI), using previously reported methods [71]. After data resampling, statistical significance between motor run length and speed data sets was determined using a paired t-test.

To determine the landing rate of KIF1A on various microtubule conditions, the total number of motor landing events on the microtubule was divided by the length of the microtubule and further divided by the duration of the movie (events/µm/minute). To be considered a landing rate event, a motor must remain on the microtubule for three consecutive frames under ADP or AMPPNP state conditions.
Acknowledgements: We thank David Warshaw and Guy Kennedy for training and use of the TIRF microscope at the University of Vermont. A special thank you to Vermont Livestock Slaughter & Processing (Ferrisburgh, VT) for supporting our work. We thank Gary Banker & Marvin Bentley for the gifted pBa.Kif1a 1-396.GFP (Addgene plasmid # 45058), William Hancock for the use of his kinesin-1 construct, and Adam Hendricks for support.

Conflict of Interest: The authors declare that they have no conflicts of interest with the contents of this article.
References

1. Schnitzer, M.J. and S.M. Block, Kinesin hydrolyses one ATP per 8-nm step. Nature, 1997. 388(6640): p. 386-90.
2. Okada, Y., et al., The neuron-specific kinesin superfamily protein KIF1A is a unique monomeric motor for anterograde axonal transport of synaptic vesicle precursors. Cell, 1995. 81(5): p. 769-80.
3. Lo, K.Y., et al., KIF1A is the primary anterograde motor protein required for the axonal transport of dense-core vesicles in cultured hippocampal neurons. Neurosci Lett, 2011. 491(3): p. 168-73.
4. Hirokawa, N., S. Niwa, and Y. Tanaka, Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron, 2010. 68(4): p. 610-38.
5. Vale, R.D. and R.A. Milligan, The way things move: looking under the hood of molecular motor proteins. Science, 2000. 288(5463): p. 88-95.
6. Hammond, J.W., et al., Mammalian Kinesin-3 motors are dimeric in vivo and move by processive motility upon release of autoinhibition. PLoS Biol, 2009. 7(3): p. e72.
7. Soppina, V., et al., Dimerization of mammalian kinesin-3 motors results in superprocessive motion. Proc Natl Acad Sci U S A, 2014. 111(15): p. 5562-7.
8. Kondo, M., Y. Takei, and N. Hirokawa, Motor protein KIF1A is essential for hippocampal synaptogenesis and learning enhancement in an enriched environment. Neuron, 2012. 73(4): p. 743-57.
9. Tsai, J.W., et al., Kinesin 3 and cytoplasmic dynein mediate interkinetic nuclear migration in neural stem cells. Nat Neurosci, 2010. 13(12): p. 1463-71.
10. Hung, C.O. and M.P. Coleman, KIF1A mediates axonal transport of BACE1 and identification of independently moving cargoes in living SCG neurons. Traffic, 2016. 17(11): p. 1155-1167.
11. Siddiqui, N. and A. Straube, Intracellular Cargo Transport by Kinesin-3 Motors. Biochemistry (Mosc), 2017. 82(7): p. 803-815.
12. Goetzl, E.J., et al., Decreased synaptic proteins in neuronal exosomes of frontotemporal dementia and Alzheimer's disease. FASEB J, 2016. 30(12): p. 4141-4148.
13. Verhey, K.J. and J. Gaertig, The tubulin code. Cell Cycle, 2007. 6(17): p. 2152-60.
14. Magiera, M.M., et al., Tubulin Posttranslational Modifications and Emerging Links to Human Disease. Cell, 2018. 173(6): p. 1323-1327.
15. Sirajuddin, M., L.M. Rice, and R.D. Vale, Regulation of microtubule motors by tubulin isotypes and post-translational modifications. Nat Cell Biol, 2014. 16(4): p. 335-44.
16. Hammond, J.W., et al., Posttranslational modifications of tubulin and the polarized transport of kinesin-1 in neurons. Mol Biol Cell, 2010. 21(4): p. 572-83.
17. Ghosh-Roy, A., et al., Kinesin-13 and tubulin posttranslational modifications regulate microtubule growth in axon regeneration. Dev Cell, 2012. 23(4): p. 716-28.
18. Audebert, S., et al., Developmental regulation of polyglutamyalted alpha- and beta-tubulin in mouse brain neurons. J Cell Sci, 1994. 107 (Pt 8): p. 2313-22.
19. Ikegami, K., et al., TRL7 is a mammalian beta-tubulin polyglutamylase required for growth of MAP2-positive neurites. J Biol Chem, 2006. 281(41): p. 30707-16.
20. Janke, C., et al., Tubulin polyglutamylation enzymes are members of the TTL domain protein family. Science, 2005. 308(5729): p. 1758-62.
21. Ikegami, K., et al., Loss of alpha-tubulin polyglutamylation in ROSA22 mice is associated with abnormal targeting of KIF1A and modulated synaptic function. Proc Natl Acad Sci U S A, 2007. 104(9): p. 3213-8.

22. Soppina, V. and K.J. Verhey, The family-specific K-loop influences the microtubule on-rate but not the superprocessivity of kinesin-3 motors. Mol Biol Cell, 2014. 25(14): p. 2161-70.

23. Okada, Y. and N. Hirokawa, Mechanism of the single-headed processivity: diffusional anchoring between the K-loop of kinesin and the C terminus of tubulin. Proc Natl Acad Sci U S A, 2000. 97(2): p. 640-5.

24. Nitta, R., et al., KIF1A alternately uses two loops to bind microtubules. Science, 2004. 305(5684): p. 678-83.

25. Kikkawa, M., Y. Okada, and N. Hirokawa, 15 A resolution model of the monomeric kinesin motor, KIF1A. Cell, 2000. 100(2): p. 241-52.

26. Okada, Y. and N. Hirokawa, A processive single-headed motor: kinesin superfamily protein KIF1A. Science, 1999. 283(5405): p. 1152-7.

27. Gramlich, M.W., et al., Single Molecule Investigation of Kinesin-1 Motility Using Engineered Microtubule Defects. Sci Rep, 2017. 7: p. 44290.

28. Padzik, A., et al., KIF5C S176 Phosphorylation Regulates Microtubule Binding and Transport Efficiency in Mammalian Neurons. Front Cell Neurosci, 2016. 10: p. 57.

29. Ginsburg, A., et al., Structure of Dynamic, Taxol-Stabilized, and GMPPCP-Stabilized Microtubule. J Phys Chem B, 2017. 121(36): p. 8427-8436.

30. Hyman, A.A., et al., Structural changes accompanying GTP hydrolysis in microtubules: information from a slowly hydrolyzable analogue guanylyl-(alpha,beta)-methylenediphosphonate. J Cell Biol, 1995. 128(1-2): p. 117-25.

31. Zhang, R., B. LaFrance, and E. Nogales, Separating the effects of nucleotide and EB binding on microtubule structure. Proc Natl Acad Sci U S A, 2018. 115(27): p. E6191-E6200.

32. Knipling, L., J. Hwang, and J. Wolff, Preparation and properties of pure tubulin S. Cell Motil Cytoskeleton, 1999. 43(1): p. 63-71.

33. Regnard, C., et al., Tubulin polyglutamylase: isozymic variants and regulation during the cell cycle in HeLa cells. J Cell Sci, 1999. 112 (Pt 23): p. 4281-9.

34. Lacroix, B. and C. Janke, Generation of differentially polyglutamylated microtubules. Methods Mol Biol, 2011. 777: p. 57-69.

35. Lacroix, B., et al., Tubulin polyglutamylation stimulates spastin-mediated microtubule severing. J Cell Biol, 2010. 189(6): p. 945-54.

36. Eva P. Karasmanis, C.-T.P., Dimitrios Angelis, Ilona A. Kesisova, Casper C. Hoogenraad, Richard J. McKenney, Elias T. Spiliotis, Polarity of Neuronal Membrane Traffic Requires Sorting of Kinesin Motor Cargo during Entry into Dendrites by a Microtubule-Associated Septin. Developmental Cell, 2018. 46(2): p. 204-218.

37. Audebert, S., et al., Reversible polyglutamylation of alpha- and beta-tubulin and microtubule dynamics in mouse brain neurons. Mol Biol Cell, 1993. 4(6): p. 615-26.

38. Stavoe, A.K., et al., KIF1A/UNC-104 Transports ATG-9 to Regulate Neurodevelopment and Autophagy at Synapses. Dev Cell, 2016. 38(2): p. 171-85.

39. Dantas, T.J., et al., Emerging roles for motor proteins in progenitor cell behavior and neuronal migration during brain development. Cytoskeleton (Hoboken), 2016. 73(10): p. 566-576.
Novel Regulation of KIF1A motility

40. Janke, C., K. Rogowski, and J. van Dijk, Polyglutamylation: a fine-regulator of protein function? 'Protein Modifications: beyond the usual suspects' review series. EMBO Rep, 2008. 9(7): p. 636-41.

41. Monroy, B.Y., et al., Competition between microtubule-associated proteins directs motor transport. Nat Commun, 2018. 9(1): p. 1487.

42. Gumy, L.F., et al., MAP2 Defines a Pre-axonal Filtering Zone to Regulate KIF1- versus KIF5-Dependent Cargo Transport in Sensory Neurons. Neuron, 2017. 94(2): p. 347-362 e7.

43. Lipka, J., et al., Microtubule-binding protein doublecortin-like kinase 1 (DCLK1) guides kinesin-3-mediated cargo transport to dendrites. EMBO J, 2016. 35(3): p. 302-18.

44. Trybus, K.M., Intracellular transport: the causes for pauses. Curr Biol, 2013. 23(14): p. R623-5.

45. Maday, S., et al., Axonal transport: cargo-specific mechanisms of motility and regulation. Neuron, 2014. 84(2): p. 292-309.

46. Hendricks, A.G., et al., Motor coordination via a tug-of-war mechanism drives bidirectional vesicle transport. Curr Biol, 2010. 20(8): p. 697-702.

47. Castle, M.J., et al., Long-distance axonal transport of AAV9 is driven by dynein and kinesin-2 and is trafficked in a highly motile Rab7-positive compartment. Mol Ther, 2014. 22(3): p. 554-566.

48. Bonnet, C., et al., Differential binding regulation of microtubule-associated proteins MAP1A, MAP1B, and MAP2 by tubulin polyglutamylation. J Biol Chem, 2001. 276(16): p. 12839-48.

49. Larcher, J.C., et al., Interaction of kinesin motor domains with alpha- and beta-tubulin subunits at a tau-independent binding site. Regulation by polyglutamylation. J Biol Chem, 1996. 271(36): p. 22117-24.

50. Hinrichs, M.H., et al., Tau protein diffuses along the microtubule lattice. J Biol Chem, 2012. 287(46): p. 38559-68.

51. Niwa, S., et al., Autoinhibition of a Neuronal Kinesin UNC-104/KIF1A Regulates the Size and Density of Synapses. Cell Rep, 2016. 16(8): p. 2129-41.

52. Tanaka, Y., et al., The Molecular Motor KIF1A Transports the TrkA Neurotrophin Receptor and Is Essential for Sensory Neuron Survival and Function. Neuron, 2016. 90(6): p. 1215-29.

53. Carabalona, A., D.J. Hu, and R.B. Vallee, KIF1A inhibition immortalizes brain stem cells but blocks BDNF-mediated neuronal migration. Nat Neurosci, 2016. 19(2): p. 253-62.

54. Lee, J.R., et al., De novo mutations in the motor domain of KIF1A cause cognitive impairment, spastic paraparesis, axonal neuropathy, and cerebellar atrophy. Hum Mutat, 2015. 36(1): p. 69-78.

55. Niwa, S., Y. Tanaka, and N. Hirokawa, KIF1Bbeta- and KIF1A-mediated axonal transport of presynaptic regulator Rab3 occurs in a GTP-dependent manner through DENN/MADD. Nat Cell Biol, 2008. 10(11): p. 1269-79.

56. Lee, J.R., et al., Characterization of the movement of the kinesin motor KIF1A in living cultured neurons. J Biol Chem, 2003. 278(4): p. 2624-9.

57. Yonekawa, Y., et al., Defect in synaptic vesicle precursor transport and neuronal cell death in KIF1A motor protein-deficient mice. J Cell Biol, 1998. 141(2): p. 431-41.

58. Iqbal, K., et al., Tau in Alzheimer disease and related tauopathies. Curr Alzheimer Res, 2010. 7(8): p. 656-64.
59. Kopeikina, K.J., B.T. Hyman, and T.L. Spires-Jones, *Soluble forms of tau are toxic in Alzheimer's disease*. Transl Neurosci, 2012. 3(3): p. 223-233.

60. Schoch, K.M., et al., *Increased 4R-Tau Induces Pathological Changes in a Human-Tau Mouse Model*. Neuron, 2016. 90(5): p. 941-7.

61. Goedert, M., B. Ghetti, and M.G. Spillantini, *Tau gene mutations in frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). Their relevance for understanding the neurogenerative process*. Ann N Y Acad Sci, 2000. 920: p. 74-83.

62. McVicker, D.P., et al., *Tau interconverts between diffusive and stable populations on the microtubule surface in an isoform and lattice specific manner*. Cytoskeleton (Hoboken), 2014. 71(3): p. 184-94.

63. Rodriguez-Martin, T., et al., *Reduced number of axonal mitochondria and tau hypophosphorylation in mouse P301L tau knockin neurons*. Neurobiol Dis, 2016. 85: p. 1-10.

64. Castoldi, M. and A.V. Popov, *Purification of brain tubulin through two cycles of polymerization-depolymerization in a high-molarity buffer*. Protein Expr Purif, 2003. 32(1): p. 83-8.

65. Widlund, P.O., et al., *One-step purification of assembly-competent tubulin from diverse eukaryotic sources*. Mol Biol Cell, 2012. 23(22): p. 4393-401.

66. Hotta, T., et al., *Affinity Purification and Characterization of Functional Tubulin from Cell Suspension Cultures of Arabidopsis and Tobacco*. Plant Physiol, 2016. 170(3): p. 1189-205.

67. McVicker, D.P., L.R. Chrin, and C.L. Berger, *The nucleotide-binding state of microtubules modulates kinesin processivity and the ability of Tau to inhibit kinesin-mediated transport*. J Biol Chem, 2011. 286(50): p. 42873-80.

68. Stern, J.L., et al., *Phosphoregulation of Tau modulates inhibition of kinesin-1 motility*. Mol Biol Cell, 2017. 28(8): p. 1079-1087.

69. Hoeprich, G.J., et al., *The axonal transport motor kinesin-2 navigates microtubule obstacles via protofilament switching*. Traffic, 2017. 18(5): p. 304-314.

70. Hoeprich, G.J., et al., *Kinesin's neck-linker determines its ability to navigate obstacles on the microtubule surface*. Biophys J, 2014. 106(8): p. 1691-700.

71. Thompson, A.R., G.J. Hoeprich, and C.L. Berger, *Single-molecule motility: statistical analysis and the effects of track length on quantification of processive motion*. Biophys J, 2013. 104(12): p. 2651-61.
FOOTNOTES

This work was supported by National Institute of General Medicine Sciences/National Institutes of Health funding to C.B. (Grant GM101066), K.J.V (GM070862), and R.O. (GM086610).

Table 1. Summary of KIF1A motility and behavior on microtubules across all conditions. Pause durations were fit to a single-exponential decay and the time constant of the fit is reported in seconds. All other metrics are reported as Mean ± SD. * = p<0.001 relative to KIF1A on taxol-stabilized MTs.
Figure 1. KIF1A pauses during runs along the microtubule. A) Representative kymograph with corresponding nomenclature used to describe novel KIF1A motility behavior. B,C) Representative kymographs demonstrating that at B) high motor concentrations, pausing becomes obscured by surrounding motor motility while at C) low motor concentrations, extensive pausing behavior (white arrows) is revealed at stochastic positions on the microtubule.
Figure 2. KIF1A pausing behavior occurs on taxol-stabilized and GMPCPP microtubules. A,B) Representative kymographs of KIF1A motility on A) taxol-stabilized or B) GMPCPP microtubules. C) Quantification demonstrates no significant differences in KIF1A overall run length (RL) (6.24 ± 2.09 μm [n=165] and 6.01 ± 2.17 μm [n=171], respectively) and continuous run length (2.95 ± 1.07 μm [n=282], and 2.81 ± 0.91μm [n=305], respectively). Run length values are reported as mean ± standard deviation and were calculated as previously reported [71]. D) KIF1A pause duration is 1.23 sec (Confidence Interval [CI] 1.00 – 1.42 sec) on taxol-stabilized microtubules [n=147] and E) 0.66 sec (CI 0.59 – 0.73 sec) on GMPCPP microtubules [n=152]. F) KIF1A exhibits a similar pauses per distance on taxol-stabilized (0.14 pauses/μm [n=165]) and GMPCPP (0.16 pauses/μm [n=171]) microtubules. Pause durations were fit to a single exponential decay and are represented as cumulative frequency distributions; the time constant of fit is reported in seconds with a 95% confidence interval. All other metrics are reported as Mean ± SD. * p < 0.001 Kinesin-1 was used as an experimental control across all conditions (Figure S2-S5). Each condition is representative of at least four independent experiments.
Figure 3. Removal of the tubulin C-terminal tail reduces KIF1A pausing. A) Cartoon depiction of tubulin C-terminal tail (CTT) cleavage upon addition of subtilisin. B) Representative kymographs of KIF1A motility on untreated microtubules (top) vs subtilisin (Sub) treated microtubules (bottom). C) The overall run length of KIF1A was reduced from 6.24 ± 2.09 µm to 3.31 ± 1.34 µm [n=171] upon subtilisin treatment of microtubules, while continuous run length was not significantly changed (2.95 ± 1.07 µm and 2.91 ± 1.16 µm [n= 205], respectively). Control values for KIF1A overall and continuous run length are the same as reported for figure 2C. D) KIF1A pause duration is 0.68 sec (CI 0.57 – 0.83 sec) on subtilisin-treated microtubules [n=34], compared to untreated microtubules (1.23 sec; Figure 2D). E) KIF1A pauses per distance was significantly decreased from 0.14 pauses/µm to 0.02 pauses/µm upon subtilisin-treatment of taxol-stabilized microtubules. Run length values and standard deviations were calculated as previously reported [71]. Kinesin-1 was used as an experimental control across all conditions (Figure S2-S5). Each condition is representative of at least four independent experiments. Pause durations were fit to a single exponential decay and are represented as cumulative frequency distributions; the time constant of fit is reported in seconds with a 95% confidence interval. All other metrics are reported as Mean ± SD. * p < 0.001
Figure 4. KIF1A behavior and motility in 80 mM PIPES Motility Buffer on taxol-stabilized microtubules. **A)** KIF1A exhibits a similar overall run length (5.98 ± 2.14 µm [n=164]) and a continuous run length (3.14 ± 0.98 µm [n=280]) in 80 mM PIPES as compared to standard motility buffer. **B)** KIF1A exhibits a similar number of pauses per distance in Motility Buffer (0.14 pauses/µm) and 80 mM PIPES (0.14 pauses/µm). **C)** In 80 mM PIPES, KIF1A pause duration is 0.78 sec (CI 0.66 – 0.91 sec) [n=132], compared to Motility Buffer (1.23 sec; Figure 2D). Pause durations were fit to a single exponential decay and are represented as cumulative frequency distributions; the time constant of fit is reported in seconds with a 95% confidence interval. All other metrics are reported as Mean ± SD.
Figure 5. The KIF1A K-loop regulates pausing. A) Amino acid sequence alignment of the KIF1A loop 12 (K-loop) of WT KIF1A and the Tri-Ala KIF1A mutant. For the Tri-Ala mutant, the three most conserved lysines amongst the kinesin-3 family have been mutated to alanine residues (yellow text). B) Representative kymographs of WT KIF1A motility (top) vs Tri-Ala KIF1A motility (bottom). C) The Tri-Ala mutation of the KIF1A K-loop significantly reduced both overall (6.24 ± 2.09 µm to 2.41 ± 1.42 µm [n=173]) and continuous (2.95 ± 1.07 µm to 2.00 ± 1.11 µm [n=207]) run length. D) KIF1A pause duration is 0.47 sec (CI 0.41 – 0.53 sec) upon mutation of the K-loop [n=36], compared to WT KIF1A (1.23 sec; Figure 2D). E) Mutation of the K-loop significantly decreased number of pauses per distance from 0.14 pauses/µm (WT KIF1A) to 0.05 pauses/µm (Tri-Ala KIF1A). Run length values and standard deviations were calculated as previously reported [71]. Kinesin-1 was used as an experimental control across all conditions (Figure S2-S5). Each condition is representative of at least four independent experiments. Pause durations were fit to a single-exponential decay and are represented as cumulative frequency distributions; the time constant of fit is reported in seconds with a 95% confidence interval. All other metrics are reported as Mean ± SD. * p < 0.001
Figure 6. KIF1A pausing is regulated by the polyglutamylation state of the microtubule. A) Western blot revealing higher levels of polyglutamylation (polyE, top) on purified neuronal (brain) tubulin in comparison to purified HeLa tubulin, known to have little tubulin polyglutamylation [33-35]. The total α-tubulin loading control is shown in the bottom blot. B) Representative kymographs of KIF1A motility on neuronal microtubules (top) vs HeLa microtubules (middle and bottom). C) The overall run length of KIF1A was reduced from 6.24 ± 2.09 μm to 4.12 ± 1.48 μm [n=164] on HeLa microtubules, while continuous run length was not significantly changed (2.95 ± 1.07 μm on HeLa microtubules vs 2.98 ± 0.96 μm [n=222] on brain microtubules). Control values for KIF1A overall and continuous run length are the same as reported for figure 2C. D) KIF1A pause duration is 0.59 sec (CI 0.54 – 0.64 sec) on HeLa microtubules [n=58], compared to neuronal microtubules (1.23 sec; Figure 2D). E) KIF1A pauses per distance was significantly decreased from 0.14 pauses/μm on brain microtubules to 0.07 pauses/μm on HeLa microtubules. Run length values and standard deviations were calculated as previously reported [71]. Kinesin-1 was used as an experimental control across all conditions (Figure S2-S5). Each condition is representative of at least four independent experiments. Pause durations were fit to a single-exponential decay and are represented as cumulative frequency distributions; the time constant of fit is reported in seconds with a 95% confidence interval. All other metrics are reported as Mean ± SD. * p < 0.001
Figure 7. KIF1A landing is influenced by microtubule state and the K-loop/C-terminal tail interaction. Quantification of KIF1A landing rate in the ADP state on indicated microtubule (MT) subsets (Mean ± SD). On taxol-stabilized microtubules KIF1A had a landing rate of 7.93 ± 1.25 events/μm/min [n=1552]. On GMPCPP microtubules, KIF1A landing rate was significantly reduced to 4.86 ± 0.88 events/μm/min [n=958]. Removal of the tubulin C-terminal tails (Sub MTs) significantly reduced KIF1A landing rate to 2.80 ± 0.42 events/μm/min [n=717]. Increasing salt concentration (80 mM PIPES) of the motility buffer reduced the landing rate to 3.28 ± 0.61 events/μm/min [n=592]. Mutation of the KIF1A K-loop (Tri-Ala KIF1A) significantly reduced the landing rate to 0.64 ± 0.14 events/μm/min [n=527]. On HeLa microtubules with reduced polyglutamylation, the KIF1A landing rate was significantly reduced to 0.49 ± 0.13 events/μm/min [n=429]. Each condition is representative of at least four independent experiments. Mean ± SD reported. * p < 0.001
Polyglutamylation of tubulin's C-terminal tail controls pausing and motility of kinesin-3 family member KIF1A
Dominique V Lessard, Oraya J Zinder, Takashi Hotta, Kristen J. Verhey, Ryoma Ohi and Christopher L. Berger

J. Biol. Chem. published online February 15, 2019

Access the most updated version of this article at doi: 10.1074/jbc.RA118.005765

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts