Draft Genome Sequence of *Daldinia eschscholzii* Isolated from Blood Culture

Kee Peng Ng,a Yun Fong Ngeow,a Su Mei Yew,a Hamimah Hassan,a Tuck Soon Soo-Hoo,a Shiang Ling Na,a Chai Ling Chan,a Chee-Choong Hoh,b Kok-Wei Lee,b and Wai-Yan Yeeb

Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia,a and Codon Genomics SB, Jalan Bandar Lapan Belas, Pusat Bandar Puchong, Selangor Darul Ehsan, Malaysiab

Daldinia eschscholzii is an invasive endophyte that is most commonly found in plant tissues rich in secondary metabolites. We report the draft genome sequence of *D. eschscholzii* isolated from blood culture. The draft genome is 35,494,957 bp in length, with 42,898,665 reads, 61,449 contigs, and a G+C content of 46.8%. The genome was found to contain a high abundance of genes associated with plant cell wall degradation enzymes, mycotoxin production, and antifungal drug resistance.

The genomic DNA was sequenced to a 100-fold depth of coverage on the Illumina Genome Analyzer IIX sequencer. From our analysis, the estimated genome size of *D. eschscholzii* UM1020 is ∼42.66 Mb. The genome was assembled into 61,449 contigs using the SOAPdenovo version 1.05 assembler (9). All contigs generated were scaffolded into 599 large scaffolds (∼1,000 bp; N50, 115 kb). The resulting draft genome is 35,494,957 bp, with an overall G+C content of 46.8%. Subsequent gene prediction analysis using GeneMark-ES version 2.3 (11) yielded a total of 11,445 predicted protein-coding genes with 92% (10,578) longer than 100 amino acids. The predicted gene model has an exon frequency of 2.82 exons per gene. Genome annotation on predicted genes was carried out by BLAST similarity searches against Swiss-Prot, with a total of 56.75% genes successfully annotated.

The genome is found to contain a high abundance of genes associated with plant cell wall degradation enzymes such as xylanase, endoglucanase, β-glucosidase, and cellobiohydrolase, which are important for survival, as an endophyte lives inside plant tissues (7, 8, 10). These genes are essentially absent or in low abundance in host-dependent endogenous fungi such as *Candida albicans* (4). A plethora of genes which are essential in heavy metal, toxic compound, and pesticide resistance were detected in *D. eschscholzii* UM1020, indicating its adaptation ability and also the origin of this species from the external environment. Genes associated with the production of potent human carcinogens, such as aflatoxins and sterigmatocystin, commonly produced by *Aspergillus* species (5, 13) were detected, together with HC-toxin, an inhibitor of histone deacetylase commonly secreted by the filamentous fungus *Cochliobolus carbonum* (6, 12). The subsequent discovery of genes associated with resistance to the antifungal drugs fluconazole, fluoroocytosine, and benomyl, as well as methotrexate resistance (1, 2, 3), present an interesting opportunity to study molecular mechanisms that lead to antifungal drug resistance.

The draft genome of *D. eschscholzii* UM1020 represents the first reported genome sequence of a wood-inhabiting fungus isolated from a patient’s blood culture. The understanding of the *D. eschscholzii* UM1020 genome provides insights into the genetic potential of nonhuman endogenous fungal infection and delivers an excellent basis for the further study of human-fungal interactions.

Nucleotide sequence accession number. The nucleotide sequence of the *D. eschscholzii* genome has been deposited in DDBJ/EMBL/GenBank under accession no. AIID00000000.

ACKNOWLEDGMENTS

This study was supported by research grants UM.C/625/1/HIR/004 and UM.C/HIR/MOH/E/MED/02 from the University of Malaya. K.P.N., Y.F.N., and H.H. conceived the project and contributed to the writing and editing of the manuscript. T.S.S.-H., S.M.Y., C.L.C., and S.L.N. were responsible for isolation, identification, and DNA extraction. C.-C.H., K.-W.L., and W.-Y.Y. performed the genome sequencing and bioinformatics analysis.

REFERENCES

1. Ben-Yaacov R, Knoller S, Caldwell A, Becker JM, Koltin Y. 1994. *Candida albicans* gene encoding resistance to benomyl and methotrexate is a multidrug resistance gene. Antimicrob. Agents Chemother. 38:648–652.
2. Casalinuovo IA, Francesco PD, Garaci E. 2004. Fluconazole resistance in *Candida albicans*: a review of mechanisms. Eur. Rev. Med. Pharmacol. Sci. 8:69–77.
3. Ghannoum MA, Rice LB. 1999. Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin. Microbiol. Rev. 12:501–517.

Received 6 March 2012 Accepted 6 March 2012

Address correspondence to Kee Peng Ng, kpng@um.edu.my.

Copyright © 2012, American Society for Microbiology. All Rights Reserved.

doi:10.1128/EC.00074-12
4. Jones T, et al. 2004. The diploid genome sequence of Candida albicans. Proc. Natl. Acad. Sci. U. S. A. 101:7329–7334.
5. Kamei K, Watanabe A. 2005. Aspergillus mycotoxins and their effect on the host. Med. Mycol. 43:S95–S99.
6. Kamitani H, et al. 2001. Expression of 15-lipoxygenase-1 is regulated by histone acetylation in human colorectal carcinoma. Carcinogenesis 22:187–191.
7. Karnchanatat A, et al. 2007. Purification and biochemical characterization of an extracellular beta-glucosidase from the wood-decaying fungus Daldinia eschscholzii (Ehrenb.:Fr.) Rehm. FEMS Microbiol. Lett. 270:162–170.
8. Karnchanatat A, et al. 2008. A novel thermostable endoglucanase from wood-decaying fungus Daldinia eschscholzii (Ehrenb.:Fr.) Rehm. Enzyme Microb. Technol. 42:404–413.
9. Li R, Kristiansen K, Wang J. 2008. SOAP: short oligonucleotide alignment program. Bioinformatics 24:713–714.
10. Pain A, Hertz-Fowler C. 2008. Genomic adaptation: a fungal perspective. Nat. Rev. Microbiol. 6:572–573.
11. Ter-Hovhannisyan V, Lomsadze A, Chernoff Y, Borodovsky M. 2008. Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training. Genome Res. 18:1979–1990.
12. Walton JD. 2006. HÇ-toxin. Phytochemistry 67:1406–1413.
13. Williams JH, et al. 2004. Human aflatoxicosis in developing countries: a review of toxicology, exposure, potential health consequences, and interventions. Am. J. Clin. Nutr. 80:1106–1122.
14. Zhang YL, et al. 2011. Immunosuppressive polyketides from mantis-associated Daldinia eschscholzii. J. Am. Chem. Soc. 133:5931–5940.