Possible Signals of D^0-\bar{D}^0 Mixing and CP Violation

Zhi-zhong Xing

Department of Physics, Nagoya University, Chikusa-ku, Nagoya 464-01, Japan

Abstract

In view of the discovery potential associated with the future experiments of high-luminosity fixed target facilities, B-meson factories and \(\tau\)-charm factories, we highlight some typical signals of D^0-\bar{D}^0 mixing and CP violation which are likely to show up in neutral D-meson decays to the semileptonic final states, the hadronic CP eigenstates, the hadronic non-CP eigenstates and the CP-forbidden states. Both time-dependent and time-integrated measurements are discussed, and particular interest is paid to $D^0/\bar{D}^0 \to K_{S,L} + \pi^0$ and $D^0/\bar{D}^0 \to K^{\pm}\pi^{\mp}$ transitions.

*Talk given at the Second International Conference on B Physics and CP Violation, Honolulu, Hawaii, March 24 - 27, 1997 (to appear in the conference proceedings).
†Electronic address: xing@eken.phys.nagoya-u.ac.jp
1 Introduction

The study of D^0-\bar{D}^0 mixing and CP violation in neutral D-meson decays is not only complementary to our knowledge obtained and to be obtained from $K^0-\bar{K}^0$ and $B^0-\bar{B}^0$ systems, but also important for exploring underlying new physics that is out of reach of the standard model predictions. A large discovery potential associated with this topic is expected to exist in the future delicate experiments of high-luminosity fixed target facilities, B-meson factories, and τ-charm factories [1].

Without CP violation, the mass eigenstates of D^0 and \bar{D}^0 mesons can be written as

\[
|D_L\rangle = p|D^0\rangle + q|\bar{D}^0\rangle, \\
|D_H\rangle = p|D^0\rangle - q|\bar{D}^0\rangle,
\]

where p and q are complex parameters determined by off-diagonal elements of the D^0-\bar{D}^0 mixing Hamiltonian. The rate of D^0-\bar{D}^0 mixing is commonly measured by two well-defined dimensionless quantities,

\[
x_D \equiv \frac{\Delta m}{\Gamma}, \\
y_D \equiv \frac{\Delta \Gamma}{2\Gamma},
\]

which correspond to the mass and width differences of D_H and D_L (i.e., $\Delta m \equiv m_H - m_L$ and $\Delta \Gamma \equiv \Gamma_L - \Gamma_H$). The latest result from the Fermilab experiment E791 has set an upper bound on the rate of D^0-\bar{D}^0 mixing [2]:

\[
r_D \equiv \frac{x_D^2 + y_D^2}{2} < 5 \times 10^{-3}.
\]

In the standard model, the short-distance contribution to D^0-\bar{D}^0 mixing is via box diagrams and its magnitude is expected to be negligibly small. But different approaches to the long-distance effects in D^0-\bar{D}^0 mixing, which come mainly from the real intermediate states of SU(3) multiplets, have given dramatically different estimates for the magnitudes of x_D and y_D [3]. If calculations based on the standard model can reliably limit x_D and y_D to be well below 10^{-2}, then observation of r_D at the level of 10^{-4} or so will imply the existence of new physics [4]. On the other hand, improved experimental knowledge of r_D, in particular the relative magnitude of x_D and y_D, can definitely clarify the ambiguities in current theoretical estimates and shed some light on both the dynamics of D^0-\bar{D}^0 mixing and possible sources of new physics beyond the standard model.

In principle, there may be three different types of CP-violating signals in neutral D-meson transitions [3, 4]:

(a) CP violation in D^0-\bar{D}^0 mixing. This implies $|q/p| \neq 1$. In practice, we have the following CP-violating observable:

\[
\Delta_D \equiv \frac{|p|^4 - |q|^4}{|p|^4 + |q|^4}.
\]

It is expected that the magnitude of Δ_D should be at most of the order 10^{-3} in the standard model. However, a reliable estimation of Δ_D suffers from large long-distance uncertainties.

(b) CP violation in direct decay. For a decay mode $D^0 \to f$ and its CP-conjugate process $\bar{D}^0 \to \bar{f}$, this implies

\[
|\langle \bar{f}|H_{eff}|\bar{D}^0\rangle| \equiv \left| \sum_n \left[A_n e^{i(\delta_n - \phi_n)} \right] \right| \neq |\langle f|H_{eff}|D^0\rangle| \equiv \left| \sum_n \left[A_n e^{i(\delta_n + \phi_n)} \right] \right|,
\]

(1.5)
where a parametrization of the decay amplitudes with the weak (ϕ_n) and strong (δ_n) phases is also given. We see that $n \geq 2$, $\phi_m - \phi_n \neq 0$ or π and $\delta_m - \delta_n \neq 0$ or π are necessary conditions for the above direct CP violation.

(c) CP violation from the interplay of decay and mixing. Let us define two rephasing-invariant quantities

$$\lambda_f \equiv \frac{q}{p} \cdot \frac{\langle f | H_{\text{eff}} | D^0 \rangle}{\langle f | H_{\text{eff}} | D^0 \rangle}, \quad \bar{\lambda}_f \equiv \frac{p}{q} \cdot \frac{\langle \bar{f} | H_{\text{eff}} | D^0 \rangle}{\langle f | H_{\text{eff}} | D^0 \rangle},$$

(1.6)

where the hadronic states f and \bar{f} are common to the decay of D^0 (or \bar{D}^0). Even in the assumption of $|q/p| = 1$, indirect CP violation can appear if $\text{Im}\lambda_f - \text{Im}\bar{\lambda}_f \neq 0$.

(1.7)

Provided f is a CP eigenstate (i.e., $|\bar{f} = \pm |f$)) and the decay is dominated by a single weak phase, then we have $\bar{\lambda}_f = \lambda_f^*$.

CP violation at the percent level has not been observed in experiments $[7]$. But signals of $O(10^{-3})$ are expected in some neutral D decays within the standard model, and those of $O(10^{-2})$ cannot be ruled out in some channels beyond the standard model.

Subsequently we shall highlight some typical signals of $D^0-\bar{D}^0$ mixing and CP violation which are likely to show up in weak decays of neutral D mesons. A systematic and comprehensive study of this topic can be found in Ref. $[6]$ and references therein.

2 Typical signals of $D^0-\bar{D}^0$ mixing

For simplicity and instruction, we assume $\Delta_D = 0$ in the discussion of $D^0-\bar{D}^0$ mixing effects. This assumption should be safe both within and beyond the standard model, and it can be tested by detecting CP violation in the semileptonic decays of D^0 and \bar{D}^0 mesons.

A. Time-integrated measurements

For fixed target experiments or e^+e^- collisions at the $\Upsilon(4S)$ resonance, the produced D^0 and \bar{D}^0 mesons are incoherent. Knowledge of $D^0-\bar{D}^0$ mixing is expected to come from ratios of the wrong-sign to right-sign events of semileptonic D decays:

$$\frac{\mathcal{R}(D^0_{\text{phys}} \to K^+l^-\bar{\nu}_l)}{\mathcal{R}(D^0_{\text{phys}} \to K^-l^+\nu_l)} \approx \frac{\mathcal{R}(\bar{D}^0_{\text{phys}} \to K^-l^+\nu_l)}{\mathcal{R}(\bar{D}^0_{\text{phys}} \to K^+l^-\bar{\nu}_l)} \approx r_D$$

(2.1)

in the assumption made above. The Fermilab experiment E791 gives $r_D < 0.5\%$ at the 90% confidence level $[2]$, the best model-independent limit on $D^0-\bar{D}^0$ mixing today.

For a τ-charm factory running on the $\psi(3.77)$ resonance, coherent $D^0\bar{D}^0$ events with odd C-parity can be produced. If e^+e^- collisions take place at the $\psi(4.16)$ resonance, coherent $D^0\bar{D}^0$
Three types of joint decay modes are interesting for measuring D^0-\bar{D}^0 mixing:

\[(D^0_{\text{phys}} \bar{D}^0_{\text{phys}}) _C \longrightarrow (l^\pm X^\mp)_D (l^\pm X^\mp)_D,\]
\[(K^\pm \pi^\mp)_D (l^\pm X^\mp)_D,\]
\[(K^\pm \tau^\mp)_D (K^\pm \pi^\mp)_D,\]

where we have used the notations $X^+ \equiv K^+ \bar{\nu}_l$ and $X^- \equiv K^- \nu_l$. Note that $D^0 \to K^+\pi^-$ is a doubly Cabibbo-suppressed decay (DCSD). This effect is usually measured by the following ratio of decay rates:

\[R_{\text{DCSD}} \equiv \frac{|\langle K^+\pi^-|\mathcal{H}_{\text{eff}}|D^0\rangle|^2}{|\langle K^-\pi^+|\mathcal{H}_{\text{eff}}|D^0\rangle|^2}.\]

In the assumption of $r_D = 0$, $R_{\text{DCSD}} \approx 0.77\%$ and 0.68% are respectively obtained by CLEO II and Fermilab E791 experiments [8]. For our present purpose, we list the possible signals of D^0-\bar{D}^0 mixing associated with the joint decays (2.2) in Table 1, where $|q/p| = 1$ has been used and the interference terms T_{int}^\pm are given by

\[T_{\text{int}}^+ = \sqrt{R_{\text{DCSD}} \left[y_D \cos(\delta_{K\pi} - \phi_D) - x_D \sin(\delta_{K\pi} - \phi_D) \right]},\]
\[T_{\text{int}}^- = \sqrt{R_{\text{DCSD}} \left[y_D \cos(\delta_{K\pi} + \phi_D) - x_D \sin(\delta_{K\pi} + \phi_D) \right]}\]

with $\phi_D \equiv \text{arg}(q/p)$ and $\delta_{K\pi} \equiv \text{arg}(\langle K^+\pi^-|\mathcal{H}_{\text{eff}}|D^0\rangle/\langle K^-\pi^+|\mathcal{H}_{\text{eff}}|D^0\rangle)$. Here we have assumed $\delta_{K\pi}$ to be a pure strong phase shift by neglecting the tiny weak phase ($\sim 10^{-4}$) from the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements.

Table 1: D^0-\bar{D}^0 mixing and DCSD effects in three types of coherent D^0-\bar{D}^0 decays [9].

Observable	Signal (C-odd)	Signal (C-even)
$\mathcal{R}(l^\pm X^\mp; l^\pm X^\mp)_C/\mathcal{R}(l^\pm X^\mp; l^\pm X^\mp)_C$	r_D	$3r_D$
$\mathcal{R}(K^\pm \pi^\mp; l^\pm X^\mp)_C/\mathcal{R}(K^\pm \pi^\mp; l^\pm X^\mp)_C$	$R_{\text{DCSD}} + r_D$	$R_{\text{DCSD}} + 3r_D + 2T_{\text{int}}^\pm$
$\mathcal{R}(K^\pm \pi^\mp; K^\pm \pi^\mp)_C/\mathcal{R}(K^\pm \pi^\mp; K^\pm \pi^\mp)_C$	r_D	$4R_{\text{DCSD}} + 3r_D + 4T_{\text{int}}^\pm$

We observe that r_D, R_{DCSD} and T_{int}^\pm can all be determined from measurements of the above joint decays, only if the size of r_D is comparable with that of R_{DCSD}. In particular, the information about T_{int}^\pm is useful to give some hints on the relative size of x_D and y_D as well as the CP-violating phase ϕ_D. In the case that D^0-\bar{D}^0 mixing is negligibly small, we are able to isolate the DCSD rate R_{DCSD} solely on the $\psi(3.77)$ resonance.
Figure 1: Illustrative plot for changes of two D^0-\bar{D}^0 mixing observables with proper time t, where $x_D = 0.05$, $y_D = 0$, $\delta_{K\pi} = 0$ and $\phi_D = \pi/2$ have been taken.

B. Time-dependent measurements

Let us illustrate two examples about the time-dependent measurement of D^0-\bar{D}^0 mixing. The first is associated with the well-known DCSDs $D^0 \to K^+\pi^-$ and $\bar{D}^0 \to K^-\pi^+$ [10]. The time-dependent decay rates of these two modes, in comparison with the rates of their Cabibbo-allowed counterparts, read as follows:

\[
\frac{\mathcal{R}[D^0(t) \to K^+\pi^-]}{\mathcal{R}[D^0(t) \to K^-\pi^+]} = R_{DCSD} + T^+_\text{int}(\Gamma t) + \frac{r_D}{2} (\Gamma t)^2 ,
\]
\[
\frac{\mathcal{R}[\bar{D}^0(t) \to K^-\pi^+]}{\mathcal{R}[\bar{D}^0(t) \to K^+\pi^-]} = R_{DCSD} + T^-\text{int}(\Gamma t) + \frac{r_D}{2} (\Gamma t)^2 ,
\]

where $\Delta_D = 0$ has been assumed. Just for the purpose of illustration, we take $x_D = 0.05$, $y_D = 0$, $\delta_{K\pi} = 0$, $\phi_D = \pi/2$ and $R_{DCSD} = 0.7\%$ to plot changes of the above two observables with proper time t in Fig. 1. We see that nonvanishing D^0-\bar{D}^0 mixing can give rise to detectable time-evolution behaviors in $\mathcal{R}[D^0(t) \to K^+\pi^-]/\mathcal{R}[D^0(t) \to K^-\pi^+]$ and $\mathcal{R}[\bar{D}^0(t) \to K^-\pi^+]/\mathcal{R}[\bar{D}^0(t) \to K^+\pi^-]$, while the difference between these two ratios comes from CP violation hidden in the interference terms T^{\pm}_{int}.

Next we consider the D^0-\bar{D}^0 mixing signals in neutral D decays to CP eigenstates $K_S\pi^0$ and $K_L\pi^0$, where tiny CP-violating effects induced by D^0-\bar{D}^0 mixing (Δ_D) and K^0-\bar{K}^0 mixing (ϵ_K) are neglected. Since $D^0 \to K^0\pi^0$ is doubly Cabibbo-suppressed in contrast with the Cabibbo-allowed transition $D^0 \to \bar{K}^0\pi^0$, we define a ratio

\[
R'_{\text{DCSD}} \equiv \frac{\langle K^0\pi^0|\mathcal{H}_{\text{eff}}|D^0\rangle}{\langle K^0\pi^0|\mathcal{H}_{\text{eff}}|D^0\rangle}^2 ,
\]
Figure 2: Illustrative plot for changes of two D^0-\bar{D}^0 mixing observables with proper time t, where (a) $x_D = y_D = 0.05$, $\phi_D = \pi/4$ (corresponding to the solid curves) and (b) $x_D = 0.05$, $y_D = 0$, $\phi_D = \pi/2$ (corresponding to the dark solid curves) have been taken.

3 Typical signals of CP violation

It is expected that CP violation induced by D^0-\bar{D}^0 mixing (i.e., Δ_D) can manifest itself, apparently or indirectly, in all neutral D-meson decay modes. But this effect should be negligibly

$$\frac{\mathcal{R}[\bar{D}^0(t) \to K_L\pi^0]}{\mathcal{R}[D^0(t) \to K_L\pi^0]} = \frac{2 + 2(y_D \cos \phi_D - x_D \sin \phi_D) (\Gamma t) + y_D^2 (\Gamma t)^2}{2 + 2(y_D \cos \phi_D + x_D \sin \phi_D) (\Gamma t) + y_D^2 (\Gamma t)^2}.$$

Finally it is worth pointing out that a comparison of the interference terms in (2.7) with T_{int}^\pm in (2.4) can provide a model-independent constraint on the strong phase shift $\delta_{K\pi}$.
small in most cases. A constraint on Δ_D is possible through measuring the semileptonic decays of either incoherent or coherent D^0 and \bar{D}^0 mesons. For example,

$$\frac{\mathcal{R}(\bar{D}^0_{\text{phys}} \to K^{-} l^+ \nu_l) - \mathcal{R}(D^0_{\text{phys}} \to K^{+} l^- \bar{\nu}_l)}{\mathcal{R}(\bar{D}^0_{\text{phys}} \to K^{-} l^+ \nu_l) + \mathcal{R}(D^0_{\text{phys}} \to K^{+} l^- \bar{\nu}_l)} = \Delta_D \quad (3.1)$$

and

$$\frac{\mathcal{R}(K^{-} l^+ \nu_l; K^{-} l^+ \nu_l)_C - \mathcal{R}(K^{+} l^- \bar{\nu}_l; K^{+} l^- \bar{\nu}_l)_C}{\mathcal{R}(K^{-} l^+ \nu_l; K^{-} l^+ \nu_l)_C + \mathcal{R}(K^{+} l^- \bar{\nu}_l; K^{+} l^- \bar{\nu}_l)_C} = \Delta_D \quad (3.2)$$

for both C-odd and C-even cases. In the following we shall pay main attention to the direct and indirect CP asymmetries in some nonleptonic D transitions, where $\Delta_D = 0$ will be assumed.

A. Time-integrated measurements

For neutral D mesons decaying to a hadronic CP eigenstate f, the observables of direct CP violation in the decay amplitude and indirect CP violation from the interplay of decay and D^0-\bar{D}^0 mixing are expressed as

$$A_{\text{dir}} \equiv \frac{1 - |\rho_f|^2}{1 + |\rho_f|^2}, \quad A_{\text{ind}} \equiv \frac{-2 \text{Im}(\bar{\rho}^\phi \rho_f)}{1 + |\rho_f|^2}, \quad (3.3)$$

where $\rho_f \equiv \langle f | \mathcal{H}_{\text{eff}} | D^0 \rangle / \langle f | \mathcal{H}_{\text{eff}} | D^0 \rangle$. In the time-integrated measurements, the following CP asymmetries can be used to probe A_{dir} and A_{ind}:

(a) For incoherent decays of D^0 and \bar{D}^0 mesons, we have

$$\frac{\mathcal{R}(D^0_{\text{phys}} \to f) - \mathcal{R}(\bar{D}^0_{\text{phys}} \to f)}{\mathcal{R}(D^0_{\text{phys}} \to f) + \mathcal{R}(\bar{D}^0_{\text{phys}} \to f)} \approx A_{\text{dir}} + x_D A_{\text{ind}}. \quad (3.4)$$

Note that a cancellation between A_{dir} and $x_D A_{\text{ind}}$ may take place if they have the opposite signs, leading the above CP asymmetry to a negligibly small value.

(b) For coherent decays of $D^0 \bar{D}^0$ pairs at the $\psi(3.77)$ or $\psi(4.16)$ resonance, one can get

$$\frac{\mathcal{R}(l^{-} X^{+}; f)_C - \mathcal{R}(l^{+} X^{-}; f)_C}{\mathcal{R}(l^{-} X^{+}; f)_C + \mathcal{R}(l^{+} X^{-}; f)_C} \approx \begin{cases} A_{\text{dir}} & (C-\text{odd}) \\ A_{\text{dir}} + 2x_D A_{\text{ind}} & (C-\text{even}) \end{cases}. \quad (3.5)$$

Clearly it is possible to distinguish between direct and indirect CP-violating signals, if the magnitude of A_{dir} is comparable with that of $x_D A_{\text{ind}}$.

(c) At the $\psi(4.16)$ resonance there may be a type of CP violation arising from the CP-forbidden decay channels. For example,

$$\frac{\mathcal{R}(f; f)_{C-\text{odd}}}{\mathcal{R}(f; f)_{C-\text{even}}} \approx r_D \left(A_{\text{dir}}^2 + A_{\text{ind}}^2 \right), \quad (3.6)$$

where we have assumed $A_{\text{dir}} < 10\%$ and $A_{\text{ind}} < 10\%$. Such a CP-violating signal is in principle interesting, but measuring it might be very difficult due to the smallness of r_D.

A more special case is associated with $D^0/\bar{D}^0 \to K_{S,L} + \pi^0$, where CP violation in the decay amplitude or that from $K^0-\bar{K}^0$ mixing can be neglected. We find, on the $\psi(3.77)$ resonance (i.e., C-odd), that

$$\frac{\mathcal{R}(K_S \pi^0; K_S \pi^0)}{\mathcal{R}(K_S \pi^0; K_{L} \pi^0)} \approx \frac{\mathcal{R}(K_L \pi^0; K_L \pi^0)}{\mathcal{R}(K_S \pi^0; K_{L} \pi^0)} \approx r_D \sin^2 \phi_D. \quad (3.7)$$
If \(r_D \) were close to its experimental upper bound and \(\phi_D \) were enhanced by new physics, this signal could be measured at a \(\tau \)-charm factory \(^4\).

Now we turn our attention to \(CP \) violation in neutral \(D \) decays to non-\(CP \) eigenstates. Again \(D^0/\bar{D}^0 \to K^{\pm}\pi^{\mp} \) can be taken as a good example for illustration. It is expected that only indirect \(CP \) violation appears in these four decay modes. We denote the signals as follows:

\[
A_{K\pi} \equiv \sqrt{R_{DCSD}} \sin \phi_D \left(y_D \sin \delta_{K\pi} - x_D \cos \delta_{K\pi}\right),
\]

\[
A'_{K\pi} \equiv \sqrt{R_{DCSD}} \sin \phi_D \left(y_D \sin \delta_{K\pi} + x_D \cos \delta_{K\pi}\right),
\]

(3.8)

where \(\phi_D \) and \(\delta_{K\pi} \) have been defined before. If \(|y_D| \ll |x_D| \), as anticipated in some non-standard models \([4, 10]\), we arrive at \(A'_{K\pi} \approx -A_{K\pi} \). For incoherent \(D \)-meson decays, \(A_{K\pi} \) can be measured from the decay-rate asymmetry

\[
\frac{\mathcal{R}(D^0_{phys} \to K^{+}\pi^-) - \mathcal{R}(D^0_{phys} \to K^{-}\pi^+)}{\mathcal{R}(D^0_{phys} \to K^{+}\pi^-) + \mathcal{R}(D^0_{phys} \to K^{-}\pi^+)} \approx A_{K\pi}.
\]

(3.9)

\(CP \)-violating signals in coherent \(D^0/\bar{D}^0 \) decays to the final states \((l^\pm X^{\pm}_D), (K^{\pm}\pi^{\mp})_D\) and \((K^{\pm}\pi^{\mp})_D, (K^{\pm}\pi^{\mp})_D\) are listed in Table 2, where the \(C \)-odd case (associated with vanishing \(CP \) asymmetries) is not included.

Table 2: \(CP \)-violating effects in typical coherent \(D^0/\bar{D}^0 \) decays at the \(\psi(4.16) \) resonance \([6, 9]\):

Observable	Signal	\((C\text{-even}) \)
\(\mathcal{R}(l^+X^-;K^{+}\pi^-)_C - \mathcal{R}(l^-X^+;K^{-}\pi^+)_C \) \(\mathcal{R}(l^+X^-;K^{+}\pi^-)_C + \mathcal{R}(l^-X^+;K^{-}\pi^+)_C \)	2\(A_{K\pi} \)	
\(\mathcal{R}(l^-X^+;K^{+}\pi^-)_C - \mathcal{R}(l^+X^-;K^{-}\pi^+)_C \) \(\mathcal{R}(l^-X^+;K^{+}\pi^-)_C + \mathcal{R}(l^+X^-;K^{-}\pi^+)_C \)	4\(A'_{K\pi} \)	
\(\mathcal{R}(K^{+}\pi^-;K^{+}\pi^-)_C - \mathcal{R}(K^{-}\pi^+;K^{-}\pi^+)_C \) \(\mathcal{R}(K^{+}\pi^-;K^{+}\pi^-)_C + \mathcal{R}(K^{-}\pi^+;K^{-}\pi^+)_C \)	8\(A_{K\pi} \)	

We see from Table 2 that it is possible to measure (or constrain) \(A_{K\pi} \) and \(A'_{K\pi} \) on the \(\psi(4.16) \) resonance with \(C \)-even \(D^0/\bar{D}^0 \) events at a \(\tau \)-charm factory.

B. Time-dependent measurements

\(^4\)In contrast with (3.7), there may be a similar \(CP \)-violating signal for \(B_d \) decays to \(K_SX_c \) and \(K_LX_c \) on the \(\Upsilon(4S) \) resonance, where \(X_c = J/\psi, \psi', \eta_c, \eta_c' \), etc \([4]\). This signal is expected to be of \(O(10\%) \) due to the large \(B_d^0-B_d^0 \) mixing rate \((x_B \approx 0.7) \) and significant \(CP \)-violating phase \((\phi_B \sim 19^\circ - 70^\circ) \) in the standard model, thus it should be detectable at the forthcoming \(B \)-meson factories.
For coherent $D^0 \bar{D}^0$ decays at the $\psi(3.77)$ and $\psi(4.16)$ resonances, to measure the time dependence of a joint decay mode requires asymmetric e^+e^- collisions, like the case of an asymmetric B-meson factory. A brief discussion about this possibility can be found in Appendix A of Ref. [6]. For incoherent neutral-D-meson decays to a CP eigenstate f, one can get the time-dependent CP asymmetry

$$R[D^0(t) \to f] - R[\bar{D}^0(t) \to f] \approx A_{\text{dir}} + x_D A_{\text{ind}} (\Gamma t),$$

where A_{dir} and A_{ind} have been defined before.

Taking $D^0/\bar{D}^0 \to K_{S,L} + \pi^0$ for example, we obtain

$$\frac{R[D^0(t) \to K_S\pi^0] - R[\bar{D}^0(t) \to K_S\pi^0]}{R[D^0(t) \to K_S\pi^0] + R[\bar{D}^0(t) \to K_S\pi^0]} \approx -2\text{Re}\epsilon_K + x_D \sin \phi_D (\Gamma t),$$

$$\frac{R[D^0(t) \to K_L\pi^0] - R[\bar{D}^0(t) \to K_L\pi^0]}{R[D^0(t) \to K_L\pi^0] + R[\bar{D}^0(t) \to K_L\pi^0]} \approx -2\text{Re}\epsilon_K - x_D \sin \phi_D (\Gamma t)$$

in the assumption of $\Delta_D = 0$. Here $\text{Re}\epsilon_K \approx 1.6 \times 10^{-3}$, signifying the CP asymmetry induced by $K^0-\bar{K}^0$ mixing, cannot be neglected [12]. Even if the $x_D \sin \phi_D$ term is vanishingly small, the effect of $\text{Re}\epsilon_K$ is still detectable from the above decay modes. For the purpose of illustration, we take $x_D = 0.01$ and $\phi_D = 0.1$ to plot changes of the CP asymmetries (3.11) with proper time t in Fig. 3.

Indirect CP violation in neutral-D-meson decays to hadronic non-CP eigenstates can be illustrated by taking $D^0/\bar{D}^0 \to K^\pm \pi^\mp$ for example. Assuming $\Delta_D = 0$, we have

$$\frac{R[\bar{D}^0(t) \to K^+\pi^-] - R[D^0(t) \to K^-\pi^+]}{R[\bar{D}^0(t) \to K^+\pi^-] + R[D^0(t) \to K^-\pi^+]} \approx A_{K\pi} (\Gamma t),$$

Figure 3: Illustrative plot for changes of CP-violating asymmetries with proper time t, where $x_D = 0.01$ and $\phi_D = 0.1$ have been taken.
Figure 4: Illustrative plot for changes of CP-violating asymmetries with proper time t, where $x_D = 0.05$, $y_D = 0$, $\delta_{K\pi} = 0$ and $\phi_D = \pi/2$ have been taken.

where $A_{K\pi}$ has been given in Eq. (3.8). Another CP asymmetry reads

$$\frac{\mathcal{R}[D^0(t) \to K^+\pi^-] - \mathcal{R}[\bar{D}^0(t) \to K^-\pi^+]}{\mathcal{R}[D^0(t) \to K^+\pi^-] + \mathcal{R}[D^0(t) \to K^-\pi^+]} \approx \frac{A'_{K\pi}}{N_{K\pi}} (\Gamma t)$$

(3.13)

with

$$N_{K\pi} \equiv R_{DCSD} + \frac{T^+_\text{int} + T^-_\text{int}}{2} (\Gamma t) + \frac{r_D}{2} (\Gamma t)^2.$$

(3.14)

Here $A'_{K\pi}$ and T^\pm_int have been defined in Eqs. (3.8) and (2.4), respectively. Obviously the asymmetry (3.13) may be large enough or even maximum in magnitude, due to the smallness of $N_{K\pi}$ suppressed by DCSD and mixing effects. To give one a numerical feeling, we plot changes of the CP asymmetries (3.12) and (3.13) with proper time t in Fig. 4 by taking $x_D = 0.05$, $y_D = 0$, $\phi_D = \pi/2$, $\delta_{K\pi} = 0$ and $R_{DCSD} = 0.7\%$.

4 Conclusion

We have higlighted some possible signals of D^0-\bar{D}^0 mixing and CP violation in neutral D-meson decays. Quantitatively, it remains difficult (even impossible) to give reliable predictions for most of such signals. Some progress can certainly be made in this topic if the future experiments are able to probe the D^0-\bar{D}^0 mixing rate r_D down to the 10^{-4} level and to search for CP-violating asymmetries down to the 10^{-3} level. The emergence of new physics in the charm sector would offer a reward for all sophisticated experimental efforts which are underway today.

Acknowledgments
I would like to thank S. Pakvasa for inviting me to participate in this nice conference. I am grateful to A.I. Sanda for his encouragement and support, which make my participation realizable. This work was supported by the Japan Society for the Promotion of Science.
References

[1] See, e.g., Proceedings of the Workshop on the Future of High Sensitivity Charm Experiments, Batavia, Illinois, 1994, edited by D.M. Kaplan and S. Kwan (Fermilab Report No. 94/190, Batavia, 1994); Proceedings of the Workshop on the Tau-Charm Factory in the Era of B-Factory and CESR, Stanford, California, 1994, edited by L.V. Beers and M.L. Perl (SLAC Report No. 451, Stanford, 1994); T. Liu, Ph.D. Thesis, Harvard University, Report No. HUHEPL-20 (1995).

[2] E791 Collaboration, E.M. Aitala et al., Phys. Rev. Lett. 77 (1996) 2384; M. Purohit, in these proceedings.

[3] E. Golowich, Report No. hep-ph/9701225 (invited talk given at the 4th KEK Topical Conference on Flavor Physics, 29 - 31 October, 1996), to be published in Nucl. Phys. B (Proc. Suppl.).

[4] E. Golowich, in these proceedings.

[5] I.I. Bigi and A.I. Sanda, Phys. Lett. B 171 (1986) 320; I.I. Bigi, in Proceedings of the Tau-Charm Factory Workshop, Stanford, California, 1989, edited by L.V. Beers (SLAC Report No. 343, Stanford, 1989), p. 169.

[6] Z.Z. Xing, Phys. Rev. D 55 (1997) 196.

[7] CLEO Collaboration, J. Bartelt et al., Phys. Rev. D 52 (1995) 4860; E687 Collaboration, P.L. Frabetti et al., Phys. Rev. D 50 (1994) R2953.

[8] CLEO Collaboration, D. Cinabro et al., Phys. Rev. Lett. 72 (1994) 406; E791 Collaboration, E.M. Aitala et al., Report No. hep-ph/9608018 (1996).

[9] Z.Z. Xing, Phys. Lett. B 372 (1996) 317.

[10] T.E. Browder and S. Pakvasa, Phys. Lett. B 383 (1996) 475; L. Wolfenstein, Phys. Rev. Lett. 75 (1995) 2460; G. Blaylock, A. Seiden, and Y. Nir, Phys. Lett. B 355 (1995) 555.

[11] Z.Z. Xing, Report No. DPNU-97-16 (invited talk given at the 1997 Shizuoka Workshop on Masses and Mixings of Quarks and Leptons, Shizuoka, March 19 - 21, 1997), to be published in the workshop proceedings; Z.Z. Xing, Phys. Rev. D 53 (1996) 204.

[12] Z.Z. Xing, Phys. Lett. B 353 (1995) 313.