ON THE ABELIAN GROUPS WHICH OCCUR AS
GALOIS COHOMOLOGY GROUPS OF GLOBAL UNIT
GROUPS

MANABU OZAKI

1. Introduction

For any number field K (number field means a finite extension fields of \mathbb{Q} in what follows), we denote by E_K the unit group of K. If K/k is a Galois extension of number fields, then we define the Galois cohomology group $\hat{H}^i(K/k, E_K) := H^i(\text{Gal}(K/k), E_K)$ for $i \in \mathbb{Z}$. Here, $H^i(G, M)$ stands for the i-th Tate cohomology group for a finite group G and a G-module M.

We are interested in Galois cohomology groups $\hat{H}^i(K/k, E_K)$ for many reasons. For example, when K/k is an unramified extension, such cohomology groups are directly related to the capitulation of ideals, which is one of the major themes of algebraic number theory; If K/k is unramified, then we have

\begin{align*}
H^1(K/k, E_K) &\simeq \ker(j_{K/k} : \text{Cl}_k \longrightarrow \text{Cl}_K^{\text{Gal}(K/k)}), \\
H^2(K/k, E_K) &\simeq \text{coker}(j_{K/k} : \text{Cl}_k \longrightarrow \text{Cl}_K^{\text{Gal}(K/k)}),
\end{align*}

where $j_{K/k}$ is the natural map from the class group Cl_k of k to that Cl_K of K induced by the inclusion $k \subseteq K$.

In the present paper, we shall investigate the following problem:

Problem. For a finite group G and $i \in \mathbb{Z}$, we define

$\mathcal{H}^i(G) := \{[\hat{H}^i(K/k, E_K)] \mid K/k: \text{unramified } G\text{-ext.’n. of number fields}\},$

where $[A]$ denotes the isomorphism class of A for any abelian group A. What is $\mathcal{H}^i(G)$?

We first note that a simple observation using Dirichlet’s unit theorem and properties of Tate cohomology groups shows

$\mathcal{H}^i(G) \subseteq \mathcal{A}(\#G),$

2010 Mathematics Subject Classification. 11R34
This research is partially supported by JSPS, the Grant-in-Aid for Scientific Research (C) 21540030, and by Waseda University, the Grant for Special Research Projects 2012A-030.
where $\mathcal{A}(n)$ stands for the set of all the isomorphism classes of the finite abelian groups killed by n for $n \in \mathbb{Z}$.

The case $i = -1$ and $G = \mathbb{Z}/p$, p being a prime number, is the most classical situation, which was first considered by D. Hilbert [7]. He showed $[0] \not\in \mathcal{H}^{-1}(\mathbb{Z}/p)$ in [7, Satz 92], which is equivalent to $\ker j_{K/k} \neq 0$ for any unramified \mathbb{Z}/p-extension K/k of number fields by (1) (Note that $\hat{H}^{-1}(G, M) \simeq \hat{H}^{1}(G, M)$ if G is cyclic). This latter claim is stated in [7, Satz 94].

We will reduce our problem to a problem of group theory. At present, this reduction has been completely done only in the case where G is a finite p-group, p being a prime number. Then, in the case where G is a finite p-group, we will determine $\mathcal{H}^i(G)$ for $i = 0, 1, 2, \text{and} 4$. We owe determination of $\mathcal{H}^1(G)$ to a series of extensive works by K. W. Gruenberg and A. Weiss [4], [5], [6].

2. Description of $\hat{H}^i(K/k, E_K)$

We recall the notion of a splitting module to describe cohomology groups of unit groups in terms of structures of certain Galois groups.

Let

$$
(\varepsilon) \quad 1 \longrightarrow A \longrightarrow G \longrightarrow G \longrightarrow 1
$$

be a group extension of finite groups with abelian kernel A. We denote by $\gamma_\varepsilon \in H^2(G, A)$ the cohomology class associated to (ε). Define the G-module M_ε so that

$$
M_\varepsilon = A \oplus \bigoplus_{1 \neq \tau \in G} \mathbb{Z}b_\tau
$$

as \mathbb{Z}-modules. Here $\{b_\tau\}$ is a free \mathbb{Z}-basis, and that G-action on M_ε is given by the natural G-module structure of A defined by (ε) and

$$
\sigma b_\tau = b_{\sigma \tau} - b_\sigma + f(\sigma, \tau)
$$

for $\sigma, \tau \in G$, where f is a 2-cocycle in the cohomology class γ_ε and we set $b_1 := f(1, 1) \in A$. We call M_ε the splitting module associated to (ε), and note that the G-module isomorphism class of M_ε is independent of the choice of a 2-cocycle f of the cohomology class γ_ε.

Then we derive from group extension (ε) the exact sequence of G-modules

$$
(2) \quad (\varepsilon^*) \quad 0 \longrightarrow A \longrightarrow M_\varepsilon \longrightarrow I_G \longrightarrow 0,
$$

where I_G denotes the augmentation ideal of $\mathbb{Z}[G]$ and the map $M_\varepsilon \longrightarrow I_G$ is given by $b_\sigma \mapsto \sigma - 1$ ($\sigma \in G$).
Conversely, from exact sequence of G-modules
\[0 \to A \to M \to I_G \to 0, \]
we get the group extension (modulo isomorphisms as group extensions of G by A)
\[(e^1) \quad 1 \to A \to G \to G \to 1 \]
associated to the cohomology class $[f] \in H^2(G, A)$ of the cocycle f defined by
\[f(\sigma, \tau) := \sigma s(\tau - 1) - s(\sigma \tau - 1) + s(\sigma - 1) \in A \quad (\sigma, \tau \in G), \]
where s is a fixed section of φ as \mathbb{Z}-modules. Then we find that
\[(e^*1) \simeq (e), \quad (e^1) \simeq (e). \]
as group extensions of G by A and G-module extensions of I_G by A, respectively.

Now we will describe the Galois cohomology groups $\hat{H}^i(K/k, E_K)$ for unramified Galois extensions K/k in terms of group extensions naturally arising from certain towers of unramified Galois extensions.

Let K/k be an unramified Galois extension of number fields, and we denote by H_K the maximal unramified abelian extension of K. Put $G := \text{Gal}(K/k)$, $\mathcal{G} := \text{Gal}(H_K/k)$, and $A := \text{Gal}(H_K/K)$. Then we have the natural group extension
\[(\varepsilon_{K/k}) \quad 1 \to A \to G \to G \to 1. \]

For any finite group G, we define $\mathcal{M}(G)$ to be the class of all the G-modules M fitting into an exact sequence $0 \to B \to M \to I_G \to 0$ with a finite G-module B, and put
\[\mathcal{X}^i(G) := \{ [\hat{H}^i(G, M)] | M \in \mathcal{M}(G) \}. \]

Proposition 1. For any unramified Galois extension K/k of number fields with $G = \text{Gal}(K/k)$ and $i \in \mathbb{Z}$, we have
\[\hat{H}^i(K/k, E_K) \simeq \hat{H}^{i-2}(G, M_{(\varepsilon_{K/k})}). \]
Hence $\mathcal{H}^i(G) \subseteq \mathcal{X}^{i-2}(G)$ holds.

Proof. In fact, this proposition follows from a special case of Tate sequence given by Ritter-Weiss [11]. However we will give a direct proof, which is based on essentially same method as theirs specialized to the most simple situation, namely, the Galois extension considered is unramified.
Let J_K, U_K, C_K, and Cl_K be the idele group, the unit idele group, the idele class group, and the ideal class group of K, respectively. We will observe the following exact commutative diagram:

\[
\begin{array}{ccccccccc}
0 & 0 & \downarrow & \downarrow & U_K/E_K & \sim & H & \downarrow & \downarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow & \\
0 & C_K & \longrightarrow & M(\mathfrak{v}) & \longrightarrow & I_G & \longrightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow & \\
0 & \text{Cl}_K & \longrightarrow & M(\varepsilon) & \longrightarrow & I_G & \longrightarrow & 0 \\
\end{array}
\]

where (\mathfrak{v}) is the group extension

\[1 \rightarrow C_K \rightarrow \mathfrak{g} \rightarrow G \rightarrow 1\]

associated to the fundamental class $c_{K/k} \in H^2(G, C_K)$, and (ε) is the group extension

\[1 \rightarrow \text{Cl}_K \rightarrow \mathfrak{g} \rightarrow G \rightarrow 1\]

associated to the image of $c_{K/k}$ under the natural map $H^2(G, C_K) \rightarrow H^2(G, \text{Cl}_K)$. It follows from Shafarevich's theorem ([1, Chapter 15, Theorem 6]) that the group extensions (ε) and $(\varepsilon_{K/k})$ of G are isomorphic via a morphism inducing the Artin map $\text{Cl}_K \simeq \text{Gal}(H_K/K)$, hence $M(\varepsilon) \simeq M(\varepsilon_{K/k})$ as G-modules. The G-module U_K is cohomologically trivial since K/k is unramified, and we know $M(\mathfrak{v})$ is also cohomologically trivial (see, for example, [9, Theorem (3.1.4)]). Therefore we have

\[
\hat{H}^i(G, E_K) \simeq \hat{H}^{i-1}(G, U_K/E_K) \simeq \hat{H}^{i-1}(G, H) \\
\simeq \hat{H}^{i-2}(G, M(\varepsilon)) \simeq \hat{H}^{i-2}(G, M(\varepsilon_{K/k})) \in \mathcal{X}^{i-2}(G),
\]

since $M(\varepsilon_{K/k}) \in \mathcal{M}(G)$.

\[\square\]
We make a remark on the case where G is a p-group. In this case, we naturally define the p-quotient of a group extension

$$(\varepsilon) \quad 1 \rightarrow A \rightarrow \mathcal{G} \rightarrow G \rightarrow 1$$

with finite abelian A to be

$$(\varepsilon)_p \quad 1 \rightarrow A \otimes_{\mathbb{Z}} \mathbb{Z}_p \rightarrow \mathcal{G}_p \rightarrow G \rightarrow 1,$$

where \mathcal{G}_p is the maximal p-quotient of \mathcal{G}. Under this situation, we see that $\hat{H}^i(G, M(\varepsilon)) \simeq \hat{H}^i(G, M(\varepsilon)_p)$. Hence it is enough for our problem to take account of only the extensions of the forms

$$1 \rightarrow A \rightarrow \mathcal{G} \rightarrow G \rightarrow 1$$

and

$$0 \rightarrow A \rightarrow M \rightarrow I_G \rightarrow 0$$

with $\#A$ being a power of p if G is a p-group.

3. Reduction to group theory

In the case where G is a p-group, we will reduce our problem in Introduction to a problem of group theory by using the following fact:

Theorem 1 ([II]). For any finite p-group \mathcal{G}, there exists a number field k such that

$$\text{Gal}(L_p(k)/k) \simeq \mathcal{G},$$

where $L_p(k)$ stands for the maximal unramified p-extension of k.

We can immediately derive the following from the above theorem:

Corollary 1. For any given group extension of finite p-groups

$$(\varepsilon) \quad 1 \rightarrow A \rightarrow \mathcal{G} \rightarrow G \rightarrow 1$$

with abelian A, there exists an unramified G-extension K/k such that $(\varepsilon_{K/k})_p \simeq (\varepsilon)$, namely, there exists a group isomorphism $\alpha : \mathcal{G} \simeq \text{Gal}(L_p(K)/k)$ such that

$$1 \rightarrow \text{Gal}(L_p(K)/K) \rightarrow \text{Gal}(L_p(K)/k) \rightarrow \text{Gal}(K/k) \rightarrow 1$$

is an exact commutative diagram, where β and γ are the isomorphisms induced by α.

Theorem 2. For any finite p-group G, we have $\mathcal{H}^i(G) = \mathfrak{X}^{i-2}(G)$ for $i \in \mathbb{Z}$.
Proof. It follows from Proposition 1 that $\mathcal{H}^i(G) \subseteq \mathfrak{X}^{i-2}(G)$.

Conversely, let $[\hat{H}^{i-2}(G, M)] \in \mathfrak{X}^{i-2}(G)$ ($M \in \mathcal{M}(G)$) be any element. Then there exists a group extension $\langle \varepsilon \rangle$ such that $M \simeq M_{\langle \varepsilon \rangle}$ by (3). We derive from Corollary 1 that there exists an unramified G-extension K/k of number fields such that $(\varepsilon)_p \simeq (\varepsilon_{K/k})_p$. Hence, by using Proposition 1 and the remark after it, we have

$$[\hat{H}^{i-2}(G, M)] = [\hat{H}^{i-2}(G, M_{\langle \varepsilon \rangle_k})] = [\hat{H}^{i}(K/k, E_K)] \in \mathcal{H}^i(G).$$

Thanks to this theorem, our problem is completely reduced to a purely group theoretic problem in the case where G is a finite p-group.

It is highly interesting and difficult to search whether $\mathcal{H}^i(G) = \mathfrak{X}^{i-2}(G)$ holds for general finite groups G.

4. Cases $i = 2$ and $i = 4$.

Now we will investigate our problem for finite p-groups G by using Theorem 2. We start with rather easy cases:

Theorem 3. For any finite p-group G, we have

$$\mathcal{H}^2(G) = \mathcal{H}^4(G) = \mathcal{A}(\#G).$$

Proof. We first show that $\mathcal{H}^2(G) = \mathcal{A}(\#G)$. For any $[X] \in \mathcal{A}(\#G)$, let $M := X \oplus I_G \in \mathcal{M}(G)$, where we make G act on X trivially. Then we have $[X] = [\hat{H}^0(G, M)] \in \mathfrak{X}^0(G) = \mathcal{H}^2(G)$ by Theorem 2 because $\hat{H}^0(G, I_G) = 0$ and $\hat{H}^0(G, X) \simeq X$. This shows $\mathcal{A}(\#G) \subseteq \mathcal{H}^2(G)$. Converse inclusion clearly holds.

Next we prove $\mathcal{H}^4(G) = \mathcal{A}(\#G)$. For any $[X] \in \mathcal{A}(\#G)$, we view X as a G-module with trivial G-action as above. We choose a surjection $(\mathbb{Z}/\#G)[G]^{\oplus r} \to X$ as G-modules and get an exact sequence

$$0 \to Y \to (\mathbb{Z}/\#G)[G]^{\oplus r} \to X \to 0$$

of G-modules. By the same manner, we get a exact sequence

$$0 \to Z \to (\mathbb{Z}/\#G)[G]^{\oplus s} \to Y \to 0$$

of G-modules for some $s \geq 0$ and finite G-module Z. Then we have $Z \oplus I_G \in \mathcal{M}(G)$ and

$$\hat{H}^2(G, Z \oplus I_G) \simeq \hat{H}^2(G, Z) \simeq \hat{H}^1(G, Y) \simeq \hat{H}^0(G, X) \simeq X$$

because $H^2(G, I_G) = 0$. Thus we have shown $[X] \in \mathfrak{X}^2(G) = \mathcal{H}^4(G)$ by Theorem 2. This implies our claim. \qed

5. Case \(i = 1 \).

The case \(i = 1 \) is the most classical situation and many group theoretic approaches have been available:

The following theorem is one of the most striking results given after the principal ideal theorem was proved by Frutwängler:

Theorem 4 (H. Suzuki [12]). For any finite abelian group of order \(n \), we have

\[
\mathfrak{X}^{-1}(G) \subseteq \{ [X] \in \mathcal{A}(n) \mid n \mid \#X \}.
\]

□

Corollary 2. If \(K/k \) is an unramified abelian extension, then we have

\[
[K : k] \mid \# \ker(\text{Cl}_k \to \text{Cl}_K).
\]

\[
\text{Proof. } [\ker(\text{Cl}_k \to \text{Cl}_K)] = [\hat{H}^1(K/k, E_K)] \in \mathcal{H}^1(G) \subseteq \mathfrak{X}^{-1}(G) \subseteq \{ [X] \in \mathcal{A}(n) \mid n \mid \#X \} \text{ by Proposition 1 and Theorem 4. } \]

We note that this corollary implies both of Hilbert’s Satz 94 and the principal ideal theorem. In fact, Suzuki’s theorem can be strengthened as follows:

Theorem 5 ((K.W.Gruenberg–A.Weiss [4]). For any abelian group \(G \), we have

\[
\mathfrak{X}^{-1}(G) = \{ [X] \in \mathcal{A}(\#G) \mid \#G \mid \#X \}.
\]

□

Thanks to this theorem and Theorem 2, we obtain;

Theorem 6. For any finite abelian \(p \)-group \(G \), we have

\[
\mathcal{H}^1(G) = \{ [X] \in \mathcal{A}(\#G) \mid \#G \mid \#X \}.
\]

□

For any given finite group \(G \), Gruenberg-Weiss [5] showed that there exists an effectively computable finite subset \(\mathfrak{X}_{\text{min}}^{-1}(G) \) of \(\mathfrak{X}^{-1}(G) \) such that

\[
\mathfrak{X}^{-1}(G) = \{ [X] \in \mathcal{A}(\#G) \mid [X] \text{ has a quotient in } \mathfrak{X}_{\text{min}}^{-1}(G) \}.
\]

Therefore we can determine \(\mathcal{H}^1(G) \) effectively when \(G \) is a finite \(p \)-group by using Theorem 2 and the work of Gruenberg and Weiss.

6. Case \(i = 0 \).

In this section, we will show;

Theorem 7. For any finite \(p \)-group \(G \), we have

\[
\mathcal{H}^0(G) = \mathcal{A}(\#G).
\]
We reduce the above theorem as follows:

Lemma 1. If \([0] \in \mathfrak{X}^{-2}(G)\) for a finite \(p\)-group \(G\), then we have \(\mathcal{H}^0(G) = \mathcal{A}(\#G)\).

Proof. It is sufficient to show \(\mathcal{A}(\#G) \subseteq \mathcal{H}^0(G)\). For any \([X] \in \mathcal{A}(\#G)\), we view \(X\) as a \(G\)-module with trivial \(G\)-action and choose an embedding

\[
X \hookrightarrow (\mathbb{Z}/\#G)^{\oplus r} \cong ((\mathbb{Z}/\#G)[G]^{\oplus r})^G \subseteq (\mathbb{Z}/\#G)[G]^{\oplus r}
\]

as \(G\)-modules for some \(r \geq 0\). Then we get the exact sequence

\[
0 \rightarrow X \rightarrow (\mathbb{Z}/\#G)[G]^{\oplus r} \rightarrow Y \rightarrow 0
\]

of \(G\)-modules with finite \(Y\).

Our assumption implies that there is a exact sequence of \(G\)-modules

\[
0 \rightarrow Z \rightarrow M \rightarrow I_G \rightarrow 0
\]

such that \(\#Z < \infty\) and \(\hat{H}^{-2}(G, M) = 0\). Then we have the exact sequence of \(G\)-modules

\[
0 \rightarrow Z \oplus Y \rightarrow M \oplus Y \rightarrow I_G \rightarrow 0,
\]

which means \(M \oplus Y \in \mathcal{M}(G)\), and it follows from (4) that

\[
\hat{H}^{-2}(G, M \oplus Y) \cong \hat{H}^{-2}(G, Y) \cong \hat{H}^{-1}(G, X) \cong X.
\]

This implies \([X] \in \mathfrak{X}^{-2}(G) = \mathcal{H}^0(G)\) by Theorem 2. Thus we have shown \(\mathcal{A}(\#G) \subseteq \mathcal{H}^0(G)\). \(\square\)

To show \([0] \in \mathfrak{X}^{-2}(G)\), we give the following purely group theoretic proposition:

Proposition 2. (a) For any given finite \(p\)-group \(G\), there exists a surjective group homomorphism \(\pi : \overline{G} \rightarrow G\) such that \(\overline{G}\) is a pro-\(p\)-FAB group (namely, every open subgroup of \(\overline{G}\) has the finite abelianization) with \(H_2(\overline{G}, \mathbb{Z}_p) = 0\).

(b) Let \(\pi : \overline{G} \rightarrow G\) be any surjective homomorphism with properties stated in (a), and put \(N = \ker \pi\). Then, for group extension

\[
(\varepsilon) \quad 1 \rightarrow N/(N, N) \rightarrow \overline{G}/(N, N) \xrightarrow{\pi} G \rightarrow 1,
\]

\(\pi\) being the map induced by \(\pi\), we have \(\hat{H}^{-2}(G, M_(\varepsilon)) = 0\), especially, \([0] \in \mathfrak{X}^{-2}(G)\).

Though Proposition 2 seems purely group theoretic, our proof of it employs largely number theory.
We recall two facts from number theory: We define $G_{\mathbb{Q},S}(p)$ to be the Galois group of the maximal p-extension over \mathbb{Q} unramified outside S for any set S of primes of \mathbb{Q}.

Theorem 8. For any finite p-group G, there are a finite set S of primes away from p and a surjection $G_{\mathbb{Q},S}(p) \twoheadrightarrow G$.

Proof. This theorem follows from Shafarevich’s theorem (see [9, Chapter 9, Section 6]) for inverse Galois problem on solvable extensions over number fields, noting that we can make the prime p unramified in a constructed G-extension over \mathbb{Q}. \square

Theorem 9. ([3, Theorem 4.9]) Let S be a finite set of primes of \mathbb{Q}. We assume that the archimedean prime is contained in S if $p = 2$. Then we have $H_2(G_{\mathbb{Q},S}(p), \mathbb{Z}_p) = 0$. \square

Part (a) follows immediately from the above two theorems because $G_{\mathbb{Q},S}(p)$ is a pro-p-FAB group if $p \not\in S$.

To prove part (b), we further recall the following facts from number theory:

Theorem 10 (Folk [2]). Let K/k be a finite p-extension of number fields of finite degree, and we denote by $H_{K,p}/K$ the maximal unramified abelian p-extension. Then we have $E_k \cap N_{H_{K,p}/k} (J_{K,p}) \subseteq N_{K/k}(E_K)$. \square

Lemma 2. Let L/M and M/k be unramified p-extensions of number fields of finite degree such that L/k is normal. Then we have the commutative diagram

\[
\begin{array}{ccc}
E_k/(E_k \cap N_{L/k}(L^\times)) & \xleftarrow{\text{nat.proj.}} & H_2(L/k, \mathbb{Z}_p) \\
\downarrow & & \downarrow \text{co-inf} \\
E_k/(E_k \cap N_{M/k}(M^\times)) & \subseteq & H_2(M/k, \mathbb{Z}_p),
\end{array}
\]

where the right vertical map is the co-inflation map, namely, the map induced by the natural projection $\text{Gal}(L/k) \twoheadrightarrow \text{Gal}(M/k)$ and the identity map on \mathbb{Z}_p.

Proof. Since L/k is unramified, the theory of number knot gives a certain canonical isomorphism

$H_2(L/k, \mathbb{Z}_p) \simeq (k^\times \cap N_{L/k}(J_L)) / N_{L/k}(L^\times)$

(see [13, Section 11.3]) and we naturally embed $E_k/(E_k \cap N_{L/k}(L^\times))$ into the right hand term of the above isomorphism. Thus we get the
upper horizontal map. We also obtain the lower horizontal map similarly. The commutativity follows from Horie-Horie [8, p.618, diagram (3)]. □

Proof of Proposition 2 (b). Let \(\pi : G \to G \) and \(N = \ker \pi \) be as in the statement of Proposition 2. The fact \(H_2(\mathcal{G}, \mathbb{Z}_p) = 0 \) implies that there exists an open normal subgroup \(H \) of \(G \) such that \(H \subseteq (N, N) \) and \(H_2(\mathcal{G}/H, \mathbb{Z}_p) \xrightarrow{\text{co-inf}} H_2(\mathcal{G}/(N, N), \mathbb{Z}_p) \) is the zero map. Choose \(k \) such that there exists an isomorphism \(\delta : \text{Gal}(L_p(k)/k) \simeq G/H \) by using Theorem 1, and define the tower of number fields \(k \subseteq K \subseteq M \subseteq L := L_p(k) \) so that \(\delta \) induces \(\text{Gal}(L/M) \simeq (N, N)/H \) and \(\text{Gal}(L/K) \simeq N/H \). Then we see that \(\delta \) induces \(\text{Gal}(K/k) \simeq \mathcal{G}/N \simeq G \) and \(M = H_{K,p} \), and by using Lemma 2 we get the commutative diagram

\[
\begin{array}{c}
E_k/(E_k \cap N_{L/k}(L^\times)) \xrightarrow{\text{nat.proj.}} H_2(\mathcal{G}/H, \mathbb{Z}_p) \\
E_k/(E_k \cap N_{H_{K,p}/k}(H_{K,p}^\times)) \xrightarrow{\text{co-inf}} H_2(\mathcal{G}/(N, N), \mathbb{Z}_p).
\end{array}
\]

Because the right vertical map in the above diagram is the zero map from our assumption, we find that \(E_k/(E_k \cap N_{H_{K,p}/k}(H_{K,p}^\times)) = 0 \), which implies \(E_k \subseteq N_{K/K}(E_K) \) by Theorem 10. Therefore we have \(\delta^{-1}(G, M_{(\varepsilon)}) \simeq \hat{H}^0(K/k, E_K) = 0 \) by Proposition 1, where \((\varepsilon) \) is the group extension \(1 \to N/(N, N) \to \mathcal{G}/(N, N) \xrightarrow{\varepsilon} G \to 1 \). □

Thus Theorem 7 follows from Lemma 1 and Proposition 2. □

References

[1] E. Artin, J. Tate, Class field theory (Second edition), Advanced Book Classics. Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, 1990.
[2] D. Folk, When are global units norms of units?, Acta Arith. 76 (1996), no. 2, 145–147.
[3] A. Fröhlich, Central extensions, Galois groups, and ideal class groups of number fields, Contemporary Mathematics 24, American Mathematical Society, Providence, RI, 1983.
[4] K. W. Gruenberg, A. Weiss, Capitulation and transfer kernels, J. Theor. Nombres Bordeaux 12 (2000), no. 1, 219–226.
[5] K. W. Gruenberg, A. Weiss, Transfer kernels for finite groups, J. Algebra 300 (2006), no. 1, 35–43.
[6] K. W. Gruenberg, A. Weiss, Transfer kernels for finite groups II, J. Algebra 326 (2011), no. 1, 122–129.
[7] D. Hilbert, Die Theorie der algebraischen Zahlkörper (Zahlbericht), Jahresbericht der Deutschen Mathematiker-Vereinigung 4 (1897), 175–546.
[8] K. Horie, M. Horie, Deflation and residualization for class formation, J. Algebra 245 (2001), no. 2, 607–619.
[9] J. Neukirch, A. Schmidt, K. Wingberg, Cohomology of number fields (second edition), Grundlehren der Mathematischen Wissenschaften \textbf{323}, Springer-Verlag, Berlin, 2008.

[10] M. Ozaki, Construction of maximal unramified p-extensions with prescribed Galois groups, Invent. Math. \textbf{183} (2011), no. 3, 649–680.

[11] J. Ritter, A. Weiss, A Tate sequence for global units. Compositio Math. \textbf{102}, no.2 (1996), 147–178.

[12] H. Suzuki, A generalization of Hilbert’s theorem 94, Nagoya Math. J. \textbf{121} (1991), 161–169.

[13] J. Tate, Global class field theory, Algebraic Number Theory, Proc. Instructional Conf. Brighton, Thompson, Washington, D.C. (1967), 162–203.

Manabu Ozaki,
Department of Mathematics,
School of Fundamental Science and Engineering,
Waseda University,
Ohkubo 3-4-1, Shinjuku-ku, Tokyo, 169-8555, Japan
e-mail: ozaki@waseda.jp