Exponential stability of 3D stochastic primitive equations driven by fractional noise

Lidan Wang∗ Guoli Zhou†

Abstract
In this article, we study the stability of solutions to 3D stochastic primitive equations driven by fractional noise. Since the fractional Brownian motion is essentially different from Brownian motion, lots of stochastic analysis tools are not available to study the exponential stability for the stochastic systems. Therefore, apart from the standard method for the case of Brownian motion, we develop a new method to show that 3D stochastic primitive equations driven by fractional noise converge almost surely exponentially to the stationary solutions. This method may be applied to other stochastic hydrodynamic equations and other noises including Brownian motion and Lévy noise.

Keywords: Stochastic primitive equations; fractional Brownian motion; exponential stability

1 Introduction
In this article, we study the exponential stability of solutions to 3D stochastic primitive equations (SPEs) driven by fractional Brownian motion. We first define a cylindrical domain \(\mathcal{U} = M \times (-h, 0) \subset \mathbb{R}^3 \), where \(M \subset \mathbb{R}^2 \) is a smooth bounded domain, then formulate 3D stochastic PEs of Geophysical Fluid Dynamics as follows:

\[
\begin{align*}
\partial_t v + L_1 v + (v \cdot \nabla)v + w \partial_z v + f v^\perp + \nabla p &= G_1(t) \dot{W}_1^H, \\
\partial_t T + L_2 T + (v \cdot \nabla)T + w \partial_z T &= Q_2 + G_2(t) \dot{W}_2^H, \\
\nabla \cdot v + \partial_z w &= 0, \\
\partial_z p + T &= 0.
\end{align*}
\]

The unknowns are the fluid velocity field \((v, w) = (v_1, v_2, w) \in \mathbb{R}^3\), with \(v = (v_1, v_2), v^\perp = (-v_2, v_1)\) being horizontal, the temperature \(T\) and the pressure function \(p\).

The Coriolis parameter \(f\) is defined by \(f = f_0 + \beta y\) and \(Q_2\) is a given heat source, the viscosity and the heat diffusion operators \(L_1, L_2\) are given by

\[
L_i = -\nu_i \Delta - \mu_i \partial_{zz}, \quad i = 1, 2.
\]

Here the positive constants \(\nu_1, \mu_1\) are the horizontal and vertical Reynolds numbers, and positive constants \(\nu_2, \mu_2\) stand for the horizontal and vertical heat diffusivity.

Throughout this paper, \(\nabla, \Delta, \text{div}\) represent the horizontal gradient, Laplacian and divergence, respectively. \(\dot{W}_i^H(t, x, y, z), i = 1, 2\) stands for the informal derivative for the fractional Wiener process \(W_i^H\) that will be introduced later in subsection 2.3.

∗School of Statistics and Data Science, Nankai University, Tianjin, 300071, P.R. China.
E-mail: lidanw.math@gmail.com.
†Corresponding author at School of Statistics and Mathematics, Chongqing University, Chongqing, 400044, P.R. China.
E-mail: zhouguoli7360126.com.
For the cylindrical domain, the boundary can be partitioned into three parts: \(\partial \Omega := \Gamma_u \cup \Gamma_b \cup \Gamma_s \), where
\[
\begin{align*}
\Gamma_u &= \{(x, y, z) \in \overline{\Omega} : z = 0\}, \\
\Gamma_b &= \{(x, y, z) \in \overline{\Omega} : z = -h\}, \\
\Gamma_s &= \{(x, y, z) \in \overline{\Omega} : (x, y) \in \partial M, -h \leq z \leq 0\}.
\end{align*}
\]
We now supplement the SPE model with initial and boundary conditions:
\[
v(x, y, z, 0) = v_0(x, y, z), \quad T(x, y, z, 0) = T_0(x, y, z), \\
\partial_z v = \eta, \quad w = 0, \quad \partial_z T = -\alpha(T - \tau) \quad \text{on} \quad \Gamma_u, \\
\partial_z v = 0, \quad w = 0, \quad \partial_z T = 0 \quad \text{on} \quad \Gamma_b, \\
v \cdot \vec{n} = 0, \quad \partial_n v \times \vec{n} = 0, \quad \partial_n T = 0 \quad \text{on} \quad \Gamma_s,
\]
where \(\eta(x, y) \) represents the wind stress on the surface of the ocean, \(\alpha > 0 \), \(\tau \) is the typical temperature distribution on the ocean surface, and \(\vec{n} \) is the norm vector on \(\Gamma_s \). For the sake of simplicity, we assume \(Q_2 \) is independent of time, and \(\eta = \tau = 0 \). We would like to mention that the results presented in this paper can be extended to the general case provided with simple modifications.

By easy calculations, we have that
\[
w(x, y, z, t) = -\int_{-1}^{z} \nabla \cdot v(x, y, \xi, t) d\xi, \\
p(x, y, z, t) = p_s(x, y, z, t) - \int_{-1}^{z} T(x, y, \xi, t) d\xi.
\]
Hence, the stochastic model, together with initial and boundary conditions, can be reformulated into the following equivalent form:
\[
\begin{align*}
\partial_t v + L_1 v + (v \cdot \nabla) v - \left(\int_{-1}^{z} \nabla \cdot v(x, y, \xi, t) d\xi \right) \partial_z v \\
+ f v^t + \nabla p_s(x, y, z, t) - \int_{-1}^{z} \nabla T(x, y, \xi, t) d\xi = G_1(t)\hat{W}_1^H, \\
\partial_t T + L_2 T + (v \cdot \nabla) T - \left(\int_{-1}^{z} \nabla \cdot v(x, y, \xi, t) d\xi \right) \partial_z T = G_2(t)\hat{W}_2^H, \\
\partial_z v|_{\Gamma_u} = \partial_z v|_{\Gamma_b} = 0, \quad v \cdot \vec{n}|_{\Gamma_s} = 0, \quad \partial_n v \times \vec{n}|_{\Gamma_s} = 0, \\
(\partial_z T + \alpha T)|_{\Gamma_u} = \partial_z T|_{\Gamma_b} = 0, \quad \partial_n T|_{\Gamma_s} = 0, \\
v(x, y, z, 0) = v_0(x, y, z), \quad T(x, y, z, 0) = T_0(x, y, z).
\end{align*}
\]

The Primitive equations are the basic model used in the study of climate and weather prediction, which describe the motion of the atmosphere when the hydrostatic assumption is enforced \([20, 29, 30]\). As far as we know, their mathematical study was initiated by J. L. Lions, R. Teman and S. Wang\([33–36]\). And this research field has developed and has received considerable attention from the mathematical community over the last two decades. Taking advantage of the fact that the pressure is essentially two-dimensional in the PEs, Cao and Titi\([9]\) proved the global results for the existence of strong solutions of the full three-dimensional PEs. Independently, I. Kukavica and M. Ziane\([32]\) developed a different proof which allows one to treat non-rectangular domains as well as different, physically realistic, boundary conditions. The existence of the global attractor is given by Ju\([31]\). For the PEs with partial dissipation, we refer the reader to the papers\([3, 4, 5, 6, 10]\). There are also other good works about the global well-posedness theory of PEs, we do not intend to mention each of them here.

The breakthroughs in the deterministic case motivated the development of the theory for the stochastic PEs. B. Ewald, M. Petcu, R. Teman\([17]\) and N. Glatt-Holtz, M. Ziane\([24]\) considered a two-dimensional stochastic PEs. Then N. Glatt-Holtz and R. Temam\([22, 23]\) extended the case to the greater generality of physically relevant boundary conditions and nonlinear multiplicative noise. Following the methods similar to\([9]\), Boling Guo and Daiwen Huang\([21]\) studied the global well-posedness and long-time behavior of the
three-dimensional system with additive noise. Using an approach similar to [32], A. Debussche, N. Glatt-Holtz, R. Temam and M. Ziane [13] considered three-dimensional system with multiplicative noise. In a subsequent paper, N. Glatt-Holtz, I. Kukavica, V. Vicol, and M. Ziane [25] established the existence and regularity of invariant measure for the SPEs. The ergodic theory and large deviations for the 3D SPEs were obtained by Dong, Zhai and Zhang in [15, 16]. Some analytical properties of weak solutions of 3D stochastic primitive equations with periodic boundary conditions were obtained in [14], in which the martingale problem associated to this model is shown to have a family of solutions satisfying the Markov property. Concerning the exponential behavior of SPEs, T. T. Medjo established the stability result for SPEs in [40] when the noise is Brownian motion. H. J. Gao and C. F. Sun also studied the long-time behavior, asymptotic and regular properties of SPEs, see [26, 27, 28].

As it is pointed out in [44, 41] that studies from climate show that the complex multi-scale nature of the earth’s climate system results in many uncertainties that should be accounted for in the basic dynamical models of atmospheric and oceanic processes. It is further suggested in [49] that the uncertainties prefer to be Non-Markovian. This is the motivation for us to study the stability of SPEs driven by fractional Brownian motion.

Since the noise here is fractional Brownian motion which has memory for the increment and is essentially different from Brownian motion, the stochastic integral is not an Itô integral. Therefore, we instead define stochastic integrals via pathwise generalized Stieltjes integrals as is the case in [37, 43, 48], for the details, one can check Section 2 in this article. As a result, the method studying the stability of the stationary solutions to SPEs in the present work is different from the standard method, see [7, 8, 40] and other references. In the following, we will illustrate the differences more clearly.

As we know if one tries to obtain the moment stability for the stochastic equations with nonlinear multiplicative Wiener noise, Itô formula will play an important role, see Theorem 3.2 in [40] and other references. Furthermore, if one tries to establish stability of the sample paths, then the moment stability and Borel-Cantelli lemma are key tools. One can refer to Theorem 3.3 in [40] and other references. If the noise is a spatial linear noise as considered in Theorem 4.2 of [40], Medjo takes advantage of the polynomial growth of Brownian motion to show that the stationary solution to SPEs is the almost surely exponentially stable.

In our article, we consider the case of additive fractional Brownian motion, as is the case in [7, 8] and [39]. A common method to deal with this type of noise is to introduce a fractional Ornstein-Uhlenbeck process to convert the SPEs into primitive equations with random coefficients. Here, we should point out that under the definition of the stochastic integral the fractional Ornstein-Uhlenback process is uniformly bounded when time t goes to infinite, please see Proposition 2.2 for details. This is a key result which helps us to show that the stationary solution to SPEs is exponentially stable, which is stated in Theorem 3.5.

It is known that one other specialty about Ornstein-Uhlenback processes driven by Brownian motion is the polynomial growth of sample paths. Therefore, the uniform Gronwall inequality can not be applied to stochastic equations. For this reason, the random attractor obtained for the stochastic equations are pullback random attractor. There are many literatures about the topic of random attractor, we list some of them here for the convenience of readers, [1, 2, 11, 12, 19]. However, in this article, we find that the uniform boundedness of the fractional Ornstein-Uhlenbeck process may open a way to obtain global attractor (not the pullback random attractor) for the stochastic equations. By virtue of the uniform boundedness of the fractional Ornstein-Uhlenbeck process, we establish the uniform estimate for the strong solution to SPEs via uniform Gronwall inequality, see Proposition 3.4. More discussions about the existence of global attractors are given in authors’ another recent work [47].

To study the long-time behavior of stochastic dynamic system, the ergodicity of fractional Ornstein-Uhlenbeck process is an important tool which can help us to obtain the uniform \emph{a priori} estimates with respect to time t for the solutions. But the dissipation of SPEs is not enough (see the proof of Proposition 3.4), one cannot directly use the ergodicity of fractional Ornstein-Uhlenbeck process to establish the desired energy estimates. Therefore, to overcome the difficulty, we introduce another fractional Ornstein-Uhlenbeck process depending on the parameter β to obtain uniform estimates, please see (2.9) for the definition of this spacial fractional Ornstein-Uhlenbeck process and detailed calculations below (3.5).

Based on the foregoing results, we establish our main result Theorem 3.5 which shows that the stationary solution to SPEs is exponentially stable. One of the difficulties is to deal with the stochastic term. As we know fractional Brownian motion is not a semi-martingale, thus, we can not use the classic tools, i.e., Itô
formula and Burkholder-Davis-Gundy inequality to achieve the stability results. Our idea is to discretize
the stochastic integral with respect to fractional Brownian motion, which helps us to open the way to make
full use of the stationary properties and polynomial growth properties of the increments of the fractional
Brownian motion as well as regularities of the fractional Brownian motion. After delicate and careful
estimates via the regularities and stationary properties of fractional Brownian motion, we establish the
uniform estimate of the stochastic terms, please see the estimates of K_1, K_2, N_1 and N_2 in the proof of
Theorem 3.5.

We would like to mention that the result and method presented in this article may be a basic tool to
study the stability behavior of stochastic partial differential equations driven by fractional Brownian motion.

The structure of the paper is as follows: In section 2, we give definitions of functional spaces and operators
regards to the SPEs, and introduce the pathwise integral with fractional calculus techniques, with those
uniform estimate of the stochastic terms, please see the estimates of estimates via the regularities and stationary properties of fractional Brownian motion. After delicate and careful
the stochastic integral with respect to fractional Brownian motion, which helps us to open the way to make

2 Preliminaries

2.1 Functional spaces

For $1 \leq p \leq \infty$, let $L^p(\mathcal{U}), L^p(M)$ be the usual Lebesgue spaces with norms $\| \cdot \|_p$ and $\| \cdot \|_{L^p(M)}$, respectively. For $m > 0$, we denote by $(H^m(p), \| \cdot \|_{m,p})$ and $(H^m(M), \| \cdot \|_{H^m(M)})$ be the usual Sobolev spaces. When
$p = 2$, we write them as $(H^m(\mathcal{U}), \| \cdot \|_m)$ and $(H^m(M), \| \cdot \|_{H^m(M)})$ for short. For simplicity of notations, we
sometimes directly write $\| \cdot \|_p$ as norms in $L^p(M), H^m(M)$, if there is no confusion.

We now define the following function spaces:

$$
V_1 = \{ v \in (C^\infty(\mathcal{U}))^2 : \partial_2 v|_{\Gamma_u} = \partial_2 v|_{\Gamma_s} = 0, v \cdot \vec{n}|_{\Gamma_s} = 0, \partial_\Sigma v \times \vec{n}|_{\Gamma_s} = 0, \int_{-1}^0 \nabla \cdot v dz = 0 \};
$$

$$
V_2 = \{ T \in C^\infty(\mathcal{U}) : (\partial_2 T + \alpha T)|_{\Gamma_u} = \partial_2 T|_{\Gamma_s} = 0, \partial_\Sigma T|_{\Gamma_s} = 0 \}.
$$

Denote by V_1, V_2 the closure spaces of V_1, V_2 under $(H^1(\mathcal{U}))^2, H^1(\mathcal{U})$, respectively. Let H_1 be the closure space of V_1 under the norm $\| \cdot \|_2$ and $H_2 = L^2(\mathcal{U})$. Now set

$$
\mathcal{V} = V_1 \times V_2, \quad \mathcal{H} = H_1 \times H_2.
$$

For $U := (v, T), \overline{U} := (\overline{v}, \overline{T}) \in \mathcal{V}$, we equip \mathcal{V} with the inner product

$$
\langle U, \overline{U} \rangle_{\mathcal{V}} := \langle v, \overline{v} \rangle_{V_1} + \langle T, \overline{T} \rangle_{V_2},
$$

$$
\langle v, \overline{v} \rangle_{V_1} := \int_\Omega (\nabla v \cdot \nabla \overline{v} + \partial_2 v \cdot \partial_2 \overline{v})dxdydz,
$$

$$
\langle T, \overline{T} \rangle_{V_2} := \int_\Omega (\nabla T \cdot \nabla \overline{T} + \partial_2 T \cdot \partial_2 \overline{T})dxdydz + \alpha \int_{\Gamma_u} T \overline{T}d\Gamma_u.
$$

Consequently, the norm in \mathcal{V} is defined by $\| U \|_1 := \langle U, U \rangle_{\mathcal{V}}^{1/2}$. Similarly, we define the inner product in \mathcal{H} by

$$
\langle U, \overline{U} \rangle_{\mathcal{H}} := \langle v, \overline{v} \rangle_{V_1} + \langle T, \overline{T} \rangle_{V_2},
$$

$$
\langle v, \overline{v} \rangle_{V_1} := \int_\Omega v \cdot \overline{v}dxdydz,
$$

$$
\langle T, \overline{T} \rangle_{V_2} := \int_\Omega T \overline{T}dxdydz.
$$

2.2 Operators

We define the bilinear forms $a : \mathcal{V} \times \mathcal{V} \to \mathbb{R}, a_i : \mathcal{V} \times \mathcal{V} \to \mathbb{R}, i = 1, 2$, by

$$
a_1(v, \overline{v}) = \langle v, \overline{v} \rangle_{V_1}, a_2(T, \overline{T}) = \langle T, \overline{T} \rangle_{V_2}, a(U, \overline{U}) = \langle U, \overline{U} \rangle_{\mathcal{V}}.
$$
Denote by $\mathcal{V}', \mathcal{V}_i'$ the dual spaces of $\mathcal{V}, \mathcal{V}_i$ for $i = 1, 2$, then the corresponding linear operators $A : \mathcal{V} \to \mathcal{V}', A_i : \mathcal{V}_i \to \mathcal{V}_i'$, $i = 1, 2$ can be defined as follows:

$$\langle A_1 v, \bar{v} \rangle = a_1(v, \bar{v}), \langle A_2 T, \bar{T} \rangle = a_2(T, \bar{T}), \langle A U, \bar{U} \rangle = a(U, \bar{U}),$$

where $U = (v, T), \bar{U} = (\bar{v}, \bar{T}) \in \mathcal{V}$.

Now for $i = 1, 2$, define $D(A_i) := \{ \rho \in \mathcal{V}_i, A_i \rho \in H_i \}$. Since A_i^{-1} is a self-adjoint compact operators in H_i, by the classic spectral theory, we can define the power A_i^s for any $s \in \mathbb{R}$. Then $D(A_i)^r = D(A_i^{-1})$ is the dual space of $D(A_i)$ and $\mathcal{V}_i = D(A_i^{1/2}), \mathcal{V}_i' = D(A_i^{-1/2})$. Moreover, we have the compact embedding relationship

$$D(A_i) \subset \mathcal{V}_i \subset H_i \subset \mathcal{V}_i' \subset D(A_i)^r, \ i = 1, 2.$$

And

$$\|\cdot\|_2^2 = a_i(\cdot, \cdot) = \langle A_i^{1/2} \cdot, A_i^{1/2} \cdot \rangle, \ i = 1, 2.$$

Hereafter we denote by $\lambda_1 > 0$ a constant such that

$$|U|_2 \leq \lambda_1 \|U\|_1, \quad U \in \mathcal{V}; \quad \|U\|_1 \leq \lambda_1 \|AU\|_2, \quad U \in D(A).$$ (2.1)

Now we define the nonlinear operator for $U = (v, T), \bar{U} = (\bar{v}, \bar{T}), \bar{U} = (\bar{v}, \bar{T}) \in \mathcal{V}$,

$$b(U, \bar{U}, \bar{U}) = \langle B(U, \bar{U}), \bar{U} \rangle = b_1(v, \bar{v}, \bar{v}) + b_2(v, \bar{T}, \bar{T}),$$

where

$$b_1(v, \bar{v}, \bar{v}) := \langle B_1(v, \bar{v}), \bar{v} \rangle := \int_{\Omega} \left[(v \cdot \nabla)\bar{v} - \left(\int_{-1}^{z} \nabla \cdot v(x, y, \xi, t) d\xi \right) \partial_2 \bar{v} \right] \cdot \hat{v} dx dy dz,$$

$$b_2(v, \bar{T}, \bar{T}) = \langle B_2(v, \bar{T}), \bar{T} \rangle := \int_{\Omega} \left[(v \cdot \nabla)\bar{T} - \left(\int_{-1}^{z} \nabla \cdot v(x, y, \xi, t) d\xi \right) \partial_2 \bar{T} \right] \cdot \hat{T} dx dy dz.$$

There are some basic properties for the nonlinear operator B. The proof can be found in [31].

Lemma 2.1. There exists a constant $c_0 > 0$ that is independent of U, \bar{U}, \bar{U} such that

$$|b(U, \bar{U}, \bar{U})| \leq c_0 \|U\|_1^{1/2} \|AU\|_2^{1/2} \|ar{U}\|_1^{1/2} \|\bar{U}\|_2^{1/2}, \quad \forall U, \bar{U} \in D(A), \bar{U} \in \mathcal{V}.$$

We also define another bilinear operator $R : \mathcal{V} \to \mathcal{V}'$ by

$$r(U, \bar{U}) = \langle R(U), \bar{U} \rangle = \langle f v^\perp, \bar{v} \rangle + \left(\int_{-1}^{z} \nabla T, \bar{v} \right), \quad \forall U = (v, T), \bar{U} = (\bar{v}, \bar{T}) \in \mathcal{V}.$$

Recall that for $U \in \mathcal{V}, \bar{U} \in H$, there exists $\alpha_0 > 0$ such that

$$|r(U, \bar{U})| = |\langle R(U), \bar{U} \rangle| \leq \alpha_0 \|U\|_1 \|ar{U}\|_2$$ (2.2)

Finally, we write $Q := (0, Q_s)$ as the forcing term. We write $G(t) = (G_1(t), G_2(t))$ as the coefficients for the random term. Hereafter we set

$$\bar{\nu}_i = \min(\nu_i, \mu_2), \quad i = 1, 2; \quad \bar{\nu} = \min(\bar{\nu}_1, \bar{\nu}_2).$$

Thus, we consider the stochastic 3D PEs of the ocean, driven by fractional Brownian motion, written in the following abstract mathematical setting

$$dU(t) = [-\nu AU(t) - B(U(t)) - R(U(t)) + Q(t)] dt + G(t) dW^H(t), \quad U(0) = U_0 := (v_0, T_0).$$ (2.3)
2.3 Fractional Brownian motion

Set $\alpha \in (0, 1)$, for a function $f : [0, T] \to \mathbb{R}$ that is regular enough, we define the Weyl fractional derivatives as follows:

$$D_{0^+}^\alpha f(t) = \frac{1}{\Gamma(1-\alpha)} \left(\frac{f(t)}{t^\alpha} + \alpha \int_0^t \frac{f(t) - f(u)}{(t-u)^{\alpha+1}} du \right),$$

$$D_{T^-}^\alpha f(t) = \frac{(-1)\alpha}{\Gamma(1-\alpha)} \left(\frac{f(t)}{(T-t)^\alpha} + \alpha \int_t^T \frac{f(t) - f(u)}{(u-t)^{\alpha+1}} du \right),$$

provided the singular integrals on the right hand side exist for almost all $t \in [0, T]$, and Γ stands for the Gamma function.

For $\phi \in L^1([0, T]; \mathbb{R})$, we define the left and right hand side fractional Riemann-Liouville integrals of ϕ of order α for almost all $t \in (0, T)$ by

$$I_{0^+}^\alpha \phi(t) = \frac{1}{\Gamma(\alpha)} \int_0^t (t-u)^{\alpha-1} \phi(u) du,$$

$$I_{T^-}^\alpha \phi(t) = \frac{(-1)\alpha}{\Gamma(\alpha)} \int_t^T (u-t)^{\alpha-1} \phi(u) du.$$

If $f = I_{0^+}^\alpha \phi$, then the Weyl left-side derivative of f exists and $D_{0^+}^\alpha f = \phi$. A similar result holds for the right-side fractional integral. See [45] for a comprehensive introduction for the theory of fractional integrals and derivatives.

We now define $W^{\alpha,1}(0, T; \mathbb{R})$ as the space of measurable functions $f : [0, T] \to \mathbb{R}$ with

$$\|f\|_{\alpha,1} := \int_0^T \left(\frac{|f(s)|}{s^\alpha} + \int_0^s \frac{|f(s) - f(u)|}{(s-u)^{\alpha+1}} du \right) ds < \infty,$$

where $\alpha \in (0, \frac{1}{2})$.

Following [48], we define the generalized Stieltjes integral $\int_0^T f dg$ by

$$\int_0^T f dg = \int_0^T D_{0^+}^\alpha f(s) D_{T^-}^{1-\alpha} g_{T-}(s) ds,$$

(2.4)

where $g_{T-}(s) = g(s) - g(T)$. Under the above hypotheses, the above integral exists for all $t \in [0, T]$, and by [43], we have

$$\int_0^t f dg = \int_0^T f_{1(0,s)} dg.$$

Furthermore, we have the following estimate

$$\left| \int_0^t f dg \right| \leq C_\alpha(g) \|f\|_{\alpha,1},$$

(2.5)

where

$$C_\alpha(g) := \frac{1}{\Gamma(\alpha)\Gamma(1-\alpha)} \sup_{0 < s < t < T} \left(\frac{|g(t) - g(s)|}{(t-s)^{2-\alpha}} + \int_s^t \frac{|g(u) - g(s)|}{(u-s)^{2-\alpha}} du \right).$$

On a complete probability space $(\Omega, \mathcal{F}, \mathbb{P})$, for $H \in (0, 1)$, we let $B_i^H = (B_i^H(t)_{t \in \mathbb{R}})$ be a sequence of independent, identically distributed continuous centered Gaussian process with covariance function

$$R(s, t) = \frac{1}{2} |t|^{2H} + |s|^{2H} - |t-s|^{2H}, \quad s, t \in \mathbb{R}.$$

This type of process is called a two-sided one-dimensional fractional Brownian motion (fBm) with Hurst parameter H. When $H = \frac{1}{2}$, $B_i^{1/2}$ is the standard Brownian motion.
For $j \in \{1, 2\}$, let H_j be linear, self-adjoint, positive trace-class operators on \mathcal{H}_j, that is, for a complete orthonormal basis $(e_{i,j})_{i \in \mathbb{N}_+}$ in \mathcal{H}_j, there exists a sequence of nonnegative values $(\lambda_{i,j})_{i \in \mathbb{N}_+}$ such that $\text{tr}H_j = \sum_{i=1}^{\infty} \lambda_{i,j} < \infty$. We now introduce \mathcal{H}_j-valued fractional Brownian motion W^H_j, $j = 1, 2$, with covariance operator H_j, and Hurst parameter H, as follows:

$$W^H_j(t) := \sum_{i=1}^{\infty} \sqrt{\lambda_{i,j}} e_{i,j}B^H_i(t). \quad (2.6)$$

For $H > 1/2$, take a parameter $\alpha \in (1-H, 1/2)$ which will be fixed throughout the paper. Let $f \in W^{\alpha,1}([0,T]; \mathbb{R})$, we define $\int_0^T f(s)dB^H_j(s)$ in the sense of (2.4) pathwise by $[43]$, $C_\alpha(B^H_j) < \infty$, \mathbb{P}-a.s. for $t \in \mathbb{R}_+$, $i \in \mathbb{N}_+$.

For $j = 1, 2$, denote by $\mathcal{L}(\mathcal{V}_j)$ the space of linear bounded operators on \mathcal{V}_j, now suppose $l : \Omega \times [0,T] \to \mathcal{L}(\mathcal{V}_j)$ is an operator-valued function such that $l_{e_{i,j}} \in W^{\alpha,1}([0,T]; \mathcal{V}_j)$ for any $i \in \mathbb{N}_+ \omega \in \Omega$. Now we define

$$\varphi(s)dW^H_j(s) := \sum_{i=1}^{\infty} \int_0^T l(s)H_j^{1/2}e_{i,j}dB^H_i(s)$$

$$= \sum_{i=1}^{\infty} \sqrt{\lambda_{i,j}} \int_0^T l(s)e_{i,j}dB^H_i(s), \quad (2.7)$$

where the convergence of the above series is understood as \mathbb{P}-a.s. convergence in \mathcal{V}_j.

2.4 Regularity of O-U processes

Now we consider the stochastic equations for $j = 1, 2$, $\beta > 1$,

$$dZ_j(t) = (-A_j Z_j - \beta Z_j)dt + G_j(t)dW^H_j(t), \quad Z_j(0) = 0. \quad (2.8)$$

The solution can be interpreted pathwise in the mild sense, that is, the solution $(Z_j(t))_{t \in [0,T]}$ is a \mathcal{V}_j-valued process whose paths are elements of the space $W^{\alpha,1}([0,T]; \mathcal{V}_j)$ with probability one, for $\alpha \in (1-H, 1/2)$, such that

$$Z_j(t) = \int_0^t e^{-(t-s)(A_j+\beta)}G_j(s)dW^H_j(s). \quad (2.9)$$

We first have the following result which gives the growth rates of $Z_j(t)$, $j = 1, 2$, under certain conditions on the forcing terms.

Proposition 2.2. For $j = 1, 2$, denote by $0 < \gamma_{1,j} \leq \gamma_{2,j} \leq \cdots$ the eigenvalues of A_j with corresponding eigenvectors $e_{1,j}, e_{2,j}, \cdots$, assume the following condition holds

$$\sum_{i=1}^{\infty} \lambda_{i,j}^{1/2} \gamma_{i,j}^{5/2} < \infty, \quad \text{for } j = 1, 2. \quad (2.10)$$

Then for $T > 0$, $(Z_1(t))_{t \in [0,T]}, (Z_2(t))_{t \in [0,T]}$ exist as generalized Stieltjes integrals in the sense of [48], and $(Z_1(t))_{t \in [0,T]} \in C([0,T]; (H^3(\mathbb{U}))^2)$, a.s. and $(Z_2(t))_{t \in [0,T]} \in C([0,T]; H^3(\mathbb{U}))$, a.s.

Assume further that the forcing terms $G_1(t), G_2(t)$ only depend on t and satisfy

$$|G_1(t)| + |G_1'(t)| \leq M_1(1+t)^{-2}, \quad |G_2(t)| + |G_2'(t)| \leq M_2(1+t)^{-2}. \quad (2.11)$$

Then for $\beta > 0$, $Z_j(t)$, $j = 1, 2$ are uniformly bounded in H^3 norms, in the sense that there exist random variables $C_1(\omega), C_2(\omega)$ taking finite values such that

$$\sup_{t \in [0,\infty)} \|Z_1(t)\|_3 \leq C_1(\omega) < \infty, \text{a.s.}, \quad \sup_{t \in [0,\infty)} \|Z_2(t)\|_3 \leq C_2(\omega), \text{a.s.}$$
Proof. For the proof of the continuity of Z_1 and Z_2, one can refer to Propositions 2.1 of [49]. Here we will give a short proof of the uniform boundedness of Z_1 and Z_2. By the definition in (2.9) and the property of Riemann-Stieltjes integral (see Theorem 4.2.1 in [48]), we have

$$
\|Z_1(t)\|_3 = \left\| \int_0^t e^{-(t-s)(A_1 + \beta)} G_1(s) dW_1^H(s) \right\|_3 \\
= \left\| \sum_{k=1}^\infty \sqrt{\lambda_{k,1}} \int_0^t e^{-(t-s)(\gamma_{k,1} + \beta)} e_{k,1} G_1(s) dB_k^H(s) \right\|_3 \\
= \left\| \sum_{k=1}^\infty \sqrt{\lambda_{k,1}} e_{k,1} \left[G_1(t) B_k^H(t) - \int_0^t B_k^H(s) \left((\gamma_{k,1} + \beta) e^{-(t-s)(\gamma_{k,1} + \beta)} G_1(s) + e^{-(t-s)(\gamma_{k,1} + \beta)} G_1'(s) \right) ds \right] \right\|_3.
$$

Since $|B_k^H(t)| \leq t^2 + c(\omega)$ (see Lemma 2.6 of [38]), $|G_1(t)| + |G'_1(t)| \leq M_1(1 + t)^{-2}$, we get

$$
\|Z_1(t)\|_3 \leq M_1(1 + t)^{-2} \left(t^2 + c(\omega) \right) \sum_{k=1}^\infty \sqrt{\lambda_{k,1}} \gamma_{k,1} \frac{2}{\beta} \int_0^t (s^2 + c(\omega))(1 + s)^{-2} e^{-(t-s)(\gamma_{k,1} + \beta)} ds
$$

$$
\leq M_1 c \sum_{k=1}^\infty \sqrt{\lambda_{k,1}} \gamma_{k,1} \frac{2}{\beta} + M_1 c \sum_{k=1}^\infty \sqrt{\lambda_{k,1}} \gamma_{k,1} \frac{2}{\beta} \int_0^t e^{-(s(\gamma_{k,1} + \beta))} ds
$$

$$
\leq C_1(\omega).
$$

The estimate for $Z_2(t)$ follows similarly.

\[\Box\]

2.5 Global well-posedness

Let $u(t) = v(t) - Z_1(t)$ and $\theta(t) = T(t) - Z_2(t)$, a stochastic process $U(t, \omega) = (v, T)$ is a strong solution to (1.1)-(1.5) on $[0, T]$, if and only if (u, θ) is a strong solution to the following problem on $[0, T]$:

$$
\partial_t u + L_1 u + [(u + Z_1) \cdot \nabla](u + Z_1) + w(u + Z_1) \partial_z (u + Z_1)
$$

$$
+ f(u + Z_1) + \nabla p_x - \int_{-1}^2 \nabla(\theta + Z_2)(x, y, \xi, t) d\xi = \beta Z_1;
$$

$$
\partial_t \theta + L_2 \theta + [(u + Z_1) \cdot \nabla](\theta + Z_2) + w(u + Z_1) \partial_z (\theta + Z_2) = Q + \beta Z_2;
$$

$$
\int_{-1}^0 \nabla \cdot u dz = 0;
$$

$$
\partial_z u|_{\Gamma_x} = \partial_z u|_{\Gamma_y} = 0, \ u \cdot \vec{n}|_{\Gamma_x} = 0, \ \partial_n u \times \vec{n}|_{\Gamma_x} = 0;
$$

$$
(\theta|_{\Gamma_y} = 0, \ \theta|_{\Gamma_z} = 0, \ \partial_\eta \theta|_{\Gamma_z} = 0;
$$

$$
(u(0), \theta(0)) = (v_0, T_0).
$$

Then the global well-posedness of 3D SPEs driven by fractional Brownian motion follows from the result in [49].

Theorem 2.3. Let $Q_2 \in L^2(\Omega)$, $v_0 \in \mathcal{V}_1$, $T_0 \in \mathcal{V}_2$, $T > 0$. Assume the condition (2.10) holds, then there exists a unique strong solution (v, T) of the system (1.1)-(1.5), or equivalently, (u, θ) of the system (2.12)-(2.17) on the interval $[0, T]$ which is Lipschitz continuous with respect to the initial data and the noises in \mathcal{V} and $C([0, T]; \mathcal{V})$, respectively.
3 Exponential stability of solutions

3.1 Steady state solution

A stationary solution to (2.3) is $U^* = (v^*, T^*)$ satisfying

$$
L_1 v^* + (v^* \cdot \nabla)v^* - \left(\int_{-1}^{z} \nabla \cdot v^*(x, y, \xi, t) d\xi \right) \partial_z v^* + f(v^*)^\perp + \nabla p_s(x, y, z, t) - \int_{-1}^{z} \nabla T^*(x, y, \xi, t) d\xi = 0,
$$
$$
L_2 T^* + (v^* \cdot \nabla)T^* - \left(\int_{-1}^{z} \nabla \cdot v^*(x, y, \xi, t) d\xi \right) \partial_z T^* = Q_2,
$$

with boundary conditions (1.3)-(1.4) held. In abstract setting, the above equation can be rewritten as

$$
\nu AU^* + B(U^*) + R(U^*) = Q.
$$

(3.1)

The existence of steady state solutions follows from the result in [39].

Theorem 3.1. Suppose $Q_2 \in L^2(\mathcal{U})$ and $\bar{\nu} > 0$ is large enough, then (3.1), together with boundary conditions (1.3)-(1.4), has a unique solution $U^* = (v^*, T^*)$. Moreover, we have the following estimate

$$
|AU^*|^2 = |A_1 v^*|^2 + |A_2 T^*|^2 \leq K,
$$

(3.2)

where K is a constant that depends on Q, ν.

3.2 Exponential stability of steady state solutions

In this section, we discuss the stability of steady state solutions. In the following, we first give the definition.

Definition 3.2. We say the solution $U(t)$ to (2.3) converges to $U^* \in H$ almost surely exponentially if there exists $\gamma > 0$ such that

$$
\lim_{t \to \infty} \frac{1}{t} \log |U(t) - U^*|_2 \leq -\gamma.
$$

(3.3)

We say that U^* is almost surely exponentially stable if any solution to (2.3) converges to U^* almost surely exponentially with the same $\gamma > 0$.

The following Lemma is called uniform Gronwall lemma which will be used repeatedly in the proof of Proposition 3.4. One can refer to Foias and Prodi [18] and Temam [46] for a proof of Lemma 3.3.

Lemma 3.3. Let f, g and h be three non-negative locally integrable functions on (t_0, ∞) such that

$$
\frac{df}{dt} \leq gf + h, \quad \forall \ t \geq t_0,
$$

and

$$
\int_{t}^{t+r} f(s) ds \leq a_1, \quad \int_{t}^{t+r} g(s) ds \leq a_2, \quad \int_{t}^{t+r} h(s) ds \leq a_3, \quad \forall \ t \geq t_0,
$$

where r, a_1, a_2, a_3 are positive constants. Then

$$
f(t + r) \leq \left(\frac{a_1}{r} + a_3 \right) e^{a_2}, \quad \forall \ t \geq t_0.
$$

Proposition 3.4. For any fixed ω, there exists a random variable $C(\omega)$ taking values in $\mathbb{R}^+ := (0, \infty)$ such that

$$
\sup_{t \in [0, \infty)} \|U(t)\|_1 \leq C(\omega) < \infty, \ a.s.. \quad (3.4)
$$
Lemma 3.3 and Proposition 2.2 3.7 and Lemma 3.3 Proposition 2.2

Thus, back to (3.5), we have

\[|u(t)|^2 + |\theta(t)|^2 \leq (|u(0)|^2 + |\theta(0)|^2) \exp \left\{ \int_0^t -\gamma_1 + C(\|Z_1\|^2 + \|Z_1\|^4 + \|Z_2\|^3) ds \right\} + \int_0^t \exp \left\{ \int_s^t -\gamma_1 + C(\|Z_1\|^2 + \|Z_1\|^4 + \|Z_2\|^3) dx \right\} (\|Q\|_2 + \|Z_1\|_2^2) ds. \] (3.5)

By Proposition 2.2, there exist \(C_1(\omega), C_2(\omega) \) such that

\[\sup_{t \in [0, \infty)} \|Z_1(t)\|_1 \leq C_1(\omega) < \infty \quad \text{and} \quad \sup_{t \in [0, \infty)} \|Z_2(t)\|_1 \leq C_2(\omega) < \infty. \]

Thus, back to (3.6), by the continuity of \(|U(t)|_2\) with respect to time \(t \), there exists \(C(\omega) \),

\[\sup_{t \geq 0} |U(t)|_2^2 \leq C(\omega). \] (3.7)

In view of (5.105) in [49], (3.7), Proposition 2.2 and Lemma 3.3, we have

\[\int_t^{t+1} |U(s)|_2^2 ds < C(\omega). \] (3.8)

By the formula above (5.113) in [49], (3.7), (3.8), Proposition 2.2 and Lemma 3.3, we obtain

\[\sup_{t \in [0, \infty)} |\theta(t)|_4^2 < C(\omega). \] (3.9)

Recall that \(\bar{u}(x, y) = \int_{-1}^0 u(x, y, z) dz\) and \(\bar{u} = u - \bar{u} \). By (5.122) in [49], (3.7)-(3.9), Proposition 2.2 and Lemma 3.3, we obtain

\[\sup_{t \in [0, \infty)} |\bar{u}(t)|_4^2 < C(\omega). \] (3.10)

By virtue of (5.121) in [49], (3.7)-(3.10), Proposition 2.2 and Lemma 3.3, we obtain

\[\int_t^{t+1} \int_{\Omega} \left(|\nabla(\bar{u}(s)|)^2 + |\partial_z(\bar{u}(s)|)^2 \right) ds + \int_t^{t+1} \int_{\Omega} |\bar{u}|^2 (|\nabla \bar{u}(s)|^2 + |\partial_z \bar{u}(s)|^2) ds < C(\omega). \] (3.11)
By (5.127) in [49], (3.7)-(3.11), Proposition 2.2 and Lemma 3.3, we obtain
\[
\int_t^{t+1} |\Delta \bar{u}|^2_2 ds < C(\omega) \tag{3.12}
\]
and
\[
\sup_{t \in [0, \infty)} |\nabla \bar{u}(t)|^2_2 ds < C(\omega). \tag{3.13}
\]
By (5.137) in [49], (3.7)-(3.13), Proposition 2.2 and Lemma 3.3, we obtain
\[
\int_t^{t+1} (|\nabla u_z|^2_2 + |u_z|^2_2) ds < C(\omega) \tag{3.14}
\]
and
\[
\sup_{t \in [0, \infty)} |u_z(t)|^2_2 ds < C(\omega). \tag{3.15}
\]
By (5.141) in [49], (3.7)-(3.15), Proposition 2.2 and Lemma 3.3, we obtain
\[
\int_t^{t+1} |\Delta u(s)|^2_2 ds < C(\omega) \tag{3.16}
\]
and
\[
\sup_{t \in [0, \infty)} |\nabla u(t)|^2_2 < C(\omega). \tag{3.17}
\]
By (5.143) in [49], (3.7)-(3.17), Proposition 2.2 and Lemma 3.3, we obtain
\[
\sup_{t \in [0, \infty)} (|\nabla \theta(t)|^2_2 + |\theta_z|^2_2 + \alpha |\theta(z = 0)|^2_2) < C(\omega). \tag{3.18}
\]
Finally, the result follows from (3.15), (3.17), (3.18).

In the following, we give the main result of this paper.

Theorem 3.5. Suppose $Q_2 \in L^2(\Omega)$. We assume the conditions for G_1, G_2 stronger than (2.11), that is, there exist $M_1, M_2, \rho_1, \rho_2 > 0$ such that
\[
|G_1(t)| + |G_1'(t)| \leq M_1 e^{-\rho_1 t}, \quad |G_2(t)| + |G_2'(t)| \leq M_2 e^{-\rho_2 t}. \tag{3.19}
\]
Let $U^* \in D(A)$ be the unique solution to (3.1) with boundary and initial conditions (1.3)-(1.5), and let ν be large enough such that
\[
\min\{\nu_1, \nu_1, \nu_2, \nu_2\} > c_0 \lambda_1 |AU^*|^2_2 + \alpha_0 \lambda_1,
\]
the solution U to (2.3) converges to the stationary solution U^* almost surely exponentially. More precisely, there exists $0 < \lambda < \rho_1 \wedge \rho_2 \wedge 2\lambda_1^{-2}(\nu - c_0 \lambda_1 |AU^*|^2_2 - \alpha_0 \lambda_1)$ such that
\[
\lim_{t \to \infty} \frac{1}{t} \log |U(t) - U^*|^2_2 \leq -\lambda/2. \tag{3.20}
\]

Proof. Firstly, we have
\[
\frac{d}{dt}[e^{\lambda t}|U(t) - U^*|^2_2] = \lambda e^{\lambda t}|U(t) - U^*|^2_2 + 2e^{\lambda t}(\frac{d}{dt}U(t), U(t) - U^*)
= \lambda e^{\lambda t}|U(t) - U^*|^2_2 - 2e^{\lambda t}\nu(AU(t), U(t) - U^*)
- 2e^{\lambda t}(B(U(t)) + R(U(t)), U(t) - U^*) + 2e^{\lambda t}(Q(t), U(t) - U^*)
\]

11
+ 2e^{\lambda t}(G(t)d\hat{W}(t), U(t) - U^*).

By (3.1), \(U^* \) satisfies
\[e^{\lambda t}(\nu AU^* + B(U^*) + R(U^*), U(t) - U^*) = e^{\lambda t}(\nu Q, U(t) - U^*), \]
we obtain that
\[e^{\lambda t}|U(t) - U^*|_2^2 = |U(0) - U^*|_2^2 + \int_0^t \lambda e^{\lambda s}|U(s) - U^*|_2^2 ds - 2 \int_0^t e^{\lambda s}\nu(A(U(s) - U^*), U(s) - U^*) ds \]
\[- 2 \int_0^t e^{\lambda s}(B(U(s)) - B(U^*), U(s) - U^*) ds \]
\[- 2 \int_0^t e^{\lambda s}(R(U(s)) - R(U^*), U(s) - U^*) ds \]
\[+ 2 \int_0^t e^{\lambda s}(G(s)dW^H(s), U(s) - U^*) \]
\[= I_1 + \cdots + I_6. \tag{3.21} \]

First by (2.1), we have
\[I_2 \leq \int_0^t \lambda \lambda e^{\lambda s}|U(s) - U^*|_2^2 ds, \quad I_3 \leq -2\lambda \nu \int_0^t e^{\lambda s}|U(s) - U^*|_2^2 ds. \]

For the bilinear operator \(B \), by (2.1), Lemma 2.1 and Theorem 3.1, we have
\[I_4 = -2 \int_0^t e^{\lambda s}\nu(B(U(s), U(s) - U^*), U(s) - U^*) ds - 2 \int_0^t e^{\lambda s}\nu(B(U(s) - U^*, U^*), U(s) - U^*) ds \]
\[= -2 \int_0^t e^{\lambda s}(B(U(s) - U^*, U^*), U(s) - U^*) ds \]
\[\leq 2\lambda_1 |AU^*|_2^2 \int_0^t e^{\lambda s}|U(s) - U^*|_2^2 ds \]

By (2.1) and (2.2),
\[I_5 \leq 2\alpha_0 \int_0^t e^{\lambda s}|U(s) - U^*|_1|U(s) - U^*|_2 ds \leq 2\alpha_0 \lambda_1 \int_0^t e^{\lambda s}|U(s) - U^*|_2^2 ds. \]

By the assumption, we see that for \(\bar{\nu} > 0 \) large enough such that \(\bar{\nu} > c_0 \lambda_1 \|AU^*\|_2 + \alpha_0 \lambda_1 \), then for small \(\lambda \) so that
\[\lambda < 2\lambda_1^{-2}(\bar{\nu} - c_0 \lambda_1 \|AU^*\|_2^2 - \alpha_0 \lambda_1), \tag{3.22} \]
we have
\[I_2 + I_3 + I_4 + I_5 < 0. \]

By the definition of fractional Brownian motions in (2.6), we get that
\[I_6 = 2 \int_0^t e^{\lambda s}\nu(G_1(s)dW^H_1(s), v(s) - v^*) + 2 \int_0^t e^{\lambda s}\nu(G_2(s)dW^H_1(s), T(s) - T^*) \]
\[= 2 \int_0^t e^{\lambda s}\nu\sum_{k=1}^\infty \sqrt{k^*}G_1(s)dB^H_k(s), v(s) - v^*) + 2 \int_0^t e^{\lambda s}\nu\sum_{k=1}^\infty \sqrt{k^*}G_2(s)dB^H_k(s), T(s) - T^*) \]
\[= 2 \sum_{k=1}^\infty \sqrt{k^*} \int_0^t \langle v(s) - v^*, c_{k,1} \rangle e^{\lambda s}G_1(s)dB^H_k(s) + 2 \sum_{k=1}^\infty \sqrt{k^*} \int_0^t \langle T(s) - T^*, c_{k,2} \rangle e^{\lambda s}G_2(s)dB^H_k(s). \]
Now applying the inequality (2.5), and by condition (2.11),
\[
\left| \int_0^t e^{\lambda s}(G(s)dW^H(s), U(s) - U^*) \right| \leq \sum_{k=1}^{\infty} \sqrt{\lambda_k} \sum_{j=1}^{[t]+1} \left(\sum_{j=1}^{[t]+1} \int_{j-1}^{j} \langle v(s) - v^*, e_{k,1} \rangle e^{\lambda s} G_1(s) dB_k^H(s) \right) \\
+ \sum_{k=1}^{\infty} \sqrt{\lambda_k} \sum_{j=1}^{[t]+1} \left(\sum_{j=1}^{[t]+1} \int_{j-1}^{j} \langle T(s) - T^*, e_{k,2} \rangle e^{\lambda s} G_2(s) dB_k^H(s) \right) \\
\leq \sum_{k=1}^{\infty} \sqrt{\lambda_k} \sum_{j=1}^{[t]+1} C_\alpha(B_k^H) \left| \int_{j-1}^{j} \frac{|v(s) - v^*, e_{k,1}| e^{-(\rho_1 - \lambda)s}}{[s - (j - 1)]^\alpha} ds \right| \\
+ \sum_{k=1}^{\infty} \sqrt{\lambda_k} \sum_{j=1}^{[t]+1} C_\alpha(B_k^H) \left| \int_{j-1}^{j} \frac{|T(s) - T^*, e_{k,2}| e^{-(\rho_2 - \lambda)s}}{[s - (j - 1)]^\alpha} ds \right| \\
\leq \sum_{k=1}^{\infty} \sqrt{\lambda_k} \sum_{j=1}^{[t]+1} C_\alpha(B_k^H) \left| \int_{j-1}^{j} \frac{|v(s) - v^*, e_{k,1}| e^{\lambda s} G_1(s) - \langle v(x) - v^*, e_{k,1} e^{\lambda x} G_1(x) \rangle ds dx ds \right| \\
+ \sum_{k=1}^{\infty} \sqrt{\lambda_k} \sum_{j=1}^{[t]+1} C_\alpha(B_k^H) \left| \int_{j-1}^{j} \frac{|T(s) - T^*, e_{k,2}| e^{\lambda s} G_2(s) - \langle T(x) - T^*, e_{k,2} e^{\lambda x} G_2(x) \rangle ds dx ds \right| \\
=: J_1 + J_2 + J_3 + J_4. \tag{3.23}
\]
Firstly, we have
\[
J_1 \leq \frac{1}{2} \sum_{k=1}^{\infty} \sqrt{\lambda_k} \sum_{j=1}^{[t]+1} C_\alpha(B_k^H) \left| \int_{j-1}^{j} |v(s) - v^*|^2 e^{-(\rho_1 - \lambda)s} ds + \int_{j-1}^{j} e^{-(\rho_1 - \lambda)s} ds \right| \\
\leq \frac{1}{2} \sum_{k=1}^{\infty} \sqrt{\lambda_k} \sum_{j=1}^{[t]+1} C_\alpha(B_k^H) \left| \int_{j-1}^{j} |v(s) - v^*|^2 e^{-(\rho_1 - \lambda)s} ds + e^{-(\rho_1 - \lambda)(j-1)} \frac{1}{1 - 2\alpha} \right| \\
\leq \frac{1}{2} \sum_{k=1}^{\infty} \sqrt{\lambda_k} \sum_{j=1}^{[t]+1} C_\alpha(B_k^H) \left| \int_{j-1}^{j} |v(s) - v^*|^2 e^{-(\rho_1 - \lambda)s} ds + \frac{e^{-(\rho_1 - \lambda)(j-1)}}{1 - 2\alpha} \right|.
\]
With similar discussion, we get
\[
J_2 \leq \frac{1}{2} \sum_{k=1}^{\infty} \sqrt{\lambda_k} \sum_{j=1}^{[t]+1} C_\alpha(B_k^H) \left| \int_{j-1}^{j} |T(s) - T^*|^2 e^{-(\rho_2 - \lambda)s} ds + \frac{e^{-(\rho_2 - \lambda)(j-1)}}{1 - 2\alpha} \right| .
\]
Thus, by Proposition 3.4, for any \(\omega \),
\[
J_1 + J_2 \leq \frac{1}{2} \sum_{k=1}^{\infty} \left(\sqrt{\lambda_k} \sum_{j=1}^{[t]+1} C_\alpha(B_k^H) \right) \left| \int_{j-1}^{j} |U(s) - U^*|^2 e^{-(\rho_1 \land \rho_2 - \lambda)s} ds + \frac{e^{-(\rho_1 \land \rho_2 - \lambda)(j-1)}}{1 - 2\alpha} \right| \\
\leq \frac{1}{2} \sum_{k=1}^{\infty} \left(\sqrt{\lambda_k} \sum_{j=1}^{[t]+1} C_\alpha(B_k^H) \right) \left| \int_{j-1}^{j} |U(s)|^2 + C(\omega) e^{-(\rho_1 \land \rho_2 - \lambda)(j-1)} ds \right| \\
+ \frac{1}{2} \sum_{k=1}^{\infty} \left(\sqrt{\lambda_k} \sum_{j=1}^{[t]+1} C_\alpha(B_k^H) \right) \left| \int_{j-1}^{j} e^{-(\rho_1 \land \rho_2 - \lambda)(j-1)} \frac{1}{1 - 2\alpha} \right| \\
=: K_1 + K_2. \tag{3.24}
\]
By Lemma 7.4 and Lemma 7.5 in [43], for any $0 < \varepsilon < H$,

$$K_1 + K_2 \leq \frac{1}{2} \sum_{k=1}^{\infty} \left(\sqrt{\lambda_{k,1}} + \sqrt{\lambda_{k,2}} \right) \sum_{j=1}^{[t]+1} C_\alpha \eta_{\varepsilon,j-1} \left(1 + \frac{1}{H - \varepsilon - 1 + \alpha} \right) \left[|U^*|^2 + C(\omega) \right] \frac{e^{-\rho_1^\varepsilon,\rho_2^\varepsilon}(j-1)}{1 - 2\alpha},$$

where $\eta_{\varepsilon,j-1}$ is a positive random variable such that $E[\eta_{\varepsilon,j-1}]^p < C\varepsilon$ that does not depend on j, for any $p \geq 1$. Hence, for $\lambda < \rho_1 \land \rho_2$,

$$E \sum_{j=1}^{[t]+1} C_\alpha \eta_{\varepsilon,j-1} \left(1 + \frac{1}{H - \varepsilon - 1 + \alpha} \right) e^{-\rho_1^\varepsilon,\rho_2^\varepsilon}(j-1) \leq \sum_{j=1}^{\infty} C_\alpha C_{\varepsilon,1} e^{-\rho_1^\varepsilon,\rho_2^\varepsilon}(j-1) < \infty,$$

so we get $\sup_{t \in [0,\infty)} [K_1 + K_2] < \infty$, and back to (3.24), we get $\sup_{t \in [0,\infty)} [J_1 + J_2] < \infty$.

Now for J_3, first by triangle inequality, and the assumption for G_1, we get

$$J_3 \leq \sum_{k=1}^{\infty} \sqrt{\lambda_{k,1}} \sum_{j=1}^{[t]+1} C_\alpha (B_k^H)^{j-1} \int_{j-1}^{j} \int_{j-1}^{s} \left\{ \frac{|(v(s) - v(x), e_{\varepsilon,1}) e^{\lambda x} G_1(x)|}{(s - x)^{1+\alpha}} \right\} dx ds$$

$$+ \sum_{k=1}^{\infty} \sqrt{\lambda_{k,1}} \sum_{j=1}^{[t]+1} C_\alpha (B_k^H)^{j-1} \int_{j-1}^{j} \int_{j-1}^{s} \left\{ \frac{|(v(s) - v^*, e_{\varepsilon,1}) e^{\lambda x} G_1(s) - e^{\lambda x} G_1(x)|}{(s - x)^{1+\alpha}} \right\} dx ds$$

$$\leq \sum_{k=1}^{\infty} \sqrt{\lambda_{k,1}} \sum_{j=1}^{[t]+1} C_\alpha (B_k^H)^{j-1} \int_{j-1}^{j} \int_{j-1}^{s} \left\{ \frac{|(v(s) - v(x), e_{\varepsilon,1}) e^{-\rho_1^\varepsilon}(j-1) e^{-\rho_2^\varepsilon}(j-1)(s - x)|}{(s - x)^{1+\alpha}} \right\} dx ds$$

$$+ \sum_{k=1}^{\infty} \sqrt{\lambda_{k,1}} \sum_{j=1}^{[t]+1} C_\alpha (B_k^H)^{j-1} \int_{j-1}^{j} \int_{j-1}^{s} \left\{ \frac{|(v(s) - v^*, e_{\varepsilon,1}) e^{-\rho_1^\varepsilon}(j-1)(s - x)|}{(s - x)^{1+\alpha}} \right\} dx ds$$

there is similar estimate for J_4, hence, altogether, by Proposition 3.4, one obtain that

$$J_3 + J_4 \leq \sum_{k=1}^{\infty} \left(\sqrt{\lambda_{k,1}} + \sqrt{\lambda_{k,2}} \right) \sum_{j=1}^{[t]+1} C_\alpha (B_k^H)^{j-1} \int_{j-1}^{j} \int_{j-1}^{s} \left\{ \frac{|U(s) - U(x)|}{(s - x)^{1+\alpha}} \right\} dx ds$$

$$+ \sum_{k=1}^{\infty} \left(\sqrt{\lambda_{k,1}} + \sqrt{\lambda_{k,2}} \right) \sum_{j=1}^{[t]+1} e^{-\rho_1^\varepsilon,\rho_2^\varepsilon}(j-1) C_\alpha (B_k^H)^{j-1} \int_{j-1}^{j} \int_{j-1}^{s} \left\{ \frac{|U(s) - U^*|}{(s - x)^{1+\alpha}} \right\} dx ds$$

$$=: N_1 + N_2. \quad (3.25)$$

Firstly, by Proposition 3.4,

$$N_2 \leq \sum_{k=1}^{\infty} \left(\sqrt{\lambda_{k,1}} + \sqrt{\lambda_{k,2}} \right) \sum_{j=1}^{[t]+1} e^{-\rho_1^\varepsilon,\rho_2^\varepsilon}(j-1) C_\alpha (B_k^H)^{j-1} \int_{j-1}^{j} \int_{j-1}^{s} (C(\omega) + |U^*|_2) \frac{(s - j + 1)^{1-\alpha}}{1 - \alpha} ds$$
\[
\leq \sum_{k=1}^{\infty} (\sqrt{\lambda_{k,1}} + \sqrt{\lambda_{k,2}}) \sum_{j=1}^{\infty} \frac{C(\omega) + |U_j|^2}{(2-\alpha)(1-\alpha)} e^{-(\rho_1 \wedge \rho_2 - \lambda)(j-1)} C_\alpha(B_k^H)^j |_{j-1}.
\]

With the same discussion as before, for \(\lambda < \rho_1 \wedge \rho_2 \), we get
\[
\mathbb{E} \sum_{j=1}^{\infty} e^{-(\rho_1 \wedge \rho_2 - \lambda)(j-1)} C_\alpha(B_k^H)^j |_{j-1} < \infty,
\]
so \(\sup_{t \in [0,\infty)} N_2 < \infty \), a.s..

Now we will estimate \(N_1 \). Applying Theorem 4.2.1 in [48], with \(|B_k^H(t)| \leq t^2 + c(\omega) \) (see Lemma 2.6 of [38]), one can obtain
\[
\left| \int_x^s G_1 W_1^H, e_{k,1} \right| = \left| \sum_{j=1}^{\infty} \sqrt{\lambda_{j,1}} e_{j,1} \int_x^s G_1(r) dB_j^H(r), e_{k,1} \right| = \sqrt{\lambda_{k,1}} \left| \int_x^s G_1(r) dB_k^H(r) \right|
\]
\[
= \sqrt{\lambda_{k,1}} \left| G_1(s) B_k^H(s) - G_1(x) B_k^H(x) - \int_x^s G_1'(r) dB_k^H(r)dr \right|
\]
\[
\leq \sqrt{\lambda_{k,1}} \left| G_1(s) B_k^H(s) - G_1(x) B_k^H(x) \right| + \left| G_1(x) B_k^H(s) - G_1(x) B_k^H(x) \right| + M_1(s^2 + c(\omega))(s-x)
\]
\[
\leq \sqrt{\lambda_{k,1}} M_1(2(s-x)(s^2 + c(\omega)) + (s-x)^{H-\varepsilon} \eta_{2,x,s}].
\]

Recall that \(A_j e_{j,k} = \gamma_{j,k} e_{j,k} \) for \(j = 1, 2 \), then for \(\varepsilon < H - \alpha \) small enough,
\[
\left| \langle v(s) - v(x), e_{k,1} \rangle \right| = \left| \int_x^s \langle L_1 v, e_{k,1} \rangle + \int_x^s \langle v \cdot \nabla v, e_{k,1} \rangle + \int_x^s \langle w \partial_x v, e_{k,1} \rangle + \int_x^s \langle G_1 W_1^H, e_{k,1} \rangle \right|
\]
\[
\leq \gamma_{k,1} (|v|^2 + |v|^2 \|v\|_1 + \|v\|^2_1)(s-x) + \sqrt{\lambda_{k,1}} M_1(2(s-x)(s^2 + c(\omega)) + (s-x)^{H-\varepsilon} \eta_{2,x,s}]
\]
\[
\leq C \gamma_{k,1}(s-x) + C \sqrt{\lambda_{k,1}}(s-x)(s^2 + c(\omega)) + (s-x)^{H-\varepsilon} \eta_{2,x,s}.
\]

Similarly, we have
\[
\left| (T(s) - T(x), e_{k,2}) \right| \leq C \gamma_{k,2}(s-x) + C \sqrt{\lambda_{k,2}}(s-x)(s^2 + c(\omega)) + (s-x)^{H-\varepsilon} \eta_{2,x,s}.
\]

Hence, by the above estimates and Proposition 3.4,
\[
N_1 \leq C \sum_{k=1}^{\infty} \left(\sqrt{\lambda_{k,1}} \gamma_{k,1} + \sqrt{\lambda_{k,2}} \gamma_{k,2} \right) \sum_{j=1}^{\infty} C_\alpha(B_k^H)^j |_{j-1} \int_{j-1}^{j} \int_{j-1}^{j} \frac{e^{-(\rho_1 \wedge \rho_2 - \lambda)x}}{(s-x)^{\alpha}} dx ds
\]
\[
+ C \sum_{k=1}^{\infty} (\lambda_{k,1} + \lambda_{k,2}) \sum_{j=1}^{\infty} C_\alpha(B_k^H)^j |_{j-1} \int_{j-1}^{j} \int_{j-1}^{j} \frac{e^{-(\rho_1 \wedge \rho_2 - \lambda)x}}{(s-x)^{\alpha}} dx ds
\]
\[
+ C \sum_{k=1}^{\infty} (\lambda_{k,1} + \lambda_{k,2}) \sum_{j=1}^{\infty} C_\alpha(B_k^H)^j |_{j-1} \eta_{\varepsilon,j,j-1} \int_{j-1}^{j} \int_{j-1}^{j} \frac{e^{-(\rho_1 \wedge \rho_2 - \lambda)x}}{(s-x)^{\alpha}} dx ds
\]
\[
\leq C \sum_{k=1}^{\infty} \left(\sqrt{\lambda_{k,1}} \gamma_{k,1} + \sqrt{\lambda_{k,2}} \gamma_{k,2} \right) \sum_{j=1}^{\infty} C_\alpha(B_k^H)^j |_{j-1} \frac{e^{-(\rho_1 \wedge \rho_2 - \lambda)(j-1)}}{(1-\alpha)(2-\alpha)}
\]
\[
+ C \sum_{k=1}^{\infty} (\lambda_{k,1} + \lambda_{k,2}) \sum_{j=1}^{\infty} C_\alpha(B_k^H)^j |_{j-1} e^{-\frac{1}{2}(\rho_1 \wedge \rho_2 - \lambda)(j-1)}
\]
\[
+ C \sum_{k=1}^{\infty} (\lambda_{k,1} + \lambda_{k,2}) \frac{1}{(1 + H - \varepsilon - \alpha)(H - \varepsilon - \alpha)} \sum_{j=1}^{\infty} C_\alpha(B_k^H)^j |_{j-1} e^{-(\rho_1 \wedge \rho_2 - \lambda)(j-1)} \eta_{\varepsilon,j,j-1},
\]

15
where we used the boundedness \(\sup_{(x,s) \in [0,\infty) \times [0,\infty) \cap \{|x-s| \leq 1\}} e^{-\frac{1}{2}(\rho_1 \wedge \rho_2 - \lambda)(s^2 + c(\omega))} < \infty \) in the last inequality. Again by Lemma 7.4 and Lemma 7.5 in [43], for 0 < \(\varepsilon < H \),

\[
N_1 \leq C \sum_{k=1}^{\infty} (\sqrt{\lambda_{k,1}} \gamma_{k,1} + \sqrt{\lambda_{k,2}} \gamma_{k,2}) \sum_{j=1}^{\infty} \eta_{\varepsilon,j-1} e^{-(\rho_1 \wedge \rho_2 - \lambda)(j-1)}
+ C \sum_{k=1}^{\infty} (\lambda_{k,1} + \lambda_{k,2}) \sum_{j=1}^{\infty} \eta_{\varepsilon,j-1} e^{-(\rho_1 \wedge \rho_2 - \lambda)(j-1)}
+ C \sum_{k=1}^{\infty} (\lambda_{k,1} + \lambda_{k,2}) \sum_{j=1}^{\infty} e^{-(\rho_1 \wedge \rho_2 - \lambda)(j-1)} \eta_{\varepsilon,j-1}^2,
\]

where \(\eta_{\varepsilon,j-1} \) is a positive random variable such that \(\mathbb{E}[\eta_{\varepsilon,j-1}] < C_{\varepsilon,p} \) that does not depend on \(j \), for any \(p \geq 1 \). Hence, there exists \(C_2(\omega) \) such that

\[
\mathbb{E}[\sup_{t \in [0,\infty)} N_1] < C,
\]

which implies

\[
\sup_{t \in [0,\infty)} N_1 < C(\omega).
\]

Back to (3.21), we get that for any fixed \(\omega \), there exists \(C_1(\omega) \), and \(\lambda < \rho_1 \wedge \rho_2 \) such that

\[
e^{-\lambda t} |U(t) - U^*|_2^2 \leq C_1(\omega),
\]

combining with (3.22), this yields that for \(\lambda < \rho_1 \wedge \rho_2 \wedge 2\lambda_1^{-2}(\bar{\nu} - c_0 \lambda_1 |AU^*|_2^2 - \alpha_0 \lambda_1), \)

\[
\lim_{t \to \infty} \frac{1}{t} \log |U(t) - U^*|_2^2 \leq -\lambda.
\] (3.26) \(\square \)

References

[1] Z. Brzeziak, T. Caraballo b, J.A. Langa, Y. Li, G. Lukaszewicz, J. Real, Random attractors for stochastic 2D-Navier Stokes equations in some unbounded domains, J. Differential Equations, 255(2013), 3897–3919.

[2] Peter W. Bates, Kening Lu, Bixiang Wang, Random attractors for stochastic reaction-Diffusion equations on unbounded domains, J. Differential Equations, 246(2009), 845–869.

[3] C. Cao, S. Ibrahim, K. Nakanishi, E.S. Titi, Finite-time blowup for the inviscid primitive equations of oceanic and atmospheric dynamics, Comm. Math. Phys. 337(2015), 473–482.

[4] C. Cao, J. Li, E.S. Titi, Global well-posedness of strong solutions to the 3D primitive equations with horizontal eddy diffusivity, J. Differential Equations 257 (2014), 4108–4132.

[5] C. Cao, J. Li, E.S. Titi, Local and global well-posedness of strong solutions to the 3D primitive equations with vertical eddy diffusivity, Arch. Ration. Mech. Anal. 214 (2014), 35–76.

[6] C. Cao, J. Li, E.S. Titi, Global well-posedness of the three-dimensional primitive equations with only horizontal viscosity and diffusion, Communications on Pure and Applied Mathematics Vol. LXIX(2016), 1492–1531.

[7] T. Caraballo, J. Langa, T. Taniguchi, The exponential behaviour and stabilizability of stochastic 2D–Navier–Stokes equations, J. Differential Equations, 179 (2002) 714–737.
[8] T. Caraballo, A. M. Marquez-Duran, J. Real, The asymptotic behaviour of a stochastic 3D LANS-\alpha model, Appl. Math. Optim., 53(2006) 141–161.

[9] C. Cao, E.S. Titi, Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics, Ann. of Math. 166(2007), 245–267.

[10] C. Cao, E.S. Titi, Global well-posedness of the 3D primitive equations with partial vertical turbulence mixing heat diffusion, Comm. Math. Phys. 310 (2012), 537–568.

[11] H. Crauel, A. Debussche, F. Flandoli, Random attractors, J. Dynam. Differential Equations, 9(1997), 307–341.

[12] H. Crauel, F. Flandoli, Attractors for random dynamical systems, Probab. Theory Related Fields, 100(1994), 365–393.

[13] A. Debussche, N. Glatt-Holtz, R. Temam, and M. Ziane, Global existence and regularity for the 3d stochastic primitive equations of the ocean and atmosphere with multiplicative white noise, Nonlinearity, 25(2012), 2093.

[14] Z. Dong, R. Zhang, Markov selection and W-strong Feller for 3D stochastic primitive equations, Science China Mathematics, 60(2017), 1873–1900.

[15] Z. Dong, J. Zhai, R. Zhang, Large deviation principles for 3D stochastic primitive equations, J. Differential Equations 263(2017), 3110–3146.

[16] Z. Dong, J. Zhai, R. Zhang, Exponential mixing for 3D stochastic primitive equations of the large scale ocean. preprint. Available at arXiv: 1506.08514.

[17] B. Ewald, M. Petcu and R. Temam, Stochastic solutions of the two-dimensional primitive equations of the ocean and atmosphere with an additive noise, Anal. Appl. (Singap.) 5(2007), 183–198.

[18] C. Foias and G. Prodi, Sur le comportement global des solutions non-stationnaires des équations de Navier-Stokes en dimension 2, Rend. Sem. Mat. Univ. Padova, 39(1967), 1–34.

[19] Hongjun Gao, Maria J. Garrido-Atienza, and Bjorn Schmalfuss, Random attractors for stochastic evolution equations driven by fractional Brownian motion, SIAM J. MATH. ANAL., 46(2014), 2281–2309.

[20] A. E. Gill, Atmosphere-ocean dynamics, International Geophysics Series, Vol. 30, Academic Press, San Diego, 1982.

[21] B. Guo, D. Huang, 3d stochastic primitive equations of the large-scale ocean: global well-posedness and attractors, Commun. Math. Phys. 286(2009), 697–723.

[22] N. Glatt-Holtz, R. Temam, Cauchy convergence schemes for some nonlinear partial differential equations, Appl. Anal. 90(2011), 85–102.

[23] N. Glatt-Holtz, R. Temam, Pathwise solutions of the 2-d stochastic primitive equations, Appl. Math. Optim. 63(2011), 401–433.

[24] N. Glatt-Holtz, M. Ziane, The stochastic primitive equations in two space dimensions with multiplicative noise, Discrete Contin. Dyn. Syst. Ser. B 10 (2008), 801–822.

[25] N. Glatt-Holtz, I. Kukavica, V. Vicol, and M. Ziane, Existence and Regularity of Invariant Measures for the Three Dimensional Stochastic Primitive Equations, Journal of Mathematical Physics, 55(2014), 051504.

[26] Hongjun Gao, Chengfeng Sun, Well-posedness and large deviations for the stochastic primitive equations in two space dimensions, COMMUN. MATH. SCI. 10(2012), 575–593.

[27] Hongjun Gao, Chengfeng Sun, Well-posedness of stochastic primitive equations with multiplicative noise in three dimensions, Disc. and Cont. Dyn. Sys. B, 21(2016), 3053–3073.
[28] Hongjun Gao, Chengfeng Sun, Hausdorff dimension of random attractor for stochastic Navier-Stokes-Voight equations and primitive equations. Dyn Partial Differ Equ, 7(2010), 307–326.

[29] G. J. Haltiner, Numerical weather prediction, J.W. Wiley & Sons, New York, 1971.

[30] G. J. Haltiner, R. T. Williams, Numerical prediction and dynamic meteorology, John Wiley & Sons, New York, 1980.

[31] N. Ju, The global attractor for the solutions to the 3D viscous primitive equations, Discrete Contin. Dyn. Syst. 17 (1) (2007) 159–179.

[32] I. Kukavica and M. Ziane, On the regularity of the primitive equations of the ocean, Nonlinearity 20(2007), 2739–2753.

[33] J. L. Lions, R. Temam and S. Wang, New formulations of the primitive equations of atmosphere and applications, Nonlinearity 5(1992), 237–288.

[34] J. L. Lions, R. Temam and S. Wang, On the equations of the large scale ocean, Nonlinearity 5(1992), 1007–1053.

[35] J. L. Lions, R. Temam and S. Wang, Models of the coupled atmosphere and ocean (CAOI), Computational Mechanics Advance 1 (1993), 1–54.

[36] J. L. Lions, R. Temam and S. Wang, Mathematical theory for the coupled atmosphere-ocean models (CAOIII), J. Math. Pures Appl. 74 (1995), 105–163.

[37] B. Maslowski and D. Nualart, Evolution equations driven by a fractional Brownian motion, Journal of Functional Analysis 202 (2003), 277–305.

[38] B. Maslowski, B. Schmalfuss, Random dynamical systems and stationary solutions of differential equations driven by the fractional Brownian motion, Stoch. Anal. Appl. 22 (6) (2004) 1577-1607.

[39] T.T. Medjo, The primitive equations of the ocean with delays, Nonlinear Anal. Real World Appl. 10 (2) (2009) 779-797.

[40] T.T. Medjo, The exponential behavior of the stochastic three-dimensional primitive equations with multiplicative noise, Nonlinear Anal. Real World Appl. 12(2011) 799–810.

[41] A.J. Majda, I. Timofeyev and E. Vanden-Eijinden, A Mathematical Framework for Stochastic Climate Models, Commun.Pure Appl.Math., 54, 891–974, 2001.

[42] N. Glatt-Holtz, I. Kukavica, V. Vicol, and M. Ziane, Existence and regularity of invariant measures for the three dimensional stochastic primitive equations, Journal of Mathematical Physics, 55(2014), 051504.

[43] D. Nualart, A. Rascanu, Differential equations driven by fractional Brownian motion, Collec. Math. 53(2002) 55-81.

[44] T.N. Palmer, A nonlinear dynamical perspective on model error: a proposal for non-local stochastic-dynamic parametrizations in weather and climate prediction models, Q.J.R.Meteorol.Soc., 127, 279–304, 2001.

[45] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, London, 1993.

[46] R. Temam, ”Infinite Dimensional Dynamical Systems in Mechanics and Physics,” SpringVerlag, 1988, 2nd Edition, 1997.

[47] L. Wang, G. Zhou, The dynamical behavior of 3D stochastic primitive equations driven by fractional noise, preprint.
[48] M. Zähle, Integration with respect to fractal functions and stochastic calculus, I, Probab. Theory and Related Fields 111 (1998) 333–374.

[49] G. Zhou, Random attractor of the 3D viscous primitive equations driven by fractional noises, J. Differential Equations, 266(2019), 7569–7637.