Influência da Ultrassonografia Doppler nas Falhas de Fístulas Arteriovenosas de Diálise Relacionada a Alguns Fatores de Risco

The influence of a doppler ultrasound in arteriovenous fistula for dialysis failure related to some risk factors

Introdução: A crescente prevalência de doença renal crônica aumentou a demanda por confecção de fístula arteriovenosa (FAV). O objetivo do presente estudo foi avaliar a relação entre alguns fatores de risco para falha da FAV (idade avançada, sexo feminino, diabetes, obesidade, cateter venoso central, fístula prévia e hospitalização) e a realização de ultrassonografia Doppler no pré-operatório. Métodos: Estudo prospectivo com 228 pacientes em diálise em Imperatriz, MA. Metade da amostra foi randomizada para receber ultrassonografia Doppler no pré-operatório. A outra metade dos pacientes não foi submetido a exame ultrassonográfico. O estudo incluiu pacientes atendidos no período de outubro de 2016 a setembro de 2018. Resultados: Houve 53 falhas (23,2%) em nossa amostra, quase o dobro do número dos pacientes no grupo clínico. Considerando as falhas e os fatores de risco associados à amostra geral, houve associação estatisticamente significativa entre catéter venoso central do mesmo lado da FAV (P = 0,04; Razão de Chances: 1,24) e obesidade (P = 0,05; Razão de Chances: 1,36), que não foi reproduzido no grupo de ultrassonografia Doppler individualmente. Não houve diferença estatisticamente significativa entre o grupo Doppler e o grupo clínico em relação à quantidade de dias de internação e falha da FAV. Conclusões: A redução de falhas com a introdução do Doppler foi estaticisticamente significativa na amostra geral, mas só foi possível estabelecer uma relação entre fatores de risco específicos e falha em dois dos fatores estudados, obesidade e cateter venoso central no mesmo lado da FAV.

Palavras-chave: Insuficiência Renal Crônica; Diálise Renal; Fístula Arteriovenosa; Ultrassonografia Doppler.

Abstract

Introduction: The increasing prevalence of chronic kidney disease has increased the demand for arteriovenous fistula (AVF) care. The objective of this study was to assess the relationship between some risk factors for AVF failure (advanced age, female sex, diabetes, obesity, central venous catheter, previous fistula, and hospitalization) and having a Doppler ultrasound performed preoperatively. Methods: A prospective study was performed with 228 dialysis patients from Imperatriz, Maranhão. Half of the sample was randomly selected to receive preoperative Doppler ultrasound and the other half did not, from the period of October 2016 to September 2018. Results: There were 53 total failures corresponding to 23.2% of our sample, which is almost double that of the patients in the clinical group. Considering the failures and risk factors associated with the overall sample, there was a statistically significant association between a central venous catheter on the same side of the AVF with P = 0.04 (Odds Ratio 1.24) and obesity with P = 0.05 (Odds Ratio 1.36), which was not repeated in the Doppler ultrasound group individually. There was no statistically significant difference between the Doppler group and clinical group with respect to the amount of days of previous AVF hospitalization and failure. Conclusions: We concluded that the reduction of failures with an introduction of the Doppler was statistically significant in the overall sample, but establishing a relationship between specific risk factors and failure was only possible with two of the risk factors in the study - obesity and central venous catheter on the same side of the AVF.

Keywords: Renal Insufficiency, Chronic; Renal Dialysis; Arteriovenous fistula; Ultrasonography, Doppler.
** INTRODUÇÃO **

O aumento da prevalência de doença renal crónica (DRC) e os consequentes impactos econômicos sobre os serviços de saúde resultaram em uma maior demanda por confecção de fístula arteriovenosa (FAV), considerada o calcanhar de Aquiles da hemodiálise. A ultrassonografia Doppler, um método não-invasivo que permite avaliar com segurança os vasos periféricos estrutural e funcionalmente, está se tornando a modalidade de imagem preferida para o planejamento e seguimento das FAV.1-10

Dados do censo de 2018 da Sociedade Brasileira de Nefrologia indicam que havia 133.464 pacientes com DRC em diálise no Brasil naquele ano, com uma prevalência nacional de 640 pmp (por milhão da população) e de 276 pmp no Maranhão. A grande maioria (92,3%) dos pacientes estava em hemodiálise.11

A fístula arteriovenosa autógena, localizada na região do punho e descrita originalmente por Brescia-Cimino em 1966, tem sido a primeira escolha para a maioria dos cirurgiões, pois a fístula rádio-cefálica ainda hoje é a que oferece menor risco de complicações e boa durabilidade.12,13 Enxertos e catéteres apresentam menor taxa de sobrevida devido à maior incidência de trombose e oclusão por hiperplasia intimal, além de maior suscetibilidade a infecções, levando a maior morbimortalidade dos pacientes em comparação à fístula arteriovenosa autógena.14

Segundo a National Kidney Foundation – Kidney Disease Outcomes Quality Initiative (NKF-K/DOQI), o acesso ideal fornece vazão adequada, boa durabilidade e baixa taxa de complicações (infecção, estenose, trombose, aneurisma e isquemia nos membros). Entre os acessos existentes, as fístulas arteriovenosas são as que mais se aproximam do ideal.15 Alguns estudos identificaram taxas de maturação inicial insatisfatórias, com falhas de maturação entre 30% e 60%.16,17

A ultrassonografia Doppler ajuda os cirurgiões vasculares a planejar a configuração de fístula mais adequada para otimizar a vazão de sangue no acesso vascular de hemodiálise, potencialmente reduzindo a incidência de disfunção da fístula arteriovenosa.6,18

As diretrizes do NKF-DOQI e da Society for Vascular Surgery recomendam o mapeamento vascular por imaginologia para todos os pacientes submetidos à cirurgia de confecção de fístula arteriovenosa para hemodiálise.15,19

O uso e interpretação do mapeamento vascular por ultrassonografia Doppler pré-operatória na FAV variam consideravelmente dependendo do país, com alta utilização demonstrada nos Estados Unidos, independentemente das características dos pacientes. Cirurgiões canadenses e europeus usam seletivamente o mapeamento vascular em pacientes com IMC >30, acesso cirúrgico prévio, histórico de uso de catéter venoso central e catéter venoso central de inserção periférica (PICC).20

Nosso estudo prospectivo buscou analisar a relação entre fatores de risco para falha da fístula arteriovenosa (idade avançada, sexo feminino, diabetes, obesidade, catéter venoso central do mesmo lado da FAV, fístula anterior e realização da fístula logo após a internação) e a realização de ultrassonografia Doppler no pré-operatório.

** MÉTODOS **

O estudo foi aprovado pelo Comitê de Ética da Faculdade de Medicina do ABC-SP (FMABC-SP) e está em conformidade com os preceitos da Declaração de Helsinque. Todos os participantes assinaram termo de consentimento livre e esclarecido. O presente estudo prospectivo incluiu pacientes em diálise atendidos nas clínicas de hemodiálise de Imperatriz-MA (Clínica de Doenças Renais e Clínica de Nefrologia de Imperatriz-MA).

A amostra foi de 228 pacientes. Metade foi randomizada por sorteio simples de 1:1 para a realização de ultrassonografia Doppler pré-operatória da FAV e metade não utilizou esse método no pré-operatório e foi avaliada apenas por exame físico. Avaliamos a redução de falhas de FAV potencialmente advindas da realização de ultrassonografia Doppler pré-operatória em relação aos seguintes fatores de risco: idade avançada, sexo feminino, diabetes, obesidade, catéter venoso central do mesmo lado da FAV, fístula prévia e internação próxima à confecção da FAV. O estudo ocorreu de outubro de 2016 a setembro de 2018, com cada paciente sendo acompanhado por seis meses (nos momentos pós-operatório imediato, uma semana, três meses e seis meses de pós-operatório).

Os critérios de inclusão foram pacientes adultos (idade> 18 anos) com condição clínica estável, arco palmar patente (teste de Allen), autorização para participar do estudo, diâmetro do vaso luminal conforme descrito abaixo, ausência de estenose ou trombose no sistema venoso central e ausência de estenose ou oclusão arterial avaliada por ultrassonografia Doppler (grupo ultrassonográfico).
Foram excluídos os pacientes que realizaram o Doppler em clínicas privadas.

O aparelho de ultrassom utilizado foi um HD11 XE Performance Plus® (Philips) com transdutor de 3 a 12 MHz. Os exames foram realizados por um único ultrassonografista vascular. Todos os pacientes foram examinados na posição sentada, com os braços apoiados na mesa de exame. O exame das veias superficiais foi realizada com o uso de torniquete. A compressibilidade das veias cefálica e basilica ao longo de seu curso no modo B, bem como os diâmetros dessas veias, foram medidos com uma seção transversal no pulso, no terço proximal do antebraço e nos terços distal e proximal do braço. Foi avaliada a continuidade do sistema venoso profundo nas veias axilar e subclávia. Investigamos o diâmetro e o fluxo das artérias braquial, ulnar e radial, bem como da subclávia e axilar, para avaliar possíveis estenoses. A patência do arco palmar foi avaliada pelo teste de Allen. A avaliação do braço dominante foi realizada apenas quando o não dominante apresentou avaliação insatisfatória.

No presente estudo, os vasos satisfizeram os critérios mínimos de diâmetro luminal venoso ≥ 2,5 mm para fístulas nativas (usando torniquete), diâmetro de veias axilares ≥ 4,0 mm para enxertos arteriovenosos e diâmetro luminal arterial ≥ 2,0 mm para serem utilizados na confecção de FAV. 21

O exame físico do grupo clínico foi realizado pelo cirurgião vascular que confeccionou as FAVs. As veias foram avaliadas com torniquete quanto ao diâmetro e compressibilidade. Edema ou circulação colateral foram avaliados em braços com sinais de estenose venosa central. O segmento arterial foi avaliado quanto à pulsatilidade e pelo teste de Allen.

A equipe profissional era composta por três cirurgiões vasculares experientes que prestavam serviços ao SUS. Cada cirurgião realizou a mesma quantidade de cirurgias nos dois grupos.

Em sua maioria, as FAVs eram localizadas na parte distal e no braço não dominante sempre que possível. Enxerto protético foi utilizado apenas quando não havia veia nativa para confecção da FAV. Após a confecção da FAV, o cirurgião avaliou a presença ou ausência de frémito. Nefrologistas e enfermeiros qualificados avaliaram clinicamente a maturação da FAV. As FAVs e as possíveis alterações foram seguidas por seis meses. Não houve procedimento endovascular para resgate de fístula no presente estudo.

**ANÁLISE DE DADOS**

Os dados coletados foram digitados em uma planilha de Microsoft Excel 2016. Após conferência para eliminar erros e inconsistências, foram realizados exames descritivos por meio de frequências absolutas e relativas e medidas de tendência central e variabilidade.

O teste do qui-quadrado ou outro equivalente foi utilizado para avaliar associações entre variáveis qualitativas e, no caso de associações 2x2 significativas, as razões de chances e intervalos de confiança foram calculados por meio de regressão logística. Para a análise das variáveis quantitativas, foi utilizado o teste t de Student ou outro método não-paramétrico semelhante. Todas as análises foram realizadas com nível de significância de 5%, utilizando o programa IBM SPSS® (IBM SPSS Statistics, Versão 24.0, 2016).

**RESULTADOS**

Em ambos os grupos, a principal etiologia da DRC foi hipertensão, que acompanhada de diabetes contabilizaram em conjunto por 90% das causas de doença renal. Os fatores dominantes foram sexo masculino, com 60% dos casos, e idade abaixo de 65 anos, com 78%, como mostra a Tabela 1.

![Tabela 1. Características básicas (n=228)](attachment:attachment.png)
Houve um total de 53 falhas, correspondendo a 23,2% da amostra total. Além disso, 34% das falhas ocorreram no grupo ultrassonográfico, em comparação aos 66% no grupo clínico, como mostra a Tabela 2.

| Falhas de FAV (n=228) | Falhas | Percentual | P-valor |
|-----------------------|--------|------------|---------|
| Grupo Clínico         | 66%    |            |         |
| Grupo Doppler         | 34%    |            |         |
| Precoce (antes da maturação) | 75,5% | 0,02       |         |
| Tardia (após a maturação) | 24,5% |            |         |

*p-valor do teste do qui-quadrado.

Considerando as falhas e os fatores de risco associados à amostra geral (com e sem Doppler), foi identificada associação significativa apenas entre ter catéter venoso central no mesmo lado da fístula arteriovenosa (*P* = 0,04; razão de chances: 1,24) e obesidade (*P* = 0,05; razão de chances: 1,36), conforme mostra a Tabela 3. No entanto, o grupo Doppler não revelou associação significativa com nenhum fator de risco para falha, conforme apresentado na Tabela 4.

A Tabela 5 mostra os dados do Doppler com os diâmetros e profundidades venosas, bem como os diâmetros arteriais, considerando que os critérios de inclusão venosa foram diâmetro ≥ 2,5 mm, arterial ≥ 2,0 mm e axilar ≥ 4,0 mm. Independentemente da profundidade da veia basílica no braço, ela foi transposta anteriormente em todos os pacientes dos dois grupos.

**Tabela 2.** Falhas de FAV (n=228)

| Falhas | Percentual | P-valor |
|--------|------------|---------|
| Grupo Clínico | 66% | |
| Grupo Doppler | 34% | |
| Precoce (antes da maturação) | 75,5% | 0,02 |
| Tardia (após a maturação) | 24,5% | |

*p-valor do teste do qui-quadrado.

**Tabela 3.** Correlação entre Falha e Fatores de Risco (n=228).

| Fatores de Risco | Não | Sim | P-valor | Razão de chances [IC 95%] |
|------------------|-----|-----|---------|--------------------------|
| Sexo Feminino    | 68  (73,9%) | 24  (26,1%) | 0,40 | -                      |
| Masculino        | 107 (78,7%) | 29  (21,3%) |         | -                      |
| Idade < 65 anos  | 136 (76,4%) | 42  (23,6%) | 0,81 | -                      |
| ≥ 65 anos        | 39  (78,0%) | 11  (22,0%) |         | -                      |
| Diabetes Sim     | 89  (76,7%) | 27  (23,3%) | 0,99 | -                      |
|                   | 167 (78,0%) | 47  (22,0%) | 0,05 | Ref                    |
| Obesidade Sim    | 8   (57,1%) | 6   (42,9%) |         | 1,36 [1,01 – 2,16]     |
|                   | 152 (79,2%) | 40  (20,8%) |         | Ref                    |
| Catéter central Sim     | 23  (63,9%) | 13  (36,1%) | 0,04 | 1,24 [1,02 – 1,60]     |
| Diabetes Nao     | 45  (81,8%) | 10  (18,2%) |         | -                      |
|                   | 51  (86,4%) | 8   (13,6%) |         | -                      |
| Diabetes Sim     | 91  (85,0%) | 16  (15,0%) | 0,50 | -                      |
|                   | 5    (71,4%) | 2   (28,6%) |         | -                      |
| Obesidade Sim    | 82  (83,7%) | 16  (16,3%) | 0,70** | -                      |
|                   | 14  (87,5%) | 2   (12,5%) |         | -                      |
| Catéter central Sim     | 63  (79,7%) | 16  (20,3%) | 0,06** | -                      |
| FAV Sim          | 33  (94,3%) | 2   (5,7%) |         | -                      |

* P-valor do teste do qui-quadrado. **Teste de Fisher.

**Tabela 4.** Grupo Ultrassonografia: Correlação entre Falha e Fatores de Risco (n=114).

| Fatores de Risco | Não | Sim | P-valor |
|------------------|-----|-----|---------|
| Sexo Feminino    | 42  (85,7%) | 7   (14,3%) | 0,70* |
| Masculino        | 54  (83,1%) | 11  (16,9%) |         |
| Idade < 65 anos  | 74  (82,2%) | 16  (17,8%) | 0,36** |
| ≥ 65 anos        | 22  (91,7%) | 2   (8,3%) |         |
| Diabetes Nao     | 45  (81,8%) | 10  (18,2%) | 0,50* |
|                   | 51  (86,4%) | 8   (13,6%) |         |
| Diabetes Sim     | 91  (85,0%) | 16  (15,0%) | 0,31** |
|                   | 5    (71,4%) | 2   (28,6%) |         |
| Obesidade Nao    | 82  (83,7%) | 16  (16,3%) | 0,70** |
|                   | 14  (87,5%) | 2   (12,5%) |         |
| Catéter central Sim     | 63  (79,7%) | 16  (20,3%) | 0,06** |
| FAV Sim          | 33  (94,3%) | 2   (5,7%) |         |

* Teste do qui-quadrado. **Teste de Fisher.
**TABELA 5. MÉDIAS E DESVIO PADRÃO NO GRUPO DE MAPEAMENTO ULTRASSONOGRÁFICO PRÉ-OPERATÓRIO (n=114).**

| Ultrassonografia Doppler | Média  | DP    |
|-------------------------|--------|-------|
| Veia céfálica (n=78)    | 0,37   | 0,08  |
| Diâmetro (cm)           |        |       |
| Profundidade (cm)       | 0,19   | 0,09  |
| Veia basilica (n=23)    | 0,40   | 0,11  |
| Diâmetro (cm)           |        |       |
| Profundidade (cm)       | 0,64   | 0,31  |
| Veia axilar (n=13)      | 0,69   | 0,14  |
| Diâmetro (cm)           |        |       |
| Artéria radial (n=29)   | 0,23   | 0,03  |
| Diâmetro (cm)           |        |       |
| PVS (cm/seg)            | 52,93  | 17,50 |
| Artéria braquial (n=85) | 0,39   | 0,09  |
| Diâmetro (cm)           |        |       |
| PVS (cm/seg)            | 68,00  | 21,27 |

DP: desvio padrão.

Não foi observada correlação significativa entre o número de dias de internação e a taxa de falha nos dois grupos. Não houve diferença no tempo de internação entre o grupo submetido ao Doppler e o grupo clínico, como mostra a Tabela 6.

**DISCUSSÃO**

Em nosso estudo, a hipertensão arterial foi a principal causa de DRC seguida de diabetes. Além disso, foi observada predominância do sexo masculino, o que está em acordo com vários outros estudos.²,¹¹,²²-²⁷ Nossa taxa de falha foi um pouco mais baixa do que as relatadas em estudos anteriores.²²,²⁸-³⁰ Não encontramos associação estatisticamente significativa entre falhas de fístula e fatores de risco como idade avançada, sexo feminino e diabetes, conforme relatado em alguns estudos.²⁴,³¹-³⁶ No entanto, em nossa amostra inicial de 228 pacientes houve apenas 53 casos, o que reduziu nossa amostra para análise de associação e possivelmente explica a ausência de associação sugerida pelos estudos citados acima.

Na amostra geral, os pacientes com obesidade apresentaram 1,36 vezes mais chances de apresentar falha do que os não obesos. Indivíduos com catéter central tiveram 1,24 vezes mais chances de apresentar falha do que pacientes sem.

No grupo submetido a ultrassonografia Doppler, não houve associação significativa com catéter central ou obesidade, o que sugere que o Doppler proporciona uma redução na ocorrência de falhas nesses pacientes.

Não houve diferença entre o número de dias de internação entre os grupos que apresentaram falhas ou não (P=0,29). Não houve diferença entre o número de dias de internação entre os grupos clínico e ultrassonográfico (P=0,052). Isso mostra que o exame físico e a ultrassonografia Doppler conseguiram identificar as veias inviabilizadas por possíveis punções realizadas antes da FAV. Não identificamos dados semelhantes na literatura para comparação.

**CONCLUSÃO**

Concluímos que a redução da taxa de falhas com o uso do Doppler foi estatisticamente significativa na amostra geral. Contudo, estabelecer uma relação entre fatores de risco específicos e falhas só foi possível em relação a dois fatores de risco, obesidade e catéter venoso central no mesmo lado da FAV. Isso mostra o benefício do uso pré-operatório da ultrassonografia Doppler nas FAVs, principalmente para reduzir falhas relacionadas a esses dois fatores de risco. Estudos adicionais com amostras maiores se fazem necessários.

**TABELA 6. DIAS DE INTERNAÇÃO POR GRUPO E TAXA DE FALHA DE PACIENTES SUBMETIDOS A CIRURGIA PARA CONFEÇÃO DE FAV (n=228).**

| Dias de internação (Média ± Desvio Padrão) | p*   |
|-------------------------------------------|------|
| Grupo                                    |      |
| Clínico (n=114)                           | 8,91±13,40 | 0,052 |
| Ultrassonografia (n=114)                  | 10,98±14,34 |
| Falhas                                    |      |
| Sim (n=53)                                | 9,34±13,58 | 0,29  |
| Não (n=175)                               | 11,94±14,80 |

*p* teste não-paramétrico de Wilcoxon | teste U de Mann-Whitney.
CONFLITO DE INTEResses
Os autores declaram não haver conflitos de interesse em relação ao estudo.

CONTRIBUIÇÕES DOS AUTORES
Jocefábia Reika Alves Lopes, Ana Lígia de Barros Marques e João Antonio Correa contribuíram na concepção e delineamento do estudo, revisão crítica do texto, aprovação final do artigo e análise estatística. Jocefábia Reika Alves Lopes contribui com a análise e interpretação dos dados, coleta de dados, edição do artigo e é a responsável geral pelo estudo.

REFERÊNCIAS
1. Shenoy S, Darcy M. Ultrasound as a tool for preoperative planning, monitoring, and interventions in dialysis arteriovenous access. AJR Am J Roentgenol. 2013 Oct;201(4):W359-43.
2. Ilhan G, Esi E, Bozkor S, Yurekli I, Ozpak B, Ozceli A, et al. The clinical utility of vascular mapping with Doppler ultrasound prior to arteriovenous fistula construction for hemodialysis access. J Vasc Access. 2013 Jan;Mar;14(1):83-8.
3. Lok CE, Davidson I. Optimal choice of dialysis access for chronic kidney disease patients: developing a life plan for dialysis access. Semin Dial. 2012 Nov;35(6):530-7.
4. Marques MG, Ibeas J, Botelho C, Maia P, Ponce P. Doppler ultrasound: a powerful tool for vascular access surveillance. Semin Dial. 2015 Mar;Apr;28(2):206-10.
5. Lomonte C, Meola M, Petrucci I, Casucci F, Basile C. The key role of color Doppler ultrasound in the work-up of hemodialysis vascular access. Semin Dial. 2015 Mar;Apr;28(2):211-5.
6. Dageforde LA, Harms KA, Feurer ID, Shaffer D. Increased minimum vein diameter on preoperative mapping with duplex ultrasound is associated with arteriovenous fistula maturation and secondary patency. J Vasc Surg. 2015 Jan;61(1):170-6.
7. Bandyk DF. Interpretation of duplex ultrasound dialysis access testing. Semin Vasc Surg. 2013 Jun;Sep;26(2-3):120-6.
8. Mudoni A, Caccetta F, Caroppo M, Musio F, Accogli A, Zacheo MD, et al. Echo color Doppler ultrasound: a valuable diagnostic tool in the assessment of arteriovenous fistula in hemodialysis patients. J Vasc Access. 2016 Sep;17(5):446-52.
9. Pajek J, Malovrh M. Preoperative ultrasound still valuable for radio-cephalic arteriovenous fistula creation? J Vasc Access. 2017;18(Suppl 1):5-9.
10. Marques MG, Ponce P. Pre-operative assessment for arteriovenous fistula placement for dialysis. Semin Dial. 2017 Jan;30(1):58-62.
11. Sociedade Brasileira de Nefrologia (SBN). Censo SBN - 2018. São Paulo: SBN; 2018. Available from: https://sbn.org.br/censo-2018
12. Clark TW, Cohen RA, Kwak A, Markmann JF, Stavropoulos SW, Patel AA, et al. Salvage of nonmaturing native fistulas by anastomotic angioplasty. Radiology. 2007;242(1):336-92.
13. Wiese P, Nonnam-Daniel B. Colour Doppler ultrasound in dialysis access. Nephrol Dial Transplant. 2004 Aug;19(8):1956-63.
14. Duval L. Proximal radial artery arteriovenous fistulae (PRA-AVF). Nephrol Nurs J. 2007 Mar;Apr;34(2):217-8.
15. Vascular Access 2006 Work Group. Clinical practice guidelines for vascular access. Am J Kidney Dis. 2006 Jul;48(Suppl 1):S176-247.
16. Biukancs A, Scott EC, Meier GH, Panneton JM, Glickman MH. The natural history of autologous fistulas as first-time dialysis access in the KDOQI era. J Vasc Surg. 2008;47(2):415-21, discussion 420-1.
17. Dember LM, Beck GJ, Allon M, Delmez JA, Dixon BS, Greenberg A, et al. Effect of clopidogrel on early failure of arteriovenous fistulas for hemodialysis: a randomized controlled trial. JAMA. 2008 May;299(18):2164-71.
18. Caroli A, Manini S, Antiga L, Passera K, Ene-Iordache B, Rota S, et al. Validation of a patient-specific hemodynamic computational model for surgical planning of vascular access in hemodialysis patients. Kidney Int. 2013 Dec;84(6):1237-45.
19. Sidawy AN, Spergel LM, Besarab A, Allon M, Jennings WC, Padberg Junior FT, et al. The Society for Vascular Surgery: clinical practice guidelines for the surgical placement and maintenance of arteriovenous hemodialysis access. J Vasc Surg. 2008 Nov;48(5 Suppl):25-25S.
20. Nica A, Lok CE, Harris J, Lee TC, Mokrzycki MH, Maya ID, et al. Understanding surgical preference and practice in hemodialysis vascular access creation. Semin Dial. 2013 Jul/Aug;26(4):520-6.
21. Silva Junior MB, Hobson RW, Pappas PJ, Jamil Z, Araki CT, Goldberg MC, et al. A strategy for increasing use of autogenous hemodialysis access procedures: impact of preoperative noninvasive evaluation. J Vasc Surg. 1998 Feb;27(2):302-7; discussion 307-8.
22. Ferring M, Claridge M, Smith SA, Wilmink T. Routine preoperative vascular ultrasound improves patency and use of arteriovenous fistulas for hemodialysis: a randomized trial. Clin J Am Soc Nephrol. 2010 Dec;5(12):2236-44.
23. Nursal TZ, Oguzkurt L, Tercan F, Torer N, Noyan T, Karakayali H, et al. Is routine preoperative ultrasonographic mapping for arteriovenous fistula creation necessary in patients with favorable physical examination findings? Results of a randomized controlled trial. World J Surg. 2006 Jun;30(6):1100-7.
24. Jemcov TK. Morphologic and functional vessels characteristics assessed by ultrasonography for prediction of radiocephalic fistula maturation. J Vasc Access. 2013 Oct;Dec;14(4):356-63.
25. Han A, Min SK, Kim MS, Joo KW, Kim J, Ha J, et al. A prospective, randomized trial of routine duplex ultrasound surveillance on arteriovenous fistula maturation. Clin J Am Soc Nephrol. 2016 Oct;11(10):1817-24.
26. Itoga NK, Ullery BW, Tran K, Lee GK, Aalami OO, Bech FR, et al. Use of a proactive duplex ultrasound protocol for hemodialysis access. J Vasc Surg. 2016 Oct;64(4):1042-1049.
27. Olsha O, Hijazi J, Goldin I, Shemesh D. Vascular access in hemodialysis patients older than 80 years. J Vasc Surg. 2015 Jan;61(1):177-83.
28. Smith GE, Barnes R, Chetter IC. Randomized clinical trial of selective versus routine preoperative duplex ultrasound imaging before arteriovenous fistula surgery. Br J Surg. 2014 Apr;101(5):469-74.
29. Barreto P, Almeida P, Matos N, Queiros JA, Pinheiro J, Silva F, et al. Preoperative vessel mapping in chronic kidney disease patients - a center experience. J Vasc Access. 2016 Oct;64(4):1034-7.
30. Al-Jaishi AA, Oliver MJ, Thomas SM, Lok CE, Zhang JC, Garg AX, et al. Patency rates of the arteriovenous fistula for hemodialysis: a systematic review and meta-analysis. Am J Kidney Dis. 2014 Mar;63(3):464-78.
31. Lok CE, Allon M, Moist L, Oliver MJ, Shah H, Zimmerman D. Risk equation determining unsuccessful cannulation events and failure to maturation in arteriovenous fistulae (REDUCE FTM). J Am Soc Nephrol. 2006 Nov;17(11):3204-12.
32. Wang W, Murphy B, Yilmaz S, Tonelli M, Macrae J, Manns BJ. Comorbidities do not influence primary fistula success in incident hemodialysis patients: a prospective study. Clin J Am Soc Nephrol. 2008 Jan;3(1):78-84.
33. Ortega T, Ortega F, Díaz-Corte C, Rebollo P, Ma Baltar J, Rota S, et al. Validation of a patient-specific hemodynamic computational model for surgical planning of arteriovenous fistula creation. J Vasc Access. 2016 Nov;17(5):398-603.
34. Mousa AY, Deering DD, Aburahma AF. Radiocephalic fistulae: a powerful tool for vascular access surveillance. J Vasc Surg. 2013 Jul;57(1):207-18.
35. Caroli A, Manini S, Antiga L, Passera K, Ene-Iordache B, Rota S, et al. Validation of a patient-specific hemodynamic computational model for surgical planning of vascular access in hemodialysis patients. Kidney Int. 2013 Dec;84(6):1237-45.