COMPLETION, EXTENSION, FACTORIZATION, AND LIFTING OF OPERATORS WITH A NEGATIVE INDEX

D. BAIDIUK AND S. HASSI

Abstract. The famous results of M.G. Krein concerning the description of selfadjoint contractive extensions of a Hermitian contraction T_1 and the characterization of all nonnegative selfadjoint extensions \tilde{A} of a nonnegative operator A via the inequalities $A_K \leq \tilde{A} \leq A_F$, where A_K and A_F are the Krein-von Neumann extension and the Friedrichs extension of A, are generalized to the situation, where \tilde{A} is allowed to have a fixed number of negative eigenvalues. These generalizations are shown to be possible under a certain minimality condition on the negative index of the operators $I - T_1^*T_1$ and A, respectively; these conditions are automatically satisfied if T_1 is contractive or A is nonnegative, respectively.

The approach developed in this paper starts by establishing first a generalization of an old result due to Yu.L. Shmul’yan on completions of 2×2 nonnegative block operators. The extension of this fundamental result allows us to prove analogs of the above mentioned results of M.G. Krein and, in addition, to solve some related lifting problems for J-contractive operators in Hilbert, Pontryagin and Krein spaces in a simple manner. Also some new factorization results are derived, for instance, a generalization of the well-known Douglas factorization of Hilbert space operators. In the final steps of the treatment some very recent results concerning inequalities between semibounded selfadjoint relations and their inverses turn out to be central in order to treat the ordering of non-contractive selfadjoint operators under Cayley transforms properly.

1. Introduction

Almost 70 years ago in his famous paper [42] M.G. Krein proved that for a densely defined nonnegative operator A in a Hilbert space there are two extremal extensions of A, the Friedrichs (hard) extension A_F and the Krein-von Neumann (soft) extension A_K, such that every nonnegative selfadjoint extension \tilde{A} of A can be characterized by the following two inequalities:

$$(A_F + a)^{-1} \leq (\tilde{A} + a)^{-1} \leq (A_K + a)^{-1}, \quad a > 0.$$

To obtain such a description he used Cayley transforms of the form

$$T_1 = (I - A)(I + A)^{-1}, \quad T = (I - \tilde{A})(I + \tilde{A})^{-1},$$

to reduce the study of unbounded operators to the study of contractive selfadjoint extensions T of a Hermitian nondensely defined contraction T_1. In the study of contractive selfadjoint extensions of T_1 he introduced a notion which is nowadays

2010 Mathematics Subject Classification. Primary 46C20, 47A20, 47A63, 47B25; Secondary 47A06, 47B65.

Key words and phrases. Completion, extension, factorization, lifting of operators.
called “the shortening of a bounded nonnegative operator H to a closed subspace \mathfrak{N}” of \mathfrak{H} as the (unique) maximal element in the set
\[
\{ D \in [\mathfrak{H}] : 0 \leq D \leq H, \, \text{ran} \, D \subset \mathfrak{N} \},
\]
which is denoted by $H_{\mathfrak{N}}$; cf. [2, 3, 50]. Using this notion he proved the existence of a minimal and maximal contractive extension T_m and T_M of T_1 and that T is a selfadjoint contractive extension of T_1 if and only if $T_m \leq T \leq T_M$, more explicitly that $T = T_m + (I + T)\mathfrak{N}$ and $T = T_M - (I - T)\mathfrak{N}$ when $\mathfrak{H} = \mathfrak{H} \ominus \text{dom} \, T_1$.

Later the study of nonnegative selfadjoint extensions of $A \geq 0$ was generalized to the case of nondensely defined operators $A \geq 0$ by T. Ando and K. Nishio [4], as well as to the case of linear relations (multivalued linear operators) $A \geq 0$ by E.A. Coddington and H.S.V. de Snoo [17]. Further studies followed this work of M.G. Kreĭn; the approach in terms of “boundary conditions” to the extensions of a positive operator A was proposed by M.I. Vishik [56] and M.S. Birman [11]; an exposition of this theory based on the investigation of quadratic forms can be found from [1]. An approach to the extension theory of symmetric operators based on abstract boundary conditions was initiated even earlier by J.W. Calkin [16] under the name of reduction operators, and later, independently the technique of boundary triplets was introduced to formalize the study of boundary value problems in the framework of general operator theory; see [38, 15, 32, 24, 47, 26]. Later the extension theory of unbounded symmetric Hilbert space operators and related resolvent formulas originating also from the work of M.G. Kreĭn [40, 41], see also e.g. [46], was generalized to the spaces with indefinite inner products in the well-known series of papers by H. Langer and M.G. Kreĭn, see e.g. [44, 45], and all of this has been further investigated, developed, and extensively applied in various other areas of mathematics and physics by numerous other researchers.

In spite of the long time span, natural extensions of the original result of M.G. Kreĭn in [42] have not occurred in the literature. Obviously the most closely related result appears in [19], where for a given pair of a row operator $T_r = (T_{11}, T_{12}) \in [\mathfrak{H}_1 \oplus \mathfrak{H}_1', \mathfrak{H}_2']$ and a column operator $T_c = \text{col} (T_{11}, T_{21}) \in [\mathfrak{H}_1, \mathfrak{H}_2 \ominus \mathfrak{H}_2']$ the problem for determining all possible operators $\tilde{T} \in [\mathfrak{H}_1 \ominus \mathfrak{H}_1', \mathfrak{H}_2 \ominus \mathfrak{H}_2']$ acting from the Hilbert space $\mathfrak{H}_1 \ominus \mathfrak{H}_1'$ to the Hilbert space $\mathfrak{H}_2 \ominus \mathfrak{H}_2'$ such that
\[
P_{\mathfrak{H}_2'} \tilde{T} = T_r, \quad \tilde{T} \, | \, \mathfrak{H}_1 = T_c,
\]
and such that the following negative index (number of negative eigenvalues) conditions are satisfied
\[
\kappa_1 := \nu_- (I - \tilde{T}^* \tilde{T}) = \nu_- (I - T_c^* T_c), \quad \kappa_2 := \nu_- (I - \tilde{T} \tilde{T}^*) = \nu_- (I - T_r T_r^*),
\]
is considered. The problem was solved in [19, Theorem 5.1] under the condition $\kappa_1, \kappa_2 < \infty$. In the literature cited therein appears also a reference to an unpublished manuscript by H. Langer and B. Textorius with the title “Extensions of a bounded Hermitian operator T preserving the number of negative squares of $I - T^* T$”, where obviously a similar problem for a given bounded Hermitian (column operator) T has been investigated; see [19, Section 6]. However, in [19] the existence of possible extremal extensions in the solution set in the spirit of [42], when it is nonempty, have not been investigated. Also possible investigations of analogous results for unbounded symmetric operators with a fixed negative index seem to be unavailable in the literature.
In this paper we study specific classes of such “quasi-contractive” bounded symmetric operators T_1 with $\nu_-(I - T_1^*T_1) < \infty$ as well as “quasi-nonnegative” operators A with $\nu_-(A) < \infty$ and the existence and description of all possible self-adjoint extensions T and \tilde{A} of them which preserve the given negative indices $\nu_-(I - T^2) = \nu_-(I - T_1^*T_1)$ and $\nu_-(\tilde{A}) = \nu_-(A)$, respectively, under a further minimality condition on the negative index $\nu_-(I - T_1^*T_1)$ and $\nu_-(A)$. Under such conditions it is shown that if there is a solution then there are again two extremal extensions which then describe the whole solution set via two operator inequalities, just as in the original paper of M.G. Krein. The approach developed in this paper differs from the approach in [42]. In fact, the approach used in a recent paper of Hassi, Malamud and de Snoo [34], a technique appearing also in an earlier paper of Kolmanovich and Malamud [39], will be successfully generalized. In [34] the original results of M.G. Krein have been proved in the general setting of a not necessarily densely defined nonnegative operator and, more generally, for a nonnegative linear relation A.

The starting point in our approach is to establish a generalization of an old result due to Yu.L. Shmul’yan [52] on completions of 2×2 nonnegative block operators where the result was applied for introducing so-called Hellinger operator integrals. Our extension of this fundamental result is given in Section 2; see Theorem 2.1 (for the case $\kappa < \infty$) and Theorem 2.2 (for the case $\kappa = \infty$). Obviously, these results can be considered to be the most important inventions in the present paper and it is possible that several further applications for them will occur in forthcoming literature.

In this paper we will extensively apply Theorem 2.1. In Section 3 this result is specialized to a class of 2×2 block operators to characterize occurrence of a minimal negative index for the so-called Schur complement of the block operator, see Theorem 3.1. This result can be viewed also as a factorization result and, in fact, it yields a generalization of the well-known Douglas factorization of Hilbert space operators in [27], see Proposition 3.3, which is completed by a generalization of Sylvester’s criterion on additivity of inertia on Schur complements in Proposition 3.5. In Section 4 Theorem 2.1, or its special case Theorem 3.1, is applied to solve lifting problems for J-contractive operators in Hilbert, Pontryagin and Krein spaces in a new simple way, the most general version of which is formulated in Theorem 4.7: this result was originally proved in [18, Theorem 2.3] with the aid of [8, Theorem 5.3]; for a special case, see also [28, 29]. In the Hilbert space case this problem has been solved in [7, 20, 55], further proofs and facts can be found e.g. from [5, 6, 14, 39, 48].

Section 5 contains the extension of the fundamental result of M.G. Krein in [42], see Theorem 5.2, which characterizes the existence and gives a description of all selfadjoint extension T of a bounded symmetric operator T_1 satisfying the following minimal index condition $\nu_-(I - T^2) = \nu_-(I - T_1^*T_1)$ by means of two extreme extensions via $T_m \leq T \leq T_M$. In Section 6 selfadjoint extensions of unbounded symmetric operators, and symmetric relations, are studied under a similar minimality condition on the negative index $\nu_-(A)$; the main result there is Theorem 6.5. It is a natural extension of the corresponding result of M.G. Krein in [42]. The treatment here uses Cayley transforms and hence is analogous to that in [42]. However, the existence of two extremal extensions in this setting and the validity of all
the operator inequalities appearing therein depend essentially of very recent "antitonicity results" proved for semibounded selfadjoint relations in [10] concerning correctness of the implication $H_1 \leq H_2 \Rightarrow H_2^{-1} \leq H_1^{-1}$ in the case that H_1 and H_2 have some finite negative spectra. In this section also an analog of the so-called Kreĭn's uniqueness criterion for the equality $T_m = T_M$ is established.

2. A completion problem for block operators

By definition the modulus $|C|$ of a closed operator C is the nonnegative selfadjoint operator $|C| = (C^* C)^{1/2}$. Every closed operator admit a polar decomposition $C = U|C|$, where U is a (unique) partial isometry with the initial space $\text{ran }|C|$ and the final space $\text{ran }C$, cf. [37]. For a selfadjoint operator $H = \int_\mathbb{R} t \, dE_t$ in a Hilbert space H the partial isometry U can be identified with the signature operator, which can be taken to be unitary: $J = \text{sign}(H) = \int_\mathbb{R} \text{sign}(t) \, dE_t$, in which case one should define $\text{sign}(t) = 1$ if $t \geq 0$ and otherwise $\text{sign}(t) = -1$.

2.1. Completion to operator blocks with finite negative index. The following theorem solves a completion problem for a bounded incomplete block operator A^0 of the form

\begin{equation}
A^0 = \begin{pmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{pmatrix}
\begin{pmatrix}
\delta_1 \\
\delta_2
\end{pmatrix}
\to
\begin{pmatrix}
\delta_1 \\
\delta_2
\end{pmatrix}
\end{equation}

in the Hilbert space $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$.

Theorem 2.1. Let $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$ be an orthogonal decomposition of the Hilbert space \mathcal{H} and let A^0 be an incomplete block operator of the form (2.1). Assume that $A_{11} = A_{11}^*$ and $A_{21} = A_{21}^*$ are bounded, $\nu_-(A_{11}) = \kappa < \infty$, where $\kappa \in \mathbb{Z}_+$, and let $J = \text{sign}(A_{11})$ be the (unitary) signature operator of A_{11}. Then:

(i) There exists a completion $A \in [\mathcal{H}]$ of A^0 with some operator $A_{22} = A_{22}^* \in [\mathcal{H}_2]$ such that $\nu_-(A) = \nu_-(A_{11}) = \kappa$ if and only if

\begin{equation}
\text{ran } A_{12} \subset \text{ran } |A_{11}|^{1/2}.
\end{equation}

(ii) In this case the operator $S = |A_{11}|^{-1/2} A_{12}$, where $|A_{11}|^{-1/2}$ denotes the (generalized) Moore-Penrose inverse of $|A_{11}|^{1/2}$, is well defined and $S \in [\mathcal{H}_2, \mathcal{H}_1]$. Moreover, $S^* JS$ is the smallest operator in the solution set

\begin{equation}
A := \{ A_{22} = A_{22}^* \in [\mathcal{H}_2] : A = (A_{ij})_{i,j=1}^2 : \nu_-(A) = \kappa \}
\end{equation}

and this solution set admits a description as the (semibounded) operator interval given by

$$
A = \{ A_{22} \in [\mathcal{H}_2] : A_{22} = S^* J S + Y, Y = Y^* \geq 0 \}.
$$

Proof. (i) Assume that there exists a completion $A_{22} \in A$. Let $\lambda_0 \leq \lambda_{-1} \leq \cdots \leq \lambda_1 < 0$ be all the negative eigenvalues of A_{11} and let ε be such that $|\lambda_1| > \varepsilon > 0$. Then $0 \in \rho(A_{11} + \varepsilon)$ and hence one can write

\begin{equation}
\begin{pmatrix}
I \\
-A_{21}(A_{11} + \varepsilon)^{-1} & I
\end{pmatrix}
\begin{pmatrix}
A_{11} + \varepsilon & A_{12} \\
A_{21} & A_{22} + \varepsilon
\end{pmatrix}
\begin{pmatrix}
I \\
0
\end{pmatrix}
= \begin{pmatrix}
-A_{21}(A_{11} + \varepsilon)^{-1}A_{12} & 0 \\
0 & A_{22} + \varepsilon - A_{21}(A_{11} + \varepsilon)^{-1}A_{12}
\end{pmatrix}
\end{equation}
The operator in the righthand side of (2.4) has κ negative eigenvalues if and only if
\[(2.5) \quad A_{21}(A_{11} + \varepsilon)^{-1}A_{12} \leq A_{22} + \varepsilon \]
or equivalently
\[(2.6) \quad \int_{\|A_{11}\|} (t + \varepsilon)^{-1}d\|E_tA_{12}f\|^2 \leq \varepsilon\|f\|^2 + (A_{22}f, f), \]
where \(E_t \) is the spectral family of \(A_{11} \). We rewrite (2.6) in the form
\[\int_{[-\|A_{11}\|, 0)} (t+\varepsilon)^{-1}d\|E_tA_{12}f\|^2 + \int_{[0, \|A_{11}\|)} (t+\varepsilon)^{-1}d\|E_tA_{12}f\|^2 \leq \varepsilon\|f\|^2 + (A_{22}f, f), \]
This yields the estimate
\[(2.7) \quad \int_{[0, \|A_{11}\|]} (t+\varepsilon)^{-1}d\|E_tA_{12}f\|^2 \leq \varepsilon\|f\|^2 + (A_{22}f, f) - \frac{1}{\lambda_1 + \varepsilon}\|A_{12}f\|^2. \]
By letting \(\varepsilon \searrow 0 \) in (2.7) the monotone convergence theorem implies that
\[P_+A_{12}f \in \text{ran} A_{11+}^{1/2} \subset \text{ran} |A_{11}|^{1/2} \]
for all \(f \in \mathcal{H}_2 \); here \(A_{11+} = \int_{[0, \|A_{11}\|]} t\,dE_t \) stands for the nonnegative part of \(A_{11} \) and \(P_+ \) is the orthogonal projection onto the corresponding closed subspace \(\text{ran} A_{11+} = \int_{[0, \|A_{11}\|]} dE_t \). This implies that \(\text{ran} A_{12} \subset \text{ran} |A_{11}|^{1/2} \).

Conversely, if \(\text{ran} A_{12} \subset \text{ran} |A_{11}|^{1/2} \), then the operator \(S := |A_{11}|^{-1/2}A_{12} \) is well defined, closed and bounded, i.e., \(S \in [\mathcal{H}_2, \mathcal{H}_1] \). Since \(A_{12} = |A_{11}|^{1/2}S \), it follows from \(A_{21} = S^*|A_{11}|^{1/2} \) and
\[(2.8) \quad A = \begin{pmatrix} |A_{11}|^{1/2} \\ S^*J \end{pmatrix} J \begin{pmatrix} |A_{11}|^{1/2} & JS \end{pmatrix} : \nu_-(A) = \kappa, \]
that the operator \(A_{22} = S^*JS \) gives a completion for \(A^0 \).

(ii) According to (i) \(A_{21} = S^*|A_{11}|^{1/2} \), and \(S^*JS \in [\mathcal{H}_2] \) gives a solution to the completion problem (2.1). Now
\[s - \lim_{\varepsilon \searrow 0} A_{21}(A_{11} + \varepsilon)^{-1}A_{12} = s - \lim_{\varepsilon \searrow 0} S^*|A_{11}|^{1/2}(A_{11} + \varepsilon)^{-1}|A_{11}|^{1/2}S = S^*JS \]
and if \(A_{22} \) is an arbitrary operator in the set (2.3), then by letting \(\varepsilon \searrow 0 \) one concludes that \(S^*JS \leq A_{22} \). Therefore, \(S^*JS \) satisfies the desired minimality property.

To prove the last statement assume that \(Y \in [\mathcal{H}_2] \) and that \(Y \geq 0 \). Then \(A_{22} = S^*JS + Y \) inserted in \(A^0 \) defines a block operator \(A_Y \geq \text{A_{min}} \). In particular, \(\nu_-(A_Y) \leq \nu_-(\text{A_{min}}) = \kappa < \infty \). On the other hand, it is clear from the formula
\[(2.9) \quad A_Y = \begin{pmatrix} |A_{11}|^{1/2} \\ S^*J \end{pmatrix} J \begin{pmatrix} |A_{11}|^{1/2} & JS \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & Y \end{pmatrix} \]
that the \(\kappa \)-dimensional eigenspace corresponding to the negative eigenvalues of \(A_{11} \) is \(A_Y \)-negative and, hence, \(\nu_-(A_Y) \geq \kappa \). Therefore, \(\nu_-(A_Y) = \kappa \) and \(Y \in A_2 \).

Notice that in the factorization \(A_{12} = |A_{11}|^{1/2}S \), \(S \) is uniquely determined under the condition \(\text{ran} S \subset \text{ran} A_{11} \) (which implies that \(\text{ker} A_{12} = \text{ker} S \)); cf. [27].

In the case that \(\kappa = 0 \), the result in Theorem 2.1 reduces to the well-known criterion concerning completion of an incomplete block operator to a nonnegative
operator; cf. [52]. In the case of matrices acting on a finite dimensional Hilbert space, the result with \(\kappa > 0 \) has been proved very recently in the appendix of [23], where it was applied in solving indefinite truncated moment problems. In the present paper Theorem 2.1 will be one of the main tools for further investigations.

2.2. Completion to operator blocks with an infinite negative index. The completion result in Theorem 2.1 is of some general interest already by the substantial number of its applications known in the case of nonnegative operators. In this section the completion problem is treated in the case that \(\kappa = \infty \). For this purpose some further notions will be introduced.

Recall that a subspace \(\mathfrak{M} \subset \mathfrak{H} \) is said to be uniformly \(A \)-negative, if there exists a positive constant \(\nu > 0 \) such that \((Af,f) \leq -\nu \|f\|^2 \) for all \(f \in \mathfrak{M} \). It is maximal uniformly \(A \)-negative, if \(\mathfrak{M} \) has no proper uniformly \(A \)-negative extension. The completion problem is now extended by claiming from the completions the following maximality property:

\[(2.10) \text{ there exists a subspace } \mathfrak{M} \subset \mathfrak{H}_1 \text{ which is maximal uniformly } A \text{-negative.}\]

Theorem 2.2. Let \(A^0 \) be an incomplete block operator of the form (2.1) in the Hilbert space \(\mathfrak{H} = \mathfrak{H}_1 \oplus \mathfrak{H}_2 \). Let \(A_{11} = A_{11}^* \) and \(A_{21} = A_{12}^* \) be bounded, let \(J = \text{sign}(A_{11}) \) be the (unitary) signature operator of \(A_{11} \), and, in addition, assume that there is a spectral gap \((-\delta,0) \subset \rho(A_{11}) \), \(\delta > 0 \). Then:

(i) There exists a completion \(A \in [\mathfrak{H}] \) of \(A^0 \) with some operator \(A_{22} = A_{22}^* \) satisfying the condition (2.10) if and only if

\[\text{ran } A_{12} \subset \text{ran } |A_{11}|^{1/2}\]

(ii) In this case the operator \(S = |A_{11}|^{-1/2}A_{12} \), where \(|A_{11}|^{-1/2} \) denotes the (generalized) Moore-Penrose inverse of \(|A_{11}|^{1/2} \), is well defined and \(S \in [\mathfrak{H}_2,\mathfrak{H}_1] \). Moreover, \(S^*JS \) is the smallest operator in the solution set

\[A := \{A_{22} = A_{22}^* \in [\mathfrak{H}_2] : A = (A_{ij})^2_{i,j=1} \, \text{satisfies (2.10)}\}\]

and this solution set admits a description as the (semibounded) operator interval given by

\[A = \{A_{22} \in [\mathfrak{H}_2] : A_{22} = S^*JS + Y, \, Y = Y^* \geq 0\}.\]

Proof. To prove this result suitable modifications in the proof of Theorem 2.1 are needed.

(i) First assume that \(A_{22} \in A \) gives a desired completion for \(A^0 \). If \(\varepsilon \in (0,\delta) \) then \(0 \notin \rho(A_{11} + \varepsilon) \) and therefore the block operator \((A_{ij}) \) satisfies the formula (2.4). We claim that the condition (2.10) implies the inequality (2.5) for all sufficiently small values \(\varepsilon > 0 \). To see this let \(\mathfrak{M} \subset \mathfrak{H}_1 \) be a subspace for which the condition (2.10) is satisfied. Then \((A_{11}f,f) \leq -\nu \|f\|^2 \) for some fixed \(\nu > 0 \) and for all \(f \in \mathfrak{M} \). Assume that for some \(0 < \varepsilon_0 < \max\{\nu,\delta\} \) (2.5) is not satisfied. Then \(((A_{22} + \varepsilon_0 - A_{21}(A_{11} + \varepsilon_0)^{-1}A_{12})v_0, v_0) < 0 \) holds for some vector \(v_0 \in \mathfrak{H}_2 \). Define

\[L = W_{\varepsilon_0}^{-1}(\mathfrak{M} + \text{span } \{v_0\}),\]

where

\[W_{\varepsilon_0} = \begin{pmatrix} I & -(A_{11} + \varepsilon_0)^{-1}A_{12} \\ 0 & I \end{pmatrix}.\]
Clearly, W_{ε_0} is bounded with bounded inverse and it maps \mathfrak{M} bijectively onto \mathfrak{M}, so that \mathcal{L} is a 1-dimensional extension of \mathfrak{M}. It follows from (2.4) that for all $f \in \mathcal{L}$,

\[
(Af, f) + \varepsilon_0 \|f\|^2 = \left(\begin{array}{cc} A_{11} + \varepsilon_0 & 0 \\ 0 & A_{22} + \varepsilon_0 - A_{21}(A_{11} + \varepsilon_0)^{-1}A_{12} \end{array} \right) u, u < 0,
\]

where $u = W_{\varepsilon_0}f \in \mathfrak{M} + \text{span} \{v_0\}$. Therefore, \mathcal{L} is a proper uniformly A-negative extension of \mathfrak{M}; a contradiction, which shows that (2.5) holds for all $0 < \varepsilon < \max\{\nu, \delta\}$. Then, as in the proof of Theorem 2.1 it is seen that $\text{ran} \, A_{12} \subset \text{ran} \, |A_{11}|^{1/2}$; note that in the estimate (2.7) λ_1 is to be replaced by $-\delta$.

Conversely, if $\text{ran} \, A_{12} \subset \text{ran} \, |A_{11}|^{1/2}$, then $S = |A_{11}|^{-1/2}A_{12} \in \mathfrak{H}_{2}, \mathfrak{H}_{1}$ and the block operator A in (2.8) gives a completion. To prove that A satisfies (2.10) observe that if \mathfrak{M} is a uniformly A-negative subspace in \mathfrak{H}, then $\left(|A_{11}|^{1/2} \, JS\right)$ maps it bijectively onto a uniformly J-negative subspace in \mathfrak{H}_{1}. The spectral subspace corresponding to the negative spectrum of A_{11} is maximal uniformly J-negative in \mathfrak{H}_{1} and also uniformly A-negative in \mathfrak{H}. By the above mapping property this subspace must be maximal uniformly A-negative in \mathfrak{H}.

(ii) If $A_{22} = A_{22}^*$ defines a completion $A \in \mathfrak{H}$ of A^0 such that (2.10) is satisfied then by the proof of (i) the inequality (2.5) holds for all sufficiently small values $\varepsilon > 0$. Now the minimality property of $S^{*}JS$ can be obtained in the same manner as in Theorem 2.1.

As to the last statement again for every $Y \in \mathfrak{H}_{2}, \ Y \geq 0$, the block operator A_{Y} defined in the proof of Theorem 2.1 satisfies $A_{Y} \geq A_{\min}$. Hence, every uniformly A_{Y}-negative subspace is also uniformly A_{\min}-negative. Now it follows from the formula (2.9) that the spectral subspace corresponding to the negative spectrum of A_{11}, which is maximal uniformly A_{\min}-negative, is also maximal uniformly A_{Y}-negative. Hence, A_{Y} satisfies (2.10) and $Y \in \mathfrak{A}$.

\[\square\]

3. Some factorizations of operators with finite negative index

Theorems 2.1 and 2.2 contain a valuable tool in solving a couple of other problems, which initially do not occur as a completion problem of some symmetric incomplete block operator. In this section it is shown that Theorem 2.1 (a) can be used to characterize existence of certain J-contractive factorization of operators via a minimal index condition; (b) implies an extension of the well-known Douglas factorization result with a certain specification to the Bognár-Král factorization; (c) yields an extension of a factorization result of Shmul’yan for J-bicontractions; (d) allows an extension of a classical Sylvester law of inertia of a block operator, which is originally used in characterizing nonnegativity of a bounded block operator via Schur complement.

Some simple inertia formulas are now recalled. The factorization $H = B^{*}EB$ clearly implies that $\nu_{\pm}(H) \leq \nu_{\pm}(E)$. If H_{1} and H_{2} are selfadjoint operators, then

\[
H_{1} + H_{2} = \begin{pmatrix} I \\ I \end{pmatrix}^{*} \begin{pmatrix} H_{1} & 0 \\ 0 & H_{2} \end{pmatrix} \begin{pmatrix} I \\ I \end{pmatrix}
\]

shows that $\nu_{\pm}(H_{1} + H_{2}) \leq \nu_{\pm}(H_{1}) + \nu_{\pm}(H_{2})$. Consider the selfadjoint block operator $H \in \mathfrak{H}_{1} \oplus \mathfrak{H}_{2}$ of the form

\[
H = \begin{pmatrix} A & B^{*} \\ B & J_{2} \end{pmatrix},
\]

where $\nu_{\pm}(H_{1} + H_{2}) \leq \nu_{\pm}(H_{1}) + \nu_{\pm}(H_{2})$. Consider the selfadjoint block operator $H \in \mathfrak{H}_{1} \oplus \mathfrak{H}_{2}$ of the form

\[
H = \begin{pmatrix} A & B^{*} \\ B & J_{2} \end{pmatrix},
\]

where $\nu_{\pm}(H_{1} + H_{2}) \leq \nu_{\pm}(H_{1}) + \nu_{\pm}(H_{2})$. Consider the selfadjoint block operator $H \in \mathfrak{H}_{1} \oplus \mathfrak{H}_{2}$ of the form

\[
H = \begin{pmatrix} A & B^{*} \\ B & J_{2} \end{pmatrix},
\]
where \(J_2 = J_2^* = J_2^{-1} \). By applying the above mentioned inequalities shows that

\[
(3.2) \quad \nu_\pm(A) \leq \nu_\pm(A - B^*J_2B) + \nu_\pm(J_2).
\]

Assuming that \(\nu_-(A - B^*J_2B) \) and \(\nu_-(J_2) \) are finite, the question when \(\nu_-(A) \) attains its maximum in (3.2), or equivalently, \(\nu_-(A - B^*J_2B) \geq \nu_-(A) - \nu_-(J_2) \) attains its minimum, turns out to be of particular interest. The next result characterizes this situation as an application of Theorem 2.1. Recall that if \(A = J_A|A| \) is the polar decomposition of \(A \), then one can interpret \(\delta_A = (\text{ran } A, J_A) \) as a Krein space generated on \(\text{ran } A \) by the fundamental symmetry \(J_A = \text{sgn } (A) \).

Theorem 3.1. Let \(A \in [\delta_1] \) be selfadjoint, \(B \in [\delta_1, \delta_2] \), \(J_2 = J_2^* = J_2^{-1} \in [\delta_2] \), and assume that \(\nu_-(A), \nu_-(J_2) < \infty \). If the equality

\[
(3.3) \quad \nu_-(A) = \nu_-(A - B^*J_2B) + \nu_-(J_2)
\]

holds, then \(\text{ran } B^* \subset \text{ran } |A|^{1/2} \) and \(B^* = |A|^{1/2}K \) for a unique operator \(K \in [\delta_2, \delta_1] \) which is \(J \)-contractive: \(J_2 - K^*JAK \geq 0 \).

Conversely, if \(B^* = |A|^{1/2}K \) for some \(J \)-contractive operator \(K \in [\delta_2, \text{ran } A] \), then the equality (3.3) is satisfied.

Proof. Assume that (3.3) is satisfied. The factorization

\[
H = \begin{pmatrix} A & B^* \cr B & J_2 \end{pmatrix} = \begin{pmatrix} I & B^*J_2 \cr 0 & I \end{pmatrix} \begin{pmatrix} A - B^*J_2B & 0 \cr 0 & J_2 \end{pmatrix} \begin{pmatrix} I & 0 \cr J_2B & I \end{pmatrix}
\]

shows that \(\nu_-(H) = \nu_-(A - B^*J_2B) + \nu_-(J_2) \), which combined with the equality (3.3) gives \(\nu_-(H) = \nu_-(A) \). Therefore, by Theorem 2.1 one has \(\text{ran } B^* \subset \text{ran } |A|^{1/2} \) and this is equivalent to the existence of a unique operator \(K \in [\delta_2, \text{dom } A] \) such that \(B^* = |A|^{1/2}K \); i.e. \(K = |A|^{-1/2}B^* \). Furthermore, \(K^*JAK \leq J_2 \) by the minimality property of \(K^*JAK \) in Theorem 2.1, in other words \(K \) is a \(J \)-contraction.

Conversely, if \(B^* = |A|^{1/2}K \) for some \(J \)-contraction \(K \in [\delta_2, \text{dom } A] \), then clearly \(\text{ran } B^* \subset \text{ran } |A|^{1/2} \). By Theorem 2.1 the completion problem for \(H^0 \) has solutions with the minimal solution \(ST_J(A)S \), where \(S = |A|^{-1/2}B^* = |A|^{-1/2}|A|^{1/2}K = K \). Furthermore, by \(J \)-contractivity of \(K \) one has \(K^*JAK \leq J_2 \), i.e. \(J_2 \) is also a solution and thus \(\nu_-(H) = \nu_-(A) \) or, equivalently, the equality (3.3) is satisfied. \(\square \)

While Theorem 3.1 is obtained as a direct consequence of Theorem 2.1 it will be shown in the next section that this result yields simple solutions to a wide class of lifting problems for contractions in Hilbert, Pontryagin and Krein space settings.

Before deriving the next result some inertia formulas for a class of selfadjoint block operators are recalled. Consider the following two representations

\[
\begin{pmatrix} J_1 & T^* \cr T & J_2 \end{pmatrix} = \begin{pmatrix} I & 0 \cr T J_1 & I \end{pmatrix} \begin{pmatrix} J_1 & 0 \cr 0 & J_2 - T J_1 T^* \end{pmatrix} \begin{pmatrix} I & J_1 T^* \cr 0 & I \end{pmatrix} = \begin{pmatrix} I & T^* J_2 \cr 0 & I \end{pmatrix} \begin{pmatrix} J_1 - T^* J_2 T & 0 \cr 0 & J_2 \end{pmatrix} \begin{pmatrix} I & 0 \cr J_2 T & I \end{pmatrix},
\]

where \(J_i = J_i^* = J_i^{-1}, \ i = 1, 2 \). Since here the triangular operators are bounded with bounded inverse, one concludes that \(\text{ran } (J_2 - T J_1 T^*) \) is closed if and only if \(\text{ran } (J_1 - T^* J_2 T) \) is closed. Furthermore, one gets the following inertia formulas; cf. e.g. [8, Proposition 3.1].
Lemma 3.2. With the above notations one has
\[\nu_\pm(J_1 - T^*J_2T) + \nu_\pm(J_2) = \nu_\pm(J_2 - TJ_1T^*) + \nu_\pm(J_1), \]
\[\nu_0(J_1 - T^*J_2T) = \nu_0(J_2 - TJ_1T^*). \]

The next result contains two general factorization results: assertion (i) contains an extension of the well-known Douglas factorization, see [27, 30], and assertion (ii) is a specification of the so-called Bognár-Krámli factorization, see [13]: \(A = B^*J_2B \) holds for some bounded operator \(B \) if and only if \(\nu_\pm(J_2) \geq \nu_\pm(A) \).

Proposition 3.3. Let \(A, B, \) and \(J_2 \) be as in Theorem 3.1, and assume that \(\nu_-(-A) = \nu_-(J_2) < \infty \). Then:

(i) The inequality
\[A \geq B^*J_2B \]
holds if and only if \(B = C|A|^{1/2} \) for some \(J \)-contractive operator \(C \in [\mathcal{H}_A, \mathcal{H}_2]; \) in this case \(C \) is unique and, in addition, \(J \)-bicontractive, i.e., \(J_A - C^*J_2C \geq 0 \) and \(J_2 - CJ_AC^* \geq 0 \).

(ii) The equality
\[A = B^*J_2B \]
holds if and only if \(B = C|A|^{1/2} \) for some \(J \)-isometric operator \(C \in [\mathcal{H}_A, \mathcal{H}_2]; \) again \(C \) is unique. In addition, \(C \) is unitary if and only if the range of \(B \) is dense in \(\mathcal{H}_2 \).

Proof. (i) The inequality (3.4) means that \(\nu_-(-A - B^*J_2B) = 0 \). Hence the assumption \(\nu_-(-A) = \nu_-(J_2) < \infty \) implies the equality (3.3). Therefore, the desired factorization for \(B \) is obtained from Theorem 3.1. Conversely, if \(B = C|A|^{1/2} \) for some \(J \)-contractive operator \(C \) then (3.3) holds by Theorem 3.1 and the assumption \(\nu_-(-A) = \nu_-(J_2) < \infty \) implies that \(\nu_-(-A - B^*J_2B) = 0 \).

The fact that \(C \) is actually \(J \)-bicontractive follows directly from Lemma 3.2.

(ii) Assume that (3.5) holds. Then by part (i) it remain to prove that in the factorization \(B = C|A|^{1/2} \) the operator \(C \) is isometric. Substituting \(B = C|A|^{1/2} \) into (3.5) gives
\[A = |A|^{1/2}C^*J_2C|A|^{1/2}. \]
Since \(\text{dom} \, C, \text{ran} \, C^* \subset \text{ran} \, A \) and \(A = |A|^{1/2}J_A|A|^{1/2} \), the previous identity implies the equality \(J_A = C^*J_2C \), i.e., \(C \) is \(J \)-isometric. Conversely, if \(C \) is \(J \)-isometric then clearly (3.5) holds.

Since \(B = C|A|^{1/2} \) and \(C \in [\mathcal{H}_A, \mathcal{H}_2] \), it is clear that \(B \) has dense range in \(\mathcal{H}_2 \) precisely when the range of \(C \) is dense in \(\mathcal{H}_2 \). The (Krein space) adjoint is a bounded operator with \(\text{dom} \, C^{[\ast]} = \mathcal{H}_2 \). By isometry one has \(C^{-1} \subset C^{[\ast]} \), and thus \(C^{-1} \) is also bounded, densely defined and closed. Thus, the equality \(C^{-1} = C^{[\ast]} \) prevails, i.e., \(C \) is \(J \)-unitary. Conversely, if \(C \) is unitary then \(C^{-1} = C^{[\ast]} \) holds and \(\text{ran} \, C = \text{dom} \, C^{[\ast]} = \mathcal{H}_2 \). Consequently, \(\text{ran} \, B = \text{ran} \, C|A|^{1/2} \) is dense in \(\mathcal{H}_2 \). \(\square \)

If, in particular, \(\nu_-(-A) = \nu_-(J_2) = 0 \) then \(0 \leq A \leq B^*B \) and Proposition 3.3 combined with Theorem 2.1 yields the factorization and range inclusion results proved in [27, Theorem 1] with \(A \) replaced by \(A^*A \). In particular, notice that if \(\text{ran} \, B^* \subset \text{ran} \, |A|^{1/2} \), then already Theorem 2.1 alone implies that \(S = |A|^{-1/2}B^*B \) is bounded and hence \(B^*B = |A|^{1/2}SS^*|A|^{1/2} \leq \|S\|^2A \).
Assertions in part (ii) of Corollary 3.3 can be found in the literature with a different proof. In fact, the first statement in (ii) appears in [8, Proposition 2.1, Corollary 2.6] while the second statement in (ii) is proved in [18, Corollary 1.3]. Another extension for Douglas’ factorization result can be found from [51].

For a general treatment of isometric (not necessarily densely defined) operators and isometric relations appearing in the proof of Proposition 3.3 the reader is referred to [9], [21, Section 2], and [22].

A slightly different viewpoint to Proposition 3.3 gives the following statement, which can be viewed as an extension of a theorem by Shmul’yan [53] on the factorization of bicontractions on Kreın spaces; for a related abstract Leech theorem, see [29, Section 3.4].

Corollary 3.4. Let $A \in \mathcal{H}_1$ be selfadjoint, let $B \in \mathcal{H}_1 \oplus \mathcal{H}_2$, and let $J_2 = J_2^* = J_2^{-1} \in \mathcal{H}_2$ with $\nu_-(J_2) < \infty$. Then:

(i)

\[A \geq B^* J_2 B \quad \text{and} \quad \nu_-(A) = \nu_-(J_2) \]

if and only if $B = C|A|^{1/2}$ for some J-bicontractive operator $C \in \mathcal{H}_1 \oplus \mathcal{H}_2$; in this case C is unique.

(ii)

\[A = B^* J_2 B \quad \text{and} \quad \nu_-(A) = \nu_-(J_2) \]

if and only if $B = C|A|^{1/2}$ for some J-bicontractive operator C which is also J-isometric, i.e., $J_A - C^* J_2 C = 0$ and $J_2 - CJ_A C^* \geq 0$; again C is unique.

Proof. Observe that if C is J-bicontractive, then an application of Lemma 3.2 shows that $\nu_-(J_2) = \nu_-(J_A) = \nu_-(A)$. Now the stated equivalences can be obtained from Proposition 3.3. \qed

This section is finished with an extension of the classical Sylvester’s criterion, that is actually obtained as a consequence of Theorem 2.1.

Proposition 3.5. Let $A = (A_{ij})_{i,j=1}^2$ be an arbitrary selfadjoint block operator in $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$, which satisfies the range inclusion (2.2), and let $S = |A_{11}|^{-1/2} A_{12}$. Then $\nu_-(A) < \infty$ if and only if $\nu_-(A_{11}) < \infty$ and $\nu_-(A_{22} - S^* J S) < \infty$; in this case

\[\nu_-(A) = \nu_-(A_{11}) + \nu_-(A_{22} - S^* J S). \]

In particular, $A \geq 0$ if and only if $\text{ran} \ A_{12} \subset \text{ran} \ |A_{11}|^{1/2}$, $A_{11} \geq 0$, and $A_{22} - S^* J S \geq 0$.

Proof. By the assumption (2.2) $S = |A_{11}|^{-1/2} A_{12}$ is an everywhere defined bounded operator and, since $A_{11} = |A_{11}|^{1/2} J |A_{11}|^{-1/2}$ (cf. Theorem 2.1), the following equality holds:

\[A = \begin{pmatrix} |A_{11}|^{1/2} & 0 \\ S^* J & I \end{pmatrix} \begin{pmatrix} J & 0 \\ 0 & A_{22} - S^* J S \end{pmatrix} \begin{pmatrix} |A_{11}|^{1/2} & JS \\ 0 & I \end{pmatrix}, \]

i.e. $A = B^* E B$ where E stands for the diagonal operator with $\nu_-(E) = \nu_-(A_{11}) + \nu_-(A_{22} - S^* J S)$ and the triangular operator B on the right side is bounded and has dense range in $\text{ran} \ A_{11} \oplus \mathcal{H}_2$. Clearly, $\nu_-(A) \leq \nu_-(E)$ and it remains to prove that if $\nu_-(A) < \infty$ then $\nu_-(A) = \nu_-(E)$.\qed
To see this assume that $\nu_-(A) < \nu_-(E)$. We claim that $\text{ran } B$ contains an E-negative subspace \mathcal{L} with dimension $\dim \mathcal{L} > \nu_-(A)$. Assume the converse and let $\mathcal{L} \subset \text{ran } B$ be a maximal E-negative subspace with $\dim \mathcal{L} \leq \nu_-(A)$. Then $(E\mathcal{L})^\perp$ must be E-nonnegative, since if $v \perp E\mathcal{L}$ and $(Ev,v) < 0$, then $\text{span } \{v + \mathcal{L}\}$ would be a proper E-negative extension of \mathcal{L}. Since $E\mathcal{L}$ is finite-dimensional and $\text{ran } B$ is dense in $\text{ran } A_{11} \oplus \mathcal{F}_2$, $\text{ran } B$ has dense intersection with $(\text{ran } A_{11} \oplus \mathcal{F}_2) \cap E\mathcal{L}$, and hence the closure of this subspace is also E-nonnegative. Consequently, $\nu_-(E) = \nu_-(\mathcal{L})$, a contradiction with the assumption $\nu_-(E) > \nu_-(A)$. This proves the claim that $\text{ran } B$ contains an E-negative subspace \mathcal{L} with $\dim \mathcal{L} > \nu_-(A)$. However, then the subspace $\mathcal{L}' = \{u \in \text{ran } A_{11} \oplus \mathcal{F}_2 : Bu \in \mathcal{L}\}$ satisfies $\dim \mathcal{L}' \geq \dim \mathcal{L}$ and, moreover, \mathcal{L}' is A-negative: $\langle Au,u \rangle = \langle EBu,Bu \rangle < 0$, $u \in \mathcal{L}'$, $u \neq 0$. Thus, $\nu_-(A) \geq \dim \mathcal{L}$, a contradiction with $\dim \mathcal{L} > \nu_-(A)$. This completes the proof.

Proposition 3.5 completes Theorem 2.1: it shows that if $\text{ran } A_{12} \subset \text{ran } |A_{11}|^{1/2}$ then $A_{11} = J|A_{11}|$ and $A_{12} = |A_{11}|^{1/2}S$ imply that $A_{21}|A_{11}|^{-1/2}J|A_{11}|^{-1/2}A_{12} = S^*JS$. Hence the negative index of A can be calculated by using the following version of a generalized of Schur complement:

$$
\nu_-(A) = \nu_-(A_{11}) + \nu_-(A_{22} - A_{21}|A_{11}|^{-1/2}J|A_{11}|^{-1/2}A_{12}).
$$

The addition made in Proposition 3.5 concerns selfadjoint operators A_{22} that are not solutions to the original completion problem for A^0.

4. LIFTING OF OPERATORS WITH FINITE NEGATIVE INDEX

As a first application of the completion problem solved in Section 2 it is shown how nicely some lifting results established in a series of papers by Arsene, Constantinescu, and Gheondea, see [7, 8, 18, 19], as well as in Dritschel, see [28, 29] (see also further references appearing in these papers), on contractive operators with finite number of negative squares can be derived from Theorem 2.1.

For this purpose some standard notations are now introduced. Let $(\mathcal{F}_1, (\cdot, \cdot)_1)$ and $(\mathcal{F}_2, (\cdot, \cdot)_2)$ be Hilbert spaces and let J_1 and J_2 be symmetries in \mathcal{F}_1 and \mathcal{F}_2, i.e. $J_i = J_i^* = J_i^{-1}$, so that $(\mathcal{F}_i, (J_i\cdot, \cdot)_i)$, $i = 1, 2$, becomes a Kreın space. Then associate with $T \in [\mathcal{F}_1, \mathcal{F}_2]$ the corresponding defect and signature operators

$$
D_T = |J_1 - T^*J_2T|^{1/2}, \quad J_T = \text{sign } (J_1 - T^*J_2T), \quad \mathcal{D}_T = \text{ran } D_T,
$$

where the so-called defect subspace \mathcal{D}_T can be considered as a Kreın space with the fundamental symmetry J_T. Similar notations are used with T^*:

$$
D_{T^*} = |J_2 - T^*J_1J^*T^*|^{1/2}, \quad J_{T^*} = \text{sign } (J_2 - T^*J_1J^*T^*), \quad \mathcal{D}_{T^*} = \text{ran } D_{T^*}.
$$

By definition $J_TD_T^2 = J_1 + T^*J_2T$ and $J_TD_T = D_TD_T$ with analogous identities for D_{T^*} and J_{T^*}. In addition,

$$
(J_1 - T^*J_2J_1J^*T^*) = T^*J_2(J_2 - T^*J_1T^*), \quad (J_2 - T^*J_1J^*T^*)J_2T = TJ_1(J_1 - T^*J_2T).
$$

Recall that $T \in [\mathcal{F}_1, \mathcal{F}_2]$ is said to be a J-contraction if $J_1 - T^*J_2T \geq 0$, i.e. $\nu_-(J_1 - T^*J_2T) = 0$. If, in addition, T^* is a J-contraction, T is termed as a J-bicontraction, in which case $\nu_-(J_1) = \nu_-(J_2)$ by Lemma 3.2. In what follows it is assumed that

$$
\kappa_1 := \nu_-(J_1 - T^*J_2T) < \infty, \quad \kappa_2 := \nu_-(J_2 - T^*J_1J^*T^*) < \infty.
$$
In this case Lemma 3.2 shows that

\[(4.2) \quad \nu_-(J_2) = \nu_-(J_1) + \kappa_2 - \kappa_1.\]

The aim in this section is to show applicability of Theorem 2.1 in establishing formulas for so-called liftings \widetilde{T} of T with prescribed negative indices $\tilde{\kappa}_1$ and $\tilde{\kappa}_2$ for the defect subspaces. Given a bounded operator $T \in [\mathcal{H}_1, \mathcal{H}_2]$ the problem is to describe all operators \widetilde{T} from the extended Krein space $(\mathcal{H}_1 \oplus \mathcal{H}_1', J_1 \oplus J_1')$ to the extended Krein space $(\mathcal{H}_2 \oplus \mathcal{H}_2', J_2 \oplus J_2')$ such that

\[(*) \quad P_2 \widetilde{T} | \mathcal{H}_1 = T \quad \text{and} \quad \nu_-(\widetilde{J}_1 - \widetilde{T}^* \widetilde{J}_2 \widetilde{T}) = \tilde{\kappa}_1, \quad \nu_-(\widetilde{J}_2 - \widetilde{T}^* \widetilde{J}_1 \widetilde{T}^*) = \tilde{\kappa}_2,
\]

with some fixed values of $\tilde{\kappa}_1, \tilde{\kappa}_2 < \infty$. Here P_i stands for the orthogonal projection from $\mathcal{H}_i = \mathcal{H}_i \oplus \mathcal{H}_i'$ onto \mathcal{H}_i and $\tilde{J}_i = J_i \oplus J_i'$, $i = 1, 2$. In addition, it is assumed that the exit spaces are Pontryagin spaces, i.e., that

\[\nu_-(J_1'), \nu_-(J_2') < \infty.\]

Following [8, 18] consider first the following column extension problem:

\[(*) \quad \text{Give a description of all (column) operators } T_c = \text{col} \begin{pmatrix} T & C \end{pmatrix} \in [\mathcal{H}_1, \mathcal{H}_2],
\]

such that $\nu_-(J_1 - T_c^* \widetilde{J}_2 T_c) = \tilde{\kappa}_1 (< \infty)$.

Since $J_1 - T_c^* \widetilde{J}_2 T_c = J_1 - T^* J_2 T - C^* J_2' C$, then necessarily (see Section 3)

\[\tilde{\kappa}_1 \geq \kappa_1 - \nu_-(C^* J_2' C) \geq \kappa_1 - \nu_-(J_2').\]

Moreover, it is clear that $\tilde{\kappa}_2 \geq \kappa_2$, since $J_2 - T J_1 T^*$ appears as the first diagonal entry of the 2×2 block operator $\widetilde{J}_2 - T_c J_1 T_c^*$ when decomposed w.r.t. $\tilde{\mathcal{H}}_1 = \mathcal{H}_1 \oplus \mathcal{H}_1'$, $i = 1, 2$.

With the minimal value of $\tilde{\kappa}_1$ all solutions to this problem will now be described by applying Theorem 2.1 to an associated 2×2 block operator T_C appearing in the proof below; in fact the result is just a special case of Theorem 3.1.

Lemma 4.1. Let $\tilde{\kappa}_1 = \nu_-(J_1 - T_c^* \widetilde{J}_2 T_c)$ and assume that $\tilde{\kappa}_1 = \kappa_1 - \nu_-(J_2')(\geq 0)$. Then $\text{ran } C^* \subset \text{ran } D_T$ and the formula

\[T_c = \begin{pmatrix} T & C^* \\ C & J_2' \end{pmatrix}
\]

establishes a one-to-one correspondence between the set of all solutions to Problem $(*)$, and the set of all J-contractions $K \in [\mathcal{H}_2, \mathcal{D}_T]$.

Proof. To make the argument more explicit consider the following block operator

\[T_C := \begin{pmatrix} J_1 - T^* J_2 T & C^* \\ C & J_2' \end{pmatrix} = \begin{pmatrix} I & C^* J_2' \\ 0 & I \end{pmatrix} \begin{pmatrix} J_1 - T_c^* \widetilde{J}_2 T_c & 0 \\ 0 & J_2' \end{pmatrix} \begin{pmatrix} I & 0 \\ J_2'C & I \end{pmatrix}.
\]

Clearly $\nu_-(T_C) = \nu_-(J_1 - T_c^* \widetilde{J}_2 T_c) + \nu_-(J_2') < \infty$, which combined with $\tilde{\kappa}_1 = \kappa_1 - \nu_-(J_2')$ shows that $\nu_-(T_C) = \kappa_1 = \nu_-(J_1 - T^* J_2 T)$. Now, the statement is obtained from Theorem 2.1 or, more directly, just by applying Theorem 3.1. \[\square\]

Remark 4.2. (i) The above proof, which essentially makes use of an associated 2×2 block operator T_c (being a special case of the block operator H in (3.1) behind Theorem 3.1), is new even in the case of Hilbert space contractions. In particular, it shows that the operator K in Lemma 4.1 coincides with the operator S that gives the minimal solution $S^* J_T S$ to the completion problem associated with T_C; the J-contractivity of K itself is equivalent to the fact that T_C is also a solution precisely when $\kappa = \kappa - \nu_-(J_2')$.

(ii) The existence of a solution to Problem $(\ast)_c$ is proved here using only the condition $\tilde{\kappa}_1 = \kappa_1 - \nu_-(J_1^*) (\geq 0)$. The corresponding result in [18, Lemma 2.2] is formulated (and formally also proved) under the additional condition $\tilde{\kappa}_2 = \kappa_2$.

In the case that $\nu_-(J_1) < \infty$ the equality $\tilde{\kappa}_1 = \kappa_1 - \nu_-(J_1^*)$ follows automatically from the equality $\tilde{\kappa}_1 = \kappa_1 - \nu_-(J_1^*)$: to see this apply (4.2) to T and T_c, which leads to $\nu_-(J_1) + \kappa_2 = \nu_-(J_1) + \tilde{\kappa}_2$, so that $\nu_-(J_1) < \infty$ implies $\kappa_2 = \tilde{\kappa}_2$. Naturally, in Lemma 4.1 the condition $\tilde{\kappa}_2 = \kappa_2$ follows from the condition $\tilde{\kappa}_1 = \kappa_1 - \nu_-(J_2^*)$ also in the case where $\nu_-(J_1) = \infty$; see Corollary 4.6 below.

Finally, it is mentioned that for a Pontryagin space operator T the result in Lemma 4.1 was proved in [8, Lemma 5.2].

In a dual manner we can treat the following row extension problem; again initially considered in [8, 18]:

$(\ast)_r$. Give a description of all operators $T_r = \begin{pmatrix} T & R \end{pmatrix} \in [\mathcal{H}_1 \oplus \mathcal{H}^*_1, \mathcal{H}_2]$, such that $\nu_-(J_1 - T_r J_2 T_r^*) = \tilde{\kappa}_2 (\leq \infty)$.

Analogous to the case of column operators, $J_2 - T_r J_1 T_r^* = J_2 - T J_1 T^* - R J_1^* R^*$ gives the estimate

$$\tilde{\kappa}_2 \geq \kappa_2 - \nu_-(R J_1^* R^*) \geq \kappa_2 - \nu_-(J_1^*).$$

Moreover, it is clear that $\tilde{\kappa}_1 \geq \kappa_1$. With the minimal value of $\tilde{\kappa}_2$ all solutions to Problem $(\ast)_r$, are established by applying Theorem 2.1 to an associated 2×2 block operator T_R.

Lemma 4.3. Let $\tilde{\kappa}_2 = \nu_-(J_2 - T_r J_1 T_r^*)$ and assume that $\tilde{\kappa}_2 = \kappa_2 - \nu_-(J_1^*) (\geq 0)$. Then $\ran R \subset \ran D_{T_r}$ and the formula

$$T_r = \begin{pmatrix} T & D_{T_r} \end{pmatrix}$$

establishes a one-to-one correspondence between the set of all solutions to Problem $(\ast)_r$, and the set of all J-contractions $B \in [\mathcal{H}_1^*, \mathcal{D}_{T_r}]$.

Proof. To prove the statement via Theorem 3.1 (or Theorem 2.1) consider

$$T_R := \begin{pmatrix} J_2 - T J_1 T^* & R \\ R^* & J_1^* \end{pmatrix} = \begin{pmatrix} I & R J_1^* \\ 0 & I \end{pmatrix} \begin{pmatrix} J_2 - T_r J_1 T_r^* & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} I & 0 \\ J_1^* & R^* \end{pmatrix}.$$

Then clearly $\nu_-(T_R) = \nu_-(J_2 - T_r J_1 J_2^*) + \nu_-(J_1^*)$ and hence the assumption $\tilde{\kappa}_2 = \kappa_2 - \nu_-(J_1^*)$ is equivalent to $\nu_-(T_R) = \kappa = \nu_-(J_2 - T J_1 T^*)$. Hence, again, the statement follows from Theorem 3.1. $
$

Remarks similar to those made after Lemma 4.1 can be done here, too. In particular, the corresponding result in [18, Lemma 2.1] is formulated under the additional condition $\tilde{\kappa}_1 = \kappa_1$: here this equality will be a consequence from the equality $\tilde{\kappa}_1 = \kappa_1 - \nu_-(J_1^*)$; cf. Corollary 4.6 below.

To prove the main result concerning parametrization of all 2×2 liftings in a larger Krein space with minimal signature for the defect operators an indefinite version of the commutation relation of the form $T D_{T_r} = D_{T_r'} T$ is needed; these involve so-called link operators introduced in [8, Section 4].

We will give a simple proof for the construction of link operators (see [8, Proposition 4.1]) by applying Heinz inequality combined with the basic factorization result from [27]. The first step is formulated in the next lemma, which is connected to a result of M.G. Krein [43] concerning continuity of a bounded Banach space operator which is symmetric w.r.t. to a continuous definite inner product; the existence of
such that \(J \). In particular, as above. Then there exist unique operators \(\sqrt{J} \).

Corollary 4.6. Let \(S \in [\mathcal{H}_1, \mathcal{H}_2] \) and let \(H \in [\mathcal{H}_2] \) be nonnegative. Then
\[
HS = (HS)^* \quad \Rightarrow \quad |HS| \leq \mu H \text{ for some } \mu < \infty.
\]

Proof. Since \(HS \) is selfadjoint, one obtains
\[
(\mu S)^2 = \mu^2 H \leq \mu^2 H^2, \quad \mu = \|S\| < \infty.
\]

Now by Heinz inequality (see e.g. [12, Theorem 10.4.2]) we get
\[
|HS| = (HSS^*H)^{1/2} \leq \mu H.
\]

Corollary 4.5. Let \(T \in [\mathcal{H}_1, \mathcal{H}_2] \) and let \(J_1 \) and \(J_2 \) be symmetries in \(\mathcal{H}_1 \) and \(\mathcal{H}_2 \) as above. Then there exist unique operators \(L_T \in [\mathcal{D}_T, \mathcal{D}_T^*] \) and \(L_{T^*} \in [\mathcal{D}_{T^*}, \mathcal{D}_{T^*}] \) such that
\[
D_{T^*}L_T = TJ_1D_T|\mathcal{D}_T, \quad D_TL_{T^*} = T^*J_2D_{T^*}|\mathcal{D}_{T^*}.
\]

Proof. Denote \(S = J_T - J_2TJ_TJ_T^* \). Then (4.1) implies that
\[
D_{T^*}S = (J_2 - TJ_T^*)J_2TJ_TJ_T^* = TJ_1(J_1 - T^*J_2T)J_TJ_T^* = TJ_1D_{T^*}J_1J_T^* \geq 0,
\]
so that \(D_{T^*}S \) is nonnegative and, in particular, selfadjoint. By Lemma 4.4 with \(\mu = \|S\| \) one has
\[
0 \leq TJ_1D^2_{T^*}J_1J_T^* = D^2_{T^*}S \leq \mu D^2_{T^*}.
\]

This last inequality is equivalent to the factorization \(TJ_1D_T|\mathcal{D}_T = D_{T^*}L_T \) with a unique operator \(L_T \in [\mathcal{D}_T, \mathcal{D}_T^*] \), see [27, Theorem 1], which by means of Moore-Penrose generalized inverse can be rewritten as indicated.

The second formula is obtained by applying the first one to \(T^* \).

The following identities can be obtained with direct calculations; see [8, Section 4]:
\[
L_{T^*}J_T,|\mathcal{D}_{T^*} = J_{T^*}L_T;
\]
(4.3)
\[
(J_T - D_TJ_1D_T)|\mathcal{D}_T = L^*_{T^*}J_{T^*}L_T;
\]
\[
(J_T^* - D_TJ_2D_{T^*})|\mathcal{D}_{T^*} = L^*_{T^*}J_{T^*}L_{T^*}.
\]

The next corollary contains the promised identity \(\tilde{\kappa}_1 = \kappa_1 \) under the assumption \(\tilde{\kappa}_2 = \kappa_2 - \mu_- (J_1^*) \geq 0 \) in Lemma 4.1. Similarly \(\tilde{\kappa}_1 = \kappa_1 - \mu_- (J_1^*) \) implies \(\tilde{\kappa}_2 = \kappa_2 \); the general result for the first case can be formulated as follows (and there is similar result for the latter case).

Corollary 4.6. Let \(R \) be a bounded operator such that \(\text{ran } R \subset \text{ran } D_{T^*} \) and let \(T_r \) be the corresponding row operator and denote \(\tilde{\kappa}_1 = \mu_- (J_1^* - T^*_rJ_2T_r) \). Then \(R = D_{T^*}B \) for a (unique) bounded operator \(B \in [\mathcal{H}'_1, \mathcal{D}_{T^*}] \) and
\[
\tilde{\kappa}_1 = \kappa_1 + \mu_- (J_1^* - B^*J_T^*B).
\]

In particular, \(J \)-contractivity of \(B \) is equivalent to \(\tilde{\kappa}_1 = \kappa_1 \).
Proof. Recall that $\text{ran } R \subset \text{ran } D_{T_r}$ is equivalent to the factorization $R = D_{T_r} B$. By applying the commutation relations in Corollary 4.5 together with the identities (4.3) one gets the following expression for $J_{T_r} D^2_{T_r}$:

$$J_{T_r} D^2_{T_r} = \begin{pmatrix} J_1 - T^* J_2 T & -T^* J_2 D_{T_r} B \\ -B^* D_{T_r} J_2 T & J_1 - B^* D_{T_r} J_2 D_{T_r} B \end{pmatrix} = \begin{pmatrix} J_1 - B^* L_{T_r} D B & J_1 - B^* L_{T_r} J_2 D_{T_r} B \\ -B^* L_{T_r} J_2 T & J_1 - B^* L_{T_r} J_2 D_{T_r} B \end{pmatrix}.$$ \hfill (4.4)

Now apply Proposition 3.5 and calculate the Schur complement, cf. (3.6),

$$J_B D^2_B + B^* L_{T_r} J_1 L_{T_r} B - B^* L_{T_r} D_T (D_T^{-1} J_T D_T^{-1}) D_T L_{T_r} B = J_B D^2_B,$$

to see that $\tilde{\kappa}_1 = \nu_-(J_1 - T^* J_2 T) + \nu_- (J_1 - B^* J_{T_r} B)$.

By means of Lemmas 4.1, 4.3 and the link operators in Corollary 4.5 one can now establish the main result concerning the lifting problem (\ast). First notice that if Problem (\ast) has a solution, then by treating \bar{T} as a row extension of its first column T_c and as a column extension of its first row T_r one gets from the inequalities preceding Lemmas 4.1, 4.3 the estimates

$$\tilde{\kappa}_1 \geq \kappa_1(T_r) - \nu_-(J_2^*) \geq \kappa_1 - \nu_-(J_2^*); \\
\tilde{\kappa}_2 \geq \kappa_2(T_c) - \nu_-(J_1^*) \geq \kappa_2 - \nu_-(J_1^*).$$ \hfill (4.5)

Under the minimal choice of the indices $\tilde{\kappa}_1$ and $\tilde{\kappa}_2$ Problem (\ast) is already solvable; all solutions are described by the following result, which was initially proved in [18, Theorem 2.3] with the aid of [8, Theorem 5.3]. Here a different proof is presented, again based on an application of Theorem 2.1.

Theorem 4.7. Let \bar{T} be a bounded operator from $(\mathfrak{H}_1 \oplus \mathfrak{H}_1', J_1 \oplus J_1')$ to $(\mathfrak{H}_2 \oplus \mathfrak{H}_2', J_2 \oplus J_2')$ such that $P_2 \bar{T}^* P_1 = T$. Assume that $0 \leq \kappa_1 - \nu_-(J_2^*) = \tilde{\kappa}_1 < \infty$ and $0 \leq \kappa_2 - \nu_-(J_1^*) = \tilde{\kappa}_2 < \infty$. Then the Problem (\ast) is solvable and the formula

$$\bar{T} = \begin{pmatrix} T & D_{T_r} \Gamma_1 \\ \Gamma_1 D_T & -\Gamma_2 L_{T_r} J_{T_r} \Gamma_1 + D_{T_r} \Gamma_1 \end{pmatrix}$$

establishes a one-to-one correspondence between the set of all solutions to Problem (\ast) and the set of triplets $\{\Gamma_1, \Gamma_2, \Gamma\}$ where $\Gamma_1 \in [\mathfrak{H}_1, \mathfrak{D}_{T_r}]$ and $\Gamma_2 \in [\mathfrak{H}_2, \mathfrak{D}_{T}]$ are J-contractions and $\Gamma \in [\mathfrak{D}_{\Gamma_1}, \mathfrak{D}_{\Gamma_2}]$ is a Hilbert space contraction.

Proof. Assume that there is a solution \bar{T} to Problem (\ast) and write it in the form

$$\bar{T} = \begin{pmatrix} T & R \\ C & X \end{pmatrix}$$

with the first column denoted by T_c and first row denoted by T_r, and assume that $\tilde{\kappa}_1 = \kappa_1 - \nu_-(J_2^*)$ and $\tilde{\kappa}_2 = \kappa_2 - \nu_-(J_1^*)$. Then (4.5) shows that $\kappa_1 = \kappa_1(T_r)$ and $\kappa_2 = \kappa_2(T_c)$. Hence Lemma 4.3 can be applied by viewing \bar{T} as a row extension of T_c to get a range inclusion and then from Corollary 4.6 one gets the equality $\tilde{\kappa}_1 = \kappa_1(T_c)$. Similarly applying Lemma 4.1 and the analog of Corollary 4.6 to column operator \bar{T} one gets the equality $\tilde{\kappa}_2 = \kappa_2(T_r)$. Thus $\kappa_1(T_c) = \kappa_1 - \nu_-(J_2^*)$ and $\kappa_2(T_r) = \kappa_2 - \nu_-(J_1^*)$. Consequently, one can apply Lemma 4.1 to the first column T_c and Lemma 4.3 to the first row T_r to get the stated factorizations $C = \Gamma_2 D_T$ and $R = D_T \Gamma_1$ with unique J-contractions Γ_1 and Γ_2.

To establish a formula for X we proceed by considering the block operator

$$H := \begin{pmatrix} J_T D_{T'}^2 & T_{r,2}^* \\ T_{r,2} & J_2 \end{pmatrix},$$

where $T_{r,2}$ denotes the second row of \tilde{T}. It is straightforward to derive the following formula for the Schur complement

$$J_T D_{T'}^2 - T_{r,2}^* J_{r,2} = \tilde{J}_1 - \tilde{T}^* \tilde{J}_2 \tilde{T}.$$

Thus $\nu_-(H) = \kappa_1 + \nu_-(J_2^*) = \kappa_1 = \nu_-(J_T)$ and one can apply Theorem 2.1 to get the factorization $T_{r,2}^* = D_T \tilde{K}$ with a unique $\tilde{K} \in [J'_{r}, D_{r}]$ satisfying $\tilde{K}^* J_T \tilde{K} \leq J_2^*$, i.e., \tilde{K} is a J-contraction; see Theorem 3.1.

It follows from (4.4) that

$$J_T D_{T'}^2 = \begin{pmatrix} D_T & 0 \\ -\Gamma_1^* L_{T'} \Gamma_1 & J_T \end{pmatrix} \begin{pmatrix} J_T & 0 \\ 0 & I_{\Gamma_1} \end{pmatrix} \begin{pmatrix} D_T & 0 \\ 0 & \Gamma_1 \end{pmatrix} =: B^* J_B.$$

Since here $\nu_-(J_T) = \kappa_1 = \nu_-(J_2)$ and B is a triangular operator whose range is dense in $D_T \oplus D_{\Gamma_1}$ (the diagonal entries D_T and D_{Γ_1} of B have dense ranges by definition), there is a unique Pontryagin space J-unitary operator U from D_T onto $D_T \oplus D_{\Gamma_1}$ such that $B = U D_{T'}$; see Proposition 3.3 (ii). It follows that $K^* := (U^{-1})^* \tilde{K}$ is a J-contraction from J'_{r} to $D_T \oplus D_{\Gamma_1}$ and $KB = \tilde{K}^* D_T = T_{r,2}$.

Now $J_2^* - K J K^* \geq 0$ gives

$$(4.6) \quad 0 \leq K_1 K_1^* \leq J_2^* - K_0 J_T K_0^*,$$

where $K = (K_0 K_1)$ is considered as a row operator, and $T_{r,2} = KB$ reads as

$$\Gamma_2^* D_T = K_0 D_T, \quad X = -K_0 J_T \Gamma_1 + K_1 D_{\Gamma_1}.$$

Since all contractions that are involved are unique, $K_0 = \Gamma_2$, $J_2^* - K_0 J_T K_0^* = D_{\Gamma_2}^2$, and (4.6) implies that there is a unique Hilbert space contraction $\Gamma \in [D_{\Gamma_1}, D_{\Gamma_2}]$ such that $K_1 = D_{\Gamma_2} \Gamma$. The desired formula for \tilde{T} is proven (cf. (4.3)). It is clear from the proof that every operator \tilde{T} of the stated form is a solution and that there is one-to-one correspondence via the triplets $\{\Gamma_1, \Gamma_2, \Gamma\}$ of J-contractions. \hfill \Box

Remark 4.8. (i) By replacing \tilde{T} with its adjoint \tilde{T}^* it is clear that all formulas remain the same and are obtained by changing T with T^* and interchanging the roles of the indices 1 and 2; see also (4.3). This connects the considerations with row and column operators to each other.

(ii) If $\kappa_1 = 0$ so that $J_1 - T^* J_2 T \geq 0$, then the above proof becomes slightly simpler since then $J_{r,1}$, J_T, and J_2^* are identity operators and \tilde{K} is a Hilbert space contraction. Then Theorem 4.7 gives all contractive liftings of a contraction in a Krein space. If in addition $\kappa_2 = 0$, then one gets all bicontractive liftings of a bicontraction in a Krein space with Pontryagin spaces as exit spaces. In the case special case that the exit spaces are Hilbert spaces ($\nu_-(J_1) = \nu_-(J_2) = 0$ and $\kappa_1 = \kappa_2 = 0$) Theorem 4.7 coincides with [28, Theorem 3.6]. In fact, the present proof can be seen as a further development of the proof appearing in that paper; see also further references and historical remarks given in [28, 29].
5. Contractive extensions of contractions with minimal negative indices

Let \(\mathcal{H}_1 \) be a closed linear subspace of the Hilbert space \(\mathcal{H} \), let \(T_{11} = T_{11}^* \in [\mathcal{H}_1] \) be an operator such that \(\nu_-(I - T_{11}^2) = \kappa < \infty \). Denote

\[
J = \text{sign}(I - T_{11}^2), \quad J_+ = \text{sign}(I - T_{11}), \quad \text{and} \quad J_- = \text{sign}(I + T_{11}),
\]

and let \(\kappa_+ = \nu_-(I - T_{11}) \) and \(\kappa_- = \nu_-(I + T_{11}) \). It is obvious that \(J = J_- J_+ = J_+ J_- \). Moreover, there is an equality \(\kappa = \kappa_- + \kappa_+ \) as stated in the next lemma.

Lemma 5.1. Let \(T = T^* \in [\mathcal{H}_1] \) be an operator such that \(\nu_-(I - T^2) = \kappa < \infty \) then \(\nu_-(I - T^2) = \nu_-(I + T) + \nu_-(I - T). \)

Proof. Let \(E_t(\cdot) \) be resolution of identity of \(T \). Then by the spectral mapping theorem the spectral subspace corresponding to the negative spectrum of \(I - T^2 \) is given by \(E_t((\infty; -1) \cup (1; \infty)) = E_t((-\infty; -1)) \oplus E_t((1; \infty)) \). Consequently, \(\nu_-(I - T^2) = \dim E_t((\infty; -1)) + \dim E_t((1; \infty)) = \nu_-(I + T) + \nu_-(I - T). \)

The next problem concerns the existence and a description of selfadjoint operators \(T \) such that \(T_+ = I + T \) and \(T_- = I - T \) solve the corresponding completion problems

\[
A_+^0 = \begin{pmatrix} I \pm T_{11} & \pm T_{21}^* \\ \mp T_{21} & \ast \end{pmatrix},
\]

under minimal index conditions \(\nu_-(I + T) = \nu_-(I + T_{11}) \), \(\nu_-(I - T) = \nu_-(I - T_{11}) \), respectively. Observe, that if \(I \pm T \) provides an arbitrary completion to \(A_+^0 \) then clearly \(\nu_-(I \pm T) \geq \nu_-(I \pm T_{11}) \). Thus by Lemma 5.1 the two minimal index conditions above are equivalent to the single condition \(\nu_-(I - T^2) = \nu_-(I - T_{11}^2) \).

Unlike with the case of a selfadjoint contraction \(T_{11} \), this problem need not have solutions when \(\nu_-(I - T_{11}^2) > 0 \). It is clear from Theorem 2.1 that the conditions \(\text{ran} T_{21} \subset \text{ran} |I - T_{11}|^{1/2} \) and \(\text{ran} T_{21}^* \subset \text{ran} |I + T_{11}|^{1/2} \) are necessary for the existence of solutions; however alone they are not sufficient.

The next theorem gives a general solvability criterion for the completion problem (5.2) and describes all solutions to this problem. As in the definite case, there are minimal solutions \(A_+ \) and \(A_- \) which are connected to two extreme selfadjoint extensions \(T \) of

\[
T_1 = \begin{pmatrix} T_{11} & T_{21} \\ T_{21}^* & \ast \end{pmatrix}, \quad T_2 = \begin{pmatrix} T_{21} & T_{11} \\ \ast & \ast \end{pmatrix},
\]

now with finite negative index \(\nu_-(I - T^2) = \nu_-(I - T_{11}^2) > 0 \). The set of all solutions \(T \) to the problem (5.2) will be denoted by \(\text{Ext}_{T_1, \kappa}(-1, 1) \).

Theorem 5.2. Let \(T_1 \) be a symmetric operator as in (5.3) with \(T_{11} = T_{11}^* \in [\mathcal{H}_1] \) and \(\nu_-(I - T_{11}^2) = \kappa < \infty \), and let \(J = \text{sign}(I - T_{11}^2) \). Then the completion problem for \(A_+^0 \) in (5.2) has a solution \(I \pm T \) for some \(T = T^* \) with \(\nu_-(I - T^2) = \kappa \) if and only if the following condition is satisfied:

\[
\nu_-(I - T_{11}^2) = \nu_-(I - T_1^* T_1).
\]

If this condition is satisfied then the following facts hold:

(i) The completion problems for \(A_\pm^0 \) in (5.2) have minimal solutions \(A_\pm \).

(ii) The operators \(T_m := A_+ - I \) and \(T_M := I - A_- \in \text{Ext}_{T_1, \kappa}(-1, 1) \).
Since \(\ker V \) is finite dimensional, consequently, see (5.1), it is easy to see that

\[
\text{ran } T - (5.7) \quad (18) \quad \text{D. BAIDIUK AND S. HASSI}
\]

\[T \in \text{Ext}_{T_{11},\kappa}(-1, 1) \quad \text{iff } \quad T = T^* \in [\mathcal{H}], \quad 1 \leq T \leq T_M. \]

The operators \(T_m \) and \(T_M \) are connected via

\[
(5.6) \quad \text{ran } T - (5.8) \quad (5.7) \quad \text{D. BAIDIUK AND S. HASSI}
\]

\[(-T)_m = -T_M, \quad (-T)_M = -T_m. \]

Proof. It is easy to see that \(\kappa = \nu_-(I - T^2_0) \leq \nu_-(I - T^2) \leq \nu_-(I - T^2). \) Hence the condition \(\nu_-(I - T^2) = \kappa \) implies (5.4). The sufficiency of this condition is established while proving the assertions (i)–(iii) below.

(i) If the condition (5.4) is satisfied then \(\text{ran } T_{21}^* \subset \text{ran } |I - T_{11}^2|^{1/2} \) by Lemma 4.1.

In fact, this inclusion is equivalent to the inclusions \(\text{ran } T_{21}^* \subset \text{ran } |I \pm T_{11}|^{1/2} \), which by Theorem 2.1 means that both of the completion problems, \(A^0_{\pm} \) in (5.2), are solvable. Consequently, the following operators

\[
(5.5) \quad S_- = |I + T_{11}|^{-1/2} T_{21}^*, \quad S_+ = |I - T_{11}|^{-1/2} T_{21}^*
\]

are well defined and they provide the minimal solutions \(A_{\pm} \) to the completion problems for \(A^0_{\pm} \) in (5.2). Notice that the assumption that there is a simultaneous solution \(I \pm T \) with a single selfadjoint operator \(T \) is not yet used here.

(ii) & (iii) Proof of (i) shows that the inclusion \(\text{ran } T_{21}^* \subset \text{ran } |I - T_{11}^2|^{1/2} \) holds. This last inclusion alone is equivalent to the existence of a (unique) bounded operator \(V^* = D_{T_{11}}^{-1} T_{21}^* \) with \(\ker V \supset \ker D_{T_{11}} \), such that \(T_{21}^* = D_{T_{11}} V^* \). The operators

\[
T_m := A_+ - I \quad \text{and} \quad T_M := I - A_- \quad (\text{see proof of (i)}) \quad \text{can be now rewritten as in (5.5).}
\]

Observe that

\[
S_- = |I \pm T_{11}|^{-1/2} D_{T_{11}} V^* = P_{\mp} |I \mp T_{11}|^{1/2} V^* = |I \mp T_{11}|^{1/2} P_{\mp} V^*,
\]

where \(P_{\mp} \) are the orthogonal projections onto

\[
(\text{ker } |I \pm T_{11}|^{1/2})^\perp = (\text{ker } |I \mp T_{11}|)^\perp = \text{ran } |I \mp T_{11}| = \text{ran } |I \mp T_{11}|^{1/2}.
\]

Since \(\ker V \subset \ker D_{T_{11}} \) implies \(\text{ran } V^* \subset \text{ran } D_{T_{11}} \subset \text{ran } |I \pm T_{11}|^{1/2} \), it follows that

\[
S_- = |I - T_{11}|^{1/2} V^*, \quad S_+ = |I + T_{11}|^{1/2} V^*.
\]

Consequently, see (5.1),

\[
S_- J_- S_- = V |I - T_{11}|^{1/2} J_- |I - T_{11}|^{1/2} V^* = V (I - T_{11}) J V^*,
\]

\[
S_+ J_+ S_+ = V |I + T_{11}|^{1/2} J_+ |I + T_{11}|^{1/2} V^* = V (I + T_{11}) J V^*.
\]

which implies the representations for \(T_m \) and \(T_M \) in (5.5). Clearly, \(T_m \) and \(T_M \) are selfadjoint extensions of \(T_1 \), which satisfy the equalities

\[
\nu_-(I + T_m) = \kappa_-, \quad \nu_-(I - T_M) = \kappa_+.
\]

Moreover, it follows from (5.5) that

\[
(5.9) \quad T_M - T_m = \begin{pmatrix} 0 & 0 \\ 0 & 2(I - V J V^*) \end{pmatrix}.
\]
Now the assumption (5.4) will be used again. Since \(\nu_-(I - T_1^*T_1) = \nu_-(I - T_{11}^2) \) and \(T_{21} = VD_{T_1} \), it follows from Lemma 4.1 that \(V^* \in [D_{T_2}, D_{T_1}] \) is J-contractive: \(I - VJV^* \geq 0 \). Therefore, (5.9) shows that \(T_M \geq T_m \) and \(I + T_M \geq I + T_m \) and hence, in addition to \(I + T_m \), also \(I + T_M \) is a solution to the problem \(A^0 \) and, in particular, \(\nu_-(I + T_M) = \kappa_- = \nu_-(I + T_m) \). Similarly, \(I - T_m \) is also a solution to the problem \(A^0 \), in particular, \(\nu_-(I - T_m) = \kappa_+ = \nu_-(I - T_M) \). Now by applying Lemma 5.1 we get

\[
\nu_-(I - T_m^2) = \nu_-(I - T_m^2) + \nu_-(I - T_m) = \kappa_+ + \kappa_- = \kappa,
\]

\[
\nu_-(I - T_M^2) = \nu_-(I - T_M) + \nu_-(I + T_M) = \kappa_+ + \kappa_- = \kappa.
\]

Therefore, \(T_m, T_M \in \text{Ext}_{T_1,\kappa}(-1, 1) \) which in particular proves that the condition (5.4) is sufficient for solvability of the completion problem (5.2).

(iv) Observe, that \(T \in \text{Ext}_{T_1,\kappa}(-1, 1) \) if and only if \(T = T^* \supset T_1 \) and \(\nu_-(I \pm T) = \kappa_+ \). By Theorem 2.1 this is equivalent to

\[
S^+_J S^-_J - I \leq T_{22} \leq I - S^+_J S^+_J.
\]

The inequalities (5.10) are equivalent to (5.6).

(v) The relations (5.7) follow from (5.8) and (5.5).

For a Hilbert space contraction \(T_1 \) one has \(\nu_-(I - T_{11}^2) \leq \nu_-(I - T_{11}^*T_1) = 0 \), i.e., the criterion (5.4) is automatically satisfied. In this case Theorem 5.2 has been proved in [34]. As Theorem 5.2 shows, under the minimal index condition \(\nu_-(I - T^2) = \nu_-(I - T_{11}^2) \), the solution set \(\text{Ext}_{T_1,\kappa}(-1, 1) \) admits the same attractive description as an operator interval determined by the two extreme extensions \(T_m \) and \(T_M \) as was originally proved by M.G. Krein in his famous paper [42] when describing all contractive selfadjoint extensions of a Hilbert space contraction.

In particular, Theorem 5.2 shows that if there is a solution to the completion problem (5.2), i.e. if \(T_1 \) satisfies the index condition (5.4), then all selfadjoint extensions \(T \) of \(T_1 \) satisfying the equality \(\nu_-(I - T^2) = \nu_-(I - T_{11}^*T_1) \) are determined by the operator inequalities \(T_m \leq T \leq T_M \).

Notice that \(T \) belongs to the solution set \(\text{Ext}_{T_1,\kappa}(-1, 1) \) precisely when \(T = T^* \supset T_1 \) and \(\nu_-(I \pm T) = \kappa_+ \). This means that every selfadjoint extension of \(T_1 \) for which \((I - T^2) = \nu_-(I - T_{11}^*T_1) \) admits precisely \(\kappa_- \) eigenvalues on the interval \((-\infty, -1)\) and \(\kappa_+ \) eigenvalues on the interval \((1, \infty)\): in total there are \(\kappa = \kappa_- + \kappa_+ \) eigenvalues outside the closed interval \([-1, 1]\). The fact that the numbers \(\kappa_+ = \nu_-(I \pm T) \) are constant in the solution set \(\text{Ext}_{T_1,\kappa}(-1, 1) \) is crucial for dealing properly with the Cayley transforms in the next section.

6. A generalization of M.G. Krein’s approach to the extension theory of nonnegative operators

6.1. Some antitonicity theorems for selfadjoint relations. The notion of inertia of a selfadjoint relation in a Hilbert space is defined by means of its associated spectral measure. In what follows the Hilbert space is assumed to be separable.

Definition 6.1. Let \(H \) be a selfadjoint relation in a separable Hilbert space \(\mathcal{H} \) and let \(E_i(\cdot) \) be the spectral measure of \(H \). The inertia of \(H \) is defined as the ordered quadruplet \(\text{in}(H) = \{i^+(H), i^-(H), i^0(H), i^\infty(H)\} \), where

\[
i^+(H) = \dim \ker H, \quad i^- (H) = \dim \ker H, \quad i^0 (H) = \dim \ker H, \quad i^\infty (H) = \dim \ker H,
\]

and hence, in addition to \(I + T_m \), also \(I + T_M \) is a solution to the problem \(A^0 \) and, in particular, \(\nu_-(I + T_M) = \kappa_- = \nu_-(I + T_m) \). Similarly, \(I - T_M \leq I - T_m \) which implies that \(I - T_m \) is also a solution to the problem \(A^0 \), in particular, \(\nu_-(I - T_m) = \kappa_+ = \nu_-(I - T_M) \). Now by applying Lemma 5.1 we get

\[
\nu_-(I - T_m^2) = \nu_-(I - T_m^2) + \nu_-(I - T_m) = \kappa_+ + \kappa_- = \kappa,
\]

\[
\nu_-(I - T_M^2) = \nu_-(I - T_M) + \nu_-(I + T_M) = \kappa_+ + \kappa_- = \kappa.
\]

Therefore, \(T_m, T_M \in \text{Ext}_{T_1,\kappa}(-1, 1) \) which in particular proves that the condition (5.4) is sufficient for solvability of the completion problem (5.2).

(iv) Observe, that \(T \in \text{Ext}_{T_1,\kappa}(-1, 1) \) if and only if \(T = T^* \supset T_1 \) and \(\nu_-(I \pm T) = \kappa_+ \). By Theorem 2.1 this is equivalent to

\[
S^+_J S^-_J - I \leq T_{22} \leq I - S^+_J S^+_J.
\]

The inequalities (5.10) are equivalent to (5.6).

(v) The relations (5.7) follow from (5.8) and (5.5).
In particular, for a selfadjoint relation H in \mathbb{C}^n, the quadruplet $i(H)$ consists of the numbers of positive, negative, zero, and infinite eigenvalues of H; cf. [10]. Hence, if H is a selfadjoint matrix in \mathbb{C}^n, then $i^\infty(H) = 0$ and the remaining numbers make up the usual inertia of H.

The following theorem characterizes the validity of the implication

$$H_1 \leq H_2 \Rightarrow H_2^{-1} \leq H_1^{-1}$$

for a pair of bounded selfadjoint operators H_1 and H_2 having bounded inverses; it in the infinite dimensional case has been proved independently in [54, 25, 35]; cf. also [36]. Some extensions of this result, where the condition $\min\{i_2^+, i_1^-\} < \infty$ is relaxed, are also contained in [54, 35, 36].

Theorem 6.2. Let H_1 and H_2 be bounded and boundedly invertible selfadjoint operators in a separable Hilbert space \mathcal{H}. Let $i(H_j) = \{i_2^+, i_1^-, i_j^0, i_j^\infty\}$ be the inertia of H_j, $j = 1, 2$, and assume that $\min\{i_2^+, i_1^-\} < \infty$ and that $H_1 \leq H_2$. Then

$$H_2^{-1} \leq H_1^{-1} \text{ if and only if } i(H_1) = i(H_2).$$

Very recently two extensions of Theorem 6.2 have been established in [10] for a general pair of selfadjoint operators and relations without any invertibility assumptions. For the present purposes we need the second main antitonicity theorem from [10], which reads as follows.

Theorem 6.3. Let H_1 and H_2 be selfadjoint relations in a separable Hilbert space \mathcal{H} which are semibounded from below. Let $i(H_j) = \{i_2^+, i_1^-, i_j^0, i_j^\infty\}$ be the inertia of H_j, $j = 1, 2$, and assume that $i_1^- < \infty$ and that $H_1 \leq H_2$. Then

$$H_2^{-1} \leq H_1^{-1} \text{ if and only if } i_1^- = i_2^-.$$

The ordering appearing in Theorem 6.3 is defined via

$$H_1 \leq H_2 \iff 0 \leq (H_2 - \alpha I)^{-1} \leq (H_1 - \alpha I)^{-1},$$

where $a < \min\{\mu(H_1), \mu(H_2)\}$ is fixed and $\mu(H_i) \in \mathbb{R}$ stands for the lower bound of H_i, $i = 1, 2$. Notice that the conditions $H_1 \leq H_2$ and $i_1^- < \infty$ imply $i_2^- < \infty$; in particular these conditions already imply that the inverses H_1^{-1} and H_2^{-1} are also semibounded from below. For further facts on ordering of semibounded selfadjoint operators and relations the reader is referred to [37, 10].

6.2. Cayley transforms. Define the linear fractional transformation \mathcal{C}, taking a linear relation A into a linear relation $\mathcal{C}(A)$, by

$$\mathcal{C}(A) = \{\{f + f', f - f'\} : \widehat{f} = \{f, f'\} \in A\} = -I + 2(I + A)^{-1}.$$

Clearly, \mathcal{C} maps the (closed) linear relations one-to-one onto themselves, $\mathcal{C}^2 = I$, and

$$\mathcal{C}(A)^{-1} = \mathcal{C}(-A),$$

for every linear relation A. Moreover,

$$\text{dom} \mathcal{C}(A) = \text{ran} (I + A), \quad \text{ran} \mathcal{C}(A) = \text{ran} (I - A),$$

$$\ker (\mathcal{C}(A) - I) = \ker A, \quad \ker (\mathcal{C}(A) + I) = \text{mul} A.$$
In addition, \mathcal{C} preserves closures, adjoints, componentwise sums, orthogonal sums, intersections, and inclusions. The relation $\mathcal{C}(A)$ is symmetric if and only if A is symmetric. It follows from (6.1) and

\[(6.3) \quad \| f + f' \|^2 - \| f - f' \|^2 = 4\text{Re} (f', f)\]

that \mathcal{C} gives a one-to-one correspondence between nonnegative (selfadjoint) linear relations and symmetric (respectively, selfadjoint) contractions. Observe the following mapping properties of relations and symmetric (respectively, selfadjoint) contractions. Observe the following mapping properties of \mathcal{C} on the extended real line $\mathbb{R} \cup \{\pm \infty\}$:

\[
(6.4) \quad \begin{align*}
\mathcal{C}([0, 1]) &= [0, 1]; & \mathcal{C}([-1, 0]) &= [1, +\infty]; \\
\mathcal{C}([-1, +\infty]) &= [-1, 0]; & \mathcal{C}([-\infty, -1]) &= [-\infty, -1].
\end{align*}
\]

If H is a selfadjoint relation then

\[
i^-(I + H) = i^- (\mathcal{C}(H) + I), \quad i^-(I - H) = i^- (\mathcal{C}(H)^{-1} + I),
\]

and hence

\[
(6.5) \quad \begin{align*}
\sigma(H) \cap (-\infty, -1) &= \sigma(\mathcal{C}(H)) \cap (-\infty, -1), \\
\sigma(H) \cap (1, +\infty) &= \sigma(\mathcal{C}(H)^{-1}) \cap (-\infty, -1) = \sigma(\mathcal{C}(H)) \cap (-1, 0);
\end{align*}
\]

which can also be seen from (6.4).

6.3. M.G. Krein’s approach to the extension theory with a minimal negative index. The crucial step in the M.G. Krein’s approach to the extension theory of nonnegative operators is the connection to the selfadjoint contractive extensions of a Hermitian contraction T via the Cayley transform in (6.1). The extension of this approach to the present indefinite situation is based on the fact that the Cayley transform still reverses the ordering of selfadjoint extensions due to the antitonicity result formulated in Theorem 6.3 and the fact that in Theorem 5.2 $T \in \text{Ext}_{t_1, \nu}(-1, 1)$ if and only if $T = T^* \supset T_1$ and $\nu_-(I \pm T) = \kappa_\pm$.

A semibounded symmetric relation A is said to be quasi-nonnegative if the associated form $a(f, f) := (f', f), \{f, f\} \in A$, has a finite number of negative squares, i.e. every A-negative subspace $\mathcal{L} \subset \text{dom } A$ is finite-dimensional. If the maximal dimension of A-negative subspaces is finite and equal to $\kappa \in \mathbb{Z}_+$, then A is said to be κ-nonnegative; the more precise notations $\nu_-(a)$, $\nu_-(A)$ are used to indicate the maximal number of negative squares of the form a and the relation A, respectively; here $\nu_-(A) = \nu_-(A)$. A selfadjoint extension \tilde{A} of A is said to be a κ-nonnegative extension of A if $\nu_-(\tilde{A}) = \kappa$. The set of all such extension will be denoted by $\text{Ext}_{A, \kappa}(0, \infty)$.

If A is a closed symmetric relation in the Hilbert space \mathcal{H} with $\kappa_-(A) < \infty$, then the subspace $\mathcal{H}_1 := \text{ran } (I + A)$ is closed, since the Cayley-transform $T_1 = \mathcal{C}(A)$ is a closed bounded symmetric operator in \mathcal{H} with $\text{dom } T_1 = \mathcal{H}_1$. Let P_1 be the orthogonal projection onto \mathcal{H}_1 and let $P_2 = I - P_1$. Then the form

\[
(6.6) \quad a_1(f, f) := (P_1 f', f), \quad \{f, f\} \in A,
\]

is symmetric and it has a finite number of negative squares.

Lemma 6.4. Let A be a closed symmetric relation in \mathcal{H} with $\kappa_-(A) < \infty$ and let $T_1 \equiv \mathcal{C}(A)$. Then the form a_1 is given by

\[
(6.7) \quad a_1(f, f) = a(f, f) + \|P_2 f\|^2
\]
with \(\nu_-(a_1) \leq \nu_-(A) \). Moreover,

\[4a_1(f, f) = \|g\|^2 - \|T_{11}g\|^2, \quad 4a(f, f) = \|g\|^2 - \|T_{11}g\|^2, \]

where \(\{f, f'\} \in A, g = f + f', \) and \(T_{11} = P_1T_1 \). In addition, \(T_{21} = P_2T_1 \) satisfies

\[\|T_{21}g\|^2 = \|P_2f\|^2 = -(P_2f, f'). \]

Proof. The formula (6.3) shows that if \(T_1 = \mathcal{C}(A) \) and \(\{f, f'\} \in A \), then

\[\|g\|^2 - \|T_{11}g\|^2 = 4(f', f) = 4a(f, f), \quad g = f + f' \in \text{dom} \ T_1 = \mathcal{S}_1. \]

Moreover, \(T_{21}g = P_2(f - f') = 2P_2f = -2P_2f' \) gives \((P_2f', f) = -\|P_2f\|^2 \) and

\[\|T_{21}g\|^2 = -4(P_2f', P_2f) = -4(P_2f', f). \]

In particular, (6.7) follows from

\[a(f, f) = (P_1f', f) + (P_2f', f) = a_1(f, f) - \|P_2f\|^2. \]

Finally, (6.7) combined with \(\|T_{21}g\|^2 = 4\|P_2f\|^2 \) leads to

\[4a_1(f, f) = \|g\|^2 - \|T_{11}g\|^2 + \|T_{21}g\|^2 = \|g\|^2 - \|T_{11}g\|^2. \]

\[\square \]

The main result in this section concerns the existence and a description of all selfadjoint extensions \(\tilde{A} \) of a symmetric relation \(A \) for which \(\nu_-(\tilde{A}) < \infty \) attains the minimal value \(\nu_-(a_1) \). A criterion for the existence of such a selfadjoint extension is established, in which case all such extensions are described in a manner that is familiar from the case of nonnegative operators. To formulate the result assume that the selfadjoint quasi-contractive extensions \(T_m \) and \(T_M \) of \(T_1 \) as in Theorem 5.2 exist, and denote the corresponding selfadjoint relations \(A_F \) and \(A_K \) by

\[A_F = X(T_m) = -I + 2(I + T_m)^{-1}, \quad A_K = X(T_M) = -I + 2(I + T_M)^{-1}. \]

Theorem 6.5. Let \(A \) be a closed symmetric relation in \(\mathcal{S} \) with \(\nu_-(A) < \infty \) and denote \(\kappa = \nu_-(a_1) (\leq \nu_-(A)) \), where \(a_1 \) is given by (6.6). Then \(\text{Ext}_{A, \kappa}(0, \infty) \) is nonempty if and only if \(\nu_-(A) = \kappa \). In this case \(A_F \) and \(A_K \) are well-defined and they belong to \(\text{Ext}_{A, \kappa}(0, \infty) \). Moreover, the formula

\[\tilde{A} = -I + 2(I + T)^{-1} \]

gives a bijective correspondence between the quasi-contractive selfadjoint extensions \(T \in \text{Ext}_{T_1, \kappa}(-1, 1) \) of \(T_1 \) and the selfadjoint extensions \(\tilde{A} = \tilde{A}^* \in \text{Ext}_{A, \kappa}(0, \infty) \) of \(A \). Furthermore, \(\tilde{A} = \tilde{A}^* \in \text{Ext}_{A, \kappa}(0, \infty) \) precisely when

\[A_K \leq \tilde{A} \leq A_F, \]

or equivalently, when \(A_F^{-1} \leq \tilde{A}^{-1} \leq A_K^{-1} \), or

\[(A_F + I)^{-1} \leq (\tilde{A} + I)^{-1} \leq (A_K + I)^{-1}. \]

The set \(\text{Ext}_{A, \kappa}(0, \infty) \) is also nonempty and \(\tilde{A} \in \text{Ext}_{A, \kappa}(0, \infty) \) if and only if \(\tilde{A}^{-1} \in \text{Ext}_{A, \kappa}(0, \infty) \). The extreme selfadjoint extensions \(A_F \) and \(A_K \) of \(A \) are connected to those of \(A^{-1} \) via

\[(A^{-1})_F = (A_K)^{-1}, \quad (A^{-1})_K = (A_F)^{-1}. \]
Proof. Since \(\nu_-(A) < \infty \) the Cayley transform \(T_1 = \mathcal{C}(A) \) defines a bounded symmetric operator in \(\mathcal{H} \) with \(\mathcal{H}_1 = \text{dom} T_1 = \text{ran} (I + A) \). It follows from Lemma 6.4 that
\[
\nu_-(A) = \nu_-(a) = \nu_-(I - T_1^* T_1), \quad \nu_-(a_1) = \nu_-(I - T_{11}^2),
\]
and therefore the condition \(\nu_-(A) = \kappa \) is equivalent to solvability criterion (5.4) in Theorem 5.2. Moreover, \(\tilde{A} \) is a selfadjoint extension of \(A \) if and only if \(T = \mathcal{C}(\tilde{A}) \) is selfadjoint extension of \(T_1 \) and by Lemma 6.4 the equality \(\nu_-(\tilde{A}) = \nu_-(I - T^2) \) holds. Therefore, it follows from Theorem 5.2 that the set \(\text{Ext}_{A,\kappa}(0, \infty) \) is nonempty if and only if \(\nu_-(A) = \kappa \) and in this case the formula (6.9) establishes a one-to-one correspondence between the sets \(\text{Ext}_{A,\kappa}(0, \infty) \) and \(\text{Ext}_{T_1,\kappa}(-1,1) \).

Next the characterizations (6.10) and (6.11) for the set \(\text{Ext}_{A,\kappa}(0, \infty) \) are established. Let \(\tilde{A} \in \text{Ext}_{A,\kappa}(0, \infty) \) and let \(T = \mathcal{C}(\tilde{A}) \). According to Theorem 6.3 \(T = \mathcal{C}(\tilde{A}) \in \text{Ext}_{T_1,\kappa}(-1,1) \) if and only if \(T \) satisfies the inequalities \(T_m \leq T \leq T_M \). It is clear from the formulas (6.8) and (6.9) that the inequalities \(I + T_m \leq I + T \leq I + T_M \) are equivalent to the inequalities (6.11).

On the other hand, \(\nu_-(I - T_{11}^2) = \nu_-(I - T^2) \) and hence the indices \(\kappa_+ = \nu_-(I - T_{11}) = \nu_-(I - T) \) and \(\kappa_- = \nu_-(I + T_{11}) = \nu_-(I + T) \) do not depend on \(T = \mathcal{C}(\tilde{A}); \) cf. (5.1). The mapping properties (6.5) of the Cayley transform imply that the number of eigenvalues of \(\tilde{A} \) on the open intervals \((\infty, -1)\) and \((-1, 0)\) are also constant and equal to \(\kappa_- \) and \(\kappa_+ \), respectively. In particular, since \(\kappa_- = \nu_-(I + T) \) is constant we can apply Theorem 6.2 to conclude that the inequalities \(I + T_m \leq I + T \leq I + T_M \) are equivalent to
\[
(I + T_M)^{-1} \leq (I + T)^{-1} \leq (I + T_m)^{-1},
\]
which due to the formulas (6.8) and (6.9) can be rewritten as \(A_F + I \leq \tilde{A} + I \leq A_K + I \), or as \(A_F \leq \tilde{A} \leq A_K \). This proves (6.10). Since \(\nu_-(A) = \kappa = \kappa_- + \kappa_+ \) is also constant, an application of Theorem 6.3 shows that the inequalities (6.10) are also equivalent to \(A_F^{-1} \leq \tilde{A}^{-1} \leq A_K^{-1} \).

As to the inverse \(A^{-1} \), notice that \(\nu_-(A^{-1}) = \nu_-(A) \). Moreover, since \(A^{-1} = \mathcal{C}(A) \) it is clear that \(\text{ran}(I + A^{-1}) = \text{dom} T_1 \) and thus the form associated to \(A^{-1} \) via (6.6) satisfies \(a_1^{-1}(f', f') = (P_1 f, f') = (P_1 f', f) = a_1(f, f) \). In particular, \(\nu_-(a_1^{-1}) = \nu_-(a_1) \). Moreover, it is clear that \(\nu_-(A^{-1}) = \nu_-(A) \). Consequently, the equality \(\nu_-(A) = \nu_-(a_1) \) is equivalent to the equality \(\nu_-(A^{-1}) = \nu_-(a_1^{-1}) \). Furthermore, it is clear that \(\tilde{A} \in \text{Ext}_{A,\kappa}(0, \infty) \) if and only if \(\tilde{A}^{-1} \in \text{Ext}_{A^{-1},\kappa}(0, \infty) \).

Finally, the relations (6.12) are obtained from (5.7), (6.2), and (6.8). \(\square \)

It follows from Theorem 6.5 that the extensions \(\tilde{A} \in \text{Ext}_{A,\kappa}(0, \infty) \) admit a uniform lower bound \(\mu \leq \mu(\tilde{A}) (\mu \leq 0) \). Consequently, the resolvents of these extensions satisfy
\[
(A_F + a)^{-1} \leq (\tilde{A} + a)^{-1} \leq (A_K + a)^{-1}, \quad a > -\mu.
\]
This follows from the formula
\[
(\tilde{A} + a)^{-1} = \frac{1}{a - 1} I - \frac{2}{(a - 1)^2} \left(T + \frac{a + 1}{a - 1} \right)^{-1}
\]
and the fact that $T = C(\tilde{A}) \in \text{Ext}_{T_1,n}(-1,1)$ has precisely κ_- eigenvalues below the number $-(a+1)/(a-1) < -1$, so that the inequalities $T_m \leq T \leq T_M$ in Theorem 5.2 imply the inequalities (6.13) by Theorem 6.2.

The antitonicity Theorems 6.2, 6.3 can be also used as follows. If the inequalities (6.10) and $A_F^{-1} \leq \tilde{A}^{-1} \leq A_K^{-1}$ hold, then $\kappa = \nu_- (\tilde{A}) = \nu_- (A_K) = \nu_- (A_F)$ is constant. If, in addition, (6.11) is satisfied, then it follows from (6.10) that $\kappa = \nu_- (I + \tilde{A}) = \nu_- (I + A_K) = \nu_- (I + A_F)$ is constant, so that also $\kappa_+ = \nu_- (I - \tilde{A}) = \nu_- (I - A_K) = \nu_- (I - A_F)$ is constant. However, in this case the equality $\nu_- (a_1) = \nu_- (A)$ need not hold and there can also be selfadjoint extensions \tilde{A} of A with

$$\nu_- (\tilde{A}) = \nu_- (A_K) = \nu_- (A_F) > \nu_- (A) \geq \nu_- (a_1),$$

which neither satisfy the inequalities (6.10) and (6.11), nor the equalities $\nu_- (I + \tilde{A}) = \kappa_-$ and $\nu_- (I - \tilde{A}) = \kappa_+$. It is emphasized that the result in Theorem 6.5 characterizes all selfadjoint extensions in $\text{Ext}_{A,n}(0,\infty)$ under the minimal index condition $\kappa = \nu_- (a_1) = \nu_- (A)$.

In the case that A is nonnegative one has automatically $\kappa = \nu_- (a_1) = \nu_- (A) = 0$. Therefore, Theorem 6.5 is a precise generalization of the famous characterization of the class $\text{Ext}_{A}(0,\infty)$ (with $\kappa = 0$) due to M.G. Krein [42] to the case of a finite negative (minimal) index $\kappa > 0$. The selfadjoint extensions A_F and A_K of A are called the Friedrichs (hard) and the Krein-von Neumann (soft) extension, respectively; these notions go back to [31, 49]. The extremal properties (6.13) of the Friedrichs and Krein-von Neumann extensions were discovered by Krein [42] in the case when A is a densely defined nonnegative operator. The case when $A \geq 0$ is not densely defined was considered by T. Ando and K. Nishio [4], and E.A. Coddington and H.S.V. de Snoo [17]. In the nonnegative case the formulas (6.12) can be found in [4] and [17].

6.4. Krein’s uniqueness criterion. To establish a generalization of Krein’s uniqueness criterion for the equality $A_F = A_K$ in Theorem 6.5, i.e., for $\text{Ext}_{A,n}(0,\infty)$ to consists only of one extension, we first derive some general facts on J-contractions by means of their commutation properties.

Let \mathcal{H}_1 and \mathcal{H}_2 be Hilbert spaces with symmetries J_1 and J_2, respectively, and let $T \in [\mathcal{H}_1, \mathcal{H}_2]$ be a J-contraction, i.e., $J_i - T^* J_2 T \geq 0$. Let D_T and D_{T^*} be the corresponding defect operators and let J_T and J_{T^*} be their signature operators as defined in Section 4. The first lemma connects the kernels of the defect operators D_T and D_{T^*}.

Lemma 6.6. Let $T \in [\mathcal{H}_1, \mathcal{H}_2]$, let J_i be a symmetry in \mathcal{H}_i, $i = 1,2$, and let D_T and D_{T^*} be the defect operators of T and T^*, respectively. Then

$$J_2 T (\ker D_T) = \ker D_{T^*}, \quad T^* J_2 (\ker D_{T^*}) = \ker D_T.$$

In particular,

$$\ker D_T = \{0\} \text{ if and only if } \ker D_{T^*} = \{0\}.$$

Proof. It suffices to show the first identity in (6.14). If $\varphi \in \ker D_T = \ker J_T D_T^2$, then the second identity in (4.1) implies that $J_2 T \varphi \in \ker J_T D_T^2 = \ker D_{T^*}$. Hence, $J_2 T (\ker D_T) \subset \ker D_{T^*}$. Conversely, let $\varphi \in \ker D_{T^*}$. Then $0 = J_T D_{T^*} \varphi$, or, equivalently, $\varphi = J_2 T J_1 T^* \varphi$, and here $J_1 T^* \varphi \in \ker D_T$ by the first identity in (4.1). This proves the reverse inclusion. \qed
Lemma 6.7. Let the notations be as in Lemma 6.6. Then
\[\text{ran} T \cap \text{ran} D_{T^*} = \text{ran} TJ_1D_T = \text{ran} D_{T^*}L_T, \]
of where \(L_T \) is the link operator defined in Corollary 4.5.

Proof. By the commutation formulas in Corollary 4.5 \(\text{ran} TJ_1D_T = \text{ran} D_{T^*}L_T \subseteq \text{ran} T \cap \text{ran} D_{T^*}. \) Hence, it suffices to prove the inclusion
\[\text{ran} T \cap \text{ran} D_{T^*} \subseteq \text{ran} TJ_1D_T. \]

Suppose that \(\varphi \in \text{ran} T \cap \text{ran} D_{T^*}. \) Then Corollary 4.5 shows that \(T^*J_2\varphi = D_Tf \) for some \(f \in \mathcal{D}_T, \) while the second identity in (4.1) implies that
\[(J_2 - T^*J_1^*)J_2\varphi = TJ_1D_Tg, \]
for some \(g \in \mathcal{D}_T. \) Therefore,
\[\varphi = (J_2 - T^*J_1^*)J_2\varphi + T^*J_1\varphi = TJ_1D_Tg + T^*J_1D_Tf = TJ_1D_T(g + f) \]
and this completes the proof. \(\Box \)

We can now characterize \(J \)-isometric operators \(T \in \mathcal{H}_1 \) as follows.

Proposition 6.8. With the notations as in Lemma 6.6 the following statements are equivalent:

(i) \(T \) is \(J \)-isometric, i.e., \(T^*J_2T = J_1; \)
(ii) \(\ker T = \{0\} \) and \(\text{ran} T \cap \text{ran} D_{T^*} = \{0\}; \)
(iii) for some, and equivalently for every, subspace \(\mathcal{L} \) with \(\text{ran} J_2T \subseteq \mathcal{L} \) one has
\[\sup_{f \in \mathcal{L}} \frac{||(f,T\varphi)||}{\|D_{T^*}f\|} = \infty \quad \text{for every } \varphi \in \mathcal{H}_1 \setminus \{0\}, \]
i.e., there is no constant \(0 \leq C < \infty \) satisfying \(||(f,T\varphi)|| \leq C\|D_{T^*}f\| \) for every \(f \in \mathcal{L}, \) if \(\varphi \neq 0. \)

Proof. (i) \(\Rightarrow \) (iii) Let \(\mathcal{L} \) be an arbitrary subspace with \(\text{ran} J_2T \subseteq \mathcal{L}. \) Assume that the supremum in (6.15) is finite for some \(\varphi = J_1\psi \in \mathcal{H}_1. \) Then there exists \(0 \leq C < \infty, \) such that
\[||(f,TJ_1\psi)|| \leq C\|D_{T^*}f\| \quad \text{for every } f \in \mathcal{L}. \]
Since \(\text{ran} J_2T \subseteq \mathcal{L} \) and \(T \) is \(J \)-isometric, also the following inequality holds:
\[\|\psi\|^2 = (J_1T^*J_2T\psi,\psi) \leq C\|D_{T^*}J_2T\psi\|. \]
By taking adjoints (and zero extension for \(L_{T^*} \)) in the second identity in Corollary 4.5 it is seen that \(D_{T^*}J_2T\psi = L_{T^*}^*D_T\psi = 0, \) since \(T \) is \(J \)-isometric. Hence (6.16) implies \(\varphi = J_1\psi = 0. \) Therefore (6.15) holds for every \(\varphi \neq 0. \)

(iii) \(\Rightarrow \) (ii) Assume that (6.15) is satisfied with some subspace \(\mathcal{L}. \) If (ii) does not hold, then either \(\ker T \neq \{0\}, \) in which case (6.15) does not hold for \(0 \neq \varphi \in \ker T, \) or \(\text{ran} T \cap \text{ran} D_{T^*} \neq \{0\}. \) However, then with \(0 \neq T\varphi = D_{T^*}h \) the supremum in (6.15) is finite even if \(f \) varies over the whole space \(\mathcal{H}_2. \) Thus, if (ii) does not hold then (6.15) fails to be true.

(ii) \(\Rightarrow \) (i) Let \(\text{ran} T \cap \text{ran} D_{T^*} = \{0\}. \) Then by Lemma 6.7 \(TJ_1D_T = 0 \) and it follows from ker \(T = \{0\} \) that \(D_T = 0, \) i.e., \(T \) is isometric. This completes the proof. \(\Box \)
After these preparations we are ready to prove the analog of Krein’s uniqueness criterion for the equality \(T_m = T_M \) in the case of quasi-contractions appearing in Theorem 5.2.

Theorem 6.9. Let the Hilbert space \(\mathcal{H} \) be decomposed as \(\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2 \) and let \(T_1 \in [\mathcal{H}_1, \mathcal{H}_2] \) be a symmetric quasi-contraction satisfying the condition (5.4) in Theorem 5.2. Then \(T_m = T_M \) if and only if

\[
\text{sup}_{f \in \mathcal{H}_1} \frac{|(T_1 f, \varphi)|^2}{|I - T_1^* T_1| f, f |} = \infty \quad \text{for every } \varphi \in \mathcal{H}_2 \setminus \{0\}.
\]

Proof. Let \(J = \text{sign}(I - T_1^2) \). According to Theorem 5.2 there is \(V \in [\mathcal{D}_{T_1}, \mathcal{H}_2] \), such that \(T_{21} = V D_{T_1} \); moreover, \(V^* \) a \(J \)-contraction, i.e., \(I - VJV^* \geq 0 \). This implies that

\[
(T_1 f, \varphi) = (T_{21} f, \varphi) = (D_{T_1} f, V^* \varphi),
\]

and a direct calculation shows that

\[
I - T_1^2 T_1 = I - T_1^2 - T_2 T_1 = JD_{T_1} - D_{T_1} V^* V D_{T_1} = D_{T_1} D_V J V D_V D_{T_1}.
\]

By construction \(D_V \in [\mathcal{D}_{T_1}] \) and therefore \(D_V D_{T_1} \) is dense in \(\mathcal{D}_V = \text{ran} \ D_V \). Furthermore, since \(V^* \) is \(J \)-contractive it follows from Lemma 3.2 that \(\nu_.(J_V) = \nu_.(I - T_1^2) \) and, therefore, the assumption (5.4) shows that \(\nu_.(J_V) = \nu_.(I - T_1^2) \). Now according to Proposition 3.3 (ii) if follows from (6.19) that there is a unique \(J \)-unitary operator \(C \in [\mathcal{D}_{T_1}, \mathcal{D}_V] \) such that \(D_V D_{T_1} = CD_{T_1} \).

In view of (5.9) \(T_m = T_M \) if and only if \(V^* \) is \(J \)-isometric. Since ran \(JV^* \subset \text{ran} \ D_{T_1} \), it follows from Proposition 6.8 that \(T := V^* \) satisfies the condition (6.15) with \(\mathcal{L} = \text{ran} \ D_{T_1} \).

On the other hand, it follows from (6.19) and the \(J \)-unitarity of \(C \in [\mathcal{D}_{T_1}, \mathcal{D}_V] \) that

\[
\|D_V D_{T_1}\| \leq \|C\| \|D_{T_1}\|, \quad \|D_{T_1}\| \leq \|C^{-1}\| \|D_V D_{T_1}\|.
\]

By combining this equivalence between the norms of \(\|D_{T_1}\| \) and \(\|D_V D_{T_1}\| \) with the equality (6.18) one concludes that \(V^* \) satisfies the condition (6.15) precisely when \(T_1 \) satisfies the condition (6.17). \(\square \)

This result can be translated to the situation of Theorem 6.5 via Cayley transform to get the analog of Krein’s uniqueness criterion for the equality \(A_F = A_K \).

Corollary 6.10. Let \(A \) be a closed symmetric relation in \(\mathcal{H} \) satisfying the condition \(\nu_.(A) = \nu_.(a_1) < \infty \) in Theorem 6.5. Then the equality \(A_F = A_K \) holds if and only if the following condition is fulfilled:

\[
\text{sup}_{\varphi \in \mathcal{H}_1} \frac{|((A + I)^{-1} g, \varphi)|^2}{(|\hat{A}| g, g)} = \infty \quad \text{for every } \varphi \in \ker (A^* + I) \setminus \{0\},
\]

where \(\hat{A} = (I + A)^{-*} A(I + A)^{-1} \) is a bounded selfadjoint operator in \(\mathcal{H}_1 = \text{ran} (A + I) \).

Proof. Let \(T_1 = \mathcal{C}(A) \) so that \(\{f, f'\} \in A \) if and only if \(\{f + f', 2f\} \in T_1 + I \); see (6.1). Then with \(g = f + f' \in \text{dom} \ T_1 = \mathcal{H}_1 \) and \(\varphi \in \mathcal{H}_2 = (\text{dom} \ T_1)^{\perp} \) one has

\[
(T_1 g, \varphi) = ((I + I) g, \varphi) = 2((A + I)^{-1} g, \varphi).
\]

Let \(A_F = P_2 A \) be the operator part of \(A \); here \(P_2 \) stand for the orthogonal projection onto mul \(A = (\text{dom} A^*)^{\perp} = \ker (T_1 + I) \). Then the form \(a(f, f) = (f', f) \) associated
with A can be rewritten as $a(f, f) = (A_s f, f)$, $f \in \text{dom } A$, and thus
\[
((I - T_1^* T_1) g, g) = 4(f', f) = 4(A_s (I + A)^{-1} g, (I + A)^{-1} g)),
\]
where $2(I + A)^{-1} = T_1 + I$ is a bounded operator from \mathcal{H}_1 into \mathcal{H}. Then clearly $\hat{A} = (I + A)^{-1} A (I + A)^{-1}$ is a bounded selfadjoint operator in \mathcal{H}_1 and, moreover, $\nu_\ast (\hat{A}) = \nu_\ast (a) = \nu_\ast (I - T_1^* T_1)$; see Lemma 6.4. Thus, it follows from Proposition 3.3 that there is a J-unitary operator C from $\mathfrak{M} \hat{A}$ into \mathfrak{D}_{T_1} such that $D_{T_1} = C |\hat{A}|^{1/2}$. As in the proof of Theorem 6.5 this implies the equivalence of the conditions (6.17) and (6.20).

Observe that if A is nonnegative then with $\{f, f'\} \in A$ and $g = f + f' \in \mathcal{H}_1$,
\[
((A + I)^{-1} g, \varphi) = (f, \varphi), \quad (A_s (I + A)^{-1} g, (I + A)^{-1} g)) = (A_s f, f),
\]
and, therefore, in this case the condition (6.20) can be rewritten as
\[
\sup_{\{f, f'\} \in A} \frac{|(f, \varphi)|^2}{(f', f)} = \infty \quad \text{for every } \varphi \in \text{ker } (A^* + I) \setminus \{0\},
\]
the criterion which for a densely defined operator A was obtained in [42] and for a nonnegative relation A can be found from [34, 33].

Acknowledgements. Main part of this work was carried out during the second author’s sabbatical year 2013-2014; he is grateful about the Professor Pool’s grant received from the Emil Aaltonen Foundation.

References

[1] Alonso, A. and Simon, B., The Birman-Krein-Vishik theory of self-adjoint extensions of semibounded operators, J. Operator Theory, 4 (1980), 251–270.
[2] Anderson, W.N. and Duffin, B.J., Series and Parallel Addition of Matrices, J. Math. Anal. Appl., 26 (1969), 576–594.
[3] Arlinski˘ı Yu.M., Hassi S., and de Snoo H.S.V., Parametrization of contractive block-operator matrices and passive discrete-time systems, Complex Analysis and Operator Theory, 1 (2007), 211–233.
[4] Arlinski˘ı Yu.M., Extremal extensions of a $C(\alpha)$-suboperator and their representations, Oper. Theory Adv. Appl., 162 (2006), 47–69.
[5] Arlinski˘ı Yu.M., Hassi S., and de Snoo H.S.V., Parametrization of contractive block-operator matrices and passive discrete-time systems, Complex Analysis and Operator Theory, 1 (2007), 211–233.
[6] Arlinski˘ı Yu.M., Constantinescu, T., Gheondea, A., Lifting of Operators and Prescribed Numbers of Negative Squares, Michigan Math. J., 34 (1987), 201–216.
[7] Arlinski˘ı Yu.M., Iokhvidov, I.S., Linear operators in spaces with indefinite metric, John Wiley and Sons, New York, 1989.
[8] Behrndt, J., Hassi, S., de Snoo, H.S.V., and Wietsma, H.L., Antitonicity of the inverse for selfadjoint matrices, operators, and relations, Proc. Amer. Math. Soc. (to appear).
[9] Birman, M.S., On the self-adjoint extensions of positive definite operators, Mat. Sb., 38 (1956), 431–450.
[10] Birman, M.S. and Solomjak, M.Z., Spectral theory of selfadjoint operators in Hilbert space, Translated from the 1980 Russian original by S. Khrushchev and V. Peller. Mathematics and its Applications (Soviet Series). D. Reidel Publishing Co., Dordrecht, 1987.
[11] Bognár, J., Indefinite Inner Product Space, Springer-Verlag, Berlin, 1974.
[12] Brasche, J.F. and Neidhardt, H., Some remarks on Krein’s extension theory, Math. Nachr., 165 (1994), 159–181.
[15] Bruk, V.M., On One Class of Boundary Value Problems with a Spectral Parameter in the Boundary Condition, (Russian) Mat. Sbornik, 100, No.2 (1976), 210–216.
[16] Calkin, J.W., Symmetric boundary conditions, Trans. of AMS, 45, No.3 (1939), 369–442.
[17] Coddington, E.A. and de Snoo, H.S.V.: Positive Selfadjoint Extensions of Positive Symmetric Subspaces, Math. Z., 159 (1978), 203–214.
[18] Constantinescu, T. and Gheondea, A.: Minimal Signature of Lifting operators. I, J. Operator Theory, 22 (1989), 345–367.
[19] Constantinescu, T. and Gheondea, A.: Minimal Signature of Lifting operators. II, J. Funct. Anal., 103 (1992), 317–352.
[20] Davis, Ch., Kahan, W.M., and Weinberger, H.F., Norm preserving dilations and their applications to optimal error bounds, SIAM J. Numer. Anal., 19, no. 3 (1982), 445–469.
[21] Derkach, V.A., Hassi, S., Malamud, M.M., and de Snoo, H.S.V., Boundary Relations and their Weyl Families, Trans. Amer. Math. Soc. 358 (2006), 5351–5400.
[22] Derkach, V.A., Hassi, S., Malamud, M.M., and de Snoo, H.S.V., Boundary Triplets and Weyl Functions. Recent Developments, in: Operator Methods for Boundary Value Problems, London Mathematical Society, Lecture Notes Series, 404 (2012), 161–220.
[23] Derkach, V.A., Hassi, S., and de Snoo, H.S.V., Truncated moment problem in the class of generalized Nevanlinna functions, Math. Nachr., 285, No. 14-15 (2012), 1741–1769.
[24] Derkach, V.A. and Malamud, M.M., Generalized Resolvents and the Boundary Value Problems for Hermitian Operators with Gaps, J. Funct. Anal., 95, No.1 (1991), 1–95.
[25] Douglas, R.G., On Majorization, Factorization and Range Inclusion of Operators in Hilbert space, Proc. Amer. Math. Soc., 17 (1966), 413–416.
[26] Dritschel, M.A., A lifting theorem for bicontractions on Kreĭn spaces, J. Funct. Anal., 89 (1990), 61–89.
[27] Dritschel, M.A. and Rovnyak, J., Extension theorems for contraction operators on Kreĭn spaces. Extension and interpolation of linear operators and matrix functions, 221–305, Oper. Theory Adv. Appl., 61 (1993), 149–161.
[28] Fillmore, P.A. and Williams, J.P., On operator ranges, Adv. Math., 7 (1971), 254–281.
[29] Friedrichs, K.O., Spektraltheorie halbbeschränkter Operatoren und Anwendung auf die Spektralzerlegung von Differentialoperatoren, Math. Ann., 109 (1934), 465–487.
[30] Gorbachuk, V.I. and Gorbachuk, M.L., Boundary problems for differential operator equations, Naukova Dumka, Kiev, 1984 (Russian). Translated and revised from the 1984 Russian original: Mathematics and its Applications (Soviet Series), 48. Kluwer Academic Publishers Group, Dordrecht, 1991.
[31] Hassi, S., On the Friedrichs and the Kreĭn-von Neumann extension of nonnegative relations", In Contributions to Management Science, Mathematics and Modelling. Acta Wasaensia, 122 (2004), 37–54.
[32] Hassi, S., Malamud, M.M., and de Snoo, H.S.V., On Kreĭn’s Extension Theory of Nonnegative Operators, Math. Nachr., 274/275 (2004), 40–73.
[33] Hassi, S. and Nordström, K., Antitonicity of the inverse of selfadjoint operators, Schwerpunktprogramm der Deutschen Forschungsgemeinschaft, Forschungsbericht No. 364, 1992.
[34] Hassi, S. and Nordström, K., Antitonicity of the inverse and J-contractivity, Operator Theory Adv. Appl., 61 (1993), 149–161.
[35] Kato, T., Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, Heidelberg, 1995.
[36] Kochubei, A.N., Extensions of symmetric operators and symmetric binary relations, Math.Zametki, 17, No.1 (1975), 41–48 (Russian). English translation in Math. Notes, 17 (1975), 25–28.
[37] Kolmanovich, V.U. and Malamud, M.M., Extensions of Sectorial operators and dual pair of contractions, (Russian) Manuscript No 4428-85. Deposited at Vses. Nauch-Issled, Inst. Nauchno-Techn. Informatsii, VINITI 19 04 85, Moscow, R ZH Mat 10B1144, (1985), 1–57.
[38] Kreĭn, M.G., On hermitian operators with defect indices (1,1), Dokl. Akad. Nauk SSSR, 43 (1944), 339–342.
[41] Krein, M.G., On resolvents of Hermitian operator with deficiency index \((m, m)\), Dokl. Akad. Nauk SSSR, 52 (1946), 657–660.

[42] Krein, M.G., Theory of Selfadjoint Extensions of Semibounded Operators and Its Applications, I, Mat. Sb. 20, No.3 (1947), 431–498.

[43] Krein, M.G., Completely continuous linear operators in function spaces with two norms, Akad. Nauk Ukrain. SSR. Zbirnik Prac' Inst. Mat., No. 9 (1947), 104–129.

[44] Krein, M.G. and Langer, H., On Defect Subspaces and Generalized Resolvents of Hermitian Operator in the Space \(\Pi_\alpha\). (Russian) Funct. Anal. and Appl., 5, No.2 (1971), 59–71.

[45] Krein, M.G. and Langer, H., On Defect Subspaces and Generalized Resolvents of Hermitian Operator in the Space \(\Pi_\alpha\). (Russian) Funct. Anal. and Appl., 5, No.3 (1971), 54–69.

[46] Langer, H. and Textorius, B., On Generalized Resolvents and \(Q\)-Functions of Symmetric Linear Relations (Subspaces) in Hilbert Space, Pacific J. Math., 72, No.1 (1977), 135–165.

[47] Malamud M.M., Certain classes of extensions of a lacunary Hermitian operator, Ukrainian Math. J., 44, No.2 (1992), 190–204.

[48] Malamud M.M., On some classes of extensions of sectorial operators and dual pair of contractions, Oper. Theory Adv. Appl., 124 (2001), 401–448.

[49] von Neumann, J., Allgemeine Eigenwerttheorie Hermitescher Funktionaloperatoren, Math. Ann., 102 (1929), 49–131.

[50] Pekarev, E.L., Shorts of operators and some extremal problems, Acta Sci. Math. (Szeged), 56 (1992), 147–163.

[51] Rodman, L., A note on indefinite Douglas’ lemma. *Operator theory in inner product spaces*, Oper. Theory Adv. Appl., 175 (2007), 225–229.

[52] Shmul’yan, Yu. L., A Hellinger operator integral, (Russian) Mat. Sb. (N.S.), 49, No.91 (1959), 381–430.

[53] Shmul’yan, Yu. L., Division in the class of \(J\)-expansive operators, (Russian) Mat. Sb. (N.S.) 74, No.116 (1967), 516–525.

[54] Shmul’yan, Yu. L., A question regarding inequalities between Hermitian operators, Mat. Zametki 49 (1991), 138–141 (Russian) [English translation: Math. Notes, 49 (1991), 423–425].

[55] Shmul’yan, Yu. L. and Yanovskaya, R.N., Blocks of a contractive operator matrix, Izv. Vyssh. Uchebn. Zaved. Mat., No. 7 (1981), 72–75.

[56] Vishik M.I., On general boundary problems for elliptic differential equations, Trans. Moscow Math. Soc., 1 (1952), 186–246. (Russian) [English translation: Amer. Math. Soc. Transl., 24 (1963), 107–172].

DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF VAASA, P.O. BOX 700, 65101 VAASA, FINLAND

E-mail address: dbaidiuk@uwasa.fi

DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF VAASA, P.O. BOX 700, 65101 VAASA, FINLAND

E-mail address: sha@uwasa.fi