Abstract
To date, there is no licensed treatment or approved vaccine to combat the coronavirus disease of 2019 (COVID-19), and the number of new cases and mortality multiplies every day. Therefore, it is essential to develop an effective treatment strategy to control the virus spread and prevent the disease. Here, we summarized the therapeutic approaches that are used to treat this infection. Although it seems that antiviral drugs are effective in improving clinical manifestation, there is no definite treatment protocol. Lymphocytopenia, excessive inflammation, and cytokine storm followed by acute respiratory distress syndrome are still unsolved issues causing the severity of this disease. Therefore, immune response modulation and inflammation management can be considered as an essential step. There is no doubt that more studies are required to clarify immunopathogenesis and immune response; however, new therapeutic approaches including mesenchymal stromal cell and immune cell therapy showed inspiring results.

Keywords COVID-19 · Coronavirus · Therapeutic approaches · Severe acute respiratory syndrome · Acute respiratory distress syndrome · Cell therapy

Introduction
Corona viruses are a large family of enveloped, positive-sense RNA viruses that have the largest RNA genome (range from 26 to 32 kb) [1, 2]. Several coronavirus epidemics such as Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle East Respiratory Syndrome Coronavirus (MERS-CoV) have occurred during the past years [2, 3]. At the end of 2019, a novel coronavirus infection named coronavirus disease of 2019 (COVID-19) was first identified in Wuhan, China [4–7]. Due to the fast transmission, it is reported in almost all countries and has become a global crisis. Therefore, COVID-19 pandemic becomes an international threat for human health and economy [1, 8].

COVID-19 spreads fast among people and the mortality rate is controversial; however, it was less than 2% in some
studies. The main manifestations of the disease include fever, dry caught, headache, shortness of breath, pneumonia, acute respiratory distress syndrome (ARDS), septic shock, and even death [3, 11, 12].

The genome sequencing of this virus revealed more than 82% identity to SARS-CoV [9]. Analysis indicated that the binding affinity of virus S protein to the angiotensin-converting enzyme 2 (ACE2) receptor on human alveolar epithelial cells is higher compared with the SARS-CoV [10].

Since SARS-CoV-2 is a new pathogen, little is known about it. Moreover, there is no licensed treatment or approved vaccine and the number of new cases and mortality multiplies daily [8]. Therefore, it is vital to develop an effective treatment strategy to control the virus spread and prevent the disease [1, 11].

Immunopathogenesis of COVID-19

Although the pathogenesis of this disease has not been fully understood, it seems that the host immune responses play an important role. Aberrant host immune response causes lung tissue damage, reduced lung capacity, and finally respiratory failure [4]. Studies indicated that dendritic cells (DCs) and macrophages are playing crucial role in innate immune responses [12, 13]. These cells produce inflammatory cytokines and chemokines including TNF-α, IL-12, IL-6, IFNγ, and IL-8, and monocyte chemotactant protein (MCP-1), macrophage colony-stimulating factor (GM-CSF), and granulocyte-colony-stimulating factor (G-CSF) [6, 14]. These inflammatory responses may lead to systemic inflammation [6, 7, 13, 14].

Adoptive immunity plays a major role in viral infections [15]. Cytotoxic T cells (CD8+ T cells) are the main T cell subsets that destroy infected cells [16]. Therefore, the number of these cells is one of the major factors for clearance of the viral infection [17, 18]. Preliminarily, it was indicated that the number of total T cells, CD4+ and CD8+ T cells, reduced significantly in COVID-19 patients. This decrease was more intensive in ICU admitted patients compared with that in non-ICU admitted individuals [19]. It is also reported that T cell clonal exhaustion occurred during the infection and the expression of certain T cell surface markers like PD1 (programmed cell death protein 1) and TIM-3 (T cell immunoglobulin and mucin domain-containing molecule-3) markedly increased [19, 20]. The cytokine storm occurred in response to SARS-CoV-2 infection that led to increased expression of NKG2A (natural-killer group 2, member A) on cytotoxic T cells (CTLs) and NK cells. This upregulation suppressed CTL and NK function and cytotoxic secretion [19, 21, 22]. It is suggested that inflammatory cytokines, TNF-α and IL-6, mainly originated from apoptotic monocytes (CD14+CD16+) and macrophages and induced T CD4+ and T CD8+ cells [19, 23]. These excessive inflammatory responses might result in respiratory system pathology and dysfunction [23].

Perhaps it takes many years to achieve a specific and effective therapeutic protocol, efficient vaccine, or suitable medicine for the treatment of COVID-19. There is a wide range of existing and current treatment strategies categorized into antiviral drugs, immunotherapy protocols including convalescent serum and monoclonal antibodies, cell-based therapies, hydroxychloroquine, Chinese medicine, and steroids (just for patients who suffer from ARDS) [24]. A schematic figure (Fig. 1) summarized the novel therapeutic approaches in treatment of COVID-19 patients. Moreover, there are a growing number of clinical trials registered for the treatment of COVID-19 (Table 1).

Passive immunotherapy

Convalescent serum

Antibody injection to the patients and susceptible people provides rapid immunity to treat or prevent the disease [25–27]. Past experiences from SARS and MERS viral infections indicated that passive immunotherapy could be a potential treatment strategy for the patients [27–29]. It is considered that passive immunotherapy could also be beneficial in SARS-CoV-2 infection [30]. Extracting neutralizing antibodies from recovered individuals with high titer of antibodies in sera and transfusion to infected patient could deactivate the virus. However, neutralization activity of these antibodies is not fully understood. It has been showed that neutralizing antibodies are not long lasting and only the recently recovered patients are suitable candidates [31]. It has also been reported that the neutralizing antibody titers vary among the patients and elderly patients had higher antibody titer compared with young recovered individuals [32]. It is supposed that convalescent serum administration may induce phagocytosis and antibody-mediated cellular cytotoxicity [25, 27]. One important implications for using convalescent serum is the risk for antibody-dependent enhancement (ADE) [33]. It is supposed that these neutralizing antibodies may enhance other viral infections [34]. Another major limitation of this strategy is donor shortage. However, by increasing the number of recovered individuals, this limitation would be solved [25].

Monoclonal antibodies

It has been shown that monoclonal antibodies (mAbs) could be an effective tool for the treatment of viral infectious diseases [35–37]. Different techniques have been used to develop mAbs including phage display library, hybridoma, single B cell isolation, and transgenic mice [37]. Various monoclonal antibodies developed against MERS and SARS infections include m396, 80R, and S3.1 against SARS and LCA60 for the
treatment of MERS disease [29, 37–41]. These mAbs limited virus replication and facilitated lung recovery in animal models [42–44]. S protein is also the most immunogenic determinant of coronaviruses [40]. Several mAbs target receptor-binding domain (RBD) in the virus spike (S) glycoprotein and inhibit the virus to invade the host cell [9]. It is reported that mAbs against SARS-CoV-1 could cross react with SARS-CoV-2 [45]. It is indicated in the preprint that mAb 1A9 that targets the S protein of SARS-CoV-1 could interact with SARS-CoV-2 [46].

Tocilizumab is a humanized monoclonal antibody against IL-6 receptor cytokine. Tocilizumab targets both membrane and soluble-bound IL-6 receptors. This mAb is used for the treatment of COVID-19 patients [47]. It is shown that the IL-6 level is considerably high in severe COVID-19 cases. Treatment of 21 severe COVID-19 cases with tocilizumab indicated that using this monoclonal antibody is an effective treatment and well tolerated in these patients. In the preprinted study, tocilizumab caused body temperature and CRP returned to the normal levels and improved lung function [48]. There are also many registered clinical trials on efficiency and safety of tocilizumab for the treatment of COVID-19 (Table 1).

VEGF is one of the main mediators of vascular permeability and progression of ARDS. Bevacizumab is a humanized monoclonal antibody that targets VEGF and employed in a phase II/III clinical trial for the treatment of COVID-19 patients (NCT04275414).

As described earlier, during the SARS-CoV-2 infection, exhaustion of T and NK cells happens. In order to restore these cells, using monoclonal antibodies to block the PD-1/PD-L1 and TIM3 pathways may have beneficial therapeutic effects as well [49].

Kinase inhibitors

It is suggested that an inhibitor of Janus kinase (JAK) called baricitinib could prevent the entry of SARS-CoV-2 into the host cells and also inhibit the inflammation [50, 51]. Cyclin G-associated kinase (GAK) and AP2-associated protein kinase 1...
Group	Therapeutic agent	Example of clinical trials registered at ClinicalTrials.gov			
Serum	Convalescent serum	NCT04327349 Iran Enrolling by invitation Phase I			
	Convalescent plasma	NCT04372979 France Not yet recruiting Phase III			
	NCT04343755 USA Recruiting Phase II				
	NCT04363034 USA Available NA				
	NCT04333355 Mexico Recruiting Phase I				
Inactivated convalescent plasma	NCT04292340 China Recruiting Phase I				
Immunoglobulin of cured patients	NCT04264858 China Not yet recruiting NA				
Immunoglobulins obtained with DFPP	NCT04346589 Italy Recruiting NA				
Monoclonal antibodies	Tocilizumab	NCT04322773 Denmark Recruiting Phase II			
	Sarilumab	NCT04324073 France Recruiting Phase II/III			
	Avdoralimab	NCT04319367 France Recruiting Phase II			
	Gimsilumab	NCT04351243 USA Recruiting Phase II			
	Siltuximab	NCT04329650 Spain Recruiting Phase II			
	Bevacizumab	NCT04275414 China Recruiting Phase II/III			
	Eculizumab	NCT0428713 USA Available Phase I			
	Emapalumab	NCT04324021 Sweden Recruiting Phase II/III			
	Clazakizumab	NCT04381052 USA Not yet recruiting Phase III			
	Canakinumab	NCT04362813 USA, Spain, UK Recruiting Phase III			
	NCT04348448 Italy Not yet recruiting NA				
	Olokizumab	NCT04380519 Russia Recruiting Phase II/III			
	Otilimab	NCT04376684 UK Not yet recruiting Phase III			
	Sirukumab	NCT04380961 USA Recruiting Phase II			
	Emapalumab	NCT04324021 Sweden Recruiting Phase II/III			
	Lenzihamab	NCT04351152 USA Recruiting Phase III			
	Leronlimab	NCT04343651 USA Recruiting Phase II			
	Ravulizumab	NCT04369469 USA Not yet recruiting Phase III			
	Nivolnab	NCT04343144 France Not yet recruiting Phase II			
	Meplazumab	NCT04275245 China Recruiting Phase I/II			
Group	Therapeutic agent	Example of clinical trials registered at ClinicalTrials.gov			
-------	-------------------	--			
	CT number	Country	Recruitment status	Phase	
CD24Fc	NCT04317040	USA	Not yet recruiting	Phase III	
TJ03234	NCT04341116	USA	Recruiting	Phase I/II	
IC14	NCT04346277	Italy	Available	NA	
Anakinra	NCT04362111	UK	Not yet recruiting	Phase III	
Anakinra vs. siltuximab vs. tocilizumab	NCT04330638	Belgium	Recruiting	Phase III	
Interferons	NCT04320236	China	Recruiting	Phase III	
IFN-α	NCT04350671	Iran	Enrolling by invitation	Phase IV	
Interferon beta-1A	NCT04293887	China	Not yet recruiting	Early Phase I	
Recombinant human interferon α1β	NCT04320238	China	Recruiting	Phase III	
Recombinant human interferon alpha-1b	NCT0431899	USA	Recruiting	Phase II	
Peginterferon lambda-1a	NCT04343976	USA	Not yet recruiting	Phase II	
Pegylated interferon lambda	NCT04324996	Colombia	Not yet recruiting	Phase I	
NK cells	NCT04280224	China	Recruiting	Phase I	
iPSC-derived NK cells	NCT04344548	Colombia	Not yet recruiting	Phase I/II	
IL15-NK cells vs. NKG2D-CAR-NK cells vs. ACE2 CAR-NK cells vs. NKG2D-ACE2 CAR-NK cells	NCT04324996	China	Recruiting	Phase I/II	
CYNK-001	NCT04365101	USA	Not yet recruiting	Phase I/II	
Kinase inhibitors	NCT04362137	UK	Recruiting	Phase III	
Ruxolitinib	NCT04348071	USA	Not yet recruiting	Phase II/III	
	NCT04355793	USA	Available	NA	
	NCT0434714	USA	Not yet recruiting	Phase II	
	NCT04377620	USA	Recruiting	Phase III	
Baricitinib	NCT04340232	USA	Not yet recruiting	Phase II/III	
	NCT04358614	Italy	Completed	Phase II/III	
	NCT04346147	Spain	Recruiting	Phase II	
Acalabrutinib	NCT04346199	Spain	Not yet recruiting	Phase II	
	NCT04380688	USA	Not yet recruiting	Phase II	
Duvelisib	NCT04372602	USA	Not yet recruiting	Phase II	
Tofacitinib	NCT04332042	Italy	Not yet recruiting	Phase II	
Imatinib	NCT04346147	Spain	Recruiting	Phase II	
Ibrutinib	NCT04375397	USA	Not yet recruiting	Phase II	
Nintedanib	NCT04338802	China	Not yet recruiting	Phase II	
Other immunosuppressors	NCT04280588	China	Recruiting	Phase II	
Fingolimod	NCT04341675	USA	Recruiting	Phase II	
Group	Therapeutic agent	Example of clinical trials registered at ClinicalTrials.gov			
-----------------	--	---			
	CT number	Country	Recruitment status	Phase	
Tacrolimus	NCT04341038	Spain	Recruiting	Phase III	
Lenalidomide	NCT04361643	Spain	Not yet recruiting	Phase IV	
Methotrexate	NCT04352465	Brazil	Not yet recruiting	Phase II	
Antivirals					
Remdesivir	NCT04292899	USA	Recruiting	Phase III	
Favipinavir	NCT04336904	Italy	Active, not recruiting	Phase III	
Umifenovir	NCT04350684	Iran	Enrolling by invitation	Phase IV	
Abidol hydrochloride vs. oseltamivir vs. lopinavir/ritonavir	NCT04330690	Canada	Recruiting	Phase II	
Lopinavir/ritonavir	NCT04307693	Korea	Recruiting	Phase II	
Galidesivir	NCT03891420	Brazil	Recruiting	Phase I	
Danoprevir, ritonavir	NCT04345276	China	Recruiting	Phase IV	
Darunavir/cobicistat	NCT04252274	China	Recruiting	Phase III	
Virazole	NCT04356677	USA	Not yet recruiting	Phase I	
Clevudine	NCT04347915	Korea	Not yet recruiting	Phase II	
Nitazoxanide	NCT04359680	USA	Not yet recruiting	Phase III	
Hydroxychloroquine	NCT04329611	Canada	Recruiting	Phase III	
Antibiotics					
Azithromycin	NCT04332107	USA	Not yet recruiting	Phase III	
Doxycycline	NCT04371952	France	Not yet recruiting	Phase III	
Carnimycin	NCT04286503	China	Not yet recruiting	Phase IV	
Decoy biomolecules	rhACE2, rhACE2	China	Withdrawn	NA	
	NCT04287686	China	Recruiting	Phase II	
	NCT0435136	Austria, Denmark, Germany	Not yet recruiting	Phase I	
	NCT04375046	Egypt	Not yet recruiting	Phase I	
Group	Therapeutic agent	Example of clinical trials registered at ClinicalTrials.gov			
---	--	---			
		CT number	Country	Recruitment status	Phase
PUL-042, PUL-042		NCT04313023	USA	Not yet recruiting	Phase II
		NCT04312997	USA	Not yet recruiting	Phase II
Rhu-pGSN		NCT04358406	USA	Not yet recruiting	Phase II
Piclidenoson		NCT04333472	Israel	Not yet recruiting	Phase II
ACE inhibitors and AR blockers					
Ramipril		NCT04366050	USA	Not yet recruiting	Phase II
Valsartan		NCT04335786	Netherlands	Recruiting	Phase IV
Losartan		NCT04335123	USA	Recruiting	Phase I
Telmisartan		NCT04355936	Argentina	Recruiting	Phase II
MSC and other cells					
Cardiosphere-derived cells		NCT04338347	USA	Available	NA
Dental pulp mesenchymal stem cells		NCT04302519	China	Not yet recruiting	Phase I
Dental pulp stem cells		NCT04336254	China	Recruiting	Phase I/II
MSC exosomes		NCT04276987	China	Not yet recruiting	Phase I
MSC		NCT04252118	China	Recruiting	Phase I
		NCT04361942	Spain	Not yet recruiting	Phase II
		NCT04377334	Germany	Not yet recruiting	Phase II
AD MSC		NCT04362189	USA	Not yet recruiting	Phase II
BM-MSC		NCT04366323	Spain	Not yet recruiting	Phase I/II
		NCT04346368	China	Not yet recruiting	Phase I/II
UC-MSC		NCT04355728	USA	Recruiting	Phase I/II
		NCT04273646	China	Not yet recruiting	NA
		NCT04333368	France	Recruiting	Phase I/II
		NCT04269525	China	Recruiting	Phase II
		NCT04339660	China	Recruiting	Phase I/II
		NCT04366271	Spain	Not yet recruiting	Phase II
WJ-MSC		NCT04313322	Jordan	Recruiting	Phase I
Corticosteroids					
Ciclesonide		NCT04330586	Korea	Not yet recruiting	Phase II
		NCT04381364	Sweden	Not yet recruiting	Phase II
Budesonide		NCT04355637	Spain	Recruiting	Phase IV
Dexamethasone		NCT04325061	Spain	Not yet recruiting	Phase IV
		NCT04360876	USA	Not yet recruiting	Phase II
Group	Therapeutic agent	Example of clinical trials registered at ClinicalTrials.gov			
--	--	---			
	CT number	Country	Recruitment status	Phase	
Prednisone	NCT04344288	France	Recruiting	Phase II	
Prednisone vs. hydrocortisone	NCT04359511	France	Not yet recruiting	Phase III	
Methylprednisolone	NCT04273321	China	Suspended	NA	
Methylprednisolone sodium succinate	NCT04274071	USA	Completed	NA	
Sedatives, antidepressants, neuroleptics	Chlorpromazine	NCT04366739	France	Not yet recruiting	Phase III
	Etoposide	NCT04356690	USA	Not yet recruiting	Phase II
	Thalidomide	NCT04273529	Egypt	Not yet recruiting	Phase I/II
	Fluvoxamine	NCT04342663	USA	Recruiting	Phase II
	Fluoxetine	NCT04377308	USA	Recruiting	Phase IV
	Dexametomidine	NCT04358627	Spain	Not yet recruiting	NA
Others	Azoximer bromide	NCT0438177	Russia	Recruiting	Phase II/III
	Etoposide	NCT04356690	USA	Not yet recruiting	Phase II
	Bicalutamide	NCT04374279	USA	Not yet recruiting	Phase II
	Selinexor	NCT04349998	USA	Recruiting	Phase II
	Melphalan	NCT04380376	Russia	Recruiting	Phase II
	Bromhexine	NCT04355026	Slovenia	Recruiting	Phase IV
	N-acetylcysteine	NCT04374461	USA	Recruiting	Phase IV
	Sargramostim	NCT04326920	Belgium	Recruiting	Phase IV
	Angiotensin peptide (1-7) derived plasma	NCT04375124	Turkey	Recruiting	NA
	Defibrotide	NCT04335201	Italy	Not yet recruiting	Phase II
	Aviptadil	NCT04311697	USA	Not yet recruiting	Phase II
	Domase alpha	NCT04355364	France	Recruiting	Phase III
	Nafamostat mesilate	NCT04352400	Italy	Not yet recruiting	Phase II/III
	Camostat mesilate	NCT04321096	Denmark	Not yet recruiting	Phase I/II
	NCT04353284	USA	Not yet recruiting	Phase II	
	Almitrine	NCT04357457	France	Not yet recruiting	Phase III
	Sildenafil citrate	NCT04304313	China	Recruiting	Phase III
	Progesterone	NCT04365127	USA	Recruiting	Phase I
	Colchicine	NCT04375202	Italy	Recruiting	Phase II
	NCT04355143	USA	Recruiting	Phase II	
	Tetrandrine	NCT04308317	China	Enrolling by invitation	Phase IV
	Vazegepant	NCT04346615	USA	Recruiting	Phase II/III
Group	Therapeutic agent	Example of clinical trials registered at ClinicalTrials.gov			
-------	-------------------	--			
	CT number	Country	Recruitment status	Phase	
	Dapagliflozin	NCT04350593	Recruiting	Phase III	
	Isotretinoin	NCT04361422	Not yet recruiting	Phase III	
	Deferoxamine	NCT04333550	Recruiting	Phase I/II	
	SnPP protoporphyrin	NCT04371822	Not yet recruiting	Phase I	
	Ascorbic acid	NCT04363216	Not yet recruiting	Phase II	
	BACTEK-R	NCT04363814	Not Yet Recruiting	Phase III	
	Traditional Chinese medicine	NCT04323332	China	Not yet recruiting	Phase III
	Huaier granule	NCT04291053	Not yet recruiting	Phase II/III	
Combined	Favipiravir, hydroxychloroquine	NCT04359615	Iran	Not recruiting	Phase IV
	Favipiravir, tocilizumab	NCT04310228	China	Recruiting	NA
	Hydroxychloroquine, azithromycin	NCT04328272	Pakistan	Not yet Recruiting	Phase III
	Hydroxychloroquine, nitazoxanide	NCT04361318	Egypt	Not yet recruiting	Phase II/III
	Hydroxychloroquine, azithromycin, tocilizumab	NCT04332094	Spain	Recruiting	Phase II
	Hydroxychloroquine vs. hydroxychloroquine, lopinavir/ritonavir vs. hydroxychloroquine, azithromycin	NCT04359095	Colombia	Not yet recruiting	Phase II/III
	Hydroxychloroquine, famotidine	NCT04370262	USA	Recruiting	Phase III
	Ivermectin, Nitazoxanide	NCT04360356	Egypt	Not yet recruiting	Phase II/III
	Lopinavir/ritonavir, ribavirin, interferon beta-1B	NCT04276688	China	Completed	Phase II
	Met-enkephalin, tridecactide	NCT04374032	Bosnia and Herzegovina	Recruiting	Phase II/III

ACE angiotensin-converting enzyme; AR angiotensin receptor; DFPP double-filtration plasmapheresis; MSC mesenchymal stem (stromal) cells; AD MSC adipose-derived MSC; BM-MSC bone marrow-derived MSC; UC-MSC umbilical cord-derived MSC; WJ-MSC Wharton jelly-derived MSC; NK cells natural killer cells; rhACE2 recombinant human angiotensin-converting enzyme 2; rbACE2 recombinant bacterial angiotensin-converting enzyme 2; Rhu-pGSN recombinant human plasma gelsolin
(AAK1) are endocytosis regulators. Baricitinib might inhibit SARS COV-2 entry by disruption of these regulators. Other JAK inhibitors such as fedratinib and ruxolitinib are also candidates for decreasing inflammatory cytokines in COVID-19 individuals [51]. Although JAK inhibitors have wide effects and can inhibit cytokine secretion such as IFN-α, more studies need to confirm their safety and efficiency [14].

Adoptive immunotherapy

Adoptive transfer of antigen-specific T cells has been developed for the treatment of cancers, autoimmunity, and viral infections including hepatitis B virus (HBV), hepatitis C virus (HCV), and cytomegalovirus (CMV) [24–26]. In this approach, anti-viral-specific T cell clones are generated, expanded, and purified in vitro [26]. It is shown that engineered SARS-specific CD8+ T cells had normal activity and function and may be a potential therapeutic tool for SARS infection [27]. Recently, it has been indicated that the number of CD8+ T cells decreased dramatically and the ratio of CD4+/CD8+ T cells increased during the SARS-CoV-2 infection. This decrease in the number of CD8+ lymphocytes has been correlated with the disease severity and clinical outcome [52]. It has also indicated that CD8+ T cells and the CD4+/CD8+ ratio decreased and increased respectively after the treatment. It seems that CD8+ T cells play an important role in COVID-19 and could be a potential biomarker of the disease [52, 53]. Due to these findings, adoptive transfer of COVID-19-specific CD8+ T cells may be an effective treatment strategy [28]. NK cells are innate immune cells that play a crucial role in host immune response after viral infections [54]. Preprinted studies indicated that NK cell population decreased remarkably during the disease [55, 56]. It has been indicated that during SARS-CoV-2 infection, increased amount of IL-6 inflammatory cytokine had negative correlation with the number of NK cells [52]. Thus, it is assumed that adoptive transfer of NK cells may have an effective therapeutic approach. Therefore, recently, an ongoing phase I clinical trial has been registered in which NK cell therapy in combination with conventional therapies for COVID-19 patients was proposed (NCT04280224). Altogether, it seems that cell-mediated immunity plays an important role in host immune response against SARS-CoV-2 [57].

Mesenchymal stromal cells

Persistence of inflammatory cytokines in COVID-19 patients leads to lung dysfunction and even death. Using corticosteroids for dampening cytokine storm suppresses immune system and makes delay in virus elimination [58].

Mesenchymal stromal cells (MSCs) are characterized with their immunomodulatory and anti-inflammatory properties [59, 60]. Because of these characteristics, they have been used for the treatment of various inflammatory and autoimmune disorders including diabetes, graft-versus-host disease (GvHD), and multiple sclerosis [59]. It is proven that MSCs and MSC extracellular vesicle (EV) infusion have beneficial effects in the treatment of virus-induced pneumonia by reducing the lung inflammation [61, 62]. EVs are stable, could distribute to the lungs, and have the same immunomodulatory and anti-inflammatory properties of parental MSCs [63]. MSCs decreased inflammatory cytokines and chemokines in animal model of avian influenza. They could also prevent immune cell infiltration into the lungs and improved alveolar injury [61]. Recently, there are studies evaluating allogenic MSCs and MSC-derived exosomes as potential therapeutic tools for reducing inflammation and improving COVID-19-related ARDS [47, 64]. It is indicated that adoptive transfer of allogenic umbilical cord mesenchymal stem cells (UC-MSCs) could inhibit inflammation and attenuate symptoms in patients with advanced COVID-19. Four days after cell therapy, patients are disconnected from the ventilator. UC-MSC therapy also elevated T cell numbers and boosted the immune system [58]. Administration of ACE negative MSCs to seven COVID-19 patients improved clinical symptoms with no side effects just 2 days after injection. The number of inflammatory cytokine secreting cells reduced significantly. Regulatory DC subpopulation (CD14+CD11c+CD11b mid) elevated. The number of inflammatory cytokine secreting cells reduced significantly. Regulatory DC subpopulation (CD14+CD11c+CD11b mid) elevated. The levels of IL-10 anti-inflammatory cytokine increased while TNF-α decreased [65]. Infusion of MSCs also induced lung tissue regeneration by modulating inflammatory microenvironment in COVID-19 patients [66]. There are several ongoing clinical trials using different sources of MSCs for the treatment of COVID-19 (Table 1). Taken together, MSC therapy could inhibit excessive immune system reaction, modulate inflammatory milieu, and prevent virus-mediated cytokine storm [65]. It seems that MSC therapy could be a novel therapeutic approach for the treatment of COVID-19 [64].

Nanomedicine

LIF (leukemia inhibitory factor) is one of the important cytokines to protect the respiratory system and promote lung homeostasis during viral infections [67, 68]. This cytokine modulates severe adverse events during ARDS [67]. Up to now, there is no study investigating the role of LIF in SARS-CoV-2 infection. However, in respiratory syncytial virus (RSV) model, it has been shown that overexpression of LIF enhanced the recovery of lungs during pneumonia. Neutralization of the LIF induced alveolar damage and chemokine secretion [69]. According to these data, LIF might also have protective effects in SARS-CoV-2 infection.

LIF nanoparticles (LIF-NPs) indicated clinical benefits in experimental autoimmune encephalomyelitis (EAE) animal models. LIF-NPs possessed immunomodulatory effects and increased self-tolerance in animal models for ARDS [70].
These inhalable NPs could be a novel strategy for lung tissue repair and cytokine storm inhibition [64]. Activation and polarization of macrophages play a major role in the initiation and intensity of inflammation, respectively, in ALI/ARDS. Peptide-coated gold nanoparticles could alleviate lung inflammation through inducing M1-to-M2 macrophage phenotype transition and increasing the anti-inflammatory cytokine (IL-10) in the lung of acute lung injury (ALI) mice [71].

Decoy biomolecules

As mentioned above, SARS-COV-2 attaches to ACE2 receptor to invade the host cells, particularly alveolar epithelial cells. SARS-CoV-2 spike protein has strong affinity to ACE2 receptor [72–74]. This attachment may enhance viral entry and replication [74, 75]. It is assumed that targeting this interaction and using soluble form of ACE2 could be a potential therapeutic approach [76]. Studies on COVID-19 indicated that ACE2 injection could competitively neutralize the virus and improve lung injury [77]. Recently, a novel therapeutic approach was developed based on soluble ACE2 interaction with the virus. It has been shown that human recombinant soluble ACE2 (hrsACE2) could inhibit SARS-CoV-2 from entering the host cells, decreasing the viral load in a dose-dependent manner. This molecule inhibits viral infection of human blood vessels and kidney organoids. These data indicated that hrsACE2 was effective in early-stage patients [78]. Since the inhibitory effects of hrsACE2 were not complete, it is preliminarily considered that the virus may use a second receptor or co-factor such as transmembrane protease serine 2 (TMPRSS2) [79]. In this regard, TMPRSS2 inhibitor was approved for clinical application in COVID-19 to inhibit the entry of virus [74].

Antiviral drugs

Remdesivir is claimed to be an option to treat COVID-19 [80]. It is a nucleoside analog and has broad-spectrum activities against RNA viruses such as MERS; remdesivir can effectively diminish the viral load in lung tissue infected with MERS-CoV and improve lung function in animal model [81]. The in vitro study revealed that, compared with ribavirin or favipiravir, remdesivir in combination with emetine showed the inhibition in viral yield that might achieve 64.9% [82]. Regarding its clinical application, Grein et al. reported the good improvement among severe COVID-19 cases (68%, n = 53) after treatment with remdesivir [83]. It also showed promising results in the treatment of a patient with COVID-19 in the USA [84]. However, its efficacy is doubted because, e.g., in a randomized, double-blind, placebo-controlled, multicenter trial, Wang et al. reported no statistically significant clinical benefits [85].

Chloroquine is a drug used to treat malaria [86]. It is taught that chloroquine has a great potential to treat COVID-19 [87]; chloroquine can prevent pH-dependent steps of the replication of several viruses such as SARS-CoV [88]. Additionally, chloroquine has immunomodulatory effects by suppressing the production/release of TNF-α and IL-6. It also might interfere with viral infection and replication, as an autophagy inhibitor [89]. In a preprinted paper, Chen et al. showed that hydroxychloroquine use can shorten the time to clinical recovery in COVID-19 patients [90]. Gautret et al. claimed that the treatment of COVID-19 patients with hydroxychloroquine (chloroquine analog) caused the significant viral load reduction/disappearance [91]. However, other researchers did not reveal the same effect. Moreover, high-dose chloroquine diphosphate in combination with azithromycin or oseltamivir resulted in high rates of death and adverse cardiac events [92]. Clinicians also cautioned that the increased consumption of chloroquine and hydroxychloroquine can lead to their shortage that might create a problem for people suffering systemic lupus erythematosus, other rheumatological disorders, primary Sjögren syndrome, dermatological diseases, and antiphospholipid syndrome [93].

It has been previously reported that the protease inhibitors such as lopinavir and ritonavir, used to treat infection with human immunodeficiency virus (HIV) [94], could improve the outcome of MERS-CoV- [95] and SARS-CoV [96]–infected patients. Initially, lopinavir and ritonavir were hypothesized to inhibit the 3-chymotrypsin-like protease of SARS and MERS, and seemed to be associated with improved outcomes of patients with SARS in a non-randomized open-label trial. In a case report from Korea, it has been shown that the viral loads of a SARS-CoV-2 significantly decreased after lopinavir/ritonavir treatment [97]. However, it is controversial whether HIV protease inhibitors could effectively inhibit the 3-chymotrypsin-like and papain-like proteases of SARS-CoV-2. HIV protease belongs to the aspartic protease family, whereas the two coronavirus proteases are from the cysteine protease family. Moreover, HIV protease inhibitors were specifically optimized to fit the C2 symmetry in the catalytic site of the HIV protease dimer; however, this C2-symmetric pocket is absent in coronavirus proteases. If HIV protease inhibitors alter host pathways to indirectly interfere with coronavirus infections, their potency remains a concern [98].

Favipiravir is a new type of RNA-dependent RNA polymerase inhibitor. Additionally, it is capable of blocking the replication of other RNA viruses [99]. Favipiravir is converted into an active phosphorylated form (favipiravir-RTP) in cells and is recognized as a substrate by viral RNA polymerase, therefore inhibiting RNA polymerase activity [100]. Favipiravir may have potential antiviral action on SARS-CoV-2, which is a RNA virus. In a clinical trial on favipiravir
for the treatment of COVID-19, the preliminary results indicated that favipiravir had more potent antiviral action than lopinavir/ritonavir [101].

BCG vaccine

Bacillus Calmette-Guérin (BCG; weakened strain of *Mycobacterium bovis*) vaccination could have protective effects against COVID-19 infection. There are several mechanisms that ensure BCG-induced non-specific protection and are actively studied. BCG and viral antigens have similar molecular structure; so after vaccination, B and T cells can recognize both pathogen types. Moreover, BCG vaccination results in the so-called trained immunity—epigenetic reprogramming of innate immune cell types [102]. Monocytes of vaccinated individuals had higher expression of different surface markers of activation and synthesis of cytokines (IL-1β, IL-6, IFNγ, and TNF) in response to infection than those of non-vaccinated ones; so non-mycobacterium pathogens, e.g., staphylococci, yellow fever virus, and influenza, can be removed faster [103]. In several preprints, it is claimed that BCG vaccination program could reduce the number of SARS-CoV-2-infected individuals and their mortality [104, 105]. However, the WHO does not recommend BCG vaccination to prevent COVID-19 because there is still no direct evidence that it can protect against SARS-CoV-2 infection, and all related clinical trials are ongoing [106].

Corticosteroids

Corticosteroids are well-known with their immunosuppressive activity, which are essential to stop or delay the progression of the pneumonia and have been proved to be beneficial for the treatment of ARDS [107]. Additionally, corticosteroids have an anti-inflammatory effect to diminish systemic inflammation, reduce exudative fluid in the lung tissue, and inhibit further diffused alveolar damage, which can relieve hypoxemia which can protect the lungs effectively and prevent further progression of respiratory insufficiency [108]. The use of corticosteroids for the treatment of COVID-19 is controversial due to their negative impact on anti-viral immune responses [109]. However, it has been shown that corticosteroids could improve mortality in severe COVID-19 patients with systemic hyperinflammation [110]. It is supposed that patient selection, half-life, formulation, and dosage of the corticosteroids are important factors determining the clinical outcome. In this regard, a preprinted study indicated that in severe COVID-19 patients with ARDS early short-term and low dose of corticosteroid (methylprednisolone) improved clinical manifestation and long lesions [111].

Conclusion

Although it seems that antiviral drugs are effective in improving clinical manifestation and controlling the SARS-CoV-2 infection, until now, there is no definite treatment protocol for this novel virus infection. Lymphocytopenia alongside with excessive inflammation and cytokine storm followed by ARDS in these patients are still unsolved problems that cause severity of the disease [14]. Therefore, it is considered that immune response modulation and inflammation management are essential steps. Based on the abovementioned, more studies needed to be conducted on immunopathogenesis and immune response during the SARS-CoV-2 infection. In this regard, new therapeutic approaches including mesenchymal stromal cell therapy and immune cell therapy showed promising results.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

References

1. Zhang L, Liu Y (2020) Potential interventions for novel coronavirus in China: a systematic review. J Med Virol
2. Wang S et al (2020) Coronaviruses and the associated potential therapeutic strategies for the viral infections. J Infect Dis Ther 8(417):2
3. Shanmugaraj B, Malla A, Phoolcharoen W (2020) Emergence of novel coronavirus 2019-nCoV: need for rapid vaccine and biologics development. Pathogens 9(2):148
4. Li G, Fan Y, Lai Y, Han T, Li Z, Zhou P, Pan P, Wang W, Hu D, Liu X, Zhang Q, Wu J (2020) Coronavirus infections and immune responses. J Med Virol 92(4):424–432
5. Cai Q, Yang M, Liu D, Chen X, Shu D, Xia J, Liao X, Gu Y, Cai Q, Yang Y, Shen C, Li X, Peng L, Huang D, Zhang J, Zhang S, Wang F, Liu J, Chen L, Chen S, Wang Z, Zhang Z, Cao R, Zhong W, Liu Y, Liu L (2020) Experimental treatment with favipiravir for COVID-19: an open-label control study. Engineering
6. Thiel V, Weber F (2008) Interferon and cytokine responses to SARS-coronavirus infection. Cytokine Growth Factor Rev 19(2):121–132
7. Wang D et al (2020) Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. Jama
8. Heymann DL, Shindo N (2020) COVID-19: what is next for public health? Lancet 395(10224):542–545
9. Yu F et al (2020) Measures for diagnosing and treating infections by a novel coronavirus responsible for a pneumonia outbreak originating in Wuhan, China. Microbes Infect
10. Yan R et al (2020) Structural basis for the recognition of the SARS-CoV-2 by full-length human ACE2. Science
11. Zhu R-F et al Systematic review of the registered clinical trials of coronavirus diseases 2019 (COVID-19). medRxiv:2020
12. Frieman M, Heise M, Baric R (2008) SARS coronavirus and innate immunity. Virus Res 133(1):101–112
13. Liu L, Wei Q, Nishiuha K, Peng J, Wang H, Midkiff C, Alvarez X, Qin C, Lackner A, Chen Z (2016) Spatiotemporal interplay of
severe acute respiratory syndrome coronavirus and respiratory mucosal cells drives viral dissemination in rhesus macaques. Mucosal Immunol 9(4):1089–1101

14. Zhang W, Zhao Y, Zhang F, Wang Q, Li T, Liu Z, Wang J, Qin Y, Zhang X, Yan X, Zeng X, Zhang S (2020) The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): the experience of clinical immunologists from China. Clin Immunol 214:108393

15. Janice Oh H-L, Ken-En Gan S, Bertoletti A, Tan YJ (2012) Understanding the T cell immune response in SARS coronavirus infection. Emerg Microbes Infect 1(1):1–6

16. Ng O-W, Chia A, Tan AT, Jadi RS, Leong HN, Bertoletti A, Tan YJ (2016) Memory T cell responses targeting the SARS coronavirus persist up to 11 years post-infection. Vaccine 34(17):2008–2014

17. Liu WJ, Lan J, Liu K, Deng Y, Yao Y, Wu S, Chen H, Bao L, Zhang H, Zhao M, Wang Q, Han L, Chai Y, Qi J, Zhao J, Meng S, Qin C, Gao GF, Tan W (2017) Protective T cell responses featured by concordant recognition of Middle East respiratory syndrome coronavirus–derived CD8+ T cell epitopes and host MHC. J Immunol 198(2):873–882

18. Liu WJ, Zhao M, Liu K, Xu K, Wong G, Tan W, Gao GF (2017) T-cell immunity of SARS-CoV: implications for vaccine development against MERS-CoV. Antivir Res 137:82–92

19. Diao B et al (2020) Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19). medRxiv

20. McLane LM, Abdel-Hakeem MS, Wherry EJ (2019) CD8 T cell exhaustion during chronic viral infection and cancer. Annu Rev Immunol 37:457–495

21. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Yao G, Gao H, Luo X, Jie W, Gao J, Jiang R, Gao Z, Jin Q, Wang J, Cao B (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395(10223):497–506

22. Zheng M et al (2020) Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol Immunol:1–3

23. Zhou Y et al (2020) Aberrant pathogenic GM-CSF+ T cells and inflammatory CD14+CD16+ monocytes in severe pulmonary syndrome patients of a new coronavirus. bioRxiv

24. Vetter P, Eckerle I, Kaiser L (2020) Covid-19: a puzzle with many missing pieces. British Medical Journal Publishing Group

25. Casadevall A, Pirofski L-a (2020) The convalescent sera option for containing COVID-19. J Clin Invest 130(4)

26. Wu X-X, Gao HN, Wu HB, Peng XM, Ou HL, Li LJ (2015) Successful treatment of avian-origin influenza A(H7N9) infection using convalescent plasma. Int J Infect Dis 41:3–5

27. Beigel JH, Voelk J, Kumar P, Raviprakash K, Wu H, Jiao JA, Sullivan E, Luke T, Davey RT Jr (2018) Safety and tolerability of a novel, polyclonal human anti-MERS coronavirus antibody produced from transchromosomic cattle: a phase 1 randomised, double-blind, single-dose-escalation study. Lancet Infect Dis 18(4):410–418

28. Arabi Y et al (2015) Feasibility, safety, clinical, and laboratory effects of convalescent plasma therapy for patients with Middle East respiratory syndrome coronavirus infection: a study protocol. Springerplus 4(1):1–8

29. van Doremalen N, Falzarano D, Ying T, de Wit E, Bushmaker T, Feldmann F, Okumura A, Wang Y, Scott DP, Hanley PW, Feldmann H, Dimitrov DS, Munster VJ (2017) Efficacy of antibody-based therapies against Middle East respiratory syndrome coronavirus (MERS-CoV) in common marmosets. Antivir Res 143:30–37

30. Zhou G, Zhao Q (2020) Perspectives on therapeutic neutralizing antibodies against the novel coronavirus SARS-CoV-2. Int J Biol Sci 16(10):1718–1723

31. Duan K, Liu B, Li C, Zhang H, Yu T, Qu J, Zhou M, Chen L, Meng S, Hu Y, Peng C, Yuan M, Huang J, Wang Z, Yu J, Gao X, Wang D, Yu X, Li L, Zhang J, Wu X, Li B, Xu Y, Chen W, Peng Y, Hu Y, Lin L, Liu X, Huang S, Zhou Z, Zhang L, Wang Y, Zhang Z, Deng K, Xia Z, Gong Q, Zhang W, Zheng X, Liu Y, Yang H, Zhou D, Yu D, Hou J, Shi Z, Chen S, Chen Z, Zhang X, Yang X (2020) Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci 117(17):9490–9496

32. Tiberghien P, Lamballerie X, Morel P, Gallian P, Lacombe K, Yazdanpanah Y (2020) Collecting and evaluating convalescent plasma for COVID-19 treatment: why and how. Vox Sang

33. Wang S-F, Tseng SP, Yen CH, Yang JY, Tsao CH, Shen CW, Chen KH, Li F, Liu FT, Wu LT, Chen YMA, Huang JC (2014) Antibody-dependent SARS coronavirus infection is mediated by antibodies against spike proteins. Biochem Biophys Res Commun 451(2):208–214

34. Zandr M and J Wang Potential mechanisms of age related severity of COVID-19 infection: implications for vaccine development and convalescent serum therapy. 2020.

35. Bakker AB et al (2005) Novel human monoclonal antibody combination effectively neutralizing natural virus variants and individual in vitro escape mutants. J Virol 79(14):9062–9068

36. Sneller MC et al (2019) An open-label phase 1 clinical trial of the anti-α4β7 monoclonal antibody vedolizumab in HIV-infected individuals. Sci Transl Med 11(509):eaax3447

37. Jin Y, Lei C, Hu D, Dimitrov DS, Ying T (2017) Human monoclonal antibodies as candidate therapeutics against emerging viruses. Front Med 11(4):462–470

38. Corti D, Passini N, Lanzavecchia A, Zambon M (2016) Rapid generation of a human monoclonal antibody to combat Middle East respiratory syndrome. J Infect Public Health 9(3):231–235

39. Zhu Z, Chakraborti S, He Y, Roberts A, Sheehan T, Xiao X, Hensley LE, Prabakaran P, Rockx B, Sidorov IA, Corti D, Vogel L, Feng Y, Kim JO, Wang LF, Baric R, Lanzavecchia A, Curtis KM, Nabel GJ, Subbarao K, Jiang S, Dimitrov DS (2007) Potent cross-reactive neutralization of SARS coronavirus isolates by human monoclonal antibodies. Proc Natl Acad Sci 104(29):12123–12128

40. Sui J, Li W, Murakami A, Tamin A, Matthews LJ, Wong SK, Moore MJ, Tallarico ASC, Olurinde M, Choe H, Anderson LJ, Bellini WJ, Farzan M, Marasco WA (2004) Potential neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association. Proc Natl Acad Sci 101(8):2536–2541

41. Traggiai E, Becker S, Subbarao K, Kolesnikova L, Uematsu Y, Gismondo MR, Murphy BR, Rappuoli R, Lanzavecchia A (2004) An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus. Nat Med 10(8):871–875

42. Corti D, Zhao J, Pedotti M, Simonelli L, Agnihothram S, Fett C, Fernandez-Rodriguez B, Foglierini M, Agatic G, Zambon M, Perlman S, Lanzavecchia A, Bellini WJ, Farzan M, Marasco WA (2004) Potent neutralization of severe acute respiratory syndrome coronavirus by a human mAb to S1 protein that blocks receptor association. Proc Natl Acad Sci 101(8):2536–2541

43. Luke T et al (2016) Human polyclonal immunoglobulin G from transchromosomic cattle: a phase 1 randomised, double-blind, single-dose-escalation study. Lancet Infect Dis 16:2541–2547

44. Johnson RF, Bagci U, Keith L, Tang X, Mollura DJ, Zeitlin L, Qin Y, Olinger GG, Baric RS, Hensley LE, Jahrling PB, Marasco WA (2016) 3B11-N, a monoclonal antibody against MERS-CoV,
reduces lung pathology in rhesus monkeys following intratracheal inoculation of MERS-CoV Jordan-n3/2012. Virology 490:49–58

45. Chen W-H, PJ Hotez, and ME Bottazzi Potential for developing the SARS-CoV receptor binding domain recombinant protein (RBD) as a heterologous human vaccine for SARS-CoV-2. 2020

46. Zheng Z et al (2020) Monoclonal antibodies for the S2 subunit of spike of SARS-CoV cross-react with the newly-emerged SARS-CoV-2. bioRxiv

47. Zümala A, Hui DS, Azhar EI, Memish ZA, Maeruer M (2020) Reducing mortality from 2019-nCoV: host-directed therapies should be an option. Lancet 395(10224):e35–e36

48. Xu X et al (2020) Effective treatment of severe COVID-19 patients with tocilizumab, in China. Xiv:20200300026

49. Chiappelli F, Khakshooy A, Greenberg G (2020) CoVid-19 Immunopathology & Immunotherapy. Bioinformation 16(3): 219–222

50. Richardson P, Griffen I, Tucker C, Smith O, Phelan A, Stebbing J (2020) Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet 395(10223):e30–e31

51. Stebbing J, Phelan A, Griffen I, Tucker C, Oechsle O, Smith D, Richardson P (2020) COVID-19: combining antiviral and anti-inflammatory treatments. Lancet Infect Dis 20:400–402

52. Wang F, Nie J, Wang H, Zhao Q, Xiong Y, Deng L, Song S, Ma Z, Mo P, Zhanga Y (2020) Characteristics of peripheral lymphocyte subset alteration in COVID-19 pneumonia. J Infect Dis 221: 1762–1769

53. Liu Z, Long W, Tu M, Chen S, Huang Y, Wang S, Zhou W, Chen D, Zhou L, Wang M, Wu M, Huang Q, Xu H, Zeng W, Guo L (2020) Lymphocyte subset (CD4+ , CD8+) counts reflect the severity of infection and predict the clinical outcomes in patients with COVID-19. J Infect

54. Maderas S, Rui G, Mo PH, Wang S, Fan J, Wang W, Deng L, Shi H, Li H, Hu Z, Zhang F, Gao J, Liu H, Li X, Zhao Y, Yin K, He X, Gao Z, Wang Y, Yang B, Jin R, Stambler I, Lim LW, Su H, Moskalev A, Cano A, Chakraborti S, Min KJ, Ellison-Hughes G, Caruso C, Jin K, Zhao RC (2020) Transplantation of ACE2-mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia. Aging Dis 11(2):216–228

55. Shetty AK (2020) Mesenchymal stem cell infusion shows promise for combating coronavirus (COVID-19)-induced pneumonia. Aging Dis 11(2):462–464

56. Forony RJ, Dabo AJ, Cummins N, Geraghty P (2014) Leukemia inhibitory factor protects the lung during respiratory syncytial viral infection. BMC Immunol 15(1):41

57. Traber KE et al (2017) Myeloid-epithelial cross talk coordinates synthesis of the tissue-protective cytokine leukemia inhibitory factor during pneumonia. Am J Phys Lung Cell Mol Phys 313(3): L548–L558

58. Poon J, Campos M, Forony RJ, Nath S, Gupta G, Railwah C, Dabo AJ, Baumlin N, Salathe M, Geraghty P (2019) Cigarette smoke exposure reduces leukemia inhibitory factor levels during respiratory syncytial viral infection. Int J Chronic Obstruct Pulmonary Dis 14:1305–1315

59. Metcalfe SM et al (2015) Multiple sclerosis and the LIF/LIL-6 axis: use of nanotechnology to harness the tolerogenic and reparative properties of LIF. Nanobiomedicine 2(2015):2–5

60. Wang L et al (2020) Manipulation of macrophage polarization by peptide-coated gold nanoparticles and its protective effects on acute lung injury. J Nanobiotechnol 18(1):1–16

61. Tolouian R et al (2020) COVID-19 interactions with angiotensin-converting enzyme 2 (ACE2) and the kinin system; looking at a therapeutic target. Intensive Care Med:1

62. Hoffmann M, Klein-Laffon H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schierzens TS, Herrlers G, Wu NH, Nitsche A, Mülter MA, Drosten C, Pöhlmann S (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181:271–280.e8

63. Ju B et al (2020) Potent human neutralizing antibodies elicited by SARS-CoV-2 infection. bioRxiv

64. Imai Y, Kuba K, Rao S, Huan Y, Guo F, Guan B, Yang P, Sarao R, Wada T, Leong-Poi H, Crackower MA, Fukamizu A, Hui CC, Hein L, Uhlig S, Slutske AS, Jiang C, Penninger JM (2005) Angiotensin-converting enzyme 2 protects the lung during respiratory syncytial viral infection. Nature 436(7047):112–117

65. Zhang H et al (2020) Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor; molecular mechanisms and potential therapeutic target. Intensive Care Med 1–5

66. Monteil V (2020) Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. cellpress

67. Lukassen S et al (2020) SARS-CoV-2 receptor ACE2 and TMPRSS2 are predominantly expressed in a transient secretory cell type in subsegmental bronchial branches. bioRxiv

68. Al-Tawfiq JA, Al-Homoud AH, Memish ZA (2020) Remdesivir as a possible therapeutic option for the COVID-19. Travel Med Infect Dis 34:101628

69. Sheahan TP et al (2020) Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun 11(1):1–13940

70. Choy K-T, Wong AYL, Kaewpreedee P, Sia SF, Chen D, Hui KPY, Chu DKW, Chan MCW, Cheung PPH, Huang X, Peiris M, Yen HL (2020) Remdesivir, lopinavir, emetine, and
homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antivir Res 178:104786

83. Grein J, Ohmagari N, Shin D, Diaz G, Asperges E, Castagna A, Feldt T, Green G, Green ML, Lescure FX, Nicaesti E, Oda R, Yo K, Quiros-Roldan E, Studemeister A, Redinski J, Ahmed S, Barnett J, Chelliah D, Chen D, Chihara S, Cohen SH, Cunningham J, D’Arminio Monforte A, Ismaili S, Kato H, Lapadula G, L’Her E, Maeno T, Majumder S, Massari M, Mora-Rillo M, Mutoh Y, Nguyen D, Verweij E, Zoufaly A, Osimusi AO, DeZure A, Zhao Y, Zhong L, Chokkalangam A, Elboudwarej E, Telep L, Timbs L, Henne I, Sellers S, Cao H, Tan SK, Winterbourne L, Desai P, Mera R, Gaggar A, Myers RP, Brainard DM, Childs R, Flanagan T (2020) Compassionate use of remdesivir for patients with severe Covid-19. N Engl J Med

84. Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, Spitters C, Ericson K, Willerson S, Tural A, Diaz G, Cohn A, Fox L, Patel A, Gerber SL, Kim L, Tong S, Lu X, Lindstrom S, Pannall MA, Weldon WC, Biggs HM, Uyeki TM, Pillai SK, Washington State 2019-nCoV Case Investigation Team (2020) First case of 2019 novel coronavirus in the United States. N Engl J Med 382(10):929–936

85. Wang Y, Zhang D, du G, du R, Zhao J, Jin Y, Fu S, Gao L, Cheng Z, Lu Q, Hu Y, Luo G, Wang K, Lu Y, Li H, Wang S, Ruan S, Yang C, Mei C, Wang Y, Ding D, Wu F, Tang X, Ye X, Ye Y, Liu B, Yang J, Yin W, Wang A, Fan G, Zhou F, Liu Z, Gu X, Xu J, Shang L, Zhang Y, Cao L, Guo T, Wang Y, Qian H, Jiang Y, Jaki T, Hayden FG, Horby PW, Cao B, Wang C (2020) Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet 395:1569–1578.

86. Aguiar AC et al (2018) Chloroquine analogs as antimalarial candidates with potent in vitro and in vivo activity. Int J Parasitol Drugs Drug Resist 8(3):459–464

87. Cortegiani A, Ingoglia G, Ippolito M, Giarratano A, Eivan S (2020) A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J Crit Care 57:279–283

88. Vincent MJ et al (2005) Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J 2(69):1–2

89. Golden EB, Cho HY, Hofman FM, Louie SG, Schönthal AH, Vincent MJ et al (2005) Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Proc Jpn Acad Ser B 81(3):449–463

90. Dong L, Hu S, Gao J (2020) Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discov Ther 14(1):58–60

91. Goodridge HS, Ahmed SS, Curtis N, Kollmann TR, Levy O, Netea MG, Pollard AJ, van Creveld R, Wilson CB (2016) Harnessing the beneficial heterologous effects of vaccination. Nat Rev Immunol 16(6):392–400

92. Arts RJ et al (2018) BCG vaccination protects against experimental viral infection in humans through the induction of cytokines associated with trained immunity. Cell Host Microbe 23(1):89–100. e5

93. Miller A et al (2020) Correlation between universal BCG vaccination policy and reduced morbidity and mortality for COVID-19: an epidemiological study. medRxiv

94. Dayal D, Gupta S (2020) Connecting BCG vaccination and COVID-19: additional data. medRxiv

95. Organization WH Bacille Calmette-Guérin (BCG) vaccination and COVID-19: scientific brief, 12 April 2020. 2020, World Health Organization

96. Thompson BT (2003) Glucocorticoids and acute lung injury. Crit Care Med 31(4):S253–S257

97. Rhen T, Cidlowski JA (2005) Antiinflammatory action of glucocorticoids—new mechanisms for old drugs. N Engl J Med 353(16):1711–1723

98. Siddiqi HK, Mehra MR (2020) COVID-19 illness in native and immunosuppressed states: a clinical-therapeutic staging proposal. J Heart Lung Transplant 39:405–407

99. Wang Y et al (2020) Early, low-dose and short-term application of corticosteroid treatment in patients with severe COVID-19 pneumonia: single-center experience from Wuhan, China. medRxiv

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.