Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Residual ground glass opacities three months after Covid-19 pneumonia correlate to alteration of respiratory function: The post Covid M3 study

Justine Frija-Masson a,b,* , Marie-Pierre Debray c, d, Samia Boussouar e, f, Antoine Khalil c, d, Catherine Bancel b, Justina Motiejunaite e, b, Maria Alejandra Galarza-Jimenez b, Hélène Benzaquen b, Dominique Penaud b, Pierantonio Laveneziana g, h, Roxane Malrin g, i, Alban Redheuil e, f, Victoria Donciu j, Olivier Lucidarme k, l, Camille Taillé c, l, Antoine Guerd er g, i, Florence Arnoult b, Emmanuelle Vidal-Petiot b, m, Martin Flamant b, m, Thomas Similowski g, n, Capucine Morelot-Panzini g, n, Morgane Faure g, h, François-Xavier Lescure g, h, Christian Straus g, h, Marie-Pia d’Ortho a, b, Jéssus Gonzalez-Bermejo g, i

a Université de Paris, Neur Odorat, Inserm, F-75018, Paris, France
b Physiologie-Explorations Fonctionnelles, FHU APOLO, Assistance Publique Hôpitaux de Paris, Hôpital Bichat-Claude Bernard, F-75018, Paris, France
b Université de Paris, Inserm U 1152, F-75018, Paris, France
c Service de Radiologie, Hôpital Bichat Claude Bernard, F-75018, Paris, France
d Sorbonne Université, Laboratoire d’Imagerie Biomédicale, INSERM, ICAN Institute of Cardiometabolism and Nutrition, Paris, France
e Cardiothoracic Imaging Unit, Assistance Publique Hôpitaux de Paris, Groupe Hospitalier Universitaire APHP-Sorbonne Universités, Site Pitié-Salpêtrière, F-75013, Paris, France
f Sorbonne Université, INSERM, UMR5158 Neurophysiologie Respiratoire Experimentale et Clinique, F-75005, Paris, France
g Assistance Publique Hôpitaux de Paris, Groupe Hospitalier Universitaire APHP-Sorbonne Universités, Site Pitié-Salpêtrière, Service des Explorations Fonctionnelles de La Respiration, de L’exercice et de La Dyspnée (Département R3S), F-75013, Paris, France
h Assistance Publique Hôpitaux de Paris, Groupe Hospitalier Universitaire APHP-Sorbonne Universités, Site Pitié-Salpêtrière, Service de Pneumologie, SSR (Département R3S), F-75013, Paris, France
i Assistance de Paris, Hôpital européen Georges Pompidou, Service de Maladies Infectieuses et Tropicales, Assistance Publique Hôpitaux de Paris, Hôpital Bichat Claude Bernard, F-75018, Paris, France

Original Research

Residual ground glass opacities three months after Covid-19 pneumonia correlate to alteration of respiratory function: The post Covid M3 study

Introduction: Lung function in survivors of SARS-CoV-2 pneumonia is poorly known, but concern over the possibility of sequelae exists.
Methods: Retrospective study on survivors with confirmed infection and pneumonia on chest-CT. Correlations between PFT and residual radiologic anomalies at three months taking into account initial clinical and radiologic severity and steroid use during acute phase.
Results: 137 patients (69 men, median age 59 (Q1 50; Q3 68), BMI 27.5 kg/m² (25.1; 31.7)) were assessed. Only 32.9% had normal PFT, 75 had altered DLCO. Median (Q1; Q3) values were: VC 79 (66; 92) % pred, FEV1 81 (68; 89), TLC 78 (67; 85), DLCO 60 (44; 72), and KCO 89 (77; 105). Ground glass opacities (GGO) were present in 103 patients (75%), reticulations in 42 (30%), and fibrosis in 18 (13%). There were significantly lower FEV1 (p = 0.0089), FVC (p = 0.0010), TLC (p < 0.0001) and DLCO (p < 0.0001) for patients with GGO, lower TLC (p = 0.0913) and DLCO (p = 0.0181) between patients with reticulations and lower FVC (p = 0.0618), TLC (p = 0.0742) DLCO (p = 0.002) and KCO (p = 0.0114) between patients with fibrosis. Patients with initial ≥50% lung involvement had significantly lower FEV1 (p = 0.0019), FVC (p = 0.0033), TLC (p = 0.0028) and DLCO (p = 0.0033).

ARTICLE INFO

Keywords:
SARS-CoV-2
Vital capacity
DLCO
Pneumonia
Chest CT
Invasive ventilation
ARDS
COVID-19

ABSTRACT

Introduction: Lung function in survivors of SARS-CoV-2 pneumonia is poorly known, but concern over the possibility of sequelae exists. Methods: Retrospective study on survivors with confirmed infection and pneumonia on chest-CT. Correlations between PFT and residual radiologic anomalies at three months taking into account initial clinical and radiologic severity and steroid use during acute phase. Results: 137 patients (69 men, median age 59 (Q1 50; Q3 68), BMI 27.5 kg/m² (25.1; 31.7)) were assessed. Only 32.9% had normal PFT, 75 had altered DLCO. Median (Q1; Q3) values were: VC 79 (66; 92) % pred, FEV1 81 (68; 89), TLC 78 (67; 85), DLCO 60 (44; 72), and KCO 89 (77; 105). Ground glass opacities (GGO) were present in 103 patients (75%), reticulations in 42 (30%), and fibrosis in 18 (13%). There were significantly lower FEV1 (p = 0.0089), FVC (p = 0.0010), TLC (p < 0.0001) and DLCO (p < 0.0001) for patients with GGO, lower TLC (p = 0.0913) and DLCO (p = 0.0181) between patients with reticulations and lower FVC (p = 0.0618), TLC (p = 0.0742) DLCO (p = 0.002) and KCO (p = 0.0114) between patients with fibrosis. Patients with initial ≥50% lung involvement had significantly lower FEV1 (p = 0.0019), FVC (p = 0.0033), TLC (p = 0.0028) and DLCO (p = 0.0033).

* Corresponding author. Service de Physiologie-explorations fonctionnelles, Hôpital Bichat Claude Bernard, 46 rue Henri Hurand, 75018, Paris, France.
E-mail address: justine.frija@aphp.fr (J. Frija-Masson).

https://doi.org/10.1016/j.rmed.2021.106435
Received 29 January 2021; Received in revised form 20 April 2021; Accepted 21 April 2021
Available online 15 May 2021
0954-6111/© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has affected more than 100 millions of people worldwide and is responsible for at least 880 000 deaths [1]. At the acute phase, disease can range from asymptomatic to extremely severe with acute respiratory distress syndrome (ARDS). Few data exist regarding at-distance follow-up and the high number of affected people raises the possibility of millions of people with coronavirus disease 2019 (COVID-19)-related sequelae.

In a retrospective study conducted in China, 79.3% of 145 patients with confirmed SARS-CoV-2 infection showed bilateral pneumonia, 18.6% showed unilateral pneumonia, 61.4% showed ground-glass opacity, and only 2.1% showed no abnormal chest CT result [2]. Radiologic and post mortem studies of patients show that lung injury in severe SARS-CoV-2 infection is not a classic diffuse alveolar damage for patients with ARDS but rather an acute fibrous and organizing pneumonia (AFOP) characterized by an extensive intra-alveolar fibrin deposition called fibrin «balls», rather than hyaline membranes, and that many patients present with secondary consolidation of lesions, resembling organizing pneumonia [3,4].

Extensive injury of alveolar epithelial cells and endothelial cells, with secondary fibroproliferation is a signature of pulmonary SARS-CoV-2 infection and indicate a potential for chronic vascular and alveolar remodeling leading to lung fibrosis and/or pulmonary hypertension.

In survivors of SARS-CoV ARDS, mean lung volumes and spirometric measurements were nearly normal by 6 months, and there was no significant difference in pulmonary function measurement at 12 months between those who had required mechanical ventilation and those who had not, except for a lower diffusion capacity [5,6]. However, the number of affected patients worldwide was lower, with younger age and less comorbidities compared to SARS-CoV-2 patients. Our previous work on short term respiratory follow-up one month after symptom onset showed that more than half of the patients had altered respiratory function, emphasising the need for longer term follow-up [7]. We found no correlation between respiratory function one month after the infection and radiological severity. At an earlier time point, Mo et al. [8] found no correlation between lung function at time of discharge and clinical severity. Still, due to the early timing of functional evaluation, there were few severe patients (i.e requiring invasive ventilation) in both these studies. In the prospective study by Shah et al., more than half of the patients had abnormal PFT at 12 weeks, but only hospitalised patients were included [9]. In addition, in a recent study in the Netherlands, 71% of patients complained of residual dyspnoea at three months after COVID, but no functional data were given [10]. We aimed to assess the natural history of functional recovery after SARS-CoV-2 pneumonia. Thus, we assessed the pulmonary functional status three months after symptoms onset in patients with SARS-CoV-2 pneumonia and studied correlations between lung function alterations and radiological status, taking into account the initial clinical and radiological severity of pneumonia.

2. Methods

All consecutive patients with confirmed SARS-CoV-2 infection (positive RT-PCR on nasopharyngeal swab) and respiratory symptoms, followed at two tertiary hospitals (Bichat hospital or la Pitié Salpêtrière hospital, Paris, France) between 01 feb 2020 and 01 aug 2020, referred for pulmonary function tests (PFT) three months after disease onset, as part of routine care, were eligible. Patients were systematically offered hospital PFT evaluation if they had needed 6 l/min or more oxygen during acute phase, or if they had residual respiratory symptoms at three months. Patients were excluded if they had not performed initial or three-month chest-CT, or if they had previously known respiratory disease, including asthma and COPD. All tests included spirometry, Functional Residual Capacity (FRC), Total Lung Capacity (TLC) and DLCO (single breath) measurement. Six-minute walking test was performed if the patient was able to walk. Predicted values from ERS/ECSS 1993 and lower limits of normal (LLN) were used [11,12].

Three senior radiologist (MPD, SB or AK) reviewed all chest computed tomography (CT) scans performed at three months performed as part of routine care. They assessed the presence of residual ground-glass opacities (GGO, categorized as absent, mild, moderate or severe depending on extent and density), the presence of reticulations and signs suggestive of fibrosis. They also evaluated the extent of pneumonia during initial acute phase as absent, mild (<10% of parenchyma involved), moderate (10–24%), wide (25–49%), severe (50–74%), or very severe (≥75%), according to European guidelines [13].

We assessed correlations between PFT values and three-month chest-CT abnormalities. We also assessed correlations between PFT values and initial pneumonia extent, body mass index (BMI), and age. To assess the effect of steroids during acute infection on functional recovery, we matched patients who had received steroids and those who had not, based on age, BMI and initial radiological severity. Finally, we classified patients in groups of clinical severity based on maximal oxygen requirement during the disease course: none, 0.5–6 L/min, 6–15 L/min, high flow canula with active humidification, non-invasive ventilation (including continuous positive airway pressure), or invasive ventilation.

Comparisons between groups used Mann-Whitney and Kruskal-Wallis (with Dunns’ multiple comparisons tests) tests for continuous variables, and chi-2 or Fischer’s exact tests for categorical variables (Prims 8, Graphpad, San Diego, USA).

Non-opposition was obtained for all patients, according to French law. The study was approved by the Institutional Review Board of the French learned society for respiratory medicine -Société de Pneumologie de Langue Française (ref 2020–056).

3. Results

3.1. Patients’ characteristics

One hundred and ninety-nine patients had performed PFT at three months, either as outpatients (Bichat), or during post-Covid19 rehabilitation (La Pitié Salpêtrière), among which 36 were excluded because of known previous respiratory condition. Twenty-six patients were excluded because they had performed neither initial chest-CT (n = 18) nor three-month chest-CT (n = 8), leading to a final sample of 137 patients (see Fig. 1 for the study flow-chart). Patients’ characteristics and PFT results are described in Tables 1 and 2 (see Fig. 2). Sixty-eight (49.6%) had hypertension and 38 (27.7%) had diabetes mellitus. There was no difference in PFT results between younger (e.g. < 60 years) and older patients. Obese patients had significantly lower KCO than non-obese patients (p = 0.0057), other PFT values were not significantly different.

Overall, only 45 (32.9%) patients had normal PFT results at three
months, 13 (9.5%) had a restrictive pattern, 39 (28.5%) had restriction and diffusion alteration, and 36 (26.3%) had isolated low diffusion capacity. Obstruction was noted in 7 (5%) patients. Among the 75 patients with altered DLCO (either with or without restriction), alteration was mild (DLCO > 60% of predicted value) for 32 patients (43%), moderate (DLCO 40–60%) for 33 patients (44%), and severe (DLCO <40%) for 10 patients (13%).

3.2. Correlation between residual CT abnormalities at three months and pulmonary function

Ground glass opacities (GGO) were the most common feature and were present in 103 patients (75%), reticulations were present in 42 (30%), and fibrosis in 18 (13%). Patients with residual GGO had significantly lower FEV1 (p = 0.0089), FVC (p = 0.0010), TLC (p < 0.0001) and DLCO (p < 0.0001), but not FEV1/FVC or KCO. Patients with reticulations had significantly lower TLC (p = 0.0913) and DLCO (p = 0.0181) but not FEV1, FVC, FEV1/FVC or KCO. Finally, patients with fibrosis had significantly lower values for DLCO (p = 0.002) and KCO (p = 0.0114), but not for FEV1, FVC, TLC and FEV1/FVC. Frequency of GGO, reticulations and fibrosis did not differ neither between smokers and non-smokers, nor between men and women. Results are summarized in Table 2.

3.3. Effect of steroids during acute infection on residual CT lesions and PFT

Thirty-nine patients (28.5%) had received oral or IV steroids during acute phase. There was no difference in lung function at three months between patients who had received steroids and those who had not. The proportion of patients with reticulations (p = 0.0383) and fibrosis (p = 0.0298) was significantly higher in patients who received steroids, than in those who did not, while the proportion of patients with residual GGO was similar in the 2 groups. in those who had received steroids. When patients were matched on initial radiological severity, BMI and age, there was no difference between patients who had received steroids and those who had not on reticulations and fibrosis.

3.4. Initial radiological and clinical severity and pulmonary function at three months

Patients with severe-to-extremely severe radiological initial pneumonia (defined as ≥ 50% of lung involvement), had a significantly lower 3 month-FEV1 (p = 0.0135), FVC (p = 0.0392), and DLCO (p = 0.0126),

Table 1	Patients’ characteristics. Results are presented as median (Q1; Q3) for continuous variables or n (%) for categorical variables.
Age	59 (50; 68)
Male	69 (51)
BMI (kg/m²)	27.5 (25.1; 31.7)
Hypertension	68 (50)
Diabetes	38 (28)
Smoking status	
Active	18 (13)
Former	27 (20)
Respiratory support	
None	13 (9.5)
Oxygen 0–6 L/min	50 (36.5)
Oxygen > 6 L/min	8 (5.8)
High flow nasal canula	12 (8.8)
Continuous Positive Airway Pressure (CPAP)	9 (6.6)
Non invasive ventilation	1 (0.7)
Invasive ventilation	44 (32.1)
Steroids	39 (29)

Fig. 1. Study flow chart.
compared to patients with none/mild initial pneumonia. Patients who had received invasive ventilation had significantly lower PFT values at three months for FEV1/FVC, TLC and KCO. There was no significant difference in PFT values at three months between patients with moderate or severe initial pneumonia or patients with none/mild pneumonia.

Patients who had received invasive ventilation had significantly lower PFT values at three months for FEV1/FVC, TLC and KCO. There was no significant difference in PFT values at three months between patients with moderate or severe initial pneumonia or patients with none/mild pneumonia.

Patients who had received invasive ventilation had significantly lower PFT values at three months for FEV1/FVC, TLC and KCO. There was no significant difference in PFT values at three months between patients with moderate or severe initial pneumonia or patients with none/mild pneumonia.

Patients who had received invasive ventilation had significantly lower PFT values at three months for FEV1/FVC, TLC and KCO. There was no significant difference in PFT values at three months between patients with moderate or severe initial pneumonia or patients with none/mild pneumonia.

Patients who had received invasive ventilation had significantly lower PFT values at three months for FEV1/FVC, TLC and KCO. There was no significant difference in PFT values at three months between patients with moderate or severe initial pneumonia or patients with none/mild pneumonia. Patients who had received invasive ventilation had significantly lower PFT values at three months for FEV1/FVC, TLC and KCO. There was no significant difference in PFT values at three months between patients with moderate or severe initial pneumonia or patients with none/mild pneumonia.

Patients who had received invasive ventilation had significantly lower PFT values at three months for FEV1/FVC, TLC and KCO. There was no significant difference in PFT values at three months between patients with moderate or severe initial pneumonia or patients with none/mild pneumonia.

Patients who had received invasive ventilation had significantly lower PFT values at three months for FEV1/FVC, TLC and KCO. There was no significant difference in PFT values at three months between patients with moderate or severe initial pneumonia or patients with none/mild pneumonia.

Patients who had received invasive ventilation had significantly lower PFT values at three months for FEV1/FVC, TLC and KCO. There was no significant difference in PFT values at three months between patients with moderate or severe initial pneumonia or patients with none/mild pneumonia.

Patients who had received invasive ventilation had significantly lower PFT values at three months for FEV1/FVC, TLC and KCO. There was no significant difference in PFT values at three months between patients with moderate or severe initial pneumonia or patients with none/mild pneumonia.

Patients who had received invasive ventilation had significantly lower PFT values at three months for FEV1/FVC, TLC and KCO. There was no significant difference in PFT values at three months between patients with moderate or severe initial pneumonia or patients with none/mild pneumonia.

Patients who had received invasive ventilation had significantly lower PFT values at three months for FEV1/FVC, TLC and KCO. There was no significant difference in PFT values at three months between patients with moderate or severe initial pneumonia or patients with none/mild pneumonia.

Patients who had received invasive ventilation had significantly lower PFT values at three months for FEV1/FVC, TLC and KCO. There was no significant difference in PFT values at three months between patients with moderate or severe initial pneumonia or patients with none/mild pneumonia.

Patients who had received invasive ventilation had significantly lower PFT values at three months for FEV1/FVC, TLC and KCO. There was no significant difference in PFT values at three months between patients with moderate or severe initial pneumonia or patients with none/mild pneumonia.

Patients who had received invasive ventilation had significantly lower PFT values at three months for FEV1/FVC, TLC and KCO. There was no significant difference in PFT values at three months between patients with moderate or severe initial pneumonia or patients with none/mild pneumonia.

Patients who had received invasive ventilation had significantly lower PFT values at three months for FEV1/FVC, TLC and KCO. There was no significant difference in PFT values at three months between patients with moderate or severe initial pneumonia or patients with none/mild pneumonia. Patients who had received invasive ventilation had significantly lower PFT values at three months for FEV1/FVC, TLC and KCO. There was no significant difference in PFT values at three months between patients with moderate or severe initial pneumonia or patients with none/mild pneumonia.

Patients who had received invasive ventilation had significantly lower PFT values at three months for FEV1/FVC, TLC and KCO. There was no significant difference in PFT values at three months between patients with moderate or severe initial pneumonia or patients with none/mild pneumonia.

Patients who had received invasive ventilation had significantly lower PFT values at three months for FEV1/FVC, TLC and KCO. There was no significant difference in PFT values at three months between patients with moderate or severe initial pneumonia or patients with none/mild pneumonia.

Patients who had received invasive ventilation had significantly lower PFT values at three months for FEV1/FVC, TLC and KCO. There was no significant difference in PFT values at three months between patients with moderate or severe initial pneumonia or patients with none/mild pneumonia.

Patients who had received invasive ventilation had significantly lower PFT values at three months for FEV1/FVC, TLC and KCO. There was no significant difference in PFT values at three months between patients with moderate or severe initial pneumonia or patients with none/mild pneumonia.
recommendations is also a strength.

Although retrospective, our study included a high number of patients of different radiological and clinical severity. A limit of our study is that we included 31% of patients who had undergone invasive ventilation. This is higher than expected in a general population of SARS-CoV-2 infected patients, and could have contributed to increase the proportion of abnormal PFT results. We did not classify patients according to unit of admission (ICU or non-ICU), since in the context of the pandemic, many patients with high flow oxygen or CPAP were treated in non-ICU wards. Another limit is the lack of functional data before SARS-CoV-2 pneumonia, but patients with known previous respiratory condition were excluded. Interestingly, in the study by Guler et al. focusing only on hospitalized patients and not assessing the effect of steroids [21]. As for ourselves, we did not assess the effect of other treatments on steroids on the functional recovery since treatment modalities other than respiratory support and steroids are heterogenous.

Altogether, these results plead for systematic assessment of SARS-CoV-2 patients with initial respiratory symptoms and long-term follow-up, ideally with lung volumes assessment and chest-CT scan. When considering the normal KCO and the correlation between 3 month-lung function and chest-CT residual abnormalities, follow-up measurement is not easily available (e.g. private practices, countries with limited resources in PFT). This is in accordance with the position paper by George et al. who propose chest X-ray and CT as screening tools [22]. In the study by Huang et al., at six months, recovery is achieved in less than 80% of patients, raising the possibility of permanent sequelae [23]. Indeed, it is important to assess pulmonary function at early time points to get a better knowledge of the natural history of SARS-CoV-2 recovery, and research on lung function has been granted priority in the last ERS/ATS task force on Covid-19 management [24].

In conclusion, impairment in lung function is common at three months after SARS-CoV-2 pneumonia, even in patients with mild initial disease. Larger studies, involving patients who did not require oxygen and/or hospitalisation, but also other studies involving more patients with ARDS and comparing the evolution of patients under different treatments, are now needed to understand, predict and prevent pulmonary sequelae of COVID-19. The specific effect of steroids on lung function recovery should be assessed in prospective studies with standardized treatment regimen.

References

[1] Johns Hopkins University of Medicine. New cases of covid-19 in world countries. n. d. https://coronavirus.jhu.edu/data/new-cases.
[2] Q. Chen, Z. Zheng, C. Zhang, X. Zhang, H. Wu, J. Wang, S. Wang, C. Zheng, Clinical Characteristics of 145 Patients with Coronavirus Disease 2019 (COVID-19) in Taizhou, Infection, Zhejiang, China, 2020, https://doi.org/10.1159/0005101-020-01432-5.
[3] The Lille COVID-19 ICU, Anatomopathology Group, M.-C. Copin, E. Parmentier, T. Dubourg, J. Poussy, D. Mathieu, Time to consider histologic pattern of lung injury to critically ill patients with COVID-19 infection, Intensive Care Med. (2020), https://doi.org/10.1007/s00134-020-06057-6.
[4] B. Reocalde, L. Garcia-Tobar, A. Argüeta, L. Álvarez, C.E. De Andrea, M. Fernández Alonso, A. Espinosa, F. Carmona Torre, C. Jordan Ibarra, J.A. Quiroga, J.L. Del Pozo, J.J. Zulueta, G. Echarri, F.M. Landecho, M.D. Lozano, Histopathological Findings in Fatal COVID-19 Severe Acute Respiratory Syndrome: Preliminary Experience from a Series of 10 Spanish Patients, Thorax, 2020, https://doi.org/10.1136/thoraxjnl-2020-215577.
[5] D.S. Hui, G.M. Joynt, K.T. Wong, C.D. Gomersall, T.S. Li, G. Antonio, F.W. Ko, M. C. Chan, D.P. Chan, M.W. Tong, T.H. Rainer, A.T. Ahuja, C.S. Cockram, J.J.Y. Sung, Impact of severe acute respiratory syndrome (SARS) on pulmonary function, functional capacity and quality of life in a cohort of survivors, Thorax 60 (2005) 401–409, https://doi.org/10.1136/thoraxjnl-2004-020205.
[6] T.S. Li, C.D. Gomersall, G.M. Joynt, D.P.S. Chan, P. Leung, D.S.C. Hui, Long-term outcome of acute respiratory distress syndrome caused by severe acute respiratory syndrome (SARS): an observational study, Crit Care Resusc 8 (2006) 302–308.
[7] J. Frija-Masson, M.-P. Debray, M. Gilbert, F.X. Lesur, F. Travers, R. Borie, A. Khalil, B. Crestani, M.-P. d’Ortho, C. Bancal, Functional characteristics of patients with SARS-CoV-2 pneumonia at 30days post-infection, Eur. Respir. J. 56 (2020), https://doi.org/10.1183/13993003.00744-2020.
[8] X. Mo, W. Jian, Z. Su, M. Chen, H. Peng, P. Peng, C. Lei, S. Li, R. Chen, N. Zhong, Abnormal pulmonary function in COVID-19 patients at time of hospital discharge, Eur. Respir. J. (2020) 2001217, https://doi.org/10.1183/13993003.01217-2020.
[9] A.S. Shah, A.W. Wong, C.J. Hague, D.T. Murphy, J.C. Johnston, C.J. Ryerson, C. Carlsten, A Prospective Study of 12-week Respiratory Outcomes in COVID-19-Related Hospitalisations, Thorax, 2020, https://doi.org/10.1136/thoraxjnl-2020-216308.

Table 3

Variable	Univariate β coefficient	95% CI	p value	Multivariate β coefficient	95% CI	p value
Age	0.06	[0.03-0.09]	0.003*	0.07	[0.04-0.12]	0.015*
Sex (female)	-0.31	[-0.43-0.10]	0.396			
BMI	-0.05	[-0.11 - 0.02]	0.174			
Hypertension	0.07	[0.65 - 0.78]	0.855			
Diabetes	0.08	[0.71 - 0.91]	0.845			
Administration of corticosteroids	0.48	[0.33 - 1.34]	0.001*	1.12	[0.39 - 1.94]	0.004*
Degree of initial lung involvement	1.24	[0.55 - 2.02]		1.29	[0.33 - 2.36]	0.012*
Endotracheal intubation	0.85	[0.04 - 1.74]		0.048*		

Acknowledgments

The authors are thankful to the patients, the PFT technicians and to Pr Mal, Pr Crestani, Dr Borie, Dr BuneL, Dr Dombret, Dr Morer, Dr Phillips, Dr Weisnenger who participated in the clinical follow-up.

CRedit authorship contribution statement

Justine Frija-Masson: Conceptualization, Methodology, Formal analysis, Writing – original draft, Writing – review & editing. Marie-Pierre Debray: Investigation, Validation, Writing – review & editing, Methodology, Writing – review & editing, Supervision. Samia Boussoar: Investigation, Validation, Writing – review & editing. Antoine Khalil: Investigation, Validation, Writing – review & editing. Catherine Bancal: Investigation, Resources, Validation, Writing – review & editing. Justina Motiejunaite: Investigation, Resources, Formal analysis. Maria Alejandra Galarza-Jimenez: Investigation, Resources. Dominique Penaud: Investigation, Resources. Pierantonio Laveneziana: Investigation, Resources, Writing – review & editing. Roxane Malrin: Investigation, Resources. Alban Redheuil: Investigation, Writing – review & editing. Victoria Doncic: Investigation, Writing – review & editing. Olivier Lucidarme: Investigation, Writing – review & editing. Camille Taille: Investigation, Resources, Writing – review & editing. Antoine Guerder: Investigation, Resources. Florence Arnould: Investigation, Resources. Emmanuelle Vidal-Petiot: Methodology, Writing – review & editing. Martin Plamant: Data curation, Methodology, Formal analysis. Thomas Simkowksi: Resources, Writing – review & editing. Capucine Morelot-Panzini: Resources, Writing – review & editing. Morgane Faure: Investigation, Resources. Francois-Xavier Lesrue: Resources, Writing – review & editing. Christian Straus: Investigation, Resources, Writing – review & editing. Jesús Gonzalez-Bermejo: Conceptualization, Methodology, Writing – review & editing, Supervision.
[10] Y.M.J. Goertz, M. Van Herck, J.M. Dell'ebressine, A.W. Vaes, R. Meyes, F.V. C. Machado, S. Houben-Wilke, C. Burtin, R. Posthumus, F.M.E. Franssen, N. van Loon, B. Hajian, V. Spies, H. Vlijthof, A.J. van 't Hul, D.J.A. Janssen, M.A. Spruit. Persistent symptoms 3 months after a SARS-CoV-2 infection: the post-COVID-19 syndrome? ERJ Open Res (2020) https://doi.org/10.1183/23120541.00542-2020, 00542–022020.

[11] A. Quanjer, G.J. Tammeling, J.E. Cotes, O.F. Pedersen, R. Peslin, J.C. Yernault. Lung volumes and forced ventilatory flows. Report working party standardization of lung function tests, European community for steel and coal. Official statement of the European respiratory society, Eur. Respir. J. Suppl. 16 (1993) 5–40.

[12] J.E. Cotes, D.J. Chinn, P.H. Quanjer, J. Roca, J.C. Yernault. Standardization of the measurement of transfer factor (diffusing capacity). Report working party standardization of lung function tests, European community for steel and coal. Official statement of the European respiratory society, Eur. Respir. J. Suppl. 16 (1993) 41–52.

[13] M.-P. Revel, A.P. Parkar, H. Prosch, M. Silva, N. Sverzellati, F. Gleeson, A. Brady. On behalf of the European society of radiology (ESR) and the European society of thoracic imaging (ESTI), Eur. Respir. (2020), https://doi.org/10.1183/00330-020.06865-17.

[14] C.G.K. Ziegler, Carly G. K., Allon, Samuel J., Nyquist, Sarah K., Mbano, Ian M., ICA Lung Biologica Network, SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues, Gellin Press, J. Pre-Proof. Available Online 27 April 2020. (n. d.).

[15] Y. Zhao, Y. Shang, W. Song, Q. Li, H. Xie, Q. Xu, J. Jia, L. Li, H. Mao, X. Zhou, H. Luo, Y. Gao, A. Xu. Follow-up-study of the pulmonary function and related physiological characteristics of COVID-19 survivors three months after recovery, EClinicalMedicine 25 (2020) 100463, https://doi.org/10.1016/j.eclinm.2020.100463.

[16] R. Pellegrino, Interpretative strategies for lung function tests, Eur. Respir. J. 26 (2005) 948–968, https://doi.org/10.1183/09031936.05.0035205.

[17] T.J. Guzik, S.A. Mohiddin, A. Dimarco, V. Patel, K. Savvatine, F.M. Marelli-Berg, M. S. Madhur, M. Tomaszewski, P. Maffia, F. D’Acquisto, S.A. Nicklin, A.J. Marian, R. Nosalski, E.C. Murray, B. Guzik, C. Berry, R.M. Touyz, R. Kreutz, D.W. Wang, D. Bollina, O. Roca, M. Tamae-Kakazu, A. Torres, R.R. Watkins, M. Belliato, H.A. Chami, R. Chen, G.A. Cortes-Puentes, C. Garzoni, T.K. Geiser, M. Van Herck, S. Raux, A. Demoule, C. Morfill, T. Similowski, Continuous positive airway pressure to avoid intubation in SARS-CoV-2 pneumonia: a two-period retrospective case-control study, Eur. Respir. J. 56 (2020), https://doi.org/10.1183/13993003.01692-2020.

[18] S. Nusair, Abnormal carbon monoxide diffusion capacity in COVID-19 patients at time of hospital discharge, Eur. Respir. J. 56 (2020), https://doi.org/10.1183/13993003.03690-2020, 2003690.

[19] J. Xia, Y. Zhang, L. Ni, L. Chen, C. Zhou, C. Gao, X. Wu, J. Duan, J. Xie, Q. Guo, J. Zhao, Y. Hu, Z. Cheng, Q. Zhan. High-flow nasal oxygen in coronavirus disease 2019 patients with acute hypoxemic respiratory failure: a multicenter, retrospective cohort study, Crit. Care Med. (2020), https://doi.org/10.1097/CCM.0000000000005458.

[20] M. Oranger, J. Gonzalez-Bermudez, P. DaCosta-Noble, C. Llontop, A. Guerder, Y. Trouini-Denert, M. Faure, M. Raux, M. Decavelle, A. Demoule, C. Morello-Panizzi, T. Similowski, Continuous positive airway pressure to avoid intubation in SARS-CoV-2 pneumonia: a two-period retrospective case-control study, Eur. Respir. J. 56 (2020), https://doi.org/10.1183/13993003.01692-2020.

[21] S.A. Guler, L. Ebers, C. Beigelman, P.-O. Bridevaux, M. Brutsche, C. Clarenbach, C. Garzoni, T.E. Geiser, A. Lenoir, M. Mancinetti, B. Naccini, S.R. Ott, L. Piquilloud, M. Prellia, Y.-A. Que, P.M. Soccal, C. von Garnier, M. Funke-Chambour, Pulmonary function and radiological features four months after COVID-19: first results from the national prospective observational Swiss COVID-19 lung study, Eur. Respir. J. (2021), https://doi.org/10.1183/13993003.03690-2020, 2003690.

[22] P.M. George, S.L. Barratt, R. Condille, S.R. Desai, A. Devaraj, I. Forrest, M. A. Gibbs, N. Hart, R.G. Jenkins, D.F. McAuley, B.V. Patel, E. Thwaite, L. G. Spencer, Respiratory follow-up of patients with COVID-19 pneumonia, Thorax 75 (2020) 1009–1016, https://doi.org/10.1136/thoraxjnl-2020-215314.

[23] C.H. Huang, L. Huang, W. Yang, X. Li, L. Ren, X. Gu, L. Kang, L. Guo, M. Liu, X. Zhou, J. Luo, Z. Huang, S. Tu, Y. Zhao, L. Chen, D. Xu, Y. Li, C. Li, L. Peng, Y. Li, W. Xie, D. Cui, L. Shang, G. Fan, J. Xu, W. Yang, W. Wang, J. Zhong, C. Wang, J. Wang, D. Zhang, B. Cao. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study, Lancet 397 (2021) 220–232, https://doi.org/10.1016/S0140-6736(20)32656-8.

[24] C. Bai, S.H. Chotirmall, J. Rello, G.A. Alba, L.C. Ginnis, J.A. Krishnan, R. Rogers, E. Bendstrup, P.-R. Burdel, J.D. Chalmers, A. Chau, K.A. Crothers, A. Duggal, Y. W. Kim, J.G. Laffey, C.M. Luna, M.S. Niederman, G. Raghu, J.A. Ramirez, J. Riera, O. Roca, M. Tamae-Kakazu, A. Torres, R.R. Watkins, M. Barrecheguren, M. Belliato, H.A. Chami, R. Chen, G.A. Cortes-Puentes, C. Delacruz, M.M. Hayes, L.M. A. Heunks, S.R. Holtes, C.L. Hough, S. Jagdal, K. Jean, T. Johkoh, M.M. Lee, J. Liebler, G.N. McElvany, A. Moskowitz, R.A. Oechler, I. Ojanguren, A. O. Regan, M.W. Pletz, C.K. Rhee, M.J. Schultz, E. Storti, C. Strange, C.C. Thomson, F. J. Torriani, X. Wang, W. Wuys, T. Xu, D. Yang, Z. Zhang, K.C. Wilson. Updated guidance on the management of COVID-19: from an American thoracic society/ European respiratory society coordinated international task force (29 July 2020), Eur. Respir. Rev. 29 (2020) 200287, https://doi.org/10.1183/16993058.0287-2020.