Gu, Xing

Some torsion classes in the Chow ring and cohomology of $\text{B}\mathbb{PGL}_n$. (English) [Zbl 1475.14009]

J. Lond. Math. Soc., II. Ser. 103, No. 1, 127-160 (2021).

Summary: In the integral cohomology ring of the classifying space of the projective linear group \mathbb{PGL}_n (over \mathbb{C}), we find a collection of p-torsion classes $y_{p,k}$ of degree $2(p^k+1)+1$ for any odd prime divisor p of n, and $k \geq 0$. If, in addition, $p^2 \nmid n$, there are p-torsion classes $\rho_{p,k}$ of degree p^k+1+1 in the Chow ring of the classifying stack of \mathbb{PGL}_n, such that the cycle class map takes $\rho_{p,k}$ to $y_{p,k}$. We present an application of the above classes regarding Chern subrings.

MSC:

14C15 (Equivariant) Chow groups and rings; motives
14B23 Stacks and moduli problems
55R35 Classifying spaces of groups and H-spaces in algebraic topology
14L30 Group actions on varieties or schemes (quotients)
55R40 Homology of classifying spaces and characteristic classes in algebraic topology
55T10 Serre spectral sequences

Full Text: DOI arXiv

References:

[1] J. Adem, ‘The iteration of the Steenrod squares in algebraic topology’, Proc. Natl. Acad. Sci. USA38 (1952) 720-726. · Zbl 0048.17002
[2] A. Adem and R. J. Milgram, Cohomology of finite groups, vol. 309 (Springer Science & Business Media, Berlin, 2013).
[3] B. Antieau, ‘On the integral Tate conjecture for finite fields and representation theory’, Algebr. Geom.3 (2016) 138-149. · Zbl 1348.14013
[4] B. Antieau and B. Williams, ‘The topological period-index problem over 6-complexes’, J. Topol.7 (2013) 617-640. · Zbl 1299.14018
[5] B. Antieau and B. Williams, ‘The period-index problem for twisted topological K-theory’, Geom. Topol.18 (2014) 1115-1148. · Zbl 1288.19006
[6] P. B. Rosen, ‘Steenrod operations in Chow theory’, Trans. Amer. Math. Soc.355 (2003) 1869-1903. · Zbl 1045.55005
[7] J.-L. Colliot-Thélène, ‘Exposant et indice d’algèbres simples centrales non ramifiées’, Enseign. Math.48 (2002) 127-146. · Zbl 1047.16007
[8] C. Cordova, D. Freed, H. T. Lam and N. Seiberg, ‘Anomalies in the space of coupling constants and their dynamical applications II’, SciPost Phys.8 (2020). https://doi.org/10.21468/SciPostPhys.8.1.002. · doi:10.21468/SciPostPhys.8.1.002
[9] D. Crowley and M. Grant, ‘The topological period-index conjecture for \(\mathcal{L}(\text{operator name} | \text{Spin}) \cdot c 6 \cdot \text{manifolds}\)’, Ann. K-Theory, to appear. · Zbl 1440.57033
[10] J. Davighi, B. Grippaoui and N. Lohitsiri, ‘Global anomalies in the standard model (s) and beyond’, Preprint, 2019, arXiv:1910.11277.
[11] D. Edidin and W. Graham, ‘Equivariant intersection theory (with an appendix by Angelo Vistoli: The Chow ring of \(\mathcal{M}_2\))’, Invent. Math.131 (1998) 595-634. · Zbl 0940.14003
[12] R. Field, ‘The Chow ring of the classifying space \(\mathcal{B} \mathcal{S} \mathcal{O} (2 n , \mathfrak{mathbb{b}}(\mathcal{C})) \)’, J. Algebra350 (2012) 330-339. · Zbl 1247.14005
[13] É. N. S. (France) and H. Cartan, Séminaire Henri Cartan: ann. 7 1954/1955; Algèbres d’Eilenberg-Maclane et homotopie. (Secretariat Mathematique, 1958), http://www.numdam.org/issues/SHC_1954-1955_7_1/.
[14] W. Fulton, Intersection theory, vol. 2 (Springer Science & Business Media, Berlin, 2013).
[15] I. García-Elxetarríba and M. Montero, ‘Dai-Freed anomalies in particle physics’, J. High Energy Phys.2019 (2019) 3. https://doi.org/10.1007/jhep08(2019)003. · doi:10.1007/jhep08(2019)003
[16] D. H. Gottlieb, ‘Fibre bundles and the Euler characteristic’, J. Differential Geom.10 (1975) 39-48. · Zbl 0294.55009
[17] X. Gu, ‘The topological period-index problem over 8-complexes, II’, Proc. Amer. Math. Soc., to appear. · Zbl 1448.55021
[18] X. Gu, ‘On the cohomology of the classifying spaces of projective unitary groups’, J. Topol. Anal.12 (2019) 1-39.
[19] X. Gu, ‘The topological period-index problem over 8-complexes, I’, J. Topol. Anal.12 (2019) 1368-1395. · Zbl 1441.55014
[20] P. Guillot, ‘Chow rings and cobordism of some Chevalley groups’, Mathematical Proceedings of the Cambridge Philosophical Society 136 (Cambridge University Press, Cambridge, 2004) 625-642. · Zbl 1083.14008
