Non symmetric Cauchy kernels for the classical Groups

Amy M. Fu* and Alain Lascoux

Abstract

We give non-symmetric versions of the Cauchy kernel and Littlewood’s kernels, corresponding to the types A_n, B_n, C_n, and D_n, of the classical groups. We show that these new kernels are diagonal in the basis of two families of key polynomials (one of them being Demazure characters) obtained as images of dominant monomials under isobaric divided differences. We define scalar products such that the two families of key polynomials are adjoint to each other.

1 Introduction

Given two sets of indeterminates $x = \{x_1, x_2, \ldots, x_n\}$, $y = \{y_1, y_2, \ldots, y_n\}$, the classical Cauchy kernel $\widetilde{\Omega}^A$ diagonalizes in the basis of Schur functions:

$$\widetilde{\Omega}^A = \prod_i \prod_j (1 - x_i y_j)^{-1} = \sum_\lambda s_\lambda(x) s_\lambda(y).$$ \hbox{(1)}

The Cauchy kernel may be considered as the generating function of all characters of the symmetric groups. Multiplying the kernel $\widetilde{\Omega}^A$ by the factor $\prod_{i<j} (1 - x_i x_j) \prod_{i,j} (1 - x_i y_j)\prod_{i,j} (1 - x_i/y_j)^{-1}$ or $\prod_{i \leq j} (1 - x_i x_j) \prod_{i,j} (1 - x_i y_j)\prod_{i,j} (1 - x_i/y_j)^{-1}$, Littlewood [11] obtained expansions for the following kernels $\widetilde{\Omega}^C$ and $\widetilde{\Omega}^D$, in terms of symplectic Schur functions and orthogonal Schur functions (see below for the precise definitions):

$$\widetilde{\Omega}^C = \frac{\prod_{i<j} (1 - x_i x_j)}{\prod_i \prod_j (1 - x_i y_j)(1 - x_i/y_j)} = \sum_\lambda s_\lambda(x) SP_\lambda(y'),$$ \hbox{(2)}

$$\widetilde{\Omega}^D = \frac{\prod_{i \leq j} (1 - x_i x_j)}{\prod_i \prod_j (1 - x_i y_j)(1 - x_i/y_j)} = \sum_\lambda s_\lambda(x) O_\lambda(y'),$$ \hbox{(3)}

where $y' = \{y_1, y_2, \ldots, y_n, y_1^{-1}, y_2^{-1}, \ldots, y_n^{-1}\}$.

* supported by the 973 Project on Mathematical Mechanization, the National Science Foundation, the Ministry of Education, and the Ministry of Science and Technology of China.
In this paper, we shall study the following non-symmetric versions of the kernels $\tilde{\Omega}^A$, $\tilde{\Omega}^C$ and $\tilde{\Omega}^D$:

\[
\Omega^A := \frac{1}{\prod_{i+j \leq n+1}(1 - x_i y_j)},
\]

\[
\Omega^B := \frac{\prod_{i<j}(1-x_i x_j) \prod_i (1 + x_i)}{\prod_i \prod_j (1 - x_i y_j) \prod_{i\leq j}(1 - x_i/y_j)},
\]

\[
\Omega^C := \frac{\prod_{i<j}(1-x_i x_j)}{\prod_i \prod_j (1 - x_i y_j) \prod_{i\leq j}(1 - x_i/y_j)},
\]

\[
\Omega^D := \frac{\prod_{i\leq j}(1-x_i x_j)}{\prod_i \prod_j (1 - x_i y_j) \prod_{i\leq j}(1 - x_i/y_j)}.
\]

It will be convenient to interpolate between Ω^B and Ω^C, choosing an arbitrary parameter β, and defining:

\[
\Omega^{BC} = \frac{\prod_{i<j}(1-x_i x_j) \prod_i (1 + \beta x_i)}{\prod_i \prod_j (1 - x_i y_j) \prod_{i\leq j}(1 - x_i/y_j)}.
\]

For each type A, B, C, D, BC, there exist two families of isobaric divided differences, which allow, starting from all dominant monomials, to define two families of key polynomials, one of them being the Demazure characters. Our main result (Th. 6) is that all kernels $\Omega^A, \ldots, \Omega^{BC}$ diagonalize in the corresponding basis of key polynomials.

Notice that in type A, one also has a polynomial kernel, which is the resultant $\prod_i \prod_j (x_i - y_j)$ of two z-polynomials $\prod_i (z-x_i)$ and $\prod_j (z-y_j)$. It still decomposes without multiplicity in the basis of products of Schur functions in x and y. The non-symmetric version of the resultant, $\prod_{i,j:i+j\leq n+1}(x_i - y_j)$, decomposes in the basis of products of Schubert polynomials in x and y, and the main properties of Schubert polynomials are easy consequences of the fact that $\prod_{i,j:i+j\leq n+1}(x_i - y_j)$ is a reproducing kernel [7].

In the present article, for type A, we have rather taken the inverse function $\prod_{i,j:i+j\leq n+1}(1 - x_i y_j)^{-1}$. The corresponding polynomials are no more the Schubert polynomials, though there are interesting relationships between them and Demazure characters.

The Cauchy kernel may be used to define a scalar product on the ring of symmetric polynomials with coefficients in \mathbb{Z}, with respect to which Schur functions constitute the only orthonormal basis [12]. Starting from Weyl's
denominators, we also define scalar products with respect to which, for all types, the bases of key polynomials are adjoint of each other (Th. 15). However, Bogdan Ion [5, 6] has shown that key polynomials can be obtained as a limit case of Macdonald polynomials. Thus the definition of the scalar product and the orthogonality property of key polynomials result from the theory of Macdonald polynomials. Nevertheless, we are giving an independent derivation in sections 6, 7, because this approach relies only on simple properties of divided differences and does not require double affine Hecke algebras.

2 Weyl Groups

We shall realize the classical groups as groups operating on vectors, or, equivalently, on Laurent polynomials, when considering the vectors to be exponents of monomials. For more informations about Coxeter groups, see [1].

Fixing a positive integer \(n \), we define the operators \(s_i \) (\(1 \leq i \leq n \)), and \(\tau_n \) acting on vectors \(v \in \mathbb{Z}^n \) as follows (operators are noted on the right):

\[
\begin{align*}
vs_i &= [\ldots, v_{i+1}, v_i, \ldots], & 1 \leq i &< n, \\
vs_n &= [\ldots, v_{n-1}, -v_n], \\
vt_n &= [\ldots, -v_n, -v_n-1].
\end{align*}
\]

Denoting a Laurent monomial \(x_1^{v_1} \cdots x_n^{v_n} \) by \(x^v \), we extend by linearity the preceding operators to operators on Laurent polynomials in indeterminates \(x_1, \ldots, x_n \). The simple transpositions \(s_i \) (\(i = 1, \ldots, n-1 \)) interchanges \(x_i \) and \(x_{i+1} \), \(s_n \) transforms \(x_n \) into \(x_n^{-1} \), and \(\tau_n \) sends \(x_{n-1} \) onto \(x_{n-1}^{-1} \), \(x_n \) onto \(x_{n-1}^{-1} \).

The group generated by \(s_1, \ldots, s_{n-1} \) is a faithful representation of the symmetric group \(\mathfrak{S}_n \) (type \(A_{n-1} \)). Adding the generator \(s_n \) gives the Weyl group of type \(B_n \) or \(C_n \) (which will be distinguished later), while \(s_1, \ldots, s_{n-1}, \tau_n \) induce a faithful representation of the type \(D_n \).

An element \(w \) of any of these groups can be identified with the image under \(w \) of the vector \(v = [1, 2, \ldots, n] \). For type \(A_{n-1} \), one gets permutations; for type \(B_n, C_n \), one gets the bar-permutations, writing \(\bar{r} \) rather than \(-r \); and for type \(D_n \), one gets the bar-permutations with an even number of bars. As usual, we denote by \(\ell(w) \) the length of \(w \) (i.e. the length of a reduced decomposition of \(w \)). For a given type, we extend the definition of length to vectors: the length \(\ell(v) \) of \(v \in \mathbb{Z}^n \) is the minimum number of generators of
the group that must be applied to pass from \(v \) to the decreasing reordering of \(|v_1|, \ldots, |v_n|\).

There is a unique element of maximal length for each type, usually denoted \(w_0 \). For \(A_{n-1} \), it is \(\omega^A := [n, \ldots, 1] \). For \(B_n, C_n \), it is \(\omega^B = \omega^C := [-1, \ldots, -n] \). For \(D_n \), it is \(\omega^D := [-1, \ldots, -n+1, n] \). Reduced decompositions for these elements are

\[
\begin{align*}
\omega^A &= (s_1) (s_2 s_1) \cdots (s_{n-1} \cdots s_1), \\
\omega^B &= \omega^C = (s_n) (s_{n-1}s_n s_{n-1}) \cdots (s_1 \cdots s_{n-1}s_n \cdots s_1), \\
\omega^D &= (s_{n-1}\tau_n) (s_{n-2}s_{n-1}\tau_n s_{n-2}) \cdots (s_1 \cdots s_{n-2}s_{n-1}\tau_n s_{n-2} \cdots s_1).
\end{align*}
\]

We shall also need some conjugates \(\theta_i \) of \(s_n \) (\(i = 1, 2, \ldots, n \)), defined by

\[v\theta_i = [\ldots, -v_i, \ldots]. \]

In the group algebra, the most important element is the alternating sum of all elements \(\sum_w (-1)^{\ell(w)} w \). From the explicit representation of the groups given above, it is easy to obtain the following factorizations:

\[
\sum_{w \in B_n, C_n} (-1)^{\ell(w)} w = (1 - \theta_1) \cdots (1 - \theta_n) \sum_{\sigma \in S_n} (-1)^{\ell(\sigma)} \sigma \quad (4)
\]

and

\[
\sum_{w \in D_n} (-1)^{\ell(w)} w = \frac{1}{2} \left((1-\theta_1) \cdots (1-\theta_n) + (1+\theta_1) \cdots (1+\theta_n)\right) \sum_{\sigma \in S_n} (-1)^{\ell(\sigma)} \sigma. \quad (5)
\]

3 The Weyl character formula

In this section, we give a brief review of the Weyl character formula, from an algebraic point of view only.

Let \(\rho^A = \rho^D := [n-1, \ldots, 1, 0] \), \(\rho^B := [n - \frac{1}{2}, \ldots, 2 - \frac{1}{2}, 1 - \frac{1}{2}] \), \(\rho^C := [n, \ldots, 2, 1] \). The sums

\[
\sum_w (-1)^{\ell(w)} \left(x^{\rho^\Diamond}\right)^w,
\]

\(\Diamond = A, B, C, D \), under the appropriate group, can be written as determi-
nents:
\[
\begin{align*}
\Delta^A &= \det\left(x_i^{j-1}\right)_{1 \leq i,j \leq n}, \\
\Delta^B &= \det\left(x_i^{j-1/2} - x_i^{1/2-j}\right)_{1 \leq i,j \leq n}, \\
\Delta^C &= \det\left(x_i^j - x_i^{-j}\right)_{1 \leq i,j \leq n}, \\
2\Delta^D &= \det\left(x_i^{j-1} + x_i^{-j+1}\right)_{1 \leq i,j \leq n}.
\end{align*}
\]

These determinants are easily factorized:
\[
\begin{align*}
\Delta^A &= \prod_{i<j} (x_i - x_j), \\
\Delta^B &= \prod_i x_i^{1/2} \prod_i (x_i - x_j)(1 - \frac{1}{x_i x_j}), \\
\Delta^C &= \prod_i (x_i - x_i^{-1}) \prod_{i<j} (x_i - x_j)(1 - \frac{1}{x_i x_j}), \\
\Delta^D &= \prod_{i<j} (x_i - x_j)(1 - \frac{1}{x_i x_j}).
\end{align*}
\]

Taking now the images of general dominant monomials, one obtains Weyl’s expressions of the characters of the linear, symplectic or orthogonal groups [15]. For \(\lambda\) dominant, with \(\ell(\lambda) \leq n\) in types \(A, B, C\) and \(\ell(\lambda) < n\) in type \(D\), the quotient
\[
\left(\sum_w (-1)^{\ell(w)} x^{(\lambda + \rho)w}\right) \left(\sum_w (-1)^{\ell(w)} x^{\rho w}\right)^{-1}
\]
is equal to
\[
\begin{align*}
s_\lambda(x), \quad &\text{type } A, \\
SP_\lambda(x'), \quad &\text{type } C, \\
O_\lambda(x''), \quad &\text{type } B, \\
O_\lambda(x'), \quad &\text{type } D,
\end{align*}
\]
where \(x' = \{x_1, \ldots, x_n, x_1^{-1}, \ldots, x_n^{-1}\}\), \(x'' = \{x_1, \ldots, x_n, 1, x_1^{-1}, \ldots, x_n^{-1}\}\).

For a combinatorial interpretation in terms of lattice paths, we refer to Chen, Li, Louck [4].

In the remainder of this text, we shall be concerned with the generalization of these characters by Demazure.
4 Divided differences and key polynomials

Restricting to \(n = 1, 2 \), one can interpret Weyl’s formulas as operators on the ring of polynomials in one or two variables. These operators are similar to Newton’s divided differences. They are called Demazure operators [3], or isobaric divided differences.

More specifically, for each type \(A, B, C, D \), one defines two families of divided differences acting on functions of \(x_1, \ldots, x_n \), and written on the right.

The first family is

\[
\begin{align*}
\pi_i : f & \mapsto f \pi_i := \frac{x_i f - x_{i+1} f^{s_i}}{x_i - x_{i+1}}, \quad 1 \leq i < n, \\
\pi_n^C : f & \mapsto f \pi_n^C := \frac{x_n f - x_{n-1} f^{s_n}}{x_n - x_{n-1}}, \\
\pi_n^B : f & \mapsto f \pi_n^B := \frac{x_n f - f^{s_n}}{x_n - 1}, \\
\pi_n^D : f & \mapsto f \pi_n^D := \frac{f - x_{n-1} f^{r_n}}{1 - x_{n-1} x_n}.
\end{align*}
\]

It is convenient to interpolate between the operators \(\pi_n^B \) and \(\pi_n^C \) and define:

\[
\pi_n^{BC} : f(x_1, x_2, \ldots, x_n) \mapsto \frac{(x_n + \beta) f - (x_{n-1}^{-1} + \beta) f^{s_n}}{x_n - x_{n-1}}.
\]

One sees that \(\pi_n^C \) is recovered by putting \(\beta = 0 \), while \(\pi_n^B \) corresponds to \(\beta = 1 \). This operator results from the representation of the Hecke algebra of type \(\tilde{C}_n \), defined by Noumi (cf. Sahi [14, 2.4]).

The second family is

\[
\hat{\pi}_i := \pi_i - 1, \quad 1 \leq i < n,
\]

and

\[
\hat{\pi}_n^\heartsuit = \pi_n^\heartsuit - 1, \quad \heartsuit = B, C, D, BC.
\]

Each family satisfy the braid relations for type \(A, B, C, D \) respectively [3]. Notice that the operators \(\pi_i \) (resp. \(\hat{\pi}_i \), \(1 \leq i \leq n \), commute with the multiplication by functions invariant under \(s_i \), and that \(\pi_n^D \) (resp. \(\hat{\pi}_n^D \))
commutes with the multiplication by functions invariant under τ_n. Thus, computations with a single π_i, $i \leq n$ are reduced to an action on the linear span of $1, x_i$. In particular, it is immediate to obtain that each operator satisfies the following quadratic relations (which are degenerate cases of the Hecke relations).

Lemma 1 The squares of the isobaric divided differences satisfy

$$\pi_i \pi_i = \pi_i, \quad \pi_i \pi_i = -\pi_i, \quad 1 \leq i < n,$$

$$\pi_n \pi_n = \pi_n, \quad \tilde{\pi}_n \pi_n = -\tilde{\pi}_n, \quad \nabla = B, C, D, BC.$$

We define the key polynomials of type ∇, for $\nabla = A, B, C, D, BC$, to be the images of dominant monomials under products of isobaric divided differences. For type A, B, C, D, these are the Demazure characters. Using the divided differences $\tilde{\pi}_i$ instead of π_i, one obtains a second family of key polynomials.

In more details. The starting points of all families are

$$x^\lambda = x_1^{\lambda_1} x_2^{\lambda_2} \ldots x_n^{\lambda_n} = K_\lambda^\nabla = \tilde{K}_\lambda^\nabla, \quad \text{all partitions } \lambda \in \mathbb{N}^n.$$

The other polynomials are defined recursively by

$$K_v^\nabla \pi_i = K_v^\nabla s_i & \tilde{K}_v^\nabla \tilde{\pi}_i = \tilde{K}_v^\nabla s_i, \quad \text{when } v_i > v_{i+1}, \quad i < n. \quad (14)$$

$$K_v^\nabla \pi_n = K_v^\nabla s_n & \tilde{K}_v^\nabla \tilde{\pi}_n = \tilde{K}_v^\nabla s_n, \quad \text{when } v_n > 0, \quad \nabla = B, C, BC. \quad (15)$$

$$K_v^D \pi_n = K_v^D \tau_n & \tilde{K}_v^D \tilde{\pi}_n = \tilde{K}_v^D \tau_n, \quad l(v \tau_n) > l(v). \quad (16)$$

The definition is consistent since the operators satisfy the braid relations. Notice that, when $v \in \mathbb{N}^n$, then all K_v^∇ and \tilde{K}_v^∇, $\nabla = A, B, C, D, BC$ coincide with each other, since the exceptional generators are not used in the computation. In that case, we shall write K_v, \tilde{K}_v, ignoring the types. We shall also need to use at the same time operators acting on x_1, \ldots, x_n, and operators acting on y_1, \ldots, y_n. In that case, we use superscripts.

The images of a dominant monomial x^λ under the maximal divided difference π_ω, for $\nabla = A, C, B, D$, are respectively the RHS of Eq. (10), (11), (12), (13). For $\nabla = BC$, and $\beta = -1$, one recovers the odd symplectic characters of Proctor [13, Prop. 7.3].

Divided differences can be extended to operators on paths. We refer specially to the work of Littelmann [9, 10].
5 Cauchy-type Kernels

In this section, we shall show that all the kernels Ω^\vartriangleleft, $\vartriangleleft = A, B, C, D, BC$, are diagonal in the basis of key polynomials. In fact, our computations will essentially be reduced to the following cases, the verifications of which are immediate.

\[
(1 - ax_i)^{-1} \pi_i = (1 - ax_i)^{-1}(1 - ax_{i+1})^{-1} \tag{17}
\]
\[
(1 - ax_i)^{-1} \hat{\pi}_i = ax_{i+1}(1 - ax_i)^{-1}(1 - ax_{i+1})^{-1} \tag{18}
\]
\[
(1 - ax_{i+1}) \pi_i = (1 - a/x_i) \pi_i = 1, \ 1 \leq i < n, \tag{19}
\]
\[
(1 - ax_{i+1})(1 - b/x_i) \pi_i = 1 - ab, \ 1 \leq i < n, \tag{20}
\]
\[
(1 - b/x_{n})\pi_{BC}^{n} = 1 + \beta b, \tag{21}
\]
\[
(1 - b/x_{n-1})(1 - b/x_{n})\pi_{D}^{n} = 1 - b^2. \tag{22}
\]

We introduce the operator

\[
\Xi_n := \sum_{\sigma \in S_n} \hat{\pi}^x_{\sigma} \pi^y_{\sigma \omega},
\]

where ω is the maximal element in S_n. Filtering the set of permutations according to the position of n, one gets the following factorization.

Lemma 2 We have

\[
\Xi_n = \Xi_{n-1} \left(\sum_{i=0}^{n-1} \pi_{[n-1:i]}^y \pi_{[n-1:n-1-i]}^i \right), \tag{23}
\]

where

\[
\pi_{[n-1:i]} := \pi_{n-1} \pi_{n-2} \cdots \pi_{n-i}.
\]

For example, the element Ξ_4 factorizes as

\[
\Xi_4 = \Xi_3 \left(\frac{x}{\pi_3 \pi_2 \pi_1} + \frac{x}{\pi_3 \pi_2 \pi_3} + \frac{x}{\pi_3 \pi_2 \pi_3} + \frac{x}{\pi_3 \pi_2 \pi_1} \right).
\]

The next proposition shows that the operator Ξ_n allows to obtain the kernel Ω^A from the generating function of the dominant monomials.
Proposition 3 We have

$$
\frac{1}{(1 - x_1 y_1)(1 - x_1 x_2 y_1 y_2) \cdots (1 - x_1 \cdots x_n y_1 \cdots y_n)} \Xi_n
= \frac{1}{\prod_{i+j \leq n+1} 1 - x_i y_j} = \Omega^A. \quad (24)
$$

Proof. The factor $\left(1 - x_1 \cdots x_n y_1 \cdots y_n\right)^{-1}$ commutes with all the divided differences $\widehat{\pi}_i^x$, $\widehat{\pi}_i^y$, $1 \leq i \leq n - 1$. Using the above factorization of Ξ_n, and supposing the proposition true for $n - 1$, one has to compute the image of $\prod_{i+j \leq n}(1 - x_i y_j)^{-1}$ under the sum

$$
\sum_{i=0}^{n-1} \widehat{\pi}_{[n-1:i]}^x \widehat{\pi}_{[n-1:n-1-i]}^y.
$$

By repeated use of (18), one obtains

$$
\prod_{i+j \leq n} (1 - x_i y_j)^{-1} \widehat{\pi}_{n-1}^x \cdots \widehat{\pi}_{k}^x = \prod_{i+j \leq n} (1 - x_i y_j)^{-1} \frac{x_n y_1}{1 - x_n y_1} \cdots \frac{x_{k+1} y_{n-k}}{1 - x_{k+1} y_{n-k}}.
$$

Thanks to (17), the action of $\pi_{n-1}^y \cdots \pi_{n-k+1}^y$ on this last function reduces to multiplication by

$$
\frac{1}{1 - x_1 y_n} \frac{1}{1 - x_2 y_{n-1}} \cdots \frac{1}{1 - x_{k-1} y_{n-k+2}}.
$$

Reducing now the sum to a common denominator, it can be rewritten as the product of Ω^A times the factor

$$
\sum_{k=1}^{n-1} x_n \cdots x_{k+1} y_1 \cdots y_{n-k} (1 - x_k y_{n-k+1}) + (1 - x_n y_1).
$$

This last factor is nothing but the factor $\left(1 - x_1 \cdots x_n y_1 \cdots y_n\right)$ which commutes with all the divided differences. This completes the proof. \[\blacksquare\]

Lemma 4 Let Φ^{BC} be the following operator acting on the variables y_1, \ldots, y_n.

$$
\Phi^{BC} := \left(\pi_n^{BC} \pi_{n-1} \cdots \pi_1\right) \left(\pi_n^{BC} \pi_{n-1} \cdots \pi_2\right) \cdots \left(\pi_n^{BC} \pi_{n-1}\right) \left(\pi_n^{BC}\right).
$$

Then

$$
\Omega^A \Phi^{BC} = \Omega^{BC}.
$$
Proof. Each step of the computation of $\Omega^A \Phi^{BC}$ corresponding to the above factorization of Φ^{BC}, is of one of the following two types.

When $i < n$, then the rational function can be written $(1 - x'y_i)^{-1}(1 - x/y_{i+1})^{-1} f$, with $f = f^{s_i}$, i.e. f symmetrical in y_i and y_{i+1}. In that case, thanks to (20), one has

$$
\frac{f}{(1 - x'y_i)(1 - x/y_{i+1})} = \frac{(1 - x'y_{i+1})(1 - x/y_i)f}{(1 - x'y_i)(1 - x'y_{i+1})(1 - x/y_{i+1})(1 - x/y_i)}
$$

In other words, this step has consisted in multiplying by

$$(1 - xx')(1 - x'y_{i+1})^{-1}(1 - x/y_i)^{-1}.$$

In the case of a step π_{BC}^n, the current function is $(1 - xy_n)^{-1} f$, where $f = f^{s_n}$. Thanks to (21), one has

$$
\frac{f}{(1 - xy_n)} = \frac{1}{(1 - x/y_n)(1 - x/y_n)}
$$

and therefore, we have created the factor $(1 + \beta x)(1 - x/y_n)^{-1}$.

The product of all the factors we have created is

$$
\prod_i (1 + \beta x_i) \prod_{i < j} (1 - x_i x_j) \prod_{i + j > n + 1} (1 - x_i y_j)^{-1} \prod_{i \leq j} (1 - x_i/y_j)^{-1},
$$

which is indeed equal to the quotient to Ω^{BC}/Ω^A.

To treat the type D, we define recursively the following operators (still acting on y_1, \ldots, y_n only):

$$
\Phi^D_2 = \pi_1 \pi_2^D, \quad \Phi^D_3 = (\pi_2 \pi_3^D)^{\pi_1} \pi_2 \pi_3^D, \ldots
$$

$$
\Phi^D_n = (\Phi^D_{n-1})^+ \pi_1 \pi_2 \ldots \pi_{n-1} \pi_n^D, \quad (25)
$$

where the symbol $(\cdot)^+$ denotes the shift $i \to i + 1$ of all indices inside the parentheses. For example, taking $n = 4$, we have

$$
\Phi^D_4 = (\pi_3 \pi_4^D) (\pi_2 \pi_3 \pi_4^D)(\pi_1 \pi_2 \pi_3 \pi_4^D).
$$
Lemma 5 Let
\[\Omega_{n-1}^A = \prod_{i+j \leq n} (1 - x_i y_j)^{-1}. \]
Then
\[\Omega_{n-1}^A \Phi_n^D = \Omega^D. \]

Proof. The successive steps in the computation of the image of \(\Omega_{n-1}^A \) are of three possible types.

Step \(\pi_{n-1} \). The current function is \((1 - x y_{n-1})^{-1} f\), with \(f \) is symmetrical in \(y_n \) and \(y_{n-1} \). Thanks to (17), we have
\[
\frac{f}{1 - x y_{n-1}} \pi_{n-1} = \frac{f}{(1 - x y_n)(1 - x y_{n-1})}.
\]
We have just created a factor \((1 - x y_n)^{-1}\).

Step \(\pi_n^D \). The current function is \((1 - x y_{n-1})^{-1}(1 - x y_n)^{-1} f\), with \(f \) invariant under \(\tau_n \). Thanks to (22), we have
\[
\frac{f}{(1 - x y_{n-1})(1 - x y_n)} \pi_n^D = \frac{(1 - x y_{n-1})(1 - x y_n)\pi_n^D f}{(1 - x y_n)(1 - x y_{n-1})(1 - x y_n)(1 - x/y_n)}
\]
\[
= \frac{(1 - x^2) f}{(1 - x y_{n-1})(1 - x y_n)(1 - x/y_n)(1 - x/y_n)}
\]
and the transformation is just multiplication by
\[
(1 - x^2)(1 - x/y_n)^{-1}(1 - x/y_n)^{-1}.
\]

Step \(\pi_i, i < n - 1 \). The current function is \((1 - x' y_i)^{-1}(1 - x/y_{i+1})^{-1} f\), with \(f = f^\pi \). Thanks to (20), one has
\[
\frac{f}{(1 - x' y_i)(1 - x/y_{i+1})} \pi_i = \frac{(1 - x' y_{i+1})(1 - x/y_i)\pi_i f}{(1 - x' y_i)(1 - x' y_{i+1})(1 - x/y_i)(1 - x/y_{i+1})}
\]
\[
= \frac{(1 - x x')(1 - x' y_{i+1})(1 - x/y_i)(1 - x/y_{i+1})}{(1 - x x')(1 - x' y_{i+1})(1 - x/y_i)(1 - x/y_{i+1})}.
\]
The function has been multiplied by
\[
(1 - x x')(1 - x' y_{i+1})^{-1}(1 - x/y_i)^{-1}.
\]
The products of all the above factors is
\[
\prod_{i \leq j} (1 - x_i x_j) \prod_{i} (1 - x_i y_j)^{-1} \prod_{i \leq j} (1 - x_i / y_j)^{-1}.
\]
This completes the proof. \[\square\]

The preceding relations between the different kernels, and the function \((1 - x_1 y_1)^{-1}(1 - x_1 x_2 y_1 y_2)^{-1} \cdots \) allow to expand these kernels.

Theorem 6 We have
\[
\begin{align*}
\Omega^A &= \sum_{v \in \mathbb{N}^n} \hat{K}_v(x) K_{v\omega}(y), \quad (26) \\
\Omega^{BC} &= \sum_{v \in \mathbb{N}^n} \hat{K}_v(x) K_{v}^{BC}(y), \quad (27) \\
\Omega^D &= \sum_{v \in \mathbb{N}^n; v_n = 0} \hat{K}_v(x) K_{v}^{D}(y), \quad (28)
\end{align*}
\]
where \(x_n\) is specialized to \(0\) in the last equation.

Proof. Note that
\[
\frac{1}{(1 - x_1 y_1)(1 - x_1 x_2 y_1 y_2) \cdots (1 - x_1 \cdots x_n y_1 \cdots y_n)}
\]
is the generating function of all dominant monomials \(x^\lambda y^\lambda\) in \(n\) indeterminates \(x_1, \ldots, x_n, y_1, \ldots, y_n\).

From the definition of \(\Xi_n\) and of key polynomials, one has
\[
\sum_{\lambda} x^\lambda y^\lambda \Xi_n = \sum_{v \in \mathbb{N}^n} \hat{K}_v(x) K_{v\omega}(y),
\]
where the sum ranges over all partitions \(\lambda\) of length at most \(n\). Thus, Proposition 3, entails (26).

The image of a key polynomial \(K_{v_n,\ldots,v_1}(y)\), \(v \in \mathbb{N}^n\) under \(\Phi^{BC}\) is \(K_{-v}(y)\). Therefore, the image of the RHS of (26) under \(\Phi^{BC}\) is the RHS of (27), and Lemma 4 gives (27).

Similarly, the image of \(K_{v_n-1,\ldots,v_1,0} \) under \(\Phi^D_{n}\) is \(K_{-v_1,-v_2,\ldots,-v_{n-1},0}(y)\). Therefore, the image of the expansion of \(\Omega^A_{n-1}\) under \(\Phi^D_{n}\) is the RHS of (28), and Lemma (5) completes the proof of (28) and of the theorem. \[\square\]
Note that (26) has been established combinatorially in [8], using Schensted bijection and double crystal graphs.

Let us conclude this section by showing that the identities (26), (27) and (28) imply the Cauchy formula and Littlewood’s formulas respectively. Indeed, \(\tilde{\tau}_i \pi_i = 0 \), 1 \(\leq \) \(i < n \), a fortiori, \(\tilde{\tau}_i \pi_\omega = 0 \), where \(\omega \) is the maximal element of \(\mathfrak{S}_n \). Therefore all the summands in the right hand sides of (26), (27) and (28) are sent to 0 under \(\pi_\omega^x \), except the terms

\[
\tilde{K}_\lambda(x) \pi_\omega^x = K_\lambda \omega(x) = s_\lambda(x).
\]

On the other hand,

\[
\prod_{i+j \leq n+1} (1 - x_i y_j)^{-1} \pi_\omega^x = \prod_{i,j=1}^n (1 - x_i y_j)^{-1}
\]

\[
\prod_{1 \leq i \leq j \leq n} (1 - x_i/y_j)^{-1} \pi_\omega^x = \prod_{i,j=1}^n (1 - x_i/y_j)^{-1}
\]

Specializing \(\beta \), we get Cauchy formula (1) and Littlewood’s identities (2), (3), as images of (26), (27) and (28) respectively.

6 Scalar products

Bogdan Ion [5, 6] has shown how to obtain the two families of Demazure characters \(K_\varhdot \), \(\hat{K}_\varhdot \), \(\varhdot = A, B, C, D \), by degeneration of Macdonald polynomials. Degenerating also Cherednik’s scalar product [2], one gets a scalar product for each of the types \(\varhdot \), with respect to which the bases \(\{K_\varhdot\} \), \(\{\hat{K}_\varhdot\} \) are adjoint of each other. But instead of having recourse to the elaborate theory of non symmetric Macdonald polynomials, we shall directly define scalar products on polynomials, and check orthogonality properties by simple recursions.

Recall that in the theory of Schubert polynomials [7], one defines a scalar product by using the maximal divided difference; as a consequence divided differences are self-adjoint. This scalar product can also be written

\[
(f, g) = CT \left(fg \prod_{1 \leq i, j \leq n} (x_i^{-1} - x_j^{-1}) \right),
\]

where \(CT \) means “constant term”.

13
It is easy to adapt this definition to our present needs, keeping the compatibility of the scalar product with the isobaric divided differences.

One first replaces the Vandermonde determinant by Weyl’s denominators, Δ^B, Δ^C and Δ^D multiplied by x^ρ. We add to their list

$$\Delta^{BC} := \Delta^C \prod_{i=1}^n (1 + \beta x_i)^{-1},$$

keeping $\rho^{BC} = \rho^C = [n, \ldots, 1]$.

Definition 7 For $\heartsuit = B, C, D, BC$, and for Laurent polynomials f, g in x_1, \ldots, x_n, let

$$(f, g)^\heartsuit = CT\left(fg x^{\rho^\heartsuit} \Delta^{\heartsuit} \right),$$

$$(f, g)^A = CT\left(f(x_1, \ldots, x_n)g(x^{-1}_n, \ldots, x^{-1}_1) \prod_{1 \leq i < j \leq n} (1 - x_i x_j^{-1}) \right),$$

where one expands $(1 + \beta x_i)^{-1}$ as a formal series in the variable $x_i \beta$.

For example, taking $n = 2$, one has

$$(f, g)^A = CT\left(fg x^2 (x_1^{-1}, x_2^{-1}) (1 - x_1 x_2^{-1}) \right),$$

$$(f, g)^{BC} = CT\left(\frac{fg x^2 (x_1^{-1}) (x_2 - x_1^{-1}) (x_2 - x_1^{-1}) (x_1 - x_2) (1 - x_1^{-1} x_2^{-1})}{(1 + x_1 \beta)(1 + x_2 \beta)} \right),$$

$$(f, g)^D = CT\left(fg x_1 (x_1 - x_2)(1 - \frac{1}{x_1 x_2}) \right).$$

Notice that the scalar product $(f, g)^{BC}$ does specialize to $(f, g)^B$ for $\beta = 1$, and to $(f, g)^C$ for $\beta = 0$:

$$(f, g)^B = CT\left(fg x^{3/2} x_2^{1/2} (x_1^{1/2} - x_1^{-1/2}) (x_2^{1/2} - x_2^{-1/2}) (x_1 - x_2) (1 - \frac{1}{x_1 x_2}) \right)$$

$$= CT\left(fg x_1 (x_1 - 1)(x_2 - 1)(x_1 - x_2)(1 - \frac{1}{x_1 x_2}) \right),$$

$$(f, g)^C = CT\left(fg x_1^2 x_2 (x_1 - \frac{1}{x_1}) (x_2 - \frac{1}{x_2}) (x_1 - x_2)(1 - \frac{1}{x_1 x_2}) \right).$$

Weyl defined a scalar product on symmetric functions by:

$$(f, g) = (n!)^{-1} CT\left(f(x_1, \ldots, x_n) g(x^{-1}_1, \ldots, x^{-1}_n) \Delta^2 \right),$$

14
and similarly for the other types, taking the squares of Δ^\triangledown. Thus, as for the different Cauchy kernels (1), (2), (3), one passes from the symmetric case to the non-symmetric one by taking “half” of the factors.

The crucial property of the scalar products (30) and (31) is the following compatibility with isobaric divided differences.

Theorem 8 Write $\pi_n = \pi_n^\triangledown$, $\hat{\pi}_n = \hat{\pi}_n^\triangledown$, for $\triangledown = B, C, BC, D$. Then the operators π_i and $\hat{\pi}_i$ $(1 \leq i \leq n)$ are self-adjoint with respect to $(\triangledown, \triangledown)$, i.e. for every pair of Laurent polynomials f, g, one has

$$(f \pi_i, g)\triangledown = (f, g\pi_i)\triangledown, \quad (f \hat{\pi}_i, g)\triangledown = (f, g\hat{\pi}_i)\triangledown.$$

In the case of type A, for $1 \leq i \leq n-1$, π_i (resp. $\hat{\pi}_i$) is adjoint to π_{n-i} (resp. $\hat{\pi}_{n-i}$), i.e. for every pair of Laurent polynomials f, h, one has

$$(f \pi_i, h)^A = (f, h\pi_{n-i})^A, \quad (f \hat{\pi}_i, h)^A = (f, h\hat{\pi}_{n-i})^A.$$

Proof. To treat all types in a uniform way, we write $h(x_n^{-1}, \ldots, x_1^{-1}) = g(x_1, \ldots, x_n)$. Then $h\pi_{n-i} = g\pi_i$, $1 \leq i < n$, and

$$(f, h\pi_{n-i})^A = CT \left(f(g\pi_i) \prod_{1 \leq i < j \leq n} (1 - x_i x_j^{-1}) \right),$$

For all types, and $i < n$, the scalar product can now be written as

$$CT \left(CT_{x_i, x_{i+1}} (fg(1 - x_i/x_{i+1})\clubsuit) \right),$$

where \clubsuit is a function symmetrical in x_i, x_{i+1} and $CT_{x_i, x_{i+1}}$ is the constant term in the variables x_i, x_{i+1} only.

Let us write f, g as $f = f_1 + x_{i+1}f_2$, $g = g_1 + x_{i+1}g_2$, with f_1, f_2, g_1, g_2 invariant under s_i. The difference $f\pi_i g - g\pi_i f = f\hat{\pi}_i g - g\hat{\pi}_i f$ is equal to $(f_1 g_2 - g_1 f_2)x_{i+1}$. Therefore the constant term

$$CT_{x_i, x_{i+1}} \left((f\pi_i g - g\pi_i f)(1 - x_i/x_{i+1})\clubsuit \right)$$

$$= CT_{x_i, x_{i+1}} \left((f\hat{\pi}_i g - g\hat{\pi}_i f)(1 - x_i/x_{i+1})\clubsuit \right)$$

$$= CT_{x_i, x_{i+1}} \left((x_i - x_{i+1})(f_1 g_2 - g_1 f_2)\clubsuit \right)$$

is null, because the function inside parentheses is antisymmetrical in x_i, x_{i+1}.

15
In the case \(i = n, \bigcirc = BC \), one writes

\[
(f, g)^{BC} = CT \left(CT_{x_n} \left(f g \frac{x_n}{1 + \beta x_n} (x_n - x_n^{-1}) \bigstar \right) \right),
\]

where \(\bigstar \) is a function invariant under \(s_n \). Therefore, to evaluate \((f \pi_n, g)^{BC} - (f, g)^{BC} - (f \pi_n, g)^{BC} - (f, g\pi_n)^{BC}\), one can first compute

\[
CT_{x_n} \left((f \pi_n g - g \pi_n f) \frac{x_n}{1 + \beta x_n} (x_n - x_n^{-1}) \bigstar \right) = CT_{x_n} \left((g^{s_n} f - f^{s_n} g) \bigstar \right)
\]

which is null, because the function under parentheses is alternating under \(s_n \).

Similarly, for \(\bigcirc = D \), neglecting a function invariant under \(\tau_n \), to determine \((f \pi_n, g)^D - (f, g)^D - (f \pi_n, g)^D - (f, g\pi_n)^D \), one can first compute

\[
CT_{x_n} \left((f \pi_n g - g \pi_n f)(1 - x_n^{-1}) \right) = CT_{x_n} \left((g^{\tau_n} f - f^{\tau_n} g) \right)
\]

which is also null, because the function \(f^{\tau_n} g - g^{\tau_n} f \) is alternating under \(\tau_n \). This completes the proof.

7 Orthogonality

Let us extend the usual dominance order on partitions [12] to an order on vectors in \(\mathbb{Z}^n \). Given two vectors \(u = (u_1, u_2, \ldots, u_n) \) and \(v = (v_1, v_2, \ldots, v_n) \) in \(\mathbb{Z}^n \), \(u \leq v \) means the following inequalities

\[
u_1 \leq v_1, u_1 + u_2 \leq v_1 + v_2, u_1 + u_2 + u_3 \leq v_1 + v_2 + v_3, \ldots
\]

One also extends the notation \(|\lambda|\) to vectors: \(|v| := v_1 + \cdots + v_n\).

We give in the following lemmas some easy properties of the scalar product.

Lemma 9 For every partition \(\lambda \) in \(\mathbb{N}^n \), for every element \(w \) in the groups of types \(B_n, C_n \) and \(D_n \) (resp. type \(A_{n-1} \)), every monomial \(x^u \) appearing in the expansion of \(x^\lambda \pi_w \) is such that \(u \geq -\lambda \) (resp. \(u \geq \lambda \omega \)).

Proof. By recursion on length, one sees that \(K_{\bigcirc}^\varphi, \bigcirc \neq A \), is equal to \(x^v + \sum c_u x^u \), with \(v < u \).
Lemma 10 For $u, v \in \mathbb{Z}^n$, $\nabla \neq A$,

$$(x^v, x^u)\nabla \neq 0 \text{ implies that } v \leq -u.$$

For $v, u \in \mathbb{N}^n$,

$$(x^v, x^u)^A \neq 0 \text{ implies that } v \leq u\omega, \text{ and } |v| = |u|.$$

Proof. Rewrite $x^a\Delta^C$ as the determinant

$$\pm\det \left(x^{j-i} (x^{2n-2j+2} - 1) \right)_{i,j=1}^n.$$

If one expands the determinant by rows, then the powers of x_1 are nonnegative, the term x_2^{-1} is multiplied by strictly positive powers of x_1, the term x_3^{-2} is multiplied by monomials in x_1, x_2 of degree at least 2, \ldots. Therefore, the scalar product $(x^v, x^u)^C$ can have a constant term only if

$$v_1 + u_1 \leq 0, v_1 + v_2 + u_1 + u_2 \leq 0, v_1 + v_2 + v_3 + u_1 + u_2 + u_3 \leq 0, \ldots,$$

i.e. $v \leq -u$.

For $(x^v, x^u)^\nabla$, $\nabla = B, D$, the proof is similar. For $(x^v, x^u)^{BC}$, we have multiplied $(x^v, x^u)^C$ by formal series in x_1, x_2, \ldots with positive exponents. Therefore $(x^v, x^u)^{BC} \neq 0$ still implies $v \leq -u$.

For $(x^v, x^u)^A$, rewrite the product $\prod_{1 \leq i < j \leq n} (1 - x_i x_j^{-1})$ as the determinant $\det(x^{j-i})_{i,j=1}^n$. One obtains that the scalar product $(x^v, x^u)^A$ has a constant term only if

$$v_1 + u_n \leq 0, v_1 + v_2 - u_n - u_{n-1} \leq 0, \ldots,$$

i.e. $v \leq u\omega$. Moreover, to have a non-zero constant term, the total degree must be 0, i.e. $|v| = |u|$.

Lemma 11 For two partitions λ and μ in \mathbb{N}^n, for $\nabla = A, B, C, D, BC$, if there exists w such that

$$(x^\lambda \pi_w, x^\mu)^\nabla \neq 0,$$

then $\lambda = \mu$.

Proof. There exists at least one monomial x^v in $x^\lambda \pi_w$ such that $(x^v, x^\mu)^\nabla \neq 0$. Lemma 10 then implies that $v \leq -\mu$, and therefore $-\lambda \leq -\mu$ when $\nabla \neq A$. In the case of type A, one has $v \leq \mu\omega$ and therefore $\lambda\omega \leq \mu\omega$.

17
Write now \((x^\lambda \pi_w, x^\mu)\kappa = (x^\lambda, x^\mu \pi_w)\kappa\), where \(w'\) is obtained from \(w\) by using Th. 8. We have reversed the role of \(\lambda\) and \(\mu\), and therefore non-nullity of the scalar product implies that \(\lambda = \mu\).

Note that if all the parts of \(\lambda\) are different, then \(w\) must be the maximal element of the group.

Corollary 12 Let \(\lambda\) be a partition in \(\mathbb{N}^n\), with at least one \(0\) component when \(\kappa = D\) and \(n\) is odd. Then \(\kappa \neq A\), \((K_v, x^\lambda)\kappa \neq 0\) implies that \(v = -\lambda\). (32)

In that case \((K_{-\lambda}, x^\lambda)\kappa = 1\).

\((K_v, x^\lambda)^A \neq 0\) implies that \(v = \lambda \omega\). (33)

In that case \((K_{\lambda \omega}, x^\lambda)^A = 1\).

Lemma 13 Let \(\kappa \neq A\) and \(i: 1 \leq i \leq n\). Given four polynomials \(f_1, f_2 = f_1 \pi_i, g_1, g_2 = g_1 \tilde{\pi}_i\), then \((f_1, g_1)\kappa = 0\) & \((f_2, g_1)\kappa = 1\), implies that

\[(f_1, g_2)\kappa = 1 \quad \& \quad (f_2, g_2)\kappa = 0.\]

Moreover, any space \(V\) stable under \(\pi_i\) which is orthogonal to \(g_1\) is orthogonal to \(g_2\).

Proof. We have

\[(f_2, g_2)^\kappa = (f_1 \pi_i, g_1 \tilde{\pi}_i)^\kappa = (f_1 \pi_i \tilde{\pi}_i, g_1)^\kappa = 0,\]

and

\[(f_1, g_2)^\kappa = (f_1, g_1 \tilde{\pi}_i)^\kappa = (f_1, g_1 \pi_i - g_1)^\kappa = (f_1 \pi_i, g_1)^\kappa = (f_2, g_1)^\kappa = 1.\]

The last statement is immediate. ■

The next lemma has a similar proof.

Lemma 14 Given an integer \(i (1 \leq i \leq n - 1)\) and four polynomials \(f_1, f_2 = f_1 \pi_{n-i}, g_1, g_2 = g_1 \tilde{\pi}_i\), then \((f_1, g_1)^A = 0\) & \((f_2, g_1)^A = 1\) implies that

\[(f_1, g_2)^A = 1 \quad \& \quad (f_2, g_2)^A = 0.\]

Moreover, any space \(V\) stable under \(\pi_{n-i}\) which is orthogonal to \(g_1\) is orthogonal to \(g_2\).
We are now ready to conclude.

Theorem 15 Let $u, v \in \mathbb{Z}^n$, and $\bigodot \neq A$. Suppose moreover that, when $\bigodot = D$ and n is odd, then u or v has at least one component equal to 0. Then

$$ (K_v, \hat{K}_u)^\bigodot = \delta_{-v,u}, \quad (34) $$

where, as usual, $\delta_{-v,u}$ is the Kronecker delta.

In the case of type A, for $u, v \in \mathbb{N}^n$, we have

$$ (K_v, \hat{K}_u)^A = \delta_{v,u}. \quad (35) $$

Proof. When u is dominant, (32) implies that $(K_v, x^u)^\bigodot = \delta_{-v,u}$. By induction on length, suppose that u is such that \hat{K}_u is orthogonal to every K_v, except $(K_{-u}, \hat{K}_u)^\bigodot = 1$. Let i be such that the linear span of $\hat{K}_u, \hat{K}_u \pi_i$ is two-dimensional. Then one uses Lemma 13, with $f_1 = K_{-us_i}, f_2 = K_{-u} = f_1 \pi_i, g_1 = \hat{K}_u, g_2 = \hat{K}_{us_i} = g_1 \pi_i$, and V generated by all $K_v, v \neq -u, -us_i$, to conclude that \hat{K}_{us_i} is orthogonal to all K_v, except for $(K_{-us_i}, \hat{K}_{us_i})^\bigodot = 1$.

For type A, one replaces Lemma 13 by Lemma 14 to arrive to a similar conclusion.

Acknowledgments. We are grateful to Bogdan Ion for his detailed explanations about the connections between Macdonald polynomials and Demazure characters.

Center for Combinatorics, LPMC
Nankai University, Tianjin 300071, P. R. China
Email address: fu@nankai.edu.cn

CNRS, IGM Université de Marne-la-Vallée
77454 Marne-la-Vallée Cedex, France
Email address: Alain.Lascoux@univ-mlv.fr

References

[1] A. Björner, F. Brenti, *Combinatorics of Coxeter Groups*, Springer (2005).
[2] I. Cherednik, *Nonsymmetric Macdonald polynomials*, Int. Math. Res., 10 (1995) 483–515.

[3] M. Demazure, *Une nouvelle formule des caractères*, Bull. Sci. Math., 98 (1974), 163-172.

[4] W. Y. C. Chen, B. Q. Li and J. D. Louck, *The flagged double Schur function*, J. Algebraic Combin., 15 (2002) 7–26.

[5] B. Ion, *Nonsymmetric Macdonald polynomials and Demazure characters*, arXiv.org:math/0105061.

[6] B. Ion, *Standard bases for affine parabolic modules and nonsymmetric Macdonald polynomials*, arXiv.org:math/0406060.

[7] A. Lascoux, *Symmetric Functions and Combinatorial Operators on Polynomials*, CBMS/AMS Lecture Notes 99 (2003).

[8] A. Lascoux, *Double Crystal graphs*, Studies in Memory of Issai Schur, Progress In Math. 210, Birkhaüser(2003) 95–114.

[9] P. Littelmann, *Paths and root operators in representation theory*, Annals of Math., 142 (1995) 499–525.

[10] P. Littelmann, *A plactic algebra for semisimple Lie algebras*, Advances in Math., 124 (1996) 312–331.

[11] D. E. Littlewood, *The theory of group characters*, Oxford University Press (1950).

[12] I. G. Macdonald, *Symmetric functions and Hall polynomials*, Oxford University Press, Oxford, 2nd edition (1995).

[13] R. Proctor, *Odd Symplectic Groups*, Inv. Math, 92 (1988) 307–332.

[14] S. Sahi, *Nonsymmetric Koornwinder polynomials and duality*, Annals of Math., 150 (1999) 267–282.

[15] H. Weyl, *The classical groups*, Princeton Univ. Press (1939).