From 2014 to 2020, we compiled radiocarbon ages from the lower 48 states, creating a database of more than 100,000 archaeological, geological, and paleontological ages that will be freely available to researchers through the Canadian Archaeological Radiocarbon Database. Here, we discuss the process used to compile ages, general characteristics of the database, and lessons learned from this exercise in “big data” compilation.

Keywords: radiocarbon, archaeological demography, big data, North America
Radiocarbon (\(^{14}\text{C}\)) dates estimate the age of sites, stratigraphic layers, houses, burials, caches, hearths, and so on. But in large numbers, \(^{14}\text{C}\) ages are important data in their own right. Although there are biases to consider, the analysis of aggregated \(^{14}\text{C}\) dates help study human demography of the past approximately 55,000 years, the limit of \(^{14}\text{C}\) dating under IntCal20 (e.g., Kelly et al. 2013; Robinson et al. 2020; Shennan et al. 2013). Therefore, from 2014 to 2021, we compiled 104,027 radiocarbon ages for the lower 48 states. Figure 1 shows counts by state and date density by county. Here, we report on the database, which is freely available to vetted researchers through the Canadian Archaeological Radiocarbon Database (CARD; Martindale et al. 2016), Supplemental Table 1, and GitHub.

Background

Archaeologists recognized the importance of a radiocarbon database soon after Willard Libby developed the method in 1950. Frederick

![Figure 1](https://doi.org/10.1017/aaq.2021.157)

Published online by Cambridge University Press
Johnson created Radiocarbon Dates Association Inc. in 1952 at Phillips Academy’s Peabody Institute of Archaeology, compiling dates on punch cards until 1972 (Baich 2010; Gates 2017). In 1959, the journal Radiocarbon was created to publish dates, which it did through 1987. Berry (1982) was among the first to use a 14C age compilation, employing one in the northern Southwest to track intensity of occupation. Rick (1987) focused the approach on population and labeled it “dates as data.” In 1987, Kra (1988) organized a conference to create an international radiocarbon database. Although that effort stalled, it inspired one participant, Richard Morlan, to create CARD. About the same time, 14C databases were started in Europe (e.g., Vermeersch 2020).

Radiocarbon ages, to at least some extent, track changes in human population. They do this indirectly by tracking energy extracted as fuel, food, clothing, housing, et cetera (Freeman et al. 2018). Date distributions are affected by taphonomic loss (Bluhm and Surovell 2019; Surovell et al. 2009), and they may only record statistically significant peaks and valleys detected by comparison to null models of growth (Shennan et al. 2013). Large databases can swamp date clusters produced through research bias, and radiocarbon (Crema and Bevan 2021)—the primary program used to produce summed probability distributions of 14C ages—has binning and thinning routines to compensate for overdating of features, strata, or sites. Progress is being made in the use of 14C dates to track human demography through time (e.g., Edinborough et al. 2021; Palmisano et al. 2020; Price et al. 2021; Shennan and Sear 2021). And to continue to move forward, the field needs the data to be made available.

Compiling Dates

All dates were compiled from databases, publications, gray literature reports, site forms, or communications with researchers. We produced no new dates. We included all dates located regardless of quality, given that we cannot anticipate what uses future researchers might find for dates that today appear useless.

We conducted the data collection in three “slices”: the 11 western states, 12 central states, and 25 eastern states. Although obtaining lab records might seem the easiest way forward, labs cannot share their data for proprietary reasons. Therefore, we downloaded data from CARD and databases compiled by state entities and individuals (Table 1). Over the years, we contacted hundreds of researchers for gray literature reports, metadata, or clarification. For states with digital archives, we searched report titles for terms such as “data recovery,” “Phase III,” and “excavation.” We tracked down defunct radiocarbon lab databases, with mixed results. We searched the January 1950–December 2020 issues of national, state, and regional journals, bulletins, and newsletters, as well as recent books/monographs whose titles suggested they

Database Provided by State or Region Covered
Jack Meyer CA, NV, OR
Ian Scharlotta Southern CA
David Hurst Thomas NV
Jerry Spangler UT
Ken Reid ID
Michael Berry CO
Jacob Freeman / Robert Hard Central and coastal TX
Myles Miller TX and NM
North Dakota Geological Survey ND
James Haug SD
Tim Perttula East TX
Scott Meeks Eastern United States
Public Archaeological Laboratory RI and Northeast
Matthew Boulanger New England
Andrew White Eastern United States
Victor Thompson / Carey James Garland GA and FL
Ancient Maize database National Paleoindian (National)
Shane Miller / Joe Gingerich TX and NM
Jim Railey TX and NM

State Databases

- Arkansas Oklahoma
- Central Plains Database Oregon
- Florida Tennessee
- Kansas Vermont
- Louisiana Virginia
- Minnesota Washington
- Kentucky, Ohio, West Virginia Wyoming

(Compiled by CRA Inc.)
may contain dates. We e-mailed colleagues about recent academic or CRM projects and conducted blind Google searches (e.g., Indiana, archaeology, radiocarbon). In addition to reviewing all PhD and MA titles in ProQuest and Scholar-Works for likely sources, we e-mailed CRM firms asking for reports or permission for Beta Analytic to make dates available to us. This was useful for the western states but less so for the central states. We targeted only a few large firms in the East.

Supplemental Text 1, Part I describes how we collected, entered, and checked data. We used the CARD submission Excel template. As a global database, CARD attempts to balance general utility with local relevance. It does so by winnowing the relevant data/metadata to a few fields: Lab Number, Field Number, Material Dated, Taxa Dated, Type of Date, Location, Provenance (e.g., submitter, date submitted), Measured Age/Error, Normalized Age/Error, Δ13C, Significance (e.g., Phase), Site Number, Site Name, Stratigraphic Component, Context, Associated Taxa, Additional Information (we used this to record if a date was AMS or radiometric), Comments, and Reference.

We gave little attention to metadata that was difficult to obtain or that seemed of little value (e.g., Provenance, Stratigraphic Component) that could be a matter of considerable debate (Significance) or could involve an endless list (Associated Taxa). Instead, we focused on information we thought researchers would need for data scrubbing: Lab Number, Material and Taxa Dated, Type of Date, Location, Age, Δ13C, Site Name and Number, Context, AMS/Radiometric, Comments, and Reference. As dates were added to our state databases, we checked for duplicates based on the lab number. We resolved duplicates with conflicting information by consulting original sources or by contacting authors.

Lab Numbers

Lab numbers are essential to track duplicate ages. They also allow researchers to remove entries from labs—such as Dicarb and Gakushuin—whose results some archaeologists have questioned (e.g., Reuther and Gerlach 2005). Lab numbers should always accompany published radiocarbon ages (Millard 2016). They should also use official lab abbreviations (http://radiocarbon.webhost.uits.arizona.edu/node/11). For example, Beta Analytic is “Beta-,” not “B” (which is Switzerland’s Bern lab) or “β.” Where lab numbers did not follow convention, we sought the correct identification. AMS dates sometimes have two numbers if the preparation and accelerator labs differed—for example, Beta-xxxx/ETH-yyyy. Note that we did not use leading zeros on lab numbers.

In cases where a report provided the lab but not the number, we recorded the date, for example, as “Beta-?” We also added “?” to any uncertain lab number. We listed unknown lab numbers as “?”; in CARD, these appear as “LUNK-x.” We checked for whether these dates were recorded properly elsewhere in our files or tried to resolve them by consulting researchers.

Material Dated

The CARD template provides specific options, such as charcoal, wood, bone, shell, pottery residue, sediment, and unknown. The Taxa Dated column allows for elaboration, such as species (using the report’s nomenclature—i.e., Latin or common name) and condition. Some archaeological dates have “unknown” material (n = 5,261; 5.1%).

We labeled dates on cultigens as “Seeds,” with Zea mays, Phaseolus, and others in the Taxa Dated column (noting for maize, if possible, whether the sample is a cob, kernel, or cupule). Dates on human bone, teeth, hair, tissue (very rare), or coprolites are labeled “Homo sapiens” under Taxa Dated, with additional information when available. Textile includes anything manufactured from plants (e.g., basketry, sandals, cordage); animal skin-based goods appear as Leather. Wooden or bone artifacts appear as Wood or Bone, with description under Taxa Dated. For bone dates, we report where possible if the date was collagen or apatite and which method was used (e.g., XAD, ultrafiltration).

Type of Date

We focused on archaeological ages but added geological and paleontological ages if such dates fell into our laps. Geological ages do not necessarily date human presence, so a dated hearth in an arroyo profile is “archaeological,”
but isolated charcoal in the same profile is “geo-
logical.” Paleontological dates include those on faunal remains not found in archaeological sites and those from pack-rat middens. Dates from archaeological sites were considered “archaeo-
logical,” and sediment dates were “geological,” unless something in the context or comments suggested otherwise.

Location
CARD masks site locations to the public by ran-
domizing them within 500 km of their submitted location. Registered users gain access to specific site locations. However, we only recorded location to county, with the county’s centroid as the site’s latitude and longitude. The county is encoded in a site’s Smithsonian trinomial, but some states do not use this system. For Connecticut, Delaware, Maine, New York, and Rhode Island, we used reports and maps to link sites to their counties. In New Mexico, where sites are numbered sequentially (e.g., LA1, LA2), we obtained counties from reports or from the state’s Laboratory of Anthropology. Arizona uses two major systems: the primary one relies on 1° x 1° map blocks, so we treated these as counties (we linked “NA-x,” Museum of Northern Arizona numbers, to these map blocks). The use of county-level locational data unfortunately precludes some kinds of spatial analyses (Robinson et al. 2019), but any other uniform masking procedure requires buy-in by all SHPOs/THPOs, and this was unlikely in our project time frame.

Ages
The CARD template records measured and nor-
malized (aka conventional or corrected—i.e., corrected for isotopic fractionation) ages. We did not record calibrated date ranges because they are often reported incorrectly (as 1σ or 2σ ranges, when the possibly several ranges and their associated probabilities is the correct for-
at) and because the calibration curve changes every few years. Ages were sometimes difficult to assign to measured or normalized dates, but only the latter should be calibrated, so it is important to distinguish between the two.

Ages are normalized to a δ13C value of −25.0‰; consequently, a measured age with δ13C = −25.0 is the normalized age. Dates with δ13C values <−25 become younger when nor-
malized; those with δ13C values ≥−25 become older. All AMS dates are normalized; radiometric dates, particularly those generated between 1950 and the mid- to late 1990s often are not.

We included dates with only measured ages because some researchers may be comfortable normalizing charcoal or wood dates to an assumed value of −25.0 (−10 for maize) or, for materials identified to taxa, another standard (e.g., Morlan 1999). Where a reference provided both the measured and normalized ages, we entered both, along with the δ13C value, if provided. Ages produced by labs that closed doors before δ13C analysis became standard (e.g., Michigan, Florida, Florida State, Wisconsin, Washington State) are considered measured unless a δ13C value was reported. Sometimes a report states that a date was normalized, but it does not provide the δ13C value; these are reported as normalized, with a comment.

Some labs were able to report when they began to routinely normalize dates. For Beta, this was with lab numbers greater than Beta-70783; for Georgia, lab numbers greater than UGa-5470. All ISGS dates are normalized. Geochron began normalizing soon after 1980 (Alex Cherkinsky, personal communication 2021). We used GX-8633 as the cutoff, knowing it was a 1982 normalized date (Reuther 2003:25). We normalized some Texas (Tx-) dates with δ13C values reported in a partial lab database.

As detailed in Supplemental Text 1, we also report dates as Radiometric, Radiometric Plus (extended counting time), or AMS. Unfortunately, many reports do not include the method used.

Finally, some labs and investigators report dates rounded to the nearest five years. We did no round-
ing, and we recorded dates as they were reported.

Site Name and Number
We recorded a site’s number (the Smithsonian trinomial, but see above) and—when given—its name. Anyone familiar with site management is aware of duplicate site numbers, sites with multiple numbers, and confusing names (e.g., Utah has a Dust Devil Cave and a Dust Devil site). Arizona extended its systems into neigh-
broring states (and Mexico), so some sites in those states have two numbers (e.g., Utah’s
Dust Devil Cave is 42SA19113/NA-6713). Dates from geological or paleontological settings often only have a locality name or investigator-provided site number.

Context

Context was as specific as possible within time constraints and was taken from a report’s date table and/or a report’s narrative. In some cases, it is minimal (e.g., “Feature 15”). In others it is not (e.g., “Feature 15, bell-shaped pit beneath wall trench structure 4, filled with burnt animal bone, charcoal, and Mississippian sherds”). When we brought data collection to a close, we followed a “Final Check” protocol (Supplemental Text 1, Part II) to search for errors, standardize spelling, and identify issues that might prevent a smooth transfer to CARD. We also ran a cross-state check for duplicate lab numbers, resolving about 95% of the approximately 500 found.

How Complete Is the Database?

We do not know what percentage of existing dates we culled except that it is certainly less than 100%. Better than half our dates (>50,000) are from Beta. Although Beta has run more than 600,000 dates, we cannot know what percentage of the other roughly 550,000 dates are ones we missed, are samples from elsewhere in the world, or are dates not yet reported.

Therefore, we directed attention to ascertaining if particular states were undercounted relative to others. Assuming the number of dates in a state should correlate with the amount of research conducted in it, we settled on the relationship between a state’s date count in our database and its site count as reported by SHPO of sites or the Digital Index of North American Archaeology (2021). Site counts measure the combined intensity of academic and CRM research, and they account for differences in state size. Figure 2 shows the expected positive relationship between site and date counts. Note that some states fall above and others below the general scatter. Given differences in site definitions, this approach provided only a rough guide over the years of our project to those states requiring more attention. South and North Carolina, Idaho, and Arkansas may still be relatively undercounted.

Those well above the general scatter are ones where the state maintained a radiocarbon database, where we or a colleague had greater access to the gray literature (e.g., Wyoming, California), and/or where CRM reports were searchable online through a state office or were otherwise accessible (e.g., Index of Texas Archaeology 2021). But they might also be states with an archaeological tradition that results in more 14C dates.

Two cases suggest that we have gathered a large percentage of available dates. Jerry Spangler and the team of Carey Garland and Victor Thompson independently worked on—and shared—databases for Utah and Georgia, respectively. These expanded our datasets for both states, but we had already acquired 85% and 94% of their Utah and Georgia dates, respectively. We conclude that although a very few states are under- or overrepresented relative to others, nearly all are well represented.

In global terms, the lower 48 states have roughly 11 archaeological dates per 1,000 km², whereas the EUROEVOL Neolithic (EUROEVOL 2021), Paleolithic Europe (Vermeersch 2020), AustArch (Williams and Ulm 2014), Canada (Martindale et al. 2016), and the People 3000 global project (People 3000 2021) databases have approximately one or fewer dates per 1,000 km². The lower 48 states are perhaps the most densely radiocarbon-documented continental region of the world.

Characteristics

The majority of our dates are archaeological (n = 86,946; 83.6%; Figure 3), with smaller numbers of geological (n = 13,476; 13.0%) and paleontological (n = 2,710; 2.6%) ages (indeterminate, n = 895; <1%). Beta Analytic dominates the labs, distantly followed by the university labs of Texas, Arizona, and Georgia. Charcoal is the most common material dated (>52%; Table 2). Many entries have only measured ages (n = 33,113; 31.8%), and 32.9% (n = 34,178) are known to be AMS dates. Standard errors on normalized archaeological dates have a median of 50; measured dates have a median of 70. The majority of archaeological dates have some context information (83.4%; n = 72,589) and many archaeological dates originate from features...
Nearly all archaeological dates have a site number (95.9%).

Dates of Human Remains

The database includes 3,023 dates on human remains (bone, teeth, hair, and tissue). Knowing that Indigenous communities might have concerns about making these dates available, we added information on consultation. Many dates made before the 1990 Native American Graves Protection and Repatriation Act were not the result of consultation, although we checked as many as possible because that is not uniformly true. Our comments included statements such as “Consultation unverified” (n = 1,300; 43.0%), “Consultation verified (Muwekma Ohlone),” or...
Culturally unaffiliated (approval given through American Museum review board).

Given concerns of Indigenous communities, we have included entries for dates on human remains, but CARD will mask the dates—as we have done in Supplemental Table 1—until it can work with Indigenous communities to decide how to treat these entries.

What Did We Learn about “Big Data” Projects?

Assuming an average of $300/date, the database represents more than $30,000,000 in mostly public funding (not including recovery costs). Even if the per-date estimate were halved or quartered, we achieved a substantial return on the National Science Foundation’s (NSF) funding. And yet, this was a very modest “big data” project, involving low-hanging archaeological fruit that nonetheless required six years to collect. So, the first lesson: even small “big data” projects take time and resources.

The second lesson concerns continuation of the project. Methods improve faster than data, and so adding new, better dates is essential to the database’s utility. Lacking further funding, we hope researchers will access, correct, and upload dates to CARD, and that someone follows up in a few years’ time and compiles more dates. But hope is a poor strategy. NSF could require that dates generated through its grants be uploaded to CARD, and SHPOs could do the same for compliance projects (which generate the most dates). In 2019, for example, British Columbia required submission of dates to CARD to obtain heritage investigation permits (at the request of the Musqueam Indian Band).

Although we “need to do more to make sure dates are published following best practice guidelines and eventually become freely and publicly accessible” (Thompson and Krus 2017:5), doing so requires funding, a change in reporting requirements, or a change in the culture of archaeology.

The issue of continuation, however, is part of a bigger question. Undoubtedly, we have missed many dates, notably those in gray literature reports. Although most journals, including back issues, are now available digitally, many state archives of gray literature cannot be digitally

Material	Count	Percent
Charcoal	54,225	52.1
Shell	10,889	10.5
Bone	8,031	7.7
Seeds	6,400	6.2
Sediment	6,165	5.9
Wood	5,417	5.2
Other	2,394	2.3
Pottery residue	1,037	1.0
Peat	1,003	1.0
Textile	989	1.0
Soil	973	0.9
Feces	742	0.7
Teeth	205	0.2
Charcoal?	149	0.1
Leather	98	0.1
Animal	26	0.0
Pollen	21	0.0
Insect	2	0.0
Unknown	5,261	5.1
Total	10,402	100.0
searched. So one necessary, simple—albeit labor-intensive—goal would be to scan all the remaining gray literature in the United States and archive it (e.g., on tDAR or in state archives). If such resources had been in place, we could have quickly searched them for “radiocarbon.” Recognition of this need led to the National Archeological Database years ago, but it is only a bibliography and has not been updated since 2004 (National Archeological Database 2021).

Also, to move to the next level, American archaeology requires a protocol for recording site location at a level of obfuscation that protects a site from looting and yet permits fine-grained spatial analysis (e.g., a random location within a 1–5 km radius of the site). We have not yet achieved an “as open as possible, as closed as necessary” level of provenience or access to records advocated by FAIR data (Landi et al. 2020). This must be a priority for big data approaches to move forward, and it obviously requires discussion among the country’s SHPOs and THPOs.

Finally, moving to the next level entails coping with the issue of “data sovereignty” or “data decolonization” (Global Indigenous Data Alliance 2021). Although we cannot discuss this issue here, we mention it because in 2013, when Kelly submitted the first NSF proposal for this project, it was admittedly not on his radar screen, but it needs to be for future big data projects.

Acknowledgments. No author has a conflict of interest or financial interest relevant to this manuscript, nor were any research permits required. This project was funded by NSF grants to Kelly: BCS 14-18858, 16-24061, and 18-22033. The Texas date collection by R. Hard was funded by NSF grants to Kelly: BCS 14-18858, 16-24061, and 18-22033. No author has a conflict of interest or financial interest relevant to this manuscript, nor were any research permits required. This project was funded by NSF grants to Kelly: BCS 14-18858, 16-24061, and 18-22033.

Data Availability Statement. The radiocarbon database described here is available to vetted researchers through the Canadian Archaeological Radiocarbon Database (CARD): www.canadianarchaeology.ca. It is also available as Supplemental Table 1 and through GitHub: https://github.com/erickrobinson/RadiocarbonDatabaseLower48States, DOI:10.5281/zenodo.5590269.

Supplemental Material. For supplemental material accompanying this article, visit https://doi.org/10.1017/aaq.2021.157.

Supplemental Text 1. Part I: A Guide to Collecting Radiocarbon Dates. Part II: Final Check Process.

Supplemental Table 1. CSV of Compiled Radiocarbon Dates. Since completion of the project, we added a few more dates, for a total of 104,651. This article uses only those dates compiled by May 31, 2021. All dates on human remains are masked in the CSV. The New Mexico dataset includes approximately 280 dates for which we only had calibrated ages. The COVID-19 pandemic prevented checking the paper records in New Mexico.

References Cited

Baich, Keith D.
2010 American Scientists, Americanist Archaeology: The Committee on Radioactive Carbon 14. Master’s thesis, Department of History, Portland State University, Portland, Oregon.

Berry, Michael S.
1982 Time, Space, and Transition in Anasazi Prehistory. University of Utah Press, Salt Lake City.

Bluhm, Lara E., and Todd A. Sunnervell
2019 Validation of a Global Model of Taphonomic Bias Using Geologic Radiocarbon Ages. Quaternary Research 91:325–328. DOI:10.1017/qua.2018.78.

Crema, Enrico R., and Andrew Bevan
2021 Inference from Large Sets of Radiocarbon Dates: Software and Methods. Radiocarbon 63:23–39. DOI:10.1017/RDC.2020.95.

Digital Index of North American Archaeology
2021 Publication and Integration of North American Archaeological Site File Records. Electronic document, http://ux.opencontext.org/archaeology-site-data/dinaamap/, accessed May 15, 2020.

Edinborough, Kevan, Rémi Martineau, Alexa Dufraisse, Stephen Shennan, Marie Imbeaux, Anthony Dumontet, Peter Schauer, and Gordon Cook
2021 A Neolithic Population Model Based on New Radiocarbon Dates from Mining, Funerary and Population Scaled Activity in the Saint-Gond Marshes Region of North East France. Quaternary International 586:121–132. DOI:10.1016/j.quaint.2021.03.001.

EUROEVOL
2021 The Cultural Evolution of Neolithic Europe. EUROEVOL Dataset. Electronic document, https://discovery.ucl.ac.uk/id/eprint/1469811/, accessed July 20, 2021.

Freeman, Jacob, David A. Byers, Erick Robinson, and Robert L. Kelly
2018 Culture Process and the Interpretation of Radiocarbon Data. Radiocarbon 60:453–467. DOI:10.1017/RDC.2017.124.

Gates, Irene
2017 Radiocarbon Dates Association Inc. Electronic document, https://peabody.andover.edu/2017/12/15/radioarbon-dates-association-inc/, accessed March 7, 2021.

Global Indigenous Data Alliance
2021 Care Principles for Indigenous Data Governance. Electronic document, https://www.gida-global.org/care, accessed May 15, 2021.

Index of Texas Archaeology
2021 Index of Texas Archaeology. Open Access Gray
Literature from the Lone Star State. Electronic document, https://scholarworks.sfasu.edu/fta, accessed throughout 2016-2020, accessed August 1, 2019.

Kelly, Robert L., Todd A. Surovell, Bryan Shuman, and Geoff Smith 2013 A Continuous Climatic Impact on Holocene Human Population in the Rocky Mountains. PNAS 110:443–447. DOI:10.1073/pnas.1201341110.

Kn, Renee 1988 Updating the Past: The Establishment of the International Radiocarbon Database. American Antiquity 53:118–125. DOI:10.2307/281158.

Lamstein, Ari 2020 Choroplethr: Simplify the Creation of Choropleth Maps in R. Electronic document, https://CRAN.R-project.org/package=choroplethr, accessed September 15, 2021.

Landi, Annalisa, Mark Thompson, Viviana Giannuzzi, Fedele Bonifazi, Ignasi Labastida, Luiz Olavo Bonino da Silva Santos, and Marco Rossi 2020 The “A” of FAIR – as Open as Possible, as Closed as Necessary. Data Intelligence 2:47–55. DOI:10.1162/dint_a_00027.

Martindale, Andrew, Richard Morlan, Matthew Betts, Michael Blake, Konrad Gajewski, Michelle Chapat, Andrew Mason, and Pierre Vermeersch 2016 Canadian Archaeological Radiocarbon Database (CARD 2.1). Electronic document, www.canadianarchaeology.ca, accessed most recently May 1, 2021.

Millard, Andrew R. 2016 Conventions for Reporting Radiocarbon Determinations. Radiocarbon 56:555–559. DOI:10.2458/56.17455.

Morlan, Richard 1999 Canadian Archaeological Radiocarbon Database: Establishing Conventional Ages. Canadian Journal of Archaeology 23:3–10.

National Archeological Database 2021 National Park Service Archeology Program National Archeological Database. Electronic document, https://www.nps.gov/archeology/tools/nadb.htm, accessed July 22, 2021.

Palmisano, Alessio, Dan Lawrence, Michelle W. de Gruchy, Andrew Bevan, and Stephen Shennan 2020 Holocene Regional Population Dynamics and Climatic Trends in the Near East: A First Comparison Using Archaeo-Demographic Proxies. Quaternary Science Reviews 252. DOI:10.1016/j.quascirev.2020.106739.

People 3000 2021 PAGES: Past Global Changes. People 3000 – Paleoclimate and the Peopling of the Earth. Electronic document, http://pastglobalchanges.org/science/wg/peopl e-3000/intro, accessed July 20, 2021.

Price, Michael H., José M. Capriles, Julie A. Hoggarth, R. Kyle Bocinsky, Claire E. Ebert, and James H. Jones 2021 End-to-End Bayesian Analysis for Summarizing Sets of Radiocarbon Dates. Journal of Archaeological Science 135. DOI:10.1016/j.jas.2021.105473.

Reuther, Joshua D. 2003 An Analysis of Radiocarbon Assays Produced by Three Laboratories: A Case Study of the Croxton Site, Locality J, Northern Alaska. Master’s thesis, Department of Anthropology, University of Alaska, Fairbanks.

Reuther, Joshua D., and S. Craig Gerlach 2005 Testing the “Dicarb Problem”: A Case Study from North Alaska. Radiocarbon 47:359–366. DOI:10.1017/S003382220003513X.

Rick, John W. 1987 Dates as Data: An Examination of the Peruvian Pre-Pottery Ceramic Radiocarbon Record. American Antiquity 52:55–73. DOI:10.2307/281060.

Robinson, Erick, R. Kyle Bocinsky, Jacob Freeman, Darcy Bird, and Robert L. Kelly 2020 Dendrochronological Dates Confirm a Late Prehistoric Population Decline in the American Southwest Derived from Radiocarbon Dates. Proceedings of the Royal Society B 376. DOI:10.1098/rspb.2019.0718.

Robinson, Erick, Christopher Nicholson, and Robert L. Kelly 2019 The Importance of Spatial Data to Open-Access National Archaeological Databases and the Development of Paleodemography Research. Advances in Archaeological Practice 7:395–408. DOI:10.1017/aap.2019.29.

Shennan, Stephen, Sean S. Downey, Adrian Timpson, Kevan Edinborough, Sue Colledge, Tim Kerg, Katie Manning, and Mark G. Thomas 2013 Regional Population Collapse Followed Initial Agriculture Booms in Mid-Holocene Europe. Nature Communication 4. DOI:10.1038/ncomms3486.

Shennan Stephen, and Rebecca Sear 2021 Archaeology, Demography and Life History Theory Together Can Help Us Explain Past and Present Population Patterns. Philosophical Transactions of the Royal Society B 376. DOI:10.1098/rspb.2019.0711.

Surovell, Todd A., Judson Finley, Geoff Smith, P. Jeff Bran tingham, and Robert L. Kelly 2009 Correcting Temporal Frequency Distributions for Taphonomic Bias. Journal of Archaeological Science 36:1715–1724. DOI:10.1016/j.jas.2009.03.029.

Thompson, Victor D., and Anthony M. Krus 2017 Contemplating the History and Future of Radiocarbon Dating in the American Southeast. Southeastern Archaeology 37:1–11. DOI:10.1080/0734578X.2017.1364600.

Vermeersch, Pierre M. 2020 Radiocarbon Paleolithic Europe Database: A Regularly Updated Dataset of the Radiometric Data Regarding the Paleolithic of Europe, Siberia Included. Data in Brief 31. DOI:10.1016/j.dib.2020.105793.

Williams, Alan, and Sean Ulm 2014 AustArch: A Database of 14C and Luminescence Ages from Archaeological Sites in Australia. DOI:10.5284/1027216, accessed July 20, 2021.

Submitted May 23, 2021; Revised October 27, 2021; Accepted November 3, 2021