PROPER TRAJECTORIES OF TYPE \mathbb{C}^* OF A POLYNOMIAL VECTOR FIELD ON \mathbb{C}^2

ALVARO BUSTINDUY

Abstract. We prove that if a polynomial vector field on \mathbb{C}^2 has a proper and non-algebraic trajectory analytically isomorphic to \mathbb{C}^* all its trajectories are proper, and except at most one which is contained in an algebraic curve of type \mathbb{C} all of them are of type \mathbb{C}^*. As corollary we obtain an analytic version of Lin-Zaidenberg Theorem for polynomial foliations.

1. Introduction

We shall consider from now on polynomial vector fields on \mathbb{C}^2 with isolated zeroes. Such vector fields X define a foliation by curves \mathcal{F}_X in \mathbb{C}^2 with a finite number of singularities (zeros of X) that extends to $\mathbb{CP}^2 = \mathbb{C}^2 \cup L_\infty$ (see [6]). Each trajectory C_z of X through a $z \in \mathbb{C}^2$ with $X(z) \neq 0$ is contained in a leaf L of this extended foliation, and its limit set $\lim(C_z)$ is defined as $\cap_{m \geq 1} L \setminus K_m$, where $K_m \subset K_{m+1} \subset L$ is a sequence of compact subsets with $\cup_{m \geq 1} K_m = L$. We say that a trajectory C_z is proper if its topological closure $\overline{C_z}$ defines an analytic curve in \mathbb{C}^2 of pure dimension one, i.e. if the inclusion of $\overline{C_z}$ in \mathbb{C}^2 is a proper map. For a proper trajectory C_z its $\lim(C_z)$ is either a finite set of points, and C_z is said to be algebraic, or it contains L_∞, and C_z is said to be non-algebraic. In what follows, transcendental will mean proper and non-algebraic.

The important work of Marco Brunella on the trajectories of a polynomial vector field with a transcendental planar isolated end [2] has a remarkable corollary: If X is a polynomial vector field on \mathbb{C}^2 with a transcendental trajectory C_z of type \mathbb{C} ("of type" means analytically isomorphic to) the foliation \mathcal{F}_X in \mathbb{C}^2 is equal to the foliation defined by a constant vector field after an holomorphic automorphism [2 Corollaire]. In particular any proper immersion γ of \mathbb{C} in \mathbb{C}^2 whose image is contained in a leaf of a polynomial foliation is equal to $\gamma(t) = (t, 0)$ modulo a holomorphic automorphism. That result can be considered as an Abhyankar-Moh and Suzuki Theorem ([1] and [12]) for polynomial foliations [2, p. 1230]. In this note we will study the case of a polynomial vector field with a transcendental trajectory of type \mathbb{C}^*. We will start with [2 Théorème] and apply some previous results of [3] and [5] to determine these vector fields. The main result is the following:

2000 Mathematics Subject Classification. Primary 32M25; Secondary 32L30, 32S65.

Key words and phrases. Complete vector field, complex orbit, holomorphic foliation.

Supported by MEC projects MTM2004-07203-C02-02 and MTM2006-04785.
Theorem. If a polynomial vector field \(X \) on \(\mathbb{C}^2 \) has a transcendental trajectory of type \(\mathbb{C}^* \), all its trajectories are proper, and except at most one which is contained in an algebraic curve of type \(\mathbb{C} \) all of them are of type \(\mathbb{C}^* \).

2. Corollaries

Corollary 1. Any polynomial vector field \(X \) on \(\mathbb{C}^2 \) with a transcendental trajectory of type \(\mathbb{C}^* \) has a meromorphic first integral of type \(\mathbb{C}^* \) which modulo a holomorphic automorphism is of the form

\[
(x^\ell y + p(x))^n
\]

where \(m \in \mathbb{Z}^*, n \in \mathbb{N}^* \) with \((m, n) = 1 \) if \(\ell > 0 \) or \(p(x) \equiv 0 \) if \(\ell = 0 \).

Proof. According to Masakazu Suzuki [14, Théorème II] for a vector field on \(\mathbb{C}^2 \) with proper parabolic trajectories there is always a meromorphic first integral. In particular for \(X \) this integral must be of type \(\mathbb{C}^* \) and it can be explicitly written applying Saito-Suzuki Theorem [13, p. 527], [10].

Remark 1. It follows from Corollary 1 that if \(X \) is a polynomial vector field on \(\mathbb{C}^2 \) with a transcendental trajectory of type \(\mathbb{C}^* \) after a holomorphic change of coordinates \(\phi \), the corresponding vector field \(\phi^* X \) (maybe not polynomial) has a rational first integral of the form (1). Removing the poles and zeros of codimension one of the differential of (1) one obtains that \(\phi^* X \) must be of the form

\[
\phi^* X = f \cdot Y = f \cdot \left\{ nx^{\ell+1} \frac{\partial}{\partial x} - ((m + nl)x^\ell y + mp(x) + nxp(x)) \frac{\partial}{\partial y} \right\},
\]

where \(f \) is a holomorphic function that never vanishes; and \(m, n, \ell \) and \(p(x) \) are as in (1). In particular, any foliation \(\mathcal{F}_X \) generated by a polynomial vector field \(X \) on \(\mathbb{C}^2 \) with a transcendental trajectory of type \(\mathbb{C}^* \) corresponds to the algebraic foliation generated by the polynomial vector field \(Y \) of (2) after a holomorphic automorphism.

Analytic version of Lin-Zaidenberg Theorem for polynomial vector fields

Lin-Zaidenberg Theorem [15] asserts that any irreducible algebraic curve of type \(\mathbb{C} \) in \(\mathbb{C}^2 \) is of the form \(y^r - ax^s = 0 \), with \((r, s) = 1 \) and \(a \in \mathbb{C}^* \), after a polynomial change of coordinates. From our Theorem we obtain the analytic version of this theorem for polynomial foliations:

Corollary 2. Let \(C \) be an irreducible transcendental curve in \(\mathbb{C}^2 \) of type \(\mathbb{C} \). If there is a point \(p \in C \) such that \(C \setminus \{ p \} \) defines a trajectory of a polynomial vector field then \(C = \{ y^r - ax^s = 0 \}, r, s \in \mathbb{N}^+, (r, s) = 1, a \in \mathbb{C}^* \), up to a holomorphic automorphism.

Proof. As \(C \setminus \{ p \} \) is a trajectory of type \(\mathbb{C}^* \) of a polynomial vector field it must be contained in a level set of (1) by Corollary 1. If the level is over \(a \neq 0 \), as it is of type \(\mathbb{C} \), \(\ell = 0 \) and \(m < 0 \). It is enough define \(r = n \) and \(s = -m \). If the level set is
over zero, necessarily it is a line: \(\{ x = 0 \} \) or also \(\{ y = 0 \} \) if \(\ell = 0 \), which has the required form with \(r = s = 1 \) after a rotation.

\[\square \]

Remark 2. The classification of H. Saito in [11] contains polynomials of this form:

\[
P = 4((xy + 1)^2 + y)(x(xy + 1) + 1)^2 + 1
\]

Such a \(P \) has two singular fibers: \(P^{-1}(0) \) and \(P^{-1}(1) \). One of them, \(P^{-1}(0) \), is a disjoint union of two curves of type \(C^* \), and another, \(P^{-1}(0) \), is an irreducible curve of type \(C^* \). The generic fiber of \(P \) is of type \(\mathbb{C} \setminus \{0, 1\} \). In particular, our Theorem implies that if there is a polynomial vector field with a holomorphic first integral of the form \(P \circ \varphi \) with \(\varphi \) a holomorphic automorphism then either \(\varphi \) is a polynomial automorphism or \((P \circ \varphi)^{-1}(0) \) and \((P \circ \varphi)^{-1}(1) \) are contained in algebraic curves.

3. Proof of Theorem

Let \(C_z \) be the transcendental trajectory of \(X \) of type \(C^* \). It defines a leaf \(L \) of \(\mathcal{F}_X \) of type \(C^* \) with a transcendental planar isolated end \(\Sigma \) (see [2] Lemma 4.1]). We can apply [2, Théoreme] and conclude that there exists a polynomial \(P \) with generic fiber of type \(C \) or \(C^* \) (that we will call of type \(C \) or \(C^* \), respectively) such that \(\mathcal{F}_X \) is \(P \)-complete. Let us recall from [2] that \(\mathcal{F}_X \) is is \(P \)-complete if there exists a finite set \(Q \subseteq \mathbb{C} \) such that for all \(t \notin Q \) \((i) \) \(P^{-1}(t) \) is transverse to \(\mathcal{F}_X \), and \((ii) \) there is a neighborhood \(U_t \) of \(t \) in \(\mathbb{C} \) such that \(P : P^{-1}(U_t) \to U_t \) is a holomorphic fibration and the restriction of \(\mathcal{F}_X \) to \(P^{-1}(U_t) \) defines a local trivialization of this fibration.

As noted in [2, p.1229] (see also [3] Remark 2.2)) the set \(Q \) associated to \(P \) consists of the critical values of \(P \) together with the regular values of \(P \) in which some of the components of the corresponding fiber are not transversal to \(\mathcal{F}_X \), and then they are invariant by \(\mathcal{F}_X \). Thus every leaf of \(\mathcal{F}_X \) is either disjoint from \(P^{-1}(Q) \) or else is contained in it.

3.1. \(P \) of type \(\mathbb{C} \).

If \(\mathcal{F}_X \) is \(P \)-complete with \(P \) of type \(\mathbb{C} \) it can be determined explicitly. According to Abhyankar-Moh and Suzuki Theorem (11 and 12), up to a polynomial automorphism, we assume that \(P = x \). It is pointed out in [2, pp.1230] (see also [3] Lemma 2.6]) that a foliation \(\mathcal{F}_X \) on \(\mathbb{C}^2 \) which is \(x \)-complete is generated by a vector field of the form:

\[
a(x) \frac{\partial}{\partial x} + [b(x)y + c(x)] \frac{\partial}{\partial y}, \ a, b, c \in \mathbb{C}[x].
\]

As \(C_z \) is covered by \(\mathbb{C} \) the projection of the universal covering map by \(P \) defines a map from \(\mathbb{C} \) to \(a(x) \neq 0 \), and according Picard Theorem we may assume \(a(x) = \lambda x^N \) with \(\lambda \in \mathbb{C}^* \). Remark that \(C_z \not\subseteq \{x = 0\} \) since \(C_z \) is not algebraic. In fact as \(C_z \) is of type \(C^* \) it holds \(N > 0 \).

Lemma 1. If \(L \) is the leaf of \(\mathcal{F}_X \) defined by \(C_z \), the leaves of \(\mathcal{F}_X \) different from the one contained in \(\{x = 0\} \) are defined by the sets \(f_\alpha(L) \), where \(f_\alpha \) are the translations in \(\mathbb{C}^2 \) of the form: \((x, y) \rightarrow (x + \alpha, y) \), \(\alpha \in \mathbb{C} \).
Proof. Let us divide \(\text{(3)} \) by \(\lambda x^N \). The system obtained can be integrated explicitly as a linear equation: For a fixed \(z = (x, y) \in \mathbb{C}^2 \), from the first equation \(x(t) = t + x \).

By substitution of it in the second equation if \(y = uv \) we get

\[
(uv)' = uv' + u'v = \bar{b}(x(t))uv + \bar{c}(x(t)),
\]

with \(\bar{b}(x) = b(x)/\lambda x^N \) and \(\bar{c}(x) = c(x)/\lambda x^N \). If \(v' = \bar{b}(x(t))v \) then \(v(t) = e^{\int \bar{b}(x(s))ds} \) and \(u'v = \bar{c}(x(t)) \). Hence

\[
u(t) = \mu + \int \bar{c}(x(u)) e^{-\int \bar{b}(x(s))ds} du,
\]

\(\mu \in \mathbb{C} \).

The trajectories of \(X \) different from one contained in \(\{ x = 0 \} \) are the subsets in \(\mathbb{C}^2 \) defined by the images \(\gamma_{(x,y)}(\mathbb{C} \setminus \{ -x \}) \) of the (mulivaluated) parametrizations

\[
\gamma_{(x,y)}(t) = \left(t + x, \left\{ y + \int_0^t \bar{c}(u + x) e^{-\int \bar{b}(s+x)ds} du \right\} e^{\int \bar{b}(s+x)ds} \right).
\]

Let \(L' \) be a leaf of \(\mathcal{F}_X \) such that \(L' \neq L \) and \(L' \not\subset \{ x = 0 \} \). There is at least one (in fact there are lots of them) \(z_1 = (x_1, y_1) \in \mathbb{C}_z \) such that \(\{ y = y_1 \} \cap L' \neq \emptyset \). If \(z_2 = (x_2, y_1) \in \{ y = y_1 \} \cap L' \) then \(L' = C_{z_2} = \gamma_{(x_2, y_1)}(\mathbb{C} \setminus \{ -x_2 \}) \). As \(L = \gamma_{(x_1, y_1)}(\mathbb{C} \setminus \{ -x_1 \}) \) since \(C_{z_1} = C_z \) we see that \(L' = f_\alpha(L) \) with \(\alpha = x_1 - x_2 \). \(\square \)

As \(L \) is proper by hypothesis and the maps \(f_\alpha \) are linear automorphisms the leaves of \(\mathcal{F}_X \) different from the one defined by \(\{ x = 0 \} \) are proper and biholomorphic to \(L \), i.e. of type \(\mathbb{C}^* \).

3.2. \(P \) of type \(\mathbb{C}^* \)

The situation is completely different to the previous one, since in this case there are many distinct polynomials of type \(\mathbb{C}^* \) after a polynomial automorphism. According to Saito and Suzuki (\cite{10} and \cite{13}), up to a polynomial automorphism, we may assume that \(P = x^m(x^\ell y + p(x))^n \), where \(m, n \in \mathbb{N}^* \) with \((m, n) = 1, \ell \in \mathbb{N}, p \in \mathbb{C}[x] \) of degree \(\ell \) with \(p(0) \neq 0 \) if \(\ell > 0 \) or \(p(x) \equiv 0 \) if \(\ell = 0 \).

New coordinates. By the relations \(x = a^n \) and \(x^\ell y + p(x) = v u^{-m} \), it is enough to take the rational map \(H \) from \(u \neq 0 \) to \(x \neq 0 \) defined by

\[
(u, v) \mapsto (x, y) = (a^n, u^{-(m+n)}[v - u^m p(u^n)])
\]

in order to get \(P \circ H(u, v) = v^m \).

It follows from the proof of \cite{3} Proposition 3.2 that \(H^* \mathcal{F} \) is a Riccati foliation \(v \)-complete having \(u = 0 \) as invariant line. Still more, according to \cite{5} Lemma 2 at least one of the irreducible components of \(P \) over 0 must be a \(\mathcal{F}_X \)-invariant line. Therefore we may assume that \(\{ x = 0 \} \) is invariant by \(\mathcal{F}_X \). As \(H \) is a finite regular covering map from \(u \neq 0 \) to \(x \neq 0 \), it implies that each component of \(H^{-1}(C_z) \) is of type \(\mathbb{C}^* \) and then covered by \(\mathbb{C} \). Thus according to Picard’s Theorem

\[
H^* X = u^k \cdot Z
\]

\[
= u^k \cdot \left\{ a(v) v \frac{\partial}{\partial u} + cu^r \frac{\partial}{\partial v} \right\},
\]

where \(k \in \mathbb{Z}, a \in \mathbb{C}[v], c \in \mathbb{C}, \) and \(N \in \mathbb{N}^+ \).
The global one form of times. Let us take the one-form η obtained when we remove the codimension one zeros and poles of $dP(x, y)$. The contraction of η by X, $\eta(X)$, is a polynomial, which vanishes only on components of fibres of P since X has only isolated singularities. Then, up to multiplication by constants:

$$\eta(X) = x^\alpha \cdot (x^\beta y + p(x))$$

where $\alpha \in \mathbb{N}^+$ (since $x = 0$) is invariant and $\beta \in \mathbb{N}$. If we define $\tau = [1/\eta(X)] \cdot \eta$, this one-form on $\eta(X) \neq 0$ coincides locally along each trajectory of X with the differential of times given by its complex flow. It is called the global one-form of times for X. Moreover τ can be easily calculated attending to (6) as

$$\tau = \frac{x(x^\beta y + p(x))}{\eta(X)} \cdot \frac{dP}{P}.$$

In (u, v) coordinates we then get

$$\varrho = H^* \tau = \frac{u^{m(\beta-1)-n(\alpha-1)}}{v^{\beta-1}} \cdot \frac{dv^n}{v^n}.$$

It holds that $\varrho(H^* X) \equiv 1$. Since $\varrho - 1/(u^k \cdot cv^N) \, dv$ contracted by $H^* X$ is identically zero and we can assume that there is no rational first integral, up to multiplication by constants

$$\varrho = 1/(u^k \cdot cv^N) \, dv.$$

Therefore, (5) and (9) must be equal and thus k of (5) can be explicitly calculated: $k = n(\alpha - 1) - m(N - 1)$. Finally, let us observe that for any path ϵ contained in a trajectory of X from p to q that can be lifted by H as $\tilde{\epsilon}$, $\int_\epsilon \varrho$ represents the complex time required by the flow of X to travel from p to q.

Existence of a meromorphic first integral. Our aim is to prove that there is an explicit meromorphic first integral for X. We will obtain that as a consequence of the following lemmas:

Lemma 2. It holds that $n|k$, $n|[(N - 1)$ if $N > 1$, and $a \in \mathbb{C}[z^n]$.

Proof. We assume that $\beta = N$ and $\alpha \in \mathbb{N}^+$ in (5). Let us observe that X can be explicitly calculated as

$$X = u^k \cdot H_s(a(v)u \frac{\partial}{\partial u} + cv^N \frac{\partial}{\partial v}) = u^k \cdot DH(u, v) \cdot \left(\frac{a(v)u}{cv^N} \right)$$

where

$$DH(u, v) = \begin{pmatrix} nu^{n-1} & 0 \\ n\ell u^n p(u^n) - u^{n+m}p'(u^n) - (m + n\ell)v & \frac{1}{u^{m+n\ell}} \end{pmatrix}$$

and $u = x^1/n$ and $v = x^{m/n} (x^\beta y + p(x))$.

Remark that $a(0) \neq 0$. Otherwise X had not isolated singularities since $N > 0$. The first component $n_a x^{(k+n)/n} a(x^{m/n} (x^\beta y + p(x)))$ of (10) must be a polynomial.
Proof. The one-form of (11), that we denote by \(X \), has a fraction expansion
\[
a(z) = \frac{a(z)}{cz^N} dz = \left(s(z) + \frac{A_1}{z} + \frac{A_2}{z^2} + \cdots + \frac{A_N}{z^N} \right) dz,
\]
where \(s(z) \in C[z] \), and \(A_i \in C^* \), for \(1 \leq i \leq N \). Let us fix
\[
\Gamma(z) = e^{s(z)} \cdot e^{\lambda_1 \log z + \frac{\lambda_2}{z} + \cdots + \frac{\lambda_N}{z^N}}
\]
where \(s(z) = \int^z s(t) dt \), and \(\lambda_1 = A_1 \) and \(\lambda_i = A_i/(-i + 1) \) for \(2 \leq i \leq N \). If we substitute (12) in (11), after explicit integration of \(\omega \), one has that \(\sigma(w, t) \) is of the form
\[
\int w \cdot \Gamma(t)/\Gamma(w_0), t)
\]
Then \(n|k \). On the other hand \(n|(N - 1) \) when \(N > 1 \) since \(k = n(\alpha - 1) - m(N - 1) \) and \((m, n) = 1 \). It implies that \(a \in C[z^n] \). \(\Box \)

\textbf{Lemma 3.} Let \(v_0 \neq 0 \). The trajectories of \(H^*X \) except the horizontal ones and the line \(\{ u = 0 \} \) are parameterized by maps \(\sigma(w_0, t) \), where \(w_0 \) is a fixed point and \(\sigma \) is a multivalued holomorphic map defined on \(C^* \times C^* \) of the form
\[
\sigma(w, t) = (u(w, t), v(w, t)) = (we^{\int_{v_0}^{w} \frac{a(z)}{cz^N} dz}, t).
\]

Proof. Let us take the local solution through \((u(w_0, v_0), v(w_0, v_0))\), with \(w_0 \in C^* \), of \(1/c(w) \cdot Z \) extending by analytic continuation along paths in \(C^* \). This map is defined as \(\sigma(w_0, t) \) with \(\sigma \) equals (11) (see [4, Section 2]). \(\Box \)

\textbf{Lemma 4.} \(X \) has a multivalued meromorphic first integral.

Proof. The one-form of (11), that we denote by \(\omega \), has a fraction expansion
\[
a(z) = \frac{a(z)}{cz^N} dz = \left(s(z) + \frac{A_1}{z} + \frac{A_2}{z^2} + \cdots + \frac{A_N}{z^N} \right) dz,
\]
where \(s(z) \in C[z] \), and \(A_i \in C^* \), for \(1 \leq i \leq N \). Let us fix
\[
\Gamma(z) = e^{s(z)} \cdot e^{\lambda_1 \log z + \frac{\lambda_2}{z} + \cdots + \frac{\lambda_N}{z^N}}
\]
where \(s(z) = \int^z s(t) dt \), and \(\lambda_1 = A_1 \) and \(\lambda_i = A_i/(-i + 1) \) for \(2 \leq i \leq N \). If we substitute (12) in (11), after explicit integration of \(\omega \), one has that \(\sigma(w, t) \) is of the form
\[
\int w \cdot \Gamma(t)/\Gamma(w_0), t)
\]
is a first integral of \(H^*X \). Finally, we can express (14) in terms of \(x \) and \(y \) by (4),
\[
G(x, y) = \frac{x^{1/n}}{\Gamma(x^{m/n}) \cdot (x^ny + p(x))},
\]
and thus obtain a (multivalued meromorphic) first integral of \(X \). \(\Box \)

\textbf{Lemma 5.} \(N = 1 \), \(\lambda_1 = p/q \in Q \) and \(s \in C[z^n] \)

Proof. When \(N > 1 \) the function \(\Gamma(v) \) has an essential singularity at \(v = 0 \) (for definition of essential singularity of a multivalued map see [7, p. 7]). On the other hand, (12) and (13) imply that \(\Gamma(v) \) is solution of the differential equation
\[
\frac{w'}{w} = \frac{v^N s(v) + v^{N-1} A_1 + \cdots + A_N}{v'}
\]
This differential equation is of the form
\[
v^{N} w' = \frac{R(v, w)}{S(v, w)}
\]
with \(R(v, w) = w(v^N s(v) + v^{N-1} A_1 + \cdots + A_N) \) and \(S(v, w) \equiv 1 \) verifying: a) \(R(v, w) \) is a polynomial in \(w \) whose coefficients are holomorphic around \(v = 0 \), b) \(R(0, w) \) and \(S(0, w) \) are not identically zero, and c) \(R(v, w) \) and \(S(v, w) \) have no common roots when \(v = 0 \). From [7, Théorème 1, p. 99] then \(\Gamma(v) \) verifies the \textit{Picard's Property}: \(\Gamma(v) \) takes in any punctured disk centered at \(v = 0 \) all the values in \(C \) except the zero, which corresponds with the unique \textit{principle characteristic
value of (15) [7, p. 34] given by the solutions of \(R(0, w) = 0 \). Therefore each level of (14), and then each component of \(H^{-1}(C_z) \), accumulates \(v = 0 \). It implies that \(C_z \) accumulates \(x^\ell y + p(x) = 0 \) by the equations of \(H(4) \) what is impossible due to properness of \(C_z \). Hence \(N = 1 \).

Let us show that \(\lambda_1 \in \mathbb{Q} \). From (12) as \(\omega \) has a pole of order one at \(v = 0 \) we can assume that it is \(\lambda_1/z \, dz \) after a biholomorphism in a neighborhood of \(v = 0 \) fixing it [9]. This way we may suppose that \(F(u, v) = u/v^{\lambda_1} \).

• If \(\lambda_1 \in \mathbb{R} \setminus \mathbb{Q} \) each component of \(H^{-1}(C_z) \) is contained in a real subvariety of dimension three [8, p. 120]. Hence \(C_z \) is not proper projecting by \(H \).

• If \(\lambda_1 \in \mathbb{C} \setminus \mathbb{R} \) each component of \(H^{-1}(C_z) \) must accumulate \(\{u = 0\} \) and \(\{v = 0\} \) [8, p. 120]. In particular \(C_z \) accumulates \(x^\ell y + p(x) = 0 \) by the equations of \(H(4) \) what again gives us a contradiction with properness of \(C_z \).

Finally, \(z s(z) = a(z) - a(0) \) implies \(s \in \mathbb{C}[z^n] \) since \(a \in \mathbb{C}[z^n] \) by Lemma 2. □

As a consequence of the above lemmas taking \(\lambda_1 = p/q \) we obtain that

\[
G^{nq} = \frac{\bar{s}^{nq}}{e^{nq \bar{s}(x^\ell y + p(x))^n} [x^m(x^\ell y + p(x))^n]^p}
\]

with \(x^m(x^\ell y + p(x))^n \) as in (11) is a meromorphic first integral of type \(C^* \) for \(X \) up to a polynomial automorphism. Therefore all the trajectories of \(X \) are proper, and except at most the one contained in \(x = 0 \) all of them are of type \(C^* \).

Remark 3. According to §3.2 any polynomial vector field \(X \) with a transcendental trajectory of type \(C^* \) defining a foliation \(P \)–complete with \(P \) of type \(C^* \) must be proportional to a complete vector field. It is enough to take in (10) \(k = 0 \) to obtain complete vector fields in the cases (i.2) and (i.3) of [3] Theorem 1.1.

Acknowledgments

I want to thank the referee for his suggestions that have improved this paper. In particular, he pointed out to me Remark 2.
References

[1] S. Abhyankar and T. Moh. Embeddings of the line in the plane. *J. Reine Angew. Math.*, 276 (1975), 148–166.
[2] M. Brunella. Sur les courbes intégrales propres des champs de vecteurs polynomiaux. *Topology*, 37(6) (1998), 1229–1246.
[3] A. Bustinduy. On the entire solutions of a polynomial vector field on \mathbb{C}^2. *Indiana Univ. Math. J.*, 53 (2004), 647–666.
[4] A. Bustinduy. The completeness of a polynomial vector field is determined by a transcendental trajectory. *J. Differential Equations* 227 (2006), 282–300.
[5] A. Bustinduy. Complete holomorphic vector fields on \mathbb{C}^2 whose underlying foliation is polynomial. *Int. J. Math.*, 21(3) (2010), 333–347.
[6] X. Gómez-Mont and L. Ortiz-Bobadilla. *Sistemas dinámicos holomorfos en superficies*. Sociedad Matemática Mexicana, México, 1989.
[7] H. Hukuhara, T. Kimura and T. Matuda. Équations différentielles ordinaires du premier ordre dans le champ complexe. *Publ. Math. Soc. of Japan* 7, 1961.
[8] F. Loray. Pseudo-groupe d’une singularité de feuilletage holomorphe en dimension deux. Prépublication IRMAR (2005) [http://hal.archives-ouvertes.fr/ccsd-00016434]
[9] J. Martinet et J.-P. Ramis. Problèmes de modules pour des équations différentielles non linéaires du premier ordre. *Inst. Hautes Études Sci. Publ. Math.* 55 (1982), 63–164.
[10] H. Saitō. Fonctions entières qui se réduisent à certains polynômes I. *Osaka J. Math.*, 9 (1972), 293–332.
[11] H. Saitō. Fonctions entières qui se réduisent à certains polynômes II. *Osaka J. Math.*, 14 (1977), 649–674.
[12] M. Suzuki. Propriétés topologiques des polynômes de deux variables complexes, et automorphismes algébriques de l’espace \mathbb{C}^2. *J. Math. Soc. Japan*, 26 (1974), 241–257.
[13] M. Suzuki. Sur les opérations holomorphes du groupe additif complexe sur l’espace de deux variables complexes. *Ann. Sci. École Norm. Sup. (4)*, 10(4) (1977), 517–546.
[14] M. Suzuki. Sur les intégrales premières de certains feuilletages analytiques complexes. *Lecture Notes in Math.* 670 (1978), 53–79.
[15] M. G. Zaidenberg and V. Ya. Lin. An irreducible, simply connected algebraic curve in \mathbb{C}^2 is equivalent to a quasihomogeneous curve. *Dokl. Akad. Nauk SSSR*, 271(5) (1983), 1048–1052.

Departamento de Ingeniería Industrial
Escuela Politécnica Superior
Universidad Antonio de Nebrija
C/ Pirineos 55, 28040 Madrid, Spain
E-mail address: abustind@nebrija.es