FUZZY EVENT-TRIGGERED DISTURBANCE REJECTION
CONTROL OF NONLINEAR SYSTEMS

PENG CHENG AND YANQING LIU
Key laboratory of Advanced Process Control for Light Industry (Ministry of Education)
School of Internet of Things Engineering, Jiangnan University
Wuxi, 214122, China

YANYAN YIN
School of Electrical Engineering, Computing and Mathematical Sciences
Curtin University, Perth, Western Australia, 6102, Australia

SONG WANG
School of Electrical Engineering, Computing and Mathematical Sciences
Curtin University, GPO Box U1987, Perth, WA6845, Australia

FENG PAN*
Key laboratory of Advanced Process Control for Light Industry (Ministry of Education)
School of Internet of Things Engineering, Jiangnan University
Wuxi, 214122, China

(Communicated by Changjun Yu)

Abstract. The problem of fuzzy based event-triggered disturbance rejection control for nonlinear systems is addressed in this paper. A new fuzzy event based anti-rejection controller is designed and a fuzzy reduced disturbance observer is constructed. Sufficient conditions for the closed loop system to be asymptotically stable under an H_{∞} performance index are derived. Based on these conditions, the design of a fuzzy event-triggered state feedback controller is formulated and solved. Numerical results are presented to demonstrate the correctness and effectiveness of our theoretical findings.

1. Introduction. To design an effective controller for a dynamic system, some knowledge of system model or structure needs to be known. It is well known that classic control theory is providing a large variety of methods for solving model-based controller design problems, particularly for those with linear structured systems. However, most of processes of practical significance are highly nonlinear and contain uncertain parameters so that conventional control theory is unable to solve them satisfactorily. To remedy this, the concept of fuzzy model based system has been introduced and applied to nonlinear systems successfully. In this approach, a system is assume to be fuzzy and controllers satisfying fuzzy rules are sought for the system. Clearly, this approach provides a practical controller design method even when only some rough knowledge of a process is available.

2020 Mathematics Subject Classification. Primary: 93C55, 93D09; Secondary: 93B05.
Key words and phrases. Fuzzy system, nonlinear systems, event trigger, disturbance rejection, asymptotically stable.

* Corresponding author: Feng Pan.
Over the past several years, many successful applications of the aforementioned fuzzy approach have been obtained, especially for control problems using Takagi-Sugeno (T-S) [15] fuzzy model, and the fuzzy method has been successful for investigating nonlinear systems [13, 17, 5, 16, 14, 3, 24, 25, 1]. Furthermore, the method has also been applied to some complex biotechnological processes [23]. However, all these results are under the assumption that the signal of a controller is transmitted periodically. In practice, it turns out that even if the state has minor changes, the controller is still updated. Event triggered controller design is a better approach to this type of problem, in which comparison between the real state and the recent past one is carried out and the signal is transmitted only when the gap is sufficiently large, see [19, 20, 21].

On the other hand, noise or disturbance is still a big challenge for a system, especially when its distribution cannot be described exactly. Much work has been done to find methods for solving complex matrix equations [10, 11, 12, 22]. The disturbance observer based control (DOBC) is a good way to estimate the disturbance which occurs in the input channel. This disturbance will be rejected during controller design which will decrease its effect on the entire system. Some work has been done on disturbance rejection control problem. For instance, in [6], a nonlinear system is considered and disturbance rejection approach is addressed. In [4], some work for linear uncertain and time delay systems has been done, and extensively studies have been done in many areas, see [7, 8, 18].

In this paper, the fuzzy H_∞ control problem with nonlinear systems in discrete-time domain is studied. The T-S fuzzy model is employed to describe the nonlinear system in terms of IF-THEN rules and the reduced order observer is constructed to estimate disturbance. The rest of the paper is organized as follows: Problem statement and preliminary results are presented in Section 2. In Section 3, stability analysis of the resulting closed loop fuzzy system is given. In Section 4, H_∞ performance for the error dynamic system is analyzed and the fuzzy H_∞ controller is designed such that the associated error dynamic system is asymptotically stable. A numerical example is given to illustrate the effectiveness of our approach in Section 5. Finally, some concluding remarks are made in Section 6.

Notation. Throughout the paper, \mathbb{R}^n is used to denote the n-dimensional Euclidean space, A^T denotes the transpose of the matrix A. A positive (negative) definite matrix P is written as $P > 0$ ($P < 0$) and $*$ indicates a symmetric element in a symmetric matrix.

2. Problem statement and preliminaries. We consider a discrete-time nonlinear system which can be described by the following fuzzy model:

Plant rule i

IF θ_{ik} is M_{i1}, · · · , and θ_{gk} is M_{ig}

THEN

$$x(k + 1) = A_i x(k) + B_i (u(k) + d_1(k)) + H_i d_2(k),$$

(1)

where $i \in \{S\} = \{1, 2, 3, \ldots, v\}$, M_{ij} is a given fuzzy set for any feasible i and j, v is the number of IF-THEN rules, $\theta_{ik}, \ldots, \theta_{gk}$ are the premise variables, $x(k) \in \mathbb{R}^l$ is the state vector of the system, $u(k) \in \mathbb{R}^l$ is the input vector of the system, $d_1(k) \in \mathbb{R}^p$ is the input disturbance of the system, $d_2(k) \in L_2^2 [0, \infty)$ is the external disturbance vector of the system, and A_i, B_i and H_i are constant matrices with appropriate dimensions at the working instant k.

The input disturbance \(d_1(k)\) in system (1) is given as follows.

\[
\begin{align*}
 w(k+1) &= W_i w(k) + M_i d_3(k), \\
 d_1(k) &= V_i w(k),
\end{align*}
\]

where \(W_i, M_i\) and \(V_i\) are constant matrices with appropriate dimensions.

Assumption 1. For systems (1) and (2), it holds that 1) \((A_i, B_i)\) is controllable; and 2) \((W_i, B_i V_i)\) is observable.

The discrete time fuzzy system is inferred as follows:

\[
x(k + 1) = \frac{\sum_{i=1}^{n} \mu_i(\theta_k)[A_i x(k) + B_i (u(k) + d_1(k)) + H_i d_2(k)]}{\sum_{i=1}^{n} \mu_i(\theta_k)},
\]

where \(\theta_k = [\theta_{1k} \theta_{2k} \cdots \theta_{nk}]\), \(\mu_i(\theta_k) = \prod_{j=1}^{n} M_{ij} \theta_{jk}\), \(h_i(\theta_k) = \frac{\mu_i(\theta_k)}{\sum_{i=1}^{n} \mu_i(\theta_k)}\), and \(M_{ij} \theta_{jk}\) is the grade of membership of \(\theta_{jk}\) in \(M_{ij}\).

Assume that

\[
\mu_i(\theta_k) \geq 0 \quad \text{and} \quad \sum_{i=1}^{n} \mu_i(\theta_k) > 0.
\]

Then, we have:

\[
h_i(\theta_k) \geq 0 \quad \text{and} \quad \sum_{i=1}^{n} h_i(\theta_k) = 1.
\]

Therefore, system (1) is rewritten as:

\[
x_{k+1} = \sum_{i=1}^{v} h_i(\theta_k)[A_i x(k) + B_i (u(k) + d_1(k)) + H_i d_2(k)].
\]

Under the assumption that all of the system states are available, we need to estimate \(d_1(k)\). If \(\theta_{1k} = M_{i1}, \ldots, \theta_{nk} = M_{ig}\), then, a reduced-order observer is constructed below:

\[
\begin{align*}
 \dot{\hat{d}}_1(k) &= V_i \hat{\omega}(k), \\
 \dot{\hat{\omega}}(k) &= v(k) - L_i x(k), \\
 v(k+1) &= (W_i + L_i B_i V_i)(v(k) - L_i x(k)) + L_i(A_i x(k) + B_i u(k)),
\end{align*}
\]

where \(\hat{d}_1(k)\) and \(\hat{\omega}(k)\) are estimations of \(d_1(k)\) and \(w(k)\), respectively.

And the fuzzy reduced-order observer is obtained as:

\[
\begin{align*}
 \hat{d}_1(k) &= \sum_{i=1}^{n} h_i(\theta_k)[V_i \hat{\omega}(k)], \\
 \dot{\hat{\omega}}(k) &= \sum_{i=1}^{n} h_i(\theta_k)[v(k) - L_i x(k)], \\
 v(k+1) &= \sum_{i=1}^{n} h_i(\theta_k)[(W_i + L_i B_i V_i)(v(k) - L_i x(k)) + L_i(A_i x(k) + B_i u(k))].
\end{align*}
\]

To reduce the effects of disturbance, controller is constructed as

\[
u(k) = -\hat{d}_1(k) + K x(k).
\]

Let

\[
f(k) = w(k) - \hat{\omega}(k),
\]

\[
f(k+1) = \sum_{i=1}^{n} h_i(\theta_k) \{(W_i + L_i B_i V_i)f(k) + L_i H_i d_2(k) + M_i d_3(k)\}.
\]
To reduce network based transmission load, by event-triggered theory, let \(\hat{x}_k \) be a new signal applied to the controller in the time interval \((k, k+1]\) with
\[
\hat{x}(k) = \begin{cases}
 x(k) & \text{if event condition is satisfied,} \\
 \hat{x}(k-1) & \text{if event condition is not satisfied,}
\end{cases}
\]
and \(\hat{x}(k) = 0 \) for \(k \leq 0 \) with the initial time \(k_0 = 0 \). Based on (8), let \(u(k) = -\hat{d}_1(k) + K\hat{x}(k) \). The following decision condition for signal transmission is given by the event generator:
\[
\|\hat{x}(k-1) - x(k)\| > \sigma \|x(k)\|,
\]
where \(\sigma > 0 \). Then, combing (8) and (9), we have an event-triggered based controller given below
\[
u(k) = \begin{cases}
 -\hat{d}_1(k) + K_i x(k) & \text{if } \|\hat{x}(k-1) - x(k)\| > \sigma \|x(k)\|, \\
 -\hat{d}_1(k) + K_i \hat{x}(k-1) & \text{if } \|\hat{x}(k-1) - x(k)\| \leq \sigma \|x(k)\|.
\end{cases}
\]
Let \(\eta^T(k) = [x^T(k), f^T(k)] \), \(d^T(k) = [d_1^T(k), d_2^T(k)] \) and \(e(k) = \hat{x}(k) - x(k) \), combining systems (1), (2) and (5), we obtain a fuzzy based error estimation system:
\[
\eta(k+1) = \tilde{A}_{ij} \eta(k) + \tilde{B}_{ij} e(k) + \tilde{C}_{ij} d(k),
\]
where
\[
\tilde{A}_{ij} = \sum_{i=1}^{v} h_i \sum_{j=1}^{v} h_j \begin{bmatrix} A_i + B_i K_i & B_i V_j \\ 0 & W_j + L_j B_i V_j \end{bmatrix},
\]
\[
\tilde{B}_{ij} = \sum_{i=1}^{v} h_i \sum_{j=1}^{v} h_j \begin{bmatrix} B_i K_i \\ 0 \end{bmatrix},
\]
\[
\tilde{C}_{ij} = \sum_{i=1}^{v} h_i \sum_{j=1}^{v} h_j \begin{bmatrix} H_i \\ L_j H_i \end{bmatrix}.
\]

The reference output of system (11) is set as:
\[
z(k) = D_{ij} \eta(k),
\]
where \(D_{ij} = \sum_{i=1}^{v} h_i \sum_{j=1}^{v} h_j \begin{bmatrix} D_{1i} & D_{2j} \end{bmatrix} \).

To proceed further, some definitions are needed in developing our main results in the paper.

Definition 2.1. For a given initial state \(\eta(0) \), suppose
\[
\lim_{m \to \infty} \left\{ \sum_{k=0}^{m} \eta^T(k) \eta(k) | \eta(0) \right\} < \infty.
\]

Then, system (11) is said to be asymptotically stable and \(K_i \) is the gain matrix of the controller.

Lemma 2.2. [2] Let \(R > 0 \) be a given symmetric matrix, and let \(W_t, t = 1, 2, \ldots, h \) be matrices with appropriate dimensions, if \(0 \leq \varepsilon_t \leq 1 \) and \(\sum_{i=1}^{h} \varepsilon_i = 1 \), then
\[
(\sum_{t=1}^{h} \varepsilon_t W_t)^T R (\sum_{t=1}^{h} \varepsilon_t W_t) \leq \sum_{t=1}^{h} \varepsilon_t W_t^T R W_t.
\]
Definition 2.3. For a given constant $\gamma > 0$, system (11) is said to be asymptotically stable and satisfy an H_∞ performance index γ, if it is asymptotically stable and the following condition is satisfied:

$$
\sum_{k=0}^{\infty} z^T(k)z(k) \leq \gamma^2 \sum_{k=0}^{\infty} d^T(k)d(k).
$$

(13)

The aim of our work is to design an event trigger based fuzzy anti-disturbance controller to ensure that the error system (11) is asymptotically stable and an H_∞ performance index is satisfied.

3. Stability analysis. In this section, sufficient conditions are given under which system (11) is asymptotically stable.

Theorem 3.1. Let $\sigma > 0$ be given. If there exist a positive definite symmetric matrix P, and a constant κ such that

$$
\hat{\Gamma}_{ij} = \begin{bmatrix} -4P + \hat{A}_{ij}^T P \hat{A}_{ij} + \kappa S & \hat{A}_{ij}^T P \hat{B}_{ij} \\ \ast & \hat{B}_{ij}^T P \hat{B}_{ij} - \kappa I \end{bmatrix} \leq 0,
$$

(14)

then, system (11) is asymptotically stable.

Proof. We take into consideration of the following Lyapunov function

$$
V(\eta(k)) = \eta^T(k)P\eta(k).
$$

Taking the difference of the Lyapunov function along the trajectory of system (11) yields

$$
\Delta V(\eta(k)) = V(\eta(k+1)) - V(\eta(k)) = \eta^T(k+1)P\eta(k+1) - \eta^T(k)P\eta(k)
$$

$$
= \eta^T(k)\frac{1}{4} \sum_{i=1}^{v} \sum_{j=1}^{v} h_i h_j \hat{A}_{ij}^T P \sum_{i=1}^{v} \sum_{j=1}^{v} h_i h_j \hat{A}_{ij} \eta(k)
$$

$$
+ \eta^T(k)\frac{1}{4} \sum_{i=1}^{v} \sum_{j=1}^{v} h_i h_j \hat{A}_{ij}^T \hat{P} \sum_{i=1}^{v} \sum_{j=1}^{v} h_i h_j \hat{B}_{ij} e(k)
$$

$$
+ e^T(k)\frac{1}{4} \sum_{i=1}^{v} \sum_{j=1}^{v} h_i h_j \hat{B}_{ij}^T \hat{P} \sum_{i=1}^{v} \sum_{j=1}^{v} h_i h_j \hat{A}_{ij} \eta(k)
$$

$$
+ e^T(k)\frac{1}{4} \sum_{i=1}^{v} \sum_{j=1}^{v} h_i h_j \hat{B}_{ij}^T \hat{P} \sum_{i=1}^{v} \sum_{j=1}^{v} h_i h_j \hat{B}_{ij} e(k) - \eta^T(k)P\eta(k),
$$

where $\hat{A}_{ij} = \hat{A}_{ij} + \hat{A}_{ji}$, $\hat{B}_{ij} = \hat{B}_{ij} + \hat{B}_{ji}$. To ensure that $\Delta V(\eta(k)) \leq 0$, we need to have

$$
\hat{\Gamma}_{11ij} = \sum_{i=1}^{v} \sum_{j=1}^{v} h_i h_j \begin{bmatrix} -4P + \hat{A}_{ij}^T P \hat{A}_{ij} & \hat{A}_{ij}^T P \hat{B}_{ij} \\ \ast & \hat{B}_{ij}^T P \hat{B}_{ij} \end{bmatrix} \leq 0.
$$

(15)

Let

$$
\xi = \min_k \{\lambda_{\min}(-\hat{\Gamma}_{11ij})\},
$$

where $\lambda_{\min}(-\hat{\Gamma}_{11ij})$ is the minimal eigenvalue of $-\hat{\Gamma}_{11ij}$. Then,

$$
\Delta V(\eta(k)) \leq -\xi \eta^T(k)\eta(k),
$$
where
\[\eta^T(k) = \begin{bmatrix} x(k) \\ f(k) \end{bmatrix}^T. \]

From this we have,
\[\sum_{k=0}^{T} \Delta V(\eta(k)) = V(\eta(T+1)) - V(\eta(0)) \leq -\xi \sum_{k=0}^{T} \|\eta(k)\|^2. \]

This, in turn, implies that
\[\sum_{k=0}^{T} \|\eta(k)\|^2 \leq \frac{1}{\xi} \{V(\eta(0)) - V(\eta(T+1))\} \leq \frac{1}{\xi} V(\eta(0)), \]

and hence
\[\lim_{T \to \infty} E\{\sum_{k=0}^{T} \|\eta(k)\|^2\} \leq \frac{1}{\xi} V(\eta(0)). \]

By Definition 2.1, system (11) is asymptotically stable.

4. H_\infty performance analysis and controller design. Based on the conditions established in Theorem 3.1, we now consider performance analysis and controller design.

Theorem 4.1. Let \(\sigma \) be given. If there exist a positive definite symmetric matrix \(P \), and a constant \(\kappa \) such that
\[
\begin{bmatrix}
-4P + \kappa S & 0 & 0 & \hat{A}_{ij}^T & \hat{D}_{ij}^T \\
* & -\kappa I & 0 & \hat{B}_{ij}^T & 0 \\
* & * & -4\gamma^2 I & \hat{C}_{ij}^T & 0 \\
* & * & * & -P^{-1} & 0 \\
* & * & * & * & -I
\end{bmatrix} < 0,
\]

then system (11) is said to be asymptotically stable and an H_\infty performance index is satisfied.
Proof. To establish the H_∞ performance for the system (11), the following cost function is introduced:

$$J(T) = \sum_{k=0}^{T} z^T(k)z(k) - \gamma^2 \sum_{k=0}^{T} d^T(k)d(k).$$

(19)

In the case of zero initial condition, $J(T)$ can be written as

$$J(T) \leq \sum_{k=0}^{T} \{z^T(k)z(k) - \gamma^2 d^T(k)d(k) + \Delta V(\eta(k))\}.$$

(20)

Thus, we have

$$J(T) \leq \sum_{k=0}^{T} \{z^T(k)z(k) - \gamma^2 d^T(k)d(k) + \Delta V(\eta(k))\}$$

which leads to

$$\Theta_{ij} = \begin{bmatrix} -4P & 0 & 0 & \hat{A}^T_{ij} & \hat{D}^T_{ij} \\ * & 0 & 0 & \hat{B}^T_{ij} & 0 \\ * & * & -4\gamma^2 & \hat{C}^T_{ij} & 0 \\ * & * & * & -P^{-1} & 0 \\ * & * & * & * & -I \end{bmatrix} < 0.$$

(21)

Then, for each fuzzy model, it follows that $J(T) \leq 0$ whenever $\Theta_{ij} < 0$.

Recalling condition (16) and following an argument similar to that in the proof of Theorem 3.1, we can show that system (11) is asymptotically stable and the following condition is also satisfied.

$$E \left\{ \sum_{k=0}^{\infty} \bar{z}_k^T \bar{z}_k \right\} \leq \gamma^2 E \left\{ \sum_{k=0}^{\infty} w_k^T w_k \right\}.$$

(22)

Note that the inequality in Theorem 4.1 is unsolvable and we need to transform it to a solvable one.

\hfill \Box
Theorem 4.2. Let \(\sigma \) be given. If there exist a positive definite symmetric matrix \(Q \), and a constant \(\kappa \) such that
\[
\begin{bmatrix}
-4G^T - 4G + 4Q & 0 & 0 & 0 & 0 \\
* & -8I + 4Q & 0 & 0 & 0 \\
* & * & -G^T - G + \frac{1}{\kappa} I & 0 & 0 \\
* & * & * & -4\gamma^2 & 0 \\
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
(\bar{A}_{ij} + \bar{B}_{ij}K_{ij})^T & 0 & 0 & 0 & 0 \\
(\bar{B}_{ij}V_j)^T & (W_j + L_jB_jV_j)^T & (D_{ij}G)^T & G^T \\
(\bar{H}_{ij})^T & (\bar{L}_{ij}\bar{H}_{ij})^T & 0 & 0 \\
-\bar{Q} & 0 & 0 & 0 \\
0 & -\bar{Q} & 0 & 0 \\
0 & 0 & -I & 0 \\
* & * & * & -\frac{1}{\kappa\sigma^2} \\
\end{bmatrix} < 0, \quad (23)
\]
then system (11) is asymptotically stable and satisfies an \(H_{\infty} \) performance index.

Proof. By the Schur complement, multiply from the left hand side and the right hand side of inequality (18) by \(\text{diag}\{G^T, I, G^T, I, I, I\} \) and \(\text{diag}\{G, I, G, I, I, I\} \), respectively, where \(G \in \mathbb{R}^{n \times n} \) is a positive definite diagonal matrix.

Noting that
\[
(P^{-1} - G)^T P(P^{-1} - G) \geq 0,
\]
or
\[
G^T PG \geq G^T + G - P^{-1}.
\]
Let \(Q = P^{-1}, \bar{A}_{ij} = A_i + A_j \) and \(\bar{K}_{ij} = K_{ij}G \). Then, Condition (23) is obtained which is linear in the variables \(G, Q \) and \(\bar{K}_{ij} \). Once a solution of (23) is obtained, the feedback gain can be calculated as \(K_{ij} = \bar{K}_{ij}G^{-1} \).

5. Numerical example. Consider a discrete-time fuzzy model based nonlinear system with the following system and other parameters:

\[
A_1 = \begin{bmatrix}
-1.02 & -0.1 & 0.8 \\
-0.1 & 0.2 & 0.2 \\
\end{bmatrix}, \quad B_1 = \begin{bmatrix}
-0.2 \\
0.2 \\
\end{bmatrix},
\]
\[
W_1 = \begin{bmatrix}
0 & -1 \\
1 & 0 \\
\end{bmatrix}, \quad H_1 = \begin{bmatrix}
0.1 \\
-0.1 \\
\end{bmatrix},
\]
\[
M_1 = \begin{bmatrix}
0.1 \\
0.1 \\
\end{bmatrix}, \quad V_1 = \begin{bmatrix}
0.3 & 0.5 \\
\end{bmatrix},
\]
\[
D_{11} = \begin{bmatrix}
0.5 & 0.1 \end{bmatrix}, \quad D_{12} = \begin{bmatrix}
0.1 & 0 \end{bmatrix}.
\]
Our purpose is to design a fuzzy H_{∞} reduced order observer for system (1) such that the resulting error system (11) is asymptotically stable with an H_{∞} noise attenuation performance index.

Based on Theorem 4.2, let $\sigma = 0.01$, under event triggered condition, we have

$$L_1 = \begin{bmatrix} -2.1610 & 1.3701 \\ 1.3701 & -1.1195 \end{bmatrix}, \quad K_1 = \begin{bmatrix} -1.3097 & -0.4087 \end{bmatrix}.$$

$$L_2 = \begin{bmatrix} -0.3125 & 1.8301 \\ 1.8301 & -0.6529 \end{bmatrix}, \quad K_2 = \begin{bmatrix} 1.1065 & -0.3906 \end{bmatrix}.$$

we obtain the following fuzzy based matrices of the observer and controller, under which the system is asymptotically stable with an H_{∞} performance index satisfied. For the case of $\sigma = 0.01$, the corresponding trajectories are shown in Figure 1. The disturbance $d_1(t)$, the estimation disturbance $\hat{d}_1(t)$, and the error disturbance $\check{d}_1(t) - \hat{d}_1(t)$ are illustrated in Figure 2. Obviously, the system concerned is asymptotically stable under such a controller.

6. Conclusion. In this paper, the problem of fuzzy event-based disturbance rejection control of nonlinear systems is studied. Sufficient conditions are given under which the closed-loop system is stable. Based on these conditions, fuzzy controller and rejection observer are formulated and solved. A numerical example illustrates the effectiveness of the proposed design procedure and the performance of the resulting closed-loop system.
Figure 2. Estimation of disturbance

Acknowledgments. This work has been partially supported by the National Natural Science Foundation of PR China (No. 61773011), Ministry of Education of China under the 111 Project B12018, National First-class Discipline Program of Light Industry Technology and Engineering (LITE2018-17) and Curtin Fellowship Grant.

REFERENCES

[1] A. Benzaouia and A. E. Hajjaji, Delay-dependent stabilization conditions of controlled positive T-S fuzzy systems with time varying delay, *International Journal of Innovative Computing, Information and Control*, 7 (2011), 1533–1548.

[2] Y.-Y. Cao, Z. L. Lin and Y. Shamash, Set invariance analysis and gain-scheduling control for LPV systems subject to actuator saturation, *Systems and Control Letters*, 46 (2002), 137–151.

[3] X. Chang and G. Yang, Relaxed results on stabilization and state feedback H_{∞} control conditions for T-S fuzzy systems, *International Journal of Innovative Computing, Information and Control*, 7 (2011), 1753–1764.

[4] M. Chen and W. Chen, Disturbance observer based robust control for time delay uncertain systems, *International Journal of Control, Automation and Systems*, 8 (2010), 445–453.

[5] T. M. Guerra and L. Vermeiren, LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno’s form, *Automatica J. IFAC*, 40 (2004), 823–829.

[6] L. Guo and W.-H. Chen, Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach, *International Journal of Robust and Nonlinear Control*, 15 (2005), 109–125.

[7] L. Guo and S. Y. Cao, *Anti-Disturbance Control for Systems with Multiple Disturbances*, USA: CRC Press, Boca Raton, FL, 2014.

[8] L. Guo and S. Y. Cao, Anti-disturbance control theory for systems with multiple disturbances: A survey, *ISA Transactions*, 53 (2014), 846–849.

[9] T. Iwasaki, G. Meinsma and M. Y. Fu, Generalized S-procedure and finite frequency KYP lemma, *Mathematical Problems in Engineering*, 6 (2000), 305–320.

[10] L. L. Lv, S. Y. Tang and L. Zhang, Parametric solutions to generalized periodic Sylvester bimatrix equations, *Journal of the Franklin Institute*, 357 (2020), 3601–3621.

[11] L. L. Lv and Z. Zhang, Finite iterative solutions to periodic Sylvester matrix equations, *Journal of the Franklin Institute*, 354 (2017), 2358–2370.

[12] L. L. Lv, Z. Zhang, L. Zhang and X. X. Liu, Gradient based approach for generalized discrete-time periodic coupled Sylvester matrix equations, *Journal of the Franklin Institute*, 355 (2018), 7691–7705.

[13] X. J. Su, P. Shi, L. Q. Wu and Y.-D. Song, A novel control design on discrete-time Takagi-Sugeno fuzzy systems with time-varying delays, *IEEE Trans on Fuzzy Systems*, 21 (2013), 655–671.
FUZZY DISTURBANCE REJECTION CONTROL

[14] C. Sun, Y. Wang and C. Chang, Switching T-S fuzzy model-based guaranteed cost control for two-wheeled mobile robots, *International Journal of Innovative Computing, Information and Control*, 8 (2012), 3015–3028.

[15] T. Takagi and M. Sugeno, Fuzzy identification of systems and its applications to modeling and control, *IEEE Trans on Syst. Man Cybern*, 15 (1985), 116–132.

[16] K. Tanaka, T. Hori and H. O. Wang, A multiple Lyapunov function approach to stabilization of fuzzy control systems, *IEEE Trans on Fuzzy Syst.*, 11 (2003), 582–589.

[17] L. Wu, X. Su, P. Shi and J. Qiu, Model approximation for discrete-time state-delay systems in the T-S fuzzy framework, *IEEE Trans on Fuzzy Systems*, 19 (2011), 366–378.

[18] X. M. Yao and L. Guo, Composite anti-disturbance control for Markovian jump nonlinear systems with disturbance observer, *Automatica J. IFAC*, 49 (2013), 2538–2545.

[19] Y. Y. Yin, X. Chen and F. Liu, Disturbance rejection control for Markov jump systems with nonhomogeneous processes, *The 27th Chinese Control and Decision Conference (2015 CCDC)*, Qingdao, China, (2015), 15340479.

[20] Y. Y. Yin, Z. L. Lin, Y. Q. Liu and K. L. Teo, Event-triggered constrained control of positive systems with input saturation, *International Journal of Robust and Nonlinear Control*, 28 (2018), 3532–3542.

[21] Y. Y. Yin, Y. Q. Liu, K. L. Teo and S. Wang, Event-triggered probabilistic robust control of linear systems with input constrains: By scenario optimization approach, *International Journal of Robust and Nonlinear Control*, 28 (2018), 144–153.

[22] Y. Y. Yin, L. J. Zhu, F. Liu, K. L. Teo and S. Wang, Asynchronous H_{∞} control for nonhomogeneous higher-level Markov jump systems, *Journal of the Franklin Institute*, 357 (2020), 4697–4708.

[23] L. A. Zadeh, Fuzzy sets, *Information and Control*, 8 (1965), 338–353.

[24] H. B. Zeng, K. L. Teo, Y. He and W. Wang, Sampled-data-based dissipative control of T-S fuzzy systems, *Applied Mathematical Modelling*, 65 (2019), 415–427.

[25] H.-B. Zeng, K. L. Teo, Y. He and W. Wang, Sampled-data stabilization of chaotic systems based on a T-S fuzzy model, *Information Sciences*, 483 (2019), 262–272.

Received October 2019; revised March 2020.

E-mail address: cjy100@163.com
E-mail address: c406.yqliu@126.com
E-mail address: yanyan.yin@curtin.edu.au
E-mail address: songwang58@gmail.com
E-mail address: pan_feng_630163.com