RESEARCH PAPER

Identification and pharmacological characterization of the prostaglandin FP receptor and FP receptor variant complexes

Y Liang1, DF Woodward1, VM Guzman1, C Li1, DF Scott2, JW Wang1, LA Wheeler1, ME Garst1, K Landsverk3, G Sachs2, AH-P Krauss5, C Cornell4, J Martos4, S Pettit4 and H Fliri4

1Departments of Biological and Chemical Sciences, Allergan Inc., Irvine, CA, USA; 2Department of Membrane Biology, UCLA, Los Angeles, CA, USA; 3Covance Inc., Madison, WI, USA and 4Selcia Ltd, Ongar, Essex, England

Background and purpose: A prostamide analogue, bimatoprost, has been shown to be effective in reducing intraocular pressure, but its precise mechanism of action remains unclear. Hence, to elucidate the molecular mechanisms of this effect of bimatoprost, we focused on pharmacologically characterizing prostaglandin FP receptor (FP) and FP receptor variant (altFP) complexes.

Experimental approach: FP receptor mRNA variants were identified by reverse transcription-polymerase chain reaction. The FP-altFP4 heterodimers were established in HEK293/EBNA cells co-expressing FP and altFP4 receptor variants. A fluorometric imaging plate reader was used to study Ca2+ mobilization. Upregulation of cysteine-rich angiogenic protein 61 (Cyr61) mRNA was measured by Northern blot analysis, and phosphorylation of myosin light chain (MLC) by western analysis.

Key results: Six splicing variants of FP receptor mRNA were identified in human ocular tissues. Immunoprecipitation confirmed that the FP receptor is dimerized with altFP4 receptors in HEK293/EBNA cells co-expressing FP and altFP4 receptors. In the studies of the kinetic profile for Ca2+ mobilization, prostaglandin F2α (PGF2α) elicited a rapid increase in intracellular Ca2+ followed by a steady state phase. In contrast, bimatoprost elicited an immediate increase in intracellular Ca2+ followed by a second phase. The prostamide antagonist, AGN211335, selectively and dose-dependently inhibited the bimatoprost-initiated second phase of Ca2+ mobilization, Cyr61 mRNA upregulation and MLC phosphorylation, but did not block the action of PGF2α.

Conclusion and implications: Bimatoprost lacks effects on the FP receptor but may interact with the FP-altFP receptor heterodimer to induce alterations in second messenger signalling. Hence, FP-altFP complexes may represent the underlying basis of bimatoprost pharmacology.

British Journal of Pharmacology (2008) 154, 1079–1093; doi:10.1038/bjp.2008.142; published online 21 April 2008

Keywords: prostaglandin; prostamide; intraocular pressure; receptor dimerization; calcium signalling

Abbreviations: altFP, alternative splicing variant of prostaglandin FP receptor; EBNA, Epstein–Barr nuclear antigen; FLIPR, fluorometric imaging plate reader; FP, prostaglandin FP receptor; HEK, human embryonic kidney; MLC, myosin light chain; PGF2α, prostaglandin F2α

Introduction

Prostaglandin F2α (PGF2α) is a product of cyclooxygenase-catalysed metabolism of arachidonic acid (Smith et al., 1991). It has been identified to be an endogenous ligand of prostaglandin FP receptors. Activation of FP receptors initiated by ligand binding triggers Gq protein-coupled mechanisms involving Ca2+ signalling, IP3 turnover and activation of protein kinase C (Toh et al., 1995). PGF2α has diverse physiological actions that include causing smooth muscle contraction (Horton and Poyser, 1976), stimulating DNA synthesis and cell proliferation, and cardiac myocyte hypertrophy (Adams et al., 1996). Importantly, PGF2α analogues have been used clinically to reduce ocular hypertension (Woodward et al., 1993). Although the precise mechanisms involved remain unclear, the effects of PGF2α analogues on intraocular pressure (IOP) principally involve an increase in uveoscleral outflow of aqueous humor. These events involve secretion of metalloproteinases by ciliary...
smooth muscle cells and remodelling of the extracellular matrix with a resultant widening of intermuscular spaces (Gaton et al., 2001; Weinreb and Lindsey, 2002; Richter et al., 2003).

In contrast to prostaglandin F_2α, prostamides (prostaglandin ethanolamides) were recently identified as a new class of compounds that was formed from anandamide via metabolic transformation catalysed by cyclooxygenase-2 (Yu et al., 1997; Burstein et al., 2000; Kozak et al., 2001; Koda et al., 2003). Although their physiological actions have not been fully investigated, a synthetic prostamide analogue (bimatoprost) has been shown to be very effective in reducing IOP by increasing both uveoscelar and trabecular outflow of aqueous humor (Woodward et al., 2001). The activities of prostamides as endogenous ligands at prostaglandin receptor(s) have been investigated, but have been shown to exert no meaningful activity (Berglund et al., 1999; Woodward et al., 2001; Ross et al., 2002; Matias et al., 2004). Studies on their metabolic rate clearly demonstrate that prostamides and their synthetic analogue bimatoprost exert their in vitro pharmacological effects (Matias et al., 2004) and ocular hypotensive effects as the intact molecule (Woodward et al., 2003). Experimental evidence suggests that prostamides may act as endogenous ligands at their own receptors (prostamide receptors) (Woodward et al., 2001, 2003; Matias et al., 2004). Nevertheless, prostamide activity has not, so far, been demonstrated in the absence of FP receptor activity. However, results from studies on FP-knockout mice have shown that the effects of bimatoprost on IOP are dependent on an intact FP receptor gene (Crowston et al., 2001, 2003; Matias et al., 2001, 2003). The PCR products were isolated from 1.5% low-melting agarose gel and subcloned into PCR II TOPO vector (Invitrogen). Sequence analysis was performed by Sequetech (Mountain View, CA, USA). Sequence alignments and analysis were done using the National Center for Biotechnology Information database.

Reverse transcription-polymerase chain reaction

Using 2 μg of human total RNA, first-strand cDNA was synthesized by SuperScript II Reverse Transcriptase (Invitrogen, Carlsbad, CA, USA). Samples, 20 μL, containing 2 μg of RNA, 100 ng random primers and 50 U reverse transcriptase were incubated at 42 °C for 50 min and terminated by 75 °C for 5 min.

The PCR buffer contained 40 mM Tricine-KOH (pH 9.2), 15 mM KOAc, 3.5 mM Mg(OAc)_2, 0.2 mM of each dNTP, 0.2 μM upstream primer (p1: 5'-tgcaatgcaatcacaggaatt-3') and downstream primer (p2: 5'-cactccagcatctgcgg-3'), and 1 U Advantage cDNA polymerase in a final volume of 50 μL. After an initial incubation for 5 min at 94 °C, samples were subjected to 35 cycles of 30 s at 94 °C, 30 s at 58 °C and 30 s at 72 °C in a PE9700 thermal cycler.

The PCR products were isolated from 1.5% low-melting agarose gel and subcloned into PCR II TOPO vector (Invitrogen). Sequence analysis was performed by Sequetech (Mountain View, CA, USA). Sequence alignments and analysis were done using the National Center for Biotechnology Information database.

Subcloning and plasmid transfection

Full-length FP and alternative splicing variant of prostaglandin FP receptor (altFP) receptor cDNAs were isolated and subcloned into retrovirus vector (Invitrogen). The plasmids were designated QhFP-wt and QhFP-alt. QhFP-wt or QhFP-alt were transfected into GP2-293 packaging cells. After 72 h, the supernatants containing virus were harvested and centrifuged at 800 g for 15 min to remove cell debris. Virus was stored and counted at –80 °C. HEK293/EBNA cells were grown in 6-cm dishes containing Dulbecco’s modified Eagle’s medium with 10% fetal bovine serum. The cells were infected with QhFP-wt or QhFP-alt, or co-infected with both QhFP-wt and QhFP-alt in equal amounts of virus. After 24 h of infection, the virus-containing medium was removed and replaced with fresh medium containing hygromycin for cell clone selection. Hygromycin-resistant colonies were amplified and screened for expression of FP and altFP receptors. The established cell lines were maintained in the same media as the parental lines.

Epitope tagging of FP receptors and altFP receptors

Wild-type FP and altFP receptors were tagged at their amino termini with either two repeats of haemagglutinin (HA) nonapeptide (YPYDVPDYA) separated by a Gly residue or with two repeats of a Flag sequence (DYKDDDDK), also separated by a Gly residue. Because the FP receptors containing two Flag epitopes or HA epitopes at the amino terminus may not localize to the cell membrane (Fujino et al., 2000), we introduced a prolactin signal peptide preceding the Flag sequence to create Pro-Flag-FP and preceding the HA sequence to create Pro-HA-altFP, according to methods previously described (Kolodziej and Young, 1991). Pro-Flag-FP or Pro-HA-altFP cDNA encoded the amino terminus MDSKGSSQKSGRL LLLVSVNLCCQGVVS/GVSV/ YPYDVPD Y... representing the prolactin signal peptide,
signal peptidase site(/), Flag epitope-FP or HA epitope-altFP. The prolactin signal peptide was then cleaved by signal peptidase after expression. All of the tagged FP or altFP receptors were subcloned into lentivirus expression vector to create Lenti-Pro-Flag-FP and Lenti-Pro-HA-altFP expression plasmids. All of the plasmids were transfected into 293FT packaging cell lines. After 48 h transfection, the virus containing cell medium was collected, titered and stored at -80 °C. HEK293/EBNA cells were grown in 6-cm dishes containing Dulbecco’s modified Eagle’s medium with 10% fetal bovine serum. The cells were infected with an equal amount of virus. After 24 h of infection, the virus-containing medium was removed and replaced with fresh medium containing blasticidin for cell clone selection. Blasticidin-resistant colonies were amplified and screened for expression of Flag-FP and HA-altFP receptors. The established cell lines were maintained in the same medium as the parental lines.

Northern blot analysis

Total RNA (10 μg) was denatured at 65 °C in RNA loading buffer (Ambion Inc., Austin, TX, USA) for 15 min and separated on 1.2% agarose gels containing 0.66 M formaldehyde. RNA loading was assessed by ethidium bromide staining of 28S and 18S ribosomal RNA bands. The relative intensities of 28S and 18S ribosomal RNA bands were used as internal controls to normalize the hybridizations. Human 1.4-kb Cyr61 (+60 to +1459; GenBank accession no. AF003594) gene-specific DNA fragment was radiolabelled using an [α-32P]-dCTP and Klenow (Ambion Inc.). The blots were hybridized with the gene-specific probes in 50% formamide, 4 × SSC, 1 × Denhardt’s solution, 50 mM sodium phosphate (pH 7.0), 1% sodium dodecyl sulphate (SDS), 50 μg mL⁻¹ yeast tRNA and 0.5 mg mL⁻¹ sodium pyrophosphate at 42 °C overnight and washed with SSC and 0.1% SDS twice at 42 °C and with 0.1 × SSC and 0.1% SDS twice at 42 °C. The hybridized blots were exposed to phosphor screens, and the exposed screens were analysed in a PhosphorImager (Amersham Biosciences, Pittsburgh, PA, USA).

Immunoprecipitation and western blotting

HEK293/EBNA cells were cultured in six-well plates. The confluent cells were harvested, washed and lysed in ice-cold lysis buffer containing 150 mM NaCl, 50 mM Tris HCl (pH 8.0), 1 mM EDTA, 1% Triton X-100, 10 mM NaF, 10 mM sodium pyrophosphate, 100 mM sodium orthovanadate plus peptase inhibitor mixture. The cell lysates were centrifuged at 14000 g, at 4 °C, for 10 min. For immunoprecipitation, the supernatant fractions were collected and then incubated at 4 °C with HA11 (HA antibody) for 15 h. The incubation was continued for another 1 h in the presence of 50 μL of a 1:1 slurry of protein G agarose (Pierce, Rockford, IL, USA) at 4 °C. The beads were washed three times with lysis buffer, Laemmli sample buffer was added and the samples were boiled for 5 min and centrifuged at 12000 g for 10 min. The supernatant fractions were subjected to western blot. In general, the supernatant fraction from immunoprecipitation or from cell lysates of transfected HEK293/EBNA cells were collected and electrophoresed on 10% SDS-polyacrylamide (SDS-PAGE) gels. Proteins were transferred to polyvinylidene fluoride membrane, and the blots were incubated with a 1:1000 dilution of a monoclonal HA11 or anti-Flag M2 antibody for 1 h at room temperature with rotation. The blots were washed three times and incubated for 1 h at room temperature with a 1:5000 dilution of a goat anti-mouse secondary antibody (Bio-Rad, Hercules, CA, USA) conjugated with horseradish peroxidase. After being washed three times, immunoreactivity of the samples was detected using an immune-star HRP developer system (Bio-Rad).

Calcium signal studies using a FLIPR instrument

HEK293/EBNA cells were seeded at a density of 50 000 cells per well in Biocoat poly-ᴅ-lysine-coated black-well, clear-bottom 96-well plates (Becton-Dickinson) and allowed to attach overnight. Before the assay, the cells were washed twice with Hank’s balanced salt solution-HEPES buffer (without bicarbonate and phenol red, 20 mM HEPES, pH 7.4) using a Lab Systems Cellwash plate washer. After being subjected to 45 min of dye loading (fluo-4 AM, 2 μM) in the dark at 37 °C in 5% CO2 humidified atmosphere, the plates were washed three times with Hank’s balanced salt solution-HEPES buffer to remove excess dye leaving 100 μL buffer in each well. Plates were equilibrated to 37 °C for 3 min prior to processing within the fluorometric imaging plate reader (FLIPR). The peak increase in fluorescence counts was recorded for each well. All data points were determined in triplicate. Mock-transfected cells (transfected with empty plasmid) were screened in parallel with FP- and alternative FP-co-transfected cells.

Prostamide antagonist pA2 determination

The methods used to study the effects of antagonists of prostamide F2α on bimatoprost-induced feline iridial stimulation and associated data analysis were identical.
to those previously described in more detail (Wan et al., 2007; Woodward et al., 2007). Briefly, feline iridial tissue specimens were mounted vertically under 50–100 mg tension in 10 mL jacketed organ baths. These contained Krebs solution maintained at 37 °C and gassed with 95% O₂ and 5% CO₂. Measurement of contractile activity was by means of force displacement transducers and was recorded on a polygraph chart recorder. After a 1-h equilibration period, vehicle and antagonist (AGN211335) were administered 30 min before the agonist dose–response curve was constructed. Agonist concentration–response curves were compared in the presence and absence of graded doses of antagonist (AGN211335). PGF₂α (10⁻⁷ M) was used at the beginning and end of each dose–response experiment as a reference compound. The pA₂ value for AGN211335 was obtained by plotting log₁₀ concentration–response-1 vs log₁₀ [antagonist] according to the method of Arunlakshana and Schild (1959), using Graphpad Prism 4 software (Woodward et al., 2007). Feline iridial experiments were performed by Covance Inc. (Madison, WI, USA).

Human recombinant prostaglandin receptors. Studies on human recombinant prostaglandin receptors were as previously described (Woodward et al., 2003; Matias et al., 2004). These involved Ca²⁺ signal studies and the use of a FLIPR instrument. The use of chimeric G protein cDNAs allowed responses to Gs- and Gi-coupled receptors to be measured as a Ca²⁺ signal. Thus, prostaglandin DP, EP₂ and EP₄ receptors were co-transfected with chimeric Gqs cDNA, and EP₃ receptor cDNA was co-transfected with chimeric Gqi cDNA (Molecular Devices, Sunnyvale, CA, USA), each containing a haemaglutinin (HA) epitope to detect protein expression. Stable transfection in HEK293/EBNA cells was achieved using the same vectors and Fugene 6 method as previously described. Stable transfectants were selected according to hygromycin resistance. FLIPR studies were performed as described in the previous section. AGN211335, 3 × 10⁻⁵ M, was given as a 10 min pretreatment, vehicle control wells were pretreated with an equal volume of ethanol. Agonists used for each receptor are listed as follows: BW245C for DP; PGE₂ for EP₁–₄; PGF₂α for FP; carprofen for IP and U-46619 for IP receptors. The peak fluorescence change in each well containing the drug was expressed relative to the controls. No activity was observed at DP₁–₂, EP₁–₄, FP or IP receptors for 3 × 10⁻⁵ M AGN211335. AGN211335 was a TP antagonist with a kᵦ of 10⁻¹ nm.

Activity at DP₂ (CRTH2) receptors was determined by externally using a proprietary FLIPR-based assay (GPCRProfiler, Millipore Corp., St Charles, MO, USA). The experimental conditions were identical to those employed at Allergan Inc.; PGD₂ was used as an agonist in this assay. AGN211335, 3 × 10⁻⁵ M, was found to have no activity at the DP₂ receptor.

Drugs

AGN211335 was synthesized by Selcia Ltd (Ongar, Essex, UK). Bimatoprost and PGF₂α were purchased from Cayman Chemical Co. (Ann Arbor, MI, USA). All stock solutions were prepared in ethanol. Screening methods for the prostamide antagonist, AGN211335, were as previously described (Woodward et al., 2007).

Figure 1 Reverse transcription-polymerase chain reaction analysis of the FP receptor gene in human ciliary bodies. (a) The location of PCR products of the correct size for known wild-type FP receptor, abbreviated as WT-FP, and FP receptor variants, abbreviated as AltFP, are indicated by arrows. Sequencing analysis showed that the band of AltFP contains multiple FP receptor variants. (b) The black bars represent the coding sequence for the wild-type FP receptor. There are five additional exons generated by mRNA alternative splicing, located between exon 2 and exon 3 and indicated as exon A, exon B, exon C, exon D and exon E.
Figure 2 Comparison of deduced amino-acid sequences of human FP receptor and FP receptor variants. The wild-type FP receptor is abbreviated as FP WT; the FP receptor variants are abbreviated as alt-1, alt-2, alt-3, alt-4, alt-5 and alt-6. An arrow in the carboxyl terminal area of the polypeptides indicates the location where the wild-type human FP receptor and the FP receptor variants alt-1 through alt-6 begin to diverge.

Figure 3 Physical interaction of FP and altFP4 receptors in HEK293/EBNA cells co-expressing FP and altFP receptors. (a) Membrane preparations from control HEK293/EBNA cells (lane 1) and cells stably transfected with HA-altFP4 (lane 2) and cells stably co-transfected with Flag-FP and HA-altFP4 (lane 3) were resolved by 10% sodium dodecyl sulphate-polyacrylamide (SDS-PAGE), transferred onto a polyvinylidene fluoride membrane and probed with anti-HA antibody, HA11. Arrows indicate altFP4 receptor or altFP4 homodimer or FP-altFP4 heterodimer. (b) FP receptors were immunoprecipitated (IP) with anti-HA antibody, from HEK293/EBNA cells transfected with Flag-FP (lane 1), HA-altFP4 (lane 2) or both (lane 3). Proteins were resolved on SDS-PAGE and probed with anti-Flag antibody in immunoblot analyses. Arrows denote FP receptors. HC represents heavy chain. LC represents light chain. HA, haemagglutinin.
Figure 4 Continued.
added and recorded for additional 600 s. (II) Real-time fluorescence traces were recorded immediately following PGF 2\(\alpha\) treatment. (III) Real-time fluorescence traces were recorded by FLIPR following PGF\(_{2\alpha}\) (10\(^{-7}\) M) or bimatoprost (10\(^{-7}\) M) in HEK293/EBNA cells expressing wt-FP receptor. Real-time fluorescence traces were recorded immediately following PGF\(_{2\alpha}\) (10\(^{-7}\) M) or bimatoprost (10\(^{-7}\) M) treatment. (c) Real-time fluorescence traces were recorded by FLIPR in HEK293/EBNA cells expressing altFP4 receptor following PGF\(_{2\alpha}\) (10\(^{-7}\) M, I) or bimatoprost (10\(^{-7}\) M, II) treatment for 600 s. (d) Real-time fluorescence traces were recorded by FLIPR in HEK293/EBNA cells co-expressing FP and altFP4 receptors following PGF\(_{2\alpha}\) (10\(^{-7}\) M, I) or bimatoprost (10\(^{-7}\) M, II) treatment in Ca\(^{2+}\)-free buffer for 600s. (e) The first peak increase of fluorescence counts was recorded in each treatment (al-dII). The data represent mean ± s.d. of three independent experiments. ***\(P<0.01\) versus PGF\(_{2\alpha}\) treatment (al).

Statistical analysis

Data are expressed as mean ± s.d. A significant difference between treatments was assessed by the one-way ANOVA, followed by a Bonferroni's post test procedure for multiple comparisons. Differences between treatments were considered to be significant if \(P<0.05\). All statistical values were calculated using GraphPad Prism 4 software (GraphPad, San Diego, CA, USA).

Results

Identification of prostaglandin FP receptor variants in human eyes

To identify potential alternative mRNA splicing variants of the human FP receptor, reverse transcription-polymerase chain reaction analyses were performed using human ciliary body cdNA libraries and two FP-specific primers, p1, which is complementary to FP exon 2 sequence, and p2, which is complementary to FP exon 3 sequence. PCR products were subcloned and sequenced (Figure 1a). Sequence analysis showed that there are five additional exons between exon 2 and exon 3 (Figure 1b). The human FP receptor gene contains three exons. The coding region of the FP receptor is located within exon 2 and exon 3. An insertion of the additional exon in the coding region causes frame shifts that lead to encode C terminus-truncated FP receptors (altFPs). Figure 2 shows the deduced amino-acid sequences of human FP (FP) and FP variants (altFPs). The FP and altFPs are identical up to amino acid 266 (leucine-266), at which point there is an insertion of additional exon A, exon B, exon C and exon E to form altFP1, altFP2, altFP4 and altFP5, respectively, and an insertion of two additional exons, exon A and B to form altFP3 and two additional exons, exon D and exon E to form altFP6. The amino-acid sequences of altFPs diverge from those of FP at leucine 266, which is close to the predicted carboxyl terminal end of TM6. For the human wild-type FP receptor, there are a total of 93 amino acids downstream of leucine-266, which constitute the third extracellular loop (−19 amino acids), TM7 (−22 amino acids) and the intracellular carboxyl terminus (−52 amino acids). A hydropathic profile analysis of FP and altFPs shows that all altFPs do not have a seventh TM domain and that its carboxyl terminus is extracellular. All altFPs were stably expressed in HEK293/EBNA cell lines. Cells expressing alternative FP receptor mRNA splicing variants were screened with FP ligands and bimatoprost using the FLIPR assay and could not be activated by 10\(\mu\)M PGF\(_{2\alpha}\) or bimatoprost (data not shown). This is entirely consistent with data from a previous study demonstrating that the first alternative variant of human FP receptor RNA (Vielhauer et al., 2004) is not the prostamide receptor. We thought that altFPs, as six-domain receptors, form dimers with FP receptors and function as regulators of the FP receptor. The next experiments were done to determine whether altFPs could form dimers with FP and to characterize their functions. Initial screening of the HEK293/EBNA cells co-transfected FP with each of altFPs (altFP1 and altFP6) showed that the co-transfected HEK293/EBNA cells responded to bimatoprost with a similar Ca\(^{2+}\) mobilization profile to that of Ca\(^{2+}\) mobilization. As the longer C terminus of altFP4 provides a better prognosis for, perhaps, eventually designing a specific antibody to this isoform, we focused on characterizing the pharmacology of FP and its interaction with the altFP4 receptor heterodimer in the following studies.

Physical interactions between FP and altFP4 receptors

We initially developed stable cell lines of HEK293/EBNA cells expressing epitope-tagged FP and altFP receptors because this cell type has a high transfection efficiency and wide application in studies involving G protein-coupled receptors. Infection of HEK293/EBNA cells with Lenti-Pro-HA-altFP4 or

Figure 4 Ca\(^{2+}\) signalling of HEK293/EBNA cells co-expressing FP and altFP4 receptors following prostaglandin F\(_{2\alpha}\) (PGF\(_{2\alpha}\)) and bimatoprost treatments. (a) Real-time fluorescence traces were recorded by fluorometric imaging plate reader (FLIPR) in HEK293/EBNA cells co-expressing FP and altFP4 receptors following PGF\(_{2\alpha}\) (10\(^{-7}\) M) or bimatoprost (10\(^{-7}\) M) treatment. (I) After recording baseline for 300 s, 10\(^{-7}\) M PGF\(_{2\alpha}\) was added and recorded for additional 600 s. (II) After recording baseline for 300 s, 10\(^{-7}\) M bimatoprost was added and recorded for additional 600 s. (b) Real-time fluorescence traces were recorded by FLIPR following PGF\(_{2\alpha}\) (10\(^{-7}\) M, I) or bimatoprost (10\(^{-7}\) M, II) in HEK293/EBNA cells expressing wt-FP receptor. Real-time fluorescence traces were recorded immediately following PGF\(_{2\alpha}\) (10\(^{-7}\) M) or bimatoprost (10\(^{-7}\) M) treatment. (c) Real-time fluorescence traces were recorded by FLIPR in HEK293/EBNA cells expressing altFP4 receptor following PGF\(_{2\alpha}\) (10\(^{-7}\) M, I) or bimatoprost (10\(^{-7}\) M, II) treatment for 600 s. (d) Real-time fluorescence traces were recorded by FLIPR in HEK293/EBNA cells co-expressing FP and altFP4 receptors following PGF\(_{2\alpha}\) (10\(^{-7}\) M, I) or bimatoprost (10\(^{-7}\) M, II) treatment in Ca\(^{2+}\)-free buffer for 600 s. (e) The first peak increase of fluorescence counts was recorded in each treatment (al-dII). The data represent mean ± s.d. of three independent experiments. ***\(P<0.01\) versus PGF\(_{2\alpha}\) treatment (al).
with Lenti-Pro-Flag-FP or co-infection of HEK293/EBNA cells with Lenti-Pro-HA-altFP4 and Lenti-Pro-Flag-FP, with an equal amount of virus, resulted in the appearance of multiple bands on immunoblots that were immunoreactive to HA11, a mouse monoclonal anti-HA antibody (Figure 3a, lanes 2 and 3). These bands were not present in the control cells.
mean expressing FP and altFP4 receptor pretreated with buffer (Figure 3b, lane 3). The data represent mean ± s.d. of three independent experiments. ***P<0.01 versus bimatoprost alone (bl).

To clarify whether the higher molecular weight band (75 kDa; Figure 3a, lane 3) was derived from receptor heterodimerization or association with other unknown proteins, we conducted differential immunoprecipitation studies of FP-altFP4 receptor heterodimer, we performed Ca2+ mobilization studies on HEK293/EBNA cells co-expressing epitope-tagged HA-altFP4 and Flag-FP and HEK293/EBNA cells co-expressing FP and altFP4 receptors, using a FLIPR.

To investigate the effects of PGF2α and bimatoprost on FP-altFP4 receptor heterodimer, we performed Ca2+ mobilization studies on HEK293/EBNA cells co-expressing FP and altFP4 receptors. Real-time fluorescence traces were recorded by fluorometric imaging plate reader instrumentation in HEK293/EBNA cells co-expressing FP and altFP4 receptors following the antagonist protocol. (a) HEK293/EBNA cells co-expressing FP and altFP4 receptor pretreated with buffer (I), AGN211335 at 10⁻⁸ M (II), AGN211335 at 10⁻⁷ M (III) and AGN211335 at 10⁻⁶ M (IV) for 300 s, immediately followed by 10⁻⁷ M prostaglandin F2α (PGF2α) treatment for 600 s. (b) HEK293/EBNA cells co-expressing FP and altFP4 receptors pretreated with buffer (I), AGN211335 at 10⁻⁶ M (II), AGN211335 at 10⁻⁷ M (III) and AGN211335 at 10⁻⁸ M (IV) for 300 s, immediately followed by 10⁻⁷ M bimatoprost treatment for 600 s. (c) The first peak increase of fluorescence counts was recorded for each treatment (al-bIV). The data represent mean ± s.d. of three independent experiments. No significant differences between treatments were observed. (d) The second peak increase of fluorescence counts was recorded after bimatoprost treatment (bl-IV). The data represent mean ± s.d. of three independent experiments. ***P<0.01 versus bimatoprost alone (bl).
investigate further the mechanism of the second-phase Ca\(^{2+}\) signal initiated by bimatoprost, Ca\(^{2+}\)-free buffer was used in the FLIPR assay. Both PGF\(_{2\alpha}\) and bimatoprost elicited a rapid increase in intracellular Ca\(^{2+}\) concentration followed by an immediate return to baseline (Figure 4dI and II), suggesting that the bimatoprost-initiated second-phase Ca\(^{2+}\) mobilization may be attributed to store-operated Ca\(^{2+}\) influx. The data are summarized in Figure 4e. To determine whether the bimatoprost-initiated second-phase Ca\(^{2+}\) mobilization is due to Ca\(^{2+}\) release from a second intracellular Ca\(^{2+}\) store, thapsigargin, a Ca\(^{2+}\)-ATPase inhibitor, was used to deplete the endoplasmic reticulum Ca\(^{2+}\) store in the cells before bimatoprost treatment. The experiments showed that there is no further Ca\(^{2+}\) release upon bimatoprost treatment after endoplasmic reticulum Ca\(^{2+}\) stores were completely depleted, suggesting that bimatoprost-initiated second-phase Ca\(^{2+}\) mobilization may not be due to the release of Ca\(^{2+}\) from a second intracellular Ca\(^{2+}\) store (data not shown).
More importantly, the prostamide antagonist, AGN211335, selectively inhibited the bimatoprost-initiated second phase of Ca$^{2+}$ mobilization in HEK293/EBNA cells co-expressing FP and altFP4 receptors, in a dose-dependent manner (Figure 5bI–IV), but did not block the steady-state phase of that induced by PGF$_2\alpha$ (Figure 5aI–IV). A summary of these data is shown in Figure 5c and d.

To determine whether the prostamide antagonist selectively blocks bimatoprost-induced biochemical signal cascades, we used the Cyr61 factor and MLC as biochemical signals to perform Cyr61 mRNA expression studies and MLC phosphorylation studies. Cyr61 has been well-characterized and regulates extracellular matrix remodelling through activation of matrix metalloproteinases (Liang et al., 2003). Phosphorylation of MLC causes ciliary muscle contraction with a resultant widening of intermuscular spaces (Ansari et al., 2003). Increases in uveoscleral outflow result from extracellular matrix remodelling of the ciliary body and widened intermuscular spaces. Both PGF$_2\alpha$ and bimatoprost induced Cyr61 mRNA upregulation and MLC phosphorylation in HEK293/EBNA cells co-expressing FP and altFP4 receptors (Figures 6a and 7a). Even though PGF$_2\alpha$ induced Cyr61 mRNA upregulation and MLC phosphorylation in HEK293/EBNA cells expressing the wild-type FP receptor, bimatoprost produced no effects (Figure 6b). The prostamide antagonist, AGN211335, selectively blocked both bimatoprost-induced Cyr61 mRNA upregulation and bimatoprost-induced MLC phosphorylation in HEK293/EBNA cells co-expressing FP and altFP4 receptors, but not those induced by PGF$_2\alpha$ (Figures 6a and 7a). We also investigated the effects of thapsigargin, as it activates store-operated channels independently of G protein-coupled receptors. However, it failed to induce Cyr61 mRNA upregulation (Figure 6b), indicating that induction of Cyr61 mRNA upregulation requires more signal transduction pathways, possibly those involving the activation of G12/13 and RhoA (Liang et al., 2003). These data fit well with the prostamide antagonist profile, which selectively inhibits bimatoprost-induced feline iris contraction, but not that produced by PGF$_2\alpha$.

Figure 7 Effects of prostaglandin $F_2\alpha$ (PGF$_2\alpha$) and bimatoprost on myosin light chain (MLC) phosphorylation. (a) HEK293/EBNA cells co-expressing FP and altFP4 receptors were pretreated with 10^{-6} M AGN211335 for 15 min (lanes 2 and 5) and with 10^{-7} M PGF$_2\alpha$ for 30 min (lanes 2 and 3) or with 10^{-7} M bimatoprost for 30 min (lanes 5 and 6). Arrows indicate MLC phosphorylation. (a, right panel) The data represent mean ± s.d. of three independent experiments. **$P<0.01$ versus control; ***$P<0.01$ versus bimatoprost alone. The intensities of the total MLC bands were used to normalize the protein-loading differences. (b) HEK293/EBNA cells expressing the FP receptor were pretreated with 10^{-6} M AGN211335 for 15 min (lanes 2 and 5) and with 10^{-7} M PGF$_2\alpha$ for 30 min (lanes 2 and 3) or with 10^{-7} M bimatoprost for 30 min (lanes 5 and 6). Arrows indicate MLC phosphorylation. (b, right panel) The data represent mean ± s.d. of three independent experiments. **$P<0.01$ versus control. The intensities of the total MLC bands were used to normalize the protein-loading differences.
Pharmacological characterization of the prostamide antagonist AGN211335. The effects of graded doses of AGN211335 pretreatment on feline iridial contraction produced by PGF$_{2\alpha}$ and prostamide F$_{2\alpha}$ are depicted in Figure 8. AGN211335, over the dose range 3 \times 10$^{-7}$–3 \times 10$^{-5}$ M, did not have a significant effect on the iridial response to PGF$_{2\alpha}$ (Figure 8a). In marked contrast, and at all the doses used, AGN211335 produced a dose-dependent rightward shift of the prostamide dose–response curve (Figure 8b). Thus, in a single preparation, AGN211335 selectively blocks the prostamide effect without altering the response to PGF$_{2\alpha}$. As described in a previous study (Woodward et al., 2007), the antagonist effects were never totally surmounted by 10 nM prostamide F$_{2\alpha}$; this has been attributed to off-target activity for prostamide F$_{2\alpha}$ at prostanoid FP receptor in the feline iris (Matias et al., 2004; Spada et al., 2005). The AGN211335 antagonism of the prostamide F$_{2\alpha}$ was subjected to Schild analysis, as previously described (Woodward et al., 2007). AGN211335 appeared to be a competitive antagonist with a pA$_2$ of 7.50. Finally, bimatoprost stimulation of feline iridial contraction did not occur in Ca$^{2+}$-free medium (Figure 8c). AGN211335 was screened for activity at other prostanoid receptors using the full range of human recombinant receptors. No activity was observed at DP$_{1,2}$, EP$_{1,4}$, FP or IP receptors for 3 \times 10$^{-5}$ M AGN211335. AGN211335 is also a TP antagonist, with a K_b of 101 nM, but is less potent as a TP receptor antagonist than the prototype prostamide antagonist AGN204396 (Woodward et al., 2007). As functional TP receptors are not present in the feline iris preparation, this activity of AGN211335 does not interfere with the analysis of FP and prostamide receptor pharmacology.

Discussion

The pharmacology and physiological significance of truncated prostanoid receptors lacking an intracellular carboxyl terminus has remained obscure. Although transcripts for
such truncated isoforms of FP (Vielhauer et al., 2004) and EP₁ (Okuda-Ashtaka et al., 1996) receptors were found in tissues, no ligand-dependent activation was observed (Okuda-Ashtaka et al., 1996; Vielhauer et al., 2004). Likewise, the FP receptor variants described herein show no meaningful G protein-coupled receptor-like activity. However, these novel FP receptor mRNA splicing variants are capable of heterodimerization with wild-type FP receptors. These heterodimers are distinct from the component monomers in terms of both ligand recognition and Ca²⁺ signalling. For PGF₂α, wild-type FP and the FP-altFP4 heterodimer respond in an identical manner with a Ca²⁺ transient followed by an elevated steady-state phase. These heterodimers differ from wild-type FP receptors in that they appear highly responsive to the prostamide analogue bimatoprost (Woodward et al., 2003; Matias et al., 2004). Moreover, interaction with bimatoprost results in a biphasic Ca²⁺ signal composed of a rapid transient response succeeded by secondary Ca²⁺ waves. The transient phase represents Ca²⁺ release from intracellular stores. The secondary phase appears to involve Ca²⁺ influx and is absent when extracellular Ca²⁺ is removed. The secondary phase of Ca²⁺ signalling is susceptible to the prostamide antagonist AGN211335. This suggests that FP-altFP receptor heterodimerization may represent the putative prostamide receptor (Gandolfi and Cimino, 2003; Woodward et al., 2003, 2007; Matias et al., 2004).

There are a number of close correlations between the FP-altFP recombinant receptor model and prostamide pharmacology observed in cells, tissues and living animals. To date, prostamide F₂α and bimatoprost have been found to be active only in cells and tissues that express functional prostaglandin FP receptors (Woodward et al., 2001, 2003, 2007; Liang et al., 2003; Richter et al., 2003; Matias et al., 2004). This is consistent with the presence of FP-altFP heterodimers, which are responsive to prostamides and are indistinguishable from FP receptors with respect to PGF₂α effects. A close connection to the FP receptor gene is further indicated by studies claiming that the ocular hypotensive effect of bimatoprost is absent in -/FP mice (Crowston et al., 2005; Ota et al., 2005). Upregulation of Cyr61 appears to be a common upstream event in the initiation of ciliary muscle re-modelling and resultant increases in uveoscleral outflow, which are common to ocular hypertensive prostaglandins, FP and EP₂ receptor agonists (Liang et al., 2003; Richter et al., 2003). As human ciliary muscle cells are sensitive to bimatoprost, mRNA for the newly discovered altFP variants would be expected to be present in these cells, and this has been shown to be the case.

The discovery of selective antagonists has been of paramount importance in defining prostamide pharmacology. The prototypical prostamide antagonist AGN204396 was described in 2007 (Woodward et al., 2007), but since then, rapid progress has occurred. Second-generation prostamide antagonists, such as AGN211334, which has been shown to block bimatoprost activity in human eye perfusion model (Wan et al., 2007) and AGN211335, are approximately 100 times more potent than their prototype. The susceptibility of the bimatoprost-induced secondary Ca²⁺ influx response in FP-altFP heterodimer to blockade by AGN211335 applies to all prostamide-sensitive preparations. The lack of inhibition afforded by AGN211335 on PGF₂α-induced Ca²⁺ signalling in the FP-altFP receptor model similarly applies to prostamide-sensitive cells and tissues. Thus, AGN211335 dose-dependently blocks the feline iridial response to prostamide F₂α, but not to PGF₂α. It is important to note that feline iridial contraction is entirely dependent on extracellular Ca²⁺. It follows that AGN211335 inhibition of the prostamide-induced secondary Ca²⁺ signals associated with FP-altFP heterodimer also correlates with Ca²⁺-dependent contraction of feline iridial tissue. To date, there is no feline FP gene structure available in a public database. It is not known if altFPs are expressed in feline iridial tissue. As it is established that the effects of prostamides and the prostamide antagonist AGN211335 in the FP-altFP4 receptor model correspond closely to those in the feline iridial contractile response model, it is reasonable for us to speculate that feline iridial tissue may express FP-altFP heterodimers that are sensitive to prostamide F₂α and AGN211335. The mechanism of the AGN211335-insensitive transient release of intracellular Ca²⁺ produced by bimatoprost is not readily apparent. It appears that the FP-altFP4 heterodimer maintains responsiveness to PGF₂α and acquires sensitivity to prostamides, with a common initial Ca²⁺ signalling pathway, involving release of Ca²⁺ from intracellular stores. Thereafter, the Ca²⁺ signalling pathways diverge, as reflected by subsequent phases that are pharmacologically and qualitatively distinct. Antagonism of recombinant and native prostamide-sensitive FP-altFP heterodimeric receptors extends beyond Ca²⁺ signalling and smooth muscle contraction. Bimatoprost-induced Cyr61 mRNA upregulation in human ciliary smooth muscle cells is replicated in the FP-altFP4 heterodimeric receptor model and, importantly, is blocked by the prostamide antagonist AGN211335 (Liang et al., 2003). Finally, bimatoprost-induced MLC phosphorylation associated with FP-altFP4 heterodimeric receptors was blocked by AGN211335. Again, in the case of both MLC phosphorylation and Cyr61 upregulation, PGF₂α effects were not affected by pretreatment with the prostamide antagonist AGN211335.

The action of prostamides has been found to involve mechanisms different from prostaglandin FP receptor-mediated responses in the primate eye. First, the effect of bimatoprost in the ocular hypertensive monkey model of glaucoma (Gagliuso et al., 2004) has been shown to be additive to that of latanoprost, the FP receptor agonist prodrug (Resul et al., 1997). This fits with the FP-altFP heterodimeric receptor concept, as divergent secondary Ca²⁺ signalling pathways may translate into an additive effect for prostamides and prostaglandin FP receptor agonists on IOP. A pharmacological distinction between bimatoprost and latanoprost has also been made at the clinical level. Glaucomatous human subjects refractory to latanoprost treatment were found to be susceptible to bimatoprost, which produced a marked reduction of IOP (Gandolfi and Cimino, 2003). This fits particularly well with the FP-altFP heterodimer prostamide receptor hypothesis as both bimatoprost and latanoprost would be expected to be active. The recent discovery that certain single-nucleotide polymorphisms associated with the FP receptor account for latanoprost insensitivity in the human eye (Sakurai et al., 2007) may be explained by...
the following hypothesis: heterodimerization of the mutated wt FP receptor with an alternative mRNA splicing variant of the FP receptor becomes insensitive to anionic FP receptor agonists but retains sensitivity to bimatoprost. It is now well-established that receptors of the G protein-coupled receptor variety form heterodimers and that these can dramatically alter receptor function in terms of ligand recognition, second messenger signalling and receptor trafficking (Jordan and Devi, 1999; Breitweiser, 2004; Wilson et al., 2004; Bulenger et al., 2005; Prinster et al., 2005). Heterodimerization may create an entirely unique receptor-binding site (Jordan and Devi, 1999; Wilson et al., 2004). Prostanoid receptors have also been shown to dimerize; these occur as an EP1/s2-adenoreceptor heterodimeric complex (McGraw et al., 2006) and dimerization of the IP receptor and the TP receptor isoform (Wilson et al., 2004). In terms of second messenger signalling, the IP/TP heterodimer confers PGH2-like properties to thromboxane mimetics in the form of robust TP receptor-mediated cAMP generation (Wilson et al., 2004). An alternative binding site for isoprostane E2 was apparently created in the case of IP/TP, which may be regarded as analogous to the prostamide recognition site apparent for the FP-altFP heterodimer. Isoprostane E2-induced increases in cAMP have been shown to be dependent on TP receptor expression, but are not inhibited by the TP antagonist SQ 29548, which sets them apart from the IP/TP heterodimer (Wilson et al., 2004). Formation of a further ligand-binding site is a frequent occurrence of G protein-coupled receptor dimerization (Jordan and Devi, 1999; Breitweiser, 2004; Prinster et al., 2005), and prostanoid receptor heterodimeric complexes appear to be no exception. For IP/TP, a unique isoprostane E2 binding site occurs. In the case of FP-altFP, prostamide responsiveness is conferred.

Prostaglandin receptor heterodimerization within and outside the prostanoi receptor classification has already been shown to have important physiological implications (Jordan and Devi, 1999; Breitweiser, 2004; Wilson et al., 2004; Bulenger et al., 2005; Prinster et al., 2005; McGraw et al., 2006). EP1/s2-adenoreceptor heterodimerization has an impact on airway tone, in that EP1 receptor stimulation may reduce s2-adenoreceptor-mediated cAMP formation and resultant bronchodilatation (McGraw et al., 2006). The IP/TP heterodimer may influence the thromboxane/prostacyclin balance by providing an additional PGH2-like effect to oppose and limit TP-mediated effects (Wilson et al., 2004). Novel ligand-recognition sites emerge as a result of prostanooid–prostanioid receptor heterodimerization. Thus, an isoprostane binding site is created by the IP/TP, heterodimers (Wilson et al., 2004). The FP-altFP receptor heterodimers confer prostamide sensitivity, which is lacking in wild-type FP receptors. It is not easy to rule out the possibility that the FP-altFP heterodimers are putative prostamide receptors. It appears that prostamide activity observed in freshly isolated cells (Gagliuso et al., 2004; Spada et al., 2005) and tissues (Woodward et al., 2003, 2007; Mattas et al., 2004), such as the feline iris described here, may be modelled by a recombiant system involving co-expression of FP and altFP receptors, as suggested by the effects of bimatoprost.

Conflict of interest

The authors state no conflict of interest.

References

Adams JW, Migita DS, Yu MK, Young R, Hellickson MS, Castro-Vargas FE et al. (1996). Prostaglandin F2 alpha stimulates hypertrophic growth of cultured neonatal rat ventricular myocytes. J Biol Chem 271: 1179–1186.

Ansari HR, Davis AM, Kaddour-Djebbar I, Abdel-Latif AA (2003). Effects of prostaglandin F2alpha and latanoprost on phosphoinositide turnover, myosin light chain phosphorylation and contraction in cat iris sphincter. J Ocul Pharmacol Ther 19: 217–231.

Arunlakshana O, Schild HO (1959). Some quantitative use of drug antagonists. Br J Pharmacol Chemother 257: 48–58.

Berglund BA, Boring DL, Howlett AC (1999). Investigation of structural analogs of prostaglandin amides for binding to and activation of CB1 and CB2 cannabinoid receptors in rat brain and human tonsils. Adv Exp Med Biol 469: 527–533.

Breitweiser GA (2004). G protein-coupled receptor oligomerization: implications for G protein activation and cell signalling. Circ Res 94: 17–27.

Bulenger S, Marullo S, Bouvier M (2005). Emerging role of homo- and heterodimerization in G-protein-coupled receptor biosynthesis and maturation. Trends Pharmacol Sci 26: 131–137.

Burstein SH, Rossetti RG, Yagen B, Zierer RB (2000). Oxidative metabolism of anandamide. Prostaglandins Other Lipid Mediat 61: 29–41.

Crowton JG, Lindsey JD, Morris CA, Wheeler L, Medeiros FA, Weinreb RN (2005). Effect of bimatoprost on intraocular pressure in prostaglandin F receptor knockout mice. Invest Ophthalmol Vis Sci 46: 4571–4577.

Fujino H, Srinivasan D, Pierce KL, Regan JW (2000). Differential regulation of prostaglandin F(2alpha) receptor isoforms by protein kinase C. Mol Pharmacol 57: 353–358.

Gagliuso DJ, Wang RF, Mittag TW, Podos SM (2004). Additivity of bimatoprost or travoprost to latanoprost in glaucomatous monkey eyes. Arch Ophthalmol 122: 1342–1347.

Gandolfi SA, Cinino L (2003). Effect of bimatoprost on patients with primary open-angle glaucoma or ocular hypertension who are nonresponders to latanoprost. Ophthalmol 110: 609–614.

Gaton DD, Sagart T, Lindsey JD, Gabelt BA, Kaufman PL, Weinreb RN (2001). Increased matrix metalloproteinases 1, 2, and 3 in the monkey uveoscleral outflow pathway after topical prostaglandin F(2alpha)-isopropyl ester treatment. Arch Ophthalmol 119: 1165–1170.

Horton EW, Poyser NL (1976). Uterine luteolytic hormone: a prostaglandin receptor heterodimerization within and outside the prostanoi receptor classification has already been shown to have important physiological implications (Jordan and Devi, 1999; Breitweiser, 2004; Wilson et al., 2004; Bulenger et al., 2005; Prinster et al., 2005, 2006). EP1/s2-adenoreceptor heterodimerization has an impact on airway tone, in that EP1 receptor stimulation may reduce s2-adenoreceptor-mediated cAMP formation and resultant bronchodilatation (McGraw et al., 2006). The IP/TP heterodimer may influence the thromboxane/prostacyclin balance by providing an additional PGH2-like effect to oppose and limit TP-mediated effects (Wilson et al., 2004). Novel ligand-recognition sites emerge as a result of prostanooid–prostanioid receptor heterodimerization. Thus, an isoprostane binding site is created by the IP/TP, heterodimers (Wilson et al., 2004). The FP-altFP receptor heterodimers confer prostamide sensitivity, which is lacking in wild-type FP receptors. It is not easy to rule out the possibility that the FP-altFP heterodimers are putative prostamide receptors. It appears that prostamide activity observed in freshly isolated cells (Gagliuso et al., 2004; Spada et al., 2005) and tissues (Woodward et al., 2003, 2007; Mattas et al., 2004), such as the feline iris described here, may be modelled by a recombiant system involving co-expression of FP and altFP receptors, as suggested by the effects of bimatoprost.
EP1 receptors directly modulate beta2-adrenergic receptors within a unique heterodimeric complex. *J Clin Invest* **116**: 1400–1409.

Okuda-Ashitaka E, Sakamoto K, Ezashi KM, Ito S, Hayashi O (1996). Suppression of prostaglandin E receptor signaling by the variant form of EP1 subtype. *J Biol Chem* **271**: 31255–31261.

Ota T, Aihara M, Narumiya S, Arai M (2005). The effects of prostaglandin analogues on IOP in prostanoid FP-receptor-deficient mice. *Invest Ophthalmol Vis Sci* **46**: 4159–4163.

Prinster SC, Hauge C, Hall RA (2005). Heterodimerization of G protein-coupled receptors: specificity and functional significance. *Pharmacol Rev* **57**: 289–298.

Resul B, Stjernschantz J, Selén G, Bito L (1997). Structure–activity relationships and receptor profiles of some ocular hypotensive prostanooids. *Surv Ophthalmol* **41**: 47–52.

Richter M, Krauss AH, Woodward DF, Lutjen-Drecoll E (2003). Morphological changes in the anterior eye segment after long-term treatment with different receptor selective prostaglandin agonists and a prostamide. *Invest Ophthalmol Vis Sci* **44**: 4419–4426.

Ross RA, Craib SJ, Stevenson LA, Pertwee RG, Henderson A, Toole J et al. (2002). Pharmacological characterization of the anandamide cyclooxygenase metabolite: prostaglandin E2 ethanolamide. *J Pharmacol Exp Ther* **301**: 900–907.

Sakurai M, Higashide T, Takahashi M, Sugiyama K (2007). Association between genetic polymorphisms of the prostaglandin F2alpha receptor gene and response to latanoprost. *Ophthalmol* **114**: 1039–1046.

Smith WL, Marnett LJ, Dewitt DL (1991). Prostaglandin and thromboxone biosynthesis. *Pharmacol Ther* **49**: 153–179.

Spada CS, Krauss AH, Woodward DF, Chen J, Protzman CE, Nieves AL et al. (2005). Bimatoprost and prostaglandin F2 alpha selectively stimulate intracellular calcium signaling in different cat iris sphincter cells. *Exp Eye Res* **80**: 135–145.

Toh H, Ichikawa A, Narumiya S (1995). Molecular evolution of receptors for eicosanoids. *FEBS Lett* **361**: 17–21.

Vielhauer GA, Fujino H, Regan JW (2004). Cloning and localization of hFP(S): a six-transmembrane mRNA splice variant of the human FP prostanoid receptor. *Arch Biochem Biophys* **421**: 175–185.

Wan Z, Woodward DF, Cornell C, Flizi H, Martos J, Pettit S et al. (2007). Bimatoprost, prostamide activity, and conventional drainage. *Invest Ophthalmol Vis Sci* **48**: 4107–4115.

Weinreb RN, Lindsey JD (2002). Metalloproteinase gene transcription in human ciliary muscle cells with latanoprost. *Invest Ophthalmol Vis Sci* **43**: 716–722.

Wilson SJ, Roche AM, Kostetskaia E, Smyth EM (2004). Dimerization of the human receptors for prostacyclin and thromboxane facilitates thromboxane receptor-mediated CAMP generation. *J Biol Chem* **279**: 53036–53047.

Woodward DF, Krauss AH, Chen J, Lai RK, Spada CS, Burk RM et al. (2001). The pharmacology of bimatoprost (Lumigan). *Surv Ophthalmol* **45**: S337–S345.

Woodward DF, Krauss AHP, Chen J, Liang Y, Li C, Protzman E et al. (2003). Pharmacological characterization of a novel antiglaucoma agent, Bimatoprost (AGN 192024). *J Pharmacol Exp Ther* **305**: 772–785.

Woodward DF, Krauss AHP, Wang JW, Protzman CE, Nieves AL, Liang Y et al. (2007). Identification of an antagonist that selectively blocks the activity of prostamides (prostaglandin-ethanolamides) in the feline iris. *Br J Pharmacol* **150**: 342–352.

Woodward DF, Lawrence RA, Fairbairn CE, Shan T, Williams LS (1993). Intraocular pressure effects of selective prostanoid receptor agonists involve different receptor subtypes according to radioligand binding studies. *J Lipid Mediat* **6**: 545–553.

Yu M, Ives D, Ramesh CS (1997). Synthesis of prostaglandin E2 ethanolamide from anandamide by cyclooxygenase-2. *J Biol Chem* **272**: 21181–21186.