Prediction and types of dead-space fraction during exercise in male chronic obstructive pulmonary disease patients

Ming-Lung Chuang, MDa,b,*, Benjamin Yung-Thing Hsieh, BAc, I-Feng Lin, DrPHd

Abstract
A high dead space (V\textsubscript{D}) to tidal volume (V\textsubscript{T}) ratio during peak exercise (V\textsubscript{D}/V\textsubscript{Tpeak}) is a sensitive and consistent marker of gas exchange abnormalities; therefore, it is important in patients with chronic obstructive pulmonary disease (COPD). However, it is necessary to use invasive methods to obtain V\textsubscript{D}/V\textsubscript{Tpeak} as noninvasive methods, such as end-tidal PCO\textsubscript{2} (P\textsubscript{ETCO\textsubscript{2}peak}) and P\textsubscript{ETCO\textsubscript{2}} adjusted with Jones’ equation (P\textsubscript{JCO\textsubscript{2}peak}) at peak exercise, have been reported to be inconsistent with arterial PCO\textsubscript{2} at peak exercise (P\textsubscript{aCO\textsubscript{2}peak}). Hence, this study aimed to generate prediction equations for V\textsubscript{D}/V\textsubscript{Tpeak} using statistical techniques, and to use P\textsubscript{ETCO\textsubscript{2}peak} and P\textsubscript{JCO\textsubscript{2}peak} to calculate the corresponding V\textsubscript{D}/V\textsubscript{Tpeak}S (i.e., V\textsubscript{D}/V\textsubscript{Tpeak,S} = V\textsubscript{D}/V\textsubscript{Tpeak}). A total of 46 male subjects diagnosed with COPD who underwent incremental cardiopulmonary exercise tests with P\textsubscript{aCO\textsubscript{2}} measured via arterial catheterization were enrolled. Demographic data, blood laboratory tests, functional daily activities, chest radiography, two-dimensional echocardiography, and lung function tests were assessed. In multivariate analysis, diffusing capacity, vital capacity, mean inspiratory tidal flow, heart rate, and oxygen pulse at peak exercise were selected with a predictive power of 0.74. There were no significant differences in the PCO\textsubscript{2peak} values and the corresponding V\textsubscript{D}/V\textsubscript{Tpeak} values across the three types (both p=NS). In subjects with COPD, V\textsubscript{D}/V\textsubscript{Tpeak} can be estimated using statistical methods and the P\textsubscript{ETCO\textsubscript{2}peak} and P\textsubscript{JCO\textsubscript{2}peak}. These methods may have similar predictive power and thus can be used in clinical practice.

Abbreviations: FEV\textsubscript{1} = forced expired volume in one second, P\textsubscript{aCO\textsubscript{2}} = arterial PCO\textsubscript{2}, P\textsubscript{B} = barometric pressure, P\textsubscript{ETCO\textsubscript{2}} = mixed expired PCO\textsubscript{2}, P\textsubscript{ETCO\textsubscript{2}peak} = end-tidal PCO\textsubscript{2}, P\textsubscript{JCO\textsubscript{2}peak} = P\textsubscript{ETCO\textsubscript{2}} adjusted with Jones’ equation, V\textsubscript{D}/V\textsubscript{Tpeak} = V\textsubscript{D} fraction at peak exercise measured, V\textsubscript{D}/V\textsubscript{Tpeak,S} = V\textsubscript{D}/V\textsubscript{Tpeak} calculated using end-tidal PCO\textsubscript{2}, V\textsubscript{D}/V\textsubscript{Tpeak,J} = V\textsubscript{D}/V\textsubscript{Tpeak} measured using end-tidal PCO\textsubscript{2} adjusted using Jones equation, V\textsubscript{Dm} = dead space dead space of the mouth piece and pneumotachograph, V\textsubscript{T} = tidal volume.

Keywords: air trapping, arterial blood gas, diffusing capacity, end-tidal CO\textsubscript{2} pressure, Jones equation for arterial PCO\textsubscript{2}

1. Introduction
In patients with chronic obstructive pulmonary disease, increased dead space (V\textsubscript{D}) causes inefficient ventilation in the lung regions with a ventilation/perfusion ratio >100 and a high V\textsubscript{D} fraction during peak exercise (V\textsubscript{D}/V\textsubscript{Tpeak}).[1,2] Notably, V\textsubscript{D}/V\textsubscript{Tpeak} is a unique variable that differs between lung function tests. Its robustness has been reported in patients with abnormal spirometry, even in those with only mildly impaired spirometry,[3] as well as in patients with chronic obstructive pulmonary disease and heart failure overlap, where V\textsubscript{D}/V\textsubscript{Tpeak} has been...
shown to allow for better differentiation of the pathophysiology of exertional dyspnea.[4] Furthermore, compared with resting dead space fraction, V_D/V_{Tpeak} may also be more sensitive in determining abnormal pulmonary gas exchange and may confirm the correctness of resting dead space fraction, although resting physiological or alveolar dead space fraction has been widely and successfully used to predict mortality in pediatric[6,15] and adult critical care medicine,[7,8] in adult patients with inhalation injury,[9] during the postoperative course in patients who underwent cardiac surgery for congenital heart disease,[10] and to assist in the diagnosis of pulmonary embolism.[11] In addition, V_D/V_{Tpeak} has been used to evaluate the pathophysiology and successfully predict mortality in patients with chronic thromboembolic pulmonary hypertension.[12]

Although measuring V_D/V_{Tpeak} is valuable, it requires invasive arterial catheterization to record P_aCO_2 at peak exercise, as well as sophisticated equipment to measure CO$_2$ output, minute ventilation, and mixed expired CO$_2$ (Paco$_2$). Statistical analysis can be used as a noninvasive method for measuring V_D/V_{Tpeak}, and it has been applied in normal subjects using age, height, weight, and sex.[13] However, lung diseases may affect the lungs to different degrees and severities; therefore, the use of statistical methods in normal subjects may be inappropriate.

Alternatively, end-tidal CO$_2$ at peak exercise ($PETCO_2$) and its value adjusted with Jones’ equation ($PrCO_2$) have been used to calculate dead space fraction (and thus the corresponding $V_D/V_{TpeakET}$ and V_D/V_{Tpeak} values, respectively),[14] and have been shown to be accurate in patients with heart failure during exercise.[15] However, these noninvasive estimations are not recommended for patients with lung disease.[16,17]

The ventilation and CO$_2$ output ratio at nadir is a non-invasive gas exchange parameter that has been suggested as a surrogate for V_D/V_{Tpeak}; however, the nadir values of minute ventilation and CO$_2$ output ratio between 28 and 39 cannot predict V_D/V_{Tpeak}.[18] Therefore, in patients with chronic obstructive pulmonary disease, other noninvasive methods to predict V_D/V_{Tpeak} need to be established, and the relationships between measured V_D/V_{Tpeak} and $V_D/V_{TpeakET}$ and V_D/V_{TpeakJ} need to be reappraised.

Accordingly, this study aimed to

1. generate prediction equations for V_D/V_{Tpeak} and
2. appraise the differences among $PrCO_2$, $PETCO_2$, and $PrCO_2$ in patients with chronic obstructive pulmonary disease.

2. Methods

2.1. Study design

We conducted this observational analytical cross-sectional study to investigate the relationship between $PrCO_2$, $PETCO_2$, and $PrCO_2$ and the corresponding V_D/V_{Tpeak} values in patients with chronic obstructive pulmonary disease at Chung Shan Medical University Hospital. Multiple linear regression was used to generate the prediction equations for V_D/V_{Tpeak}. Signed informed consent was obtained from all the participants.

2.2. Subjects

We enrolled patients with chronic obstructive pulmonary disease aged ≥40 years with a smoking history of ≥15 pack-years and with exertional dyspnea and/or leg fatigue. Chronic obstructive pulmonary disease was diagnosed according to the Global Initiative for Chronic Lung Obstructive Disease criteria: persistent respiratory symptoms and airflow limitation due to airway and/or alveolar abnormalities caused by significant exposure to cigarette smoke.[19] The forced expired volume in one second (FEV$_1$)forced vital capacity in each subject was <0.7.[19]

We excluded subjects with a body mass index ≤18 kg m$^{-2}$ or ≥32 kg m$^{-2}$ and those with uncontrolled diabetes mellitus, uncontrolled hypertension, anemia (hemoglobin <13 g dL$^{-1}$ in men), cardiovascular, hematological, metabolic, or neuromuscular diseases, and an acute illness in the recent 1 month, as these factors may confound exercise performance. Female subjects were not included in this study because few women had chronic obstructive pulmonary disease in Taiwan,[20] and lung function parameters, anthropometric data, and exercise physiology used for multiple regression analysis were highly sex-related. If women had been included, the inequality in the sample size would have introduced bias when these factors were selected to generate the prediction equations for V_D/V_{Tpeak}.

2.3. Measurements

Demographic data and daily functional activities, including age, height, weight, body mass index, and cigarette consumption, were recorded. An oxygen cost diagram was used to evaluate the participants’ functional activity. The participants were asked to indicate a point on an oxygen cost diagram, a 10-cm long vertical line with everyday activities listed alongside the line above which breathlessness limited them.[21] The distance from zero was measured and scored. Leisure activity was coded 1 to 4 according to hours of activity per week: 1 = ≤1 hour; 2 = 1 to 3 hours; 3 = 3 to 6 hours; 4 = ≥6 hours.[22]

Chest radiography and two-dimensional echocardiography

Chest radiography was obtained within one month of enrollment in the study. The hilohoracic ratio, cardiothoracic ratio, and diameter of the anterior descending pulmonary artery on the standing posterior-anterior chest radiograph were measured.[23] The hila-thoracic ratio >36% and the diameter of anterior descending pulmonary artery >1.8 cm on the standing posterior-anterior chest radiograph were in favor of pulmonary hypertension. The chest radiographs were evaluated by two of the pulmonologists without knowing the clinical information and the average values were recorded for analysis. Two-dimensional echocardiography was performed by an experienced cardiologist who was blinded to the clinical data, lung function, and cardiopulmonary exercise test reports. Parasternal, apical, and subcostal examinations were conducted.[24] Cor pulmonale was defined as follows. Apical four-chamber view: end-diastolic right ventricle area (EDRV) >15 cm2, end-systolic right-ventricle area (ESRV) >10 cm2; subcostal four-chamber view: EDRV >13 cm2, ESRV >8 cm2; long and short axes view: the presence of paroxysmal intraventricular septum (IVS) with right ventricle enlargement; the right ventricle free wall thickness >4 mm at an end-diastolic phase between the tricuspid annulus and the papillary muscle.[22]

Pulmonary function testing A thorough physical examination was completed before the exercise testing. Pretest preparation and short-acting and long-acting beta bronchodilators were administered according to standard protocols.[25,26] FEV$_1$, forced vital capacity, total lung capacity, residual volume, and diffusing capacity for carbon monoxide were measured using spirometry, body plethysmography, and the single-breath
reported by the manufacturer. The dead space of the mouth piece and pneumotachograph, as reached:

4. a drop of 4mmol/L or more in bicarbonate level from baseline
5. pH of arterial blood gas at peak exercise was of 7.35 or lower;
6. pH of arterial blood gas at peak exercise decreased by 0.05 or more from rest.

Exercise testing with pulmonary gas exchange with arterial blood gases and V_{D}/V_{T} measurements: Each subject completed an incremental exercise test with pulmonary gas exchange measurements. Oxygen uptake (mL/min at standard temperature and pressure and dry, standard temperature, and pressure and dry), CO$_2$ output (mL/min at standard temperature and pressure and dry), minute ventilation (at body temperature, pressure, and water vapor saturation, L/min), and oxyhaemoglobin saturation (Sp$_{O2}$, %) were measured (MasterScreen CPX, Carefusion, Wuerzburg, Germany). Data from the last 15 seconds of each stage were averaged and reported. The definition of maximum exercise has been reported in the literature if any of the following are reached:

1. heart rate reserve was of 15% or 15 beats/min of predicted maximum heart rate or less; predicted maximum heart rate = 220 – age;
2. respiratory exchange ratio was of 1.09 or greater;
3. blood bicarbonate level of <21 mmol/L;
4. a drop of 4 mmol/L or more in bicarbonate level from baseline level;
5. pH of arterial blood gas at peak exercise was of 7.35 or lower; or
6. pH of arterial blood gas at peak exercise decreased by 0.05 or more from rest.

Brachial artery catheterization was performed, and blood samples were drawn and heparinized for each subject during peak exercise. The sample was immediately placed on ice and then analyzed with normal body temperature correction (model 278, CIBA-Corning, Medfield, MA). Three types of V_{D}/V_{Tpeak} were calculated using the standard Bohr’s formula as follows:

$$V_{D}/V_{T} = (P_aCO_2 – PrCO_2)/P_aCO_2 - V_{Dm}/V_{T}$$

$$V_{D}/V_{TET} = (P_{ET}CO_2 – PrCO_2)/P_{ET}CO_2 - V_{Dm}/V_{T}$$

$$V_{D}/V_{TJ} = (P_jCO_2 – PrCO_2)/P_jCO_2 - V_{Dm}/V_{T}$$

where \(PrCO_2\) is CO$_2$ output/minute ventilation \(\times (P_b – 47 \text{ mm Hg})\), \(P_b\) is the barometric pressure measured daily, and \(V_{Dm}\) is the dead space of the mouth piece and pneumotachograph, as reported by the manufacturer. \(P_jCO_2\) = 5.5 + 0.90 \(\times P_{ET}CO_2\) – 0.0021 \(\times V_{T}\) (mL).

Blood cell and biochemical analyses Blood cell and biochemical analyses were conducted within one month before entering the study. Biochemical analyses included albumin, globulin, creatinine, sodium, potassium, glucose, cholesterol, triglyceride, aspartate and alanine aminotransferase, and bilirubin. Whole-blood lactate concentration was analyzed.

2.4. Statistical analysis

Data are summarized as mean ± standard deviation. As the primary aim of this study was to construct a predictive model for invasively measured \(V_{D}/V_{Tpeak}\) using noninvasive variables rather than to test the hypothesis of detecting an expected effect size in a clinical trial, our sample size consideration focused on the size needed to ensure stable and efficient regression coefficients. The sample size was thus estimated to be at least 6 to 15 subjects per variable based on at least 6 to 10 subjects per variable, the sum of 20 and 2 times the number of predictors, and 10 to 15 subjects per variable. For each outcome variable, comparisons were performed a priori for each outcome variable. Pearson’s or Spearman’s correlation coefficients were used when appropriate to quantify pairwise relationships among the variables of interest. Multiple linear regression analysis was performed to generate a predictive equation for \(V_{D}/V_{T}\). All possible regression algorithms were performed using candidate variables with \(P\) values <.35 in univariate analysis in a step-by-step manner. Although using candidate variables with \(P\) values <.157 has been suggested in the literature, using candidate variables with \(P\) values <.35 would result in many more variables being included. Predictors that are highly correlated with others (i.e., a lower \(P\)-value) contribute little independent information, whereas predictors that are not significant in univariable analysis (i.e., a higher \(P\)-value) should not be excluded as candidates. Our procedure included more variables, thus avoiding missing any potential candidates as far as possible. The final models were based on the highest adjusted r-square values; when models had similarly high adjusted r-square values, biological plausibility was considered. Studies often measure more predictors than can be used in a model, and thus, pruning is required. Biological plausibility is a component of the reasoning method that can establish a cause-and-effect relationship between a biological factor and an adverse event. Hence, the possible candidate variables should meet any possible cause-and-effect relationship and should not be obtained from data mining. \(P\)-values were calculated using ANOVA with Tukey’s correction for multiple comparisons to compare means across the three types of \(PCO_2\) and \(V_{D}/V_{Tpeak}\). Correlation post hoc analyses were conducted when indicated. All statistical analyses were performed using the SAS statistical software (SAS Institute Inc, Cary, NC). Statistical significance was set at \(P < .05\).

2.5. Ethics approval statement

The local institutional review board of Chung Shan Medical University Hospital (CS19014) approved this study. This study was conducted in compliance with the principles of the Declaration of Helsinki.

3. Results

A total of 46 male subjects with chronic obstructive pulmonary disease were enrolled (mean age 65.2 ± 5.8 years) (Table 1). Most of the enrolled subjects had moderate-to-severe chronic obstructive pulmonary disease, were normocapnic, and had borderline hypoxemia at rest (Table 1). At peak exercise, obstructive ventilatory limitation, mild hypercapnia, and hypoxemia were observed.
Table 1
Demographic data, image, lung function and peak exercise data.

	n	Mean	SD
Age, year	46	65.2	5.8
Body mass index, kg/m²	46	22.12	3.53
Anterior descending pulmonary artery, cm	46	1.62	0.33
Apical four EDRV, cm²	42	13.5	3.7
Total lung capacity, TLC predicted, %	46	135	21
Residual Volume, RV predicted, %	46	200	55
RV/TLC, %	46	58	9
DLCO pred, %	45	69	22
FEV1 pred, %	46	94	43
Forced vital capacity, pred, %	46	81	21
FEV1/FVC, %	46	50	19
FEV1, %	46	49	13
Maximal inspiratory pressure, %	43	63.8	17.2

Exercise:

Oxygen uptake, L/min/kg	46	17.9
Respiratory exchange ratio	46	1.05
Oxygen pulse, mL/beat	46	8.1
Heart rate, beat/min	46	133.2
VT/Ti, L/s	46	1.52
Ventilatory equivalent for CO₂	46	35.0
Minute ventilation, L/min	46	38.6
P₃CO₂ mmHg	44	46.1
V₃/V₂	43	0.44
PₑCO₂ mmHg	44	-0.55

D/CO₂ is the diffusion capacity of the lungs for carbon monoxide, FEV₁ = forced expiratory volume in one second, P₃CO₂ = arterial end tidal CO₂ pressure gradient, V₃/Ti = tidal volume and inspiratory time ratio, Anterior descending pulmonary artery of the right lung ≥ 1.8 cm indicating pulmonary hypertension.

Exercise:

Oxygen uptake, L/min/kg	46	17.9
Respiratory exchange ratio	46	1.05
Oxygen pulse, mL/beat	46	8.1
Heart rate, beat/min	46	133.2
VT/Ti, L/s	46	1.52
Ventilatory equivalent for CO₂	46	35.0
Minute ventilation, L/min	46	38.6
P₃CO₂ mmHg	44	46.1
V₃/V₂	43	0.44
PₑCO₂ mmHg	44	-0.55

In normal subjects, age and weight were positively correlated with V₃/V₇peak, whereas SVC and heart rate and oxygen pulse at peak exercise were negatively correlated with V₃/V₇peak (Table 2, r² = 0.74). Table 3 shows the correlations between the selected variables and the variables of interest.

3.1. Prediction equation for V₃/V₇peak

In the multiple linear regression analysis, diffusion capacity for carbon monoxide and V₃/Ti were positively correlated with V₃/V₇peak, whereas SVC and heart rate and oxygen pulse at peak exercise were negatively correlated with V₃/V₇peak (Table 2, r² = 0.74). Table 3 shows the correlations between the selected variables and the variables of interest.

3.2. PCO₂ and the corresponding V₃/V₇peak

The differences among P₃CO₂, PₑCO₂, and PₑCO₂ at peak exercise were insignificant; therefore, the differences among V₃/V₇peak, V₃/V₇peakET, and V₃/V₇peakJ were also insignificant (Fig. 1; r = 0.36 and 0.37, respectively). The predictive powers of V₃/V₇peakET and V₃/V₇peakJ in relation to V₃/V₇peak were similar to those of the prediction equation for V₃/V₇peak (Table 3 and Fig. 2; r² = 0.75 vs 0.74). The residual difference between V₃/V₇peak and V₃/V₇peakJ is 0.01 ± 0.06 (Fig. 2).

Table 2
Multiple linear regression analysis of dead space fraction of tidal volume at peak exercise in male patients with chronic obstructive pulmonary disease.

V₃/V₇peak equation	

(1)	
1.1375 ± (0.0751) − 0.0333 × SVC (± 0.0176) + 0.0045 × D/CO₂ (± 0.0024) + 0.1346 × V₃/Ti (± 0.0059)	0.74

D/CO₂ = diffusion capacity for carbon monoxide in mL/min/mmHg, HRpeak = peak heart rate, O₂Ppeak = peak oxygen pulse which was peak oxygen uptake in mL/min divided by peak heart rate in beats per minute, (±SD) = standard errors, P < .0001, SVC = slow vital capacity in liters, V₃/Ti = tidal volume in liters divided by inspiratory time in seconds indicating the mean inspiratory flow at peak exercise.

4. Discussion

In this study, we established prediction equations for V₃/V₇peak with a predictive power of 0.74. Differences across the three types of PCO₂ were not significant; therefore, there were no significant differences across the three types of corresponding V₃/V₇peak values. The predictive power for V₃/V₇peak was similar when using the statistical method and when calculated using the PₑCO₂ or PₑCO₂peak.

4.1. Prediction equation for V₃/V₇peak

In normal subjects, age and weight were positively correlated with V₃/V₇peak, whereas for females and taller individuals, V₃/V₇peak was lower. However, in the multiple linear regression analysis for V₃/V₇peak in patients with chronic obstructive pulmonary disease in the current study, age, height, and weight were not selected (Table 2), and slow vital capacity (SVC), diffusing capacity of the lungs and mean tidal inspiratory flow, heart rate, and oxygen pulse at peak exercise were selected. The results indicated that the relationship between demographics and V₃/V₇peak in normal subjects was altered by lung pathology in patients with chronic obstructive pulmonary disease.

4.2. Slow vital capacity and heart rate and oxygen pulse at peak exercise

Slow vital capacity is different from forced vital capacity in that air trapping beyond the small airways cannot be expelled if breathing is forcefully exhaled. Hence, slow vital capacity was highly related to air trapping (residual volume/total lung capacity) and chronic obstructive pulmonary disease severity (Table 3, r = 0.69 – 0.72). Increased V₃/V₇ has been reported to occur secondary to an increase in functional residual capacity. However, V₃/V₇peak was not correlated with functional residual capacity % predicted in the current study but was correlated with residual volume/total lung capacity (r = 0.16 and 0.44, respectively). In brief, V₃/V₇peak was related to slow vital capacity rather than forced vital capacity owing to an air trapping effect.

Heart rate and oxygen pulse at peak exercise are indicators of exercise intensity and cardiovascular effort, and they were positively correlated with ventilatory and exercise capabilities in this study (Table 3, r = 0.36 – 0.69, P = .01 – <.0001). Hence, heart rate % predicted and oxygen pulse at peak exercise were negatively correlated with V₃/V₇peak in the univariate and multivariate analyses (Table 3, r = −0.46 and −0.63, P = .002 and <.0001, respectively; Table 2). Oxygen pulse at peak exercise is and its curve patterns are influenced by both central cardiovascular function and air trapping and dynamic hyperinflation in patients with chronic obstructive pulmonary disease.
Predictors of high dead space fraction at peak exercise (\(V_D/V_{T\text{Peak}}\)) correlated with variables of interest.

SVC% predicted	\(r\)	\(P\)
RV/TLC	-0.72	<.0001
FEV1%predicted	0.69	<.0001
Peak \(V_{D}/V_{T}\)		
FRC%predicted	0.16	NS
RV/TLC	0.44	.003
Peak HR %predicted	-0.46	.002
Peak \(O_2P, \text{ml/beat}\)	-0.63	<.0001
Peak \(V_{O_2}\) %predicted		
\(\text{Peak} V_{O_2}/(20+20 \times \text{FEV}_1)\)	0.36	.01
\(\text{Peak} V_{T}/\text{TLC}\)	0.37	.01
\(\text{Peak} V_{O_2}\) %predicted	0.44	.002
\(\text{Peak} V_{T}/\text{T}_{\text{I}}\)		
SVC%predicted	0.37	.01
\(D_1 CO\) %predicted	0.36	.016
\(\text{Peak} V_{O_2}\) %predicted	0.59	.0001
Peak \(O_2\) pulse	0.69	<.0001
Peak \(V_{D}/V_{T}\)	-0.49	.0007
Peak \(V_{T}/V_{E}\)	-0.48	.0006
RV/TLC	-0.58	<.0001
FRC%predicted	-0.32	.03
FVC%predicted	0.35	.03
\(\text{FEV}_1\) %predicted	0.51	.0003
MIP, cm H\(_2\)O	0.5	.0006
\(V_{E}\)	0.95	<.0001
\(V_{T}/\text{TLC}\)	0.74	<.0001
HR%predicted	0.46	.001
\(D_1 CO\) %predicted		
\(\text{Peak} V_{D}/V_{T\text{Peak}}\)	-0.38	.01

\(D_1 CO\) = diffusing capacity for carbon monoxide, \(\text{FEV}_1\) = forced expired volume in one second, FRC = functional residual capacity, FVC = forced expiratory capacity, HR = heart rate, MIP = maximal inspiratory pressure, \(O_2P\) = oxygen pulse defined by oxygen uptake divided by heart rate, \(RV/V_{T}\) = tidal inspiratory volume, TLC = total lung capacity, \(SVC\) = slow vital capacity, \(T_{\text{I}}\) = inspiratory time, \(TLC\) = total lung capacity, \(V_{E}\) = minute ventilation, \(V_{O_2}\) = oxygen uptake, \(V_{T}\) = tidal volume.

4.3. Tidal inspiratory flow at peak exercise and diffusion capacity for carbon monoxide

In univariate analysis, tidal inspiratory flow at peak exercise and diffusion capacity for carbon monoxide were negatively related to \(V_{D}/V_{T\text{Peak}}\) (Table 3, \(r = -0.49\) and \(-0.38\), respectively). In the multiple regression analysis, tidal inspiratory flow at peak exercise and diffusion capacity for carbon monoxide were “positively” related to \(V_{D}/V_{T\text{Peak}}\). Because the correlations among the independent variables were significant, their contributions to the dependent variables may have affected each other and even changed the direction of the correlation. In this study, \(V_{D}/V_{T\text{Peak}}\) was correlated with slow vital capacity % predicted, diffusion capacity for carbon monoxide % predicted, and oxygen pulse and heart rate at peak exercise (Table 3, \(r = 0.36 - 0.69\)).

Tidal inspiratory flow at peak exercise represents the mean tidal inspiratory flow during peak exercise, and should be a beneficial indicator of ventilation. Hence, in the univariate analysis, it was positively correlated with spirometry data in % predicted, diffusion capacity for carbon monoxide % predicted, and maximum inspiratory pressure, and oxygen uptake % predicted, minute ventilation, tidal volume, and their related derivatives, and heart rate % predicted at peak exercise (\(r = 0.35 - 0.95\), \(P = 0.02 - <.0001\)), whereas it was negatively correlated with \(V_{D}/V_{T\text{Peak}}\), shallow breathing index, functional residual capacity % predicted, and residual volume/total lung capacity (Table 3, \(r = -0.32 - 0.38\), \(P = 0.03 - <.0001\)).
4.4. Types of PCO_{2peak} and V_D/V_{Tpeak}

Lewis et al reported that, in 68 patients with exertional dyspnea, V_D/V_{Tpeak} and V_D/V_{Tpeak}^{ET} identified only 50% and 57% of those with abnormal V_D/V_{Tpeak} respectively.[16] In addition, Liu et al reported that $P_{ET}CO_2$ was correlated with P_aCO_2 with a standard error of estimate as high as 2.3 mmHg in only 7 patients with chronic obstructive pulmonary disease in whom arterial blood gas was repeatedly sampled at rest and during exercise ($r = 0.76$).[38] In addition, Zimmerman et al reported that in 35 patients referred for the evaluation of dyspnea, the mean difference between V_D/V_{Tpeak} and V_D/V_{Tpeak}^{ET} significantly increased by 4%±6% in response to exercise at ~50% of VO$_2peak$.[17] They suggested that V_D/V_{Tpeak}^{ET} underestimated the measured V_D/V_{Tpeak} and that V_D/V_{Tpeak}^{ET} was no better than V_D/V_{Tpeak}.[16,17,38] In the current study, there were no significant differences in the PCO_{2peak} and the corresponding V_D/V_{Tpeak} values across the three types (both p=NS). The discrepancies between the current study and previous reports may be because the involved data were obtained from subjects at different stages of exercise and from subjects with different diseases. However, only one previous study investigated patients with chronic obstructive pulmonary disease alone, and the sample size was small.[38]

4.5. Limitations

The number of cases was small in this study because of the invasive procedures. Hence, it was not appropriate to split the dataset for the cross-validation of the derived prediction equations. However, future cross-validation studies using predictive equations are warranted. It may be argued that measuring V_D/V_{Tpeak} was redundant, as minute ventilation and CO$_2$ output ratio and minute ventilation and O$_2$ uptake ratio, their nadir values, slopes, and intercepts during exercise, provide a very good approximation of the “wasted” ventilation, and that this coupled with $P_{ET}CO_{2peak}$ and breathing reserve is usually sufficient to understand the causes of a patient’s breathlessness. However, the relationships between airflow obstruction, minute ventilation and CO$_2$ output ratio, its slope and intercept, dead space fraction, and dead space remain controversial.[39] Nevertheless, an minute ventilation and CO$_2$ output ratio value between 28 and 39 has been shown to be a poor predictor of V_D/V_{Tpeak}.[18] In patients with pulmonary hypertension and chronic obstructive pulmonary disease, inhaled iloprost improves minute ventilation and CO$_2$ output ratio, but not dead space fraction.[40] In patients with chronic obstructive pulmonary disease and heart failure overlap, increased slope, nadir, or end-exercise of minute ventilation and CO$_2$ output ratio has been related to capillary PCO$_2$ but not dead space fraction.[4] However, the nadir of minute ventilation and CO$_2$ output ratio has been reported to be strongly related to V_D/V_{Tpeak} when the data involve healthy subjects and those with chronic obstructive pulmonary disease at rest and during submaximal exercise.[37] Nevertheless, the nadir of minute ventilation and CO$_2$ output ratio was not selected for the multiple regression analysis in this study. Except for the contribution of neural control to breathing, V_D/V_T explains the nadir of minute ventilation and CO$_2$ output ratio because both factors are mathematically related. The reason why the nadir of minute ventilation and CO$_2$ output ratio was not selected may be the much greater contributions of slow vital capacity, diffusion capacity for carbon monoxide % predicted and tidal inspiratory flow, heart rate % predicted, and oxygen diffusion capacity for carbon monoxide should also be a beneficial indicator of gas exchange; however, it has been shown to be a specific but insensitive predictor during exercise. Hence, diffusion capacity for carbon monoxide was negatively correlated with V_D/V_{Tpeak} in univariate analysis (Table 3, r = -0.38, P=.01). This is consistent with a previous report, in which diffusion capacity for carbon monoxide % predicted was found to be negatively related to dead space fraction at rest and during peak exercise.[37]
pulse at peak exercise to V_d/V_{Tpeak}. Recently, a study reported that transcutaneous PCO$_2$ may reflect P$_a$CO$_2$ and may be used to calculate dead space fraction during rest and exercise, but not during recovery in patients with chronic obstructive pulmonary disease.[43] Lastly, the Harris-Benedict estimated resting dead space fraction has been reported to be a better predictor of mortality in patients with acute respiratory distress syndrome than the other three estimates of predicted measured dead-space fraction, namely the Siddiki estimate, Penn State estimate, and direct estimate from physiological variables.[43] The first three approaches require predicting energy expenditure, and the last approach is used to derive an equation that includes the Murray lung injury score and positive end-expiratory pressure level.[8] However, it is not clear whether these equations are appropriate for predicting dead space fraction during peak exercise, even though volumetric capnography has been successfully used in patients with cystic fibrosis during submaximal exercise.[42] Moreover, different techniques to measure alveolar PCO$_2$ and P$_a$CO$_2$, such as using a Douglas bag, indirect calorimetry, and volumetric capnography in patients with acute respiratory distress syndrome, have been shown to result in clinically relevant mean and individual differences in calculated dead space fraction.[43] Further studies on these approaches during peak exercise are required.

4.6. Future directions

Further studies on our prediction equations and the corresponding $V_d/V_{TpeakET}$ and V_d/V_{Tpeakk} ratios are warranted. Using predicted types of V_d/V_{Tpeak} to evaluate subjects with chronic obstructive pulmonary disease is simple and noninvasive and may thus expand its clinical application to evaluate lung pathophysiology, treatment response, and patient-centered outcomes.

5. Conclusion

Our prediction equations showed high predictive power for V_d/V_{Tpeak} and a small residual difference between the measured V_d/V_{Tpeak} and calculated V_d/V_{Tpeak} with and without using the Jones and Bohr equations to adjust the P$_{ETCO_2peak}$. We believe that these equations can be used to predict V_d/V_{Tpeak} and may lead to changes in practice guidelines regarding the use of P$_{ETCO_2peak}$ or P$_a$CO$_2$ to calculate V_d/V_{Tpeak} in patients with chronic obstructive pulmonary disease. These non-invasive methods may approximate the measured V_d/V_{Tpeak} and thus may add information to lung function tests; however, further studies are warranted to confirm their validity.

Supplementary: http://links.lww.com/MD2/A891

Author contributions

Conceptualization: Ming-Lung Chuang.

Data curation: Ming-Lung Chuang, Benjamin Yung-Thing Hsieh, I-Feng Lin.

Formal analysis: Ming-Lung Chuang, Benjamin Yung-Thing Hsieh, I-Feng Lin.

Funding acquisition: Ming-Lung Chuang.

Investigation: Ming-Lung Chuang, Benjamin Yung-Thing Hsieh, I-Feng Lin.

Methodology: Ming-Lung Chuang, Benjamin Yung-Thing Hsieh, I-Feng Lin.

Project administration: Ming-Lung Chuang.

Resources: Ming-Lung Chuang, Benjamin Yung-Thing Hsieh, I-Feng Lin.

Software: Ming-Lung Chuang, Benjamin Yung-Thing Hsieh, I-Feng Lin.

Supervision: Ming-Lung Chuang.

Validation: Ming-Lung Chuang, Benjamin Yung-Thing Hsieh, I-Feng Lin.

Visualization: Ming-Lung Chuang, Benjamin Yung-Thing Hsieh.

Writing – original draft: Ming-Lung Chuang, Benjamin Yung-Thing Hsieh, I-Feng Lin.

Writing – review & editing: Ming-Lung Chuang, Benjamin Yung-Thing Hsieh, I-Feng Lin.

References

[1] Wasserman K, Hansen JE, Sue DY. Wasserman K, et al. Measurements during integrative cardiopulmonary exercise testing. Principles of exercise testing and interpretation Philadelphia: Lippincot Williams & Wilkins; 2005;76–110.

[2] Wasserman K, Hansen JE, Sue DY. Wasserman K, et al. Physiology of exercise. Principles of exercise testing and interpretation Philadelphia: Lippincot Williams & Wilkins; 2005;10–65.

[3] Elbehairy AF, Ciavaglia CE, Webb KA, et al. Pulmonary gas exchange abnormalities in mild chronic obstructive pulmonary disease. Implications for dyspnea and exercise intolerance. Am J Respir Crit Care Med 2015;191:1384–94.

[4] Rocha A, Arbex FF, Sperandio PA, et al. Excess ventilation in chronic obstructive pulmonary disease-heart failure overlap. Implications for dyspnea and exercise intolerance. Am J Respir Crit Care Med 2017;196:1264–74.

[5] Cigarroa CL, van den Bosch SJ, Tang X, et al. Measurement of dead space fraction upon ICU admission predicts length of stay and clinical outcomes following bidirectional cavopulmonary anastomosis. Pediatr Crit Care Med 2018;19:23–31.

[6] Bhatia AK, Belani S, Leung D, et al. Higher dead space is associated with increased mortality in critically ill children. Crit Care Med 2015;43:2439–45.

[7] Morales-Qinteros I, Schulz MJ, Bringue J, et al. Estimated dead space fraction and the ventilatory ratio are associated with mortality in early ARDS. Ann Intensive Care 2019;9:128.

[8] Beiter JR, Thompson BT, Matthay MA, et al. Estimating dead-space fraction for secondary analyses of acute respiratory distress syndrome clinical trials. Crit Care Med 2015;43:1026–35.

[9] Granchi T, Lemere A, Mashruwala N, et al. Increased ratio of dead space to tidal volume in subjects with inhalation injury. Respir Care 2020;65:1555–60.

[10] Shostak E, Schiller O, Merzbach A, et al. Alveolar dead-space fraction and arterial saturation predict postoperative course in Fontan patients. Pediatr Crit Care Med 2020;21:200–6.

[11] Songur Yucel Z, Metin Akso N, Akkas M. The combined use of end-tidal carbon dioxide and alveolar dead space fraction values in the diagnosis of pulmonary embolism. Pulmonology 2020;26:192–7.

[12] Godinas L, Sattler C, Lau EM, et al. Dead-space ventilation is linked to exercise capacity and survival in distal chronic thromboembolic pulmonary hypertension. J Heart Lung Transplant 2017;36:1234–42.

[13] Gläser S, Ittermann T, Koch B, et al. Influence of smoking and obesity on alveolar-arterial gas pressure differences and dead space ventilation at rest and peak exercise in healthy men and women. Respir Med 2013;107:919–26.

[14] Lumb AB, Nunn JF. Lumb AB. Distribution of pulmonary ventilation and perfusion. Nunn’s Applied Respiratory Physiology Edinburgh: Butterworth Heinemann; 2000;163–99.

[15] Van Iertsen EH, Olson TP. Use of ‘ideal’ alveolar air equations and corrected end-tidal PCO2 to estimate arterial PCO2 and physiological dead space during exercise in patients with heart failure. Int J Cardiol 2018;250:176–82.

[16] Lewis DA, Sietsma KE, Casaburi R, et al. Inaccuracy of noninvasive estimates of VD/VT in clinical exercise testing. Chest 1994;106:1476–80.

[17] Zimmerman ML, Miller A, Brown LK, et al. Estimated vs actual values for dead space/tidal volume ratios during incremental exercise in patients evaluated for dyspnea. Chest 1997;106:131–6.
[18] Roman MA, Casaburi JD, Porszasz J, et al. Noninvasive assessment of normality of VD/VT in clinical cardiopulmonary exercise testing utilizing incremental cycle ergometry. Eur J Appl Physiol 2013;113:33–40.

[19] GOLD Committees. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease. Disclosure forms for GOLD Committees are posted on the GOLD Website, www.goldcopd.org, 2020. Accessed December 25, 2020.

[20] Huang TH, Hsue TR, Lin SH, et al. Comparison of different staging methods for COPD in predicting outcomes. Eur Respir J 2018;51: pii: 1700577.

[21] Chuang ML, Lin IF. Investigating the relationships among lung function variables in chronic obstructive pulmonary disease in men. Peer J 2019;7: e7829.

[22] Chuang ML, Lin IF, Wasserman K. The body weight-walking distance product as related to lung function, anaerobic threshold and peak VO2 in COPD patients. Respir Med 2001;95:618–26.

[23] Miller MR, Crapo R, Hankinson J, et al. Standardisation of spirometry. Eur Respir J 2005;26:319–38.

[24] Dickstein K, Cohen-Solal A, Filippatos G, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2008 The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM). Europ Heart J 2008;29:2388–442.

[25] Chuang ML, Lin IF. Clinical assessment tests in evaluating patients with chronic obstructive pulmonary disease: a cross-sectional study. Medicine (Baltimore) 2016;95:e5471.

[26] Chuang ML, Lin IF, Wasserman K. The body weight-walking distance product as related to lung function, anaerobic threshold and peak VO2 in COPD patients. Respir Med 2001;95:618–26.

[27] Miller MR, Hankinson J, Brusasco V, et al. Standardisation of spirometry. Eur Respir J 2005;26:319–38.

[28] Wanger J, Clausen JL, Coates A, et al. Standardisation of the measurement of lung volumes. Eur Respir J 2005;26:511–22.

[29] ATS/ERS SATS/ERS Statement on respiratory muscle testing. Am J Respir Crit Care Med 2002;166:518–624.

[30] Miller MR, Crapo R, Hankinson J, et al. General considerations for lung function testing. Eur Respir J 2005;26:153–61.

[31] Wasserman K, Hansen JE, Sue DY. Wasserman K, et al. Calculations, formulas, and examples. Principles of Exercise Testing and Interpretation Philadelphia: Lippincot Williams & Wilkins; 2005;556–65.

[32] Chow S-C, Shao J, Wang H. Sample size Calculations in Clinical Research. 2nd ed.Boca Raton, FL: Chapman & Hall/CRC; 2008.

[33] Royston P, Moons KG, Altman DG, et al. Prognosis and prognostic research: developing a prognostic model. BMJ 2009;338:b604.

[34] Vassaux C, Torre-Bouscoulet L, Zeineldine S, et al. Effects of hyperinflation on the oxygen pulse as a marker of cardiac performance in COPD. Eur Respir J 2008;32:1275–82.

[35] Chuang ML, Lin IF, Huang SF, et al. Patterns of oxygen pulse curve in response to incremental exercise in patients with chronic obstructive pulmonary disease: an observational study. Sci Rep 2017; 7:10929.

[36] Degani-Costa LH, Nery LE, Rodrigues MT, et al. Does oxygen pulse trajectory during incremental exercise discriminate impaired oxygen delivery from poor muscle oxygen utilisation? ERJ Open Res 2019;5: 00108-2018.

[37] Mahut B, Chevalier-Bidaud B, Plantier L, et al. Diffusing capacity for carbon monoxide is linked to ventilatory demand in patients with chronic obstructive pulmonary disease. COPD 2012;9:16–21.

[38] Liu Z, Vargas F, Stansbury D, et al. Comparison of the end-tidal arterial PCO2 gradient during exercise in normal subjects and in patients with severe COPD. Chest 1995;107:1218–24.

[39] Chuang ML. Mechanisms affecting exercise ventilatory inefficiency-airflow obstruction relationship in male patients with chronic obstructive pulmonary disease. Respir Res 2020;21:206.

[40] Dernaika TA, Beavin M, Kinasewitz GT. Iloprost improves gas exchange and exercise tolerance in patients with pulmonary hypertension and chronic obstructive pulmonary disease. Respir Res 2010;7:377–82.

[41] Cao M, Stringer WW, Corey S, et al. Transcutaneous PCO2 for exercise gas exchange efficiency in chronic obstructive pulmonary disease. COPD 2021;18:16–25.

[42] Parazzini PLF, Marson FAL, Ribeiro M, et al. Correlation between parameters of volumetric capnography and spirometry during a submaximal exercise protocol on a treadmill in patients with cystic fibrosis and healthy controls. Pulmonology 2019;25:21–31.

[43] Doorduin J, Nollet JL, Vugts MP, et al. Assessment of dead-space ventilation in patients with acute respiratory distress syndrome: a prospective observational study. Crit Care 2016;20:121.