RESUMO
Introdução: A nova pneumonia por coronavírus (COVID-19) surgiu como as principais ameaças à saúde global desde dezembro de 2019. Abordar parte da fisiopatologia pulmonar envolvida na doença é importante para ajudar os profissionais de saúde interessados a compreender melhor os diversos aspectos dessa complexa patologia.
Objetivo: Esse artigo tem o intuito de apresentar parte do processo fisiopatológico envolvido nas complicações pulmonares associadas à Covid-19. Métodos: Foi realizada uma revisão integrativa da literatura, com artigos publicados entre 2019 e 2020, nas bases de dados Google e PubMed, utilizando os seguintes termos para pesquisa: coronavírus, COVID-19, complicações pulmonares, pneumonia. Resultados: Foram incluídos 6 artigos, abordando o tema proposto. Conclusão: A infecção do indivíduo pela Covid-19 tem potencial de causar alterações significativas na capacidade ventilatória, cursando com comprometimento pulmonar difuso e piora nas trocas gasosas. Mais estudos são necessários para esclarecer a fisiopatologia dessa complexa com alto potencial de contágio, morbidade e mortalidade.
Palavras-chave: Coronavírus infeções; Doenças Comunicáveis; Pneumonia.
Introdução

O COVID-19, ou o coronavírus, começou na China, no final de 2019 como um conjunto de casos de pneumonia com causa desconhecida. A causa da pneumonia foi encontrada como um novo vírus - síndrome respiratória aguda grave coronavirus 2 ou Sars-CoV-2. Agora declarada como uma pandemia pela Organização Mundial da Saúde (OMS), a maioria das pessoas que contraem o COVID-19 sofrem apenas sintomas leves. A OMS diz que apenas uma pessoa em cada seis fica gravemente doente “e desenvolverá dificuldade em respirar”. Quase todas as sérias consequências do COVID-19 apresentam pneumonia. A OMS diz ainda que idosos e pessoas com problemas subjacentes, como hipertensão arterial, problemas cardíacos e pulmonares ou diabetes, têm maior probabilidade de desenvolver doenças graves [1].

Regularmente, quando pessoas com COVID-19 desenvolvem tosse e febre, isso é resultado da infecção que atinge a árvore brônquica. O revestimento dos brônquios fica ferido, causando inflamação. Isso, por sua vez, irrita os nervos do revestimento das vias aéreas, e em tais situações, com apenas um grão de poeira pode-se estimular a tosse. Com a evolução do quadro, o vírus atinge as unidades de troca gasosa (alvéolos) inflamando-as e consequentemente, promovendo um preenchimento de tais alvéolos por líquidos, restos celulares e outros, devido às alterações causadas na membrana alvéolo-capilar. Esse quadro vai, portanto, ser caracterizado como pneumonia, resultando em incapacidade de troca gasosa com consequente hipoxemia e hipercapnia. Os quadros pneumônicos são associados à mortalidade, especialmente em idosos [1].

Chen e colaboradores [2] estudaram retrospectivamente 99 pacientes com pneumonia causada pelo COVID-19. A idade média dos pacientes foi de 55,5 anos, incluindo 67 homens e 32 mulheres. 51% dos pacientes apresentavam doenças crônicas. Os pacientes apresentaram manifestações clínicas de febre (83%), tosse (82%), falta de ar (31%), dor muscular (11%), confusão mental (9%), dor de cabeça (8%), dor de garganta (5%), rinorreia (4%), dor no peito (2%), diarreia (2%) e náusea e vômito (1%). De acordo com o exame de imagem, 75% dos pacientes apresentaram pneumonia bilateral, 14% dos pacientes apresentaram manchas múltiplas e opacidade em vidro fosco e 1% dos pacientes apresentou pneumotórax. 17% dos pacientes desenvolveram síndrome do desconforto respiratório agudo (SDRA) e, dentre eles, 11% dos pacientes pioraram em um curto período e morreram por falência de múltiplos órgãos.

Métodos

Foi realizada uma revisão integrativa da literatura, com artigos publicados entre 2019 e 2020, nas bases de dados Google e PubMed, utilizando os seguintes termos para pesquisa: coronavírus, COVID-19, complicações pulmonares, pneumonia, sendo selecionados 06 artigos para a escrita do presente manuscrito.

Achados histopatológicos

Luo et al. [3] descrevem, em dados ainda não publicados, achados histopatológicos relacionados a um paciente do sexo masculino de 66 anos que apre-
sentava sintomas de febre alta e tosse quando retornou à cidade de Shenzhen, vindo de Wuhan em 4 de janeiro de 2020. Esse indivíduo apresentava como co-morbidade apenas hipertensão arterial. No exame macroscópico (Figura 1), a superfície de todo o pulmão mostrou aparência congestiva difusa. Havia hemorragia pontual e parcialmente necrose hemorrágica. A necrose hemorrágica estava presente principalmente na borda externa do lobo inferior direito, lobo médio e lobo superior do pulmão. Os brônquios estavam inchados e as superfícies mucosas, cobertas com exsudação hemorrágica. As superfícies cortadas do pulmão apresentaram alterações congestivas e hemorrágicas graves.

![Figura 1. Exame macroscópico pulmonar no COVID-19.](image)

Como mostra a Figura 2, os achados histopatológicos mostraram extensa fibrose intersticial com degeneração parcialmente hialina e infarto hemorrágico pulmonar. Os pequenos vasos apresentaram hiperplasia, espessamento da parede do vaso e estenose/oclusão. Infiltração intersticial de células inflamatórias, incluindo linfócitos e células mononucleares. Fibrose intersticial pulmonar foi confirmada e nenhuma outra infecção bacteriana e fúngica foi encontrada por coloração especial.

Houve alveolite com atrofia, proliferação, descamação e várias alterações da metaplasia escamosa das células epiteliais alveolares (principalmente do tipo II), conforme listado na Figura 3. Os alvéolos pulmonares restantes apresentaram septo espessado, necrose e descamação de células epiteliais alveolares. Além disso, exsudato fibroso macizo, gigante multinucleado células e corpos de inclusão viral intracitoplasmáticos. Bronquiolite necrosante e necrose manifesta da parede bronquiolar, com células epiteliais presentes no lúmen.
Figura 2. Histopatologia intersticial pulmonar associada a paciente crítico no COVID-19.
A: Fibrose intersticial pulmonar maciça. B: Infarto hemorrágico pulmonar. C: parede vascular espessamento e estenose do lúmen. D: Thromboangiitis Obliterans cercados por células inflamatórias. E: Células plasmáticas intersticiais infiltradas. F: Fibrose intersticial pulmonar. Imagem reproduzida a partir dos dados de Luo e colaboradores [3].

Figura 3. Alterações dos alvéolos pulmonares do COVID-19.
A: Bronquiolite necrosante, células epiteliais brônquicas necróticas estão presentes no lúmen. B: Atrofia de células epiteliais alveolares. C e D: Várias alterações da metaplasia escamosa das células alveolares. E: Septo alveolar espessado. F: Necrose e descamação das células epiteliais alveolares. G: maciço exsudato fibrinoso no lúmen. H: célula gigante multinucleada. I: Corpo de inclusão viral intracitoplasmático em célula epitelial alveolar (indicado no quadrado). Imagem reproduzida a partir dos dados de Luo e colaboradores [3].
Anormalidades observadas nas tomografias de tórax (TC)

A pneumonia por COVID-19 manifesta-se com anormalidades na TC do tórax, mesmo em pacientes assintomáticos, com rápida evolução de opacidades em vidro fosco bilaterais unilaterais a difusas que evoluem ou coexistem com consolidações em 1-3 semanas. Combinar a avaliação dos recursos de imagem com os achados clínicos e laboratoriais pode facilitar o diagnóstico precoce da pneumonia por COVID-19 [4].

Anormalidades na TC do tórax antes dos sintomas

Shi et al. [4] revisaram retrospectivamente os achados da TC de tórax de 81 pacientes com COVID-19 confirmado. Os pacientes foram subdivididos em 4 grupos com base na duração dos sintomas clínicos. O grupo 1 consistiu em 15 pacientes que realizaram uma TC do tórax antes de qualquer sintoma clínico; o grupo 2 realizou uma tomografia computadorizada nos 7 dias seguintes ao início dos sintomas; os pacientes do grupo 3 foram examinados 7 a 14 dias após o início dos sintomas. Importante ressaltar que todos os 81 pacientes [incluindo aqueles sem sintomas] tiveram uma TC torácica anormal consistente com pneumonia viral. No grupo assintomático, o padrão típico era de opacidades em vidro fosco, multifocal e periférico (figura 4). Espessamento do septo interlobular, espessamento da pleura adjacente, nódulos, alterações císticas redondas, bronquioectasia, derrame pleural e linfadenopatia raramente foram observados no grupo assintomático.

| Quadro 1. Resumo dos achados anátomo e histopatológicos pulmonares no COVID-19, baseados no estudo de Luo e colaboradores [3]. |
|---|---|
| • Tecido pulmonar com aparência congestiva difusa ou necrose parcialmente hemorrágica no exame macroscópico | • Bronquiolite e alveolite com proliferação, atrofia, descamação e metaplasia escamosa de células epiteliais |
| • Fibrose intersticial pulmonar maciça e degeneração parcialmente hialina | • Graus variáveis de infarto pulmonar hemorrágico |
| • Hiperplasia de pequenos vasos, espessamento da parede dos vasos, estenose ou oclusão do lúmen | • Monócitos focais, linfócitos e células plasmáticas infiltrando-se no interstício pulmonar |
| • Congestão alveolar proeminente contendo líquido de edema, células epiteliais descamadas e células inflamatórias | • Atrofia, degeneração vacuolar, proliferação, descamação e metaplasia escamosa em células epiteliais alveolares |
| • Células gigantes multinucleadas e corpos de inclusão viral intracitoplasmáticos | • Fibrose intersticial pulmonar maciça |
| • Resultados imuno-histoquímicos positivos para as células do sistema imune, incluindo CD3, CD20, CD79a, CD4, CD8, CD5, CD68 e CD38 |
Figura 4. Ilustração da evolução da TC do tórax durante o COVID-19. Hipotético estágio inicial com opacidade em vidro fosco bilateral, multifocal e predominantemente periférico. Fonte: imagem de arquivo do autor.

Figura 5: Ilustração da evolução adicional das opacidades em vidro fosco baseadas na periferia no COVID-19. As lesões são agora bilaterais e multifocais. Fonte: imagem de arquivo do autor.

Ainda analisando o estudo de Shi et al. [4], houve progressão radiográfica após os primeiros sintomas. No grupo 2 (ou seja, nos primeiros 7 dias de sintomas) lesões na TC do tórax tornaram-se bilaterais em 90% e difusas em mais de 50%, predominantemente com opacidades em vidro fosco (figura 5). Derrame pleural e alguns casos de linfadenopatia também foram detectados no grupo 2. No grupo 3 (ou seja, 7 a 14 dias após os sintomas), o aspecto de vidro fosco ainda era o achado predominante na TC em mais de 50% dos casos, no entanto, os padrões de consolidação também foram observados em cerca de um terço dos pacientes. Por fim, no grupo 4 (ou seja, mais de 14 dias após os sintomas), opacidades em vidro fosco e padrões reticulares eram mais comuns.
Associação do COVID-19 com a hemoglobina

Wenzhong & Hualan [5] divulgaram os resultados de seu estudo, mencionando que na fase de replicação viral após entrar no organismo de uma pessoa, o RNA do coronavírus codifica a produção de proteínas estruturais (para a estrutura do vírus) e outras não estruturais. Uma dessas proteínas não estruturais invade as hemoglobinas, retira o átomo de ferro e se liga no sítio, impedindo o carreamento de oxigênio. Isso explicaria o quadro de hipóxia de evolução rápida. Postulam que as lesões do parênquima pulmonar (vidro fosco) são consequência da hipóxia e consequente necrose e não efeito direto do processo inflamatório provocado pelo vírus. Isso poderia explicar pessoas com comorbidades, principalmente diabetes, que descompensam rapidamente devido à hipóxia as vezes mesmo com oferta de oxigênio suplementar, pois esses indivíduos teriam menos sítios de ligação nas hemoglobinas. Teoricamente, em pessoas sem comorbidades a carga viral inicial seria responsável por determinar a gravidade do quadro uma vez que quanto maior a carga viral, teoricamente há mais hemoglobinas comprometidas. Sugere-se ainda que a alteração na estrutura das hemácias explicaria a lesão de vasos e a coagulação intravascular disseminada.

Conclusão

A infecção do indivíduo pela COVID-19 tem potencial de causar alterações significativas na capacidade ventilatória, cursando com comprometimento pulmonar difuso e piora nas trocas gasosas. Mais estudos são necessários para esclarecer a fisiopatologia dessa doença complexa com alto potencial de contágio, morbidade e mortalidade.

Referências

1. World Health Organization - WHO. Coronavirus disease (COVID-19) Pandemic [acesso em 10 abr 2020]; Disponível em: https://www.who.int/emergencies/diseases/novel-coronavirus-2019
2. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, Xia J, Yu T, Zhang X, Zhang L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507-513. doi: 10.1016/S0140-6736(20)30211-7.
3. Luo W, Yu H, Gou J, Li X, Sun Y, Li J, Liu L. Clinical Pathology of Critical Patient with Novel Coronavirus Pneumonia (COVID-19). Preprints 2020, 2020020407 [periódicos na Internet]. [acesso em 10 abr 2020]; Disponível em: https://www.preprints.org/manuscript/202002.0407/v1
4. Shi H, Han X, Jiang N, Cao Y, Alwalid O, Gu J, Fan Y, Zheng C. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis. 2020;20(4):425-434. doi: 10.1016/S1473-3099(20)30086-4.
5. Wenzhong L, Hualan L. COVID-19: Attacks the 1-Beta Chain of Hemoglobin and Captures the Porphyrin to Inhibit Human Heme Metabolism. ChemRxiv. 2020; Preprint. https://doi.org/10.26434/chemrxiv.11938173.v6