Texture and Cofactor Zeros of the Neutrino Mass Matrix

Jiajun Liao1, D. Marfatia2, and K. Whisnant1

1Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
2Department of Physics and Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822, USA

Abstract

We study Majorana neutrino mass matrices that have two texture zeros, or two cofactor zeros, or one texture zero and one cofactor zero. The two texture/cofactor zero conditions give four constraints, which in conjunction with the five measured oscillation parameters completely determine the nine independent real parameters of the neutrino mass matrix. We also study the implications that future measurements of neutrinoless double beta decay and the Dirac CP phase will have on these cases.
1 Introduction

Neutrino phenomena are describable by the Majorana neutrino mass matrix,

\[M = V^* \text{diag}(m_1, m_2, m_3)V^\dagger, \]

where we work in the basis in which the charged lepton mass matrix is diagonal, the \(m_i \) are real and nonnegative, \(V = U \text{diag}(1, e^{i\delta_2/2}, e^{i\delta_3/2}) \), and

\[U = \begin{bmatrix} c_{13}c_{12} & c_{13}s_{12} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}s_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}s_{13} \end{bmatrix}. \]

(2)

Here \(s_{ij} \) and \(c_{ij} \) stand for the sine and cosine of the mixing angles \(\theta_{ij} \). We study the consequences of imposing two texture/cofactor zeros in the neutrino mass matrix. There are three classes of such ansätze: two texture zeros (TT) \[1, 2, 3\], two cofactor zeros (CC) \[4, 5\], and one texture zero and one cofactor zero (TC) \[6\]. Of the nine real parameters of \(M \), five are fixed by measurements of the three mixing angles and two mass-squared differences; for a recent global three-neutrino fit see Ref. \[7\]. The remaining four parameters, which we take to be the lightest mass, the Dirac phase, and the two Majorana phases, can then be determined from the four constraints that define the two texture/cofactor zeros. Consequently, the rate for neutrinoless double beta decay \((0\nu\beta\beta) \) which is given by the magnitude of the \(\nu_e - \nu_e \) element of the neutrino mass matrix,

\[|M_{ee}| = |m_1c_{12}^2c_{13}^2 + m_2e^{-i\delta_2}s_{12}^2c_{13}^2 + m_3e^{-i\delta_3}s_{13}^2e^{2i\delta}|, \]

(3)

is also determined.

In Sections 2, 3 and 4, we use current experimental data to study the allowed parameter space for two texture zeros, two cofactor zeros, and one texture and one cofactor zero, respectively. We discuss and summarize our results in Section 5.

2 Two texture zeros

The condition for a vanishing element \(M_{\alpha\beta} = M_{\alpha\beta}^* = 0 \) is

\[m_1U_{\alpha1}U_{\beta1} + m_2e^{i\delta_2}U_{\alpha2}U_{\beta2} + m_3e^{i\delta_3}U_{\alpha3}U_{\beta3} = 0. \]

(4)
Since there are two such constraints that depend linearly on the masses, the masses are related by

\[
\frac{m_1}{c_1} = \frac{m_2 e^{i\phi_2}}{c_2} = \frac{m_3 e^{i\phi_3}}{c_3},
\]

where \(c_j\) are complex numbers that are quartic in the matrix elements of \(U\). Then, with \(\Delta m^2 = m_2^2 - m_1^2\) and \(\Delta m^2 = |m_3^2 - \frac{1}{2}(m_1^2 + m_2^2)|\), we get two equations that relate \(m_1\) to the oscillation parameters and the Dirac phase \(\delta\),

\[
m_1 = \sqrt{\frac{\delta m^2}{|c_2/c_1|^2 - 1}},
\]

\[
m_1 = \sqrt{\frac{\frac{1}{2}\delta m^2 \pm \Delta m^2}{|c_3/c_1|^2 - 1}},
\]

where the plus and minus signs correspond to the normal hierarchy (NH) and the inverted hierarchy (IH), respectively. (For the NH the lightest mass is \(m_1\), and for the IH the lightest mass is \(m_3 = \sqrt{m_1^2 + \frac{1}{2}\delta m^2 - \Delta m^2}\).) For a fixed set of oscillation parameters each of these two equations give \(m_1\) as a function of \(\delta\), and the intersections of the curves give the allowed values of \(m_1\) and \(\delta\). We use the data from the latest global fit of Ref. [7] to find the 2\(\sigma\) allowed regions for the lightest mass and \(\delta\) that satisfy Eqs. (6) and (7). Note that if we replace \(\delta\) by \(-\delta\), the two constraints from the Eqs. (6) and (7) will be the same since the magnitude of \(c_i\) does not depend on the sign of \(\delta\), but because the latest global fit has a preference for negative values of \(\delta\) [7], the allowed regions for \(0 \leq \delta \leq 180^\circ\) are a little larger than for \(180^\circ \leq \delta \leq 360^\circ\).

For two texture zeros in the mass matrix, there are \(\frac{6!}{2!4!} = 15\) different cases to consider. If two off-diagonal entries vanish, the mass matrices are block diagonal and have one neutrino decoupled from the others, which is inconsistent with the data. Therefore, we only need to consider 12 cases that can be divided into three categories:

1. **One zero on diagonal, off-diagonal zero sharing column and row.** The six possibilities of this type, \(X_1, X_2, X_3, X_4, X_5,\) and \(X_6\), are displayed in Table I. Using the unitarity of \(U\) and the fact that the cofactors of \(U_{ij}\) are equal to \(U_{ij}^*\), e.g., \(U_{e1}U_{\mu 2} - U_{e2}U_{\mu 1} = U_{\tau 3}^*\), we obtain the simplified expressions for \(c_1, c_2,\) and \(c_3\) provided in Table I. From a numerical analysis, we find that at the 2\(\sigma\) level, only \(X_1, X_2\) and
Table 1: The expressions for c_1, c_2 and c_3 for Class X. The symbol \times denotes a nonzero matrix element.
X_5 are allowed for the normal hierarchy and X_5 and X_6 are allowed for the inverted hierarchy. The allowed regions for X_1 and X_2 for the normal hierarchy are shown in Figs. [1] and [2]. The allowed regions for X_5 for the normal and inverted hierarchy are shown in Figs. [3] and [4] respectively. For the best-fit values of the measured oscillation parameters, X_2 NH and X_5 IH are not allowed, and the best-fit points for X_1 NH and X_5 NH are shown in Figs. [1] and [2] respectively. Both hierarchies for X_5 have nearly maximal CP violation, i.e., δ close to 90° or 270°, and a lower bound on the lightest mass of about 30 meV. For X_5 NH and X_5 IH, the upper bound on the lightest mass is about 290 meV and 250 meV, respectively. For comparison, the 95% C.L. limit from cosmology is $\sum m_i < 660$ meV [8]. The allowed region for X_6 IH is very similar to that for X_5 IH.

2. **One zero on diagonal, off-diagonal zero not sharing column and row.** The three possibilities of this type, Y_1, Y_2 and Y_3, and the corresponding c_i’s are displayed in Table [2]. At the 2σ level, Y_1 and Y_2 are allowed for the inverted hierarchy, and their allowed regions are very similar to that for X_5 IH; Y_1 is also allowed for the normal hierarchy and the allowed region is very similar to that for X_5 NH; Y_3 is excluded at 2σ. All the allowed cases have nearly maximal CP violation, and a lower bound on the lightest mass of about 30 meV, similar to X_5 NH and X_5 IH; see Figs. [3] and [4].

3. **Two zeros on diagonal.** The three possibilities of this type, Z_1, Z_2 and Z_3, and the corresponding c_i’s are listed in Table [3]. The numerical results show that only Z_1 for the inverted hierarchy is allowed at the 2σ level, and the allowed regions are shown in Fig. [5]. Z_1 for the normal hierarchy is excluded at 2σ for $m_1 < 0.3$ eV, which is consistent with the result of Ref. [9].

Although the allowed regions for the seven acceptable textures of Ref. [1] have been further restricted by the determination of θ_{13}, all seven textures remain allowed. Further restrictions on the Dirac CP phase δ [3] can also be placed by the latest global fit [7] for each case.
Case	Structure	c_1	c_2	c_3
Y_1	$\left(\begin{array}{ccc} \times & \times & 0 \\ \times & 0 & \times \\ 0 & \times & \times \end{array} \right)$	$U_{e_1}^* U_{e_2} U_{\mu_3} - U_{r_1}^* U_{r_2} U_{r_3}$	$U_{e_1} U_{e_2} U_{\mu_3} - U_{r_1} U_{r_2} U_{r_3}$	$U_{\mu_1} U_{e_2} U_{e_3}^* - U_{r_1} U_{\mu_2} U_{e_3}^*$
Y_2	$\left(\begin{array}{ccc} \times & 0 & \times \\ 0 & \times & \times \\ \times & \times & 0 \end{array} \right)$	$U_{\mu_1}^* U_{r_2} U_{\mu_3}^* - U_{e_1}^* U_{e_2} U_{r_3}$	$U_{r_1} U_{\mu_2} U_{r_3} - U_{e_1} U_{e_3} U_{r_3}$	$U_{\mu_1} U_{r_2} U_{e_3}^* - U_{r_1} U_{r_2} U_{e_3}^*$
Y_3	$\left(\begin{array}{ccc} 0 & \times & \times \\ \times & \times & 0 \\ \times & 0 & \times \end{array} \right)$	$U_{r_1}^* U_{e_2} U_{r_3} - U_{\mu_1} U_{\mu_2} U_{e_3}$	$U_{e_1} U_{r_2} U_{r_3} - U_{\mu_1} U_{\mu_2} U_{e_3}$	$U_{r_1} U_{e_3} U_{r_3}^* - U_{e_1} U_{\mu_2} U_{\mu_3}^*$

Table 2: The expressions for c_1, c_2 and c_3 for Class Y. The symbol \times denotes a nonzero matrix element.
Case	Structure	c_1	c_2	c_3
Z_1	\[
\begin{pmatrix}				
\times & \times & \times \\				
\times & 0 & \times \\				
\times & \times & 0				
\end{pmatrix}				
\]	$(U_{\mu_2}U_{\tau_3} + U_{\mu_3}U_{\tau_2})U_{e_1}^*$	$(U_{\mu_3}U_{\tau_1} + U_{\mu_1}U_{\tau_3})U_{e_2}^*$	$(U_{\mu_1}U_{\tau_2} + U_{\mu_2}U_{\tau_1})U_{e_3}^*$	
Z_2	\[
\begin{pmatrix}				
0 & \times & \times \\				
\times & \times & \times \\				
\times & \times & 0				
\end{pmatrix}				
\]	$(U_{e_2}U_{\tau_3} + U_{e_3}U_{\tau_2})U_{\mu_1}^*$	$(U_{e_3}U_{\tau_1} + U_{e_1}U_{\tau_3})U_{\mu_2}^*$	$(U_{e_1}U_{\tau_2} + U_{e_2}U_{\tau_1})U_{\mu_3}^*$	
Z_3	\[
\begin{pmatrix}
0 & \times & \times \\
\times & 0 & \times \\
\times & \times & \times
\end{pmatrix}
\] | $(U_{e_2}U_{\mu_3} + U_{e_3}U_{\mu_2})U_{\tau_1}^*$ | $(U_{e_3}U_{\mu_1} + U_{e_1}U_{\mu_3})U_{\tau_2}^*$ | $(U_{e_1}U_{\mu_2} + U_{e_2}U_{\mu_1})U_{\tau_3}^*$ |

Table 3: The expressions for c_1, c_2 and c_3 for Class Z. The symbol \times denotes a nonzero matrix element.
3 Two cofactor zeros

In Ref. [5] it was shown that for matrices with two zero cofactors, the lightest mass can vanish only if $\theta_{13} = 0$. Since θ_{13} is nonzero at the 7.7 σ level [10], we assume there are no vanishing neutrino masses and the mass matrix is invertible. Since $(M^{-1})_{\alpha\beta} = \frac{1}{\det M} C_{\alpha\beta}$ (where $C_{\alpha\beta}$ is the (α, β) cofactor of M), and the Majorana neutrino mass matrix is symmetric, $C_{\alpha\beta} = 0$ is equivalent to $(M^{-1})_{\alpha\beta} = 0$. Because $M^{-1} = V \text{diag}(m_1^{-1}, m_2^{-1}, m_3^{-1}) V^T$, the constraint is

$$m_1^{-1} U_{\alpha 1} U_{\beta 1} + m_2^{-1} e^{i \phi_2} U_{\alpha 2} U_{\beta 2} + m_3^{-1} e^{i \phi_3} U_{\alpha 3} U_{\beta 3} = 0.$$

(8)

The above equation is the same as Eq. (4), except that the m_i’s are replaced by their inverses. Hence, we can follow a procedure similar to that for the TT case to find the favored values of the lightest mass and δ. Since the cofactor matrix is also diagonalized by the mixing matrix V, it cannot be block diagonal, and only 12 different patterns need to be considered. It is possible to employ the notation for the TT case if the locations of the two zeros are the same in the cofactor matrix as in the mass matrix. Then all the c_i’s are identical, and the only difference from the TT case is that Eqs. (6) and (7) are replaced by

$$m_1 = \sqrt{\frac{\delta m^2}{|c_1/c_2|^2 - 1}},$$

(9)

$$m_1 = \sqrt{\frac{\frac{1}{2} \delta m^2 \pm \Delta m^2}{|c_1/c_3|^2 - 1}}.$$

(10)

As for the TT case, there are three categories:

1. **One zero on diagonal, off-diagonal zero sharing column and row.** An interesting fact is that the two cofactor zero cases in this class yield the same allowed regions as for the two texture zero cases in the same class [4, 5]; the correspondence is listed in Table 4. The reason for this is that the two cofactor zero conditions in this category imply either two texture zeros, or three cofactor zeros in a row or column. The latter possibility which gives a vanishing mass is excluded since $\theta_{13} \neq 0$. From Table 4 we readily find the cases that are allowed at 2σ: X_3, X_4 and X_6 for the normal hierarchy, and X_5 and X_6 for the inverted hierarchy. The allowed regions in the $m_1(m_3)$-δ plane are the same as those for the corresponding cases in the TT ansatz.
Two cofactor zeros
| | X₁ | X₂ | X₃ | X₄ | X₅ | X₆ |

Two texture zeros
| | X₃ | X₄ | X₁ | X₂ | X₆ | X₅ |

Table 4: The correspondence between the two cofactor zero cases and two texture zero cases for Class X.

2. **One zero on diagonal, off-diagonal zero not sharing column and row.** There are three possibilities of this type: \(Y_1\), \(Y_2\) and \(Y_3\); see Table 2. At the 2\(\sigma\) level, \(Y_1\) and \(Y_2\) are allowed for the inverted hierarchy, and their allowed regions are very similar to that for TT \(X_5\) IH; \(Y_2\) is also allowed for the normal hierarchy and the allowed region is very similar to that for TT \(X_5\) NH; \(Y_3\) is excluded at 2\(\sigma\). All the allowed cases have nearly maximal CP violation, and a lower bound on the lightest mass of about 30 meV, similar to TT \(X_5\) NH and and TT \(X_5\) IH.

3. **Two zeros on diagonal.** There are three possibilities of this type: \(Z_1\), \(Z_2\) and \(Z_3\); see Table 3. We find numerically that \(Z_1\) is allowed at 2\(\sigma\) for the normal hierarchy only. The other cases are excluded at 2\(\sigma\). The allowed regions for \(Z_1\) for the normal hierarchy are shown in Fig. 6.

4. **One texture zero and one cofactor zero**

There are 36 possibilities with one texture zero and one cofactor zero, of which 21 are equivalent to a TT case [6]. So we only need to study the remaining 15 cases listed in Table 5. The two constraints \(M_{\alpha\beta} = 0\) and \(C_{\alpha'\beta'} = 0\) can be written as

\[
m_1 A_1 + m_2 e^{-i\phi_2} A_2 + m_3 e^{-i\phi_3} A_3 = 0,
\]

and

\[
m_1^{-1} B_1 + m_2^{-1} e^{i\phi_2} B_2 + m_3^{-1} e^{i\phi_3} B_3 = 0,
\]

where \(A_i = U_{\alpha_i}^* U_{\beta_i}^*\), and \(B_i = U_{\alpha'_{i}} U_{\beta'_{i}}\) for \(i = 1, 2, 3\). Solving these two equations, we get

\[
\frac{m_3}{m_1} e^{-i\phi_3} = \frac{1}{2 A_3 B_1} (A_2 B_2 - A_1 B_1 - A_3 B_3 \pm \sqrt{\Lambda}),
\]

and

\[
\frac{m_2}{m_1} e^{-i\phi_2} = \frac{1}{2 A_2 B_1} (A_3 B_3 - A_1 B_1 - A_2 B_2 \mp \sqrt{\Lambda}),
\]
Case	Conditions
1A	$M_{ee} = 0, C_{ee} = 0$
1B	$M_{ee} = 0, C_{e\mu} = 0$
1C	$M_{ee} = 0, C_{e\tau} = 0$
2A	$M_{e\mu} = 0, C_{ee} = 0$
2D	$M_{e\mu} = 0, C_{e\mu} = 0$
3A	$M_{e\tau} = 0, C_{ee} = 0$
3F	$M_{e\tau} = 0, C_{e\tau} = 0$
4B	$M_{\mu\mu} = 0, C_{e\mu} = 0$
4D	$M_{\mu\mu} = 0, C_{e\mu} = 0$
4E	$M_{\mu\tau} = 0, C_{e\mu} = 0$
5D	$M_{\mu\tau} = 0, C_{\mu\mu} = 0$
5F	$M_{\mu\tau} = 0, C_{\mu\tau} = 0$
6C	$M_{\tau\tau} = 0, C_{e\tau} = 0$
6E	$M_{\tau\tau} = 0, C_{\mu\tau} = 0$
6F	$M_{\tau\tau} = 0, C_{\tau\tau} = 0$

Table 5: The 15 cases with one texture zero and one cofactor zero that are not reducible to a TT case.
where $\Lambda = A_1^2 B_1^2 + A_2^2 B_2^2 + A_3^2 B_3^2 - 2(A_1 A_2 B_1 B_2 + A_1 A_3 B_1 B_3 + A_2 A_3 B_2 B_3)$. Taking the absolute values of the above equations, we can find the two mass ratios, $\sigma = m_2/m_1$ and $\rho = m_3/m_1$. Then,

$$m_1 = \sqrt{\frac{\delta m^2}{\sigma^2 - 1}},$$

$$m_1 = \sqrt{\frac{\frac{1}{2} \delta m^2 + \Delta m^2}{\rho^2 - 1}},$$ (15)

A numerical study shows that at 2σ, only 2D, 3F and 4B are allowed for the normal hierarchy, and only 2A, 2D, 3A, 3F, 4B and 6C are allowed for the inverted hierarchy. The allowed regions for 2D and 3F for the normal hierarchy are shown in Figs. 7 and 8 and the allowed regions for 2A, 4B and 6C for the inverted hierarchy are shown in Figs. 9, 10 and 11 respectively. The allowed region for 3A IH is very similar to that for 2A IH. The allowed region for 4B NH is very similar to that for TT X_5 NH, and the allowed regions for 2D IH and 3F IH are very similar to that for TT X_5 IH. They have nearly maximal CP violation, and a lower bound on the lightest mass of about 30 meV. For 3F NH and 6C IH there are four best-fit points since there are four solutions to the one texture zero and one cofactor zero conditions.

5 Discussion

There are 7 cases that are allowed at the 2σ level for the two texture zero ansatz, 7 cases that are allowed for the two cofactor zero ansatz, and 6 cases that are allowed for the one texture and one cofactor zero ansatz. Seven cases allow both hierarchies, so there are a total of 27 possible two-zero cases allowed at 2σ. However, there are many similarities among the allowed regions for these cases. In Ref. [11] we noted that any case with a homogeneous relationship among elements of M with one mass hierarchy yields predictions for the oscillation parameters and phases similar to those given by a case with the same homogeneous relationship among cofactors of M with the opposite mass hierarchy. The only exceptions are when the lightest mass is small, of order 20 meV or less, or when the allowed ranges of the oscillation parameters differ significantly for the two mass hierarchies. The
latter situation occurs for θ_{23}, which is constrained at the 2\(\sigma\) level to be less than about 45.3° for the NH but can have larger values for the IH.

A texture or cofactor zero is the simplest homogeneous relationship; therefore, CC cases can be dual to TT cases (and, of course, vice versa), and some TC cases can be dual to other such cases\(^1\). We can identify 8 cases where allowed regions are similar due to the dual-case argument, 6 cases where a case is allowed at 2\(\sigma\) but its dual case is not because the lightest mass is small, 5 cases where an IH case is allowed but its dual case is disfavored because θ_{23} must be larger than 45.3°. A complete listing of dual case relationships is given in Table 6.

We note that the allowed regions for the CC Z_1 NH case (Fig. 6) are similar to the allowed regions for its dual case, TT Z_1 IH (Fig. 5). The region for $90^\circ \leq \delta \leq 180^\circ$ in Fig. 5 does not appear in Fig. 6 because θ_{23} has values that are larger than 45.3° for the inverted hierarchy for $90^\circ \leq \delta \leq 180^\circ$, while such values of θ_{23} are disfavored for the normal hierarchy.

We can also use the effective Majorana mass for the neutrinoless double beta decay to differentiate two-zero cases. In Table 7 we list the minimum and maximum values of $|M_{ee}|$ at the 2\(\sigma\) level for each case. Note that for TT X_1 and X_2, and CC X_3 and X_4, $|M_{ee}|$ is identically zero, and therefore they are not listed in the table. We also omit the cases of CC X_5 IH, X_6 NH and X_6 IH because they give the same phenomenology as the corresponding cases in the TT class, as given in Table 4.

We find that there are four different types of cases phenomenologically:

1. **Cases that allow only a small value for the lightest mass, less than 10 meV.**
 This includes 6 cases: TT X_1 NH, TT X_2 NH, CC X_3 NH, CC X_4 NH, TC 2A IH and TC 3A IH (Figs. 1, 2 and 9 respectively). The value of $|M_{ee}|$ is either zero (for the TT cases) or close to 50 meV (for the TC cases).

2. **Cases that restrict δ to be very close to 90° or 270°.** This group consists of 5 cases with NH (TT X_5, CC X_6, TT Y_1, CC Y_2, and TC 4B) and 10 cases with IH (TT X_5, TT X_6, CC X_5, CC X_6, TT Y_1, CC Y_1, TT Y_2, CC Y_2, TC 2D, and TC 3F), all of which have a minimum value for the lightest mass of about 30 meV. In all NH cases of this

\(^1\)In principle, the TC cases 1A, 2D, and 6F could be self-dual, which means they would have similar allowed regions for the NH and IH, but these are not allowed at 2\(\sigma\).
type, the maximum value for \(m_1 \) is about 290 meV and 35 meV \(\lesssim |M_{ee}| \lesssim 290 \) meV; in all IH cases, the maximum value for \(m_3 \) is about 250 meV and 55 meV \(\lesssim |M_{ee}| \lesssim 250 \) meV. Therefore it will be very difficult to distinguish these cases from each other.

3. **Cases in which maximal CP violation is approached for larger values of the lightest mass.** This group includes TT \(Z_1 \) IH and CC \(Z_1 \) NH (Figs. 5 and 6). In these cases a wide range of \(\delta \) is possible, although maximal CP violation is not allowed.

4. **Cases that are a mixture of types 1 and 2.** The TC cases 2D NH, 3F NH, 4B IH, and 6C IH allow values of the lightest mass less than 10 meV, and also have nearly maximal CP violation when the lightest mass is above about 30 meV (Figs. 7, 8, 10, and 11).

Due to the large number of cases and their overlapping predictions, it is currently not possible to uniquely determine any given case. The latest experimental result from EXO-200 [12] sets an upper limit on the effective mass \(|M_{ee}| \) of less than 140–380 meV at 90% C.L. However, with future sensitivities to \(|M_{ee}| \) of about 20 meV [13], and a precision measurement of \(\delta \) in future long baseline oscillation experiments, we might be able to distinguish between these cases. Here we run a test on the survivability of two-zero cases by applying an upper limit on \(|M_{ee}| \) and assuming specific values for \(\delta \) with the 3\(\sigma \) resolution attainable with a 350 kt-yr exposure at the Long-Baseline Neutrino Experiment [14]. The results in Table 8 are qualitative without specific confidence levels ascribable.

Acknowledgments

KW thanks the Center for Theoretical Underground Physics and Related Areas (CETUP 2013) in South Dakota for its hospitality and for partial support while this work was in progress. This research was supported by the U.S. Department of Energy under Grant Nos. DE-FG02-01ER41155, DE-FG02-13ER42024 and de-sc0010504.
Case	Hierarchy	Dual case allowed?
TT X_1	NH	No, m_1 small
TT X_2	NH	No, m_1 small
TT X_5	NH	Yes, CC X_5 IH
TT X_5	IH	Maybe, CC X_5 NH, if the θ_{23} restriction were absent
TT X_6	IH	Yes, CC X_6 NH
TT Y_1	NH	Yes, CC Y_1 IH
TT Y_1	IH	Maybe, CC Y_1 NH, if the θ_{23} restriction were absent
TT Y_2	IH	Yes, CC Y_2 NH
TT Z_1	IH	Yes, CC Z_1 NH (for $\delta \in [0, 90^\circ] \cup [180^\circ, 360^\circ]$)
CC X_3	NH	No, m_1 small
CC X_4	NH	No, m_1 small
CC X_6	IH	Maybe, TT X_6 NH, if the θ_{23} restriction were absent
CC Y_2	IH	Maybe, TT Y_2 NH, if the θ_{23} restriction were absent
TC $2A$	IH	No, m_3 small
TC $2D$	NH	Yes, TC 4B IH (except for low m_1 and m_3 and if the θ_{23} restriction were absent)
TC $2D$	IH	Yes, TC 4B NH
TC $3A$	IH	No, m_3 small
TC $3F$	NH	Yes, TC 6C IH (except for low m_1 and m_3)
TC $3F$	IH	Maybe, TC 6C NH, if the θ_{23} restriction were absent

Table 6: A listing of which allowed cases have dual cases that are also allowed, and which do not. The “Maybe” designation is for situations in which the dual case has a NH and $\theta_{23} > 45.3^\circ$; the global analysis of Ref. [7] suggests that for a NH, $\theta_{23} < 45.3^\circ$ at 2\(\sigma\). “Maybe” indicates that the exclusion of the dual case on this basis is not robust.
Case	Hierarchy	Minimum	Maximum
TT X_5	NH	37	286
TT X_5	IH	58	247
TT X_6	IH	62	215
TT Y_1	NH	34	276
TT Y_1	IH	57	230
TT Y_2	IH	60	226
TT Z_1	IH	24	>1000
CC Y_1	IH	59	231
CC Y_2	NH	34	275
CC Y_2	IH	56	227
CC Z_1	NH	15	>1000
TC $2A$	IH	45	49
TC $2D$	NH	3	279
TC $2D$	IH	60	227
TC $3A$	IH	45	49
TC $3F$	NH	3	281
TC $3F$	IH	57	217
TC $4B$	NH	35	281
TC $4B$	IH	16	232
TC $6C$	IH	15	229

Table 7: The minimum and maximum values of $|M_{ee}|$ (in meV) at 2σ. CC X_5 and CC X_6 are not shown since they are equivalent to TT X_6 and TT X_5, respectively. $|M_{ee}|$ is identically zero for TT X_1, TT X_2, CC X_3 and CC X_4.
Table 8: The two-zero cases that survive (indicated by a tick mark) an upper limit on $|M_{ee}|$ and a measurement of δ (as in the second row) with the 3σ resolution attainable by the Long-Baseline Neutrino Experiment with 350 kt-yr of data [14]. The CC Class X is not shown since it is equivalent to the TT Class X.

| Case | $|M_{ee}| < 20$ meV | $|M_{ee}| < 50$ meV | $|M_{ee}| < 100$ meV |
|-----------|---------------------|---------------------|---------------------|
| | 0 90° 180° 270° | 0 90° 180° 270° | 0 90° 180° 270° |
| TT X_1 NH | × √ √ √ | × √ √ √ | × √ √ √ |
| TT X_2 NH | √ √ × √ | √ √ × √ | √ √ × √ |
| TT X_5 NH | × × × × | × √ × √ | × √ × √ |
| TT X_5 IH | × × × × | × × × × | × × × × |
| TT X_6 IH | × × × × | × × × × | × √ × √ |
| TT Y_1 NH | × × × × | × √ × √ | × √ × √ |
| TT Y_1 IH | × × × × | × × × × | × × × × |
| TT Y_2 IH | × × × × | × × × × | × × × × |
| TT Z_1 IH | × × × × | × √ × √ | × √ × √ |
| CC Y_1 IH | × × × × | × × × × | × × × × |
| CC Y_2 NH | × × × × | × √ × √ | × √ × √ |
| CC Y_2 IH | × × × × | × × × × | × × × × |
| CC Z_1 NH | × √ × √ | × √ × √ | × √ × √ |
| TC $2A$ IH | × × × × | × √ × √ | × √ × √ |
| TC $2D$ NH | × √ × √ | × √ × √ | × √ × √ |
| TC $2D$ IH | × × × × | × × × × | × √ × √ |
| TC $3A$ IH | × × × × | × √ × √ | × √ × √ |
| TC $3F$ NH | × √ × √ | × √ × √ | × √ × √ |
| TC $3F$ IH | × × × × | × × × × | × × × × |
| TC $4B$ NH | × × × × | × √ × √ | × √ × √ |
| TC $4B$ IH | √ √ × √ | √ √ × √ | √ √ × √ |
| TC $6C$ IH | × √ √ √ | × √ √ √ | × √ √ √ |
References

[1] P. H. Frampton, S. L. Glashow and D. Marfatia, Phys. Lett. B 536, 79 (2002) [hep-ph/0201008].

[2] Z.-z. Xing, Phys. Lett. B 530, 159 (2002) [hep-ph/0201151]; Phys. Lett. B 539, 85 (2002) [hep-ph/0205032].

[3] H. Fritzsch, Z.-z. Xing and S. Zhou, JHEP 1109, 083 (2011) arXiv:1108.4534 [hep-ph]; P. O. Ludl, S. Morisi and E. Peinado, Nucl. Phys. B 857, 411 (2012) arXiv:1109.3393 [hep-ph].

[4] L. Lavoura, Phys. Lett. B 609, 317 (2005) [hep-ph/0411232]; S. Verma, Nucl. Phys. B 854, 340 (2012) arXiv:1109.4228 [hep-ph]; S. Dev, S. Gupta, R. R. Gautam and L. Singh, Phys. Lett. B 706, 168 (2011) arXiv:1111.1300 [hep-ph]; T. Araki, J. Heeck and J. Kubo, JHEP 1207, 083 (2012) arXiv:1203.4951 [hep-ph].

[5] E. I. Lashin and N. Chamoun, Phys. Rev. D 78, 073002 (2008) arXiv:0708.2423 [hep-ph].

[6] S. Dev, S. Verma, S. Gupta and R. R. Gautam, Phys. Rev. D 81, 053010 (2010) arXiv:1003.1000 [hep-ph].

[7] F. Capozzi, G. L. Fogli, E. Lisi, A. Marrone, D. Montanino and A. Palazzo, Phys. Rev. D 89, 093018 (2014) arXiv:1312.2878 [hep-ph].

[8] P. A. R. Ade et al. [Planck Collaboration], arXiv:1303.5076 [astro-ph.CO].

[9] D. Meloni, A. Meroni and E. Peinado, Phys. Rev. D 89, 053009 (2014) arXiv:1401.3207 [hep-ph].

[10] F. P. An et al. [Daya Bay Collaboration], Chin. Phys. C 37, 011001 (2013) arXiv:1210.6327 [hep-ex].

[11] J. Liao, D. Marfatia and K. Whisnant, Phys. Rev. D 89, 013009 (2014) arXiv:1308.1368 [hep-ph].

17
[12] M. Auger et al. [EXO Collaboration], Phys. Rev. Lett. 109, 032505 (2012) [arXiv:1205.5608 [hep-ex]].

[13] W. Rodejohann, J. Phys. G 39, 124008 (2012) [arXiv:1206.2560 [hep-ph]].

[14] C. Adams et al. [LBNE Collaboration], arXiv:1307.7335 [hep-ex].
Figure 1: The 2σ allowed regions in the \((m_1, \delta)\) plane for the TT \(X_1\) case and the normal hierarchy. The black diamonds indicate \(m_1\) and \(\delta\) for the best-fit values of the five oscillation parameters.
Figure 2: Same as Fig. 1 except for TT X_2 and the normal hierarchy. This case is not allowed for the best-fit oscillation parameters.

Figure 3: Same as Fig. 1 except for TT X_5 and the normal hierarchy.
Figure 4: Same as Fig. II except for TT X_5 and the inverted hierarchy. This case is not allowed for the best-fit oscillation parameters.

Figure 5: Same as Fig. II except for TT Z_1 and the inverted hierarchy.
Figure 6: Same as Fig. 1 except for CC Z_1 and the normal hierarchy.

Figure 7: Same as Fig. 1 except for TC 2D and the normal hierarchy.
Figure 8: Same as Fig. I except for TC 3F and the normal hierarchy.

Figure 9: Same as Fig. II except for TC 2A and the inverted hierarchy.
Figure 10: Same as Fig. 1 except for TC 4B and the inverted hierarchy. This case is not allowed for the best-fit oscillation parameters.
Figure 11: Same as Fig. 1 except for TC 6C and the inverted hierarchy. There are four best-fit points since there are four solutions to the TC conditions.