Maternal germline-specific effect of DNA ligase I on CTG/CAG instability

Stéphanie Tomé1,3,†, Gagan B. Panigrahi1,†, Arturo López Castel1, Laurent Foiry3, David W. Melton4, Geneviève Gourdon3,* and Christopher E. Pearson1,2,*

1Program of Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada M5G1L7, 2Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5G1L7, 3Institut national de la santé et de la recherche médicale, U781, Hôpital Necker-Enfants Malades, Université René Descartes Paris V, Paris 75730, France and 4Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland

Received January 27, 2011; Revised and Accepted March 2, 2011

The instability of (CTG)•(CAG) repeats can cause >15 diseases including myotonic dystrophy, DM1. Instability can arise during DNA replication, repair or recombination, where sealing of nicks by DNA ligase I (LIGI) is a final step. The role of LIGI in CTG/CAG instability was determined using in vitro and in vivo approaches. Cell extracts from a human (46BR) harbouring a deficient LIGI (~3% normal activity) were used to replicate CTG/CAG repeats; and DM1 mice with >300 CTG repeats were crossed with mice harbouring the 46BR LigI. In mice, the defective LigI reduced the frequency of CTG expansions and increased CTG contraction frequencies on female transmissions. Neither male transmissions nor somatic CTG instability was affected by the 46BR LigI - indicating a post-female germline segregation event. Replication-mediated instability was affected by the 46BR LigI in a manner that depended upon the location of Okazaki fragment initiation relative to the repeat tract; on certain templates, the expansion bias was unaltered by the mutant LigI, similar to paternal transmissions and somatic tissues; however, a replication fork-shift reduced expansions and increased contractions, similar to maternal transmissions. The presence of contractions in oocytes suggests that the DM1 replication profile specific to pre-meiotic oogenesis replication of maternal alleles is distinct from that occurring in other tissues and, when mediated by the mutant LigI, is predisposed to CTG contractions. Thus, unlike other DNA metabolizing enzymes studied to date, LigI has a highly specific role in CTG repeat maintenance in the maternal germline, involved in mediating CTG expansions and in the avoidance of maternal CTG contractions.

INTRODUCTION

The expansion of a (CTG)•(CAG) trinucleotide repeat is the genetic basis for at least 15 neurological, neurodegenerative or neuromuscular diseases, including myotonic dystrophy type 1 (DM1) and Huntington’s disease (HD) (1). In the normal population, the length of the repeat tracts is genetically stable, ranging from 5–24 repeat units. Tract lengths of >25 repeats can be genetically unstable, while disease-associated expansions of 40–6550 repeats show greatly increased instability. These mutations are termed ‘dynamic mutations’ where the repeats continue to expand within the tissues and across the generations. Instability in DM1 and other trinucleotide repeat diseases is thought to contribute to disease pathogenesis in a tissue-specific manner.

Many of the repeat-associated diseases display a parent-of-origin effect where an increased proportion of disease-causing transmissions to offspring arise from either paternal or maternal transmissions of the mutant allele. This parent-of-origin effect is molecularly explained by a paternal

†S.T. and G.B.P. contributed equally to this study.

*To whom correspondence should be addressed at: 101 College Street, 15th Floor, East Tower, TMDT Building, Toronto, Ontario, Canada M5G 1L7. Tel: +1 4168138256; Fax: +1 4168134931; Email: ceperson.sickkids@gmail.com (C.E. P.); Faculté de Médecine Necker-EM, 156, rue de Vaugirard, 75730 Paris Cedex 15, France. Tel: +33 140615334; Email: genevieve.gourdon@inserm.fr (G.G.)

© The Author 2011. Published by Oxford University Press. All rights reserved.
For Permissions, please email: journals.permissions@oup.com
or maternal repeat expansion bias in the germline, and in some
diseases this is coincident with a maternal or paternal repeat
contraction bias, respectively. For instance, the strong paternal
repeat expansion bias characteristic of most CAG (polyGlu)
diseases occurs in spinocerebellar ataxia 1 (SCA1) which
also displays a maternal contraction bias (2,3). A strong
maternal expansion bias is evident for the very large expansions
arising in fragile X mental retardation type A (FRAXA) and DM1,
for which the latter lead to the more severe congenital form of DM1 (4).
A strong paternal contraction bias is evident for expanded repeats in patients with
SCA8, Friedreich’s ataxia and FRAXA. Large CTG contrac-
tions in DM1 do arise, but these are rare (4,5). Curiously, in
maternal, but not paternal transmissions of HD, repeat-length
changes were also dependent upon the sex of the offspring,
with more expansions and contractions arising in male and
female offspring, respectively (6). Equally surprising is the
predominant CAG expansions and contractions in male and
female progeny, respectively, from the same father HD exon
1 mice (7,8). The absence of CAG tract length differences
between X- and Y-bearing sperm suggests that in this HD
mouse model the embryo gender-mutation bias occurs post-
zygotically (7). Little is mechanistically known of either the
parental or embryo gender mutation biases or the causes of
expansion versus contraction biases.

A role for DNA replication, repair or recombination has been
proposed to contribute to repeat expansion (1,9). DNA ligation
by DNA ligase is a critical final step common to the processes of
DNA replication, repair and recombination. DNA ligase I
(LIGI) has been demonstrated to act at replication forks, in
long-patch base excision repair (BER), and can act in reconstituted
mismatch repair and double-strand break repair (10). LIGI can
affect mutations, for example the addition of human DNA
LIGI to a reconstituted V(D)J recombination system resulted
in greater sequence diversity in the coding flanks, particularly
in the alterations of direct repeat copy numbers—revealing a
potential mutagenic role of this protein (11). LIGI-deficiencies
lead to errors of fork progression (incomplete processing of
Okazaki fragments), long-lived nicks at sites of strand-breaks
(12) and widened excision gap sizes during BER. A potential
role of LIGI on CTG repeat instability was suggested in yeast
and primate model systems (13–15). These in vitro data
revealed that the increased levels of functional wild-type LIGI
led to increased instability and suggested that levels of this
protein may be a determinant of in vivo instability. However,
no mammalian in vivo system has ever been tested for the role
of LIGI in disease-associated trinucleotide instability.

Mutations in the human LIGI gene have been identified in a
patient with growth retardation, immunodeficiency and photo-
sensitivity (16). The cell line 46BR.1G1 derived from the
patient is homozygous (or hemizygous) for a mutant
(Arg-771 → Trp) LIGI gene encoding an enzyme with
residual ligase activity; it has only 3–5% of the wild-type
enzyme activity. In addition to the >20-fold decrease in liga-
tion activity, 46BR.1G1 cells and cell extracts exhibited
retarded joining of Okazaki fragments during DNA replica-
tion, hypersensitivity to a variety of DNA-damaging agents
and delayed ligation, excessive excision and extended BER
patch sizes (17–19). Mice engineered to contain the point
mutation analogous to that found in human 46BR.1G1 cells
were fecund, showed slow growth, cells with DNA replication
failure, genome instability and cancer susceptibility—all phe-
notypes that are consistent with the DNA ligation defect delay-
ing DNA replication and unligated single-strand DNA breaks,
as occur in the human 46BR cells (20). LigI mutant 46BR
mice were therefore suitable to assess whether DNA ligation
could be involved in CTG repeat instability through parental
transmissions and/or in somatic tissues.

In the present study, we have assessed the role of LIGI in
(CTG)•(CAG) repeat instability. Specifically, we assessed
the level of CTG instability in transgenic DM1 mice with
>300 CTG repeats which were crossed to mice carrying the
homozygous 46BR LigI mutation and in vitro replication of
CTG DNA templates by protein extracts from the 46BR.1G1
LIGI-deficient cell line. The 46BR LigI enhanced CTG con-
tractions in maternal transmissions but not paternal trans-
missions or somatic tissues. The presence of CTG
contractions in oocytes and a replication template-specific
effect of the 46BR LigI support a role for LigI in maternal
allele-specific CTG instability.

RESULTS

CTG/CAG repeats are hyper-sensitive to 46BR
LIGI-mediated replication fork progression

To investigate the effect of DNA LIGI deficiency on DNA repli-
cation fork progression through repeat DNAs, we used the SV40
in vitro DNA replication system, a model of the primate replica-
tion fork. DNA templates containing the SV40 replication
origin and 79 (CTG)•(CAG) repeats were replicated using
extracts from HeLa cells, containing only wild-type LigI;
46BR.1G1 cells, expressing only the defective LigI; or from
the 46BR.1G1 complemented cells that also stably express a
transfected wild-type LigI sequence (21) (Fig. 1). The effi-
ciency of complete replication was severely hampered by the
LIGI-defective 46BR extracts, compared with either the LIGI-
proficient HeLa or 46BR-complemented extracts (Fig. 1,
compare lanes 2 and 6 with 4; lanes 8 and 12 with 10 and
lanes 14 and 18 with 16). Strikingly, the proportion of incomple-
tely replicated or aberrantly processed Okazaki fragments is
increased for all templates replicated by the LIGI-deficient
46BR extracts (compare lanes 2 and 6 with 4; lanes 8 and 12
with 10 and lanes 14 and 18 with 16). The amount of incomplete
Okazaki fragments was greatest for the repeat-containing tem-
plates; this was particularly exacerbated when CTG served as
the lagging strand template (pDM79EF), suggesting that this
effect was sensitive to replication direction. Overall, repeat
tracts were hyper-sensitive to replication defects by the defec-
tive LigI, yielding an accumulation of unligated Okazaki
fragments and reduced replication efficiencies which confirm other
reports and extend those by revealing CTG/CAG tracts as par-
icularly prone to such errors (17–19). The hyper-sensitivity
of CTG/CAG repeats to replication fork progression by mutant
46BR LigI extracts suggested that a similar pheno-
menon might occur in vivo and may contribute to repeat instabil-
ity. To address in vivo the role of a deficient Lig in repeat
instability, we used a DM1 transgenic mouse (DM300–328),
containing ~45 kb of the human DM1 locus, including a
large CTG repeat (>300 units) (22,23).
Intergenerational CTG instability in mice carrying the 46BR LigI mutation

DM300–328 mice display >90% CTG repeat length variation over generations and high levels of age-dependant somatic instability, both showing a strong bias towards expansions (22,23). 46BR LigI mutant mice (20) were crossed with DM300–328 mice by successive breeding over generations. CTG repeat length variations after male and female transmissions were analysed in mice carrying either the wild-type LigI gene (LigI+/+), 46BR heterozygous (LigI+/m) or 46BR homozygous mutant LigI gene (LigIm/m). Frequencies of intergenerational CTG expansions and contractions were determined by measuring CTG repeat length changes in the tail DNAs of offspring compared with CTG lengths of the transmitting parent (Table 1 and Fig. 2). The frequency of CTG expansions is high in mice also containing the wild-type LigI (LigI+/+ to LigI+/+ transmissions; 94 and 78% in male and female transmissions, respectively). The magnitude of expansions ranged from 10 to 40 (with one event at 180 CTG for the female transmissions), and contractions ranged from −10 to −40 CTG. This expansion bias, mutation frequency and magnitude were similar to previous observations (22,23). For the mice with LigI-deficient backgrounds (LigI+/m and LigIm/m), no significant differences were observed in the frequencies or ranges of expansions and contractions for male transmissions (Table 1 and Fig. 2). However, female transmissions showed both a significant decrease in the frequency of CTG expansions and a significant increase in the frequency of contractions when one or both LigI alleles were mutated (P = 0.017 and P = 0.028, respectively). The mutation frequency and the ranges of mutations were similar in the LigI+/m to LigI+/+ and LigIm/m to LigIm/m female transmissions, suggesting that the heterozygous LigI mutation is sufficient to disrupt the level of CTG instability. The frequency of expansions was lower in these two types of transmissions compared with the LigI wild-type female transmissions (47 and 53% compared with the 78% expansions observed in LigI+/+ transmissions, Table 1). The frequency of contractions was higher in the LigI+/m to LigI+/+ and LigIm/m to LigIm/m female transmissions (24 and 29%).
compared with the 8% observed in the LigI+/+ transmissions, Table 1). The age of the transmitting mothers did not affect the contraction events detected either in the LigI+/m or LigIm/m mice (ages ranged from 9.5 to 28.5 weeks, 45 ± 51 maternal transmissions, respectively), since no significant correlation was found between CTG repeat changes and ages. Thus, the 46BR LigI mutation affects intergenerational CTG instability in maternal but not paternal transmissions yielding a bias towards contractions.

Table 1. Intergenerational CTG repeat instability in transgenic mice carrying the 46BR LigI mutation

Parent-to-offspring transmission	Transmissions analysed	Expansion frequency (%)	Contraction frequency (%)	Mean exp. (CTG)	Mean contr. (CTG)
Male transmissions					
LigI+/+ to LigI+/+	48	94	4	±21	−15
LigI+/m to LigI+/m	50	88	4	±23	−35
LigIm/m to LigIm/m	31	87	3	±21.4	−30
Female transmissions					
LigI+/+ to LigI+/+	36	78	8	±25	−30
LigI+/m to LigI+/m	45	47	24	+19.5	−14.5
LigIm/m to LigIm/m	51	53	29	+14.4	−13.3

Figure 2. Intergenerational instability of CTG repeats in wild-type and LigI mutant mice. The x-axis shows CTG repeat length changes and the y-axis the percentage corresponding to each size change for all transmissions analysed. Genotypes of parent and offspring are indicated on the upper left of graphs.

Somatic instability in mice carrying the 46BR LigI mutation

To determine whether the mutant LigI affected somatic CTG repeat instability, the length of the CTG tract in the DNA from various tissues was assessed by polymerase chain reaction (PCR) amplification across the repeat tract. Each tissue in a wild-type LigI+/+ mouse showed a distinct pattern of CTG expansions, as previously observed (23). The tissue-
specific, expansion-biased pattern of CTG instability was unaltered by the status of LigI (Fig. 3A). Stability was unaffected in the spleen, which was previously demonstrated in the LigIm/m mice to display low levels of genetic instability as assessed by the micronuclei assay (20). To confirm the absence of an effect of LIGI activity on somatic CTG instability, we assessed CTG instability by the highly sensitive small-pool PCR which can detect rare CTG-length variations in tissues, such as ovaries and spleen (24). No difference was observed in the levels of the somatic CTG repeat between mice with the wild-type or mutated LigI (Fig. 3B, and data not shown). Overall, the decreased LIGI activity has a specific CTG contraction bias effect through the maternal transmissions, not observed after paternal transmissions or in somatic tissues. The instability exclusively in maternally transmitted CTG alleles may be explained by unique events occurring in the female reproduction system. Such events could include LIGI expression/activity levels in ovaries and/or aberrant processing of DNA structures that form in the repeats during oogenesis or during post-zygotic replication of the maternal allele.

Status of LIGI protein in DM300–328 mice tissues
To assess whether the expression of LIGI protein might explain the preferential sensitivity of the maternal transmissions to both increased CTG contractions and decreased expansions by the mutant LigI, we assessed the level of LIGI in various tissues of DM300–328 mice with the different LigI genotypes (Fig. 4). Maternal and paternal germinal tissues (testis and ovaries) showed considerable levels of LIGI, which did not vary between LigI genotypes (Fig. 4A). However, for all genotypes, the amount of LIGI was 20- to 30-fold greater in testis than in the ovaries. This result possibly indicates varying and specific functional requirements of LIGI in testis compared with ovaries, but does not offer a direct explanation of the instability towards contraction observed in LigIm/m female mice. In somatic tissues, the LIGI levels were low or near undetectable with the exception of spleen and ovaries (Fig. 4B). In all cases, the LIGI amounts did not vary between mice genotypes. The phosphorylation status of LIGI was assessed in all tissues, since the level of LIGI phosphorylation can affect repair activity (25–27) and may also affect patterns of CTG instability. The levels of LIGI or its phosphorylation status between tissues did not show an obvious correlation with the tissue-specific patterns for CTG instability; further supporting a limited contribution of LIGI to somatic instability. Importantly, LIGI phosphorylation, such as LIGI levels, did not vary between mice LigI++, LigI+m and LigI+m females in tail-extracted DNA at weaning contained about 500 CTG repeats for each genotype.

CTG contractions are present in oocytes
The effect of the mutant LigI upon maternally transmitted CTG instability in DM1 mice may be the result of DNA metabolic processes unique to oogenesis or to the maternal genome following fertilization. Either the CTG contraction events arose during the production of the maternal primordial germ
cells, during their long-term arrest in Meiosis I or as a post-fertilization event unique to the maternal CTG alleles. In the former two cases, one would expect the altered pattern of CTG instability to be present in the oocytes of a fertile 46BR mother. If contraction events were limited to the post-fertilization stages, one would not expect oocytes to harbour contractions. Towards addressing whether instability arose during the oogenic process or during post-zygotic stages, we determined whether the maternal contractions from either the LigI\(^{+/+}\) or LigIm/m mother are present in their oocytes.

Oocytes were isolated from superovulated fertile mothers of LigI\(^{-}\) proficient or the LigIm/m backgrounds and DNAs isolated from these, their follicular tissues and tails (Fig. 5). Repeat length analysis revealed CTG expansions in the follicular tissue [compared with the CTG repeat in tail DNA at weaning, previously shown to represent the inherited CTG repeat size (28)] in both strains. However, large contractions of repeat lengths relative to the tail were observed in the oocytes of the LigIm/m mice. These results support the occurrence of pre-fertilization CTG contraction events in the female germline, which may also continue as maternal allele-specific CTG contractions during post-fertilization stages.

46BR-LigI CTG contractions depend upon replication program

The effect of the mutant LigI on intergenerational instability observed exclusively in female transmissions may be explained by DNA metabolic processes unique to oogenesis. For example, the DNA replication program of the genome is the primordial germ cell divisions that produce oogonia is distinctly different from somatic and male germinal cells (29,30). These differences are specifically due to variations in the number and location of active replication origins. Similarly, the replication program of the maternal genetic complement in the earliest post-fertilization cell divisions is different from that of the paternal pronuclei (29,30). To test the hypothesis that altering the location of replication initiation relative to the repeat can, in the context of a mutant 46BR LigI, alter CTG instability, we assessed the repeat instability using a defined replication system (31). Repeat instability was assessed following replication of a series of circular DNA templates with a tract of 79 repeats that had the location of the SV40 replication origin placed, by cloning site selection, at varying distances from the repeat (Fig. 6). These DNA templates were replicated \textit{in vitro} using LigI-deficient and -proficient cell extracts and the SV40 replication initiator T-antigen and replication products assessed for instability using the STRIP assay (see Materials and Methods).

A significant LigI-specific effect upon CTG contractions was evident for template pDM79BF (Fig. 6, compare instability following replication by 46BR and 46BR-complemented extracts, \(P = 0.03\)). This LigI-specific effect depended on the location of the replication origin relative to the repeat, as another template pDM79ER with the SV40-replication origin shifted closer to the CTG repeat tract by \(\sim\)100 nt, through cloning site selection, did not show a LigI-specific effect upon CTG instability (Fig. 6). The enhanced CTG contractions for pDM79BF by the LigI-mutant 46BR extracts were similar to the 46BR mutant LigI effect on CTG contractions in maternal transmissions (Table 1 and Fig. 2). These results suggest that the replication profile differences may place the
repeat tract in a contraction-prone location that is particularly sensitive to LIGI activity. However, we cannot know which replication origin may be used in oocytes. Our data are consistent with the maternal-specific altered instability occurring either as a replication event unique to the cell divisions that produce the maternal germ cells or possibly also as a post-fertilization event unique to the maternal CTG alleles during the earliest embryonic cell divisions.

DISCUSSION

We observed no change in the levels of somatic instability between LigI mutant mice and wild-type mice. The mutant LigI did not affect CTG repeat instability in offspring of paternal transmissions. Nevertheless, a significant decrease in the frequency of CTG expansions coupled with an increase in the frequency of CTG contractions arose when the repeats were transmitted by females carrying the 46BR mutation on one or both alleles. These results suggest that DNA LIGI is not required for either somatic expansions or paternal expansion, but is involved in the formation of maternally transmitted CTG expansions and in the avoidance of maternal CTG contractions. These effects are consistent with underlying gender specificities in the processes of CTG instability, as well as a maternal-specific role for LigI.

The enhanced CTG contractions upon maternal transmissions were similar under heterozygous and homozygous 46BR genotypes, suggesting that the presence of a single copy of the mutant 46BR LigI may have a dominant negative role for some but not all functions, which might include maternal CTG stability. This possibility was previously suggested by (i) the LigI-null mouse cells performed better in the survival and replication assays than did the 46BR.1GI mouse cells, supporting the concept that the mutant form may have deleterious effects over the compensation by other ligase activities (32); (ii) the partial correction (±60%) of cell sensitivity to ethyl methanesulphonate treatment in 46BR.1GI cells transfected by the wild-type LIGI gene (21); (iii) the mutant 46BR LigI increased lifetimes of the mutant protein upon DNA intermediates (17), altered dynamics of protein–protein interactions or alterations of either protein-mediated modifications of LIGI, such as phosphorylation (33). While these data might suggest an aberrant dominant-negative property of the mutant ligase, the more likely possibility is that a 50% reduction in normal LIGI levels is sufficient to trigger the phenotype.

There was no strong or clear effect of the 46BR LigI mutation on somatic CTG instability. Two papers revealed an enhanced CTG instability with over-expression of wild-type LigI in human cells or in yeast (13,15)—which might suggest a possible correlation of LIGI levels or activity between tissues displaying variant patterns and levels of CTG instability. The high levels of CTG instability in the heart, quadriceps, brain and pancreas, which show the lowest levels of LIGI, compared with an absence of CTG instability in the cerebellum, liver and spleen, which show varying levels of LIGI, suggest a lack of correlation of LIGI expression levels with instability or that if there is a correlation, it is complex. This conclusion is based only upon inter-tissue LIGI expression differences and cannot take into account other cis- or trans-factors that may vary between tissues. The absence of an obvious effect of the 46BR mutant LigI on genomic instability in general (32) is
consistent with an absence of a strong role in somatic CTG instability.

In the absence of MSH2, only 5% of offspring showed expansions relative to their parents (instead of 90%) and ongoing somatic expansions do not occur (34–41). Interestingly, CTG contractions rather than expansions predominated, with 90% expansions versus 90% contractions in the MMR-proficient and MMR-deficient states, respectively. This shift in the mutation direction occurred by paternal or maternal transmissions. However, Foiry et al. (41) observed a maternal bias for CTG contractions in transmissions from mothers with heterozygous deficiencies of the Msh3 gene, suggesting that the maternal transmissions are more sensitive to CTG contractions in the absence of DNA repair proteins than paternal transmissions. In the present study, LigI deficiency also led to a shift from expansions to contractions, but this was observed only in maternal transmissions; indicating a unique role of DNA LigI in maternal genome stability and distinguishing its role from that of MSH2 and MSH3.

We have also observed that the age of the transmitting mothers did not affect the intergenerational CTG instability in either the LigI+/m or LigI−/m mice. This argues against a strong post-meiotic genome maintenance/repair mechanism for the increased repeat contractions and decreased expansions arising in the LigI-deficient mice. In contrast, Kaytor et al. (2) have shown a maternal age effect for CAG contraction frequency and magnitude in SCA1 mice. The altered instability might occur as a post-fertilization event, where one would not expect the altered pattern of instability to be present in the oocytes of a fertile mother. However, the timing of the instability event may occur as early as germline segregation (5 days post-fertilization, prior to ovulation) while the unborn mother is still a developing embryo. However, contractions must have arisen following germline segregation since if they arose before this we would have detected contractions in somatic tissues, which we did not. We revealed the presence of CTG contractions in oocytes (meiotic stage) from homozygous 46BR mice, which suggests that the contractions would have occurred prior to meiosis and might have arisen during a proliferative stage of germline development (possibly during DNA replication). Our data also show that the effect of the mutant 46BR LigI upon instability depends upon the replication program. The absence of an altered pattern of instability by the mutant 46BR LigI for the majority of templates, with the exception of pDM79BF, is consistent with the unaltered patterns of paternal intergenerational instability and somatic instability in the various tissues of the ligase-deficient DM300–328 mice (data not shown, Fig. 6). In contrast, the instability is biased towards CTG contractions in the mutant LigI for the pDM79BF template, which is consistent with maternal instability observed in the ligase-deficient DM1 mice. Factors affecting the location of Okazaki initiation may affect the location of repeats in the replication fork and may determine instability.

We propose that the replication profile unique to the maternal DM1 locus during either the cell divisions leading to the production of the oogonia or the earliest post-zygotic divisions predispose the CTG repeat to contractions in the presence of a mutant LigI (Fig. 7). Specifically, the location of the replication origin used to replicate the maternal DM1 repeat during the cell divisions to produce the oogonia, or the earliest post-zygotic cell divisions, may be placed closer to or further from the repeat relative to later stages of development. Such changes may be mediated by alterations in chromatin packaging, which have recently been reported to occur during those early developmental stages (42). The replication program during these stages coupled with the presence of the mutant 46BR LigI could predispose the maternal expanded CTG allele to contractions. In mice, the maternal genome displays a unique replication program during oogenic cell divisions and during early-post-zygotic pronuclei and subsequent cell divisions (29,43–46). Furthermore, we recently observed distinct replication initiation profiles between tissues of DM1 transgenic mice (47). During the mapping of the replication origins within the ~45 kb human DM1 transgene, we observed only one active origin in the region and this was proximally located downstream of the CTG tract. This supports the conclusion that the repeat is most likely replicated by replication forks originating from this origin, rather than from one occurring within the murine genome adjacent to the transgene integration site. We also observed development-specific alterations in the replication profile of the DM1 locus in testes, where a sufficient amount of nascent DNA could be collected and assessed. Similarly, replication profile variations unique to the female germline may also arise, but could not be assessed due to limiting DNA amounts from these few cells. Evidence suggests that the number of replication origins used to replicate mouse oocytes is 3-fold fewer than that used to replicate spermatogonial genomes (29), which is consistent with our proposal that there is a specific replication program unique to oogonial replication (Fig. 7). Such variations may lead to CTG contractions in the presence of the mutant 46BR LigI.

This mechanism (Fig. 7) could apply to the replication profile of the maternal DM1 allele during earliest post-zygotic cell divisions. Notably, CTG contractions have been observed in human DM1 embryonic stem cells, suggesting that early post-fertilization mutations may also be active (48). Replication of paternal pronuclei differs from that of maternal pronuclei and from that of zygotic nuclei (49–51). The first round of post-zygotic replication is genomeric (52), such that the paternal and maternal pronuclei undergo full replication prior to fusing nuclear membranes. The replication timing of the paternal genome is ~20% faster than that of the maternal genome, beginning and finishing earlier (43–46). The maternal longer replication timing can be indicative of slower fork progression and/or a replication program with activation of fewer origins. The role of chromatin in mediating specific replication profiles at the DM1 locus is supported by our recent observations in specific tissues of the DM1 mouse (47) and chromatin changes during early development (42).

A maternal-specific effect of mutation predisposition by a heterozygous deficiency of a DNA repair gene, Pms2, has previously been reported (53,54). The Pms2 deficiency of maternal pronuclei and one to eight cell embryos derived from Pms2-deficient oocytes persisted and increased the susceptibility of the mice to non-trinucleotide microsatellite instability. These groups proposed that the inherited mutations arose during the earliest rounds of embryonic cell divisions. While they had not tested the mutation level in oocytes to assess the possible effect of primordial germ cell divisions
upon mutation status, this may be further exacerbated during the very first round of post-zygotic DNA replication which is gonomeric—where the maternal and paternal genomes, physically separated in the maternal and paternal pronuclei, replicate independently, and mix only after the first round of replication. Our findings presented herein are the first maternal-specific effect for a mutant LigI and for trinucleotide repeats. In other trinucleotide repeat diseases, a contraction bias of expanded CTG•CAG repeats through maternal but not paternal transmissions has been observed in humans for the SCA1 locus, and in many but not all mouse models harbouring...
expanded CTG•cAG repeats. Among these are SCA1 cDNA CAG82 transgenic mice (2), Sca178Q/Sca12Q (55), Hdh4/ Q80 knock-in mice (56), HdhQ18-Q111 knock-in mice (57), huntingtin exon 1 transgenic mice (CAG)113–156 (58), androgen receptor yeast artificial chromosome transgenic mice (CAG45) (59) and DRPLA YAC transgenic mice (CAG76–78) (60). All these mice displayed a bias of small contractions in maternal transmission, an effect not occurring in DM1 transgenic mice with (CTG)55 or (CTG)300 tract lengths (22,23). These results suggest that the mechanism underlying gametic repeat instability is distinct in females and males. It is noteworthy that the female germ line mutation frequencies of Sca178Q/Sca12Q and SCA1 cDNA CAG82 D02 mice were similar to each other but considerably higher than those of Hdh4/Q80 and DRPLA YAC transgenic mice (CAG76–78) (56,60), which contrasts with their absence in DM1 mice (22,23).

Thus, CTG contractions in female transmissions depend on unknown cis-acting sequences that are present near or adjacent to the repeat, as well as the length of the repeat (55). Our observations with the DM1 LigI defective mice suggest that a cis-element specific to the maternal gametic genome marks it for CTG contractions. Our data are consistent with this cis-element being the replication program of the DM1 locus following germine segregation and possibly through to the earliest embryonic cell divisions.

MATERIAL AND METHODS

SV40 replication templates

The construction of SV40 replication templates is described in Cleary et al. (31). Briefly, genomic clones of DM1 containing EcoRI/HindIII (CTG)n fragments were sub-cloned into pBlue- script KSII+ (Stratagene) (61,62). The SphI–HindIII fragment (viral nucleotide positions 128 and 5171, respectively) of the SV40 virus, which contains the SV40-ori, was amplified by PCR with primers (5′-CTTATCTTGAACGTTCGC-3′ and 5′-CGCTCTAGATGGCATGCATCTC-3′). The PCR product of 219 bp was inserted into pBlue- script KSII+ using the XbaI site in the primers (underlined). The SV40-ori was cloned as a blunt XbaI fragment into several sites of pBlue- script KSII+. Large-scale plasmid preparations were prepared from dam+ E. coli cells and used in the replication assay (31,61).

Cell lines and cell extract preparation for in vitro replication assays

The LigI-deficient 46BR.1G1 cell line is a simian virus 40-transformed human cell line derived from the primary fibroblast strain 46BR expressing the defective LigI enzyme (hemizygous or homozygous for the Arg-771 → Trp mutation). The complemented 46BR.1G1 pβAHneo#2 derivative cell line also expresses a wild-type LigI from a stably transfected pβAHNeo plasmid carrying a wild-type human DNA LigI cDNA (17,21). Cells were cultured and extracts were prepared as previously described (63).

In vitro replication assay and replication efficiency

Reactions were performed as described (63). DNA templates (150 ng) were replicated in reactions containing final concentration of: dATP, dGTP, dTTP and dCTP, 100 μM each; GTP, UTP and CTP, 200 μM each; ATP, 4 mM; creatine phosphate (Roche), 40 mM; creatine kinase, 100 μg/ml (Roche), 1 μg SV40 T-antigen (Chimerex, Wisconsin) and 30 μl cell extracts (4 μg to 6 μg/μl). For direct analysis of the replication products, 20 μl 32P-α-dCTP was included in the reaction mixture. Reactions were incubated for 4 h at 37°C and terminated with 50 μl of stop solution (2 μg/μl proteinase K, 2% sodium dodecyl sulfate (SDS) and 50 mM ethylenediamine tetracetic acid (EDTA), pH 8.0) with further incubation of 1 h at 37°C. Carrier tRNA (15 μg) was added. Replication products were ethanol-precipitated, resuspended in water and divided into two aliquots. Equal quantities of reaction products were digested with 10 units BamHI only or with 10 units BamHI–DpnI to discriminate between total and completely replicated material, respectively. Finally, digestion products were resolved by electrophoresis on 15 cm 1% agarose gels. Gels were run for 16 h at 4 V/cm in Tris-buffered EDTA buffer 1×, dried and exposed to Kodak film. Replication amounts were determined by autoradiography and quantified using ImageQuant GE Healthcare Version 1.2 software.

In vitro mutation analysis/the STRIP assay

Mutation analysis was performed using the Stability of Trinucleotide Repeats by Individual Product analysis (STRIP assay) as described before (31,63). Briefly, replication products were digested with 10 units of DpnI (New England Biolabs) to eliminate un-replicated parental material. DpnI-digested material was transformed into competent E. coli. Individual bacterial colonies, each representing an individual product of primate DNA replication, were picked and cultured for 6 h. Miniprep DNA was analysed for changes in repeat length by analysis of the repeat containing fragment on high-resolution 4% polyacrylamide gels. To focus upon mutation events derived from in vitro replication by human proteins, the background length heterogeneity within the parental template preparation and that derived through bacterial miniprep culture were determined. Background length heterogeneity for each template was determined by direct bacterial transformation of the same template DNA used for in vitro replication reactions, repeat length analysis and length categorization of single colonies (Fig. 6). Since the degree and distribution of length heterogeneity may vary between different bacterial preparations of a particular template, it is critical that the same template preparation used for the in vitro replication reactions be used for the bacterial background correction. Statistical analysis was performed between cell extracts using the χ2 test. The observed differences were considered statistically significant only if the P-values were <0.05.

Transgenic mice

DM300–328 mice (C57Bl/6) transgenic for the DM1 locus were crossed with 46BR mice (129/Ola × BALB/c) carrying the 46BR.1G1 LigI mutation (CGG to TGG, Arg-771 to Trp).
to obtain $\text{Lig}^{+/+}$, $\text{Lig}^{+/m}$ and $\text{Lig}^{m/m}$ mice carrying more than 300 CTG repeats. The DM1 transgenic status was determined by PCR with the DMHR8 and DMHR9 primers. The 46BR mice have been described elsewhere, and the genotypes were assayed by multiplex PCR as reported. Housing and handling of mice were performed according to the French government ethical guidelines.

Intergenerational and somatic CTG instability in mice

Intergenerational instability was assessed by comparison of the CTG repeat lengths between transmitting parent and its offspring. DNA was extracted from the tail, collected at weaning and amplified using primers 101 and 102, and the repeat length was measured by running CTG amplification products on a 4% acrylamide denaturing gel as described previously. Somatic instability was determined in tissues collected from 19-month-old mice using the protocol described in Tomé et al. DNA samples were digested with HindIII, and PCR was performed with DM-C and DM-BR primers. PCR products from mice of different Lig genotypes and tail/blood or tail/liver PCR products were loaded on the same 0.7% agarose gel to compare instability between $\text{Lig}^{+/+}$, $\text{Lig}^{+/m}$ and $\text{Lig}^{m/m}$ mice.

CTG instability in oocytes

Mature female mice were superovulated by intramuscular injection of 5 UI of pregnant mare serum gonadotropin (PMSG; Syncro-part PMSG 500 UI from CEVA Santé) into the inguinal region followed by administration of 5 UI of human chorionic gonadotropin (HCG, Chorulon 1500 UI from Intervet) to obtain primary oocytes and follicle cells. Primary oocytes were collected from the ampullar region of the oviducts 16 h after HCG and freed from cumulus cells by gently pipetting briefly in 10 mg/ml hyaluronidase (Sigma H4272) at 37°C, and then washed twice in M2 medium at 37°C (Sigma M7167). DNA was extracted from oocytes of each superovulated mouse by the phenol–chloroform protocol. The size of the CTG repeat was determined by the SP-PCR protocol as described previously.

Statistical analyses

Statistical analyses for expansion and contraction distributions were performed with the StatView software, using the Mann–Whitney test (SAS Institute Inc.). Frequencies were analysed by Fisher’s exact test. Each analysis was performed for all transmissions and was checked on groups of mice of the same age and with the same repeat sizes, to prevent bias. The observed differences were considered statistically significant only if the P-values were <0.05 in total transmissions and homogeneous groups.

Quantitation of LIGI and its phosphorylation

Proteins from young mice were extracted by mechanical homogenization in lysis buffer (0.125 M Tris–HCl pH 6.8, 4% SDS, 10% glycerol) containing complete Mini 7x protease inhibitor cocktail (Roche Applied Science) and 1 mM phenylmethyl sulfanylfluoride (Sigma). Protein analysis of LIGI in mouse tissues was performed by western blot, combined with a dephosphorylation treatment with alkaline phosphatase (CIP, New England Biolabs) for 4 h at 37°C in order to assess this posttranslational protein modification. With or without dephosphorylation, samples were compared by running the samples on 7.5% acrylamide SDS-polyacrylamide gel electrophoresis gel, transferred onto a polyvinylidene difluoride (PVDF) membrane and probed with 5H5 monoclonal antibody against LiGI (5H5, MBL; 1:5000, ±125 kDa). Loading was normalized for the same amount of protein in each lane. Actin, 42 kDa (Ab-5, BD Biosciences; 1:5000) was used as a control. The functional protein extracts from 46BR.1G1 cell extracts were prepared as described in Lopez Castel et al.

Conflict of Interest statement. None declared.

FUNDING

This work was supported by grants from the Canadian Institutes of Health Research (C.E.P.), Muscular Dystrophy Association (USA) (C.E.P.), Canadian Institutes of Health Research International Opportunities (France) (C.E.P. and G.G.), the Association Française contre les Myopathies (AFM) (G.G.), Institut National de la Santé et de la Recherche Médicale (Inserm) (G.G.), Agence National de la Recherche (ANR) and Université René Descartes, Paris (G.G.), Cancer Research UK (D.W.M.), A.L.C. was supported by a postdoctoral fellowship award from RESTRACOM, V.L.F. and S.T. were awarded a student fellowship from the Ministère Français de la Recherche et Technologie.

REFERENCES

1. López Castel, A., Cleary, J.D. and Pearson, C.E. (2010) Repeat instability as the basis for human diseases and as a potential target for therapy. Nat. Rev. Mol. Cell Biol., 11, 165–170.
2. Kaytor, M.D., Burright, E.N., Duvick, L.A., Zoghbi, H.Y. and Orr, H.T. (1997) Increased trinucleotide repeat instability with advanced maternal age. Hum. Mol. Genet., 6, 2135–2139.
3. Pearson, C.E. (2003) Slipping while sleeping? Trinucleotide repeat expansions in germ cells. Trends Mol. Med., 9, 490–495.
4. Ashizawa, T., Anvret, M., Baiget, M., Barcelo, J.M., Brunner, H., Cobo, A.M., Dallapiccola, B., Fenwick, R.G Jr, Grandell, U., Harley, H. et al. (1994) Characteristics of intergenerational contractions of the CTG repeat in myotonic dystrophy. Am. J. Hum. Genet., 54, 414–423.
5. Puymirat, J., Giguere, Y., Mathieu, J. and Bouchard, J.P. (2009) Intergenerational contraction of the CTG repeats in 2 families with myotonic dystrophy type 1. Neurology, 73, 2126–2127.
6. Wheeler, V.C., Persichetti, F., McNeil, S.M., Mysore, J.S., Mysore, S.S., MacDonald, M.E., Myers, R.H., Gusella, J.F. and Wexler, N.S. (2007) Factors associated with HD CAG repeat instability in Huntington disease. J. Med. Genet., 44, 695–701.
7. Kovtun, I.V., Welch, G., Guthrie, H.D., Hafner, K.L. and McMurray, C.T. (2004) CAG repeat lengths in X- and Y-bearing sperm indicate that gender bias during transmission of Huntington’s disease gene is determined in the embryo. J. Biol. Chem., 279, 9389–9391.
transgenic for the human myotonic dystrophy region with expanded CTG repeats display muscular and brain abnormalities. *Hum. Mol. Genet.*, **10**, 2717–2726.

29. Jagiello, G., Sung, W.K. and Van’t Hof, J. (1983) Fiber DNA studies of primate mouse spermatogenesis. *Exp. Cell Res.*, **146**, 281–287.

30. Sung, W.K., Van’t Hof, J. and Jagiello, G. (1986) DNA synthesis studies in pre-meiotic mouse oogenesis. *Exp. Cell Res.*, **163**, 370–380.

31. Cleary, J.D., Nichol, K., Wang, Y.H. and Pearson, C.E. (2002) Evidence of cis-acting factors in replication-mediated trinucleotide repeat instability in primates. *Nat. Genet.*, **31**, 37–46.

32. Bentley, D.J., Harrison, C., Ketchen, A.M., Redhead, N.J., Samuel, K., Waterfall, M., Ansell, J.D. and Melton, D.W. (2002) DNA ligase I null mouse cells show normal DNA repair activity but altered DNA replication and reduced genome stability. *J. Cell Sci.*, **115**, 1551–1561.

33. Koundrioukoff, S., Jonsson, Z.O., Hasan, S., de Jong, R.N., van der Vliet, P.C., Hottiger, M.O. and Hubscher, U. (2000) A direct interaction between proliferating cell nuclear antigen (PCNA) and Cdk2 targets PCNA-interacting proteins for phosphorylation. *J. Biol. Chem.*, **275**, 22882–22887.

34. Savouret, C., Brisson, E., Essers, J., Kanaar, R., Pastink, A., de Riele, H., Junien, C. and Gourdon, G. (2003) CTG repeat instability and size variation timing in DNA repair-deficient mice. *EMBO J.*, **22**, 2264–2273.

35. Wheeler, V.C., Lebel, L.A., Vrbacan, V., Teed, A., de Riele, H. and MacDonald, M.E. (2003) Mismatch repair gene Msh2 modifies the timing of early lethality in Dhb/HQ11 strain. *Hum. Mol. Genet.*, **12**, 273–281.

36. Manley, K., Shirley, T.L., Flaherty, L. and Messer, A. (1999) Msh2 deficiency prevents in vivo somatic instability of the CAG repeat in Huntington disease transgenic mice. *Nat. Genet.*, **23**, 471–473.

37. Dragileva, E., Hendricks, A., Teed, A., Gillis, T., Lopez, E.T., Friedberg, E.C., Kucherlapati, R., Edelmann, W., Lunetta, K.L., Macdonald, M.E. et al. (2008) Intergenerational and striatal CAG repeat instability in Huntington’s disease knock-in mice involve different DNA repair genes. *Neurobiol. Dis.*, **33**, 37–47.

38. Kottupur, I.V. and McMurray, C.T. (2001) Trinucleotide expansion in haploid germ cells by gap repair. *Nat. Genet.*, **27**, 407–411.

39. van den Broek, W.J., Nelen, M.R., Wansink, D.G., Coerwinkel, M.M., de Riele, H., Groenen, P.J. and Wieringa, B. (2002) Somatic expansion behaviour of the (CAG)n repeat in myotonic dystrophy knock-in mice is differentially affected by Msh3 and Msh6 mismatch-repair proteins. *Hum. Mol. Genet.*, **11**, 191–198.

40. Owen, B.A., Yang, Z., Lai, M., Gajek, M., Badger, J.D., Hayes, J.J., Edelmann, W., Kucherlapati, R., Wilson, T.M. and McMurray, C.T. (2005) (CAG)n-hairpin DNA binds to Msh2-Msh3 and changes properties of mismatch recognition. *Nat. Struct. Mol. Biol.*, **12**, 663–670.

41. Foiry, L., Dong, L., Savouret, C., Hubert, L., de Riele, H., Junien, C. and Gourdon, G. (2006) Msh3 is a limiting factor in the formation of intergenerational CTG expansions in DM1 transgenic mice. *Hum. Genet.*, **119**, 520–526.

42. Ahmed, K., Delghani, H., Rugg-Gunn, P., Fussner, E., Rossant, J. and Bazett-Jones, D.P. (2010) Global chromatin architecture reflects pluripotency and lineage commitment in the early mouse embryo. *PLoS ONE*, **5**, e10531.

43. Luthardt, F.W. and Donahue, R.P. (1973) Pronuclear DNA synthesis in mouse eggs. An autoradiographic study. *Exp. Cell Res.*, **92**, 143–151.

44. Abramczuk, J. and Sawicki, W. (1975) Pronuclear synthesis of DNA in mouse eggs. *Explain. Cell Res.*, **92**, 361–371.

45. Ferreira, J. and Carino-Fonseca, M. (1997) Genomic replication in early mouse embryos follows a defined temporal and spatial order. *J. Cell Sci.*, **110**, 889–897.

46. Aoki, E. and Schultz, R.M. (1999) DNA replication in the 1-cell mouse embryo: stimulatory effect of histone acetylation. *Zygote*, **7**, 165–172.

47. Cleary, J.D., Tomé, S., López Castel, A., Panigrahi, G.B., Foriy, L., Hagerman, K.A., Stoka, H., Chitayat, D., Gourdon, G. and Pearson, C.E. (2010) Tissue- and age-specific DNA replication patterns at the CTG-CAG expanded human myotonic dystrophy type 1 locus. *Nat. Struct. Mol. Biol.*, **17**, 1079–1087.

48. Seriola, A., Spits, C., Simard, J.P., Hilven, P., Haentjens, P., Pearson, C.E. and Sermon, K. (2010) Huntington’s and myotonic dystrophy hESCs: down-regulated trinucleotide repeat instability and mismatch repair machinery expression upon differentiation. *Hum. Mol. Genet.*, **20**, 176–185.
49. Wiekowski, M., Miranda, M. and DePamphilis, M.L. (1993) Requirements for promoter activity in mouse oocytes and embryos distinguish paternal pronuclei from maternal and zygotic nuclei. Dev. Biol., 159, 366–378.

50. van der Heijden, G.W., Ramos, L., Baart, E.B., van den Berg, I.M., Derijck, A.A., van der Vlag, J., Martini, E. and de Boer, P. (2008) Sperm-derived histones contribute to zygotic chromatin in humans. BMC Dev. Biol., 8, 34.

51. van der Heijden, G.W., Dieker, J.W., Derijck, A.A., Muller, S., Berden, J.H., Braat, D.D., van der Vlag, J. and de Boer, P. (2005) Asymmetry in histone H3 variants and lysine methylation between paternal and maternal chromatin of the early mouse zygote. Mech. Dev., 122, 1008–1022.

52. Keneklis, T.P. and Odartchenko, N. (1974) Autoradiographic visualisation of paternal chromosomes in mouse eggs. Nature, 247, 215–216.

53. Gurtu, V.E., Verma, S., Grossmann, A.H., Liskay, R.M., Skarnes, W.C. and Baker, S.M. (2002) Maternal effect for DNA mismatch repair in the mouse. Genetics, 160, 271–277.

54. Larson, J.S., Stringer, S.L. and Stringer, J.R. (2004) Impact of mismatch repair deficiency on genomic stability in the maternal germline and during early embryonic development. Mutat. Res., 556, 45–53.

55. Lorenzetti, D., Watase, K., Xu, B., Matzuk, M.M., Orr, H.T. and Zoghbi, H.Y. (2000) Repeat instability and motor incoordination in mice with a targeted expanded CAG repeat in the Sc1 locus. Hum. Mol. Genet., 9, 779–787.

56. Shelbourne, P.F., Killeen, N., Hevner, R.F., Johnston, H.M., Tecott, L., Lewandoski, M., Ennis, M., Ramirez, L., Li, Z., Iannicola, C. et al. (1999) A Huntington’s disease CAG expansion at the murine Hdh locus is unstable and associated with behavioural abnormalities in mice. Hum. Mol. Genet., 8, 763–774.

57. Wheeler, V.C., Auerbach, W., White, J.K., Srinidhi, J., Auerbach, A., Ryan, A., Duyao, M.P., Vrbanac, V., Weaver, M., Gusella, J.F. et al. (1999) Length-dependent gametic CAG repeat instability in the Huntington’s disease knock-in mouse. Hum. Mol. Genet., 8, 115–122.

58. Mangiarini, L., Sathasivam, K., Mahal, A., Mott, R., Seller, M. and Bates, G.P. (1997) Instability of highly expanded CAG repeats in mice transgenic for the Huntington’s disease mutation. Nat. Genet., 15, 197–200.

59. La Spada, A.R., Peterson, K.R., Meadows, S.A., McClain, M.E., Jeng, G., Chmelar, R.S., Haugen, H.A., Chen, K., Singer, M.J., Moore, D. et al. (1998) Androgen receptor YAC transgenic mice carrying CAG 45 alleles show trinucleotide repeat instability. Hum. Mol. Genet., 7, 959–967.

60. Sato, T., Oyake, M., Nakamura, K., Nakao, K., Fukusima, Y., Onodera, O., Igarashi, S., Takano, H., Kikugawa, K., Ishida, Y. et al. (1999) Transgenic mice harboring a full-length human mutant DRPLA gene exhibit age-dependent intergenerational and somatic instabilities of CAG repeats comparable with those in DRPLA patients. Hum. Mol. Genet., 8, 99–106.

61. Pearson, C.E. and Sinden, R.R. (1996) Alternative structures in duplex DNA formed within the trinucleotide repeats of the myotonic dystrophy and fragile X loci. Biochemistry, 35, 5041–5053.

62. Pearson, C.E., Wang, Y.H., Griffith, J.D. and Sinden, R.R. (1998) Structural analysis of slipped-strand DNA (S-DNA) formed in (CTG)n†(CAG)n repeats from the myotonic dystrophy locus. Nucleic Acids Res., 26, 816–823.

63. Panigrahi, G.B., Cleary, J.D. and Pearson, C.E. (2002) In vitro (CTG)n(CAG)n expansions and deletions by human cell extracts. J. Biol. Chem., 277, 13926–13934.

64. Tamq, S., Holt, I., Edelmann, W., Morris, G.E., Munnich, A., Pearson, C.E. and Gourdon, G. (2009) MSH2 ATPase domain mutation affects CTG/CAG repeat instability in transgenic mice. PLoS Genet., 5, e1000482.