Homogeneous finitely presented monoids of linear growth

Dmitri Piontkovski

Abstract. If a finitely generated monoid M is defined by a finite number of degree-preserving relations, then it has linear growth if and only if it can be decomposed into a finite disjoint union of subsets (which we call “sandwiches”) of the form $a\langle w \rangle b$ where $a, b, w \in M$ and $\langle w \rangle$ denotes the monogenic semigroup generated by w. Moreover, the decomposition can be chosen in such a way that the sandwiches are either singletons or “free” ones (meaning that all elements $aw^n b$ in each sandwich are pairwise different). So, the minimal number of free sandwiches in such a decompositions becomes a new numerical invariant of a homogeneous (and conjecturally, non-homogeneous) finitely presented monoid of linear growth.

Mathematics Subject Classification (2010). 20M05.

Keywords. Homogeneous monoid, linear growth, finitely presented semigroup.

If a semigroup is a disjoint union of a finite number of free monogenic subsemigroups, then it is finitely presented and residually finite [1] and has linear growth [2]. It is easy to see that the reverse implication does not hold. For example, the monoid with zero $M = \langle x, y | xy = 0, xx = 0 \rangle$ is finitely presented with monomial relations (hence, residually finite) and has linear growth. However, M cannot be represented as a finite union of monogenic semigroups since it contains an infinite set $\{y^n x | n \geq 0 \}$ of nilpotent elements.

Let us call a monoid S homogeneous if its relations are degree-preserving with respect to some weight function, that is, for some set of generators X of S there is a function $d : X \to \mathbb{Z}_{>0}$ such that all relations of S have either the form $w = 0$ (if S contains zero) or $w = u$ with $d(w) = d(u)$, where for a word $w = x_1 \ldots x_k$ (resp., for a word u) on the generators we define $d(w)$ to be the sum $d(x_1) + \cdots + d(x_k)$. In particular, any monoid defined by the

The article was prepared within the framework of the Academic Fund Program at the National Research University Higher School of Economics (HSE) in 2017–2018 (grant 17-01-0006) and by the Russian Academic Excellence Project “5–100”.
relations of the form $u = 0$ or $u = w$ where the words u and w have the same length is homogeneous with $d(x) = 1$ for all $x \in X$.

Given three elements a, b and w of a semigroup S, we call the subset $a\langle w \rangle b = \{aw^n b|n \geq 0\}$ sandwich. For example, each singleton $\{a\}$ is the sandwich $a\langle 1 \rangle 1$. A sandwich $a\langle w \rangle b$ is called free if its elements $aw^n b$ are pairwise different for all $n \geq 0$. For example, in free monoids all sandwiches containing two or more elements are free.

Theorem 1. Suppose that a monoid S is homogeneous and finitely presented. Then the following conditions are equivalent.

(i) S has at most linear growth;
(ii) S is a finite union of sandwiches;
(iii) S is a union of a finite subset and a finite disjoint union of free sandwiches.

We refer to the last decomposition as **sandwich decomposition**. For example, a sandwich decomposition of the above monoid M consists of the finite set $\{0, 1\}$ and two free sandwiches $1(y)x$ and $1(y)1 = \langle y \rangle$.

Proof. The implication (ii)\implies(i) is straightforward since in each sandwich $a\langle w \rangle b$ the number of words u of length $\text{len}(u)$ is not greater than

$$\frac{n - \text{len}(a) - \text{len}(b)}{\text{len}(w)} = O(n).$$

The implication (iii)\implies(ii) is trivial since any finite set is a finite union of singletons which are trivial sandwiches.

To complete the prove, let us prove the implications (i)\implies(ii) and (i)&(ii)\implies(iii). Let $A = F_2 S$ be the semigroup algebra (with common zero, if S contains zero) over the two-element filed. It is \mathbb{Z}-graded connected, finitely presented, and has linear growth. By [6, Theorem 3.1], it is automaton in the sense of Ufnarovski with respect to any homogeneous finite set of generators. In particular, A is automaton in the sense of Ufnarovski with respect to a minimal set of generators of S. Then the set of normal words in A form a regular language. Now, the theorem follows from a theorem by Paun and Salomaa [5, Theorem 3.3] which describes slender regular languages.

Let us give also another proof which does not use methods of the theory of finite automata. By [6, Corollary 2.3], it follows that there exists a finite generating set X of S containing the unit of S and a subset $Q \subset X \times X \times X$ such that the set

$$Y = \{aw^n b|n \geq 0, (a, b, w) \in Q\}$$

form a linear basis of A (moreover, it is the set of normal words of A). It follows that either $S = Y \cup \{0\}$ (if S contains zero) or $S = Y$. Since Y is the union of sandwiches $a\langle w \rangle b$ for $(a, b, w) \in Q$, we get the implication (i)\implies(ii).

It remains to show that the set of words Y is a finite disjoint union of sandwiches (since Y is a subset of the free monoid $\langle X \rangle$, all these sandwiches are either free or singletons). To apply the induction argument, it is sufficient to use the next lemma. \qed
Lemma 2. Suppose that a subset Z of a free monoid is a finite union of sandwiches. Then Z is decomposable into a finite disjoint union of sandwiches.

Proof. Let $Z = \bigcup_{i=1}^{s} U_i$ be a decomposition of Z into a union of s sandwiches.

First let first consider the case $s = 2$. Let $U_1 = U = a\langle w \rangle b$ and $U_2 = U' = a'\langle w' \rangle b'$. We will show that the sets $U \cap U'$, $U \cup U'$, $U \setminus U'$ and $U' \setminus U$ are decomposed as the finite disjoint union of sandwiches.

If the intersection $I = U \cap U'$ is finite, then it is a disjoint union of singletons $\{a, b, a', b'\}$. Moreover, in this case the set $U \setminus I$ (respectively, $U' \setminus I$) is a union of a finite number of singletons and the subset $aw^m\langle w \rangle b$ for some $m \geq 0$ (resp., $a'w^n\langle w' \rangle b'$ for some $n \geq 0$). So, $U \cup U'$ admits the desired decomposition.

Suppose now that I is infinite. Then the two-sided infinite words w^∞ and w'^∞ coincide. It is sufficient to prove our claim for the sets $aw^M\langle w \rangle b$ and $a'w^N\langle w' \rangle b'$ for all sufficiently large M, N in place of U and U' respectively. Then up to a cyclic permutation of letters in w and w' (and possible change of the words a, a', b, b'), one can assume that there exist m, n, p, q such that $w^m = w^n$ and $aw^p = a'w'^q$.

Now, if T is one of the sets I and $U \setminus I$, then T is periodic in the following sense: for large enough t we have $aw^tb \in T \iff aw^{t+m}b \in T$. Then $T = \{aw^{t+m}b \mid m \in \mathbb{Z}_+, t_0 \in S \}$ where S is some finite set of nonnegative integers. It follows that T is a disjoint union of a finite collection of sandwiches of the form $aw^t\langle w^m \rangle b$. Analogously, the set $U' \setminus I$ is a finite disjoint union of sandwiches of the form $a'w'^t\langle w'^m \rangle b'$. So, the set $U \cup U' = I \cup (U' \setminus I) \cup (U' \setminus I)$ admits the desired decomposition as well.

Now, for $s > 2$ we proceed by the induction. If $Z' = \bigcup_{i=1}^{s-1} U_i$ is decomposable into a disjoint union $\bigcup_{j=1}^{N} T_j$ with $T_j = p_j\langle q_j \rangle r_j$, then

$$Z = Z' \cup U_s = \bigcup_{j=1}^{N} (T_j \cup U_s),$$

where the sets $T_j \cup U_s$ admit the desired decomposition by the $s = 2$ case.

Remark 3. Note that each finitely generated semigroup of linear growth is a finite union of sandwiches [4, Theorem 4.2] (see also [3, Proposition 2.174b]).

However, for monoids with infinite set of defining relations the conclusion of Theorem [I] may fail (so that the union is not disjoint).

For example, consider a monoid

$$N = \langle a, w, b \mid ba = 0, bw = 0, wa = 0, a^2 = 0, b^2 = 0, aw^{t^2}b = 0 \text{ for } t \geq 0 \rangle.$$

Then the number c_n of nonzero words of length $n \geq 2$ in N is equal to 3 if $n = 2 + t^2$ for some $t \geq 0$ and 4 otherwise (these are the words $w^n, aw^{n-1}, w^{n-1}b$, and $aw^{n-2}b$). It follows that N cannot be presented as a disjoint union of subsets of the desired form since the sequence $\{c_n\}_{n \geq 0}$ is not a sum of a finite number of arithmetic progressions.

If S is a finitely presented monoid of linear growth (not necessary homogeneous), we do not know whether there it is a finite disjoint union of
free sandwiches and singletons. Ufnarovski [7, 5.10] conjectured that each finitely presented algebra of linear growth (in particular, the algebra F_2S) is automaton. This conjecture fails for homogeneous algebras over some infinite fields and holds for homogeneous algebras over finite fields [6]. Note that if the algebra F_2S is automaton with respect to some ordering of the monomials on a finite set of generators of S, then S is a finite disjoint union of sandwiches and singletons by the same arguments as above. So, we can formulate a weaker (in a sense) version of Ufnarovski’s conjecture.

Conjecture 4. Each finitely presented monoid S of linear growth is a finite disjoint union of free sandwiches and a finite set.

Now we can introduce a new invariant for finitely generated monoids. Given such a monoid S, let $\gamma(S)$ be the minimal number M such that S is the disjoint union of M free sandwiches and a finite set. In particular, for a finite monoid S we have $\gamma(S) = 0$. If there is no such finite decompositions, we put for $\gamma(S) = \infty$. So, Theorem 1 and Conjecture 4 simply mean that $\gamma(S) < \infty$ if S is a homogeneous (respectively, arbitrary) finitely presented monoid of linear growth.

Proposition 5. Let S be a homogeneous monoid such that $\gamma(S) = 1$. Then S is the union of a free monogenic monoid and a finite set.

Note that the above monoid M (which is homogeneous of linear growth) with $\gamma(M) = 2$ cannot be decomposed into a finite union of monogenic semigroups and a finite set (again because M contains an infinite subset $1(y)x$ of nilpotent elements).

Proof. Let S be the disjoint union of a finite set Y and a free sandwich $Z = a\langle w\rangle b$. For $m >> 0$, the set S_m of elements of the degree m in S is either the singleton $\{aw^k b\}$ (if $k = (m − d(a) − d(b))/d(w)$ is integer) or empty. Since the element w^t is nonzero for all $t \geq 0$, for $m = td(w)$ with $t >> 0$ this set S_m contains w^t. So, $S_{td(w)}$ is non-empty for all $t >> 0$, so that $d(a) + d(b) = sd(w)$ for some integer s. We conclude that for each $m >> 0$ the set S_m is non-empty if and only if $m−sd(w)/d(w)$ is an integer, or $m = td(w)$ for some integer t. In the last case, we have $S_m = \{w^t\}$, so that S is the union of the free monogenic monoid $\langle w\rangle$ and a finite set.

Acknowledgement

I am grateful to Jan Okninski for fruitful discussions.

References

[1] N. Abu-Ghazalah and N. Ruskuc, *On disjoint unions of finitely many copies of the free monogenic semigroup*, Semigroup Forum, 87 (2013), 1, pp. 243–256

[2] N. Abughazalah and P. Etingof, *Linear growth for semigroups which are disjoint unions of finitely many copies of the free monogenic semigroup*, Archiv der Mathematik, 105 (2015), 3, pp. 223–228
[3] A. Ya. Belov, V. V. Borisenko and V. N. Latyshev, Monomial algebras, Journal of Mathematical Sciences, 87 (1997), 3, pp. 3463–3575

[4] D. F. Holt, M. D. Owens and R. M. Thomas, Groups and semigroups with a one-counter word problem, Journal of the Australian Mathematical Society, 85 (2008), 2, pp. 197–209

[5] Paun G., Salomaa A., Thin and slender languages, Discrete Applied Mathematics, 61 (1995), 3, pp. 257–270

[6] D. Piontkovski, Algebras of linear growth and the dynamical Mordell-Lang conjecture, arXiv:1706.06470, 2017

[7] V. A. Ufnarovskij, Combinatorial and asymptotical methods in algebra, Sovr. probl. mat., Fund. napr., 57 (1990), p. 5–177 [Russian] Engl. transl.: Algebra VI, Encycl. Math. Sci., Springer, Berlin 1995, pp. 1–196

Dmitri Piontkovski
Department of Mathematics for Economics
National Research University Higher School of Economics
Myasnitskaya str. 20
Moscow 101990
Russia
e-mail: dpiontkovski@hse.ru