Zinc, sulfur and cadmium isotopes and Zn/Cd ratios as indicators of the origin of the supergiant Broken Hill Pb–Zn–Ag deposit and other Broken Hill-type deposits, New South Wales, Australia

Paul G. Spry1, Ryan D. Mathur2, Graham S. Teale3 and Linda V. Godfrey4

1Department of Geological and Atmospheric Sciences, Iowa State University, 253 Science Hall, Ames, Iowa 50011-1027, USA; 2Department of Geology, Juniata College, 1700 Moore Street, Huntingdon, Pennsylvania 16652, USA; 3Teale & Associates Pty Ltd, PO Box 740, North Adelaide, South Australia 5006, Australia and 4Department of Earth and Planetary Sciences, Rutgers University, Wright-Rieman Laboratories, Busch Campus, 610 Taylor Road, Piscataway, New Jersey 08854-8066, USA

Abstract
Various genetic models have been proposed for the supergiant Proterozoic Broken Hill Pb–Zn–Ag deposit largely based on geological and geochronological evidence. Here we present Zn, Cd and S isotope compositions as well as Zn/Cd ratios of sphalerite from Broken Hill and Broken Hill-type deposits (Australia) to help constrain these models but focus on syngenetic and magmatic–hydrothermal processes, since epigenetic models can be rejected because the orebodies were deformed and metamorphosed by the Olorian Orogeny. Values of δ34S

\[
\text{Svast, } \delta^{63}Zn, \delta^{114}Cd, \text{ and } \delta^{34}SVCDT
\]

for sphalerite from Broken Hill range from +0.27 to +4.73‰, -1.15 to +0.46‰ and -0.48 to +0.01‰, respectively, while those for the smaller Broken Hill-type deposits range from -5.11 to +1.28‰, -0.97 to +0.10‰ and -1.02 to +2.59‰, respectively. By combining published S isotope data of sulfides from the Broken Hill district with those obtained here, the sources of sulfur via thermochemical sulfate reduction, bacterial sulfate reduction and a magmatic origin cannot be distinguished. However, when the S isotope compositions are considered along with the broad range of Cd and Zn isotope data for sphalerite, which are among the lightest and heaviest yet reported for a sulfide deposit, the isotopic datasets are consistent with low-temperature biogenic processes associated with syngenetic deposition of sulfides. Cadmium isotope compositions when coupled with Zn/Cd ratios of sphalerite have previously been used to classify Pb–Zn deposits, including low-temperature, high-temperature and exhalative ores. However, the Zn/Cd ratios of sphalerite from Broken Hill cannot be used for such classification purposes.

1. Introduction
The Broken Hill Pb–Zn–Ag deposit (280 Mt of 10.0 % Pb, 8.5 % Zn and 148 g/t Ag; Huston et al. 2006) is the world’s largest massive sulfide deposit. It occurs in the southern Curnamona province, New South Wales (Australia), along with hundreds of minor Broken Hill-type (BHT) deposits. They are hosted in the Palaeoproterozoic Willyama Supergroup in an ~7 km thick package of multi-deformed and metamorphosed clastic sediments, bimodal (felsic and mafic) volcanic and volcaniclastic rocks, chemical sediments and granitoids (Fig. 1) (Willis et al. 1983; Burton, 1994). Metamorphic conditions reached granulite facies. Given the high metamorphic grade and extreme deformation, which have largely removed primary textures in the ore, a variety of origins have been proposed for the formation of the deposit. These ore deposit models are summarized in Greenfield (2003) and include: (1) syngenesis in which the deposit was considered to have formed by submarine exhalative/inhalative processes (Plimer, 1979; Wright et al. 1987; Parr & Plimer, 1993); (2) syntectonic (Katz, 1976; Findlay, 1994; Nutman & Ehlers, 1998); (3) post-tectonic (Andrews, 1922; Williams et al. 1996); (4) magmatic–hydrothermal (Crawford & Maas, 2009); and (5) partial melting (Mavrogenes et al. 2001; Frost et al. 2011).

In attempting to add clarity to how the Broken Hill deposit formed, we evaluate sulfur, zinc and cadmium isotopes of sphalerite along with the Zn/Cd ratios of sphalerite. Although various zinc isotopic studies have been conducted on several types of ore deposits including, Mississippi Valley-type Pb–Zn (MVT) (e.g. Pašava et al. 2014; Wen et al. 2016; Zhu et al. 2018, 2021; Li et al. 2019), Irish-type Pb–Zn (Wilkinson et al. 2005; Gagnevin et al. 2012, 2014); volcanogenic massive sulfide (VMS) (Mason et al. 2005), sedimentary exhalative (Sedex) (e.g. Kelley et al. 2009; Gao et al. 2018; Baumgartner et al. 2021; Wang et al. 2021) and active hydrothermal vents (e.g. John et al. 2008), Zn isotope studies of sphalerite in regionally metamorphosed ore deposits are
restricted to those of Matt et al. (2020, 2022) on sphalerite and zinc oxides (zincite and franklinite) from the carbonate- and evaporate-hosted Balmat Zn deposit (New York) and the marble-hosted Franklin Zn deposit, New Jersey. A preliminary Zn isotope study was also made on sphalerite from the Gamsberg Sedex Zn deposit (South Africa) by S. E. Foulkes (unpub. M.Sc. thesis, Rhodes Univ., 2014), which, along with the Balmat deposit, was metamorphosed to the amphibolite facies. The Franklin district mines, like the Broken Hill district, were metamorphosed to the granulite facies. Although not part of this study, the Zn isotope composition of galena from various unmetamorphosed Chinese Pb–Zn deposits were obtained by Wang et al. (2020, 2021).

Cadmium isotopes have been used to evaluate the source of Cd in rocks, ore deposits, unconsolidated sediments, seawater, meteorites and biological samples (e.g. Wohmbacher et al. 2003, 2004; Lacan et al. 2006; Zhu et al. 2016, 2021; Hohl et al. 2017), and to
understand geochemical processes. Wen et al. (2016) suggested that Cd isotope compositions of sphalerite when coupled with Zn/Cd ratios of sphalerite can be used to classify Pb–Zn deposits. They identified three classes of ore systems: high-temperature (i.e. skarn, VMS, porphyry, magmatic–hydrothermal), low-temperature (i.e. Sedex, seafloor hydrothermal). To date, no Cd isotope study has been done on an ore deposit subject to regional metamorphism. The criteria for deposit classification as applied by Wen et al. (2016) is discussed further in Section 5.b.

Several sulfur isotope studies have been conducted on sulfides from Broken Hill and the smaller BHT deposits (Lawrence & Rafter, 1962; Stanton & Rafter, 1966, 1967; Both & Smith, 1975; Dong et al. 1987; Spry, 1987; Parr, 1992, 1994a; Huston et al. 1995), while the major-element composition of sphalerite was determined by, for example, Both (1973), Hodgson (1975) and Lockington et al. (2014). Trace-element compositions of sphalerite are largely restricted to the studies of Both (1973) and Lockington et al. (2014). Both (1973) determined the trace-element content (including Cd) of sphalerite separates from each orebody using X-ray fluorescence spectrographic techniques, while Lockington et al. (2014) analysed two samples of sphalerite using a laser ablation inductively coupled plasma mass spectrometer. We have obtained new major- and trace-element compositions of sphalerite because individual sphalerite compositions were not provided by Both (1973) and Hodgson (1975) and only two samples were obtained by Lockington et al. (2014). Both (1973) plotted the compositions to show the ranges of Cd in sphalerite for each orebody, which is unsuitable for our purposes, while Hodgson (1975) analysed Zn, Mn, Fe and S but not Cd. The new sphalerite compositions obtained here, along with Cd isotope analyses from the Broken Hill deposit, are used to evaluate the origin of the Broken Hill deposit given the classification scheme of Wen et al. (2016). These geochemical parameters along with Zn isotope composition of sphalerite have not previously been applied to lead–zinc–silver mineralization in the Broken Hill district. The study of Zn isotopes of sphalerite from Broken Hill is particularly relevant given the partial melt model of Mavrogenes et al. (2001) and Frost et al. (2011) for the formation of the deposit, which was recently applied to the metamorphosed Balmat deposit by Matt et al. (2020) to explain the fractionation of Zn isotopes in some orebodies. The aim of the study is to utilize Zn, Cd and S isotopes and the Zn/Cd ratios of sphalerite to shed light on the controversy surrounding the origin of the Broken Hill deposit and minor BHT deposits in the Broken Hill district.

2. Geological setting

Depositional ages of the Willyama Supergroup are ~1720–1640 Ma, with the Broken Hill Group, which hosts the Broken Hill deposit, having formed at ~1695–1685 Ma (Page & Laing, 1992; Page et al. 2005) (Fig. 2). Metamorphic conditions in and adjacent to the Broken Hill deposit were ~700–800 °C and 5–6 kbar (Phillips & Wall, 1981; Powell & Downes, 1990; White et al. 2004) but decreased to the amphibolite facies in the northern part of the Willyama Domain. The minor BHT deposits studied here (11.30, Flying Doctor, Esmeralda, Henry George, Globe, Pinnacles) were all subjected to the granulite facies. The deposits were intensely deformed and affected by at least three periods of deformation. Two of these deformational episodes resulted in the Broken Hill deposit being subject to isoclinal fold events (Laing et al. 1978; Willis et al. 1983) with the structural data of Laing et al. (1978) suggesting that the deposit and the contained orebodies were overturned. The Broken Hill deposit is 8 km long and consists of at least six separate orebodies (from stratigraphic bottom to the top, they are C, B and A lodes and 1, 2 and 3 lenses; Figs 3, 4) each of which has a characteristic gangue mineralogy and metal ratio. Details of the vast array of minerals (>350) found in the Broken Hill deposit are given in Plimer (1984) and Birch (1999). The main metallic minerals consist of sphalerite and galena, with minor amounts of pyrrhotite, chalcopyrite, arsenopyrite, löllingite, tetrahedrite and various sulfosalts. The most abundant silver-bearing minerals are galena and tetrahedrite with pyrrargyrite, polybasite, stephanite, argentite, antimonal silver, allargentum, dyscrasite, argentopyrite and native silver occurring in lesser amounts (Lawrence, 1968; Both & Stumpfl, 1987). The dominant gangue minerals in each orebody are rhodonite, fluorate, quartz (3 lens), calcite, rhodonite, wollastonite (2 lens), quartz, calcite, wollastonite (1 lens), rhodonite, manganooan hedenbergite (A lode), quartz (B lode) and quartz (C lode). Based, in part, on Laing et al.’s (1978) assumption that the deposit was structurally overturned, Groves et al. (2008) identified a feeder zone system in the C lode, with cross-cutting blue quartz-gahnite ± garnet rocks serving as the metamorphosed alteration zone. However, some workers (e.g. Mavrogenes et al. 2001; Webster, 2006; Frost et al. 2011) suggested that the deposit was not overturned so that the orebodies are the correct way up with 3 lens being at the stratigraphic base of the deposit and C lode at the top. The C, B and A lodes and 1 lens are characterized by Zn > Pb, whereas the 2 and 3 lenses have Pb ≥ Zn. By invoking major partial melting of the deposit, Mavrogenes et al. (2001) and Frost et al. (2011) argued that the zinc lodes (i.e. A, B and C lodes and 1 lens) are restites of Pb-rich sulfide melts implying that these melts migrated through the stratigraphy to form the Pb-rich orebodies (i.e. 2 and 3 lenses).

The Broken Hill deposit is intimately associated with a package of rocks that Johnson & Klingner (1975) referred to as the ‘lode horizon’, which consists of quartz garnetite, garnetite, blue quartz and blue quartz-gahnite rocks, and lode pegmatite (Spry & Wonder, 1989; O’Brien et al. 2015). Apart from metasedimentary rocks, blue quartz-gahnite rocks and quartz garnetite are the two most common rock types spatially associated with minor BHT deposits (Barnes et al. 1983). A summary of the geological setting for the deposits from which samples were analysed is given in Table 1.

3. Samples and analytical methods

3.1. Cadmium and zinc isotopes

Thirty-one samples were collected from drill core and from underground locations at the Broken Hill and Pinnacles deposits. Some of the samples were used previously in the studies of Spry & Wonder (1989) and O’Brien et al. (2015). Approximately 50 mg of sphalerite powder was dissolved in 4 ml of ultrapure heated (80 °C) aqua regia for 8 hours. Complete dissolution was visually confirmed. The solution was cut into two equal aliquots and used for chromatographic separation. The procedure for the preparation of the Cd and Zn isotopes is identical to that given by Wang et al. (2020, 2021). All reported results show mass dependence.

The Cd isotopic compositions were measured on a Neptune multicollector inductively coupled plasma mass spectrometer (MS-ICP-MS) at Rutgers University. Cadmium was purified using the anion exchange chromatograph (Cloquet et al. 2005) with...
volumetric yields for the samples greater than 94% after two rounds of column chromatography. Yield checks were measured on an Agilent 5900 ICP-optical emission spectrometer (ICP-OES) at Juniata College. Zinc and Cd concentrations were determined with standard calibration curves that ranged from 0.5 to 20 ppm, and yttrium was used as an internal standard for analysis. The chromatography for Cd involved 2 ml of wet BioRad AG MP-1 resin chloride form (100–200 mesh), which was added to a 10 ml BioRad chromatography column. The resin was sequentially cleaned with 10 ml of 2% HNO₃, 10 ml of MQ water (18.2 W) and 5 ml of 1.2 molar HCl. The sample was loaded onto the resin with 1 ml of 1.2 molar HCl and the unwanted ions were sequentially eluted with lower molality HCl and the Cd was collected in 17 ml of 0.0012 molar HCL. This process was repeated with the use of new resin for the second column to eliminate Sn. The chromatography was effective, as no 115Sn voltages were recorded above the 2 mV background. The 115Sn mass was monitored in H4 cup, with 107Ag in L4 cup, 109Ag in L2 cup, 110Cd in L1 cup, 111Cd in Ax cup, 112Cd in H1 cup, 113Cd in H2 cup, 114Cd in H3 cup and 115Sn in H4 cup. Instrumentation setup and introduction was similar to that of Wasylenti et al. (2014). All samples were doped with 150 ppb NIST 987 Ag isotope standard, which was used to correct for mass bias using the exponential fractionation correction (Maréchal et al. 1999). The 107Ag/109Ag of the NIST 987 Ag isotope standard is reported as 1.07638. Solutions were measured at 200 ppb Cd, with on-peak blank subtraction in one block of 30 ratios. The reported values are an average of two separate measurements, and the data are presented relative to the NIST SRM 3108 standard in per mil notation defined as: $\delta^{114/110}{\text{Cd}} (\%) = ((^{114}{\text{Cd}}/^{110}{\text{Cd}})_{\text{sample}}/(^{114}{\text{Cd}}/^{110}{\text{Cd}})_{\text{NIST SRM 3108}} – 1) \times 1000$ (Abouchami et al. 2013). All data cited here from the literature are converted relative to the NIST SRM 3108 standard ($\delta^{114}{\text{Cd}}_{\text{NIST SRM 3108}} = \delta^{114}{\text{Cd}}_{\text{Nancy SPEX}} – 0.11 \%o; Xu et al. 2020).

Measured errors of ratios were in the fifth or sixth decimal and do not represent a conservative estimation of error. Errors for the measured values are constrained in two ways. The variation of NIST SRM 3108 throughout the measuring session was 0.05 %o (2s, n = 27). The second means for error estimation was by measuring a High Purity Standard ICP-MS standard during the two sessions. The value of the standard is $\delta^{114}{\text{Cd}} = -0.53 \%o \pm 0.06$ (2s,

BROKEN HILL DOMAIN	WILLYAMA SUPERGROUP	IGNEOUS ROCKS
Dalit Bore Metasediments	<1642 +/- 5 Ma	PARAGON GROUP
Bijerkerno Metasediments	<1656 +/- 4 Ma	
Cartwrights Creek Metasediments		
King Gunnia Calc-silicate Member		
SUNDOWN GROUP	**Silver King Formation**	**Hores Gneiss 1685 +/-3 Ma**
Purnamota Subgroup		
1691 +/- 3 Ma	Allendale Metasediments	
Himalaya Formation		
Kyong Formation		
Lady Brassey Fm.	Alma Gneiss 1704 +/-3 Ma	
Thorndale Composite Gneiss		
Clevedale Migmatite		
Mulculca Formation		
Ednas Gneiss		
Redan Gneiss		

Fig. 2. (Colour online) Stratigraphic column and ages of rocks in the Broken Hill domain (after Conor & Preiss, 2008). The Broken Hill and BHT deposits occur in the Hores Gneiss of the Purnamota Subgroup, while the Pinnacles deposit likely occurs in the Cues Formation stratigraphically lower in the Broken Hill domain.
n = 10) and is considered the error of measurements. All duplicate measurements fall within reported errors.

The chromatography for Zn also involved the BioRad MP-1 anion exchange resin using the protocol defined by Maréchal et al. (1999). Yields from the columns were tested volumetrically and were all greater than 95%. The mass bias corrections for Zn using Cu (NIST 976) were employed for these samples and then the corrected values were bracketed by the standards (Archer & Vance, 2004; Chapman et al. 2004, 2006; Peel et al. 2008). Solutions were measured at 150 ppb Cu and 200 ppb Zn (63Cu = 7V and 66Zn = 4V). One block was 30 ratios in the analytical session, and the Zn isotope values are reported in traditional per mil notation relative to the AA–ETH standard: δ66Zn(‰) = ((66Zn/64Zn)sample/(66Zn/64Zn)AA–ETH − 1) × 1000. All the data cited here from the literature were converted relative to the AA–ETH standard (δ66ZnAA–ETH = δ66ZnJMC3–0749L − 0.28‰; Archer et al. 2017).

Errors for Zn isotopes are calculated in a similar manner to that discussed above for Cd isotopes. Throughout the analytical sessions, the reference material AA–ETH standard compared with itself (n = 14) yielded two standard deviations of 0.06‰ (2σ) for 66Zn, which is larger than the error for each sample during the run. The value of USGS BVHO-2 δ66ZnAA–ETH is +0.02‰ ± 0.04 (2σ, n = 3). The largest error between the two methods is that of the variation of the standard in comparison to itself and is considered the error for reported samples.

3.b. Sulfur isotopes

Sphalerite was separated from ore samples by hand picking under a binocular microscope or was drilled out with a Dremel tool with a 1 mm drill tip. We followed the procedure for sulfur isotope analysis as described by Grassineau (2006). Sphalerite was pulverized in an agate mortar to a powder (1.5 mg), which was then loaded into tin capsules and burned using a Thermo Scientific Flash IRMS IsoLInk elemental analyser. The Sn capsules oxidized at ~1020 °C, and when oxygen was added it flash combusted at 1800 °C (Grassineau, 2006). The oxygen was added at a rate of 300 ml/minute for three seconds. The SO2 gas produced was purified through a gas chromatography column and then introduced via a Conflo IV Universal Interface system into a continuous flow-type dual-inlet Thermo Scientific Delta V Series Isotope Ratio mass

Fig. 3. Geological map of the Broken Hill deposit. Abbreviations: N.B.H.C. – New Broken Hill Consolidated mine (currently part of Southern Operations operated by Perilya Broken Hill Limited); Z.C. – Zinc Corporation mine (currently part of Southern Operations operated by Perilya Broken Hill Limited); B.H.S. – Broken Hill South mine; N.B.H. – North Broken Hill mine (currently North mine operated by Perilya Broken Hill Limited). Cross-section No. 62 is shown as a bold black line (see Fig. 4 for cross-section).
spectrometer under He flow. The analysis time was ~420 seconds. The 3 lens orebody is not shown here as it only occurs in the central and northern parts of the deposit, where it occurs at the stratigraphic top. The figure has been modified after Pratten (1965).

3.c. Major- and trace-element composition of sphalerite

Part of the dissolved separates of sphalerite in solution that were analysed for Zn and Cd isotopes from the Broken Hill deposit as well as smaller BHT deposits (11:30, Esmeralda, Flying Doctor, Henry George) were also analysed for Ag, Cd, Cu, Fe and Zn using an Agilent 5900 ICP-OES at Juniata College. Quantitative analyses of sphalerite were also performed on a JEOL JXA-8530FPlus electron microprobe at the University of Minnesota. Analytical conditions for determining sphalerite compositions used an accelerating voltage of 15 kV, beam current of 50 nA and a beam diameter of 5 microns. Elements were acquired using analysing crystals LIL for Zn kα, Mn kα, Fe kα and Cu kα, PETL for Cd kα, and PETJ for S kα and Ag kα. The standards were Mn-olivine and synthetic Mn₃SiO₅ for Mn, Cu metal for Cu, pyrite for Fe, sphalerite for Zn and S, hesstie for Ag and cadmium sulfide (CdS) for Cd. The on-peak counting time was 10 seconds for Zn kα, Mn kα, Fe kα, Cu kα and S kα, 40 seconds for Ag kα and 60 seconds for Cd kα. The mean atomic number (MAN) background intensity method was used instead of the traditional off-peak background acquisition (Donovan & Tingle, 1996; Donovan et al. 2016). The MAN background intensity data was calibrated and continuum absorption corrected for Cd kα, Zn kα, Mn kα, Fe kα, Cu kα, S kα and Ag kα. Unknown and standard intensities were corrected for dead-time. The Phi-Rho-Z matrix correction algorithm Armstrong/Love Scott (CitZAF) was used along with the mass absorption coefficients dataset FFAST (Chantler et al. 2005).

4. Results

4.a. Sulfur isotopes

Sulfur isotope compositions of 31 samples of sphalerite are in Table 2. The values of δ³⁴S from Broken Hill range from +0.27 to +4.73‰ (n = 19), while those for the following smaller BHT deposits are: Pinnacles (−3.08 to −0.94‰, n = 3), Esmeralda (+1.24 to +1.28‰, n = 2), Henry George (−1.06 to +1.17‰, n = 4), 11:30 (−5.11‰, n = 2) and Flying Doctor (−0.36‰, n = 1) (Fig. 5). Sulfur isotope compositions of sulfides from these minor deposits had not previously been obtained, except for the Pinnacles deposit, the second largest Pb–Zn–Ag deposit in the Willyama Domain, where Parr (1992, 1994a) reported a range of δ³⁴S = −3.5 to +3.7‰. Other sulfur isotope studies of sulfides from the Broken Hill area include analyses of sphalerite, galena, pyrrhotite and chalcopyrite. Both & Smith (1975) recorded δ³⁴S values of between −2.1 and +2.4‰ per mil and between −3.8 and +5.4‰ for sulfides from the main Broken Hill lode and 26 minor BHT deposits (including Pinnacles), respectively, while Spry (1987) showed a broader isotopic range for the Broken Hill deposit of −3.3 to +6.7‰. The isotopic compositions obtained by Lawrence & Rafter (1962); δ³⁴S = +0.4 to +1.7‰ and Stanton & Rafter (1966); δ³⁴S = −2.2 to +4.7‰, 1967; δ³⁴S = −1.5 to +2.8‰ for Broken Hill fall within the range given by Spry (1987).

By combining the S isotope data for sphalerite, galena, pyrrhotite and chalcopyrite of Both & Smith (1975) and Spry (1987), the latter proposed that there may be a weak increase in isotopic values from the stratigraphic footwall (C lode) through to the hanging wall (3 lens). However, by adding the S isotope data for sphalerite obtained here with these two studies it is apparent that there is no systematic increase from the footwall to the hanging wall. Instead, there is an increase in the average isotopic compositions for sphalerite in C lode (δ³⁴S = 0‰) to the top of the Zn lodes (i.e. 1 lens; δ³⁴S = +2.2‰) with a slight decrease to 1‰ in 3 lens (Fig. 6a). Although galena was not analysed here, the combined data of Both & Smith (1975) and Spry (1987) show a steady increase in the average δ³⁴S galena composition from C lode (−1.4‰) to 2 lens (+1.3‰) and 3 lens (+1.2‰). Data for the Zn mineralization from the North mine is shown in Figure 6a but was not included owing to uncertainty in its stratigraphic position (possibly 1 lens or
Table 1. Summary of geological characteristics of Broken Hill and BHT deposits (modified after O’Brien et al. 2015)

Deposit: Lat., Long.	Grade, drilling data, tonnage*, metallic minerals†	Gangue minerals	Lode and country rocks	References
Broken Hill	300 Mt of 10.0 % Pb, 8.5 % Zn, 0.14 % Cu and 148 g/t Ag: Gn–Sp–Ccp ± Asp ± Po ± Lo	Qz–Ghn–Rhd–Grt ± Ms ± Síl ± Amp ± Ap ± Fsp	Qz–Grt and Qz–Ghn rocks envelope orebodies in psammitic-psammopelitic–pelitic metasediments (Hores Gneiss) and quartzofeldspathic gneiss (Potosi Gneiss); Ghn–Qz ± Grt rocks are most abundant in the structural hanging wall, spatially associated with BIF	Johnson & Klingner (1975); Parr & Plimer (1993); Webster (2006)
11:30 (BHT)	0.2 Mt @ 1 % Pb, 12 % Zn, 7 g/t Ag; Sp ± Py ± Po ± Asp ± Gn	Ghn–Qz–Grt–Bt ± Fsp	Qz–Ghn–Grt lode rocks in psammitic–psammopelitic metasediment (Broken Hill Group) occur between two plagioclase gneiss units; locally intersected by a mafic amphibolite	Perilya (2008); O’Brien et al. (2015)
Esmeralda (BHT)	Unknown tonnage, 5–7 % Pb + Zn (up to 5 m drill intersection); Sp ± Po ± Py	Qz-Cal–Pmt–Wo–Grt–Mag	Qz–Cal lode rocks in psammitic–psammopelitic metasediment (lower Broken Hill Group) and is also associated with amphibolites, calc-silicate units and rare Potosi Gneiss	Heimann et al. (2013); D. Rogers (pers. comm. 2022)
Flying Doctor (BHT)	1.5 Mt @ 4 % Pb, 3 % Zn, 44g/t Ag; Gt–Sp–Asp–Po–Cp ± Py	Qz–Ghn–Grt ± Bt ± Chl ± Ap	Qz–Ghn–sulphide ± Gt lode rock in pelitic to psammopelitic metasediments (Broken Hill Group)	Burton (1994); Teale et al. (2006)
Globe (BHT)	2686 t produced, with 502 kg Ag and 512 t Pb recorded; Cer–Gn–Sp–Mic ± Po	Fsp–Qz ± Chl ± Ms ± Grt ± Tur	Qz–Ghn lode rock in pelitic–psammitic metasediments (Purnamoota Subgroup) and Potosi Gneiss	Burton (1994)
Henry George (BHT)	1.3 Mt @ 1 % Pb, 8 % Zn, 14 g/t Ag; Sp–Po–Py–Gn ± Asp	Qz–Ghn–Fsp–Bt ± Grt	Qz–Ghn lode rock in pelitic to psammopelitic metasediment with minor pegmatic segregations (Broken Hill group). Lode rocks occur adjacent to amphibolite and ultramafic dyke	Perilya (2008)
North Mine Zinc Lode	Also known as the ‘Fitpatrick Zinc Lode’. Past production 0.04 Mt @ 9.6 % Zn, 4.6 % Pb, 187 g/t Ag; reserves: 1 Mt @ 9.0 % Pb, 7.0 % Zn, 140 g/t Ag; Sp–Po ± Gt ± Py ± Ccp	Qz–Grt–Ghn ± Síl ± Bt	Po–Sp-bearing Gt–Qz lode rocks bounded by Gt–Síl-bearing psammites–psammopelites and pelitic metasediments	Widdop (1983); Webster (2006)
Pinnacles (BHT)	Second largest Broken Hill deposit. 2 Mt @ 6–11 wt % Pb, 2.5 wt % Zn, 300–500 g/t Ag; Gn–Sp–Py–Po ± Asp ± Lo ± Tr ± Po	Fsp–Ghn–Amp–Grt–Mag–Qz–Ghn ± Bt ± Ms	Three sulphide-bearing lode (two Pb and one Zn) with associated Qz–Ghn and Qz–Grt lode rock occur in pelitic and psammitic metasediment (Cues Formation)	Parr (1994)

*Estimates of grades and tonnage supplied by Perilya Ltd for North Mine Zinc Lode, Henry George and 11:30.
†Mineral abbreviations after Whitney & Evans (2010); Amp–amphibole; Ap–apatite; Asp–arsenopyrite; Az–azurite; Bt–biotite; BIF–banded iron formation; Cal–calcite; Cer–cerussite; Ccp–chalcopyrite; Chl–chlorite; Di–diopside; Fsp–feldspar; Ghn–gahnite; Gt–garnet; Lo–löllingite; Mag–magnete; Mic–malachite; Ms–massicot; Pmt–piemontite; Po–pyritohedrite; Py–pyrite; Rhd–rhyodite; Qz–quartz; Sil–sillimanite; Sp–sphalerite; Tr–tetrahedrite; Tur–tourmaline; Wo–wollastonite.
Table 2. Zn, Cd and S isotope data and major-trace-element contents of sphalerite (ppm) from Broken Hill and minor BHT deposits

Sample no.	Deposit	Ore body	Location or drill core	δ²⁹S ‰	δ⁶⁸Zn ‰	δ¹¹⁴Cd ‰	Ag	Cd	Cu	Fe	Zn	Zn/Cd
BH-1	Broken Hill	3 lens	Blackwoods pit	2.02	−1.15	−0.23	2842	2769	4255	83768	607189	219
BH-2	Broken Hill	3 lens	North mine	0.27	0.04	−0.14	386	2439	545	75201	1024854	420
GT-1	Broken Hill	3 lens	North mine 37 level	0.66	0.04	−0.04	155	10345	151369	769324	3040252	294
532-502	Broken Hill	3 lens	North mine garnet rim	1.83	−0.35	−0.25	70	3060	16818	142770	1131631	370
6542	Broken Hill	3 lens	North mine	2.17	−0.08	−0.44	403	2381	2063	155596	780859	328
Z3590	Broken Hill	2 lens	66.9 m	1.22	−0.09	0.01	581	2451	10266	162487	915607	374
532-331	Broken Hill	1 lens	4.73									
Z3590	Broken Hill	0.6 m	15.6	2.20	−0.04	−0.36	144	10882	16083	937588	3050190	280
Z3590	Broken Hill	15.6	72.7 m	4.47	0.46	−0.08	32	181	1145	286924	214846	1189
7254	Broken Hill	1.29	88.7 m	1.66	−0.07	−0.48	156	7882	45109	841379	2433570	309
7318	Broken Hill	2.24	100.5 m	1.29	0.30	−0.23	17	1435	11284	170209	784061	546
6303	Broken Hill	1.29	6.2 m	2.24	−0.39	−0.12	17	2529	0	326292	1167979	462
JB-10-82	Broken Hill	1.07	Zinc lode	1.22	0.08	−0.33	18	5322	474	265437	1203836	226
JB-10-83	Broken Hill	1.54	Zinc lode	1.54	−0.77	−0.12	324	2284	3619	245641	1001814	439
JB-10-87	Broken Hill	1.54	Zinc lode	1.54	−0.77	−0.12	324	2284	3619	245641	1001814	439
6220	Broken Hill	1.48	20.0 m	0.98	0.22	17	2656	2246	244523	815529	307	
532-299	Broken Hill	1.38	3.7 m	1.38	0.25	−0.04	77	2242	1353	234689	682008	304
532-300	Broken Hill	1.66	3.7 m	1.66	0.03	−0.24	169	2360	2151	354074	1001871	424
JB-10-52	Esmeralda	1.28	PPN133 142.5 m	1.28	−0.76	−0.35	81	2960	1664	222735	908574	307
JB-10-53	Esmeralda	1.24	PPN133 143.1 m	1.24	−0.97	−0.03	18	2123	2928	263498	995789	469
JB-10-100	Flying Doctor	1.54	3538 39.3 m	0.36	0.10	−0.77	196	4100	2684	331625	916657	224
JB-10-X	Henry George	1.54	PPN94 295 m	0.24	−0.24	−0.28	412	1950	2464	147419	865877	444
JB-10-23	Henry George	−1.06	PPN94 295.7 m	−1.06	−0.33	−1.02	29	2210	3563	197197	943294	427
JB-10-27	Henry George	0.11	PPN94 300.1 m	0.11	−0.38	−0.15	8	2068	576	188590	1118626	541
JB-10-34	Henry George	1.17	PPN95 308.4 m	1.17	−0.25	−0.38	532	1961	592	209415	727040	371
JB-10-43	11:30	PPN106 172.2 m	−5.11	−0.26	−0.04	57	2154	0	190561	933566	433	
JB-10-46	11:30	PPN109 208.3 m	−5.11	−0.19	2.59	55	1803	0	173888	935901	519	

(Continued)
A lode; Plimer, 1979). It yields the highest average sulfur isotopic composition for sphalerite and galena for any of the orebodies.

4.b. Zinc isotopes

Values of $\delta^{66}\text{Zn}$ range from -1.15 to $+0.46$ ‰ ($n = 19$) for the Broken Hill deposit and from -0.97 to $+0.10$ ‰ ($n = 9$) for the smaller BHT deposits (Table 2). The isotopically lightest value for the smaller BHT deposits is sample JB-10-53 ($\delta^{66}\text{Zn} = -0.97$ ‰) from the Esmeralda deposit, while the isotopically heaviest sample is $\delta^{66}\text{Zn} = +0.10$ ‰ for sample JB-10-100 from the Flying Doctor deposit. Sample JB-10-53, along with samples BH-1 (3 lens), JB-10-87 (Zinc lode, North mine) and JB-10-52 (Esmeralda) have values of $\delta^{66}\text{Zn}$ of -1.15, -0.77 and -0.76 ‰, respectively, which are among the most negative values for sphalerite ever reported for an ore deposit, with that from sample BH-1 being the lowest value yet recorded. There appears to be no systematic variation of Zn isotopes from the stratigraphic footwall to the hanging wall of the Broken Hill deposit (Fig. 6b).

Table 2. (Continued)

Sample no.	Deposit	Ore body	Location or drill core	$\delta^{34}\text{S}$ ‰	$\delta^{66}\text{Zn}$ ‰	$\delta^{114}\text{Cd}$ ‰	Ag	Cd	Cu	Fe	Zn	Zn/Cd
BH-109	Pinnacles	Consols Lead lode		-3.08								
BH-113	Pinnacles	2 level		-0.94								
BH-115	Pinnacles	2 level Zinc lode		-1.04								
±0.14 ‰	±0.09 ‰											

Fig. 5. (Colour online) Histogram of sulfur isotope compositions of sphalerite (this study) from the Broken Hill deposit and minor Broken Hill-type deposits (P – Pinnacles; HG – Henry George; FD – Flying Doctor; 11 – 11:30). Also shown as bar lines are the ranges of previously published sulfur isotope studies by Lawrence & Rafter (1962), Stanton & Rafter (1966, 1967), Both & Smith (1975), Spry (1987), Parr (1992, 1994) and Huston et al. (1995). Sulfur isotope compositions of sulfides from the Pinnacles deposit, minor BHT deposits and Broken Hill from these studies are shown as orange, brown and red bar lines, respectively.

Fig. 6. (Colour online) (a) Sulfur isotope compositions of sphalerite and galena as a function of stratigraphic position (with C lode in the stratigraphic footwall) in the Broken Hill deposit. Note that isotopic compositions of sphalerite in the so-called Zinc lode from the North mine is also shown but its stratigraphic position is uncertain. Plimer (1979) proposed that it equated to either 1 lens or A lode. (b) Zinc isotope compositions as a function of stratigraphic position in the Broken Hill deposit. (c) Cadmium isotope compositions as a function of stratigraphic position in the Broken Hill deposit.
Values of $\delta^{114}\text{Cd}$ for sphalerite from Broken Hill and smaller BHT deposits range from -0.48 to $+0.01\%$ for the Broken Hill deposit and from -1.02 to $+2.59\%$ for the smaller BHT deposits (Table 2). The isotopically lightest value is from the Henry George deposit, while the heaviest is from the 11:30 deposit. The range observed here for the BHT deposits are the most negative and positive yet reported for sphalerite from an ore deposit. Although it should be noted that Cd isotope compositions of native and positive yet reported for sphalerite from an ore deposit. The range observed here for the BHT deposits are the most negative and positive yet reported for sphalerite from an ore deposit. (Table 2). The isotopically lightest value is from the Henry George deposit, while the heaviest is from the 11:30 deposit. Moreover, this same sample yielded the most isotopically light sulfur isotope value lysed twice and yielded the same value (Table 2). Moreover, this same sample yielded the most isotopically light sulfur isotope value lysed twice and yielded the same value (Table 2). Moreover, this same sample yielded the most isotopically light sulfur isotope value lysed twice and yielded the same value (Table 2). Moreover, this same sample yielded the most isotopically light sulfur isotope value lysed twice and yielded the same value (Table 2). Moreover, this same sample yielded the most isotopically light sulfur isotope value lysed twice and yielded the same value (Table 2). Moreover, this same sample yielded the most isotopically light sulfur isotope value lysed twice and yielded the same value (Table 2). Moreover, this same sample yielded the most isotopically light sulfur isotope value lysed twice and yielded the same value (Table 2).

4.c. Cadmium isotopes

4.d. Composition of sphalerite and Zn/Cd ratios

Samples were analysed for Ag, Cd, Cu, Fe and Zn using the Agilent 5900 ICP-OES but only the Ag, Cd and Cu concentrations are accurate since the Zn and Fe are major elements (per cent levels) and thus not suitable for analysis by ICP-OES analysis, given the ppm level concentrations of Zn and Fe in the standard. The Ag, Cd and Cu concentrations of sphalerite from Broken Hill (17–2842 ppm Ag, 181–10 882 ppm Cd, 0–151 369 ppm Cu), Esmeralda (18–81 ppm Ag, 2123–2960 ppm Cd, 1664–2928 ppm Cu), Flying Doctor (196 ppm Ag, 4100 ppm Cd, 2684 ppm Cu) and Henry George (8–532 ppm Ag, 1950–2210 Cd, 576–3563 ppm Cu). To further explore the concentrations of both major- (Zn, Fe and S) and trace-element (Ag, Cd, Cu and Mn) compositions of sphalerite, a suite of ore samples containing sphalerite from the main Broken Hill deposit, as well as minor BHT deposits (Flying Doctor, Globe, Henry George) were analysed by electron microprobe (Fig. 7; Table 3). Note that samples analysed here are not the same as those analysed for Zn, Cd and S isotopes owing to the limited sample size. The Zn and Cd concentrations in sphalerite from 14 samples from the Broken Hill deposit range from 52.93 to 58.73 wt % Zn and 1740 to 2810 ppm Cd, respectively, for Zn/Cd ratios of 203 to 303 with an average of 220 (Fig. 7). The narrow range of ratios obtained by electron microprobe analysis is remarkable given the enormous sized localities. Samples of sphalerite were analysed from Globe and Cu concentrations of sphalerite from Broken Hill (17–2842 ppm Ag, 181–10 882 ppm Cd, 0–151 369 ppm Cu), Esmeralda (18–81 ppm Ag, 2123–2960 ppm Cd, 1664–2928 ppm Cu), Flying Doctor (196 ppm Ag, 4100 ppm Cd, 2684 ppm Cu) and Henry George (8–532 ppm Ag, 1950–2210 Cd, 576–3563 ppm Cu). To further explore the concentrations of both major- (Zn, Fe and S) and trace-element (Ag, Cd, Cu and Mn) compositions of sphalerite, a suite of ore samples containing sphalerite from the main Broken Hill deposit, as well as minor BHT deposits (Flying Doctor, Globe, Henry George) were analysed by electron microprobe (Fig. 7; Table 3). Note that samples analysed here are not the same as those analysed for Zn, Cd and S isotopes owing to the limited sample size. The Zn and Cd concentrations in sphalerite from 14 samples from the Broken Hill deposit range from 52.93 to 58.73 wt % Zn and 1740 to 2810 ppm Cd, respectively, for Zn/Cd ratios of 203 to 303 with an average of 220 (Fig. 7). The narrow range of ratios obtained by electron microprobe analysis is remarkable given the enormous sized localities. Samples of sphalerite were analysed from Globe (n = 1), Flying Doctor (n = 2) and Henry George (n = 1) and yield compositions considerably more variable than those from Broken Hill (i.e. Globe, 56.99–58.63 wt % Zn, 42–70 ppm (average Zn/Cd ratio of 1111); Flying Doctor, 51.05–56.66 wt % Zn, 2400–3420 ppm (average Zn/Cd ratios of 153 to 226); Henry George, 54.94–55.44 wt % Zn, 2410–2550 ppm Cd (average Zn/Cd ratio of 221)). The Zn/Cd ratio of 1111 for the Globe sample is anomalous relative to all other samples of sphalerite from the Broken Hill district. This is likely due to the low Fe content of the sphalerite, which is consistent with sphalerite not being buffered by a member of the system Fe–S. The Fe, Mn and Cu concentrations of sphalerite from Broken Hill range from 7.12 to 11.89 wt % Fe (average = 10.35 wt %), 0.08 to 1.02 wt % Mn (average = 0.34 wt %) and 0 to 0.09 wt % Cu (average = 0.03 wt %). Up to 0.08 wt % Ag was also obtained. The range of concentrations of Fe, Cu and Ag in sphalerite is similar to the ranges of these elements in the minor BHT deposits (6.85 to 12.93 wt % Fe, 0 to 0.04 wt % Cu, up to 0.06 wt % Ag). However, the Mn concentration is considerable lower (0.01 to 0.08 wt % Mn) in the minor BHT occurrences. The concentrations of Cd and the Zn/Cd ratios derived from electron microprobe analysis are evaluated further in this contribution rather than those obtained by ICP-OES.

5. Discussion

5.a. Previous genetic models

The origin of the Broken Hill deposit and the minor BHT deposits is controversial with a variety of origins having been proposed in the vast literature on the deposit (see Greenfield, 2003). Essentially these disparate views can be distilled down to syngenetic, epigenetic and magmatic–hydrothermal models. For the syngenetic models, sulfide formed by subaqueous hydrothermal processes and subsequently underwent high-grade metamorphism, deformation and possibly partial melting (e.g. Johnson & Klingner, 1975; Laing et al. 1978; Mavrogenes et al. 2001). For the syngenetic models, there has been debate regarding whether or not the BHT deposits are Sedex deposits (e.g. Goodfellow et al. 1993; Sangster, 2020), a separate class of deposit (e.g. Walters, 1996; Walters et al. 2002; Spry & Teale, 2021) or deposits that are possibly transitional between Sedex and VMS deposits (e.g. Walters, 1998; Leach et al. 2005; Spry et al. 2010).

Epigenetic models revolve around the introduction of metals during peak metamorphism or by post-tectonic replacement (e.g. Nutman & Ehlers, 1998; Gibson & Nutman, 2004). Crawford & Maas (2009) proposed a magmatic–hydrothermal
model where they argued that the ore-forming components were derived from fractionated rift-related ferrotholeiite magmas in which fractional crystallization of Fe-rich oxide gabbros separated Cu from Pb and Zn. They suggested that magmatic fluid evolved from these magmas transported Pb and Zn in a saline-rich hydrothermal fluid and deposited metals below the seafloor.

Of these models, the epigenetic (i.e. syntectonic and post-tectonic models) of formation can be rejected since the orebodies were deformed and metamorphosed by the Olarian Orogeny. However, the syngenetic and magmatic–hydrothermal models will be considered further based on the geochemical data obtained here.

5.b. Zn/Cd ratios and Cd isotopes of sphalerite as an indicator of ore genesis

Wen et al. (2016) pointed out that the Cd content of sphalerite is dependent on a variety of physicochemical parameters including temperature (T), the nature and concentration of ligands in the ore fluid that bond to Zn and Cd, pH and the total sulfur in solution. Wen et al. classified Pb–Zn deposits into three groups: low-temperature (i.e. MVT deposits), high-temperature (i.e. porphyry, magmatic–hydrothermal, skarn and VMS deposits) and exhalative systems (i.e. Sedex, seafloor hydrothermal sulfides). Distinctions between the three classes of deposits were based on Cd concentrations and Zn/Cd ratios in sphalerite as well as a plot of Cd isotopes versus Zn/Cd ratios. However, an issue with Wen et al.’s study is that it was based on only ten occurrences, four of which were MVT deposits with single examples of a Sedex (i.e. Langshan) and a VMS deposit (i.e. Gacun).

There are several difficulties with the categorization technique proposed by Wen et al. (2016). Their study evaluated low- and high-temperature classes of deposits, which include different types of deposits that form under very different ore-forming conditions. For example, Wen et al.’s (2016) high-temperature deposits include both VMS and porphyry-style deposits, yet VMS deposits form at much lower temperatures (up to ~400 °C) than those of porphyry-style deposits that form above magmatic solidus temperatures (~600–750 °C) (Franklin et al. 2005; Seedorff et al. 2005). Volcanogenic massive sulfide deposits also generally form from low salinity fluids (i.e. equivalent to seawater compositions), although higher salinity fluids are reported in some deposits that have a magmatic component (Franklin et al. 2005). Metals from porphyry-style deposits are either carried in the vapour phase or from highly saline fluids (commonly >50 wt % NaCl). Finally, Wen et al. (2016) also provided a simplistic set of physicochemical conditions of formation for Sedex deposits proposing that they formed under reducing conditions, which is characteristic of Selwyn-type Pb–Zn Sedex deposits. Cooke et al. (2000) recognized the McArthur River-type Sedex deposits form from more oxidized fluids at T generally <200 °C, while Selwyn-type deposits form from reduced fluids at T >200 °C. These concerns notwithstanding, Wen et al. (2016) demonstrated that competing physicochemical conditions produce different Cd concentrations and Zn/Cd ratios.

Table 3. Zn and Cd concentrations and Zn/Cd ratios of sphalerite from Broken Hill and BHT deposits

Deposit	Sample no.	No. analyses	Zn (wt %)	Cd (ppm)	Zn/Cd (average)
Broken Hill					
Broken Hill C lode, NBHC	JB10-140A	6	54.10–54.26	2260–2370	234
Broken Hill B lode, NBHC	JB10-125	6	53.51–54.89	1740–1860	303
Broken Hill Zinc lode, NM	JB10-82	18	53.70–54.70	2300–2610	221
Broken Hill A lode, ZC	SJT-308	6	58.09–58.73	2470–2550	233
Broken Hill A lode, ZC	JB32-313	6	52.93–53.68	2080–2190	280
Broken Hill A Lode NBHC	JB32-283		53.70–54.33	1850–1990	280
Broken Hill SE A Lode	JB10-130A	6	53.68–54.23	1840–1950	287
Broken Hill 1 lens, NBHC	JB32-11	6	56.51–56.70	2220–2290	254
Broken Hill Lead lode, NBHC	JB32-35H	6	58.09–58.73	2450–2550	233
Broken Hill Lead lode, NBHC	JB32-34	6	54.80–55.23	2290–2430	234
Broken Hill 3 lens, NBHC	JB32-357	6	54.78–56.07	2640–2790	204
Broken Hill 3 lens, NBHC	JB32-35	6	56.40–56.89	2470–2570	225
Broken Hill 3 lens, NM	JB32-45	6	55.89–55.97	2420–2480	227
Broken Hill 3 lens, NM	JB32-73	6	53.60–54.10	2530–2810	203
Broken Hill-type					
Globe	JB10-65C	6	56.99–58.63	42–70	1111
Flying Doctor	JB10-100	6	51.05–52.19	3300–3420	153
Flying Doctor	JB10-101	6	55.39–56.66	2400–2510	226
Henry George	JB10-34	6	54.94–55.44	2410–2550	221

NBHC – New Broken Hill Consolidated mine; NM – North mine; ZC – Zinc Corporation mine.
if there are differences in these concentrations and ratios between sphalerite in Sedex and VMS deposits. Table 3 lists the Cd concentrations and Zn/Cd ratios of sphalerite in the Broken Hill area that were analysed by electron microprobe. The highest concentrations of Cd are generally associated with the 3 lens and Lead lode (i.e. undifferentiated 2 and 3 lenses), which is consistent with the findings of Both (1973) who determined the trace-element compositions of sphalerite concentrate in the Broken Hill orebodies. Although the Cd concentrations overlap in the current study for the various orebodies, Both (1973) found a decline in Cd content of sphalerite from 3 lens to A lode. This was not observed in the current study but is likely a result of the fewer number of samples analysed here. Given that Broken Hill and minor BHT deposits occur in metasedimentary rocks spatially associated with metagneous rocks, it is not surprising that both sets of data for these deposits have Cd isotope compositions and Zn/Cd ratios that overlap the compositions of both Sedex and VMS deposits (Figs 7, 8).

The only magmatic–hydrothermal deposit for which there are Cd isotope compositions and Zn/Cd ratio data is the Shagou deposit, China, which has Zn/Cd ratios of 154–191 and values of δ114Cd = −0.05 to 0 ‰. These values overlap those for MVT deposits with the Zn/Cd ratios being lower than the range observed for the Broken Hill and the minor BHT deposits. Although the number of data are limited, the range of values obtained by Wen et al. (2016) cannot be used to support a magmatic–hydrothermal model for the Broken Hill and minor BHT deposits.

5.c. Cd, Zn and S isotopes and the origin of Broken Hill and minor BHT deposits

By incorporating data from the present study with those of Lawrence & Rafter (1962), Stanton & Rafter (1966, 1967), Both & Smith (1975), Spry (1987), Parr (1992, 1994a) and Huston et al. (1995), sulfur isotope compositions of sulfides in the Broken Hill and minor BHT deposits show ranges of δ34S = −3.3 to +6.7 ‰ and −5.1 to +5.4 ‰, respectively. Plimer (1985), in recognizing that the sulfur isotope compositions were centred around 0 ‰, proposed a single primordial source of sulfur, while Parr (1992) suggested that the values near 0 ‰ were the result of sulfide formation from a modified magmatic–hydrothermal source of sulfur in which hydrothermal fluids mixed with reduced sulfur source or that magmatic sulfur was oxidized. The scenarios proposed by Plimer (1985) and Parr (1992) are supportive of a magmatic source associated with the magmatic–hydrothermal model of Crawford & Maas (2009).

Alternatively, Spry (1987) suggested an inorganic source of sulfur in which thermochemical considerations at a T of ~350 °C show that the range of isotopic compositions observed for Broken Hill and the minor BHT deposits occur along the pyrrhotite–magnetite join, which is the dominant assemblage in the system Fe–S–O in the Broken Hill district, although rare primary pyrite is also present (e.g. Parr, 1994b). A log δ^{18}O–pH diagram incorporates the current S isotope data along with those of previously published S isotope data (Fig. 9). The temperature used here is higher than that proposed by Large et al. (1996) who suggested that BHT deposits were derived from slightly acid or near neutral, high salinity fluids between 100 and 250 °C. The upper temperature limit was largely based on solubility constraints of chalcopyrite. However, it should be emphasized that minor amounts of chalcopyrite are present throughout the deposit but its paucity may simply be due to the limited amount of Cu in the source rocks. Regardless, if thermochemical sulfate reduction (TSR) is assumed,
Table 4. Cd concentrations and Zn/Cd ratios of sphalerite in MVT, VMS and Sedex deposits

Deposit	Type	No. analyses (samples)	Zn (wt %)	Cd (ppm)	Zn/Cd (average)	References
Fule	MVT	14 (8)	51.7–62.8	5238–34981	17.0–119.9 (43)	Wen et al. (2016)
Tianbaoshan	MVT	28 (3)	39.3–49.5	1998–4887	93.8–228.1 (140)	Wen et al. (2016)
Jinding	MVT	5 (4)	54.1–66.3	3184–22826	24–189 (126)	Wen et al. (2016)
Dadongla	MVT	5 (4)	58.7–65.1	16536–26215	24–36 (30)	Wen et al. (2016)
Fankou	MVT	10 (7)	55.97–62.7	1400–2700	216–389 (324)	Xuesin (1984)
Beichang	MVT	23 (23)	51.5–60.3	3160–14695	38–189 (84)	Li et al. (2019)
Nanchang	MVT	9 (9)	54.0–58.4	5625–22750	24–96 (46)	Li et al. (2019)
Maoping	MVT	23	47–61	1869–3344	156–294	Wu et al. (2021)
Gacun	VMS	4 (4)	51.5–63.9	2828–3476	169–213 (193)	Wen et al. (2016)
Bankshapa	VMS	5	60.24–62.12	1518–1569	391–407 (398)	Mishra et al. (2021)
Jangalderi	VMS	9	56.30–57.62	378–1217	470–674 (558)	Mishra et al. (2021)
Biskhan	VMS	5	55.57–57.64	1070–1168	477–512 (498)	Mishra et al. (2021)
Bhuyari	VMS	6	54.53–56.07	1036–1187	463–530 (492)	Mishra et al. (2021)
Bukit Botol	VMS (massive)	54 (7)	65.72–66.13	5100–5700	115–130 (123)	Basori et al. (2021)
Bukit Botol	VMS (stringer)	24 (7)	53.48–62.35	2200–2800	216–267 (240)	Basori et al. (2021)
Bukit Ketaya	VMS (massive)	45 (9)	64.70–66.63	1800–2500	265–371 (320)	Basori et al. (2021)
Bukit Ketaya	VMS (stringer)	48 (8)	64.57–66.08	2700–5200	125–246 (218)	Basori et al. (2021)
Arminius	VMS	16 (8)	57.80–67.00	1000–3000*	195–670 (274)	D. J. Sandhaus (unpub. MS thesis, Virginia Polytechnic Institute and State Univ., 1981)
Cofer	VMS	35 (20)	55.80–64.70	1000–3100*	77–656 (312)	D. J. Sandhaus (unpub. MS thesis, Virginia Polytechnic Institute and State Univ., 1981)
Geco	VMS	14 (2)	58.54–58.72	2400–4700	125–244 (185)	P. G. Spry (unpub. Ph.D. thesis, Univ. Toronto, 1984)
Attu	VMS	25 (10)	55.83	1900	294	Hangala (1987)
Pontide	VMS (Zone A)	16 (2)	61.80–66.40	2639–8957	78–249 (177)	Revan et al. (2014)
Pontide	VMS (Zone B)	1 (1)	62.7	2773	226 (226)	Revan et al. (2014)
Pontide	VMS (Zone C)	2 (10)	61.84–66.00	2260–3765	174–278 (219)	Revan et al. (2014)
Langshan	Sedex	4 (3)	1.1–34.2	34–996	316–393 (350)	Wen et al. (2016)
Bleikvassil	Sedex	?	58.4	1100	531	Vokes (1976)
Aclare	Sedex	1 (1)	57.4	2000	287	Spyri et al. (1988)
Kanmantoo	Sedex	29 (4)	51.94–56.99	1200–2800	198–461 (320)	H. Arbon (unpub. B.Sc. Honors thesis, Univ. Adelaide, 2011)
Mt Isa	Sedex	357 (13)	53.08–63.86	1464–4492	135–436 (264)	Cave et al. (2020)
Sullivan	Sedex	222 (5)	56.20–59.72	500–3200†	180–398 (345)	Lydon & Reardon (2000)
Gamsberg	Sedex	8 (8)	51.48–52.46	900–1700	326–580 (393)	Höhn et al. (2021)

* below detection limits (0.11 wt % Cd) were not included.
† below detection limits (0.05 wt % Cd) were not included.

it is not possible to obtain the observed range of isotopic compositions along the pyrrhotite–magnetite join for geologically reasonable values of ionic concentrations, pH and δ¹⁸S in the ore fluid at the temperatures proposed by Large et al. (1996). While the range of sulfur isotope values can be explained by TSR, the range in isotope data can also be accounted for by reduced sulfur produced by TSR that is mixed with magmatic sulfur or that sulfate from seawater was reduced by biogenic processes at low temperatures (Spry, 1987). It should be noted that Both & Smith (1975) suggested that sulfur isotopic differences among BHT deposits are due to differences in the relative proportion of biogenic sulfur contributed to each deposit.

In an attempt to further evaluate ore-forming processes that may be gleaned from the sulfur isotopes obtained here, we plotted δ¹⁸S versus δ¹¹⁵Cd (Fig. 10) and δ³⁴S versus δ¹³⁵Cd (Fig. 11). However, these isotope pairs involving S show no systematic
variation suggesting that Zn, Cd and S were decoupled from each other. This is further demonstrated by the lack of correlation between δ66Zn and δ114Cd (Fig. 12). Two exceptions exist for one sample (Z359O 15.6 m) from A lode at Broken Hill and one from 11:30. The former shows the highest Zn (δ66Zn = +0.46‰) and S (δ34S = +4.47‰) isotope compositions in the deposit, while sample JB-10-46 from 11:30 shows the highest Cd (δ114Cd = 2.59‰) and lowest S (δ34S = −5.11‰) isotope values for the samples analysed here.

The range of δ66Zn for sphalerite from the Broken Hill deposit is among the largest (1.61‰) yet reported, being exceeded only by sphalerite from the Yuhuang-1 hydrothermal field (1.67‰; Liao et al. 2019). Fourteen of the 18 samples of sphalerite samples from Broken Hill have values of δ66Zn that range from −0.39 to +0.46‰, which overlap most Zn isotope compositions reported from previous studies of MVT, Sedex and VMS deposits (Fig. 13), as well as the compositions of most igneous and sedimentary rocks (e.g. Mârčel et al. 2000; Toutain et al. 2008; Telus et al. 2012). A question remains as to why the remaining four Zn isotope isotopic compositions, two from Broken Hill and two from the Esmeralda deposit, yield the very negative values of δ66Zn between −1.15 and −0.76‰.

Variations in Zn isotopes in a given hydrothermal orebody can result from a variety of processes including (Li et al. 2019): Rayleigh fractionation (e.g. Wilkinson et al. 2005; Kelley et al. 2009; Wang et al. 2020); biological processes (Li et al. 2019); equilibrium fractionation related to T (Mason et al. 2005); different Zn species in the hydrothermal fluid (Fuji et al. 2011); volatilization/evaporation/boiling (e.g. Paniello et al. 2012; Wang et al. 2021); and mixing of different sources of Zn (Wilkinson et al. 2005). Although the effects of metamorphism on the fractionation of Zn isotope compositions in natural systems have received limited attention, Xu et al. (2021) showed that basalt metamorphosed to the greenschist, amphibolite and eclogite facies showed no detectable fractionation. This contrasts with the observations of Pons et al. (2016) who showed that small isotopic variations (up to 0.16‰) occur in subducted Alpine serpentinites that were metamorphosed from greenschist to blueschist through to the eclogite facies. They ascribed the decrease in δ66Zn to the release of oxidized Zn sulfate-rich fluids to the mantle wedge. Regardless, metamorphism to high grades would appear to only produce a very small amount (i.e. <0.2‰) of fractionation. Relatively small isotopic ranges were reported by S. E. Foulkes (unpub. M.Sc. thesis, Rhodes Univ., 2014) for sphalerite from the Gamsberg (δ66Zn = −0.22 to −0.08‰, n = 7) and by Matt et al. (2020) for sphalerite from the Balmat deposits (δ66Zn = −0.30 to 0.28, n = 47) that were both metamorphosed to the amphibolite facies. This further supports the idea that the metamorphism does not modify the original Zn isotopes in the Broken Hill district and is not the cause for the wide isotopic range in the Broken Hill district. Owing to the intense deformation at Balmat, Matt et al. (2020) showed there was a δ66Zn fraction of up to 0.4‰ down the length of some ore bodies. They ascribed this to syntectonic isotopic fractionation that resulted from the interaction between the ore and sulfide melts that were fluxed by H2S. Peak metamorphic conditions at Balmat reached ~640 °C and 6.5 kbar. However, given that sulfide in the Balmat deposit primarily consists of sphalerite with only minor to trace amounts of other sulfides/sulfosalts (e.g. arsenopyrite, bournonite, tetrahedrite, galena, pyrite, tennantite, chalcopyrite, jordanite, realgar; P. Matt, unpub. MS thesis, City Univ. New York, 2019) to potentially lower the melting point of a sulfide mix, there is some question regarding whether or not there was sufficient quantity of these minerals to lower the melting point to the metamorphic conditions reached at Balmat given the high melting point of sphalerite (i.e. 1827 °C). Regardless of whether or not there was a sulfide melt, or whether
Mechanisms involving Rayleigh fractionation may not produce the large fractionation in Zn isotopes observed in the Broken Hill and the minor BHT deposits, although it may account for the Zn isotopic compositions >0‰ at Broken Hill. Nonetheless, ab initio calculations by Fuji et al. (2011) show that negative values of δ^{66}Zn of up to 0.6‰ can occur in sulfides in high pH fluids (likely associated with carbonates) at low temperatures but a considerably smaller fractionation occurs under neutral to acidic fluids at higher temperatures. Regardless, Rayleigh fractionation is inconsistent with the isotopic compositions in the Esmeralda deposit and two samples from Broken Hill that have values of δ^{66}Zn < −0.7‰ since they are hosted in clastic metasedimentary rocks rather than marbles (although carbonates are relatively common in 2 lens at Broken Hill). It is, therefore, unlikely that high pH ore fluids were associated with the formation of deposits in the Broken Hill district (including Broken Hill) and cannot account for the observed wide isotopic range.

The largest Zn isotopic variations in the solar system are associated with devolatilization processes related to the formation of terrestrial bodies where variations of several per mil have been reported (e.g. Luck et al. 2005; Creech & Moynier 2019). Wang et al. (2021), in evaluating the Zn isotopic compositions of sphalerite in the Keyue and Zhaxikang Sedex deposits, showed that vapour–liquid–solid partitioning from hydrothermal fluids would result in lighter Zn and Cd isotopes in the vapour and heavier Zn and Cd isotopes in the solid phase (i.e. sphalerite). Given the possibility that the Broken Hill and minor BHT deposits may have formed from magmatic–hydrothermal fluids (i.e. possibly in the range of 400–700 °C, see Williams-Jones & Heinrich, 2005) rather than the lower temperature fluids (i.e. <350 °C) associated with the previously discussed syngenetic model, then a vapour phase may have been generated. However, Wang et al. (2021) also showed that when the fraction of the initial Zn and Cd partitioned into the volatile phase is extremely high (i.e. >0.8), the resultant sphalerite precipitated from the vapour can produce very light isotopic values.

This scenario could conceivably account for the very negative Zn isotopes observed in sphalerite from the Esmeralda deposit and two samples from the Broken Hill deposit even though such high partitioning of metals such as Zn and Pb into the vapour can produce very light isotopic values.

The light Zn isotopes fractionate due to deformation in a fluid-bearing or fluid-free environment remains uncertain. However, a similar question was raised by Spry et al. (2008) regarding whether a partial sulfide melt was produced at Broken Hill and whether or not it was possible to produce the Pb lode ore bodies as a result of sulfide migration from the restite Zn lodes as proposed by Mavrogenes et al. (2001). Despite these uncertainties, fractionation of S isotopes in veins due to deformation was reported by Spry (1987) at Broken Hill and it may be the same mechanism that is responsible for some of the light Zn isotopes in the Broken Hill district where isoclinal folding exists for the first two phases of deformation that affected the Broken Hill deposit and which caused the migration of sulfides into fold hinges (e.g. Laing et al. 1978; Parr & Plimer, 1993).

![Fig. 11](Colour online) A plot of δ^{66}Zn versus δ^{34}S for sphalerite from the Broken Hill deposit and minor BHT deposits.

![Fig. 12](Colour online) A plot of δ^{66}Zn versus δ^{114}Cd for sphalerite from the Broken Hill deposit and minor BHT deposits.

Fractionation of Cd isotopes can be large with extreme values of between −8 and +16‰ being reported for meteorites as a result of condensation and evaporation processes (e.g. Woebbeling et al. 2003, 2004, 2008). Previous studies of hydrothermal ore deposits show ranges of −0.74 to +1.01‰ in sphalerite based on studies of the Zhaxikang VMS and Fule MVT deposits (Wen et al. 2016; Wang et al. 2020). Cadmium isotope compositions of igneous and sedimentary rocks are essentially indistinguishable with δ^{114}Cd values generally around 0 ± 0.2‰ (e.g. Woebbeling et al. 2003; Schmitt et al. 2009; Liu et al. 2019). Values of δ^{114}Cd for sphalerite from Broken Hill and smaller BHT deposits range from −0.48 to +0.01‰ for the Broken Hill deposit and from δ^{114}Cd = −1.02 to 2.59‰ for the smaller BHT deposits (Fig. 14). Although values of δ^{114}Cd for sphalerite from Broken Hill overlap those of igneous and sedimentary rocks, 10 of the 17 samples analysed range from δ^{114}Cd = −0.48 to −0.23‰ suggesting that some mechanism other than hydrothermal processes,
where Cd was extracted from the meta-igneous and metasedimentary package associated with the Zn–Pb deposits in the Broken Hill district, was responsible. In a Cd, S and Zn isotope study of the Broken Hill deposit and minor Broken Hill-type deposits. Also shown as bar lines are the ranges of δ⁶⁶Zn for sphalerite from the Xiaobaliang VMS deposit, Yang district, was responsible. In a Cd, S and Zn isotope study of the Xiaobaliang deposit; the Alexandrinka (Gao et al. 2018) and Xiaobaliang (Yang et al. 2022) VMS deposits; the Cantabria (Palavia et al. 2014), Cévennes (Albarède, 2004), Jinding (Deng et al. 2017; Li et al. 2019), Maoping (Wu et al. 2021) and Wuishe (Zhu et al. 2018) MVT deposits; Irish-type deposits including Navan (Wilkinson et al. 2005; Gangevin et al. 2012) and the Balmat (Matt et al., 2020), Banbangqiao, Tianqiao (Zhou et al. 2014b), Daliangzi, Fusheng, Jinshachang, Mazou, Tianbaoshan (Xu et al. 2020) and Shanshulin (Zhou et al. 2014a) carbonate-hosted Pb–Zn or Zn deposits. Note that the anomalous value of sample of δ⁶⁶Zn = +1.05 ‰ for late-stage sphalerite that was obtained by Wilkinson et al. (2005) from the Galmoy Irish-type Zn–Pb deposit is not shown on this figure. The reader can view the individual data points for most of the deposits shown here in Wang et al. (2018, 2021).

5.d. A biological syndepositional model for the formation of the Broken Hill deposit and minor BHT deposits

Although the S isotopic compositions of sphalerite can be interpreted in the light of a magmatic–hydrothermal or a syngenetic model, where TSR occurs at a temperature of around 350 °C, neither model can account for the wide range of Zn and Cd isotope compositions of sphalerite. Microbially mediated dissimilatory sulfate reduction to H₂S produces isotopically light H₂S with Δ¹⁵NSO₄-H₂S up to 72 ‰ (e.g. Canfield & Teske, 1996; Balci et al. 2007). However, biological processes are also likely to be important for Zn and Cd (e.g. Li et al. 2019). Although fractionation factors associated with biological processes are not large (1.0002 to 1.0008; Abouchami et al. 2013), biological partial assimilation of Cd from seawater can generate a range of δ¹¹⁴Cd of 7 ‰ in surface waters as a result of the uptake of dissolved Cd by photosynthesis (e.g. Lacan et al. 2006; Ripperger et al. 2007; Schmitt et al. 2009; Wen et al. 2016), while a range of δ⁶⁶Zn of up to ~0.7 ‰ occurs as a result of biological processes (e.g. Conway & John, 2014; Conway & Conway 2014; Zhao et al. 2014) (Fig. 15). Theoretical calculations and experimental studies of Fuji et al. (2011) and Marković et al. (2017), respectively, show that organic compounds (e.g. Zn-carboxylate) generally have heavier isotopic compositions than Zn⁺², which can result in sphalerite having very low δ⁶⁶Zn values in a low T solution (i.e. <100 °C). Li et al. (2019) suggested that Cd, like Zn, may have bonded to carboxylate molecules in hydrothermal solutions resulting in light isotopic values for sphalerite.

However, two features of the Zn and Cd isotope ranges for sphalerite from Broken Hill need to be addressed: why there is no apparent linear relationship between Zn and Cd isotopic compositions of sphalerite from the Broken Hill deposit and minor Broken Hill-type deposits. Also shown as bar lines are the ranges of δ⁶⁶Zn for sphalerite from the Dongshengmiao (Gao et al. 2018), Gamsberg (S. E. Foulkes, unpub. M.Sc. thesis, Rhodes Univ., 2014), Keyue (Wang et al. 2021), Red Dog (Kelley et al. 2009) and Zhaxikang (Wang et al. 2018, 2021) Sedex deposits; the Alexandrinka (Gao et al. 2018) and Xiaoabaliang (Yang et al. 2022) VMS deposits; the Cantabria (Palavia et al. 2014), Cévennes (Albarède, 2004), Jinding (Deng et al. 2017; Li et al. 2019), Maoping (Wu et al. 2021) and Wuishe (Zhu et al. 2018) MVT deposits; Irish-type deposits including Navan (Wilkinson et al. 2005; Gangevin et al. 2012) and the Balmat (Matt et al., 2020), Banbangqiao, Tianqiao (Zhou et al. 2014b), Daliangzi, Fusheng, Jinshachang, Mazou, Tianbaoshan (Xu et al. 2020) and Shanshulin (Zhou et al. 2014a) carbonate-hosted Pb–Zn or Zn deposits. Note that the anomalous value of sample of δ⁶⁶Zn = +1.05 ‰ for late-stage sphalerite that was obtained by Wilkinson et al. (2005) from the Galmoy Irish-type Zn–Pb deposit is not shown on this figure. The reader can view the individual data points for most of the deposits shown here in Wang et al. (2018, 2021).

5.d. A biological syndepositional model for the formation of the Broken Hill deposit and minor BHT deposits

Although the S isotopic compositions of sphalerite can be interpreted in the light of a magmatic–hydrothermal or a syngenetic model, where TSR occurs at a temperature of around 350 °C, neither model can account for the wide range of Zn and Cd isotope compositions of sphalerite. Microbially mediated dissimilatory sulfate reduction to H₂S produces isotopically light H₂S with Δ¹⁵NSO₄-H₂S up to 72 ‰ (e.g. Canfield & Teske, 1996; Balci et al. 2007). However, biological processes are also likely to be important for Zn and Cd (e.g. Li et al. 2019). Although fractionation factors associated with biological processes are not large (1.0002 to 1.0008; Abouchami et al. 2013), biological partial assimilation of Cd from seawater can generate a range of δ¹¹⁴Cd of 7 ‰ in surface waters as a result of the uptake of dissolved Cd by photosynthesis (e.g. Lacan et al. 2006; Ripperger et al. 2007; Schmitt et al. 2009; Wen et al. 2016), while a range of δ⁶⁶Zn of up to ~0.7 ‰ occurs as a result of biological processes (e.g. Conway & John, 2014; Conway & Conway 2014; Zhao et al. 2014) (Fig. 15). Theoretical calculations and experimental studies of Fuji et al. (2011) and Marković et al. (2017), respectively, show that organic compounds (e.g. Zn-carboxylate) generally have heavier isotopic compositions than Zn⁺², which can result in sphalerite having very low δ⁶⁶Zn values in a low T solution (i.e. <100 °C). Li et al. (2019) suggested that Cd, like Zn, may have bonded to carboxylate molecules in hydrothermal solutions resulting in light isotopic values for sphalerite.

However, two features of the Zn and Cd isotope ranges for sphalerite from Broken Hill need to be addressed: why there is no apparent linear relationship between Zn and Cd isotopic compositions of sphalerite from the Broken Hill deposit and minor Broken Hill-type deposits. Also shown as bar lines are the ranges of δ⁶⁶Zn for sphalerite from the Dongshengmiao (Gao et al. 2018), Gamsberg (S. E. Foulkes, unpub. M.Sc. thesis, Rhodes Univ., 2014), Keyue (Wang et al. 2021), Red Dog (Kelley et al. 2009) and Zhaxikang (Wang et al. 2018, 2021) Sedex deposits; the Alexandrinka (Gao et al. 2018) and Xiaoabaliang (Yang et al. 2022) VMS deposits; the Cantabria (Palavia et al. 2014), Cévennes (Albarède, 2004), Jinding (Deng et al. 2017; Li et al. 2019), Maoping (Wu et al. 2021) and Wuishe (Zhu et al. 2018) MVT deposits; Irish-type deposits including Navan (Wilkinson et al. 2005; Gangevin et al. 2012) and the Balmat (Matt et al., 2020), Banbangqiao, Tianqiao (Zhou et al. 2014b), Daliangzi, Fusheng, Jinshachang, Mazou, Tianbaoshan (Xu et al. 2020) and Shanshulin (Zhou et al. 2014a) carbonate-hosted Pb–Zn or Zn deposits. Note that the anomalous value of sample of δ⁶⁶Zn = +1.05 ‰ for late-stage sphalerite that was obtained by Wilkinson et al. (2005) from the Galmoy Irish-type Zn–Pb deposit is not shown on this figure. The reader can view the individual data points for most of the deposits shown here in Wang et al. (2018, 2021).
compositions (see Fig. 12) and why the range of isotopic values for Cd is smaller than that for Zn isotopes. Cadmium and Zn behave differently with regards to biological productivity. While Zn can be adsorbed and assimilated by phytoplankton, the scavenging of isotopically heavy Zn onto biological particles, which sink through the water column, leave the remaining fluid characterized by lighter Zn isotope compositions (John et al. 2017). Scavenging/ad sorption can lower the Zn isotope compositions by ~0.3 to ~0.6 ‰ (Li et al. 2019). Therefore, the sum of values related to preferential uptake of light isotopes during biological processes is as much as ~1.3 ‰ (i.e. the sum of values for biological assimilation (up to 0.7 ‰; Conway & John, 2014) and scavenging/adsorption (~0.3 to ~0.6 ‰; Li et al. 2019)). On the other hand, Cd is not scavenged by biological particles but is controlled by biological assimilation as it substitutes for P. If Zn in the Broken Hill area was released from organic material during decay to form sphalerite this process could result in the light Zn and Cd isotopic compositions of both Zn and Cd. Alternately, sphalerite formation from the residual seawater would not account for the Cd isotope composition because surface seawater trends to high values of δ114Cd.

A similar explanation for the small range in Cd isotopes compared to Zn isotopes, a feature observed in sphalerite from the Broken Hill area, was proposed by John et al. (2017) for the Neoproterozoic dolostones from the Nuccaleena Formation, South Australia. In the Nuccaleena dolostone, Cd was buried in biological material (i.e. phytoplankton) to produce light Cd isotope compositions, while scavenging of heavy Zn left surface seawater with light Zn isotope compositions. Organic matter formed in surface seawater when buried will produce a larger isotopic range for Zn than Cd.

A mechanism involving Zn and Cd being bonded to organic molecules best accounts for the light Zn and Cd isotopic compositions in the Broken Hill district, including the light isotopic values from the Flying Doctor (δ114Cd = −0.77 ‰) and Henry George (δ114Cd = −1.02 ‰). This scenario is analogous to biogenic processes proposed by Li et al. (2019) to explain similar Zn, Cd and S
isotope compositions for sulfides from the giant Jinding MVT deposit, China, and by Yang et al. (2022) to account for the isotopically light Cd and S isotope values of sphalerite in the Xiaoabaliang Cu–Au VMS deposit, China. Fractionation by biogenic sulfate reduction (BSR) is consistent with the process proposed by Both & Smith (1975) to explain the differences in S isotopes in the district. To this end, Heimann et al. (2013) also reported C and O isotopes values in calcite from the Esmeralda and Broken Hill deposits (the two deposits that show the most negative values of $\delta^{66}Zn$; Table 2), which range from -25 to -21% for $\delta^{13}C_{VPDB}$ and $+10$ to $+11.0 \%$ for $\delta^{34}S_{SMOW}$, respectively. The low carbon isotope values also overlap ($\delta^{13}C_{VPDB} = -26$ to -14%) for graphite in graphitic schists in the southern Curnamona province (including the Broken Hill deposit) and calcite at the RW Iron Clad and Little Broken Hill BHT prospects (M. Schuler et al., The Broken Hill Line of Lode Study, unpub. report to Pasminco Mining Company, 1993; Bierlein et al. 1996). Biogenic processes occur at low temperatures (i.e. <100 °C). Notwithstanding the proposal here that biological processes are important in producing the Zn, Cd and S isotopic compositions reported for sphalerite in the Broken Hill district, the cause of the outlier value of $\delta^{114}Cd = +2.59 \%$, coupled with the isotopically lightest value of $\delta^{48}S$ of -5.11%, for the samples studied here from the small 11:30 deposit remains unknown. However, these anomalous isotopic values may be due to kinetic and/or equilibrium effects similar to those responsible for the isotopically anomalous value of $\delta^{66}Zn > +1.0 \%$ reported by John et al. (2008) for sulfides in active hydrothermal vents on the seafloor.

6. Conclusions

Geological and geochemical considerations suggest that the Broken Hill deposit as well as minor BHT deposits likely formed by either syngenetic processes at $T < 350 \degree C$ or from magmatic-hydrothermal fluids at a T of between 400 and 700 °C. Although S isotope studies are compatible with either process, Cd and Zn isotope studies are incompatible with high T processes because both the lighter isotopes for both isotopic systems will fractionate into the vapour phase leaving sphalerite exhibiting heavy isotopic compositions. Even though the S, Cd and Zn isotope values show no correlation with each other, suggesting they were decoupled, the isotopic ranges are commensurate with fractionation being caused by low-temperature biogenic processes. The Zn and Cd isotope variations for sphalerite from the Broken Hill deposit and minor BHT deposits are among the largest yet reported. Although biogenic processes appear to be the most likely explanation for the isotopically light values reported for both isotopes, fractionation caused by mechanical processes whereby the lighter isotope Zn and Cd isotopes migrate more easily in a fluid assisted or depleted system is uncertain, but this remains a possibility given the extreme deformation that resulted in two isoclinal fold episodes at Broken Hill and the migration of sulfides into fold hinges.

Syngenetic scenarios for the Broken Hill deposit have previously considered it being a VMS or Sedex deposit. Although Cd isotopes have been combined with the Zn/Cd isotope ratio of sphalerite to classify Pb–Zn deposits in the past and may have helped in distinguishing these two deposit models, such an exercise is fraught with problems. Although MVT deposits tend to have lower Zn/Cd ratios in sphalerite than those formed by high-temperature (e.g. VMS) and exhalative (Sedex) systems, the Zn/Cd ratios for VMS and Sedex deposits overlap and cannot be used to distinguish between these deposit types. Sphalerite from the Broken Hill and BHT deposits have average Zn/Cd ratios for sphalerite that range from 203 to 303 and fit within the overlap region for Sedex and VMS deposits. This is hardly surprising given the spatial association of sulfide mineralization with bimodal mafic and felsic igneous rocks within a thick package of metasedimentary rocks.

Acknowledgements. Funding for the electron microprobe facility used in this research was provided by the National Science Foundation under award number EAR-1625432. Dan-Layton Matthews and Evelyne Leduc Queen’s University for Isotope Research (Queen’s University, Canada) are kindly thanked for providing sulfur isotope standards, while Ben Johnson (ISU) helped with S isotope analyses. Assistance with drafting by Justin Glenn is gratefully appreciated. The reviews of Peter Matt and Da Wang are greatly appreciated and improved the quality of the manuscript.

References

Abouchami W, Galer SIG, Horner TJ, Rehkämper M, Wombacher F, Xue Z, Lambelet M, Gautl-Ringold M, Stirling CH, Schönbächler M, Shiell AE, Weis D and Holdship PF (2013) A common reference material for cadmium isotope studies – NIST SRM 3108. Geostandards and Geoscientific Research 37, 5–17.

Albarède F (2004) The stable isotope geochemistry of copper and zinc. Reviews in Mineralogy and Geochemistry 55, 409–27.

Andrews EC (1922) The Geology of the Broken Hill District. Geological Survey of New South Wales Memoir 8. Sydney: William Applegate Gullick, Government Printer, 412 pp.

Archer C, Andersen MB, Cloquet C, Conway TM, Dong S, Ellwood M, Moore R, Nelson J, Rehkämper M, Rouxel O, Samanta M, Shin K-C, Sohrin Y, Taken S and Wasyljenk I (2017) Inter-calibration of a proposed new primary reference standard AA-ETH Zn for zinc isotopic analysis. Journal of Analytical Atomic Spectrometry 32, 415–19.

Archer C and Vance D (2004) Mass discrimination correction in multiple-collector plasma source mass spectrometry: an example using Cu and Zn isotopes. Journal of Analytical Atomic Spectrometry 19, 656–65.

Balci N, Shanks WC III, Mayer B and Mandernack KW (2007) Oxygen and sulfur isotopic systematics of sulfate produced by bacterial and abiotic oxidation of pyrite. Geochimica et Cosmochimica Acta 71, 3796–811.

Barnes RG, Stevens BPJ, Stroud WJ, Brown RE, Willis II and Bradley GM (1983) Zinc, manganese and iron-rich rocks and various minor rock types. Records of the Geological Survey of New South Wales 21, 289–323.

Basori MBI, Gilbert SE, Zaw K and Large RR (2021) Geochemistry of sphalerite from the Permian volcanic-hosted massive sulphide (VHMS) deposits in the Tasik Chini area, Peninsular Malaysia: constraints for ore genesis. Minerals 11, 728. doi: 10.3390/min11070728.

Baumgartner RJ, Kunzmann M, Spinks S, Bian X, John SG, Blaikie TN and Hu S (2021) Zinc isotope composition of the Proterozoic clastic-dominated McArthur River Zn-Pb-Ag deposit, northern Australia. Ore Geology Reviews 104545. doi: 10.1016/j.oregeorev.2021.104545.

Bierlein FP, Ashley PM and Seccombe, PK (1996) Origin of hydrothermal Cu–Zn–Pb mineralisation in the Olary Block, South Australia: evidence from fluid inclusions and sulphur isotopes. Precambrian Research 79, 281–305.

Birch WD (1999) The minerals. In Minerals of Broken Hill (ed. WD Birch), pp. 88–256. Broken Hill: Broken Hill City Council.

Both RA (1973) Minor element geochemistry of sulphide minerals in the Broken Hill lode (N. S.W.) in relation to the origin of the ore. Mineralium Deposita 8, 349–69.

Both RA and Smith JW (1975) A sulfur isotope study of base-metal mineralization in the Willyama Complex, western New South Wales. Economic Geology 70, 308–18.

Both RA and Stumpfl EF (1987) Distribution of silver in the Broken Hill orebody. Economic Geology 82, 1037–43.

Burton GR (1994) Metallogenic Studies of the Broken Hill and Euriowie Blocks, New South Wales. 3, Mineral Deposits of the South-Eastern Broken Hill Block.
Zinc, sulfur and cadmium isotopes and Zn/Cd ratios

Bulletin of the Geological Survey of New South Wales 32. Sydney: Geological Survey of New South Wales, 100 pp.

Canfield DE and Teske A (1996) Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature 382, 127–12

Cave B, Lilly R and Barovich K (2020) Textural and geochemical analysis of chalcopyrite, galena and sphalerite across the Mount Isa Cu to Pb-Zn transition: implications for a zoned Cu-Pb-Zn system. Ore Geology Reviews 124, 103647. doi: 10.1016/j.oregeorev.2020.103647.

Chantler CT, Olsen K, Dragoset RA, Chang J, Kishore AR, Kotochigova SA and Zucker DS (2005) X-ray Form Factor, Attenuation and Scattering Tables (Version 2.1). Gaithersburg, MD: National Institute of Standards and Technology.

Chapman JB, Mason TFD, Weiss DJ, Coles BJ and Wilkinson JJ (2004) An adapted column chemistry procedure for separation of Fe, Cu and Zn from geological matrices, and natural Zn isotopic variations in geological standard reference materials BCR-027, BCR-030 and NOD-P-1. Geology of America Abstracts with Programs 36, 448.

Chapman, JB, Mason TFD, Weiss DJ, Coles BJ and Wilkinson JJ (2006) Chemical separation and isotopic variations of Cu and Zn from five geological reference materials. Geostandards and Georesearch 30, 5–16.

Chen L, Little SH, Kreissig KJ, Severmann S and McManus J (2021) Isotopically light Cd in underlying oxygen deficient zones. Frontiers in Earth Science 6, 123720. doi: 10.3389/feart.2021.123720.

Cloquet C, Rouxel O, Carignan J and Libourel G (2005) Natural cadmium isotopic variations in eight geological reference materials (NIST SRM 2711, BCR 176, GSS-1, GXR-1, GXR-2, GSD-12, Nod-P-1, Nod-A-1) and anthropogenic samples, measured by MC-ICP-MS. Geostandards and Georesearch 29, 95–106.

Conor CHH and Preiss WV (2008) Understanding the 1720–1640 Ma Palaeoproterozoic Willyama Supergroup, Curnamona Province, southeastern Australia: implications for tectonics, basin evolution and ore genesis. Precambrian Research 166, 297–317.

Conway T and John S (2014) The biogeochronochemical cycling of zinc and zinc isotopes in the North Atlantic Ocean. Global Biogeochemical Cycles 28, 1111–28.

Cooker DR, Bull SW, Large RR and McGoldrick PJ (2000) The importance of oxidized brines for the formation of Australian Proterozoic stratafied sediment-hosted Pb-Zn (Sedex) deposits. Economic Geology 95, 1–17.

Crawford AJ and Maas R (2009) A magmatic-hydrothermal origin for the giant Broken Hill deposit. Geoscience Australia Record 2009/28, 28–30.

Creech JB and Mynnier F (2019) Tin and zinc stable isotope characterisation of chondrites and implications for early Solar System evolution. Chemical Geology 511, 81–90.

Deng J, Wang C, Bagas L, Selvaraja V, Jeon H, Wu B and Yang L (2017) Insights into ore genesis of the Jinding Zn-Pb deposit, Yunnan Province, China: evidence from Zn and in-situ S isotopes. Ore Geology Reviews 90, 943–57.

Dong Y-B, Barnes RG, Both RA and Sun SS (1987) Regional stable isotope and fluid inclusion study of vein-type mineralization in the Broken Hill Block, New South Wales, Australia. Transactions of the Institute of Mining and Metallurgy 9, B15–B30.

Donovan JJ, Singer JW and Armstrong JT (2016) A new EPMA method for fast trace element analysis in simple matrices. American Mineralogist 101, 1839–53.

Donovan JJ and Tingle TN (1996) An improved mean atomic number correction for quantitative microanalysis. Journal of Microscopy 2, 1–7.

Findlay D (1994) Boudinage, a reinterpretation of the structural control on the mineralization at Broken Hill. Australian Journal of Earth Science 41, 387–90.

Franklin JM, Gibson HL, Jonasson IR and Galley AG (2005) Volcanogenic massive sulphide deposits. In Economic Geology: One Hundredth Anniversary Volume (eds JW Hedenquist, JFH Thompson, RJ Goldfarb and JP Richards), pp. 523–60. Littleton, Colorado: Society of Economic Geologists.

Frost BR, Swap S and Navrogesen J (2011) Textural evidence for extensive melting of the Broken Hill orebody. Economic Geology 106, 1117–37.

Fuji T, Mynnier F, Pons, M-L and Albarede F (2011) The origin of Zn isotope fractionation in sulfides. Geochimica et Cosmochimica Acta 75, 7632–43.

Gagnevin D, Boyce AJ, Barrie CD, Menuge JF and Blakeman RJ (2012) Zn, Fe and S isotope fractionation in a large hydrothermal system. Geochimica et Cosmochimica Acta 88, 183–98.

Gagnevin D, Menuge JF, Kronz A, Barrie C and Boyce AJ (2014) Minor elements in layered sphalerite as a record of fluid origin, mixing, and crystallization in the Navan Zn-Pb ore deposit, Ireland. Economic Geology 109, 1513–28.

Gao Z, Zhu X, Sun J, Luo Z, Bao C, Tang C and Ma J (2018) Spatial evolutionary of Zn-Fe-Pb isotopes of sphalerite within a single ore body: a case study from the Dongshengmiao ore deposit, Inner Mongolia, China. Mineralium Deposita 53, 55–65.

Gibson GM and Nutman AP (2004) Detachment faulting and bimodal mafic–ultramafic in the Palaeoproterozoic Willyama Supergroup, south-central Australia: keys to recognition of a multiply deformed Precambrian metamorphic core complex. Journal of the Geological Society, London 161, 55–66.

Goodfellow WD, Lydon JW and Turner RJW (1993) Geology and genesis of stratiform sediment hosted (SEDEX) zinc-lead-silver sulphide deposits: mineral deposit modeling. In Mineral Deposit Modeling (eds RV Kirkham, WD Sinclair, RJ Thorpe and JM Duke), pp. 201–51. Geological Association of Canada Special Paper 40.

Grassineau NV (2006) High-precision EA-IRMS analysis of S and C isotopes in geological materials. Applied Geochemistry 21, 756–65.

Greenfield J (2003) A critical review of Broken Hill ore system models. Commonwealth Scientific Industrial Research Organisation and Exploration Report 1160R, 192 pp.

Groves IM, Groves DI, Bierlein FP, Broome J and Penhall J (2005) An improved mean atomic number correction for quantitative microanalysis. Journal of Microscopy 216, 159–66.

Höfl M, Galer SJG, Gamper A and Becker B (2017) Cadmium isotopic variations in Neoproterozoic carbonates – a tracer of biogenic production? Geochemical Perspectives Letters 32, 243–53.

Hühn S, Frimmel HE and Westley P (2021) A new EMMA method for scavenging the marine biogeochemical cycling of zinc and zinc isotopes. Earth and Planetary Science Letters 584, 159–67.

Huston DL, Power M, Gemmell JB and Large RR (1995) Design, calibration and geological application of the first operational Australian laser ablation sulphur isotope microprobe. Australian Journal of Earth Sciences 42, 549–55.

Huston DL, Stevens B, Southgate PN, Mulhing P and Wyborn L (2006) Australian Zn-Pb-Ag ore-forming systems: a review and analysis. Economic Geology 101, 1117–37.

John SG and Conway TM (2014) A role for scavenging in the marine biogeochemical cycling of zinc and zinc isotopes. Earth and Planetary Science Letters 394, 159–67.

Kuwano T, Kunzmann M, Townsend DJ and Korsgen AD (2017) Zinc and cadmium stable isotopes in the geological record: a case study from the post-snowball Earth Nuculanae cap dolostone. Palaeogeography, Palaeoclimatology, Palaeoecology 466, 202–8.

Johnson IR and Klingner GD (1975) The Broken Hill ore deposit and its environment. In Economic Geology of Australia and Papua New Guinea, 1 (ed. CL Knight) pp. 476–91. Parkville, Victoria: Australasian Institute of Mining and Metallurgy.
Katz MB (1976) Lineament tectonics of the Willyama and its relationship to the Adelaide anorthosite. Journal of the Geological Society of Australia 23, 275–85.

Kelley KD, Wilkinson JJ, Chapman JB, Crowther HL and Weiss DJ (2009) Zinc isotope in sphalerite from base metal deposits in the Red Dog district, northern Alaska. Economic Geology 104, 767–73.

Lacan F, Franciosi R, Ji Y and Sherrell RM (2006) Cadmium isotopic composition in the ocean. Geochimia et Cosmochimica Acta 70, 5104–18.

Laing WP, Marjoribanks RW and Rutland RWR (1978) Structure of the Broken Hill mine area and its significance for the genesis of the ore bodies. Economic Geology 73, 1112–36.

Large R, Bodon S, Davidson G and Cooke D (1996) The chemistry of BHT ore formation – one of the keys to understanding the differences between SEDEX and BHT deposits. In New Developments in Broken Hill-Type Deposits (eds J Pongratz and GI Davidson), pp. 105–11. CODES Special Publication 1. Hobart: Centre for Ore Deposit and Exploration Studies, University of Tasmania.

Lawrence LJ (1968) The minerals of the Broken Hill district. Australasian Institute of Mining and Metallurgy Monograph 3, 103–36.

Lawrence LJ and Rafter TA (1962) Sulphur isotope distribution in sulphides and sulphates from Broken Hill South, N.S.W. Economic Geology 57, 217–25.

Leach DL, Sangster DF, Kelley KD, Large RR, Garven G, Allen CR, Gutzmer J and Walters S (2005) Sediment-hosted lead-zinc deposits: a global perspective. Economic Geology: One Hundredth Anniversary Volume (eds JW Hedenquist, JF Thompson, RJ Goldfarb and JP Richards), pp. 561–607. Littleton, Colorado: Society of Economic Geologists.

Lefticariu L, Behum PT, Bender KS and Lefticariu M (1968) Systematics of copper and carbon isotopes in hydrothermal ore deposits. Economic Geology 67, 557–78.

Page RW and Laing WP (1992) Felsic metavolcanic rocks related to the Broken Hill Pb-Zn-Ag orebody, Australia. Geology, depositional age and timing of high-grade metamorphism. Economic Geology 87, 2138–68.

Page RW, Stevens BPJ and Gibson GM (2005) Geochemistry of the sequence hosting the Broken Hill Pb-Zn-Ag orebody. Economic Geology 100, 633–61.

Panniel RC, Day JM and Morriyer F (2012) Zinc isotopic evidence for the origin of the Moon. Nature 490, 376–9.

Parr JM (1992) Fluctuations in a magmatic sulphur isotope signature from the Pinnacles mine, New South Wales, Australia. Mineralium Deposita 27, 200–5.

Parr JM (1994a) The geology of the Broken Hill-type Pinnacles Pb-Zn-Ag deposit, western New South Wales, Australia. Economic Geology 89, 778–90.

Parr JM (1994b) The preservation of pre-metamorphic colloform banding in pyrite from the Broken Hill-type Pinnacles deposit, New South Wales, Australia. Mineralogical Magazine 58, 461–71.

Parr JM and Plimer IR (1993) Models for Broken Hill-type lead-zinc-silver deposits. In Mineral Deposit Modeling (eds RV Kirkham, WD Sinclair, RI Thorpe and JM Duke), pp. 253–88. Geological Association of Canada Special Paper 40.

Pašača J, Tornos F and Chrastný V (2014) Zinc and sulfur isotope variation in sphalerite from carbonate-hosted zinc deposits, Cantabria, Spain. Mineralium Deposita 49, 797–807.

Peel K, Weiss D, Chapman J, Arnold T and Coles B (2008) A simple combined sample-standard bracketing and inter-element correction procedure for accurate mass bias correction and precise Zn and Cu isotope ratio measurements. Journal of Analytical Atomic Spectrometry 23, 103–10.

Periša (2008) Concise Annual Report 2008. Perth: Periša Limited, 69 pp.

Phillips GN and Wall PJ (1981) Evaluation of pregrade regional metamorphic conditions: their implications for the heat source and water activity during metamorphism in the Willyama Complex. Bulletin de Mineralogie 104, 801–10.

Plimer IR (1979) Sulphide rock zonation and hydrothermal alteration at Broken Hill, Australia. Transactions of the Institute of Mining and Metallurgy 88, B161–76.

Plimer IR (1984) The mineralogical history of the Broken Hill lode, NSW. Australian Journal of Earth Sciences 31, 379–402.

Plimer IR (1985) Broken Hill Pb-Zn-Ag deposit- a product of mantle metasomatism. Mineralium Deposita 20, 147–53.

Pons M-L, Debret B, Bouihol P, Delacour A and Williams H (2016) Zinc isotope evidence for sulfate-rich fluid transfer across subduction zones. Nature Communications 7, 13794. doi:10.1038/ncomms13794.

Powell T and Downes J (1990) Garnet porphyroblast-bearing leucosomes in metapegmatites: Mechanisms, phase diagrams, and an example from Broken Hill, Australia. In High-temperature Metamorphism and Crustal Anatatis (eds JR Ashworth and M Brown), pp. 105–23. London: Unwin Hyman.
Pratten RD (1965) Lead-silver-zinc ore deposits of the Zinc Corporation and New Broken Hill Consolidated Mines, Broken Hill. In Geology of Australian Ore Deposits (ed. J. McAndrew), pp. 333–5. 8th Commonwealth Mining and Metallurgy Congress Abstracts. Melbourne: Australasian Institute of Mining and Metallurgy.

Revan MK, Genç Y, Maslennikov VV, Maslennikova SP, Large RR and Danyushhevsky LV (2014) Mineralogy and trace-element geochemistry of sulphide minerals in hydrothermal chimneys from the Upper-Cretaceous VMS deposits of the eastern Pontide orogenic belt (NE Turkey). Ore Geology Reviews 63, 129–49.

Ripperger S, Rehkämper M, Porcelli D and Halliday AN (2010) Nodular sillimanite rocks as field indicators of metamorphosed ore deposits: Examples from the Zn-Pb-Ag deposit melt? Ore Geology Reviews 36, 279–300.

Schmitt AD, Galer SJG and Abouchami W (2020) Evidence that Broken Hill-type Pb-Zn deposits are metamorphosed SEDEX deposits. Mineralium Deposita 55, 1263–70.

Schmidt AD, Galer SJG and Abouchami W (2009) High-precision cadmium stable isotope measurements by double spike thermal ionisation mass spectrometry. Journal of Analytical Atomic Spectrometry 24, 1079–88.

seedorff E, Dilles JH, Proffett JM, Einaudi MT, Zurcher L, Stavast WJA, Johnson DA and Barton MD (2005) Purphyrphy deposits: characteristics and origin of hypogene features. Economic Geology: One Hundredth Anniversary Volume (eds JW Hedenquist, JFH Thompson, RJ Goldfarb and JP Richards), pp. 251–98. Littleton, Colorado: Society of Economic Geologists.

Spry PG (1987) A sulphur isotope study of the Broken Hill deposit, New South Wales, Australia. Mineralium Deposita 22, 109–15.

Spry PG, McFadden S, Teale GS and Steadman JA (2007) Cadmium isotope fractionation in seawater – a signature of biological activity. Earth and Planetary Science Letters 261, 670–84.

Sangster DF (2020) Zinc, sulfur and cadmium isotopes and Zn/Cd ratios for Discovery: Global Exploration in the Twenty-First Century (eds R Goldfarb and RL Nielsen), pp. 95–118. Society of Economic Geologists Special Publication no.

Walters SG (1996) An overview of Broken Hill type deposit. In New Developments in Broken Hill Type Deposits (eds J Pongratz and GJ Davidson), pp. 1–10. CODES Special Publication 1. Hobart: Centre for Ore Deposit and Exploration Studies, University of Tasmania.

Walters SG (1998) Broken Hill-type Pb-Zn-Ag deposits. Australian Geological Survey Organisation Journal of Australian Geology and Geophysics 17, 229–37.

Wang D, Zheng Y, Mathur R, Qiu K, Wu H, Ren H, Wang E, Li Y and Yi J (2021) Zinc and cadmium isotopic constraints on ore formation and mineral exploration in epithermal system: a reconnaissance study at the Keyue and Zhaxiakang Sh-Pb-Zn-Ag deposits in southern Tibet. Ore Geology Reviews 139, 105459. doi: 10.1016/j.oregeorev.2021.104594.

Wang D, Zheng Y, Mathur R and Wu S (2018) The Fe-Zn isotope characteristics and fractionation models: implications for the genesis of the Zhaxiakang Sh-Pb-Zn-Ag deposit in southern Tibet. Geofluids 18, 2197891. doi: 10.1155/2018/2197891.

Wang D, Zheng Y, Mathur R and Yu M (2020) Fractionation of cadmium isotope caused by vapour-liquid partitioning in hydrothermal ore-forming systems: a case study of the Zhaxiakang Sh-Pb-Zn-Ag deposit in Southern Tibet. Ore Geology Reviews 119, 103400. doi: 10.1016/j.oregeorev.2020.103400.

Wasylenki LE, Swihart JW and Romaniello SJ (2014) Cadmium isotope fractionation during adsorption to Mn oxhydroxide at low and high ionic strength. Geochimica et Cosmochimica Acta 140, 212–26.

Webster AE (2006) The Geology of the Broken Hill Lead-Zinc-Silver Deposit, New South Wales, Australia. CODES ARC Centre of Excellence in Ore Deposits Monograph 1. Hobart: ARC Centre of Excellence in Ore Deposits, University of Tasmania, 278 pp.

Williams PJ, Chapman LH, Richard J, Baker T, Heinemann M and Pendergrast WJ (1996) Significance of late orogenic metamatism in the Broken Hill-type deposits of the Cloncurry district, NW Queensland. In New Developments in Broken Hill Type Deposits (eds J Pongratz and GJ Davidson), pp. 119–32. CODES Special Publication 1. Hobart: Centre for Ore Deposit and Exploration Studies, University of Tasmania.

Williams-Jones AE and Heinrich CA (2005) Vapor transport of metals and the formation of magmatic-hydrothermal ore deposits. Economic Geology 100, 583–90.

Williams PJ, Chapman LH, Richmond J, Baker T, Heinemann M, Pendergrast WJ (2003) Stable isotopes in the Broken Hill-type deposits. Geochimica et Cosmochimica Acta 67, 2349–57.
determined by multi-collector ICPMS. *Geochimica et Cosmochimica Acta* 67, 4639–54.

Wright JV, Haydon RC and McConachy GW (1987) Sedimentary model for the giant Broken Hill Pb-Zn deposit, Australia. *Geology* 15, 598–602.

Wu T, Huang Z, He Y, Yang M, Fan H, Wei C, Ye L, Hu Y, Xiang Z and Lai C (2021) Metal source and ore-forming process of the Maoping carbonate-hosted Pb-Zn deposit in Yunnan, SW China: evidence from deposit geology and sphalerite Pb-Zn-Cd isotopes. *Ore Geology Reviews* 135, 104214. doi: 10.1016/j.oregeorev.2021.104214.

Xu C, Zhong H, Hu R-Z, Wen H-J, Zhu W-G, Bai Z-J, Fan H-F, Li F-F and Zhou T (2020) Sources and ore-forming fluid pathway of carbonate-hosted Pb-Zn deposits in Southwest China: implications of Pb-Zn-S-Cd isotopic compositions. *Mineralium Deposita* 55, 491–513.

Xu L-J, Liu S-A and Li S (2021) Zinc isotopic behavior of mafic rocks during continental deep subduction. *Geoscience Frontiers* 12, 101182. doi: 10.1016/j.gsff.2021.101182.

Xuesin S (1984) Minor elements and ore genesis of the Fankou lead-zinc district. *Mineralium Deposita* 19, 95–104.

Yang Z, Song W, Wen H, Zhang Y, Fan H, Wang F, Li Q, Yang T, Zhou Z, Liao S and Zhu C (2022) Zinc, cadmium and sulphur isotopic compositions reveal biological activity during formation of a volcanic-hosted massive sulphide deposit. *Gondwana Research* 101, 103–13.

Zhao Y, Vance D, Abouchami W and de Baar HJW (2014) Biogeochemical cycling of zinc and its isotopes in the Southern Ocean. *Geochimica et Cosmochimica Acta* 125, 653–72.

Zhou J-X, Huang Z-L, Lv Z-C, Zhu X-K, Gao J-G and Mirnejad H (2014a) Geology, isotope geochemistry and ore genesis of the Shanshulin carbonate-hosted Pb-Zn deposit, southwest China. *Ore Geology Reviews* 63, 209–25.

Zhou J-X, Huang Z-L, Zhou M-F, Zhu, A-K and Muchez P (2014b) Zinc, sulfur and lead isotopic variations in carbonate-hosted Pb-Zn sulﬁde deposits, southwest China. *Ore Geology Reviews* 58, 41–54.

Zhu C, Liao S, Wang W, Zhang Y, Yang T, Fan H and Wen H (2018) Variations in Zn and S isotope chemistry of sedimentary sphalerite. Wuashe Zn-Pb deposit, Sichuan Province, China. *Ore Geology Reviews* 95, 639–48.

Zhu C, Wen H, Zhang Y and Fan H (2016) Cadmium and sulfur isotopic compositions of the Tianbaoshan Zn-Pb-Cu deposit, Sichuan Province, China. *Ore Geology Reviews* 76, 152–62.

Zhu CW, Wen H, Zhang Y-X, Fan H-F, Fe S-H, Xu J and Qin T-R (2013) Characteristics of Cd isotopic compositions and their genetic significance in the lead-zinc deposits of SW China. *Science China–Earth Sciences* 56, 2058–65.

Zhu C, Wen H, Zhang Y, Huang Z, Cloquet C, Luais B, and Yang T (2021) Cadmium isotopic constraints on metal sources in the Huize Zn–Pb deposit, SW China. *Geoscience Frontiers* 12, 101241. doi: 10.1016/j.gsf.2021.101241.