Local topology of a deformation of a function-germ with a one-dimensional critical set *

Hellen Santana

Abstract

The Brasselet number of a function f with nonisolated singularities describes numerically the topological information of its generalized Milnor fibre. In this work, we consider two function-germs $f, g : (X, 0) \rightarrow (\mathbb{C}, 0)$ such that f has isolated singularity at the origin and g has a stratified one-dimensional critical set. We use the Brasselet number to study the local topology a deformation \tilde{g} of g defined by $\tilde{g} = g + f^N$, where $N \gg 1$ and $N \in \mathbb{N}$. As an application of this study, we present a new proof of the Lê-Iomdin formula for the Brasselet number.

Introduction

The Milnor number, defined in [16], is a very useful invariant associated to a complex function f with isolated singularity defined over an open neighborhood of the origin in \mathbb{C}^N. It gives numerical information about the local topology of the hypersurface $V(f)$ and compute the Euler characteristic of the Milnor fibre of f at the origin.

In the case where the function-germ has nonisolated singularity at the origin, the Milnor number is not well defined, but the Milnor fibre is, what led many authors ([8],[9],[3],[6],[14]) to study an extension for this number in more general settings. For example, if we consider a function with a one-dimensional critical set defined over an open subset of \mathbb{C}^n and a generic linear form l over \mathbb{C}^n, Iomdin gave an algebraic proof (Theorem 3.2), in [8], of a relation between the Euler characteristic of the Milnor fibre of f and the Euler characteristic of the Milnor fibre of $f + l^N$, $N \gg 1$ and $N \in \mathbb{N}$, using properties of algebraic sets with one-dimensional critical locus. In [9], Lê proved (Theorem 2.2.2) this same relation in a more geometric approach and with a way to obtain the Milnor fibre of f by attaching a certain number of n-cells to the Milnor fibre of $f|_{\{l=0\}}$.

In [14], Massey worked with a function f with critical locus of higher dimension defined over a nonsingular space and defined the Lê numbers and cycles, which provides a way to numerically describe the Milnor fibre of this function with nonisolated singularity. Massey compared (Theorem II.4.5), using appropriate coordinates, the Lê numbers of f and $f + l^N$, where l is a generic linear form over \mathbb{C}^n and $N \in \mathbb{N}$ is sufficiently large, obtaining a Lê-Iomdin type relation between these numbers. He also gave (Theorem II.3.3) a handle decomposition of the Milnor fibre of f, where the number of attached cells is a certain Lê

*Research partially supported by FAPESP - Brazil, Grant 2015/25191-9 and 2017/18543-1.

Key-words: Brasselet number, Euler obstruction, Milnor fibre, Lê-Iomdin formulas
number. Massey extended the concept of Lé numbers to the case of functions with nonisolated singularities defined over complex analytic spaces, introducing the Lé-Vogel cycles, and proved the Lé-Iomdin-Vogel formulas: the generalization of the Lé-Iomdin formulas in this more general sense.

The Brasselet number, defined by Dutertre and Grulha in [6], also describes the local topological behavior of a function with nonisolated singularities defined over an arbitrarily singular analytic space: if \(f : (X, 0) \to (\mathbb{C}, 0) \) is a function-germ and \(V = \{0\}, V_1, \ldots, V_q \) is a good stratification of \(X \) relative to \(f \) (see Definition 3), the Brasselet number \(B_{f,X}(0) \) is defined by

\[
B_{f,X}(0) = \sum_{i=1}^{q} \chi(V_i \cap f^{-1}(\delta) \cap B_\epsilon) Eu_X(V_i).
\]

In [6], the authors proved several formulas about the local topology of the generalized Milnor fibre of a function germ \(f \) using the Brasselet number, like the Lé-Greuel type formula (Theorem 4.2 in [6]):

\[
B_{f,X}(0) - B_{f,X^g}(0) = (-1)^{\dim_c n},
\]

where \(n \) is the number of stratified Morse critical points of a Morseification of \(g|_{X \cap f^{-1}(\delta) \cap B_\epsilon} \) on \(V_q \cap f^{-1}(\delta) \cap B_\epsilon \). In [5], Dalbelo e Pereira provided formulas to compute the Brasselet number of a function defined over a toric variety and in [1], Ament, Nuño-Ballesteros, Oréficé-Okamoto and Tomazella computed the Brasselet number of a function-germ with isolated singularity at the origin and defined over an isolated determinantal variety (IDS) and the Brasselet number of finite functions defined over a reduced curve. More recently, in [4], Dalbelo and Hartmann calculated the Brasselet number of a function-germ defined over a toric variety using combinatorical properties of the Newton polygons. In the global study of the topology of a function germ, Dutertre and Grulha defined, in [7], the global Brasselet numbers and the Brasselet numbers at infinity of \(V \) and \(g \). We consider analytic function-germs \(f, g : (X, 0) \to (\mathbb{C}, 0) \), a Whitney stratification \(\mathcal{W} \) of \(X \), suppose that \(f \) has isolated singularity at the origin and \(g \) has a one-dimensional stratified critical set. Consider the good stratification of \(X \) induced by \(f \), \(\mathcal{V} = \{W_\lambda \setminus X^f, W_\lambda \cap X^f \setminus \{0\}, \{0\}, \{0\} \in \mathcal{W} \} \) and suppose that \(g \) is tractable at the origin with respect to \(\mathcal{V} \) (see Definition 2.5). Let \(\epsilon \) be sufficiently small such that the local Euler obstruction of \(X^g \) is constant on \(b_j \cap B_\epsilon \). In this case, we denote by \(Eu_{X^g}(b_j) \) the local Euler obstruction of \(X \) at a point of \(b_j \cap B_\epsilon \) and by \(B_{g,X \cap f^{-1}(\delta)}(b_j) \) the Brasselet number of \(g|_{X \cap f^{-1}(\delta)} \) at a point of \(b_j \cap B_\epsilon \). For a deformation of \(g, \tilde{g} = g + f^N, N \gg 1 \), we prove (Proposition 3.5)

\[
B_{g,X^f}(0) = B_{g,X^f}(0) = B_{f,X^g}(0).
\]

and for \(0 < |\delta| \ll \epsilon \ll 1 \) (Proposition 3.9),

\[
B_{f,X^g}(0) - B_{f,X^g}(0) = \sum_{j=1}^{r} m_{f,b_j}(Eu_{X^g}(b_j) - B_{g,X \cap f^{-1}(\delta)}(b_j)).
\]

As an application of these results, we compare the Brasselet numbers \(B_{g,X}(0) \) and \(B_{\tilde{g},X}(0) \), and we obtain (Theorem 4.4) a topological proof of the Lé-Iomdin formula for the Brasselet
number,
\[B_{\check{g},X}(0) = B_{g,X}(0) + N \sum_{j=1}^{r} m_{f,b_j} E_{u_{f,X} \cap \check{g}^{-1}(\alpha')} (b_j), \]

where \(0 \ll |\alpha'| \ll 1 \) is a regular value of \(\check{g} \). This formula generalizes the Lê-Imdonin formula for the Euler characteristic of the Milnor fibre in the case of a function with isolated singularity. We note that an algebraic proof can be obtained using the description (see [3]) of the defect of a function-germ \(f \) in terms of the Euler characteristic of vanishing cycles and the Lê-Vogel numbers associated to \(f \).

In [20], Tibăr provided a bouquet decomposition for the Milnor fibre of \(\check{g} \) and related it with the Milnor fibre of \(g \). As a consequence of this strong result, Tibăr gave a Lê-Imdonin formula to compare the Euler characteristics of these Milnor fibres. In the last section of this work, we apply our results to give an alternative proof for this Lê-Imdonin formula (see Proposition 5.1):

\[\chi(X \cap \check{g}^{-1}(\alpha') \cap B_\varepsilon) = \chi(X \cap g^{-1}(\alpha) \cap B_\varepsilon) + N \sum_{j=1}^{r} m_{b_j} (1 - \chi(F_j)), \]

where \(F_j = X \cap g^{-1}(\alpha) \cap H_j \cap D_{2\varepsilon} \) is the local Milnor fibre of \(g|_{\{t=\delta\}} \) at a point of the branch \(b_j \) and \(H_j \) denotes the generic hyperplane \(t^{-1}(\delta) \) passing through \(x_t \in b_j \) for \(t \in \{i_1, \ldots, i_{k(j)}\} \).

\section{Local Euler obstruction and Euler obstruction of a function}

In this section, we will see the definition of the local Euler obstruction, a singular invariant defined by MacPherson and used as one of the main tools in his proof of the Deligne-Grothendieck conjecture about the existence and uniqueness of Chern classes for singular varieties.

Let \((X, 0) \subset (\mathbb{C}^n, 0) \) be an equidimensional reduced complex analytic germ of dimension \(d \) in a open set \(U \subset \mathbb{C}^n \). Consider a complex analytic Whitney stratification \(\mathcal{V} = \{V_\lambda\} \) of \(U \) adapted to \(X \) such that \(\{0\} \) is a stratum. We choose a small representative of \((X, 0) \), denoted by \(X \), such that \(0 \) belongs to the closure of all strata. We write \(X = \bigcup_{i=0}^{q} V_i \), where \(V_0 = \{0\} \) and \(V_q = X_{reg} \), where \(X_{reg} \) is the regular part of \(X \). We suppose that \(V_0, V_1, \ldots, V_{q-1} \) are connected and that the analytic sets \(\overline{V}_0, \overline{V}_1, \ldots, \overline{V}_q \) are reduced. We write \(d_i = \text{dim}(V_i), i \in \{1, \ldots, q\} \). Note that \(d_q = d \). Let \(G(d, N) \) be the Grassmannian manifold, \(x \in X_{reg} \) and consider the Gauss map \(\phi : X_{reg} \to U \times G(d, N) \) given by \(x \mapsto (x, T_x(X_{reg})) \).

\textbf{Definition 1.1.} The closure of the image of the Gauss map \(\phi \) in \(U \times G(d, N) \), denoted by \(\check{X} \), is called \textbf{Nash modification} of \(X \). It is a complex analytic space endowed with an analytic projection map \(\nu : \check{X} \to X \).

Consider the extension of the tautological bundle \(\mathcal{T} \) over \(U \times G(d, N) \). Since \(\check{X} \subset U \times G(d, N) \), we consider \(\check{T} \) the restriction of \(\mathcal{T} \) to \(\check{X} \), called the \textbf{Nash bundle}, and \(\pi : \check{T} \to \check{X} \) the projection of this bundle.
In this context, denoting by \(\varphi \) the natural projection of \(U \times G(d, N) \) at \(U \), we have the following diagram:

\[
\begin{array}{ccc}
\tilde{T} & \xrightarrow{\pi} & \mathcal{T} \\
\downarrow & & \downarrow \\
\tilde{X} & \xrightarrow{\nu} & U \times G(d, N) \\
\downarrow & & \downarrow \\
X & \xrightarrow{\varphi} & U \subseteq \mathbb{C}^N
\end{array}
\]

Considering \(||z|| = \sqrt{z_1\overline{z_1} + \cdots + z_N\overline{z_N}} \), the 1-differential form \(w = d||z||^2 \) over \(\mathbb{C}^N \) defines a section in \(T^*\mathbb{C}^N \) and its pullback \(\varphi^*w \) is a 1-form over \(U \times G(d, N) \). Denote by \(\tilde{w} \) the restriction of \(\varphi^*w \) over \(\tilde{X} \), which is a section of the dual bundle \(\tilde{T}^* \).

Choose \(\epsilon \) small enough for \(\tilde{w} \) be a nonzero section over \(\nu^{-1}(z), 0 < ||z|| \leq \epsilon \), let \(B_\epsilon \) be the closed ball with center at the origin with radius \(\epsilon \) and denote by \(\text{Obs}(\tilde{T}^*, \tilde{w}) \in \mathbb{H}^{2d}(\nu^{-1}(B_\epsilon), \nu^{-1}(S_\epsilon), \mathbb{Z}) \) the obstruction for extending \(\tilde{w} \) from \(\nu^{-1}(S_\epsilon) \) to \(\nu^{-1}(B_\epsilon) \) and \(O_{\nu^{-1}(B_\epsilon), \nu^{-1}(S_\epsilon)} \) the fundamental class in \(\mathbb{H}^{2d}(\nu^{-1}(B_\epsilon), \nu^{-1}(S_\epsilon), \mathbb{Z}) \).

Definition 1.2. The **local Euler obstruction** of \(X \) at 0, \(Eu_X(0) \), is given by the evaluation

\[
Eu_X(0) = \langle \text{Obs}(\tilde{T}^*, \tilde{w}), O_{\nu^{-1}(B_\epsilon), \nu^{-1}(S_\epsilon)} \rangle.
\]

In [2], Brasselet, Lê and Seade proved a formula to make the calculation of the Euler obstruction easier.

Theorem 1.3. (Theorem 3.1 of [2]) Let \((X, 0) \) and \(\mathcal{V} \) be given as before, then for each generic linear form \(l \), there exists \(\epsilon_0 \) such that for any \(\epsilon \) with \(0 < \epsilon < \epsilon_0 \) and \(\delta \neq 0 \) sufficiently small, the Euler obstruction of \((X, 0) \) is equal to

\[
Eu_X(0) = \sum_{i=1}^{q} \chi(V_i \cap B_\epsilon \cap l^{-1}(\delta)).Eu_X(V_i),
\]

where \(\chi \) is the Euler characteristic, \(Eu_X(V_i) \) is the Euler obstruction of \(X \) at a point of \(V_i, i = 1, \ldots, q \) and \(0 < |\delta| \ll \epsilon \ll 1 \).

Let us give the definition of another invariant introduced by Brasselet, Massey, Parameswaran and Seade in [3]. Let \(f : X \rightarrow \mathbb{C} \) be a holomorphic function with isolated singularity at the origin given by the restriction of a holomorphic function \(F : U \rightarrow \mathbb{C} \) and denote by \(\nabla F(x) \) the conjugate of the gradient vector field of \(F \) in \(x \in U \),

\[
\nabla F(x) := \left(\frac{\partial F}{\partial x_1}, \ldots, \frac{\partial F}{\partial x_n} \right).
\]

Since \(f \) has an isolated singularity at the origin, for all \(x \in X \setminus \{0\} \), the projection \(\hat{\zeta}_i(x) \) of \(\nabla F(x) \) over \(T_x(V_i(x)) \) is nonzero, where \(V_i(x) \) is a stratum containing \(x \). Using this projection, the authors constructed, in [3], a stratified vector field over \(\tilde{X} \), denoted by \(\nabla f(x) \). Let \(\zeta \) be the lifting of \(\nabla f(x) \) as a section of the Nash bundle \(\tilde{T} \) over \(\tilde{X} \), without singularity over \(\nu^{-1}(X \cap S_\epsilon) \). Let \(\mathcal{O}(\zeta) \in \mathbb{H}^{2n}(\nu^{-1}(X \cap B_\epsilon), \nu^{-1}(X \cap S_\epsilon)) \) be the obstruction cocycle for extending \(\zeta \) as a nonzero section of \(\tilde{T} \) inside \(\nu^{-1}(X \cap B_\epsilon) \).
Definition 1.4. The local Euler obstruction of the function f, $Eu_{f,X}(0)$ is the evaluation of $O(\tilde{\zeta})$ on the fundamental class $[\nu^{-1}(X \cap B_{\epsilon}), \nu^{-1}(X \cap S_{\epsilon})]$.

The next theorem compares the Euler obstruction of a space X with the Euler obstruction of function defined over X.

Theorem 1.5. (Theorem 3.1 of [3]) Let $(X, 0)$ and V be given as before and let $f : (X, 0) \rightarrow (\mathbb{C}, 0)$ be a function with an isolated singularity at 0. For $0 < |\delta| \ll \epsilon \ll 1$, we have

$$Eu_{f,X}(0) = Eu_X(0) - \sum_{i=1}^{q} \chi(V_i \cap B_{\epsilon} \cap f^{-1}(\delta)).Eu_X(V_i).$$

Let us now see a definition we will need to define a generic point of a function-germ. Let $V = \{V_{\lambda}\}$ be a stratification of a reduced complex analytic space X.

Definition 1.6. Let p be a point in a stratum V_{β} of V. A degenerate tangent plane of V at p is an element T of some Grassmanian manifold such that $T = \lim_{p_i \rightarrow p} T_{p_i} V_{\alpha}$, where $p_i \in V_{\alpha}, V_{\alpha} \neq V_{\beta}$.

Definition 1.7. Let $(X, 0) \subset (U, 0)$ be a germ of complex analytic space in \mathbb{C}^n equipped with a Whitney stratification and let $f : (X, 0) \rightarrow (\mathbb{C}, 0)$ be an analytic function, given by the restriction of an analytic function $F : (U, 0) \rightarrow (\mathbb{C}, 0)$. Then 0 is said to be a generic point of f if the hyperplane $Ker(d_0 F)$ is transverse in \mathbb{C}^n to all degenerate tangent planes of the Whitney stratification at 0.

Now, let us see the definition of a Morsification of a function.

Definition 1.8. Let $W = \{W_0, W_1, \ldots, W_q\}$, with $0 \in W_0$, a Whitney stratification of the complex analytic space X. A function $f : (X, 0) \rightarrow (\mathbb{C}, 0)$ is said to be Morse stratified if $\dim W_0 \geq 1, f|_{W_0} : W_0 \rightarrow \mathbb{C}$ has a Morse point at 0 and 0 is a generic point of f with respect to W_i, for all $i \neq 0$.

A stratified Morsification of a germ of analytic function $f : (X, 0) \rightarrow (\mathbb{C}, 0)$ is a deformation \tilde{f} of f such that \tilde{f} is Morse stratified.

In [18], Seade, Tibăr and Verjovsky proved that the Euler obstruction of a function f is also related to the number of Morse critical points of a stratified Morsification of f.

Proposition 1.9. (Proposition 2.3 of [18]) Let $f : (X, 0) \rightarrow (\mathbb{C}, 0)$ be a germ of analytic function with isolated singularity at the origin. Then,

$$Eu_{f,X}(0) = (-1)^d n_{\text{reg}},$$

where n_{reg} is the number of Morse points in X_{reg} in a stratified Morsification of f.

2 Brasselet number

In this section, we present definitions and results needed in the development of the results of this work. The main reference for this section is [13].

Let X be a reduced complex analytic space (not necessarily equidimensional) of dimension d in an open set $U \subseteq \mathbb{C}^n$ and let $f : (X, 0) \rightarrow (\mathbb{C}, 0)$ be an analytic map. We write $V(f) = f^{-1}(0)$.

Definition 2.1. A good stratification of X relative to f is a stratification V of X which is adapted to $V(f)$ such that $\{V_\lambda \in V, V_\lambda \not\subseteq V(f)\}$ is a Whitney stratification of $X \setminus V(f)$ and such that for any pair (V_λ, V_γ) such that $V_\lambda \not\subseteq V(f)$ and $V_\gamma \subseteq V(f)$, the (a_f)-Thom condition is satisfied, that is, if $p \in V_\lambda$ and $p_i \in V_\lambda$ are such that $p_i \rightarrow p$ and $T_{p_i}V(f|_{V_\lambda} - f|_{V_\lambda}(p_i))$ converges to some $T_\nu V_\gamma \subseteq T_\nu$.

If $f : X \rightarrow \mathbb{C}$ has a stratified isolated critical point and V is a Whitney stratification of X, then

$$\{V_\lambda \setminus X^f, V_\lambda \cap X^f \setminus \{0\}, \{0\}, V_\lambda \in V\}$$

is a good stratification of X relative to f, called the good stratification induced by f.

Definition 2.2. The critical locus of f relative to V, $\Sigma_V f$, is given by the union

$$\Sigma_V f = \bigcup_{V_\lambda \in V} \Sigma(f|_{V_\lambda}).$$

Definition 2.3. If $V = \{V_\lambda\}$ is a stratification of X, the symmetric relative polar variety of f and g with respect to V, $\Gamma_{f,g}(V)$, is the union $\cup V_\lambda \tilde{\Gamma}_{f,g}(V_\lambda)$, where $\Gamma_{f,g}(V_\lambda)$ denotes the closure in X of the critical locus of $(f,g)|_{V_\lambda \setminus (X^f \cup X^g)}$. $X^f = X \setminus \{f = 0\}$ and $X^g = X \setminus \{g = 0\}$.

Definition 2.4. Let V be a good stratification of X relative to a function $f : (X, 0) \rightarrow (\mathbb{C}, 0)$. A function $g : (X, 0) \rightarrow (\mathbb{C}, 0)$ is prepolar with respect to V at the origin if the origin is a stratified isolated critical point, that is, 0 is an isolated point of $\Sigma_V g$.

Definition 2.5. A function $g : (X, 0) \rightarrow (\mathbb{C}, 0)$ is tractable at the origin with respect to a good stratification V of X relative to $f : (X, 0) \rightarrow (\mathbb{C}, 0)$ if $\dim_0 \tilde{\Gamma}_{f,g}(V) \leq 1$ and, for all strata $V_\alpha \subseteq X^f$, $g|_{V_\alpha}$ has no critical points in a neighbourhood of the origin except perhaps at the origin itself.

We present now the definition of the Brasselet number. Let $f : (X, 0) \rightarrow (\mathbb{C}, 0)$ be a complex analytic function germ and let V be a good stratification of X relative to f. We denote by V_1, \ldots, V_q the strata of V that are not contained in $\{f = 0\}$ and we assume that V_1, \ldots, V_{q-1} are connected and that $V_q = X_{\text{reg}} \setminus \{f = 0\}$. Note that V_q could be not connected.

Definition 2.6. Suppose that X is equidimensional. Let V be a good stratification of X relative to f. The Brasselet number of f at the origin, $B_{f,X}(0)$, is defined by

$$B_{f,X}(0) = \sum_{i=1}^q \chi(V_i \cap f^{-1}(\delta) \cap B_\epsilon) Eu_X(V_i),$$

where $0 < |\delta| \ll \epsilon \ll 1$.

Remark: If V_q^i is a connected component of V_q, $Eu_X(V_q^i) = 1$.

Notice that if f has a stratified isolated singularity at the origin, then $B_{f,X}(0) = Eu_X(0) - Eu_{f,X}(0)$ (see Theorem 1.5).
3 Local topology of a deformation of a function-germ with one-dimensional critical set

We begin this section with a discussion about the singular locus of the function \(\tilde{g} = g + f^N \) and a description of the appropriate stratification with which we can compute explicitly the Brasselet numbers we will use.

Let \(f, g : (X, 0) \to (\mathbb{C}, 0) \) be complex analytic function-germs such that \(f \) has isolated singularity at the origin. Let \(\mathcal{W} \) be the Whitney stratification of \(X \) and \(\mathcal{V} \) be the good stratification of \(X \) induced by \(f \). Suppose that \(\Sigma_\mathcal{W}g \) is one-dimensional and that \(\Sigma_\mathcal{W}g \cap \{ f = 0 \} = \{ 0 \} \).

By Lemma 3.1 in [17], if \(\mathcal{V}^f \) denote the set of strata of \(\mathcal{V} \) contained in \(\{ f = 0 \} \), \(\mathcal{V'} = \{ V_i \setminus \Sigma_\mathcal{W}g, V_i \cap \Sigma_\mathcal{W}g, V_i \in \mathcal{V} \} \cup \mathcal{V}^f \) is a good stratification of \(X \) relative to \(f \), such that \(\mathcal{V}_\mathcal{V}(g=0) \) is a good stratification of \(X^g \) relative to \(f \mid_{X^g} \), where

\[
\mathcal{V}_\mathcal{V}(g=0) = \left\{ V_i \cap \{ g = 0 \} \setminus \Sigma_\mathcal{W}g, V_i \cap \Sigma_\mathcal{W}g, V_i \in \mathcal{V} \right\} \cup \mathcal{V}^f \cap \{ g = 0 \},
\]

and \(\mathcal{V}^f \cap \{ g = 0 \} \) denotes the collection of strata of type \(V^f \cap \{ g = 0 \} \), with \(V^f \in \mathcal{V}^f \).

In this whole section, we will use this good stratification of \(X \) relative to \(f \). Suppose that \(g \) is tractable at the origin with respect to \(\mathcal{V} \) and let \(\tilde{g} : (X, 0) \to (\mathbb{C}, 0) \) be the function-germ given by \(\tilde{g}(x) = g(x) + f^N(x), N \gg 1 \).

Proposition 3.1. For a sufficiently large \(N \), \(\tilde{g} \) has a stratified isolated singularity at the origin with respect to the Whitney stratification \(\mathcal{W} \) of \(X \).

Proof. Let \(x \) be a critical point of \(\tilde{g} \), \(U_x \) be a neighborhood of \(x \) and \(G \) and \(F \) be analytic extensions of \(g \) and \(f \) to \(U_x \), respectively. If \(V(x) \) is a stratum of \(\mathcal{W} \) containing \(x \neq 0 \),

\[
d_x \tilde{g}|_{V(x)} = 0 \iff d_x G|_{V(x)} + N(F(x))^{N-1} d_x F|_{V(x)} = 0.
\]

If \(d_x G|_{V(x)} = 0 \), then \(N(F(x))^{N-1} d_x F|_{V(x)} = 0 \), hence \(x \in \{ F = 0 \} \). Then \(x \in \Sigma_\mathcal{W}g \cap \{ f = 0 \} = \{ 0 \} \). If \(d_x G|_{V(x)} \neq 0 \), we have \(G \neq 0 \). Since \(d_x \tilde{g}|_{V(x)} = 0 \), by Proposition 1.3 of [13], \(\tilde{G} = 0 \), which implies that \(F \neq 0 \). On the other hand, if \(d_x G|_{V(x)} \neq 0 \), \(d_x G|_{V(x)} = -N(F(x))^{N-1} d_x F|_{V(x)} \), and then \(x \in \tilde{G}_{f,g}(V(x)) \). Suppose that \(x \) is arbitrarily close to the origin. Since \(f \) has isolated singularity at the origin, we can define for the stratum \(V(x) \), the function \(\beta : (0, \epsilon) \to \mathbb{R}, 0 < \epsilon \ll 1 \),

\[
\beta(u) = \inf \left\{ \frac{||d_x g|_{V(x)}||}{||d_x f|_{V(x)}||} : z \in \tilde{G}_{f,g}(V(x)) \cap \{|f|_{V(x)}(z) = u, u \neq 0\} \right\},
\]

where \(||.|| \) denotes the operator norm, (defined, for each linear transformation \(T : V \to W \) between normed vector fields, by \(\sup_{v \in V, ||v||=1} ||T(v)|| \)). Notice that, for each stratum \(W_i \in \mathcal{W}, \tilde{G}_{f,g}(W_i) = \tilde{G}_{f,g}(W_i \setminus \{ f = 0 \}) \). Since \(g \) is tractable at the origin with respect to \(\mathcal{V}, \dim_0 \tilde{G}_{f,g}(V) \leq 1 \). Therefore, \(\dim_0 \tilde{G}_{f,g}(W_i) = \dim_0 \tilde{G}_{f,g}(W_i \setminus \{ f = 0 \}) \leq 1 \). Hence \(\tilde{G}_{f,g}(V(x)) \cap \{|f| = u, u \neq 0\} \) is a finite number of points and \(\beta \) is well defined.

Since the function \(\beta \) is subanalytic, \(\alpha(R) = \beta(1/R), \) for \(R \gg 1 \), is subanalytic. Then, by [10], there exists \(n_0 \in \mathbb{N} \) such that \(\frac{1}{\alpha(R)} < R^{n_0} \), which implies \(\beta(1/R) > (1/R)^{n_0} \), that is, \(\beta(u) > u^{n_0} \). Hence, for \(z \in \tilde{G}_{f,g}(V(x)) \cap \{|f| = u\}, u \ll 1 \), we have
\[\frac{|d_z g|_{V(x)}|}{|d_z f|_{V(x)}|} \geq \beta(u) > w^{n_0}, \text{ which implies, } |d_z g|_{V(x)}| > |f|_{V(x)}(z)|^{n_0}|d_z f|_{V(x)}|. \]

On the other hand, since \(N \) is sufficiently large, we can suppose \(N > n_0 \). Since \(\tilde{g}(z) = g(z) + f^N(z) \), we obtain using previous inequality that, for the critical point \(x \) of \(\tilde{g} \),

\[N|f|_{V(x)}(x)|^{N-1}|d_z f|_{V(x)}| = |d_z g|_{V(x)}| > |f|_{V(x)}(x)|^{n_0}|d_z f|_{V(x)}|, \]

which implies that \(N|f|_{V(x)}(x)|^{N-1-n_0} > 1 \). Since \(x \) was taken sufficiently close to the origin, \(f|_{V(x)}(x) \) is close to zero. Hence, \(|f|_{V(x)}(x)| \ll 1 \), which implies that \(N - 1 - n_0 < 0 \). Therefore, \(N \leq n_0 \), what is contradiction. So, there is no \(x \) sufficiently close to the origin such that \(d_x \tilde{g} = 0 \). Therefore, \(\tilde{g} \) has isolated singularity at the origin. \(\blacksquare \)

We will now see how \(\tilde{g} \) behaves with respect to the good stratification \(\mathcal{V} \) of \(X \) induced by \(f \).

Proposition 3.2. If \(g \) is tractable at the origin with respect to the good stratification \(\mathcal{V} \) of \(X \) induced by \(f \), then \(\tilde{g} \) is prepolar at the origin with respect to \(\mathcal{V} \).

Proof. By Proposition 3.1, \(\tilde{g} \) is prepolar at the origin with respect to \(\mathcal{V} \). So it is enough to verify that \(\tilde{g}|_{V_i \cap \{f = 0\}} \) is nonsingular or has isolated singularity at the origin, where \(V_i \) is a stratum from the Whitney stratification \(\mathcal{V} \) of \(X \). Suppose that \(x \in \Sigma \tilde{g}|_{V_i \cap \{f = 0\}} \). Then \(d_x \tilde{g} = d_x g + N f(x)^{N-1}d_x f = 0 \), which implies that \(d_x g = 0 \). But \(g \) has no critical point on \(V_i \cap \{f = 0\} \), since \(g \) is tractable at the origin with respect to \(\mathcal{V} \). Therefore, \(\tilde{g} \) is prepolar at the origin with respect to \(\mathcal{V} \). \(\blacksquare \)

Corollary 3.3. Let \(\tilde{\mathcal{V}} \) be the good stratification of \(X \) induced by \(\tilde{g} \). Then \(f \) is prepolar at the origin with respect to \(\tilde{\mathcal{V}} \).

Proof. Use Proposition 3.2 and Lemma 6.1 of [6]. \(\blacksquare \)

Using the previous results, we can relate the relative symmetric polar varieties \(\tilde{\Gamma}_{f, \tilde{g}}(\mathcal{V}) \) and \(\Gamma_{f, g}(\mathcal{V}) \).

Remark 3.4. Let us describe \(\tilde{\Gamma}_{f, \tilde{g}}(\mathcal{V}) \). Let \(\Sigma(\tilde{g}, f) = \{ x \in X; rk(d_x \tilde{g}, d_x f) \leq 1 \} \). Since \(f \) is prepolar at the origin with respect to the good stratification induced by \(\tilde{g}, f|_{W_i \cap \{\tilde{g} = 0\}} \) is nonsingular, for all \(W_i \in \mathcal{W}, i \neq 0 \). Also \(\tilde{g} \) is prepolar at the origin with respect to the good stratification induced by \(f \), which implies that \(\tilde{g}|_{W_i \cap \{f = 0\}} \) is nonsingular, for all \(W_i \in \mathcal{W}, i \neq 0 \). Nevertheless, since \(f \) and \(\tilde{g} \) have stratified isolated singularity at the origin, \(\Sigma_{\mathcal{W}} \tilde{g} \cup \Sigma \mathcal{W} f = \{0\} \). Therefore, the map \((f, g) \) has no singularities in \(\{g = 0\} \) or in \(\{f = 0\} \). Hence, \(\Sigma(\tilde{g}, f) = \tilde{\Gamma}_{f, \tilde{g}}(\mathcal{V}) \). So, it is sufficient to describe \(\Sigma(\tilde{g}, f) \). Let \(x \in \Sigma(\tilde{g}, f) \), then

\[rk(d_x \tilde{g}, d_x f) \leq 1 \iff (d_x \tilde{g} = 0) \text{ or } (d_x f = 0) \text{ or } (d_x \tilde{g} = \lambda d_x f) \]

\[\iff (d_x \tilde{g} = 0) \text{ or } (d_x f = 0) \text{ or } (d_x g = (-N f(x)^{N-1} + \lambda)d_x f) \]

Since \(x \notin \{f = 0\}, d_x f \neq 0 \). And since \(\tilde{g} \) has isolated singularity at the origin, \(d_x \tilde{g} \neq 0 \). If \(-N f(x)^{N-1} + \lambda = 0 \), then \(d_x g = 0 \), that is, \(x \in \Sigma_{\mathcal{W}} g \). If \(-N f(x)^{N-1} + \lambda \neq 0 \), then \(d_x g \) is a nonzero multiple of \(d_x f \), that is, \(x \in \tilde{\Gamma}_{f, \tilde{g}}(\mathcal{V}) \). Therefore,

\[\Sigma(\tilde{g}, f) \subseteq \Sigma_{\mathcal{W}} g \cup \tilde{\Gamma}_{f, \tilde{g}}(\mathcal{V}). \]

On the other hand, if \(x \in \Sigma_{\mathcal{W}} g \), then \(d_x g = 0 \), and

\[d_x \tilde{g} = d_x g + N f(x)^{N-1}d_x f = N f(x)^{N-1}d_x f. \]
So, \(x \in \Sigma(\tilde{g}, f) \). If \(x \in \tilde{\Gamma}_{f,g}(\mathcal{V}) \), \(d_x g = \lambda d_x f \), and
\[
d_x \tilde{g} = d_x g + N f(x)^{N-1} d_x f = (\lambda + N) f(x)^{N-1} d_x f,
\]
which implies \(x \in \Sigma(\tilde{g}, f) \). Therefore, \(\tilde{\Gamma}_{f,\tilde{g}}(\mathcal{V}) = \Sigma(\tilde{g}, f) = \Sigma_W g \cup \tilde{\Gamma}_{f,\tilde{g}}(\mathcal{V}) \).

Proposition 3.5. Suppose that \(g \) is tractable at the origin with respect to the good stratification \(\mathcal{V} \) of \(X \) induced by \(f \). Then, for \(N \gg 1 \),
\[
B_{g,X}(0) = B_{\tilde{g},X}(0) = B_{f,X}(0).
\]

Proof. Since \(\tilde{g} = g + f^N \), over \(\{ f = 0 \} \), \(\tilde{g} = g \). Therefore, \(B_{g,X}(0) = B_{\tilde{g},X}(0) \). On the other hand, by Corollary 3.6, \(f \) is prepolar at the origin with respect to the good stratification \(\mathcal{V} \) of \(X \) induced by \(\tilde{g} \) and so is \(\tilde{g} \) with respect to \(\mathcal{V} \), by Proposition 3.2. Hence, by Corollary 6.3 of [6], \(B_{f,X}(0) = B_{\tilde{g},X}(0) \).

Corollary 3.6. Let \(l \) be a generic linear form in \(\mathbb{C}^n \) and denote \(l^{-1}(0) \) by \(H \). Then
\[
B_{g,X \cap H}(0) = B_{\tilde{g},X \cap H}(0) = Eu_{X'}(0).
\]

Proof. By [17], \(g \) is tractable at the origin with respect to the good stratification \(\mathcal{V} \) of \(X \) induced by \(l \). Hence, the formula follows directly by Proposition 3.2 using the equality \(B_{g,X'}(0) = B_{\tilde{g},X'}(0) \), and Corollary 6.6 of [6].

Corollary 3.7. Let \(N \in \mathbb{N} \) be a sufficiently large number.

1. If \(d \) is even, \(Eu_{X'}(0) \geq Eu_{X}(0) \);
2. If \(d \) is odd, \(Eu_{X'}(0) \leq Eu_{X}(0) \).

Proof. Use Corollary 4.11 of [17] and Corollary 3.6.

In order to compare the Brasselet numbers \(B_{f,X'}(0) \) and \(B_{f,X}(0) \) we need to understand the stratified critical set of \(g \). We use the description presented in [17]. Consider a decomposition of \(\Sigma_W g \) into branches \(b_j \),
\[
\Sigma_W g = \bigcup_{\alpha=1}^{q} \Sigma g|_{W_\alpha} \cup \{ 0 \} = b_1 \cup \ldots \cup b_r,
\]
where \(b_j \subseteq W_\alpha \), for some \(\alpha \in \{ 1, \ldots, q \} \). Notice that a stratum \(W_\alpha \) can contain no branch and that a stratum \(V_j \) can contain more than one branch, but a branch can not be contained in two different strata. Let \(\delta \) be a regular value of \(f \), \(0 < |\delta| \ll 1 \), and let us write, for each \(j \in \{ 1, \ldots, r \} \), \(f^{-1}(\delta) \cap b_j = \{ x_{i_1}, \ldots, x_{i_{k(j)}} \} \). So, in this case, the local degree \(m_{f,b_j} \) of \(f|_{b_j} \) is \(k(j) \). Let \(\epsilon \) be sufficiently small such that the local Euler obstruction of \(X \) and of \(X^g \) are constant on \(b_j \cap B_\epsilon \). Denote by \(Eu_{X}(b_j) \) (respectively, \(Eu_{X'}(b_j) \)) the local Euler obstruction of \(X \) (respectively, \(X^g \)) at a point of \(b_j \cap B_\epsilon \).

Remark 3.8. If \(\epsilon \) is sufficiently small and \(x_l \in b_j \), \(l \in \{ i_1, \ldots, i_{k(j)} \} \), \(B_{g,X \cap f^{-1}(\delta)}(x_l) \) is constant on \(b_j \cap B_\epsilon \) (see Remark 4.5 of [17]). Then we denote \(B_{g,X \cap f^{-1}(\delta)}(x_l) \) by \(B_{g,X \cap f^{-1}(\delta)}(b_j) \).
Since \(B_{g,X \cap f^{-1}(\delta)}(x_l) = Eu_{X \cap f^{-1}(\delta)}(x_l) - Eu_{g,X \cap f^{-1}(\delta)}(x_l) \), we also denote \(Eu_{g,X \cap f^{-1}(\delta)}(x_l) \) by \(Eu_{g,X \cap f^{-1}(\delta)}(b_j) \).
Proposition 3.9. Suppose that g is tractable at the origin with respect to the good stratification \mathcal{V} of X relative to f. Then, for $0 < |\delta| \ll \epsilon \ll 1$,

$$B_{f,X\delta}(0) - B_{f,X\delta}(0) = \sum_{j=1}^{r} m_{f,b_j}(Eu_{X\delta}(b_j) - B_{g,X\cap f^{-1}(\delta)}(b_j)).$$

Proof. Use Corollary 4.8 of [17] and Proposition 3.5. \hfill \square

Corollary 3.10. For $0 < |\delta| \ll \epsilon \ll 1$,

$$Eu_{X\delta}(0) - Eu_{X\delta}(0) = \sum_{j=1}^{r} m_{b_j}(Eu_{X\delta}(b_j) - B_{g,X\cap f^{-1}(\delta)}(b_j)).$$ (2)

Proof. By [17], g is tractable at the origin with respect to the good stratification \mathcal{V} of X induced by a generic linear form l. Hence, the formula follows directly from Proposition 3.9 using that $B_{l,X\delta}(0) = Eu_{X\delta}(0)$ and that $B_{l,X\delta}(0) = Eu_{X\delta}(0)$. \hfill \square

Remark 3.11. Since l is a generic linear form over \mathbb{C}^n, $l^{-1}(\delta)$ intersects $X \cap \{g = 0\}$ transversely and using Corollary 6.6 of [6], we have $Eu_{X\delta}(b_j) = Eu_{X\cap l^{-1}(\delta)}(b_j \cap l^{-1}(\delta)) = B_{g,X\cap l^{-1}(\delta)\cap l}(b_j \cap l^{-1}(\delta))$, where L is a generic hyperplane in \mathbb{C}^n passing through $x_l \in b_j \cap l^{-1}(\delta), j \in \{1, \ldots, r\}$ and $l \in \{i_1, \ldots, i_{k(j)}\}$. Denoting $B_{g,X\cap l^{-1}(\delta)\cap l}(b_j \cap l^{-1}(\delta))$ by $B_{g,X\cap l^{-1}(\delta)}(b_j)$, the formula obtained in Corollary 3.10 can be written as

$$Eu_{X\delta}(0) - Eu_{X\delta}(0) = \sum_{j=1}^{r} m_{b_j}(B_{g,X\cap l^{-1}(\delta)}(b_j) - B_{g,X\cap l^{-1}(\delta)}(b_j)).$$

Let m be the number of stratified Morse points of a partial Morseification of $g|_{X\cap f^{-1}(\delta)\cap B\epsilon}$ appearing on $X_{reg} \cap f^{-1}(\delta) \cap \{g \neq 0\} \cap B\epsilon$ and m be the number of stratified Morse points of a Morseification of $g|_{X\cap f^{-1}(\delta)\cap B\epsilon}$ appearing on $X_{reg} \cap f^{-1}(\delta) \cap \{g \neq 0\} \cap B\epsilon$. The next lemma shows how to compare m and \tilde{m}. In the following we keep the same description of $\Sigma_{\mathcal{W}g}$.

Corollary 3.12. Suppose that g is tractable at the origin with respect to the good stratification \mathcal{V} of X relative to f. Then

$$\tilde{m} = (-1)^{d-1} \sum_{j=1}^{r} m_{f,b_j} Eu_{g,X\cap f^{-1}(\delta)}(b_j) + m.$$

Proof. By Theorem 3.2 of [17],

$$B_{f,X}(0) - B_{f,X\delta}(0) - \sum_{j=1}^{r} m_{f,b_j}(Eu_{X}(b_j) - Eu_{X\delta}(b_j)) = (-1)^{d-1} m,$$

and by Proposition 3.2 \tilde{g} is prepolar at the origin with respect to \mathcal{V}, by Theorem 4.4 of [6],

$$B_{f,X}(0) - B_{f,X\delta}(0) = (-1)^{d-1} \tilde{m}.$$

Using Proposition 3.9 we obtain that

$$\tilde{m} = m + (-1)^{d-1} \sum_{j=1}^{r} m_{f,b_j} (Eu_{X}(b_j) - B_{g,X\cap f^{-1}(\delta)}(b_j)).$$

Since f has isolated singularity at the origin, $f^{-1}(\delta)$ intersects each stratum out of $\{f = 0\}$ transversely. So, $Eu_{X}(V_i) = Eu_{X\cap f^{-1}(\delta)}(S)$, for each connected component of $V_i \cap f^{-1}(\delta)$. In particular, $Eu_{X}(b_j) = Eu_{X\cap f^{-1}(\delta)}(b_j)$. The formula holds by Theorem 1.5

$$Eu_{X}(b_j) - B_{g,X\cap f^{-1}(\delta)}(b_j) = Eu_{g,X\cap f^{-1}(\delta)}(b_j).$$ \hfill \square
\textbf{Proposition 3.13.} Let $\tilde{\alpha}$ be a regular value of \tilde{g} and α_t a regular value of f, $0 \ll |\tilde{\alpha}| \ll |\alpha_t| \ll 1$. If g is tractable at the origin with respect to \mathcal{V} relative to f, then $B_{g,X \cap f^{-1}(\alpha_t)}(b_j) = B_{f,X \cap \tilde{g}^{-1}(\tilde{\alpha})}(b_j)$.

\textbf{Proof.} Let $x_t \in \{f = \alpha_t\} \cap b_j$, D_{x_t} be the closed ball with center at x_t and radius r_t, $0 < |\alpha - \delta| \ll |\alpha_t| \ll r_t \ll 1$. We have

\[
B_{g,X \cap f^{-1}(\alpha_t)}(x_t) = \sum \chi(W_i \cap f^{-1}(\alpha_t) \cap g^{-1}(\alpha - \delta) \cap D_{x_t})E u_{X \cap f^{-1}(\alpha_t)}(W_i \cap f^{-1}(\alpha_t))
\]

\[
= \sum \chi(W_i \cap f^{-1}(\alpha_t) \cap \tilde{g}^{-1}(\tilde{\alpha}) \cap D_{x_t})E u_{X \cap \tilde{g}^{-1}(\tilde{\alpha})}(W_i \cap \tilde{g}^{-1}(\tilde{\alpha}))
\]

Let $g(x_t) = \alpha$, $\tilde{g}(x_t) = \alpha'$ and $f(x_t) = \alpha_t$. Then

\[
p \in f^{-1}(\alpha_t) \cap g^{-1}(\alpha - \delta) \iff g(p) = \alpha - \delta \text{ and } f(p) = \alpha_t
\]

\[
\iff g(p) = g(x_t) - \delta \text{ and } f(p) = \alpha_t
\]

\[
\iff g(p) + \alpha_t^N = \alpha + \alpha_t^N - \delta \text{ and } f(p) = \alpha_t
\]

\[
\iff g(p) + f^N(p) = g(x_t) + f^N(x_t) - \delta \text{ and } f(p) = \alpha_t
\]

\[
\iff \tilde{g}(p) = \tilde{g}(x_t) - \delta \text{ and } f(p) = \alpha_t
\]

\[
\iff \tilde{g}(p) = \alpha' - \delta \text{ and } f(p) = \alpha_t.
\]

Therefore, denoting $\tilde{\alpha} = \alpha' - \delta$,

\[
B_{g,X \cap f^{-1}(\alpha_t)}(x_t) = \sum \chi(W_i \cap f^{-1}(\alpha_t) \cap g^{-1}(\alpha - \delta) \cap D_{x_t})E u_X(W_i)
\]

\[
= \sum \chi(W_i \cap f^{-1}(\alpha_t) \cap \tilde{g}^{-1}(\tilde{\alpha}) \cap D_{x_t})E u_{X \cap \tilde{g}^{-1}(\tilde{\alpha})}(W_i \cap \tilde{g}^{-1}(\tilde{\alpha}))
\]

\[
= B_{f,X \cap \tilde{g}^{-1}(\tilde{\alpha})}(x_t).
\]

An immediate consequence of the last proposition is the following.

\textbf{Corollary 3.14.} Let $\tilde{\alpha}$ be a regular value of \tilde{g} and α_t, a regular value of f, $0 \ll |\tilde{\alpha}| \ll |\alpha_t| \ll 1$. If g is tractable at the origin with respect to \mathcal{V}, then $E u_{g,X \cap f^{-1}(\alpha_t)}(b_j) = E u_{f,X \cap \tilde{g}^{-1}(\tilde{\alpha})}(b_j)$.

\textbf{Proof.} Let $x_t \in \{f = \alpha_t\} \cap b_j$, D_{x_t} be the closed ball with center at x_t and radius r_t, $0 < |\alpha' - \delta| \ll |\alpha_t| \ll r_t \ll 1$. The equality holds by Proposition 3.13.

\section{Lê-Iomdin formula for the Brasselet number}

Let $f, g : (X, 0) \to (\mathbb{C}, 0)$ be complex analytic function-germs such that f has isolated singularity at the origin. Let \mathcal{W} be the Whitney stratification of X and \mathcal{V} be the good stratification of X induced by f. Suppose that $\Sigma_{\mathcal{W}g}$ is one-dimensional and that $\Sigma_{\mathcal{W}g} \cap \{f = 0\} = \{0\}$.

Suppose that g is tractable at the origin with respect to \mathcal{V}. By [17],

\[
\mathcal{V'} = \left\{V_i \setminus \Sigma_{\mathcal{W}g}, V_i \cap \Sigma_{\mathcal{W}g}, V_i \in \mathcal{V} \right\} \cup \mathcal{V}^f (3)
\]

is a good stratification of X relative to f, where \mathcal{V}^f denotes the collection of strata of \mathcal{V} contained in $\{f = 0\}$ and

\[
\mathcal{V''} = \left\{V_i \setminus \{g = 0\}, V_i \cap \{g = 0\} \setminus \Sigma_{\mathcal{W}g}, V_i \cap \Sigma_{\mathcal{W}g}, V_i \in \mathcal{V} \right\} \cup \{0\},
\]
is a good stratification of X relative to g. Let us denote by $\tilde{\mathcal{V}}$ the good stratification of X induced by $\tilde{g} = g + f^N, N \gg 1$.

Let α be a regular value of g, α' a regular value of \tilde{g}, $0 < |\alpha|, |\alpha'| \ll \epsilon \ll 1$, n be the number of stratified Morse points of a Morseification of $f|_{X \cap g^{-1}(\alpha) \cap B_\epsilon}$ appearing on $X_{\text{reg}} \cap g^{-1}(\alpha) \cap \{ f \neq 0 \} \cap B_\epsilon$, and \tilde{n} be the number of stratified Morse points of a Morseification of $f|_{X \cap g^{-1}(\alpha') \cap B_\epsilon}$ appearing on $X_{\text{reg}} \cap g^{-1}(\alpha') \cap \{ f \neq 0 \} \cap B_\epsilon$.

Proposition 4.1. Suppose that g is tractable at the origin with respect to \mathcal{V}. Then,

$$B_{g,X}(0) - B_{\tilde{g},X}(0) = (-1)^{d-1}(n - \tilde{n}).$$

Proof. By [17],

$$B_{g,X}(0) - B_{f,X}(0) = (-1)^{d-1}(n - m) - \sum_{j=1}^r m_{f,b_j}(E u_{X}(b_j) - B_{g,X\cap\{f=0\}}(b_j)),$$

where m is the number of stratified Morse points of a Morseification of $g|_{X \cap f^{-1}(\delta) \cap B_\epsilon}$ appearing on $X_{\text{reg}} \cap f^{-1}(\delta) \cap \{ g \neq 0 \} \cap B_\epsilon$, for $0 < |\delta| \ll \epsilon \ll 1$.

By Lemma 3.2, \tilde{g} is prepolar at the origin with respect to \mathcal{V}. So, by Corollary 6.5 of [6],

$$B_{\tilde{g},X}(0) - B_{f,X}(0) = (-1)^{d-1}(\tilde{n} - \tilde{m}),$$

where \tilde{m} is the number of stratified Morse points of a Morseification of $\tilde{g}|_{X \cap f^{-1}(\delta) \cap B_\epsilon}$ appearing on $X_{\text{reg}} \cap f^{-1}(\delta) \cap \{ \tilde{g} \neq 0 \} \cap B_\epsilon$.

Using Corollary 3.12 and Theorem 1.5 we have the formula. \blacksquare

Lemma 4.2. Suppose that g is tractable at the origin with respect to \mathcal{V} relative to f. If $N \gg 1$ is bigger than the maximum gap ratio of all components of the symmetric relative polar curve $\tilde{\Gamma}_{f,g}(\mathcal{V})$ such that Proposition 3.7 is satisfied, then

$$\left([\tilde{\Gamma}_{f,g}(\mathcal{V})], [V(g)] \right)_0 = \left([\tilde{\Gamma}_{f,g}(\mathcal{V})], [V(\tilde{g})] \right)_0.$$

Proof. Since g is tractable at the origin with respect to \mathcal{V}, $\tilde{\Gamma}_{f,g}(\mathcal{V})$ is a curve. Let us write $[\tilde{\Gamma}_{f,g}(\mathcal{V})] = \sum_v m_v[v]$, where each component v of $\tilde{\Gamma}_{f,g}(\mathcal{V})$ is a reduced irreducible curve at the origin. Let $\alpha_v(t)$ be a parametrization of \mathcal{V} such that $\alpha_v(0) = 0$. By page 974 [13], each component v intersects $V(g - g(p))$ at a point $p \in v$, $p \neq 0$, sufficiently close to the origin and such that $g(p) \neq 0$. So,

$$\text{codim}_X \{ 0 \} = \text{codim}_X V(g) + \text{codim}_X v.$$

Also, each component (reduced irreducible curve at the origin) \tilde{v} of $\tilde{\Gamma}_{f,\tilde{g}}(\mathcal{V})$ intersects $V(\tilde{g} - g(p))$ at such point $p \in \tilde{v}$, $p \neq 0$ and $\tilde{g}(p) \neq 0$. But since $\tilde{\Gamma}_{f,\tilde{g}}(\mathcal{V}) = \tilde{\Gamma}_{f,g}(\mathcal{V}) \cup \sum Wg$, we also have that v intersects $V(\tilde{g} - g(p))$ at the point p, so

$$\text{codim}_X \{ 0 \} = \text{codim}_X V(\tilde{g}) + \text{codim}_X v.$$

Therefore, by A.9 of [14],

$$\begin{align*}
([v],[V(g)])_0 &= \text{mult}_tg(\alpha_v(t)) \\
([v],[V(\tilde{g})])_0 &= \min\{\text{mult}_tg(\alpha_v(t)), \text{mult}_tf^N(\alpha_v(t))\}
\end{align*}$$

Now,
\[\text{mult}_f N(\alpha_v(t)) = N([v],[V(f)])_0 \text{ and } \text{mult}_g(\alpha_v(t)) = ([v],[V(g)])_0. \]

The gap ratio of \(v \) at the origin for \(g \) with respect to \(f \) is the ratio of intersection numbers \(\frac{([v],[V(g)])_0}{([v],[V(f)])_0} \). So, if \(N > \frac{([v],[V(g)])_0}{([v],[V(f)])_0} \), then \(\text{mult}_f N(\alpha_v(t)) > \text{mult}_g(\alpha_v(t)). \)

Making the same procedure over each component \(v \) of \(\tilde{\Gamma}_{f,g}(\mathcal{V}) \) and using that \(N \) is bigger then the maximum gap ratio of all components \(v \) of \(\tilde{\Gamma}_{f,g}(\mathcal{V}) \) and such that Proposition 3.1 is satisfied, we conclude that

\[\left([\tilde{\Gamma}_{f,g}(\mathcal{V})],[V(g)] \right)_0 = \left([\tilde{\Gamma}_{f,g}(\mathcal{V})],[V(\tilde{g})] \right)_0. \]

\[\text{Lemma 4.3. If } N \text{ is bigger than the maximum gap ratio of all components of the symmetric relative polar curve } \tilde{\Gamma}_{f,g}(\mathcal{V}) \text{ and such that Proposition 3.1 is satisfied, if } 0 < |\alpha|, |\alpha'| \ll \epsilon \ll 1, \text{ then } \]

\[\tilde{n} = n + (-1)^{d-1}N \sum_{j=1}^r m_{f,b_j} E_{u_{f,X}} g^{-1}(\alpha') (b_j). \]

\[\text{Proof. We start describing the critical points of } f|_{g^{-1}(\alpha) \cap B_{\epsilon}}. \text{ We have } \]

\[x \in \Sigma f|_{g^{-1}(\alpha) \cap B_{\epsilon}} \iff x \in g^{-1}(\alpha) \cap B_{\epsilon} \text{ and } rk(d_x g, d_x f) \leq 1 \]

\[\iff x \in g^{-1}(\alpha) \cap B_{\epsilon} \text{ and } (d_x g = 0) \text{ or } (d_x f = 0) \text{ or } (d_x g = \lambda d_x f, \lambda \neq 0). \]

Since \(f \) has isolated singularity at the origin and, by Proposition 1.3 of [13], \(\Sigma_{\mathcal{W}g} \subset \{g = 0\} \), we have that \(\Sigma f|_{g^{-1}(\alpha) \cap B_{\epsilon}} = g^{-1}(\alpha) \cap B_{\epsilon} \cap \tilde{\Gamma}_{f,g}(\mathcal{V}) \). Therefore, \(n \) counts the number of Morse points of a Morsification of \(f|_{g^{-1}(\alpha) \cap B_{\epsilon}} \) coming from \(g^{-1}(\alpha) \cap B_{\epsilon} \cap \tilde{\Gamma}_{f,g}(\mathcal{V}) \).

Now, let us describe \(\Sigma f|_{\tilde{g}^{-1}(\alpha') \cap B_{\epsilon}} \).

\[x \in \Sigma f|_{\tilde{g}^{-1}(\alpha') \cap B_{\epsilon}} \iff x \in \tilde{g}^{-1}(\alpha') \cap B_{\epsilon} \text{ and } rk(d_x \tilde{g}, d_x f) \leq 1 \]

\[\iff x \in \tilde{g}^{-1}(\alpha') \cap B_{\epsilon} \text{ and } (d_x \tilde{g} = 0) \text{ or } (d_x f = 0) \text{ or } (d_x \tilde{g} = \lambda' d_x f, \lambda' \neq 0). \]

Since \(f \) and \(\tilde{g} \) has isolated singularity at the origin, we have that

\[\Sigma f|_{\tilde{g}^{-1}(\alpha') \cap B_{\epsilon}} = \tilde{g}^{-1}(\alpha') \cap B_{\epsilon} \cap \tilde{\Gamma}_{f,\tilde{g}}(\mathcal{V}). \]

Since \(\tilde{\Gamma}_{f,\tilde{g}}(\mathcal{V}) = \tilde{\Gamma}_{f,g}(\mathcal{V}) \cup \Sigma_{\mathcal{W}g}, \)

\[\Sigma f|_{\tilde{g}^{-1}(\alpha') \cap B_{\epsilon}} = (\Sigma_{\mathcal{W}g} \cap \tilde{g}^{-1}(\alpha') \cap B_{\epsilon}) \cup (\tilde{\Gamma}_{f,g}(\mathcal{V}) \cap \tilde{g}^{-1}(\alpha') \cap B_{\epsilon}). \]

Notice that, since \(\Sigma_{\mathcal{W}g} \cap \{f = 0\} = \{0\} \), \(\Sigma_{\mathcal{W}g} \cap \tilde{g}^{-1}(\alpha') \cap B_{\epsilon} \subset \{f \neq 0\} \). Also, by definition, \(\tilde{\Gamma}_{f,g}(\mathcal{V}) \setminus \{0\} \subset \{f \neq 0\} \). Therefore, \(\tilde{n} \) counts the number of Morse points of a Morsification of \(f|_{\tilde{g}^{-1}(\alpha') \cap B_{\epsilon}} \) coming from \(\tilde{g}^{-1}(\alpha') \cap B_{\epsilon} \cap \Sigma_{\mathcal{W}g} \cap \{f \neq 0\} \cap \{g = 0\} \) and from \(\tilde{g}^{-1}(\alpha') \cap B_{\epsilon} \cap \tilde{\Gamma}_{f,g}(\mathcal{V}) \cap \{f \neq 0\} \cap \{g \neq 0\} \).

By Lemma 4.2, the number of Morse points of a Morsification of \(f|_{\tilde{g}^{-1}(\alpha') \cap B_{\epsilon}} \) appearing on \(\tilde{g}^{-1}(\alpha') \cap B_{\epsilon} \cap \tilde{\Gamma}_{f,g}(\mathcal{V}) \cap \{f \neq 0\} \cap \{g \neq 0\} \) is precisely \(n \). Let us describe the number of
Morse points of a Morsification of \(f|_{\tilde{g}^{-1}(\alpha') \cap B_c} \) appearing on \(\tilde{g}^{-1}(\alpha') \cap B_c \cap \Sigma_Wg \cap \{ f \neq 0 \} \cap \{ g = 0 \} \). Using that \(\Sigma_Wg \subset \{ g = 0 \} \),
\[
x \in \tilde{g}^{-1}(\alpha') \cap B_c \cap \Sigma_Wg \iff \tilde{g}(x) = \alpha' \text{ and } d_xg = 0
\]
\[
\iff g(x) + f(x)^N = \alpha' \text{ and } d_xg = 0
\]
\[
\iff f(x)^N = \alpha' \text{ and } d_xg = 0
\]
\[
\iff f(x) \in \{ \alpha_0, \ldots, \alpha_{N-1} \} \text{ and } d_xg = 0,
\]
where \(\{ \alpha_0, \ldots, \alpha_{N-1} \} \) are the \(N \)-th roots of \(\alpha' \). Therefore,
\[
\tilde{g}^{-1}(\alpha') \cap B_c \cap \Sigma_Wg = \bigcup_{i=0}^{N-1} f^{-1}(\alpha_i) \cap B_c \cap \Sigma_Wg.
\]

Since \(\Sigma_Wg \) is one-dimensional, \(f^{-1}(\alpha_i) \cap \Sigma_Wg \) is a finite set of critical points of \(f|_{\tilde{g}^{-1}(\alpha') \cap B_c} \). Since \(\tilde{\Gamma}_{f,\tilde{g}}(\mathcal{V}) = \Sigma_Wg \cup \tilde{\Gamma}_{f,\tilde{g}}(\mathcal{V}) \), each branch \(b_j \) of \(\Sigma_Wg \) is a component of \(\tilde{\Gamma}_{f,\tilde{g}}(\mathcal{V}) \). If \(V_{i(j)} \) is the stratum of \(\mathcal{V}' \) containing \(b_j \), then \(f|_{\tilde{g}^{-1}(\alpha')} \) has isolated singularity at each point \(x_l \in b_j \cap f^{-1}(\alpha_i) \cap \tilde{g}^{-1}(\alpha') \), \(j \in \{ 1, \ldots, r \} \) and \(l \in \{ i_1, \ldots, i_{k(j)} \} \) (page 974, [13]). Using Proposition 1.9 we can count the number \(n_l \) of Morse points of a Morsification of \(f|_{\tilde{g}^{-1}(\alpha') \cap B_c} \) in a neighborhood of each \(x_l \),
\[
Eu_{f,X\cap \tilde{g}^{-1}(\alpha')}(x_l) = (-1)^{d-1}n_l.
\]

Since the Euler obstruction of a function is constant on each branch \(b_j \), so is the Euler obstruction of a function and we can denote \(Eu_{f,X\cap \tilde{g}^{-1}(\alpha')}(x_l) \) by \(Eu_{f,X\cap \tilde{g}^{-1}(\alpha')}(b_j) \), for all \(x_l \in b_j \cap f^{-1}(\alpha_i) \cap \tilde{g}^{-1}(\alpha') \). Therefore, if \(b_j \cap \tilde{g}^{-1}(\alpha_i) \cap \tilde{g}^{-1}(\alpha') = \{ x_{j_1}, \ldots, x_{j_{m_f(b_j)}} \} \), the number of Morse points of a Morsification of \(f|_{\tilde{g}^{-1}(\alpha') \cap B_c} \) appearing on \((X_{reg} \setminus \{ \tilde{g} = 0 \}) \cap b_j \cap \{ \tilde{g} = \alpha' \} \cap B_c \cap \{ f = \alpha_i \} \) is
\[
n_{j_1} + \cdots + n_{j_{m_f(b_j)}} = (-1)^{d-1}m_{f,b_j}Eu_{f,X\cap \tilde{g}^{-1}(\alpha')}(x_l).
\]

Making the same analysis over each \(\alpha_i \in \sqrt[N]{\alpha'} \), the number of Morse points of a Morsification of \(f|_{\tilde{g}^{-1}(\alpha') \cap B_c} \) appearing in \(X_{reg} \setminus \{ \tilde{g} = 0 \} \cap \{ g = 0 \} \cap \{ \tilde{g} = \alpha' \} \cap B_c \) is
\[
(\alpha')^d \sum_{j=1}^{r} m_{f,b_j}Eu_{f,X\cap \tilde{g}^{-1}(\alpha')}(b_j).
\]

\[\blacklozenge\]

Theorem 4.4. Suppose that \(g \) is tractable at the origin with respect to \(\mathcal{V} \). If \(0 < |\alpha|, |\alpha'| \ll \epsilon \) and \(N \) is bigger than the maximum gap ratio of each component of the symmetric relative polar curve \(\tilde{\Gamma}_{f,\tilde{g}}(\mathcal{V}) \) and such that Proposition 3.7 is satisfied, then
\[
B_{\tilde{g},X}(0) = B_{g,X}(0) + N \sum_{j=1}^{r} m_{f,b_j}Eu_{f,X\cap \tilde{g}^{-1}(\alpha')}(b_j).
\]

Proof. It follows by Proposition 4.1 and Lemma 4.3. \[\blacksquare\]

This formula gives a way to compare the numerical data associated to the generalized Milnor fibre of a function \(g \) with a one-dimensional singular locus and and to the generalized
Milnor fibre of the deformation $\tilde{g} = g + f^N$, for $N \gg 1$ sufficiently large. This is what Lê [9] and Iomdin [8] have done in the case where g is defined over a complete intersection in \mathbb{C}^n, g has a one-dimensional critical locus and f is a generic linear form over \mathbb{C}^n. Therefore, Theorem 4.4 generalizes this Lê-Iomdin formula.

For $X = \mathbb{C}^n$, let us consider $\mathcal{V} = \{\mathbb{C}^n \setminus \{0\}, \{0\}\}$ the Whitney stratification of \mathbb{C}^n. If f has isolated singularity at the origin, the good stratification \mathcal{V} of \mathbb{C}^n induced by f is given by $\mathcal{V} = \{\mathbb{C}^n \setminus \{f = 0\}, \{f = 0\} \setminus \{0\}, \{0\}\}$.

Corollary 4.5. Suppose that g is tractable at the origin with respect to \mathcal{V} relative to f. If α and α' are regular values of g and \tilde{g}, respectively, with $0 < |\alpha|, |\alpha'| \ll \epsilon$, then

$$\chi(g^{-1}(\alpha') \cap B_\epsilon) = \chi(g^{-1}(\alpha) \cap B_\epsilon) + (-1)^{n-1} N \sum_{j=1}^r m_{f,b_j} \mu(g|_{f^{-1}(\delta_{j,i})}, b_j),$$

where $\mu(g|_{f^{-1}(\delta_{j,i})}, b_j)$ denotes the Milnor number of $g|_{X \cap f^{-1}(\delta_{j,i}) \cap B_\epsilon}$ at a point $x_{j,i}$ of the branch b_j, with $f(x_{j,i}) = \delta_{j,i}$.

Proof. By [17], $\mathcal{V}' = \{\mathbb{C}^n \setminus \{f = 0\} \cup \Sigma_{\mathcal{W}g}, \{f = 0\} \setminus \{0\}, \Sigma_{\mathcal{W}g}, \{0\}\}$ is a good stratification of \mathbb{C}^n relative to f. Also by [17], \mathcal{V}'', given by

$$\{\mathbb{C}^n \setminus \{f = 0\} \cup \{g = 0\}, \{f = 0\} \setminus \{g = 0\}, \{g = 0\} \setminus \{f = 0\} \cup \Sigma_{\mathcal{W}g}, \{f = 0\} \cap \{g = 0\} \setminus \Sigma_{\mathcal{W}g}, \Sigma_{\mathcal{W}g}, \{0\}\},$$

is a good stratification of \mathbb{C}^n relative to g.

By definition of the Brasselet number, if $0 < |\alpha| \ll \epsilon \ll 1$,

$$B_{g,x}(0) = \sum_{V_i \in \mathcal{V}'} \chi(V_i \cap g^{-1}(\alpha) \cap B_\epsilon) Eu_{\mathbb{C}^n}(V_i)$$

$$= \chi((\mathbb{C}^n \setminus \{f = 0\} \cup \{g = 0\}) \cap g^{-1}(\alpha) \cap B_\epsilon) Eu_{\mathbb{C}^n}(\mathbb{C}^n \setminus \{f = 0\} \cup \{g = 0\})$$

$$+ \chi((\{f = 0\} \setminus \{g = 0\}) \cap g^{-1}(\alpha) \cap B_\epsilon) Eu_{\mathbb{C}^n}(\{f = 0\} \setminus \{g = 0\})$$

$$= \chi((\mathbb{C}^n \setminus \{g = 0\}) \cap g^{-1}(\alpha) \cap B_\epsilon)$$

$$= \chi(g^{-1}(\alpha) \cap B_\epsilon).$$

The good stratification of \mathbb{C}^n induced by \tilde{g} is $\mathcal{V} = \{\{\tilde{g} = 0\}, \mathbb{C}^n \setminus \{\tilde{g} = 0\}, \{0\}\}$ and then, if $0 < |\alpha'| \ll \epsilon \ll 1$,

$$B_{\tilde{g},x}(0) = \chi(\mathbb{C}^n \setminus \{\tilde{g} = 0\} \cap g^{-1}(\alpha) \cap B_\epsilon) Eu_{\mathbb{C}^n}(\mathbb{C}^n \setminus \{0\}) = \chi(g^{-1}(\alpha') \cap B_\epsilon).$$

Since $f|_{\tilde{g}^{-1}(\alpha') \cap B_\epsilon}$ is defined over \mathbb{C}^n and has isolated singularity at each $x_{j,i} \in b_j$, considering a small ball $B_\epsilon(x_{j,i})$ with radius ϵ and center at $x_{j,i}$, for $0 < |\delta| \ll \epsilon \ll 1$,

$$Eu_{f,\tilde{g}^{-1}(\alpha')}(x_{j,i}) = (-1)^{n-1} \mu(f|_{\tilde{g}^{-1}(\alpha')}, x_{j,i})$$

$$= (-1)^{n-1} \chi(f|_{\tilde{g}^{-1}(\alpha')})^{-1}(\delta) \cap B_\epsilon(x_{j,i}) - 1$$

$$= \chi(f^{-1}(\delta_{j,i}) \cap \tilde{g}^{-1}(\alpha') \cap B_\epsilon(x_{j,i})) - 1, f(x_{j,i}) = \delta_{j,i}$$

$$= \chi(f^{-1}(\delta_{j,i}) \cap g^{-1}(\alpha' - \delta) \cap B_\epsilon(x_{j,i})) - 1$$

$$= \chi((g|_{f^{-1}(\delta_{j,i})})^{-1}(\delta) \cap B_\epsilon(x_{j,i})) - 1$$

$$= (-1)^{n-1} \mu(g|_{f^{-1}(\delta_{j,i})}, x_{j,i}),$$

15
where the equality \((\ast)\) is justified by Proposition 6.2 of \([6]\). Therefore, applying Theorem \([4,4]\) we obtain
\[
\chi(\tilde{g}^{-1}(\alpha') \cap B) = \chi(g^{-1}(\alpha) \cap B) + (-1)^{n-1} N \sum_{j=1}^{r} m_{f,b_j} \mu(g|_{f^{-1}(\delta_j)}, b_j).
\]

Another consequence of Theorem \([4,4]\) is a different proof for the Lé-Iomdin formula proved by Massey in \([14]\) in the case of a function with a one-dimensional singular locus. For that we will need the definition of the Lé-numbers. We present here the case for functions defined over a nonsingular subspace of \(\mathbb{C}^n\), and we recommend Part I of \([14]\) for the general case. Let \(h : (U, 0) \subseteq (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)\) be an analytic function such that its critical locus \(\Sigma h\) is a \(s\)-dimensional set. For \(0 \leq k \leq n\), the \(k\text{-th relative polar variety} \Gamma_{h,z}^k\) of \(h\) with respect to \(z\) is the scheme \(V \left(\partial h / \partial z^k, \ldots, \partial h / \partial z^n \right) / \Sigma h\), where \(z = (z_1, \ldots, z_n)\) are fixed local coordinates and the \(k\text{-th polar cycle} \) of \(h\) with respect to \(z\) is the analytic cycle \([\Gamma_{h,z}^k]\). The \(k\text{-th Lé cycle} \) \([\Lambda_{h,z}^k]\) of \(h\) with respect to \(z\) is the difference of cycles \([\Gamma_{h,z}^{k+1} \cap V (\partial h / \partial z^k)] - [\Gamma_{h,z}^k]\).

Definition 4.6. The \(k\text{-th Lé number} \) of \(h\) in \(p\) with respect to \(z\), \(\lambda_{h,z}^k\), is the intersection number
\[
(\Lambda_{h,z}^k \cap V(z_0 - p_0, \ldots, z_{k-1} - p_{k-1}))_p,
\]
provided this intersection is purely zero-dimensional at \(p\).

If this intersection is not purely zero-dimensional, the \(k\text{-th Lé number} \) of \(h\) at \(p\) with respect to \(z\) is said to be undefined.

Corollary 4.7. Let \(\mathcal{V}\) be the good stratification of an open set \((U, 0) \subseteq (\mathbb{C}^n+1, 0)\) induced by a generic linear form \(l\) defined over \(\mathbb{C}^{n+1}\). Let \(N \geq 2\), \(z = (z_0, \ldots, z_n)\) be a linear choice of coordinates such that \(\lambda_{l,z}^i(0)\) is defined for \(i = 0, 1\), and \(\tilde{z} = (z_1, \ldots, z_n, z_0)\) be the coordinates for \(\tilde{g} = g + l^n\) such that \(\lambda_{\tilde{g},\tilde{z}}^0\) is defined. If \(N\) is greater then the maximum gap ratio of each component of the symmetric relative polar curve \(\tilde{\Gamma}_{f,g}(\mathcal{V})\) and such that Proposition \([3,1]\) is satisfied, then

\[
\lambda_{\tilde{g},\tilde{z}}^0(0) = \lambda_{l,z}^0(0) + (N - 1)\lambda_{g,z}^1(0).
\]

Proof. By \([17]\), \(g\) is tractable at the origin with respect to the good stratification \(\mathcal{V}\) induced by \(l\). Without loss of generality, we can suppose that \(l = z_0\). Let \(F_{g,0}\) be the Milnor fibre of \(g\) at the origin and \(F_{\tilde{g},0}\) be the Milnor fibre of \(\tilde{g}\) at the origin. Since \(g\) has a one-dimensional critical set, the possibly nonzero Lé numbers are \(\lambda_{g,z}^0(0)\) and \(\lambda_{g,z}^1(0)\) and, since \(\tilde{g}\) has isolated singularity at the origin, the only possibly nonzero Lé number is \(\lambda_{g,z}^0(0)\). By Theorem 4.3 of \([15]\),
\[
\chi(F_{g,0}) = 1 + (-1)^n \lambda_{g,z}^0(0) + (-1)^{n-1} \lambda_{g,z}^1(0)
\]
and
\[
\chi(F_{\tilde{g},0}) = 1 + (-1)^n \lambda_{\tilde{g},\tilde{z}}^0(0).
\]

In \([14]\), on page 49, Massey remarked that for \(0 < |\delta| \ll \epsilon \ll 1\),
\[
\lambda_{g,z}^1(0) = \sum_{j=1}^{r} m_{b_j} \mu(g|_{l^{-1}(\delta)}, b_j).
\]

Therefore, the formula holds by Corollary \(4.5\) ■
5 Applications to generic linear forms

Let \(g : (X, 0) \to (\mathbb{C}, 0) \) be a complex analytic function-germ and \(l \) be a generic linear form in \(\mathbb{C}^n \). Let \(\mathcal{W} = \{ \{ 0 \}, W_1, \ldots, W_q \} \) be a Whitney stratification of \(X \) and \(\mathcal{V} \) be the good stratification of \(X \) induced by \(l \). Suppose that \(\Sigma_{\mathcal{V} \mathcal{W}}g \) is one-dimensional.

Let \(\mathcal{V}' \) be the good stratification of \(X \) relative to \(l \), \(\mathcal{V}'' \) be the good stratification of \(X \) relative to \(g \) and \(\mathcal{V} \) be the good stratification of \(X \) induced by \(\tilde{g} = g + l^N, N \gg 1 \), taken as in Section 4.

Let \(\alpha \) be a regular value of \(g \), \(\alpha' \) a regular value of \(\tilde{g} \), \(0 < |\alpha|, |\alpha'| \ll \epsilon \ll 1 \), \(n \) be the number of stratified Morse points of a Morsification of \(l|_{X\cap g^{-1}(\alpha)\cap B_\epsilon} \) appearing on \(X_{\text{reg}} \cap g^{-1}(\alpha) \cap \{ l \neq 0 \} \cap B_\epsilon \), \(n_i \) be the number of stratified Morse points of a Morsification of \(l|_{W_i \setminus \{ (g=0) \cup \{ l=0 \} \} \cap g^{-1}(\alpha) \cap B_\epsilon} \) appearing on \(W_i \cap g^{-1}(\alpha) \cap \{ l \neq 0 \} \cap B_\epsilon \), \(\tilde{n} \) be the number of stratified Morse points of a Morsification of \(l|_{X\cap \tilde{g}^{-1}(\alpha')\cap B_\epsilon} \) appearing on \(X_{\text{reg}} \cap \tilde{g}^{-1}(\alpha') \cap \{ l \neq 0 \} \cap B_\epsilon \), and \(\tilde{n}_i \) be the number of stratified Morse points of a Morsification of \(l|_{W_i \setminus \{ \tilde{g}=0 \} \cap \tilde{g}^{-1}(\alpha') \cap B_\epsilon} \) appearing on \(W_i \cap \tilde{g}^{-1}(\alpha') \cap \{ l \neq 0 \} \cap B_\epsilon \), for each \(W_i \in \mathcal{W} \).

As before, we write \(\Sigma_{\mathcal{V} \mathcal{W}}g \) as a union of branches \(b_1 \cup \ldots \cup b_r \) and we suppose that \(\{ l = \delta \} \cap b_j = \{ x_{i_1}, \ldots, x_{i_{k(j)}} \} \). For each \(t \in \{ i_1, \ldots, i_{k(j)} \} \), let \(D_{x_t} \) be the closed ball with center at \(x_t \) and radius \(r_t, 0 < |\alpha|, |\alpha'| < |\delta| < r_t < \epsilon \ll 1 \), sufficiently small for the balls \(D_{x_t} \) be pairwise disjoint and the union of balls \(D_j = D_{x_{i_1}} \cup \ldots \cup D_{x_{i_{k(j)}}} \) be contained in \(B_\epsilon \) and \(\epsilon \) is sufficiently small such that the local Euler obstruction of \(X \) at a point of \(b_j \cap B_\epsilon \) is constant.

In [20], Tibar gave a bouquet decomposition to for the Milnor fibre of \(\tilde{g} \) in terms of the Milnor fibre of \(g \). Let us denote by \(F_g \) the local Milnor fibre of \(g \) at the origin, \(F_{\tilde{g}} \) the local Milnor fibre of \(\tilde{g} \) at the origin and \(F_j \) is the local Milnor fibre of \(g|_{\{ l=\delta \}} \) at a point of the branch \(b_j \). Then there is a homotopy equivalence

\[
F_{\tilde{g}} \overset{ht}{\simeq} (F_g \cup E) \bigvee_{j=1}^r M_j S(F_j),
\]

where \(\bigvee \) denotes the wedge sum of topological spaces, \(M_j = Nm_{b_j} - 1 \), \(S(F_j) \) denotes the topological suspension over \(F_j, E := \bigcup_{j=1}^r \text{cone}(F_j) \) and \(F_g \cup E \) is the attaching to \(F_g \) of one cone over \(F_j \subset F_g \) for each \(j \in \{ 1, \ldots, r \} \). As a consequence of this theorem, Tibar proved a Lê-Iomdin formula for the Euler characteristic of these Milnor fibres.

In the following, we present a new proof for this formula using our previous results.

Proposition 5.1. Suppose that \(g \) is tractable at the origin with respect to \(\mathcal{V} \). If \(0 < |\alpha|, |\alpha'| \ll |\delta| \ll \epsilon \ll 1 \), then

\[
\chi(X \cap g^{-1}(\alpha) \cap B_\epsilon) - \chi(X \cap g^{-1}(\alpha) \cap B_\epsilon) = N \sum_{j=1}^r m_{b_j} (1 - \chi(F_j)),
\]

where \(F_j = X \cap g^{-1}(\alpha) \cap H_j \cap D_{x_t} \) is the local Milnor fibre of \(g|_{\{ l=\delta \}} \) at a point of the branch \(b_j \) and \(H_j \) denotes the generic hyperplane \(l^{-1}(\delta) \) passing through \(x_t \in b_j \), for \(t \in \{ i_1, \ldots, i_{k(j)} \} \).

Proof. For a stratum \(V_i = W_i \setminus (\{ g = 0 \} \cup \{ l = 0 \}) \) in \(\mathcal{V}'' \), \(W_i \in \mathcal{W} \), let \(N_i \) be a normal slice to \(V_i \) at \(x_t \in b_j \), for \(t \in \{ i_1, \ldots, i_{k(j)} \} \) and \(D_{x_t} \) a closed ball of radius \(r_t \) centered at \(x_t \).
Considering the constructible function 1_X, the normal Morse index along V_i is given by

$$
\eta(V_i, 1_X) = \chi(W_i \setminus \{g = 0\} \cup \{l = 0\} \cap N_i \cap D_{x_i}) - \chi((W_i \setminus \{g = 0\} \cap N_i \cap \{g = \alpha\} \cap D_{x_i})
$$

For a stratum $V_i = W_i \setminus \{g = 0\} \in \mathcal{V}$, $W_i \in \mathcal{W}$, let \tilde{N}_i be a normal slice to V_i at $x_t \in b_j$, for $t \in \{i_1, \ldots, i_{k(j)}\}$. Considering the constructible function 1_X, the normal Morse index along V_i is given by

$$
\eta(\tilde{V}_i, 1_X) = \chi((W_i \setminus \{g = 0\}) \cap \tilde{N}_i \cap D_{x_i}) - \chi((W_i \setminus \{g = 0\}) \cap \tilde{N}_i \cap \{\tilde{g} = \alpha'\} \cap D_{x_i})
$$

Then applying Theorem 4.2 of [6] for 1_X, we obtain that

$$
\chi(X \cap \tilde{g}^{-1}(\alpha') \cap B_e) - \chi(X \cap \tilde{g}^{-1}(\alpha') \cap l^{-1}(0) \cap B_e) = \sum_{i=1}^{q} (-1)^{d_i-1} n_i (1 - \chi(l_{W_i}))
$$

and that

$$
\chi(X \cap g^{-1}(\alpha) \cap B_e) - \chi(X \cap g^{-1}(\alpha) \cap l^{-1}(0) \cap B_e) = \sum_{i=1}^{q} (-1)^{d_i-1} n_i (1 - \chi(l_{W_i}))
$$

where $d_i = \dim W_i$.

Therefore, since $\chi(X \cap \tilde{g}^{-1}(\alpha' \cap l^{-1}(0) \cap B_e) = \chi(X \cap g^{-1}(\alpha) \cap l^{-1}(0) \cap B_e),$

$$
\chi(X \cap \tilde{g}^{-1}(\alpha') \cap B_e) - \chi(X \cap g^{-1}(\alpha) \cap B_e) = \sum_{i=1}^{q} (-1)^{d_i-1} (\tilde{n}_i - n_i) (1 - \chi(l_{W_i})).
$$

Applying Lemma 4.3 and Corollary 3.14, we obtain, for each i,

$$
\tilde{n}_i = n_i + (-1)^{d_i-1} N \sum_{j=1}^{r} m_{b_j} \chi(\tilde{l}_{W_i \cap \tilde{g}^{-1}(\alpha')} \cap b_j)
$$

$$
= n_i + (-1)^{d_i-1} N \sum_{j=1}^{r} m_{b_j} \chi(g_{W_i \cap H_j} \cap b_j),
$$

where H_j denotes the generic hyperplane $l^{-1}(\delta)$ passing through $x_t \in b_j$, for $t \in \{i_1, \ldots, i_{k(j)}\}$.

Hence

$$
\chi(X \cap \tilde{g}^{-1}(\alpha') \cap B_e) - \chi(X \cap g^{-1}(\alpha) \cap B_e) = \sum_{i=1}^{q} \left(\sum_{j=1}^{r} m_{b_j} \chi(g_{W_i \cap H_j} \cap b_j) \right) (1 - \chi(l_{W_i}))
$$

$$
= \sum_{j=1}^{r} m_{b_j} \left(1 - \chi(X \cap g^{-1}(\alpha) \cap H_j \cap D_{x_i}) \right)
$$

$$
= \sum_{j=1}^{r} m_{b_j} (1 - \chi(F_j)),
$$

for $t \in \{i_1, \ldots, i_{k(j)}\}$.

References

[1] AMENT, D. A. H.; NUÑO-BALLESTEROS, J. J.; ORÉFICE-OKAMOTO, B.; TOMAZELLA, J. N., The Euler obstruction of a function on a determinantal variety and on a curve., Bulletin Brazilian Mathematical Society (Online), v. 47 (2016), p. 955-970.

[2] BRASSELET, J.P., Lê, D.T., SEADE, J., Euler obstruction and indices of vector fields, Topology, v.39, (2000), p. 1193-1208.

[3] BRASSELET, J-P., MASSEY, D., PARAMESWARAN, AJ. AND SEADE, J. Euler obstruction and defects of functions on singular varieties, Journal of the London Mathematical Society, Cambridge University Press, 70, n.1, (2004), p. 59-76.

[4] DALBELLO, T. M.; HARTMANN, L., Brasselet number and Newton polygons, MANUSCRIPTA MATHEMATICA. (2019)

[5] DALBELLO, T. M.; PEREIRA, M. S., Multitoric surfaces and Euler obstruction of a function, International Journal of Mathematics, v.27 (2016), p. 1650084.

[6] DUTERTRE, N., GRULHA JR., N.G., Lê-Greuel type formula for the Euler obstruction and applications, Adv. Math. 251 (2014), p. 127-146.

[7] DUTERTRE, N., GRULHA JR., N.G., Global Euler obstruction, global Brasselet numbers and critical points (2019).

[8] IOMDIN, N. Complex surfaces with a one-dimensional set of singularities, Siberian Mathematical Journal, Springer, v. 15, n. 5, (1974), p. 748-762.

[9] Lê, D.T. Ensembles analytiques complexes avec lieu singulier de dimension un (d’apres Iomdine), Seminaire sur les Singularités, Publications Mathématiques de l’Université Paris VII, (1980), p. 87-95.

[10] LOI, T. L. Tame topology and Tarski-type systems, Vietnam J. Math, 961, v. 31, n. 2, (2003), p.127-136.

[11] LOJASIEWICZ, S., Introduction to complex analytic geometry, Birkhäuser (1991).

[12] LOOIJENGA, E., Isolated singular points on complete intersections, Cambridge University Press, v. 77, (1984).

[13] MASSEY, D., Hypercohomology of Milnor Fibers, Topology, 35 (1996), no. 4 p. 969-1003.

[14] MASSEY, D., Numerical control over complex analytic singularities, American Mathematical Soc., (2003).

[15] MASSEY, D. The Lê-Ramanujam problem for hypersurfaces with one-dimensional singular sets, Mathematische Annalen, Springer, v 282, n 1 (1988), p. 33-49.

[16] MILNOR, W. J., Singular Points of Complex Hypersurfaces, Annals of Mathematics Studies, 25, New Jersey, (1968).
[17] Santana, H. *Brasselet number and function-germs with a one-dimensional critical set*, arXiv:1909.00803 [math.GT], (2019).

[18] Seade, J., Tibăr, M. and Verjovsky, A. *Milnor numbers and Euler obstruction*, Bulletin of the Brazilian Mathematical Society, Springer, v. 36, n. 2, (2005), p. 275-283.

[19] Seade, J., Tibăr, M. and Verjovsky, A. *Global Euler obstruction and polar invariants*, Math. Ann., 333 (2005), no. 2, p. 393-403.

[20] Tibăr, M. *Embedding nonisolated singularities into isolated singularities*, Springer, (1998), p.103-115.

(Hellen Monção de Carvalho Santana) Universidade de São Paulo, Instituto de Ciências Matemáticas e de Computação - USP, Avenida Trabalhador São-Carlense, 400 - Centro, São Carlos, Brazil. *E-mail address: hellenmcarvalho@hotmail.com*