Open-Set Recognition with Gaussian Mixture
Variational Autoencoders: Supplementary Material

Alexander Cao
Department of Industrial Engineering and Management Sciences
Northwestern University
Evanston, IL 60208
a-cao@u.northwestern.edu

Yuan Luo
Department of Preventive Medicine
Northwestern University
Chicago, IL 60611
yuan.luo@northwestern.edu

Diego Klabjan
Department of Industrial Engineering and Management Sciences
Northwestern University
Evanston, IL 60208
d-klabjan@northwestern.edu

1 Neural network assumptions

We call a neural network \(f_\tau \) an \(n \)-headed neural network if

1. \(f_\tau : \mathbb{R}^m \to \prod_{i=1}^n \mathbb{R}^s \), i.e. it maps \(b \) to \((a_1, a_2, ..., a_n)\) with \(a_i \in \mathbb{R}^s \),

2. for each \(i, 1 \leq i \leq n \), we have \(a_i = f_{i, \ell_i} \circ f_{i, \ell_i-1} \circ ... \circ f_{i,t+1} \circ f_t \circ ... \circ f_1(b) \) for an integer \(t \) not depending on \(i \), \(\ell_i \geq t + 1 \), and each \(f_j, f_j^i \) is a typical neural network single layer parameterized by a matrix and a bias vector, and it includes an activation function. Vector \(\tau \) corresponds to all these parameters.

In GMVAE, neural networks corresponding to \(q_{\phi_z}, q_{\phi_w} \) are 2-headed neural networks (mean and covariance) with \(\phi_z, \phi_w \) denoting all of the respective parameters. Probability \(p_\beta \) is a 1 or 2-headed network with parameters \(\theta \), and \(p_\beta \) for \(\beta = (\beta_{K_1}, \beta_{K_2}, ..., \beta_{K_C}) \) consists of a \((2 \sum_{c=1}^C K_c) \)-headed neural network.

Assumption 1. In each network \(q_{\phi_z}, q_{\phi_w}, p_\theta, \) and \(p_\beta \), the last layer in each head \(f_{i,\ell_i} \) has an identity activation function.

Assumption 2. Neural network \(p_{\beta'} \) for \(\beta' = (\beta_{K_1}, ..., \beta_{K_{c+1}}, ..., \beta_{K_C}) \) consists of \(p_\beta \) with simply two additional heads, while all other network architectures are the same.

Lemma 1. Under Assumption 1 for an \(n \)-headed network, we have that given any \(\overline{a} = (\overline{a}_1, ..., \overline{a}_n) \), there exists \(\tau = \tau(\overline{a}) \) such that \(f_\tau(b) = \overline{a} \) for every \(b \).

Proof. Let \(\overline{a} \) be given. We define \(\tau \) to consist of 0 matrices and biases for each layer except \(f_{i,\ell_i} \). In \(f_{i,\ell_i} \), the matrix is 0 but the bias is \(\overline{a}_i \). Since \(f_{i,\ell_i} \) has the identity activation, it follows \(f_\tau(b) = \overline{a} \) for every \(b \).

Preprint. Under review.
2 Proof of Proposition 1

Proposition 1. Let us assume that \(x \in \mathcal{X} \) is distributed as \(x \sim p_{\text{data}} = \mathcal{B}(\mu, \sigma^2, C = 1) \), and Assumption 1 holds. Then the optimal GMVAE loss is constant with respect to \(K \). In fact, we have that \(\min -\mathbb{E}_X[L(K)] = -\mathbb{E}_X[\log p_{\text{data}}] \) for every \(K \geq 1 \) and a globally optimal solution reads

\[
\begin{align*}
\mu(x; \phi^*_w) &= \mu_{z=1,b}(w; \beta^*) = \mu_z \\
\sigma^2(x; \phi^*_w) &= \sigma^2_{z=1,b}(w; \beta^*) = \sigma^2_z \\
\mu(x, y; \phi^*_w) &= 0 \\
\sigma^2(x, y; \phi^*_w) &= 1 \\
\mu(z; \theta^*) &= \mu_z
\end{align*}
\]

for any constant vectors \(\mu_z, \sigma_z \).

Proof. Note that \((\phi^*_w, \phi^*_w, \beta^*, \theta^*) \) exist due to Assumption 1 and Lemma 1. First, we show that \((\theta^*, \beta^*) \) given in (1) maximize the log likelihood \(\mathbb{E}_X[\log p_{\theta, \beta}(x|y = 1)] \) and results in \(p_{\theta^*, \beta^*}(x|y = 1) = p_{\text{data}} \). We have

\[
KL(p_{\text{data}}||p_{\theta, \beta}(x|y = 1)) = \mathbb{E}_X[\log p_{\text{data}}] - \mathbb{E}_X[\log p_{\theta, \beta}(x|y = 1)]
\]

and thus maximizing \(\mathbb{E}_X[\log p_{\theta, \beta}(x|y = 1)] \) is equivalent to minimizing \(KL(p_{\text{data}}||p_{\theta, \beta}(x|y = 1)) \). The global minimum of \(KL(p_{\text{data}}||p_{\theta, \beta}(x|y = 1)) \) is clearly when \(p_{\text{data}} = p_{\theta, \beta}(x|y = 1) \). This is indeed the case for \((\theta^*, \beta^*) \), since

\[
p_{\theta^*, \beta^*}(x|y = 1) = \int_{w, z, v} p_{\theta^*, \beta^*}(x, v, w, z|y = 1)dwdzdv
\]

because of GMVAE’s generative model factorization and (1). Now we have

\[
\mathbb{E}_X[\log p_{\text{data}}] = \mathbb{E}_X[\log p_{\theta^*, \beta^*}(x|y = 1)]
\]

\[
= \mathbb{E}_X\left[\mathbb{E}_{q_{\theta^*, \beta^*}(v, w, z|x, y = 1)}\left[\log \frac{p_{\theta^*, \beta^*}(x, z, w, v|y = 1)}{q_{\theta^*, \beta^*}(v, w, z|x, y = 1)} \right] \right]
\]

\[
+ \mathbb{E}_X\left[\mathbb{E}_{q_{\theta^*, \beta^*}(v, w, z|x, y = 1)}\left[\log \frac{q_{\theta^*, \beta^*}(v, w, z|x, y = 1)}{p_{\theta^*, \beta^*}(x, z, w, v|y = 1)} \right] \right] = \mathbb{E}_X[L(K; \phi^*_w, \phi^*_w, \beta^*, \theta^*)] + \mathbb{E}_X[\text{VG}(\phi^*_z, \phi^*_w, \beta^*, \theta^*)]
\]

where \(\text{VG}(\phi^*_z, \phi^*_w, \beta^*, \theta^*) \) corresponds to (3). We next show that \(\text{VG}(\phi^*_z, \phi^*_w, \beta^*, \theta^*) = 0 \). This together with the facts that maximized \(\mathbb{E}_X[L(K; \phi^*_z, \phi^*_w, \beta, \theta)] \) corresponds with minimized \(\mathbb{E}_X[\text{VG}(\phi^*_z, \phi^*_w, \beta, \theta)] \), and \(\text{VG}(\phi^*_z, \phi^*_w, \beta, \theta) \geq 0 \) (it is a KL divergence), shows optimality.

From (1) we have that \(p_{\theta^*}(x|z) = p_{\text{data}}(x) \) for all \(x \) and \(z \) and thus with (2) we have

\[
p_{\theta^*, \beta^*}(z, w, v|x, y = 1) = \frac{p_{\theta^*}(x|z, w, v, y = 1)p_{\beta^*}(z, w, v|y = 1)}{p_{\theta^*, \beta^*}(x|y = 1)} = \frac{p_{\theta^*}(x|z)p_{\beta^*}(z, w, v|y = 1)}{p_{\text{data}}(x)} = \frac{p_{\beta^*}(z, w, v|y = 1)}{p_{\beta^*}(z, w|y = 1)}.
\]

The reconstruction term \(p_{\theta}(x|z, w, v, y = 1) = p_{\theta}(x|z) \) for every \(\theta \) because in GMVAE, data reconstruction depends only on \(z \) and is independent of \(w \) and \(v \) (see §3.1 of the paper).

Also from Bayes’ and GMVAE’s generative model factorization, we have the following simplification

\[
p_{\beta^*}(v|z, w, y = 1) = \frac{p_{\beta^*}(z, w, y = 1)v(y = 1)p(w)}{p_{\beta^*}(z, w|y = 1)}
\]
which is a valid choice by Assumption 2, and have

\[
p_{\beta^*}(z|w, y = 1, v) p(v|y = 1) p(w) = p_{\beta^*}(z|w, y = 1) p(v|y = 1) p(w) = \sum_{v'} p_{\beta^*}(z|w, y = 1, v') p(v'|y = 1) = p(v|y = 1) \tag{6}
\]

where (1) is only used in the last line. Substituting (5) into \(VG(\phi^*_w, \phi^*_w, \beta^*, \theta^*) \) we obtain \(VG(\phi^*_w, \phi^*_w, \beta^*, \theta^*) \)

\[
= \mathbb{E}_{q_{\phi^*_w}(v,w,z|x,y=1)} \log \frac{q_{\phi^*_w}(v,w,z|x,y=1)}{p_{\beta^*}(v,w,z|x,y=1)} = \mathbb{E}_{q_{\phi^*_w}(v,w,z|x,y=1)} \log \frac{q_{\phi^*_w}(v,w,z|x,y=1)}{p_{\beta^*}(z|w, y = 1, v) p(v|y = 1)} = \mathbb{E}_{q_{\phi^*_w}(w|x,y=1)} q_{\phi^*_w}(w|x,y=1) \log p_{\beta^*}(z|w, y = 1, v) = 0 \tag{7}
\]

due to (1) and (7). To complete the proof, simply note that negating (4) yields

\[-\mathbb{E}_X [\mathcal{L}(K; \phi^*_w, \phi^*_w, \beta^*, \theta^*)] = -\mathbb{E}_X [\log p_{\text{data}}]. \]

\section{Proof of Proposition 2}

\textbf{Lemma 2.} For every \(\delta > 0 \) and \(\mu \), there exists \(\sigma^2 \) such that if \(f(z) \) is the pdf of a d-dimensional Normal random vector with mean \(\mu \) and diagonal covariance \(\sigma^2 \) then

\[f(z) \leq \delta \text{ for every } z. \]

\textbf{Proof.} Let \(u = \left(\frac{1}{\delta} (2\pi)^{-d/2} \right)^{1/d} \) and \(\sigma = (u, \ldots, u) \). We have

\[
f(z) = \prod_i \frac{1}{\sigma_i \sqrt{2\pi}} \exp\left\{ -\frac{1}{2\sigma_i^2} (z_i - \mu_i)^2 \right\} \leq \prod_i \frac{1}{\sigma_i \sqrt{2\pi}} = \delta. \]

\textbf{Proposition 2.} Let us assume \(C = 1 \), Assumptions 1 and 2 hold, and that \(p(v|y = 1) \) is uniform in the appropriate dimension. We have

\[
\min \{-\mathbb{E}_X[\mathcal{L}(K; \phi_w, \phi_w, \beta, \theta)]\} - \min \{-\mathbb{E}_X[\mathcal{L}(K + 1; \phi_w, \phi_w, \beta, \theta)]\} \geq \epsilon_K
\]

where \(-\log 2 \leq \log(K/(K + 1)) \leq \epsilon_K \) for all \(K \).

\textbf{Proof.} We show that for every solution \((\phi^*_w, \phi^*_w, \beta^*, \theta')\) to minimize \(\mathbb{E}_X[-\mathcal{L}(K; \phi_w, \phi_w, \beta, \theta)] \), there exists a corresponding solution \((\phi^*_w, \phi^*_w, \beta^*, \theta^*)\) such that

\[
-\mathbb{E}_X[\mathcal{L}(K; \phi^*_w, \phi^*_w, \beta^*, \theta')] = -\mathbb{E}_X[\mathcal{L}(K + 1; \phi^*_w, \phi^*_w, \beta^*, \theta')] + \epsilon_K.
\]

Let us assume that \((\phi^*_w, \phi^*_w, \beta^*, \theta')\) minimizes \(-\mathbb{E}_X[\mathcal{L}(K; \phi_w, \phi_w, \beta, \theta)] \). Then we can choose

\[
\phi^*_w = \phi'_w
\]

\[
\phi^*_w = \phi'_w
\]

\[
\theta^* = \theta'
\]

\[\tag{8} \]

which is a valid choice by Assumption 2, and have \(\beta^* \) such that

\[
p_{\beta^*}(z|w, y = 1, v) = p_{\beta^*}(z|w, y = 1, v) \text{ for all } v \leq K \tag{9} \]
Inserting (9) and (10) into (6) and combined with uniform priors, we get that for all \(w, \beta \) and 2 and Lemmas 1 and 2. In essence, we choose \(\beta^* \) such that the first \(K \) subcluster generative distributions are the same as the case \(\beta^* \) but we take the \((K + 1)\)-th subcluster generative distribution to map all points \(w \) to the same Normal distribution with large enough covariance.

Inserting (9) and (10) into (6) and combined with uniform priors, we get that

\[
p_{\beta^*}(v = K + 1|z, w, y = 1) = \frac{p_{\beta^*}(v = K + 1|w, y = 1)}{\sum_{j=1}^{K} p_{\beta^*}(v = j|w, y = 1)}
\]

and

\[
p_{\beta^*}(v = k|z, w, y = 1) = \frac{p_{\beta^*}(v = k|w, y = 1)}{\sum_{j=1}^{K} p_{\beta^*}(v = j|w, y = 1)} \leq \frac{p_{\beta^*}(v = k|z, w, y = 1)}{p_{\beta^*}(v = K + 1|w, y = 1)} = \delta A(z, w, v = k).
\]

for all \(k \leq K \). The absolute difference between the two posteriors for \(k \leq K \) in (12) is bounded by a factor of \(\delta \) as follows:

\[
\left| p_{\beta^*}(v = k|z, w, y = 1) - p_{\beta^*}(v = k|z, w, y = 1) \right| \leq \frac{\delta}{\sum_{j=1}^{K} p_{\beta^*}(v = j)} \left(\frac{\sum_{j=1}^{K} p_{\beta^*}(v = j)}{\sum_{j=1}^{K} p_{\beta^*}(v = j)} \right)^2 \leq \delta A(z, w, v = k).
\]

Now we calculate \(\epsilon_K \) given by

\[
\mathbb{E}_X[-\mathcal{L}(K; \phi_z^*, \phi_w^*, \beta^*, \theta^*)] - \mathbb{E}_X[-\mathcal{L}(K + 1; \phi_z^*, \phi_w^*, \beta^*, \theta^*)] = \epsilon_K
\]

Because of (8), \(\epsilon_K \) simplifies to

\[
\epsilon_K = -\mathbb{E}_X \left[\mathbb{E}_{q_{z|w}}(w|x, y=1)q_{z|x}(z|x) \sum_{j=1}^{K} p_{\beta^*}(v = j|z, w, y = 1) \log p_{\beta^*}(z|w, y = 1, v = j) \right] + \mathbb{E}_X \left[\mathbb{E}_{q_{z|w}}(w|x, y=1)q_{z|x}(z|x) \sum_{j=1}^{K+1} p_{\beta^*}(v = j|z, w, y = 1) \log p_{\beta^*}(z|w, y = 1, v = j) \right] + \mathbb{E}_X \left[\mathbb{E}_{q_{z|w}}(w|x, y=1)q_{z|x}(z|x) KL(p_{\beta^*}(v|z, w, y = 1) || p_K(v|y = 1)) \right] - \mathbb{E}_X \left[\mathbb{E}_{q_{z|w}}(w|x, y=1) q_{z|x}(z|x) KL(p_{\beta^*}(v|z, w, y = 1) || p_{K+1}(v|y = 1)) \right] = \epsilon^{(1)}_K + \epsilon^{(2)}_K
\]

\[
\epsilon_K = \epsilon^{(1)}_K + \epsilon^{(2)}_K
\]
where $p_K(v|y=1)$ indicates that v is K-dimensional, and $\epsilon_k^{(1)}$ are the first two terms while $\epsilon_k^{(2)}$ are the last two terms.

We first analyze $\epsilon_k^{(1)}$. For brevity, we combine the expectations and simply write $E[\cdot]$. Together with (9), (11), and (13), we get

$$
|\epsilon_k^{(1)}| = -E \left[\sum_{j=1}^{K} p_{\beta'}(v = j|z, w, y = 1) \log p_{\beta'}(z|w, y = 1, v = j) \right]
+ E \left[\sum_{j=1}^{K} p_{\beta'}(v = j|z, w, y = 1) \log p_{\beta'}(z|w, y = 1, v = j) \right]
+ E \left[p_{\beta'}(v = K + 1|z, w, y = 1) \log p_{\beta'}(z|w, y = 1, v = K + 1) \right]
= E \left[\sum_{j=1}^{K} \log p_{\beta'}(z|w, y = 1, v = j) \left(p_{\beta'}(v = j|z, w, y = 1) - p_{\beta'}(v = j|z, w, y = 1) \right) \right]
+ E \left[p_{\beta'}(z|w, y = 1, v = K + 1) \log p_{\beta'}(z|w, y = 1, v = K + 1) \right]
\sum_{j=1}^{K} \log p_{\beta'}(z|w, y = 1, v = j) + p_{\beta'}(z|w, y = 1, v = K + 1) \leq \delta \cdot E \left[\sum_{j=1}^{K} \log p_{\beta'}(z|w, y = 1, v = j) \right] A(z, w, v = j)
+ |\delta(\log \delta)| E \left[\frac{1}{\sum_{j=1}^{K} p_{\beta'}(z|w, y = 1, v = j)} \right] = o(1),
$$

(14)

where the last inequality follows from $|x \log x|$ being increasing for $x \leq 1/e$ and in $o(1)$ we consider $\delta \to 0$.

Next we study $\epsilon_k^{(2)}$. For shorthand, let us define

$$
\log \left((K + 1)p_{\beta'}(v = K + 1|z, w, y = 1) \right)
= \log \left(\frac{(K + 1)p_{\beta'}(z|w, y = 1, v = K + 1)}{\sum_{j=1}^{K} p_{\beta'}(z|w, y = 1, v = j) + p_{\beta'}(z|w, y = 1, v = K + 1)} \right)
= \log p_{\beta'}(z|w, y = 1, v = K + 1) + B(z, w)
$$

and note that

$$
|B(z, w)| = \left| \log \left(\frac{(K + 1)}{\sum_{j=1}^{K} p_{\beta'}(z|w, y = 1, v = j) + p_{\beta'}(z|w, y = 1, v = K + 1)} \right) \right|
\leq \max \left\{ \left| \log \left(\frac{(K + 1)}{\sum_{j=1}^{K} p_{\beta'}(z|w, y = 1, v = j)} \right) \right|, \left| \log \left(\frac{(K + 1)}{\sum_{j=1}^{K} p_{\beta'}(z|w, y = 1, v = j) + 1/e} \right) \right| \right\}
= C(z, w).
$$

We have

$$
\epsilon_k^{(2)}
= E \left[\sum_{j=1}^{K} p_{\beta'}(v = j|z, w, y = 1) \log (Kp_{\beta'}(v = j|z, w, y = 1)) \right]
$$
\begin{align*}
&- \mathbb{E} \left[\sum_{j=1}^{K} p_{\beta^*}(v = j \mid z, w, y = 1) \log \left((K + 1)(p_{\beta^*}(v = j \mid z, w, y = 1)) \right) \right] \\
&- \mathbb{E} \left[p_{\beta^*}(v = K + 1 \mid z, w, y = 1) \log ((K + 1)p_{\beta^*}(v = K + 1 \mid z, w, y = 1)) \right] \\
&= \mathbb{E} \left[\sum_{j=1}^{K} (\log K)p_{\beta^*}(v = j \mid z, w, y = 1) - (\log (K + 1))p_{\beta^*}(v = j \mid z, w, y = 1) \right] \\
&+ \mathbb{E} \left[\sum_{j=1}^{K} p_{\beta^*}(v = j \mid z, w, y = 1) \log p_{\beta^*}(v = j \mid z, w, y = 1) - p_{\beta^*}(v = j \mid z, w, y = 1) \log p_{\beta^*}(v = j \mid z, w, y = 1) \right] \\
&- \mathbb{E} \left[p_{\beta^*}(v = K + 1 \mid z, w, y = 1) \log ((K + 1)p_{\beta^*}(v = K + 1 \mid z, w, y = 1)) \right] \\
&\geq \log(K) - (\log(K + 1))\mathbb{E} \left[\sum_{j=1}^{K} p_{\beta^*}(v = j \mid z, w, y = 1) \right] \\
&+ \mathbb{E} \left[\sum_{j=1}^{K} (p_{\beta^*}(v = j \mid z, w, y = 1) - p_{\beta^*}(v = j \mid z, w, y = 1)) \log(p_{\beta^*}(v = j \mid z, w, y = 1)) \right] \tag{15} \\
&- \mathbb{E} \left[\frac{p_{\beta^*}(z \mid w, y = 1, v = K + 1) \log p_{\beta^*}(z \mid w, y = 1, v = K + 1)}{\sum_{j=1}^{K} p_{\beta^*}(z \mid w, y = 1, v = j) + p_{\beta^*}(z \mid w, y = 1, v = K + 1)} \right] B(z, w) \\
&\geq \log(K) - \log(K + 1) \\
&- \delta \cdot \mathbb{E} \left[\sum_{j=1}^{K} A(z, w, v = j) \left| \log(p_{\beta^*}(v = j \mid z, w, y = 1)) \right| \right] \tag{16} \\
&- \delta (\log \delta) \mathbb{E} \left[\frac{1}{\sum_{j=1}^{K} p_{\beta^*}(z \mid w, y = 1, v = j)} \right] \tag{17} \\
&- \delta \cdot \mathbb{E} \left[\frac{1}{\sum_{j=1}^{K} p_{\beta^*}(z \mid w, y = 1, v = j)} C(z, w) \right] \\
&= \log \left(\frac{K}{K + 1} \right) + o(1). \\
\end{align*}

In (15) we use (12), in (16) we rely on (13), and in (17) we use (14) again.

To summarize, we have $\epsilon_K \geq -|\epsilon^{(1)}_K| + \epsilon^{(2)}_K \geq -o(1) + o(1) + \log \frac{K}{K + 1} = \log \frac{K}{K + 1} + o(1)$. Thus $\epsilon_K \geq \log \frac{K}{K + 1}$. \qed