Investigation of Some Quality Properties of Kars Gravyer, Gruyere, and Emmental Cheese

Mustafa Çavuş¹*, Mehmet Beykaya²

¹ Kayseri University, Safiye Cikrikcioglu Vocational College, Department of Food Technology, Kayseri, Turkey, (ORCID: 0000-0002-9535-7277), mustafacavus@kayseri.edu.tr
² Republic of Turkey Ministry of Agriculture and Forestry, Ankara, Turkey, (ORCID: 0000-0003-2594-5011), mb-kaya@hotmail.com

(First received 2 February 2022 and in final form 25 March 2022)

(DOI: 10.31590/ejosat.1067172)

Abstract
In the present study, the characteristic features of the cheese known as Kars Gravyer cheese were determined. In addition, some parameters of Gruyere and Emmental cheeses, which are Swiss-type cheeses, were compared to the Kars Gravyer. Swiss Gruyere and Emmental cheeses were supplied from six various places. Also, six Gravyer cheese was obtained from different sales points in Kars. Some physicochemical properties of cheeses were investigated. Average moisture values were found to be the highest in Emmental cheeses, while the lowest was in Gruyere. The fat value was measured highest in Gruyere cheeses and the lowest in Emmental. Average b* values were found to be the highest in Emmental cheeses; therefore, Emmental cheeses had a more yellow appearance than the others. Average hardness values were the highest in Kars Gravyer and the lowest in Gruyere.

Keywords: Gravyer, Swiss Cheeses, Physicochemical properties.
1. Introduction

Gravyer cheese is from raw or pasteurized milk using calf siren and thermophilic starter cultures (propionic acid bacteria). It has medium-sized pores evenly spaced. It ripens for about 12 months and has a strong aroma. Its color is light yellow, and its crust color is golden yellow to brownish (Fernandes R. 2008; Lavanchy and Büntikofer, 1999).

Milk with high-fat contents is used in cheese making. This milk is obtained from Zavot cows, fed with plants with more than a thousand seeds (Koçulu, 2014). Gravyer cheese is a kind of local cheese produced in Turkey. Apart from this, it is a European type of cheese with economic value and is liked by consumers. Due to the increase in demand in the domestic market, its imports and production are increasing day by day. Gravyer cheese is produced in the Eastern Anatolia Region, especially in Kars province and its surroundings, as in other country regions. It is stated that this cheese was brought to Kars by the Russians, and its production was thought (Kurt, 1968). 90% (approximately 214 tons) of Gravyer is produced annually in Kars, Turkey (Anonymous, 2012; Anonymous, 2007b).

Le Gruyère cheese is a hardened cheese traditionally produced from raw milk from cows fed on meadows and pastures in the Alpine region of Switzerland. (Gerz et al., 2007). The origin of Swiss-type cheeses is the Emmen valley in Switzerland. Swiss-type cheeses have round, smooth and medium to large (1-3 cm) pores (Steffen et al., 1993; Fröhlich-Wyder and Bachmann 2007). The authenticity of this cheese, which is known in many countries, varies according to milk. Milk is affected by the country's climate, geology, and flora. The Swiss-type Gruyere cheese is known by the name of the town of Gruyère in Switzerland. It has been produced since the 13th century in the town of Gruyère, northeast of Lake Leman.

Boğatepe Gravyer or Kars Gravére resembles porous Emmental cheese in appearance. Emmental cheese is another type of cheese originating from Switzerland. These two types of cheese differ from each other in terms of taste and production process. Swiss Gruyère cheese is non-porous and salty, while Emmental is porous and less salty (Arıç, 2018). Gravyer cheese has a stronger flavor than Emmental cheese and smaller pores. (İnal and Ergün, 1990; Fox et al., 2004a).

Gravyer cheese is one of the 20 kinds of hard and pored cheese globally. One of the most important features is that its pores are 1.3-1.5 cm in diameter, and these pores are generally 2.5-5 cm apart from each other (Nath and Kostak, 1986). On the other hand, in some studies, it has been stated that the diameters of the pores in Gravyer cheese vary between 0.5-1.3 cm (Kosikowski, 1981).

This study aimed to determine the characteristics of the Kars Gravyer cheese and to compare some parameters with Gruyere and Emmental cheeses, which are Swiss-type cheeses.

2. Material and Method

2.1. Materials

Within the scope of the study, a total of 18 types of cheese were used, including six types of Kars Gravyer cheese, six types of Gruyere cheese, and six types of Emmental cheese. Kars Gravyer cheese was obtained from factories and dairy farms in and around Kars province. Gruyere and Emmental cheeses, Swiss ones, were also obtained from the sales place (Metro A.Ş) with suitable storage conditions (+4 °C). The samples were brought to the 1ğdır University laboratory under cold chain conditions.

2.2. Physicochemical properties

Dry matter analysis of cheeses was made according to Metin and Öztürk (2002). Fat determination in cheese samples was determined using the Gerber method. (Anonymous 1978a). Gravimetric analysis was used to determine the Ash content of the cheeses. Salt analysis was carried out according to the Mohr method (Anonymous, 1978b; Metin and Öztürk 2002). Acidity in the samples was determined as % lactic acid (Kurt et al. 2015).

To determine the pH values of the cheeses, 10 g of grated cheese and 10 ml of distilled water were mixed and homogenized with the help of a homogenizer. The pH of the prepared mixture was measured with a digital pH meter (Kurt et al., 2015). Protein analysis was performed according to the Kjeldahl method (Kurt et al. 2015; Anonymous 2007a). The ratio of water-soluble protein and nitrogen in % was determined by the Micro-Kjeldahl method. The result was multiplied by 6.38 to determine the proportion of water-soluble protein (Kurt et al., 2015).

2.3. Color parameters

The color characteristics of the cheeses were determined with a color determination device (Lovinbond Reflectance Tintometer 962, Canada). Samples were measured light-darkness with L* value (from black (0) to white (100)), green-red color with a* value, and yellow-blue color with b* value (Mitsumoto et al. 2005).

2.4. Textural properties

The textural properties of the cheese samples were determined using the TA.XT Plus Texture Analyzer texture measuring device (McMahon et al., 2009). Samples were cut into 2.0 cm cubes. A 2 cm diameter spherical head was used in the compression. Compression speed was set to 1 mm.sec⁻¹, with a total processing time of 10 sec. The compression process was carried out so that 25% of the original size of the samples was compressed.

2.5. Statistical Analysis

Results of some physicochemical properties of Kars Gravyer, Swiss-Gruyere and Emmental cheese were expressed with the standard normal distribution (Kissell and Poserina, 2017). All analyses were conducted with JMP Pro 15.

3. Results and Discussion

The physicochemical and textural values of Kars Gravyer cheese and Swiss Gruyere and Emmental cheeses were given in Table 1, Table 2, and Table 3.

3.1. Physicochemical measurements

The normal distribution graphs of the moisture, protein, fat, and ash contents of cheese samples were given in Figure 1. Moisture values of Kars Gravyer cheeses were also found to vary between 29.82-33.52% (Table 1). According to TS 2174 (38%), the moisture value of Kars Gravyer cheese was within the standard values. The moisture value of Kars Gravyer cheese was determined by Ulutas et al. (1993), 31.8%, Kamber et al. (2008)
found 19.8%, Topuk, and Sezer (2015) determined the moisture value of gruyer cheese bought from 40 different sales points between 20.37-36.8%, Çetinkaya, and Öz (2018) determined the moisture value of gruyer cheese in their study. The moisture value of Emmental cheeses was found to be between 35.12-40.52% (Table 1). The moisture value of Gruyere cheeses was found to be between 28.80-32.60% (Table 1). Zerfiridis et al. (1984) measured the moisture value of Swiss gruyere cheeses matured for six months between 33.96% and 38.61%. Sabanoğlu (2010) found the moisture value of Emmental cheeses to be 37.40% - 39.26%, and Erol (2014) found the moisture value of Emmental cheeses to be 37.75%.

Table 1. Physicochemical values of Kars Gravyer, Swiss Gruyere, and Emmental cheeses

SAMPLE NO	Ash (550)	pH	Moisture	Acidity	Protein	Salt	Fat	WSN
KG-1	5.13	5.66	29.82	1.16	26.38	2.50	32.25	0.11
KG-2	4.39	5.96	33.52	1.02	28.35	1.65	31.50	0.16
KG-3	4.76	5.61	32.91	1.55	27.69	2.05	31.50	0.16
KG-4	4.53	5.66	32.92	1.57	29.96	1.79	28.75	0.19
KG-5	4.59	5.72	32.45	1.67	28.71	1.78	28.50	0.19
KG-6	4.45	5.64	30.45	1.19	29.06	1.62	30.75	0.20
MEAN	4.64±0.27	5.71±0.13	32.01±1.51	1.36±0.27	28.36±1.23	1.90±0.33	30.54±1.56	0.17±0.03
SE-1	3.83	5.99	36.74	1.23	29.92	1.44	27.25	0.19
SE-2	3.36	5.59	37.28	1.29	29.74	0.68	27.00	0.22
SE-3	3.83	5.86	36.78	1.44	27.93	1.37	28.50	0.18
SE-4	3.79	5.79	35.62	1.03	27.41	1.32	28.50	0.14
SE-5	3.79	5.79	35.12	1.24	26.95	1.00	27.75	0.17
SE-6	4.32	5.93	40.80	1.28	28.26	2.11	26.00	0.18
MEAN	3.82±0.30	5.83±0.14	37.06±2.00	1.25±0.13	28.37±1.22	1.32±0.48	27.50±0.96	0.18±0.03
SG-1	3.94	5.56	32.60	1.68	29.21	1.51	32.50	0.23
SG-2	4.18	5.95	30.41	1.63	29.06	1.81	33.50	0.35
SG-3	4.26	5.96	29.88	1.50	29.71	1.79	33.25	0.25
SG-4	3.58	6.76	29.95	1.56	28.51	1.12	36.00	0.33
SG-5	4.31	6.06	28.08	1.28	30.14	1.88	34.50	0.17
SG-6	4.54	6.05	30.59	1.51	28.96	1.99	34.25	0.18
MEAN	4.14±0.33	6.06±0.39	30.25±1.46	1.53±0.14	29.27±0.58	1.68±0.32	34.00±1.21	0.25±0.07

KG: Kars Gravyer **SE:** Emmental **SG:** Swiss-Gruyere

The pH value of Kars Gravyer cheese was found to be between 5.61 and 5.96 (Table 1). Kamber (2015) found the pH value of Kars Gravyer cheeses to be 5.73-6.82. Topuk and Sezer (2015) found the average pH value of Kars Gravyer cheeses purchased from 40 different sales points to be 6.02. The pH value of Emmental cheeses was found between 5.59-5.99 (Table 1). The pH value of Gruyere cheeses was found to be between 5.56-5.76 (Table 1). Zerfiridis et al. (1984) found the pH value of Swiss gruyere cheeses matured for 6 months between 5.53 and 5. Erol (2014) found the pH value of Emmental cheeses to be 5.33. Sabanoğlu (2010) found the pH value of Emmental cheeses to be between 5.42 and 5.76. It was emphasized that the reason for the different results was the raw material content and cheese culture used.

The average ash value of Kars Gravyer cheese is 4.64. In various studies on Kars Gravyer cheese, the ash value of cheeses was determined as 5.4 by Kamber et al. (2008), 3.95-6.61 by Topuk and Sezer (2015), and 4.94 by Ulutaş et al. (1993). The average ash value of Emmental cheeses was measured as 3.82. The average ash value of Gruyere cheeses was measured as 4.14. Ash values were determined as 3.50 in Emmental cheeses (Langsrud and Reinbold, 1973) and 4.10 in Gruyere cheeses (Kosikowski, 1981).

The acidity value of Kars Gravyer cheese was measured between 1.02-1.67. The acidity value of Kars Gravyer cheese was found to be 1.54 by Kamber et al. (2008) and 1.87 by Ulutas et al. (1993). Çetinkaya and Öz (2018) found the average titration acidity of Gravyer cheese to be 1.12 in their study. They reported that the effect of ripening on titration acidity is significant. Gölgü (2009) found 0.35-0.53% acidity value in fresh and ripened kelle cheese. The acidity value of Emmental cheeses was determined between 1.03 and 1.44 (Table 1). The acidity value of Gruyere cheeses was found between 1.28-1.68 (Table 1).
In this study, the protein value of Kars gravyer cheese was found to be between 26.38-29.96 (Table 1). The protein values of Kars gravyer cheese were found to be 31.3 by Kamber et al (2008), 23.7-33.3 by Topuk and Sezer (2015), 28.95 by Ulutas et al (1993), and 29.65 by Çetinkaya and Öz (2018). The protein value of Emmental cheeses was determined between 26.96-29.92 (Table 1). The protein value of Gruyere cheeses was found to be between 28.51-30.14 (Table 1). Langsrud and Reinbold (1973) determined the protein value of Emmental cheese as 27.50, Kosikowski (1981) determined the protein value of Gruyere cheese as 30.0, and Erol (2014) determined the protein value of Emmental cheese as 27.40. The results of our study show similarities with the studies carried out.

The salt value of Kars gravyer cheese was found to be between 1.62-2.50% (Table 1). In various studies on Kars gravyer cheeses, the salt value of cheeses was determined 11.0 % by Kamber et al (2008), 1.03-5.57 % by Topuk and Sezer (2015), 3.70 % by Ulutas et al (1993), and 1.53% by Çetinkaya and Öz (2018). Grappin et al. (1993) reported that salt concentration is quite effective in forming propionic acid fermentation in Gravyer cheese. At the same time, Huc et al. (2014) found that the number and size of pores decreased as the salt concentration increased. The salt value of Emmental cheeses was measured between 0.68-2.11 (Table 1). The salt value of Gruyere cheeses was found between 1.12-1.99 (Table 1). The salt value in Emmental cheeses was determined as 1.20 by Langsrud and Reinbold (1973) and 2.60 by Erol (2014). Kosikowski (1981) determined the salt value in Gruyere cheese as 1.10 in his study. Our results were slightly lower than the TS2174 (3-10%) Kars gravyer cheese standard. Salt values in various studies on Kars gravyer cheese were slightly higher than our results. This is thought to be due to production differences.

The fat value of Kars gravyer cheese was found to be between 1.62-2.50% (Table 1). In various studies on Kars gravyer cheeses, the salt value of cheeses was determined 11.0 % by Kamber et al (2008), 1.03-5.57 % by Topuk and Sezer (2015), 3.70 % by Ulutas et al (1993), and 1.53% by Çetinkaya and Öz (2018). Grappin et al. (1993) reported that salt concentration is quite effective in forming propionic acid fermentation in Gravyer cheese. At the same time, Huc et al. (2014) found that the number and size of pores decreased as the salt concentration increased. The salt value of Emmental cheeses was measured between 0.68-2.11 (Table 1). The salt value of Gruyere cheeses was found between 1.12-1.99 (Table 1). The salt value in Emmental cheeses was determined as 1.20 by Langsrud and Reinbold (1973) and 2.60 by Erol (2014). Kosikowski (1981) determined the salt value in Gruyere cheese as 1.10 in his study. Our results were slightly lower than the TS2174 (3-10%) Kars gravyer cheese standard. Salt values in various studies on Kars gravyer cheese were slightly higher than our results. This is thought to be due to production differences.

The fat value of Kars gravyer cheese was found to be between 1.62-2.50% (Table 1). In various studies on Kars gravyer cheeses, the salt value of cheeses was determined 11.0 % by Kamber et al (2008), 1.03-5.57 % by Topuk and Sezer (2015), 3.70 % by Ulutas et al (1993), and 1.53% by Çetinkaya and Öz (2018). Grappin et al. (1993) reported that salt concentration is quite effective in forming propionic acid fermentation in Gravyer cheese. At the same time, Huc et al. (2014) found that the number and size of pores decreased as the salt concentration increased. The salt value of Emmental cheeses was measured between 0.68-2.11 (Table 1). The salt value of Gruyere cheeses was found between 1.12-1.99 (Table 1). The salt value in Emmental cheeses was determined as 1.20 by Langsrud and Reinbold (1973) and 2.60 by Erol (2014). Kosikowski (1981) determined the salt value in Gruyere cheese as 1.10 in his study. Our results were slightly lower than the TS2174 (3-10%) Kars gravyer cheese standard. Salt values in various studies on Kars gravyer cheese were slightly higher than our results. This is thought to be due to production differences.
The WSN value of Kars Gravyer cheese was found to be between 0.11-0.20 (Table 1). The WSN value of Emmental cheeses was determined between 0.14-0.22 (Table 1). The WSN value of Gruyere cheeses varied between 0.17-0.35 (Table 1). Çelebi and Şimşek (2020) found the water-soluble nitrogen rates to be 0.48% on the first day and 0.61% at the end of storage. Water-soluble nitrogen contains peptides, free amino acids, and the non-casein fraction of proteins. The formation of water-soluble nitrogen compounds with maturation gives us clues about proteolysis.

3.2. Color measurements

The L* value of Kars Gravyer cheese was found to be between 71.13 and 79.39 (Table 2). The L* value of Emmental cheeses was found to be between 71.02-77.29 (Table 2). The L* value of Gruyere cheeses was found to be between 70.39 and 82.25 (Table 2). It has been determined that Gruyere cheese is brighter than other cheeses, as the L* value shows the degree of black and whiteness. Kavak and Karabıyık (2019) found the L* value of kashar cheese to be between 85.87-87.42 on the first day of storage and between 81.45-83.34 on the end of storage. Metzger et al. (2000) reported that fat globules and casein affect the L* value of cheese. A decrease in L* values at the end of ripening was also reported by Dinkci et al. (2011). This decrease in L* value is due to the Maillard reaction between lactose and proteins.

The a* value of Kars Gravyer cheese was found to be between -3.63 and 24.24 (Table 2). The a* value of Gruyere cheeses was found between -0.35 and 3.32 (Table 2). The a* value of kashar cheeses changed between -14.5 and -3.11 (Table 2). Kavak and Karabıyık (2019) found the a* value of kashar cheese to be between -4.32- -3.11 on the first day of storage and between -4.24- -2.78 at the end of storage. Sahan et al. (2008) reported that the reduced-fat cheese samples had a more greenish hue.

The b* value of Kars Gravyer cheese was found to be between 19.61-26.33 (Table 2). The b* value of Emmental cheeses was found to be between 19.32-28.59 (Table 2). The b* value of Gruyere cheeses was found to be between 19.45-27.71 (Table 2). Emmental cheeses are the cheeses with the highest average b* value. Therefore, these cheeses have a more yellow appearance than others. Kavak and Karabıyık (2019) found the b* value of kashar cheese to be between 9.61-10.21 on the first day of storage and between 11.23-12.60 at the end of storage. At the same time, Buffa et al. (2004) reported that the b* value of cheese increased at the end of storage, so the yellowness of cheese increased with ripening.

3.3. Textural properties

The hardness value of Kars Gravyer cheese was found to be between 3702.33 - 9013.03 g (Table 3).

The hardness value of Emmental cheeses was found between 3163.67-6153.53 g (Table 3). The hardness value of Gruyere cheeses was found to be 2788.33-6974.81 g (Table 3). The hardest one among the cheeses was the sample numbered KG-6. Ozcan et al. (2017) attributed the different textural properties of cheeses to the composition of the milk, heat treatment process, pH, salt content, and different starter cultures in their study. Many researchers have reported that moisture loss, enzymatic activity, and salt content during the ripening stage are effective in the formation of textural features (Fox and Wallace, 1997; Puvacaba et al., 2020). Eroğlu et al. (2015) reported that the hardness values of 30 different fresh kashar cheeses ranged from 34.76 to 112.6 N. Alam et al. (2016) measured the average hardness value of mozzarella cheese as 138.89. They stated that atmosphere packaging types play an important role in the proteolysis and textural properties of mozzarella cheese. Khanal et al. (2018), in their study on kashar cheese, stated that the texture values of cheeses with added sodium alginate were softer than low-fat kashar cheese.

The long ripening period in Gravyer cheese causes the formation of a hard crust. It has been reported by researchers that the moisture content of this type of cheese affects different characteristics of the cheese, such as texture, aroma, and taste (Fox et al., 2004a; Fox et al., 2004b).

It is also known that because of the enzymatic hydrolysis of casein, the hardness value of cheeses decreases with ripening (Eroğlu et al., 2015). The adhesiveness value of Kars Gravyer cheese was found to be between -4.91- -27.28 (Table 3). The adhesiveness value of Emmental cheeses was found between -3.78- -15.85 (Table 3). The adhesiveness value of Gruyere cheeses was found between -9.21- -74.95 (Table 3). Eroğlu et al. (2015) examined 30 different fresh kashar cheeses and found the adhesiveness values of their cheeses between -0.310 and -1.176 Ns. Eroğlu et al. (2015) reported that the adhesiveness values of kashar cheeses changed between -75.00 -61.00 on the first day of storage and -14.50 -5.90 at the end of storage.

The springiness value of Kars Gravyer cheese was found to be between 0.77-0.89 (Table 3). The springiness value of Emmental cheeses was found between 0.78-0.87 (Table 3). The

Table 2. Color values of Kars Gravyer, Swiss Gruyere, and Emmental cheeses

SAMPLE NO	L*	a*	b*
KG-1	79.39	-3.63	24.24
KG-2	74.97	-3.01	23.05
KG-3	76.10	-2.83	24.83
KG-4	71.13	-1.46	19.61
KG-5	76.69	-2.97	26.33
KG-6	74.98	-2.87	22.98
MEAN	75.54±2.70	-2.80±0.72	23.51±2.28
SE-1	72.64	-2.34	24.86
SE-2	75.90	-3.32	27.92
SE-3	77.29	-1.71	21.80
SE-4	76.05	-3.09	28.59
SE-5	71.61	-2.93	24.92
SE-6	71.02	-1.47	19.32
MEAN	74.09±2.65	-2.48±0.76	24.57±3.54

SAMPLE NO	L*	a*	b*
SG-1	77.39	-1.63	21.90
SG-2	82.25	-2.46	27.71
SG-3	76.45	-2.98	25.97
SG-4	70.39	-1.45	19.45
SG-5	79.62	-3.11	26.52
SG-6	76.79	-2.89	24.84
MEAN	77.15±3.96	-2.42±0.72	24.40±3.13

Note: KG: Kars Gravyer SE: Emmental SG: Swiss-Gruyere
The cohesiveness value of Emmental cheeses was found to be between 0.11 and 0.23 (Table 3). The cohesiveness value of Gruyere cheeses was found to be between 0.15 and 0.16 (Table 3). The cohesiveness value of Swiss cheeses was found to be between 0.03 and 0.17 (Table 3).

The gumminess value of Kars Gravyer cheese was found to be between 0.04 and 0.09 (Table 3). The gumminess value of Mozzarella cheese was measured as 0.38. It is known that the decrease in gumminess value changes in direct proportion to the cohesiveness value. Kavak and Karabıyık (2020) found that the gumminess value of kashar cheeses varied between 0.03 and 0.16 (Table 3). The gumminess value of Swiss cheeses was found to be between 0.11 and 0.23 (Table 3).

The chewing values of Kars gravyer cheese were found to be between 214.57 and 1214.57 (Table 3). The chewing values of Emmental cheeses were found to be between 507.33 and 1159.33 (Table 3). Alam et al. (2016) reported that the chewing values of Gruyere cheeses were found to be between 507.33 and 1159.33 (Table 3). The chewing values of Swiss cheeses were found to be between 2517.06 and 6234.37 (Table 3). The chewing values of Emmental cheeses were found to be between 1259.68 and 2648.41 (Table 3). The chewing values of Swiss cheeses were found to be between 214.57 and 1214.57 (Table 3).

Table 3. Textural values of Kars Gravyer, Swiss Gruyere, and Emmental cheeses

SAMPLE NO	Hardness	Adhesiveness	Springiness	Cohesiveness	Gumminess	Chewiness	Resilience
KG-1	8532.44	-17.88	0.82	0.34	1619.48	1214.57	0.09
KG-2	3702.33	-4.91	0.79	0.53	1968.00	1552.33	0.16
KG-3	4033.20	-9.34	0.79	0.36	1461.80	1163.97	0.11
KG-4	7500.04	-19.81	0.77	0.30	2201.00	1708.97	0.05
KG-5	8736.99	-27.28	0.89	0.50	4361.92	3895.13	0.16
KG-6	9013.03	-13.47	0.78	0.35	2230.15	2677.83	0.07
MEAN	6919.67±2420.98	-15.45±7.97	0.81±0.04	0.40±0.09	2307.04±1052.79	2035.47±1062.49	0.11±0.05

SE-1	4940.71	-7.07	0.87	0.42	2045.68	1776.09	0.12
SE-2	3726.00	-3.78	0.84	0.62	2346.67	1961.00	0.23
SE-3	5668.59	-4.20	0.79	0.59	3344.37	2648.41	0.18
SE-4	3163.67	-7.30	0.79	0.63	1989.67	1556.33	0.20
SE-5	6153.53	-5.73	0.83	0.54	3321.19	2780.51	0.12
SE-6	3761.00	-15.85	0.78	0.38	1614.26	1259.68	0.11
MEAN	4568.92±1199.71	-7.32±4.42	0.82±0.04	0.53±0.11	2443.64±727.07	1997.00±604.34	0.16±0.05

SG-1	3514.67	-11.92	0.72	0.41	1462.33	1065.00	0.12
SG-2	6974.81	-74.95	0.62	0.15	1020.02	631.88	0.03
SG-3	3046.33	-9.21	0.70	0.47	1512.67	1051.33	0.15
SG-4	3655.33	-40.39	0.51	0.27	981.33	507.33	0.07
SG-5	2806.00	-19.83	0.79	0.40	1164.50	873.00	0.13
SG-6	2788.33	-28.04	0.81	0.52	1440.00	1159.33	0.17
MEAN	3797.58±1597.58	-30.72±24.46	0.69±0.11	0.37±0.14	1263.48±237.27	881.31±261.57	0.11±0.05

KG: Kars Gravyer SE: Emmental SG: Swiss-Gruyere
4. Conclusions and Recommendations

When the results of the physicochemical analysis were evaluated, the moisture value of the cheeses was found within the standard values. The average protein value of the cheeses was measured the highest in Gruyere cheeses, then in Emmental cheeses, and the lowest in Kars gravyer cheeses. The average salt values of the cheeses were found to be slightly lower than the TS2174 (3-10%) Kars Gravyer cheese standard. The mean L* values of the cheeses were measured the highest in Gruyere cheeses, then in Kars gravyer cheeses, and the lowest in Emmental cheeses. The a* values were highest in Gruyere cheeses, followed by Emmental cheeses, and the lowest in Kars gravyer cheeses. The b* values were highest in Emmental cheeses, followed by Gruyere cheeses, and the lowest in Kars gravyer cheeses. Since the cheeses with the highest average b* values are Emmental cheeses, followed by Gruyere cheeses, and the lowest in Kars gravyer cheeses. The moisture value of the cheeses was found within the standard values. The average fat values of the cheeses were measured the highest in Gruyere cheeses, then in Kars gravyer cheeses, and the lowest in Emmental cheeses. The a* values were highest in Gruyere cheeses, followed by Emmental cheeses, and the lowest in Kars gravyer cheeses. The b* values were highest in Emmental cheeses, followed by Gruyere cheeses, and the lowest in Kars gravyer cheeses. Since the cheeses with the highest average b* values are Emmental cheeses, these cheeses have a more yellow appearance than others. The average hardness value of the cheeses was the hardest sample KG-6.

As a result, it is thought that the data obtained may increase the chance of competing with the world-famous counterparts of Kars Gravyer cheese, such as similar cheese varieties with high economic potential. At the same time, it is thought that it can contribute to the economy of the region and the country.

5. Acknowledge

This study was carried out with the support of Iğdır University Scientific Research Projects Coordinatorship (Project No: 2020-FBE-A05). We would like to thank the Scientific Research Projects Coordinator of Iğdır University for their support.

References

Alam, T., Saha, N. C., Bhardwaj, A., & Goyal, G. K. (2016). Influence of Modified Atmosphere Packaging (MAP) on textural properties of Mozzarella cheese during refrigeration storage. *Asian Journal of Dairy and Food Research*, 35(2), 103-110.

Anonim, 1978a. TS 3046. Peynirde Yağ Miktarı Tayini (Van Gülük Metodu) Türk Standartları Genel Müdürlüğü. Ankara Anonim, 1978b. TS 3043, Peynirde Klorür Miktarı Tayini. Türk Standartları Genel Müdürlüğü, Ankara.

Anonim, 2007a. Gidalarla Ham Protein Tayini. Mesleki Eğitim ve Öğretim Sisteminin Göçefdırılması Projesi. Ankara.

Anonim, 2007b. Düzey İİ Bölgeleri Kalkınma Programı, Pazarlama Araştırmaları, Süt ve Süt Ürünleri TRA2, RD- AKKM.419.TR.

Anonim, 2012. Kars 2012 yılı Süt ve Ürünleri Üretim Yılığı. Kars Tarm İİ Müdurlüğü. Kars

Arnç, K. (2018). Boğatęye Köyü’nde Graver Peyniri üretimi ve sürdürülebilir gelişme bakımdan önemli (Kars/Türkiye). *Türk Coğrafya Dergisi*, (70), 7-18.

Buffa, M., Guamin, B., Saldo, J., & Trujillo, A. J. (2004). Changes in organic acids during ripening of cheeses made from raw, pastureured or high-pressure-treated goats’ milk. *LWT-Food Science and Technology*, 37(2), 247-253. http://dx.doi.org/10.1016/j.lwt.2003.08.006.
Avrupa Bilim ve Teknoloji Dergisi

Huc, D., Roland, N., Grenier, D., Challois, S., Michon, C., & Mariette, F. (2014). Influence of salt content on eye growth in semi-hard cheeses studied using magnetic resonance imaging and CO2 production measurements. *International Dairy Journal*, 35(2), 157-165. http://dx.doi.org/10.1016/j.idairyj.2013.11.010

İnal, T., Ergün, Ö. (1990). *Süt ve Süt Ürünleri Teknolojisi*. Panzehir Yayınları-1, istanbul, T

İnal, T., & Ergün, Ö. (1990). *Süt ve Süt Ürünleri Teknolojisi*. Final Ofset, İstanbul.

Jaster, H., Judacewski, P., Ribeiro, J. C. B., Zielinski, A. A. F., Demiate, O. M., Los, P. R., Alberti, A., & Nogueira, A. (2019). Quality assessment of the manufacture of new ripened soft cheese by Geotrichum candidum: physicochemical and technological properties. *Food Science and Technology*, 39(1), 50-58. http://dx.doi.org/10.1590/fst25717.

Kamber, U. (2015). Traditional Turkey cheeses and their classification. *Van Veterinary Journal*, 26(3), 161-171.

Kamber, U., Elmalı, M., & Yaman, H. (2008). Microbiological and chemical properties of graviere cheeses. *Atatürk Üniversitesi Veteriner Bilimleri Dergisi*, 3(1), 1-7.

Kavak, D. D., & Karabiyik, H. (2019). Quality evaluation of kashar cheese: influence of palm oil and ripening period. *Food Science and Technology*, 40, 354-360.

Khanal, B. K. S., Bhandari, B., Prakash, S., Liu, D., Zhou, P., & Bansal, N. (2018). Modifying textural and microstructural properties of low fat Cheddar cheese using sodium alginate. *Food Hydrocolloids*, 83, 97-108.

Koca, N., & Metin, M. (2004). Textural, melting and sensory properties of low-fat fresh kashar cheeses produced by using fat replacers. *International Dairy Journal*, 14(4), 365-373. http://dx.doi.org/10.1016/j.idairyj.2003.08.006.

Koçulu, İ. (2014). *Alplerden Kaşkılara Kayseri Kıyıkılığı'nın 150 Yıllık Tarihii*. Boğatepe Çevre ve Yaşam Derneği, Tarih Vakfı, İstanbul.

Kosikowski, F. V. (1981). *Cheese and Fermented Milk Foods*. Michigan Edwards, Brothers, Inc., USA.

Kurt, A. (1968). *Erzurum ve Kars İllerinin Genel Sütiçilik Durumları Üzerinde Bir Araştırma*, Atatürk Üniversitesi Ziraat Fak. Ziraat Araştırmaları Enstitüsü Araştırması Bülteni. No: 28. Erzurum.

Kurt, A., Çakmakçı, S., & Çağlar, A. (2015). Süt ve mamuller muayene ve analiz metotları rehberi. Atatürk Üniversitesi Ziraat Fakültesi Yayınları No:252, Erzurum.

Lavanchy, P., Bütkofer, U. (1999). Caractérisation Sensorielle de Fromages à Pâte Dure ou Mi-Dure Fabriqués en Suisse. (Sensory Characterization of Swiss Hard and Semi-Hard Cheeses). *Mitt Lebensmittelunters Hyg 90* (6): 670-683.5

Macman, D.J., Motawee, M.M., And McManus, W.R., 2009. Influence of Brine Concentration and Temperature on Composition, Microstructural and Yield of Feta Cheese. *Journal of Dairy Science*, 92(9):4169-4179

McManus, D. J., Motawee, M. M., & McManus, W. R. (2009). Influence of brine concentration, microstructure, and yield of feta cheese. *Journal of Dairy Science*, 92(9), 4169-4179.

Metin, M. & Öztürk, G. F. (2002). *Süt ve Mamulleri Analiz Yöntemleri*. Ege Üni. Ege Meslek Yüksekokulu Yayınları. Yayın No:24. Bornova, İzmir.

Metzger, L. E., Barbano, D. M., Rudan, M. A., & Kindstedt, P. S. (2000). Effect of milk preacidification on low fat mozzarella cheese. O. Composition and yield. *Journal of Dairy Science*, 83(4), 648-658. http://dx.doi.org/10.3168/jds.S0022-0302(00)74925-3. PMid:10791779.