The Potential Diagnostic and Predictive Role of HbA1c in Diabetic, Septic Patients - a Retrospective Single Center Study

Imre Juhász
University of Debrecen Faculty of Medicine

Janka Juhász
University of Debrecen Faculty of Medicine: Debreceni Egyetem Altalanos Orvostudomanyi Kar

Hajnalka Lőrincz
University of Debrecen Faculty of Medicine

Ildikó Seres
University of Debrecen Faculty of Medicine

Lilla Végh
University of Debrecen Faculty of Medicine

Szilvia Ujfaluşi
University of Debrecen Faculty of Medicine

Mariann Harangi
University of Debrecen Faculty of Medicine: Debreceni Egyetem Altalanos Orvostudomanyi Kar

Zoltán Szabó
University of Debrecen Faculty of Medicine: Debreceni Egyetem Altalanos Orvostudomanyi Kar

György Paragh (✉ paragh@belklinika.com)
University of Debrecen Faculty of Medicine https://orcid.org/0000-0002-6791-3870

Original Research

Keywords: sepsis, diabetes, HbA1c, white blood cell, risk prediction

DOI: https://doi.org/10.21203/rs.3.rs-127448/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Diabetes mellitus is a major risk factor of sepsis. The potential role of hemoglobin A1c (HbA1c) in diabetic, septic patients has not yet been studied.

Results: In our retrospective study we included diabetic, septic patients - in whom the diagnosis of sepsis was based on the Systemic Inflammatory Response Syndrome (SIRS) criteria (112 patients, SIRS group) - who had HbA1c levels measured either in the previous 30 days (SIRS 30d subgroup – 39 patients) or within 24 hours after their Emergency Department admission (SIRS 24h subgroup – 73 patients). We later selected those patients from the SIRS group, whose Sequential Organ Failure Assessment (SOFA) score was ≥ 2 (55 patients, SOFA group) and these patients were also divided based on the time of HbA1c measurement (SOFA 30d subgroup – 21 patients and SOFA 24h subgroup – 34 patients). We analyzed the relationship between laboratory parameters, length of hospital stay and HbA1c. We found a significant positive correlation between glucose and HbA1c, significant negative correlations between white blood cell count (WBC) and glucose, WBC and HbA1c levels in the SIRS 24h and SOFA 24h subgroups. Furthermore there was a significant positive correlation between length of hospital stay and HbA1c in the SIRS 24h subgroup. No significant correlations were found in the SIRS 30d and SOFA 30d subgroups.

Conclusions: Based on our results normal WBC with elevated HbA1c might be considered a positive SIRS criterium in diabetic, SIRS 24h patients. Besides this potential diagnostic role, HbA1c might also be an additional prognostic biomarker in diabetic, SOFA 24h patients.

Background

Sepsis is a potentially life-threatening condition. Its definition keeps on changing as we learn more and more about the underlying pathomechanism of the disease. Before 2016 the Systemic Inflammatory Response Syndrome (SIRS) criteria was used for the diagnosis of sepsis: if at least 2 out of 4 clinical findings were present in a patient with a likely infection the diagnosis of sepsis was confirmed. The SIRS criteria are the following: tachycardia (heart rate > 90), hypothermia/fever (temperature < 36 °C or > 38 °C), hyperventilation/hypocapnia (respiratory rate > 20 or PaCO₂ < 32 mmHg), leukopenia/leukocytosis (white blood cell count < 4,000/mm³ or > 12,000/mm³ or > 10% bands). The definition distinguished sepsis, severe sepsis and septic shock (1–4). In 2016 the definition of sepsis changed once again: the SIRS criteria as well as the definition of severe sepsis were no longer recommended. According to the new definition sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. The Sequential Organ Failure Assessment (SOFA) and the quick SOFA (qSOFA) scores have been introduced (4). The diagnostic algorithm of sepsis has changed: in a patient with a likely infection the use of the quick SOFA score is recommended (it consists of 3 components: systolic blood pressure ≤ 100 mmHg, altered mental status, respiratory rate ≥ 22). According to the new recommendations a positive qSOFA Score (≥ 2 points) should prompt the calculation of the SOFA score to confirm the diagnosis of sepsis. If the qSOFA score is negative (< 2 points) but sepsis is still likely, we should also calculate the SOFA score. In a patient with a negative qSOFA score (< 2 points) and an unlikely infection, sepsis can be excluded. If a patient's SOFA score is ≥ 2 the diagnosis of sepsis is confirmed. The SOFA score consists of the following: platelet count, bilirubin and creatinine levels, mean arterial pressure (MAP) or administration of vasoactive agents, altered mental status (based on the Glasgow Coma Scale) and PaO2/FiO2. Septic shock is a form of sepsis in which particularly profound circulatory, cellular, and metabolic abnormalities are associated with a greater risk of mortality than with sepsis alone. Patients with septic shock can be clinically identified by vasopressor requirement to maintain a MAP of 65 mmHg or greater and serum lactate levels greater than 2 mmol/L in the absence of hypovolemia (4). Lots of studies have been published since 2016 in which the SIRS, qSOFA and SOFA criteria have been compared and data are controversial (5). Some results have shown inferior sensitivity of the qSOFA score compared to the previously favored SIRS criteria in the diagnosis of sepsis (6–9). Partly due to this, the 2016 recommendations are not universally accepted, and many countries still favor the previous diagnostic criteria and therefore the SIRS criteria.

Sepsis is usually bacterial in origin (caused mainly by Gram positive bacteria), however viral and fungal causes could also be in the background (10). Its global incidence is increasing, and it can be as high as 437/100000/year (11). Major risk factors of sepsis include: advanced age (≥ 65 years), previous hospitalization (especially in the previous 90 days, intensive care unit admission, nosocomial infections, community-acquired pneumonia), immunosuppression (e.g. neoplasms, renal failure, liver failure, AIDS, splenectomy) and genetic factors (10, 12–23). Diabetes mellitus, a metabolic disorder which has become a global health burden partly due to its rising incidence, is another major risk factor for sepsis (24). Immune response is severely altered in diabetics: neutrophil chemotaxis, phagocytosis, intracellular bactericide activity, opsonization as well as cell-mediated immunity are all affected (25–29). Therefore, infections are more common in diabetics compared to non-diabetic individuals. Poor glycemic control and hyperglycemia further increases the chance of infections in diabetics (25–29).

Hemoglobin in newly formed red blood cells is minimally glycated. The membrane of circulating red blood cells is permeable to glucose therefore it could be irreversibly attached to hemoglobin in a non-enzymatic way. HbA1c gives us information regarding mean blood glucose concentration over the lifespan of red blood cells (120 days) and its value correlates best with mean blood sugar levels over the previous 8–12 weeks. HbA1c is widely used nowadays to diagnose diabetes and monitor carbohydrate metabolism in diabetics (30–37), however its potential role in diabetic, septic patients has not yet been studied.

Results

Diabetic, septic patients with HbA1c levels measured within 24 hours after emergency department admission

SIRS 24 h patients
SIRS 24 h patients were 72.8 ± 12.7 years old (73 patients, 47 females, 26 males). All our patients were type II diabetics. Anthropometric data, past medical history, anti-diabetic therapy, laboratory parameters of patients as well as length of hospital stay in survivors were summarized in a table (Table 1). We analyzed the relationship between laboratory parameters and HbA1c as well as the correlation between length of hospital stay and HbA1c. Additionally we examined the relationship between leukocyte count and glucose, platelet count and glucose, and length of hospital stay and glucose levels. (Fig. 1). In these patients there was a significant positive correlation between glucose and HbA1c levels (p < 0.001) (Fig. 2/a). We found significant negative correlations between white blood cell count and glucose (p = 0.01) (Fig. 2/b), white blood cell count and HbA1c levels (p = 0.001) (Fig. 2/c). The same correlations were observed in most cases even if patients were divided based on gender, anti-diabetic therapy (oral anti-diabetic agents vs. insulin therapy), age (< 65 yrs vs. ≥65 yrs) and hospitalization in the previous 90 days (Table 2).

Table 1

Criteria	SIRS 24 h group	SOFA 24 h group
Number of patients (n)	73 (47f/26 m)	34 (21f/13 m)
Age (years)	72.8 ± 12.7	73.9 ± 12.3
Type 2 diabetes (n)	73	34
Comorbidities		
Hypertension (n; %)	67 (91.8)	31 (91.2)
Dyslipidemia (n; %)	31 (42.5)	12 (35.3)
IHD/AMI/PCI/CABG (n; %)	32 (43.8)	18 (52.9)
TIA/stroke (n; %)	15 (20.6)	6 (17.7)
Peripheral arterial disease (n; %)	42 (57.5)	18 (52.9)
Chronic kidney disease (n; %)	27 (37.0)	13 (38.2)
Anti-diabetic medications		
Metformin (n; %)	30 (41.1)	11 (32.4)
Sulphonyl urea (n; %)	24 (32.9)	10 (29.4)
DPP4 (n; %)	4 (5.5)	0
Insulin (n; %)	18 (24.7)	11 (32.4)
Laboratory parameters		
Glucose (mmol/l)	11.5 (7.7–16.3)	12.05 (8.5–19.2)
HbA1C (%)	7.47 ± 1.8	7.26 ± 1.9
Urea (mmol/l)	8.4 (6-12.3)	9.85 (6.2–19.4)
Creatinine (µmol/l)	99 (77–137)	118 (95–172)
Glomerular filtration rate (ml/min*1.73 m²)	52 (38–75)	42 (27–61)
C-reactive protein (mg/l)	77 (21-151.5)	108 (21.3-246.3)
AST (U/L)	21 (17-33.5)	25 (16–42)
GGT (U/L)	35 (21–69)	40 (16–124)
ALT (U/L)	21 (14–32)	21 (14–37)
Total bilirubin (µmol/l)	10 (6.5–17.4)	11.2 (6.3–33.6)
White blood cell count (G/L)	15.8 ± 6.1	17.3 ± 7.3
Red blood cell count (T/L)	4.3 ± 0.7	4.3 ± 0.7
Hemoglobin concentration (g/l)	129.8 ± 22.3	133.8 ± 19.4
Thrombocyte (G/L)	252.6 ± 76.9	251.0 ± 92.8
Length of hospital stay (day)	8 (6-11.5)	8 (7-11.5)
Table 2
Correlations between various laboratory parameters in subgroups of diabetic, SIRS 24 h septic patients. Abbreviations: CRP, C-reactive protein; HbA1c, hemoglobin A1c; LOS, length of stay in survivors; RBC, red blood cell; THR, thrombocyte; WBC, white blood cell.

n	glucose vs. HbA1c	urea vs. HbA1c	creatinine vs. HbA1c	CRP vs. HbA1c	bilirubin vs. HbA1c	WBC vs. glucose	WBC vs. HbA1c	RBC vs. glucose	RBC vs. HbA1c	THR vs. HbA1c	LOS vs. HbA1c	LOS vs. glucose	LOS vs. WBC
All	73	r = 0.74	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
		p < 0.001				r = 0.29	ns	ns	ns	ns	ns	ns	ns
						p = 0.01	ns	ns	ns	ns	ns	ns	ns
						r = 0.37	ns	ns	ns	ns	ns	ns	ns
						p = 0.001	ns	ns	ns	ns	ns	ns	ns
males	26	r = 0.84	ns	ns	ns	r = 0.43	ns	r = 0.48	ns	r = 0.46	ns	ns	ns
		p < 0.001				p = 0.05	ns	p = 0.01	ns	p = 0.02	ns	ns	ns
females	47	r = 0.70	ns	ns	ns	r = 0.28	ns	r = 0.32	ns	r = 0.35	ns	ns	ns
		p < 0.001				p = 0.05	ns	p = 0.02	ns	p = 0.01	ns	ns	ns
non-insulin	53	r = 0.76	ns	ns	ns	r = 0.28	ns	r = 0.35	ns	r = 0.39	ns	ns	ns
		p < 0.001				p = 0.04	ns	p = 0.01	ns	p = 0.01	ns	ns	ns
insulin	18	r = 0.69	ns	ns	ns	r = 0.52	ns	ns	ns	r = 0.57	ns	ns	p = 0.02
		p = 0.001				p = 0.03	ns	ns	ns	p = 0.02	ns	ns	ns
under 65 yrs	17	r = 0.87	ns	ns	ns	r = 0.53	ns	ns	ns	ns	ns	ns	ns
		p < 0.001				p = 0.03	ns	ns	ns	ns	ns	ns	ns
over 65 yrs	56	r = 0.70	ns	ns	ns	r = 0.28	ns	r = 0.33	ns	ns	ns	ns	ns
		p < 0.001				p = 0.04	ns	p = 0.01	ns	ns	ns	ns	ns
Not stay within 90 days	66	r = 0.77	ns	ns	ns	r = 0.32	ns	r = 0.38	ns	ns	ns	ns	ns
		p < 0.001				p = 0.01	ns	p = 0.001	ns	ns	ns	ns	ns
Stay within 90 days	7	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns

SOFA 24 h patients

34 type II diabetic, septic patients were in the SOFA 24 h group (21 females, 13 males, age: 74 ± 12.3 years). Anthropometric data, past medical history, anti-diabetic therapy, laboratory parameters of patients as well as length of hospital stay in survivors were summarized in a table (Table 1). We also analyzed the relationship between laboratory parameters and HbA1c as well as the correlation between length of hospital stay and HbA1c. Additionally we examined the relationship between leukocyte count and glucose, platelet count and glucose, and length of hospital stay and glucose levels. There was a significant positive correlation between glucose and HbA1c levels in the SOFA 24 h group, similarly to the one we found in SIRS 24 h patients (p < 0.001) (Fig. 3/a). We also found significant negative correlations between white blood cell count and glucose (p = 0.02) (Fig. 3/b) and white blood cell count and HbA1c levels in SOFA 24 h patients (p = 0.02) (Fig. 3/c). Additionally, there was a significant positive correlation between HbA1c levels and length of hospital stay in survivors (p = 0.01) (data not shown). The previous correlations in the SOFA 24 h group were observed in most cases even if patients were divided based on gender, anti-diabetic therapy (oral anti-diabetic agents vs. insulin therapy), age (< 65 yrs vs. ≥ 65 yrs) and hospitalization in the previous 90 days (Table 3).
Table 3
Correlations between various laboratory parameters in subgroups of diabetic, SOFA 24 h septic patients. Abbreviations: CRP, C-reactive protein; HbA1c, hemoglobin A1c; LOS, length of stay in survivors; RBC, red blood cell; THR, thrombocyte; WBC, white blood cell.

n	glucose vs. HbA1c	urea vs. HbA1c	creatinine vs. HbA1c	CRP vs. glucose	CRP vs. HbA1c	bilirubin vs. glucose	bilirubin vs. HbA1c	WBC vs. glucose	WBC vs. HbA1c	RBC vs. glucose	RBC vs. HbA1c	THR vs. HbA1c	LOS vs. glucose	LOS vs. HbA1c	LOS vs. WBC
All	34	r = 0.80	ns	ns	ns	r = 0.39	ns	ns	ns	r = 0.45	ns	r = 0.57	ns	ns	ns
		p = 0.001	ns	ns	ns	p = 0.02	ns	ns	ns	p = 0.01	ns	p = 0.001	ns	ns	ns
males	13	r = 0.95	ns	ns	ns	r = 0.59	ns	ns	ns	r = 0.62	ns	r = 0.72	ns	ns	ns
		p = 0.001	ns	ns	ns	p = 0.05	ns	ns	ns	p = 0.02	ns	p = 0.001	ns	ns	ns
females	21	r = 0.73	ns	ns	ns	ns	ns	ns	ns	r = 0.58	ns	r = 0.65	ns	ns	ns
		p = 0.001	ns	ns	ns	ns	ns	ns	ns	p = 0.01	ns	p = 0.05	ns	ns	ns
non-insulin	22	r = 0.82	ns	ns	ns	r = 0.42	ns	ns	ns	r = 0.56	ns	r = 0.43	ns	ns	ns
		p = 0.001	ns	ns	ns	p = 0.05	ns	ns	ns	p = 0.01	ns	p = 0.01	ns	ns	ns
insulin	11	r = 0.79	ns	ns	ns	ns	ns	ns	ns	r = 0.67	ns	r = 0.65	ns	ns	ns
		p = 0.005	ns	ns	ns	ns	ns	ns	ns	p = 0.05	ns	p = 0.04	ns	ns	ns
under 65 yrs	7	r = 0.84	ns	ns	ns	r = 0.80	ns	ns	ns	r = 0.82	ns	r = 0.91	ns	ns	ns
		p = 0.02	ns	ns	ns	p = 0.03	ns	ns	ns	p = 0.02	ns	p = 0.004	ns	ns	ns
over 65 yrs	27	r = 0.80	ns	ns	ns	r = 0.43	ns	ns	ns	r = 0.45	ns	r = 0.55	ns	ns	ns
		p = 0.001	ns	ns	ns	p = 0.02	ns	ns	ns	p = 0.02	ns	p = 0.004	ns	ns	ns
Not stay within 90 days	29	r = 0.80	ns	ns	ns	r = 0.43	ns	ns	ns	r = 0.62	ns	r = 0.73	ns	ns	ns
		p = 0.001	ns	ns	ns	p = 0.02	ns	ns	ns	p = 0.001	ns	p = 0.001	ns	ns	ns
Stay within 90 days	5	r = 0.96	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
		p = 0.01	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns

Diabetic, septic patients with HbA1c levels measured in the previous 30 days before their emergency department admission

SIRS 30d and SOFA 30d patients

There were 39 diabetic, septic patients in the SIRS 30d group. We studied the same correlations that were previously examined in the SIRS 24 h group. We did not find any significant correlation in this population even if we later selected and examined patients whose SOFA score was positive (≥ 2) (SOFA 30d group, 21 patients) (data not shown).

Discussion

This is the first study to evaluate the potential role of HbA1c in diabetic, septic patients. In SIRS 24 h patients we found a significant positive correlation between glucose and HbA1c levels, while significant negative correlations were observed between white blood cell count and glucose, white blood cell count and HbA1c. Correlations were observed even if patients were divided based on gender, anti-diabetic therapy (oral anti-diabetic agents vs. insulin therapy), age (< 65 yrs vs. ≥ 65 yrs) and hospitalization in the previous 90 days. One possible explanation behind the observed negative correlations between white blood cell count and glucose, white blood cell count and HbA1c is glucose toxicity, a phenomenon previously described in pancreatic beta cells (38–40). According to this, HbA1c levels reflect the average blood glucose levels over the previous 30 days, which may explain the observed correlations. Further studies are needed to confirm these findings in a larger cohort of diabetic, septic patients.
to previous studies, hyperglycemia in diabetic patients increases oxidative stress and induces glucose-induced apoptosis mainly in metabolically active cells (e.g. white blood cells in sepsis), resulting in cell death. There are some diabetic, septic patients - in whom sepsis is diagnosed based on the SIRS criteria - whose white blood cell count is normal, despite being septic. These diabetic, septic patients with normal white blood cell counts (WBC count between 4–12 × 10⁹/l) have higher HbA1c levels. This observation is crucial as white blood cell count is an important part of the SIRS criteria (positive criterion: white blood cell count < 4,000/mm³ or > 12,000/mm³ or > 10% bands). It may occur in diabetic, septic patients - in whom diagnosis is based on the SIRS criteria - that white blood cell count is normal (between 4–12 × 10⁹/l) and there is only one other positive SIRS criterion (heart rate > 90, temperature < 36 °C or > 38 °C, respiratory rate > 20 or PaCO₂ < 32 mmHg). According to the definition of sepsis - based on the SIRS criteria - these patients are not septic however the potential life-threatening immune processes might have already started. HbA1c - based on the negative correlation found between white blood cell count and HbA1c levels - can be a useful tool in finding these patients: in diabetic patients, normal white blood cell count (4–12 × 10⁹/l) with elevated HbA1c levels should be considered a positive SIRS criterion. Therefore HbA1c - measured within 24 hours after admission (preferably upon arrival) - could turn out to be an efficient way to identify these diabetic, septic patients early and initiate sepsis treatment accordingly. Further, large, multi-centric studies are needed to confirm our hypothesis.

In the SOFA 24 h group we found a significant positive correlation between glucose and HbA1c levels, significant negative correlations between white blood cell count and glucose, white blood cell count and HbA1c. We also found a significant positive correlation between length of hospital stay and HbA1c levels in survivors. A significant negative correlation was observed between white blood cell count and HbA1c in SOFA 24 h diabetic, septic patients similarly to the SIRS 24 h group. However as white blood cell count is not a SOFA criterion this correlation and therefore the possible early diagnostic potential of HbA1c is not that significant in SOFA patients. On the other hand - as there was a significant positive correlation between length of hospital and HbA1c levels in survivors - HbA1c may be a significant prognostic tool in diabetic, septic patients in whom the diagnosis is based on the SOFA criteria.

We did not find any significant correlation in SIRS 30d patients. Previous studies found no significant difference between HbA1c levels measured on admission and 30 days earlier in critically ill patients (41). Based on this the same correlations we found in SIRS 24 h patients should have been observed in SIRS 30d patients. A possible explanation for this difference is that HbA1c in our study was measured within 30 days prior to these patient's emergency department admission, and not 30 days prior exactly, and HbA1c measured on admission correlates better with glucose concentration of the previous weeks. We did not find any significant correlation in the SOFA 30d group either.

Some limitations must be noted. Despite our significant correlations, enrolment of a larger population might increase the statistical power. Additionally, HbA1c levels strongly depend on the turnover of red blood cells: slow turnover (e.g. iron, vitamin B12, or folate deficiency anemias) often results in higher, whereas fast turnover (e.g. hemolytic anemia, erythropoietin therapy) in lower HbA1c levels (30–37). Due to metabolic changes and erythropoietin treatment in patients with end-stage renal failure HbA1c levels are often altered (30, 32–37). Therefore, all patients with the above mentioned disorders have been excluded from the study. Furthermore, according to some studies HbA1c levels vary among different racial and ethnic groups (higher levels in Afro-Americans and Asians). (37). We enrolled only Caucasian patients.

Conclusion

Based on our results we can conclude that even normal white blood cell count could be abnormal in diabetic, septic patients in whom the diagnosis is based on the SIRS criteria if an elevated HbA1c level is measured within 24 hours after admission (preferably upon arrival). Therefore, in these patients normal white blood cell count (4–12 × 10⁹/l) with elevated HbA1c levels could be considered a positive SIRS criterion.

In diabetic, septic patients, in whom the diagnosis of sepsis is based on the SOFA score and HbA1c is measured within 24 hours after admission (preferably upon arrival), HbA1c could be an important prognostic tool as there is a significant positive correlation between HbA1c levels and length of hospital stay in survivors.

Futher studies focusing on the possible diagnostic and prognostic role of HbA1c in diabetic, septic patients are needed to verify our data.

Methods

We collected all cases from the Department of Emergency Medicine and later Emergency Clinic at the University of Debrecen, between 1st January 2017 and 31st December 2018 (27737 patients, 42766 cases). First, we selected patients who had their HbA1c measured in the study period (3743 patients) and later from these patients we collected those diabetic, septic patients who had HbA1c levels measured either in the previous 30 days or within 24 hours after their Emergency Department admission. Sepsis was diagnosed based on the SIRS criteria. Patients with autoimmune disease, end-stage renal failure, liver cirrhosis and active cancer were excluded from our study. As HbA1c levels highly depend on the turnover of red blood cells, patients with iron, vitamin B12, and folate deficiency anemias were also excluded. Exclusion criteria also included erythropoietin therapy and hemolytic anemia for the previous reason. This way 112 diabetic, septic patients were included in our study (SIRS group) from whom 39 had HbA1c measured in the previous 30 days (SIRS 30d subgroup) and 73 within 24 hours after their Emergency Department admission (SIRS 24 h subgroup). The past medical history (type of diabetes mellitus and date of diagnosis, hypertension, dyslipidemia, ischemic heart disease, previous myocardial infarction, percutaneous coronary intervention, coronary artery bypass grafting surgery, transient ischemic attack, stroke, peripheral arterial disease, chronic renal failure), anti-diabetic therapy (metformin, sulfonylureas, dipeptidyl peptidase-4 inhibitors, other oral anti-diabetic agents, insulin), laboratory results (arterial blood gas results, urea and electrolytes, glucose levels, liver function tests, pancreatic enzymes, C-reactive protein - CRP, procalcitonin - PCT, albumin, full blood count), HbA1c levels and time of measurement, SIRS and SOFA scores, microbiological results, type of infection, length of hospital stay and mortality data of all patients were collected. Most laboratory parameters - with sometimes the exception of HbA1c - were measured upon arrival.
We later selected those patients from the SIRS group, whose SOFA score was ≥ 2 (55 patients, SOFA group). Patients from the SOFA group were also divided into subgroups based on the time of measurement of HbA1c (patients with HbA1c measured in the previous 30 days - SOFA 30d subgroup vs. patients with HbA1c measured within 24 hours after their Emergency Department admission - SOFA 24 h subgroup) (Fig. 1.)

The STATISTICA 13.7 (TIBCO INC. USA) software was used for data analysis. Results were either given as mean +/- standard deviation or median (lower and upper quartile), respectively. We used Pearson's correlation for finding significant relationships (in case of significant correlations p was < 0.05).

Abbreviations

CRP: C-reactive protein
HbA1c: hemoglobin A1c
MAP: mean arterial pressure
PCT: procalcitonin
qSOFA: quick SOFA
SIRS: Systemic Inflammatory Response Syndrome
SOFA: Sequential Organ Failure Assessment
WBC: white blood cell count

Declarations

Ethics approval and consent to participate

The work is conform to the guiding principles of the Declaration of Helsinki, and our study subjects gave informed consent of a study that has been approved by the Institutional Committee on Human Research at our institution.

Consent for publication

Not applicable.

Availability of data and materials

All data generated or analyzed during this study are included in this published article. All data generated or analyzed during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors report no conflict of interest.

Funding

The work is supported by the National Research, Development and Innovation Office – NKFIH, grant number: K115723 and by the GINOP-2.3.2-15-2016-00005 project.

The GINOP project is co-financed by the European Union under the European Regional Development Fund.

Authors' contributions

Design: I. Juhász, G. Paragh
Collection of data: I. Juhász, J. Juhász, L. Végh, S. Ujfalusi
Analysis and/or interpretation of data: H. Lőrincz, I. Seres
Writing (not revising) all or sections of the manuscript: I. Juhász, M. Harangi
Manuscript review: G. Paragh, Z. Szabó

Acknowledgements

The authors are also thankful for the contribution of Lilla Kovács, Tünde Adamecz, Árpád Badics and Tamás Tornai in this study.

References
1. American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference: definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med. 1992;20(6):864-74.
2. Levy MM, Fink MP Marshall JC, Abraham E, Angus D, Cook D, et al. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med. 2003;31(4):1250-6.
3. Annane D, Bellissant E, Cavaillon JM. Septic shock. Lancet. 2005;365(9453):63-78.
4. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315(8):801-10.
5. Franchini S, Scarallo L, Carluccii M, Cabrini L, Tresoldi M. SIRS or qSOFA? Is that the question? Clinical and methodological observations from a meta-analysis and critical review on the prognostication of patients with suspected sepsis outside the ICU. Intern Emerg Med. 2019;14(4):593-602.
6. Serafim R, Gomes JA, Salluh J, Póvoa P. A Comparison of the Quick-SOFA and Systemic Inflammatory Response Syndrome Criteria for the Diagnosis of Sepsis and Prediction of Mortality: A Systematic Review and Meta-Analysis. Chest. 2018;153(3):646-55.
7. Song JU, Sin CK, Park HK, Shim SR, Lee J. Performance of the quick Sequential (sepsis-related) Organ Failure Assessment score as a prognostic tool in infected patients outside the intensive care unit: a systematic review and meta-analysis. Crit Care. 2018;22(1):28.
8. Jiang J, Yang J, Mei J, Jin Y, Lu Y. Head-to-head comparison of qSOFA and SIRS criteria in predicting the mortality of infected patients in the emergency department: a meta-analysis. Scand J Trauma Resusc Emerg Med. 2018;26(1):56.
9. Khwannimit B, Bhurayanontchai R, Vattanavanit V. Comparison of the performance of SOFA, qSOFA and SIRS for predicting mortality and organ failure among sepsis patients admitted to the intensive care unit in a middle-income country. J Crit Care. 2018;44:156-60.
10. Sands KE, Bates DW, Lanken PN, Graman PS, Hibberd PL, Kahn KL, et al. Epidemiology of sepsis syndrome in 8 academic medical centers. JAMA. 1997;278(3):234-40.
11. Fleischmann C, Scherag A, Adhikari NK, Hartog CS, Tsaganos T, Schlattmann P, et al. Assessment of Global Incidence and Mortality of Hospital-treated Sepsis. Current Estimates and Limitations. Am J Respir Crit Care Med. 2016;193(3):259-72.
12. Bone RC, Fisher CJ, Clermont G, Metz CA, Balk RA. A controlled clinical trial of high-dose methylprednisolone in the treatment of severe sepsis and septic shock. N Engl J Med. 1987;317(11):653-8.
13. Ziegler EJ, Fisher CJ, Sprung CL, Straube RC, Sadoff JC, Foulke GE, et al. Treatment of gram-negative bacteremia and septic shock with HA-1A human monoclonal antibody against endotoxin. A randomized, double-blind, placebo-controlled trial. The HA-1A Sepsis Study Group. N Engl J Med. 1991;324(7):429-36.
14. Abraham E, Wunderink R, Silverman H, Perl TM, Nasraway S, Levy H, et al. Efficacy and safety of monoclonal antibody to human tumor necrosis factor alpha in patients with sepsis syndrome. A randomized, controlled, double-blind, multicenter clinical trial. TNF-alpha MAb Sepsis Study Group. JAMA. 1995;272(12):934-41.
15. Dhainaut JF, Vincent JL, Richard C, Lejeune P, Martin C, Fierobe L, et al. CDP571, a humanized antibody to human tumor necrosis factor-alpha: safety, pharmacokinetics, immune response, and influence of the antibody on cytokine concentrations in patients with septic shock. CPD571 Sepsis Study Group. Crit Care Med. 1995;23(9):1461-9.
16. Jones GR, Lowes JA. The systemic inflammatory response syndrome as a predictor of bacteraemia and outcome from sepsis. QJM. 1996;89(7):515-22.
17. Dremsizov T, Clermont G, Kellum JA, Kalissant KS, Fine MJ, Angus DC. Severe sepsis in community-acquired pneumonia: when does it happen, and do systemic inflammatory response syndrome criteria help predict course? Chest. 2006;129(4):968-78.
18. Martin GS, Mannino DM, Moss M. The effect of age on the development and outcome of adult sepsis. Crit Care Med. 2006;34(1):15-21.
19. Prescott HC, Dickson RP, Rogers MA, Langa KM, Iwashyna TJ. Hospitalization Type and Subsequent Severe Sepsis. Am J Respir Crit Care Med. 2015;192(5):581-8.
20. Netea MG, van der Meer JW. Immunodeficiency and genetic defects of pattern-recognition receptors. N Engl J Med. 2011;364(1):60-70.
21. Vincent JL, Bihari DJ, Suter PM, Bruning HA, White J, Nicolas-Chanoin MH, et al. The prevalence of nosocomial infection in intensive care units in Europe. Results of the European Prevalence of Infection in Intensive Care (EPIC) Study. EPIC International Advisory Committee. JAMA. 1995;274(8):639-44.
22. Falagas ME, Kompoti M. Obesity and infection. Lancet Infect Dis. 2006;6(7):438-46.
23. Williams MD, Braun LA, Cooper LM, Johnston J, Weiss RV, Qualy RL, et al. Hospitalized cancer patients with severe sepsis: analysis of incidence, mortality, and associated costs of care. Crit Care. 2004;8(5):R291-8.
24. Xu G, Liu B, Sun Y, Du Y, Nsetseelaar LG, Hu FB, et al. Prevalence of diagnosed type 1 and type 2 diabetes among US adults in 2016 and 2017: population based study. BMJ. 2018;362:k1497.
25. Geerlings SE, Hoepelman AI. Immune dysfunction in patients with diabetes mellitus (DM). FEMS Immunol Med Microbiol. 1999;26(3-4):259-65.
26. Carey IM, Critchley JA, DeWilde S, Harris T, Hosking FJ, Cook DG. Risk of Infection in Type 1 and Type 2 Diabetes Compared With the General Population: A Matched Cohort Study. Diabetes Care. 2018;41(3):513-21.
27. Fahey TJ, Sadaty A, Jones WG, Barber A, Smoller B, Shires GT. Diabetes impairs the late inflammatory response to wound healing. J Surg Res. 1991;50(4):308-13.
28. Grossmann V, Schmitt VH, Zeller T, Panova-Noeva M, Schulz A, Laubert-Reh D, et al. Profile of the Immune and Inflammatory Response in Individuals With Prediabetes and Type 2 Diabetes. Diabetes Care. 2015;38(7):1356-64.
29. Estrada CA, Young JA, Nifong LW, Chitwood WR. Outcomes and perioperative hyperglycemia in patients with or without diabetes mellitus undergoing coronary artery bypass grafting. Ann Thorac Surg. 2003;75(5):1392-9.

30. Rolhifing CL, Wiedmeyer HM, Little RR, England JD, Tennill A, Goldstein DE. Defining the relationship between plasma glucose and HbA(1c): analysis of glucose profiles and HbA(1c) in the Diabetes Control and Complications Trial. Diabetes Care. 2002;25(2):275-8.

31. Nathan DM, Turgeon H, Regan S. Relationship between glycated haemoglobin levels and mean glucose levels over time. Diabetologia. 2007;50(11):2239-44.

32. Panzer S, Kronik G, Lechner K, Bettelheim P, Neumann E, Dudczak R. Glycosylated hemoglobins (GHB): an index of red cell survival. Blood. 1982;59(6):1348-50.

33. Brown JN, Kemp DW, Brice KR. Class effect of erythropoietin therapy on hemoglobin A(1c) in a patient with diabetes mellitus and chronic kidney disease not undergoing hemodialysis. Pharmacotherapy. 2009;29(4):468-72.

34. Ng JM, Cooke M, Bhandari S, Atkin SL, Kilpatrick ES. The effect of iron and erythropoietin treatment on the A1C of patients with diabetes and chronic kidney disease. Diabetes Care. 2010;33(11):2310-3.

35. Roberts WL, Safar-Pour S, De BK, Rolhifing CL, Weykamp CW, Little RR. Effects of hemoglobin C and S traits on glycohemoglobin measurements by eleven methods. Clin Chem. 2005;51(4):776-8.

36. Saaddine JB, Fagot-Campagna A, Rola D, Narayan KM, Geiss L, Eberhardt M, et al. Distribution of HbA(1c) levels for children and young adults in the U.S.: Third National Health and Nutrition Examination Survey. Diabetes Care. 2002;25(8):1326-30.

37. Herman WH, Ma Y, Uwaifo G, Haffner S, Kahn SE, Horton ES, et al. Differences in A1C by race and ethnicity among patients with impaired glucose tolerance in the Diabetes Prevention Program. Diabetes Care. 2007;30(10):2453-7.

38. Kaneto H. Pancreatic β-cell glucose toxicity in type 2 diabetes mellitus. Curr Diabetes Rev. 2015;11(1):2-6.

39. Robertson RP, Harmon J, Tran PO, Tanaka Y, Takahashi H. Glucose toxicity in beta-cells: type 2 diabetes, good radicals gone bad, and the glutathione connection. Diabetes. 2003;52(3):581-7.

40. Hall E, Dekker Nitert M, Volkov P, Malmgren S, Mulder H, Bacos K, et al. The effects of high glucose exposure on global gene expression and DNA methylation in human pancreatic islets. Mol Cell Endocrinol. 2018;472:57-67.

41. Luethi N, Cioccari L, Tanaka A, Kar P, Giersch E, Deane AM, et al. Glycated Hemoglobin A1c Levels Are Not Affected by Critical Illness. Crit Care Med. 2016;44(9):1692-4.