Ambient Air Pollution and Stroke

Petter L. Ljungman, MD, PhD; Murray A. Mittleman, MD, DrPH

Stroke is a leading cause of death in the United States and worldwide and may lead to considerable neurological sequelae including aphasia, paraplegia, and dementia. The estimated healthcare costs of stroke in the United States exceed $36 billion per year. A large body of evidence supports the association between ambient air pollution exposure and increased cardiovascular mortality and morbidity, but only recently have several studies specifically demonstrated an association with increased stroke risk.

Background

Major sources of air pollution include traffic, power plants, and in developing countries, biomass combustion. Both particles and gases are emitted through combustion. Particulate matter with aerodynamic diameter <10 μm (PM_{10}) include ultrafine particles (PM_{0.02}), fine particles (PM_{2.5}), and coarse particles (PM_{10,2.5}). Ultrafine particles are emitted in fresh exhaust and coalesce into PM_{2.5} within a short time frame. PM_{2.5} includes both local sources from traffic emissions and domestic heating and regional sources from power plants, biogenic emissions, and traffic, whereas coarse particles are a heterogeneous mixture that include road dust, endotoxins, and suspended crustal matter. CO, NO, NO_{2}, SO_{2}, and ground-level ozone (O_{3}) are gaseous pollutants emitted as a result of combustion processes. CO is mainly attributed to mobile sources in urban environments, and NO_{x} and NO_{2} are rapidly formed in emissions from combustion sources such as traffic and power plants. The main source of SO_{2} is from fossil fuel power plants. Ground-level O_{3} is formed as a result of atmospheric reactions of NO_{x} with hydrocarbons in the presence of sunlight and is a major constituent of photochemical smog. Several of the mentioned pollutants are regulated based on evidence of adverse health effects. Possible mechanistic pathways including induction of oxidative stress, inflammation, atherosclerosis, and autonomic dysregulation have been outlined in detail and are beyond the scope of the current review.

This review aims to assess the current evidence on the association of air pollution exposure with incidence of ischemic and hemorrhagic stroke considering long-term and short-term exposure to ambient pollutants.

Long-Term Air Pollution Exposure

Most studies of long-term exposure to air pollution and stroke outcomes have used estimates of exposure at residential address in months to years as a proxy for long-term accumulated individual exposure. Exposure has then been assessed using residential distance to major roadways, measurements from closest available fixed monitor, or advanced modeling of pollutants combining fixed monitoring measurements with land-use data, emissions databases, traffic density counts, and meteorology incorporated into geographical information systems. These geographical information system models can also include population-based data such as average income level and average smoking prevalence.

Long-Term Air Pollution Exposure and Stroke Mortality

Studies considering long-term exposure to air pollution and stroke mortality have reported that living in areas with higher ambient pollution is associated with higher risk of stroke mortality (Table 1). Studies from the United Kingdom and Northwest Florida contained large administrative databases with cause of death, residence, sex, and area-based data such as socioeconomic status, urbanization, smoking prevalence, and greenness. Living near a main road, traffic sources, point sources of emissions, or higher modeled exposure to PM_{2.5}, CO, and NO_{2} were all associated with stroke mortality. Several cohort studies have also studied the association between long-term exposure to air pollution and stroke mortality. These studies have more detailed individual-level data that improve the ability to adjust for potential confounders that may influence the place of residence and the risk of stroke mortality. Strongest associations were reported in the prospective Women’s Health Initiative cohort that included well-validated outcome assessment. In the Californian residents of the American Cancer Society cohort study, associations were reported for NO_{2} and any stroke mortality and borderline significant associations for PM_{10}. In the California Teachers Study, however, higher long-term PM_{2.5} exposure was not associated with cerebrovascular mortality. In 232 rural districts of Japan, including 250 stroke

Table 1. Studies from the United Kingdom and Northwest Florida.

Study	Country	Exposure Assessment	Findings
UK	Regional	Residential distance	PM_{2.5}, CO, NO_{2} associated with stroke mortality
NC	Administrative	Land-use data	PM_{2.5}, CO, NO_{2} associated with stroke mortality

Table 2. Studies from the United States.

Study	Region	Exposure Assessment	Findings
CA	Rural	Residential distance	PM_{2.5} not associated with cerebrovascular mortality

Received June 18, 2014; final revision received September 17, 2014; accepted September 18, 2014.

From the Department of Medicine Cardiovascular Epidemiology Research Unit, Cardiovascular Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (P.L.L., M.A.M.); and Unit of Environmental Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden (P.L.L.).

The online-only Data Supplement is available with this article at http://stroke.ahajournals.org/lookup/suppl/doi:10.1161/STROKEAHA.114.003130.DC1.

Correspondence to Murray A. Mittleman, MD, DrPH, Cardiovascular Epidemiology Research Unit, Cardiovascular Division, Beth Israel Deaconess Medical Center, 375 Longwood Ave, 4th Floor Suite 440, Boston, MA 02215-5395. E-mail mmittlema@bidmc.harvard.edu

Stroke is available at http://stroke.ahajournals.org

DOI: 10.1161/STROKEAHA.114.003130
deaths, higher long-term PM\(_{10}\) exposure was not associated with stroke mortality. Specific characterization of stroke into types and subtypes was available in 2 studies: in Shizuoka, Japan\(^{13}\) and in Denmark. \(^8\) Yorifuji et al\(^{13}\) reported associations between NO\(_2\) and mortality from ischemic stroke and intracerebral hemorrhage but not subarachnoid hemorrhage. Andersen et al\(^{8}\) reported borderline significant associations between long-term NO\(_2\) exposure and ischemic stroke but not hemorrhagic strokes and did not further subtype hemorrhagic strokes.

Long-Term Air Pollution Exposure and Hospitalization for Stroke

In studies of long-term exposure to air pollution and hospitalization for stroke, higher exposure at home addresses was also associated with higher risk of admission for stroke in some studies, but results were less consistent than for stroke mortality (Table 2). Most commonly reported pollutants included long-term exposure to PM\(_{2.5}\) and PM\(_{10}\), and NO\(_2\) or NO\(_x\). Many of the cohort studies reported positive associations, whereas ecological studies\(^{6,15,19}\) and case–control studies\(^{17,18,21}\) showed mixed results. In a random-effects meta-analysis of 11 European cohorts,\(^{16}\) long-term PM\(_{2.5}\) was associated more strongly with stroke in subjects >60 years old, never-smokers, and among subjects with exposure levels <25 μg/m\(^3\) (current annual mean air quality standard in Europe). Studies that compared long-term air pollution exposure and hospital admissions according to specific stroke type reported positive associations for NO\(_2\), CO, and traffic density and admissions for both ischemic and hemorrhagic stroke\(^{19}\) in Edmonton, Canada, whereas NO\(_2\) in Denmark or NO\(_x\) in London, UK, demonstrated associations consistent with ischemic stroke but not hemorrhagic stroke. Two studies from Scania, Sweden\(^{7,14}\) only including hospital admissions for ischemic stroke observed associations between higher long-term exposure to NO\(_2\) and higher risk of hospital admission for ischemic stroke in participants with diabetes mellitus but found no association in the overall population, in smokers, or in participants with hypertension or atrial fibrillation. A recent population-based cohort study in Denmark studying long-term NO\(_2\) and traffic noise exposure and stroke incidence reported positive associations for ischemic stroke in separate analyses for both noise and NO\(_2\), but in combined analyses NO\(_2\) was only associated with fatal ischemic strokes.\(^{20}\)

Short-Term Air Pollution Exposure

Day-to-day differences in air pollution exposure in the days preceding stroke are used to study possible triggering effects of air pollution on stroke. In time-series analyses, daily counts of stroke deaths or admissions are compared with air pollution levels on the same day or preceding days in a study region. In case-crossover analyses, exposure levels preceding stroke mortality or hospitalization in an individual are contrasted with control periods within the same calendar month within each individual controlling for season and day of week and perfectly matching time-invariant patient characteristics by design.

Table 1. Studies of Long-Term Air Pollution Exposure and Stroke Mortality

Study	Location	Study Design	Stroke Outcome	Relative Risk (95% Confidence Intervals)	Exposure
Maheswaran and Elliott\(^4\)	England and Wales	Ecological	Any stroke	1.05 (1.04–1.07)	Living within 200 m of main road compared with ≥1000 m
Maheswaran et al\(^6\)	Sheffield, UK	Ecological	Any stroke	1.37 (1.19–1.57) PM\(_{10}\)	Highest to lowest quintile of modeled pollutant
				1.26 (1.10–1.46) CO	
				1.33 (1.14–1.56) NO\(_2\)	
Hu et al\(^7\)	Florida, USA	Ecological	Any stroke	1.09 (1.03–1.15)*	Per 10 000 vehicles/d within census tract
Andersen et al\(^8\)	Denmark	Cohort	Any stroke	1.22 (1.00–1.50)	Per interquartile range increase (43%) in mean modeled NO\(_2\) since 1971
			Ischemic	1.46 (0.90–2.39)	
			Hemorrhagic	1.00 (0.76–1.31)	
Jerrett et al\(^9\)	California, USA	Cohort	Any stroke	1.07 (0.99–1.15) PM\(_{2.5}\)	Per 5.3 μg/m\(^3\) PM\(_{10}\)
				1.08 (1.02–1.15) NO\(_2\)	Per 4.12 ppb NO\(_2\)
				1.01 (0.92–1.11) O\(_3\)	Per 24.2 ppb O\(_3\)
Lipsett et al\(^10\)	California, USA	Cohort	Any stroke	0.99 (0.89–1.09) PM\(_{10}\)	Per 10 μg/m\(^3\) mean PM\(_{10}\) 1996–2005 or mean PM\(_{2.5}\) 1999–2005
				1.16 (0.92–1.46) PM\(_{2.5}\)	
Miller et al\(^11\)	36 US cities	Cohort	Any stroke	1.83 (1.11–3.00) PM\(_{2.5}\)	Annual mean in 2000 at closest monitor per 10 μg/m\(^3\)
Ueda et al\(^12\)	Japan	Cohort	Any stroke	0.86 (0.74–1.01) PM\(_{10}\)	Per 10 μg/m\(^3\) annual mean at closest monitor
Yorifuji et al\(^13\)	Shizuoka, Japan	Cohort	Any stroke	1.19 (1.06–1.34) PM\(_{2.5}\)	Per 10 μg/m\(^3\) annual mean NO\(_2\)
			Ischemic	1.20 (1.04–1.39)	
			Hemorrhagic	1.28 (1.05–1.57)	

PM\(_{10}\) indicates particles with aerodynamic diameter ≤10 μm; PM\(_{2.5}\), fine particles with aerodynamic diameter ≤2.5 μm; and ppb, parts per billion.

*95% credible interval from a Bayesian analysis.
Table 2. Studies of Long-Term Air Pollution Exposure and Hospitalization for Stroke

Study	Location	Study Design	Stroke Outcome	Relative Risk (95% Confidence Intervals)	Exposure
Maheswaran et al6	Sheffield, UK	Ecological	Any stroke	1.13 (0.99–1.29) PM$_{10}$	Highest to lowest quintile of modeled pollutant
				1.11 (0.99–1.25) CO	Per interquartile range increase (43%) in mean modeled NO$_2$ since 1971
				1.13 (1.04–1.27) NO$_x$	
Andersen et al8	Denmark	Cohort	Any stroke	1.05 (0.99–1.11)	Per 10 μg/m3 annual mean pollutant at closest monitor
			Ischemic	1.05 (0.95–1.17)	
			Hemorrhagic	0.93 (0.81–1.07)	
Lipsett et al10	California	Cohort	Any stroke	1.06 (1.00–1.13) PM$_{10}$	Per 10 μg/m3 annual mean pollutant of modeled pollutant exposure
				1.14 (0.99–1.32) PM$_{2.5}$	
Miller et al11	36 US cities	Cohort	Any stroke	1.28 (1.01–1.61) PM$_{2.5}$	Per 10 μg/m3 mean of closest monitor during 2000
Maheswaran et al15	London, UK	Ecological	Ischemic	1.22 (0.77–1.93) PM$_{10}$	Per 10 μg/m3 annual mean pollutant exposure
			Hemorrhagic	1.11 (0.93–1.32) NO$_2$	
				0.52 (0.20–1.37) PM$_{10}$	
				0.86 (0.60–1.24) NO$_2$	
Atkinson et al14	England	Cohort	Any stroke	0.98 (0.95–1.01) PM$_{10}$	Per 3.0 μg/m3 PM$_{10}$
			Ischemic	0.99 (0.95–1.03) NO$_2$	Per 10.7 μg/m3 NO$_2$
			Hemorrhagic	1.02 (1.00–1.05) SO$_2$	Per 2.2 μg/m3 SO$_2$
				1.00 (0.97–1.04) O$_3$	Per 3.0 μg/m3 O$_3$, modeled annual mean
Stafoggia et al16	11 cohorts, Europe	Cohort	Any stroke	1.19 (0.88–1.62)	Per 5 μg/m3 annual mean
Oudin et al17	Scania, Sweden	Case–control	Ischemic	0.99 (0.86–1.06)	Annual mean modeled NO$_x$ of 20–30 vs <10 μg/m3
			Hemorrhagic	1.20 (1.09–1.32)	
Oudin et al18	Scania, Sweden	Case–control	Ischemic	2.0 (1.2–3.4) high NO$_x$	High NO$_x$ ≥25 μg/m3
				1.3 (1.1–1.6) low NO$_x$	Low NO$_x$ <15 μg/m3
			In diabetics:	2.0 (1.2–3.4) high NO$_x$	Reference: nondiabetics with low NO$_x$
			Modeled annual NO$_x$:	1.3 (1.1–1.6) low NO$_x$	
Johnson et al19	Edmonton, Canada	Ecological	Any stroke	1.29 (1.16–1.43)	Highest (16.7–20.3 ppb) to lowest quintile (10.1–14.0 ppb) of NO$_2$ exposure
			Nonhemorrhagic	1.36 (1.19–1.56)	
			Hemorrhagic	1.46 (1.19–1.80)	
Sørensen et al20	Denmark	Cohort	Any stroke	1.08 (1.01–1.16)	Per 10 μg/m3 annual mean NO$_2$
			Ischemic	1.11 (1.03–1.20)	
			Hemorrhagic	1.00 (0.80–1.24)	
Johnson et al21	Edmonton, Canada	Case–control	Any stroke	1.01 (0.94–1.08)	Per 5 ppb NO$_2$
			Ischemic	1.03 (0.94–1.13)	
			TIA	0.95 (0.86–1.05)	
			Hemorrhagic	1.07 (0.92–1.24)	

PM$_{10}$ indicates particles with aerodynamic diameter ≤10 μm; PM$_{2.5}$, fine particles with aerodynamic diameter ≤2.5 μm; ppb, parts per billion; and TIA, transient ischemic attack.
Several studies have investigated associations between short-term exposure to air pollutants including PM$_{10}$, PM$_{2.5}$, CO, NO$_2$, SO$_2$, and O$_3$ and stroke mortality or hospitalizations for stroke in many cities in North America, Europe, and East Asia. Mean levels of pollutants varied considerably between study locations from low-polluted cities such as Dijon, France (daily mean PM$_{10}$ 20 μg/m3) to highly polluted cities such as Wuhan, China (daily mean PM$_{10}$ 119 μg/m3).

Short-Term Air Pollution Exposure and Stroke Mortality

A majority of studies investigating short-term exposure to air pollution and stroke mortality have been time-series studies,$^{22–36}$ the remainder used case-crossover design.$^{37–41}$ A qualitative summary of the studies is provided in Table 3 (for detailed estimates, see Table I in the online-only Data Supplement). Most studies do not differentiate between ischemic and hemorrhagic stroke mortality. Several studies reported associations between short-term exposure to particle matter, including several size fractions, or gases and any stroke mortality. Only a few studies further characterized stroke into ischemic and hemorrhagic stroke mortality.$^{24,33–35,38}$ Short-term exposure to particulate matter and gases was associated with both ischemic stroke and hemorrhagic stroke. In Tokyo,34 the risk increase for subarachnoid hemorrhage mortality per 10 μg/m3 PM$_{2.5}$ or NO$_2$ was roughly double the risk increase for ischemic or intracerebral

Table 3. Studies of Short-Term Air Pollution Exposure and Stroke Mortality

Study	Location	Study Design	Stroke Outcome	Positive Associations*	Null Associations†
Chen et al22	8 Chinese cities	Time series	Any stroke	PM$_{10}$, NO$_2$, and SO$_2$...
Hoek et al23	Netherlands	Time series	Any stroke	Black smoke, CO, SO$_2$, and O$_3$	PM$_{10}$ and NO$_2$
Hong et al24	Seoul, Korea	Time series	Ischemic	TSP, CO, NO$_2$, SO$_2$, and O$_3$...
Hong et al25	Seoul, Korea	Time series	Hemorrhagic	TSP	CO$_2$, NO$_2$, SO$_2$, and O$_3$
Kan et al26	Shanghai, China	Time series	Any stroke	PM$_{10}$, CO, NO$_2$, SO$_2$, and O$_3$...
Kettunen et al27	Helsinki, Finland	Time series	Any stroke	PM$_{2.5}$ and CO in warm season	PM$_{10}$, coarse PM, PM$_{10}$, NO$_2$, and O$_3$ in warm season.
Li et al28	Tianjin, Taiwan	Time series	Any stroke	PM$_{10}$ on days with >20°C	PM$_{10}$ on days with ≤20°C
Qian et al29	Wuhan, China	Time series	Any stroke	PM$_{10}$...
Qian et al30	Wuhan, China	Time series	Any stroke	NO$_2$, SO$_2$, and O$_3$...
Qian et al31	Wuhan, China	Time series	Any stroke	PM$_{10}$ all days and NO$_2$, SO$_2$ on normal temperature days	O$_3$ all days and NO$_2$, SO$_2$ on high temperature days
Qian et al32	Wuhan, China	Time series	Any stroke	NO$_2$ in spring, PM$_{10}$, NO$_2$, SO$_2$ in winter	PM$_{10}$ and SO$_2$ in spring. All pollutants summer or fall
Turin et al33	Takashima, Japan	Time series	Any stroke	Ischemic NO$_2$	Suspended PM, NO$_2$, SO$_2$, and O$_3$
Yorifuji et al34	Tokyo, Japan	Time series	Any stroke	Ischemic PM$_{2.5}$ and NO$_2$	Suspended PM, NO$_2$, SO$_2$, and O$_3$
Yorifuji and Kashima35	47 Japanese cities	Time series	Any stroke	Ischemic PM$_{10}$	Suspended PM, NO$_2$, SO$_2$, and O$_3$
Zanobetti and Schwartz36	112 US cities	Time series	Any stroke	PM$_{2.5}$ and PM$_{coarse}$	Suspended PM, NO$_2$, SO$_2$, and O$_3$
Maynard et al37	Massachusetts, USA	Case crossover	Any stroke	Black carbon	SO$_2$
Qian et al38	Shanghai, China	Case crossover	Any stroke	PM$_{10}$, NO$_2$, and SO$_2$...
Ren et al39	Massachusetts, USA	Case crossover	Any stroke	PM$_{10}$...
Zeka et al40	20 US cities	Case crossover	Any stroke	PM$_{10}$...
Zeka et al41	20 US cities	Case crossover	Any stroke	PM$_{10}$ if pneumonia or ≥75-y old	PM$_{10}$ if no pneumonia or ≤75-y old

PM$_{0.1}$ indicates ultrafine particles with <0.1 μm aerodynamic diameter; PM$_{10}$, particles with aerodynamic diameter ≤10 μm; PM$_{2.5}$, fine particles with aerodynamic diameter ≤2.5 μm; PM$_{coarse}$, coarse particles with aerodynamic diameter between 2.5 and 10 μm in aerodynamic diameter; and TSP, total suspended particles.

*Positive associations with confidence intervals not including the null.
†Associations with confidence intervals including the null.
Table 4. Studies of Short-Term Exposure to Air Pollution and Hospital Admissions for Stroke

Study	Location	Study Design	Stroke Outcome	Positive Associations*	Null Associations†
Ballester et al43	Valencia, Spain	Time series	Any stroke	CO, SO₂ and O₃	
Burnett et al44	Toronto, Canada	Time series	Any stroke	PM₁₀, PM₂·₅, and O₃	
Chan et al45	Taipei, Taiwan	Time series	Any stroke	PM₁₀, PM₂·₅, CO, NO₂, and SO₂	
			Ischemic	PM₁₀, PM₂·₅, CO, NO₂, SO₂, and O₃	
			Hemorrhagic	PM₁₀, PM₂·₅, CO, NO₂, SO₂, and O₃	
Corea et al46	Mantua, Italy	Case crossover	Any stroke	PM₃₂·₅, in all ischemic, large vessel, small vessel, and lacunar	PM₃₂·₅, in cardioembolic, CO, NO₂, SO₂, and O₃
Jalaludin et al47	Sydney, Australia	Time series	Any stroke	PM₁₀, PM₂·₅, CO, NO₂, SO₂, and O₃	
Larrieu et al48	8 French cities	Time series	Any stroke	PM₁₀, NO₂, and O₃	
Le Tertre et al49	8 European cities	Time series	Any stroke	PM₁₀ and black smoke	
Linn et al50	Los Angeles, USA	Time series	Any stroke	CO and NO₂ in spring	
Moolgavkar51	Los Angeles, USA	Time series	Any stroke	PM₁₀, CO, NO₂, and SO₂	
Nascimento et al52	Sao Jose Campos, Brazil	Time series	Any stroke	PM₃₂·₅, CO, NO₂, and SO₂	
Poloniecki et al53	London, UK	Time series	Any stroke	Black smoke, CO, NO₂, SO₂, and O₃	
Pönkä and Virtanen54	Helsinki, Finland	Time series	Any stroke	NO₂	
Suryer et al55	7 European cities	Time series	Any stroke	SO₂	
Turin et al56	Takashima, Japan	Time series	Any stroke	PM₁₀, NO₂, SO₂, and O₃	
			Ischemic	PM₁₀, NO₂, SO₂, and O₃	
			Hemorrhagic	PM₁₀, SO₂	
Villeneuve et al57	Edmonton, Canada	Case crossover	Any stroke	PM₁₀, PM₂·₅, CO, NO₂, and SO₂	
			Ischemic	PM₂·₅, CO, NO₂, SO₂, and O₃	
			TIA	PM₁₀, PM₂·₅, CO, NO₂, SO₂, and O₃	
			Hemorrhagic	PM₁₀, SO₂	
Villeneuve et al58	Edmonton, Canada	Case crossover	Any stroke	CO in warm season PM₂·₅, NO₂, SO₂, O₃, and CO all year	
			Ischemic	PM₂·₅, CO, NO₂, and SO₂	
			Hemorrhagic	PM₂·₅, CO, NO₂, and SO₂	
Wong et al59	Hong Kong, China	Time series	Any stroke	PM₁₀, PM₂·₅, NO₂, SO₂, and O₃	
Wordley et al60	Birmingham, UK	Time series	Any stroke	PM₁₀, PM₂·₅, NO₂, SO₂, and O₃	
Xiang et al61	Wuhan, China	Case crossover	Any stroke	PM₁₀ and NO₂ in cold season PM₁₀, NO₂ and SO₂ all year and in subtypes. PM₃₂·₅ and NO₂ in warm season	
Xu et al62	Allegheny, USA	Case crossover	Any stroke	O₃	
Yang et al63	Taipei, Taiwan	Time series	Any stroke	O₃	
Yang et al63	Taipei, Taiwan	Time series	Hemorrhagic	O₃	
Tsai et al64	Kaohsiung, Taiwan	Case crossover	Ischemic	PM₁₀, NO₂, SO₂, O₃ warm days, CO all days	
			Hemorrhagic	Asian dust and intracerebral Asian dust and subarachnoidal	
Wellenius et al65	9 US cities	Case crossover	Ischemic	PM₁₀, CO, NO₂, and O₃ warm days, SO₂ warm days, all pollutants cool days	
Wellenius et al65	9 US cities	Case crossover	Hemorrhagic	PM₁₀, CO, NO₂, and SO₂	
Wellenius et al65	9 US cities	Case crossover	Hemorrhagic	PM₁₀, CO, NO₂, and SO₂	
Lisabeth et al66	Corpus Christi, USA	Time series	Ischemic	PM₂·₅ in diabetics and noncardioembolic	
O’Donnell et al67	8 Canadian cities	Case crossover	Ischemic	PM₂·₅ in ischemic strokes overall	

(Continued)
hemorrhage mortality. It is possible that these hemorrhages may have more precise temporal relationship between air pollution exposure and the timing of stroke onset leading to less exposure misclassification and more precise estimation of the association.41 Stronger associations between short-term air pollution exposure and stroke mortality were observed in elderly,23,30 women,25 and individuals with a history of diabetes mellitus41 or cardiac disease38 in some but not all studies.

Short-Term Air Pollution Exposure and Hospitalization for Stroke

Studies of short-term air pollution exposure and hospitalization for any stroke have reported mixed results.43–61 However, in contrast to studies investigating short-term exposure to air pollution and stroke mortality that typically use death certificate data, some studies of associations with hospital admissions for stroke have had more data on stroke type. These studies have reported associations between PM_{0.1}62,69,70 and ischemic stroke.46,67–69 Stronger associations were reported for recurrent ischemic strokes or history of stroke,58,70 in individuals with diabetes mellitus or on diabetes mellitus medication62,70 and with ≥1 cardiovascular risk factors.69,70 A few studies reported stronger associations between O₃ and ischemic stroke in men than in women.52,69,72 Air pollution on warm days was more strongly associated with both hemorrhagic and ischemic stroke in Taiwan.64 Associations between air pollution and ischemic stroke were stronger in the warm season in Edmonton, Canada58 and Dijon, France30 in contrast to Wuhan41 where associations were stronger in the cold season. Differences may reflect better exposure classification because of time spent outdoors in climates such as Edmonton, Canada but may also be because of seasonal interactions between pollutants.

Summary

The current evidence suggests that exposure to higher levels of air pollutants related to combustion increases the risk of stroke. Studies of both long-term and short-term air pollution exposure suggest consistent evidence of increased risk of ischemic stroke and moderately consistent evidence supporting an association with hemorrhagic stroke. A few studies exploring susceptible subgroups have indicated stronger associations in individuals with several cardiovascular risk factors, diabetes mellitus, previous stroke, and of older age. A recently published meta-analysis focusing on short-term air pollution exposure and stroke incidence or mortality reported significant associations for PM₁₀, PM_{2.5}, SO₂, CO, NO₂, and O₃ for stroke with stronger associations for ischemic stroke.73

Because much of the existing literature is based on linkage of administrative data, an important limitation of many available studies is limited ability to classify and validate specific stroke outcomes. Ischemic stroke and hemorrhagic stroke and their subtypes have in the majority of studies been analyzed differently. Only some have separately analyzed ischemic stroke and hemorrhagic stroke and a handful have considered subtypes of ischemic stroke or hemorrhagic stroke similarly. Only a handful used thorough chart reviews and adjudicated the diagnosis and onset time of stroke. This highlights the need for high-quality validated diagnostic characterization of stroke outcome in studies of air pollution. In a study of short-term air pollution exposure and stroke specifically investigating the bias introduced through misclassification of time of event of stroke found that incorrect temporal classification caused up to 66% bias toward the null.42 This may be especially relevant in mortality studies where the date of death from death certificates is used while not accounting for the

Table 4. Continued

Study	Location	Study Design	Stroke Outcome	Positive Associations*	Null Associations†
Bedada et al⁷²	UK	Case crossover	Minor stroke	NO₂	CO₂, NO₂, SO₂, and O₃
Wellenius et al⁶⁸	Boston, USA	Case crossover	Ischemic	PM_{2.5}, black carbon, NO₂, and PM₁₀ large and small vessel stroke	CO₂, SO₂, O₃, and PM_{2.5} cardioembolic stroke
Henrotin et al⁶⁹	Dijon, France	Case crossover	Ischemic	O₃ in all ischemic, large vessel, and TIA	PM₁₀, CO, NO₂, and SO₂
Henrotin et al⁷⁰	Dijon, France	Case crossover	Hemorrhagic	PM₁₀, CO, NO₂, SO₂, and O₃	
Yamazaki et al⁷¹	Japan	Case crossover	Ischemic	O₃ in recurrent stroke	O₃ in incident stroke
		Case crossover	Hemorrhagic	PM₂ 2 h before intracerebral hemorrhage	PM₂, NO₂, and O₃ in 24 h averages

PM_{0.1} indicates ultrafine particles with less than 0.1 μm aerodynamic diameter; PM₁₀, particles with aerodynamic diameter ≤10 μm; PM_{2.5}, fine particles with aerodynamic diameter ≤2.5 μm; PM_{coarse}, coarse particles with aerodynamic diameter between 2.5 and 10 μm in aerodynamic diameter; and TIA, transient ischemic attack.

*Positive associations with confidence intervals not including the null.
†Associations with confidence intervals including the null.
time between stroke onset and death. In studies of long-term exposure to air pollution, the ability to investigate associations with stroke is dependent on the validity and resolution of the spatial exposure assessment and the adequate control for confounders related to both air pollution at place of residence and the risk of stroke, in particular socioeconomic factors.

There is growing evidence to suggest that both accumulated exposure to higher air pollution during a period of years and higher mean levels during a period of days increase the risk of stroke. In addition to improving temporal classification of exposure by validating stroke onset time, future research efforts should be directed to careful characterization of stroke subtype because air pollution may variably affect the different pathophysiological pathways. Air pollution exposure and increased risk of stroke may represent a considerable public health problem and regulations have improved air quality in many countries in Europe and the United States, resulting in greater life expectancy. Yet, associations with stroke have been reported at levels in compliance with current standards, highlighting the continued importance of effective regulation and monitoring in high-income countries as well as extending efforts to address regulation in low- and middle-income countries where levels of air pollution and prevalence of stroke are on the rise.

Sources of Funding

This work was supported by the US Environmental Protection Agency (grants R832416, RD83479801), National Institute of Environmental Health Sciences (grant P01-ES009825), Swedish Council for Working Life and Social Research Marie Curie International Postdoctoral Fellowship Programme, the Swedish Heart-Lung Foundation, the Swedish Society of Cardiology, and the Swedish Society for Medical Research. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or the Environmental Protection Agency.

Disclosures

None.

References

1. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, et al; American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics–2013 update: a report from the American Heart Association. Circulation. 2013;127:e6–e245.
2. Brook RD, Rajagopalan S, Pope CA 3rd, Brook JR, Bhatnagar A, Diez-Roux AV, et al; American Heart Association Council on Epidemiology and Prevention, Council on the Kidney in Cardiovascular Disease, and Council on Nutrition, Physical Activity and Metabolism. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation. 2010;121:2331–2378.
3. Brook RD, Franklin B, Cascio W, Hong Y, Howard G, Lipsitz M, et al; Expert Panel on Population and Prevention Science of the American Heart Association. Air pollution and cardiovascular disease: a statement for healthcare professionals from the Expert Panel on Population and Prevention Science of the American Heart Association. Circulation. 2004;109:2655–2671.
4. Mills NL, Tornqvist H, Robinson SD, Gonzalez MC, Soderberg S, Sandstrom T, et al. Air pollution and arteriothrombosis. Inhal Toxicol. 2007;19(suppl 1):81–89.
5. Maheshwaran R, Elliott P. Stroke mortality associated with living near main roads in England and Wales: a geographical study. Stroke. 2003;34:2776–2780.
6. Maheshwaran R, Haining RP, Brindley P, Law J, Pearson T, Fryers PR, et al. Outdoor air pollution and stroke in Sheffield, United Kingdom: a small-area level geographical study. Stroke. 2005;36:239–243.
7. Hu Z, Liebans J, Rao KR. Linking stroke mortality with air pollution, income, and greenness in northwest Florida: an ecological geographical study. Int J Health Geogr. 2008;7:20.
8. Andersen ZJ, Kristiansen LC, Andersen KK, Olsen TS, Hvidberg M, Jensen SS, et al. Stroke and long-term exposure to outdoor air pollution from nitrogen dioxide: a cohort study. Stroke. 2012;43:320–325.
9. Jerrett M, Burnett RT, Beckerman BS, Turner MC, Krewski D, Thurston G, et al. Spatial analysis of air pollution and mortality in California. Am J Respir Crit Care Med. 2013;188:593–599.
10. Lipsitt MJ, Ostro BD, Reynolds P, Goldberg D, Hertz A, Jerrett M, et al. Long-term exposure to air pollution and cardiorespiratory disease in the California teachers study cohort. Am J Respir Crit Care Med. 2012;184:828–835.
11. Miller KA, Siscovick DS, Sheppard L, Shepherd K, Sullivan JH, Anderson GL, et al. Long-term exposure to air pollution and incidence of cardiovascular events in women. N Engl J Med. 2007;356:447–458.
12. Ueda K, Nagasawa SY, Nitta H, Miura K, Ueshima H; NIPPON DATA80 Research Group. Exposure to particulate matter and long-term risk of cardiovascular mortality in Japan: NIPPON DATA80. J Atheroscler Thromb. 2012;19:246–254.
13. Yoriyuki T, Kashima S, Tsuda T, Ishikawa-Takata K, Ohta T, Tsuruta K, et al. Long-term exposure to traffic-related air pollution and the risk of death from hemorrhagic stroke and lung cancer in Shizuoka, Japan. Sci Total Environ. 2013;443:397–402.
14. Atkinson RW, Carey IM, Kent AJ, van Staa TP, Anderson HR, Cook DG. Long-term exposure to outdoor air pollution and incidence of cardiovascular diseases. Epidemiology. 2013;24:44–53.
15. Maheshwaran R, Pearson T, Tonne C, Beeser SD, Campbell MJ, Wolfe CD. Outdoor air pollution and incidence of ischemic and hemorrhagic stroke: a small-area level ecological study. Stroke. 2012;43:22–27.
16. Stefamigiai M, Cesaroni G, Peters A, Andersen ZJ, Badaloni C, Beelen R, et al. Long-term Exposure to Ambient Air Pollution and Incidence of Cerebrovascular Events: Results from 11 European Cohorts within the ESCAPE Project. Environ Health Perspect. 2014;122:919–925.
17. Oudin A, Stroh E, Strömberg U, Jakobsson K, Björk J. Long-term exposure to air pollution and hospital admissions for ischemic stroke. A register-based case-control study using modelled NO(x) as exposure proxy. BMC Public Health. 2009;9:301.
18. Oudin A, Strömberg U, Jakobsson K, Stroh E, Lindgren AG, Norrving B, et al. Hospital admissions for ischemic stroke: Does long-term exposure to air pollution interact with major risk factors? Cerebrovasc Dis. 2011;31:284–293.
19. Johnson JY, Rowe BH, Villeneuve PJ. Ecological analysis of long-term exposure to ambient air pollution and the incidence of stroke in Edmonton, Alberta, Canada. Stroke. 2010;41:1319–1325.
20. Sørensen M, Luhdorf P, Ketzel M, Andersen ZJ, Tjønneland A, Overvad K, et al. Combined effects of road traffic noise and ambient air pollution in relation to risk for stroke? Environ Res. 2014;133:49–55.
21. Johnson JY, Rowe BH, Allen RW, Peters PA, Villeneuve PJ. A case-control study of medium-term exposure to ambient nitrogen dioxide pollution and hospitalization for stroke. BMC Public Health. 2013;13:368.
22. Chen R, Zhang Y, Yang C, Zhao Z, Xu X, Kan H. Acute effect of ambient air pollution on stroke mortality in the China air pollution and health effects study. Stroke. 2013;44:954–960.
23. Hoek G, Brunekeeff B, Fischer P, van Wijnen J. The association between air pollution and heart failure, arrhythmia, embolism, thrombosis, and other cardiovascular causes of death in a time series study. Epidemiology. 2001;12:355–357.
24. Hong YC, Lee JT, Kim H, Kwon HJ. Air pollution: a new risk factor in ischemic stroke mortality. Stroke. 2002;33:2165–2169.
25. Hong YC, Lee JT, Kim H, Ha EH, Schwartz J, Christiani DC. Effects of air pollutants on acute stroke mortality. Environ Health Perspect. 2002;110:187–191.
26. Kan H, Jia J, Chen B. Acute stroke mortality and air pollution: new evidence from Shanghai, China. J Occup Health. 2003;45:321–323.
27. Kettenun J, Lanki T, Tiittanen P, Aalto PP, Koskelento T, Kalmula M, et al. Associations of fine and ultrafine particulate air pollution with stroke mortality in an area of low air pollution levels. Stroke. 2007;38:918–922.
28. Li G, Zhou M, Cai Y, Zhang Y, Pan X. Does temperature enhance acute mortality effects of ambient particle pollution in Tianjin City, China. Sci Total Environ. 2011;409:1811–1817.
29. Qian Z, He Q, Lin HM, T. S., Liao D, Dan J, et al. Association of daily cause-specific mortality with ambient particle air pollution in Wuhan, China. Environ Res. 2007;105:380–389.
30. Qian Z, He Q, Lin HM, Kong L, Liao D, Yang N, et al. Short-term effects of gaseous pollutants on cause-specific mortality in Wuhan, China. J Air Waste Manag Assoc. 2007;57:785–793.

31. Qian Z, He Q, Lin HM, Kong L, Bentley CM, Liu W, et al. High temperatures enhanced acute mortality effects of ambient particle pollution in the “toven” city of Wuhan, China. Environ Health Perspect. 2008;116:1172–1178.

32. Qian Z, Lin HM, Stewart WF, Kong L, Xu F, Zhou D, et al. Seasonal pattern of the acute mortality effects of air pollution. J Air Waste Manag Assoc. 2010;60:481–488.

33. Turin TC, Kita Y, Rumana N, Nakamura Y, Ueda K, Takashima N, et al. Ambient air pollutants and acute case-fatality of cerebro-cardiovascular events. Takahama Stroke and AMI Registry, Japan (1998-2004). Cerebrovasc Dis. 2012;34:130–139.

34. Yorifuj T, Kawachi I, Sakamoto T, Doi H. Associations of outdoor air pollution with hemorrhagic stroke mortality. J Occup Environ Med. 2011;53:124–126.

35. Yorifuj T, Kashima S. Associations of particulate matter with stroke mortality: a multicity study in Japan. J Occup Environ Med. 2013;55:768–771.

36. Zanobetti A, Schwartz J. The effect of fine and coarse particulate air pollution on mortality: a national analysis. Environ Health Perspect. 2009;117:998–903.

37. Maynard D, Coull BA, Gryparis A, Schwartz J. Mortality risk associated with short-term exposure to traffic particles and sulfates. Environ Health Perspect. 2007;115:751–755.

38. Qian Y, Zhu M, Bai B, Yang Q, Kan H, Song G, et al. Epidemiological evidence on short and long term ambient air pollution and stroke mortality. J Epidemiol Community Health. 2013;67:635–640.

39. Ren C, Melly S, Schwartz J. Modifiers of short-term effects of ozone on mortality in eastern Massachusetts—a case-crossover analysis at individual level. Environ Health. 2010;9:3.

40. Zeka A, Zanobetti A, Schwartz J. Short term effects of particulate matter on cause specific mortality: effects of lags and modification by city characteristics. Occup Environ Med. 2009;66:79–84.

41. Zeka A, Zanobetti A, Schwartz J. Individual-level modifiers of the effects of particulate matter on daily mortality. Am J Public Health. 2006;106:843–848.

42. Lokken RP, Welinlius GA, Coull BA, Burger MR, Schlaug G, Suh HH, et al. Air pollution and risk of stroke: underestimation of effect due to misclassification of time of event onset. Epidemiology. 2009;20:137–142.

43. Ballester F, Tenías JM, Pérez-Hoyos S. Air pollution and emergency hospital admissions for cardiovascular diseases in Valencia, Spain. J Epidemiol Community Health. 2001;55:57–65.

44. Burnett RT, Smith-Doiron M, Stieb D, Cakmak S, Brook JR. Effects of particulate and gaseous air pollution on cardiopulmonary hospitalizations. Arch Environ Health. 1999;54:130–139.

45. Chan CC, Chuang KJ, Chien LC, Chen WJ, Chang WT. Urban air pollution and emergency admissions for cerebrovascular diseases in Taipei, Taiwan. Eur Heart J. 2006;27:1328–1344.

46. Corea F, Silvestrelli G, Baccarello A, Giua A, Previti P, Siliprandi G, et al. Airborne pollutants and lacunar stroke: a case-cross-over analysis on stroke unit admissions. Neurol Sci. 2012;33:411.

47. Jalaludin B, Morgan G, Lincoln D, Sheppard V, Simpson R, Corbett S. Associations between ambient air pollution and daily emergency department attendances for cardiovascular disease in the elderly (65+ years), Sydney, Australia. J Expo Sci Environ Epidemiol. 2006;16:225–237.

48. Larrieu S, Jusot JF. Associations between ambient air pollution and daily emergency department visits for stroke unit admissions. J Stroke Cerebrovasc Dis. 2005;14:718–725.

49. Qian Z, He Q, Lin HM, Stewart WF, Kong L, Xu F, Zhou D, et al. Seasonal pattern of the acute mortality effects of air pollution. J Air Waste Manag Assoc. 2010;60:481–488.

50. Polonecki JD, Atkinson RW, de Leon AP, Anderson HR. Daily time series for cardiovascular hospital admissions and previous day’s air pollution in London, UK. Occup Environ Med. 1997;54:535–540.

51. Pönta A, Virtanen M. Low-level air pollution and hospital admissions for cardiac and cerebrovascular diseases in Helsinki. Am J Public Health. 1996;86:1273–1280.

52. Suyner J, Ballestor F, Trettet AL, Atkinson R, Ayres JG, Forastiere F, et al. The association of daily sulfur dioxide air pollution levels with hospital admissions for cardiovascular diseases in Europe (The Aphea-II study). Eur Heart J. 2003;24:752–760.

53. Turin TC, Kita Y, Rumana N, Nakamura Y, Ueda K, Takashima N, et al. Short-term exposure to air pollution and incidence of stroke and acute myocardial infarction in a Japanese population. Neuroepidemiology. 2012;38:84–92.

54. Villedenue P, Chen L, Stieb D, Rowe BH. Associations between outdoor air pollution and emergency department visits for stroke in Edmonton, Canada. Eur J Epidemiol. 2006;21:689–700.

55. Villedenue P, Johnson JY, Pasichnyk D, Lowes J, Kirkland S, Rowe BH. Short-term effects of ambient air pollution on stroke: who is most vulnerable? Sci Total Environ. 2012;430:193–201.

56. Wong TW, Lau TS, Yu TS, Neller A, Wong SL, Tam W, et al. Air pollution and hospital admissions for respiratory and cardiovascular diseases in Hong Kong. Occup Environ Med. 1999;56:679–683.

57. Wordley J, Walters S, Ayres JG. Short term variations in hospital admissions and mortality and particulate air pollution. Occup Environ Med. 1997;54:108–116.

58. Xiong H, Mertz KJ, Arena VC, Brink LL, Xu X, Bi Y, et al. Estimation of short-term effects of air pollution on stroke hospital admissions in Wuhan, China. PLoS One. 2013;8:e56118.

59. Xu X, Sun Y, Ha S, Talbott EO, Lissaker CT. Association between ozone exposure and onset of stroke in Allegheny County, Pennsylvania, USA, 1994-2000. Neuroepidemiology. 2013;41:2–6.

60. Yang CY, Chen YS, Chiu HF, Goggins WB. Effects of Asian dust storm events on daily stroke admissions in Taipei, Taiwan. Environ Res. 2013;126:99–104.

61. Tsai SS, Goggins WB, Chiu HF, Yang CY. Evidence for an association between air pollution and daily stroke admissions in Kaohsiung, Taiwan. Stroke. 2003;34:2612–2616.

62. Welinlius GA, Schwartz J, Mittleman MA. Air pollution and hospital admissions for ischemic and hemorrhagic stroke among medicare beneficiaries. Stroke. 2008;39:2549–2553.

63. Leibson LD, Escobar JD, Dvonch JT, Sánchez BN, Majersik JJ, Brown DL, et al. Ambient air pollution and risk for ischemic stroke and transient ischemic attack. Ann Neurol. 2008;64:53–59.

64. O’Donnell MJ, Fang J, Mittleman MA, Kapral MK, Welinlius GA; Investigators of the Registry of Canadian Stroke Network. Fine particulate air pollution (PM2.5) and the risk of acute ischemic stroke. Epidemiology. 2011;22:422–431.

65. Welinlius GA, Burger MR, Coull BA, Schwartz J, Suh HH, Kostrukas P, et al. Ambient air pollution and the risk of acute ischemic stroke. Arch Intern Med. 2012;172:229–234.

66. Henrotin JB, Besancenot JP, Bejot Y, Giroud M. Short-term effects of ozone air pollution on ischemic stroke: a case-crossover analysis from a 10-year population-based study in Dijon, France. Occup Environ Med. 2007;64:439–445.

67. Henrotin JB, Zeller M, Lorigs L, Cottin Y, Giroud M, Bejot Y. Evidence of the role of short-term exposure to ozone on ischemic cerebral and cardiac events: the Dijon Vascular Project (DIVA). Heart. 2010;96:1990–1996.

68. Yamasaki S, Nitta H, Ono M, Green J, Fukuhara S. Intracerebral haemorrhage associated with hourly concentration of ambient particulate matter: case-crossover analysis. Occup Environ Med. 2007;64:17–24.

69. Bedada GB, Smith CJ, Tyrrell PJ, Hirst AA, Agius R. Short-term effects of ambient particulates and gaseous pollutants on the incidence of transient ischaemic attack and minor stroke: a case-crossover study. Environ Health. 2012;11:77.

70. Wang WS, Wang X, Deng Q, Fan WY, Wang WY. An evidence-based appraisal of global association between air pollution and risk of stroke. Int J Cardiol. 2014;175:307–313.

71. Pope CA III, Ezzati M, Dockery DW. Fine-particulate air pollution and life expectancy in the United States. N Engl J Med. 2009;360:376–386.
Ambient Air Pollution and Stroke
Petter L. Ljungman and Murray A. Mittleman

Stroke. published online October 9, 2014;
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2014 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://stroke.ahajournals.org/content/early/2014/10/09/STROKEAHA.114.003130.citation

Data Supplement (unedited) at:
http://stroke.ahajournals.org/content/suppl/2014/10/09/STROKEAHA.114.003130.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org/subscriptions/
SUPPLEMENTAL MATERIAL

Ambient Air Pollution and Stroke

Petter L. Ljungman, Murray A. Mittleman

Contents:
Table I. Studies of Short-term Air Pollution Exposure and Stroke Mortality: Detailed estimates.
Table II. Studies of Short-term Air Pollution Exposure and Hospitalization for Stroke: Detailed estimates.
Study	Location	Stroke Outcome	Stratification	Pollutant	Averaging Period	%*	95% CI
Chen 2013	8 Chinese cities	Any stroke	PM$_{10}$	2-day	0.5	(0.3, 0.8)	
			NO$_2$	2-day	0.8	(0.5, 1.1)	
			SO$_2$	2-day	0.3	(0.2, 0.5)	
Hoek 2002	Netherlands	Any stroke	PM$_{10}$	7-day	0.4	(-0.4, 1.2)	
			B$_5$	7-day	4.1	(0.7, 7.7)	
			CO	7-day	4.8	(2.1, 7.6)	
			NO$_2$	7-day	0.9	(-0.3, 2.1)	
			SO$_2$	7-day	0.4	(0.2, 0.7)	
			O$_3$	Previous day 8-h max	0.2	(0.1, 0.4)	
Hong 2002	Seoul, Korea	Ischemic stroke	TSP	Same day	3.0	(0.0, 6.0)	
			CO	Same day	0.8	(0.3, 1.2)	
			NO$_2$	Same day	2.9	(0.7, 5.0)	
			SO$_2$	Same day	2.3	(0.6, 4.0)	
			O$_3$	3-day lagged 8-h mean	3.5	(1.2, 5.8)	
		Hemorrhagic stroke	TSP	Same day	4.0	(2.0, 7.0)	
			CO	Same day	NS		
			NO$_2$	Same day	NS		
			SO$_2$	Same day	NS		
			O$_3$	3-day lagged 8-h mean	NS		
Hong 2002	Seoul, Korea	Any stroke	PM$_{10}$	Same day	0.7	(0.6, 0.8)	
			CO	2-day lag	0.7	(0.1, 1.4)	
			NO$_2$	2-day lag	3.7	(1.3, 6.1)	
			SO$_2$	2-day lag	5.1	(1.4, 8.8)	
			O$_3$	Same day	3.1	(0.3, 5.9)	
Kan 2003	Shanghai, China	Any stroke	PM$_{10}$	Previous day	0.8	(0.0, 1.6)	
			NO$_2$	Previous day	1.5	(0.1, 3.0)	
			SO$_2$	Previous day	0.6	(-0.1, 1.3)	
Kettunen 2007	Helsinki, Finland	Any stroke	PM$_{10}$	Previous day	-0.7	(-2.6, 1.3)	
			PM$_{2.5}$	Previous day	-0.3	(-1.9, 1.4)	
			PM$_{10}$,lag	Previous day	-2.5	(-7.6, 2.9)	
			PM$_{10}$,lag	Previous day	-0.8	(-4.9, 3.3)	
			CO	Previous day	-0.3	(-1.9, 1.4)	
			NO$_2$	Previous day	-0.7	(-2.7, 1.8)	
			O$_3$	8-h mean previous day	-0.2	(-1.4, 1.2)	
			PM$_{10}$	Previous day	8.7	(-0.9, 19.3)	
			PM$_{2.5}$	Previous day	13.0	(2.3, 24.2)	
			PM$_{10}$,lag	Previous day	4.4	(-4.3, 13.8)	
			PM$_{10}$,lag	Previous day	8.5	(-1.2, 19.1)	
			CO	Previous day	3.6	(0.3, 7.2)	
			NO$_2$	Previous day	1.5	(-2.0, 5.4)	
			O$_3$	8-h mean previous day	1.3	(-0.4, 3.1)	
Li 2011	Tianjin, Taiwan	Any stroke	PM$_{10}$	Same day	0.1	(-0.2, 0.5)	
			PM$_{10}$	Same day	0.7	(0.0, 1.3)	
Qian 2007	Wuhan, China	Any stroke	PM$_{10}$	Same day	0.4	(0.2, 0.7)	
Qian 2007	Wuhan, China	Any stroke	NO$_2$	Same day	0.8	(0.0, 1.3)	
			SO$_2$	Same day	-0.1	(-0.4, 0.2)	
			O$_3$	Same day	-0.1	(-0.3, 0.2)	
Qian 2008	Wuhan, China	Any stroke	PM$_{10}$	2-day	2.4	(0.0, 4.8)	
			NO$_2$	2-day	2.4	(-3.2, 8.5)	
			SO$_2$	2-day	-0.1	(-3.0, 3.0)	
			O$_3$	2-day	0.5	(-0.4, 1.4)	
			PM$_{10}$	2 day	0.4	(0.1, 0.7)	
			NO$_2$	2-day	1.0	(0.4, 1.6)	
			SO$_2$	2-day	0.4	(0.0, 0.7)	
			O$_3$	2-day	-0.1	(-0.4, 0.1)	
Qian 2010	Wuhan, China	Any stroke	PM$_{10}$	2-day	0.1	(-0.4, 0.7)	
			NO$_2$	2-day	1.8	(0.4, 3.3)	
			SO$_2$	2-day	0.6	(-0.1, 1.4)	
			NO$_2$	2-day	0.2	(-0.8, 1.1)	
			NO$_2$	2-day	0.9	(-1.0, 2.9)	
Table of Results

Study	Location	Type	Reference Dates	PM_{2.5}	PM₁₀	NO₂	SO₂	O₃	PM₁₀	NO₂	SO₂	O₃
Turin 2012[†]	Takashima, Japan	Any stroke	2013	25	45	15	9	2	35	50	60	90
		Ischemic stroke										
		Intracerebral stroke										
		Subarachnoidal stroke										
Yorifuji 2011[†]	Tokyo, Japan	Any stroke	2011	1.3	1.5	1.4	1.3	2.3	4.1	3.4	2.2	1.1
		Ischemic stroke										
		Intracerebral stroke										
		Subarachnoidal stroke										
Yorifuji 2013[†]	47 Japanese cities	Any stroke	2013		1.4	1.6	2.0	1.2	2.6	3.4		
		Ischemic stroke										
		Intracerebral stroke										
		Subarachnoidal stroke										
Zanobetti 2009[†]	112 US cities	Any stroke	2009		0.8				0.8			
		BC										
Maynard 2007[†]	Massachusetts, USA	Any stroke	2007		4.4							
		SO₂										
Qian 2013[†]	Shanghai, China	Any stroke	2013		0.2				0.2			
		Ischemic stroke										
		Hemorrhagic stroke										
		Subarachnoidal stroke										
Ren 2010[†]	Massachusetts, USA	Any stroke	2010		0.4							
		O₃										
Zeka 2005[†]	20 US cities	Any stroke	2005		0.4							
		PM₁₀										
Zeka 2006[†]	20 US cities	Any stroke	2006		0.4							
		O₃										

Notes:
- Percent differences per: 10μg/cm² for PM_{2.5}, PM₁₀, PM_{2.5}, 10 ppb for NO₂, SO₂, and O₃; 0.1 ppm for CO; 52 μg/cm³ for TSP; 5000 particles/cm³ for PM_{2.5}; 40μg/cm³ for BS, unspecified interquartile range for BC.
- † Comparing highest to lowest quartile of air pollution
- Abbreviations: BC, Black carbon. BS, Black smoke. CI, Confidence intervals. CO, Carbon monoxide. H, hour. Max, Daily maximum. NO₂, Nitrogen dioxide. NS, Non-significant associations but estimates not provided in publication. O₃, Ozone. PM_{2.5}, Particles with aerodynamic diameter ≤ 2.5μm. PM₁₀, Fine particles with aerodynamic diameters 2.5μm. PM_{2.5}, Coarse particles with aerodynamic diameter between 2.5 and 10 μm in aerodynamic diameter. PM₁₀, Ultrafine particles with less than 0.1 μm aerodynamic diameter. SO₂, Sulfur dioxide. SO₄, Sulfate. TSP, Total suspended particles.
Table II. Studies of Short-term Air Pollution Exposure and Hospitalization for Stroke: Detailed estimates

Study	Location	Stroke Outcome	Stratification	Pollutant	Averaging Period	%*	95% CI
Ballester 2001**	Valencia, Spain	Any stroke	BS		5-day lag	1.6	(-1.4, 4.6)
			CO		1-h same day	-0.1	(-0.3, 0.09)
			NO₂		4-day lag	1.9	(0.4, 3.5)
			SO₂		5-day lag	1.4	(-0.6, 3.5)
			O₃		8-h 2-day lag	-1.2	(-2.6, 0.3)
Burnett 1999**	Toronto, Canada	Any stroke	PMₐ₁₀	Same day	NS		
			PMₐ₂.₅	Same day	NS		
			CO		2-day	0.1	(-0.2, 0.4)
			NO₂		Same day	0.8	(-0.4, 2.0)
			SO₂		Same day	0.1	(-3.6, 4.5)
Chan 2006**	Taipei, Taiwan	Any stroke	PMₐ₁₀	3-day lag	1.2	(0.4, 1.9)	
			PMₐ₂.₅	3-day lag	1.1	(0.3, 1.9)	
			CO		8-h max same day	0.4	(-0.1, 0.8)
			NO₂		Same day	3.3	(-0.9, 7.7)
			SO₂		Same day	2.6	(-10, 15)
			O₃		1-h max same day	1.0	(0.3, 1.7)
Chan 2006**	Taipei, Taiwan	Ischemic stroke	PMₐ₁₀	3-day lag	1.7	(-0.8, 4.1)	
			PMₐ₂.₅	3-day lag	3.0	(-0.8, 6.8)	
			CO		8-h max same day	0.7	(-0.2, 1.6)
			NO₂		Same day	2.6	(-4.6, 9.8)
			SO₂		Same day	14	(-11, 40)
			O₃		1-h max same day	1.5	(-0.6, 3.5)
Chan 2006**	Taipei, Taiwan	Hemorrhagic stroke	PMₐ₁₀	3-day lag	-1.0	(-3.9, 1.8)	
			PMₐ₂.₅	3-day lag	-4.0	(-8.7, 0.6)	
			CO		8-h max same day	-0.2	(-1.5, 1.0)
			NO₂		Same day	-3.9	(-12, 4.4)
			SO₂		Same day	-27	(-60, 6.8)
			O₃		1-h max same day	-0.4	(-3.9, 3.2)
Corea 2012**	Mantua, Italy	Any stroke	PMₐ₁₀	Same day	8.0	(0.0, 16)	
		Ischemic stroke	PMₐ₁₀	Same day	8.0	(0.0, 17)	
		Large vessel stroke	PMₐ₁₀	Same day	20	(0.0, 40)	
			CO		Same day	-7.5	(-8.6, 6.7)
			NO₂		Same day	0.0	(-32, 32)
			SO₂		Same day	0.0	(-44, 52)
			O₃		Same day	9.6	(-4.8, 29)
Corea 2012**	Mantua, Italy	Cardioembolic stroke	PMₐ₁₀	Same day	-10	(-20, 10)	
			CO		Same day	9.3	(-3.1, 48)
			NO₂		Same day	0.0	(-16, 21)
			SO₂		Same day	-11	(-37, 15)
			O₃		Same day	-4.8	(-14, 48)
Corea 2012**	Mantua, Italy	Small vessel stroke	PMₐ₁₀	Same day	10	(0.0, 20)	
			CO		Same day	6.9	(-2.5, 31)
			NO₂		Same day	-11	(-27, 5.3)
			SO₂		Same day	-11	(-33, 7.4)
			O₃		Same day	0.0	(-9.6, 4.8)
Jalaludin 2006**	Sydney Australia	Any stroke	PMₐ₁₀	Same day	-2.1	(-4.5, 0.3)	
			PMₐ₂.₅	Same day	-1.9	(-5.0, 1.4)	
			CO		8-h same day	0.3	(-0.02, 0.6)
			NO₂		1-h same day	-1.8	(-4.1, 0.5)
			SO₂		Same day	-19	(-49, 12)
			O₃		1-h max same day	-1.1	(-2.5, 0.4)
Larrieu 2007**	8 French cities	Any stroke	PMₐ₁₀	2-day	0.2	(-1.6, 1.9)	
			NO₂		2-day	0.4	(-0.5, 1.3)
			O₃		2-day	-0.2	(-0.6, 0.1)
Le Tertre 2002**	8 European cities	Any stroke	PMₐ₁₀	2-day	0.0	(-0.3, 0.3)	
			BS		2-day	-0.1	(-0.5, 0.4)
Linn 2000**	Los Angeles, USA	Any stroke	PMₐ₁₀	Same day	0.06	(-0.4, 0.6)	
			CO		Same day	0.1	(-0.05, 0.2)
			NO₂		Same day	0.4	(-0.4, 1.2)
			O₃		Same day	0.3	(-0.7, 1.3)
Moolgavkar 2000**	Los Angeles, USA	Any stroke	PMₐ₁₀	Same day	0.6	(0.3, 1.0)	
			CO		Same day	0.1	(-0.1, 0.3)
Study	Location	Stroke Type	Lag Time	Risk Estimate	95% CI		
-----------------------	-------------------------------	------------------------	----------------	---------------	----------------		
Poloniecki 1997	London, UK	Any stroke	Previous day	-0.07	(-0.2, 0.08)		
Poloniecki 1997	Sao Jose Campos, Brazil	Any stroke	Same day	0.5	(-2.1, 3.2)		
Pönkä 1996	Helsinki, Finland	Any stroke	6-day lag	96	(21, 175)		
Sunyer 2003	7 European cities	Any stroke	2-day	0.0	(-0.2, 0.2)		
Turin 2012	Takashima, Japan	Any stroke	Same day	0.5	(-2.1, 3.2)		
		Ischemic stroke	3-day	-0.6	(-4.4, 3.1)		
		Intracerebral hemorrhage	3-day	1.6	(-4.3, 8.5)		
		Subarachnoidal hemorrhage	3-day	3.2	(-5.3, 14)		
Villeneuve 2006	Edmonton, Canada	Any stroke	NS	-3.8	(-8.1, 0.6)		
		Ischemic stroke	3-day	-6.4	(-16, 4.8)		
		TIA	3-day	-3.8	(-8.1, 0.6)		
		Hemorrhagic stroke	3-day	8.1	(-1.2, 19)		
Villeneuve 2012	Edmonton, Canada	Any stroke	Previous day	1.7	(-4.5, 6.9)		
		Ischemic stroke	3-day	1.7	(-4.5, 6.9)		
Year	Location	Stroke Type	Season	Parameters	lag	Effect Size	95% CI
------	------------------	------------------------------------	----------	------------	-----	-------------	----------
2003	Kaoshiung, Taiwan	Ischemic stroke ≥20°C		PM$_{2.5}$	3-day	6.9	(4.8, 9.2)
				CO	3-day	7.2	(4.8, 9.7)
				NO$_2$	3-day	32.2	(23, 42)
				SO$_2$	3-day	9.7	(0.0, 21)
				O$_3$	3-day	7.1	(3.3, 11)
		Hemorrhagic stroke ≥20°C		PM$_{2.5}$	3-day	8.1	(4.7, 12)
				CO	3-day	7.2	(3.1, 12)
				NO$_2$	3-day	32	(19, 49)
				SO$_2$	3-day	9.7	(8.1, 29)
				O$_3$	3-day	9.4	(2.8, 17)
		Ischemic stroke <20°C		PM$_{2.5}$	3-day	-0.5	(-5.3, 3.6)
				CO	3-day	27	(11, 48)
				NO$_2$	3-day	9.4	(-11, 40)
1999	Hong Kong, China	Any stroke	Warm season	PM$_{10}$	2-day	0.3	(-0.5, 1.0)
				NO$_2$	2-day	0.4	(-0.1, 1.0)
				SO$_2$	3-day	-0.4	(-0.8, 0.1)
				O$_3$	Same day	-0.4	(-0.8, 0.05)
2013	Wuhan, China	Any stroke	3-day	PM$_{10}$		-0.5	(-1.5, 0.6)
				NO$_2$	3-day	0.2	(-1.2, 1.6)
				SO$_2$	3-day	-0.3	(-1.0, 0.4)
		Ischemic stroke	3-day	PM$_{10}$		0.5	(-1, 0.7)
				NO$_2$	3-day	0.2	(-1.4, 1.0)
				SO$_2$	3-day	-0.3	(-0.9, 0.3)
		Hemorrhagic stroke	3-day	PM$_{10}$		-0.5	(-1.7, 0.8)
				NO$_2$	3-day	0.0	(-1.9, 1.9)
				SO$_2$	3-day	-0.2	(-1.1, 0.7)
2013	Allegheny, USA	Any stroke	Same day	O$_3$		0.2	(0.0, 0.3)
		Ischemic stroke	Same day	O$_3$		0.2	(0.0, 0.3)
		Hemorrhagic stroke	Same day	O$_3$		0.0	(0.0, 0.0)
2005	Taipei, Taiwan	Any stroke	3-day lag post ADS	ADS	5*	(-1, 7)	758
		Ischemic	3-day lag post ADS	ADS	4*	(-3, 698)	
		Intracerebral hemorrhage	3-day lag post ADS	ADS	15*	(1, 910)	
		Subarachnoidal hemorrhage	3-day lag post ADS	ADS	-19*	(-40, 478)	
2003	Kaoshiung, Taiwan	Ischemic stroke ≥20°C		PM$_{2.5}$	3-day	6.9	(4.8, 9.2)
				CO	3-day	7.2	(4.8, 9.7)
				NO$_2$	3-day	32.2	(23, 42)
				SO$_2$	3-day	9.7	(0.0, 21)
				O$_3$	3-day	7.1	(3.3, 11)
		Hemorrhagic stroke ≥20°C		PM$_{2.5}$	3-day	8.1	(4.7, 12)
				CO	3-day	7.2	(3.1, 12)
				NO$_2$	3-day	32	(19, 49)
				SO$_2$	3-day	9.7	(8.1, 29)
				O$_3$	3-day	9.4	(2.8, 17)
		Ischemic stroke <20°C		PM$_{2.5}$	3-day	-0.5	(-5.3, 3.6)
				CO	3-day	27	(11, 48)
				NO$_2$	3-day	9.4	(-11, 40)
Event	Stroke Type	Location	PM0.1	Date	Estimate (95% CI)		
-----------------------	----------------------	-------------------	-------	---------------	-------------------		
Henrotin 2007	Ischemic stroke	Dijon, France	PM0.1	Previous day	1.1 (-0.2, 9.4)		
			CO	Previous day	-1.8 (-2.6, 0.9)		
			SO2	Previous day	-0.8 (-5.1, 4.0)		
			O3	Previous day	3.6 (1.1, 6.3)		
	Hemorrhagic stroke		PM0.1	Previous day	-9.9 (-27, 11)		
			CO	Previous day	-0.9 (-2.6, 4.4)		
			SO2	Previous day	0.5 (-9.4, 14)		
			O3	Previous day	-1.2 (-1.1, 5.9)		
	Large vessel stroke		PM0.1	Previous day	-6.2 (-23, 14)		
			CO	Previous day	-1.8 (-5.2, 2.6)		
			SO2	Previous day	3.3 (-8.0, 19)		
			O3	Previous day	6.7 (0.6, 14)		
	Lacunar stroke		PM0.1	Previous day	-12 (-30, 11)		
			CO	Previous day	-2.6 (-7.0, 0.9)		
			SO2	Previous day	-6.3 (-15, 15)		
			O3	Previous day	3.7 (-3.3, 12)		
	Cardioembolic stroke		PM0.1	Previous day	10 (-11, 35)		
			CO	Previous day	-0.9 (-4.4, 3.5)		
			SO2	Previous day	-1.0 (-11, 13)		
			O3	Previous day	5.4 (-1.4, 13)		
	TIA		PM0.1	Previous day	9.5 (-17, 43)		
			CO	Previous day	-0.9 (-4.4, 3.5)		
			SO2	Previous day	-1.3 (-13, 15)		
			O3	Previous day	9.9 (2.8, 19)		
Henrotin 2010	Ischemic stroke	Dijon, France	O3	3-day lag	-0.2 (-2.3, 1.9)		
			O3	3-day lag	5.5 (2.3, 10)		
Yamazaki 2007	Ischemic stroke	Japan	PM0.1	Same day	0.9 (-0.2, 2.1)		
			NO2	Same day	-0.5 (-2.9, 1.9)		
			O3	Same day	-2.5 (-4.5, 0.4)		
	Cold season		PM0.1	Same day	0.2 (-0.9, 1.3)		
			NO2	Same day	0.0 (-2.9, 1.9)		
	Hemorrhagic stroke		PM0.1	Same day	1.4 (-0.5, 3.4)		
			NO2	Same day	-0.5 (-4.5, 3.7)		
			O3	Same day	-0.4 (-3.9, 3.3)		
Cold season	PM2.5	Same day	0.2	(-1.6, 2.0)			
-------------	-------	----------	-----	-------------			
NO2	Same day	2.5	(-2.4, 7.7)				
O3	Same day	1.0	(-5.0, 3.3)				

Bedada 2012	Manchester, UK	Minor stroke/ TIA	PM10	3-day lag	13	(-1.1, 29)
			CO	3-day lag	4.7	(0.6, 11)
			NO2	3-day lag	4.1	(-2.4, 12)
			SO2	3-day lag	3.7	(-14, 23)
			O3	3-day lag	-2.9	(-6.5, 1.6)
			PM10	3-day lag	-5.9	(-20, 9.4)
			CO	3-day lag	-8.7	(1.5, 3.5)
			NO2	3-day lag	-3.3	(-9.2, 4.0)
			SO2	3-day lag	-1.9	(-16, 11)
			O3	3-day lag	3.5	(-10, 9.2)

Liverpool, UK	Minor stroke/TIA	PM10	3-day lag	-5.9	(-20, 9.4)
		CO	3-day lag	-8.7	(1.5, 3.5)
		NO2	3-day lag	-3.3	(-9.2, 4.0)
		SO2	3-day lag	-1.9	(-16, 11)
		O3	3-day lag	3.5	(-10, 9.2)

*Percent differences per: 10µg/cm³ for BS, PM₁₀, PM₁₅, PM₂.₅; 10 ppb for NO₂, SO₂, and O₃; 0.1ppm for CO; 1 µg/cm³ for TSP; 0.5 µg/cm³ for BC.
† Comparing risk of stroke admission on third day after an Asian dust storm with the risk of stroke admission on non-Asian dust storm days.

Abbreviations: ADS, Asian dust storm episodes. BC, Black carbon. BS, Black smoke. CO, Carbon monoxide. NO₂, Nitrogen dioxide. NS, Non-significant associations but estimates not provided in publication. O₃, Ozone. PM₁₀, Particles with aerodynamic diameter ≤10µm. PM₁₅, Fine particles with aerodynamic diameters 2.5µm. PM₂.₅, Coarse particles with aerodynamic diameter between 2.5 and 10 µm in aerodynamic diameter. PM₁₀, Ultradefine particles with less than 0.1 µm aerodynamic diameter. SO₂, Sulfur dioxide. SO₄, Sulfate. TSP, Total suspended particles.

References

1. Chen R, Zhang Y, Yang C, Zhao Z, Xu X, Kan H. Acute effect of ambient air pollution on stroke mortality in the china air pollution and health effects study. Stroke. 2013;44:954-960
2. Hoek G, Brunekeef B, Fischer P, van Wijnen J. The association between air pollution and heart failure, arrhythmia, embolism, thrombosis, and other cardiovascular causes of death in a time series study. Epidemiology. 2001;12:355-357
3. Hong YC, Lee JT, Kim H, Kwon HJ. Air pollution: A new risk factor in ischemic stroke mortality. Stroke. 2002;33:2165-2169
4. Hong YC, Lee JT, Kim H, Ha EH, Schwartz J, Christiani DC. Effects of air pollutants on acute stroke mortality. Environmental health perspectives. 2002;110:187-191
5. Kan H, Jia J, Chen B. Acute stroke mortality and air pollution: New evidence from shanghai, china. J Occup Health. 2003;45:321-323
6. Kettunen J, Lanki T, Tiittanen P, Aalto PP, Koskentalo T, Kulmala M, et al. Associations of fine and ultrafine particulate air pollution with stroke mortality in an area of low air pollution levels. Stroke. 2007;38:918-922
7. Li G, Zhou M, Cai Y, Zhang Y, Pan X. Does temperature enhance acute mortality effects of ambient particle pollution in tianjin city, china. The Science of the total environment. 2011;409:1811-1817
8. Qian Z, He Q, Lin HM, Kong L, Liao D, Dan J, et al. Association of daily cause-specific mortality with ambient particle air pollution in wuhan, china. Environmental research. 2007;105:380-389
9. Qian Z, He Q, Lin HM, Kong L, Liao D, Yang N, et al. Short-term effects of gaseous pollutants on cause-specific mortality in wuhan, china. J Air Waste Manag Assoc. 2007;57:785-793
10. Qian Z, He Q, Lin HM, Kong L, Bentley CM, Liu W, et al. High temperatures enhanced acute mortality effects of ambient particle pollution in the "oven" city of wuhan, china. Environmental health perspectives. 2008;116:1172-1178
11. Qian Z, Lin HM, Stewart WF, Kong L, Xu F, Zhou D, et al. Seasonal pattern of the acute mortality effects of air pollution. J Air Waste Manag Assoc. 2010;60:481-488
12. Turin TC, Kita Y, Rumana N, Nakamura Y, Ueda K, Takashima N, et al. Ambient air pollutants and acute case-fatality of cerebro-cardiovascular events: Takashima stroke and ami registry, japan (1988-2004). Cerebrovasc Dis. 2012;34:130-139
13. Yorifuji T, Kawachi I, Sakamoto T, Doi H. Associations of outdoor air pollution with hemorrhagic stroke mortality. *J Occup Environ Med*. 2011;53:124-126
14. Yorifuji T, Kashima S. Associations of particulate matter with stroke mortality: A multicity study in Japan. *J Occup Environ Med*. 2013;55:768-771
15. Zanobetti A, Schwartz J. The effect of fine and coarse particulate air pollution on mortality: A national analysis. *Environmental health perspectives*. 2009;117:898-903
16. Maynard D, Coull BA, Gryparis A, Schwartz J. Mortality risk associated with short-term exposure to traffic particles and sulfates. *Environmental health perspectives*. 2007;115:751-755
17. Qian Y, Zhu M, Cai B, Yang Q, Kan H, Song G, et al. Epidemiological evidence on association between ambient air pollution and stroke mortality. *J Epidemiol Community Health*. 2013;67:635-640
18. Ren C, Melly S, Schwartz J. Modifiers of short-term effects of ozone on mortality in eastern Massachusetts—a case-crossover analysis at individual level. *Environmental health: a global access science source*. 2010;9:3
19. Zeka A, Zanobetti A, Schwartz J. Short term effects of particulate matter on cause specific mortality: Effects of lags and modification by city characteristics. *Occup Environ Med*. 2005;62:718-725
20. Zeka A, Zanobetti A, Schwartz J. Individual-level modifiers of the effects of particulate matter on daily mortality. *American journal of epidemiology*. 2006;163:849-859
21. Ballester F, Tenias JM, Perez-Hoyos S. Air pollution and emergency hospital admissions for cardiovascular diseases in Valencia, Spain. *J Epidemiol Community Health*. 2001;55:57-65
22. Burnett RT, Smith-Doiron M, Stieb D, Cakmak S, Brook JR. Effects of particulate and gaseous air pollution on cardiorespiratory hospitalizations. *Arch Environ Health*. 1999;54:130-139
23. Chan CC, Chuang KJ, Chien LC, Chen WJ, Chang WT. Urban air pollution and emergency admissions for cerebrovascular diseases in Taipei, Taiwan. *Eur Heart J*. 2006;27:1238-1244
24. Corea F, Silvestrelli G, Baccarelli A, Giua A, Previdi P, Siliprandi G, et al. Airborne pollutants and lacunar stroke: A case cross-over analysis on stroke unit admissions. *Neurol Int*. 2012;4:e11
25. Jalaludin B, Morgan G, Lincoln D, Sheppeard V, Simpson R, Corbett S. Associations between ambient air pollution and daily emergency department attendances for cardiovascular disease in the elderly (65+ years), Sydney, Australia. *Journal of exposure science & environmental epidemiology*. 2006;16:225-237
26. Larrieu S, Jusot JF, Blanchard M, Prouvost H, Declercq C, Fabre P, et al. Short term effects of air pollution on hospitalizations for cardiovascular diseases in eight French cities: The psas program. *The Science of the total environment*. 2007;387:105-112
27. Le Tertre A, Medina S, Samoli E, Forsberg B, Michelozzi P, Boumghar A, et al. Short-term effects of particulate air pollution on cardiovascular diseases in eight European cities. *J Epidemiol Community Health*. 2002;56:773-779
28. Linn WS, Szlachcic Y, Gong H, Jr., Kinney PL, Berhane KT. Air pollution and daily hospital admissions in metropolitan Los Angeles. *Environmental health perspectives*. 2000;108:427-434
29. Moolgavkar SH. Air pollution and hospital admissions for diseases of the circulatory system in three U.S. Metropolitan areas. *J Air Waste Manag Assoc*. 2000;50:1199-1206
30. Nascimento LF, Francisco JB, Patto MB, Antunes AM. Environmental pollutants and stroke-related hospital admissions. *Cad Saude Publica*. 2012;28:1319-1324
31. Poloniecki JD, Atkinson RW, de Leon AP, Anderson HR. Daily time series for cardiovascular hospital admissions and previous day’s air pollution in London, UK. *Occup Environ Med*. 1997;54:535-540
32. Ponka A, Virtanen M. Low-level air pollution and hospital admissions for cardiac and cerebrovascular diseases in Helsinki. *Am J Public Health*. 1996;86:1273-1280
33. Sunyer J, Ballester F, Tertre AL, Atkinson R, Ayres JG, Forastiere F, et al. The association of daily sulfur dioxide air pollution levels with hospital admissions for cardiovascular diseases in Europe (the aphea-ii study). *Eur Heart J.* 2003;24:752-760

34. Turin TC, Kita Y, Rumana N, Nakamura Y, Ueda K, Takashima N, et al. Short-term exposure to air pollution and incidence of stroke and acute myocardial infarction in a Japanese population. *Neuroepidemiology.* 2012;38:84-92

35. Villeneuve PJ, Chen L, Stieb D, Rowe BH. Associations between outdoor air pollution and emergency department visits for stroke in Edmonton, Canada. *European Journal of Epidemiology.* 2006;21:689-700

36. Villeneuve PJ, Johnson JY, Pasichnyk D, Lowes J, Kirkland S, Rowe BH. Short-term effects of ambient air pollution on stroke: Who is most vulnerable? *The Science of the Total Environment.* 2012;430:193-201

37. Wong TW, Lau TS, Yu TS, Neller A, Wong SL, Tam W, et al. Air pollution and hospital admissions for respiratory and cardiovascular diseases in Hong Kong. *Occup Environ Med.* 1999;56:679-683

38. Wordley J, Walters S, Ayres JG. Short term variations in hospital admissions and mortality and particulate air pollution. *Occup Environ Med.* 1997;54:108-116

39. Xiang H, Mertz KJ, Arena VC, Brink LL, Xu X, Bi Y, et al. Estimation of short-term effects of air pollution on stroke hospital admissions in Wuhan, China. *PloS One.* 2013;8:e61168

40. Xu X, Sun Y, Ha S, Talbott EO, Lissaker CT. Association between ozone exposure and onset of stroke in Allegheny County, Pennsylvania, USA, 1994-2000. *Neuroepidemiology.* 2013;41:2-6

41. Yang CY, Chen YS, Chiu HF, Goggins WB. Effects of Asian dust storm events on daily stroke admissions in Taipei, Taiwan. *Environmental Research.* 2005;99:79-84

42. Tsai SS, Goggins WB, Chiu HF, Yang CY. Evidence for an association between air pollution and daily stroke admissions in Kaohsiung, Taiwan. *Stroke.* 2003;34:2612-2616

43. Wellenius GA, Schwartz J, Mittleman MA. Air pollution and hospital admissions for ischemic and hemorrhagic stroke among medicare beneficiaries. *Stroke.* 2005;36:2549-2553

44. Lisabeth LD, Escobar JD, Dvonch JT, Sanchez BN, Majersik JJ, Brown DL, et al. Ambient air pollution and risk for ischemic stroke and transient ischemic attack. *Ann Neurol.* 2008;64:53-59

45. O'Donnell MJ, Fang J, Mittleman MA, Kapral MK, Wellenius GA. Fine particulate air pollution (pm2.5) and the risk of acute ischemic stroke. *Epidemiology.* 2011;22:422-431

46. Wellenius GA, Burger MR, Coull BA, Schwartz J, Suh HH, Koutrakis P, et al. Ambient air pollution and the risk of acute ischemic stroke. *Archives of Internal Medicine.* 2012;172:229-234

47. Henrotin JB, Besançonot JP, Bejot Y, Giroud M. Short-term effects of ozone air pollution on ischaemic stroke occurrence: A case-crossover analysis from a 10-year population-based study in Dijon, France. *Occup Environ Med.* 2007;64:439-445

48. Henrotin JB, Zeller M, Lorgis L, Cottin Y, Giroud M, Bejot Y. Evidence of the role of short-term exposure to ozone on ischaemic cerebral and cardiac events: The Dijon vascular project (diva). *Heart.* 2010;96:1990-1996

49. Yamazaki S, Nitta H, Ono M, Green J, Fukuhara S. Intracerebral haemorrhage associated with hourly concentration of ambient particulate matter: Case-crossover analysis. *Occup Environ Med.* 2007;64:17-24

50. Bedada GB, Smith CJ, Tyrrell PJ, Hirst AA, Agius R. Short-term effects of ambient particulates and gaseous pollutants on the incidence of transient ischaemic attack and minor stroke: A case-crossover study. *Environmental Health: A Global Access Science Source.* 2012;11:77