Transcriptomic characterization of candidate genes responsive to salt tolerance of Miscanthus energy crops

ZHIHONG SONG1,2,**, QIN XU1,**, CONG LIN1, CHENGCHENG TAO1,2, CAIYUN ZHU2,3, SHILAI XING2,3, YANGYANG FAN1,2, WEI LIU3, JUAN YAN4, JIANQIANG LI4 and TAO SANG1,2,3

1Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China, 2University of Chinese Academy of Sciences, Beijing 100049, China, 3State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China, 4Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China

**These two authors contributed equally to the work.

Correspondence: Tao Sang, tel. +86 10 62836172, fax +86 10 62590843, e-mail: sang@ibcas.ac.cn

Abstract

Given the growing need for biofuel production but the lack of suitable land for producing biomass feedstock, development of stress-tolerant energy crops will be increasingly important. We used comparative transcriptomics to reveal differential responses to long-term salt stress among five populations of Miscanthus lutarioriparius grown in the natural habitats and salinity experimental site. A total of 59 genes were found to be potentially responsive to the high-salinity conditions shared by the five populations, including those involved in detoxification, plant defense, photosynthesis, and signal transduction. Of these genes, about 70% were related to abiotic stress response. Among five populations, the most contrasting performance between relatively high survival rates and the relatively weak growing traits was in accordance with the down-regulation of genes involved in growth and up-regulation of genes related to plant stress tolerance in one of the populations. These results might reveal a potential tolerance-productivity trade-off, where resources were allocated from growth to stress resistance. The comparative transcriptomics of different populations among different environments will provide a basis for breeding and domestication of energy crops.

Keywords: bioenergy, energy crop domestication, long-term salt tolerance, marginal land, Miscanthus lutarioriparius, resource allocation

Received 13 September 2016; revised version received 13 September 2016 and accepted 17 November 2016

Introduction

With the increasing demand for fuel production from renewable resources, the development of second-generation energy crops capable of growing on marginal land becomes increasingly urgent (Sang & Zhu, 2011; Allwright & Taylor, 2016). Given that salinity is a major adverse environmental factor affecting plant growth and productivity (Boyer, 1982), it is important to improve salt tolerance of energy crops. Considerable efforts have been undertaken to elucidate salt-responsive mechanisms of plants (Flowers & Yeo, 1995; Zhu, 2001; Zhang et al., 2004; Brinker et al., 2010; Cherel et al., 2014; Bushman et al., 2016). However, understanding of plant responding to long-term salt stress in the field conditions that could facilitate energy crop development remained limited.

Over the past decades, intense studies were devoted to understanding the mechanisms of plant responding to salt stress using model plants under short-term (several hours) salt stress in controlled laboratory or greenhouse conditions (Munns & Termaat, 1986; Zhu et al., 1998; Taji et al., 2004; Fuji & Zhu, 2009; Sun et al., 2010; Wang et al., 2015). Although this has been a powerful approach for revealing detailed molecular mechanisms, mechanistic study of salt tolerance of plants growing in salinity soil under long-term field conditions is needed to close the gap for the development of salt-tolerant crops (Zhu et al., 1998; Brosché et al., 2005; Vicente et al., 2016). In such efforts, plants grown in the field conditions do represent a valuable resource for elucidating the tolerance mechanisms (Brosché et al., 2005). The importance of acclimation process to long-term salt stress in the field is even more crucial for perennial grasses, as they face repeated episodes of abiotic stresses during their life cycles (Brosché et al., 2005; Moinuddin et al., 2014). Thus, a better understanding of long-term salt tolerance mechanisms under field
conditions should benefit breeding salt-tolerant perennial grasses.

Generally, plants responding to various abiotic stresses often show a notable alteration in gene expression at the transcriptional level (Kreps et al., 2002). High-throughput RNA sequencing has been increasingly adopted to monitor global gene expression changes and identify candidate genes by comparative analyses of transcriptional profiles between normal and stressed conditions (Walia et al., 2005; Wang et al., 2009; Beritognolo et al., 2011; Alvarez et al., 2015). It is particularly useful in studying nonmodel plants whose reference genome sequences are not available (Trick et al., 2009; Libault et al., 2010a,b). Moreover, according to recent researches exploring the performance of native plants in adverse environments, transcriptomic analysis has been proven to be an effective approach to discover candidate genes with drastically altered expressional levels (Morozova & Marra, 2008; Wang et al., 2009; Champigny et al., 2013).

Several studies aiming to determine which physiological parameters best reflecting the response of Miscanthus to salt stress showed that salinity resulted in a reduction in plant growth and photosynthetic rates (Plazek et al., 2014). Nevertheless, Miscanthus could still maintain a relatively high growth rate and biomass accumulation compared to other plants (Plazek et al., 2014). Miscanthus lutarioriparius, an endemic species in central China, is considered to be a promising candidate of second-generation energy crops due to its capability of producing high biomass on the semiarid marginal land (Sang & Zhu, 2011; Yan et al., 2012; Liu & Sang, 2013; Mi et al., 2014; Fan et al., 2015; Xu et al., 2015). It is self-incompatible and reproduces through both cross pollination and clonal growth by rhizomes (Chen & Renvoize, 2006). The adaptation of M. lutarioriparius to the semiarid environment could be related to the change of expressional patterns of candidate genes responsible for abiotic stress resistance and the improvement of water use efficiency (Fan et al., 2015; Xu et al., 2015).

In this study, we sequenced transcriptomes of 50 one-year-old M. lutarioriparius individuals grown in the saline experimental field in Dongying, Shandong Province of China (DS). These individuals were collected from five natural populations (NP), and seeds were planted in the experimental field. The gene expression of 50 individuals was compared with those of 40 individuals whose leaves were directly sampled from these five natural populations for transcriptomic studies. The comparative transcriptomic study allowed for the identification of candidate genes responsive to long-term salt tolerance and one underlying mechanism of tolerance-productivity trade-off.

Materials and methods

Sample collection

A total of 40 individuals of M. lutarioriparius from five populations across the natural habitats of the species (NP) and 50 individuals from same populations grown at the salinity experimental site (DS) were sampled in June and July of 2013, respectively. Our previous study had predicted a high degree of adaptability in M. lutarioriparius based on the genetic analysis of 644 individuals from 25 populations along the Yangtze River, which span the whole geographic range of the species (Yan et al., 2016). To investigate whether these populations have salt tolerance and reveal the underlying mechanism of salt tolerance at the transcriptomic level, we focused on five of these populations of M. lutarioriparius which represent different habitats in the middle reaches of Yangtze River in this study. They are LU5, LU7, LU10, LU14, and LU9, which are from Hekou, Jianli, Honghu, and Jiayu of Hubei Province and Junshan of Hunan Province, respectively. The population identities used here are corresponding to codes in Yan et al. (2016). Seeds of the five populations of M. lutarioriparius were collected in NP and planted in the experimental field in Dongying, Shandong Province (DS), with high salt content in April 2012 (Fig. 1). The five populations of M. lutarioriparius were planted with randomized block design to reduce the variety of salinity in the saline field. We investigated the survival rate, plant height, and net photosynthetic rate of each sampled individual in DS. To reveal the intrinsic expression patterns of underlying adaptation in natural populations, the five populations in NP had been sampled for transcriptome sequencing around noon of 18–22 June, 2013, with eight individuals for each of the populations (J. Yan, Z.H. Song, J. Greimler, J.Q. Li, T. Sang, unpublished). To obtain samples of DS harvested at a similar growing phase with that of NP, the collecting time was accordingly adopted. Due to the seasonal climate conditions, the same temperature was found about one month later in DS than in NP. Ten individuals from each of the populations grown in DS were sampled for transcriptome sequencing around noon on 24 July, 2013. For all individuals, the fourth leaf from the top of each individual was cut and immediately placed in liquid nitrogen and stored at −80 °C for further analysis.

RNA-Seq, preprocessing, and annotating RNA-Seq data

Total RNA of leaves was extracted using Qiagen Plant Mini Kit (Qiagen, Stanford, CA, USA) and purified using the RNase-free DNasel (TaKaRa, Otsu, Shiga, Japan) following the manufacturer’s protocol. The concentration of purified RNA was quantified by NanoDrop ND-1000 spectrophotometer (Thermo Scientific, Wilmington, DE, USA) and stored at −80 °C until next step. The mRNA was isolated from 5 μg purified total RNA using one round of purification with oligo d (T) beads Dynabeads® mRNA Purification Kit (Invitrogen, Carlsbad, CA, USA). The cDNA libraries were prepared with the NEB-Next Ultra RNA Library Prep Kit for Illumina (New England
Biolabs, Ipswich, MA, USA). The first strand cDNA was synthesized using random hexamer-primed reverse transcription. Following the second-strand cDNA synthesis and adaptor ligation, approximately 450-bp cDNA fragments were isolated by the selection of Ampure XP beads (Beckman Coulter, Brea, CA, USA). The isolated cDNA fragments were amplified by 10 cycles of PCR. Library integrity and quality were estimated with Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA) and Qubit 2.0 fluorometer (Life Technologies, Grand Island, NY, USA), respectively. The libraries were subsequently sequenced on the Illumina HiSeq 2500 system as 2×100-bp paired-end reads.

Raw data were sorted into the corresponding individual according to their indexed nucleotides using bcl2fastq-1.8.4 (http://support.illumina.com/downloads/bcl2fastq_conversion_software_184.html). The unstable sequences content in the first nine bases of the 100-bp reads were trimmed in all samples. To control the quality, raw reads were filtered based on quality scores (Q = 20) and trimmed using FASTQC (http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/) and FASTX (http://hannonlab.cshl.edu/fastx_toolkit). Although there was no reference genome sequence of *M. luparioriparius*, Xu et al. (2015) assembled a high-quality reference transcriptome (TSA accession no. GEDE00000000). To measure the expression level of each gene in each sample, trimmed reads of each individual were mapped to the Bowtie-build indexed reference transcriptome using TopHat v2.0.0 with default settings (Langmead et al., 2009; Trapnell et al., 2009; Xu et al., 2015). Expression level of each sample was calculated using FPKM standing for fragments per kilobase of exon per million fragments mapped with Cufflinks v2.0.2 (Trapnell et al., 2010). The trimmed sequence data are available at Sequence Read Archive (SRA) at NCBI under Project ID (SRP068901). By mapping reads from each sample onto the reference transcriptome, we obtained the number of genes expressed in each sample and the expression level for each gene.

SAMtools was used to identify single-nucleotide polymorphisms (SNPs) with default settings (Li et al., 2009). We eliminated SNPs with quality score ≤10 and minor allele frequency (MAF) ≤0.05 to ensure the accuracy of SNPs. After the low-quality reads were discarded, the remaining SNPs were retained for analysis. Genetic differentiation (*F*$_{ST}$) was estimated based on those SNPs (Wright, 1978).

Expression pattern analysis

We used Xu et al.’s method (Xu et al., 2015) to describe the level and diversity of gene expression at the population level. Population expression level (*E*$_p$) was calculated as the mean of FPKM values of the given individuals to descript the mean level of gene expression in each population. Considering the unequal number of samples collected from two sites, the extent of variability in relation to the mean of the population of gene expression in each population (expression diversity, *E*$_d$) was calculated using the formula ($E_d = \frac{\sum_{i=1}^{n} |E_i - E_p|}{(n-1)E_p}$). The above *n* represents the number of individuals sampled and *E*$_i$ represents the FPKM of a given gene of the *i*th individual. The change of *E*$_p$ was further examined by the ratios of *E*$_{pS}$ (the *E*$_p$ in DS divided by the *E*$_p$ in NP).

Fig. 1 Sampling map in the transplanted site and the native habitats. Map of the locations indicating the populations sampling sites with dotted circle: Dongying, Shandong Province (DS), natural populations (NP). The detailed site for the collection in DS is indicated with red circle, while the five detailed sites for the collection of each population in NP (LU5, LU7, LU9, LU10, and LU14) are indicated with green squares.
Identification of population-specific and shared responsive genes

To more accurately detect population gene expression either shared or responding differently to long-term salt stress, we used both t-test and a fold change ranking (Cui & Churchill, 2003; Lee et al., 2012; Parker et al., 2016). The differentially expressed genes between the two sites were identified using the parametric t-test (normal bimodal distribution) or the non-parametric Wilcoxon test (nonnormal unimodal distribution). Gene expression change with \(P < 0.05 \) and larger than twofold change was considered to be statistically significant. Those genes significant differentially expressed in all of the five populations were considered as shared responsive genes. To further estimate the pattern of gene expression of shared responsive genes (down-regulated and up-regulated), we compared the \(E_{ps} \) and \(E_{ds} \) of these genes with those of all genes that expressed in both sites, respectively.

Functional annotation of population shared and differently responsive genes

Hierarchical cluster analysis of shared responsive genes in all individuals was carried out using MULTI EXPERIMENT VIEWER (MEV) v4.9 software using Spearman’s rank correlation (Saeed et al., 2003). These normalized genes’ FPKM values of individuals of two sites were put together as input data for MEV v4.9. The sequences of shared responsive genes were searched against the Arabidopsis database, using the defaulted TAIR BLASTn parameters to analyze the detailed functional categorization. The expected value (e-value) threshold was set at \(10^{-10} \) when we did the BLAST search. Functional classifications of genes expressed significantly different in each population were achieved using AgriGO (Du et al., 2010). KOBAS 2.0 was used to analyze the pathway annotation and enrichment of the differentially expressed genes in each population and chose false discovery rate (FDR) <0.05 as the threshold (Xie et al., 2011).

Results

Sequencing quality, gene expression of five M. lutarioriparius populations

Based on RNA-seq, 50 M. lutarioriparius individuals collected from five populations in the experimental field DS generated approximately 1,369,822,768 raw reads and 128.9 Gb of 100-bp paired-end reads after quality control (Table S1). The detail data size information for each individual in DS is shown in Table S1. After excluding genes with average FPKM value of zero in each population, the number of expressed genes for five populations in DS ranged from 17,315 to 17,560.

Then, we compared the data with that of 40 individuals of the five populations in NP. The further population transcriptome analyses were based on 16,678 genes expressed in five populations in both environments. We compared the \(E_{ps} \) for all genes from NP to DS, and we found that \(E_{ps} \) in DS shifted significantly toward to higher levels, suggesting an overall increase in expression from NP to DS (Wilcoxon’s test, \(P < 0.01 \); Fig. S1a). We also compared the change of \(E_{ds} \) for each of the five different populations from NP to DS separately. From NP to DS, the proportion of genes that up-regulated was highest in LU5 and lowest in LU9 (67.4%, 62.8%, 62.1%, 61.4%, and 48.2% genes were up-regulated in LU5, LU10, LU7, LU14, and LU9, respectively; Fig. S1b–f), suggesting the majority decrease in expression from NP to DS in LU9.

Responsive genes shared in five populations of M. lutarioriparius

The salinity of NP ranges from 0.55% to 1.65% (Harmonized World Soil Database v1.2, FAO/IIASA/ISRIC/ ISSCAS/JRC 2012), while the salinity of DS is around 7% about seven times higher than that of NP on average. To accurately identify salt stress-responsive genes shared by different populations of M. lutarioriparius, we conducted t-test/Wilcoxon’s test and a fold change method to screen genes significantly up or down-regulated in five populations (Fig. S2). As a result, 9945 genes were significantly differentially expressed in only one of the five populations (\(P < 0.05 \) and twofold change; Fig. 2a), while 375, 172, and 89 genes were significantly differentially expressed together in two, three, and four of the five populations, respectively (\(P < 0.05 \) and twofold change; Fig. 2a). Moreover, there were 59 differentially expressed genes shared by five populations of M. lutarioriparius, in which 46 genes were up-regulated and 13 genes were down-regulated. The \(E_{ps} \) of the 59 responsive genes shared in five populations of M. lutarioriparius tended to be significantly higher than that of all genes in both sites (Wilcoxon’s test, \(P < 0.01 \); Fig. 2b, c). \(E_{ds} \) of 59 responsive genes shared in five populations of M. lutarioriparius tended to be lower compared with that of the all genes in both environments (Fig. 2d, e). The ratio of \(E_{ds} \) between DS and NP for the 59 responsive genes shared in five populations was significantly lower than that of all genes (\(P < 0.01 \); Fig. S3). Together these results demonstrated the conserved expression of these shared genes in response to salt stress.

Three distinct clusters were obtained based on hierarchical cluster analysis of those genes using Spearman’s rank correlation (Fig. 3a; Table 1). In addition, all 59 responsive genes shared in five populations were placed into several main functional categories based on the results of BLASTn against the Arabidopsis database. The major functional category was involved in plant defense (23.73%), followed by photosynthesis (15.25%),...
cellular metabolism (13.56%), signal transduction (8.47%), and detoxification (8.47%). Some of the responsive genes shared in five populations (5.08%) were unable to assign functions (Fig. 3b). A detailed functional categorization for 59 responsive genes shared by five populations is shown in Table 1. Of these genes, about 61%, 69%, and 90% genes were reported abiotic stress-responsive genes in clusters I, II, and III, respectively, with an average of about 70% (Table 1). Interestingly, of these genes, about 33%, 11%, and 56% of reported photosynthesis genes were within clusters I, II, and III, respectively (Table 1).

Population-different phenotype and candidate genes responding to salt stress

Pair-wise F_{ST} estimated with SNPs from the transcriptomes between the five populations ranged from 0.028 to 0.049 (Table S2). Then, we monitored the survival rate and trait performances of each population respectively in response to salt stress to screen the variation of salt stress tolerance. The average survival rate for the majority of populations was smaller than 50% (Fig. 4). And there was significant difference for their survival rates among the five populations, with the survival rate 45.9, 38.3, 31.6, 29.4, and 26% in LU14, LU9, LU5, LU7, and LU10, respectively (Fig. 4). Moreover, plant height and photosynthetic rate of five populations were significantly different from each other ($P < 0.05$). The average plant height of LU10, LU5, LU14, LU7, and LU9 was 255, 243.3, 218.3, 209, and 201.7 cm, respectively (Fig. 4). The average photosynthetic rates of LU7, LU10, LU14, LU5, and LU9 were 35.0, 33.7, 33.0, 31.7, and 29.6 $\text{mmol} \text{CO}_2 \text{m}^{-2} \text{s}^{-1}$, respectively (Fig. 4). Therefore, among the five populations, LU9 showed the most contrasting performance between relatively high survival rates and relatively weak growing traits including plant height and photosynthetic rates in salinity soil. LU10 showed the contrary performance with relatively lower survival rates and relatively high growing traits for survival individuals in salinity soil.

We further monitored the expression performance of each population respectively in response to salt stress to screen the candidate genes. Among the 16 678 shared expressed genes in all five populations in two environments, 1774 (10.6%), 239 (1.4%), 981 (5.9%), 2015 (12.1%), and 912 (5.5%) population-specific responsive genes ($P < 0.05$ and twofold change) were detected in LU5, LU7, LU9, LU10, and LU14, respectively. The E_{ps} and E_{ds} of these genes were quite different among populations ($P < 0.05$; Fig. S4a–d). The E_{ps} of LU9 exhibited the widest range in both two environments. What's more, for LU9 the E_{ps} were largest in NP and the smallest in DS ($P < 0.05$; Fig. S4a, b), and the E_{ds} were largest...
in NP and smallest in DS ($P < 0.05$; Fig. S4c, d). LU9, with most of the genes down-regulated, was found to be with the significantly widest range of E_p ratio from NP to DS ($P < 0.05$; Fig. 5a). LU9 was also found to be with the significantly lowest E_d ratio from NP to DS ($P < 0.05$; Fig. 5b).

The enriched GO terms in population-specific responsive genes were listed in Table S3. The significantly enriched GO terms of population-specific responsive genes in LU9 were involved in the up-regulation of defense response, the down-regulation of photosystem, the down-regulation of isopentenyl diphosphate biosynthetic process, mevalonate-independent pathway, and the pentose-phosphate shunt in the category of biological process (Fig. 6; Table S3). Enriched GO terms of genes between the up- and down-regulated genes were similar among other four populations (Table S3). Thus, LU9 showed the most typical expression coordination, in which the decreased expression of genes involved in normal growth was accompanied by the increased expression of genes related to stress tolerance. To improve our understanding of the important biochemical pathways of population-specific responsive genes, we further analyzed the KEGG pathway of those genes in each population. With the KO annotation of expressed genes in each population as background, four pathways that were photosynthesis (ko00195), protein processing in endoplasmic reticulum (ko04141), phenylpropanoid biosynthesis (ko00940), and circadian rhythm plant (ko04712) had significant enrichment between two environments in LU9 (Table 2). Two pathways that were ribosome (ko03010) and aminoacyl-tRNA biosynthesis (ko00970) had significant enrichment between two sites in LU5 and LU10 (Table 2). One pathway that
The accession, annotation, and potential functional groups of responsive genes shared in five populations was performed using blastn of TAIR. The clusters were grouped using hierarchical clustering method. The direction of expression regulation is shown by plus sign (up) and minus sign (down), respectively. Different stress types and corresponding reference of the reported abiotic stress-responsive genes in those genes were also listed.

Gene	Cluster	Function category	Accession	TAIR description	Regulation	Reference	Stress type
MluLR16374	I	Cellular metabolism-related	AT5G01820.1	Pigment Defective 312 (PDE312)	+	Chen et al. (2014)	Wounding, salt stress
MluLR4612	I	Cellular metabolism-related	AT2G24200.1	Chloroplast-targeting Ogb GTPase	+	Singh et al. (2011)	Salt stress, hormones
MluLR1909	I	Cellular metabolism-related	AT2G37220.1	Myristoyl-CoA:protein	+	Pham et al. (2015)	Oxidative stress
MluLR9800	I	Cellular metabolism-related	AT2G07686.1	Embryo sac development arrest 41 (EDA41)	+	Shi et al. (2011)	Salt stress
MluLR199	I	Cellular metabolism-related	AT4G32551.2	ATP-binding microtubule motor family protein	+	Kley et al. (2011)	Light
MluLR10256	I	Cellular metabolism-related	AT5G19855.1	FAD/NAD (P)-binding oxidoreductase family protein	+	Zhao et al. (2007)	Salt stress
MluLR12673	I	Detoxification enzyme	AT4G33510.2	A homolog of animal DJ-1 superfamily protein	+	Park et al. (2005)	Oxidative stress
MluLR9783	I	HSP90	AT3G27190.1	Heat Shock Protein 90.5 (HSP90.5)	+	Lockwood et al. (2010)	Heat stress
MluLR16658	I	Photosynthesis	AT2G42490.1	Heme oxygenase-like protein	+	Pham et al. (2015)	Oxidative stress
MluLR10655	I	Photosynthesis	AT3G47450.1	Chaperonin-60 alpha	+	Shi et al. (2011)	Salt stress
MluLR10490	I	Photosynthesis	AT5G26345.1	DegP2 protease (DEGP2)	+	Kley et al. (2011)	Light
MluLR1420	I	Plant defense	AT3G04650.1	Nicotin Oxide Synthase 1 (NOS1)	+	Pillai et al. (2012)	Drought, hyperosmotic stress
MluLR18500	I	Plant defense	AT2G47940.2	SNF1-related protein kinases (SnRK2)	+	Huang et al. (2003)	Salt stress
MluLR7896	I	Plant defense	AT1G11430.1	Activated Disease Susceptibility 1 (ADS1)	+	Lee et al. (2011)	Herbicide
MluLR14296	I	Plant defense	AT5G52470.1	Acetohydroxy Acid Synthase (AHAS)	+	Kalamaki et al. (2009)	Drought, salt stress
MluLR10051	I	Plant defense	AT5G52460.1	Argininosuccinate Synthase (ASS)	+	Jeong et al. (2011)	Plant immunity
MluLR13497	I	Plant defense	AT1G71220.1	A substrate of the type III effector HopU1	+	Lorkovic (2009)	Cold stress
MluLR15976	I	Plant defense	AT1G20620.5	Glycine-Rich RNA-Binding Protein 8 (GR-RBP8)	+	Jeong et al. (2011)	Plant immunity
MluLR2498	I	Plant defense	AT4G35090.2	A substrate of the type III effector HopU1	+	Lorkovic (2009)	Cold stress
MluLR7575	I	Ribosome	AT3G48530.1	Fibrillarin 1 (FBR1)	+	Lee et al. (2011)	Herbicide
MluLR9201	I	RNA and DNA synthesis	AT1G51410.1	Multiple Organellar Rna Editing Factor 9 (MORF9)	+	Kalamaki et al. (2009)	Drought, salt stress
MluLR9925	I	Signaling	AT4G25990.2	Chloroplast Signal Recognition Particle 54 Kda Subunit (cpSRP54)	+	Jeong et al. (2011)	Plant immunity
MluLR14186	I	Transporter	AT5G09810.1	Heavy Metal Atpase 2 (HMA2)	+	Tan et al. (2013)	Heavy metal stresses
Gene Cluster	Function category	Accession	TAIR description	Regulation	Reference	Stress type	
-------------	------------------	----------	------------------	------------	-----------	-------------	
MluLR6586	Transporter	AT1G79040.1	Copper uptake transmembrane transporter	+			
MluLR18499	Transposon	AT2G04030.2	Non-LTR retrotransposon family	+			
MluLR11152	Transposon	AT3G14940	Mutator-like transposase family	+			
MluLR13768	Transposon	AT3G48000.1	Gypsy-like retrotransposon family	+			
MluLR15241	Unknown	AT5G05940.1	SWIB/MDM2 domain superfamily protein	+			
MluLR9684	Carbohydrate metabolism-related	AT4G07970.1	Uridine Kinase-Like 2 (UKL2)	+	Keith et al. (1991)	Wounding, pathogenic attack	
MluLR9792	Cellular metabolism-related	AT1G18550.1	3-Deoxy-D-Arabinose-Heptulosonate 7-Phosphate Synthase	+	Limami et al. (2008)	Hypoxic stress	
MluLR4471	Cellular metabolism-related	AT2G37220.1	Alanine Aminotransferase 2 (ALAAT2)	+			
MluLR6349	Detoxification enzyme	AT2G28000.1	Catalase 3	+	Engel et al. (2006)	Salt stress	
MluLR14616	Detoxification enzyme	AT3G48560.1	Catalase 2	+	Engel et al. (2006)	Salt stress	
MluLR12619	Detoxification enzyme	AT5G20550.1	Soluble Epoxide Hydrolase (SEH)	+	Kyosue et al. (1994)	Auxin, water Stress	
MluLR8439	Detoxification enzyme	AT1G56340.1	Copper Amine Oxidase Family Protein	+	Wimalasekera et al. (2011)	Abscisic acid	
MluLR6699	Photosynthesis	AT2G14880.1	Phosphoenolpyruvate carboxylase (PEPC)	+	Monreal et al. (2013)	Salt stress	
MluLR884	Plant defense	AT4G34020.2	Aldehyde Dehydrogenase 2 (ALDH2)	+	Sunkar et al. (2003)	Oxidative stress	
MluLR12563	Plant defense	AT2G26740.1	2-oxoglutarate (2OG) and Re (II)-dependent oxidase superfamily protein	+	Kumchai et al., (2013)	Molybdenum	
MluLR6829	Plant defense	AT3G31395.1	Cytosol Aminopeptidase Family Protein (CAP)	+	Zhou et al. (2009)	Aluminum stress	
MluLR5906	Plant defense	AT2G19170.1	UDP-glucose:glycoprotein glucosyltransferase (UGGT)	+	Howell (2013)	Endoplasmic reticulum stress	
MluLR13269	Protein kinase	AT2G33170.1	SNF1-related protein kinase regulatory subunit gamma 1 (KING1)	+	Akkasaeng et al. (2007)	Water stress	
MluLR6675	Protein kinase	AT1G08450.3	Leucine-rich repeat receptor-like protein kinase family protein	+	Wu et al. (2009)	Salt stress, cold, wounding	
MluLR10987	Signaling	AT2G26550.3	Calreticulin 3 (CRT3)	+	Jia et al. (2008)	Salt stress, tunicamycin	
MluLR13377	Signaling	AT2G15290.1	Calreticulin 1 (CRT1)	+	Jia et al. (2008)	Salt stress, tunicamycin	
MluLR10583	Signaling	AT3G52310.1	BRI1-LIKE 3 (BRI3)	+	Cano-Delgado et al. (2004)	brassinosteroid regulation	
MluLR6770	Unknown	AT4G39260.4	Similar to Eucalyptus gunnii alcohol dehydrogenase of unknown physiological function	+			
MluLR806	Actin	AT4G29140.1	Member of Actin gene family	-	Wang et al. (2012)	Salt stress	
Gene Cluster	Function category	Accession	TAIR description	Regulation	Reference	Stress type	
--------------	-------------------	-----------	------------------	------------	-----------	-------------	
MluLR15151	Cellular metabolism-related	AT2G23030.1	Subtilisin-Like Serine Protease 3 (SLP3)	-	Liu et al. (2007)	Salt stress	
MluLR13525	Photosynthesis	AT5G18570.1	Photosystem II encoding the Light-harvesting chlorophyll a/b-binding protein CP26	-	-	-	
MluLR16614	Photosynthesis	AT3G48500.2	PSI type III chlorophyll a/b-binding protein (Lhca3*1)	-	Jung et al. (2003)	Cold stress	
MluLR17427	Photosynthesis	AT4G24830.2	Encodes the only subunit of photosystem I located entirely in the thylakoid lumen	-	-	-	
MluLR429	Photosynthesis	AT5G64040.2	A chloroplast stromal localized RbcX protein	-	Kolesinski et al. (2011)	Salt stress, oxidative stress and so on H2O2 stress, polyethylene glycol stress	
MluLR6297	Photosynthesis	AT1G04445.1	The 10-kDa PsbR subunit of photosystem II	-	Suja & Parida (2008)	-	
MluLR2862	Plant defense	AT4G10340.1	LEUNIG	-	Shrestha et al. (2014)	Salt stress, osmotic stress	
MluLR9503	Signaling	AT1G72330.3	CBL-Interacting Protein Kinase 14 (CIPK14)	-	Zhang et al. (2008)	Cold, drought, salt stress	
MluLR719	Transcription factor	AT4G30110.1	Chloroplast Import Apparatus Cia2-Like	-	-	-	
MluLR5518	Transcription factor	AT1G61520.3	C2H2-like zinc finger protein	-	Plavcova et al. (2013)	Nitrogen stress	
MluLR3082	Transporter	AT5G57020.1	ABC-2 type transporter family protein	-	Gu et al. (2004)	Salt stress	
MluLR7664	Unknown	AT3G13380.1	Hypothetical protein	-	-	-	
Discussion

The important role of shared responsive genes in stress responses

To avoid getting false-positive results of responsive genes, only those showing significantly differential expression in all the five populations ($P < 0.05$ and two-fold change) were identified as candidate genes. This is necessary for studying plants responding to stress in the field conditions where variables are relatively difficult to control. The finding that responsive genes shared by five populations tended to have lower E_{ds} and higher E_{ps} compared with all genes (Fig. 2b–e) may indicate that those shared responsive genes tend to be more conserved among individuals than others. They are expected to have experienced strong positive or purifying selective constraint (Hannah et al., 2006; Des Marais et al., 2012; Rengel et al., 2012; Lasky et al., 2014). This result was also in agreement with previous reports that E_{ds} of genes with higher E_{ps} tended to be more conserved in changing environment (Xu et al., 2016), which had been explained that highly expressed genes experienced stronger purifying selection than those at lower level. The results that the decrease of E_{ds} of shared responsive genes following $M.\ lutarioriparius$ being transplanted from its native habitats NP to DS in high saline field reflected the dominant trend of narrowed range of gene expression in the new environment. Thus, these shared responsive genes may be considered as consistently expressed salt-responsive genes and likely represent adaptive responses to common saline conditions (Lasky et al., 2014).

Indeed, these shared genes are also found to play an important role in stress response in the related species. As we found that the functions of those genes were mainly involved in detoxification enzymes, plant defense and photosynthesis, and up to 70% of these genes were reported to be stress-responsive genes. For example, detoxification enzymes can reduce excessive reactive oxygen species (ROS) accumulation as various environmental stresses such that salinity universally causes oxidative stress with an excessive accumulation.
of ROS in plants such as *Soldanella alpina* and *Arabidopsis thaliana* (Kiyosue *et al.*, 1994; Sunkar *et al.*, 2003; Engel *et al.*, 2006). Therefore, the complex regulation of the mRNA of catalase (CAT) (Engel *et al.*, 2006), aldehyde dehydrogenase (ALDH) (Sunkar *et al.*, 2003), and epoxide hydrolase (EH) (Kiyosue *et al.*, 1994) seemed to constitute a detoxification mechanism that limits excessive ROS accumulation in *M. lutarioriparius* leaves. Plant defense was found to frequently respond to various stress environments in other plants (Park *et al.*, 2005; Lockwood *et al.*, 2010), which is according to our result that genes encoding DJ-1/PfpI proteins family and heat shock proteins (HSPs) were up-regulated in DS. Photosynthetic response to salinity stress is extremely complex because salinity stress indirectly affects photosynthesis and includes expression of those genes connected to growth inhibition or leaf shedding. Through limiting water consumption, plant could help to maintain the carbon assimilation (Chaves *et al.*, 2009). In this case, down-regulated genes in *M. lutarioriparius* encoding photosynthesis-related proteins such as light-harvesting chlorophyll a/b-binding protein 5 (LHCP5) may function in the same way. Consistently, the previous studies also showed that plants responding to salt stress displayed complex molecular responses including the production of ion transporters and detoxification enzymes to re-establish homeostasis and resume growth in *Arabidopsis* (Zhu, 2001).
The potential tolerance-productivity trade-off mechanism in response to salt stress

The different performances existing among different populations or species may be used for dissecting different salt tolerance mechanisms (Walia et al., 2005; Platten et al., 2013). This study analyzed the expression pattern of population-specific responsive genes in five populations. The Eqs' range of these genes narrowed down only in LU9 when *M. lutarioriparius* was transplanted from NP to DS (Fig. S4c, d), suggesting that the expression for these genes in LU9 experienced a purifying selection (Brawand et al., 2011) or responded to long-term salt stress. Another possible explanation for this might be that these genes would be under a more systematic and strict regulation when encountered with salt stress environment (Zhu, 2001; Chen et al., 2002).

In addition, the different performances of phenotype were also observed among the five populations (Fig. 4). The strongest growth traits and lowest survival rate of LU10 might be a result of selection under which a relatively small portion of individuals with outstanding phenotype was able to survive (Randerson & Hurst, 2001). Therefore, the surviving individuals with such phenotype could have a great potential for energy crop development in salinity soil. In further studies, salt tolerance and growth traits of *M. lutarioriparius* can be selected separately for pyramiding breeding (Handa et al., 2014). The detailed response mechanisms could be revealed more clearly by associating the expression pattern with phenotype (Atwell et al., 2010). First of all, the responsive genes were analyzed for GO enrichment in each population separately, and the results showed that the up-regulation of stress response, the down-regulation of photosystem II assembly, isopentenyl diphosphate biosynthetic process, mevalonate-independent pathway, and the pentose-phosphate shunt were enriched in LU9 (Fig. 6; Table S3). Moreover, pathway enrichment analysis showed that photosynthesis, protein processing in endoplasmic reticulum, and phenylpropanoid biosynthesis were enriched in LU9 (Table 2). Phenylpropanoid biosynthesis (ko00940) (Vogt, 2010) and the up-regulation of defense response might have contributed to the salt tolerance of LU9. The pentose-phosphate shunt pathway that was well known as the fundamental metabolic pathway was down-regulated (Wood, 1986). The down-regulation of photosystem II assembly, isopentenyl diphosphate biosynthetic process, mevalonate-independent pathway, and photosynthesis (Lichtenthaler et al., 1997) might have contributed to the lowest photosynthetic rate in LU9 (Fig. 4). The down-regulation of function in photosynthesis and cellular metabolism that consequently limited carbon dioxide uptake and compromised plant growth might be one cause of the weak phenotype in LU9 under salt stress (Chaves et al., 2009).

The contrasting performance of LU9 between relatively high survival rate and relatively weak growing traits including plant height and photosynthetic rate was in accordance with gene expression patterns in such a way that the decreased expression of genes involved in normal growth was accompanied by the increased expression of genes related to plant stress tolerance. These results revealed the underlying mechanism of tolerance-productivity trade-off, that is, the molecular basis for redirecting resources from growth to stress resistance (Dupont-Prinet et al., 2010; Muller-Landau, 2010). The coordination of decreasing the expression of genes related to normal growth and increasing the expression of genes involved in plant stress-responsive mechanisms could have contributed to allocation of resources from rapid growth to stress protection (Sabreen & Sugiyama, 2008; Lopez-Maury et al., 2009; Zakrzewska et al., 2011) and resulted in higher survival rates at a cost of other physiological attributes (Dupont-Prinet et al., 2010).

The findings of response of *M. lutarioriparius* to long-term salt stress in natural environment

We compared the findings of our study with those studies of poplar and *Arabidopsis* under short-term controlled environment salt stress. The CAT gene family involved in antioxidant defense in poplar (Ding et al., 2010) and SOS pathway that salt stress induced calcium-signaling pathway in *Arabidopsis* (Chinnusamy et al., 2004) were the well-known salt stress-associated genes which were revealed under short-term (0–48 h) controlled environment salt stress. We also found genes such as CAT involved in antioxidant defense and CBL that was identified as one of the calcium sensors in calcium-signaling pathway, which is in coincidence with the findings in short-term controlled environment (Engel et al., 2006; Zhang et al., 2008). And the expression of catalase was only up-regulated under long-term salt stress treatments, which was consistent with the previous study (Hernandez et al., 2010). Compared with findings of studies under short-term salt stress, the long-term study could also have a better observation of survival rates and growing traits.

We also compared the findings of our study with those studies of *Miscanthus*, pea, and wheat under controlled long-term salt stress. We found in *M. lutarioriparius* leaves, genes involved in the function of detoxification, plant defense, photosynthesis, and signal transduction were potentially responsive to the high-salinity conditions. One of the *M. lutarioriparius* populations had the potential tolerance-productivity trade-off,
in which down-regulation of cellular metabolisms, photosynthesis genes, and the up-regulation of stress-related genes were coordinated with the contrasting performance between relatively high survival rate in salinity soil and relatively weak growing traits including plant height and photosynthetic rates (Fig. 4; Fig. 6). The previous studies found that Miscanthus x giganteus and Miscanthus sinensis tended to have a reduction in plant growth and photosynthetic rate in response to salt stress under controlled hydroponic conditions (Plazek et al., 2014), which were in accordance with the relatively weak growing traits. In the expression profile, the induction of antioxidant defense (Hernandez et al., 2000) and the reduction in photosynthesis-related genes (Kiani-Pouya, 2015) were also found in pea and wheat responding to long-term (15–60 days) salt stress under controlled environment. Those findings focused on investigating the different responses between salt-tolerant and salt-sensitive genotypes facing long-term salt stress. Salt-tolerant genotypes had stronger growing traits or higher expression of antioxidant defense-related genes than salt-sensitive genotypes. However, only our study did find the link between gene expression and growth traits.

In this study, we aimed to understand how plants respond to long-term salt stress by conducting comparative population transcriptomic analyses between native habitat and salinity field. Through identifying candidate stress-responsive genes shared by populations, we demonstrated that consistently expressed responsive genes were likely to represent adaptive responses to common stress conditions and genes shared for stress responses appeared to have been subject to purifying selection. Based on the population which had the most contrasting performance between survival rates and growing traits, we found this contrasting performance was in accordance with the up-regulation of genes involved in stress tolerance and down-regulation of certain growth-related genes. The finding suggested that there might be a tolerance-productivity trade-off when plants were exposed to long-term salt stress in the field conditions, where resource allocation from growth to stress resistance might be the mechanism at the expression level for stress tolerance. Fine tuning of the tolerance-productivity trade-off could potentially contribute to the development of second-generation energy crops that have satisfactory establishment rates and productivity in salinity land.

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China [31500186 and 31400284] and the Science and Technology Service Network Initiative of the Chinese Academy of Sciences [KJF-EW-STS-061 and KJF-EW-STS-119]. We thank the Beijing Center for Physical and Chemical Analysis for generating the sequencing data, the Beijing Computing Center for providing computational infrastructure for data analysis. The government of Kenli County and government of Dongying City of the Shandong Province provide assistance and support for this work.

References

Akkasaeng C, Tantisuwirawong N, Chairam I, Prakrongrak N, Jogloy S, Pathanothai A (2007) Isolation and identification of peanut leaf proteins regulated by water stress. Pakistan Journal of Biological Sciences: PJBS, 10, 1611–1617.

Allwright MR, Taylor G (2016) Molecular breeding for improved second generation bioenergy crops. Trends Plant Science, 21, 43–54.

Alvarez M, Schrey AW, Richards CL (2015) Ten years of transcriptomics in wild populations: what have we learned about their ecology and evolution? Molecular Ecology, 24, 710–725.

Atwell S, HuangYS, Vilhalmsson Bf et al. (2010) Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature, 465, 627–631.

Bertognoolo I, Harfoochue A, Brilli F et al. (2011) Comparative study of transcriptional and physiological responses to salinity stress in two contrasting Populus alba L. genotypes. Tree Physiology, 31, 1335–1355.

Beyer JS (1982) Plant productivity and environment. Science, 218, 443–448.

Brawand D, Soumillon M, Nocesea A et al. (2011) The evolution of gene expression levels in mammalian organs. Nature, 479, 343–348.

Briner M, Brosche M, Vinocur B et al. (2010) Linking the salt transcriptome with physiological responses of a salt-resistant populus species as a strategy to identify genes important for stress acclimation. Plant Physiology, 154, 1697–1709.

Brosche M, Vinocur B, Alatalo ER et al. (2005) Gene expression and metabolite profiling of Populus euphratica growing in the Niger desert. Genome Biology, 6, R101.

Bushman BS, Amundsen KL, Warnke SE, Robins JC, Johnson PG (2016) Transcription profiling of Kentucky bluegrass (Poa pratensis L.) accessions in response to salt stress. BMC Genomics, 17, 48.

Cano-Delgado A, Yin VH, Yu C et al. (2004) BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis. Development, 131, 5341–5351.

Champigny MI, Sung WWL, Catana V et al. (2013) RNA-seq effectively monitors gene expression in Eutrema salsugineum plants growing in an extreme natural habitat and in controlled growth cabinet conditions. BMC Genomics, 14, 578.

Chaves MM, Flicues J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany, 103, 551–560.

Chen SL, Renvoize SA (2006) Miscanthus. In: Flora of China (eds Wu ZY, Raven PH, Hong DY), pp. 581–583. Science Press, Beijing, China, Missouri Botanical Garden Press, St. Louis, MO, USA.

Chen WQ, Provart NJ, Glazebrook J et al. (2002) Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell, 14, 559–574.

Chen J, Bang WY, Lee Y et al. (2014) AtObgC-AtRSH1 interaction may play a vital role in stress response signal transduction in Arabidopsis. Plant Physiology and Biochemistry, 74, 176–184.

Cherel I, Lebloiz C, Boeglin M, Sentenac H (2014) Molecular mechanisms involved in plant adaptation to low K+ availability. Journal of Experimental Botany, 65, 833–848.

Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. Journal of Experimental Botany, 55, 225–236.

Cui XQ, Churchill GA (2003) Statistical tests for differential expression in cDNA microarray experiments. Genome Biology, 4, 210.

De Marzio DL, Mckay JK, Richards JH, Sen S, Wayne T, Jaenger TE (2012) Physiological genomics of response to soil drying in diverse Arabidopsis accessions. Plant Cell, 24, 893–914.

Ding MQ, Hou PC, Shen X et al. (2010) Salt-induced expression of genes related to Na+/K+ and ROS homeostasis in leaves of salt-resistant and salt-sensitive poplar species. Plant Molecular Biology, 73, 251–269.

Du Z, Zhou X, Ling Y, Zhang ZH, Su Z (2010) Agrigo: A go analysis toolkit for the agricultural community. Nucleic Acids Research, 38, W64–W70.

Dupont-Pinet A, Chatain B, Grima L, Vandepitte M, Claireaux G, Mckenzie DJ (2010) Physiological mechanisms underlying a trade-off between growth rate and...
tolerance of feed deprivation in the European sea bass (Dicentrarchus labrax). Jour-
nal of Experimental Biology, 213, 1143–1152.
Engel N, Schmidt M, Lutz C, Feierabend J (2016) Molecular identification, heterolo-
geneous expression and properties of light-insensitive plant catalases. Plant Cell and
Environment, 29, 593–607.
Fan YY, Wang Q, Kang LF et al. (2015) Transcriptome-wide characterization of can-
didate genes for improving the water use efficiency of energy crops grown on
semiarid land. Journal of Experimental Botany, 66, 6415–6429.
Flowers TJ, Yeo AR (1995) Breeding for salinity resistance in crop plants where
next? Australian Journal of Plant Physiology, 22, 875–884.
Fuji H, Zhu J (2009) An autophosphorylation site of the protein kinase SOS2 is
important for salt tolerance in Arabidopsis. Molecular Plant, 2, 183–190.
Cu RS, Fonseca S, Puskas LG, Hacker L, Zvara A, Dados D, Paix MS (2004) Tran-
script identification and profiling during salt stress and recovery of Populus euphratica.
Tree Physiology, 24, 265–276.
Handa N, Bhardwaj R, Thukral AK, Arora S, Kohli SK, Gautam V, Kaur T (2014)
Gene pyramiding and omics approaches for stress tolerance in leguminous plants.
In: Legumes Under Environmental Stress: Yield, Improvement and Adaptations, 265 John Wiley & Sons, Chichester, UK.
Hannah MA, Wiese D, Freund S, Fiehn O, Heyer AG, Hincha DK (2006) Natural genetic variation of freezing tolerance in Arabidopsis. Plant Physiology, 142, 98–112.
Hernandez JA, Jimenez A, Mullineaux P, Sevilla F (2000) Tolerance of pea (Pisum
sativum L.) to long-term salt stress is associated with induction of antioxidant
defences. Plant Cell and Environment, 23, 853–862.
Hernandez M, Fernandez-Garcia N, Dauz-Vivancos P, Olmos E (2010) A different role
for hydrogen peroxide and the antioxidative system under short and long
salt stress in Brassica oleracea roots. Journal of Experimental Botany, 61, 521–535.
Howell SH (2013) Endoplasmic reticulum stress responses in plants. Annual Review
of Plant Biology, 64, 477–499.
Huang J, Zhang HS, Wang JF, Yang JG (2003) Molecular cloning and characterization
of rice 6-phosphogluconate dehydrogenase gene that is up-regulated by salt
stress. Molecular Biology Reports, 30, 223–227.
Jeong BR, Lin Y, Joe A et al. (2011) Structure function analysis of an ADP-ribosyl-
transferase type III effector and its RNA-binding target in plant immunity. Journal of Biological Chemistry, 286, 43272–43281.
Jia XY, Xu CY, Jing RL, Li RZ, Mao XG, Wang JP, Chang XP (2008) Molecular clon-
ing and characterization of wheat calreticulin (CRT) gene involved in drought-
stressed responses. Journal of Experimental Botany, 59, 739–751.
Jung SH, Lee JY, Lee DH (2003) Use of SAGE technology to reveal changes in gene
expression in Arabidopsis leaves undergoing cold stress. Plant Molecular Biology, 52, 553–567.
Kalamaki MS, Alexandrou D, Lazarri D et al. (2009) Over-expression of a tomato N-
acetyl-L-glutamate synthase gene (SINAGS1) in Arabidopsis thaliana results in high
ornithine levels and increased tolerance to salt and drought stresses. Journal of Experimental Botany, 60, 1859–1871.
Keith B, Dong XN, Ausubel FM, Pink GR (1991) Differential induction of 3-deoxy-D-
arabino-heptulosonate 7-phosphate synthase gene in Arabidopsis thaliana by
wounding and pathogenic attack. Proceedings of the National Academy of Sciences, 88, 8621–8625.
Kiani-Pooya A (2015) Changes in activities of antioxidant enzymes and photosyn-
thetic attributes in Triticale (x Triticosecale wittmack) genotypes in response to
long-term salt stress at two distinct growth stages. Acta Physiologica Plantarum, 7, 1–11.
Kiyosue T, Beetham JK, Pinot F, Hammock BD, Yamaguchi-Shinozaki K, Shin
nozaki K (1994) Characterization of an Arabidopsis cDNA for a soluble
epoxide hydrolase gene that is inducible by auxin and water-stress. Plant Journal, 5, 259–269.
Kley J, Schmidt B, Boyanov B et al. (2011) Structural adaptation of the plant protease
Degt to repair photosystem II during light exposure. Nature Structural and Molec-
ular Biology, 18, 728–731.
Kolesinski P, Pechota J, Szczepaniak A (2011) Initial characteristics of RhX proteins
from Arabidopsis thaliana. Plant Molecular Biology, 77, 447–459.
Kreps JA, Wu YJ, Chang HS, Zhu T, Wang X, Harper JF (2002) Transcriptome changes
for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physi-
ology, 130, 1219–2141.
Kumcchi J, Huang JZ, Lee CY, Chen FC, Chin SW (2013) Proline partially overcomes
excess molybdenum toxicity in cabbage seedlings grown in vitro. Genetics and Mol-
ecular Research, 12, 5809–5861.
Perspectives and Strategies (ed. Venkateswarlu B), pp. 139–161. Springer Science + Media, Mumbai, India.

Plattner JD, Egadane JA, Ismail AM (2013) Salinity tolerance, Na⁺ exclusion and allelic mining of HKT1;5 in Oryza sativa and O. glumae: many sources, many genes, one mechanism? BMC Plant Biology, 13, 32.

Plavecova L, Hacke UG, Almeida-Rodriguez AM, Li EY, Douglas CJ (2013) Gene expression patterns undergoing changes in xylem structure and function in response to increased nitrogen availability in hybrid poplar. Plant Cell and Environment, 36, 186–199.

Plazek A, Dubert F, Koscielniak J, Tätzranska M, Maciejewski M, Gondek K, Zurek G (2014) Tolerance of Miscanthus × giganteus to salinity depends on initial weight of rhizomes as well as high accumulation of potassium and proline in leaves. Industrial Crops and Products, 52, 278–285.

Randerson JP, Hurst LD (2001) A comparative test of a theory for the evolution of anisogamy. Proceedings of the Royal Society B-Biological Sciences, 268, 879–884.

Rengel D, Arribat S, Maury P et al. (2012) A gene-phenotype network based on genetic variability for drought responses reveals key physiological processes in controlled and natural environments. Plas ONE, 7, e45249.

Sahreen S, Sagiyama SI (2008) Trade-off between cadmium tolerance and relative growth rate in 10 grass species. Environmental and Experimental Botany, 63, 327–332.

Saeed AL, Sharov V, White J et al. (2003) TM4: a free, open-source system for microarray data management and analysis. BioTechniques, 34, 374–378.

Sang T, Zhu WX (2011) China’s bioenergy potential. Industrial Crops and Products, 332.

Shrestha B, Guragain B, Sridhar VV (2014) Involvement of co-repressor LUH and its promoter from drought-tolerant plant cultivar.

Shrestha B, Guragain B, Sridhar VV (2014) Involvement of co-repressor LUH and its promoter from drought-tolerant plant cultivar. Plant and Cell Physiology, 55, 997–1006.

Singh K, Singla-Pareek SL, Pareek A (2011) Dissecting out the crosstalk between salinity and hormones in roots of Arabidopsis. Omics - A Journal of Integrative Biology, 15, 913–924.

Suja G, Parida A (2008) Isolation and characterization of photosystem 2 PsbR gene and its promoter from drought-tolerant plant Prosopis juliflora. Photosynthetica, 46, 525–530.

Sun W, Xu XN, Zhu HS, Liu AH, Liu L, Li JM, Hua XJ (2010) Comparative transcriptional profiling of a salt-tolerant wild tomato species and a salt-sensitive tomato cultivar. Plant and Cell Physiology, 51, 997–1006.

Sunkar R, Bartels D, Kirch HH (2003) Overexpression of a stress-inducible aldehyde dehydrogenase gene from Arabidopsis thaliana in transgenic plants improves stress tolerance. Plant Journal, 35, 452–464.

Taj T, Seki M, Satou M et al. (2004) Comparative genomics in salt tolerance between Arabidopsis and Anthriscus-chelated halophyte salt cross using Arabidopsis microarray. Plant Physiology, 135, 1697–1709.

Tan JJ, Wang JW, Chai TY et al. (2013) Functional analyses of TaBMA2, a P1B-type ATPase in wheat. Plant Biotechnology Journal, 11, 420–431.

Trappcn L, Fachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-seq. Bioinformatics, 25, 1105–1111.

Trappcn L, Williams BA, Pertea G et al. (2010) Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology, 28, 511–515.

Trick M, Kwon SJ, Choi SK et al. (2009) Complexity of genome evolution by segmental rearrangement in Brassica rapa revealed by sequence-level analysis. BMC Genomics, 10, 539.

Vicente O, Ali Hassan M, Boscau M (2016) Contribution of osmolite accumulation to abiotic stress tolerance in wild plants adapted to different stressful environments. In: Osmolites and Plants Acclimation to Changing Environment: Emerging Omics Technologies (eds Iqbal N, Nazar R, Khan NA), pp. 13–25. Springer, New Delhi, India.

Vogt T (2010) Phenylpropanoid biosynthesis. Molecular Plant, 3, 2–20.

Wallia H, Wilson C, Condamine P et al. (2005) Comparative transcriptional profiling of two contrasting rice genotypes under salinity stress during the vegetative growth stage. Plant Physiology, 139, 822–835.

Wang Z, Gerstein M, Snyder M (2009) RNA-seq: a revolutionary tool for transcriptomics. Nature Reviews Genetics, 10, 57–63.

Wang F, Yang CL, Wang LJ, Zhong NQ, Wu XM, Han JB, Xia GX (2012) Heterologous expression of a chloroplast outer envelope protein from Spinacia oleracea confers oxidative stress tolerance and induces chloroplast aggregation in transgenic Arabidopsis plants. Plant Cell and Environment, 35, 588–600.

Wang T, Tohe T, Iivak A et al. (2015) Salt-related MYB1 (SRM1) coordinates abscisic acid biosynthesis and signaling during salt stress in Arabidopsis. Plant Physiology, 169, 1027–1041.

Wimalasekera R, Villar C, Begum T, Scherer G (2011) COPPER AMINE Oxidase (CUXA01) of Arabidopsis thaliana contributes to abscisic acid- and polyamine-induced nitric oxide biosynthesis and abscisic acid signal transduction. Molecular Plant, 4, 663–678.

Wood T (1986) Physiological functions of the pentose-phosphate pathway. Cell Biochemistry and Function, 4, 241–247.

Wright S (1978) Evolution and the Genetics of Populations, Variability within and among Natural Populations. University of Chicago press, Chicago, IL, USA.

Wu T, Tian ZD, Liu J, Xie CH (2009) A novel leucine-rich repeat receptor-like kinase gene in potato, StLRPK1, is involved in response to diverse stresses. Molecular Biology Reports, 36, 2365–2374.

Xie C, Mao XZ, Huang JJ et al. (2011) KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Research, 39, W316–W322.

Xu Q, Xing SL, Zhu CY et al. (2015) Population transcriptomics reveals a potentially positive role of expression diversity in adaptation. Journal of Integrative Plant Biology, 57, 284–299.

Xu Q, Zhu CY, Fan YY et al. (2016) Population transcriptomics uncovers the regulation of gene expression variation in adaptation to changing environment. Scientific Reports, 6, 25336.

Yan J, Chen WL, Luo F et al. (2012) Variability and adaptability of Miscanthus species evaluated for energy crop domestication. Global Change Biology Bioenergy, 4, 49–60.

Yan J, Zhu MD, Liu W, Xu Q, Zhu CY, Li QJ, Sang T (2016) Genetic variation and bidirectional gene flow in the riparian plant Miscanthus sinensis, across its endemic range: Implications for adaptive potential. Global Change Biology Bioenergy, 8, 764–776.

Yu Y, Huang WG, Chen HY et al. (2014) Identification of differentially expressed genes in flax (Linum usitatissimum L.) under saline-alkaline stress by digital gene expression. Gene, 549, 113–122.

Zakrzewska A, Van Eiktenhorst G, Burggraaf JEC et al. (2011) Genome-wide analysis of yeast stress survival and tolerance acquisition to analyze the central trade-off between growth rate and cellular robustness. Molecular Biology of the Cell, 22, 4435–4446.

Zhang JZ, Creelman RA, Zhu JK (2004) From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. Plant Physiology, 135, 615–621.

Zhang HC, Yin WL, Xia XL (2008) Calcineurin B-Like family in Populus: comparative genome analysis and expression pattern under cold, drought and salt stress treatment. Plant Growth Regulation, 56, 129–140.

Zhao MG, Tian QY, Zhang WH (2007) Nitric oxide synthase-dependent nitric oxide production is associated with salt tolerance in Arabidopsis. Plant Physiology, 144, 206–217.

Zhou SP, Sauve R, Thannhauser TW (2009) Proteome changes induced by aluminum stress in tomato roots. Journal of Experimental Botany, 60, 1849–1857.

Zhu JK (2001) Plant salt tolerance. Trends Plant Science, 6, 66–71.

Zhu JK, Liu JP, Xiaol LM (1996) Genetic analysis of salt tolerance in Miscanthus: evidence for a critical role of potassium nutrition. Plant Cell, 10, 1181–1191.
Supporting Information

Additional Supporting Information may be found online in the supporting information tab for this article:

Figure S1. Comparison of E_ps of *M. lutarioriparius* between field sites. (a) Distributions of E_ps in all individuals sampled from native habitat (NP) and transplanted site (DS). The E_p was calculated as the mean of FPKM values of all individuals in one site. (b-f) Distributions of E_ps in five populations between two sites, respectively. The E_p was calculated as the mean of FPKM values of the individuals in each population. The black line indicates genes expressed in DS, while the black dotted line indicates genes expressed in NP.

Figure S2. The volcano plot displays the relationship between fold-change and significance between the two sites in five populations respectively (a–e). The y-axis is the $-\log_{10} P$ values (a higher value indicates greater significance) and the x-axis is the log$_2 E_p$ ratio between two experimental fields. Horizontal red line indicated the significance threshold ($P < 0.05$). The vertical red line identified as the two-fold change threshold.

Figure S3. Comparison of E_{ds} ratio of responsive genes shared in five populations and all genes expressed in both sites.

Figure S4. Comparison of E_ps and E_{ds} of genes expressed significantly different in populations and all genes in the populations of *M. lutarioriparius* between two sites. (a, b) Distributions of log$_2 E_p$ of population-specific responsive genes and all genes of LU5, LU7, LU9, LU10, LU14 in DS and NP, respectively. (c, d) Distributions of E_{ds} of population-specific responsive genes and all genes of LU5, LU7, LU9, LU10, LU14 in DS and NP, respectively. Each group was further divided based on location in DS (white box) or NP (gray box).

Table S1. Data size and coverage of reference transcriptome of the *M. lutarioriparius* individuals used in our study.

Table S2. The population genetic differentiation (F_{ST}) based on SNP data.

Table S3. Significantly enriched GO terms of down- or up-regulated population-specific responsive genes in each population. Functional classifications of differentially expressed genes of each population were achieved using AgriGO. The P value cut-off of 0.05 was chosen in order to control the false discovery rate.