Visual Cultural Biases in Food Classification

Qing Zhang 1*, David Elsweiler 1 and Christoph Trattner 2

1 Department of Language, Literature and Culture, University of Regensburg, Universitätsstraße 31, 93053 Regensburg; qing.zhang@ur.de (Q.Z.); david.elsweiler@ur.de (D.E.)
2 Department of Information Science & Media Studies, University of Bergen, Fosswinckelsgt. 6, 5007 Bergen, Norway; christoph.trattner@uib.no (C.T.)
* Correspondence: qing.zhang@ur.de; Tel.: +49-1573-593-1979 (Q.Z.)

Received: 06 May 2020; Accepted: date; Published: date

Abstract: This article investigates how visual biases influence the choices made by people and machines in the context of online food. To this end the paper investigates three research questions and shows (i) to what extent machines are able to classify images, (ii) how this compares to human performance on the same task and (iii) which factors are involved in the decision making of both, humans and machines. The research reveals that algorithms significantly outperform human labelers on this task with a range of biases being present in the decision-making process. The results are important as they have a range of implications on research, such as recommender technology and crowdsourcing as is discussed in the article.

Keywords: Visual biases; Food classification; Crowdsourcing

1. Introduction

Visual processing plays a significant role in human decision making [1] but can be biased in several ways. For example, limited cognitive capacity means we are inclined to focus on the most salient elements of stimuli and filter out other aspects [2]. This, in turn, means that the presentation of visual cues can bias the decisions people make. Good examples of this are signs in supermarket shelves that improve the salience of products and increase their sales as a result [3], or the placement of items on a restaurant menu that make certain meals more likely to be chosen [4]. Visual biases of this type transfer to digital environments. Chen and Pu, for instance, discovered that patterns of visual attention change according to the layout of a recommender interface [5]. In our study, we focus on cultural differences in visual biases related to food. The reasons for focusing on food are two-fold: First, food is central to human health and quality of life and thus the problems most related to our work, food identification and food recommendation, are both problems, which have received significant research attention in recent years. Second, past research has shown that in food identification tasks, algorithms can outperform human users [6]. The reasons why this is the case, however, are not particularly well understood. We postulate that human biases, such as those described above, may be playing a role. To our knowledge very little research has been performed in this area as most work has focused on dataset biases and how these may be resolved e.g., [7,8]. There has been some prior work, however, that has explored how known human visual biases, such as canonical perspective (prefer to see objects from a certain perspective) [9] and Gestalt laws of grouping (tendency to see objects in collections of parts) [10] to improve object classification [11]. Our work is different because we examine how human biases harm classification accuracy and not improve it, focusing on the classification of food images.

A second component of our work is to understand the cultural influence on how visual biases impact human decisions. Again, limited literature exists on this aspect. Vondrick et al. [11] did show the existence of cultural differences in visual biases. In their work they demonstrated that people...
from different cultures had varying mental visual representations of objects, which could be
harnessed to improve classification performance. Again, our work is different because we examine
this kind of bias in detail, focusing on the classification of foods sourced from different food cultures.
It is well-known that food preferences vary geographically, both across [12] and within countries [13].
This also applies to visual preferences for food [14], with scholars arguing that if such cultural-related
context factors are ignored when developing recommendation systems, biased (and therefore poorer)
recommendations will be provided [14]. This makes the relationship between the origin of the food
and the individual to whom it should be recommended an important one. It is within this context
that we study participants’ perception of recipes.

In this article, we present a study whereby participants from three countries, China, the US, and
Germany, are asked to label images of food. The labels they apply are the country, from which they
believe the recipe was sourced. Studying a task with a known “true label”, and collecting predictions
from both algorithms and human judges, we can achieve the following objectives:

- Determine how able humans are to categorise recipes by origin.
- Understand the visual and other factors which influence (and bias) the labels they apply.
- Compare performance of humans and machine learning algorithms for this task.

In line with our objectives this work aims to answer three research questions:

- RQ1. To what extent is it possible to classify the recipes from the recipe portals of different food
cultures with machine learning models based only on visual properties?
- RQ2. How able humans are to distinguish the recipes from the recipe portals of different food
cultures by solely observing the recipe images?
- RQ3. Which factors (i.e., information cues from the images or user properties) influence the
judgements made?

2. Materials and Methods

2.1. Data Collections

The recipes and associated images studied were sourced from three popular recipe portals from
China, Germany and the US. We collected 25,508 recipe images from Xiachufang.com, 35,501 from
Allrecipes.com and 72,899 images from Kochbar.de. Recipes from Xiachufang.com were crawled from the
website during the period from the 22nd to 26th October 2018, whereas the images and recipes for
Allrecipes.com and Kochbar.de were re-used from our past work [15]. These are amongst the most
popular recipe sharing websites in China, the US and Germany, respectively. In all cases we stored
only one image for each recipe, taking the initial, default associated image. To ensure equal classes
we randomly selected 25,000 images from each portal for our analyses.

2.2. Food Classification by means of Visual Features and Machine Learning

To establish the extent to which it is possible to use visual information to automatically
determine the portal from which a recipe was sourced, we formulated the problem as prediction task
whereby classifiers were trained to predict the source portal for each image. The images were
represented as a multi-dimensional vector by extracting 5,144 visual features from each image. The
idea was to generate as many features as possible that may capture elements of what participants
perceive and utilise when assigning labels. The features, described in detail below, include explicit
visual features (EVF), Colour Histogram, Local Binary Patterns (LBP), descriptors from Scale
Invariant Feature Transform (SIFT), as well as Deep Neural Network image embeddings (DNN).

2.2.1. Explicit Visual Features (EVF)

The first set of features, which we refer to as Explicit Visual Features (EVF), were originally
proposed by San Pedro and Siersdorfer [16]. The ten features in this set represent low-level image
properties including image Brightness, Sharpness, Contrast, Colourfulness, Entropy, RGB contrast,
Variation in Sharpness, Saturation, Variation in Saturation and Naturalness. These features are
simple to calculate and have shown utility in several image popularity predictions and recommendation tasks, from the photos in Folksonomies [16] to specific categories of images, such as recipe images [15] and artwork [17]. The freely available OpenIMAJ (http://openimaj.org) Framework was employed to calculate the EVF features.

2.2.2. Colour Histogram

Colour can strongly influence human perception of food and alter their eating behaviours [18]. Colour has even been shown to affect human judgements with respect to other sensory properties of food, such as taste or flavour [19]. To capture the colour properties of an image, images can be represented as colour histograms, which describe the global distribution of colour in the image. We compute a multi-dimensional colour histogram in the RGB colour space, which simultaneously represents three colour channels with eight bins for each colour channel. This results in an 8*8*8=512 dimensions vector for each image. This form of representation has shown utility in both image classification (e.g., [20]), and retrieval tasks (e.g., [21]).

2.2.3. Local Binary Patterns (LBP)

LBP describes images in their entirety by computing the local representation of texture. Proposed by Ojala et al. [22], LBP has been employed in several domains including facial recognition [23], image retrieval [24], object detection and matching [25] owing to its ability to discriminate and isolate changes. LBP ignores colour information. Before extracting, therefore, original images are transformed into grey scale. Pixels from the image are then selected randomly and the grey value of 24 neighbours in a circle with the radius 8 pixels around these are compared. If the grey value of the chosen pixel is greater than or equal to one of its neighbours, the neighbour point is set to 1. Otherwise, the point gets a value 0. Subsequently, a group of binary strings are formed, the LBP value of the chosen pixel is the decimal converted from it. The process is repeated until the LBP value has been computed for every pixel. The final features describing the texture of the image are obtained by counting the frequency of LBP values. Here, we employ uniform LBP, which is defined as the LBP has only at most 2 transitions from 0 to 1 or vice versa, the others are deemed as one situation. Since 24 neighbours for each pixel are chosen, a vector of 24+2=26 dimensions is calculated.

2.2.4. Descriptors of Scale-Invariant Feature Transform (SIFT)

SIFT is a further robust local image representation [26]. The main idea of using SIFT is to identify and describe the keypoints within images. Keypoints represent a sparse set of image regions that contain complex image gradient structure. Following the approach described in [27] to identify these, we apply to each keypoint a 128-dimension descriptor. Since each image has a different number of keypoints, however, the dimensions of the visual features of each image are not of equal size. As such, we apply k-means clustering (k=500) on all descriptors, and the centre of each cluster is deemed a codeword and can be used to form a codebook. The final step is calculating the frequency histogram of each codeword in the codebook for each image, those frequency histograms are the BoVW (Bag-of-Visual-Words), which are inspired by bag of words model in NLP [28]. In the end, each image is represented by a 500-dimension vector.

2.2.5. Deep Neural Network Image Embeddings (DNN)

Deep learning has widely applied in diverse fields with promising results. In terms of image classification, several deep neural networks have been developed, such as AlexNet [29], GoogLeNet [30], ResNet [31], etc., which have proven to be powerful in a number of tasks, from medical applications, such as identifying cancerous cells [32] to urban planning [33]. In the food domain, such models have been used to improve accuracy in food categorization [34] and to estimate the nutritional content of a meal [35]. Inspired by these developments, we apply VGG-16, which is a deep neural network pre-trained with ImageNet [36], which has shown impressive predictive power in food
image retrieval [6]. We extracted the features of layer fc1 from VGG-16 by using the Keras framework, resulting in a 4,096-dimensional vector for each image.

After extracting the visual features, each image in our dataset is transformed to a 5,144-dimensional vector and represented by the feature sets described above. We build classifiers by using each feature set individually then all feature sets as a combination. Three supervised classification approaches are applied: Naive Bayes (NB), Logistic Regression (LOG) and Random Forest (RF). In all experiments the data are split randomly into training (70%) and testing (30%) sets, with a 5-fold cross-validate Randomized Search CV being applied on the training set to select the optimal parameters for logistic regression and random forests.

2.3. Food Classification by means of Human Judgement

To establish human performance on the same task we designed a remotely deployed experiment and recruited participants via crowd-sourcing platforms and social media. The experiment was hosted on a server owned by the University of Regensburg, Germany and in all cases accessed by means of an anonymised URL. By recruiting participants located in China, the United States and Germany, this allows us to study the influence of culturally induced biases.

2.3.1. Study Design

In the main part of the study participants are shown images sourced from different portals and must answer 3 questions with respect to each image. On completing the study, participants provide demographic and other background information. Participants are each shown 9 images, 3 from each dataset, one after the other. All images are drawn randomly from the same test set used to evaluate our classifiers (see above). To increase the generalisability of the findings, we maximised the number of images used by assigning each image to only one participant. After showing an image, participants are first asked to decide from which of the three recipe portals the associated recipe was sourced. The study approach, the selection of the images, the questions asked, and their wording were tested in a small scale-pilot study prior to performing these experiments.

Next, participants are asked to report, on a 5-point Likert scale, their confidence in the label they assigned. In a final question, participants can select one or more items from a list of factors, which we believed may have been influential in judgements. These included factors relating to food, e.g., recognisable ingredients, the type of food, the food colour, and shape, as well as non-food factors, such as the food container, eating utensils, or their gut instinct. The reasons for focusing on these factors are that they are commonly reported in the literature and reflect features in our classification approaches. More concretely:

Ingredients: The ingredients of meals are commonly used to build food classifiers, e.g.[37,38].

Type: As shown in[39], when food type is given, it is helpful for algorithms to predict food ingredients. We put the factor Type here to see if food type has a positive influence for the human to make the judgement.

Colour: Colour is also often used to classify food automatically[40] and in our case corresponds to the visual feature Colour Histogram. Colour of food has also been proven to affect human perception of food, sometimes leading to misrecognition[18,41].

Shape: This relates to the visual feature LBP. According to[42], humans rely on the shape to classifying the objects while algorithms pay more attention to texture.

While the above listed factors all relate to the food itself, the remaining questions are associated with supplementary factors, such as the container, eating utensils and instinct, which all were reported by the participants as important during the pilot survey.

Participants can also list further factors in a free-text field. An example task and associated questions are shown in Figure 1.
Figure 1. Example of the online survey.

After labelling the images, participants complete the study by answering 13 questions, which capture participant demographic, as well as other information of interest. The following details were shown in Table 1:
Table 1. Survey questions for the participants.

Question	Scale
Personal Information	
Age	<18, 18-24, 25-34, 35-44, >55
Gender	Male, Female, Other
Nationality	Select from a drop-down list
Experiences with the recipe portals	
Familiarity with each recipe portal	Likert Scale 1 (Not at all) - 5 (Very familiar)
Use frequency of using recipe portals	Hardly use, At least once every three months, At least once per month, At least once per week, use on a daily basis
Settlement and travel experience	
Experience in China	Never visited, I have been there once or a few times, I visit or have visited regularly, I have lived there for many months or longer, I am a permanent resident
Experience in USA	Never visited, I have been there once or a few times, I visit or have visited regularly, I have lived there for many months or longer, I am a permanent resident
Experience in Germany	Never visited, I have been there once or a few times, I visit or have visited regularly, I have lived there for many months or longer, I am a permanent resident
Frequency of cross-continental travelling	Never, Less than once per year, 1-2 times per year, More than 2 times per year
Interests in food/recipe from foreign cultures	
Interest on food/recipe from other cultures	Likert Scale 1 (Not interest at all) - 5 (Very interested)
Frequency of trying food/recipe from other cultures	Hardly ever, Less than once per month, At least once per month, At least once per week, Most days
Free-text field	Blank space left for all participants

Participants. The study was originally deployed on Amazon Mechanical Turk (MTurk: https://www.mturk.com/), a popular crowdsourcing platform, as a means to recruit participants restricted to individuals from China, the US and Germany. To ensure participants performed reliably, participation was restricted to only those who had a ‘HIT accept rate’ of more than 98% in their previous tasks. Participants were paid 50 cents for their participation. This approach quickly provided the sought-after 100 participants from the US, but after several weeks only 57 German participants were recruited, and no Chinese participants were found. To recruit German participants, we supplemented our sample by advertising via university mailing lists (our institution is located in Germany) and social media via the authors’ personal Twitter (https://www.twitter.com/) and Facebook (https://www.facebook.com/) accounts. We additionally deployed a Chinese version of the study (where instructions and questions were translated to Chinese) on the platform Wenjuanxing (https://www.wjx.cn/) and advertised on Chinese social media channels Douban (https://www.douban.com/), Xiaomuchong (http://www.xiaomuchong.com/bbs/) and Wechat. Participants were reimbursed 1 Yuan for taking part. These approaches combined allowed us to recruit 100 participants from each country. In the end, 300 participants from the three countries were recruited. Figure 2 shows the distribution of the participants’ age (Figure 2(a)) and gender (Figure 2(b)) from each location. Participants who were located in Germany and China were younger than those in the US and the distribution of gender in each country was also imbalanced. More males took part in the US and Germany, while this trend is reversed in the Chinese sample.
Methods of Data Analysis. After the collection phase was complete, the data were analysed in different ways. Classification performance of both prediction models and the human judgements was measured in terms of accuracy (ratio of successfully made classifications to total number of classification decisions (ACC)). The performance of both prediction models and the human judgements was visualised using confusion matrices. These are useful since they help illustrate in which cases mistakes were made, as well as how these were made (i.e. which labels were erroneously applied in which cases). Appropriate inferential statistics were used to establish differences across groups (e.g., in terms of gender, interest in food/recipes from foreign cultures, etc.). Binary logistic regression analyses were applied to determine if participants’ answers related to demographic or other factors and ordinal logistic regression models were built with the same factors, as well as participants’ reported confidence in their labels to understand which factors help predict confident decisions. Binary logistic regression was used in cases where the dependent variable had two classes, ordinal logistic regression was employed when the dependent variable was measured on an ordinal scale. We created numerous different models using groups of feature sets as shown in the tables in appropriate sections below.

Participant responses to free-text questions were analysed qualitatively using a bottom-up, inductive approach. Responses were coded and duplicate, similar or related responses were grouped together, and the groups collapsed until a hierarchical structure was formed. We communicate the results in the form of a coding scheme and provide examples to illustrate the most important codes.

3. Results

The results of our experiments will be reported in the following subsections to answer the three questions we raised in Section 1.

3.1. Classifying the origin of recipes based on visual properties with machine learning approaches (RQ1)
Table 2 presents the performance of each classifier. The bottom line of the table illustrates that the recipe images from the three recipe portals are sufficiently visually distinct, such that they can be classified by the algorithms with relatively high accuracy. When using all of the visual features available, all 3 classifiers offered accuracy (ACC) of ACC = 0.73 or better with the logistic regression model achieving the highest accuracy of ACC = 0.89. The DNN features offer the best predictive power while SIFT ranked at the second place. Single EVF features offer the lowest accuracy, but, nevertheless, all perform slightly better than random (ACC = 0.33). Models utilising all EVF features offer improved accuracy (ACC = 0.47 - 0.55). The performance of the remaining feature sets like Colour Histogram and LBP shows no significant difference when combined EVF.

Features	NB	LOG	RF
EVF(Brightness)	0.41	0.41	0.42
EVF(Sharpness)	0.41	0.41	0.43
EVF(Contrast)	0.37	0.37	0.42
EVF(Colourfulness)	0.38	0.38	0.41
EVF(Entropy)	0.38	0.37	0.40
EVF(RGBContrast)	0.38	0.38	0.41
EVF(Sharpness Variation)	0.41	0.41	0.41
EVF(Saturation)	0.39	0.39	0.40
EVF(Saturation Variation)	0.39	0.38	0.41
EVF(Naturalness)	0.38	0.38	0.40
EVF(All features)	0.47	0.54	0.55
Colour Histogram	0.43	0.52	0.54
LBP	0.48	0.52	0.52
SIFT	0.58	0.72	0.67
DNN	0.67	0.86	0.78
ALL Features	0.73	0.89	0.85

Figure 3 shows the confusion matrix for the best performing model, illustrating that the classifier was more accurate when identifying recipes from Xiachufang (ACC = 0.95) than classifying that from the other two (ACC = 0.86 and 0.85). The majority of miss-classifications for Allrecipes and Kochbar were labelled as belonging to the other of these two classes, with very few being miss-classified as Xiachufang recipes. In other words, when applying the same algorithms and visual features to images, the recipes from the Chinese recipe portals seem easier to differentiate.
In summary, the experiments show that it is possible to distinguish between the recipes from different recipe portals of China, US, and Germany based solely on the proposed visual features. Xiachufang recipe images appear to be more visually distinct with images from the other two portals more likely to be confused.

3.2. Analysing human labelling performance (RQ2)

As shown in Figures 4 human performance on the same food classification task was markedly poorer. Figure 4(a) presents the accuracy distribution over all 300 participants, with most achieving an accuracy of between ACC = 0.40 and 0.60; M = 0.49. Figure 4(b) depicts how accuracy varied for participants from the three countries across the different food portals. Performance for the Chinese and American participants was highest when they were tasked with classifying recipe images from their own country. Participants from China were particularly accurate with Xiachufang recipe images, with the accuracy ACC = 0.67. Participants from Germany, on the other hand, achieved a slightly higher accuracy when classifying recipes from Xiachufang than images from Kochbar, the ACC = 0.55 and 0.54 respectively. For Chinese and German participants, recipes from Allrecipes were the most difficult to classify.

When comparing the performance of our human participants to those achieved by the algorithms above (i.e., by examining the confusion matrices in Figures 3 and 5), we see that humans make choices biased in the same direction as those generated algorithmically. Figure 5, which provides the confusion matrix of their judgements indicates that participants made more mistakes when classifying recipes from Allrecipes and Kochbar. More than 30% of recipes from Allrecipes are identified as from Kochbar, while 10% fewer are mistaken for recipes from Xiachufang. Participants behaved similarly when classifying the recipes from Kochbar. At the same time, more than half of the recipes from Xiachufang are classified correctly. The human judgements, therefore, follow the same trend as those provided by the algorithms: The images from Xiachufang seem to be most visually distinct, whereas those from Allrecipes and Kochbar seem to most similar.
Participants from different locations display diverse degrees of confidence in each recipe portal, as shown in Figure 6(a). In general, participants report higher confidence when labelling recipes sourced from the country where they reside. This is particularly true for the participants from USA and Germany. Moreover, both the German and US participants report least confidence when labelling images from Xiachufang. The findings may shed light on cultural differences with respect to confidence, with the Chinese exhibiting caution rather than confidence and the participants from the United States exhibiting high confidence in their judgements other than for images from the Chinese site.

Figure 6(b) presents the correlation matrix for the confidence scores participants applied to their labels for images sourced from different recipe portals. It demonstrates that participants’ confidence in their labels for Allrecipes and Kochbar images correlate positively ($p < 0.05$), while a negative correlation exists between the confidence in labels for both western portals and those for Xiachufang images. This finding aligns with those described above. It seems that when participants assumed a recipe originated from Xiachufang, then they believed that it is unlikely to come from the other two recipe portals and vice versa. In other words, participants believe recipes images on the western portals to look similar, but different to those from Xiachufang.

To summarise, in this section we have learned that participant performance in the labelling task was significantly poorer than the machine learning approaches in the previous section. The analyses, moreover, reveal differences in the labels applied and the performance of participants from different countries for images sourced from different portals. Participants typically perform best and are more confident when labelling images sourced from their home country.
Figure 6. Participant confidence in labels across recipe portals. (a) Mean value and error bar for confidence ratings for each collection by participants from different locations. (b) Correlation matrix for participant confidence scores for their labels for different recipe portals.

3.3. Factors leading to or influencing participants’ judgements (RQ3)

In this section we explore the labelling decisions made by participants in detail. We do this by first looking at the visual features, which proved useful when predicting the source of an image, to determine if the same information can help predict the labels applied by participants. Next, we examine the explanations participants gave for their choices to understand how choices were made and / or biased, as well as to determine which, if any, helped lead to a correct label being applied. Lastly, we examine how labelling performance varies across different groups, which provides an insight into how demographic variables can influence the way images of food are perceived.

3.3.1. Predicting participant label based on visual features

Table 3 presents the utility of various visual components with respect to a) predicting a recipe’s origin and b) predicting the label applied to the image by participants in the experiment. The first thing we notice when examining Table 3 is that visual information features tell us more about the actual source of a recipe image than the label applied to it by the participant. The highest accuracy for image source achieved was $\text{ACC} = 0.84$ with a combined feature set, which is slightly lower than with the full test set (see Section 3.1) achieved when attempting to predict participant judgements. The best performance achieved an accuracy of $\text{ACC} = 0.46$, again using all of the visual features available. This is an initial indication that participants were not using the same visual properties as the algorithms to make their decisions.
Table 3. Results when predicting recipe image source and participant applied label based on different visual properties and other factors. Best performing scores for each classifier are bolded. NB=Naive Bayes; LOG=Logistic Regression; RF=Random Forest.

	Accuracy					
	NB	LOG	RF			
	Recipe’s Origin	Participants’ Judgements	Recipe’s Origin	Participants’ Judgements	Recipe’s Origin	Participants’ Judgements
EVF(Brightness)	0.43	0.36	0.41	0.33	0.41	0.34
EVF(Sharpness)	0.41	0.36	0.43	0.37	0.44	0.36
EVF(Contrast)	0.37	0.34	0.37	0.34	0.35	0.34
EVF(Saturation)	0.41	0.34	0.40	0.34	0.40	0.34
EVF(Entropy)	0.38	0.36	0.38	0.36	0.39	0.36
EVF(RGBContrast)	0.37	0.34	0.38	0.35	0.37	0.35
EVF(Sharpness Variation)	0.42	0.36	0.43	0.36	0.42	0.37
EVF(Saturation Variation)	0.42	0.36	0.39	0.34	0.39	0.37
EVF(Naturalness)	0.39	0.36	0.40	0.36	0.40	0.34
EVF(All features)	0.50	0.38	0.56	0.38	0.55	0.38
Colour Histogram	0.37	0.34	0.49	0.36	0.54	0.38
LBP	0.47	0.38	0.50	0.38	0.51	0.39
SIFT	0.57	0.40	0.52	0.39	0.65	0.44
DNN	0.66	0.43	0.82	0.42	0.77	0.45
All Features(Visually)	0.69	0.43	0.85	0.43	0.84	0.46
Ingredients	0.34	0.35	0.34	0.35	0.34	0.35
Type	0.34	0.35	0.34	0.35	0.34	0.35
Colour	0.35	0.34	0.35	0.34	0.35	0.34
Shape	0.33	0.33	0.32	0.33	0.32	0.33
Container	0.34	0.36	0.34	0.36	0.34	0.36
Eating utensils	0.35	0.36	0.35	0.36	0.35	0.36
Instinct	0.35	0.36	0.35	0.36	0.35	0.36
All Factors	0.34	0.38	0.35	0.37	0.35	0.36

3.3.2. Participant explanations for labelling choices

The lower part of Table 3 demonstrates how classifiers performed using the predefined explanations we provided to participants to justify their performance as features. As can be read from the table, none of these features were helpful, either for predicting origin or the labels participants assigned. Most likely this was because the explanations did not advocate for a specific class, e.g., some utensils (for example, chopsticks) may have indicated Chinese food, whereas others may have been a sign of a western dish.

Table 4 shows the frequency with which the most common factors and combination of factors were selected by participants to justify the labels they applied. The ingredients featured in the image, type of food and the combination of these two features were the most commonly reported as influencing decisions. These findings underline that although participants were only presented with visual information in the form of an image, the labelling choice was made based on semantic interpretation of the image content. Moreover, in 127 cases participants reported making decisions based on “Instinct”, that is a feeling that the recipe was sourced from a particular recipe platform.

Colour and shape - the two obvious visual properties listed - seem to have been supplementary factors since, as shown in Table 4 and Figure 7, they were more likely to be chosen with other factors rather than being chosen alone. Factors, such as container and eating utensil were selected least frequently, although it is important to note that not every image contained a container or utensil.
Table 4. Top-10 factor or combination of factors indicated by participants to have influenced the label applied.

Factors	Count	Percentage
Ingredients, Type	226	84%
Type	226	84%
Ingredients	164	61%
Instinct	127	47%
Ingredients, Colour, Type	94	35%
Shape, Type	76	28%
Ingredients, Shape, Type	76	28%
Ingredients, Type, Instinct	75	28%
Ingredients, Colour	62	23%
Type, Instinct	62	23%

Figure 7. The percentage based on frequency of each single factor chosen by the participants.

3.3.3. Free-text Explanations

Participants were also able to provide additional descriptions to justify their decisions in their own words using free-text comments. 14 participants from China, 33 from the US and 22 from Germany provided 166 such explanations, which were analysed qualitatively in a bottom-up fashion as described above. Duplicate, similar or related responses were grouped together, and the groups collapsed until a hierarchical structure was formed. The coding scheme for the factor is shown in Table 5.

Two high-level categories were discovered: Food-based and non-food-based. Non-food factors include watermarks, commonly used date format for specific countries, or objects or background aspects surrounding the pictured meals, which helped the participants make judgements.

Both food and non-food factors featured aesthetic dimensions, which may be related to the visual aspects represented in the machine learning features. Comments categorised with Adjective, Style or Photo were somehow related to visual aspects. Several participants described the recipe images aesthetically and treated photography as the basis for judgements e.g., “Angle of the photo, light in the photo” (US_72). On the other hand, other justifications required abstraction or reflection of the images to derive semantic properties, including what ingredients a meal contains, how it is cooked, how it may taste, whether or not it is healthy etc. Some participants even reported how their
personal experiences with this kind of food influenced the label they assigned. All of these factors underline how the participants knowledge and background influenced or biased the label they applied.

Categories	N	Description	Examples¹
Food Factors			
Adjective	24	Participants left single adjective to describe the food in the recipe image	GE_96: good
			US_98: healthy
Style	26	Participants reported how the food looks like in the recipe image	CH_30: Chinese dish is generally not so ugly
			US_85: Plate design
Ingredients	17	Participants reported at least one ingredient they have seen from the recipe	CH_10: There is rice
			US_95: The egg on top looks like oriental food.
Cooking Methods	5	Participants reported how to cook the food in the recipe image	CH_13: Production methods, it’s barbecue
Text	49	Participants reported the letters, characters or water markers, etc. they have seen	CH_42: "猪肉" is Chinese character
			US_77: German writing
			GE_64: Date format: 19.02.2013 is
Non-food factors			
Object/Background	16	Participants described the objects or setting on the recipe image instead of the recipe image	CH_30: Stairs
			US_55: Newspaper
			GE_31: Kitchen utensils
Photo	9	Participants described the photographic and post-processing of the recipe	CH_51: A popular filter was used
			US_72: Angle of the photo, light in the photo
Personal experience	2	Participants reported their own experience with the food in the recipe image	US_5: I know this type of food
			CH_41: It seems like I’ve eaten this
Unknown	18	Participants left comments but offer deficient information	CH_41: It could come from any portal
			US_3: not sure what type of food that is
			GE_96: nothing

Note: 1. Column N indicates how many times this kind of factors were reported by the participants; 2. Column Examples indicated the id of participants and the comments they left; 3. Participants id comprised by their location (CH: China, US: the US, GE: Germany) and a number.

The free-text comment box was occasionally used by participants to explain their uncertainty. We assigned these cases most often to the category “Text”. We examined the images in these cases manually and discovered that they all originated either from Xichufang (see Figure 8a) or Kochbar (see Figure 8b). Most of the texts were added with post-processing, as shown in Figure 8(a), the uploaders tagged the recipes with the dish names or their usernames. While the brands on the food packages reveal the information related to recipes’ origins, like the images on the left of Figure 8(b), those brands are common in German supermarket but rare in the other two countries. Texts offer concrete information for humans, and as such the accuracy of participants in such cases increased to ACC = 0.94.
3.3.4. Factors leading to correct classification choices

To determine which factors aided participants classify recipes correctly, we developed further logistic regression models. To do so, cases where labels were assigned correctly were given a value of 1 and cases where an incorrect label was given, 0. This value was then used as the dependent variable in the analysis. The predictors (independent variables) were the predefined explanatory factors described above. The results are shown in Table 6.

	Dependent variable Correct/Wrong Answer	OR
Constant	-0.192	0.825
Ingredients	0.069	1.071
Type	0.184*	1.202*
Colour	0.031	1.031
Shape	-0.063	0.939
Container	0.013	1.013
Eating Utensils	0.394**	1.483**
Instinct	0.008	1.008
McFadden R²		0.004
Log Likelihood		-1863.5
AIC		3743

Note: *p<0.05, **p<0.01, ***p<0.001.

Only food type and eating utensils prove to have a significant (p < .05) influence on participants’ ability to label images correctly. We must acknowledge, however, the fit of the model is not particularly strong, as indicated by the low R² value. That being said, when participants reported noticing eating utensils, prediction accuracy increases from ACC = 0.48 to ACC = 0.57. The increase is especially pronounced for recipes from Xiachufang where accuracy increases from ACC = 0.53 to ACC = 0.75. To exemplify why performance increases in such cases, recipes with eating utensils originating from Xiachufang are shown in Figure 9. These were all classified correctly by our participants; the traditional Chinese eating utensil chopsticks are obvious in the images, which increases the probability of participants labelling correctly.
In a next step, we investigate whether the same factors had an influence on participants’ confidence that they were labelling images correctly. For this, ordinal regression models are used, one model per collection, the results of which are shown in Table 7.

The first thing to observe is that different features are found to be helpful for different collections. Type, Container, Eating Utensils and Instinct were useful predictors for confidence when Xiachufang were to be judged; for Allrecipes, Colour, Eating Utensils and Instinct were significant features; and, for Kochbar only the presence of Ingredients was found to be a significant feature.

The only features with positive coefficients, i.e., features that when present increase participant confidence, were found in the model for Xiachufang. When a participant reported the presence of a Container or Eating Utensil on average this increased their confidence in the label applied. The remaining significant features were indicators, which reduced confidence. In other words, acknowledging the presence of certain ingredients in a recipe from Kochbar tended to lower confidence in the assigned label on average. We also note that while the presence of Eating Utensils increased confidence for Xiachufang recipes, the trend was the opposite for images from both other collections. Moreover, when participants reported making a decision based on Instinct in all three collections this resulted in lower confidence ratings on average, which makes sense.
3.3.5. Varying performance across participant groups

To understand if participant demographic information influences their ability to determine the portal from which a recipe originates, we examine how the accuracy of participants’ judgements varied on each recipe portal depending on how they answered the post-experiment questionnaire. Table 8 presents the results, revealing that participants with different ages and genders behaved differently when judging recipes’ origins. Younger participants (< 35) achieved higher accuracy when labelling recipes from Xichufang (ACC = 0.59 vs ACC = 0.49) but they performed significantly worse than elder participants on labelling Allrecipes (ACC = 0.41 vs ACC = 0.52).

Table 8. Comparison of classification accuracy achieved by different groups based on demographic information. Only attributes with significant results are included in the table. Statistical significance across groups was determined using Mann-Whitney U tests.

Gender	Overall Accuracy Mean(+/- std)	Accuracy on Xiachufang Mean(+/- std)	Accuracy on Allrecipes Mean(+/- std)	Accuracy on Kochbar.de Mean(+/- std)
Male	0.49(+/-0.17)	0.51(+/-0.29)	0.44(+/-0.28)	0.51(+/-0.30)*
Female	0.50(+/-0.18)	0.61(+/-0.28)**	0.46(+/-0.28)	0.44(+/-0.31)
Age				
Age < 35	0.50(+/-0.18)	0.59(+/-0.29)**	0.41(+/-0.27)	0.50(+/-0.30)*
Age ≥ 35	0.48(+/-0.17)	0.49(+/-0.29)	0.52(+/-0.27)**	0.50(+/-0.30)
Experience of each Country (China)				
Never visited - been there a few times	0.49(+/-0.17)	0.51(+/-0.29)	0.47(+/-0.27)*	0.49(+/-0.29)
Visit regularly - permanent resident	0.50(+/-0.18)	0.63(+/-0.28)**	0.41(+/-0.29)	0.45(+/-0.31)
Experience of each Country (The US)				
Never visited - been there a few times	0.49(+/-0.18)	0.61(+/-0.29)**	0.39(+/-0.28)	0.49(+/-0.31)
Visit regularly - permanent resident	0.48(+/-0.17)	0.47(+/-0.27)	0.53(+/-0.26)**	0.46(+/-0.30)
Experience of each Country (Germany)				
Never visited - been there a few times	0.48(+/-0.18)	0.56(+/-0.27)	0.46(+/-0.28)	0.43(+/-0.31)
Visit regularly - permanent resident	0.50(+/-0.17)	0.55(+/-0.31)	0.43(+/-0.28)	0.54(+/-0.29)**
Familiarity with each recipe portal (Xiachufang.com)				
Not familiar (≥ 2 on Likert scale)	0.51(+/-0.17)**	0.55(+/-0.29)	0.46(+/-0.28)	0.52(+/-0.29)**
Familiar (≤ 3 on the Likert scale)	0.46(+/-0.17)	0.57(+/-0.31)	0.42(+/-0.28)	0.39(+/-0.31)
Familiarity with each recipe portal (Allrecipes.com)				
Not familiar (≥ 2 on Likert scale)	0.50(+/-0.17)	0.62(+/-0.28)**	0.40(+/-0.28)	0.50(+/-0.29)
Familiar (≤ 3 on the Likert scale)	0.48(+/-0.17)	0.48(+/-0.28)	0.50(+/-0.27)**	0.46(+/-0.31)
Familiarity with each recipe portal (Kochbar.de)				
Not familiar (≥ 2 on Likert scale)	0.50(+/-0.17)	0.58(+/-0.28)*	0.44(+/-0.028)	0.48(+/-0.30)
Familiar (≤ 3 on the Likert scale)	0.48(+/-0.18)	0.50(+/-0.32)	0.46(+/-0.28)	0.48(+/-0.31)
Interests in food from foreign cultures				
Not interested (≥ 2 on Likert scale)	0.41(+/-0.23)	0.46(+/-0.28)	0.33(+/-0.33)	0.45(+/-0.39)
Interested (≤ 3 on the Likert scale)	0.50(+/-0.17)*	0.56(+/-0.29)*	0.46(+/-0.27)*	0.48(+/-0.30)
Interests in recipes from foreign cultures				
Not interested (≥ 2 on Likert scale)	0.45(+/-0.23)	0.50(+/-0.27)	0.37(+/-0.33)	0.47(+/-0.34)
Interested (≤ 3 on the Likert scale)	0.50(+/-0.17)*	0.56(+/-0.29)	0.46(+/-0.27)*	0.48(+/-0.30)
Frequency of trying recipes from other cultures

	Once per month	Once per month
	0.48(+/-0.18)	0.50(+/-0.17)
	0.58(+/-0.29)*	0.52(+/-0.29)
	0.41(+/-0.28)	0.49(+/-0.27)**
	0.46(+/-0.29)	0.50(+/-0.32)**

Note: * p<0.05; ** p<0.01; *** p<0.001.

Female participants achieved higher accuracy on Xiachufang (ACC = 0.61 vs ACC = 0.51) while they underperformed compared to male participants on Kochbar (ACC = 0.44 vs ACC = 0.51). We must interpret the findings regarding age cautiously, though. As the sample age distribution in our samples varies across countries, it is very possible that the effects found relating to age are simply a consequence of participants being best able to identify foods sourced from the portal in their home country.

An additional question invited the participants to share their travel experiences and experiences of each country. This allows us to understand whether the classification decisions participants made varied according to the age they were, however, significantly better able to classify the recipes from the portal of this country. Other observations include that participants who had spent time in China were more accurate when labelling recipes from Allrecipes, whereas those with more experience of the US were less accurate when labelling Xiachufang images. Less surprisingly, being familiar with the recipe portal influenced the accuracy of judgements. Participants who reported to be more familiar with Allrecipes provided significantly more accurate judgements on recipes from this portal. Familiarity with Xiachufang and Kochbar, on the other hand, had no significant influence on accuracy of images from these portals. Participants unfamiliar with Allrecipes and Kochbar were better in judging the recipes from Xiachufang.

Participants who reported being interested in food or recipes from foreign cultures achieved higher accuracy overall. Similarly, those participants who reported trying food from other cultures were also more accurate in the labelling task.

The analyses in this section have shown that it is not only the participants’ culture that influences the labels that they apply. Individual traits and personal experience also played a role in the labels that were assigned, and the accuracy achieved.

4. Discussion and Conclusion

The analyses, reported in the previous section, shed light on how visual-based choices can be influenced by diverse factors including cultural differences, but also by a range of other contextual properties. We focused on the task of labelling foods with a particular location because of the importance of food to human life and the visual nature of food choices.

In a first step, we compared the performance of human judges from 3 countries with the automated classifiers employing machine learning approaches. Next, to better understand how the participants interpret the image visual cues they were presented with, we attempted to use the same machine learning approaches to understand which features help predict the labels participants assign.

Finally, we examined the performance of participants from different groups with different demographics and properties across images from the three collections. The results of the analyses performed help answer our research questions, introduced in Section 1. We summarise the insights learned in relation to the research questions below:

In response to RQ1 our experiments show that classification algorithms can achieve high accuracy when determining the source of recipes based solely on visual properties of the image associated with a recipe. Almost all of the image properties tested provided some useful signal for this task, the strongest being provided by DNN. Overall images from the Chinese recipe portal were labelled most accurately, with recipe images from The US and German portals more likely to be confused. The results show that the Chinese-sourced images were more visually distinct than those from Allrecipes and Kochbar.
Our results show that humans are far less accurate at the same task. While in the literature there is evidence that for other food classification tasks the best performing algorithms can perform comparably with human labellers [6] our findings, for this particular task, are even stronger. The evidence suggests that unlike the machine learning approaches, humans abstract or interpret the visual features to derive semantic features, such as the ingredients a meal contains or how it may taste. As this process is based on personal knowledge or experience the act of classification becomes biased, which evidently negatively influences accuracy. When humans made classification errors, however, the trend in their mistakes was the same as for the machine learning approach. The Chinese sourced images were more likely to be accurately labelled, while those from the German and US sites were more likely to be confused. The confidence associated with the labels applied confirm that the participants were aware of this trend. It is not easy to compare our findings to past results from the literature given the specific nature of the tasks studied. The task studied in our case - determining the source of a recipe - is much more challenging than that studied by [6], which made it ripe for identifying the biases involved. Moreover, unlike in [11], the visual biases we uncovered did not improve human classification performance, but rather hindered it.

Underlining the diverse biases at play in the labelling task, the experiments showed that predicting the labels participants applied turned out to be a much more challenging machine learning task than predicting the actual source website for the recipe. The performance of human labellers was substantially poorer than the algorithms. The collected data shed some light as to why this was the case. The participants reported several features of the images as being influential when making their decisions although some justifications were more useful than others. The features dominant in the literature for food perception tasks, such as colour[18,41] and shape[42] were less important than the ingredients present and type of dish. Our results show that if the participants recognised the dish type from the image, it is more likely for them to make the right choice. Moreover, participants were able to improve their performance by identifying factors in the image, which have nothing to do with the food itself, but offer discriminative power. Eating utensils, such as cutlery or chopsticks or text being present in the image were prominent examples. The results, moreover, demonstrate that participants with different demographics perform differently on this task. Experiences of the culture and familiarity with the recipe portal both had an influence on participant accuracy. The modelling work identified other demographic factors that superficially look to be important, such as age and gender. We posit, however, that differing sampling mixes across the countries mean that these are largely tied to interest in and experience of the food culture.

4.4. Implications of the results

In this section we discuss what we believe to be the implications of our results. We relate our findings to the problem of food recommendation, which is our main area of interest, but we also make notes of caution with respect to the use of crowd-sourcing platforms when collecting data for food identification tasks.

Our findings underline that the way people perceive images of food differs fundamentally based on different factors. The primary factor we studied was the participant’s country of residence and we discovered that this directly influenced the labels applied to images in the study. While we did not study food preference directly, our findings do have consequences for the development of food recommendation systems since familiarity with food - and visual familiarity in particular - is strongly related to food preference [43,44]. The foods people find desirable - and to what extent they are willing to try something new - are tightly bound to their cultural upbringing and to physical and emotional reactions to food experiences in the past [43], but also depend on individual traits, such as openness to experience [45]. We also note in our findings that the perception of images and the resulting labels were correlated with several demographic factors, such as familiarity with the recipe portals and interests in food and recipes from foreign cultures.

This reinforces the need for food recommendation systems to model and account for contextual variables when making personalised food recommendations. Our results also offer an explanation as
to why - in contrast to many other domains, such as music or film recommendation - standard recommendation technologies do not perform well for the recommendation of food [46].

Certainly, more research is required to understand which contextual factors are important and how these can best be modelled and incorporated in recommendation algorithms. Our findings underline the importance of culture as a dimension in combination with other demographic factors. Initial work in this direction has been initiated in the domain of music recommendation (e.g., [47]), but no equivalent research exists for the recommendation of food.

The results here additionally have implications for the collection of data for food identification research using crowdsourcing platforms, such as Amazon Mechanical Turk. Crowdsourcing has become popular in diverse research areas because it can be used to recruit a large sample of workers in a short period of time for relatively little financial outlay. This method was used in the largest dataset available for food identification [48]. However, as our results show, caution is necessary when taking this approach. Differing cultural backgrounds, personal experiences and interests will influence how food images are perceived. Moreover, as our experience with recruiting in Amazon Mechanical Turk showed, it is challenging to ensure diversity in participants. This problem has been noted by other scholars who are working to address this issue algorithmically [49].

4.5. Limitations of the study

There are several limitations to our work that we wish to acknowledge. To maximise the number of images tested, and thus the generalisability of our findings, our experiments were designed, such that images were only labelled by a single participant. This has the disadvantage that we have no means to compare labels applied across participants or groups of participants. In future work we aim to complement the analyses here with a design that allows multiple judgements for single images to be compared as in [50] and [51].

A second limitation to note is the presence of text in some of the images which, as reported above, influenced the labels assigned by some participants. Based on the free-text explanations provided by participants, text only appeared in the images sourced from Xiachufang and Kochbar, with 30 and 19 recipe images with text being reported in these portals, respectively. Although we reported the use of this text as a finding, it was not our attention to study such images.

Building on this work, our future research will explore whether similar cross-cultural biases are present when users apply subjective labels to recipes. We plan to employ a similar experimental setup but collect data on participants’ subjective impression of recipes (e.g., their attractiveness, how willing they are to cook and eat them etc.). This would complement the findings presented in this paper nicely and would offer concrete utility with respect to the design of food recommendation systems.

In this work we have explored the influence of contextual factors on the way people perceive images of food. In our experiments, where human annotators and machine learning algorithms labelled images of food, the algorithmic approach outperformed the human labellers by a large margin. Further analyses reveal several reasons why annotators miss-classified, including basing judgements on factors that are coloured by past experience and knowledge.

Author Contributions: Conceptualisation: Qing Zhang, David Elsweiler and Christoph Trattner; Supervision: David Elsweiler and Christoph Trattner; Investigation: Qing Zhang, David Elsweiler, Christoph Trattner; Visualization: Qing Zhang; Writing - original draft: Qing Zhang; Writing, Review & Editing: David Elsweiler and Christoph Trattner. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by China Scholarship Council.

Conflicts of Interest: The authors declare no conflict of interest. This study was supported by a grant from the China Scholarship Council. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References
1. Brascamp, J.; Blake, R.; Knapen, T. Negligible fronto-parietal BOLD activity accompanying unreportable switches in bistable perception. Nat. Neurosci. 2015, 18, 1672–1678, doi:10.1038/nn.4130.

2. Dean, M.; Neligh, N. Experimental Tests of Rational Inattention. 55.

3. Clement, J.; Aastrup, J.; Charlotte Forsberg, S. Decisive visual saliency and consumers' in-store decisions. J. Retail. Consum. Serv. 2015, 22, 187–194, doi:10.1016/j.jretconser.2014.09.002.

4. Dayan, E.; Bar-Hillel, M. Nudge to nobesity II: Menu positions influence food orders. Judgm. Decis. Mak. 2011, 6, 11.

5. Chen, L.; Pu, P. Eye-Tracking Study of User Behavior in Recommender Interfaces. In User Modeling, Adaptation, and Personalization; De Bra, P., Kobsa, A., Chin, D., Eds.; Lecture Notes in Computer Science; Springer Berlin Heidelberg: Berlin, Heidelberg, 2010; Vol. 6075, pp. 375–380 ISBN 978-3-642-13469-2.

6. Salvador, A.; Hynes, N.; Aytar, Y.; Marin, J.; Ofli, F.; Weber, I.; Torralba, A. Learning Cross-Modal Embeddings for Cooking Recipes and Food Images. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); IEEE: Honolulu, HI, 2017; pp. 3068–3076.

7. Khosla, A.; Zhou, T.; Malisiewicz, T.; Efros, A.A.; Torralba, A. Undoing the Damage of Dataset Bias. In Computer Vision – ECCV 2012; Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C., Eds.; Lecture Notes in Computer Science; Springer Berlin Heidelberg: Berlin, Heidelberg, 2012; Vol. 7572, pp. 158–171 ISBN 978-3-642-33717-8.

8. Torralba, A.; Efros, A.A. Unbiased look at dataset bias. In Proceedings of the CVPR 2011; IEEE: Colorado Springs, CO, USA, 2011; pp. 1521–1528.

9. PALMER, S. Canonical perspective and the perception of objects. Atten. Perform. 1981, 135–151.

10. Ellis, W.D. A Source Book of Gestalt Psychology; Gestalt Legacy Press, 1938; ISBN 978-1-892966-00-1.

11. Vondrick, C.; Pirsiavash, H.; Oliva, A.; Torralba, A. Learning visual biases from human imagination. In Advances in Neural Information Processing Systems 28; Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R., Eds.; Curran Associates, Inc., 2015; pp. 289–297.

12. Zhu, Y.-X.; Huang, J.; Zhang, Z.-K.; Zhang, Q.-M.; Zhou, T.; Ahn, Y.-Y. Geography and Similarity of Regional Cuisines in China. PLoS ONE 2013, 8, e79161, doi:10.1371/journal.pone.0079161.

13. Ahn, Y.-Y.; Ahnert, S.E.; Bagrow, J.P.; Barabási, A.-L. Flavor network and the principles of food pairing. Sci. Rep. 2011, 1, 196, doi:10.1038/srep00196.

14. Zhang, C.; Yue, Z.; Zhou, Q.; Ma, S.; Zhang, Z.-K. Using social media to explore regional cuisine preferences in China. Online Inf. Rev. 2019, 43, 1098–1114, doi:10.1108/OIR-08-2018-0244.

15. Trattner, C.; Moesslang, D.; Elsweiler, D. On the predictability of the popularity of online recipes. EPJ Data Sci. 2018, 7, 20, doi:10.1140/epjds/s13688-018-0149-5.
16. San Pedro, J.; Siersdorfer, S. Ranking and classifying attractiveness of photos in folksonomies. In Proceedings of the Proceedings of the 18th international conference on World wide web - WWW ’09; ACM Press: Madrid, Spain, 2009; p. 771.

17. Messina, P.; Dominguez, V.; Parra, D.; Trattner, C.; Soto, A. Content-based artwork recommendation: integrating painting metadata with neural and manually-engineered visual features. *User Model. User-Adapt. Interact.* 2019, 29, 251–290, doi:10.1007/s11257-018-9206-9.

18. Spence, C.; Levitan, C.A.; Shankar, M.U.; Zampini, M. Does Food Color Influence Taste and Flavor Perception in Humans? *Chemosens. Percept.* 2010, 3, 68–84, doi:10.1007/s12078-010-9067-z.

19. Spence, C. On the psychological impact of food colour. *Flavour* 2015, 4, 21, doi:10.1186/s13411-015-0031-3.

20. Chapelle, O.; Haffner, P.; Vapnik, V.N. Support vector machines for histogram-based image classification. *IEEE Trans. Neural Netw.* 1999, 10, 1055–1064, doi:10.1109/72.788646.

21. Kaur, K.P.; Singh, C.; Bhullar, E.W. Color Image Retrieval Using Color Histogram and Orthogonal Combination of Linear Binary Pattern. In Proceedings of the Proceedings of the 2014 Indian Conference on Computer Vision Graphics and Image Processing - ICVGIP ’14; ACM Press: Bangalore, India, 2014; pp. 1–8.

22. Ojala, T.; Pietikainen, M. A COMPARATIVE STUDY OF TEXTURE MEASURES WITH CLASSIFICATION BASED ON FEATURE DISTRIBUTIONS. 9.

23. Liao, S.; Zhu, X.; Lei, Z.; Zhang, L.; Li, S.Z. Learning Multi-scale Block Local Binary Patterns for Face Recognition. In *Advances in Biometrics*; Lee, S.-W., Li, S.Z., Eds.; Lecture Notes in Computer Science; Springer Berlin Heidelberg: Berlin, Heidelberg, 2007; Vol. 4642, pp. 828–837 ISBN 978-3-540-74548-8.

24. Yuan, X.; Yu, J.; Qin, Z.; Wan, T. A SIFT-LBP Image Retrieval Model Based on Bag-of-Features. *Th IEEE Int. Conf. Image Process.* 2011, 4.

25. Trefný, J.; Matas, J. Extended Set of Local Binary Patterns for Rapid Object Detection. 7.

26. Mikolajczyk, K.; Schmid, C. A Performance Evaluation of Local Descriptors. *IEEE Trans. PATTERN Anal. Mach. Intell.* 2005, 27, 16.

27. DeCost, B.L.; Holm, E.A. A computer vision approach for automated analysis and classification of microstructural image data. *Comput. Mater. Sci.* 2015, 110, 126–133, doi:10.1016/j.commatsci.2015.08.011.

28. Jurie, F.; Triggs, B. Creating efficient codebooks for visual recognition. In Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV’05) Volume 1; IEEE: Beijing, China, 2005; pp. 604-610 Vol. 1.

29. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. *Commun. ACM* 2017, 60, 84–90, doi:10.1145/3065386.

30. Szegedy, C.; Wei Liu; Yangqing Jia; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the
31. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. *ArXiv151203385 Cs 2015*.

32. Wang, D.; Khosla, A.; Gargeya, R.; Irshad, H.; Beck, A.H. Deep Learning for Identifying Metastatic Breast Cancer. *ArXiv160605718 Cs Q-Bio 2016*.

33. Liu, L.; Wang, H.; Wu, C. A machine learning method for the large-scale evaluation of urban visual environment. 16.

34. Bossard, L.; Guillaumin, M.; Van Gool, L. Food-101 – Mining Discriminative Components with Random Forests. In *Computer Vision – ECCV 2014*; Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, 2014; Vol. 8694, pp. 446–461 ISBN 978-3-319-10598-7.

35. Myers, A.; Johnston, N.; Rathod, V.; Korattikara, A.; Gorbman, A.; Silberman, N.; Guadarrama, S.; Papandreou, G.; Huang, J.; Murphy, K. Im2Calories: Towards an Automated Mobile Vision Food Diary. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV); IEEE: Santiago, Chile, 2015; pp. 1233–1241.

36. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. *ArXiv14091556 Cs 2015*.

37. Pan, L.; Pouyanfar, S.; Chen, H.; Qin, J.; Chen, S.-C. DeepFood: Automatic Multi-Class Classification of Food Ingredients Using Deep Learning. In Proceedings of the 2017 IEEE 3rd International Conference on Collaboration and Internet Computing (CIC); IEEE: San Jose, CA, 2017; pp. 181–189.

38. Chen, J.; Ngo, C. Deep-based Ingredient Recognition for Cooking Recipe Retrieval. In Proceedings of the Proceedings of the 2016 ACM on Multimedia Conference - MM ’16; ACM Press: Amsterdam, The Netherlands, 2016; pp. 32–41.

39. Kusmierczyk, T.; Trattner, C.; Nørvåg, K. Understanding and Predicting Online Food Recipe Production Patterns. In Proceedings of the Proceedings of the 27th ACM Conference on Hypertext and Social Media - HT ’16; ACM Press: Halifax, Nova Scotia, Canada, 2016; pp. 243–248.

40. Farinella, G.M.; Allegra, D.; Molitsanti, M.; Stanco, F.; Battiato, S. Retrieval and classification of food images. *Comput. Biol. Med. 2016, 77, 23–39*, doi:10.1016/j.combiomed.2016.07.006.

41. Appleton, K.M.; Smith, E. A Role for Identification in the Gradual Decline in the Pleasantness of Flavors With Age. *J. Gerontol. B. Psychol. Sci. Soc. Sci. 2016, 71, 987–994*, doi:10.1093/geronb/gbv031.

42. Geirhos, R.; Michaelis, C.; Wichmann, F.A.; Rubisch, P.; Bethge, M.; Brendel, W. IMAGENET-TRAINED CNNS ARE BIASED TOWARDS TEXTURE; INCREASING SHAPE BIAS IMPROVES ACCURACY AND ROBUSTNESS. *2019*, 22.

43. Aldridge, V.; Dovey, T.M.; Halford, J.C.G. The role of familiarity in dietary development. *Dev. Rev. 2009, 29, 32–44*, doi:10.1016/j.dr.2008.11.001.
44. Heath, P.; Houston-Price, C.; Kennedy, O.B. Increasing food familiarity without the tears. A role for visual exposure? *Appetite* 2011, 57, 832–838, doi:10.1016/j.appet.2011.05.315.

45. Tan, H.S.G.; van den Berg, E.; Stieger, M. The influence of product preparation, familiarity and individual traits on the consumer acceptance of insects as food. *Food Qual. Prefer.* 2016, 52, 222–231, doi:10.1016/j.foodqual.2016.05.003.

46. Trattner, C.; Elsweiler, D. Food Recommender Systems: Important Contributions, Challenges and Future Research Directions. *ArXiv171102760 Cs 2017*.

47. Schedl, M.; Knees, P.; McFee, B.; Bogdanov, D.; Kaminskas, M. Music Recommender Systems. In *Recommender Systems Handbook*; Ricci, F., Rokach, L., Shapira, B., Eds.; Springer US: Boston, MA, 2015; pp. 453–492 ISBN 978-1-4899-7636-9.

48. Marin, J.; Biswas, A.; Ofli, F.; Hynes, N.; Salvador, A.; Aytar, Y.; Weber, I.; Torralba, A. Recipe1M+: A Dataset for Learning Cross-Modal Embeddings for Cooking Recipes and Food Images. *ArXiv181006553 Cs 2019*.

49. Goel, N.; Faltings, B. Crowdsourcing with Fairness, Diversity and Budget Constraints. *ArXiv181013314 Cs 2019*.

50. Elsweiler, D.; Trattner, C.; Harvey, M. Exploiting Food Choice Biases for Healthier Recipe Recommendation. In Proceedings of the Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval; ACM: Shinjuku Tokyo Japan, 2017; pp. 575–584.

51. Rokicki, M.; Trattner, C.; Herder, E. The Impact of Recipe Features, Social Cues and Demographics on Estimating the Healthiness of Online Recipes. 10.

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).