A 50% Reduction of Excitability but Not of Intercellular Coupling Affects Conduction Velocity Restitution and Activation Delay in the Mouse Heart

Mèra Stein1,2, Toon A. B. van Veen1, Richard N. W. Hauer2, Jacques M. T. de Bakker1,3,4, Harold V. M. van Rijen1*

1 Division of Heart & Lungs, Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands, 2 Division of Heart & Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands, 3 Interuniversity Cardiology Institute of the Netherlands, Utrecht, The Netherlands, 4 Heart Failure Research Center, Academic Medical Center, Amsterdam, The Netherlands

Abstract

Introduction: Computer simulations suggest that intercellular coupling is more robust than membrane excitability with regard to changes in and safety of conduction. Clinical studies indicate that SCNSA (excitability) and/or Connexin43 (Cx43, intercellular coupling) expression in heart disease is reduced by approximately 50%. In this retrospective study we assessed the effect of reduced membrane excitability or intercellular coupling on conduction in mouse models of reduced excitability or intercellular coupling.

Methods and Results: Epicardial activation mapping of LV and RV was performed on Langendorff-perfused mouse hearts having the following: 1) Reduced excitability: Scn5a haploinsufficient mice; and 2) reduced intercellular coupling: Cx43
transR(5/JR mice, uninduced (50% Cx43) or induced (10% Cx43) with Tamoxifen. Wild type (WT) littermates were used as control. Conduction velocity (CV) restitution and activation delay were determined longitudinal and transversal to fiber direction during S1S1 pacing and S1S2 premature stimulation until the effective refractory period. In both animal models, CV restitution and activation delay in LV were not changed compared to WT. In contrast, CV restitution decreased and activation delay increased in RV during conduction longitudinal but not transverse to fiber direction in Scn5a heterozygous animals compared to WT. In contrast, a 50% reduction of intercellular coupling did not affect either CV restitution or activation delay. A decrease of 90% Cx43, however, resulted in decreased CV restitution and increased activation delay in RV, but not LV.

Conclusion: Reducing excitability but not intercellular coupling by 50% affects CV restitution and activation delay in RV, indicating a higher safety factor for intercellular coupling than excitability in RV.

Introduction

Various factors [1] determine impulse propagation throughout the heart, among which membrane excitability, intercellular coupling, and tissue architecture (i.e. myocyte size [2], collagen [1], and fiber orientation [3]) are most important. An appropriate interplay between these factors is necessary for proper impulse propagation [1,4]. The effect of modification of these factors on conduction has been extensively investigated [4,5,6,7]. These studies show that if impulse conduction is challenged, either by reducing membrane excitability [5,7] or intercellular coupling [6], the effect on impulse conduction at basic cycle length is minor. These data suggest that the heart has ‘conduction reserve’ [8,9,10], and that single factors determining impulse conduction either need to be modified to the extreme [6], or moderately in combination [4,5,7], in order to exceed the myocardial conduction reserve and cause impulse propagation impairment.

Under physiologic conditions, no differences in conduction characteristics exist between the right (RV) and left ventricle (LV). However, when determinants of impulse conduction are comparably altered in RV and LV, impulse impairment occurs preferentially in RV [4,5,6,7]. This suggests that RV conduction reserve is lower than that of LV, leaving the RV more vulnerable to impulse propagation impairment in the mouse heart.

Conduction velocity restitution and activation delay are considered to be important determinants for electrical stability. Abnormal conduction velocity restitution favors the occurrence of ventricular fibrillation as demonstrated by Saumarez et al [11]. Conduction velocity restitution is defined as conduction velocity dependence of the diastolic interval [12]. At short diastolic intervals less sodium current is available and membrane
excitability is reduced. Reduced excitability lowers the safety factor for conduction. Thus, conduction velocity restitution is a measure for the safety of conduction.

Activation delay (between a stimulus and recording site) differs from conduction velocity restitution in that it involves next to activation delay imposed by conduction velocity, a stimulus-to-activation delay. The latter occurs because of: 1. current to load mismatch due to the fact that the initial wave front is small and has to excite a large area of surrounding myocardium and 2. charging cell membranes and activating sodium conductance require time. Due to structural remodeling, current to load mismatch sites frequently occur in diseased hearts and may affect the stimulus to activation delay.

Several studies on hearts from patients with heart disease have shown that SCN5A and Cx43 expression is reduced by approximately 50% [13,14,15,16]. Computer simulations of ionic mechanisms of propagation in cardiac tissue carried out by Shaw and Rudy suggest that a 50% reduction in membrane excitability has more effect on conduction and safety of conduction compared to a 50% reduction in intercellular coupling [17].

For the current study we have performed a retrospective analysis of data of 2 previous studies on mice with a 50% reduction in Scn5a expression [5] and on mice with Cx43 expression levels of 50% or 10% [6]. We aimed to find evidence for the preferential role of intercellular coupling compared to excitability to maintain normal conduction and safety of conduction in whole hearts with impaired excitability or intercellular coupling by detailed analysis of conduction delay and conduction velocity restitution in these models.

The study demonstrates that reduced membrane excitability increases longitudinal activation delay and impairs conduction velocity restitution significantly in RV. In LV a similar trend was observed. Reduced intercellular coupling by 50% had neither effect on conduction velocity restitution nor on activation delay in either RV or LV. However, reduction of intercellular coupling to 10% did result in increased activation delay and impairment of conduction velocity restitution in RV. This implies that in the intact mouse heart a 50% reduction of excitability is sufficient to increase activation delay and decrease safety of conduction, but that these effects are only observed after reduction to only 10% intercellular coupling. These data are compatible with the results of Shaw and Rudy obtained from a computer model of cardiac propagation [17]. In addition, our data show that the effect of decreased excitability on conduction is more outspoken in RV than LV.

![Figure 1. Determination of Conduction Velocity and Activation delay.](https://example.com/figure1.png)

Figure 1. Determination of Conduction Velocity and Activation delay.

A. The ventricles were stimulated from the center of the grid at S1S1 stimulation of 100 ms. The stimulation protocol was composed of sixteen basic stimuli followed by 1 premature stimulus (S1S2). The premature stimulus started at 90 ms and at the subsequent trains, the coupling interval of the premature stimulus was reduced in steps of 5 ms, until the effective refractory period (ERP) was reached, which was defined as the longest possible coupling interval of the premature stimulus that fails to activate the entire heart.

B. CV parallel (longitudinal; CVL) and perpendicular (transverse; CVT) to myocyte fiber direction was determined from each activation map. For CVL, the distance between 4 consecutive electrodes parallel to fiber orientation and perpendicular to the isochrones was measured (x) and divided by the time difference. Similarly, CVT was determined as \(\frac{D_y}{D_t} \).Activation delay is defined as the local activation time (stimulus is time zero) at a fixed distance from the center of activation origin (stimulus site). Activation delay is registered at two sites (A and B), located on a line parallel to longitudinal and transversal conduction propagation during S1S1. Subsequently, activation delay is measured at the same sites during the premature stimuli S1S2. Finally, activation delay is normalized by subtracting the activation delays of S1S1 from activation delay at S1S2.

doi:10.1371/journal.pone.0020310.g001
which Cx43 is reduced to 50%. Cx43 expression was further decreased to only 10% by intraperitoneal injections on 5 consecutive days with 4-hydroxytamoxifen. Cx43 expression was unaffected in Cx43^{fl/fl} plus carrier littermates (n = 8), which served as control. Mice were of mixed genetic background of 129P2/OlaHsd-C57BL/6. Cx43 levels were verified by western blotting [5].

Study 2, reduced excitability [5] in young heterozygous Scn5a^{−/−} (HZ) mice of C57BL/6 background (n = 8). These animals have 50% reduction of Nav1.5 expression as established by western blotting, corresponding to 50% reduction of the sodium current [18]. Young wild-type (WT) C57BL/6 mice (n = 10) served as control. The investigation conformed to the guiding principals of the Declaration of Helsinki. All animal experiments were performed after approval by the Utrecht University Animal Ethics Review Committee (approval number 102296).

Preparation of the hearts

For both studies, mice were anaesthetized by intraperitoneal injection of urethane (2 g/kg bodyweight). The chest was opened and the heart was excised and submerged in Tyrode's solution at 4°C. With the help of a binocular microscope the heart was dissected from the lungs as well as other tissue and the aorta was cannulated. Subsequently, the heart was connected to a Langendorff perfusion setup and perfused at 37°C and perfusion pressure of 80 cm H₂O. Perfusion buffer composition (in mM): NaCl 90, KCl 3.6, KH₂PO₄ 0.92, MgSO₄ 0.92, NaHCO₃ 19.2, CaCl₂ 1.8, glucose 22, creatin 6, taurin 6, insulin 0.1 μM, gassed with 95% O₂ and 5% CO₂. In all experiments the heart started to beat immediately after initiating perfusion. Flow rate was approximately 2 ml/min. To ensure proper temperature of the preparation, the heart was placed against a heated (37°C) and continuously moisturized support.

Recording of Electrograms during Langendorff Perfusion

Electrical recordings of RV and LV were made with a 247 points unipolar electrode (19×13 grid, spacing 300 μm) as described previously [5,6]. The ventricles were stimulated from the center of the grid at S_RS_L cycle length of 100 ms. Electrograms were acquired using a 256-channel data acquisition system (Biosemi, Amsterdam). The premature stimulation method (sixteenth basic stimulus followed by 1 premature stimulus) was applied until the effective refractory period was reached; starting at 90 ms, the coupling interval of the premature stimulus S_SS_L was reduced in steps of 5 ms, until the effective refractory period (figure 1A) [6].

Data Analysis

The moment of maximal negative dV/dt in the unipolar electrograms was selected as the time of local activation and determined with custom written software based on Matlab (The Mathworks Inc.) [19]. Activation times were used to construct activation maps. Activation maps were constructed during S_RS_L pacing and after each premature stimulus. Of each activation map the following parameters were determined (figure 1B): 1) Conduction velocity parallel (longitudinal; CV_L) and perpendicular (transverse; CV_T) to fiber direction. Fiber direction was determined by conventional histology and was perpendicular for RV and oblique for LV with regard to the long axis of the heart (data not shown). Activation times of at least 4 consecutive electrode terminals along lines perpendicular to intersecting isochronal lines (1 ms) were used to calculate conduction velocity.

2) Activation delay is defined as the local activation time (stimulus is time zero) at a distance L from the center of activation origin (stimulus site). Activation delay is registered at two sites (A and B), located on a line parallel to longitudinal and transversal axes of the heart (data not shown). In the right ventricle the line passed the apex of the heart, in the left ventricle the line passed the mitral valve.

Materials and Methods

Animals

Electrophysiologic recordings were analyzed from 2 studies [5,6].

Study 1, reduced cell-to-cell coupling [6] in young heterozygous Connexin43 (Cx43) mice: Cx43^{−/−} plus carrier (n = 8) in which Cx43 is reduced to 50%. Cx43 expression was further decreased to only 10% by intraperitoneal injections on 5 consecutive days with 4-hydroxytamoxifen. Cx43 expression was unaffected in Cx43^{fl/fl} plus carrier littermates (n = 8), which served as control. Mice were of mixed genetic background of 129P2/OlaHsd-C57BL/6. Cx43 levels were verified by western blotting [5].

Study 2, reduced excitability [5] in young heterozygous Scn5a^{−/−} (HZ) mice of C57BL/6 background (n = 8). These animals have 50% reduction of Nav1.5 expression as established by western blotting, corresponding to 50% reduction of the sodium current [18]. Young wild-type (WT) C57BL/6 mice (n = 10) served as control. The investigation conformed to the guiding principals of the Declaration of Helsinki. All animal experiments were performed after approval by the Utrecht University Animal Ethics Review Committee (approval number 102296).

Table 1. Reduced membrane excitability group conduction velocity and stimulus-to-activation delay measurements.

	WT S_RS_L	HZ S_RS_L	WT S_RS_L	HZ S_RS_L
CV_L	100	100	95	95
CV_T	100	100	95	95
StAD_L	100	100	95	95
StAD_T	100	100	95	95

All values are mean±SEM. WT – wild-type, HZ – heterozygous. S_RS_L coupling interval is in ms. CV_L/T – longitudinal/transverse conduction velocity (cm/s); StAD_{L/T} – stimulus-to-activation delay longitudinal/transverse (ms).

Intra-variable differences: P<0.05 between consecutive S_RS_L and S_RS_L−5 ms. Inter-variable differences are within either RV or LV.

P<0.05 between wild-type and heterozygous animals.

DOI:10.1371/journal.pone.0020310.t001
Table 2. Reduced intercellular coupling group conduction velocity and stimulus-to-activation delay measurements.

STADL	100% Cx43 RV	50% Cx43 RV	10% Cx43 RV	100% Cx43 LV	50% Cx43 LV	10% Cx43 LV
CVs	100	31.0 ± 1.6 (16)	33.0 ± 2.2 (8)	24.8 ± 3.3 (9)	32.8 ± 3.3 (9)	37.5 ± 3.3 (7)
	90	29.2 ± 1.6 (16)	31.5 ± 1.5 (8)	22.6 ± 2.7 (9)	31.5 ± 2.9 (9)	33.0 ± 2.9 (7)
	85	28.0 ± 1.5 (16)	30.4 ± 1.5 (8)	18.2 ± 2.7 (8)	24.8 ± 3.3 (9)	30.8 ± 3.3 (7)
	75	28.5 ± 1.4 (15)	28.5 ± 1.7 (8)	15.6 ± 3.0 (8)	22.8 ± 1.8 (6)	29.3 ± 3.7 (6)
	70	25.9 ± 1.3 (12)	28.1 ± 1.8 (7)	15.9 ± 2.4 (9)	22.1 ± 4.2 (5)	26.7 ± 2.8 (5)
	65	24.9 ± 1.1 (12)	27.1 ± 1.4 (3)	14.8 ± 2.9 (7)	20.0 ± 3.8 (4)	23.3 ± 2.2 (4)
	60	24.0 ± 1.2 (8)	14.7 ± 4.1 (4)	20.3 ± 2.9 (4)	15.9 ± 4.2 (3)	
	55	20.6 ± 2.2 (4)	11.8 ± 3.1 (3)	0.0 ± 0.0 (6)	0.0 ± 0.0 (6)	
	50	16.8 ± 0.4 (4)	11.8 ± 3.1 (3)	0.0 ± 0.0 (6)	0.0 ± 0.0 (6)	
	45	11.5 ± 2.4 (7)	4.1 ± 0.6 (4)	0.0 ± 0.0 (6)	0.0 ± 0.0 (6)	
	40	5.9 ± 1.0 (8)	9.4 ± 1.3 (4)	0.0 ± 0.0 (6)	0.0 ± 0.0 (6)	
	35	7.3 ± 0.9 (4)	20.8 ± 12.7 (3)	0.0 ± 0.0 (6)	0.0 ± 0.0 (6)	
	30	0.0 ± 0.0 (6)	0.0 ± 0.0 (6)	0.0 ± 0.0 (6)	0.0 ± 0.0 (6)	
	25	0.6 ± 0.2 (16)	0.6 ± 0.2 (9)	0.6 ± 0.2 (9)	0.6 ± 0.2 (9)	
	20	0.9 ± 0.3 (6)	1.4 ± 0.4 (8)	1.7 ± 0.3 (9)	2.9 ± 0.9 (7)	
	15	1.5 ± 0.5 (15)	1.9 ± 0.5 (8)	2.8 ± 0.8 (8)	3.5 ± 0.9 (9)	
	10	2.0 ± 0.5 (15)	2.8 ± 0.6 (8)	4.5 ± 1.0 (8)	4.8 ± 1.0 (6)	
	5	2.9 ± 0.4 (12)	4.6 ± 1.0 (7)	5.8 ± 1.0 (9)	6.0 ± 1.3 (5)	
	0	6.0 ± 0.8 (8)	11.3 ± 3.5 (4)	12.1 ± 1.7 (4)	19.5 ± 11.2 (3)	

All values are mean ± SEM. CVsst – longitudinal/transverse conduction velocity (cm/s); STADL – stimulus-to-activation delay (ms). Differences in ms. CVL/T – longitudinal/transverse conduction velocity (cm/s); STADL/T – stimulus-to-activation delay (ms).

*Intra-variable differences: P<0.05 between consecutive S1S2 and S1S2-S ms.
Inter-variable differences are within either RV or LV:
**P<0.05 between 100% and 50% Cx43.
***P<0.05 between ventricles with 100% and 10% Cx43.
1. Conduction propagation during S1S2. Activation delay is determined during S1S2 and for successive premature beats. From these values, absolute activation delays were calculated as follows; Local activation time at site A and B during S1S1 was subtracted from measured values at S1S2, defining S1S1 activation time as ‘zero’, allowing comparison of changes in delay between the groups.

It is important to realize, that even though the absolute increase in delay is measured, this parameter is influenced by two factors: 1) the stimulus-to-activation delay (which may change with prematurity of the stimulus), and 2) activation delay caused by conduction. As such, to measure delay that is independent of the stimulus delay, the conduction velocity was measured as well.

3) Conduction velocity restitution; restitution is the property that, as the diastolic interval of a premature beat varies, the conduction velocity of that beat also varies, typically decreasing with decreasing diastolic interval [20] and is rate dependent. The
Conduction velocity restitution curve can be measured by plotting conduction velocity along S1S1 and the S1S2 coupling interval. Curves of both ‘conduction velocity restitution’ and ‘activation delay’ were constructed from average values of at least 2 measurements. For specific number of measurements per S1S1 and S1S2 coupling intervals, see Tables 1 and 2.

To facilitate comparison between activation maps, similar colors in all figures represent equal activation time.

Statistics

CV restitution and activation delay curves data were analyzed using two-way repeated measurements ANOVA with a LSD posthoc test (corrected for comparisons made).

Probability values of \(P \leq 0.05 \) were considered statistically significant. Data was analyzed using SPSS 13.0 software.

Results

Conduction Velocity Restitution and Activation Delay

Tables 1 and 2 provide mean±SEM values of the study groups during S1S1 and S1S2 coupling intervals. Table 3 supplies a summary of RV and LV conduction velocity restitution and activation delay of the groups.

Reduced Membrane Excitability

Conduction velocity restitution (closed markers) and activation delay (open markers) curves of WT (circles) and Scn5a HZ (squares) animals are depicted in figure 2 (A to D). In RV, CVL restitution was significantly affected by the reduced membrane excitability (solid markers in figure 2A). Decreased CVL in RV was mainly seen during long S1S2 coupling intervals. Interestingly, with S1S2 coupling intervals near the refractory period, CVL increased in the Scn5a HZ mice rather than further decreased as occurred in WT animals. Data was analyzed using SPSS 13.0 software.

Reduced Excitability

CVL restitution and longitudinal activation delay of the groups.

Left Ventricle

Reduced Excitability (50%) ~ ~ ~ ~

Reduced Coupling (50%) ~ ~ ~ ~

Reduced Coupling (10%) ~ ~ ~ ~

Transversal Conduction

CV restitution Activation Delay

Reduced Excitability (50%)	k	l	Prior to block	k	l	Prior to block
Reduced Coupling (50%)	~	~	~	~	~	~
Reduced Coupling (10%)	~	~	~	~	~	~

Conduction Velocity Restitution in the Mouse Heart

Right Ventricle	Longitudinal CV restitution	Activation Delay	Transversal CV restitution	Activation Delay	
Reduced Excitability (50%)	k	l	Prior to block	~	~
Reduced Coupling (50%)	~	~	~	~	~
Reduced Coupling (10%)	~	~	~	~	~

k = increased; l = decreased; ~ = unchanged.

Table 3. Summary of right and left ventricular CV restitution and activation delay.

Reduced Excitability

During longitudinal propagation conduction velocity restitution decreases and activation delay increases if excitability is reduced by 50%, but only significantly in RV. Similar trends were observed during transverse propagation in RV and propagation in LV; 2) reduced intercellular coupling by 50% did not affect conduction velocity restitution, both longitudinally and transversely.
velocity restitution nor activation delay, but reduction to 10% resulted in a significant decrease in conduction velocity restitution during both longitudinal and transversal propagation in RV. Activation delay at 10% Cx43 was increased in RV, but only significant for transverse propagation. In LV, conduction velocity restitution and activation delay was similar for 100%, 50% and 10% Cx43 levels.

These results, which show that cell-to-cell coupling is more robust with regard to conduction than excitability, are compatible with the observations made by Shaw and Rudy in a computer

Figure 2. CV restitution and activation delay curves of mice demonstrating reduced membrane excitability. CV restitution (solid markers) and activation delay (open markers) curves of WT (circles) and Scn5a HZ (squares). Hearts are paced at S1S1 of 100 ms with S1S2 coupling interval reduced in steps of 5 ms until the effective refractory period. A and B demonstrate the RV and LV CVL restitution and activation delay curves, C and D show the curves during transverse propagation.

doi:10.1371/journal.pone.0020310.g002
A. Wild-type

![Activation maps of wild-type and Scn5a heterozygous RV.](image)

Figure 3. Activation maps of wild-type and Scn5a heterozygous RV. RV activation maps of WT (panel A) and Scn5a heterozygous (panel B) mice paced at S1S1 of 100 ms and during S1S2 activation with 5 ms decrement until the effective refractory period is reached. Isochronal lines are set to 1 ms. Red denotes earliest activation, blue latest. Equal color represents equal activation times.

doi:10.1371/journal.pone.0020310.g003

Reduced Membrane Excitability

Previous studies have shown that the effect of reduced membrane excitability [5] or reduced intercellular coupling [6] on mouse heart electrophysiology are different. However, one common denominator exists between these mouse models: RV impulse propagation impairment is significantly affected, in contrast to LV [4,5,6,21]. Activation delay and conduction velocity restitution of the genetically modified mice demonstrate a higher vulnerability of RV for electrophysiological changes.

Reduced excitability has a peculiar effect on conduction velocity restitution and activation delay in RV. At S1S1 and long S1S2 coupling intervals CV_L is decreased in RV of HZ mice, while CV_T is not significantly altered. This fits well to the theory of Spach of discontinuous conduction in the heart [22]. Conduction in the long and low resistive axis of the myocytes was more vulnerable to premature stimulation than in transverse directions and conduction block preferentially occurred in the long axis. This is explained by source-sink relationships between excited (source) and unexcited (sink) cells in the propagation path (for a review see [1]). The resistance of the longitudinal conduction path is low, while that of the transverse pathway is high, due to the shape of the myocytes and preferential location of gap junctions at the intercalated disk [23]. As a result, more current is needed in the longitudinal direction for activation than transverse, resulting in higher vulnerability to longitudinal conduction slowing due to premature stimulation, and in our study, combined with genetic reduction of sodium channel expression.

When the coupling interval is further reduced (Fig. 2A), activation delay increases, while CV_L of HZ in RV is no longer significantly decreased compared to WT RV. Shaw and Rudy discussed extensively the mechanism of reduced membrane excitability on conduction velocity [17]. It is evident that when membrane excitability is reduced, conduction velocity will decrease. However, at shorter S1S2 coupling intervals activation delay increases (up to 25 ms delay prior to conduction block), while conduction velocity does not further decrease. It is plausible that during such long delay additional support to conduction is delivered from another inward current, i.e. the L-type Calcium current (I_{Ca,L}) [17]. In well-coupled fibers excitability and conduction are determined by I_{Na}. However, under conditions...
Figure 4. CV restitution and activation delay curves of mice with reduced intercellular coupling. CV restitution (solid markers) and activation delay (open markers) curves of Cx43^{flox/flox} animals (control levels of Cx43, circles), and animals with reduced intercellular coupling of 50% (squares) and 10% (triangles). Hearts are paced at S1-S2 of 100 ms with S1-S2 coupling interval reduced in steps of 5 ms until the effective refractory period. A & B are RV and LV longitudinal CV restitution and activation delay curves. C and D demonstrate the transverse RV and LV CV restitution and activation delay curves.
doi:10.1371/journal.pone.0020310.g004
of reduced membrane excitability, the fast nature of sodium channel inactivation allows contribution of ICa(L), the increase in axial current delivered to depolarize downstream cells [17]. Another explanation may result from the high activation delay, which allows greater recovery time from inactivation for the NaV1.5 channels in the myocytes distal of the stimulation site, resulting in even higher conduction velocity at shorter coupling intervals.

Reduced Intercellular Coupling

Reduction of intercellular coupling by 50% has little effect on conduction velocity restitution and activation delay. Although impulse delay in RV increased and conduction velocity restitution decreased at 50% Cx43 compared to wild type, these alterations were not significant. These changes became significant after reduction to 10%. Both longitudinal and transverse conduction velocity restitution were decreased in RV and activation delay increased, albeit only significant for transverse propagation. Jongsma and Wilders [24] demonstrated in a computer model of impulse propagation that moderate reduction of gap junctional coupling has little or no effect and that large reductions of intercellular coupling are required for significant reduction of conduction velocity. Also in the study of Shaw and Rudy the reduction of conduction velocity at a 50% reduction of

Figure 5. Activation maps of 100%, 50% and 10% Cx43 for RV. The figure shows RV activation maps for 100% Cx43 (A), 50% Cx43 (B), and 10% Cx43 (C). Either S1S1 of 100 ms or S1S2 coupling interval (decrement of 5 ms) is specified above the activation map. Isochronal lines are at 1 ms intervals. Red denotes earliest activation, blue latest. Equal color represents similar activation time.

doi:10.1371/journal.pone.0020310.g005
intercellular coupling is small (approximately 15%), but reduction of intercellular coupling to 10% leads to a ~60% decrease in conduction velocity. These data are compatible with experimental findings in Cx43 knockout mice, which show that a 50% reduction in Cx43 expression does not affect conduction, but is significantly reduced by 19 (longitudinal) and 41% (transversal) after reduction to 10% Cx43 expression [6,25]. More importantly, changes in gap junctional conductance (gj) have a greater impact on transverse conduction. CVL restitution which is not accompanied by an increased activation delay.

The discontinuous nature of propagation in normal canine cardiac muscle. Circ Res 66: 9–11.

10. Van Rijen HV, van Veen TA, Gros D, Wilders R, de Bakker JM (2006) Overlap syndrome of cardiac sodium channel disease in mice carrying the H269→H270 mutation. PloS one 5: e9298.

12. Frame LH, Simson MB (1988) Oscillations of conduction, action potential duration, and refractoriness. A mechanism for spontaneous termination of reentrant tachycardias. Circulation 78: 1277–1287.

13. Peters NS, Green CR, Poole-Wilson PA, Severs NJ (1995) Reduced content of connexin43 gap junctions in ventricular myocardium from hypothyroid and in elderly human hearts. Circulation 85: 984–987.

14. Borlak J, Thum T (2003) Hallmarks of ion channel gene expression in end-stage heart failure. Faseb J 17: 1592–1608.

15. Valdivia CR, Chu WW, Pu J, Fiedl JD, Horsworth RA, et al. (2005) Increased late sodium current in myocytes from a canine heart failure model and from failing human heart. J Mol Cell Cardiol 38: 475–483.

16. Kostin S, Rieger M, Danner S, Hein S, Richter M, et al. (2003) Gap junction remodeling and altered connexin3 expression in the failing human heart. Mol Cell Biochem 242: 135–144.

17. Shaw RM, Rudy Y (1997) Ionic mechanisms of propagation in cardiac tissue. Roles of the sodium and L-type calcium currents during reduced excitability and increased refractoriness. J Cardiovasc Pharmacol 29: 195–200.

18. Leoni AL, Gavillet B, Rougier JS, Marionneau C, Probst V, et al. (2010) Variable Na(v)1.5 protein expression from the wild-type allele correlates with the penetrance of cardiac conduction disease in the Scn5a(+/-) mouse model. PLoS one 5: e9298.

19. Pote M, Linnenbank A, Grümbergen C (2002) Software design for analysis of multichannel intracardial and body surface electrocardiograms. Comput Methods Programs Biomed 69: 225.

20. Qu Z, Weiss JN, Garfinkel A (1999) Cardiac electrical restitution properties and stability of reentrant spiral waves: a simulation study. Am J Physiol 276: H209–2083.

21. Pinski SL (2009) The right ventricular tachycardias. J Electrophysiol 33 Suppl: 103–114.

22. Spach MS, Miller WT, 3rd, Geselowitz DB, Barr RG, Koosrey JM, et al. (1981) The discontinuous nature of propagation in normal canine cardiac muscle.
Evidence for recurrent discontinuities of intracellular resistance that affect the membrane currents. Circ Res 48: 39–54.

23. Spach MS, Heidlage JF, Dolber PC, Barr RC (2001) Changes in anisotropic conduction caused by remodeling cell size and the cellular distribution of gap junctions and Na(+) channels. J Electrocardiol 34 Suppl: 69–76.

24. Jongma HJ, Wilders R (2000) Gap junctions in cardiovascular disease. Circ Res 86: 1193–1197.

25. Morley GE, Vaidya D, Samie FH, Lo C, Delmar M, et al. (1999) Characterization of conduction in the ventricles of normal and heterozygous Cx43 knockout mice using optical mapping. J Cardiovasc Electrophysiol 10: 1361–1373.

26. Stein M, van Veen TA, Remme CA, Boulakia M, Noorman M, et al. (2009) Combined reduction of intercellular coupling and membrane excitability differentially affects transverse and longitudinal cardiac conduction. Cardiovasc Res 83: 52–60.

27. Remme CA, Verkerk AO, Nuyens D, van Ginneken AC, van Bruschem S, et al. (2006) Overlap syndrome of cardiac sodium channel disease in mice carrying the equivalent mutation of human SCN5A-1795insD. Circulation 114: 2584–2594.