Patients with coronavirus disease 2019 (COVID-19), which has recently caused a pandemic, have reported symptoms of coronavirus infection that are not well understood by the medical community in general. After severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, several symptoms, including acute clinical signs and possible sequelae, manifest in multiple organs. It is necessary to precisely identify the cells susceptible to SARS-CoV-2 infection in order to comprehend the mechanism of symptom occurrence, identify molecular targets for therapeutic development, and prevent current or future threats. Following the use of cell lines, animal models, and stem cell-derived symptom-relevant cells, recent research on the pathophysiology of human diseases has utilized organoid models. This article provides a summary of recent research on the tissue- or organ-specific cellular targets of SARS-CoV-2 aiming to understand the pathophysiology of COVID-19.

Keywords: COVID-19; SARS-CoV-2; Organoids; Pathogenesis; Communicable diseases

Introduction

Amid the increasing risk of emerging infectious diseases, we are struggling with coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); this virus appeared after SARS-CoV in the 2000s and Middle East respiratory syndrome (MERS)–related coronavirus in the 2010s [1]. The recent COVID-19 epidemic has had far more fatal consequences for humans than those in the past [2]. Despite sufficient vaccine supplies and advances in medical technology [3–7], more than 5 million people have already died worldwide, and infections continue to spread [8]. The global burden of COVID-19 is rapidly increasing due to the growing incidence of various diseases directly or indirectly related to the ongoing COVID-19 pandemic [9,10]. However, effective strategies for prevention and treatment have not yet been proposed.

Coronavirus infections generally cause respiratory symptoms, but patients with COVID-19 have reported additional unconventional symptoms as well as major symptoms in the respiratory tract. Unexpected symptoms described as being caused by a hyperimmune response referred to as the "cytokine storm" have been observed in various organs [11–14]. Severe respiratory symptoms and inflammation of various organs in the circulatory, digestive, nervous, and endocrine systems are affected [15–18]. Notably, more than 40% of patients experience neurological symptoms (e.g., chemosensory impairment or brain fog) that have not been reported in previous coronavirus infections [19,20]. These symptoms often remain even after the respiratory symptoms caused by viral infection are over, developing into sequelae called "long COVID" [21]. To understand the expression of unusual symptoms and develop...
op effective therapeutics, it is required to identify the precise pathogenesis of COVID-19.

To identify the mechanisms through which the symptoms caused by COVID-19 manifest, studies were conducted using cell-based in vitro or animal-based in vivo models [22,23]. It has been found that angiotensin-converting enzyme 2 (ACE2), a cell membrane protein, contributes to the introduction of SARS-CoV-2 into the cell [23]. Multiple tissues and organs were validated as infection targets of SARS-CoV-2 [11,12,24–26], and a genetically modified mouse model expressing human ACE2 has been established to recapitulate the infectivity and pathophysiology of the virus [27,28]. However, inaccuracies in the expression pattern and the activity of ACE2 across the variety of tissues in the transgenic animal model still cause confusion regarding the pathology of SARS-CoV-2 infection. Respiratory failure is the main clinical symptom that requires a mutation in the spike protein of the virus [39]. Although it was confirmed that SARS-CoV-2 replicated within cells in pulmonary epithelia-originating cell lines, abnormal cellular conditions including cancer pathology and ACE2 deficiency still limited the interpretation of the pathophysiological observations. As an advanced experimental model, hPSC-derived lung organoids containing ACE2-expressing AT2 cells were utilized to determine the infectivity of SARS-CoV-2 and the molecular mechanisms employed in the viral entry process [40]. AT2 cells, the only population expressing ACE2 in lung tissues, were the sole infection targets of SARS-CoV-2 in the lung organoid model [41]. Studies using alveolar organoids supported the proposal that AT2 cells are the major target of SARS-CoV-2 infection in the respiratory tract [42]. However, a study utilizing an airway organoid demonstrated that 90% of infected cells were ciliated cells, 10% were club cells, and other cells such as goblet cells (GCs) and basal cells were uninfected. While multiple cell types were observed as viral infection targets in animal model studies [43], organoid studies reproduced the physiological environment in vitro and effectively presented the primary target cells of viral infection, yielding a better understanding of the pathological sequence, which is important for preventing the inter-tissue spread of SARS-CoV-2 in the early stage of infection [44]. Although AT2 cells, club cells, TUBA-positive ciliated cell-like cells, and MUC5AC-positive GC-like cells were presented in lung organoids as infection targets of SARS-CoV-2 [45,46], debate continues on the primary cellular target and infection mechanisms [47]. Interestingly, contrary to the ubiquitous expression of transmembrane serine protease 2 (TMPRSS2) through various cell types, not all ACE2-expressing cells were permissive for SARS-CoV-2 infection in organoid models, even though infected cells expressed ACE2 [42]. These findings suggested that ACE2 and/or TMPRSS22 expression are insufficient to adequately explain SARS-CoV-2 infection of cells, and that integrative research using cell lines and animal

Respiratory organoids

SARS-CoV-2, which reaches the lungs through the respiratory tract, causes pulmonary pathology. Respiratory failure is the most common symptom of COVID-19 and is primarily responsible for death [35]. To understand pulmonary pathology in COVID-19 patients and establish clinical concepts for prevention and treatment, it is necessary to reveal the target cell type of SARS-CoV-2 infection in lung tissues. However, the lungs contain a variety of cell types, including alveolar type 1 cells (AT1), AT2 cells, vascular endothelial cells, and immune cells, and thus SARS-CoV-2 infection in the lungs induces complex symptoms, including difficulty breathing and inflammation [36,37]. The coexistence of multiple cell types and complex interactions between different cell types give rise difficulties in identifying the primary target cell type of SARS-CoV-2 and tracking the pathological sequences within lung tissues. The alveolar epithelium mainly consists of ACE1-expressing AT1 cells and ACE2-expressing AT2 cells [38]. A recent study using cancer cell lines taken from respiratory tissue-derived tumors revealed the viral tropism of SARS-CoV-2 for an adenocarcinoma cell line H522, but failed to explain the cell line-specific ACE2-independent infection that requires a mutation in the spike protein of the virus.

Organoid

Organoid 2022;2:e16 • https://doi.org/10.51335/organoid.2022.2.e16
models with organoids will be necessary to provide an unbiased interpretation.

Gastrointestinal organoids

As is the case with other coronavirus infections [48,49], some COVID-19 patients report gastrointestinal symptoms including diarrhea, vomiting, and abdominal pain [50,51]. In addition, SARS-CoV-2 RNA particles were detected in the excrement of COVID-19 patients [52], confirming the presence of gastrointestinal symptoms and suggesting that SARS-CoV-2 may be spread by the fecal-oral transmission route [53]. In the gastrointestinal tract, it has been reported that gastric epithelial cells, intestinal endothelial and epithelial cells, rectal epithelial cells, and colonocytes express ACE2, and the population of intestinal enterocytes (ECs) that form the brush border has been validated as having the highest level of ACE2 expression in the human body [54]. Intestinal organoids, including ECs, GCs, and enteroendocrine cells (EECs), have been used as in vitro models to confirm the infectivity of viruses [47,55]. However, SARS-CoV-2–infected enterocyte precursors (ECPs), ECs, GCs, and EECs were not infected. Notably, despite the thousand-fold higher ACE2 mRNA expression in differentiated ECs than in ECPs, SARS-CoV-2 infected both populations with comparable efficiency. Meanwhile, TMPRSS2 and TMPRSS4 were found to facilitate the fusogenic activity of the SARS-CoV-2 spike, promoting virus entry into mature ACE2-expressing ECs [56]. These results suggest that ACE2, which has minimal expression levels, in the intestinal environment determines the target cell selectivity of SARS-CoV-2, while the expression pattern of TMPRSS contributes to the level of the virus entry and the severity of symptom expression. Another study found that chromogranin A-positive EECs and lysozyme-positive Paneth cells expressed ACE2 and were infected with SARS-CoV-2, but not mucin 2-positive GCs [56–58]. Dysregulation of these cells is associated with a mechanism of tissue damage that leads to severe necrosis with immune responses and digestive dysfunction in COVID-19 patients [59,60]. A comparative study of proximal or colonic intestinal organoids found that the differentially expressed genes (DEGs) increased rapidly by SARS-CoV-2 infection more sensitively in the proximal region than at the colonic site, but DEGs in both regions reached similar levels over time [61]. The later-increasing DEGs in the colonic region displayed the upregulation of general pro-inflammatory factors and downregulation of canonical interferon-stimulated genes. Taken together, SARS-CoV-2 infects cells involved in immune function in the gastrointestinal tract, altering the mechanisms associated with type I or type III interferon responses [47,61,62]. These changes are believed to cause an imbalance in intestinal immune homeostasis or mobilization of the systemic immune system, leading to gastrointestinal symptoms and further tissue necrosis.

Central nervous system organoids

Neurological manifestations in coronavirus diseases are generally unusual, but neurological symptoms are common in COVID-19 patients [63]. Patients frequently report headaches, dizziness, and nausea caused by SARS-CoV-2 infection, as well as a symptom known as brain fog, which includes memory loss and dazed feelings, even after the treatment of the infection is completed. It is challenging to reveal the mechanism by which coronavirus infections cause symptoms in the brain. Recent studies have suggested that SARS-CoV-2 may be detected in the brain [63–65]. Autopsy data of COVID-19 deaths confirmed the presence of viral genomes and particles in various regions of the brain [63,64], and experiments using hPSC-derived brain organoids recapitulated the brain infection of SARS-CoV-2 in vitro [65]. In particular, in hPSC-derived brain organoids with a cerebral cortex-like structure, antigens were detected not only in the peripheral region of the brain but also in the deeper region when they were infected with SARS-CoV-2, proving that the virus directly penetrated into the deep brain [66]. However, the mechanism of the spread of the virus in affected patients’ brains remains a topic of debate. In recent reports, cerebral edema and acute necrotizing encephalopathy associated with cytokine storm and blood-brain-barrier breakdown were observed in COVID-19 patients [67–69]. A study using advanced brain organoids found that epithelial cells of the choroid plexus (ChP) are more vulnerable targets to SARS-CoV-2 tropism than neurons and astrocytes [70]. The difference in viral infectivity is induced by higher expression of ACE2 and TMPRSS2 in epithelial cells of the ChP than in other cell types in the brain, resulting in more abundant SARS-CoV-2 infection and increased cell-cell fusion promoting the spread of the virus. Indeed, a single cell containing 12 nuclei due to cell membrane fusion by SARS-CoV-2 spikes was observed, and the virus actively replicated in the brain organoid [66,70]. In addition, cerebrovascular pericytes have been suggested as a cell type with susceptibility to SARS-CoV-2, and pericyte-like cells served as a “viral replication hub” in integrated conditions with cortical organoids, contributing to viral spread and the type I interferon response [71,72]. These findings support that cells in the ChP play a gateway role in the invasion of SARS-CoV-2.
into the brain.

Simultaneously, cell death in the ChP, which increases due to viral infection, seems to induce a cytokine storm and impaired cellular function by provoking the upregulation of pro-inflammatory cytokines and downregulation of cerebrospinal fluid secretion [70,73]. Another hypothesis refers to synaptic transmission that passes through olfactory neurons [74–76]. Depending on the research conditions, 30% to 70% of patients complain of chemosensory impairment of the olfactory or gustatory system, and this is the most common neurological symptom in COVID-19 patients [19,77]. SARS-CoV-2 has been found to infect olfactory neurons, and brain infections have been reported along with damage to olfactory neurons in COVID-19 patients [26,78–80]. Although a transgenic mouse model expressing human ACE2 indicated that SARS-CoV-2 infection occurred only in epithelial cells, not olfactory neurons [30], the results of the direct infection of hPSC-derived peripheral neurons with SARS-CoV-2 [31], along with autopsy data [26,79,80], still presents a potential nerve track for viral spread through synaptic transmission. In order to overcome the limitations of animal or cell-based research, studies using mature brain organoids with the concept of a neuronal assembloid are required in the near future [71,81,82].

Other organoids

SARS-CoV-2 has been reported to affect multiple organs, including the kidneys, liver, and heart, in addition to the organs expressing the aforementioned symptoms [83]. Acute kidney injury (AKI) is a severe condition associated with COVID-19; approximately 3% to 70% of COVID-19 patients were diagnosed with AKI, and severe cases require renal replacement or lead to death [84]. Proximal tubules and glomerular parietal epithelial cells have been suggested as infection targets of SARS-CoV-2. A study using kidney organoids found evidence supporting that the proximal tube and the podocyte II cell cluster express ACE2, resulting in SARS-CoV-2 infection and the production of viral progeny [85].

Hepatic dysfunction, characterized by elevated levels of aspartate aminotransferase, alanine aminotransferase, and bilirubin, in addition to hypovolemia, has been reported in 14% to 53% of deceased COVID-19 patients [56]. Since ACE2 mRNA expression has been validated in hepatocytes and cholangiocytes of human liver tissues, it is expected that SARS-CoV-2 can directly induce acute liver injuries [54]. Long-term maintenance of liver ductal organoids derived from adult stem cells contained cholangiocytes expressing ACE2 and TMPRSS2, supporting the possibility of viral replication and subsequent cell death in response to SARS-CoV-2 infection of cholangiocytes [86]. The ablated expression of claudin-1 in cholangiocytes by SARS-CoV-2 infection is considered to disrupt the bile ductal epithelium function, causing abnormalities of bile acid collection and secretion.

The eyes are another site that can come into contact with SARS-CoV-2 by spray or droplets. There have been observations of SARS-CoV-2 viral particles in ocular tissues, such as the cornea, conjunctiva, lacrimal sac, or tears [87]. Pericytes and fibroblasts in the eye tissue express ACE2, although at lower levels than in other tissues, such as the lung and kidney [54]. Whole-eye organoids revealed that cells expressing corneal or corneal endothelium markers retained both ACE2 and TMPRSS2 [88]. Infection with SARS-CoV-2 induced ocular tissue-associated inflammatory responses [89,90].

COVID-19 patients have been reported to experience cardiac symptoms, including chest pain, palpitations, and chest pain, and myocardial edema has also been observed [91]. Single-cell RNA sequencing analysis of the human heart to examine ACE2 expression patterns indicated that multiple cell types, including myocardial cells, mural cells, and pericytes, may be potential cellular targets of SARS-CoV-2 [92]. Recent advances in cardiac organoids generated functional modules consisting of multiple cell types, including epicardial cells, cardiomyocytes, and endocardial cells, and further formed interconnected chambers with vascular structures [93]. However, the application of cardiac organoids to COVID-19 research, is limited significantly by issues in maintaining functional and structural stability in vitro [94].

Conclusion and perspectives

Organoid technologies have been utilized to investigate COVID-19 from biological and pathological perspectives, but debate continues about the identity of cells subject to SARS-CoV-2 infection. First, opposite results have been reported. Differences in the susceptibility of GCs to SARS-CoV-2 were recognized in lung and gastrointestinal organoids [42,47,57]. The type I interferon response after SARS-CoV-2 infection was confirmed in pericyte-cortical organoids, but not in brain organoids [71,72]. Second, organoid models are still insufficient to simulate the biological environment in vitro. While the secretion of both pro- and anti-inflammatory cytokines in the serum of COVID-19 patients was enriched, organoids with SARS-CoV-2 infection showed increases in only pro-inflammatory cytokines [95]. Brain infection of SARS-CoV-2 has been confirmed using
various region-specific brain organoids, but the infection route has not been clearly identified [30,31].

Identifying the target cell types of SARS-CoV-2 is important for preventing COVID-19 infection and for developing treatments [96,97]. Research on viral infectious diseases using animal models, cell lines, and stem cell-derived symptom-relevant cells has been attempted, and the resultant data have been of great help to human health [98,99]. Although methodologies employing stem cells have been applied to obtain various appropriate cells and model diseases, there is still a need for a model that simulates the complex tissue environments of the human body. While recent organoid technologies are yielding new pathophysiological knowledge in studies on various topics, including infectious diseases [100,101], studies using organoids to simulate tissue environments remain lacking. The development of organoids with correct cell compositions and connectivity between organs will enable an accurate understanding of the mechanisms of multi-organ dysfunction and an ability to respond to persistent threats such as possible sequelae and virus mutations [102–106].

Notes

Conflict of interest
No potential conflict of interest relevant to this article was reported.

Funding
This work was supported by the National Research Foundation of Korea (NRF-2021M3E5E5096744 and NRF-2022M3A9H1016308).

ORCID
Young Hyun Che, https://orcid.org/0000-0002-0355-4055
Yong Jun Kim, https://orcid.org/0000-0002-5374-712X

References

1. Zhu Z, Lian X, Su X, Wu W, Marraro GA, Zeng Y. From SARS and MERS to COVID-19: a brief summary and comparison of severe acute respiratory infections caused by three highly pathogenic human coronaviruses. Respir Res 2020;21:224.
2. Heikkinen T, Jarvinen A. The common cold. Lancet 2003; 361:51–9.
3. Corbett KS, Edwards DK, Leist SR, Abiona OM, Boyoglu-Barnum S, Gillespie RA, et al. SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature 2020;586:567–71.
4. Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med 2020;383:2603–15.
5. Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med 2021;384:403–16.
6. Luo S, Zhang P, Liu B, Yang C, Liang C, Wang Q, et al. Prime-boost vaccination of mice and rhesus macaques with two novel adenovirus vectored COVID-19 vaccine candidates. Emerg Microbes Infect 2021;10:1002–15.
7. Zhang J, He Q, An C, Mao Q, Gao F, Bian L, et al. Boosting with heterologous vaccines effectively improves protective immune responses of the inactivated SARS-CoV-2 vaccine. Emerg Microbes Infect 2021;10:1598–608.
8. World Health Organization (WHO). WHO coronavirus (COVID-19) dashboard [Internet]. Geneva: WHO; 2022 [cited 2022 Apr 30]. Available from: https://covid19.who.int.
9. COVID-19 Mental Disorders Collaborators. Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. Lancet 2021;398:1700–12.
10. Fan CY, Fann JC, Yang MC, Lin TY, Chen HH, Liu JT, et al. Estimating global burden of COVID-19 with disability-adjusted life years and value of statistical life metrics. J Formos Med Assoc 2021;120 Suppl 1:S106–17.
11. Xie Y, Xu E, Bowe B, Al-Aly Z. Long-term cardiovascular outcomes of COVID-19. Nat Med 2022;28:583–90.
12. Ji N, Zhang M, Ren L, Wang Y, Hu B, Xiang J, et al. SARS-CoV-2 in the pancreas and the impaired islet function in COVID-19 patients. Emerg Microbes Infect 2022;11:1115–25.
13. Yongzhi X. COVID-19-associated cytokine storm syndrome and diagnostic principles: an old and new Issue. Emerg Microbes Infect 2021;10:266–76.
14. Shaath H, Vishnubalaji R, Elkord E, Alajez NM. Single-cell transcriptome analysis highlights a role for neutrophils and inflammatory macrophages in the pathogenesis of severe COVID-19. Cells 2020;9:2374.
15. Han H, Ma Q, Li C, Liu R, Zhao L, Wang W, et al. Profiling serum cytokines in COVID-19 patients reveals IL-6 and IL-10 are disease severity predictors. Emerg Microbes Infect 2020;9:1123–30.
16. Michaels JR, Nazrul MS, Adhikari S, Wilkins D, Pavel AB. Th1, Th2 and Th17 inflammatory pathways synergistically predict cardiometabolic protein expression in serum of
COVID-19 patients. Mol Omics 2022;18:408–16.
17. Magadum A, Kishore R. Cardiovascular manifestations of COVID-19 infection. Cells 2020;9:2508.
18. Kamel MH, Yin W, Zavaro C, Francis JM, Chitalia VC. Hyperthrombotic milieu in COVID-19 patients. Cells 2020;9:2392.
19. Quer G, Radin JM, Gadaleta M, Baca-Motes K, Ariniello L, Ramos E, et al. Wearable sensor data and self-reported symptoms for COVID-19 detection. Nat Med 2021;27:73–7.
20. Wadman M. Lasting impact of infection extends to the brain. Science 2022;375:707.
21. Leung T, Chan A, Chan EW, Chan V, Chui C, Cowling BJ, et al. Short- and potential long-term adverse health outcomes of COVID-19: a rapid review. Emerg Microbes Infect 2020;9:2190–9.
22. Synowiec A, Jedrysik M, Branicki W, Klajmon A, Lei J, Owczarek K, et al. Identification of cellular factors required for SARS-CoV-2 replication. Cells 2021;10:3159.
23. Shou S, Liu M, Yang Y, Kang N, Song Y, Tan D, et al. Animal models for COVID-19: hamsters, mouse, ferret, mink, tree shrew, and non-human primates. Front Microbiol 2021;12:626553.
24. Ong S, Flyamer IM, Bikmore WA, Biddie SC. From bedside to bench: regulation of host factors in SARS-CoV-2 infection. Exp Mol Med 2021;53:483–94.
25. Sun J, Zhu A, Li H, Zheng K, Zhuang Z, Chen Z, et al. Isolation of infectious SARS-CoV-2 from urine of a COVID-19 patient. Emerg Microbes Infect 2020;9:991–3.
26. Meinhardt J, Radke J, Dittmayer C, Franz J, Thomas C, Mothes R, et al. Olfactory transmucosal SARS-CoV-2 invasión as a port of central nervous system entry in individuals with COVID-19. Nat Neurosci 2021;24:168–75.
27. Winkler ES, Bailey AL, Kafai NM, Nair S, McCune BT, Yu J, et al. SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function. Nat Immunol 2020;21:1327–35.
28. Yuan L, Tang Q, Cheng T, Xia N. Animal models for emerging coronavirus: progress and new insights. Emerg Microbes Infect 2020;9:949–61.
29. Li R, Qin C. Expression pattern and function of SARS-CoV-2 receptor ACE2. Biosaf Health 2021;3:312–8.
30. Brann DH, Tsukahara T, Weirenb C, Lipovsek M, Van den Berge K, Gong B, et al. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci Adv 2020;6:eabc5801.
31. Lyoo KS, Kim HM, Lee B, Che YH, Kim SJ, Song D, et al. Direct neuronal infection of SARS-CoV-2 reveals cellular and molecular pathology of chemosensory impairment of COVID-19 patients. Emerg Microbes Infect 2022;11:406–11.
32. Jang H, Kim SH, Koh Y, Yoon KJ. Engineering brain organoids: toward mature neural circuitry with an intact cytoarchitecture. Int J Stem Cells 2022;15:41–59.
33. Park NY, Koh A. From the dish to the real world: modeling interactions between the gut and microorganisms in gut organoids by tailoring the gut milieu. Int J Stem Cells 2022;15:70–84.
34. Lee J, Kim JH, Hong SH, Yang SR. Organoid model in idiopathic pulmonary fibrosis. Int J Stem Cells 2021;14:1–8.
35. Slater TA, Straw S, Drozd M, Kamalathasan S, Cowley A, Witte KK. Dying ‘due to’ or ‘with’ COVID-19: a cause of death analysis in hospitalised patients. Clin Med (Lond) 2020;20:e189.
36. D’Agnillo F, Walters KA, Xiao Y, Sheng ZM, Scherler K, Park J, et al. Lung epithelial and endothelial damage, loss of tissue repair, inhibition of fibrinolysis, and cellular senescence in fatal COVID-19. Sci Transl Med 2021;13:eabj7790.
37. Kang S, Kishimoto T. Interplay between interleukin-6 signaling and the vascular endothelium in cytokine storms. Exp Mol Med 2021;53:1116–23.
38. Brody JS, Williams MC. Pulmonary alveolar epithelial cell differentiation. Annu Rev Physiol 1992;54:351–71.
39. Puray-Chavez M, LaPak KM, Schrank TP, Elliott JL, Bhatt DP, Agajanian MJ, et al. Systematic analysis of SARS-CoV-2 infection of an ACE2-negative human airway cell. Cell Rep 2021;36:109364.
40. Han Y, Duan X, Yang L, Nilsson-Payant BE, Wang P, Duan F, et al. Identification of SARS-CoV-2 inhibitors using lung and colonic organoids. Nature 2021;589:270–5.
41. Tindle C, Fuller M, Fonseca A, Taheri S, Ibeawuchi SR, Beutler N, et al. Adult stem cell-derived complete lung organoid models emulate lung disease in COVID-19. Elife 2021;10:e66417.
42. Pei R, Feng J, Zhang Y, Sun H, Li L, Yang X, et al. Host metabolism dysregulation and cell tropism identification in human airway and alveolar organoids upon SARS-CoV-2 infection. Protein Cell 2021;12:717–33.
43. Oladunni FS, Park JG, Pinó PA, Gonzalez O, Akhter A, Al-lué-Guara A, et al. Lethality of SARS-CoV-2 infection in K18 human angiotensin-converting enzyme 2 transgenic mice. Nat Commun 2020;11:6122.
44. Ghwara A, Ray A, Rana D, Bajpai P, Nambirajan A, Arul-
selvi S, et al. ACE2 protein expression in lung tissues of severe COVID-19 infection. Sci Rep 2022;12:4058.

45. Salahudeen AA, Choi SS, Rustagi A, Zhu J, van Unen V, de la O SM, et al. Progenitor identification and SARS-CoV-2 infection in human distal lung organoids. Nature 2020;588:670–5.

46. Hysenaj L, Little S, Kulhanek K, Gbenedio OM, Rodriguez L, Shen A, et al. SARS-CoV-2 infection studies in lung organoids identify TSPAN8 as novel mediator [Preprint]. Posted 2021 Jun 2. bioRxiv 2021.06.01.446640. https://doi.org/10.1101/2021.06.01.446640.

47. Lamers MM, Beumer J, van der Vaart J, Knoops K, Puschhof J, Breugem TI, et al. SARS-CoV-2 productively infects human gut enterocytes. Science 2020;369:50–4.

48. Lee N, Hui D, Wu A, Chan P, Cameron P, Joynt GM, et al. A major outbreak of severe acute respiratory syndrome in Hong Kong. N Engl J Med 2003;348:1986–94.

49. Leung WK, To KF, Chan PK, Chan HL, Wu AK, Lee N, et al. Enteric involvement of severe acute respiratory syndrome-associated coronavirus infection. Gastroenterology 2003;125:1011–7.

50. Caio G, Lungaro L, Cultrera R, De Giorgio R, Volta U. Coronavirus and gastrointestinal symptoms: an old liaison for the new SARS-CoV-2. Gastroenterol Hepatol Bed Bench 2020;13:341–50.

51. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020;382:1708–20.

52. Wang W, Xu Y, Gao R, Lu R, Han K, Wu G, et al. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA 2020;323:1843–4.

53. Guo M, Tao W, Flavell RA, Zhu S. Potential intestinal infection and faecal-oral transmission of SARS-CoV-2. Nat Rev Gastroenterol Hepatol 2021;18:269–83.

54. Qi F, Qian S, Zhang S, Zhang Z. Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses. Biochem Biophys Res Commun 2020;526:135–40.

55. Zhou J, Li C, Liu X, Chiu MC, Zhao X, Wang D, et al. Infection of bat and human intestinal organoids by SARS-CoV-2. Nat Med 2020;26:1077–83.

56. Zang R, Gomez Castro MF, McCune BT, Zeng Q, Rothlauf PW, Sonnek NM, et al. TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes. Sci Immunol 2020;5:eabc3582.

57. Krüger J, Groß R, Conzelmann C, Müller JA, Koepke L, Sparrer K, et al. Drug inhibition of SARS-CoV-2 replication in human pluripotent stem cell-derived intestinal organoids. Cell Mol Gastroenterol Hepatol 2021;11:935–48.

58. Katano T, Bialkowska AB, Yang VW. KLF4 regulates goblet cell differentiation in BMI1 + reserve intestinal stem cell lineage during homeostasis. Int J Stem Cells 2020;13:424–31.

59. Seo J, Nam YW, Kim S, Oh DB, Song J. Necroptosis molecular mechanisms: recent findings regarding novel necroptosis regulators. Exp Mol Med 2021;53:1007–17.

60. Gartland RM, Velmahos GC. Bowl necrosis in the setting of COVID-19. J Gastrointest Surg 2020;24:2888–9.

61. Mithal A, Hume AJ, Lindstrom-Vautrin J, Villacorta-Martin C, Olejnik J, Bullitt E, et al. Human pluripotent stem cell-derived intestinal organoids model SARS-CoV-2 infection revealing a common epithelial inflammatory response. Stem Cell Reports 2021;16:940–53.

62. Stanifer ML, Kee C, Cortese M, Zumaran CM, Triana S, Muenkhirn M, et al. Critical role of type III interferon in controlling SARS-CoV-2 infection in human intestinal epithelial cells. Cell Rep 2020;32:107863.

63. Matschke J, Lütgethetmann M, Hagel C, Sperhake JP, Schröder AS, Edler C, et al. Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. Lancet Neurol 2020;19:919–29.

64. Hanley B, Naresh KN, Roufoss C, Nicholson AG, Weir J, Cooke GS, et al. Histopathological findings and viral tropism in UK patients with severe fatal COVID-19: a post-mortem study. Lancet Microbe 2020;1:e245.

65. Ramani A, Müller L, Ostermann PN, Gabriel E, Abida-Islam P, Müller-Schiffmann A, et al. SARS-CoV-2 targets neurons of 3D human brain organoids. EMBO J 2020;39:e106230.

66. Zhang BZ, Chu H, Han S, Shuai H, Deng J, Hu YF, et al. SARS-CoV-2 infects human neural progenitor cells and brain organoids. Cell Res 2020;30:928–31.

67. Achar A, Ghosh C. COVID-19-associated neurological disorders: the potential route of CNS invasion and blood-brain relevance. Cells 2020;9:2360.

68. Poyiadji N, Shahin G, Noujaim D, Stone M, Patel S, Griffith B. COVID-19-associated acute hemorrhagic necrotizing encephalopathy: imaging features. Radiology 2020;296:E119–20.

69. Gu J, Gong E, Zhang B, Zheng J, Gao Z, Zhong Y, et al. Multiple organ infection and the pathogenesis of SARS. J Exp Med 2005;202:415–24.

70. Jacob F, Pather SR, Huang WK, Zhang F, Wong S, Zhou H, et al. Human pluripotent stem cell-derived neural cells and brain organoids reveal SARS-CoV-2 neurotropism
predominates in choroid plexus epithelium. Cell Stem Cell 2020;27:937–50.
71. Wang L, Sievert D, Clark AE, Lee S, Federman H, Gastfriend BD, et al. A human three-dimensional neural-perivascular ‘assembloid’ promotes astrocytic development and enables modeling of SARS-CoV-2 neuropathology. Nat Med 2021;27:1600–6.
72. Song E, Zhang C, Israelow B, Lu-Culligan A, Prado AV, Skrabine S, et al. Neuroinvasion of SARS-CoV-2 in human and mouse brain. J Exp Med 2021;218:e20202135.
73. Pellegrini L, Albecka A, Mallery DL, Kellner MJ, Paul D, Carter AP, et al. SARS-CoV-2 infects the brain choroid plexus and disrupts the blood-CSF barrier in human brain organoids. Cell Stem Cell 2020;27:951–61.
74. Harvey JD, Heinbockel T. Neumodulation of synaptic transmission in the main olfactory bulb. Int J Environ Res Public Health 2018;15:2194.
75. Yang M, Card JP, Tirabassi RS, Miselis RR, Enquist LW. Retrograde, transneuronal spread of pseudorabies virus in defined neuronal circuitry of the rat brain is facilitated by gE mutations that reduce virulence. J Virol 1999;73:4350–9.
76. Trombley PQ, Shepherd GM. Synaptic transmission and modulation in the olfactory bulb. Curr Opin Neurobiol 1993;3:540–7.
77. Lechien JR, Chiesa-Estomba CM, De Siati DR, Horoi M, Le Bon SD, Rodriguez A, et al. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur Arch Otorhinolaryngol 2020;277:2251–61.
78. Fabbri VP, Foschini MP, Lazzarotto T, Gabrielli L, Cenacchi G, Gallo C, et al. Brain ischemic injury in COVID-19-infected patients: a series of 10 post-mortem cases. Brain Pathol 2021;31:205–10.
79. Deigendesch N, Sironi L, Kutzka M, Wischnewski S, Fuchs V, Hench J, et al. Correlates of critical illness-related encephalopathy predominant postmortem COVID-19 neuropathology. Acta Neuropathol 2020;140:583–6.
80. Al-Dalahmah O, Thakur KT, Nordvig AS, Prust ML, Roth W, Lignelli A, et al. Neuronophagia and microglial nodules in a SARS-CoV-2 patient with cerebellar hemorrhage. Acta Neuropathol Commun 2020;8:147.
81. Susaimanickam PJ, Kiral FR, Park IH. Region specific brain organoids to study neurodevelopmental disorders. Int J Stem Cells 2022;15:26–40.
82. Yun W, Kim YJ, Lee G. Direct conversion to achieve glial cell fates: oligodendrocytes and Schwann cells. Int J Stem Cells 2022;15:14–25.
83. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020;323:1061–9.
84. Qian JY, Wang B, Liu BC. Acute kidney injury in the 2019 novel coronavirus disease. Kidney Dis (Basel) 2020;323:1–6.
85. Monteil V, Kwon H, Prado P, Hagelkü tyres A, Wimmer RA, Stahl M, et al. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell 2020;181:905–13.
86. Zhao B, Ni C, Gao R, Wang Y, Yang L, Wei J, et al. Recapitulation of SARS-CoV-2 infection and cholangiocyte damage with human liver ductal organoids. Protein Cell 2020;11:771–5.
87. Aiello F, Gallo Afflitto G, Mancino R, Li JO, Cesareo M, Giannini C, et al. Coronavirus disease 2019 (SARS-CoV-2) and colonization of ocular tissues and secretions: a systematic review. Eye (Lond) 2020;34:1206–11.
88. Makovoz B, Moeller R, Zebitz Eriksen A, ten Oever BR, Blenkinsop TA. SARS-CoV-2 infection of ocular cells from human adult donor eyes and hESC-derived eye organoids. SSRN [Preprint]. 2020:3650574. https://doi.org/10.2139/ssrn.3650574.
89. Menuchin-Lasowski Y, Schreiber A, Lecanda A, Mecate-Zambrano A, Brunotte L, Psathaki OE, et al. SARS-CoV-2 infects and replicates in photoreceptor and retinal ganglion cells of human retinal organoids. Stem Cell Reports 2022;17:789–803.
90. Golob-Schwarzl N, Woltsche N, Armento A, Wolf P, Horwath-Winter J, Wedrich A, et al. SARS-CoV-2 spike protein functionally interacts with primary human conjunctival epithelial cells to induce a pro-inflammatory response. Eye (Lond) 2022 Apr 15 [Epub]. https://doi.org/10.1038/s41433-022-02066-7.
91. Huang L, Zhao P, Tang D, Zhu T, Han R, Zhan C, et al. Cardiac involvement in patients recovered from COVID-2019 identified using magnetic resonance imaging. JACC Cardiovasc Imaging 2020;13:2330–9.
92. Nicin L, Abplanalp WT, Mellentin H, Kattih B, Tombor L, John D, et al. Cell type-specific expression of the putative SARS-CoV-2 receptor ACE2 in human hearts. Eur Heart J 2020;41:1804–6.
93. Lewis-Israeli Y, Wasserman AH, Gabalski MA, Volmert BD, Ming Y, Ball KA, et al. Self-assembling human heart organoids for the modeling of cardiac development and con-
94. Perez-Bermejo JA, Kang S, Rockwood SJ, Simoneau CR, Joy DA, Silva AC, et al. SARS-CoV-2 infection of human iPSC-derived cardiac cells reflects cytopathic features in hearts of patients with COVID-19. Sci Transl Med 2021;13:eabf7872.

95. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395:497–506.

96. Bojkova D, Bechtel M, McLaughlin KM, McGreig JE, Klann K, Bellinghausen C, et al. Aprotinin inhibits SARS-CoV-2 replication. Cells 2020;9:2377.

97. Papageorgiou AC, Mohsin I. The SARS-CoV-2 spike glycoprotein as a drug and vaccine target: structural insights into its complexes with ACE2 and antibodies. Cells 2020;9:2343.

98. Kurapati S, Sadaoka T, Rajbhandari L, Jagdish B, Shukla P, Ali MA, et al. Role of the JNK pathway in varicella-zoster virus lytic infection and reactivation. J Virol 2017;91:e00640.

99. Yuan L, Tang Q, Zhu H, Guan Y, Cheng T, Xia N. SARS-CoV-2 infection and disease outcomes in non-human primate models: advances and implications. Emerg Microbes Infect 2021;10:1881–9.

100. Kumar A, Ghosh SB. Emerging treatment options of regenerative medicine in severe corona virus/COVID 19 infections. Int J Stem Cells 2020;13:305–11.

101. Kiaie N, Ghanavati S, Miremadi SS, Hadipour A, Aghdam RM. Mesenchymal stem cell-derived exosomes for COVID-19 therapy, preclinical and clinical evidence. Int J Stem Cells 2021;14:252–61.

102. Hayden MR. An immediate and long-term complication of COVID-19 may be type 2 diabetes mellitus: the central role of β-cell dysfunction, apoptosis and exploration of possible mechanisms. Cells 2020;9:2475.

103. Aguilar C, Alves da Silva M, Saraiva M, Neyazi M, Olsson I, Bartfeld S. Organoids as host models for infection biology: a review of methods. Exp Mol Med 2021;53:1471–82.

104. Yu J. Organoids: a new model for SARS-CoV-2 translational research. Int J Stem Cells 2021;14:138–49.

105. Yi K, Kim SY, Bleazard T, Kim T, Youk J, Ju YS. Mutational spectrum of SARS-CoV-2 during the global pandemic. Exp Mol Med 2021;53:1229–37.

106. Singh D, Yi SV. On the origin and evolution of SARS-CoV-2. Exp Mol Med 2021;53:537–47.