Exercise Prevents Growth Hormone-Induced Insulin Resistance

Skeletal muscle is the most important tissue of glucose utilization after a meal. Growth hormone has been known to reduce insulin-stimulated glucose transport in muscles [9]. This adverse effect can be reversed by exercise. Hou et al. [13] present evidence indicating that exercise training prevents growth hormone-induced insulin resistance in rats by increasing muscle glycogen storage and GLUT4 protein levels. The importance of exercise to our health is once again shown to hold some scientific truth.

Wai Tan Kung as a Physiological Vagal Enhancer for the Elderly

Among the many Oriental conditioning exercises, Wai Tan Kung (WTK) is a traditional conditioning exercise practiced in Taiwan, and is said to be suitable for elderly people and patients with chronic diseases [3]. The underlying mechanism has not been adequately studied. Based on measurement of heart rate variability or hemodynamics, Lu and Kuo [28] conclude that in the short-term, WTK enhances vagal modulation and suppresses sympathetic modulation in the elderly. On the other hand, long-term practice of WTK enhances sympathetic modulation without compromising vagal modulation in the elderly.

Capsaicin Alters Respiratory-Related Hypoglossal Activity

Activation of pulmonary C fibers, the primary chemosensitive vagal afferents innervating the lung [12], with irritant gases evokes a cardiopulmonary reflex [22]. This centrally mediated reflex is considered to be beneficial because it prevents further insult by irritant gases. Lee et al. [24] found that pulmonary C fiber activation in rats by low and moderate doses of capsaicin decreases phrenic and hypoglossal nerve activities. Those effects are reversed after bilateral vagotomy. These observations suggest that pulmonary vagal C fibers may narrow the diameter at the oropharyngeal level by a decrease in phasic nerve activity, which may be disadvantageous to the maintenance of a patent upper airway.

Supranodose Vagotomy Precludes Reflex Respiratory Responses to Serotonin

Serotonin is known to evoke a variety of respiratory responses. For example, injection of serotonin into the pulmonary circulation of cats elicits a pulmonary chemoreflex, which is a cascade of cardiorespiratory responses that include apnea, hypotension and bradycardia, followed by rapid shallow breathing [8]. The study by Kopczynska and Szereda-Przestaszewska [18] extends this previous work, and they found that pulmonary vagal afferents and nodose ganglion contribute to the serotonin-induced ventilatory effects.

Protective Effect of ATP-MgCl2 on Ischemia-Reperfusion Lung Injury Is Leukocyte Dependent

Considerable evidence suggests that ATP-MgCl2 restores the depressed cell and organ functions following ischemia-reperfusion-induced injury [19]. A previous study [14] indirectly suggested that Mg2+-dependent ecto-ATPases on the surface of leukocytes are responsible for the hydrolysis of ATP-MgCl2 to adenosine, which then contributes to the protective effect of ATP-MgCl2. Chen et al. [7], in a buffer-perfused isolated rat lung model, found that ischemia-reperfusion increases capillary permeability, lung weight gain, wet lung/body weight ratio, lung lavaged protein concentration and pulmonary arterial pressure. These increases were significantly attenuated when leukocytes were added to the ATP-MgCl2 pretreatment. They concluded that the protective effect of ATP-MgCl2 requires the presence of leukocytes.

807 C/T Polymorphism in Glycoprotein Ia Increases Blood Platelet Reactivity

Collagen is a major adhesive protein that mediates the adhesion of platelets after blood vessel injury, thus triggering the formation of hemostatic plug. α2β1 integrin is the major receptor for collagen, and polymorphisms in the gene encoding the glycoprotein Ia subunit affect the cell surface expression level of the receptor [20, 21]. Luzak et al. [29] report that the 807 T/T polymorphism, which does not change the amino acid sequence of glycoprotein Ia, correlates with increased platelet reactivity.

Induction of Plasminogen Activator Inhibitor-1 Gene via the MEK/ERK Pathway

Plasminogen activator inhibitor-1 (PAI-1) is the primary regulator of plasminogen activation and possibly extracellular proteolysis [27, 32, 34]. In anchorage-dependent cells, the PAI-1 gene is upregulated when cells begin to attach and is downregulated when cells are completely attached. Chang et al. [4] show that PAI-1 gene activation is mediated through MEK and p42/p44 MAP kinase (ERK), and may be regulated by molecules downstream from ERK such as Elk-1 and hypoxia-inducible factor-1.
Apoptotic Neutrophils Undergoing Secondary Necrosis Manifest Elastase Activity and Induce Lung Epithelial Cell Detachment

Desquamation of airway and lung epithelial cells has been widely observed in a variety of immunological, infectious or inflammatory pulmonary diseases [1, 2]. Liu et al. [26] used lung epithelial cell detachment as an assay to investigate the effect of early apoptotic neutrophils on airway epithelial cells. They found that the detachment process is CD18-independent and serine proteinase-dependent and correlates with the transition from early apoptotic to secondary necrotic neutrophils. These observations suggest that apoptosing neutrophils can manifest elastase activities and emphasize the importance of prompt clearance of apoptotic neutrophils before they progress to secondary necrosis at the site of lung inflammation.

IL-1 Upregulates MMP-9 and -13 in Liver Myofibroblast Cells

Hepatic stellate cells play a fundamental role in the pathogenesis of hepatic fibrosis. Following liver injury, these cells change from quiescent cells to myofibroblasts. These myofibroblasts produce abundant extracellular matrix, which leads to the development of hepatic fibrosis [25]. They also produce matrix metalloproteinases (MMPs) to degrade extracellular matrix. Lee et al. [23] show that IL-1 produced from myofibroblasts by an autocrine model or from Kupffer cells by a paracrine model upregulates the expression of both MMP-9 and -13. This suggests that during liver inflammation, myofibroblasts and Kupffer cells may participate in the remodeling of liver fibrosis through the production of IL-1.

Role of crumbs in Development of Drosophila Eye

Drosophila eye development offers an easy system to analyze gene functions in vivo, and has become the model of choice to study human eye diseases. Signaling pathways such as EGF and receptor tyrosine kinase for patterning, differentiation and morphogenesis of the eye have been well characterized [33]. However, not much attention has been paid to the relationships between genes involved in cell polarity and eye development. The cell polarity gene, crumbs, plays a role in establishing cell polarity in ectoderm-derived epithelia. Mutations of crumbs result in progressive, light-induced retinal degeneration [16]. Fan et al. [10] used the gain-of-function strategy to study the function of crumbs in Drosophila eye development. They have dissected out distinct roles of crumbs at precisely timed stages during photoreceptor differentiation.

Dopamine Synthesis and Transport in Synaptic Vesicles

Tyrosine hydroxylase (TH) is the rate-limiting enzyme in dopamine (DA) biosynthesis. Although regulation of the soluble form of TH and storage of DA in synaptic vesicles [11] have been extensively studied, little is known regarding the relationship between DA synthesis and its transport into synaptic vesicles. Chen et al. [6] report that the membrane-associated form of TH is activated by proton gradient-dependent protein phosphorylation and that there is a tight coupling between DA synthesis by the membrane-associated form of TH and DA transport into synaptic vesicles. These findings provide further support for generalization of the coupling model between neurotransmitter synthesis and vesicular transport into synaptic vesicles, as recently proposed for the GABA system [15].

Bitter Gourd Extract Activates Peroxisome Proliferator-Activated Receptor-α

Peroxisome proliferator-activated receptors (PPARs) are lipid-activated transcription factors that control energy homeostasis through genomic action [35]. Chao and Huang [5] evaluated whether ethyl acetate extract of bitter gourd activates PPARα, using a clone of CHO K1 cells stably transfected with a (UAS),tk-alkaline phosphatase report and a chimeric receptor Gal4-rPPARα LBD. They demonstrated that the extract activates PPARα to an extent that is equivalent to or even higher than that with 10 μM of Wy-14643, a known ligand of PPARα. Furthermore, a hepatoma cell line (H411/EC3) treated with the bitter gourd extract showed a significant increase in mRNA and activity of acyl CoA oxidase and fatty acid binding protein.

Downregulation of Polymeric Immunoglobulin Receptor mRNA during Colon Cancer Progression

The genesis of colon cancer is complex and progresses through many distinct stages of tissue changes [17]. The polymeric immunoglobulin receptor (PIGR) gene is abundantly expressed in normal colonic epithelium, where it mediates transport of locally synthesized IgA and IgM antibodies into intestinal secretions [31]. Downregulation of PIGR expression during progression of colon cancer has been reported, but the mechanism remains unknown. Traicoff et al. [36] studied the properties of the human PIGR gene in a novel in vitro model of progression of colonic adenoma to carcinoma. They provide mechanistic evidence that the downregulation of PIGR in colon cancer is due to mRNA instability.
The gonadotrophs stimulate growth of cells expressing prolactin, or lactotrophs, during embryonic development. This paracrine stimulatory action was previously demonstrated in vivo by transgenic ablation of gonadotrophs in mice [30]. Vankelecom et al. [37] demonstrate that this developmental influence is exerted at the transcriptional level by selective upregulation of prolactin gene expression.

References

1 Ayars GH, Altman LC, O’Neil CE, Butcher BT, Chi EY. Cotton dust-mediated lung epithelial injury. J Clin Invest 78:1579–1588;1986.
2 Burnett D, Chamba A, Hill SL, Stockley RA. Neutrophil chemotactic stimulatory action was previously demonstrated in vivo by transgenic ablation of gonadotrophs in mice [30]. Vankelecom et al. [37] demonstrate that this developmental influence is exerted at the transcriptional level by selective upregulation of prolactin gene expression.

10 Fan SS, Chen MS, Lin JP, Chao WT, Yang VC. Use of gain-of-function study to delineate the roles of crumbs in Drosophila eye development. J Biomed Sci 10:766–773;2003.
11 Floor E, Leventhal PS, Wang Y, Meng L, Chen W. Dynamic storage of dopamine in rat brain synaptic vesicles in vitro. J Neurochem 64:689–699;1995.
12 Ho CY, Gu Q, Lin YS, Lee YJ. Sensitivity of vagal afferent endings to chemical irritants in the rat lung. Respir Physiol 127:113–124;2001.
13 Hou CW, Chou SW, Ho HY, Lee WC, Lin CH, Kuo CH. Interactive effect of exercise training and growth hormone administration on glucose tolerance and muscle GLUT4 protein expression in rats. J Biomed Sci 10:696–699;2003.
14 Hsu K, Wang D, Wu SY, Chen CY. Hsischemia-reperfusion lung injury attenuated by AT-MgCl2 in rats. J Appl Physiol 76:545–552;1994.
15 Jin H, Osterhaus G, Wei J, Davis K, Sha D, Floor E, Hsu C, Koppe R, Wu YJ. Demonstration of functional coupling between gamma-aminobutyric acid (GABA) synthesis and vesicular GABA transport into synaptic vesicles. Proc Natl Acad Sci USA 100:4293–4298;2003.
16 Johnson K, Grawe F, Grzeschik N, Knust E. Drosophila crumbs is required to inhibit light-induced photoreceptor degeneration. Curr Biol 12:1675–1679;2002.
17 Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell 87:159–170;1996.
18 Kopczyński B, Szereda-Przestaszewska M. Supranodose vagotomy precludes reflex respiratory responses to serotonin in cats. J Biomed Sci 10:718–724;2003.
19 Kopf GS, Chaudry I, Condos S, Baue AE. Reperfusion with AT-MgCl2 following prolonged ischemia improves myocardial performance. J Surg Res 43:114–117;1987.
20 Kritzik M, Savage B, Nugent DJ, Santoso S, Ruggeri ZM, Kuncinski TJ. Nucleotide polymorphisms in the alpha2 gene define multiple alleles that are associated with differences in platelet alpha beta 1 density. Blood 92:2382–2388;1998.
21 Kunicki TJ, Kritzik M, Annis DS, Nugent DJ. Hereditary variation in platelet integrin alpha 2 beta 1 density is associated with two silent polymorphisms in the alpha 2 gene alpha coding sequence. Blood 89:1939–1943;1997.
22 Lai CJ, Kou YR. Stimulation of vagal pulmonary C fibers by inhaled wood smoke in rats. J Appl Physiol 84:30–36;1998.
23 Lee HS, Mial LH, Chen CH, Chiou LL, Huang GT, Yang PM, Sheu JC. Differential role of p38 in IL-1a induction of MMP-9 and MMP-13 in an established liver myofibroblast cell line. J Biomed Sci 10:757–765;2003.
24 Lee KZ, Liu JJ, Ku LC, Lin JT, Hwang JC. Response of respiratory-related hypoglossal nerve activity to capsaicin-induced pulmonary C-fiber activation in the rats. J Biomed Sci 10:706–717;2003.
25 Li D, Friedman SL. Liver fibrogenesis and the role of hepatic stellate cells: New insights and prospects for therapy. J Gastroenterol Hepatol 14:618–633;1999.
26 Liu CY, Liu YH, Lin SM, Yu CT, Wang CH, Lin HC, Lin CH, Kuo HP. Apoptotic neutrophils undergoing secondary necrosis induce human lung epithelial cell detachment. J Biomed Sci 10:746–756;2003.
27 Loskutoff KJ, Sawdwy M, Mimuro J, Coller B: Progress in Hemostasis and Thrombosis, ed 9. Philadelphia, W.B. Saunders, 87–115;1989.
28 Lu WA, Kuo CD. The effect of wai tan kung on autonomic nervous modulation in the elderly. J Biomed Sci 10:697–705;2003.
29 Luzak B, Golanski J, Rozalka M, Watala C. Effect of 807 C/T polymorphism in glycoprotein la on blood platelet reactivity. J Biomed Sci 10:731–737;2003.
30 Meijer JC, Trudeau VL, Colenbrander B, Poot P, Erkens JH, Van de Wiel DFL. Prolactin in the developing pig. Biol Reprod 39:264–269;1988.
31 Mostov K, Kaetzel CS. Immunoglobulin transport and the polymeric immunoglobulin receptor. In: Ogra PL, Mestecky J, Lamm ME, Strober W, Bienvenin J, McGregor JH, eds. Mucosal Immunology, ed 2. San Diego, Academic Press, 181–211;1999.
32 Schneiderman J, Loskutoff DJ. Plasminogen activator inhibitors. Trends Cardiovasc Med 1:99–102;1999.
33 Simon MA. Receptor tyrosine kinases: Specific outcomes from general signals. Cell 103:13–15;2000.
34 Sprenger ED, Kluft C. Plasminogen activator inhibitors. Blood 69:381–387;1987.
35 Torra IP, Chinetti G, Duval C, Fruchart JC, Staels B. Peroxoxime proliferator-activated receptors: From transcriptional control to clinical practice. Curr Opin Lipidol 12:245–254;2001.
36 Traicoff JL, De Marchi L, Ginsburg BL, Zamora RE, Khattar NH, Blanch VL, Plummer S, Bargo SA, Templeton DJ, Case G, Kaetzel CS. Characterization of the human polyclmeric immunoglobulin receptor (PIGR) 3’ UTR and differential expression of PIGR mRNA during colon tumorgenesis. J Biomed Sci 10:792–804;2003.
37 Vankelecom H, Seuntjens E, Haispie A, Denef C. Targeted ablation of gonadotrophs in transgenic mice depresses prolactin but not growth hormone gene expression at birth as measured by quantitative mRNA detection. J Biomed Sci 10:805–812;2003.