Development of tools for genetic analysis of phenanthrene degradation and nanpod production by *Delftia* sp. Cs1-4

Shicheng Chen and William J. Hickey*

O.N. Allen Laboratory for Soil Microbiology, Department of Soil Science, University of Wisconsin–Madison, Madison, WI, USA

Edited by:
Jeremy Semrau, The University of Michigan, USA

Reviewed by:
Steven Ripp, University of Tennessee, USA
Jong-In Han, Korean Advanced Institute of Science and Technology, South Korea

Correspondence:
William J. Hickey, O.N. Allen Laboratory for Soil Microbiology, Department of Soil Science, University of Wisconsin–Madison, 1525 Observatory Drive, Madison, WI 53706, USA.

e-mail: wjhickey@wisc.edu

INTRODUCTION

Bacteria of the genus *Delftia* mediate a diversity of processes important in environmental toxicology, including xenobiotic biodegradation and biotransformation of heavy metals (Vacca et al., 2005; De Gusseme et al., 2010; Juarez-Jimenez et al., 2010; Leibeling et al., 2010; Paulin et al., 2010; Zhang et al., 2010; Morel et al., 2011; Yang et al., 2011). Additionally, *Delftia* spp. have been identified as endobionts in a variety of organisms including humans and, in the latter case, some are emerging as opportunistic pathogens (Hail et al., 2011; Preiswerk et al., 2011). Genome sequence data will be an essential resource for identification of functions in *Delftia* spp. that are key to these activities, and one recently completed genome is that of the phenanthrene degrader *Delftia* sp. Cs1-4.

In addition to its abilities as a phenanthrene degrader, strain Cs1-4 is noteworthy as the organism in which new extracellular structures, termed nanpods, were discovered (Shetty et al., 2011). Nanpods are tubular elements that contain outer membrane vesicles (OMV) within a sheath composed of a surface layer protein (SLP). The latter was termed Nanopod protein A (NpdA), and mutants lacking this protein were unable to form nanpods. Proteomic analyses of nanpods revealed a variety of proteins that were associated with these structures, two being outer membrane protein 32 (Omp32) and hemolysin co-regulated protein (Hcp). These proteins were of interest as we hypothesized that they, along with NpdA, could have key roles in nanpod structure. For Omp32, this hypothesis was based on its occurrence of OMV in nanpods, and Omp32 being the major protein in the outer membrane of strain Cs1-4 (Shetty et al., 2011). The protein Hcp, which is part of the recently discovered type 6 secretion system (T6SS), can self-assemble into ca. 10 nm diameter rings, which subsequently stack into ca. 100 nm tubes (Mougous et al., 2006; Ballister et al., 2008). The functions of such tubes are unknown, but in the case of nanpods, we hypothesized that they could have a structural role in nanpod formation, perhaps forming an inner core. One other gene/protein of interest in nanpod formation was lasI, which is involved in quorum sensing via the acyl homoserine lactone (AHL) synthase it encodes. Its potential connection to nanpod formation was based on two observations: (1) the increased abundance of nanpods in late-growth phase of phenanthrene-grown cultures (Shetty et al., 2011), and (2) the close association of the lone genomic copy of lasI with the phenanthrene degradation gene cluster. Thus, we hypothesized that nanpod production may be regulated by quorum sensing.

Testing of the above-described hypotheses has been hindered by a lack of genetic tools that have been developed for use in *Delftia* spp. The objectives of this study were thus to develop such tools, and apply them for molecular analysis of nanpod formation or phenanthrene degradation. Three types of tools were developed...
and/or validated. First, a new expression system was developed based on a strong promoter (controlling npdA expression) from *Delftia* sp. Cs1-4. Second, the Cre-*loxP* gene deletion system was validated for generation of markerless, in-frame, gene deletions. Third, pMinIIHimar was modified to enhance gene recovery and mutant analysis in genome-wide transposon mutagenesis.

MATERIALS AND METHODS

BACTERIAL STRAINS, PLASMIDS, AND GROWTH CONDITIONS

Bacterial strains and plasmids used in this work are listed in Table 1. *E. coli* JM109 was used for cloning. For conjugation, donor strains were either *E. coli* BW19851 (λ, pir) or *E. coli* S17 (λ, pir) and recipient strains were either *E. coli* TransforMax EC100+ (for propagation of constructs) or *Delftia* sp. Cs1-4. *E. coli* strains were routinely grown in Luria-Bertani (LB) broth at 37˚C. Mineral salt medium (MSM; Hickey and Focht, 1990) containing phenanthrene as the sole carbon source (1 mg/mL) was routinely used for *Delftia* sp. Cs1-4 culture. Liquid cultures were grown with shaking (ca. 200 rpm) at either 25˚C (strain Cs1-4) or 37˚C (*E. coli*). For solid LB media, Bacto-Agar (Difco, Detroit, MI, USA) was added when required at 100 μg/mL (ampicillin, Ap), 50 μg/mL (kanamycin, Km), or 10 μg/mL (tetracycline, Tc). Kanamycin and tetracycline were used in some cases were added at 300 and 40 μg/mL, respectively.

DNA MANIPULATIONS

Genomic DNA was prepared using a genomic DNA extraction kit (Promega, Madison, WI, USA), and plasmid DNA was purified with the QIAPrep spin miniprep kit (QIAGEN, Germantown, MD, USA). Restriction and modification enzymes were purchased from Promega (Madison, WI, USA) or New England Biolabs (Beverly, MA, USA). Klenow fragment or T4 DNA polymerase (Promega) was used to a final concentration of 15 g/L. For *E. coli*, antibiotics were added when required at 100 μg/mL (ampicillin, Ap), 50 μg/mL (kanamycin, Km), or 10 μg/mL (tetracycline, Tc). Kanamycin and tetracycline were used in some cases were added at 300 and 40 μg/mL, respectively.

TRANSSCRIPTION START SITE DETERMINATION

Total RNA was isolated from phenanthrene-grown strain Cs1-4 cells, and purified of genomic DNA by DNase I digestion. Analysis by 5’-RACE was done using TaKaRa 5′-full RACE Core set under conditions recommended by the supplier (TaKaRa). Reverse transcription (RT) was done with a 5′-phosphorylated RT primer (Delf1; Table 2). After RT, mRNA was digested with RNaseH, and then cDNA was concatenated using T4 RNA ligase. The region of interest was then amplified via nested PCR using two sets of primers to regions of npdA. In the first PCR, RT products were used as template, and amplified with primers Delf2 and Delf3 (Table 2). In the second PCR, template was a 10-fold dilution of the round one PCR product, and amplification was done using primers Delf4 and Delf5 (Table 2). The 5’-RACE products were isolated, purified, ligated into pGEM-T easy and then sequenced.

The npdA fragment including the non-coding and partial structural gene regions was amplified with primers Delf6 and Delf7 (Table 2) using strain Cs1-4 genomic DNA as template. The Renilla luciferase (*rluc*) gene was amplified from pRL-SV40 using primers Delf8 and Delf9 (Table 2). These fragments were fused via overlap PCR. To analyze the structure of the putative npdA promoter, deletion derivatives of non-coding fragments upstream of npdA were amplified by employing the same PCR strategy as described above, except using different N-terminal primers, namely Delf10, Delf11, Delf12, Delf13, Delf14, and Delf15 (Table 2). The above amplicons were inserted in pGEM-T easy, released from this vector by SacI and ScaI digestion, and inserted into the same sites of pBBR1MCS-3 to create the deletion series. The reporter vector was then conjugated into strain Cs1-4.

CONSTRUCTION OF STRONG EXPRESSION SYSTEM AND FLUORESCENT PROTEIN REPORTER VECTORS

Genes encoding green fluorescent protein and red fluorescent protein were amplified from pKEN2 and pmStrawberry using the primers Delf16/Delf17 and Delf18/Delf19, respectively, and engineered via PCR to contain an *E. coli* ribosome binding site on the 5′-end (Table 2). The amplicons were cloned into pGEM-T easy (pSCH374 and pSCH378, respectively), gfpmut3 was then released by ApaI and SacI digestion, and inserted into the same sites on pBBR1MCS3 (pSCH397). The mStrawberry gene was cut from pSCH378 by digestion with KpnI and SacII, and inserted into KpnI/SacII sites on pBBR1MCS3 (pSCH395).

A strong expression system controlled by PnpdA was constructed as follows. The PnpdA region (genome position 5862152–5862685) was amplified from strain Cs1-4 genomic DNA using primers Delf20 and Delf21 (Table 2). The amplicons were cloned into pGEM-T easy (pSCH426), released by digestion with ApaI and Smal, and inserted into the same sites on pBBR1MCS3 (pSCH442). Green fluorescent protein (GFP, gfpmut3) and red fluorescent protein (RFP, mStrawberry) marker genes were released from pSCH374 and pSCH378 by digestion with SacII, cloned into pSCH442 and transformed into *E. coli* JM109. Colonies with strong green (pSCH476) and red (pSCH473) fluorescence were recovered, and orientation of reporter genes was confirmed by sequencing. These plasmids were next conjugated into *Delftia* sp. Cs1-4, leading to strains SCH481 (pSCH476) and SCH482 (pSCH473).

CONSTRUCTION OF GFP REPORTER VECTOR FOR CHROMOSOMAL TAGGING OF NPDA

To transcriptionally tag npdA, gfp was inserted immediately downstream of npdA using the Cre-*loxP* recombination method of Denef et al. (2005). An npdA fragment with the stop codon
Table 1 | Bacterial strains and plasmids used in this study.

Strain or plasmid	Relevant characteristics and/or plasmid construction	Source
BACTERIA		
E. coli	RP4-2: tet::Mu-1 kan::Tn7 integrant; ΔuidA::pir ΔrecA1 hsdR17 creB150 endA1 zbf-5 thi	Metcalf et al. (1994)
BW19851 (λ pir)	F' mcrA Δ(mrr-hsdRMS-mcrBC) Φ80lacZΔM15 ΔlacX74 recA1 endA1 araD139 Δara, leu7697 galU galK::rpsL ΔrpsL (StrR) nupG	Epicenter
TransforMax EC100+	ΔR17::Mu-1 kan::Tn7 integrant; ΔuidA::pir ΔrecA1 hsdR17 creB150 endA1 zbf-5 thi	Simon et al. (1983)
S17-1	ΔR17::Mu-1 kan::Tn7 integrant; ΔuidA::pir ΔrecA1 hsdR17 creB150 endA1 zbf-5 thi	Epicenter
JM109	ΔR17::Mu-1 kan::Tn7 integrant; ΔuidA::pir ΔrecA1 hsdR17 creB150 endA1 zbf-5 thi	Epicenter
Delftia sp. Cs1-4	ΔlasI::Km	This study
Wild type	Growth on phenanthrene, nanopod production	Shetty et al. (2011)
SCH482	Wild type carrying expression cassette PnpdA + μStrawberry	This study
SCH481	Wild type carrying expression cassette PnpdA + μStrawberry	This study
SCH369	Δomp32	This study
SCH340	Δomp32	This study
SCH411	Δomp32	This study
SCH456	npdA::gfp on the chromosome	This study
SCH514	npdA::gfp on the chromosome	This study
PLASMIDS		
pGEM-T Easy	Cloning vector; Amp'	Promega
pRLSV40	Renilla luciferase gene (rluc)	Promega
pKEN2	Source of μStrawberry; Apr'	Cormack et al. (1996)
pmStrawberry	μStrawberry gene template; Apr'	Shaner et al. (2004)
pBBR1MCS3	Broad-host-range plasmid; Tc'	Kovach et al. (1994)
pJK100	Allelic exchange vector; Tc' and Km'	Denef et al. (2006)
pCM157	Cre expression vector; Tc'	Denef et al. (2006)
pHimar1m1	Plasmid carrying mini-Himar RB1; Km'	Braun et al. (2005)
pSCH29	Derivative of pMiniHimar RB1; Km'	This study
pSCH160	gfpmut3 on pSCH29; Km'	This study
pSCH402	μStrawberry on pSCH29; Km'	This study
pSCH375	Gfpmut3 on pGEM-T easy; Apr'	This study
pSCH378	μStrawberry on pGEM-T easy; Apr'	This study
pSCH394	μStrawberry on pBBR1MCS3; Tc'	This study
pSCH397	Gfpmut3 on pBBR1MCS3; Tc'	This study
pSCH426	PnpdA on pGEM-T easy; Apr'	This study
pSCH442	PnpdA on pGEM-T easy; Apr'	This study
pSCH473	μStrawberry reporter under PnpdA on pSCH442; Tc'	This study
pSCH476	gfpmut3 reporter under PnpdA on pSCH442; Tc'	This study
pSCH447	npd' gene fragment on pGEM-T easy; Apr'	This study
pSCH430	Downstream npd' gene fragment on pGEM-T easy; Apr'	This study
pSCH431	Insert from pSCH430 cloned into pJK100; Tc'	This study
pSCH485	Insert from pSCH447 cloned into pSCH431; Tc'	This study
pSCH451	gfpmut3 from pSCH375 was inserted into pSCH485; Tc'	This study
pSCH487	Upstream fragment of hcp on pGEM-T easy; Apr'	This study
pSCH486	Downstream fragment of hcp on pGEM-T easy; Apr'	This study
pSCH339	hcp knock out plasmid; Tc' and Km'	This study
pSCH490	Upstream fragment of omp32 on pGEM-T easy; Apr'	This study
pSCH418	Downstream fragment of omp32 on pGEM-T easy; Apr'	This study
pSCH371	omp32 knock out plasmid; Tc' and Km'	This study
pSCH356	Downstream fragment of lasI on pGEM-T easy; Apr'	This study
pSCH488	Upstream fragment of lasI on pGEM-T easy; Apr'	This study
pSCH356	lasI knock out plasmid; Tc' and Km'	This study
Table 2 | Primers used in this study.

Primer	Sequence (5’–3’)	Modification†
Delf1	(P) ctttgagaacggtc	None
Delf2	Ccgccgcttcttcttctgtc	None
Delf3	Cgggctgctgctgctgctgctg	None
Delf4	Ggtagcggtctgctgctgctg	None
Delf5	Gggaattccttcttcttcttcttcttgagc	SacI
Delf6	Gggaattccttcttcttcttcttcttcttcttgagc	SacI
Delf7	Gggaattccttcttcttcttcttcttcttcttcttgagc	SacI
Delf8	Gggaattccttcttcttcttcttcttcttcttcttcttgagc	SacI

*†Delf1 introduces 5’-phosphorylation. Nucleotide sequences in uppercase were used to introduce the indicated modifications in PCR products. The engineered E.coli RBS sequences were capitalized and underlined.

(genome position 5860670–5861289) was amplified using primers Delf24 and Delf25 (Table 2). The downstream fragment of npdA (genome positions 5860666–5860809) was amplified using primers Delf24 and Delf25 (Table 2). These fragments were then cloned into pGEM-T easy (pSCH447 and pSCH430). The downstream fragment from pSCH430 was released by digestion with SacI and SacI and inserted into the same sites on pJK100 (pSCH431). The npdA fragment from pSCH447 was released by NdeI and KpnI digestion, and then inserted into the same sites on pSCH431 (pSCH485). The gfpmut3 gene was released from pSCH375 by KpnI and NotI digestion, and assembled into the same sites on pSCH485 (pSCH451). Conjugation of pSCH451 into strain Cs1-4 gave Km²/Tc² colonies, which were recovered for further analysis. The Cre-expressing vector, pCM157, was then next introduced into a selected colony (SCH483) in order to remove Km resistance, leading to strain SCH484 (Km²/Tc²). Cur- ing of pCM157 from SCH484 was done by serial transfers in LB medium. A selected colony (Km²/Tc²) with green fluorescence was then confirmed for the correct construct by PCR and sequencing (SCH456).

MUTANT CONSTRUCTION
To knock out lasI, its upstream (strain Cs1-4 genome positions 1950815–1951882) and downstream (strain Cs1-4 genome positions 1952504–1953573) sequences were amplified with primers Delf26/Delf27 and Delf28/Delf29, respectively (Table 2). The amplicons were gel purified and cloned into pGEM-T easy (pSCH488 and pSCH356). The upstream fragments were released by BglII/NdeI digestion, and downstream fragments were released by ApaI/SacI from pGEM-T easy and then sequentially assembled on the same sites on pJK100 (pSCH363). To knock out hcp, upstream (strain Cs1-4 genome position 3366999–3367911) and downstream fragments (strain Cs1-4 genome position 3368229–3369041) were amplified using PCR primers Delf30/Delf31 and Delf32/Delf33, respectively (Table 2). The amplicons were gel purified and cloned into pGEM-T easy (pSCH487 and pSCH486). These fragments were sequentially assembled on the same sites on pJK100 (pSCH339) using the same strategy as described above. To knock out omp32, upstream (Cs1-4 genome positions 1041477–1042202) and downstream (Cs1-4 genome position 1044310–1045032) fragments were amplified with primers Delf34/Delf35 and Delf36/Delf37 (Table 2). The amplicons were gel purified and cloned into pGEM-T easy vector (pSCH490 and pSCH418). These fragments were sequentially assembled on the same sites on pJK100 (pSCH371). Each of the three constructs (pSCH363, pSCH339, pSCH371) was introduced into strain Cs1-4 by conjugation, and Tc²/Km² transconjugants were selected, leading to strains SCh369, SCH340, and SCH389, respectively.

GENOME-WIDE TRANPOSON MUTAGENESIS
Modification of pHimarEm1 was done to introduce additional unique KpnI–BamHI–SacI restriction sites, to remove the ery-thromycin resistance gene and to insert genes encoding GFP and RFP. To do so, PCR was done with pHimarEm1 DNA as template, and using forward primer Delf38 and reverse primer Delf39 (Table 2). The amplicon was digested with BamHI, self-ligated and transformed into E. coli S17 λpir. The gfpmut3 fragment was digested with KpnI and SacI from pSCH375 and inserted into pSCH29 at the same restriction sites (pSCH1160). The promoterless mStrawberry fragment was then released from pSCH378 by KpnI
and SacII digestion, inserted into pSCH29 at the same restriction sites (pSCH402), and then introduced into strain SCH456 by conjugation. The Km-resistant colonies were randomly picked and replicated in 96-well plates containing MSM with either pyruvate and or phenanthrene as the carbon source. After incubation with shaking (24 h), the OD₆₀₀ and GFP fluorescence were determined (see below).

REPOR TER ASSAYS
Renilla luciferase assays were done as described in our prior work (Chen et al., 2009) using a commercially available kit (Promega) according to the manufacturer’s protocol. Quantitative analysis of fluorescent protein production was done using a Synergy 2 plate reader with the following conditions (all 0.2-s interval, 22°C): GFP, excitation at 485 nm, emission 510 nm; RFP, excitation at 574 nm, emission at 596 nm. All measurements were corrected for background with wild type (WT) Delftia sp. Cs1-4 cells.

DNA SEQUENCE AND SEQUENCE ANALYSIS
The complete genome sequence of Delftia sp. Cs1-4 was deposited in Genbank as accession NC015563.1. All constructs were sequenced by the dyeoxy termination method using an Applied Biosystems (Foster City, CA, USA) 3730 × I DNA Analyzer available at the University of Wisconsin-Madison, Biotechnology Center. GenBank database searches were carried out using the National Center for Biotechnology Information BLAST-N web server.

RESULTS
ANALYSIS OF NPDA PROMOTERS IN DELFTIA SP. CS1-4 AND DEVELOPMENT OF STRONG EXPRESSION SYSTEM
Three TSS were identified for npdA, and were located at (nucleotide) −34-bp (A), −56-bp(G), and −172-bp (A), respectively upstream of the npdA start codon (Figure 1A). Three putative promoter motifs, P(npdA)₁ (TCCTCT-N₅₋₁-TGTCTG), P(npdA)₂ (TAGGGG-N₁₅₋₁-TACGAT), and P(npdA)₃ (TACGAT-N₁₇₋₁-TGGTTG) situated at −38, −61, and −180-bp, respectively were identified (Figure 1A). Serial deletion of non-coding regions upstream of npdA was done to establish involvement in npdA regulation of one or more of the three putative promoters. There was no significant difference in levels of gene expression between the WT and D1 (npdA −220 bp; Figure 1B). However, further deletion of an 11-bp fragment from D1 (D2, npdA −209 bp) yielded a ca. 20% decrease in Rluc activity relative to the WT (Figure 1B). Since the D2 construct carried the putative −35 motif in P(npdA)₁, we inferred the fragment (−220 to −209 bp) was also important for npdA expression. Deletion of the −35 region of P(npdA)₁ (D3, npdA −190 bp) decreased Rluc activity by 40% compared to the WT. Construct D4 (npdA −180 bp) had only ca. 20% Rluc activity. The latter contained a deletion that originated at −180 bp, and thus had the entire P(npdA)₁ region disrupted, indicating that P(npdA)₁ was the most important promoter for driving npdA expression. A further deletion (D5, npdA −67 bp) that removed the −35 bp motif in P(npdA)₁ retained ca. 5% of WT level. Removing the P(npdA)₂ region (D6, npdA −54) reduced Rluc activity to background levels.

To test the utility of the P(npdA) expression system, the genes encoding a GFP and RFP were inserted downstream of the P(npdA) cassette, which contained the 220-bp fragment described above. Transformants appeared green or red under ambient light, indicating strong expression of gfp and mstrawberry, respectively. The apparent high-level expression of these proteins was non-toxic to Delftia sp. Cs1-4, as growth of cultures expressing GFP or RFP was not distinguishable from that of the WT (Figure 2A). Production of GFP and RFP followed similar patterns, with levels increasing with culture growth, achieving stable accumulations upon reaching stationary phase (Figure 2B). In the absence of antibiotic selection, the expression vector was stable in Delftia sp. Cs1-4 for at least 56 generations (Figure 2C).

GENE DELETION AND GENOME-WIDE MUTAGENESIS
For generation of gene knockouts, the vector was used to target omp32, hep, and lasl. Deletion of all three genes was successful, and confirmed by PCR and/or Southern hybridization. However, none of the gene deletions resulted in a loss of nanopod production, and only the Δomp32 mutant exhibited phenotypes different from that of the WT. In whole cell protein profiles, the latter mutant showed a loss of the predominant band corresponding to Omp32 (Shetty et al., 2011) and appearance of two other proteins, also identified as porins (Figure 3A). The Δomp32 mutant had an irregular cell shape (Figure 3B), and its growth was impaired on both pyruvate and phenanthrene, but the impact of Omp32 loss appeared to be greater with the latter substrate (Figures 3C,D).

Following conjugal delivery to Delftia sp. Cs1-4, the transposition frequency of pMiniHimar was ca. 2 × 10⁻⁵ to 5 × 10⁻⁶ per recipient, a frequency comparable to those reported for She wa nella oneidensis, Geobacter sulfurreducens, and B. pseudomallei (Choi et al., 2008; Rollefson et al., 2009). From the 13,000 colonies screened, seven mutants were recovered that were impaired in either growth on phenanthrene (Mutants 1–6; Table 3) or in npdA expression (Mutant 7; Table 3). For the former, three mutants had insertions in the gene cluster encoding the phenanthrene catabolic pathway. Of these, Mutant 3 was intriguing as the gene bearing the insertion was predicted to encode an Ycf48 homolog. For Mutants 5 and 7, insertions were in genes outside of the phenanthrene degradation cluster, and were predicted to encode a SpoT/RelA type (p)ppGpp synthetase, and a HylD Family, type I secretion membrane fusion protein, respectively.

DISCUSSION
Promoters preceding SLP genes are among the most potent in many bacteria. For example, in Lactobacillus acidophilus, the strength of the SLP gene promoter is roughly twice that controlling the lactate dehydrogenase gene (Boot et al., 1996). Strong promoters may be needed for genes encoding SLP, as SLP are typically among the most abundant cellular proteins, as is the case with NpdA in strain Cs1-4 (Shetty et al., 2011). Thus, to develop a strong expression system, we focused on identification of the npdA promoter.

Collectively, the serial deletion analyses indicated that at least 220 bp upstream of npdA were required for maximal, log phase expression of npdA in strain Cs1-4 growing on phenanthrene. The presence within this region of multiple putative promoters is a feature that appears to be common for genes encoding SLP. For example, the SLP-encoding genes of Lactobacillus brevis ATCC 8287 (Hynonen et al., 2010), Aeromonas salmonicida (Chu et al.,
FIGURE 1 | Analysis of npdA promoter regions. (A) Putative −10- and −35-bp motifs are indicated with P1, P2 and P3. Transcription start points are capitalized and underlined. Arrows indicate positions of deletions (D1-7).

(B) Effect of serial deletion on rluc expression. Results were normalized to Rluc activity of the wild-type. Reactions were done in triplicate, and standard deviations are indicated by error bars.

Expression systems based on well-characterized promoters such as Plac or Ptac are widely used (Dykxhoorn et al., 1996), but have had limited success in the Burkholderiales (Lefebre and Valvano, 2002). Likewise, for strain Cs1-4, Rluc was weakly expressed under control of Plac, as Rluc activity was ca. 2,500-fold lower than that from PnpdA:rluc. An alternative approach is to use promoters that originate from the Burkholderiales, and one example is the promoter regulating expression of small ribosomal protein S12 (Prsp). The latter promoter has been successfully utilized in Burkholderia xenovorans LB400 (Yu and Tsang, 2006) and in B. cepacia (Lefebre and Valvano, 2002). However, in strain Cs1-4, gene expression under Prsp was poor, and not significantly
different from that of Plac (data not shown). Thus, demonstration of PnpdA as a strong promoter functional in Delftia sp. Cs1-4 has provided a much-needed tool for genetic analyses of this organism, and potentially other related bacteria.

The Δomp32 mutant had an irregular cell shape (Figure 3B), suggesting that Omp32 may have a key role in establishment of cell envelope structure, as shown for other outer membrane proteins (Lazar and Kolter, 1996; Watts and Hunstad, 2008). Analysis of the Δhcp mutant demonstrated that, as opposed to our hypothesis, Hcp did not have a structural function essential for nanopod formation. However, Western blot data indicated that Hcp was associated in some manner with nanopods as the majority of this protein accumulated in the >50-nm diameter fraction along with nanopods (data not shown). It is possible that Hcp was secreted separately from nanopods, and formed extracellular structures that were co-purified with nanopods. If so, such structures were not discernible in samples imaged by transmission electron microscope. Alternatively, Hcp may be associated with nanopods as cargo carried by OMV. In this case, Hcp may function as a virulence factor that may be employed by strain Cs1-4 in interactions with competing bacteria, as has been shown for T6SS in other bacteria (Schwarz et al., 2010; Leung et al., 2011; Records, 2011). Lastly, for the ΔlasI mutant, the absence of any detectable change in the formation of nanopods suggested that the process was not affected by quorum sensing, at least in the sense that it was regulated by AHL produced by a canonical AHL synthetase. This finding is noteworthy as it helps to narrow the spectrum of possible mechanisms that may control nanopod production.

Efficient targeting for gene inactivation is critical for functional genomic studies and, in bacteria, two widely used systems for generating in-frame, unmarked deletions are those based on sacB counter selection (Jäger et al., 1995; Chen et al., 2010), and Cre-loxP system (Denef et al., 2006; Choi et al., 2008). For strain Cs1-4, the sacB system proved unsuccessful; merodiploids (first recombination) were recovered at a high frequency, but these were not effectively resolved as Delftia sp. Cs1-4 grew in YT agar medium containing 5–15% (wt/vol) sucrose (data not shown). Similar observations have been reported for Streptomyces lividans and some Burkholderia strains, which carry an intrinsic sacBC operon. Alternatively, Cre-loxP system was successfully adapted for gene deletion or insertion, and was an efficient way for recycling antibiotic markers in Delftia sp. Cs1-4. To our knowledge, this is the first report of the Cre-loxP system being used for gene deletion analysis in Delftia spp.

Of the mutants recovered from genome-wide mutagenesis, three were of particular interest as they may encode new functions associated with nanopod production and/or phenanthrene degradation. One of these putatively encoded an Ycf48-like protein. In phototrophs, Ycf48 functions in the assembly and repair of Photosystem II (Komenda et al., 2008; Rengstl et al., 2011). Activities of an Ycf48-like protein that may be related to phenanthrene degradation are unknown, but, given the significant reduction (ca. 64%) in nanopod produced by this mutant, it’s interesting to speculate that it may have a role in the assembly of these structures. The putative spoT/relA mutant, had an insertion in a (p)ppGpp synthetase. The alarmone (p)ppGpp primarily governs the stringent response to amino acid starvation (Martinez-Costa et al., 1998; Åberg et al., 2006; Gomez-Escribano et al., 2008; Abranches et al., 2009) and, since growth of the spoT/relA mutant on pyruvate was not impaired, the effect of the mutation appeared related to use of phenanthrene as a carbon source. The third gene of
FIGURE 3 | Characterization of the Delftia sp. Cs1-4 Δomp32 mutant. (A) Protein profiles of the wild type (WT) and mutant. Boxed area indicates the region of the Omp32 band in the WT. In the mutant, arrows indicate two bands identified as different porins, which were not detected in the WT. (B) Transmission electron micrographs of strain Cs1-4 biofilm cells grown on phenanthrene illustrating the mutant’s cellular deformities. (C) and (D) Growth of the WT (diamonds) and mutant (circles) on the indicated substrate.

Table 3 | Mutants recovered from miniHimar transposon mutagenesis.

Mutant	Insertion locus\(^a\)	\(\text{OD}_{600}\)\(^b\)	Nanopod production\(^c\)	GFP\(^d\)	Gene product
1	1741	N/A	N/A	N/A	Phenanthrene dioxygenase component; Ferredoxin-NAD(+)-I reductase (PhnAa)
2	1742 and 1743	0.09 ± 0.01	0.18 ± 0.02	0.59 ± 0.02	Non-coding region between phnB (cis-2,3-dihydrobiphenyl-2,3-diol dehydrogenase) and phnAc (phenanthrene 1,2-dioxygenase, large subunit)
3	1760	0.13 ± 0.01	0.32 ± 0.16	0.31 ± 0.05	2-Carboxybenzaldehyde dehydrogenase (PhnH)
4	3891	0.15 ± 0.01	0.81 ± 0.01	0.74 ± 0.03	(p)ppGpp synthetase (SpoT/RelA)
5	4612	0.15 ± 0.01	0.99 ± 0.09	0.93 ± 0.03	Type I secretion membrane fusion protein, HlyD family
6	1758	0.20 ± 0.02	0.36 ± 0.04	0.74 ± 0.03	Ycf48-like protein
7	3984	0.24 ± 0.02	0.84 ± 0.05	0.68 ± 0.11	Heavy metal translocating P-type ATPase
Wild type	N/A	0.23 ± 0.01	1.00	1.00	N/A

\(^a\) Locus in Delftia sp. Cs1-4 genome, all locus numbers are proceeded by “DelCs14/”

\(^b\) Optical density measured after 7 d incubation in MSM supplemented with phenanthrene. Values are averages (±SD) of single measures from triplicate cultures.

\(^c\) Determined as described by Shetty et al. (2011). Values are averages (±SD) of single measures from triplicate cultures, and are normalized to those of WT.

\(^d\) GFP Fluorescence. Values are averages (±SD) of single measures from triplicate cultures, and are normalized to those of WT.
interest, encoding an HlyD-like protein, was clustered with other genes predicted to encode pilE formation. But, it remains to be determined how amino acid starvation and pilE formation may be connected to phenanthrene degradation. Mutant 7 was not impaired in growth on phenanthrene, but did show decreased expression of npdA, and a depressed level of nanopod production. The protein predicted for the locus bearing the insertion contained a heavy-metal-associated domain that is also found in a number of proteins that transport or detoxify heavy metals; the relation of such a protein to npdA expression and nanopod formation remains to be determined.

Minitransposons are widely used for genome-wide mutagenesis in Gram-negative and Gram-positive bacteria (Lampe et al., 1999; Youderian et al., 2003; Maier et al., 2006; Choi et al., 2008) and, compared to other minitransposons, pMiniHimar is advantageous as it does not require host-specific factors for transposition, and, compared to other minitransposons, pMiniHimar is advantageous as it does not require host-specific factors for transposition, it lacks site specificity and the transposase is not introduced into the chromosome, thus enhancing insertion stability. The transposition frequency of pMiniHimar was sufficient (> 5 × 10^6 per recipient) for saturation mutagenesis of the strain Cs1-4 genome. In the present study, pMiniHimar RB1 was modified by adding unique restriction sites for insertion of additional genetic elements. In our tests, these elements were promoterless gfpmut3 and mStrawberry, and the resultant vectors can be utilized for random generation of genomic transcriptional fusions. Such vectors can provide a convenient way to conduct genome-wide investigations of gene expression levels under selected conditions (de Lorenzo et al., 1990; Hahn et al., 1991; Boyle-Vavra and Seifert, 1995; Velayudhan et al., 2007).

CONCLUSION

The present report outlined the development of tools needed for genetic manipulation of *Delftia* sp. Cs1-4. These tools included a new expression cassette (PnpdA-based) that can be used for tagging of chromosomal genes as well as for complementation of knockout mutants, and a pMiniHimar transposon modified to enhance gene recovery and mutant analysis. The effectiveness in *Delftia* sp. of the Cre-loxP for gene deletion was also demonstrated. These tools were developed and validated for manipulation of *Delftia* sp. Cs1-4, but could also be applied to other related genera and species with importance in environmental toxicology.

ACKNOWLEDGMENTS

These studies were funded by a National Science Foundation grant to William J. Hickey (MCB0920664). Sequencing and annotation of the *Delftia* sp. Cs1-4 genome was done by the U.S. Department of Energy Joint Genome Institute, through the Community Sequencing Project (CSP795673 to William J. Hickey). The work conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under contract No. DE-AC02-05CH11231.
Lefebre, M. D., and Valvano, M. A.
Lazar, S. W., and Kolter, R. (1996). SurA
Lampe, D. J., Akerley, B. J., Rubin, E. J.,
Kovach, M., Phillips, R., Elzer, P.,
Jarosch, M., Egelseer, E. M., Mat-
Jäger, W., Schäfer, A., Kalinowski, J.,
Frontiers in Microbiology

Chen and Hickey Genetic manipulation of Delftia sp. Cs1-4

Leibeling, S., Taubert, M., Seifert, J.,
Von Bergen, M., Harms, H., and
Muller, R. H. (2010). Adaptation of the hericde-degrading strain Delf-
tia acidovorans MC1 through car-
bonylation of RdPa as key enzyme. J. Bacteriol. 190, S26–S26.

Leung, K. Y., Siame, B. A., Snowball, H.,
and Mok, Y. K. (2011). Type VI secre-
tion regulation: crosstalk and intra-
cellular communication. Curr. Optim. Microbiol. 14, 9–19.

Maiz, T. M., Pochou, R., Casey, M.,
Zahr, T. B., and Frank, D. W. (2006). In vivo himar1-based transposon mutagenesis of Fransciella tularen-
sis. Appl. Environ. Microbiol. 72, 1878–1885.

Martinez-Costa, O. H., Hernandez-
Moreno, M. A., and Malpar-
tida, F. (1998). The relA/spot homologous genes in Streptococcus pyogenes encode both ribosome-depen-
dent (p)pGpp synthesizing and -degrading activities. J. Bacte-
riol. 180, 4123–4132.

Metcall, W. W., Jiang, W., and Wann,
ner, L. B. (1994). Use of the rep rep technique for allele replacement to construct new Escherichia coli hosts for maintenance of R6Kig origin plasmids at different copy numbers. Gene 138, 1–7.

Morel, M. A., Ubalde, M. C., Brana, V.,
and Castro-Sowinski, S. (2011). Delftia sp. JD2: a potential Cr(VI)-reducing agent with plant growth-promoting activity. Arch. Microbiol. 193, 63–68.

Moungou, J. D., Cuff, M. E., Raunser,
S., Shen, A., Zhou, M., Gifford, C. A.,
Goodman, A. L., Joachimiak,
G., Ordonez, C. L., Lory, S., Wälz,
T., Joachimiak, A., and Mekalanos, J. J. (2006). A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 312, 1526–1530.

Paulin, M. M., Nicolaisen, M. H., and Sorensen, J. (2010). Abundance and expression of entanislastic-
rdpa and sdpa dioxygenase genes during degradation of the racemic herbicide (R)-2-(2,4-
dichlorophenoxy)propionate in isolated soil bacteria adapted to degrade humic acid sorbed phanthenrene. Appl. Environ. Microbiol. 71, 3797–3805.

Vacc, D. J., Bleam, W. F., and Hickey, W. J. (2005). Isolation of soil bac-
teria adapted to degrade humic acid sorbed phanthenrene. Appl. Environ. Microbiol. 71, 3797–3805.

Velayudhan, J., Castor, M., Richardson,
A., Main-Hester, K. L., and Fong, F.
C. (2007). The role of ferritins in the physiology of Salmonella enter-
ica sv. Typhimurium: a unique role for ferritin B in iron-sulfur cluster repair and virulence. Mol. Microbiol. 63, 1495–1507.

Watts, K. M., and Hunstad, D. A. (2008). Components of SurA required for outer membrane biogenesis in urophathogenic Escherichia coli. Plas.
ONE 3, e3359. doi: 10.1371/jour-
nal.pone.0003359

Yang, Z. Y., Ni, Y., Lu, Z. Y., Liao, X. R.,
Zheng, Y. G., and Sun, Z. H. (2011). Industrial production of S-2,2-
dimethylcyclopropanecarboxamide with a novel recombinant R-amidase from Delftia tsuruhatensis. Process Biochem. 46, 182–187.

Yousuerian, P., Burke, N., White, D. J.,
and Hartzell, P. L. (2003). Identification of genes required for adventur-
gous gliding motility in Myxococcus xanthus with the transposable ele-
ment mariner. Mol. Microbiol. 49,
555–570.

Yu, M., and Tsang, J. S. H. (2006). Use of ribosomal promoters from Burkholderia cenocepa and Burkholderia cepacia for improved expression of trans-
porter protein in Escherichia coli. Protein Expr. Purif. 49, 219–227.

Zhang, L. L., He, D., Chen, J. M., and Liu, Y. (2010). Biodegradation of 2-
chloroaniline, 3-chloroaniline, and 4-chloroaniline by a novel strain Delftia tsuruhatensis H1. J. Hazard. Mater. 179, 875–882.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 19 July 2011; accepted: 22 August 2011; published online: 12 Octo-
ber 2011.

Citation: Chen S and Hickey WJ

(2011) Development of tools for genetic manipulation of Delftia sp. Cs1-4. Front. Microbiol. 2:187. doi: 10.3389/\textit{fmicb}.2011.00187

This article was submitted to Frontiers in Microbiotechnology, Ecotoxicology and Bioremediation, a specialty of Frontiers in Microbiology. Copyright © 2011 Chen and Hickey. This is an open-access article subject to a non-
exclusive license between the authors and Frontiers Media SA, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and other Frontiers conditions are complied with.

Frontiers in Microbiology | Microbiotechnology, Ecotoxicology and Bioremediation

October 2011 | Volume 2 | Article 187 | 10