Characterization of multitype colonies originating from porcine blastocysts produced in vitro

Jong-Nam Oh1, Jinsol Jeong1, Mingyun Lee1, Gyun Cheol Choe1, Dong-Kyung Lee1, Kwang-Hwan Choi1, Seung-Hun Kim1 and Chang-Kyu Lee1,2*

1Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea, 2Designed Animal and Transplantation Research Institute (DATRI), Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, South Korea

Many types of embryonic stem cells have been induced from pre-implantation blastocysts to study the specification of early lineages. Various cell lines have been established using chemicals, including excessive inhibitory molecules. Previous studies have also aimed to purify cell populations representing a single embryonic lineage from a protocol. In this study, we used a novel culture condition to induce cells from blastocyst seeding and analyzed their characteristics. Next, signaling inhibitors were introduced during the cell culture period. Furthermore, we investigated the cell types using RNA sequencing. Each type of cell population showed a distinct morphology and reactivity with alkaline phosphatase. Marker proteins enabled each cell type to be distinguished by immunocytochemistry, and genes such as Sox17, Gata4, Gata6, T, and Cdx2 showed applicability for the discrimination of cell types. Signaling inhibitors suppressed the production of some cell types, and gene expression and marker protein patterns were collapsed. RNA-sequencing suggested cell-type-specific marker genes and the correlation among samples. In conclusion, four types of cells could be induced from porcine embryos using a single protocol, and they could be isolated manually. Our data will help promote the study of lineage segregation based on embryonic cells.

KEYWORDS
embryo, lineage, segregation, RNA-seq, blastocyst attachment

Introduction

Every cell that comprises the body comes from a fertilized egg. From a few totipotent cells, embryonic lineages arise in a planned order. Following the compaction of embryonic cells, the outer cells form the trophectoderm (TE) and the inner cells form the inner cell mass (ICM) (Yamanaka et al., 2006). Furthermore, cells in the ICM are segregated into epiblasts and primitive endoderm (PrE) (Hermitte and Chazaud, 2014). All of the cell populations of the fetus originate from these embryonic lineages (Rossant, 2007). To understand the early development of embryos, lineages in the early stages have been
TABLE 1 List of antibodies.

Primary antibodies	Secondary antibodies		
Target	**Host**	**Company**	**Catalog number**
SOX SOX172	Goat	R&D systems	AF1924
SOX2	Rabbit	Millipore	AB5603
GATA6	Goat	R&D systems	AF1700
NANO2	Rabbit	Peptrotech	500-P236

Fluorescent dye	Target/host	Company	Catalog number
Alexa488	Rabbit/donkey	Invitrogen	A-11055
Alexa594	Goat/donkey	Invitrogen	A-21207

In a previous study, we obtained an epiblast-like cell line from blastocyst seeding (Choi et al., 2019). Fetal bovine serum was excluded to reduce unknown factors, and many cytokines and chemicals were used to derive cells of the epiblast lineage (van der Valk et al., 2018). Inhibitors for the maintenance of stem and chemical states of cells were introduced to suppress unintended cell types. Many other studies have used various combinations of chemicals to lead cells on a path to a single lineage (Emre et al., 2007; Li and Ding, 2010). However, during the early stages of natural development, most signals originate from inside the embryo. Therefore, to follow the spontaneous development of early embryos, chemical barriers should be excluded. However, mimicry of the early differentiation of embryonic cell lineages outside of the reproductive tract still has challenges to overcome. The primary task is the isolation of cell populations representing embryonic lineages with the minimum use of inhibitors.

In this study, we minimized inhibitors to retain as many embryonic lineages as possible. Two inhibitors that are required to maintain pluripotent states in pigs, human leukemia inhibitory factor (hLIF) and basic fibroblast growth factor (bFGF), were used together under previously described culture conditions (Ezashi et al., 2012). We established four types of cells from *in vitro* fertilized blastocysts. To identify these cell types, first, the morphology of the cells was examined. Next, alkaline phosphatase staining and immunocytochemistry of marker proteins were conducted. Then, we isolated each cell type and used quantitative PCR to analyze the expression levels of marker genes. To identify detailed expression profiles, RNA sequencing (RNA-seq) was conducted with cell clumps. During the culture period, and to observe the response of cells, we also added additional signaling inhibitors (PDGFRA inhibitor, TGFβ inhibitor, and MEK inhibitor), which have the potential to control the pluripotency of pig embryos (Vrbsky et al., 2015; Oh et al., 2020). Finally, we isolated RNAs from each cell type and conducted RNA-seq. We selected upregulated genes from each cell type and showed the distribution of each type on a multidimensional scaling plot. Additionally, the results were compared with sequencing results from other studies.

Materials and methods

The care and experimental use of pigs were approved by the Institute of Laboratory Animal Resources, Seoul National University (SNU-140328-2). Unless otherwise stated, we obtained all chemicals from Sigma–Aldrich Corp. (St. Louis, MO, United States).

In vitro production of fertilized embryos

Ovaries of prepubertal gilts were obtained from a local slaughterhouse and transferred to the laboratory within warmed saline. Cumulus-oocyte complexes (COCs) were collected by aspirating 3- to 7-mm follicles from the prepubertal gilts with a 10-ml syringe and an 18-gauge needle. COCs with compact layers of cumulus cells and fine cytoplasm were collected from aspirated porcine follicular fluid (pFF) and allowed to mature for 44 h at 39°C in tissue culture medium 199 (TCM 199) (Gibco, Grand Island, NY, United States) supplemented with 10% pFF, L-cysteine (0.1 mg/ml), sodium pyruvate (44 ng/ml), epidermal growth factor (10 ng/ml), insulin (1 mg/ml), and kanamycin (75 μg/ml). The COCs were matured for the first 22 h with 10 IU/ml gonadotropin hormones, pregnant mare serum gonadotropin (PMSG) (Lee Biosolutions, Maryland Heights, MO, United States), and human chorionic gonadotropin (hCG); the gonadotropins were excluded from the medium for the last 22 h. After maturation, cumulus cells were removed from the oocytes with hyaluronidase. Sperm cells were washed twice with Dulbecco’s phosphate buffered saline (DPBS) supplemented with 0.1% bovine serum albumin (BSA) at 1,400 rpm for 3 min. Washed sperm (4 × 10⁶/ml in the final concentration) were co-incubated with the matured oocytes in 500 μl of modified tris-buffered medium (mTBM) for 4 h (Abeydeera and Day, 1997). mTBM consisted of 113.1 mM sodium chloride, 3 mM potassium chloride, 7.5 mM calcium chloride, 20 mM Trizma® base, 11 mM glucose, 5 mM pyruvate, 1 mM caffeine, and 0.8% BSA. Following this process,
the eggs were incubated in 5% CO₂ and 5% O₂ at 39°C in 20 μl of porcine zygote medium 3 (PZM3) (Yoshioka et al., 2002).

Culture of cells from blastocyst seeding (including AP staining)

Hatched blastocysts were attached to feeder cells (mitomycin C-treated mouse embryonic fibroblasts). In total, 12 to 24 blastocysts were used in each seeding experiment. The basal medium was DMEM/F-12 supplemented with MEM Non-Essential Amino Acids, Glutamax, 2-mercaptoethanol, antibiotic-antimycotic, and 15% KnockOut™ Serum Replacement (all from Gibco, NY, United States). Basic FGF and human LIF were added to the medium (10 ng/ml each). AG1296 (PDGF receptor inhibitor, 10 μM), SB431542 (TGFβ inhibitor, 4 μM), and PD0325901 (MEK inhibitor, 1 μM) were used for the inhibitor treatment experiment. Samples were cultured for 14 days after blastocyst seeding and stained with alkaline phosphatase (AP).

Immunocytochemistry of colonies

Cells were washed with DPBS supplemented and fixed with 4% paraformaldehyde (PFA) in DPBS at room temperature (RT) for 15 min. Fixed cells were permeabilized using 0.2% Tween-20

TABLE 2 List of oligonucleotides for quantitative PCR.

Cell lineage	Gene	Forward sequence	Reverse sequence	Annealing temperature (°C)	Product size (base pairs)
Reference	GAPDH	TGCTCCCTCCCGCTGCA	ATGGCGCCCAAATCGGTC	60	100
Epiblast	OCT4A	CTGGAGACCCCTGGTTTTACT	GCCAGGAGCCAGGATCAAC	68	159
	SOX2	GCGGGTGACACTCTC	TCGGAGCCACACCATGAAA	64	100
	NANOG	CATCTGCTGAGACCCTGAC	GGGTCTGAGAGAACACTGAG	64	195
	HNF4A	GCTCTCTCCAGGAGAATGTG	TTGAACCTGAGATGCTGAT	60	183
	KLF4	GCAACACCTGCCCTACACCA	TTTTACGCTGAGATGCTC	60	146
	MYC	GAAAAGAGCTGCTGCGGAA	CCAGCCAAGGTTGAGGTTT	60	253
PrE	PDGFRA	GGTACACCTGTCGCTTATA	TTTTGATGGACGGGACTTGG	60	115
	PDGFA	GCTGTGGGATACCTGCGCAAT	CTCTCCCTCCGGAACGGG	60	132
	SOX17	GCAAAGATGCTGGGAGAAGT	TTGTAGTGGGAGATGCTG	60	112
	GATA4	GACCCACACACACAGCT	AATCCCCCTTTTTCGCACT	60	121
	GATA6	CGCCCTCTACAGCAAGATGA	AGTTGGAGAGGACAAATCCA	60	98
TE	CDX2	CAGCGCCAGCAGCAGCTGTG	ACTCGGATTATTGCTTTTGCTC	63	92
	DAN2	TGGGATGAGCCGCGCTATAGA	GCAGACTTATTGAGGGAGGAGG	60	111
	GATA3	GCGGCGCTCCTACACAAA	CGTGGCATTTTTCTCCTCA	60	141
XEN	SALL4	CAGGGATGACAGCAGCAGGAG	ACCCTGGGAGACTGAGGACTT	60	107
	SNAI1	TTTCACGCAGCCGCTATGACC	CCAGCAGAGAGTTCCAGATT	60	107
	SPARC	GCAACATCAGCTCCTGGAAC	AGTTCCGCTGTCCTCAGAAGA	60	111
Mesoderm	T	GGGCAAGGGATGGAATAAGG	ACCCTGGAGGATGGAACAAAG	60	112
	GSC	GAAAGCGCTGGAGAAACCTTT	GCTCTGGAGACGCTCTTGT	60	200
	GATA5	GAAAGCGCGAGCCGCAAAC	GCAGTGAGAGCGAGAGGAGG	60	172
	MIXL1	AGATGCTGACCGTCCGCCC	ACCTCTGCTGATGCTCCCTG	60	232
Germ cell	IFITM3	TTCTGCTTCCCTGCTACTC	CCAGTGCTGCAAACGATGAT	60	161
	DDX4	GAAACCAGTGGGGGATTTCA	TTTTAGGACCTCTGCGGCA	60	211
	PRDM1	GTTCACGGCAAGGACATCTT	GAGTAGCTGCTGGTGACAGTA	60	272
	PTEN	CCAGTCACAGGCGCTATGTT	TGCCAGACACAAACTGAGG	60	151
Access number of GEO	Name of sample	Run	Description	Sample name in this study	
----------------------	----------------	-----	------------------------	---------------------------	
GSE189477	GSM5702418	SRR7851658	Not published (private until publication) Epiblast-like cells	Type A (A)	
GSE189477	GSM5702419	SRR7851659	Not published (private until publication) Epiblast-like cells	Type A (A1)	
GSE189477	GSM5702420	SRR7851660	Not published (private until publication) Epiblast-like cells	Type A (A2)	
GSE189477	GSM5702421	SRR7851667	Not published (private until publication) Primitive endoderm-like cells	Type B (B)	
GSE189477	GSM5702422	SRR7851668	Not published (private until publication) Primitive endoderm-like cells	Type B (B1)	
GSE189477	GSM5702423	SRR7851669	Not published (private until publication) Primitive endoderm-like cells	Type B (B2)	
GSE189477	GSM5702424	SRR7851670	Not published (private until publication) Trophectoderm-like cells	Type C (C)	
GSE189477	GSM5702425	SRR7851671	Not published (private until publication) Trophectoderm-like cells	Type C (C1)	
GSE189477	GSM5702426	SRR7851672	Not published (private until publication) Trophectoderm-like cells	Type C (C2)	
GSE189477	GSM5702427	SRR7851673	Not published (private until publication) Mesoderm-like cells	Type D (D)	
GSE189477	GSM5702428	SRR7851674	Not published (private until publication) Mesoderm-like cells	Type D (D1)	
GSE189477	GSM5702429	SRR7851675	Not published (private until publication) Mesoderm-like cells	Type D (D2)	
GSE120031	GSM3391893	SRR7851658	Not published (private until publication) Pig fetal fibroblasts	PEF	
GSE120031	GSM3391894	SRR7851659	Not published (private until publication) Pig fetal fibroblasts	PEF	
GSE120031	GSM3391895	SRR7851660	Not published (private until publication) Pig ESCs	IVF-ES	
GSE120031	GSM3391902	SRR7851667	Not published (private until publication) Pig ESCs	IVF-ES	
GSE120031	GSM3391903	SRR7851668	Not published (private until publication) Pig ESCs	IVF-ES	
GSE120031	GSM3391904	SRR7851669	Not published (private until publication) Pig ESCs	IVF-ES	
GSE112380	GSM3069020	SRR6904203	Not published (private until publication) Pig embryo: Morula	Morula	
GSE112380	GSM3069022	SRR6904205	Not published (private until publication) Pig embryo: Morula	Morula	
GSE112380	GSM3069025	SRR6904208	Not published (private until publication) Pig embryo: Morula	Morula	
GSE112380	GSM3069058	SRR6904241	Not published (private until publication) Pig embryo: EB ICM	EB_ICM	
GSE112380	GSM3069061	SRR6904244	Not published (private until publication) Pig embryo: EB ICM	EB_ICM	
GSE112380	GSM3069065	SRR6904248	Not published (private until publication) Pig embryo: EB ICM	EB_ICM	
GSE112380	GSM3069081	SRR6904264	Not published (private until publication) Pig embryo: EB TE	EB_TE	
GSE112380	GSM3069092	SRR6904275	Not published (private until publication) Pig embryo: EB TE	EB_TE	
GSE112380	GSM3069094	SRR6904277	Not published (private until publication) Pig embryo: EB TE	EB_TE	
GSE112380	GSM3069096	SRR6904279	Not published (private until publication) Pig embryo: LB EPI	LB_Epi	
GSE112380	GSM3069113	SRR6904296	Not published (private until publication) Pig embryo: LB EPI	LB_Epi	
GSE112380	GSM3069118	SRR6904301	Not published (private until publication) Pig embryo: LB EPI	LB_Epi	
GSE112380	GSM3069131	SRR6904314	Not published (private until publication) Pig embryo: HYPO	LB_PrE	
GSE112380	GSM3069134	SRR6904317	Not published (private until publication) Pig embryo: HYPO	LB_PrE	
GSE112380	GSM3069142	SRR6904325	Not published (private until publication) Pig embryo: HYPO	LB_PrE	
GSE66507	GSM1624222	SRR1825955	Not published (private until publication) Human embryo: TE	TE	
GSE66507	GSM1624225	SRR1825958	Not published (private until publication) Human embryo: TE	TE	
GSE66507	GSM1624228	SRR1825961	Not published (private until publication) Human embryo: EPI	Epiblast	
GSE66507	GSM1624229	SRR1825962	Not published (private until publication) Human embryo: TE	TE	
GSE66507	GSM162432	SRR1825965	Not published (private until publication) Human embryo: PE	PrE	
GSE66507	GSM1868810	SRR2240580	Not published (private until publication) Human embryo: PE	PrE	
GSE66507	GSM1868810	SRR2240581	Not published (private until publication) Human embryo: PE	PrE	
GSE66507	GSM1868823	SRR2240644	Not published (private until publication) Human embryo: EPI	Epiblast	
GSE66507	GSM1868823	SRR2240645	Not published (private until publication) Human embryo: EPI	Epiblast	
and 0.1% Triton X-100 in DPBS at RT for 15 min, followed by blocking with 10% donkey serum in DPBS at RT for 1 h. Samples were stained with anti-SOX2 (5 μg/ml) or anti-GATA6 (1 μg/ml) in DPBS containing 10% donkey serum at 4°C overnight. After washing three times in washing solution (DPBS with 0.2% Tween-20 for 10 min), cells were incubated with donkey anti-rabbit Alexa594 or donkey anti-goat Alexa488 (Invitrogen 1: 5,000) in DPBS with 10% donkey serum at RT for 1 h and at 4°C for 6 h. For double staining, samples were stained again with anti-SOX17 (1 μg/ml) or anti-NANOG (1 μg/ml). The procedures were the same as for the first staining. The antibodies used are listed in Table 1. A digital imaging system for microscopy (DS-L1, Nikon) was used to obtain fluorescence and bright-field images. We used ImageJ software to process the images.
RNA extraction and quantitative PCR

Each cell population from the colonies was mechanically separated from the blastocyst seeding samples. RNA was extracted and cDNA was synthesized with a TaqMan™ Gene Expression Cells-to-CT Kit (Invitrogen, MA, United States). Quantitative PCR was conducted using Power SYBR™ Green PCR Master Mix (Applied Biosystems™, CA, United States). The levels of the transcripts were normalized to the expression level of the GAPDH gene. The list of primers used is described in Table 2.
RNA sequencing

RNA was purified from each type of cell (Clear-S™, Invirustech, Korea). Libraries were prepared using the SMART-Seq® v4 Ultra® Low Input RNA Kit for Sequencing (Takara Bio, CA, United States). An Illumina Novaseq 6000 (CA, United States) was used to produce read counts of samples. For the comparative study, previous reports were...
used (Table 3). A list of the tools used for the analysis is given in Table 4.

Statistical analysis

Statistical analysis of the data was performed using GraphPad Prism Software (version 5.01; San Diego, CA, United States). Significant differences among experimental groups were determined by one-way analysis of variance (ANOVA) followed by Tukey’s multiple comparison test, while unpaired t-tests were used for the binomial data. A p-value < 0.05 was considered significant. Data are presented as the mean± the standard error.

Results

Morphology and protein localization in each type of cell

The morphological features of each cell population are shown in Figure 1A. Types A, B, and C cultured as single layers, but type D formed multiple layers. Lipid droplets (LDs) were determined by microscopy with normal light, following a previous study (Niu et al., 2015). Cell types A and C contained LDs, while B and D did not show LDs. The density order of the cells was type D, B, A, and C. In the AP treatment experiment, type A cells were stained, but cell types B and C were not AP-positive. Within type D, the central part of the colony (high cellular density) showed an AP-positive signal (Figure 1B). Because the type D cells grew in multiple layers, the AP staining always showed the same pattern as shown in Figure 1B. SOX17 protein was detected only in the nuclei of type A cells. SOX2 was localized in the nuclei of type A, B, and D cells, but this protein was localized in the cytoplasm of type C cells (Figure 1C; Supplementary Figure S1). Similar to SOX17, GATA6 was detected in the nuclei of type A and D cells, while it was observed in the cytoplasm of type C cells (Figure 1D). All of the results from this section are summarized in Figure 3A, and representative images are shown in Figure 3B.

Relative expression level of lineage-specific marker genes in each type of cells

Relative expression levels of marker genes were normalized with porcine embryonic fibroblasts (PEFs) as a control (Figure 2).
Among the epiblast markers, Oct4a and Hnf4a showed high levels of expression in cell types A and B. The expression of Sox2 was restricted in type D cells. Nanog expression in type C cells showed significantly lower expression than that in PEFs. The expression levels of Klf4 and Myc were lower in the four types of cells than in somatic cells. PDGFRA expression was high in type A and B cells, but PDGFα expression was lower in the four cell types than in PEFs. Other PrE-specific genes, Sox17, Gata4, and Gata6, were highly expressed in cell types A and B. Among TE-specific markers, Cdx2 showed specific expression in type C cells. Dab2 expression in the four cell types was lower than that in PEFs, while Gata3 expression was only high in type B cells. Among XEN cell markers, Snail and Sparc expression in the four types of cells was lower than that in PEFs. Sall4 was highly expressed in cell types A and B. Mesoderm marker T showed exclusive expression in type D cells. Type D cells also showed the highest expression of Gata5. Additionally, the expression of Gata5 in type C cells was lower than that in type D cells but higher than that in cell types A and B. Gsc expression was high in cell types A and B, and the expression of Mixl1 was significantly high in cell types A, B, and D. In the case of germ cell markers, the expression levels of Prdm1 were significantly high in cell types A and B. However, Ddx4 expression was only higher in cell type D than in the other cell types. Moreover, Pten expression in the four cell types was lower than that in PEFs. All of the results from this section are summarized in Figure 3A.

Treatment of colonies with signaling inhibitors

The inhibitors we used were powerful, therefore some cell types were not detected after the culture period (Figure 4A). The four types were observed following TGFβ inhibitor treatment. However, AG1296 suppressed the development of cell type D, and only type C cells survived MEK inhibitor treatment. We selected five marker genes (Sox17, Gata4, Gata6, T, and Cdx2) from the above experiment (Figure 4B). In type A cells, PrE markers were greatly reduced by a TGFβ inhibitor, and these markers were decreased in type B cells by AG1296. The TE marker Cdx2 in type C cells was downregulated by all three inhibitors; in particular, the MEK inhibitor strongly suppressed Cdx2. The mesoderm marker T was repressed in type D cells by a MEK inhibitor. Next, the cells were immunostained with the antibodies listed in Figure 5. No difference was detected in the pattern of SOX2 following inhibitor treatment, but the SOX17 signal was not observed under all conditions. In the case of GATA6 and NANOGLAG, AG1296 and MEK inhibitors did not affect the pattern of protein expression. Under TGFβ inhibitor treatment, the nucleus-specific positive signals of GATA6 and NANOGLAG in type A cells disappeared, and NANOGLAG was translocated to the cytoplasm in type B cells. Additionally, type C cells were not positive for either protein.

RNA sequencing of the four cell types

A summary of the RNA sequencing is given in Supplementary Table S1. Raw data were aligned with reference genome information of pigs (Supplementary Table S2). Mapped reads were categorized by the value of reads per kilobase per million (RPKM) (Supplementary Table S3). We found up- or down-regulated genes in each cell type (Table 5). Only triplicates were used for each type, so no significant differences were detected in the lineage marker results. However, to show any tendencies of the marker genes, relative RPKMs were visualized (Figure 6A). Of the epiblast markers, Oct4, Nanog, and Hnf4a showed peaks in cell type A. All the PrE markers had the highest value in cell type A. The TE markers Cdx2, Dab2, and Gata3 showed peaks in cell type C. Correlations
among the 12 samples were analyzed by multidimensional scaling (Figure 6B). Samples were gathered according to their types. This result means that each type showed a distinct pattern of RNA expression. We also compared 12 samples with RNA sequencing data of previous studies (Figure 6C). In the comparison with porcine embryonic stem cells and somatic cells, the 12 samples showed a closer correlation with embryonic stem cells than somatic cells. Next, the 12 samples were compared with single-cell RNA-seq samples of porcine and human embryos (Figures 6D,E, respectively). In this analysis, no correlation was found between our samples and the single-cell RNA-seq data.

Discussion

Unlike previous studies, we tried to produce multiple types of embryonic cells with minimum signaling chemicals. We used
both hLIF and bFGF together with the recipe described in our previous report (Choi et al., 2019). We induced four types of cell populations using a single protocol, and their characteristics were analyzed.

From the patterns of marker proteins and profiles of gene expression, we concluded that these four cell types could represent four embryonic lineages of early blastocysts (type A, PrE; type B, epiblast; type C, TE; type D, mesoderm). First, we could easily classify the types based on their morphology. Well-known protein markers of pluripotent cells, SOX2, GATA6, NANOG, and SOX17, showed their availability as standards to distinguish the four types. Additionally, among candidate genes, some genes demonstrated that their expression levels could be used as type-specific markers of gene expression. The nuclei of type A cells were highly positive for the PrE-specific markers SOX17 and GATA6. Also, similar to PrE tissue in embryos, type A cells only grew in a single layer. Type B cells shared many marker patterns with type A cells, including...
NANOG protein and mRNA expression. One of the major differences between cell types A and B was morphology. Type B cells could grow in multiple layers with cuboidal shapes. In the early stages of embryonic development, only epiblast cells can have many layers between two monolayer cell types, TE and PrE. Additionally, early epiblast cells have an apolar cell shape similar to that of the type B cells (Sheng, 2015). SOX2 is known as a marker of pluripotent cells such as ICM cells and epiblasts (Avilion et al., 2003). However, SOX2 has also been detected in the cytosol of TE and cancer cells (Keramari et al., 2010; Artus et al., 2011). Our results corresponded with those reports. Type C cells showed similar characteristic to TE cells. This type only expanded in the monolayer, and when the density of cells became too high, it detached from the feeder cells to form a bubble-like structure. The strong mesoderm marker T was only expressed in type D cells among the four cell types, and these cells were AP-positive (Herrmann et al., 1990). Therefore, type D cells were assumed to be a mesoderm lineage.

AG1296, an inhibitor of the PDGF receptor, repressed the induction of type D cells during the culture period. Type A cells maintained GATA6-positivity but lost SOX17 intensity. TGFβ inhibitors and MEK inhibitors are well-known cytokines that suppress the epiblast lineage in embryos and embryonic stem cells (Vrbsky et al., 2015). The four cell types we cultured can be produced with TGFβ inhibitor. However, type A cells lost the expression of both SOX17 and GATA6. In our results, the MEK inhibitor was a much stronger regulator than TGFβ in porcine embryos. Only type C-like cells could be obtained, while the expression level of Cdx2, a TE marker, was significantly reduced. Therefore, these cells could be suggested as type C, whereas it is hard to conclude them as type C cells. Treatment of AG1296 also resulted in changes in marker gene expression.

Based on the RNA-seq results, comparative analyses were conducted. Up- or down-regulated genes were selected for each type of cell. Epiblast and TE markers showed peaks in epiblast-like type A and TE-like type D cells, respectively. Together with the qPCR and ICC data, type A could be inferred to be an epiblast lineage. Additionally, by the same token, type D cells might be inferred to be a TE-like lineage. The four types of samples were clustered on the overall experiments and data curation. As a further study, we are preparing type-specific culture conditions to maintain the characteristics of each cell type. Functional experiments such as differentiation of each cell type will be possible due to the extension of the culture period. This study will broaden the understanding of lineage specification in early embryos. In particular, we might develop a method to isolate cell populations in their natural state.

Data availability statement

The datasets presented in this study can be found in online repositories. The name of the repository and accession number can be found below: NCBI Gene Expression Omnibus; accession number GSE189477.

Ethics statement

The animal study was reviewed and approved by the Institute of Laboratory Animal Resources, Seoul National University.

Author contributions

J-NO and C-KL conceptualized the study. J-NO conducted the overall experiments and data curation. JJ contributed to feeder cell preparation and sampling for RNA purification. ML, GC, D-KL, K-HC, S-HK, and JJ participated in writing, review, and editing. D-KL, K-HC, and C-KL supervised the research. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by the BK21 Four program, the Korea Evaluation Institute of Industrial Technology (KEIT) through the Alchemist project funded by the Ministry of Trade, Industry and Energy (MOTIE; 20012411), and the National Research Foundation of Korea (NRF) grant funded by the government of Republic of Korea (NRF-2021R1A2C4001837).
Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fcell.2022.918222/full#supplementary-material

References

Abayderla, L. R., and Day, B. N. (1997). *In vitro* penetration of pig oocytes in a modified Tris-buffered medium: Effect of BSA, caffeine and calcium. *Theriogenology* 48, 537–544.

Anders, S., and Huber, W. (2010). Differential expression analysis for sequence count data. * Genome Biol.* 11, R106. doi:10.1186/gb-2010-11-10-r106

Anders, S., Pyl, P. T., and Huber, W. (2015). FTrSeq: a Python framework to work with high-throughput sequencing data. *Bioinformatics* 31, 166–169. doi:10.1093/bioinformatics/btu538

Andrews, S. (2010). FastQC: A quality control tool for high throughput sequence data.

Artus, J., Piliszek, A., and Hadjantonakis, A. K. (2011). The primitive endoderm lineage of the mouse blastocyst: Sequential transcription factor activation and regulation of differentiation by Sox17. *Dev. Biol.* 350, 393–404. doi:10.1016/j.ydbio.2010.12.007

Avilion, A. A., Nicolis, S. K., Penn, L. H., Perez, L., Vivian, N., and Lovell-Badge, R. (2003). Multispot cell lineages in early mouse development depend on Sox12 gene function. *Genes Dev.* 17, 126–140. doi:10.1101/gad.224503

Choi, K. H., Lee, D. K., Kim, S. W., Woo, S. H., Kim, D. Y., and Lee, C. K. (2019). Chemically defined media can maintain pig pluripotency in vitro. *Stem Cell Rep.* 13, 221–234. doi:10.1016/j.stemcr.2019.05.028

Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., et al. (2013). Star: Ultrafast universal RNA-seq aligner. *Bioinformatics* 29, 15–21. doi:10.1093/bioinformatics/bts655

Emre, N., Coleman, R., and Ding, S. (2007). A chemical approach to stem cell biology. *Curr. Opin. Chem. Biol.* 11, 252–258. doi:10.1016/j.copcb.2007.04.024

Ezashi, T., Teltug, B. P., and Roberts, R. M. (2012). Induced pluripotent stem cells from pigs and other ungulate species: An alternative to embryonic stem cells? *Reprod. Domest. Anim.* 47, 231–242. doi:10.1111/j.1439-0531.2012.02161.x

Hahne, F., and Ivanek, R. (2016). Visualizing genomic data using gviz and bioconductor. *Methods Mol. Biol.* 1418, 335–351. doi:10.1007/978-1-4939-3578-9_16

Hermutte, S., and Chauvas, C. (2014). Primitive endoderm differentiation: from specification to epithelium formation. *Philos. Trans. R. Soc. Lond. B Biol. Sci.* 369, 20130357. doi:10.1098/rstb.2013.0357

Herrmann, B. G., Labeit, S., Pousta, A., King, T. R., and Lebrich, H. (1990). Cloning of the T gene required in mesoderm formation in the mouse. *Nature* 345, 617–622. doi:10.1038/345617a

Keramari, M., Razavi, J., Ingman, K. A., Patsch, C., Edenhofer, F., Ward, C. M., et al. (2010). Transcript assembly and quantification of the lineage markers and inhibition of DAB2 in pig parthenogenetically activated embryos after delamination. *Theriogenology* 83, 131–138. doi:10.1016/j.theriogenology.2014.09.002

Oh, J. N., Lee, M., Cheor, G. C., Lee, D. K., Choi, K. H., Kim, S. H., et al. (2020). Identification of the lineage markers and inhibition of DAB2 in *in vitro* porcine embryos. *Int. J. Mol. Sci.* 21, E7275. doi:10.3390/ijms21197275

Ralston, A., and Rossant, J. (2005). Genetic regulation of stem cell origins in the mouse embryo. *Clin. Genet.* 68, 106–112. doi:10.1111/j.1399-0004.2005.00478.x

Robinson, M. D., McCarthy, D. J., and Smyth, G. K. (2010). edger: A Bioconductor package for differential expression analysis of digital gene expression data. *Bioinformatics* 26, 139–140. doi:10.1093/bioinformatics/btp616

Rossant, J. (2007). Stem cells and lineage development in the mammalian blastocyst. *Reprod. Fertil. Dev.* 19, 111–118. doi:10.1071/rd06012

Sheng, G. (2015). Epiblast morphogenesis before gastrulation. *Dev. Biol.* 401, 17–24. doi:10.1016/j.ydbio.2014.10.003

Smith, A. G. (2001). Embryo-derived stem cells: Of mice and men. *Annu. Rev. Cell Dev. Biol.* 17, 435–462. doi:10.1146/annurev.cellbio.17.1.435

Sun, J., Nishiyama, T., Shimizu, K., and Kadota, K. (2013). Tcc: an R package for comparing tag count data with robust normalization strategies. * BMC Bioinform. 14, 219. doi:10.1186/1471-2105-14-219

Teruel, M., Smith, R., and Catalano, R. (2000). Growth factors and embryo development. *Bioch. 24, 107–122.

Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan, G., Van Buren, M. J., et al. (2010). Transcript assembly and quantification of the lineage markers and inhibition of DAB2 in pig parthenogenetically activated embryos after delamination. *Theriogenology* 83, 131–138. doi:10.1016/j.theriogenology.2014.09.002

van der Valk, J., Biebeck, K., Buta, C., Cochrane, B., Dirks, W. G., Fu, J., et al. (2018). Fetal bovine serum (FBS): Past - present - future. *ALTEX* 35, 99–118. doi:10.14806/ej.17.1.200

Vrbsky, S., Tereh, T., Kyyrylenko, S., Dvorak, P., and Krejci, L. (2015). MEK and TGF-beta inhibition promotes reprogramming without the use of transcription factor. *PLoS One 10, e0127739. doi:10.1371/journal.pone.0127739

Walter, W., Sanchez-Cabo, F., and Ricote, M. (2015). GCPlot: An R package for visually combining expression data with functional analysis. *Bioinformatics* 31, 2921–2924. doi:10.1093/bioinformatics/btv900

Yamanaka, Y., Takeuchi, Y., Koyabu, R., and Yamanaka, S. (2006). Fetal bovine serum (FBS): Past - present - future. *ALTEX* 35, 99–118. doi:10.14806/ej.17.1.200

Young, M. D., Wakefield, M. J., Smyth, G. K., and Oshlack, A. (2010). Gene ontology analysis for RNA-seq: Accounting for selection bias. * Genome Biol.* 11, R14. doi:10.1186/gb-2010-11-2-r14