Whole- and Refined-Grain Consumption and Longitudinal Changes in Cardiometabolic Risk Factors in the Framingham Offspring Cohort

Caleigh M Sawicki,1,2 Paul F Jacques,1,2 Alice H Lichtenstein,1,2 Gail T Rogers,1 Jiantao Ma,2 Edward Saltzman,2 and Nicola M McKeown1,2

1Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston MA, USA; and 2Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA

ABSTRACT

Background: Greater whole grain (WG) consumption is associated with reduced risk of cardiovascular disease (CVD); however, few prospective studies have examined WG or refined grain (RG) intake and intermediate cardiometabolic risk factors.

Objectives: We examined the longitudinal association between WG and RG intake on changes in waist circumference (WC); fasting HDL cholesterol, triglyceride, and glucose concentrations; and blood pressure.

Methods: Subjects were participants in the Framingham Offspring cohort study (n = 3121; mean ± SD baseline age: 54.9 ± 0.2 y; BMI (kg/m²) 27.2 ± 0.1). FFQ, health, and lifestyle data were collected approximately every 4 y over a median 18-y follow-up. Repeated measure mixed models were used to estimate adjusted mean changes per 4-y interval in risk factors across increasing categories of WG or RG intake.

Results: Greater WG intake was associated with smaller increases in WC (1.4 ± 0.2 compared with 3.0 ± 0.1 cm in the highest compared with the lowest category, respectively; P-trend < 0.001), fasting glucose concentration (0.7 ± 0.4 compared with 2.6 ± 0.2 mg/dL; P-trend < 0.001), and systolic blood pressure (SBP; 0.2 ± 0.5 compared with 1.4 ± 0.3 mm Hg; P-trend < 0.001) per 4-y interval. When stratified by sex, a stronger association with WC was observed among females than males. Higher intake of WG was associated with greater increases in HDL cholesterol and declines in triglyceride concentrations; however, these differences did not remain significant after adjustment for change in WC. Conversely, greater RG intake was associated with greater increases in WC (2.7 ± 0.2 compared with 1.8 ± 0.1 cm, P-trend < 0.001) and less decline in triglyceride concentration (−0.3 ± 1.3 compared with −7.0 ± 0.7 mg/dL, P-trend < 0.001).

Conclusions: Among middle- to older-age adults, replacing RG with WG may be an effective dietary modification to attenuate abdominal adiposity, dyslipidemia, and hyperglycemia over time, thereby reducing the risk of cardiometabolic diseases.

J Nutr 2021;00:1–10.

Keywords: whole grain, refined grain, cardiovascular disease, Framingham Heart Study, waist circumference, fasting glucose, blood lipids, blood pressure

Introduction

Cardiovascular disease (CVD) is the underlying cause in approximately 1 out of every 3 deaths in the United States (1). Though there are many factors that contribute to the development of CVD, diet is an important factor not only because it has been associated with CVD risk in multiple cohort studies, but also because it is a modifiable target for CVD prevention (2).

Evidence from observational studies have found that greater whole grain (WG) consumption is associated with lower risk of CVD (3–6), as well as obesity (7), type 2 diabetes (T2D), hypertension (8–10), and all-cause mortality (11–13). In the United States, WG intake is low, with adults consuming an average of <1 serving per d (e.g., 1 serving is equivalent to a 1 oz slice of bread, which typically contains 16 g of WG) (14). In contrast, refined grain (RG) intake remains high, averaging 5–6 servings per d (15). Some (16–18), but not all (4, 19–21), studies indicate higher intake of RG is associated with greater risk of CVD. Therefore, higher WG intake, substituted for RG, is a potential dietary strategy to lower CVD risk.

WG is defined as the intact, ground, cracked, or flaked fruit of the grain, that includes the endosperm, germ, and bran (22), whereas RG only contains the endosperm. Compared with RGs, WGs are higher in fiber, magnesium, vitamin E, potassium,
and many other phytochemical and bioactive components, each of which has different cardiometabolic health benefits (23). For example, the soluble fibers have been reported to increase satiety and modulate postprandial glucose and insulin responses. Magnesium has been shown to improve insulin sensitivity, and polyphenols or other bioactive components have been reported to alter the composition of the gut microbiota (23, 24).

Clinical measures that have been demonstrated to predict the risk of CVD and other cardiometabolic diseases can serve as intermediate risk factors, or early warning signs, of nascent disease. These include measures of central adiposity [i.e., waist circumference (WC)], blood lipid and lipoprotein concentrations, blood pressure, and fasting glucose concentrations and/or insulin resistance. The majority of previous observational studies that have examined grain intake in relation to these intermediate risk factors were limited by cross-sectional design (25–39), with some reporting favorable associations between WG intake and blood glucose concentrations (25, 27, 31), abdominal adiposity (29, 31, 34, 36–38, 40), and blood lipid and lipoprotein concentrations (26, 28–30). Some randomized controlled trials have demonstrated beneficial effects of WG intake on total cholesterol (41) and glucose concentrations (3), blood pressure (42, 43), and abdominal adiposity (44), whereas others have not (45–48). Inconsistencies among trial results may be due to heterogeneous study designs, insufficient statistical power, or insufficient intervention period (49–52). To our knowledge, no long-term, prospective observational studies have yet examined the relation between WG or RG intake and changes in blood lipids or blood glucose concentrations.

The main objective of this study was to examine habitual grain consumption and periodic changes in cardiometabolic risk factors, including WC, systolic blood pressure (SBP) and diastolic blood pressure (DBP), and fasting plasma HDL cholesterol, plasma triglyceride, and serum glucose concentrations.

Subjects and Methods
This prospective study used data collected from the National Heart, Lung, and Blood Institute (NHLBI) Framingham Heart Study (FHS) Offspring Cohort. The FHS is a long-term, community-based population study, initiated in 1948, with the aim of studying determinants of cardio- and cerebrovascular disease. These include measures of central adiposity [i.e., waist circumference (WC)], blood lipid and lipoprotein concentrations, blood pressure, and fasting glucose concentrations and/or insulin resistance. The majority of previous observational studies that have examined grain intake in relation to these intermediate risk factors were limited by cross-sectional design (25–39), with some reporting favorable associations between WG intake and blood glucose concentrations (25, 27, 31), abdominal adiposity (29, 31, 34, 36–38, 40), and blood lipid and lipoprotein concentrations (26, 28–30). Some randomized controlled trials have demonstrated beneficial effects of WG intake on total cholesterol (41) and glucose concentrations (3), blood pressure (42, 43), and abdominal adiposity (44), whereas others have not (45–48). Inconsistencies among trial results may be due to heterogeneous study designs, insufficient statistical power, or insufficient intervention period (49–52). To our knowledge, no long-term, prospective observational studies have yet examined the relation between WG or RG intake and changes in blood lipids or blood glucose concentrations.

The main objective of this study was to examine habitual grain consumption and periodic changes in cardiometabolic risk factors, including WC, systolic blood pressure (SBP) and diastolic blood pressure (DBP), and fasting plasma HDL cholesterol, plasma triglyceride, and serum glucose concentrations.

Subjects and Methods
This prospective study used data collected from the National Heart, Lung, and Blood Institute (NHLBI) Framingham Heart Study (FHS) Offspring Cohort. The FHS is a long-term, community-based population study, initiated in 1948, with the aim of studying determinants of CVD. In 1971, 5124 offspring of the original cohort were recruited into the Offspring cohort. Approximately every 4 years, participants undergo standardized medical history and physical examinations. Dietary assessment began in the 5th examination cycle (1991–1995), which was considered as the baseline of the current study. As of 2014, a total of 9 study examinations have been completed. We used data from the 5th (1991–1995, n = 3799), 6th (1995–1998, n = 3532), 7th (1998–2001, n = 3539), 8th (2005–2008, n = 3021), and 9th (2011–2014, n = 2430) study examinations. Subjects were included only if they attended ≥2 consecutive examinations with valid dietary data (n = 3365). Therefore, the baseline exam varied by subject and was defined as the 1st exam for which there was also consecutive exam data available. Subjects could contribute multiple observations if they had data from ≥2 consecutive exams. Subjects with diabetes at baseline, defined as blood glucose ≥200 mg/dL, or fasting blood glucose ≥126 mg/dL, or currently being treated for diabetes were excluded (n = 244). Therefore, 3121 subjects were included in the final analyses, contributing 9231 exam-interval observations (Figure 1).

All FHS study protocols and procedures were approved by the institutional review board for human research at Boston University. The Tufts Health Sciences Institutional Review Board reviewed the current study. All subjects provided their written informed consent for participation.

Dietary assessment
Diet was assessed using the Harvard semiquantitative FFQ, which was designed to capture habitual dietary intake of the previous year (53). The FFQ included a list of foods with standard serving sizes and 9 frequency categories, ranging from never or <1 serving per mo to ≥6 servings per d, and also asked about brands or types of cold breakfast cereal usually consumed. The daily intakes of food groups (e.g., fruits and vegetables) were calculated by multiplying the portion size of each food that was consumed by the consumption frequency and summing across all food items. Nutrient intakes were calculated by multiplying the frequency of consumption of each food item by the nutrient content of the specified portion. Nutrient composition was based on the USDA food composition database and supplemented with other published sources (53). The relative validity of this FFQ to capture both foods and nutrients has been evaluated in several populations (53–55). Invalid dietary data was defined as a total energy intake of <600 kcal/d for all or ≥4000 kcal/d for females and ≥4200 kcal/d for males or >12 blank food items.

A WG database developed by the Harvard School of Public Health was used to quantify the amount of WG in each food and breakfast cereal as described previously (56). The database identified ingredients and cereal grains (barley, brown rice, brown rice flour, buckwheat groats, bulgur, cornmeal, corn flour, millet, oats, oat flour, rye, rye flour, and whole wheat flour) using the recipes obtained from manufacturers’ product labels, the USDA Nutrient Database, and cookbooks sold in supermarkets. The amount of WG in each food was then designated as equivalent to the dry weight of the WG ingredients (i.e., calculated

![Flow chart of included participants from the Framingham Cohort Study](https://example.com/flowchart.png)
by subtracting the water component). The amount of bran and germ added during processing was also identified. Accordingly, the WG intake (in grams per day) for each participant was then estimated, including both with and without added bran and germ. For the present analyses, we only considered the grams per day without added bran and germ, according to the current consensus on how to define WG (57). Grams of WG per day were then translated into servings per day by dividing by 16 grams/serving, the amount of WG typically present in 1 ounce (or 1 serving) of a 100% WG food item, to allow comparison to RG intake (58).

RG was captured as servings per day from the FFQ for the following food items: refined cold ready-to-eat breakfast cereal (defined as containing <25% WG by weight), cooked breakfast cereal (not oatmeal), white bread, English muffins, bagels, muffins, biscuits, white rice, pasta, pancakes, waffles, crackers, and pizza. A serving of RG was a 1 oz equivalent and defined as 1 cup cold ready-to-eat breakfast cereal, 0.5 cup cooked cereal, 1 slice white bread, one-half English muffin or bagel, 1 muffin or biscuit, 0.5 cup white rice or pasta, 1 pancake or waffle, 7 crackers, or 1 slice pizza. RG from sweet/dessert food items was not included so that RG would better reflect WG counterparts.WG and RG were estimated as an average over each examination interval (i.e., an average of 2 exams) to better estimate habitual intake and minimize potential systematic error in dietary assessment.

Cardiometabolic risk factors
For the present study, we focused on the risk factors that have been used to define metabolic syndrome: WC (cm), SBP and DBP (mm Hg), and fasting plasma HDL cholesterol (mg/dL), plasma triglyceride (mg/dL), and serum glucose (mg/dL). During physical examinations, WC was measured by a trained professional by applying anthropometric tape at the level of the umbilicus with the participant standing, at midrespiration with participant breathing normally, and rounding of the measurement to the nearest 0.25 inches. Measurements were converted to units of centimeters for analyses. Sitting blood pressure was measured twice on each participant after a 5-min rest using a random-zero sphygmomanometer, and the 2 readings were averaged. Fasting (≥8 h) blood samples were drawn for assessing the concentration of glucose and lipids. Serum glucose was measured with a hexokinase reagent kit (Roche Cobas Analyzer c501, Roche Diagnostics).

Changes in outcomes were calculated as the change between consecutive exams. Since the actual time interval between exams could differ by subject, changes in outcomes were standardized by dividing the raw change by the number of years between exam dates and then expressing as a 4-y change (because exams are approximately 4 y apart, on average). Outcome data was excluded from final analyses if the 4-y change in the outcome was not within ±4 SDs of the mean 4-y change for that outcome. Final sample sizes varied by outcome [n = 3104 (9064 observations) for WC, n = 3072 (8857) for HDL cholesterol, n = 3070 (8843) for triglyceride, n = 3118 (9168) for SBP, n = 3121 (9187) for DBP, and n = 3073 (8863) for glucose].

Covariates
Several potential confounders of the relation between WG or RG intake and CVD risk factors were included as covariates in analyses. These included age (years); sex (male/female); current smoker (yes/no reported smoking regularly in the last year); physical activity [measured by the physical activity index (PAI), a score based on the sum of sedentary, light, moderate, and vigorous metabolic equivalent task (MET, hrs/wk)]; alcohol consumption (g/d); pharmacological treatment of dyslipidemia (for lipid outcomes), hypertension (for blood pressure outcomes), or diabetes (all yes/no); menopausal status (yes/no periods had stopped ≥8 h); BMI (calculated as kg/m²); change in waist circumference (cm); fruit, vegetable, and sugar-sweetened beverage (SSB) intake (all in serving/d); and the ratio of PUFAs to SFAs. Since PAI was not included so that RG would better reflect WG counterparts. WG and RG intake was performed by assigning the median value of grain intake for each category and treating these as a continuous variable. We adjusted sequentially for (1) age, sex, energy intake, smoking, physical activity, alcohol consumption, menopausal status, BMI at the baseline of each exam interval (adjusted for in the 2nd model for WC), and diabetes, lipid, and hypertension medications; (2) change in WC (except when WC was the outcome we adjusted for BMI in this model); and (3) consumption of fruits, vegetables, SSBs, and PUFAs:SFA ratio, to capture other aspects of a healthy diet. We alternatively adjusted for overall diet quality score, captured using the 2015 Dietary Guidelines Adherence Index; however, this did not alter estimates (not shown). Because there was some concern for potential collinearity between WC and BMI, models that adjusted for WC were tested again, removing baseline BMI (not shown). Since this did not alter estimates, we retained BMI in the models. We also mutually adjusted for WG and RG in a separate model, but this did not alter the estimates (not shown). We tested for effect modification in the final model by assessing the interactions between WG or RG with sex, age, BMI category (BMI ≥25 kg/m² compared with <25 kg/m²), total carbohydrate intake, and between WG and RG by including the corresponding cross-product terms in the mixed models and assessing the statistical significance of the likelihood ratios. When significant interactions were detected, stratified analysis was performed.

All analyses were conducted in SAS 9.4 (SAS Institute). All statistical tests were 2-sided, and statistical significance was set at a Bonferroni-corrected P < 0.025 (0.05/2 exposures of interest). We did not further adjust according to the number of individual outcome measures as all of these cardiometabolic risk factors are correlated and are considered together to increase the risk of CVD. Because tests for interactions were exploratory, these were considered statistically significant at a Bonferroni-corrected P < 0.005 (0.025/5 interactions).

Results
A total of 9231 observations were included from 3121 subjects who had ≥1 consecutive follow-up exam (i.e., attended ≥2 consecutive exams with valid data). The average number of exams attended was 4 (of a possible 5), with a median total follow-up time of 18.1 y (IQR: 7.0 y). At baseline, study participants had a mean ± SE age of 54.9 ± 0.17 y, 54.5% were females, and the majority were overweight or obese (64.4%) (Table 1). Study participants reported consuming an average of 16.0 ± 0.28 g/d (or 1.0 ± 0.02 serving/d) of WG and 3.0 ± 0.03 serving/d of RG. Only 3.8% of subjects reported consuming ≥48 g/d (~3 serving/d) of WG. The greatest contributors to WG intake were dark or whole wheat breads (47%) and ready-to-eat breakfast cereal (36%). For RG, the greatest contributors were white bread (22%) and pasta (20%).

Whole grain
After adjusting for demographic and lifestyle factors, participants in the highest category (≥48 g or ~3 serving/d) of WG intake compared with those in the lowest category
Characteristics	Total	<8	8 to <24	24 to <48	≥48	<2	2 to <3	3 to <4	≥4
n	3121	1226	1159	617	119	1029	880	580	692
Age, y	54.9 ± 0.17	55.4 ± 0.27	54.0 ± 0.28	55.8 ± 0.36	54.1 ± 0.88	56.4 ± 0.3	55.0 ± 0.33	53.9 ± 0.4	53.5 ± 0.36
Male sex, %	45.5	45.4	47.8	42.7	40.5	44.1	42.4	46.1	51.0
Weight, kg	76.9 ± 0.25	76.8 ± 0.4	77.7 ± 0.41	76.4 ± 0.56	73.4 ± 1.28	76.2 ± 0.44	77.1 ± 0.48	76.3 ± 0.58	78.4 ± 0.53
BMI, cm	27.2 ± 0.09	27.3 ± 0.14	27.4 ± 0.14	26.8 ± 0.19	25.8 ± 0.44	27.0 ± 0.15	27.3 ± 0.16	26.9 ± 0.20	27.7 ± 0.18
WC, cm	92.6 ± 0.23	92.8 ± 0.36	93.1 ± 0.37	91.8 ± 0.51	903.3 ± 1.16	92.4 ± 0.4	92.7 ± 0.44	91.7 ± 0.53	93.7 ± 0.48
Fasting plasma HDL cholesterol, mg/dL	51.4 ± 0.25	51.4 ± 0.41	51.4 ± 0.41	51.1 ± 0.57	533 ± 1.3	52.2 ± 0.45	51.9 ± 0.49	51.2 ± 0.59	49.9 ± 0.54
Fasting plasma triglyceride, mg/dL	139.2 ± 1.83	142.3 ± 2.93	146.6 ± 0.30	132.9 ± 4.12	1268.8 ± 9.39	136.1 ± 3.23	137.3 ± 3.53	142.4 ± 4.25	143.4 ± 3.89
SBP, mg/dL	125.4 ± 0.3	125.8 ± 0.49	125.8 ± 0.5	124.7 ± 0.69	1220.2 ± 1.56	125.0 ± 0.54	1245.2 ± 0.59	1259.2 ± 0.71	1285.2 ± 0.85
DBP, mg/dL	74.6 ± 0.17	74.4 ± 0.28	74.9 ± 0.29	74.5 ± 0.39	736.8 ± 0.89	74.3 ± 0.31	74.1 ± 0.43	74.9 ± 0.40	75.3 ± 0.37
Fasting serum glucose, mg/dL	95.4 ± 0.17	95.7 ± 0.26	95.5 ± 0.27	94.9 ± 0.37	946.8 ± 0.85	95.1 ± 0.29	948.8 ± 0.32	981.8 ± 0.38	96.1 ± 0.35
PAI score	34.9 ± 0.11	35.0 ± 0.18	35.0 ± 0.18	34.6 ± 0.25	362.5 ± 0.58	34.9 ± 0.2	350.2 ± 0.21	350.2 ± 0.26	350.2 ± 0.23
Current smoker, %	18.0	26.1	15.1	9.4	8.0	22.8	15.5	18.0	14.1
Overweight/obese, %	64.4	64.8	66.9	59.0	58.7	62.5	64.0	65.5	66.9
Hypertension, %	46.7	48.1	46.9	44.6	41.1	45.0	44.8	47.8	50.5
BP medication, %	17.9	17.2	18.4	18.3	16.2	17.8	17.5	17.4	18.7
Lipid medication, %	7.5	6.5	8.2	8.6	7.3	7.2	7.1	7.5	7.8
Menopausal, %	36.2	36.8	35.6	36.5	34.1	36.6	35.8	34.0	37.9
Total carbohydrate, g/d	38.9	30.0	41.1	50.2	45.7	35.0	40.8	42.5	33.2
College graduate, %	38.9	30.0	41.1	50.2	45.7	35.0	40.8	42.5	33.2

Table 1 Baseline participant characteristics by grain intake categories in 3121 participants of the Framingham Cohort Study

1. Values are means ± SEs or percentages. BP: blood pressure; DBP: diastolic blood pressure; DGA1: Dietary Guidelines Adherence Index; PAI: physical activity index; PUFAs: ratio of polyunsaturated fatty acid to saturated fatty acid; RG: refined grain; SBP: systolic blood pressure; SSBs: sugar-sweetened beverage; WC: waist circumference; WG: whole grain.
2. Approximately <0.5 to <1.5, 1.5 to <3 serving/d (1 serving = 16 g WG).
3. Adjusted for age and sex.
4. Adjusted for age, sex, and total energy intake.
(<8 g or ~0.5 serving/d) had a smaller mean increase in WC, fasting serum glucose concentration, and SBP per 4-y interval (Table 2). These associations remained significant after adjustment for BMI, change in WC (in glucose and SBP models), and other dietary factors. WG consumption was also associated with a greater mean increase in fasting plasma HDL cholesterol concentration and greater mean decline in fasting plasma triglyceride concentration across increasing categories of WG intake. These associations were attenuated and no longer significant after adjustment for change in WC (Supplemental Figure 1).

We detected a significant interaction with sex (P < 0.001) in the fully adjusted WC model. When stratified, both females and males had a significant trend toward a smaller mean increase in WC across increasing WG intake categories, and the effect was larger among females (Table 3).

Refined grain
Similar yet opposite associations were observed between higher RG intake and cardiometabolic risk factors (Table 4). After adjustment for demographic and lifestyle factors, participants consuming ≥4 serving/d of RG food compared with those consuming <2 serving/d had a greater mean increase in WC and smaller mean decline in fasting plasma triglyceride concentration per 4-y interval. These associations remained significant after adjustment for BMI, change in WC (in triglyceride model), and other dietary factors. No significant associations were observed between RG intake and fasting serum glucose, plasma HDL cholesterol, or blood pressure.

A significant interaction was identified between RG intake and BMI in the glucose model (P = 0.002). After the data were stratified by BMI, no significant associations in either strata were observed (data not shown).

Discussion
Prospective changes in several cardiometabolic risk factors linked to metabolic syndrome and CVD were examined in a community-based prospective cohort of 3121 US adults.

We observed a significant association between greater WG intake and smaller increase in WC over time, especially among females, after adjustment for several demographic and lifestyle factors, including BMI. Although the observed association was relatively small, amounting to a total difference of 8.1 cm less gain in the highest compared with lowest WG intake category over 18 y, small gains in abdominal adiposity can impact disease risk. In a meta-regression analysis of 15 prospective studies on WC and CVD events, de Koning and colleagues found that just a 1 cm increase in WC translated to a 2% increase in the risk of CVD events (60).

Evidence from many prospective observational studies has supported the inverse relation between WG intake and overall body weight or BMI (24, 61–63). However, few studies have included measures of abdominal adiposity, which may be a stronger risk factor for metabolic and CVD disorders (64–66), and consistent findings have not been reported in short-term intervention studies (47, 67). Only 1 prior prospective study (over 3 y) (68) and some cross-sectional studies (28, 31, 34, 36–38) found a significant inverse association between WG intake and WC. Two other prospective studies found that higher intake of refined (white) bread was associated with gain in WC among females but found no associations with WG bread (69, 70).

The association between WG intake and WC was significant in both males and females; however, the difference in WC change across categories of WG was greater among females than in males, and females in the lowest category of WG intake had the greatest increase in WC. This may be partially due to sex differences in body fat distribution and accumulation of adiposity over time. Rates of obesity are higher among females, and sex hormones can affect changes in central adiposity with age (71). In this cohort, males had a greater WC at baseline than females (98.4 ± 10.2 compared with 86.1 ± 13.9 cm), but the average change in WC over time was smaller among males than females (average change of 1.9 ± 4.6 compared with 3.4 ± 7.3 cm per 4-y interval). This may explain the stronger association with WG observed among women.

Higher WG and less RG intake has also been associated with abdominal fat as measured by DXA (36, 72). In a cross-sectional study of 2834 adults in the Framingham Heart Study (the same cohort used in the present analysis), McKeown and colleagues found that WG intake was inversely associated with WC and visceral adipose tissue (VAT) volume (P-trend < 0.001 for both) (36). The beneficial association of WG on VAT was attenuated in the presence of high RG intake. This observation highlights the benefit of substituting RG with WG, rather than just addition of WG to an existing diet high in RG. Replacing RG foods with WG equivalents would increase WG intake without adding to overall total energy intake and simultaneously would lead to a reduction in RG intake. In an 8-week randomized, controlled, weight-maintenance trial, substituting WG for refined grain in an otherwise similar diet resulted in higher resting metabolic rate and higher stool energy excretion (73), which may help explain the association between WG intake and reduced adiposity. The 2020–2025 Dietary Guidelines for Americans recommends 3–5 serving/d of WGs, or to make at least half of the recommended 6 servings of grains per day WG.

We also observed a significant association between greater WG intake and better maintenance of fasting serum glucose over time. These findings support evidence from prospective studies that higher WG intake (74–78), but not RG intake (74, 75, 77–79), is linked to lower risk of T2D. Hyperglycemia is a major contributing factor in the development of T2D and 1 of the 5 components of metabolic syndrome. Prior cross-sectional studies that assessed the effect of WG and RG on fasting glucose concentrations have been mixed, with 3 finding no association between WG and blood glucose (29, 30, 32), and 3 finding significant inverse associations (25, 27, 31).

A significant inverse association was found between WG intake and SBP independent of changes in WC, although no significant association was observed between WG intake and DBP (after Bonferroni adjustment) or between RG and either SBP or DBP. This is consistent with a meta-analysis (80) of prospective studies, 4 on WG and 3 on RG, and the risk of hypertension (8–10, 81), which concluded that there was an inverse association with WG intake (RR: 0.86; 95% CI: 0.79, 0.93) but not RG intake. Body weight and central adiposity are reported to be associated with blood pressure and risk of hypertension (82–85); however, none of the prospective studies included in the meta-analysis evaluated whether the observed associations were independent of adiposity. Although slightly attenuated, we found that the association between WG intake and SBP remained significant after adjusting for changes in WC. Similarly, daily intake of 3 servings of WG wheat and oat foods has been reported to result in a 6 mm Hg reduction of SBP after 12 wk, independent of weight loss (42).
Cross-sectional studies have mostly found no associations between grain intake and triglyceride or HDL cholesterol concentrations (26, 27, 30–33, 39, 40). Other evidence has linked higher intake of carbohydrate foods, in particular carbohydrate sources with a high glycemic index, to elevated triglyceride concentration (86). We observed an association between RG intake and higher fasting plasma triglyceride, which was also independent of change in WC. However, significant associations between WG intake and triglyceride concentration, as well as fasting plasma HDL cholesterol, were attenuated and no longer significant after adjusting for change in WC.

There are several potential mechanisms by which higher WG and/or lower RG intake may have cardiometabolic benefits. First, WG is high in dietary fiber, which can have a satiating effect. In addition, high WG intake is associated with lower intake of total fat and saturated fat (and/or lower RG intake may have cardiometabolic benefits).

TABLE 2 Four-year change in cardiometabolic risk factors across categories of energy-adjusted WG intake in 3121 participants of the Framingham Cohort Study

WG intake category	0 to <8 g/d	8 to <24 g/d	24 to <48 g/d	≥48 g/d	P-trend \(^{3} \)
WG intake, g/d					
4yr Δ WC cm, n (observations)					
Model 1 \(^{1}\)	2.97 ± 0.13	2.24 ± 0.08	1.74 ± 0.09	1.43 ± 0.21	<0.001
Model 2 \(^{2}\)	3.07 ± 0.13	2.43 ± 0.08	1.90 ± 0.10	1.74 ± 0.22	<0.001
Model 3 \(^{3}\)	3.01 ± 0.13	2.42 ± 0.08	1.94 ± 0.10	1.84 ± 0.23	<0.001
4yr Δ fasting plasma HDL cholesterol mg/dL, n (observations)					
Model 1	1.96 ± 0.17	2.12 ± 0.11	2.56 ± 0.13	2.41 ± 0.33	0.007
Model 2	2.09 ± 0.16	2.09 ± 0.11	2.38 ± 0.13	2.13 ± 0.32	0.244
Model 3	2.23 ± 0.17	2.10 ± 0.11	2.29 ± 0.14	1.96 ± 0.33	0.988
4yr Δ fasting plasma triglyceride mg/dL, n (observations)					
Model 1	−3.84 ± 0.98	−4.95 ± 0.58	−6.76 ± 0.69	−6.96 ± 1.54	0.010
Model 2	−4.19 ± 0.97	−4.12 ± 0.58	−5.42 ± 0.68	−5.11 ± 1.53	0.211
Model 3	−4.87 ± 1.00	−4.19 ± 0.58	−5.03 ± 0.70	−4.48 ± 1.57	0.749
4yr Δ SBP, mm Hg, n (observations)					
Model 1	1.37 ± 0.27	1.06 ± 0.17	0.24 ± 0.21	0.16 ± 0.48	<0.001
Model 2	1.32 ± 0.27	1.16 ± 0.17	0.41 ± 0.21	0.41 ± 0.48	0.003
Model 3	1.32 ± 0.28	1.17 ± 0.17	0.43 ± 0.21	0.55 ± 0.48	0.009
4yr Δ DBP mm Hg, n (observations)					
Model 1	−0.36 ± 0.16	−0.44 ± 0.10	−0.75 ± 0.12	−0.69 ± 0.27	0.040
Model 2	−0.43 ± 0.16	−0.36 ± 0.10	−0.60 ± 0.12	−0.47 ± 0.27	0.320
Model 3	−0.45 ± 0.16	−0.37 ± 0.10	−0.58 ± 0.12	−0.39 ± 0.28	0.553
4yr Δ fasting serum glucose mg/dL, n (observations)					
Model 1	2.58 ± 0.20	1.99 ± 0.13	1.62 ± 0.16	0.69 ± 0.38	<0.001
Model 2	2.51 ± 0.19	2.05 ± 0.13	1.82 ± 0.16	0.99 ± 0.37	<0.001
Model 3	2.51 ± 0.20	2.04 ± 0.13	1.82 ± 0.16	1.04 ± 0.38	0.001

\(^{1}\) Values are means ± SE unless otherwise specified. DBP: diastolic blood pressure; PUFA:SFA: ratio of polyunsaturated fatty acid to saturated fatty acid; SBP: systolic blood pressure; SSB, sugar-sweetened beverage; WC, waist circumference; WG, whole grain.

\(^{2}\) Approximately <0.5, 0.5 to <1.5, 1.5 to <3, or ≥3 serving/d (1 serving = 16g WG).

\(^{3}\) \(P < 0.025 \) considered significant.

\(^{4}\) Values are medians (IQRs).

\(^{5}\) Model 1: periodic baseline age, sex, energy, periodic baseline value, current smoker (yes/no), physical activity score, alcohol (g/d), menopausal status, medication use for diabetes, dyslipidemia (for triglyceride and HDL cholesterol), and hypertension (for SBP and DBP only), and periodic baseline BMI (except for WC, which was adjusted for this in model 2).

\(^{6}\) Model 2: model 1 + periodic baseline BMI (for WC) or 4-yr change in waist circumference (for all other outcomes).

\(^{7}\) Model 3: model 2 + fruit (serving/d), vegetables (serving/d), SSB (serving/d), PUFA:SFA.

TABLE 3 Four-year change in WC across categories of energy-adjusted WG intake in 3121 participants of the Framingham Cohort Study stratified by sex

WG intake category	0 to <8 g/d	8 to <24 g/d	24 to <48 g/d	≥48 g/d	P-trend \(^{3}\)
Observations, n					
All	2095	4049	2498	422	
Females	1042	2210	1495	266	
Males	1053	1839	1003	156	
4yr Δ WC cm					
All	3.01 ± 0.13	2.41 ± 0.08	1.93 ± 0.10	1.83 ± 0.23	<0.001
Females	3.94 ± 0.22	3.06 ± 0.13	2.47 ± 0.15	2.14 ± 0.33	<0.001
Males	1.99 ± 0.14	1.72 ± 0.09	1.30 ± 0.12	1.48 ± 0.29	0.002

\(^{1}\) Values are means ± SE adjusted for: periodic baseline age, energy, periodic baseline value, current smoker (yes/no), physical activity score, alcohol (g/d), menopausal status, medication use for diabetes, periodic baseline BMI, fruit (serving/d), vegetables (serving/d), SSB (serving/d), PUFA: SFA, PUFA:SFA, ratio of polyunsaturated fatty acid to saturated fatty acid; SSB, sugar-sweetened beverage; WC, waist circumference; WG, whole grain.

\(^{2}\) Approximately <0.5, 0.5 to <1.5, 1.5 to <3, or ≥3 serving/d (1 serving = 16g WG).

\(^{3}\) \(P < 0.025 \) considered significant.
TABLE 4 Four-year change in cardiometabolic risk factors across categories of energy adjusted refined grain intake in 3121 participants of the Framingham Cohort Study1

RG intake category	0 to <2 serving/d	2 to <3 serving/d	3 to <4 serving/d	≥4 serving/d	P-trendd
RG intake, serving/d	1.6 (0.5)	2.5 (0.5)	3.4 (0.4)	4.6 (0.9)	
4yr Δ WC cm, n (observations)	2571	3457	1993	1043	
Model 1	1.81 ± 0.09	2.18 ± 0.08	2.37 ± 0.12	2.71 ± 0.17	<0.001
Model 2	2.00 ± 0.10	2.39 ± 0.09	2.49 ± 0.12	2.85 ± 0.18	<0.001
Model 3	2.03 ± 0.10	2.38 ± 0.09	2.50 ± 0.12	2.87 ± 0.18	<0.001
4yr Δ fasting plasma HDL cholesterol mg/dL, n (observations)	2514	3369	1952	1013	
Model 1	2.42 ± 0.13	2.04 ± 0.12	2.23 ± 0.17	2.40 ± 0.23	0.811
Model 2	2.28 ± 0.13	1.98 ± 0.12	2.22 ± 0.16	2.51 ± 0.23	0.456
Model 3	2.25 ± 0.13	2.00 ± 0.12	2.22 ± 0.17	2.49 ± 0.23	0.427
4yr Δ fasting plasma triglyceride mg/dL, n (observations)	2518	3369	1952	1013	
Model 1	−7.02 ± 0.68	−5.73 ± 0.63	−4.87 ± 0.90	−0.31 ± 1.30	<0.001
Model 2	−5.63 ± 0.68	−5.10 ± 0.62	−4.07 ± 0.90	−0.32 ± 1.28	0.001
Model 3	−5.47 ± 0.68	−5.16 ± 0.63	−4.11 ± 0.90	−0.33 ± 1.29	0.001
4yr Δ SBP, mm Hg, n (observations)	2594	3507	2015	1052	
Model 1	0.53 ± 0.20	0.89 ± 0.18	1.04 ± 0.26	0.99 ± 0.37	0.134
Model 2	0.69 ± 0.21	1.01 ± 0.19	1.06 ± 0.26	1.01 ± 0.37	0.278
Model 3	0.67 ± 0.21	1.01 ± 0.19	1.14 ± 0.26	1.12 ± 0.38	0.163
4yr Δ DBP mm Hg, n (observations)	2607	3513	2018	1049	
Model 1	−0.57 ± 0.12	−0.52 ± 0.11	−0.64 ± 0.15	−0.27 ± 0.21	0.454
Model 2	−0.43 ± 0.12	−0.45 ± 0.11	−0.57 ± 0.15	−0.29 ± 0.21	0.927
Model 3	−0.42 ± 0.12	−0.48 ± 0.11	−0.58 ± 0.15	−0.27 ± 0.21	0.941
4yr Δ fasting serum glucose, mg/dL, n (observations)	2507	3379	1959	1018	
Model 1	1.97 ± 0.15	1.92 ± 0.14	1.87 ± 0.19	1.94 ± 0.27	0.782
Model 2	2.15 ± 0.15	2.02 ± 0.14	1.90 ± 0.19	1.90 ± 0.27	0.288
Model 3	2.16 ± 0.15	2.01 ± 0.14	1.89 ± 0.19	1.92 ± 0.27	0.306

1Values are means ± SE unless otherwise specified. DBP, diastolic blood pressure; PUFA:SFA, ratio of polyunsaturated fatty acid to saturated fatty acid; RG, refined grain; SBP, systolic blood pressure; SSB, sugar-sweetened beverage; WC, waist circumference.
2P < 0.025 considered significant.
3Values are medians (IQRs).
4Model 1: periodic baseline age, sex, energy, periodic baseline value, current smoker (yes/no), physical activity score, alcohol (g/dl), menopausal status, medication use for diabetes, dyslipidemia (for triglyceride and HDL cholesterol), and hypertension (for SBP and DBP only), and periodic baseline BMI (except for WC, which adjusted for this in model 2).
5Model 2: model 1 + periodic baseline BMI (for WC) or 4-y change in WC (for all other outcomes).
6Model 3: model 2 + fruit (serving/d), vegetables (serving/d), SSB (serving/d), PUFA:SFA.

...effect, and soluble fiber, in particular, may have a beneficial effect on blood lipids. For example, evidence from randomized controlled trials has demonstrated the cholesterol-lowering effect of beta-glucan found in WG oats (87). However, not all grain varieties contain the same types of fiber, and thus some varieties may not be as effective in lowering cholesterol and triglycerides (41). Additionally, the slower digestion and absorption of WG may result in a reduction in postprandial glucose and insulin response, which may, in turn, favor the oxidation and lipolysis of fat rather than its storage. In contrast, evidence from clinical studies supports that diets rich in highly digestible carbohydrates, indicative of greater refined grain or low fiber intake, can alter lipoprotein secretion and clearance, leading to higher fasting triglyceride concentrations (86, 88). Additionally, fermentation of dietary fiber by the microbiota present in the colon produces short-chain fatty acids (SCFAs), which are involved in lipid metabolism (89) and satiety and glucose metabolism via production of peripheral peptide tyrosine–tyrosine (PYY) and glucagon-like peptide-1 (GLP)-1 (89). Other nutritional attributes of WG, such as magnesium, potassium, selenium, and zinc, as well as antioxidants and polyphenols, may contribute to lowering blood pressure and improving glucose and insulin metabolism.

A major strength of the present analyses is the large, prospective nature of the FHS cohort, with repeated measures of exposures and clinical intermediate risk factors over a median of 18 y. Although FFQs are limited by recall and self-report biases, they are widely used and are good at estimating relative dietary intake (i.e., distinguishing high and lower consumers of specific foods or nutrients). We further benefited from access to a WG database that captured WG intake in grams. This allows for the removal of the contribution of added bran or germ from estimates and provides a more accurate “absolute” estimate of WG intake from all foods rather than a qualitative estimate of servings of WG foods. The current database does not include grams of RG, and, thus, RG foods were only captured in servings. Because some RG foods may contain a mixture of WG and RG, such as breakfast cereal with >25% WG, the observed effects of RG may have been attenuated. We did not exclude individuals with cardiometabolic risk factors that exceed cut points for disease definitions as we were interested in examining these changes across the life course. If we had excluded these individuals, our sample would contain only the healthiest individuals, and we would not be able to draw conclusions generalizable to a high-risk population. The proportion of overweight and obese individuals in our sample was comparable to that in the general US population (90). Additionally, we cannot rule out the possibility of residual confounding by other lifestyle factors influencing our results. We acknowledge that WG consumption is a marker of an overall healthier lifestyle; however, our models were adjusted for other aspects of a healthy diet. Finally, the generalizability...
of our conclusions may be limited, as the Framingham Offspring cohort is a relatively homogenous cohort of Caucasian Americans.

Over the past couple of decades, the prevalence of abdominal obesity and T2D has increased substantially, contributing to CVD and related health consequences. Our findings suggest that greater WG intake is prospectively associated with better maintenance of WC, especially among females, SBP, and fasting blood glucose concentrations. In contrast, higher RG intake is prospectively associated with higher gains in abdominal adiposity and triglyceride concentrations. Overall, these findings support recommendations to replace RG foods with WG equivalents, particularly as a dietary modification to attenuate abdominal adiposity, hypertension, and hyperglycemia, and thereby reduce the risk for cardiometabolic disease.

Acknowledgments
The authors’ responsibilities were as follows—CMS, PFJ, AHL, JM, ES, NMM: designed research; CMS, PFJ, JM, GR, NMM: conducted research; CMS, GR, NMM: performed statistical analyses; CMS: wrote the paper; CMS, NMM: had primary responsibility for final content; and all authors: read and approved the final version of the article. JM is supported by a National Heart, Lung, and Blood Institute Career Transition Award (1K22HL135075-01).

Data Availability
Data described in the manuscript, code book, and analytic code will not be made available by the authors because the authors are prohibited from distributing or transferring the data and codebooks on which their research was based to any other individual or entity under the terms of an approved NHLBI Framingham Heart Study Research Proposal and Data and Materials Distribution Agreement through which the authors obtained these data. The data used for this project are available upon request pending application to and approval by the Framingham Heart Study.

References
1. Benjamin EJ, Virani SS, Callaway CW, Chang AR, Cheng S, Chiuve SE, Cushman M, Delling FN, Deo R, de Ferranti SD, et al. Heart Disease and Stroke Statistics—2018 Update: A Report From the American Heart Association. Circulation 2018 [Internet]. Available from: http://circ.ahajournals.org/content/early/2018/02/14/CIR.0000000000000358 (accessed 22 Feb 2018).
2. Ashin A, Sur PJ, Fay KA, Cornathy L, Ferrar G, Salama JS, Mullaney EC, Abate KH, Ababafo C, Abebe Z, et al. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet North Am Ed 2019;393: 1958–72.
3. Ye EQ, Chacko SA, Chou EL, Kugizaki M, Liu S. Greater whole-grain intake is associated with lower risk of type 2 diabetes, cardiovascular disease, and weight gain. J Nutr 2012;142:1304–13.
4. Aune D, Keum N, Giovannucci E, Fadnes LT, Boffetta P, Greenwood DC, Tonstad S, Vatten LJ, Riboli E, Norat T. Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: systematic review and dose-response meta-analysis of prospective studies. BMJ 2016;353:j2716.
5. Tang G, Wang D, Long J, Yang F, Si L. Meta-analysis of the association between whole grain intake and coronary heart disease risk. Am J Cardiol 2015;115:625–9.
6. Bchthold A, Boeling H, Schwedhelm C, Hoffmann G, Knueppel S, Iqbal K, Henauw SD, Michels N, Devleeschauwer B, Schlesinger S, et al. Food groups and risk of coronary heart disease, stroke and heart failure: a systematic review and dose-response meta-analysis of prospective studies. Crit Rev Food Sci Nutr Taylor & Francis; 2019;59: 1071–90.
7. Cho SS, Qi L, Fahey GC, Klarfeld DM. Consumption of cereal fiber, mixtures of whole grains and bran, and whole grains and risk reduction in type 2 diabetes, obesity, and cardiovascular disease. Am J Clin Nutr 2013;98:594–619.
8. Wang L, Gazzano JM, Liu S, Mansson JE, Buring JE, Sesso HD. Whole- and refined-grain intakes and the risk of hypertension in women. Am J Clin Nutr 2007;86:472–9.
9. Weng L-C, Steffen LM, Szlko M, Nettleton J, Chambless L, Folsom AR. A diet pattern with more dairy and nuts, but less meat is related to lower risk of developing hypertension in middle-aged adults: the Atherosclerosis Risk in Communities (ARIC) Study. Nutrients 2013;5:1719–33.
10. Flint AJ, Hu FB, Glynn RJ, Jensen MK, Franz M, Sampson L, Rimm EB. Whole grains and incident hypertension in men. Am J Clin Nutr 2009;90:493–8.
11. Aune D, Norat T, Romundstad P, Vatten LJ. Whole grain and refined grain consumption and the risk of type 2 diabetes: a systematic review and dose-response meta-analysis of cohort studies. Eur J Epidemiol 2013;28:845–58.
12. Wu H, Flint AJ, Qi Q, van Dam RM, Sampson LA, Rimm EB, Holmes MD, Willett WC, Hu FB, Sun Q. Association between dietary whole grain intake and risk of mortality: two large prospective studies in US men and women. JAMA Intern Med 2015;175:373–84.
13. Huang T, Xu M, Lee A, Cho S, Qi L. Consumption of whole grains and cereal fiber and total and cause-specific mortality: prospective analysis of 367,442 individuals. BMC Medicine 2015;13:59.
14. McGill CR, Fulgoni VL, III, Devareddy L. Ten-year trends in fiber and whole grain intakes and food sources for the united states population: national health and nutrition examination survey 2001–2010. Nutrients 2015;7:1119.
15. Prevention O D, Promotion H. Report of the Dietary Guidelines Advisory Committee on the Dietary Guidelines of America 2015 to the Secretary of Agriculture and the Secretary of Health and Human Services. Washington, DC: USDA. [2015-2020 Dietary Guidelines Advisory Report]
16. Yu D, Shu X-O, Li H, Xiang Y-B, Yang G, Gao Y-T, Zheng W, Zhang X. Dietary carbohydrates, refined grains, glycemic load, and risk of coronary heart disease in Chinese adults. Am J Epidemiol 2013;178:1542–9.
17. Li Y, Hruby A, Bernstein AM, Ley SH, Wang DD, Chiuve SE, Sampson L, Rexrode KM, Rimm EB, Willett WC, et al. Saturated fat as compared with unsaturated fats and sources of carbohydrates in relation to risk of coronary heart disease: a prospective cohort study. J Am Coll Cardiol 2015;66:1538–48.
18. Chen M, Li J, Li W, Sun X, Shu H. Dietary refined grain intake could increase the coronary heart disease risk: evidence from a meta-analysis. Int J Clin Med 2017;10(8):12749–55.
19. Jacobs DR, Meyer KA, Kushi LH, Folsom AR. Whole-grain intake may reduce the risk of ischemic heart disease death in postmenopausal women: the Iowa Women's Health Study. Am J Clin Nutr 1998;68: 248–57.
20. Steffen LM, Jacobs DR, Stevens J, Shahar E, Carithers T, Folsom AR. Associations of whole-grain, refined-grain, and fruit and vegetable consumption with risks of all-cause mortality and incident coronary artery disease and ischemic stroke: the Atherosclerosis Risk in Communities (ARIC) Study. Am J Clin Nutr 2003;78: 383–90.
21. Djousse L, Gaziano JM. Breakfast cereals and risk of heart failure in the physicians' health study I. Arch Intern Med 2007;167:2080–5.
22. American Association of Cereal Chemists AACC Definition/Reports: AACC International defines whole grain [Internet]. Available from: http://www.aaccream.org/initiatives/definitions/pages/wholegrain.aspx (accessed 16 Jan 2017).
23. Slavin J. Whole grains and human health. Nutr Res Rev 2004;17: 99–110.
24. Karl JP, Saltzman E. The role of whole grains in body weight regulation. Adv Nutr 2012;3:697–709.
25. Lutsey PL, Jacobs DR, Kori S, Mayer-Davis E, Shea S, Steffen LM, Szlko M, Tracy R. Whole grain intake and its cross-sectional association with obesity, insulin resistance, inflammation, diabetes and subclinical CVD: the MESA Study. Br J Nutr 2007;98:397–405.
Grain consumption and cardiometabolic risk factors

26. Jensen MK, Koh-Banerjee P, Franz M, Sampson L, Gronbaek M, Rimm EB. Whole grains, bran, and germ in relation to homeostasis and markers of glycemic control, lipids, and inflammation 1. Am J Clin Nutr 2006;83:275–83.

27. Sahyoun NR, James PF, Zhang XL, Juan W, McKeown NM. Whole-grain intake is inversely associated with the metabolic syndrome and mortality in older adults. Am J Clin Nutr 2006;83:124–31.

28. Esmaillzadeh A, Mirrimalan P, Azizi F. Whole-grain intake and the prevalence of hypertlyceridemic waist phenotype in Tehranian adults. Am J Clin Nutr 2005;81:55–63.

29. Hur JY, Reicks M. Relationship between whole-grain intake, chronic disease risk indicators, and weight status among adolescents in the national health and nutrition examination survey, 1999–2004. J Acad Nutr Diet 2012;112:46–55.

30. McKeown NM, Meigs JB, Liu S, Wilson PW, Jacques PF. Whole-grain intake is favorably associated with metabolic risk factors for type 2 diabetes and cardiovascular disease in the Framingham Offspring Study. Am J Clin Nutr 2002;76:390–8.

31. Newby P, Maras J, Bakun P, Muller D, Ferrucci L, Tucker KL. Intake of whole grains, refined grains, and cereal fiber measured with 7-d diet records and associations with risk factors for chronic disease. Am J Clin Nutr 2007;86:1743–53.

32. Steffen LM, Jacobs DR, Murtaugh MA, Moran A, Steinberg J, Hong C-P, Sinaiko AR. Whole grain intake is associated with lower body mass and greater insulin sensitivity among adolescents. Am J Epidemiol 2003;158:243–50.

33. Montonen J, Boeing H, Fritsche A, Schleicher E, Joost H-G, Schulze MB, Steffen A, Pischon T. Consumption of red meat and whole-grain bread in relation to biomarkers of obesity, inflammation, glucose metabolism and oxidative stress. Eur J Nutr 2013;52:337–45.

34. Good CK, Holschuh N, Albertson AM, Eldridge AL. Whole grain intake is associated with lower body weight measures in US adults: National Health and Nutrition Examination Survey 1999–2004. Nutr Res 2010;30:815–22.

35. Zanovce M, O’Neil CE, Cho SS, Nicklas TA. Whole grain and fiber consumption are associated with lower body weight measures in US adults: National Health and Nutrition Examination Survey 1999–2004. Am J Clin Nutr 2008;27:80–87.

36. O’Neil CE, Zanovce M, Cho SS, Nicklas TA. Whole grain and fiber consumption are associated with lower body weight measures in US adults: National Health and Nutrition Examination Survey 1999–2004. Am J Clin Nutr 2008;83:275–83.

37. Thielecke F, Jonnalagadda SS. Can whole grain help in weight management? J Clin Gastroenterol 2014;48(Suppl 1):S70–7.

38. Sawicki CM, Livingston K, Ross A, Jacques P, Koecher K, McKeown N, Albertson AM, Reicks M, Joshi N, Gugger CK. Whole grain consumption trends and associations with body weight measures in adult consumers. J Nutr 2015;145:215–21.

39. Brownlee IA, Moore C, Chatfield M, Richardson DP, Ashby P, Kuznesof SS, Jebb SA, Seal CJ. Markers of cardiovascular risk are not changed by increased whole-grain intake: the WHOHEART study, a randomised, controlled dietary intervention. Br J Nutr 2010;104:125–34.

40. Reynolds A, Mann J, Cummings J, Winter N, Mete E, Te Morenga L. Carbohydrate quality and human health: a series of systematic reviews and meta-analyses. Lancet North Am Ed 2019;393:434–45.

41. Kristensen M, Pelletier X, Ross AB, Thielecke F. A high rate of non-compliance confounds the study of whole grains and weight maintenance in a randomised intervention trial—the case for greater use of dietary biomarkers in nutrition intervention studies. Nutrients 2017;9;5:35.

42. Kelly S a. M, Summerbell CD, Byrnes A, Whittaker V, Frost G. Wholegrain cereals for coronary heart disease. Cochrane Database Syst Rev 2007;CD005051.

43. Sawicki C, Livingston K, Ross A, Jacques P, Koecher K, McKeown N, Albertson AM, Eldridge AL. Whole grain intake is associated with lower body weight measures in US adults: National Health and Nutrition Examination Survey 1999–2004. Am J Clin Nutr 2005;81:533–62.

44. Hollander PLB, Ross AB, Kristensen M. Whole-grain and blood lipid changes in apparently healthy adults: a systematic review and meta-analysis of randomized controlled studies. Am J Clin Nutr 2015;102:556–72.

45. Tighe P, Duthie G, Vaughan N, Brettenden J, Simpson WG, Duthie S, Mutch W, Wahi K, Horgan G, Thies F. Effect of increased consumption of whole-grain foods on blood pressure and other cardiovascular risk markers in healthy middle-aged persons: a randomized controlled trial. Am J Clin Nutr 2010;92:733–40.

46. Kirwan JP, Malin SK, Scelis AR, Kullman EL, Navanethan SD, Pagadala MR, Haus JM, Filion J, Godin J-P, Kochhar S, et al. A whole-grain diet reduces cardiovascular risk factors in overweight and obese adults: a randomized controlled trial. J Nutr 2016;146:2244–51.

47. Katcher HI, Legro RS, Kullman EL, Gilsdorf PJ, Demers LM, Bagshaw DM, Mays ER, Thielecke F, Jonnalagadda SS, Ross AB. Whole grain consumption does not affect blood biochemistry, body composition, or gut microbiology in healthy, low habitual whole-grain consumers. J Nutr 2015;145:215–21.

48. Wang H, Troy LM, Rogers GT, Fox CS, McKeown NM, Meigs JB, Jacques PF. Longitudinal association between diabetes consumption and changes of body weight and waist circumference: the Framingham Heart Study. Int J Obes 2014;38:299–305.

49. Brownlee IA, Moore C, Chatfield M, Richardson DP, Ashby P, Kuznesof SS, Jebb SA, Seal CJ. Markers of cardiovascular risk are not changed by increased whole-grain intake: the WHOHEART study, a randomised, controlled dietary intervention. Br J Nutr 2010;104:125–34.

50. Reynolds A, Mann J, Cummings J, Winter N, Mete E, Te Morenga L. Carbohydrate quality and human health: a series of systematic reviews and meta-analyses. Lancet North Am Ed 2019;393:434–45.

51. Kristensen M, Pelletier X, Ross AB, Thielecke F. A high rate of non-compliance confounds the study of whole grains and weight maintenance in a randomised intervention trial—the case for greater use of dietary biomarkers in nutrition intervention studies. Nutrients 2017;9;5:35.

52. Kelly S a. M, Summerbell CD, Byrnes A, Whittaker V, Frost G. Whole-grain cereals for coronary heart disease. Cochrane Database Syst Rev 2007;CD005051.

53. Albertson AM, Reicks M, Joshi N, Gugger CK. Whole grain consumption trends and associations with body weight measures in adult consumers. J Nutr 2015;145:215–21.

54. Sawicki CM, Livingston K, Ross A, Jacques P, Koecher K, McKeown N, Albertson AM, Eldridge AL. Whole grain intake is associated with lower body weight measures in US adults: National Health and Nutrition Examination Survey 1999–2004. Am J Clin Nutr 2005;81:533–62.

55. Salvini S, Hunter DJ, Sampson L, Stampfer MJ, Rosner B, Willett WC. Food-based validation of a dietary questionnaire: the effects of week-to-week variation in food consumption. Int J Epidemiol 1989;18:858–67.

56. Koh-Banerjee P, Franz M, Sampson L, Liu S, Jacobs DR, Spiegelman D, Willett W, Rimm E. Changes in whole-grain, bran, and cereal fiber consumption in relation to 8-y weight gain among men. Am J Clin Nutr 2004;80:1237–45.

57. HealthGrain Forum. Definition and analysis of whole grain [Internet]. Available from: http://www.healthgrain.org/regulatory_issues/whole_g_rain (accessed 16 Jan 2017).

58. USDA. Dietary guidelines for Americans. 7th ed. 2010 [Internet]. Available from: https://www.health.gov/dietaryguidelines/2010/ (accessed 16 Jan 2017).

59. Wang H, Troy LM, Rogers GT, Fox CS, McKeown NM, Meigs JB, Jacques PF. Longitudinal association between diabetes consumption and changes of body weight and waist circumference: the Framingham Heart Study. Int J Obes 2014;38:299–305.

60. de Koning L, Merchant AT, Pogue J, Anand SS. Waist circumference and waist-to-hip ratio as predictors of cardiovascular events: meta-regression analysis of prospective studies. Eur Heart J 2007;28:850–6.

61. Schlesinger S, Neunueschwander M, Schwedhelm C, Hoffmann G, Bechthold A, Boeing H, Schwinghach S. Food groups and risk of overweight, obesity, and weight gain: a systematic review and dose-response meta-analysis of prospective studies. Adv Nutr 2019;10:205–18.

62. Albertson AM, Reicks M, Joshi N, Gugger CK. Whole grain consumption trends and associations with body weight measures in the United States: results from the cross sectional National Health and Nutrition Examination Survey 2001–2012. Nutrition Journal 2015;14:5.

63. Thielecke F, Jonnalagadda SS. Can whole grain help in weight management? J Clin Gastroenterol 2014;48(Suppl 1):S70–7.
64. Müller MJ, Lagerpusch M, Enderle J, Schautz B, Heller M, Bosy-Westphal A. Beyond the body mass index: tracking body composition in the pathogenesis of obesity and the metabolic syndrome. Obes Rev 2012;13(Suppl 2):6–13.

65. Casanueva FF, Moreno B, Rodríguez-Azederro R, Massieu C, Combe P, Formiguera X, Barrios V, Balkau B. Relationship of abdominal obesity with cardiovascular disease, diabetes and hyperlipidaemia in Spain. Clin Endocrinol (Oxf) 2010;73:35–40.

66. Lee S-Y, Chang H-J, Sung J, Kim KJ, Shin S, Cho I-J, Shim CY, Hong G-R, Chung N. The impact of obesity on subclinical coronary atherosclerosis according to the risk of cardiovascular disease. Obesity 2014;22:1762–8.

67. Maki KC, Palacios OM, Koecher K, Sawicki CM, Livingston KA, Bell MA, Corella D, Tjonneland A, Togo P, Holst C, Hettmann BL. Food and drinking patterns as predictors of 6-year BMI-adjusted changes in waist circumference. Br J Nutr 2004;92:735–48.

68. Mirmiran P, Bahadoran Z, Golzarand M, Shiva N, Azizi F. Association between dietary phytochemical index and 3-year changes in weight, waist circumference and body adiposity index in adults: Tehran Lipid and Glucose study. Nutrition & Metabolism 2012;9:108.

69. Halkjaer J, Sørensen TIA, Tjonneland A, Togo P, Holst C, Hettmann BL. The association between whole grain intake and body weight: results of meta-analyses of observational studies and randomized controlled trials. Nutrients 2019;11:1245.

70. Bautista-Castaño I, Sánchez-Villegas A, Estruch R, Martínez-González MA, Corella D, Salas-Salvadó J, Covas MI, Schroder H, Alvarez-Pérez J, Quilez J, et al. Changes in bread consumption and 4-year changes in adiposity in Spanish subjects at high cardiovascular risk. Br J Nutr 2013;110:337–46.

71. Faulkner JL, de C EJB. Sex hormones, aging and cardiometabolic syndrome. Biol Sex Differ BioMed Central 2019;10:1–9.

72. McKeown NM, Yoshida M, Shea MK, Jacques PF, Lichtenstein AH, Rogers G, Booth SL, Saltzman E, Knudtson M, Nelson Cortes H, McKeown NM. The relationship between whole grain intake and body weight: results of meta-analyses of observational studies and randomized controlled trials. Nutrients 2019;11:1245.

73. Karl JP, Meydani M, Barnett JB, Vanegas SM, Goldin B, Kane A, Rasmussen H, Saltzman E, Yangay P, Knights D, et al. Substituting whole grains for refined grains in a 6-wk randomized trial favorably affects energy-balance metrics in healthy men and postmenopausal women. Am J Clin Nutr 2017;105:589–99.

74. Meyer KA, Kushi LH, Jacobs DR, Slavin J, Sellers TA, Folsom AR. Carbohydrates, dietary fiber, and incident type 2 diabetes in older women. Am J Clin Nutr 2000;71:921–30.

75. Parker ED, Liu S, Van Horn L, Tinker LF, Shikany JM, Eaton CB, Margolis KL. The association of whole grain consumption with incident type 2 diabetes: the Women’s Health Initiative Observational Study. Ann Epidemiol 2013;23:321–7.

76. de Munter JS, Hu FB, Spiegelman D, Franz M, van Dam RM. Whole grain, bran, and germ intake and risk of type 2 diabetes: a prospective cohort study and systematic review. PLoS Med 2007;4:e261.

77. Fung TT, Hu FB, Pereira MA, Liu S, Stampfer MJ, Colditz GA, Willett WC. Whole-grain intake and the risk of type 2 diabetes: a prospective study in men. Am J Clin Nutr 2002;76:535–40.

78. Montonen J, Knekt P, Jarvinen R, Aromaa A, Reunanen A. Whole-grain and fiber intake and the incidence of type 2 diabetes. Am J Clin Nutr 2003;77:622–9.

79. Hodge AM, English DR, O’Dea K, Giles GG. Glycemic index and dietary fiber and the risk of type 2 diabetes. Diabetes Care 2004;27:2701–6.

80. Schwingshackl L, Schwedhelm C, Hoffmann G, Knuppel S, Iqbal K, Andriolo V, Bechthold A, Schlesinger S, Boeing H. Food groups and risk of hypertension: a systematic review and dose-response meta-analysis of prospective studies. Adv Nutr 2017;8:793–803.

81. Kochar J, Gaziano JM, Djoussé L. Breakfast cereals and risk of hypertension in the Physicians’ Health Study I. Clin Nutr 2012;31:89–92.

82. Johnson D, Prud’homme D, Després JP, Nadeau A, Tremblay A, Bouchard C. Relation of abdominal obesity to hyperinsulinemia and high blood pressure in men. Int J Obes Relat Metab Disord 1992;16:881–90.

83. Kannel WB, Brand N, Skinner JJ, Dawber TR, McNamara PM. The relation of adiposity to blood pressure and development of hypertension. The Framingham study. Ann Intern Med 1967;67:48–59.

84. Siani A, Cappuccio FP, Barba G, Trevisan M, Faninaro E, Iacone R, Russo O, Russo P, Mancini M, Strazzullo P. The relationship of waist circumference to blood pressure: the Olivetti Heart Study. Am J Hypertens 2002;15:780–6.

85. Stanler M, Stampler J, Riedlinger WF, Algera G, Roberts RH. Weight and blood pressure. Findings in hypertension screening of 1 million Americans. JAMA 1978;240:1607–10.

86. Parks EJ. Effect of Dietary carbohydrate on triglyceride metabolism in humans. J Nutr 2001;131:1272S–4S.

87. Thies F, Masson LF, Boiffetta P, Kris-Etherton P, Oats and CVD risk markers: a systematic literature review. Br J Nutr 2014;112(S2):S19–30.

88. Lairon D, Play B, Jourdheuil-Rahmani D. Digestible and indigestible carbohydrates: interactions with postprandial lipid metabolism. J Nutr Biochem 2007;18:217–27.

89. den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 2013;54:2325–40.

90. Fryar CD, Carroll MD, Afful J. Prevalence of overweight, obesity, and severe obesity among adults aged 20 and over: United States, 1960–1962 through 2017–2018. NCHS Health E-Stats, 2020. [Internet]. Available from: https://www.cdc.gov/nchs/data/hestat/obesity-adult-17-18/obesity-adult.htm.