Transcriptional Activation by STAT6 Requires the Direct Interaction with NCoA-1*

Received for publication, August 23, 2001, and in revised form, September 25, 2001
Published, JBC Papers in Press, September 26, 2001, DOI 10.1074/jbc.M108132200
Claudia M. Litterst and Edith Pfitzner‡
From the Georg-Speyer-Haus, Institute for Biomedical Research, Paul-Ehrlich-Strasse 42-44, 60596 Frankfurt, Germany

Signal transducer and activator of transcription 6 (STAT6) is a transcription factor that is activated by interleukin-4 (IL-4)-induced tyrosine phosphorylation and mediates most of the IL-4-induced gene expression. Transcriptional activation by STAT6 requires the interaction with coactivators like p300 and the CREB-binding protein (CBP). In this study we have investigated the function of the CBP-associated members of the p160/steroid receptor coactivator family in the transcriptional activation by STAT6. We found that only one of them, NCoA-1, acts as a coactivator for STAT6 and interacts directly with the transactivation domain of STAT6. The N-terminal part of NCoA-1 interacts with the far C-terminal part of the STAT6 transactivation domain but does not interact with the other members of the STAT family. This domain of NCoA-1 has a strong inhibitory effect on STAT6-mediated transactivation when overexpressed in cells, illustrating the importance of NCoA-1 for STAT6-mediated transactivation. In addition, we showed that both coactivators CBP and NCoA-1 bind independently to specific regions within the STAT6 transactivation domain. Our results suggest that multiple contacts between NCoA-1, CBP, and STAT6 are required for transcriptional activation. These findings provide new mechanistic insights into how STAT6 can recruit coactivators required for IL-4-dependent transactivation.

STAT1 proteins are transcription factors that transmit signals from activated cytokine receptors to the nucleus. Following their obligatory tyrosine phosphorylation exerted by JAK kinases, STATs dimerize and move to the nucleus where they modulate transcription through specific DNA sequence elements (1–3). Thus far, seven mammalian STATs have been identified. They share the same structure and functional domains. The N-terminal portion mediates cooperative binding to multiple DNA sites (4, 5). The region that determines the DNA-binding site specificity is located between amino acids 400 and 500 (6). The STAT-SH2 domain mediates association with the activated receptor (7, 8) and dimerization via reciprocal SH2-phosphotyrosine interactions (9, 10). The C-terminal part constitutes the transactivation domain (2, 11). Although STAT3 and STAT5 are expressed in most cell types and activated by a variety of cytokines and growth factors, other STAT proteins play specific roles in host defenses (2).

In the present study we focused on STAT6, which is activated in response to IL-4 and IL-13, another cytokine that binds to the α chain of the IL-4 receptor (12). IL-4 regulates immune and anti-inflammatory responses. It promotes the differentiation of T helper precursors toward the Th2 lineage while inhibiting Th1 development. Furthermore, IL-4 stimulation of B-cells triggers Ig class switching to IgE isotype. This recombination is thought to be initiated following the transcriptional activation of the germline (GL) e promoter, which leads to the generation of the sterile e transcript (13, 14). STAT6-deficient mice have defects in IL-4-mediated functions including Th2 development, induction of CD23 and major histocompatibility complex class II expression, and immunoglobulin class switching to IgE, demonstrating the essential role of STAT6 in these IL-4-induced functions (15, 16). STAT6-binding sites have been identified in the promoter regions of several IL-4-responsive genes. They are best characterized in the Ig GL e promoter, which contains a composite binding element for STAT6 and the CAAT/enhancer-binding protein (17). The transactivation domain of STAT6 was characterized as a modular, proline-rich region in the C terminus of the protein. The structure of this domain is quite different from that of the other members of the STAT family (18, 19). Recently studies have mapped two distinct transactivation functions in this domain that cooperate in transcriptional activation (20).

Activation of transcription in general requires the recruitment of transcriptional coactivators that are part of the chromatin modifying complexes possessing histone acetyltransferase activities and serve as a bridge to the basal transcriptional apparatus (21). In previous studies we demonstrated that the functionally conserved coactivators p300 and CREB-binding protein (CBP) are recruited by STAT6 and are required for transcriptional activation by IL-4 (22). p300/CBP are also recruited by different classes of transcription factors, including nuclear receptors, AP-1, p53, p65 subunit of NFκB, and STAT1, STAT2, and STAT5 (23, 24). p300/CBP possesses intrinsic histone acetyltransferase activity and associates with other histone acetyltransferases (HATs) like p/Caf and members of the p160/steroid receptor coactivator (SRC) family (23).

The p160/SRC coactivator family, also called the NCoA coactivator family, was identified as nuclear receptor-binding proteins, which enhance transcriptional activation, by these ligand-induced transcription factors (25). Three homologous factors, termed NCoA-1, also called SRC-1 (26, 27); NCoA-2, also called TIF2 or GRIP1 (28, 29); and NCoA-3, also called p/Caf, ACTR, or AIB1 (30–32), were identified by several groups. NCoA factors can associate with p300/CBP (27, 33). It has been shown that these factors are also involved in transcriptional activation by AP-1, p53, serum response factor,
NFkB, and STAT1 (30, 34–38). They contain conserved domains for interaction with downstream effectors such as HATs like p300/CBP, p/CAF, and protein methyltransferases (39–41). In addition, two members of this family, NCoA-1 and NCoA-3, contain moderate intrinsic HAT activity (42). Several studies have postulated a selectivity in the use of specific coactivators and HAT activities required for the function of distinct classes of transcription factors, e.g. p300 and NCoA-3 are required for STAT1, whereas p/CAF and NCoA-1 are dispensable for this transcription factor (40, 43). One important question concerning the function of NCoA coactivators focuses on whether or not the different NCoA cofactors fulfill redundant functions. All three family members possess similar properties in terms of interaction with nuclear receptors and enhancement of nuclear receptor transcriptional activation. However, several reports suggest that their activities are not completely redundant (30, 35).

Because NCoA coactivators are associated with p300/CBP, which in turn coactivates STAT6, we investigated their influence on STAT6 transactivation. We tested whether STAT6-mediated transactivation requires the activity of specific coactivators. In this paper we demonstrate that NCoA-1, but not the other members of the NCoA coactivator family, acts as a coactivator of STAT6. We found a direct interaction of STAT6 and NCoA-1 in cells and in vitro. Overexpression of the STAT6-interacting domain of NCoA-1 inhibits transactivation by STAT6 in a transdominant manner, demonstrating the importance of NCoA-1 for STAT6 transactivation. Additionally, we showed that CBP and NCoA-1 bind independently to specific parts of the STAT6 transactivation domain. The analysis of NCoA-1 mutants in which different functional domains were deleted demonstrated that coactivation by NCoA-1 requires its activation domain 1 and the STAT6 interaction region. Our results show that STAT6 enhances transcription by directly contacting at least two different coactivators (CBP and NCoA-1) with its modular transactivation domain.

EXPERIMENTAL PROCEDURES

Cell Culture and Transfection—HepG2 cells were grown in Dulbecco's modified Eagle's medium containing 10% fetal calf serum, 2 mM l-glutamine, and penicillin/streptomycin. These cells were transfected by the calcium phosphate precipitation method. The reporter genes (GAL4–LacZ, GCN5-LacZ) were expressed from the pPMX21 vector (13), containing a GAL4 activation domain 1 and the STAT6 transactivation domain. The pPMX21 vector was obtained by deletion of the NcoI fragment of pX-MAX-STAT6 into the EcoRI/EcoRI sites of pSG6. The expression vectors for murine NCoA-1, NCoA-2, and NCoA-3 (pCMV-NCoA-1/SRC-1, pCMV-NCoA-2, and pCMV-NCoA-3/p/CAF) were kindly provided by Joe Torchia (University of Western Ontario, London, Canada). The expression vectors for the human IL-4Rα chain (44), was cultured in RPMI medium containing 10% fetal calf serum, 45714 L-glutamine, and penicillin/streptomycin, and 5% supernatant of murine IL-3-overproducing WEHI cells as previously described (44). These cells (5 × 10⁶) were transfected by electroporation with a Bio-Rad gene pulser at 350 V/2000 microfarads. In a typical transfection experiment 1.5 × 10⁵ cells were transfected with 2 μg of luciferase reporter plasmid, the indicated amounts of expression vectors, and 0.025 μg of SV40 promoter-driven LacZ expression vector to control the transfection efficiency. After 1 day the cells were induced with IL-4 (10 ng/ml) and lysed after a further 16 h of incubation. The pre-B-cell line Ba/F3-IL-4, stably transfected with the human IL-4Rα and γ chains (44), was cultured in RPMI medium containing 10% fetal calf serum, 2 mM l-glutamine, penicillin/streptomycin, and 5% supernatant of murine IL-3-overproducing WEHI cells as previously described (44). These cells (5 × 10⁵) were transfected by electroporation with a Bio-Rad gene pulser at 350 V/960 microfarads. In a typical transfection experiment 5 μg of luciferase reporter construct, the indicated amount of expression vectors, and 1 μg of SV40-LacZ control plasmid was used. The total amount of DNA was adjusted to 20 μg with pBSK. 4 h later the cells were aliquoted into two fractions; one was treated with murine IL-4 (10 ng/ml), and the other was left untreated. 20 h later the cells were harvested. 293T cells were grown in Dulbecco's modified Eagle's medium containing 10% fetal calf serum, 2 mM l-glutamine, and penicillin/streptomycin. These cells were transfected by the calcium phosphate precipitation method. Luciferase and β-galactosidase assays were assayed as recommended by the manufacturer (Promega). Luciferase activities were normalized to the LacZ expression. At least three independent experiments were performed.

Recombinant Plasmids and Constructs—The reporter genes (GAL4–RE3TK LUC, Naf/STAT-RE3 LUC, and LacZ expression plasmid (pCH110)) have been described previously (19). The reporter gene Ige-1LUC, containing nucleotides −111 to −62 of the human IgE promoter, was kindly provided by Andre Zimmer (Albert-Ludwigs-University, Freiburg, Germany). The expression vectors for hSTAT6 (pMX-

RESULTS

NCoA-1 Enhances the IL-4-induced Transcription by STAT6—Previous studies characterized the transactivation domain (TAD) of STAT6 (18–20) and identified autonomously transactivating elements. We have recently demonstrated that...
the activity of the STAT6 TAD is enhanced by the coactivators p300 and CBP. This domain also mediates the interaction of p300/CBP with the NCoA family of nuclear receptor coactivators (33), which together form a large coactivator complex. To investigate whether the NCoA coactivators are involved in the transactivation by STAT6, transient transfection assays in the IL-4–responsive liver cell line HepG2 were carried out. The cells were transfected with a luciferase reporter construct containing multimerized STAT6 response elements and expression vectors encoding STAT6 and the coactivators NCoA-1, NCoA-2, and NCoA-3, respectively. After transfection, the cells were treated with IL-4 or left untreated. Induction with IL-4 led to a 6-fold enhancement of basal reporter gene expression (Fig. 1, lanes 1 and 2). This induction was further enhanced up to 20-fold when NCoA-1 was cotransfected (lanes 3 and 4), whereas cotransfection of NCoA-2 or NCoA-3, respectively, had no effect (lanes 5–8). These results indicate that NCoA-1 is a coactivator of STAT6, whereas the other members of the NCoA family, NCoA-2 and NCoA-3, do not seem to be involved in transactivation by STAT6.

The Transactivation Domain of STAT6 Interacts with NCoA-1, but Not with NCoA-2 and NCoA-3, in Vitro—The results from our transfection experiments suggested that NCoA-1 has, in contrast to the other CBP-associated NCoA-family members, a specific function in STAT6-mediated transcriptional activation. To analyze whether NCoA-1 can directly interact with the transactivation domain of STAT6, GST pull-down experiments were performed with NCoA-1 and the two other related members of the NCoA family. Equal amounts of GST and GST-STAT6-TAD containing the STAT6 transactivation domain fused to GST were incubated with in vitro synthesized, 35S-labeled coactivators. NCoA-1 strongly bound to GST-STAT6 TAD (Fig. 2, lane 7). In contrast, NCoA-2 and NCoA-3 failed to interact with STAT6 TAD (lanes 8 and 9). No binding was observed with GST alone (lanes 4–6). These findings are consistent with the transient transfection experiments shown in Fig. 1, where NCoA-1, but not NCoA-2 and NCoA-3, enhanced STAT6 transactivation potential. Taken together, only NCoA-1 interacts with STAT6 and serves as a specific coactivator for STAT6.

NCoA-1 Strongly Enhances the Transactivation Potential of the C-terminal Part of STAT6 Transactivation Domain—Previous studies have characterized the transactivation domain of STAT6 as a modular domain with different transactivation functions that mediates transcriptional activation when fused to the heterologous GAL4-DNA-binding domain (18–20). We investigated whether NCoA-1 enhances the transactivation potential of STAT6 by contacting a specific part of the STAT6 transactivation domain. Two GAL4 fusion proteins, possessing either the N-terminal part of the STAT6 transactivation domain (amino acids 677–791) or the far C-terminal part of the STAT6 transactivation domain (amino acids 792–847) (Fig. 3A) were used to analyze whether NCoA-1 is recruited to these domains. The GAL4-STAT6-TAD constructs and a luciferase reporter construct containing three GAL4 response elements in its promoter region were transiently transfected into HepG2, with or without cotransfection of the coactivator NCoA-1. Expression of the isolated GAL4-DBD did not result in a significant enhancement of the luciferase reporter gene activity, which was also not affected by cotransfection of NCoA-1 (Fig. 3B, lanes 1 and 2). GAL4-STAT6 (677–791) strongly induced the reporter gene expression (lane 3). Cotransfection of NCoA-1 led to a slight enhancement (lane 4). GAL4-STAT6 (792–847) did not significantly induce the reporter gene activity, indicating that this domain has only a minor transactivation potential when fused to the GAL4 DBD. Surprisingly, cotransfection of NCoA-1 strongly enhanced the transactivation function of this far C-terminal part of the STAT6 TAD to a level as high as the N-terminal transactivation domain of STAT6 (compare lanes 6 and 4). To validate this finding and to exclude the possibility that the strong effect of NCoA-1 on the transactivation activity of GAL4-STAT6 (792–847) was cell type-specific, we repeated the experiments in the pre-B-cell line Ba/F3-IL-4R (Fig. 2C). Again, GAL4-DBD alone had no significant transactivation capacity, and this was not changed by coexpression of NCoA-1 (Fig. 3C, lanes 1 and 2). GAL4-STAT6 (677–791) strongly induced reporter gene activity (lane 3), but in contrast to our results in HepG2 cells, this was not further enhanced by coexpression of NCoA-1 (lane 4). GAL4-STAT6 (792–847) did not
show significant transactivation activity by itself (lane 5). In the presence of cotransfected NCoA-1, GAL4-STAT6 (792–847) strongly enhanced the transcription (lane 6). These results confirm that NCoA-1 is a coactivator of the STAT6 transactivation domain. The strong coactivation effect on the far C-terminal part of the STAT6 TAD has very low autonomous transactivation activity, suggests that NCoA-1 is recruited to this domain by cell-specific factors. NCoA-1 and the Far C-terminal Region of STAT6 Interact in Vivo. Transfection experiments showed that NCoA-1 strongly enhanced the transactivation potential of the far C-terminal STAT6 TAD. To examine a possible interaction between NCoA-1 and this region of STAT6, in vivo coimmunoprecipitation experiments were carried out. 293T cells were transfected with expression vectors encoding full-length STAT6 or STAT6Δ792, lacking the far C-terminal part of the TAD, and NCoA-1. Whole cell extracts were prepared, and coimmunoprecipitation experiments were performed with the indicated antibodies. Immunoprecipitates were analyzed by Western blotting.}

Fig. 4. The far C-terminal part of the STAT6 TAD contributes to the full transactivation activity of STAT6. **A,** schematic representation of STAT6 functional domains. Depicted are DBD, SH2 domain, TAD, and the cytokine-dependent phosphorylation site (Y). **B,** reporter plasmid (GAL4-RE3TK LUC (2 μg), the plasmid encoding full-length or truncated STAT6 (200 ng), and SV40-LucZ expression vector (1 μg) as indicated. 4 h after transfection, the cells were treated with IL-4 or left untreated. 24 h post-transfection, luciferase activities were determined and normalized against β-galactosidase activities. The values represent the average from three independent experiments.

Fig. 3. The transactivation potential of the far C-terminal part of the STAT6 transactivation domain is strongly enhanced by NCoA-1. **A,** structure of human STAT6 and the fusion proteins of the GAL4-DBD with the STAT6 transactivation domain (TAD) are shown. The GAL4-DBD (amino acids 1–147) was fused to different regions of STAT6 TAD. Amino acid position, DBD, SH2 domain, TAD, and the cytokine-dependent phosphorylation site (Y) are indicated. **B,** expression plasmids encoding the GAL4-DBD or GAL4-DBD-STAT6-TAD fusion proteins (50 ng), NCoA-1 or empty expression plasmid (400 ng), and SV40-LucZ expression plasmid (25 ng) were transfected into HepG2 cells as indicated. C, Ba/F3 cells were transfected with the reporter plasmid (GAL4-RE3TK LUC (5 μg), the plasmids encoding the GAL4-DBD or GAL4-DBD-STAT6-TAD fusion proteins (50 ng), NCoA-1 (500 ng), or empty expression plasmid and SV40-LucZ expression plasmid (1 μg) as indicated. **B** and **C,** relative luciferase activities were determined and normalized against β-galactosidase activities. The average values with standard deviations of three independent experiments are shown.

The Far C-terminal Part of the STAT6 TAD Is Required for Full Transactivation Activity of STAT6—We compared the activity of full-length STAT6 and a truncated version lacking the far C-terminal part of the TAD (STAT6Δ792) to prove the importance of this domain for STAT6 transactivation (Fig. 4A). To exclude promoter-specific effects we analyzed the transactivation potential of these proteins on two different reporter constructs. The first contained part of the Ig GL promoter, including the relevant STAT6-binding site upstream of a minimal thymidine kinase promoter (Ig-TK LUC), and the second contained multimerized STAT6 binding sites (N4(STAT-RE)3 LUC) (Fig. 4B). Ba/F3-IL-4R cells were transfected with the vectors expressing full-length or truncated STAT6 and the reporter plasmids. After transfection, the cells were treated with IL-4 or left untreated. Western blotting confirmed similar expression of wild type and mutant STAT6 (data not shown).

As expected, the full-length STAT6 strongly induced expression of both reporter constructs upon IL-4 treatment (Fig. 4A). In vivo coimmunoprecipitation experiments were performed with the indicated antibodies. Immunoprecipitates were analyzed by Western blot-
Coactivation of STAT6 by NCoA-1

The Transactivation Domain of STAT6 Interacts Directly with Amino Acids 213–462 of NCoA-1—NCoA-1 contains several structural and functional domains (Fig. 7A). To investigate which domain in NCoA-1 mediates the interaction with STAT6, we tested various fragments of NCoA-1 for interaction with STAT6 in pull-down experiments (Fig. 7). We used the GST STAT6 TAD fusion protein comprising residues 677–847 to analyze the binding to various fragments of in vitro translated labeled NCoA-1. We observed specific interaction of an N-terminal fragment spanning amino acids 1–781 (Fig. 7B, lane 11) and the full-length NCoA-1 protein (lane 15) with GST-STAT6 TAD but no interaction with GST alone (lanes 6–10). The fragments containing the nuclear receptor interaction domain (lane 12), the p300/CBP interaction domain (lane 13), and the C-terminal transactivation domain (lane 14) failed to interact. To further narrow down the STAT6-binding site in NCoA-1, we dissected the N-terminal region of NCoA-1 and tested different fragments in pull-down experiments (Fig. 7C). The divided parts (1–361 and 361–781) of the shortest N-terminal interacting fragment (1–571) failed to interact with STAT6 TAD (Fig. 7C, lanes 6 and 9), indicating that the binding site is around amino acid 361. The minimal fragment of NCoA-1 that was still able to interact with GST STAT6 encompassed the region from amino acids 213 to 462 (lane 18), which comprises the Per-Anti-Sim (PAS) domain B and part of the serine/threonine rich domain. Further deletion of the N terminus (fragment 313–462, lane 21) or the C terminus (fragment 1–361, lane 6) abolished the binding. Strong interaction was also observed when GST STAT6 was incubated with purified histidine-tagged NCoA-1 (213–462) (data not shown), confirming that the inter-

Fig. 5. NCoA-1 coimmunoprecipitates with STAT6. 293T cells were transfected with expression vector encoding full-length or truncated STAT6 along with NCoA-1 expression vector. Whole cell extracts were prepared and immunoprecipitated (IP) with STAT6-specific antibody, NCoA-1-specific antibody, or unrelated antibody. All samples were analyzed by SDS-PAGE and Western blotting with antisera against NCoA-1 (upper panels) and STAT6 (lower panels). An aliquot of the cell lysate corresponding to 1% of the material used for the assay was analyzed in parallel (lanes 1, 5, 9, and 11).

![Image](http://www.jbc.org/)

Fig. 6. STAT6 contacts NCoA-1 and CBP via different parts of its transactivation domain. A, structure of human STAT6 and the GST-STAT6 TAD fusion proteins. B, NCoA-1 and GAL4-CBP fusion protein comprising amino acids 1678–2441 of CBP were labeled with [35S]methionine by in vitro translation and incubated with glutathione-Sepharose bound GST or GST STAT6 fusion proteins as indicated. Specifically bound material was eluted from the glutathione-Sepharose and resolved by SDS-PAGE. An aliquot of the reticulocyte lysate corresponding to 10% of the material used for the assay was analyzed in parallel (lanes 1 and 10). Radioactive labeled protein was visualized by fluorography.
action between NCoA-1 and STAT6 is direct and does not depend on additional proteins.

Coactivation of STAT6-mediated Transactivation by NCoA-1 Requires the PAS Domain and the Activation Domain 1 of NCoA-1—

To explore the domains of NCoA-1 required to enhance transactivation by STAT6, NCoA-1 mutants with distinct functional defects were tested for their coactivator function. As shown in Fig. 1, cotransfection of wild type NCoA-1 enhanced IL-4-induced transactivation by STAT6 (Fig. 8, compare lane 4 with lane 2). NCoA-1 mutant in which the STAT6 interaction domain was deleted (H9004 PAS) failed to enhance transactivation by STAT6 (lane 6). The NCoA-1 mutant in which the activation domain 1 was deleted (H9004 AD1) was also no longer functional in coactivating STAT6 transactivation (lane 8). In contrast, the deletion mutant of the second activation domain of NCoA-1 (H9004 AD2) was still able to enhance STAT6 transactivation like wild type NCoA-1 (lane 10). These results indicate that NCoA-1 needs to interact with STAT6 and to recruit additional factors like CBP via its activation domain 1 to coactivate the STAT6 activity.

Only STAT6 Interacts with the N-terminal Region of NCoA-1—

To analyze whether the interaction with NCoA-1 is specific for STAT6 or could also be observed with other structurally related members of the STAT family, pull-down experiments with NCoA-1 and the various STAT proteins were performed. We created a GST fusion protein with the N-terminal part of NCoA-1 and analyzed the binding of in vitro synthesized STATs. Only STAT6 interacted strongly with the N-terminal region of NCoA-1 (lane 21), whereas the other STATs showed no significant binding. This confirms that the characterized interaction with NCoA-1 is a specific feature of the STAT6 TAD.

The N-terminal Region of NCoA-1 Has a Dominant Negative Effect on Transcriptional Activation by STAT6 but Has No Effect on the Transactivation by RAR/RXR—

To confirm the relevance of the interaction with NCoA-1 to STAT6 transactivation, we investigated whether overexpression of the N-terminal domain of NCoA-1 (Fig. 10A) could influence the transcriptional activation capacity of STAT6. Therefore, we expressed the N-terminal fragment (amino acids 1–571) or, as
Coactivation of STAT6 by NCoA-1

a luciferase reporter containing part of the RAR antibodies leads to inhibition of RAR/RXR function (30). We used nuclear receptor interaction domain of NCoA-1 by specific characterized previously by several groups. Blocking of the activator function of NCoA-1 for the nuclear receptors has been influence on the nuclear receptors RAR and RXR. The coactivation by transcription factors, we investigated its N-terminal part of NCoA-1 leads to general inhibition of the and 6). To exclude the possibility that overexpression of the lanes 5 any marked effect on the STAT6-mediated stimulation (lanes 3
transactivation by RAR/RXR (lanes 5
expression of the N-terminal part of NCoA-1 did not influence the expression of luciferase expression (Fig. 10
determined. Treatment with retinoic acid led to strong induction of luciferase reporter gene was observed (Fig. 10B, lanes 1
and 2). Coexpression of the N-terminal NCoA-1 constructs containing the STAT6 interaction region abolished this activation (lanes 3 and 4). In contrast, coexpression of the fragments harboring the NID did not show any marked effect on the STAT6-mediated stimulation (lanes 5 and 6). To exclude the possibility that overexpression of the N-terminal part of NCoA-1 leads to general inhibition of the transactivation by transcription factors, we investigated its influence on the nuclear receptors RAR and RXR. The coactivator function of NCoA-1 for the nuclear receptors has been characterized previously by several groups. Blocking of the nuclear receptor interaction domain of NCoA-1 by specific antibodies leads to inhibition of RAR/RXR function (30). We used a luciferase reporter containing part of the RARβ promoter, which possesses two response elements for RAR/RXR, upstream of a minimal promoter (β-RE-2-TK LUC). Ba/F3-IL-4R cells were transfected with the β-RE-2-TK LUC reporter, expression vectors for RAR and RXR, and vectors encoding the N-terminal fragment and NID domain of NCoA-1 by electroporation. After transfection, the cells were induced with retinoic acid or left untreated, and luciferase activity in cell lysates was determined against the indicated fragments of NCoA-1 or empty vector, along with 5 μg of Igg-TK LUC reporter plasmid and 1 μg of SV40-LacZ expression vector. 4 h after transfection cells were treated with IL-4 or left untreated. C, Ba/F3 cells were transfected with expression vectors encoding RAR and RXR (200 ng) and the indicated fragments of NCoA-1 (3 μg), along with the β-RE-2-TK LUC reporter plasmid (5 μg) and SV40-LacZ expression vector (1 μg). 4 h after transfection cells were treated with 10−6 M retinoic acid or left untreated. B and C, 20 h after transfection cells were harvested, and luciferase activities were determined and normalized against β-galactosidase activities. The values represent the averages from three independent experiments.

DISCUSSION

In previous studies, we have shown that p300 and CBP, which coactivate a variety of transcription factors, are required for IL-4-induced STAT6-mediated transactivation (22). p300/ CBP have been shown to associate with other coactivators like pCAF (48) and members of the NCoA coactivator family also called p160/SRC-1 family (27, 33), thus providing a platform for a variety of proteins playing a role in gene expression (23). Different classes of transcription factors require specific components of the p300/CBP/NCoA coactivator complex as well as their HAT activities, suggesting the existence of distinct multiprotein coactivator complexes (40). In this report, we investigated whether the NCoA coactivators are involved in transcriptional activation by STAT6.

We demonstrated that STAT6 uses NCoA-1 as a coactivator for transcriptional activation but not the closely related family members, NCoA-2 and NCoA-3, which have also been reported to interact with p300/CBP. This suggests that these
Coactivation of STAT6 by NCoA-1

coc activators are either functionally different or are not limiting in the cells that we used in our study. Indeed, our in vitro interaction studies argued for the first possibility. Only NCoA-1 was able to interact directly with STAT6, supporting the idea that NCoA-1 has a specific function in STAT6-mediated transactivation.

The C-terminal part of STAT6 contains an autonomous, modular TAD (18, 19, 50). The efficiency of this TAD seems to depend on the cell type, implying a complex transactivation mechanism and the involvement of cell type-specific factors (18, 19). The modular structure of the transactivation domain suggests that STAT6 recruits the transcription machinery by interactions with multiple partners. We investigated whether NCoA-1 can enhance transcription by contacting a specific part of the STAT6 TAD fused to the GAL4-DBD (Fig. 3). The N-terminal part of the STAT6 TAD (residues 677–792) showed a high transcriptional activation function. Coexpression of NCoA-1 slightly enhanced this activity in a cell type-specific manner, indicating that NCoA-1 might be recruited indirectly via other cell type-specific coactivators. In contrast, the C-terminal part of the TAD (residues 792–847) had a low transactivation potential per se, but this activity was strongly enhanced in the presence of exogenous NCoA-1. This result shows that NCoA-1 is the limiting mediator for transactivation via this region. It directly interacted with this region (Fig. 6). Furthermore, interaction of NCoA-1 with the full-length STAT6 protein was dependent upon the presence of this region (Fig. 5). Taken together, these results showed that the direct binding of NCoA-1 led to a dramatic increase of the activity of the far C-terminal part of the STAT6 TAD.

Because the far C-terminal part of the STAT6 TAD has a negligible transactivation potential on its own, we wondered whether this part of the transactivation domain contributes to the full transactivation potential of STAT6. A truncated mutant of STAT6 lacking the NCoA-1-interacting part of the TAD showed a marked decrease in transactivation efficiency, up to 40%. This was observed both with a promoter consisting of multimerized STAT6 binding elements and with a promoter fragment of the natural GLβ promoter containing CAAT/enhancer-binding protein and NF-kB-binding sites (Fig. 3). This result supports the importance of the NCoA-1-responsive part of the STAT6 TAD for optimal IL-4-induced STAT6-mediated transactivation.

We found that STAT6 recruited the two coactivators, CBP and NCoA-1, by direct contact with distinct parts of its TAD. The N-terminal part of the STAT6 TAD recruited CBP, whereas the very far C-terminal part directly contacted NCoA-1. Although the strength of the interaction cannot accurately be determined by pull-down experiments, our results suggest that more NCoA-1 than CBP is recruited by STAT6 (Fig. 6). We would therefore propose a model by which NCoA-1 binds to the far C-terminal part of the STAT6 transactivation domain, thereby recruiting CBP, which interacts directly with the N-terminal part of the STAT6 TAD. Multiple interactions of CBP, NCoA-1, and STAT6 would stabilize binding to the promoter. Additional experiments are required to verify this model.

NCoA-1, NCoA-2, and NCoA-3 possess different conserved domains responsible for the interaction with transcription factors like the nuclear hormone receptors, as well as interaction domains responsible for the recruitment of downstream effectors (39). At the N terminus, NCoA coactivators share a highly conserved basic helix loop helix (bHLH)/PAS domain accompanied by a serine/threonine-rich region. The bHLH domain functions as a DNA-binding and dimerization surface in many transcription factors. The PAS motif is also found in several regulators and seems to play a role in protein-protein interactions and dimerization as well (51). We localized the region in NCoA-1 responsible for interaction with STAT6 to a region spanning amino acids 213–462, which comprises the B part of the PAS domain and a part of a serine/threonine-rich region (Fig. 7). Interestingly, neither the bHLH/PAS domain alone (residues 1–361) nor the serine/threonine-rich domain (361–571) was able to interact strongly with STAT6. These regions of NCoA-1 have already been shown to interact with other transcription factors. Residues 1–361 bind TEF4 and p53 in vitro (35, 48), and residues 361–568 interact with serum response factor (36). Because the presence of both the PAS-B domain and the serine/threonine-rich domain are necessary and sufficient for the interaction with STAT6 in vitro and in vivo (in yeast, data not shown), we have characterized a novel interaction surface of NCoA-1.

The current model of transcriptional activation proposes that coactivators function as bridging factors to recruit additional cofactors and the basal transcription machinery to the DNA-bound transcription factors and/or function as chromatin modifying enzymes. NCoA-1 possesses at least two effector domains. AD1 is able to interact with the coactivators p300/CBP and p/CAF (40). AD2 contains a weak histone acetyltransferase activity and contacts the methyltransferases CARM1 and PRMT1 (52, 53). In addition, the first 93 amino acids of NCoA-1 were also found to exhibit a weak transactivation function when fused to the GAL4-DNA-binding domain (54). Using NCoA-1 deletion mutants, we have analyzed which of the functional domains of NCoA-1 mediated coactivation of STAT6. The results we obtained from these experiments indicate that the N-terminal part of NCoA-1, as well as the AD1 domain was required for STAT6 coactivation. The N terminus of NCoA-1 was responsible for binding to STAT6. We therefore expected that deletion of this domain would abolish the coactivation function of NCoA-1. However, in addition to its function in contacting STAT6, this domain could have a role recruiting effector proteins via its weak transactivation function. The AD1 appears to mediate coactivation of STAT6 by the interaction with p300/CBP and/or other AD1 binding proteins like p/CAF. Recruited CBP could, in addition to its function in histone acetylation, stabilize the NCoA-1/STAT6 interaction because it binds to the STAT6 TAD at a region near to the NCoA-1-binding site (Fig. 6). The C-terminal AD2 domain can be deleted without affecting the ability of NCoA-1 to enhance STAT6 activity, indicating that recruitment of methyltransferases as well as the HAT activity of NCoA-1 are not required for coactivation of STAT6 in transient reporter assays.

Although the STAT family members are highly related in structure and function, we propose no common coactivation mechanism for different STATs. STAT1, STAT2, STAT3, STAT5, and STAT6 each contact different domains of p300/ CBP (2, 22, 24, 55). Our studies of NCoA-1 showed that among the STAT proteins, only STAT6 was able to interact with the N-terminal part of NCoA-1 (Fig. 9). Sequence comparison of the transactivation domains of the most related STAT proteins (STAT6, STAT5a STAT5b, and STAT4) reveals that the NCoA-1 interaction domain of STAT6 is located in a region that extends past the sequence end of the other STATs, supporting the idea that this interaction module is a specific feature of STAT6. We will not exclude the possibility that NCoA-1 has also a function in transcription activation by the other STAT proteins, but it may be recruited by another mechanism. We hypothesize that different STAT proteins recruit specific coactivator complexes with distinct content and structure, because of requirements for their respective promoter context.

Indeed, on the promoters of IL-4-responsive genes, like GLβ,
GL γ1, and CD23, the STAT6 response elements are close to binding sites of other transcription factors, e.g. NF-κB, CAAT enhancer-binding protein, and PU.1. These factors can act in a synergistic manner (17, 56–61). PU.1, NF-κB subunit p65, and STAT6 have been shown to interact with different regions of CBP (22, 62–64). Also, NF-κB p50 and STAT6 recruited NCoA-1 via different regions (38).

We speculate that the synergistic activation of IL-4-responsive genes occurs, in addition to cooperative DNA binding of the factors, as a result of a concerted recruitment of a common CBP/p300/NCoA-1 coactivator complex. Thus, p300/CBP and NCoA-1 would represent integrators of different signaling pathways that exert their function via multiple interaction surfaces. From our transient transfection experiments we would predict that the IL-4-regulated expression of the GL γ1, CD23, and major histocompatibility complex II are dependent on this mechanism. We are currently addressing this question by the overexpression of the dominant negative acting interaction domain into stable cell lines.

Our data suggest that NCoA-1 is an essential requirement for STAT6 function. Overexpression of the N-terminal STAT6 interaction domain of NCoA-1 resulted in a dominant negative inhibition of the IL-4-induced STAT6-mediated transactivation of the GL γ promoter. In contrast, overexpression of this domain did not alter transactivation by the nuclear receptors RAR/RXR, indicating that expression of this domain does not per se inhibit transactivation. STAT6 has an essential role in IgE production and represents, therefore, an important target for therapeutic intervention in cases of allergic diseases. The identification of NCoA-1 as a key component in the transactivation by STAT6 and the characterization of its specific interaction domain open the possibility of developing new strategies to interfere with STAT6 function at the level of transcription activation.

Acknowledgments—We thank Bernd Groner, Fabrice Gouillieux, Markus Heim, Ludger Klein-Hitpass, Richard Moriggl, Malcolm Parker, Joe Torchia, and Andre Zimmermann for plasmids. We thank Thorsten Heinzel, Cathrine Mahoney, Dominique Marilley, Barbara Schnierle, and Carrie Scheman for reading the manuscript and helpful discussion.

REFERENCES

1. Darnell, J. E., Kerr, I. M., and Stark, G. R. (1994) Science 264, 1415–1421
2. Darnell, J. E. (1997) Cell 97, 1630–1635
3. Ihle, J. N. (1996) Science 273, 764–769
4. Xu, X., Sun, Y. L., and Hoey, T. (1996) Science 273, 794–797
5. Vinkemeier, U., Cohen, S. L., Moarefi, I., Chait, B. T., Kuriany, J., and Darnell, J. E. (1996) EMBO J. 15, 5616–5626
6. Horvath, C. M., Wen, Z., and Darnell, J. E. (1995) Genes Dev. 9, 984–994
7. Greenland, A. C., Farrar, M. A., Viviana, B. L., and Schreiber, R. D. (1994) EMBO J. 13, 1591–1600
8. Stahl, N., Farrugella, T. J., Boulton, T. Y., Zhong, Z., Darnell, J. E., and Yancopoulos, G. D. (1995) Science 267, 1349–1353
9. Shiui, K., Horvath, C. M., Huang, L. H., Qureshi, S. A., Cowburn, D., and Ihle, J. N. (1999) J. Biol. Chem. 274, 10826–10831
10. Chen, H., Lin, R. J., Schiltz, R. L., Chakravarti, D., Ash, A., Lass, A., Privalov, M. L., Nakatani, Y., and Evans, R. M. (1997) Cell 90, 589–590
11. Anzilotti, L., Kononen, J., Walker, R. L., Azzera, D. O., Tanner, M. M., Guan X. Y., Sauter, G., Kallioniemi, O. P., Trent, J. M., and Melzer, P. S. (1997) Science 277, 965–968
12. Yao, T. P., Guo, Z., Mou, S., Reilly, S., and Livingston, D. M. (1994) Proc. Natl. Acad. Sci. U. S. A. 91, 10602–10606
13. Lee, S. K., Kim, H. J., Na, S. Y., Kim, T. S., Che, H. S., Im, S. Y., and Lee, J. W. (1998) J. Biol. Chem. 273, 16651–16654
14. Lee, S. K., Kim, H. J., Kim, J. W., and Lee, J. W. (1999) J. Endocrinol. 13, 1924–1933
15. Kim, H. J., Kim, J. H., and Lee, J. W. (1998) J. Biol. Chem. 273, 28564–28567
16. Shipard, K. A., Phillips, K. M., Williams, A. J., Thanos, D., Glass, C. K., Rosenfeld, M. G., Gerrissen, M. E., and Collina, T. (1998) J. Biol. Chem. 273, 29291–29294
17. Na, S. Y., Lee, S. K., Han, S. J., Choi, H. S., Im, S. Y., and Lee, J. W. (1998) J. Biol. Chem. 273, 10821–10824
18. Leo, C., and Chen, J. D. (2000) Gene (Amst.) 245, 1–11
19. Korusz, E., Torchia, J., Rose, D. W., Xu, L., Kurokawa, R., McInerney, E. M., Muller, T. M., Glass, C. K., and Rosenfeld, M. G. (1998) Science 278, 703–707
20. Stallcup, M. R., Chen, D., Koh, S. S., Ma, H., Lee, Y. H., Li, H., Schurter, B. T., and Awan, D. W. (2000) Biochem. Soc. Trans. 28, 415–419
21. Schneider, U., Schindler, U., and Ihle, J. N. (1997) EMBO J. 16, 5811–5820
22. Chen, T., Jenukatia, G., Kizhakaryma, J., Raaipmeterma, K., Zoeb, M., Mizenza, C. A., Mccenna, N. J., Onate, S. A., Tsai, S. Y., Tsai, M. J., and O’Malley, B. W. (1997) Nature 389, 194–198
23. Kurokawa, R., Kallus, D. B., Ogniastra, M. H., Kiussi, C., Xu, L., Torchia, J., Rosenfeld, M. G., and Glass, C. K. (1998) Science 279, 700–703
24. Lischke, A., Ammer, W., and Friedrich, K. (1995) Eur. J. Biochem. 234, 105–107
25. Caldenhoven, E., van Dijk, T. B., Solari, R., 円山, K., Raaipmeterma, J., Aammaar, J. W., Koenderman, L., and de Groot, R. P. (1996) J. Biol. Chem. 271, 13221–13226
26. Mikita, T., Campbell, D., Wu, P., Williamson, K., and Schindler, U. (1996) Mol. Cell. Biol. 16, 5811–5820
27. Crews, S. T., and Fan, C. M. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 319–324
28. Ishii, K., Moriya, S., Sato, K., and Ikeda, J. (1999) Oncogene 18, 319–324
29. Paulson, M., Fishardy, S., Pan, L., Guadagno, S., Mui, A. L., and Levy, D. E. (1999) J. Biol. Chem. 274, 25343–25349
30. Lundgreen, M., Larsson, C. M., Devitz, A. M., and Stevenson, J., and Severinson, E. (1994) J. Immunol. 153, 2983–2995
31. Richards, M. L., and Katz, D. H. (1997) J. Immunol. 158, 263–272
32. Stutz, A. M., and Waisetschlag, M. (1999) J. Immunol. 163, 4385–4391
33. Mita, T., Kurama, M., and Kita, T. (1998) J. Immunol. 161, 1822–1828
34. Shen, C. H., and Stavnezer, J. (1998) Mol. Cell. Biol. 18, 3395–3404
35. Warren, W. D., and Berto, M. T. (1995) J. Immunol. 155, 5657–5664
36. Yamamoto, H., Kihara-Nagashima, F., Yamada, T., Hashimoto, Y., and Okawa, T. (1999) Oncogene 18, 1495–1501
37. Perkins, N. D., Felzien, L. K., Betts, J. C., Leung, K., Beach, D. H., and Nabel, G. J. (1997) Science 273, 522–527
38. Gerritsen, M. E., Williams, A. J., Neish, A. S., Moore, S., Shi, Y., and Collins, T. J. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 2927–2932
Transcriptional Activation by STAT6 Requires the Direct Interaction with NCoA-1
Claudia M. Litterst and Edith Pfützner

J. Biol. Chem. 2001, 276:45713-45721.
doi: 10.1074/jbc.M108132200 originally published online September 26, 2001

Access the most updated version of this article at doi: 10.1074/jbc.M108132200

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 64 references, 39 of which can be accessed free at
http://www.jbc.org/content/276/49/45713.full.html#ref-list-1