Genetic Variants in FGFR2 and FGFR4 Genes and Skin Cancer Risk in the Nurses' Health Study

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

Citation	Nan, Hongmei, Abrar A Qureshi, David J Hunter, and Jiali Han. 2009. Genetic variants in FGFR2 and FGFR4 genes and skin cancer risk in the Nurses’ Health Study. BMC Cancer 9: 172.
Published Version	doi://10.1186/1471-2407-9-172
Citable link	http://nrs.harvard.edu/urn-3:HUL.InstRepos:8123172
Terms of Use	This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Genetic variants in FGFR2 and FGFR4 genes and skin cancer risk in the Nurses' Health Study

Hongmei Nan*1,2, Abrar A Qureshi2,3, David J Hunter1,2 and Jiali Han1,2

Address: 1Program in Molecular and Genetic Epidemiology, Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA, 2Channing Laboratory, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA and 3Department of Dermatology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA

Email: Hongmei Nan* - hnan@hsph.harvard.edu; Abrar A Qureshi - aqureshi@partners.org; David J Hunter - David.Hunter@channing.harvard.edu; Jiali Han - jiali.han@channing.harvard.edu

* Corresponding author

Abstract

Background: The human fibroblast growth factor (FGF) and its receptor (FGFR) play an important role in tumorigenesis. Deregulation of the FGFR2 gene has been identified in a number of cancer sites. Overexpression of the FGFR4 protein has been linked to cutaneous melanoma progression. Previous studies reported associations between genetic variants in the FGFR2 and FGFR4 genes and development of various cancers.

Methods: We evaluated the associations of four genetic variants in the FGFR2 gene highly related to breast cancer risk and the three common tag-SNPs in the FGFR4 gene with skin cancer risk in a nested case-control study of Caucasians within the Nurses’ Health Study (NHS) among 218 melanoma cases, 285 squamous cell carcinoma (SCC) cases, 300 basal cell carcinoma (BCC) cases, and 870 controls.

Results: We found no evidence for associations between these seven genetic variants and the risks of melanoma and nonmelanocytic skin cancer.

Conclusion: Given the power of this study, we did not detect any contribution of genetic variants in the FGFR2 or FGFR4 genes to inherited predisposition to skin cancer among Caucasian women.

Background

The human fibroblast growth factor (FGF) and its receptor families consist of 22 structurally related FGF members and four high-affinity tyrosine kinase FGF receptors (FGFR1 to 4) [1,2]. The four FGFRs generate ligand-binding specific isoforms by tissue-specific alternative mRNA splicing of the genes [3-7]. FGFs and their receptors have an important role in cell signaling [8]. The formation of the FGF-FGFR complex activates the intracellular tyrosine kinase, which mediates signal transduction through the direct phosphorylation of adaptor proteins [9]. These complex FGF signaling networks are crucial in the multiple cell biological activities, such as proliferation, differentiation, mitogenesis, migration, and apoptosis, and are thus implicated in tumorigenesis [10-12].

The FGFR2, known as a unique high-affinity receptor for keratinocyte growth factor (KGF or FGF7), is expressed in the keratinocytes of the skin epidermis, hair follicles, and mesenchymal tissues [5,13,14]. An experiment in transgenic mice with FGFR2 mutation in the keratinocyte showed that normal signal transduction was blocked by...
binding of its ligand KGF [15]. It has been reported that the FGFR2 plays a role in tumor suppression in the skin [16]. In addition, the increased FGFR2 gene expression has been related to the genetic variants in intron 2 of the FGFR2 gene [17] and deregulation of FGFR2 gene expression and/or gene mutation has been identified in various kinds of human cancers, such as breast, prostate, endometrial, colon, bladder, and thyroid cancers [17-22]. Recently, two genome-wide association studies have identified some genetic variants in the FGFR2 gene that were highly associated with breast cancer [23,24].

The FGFR4 gene located on the chromosome 5 spans approximately 11.3 kb and is composed of 18 exons [25]. Overexpression of the FGFR4 protein has been associated with cutaneous melanoma progression [26]. High expression of FGFR4 has also been observed in breast cancer, prostate cancer, pancreatic cancer, and renal cell carcinoma [27-30]. Furthermore, SNP rs351855 located in exon 9 of the FGFR4 gene results in an amino acid change (Gly388Arg) in the transmembrane domain of the receptor and has been associated with tumor progression in, for example, cutaneous nodular malignant melanoma, breast cancer, lung adenocarcinoma, prostate cancer, and head and neck cancer [26,31-36].

We conducted a nested case-control study of Caucasians within the Nurses’ Health Study (NHS) to evaluate whether the four breast cancer-related SNPs in the FGFR2 gene (rs11200014, rs2981579, rs1219648, and rs2420946) [24] and the three common variants (tag-SNPs) in the FGFR4 gene (rs1966265, rs376618, and rs351855) are associated with the risk of three skin cancer types including melanoma, squamous cell carcinoma (SCC), and basal cell carcinoma (BCC).

Methods

Eligible cases in this study consisted of women with incident skin cancer from the subcohort of the NHS who gave a blood specimen in 1989–1990 \((n = 32,826)\), including SCC and BCC cases with a diagnosis any time after blood collection up to June 1, 1998 and melanoma cases up to June 1, 2000 with no previously diagnosed skin cancer. A common control series was randomly selected from participants who gave a blood sample and were free of diagnosed skin cancer up to and including the questionnaire cycle during which the case was diagnosed. One or two controls were matched to each case by year of birth \((\pm 1\) year). All subjects were drawn from the U.S. non-Hispanic Caucasian women in this study. The nested case-control study consisted of 218 incident melanoma cases, 285 incident SCC cases, a sample of 300 BCC cases from the large number of incident cases, and 870 age-matched controls.

The informed consent was obtained from the participants who gave a blood sample and were free of diagnosed skin cancer at baseline were grouped into three regions: Northeast (Connecticut, Massachusetts, Maryland, New Jersey, New York, and Pennsylvania), Northcentral (Michigan and Ohio), and West and South (California, Texas, and Florida).

Information on the seven SNPs in the FGFR2 and FGFR4 genes is presented in Table 1. Four SNPs in intron 2 of the FGFR2 gene (rs11200014, rs2981579, rs1219648, and rs2420946) genotyped in this study were breast cancer-related SNPs identified by a recent genome-wide association study conducted by our group [24]. For the FGFR4 gene, based on the HapMap phase II SNP genotype data, we chose three tag-SNPs (rs1966265, rs376618, and rs351855) as surrogates for untyped polymorphisms in the FGFR4 gene using the HapMap Project 90 (30 trios) Caucasian samples from a US Utah population with Northern and Western European ancestry collected in 1980 by the Centre d’Etude du Polymorphisme Humain (CEPH) [39]. Briefly, the tag-SNPs (minor allele frequency > 0.05) were selected using the Tagger program of \(r^2 > 0.8\), which combines the simplicity of pairwise \(r^2\) methods [40] with the potential efficiency of multimarker haplotype approaches [41].

We genotyped these seven SNPs by the 5’ nuclease assay (TaqMan®) in 384-well format, using the ABI PRISM 7900 HT Sequence Detection System (Applied Biosystems, Foster City, CA). TaqMan® primers and probes were designed with the Primer Express® Oligo Design software v2.0 (ABI PRISM). Due to assay failure, we genotyped rs12519145.
Table 1: Seven SNPs in the FGFR2 and FGFR4 genes

SNP	rs#	Chromosome	Location	MAF-controls (%)^a	MAF-CEU (%)^b
FGFR2 intron 2	rs1200014	10	123324920	42	47
FGFR2 intron 2	rs2981579	10	123327325	42	47
FGFR2 intron 2	rs1219648	10	123336180	40	47
FGFR2 intron 2	rs2420946	10	123341314	40	47
FGFR4 Val101le	rs1966265^a	5	176449237	-	20
FGFR4 Leu136Pro	rs376618	5	176450403	24	26
FGFR4 Gly388Arg	rs351855	5	176452849	31	28

^aThe SNP rs1966265 failed the assay and the rs12519145 was genotyped instead ($r^2 = 0.8$).
^bMinor allele frequency (MAF) was calculated among controls in this study.

as a surrogate for the FGFR4 rs1966265 ($r^2 = 0.8$). Laboratory personnel were blinded to case-control status, and 10% blinded quality control samples (duplicate samples) were inserted to validate genotyping procedures; concordance for the blinded quality control samples was 100%. Primers, probes, and conditions for genotyping assays are available upon request.

We used the χ^2 test to assess whether the genotypes for all seven SNPs were in Hardy-Weinberg equilibrium among the controls. We compared each type of skin cancer with the common control series to increase the statistical power. We evaluated the association between each genotype and skin cancer risk using unconditional logistic regression. An additive model was used to calculate the p-value on skin cancer risk according to an ordinal coding for genotype (0, 1 or 2 copies of SNP minor allele). For the four FGFR2 SNPs and three FGFR4 SNPs, haplotype frequencies and expected haplotype counts for each individual were estimated using a simple expectation-maximization algorithm, as implemented in SAS PROC HAPLOTYPE. The analyses of the associations between haplotypes and skin cancer risk were performed using the expectation-substitution technique [42]. All statistical analyses were two-sided and carried out using SAS V9.1 (SAS Institute, Cary, NC).

The Quanto statistical software version 1.2.3 was used for power calculation [43]. We calculated the power to detect the specified ORs at various allele frequencies of variant allele in additive models. The calculations were based on a two-sided alpha of 0.05. For melanoma (SCC or BCC), we have 80% power to detect an OR of 1.80 (1.72 or 1.70), 1.48 (1.42 or 1.41), and 1.35 (1.32 or 1.31) if the minor allele frequency is 5%, 15%, and 40%, respectively.

Results and discussion
A detailed description of the characteristics of cases and controls in the skin cancer nested case-control study has been provided previously [44]. In brief, at the beginning of the follow-up of this nested case-control study, the nurses were between 43 and 68 years old (mean age, 58.7 years). The mean ages at diagnosis for incident melanoma, SCC, and BCC cases were 63.4, 64.7, and 64.0 years, respectively. A family history of skin cancer was a risk factor for all three types of skin cancer. Skin cancer cases had lighter pigmentation (skin color and hair color), more moles on the arms, higher cumulative sun exposure while wearing a bathing suit, and more lifetime severe sunburns that blistered than controls.

The genotype distributions of the seven SNPs evaluated in this study were in Hardy-Weinberg equilibrium among controls. The minor allele frequencies of these seven SNPs among controls in this study were similar to those from HapMap CEU data. We evaluated the main effect of each polymorphism across three types of skin cancer (Table 2) and observed no significant associations between these seven SNPs and skin cancer risk. The multivariate analyses controlling for age and skin cancer risk factors showed results similar to the age-adjusted analyses (Additional file 1). Furthermore, we performed a global test to evaluate the difference in FGFR2 and FGFR4 haplotype frequencies between cases and controls (Table 3) and found no significant associations with skin cancer risk, which was consistent with the results of the single SNP analyses presented in Table 2.

The potential contribution of the FGF/FGFR family to the development of skin cancer has been suggested. For example, the basic FGF (bFGF) alternatively named FGFR2 binds to distinct splice variants of the four FGFRs and acts as a potent activator in the proliferation and differentiation of melanocytes [45]. It has been noted that the combination of bFGF with ultraviolet (UV) light, the main risk factor for skin cancer, may lead to cutaneous melanoma induction [46]. In this study, we assessed the associations between the genetic variants in the FGFR2 and FGFR4 genes and the three types of skin cancer simultaneously with a modest sample size in each cancer type. Only one
Table 2: Associations between the seven SNPs in the FGFR2 and FGFR4 genes and skin cancer risk

SNP	Melanoma Additive OR*	p for trend	SCC Additive OR*	p for trend	BCC Additive OR*	p for trend
FGFR2 rs11200014	0.95 (0.77–1.19)	0.67	0.90 (0.74–1.10)	0.30	1.03 (0.85–1.26)	0.73
FGFR2 rs2981579	0.96 (0.77–1.19)	0.70	0.92 (0.75–1.12)	0.40	1.11 (0.91–1.36)	0.29
FGFR2 rs1219648	0.96 (0.77–1.20)	0.75	0.87 (0.71–1.07)	0.18	1.06 (0.87–1.29)	0.57
FGFR2 rs2420946	1.08 (0.85–1.38)	0.53	0.89 (0.72–1.10)	0.28	0.99 (0.81–1.21)	0.91
FGFR4 rs1966265**	1.16 (0.90–1.48)	0.26	1.00 (0.79–1.26)	1.00	0.94 (0.74–1.19)	0.61
FGFR4 rs376618	0.88 (0.67–1.14)	0.33	1.04 (0.83–1.31)	0.73	0.87 (0.69–1.11)	0.27
FGFR4 rs351855	1.09 (0.87–1.38)	0.44	0.90 (0.73–1.12)	0.35	1.13 (0.93–1.39)	0.21

*Unconditional logistic regression adjusted for age.
**The SNP rs1966265 failed the assay and the rs12519145 was genotyped instead (r² = 0.8).

Table 3: Haplotypes for the SNPs in the FGFR2 and FGFR4 genes and skin cancer risk

FGFR2

Controls	Melanoma	SCC	BCC	
A B C D	n %	n %	n %	
0 0 0 0	779 56.4	166 55.3	286 59.8	270 55.1
	Multivariate OR	1.00	1.00	1.00
1 1 1 1	532 38.5	118 39.3	177 37.0	196 40.0
	Multivariate OR	1.06 (0.82–1.38)	0.90 (0.72–1.11)	1.06 (0.85–1.32)
1 1 0 0	25 1.8	3 1.0	8 1.7	8 1.6
	Multivariate OR	0.55 (0.16–1.89)	0.89 (0.39–2.00)	0.90 (0.40–2.05)
1 1 1 0	17 1.2	8 2.7	3 0.6	6 1.2
	Multivariate OR	2.42 (1.00–5.87)	0.46 (0.13–1.60)	1.03 (0.40–2.69)
Rare < 1%	29 2.1	5 1.7	4 0.8	10 2.1
	Multivariate OR	0.80 (0.31–2.06)	0.41 (0.15–1.13)	0.98 (0.50–1.93)

A: rs11200014; B: rs2981579; C: rs1219648; D: rs2420946

FGFR4

Controls	Melanoma	SCC	BCC	
A B C	n %	n %	n %	
0 0 1	446 29.7	118 30.7	121 25.8	164 32.2
	Multivariate OR	1.00	1.00	1.00
0 0 0	391 26.0	89 23.2	130 27.7	133 26.1
	Multivariate OR	0.86 (0.63–1.17)	1.22 (0.92–1.62)	0.93 (0.71–1.21)
0 1 0	343 22.8	83 21.7	113 24.0	106 20.9
	Multivariate OR	0.91 (0.66–1.26)	1.21 (0.90–1.64)	0.82 (0.62–1.10)
1 0 0	293 19.5	84 22.0	95 20.3	95 18.8
	Multivariate OR	1.08 (0.78–1.49)	1.19 (0.88–1.62)	0.88 (0.66–1.18)
Rare < 1%	30 2.0	9 2.4	10 2.2	10 1.9
	Multivariate OR	1.21 (0.49–2.96)	1.31 (0.55–3.10)	0.89 (0.37–2.16)

A: rs1966265*; B: rs376618; C: rs351855

0, common allele; 1, rare allele.
Logistic regression adjusted for age.
p-values for global tests are >0.05.
*The SNP rs1966265 failed the assay and the rs12519145 was genotyped instead (r² = 0.8).
study has attempted to assess the relation of the FGFR4 Gly388Arg with the progression of melanoma in melanoma patients, and observed that the FGFR4 Arg388 allele was associated with tumor thickness and nodular malignant melanoma [26]. We did not observe a significant association of this allele with skin cancer risk. It seems that this SNP acts as a potential marker for the progression of skin cancer rather than susceptibility to skin cancer. Spinola et al. reported similar results for lung adenocarcinoma, i.e., that this allele revealed association with progression of cancer but a lack of association with the risk of cancer [33]. FGFR2 possesses the largest genomic structure among the FGF family, with at least 22 exons and 21 introns and has been implicated in distinct types of cancer [47]. Also, recent in vitro and in vivo studies showed that loss-of-function FGFR2 mutations occur in a subset of melanomas [48]. It would be important to comprehensively examine the association of the common genetic variants in the entire FGFR2 gene region with skin cancer risk.

Conclusion
In conclusion, we did not detect any contribution of genetic variants in the FGFR2 or FGFR4 genes to inherited predisposition to skin cancer among Caucasian women.

List of Abbreviations
FGFR: Fibroblast Growth Factor Receptor; BCC: Basal Cell Carcinoma; SCC: Squamous Cell Carcinoma; OR: Odds Ratio; CI: Confidence Interval; UV: Ultraviolet.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors have contributed to designing the study and analyzing and interpreting the data, as well as to the writing of the manuscript. All authors have read and approved this manuscript.

Additional material

Additional File 1
Supplementary Table S1. Associations between the seven SNPs in the FGFR2 and FGFR4 genes and skin cancer risk. The data provided represent the results of the associations between seven SNPs in the FGFR2 and FGFR4 genes and skin cancer risk. Click here for file [http://www.biomedcentral.com/content-supplementary/1471-2407-9-172-S1.xls]

Acknowledgements
We thank Dr. Hardeep Ranu and Ms. Pati Soule of the Dana-Farber/Harvard Cancer Center High-Throughput Polymorphism Detection Core for their laboratory assistance, and Ms. Carolyn Guo for her programming support. We are indebted to the participants in the Nurses’ Health Study for their dedication and commitment. This work was supported by National Institutes of Health research grants CA128381 and CA132175.

References
1. Ishii N, Ornitz DM: Evolution of the Fgf and Fgfr gene families. Trends Genet 2004, 20:563-569.
2. Ornitz DM, Ishii N: Fibroblast growth factors. Genome Biol 2001, 2:REVIEW3005.
3. Chelliah AT, McEwen DG, Werner S, Xu J, Ornitz DM: Fibroblast growth factor receptor (FGFR) 3. Alternative splicing in immunoglobulin-like domain III creates a receptor highly specific for acidic FGF/FGF-1. J Biol Chem 1994, 269:11620-11627.
4. Ornitz DM, Xu J, Colvin JS, McEwen DG, MacArthur CA, Coulier F, Gao G, Goldfarb M: Receptor specificity of the fibroblast growth factor family. J Biol Chem 1996, 271:15292-15297.
5. Orten-Ilarregui A, Bedford MT, Burakova T, Aarman E, Zimmer Y, Yayon A, Givol D, Lonai P: Developmental localization of the splicing alternatives of fibroblast growth factor receptor-2 (FGFR2). Dev Biol 1993, 158:475-486.
6. Peters KG, Werner S, Chen G, Williams LT: Two FGF receptor genes are differentially expressed in epithelial and mesenchymal tissues during limb formation and organogenesis in the mouse. Development 1992, 114:233-243.
7. Stark KL, McMahon JA, McMahon AP: FGFR-4, a new member of the fibroblast growth factor receptor family, expressed in the definitive endoderm and muscle lineages of the mouse. Development 1991, 113:641-651.
8. Johnson DE, Williams LT: Structural and functional diversity in the FGF receptor multigene family. Adv Cancer Res 1993, 60:1-41.
9. Klint P, Claesson-Welsh L: Signal transduction by fibroblast growth factor receptors. Front Biosci 1999, 4:D165-177.
10. Dmowski WP, Ding J, Shen J, Rana N, Fernandez BB, Braun DP: Apoptosis in endometrial glandular and stromal cells in women with and without endometriosis. Hum Reprod 2001, 16:1802-1808.
11. Eswarakumar VP, Lax I, Schlessinger J: Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev 2005, 16:139-149.
12. Taniguchi F, Harada T, Ito M, Yoshida S, Iwabe T, Tanikawa M, Terakawa N: Keratinocyte growth factor in the promotion of human choriocarcinoma cell invasion. Am J Obstet Gynecol 2000, 182:692-698.
13. Danilenco DM, Ring BD, Yanagihara D, Benson W, Wiemann B, Staines CO, Pierce GF: Keratinocyte growth factor is an important endogenous mediator of hair follicle growth, development, and differentiation. Normalization of the nu/nu follicular differentiation defect and amelioration of chemotherapy-induced alopecia. Am J Pathol 1995, 147:145-154.
14. Werner S, Weinberg W, Liao X, Peters KG, Blessing M, Yuspah SH, Weiner RL, Williams LT: Targeted expression of a dominant-negative FGF receptor mutant in the epidermis of transgenic mice reveals a role of FGF in keratinocyte organization and differentiation. EMBO J 1993, 12:2635-2643.
15. Werner S: Keratinocyte growth factor: a unique player in epithelial repair processes. Cytokine Growth Factor Rev 1998, 9:153-165.
16. Grose R, Fandl V, Werner S, Chioni AM, Jarosz M, Rudling R, Cross B, Hart IR, Dickson C: The role of fibroblast growth factor receptor 2b in skin homeostasis and cancer development. EMBO J 2007, 26:1268-1278.
17. Meyer KB, Maia AT, O'Reilly M, Tschendorff AE, Chin SF, Caldas C, Ponder BA: Allele-specific up-regulation of FGRF2 increases susceptibility to breast cancer. PLoS Biol 2008, 6:e108.
18. Jang JH, Shin KH, Park JG: Mutations in fibroblast growth factor receptor 2 and fibroblast growth factor receptor 3 genes associated with human gastric and colorectal cancers. Cancer Res 2001, 61:3541-3543.
19. Kondo T, Zheng L, Liu W, Kurebayashi J, Asa SL, Ezzat S: Epigenetically controlled fibroblast growth factor receptor 2 signaling imposes on the RAS/BRAF/mitogen-activated protein kinase
pathway to modulate thyroid cancer progression. Cancer Res 2007, 67:5461-5470.

20. Hjelmqvist PM, Wallace MG, Dejeza LC, Powell MA, Mallon MA, Davies H, Mohammad M, Furea PA, Straton MR, Trent JM, Goodfellow PJ: Frequent activating FGFR2 mutations in endometrial carcinomas parallel germline mutations associated with craniosynostosis and skeletal dysplasia syndromes. Oncogene 2007, 26:1578-1582.

21. Ricci D, Capellen D, El Marjou A, Gil-Diez-de-Medina S, Girault JM, Yoshida T, Ferry G, Tucker G, Poupon MF, Chopin D, et al.: Tumour suppressive properties of fibroblast growth factor receptor 2-IIIb in human bladder cancer. Oncogene 1999, 18:7234-7243.

22. Yasumoto H, Matsubara A, Mutaguchi K, Usui T, McKeehan WL: Restoration of fibroblast growth factor receptor2 suppresses growth and tumorigenicity of malignant human prostate carcinoma PC-3 cells. Prostate 2004, 61:236-242.

23. Easton DF, Pooley KA, Dunnim AM, Pharaoh DP, Thompson D, Ball-Praprasam VJ, et al.: The FGFR4 Gly388Arg polymorphism is associated with prostate cancer risk: a meta-analysis of case-control studies. Am J Hum Genet 2005, 77:567-574.

24. Hunter DJ, Kraft P, Cox DG, Paynter RA, Hunter D, De Vivo I: A genome-wide association study identifies novel breast cancer susceptibili-loci. Nature 2007, 447:1087-1093.

25. Hunter DJ, Kraft P, Jacobs P, Dejeza LC, Powell MA, Mallon MA, Davies H, Mohammad M, Furea PA, Straton MR, Trent JM, Goodfellow PJ: Frequent activating FGFR2 mutations in endometrial carcinomas parallel germline mutations associated with craniosynostosis and skeletal dysplasia syndromes. Oncogene 2007, 26:1578-1582.

26. Staerk S, Bange J, Pignatiello C, Conti B, Ravagnani F, Pastorino U, Dragani TA: Functional FGFR4 Gly388Arg polymorphism predicts prognosis in lung adenocarcinoma patients. J Clin Oncol 2005, 23:7307-7311.

27. Streit S, Bange J, Fehmert A, Ihler S, Issing W, Ullrich A: Involvement of the FGFR4 Arg388 allele in head and neck squamous cell carcinoma. Int J Cancer 2004, 112:213-217.

28. Thussbus M, Nährig J, Streit S, Bange J, Knier M, Kates R, Ulm K, Kiechle M, Hoefler H, Ullrich A, Harbeck N: FGFR4 Arg388 allele is associated with resistance to adjuvant therapy in primary breast cancer. J Clin Oncol 2006, 24:3747-3755.

29. Wang J, Stockton DW, Ittmann M: The fibroblast growth factor receptor-4 Arg388 allele is associated with prostate cancer initiation and progression. Clin Cancer Res 2004, 10:6169-6178.

30. Miettinen OS: Stratification by a multivariable confounder score. Am J Epidemiol 1976, 104:609-620.

31. Han J, Colditz GA, Hunter DJ: Risk factors for skin cancers: a nested case-control study within the Nurses’ Health Study. Int J Epidemiol 2006, 35:1514-1521.

32. Dausset J, Cann H, Cohen D, Lathrop M, Lalouel JM, White R: Centre d’étude du polymorphisme humain (CEPH): collaborative genetic mapping of the human genome. Genomics 1990, 5:575-577.

33. Carlson CS, Eberle MA, Rieder MJ, Y. Q, Kruglyak L, Nickerson DA: Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. Am J Hum Genet 2004, 74:106-120. Epub 2003 Dec 12 2005

34. Stram DO, Leigh Pearce C, Bretsky P, Freedman M, Hirschhorn JN, Alshuler D, Kolen LN, Henderson BE, Thomas DC: Modeling and E-M estimation of haplotype-specific relative risks from genotype data for a case-control study of unrelated individuals. Hum Hered 2003, 55:179-190.

35. Kraft P, Cox DG, Paynter RA, Hunter D, De Vivo I: Accounting for haplotype uncertainty in matched association studies: a comparison of simple and flexible techniques. Genet Epidemiol 2005, 28:261-272.

36. Gau德erman WJ, Morrison J: QUANTO 1.1: A computer program for power and sample size calculations for genetic-epidemiology studies. 2006 [http://hydra.usc.edu/hydra].

37. Han J, Colditz GA, Liu JS, Hunter DJ: Genetic variation in XPD, sun exposure, and risk of skin cancer. Cancer Epidemiol Biomarkers Prev 2005, 14:1539-1544.

38. Bikfalvi A, Klein S, Pintucci G, Rifkin DB: Biological roles of fibroblast growth factor-2. Endocr Rev 1997, 18:26-45.

39. Berking C, Takemoto R, Satyamoorthy K, Elteniss R, Herlyn M: Basic fibroblast growth factor and ultraviolet B transform melanocytes in human skin. Am J Pathol 2001, 158:943-953.

40. Ingersoll RG, Paznekas WA, Tran AK, Scott AF, Jiang G, Jabs EW: Fibroblast growth factor receptor 2 (FGFR2): genomic sequence and variations. CytoMgen Cell Genet 2001, 94:121-126.

41. Gartside MG, Chen H, Ibrahim OA, Byron SA, Curtis AV, Wellsens CL, Bengtson A, Yudit LM, Elseenkova AV, Ma J, et al.: Loss-of-function fibroblast growth factor receptor-2 mutations in melanoma. Mol Cancer Res 2009, 7:41-54.