Mandibular Primary First Molar with Single Root and Single Canal: A Rare Case Report

Tazdik G. Chowdhury¹, KM Rowank Jahan², Tasnim-A-Jannat³, Ashik Abdullah Imon⁴

¹Associate Professor and Head, Department of Paediatric Dentistry, Update Dental College and Hospital, Dhaka, Bangladesh; ²Lecturer, Department of Paediatric Dentistry, Update Dental College and Hospital, Dhaka, Bangladesh; ³Lecturer, Department of conservative dentistry & Endodontics, Update Dental College and Hospital, Dhaka, Bangladesh; ⁴Assistant Professor and Head, Department of Oral and Maxillofacial Surgery, Update Dental College and Hospital, Dhaka, Bangladesh

Abstract
An extremely uncommon tooth developmental anomaly seen such as bilateral primary mandibular first molar with a single root and single canal. Various researchers found that due to failure of invagination of HERS leads to various anomalies in root morphology. A 9 year old girl with pain on lower left side of the jaw originated from mandibular left first molar. On right side there was also presence of 84 with single root. The tooth was treated by pulpectomy followed by restoration. Due to unusual morphology, the chance of endodontic mishaps is extremely high in the search of additional canal, which can be overcome by proper knowledge of root morphology and radiographic interpretation. [Journal of National Institute of Neurosciences Bangladesh, 2020;6(1): 67-71]

Keywords: Mandibular first molar; bilateral, primary; single root; single canal

Introduction
The process of tooth eruption and root formation is a complex process¹. Mesenchymal tissue during odontogenesis helps tooth formation which is the important component of functional cranial components consisting of enamel, dentine, cementum and pulp². Dental pulp is an ectomesenchymal origin consisting of soft gelatinous connective tissue which is surrounded by bilayered mineralized tissue². There is a link between root development and tooth eruption³. After crown formation, the meeting point of inner and outer epithelium called “zone of reflexion or cervical loop”, the cell continue to divide and forms a double layer of cells as Hertwig’s Epithelial root sheath⁴. It starts formation of root portion. Root canals are larger in deciduous teeth as enamel and dentine is thinner and there is no clear demarcation between pulp chamber and root canals⁵,⁶. The HERS usually grows down and surrounds the entire dental papilla and the most apical portion of dental papilla represents the future apical foramen. Two tongue-like projections grow inward towards the center from the lateral walls of root sheath and finally when projections merge in the center, two rooted molar is develop. Three rooted molar develops with the three projections grow from the root sheath, dividing the developing root structure into three portions⁷. Thus failure of invagination of HERS leads to various anomalies in root morphology⁸. The success of root canal therapy is more challenging in anatomically variant root canal configuration in primary molars⁹. Thus proper knowledge of root morphology is necessary for communication,
diagnosis and treatment planning. Single-rooted primary mandibular first molar is a very uncommon morphologic variation and few cases are noted. In routine dental practice, we use periapical radiograph to evaluate the root canal configuration but these techniques have some limitations that compromise their reliability. Now-a-days computed tomography (CT) scan has been implemented to evaluate the three-dimensional anatomy of teeth and root canal morphology as well as unusual morphology of root canals. In this article, we had present a rare case of bilateral mandibular primary first molar with single root and single canal.

Case Presentation
A 9 year old girl who had met with pain on lower left side of the jaw for last 3 days, before she visited the Department of Paediatric Dentistry, Update Dental College & Hospital, Dhaka, Bangladesh for the treatment of left 1st molar. Patient had met with secondary caries and she has History of taking Restoration one month before. She had chief complaint of pain, which was mild in nature, persistent and had started three days back. The patient was rated as No.4 on Frankl’s Behavior Rating Scale (1962). Clinical examination with context to 74 revealed the crown size was normal with faulty restoration. We also get slight mobility of the teeth was within normal limits and depression of the tooth with digital pressure results in pain. With context to 74 and single rooted tooth with physiological resorption with presence of 34 was evident, on radiographic evaluation. On the basis of pain history and clinical examination, the case directed us as widespread inflammation of the pulp extending throughout the radicular filaments and radiologically was diagnosed as chronic irreversible pulpitis. On right side, there was also presence of 84 with single rooted and 85 with pulp therapy was found. Finally Single visit Pulpectomy was planned for the left primary mandibular first molar (74) followed by restoration, but stainless steel crown could not be given, as the parents were not keen about it. On the first appointment, after proper isolation access opening to root canal instrumentation was established by standardized technique. After working length determination (10 mm) biomechanical preparation was performed by using H- files. During working length determination two individual gutta percha was used to evaluate weather the canal type is Vertucci type IV rather than type I. Copious normal saline solution was used for irrigation of the canal throughout the biomechanical preparation. Finally obturation is done with calcium hydroxide based sealer (Metapex) in the canal to the desired length. Finally cavity is sealed with IRM. Five days later patient was recalled and temporary filling was removed and permanent restoration was done. Stainless steel crowns for the teeth could not be done as the parents did not want any further treatment.

Clinical and Radiographic Presentation

![Clinical photograph](image1)

![Initial Clinical photograph](image2)

![Initial radiograph](image3)

![Mandibular Left 1st Molar](image4)

![Mandibular Right 1st Molar](image5)
is a link between root development and tooth components consisting of enamel, dentine, cementum and forms a double layer of cells as Hertwig's reflexion or cervical loop, the cell continue to divide portion. There the three projections grow from the root sheath, morphology is necessary for communication, in anatomically variant root canal configuration in success of root canal therapy is more challenging determination (10 mm) biomechanical preparation by standardized technique. After working length given, as the parents were not keen about it. On the first appointment, after proper isolation access was diagnosed as chronic irreversible pulpitis. On radiographic evaluation. On the basis of pain history resorption with presence of 34 was evident, on complaint of pain, which was mild in nature, Restoration one month before. She had chief College & Hospital, Dhaka, Bangladesh for the use periapical Echocardiographic Characteristics of LVDD among IGT Patients Bhuiyan et al After Obturation After Restoration

Discussion
One of the important goal of paediatric dentistry is the preservation of primary teeth until eruption of permanent teeth for proper mastication, speech, aesthetics and correction of spacing. The anatomy of primary root canal have been surveyed by few researchers which are not consistent. Bagherian and colleagues found in Iranian population that two roots with four canals in four deciduous mandibular first molars Gupta et al and Hibbard et al also found same anatomy. The variations in the number of roots is shown in primary molars by various researchers. Single rooted primary mandibular first molar is extremely rare physiology which was not documented until 1973. Acherman et al and Gideon et al found out the first case in 10 year old child. It can occur unilaterally or bilaterally with frequent involvement of permanent dentition than primary dentition. It may be the cause of lack of proliferation of tooth germination from dental lamina and also some genes associated with tooth agenesis such as Msx 1 and PAX 9 have been identified. It can cause the abnormalities such as fusion of roots or deep taurodontism characterized by apical displacement of pulpal floor and vertically elongated pulp chamber. The other abnormalities associated with the odontogenic anomalies are oligodontia, hypodontia, macrodontia, dens invaginatus, idiopathic generalized short root and pyramidal molars. Taurodontism and isolated pyramidal molars is found in 48.6% of cases. The morphology of tooth development effects by several environmental factors like radiotherapy, chemotherapy and trauma. It may be associated with fusion of the root or deep

Table 1: Different Number of Roots in Primary Teeth

Author	Year	Number of cases	Description of root anomaly
Ackerman et al24	1973	One	Single rooted Deciduous molars
Gideon et al29	1991	Two	Single rooted Deciduous and permanent molars
Anne Marie.H.Ngyen et al30	1996	One	Single rooted Deciduous and permanent molars
Chow et al31	1980	One	Bilateral double rooted maxillary Deciduous canines
Kelly’s et al32	1978	One	Bilateral double rooted maxillary Deciduous canines
Krolls et al33	1980	One	Bilateral double rooted maxillary Deciduous canines
Micheal et al34	1997	Three	Double rooted maxillary left Deciduous canines. Three rooted Deciduous mandibular right first molar. Three-rooted Deciduous mandibular right first and second molars
Mochizuki et al35	2001	One	Double rooted maxillary Deciduous canines
Orhan36	2006	Three	Double rooted maxillary Deciduous canines
Mayhull et al37	1981	One	Three rooted Deciduous mandibular right first molar
Curzon et al38	1972	One	Three rooted Deciduous mandibular molars
Tratman et al39	1938	One	Three rooted Deciduous mandibular molars
Badger40	1982	One	Three-rooted mandibular first Deciduous molar
Falk et al41	1983	One	Bilateral three rooted mandibular first Deciduous molars
Acs et al42	1992	One	Three rooted Deciduous mandibular right first molar
taurodontism. In our case such findings were absent. Some added radiograph with different horizontal angulation (20-degree mesial and distal angulation) is useful in evaluation of canal morphology.

Single rooted molar can describe by different terms, such as conical, fused and pyramidal. With connected roots and two separate canals refers to fused roots and pyramidal roots refers to single enlarged root canal in a single tapping root. In our case we found a pyramidal root. Also root abnormalities are more seen in females than males, as reported in our study. Causation of pyramidal root is due to failure of HERS to encircle completely the dental papilla during vertical growth or failure of the lateral tongue like projections to form completely.

Due to unusual morphology, the chance of endodontic mishaps is extremely high in the search of additional canal which can be overcome by proper knowledge of root morphology and radiographic technique. Radiographs such as 20 degree mesial and distal projection or CT scan to access three dimensional anatomy of tooth and its canal morphology helps to minimize the errors.

Conclusion

Due to unusual morphology, the chance of endodontic mishaps is extremely high in the search of additional canal, which can be overcome by proper knowledge of root morphology and radiographic interpretation.

References

1. Jeevanandan G, Subramanian E, Muthu MS. Single rooted primary first molars. Indian J Dent Res 2012;23:104-6
2. Jana S, Ghosh C, Dey B, Roy D. Primary Mandibular First Molar with Single Root and Single Canal: A Rare Morphology- A Report of Two Cases. Int J Oral Health Med Res 2016;3(1):137-139
3. Esmaeilzadeh M, Janeshin A, Donayvi Z, Single-Rooted Primary Mandibular First Molar: Report of a Rare Morphology. Avicenna J Dent Res. 2016: e26603
4. Asamassimo PS, Fields JH, McTigue DJ, Nowak A. Pediatric dentistry: infancy through adolescence. USA: Elsevier Health Sciences; 2013
5. Goerig AC, Camp JH. Root canal treatment in primary teeth: a review. Pediatric dentistry. 1983;5(1):33-7
6. Sarker SR, Rao AP. Number of Root Canals, their shape, configuration,accessory root canals in radicular pulp morphology:A preliminary study. J Indian Soc Pedo Prev Dent 2002;20(3):93-97
7. Ten Cate’s AR. Oral histology: Development, structure, and function. 4th ed. St. Louis: Mosby; 1994:104-7.
8. Bahrololoomi Z, Ghafourifard R, Soleimani AA. Primary Mandibular First Molar with Single Root and Single Canal: A Case Report of a Rare Morphology. Journal of Dentistry, Tehran University of Medical Sciences 2014;11(3):355-360
9. Malagnino V, Gallottini L, Passariello P. Some unusual clinical cases on root anatomy of permanent maxillary molars. J Endod 1997;23(2):127-8.
10. Bahrololoomi Z, Ghafourifard R, Soleimani AA. Primary mandibular first molar with single root and single canal: a case report of a rare morphology. J Dent 2014;11(3):355-60
11. Shiglu A, Agrawal A. Permanent maxillary first molar with single root and single canal: A case report of a rare morphology. J Indian Soc Pedo Prev Dent 2010;28(2):121-5
12. GopiKrishna V, Bhargavi N, Kandaswamy D. Endodontic management of a maxillary first molar with a single root and a single canal diagnosed with the aid of spiral CT: a case re-port. J Endod 2006;32(7):687-91
13. Gupta S, Nagaveni NB, Chandranee NJ. Three rooted mandibular first primary molar: Report of three cases. Contemp Clin Dent 2012;3:S134-6
14. Meshahi M, Talei Z, Mollarverdi F, Kadk-hodazadeh M. Comparison of root canal system configuration in primary teeth. Res J Biol Sci 2010;5(7):488-91
15. Bagherian A, Kalbori KA, Sadeghi M, Mir-hosseini F, Parsiay I. An in vitro study of root and canal morphology of human deciduous molars in an Iranian population. J Oral Sci 2010;52(3):397-403
16. Gupta D, Grewal N. Root canal configuration of deciduous mandibular first molars – an in vitro study. J Indian Soc Pedo Prev Dent. 2005;23(3):134-7
17. Hibbard ED, Ireland RL. Morphology of the root canals of the primary molar teeth. J Dent Child 1957; 24:250-7
18. Demirbuga S, Sekerci AE, Dinçer AN, Cayabatmaz AM, Zorba YO. Use of cone-beam computed tomography to evaluate root and canal morphology of mandibular first and second molars in Turkish individuals. Med Oral Patol Oral Cir Bucal 2013;18(4):e737-44
19. Thakar SS, Motghare V, Prabhakar I, Shivlingesh KK, Gupta B, Gupta N. Bilateral Presence of a Single Root in Mandibular Second Molars having a Single Non-Conical Canal Configuration: A Rare Case Report. Int J Adv Health Sci 2014;1(3):31-34
20. Kamali A, Alipurianzi Z. primary molar Ectodermal dysplasia: A rare case. Sch J Dent Sci 2017; 4(3):151-153
21. Salama F.S, Anderson R.W., McKnight-Hanes C, Barenice J.T., Myers D.R.Anatomy of primary incisor and molar root canals. Pediatric Dentistir 1992; 14(2):117-118
22. Minieucchi EM, Lopes LF, Crocci AJ. Dental abnormalities in children after chemotherapy treatment for acute lymphoid leukemia. Leuk Res 2003;27:45-50
23. De Moor RJ. C-shaped root canal configuration in maxillary first molars. Int Endod J 2002;35(2):200-8.
24. Ackerman JL, Ackerman AL, Ackerman AB. Taurodont, pyramidal and fused molar roots associated with other abnormalities in a kindred. Am J Phys Anthropol 1973;38(3):681–94.
25. Jeevanandan G, Subramanian E, Muthu MS. Single-rooted primary first molars. Indian J Dent Res. 2012;23(1):104-6
26. Suyuk SL, Abdul Kadir R, Dom TN. Esthetic perception and psycho-social impact of developmental enamel defects among Malay-sian adolescents. J Oral Sci. 2004;46(4):221–6.
27. Wang Y.L., Chang H.H, Ching-I Kuo c, Chen S.K, Guo M.K., Huang G.F., Lin C.P. A study on the root canal morphology of primary molars by high-resolution computed tomography. Journal of Dental Sciences (2013) 8, 321-327
28. Bahrololoomi Z, Ghafourifard R, Soleimani A Primary Mandibular First Molar with Single Root and Single Canal: A Case Report of a Rare Morphology. J Dent (Tehran). 2014 May; 11(3): 355–360.
29. Holan G, Chosack A. Single-rooted molars in the primary and permanent dentition in two siblings: Case report. Pediatr Dent
is a link between root development and tooth components consisting of enamel, dentine, cementum. The process of tooth eruption and root formation is a part of the tooth germination, involving the three projections: dental papilla, dental bud, and dental anlage. The dental anlage gives rise to the HERS (Hartman’s epithelial rests), which are involved in the formation of the root sheath. The root sheath divides the developing root structure into three projections: the surface, the middle, and the inner. The middle projection grows from the dental papilla, the surface projection grows from the dental bud, and the inner projection grows from the dental anlage. The HERS usually grows down and surrounds the developing root structure, forming the root canal system. The success of root canal therapy is more challenging when dealing with complex root canal systems due to the presence of multiple roots and canals. The preservation of primary teeth until eruption of permanent teeth is one of the important goals of pediatric dentistry. The anatomy of primary root canal has been described in several studies, and the differences between primary and permanent teeth affect the management of endodontic cases. The radiographic evaluation of root canal anatomy is crucial for proper treatment planning. Radiographs such as 20-degree mesial and distal views can provide valuable information about root canal anatomy. The clinical examination should be performed carefully to avoid mishaps. Some added radiographs with different horizontal projections or CT scan can help in accessing three-dimensional root canal anatomy. The endodontic treatment of primary molars can be challenging due to the presence of multiple canals and roots. The obturation is done with calcium hydroxide-based gutta-percha and AH-26 sealer. The report of two cases highlights the importance of careful radiographic evaluation and thorough clinical examination in managing complex root canal systems. The canal morphology and radiographic interpretation play a crucial role in the success of root canal therapy. The persistence of endodontic mishaps is extremely high in the search of additional canals. The use of cone-beam computed tomography to evaluate root canal anatomy has been advocated. The HERS usually grows down and surrounds the developing root structure, forming the root canal system. The success of root canal therapy is more challenging when dealing with complex root canal systems due to the presence of multiple roots and canals. The preservation of primary teeth until eruption of permanent teeth is one of the important goals of pediatric dentistry. The anatomy of primary root canal has been described in several studies, and the differences between primary and permanent teeth affect the management of endodontic cases. The radiographic evaluation of root canal anatomy is crucial for proper treatment planning. Radiographs such as 20-degree mesial and distal views can provide valuable information about root canal anatomy. The clinical examination should be performed carefully to avoid mishaps. Some added radiographs with different horizontal projections or CT scan can help in accessing three-dimensional root canal anatomy. The endodontic treatment of primary molars can be challenging due to the presence of multiple canals and roots. The obturation is done with calcium hydroxide-based gutta-percha and AH-26 sealer. The report of two cases highlights the importance of careful radiographic evaluation and thorough clinical examination in managing complex root canal systems. The canal morphology and radiographic interpretation play a crucial role in the success of root canal therapy. The persistence of endodontic mishaps is extremely high in the search of additional canals. The use of cone-beam computed tomography to evaluate root canal anatomy has been advocated.