Probing the conformal Calabrese-Cardy scaling with cold atoms

J. Unmuth-Yockey1, Jin Zhang2, P. M. Preiss3, Li-Ping Yang4, S.-W. Tsai2, and Y. Meurice1

1 Department of Physics and Astronomy, The University of Iowa, Iowa City, IA 52242, USA
2 Department of Physics and Astronomy, University of California, Riverside, CA 92521, USA
3 Physikalisches Institut, Heidelberg University, 69120 Heidelberg, Germany
4 Department of Physics,Chongqing University, Chongqing 401331, China

(Dated: July 7, 2018)

We demonstrate that current experiments using cold bosonic atoms trapped in one-dimensional optical lattices and designed to measure the second-order Rényi entanglement entropy \(S_2 \), can be used to verify detailed predictions of conformal field theory (CFT) and estimate the central charge \(c \). We discuss the adiabatic preparation of the ground state at half-filling where we expect a CFT with \(c = 1 \). This can be accomplished with a very small hopping parameter \(J \), in contrast to existing studies with density one where a much larger \(J \) is needed. We provide two complementary methods to estimate and subtract the classical entropy generated by the experimental preparation and imaging processes. We compare numerical calculations for the classical \(O(2) \) model with a chemical potential on a 1+1 dimensional lattice, and the quantum Bose-Hubbard Hamiltonian implemented in the experiments. \(S_2 \) is very similar for the two models and follows closely the Calabrese-Cardy scaling, \((c/8) \ln(N) \), for \(N \) sites with open boundary conditions, provided that the large subleading corrections are taken into account.

PACS numbers: 05.10.Cc, 11.15.Ha, 11.25.Hf, 37.10.Jk, 67.85.Hj, 75.10.Hk

The concept of universality provides a unified approach to the critical behavior of lattice models studied in condensed matter, lattice gauge theory (LGT) and experimentally accessible systems of cold atoms trapped in optical lattices. Conformal field theory (CFT) [1][2] offers many interesting examples of universal behavior that can be observed for lattice models in two [3][5], three [6], and four [7][8] dimensions. Practical simulations for these models unavoidably involve a finite volume that breaks explicitly the conformal invariance. However, this symmetry breaking follows definite patterns dictated by the restoration of the symmetry at infinite volume and allows us to identify the universality class. In view of the rich collection of interesting CFTs, it would be highly desirable to study their universality classes using quantum simulations. In order to start this ambitious program, one needs a simple concrete example to demonstrate the feasibility of the idea.

In this Letter, we propose to use the setup of ongoing cold atom experiments to quantum simulate the \(O(2) \) model with a chemical potential and check the predictions of CFT for the growth of the entanglement entropy with the size of the system corresponding to the universality class of the superfluid (SF) phase. The \(O(2) \) model is an extension of the Ising model where the spin is allowed to move on a circle, making an angle \(\theta \) with respect to a direction of reference. This model can be used to describe easy plane ferromagnetism and the compactness of \(\theta \) leads to topological configurations called vortices. Their unbinding provides a prime example of a Berezinski-Kosterlitz-Thouless transition [9][10] in a way that has also been advocated to apply for gauge theories near the boundary of the conformal window [11]. When space and Euclidean time are treated isotropically, this model has important common features with models studied numerically in LGT to describe relativistic systems in the continuum limit. Quantum simulating this model and studying experimentally the CFT predictions would be a crucial first step towards applying similar methods for LGT models.

In the following, we show that these goals can be achieved by measuring the entanglement entropy of a simple Bose-Hubbard (BH) model in a very specific region for the adjustable couplings. The entanglement entropy measures the correlations between degrees of freedom in different regions of a system, is an important tool in assessing the phase structure and the finite-size scaling. For a CFT in one space and one time (1+1) dimension, the ground state entanglement entropy increases logarithmically with the spatial volume of the system and its subsystems [12][17]. Using basic CFT results, Calabrese and Cardy [14] established that the coefficient of proportionality is in general the central charge multiplied by a rational number depending on the type of entropy and the boundary conditions (CC scaling). The central charge, denoted \(c \), is of primordial importance in CFT. It characterizes the universality class and is present in a variety of physical observables [2][14].

It has been proposed to use a quantum gas microscope to study the second-order Rényi entropy \(S_2 \) of one-dimensional fermionic Hubbard chains [18][19] at half(quarter)-filling which seem consistent with \(c = 1(2) \). Recently, manipulations of small one-dimensional chains of cold bosonic \(^{87}\)Rb atoms trapped in optical lattices have allowed experimental measurements of \(S_2 \) [20][21] using a beam splitter method [22][23]. In these experiments, the SF phase is reached by increasing the hopping parameter \(J \) to values having the same order of magni-
tude as the onsite energy U. It is important to realize that in order to see a clear correspondence between the BH and $O(2)$ model, one needs $J/U \ll 1$. Some examples are given below. However, the feasibility of the measurements is restricted by the fact that very small values of J can be problematic because of disorder or finite-temperature effects. We argue that a reasonable compromise is to take $J/U \approx 0.1$. In this regime, a detailed study [24–25] shows that the finite size scaling is easier to resolve near half-filling [26].

Experimental measurements have been performed for small chains of four [20] and six [21] atoms and only slightly larger sizes are expected to be within experimental reach in the near future [27]. An important feature of S_2 with open boundary conditions [24–25] is that the subleading corrections are large and decay slowly with N_s (see Eq. (4) below). Knowing these corrections is essential to extract the leading CC scaling using N_s accessible in experiments.

The details of the connection between the $O(2)$ and BH models are discussed in [28]. The von Neumann entanglement for the isotropic model has been calculated numerically [29] using tensor Renormalization Group (TRG) methods [28, 30]. In order to connect the $O(2)$ model with quantum simulators, it is possible to take a highly anisotropic limit of the transfer matrix where the time becomes continuous and we can identify a quantum Hamiltonian [28, 31–34]:

$$\hat{H} = \frac{U}{2} \sum_x \hat{L}_x^2 - \hat{\mu} \sum_x \hat{L}_x - 2J \sum_{\langle xy \rangle} \cos(\hat{\theta}_x - \hat{\theta}_y), \quad (1)$$

with $[\hat{L}_x, e^{i\hat{\theta}_y}] = \delta_{xy} e^{i\hat{\theta}_y}$. These commutation relations can be approximated with finite integer spin [28]. In the following, we use the spin-1 and spin-2 approximations for numerical calculations. Quantum simulators involving two species of bosonic atoms have been proposed for the spin-1 approximation [28, 35]. This effort is directly related to recent attempts (for recent reviews see Refs. [32–38]) to develop quantum simulators for models studied in LGT. Note that the non-zero eigenvalues of \hat{L} come in pairs with opposite signs. When $\hat{\mu} = 0$, the sign of these eigenvalues plays no role and there is an exact invariance under the charge conjugation which implies the existence of anti-particles.

On the other hand, when $\hat{\mu}$ is large and positive, the states with negative eigenvalues play a minor role in numerical calculations. If we omit these states, we can replace \hat{L}_x by the occupation number n_x and $e^{i\hat{\theta}_x}$ by the creation operator a_x^\dagger in Eq. (1). We then obtain the simple BH Hamiltonian:

$$\hat{H} = \frac{U}{2} \sum_x n_x(n_x - 1) - J \sum_x (a_x^\dagger a_{x+1} + h.c.). \quad (2)$$

This approximate correspondence already discussed in the literature [33–35] is supported by results presented below. In the following, we focus on the region of the phase diagram where $\hat{\mu} \approx U/2 \gg J$ illustrated in Fig. 1. In this regime, the particle occupancies 0 and 1 dominate for BH (hard core limit) and there is an approximate correspondence with the spin-1/2 XX model which is integrable and has a central charge $c = 1$ [12–15].

![FIG. 1. S_2 for $O(2)$ with $N_s = 16$ and OBC. Laid over top are the BH boundaries between particle number sectors.](image)

Recent cold atom experiments [20–21] have measured the second-order Rényi entropy

$$S_2(\mathcal{A}) \equiv -\ln(\text{Tr}(\rho_\mathcal{A}^2)),$$

for a variety of subsystems \mathcal{A} and open boundary conditions (OBC). The reduced density matrix $\rho_\mathcal{A}$ is obtained by tracing over the complement of \mathcal{A}. CFT provides severe restrictions on the dependence of S_2 on the size of the system and the subsystem (14–17, 39). In the following, we restrict ourselves to systems with an even number of sites and a subsystem \mathcal{A} of size $N_s/2$. Fits of other subsystems will be discussed in (21–25). Eq. (1) displays S_2 for $N_s = 16$ as a function of J/U and the chemical potential. The lower (upper) light part is the Mott phase with particle density $\lambda = 0$ (1), and the 15 plateaus corresponding to the particle number sectors 1, 2, ..., $N_s - 1$ in the SF phase in between are visible. Its boundaries $\hat{\mu}/U = 1/2 \pm 2J/U$ at small J follow from a perturbative calculation and are consistent with Refs. [40–41] for BH at larger J. In the following, we focus on the half-filling region which is more or less horizontal in the SF region and can be reached numerically at arbitrarily small J/U.

Since existing experiments only allow a very limited number of sites, it is crucial to take into account subleading corrections. Using existing results [14–17, 39] for subsystems of size $N_s/2$, we consider the form:

$$S_2(N_s) = K + A \ln(N_s) + \frac{B \cos \left(\frac{\pi N_s}{2} \right)}{(N_s)^p} + \frac{D}{\ln^2(N_s)}, \quad (4)$$
where K, A, p, B, and D are fitting parameters. For OBC, the CC scaling predicts $A = c/8$. In order to verify this prediction, we have calculated S_2 at half-filling for $J/U = 0.1$ for the two models considered with the Density Matrix Renormalization Group (DMRG) method\footnote{24, 25} using the iTensor C++ library\footnote{44}. For the $O(2)$ model, the results were cross-checked\footnote{24, 25} with TRG methods\footnote{28, 30}.

If we use the numerical data for N_s up to 64, we obtain $A = 0.1263$ for $O(2)$ and 0.1278 for BH which is close to the CC prediction 0.125 for $c = 1$. The difference between the two models can be reduced significantly by decreasing J/U, which also brings A closer to 0.125\footnote{24, 25}. In order to test the predictive ability of the fit for smaller spatial sizes we have reduced the maximal value N_s^{\max} of N_s from 64 to smaller values, down to 12. The results for S_2 and A are shown in Fig. 2 which suggests that the estimates converge slowly to the CFT value as N_s^{\max} increases. It has also been noticed that if J/U is increased to $J/U \approx 0.3$ for BH, the sign of D changes in a way that seems almost independent of the other subleading corrections used. In this region of parameters, the periodic corrections are smaller which may facilitate the estimate of c, however the close connection with the $O(2)$ model is lost.

![Fig. 2](image-url)

FIG. 2. (top) S_2 at half-filling with OBC for $O(2)$ and BH with $J/U = 0.1$. The solid lines are the fits for BH and $O(2)$. (bottom) Values of A as a function of the maximal value of N_s used in the fit, the band represents a positive departure of 5 percent from the expected value 0.125.

We now proceed to explain the proposed experimental setup. We consider an optical lattice experiment with single-particle resolved readout and local manipulation of the optical potential, similar to Ref.\footnote{20}. In the experiment, two copies of the one-dimensional many-body state of interest are prepared in adjacent rows of an optical lattice, and global and local Rényi entropies can be measured by a beamsplitter operation implemented via a controlled tunneling operation between the two copies (Fig. 3a). The parity of the atom number in one copy after the beamsplitter operation gives access to the quantum mechanical purity\footnote{25}.

BH systems with tunable parameters U and J and well-defined particle number are realized in current experiments with one particle per site. Fig. 3b shows a proposed scheme to achieve half-filling at $J/U \approx 0.1$: N_p bosons are initialized in the Mott regime $J \ll U$, as in current experiments. A superimposed harmonic confinement as well as two sharp, confining walls separated by N_s sites ensure that the system remains in its ground state as the optical lattice depth is adiabatically reduced to achieve the desired J/U. The harmonic confinement is then removed to realize a homogeneous system with hard wall boundary conditions at half-filling. For system sizes considered here, this scheme should allow adiabatic preparation of the ground state with available experimental tools. Alternatively, techniques based on optical superlattices may be able to prepare lattice ground states at half-filling\footnote{15}.

![Fig. 3](image-url)

FIG. 3. Measuring entanglement entropy in optical lattices. a) Two copies of a quantum state $|\Psi\rangle$ interfere under a beamsplitter operation, and site-resolved number measurements reveal the local parity \hat{P} and entanglement entropy. b) Proposed state preparation for BH systems at half-filling, here for 4 atoms on 8 sites. Particles indicated by wavefunctions (blue online) are initialized in a deep optical lattice, where the local environment can be shaped via harmonic confinement and sharp features projected with a spatial light modulator. As the lattice depth is reduced, the particles delocalize but are confined by repulsive walls.

After preparing twin tubes with half-filling in their ground state and applying the beamsplitter operation, one can measure the number of particles modulo 2 at each site x of a given copy (n_c^{copy})\footnote{20}, and use the result\footnote{25}:

$$\exp(-S_2) = \text{Tr}(\rho^2_A) = \langle (-1)^{\sum_{x \in A} n^{\text{copy}}_x} \rangle ,$$ \hspace{1cm} (5)
to calculate S_2.

The probability for parity $(-1)^{n_e} = \pm 1$ is $(1 \pm \exp(-S_2))/2$. As S_2 increases, more cancellations occur and one needs to control the order of $\exp(2S_2)$ measurements to overcome the fluctuations. From Fig. 2 and assuming N_s to be less than 16 (i.e., less than 8 particles at half-filling with an entropy per particle of order 0.05), the maximal measured S_2 is less than 1.1. For N independent measurements, we find that the statistical error is

$$\sigma_{S_2} = \sqrt{(\exp(2S_2) - 1)/N}. \quad (6)$$

For the maximal value $S_2 = 1.1$, it takes about 800 measurements to reach $\sigma_{S_2} \approx 0.1$. Due to the logarithmic growth of S_2, the number of measurements only needs to increase like $N_s^{1/4}$ to maintain a desired accuracy, which is not a prohibitive growth.

In addition to the statistical errors, one needs to take into account that finite temperature as well as preparation and manipulation errors contribute a classical entropy S_{class}. Assuming that this classical entropy is linear in the number of particles in the system, it can be estimated by making use of an approximate particle-hole symmetry: near half-filling, $S_2(N_s)$ of the ground state is in good approximation symmetric in the particle number about $N_p = N_s/2$. By measuring $S_2^{\exp}(N_s)$ for a range of particle numbers in the vicinity of $N_s/2$, the excess classical entropy per particle in the experiment can be determined. Subtracting this estimate of the classical entropy from the experimentally measured S_2^{\exp} gives a corrected estimate of the ground state entanglement entropy $S_2^{\text{corr.}}$, which we compare to CFT via Eq. (4). For the system sizes considered here, deviations from an exact particle-hole symmetry are small and exhibit a regular behavior at zero and finite temperature [46]. Understanding and fitting these effects is important to get estimates of $S_2^{\text{corr.}}$ with errors less than 0.02 [47].

In order to give an idea of possible experimental outcomes, we have numerically studied the sensitivity of the fit results of Eq. (4) to statistical errors in the measured values of S_2. By repeatedly fitting synthetically generated data (SGD) with Gaussian noise on S_2 of magnitude σ_{S_2} as illustrated in Fig. 3 (left), we find that it translates into errors of the fit approximately as $\sigma_A = 3.1\sigma_{S_2}$ for a global fit of the central charge involving data up to $N_s = 16$. To reach a statistical uncertainty in A comparable to systematic errors of the order 0.02, the statistical error on σ_{S_2} has to be on the order of 0.005.

Alternatively, we can try to fit S_{class}. For this purpose, we have considered the finite temperature (T) effects for $T = 0.2J$ and $0.4J$ in Fig. 4 (left). Remarkably, these effects can be fitted by adding only one term linear in N_s. If S_{class} generated during the experiment follows this linear behavior, it may be used to determine some effective temperature. Note that the finite temperature effects become more important as we decrease J [25].

![Figure 4](image-url)

FIG. 4. S_2 at half-filling for BH with $J/U = 0.1$ (triangles, orange online) and SGD with random Gaussian fluctuations with $\sigma_{S_2} = 0.02$ (circles, blue online). (left): vs. $\ln(N_s)$ for a subsystem of size $N_s/2$ with the solid line corresponding to a fit of the SGD from Eq. (4). (right): vs. the subsystem size ℓ for $N_s = 8$; the solid line corresponds to a fit of the SGD using the formulas of Ref. [53]. Same quantities for $T = 0.2J$ (squares, red online) and $T = 0.4J$ (diamonds, cyan online).

So far we have only used the values of S_2 corresponding to a subsystem of size $N_s/2$. CFT also provides prediction for arbitrary subsystem sizes ℓ with $1 \leq \ell \leq N_s - 1$ which are described in the SM [24]. The large oscillations when ℓ is changed for $N_s = 8$ are shown in Fig. 4 (right). Finite-T effects can be fitted with a single additional term linear in ℓ [25]. Importantly, the experimental measurements of the parities at each site shown in Fig. 5 allow us to calculate S_2 for all possible subsystems without extra measurements. Estimates of c from numerical calculations at fixed N_s fits in other models have up to 20 percent errors [24, 25, 19]. Knowing S_2 for all the subsystems also allows us to calculate the mutual information [18, 20], where the S_{class} contributions cancel.

New directions should be pursued. Half-filling initial states can also be obtained by a sudden expansion. The presence of additional approximate conserved charges makes the thermalization non-trivial and interesting [50]. The possibility of revivals in the time-dependent $S_2(t)$ for time scales of the order of 200 ms for $J/U = 0.1$, a duration about 10 times longer than current experiments [21], is under study. The techniques discussed here for the bosonic case can also be applied to Fermi-Hubbard systems [13], for which optical lattice experiments with single-site resolution are rapidly becoming available [54, 57]. It would be desirable to develop specific procedures to study models with other values of c (Ising, Z_N clock, Potts) or with $O(3)$ symmetry with a chemical potential, which have a similar phase diagram [58], and could be quantum simulated [59]. More insight on conformal symmetry could be gained by studying particle number fluctuations [60, 62]. The entanglement entropy can also be calculated in pure gauge theories using standard Monte
Carlo methods [63]. Methods for calculating the entanglement entropy in the presence of fermion determinants have been designed on the lattice [64] and in the continuum [65].

In conclusion, we have shown that the simple BH model which is implemented in current experimental measurements of S_2 can be used as a quantum simulator for the classical $O(2)$ model with a chemical potential. We showed that the region of the phase diagram near half-filling and small J/U offers rich possibilities that complement the existing experiments at unity-filling and larger J/U [20, 21]. The changes in S_2 due to the size of the system or the subsystem show strong periodic oscillations which are of the same order of magnitude as the average S_2 for $N_s \leq 16$. We provided complementary methods to estimate and subtract $S_{\text{class.}}$ from $S_{\text{exp.}}$. Existing experiments could immediately confirm the periodic patterns found in the numerical calculations and fits. Accurate determination of c would require larger statistics or a suitable use of the complete information about the subsystems. Conformal symmetry connects disparate physical systems from condensed matter and LGT. While this equivalence is usually apparent in theory in the thermodynamic limit, we have shown that the basic equivalence between the BH model and the classical $O(2)$ model can already be identified in present cold-atom experiments. Our proposed method could enable the first direct verification of conformal scaling in an experimentally accessible system.

Acknowledgments. We thank M. C. Banuls, I. Bloch, I. Cirac, M. Greiner, A. Kaufman, G. Ortiz, J. Osborn, H. Pichler and P. Zoller for useful suggestions or comments. This research was supported in part by the Department of Energy under Award Numbers DOE grant DE-FG02-05ER41368, de-sc0010114 and DE-FG02-91ER40664, the NSF under grant DMR-1411345 and by the Army Research Office of the Department of Defense under Award Number W911NF-13-1-0119. L.-P. Yang was supported by Natural Science Foundation for young scientists of China (Grants No.11304404) and Research Fund for the Central Universities(No. CQDXWL-2012-Z005). P.M.P. has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 706487. Parts of the numerical calculations were done at the Argonne Leadership Computational Facilities. Y.M. thanks the Focus Group Physics with Effective Field Theories of the Institute for Advanced Study, Technische Universität München, and the workshop on “Emergent properties of space-time” at CERN for hospitality while part of this work was carried out and the Institute for Nuclear Theory for motivating this work during the workshop “Frontiers in Quantum Simulation with Cold Atoms”.

[1] A. M. Polyakov, *Gauge Fields and Strings*, Contemporary concepts in physics (Taylor & Francis, 1987) ISBN 9783718603930
[2] P. Di Francesco, P. Mathieu, and D. Sénéchal, *Conformal field theory*, Graduate texts in contemporary physics (Springer, New York, NY, 1997)
[3] A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, *Nucl. Phys. B241*, 333 (1984)
[4] D. Friedan, Z.-a. Qiu, and S. H. Shenker, *Phys. Rev. Lett.* 52, 1575 (1984)
[5] V. S. Dotsenko, *Nucl. Phys. B235*, 54 (1984)
[6] S. El-Sheik, M. F. Fazio, D. Poland, S. Rychkov, D. Simmons-Duffin, and A. Vichi, *Phys. Rev. D* 86, 025022 (Jul 2012)
[7] T. DeGrand, Phil. Trans. R. Soc. A 369, 2701 (2011), arXiv:1010.4741 [hep-lat]
[8] J. Kuti, *Proceedings, KMI International Symposium 2013 on Quest for the Origin of Particles and the Universe (KMI2013)*, PoS KMI2013, 002 (2015)
[9] V. L. Berezinskii, Soviet Journal of Experimental and Theoretical Physics 32, 493 (1971)
[10] J. M. Kosterlitz and D. J. Thouless, *Journal of Physics C Solid State Physics* 6, 1181 (Apr. 1973)
[11] D. B. Kaplan, J.-W. Lee, D. T. Son, and M. A. Stephanov, *Phys. Rev. D* 80, 125005 (2009), arXiv:0905.4752 [hep-th]
[12] G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, *Phys. Rev. Lett.* 90, 227902 (Jun. 2003), quant-ph/0211074
[13] V. E. Korepin, *Phys. Rev. Lett.* 92, 096402 (Mar 2004)
[14] P. Calabrese and J. L. Cardy, *J. Stat. Mech.* [0406, 006002] (2004), arXiv:hep-th/0405152 [hep-th]
[15] P. Calabrese and J. L. Cardy, *Int. J. Quant. Inf.* 4, 429 (2006), arXiv:quant-ph/0505193 [quant-ph]
[16] P. Calabrese, M. Camposstrini, F. Essler, and B. Nienhuis, *Phys. Rev. Lett.* 104, 095701 (Mar 2010)
[17] J. Cardy and P. Calabrese, *Journal of Statistical Mechanics: Theory and Experiment* 2010, P04023 (2010)
[18] H. Pichler, L. Bonnes, A. J. Daley, A. M. Läuchli, and P. Zoller, *New Journal of Physics* 15, 063003 (Jun. 2013), arXiv:1302.1187 [cond-mat.quant-gas]
[19] L. Bonnes, H. Pichler, and A. M. Läuchli, *Phys. Rev. B* 88, 155103 (Oct 2013)
[20] R. Islam, R. Ma, P. M. Preiss, M. E. Tai, A. Lukin, M. Rispoli, and M. Greiner, *Nature* 528, 77 (2015)
[21] A. M. Kaufman, M. E. Tai, A. Lukin, M. Rispoli, R. Schittko, P. M. Preiss, and M. Greiner, *Science* 353, 794 (2016)
[22] C. Moura Alves and D. Jaksh, *Phys. Rev. Lett.* 93, 110501 (Sep 2004)
[23] A. J. Daley, H. Pichler, J. Schachenmayer, and P. Zoller, *Phys. Rev. Lett.* 109, 020505 (Jul 2012)
[24] J. Unmuth-Yockey, J. Zhang, L.-P. Yang, A. Bazavov, S.-W. Tsai, and Y. Meurice, “Estimating the central charge from the renyi entanglement entropy,” ArXiv-1703-xxxxx, to appear
[25] J. Unmuth-Yockey, J. Zhang, P. Preiss, L.-P. Yang, S.-W. Tsai, and Y. Meurice, see Supplemental Material at [URL to be inserted] for a discussion of choice of parameters used in the main text.
[26] For bosons, half-filling means twice more sites than particles, while for spin-1/2 fermions it means one particle
In the discussion we focus on experiments with 16 sites or less.

H. Zou, Y. Liu, C.-Y. Lai, J. Unmuth-Yockey, L.-P. Yang, A. Bazavov, Z. Y. Xie, T. Xiang, S. Chandrasekharan, S.-W. Tsai, and Y. Meurice, Phys. Rev. A 90, 063603 (Dec 2014)

L.-P. Yang, Y. Liu, H. Zou, Z. Y. Xie, and Y. Meurice, Phys. Rev. E 93, 012138 (Jan 2016)

Y. Liu, Y. Meurice, M. P. Qin, J. Unmuth-Yockey, T. Xiang, Z. Y. Xie, J. F. Yu, and H. Zou, Phys. Rev. D 88, 056005 (2013), arXiv:1307.6543 [hep-lat]

E. Fradkin and L. Susskind, Phys. Rev. D 17, 2637 (May 1978)

J. B. Kogut, Rev. Mod. Phys. 51, 659 (Oct 1979)

M. P. A. Fisher, Strong Interaction in Low Dimensions (Kluwer Academic, 2004) Chap. Duality in low dimensional quantum field theories

S. Sachdev, Quantum phase transitions, second ed. ed. (Cambridge University Press, 2011) ISBN 9780521514682

A. Bazavov, Y. Meurice, S.-W. Tsai, J. Unmuth-Yockey, and J. Zhang, Phys. Rev. D 92, 076003 (Oct 2015)

L. Tagliacozzo, A. Celli, A. Zamora, and M. Lewenstein, Annals Phys. 330, 160 (2013), arXiv:1205.0496 [cond-mat.quant-gas]

U.-J. Wiese, Annalen Phys. 525, 777 (2013), arXiv:1305.1692 [quant-ph]

E. Zohar, J. I. Cirac, and B. Reznik, Rept. Prog. Phys. 79, 014101 (2016), arXiv:1503.02312 [quant-ph]

M. Fagotti and P. Calabrese, Journal of Statistical Mechanics: Theory and Experiment 2011, P01017 (2011)

G. G. Batrouni and R. T. Scalettar, Phys. Rev. B 46, 9051 (Oct 1992)

T. D. Kühner and H. Monien, Phys. Rev. B 58, R14741 (Dec 1998)

S. Trotzky, Y.-A. Chen, I. P. McCulloch, U. Schollwöck, J. Eisert, and I. Bloch, Nat. Phys. 8, 325 (2012)

J. Cardy and C. P. Herzog, Phys.Rev.Lett. 112, 171603 (2014), arXiv:1403.0578 [hep-th]

Jin Zhang et al. , work in progress.

J. C. Xavier and F. C. Alcaraz, Phys. Rev. B 83, 214425 (Jun 2011)

L. Mazza, D. Rossini, R. Fazio, and M. Endres, New Journal of Physics 17, 013015 (2015)

H. Pichler, A. J. Daley, and P. Zoller, Phys. Rev. A 82, 063605 (Dec 2010)

A. J. Daley, Advances in Physics 63, 77 (Mar. 2014), arXiv:1405.6694 [quant-ph]

J. Schachenmayer, L. Pollet, M. Troyer, and A. J. Daley, ArXiv e-prints(Aug. 2014), arXiv:1408.1041 [cond-mat.quant-gas]

L. Vidmar, S. Langer, I. P. McCulloch, U. Schneider, U. Schollwöck, and F. Heidrich-Meisner, Phys. Rev. B 88, 235117 (Dec 2013)

E. Haller, J. Hudson, A. Kelly, D. A. Cotta, B. Peaudecerf, G. D. Bruce, and S. Kuhr, Nat. Phys. 11, 738 (2015)

A. Omran, M. Boll, T. A. Hikier, K. Kleinlein, G. Salomon, I. Bloch, and C. Gross, Phys. Rev. Lett. 115, 263001 (Dec 2015)
Supplemental Material

This Supplemental material aims to provide background calculations done for the Bose-Hubbard (BH) and O(2) model that give empirical evidence to the claims made in the main text. The main text put forward that in the model that give empirical evidence to the claims made in the main text. The main text was done with open boundary conditions. In addition, all work here and in the main text, was done at half-filling. In addition, all work here and in the main text was done with open boundary conditions. However, while this is more easily realized in experiment, the second order Rényi entropy with open boundary conditions has much larger fluctuations than the von Neumann entropy (See Ref. [1]).

Here we first consider fits to the second order Rényi entanglement entropy, \(S_2\), across a range of \(J/U\) values to better understand the dependence on \(J/U\). Next we consider fits made to data across the entire range of system sizes, \(N_s\), and across all subsystem sizes, \(l\). These fits span the entire \(N_s\)-\(l\) plane and aim to explain how we decided to specifically focus on the case \(l = N_s/2\). We report the average relative error for fits to large and small systems. We mention some investigation into taking finite temperature effects into account in experiments. Finally we discuss how we used synthetic Gaussian fluctuations to simulate errors on experimental data and estimate the error that would be incurred on measuring the central charge.

In order to understand how the fits were influenced by \(J/U\), we considered fits of \(S_2\) across a range of \(J/U\) values. These fits were done with DMRG data for \(N_s = 4\) up to \(N_s = 64\). We fit the second order Rényi entanglement entropy with a subsystem size of \(l = N_s/2\) and compared the coefficient of logarithmic scaling, \(A\), between the BH and \(O(2)\) models for various finite-size correction terms. The \(A\) values as a function of \(J/U\) can be found in Fig. [2] with a correction term proportional to \(1/\ln^2(N_s)\) which is predicted by conformal field theory (CFT) [2]. We considered additional corrections like \(1/N_s\), \(1/\ln(N_s)\), etc... We found some features were robust across different functional forms for the corrections. For larger \(J/U\) the BH \(A\) values tended to decrease monotonically, while the \(O(2)\) \(A\) values seem to increase. There appears to be a crossing between the BH data and the CFT prediction around \(J/U \approx 0.35\). However at small \(J/U\), only the correction \(\propto 1/\ln^2(N_s)\) showed a tendency towards \(A_2 \approx 1/8\) as \(J/U \to 0\), a soluble limit where \(c = 1\). The choice for \(J/U = 0.1\) for quantum simulation is a nice compromise since ideally the smaller the \(J/U\) the better for the mapping between BH and \(O(2)\), however, for experimental purposes too small a value of \(J\) is inconvenient because of the associated long time scales and sensitivity to uncontrolled disorder, and finite temperature effects are larger at smaller \(J/U\).

At this point, it’s important to reiterate that calculations done in the rest of this text specifically refer to the BH model. A deeper investigation into the \(O(2)\) spin model can be found in Ref. [1].

CFT gives predictions for the scaling of the Rényi entropy as a function of subsystem size. Eq. [7] gives the leading order prediction along with a term believed to account for finite-size effects and parity oscillations [2]. Importantly, the experimental measurements of the particles at each site shown in Eq. (5) in the main text allow us to calculate \(S_2\) for all possible subsystems without extra measurements. The possibility of using these additional (but statistically correlated) results to reduce the overall statistical error on the estimate is under study.

We explored \(S_2\) as a function of system size, \(N_s\), and subsystem size, \(l\), in the BH model. As an example we have the subsystem data plotted for two different system sizes, \(N_s = 32\) and 64, in Fig. [3] From the plot one
can see that for small \(l \) and \(l \approx N_s \), the amplitudes are almost independent of \(N_s \), however near \(l \approx 12 \) the data sets depart. We attempted fits using

\[
S_n(N_s, l) = A_n \ln \left(\frac{N_s \sin \left(\frac{\pi l}{N_s} \right)}{2} \right) + B + C \frac{\cos(\pi l)}{N_s^{p_c}} \sin \left(\frac{\pi l}{N_s} \right)^{-p_n} + f_n(N_s, l)
\]

as well as including the order \(1/l \) corrections \[18\],

\[
S_n(N_s, l) = A_n \ln \left(\frac{4(N_s + 1)}{\pi} \sin \left(\frac{\pi(2l + 1)}{2(N_s + 1)} \right) \right) + B + C \frac{\cos(\pi l)}{N_s^{p_c}} \sin \left(\frac{\pi(2l + 1)}{2(N_s + 1)} \right)^{-p_n} + f_n(N_s, l)
\]

where \(f'_n \) and \(f_n \) are correction terms. We performed global fits across the entire \(N_s \times l \) plane in order to take full advantage of the data.

The largest discrepancies between the fit and the data appear at small \(N_s \), with discrepancies remaining on the boundary (small \(l \) and \(l \approx N_s \)) and lesser error near the center of the chain at larger values of \(N_s \). We then considered the removal of points from the boundary (points from small \(l \) and \(l \approx N_s \)) in the pattern shown in Fig. 7. When fitting to the entire data set we first remove a single point from the left and right (1 and \(N_s - 1 \)) and perform a fit. Starting over, we then remove a single point from \(N_s = 4 \) on both sides, but two points from all larger \(N_s \) and perform a fit. Starting yet again we remove a single point from both sides for \(N_s = 4 \), two points from both sides for \(N_s = 6 \), and three points from either side for all larger \(N_s \) and perform a fit. We continue this until only the center points from \(N_s/2 \) remain. This allows us to identify the contributions to the error from the points away from the center of the chain.

In order to measure the error on the fits we used the average relative error

\[
(\text{Relative Error})^2 = \frac{1}{N} \sum_{i=0}^{N-1} \left(\frac{y_i - f(x_i)}{y_i} \right)^2
\]

for \(N \) data points, with \(y_i \) the dependent data, \(x_i \) the independent data, and \(f \) the fit. This measure has the advantage of being dimensionless. The average relative error for two examples of \(N_s = 64 \) and 16 is found in Fig. 8. In this Figure we see for small \(N_s \) (right) that as the maximum number of points removed following the procedure above, \(n_{\text{max}}^{p_c} \), approaches \(N_s/2 - 1 \) the relative error takes a minimum. We see the optimum fit for the entire data set (left) takes place when all points except the center ones have been removed for small \(N_s \), and a “fan” of points remain for larger \(N_s \). When considering fits with \(f \) and \(f' \neq 0 \) we again tried various, typical functional forms. These included corrections \(\propto 1/N_s \), \(1/N_s^2 \), and \(1/\ln(N_s) \) as well as corrections from \[3\]. All of these corrections obtained similar relative errors.

We considered the effects of a finite temperature for a few cases on the Rényi entropy. An example of the finite temperature effects on the scaling with the system size is shown in Fig. 9. As one can see the finite temperature effects are much more pronounced for smaller \(J/U \).

To take the finite temperature effects into account it is...
FIG. 8. The average relative error versus the maximum number of points removed ($n_{r_{\max}}$) from the boundary during the fit. (left) Fitting to the entire data set, $4 \leq N_s \leq 64$, we see the optimum fit occurs when the majority of the smaller N_s data has been removed except for the center points. However a “fan” of data remains for the larger N_s data. (right) Fitting data such that $4 \leq N_s \leq 16$. From this we see the optimum fit occurs particularly at $l = N_s/2$.

FIG. 9. The second order Rényi entropy, S_2, as a function of the logarithm of system size with a finite temperature and $l = N_s/2$. Here $U = 1$ and $T = 0.04$ is shown. The lines through the data points are fits using Eq. 7 with one addition term linear in the system size. The $J = 0.05$ data used sampling methods however the errors are smaller than the markers.

FIG. 10. (top-left) S_2 with open boundary conditions at $T = 0$ (orange triangles online) and the same data with added Gaussian fluctuations (blue circles online) as a function of $\ln[N_s]$ with a fit to the fluctuating data. (top-right) S_2 with open boundary conditions as a function of subsystem size for a fixed system size of $N_s = 8$. (bottom-left) The probability distribution for A values extracted from fits to fluctuating data. This distribution was built from 10,000 “experiments”. (bottom-right) The error on the mean A values extracted from fits to the fluctuating data versus the error on S_2. The blue circles are the data, while the solid line is a linear fit with slope ≈ 3.1.

enough to add a term linear in l or N_s, for the subsystem or system scaling respectively. The fits in Fig. 9 and those used in the main text were done similarly, using Eq. 7 with an additional linear term.

It is possible to investigate the influence of statistical fluctuations of the pure $T = 0$, S_2 data. This can be accomplished by adding Gaussian fluctuations drawn from a distribution with a specified σ_{S_2}. This synthetic data mimics the actual experimental results under the assumption that the error associated with each data point is the same regardless of system size or subsystem size. By running many “experiments” one can see, approximately, how many measurements are needed for a given single experiment to obtain acceptable results.

To do this, one takes the pure, $T = 0$ data and adds Gaussian noise with σ_{S_2} to the data and then fits the data to the desired functional fit. One does this many times and bins the fit parameters to obtain a histogram of the fit parameters for many experiments. With the histogram one can extract σ_A, the error on the measurement of the central charge. In addition one can establish the relationship between σ_{S_2} and σ_A to understand the size of the errors necessary on S_2 to obtain reliable estimates of c. In Fig. 10 one can see how the addition of Gaussian fluctuations modifies the data and the estimates of c. Using the distribution of A values obtained from the fits we can extract σ_A. In addition we can repeat this again for a different σ_{S_2}. By doing this we find an approximately linear relationship between σ_A and σ_{S_2}, such that $\sigma_A \approx 3.1 \sigma_{S_2}$. For a systematic error of 0.02 on the measurement of A, the uncertainty in S_2 must be approximately 0.006. This gives an estimate on the number of measurements necessary, assuming a maximum entropy of 1.1. Using Eq. (6) in the main text we find on the order of 193,000 measurements.
[1] J. Unmuth-Yockey, J. Zhang, L.-P. Yang, A. Bazavov, S.-W. Tsai, and Y. Meurice, “Estimating the central charge from the renyi entanglement entropy,” Arxiv-1703-xxxxx, to appear.

[2] J. Cardy and P. Calabrese, Journal of Statistical Mechanics: Theory and Experiment 2010, P04023 (2010).

[3] J. C. Xavier and F. C. Alcaraz, Phys. Rev. B 83, 214425 (2011).

[4] J. C. Xavier and F. C. Alcaraz, Phys. Rev. B 85, 024418 (2012).