Design analysis of raw materials inventory on TC1118 cloth products with JIT approach

E Rimawan¹, U Mardono¹²*, O Kustiadi¹, M A Lutfi¹ and I Saraswati³
¹ Departement of Industrial Engineering, University of Mercu Buana, Jakarta, Indonesia.
² Departement of Mechanical Engineering, University of Sultan Ageng Tirtayasa, Banten, Indonesia
³ Departement of Electrical Engineering, University of Sultan Ageng Tirtayasa, Banten, Indonesia
*Email: u_mardono@yahoo.co.id

Abstract. Control of inventory of raw materials becomes an important part of the manufacturing process. By controlling good raw materials will reduce storage costs in warehouses, increase productivity and profits of the company. In this paper use quantitative methods that will result in the calculation of the most efficient order quantity to increase the productivity. Based on the just-time approach, control of raw material inventory is done by planning the purchase of raw materials by using the right delivery system so as to produce short delivery time. By ordering one day and added with proper inventory calculation will result in a reorder point in accordance with the company's production capacity and able to reduce the storage of raw materials in the warehouse. The impact of the implementation of just in time, storage of raw materials in the warehouse becomes less and reduce inventory cost by 9.4%, so as to generate greater profit the company and can make savings of Rp7,581,515,237.

1. Introduction
PT. XYZ is a textile company around the world competing in the field of textiles. The resulting products include woven and colour cloths. Where the resulting product has so many requests from local or international customers. With variations of products produced in roll form willing to compete as a supplier of high quality cloths. Inventory control at PT. XYZ there is a problem with the amount of raw material inventory stored in the warehouse, because demand is not well designed, the amount of product demand is not commensurate with the amount of raw material purchased. This problem is based on inventory data that has unstable stocks in the period from January 2017 to December 2017.

From the data shows that the quantity of demand and quantity of TC1118 raw materials is unstable, causing the amount of stocks to rise and fall and increase inventory costs. And there is also the problem of the number of requests that are not in accordance with the amount of inventory because the inventory design system used cannot adjust the number of customer requests with the amount of inventory contained in the warehouse [1]. Therefore, this study aims to apply good raw material control and can reduce inventory costs at PT. XYZ.
2. Literature Review

2.1. Inventory

Inventory is also an idle source waiting for further processing [2]. The next process is in the form of shopping activities on manufacturing systems, marketing activities of the circulatory system or activities of use in household systems [3]. The need for inventory control systems basically arises because of problems that may be faced by companies in the form of excess or shortage of inventory [4].

2.2. Just in Time

Just in Time is a sustainable and compelling problem-solving philosophy that supports lean production. Lean production (Lean Production) supplies customers exactly as customers want when customers want it, without wastage, through continuous improvement according to [5] quoted in [6].

The basic concept of JIT is to produce the required product, at the right time or required by the customer, in an appropriate quantity with the customer, on every process in the production system, in the most economical or most efficient way through waste elimination and continuous improvement, according to [7].

3. Methodology

The type of this research is Quantitative Research, because this research is a research on a company in the field of textile is precisely about the control of raw materials inventory by the method of Just In Time (JIT) in the form of raw material inventory data in one year more shaped numbers than the narrative [7]. The problems discussed only on the process of controlling the raw materials TC1118 so that will get the solution of the inventory problems in the form of good planning and minimum cost.

3.1. Input data

In this study, there are some data to be entered for processing based on the working procedure of the method used. User demand data for TC1118 Cloth in the period from January 2017 to December 2017 will be description at Table 1.

Month	Demand	Unit
Jan-17	306,363	YARD
Feb-17	199,906	YARD
Mar-17	262,070	YARD
Apr-17	100,056	YARD
May-17	200,469	YARD
Jun-17	156,000	YARD
Jul-17	150,509	YARD
Aug-17	236,395	YARD
Sep-17	205,942	YARD
Oct-17	289,308	YARD
Nov-17	248,926	YARD
Dec-17	100,123	YARD

After the request data, there is a raw material requirement for each product produced, Table 2 is the material requirements data for the TC1118 Cloth product.

Level	Component	Summary	Unit	Source
0	Fabric TC1118	1	Yard	Made
1	Fabric Gray TC1118	1	Yard	Buy
1	Textile Dyes Colour	0.025	Kg	Buy
1	Alkali Profix RE	0.2	Kg	Buy
3.2. Just In time method

Based on the system of Just In Time that inventory will follow the amount of usage to be produced as needed [8] quoted in [6], therefore an inventory plan is made based on the assumption of safety stock of 15% of the daily requirement of each raw material.

Month	Fabric Grey	Textile Dyes	Alkali Profix
Jan-18	231052	5776	46210
Feb-18	227013	5675	45403
Mar-18	222974	5574	44595
Apr-18	218936	5473	43787
May-18	214897	5372	42979
Jun-18	210858	5271	42172
Jul-18	206820	5170	41364
Aug-18	202781	5070	40556
Sep-18	198742	4969	39748
Oct-18	194703	4868	38941
Nov-18	190665	4767	38133
Dec-18	186626	4666	37325

Based on the above table it can be calculated inventory planning by using the ROP (Re Order Point) method against one of every requirement of raw material to fulfil the production of TC1118 product. Here is an example of Re Order Point calculation for the material of Gray Cloth TC1118:

- Usage for one year = \(\sum Y = 2506067 \) yard
- Usage for one month = \(\frac{\sum Y}{\sum n} = 208839 \) yard
- Usage for one day = \(\frac{\sum Y}{\text{the number of working days a month}} = \frac{208839}{25} = 8354 \) yard
- Use during Lead Time = \(\frac{\text{Usage for one day}}{\text{lead time}} = \frac{8354}{1} = 8354 \) yard
- The number of shipments for one year = \(\frac{\sum Y}{\text{Usage for one day}} = \frac{2506067}{8354} = 300 \) time shipment
- Safety Stock = 15% of raw materials per day = 1253
- ROP = Use during Lead Time + Safety Stock = 8354 + 1253 = 9607 yard

Table 4. Reorder Point Fabric Grey 1118.

Fabric Gray TC1118	
Usage for one year	2506067
Usage for one month	208839
Usage for one day	8354
Use during Lead Time	8354
The number of shipments for one year	300
Safety Stock	1253
Re Order Point	9607
4. Result and Discussion
Based on the result of forecasting and the result of verification by using Moving Range map then obtained Master Production Schedule for TC1118 Cloth production in 2018 can be represented at Table 5.

Table 5. Master Production Schedule.

Period	Fabric TC1118	Textile Dyes Colour	Alkali Profix RE
Jan-18	231052	5776	46210
Feb-18	227013	5675	45403
Mar-18	222974	5574	44595
Apr-18	218936	5473	43787
May-18	214897	5372	42979
Jun-18	210858	5271	42172
Jul-18	206820	5170	41364
Aug-18	202781	5070	40556
Sep-18	198742	4969	39748
Oct-18	194703	4868	38941
Nov-18	190665	4767	38133
Dec-18	186626	4666	37325
Quantities	1	0.025	0.2
Table 8. Holding Cost.

Material	Holding Summary	Hold Cost	Holding Cost
Cloth TC1118	375910	Rp 1,150	Rp 432,296,500
Textile Dyes Colour	9398	Rp 5,135	Rp 48,258,730
Alkali Profix RE	75182	Rp 825	Rp 62,025,150
Holding Cost Summary			**Rp 542,580,380**

Based on table 6. to 8. the results obtained from the calculation of the amount of purchase costs, ordering costs, and storage costs by using inventory control methods just in time, to compare with the amount of costs by the method used by the company.

PT. XYZ is an industrial company engaged in the manufacture of textile products. PT. XYZ in the form of Cloths and yarns for use as a Cloth-making material and others. In this study focused on producer of gray cloth TC1118 made from gray Cloth, alkali profix RE, and textile dyes colour. Year 2018, PT. XYZ plans and produces TC1118 Cloth production of 2506607 bale. The JIT inventory system seeks to purchase raw material inventory in accordance with the quantity required by the production so that there is no waste of raw material purchases. In the early stages, the planning of raw material purchase must be adjusted to the production target so that it will not exceed the purchase of raw material inventory.

Table 9. Raw Material Purchase Plan Using Just In Time Approach At PT. XYZ.

Material	Usage for one day	Safety Stock	ROP
Fabric Grey TC1118	8354	1253	9607
Textile Dyes Colour	209	31	240
Alkali Profix RE	1671	251	1921

Based on the just-time approach above the table on the control of raw material inventory at PT. XYZ is done by planning the purchase of raw materials by using the right delivery system so as to produce short delivery time. By ordering one day and added with proper inventory calculation will result in a reorder point in accordance with the company’s production capacity and able to reduce the storage of raw materials in the warehouse.

The total inventory cost calculation is done by summing up the purchase cost, ordering cost, and storage cost. The total inventory cost for the condition applied by the company and the conditions of the just-in-time implementation are presented in Table 10. The difference between the total inventory cost between the conditions applied by the company and the condition of the application of just in time is the total amount of savings that can be made by the company.

Table 10. Cost Comparison Of The Applied Companies With A Just In Time System Approach.

Inventory Cost	Current (Rupiah)	Just In Time (Rupiah)	Saving (Rupiah)
Purchase Cost	Rp 79,026,227,300	Rp 72,343,915,900	Rp 6,682,311,400
Order Cost	Rp 341,280	Rp 4,266,000	-Rp 3,924,720
Hold Cost	Rp 1,445,708,937	Rp 542,580,380	Rp 903,128,557
Total	Rp 80,472,277,517	Rp 72,890,762,280	Rp 7,581,515,237
5. Conclusion
Based on research that has been done on the planning and control of raw materials by using the method just in time it can be generated conclusion as follows, Storage of raw materials in the warehouse becomes less because by using the system just in time raw materials ordered directly manufactured so as to minimize the amount of inventory storage and reduce inventory cost by 9.4%. Company productivity increases with the short lead time of the company and the minimum amount of inventory stored in the warehouse, so as to generate greater profit and the company can make savings of Rp 7,581,515,237.

6. References
[1] Ristono A 2008 Sistem Produksi Tepat Waktu (Yogyakarta: Graha Ilmu)
[2] Susanti L, Machfud, and Hasbullah R 2015 Jurnal Aplikasi Bisnis dan Manajemen 1 2
[3] Suswardji E, Eman, and Ratnaningsih R 2012 Jurnal Manajemen 10 1
[4] Nasution A H and Prasetyawan Y 2008 Perencanaan dan Pengendalian Produksi (Yogyakarta: Graha Ilmu)
[5] Adnan A N, Ahmed, Noriah and Hayati N 2013 Industrial Engineering Letters 3 6
[6] Firmansyah S and Dharmayanti D 2012 Jurnal Komputer dan Informatika 1 1
[7] Kootanaee A J, Babu N, and Talari H F 2013 International Journal Of Economics 1 2
[8] Diaz A P and Retnani E D 2015 Jurnal Ilmu dan Riset Akuntansi 4 10