Thoracoscopic segmentectomy versus lobectomy: A propensity score–matched analysis

Julio Sesma, MD, Sergio Bolufer, MD, PhD, Antonio García-Valentín, MD, PhD, Raúl Embún, MD, PhD, Iker Javier López, MD, PhD, Nicolás Moreno-Mata, MD, PhD, Unai Jiménez, MD, Florentino Hernando Trancho, MD, PhD, Antonio Eduardo Martín-Ucier, MD, and Juana Gallar, MD, PhD, the Spanish Video-Assisted Thoracic Surgery Group

ABSTRACT

Objectives: The aim of this study is to compare the postoperative complications, perioperative course, and survival among patients from the multicentric Spanish Video-assisted Thoracic Surgery Group database who received video-assisted thoracic surgery lobectomy or video-assisted thoracic surgery anatomic segmentectomy.

Methods: From December 2016 to March 2018, a total of 2250 patients were collected from 33 centers. Overall analysis (video-assisted thoracic surgery lobectomy = 2070; video-assisted thoracic surgery anatomic segmentectomy = 180) and propensity score–matched adjusted analysis (video-assisted thoracic surgery lobectomy = 97; video-assisted thoracic surgery anatomic segmentectomy = 97) were performed to compare postoperative results. Kaplan–Meier and competing risks method were used to compare survival.

Results: In the overall analysis, video-assisted thoracic surgery anatomic segmentectomy showed a lower incidence of respiratory complications (relative risk, 0.56; confidence interval, 0.37–0.83; P = .002), lower postoperative prolonged air leak (relative risk, 0.42; 95% confidence interval, 0.23–0.78; P = .003), and shorter median postoperative stay (4.8 vs 6.2 days; P = .004) than video-assisted thoracic surgery lobectomy. After propensity score–matched analysis, prolonged air leak remained significantly lower in video-assisted thoracic surgery anatomic segmentectomy (relative risk, 0.33; 95% confidence interval, 0.12–0.89; P = .02). Kaplan–Meier and competing risk curves showed no differences during the 3-year follow-up (median follow-up in months: 24.4; interquartile range, 20.8–28.3) in terms of overall survival (hazard ratio, 0.73; 95% confidence interval, 0.45–1.17; P = .2), tumor progression–related mortality (subdistribution hazard ratio, 0.41; 95% confidence interval, 0.11–1.57; P = .2), and disease-free survival (subdistribution hazard ratio, 0.73; 95% confidence interval, 0.35–1.51; P = .4) between groups.

Conclusions: Video-assisted thoracic surgery segmentectomy showed results similar to lobectomy in terms of postoperative outcomes and midterm survival. In addition, a lower incidence of prolonged air leak was found in patients who underwent video-assisted thoracic surgery anatomic segmentectomy. (JTCVS Open 2022;9:268-78)
Parenchymal-sparing resections could be important in patients with small pulmonary lesions, decreased pulmonary reserve, poor performance, or previous lung resections.1-3 Over time, improvements in imaging and wider use of screening have allowed earlier detection of treatable lung lesions.7 As video-assisted thoracic surgery (VATS) continues to expand, a special interest in thoracoscopic sublobar procedures has naturally arisen among thoracic surgeons.5-8 There are still few and limited studies that compare the postoperative outcomes of VATS anatomic segmentectomy versus VATS lobectomy.9-13 The main advantage previously described is the value of lung preservation after segmentectomy but at the cost of prolonged air leaks.9,10 This study aims to compare the postoperative outcomes and midterm survival between VATS anatomic segmentectomy and lobectomy in 2250 patients from the prospective multicentric Spanish Video-assisted Thoracic Surgery Group database.

MATERIALS AND METHODS

Patients
In 2016, the Spanish Society of Thoracic Surgery developed a prospective multicentric database with the participation of 33 certified Spanish thoracic surgery centers, all of them members of the Spanish Video-assisted Thoracic Surgery Group.14 This project was approved by the ethics committees of all the participating centers, and informed consent was obtained from the recruited patients to use their clinical data for scientific purposes (PI15/0072, 20/05/2015). Each center included all consecutive patients undergoing VATS anatomic lung resections from December 20, 2016, to March 20, 2018. Inclusion criteria were patients aged more than 18 years undergoing VATS anatomic lung resections (lobectomy or segmentectomy). Wedge resections, bilateral procedures, pneumonectomies, bilobectomies, non-VATS interventions, and those VATS procedures that required conversion to thoracotomy were excluded. Patients were then included in the VATS lobectomy group (VLG) or the VATS anatomic segmentectomy group (VASG).

Surgical Technique
VATS cases were defined as the absence of rib separation (regardless number of incisions) and the visualization performed via the optic system alone (Video 1). Anatomic segmentectomy was defined as any sublobar resection following the intersegmental plane with individual division of arterial, venous, and bronchial branches from the involved segment. In lung cancer cases, lymphadenectomy was performed by sampling or systematic lymph node dissection.15

Descriptive, Explicative, and Outcome Variables
All descriptive and outcome variables were adapted from the standardization documents of the Society of Thoracic Surgeons and the European Society of Thoracic Surgeons.16 Cases of postoperative morbidity and mortality included those occurring during the first 30 days after surgery. Two composite dependent variables were defined: Severe complications included death or any complication considered IIIb or worse in the Clavien-Dindo classification,17 and respiratory complications were defined as the presence of any respiratory complication listed in Table 1. In a 3-year follow-up, overall survival, tumor-progression survival, and disease-free survival were also evaluated. The explanatory predictive variable was the type of VATS resection (anatomic segmentectomy vs lobectomy).

Patients’ Follow-up
Patients’ follow-up included computed tomography every 3 months for the first year, every 6 months for second year, and yearly thereafter.

Statistical Analysis
Data were processed and explored. Variables with more than 10% missing values were deleted. For descriptive analysis, continuous variables were tested for normal distribution (Shapiro–Wilk test) and homoscedasticity (Levene test). Normally distributed variables were reported as mean and standard deviation, and non-normal variables were reported as median and interquartile range (IQR). Mean differences were assessed with a t test. Categorical variables were reported as absolute (count) and relative (percentage) frequencies and compared with a chi-square test. Dependent variables were postoperative complications and perioperative course (Table 1). The remaining descriptive variables were considered for statistical adjustment. An unadjusted analysis was performed for outcome variables. Risk ratio
was used as association measure for categorical variables. Continuous and multivariate variables were tested for mean or frequency differences. For adjusted analysis, a propensity score–matched 1:1 sample was selected using logistic regression with the nearest neighbor method and a caliper of 0.1. All descriptive variables showing significant differences between groups was included in the model. Baseline characteristics were checked again in the matched sample. A risk ratio confidence interval (CI) excluded the value one. Survival analysis was performed with the resulting groups after propensity matching. For the univariate analysis of survival, the Kaplan–Meier method was used. Global survival curves were compared with log-rank test. Mortality by a specific cause and recurrences were analyzed by competing risks method because other-cause mortality is a competing risk for relapse and disease-related mortality. Survival between groups was assessed with the Gray test. Stata 14 Statistical Software: Release 14 (StataCorp LP) was used for the analysis.

RESULTS

The analysis identified 2070 patients in the VLG, 1404 male and 666 female, with a median age of 66 years (IQR, 59-73); and 180 patients in the VASG, 124 male and 56 female, with a median age of 67 years (IQR, 59-74).

Overall Results

Preoperatively (Table 2), the VLG showed less frequency of previous thoracic surgery (4.7% vs 10%; $P = .001$), previous oncological history (37.8% vs 49.4%; $P < .001$), and better predicted postoperative diffusion capacity for carbon monoxide (72.9% vs 65.7%; $P = .001$), whereas the VASG exhibited better predicted postoperative forced expiratory volume in 1 second (75.2% vs 72.2%; $P = .001$). Upper lobectomies were the most frequent procedures in the VLG,

TABLE 1. Unadjusted analysis of results

Severe complications*
Postoperative mortality
Clavien–Dindo IIIb
Clavien–Dindo IVa
Clavien–Dindo IVb
Respiratory complications
Prolonged intubation
Reintubation
Prolonged air leak (>5 d)
Pleural effusion/pneumothorax
Atelectasis
Pneumonia
ARDS
Bronchopleural fistula
Empyema
Chylothorax
Pulmonary thromboembolism
Other respiratory complications
Reintervention
Wound infection
Cardiovascular complications
Blood transfusion
Other complications

Perioperative outcomes

Type of care	Surgical time (min)	180	177	3.7	-6.5 to 13.9	.47
Basic care	278 (13.4%)	20	11.1%			.32
Intermediate care	668 (32.3%)	70	38.9%			
Intensive care unit	1123 (54.3%)	90	50.0%			
Intraoperative death	1 (0.1%)	0	0			.76
Postoperative stay (d)	6.2	4.8	1.4	0.43-2.31	.904	
Readmission	109 (5.5%)	6 (3.5%)	0.64	0.28-1.43	.26	
Intermediate care or ICU readmission	69 (3.3%)	7 (3.9%)	1.17	0.54-2.50	.69	
TABLE 2. Patient demographics and baseline characteristics

Variables: Median (IQR) or No. (%)	VLG (N = 2070)	VASG (N = 180)	P value
Age (y)	66 (59, 73)	67 (59, 74)	.9678
Sex (male)	1404 (67.8%)	124 (68.9%)	.77
BMI (kg/m²)	26.6 (23.7, 29.7)	26.6 (24.2, 29.7)	.65
Smokers (current or ex-smokers)	1707 (82.5%)	136 (75.5%)	.04
Previous thoracic surgery			
Ipsilateral	96 (4.7%)	18 (10.0%)	.001
Contralateral	32 (1.6%)	4 (2.2%)	
Bilateral	53 (2.6%)	14 (7.8%)	
Previous oncological disease			<.001
Previous lung cancer	53 (2.9%)	14 (11.1%)	<.001
Predicted postoperative FEV1 (%)	72.2 (61.2, 84.5)	75.2 (62.6, 90.9)	.002
Predicted postoperative DLCO (%)	65.7 (54.7, 78.1)	72.9 (59.9, 85.9)	.001
Diagnosis			.001
Lung carcinoma	1819 (87.9%)	126 (70.0%)	
Lung metastases	141 (6.8%)	31 (17.2%)	
Other	110 (5.3%)	23 (12.8%)	
Pathologic stage			<.001
0	14 (0.8%)	5 (4.0%)	
I	1178 (56.9%)	101 (56.1%)	
II	344 (16.6%)	8 (4.4%)	
III	216 (10.4%)	7 (3.9%)	
IV	27 (1.3%)	3 (1.7%)	
Tumor location			<.001
Central	501 (27.6%)	15 (11.9%)	
Peripheral	1317 (72.4%)	111 (88.10%)	
ASA			.57
I	50 (2.4%)	5 (2.8%)	
II	907 (43.9%)	70 (38.9%)	
III	1066 (51.6%)	102 (56.7%)	
IV	44 (2.1%)	3 (1.7%)	
Hemithorax			<.001
Right	1302 (62.9%)	54 (30.0%)	
Left	768 (37.1%)	126 (70.0%)	
No. of incisions			<.001
1	176 (8.5%)	34 (18.9%)	
2	1349 (65.2%)	114 (63.3%)	
Multiportal (≥3)	545 (26.3%)	32 (17.8%)	
Lobes or segments resected			N/A
Right upper lobectomy	2070 (100.0%)	180 (100.0%)	
Middle lobectomy	775 (36.6%)		
Right lower lobectomy	393 (19.0%)		
Left upper lobectomy	444 (21.5%)		
Left lower lobectomy	326 (15.8%)		
S1		15 (8.3%)	
S2		9 (5.0%)	
S3		8 (4.4%)	
S6		31 (17.2%)	
Basal pyramid		10 (5.6%)	
Nonbasal pyramid lower segmentectomies (S7, S8, S9, S10 or combination)			
S1 + S2		5 (2.8%)	
Left S1 + S2 + S3		5 (2.8%)	
Left S4 + S5		59 (32.8%)	
Other combination		24 (13.3%)	

IQR, Interquartile range; VLG, VATS lobectomy group; VASG, VATS anatomic segmentectomy group; BMI, body mass index; FEV1, forced expiratory volume in 1 second; DLCO, diffusing capacity for carbon monoxide; ASA, American Society of Anesthesiologists; N/A, not applicable.
Variables	VLG (N = 97)	VASG (N = 97)	P value
Age (y)	67 (61, 72)	69 (61, 74)	.5998
Sex (male)	97 (62.9%)	97 (66.0%)	.653
BMI (kg/m²)	27.7 (25.0, 30.8)	26.7 (24.2, 30.0)	.1521
Smokers (current or ex-smoker)	82 (84.5%)	81 (83.5%)	.957
Previous thoracic surgery			.747
No	86 (88.9%)	88 (90.7%)	
Ipsilateral	3 (3.1%)	2 (2.1%)	
Contralateral	7 (7.2%)	7 (7.2%)	
Bilateral	1 (1.0%)	0	
Previous oncological disease	30 (38.1%)	41 (42.3%)	.558
Predicted postoperative FEV1 (%)	75.9 (63.4, 86.8)	72.47 (59.7, 86.8)	.8019
Predicted postoperative DLCO (%)	70.7 (61.6, 82.5)	73.1 (56.4, 85)	.90
Diagnosis			1
Lung carcinoma	97 (100%)	97 (100%)	
Histology			.5
Adenocarcinoma	63 (64.9%)	55 (56.7%)	
Epidermoid	22 (22.7%)	26 (26.8%)	
Others	12 (12.4%)	16 (16.5%)	
Tumor size (mm)	17 (12, 25)	15 (12, 20)	.09
Pathologic stage			.97
0	5 (5.2%)	4 (4.1%)	
IAI	15 (15.5%)	16 (16.5%)	
IA2	38 (39.2%)	41 (42.3%)	
IA3	6 (6.2%)	9 (9.3%)	
IB	12 (12.4%)	13 (13.4%)	
IIA	1 (1.0%)	1 (1.0%)	
IIB	10 (10.3%)	5 (5.6%)	
IIIA	8 (8.3%)	6 (6.2%)	
IIIB	1 (1.0%)	1 (1.0%)	
IVB	1 (1.0%)	1 (1.0%)	
Lymph nodes resected	6 (4, 10)	4 (2.5, 8)	.001
Hilar-mediastinal* stations resected	3 (3, 4)	3 (2, 3)	.01
Patients with pathological hilar-mediastinal lymph node involvement	11 (11.3%)	9 (9.3%)	.22
Patients with pathological Intrapulmonary lymph node involvement	4 (4.1%)	2 (2.1%)	.407
Previous lung cancer	9 (9.3%)	8 (8.3%)	.8
ASA			.741
I	2 (2.1%)	1 (1.03%)	
II	41 (42.3%)	35 (36.1%)	
III	52 (53.6%)	59 (60.8%)	
IV	2 (2.1%)	2 (2.1%)	
Hemithorax			.869
Right	24 (24.7%)	25 (25.8%)	
Left	73 (75.3%)	72 (74.2%)	
No. of incisions			.22
1	8 (8.3%)	16 (16.5%)	
2	66 (68.0%)	61 (62.8%)	
Multiportal (≥3)	23 (23.7%)	20 (20.6%)	

IQR, Interquartile range; VLG, VATS lobectomy group; VASG, VATS anatomic segmentectomy group; BMI, body mass index; FEV1, forced expiratory volume in 1 second; DLCO, diffusing capacity for carbon monoxide; ASA, American Society of Anesthesiologists. *Hilar-mediastinal: N2 stations or 10 station.
whereas left upper trisegmentectomy was the most frequent in the VASG. Primary lung cancer was the most frequent diagnosis in both groups but more prevalent in VLG (87.9% vs 70%; \(P = .001 \)). The majority of cases were performed by the biportal or multiportal VATS approach (91.3% of all cases) (Videos 1 and 2).

In the postoperative data analysis (Table 1), VASG showed less respiratory complications (RR, 0.56; 95% CI, 0.37-0.83; \(P = .002 \)), less postoperative prolonged air leak (RR, 0.42; 95% CI, 0.23-0.78; \(P = .003 \)), and shorter postoperative stay (4.8 vs 6.2 days; \(P = .004 \)). Severe complications were lower in VASG, but this difference did not reach statistical significance (RR, 0.63; 95% CI, 0.23-1.70; \(P = .36 \)). No other significant differences were found.

Table 4. Propensity-matched analysis of results

	VLG (97)	VASG (97)	RR/MD	95% CI	\(P \) value
Severe complications*	3 (3.1%)	3 (3.1%)	1	0.21-4.8	1
Postoperative mortality	1 (1.0%)	2 (2.1%)	2	0.18-21.7	.56
IIb	1 (1.0%)	0 (0%)	0	N/A	.31
Iva	2 (2.1%)	2 (2.1%)	1	0.14-6.96	1
Ivb	0 (0%)	0 (0%)	N/A	N/A	.56

Respiratory complications

	VLG (97)	VASG (97)	RR/MD	95% CI	\(P \) value
Prolonged intubation	0 (0%)	0 (0%)	0 (0%)	N/A	.07
Reintubation	0 (0%)	1 (1.0%)	N/A	N/A	.02
Prolonged air leak (>5 d)	16 (16.5%)	6 (6.2%)	0.38	0.15-0.92	1
Pleural effusion/pneumothorax	1 (1.0%)	1 (1.0%)	1	0.06-15.8	1
Atelectasis	2 (2.1%)	4 (4.1%)	2	0.38-10.7	.41
Pneumonia	3 (3.1%)	3 (3.1%)	1	0.21-4.8	1
ADRS	0 (0%)	0 (0%)	N/A	N/A	.56
Bronchopleural fistula	0 (0%)	0 (0%)	N/A	N/A	.56
Empyema	0 (0%)	0 (0%)	N/A	N/A	.56
Chylothorax	2 (2.1%)	1 (1.0%)	0.5	0.05-5.42	1
Pulmonary thromboembolism	0 (0%)	0 (0%)	N/A	N/A	.56
Other respiratory complications	2 (2.1%)	1 (1.0%)	0.5	0.05-5.42	1

Reintervention

	VLG (97)	VASG (97)	RR/MD	95% CI	\(P \) value
Wound infection	0 (0%)	2 (2.1%)	N/A	N/A	.07
Cardiovascular complications	6 (6.2%)	7 (7.2%)	1.17	0.41-3.35	.77
Blood transfusion	2 (2.1%)	3 (3.1%)	1.5	0.26-8.78	.65
Other complications	6 (6.2%)	6 (6.2%)	1	0.33-2.99	1

Perioperative outcomes

	VLG (97)	VASG (97)	RR/MD	95% CI	\(P \) value
Surgical time (min)	191	179	12	-6.7 to 30.8	.2
Basic care	11 (11.3%)	4 (4.1%)	3.8	0.01-27.8	1
Intermediate care	33 (34.0%)	38 (39.2%)	1.17	0.41-3.35	.77
Intensive care unit	53 (54.6%)	55 (56.7%)	1.17	0.41-3.35	.77
Intraoperative death	0 (0%)	0 (0%)	N/A	N/A	.56
Postoperative stay	5.7	5.3	0.4	-0.75 to 1.58	.49
Readmission	7 (7.2%)	6 (6.2%)	0.86	0.30-2.45	.56
Intermediate care or ICU readmission	0 (0%)	0 (0%)	N/A	N/A	.56

VLF, VATS lobectomy group; VASG, VATS anatomic segmentectomy; RR, relative risk; MD, mean difference; CI, confidence interval; N/A, not applicable; ADRS, acute respiratory distress syndrome; ICU, intensive care unit. *Severe complications: death or any complication considered IIb or superior in the Clavien-Dindo classification.

Matched Results

After propensity score–matching analysis, a sample of 97 VASG patients were 1:1 matched to 97 VLG patients (Table 3) according to the following variables: smokers, previous thoracic surgery, previous oncological disease, previous lung cancer, postoperative predicted forced expiratory volume in 1 second, postoperative predicted diffusing capacity for carbon monoxide, diagnosis, stage, tumor location, hemithorax, and number of incisions. All patients in both groups had a diagnosis of primary lung cancer, and there were no significant differences in the preoperative variables, including staging. The VLF showed a greater number of lymph nodes resected (6 [IQR, 4-10] vs 4 [IQR, 2.5-8]; \(P = .001 \)) and a greater number of hilar-mediastinal stations resected (3 [IQR, 3-4] vs 3 [IQR, 2-3]; \(P = .01 \)).
However, neither intrapulmonary (4.1% vs 2.1%; $P = .407$) nor hilar mediastinal (10.3% vs 8.3%; $P = .39$) lymph nodes involvement showed differences between groups.

After adjusted analysis (Table 4), the only postoperative difference between groups was a significantly lower incidence of prolonged air leak in the VASG (RR, 0.33; 95% CI, 0.12-0.89; $P = .02$). No other differences were found in terms of postoperative complications and perioperative outcomes between groups.

The 36-month follow-up (24.4; IQR, 20.8-28.3) time curve analysis for overall survival (HR, 0.73; 95% CI, 0.45-1.7; $P = .2$) (Figure 1), tumor progression–related survival (loco-regional or distant metastasis) (subdistribution Log-Rank test = 0.25 ($P = .62$) $HR = 0.73 (0.45-1.17) P = .2$) (Figure 1), and relapse-related mortality (Multiple Decrements) (SHR = 0.41 (0.11-1.57) $P = .2$) (Figure 2) showed no significant differences between the two groups.

FIGURE 1. Overall survival in the VASG versus VLG. CI, Confidence interval; HR, hazard ratio.

FIGURE 2. Relapse-related mortality in the VASG versus VLG. CI, Confidence interval; SHR, subdistribution hazard ratio.
hazard ratio, 0.41; 95% CI, 0.11-1.57; *P* = .2) (Figure 2), and disease-free survival (subdistribution hazard ratio, 0.73; 95% CI, 0.35-1.51; *P* = .4) (Figure 3) showed no differences between groups.

DISCUSSION

Postoperative results and midterm survival after VATS anatomic segmentectomy have been explored by different authors showing postoperative results similar to those for VATS lobectomy, but studies are mostly retrospective, focusing on patients with limited functional reserve or very small lung lesions, with occasional attempts of patient matching. Although our study is retrospective, it is characterized by a reasonably large cohort of patients (2250 VATS patients) and the application of propensity score–matching methodology. A significant postoperative finding in the present study is the lower incidence of prolonged air leak in VATS segmentectomies that have been greater in previous studies. We suspect this is due to greater apposition of the remaining lung parenchyma; however, there was no homogeneous way to construct the intersegmental plane in all centers, so future studies will be necessary to confirm this finding.

In the survival analysis, we did not find differences between groups, which is consistent with previous studies. Although there were differences in lymphadenectomy patterns, the definitive pathological lymph node involvement did not show differences between groups. Despite the inherent diversity of stages, histology, and lymphadenectomy technique of a multicentric study, midterm survival results were similar when comparing thoracoscopic anatomic segmentectomy with lobectomy (Figures 1-3). Midterm survival and recurrence were tested in 3 years of follow-up (24.4; IQR, 20.8-28.3) because the median time from surgical resection of the primary lung cancer to loco-regional recurrent disease or distant recurrence is less than 15 months.

Not limited to VATS approaches only, there are currently 2 randomized trials being conducted to compare lobectomy versus sublobar resections in terms of survival and disease-free survival: the Cancer and Leukemia Group B (140503) and the Japan Clinical Oncology Group (0802). It is hoped that the future results will provide strong, sufficient evidence to overcome the limitations not only in our study but also in the available literature. However, the issue of adopting the VATS approach for sublobar resections, even in the absence of strong randomized studies, seems to have been overcome by clinical evolution of surgical units toward noninvasive approaches.

Study Limitations

This study has several limitations. Although the entry of data was made in a prospective manner, the decision to perform each procedure was not randomized and was left up to the individual clinician’s judgment. This supposes a risk of selection bias and a lack of control of confounding factors with the need of statistical adjustment techniques. In addition, this is not an intention-to-treat analysis. Moreover, the nature of the multicenter collaboration implies that some units would be more versed in performing more...
complex or unusual segmentectomies than others. Missing is higher than 10% in the variable tumor location. We acknowledge that accurate information about the location of the tumors, peripheral versus central, might have an effect, depending on the surgeon’s experience, on having more prolonged air leaks. In addition, there was no requirement to disclose the method of lung parenchyma division, although is assumed that this was performed by the use of endo-staplers in the majority of cases.

CONCLUSIONS

VATS anatomic segmentectomy has similar postoperative results when compared with VATS lobectomy in terms of postoperative morbidity, midterm overall survival, and disease-free survival. As a newly reported finding, VATS segmentectomy decreases the risk of postoperative prolonged air leak compared with VATS lobectomy (Figure 4).

Conflict of Interest Statement

The authors reported no conflicts of interest.

The Journal policy requires editors and reviewers to disclose conflicts of interest and to decline handling or reviewing manuscripts for which they may have a conflict of interest. The editors and reviewers of this article have no conflicts of interest.

References

1. Altorki NK, Kamel MK, Narula N, Ghalay G, Nasar A, Rahouma M, et al. Anatomical segmentectomy and wedge resections are associated with comparable outcomes for patients with small cTIN0 non-small cell lung cancer. J Thorac Oncol. 2016;11:1984-92.
2. Dziedzic R, Zarek W, Marjanski T, Rudzinski P, Orłowski TM, Sawicka W, et al. Stage I non-small-cell lung cancer: long-term results of lobectomy versus sublobar resection from the polish national lung cancer registry. *Eur J Cardiothorac Surg*. 2017;52:363-9.

3. Chlouls A, Quoix E. Lung segmentectomy: does it offer a real functional benefit over lobectomy? *Eur Respir Rev*. 2017;26:146.

4. Ost DE, Jim Yeung SC, Tanoue LT, Gould MK. Clinical and organizational factors in the initial evaluation of patients with lung cancer: diagnosis and management of lung cancer. 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. *Chest*. 2013;143(Suppl 5):s121-41.

5. Gossot D, Lutz J, Gregorouiu M, Brian E, Seguin-Givelet A. Thoracoscopic anatomic segmentectomies for lung cancer: technical aspects. *J Vis Surg*. 2016;2:171.

6. Nagashima T, Shimizu K, Ohtaki Y, Obayashi K, Kakegawa S, Nakazawa S, et al. An analysis of variations in the bronchovascular pattern of the right-upper lobe using three-dimensional CT angiography and bronchography. *Gen Thorac Cardiovasc Surg*. 2015;63:354-60.

7. Nagashima T, Shimizu K, Ohtaki Y, Obayashi K, Nakazawa S, Mogi A, et al. An analysis of variations in the bronchovascular pattern of the middle-lobe and lower lobes of the lung using three-dimensional CT angiography and bronchography. *Gen Thorac Cardiovasc Surg*. 2017;65:343-9.

8. Traibi A, Grigoriou M, Bouliotop C, Urena A, Masueat-Aumatell C, Brian E, et al. Predictive factors for complications in anatomical pulmonary segmentectomies. *Interact Cardiovasc Thorac Surg*. 2013;17:838-44.

9. Deng B, Cassivi SD, de Andrade M, Nichols FC, Trastek VF, Wang Y, et al. Clinical outcomes and changes in lung function after segmentectomy versus lobectomy for lung cancer cases. *J Thorac Cardiovasc Surg*. 2014;148:1186.

10. Song CY, Sakai T, Kimura D, Tsushima T, Fukuda I. Comparison of perioperative complications of pulmonary segmentectomy versus lobectomy for patients receiving anatomical lung resections. *Arch Bronconeumol*. 2020;56:718-24.

11. Didier D, De Leyn P, Van Schil P, Porta RR, Waller D, Paslick P, et al. ESTS guidelines for intraoperative lymph node staging in non-small cell lung cancer. *Eur J Cardiothorac Surg*. 2006;30:787-92.

12. Fernandez FG, Falceur PE, Kozower BD, Salati M, Wright CD, Brunelli A. The Society of Thoracic Surgeons and the European Society of Thoracic Surgeons General Thoracic Surgery databases: joint standardization of variable definitions and terminology. *Ann Thorac Surg*. 2015;99:368-76.

13. Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. *Ann Surg*. 2004;240:205-13.

14. Zeng W, Zhang W, Zhang J, You G, Mao Y, Xu J, et al. Systematic review and meta-analysis of video-assisted thoracoscopic surgery segmentectomy versus lobectomy for stage I non-small cell lung cancer. *World J Surg Oncol*. 2020;18:44.

15. Winckelman T, Decaluwé H, De Leyn P, Van Raemdonck D. Segmentectomy or lobectomy for early-stage non-small cell lung cancer: a systematic review and meta-analysis. *Eur J Cardiothorac Surg*. 2020;57:1051-60.

16. Shapiro M, Weiser TS, Wnieweski JP, Chin C, Arustamyan M, Swanson SJ. Thoracoscopic segmentectomy compares favorably with thoracoscopic lobectomy for patients with small stage I lung cancer. *J Thorac Cardiovasc Surg*. 2009;137:1388-93.

17. Martin-Ucár AE, Nakas A, Pilling JE, West KJ, Waller DA. A case-matched study of anatomical segmentectomy versus lobectomy for stage I lung cancer in high-risk patients. *Eur J Cardiothorac Surg*. 2005;27:675-9.

18. Date H, Andou A, Shimizu N. The value of limited resection for ‘clinical’ stage I peripheral non-small cell lung cancer in poor-risk patients: comparison of limited resection and lobectomy by a computer-assisted matched study. *Tumori*. 1994;80:422-6.

19. Boyd JA, Hubbs JL, Kim DW, Hollis L, Marks LB, Kelsey CR. Timing of local and distant failure in resected lung cancer: implications for reported rates of local failure. *J Thorac Oncol*. 2010;5:211-4.

20. Altorki NK, Wang X, Wigle D, Gu L, Darling G, Ashraf AI, et al. Perioperative mortality and morbidity after lobar versus sublobar resection for early stage lung cancer: a post-hoc analysis of an international randomized phase III trial (CALGB/Alliance 140503). *Lancet Respir Med*. 2018;6:914-24.

21. Suzuki K, Saji H, Asogae K, Watanabe SI, Okada M, Mizusawa J, et al. Comparison of pulmonary segmentectomy and lobectomy: safety results of a randomized trial. *J Thorac Cardiovasc Surg*. 2019;158:895-907.

22. Surendrakumar V, Martin-Ucár AE, Edwards JG, Rao J, Soci L. Evaluation of surgical approaches to anatomical segmentectomies: the transition to minimal invasive surgery improves hospital outcomes. *J Thorac Dis*. 2017;9:3896-902.

Key Words: anatomic segmentectomy, lobectomy, lung cancer, sublobar resection, thoracoscopic, VATS
APPENDIX E1
Multicentric Spanish Video-Assisted Thoracic Surgery Group Database Members

Raul Embun,1,2 Inigo Royo-Crespo,3 José Luis Recuero Díaz,3 Sergio Bolufer,4 Julio Sesma,5 Sergi Call,6 Miguel Congregado,4 David Gómez-de Antonio,5 Marcelo F. Jiménez,7 Nicolas Moreno-Mata,9 Borja Aguinalde,14 Sergio Amor-Alonso,1 Miguel Jesús Arrarás,1 Ana Isabel Blanco Orozco,6 Marc Boada,1 Alberto Cabañero Sánchez,3 Isabel Cal Vázquez,21 Ángel Cilleruelo Ramos,2 Silvana Crowley Carrasco,2 Elena Fernández-Martín,2 Santiago García-Barajas,0 María Dolores García-Jiménez,5 Jose María García-Prim,5 Jose Alberto García-Salcedo,5 Juan José Gelbenu-Zazpe,5 Carlos Fernando Giraldo-Ospina,1 María Teresa Gómez Hernández,7 Jorge Hernández,7 Jennifer D. Illana Wolf,2 Alberto Jauregui Abularach,26 Unai Jiménez,2 Iker López Sanz,6 Néstor J. Martínez-Hernández,2 Elisabeth Martínez-Téllez,6 Lucía Milla Collado,26 Roberto Mongil Poco,1 Francisco Javier Moradiellos-Diez,2 Ramón Moreno-Balsalobre,26 Sergio B. Moreno Merino,6 Carme Obiols,5 Florencio Quero-Valenzuela,2b María Elena Ramirez-Gil,2 Ricardo Ramos-Izquierdo,5 Eduardo Rivo,7 Alberto Rodríguez-Fuster,26,6,27 Rafael Rojo-Marcos,5 David Sanchez-Lorente,1 Laura Sanchez Moreno,26 Carlos Simón,27 Juan Carlos Trujillo-Reyes,2 Florentino Hernando Trancho,4

1Servicio de Cirugía Torácica, Hospital Universitario Miguel Servet y Hospital Clínico Universitario Lozano Blesa, IIS Aragón, Zaragoza, Spain
2Servicio de Cirugía Torácica, Hospital General Universitario de Alicante, Alicante, Spain
3Servicio de Cirugía Torácica, Hospital Universitario Mútua Terrassa, Universidad de Barcelona, Terrassa, Barcelona, Spain
4Servicio de Cirugía Torácica, Hospital Universitario Virgen Macarena, Sevilla, Spain
5Servicio de Cirugía Torácica, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
6Servicio de Cirugía Torácica, Hospital Universitario de Salamanca, Universidad de Salamanca, IBSAL, Salamanca, Spain
7Servicio de Cirugía Torácica, Hospital Universitario Ramón y Cajal, Madrid, Spain
8Servicio de Cirugía Torácica, Hospital Universitario de Donostia, San Sebastián-Donostia, Spain
9Servicio de Cirugía Torácica, Hospital Universitario Quironsalud Madrid, Madrid, Spain
10Servicio de Cirugía Torácica, Fundación Instituto Valenciano de Oncología, Valencia, Spain
11Servicio de Cirugía Torácica, Hospital Universitario Virgen del Rocio, Sevilla, Spain
12Servicio de Cirugía Torácica, Hospital Clínico de Barcelona, Instituto Respiratorio, Universidad de Barcelona, Barcelona, Spain
13Servicio de Cirugía Torácica, Hospital Universitario La Princesa, Madrid, Spain
14Servicio de Cirugía Torácica, Hospital Clínico Universitario, Valladolid, Spain
15Servicio de Cirugía Torácica, Hospital Clínico San Carlos, Madrid, Spain
16Servicio de Cirugía Torácica, Hospital Universitario de Badajoz, Badajoz, Spain
17Servicio de Cirugía Torácica, Hospital Universitario de Albacete, Albacete, Spain
18Servicio de Cirugía Torácica, Hospital Universitario Santiago de Compostela, Santiago de Compostela, Spain
19Servicio de Cirugía Torácica, Hospital Universitario 12 de Octubre, Madrid, Spain
20Servicio de Cirugía Torácica, Complejo Hospitalario de Navarra, Pamplona, Spain
21Servicio de Cirugía Torácica, Hospital Regional Universitario, Málaga, Spain
22Servicio de Cirugía Torácica, Hospital Universitario Sagrat Cor, Barcelona, Spain
23Servicio de Cirugía Torácica, Hospital Puerta del Mar, Cádiz, Spain
24Servicio de Cirugía Torácica, Hospital Universitario Vall d’Hebron, Barcelona, Spain
25Servicio de Cirugía Torácica, Hospital Universitario Cruces, Bilbao, Spain
26Servicio de Cirugía Torácica, Hospital Universitario La Ribera, Alcira, Valencia, Spain
27Servicio de Cirugía Torácica, Hospital Santa Creu y Sant Pau, Universidad Autónoma de Barcelona, Barcelona, Spain
28Servicio de Cirugía Torácica, Hospital Arnau de Vila-nova, Lleida, Spain
29Servicio de Cirugía Torácica, Hospital Virgen de las Nieves, Granada, Spain
30Servicio de Cirugía Torácica, Hospital Universitario Bellvitge, Hopsitalet de Llobregat, Barcelona, Spain
31Servicio de Cirugía Torácica, Hospital del Mar, Barcelona, Spain
32IMIM (Instituto de Investigación Médica Hospital del Mar), Barcelona, Spain
33Servicio de Cirugía Torácica, Hospital Universitario Marqués de Valdecilla, Santander, Spain
34Servicio de Cirugía Torácica, Hospital Universitario Gregorio Marañón, Madrid, Spain