Potential in the elimination of cancer cells through synchrotron radiation: A hartree–fock methods analysis protonated rhodochrosite crystal

Ricardo Gobato¹, Marcia Regina Risso Gobato¹, Alireza Heidari² and Abhijit Mitra⁴

¹Laboratory of Biophysics and Molecular Modeling Genesis, State Secretariat of Education of Parana, 86130-000, Parana, Brazil
²Green Land Landscaping and Gardening, Seedling Growth Laboratory, 86130-000, Parana, Brazil
³Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA
⁴Department of Marine Science, University of Calcutta, 35 B.C. Road Kolkata, 700019, India

Abstract

The rhodochrosite (MnCO₃) shows complete solid solution with siderite (FeCO₃), and it may contain substantial amounts of Zn, Mg, Co, and Ca. There is no precedent in the literature on the treatment of tumor tissues by eliminating these affected tissues, using rhodochrosite crystals in tissue absorption and eliminating cancerous tissues by synchrotron radiation. The studies that are found are the research papers of this team. Through an unrestricted Hartree-Fock (UHF) computational simulation, Compact effective potentials (CEP), the infrared spectrum of the protonated rhodochrosite crystal, CH₂Mn₆O₈, and the load distribution by the unit molecule by two widely used methods, Atomic Polar Tensor (APT) and Mulliken, were studied. The rhodochrosite crystal unit cell of structure CMn₆O₈, where the load distribution by the molecule was verified in the UHF CEP-4G (Effective core potential (ECP) minimal basis), UHF CEP-31G (ECP split valance) and UHF CEP-121G (ECP triple-split basis). The largest load variation in the APT and Mulliken methods were obtained in the CEP-121G basis set, with δ = 2.922 ± 0.65 u. a., respectively, being δ_{Mulliken} > δ_{APT}. The maximum absorbance peaks in the CEP-4G, CEP-31G and CEP-121G basis set are present at the frequencies 2172.23 cm⁻¹, with a normalized intensity of 0.65; 2231.4 cm⁻¹ and 0.454; and 2177.24 cm⁻¹ and 1.0, respectively. An in-depth study is necessary to verify the absorption by the tumoral and non-tumoral tissues of rhodochrosite, before and after irradiating of synchrotron radiation using Small–Angle X–Ray Scattering (SAXS), Ultra–Small Angle X–Ray Scattering (USAXS), Fluctuation X–Ray Scattering (FXS), Wide–Angle X–Ray Scattering (WAXS), Grazing–Incidence Small–Angle X–Ray Scattering (GISAXS), X–Ray Diffraction (XRD), Powder X–Ray Diffraction (PXRD), Wide–Angle X–Ray Diffraction (WAXD), Grazing–Incidence X–Ray Diffraction (GIXD) and Energy–Dispersive X–Ray Diffraction (EDXRD). Later studies could check the advantages and disadvantages of rhodochrosite in the treatment of cancer through synchrotron radiation, such as one oscillator crystal. Studying the sites of rhodochrosite action may lead to a better understanding of its absorption by healthy and/or tumor tissues, thus leading to a better application of synchrotron radiation to the tumors to eliminate them.

Introduction

The rhodochrosite (MnCO₃) shows complete solid solution with siderite (FeCO₃), and it may contain substantial amounts of Zn, Mg, Co, and Ca. The electric charge that accumulates in certain solid materials, such as crystals, certain ceramics, and biological matter such as bone, DNA and various proteins in response to applied mechanical stress, phenomenon called piezoelectricity [1-12].

Through an unrestricted Hartree-Fock (UHF) computational simulation, Compact effective potentials (CEP), the infrared spectrum of the protonated rhodochrosite crystal, CH₂Mn₆O₈, and the load distribution by the unit molecule by two widely used methods, Atomic Polar Tensor (APT) and Mulliken, were studied. The rhodochrosite crystal unit cell of structure CMn₆O₈, where the load distribution by the molecule was verified in the UHF CEP-4G (Effective core potential (ECP) minimal basis), UHF CEP-31G (ECP split valance) and UHF CEP-121G (ECP triple-split basis).

The Figure 1 is one photography the Rhodochrosite stone from Cangwu, China. Rhodochrosite Paragenesis, Apatite (brownish), Fluorite (purple), Quartz (colorless) and some tiny pyrite cubes from Cangwu, China.

The Figure 2 is one photography the Rhodochrosite stone, some cut and used with semi-precious jewelry.

The lovely rose-pink rock, Rhodochrosite, like its namesake the rose, is soft and fragile, measuring only 3.5 to 4 on the hardness, or Mohs scale. It is found in two forms: the first is a clear, bright pink, rhombohedra, gem quality crystal, which is rare and demands great skill from the cutter. The more common form, which comes from white banded stalacite rocks, is a little harder and is used for semi-precious jewellery [13,14].

*Correspondence to: Alireza Heidari, Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA, E-mail: Scholar.Researcher.Scientist@gmail.com; Alireza.Heidari@calsu.us; Central@asi-usa.org

Key words: rhodochrosite, quartz crystal, hartree–fock methods, apt, mulliken, effective core potential, synchrotron radiation, cancer, tumoral tissues

Received: June 01, 2020; Accepted: June 16, 2020; Published: June 18, 2020
operators \hat{g}_{ij}; we have $\tilde{H}_{\text{el}} = \sum_i \hat{E} + \sum_{i>j} \hat{g}_{ij}$, where $\hat{E} = -\frac{1}{2} \sum_{\alpha} \sum_{\beta} \frac{1}{r_{\alpha\beta}}$ and $\hat{g}_{ij} = \frac{1}{r_{ij}}$. The Hamiltonian \tilde{H}_{el} is the same as the Hamiltonian H for an atom except that $\sum_{\alpha} \sum_{\beta} \frac{1}{r_{\alpha\beta}}$ replaces Z/r_i. Hence

$$E = \langle D | \tilde{H} | D \rangle = 2 \sum_i \langle \phi_i(1) | \hat{f}_i | \phi_i(2) \rangle + \sum_i (2I_{ii} - K_{ii})$$

where $I_{ii} = \langle \phi_i(1) \phi_i(2) | \hat{e}^2 / r_{12} | \phi_i(1) \phi_i(2) \rangle$ and $K_{ii} = \langle \phi_i(1) \phi_i(2) | \hat{e}^2 / r_{12} | \phi_i(1) \phi_i(2) \rangle$

The expression for the Hartree-Fock energy of a diatomic or polyatomic molecule with only closed shells is

$$E_{HF} = 2 \sum_i \langle \phi_i(1) \phi_i(2) | \hat{e}^2 / r_{12} | \phi_i(1) \phi_i(2) \rangle + V_{NN}$$

where $V_{\text{el-el}} = \langle \phi(1) \phi(2) | \hat{e}^2 / r_{12} | \phi(1) \phi(2) \rangle$

and $I_{ii} = \langle \phi_i(1) \phi_i(2) | \hat{e}^2 / r_{12} | \phi_i(1) \phi_i(2) \rangle$

The one-electron-operator symbol was changed from \hat{f}_i to $\tilde{H}_{\text{el}}^\text{core}$.

Mulliken Load

Mulliken’s loads are derived from the Mulliken population analysis and provide means for estimating partial atomic charges from numerical chemistry calculations, particularly those based on the linear combination of atomic orbitals. If the coefficients of the basic functions in the molecular orbital are C_{μ} for μ, the basic function \hat{r} in the orbital molecular, the coefficients of the density matrix are:

$$D_{\nu\mu} = \sum_{\alpha} C_{\mu\alpha} C_{\nu\alpha}$$

where α and β are appropriate basic functions. Non-diagonal terms including α and β this simplifies the operation to a sum on a line. This defines the gross orbital population (GOB) as:

$$\text{GOB}_A = \sum_{\mu} P_{\mu A}$$

The terms $P_{\mu A}$ lie on N and then divide the total number of electrons by the basic functions. It then remains to sum these terms on all the basic functions of a given atom A in order to obtain the gross atomic population (GAP). The integral of the GAP terms also gives N. The load, Q_A, is then defined as the difference between the number of electrons on the free isolated atom, which is the atomic number Z_A, and the raw atomic population.

Methods

Hartree-Fock Methods

The molecular Hartree-Fock [15-21] wave function is written as an antisymmetrized product (Slater determinant) of spin-orbitals, each spin-orbital being a product of a spatial orbital ϕ_i and a spin function (either α or β).

The expression for the Hartree-Fock molecular electronic energy E_{HF} is given by the variation theorem as $E_{HF} = \langle D | \tilde{H}_{\text{el}}^\text{core} + V_{NN} | D \rangle$ where D is the Slater-determinant Hartree-Fock wave function and V_{NN} and $\tilde{H}_{\text{el}}^\text{core}$ are given by

$$\tilde{H}_{\text{el}}^\text{core} = -\sum_{\alpha} \sum_{\beta} \frac{1}{r_{\alpha\beta}}$$

$$V_{NN} = \sum_{\alpha} \sum_{\beta} \frac{1}{r_{\alpha\beta}}$$

Since V_{NN} does not involve electronic coordinates and D is normalized, we have $\langle D | V_{NN} | D \rangle = V_{NN}.\langle D | D \rangle = V_{NN}$. The operator $\tilde{H}_{\text{el}}^\text{core}$ is the sum of one-electron operators \hat{f}_i and two-electron
\[Q_A = Z_A - GAP_A \]

The problem with this approach is the even distribution of non-diagonal terms between the two basic functions. This leads to charge separations between the molecules that are exaggerated. Many other methods are used to determine atomic charges in molecules [22,23].

Concerning the nuclear contribution, the nuclear charge \(Z_A \) can be written as \(Z_A = q_A + Q_A \), where \(q_A \) and \(Q_A \) account for the Mulliken net and gross atomic charge [22]. According to the Mulliken population analysis, the nuclear charge for \(A \) can be written as

\[Z_A = q_A + \sum_A \sum_{\mu, \nu} 2p_{\mu A} s_{\mu A} + \frac{1}{2} \sum_A \sum_{\mu < \nu} 2p_{\mu A} s_{\mu \nu} \]

which upon substitution in the dipole moment expression yields

\[(\hat{p}_A) = -\sum_A q_A x_A - \sum_A \sum_{\mu, \nu} 2p_{\mu A} s_{\mu A} x_A + \frac{1}{2} \sum_A \sum_{\mu < \nu} 2p_{\mu A} s_{\mu \nu} x_A + \sum_A x_A . \]

Note that \(s_{\mu A} x_A = \langle \phi_\mu | x - X_A | \phi_\nu \rangle \) and \(s_{\mu \nu} = 1 \) so that

\[(\hat{p}_A) = \sum_A q_A x_A - \sum_A \sum_{\mu, \nu} 2p_{\mu A} s_{\mu A} x_A + \frac{1}{2} \sum_A \sum_{\mu < \nu} 2p_{\mu A} s_{\mu \nu} x_A \]

where

\[x_A^D = \langle \phi_\mu | x - X_A | \phi_\nu \rangle \]

and

\[x_A^{AD} = \langle \phi_\mu | x - X_A | \frac{x_A + x_B}{2} | \phi_\nu \rangle \]

The first two terms in eq. for \((\hat{p}_A) \) are of atomic origin where the first one, involving the net atomic charge, is the only term with a classical counterpart. The second term resembles Coulson’s atomic dipole, and the integral \(x_A^D \) is the distance from the centroid of the hybrid orbital to nucleus \(A \). For the third term, the integral \(x_A^{AD} \) is the distance of the center of charge from the midpoint of the chemical bond \(A-B \). This contribution to the dipole moment has been referred to as the homopolar dipole [22] by Mulliken. As can be seen, the dipole moment has been partitioned into three contributions: the net atomic charge, the atomic dipole, and the homopolar dipole. Since the density matrix is invariant with respect to the choice of origin and since the sum of all net atomic charges vanishes, this partitioning of the dipole moment does not depend on the choice of the origin for the system [5,24].

Atomic Polar Tensor (APT)

One of the most useful methods for interpreting and predicting infrared intensities comes from the atomic polar tensor (APT) formalism [25,26]. In the APT framework, the derivative of the molecular dipole moment vector with respect to the \(i \)th normal coordinate (which is directly related to the infrared intensity of the \(i \)th fundamental mode), can be expressed as

\[\frac{\partial \mathbf{p}}{\partial \mathbf{q}_i} = \sum_{\alpha} \sum_{\xi} \left[\frac{\partial \mathbf{p}_\alpha}{\partial \xi} \right]_{\xi x,i} \]

For each atom \(\alpha \) in molecule, the quantities \(\frac{\partial \mathbf{p}_\alpha}{\partial \xi} \) are a 3 X 3 matrix \(\mathbf{P}_\alpha^{(2)} \) where \(\tau = \tau_A \) and \(\xi = \xi_A \). The APT is formed by

\[\mathbf{p}_\alpha^{(2)} = \mathbf{V}_\alpha \mathbf{P} \]

where \(\mathbf{V}_\alpha \) is the identity matrix and each term of the APT is represented by a 3 X 3 matrix. The four contributions in the above equation can be identified according to Person, Coulson, and Mulliken terminology as charge, charge flux, atomic dipole flux, and homopolar dipole flux. Comparing with the CCFO model, the difference introduced in this work lies in the fact that the overlap term has been decomposed into two flux contributions (atomic dipole and homopolar dipole fluxes).

In eq. for \(\mathbf{V}_\alpha \mathbf{P} \), the first two terms are the only classical contributions, one of them being the Mulliken net charge of atom \(a \) in its equilibrium position, \(R_a \), and the other being the “charge flux” corresponding to charge migration as the chemical bond involving the \(a \) atom has been distorted. The sum over all atoms, \(A \), implies there is electronic density deformation involving all the atoms in the molecule. These two terms have already been well discussed by Person, Zilles, and other [29-31]. The atomic dipole flux can be separated into two parts if the gradient of the density matrix and center of charge integrals are taken inside the parentheses:

\[-\sum_{\mu < \nu} 2p_{\mu A} \mathbf{V}_A (\mathbf{R}_{\mu \nu}^A) \]

and

\[-\sum_A \sum_{\mu < \nu} 2 (p_{\mu A} \mathbf{V}_A) \mathbf{R}_{\mu \nu}^A \]

the first of the two terms in equation

\[-\sum_A \sum_{\mu < \nu} 2 (p_{\mu A} \mathbf{V}_A) \mathbf{R}_{\mu \nu}^A \]

involves only the atom for which the APT is being calculated because only these \(\phi_\alpha \) depend on \(\mathbf{V}_A - \mathbf{R}_A \).

Results and discussion

The Figure 3 show on cell structure of a protonated rhodochrosite crystal of structure Stoichiometric is \(\text{CH}_3\text{Mn}_6\text{O}_8 \), obtained after molecular dynamics via unrestricted Hartree-Fock method, in basis set CEP-4G, CEP-31G and CEP-121G [32-97].
Gobato R (2020) Potential in the elimination of cancer cells through synchrotron radiation: A hartree-fock methods analysis protonated rhodochrosite crystal

The rhodochrosite crystal unit cell of structure CMn$_6$O$_8$, where the load distribution by the molecule was verified in the unrestricted Hartree-Fock method, UHF CEP-4G (Effective core potential (ECP) minimal basis), UHF CEP-31G (ECP split valance) and UHF CEP-121G (ECP triple-split basis), through the analysis of APT and Mulliken loads [98-100].

The rhodochrosite unit cell was protonated, then presented the structure CH$_{19}$Mn$_6$O$_8$ for the study with ab initio methods with +4 multiplicity. The displacement of charges by the molecule was analyzed to verify the site of molecular action. The load distribution by the protonated crystal is evaluated in Table 1, and its vibrational frequencies in Table 2.

The largest load variation in the APT and Mulliken methods were obtained in the CEP-121G base set, with δ = 2.922 e δ = 2.650, respectively, being δ$_{\text{APT}}$ > δ$_{\text{Mulliken}}$ in all sets of calculated bases, Table 1.

The Table 2 show the maximum absorbance peaks in the CEP-4G, CEP-31G and CEP-121G set basis are present at the frequencies 2172.23 cm$^{-1}$, with a normalized intensity of 65%; 2231.4 cm$^{-1}$ and 45.4%; and 2177.24 cm$^{-1}$ and 100%, respectively.

The Mulliken load method in the UHF-CEP-4G base set; UHF-CEP-31G and UHF-CEP-121G are sufficient to show that the sites of action of the rhodochrosite crystal structure are found in three Oxygen-linked Manganese atoms, which are attached to the central Carbon atom, as well as these. Oxygen atoms and the central Carbon.

These Manganese atoms show a slight negative to neutral load shift in the CEP-4G set basis, neutral to positive in the CEP-31G and CEP-121G set basis at the Mulliken charges, Figure 4.

The charge displacement is strong in the oxygen atoms, especially those near the central carbon, with negative load in all set basis studied, both in the APT and Mulliken charges.

The central carbon atom on all set basis is positively charged in both APT and Mulliken load, except Mulliken in CEP-31G, which is neutral.

As might be expected from the charges by APT, the strong positive load manganese atoms, the strong negative load oxygen, the positively charged carbon atom. The manganese atom farthest from the carbon atom has a slight positive to neutral load shift.

The Mulliken load method presents a better result when compared to the APT, in the studied set basis, for protonated rhodochrosite crystal, with a smaller load variation δ = 2.650 u.a for CEP-121G.

The absorption peaks are in a Gaussian between the frequencies 1620 cm$^{-1}$ and 2520 cm$^{-1}$, Figure 3D.

The largest load variation in the APT and Mulliken methods were obtained in the CEP-121G base set, with δ = 2.922 e δ = 2.650, respectively, being δ$_{\text{APT}}$ > δ$_{\text{Mulliken}}$, in all sets of calculated basis, Table 1.

The Figure 1 is one photography the Rhodochrosite stone from China.

The Figure 2 is one photography the Rhodochrosite stone, some cut and used with semi-precious jewelry.

The Figure 3 represented a Cell structure of a protonated rhodochrosite crystal. Represented in red the oxygen; Purple in color Manganese; in gray color Hydrogen; in light see green color the Carbon.

Analysis

The Mulliken load method in the UHF-CEP-4G basis set; UHF-CEP-31G and UHF-CEP-121G are sufficient to show that the sites of action of the rhodochrosite crystal structure are found in three Oxygen-linked Manganese atoms, which are attached to the central Carbon atom, as well as these. Oxygen atoms and the central Carbon.

The Table 1 show the maximum absorbance peaks in the CEP-4G, CEP-31G and CEP-121G set basis are present at the frequencies 2172.23 cm$^{-1}$, with a normalized intensity of 65%; 2231.4 cm$^{-1}$ and 45.4%; and 2177.24 cm$^{-1}$ and 100%, respectively.

The Mulliken load method presents a better result when compared to the APT, in the studied set basis, for protonated rhodochrosite crystal, with a smaller load variation δ = 2.650 u.a for CEP-121G.

The absorption peaks are in a Gaussian between the frequencies 1620 cm$^{-1}$ and 2520 cm$^{-1}$, Figure 3D.

The largest load variation in the APT and Mulliken methods were obtained in the CEP-121G base set, with δ = 2.922 e δ = 2.650, respectively, being δ$_{\text{APT}}$ > δ$_{\text{Mulliken}}$, in all sets of calculated basis, Table 1.

The Figure 4 show the protonated rhodochrosite crystal for UHF-CEP-4G basis set, UHF-CEP-31G and UHF-CEP-121G, respectively, which are shown in Table 2.

The rhodochrosite crystal unit cell of structure CMn$_6$O$_8$, where the load distribution by the molecule was verified in the unrestricted Hartree-Fock method, UHF CEP-4G (Effective core potential (ECP) minimal basis), UHF CEP-31G (ECP split valance) and UHF CEP-121G (ECP triple-split basis), through the analysis of APT and Mulliken loads.

Basis Sets	Mulliken	APT
Charge*	δ	Charge*
δ		
CEP-4G	-1.064	+1.064
CEP-31G	-1.034	+1.034
CEP-121G	-1.325	+1.325

ν (cm$^{-1}$)	I (%)						
2172.23	64.9904	2043.25	51.7671	2191.31	41.6608	2242.97	36.4643
2231.4	45.3589	1891.26	41.6207	2027.77	40.3978	1926.32	38.0064
2177.24	100	2261.98	87.0533	1947.03	83.1151	1778.57	51.6624

ν = Frequency (cm$^{-1}$); I = Normalized Intensity (%)
Figure 4. UHF-CEP-4G; UHF-CEP-31G and UHF-CEP-121G for APT and Mulliken
Conclusion

The absorption peaks are in a Gaussian between the frequencies 1620 cm⁻¹ and 2520 cm⁻¹. The Mulliken load method presents a better result when compared to the APT, in the studied set basis, for protonated rhodochrosite crystal, with a smaller load variation δ = 2,650 u.a for CEP-121G.

The maximum absorbance peaks in the CEP-4G, CEP-31G and CEP-121G set basis are present at the frequencies 2172.23 cm⁻¹, with a normalized intensity of 0.65, 2231.4 cm⁻¹ and 0.454 and 2177.24 cm⁻¹ and 1.0 respectively.

Later studies could check the advantages and disadvantages of rhodochrosite in the treatment of cancer through synchrotron radiation, such as one oscillator crystal.

An in-depth study is necessary to verify the absorption by the tumoral and non-tumoral tissues of rhodochrosite, before and after irradiating of synchrotron radiation using Small–Angle X–Ray Scattering (SAXS), Ultra–Small Angle X–Ray Scattering (USAXS), Fluctuation X–Ray Scattering (FXS), Wide–Angle X–Ray Scattering (WAXS), Grazing–Incidence Small–Angle X–Ray Scattering (GISAXS), Grazing–Incidence Wide–Angle X–Ray Scattering (GIWAXS), Small–Angle Neutron Scattering (SANS), Grazing–Incidence Small–Angle Neutron Scattering (GISANS), X–Ray Diffraction (XRD), Powder X–Ray Diffraction (PXRD), Wide–Angle X–Ray Diffraction (WAXD), Grazing–Incidence X–Ray Diffraction (GIXD) and Energy–Dispersive X–Ray Diffraction (EDXRD).

References

1. F. James Holler, Douglas A. Skoog and Stanley R. Crouch. Principles of Instrumental Analysis (6th ed.). Cengage Learning. 200. p. 9. ISBN 978-0-495-01201-6.

2. Fox Electronics. Quartz Crystal Theory of Operation and Design Notes. Oscillator Theory of Operation and Design Notes. 2008. Available in: April 16, 2019. URL: https://web.archive.org/web/20110725032851/http://www.foxonline.com/techdata.htm.

3. R. E. Newham. Properties of materials. Anisotropy, Symmetry. Structure. Oxford University Press, New York, 2005.

4. C. D. Gribble and A. J. Hall. A Practical Introduction to Optical Mineralogy. 1985.

5. Creative Commons. (CC-BY 4.0). Wikipedia, The Free Encyclopedia. May 2019. URL: https://creativecommons.org/licenses/by/4.0/.

6. Ricardo Gobato, Marcia Regina Risso Gobato, Alireza Heidari. Rhodochrosite as Crystal Oscillator. Am J Biomed Sci & Res. 2019 – 3 (2). AJBSR. MS. ID. 000659. DOI: 10.34297/AJBSR.2019.03.000659.

7. Ricardo Gobato, Marcia Regina Risso Gobato, Alireza Heidari. Calculation by UFF method of frequencies and vibrational temperatures of the unit cell of the rhodochrosite crystal International Journal of Advanced Chemistry, 7 (2) (2019) 77-81. doi: 10.14419/ijac.v7i1.29176.

8. Ricardo Gobato, Marcia Regina Risso Gobato, Alireza Heidari. Rhodochrosite as Crystal Oscillator. June 17, 2019. URL: https://www.researchgate.net/publication/333817526_Rhodochrosite_as_Crystal_Oscillator?enrichId=rgreq-26dd55b5b6e53d92fe500420f8725-XXX&enrichSource=Y292ZXJQYWdlOzE=

9. Ricardo Gobato, Marcia Regina Risso Gobato, Alireza Heidari. Rhodochrosite as Crystal Oscillator. Am J Biomed Sci & Res. 2019 - 3 (2). DOI: 10.34297/AJBSR.2019.03.000659.

10. Ricardo Gobato, Marcia Regina Risso Gobato, Alireza Heidari. Rhodochrosite as Crystal Oscillator. viXra.org, Condensed Matter, viXra: 1908. 0295. http://vixra.org/abs/1908.0295.

11. Ricardo Gobato. Rhodochrosite Optical Indicatrix. Peer Res Nest. 2019 – 1 (3). PNEST. 19.08.020.

12. Ricardo Gobato, Marcia Regina Risso Gobato, Alireza Heidari, Abhijit Mitra. Rhodochrosite Optical Indicatrix. viXra.org > Condensed Matter > viXra: 1908. 0455. URL: http://vixra.org/abs/1908.0455. Available in: Aug 22, 2019.

13. Rob Lavinsky, iRocks.com, CC-BY-SA-3.0. 2010. URL: https://dc.wikipedia.org/wiki/Rhodochrosite%3amedia%3ADatei%Aptitude-Rhodochrosite-Fluorite-169799.jpg. Available in: November 4, 2019.

14. Gemstone Qualities. Rhodochrosite. 2019. Available in: November 4, 2019. URL: https://www.rosecorborhodochrosite.co.uk/rhodochrosite/

15. N. Levine. Quantum Chemistry. Pearson Education (Singapore) Pte. Ltd., Indian Branch, 482 F. I. E. Patparganj, Delhi 110 092, India, 5th ed. edition, 2003.

16. Szabo and N. S. Ostlund. Modern Quantum Chemistry, Dover Publications, New York, 1989.

17. M. S. Gordon et al. General atomic and molecular electronic structure system (GAMESS). J. Comput. Chem., 14: 1347–1363, 1993.

18. K. Ohno, K. Esfarjani and Y. Kawazo. Computational Material Science. Springer-Verlag, Berlin, 1999.

19. K. Wolfram and M. C. Horhousen. Introduction to DFT for Chemists. John Wiley & Sons, Inc. New York, 2nd ed. edition, 2001.

20. P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev., (136): B664–B871, 1964.

21. W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation effects. Phys. Rev., (140): A1133, 1965.

22. R. S. Mulliken. J. Chem. Phys. 1955 23, 1833–1840.

23. G. Csizmadia, Theory and Practice of MO Calculations on Organic Molecules, Elsevier, Amsterdam, 1976.

24. Ferreira, M. M. C. J. Phys. Chem. 1990, 94, 3220-3223.

25. Biarge, J. F.; Herranz, J.; Morillic, J. An. R. Soc. Esp. Fis. Quim. Ser, A 1961, A57, 81.

26. Person, W. B.; Newton, J. H. J. Chem. Phys. 1974, 61, 1040.

27. King, W. T.; Mast, G. B. J. Phys. Chem. 1976,80,2521.

28. King, W. T. Vibrational Intensities in Infrared and Ramon Spectra: Person, W. B., Zerbi, G. Eds.; Elsevier: Amsterdam, 1982; Chapter 6.

29. Person, W. B.; Zilles, B.; Rogers, J. D.; Maia, R. G. A. J. Mol. Struct. 1982, 80, 297.

30. Zilles. B. A. Ph. D. Dissertation, University of Florida, 1980.

31. Zilles, B. A. ; Person, W. J. J. Chem. Phys. 1983, 79, 65.

32. Ricardo Gobato, Marcia Regina Risso Gobato, Alireza Heidari, Abhijit Mitra. “Hartree-fock Methods Analysis Protonated Rhodochrosite Crystal and Potential in the Elimination of Cancer Cells Through Synchrotron Radiation”, Radiation Science and Technology. Vol. 5, No. 3, 2019, pp. 27-36. doi: 10.11648/j.rast.20190503.12.

33. Ricardo Gobato, Ibtihal Kadhim Kareem Dosh, Alireza Heidari, Marcia Regina Risso Gobato. “Perspectives on the Elimination of Cancer Cells Using Rhodochrosite Crystal Through Synchrotron Radiation, and Absorption the Tumoral and Non-Tumoral Tissues”, Arch Biomed Eng & Biotechnol. 3(2): 2019. ABEB. MS.ID.000558. DOI: 10.33552/ABEB.2019.03.000558.

34. M. S. Gordon and W. M. Schmidt. Advances in electronic structure theory: GAMESS a decade later. Theory and Applications of Computational Chemistry: the first forty years. Elsevier. C. E. Dykstra, G. Frenking, K. S. Kim and G. E. Scuseria (editors), pages 1167–1189, 2005. Amsterdam.

35. R. Gobato, A. Gobato, D. F. G. Fedrigo, “Inorganic arrangement crystal berylhum, lithium, selenium and silicon”. In XIX Semana da Física. Simpósio Comemorativo dos 40 anos do Curso de Física da Universidade Estadual de Londrina, Brazil, 2014. Universidade Estadual de Londrina (UEL).

36. R. Gobato, “Benzocaina, um estudo computacional”, Master’s thesis, Universidade Estadual de Londrina (UEL). 2008.

37. R. Gobato, “Study of the molecular geometry of Caramboxin toxin found in star flower (Averrhoa carambola L.)”. Parana J. Sci. Edu, 3 (1): 1–9, January 2017.

38. R. Gobato, A. Gobato, D. F. G. Fedrigo. “Molecular electrostatic potential of the main monoterpenoids compounds found in oil Lemon Tahiti (Citrus Latifolia Var Tahiti)”. Parana J. Sci. Edu., 1 (1): 1–10, November 2015.
Gobato R (2020) Potential in the elimination of cancer cells through synchrotron radiation: A hartree-fock methods analysis protonated rhodochrosite crystal