DF-SCA: Dynamic Frequency Side Channel Attacks are Practical

Debopriya Roy Dipta and Berk Gulmezoglu
roydipta@iastate.edu bgulmez@iastate.edu

IOWA STATE UNIVERSITY, IA, USA
What is Side Channel Attack?

- Side-channel attacks use unintentional information leakage from secure chips to compromise their security.

- Compromising security:
 - Cryptographic key recovery
 - Website fingerprinting
 - Keystroke detection

- These unintentional information can be of different types:
 - Timing information
 - Power dissipation
 - Electromagnetic fields
 - Micro-architectural information

Ref: Gamaarachchi, H. and Ganegoda, H., 2018. Power analysis-based side channel attack. arXiv preprint arXiv:1801.00932.

- Micro-architectural side-channel attacks refer to a side-channel attack that exploit information leakage from the hardware infrastructure itself.
DF-SCA: Dynamic Frequency Side Channel

- Software-based dynamic frequency side-channel attack
- Applicable on Linux and Android OS devices
- Exploit unprivileged access to cpufreq interface

- Exploited in the context of covert channels and cryptographic attacks
- However, it has not been investigated to infer user activity, e.g.,
 - Website fingerprinting
 - Keystroke detection

Challenge!

- Noisy measurements
- Low resolution

Still dynamic frequency readings through Linux cpufreq interface provide sufficiently-detailed information on the user activity on Intel, AMD, and ARM architectures.
Dynamic Voltage and Frequency Scaling (DVFS)

- Allow switching between different frequency/voltage configurations based on the dynamic CPU resource demand.
- The rapid frequency changes are adjusted through different algorithms depending on the target application.

CPUFreq Subsystem:

- Responsible for the performance scaling of the CPU in a Linux kernel-based operating system.
- Comprises of three layers of code:
 - **Core:** Defines the layout of basic framework.
 - **Scaling governor:** Defines different frequency scaling algorithms to predict the CPU latency.
 - **Scaling driver:** Access a specific hardware interface to change the P-state based on the request set forth by the scaling governors.
Dynamic Voltage and Frequency Scaling (DVFS)

PolicyX Interface:

- CPUFreq core generates a sysfs directory named `cpufreq`, under `/sys/devices/system/cpu` path
- Within this directory a policyX sub-directory exists for all of the CPUs associated with the given policy
- policyX directories include policy-specific files to control CPUFreq behavior based on the corresponding policy objects.
- CPUFreq core generates several attributes dependent on the scaling governors and drivers, such as:
 - `scaling_cur_freq`
 - `scaling_min_freq`
 - `scaling_max_freq`
 - `scaling_available_governors`
 - `scaling_governor`
 - `scaling_driver`
Dynamic Voltage and Frequency Scaling (DVFS)

Scaling governor:
• **Performance** governor keeps the CPU around the highest frequency, within the `scaling_max_freq` policy limit
• **Powersave** governor keeps the core frequency low when there is no workload still within the `scaling_min_freq` policy limit.
• **User-space** governor allows userspace application to set the CPU frequency for the associated policy
• **Ondemand** governor uses CPU load to determine the CPU frequency selection metric
• **Conservative** governor sets the CPU frequency selection metric based on the CPU load.
• **Interactive** governor is designed for latency-sensitive, interactive workloads
• **Schedutil** governor was designed to estimate the load based on the scheduler’s Per-Entity Load Tracking (PELT) mechanism.

Scaling driver:
• Intel Core CPUs on Linux → Intel P-state driver
• AMD architecture → ACPI P-state driver
• Android systems → specialized frequency scaling driver called *msm*
Threat Model

- **Offline Phase:**
 - ✓ Attacker monitors the dynamic CPU frequency in his own system while rendering different websites.
 - ✓ A multi-class classification model is trained with the collected frequency measurements.

- **Online Phase:**
 - ✓ Attacker places a malicious code in a user-space application installed by the victim in his/her device.
 - ✓ Monitor the current frequency in the victim’s system.
 - ✓ Implement a cross-core side-channel attack through the current frequency readings.
 - ✓ Attacker collects a single trace during the website rendering.
 - ✓ Forward to the attacker’s server in which the pre-trained model is located.
 - ✓ Finally, the model is queried in the attacker server to classify the visited website.

Assumptions:
- ✓ Victim’s device is only running a particular browser instead of many applications at a time.
- ✓ System Configuration (Attacker and Victim) needs to be matched.
Experimental Setup

Intel Comet Lake
- CPU Model: Intel(R) Core (TM) i7-10610U CPU @1.80GHz
- Scaling Governors: powersave (default), performance
- Linux kernel version: 5.11.0-46-generic

Intel Tiger Lake:
- CPU Model: Intel(R) Core (TM) i7-1165G7 @ 2.80GHz
- Scaling Governors: powersave (default), performance
- Linux kernel version: 5.13.0-44-generic

AMD Ryzen 5:
- CPU Model: AMD Ryzen 5 5500U CPU with Radeon Graphic
- Scaling Governors: ondemand (default), powersave, performance, conservative, userspace, schedutil
- Linux kernel version: 5.13.0-44-generic

ARM Cortex-A73:
- CPU Model: Four ARM Cortex-A53 and Four ARM Cortex-A73 cores
- Scaling Governors: interactive (default), powersave, performance, ondemand, conservative, userspace
Website Detection: Data Collection

Algorithm 1: Data Collection Algorithm for Each Website

// T_i is the interval between each readings
// N_s is the number of samples
// N_M is the number of measurements per website
// url is the web-page address
// f is the CPU frequency

Input: T_i, N_s, N_M, url

Output: f

1. for $i \leftarrow 1$ to N_M
do
2. Run url in the browser;
3. for $j \leftarrow 1$ to N_s
do
4. \hspace{1cm} $f[i, j] \leftarrow$ Read scaling_cur_freq;
5. \hspace{1cm} sleep T_i;
6. Close the browser;
7. sleep 1s;

Selected parameters in the Algorithm:

- $T_i = 10$ ms
- Google-chrome: $N_s = 1000$
- Tor browser: $N_s = 3000$
- $N_M = 100$

Reading CPU frequency:
/sys/devices/system/cpu/cpu1/cpufreq/scaling_cur_freq
Website Detection: Data Collection

- Each website has a distinct pattern as the contents of these websites include different JS scripts, images, HTML documents, and plug-in objects.

- CPU workload generates a unique fingerprint on the frequency readings for individual website.

A common pattern exists while visiting the same websites for multiple measurements.
Website Detection: Data Collection

cpufreq Resolution:

- Higher resolution enables attackers to capture a more detailed fingerprint
- We observe that the number of repeated values increases with the decreasing amount of delay between each reading
- The optimal delay is 10 ms for Intel and AMD architectures
- The speed of querying the cpufreq interface on Android devices is different than Intel and AMD architectures
- This value is defined by the min_sample_time in the interactive governor, which is set to 20 ms by default.
Website Detection: Performance Evaluation

Table 2: Test accuracy for different setups with their default scaling governor mode explored with four ML models

Micro-architecture	Governor	Browser	Test Accuracy			
			CNN	SVM	KNN	RF
Intel Comet Lake	powersave	Chrome	94.5%	92.0%	74.6%	93.7%
		Tor	73.7%	64.9%	33.6%	63.6%
		Tor (Top 5 score)	93.0%	86.6%	54.0%	86.2%
Intel Tiger Lake	powersave	Chrome	97.6%	95.8%	84.3%	93.0%
		Tor	68.7%	51.9%	16.2%	30.4%
		Tor (Top 5 score)	86.1%	78.7%	30.9%	55.0%
AMD Ryzen 5	ondemand	Chrome	93.1%	90.4%	78.4%	84.9%
		Tor	60.3%	50.8%	24.7%	29.8%
		Tor (Top 5 score)	87.0%	83.2%	46.5%	58.2%
ARM Cortex-A73	interactive	Chrome	87.3%	71.7%	38.6%	69.6%
Website Detection: Related Work

Table 3: Previous works based on different side-channel profiling techniques for website fingerprinting. For each work, attack vector, resolution, targeted browser, classification accuracy, and number of websites profiled are given.

Work	Attack Vector	Resolution	Browser	Accuracy (%)	# of Websites
DF-SCA	Frequency scaling	10 ms	Chrome/Tor	97.6	100
Rendered Insecure [32]	GPU memory API	60 µs	Chrome	90.4	200
PerfWeb [13]	Performance counters	40 µs	Chrome/Tor	86.4	30
RedAlert [53]	Intel RAPL	1 ms	Chrome	99	37
Shusterman et al. [43]	Last-level cache	2 ms	Firefox/Chrome/Tor	80	100
Spreitzer et al. [47]	Data-usage	20 ms	Tor	95	100
Zhang et al. [52]	iOS APIs	1 ms	Safari	68.5	100
Memento [18]	procfs	10 µs	Chrome	78	100
Loophole [48]	shared event loop	25 µs	Chrome	76.7	500
Keystroke Detection

- We assume that a phone user enters her password to log into his account in a banking application
- Considered Banking Application: Bank of America (BoA)
- Sampling rate: **20 ms**

- The collected keystrokes have three common properties
 ✓ A single keystroke length changes between 8 and 12 samples
 ✓ The big cores’ frequency increases up to 1.6GHz
 ✓ If two consecutive keystrokes are close to each other, the length of a keystroke pattern is higher than 12 samples.

- It takes 200 ms in average to decrease the frequency from peak to idle frequency level
- Hence, an attacker is able to distinguish the keystrokes that have at least 200 ms between each key press with DF-SCA.

- Our goal is not to outperform the existing works in the keystroke attack literature, but rather demonstrates DF-SCA attack has sufficient resolution and accuracy to perform a password detection attack.
Keystroke Detection

- Selected password: **50 out of 200** most used passwords on web
- Length of the password varies from **6 to 9 characters**.
- The phone user entered **50** distinct passwords for at least **10 times**
- In total, **1252 password measurements** were collected from **50 distinct passwords**
- The achieved keystroke detection rate is **95%**
- The inter-keystroke timings are determined
- **10 measurements** for each password are selected to evaluate the password detection accuracy
- A **Kth-nearest neighbor (KNN) model** is trained with the measurements.

- The model can guess the correct password with **88% success rate with one guess**
- With only **3 guesses**, the success rate is **97%**
Countermeasures

- **Restricting Access Privilege** for `cpufreq` interface from userspace applications in Linux OS.
- **Decreasing the update interval** of the `cpufreq` interface
 - ✓ With lower resolution, the amount of information leaked by DF-SCA can be diminished significantly
- **Artificial noise** can be introduced by the system to mask the rapid frequency changes in the system
 - ✓ Example: by randomly inserting workloads in the system
 - ✓ Since side-channel analysis takes advantage of Deep Learning algorithms frequently, adversarial obfuscation techniques can also be implemented to fool the Deep Learning models
- Similarly, keystroke attacks can be eliminated by **introducing additional keystrokes** to make the distribution more uniform
Impact of Different Scaling Governors

• **Intel Tiger Lake:**
 - Accuracy improves slightly when the scaling governor is changed to *performance* from *powersave.*

• **AMD Ryzen 5:**
 - The default scaling governor *ondemand* gives the highest website classification accuracy.
 - The *performance* and *powersave* governors drop the classification.

Table 4: The impacts of different scaling governors on website fingerprinting accuracy for Intel Tiger Lake and AMD Ryzen 5 architectures

Scaling governor	Test Accuracy (%)	
	Intel Tiger Lake	AMD Ryzen 5
performance	97.8	68.1
powersave	97.6	75.3
userspace	N/A	80.1
ondemand	N/A	97.6
conservative	N/A	96.7
schedutil	N/A	97.6
Impact of Different Scaling Governors

- Unlike other scaling governors, for *userspace* governor the CPU keeps the core frequency below its base frequency.

- Although the variation is quite low, a similar pattern for the same web page can still be noticeable from this figure.
Universal ML Model for different microarchitectures

• Previously, we trained separate ML models for Intel, AMD, and ARM architectures to obtain the highest website fingerprinting accuracy.

• We are interested to know whether it is possible to replace the individual ML models with a universal ML model.

• This will facilitate the attacker to perform website fingerprinting without requiring to know the exact targeted microarchitecture.

Table 5: The universal ML Model training and evaluation for Intel Tiger Lake, Intel Comet Lake, and AMD Ryzen 5 architectures

Micro-architecture	Test Accuracy (%)
Intel Comet Lake + Intel Tiger Lake	95.9
Intel Comet Lake + Intel Tiger Lake + AMD Ryzen 5	92.3

• Combined the CPU frequency traces of the Intel microarchitectures to train one CNN model and achieved test accuracy of 95.9%.
• Later, combined both Intel and AMD frequency traces, which leads to 92.3% accuracy with one CNN model.
Outcomes

- The attacker only needs to collect 10 seconds of the frequency values to detect the websites in Google Chrome browser applicable to Intel, AMD, and ARM devices.

- Even though DF-SCA’s resolution is significantly lower than many previous attacks, it is still possible to detect the visited websites with a high accuracy.

- Moreover, victim keystrokes can be detected with 95% success rate which yields to a successful password recovery attack with a simple ML classification.

- As a result, DF-SCA is a potential threat for all the components that take advantage of DVFS technology.

- The access privilege restriction or artificial noise injection might become fruitful countermeasures against such a threat.

The dataset and the code are made available in GitHub: https://github.com/Diptakuet/DF-SCA-Dynamic-Frequency-Side-Channel-Attacks-are-Practical.git
THANK YOU

QUESTIONS?