Contextual Information Retrieval based on Algorithmic Information Theory and Statistical Outlier Detection

Rafael Martinez*, Manuel Cebrián*†, Francisco de Borja Rodriguez* and David Camacho*

*Departamento de Ingeniería Informática, Universidad Autónoma de Madrid
Rafael.Martinez@estudiante.uam.es, {Manuel.Cebrian, F.Rodriguez, David.Camacho} @uam.es
†Department of Computer Science, Brown University, mcebian@cs.brown.edu

Abstract—The main contribution of this paper is to design an Information Retrieval (IR) technique based on Algorithmic Information Theory (using the Normalized Compression Distance-NCD), statistical techniques (outliers), and novel organization of data base structure. The paper shows how they can be integrated to retrieve information from generic databases using long (text-based) queries. Two important problems are analyzed in the paper. On the one hand, how to detect “false positives” when the distance among the documents is very low and there is actual similarity. On the other hand, we propose a way to structure a document database which similarities distance estimation depends on the length of the selected text. Finally, the experimental evaluations that have been carried out to study previous problems are shown.

I. INTRODUCTION

Any Information Retrieval (IR) system uses a query, and a document collection, to search and retrieve from this collection the set of most similar documents (usually ordered by any similarity measure) [1], [2], [3]. These kind of systems are mainly designed to reduce information overload, and they allow to access, find, and retrieve documents, video, music, or any type of information that can be indexed in a database. The most popular IR applications are the Web search engines such as Google, or Yahoo search engines that allow to easily access to a huge available amount of data.

Although it is quite hard to generalize, due the high number of methods that have been designed to improve the accuracy of IR systems, there are a high number of these systems that uses classical IR theory as keyword (usually named terms or descriptors) matching techniques. These are mainly based on a binary keyword matrix containing a vector of words extracted from the set of documents to be retrieved. A zero value means that one document has no correspondence with one keyword, and non-zero value (usually one), indicates that this word is a keyword for this document. Using this vector of features a mathematical function calculates how much closer is the document to the given query (see the Vector Space Model for a further description [4]).

Some interesting Web browsers that are not based on keywords matching are Proximic (www.proximic.com), and Mercury News (www.mercurynews.com). These browsers are based on a context-based searching over their documents, not just a keyword search/match. Proximic uses a technology called “pattern proximity” that uses a set of symbol sets as patterns to look for for similarities in other documents. Therefore, Proximic does not look at words, instead uses pattern recognition to understand the “composition” of text, not the text itself. Several advantages can be considered from these kind of IR applications; it is possible to use long queries (we are not restricted to use only some few key words), it is possible to categorize the results, or to look for information by its context.

There exist an important research in both, IR and Search engines areas, related with knowledge, and files organization, automatic text analysis, search strategies, automatic classification, probabilistic retrieval, etc. Most of their techniques are based on Natural Language, Data representation, machine learning, pattern recognition, and others techniques [5], [6], [7], [8]. However, in the context of IR, the concept of information in a mathematical sense is not usually measured. In fact, in many cases there no exist difference between both facts, document and information.

In this paper a new approach to contextual-search information based on Algorithmic Information Theory (AIT) techniques is presented. This approach uses some elements from AIT theory such as Kolmogorov complexity estimation, and other form statistics theory to compute the similarity between two documents. Using techniques from both areas, we are trying to classify documents by their content and structure (without using a set of given, learned, or extracted keywords). In our approach the Kolmogorov Complexity of a document is estimated using a compressor, an outliers are used to refine, and improve, the accuracy of the retrieval process.

This paper is structured as follows. Section III introduces briefly some concepts about Kolmogorov Complexity (NCD) and Statistics (outliers). Section III describes, and analyzes, how to structure a set of documents that can be used by a context-based search engine. Section IV provides a brief description of the IR application deployed to evaluate the proposed technique. Section V provides the experimental results which have been designed to obtain the best organization of the database, and the optimal (statistical) parameters to maximize the accuracy of the retrieval process. Finally, Section VI summarizes the conclusions and describes the future lines of work.
II. INFORMATION RETRIEVAL BASED ON KOLMOGOROV COMPLEXITY AND STATISTICS

The Kolmogorov Complexity of a text can be used to characterize the minimal amount of information needed to codify that particular text, regardless of any probability consideration. The Kolmogorov Complexity $K(x)$ of a string x, which is the size of the shortest program able to output x in a universal Turing machine, is an incomputable problem too (due to the Halting problem), the most usual (upper bound) estimation is based on data compression: the size of a compressed version of a document x, which we will denote by $C(x)$ may be used as an estimation of $K(x)$.

A. Normalized Compression Distance

A natural measure of similarity assumes that two objects x and y are similar if the basic blocks of x are in y and vice versa. If this happens we can describe the object x by referencing the blocks that belongs to y, thus the description of x will be very simple using the description of y. This is partially what a compressor does when concatenates the xy sequence: a search for information shared by both sequences in order to reduce the redundancy of the whole sequence. If the result is small, it means that part of the information contained in x can be used to code y, following the similarity conditions described.

Previous, was formalized by Rudi Cilibrasi and Paul Vitanyi [9], they proved that it is possible to calculate an upper bound value of the Kolmogorov complexity using compressors. This estimation, named the Normalized Compression Distance (NCD), can be used as a similarity distance between two objects. Therefore, the NCD distance, may be used to cluster objects, or to sort them in a set of relevant documents. The mathematical NCD formulation is shown in equation (1).

$$NCD(x,y) = \frac{\max\{C(xy) - C(x), C(yx) - C(y)\}}{\max\{C(x), C(y)\}},$$ (1)

Where C is an algorithm compression, $C(x)$ is the size of the C-compressed version of x, and $C(xy)$ is the compressed size of the catenation of x and y. NCD generates a non-negative number $0 \leq NCD(x,y) \leq 1$. Distances near 0 indicate similarity between objects, while those near 1 they shows dissimilarity. However, when these methods are used it is necessary to make an analysis of the document representation, the compressors have their own characteristics and it is necessary to study how the documents will be structured, and organized, to obtain a correct NCD distance between two blocks of texts.

As the quality of the NCD measure depends on the size of the objects compressed (some well-known compressors do not correctly work if the object size exceeds some memory constraints [10]), we make use of a windowless version of the classical Lempel-Ziv compression algorithm.

B. The Notion of Outlier

The result of performing similarity calculations is usually a large (quadratic in the number of submission in the corpus) number of pairwise distances, a number of which will be very low in case of similarity occurrence. The goal of an information retrieval tool is to flag these distances as the ones connecting relevant documents.

When based only on the bulk of distance values, the process of evaluation relevant candidates depends on the determination of a similarity threshold value. If a pair of documents have a similarity distances which falls below this threshold, it will be marked for inspection. Otherwise, the pair will not be marked.

However, the task of locating a good initial threshold has received little attention in the literature, and is therefore left completely to the personal decision of the search engine designer.

Under certain conditions, it is possible to quantify the amount of surprise presented by a distance value within a sample of distances. This problem is completely equivalent to the one of finding outliers in a data sample, a classical problem in statistical data analysis. Quoting Barnet and Lewis[11]

We shall define an outlier in a set of data to be an observation (or subset of observations) which appears to be inconsistent with the remainder of that set of data.

The term ‘surprisingly small distances’ is thus equivalent to the term lower outliers as used in statistics. In other words, the set of distances which should be marked as connecting relevant documents in a query corresponds to what a reasonable statistical test will consider as lower outliers within the full set of distances. As far as the authors are aware, this is the very first application of outlier detection techniques to Information Retrieval, despite its natural analogy.

III. DATA KNOWLEDGE STRUCTURE AND ORGANIZATION

Database research [12] is a hot topic related with a wide number of topics like: Web database systems, information integration, data mining, parallel database systems, scientific databases, visualization of large data sets, database performance….The research in this area (usually related with others such as Artificial Intelligence, Software Engineering or Physics for instance) tries to solve different problems (i.e. high performance and reliability accessing the data) for any particular domain (Web, networks, huge data sets,…).

This section analyzes the problem of data structure, and organization, from our (technique) perspective. The target is to obtain a reliable data organization that allows to optimize both, find the best block of inside a particular document (this block, or document elemental unit, that better fit with the query), to minimize the time necessary to find the most similar documents.

A. Database organization

Like in any database repository, we have a set of documents that need to be stored and indexed to allow their future retrieval. Any document in our database will be divided in
elemental units (named blocks) from 1 Kb to \(N\) Kb. The maximum size \((N)\) of a block depends with the compressor used, because any standard compressor uses a window which defines the best behavior in the algorithm (for instance the maximum window for LZ-compressor is 32 Kb).

This is a critical design aspect in our retrieval method, because if we use arbitrary length blocks, the NCD estimation of these blocks will not fit correctly (because the compression algorithm it is not able to find correctly the similarities) with the user query. Figure 1 shows an schematic representation of a distributed database build by 32 data repositories where each document has been divided in blocks from 1Kb to 32Kb, therefore it will be used a redundant distributed database, where each database can use their indexes to retrieve this elemental units.

Another problem that needs to be analyzed is related with the user query. Although any document can be pre-processed off-line (we know its size once it has been stored in the database), it is not possible to know what will be the size of the user query. With our approach the user query, may vary from a sentence, or a paragraph, to a complete file. The variable length of the user query will be handle as our previous files, so any user query will be processed into elemental units from 1Kb to \(N\) Kb, if the size of the user query is greater than \(N\) KB, it will be processed into \(N\) K blocks (as any other file). This user query processing will aid to obtain a more accurate NCD value.

B. File structure elemental division

If we consider a file like a sequence of characters (i.e. string) we can divide it into blocks of approximately 1024 bytes, 2048 bytes, etc, until the complete division of the file. These blocks build the elemental units of a particular file, that finally are indexed and stored in the corresponding database. However, the results, in the retrieval process, of this structure organization could not work so well at it would be expected.

The problem is newly related with the base technique used (compression) to look for a particular document. Any compressor is an algorithm designed to detect several similarities, or regularities (structural, statistical, . . .) in the documents. What happens if a document is truncated in basic block? Possibly the compressor will not be able to find their similarities, and therefore our similarity distance will not be so good as we desire.

To smooth previous problem our file structure division uses an **overlap** in the blocks (see Figure 2). Overlapping means that any block \((N_i)\) contains some information (bytes) of the precedent block \((N_{i+1})\). This allows to preserve some of the structure that could be contained in a particular block, on the other hand it is a high memory cost technique so it is necessary to evaluate carefully. This overlap is a configuration parameter in our search engine that can be set from 1% to 99% (i.e. if 10% is selected a 40Kb file needs, using 10Kb blocks, about 50Kb of memory).

IV. SEARCH ENGINE

A simple search engine prototype has been designed to allow make different experimental evaluations of the proposed technique. This search engine uses a set of graphical interfaces to allow: preprocessing a set of document repositories and store them into our database organization; deploy these databases in the search engine; calculate the NCD for each stored document; show the set of documents found from a particular user query (with the NCD distance for each block); show the documents found, and highlight those blocks (inside a particular document) with the best similarity.

As Figure 3 shows, the main GUI of the search engine is built by four work areas. The first one is a text area where the user can enter some text to be queried, or introduce any existing file with the content that wants to search for. This area also provides some customizable parameters like the number of blocks to be shown, or the limit value for outliers search.

The second area shows those blocks that have been found. This area provides information about the NCD value of the block, the file name, the database where it has been stored, and its relative position position in the whole file (i.e. database 1KB, block 21).

Once all the blocks have been obtained, the third area provides the results of the total voting for each file/blocks. The files are ordered by increasing similarity. Any file can be selected to show the complete file, and the blocks that have been found, in the last work area (bottom area in the gui).

A. The Voting Method

Each time we have a query we compute the NCD distance from the query to several elements (document fragments) of
the DB, those whose size is in the same size interval of the query, the 2 following intervals and the previous interval (see point 3.3). In this way we obtain several sets of distances, \(d_1, d_2, \ldots\)

We have gathered empirical evidence that distances from a query to DB elements (document fragments) which are not relevant are normally (gaussian) distributed (data not shown).

Additionally, we have experimental evidence that distances from a query to relevant elements are generally lower outliers of the distribution, i.e. distances which are abnormally low as to have been generated by a normal distribution which some particular mean and standard deviation.

Put it differently, the probability of a non-relevant distance being as low as a relevant one is extremely small. Therefore, it is fair enough to propose the following querying method:

1) Choose some size interval \(S\).
2) Compute the distances from the query the elements in the database which are in the size interval \(S\). We assume the majority of the distances are non-relevant and some very few distances are relevant. Therefore the statistical distribution of the data will be normal (gaussian).
3) Find outliers in this distance set. Each one of the fragments whose distance to the query is an outlier counts as one vote to the document it belongs to.
4) Go to 1, until no more intervals can be selected.

At the end of this loop we sum the votes from several size intervals, and we highlight those fragments which received a vote.

B. Finding outliers

The Hampel identifier, is maybe the most extensively studied (see [23]) outlier-finding method for normally distributed data sets. Additionally, there is empirical data proving that it outperforms other tests in many applications[13], [14].

The Hampel identifier works as follows. Let \(X(1), X(2), \ldots, X(N)\) be the ordered distances \(X_1, X_2, X_3, X_N\). Let \(M\) be the median of the sample, and \(S\) be the median absolute deviation form the median of the sample.

The Hampel identifier, adapted to lower outliers, is a rule which identifies as relevant all distances of the sample \(X\) satisfying:

\[
(M - X)/S > g(N; \alpha)
\]

where the function \(g(N; \alpha)\) serves for standardizing the identifier in the following way (see [15], p. 783, standardization (4)):

\[
\Pr(\text{no outliers in sample}) = \Pr\left(\frac{|X(N)| - M}{S} < g(N; \alpha)\right) = 1 - \alpha
\]

The function \(g(N; \alpha)\) does not have an analytic form and we estimate by means of a Montecarlo simulation.

This method can handle a large number of outliers, and is resistant to the problems appreciated in non-parametric approaches [16]. The designer may choose which threshold to use, being \(\alpha = 0, 01\) and \(\alpha = 0, 05\) the most usual ones.

V. Experimental Results

Our experimental setup consists of a database with a total amount of 100 peer-reviewed scientific publications by 17 different authors, all of them belonging to the Department of Computer Science at Universidad Autónoma de Madrid, and therefore in the Computer Science field.

As explained in section IV.A, we use voting for considering a relevant/irrelevant result. A non-zero value of voting is enough to consider the document containing the voted fragment as relevant. Although a higher number of votes represents a higher relevance, this is not taken into account in this experimental validation (but is used to rank results by their decreasing number of votes).

Our first set of experiments is intended as a proof-of-concept, and consists of selecting an abstract from one of the documents included in the database, and using it as a query. The desired output, true positive, is therefore the document from which the abstract was extracted. On the other hand, a false positive is any other document.

We consider our search engine as a binary classifier system with two classes, relevant and irrelevant. One can see the results using a ROC curve, a graphical plot of the sensitivity (rate of true positives) vs. \((1 - \text{specificity})\) (rate of false positives) as \(\alpha\) (our discrimination threshold) goes from 0 (total discrimination, no documents retrieved) to 1 (no discrimination, all documents are retrieved).
Figure 4 depicts a representative query result of the above described kind of experiments. We also depict the ROC curve of a random binary classifier for the sake of comparison. Results above the random curve represent positive evidence of information retrieval, and the faster the curve separates from the random curve, the better the search engine performs.

In a second step we remove the abstract from every document of the database, and we repeat the previous queries. The true positive and false positive consideration is unchanged. A representative result is depicted in Figure 5.

In the final step, we choose 20 documents which scientific classification subject coincides with one or more subjects of the documents in the database. This is done using the SpringerLink search engine (www.springerlink.com). We then select 5 fragments from each document, and use each of them as a query to the database. True positive results are those documents whose subject coincides with the query subject, and false positive are those which do not. A representative result of single query is shown in figure 6.

We therefore have a clear-cut experimental evidence of positive information retrieval in experiments ranging from simple literal text-coinidence queries to subject-affine document exploration.

VI. CONCLUSIONS AND FUTURE WORK

This paper has described a new IR technique based on Algorithmic Information Theory and Statistical techniques. The Information Theory technique is based on the utilization of the Normalized Compression Distance. This distance has been used as a feasible approximation of the Normalized Information Distance (based on the ideal notion of Kolmogorov Complexity). For a particular document, this measure is used to compare how close, or similar, two documents are, without using keywords, or any other traditional IR technique.

The paper has described the organization of the database and the files structure, both essential characteristics to implement the proposed technique. It has been shown how the detection of outliers is used to obtain a better precision in the retrieving process in a natural way.

Several experiments have been carried out with to main objectives. On one hand to fit some parameters (i.e overlapping in the databases, Hampel identifier threshold and others) of the search engine, and in the other hand to test in a set of scientific documents, how is working the method. The encouraging efficacy of the search engine together with its great simplicity and generality makes it a promising line of research towards alternative information retrieval systems.

In the future other database repositories will be used to study this technique (i.e. genetic databases and classical text books). Other compression algorithms, like PPMZ, BZIP2 or GZIP, will be integrated in the search engine to evaluate how these algorithms affects to the retrieval technique. Finally, other techniques, like intelligent distortion in textual documents that have been designed to obtain better complexity estimations (in form of most accurate NCD distances) [17], could be used to improve the IR technique proposed.
ACKNOWLEDGMENTS

This work was supported by TIN 2004-04363-C03-03, TIN 2007-65989, CAM S-SEM-0255-2006, S-0505/TIC/000267 and TSI 2005-08255-C07-06.

REFERENCES

[1] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval. Addison-Wesley, 1999.
[2] L. Doyle, Information Retrieval and Processing. Melville Publishing Co., 1975.
[3] C. van Rijsbergen, Information Retrieval. Butterworths, 1979.
[4] G. Salton, A. Wong, and C. S. Yang, “A vector space model for automatic indexing,” Communications of the ACM, vol. 18, no. 11, p. 613620, 1975.
[5] L. Smith, “Artificial intelligence in information retrieval systems,” Information Processing and Management, vol. 12, pp. 189–222, 1976.
[6] N. Elkin, “Information concepts for information science,” Journal of Documentation, vol. 34, pp. 55–85, 1978.
[7] Automatic Information Organization and Retrieval. McGraw-Hill, 1968.
[8] S. Robertson and K. Jones, “Relevance weighting of search terms,” Journal of the American Society for Information Science, vol. 27, pp. 129–146, 1976.
[9] R. Cilibrasi and P. Vitanyi, “Clustering by compression,” IEEE Transactions on Information Theory, vol. 51, no. 4, pp. 1523–1545, 2005.
[10] M. Cebrián, M. Alfonseca, and A. Ortega, “Common pitfalls using normalized compression distance: what to watch out for in a compressor,” Communications in Information and Systems, vol. 5, no. 4, pp. 367–384, 2005.
[11] V. Barnett and T. Lewis, “Outliers in statistical data,” Wiley New York, 1994.
[12] C. J. Date, An Introduction to Data Base Systems. Reading,: Addison-Wesley, 1975. [Online]. Available: citeseer.ist.psu.edu/anywhere.html
[13] R. Pearson, “Outliers in process modeling and identification,” Control Systems Technology, vol. 27, pp. 10(1):55–63, 2002.
[14] R. Wilcox, Applying contemporary statistical techniques, 2003.
[15] L. Davies and U. Gather, “The identification of multiple outliers,” Journal of the American Statistical Association, vol. 88, no. 423, pp. 782–792, 1993.
[16] M. Freire, M. Cebrián, and E. del Rosal, “Ac: An integrated source code plagiarism detection environment.” 2007. [Online]. Available: arXiv:cs/0703186.
[17] A. Granados, M. Cebrián, D. Camacho, and F. de Borja Rodríguez, “Evaluating the impact of information replacement on normalized compression distance-driven text clustering,” in IEEE Information Theory Workshop. (Submitted) 2008.