Mathematical modeling of failure of port control systems

Tatyana Khripko

Moscow State University of Civil Engineering, Yaroslavskoe shosse, 26, Moscow, 129337, Russia

E-mail: ProkhorovaTV@mgsu.ru

Abstract. The need to increase the capacity of ports is due to the development of the Northern Sea Route as a national transport route of Russia in the Arctic, the National Program for the Development of the Far East, in the context of an increase in trade with other regions of Russia, as well as the reorientation of cargo flows from the Baltic ports to Russian ones in Primorsk, Ust-Luga and Vysotske. Increasing cargo turnover and ensuring the strategic economic interests of Russia requires the reconstruction of existing and construction of new modern port-industrial complexes, provided with advanced technologies, including the automation of logistics management processes, production and engineering systems. This article describes a method for mathematical modeling of the failure of control systems for automation of cargo terminals of ports. Since failures in the operation of automation systems lead to an increase in the load of cargo berths (terminals) of both sea and river port complexes, to a violation of logistics schemes, and as a consequence to an increase in costs [11-13]. Modeling is carried out using methods of probability theory, in particular, the Poisson distribution law. A comparison of the empirical and theoretical failure rates of automation is performed using the Pearson criterion. The performed modeling will allow determining the technical and economic indicators of new construction, reconstruction or overhaul, in terms of the engineering systems of the facility, and optimize the automation processes.

1. Introduction

The need to increase the capacity of ports is due to the development of the Northern Sea Route as a national transport route of Russia in the Arctic, the National Program for the Development of the Far East, in the context of an increase in trade with other regions of Russia, as well as the reorientation of cargo flows from the Baltic ports to Russian ones in Primorsk, Ust-Luga and Vysotske. Increasing cargo turnover and ensuring the strategic economic interests of Russia requires the reconstruction of existing and construction of new modern port-industrial complexes, provided with advanced technologies, including the automation of logistics management processes, production and engineering systems. This article describes a method for mathematical modeling of the failure of control systems for automation of cargo terminals of ports. Since failures in the operation of automation systems lead to an increase in the load of cargo berths (terminals) of both sea and river port complexes, to a violation of logistics schemes, and as a consequence to an increase in costs [11-13]. Modeling is carried out using methods of probability theory, in particular, the Poisson distribution law [20-25]. If the number of trials increases, then the number of terms in the binomial distribution also increases. Since the sum of the probabilities of all possible values remains equal to one, the value of the
The probability of each individual value decreases. This explains what Poisson's law is sometimes called the law of rare events. A comparison of the empirical and theoretical failure rates of automation is performed using the Pearson criterion. Pearson criterion is a non-parametric method that allows you to assess the significance of the differences between the actual (identified by the study) number of outcomes or qualitative characteristics of the sample falling into each category, and the theoretical number that can be expected in the studied groups if the null hypothesis is valid. Simply put, the method allows you to assess the statistical significance of the differences between two or more relative indicators (frequencies, shares) [1-5]. The performed modeling will allow determining the technical and economic indicators of new construction, reconstruction or overhaul, in terms of the engineering systems of the facility, and optimize the automation processes.

2. Methods
The research used methods of the theory of probability [6-10]. As the initial data, let us set the empirical distribution of a discrete random variable of the number of failures of control systems \(x_i \). Define the following parameters required for modeling the process:

- \(m_i \) - frequency of the \(i \)-th feature;
- \(P_i \) - empirical probability of the \(i \)-th feature:

\[
P_i = \frac{m_i}{\sum m_i} = \frac{m_i}{n}
\]

- \(P'_i \) - theoretical value of the probability of occurrence of the \(i \)-th feature for Poisson's law:

\[
P'_i = e^{-\lambda} \frac{\lambda^{x_i}}{x_i!}
\]

- \(\lambda \) - average number of failures:

\[
\lambda = \sum P x_i = \lambda
\]

- \(m'_i \) - theoretical value of frequency according to Poisson's law

\[
m'_i = P'_i * n
\]

- \(\chi^2 \) - value of Pearson criterion

\[
\chi^2 = \sum \frac{(m_i - m'_i)^2}{m'_i}
\]

Based on the value of the Pearson criterion, the conclusion is drawn on the possibility of replacing the empirical distribution of the number of failures of control systems with the theoretical Poisson's law. Taking the number of degrees of freedom \(k \):

\[
k = l - 1 - r,
\]

- \(l \) - the number of distinct values \(x_i \) (the number of rows in the previously constructed table), \(l = N + 1 \);
- \(r \) - the number of parameters of the theoretical law. For the law Poisson uses one parameter \(\lambda = M(x) \), that is in this case \(r = 1 \).

By the value of the \(\chi^2 \) criterion and the parameter \(k \) (at their intersection), the value of the Pearson distribution function is read, which represents the "probabilistic degree of distrust" to the hypothesis about the possibility of replacement experimental distribution corresponding to theoretical. In other words, the closer this value is to zero, the better the agreement between the experimental distribution and the theoretical one, the more the hypothesis is confirmed [14-19].

3. Results
In the course of the research, calculations were carried out for the possible number of failures of control systems during the period conventionally taken for a calendar year. Column 1 of Table 1 shows the number of possible repetitions of control system failure. The research results are presented in Table 1.
Table 1.

x_i	m_i	P_i	$P_i x_i$	$P_i x_i^2$	m'_i	$(m_i - m'_i)^2$	χ^2	
0	35	0.000	0.000	0.000	0.740	136,160	75.157	
1	49	0.005	0.005	0.005	0.220	40,480	72.590	
2	45	0.011	0.022	0.043	0.030	5,520	1,793	
3	31	0.016	0.049	0.147	0.010	1,840	462.123	
4	11	0.022	0.087	0.348	-	-	-	
5	13	0.027	0.136	0.679	-	-	-	
	n=184					$\Sigma=0.299$	$\Sigma=1.223$	$\Sigma=821.44$

The average value of the number of rejects

$\lambda = 0.3$

Dispersion

$D(x) = M(x^2) - [M(x)]^2 = \Sigma P_i x_i^2 - (\Sigma P_i x_i)^2 = 1.134$

4. Discussion

According to the calculated goodness-of-fit criterion, it follows that it is impossible to replace the empirical distribution of the number of failures of control systems with the theoretical Poisson distribution law.

Figure 1 shows graphs of empirical distributions of the daily number of failures of control systems. In this case, along the X axis, the values the number of failures of control systems, and along the Y axis the corresponding frequencies - empirical m_i.

![Figure 1 - empirical m_i](image)
Figure 2 shows graphs of theoretical distributions of the daily number of failures of control systems. In this case, along the X axis, the values the number of failures of control systems, and along the Y axis the corresponding frequencies - theoretical m'_i.

5. Conclusions
The data for determining the probabilities should be carried out according to the empirical probability P_i of the Poisson distribution law. After analyzing the results obtained, we find that the probability that the number of failures of control systems per day will be equal to zero is 0.19. The probability that at least one failure of control systems will occur during the day is 0.81.

References
[1] Volkov A and Sukneva L 2013 Programming applications of computer aided design and layout of the complex solar panels Applied Mechanics and Materials 411-414 p 1840-1843
[2] Volkov A and Muminova S 2014 Devaluation modelling for residential buildings Advanced Materials Research 860-863 p 2864-2867
[3] Volkov A, Chulkov V, Kazaryan R and Sinenko 2014 Acting adaptation and human parity in the triad "man - Knowledge - Methods" Applied Mechanics and Materials 584-586 p 2681-2684
[4] Volkov A A and Vasilkin A 2016 Optimal Design of the Steel Structure by the Sequence of Partial Optimization Procedia Engineering 153 p 850-855
[5] Volkov A, Chulkov V, Kazaryan R and Gazaryan R 2014 Cycle reorganization as model of dynamics change and development norm in every living and artificial beings Applied Mechanics and Materials 584-586 p 2685-2688
[6] Volkov A A and Batov E I 2016 Model of stability of life support systems in emergency situations International Journal of Applied Engineering Research 11(3) p 1666-1669
[7] Volkov A, Sedov A, Chelyshkov P, Kulikova E 2014 Modeling the thermal comfort of internal building spaces in hospital Applied Mechanics and Materials 584-586 pp. 753-756 doi:10.4028/www.scientific.net/AMM.584-586.753
[8] Volkov A, Chelyshkov P, Grossman Y, Khromenkov A 2017 BIM cost analysis of transport infrastructure projects IOP Conf. Series: Earth and Enviromental Science 90 (2017) 012203 doi: 10.1088/1755-1315/90/1/012203
[9] Volkov A, Sedov A, Chelyshkov P 2014 Modeling the thermal comfort of internal building spaces in social buildings Procedia Engineering 91 pp. 362-367
[10] Volkov A, Sedov A, Chelyshkov P, Kulikova E 2014 Modeling the thermal comfort of internal building spaces in kindergarten Applied Mechanics and Material 584-586 pp. 757-760 doi:10.4028/www.scientific.net/AMM.584-586.757
[11] Lysenko D, Chelyshkov P 2018 The method of optimization of energy-efficient engineering solutions by varying criteria in CAD IOP Conference Series: Materials Science and Engineering. 365 022027 doi: 10.1088/1757-899X/365/2/022027
[12] Lapko A V and Lapko V A 2016 Selection of the optimal number of intervals sampling the region of values of a two-dimensional random variable Measurement Techniques 59 2 p 122-126 DOI: 10.1007/s11018-016-0928-y
[13] Aleksandrova T, Gromakov E, Chugunov R and Syramkin V 2016 Virtual analysis of technical equipment operational states variability MATEC Web of Conferences 01006 DOI: 10.1051/matecconf/20167901006
[14] Gromyschova S S, Astashkov N P, Olentsevich V A and Lobanov O V 2019 Safety level assessment of complexy structured transport systems with the purpose of increasing the level of their competitiveness in the market of transport services Modern technologies. System analysis. Modeling 2 (62) p 250-259 DOI: 10.26731/1813-9108.2019.2(62).250-259
[15] Lutin V I, Khripunov Y V, Desyatirikova E N, Myshovskaya L P and Lapshina K N 2019 Automatic quality control of processes in the online educational environment Proceedings of the 2019 IEEE International Conference Quality Management, Transport and Information Security, Information Technologies IT and QM and IS p 634-638 DOI: 10.1109/ITQMIS.2019.8928311
[16] Svyd I, Obod I, Maltsev O, Shtykh I and Zavolodko G 2019 Model and method for detecting request signals in identification friend or foe systems 15th International Conference on the Experience of Designing and Application of CAD Systems, CADSM 2019 - Proceedings 15 p 8779322 DOI: 10.1109/CADSM.2019.8779322
[17] Pyt’ev Y P 2017 Mathematical modeling of randomness and fuzziness phenomena in scientific studies. II. Applications Moscow University Physics Bulletin 72 2 p 113-127.DOI: 10.3103/S0027134917010131
[18] Kheker E V, Popov A N and Yusupov L N 2020 The representativeness of the experiment results with the navigator’s intelligent support system Operation of sea transport 2 (95) p 53-59 DOI: 10.34046/aumsuoim95/9
[19] Volodalrsky Y, Pototskiy I and Warsza Z L 2020 The use of cusum-charts for identification the technological process disorder at the initial stage Advances in Intelligent Systems and Computing 1140 p 147-156 DOI: 10.1007/978-3-030-40971-5_14
[20] Oblakova T V 2018 Statistical justification of pearson”s criterion for testing a complex hypothesis on the uniform distribution Mechanical engineering and computer technology 4 p 45-53. DOI: 10.24108/0418.0001392
[21] Starovoitov V.V., Eldarova E.E., Iskakov K.T 2020 Comparative analysis of the ssim index and the pearson coefficient as a criterion for image similarity Eurasian Journal of Mathematical and Computer Applications 8 1 p 76-90 DOI: 10.32523/2306-6172-2020-8-1-76-90
[22] Larkin E, Bogomolov A, Gorbachev D and Privalov A 2017 About approach of the transactions flow to poisson one in robot control systems Lecture Notes in Computer Science 10459 LNAI p 113-122 DOI: 10.1007/978-3-319-66471-2_13
[23] Gatelyuk O V, Nesevac V L and Erbes V V 2019 Analysis of measurement data in a direct current traction power-supply system with uncontrolled rectifiers Russian Electrical
[24] Timashev A N 2019 Limit poisson law for the distribution of the number of components in generalized allocation scheme Discrete Mathematics and Applications 29 4 p 255-266 DOI: 10.1515/dma-2019-0023

[25] Trukhanov V M, Sultanov M M, Kukhtik M P and Gorban Yu A 2018 Mathematical model of failure prediction by statistical method at testing of prototypes of heat-power equipment Energy reliability and safety 11 3 p 235-240 DOI: 10.24223/1999-5555-2018-11-3-235-240