Nondestructive Determination of 235U Enrichment of Uranium Samples in the Presence of Actinides (232Th, 236U, 237Np)

Yu V Stogov

Department of Theoretical and Experimental Physics of Nuclear Reactors, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe highway, 31, Moscow, Russia

YVStogov@mephi.ru

Abstract. The measurements were performed using a planar Ge detector. The multi-group analysis (MGA) for the determination isotopic abundances in low enriched uranium samples is applied in this study. In order to perform the analysis of complex gamma-spectrums, were taken a number of gamma-spectrums of single reference samples, containing 235U, 238U, 232Th, 236U, 237Np with declared isotopic abundance. The gamma-ray spectrums in the range of low energy X-ray and gamma-ray peaks of these samples were obtained and analyzed.

1. Introduction
The determination of 235U enrichment is of great importance of nuclear technology. The MGA for uranium (MGAU) method for non-destructive assay of 235U enrichment does not require the use of any nuclear material standards [1].

The MGAU-code is based on the analysis of the 89-120 keV region of Ge detector spectrum. There are some limitations of using of MGAU-code: the resolution at $E_\gamma=122$ keV of Germanium detector less than 700 eV; it requires from the daughter isotopes be in activity equilibrium with the 235U and 238U parent isotopes (it require up to six months after chemical separation); the accuracy of the method diminishes when the thickness of sample container becomes excessive; the abundances of actinides (232Th, 236U, 237Np, 239Pu) and other gamma-emitter nuclides (fission products, et al) must be very little. The MGAU-code was designed to operate with little or no user interaction, that is as «complete secrecy»-code (we can not change the parameters of the code). Hence the conclusion: it is necessary to perform a preliminary analysis of the gamma-ray spectrums of the samples for the presence of «interfering» impurities - gamma emitters (actinides) [1-2].

The first task of this investigation is to perform the analysis of gamma-spectrums of single reference samples containing 235U, 238U, 232Th, 236U, 237Np with declared isotopic abundance.

The second task – using the MGAU-code to obtain the results of the 235U enrichment of samples: a) «pure» U-samples and b) «dirty» U-samples, containing different concentrations of actinides (232Th, 236U, 237Np). Before each using of the MGAU-code it is necessary to analyze gamma-spectrum of sample.

The third task – to obtain the results of the 235U enrichment sample using the gamma-spectrum of investigated sample without use of MGAU-code. In order to decide this task the «peak-ratio» technique was applied [3] in the narrow 89-99-keV energy range. The peak 89.95-keV in spectrum of the sample is a measure of the 235U concentration (X-ray Th X K_{a2}). The intensities of 92.4 and 92.8-
keV lines of 234Th are used as a measure of 238U concentration of the sample. The 93.35-keV thorium Kα$_1$ line was used as a measure of 235U concentration. The contribution of 93.35-keV line was taken into account by using the special procedure.

2. Experimental description

2.1. Equipment
Spectrums were taken in planar Ge detector with resolution 46.0 eV at $E_\gamma=122$ keV (full width at half maximum, FWHM). The multichannel digital analyzer DSA-1000 Canberra and Genie-2000 (including MGAU-code) soft were used. The spectrums were stored in 4096 channels with a gain of 0.75 keV/channel. During the measurements there was performed the control of the position of the X-ray and gamma-ray peaks at energies of 63.1 and 185.72 keV, respectively belonging 234Th and 235U. The maxima of the peaks were situated respectively in the channels (844±1) and (2476±4).

2.2. The Gamma and X-rays Nuclear Data
The Gamma and X-rays nuclear data are presented in Table 1.

Nuclide	Energy (keV)	Photon emission probability (%)
234U/231Th	89.95±0.2	1.00±0.6
Th Kα$_2$	89.957	28.2±0.6
Pa Kα$_2$	92.282	28.3±0.6
238U/234Th	92.38	2.8±0.3
235U/231Th	92.80	2.8±0.3
Th Kα$_1$	93.02	0.047±0.006
U Kα$_3$	93.844	0.098±0.003

2.3. The Procedure of the Experimental Investigation

2.3.1. The Investigation of Influence of Different Concentrations of 232Th and 236U Presence in UO_2-Samples on the Results of 235U Enrichment Determination by MGAU-code

The 235U enrichment of the reference UO_2-sample (235U enrichment x=6.50 wt%) was determined by MGAU-code (Table 2).

Nuclide	Weight fraction of nuclide, (%)	Derivation
234U	0.045	0.010 (22.2 %)
235U	6.352	0.084 (1.3%)
238U	93.603	0.084 (0.1%)
The gamma-spectrum of the reference UO₂-sample (²³⁵U enrichment x=6.50 wt%) was taken. The peak 89.95-keV in spectrum of this sample is a measure of the ²³⁵U concentration (X-ray Th X Kα₂) (Figure 1).

The gamma-spectrum of ²³²Th sample was taken. In this spectrum the peak of sample 89.95-keV is a measure of ²³²Th concentration.

The count rate in peaks 89.95 keV in both samples was determined (measuring peak intensity in counts/s). The time of measuring ²³²Th sample spectrum, corresponding the increasing the value of count rate in peak 89.95 keV in the spectrum of UO₂-sample (²³⁵U enrichment x=6.50 wt%) is obtained.

Using the gamma-spectrum of UO₂-sample contained in the memory of multi-channel analyzer, the UO₂-sample was removed from Ge - detector and then the ²³²Th-sample was put on the detector. After the spectrum measurement of ²³²Th-sample during the necessary time the count rate in the peak 89.95 keV increased by 1%. That corresponds to an increase of weight fraction ²³²Th in the mixture of (UO₂+²³²Th). A new treatment of obtained spectrum was performed by MGAU-code, ect. Step by step we obtain the response function of MGAU-code of increasing 89.95 keV count rate peak by gamma-emitter (²³²Th-sample). This count rate depends from parameter P:

\[
P = \frac{S_{90\text{ keV}}(UO_2(6.5\%)) + 232\text{Th}}{S_{90\text{ keV}}(UO_2(6.5\%))}
\]

The dependence of ²³⁵U enrichment (obtained using MGAU-code analysis) from parameter P is presented on Figure 2. The number of the «big points» on the Figure 2 corresponds that there are no message from MGAU-code «gamma-emitting nuclides are present in investigated sample» on measure of increase of parameter P before certain moment. The analogical procedure was performed with ²³⁶U sample. The results are presented in Figure 3 in dependence of the parameter \[P_1 = \frac{S_{90\text{ keV}}(UO_2(6.5\%)) + 236\text{U}}{S_{90\text{ keV}}(UO_2(6.5\%))}\].
Figure 2. Dependence of ^{235}U enrichment (obtained using MGAU-code analysis) from parameter P: ^{232}Th gamma-emitting nuclide is present in investigated sample.

Figure 3. Dependence of ^{235}U enrichment (obtained using MGAU-code analysis) from parameter P_1: ^{236}U gamma-emitting nuclide is present in investigated sample.
2.2.2. The «Peak-Ratio» Technique for 235U Enrichment Determination in Samples (Without Using of MGAU-Code)

On the Figure 4 is presented the gamma and X-ray spectrum of depleted uranium sample ($x=0.0025$ wt%). On the Figure 5 is presented the gamma and X-ray spectrum of enriched uranium sample ($x=98$ wt%)

![Gamma and X-ray spectrum of depleted uranium sample (x=0.0025 wt%).](image)

![Gamma and X-ray spectrum of enriched uranium sample (x=98 wt%).](image)

Figure 4. Gamma and X-ray spectrum of depleted uranium sample ($x=0.0025$ wt%).

Figure 5. Gamma and X-ray spectrum of enriched uranium sample ($x=98$ wt%).
The «strip» function of the multichannel analyzer was used as follows: 1) store an «enriched» spectrum of uranium enriched to 99.5% in 235U; 2) obtain the sample spectrum, then normalize the «enriched» spectrum to the 89.96 keV X-ray of the sample spectrum; and 3) subtract the normalized «enriched» spectrum from the sample spectrum. The resultant stripped spectrum contains the cleanly resolved 238U gamma-ray doublet at 92-keV peak from the stripped spectrum and the 89.96-keV X-ray peak area from the original sample spectrum are used to obtain the 238U/235U ratio.

A relationship between enrichment, X, and the 238U/235U ratio, R, can be obtained as follows:

$$X = \frac{100 \cdot w.f.^{235}U}{w.f.^{234}U + w.f.^{235}U + w.f.^{236}U + w.f.^{238}U}$$

(2),

where $w.f.^{234}U$, $w.f.^{235}U$, $w.f.^{236}U$, $w.f.^{238}U$ - weight fraction of ^{234}U, ^{235}U, ^{236}U, ^{238}U, respectively.

Substitutive the following approximation into the above equation:

$$w.f.^{234}U + w.f.^{236}U = 0.01 \cdot w.f.^{235}U$$

(3).

Than rearrange the terms to obtain:

$$X = \frac{100}{1.01 + \frac{w.f.^{238}U}{w.f.^{235}U}} = \frac{100}{1.01 + K \cdot R},$$

where $R = \frac{S_{92\text{keV}}}{S_{90\text{keV}}}$; $K = 5.46$ is an experimental constant. The constant K is determined in by iterative way to give the best fit to the calibration data where $R = \frac{S_{92\text{keV}}}{S_{90\text{keV}}}$. The relationship between peak area ratios $S_{92\text{keV}}/S_{90\text{keV}}$ and 235U enrichment are presented in figure 6.

![Figure 6](https://example.com/figure6.png)
3. Conclusions
Using the high resolution planar Ge detector it is possible to take the gamma-spectrums of «clean» uranium samples and «unknown» «dirty» uranium samples, containing some concentrations of actinides. Using a single reference samples, containing $^\text{232}\text{Th}$, $^\text{235}\text{U}$, $^\text{237}\text{Np}$ etc. with declared isotopic abundance, it is possible to increase the count rates in corresponding gamma-spectrum peaks of «unknown» «dirty» uranium samples and obtain the response function of MGAU-code from the $^\text{235}\text{U}$ enrichment (using MGAU-code) in dependence of parameter P. At last, now it is possible to estimate the number of steps, that corresponds the increasing of P on 1%, when the MGAU-code message «gamma-emitters are present in sample» will be obtain.

The «peak-ratio» technique description, presented in this paper, allows explaining the procedure of $^\text{235}\text{U}$ enrichment determination of uranium samples without using of MGAU-code and its allows obtaining the $^\text{235}\text{U}$ enrichment of investigated samples.

The study of nondestructive determination of $^\text{235}\text{U}$ enrichment of uranium samples in the presence of actinides will be continued.

4. References
[1] Gunnik R et al 1994 A New Analysis Code for Measuring U-235 Enrichments in Arbitrary Samples IAEA Symposium on International Safeguards, Vienna, Austria. Lawrence Livermore National Laboratory. Report UCRL-JC-114713 Livermore, California.
[2] Yucel H 2007 The Applicability of MGA Method for Depleted and Natural Uranium Isotopic Analysis in the Presence of Actinides ($^\text{232}\text{Th}$, $^\text{237}\text{Np}$, $^\text{233}\text{Pa}$ and $^\text{241}\text{Am}$) Applied Radiation and Isotopes 65 p 1269-1280.
[3] Passive Nondestructive Assay of Nuclear Materials 1991 NUREG/CR-5550 LA-UR-90-732 Edited by: Reilly D, Ensslin N and Smith H.
[4] Firestone R B, Shirley V S 1996 Table of Isotopes. Wiley, New-York.