Towards a green economy in Europe: does renewable energy production has asymmetric effects on unemployment?

Sameen Naqvi1 · Jinchao Wang1 · Rizwan Ali2

Received: 8 September 2021 / Accepted: 13 October 2021 / Published online: 26 October 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
Renewable energy production is necessary for digital society; it is also beneficial for labor market and sustainable development. This paper examines the impact of renewable energy production on unemployment rate by employing panel NARDL-PMG and robust asymmetric quantile regression for European countries from 1991 to 2019. The results reveal that renewable energy production significantly reduced unemployment in European countries in long run. The renewable energy production effect is found significant in the asymmetric model, specifically, in European countries; a positive change in renewable energy production has a negative significant impact on unemployment, and a negative change in renewable energy production has a positive significant impact on unemployment in long run. The GDP, investment, and technology innovation process are found to be triggered in labor market by reducing the unemployment rate in the long run. In addition, the asymmetric effects of renewable energy production on unemployment growth are robust in the different quantile regression. The findings suggest some insightful policy implications for government officials and policymakers.

Keywords Renewable energy production · Unemployment · Europe

Introduction
Over the past few decades, climate change has become a primary concern for policymakers worldwide. Climate change and its related problems, such as global warming, rising sea levels, floods, and droughts, have jeopardized the survival of mankind on earth (Usman et al. 2020). One of the primary causes of global climate change is the emissions of greenhouse gases (GHGs) due to man-induced economic and social activities. Among the GHGs, carbon dioxide (CO2) has the largest share of 76%, followed by methane (CH4) 16%, nitrous oxide (N2O) 6%, and others 2%. The excessive infusion of CO2 emissions into the atmosphere is considered a crucial proxy of environmental degradation (Mahmood et al. 2020). Many empirics have tried to find the factors to curb CO2 emissions without hampering economic and social activities (Ullah et al. 2021 and Usman et al. 2021).

The talks at the international level are getting serious about the efficacy of renewable energy in mitigating CO2 emissions after the publication of the fourth assessment report (AR4) by the International Panel on Climate Change (IPCC) in 2007. The European Commission on Climate Change suggests that Europe can play a leading role in the worldwide efforts to curb GHGs emissions and set a target of reducing emissions by 30% with the help of other nations. Although the benefits of renewable energy in terms of energy security, resource preservations, climate protection, and import independence are undisputed (Sohail et al. 2021), however, actual economic costs of renewable energy projects are still a point of controversy because of the high upfront costs of such projects.

Given the importance of renewable energy and its related economic benefits, many studies with different geographical focuses have discussed the relationship between renewable energy and economic growth without assessing the value
sources soared to 19.7% of total energy in 2019, while in 2019. On the other side, the share of renewable energy electricity demand is fulfilled via renewable energy sources (Rivers 2013; Mbarek et al. 2018; Çelik 2021). The deployment of renewable energy projects saw a massive surge after 2012, and more than 11 million people worldwide are serving in the renewable energy sector (Meyer and Sommer 2014). The swiftly growing development of renewable energy projects and technologies and the increasing numbers of employment opportunities make it vital to explore the occupation effect of renewable electricity (Apergis & Salim 2015). D’Adamo et al. (2020) noted that a dramatic recent economic crisis has impacted the supply chain of energy projects. The clean energy system plays an essential role in green recovery. Renewable energy projects are also achieving a pathway of environmental sustainability targets in the recent era (Onifade et al. 2021). In the existing literature, many studies have focused on the employment effects of renewable energy concerning different locations; however, most of the studies ignored the employment opportunities created by nuclear and non-renewable energy sources (Cameron and Van Der Zwaan 2015; Azretbergenova et al. 2021). They extensively reviewed the literature on the employment effects of renewable energy and suggested that the size of net employment effects differs significantly because of variations in geography, technologies, econometric methodologies, and data collection. They also highlighted that there is no consensus vis-à-vis the long-run sustainability in employment effects of the renewable energy sector (Rivers 2013; Mbarek et al. 2018; Çelik 2021).

The share of renewable energy in total energy mixes of different countries is on the rise, particularly in the developed economies such as Europe, where 34% of the total electricity demand is fulfilled via renewable energy sources in 2019. On the other side, the share of renewable energy sources soared to 19.7% of total energy in 2019, while this number was just 9.6% in 2004 (Daunfeldt et al. 2015). Though the benefits of renewable energy are many, most notables are improved environmental quality and increased energy security. Another significant benefit of renewable energy is job creation which is also noted by the various studies; however, this claim is still debatable. Although multiple studies have supported the argument that renewable energy projects benefit the economy by creating job opportunities (Moreno & Lopez 2008; Blanco and Rodrigues 2009; Nusair 2020), these studies have relied on very positive or simple expectations and thus provided such results. In some instances, a rational approach is adopted by considering reasonable suppositions, but discriminatory findings can drive a wrong image of job creation. Previous literature confirmed that large-scale and massive investments in renewable energy projects could positively affect employment opportunities at a much greater pace than the employment effects of small renewable projects with low-level investments (Böhringer et al. 2013; Yi 2013). The renewable energy sector has been generating a lot of employment in the light of the Renewable Energy Plan 2011–2020 in Spain (Blanco et al. 2021).

Against this backdrop, in this analysis, our primary focus is to analyze the impact of renewable energy on employment opportunities in European economies. European countries are rapidly adopting renewable energy technologies, and it has become a vital provider of electricity and energy inside Europe. Hence, these economies have become the ideal countries to study the impact of renewable energy projects on employment opportunities. Previous studies assumed the symmetric impact of renewable energy production on unemployment (Apergis & Salim 2015; Arvanitopoulos & Agnolucci 2020; Destek et al. 2020), but findings provide misleading economic inferences. The asymmetric estimates bring new empirical accurate and unbiased understanding on a less explored research topic in the current literature. Moreover, we also want to observe whether the employment growth responds symmetrically or asymmetrically to the changes in renewable energy production. To that end, we have applied nonlinear Panel-NARDL-PMG, which provides us the opportunity to break down the renewable energy production into their positive and negative shocks and thus separately calculate their impact on employment growth in Europe. The asymmetric analysis is closer to reality because most of the macroeconomic variables behave nonlinearly due to their vulnerability to external shocks. The nonlinear analysis assumes that a positive and negative change may move in the same direction with different magnitudes. Furthermore, to strengthen our results, we will also apply the quantile regression model.

This study is a blend of various sections, and their organizations are as follows. In the “Model and methods” section, we present data and methods. Then, we offer results in the
“Results and Discussion” section. We have provided the conclusion in the “Conclusion and implications” section.

Model and methods

A majority of the studies in the literature identify renewable energy production as one of the key factors of employment. Hillebrand et al. (2006) revealed that renewable energy production has importance in their formulation of the labor market. Therefore, we follow Arvanitopoulos and Agnolucci (2020) and adopt the following long-run model:

\[
Unemp_{it} = \omega_0 + \varphi_1 REP_{it} + \varphi_2 GDP_{it} + \varphi_3 Investment_{it} + \varphi_4 Patent_{it} + \varepsilon_{it},
\]

(1)

where \(Unemp_{it} \) is employment rate, \(REP_{it} \) is renewable energy production, \(GDP_{it} \) is GDP per capita, \(Investment_{it} \) is investment share, and \(Patent_{it} \) is technology innovation. Since data sampling nation is Europe, we express the “i” and time period “t”. It is normally assumed that an increase in renewable energy production encourages the employment rate. Thus, we expect estimates of \(\varphi_1 \) to be negative. The next phase involves re-writing Eq. (1) in an error-correction modeling format so that we can also measure the short-run impacts of exogenous variables. Such model is outlined by (2) as follows:

\[
\Delta Unemp_{it} = \omega_0 + \sum_{k=1}^{n} \beta_{1k} \Delta Unemp_{2it-k} + \sum_{k=0}^{n} \beta_{2k} \Delta REP_{it-k} + \sum_{k=0}^{n} \beta_{3k} \Delta GDP_{it-k} + \sum_{k=0}^{n} \beta_{4k} \Delta Investment_{it-k} + \sum_{k=0}^{n} \beta_{5k} \Delta Patent_{it-k}
+ \omega_1 Unemp_{it-1} + \omega_2 REP_{it-1} + \omega_3 GDP_{it-1} + \omega_4 Investment_{it-1} + \omega_5 Patent_{it-1} + \varepsilon_{it},
\]

(2)

Specifications (2) is due to Pesaran et al. (2001) where coefficients are attached to “first-differenced” variables and the long-run coefficients by the estimates of \(\omega_2-\omega_5 \) normalized on \(\omega_1 \). However, for the consistency and validity of long-run estimates, we must establish cointegration (Bahmani-Oskooee and Nasir 2020; Bahmani-Oskooee et al. 2020). Two famous tests are recommended in the literature (Pesaran et al. 2001): the F test to establish the joint significance of lagged level variables and the t-test or ECM to establish the significance of \(\omega_1 \) in Eq. (2). The central assumption in the error-correction model (2) is that the impact of renewable energy production on the unemployment rate is symmetric. Shin et al. (2014) modify such a type of econometric model so that we can easily judge the possibility of asymmetric effects of renewable energy production on the unemployment rate.

\[
REP^{+}_{it} = \sum_{n=1}^{t} \Delta REP^{+}_{it-n} = \sum_{n=1}^{t} max(REP^{+}_{it-n}, 0)
\]

(3a)

Thus, the concept of the partial sum is employed to create two new time series as, \(REP^+ \), and \(REP^- \). A positive change in renewable energy production reflects only an increase in renewable energy production. By the same token, \(REP^- \) is the partial sum of negative change and reflects on the decreased renewable energy production. In the next step, we move back to (2) and replace \(REP \) with the partial sum of two new variables to arrive at:

\[
\Delta Unemp_{2it} = \omega_0 + \sum_{k=1}^{n} \delta_{1k} \Delta Unemp_{2it-k} + \sum_{k=0}^{n} \delta_{2k} \Delta REP^{+}_{it-k} + \sum_{k=0}^{n} \delta_{3k} \Delta REP^{-}_{it-k} + \sum_{k=0}^{n} \beta_{4k} \Delta Investment_{it-k} + \sum_{k=0}^{n} \beta_{5k} \Delta Patent_{it-k}
+ \omega_1 Unemp_{it-1} + \omega_2 REP^{+}_{it-1} + \omega_3 REP^{-}_{it-1} + \omega_4 Investment_{it-1} + \omega_5 Patent_{it-1} + \varepsilon_{it}
\]

(3b)

Since assembling the two new partial sum variables of the renewable energy production, models like Eq. (4) is referred to as asymmetric ARDL model, whereas that like Eq. (2) is called asymmetric ARDL model. Shin et al. (2014) employed a similar estimation approach and the same diagnostic for both linear and nonlinear models. Once Eq. (4) is estimated, a few nonlinearity assumptions could be tested (Bahmani-Oskooee and Nasir 2020; Bahmani-Oskooee et al. 2020). First, short-run asymmetry can be established if \(\Delta REP^+ \) and \(\Delta REP^- \) take a different lag order, i.e., if \(\delta_{2k} \neq \delta_{3k} \). Second, short-run asymmetric impacts of renewable energy production will be established by using Wald test, if at any given lag order \(k \), the estimate of \(\delta_{2k} \) attached to \(\Delta REP^+_{t-k} \) is different than the estimate of \(\delta_{3k} \) attached to \(\Delta REP^-_{t-k} \). Lastly, the long-run asymmetric impacts between the positive and negative changes are established if, once again, we can reject the null hypothesis of the Wald test \(\frac{\omega_1}{\omega_4} = \frac{\omega_2}{\omega_3} \).

Some scholars also apply the quantile technique on the panel data and give large attention in theory and application. Quantile regression has become a workhorse in recent years and has been widely used in energy and environmental empirical research. Koenker and Bassett (1978) offer an insight into the relationship of the response variable distribution on the covariates in the various quantiles in quantile regression. It is noted that fat tails or distinct peaks often exist in the data, while the panel data model is mostly estimated based on conditional mean regression. To alleviate this difficulty, we utilize panel quantile regression to estimate our nonlinear econometric model.
The quantile regression provides more robust estimation results for panel data (Koenker and Bassett 1978). This method allows exploring a range of conditional quantiles by capturing asymmetric effects. Koenker (2004) proposes a different quantile regression model based on the fixed-effects panel data, where the different term is added to the objective function to decrease the individual impacts and maintain the asymptotic normality of the estimator.

The panel asymmetric quantile regression also deals with the outliers and offers robust outcomes. PANEL quantile regression delivers a separate influence of concern variables on unemployment due to varied quantiles. PANEL quantile regression also explores unobserved heterogeneity for each cross-section and measures various parameters in different quantiles.

Data

The study aims to investigate the impact of renewable energy production on employment growth in European economies (Germany, Italy, France, Sweden, Spain, Norway, UK, Finland, Austria, Poland) for the period 1991 to 2019. Unemployment as a percentage of the total labor force is used to measure unemployment growth. Renewable energy production is measured as renewables and others in quad Btu. GDP, investment, and Patent are control variables in this study. GDP is measured as GDP per capita at constant 2010 US$. Gross fixed capital formation as a percentage of GDP is used as a proxy variable for investment. A patent variable is used as a proxy variable for technological innovation which is measured as patent applications in a number of total residents and non-residents. Data on all variables are extracted from the World Bank (Table 1).

Table 1 Variables and definitions

Variables	Symbol	Definitions	Mean	Std. Dev	Min	Max
Unemployment	Unemp	Unemployment, total (% of total labor force) (modeled ILO estimate)	8.874	4.567	2.490	26.09
Renewable energy production	REP	Renewables and other (quad Btu)	0.622	0.437	0.019	2.331
Gross domestic product	GDP	GDP per capita (constant 2010 US$)	10.50	0.528	8.614	11.43
Investment	Investment	Gross fixed capital formation (% of GDP)	21.39	2.711	14.97	30.02
Technology innovation	Patent	Patent applications, total (residents and nonresidents)	8.825	1.095	7.221	11.12

World Bank (2020)

Table 2 Panel unit root testing

Variables	LLC	IPS	ADF						
	I(0)	I(1)	I(0)	I(1)	I(0)	I(1)			
Unemp	−1.935***	I(0)	−2.752***	I(0)	−2.832***	I(0)			
REP	−1.035	−6.325***	I(1)	0.987	−8.356***	I(1)	−1.002	−7.655***	I(1)
GDP	−1.032	−3.987***	I(1)	−0.987	−5.988***	I(1)	−0.782	−6.598***	I(1)
Investment	−2.352***	I(0)	−3.565***	I(0)	−3.255***	I(0)			
Patent	−0.231	−2.987***	I(1)	−0.987	−5.988***	I(1)	−0.325	−5.032***	I(1)

***p < 0.01; **p < 0.05; and *p < 0.00
1.086 percent, 0.789 percent, and 1.534 percent reduction in unemployment in these economies in the long run. The short-run findings of panel ARDL demonstrate that renewable energy production and patent variables have no significant impact on unemployment as the coefficient estimates of these two variables are statistically insignificant. However, GDP and investment have a significant negative impact on unemployment confirming that increase in investment and GDP results in increasing employment growth in these economies in the short run. To confirm the findings of panel ARDL, the study performs some diagnostic tests such as Log-likelihood test, ECM, and Kao test. The coefficient estimate of Log-likelihood confirms the overall goodness of fit of the model. Furthermore, the findings of ECM and Kao test confirm the existence of long-run cointegration among variables. The coefficient estimate of ECM holds a negative sign as required for convergence, with a value 0.241, which states that in a period of 1 year, almost 24 percent convergence towards equilibrium will be achieved.

The study also scrutinizes the asymmetric impact of renewable energy production on employment growth in selected European economies. The long-run findings of panel NARDL demonstrate that positive shocks in renewable energy production have a significant negative impact on unemployment revealing that due to 1 percent increase in renewable energy production, unemployment decreases by 0.943 percent. In contrast, the negative shock that is renewable energy production has a significant positive impact on unemployment showing that due to 1 percent increase in the negative component of renewable energy production, unemployment increases by 1.785 percent in the long run.

This finding is reliable with Arvanitopoulos and Agnolucci (2020), who noted that renewable energy production contributes to stimulating employment in the UK. This study also reported that 1 GWh increase in annual renewables creates 4.7 new jobs in the short-run period and 3.5 jobs in the long period. Azretbergenova et al. (2021) suggest that renewable energy investments generate thousands of job opportunities around the globe in the modern era. A similar finding is also found by Lehr et al. (2008) for Germany, who infers that renewable energy production has directly and indirectly increased employment. Renewable energy production is sometimes considered a win–win scenario for economic welfare and the environment, as they reduce CO2 emissions and create employment in the economy. The effect of renewable energy production on the unemployment rate is not much smaller in absolute terms in Europe. Moreno and Lopez (2008) noted that renewable energy production offers the opportunity to reduce the emission of

Variable	Coefficient	Std. Error	t-Statistic	Prob.*
REP	-1.029**	0.494	-2.084	0.038
REP_POS	-0.943**	0.470	-2.007	0.046
REP_NEG	-1.785*	1.072	1.665	0.100
GDP	-1.086	0.509	-2.133	0.035
INVESTMENT	-0.789***	0.087	-9.104	0.000
PATENT	-1.534***	0.520	-2.949	0.004

Variable	Coefficient	Std. Error	t-Statistic	Prob.*
D(REP)	0.665	0.999	0.665	0.507
D(REP_POS)	-0.017*	0.009	1.888	0.078
D(REP_NEG)	-1.902	2.618	-0.726	0.468
D(GDP)	-1.220	0.443	-2.753*	0.005
D(INVESTMENT)	-0.161**	0.079	-2.033	0.043
D(PATENT)	0.492	1.215	0.405	0.686
C	58.44***	14.04	4.161	0.000

Diagnostics	Coefficient	Std. Error	t-Statistic	Prob.*
Log likelihood	-166.18			
ECM(-1)	-0.241***	0.058	-4.168	0.000
Kao-cointegration	-3.255***	0.465	4.658***	3.878***

***p<0.01; **p<0.05; and *p<0.0
CO2 and create new employment. The finding also infers that renewable energy production increases output level by reducing unemployment in the economy. The negative effect can be explained by income and technology effects in economic theory. The effects of the financial crisis are visible in the European energy market. The financial crisis has severely affected the renewable energy project because it also changed the preferences of investors by reducing the employment rate (Hofman and Huisman 2012).

As it is assumed that the renewable energy sector has increased business opportunities rapidly with also increasing the green jobs in Europe, our finding also infers that the renewable energy sector itself has a direct impact on employment in the economy. Indirect employment includes employment in each sector of the economy in the supply chain. Destek et al. (2020) reveal that green energy also reduces the unemployment rate in Canada, Israel, France, New Zealand, and Mexico via direct and indirect transmission channels.

However, GDP, investment, and technological development significantly tend to reduce unemployment in these economies in the long run. As it is shown that in response of 1 percent increase in GDP, investment, and technological innovation, unemployment reduces by 1.374 percent, 0.885 percent, and 2.151 percent, respectively. The short-run outcomes of panel NARDL reveal that positive shock in renewable energy production has a significant negative impact on unemployment; however, the negative shock in renewable energy production has reported no impact on unemployment. In the case of control variables, GDP and investment result in reducing unemployment, but patent variable reports no significant association between technological innovation and unemployment in the short run. The findings of diagnostic tests also validate the empirical outcomes of NARDL. As the findings of Log-likelihood confirm the goodness of fit of the model, the findings of ECM and Kao test confirm the existence of long-run cointegrating association among variables in the long run. The negative coefficient value of ECM demonstrates that almost 23 percent stability will be attained in the period of 1 year. The findings of Wald test also report that the asymmetries exist among dependent and independent variables in the long run and short run (Table 3).

Table 4 portrays the results of quantile regression estimates. Although we have presented the complete results of all our variables, however, to save space, we only discuss the results of our primary variable. In total, we have included 11 quantiles. The estimates of REP are negatively significant in symmetric quantile regression. In addition, the asymmetric effects of renewable energy production on unemployment growth are robust in the different quantile regression.
Conclusion and implications

Due to environmental degradation and energy supply sanctuary issues, the energy sector has transformed towards renewable energy production. The increasing trend of investments in the field of renewable energy creates substantial support to the development and economic growth by increasing production levels and by generating more employment. The current study examines the effect of renewable energy production on the employment growth in the case of European countries namely Austria, Finland, France, Germany, Italy, Norway, Poland, Spain, and Sweden for period 1991 to 2019. For this purpose, the study employed panel ARDL and panel NARDL regression techniques. GDP, investment, and technological innovation are also incorporated as control variables in the study. The long-run findings of panel ARDL report that due to an increase in renewable energy production, employment growth increases significantly. However, short-run findings of ARDL do not report any significant impact of renewable energy production on employment growth.

The long-run outcomes of NARDL demonstrate that positive shock in renewable energy production leads to employment growth in these economies; however, negative shock in renewable energy production results in increased unemployment in the long run. The short-run findings of NARDL also report employment growth due to positive changes in renewable energy production. The finding does not report any significant impact of negative shock of renewable energy production on employment growth in the short run. In case of control variables, the findings of panel ARDL and panel NARDL models reveal that any increase in GDP, investment, and Patent variables results in a reduction of unemployment in these economies in the long run. However, in the short run, the findings of panel ARDL and panel NARDL models reveal that GDP and investment result in increasing employment growth, but a patent has no significant impact on employment growth.

In short, renewable energy production and other variables exert a significant positive impact on employment growth in the sample of selected European economies. On the basis of these findings, the study proposed several policy recommendations. Firstly, capital investment in renewable energy sector-related technologies should be increased. Secondly, the joint projects, support projects, statistical transfers, and collaborations should be strengthened among these selected economies on renewable energy production. Thirdly, the utilization of fossil fuels should be minimized, and the appropriate domains for the renewable energy sector amenities should be determined. Lastly, the governments should adopt such strategies that fulfill the necessities of the energy sector, containing the training of future workforces that improves regional competitiveness and generates positive influences on the labor market. In addition, the European governments should also provide some tax benefits, price guarantees, subsidies, and easy financing opportunities inspiring the green energy sector to increase its employment level.

Although the asymmetric empirical analysis of renewable energy production and unemployment is an innovative step, some limitations persist. The data period is small; authors used limited variables in empirical analysis. This study is not able to address the country-specific asymmetric empirical analysis of concern variables. The country-specific asymmetric findings in this study have opened new avenues about the renewable energy production-unemployment nexus, but it is left for future research studies. Future research should also extend the similar analysis for developing economies.

Author contribution Conceptualization, writing, referencing, and final format: Sameen Naqvi. Data analysis and result: Sameen Naqvi and Jinchao Wang. Supervision, proofreading, and review: Jinchao Wang and Rizwan Ali.

Availability of data and materials Data is available from the corresponding author upon request.

Declarations

Ethical approval Not applicable.

Consent to participate Not applicable.

Consent to publish All authors have read and approved the manuscript to publish with this journal.

Competing interests The authors declare no competing interests.

References

Apergis N, Salim R (2015) Renewable energy consumption and unemployment: evidence from a sample of 80 countries and nonlinear estimates. Appl Econ 47(52):5614–5633
Arvanitopoulos T, Agnolucci P (2020) The long-term effect of renewable electricity on employment in the United Kingdom. Renew Sust Energ Rev 134:110322
Azretbergenova G, Syzdykov B, Niyazov T, Gulzhan T, Yskak N (2021) The relationship between renewable energy production and employment in European Union countries: panel data analysis. Int J Energy Econ Policy 11:20–26
Bahmani-Oskooee M, Nasir MA (2020) Asymmetric J-curve: evidence from industry trade between US and UK. Appl Econ 52(25):2679–2693
Bahmani-Oskooee M, Usman A, Ullah S (2020) Asymmetric J-curve in the commodity trade between Pakistan and United States: evidence from 41 industries. Eurasian Econ Rev 10(2):163–188
Blanco MI, Rodrigues G (2009) Direct employment in the wind energy sector: an EU study. Energy Policy 37(8):2847–2857
Blanco M, Ferasso M, Bares L (2021) Evaluation of the Effects on Regional Production and Employment in Spain of the Renewable Energy Plan 2011–2020. Sustainability 13(6):3587

Böhringer C, Keller A, Van der Werf E (2013) Are green hopes too rosy? Employment and welfare impacts of renewable energy promotion. Energy Econ 36:277–285

Breitschopf B, Held A, Resch G (2016) A concept to assess the costs and benefits of renewable energy use and distributional effects among actors: the example of Germany. Energy Environ 27(1):55–81

Cameron L, Van Der Zwaan B (2015) Employment factors for wind and solar energy technologies: A literature review. Renew Sust Energ Rev 45:160–172

Çelik O (2021) Assessment of the relationship between renewable energy and employment of the United States of America: empirical evidence from spectral Granger causality. Environ Sci Pollut Res, 1–8

D’Adamo I, Gastaldi M, Morone P (2020) The post COVID-19 green recovery in practice: assessing the profitability of a policy proposal on residential photovoltaic plants. Energy Policy 147:111910

Daunfeldt SO, Johansson D, Halvarsson D (2015) Using the Eurostat-OECD definition of high-growth firms: a cautionary note. J Entrep Public Econ

Destek MA, Ozsoy FN, Ozpolat A (2020) Investigation on the job creation effect of green energy in OECD countries. In Econometrics of green energy handbook (pp. 131–149). Springer, Cham

Hillebrand B, Buttermann HG, Behringer JM, Bleuel M (2006) The expansion of renewable energies and employment effects in Germany. Energy Policy 34(18):3484–3494

Hofman DM, Huisman R (2012) Did the financial crisis lead to changes in private equity investor preferences regarding renewable energy and climate policies? Energy Policy 47:111–116

Koenker R (2004) Quantile regression for longitudinal data. J Multivar Anal 91(1):74–89

Koenker R, Bassett Jr G (1978) Regression quantiles. Econometrica: journal of the Econometric Society, 33–50

Lehr U, Nitsch J, Kratzat M, Lutz C, Edler D (2008) Renewable energy and employment in Germany. Energy Policy 36(1):108–117

Lei W, Liu L, Hafeez M, Sohail S (2021) Do economic policy uncertainty and financial development influence the renewable energy consumption levels in China? Environ Sci Pollut Res, 1–10

Mahmood MT, Shahab S, Hafeez M (2020) Energy capacity, industrial production, and the environment: an empirical analysis from Pakistan. Environ Sci Pollut Res 27(5):4830–4839

Mbarek MB, Abdelkafi I, Feki R (2018) Nonlinear causality between renewable energy, economic growth, and unemployment: evidence from Tunisia. J Knowl Econ 9(2):694–702

Meyer I, Sommer MW (2014) Employment effects of renewable energy supply-a meta analysis. Policy Paper, 12

Meyer I, Sommer MW (2020) The effect of renewable energy on employment. The case of Asturias (Spain). Renew Sust Energ Rev 12(3):732–751

Nusair SA (2020) The asymmetric effects of oil price changes on unemployment: evidence from Canada and the US. J Econ asymmetric 21:e00153

Onifade ST, Erdoğan S, Alagöz M, Bekun FV (2021) Renewables as a pathway to environmental sustainability targets in the era of trade liberalization: empirical evidence from Turkey and the Caspian countries. Environ Sci Pollut Res, 1–12

Pachauri RK, Meyer LA, Plattner GK, Stocker T (2014) Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change: Geneva, Switzerland

Pesaran MH, Shin Y, Smith RJ (2001) Bounds testing approaches to the analysis of level relationships. J Appl Economet 16(3):289–326

Rivers N (2013) Renewable energy and unemployment: a general equilibrium analysis. Resour Energy Econ 35(4):467–485

Shin Y, Yu B, Greenwood-Nimmo M (2014) Modelling asymmetric cointegration and dynamic multipliers in a nonlinear ARDL framework. In Festschrift in honor of Peter Schmidt (pp. 281–314). Springer, New York

Sohail MT, Xiuyuan Y, Usman A, Majeed MT, Ullah S (2021) Renewable energy and non-renewable energy consumption: assessing the asymmetric role of monetary policy uncertainty in energy consumption. Environ Sci Pollut Res, 1–10

Ullah S, Ozturk I, Majeed MT, Ahmad W (2021) Do technological innovations have symmetric or asymmetric effects on environmental quality? Evidence from Pakistan. J Clean Prod 316:128239

Usman A, Ozturk I, Ullah S, Hassan A (2021) Does ICT have symmetric or asymmetric effects on CO2 emissions? Evidence from selected Asian economies. Technol Soc 67:101692

Usman A, Ullah S, Ozturk I, ChistiMZ, Zafar SM (2020) Analysis of asymmetries in the nexus among clean energy and environmental quality in Pakistan. Environ Sci Pollut Res 27(17):20736–20747

Yi H (2013) Clean energy policies and green jobs: an evaluation of green jobs in US metropolitan areas. Energy Policy 56:644–652

World Bank (2020) World development indicators of the year 2020. World Bank

Wright G (2011) The International Renewable Energy Agency: A Global Voice for the Renewable Energy Era. Renewable Energy L. & Pol’y Rev 2:251

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.