Associations between serum L-arginine and ficolins in the early phase of acute ischemic stroke – A pilot study

Molnar, Tihamer; Csuka, Dorottya; Pusch, Gabriella; Nagy, Lajos; Garred, Peter; Illes, Zsolt

Published in:
Journal of Stroke and Cerebrovascular Diseases

DOI:
10.1016/j.jstrokecerebrovasdis.2020.104951

Publication date:
2020

Document version
Final published version

Document license
CC BY

Citation for published version (APA):
Molnar, T., Csuka, D., Pusch, G., Nagy, L., Garred, P., & Illes, Z. (2020). Associations between serum L-arginine and ficolins in the early phase of acute ischemic stroke – A pilot study. Journal of Stroke and Cerebrovascular Diseases, 29(8), [104951]. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.104951

Terms of use
This work is brought to you by the University of Southern Denmark through the SDU Research Portal. Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply:

• You may download this work for personal use only.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying this open access version

If you believe that this document breaches copyright please contact us providing details and we will investigate your claim. Please direct all enquiries to puresupport@bib.sdu.dk

Download date: 04. Nov. 2020
Associations between serum L-arginine and ficolins in the early phase of acute ischemic stroke — A pilot study

Tihamer Molnar, MD, PhD,* Dorottya Csuka, MD, PhD,† Gabriella Pusch, MD, PhD,‡ Lajos Nagy, PhD,§ Peter Garred, MD, PhD,¶ and Zsolt Illes, MD, DSc#

Introduction: Activation of both the L-arginine and the lectin pathway contributes to the pathophysiology and the outcome of acute ischemic stroke (AIS). However, the interplay between the two systems has not yet been examined. Methods: A total of 44 patients with AIS were recruited into this study. Serial measurement of serum L-arginine, asymmetric and symmetric dimethylarginine (ADMA, SDMA), and hsCRP, ficolin-2, ficolin-3, MAP-1, MASP-3 and mannose-binding lectin (MBL) were analyzed within 6 h after onset of stroke and 72 h later. Outcomes were assessed as National Institutes of Health Stroke Scale (NIHSS) worsening by 24 h, poststroke infection, and death by 1 month. Results: In the hyperacute stage of AIS, ficolin-3, MAP-1 and MBL were positively correlated with L-arginine within 6 h after onset of symptoms (p<0.05 respectively). Significantly lower ficolin-3 and MASP-3 levels were found at 72 h in patients, who developed post-stroke infection after day 4, when compared to patients without post-stroke infections (p=0.03 and p=0.009). At 72 hours, ficolin-3 levels negatively correlated with S100B (p=0.01). Ficolin-3 at 72 post-stroke hours remained an independent predictor of post-stroke infection, while only hsCRP was an independent predictor of 30-day mortality. Conclusion: Early consumption of ficolin-3 is associated with complications such as post-stroke infections. In the hyperacute phase of AIS, the positive correlation between ficolins and the NO donor L-arginine may reflect the protective role of L-arginine presumably by improving the cerebral microcirculation in a prothrombotic environment induced by complement activation.

Key Words: Ischemic stroke—L-arginine—Ficolin—Mannose-binding lectin—infection—outcome

© 2020 Elsevier Inc. All rights reserved.

Introduction

Post-stroke inflammation and immunodepression are mediated by systemic immune cells, endothelial cells, microglia, and neurons.1–3 Both infection and inflammation can influence the outcome of ischemic stroke.4–6 Markers for immunodepression, inflammation and infection are being extensively investigated.7–9 Activation of the complement system is a key element in the ischemic cascade resulting in an unfavorable outcome due to secondary brain injury.10 Several studies have explored the temporal profile of the lectin pathway molecules in the sera of patients with acute ischemic stroke (AIS) showing: (i) a decrease in concentration of ficolins in the very early phase of stroke; (ii) unchanged concentration during the subacute phase; (iii) an inverse correlation between ficolin-3 and astrocyte-derived S100B in the follow-up samples suggesting that greater size of the infarct results in...
higher consumption of ficolin-3.11,12 Besides, the low levels of ficolins were found to be associated with an unfavorable prognosis in AIS.11,13

The mannose-binding lectin (MBL) pathway also contributes to the pathological processes. A deficiency of MBL is associated with smaller infarction size and a more favorable outcome.14 In focal cerebral ischemia model, MBL was a key player in the pathogenesis of ischemic injury suggesting that MBL inhibition may be a relevant therapeutic target in humans with a wide therapeutic window of application.15,16

Besides complement activation, other inflammatory processes are also known to contribute to the pathogenesis and outcome of the ischemic stroke.1 Elevated serum levels of L-arginine pathway molecules were observed in the very acute phase of ischemic stroke indicating a more pronounced endothelial dysfunction compared with asymptomatic significant carotid stenosis.17 Moreover, an increased level of the NO donor L-arginine was found in patients with AIS on admission.17 A transient elevation of the L-arginine/asymmetric dimethylarginine (ADMA) ratio was observed at the critical 24 post-stroke hours suggesting the protective role of L-arginine, and changes in the L-arginine pathway were predictive of post-stroke infections.17 In addition, the concentration of L-arginine and ADMA/symmetric dimethylarginine (SDMA) differentially correlated with thrombo-inflammation in the hyperacute phase of ischemic stroke and such correlations were independently associated with post-stroke infection.18

Besides, CRP is an independent predictor of cerebrovascular events and prognosis after stroke. CRP is an important molecule in the progression of cerebral tissue injury.19 Complement activation and elevated CRP levels were independently associated with the clinical severity and different outcome measures of ischemic stroke, indicating their additive effect.6 An early elevation of CRP inversely correlated with the concentration of L-arginine suggesting that L-arginine may play a protective role and the low L-arginine levels are associated with a higher concentration of CRP, a risk factor for ischemic stroke.17 In contrast, further elevation of CRP by 72 hours was associated with high concentration of ADMA,17 contributing to brain injury by reducing cerebral blood flow and facilitating excitotoxic neuronal death.20 Early elevation of CRP was a strong predictor of mortality, while late elevation predicted post-stroke infection as an early subclinical sign of infection.21

Here, we aimed to explore the interplay between the lectin and L-arginine pathway and their impact on post-stroke infection and outcome.

Methods

This research has been complied with all the relevant national regulations, institutional policies, and in accordance the tenets of the Helsinki Declaration. The study was approved by the local ethics committees. Written informed consent was obtained from all individuals included in this study.

Subjects

Patients with AIS were prospectively examined (Table 1). Part of this cohort overlapped with a previously published cohort.11 Patients were enrolled upon the first occurrence of acute ischemic stroke only; all patients had neuroimaging (most of them brain MRI, but at least cranial CT). All patients with definite acute clinical symptoms were enrolled regardless of etiology i.e. lacunar or territorial infarct caused by thrombosis or emboli. Exclusion criteria were infectious diseases, fever < 4 weeks before stroke, an elevated white blood cell (WBC), erythrocyte sedimentation rate (ESR), high-

Table 1. Demography and clinical factors.
all patients
n=44
with infection
n=7
without infection
n=37
Age (year)
Male
BMI
Smoking, %
Hypertension, %
Diabetes mellitus, %
Dyslipidemia, %
NIHSS on admission
NIHSS day 2
NIHSS on discharge
Death, %
Antiplatelet therapy, %
Statin therapy, %

BMI=body mass index; NIHSS=National Institute of Health Stroke Scale. Data are shown as mean±SD or absolute number (%). Chi-square test and Mann-Whitney test.
sensitivity CRP (hsCRP, cut-off value < 5 mg/L), procalcitonin on admission (cut-off value < 0.05 ng/mL), positive chest X-ray, hemorrhagic stroke defined by an acute cranial CT scan, and those who declined to participate in the study. An evidence-based guideline was followed to detect post-stroke infectious complications (in short, physical and laboratory measures including WBC, ESR, hsCRP, PCT, fever, abnormal urine, chest X-ray or positive cultures). Such complications, predominantly pneumonia and urinary tract infection occurred on the 5th day as an average. The severity of stroke was assessed each day by National Institutes of Health Stroke Scale (NIHSS).

Outcome measures were the worsening of NIHSS by 24 h, post-stroke infections, and 30-day mortality.

Biomarkers

Serial measurement of serum L-arginine, ADMA and SDMA, and serum hsCRP, ficolin-2, ficolin-3, MAP-1, MASP-3 and MBL were analyzed within 6 h after onset of stroke and 72 hours later. Ficolin-2 and ficolin-3, mannose-binding lectin (MBL), MBL/Ficolin associated Protein-1 (MAP-1), and MBL associated serine protease-3 (MASP-3) were determined by ELISA-based methods at the Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Copenhagen, Denmark as described earlier. Serum S100B concentrations were measured by an ELISA method (BioVendor, Modrice, Czech Republic). Serum concentrations of hsCRP were measured by particle-enhanced immunturbidimetric assay, using an automated laboratory analyzer (Roche Cobas Integra 400, Basel, Switzerland). The serum concentration of L-arginine, ADMA and SDMA were determined by High Pressure Liquid Chromatography (HPLC), at the Department of Applied Chemistry, University of Debrecen, Hungary. The determination of L-arginine and its derivatives was described earlier.

Statistical analysis

Statistical analyses were performed using SPSS 20.0 software (IBM Corp., Armonk, NY). Comparison of categorical variables between the groups was performed by chi-square test. Normal distribution of continuous variables was checked by Kolmogorov-Smirnov test. Mann–Whitney U test was used to compare not normally distributed parameters. Correlation analysis was performed calculating Spearman’s correlation coefficient (r). Binary logistic regression including baseline variables (age, gender, BMI, hsCRP, S100B, L-arginine and lectin pathway molecules) was used to explore independent predictors and ROC analysis was performed to calculate the cut-off value. Results were considered significant, if \(p < 0.05 \).

Results

A total of 44 patients (mean age: 67, SD: 10 years, male: 21) (AIS) were recruited to this study. The demography and clinical parameters are shown in Table 1.

L-arginine and lectin pathway

In the hyperacute stage of AIS, ficolin-3, MAP-1 (Fig. 1 (A) and (B)) and MBL were positively correlated with L-arginine (\(r=0.331, p=0.017 \), \(r=0.557, p<0.001 \) and \(r=0.419, p=0.02 \) respectively), nevertheless neither ADMA nor SDMA correlated with any lectin pathway molecules within 6 h after onset of symptoms (Table 2). These correlations between ficolin-3, MAP-1, MBL and L-arginine disappeared by 72 post-stroke hours, but MBL showed an inverse correlation with ADMA (\(r= − 0.397, p=0.04 \)) and S100B (\(r= − 0.434, p=0.006 \)), while ficolin-3 negatively correlated only with S100B (\(r= − 0.397, p=0.01 \) (Table 3).

![Fig. 1](image)

Fig. 1. Correlation between L-arginine and ficolin-3 (A), and L-arginine and MAP-1 (B) in patients with acute ischemic stroke within 6 h after stroke onset. (A) Positive correlation between serum L-arginine (\(\mu \text{mol/L} \)) and ficolin-3 (\(\mu \text{g/mL} \)) concentrations on admission (scatter plot diagram, Spearman correlation, \(r=0.331, p=0.017 \)). (B) Positive correlation between serum L-arginine (\(\mu \text{mol/L} \)) and MAP-1 (ng/mL) concentrations on admission (scatter plot diagram, Spearman correlation, \(r=0.557, p<0.001 \)).
C-reactive protein and L-arginine and lectin pathway

The serum concentration of hsCRP showed a positive correlation with L-arginine ($r=0.485$, $p=0.01$) and S100B ($r=0.428$, $p=0.02$) at 72 post-stroke hours in the total population (Table 2). In addition, hsCRP showed a negative correlation ($r=-0.435$, $p=0.01$) with ficolin-3 levels at 72 h.

Post-stroke infection

Patients were dichotomized into two subgroups: with ($n=7$) and without post-stroke infection ($n=37$). The stroke severity based on NIHSS at 24 h was significantly higher in patients with post-stroke infection compared to those without such complication (19.7±5.0 vs. 6.5±6.0, $p=0.001$). Post-stroke infection was developed in 7 patients on the average 5th post-admission day. Five of them died due to severe infection (predominantly pulmonary complication).

Significantly lower ficolin-3 and MASP-3 levels were found at 72 h in patients, who developed post-stroke infection later, when compared to patients without post-stroke infections ($p=0.03$ and $p=0.009$) (Figure 2(A) and (B)). In addition, MASP-3 inversely correlated with NIHSS assessed at hospital discharge ($r=-0.482$, $p=0.002$). A reduced serum concentration of ficolin-3 with a cut-off value of <13.3 μg/mL measured at 72 post-stroke hours was found a predictor of infection, but not of death (sensitivity: 76%; specificity: 78%, AUC: 0.753; $p=0.03$)

Independent predictors of post-stroke infection

Based on multiple regression analysis including baseline variables, only ficolin-3 with a cut-off value of <13.3 μg/mL (sensitivity: 76%; specificity: 72%, AUC: 0.753; $p=0.03$) measured at 72 post-stroke hours was a weak independent predictor of post-stroke infection (OR: 0.73, 95% Confidence Interval: 0.53–1.00, $p=0.05$), while the independent predictor of 30-day mortality (OR: 1.05, 95% Confidence Interval: 1.002–1.100, $p=0.05$) was only hsCRP at 72 with a cut-off value of >39.6 mg/L (sensitivity: 80%; specificity: 82%, AUC: 0.830; $p=0.02$).

Discussion

Here, we examined association between the L-arginine and lectin pathway molecules in the sera of patients with AIS within the first 72 post-stroke hours.

In the hyperacute phase of AIS, we observed a positive correlation between ficolin-3, MAP-1, MBL and the NO donor L-arginine reflecting the protective role of L-arginine presumably by improving the cerebral microcirculation in a prothrombotic environment induced by complement activation.25 Beside initiating activation of complement via the lectin pathway, ficolins may trigger activation of the immune system by production of nitric oxide (NO) by macrophages, thus limiting the infection and concurrently orchestrating the subsequent adaptive immune response.26 In acute coronary syndrome, the kinetics of oxidized low-density lipoprotein receptor-1 (LOX-1), a lectin like molecule, was described with an acute increase up to 12 post-event hour and a subsequent decrease, while NOx derived from the L-arginine-nitric oxide pathway, decreased promptly suggesting an impaired NO metabolism during acute ischemic coronary event.27 Based on these observations, we assume that an increased availability of the L-arginine might be a counteracting response in the very early phase of ischemic stroke providing the following beneficial effects via restoration of NO production: (i) regulation of the vascular tone; (ii) playing a role as a cytotoxic effector in the immune system; (iii) acting as an intercellular neurotransmitter in the nervous system.

In the subacute phase of ischemic stroke, significant differences were found in the serum concentration of both, L-arginine and ADMA, S100B and lectin pathway molecules (Table 3).
ficolin-3 and L-arginine by 72 h showing that clinically more severe AIS (NIHSS≥16) was associated with lower ficolin-3,11,17 and higher L-arginine serum levels. It seems reasonable, that the ficolin-3 induced NO generation is exhausted in patients with worsening stroke despite a higher L-arginine supply in the subacute phase. A higher NIHSS score at 24 h reflects an early progression of AIS, thus the opposite change in serum ficolin-3 (decrease between 6 and 72 h) and L-arginine levels (increase between 6 and 72 h) may also suggest that higher infarct size is accompanied by further consumption of ficolin-3, which is presumably antagonized by a further L-arginine availability. Similarly, MBL, another component of the lectin pathway, showed negative correlation with ADMA an indicator of endothelium dysfunction, and also S100B, an indicator of infarct size suggesting an association between extended brain tissue injury and increased consumption of MBL by post-stroke 72 h. In accordance with our previous data, the S100B protein reaches its peak serum concentration at 72 h after the onset of stroke.21 In addition, high plasma concentration of ADMA, an endogenous inhibitor of NO synthase, was observed in patients with silent brain infarcts on MRI.28

Consumption of ficolin-3 and MASP-3 by 72 h was also associated with complications such as post-stroke infections. Recently MASP-2 was reported playing a pivotal role in driving tissue injury and unfavorable outcomes in mouse models of ischemic brain injury.29 In our earlier studies, low ficolin-3 and elevated hsCRP concentrations were independently predictive for worse outcome.10,11 Our finding, that ficolin-3 at 72 post-stroke hours was found to be an independent predictor of post-stroke infection, is in accordance with those observations that ficolin-3 has the highest post-stroke concentration and the greatest complement-activating capacity among the lectin pathway initiators.30 The fact, that the independent predictor of 30-day mortality was only CRP, but not ficolin-3, suggests that they reflect two different pathways of inflammation contributing to the outcome of stroke.11,18,31

Although the sample size is small, our findings may suggest that both the lectin and L-arginine pathway plays a crucial role in post-ischemic stroke pathology including immunodepression leading to a poor outcome. Limitations of this study should be also mentioned: (i) the size and localization of the infarct could have been more accurately determined by follow-up MR imaging instead of S100B; (ii) the functional outcome based on the modified Rankin Scale was not assessed here; and (iii) it would have been interesting to clarify the recovery time of the lectin pathway by a follow-up study. However, the detailed mechanisms remain largely unknown, therefore larger studies will be required to establish the clinical implications of our finding.

Declaration of Competing Interest

None declared.

Acknowledgement

Prof. George Füst initiated partly and contributed much to this study. The study was supported by EFOP-3.6.3-VEKOP-16-2017-00009 at the University of Pécs and The Danish Research Foundation of Independent Research [DFF-6110-00489], the Svend Andersen Research Foundation and the Novo Nordisk Research Foundation.
Authors contributions

All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

References

1. Chamorro A, Meisel A, Planas AM, Urrea X, van de Beek D, Veltkamp R. The immunology of acute stroke. Nat Rev Neurol 2012;8:401-410.
2. Gao L, Dong Q, Song Z, Shen F, Shi J, Li Y. NLRP3 inflammasome: a promising target in ischemic stroke. Inflamm Res 2017;66:17-24.
3. Iadecola C, Anrather J. The immunology of stroke: from mechanisms to translation. Nat Med 2011;17:796-808. https://doi.org/10.1038/nm.2396.
4. Abulafia DP, de Rivera Vaccari JP, Lozano JD, Lotocki G, Keane RW, Dietrich WD. Inhibition of the inflammasome complex reduces the inflammatory response after thromboembolic stroke in mice. J Cereb Blood Flow Metab 2009;29:534-544.
5. Jung JE, Kim GS, Chan PH. Neuroprotection by interleukin-6 is mediated by signal transducer and activator of transcription 3 and antioxidant signaling in ischemic stroke. Stroke 2011;42:3574-3579.
6. Mengel A, Ulm L, Hotter B, Harms H, Piper SK, Grittner U, Montaner J, Meisel C, Meisel A, Hoffmann S. Biomarkers of immune capacity, infection and inflammation are associated with poor outcome and mortality after stroke – the PREDICT study. BMC Neurol 2019;19:148. https://doi.org/10.1186/s12883-019-1375-6.
7. Pusch G, Debrabant B, Molnar T, Feher G, Papp V, Banati M, Kovacs N, Szapary L, Illes Z. Early dynamics of P-selectin and interleukin 6 predicts outcomes in ischemic stroke. J Stroke Cerebrovasc Dis 2015;24:1938-1947.
8. Bustamante A, Vilar-Bergua A, Guettier S, Sanchez-Poblet J, Garcia-Berrocoso T, Giralt D, Fluri F, Topakian R, Worthmann H, Hug A, Molnar T, Waje-Andreasson U, Katan M, Smith CJ, Montaner J. C-reactive protein in the detection of post-stroke infections: systematic review and individual participant data analysis. J Neurochem 2017;141:305-314.
9. Cseesei P, Pusch G, Ezer E, Berki T, Szapary L, Illes Z, Molnar T. Relationship between cardiac troponin and thrombo-inflammatory molecules in prediction of outcome after acute ischemic stroke. J Stroke Cerebrovasc Dis 2018;27:951-956.
10. Szeplaki G, Szegedi R, Hirschberg K, et al. Strong complement activation after acute ischemic stroke is associated with unfavorable outcomes. Atherosclerosis 2009;204:315-320.
11. Fišt G, Munthe-Fog L, Illes Z, Széplaki G, Molnar T, Pusch G, Hirschberg K, Szegedi R, Széplaki Z, Prohászka Z, Skjøeert MO, Garred P. Low ficolin-3 levels in early follow-up serum samples are associated with the severity and unfavorable outcome of acute ischemic stroke. J Neuroinflamm 2011;8:185. https://doi.org/10.1186/1742-204x-8-185.
12. Beer C, Blacker D, Bynevelt M, Hanley GJ, Puddey IB. Systemic markers of inflammation are independently associated with S100B concentration: results of an observational study in subjects with acute ischaemic stroke. J Neuroinflamm 2010;7:71-10.1186/1742-204x-7-71.
13. Zangari R, Zanier ER, Torgano G, Bersano A, Beretta S, Beghi E, Casolla B, Checcharelli N, Lanfranconi S, Maino A, Mandelli C, Miceli G, Orzi F, Piccetti E, Silvestrini M, Stocchetti N, Zecca B, Garred P, De Simoni MG. Early ficolin-1 is a sensitive prognostic maker for functional outcome in ischemic stroke. J Neuroinflamm 2016;13:16.
14. Osthoff M, Katan M, Fluri F, et al. Mannose-binding lectin deficiency is associated with smaller infarction size and favorable outcome in ischemic stroke patients. PLoS One 2011;6:e21338. 10.1371/journal.pone.0021338.
15. Orsini F, Parrella S, Villa P, et al. Mannose binding lectin as a target for cerebral ischemic injury. Mol Immunol 2011;48:1677.
16. Orsini F, Villa P, Parrella S, Zangari R, Zanier ER, Gesuete R, Stravalaci M, Fumagalli S, Ottira R, Reina JJ, Paladini A, Micotti E, Ribeiro-Viana R, Rojo J, Pavlov VI, Stahl GL, Bernardi A, Gobbi M, De Simoni MG. Targeting mannose-binding lectin confers long-lasting protection with a surprisingly wide therapeutic window in cerebral ischemia. Circulation 2012;126:1484-1494.
17. Molnar T, Pusch G, Papp V, Feher G, Szapary L, Birì B, Nagy L, Keki S, Illes Z. The L-arginine pathway in acute ischemic stroke and severe carotid stenosis: temporal profiles and association with biomarkers and outcome. J Stroke Cerebrovasc Dis 2014;23:2206-2214.
18. Molnar T, Pusch G, Nagy L, Keki S, Berki T, Illes Z. Correlation of the L-arginine pathway with thrombo-inflammation may contribute to the outcome of acute ischemic stroke. J Stroke Cerebrovasc Dis 2016;25:2055-2060.
19. Ormstad H, Aaes HC, Lund-Sorensen N, Amthor KF, Sandvik L. Serum levels of cytokines and C-reactive protein in acute ischemic stroke patients, and their relationship to stroke lateralization, type, and infarct volume. J Neurol 2011;258:677-685.
20. Chen S, Li N, Deb-Chatterji M, Dong Q, Kielshten JT, Weissenborn K, Worthmann H. Asymmetric dimethylarginine as marker and mediator in ischemic stroke. Int J Mol Sci 2013;13:15983-16004.
21. Molnar T, Papp V, Banati M, Szereday L, Pusch G, Szapary L, Bogar I, Illes Z. Relationship between C-reactive protein and early activation of leukocytes indicated by leukocyte antisedimentation rate (LAR) in patients with acute cerebrovascular events. Clin Hemorheol Microcirc 2010;44(3):183-192.
22. Cohen J, Brun-Buisson C, Torres A, Jorgensen J. Diagnosis of infection in sepsis: an evidence-based review. Crit Care Med 2004;32:S466-S494. https://doi.org/10.1097/01.CCM.0000145917.89975.F5.
23. Brett T, Adams HP, Olinger CP, et al. Measurements of acute cerebral infarction: a clinical examination scale. Stroke 1989;20:864-870. https://doi.org/10.1161/01.STR.20.7.864.
24. Venge EN, Enger TB, Videm V, Garred P, Pentraxin 3, ficolin-2 and lectin pathway associated serine protease MASP-3 as early predictors of myocardial infarction - the HUNT2 study. Sci Rep 2017;7:43045. https://doi.org/10.1038/srep43045.
25. Ye XC, Hao Q, Ma WJ, Zhao QC, Wang WW, Yin HH, Zhang T, Wang M, Zan K, Yang XQ, Zhang ZH, Shi HJ, Zu J, Raza HK, Zhang XL, Geng DQ, Hu JX, Cui GY. Decin-1/Syk signaling triggers neuroinflammation after ischemic stroke in mice. J Neuroinflamm 2020;17(1):17. https://doi.org/10.1186/s12974-019-1693-z.
26. Ren Y, Ding Q, Zhang X. Ficolins and infectious diseases. Virol Sin 2014;29:25-32.
27. Lubrano V, Pingitore A, Traghella I, Storti S, Parri S, Berti S, Ndreu R, Andrrenelli A, Palmieri C, Iervasi G, Mastorci F, Vassalle C. Emerging biomarkers of oxidative stress in acute and stable coronary artery disease: levels and...
determinants. Antioxidants 2019;8(5). https://doi.org/10.3390/antiox8050115. pii: E115.

28. Pikula A, Boger RH, Beiser AS, Maas R, DeCarli C, Schwedhelm E, Himali JJ, Schulze F, Au R, Kelly-Hayes M, et al. Association of plasma ADMA levels with MRI markers of vascular brain injury: Framingham offspring study. Stroke 2009;40:2959-2964.

29. Orsini F, Chrysanthou E, Dudler T, Cummings WJ, Takahashi M, Fujita T, Demopoulos G, De Simoni MG, Schwaeble W. Mannan binding lectin-associated serine protease-2 (MASP-2) critically contributes to post-ischemic brain injury independent of MASP-1. J Neuroinflamm 2016;13:213. https://doi.org/10.1186/s12974-016-0684-6.

30. Garred P, Genster N, Pilely K, Bayarri-Olmos R, Rosbjerg A, Ma YJ, Skjoedt MO. A journey through the lectin pathway of complement-MBL and beyond. Immunol Rev 2016;274(1):74-97.

31. Song IU, Kim YD, Kim JS, Lee KS, Chung SW. Can high-sensitivity C reactive protein and plasma homocysteine levels independently predict the prognosis of patients with functional disability after first-ever ischemic stroke? Eur Neurol 2010;64:304-310.