THE SUDDEN DEATH OF THE NEAREST QUASAR

KEVIN SCHAWINSKI1,2,18, DANIEL A. EVANS3,4,5, SHANIL VIRANI1,2,6, C. MEGAN URRY1,2,6, WILLIAM C. KEEL7,19, PRIYAMVADA NATARAJAN1,2,6, CHRIS J. LINTOTT8,9, ANNA MANNING7,19, PAOLO COPPI1,2,6, SUGATA KAVIRAJ8,10, STEVEN P. BAMFORD11, GYULA I. G. JÓZSA12,13, MICHAEL GARRETT12,14,15, HANNY VAN ARKEL12, PAMELA GAY16, and LUCY FORTSON17

1 Department of Physics, Yale University, New Haven, CT 06511, USA; kevin.schawinski@yale.edu
2 Yale Center for Astronomy and Astrophysics, Yale University, P.O. Box 208121, New Haven, CT 06520, USA
3 Massachusetts Institute of Technology, Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
4 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
5 Elon University, Elon, NC 27244, USA
6 Department of Astronomy, Yale University, New Haven, CT 06511, USA
7 Department of Physics and Astronomy, University of Alabama, P.O. Box 870324, Tuscaloosa, AL 35487, USA
8 Astrophysics Department, University of Oxford, Oxford OX1 3RH, UK
9 Adler Planetarium, 1300 S. Lakeshore Drive, Chicago, IL 60605, USA
10 Blackett Laboratory, Imperial College London, London SW7 2AZ, UK
11 Centre for Astronomy & Particle Theory, University of Nottingham, University Park, Nottingham NG7 2RD, UK
12 Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA Dwingeloo, The Netherlands
13 Argelander-Institut für Astronomie, Auf dem Hügel 71, 53121 Bonn, Germany
14 Leiden Observatory, University of Leiden, P.O. Box 9513, 2300 RA Leiden, The Netherlands
15 Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, 3122 Victoria, Australia
16 Southern Illinois University, Edwardsville, IL 62026, USA
17 School of Physics and Astronomy, 116 Church Street S. E., University of Minnesota/Twin Cities, Minneapolis, MN 55455, USA

Received 2010 August 24; accepted 2010 October 12; published 2010 October 26

Abstract

Galaxy formation is significantly modulated by energy output from supermassive black holes in a large class of galaxies which grow in highly efficient luminous quasar phases. The timescale on which black holes transition into and out of such phases is, however, unknown. We present the first measurement of the shutdown timescale for an individual quasar using X-ray observations of the nearby galaxy IC 2497, which hosted a luminous quasar no more than 70,000 years ago that is still seen as a light echo in “Hanny’s Voorwerp,” but whose present-day radiative output is lower by at least two, and more likely by over four, orders of magnitude. This extremely rapid shutdown provides new insight into the physics of accretion in supermassive black holes and may signal a transition of the accretion disk to a radiatively inefficient state.

Key words: quasars: general – quasars: individual (IC 2497)

Online-only material: color figures

1. INTRODUCTION

The discovery of the object known as “Hanny’s Voorwerp”20 (the Voorwerp hereafter) by a citizen scientist participating in the Galaxy Zoo project (Lintott et al. 2008, 2009) permits the first direct probe of a quasar’s variability for an individual source on timescales significantly longer than human lifetimes (Lintott et al. 2009). The Voorwerp is a large (11 × 16 kpc) cloud of ionized gas 45,000–70,000 lt·yr away from the nucleus of the galaxy IC 2497, embedded in a larger reservoir of atomic hydrogen (Józsa et al. 2009), with a mass of several times the galaxy IC 2497, embedded in a larger reservoir of atomic hydrogen presumably due to shocks (such as might be induced by a jet; Lintott et al. 2009). Radio observations of IC 2497 reveal a nuclear source and a jet hotspot in the nucleus, and a large kiloparsec-scale structure that may be a jet (Józsa et al. 2009; Rampadarath et al. 2010). The Voorwerp lies where this jet meets the HI reservoir and coincides with a local decrement in atomic hydrogen presumably due to photoionization (see Figure 2 of Józsa et al. 2009). An actively accreting black hole at the center of IC 2497 is therefore the only plausible source of ionization that can account for the emission seen from the Voorwerp.

The light-travel time from the nucleus of IC 2497 to the Voorwerp, accounting for all possible geometries, ranges from 45,000 to 70,000 years (Lintott et al. 2009) and so the Voorwerp reflects the radiative output of the central black hole of IC 2497 at those times in the past. Its large physical extent rules out a brief flare, caused, for example, by the tidal disruption of a star, as the ionizing source (Komossa et al. 2004; Gezari et al. 2006). The black hole must produce sufficient ionizing photons in order to power its observed [O III] λ5007 luminosity. This requirement corresponds to 2 × 1045 erg s−1 between 1 and 4 Ryd (13.6–54.4 eV), assuming isotropic emission. This likely underestimated the necessary intrinsic luminosity due to large amounts of dust obscuration in the bulge of IC 2497, which has prominent dust lanes (Figure 1). We calculate the required luminosity of the quasar lighting up the Voorwerp

18 Einstein Fellow.
19 Visiting Astronomer, Kitt Peak National Observatory, NOAO, operated by AURA under cooperative agreement with the US NSF.
20 Voorwerp is the Dutch word for object. The object’s name was coined by the members of the Galaxy Zoo forum who named it after the discoverer, Hanny van Arkel (http://www.galaxyzooforum.org).
by taking a template spectral energy distribution (SED) for an unobscured quasar from Elvis et al. (1994) which the Voorwerp is presumably seeing. We then scale this template to match the minimum UV ionizing luminosity needed and derive a minimum bolometric luminosity of $L_{\text{bol, past}} = 1.2 \times 10^{46} \text{ erg s}^{-1}$. This means IC 2497, at a redshift of $z = 0.0502$ (Fisher et al. 1995), is, or has been, the nearest luminous quasar, an extremely rare object in the local universe.

However, IC 2497 poses a challenge: the optical image reveals no strong point source (Figure 1), the nuclear spectrum shows very weak optical line emission (Lintott et al. 2009), and it also has a weak ($\sim 10^{38} \text{ erg s}^{-1}$) nuclear radio source (Józsa et al. 2009). These observations are difficult to reconcile with the presence of a currently active $L_{\text{bol}} \sim 10^{46} \text{ erg s}^{-1}$ quasar. There are two possible scenarios that can account for these apparently contradictory observations as argued by Lintott et al. (2009): (1) the quasar in IC 2497 features a novel geometry of obscuring material and is obscured at an unprecedented level only along our line of sight, while being virtually unobscured toward the Voorwerp, or (2) the quasar in IC 2497 has shut down within the last 70,000 years, while the Voorwerp remains lit up due to the light-travel time from the nucleus. If the latter is the case, the IC 2497–Voorwerp system gives for the first time an upper limit of the shutdown timescale of an individual quasar central engine. In this Letter, we present observations to distinguish these two scenarios.

2. OBSERVATIONS AND RESULTS

2.1. Archival Infrared Data

We have obtained multiple, independent observations to assess the current nuclear luminosity of IC 2497. Light from an obscured $L_{\text{bol}} \sim 10^{46} \text{ erg s}^{-1}$ quasar in IC 2497 should be re-emitted at mid- and far-infrared wavelengths. Archival IRAS observations show that the infrared temperature of IC 2497 is $\sim 50 \text{ K}$, which corresponds to just under 5 kpc. To ionize and light up the Voorwerp, a quasar corresponding to $L_{\text{bol}} \sim 10^{46} \text{ erg s}^{-1}$ is presumably seeing. We then scale this template to match the minimum UV ionizing luminosity needed and derive a minimum bolometric luminosity of at least $L_{\text{bol}} \sim 10^{46} \text{ erg s}^{-1}$, but no point source indicating the presence of such a luminous quasar is evident. The prominent dust lanes in the bulge of IC 2497 indicate an ongoing morphological disturbance that may be related to the nearby galaxy to the left or to a recent merger.

(A color version of this figure is available in the online journal.)

2.2. Suzaku and XMM-Newton Observations

The presence of a quasar with high levels of obscuration should still be detected in the hard X-rays ($\gg 10 \text{ keV}$) where photoelectric absorption is minimal. To this end, we observed IC 2497 with the Suzaku X-ray space observatory for 75 ks on 2009 April 20 using both the X-ray Imaging Spectrometer (XIS) (0.2–12 keV) and Hard X-ray Detector/Positive Intrinsic Negative (HXD/PIN) (10–600 keV) detectors. This observation was designed to be sufficiently deep to detect a quasar with $L_{\text{bol}} \sim 10^{46} \text{ erg s}^{-1}$ and an obscuring column of $N_H = 10^{24} \text{ cm}^{-2}$. There is no significant detection with the HXD/PIN instrument consistent with such a highly obscured quasar, although there are some marginally significant counts at $E > 15 \text{ keV}$; even if real, these imply a $10–20 \text{ keV}$ luminosity orders of magnitude below the required luminosity.

We then obtained a second observation of IC 2497 with the XMM-Newton X-ray space observatory using the EPIC-pn, MOS-1, and MOS-2 detectors on 2010 April 19 with a total useful observing time of 11 ks and sensitivity between 0.1 and 7 keV. With XMM-Newton we detect a source at 0.1–5 keV, which can be fit with a combination of two spectral components: a collisionally ionized plasma ($T = 0.78 \pm 0.14 \text{ keV}$), consistent with thermal emission from a warm interstellar medium in IC 2497, and an unabsorbed power law ($\Gamma = 2.5 \pm 0.7$) from a very low luminosity AGN with $L_{2–10 \text{ keV}} = 4.2 \times 10^{40} \text{ erg s}^{-1}$. The emission may equally well be attributed to emission from star formation and X-ray binaries (XRBs). Neither the XMM-Newton nor the Suzaku XIS observations detect the $K\alpha$ line feature at $\sim 6.4 \text{ keV}$ which is prominent in obscured AGN, especially the most highly obscured systems (Ueda et al. 2007).

We show the XMM-Newton spectra in Figure 2. If the observed X-ray power law is not due to a low-luminosity AGN, then its radiative output must be even lower.

If we assume that all the observed emission is from non-AGN sources, then the Suzaku data can give us an extreme upper limit on the present-day AGN luminosity. Assuming a Compton-thick AGN, the full XMM-Newton and Suzaku data, especially the PIN data, limit the present-day hard X-ray luminosity to $L_{15–30 \text{ keV}} = 3.5 \times 10^{42} \text{ erg s}^{-1}$, roughly 2 orders of magnitude more luminous than the observed soft X-ray power law, but not sufficient to ionize the Voorwerp. The interpretation of the power law seen by XMM-Newton as a low-luminosity AGN appears to be the more likely one as we see a low-luminosity AGN in two other wavelength regimes: a very long baseline interferometry radio core (Rampadarath et al. 2010) and a nuclear point source visible in a Hubble Space Telescope F184W image (W. C. Keel et al. 2010, in preparation) indicate that a low-luminosity AGN consistent with the observed X-ray power law is present in IC 2497.

The XMM-Newton detection of a power-law continuum is consistent with an active black hole at the center of IC 2497 but at a very low accretion rate. It must also be unobscured along our line of sight, apart from Galactic extinction.
Figure 2. X-ray spectrum from XMM-Newton from the EPIC-pn (black), MOS1 (red), and MOS2 (green). The solid lines are the combined model of a power law due to an unobscured AGN with a present-day luminosity of $L_{2-10\text{keV}} = 4.2 \times 10^{40}$ erg s$^{-1}$, and a collisionally ionized plasma from hot, diffuse gas. Residuals from the best-fit two-component model (see the text) are shown in the bottom panel. Extrapolated to hard X-rays, the fit to the power law is consistent with the marginal PIN counts at ~ 15 keV.

(A color version of this figure is available in the online journal.)

$\left(N_{H} = 1.31 \times 10^{20} \text{cm}^{-2}\right)$. Additional absorption does not improve the quality of the fit, and the amount of absorption is consistent with zero. This power-law AGN is therefore a fair probe of the current radiative output of the central engine of IC 2497. An extrapolation of the fit to the XMM-Newton data out to the energies sampled by Suzaku PIN is consistent with the marginal Suzaku PIN detection.

The hypothesis that a quasar of the required luminosity is present, but sufficiently obscured along our line of sight to elude detection at optical wavelengths is ruled out by the Suzaku hard X-ray luminosity limit and the lack of a Kα line at 6.4 keV. The Suzaku upper limit implies a drop in luminosity at a low state to a radiatively inefficient state where the bulk of the energy is dissipated not as radiation but as either thermal or kinetic energy (Begelman et al. 1984; Narayan & Yi 1994). The presence of a recent radio outflow (Rampadarath et al. 2010) extending over ~ 1000 lt-yr (projected distance) from the nucleus of IC 2497 also supports the hypothesis of a change in accretion state (Narayan et al. 1995) if the launch of the jet is associated with the state change.

However, the 4 orders of magnitude drop in luminosity poses a problem for a direct analogy. In XRBs, such large luminosity changes are seen as they return to quiescence after the (quasi-exponential) outburst decline. Typically it takes a few days for the cooling wave to propagate through to the inner disk in black hole binaries, as seen in observations (e.g., Chen et al. 1997) and in theoretical light curves from disk instability models (e.g., Dubus et al. 2001). Taking 1 day as the transition timescale and scaling from $10 M_\odot$ to $10^9 M_\odot$ using the linear scaling yields a transition timescale for the quasar of at least 280,000 years, significantly longer than what we see in IC 2497. A change of accretion state remains a possible explanation for the observed luminosity drop in IC 2497, but in that case the analogy to XRBs does not scale linearly with the black hole mass. We therefore conclude that the sudden death of IC 2497 is a vital clue to how quasars accrete and shut down, but that we do not yet understand the physics of this process.

If such a change of state in the accretion disk did occur, then it is entirely plausible that the accretion disk may change back to a high luminosity state on a similar timescale. Future multi-wavelength monitoring of IC 2497 could reveal such a change. Since the quasar in IC 2497 shut down less than 70,000 years ago, it offers an unobstructed view of the host galaxy of a quasar. The close distance of IC 2497 furthermore means that we can view this quasar host galaxy in greater detail than any other system. As such, it is ideally suited for observationally probing the fueling of the black hole and how the quasar phase is affecting the large-scale environment of the host galaxy, and in particular, whether it retains any evidence for whether the central engine was, or currently is, injecting kinetic or thermal energy into the interstellar medium and therefore doing feedback work.

We thank the anonymous referee for helpful comments. This work is based on observations with the XMM-Newton and
Suzaku X-ray satellites and the WIYN observatory, and was supported by NASA grants NNX09AR22G and NXX09AV69G. Support for the work of K.S. was provided by NASA through Einstein Postdoctoral Fellowship grant number PF9-00069 issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of NASA under contract NAS8-03060. P.N. acknowledges the award of a Guggenheim fellowship. C.J.L. acknowledges support from The Leverhulme Trust and a STFC Science and Society Fellowship. We thank Charles Bailyn, Chris Done, and Phil Hopkins for discussions and suggestions. This research has made use of NASA’s Astrophysics Data System Bibliographic Services.

Facility: XMM (EPIC-pn, MOS), Suzaku (XIS, PIN), WIYN:0.9m

REFERENCES

Begelman, M. C., Blandford, R. D., & Rees, M. J. 1984, Rev. Mod. Phys., 56, 255
Chen, W., Shrader, C. R., & Livio, M. 1997, ApJ, 491, 312
Done, C., & Gierliński, M. 2005, MNRAS, 364, 208
Dubus, G., Hameury, J., & Lasota, J. 2001, A&A, 373, 251
Elvis, M., et al. 1994, ApJS, 95, 1
Fender, R., & Belloni, T. 2004, ARA&A, 42, 317
Fender, R. P., Belloni, T. M., & Gallo, E. 2004, MNRAS, 355, 1105
Fisher, K. B., Huchra, J. P., Strauss, M. A., Davis, M., Yahil, A., & Schlegel, D. 1995, ApJS, 100, 69
Gezari, S., et al. 2006, ApJ, 653, L25
Häring, N., & Rix, H.-W. 2004, ApJ, 604, L89
Józsa, G. I. G., et al. 2009, A&A, 500, L33
Komossa, S., Halkon, I., Schartel, N., Hasinger, G., Santos-Lleo, M., & Predehl, P. 2004, ApJ, 603, L17
Körding, E. G., Jester, S., & Fender, R. 2006, MNRAS, 372, 1366
Lintott, C. J., et al. 2008, MNRAS, 389, 1179
Lintott, C. J., et al. 2009, MNRAS, 399, 129
Maccarone, T. J., Gallo, E., & Fender, R. 2003, MNRAS, 345, L19
McHardy, I. M., Koerding, E., Knigge, C., Uttley, P., & Fender, R. P. 2006, Nature, 444, 730
Moshir, M., et al. 1990, in IRAS Faint Source Catalogue, version 2.0, 0
Narayan, R., & Yi, I. 1994, ApJ, 428, L13
Narayan, R., Yi, I., & Mahadevan, R. 1995, Nature, 374, 623
Nayakshin, S., Rappaport, S., & Melia, F. 2000, ApJ, 535, 798
Prat, L., Rodriguez, J., & Pooley, G. 2010, ApJ, 717, 1222
Rampadarath, H., et al. 2010, A&A, 517, L8
Risaliti, G., Maiolino, R., & Salvati, M. 1999, ApJ, 522, 157
Ueda, Y., et al. 2007, ApJ, 664, L79