NO better way to protect the heart during ischemia–reperfusion: to be in the right place at the right time

Charlotte Farah1,2 and Cyril Reboul1,*

1 EA4278, LaPEC, Université d’Avignon, Avignon, France
2 UMR-CNRS 9214, INSERM U1046, Université de Montpellier, Montpellier, France
*Correspondence: cyril.reboul@univ-avignon.fr

INTRODUCTION

Acute myocardial infarction (MI) is one of the leading causes of mortality worldwide. MI is the heart muscle irreversible death secondary to prolonged ischemia. Over the last few decades, medical progress in how and when to restore blood flow to the ischemic area have markedly improved patient survival. Although early heart reperfusion is acknowledged to be the most effective way to limit infarct size, post-ischemic reperfusion is associated with detrimental effects, such as myocardial stunning, ventricular arrhythmias, microvascular dysfunction, and cell death. The molecular mechanisms of these reperfusion injuries remain to be elucidated and their management is very challenging.

Among the various therapeutic molecular approaches proposed by experimental studies, nitric oxide (NO) role in protecting heart against MI and reperfusion injuries has been widely assessed and discussed (1–4). NO is a gasotransmitter that is abundantly produced in the cardiovascular system mainly by the NO synthase (NOS) enzymes system. Two isoforms, endothelial NOS (eNOS) and neuronal NOS (nNOS), are constitutively expressed in both myocardium and vessels, whereas inducible NOS (iNOS) is detected only in pathological conditions, such as inflammatory and/or oxidative stress. Both eNOS and nNOS are low-NO output Ca2+-dependent enzymes, while iNOS is a high-NO output Ca2+-independent enzyme. In physiological conditions, NOS form homodimers (“coupled” NOS) that catalyze NO production from L-arginine and O2 through electron transfer from NADPH on the reductase domain of one monomer to the oxidase domain of the second monomer. In pathological conditions, such as in the absence of the essential cofactor tetrahydrobiopterin (BH4), eNOS can be “uncoupled” to produce O2·− instead of NO.

In stress conditions, NO protects tissues through two distinct pathways. In the first one, NO activates the soluble guanylate cyclase (sGC) that initiates cyclic guanosine monophosphate (cGMP) production, leading to the activation of protein kinase G (PKG). As sGC is the major cell receptor for NO and the NO/sGC/cGMP/PKG pathway plays a critical role in both myocardium excitation–contraction coupling and cardiovascular function regulation (5–8), NO cardioprotective role was first attributed to PKG activation (9–11). However, a second pathway in which proteins are directly modified by NO addition to sulfhydryl residues, a process known as S-nitrosylation (SNO), has recently emerged in the scientific literature. Although PKG activation pathway has been largely involved in NO-mediated cardioprotection (11–13), SNO is now taking the front stage and is considered to be a key player in cardioprotection through (i) the transient modification of protein activity and/or (ii) their protection from irreversible oxidation (14–17). Indeed, Sun et al. (18) showed that reduced heart vulnerability to ischemia–reperfusion (IR) following acute ischemic preconditioning is mainly related to SNO signaling and not to PKG activation through the NO–sGC–cGMP pathway. Accordingly, we found that in exercise training-induced cardioprotection against IR injuries, protein SNO level, but not cGMP level, increased during early reperfusion (19). The same year, Methner et al. (20), using a Cre/loxP approach to selectively ablate type I PKG in cardiomyocytes, demonstrated that ischemic post-conditioning reduced infarct size in mice like in wild type controls. Moreover, they showed that the cardioprotective effect against IR injury of mitochondria-targeted S-nitrosothiol (MitoSNO), which allows NO and S-nitrosothiol accumulation in mitochondria, was comparable in mice that specifically lack PKG in cardiomyocytes and in controls. This indicates that MitoSNO cardioprotective effect is independent of PKG.

The current literature strongly supports NO implication in cardioprotection. However, the mechanism is still debated and whether increased NO availability during IR is cytoprotective remains to be demonstrated. Here, we discuss how NO might contribute to protect heart and particularly the importance of NO (i) localization, (ii) concentration, and (iii) time of availability during IR.

RIGHT PLACE

NO signaling depends on NOS cardiomyocyte subcellular localization (8, 21). Indeed, eNOS-catalyzed NO production occurs almost everywhere in the cell, thus leading to SNO of many targets (membrane and cytosolic proteins). On the other
reactions are essential for cardiovascular heart vulnerability to IR (27). Based on these results, Beigi et al. (28) demonstrated that MitoSNO-induced heart protection could be explained by SNO of the ND3 subunit of mitochondrial complex I (on Cys39) to transiently lock it in a low-activity state, thus decreasing ROS production during early reperfusion. This SNO of the ND3 subunit was observed using an ischemic preconditioning experimental approach. Thus, through SNO, NO could directly protect mitochondrial proteins during IR. However, NO has also indirect effects. Indeed, Huang et al. (25) reported that SNO of G-protein coupled receptor kinase 2 (GRK2) is the primary target of NO cardioprotective activity. Although GRK2 is a cytosolic protein that regulates the activity of G-protein coupled receptors, the authors found that, during IR, GRK2 translocates to mitochondria and activates the cell death pathway. SNO-dependent inhibition of GRK2 could then have a protective effect, mainly by preserving mitochondrial integrity.

S-nitrosylation clearly has beneficial effects during IR when targeting specifically mitochondria; however, incorporation of a NO moiety (NO⁺ or NO) to a sulfur atom can also be deleterious. Indeed, hypernitrrosylation of RyR2 channels via the TNF-α/caspase 8 pathway increases Ca²⁺ leak from the sarcoplasmic reticulum (SR), thus contributing to cell death during IR (26). In this work, reduction of RyR2-SNO by using a caspase 8 inhibitor (Q-LETD-OPh) reduced infarct size in mice. On the other hand, RyR2 hyponitrrosylation also promotes SR Ca²⁺ leak and thus might increase heart vulnerability to IR (27). Based on these results, Beigi et al. (28) demonstrated that dynamic SNO/denitrosylation reactions are essential for cardiovascular homeostasis.

Taken together, these data clearly show that SNO plays a key role in cardioprotection and also illustrate that this positive effect depends on the target and thus on the subcellular localization of NO synthesis. NO concentration could also be important and seems to be directly linked to the cellular redox state during IR (4). Indeed, although NO has undoubtedly a cardioprotective function, it could go over to the dark side, particularly if too much NO is produced or if it is available at the wrong moment.

RIGHT CONCENTRATION

In pro-oxidative conditions, such as during myocardial IR, NO can react with O₂⁻ to form peroxynitrite (ONOO⁻), a cytotoxic molecule that is considered to be the main trigger of reperfusion injuries (29). Consequently, it is debated whether increasing NO bioavailability during IR has a cardioprotective effect (30). For instance, NOS overexpression, BH₄ supplementation, or nitrite supplementation reduces heart sensitivity to IR (31–34). Also, numerous studies showed the cytoprotective function of iNOS during the specific late phase of preconditioning (35). But conversely, Csonka et al. (36) demonstrated that classical preconditioning induces cardioprotection by reducing NO harmful accumulation during early reperfusion. Consistently, the group of Zweier suggested that, in a pro-oxidative environment, transient limitation of NO synthesis via temporary S-glutathionylation-mediated NOS uncoupling might exert a cardioprotective effect by limiting ONOO⁻ overproduction (37, 38). Similarly, we demonstrated that exercise-induced cardioprotection requires eNOS uncoupling during early reperfusion to limit excessive NO production and thus to reduce nitro-oxidative stress (19). If eNOS uncoupling during IR is corrected by BH₄ supplementation, higher ONOO⁻ production and increased infarct size are observed (19). Nonetheless, in this rat model of cardioprotection, reduced NO synthesis due to eNOS uncoupling during early reperfusion was counterbalanced by increased storage of NO metabolites (nitrite and S-nitrosothiols) in hearts of exercised rats (compared to sedentary controls). This allowed maintaining a high level of protein SNO, and thus of cardioprotection, during early reperfusion.

NO availability could mostly explain the discrepant findings concerning the effects of increasing or reducing NO synthesis during IR.

RIGHT TIME

The time of NO availability for SNO of key proteins during IR seems to be critical. Recently, Chouchani et al. (24) showed that SNO of mitochondrial complex I by MitoSNO can be observed only after ischemia and does not occur in normoxic hearts. The authors suggested that ischemia allows the exposure of Cys39 in the ND3 subunit of complex I for SNO. Considering that this mechanism is a key point of SNO-dependent cardioprotection, we can hypothesize that any strategy to make NO available during the ischemic period could contribute to protect the myocardium during IR. However, during ischemia, eNOS is not functional because it is monomerized, its activation by phosphorylation blunted (19) and its substrates (especially O₂⁻) are lacking. Therefore, NO availability in ischemic conditions is mainly dependent on NO metabolites (i.e., nitrite and S-nitrosothiols). Nitrite, a NO reservoir, is reduced to NO during ischemia by nitrite reductase (32) and S-nitrosothiols can decompose to liberate NO (39). Thus, oral treatment with nitrite (40) or acute nitrite administration before ischemia (41) increases NO metabolite storage, providing cardioprotection against IR. Moreover, nitrite therapy mediates cardioprotection by modulating mitochondrial function, leading to increased SNO of the ND3 subunit of the mitochondrial complex I (24). We (19) and others (42), showed that the beneficial effects of exercise on IR injuries are mainly mediated through the increase of the NO metabolite reserve before ischemia. In our work, such increase was associated with higher protein SNO level during early reperfusion. Finally, Calvert et al. (42) clearly demonstrated, using mice in which β3-adrenergic receptor (which plays a key role in eNOS activation) was knocked out that inhibition of exercise-induced NO metabolite storage increase abolishes the cardioprotective effects of exercise against IR.

Altogether, these results indicate that ensuring NO availability during the
ischemic period by increasing NO metabolites storage and improving SNO during early reperfusion are key steps for efficient cardioprotection.

CONCLUSION

NO is essential to limit the deleterious effects of post-ischemic reperfusion. Experimental studies indicate that NO exerts its cardioprotective effect against ischemia–reperfusion injuries not only directly through protein SNO but also indirectly through the NO/Guanylyl cyclases (GCs)/cGMP/PKG signaling pathway. Among the many cellular targets of NO, SNO of mitochondrial proteins during IR seems to play a key role. However, the efficiency of NO-induced cardioprotection depends on (i) its concentration, because NO can also generate nitro-oxidative stress (through the formation of ONOO−), (ii) its subcellular localization, and (iii) when it is available. Thus, improving NO metabolism (nitrites and S-nitrosothiols) storage before and during ischemia, to optimize NO availability and SNO during ischemia and early reperfusion, is an efficient strategy. Nevertheless, further studies are needed to better understand NO metabolism dynamics during IR in order to liberate the right amount of NO in the right place and at the right time.

REFERENCES

1. Schulz R, Kelm M, Heusch G. Nitric oxide in myocardial ischemia/reperfusion injury. Circ Res (2004) 94(3):402–13. doi:10.1161/01.res.2003.09.019
2. Jones SP, Boll R. The ubiquitous role of nitric oxide in cardioprotection. J Mol Cell Cardiol (2006) 40(1):16–23. doi:10.1016/j.yjmcc.2005.09.011
3. Pagliaro P, Moro F, Tullio F, Perrelli MG, Penna C. Cardioprotective pathways during reperfusion: focus on redox signaling and other modalities of cell signaling. Antioxid Redox Signal (2011) 14(5):583–50. doi:10.1089/ars.2010.3245
4. Tullio F, Angotti C, Perrelli MG, Penna C, Pagliaro P. Redox balance and cardioprotection. Basic Res Cardiol (2013) 108(6):392. doi:10.1007/s00395-013-0392-7
5. Kojda G, Kottenberg K. Regulation of basal myocardial function by NO. Cardiovasc Res (1999) 41(3):514–23. doi:10.1016/s0008-6368(98)00314-9
6. Hare JM. Nitric oxide and excitation–contraction coupling. J Mol Cell Cardiol (2003) 35(7):719–29. doi:10.1016/s0022-2828(03)00143-3
7. Massion PB, Feron O, Desdy C, Balligand JL. Nitric oxide and cardiac function: ten years after, and continuing. Circ Res (2003) 93(5):388–98. doi:10.1161/01.RES.0000008835.58510.21
8. Carnicer R, Crabtree MJ, Sivakumar V, Casadei B, Kass DA. Nitric oxide synthases in heart failure. Antioxid Redox Signal (2013) 18(9):1078–99. doi:10.1089/ars.2012.4824
9. Costa AD, Garlid KD, West IC, Lincoln TM, Downey JM, Cohen MV, et al. Protein kinase G transmits the cardioprotective signal from cysitol to mitochondria. Circ Res (2005) 97(4):329–36. doi:10.1161/01.RES.0000178451.08719.5b
10. Agullo L, Garcia-Dorado D, Escalona N, Ruiz-Meana M, Mirabet M, Insarte J, et al. Membrane association of nitric oxide-sensitive guanylyl cyclase in cardiomyocytes. Cardiovasc Res (2005) 68(1):65–74. doi:10.1016/j.jcsr.2005.05.021
11. Penna C, Cappello S, Mancardi D, Raimondo S, Rastaldo R, Gattullo D, et al. Post-conditioning reduces infarct size in the isolated rat heart: role of coronary flow and pressure and the nitric oxide/cGMP pathway. Basic Res Cardiol (2006) 101(2):168–79. doi:10.1007/s00395-005-0543-6
12. Insarte J, Barba I, Ponceles-Nozal M, Hernando V, Agullo L, Ruiz-Meana M, et al. cGMP/PKG pathway mediates myocardial postconditioning protection in rat hearts by delaying normalization of intracellular acidosis during reperfusion. J Mol Cell Cardiol (2011) 50(5):903–9. doi:10.1016/j.yjmcc.2011.02.013
13. Insarte J, Hernando V, Villarosoa U, Abad E, Ponceles-Nozal M, Garcia-Dorado D. Activation of eNOS/protein kinase G pathway in post-conditioned myocardium depends on reduced oxidative stress and preserved endothelial nitric oxide synthase coupling. J Am Heart Assoc (2013) 2(1):e000575. doi:10.1161/JAHA.112.000575
14. Cohen MV, Yang XM, Liu Y, Solskenova NV, Downey JM. Cardioprotective PGK-Independent NO Signaling at Reperfusion. Am J Physiol Heart Circ Physiol (2010) 299(6):H2028–36. doi:10.1152/ajpheart.00527.2010
15. Sun J, Murphy E. Protein S-nitrosylation and cardioprotection. Circ Res (2010) 106(2):285–96. doi:10.1161/CIRCRESAHA.109.209452
16. Murphy E, Kohr M, Sun J, Nguyen T, Steenbergert C. S-Nitrosylation: a radical way to protect the heart. J Mol Cell Cardiol (2012) 52(3):568–77. doi:10.1016/j.yjmcc.2011.08.021
17. Tong G, Aponte AM, Kohr MJ, Steenbergert C, Murphy E, Sun J. Postconditioning leads to an increase in protein S-nitrosylation. Am J Physiol Heart Circ Physiol (2014) 306(6):H1825–32. doi:10.1152/ajpheart.00600.2013
18. Sun J, Aponte AM, Kohr MJ, Tong G, Steenbergert C, Murphy E. Essential role of nitric oxide in acute ischemic preconditioning: S-Nitrosylation of mitochondrial complex I. Proc Natl Acad Sci U S A (2011) 108(32):13258–63. doi:10.1073/pnas.1005286108
19. Zhang YH, Casadei B. Sub-cellular targeting of protein S-nitrosylation of mitochondrial proteins. Antioxid Redox Signal (2012) 16(1):45–56. doi:10.1089/ars.2010.3245
20. Zhan YH, Yang T, Nguyen T, Aponte AM, Connolly PS, Esfahani SG, et al. Disruption of caveolae blocks ischemic preconditioning-mediated S-nitrosylation of mitochondrial proteins. Antioxid Redox Signal (2012) 16(1):45–56. doi:10.1089/ars.2010.3245
33. Dumitrescu C, Biondi R, Xia Y, Cardounel AJ, Druhan LJ, Ambrosio G, et al. Myocardial ischemia results in tetrahydrobiopterin (BH4) oxidation with impaired endothelial function ameliorated by BH4. Proc Natl Acad Sci U S A (2007) 104(38):15081–6. doi:10.1073/pnas.0702986104
34. Bhushan S, Kondo K, Polhemus DJ, Otuka H, Nicholson CK, Tao YX, et al. Nitrite therapy improves left ventricular function during heart failure via restoration of nitric oxide-mediated cytoprotective signaling. Circ Res (2014) 114(8):1281–91. doi:10.1161/CIRCRESAHA.114.301475
35. Bolli R. Cardioprotective function of inducible nitric oxide synthase and role of nitric oxide in myocardial ischemia and preconditioning: an overview of a decade of research. J Mol Cell Cardiol (2001) 33(11):1897–918. doi:10.1006/jmcc.2001.1462
36. Csonka C, Szilvássy Z, Fului P, Páli T, Blaig IE, Tosaki A, et al. Classic preconditioning decreases the harmful accumulation of nitric oxide during ischemia and reperfusion in rat hearts. Circulation (1999) 100(22):2260–6. doi:10.1161/01.CIR.100.22.2260
37. Chen CA, Wang TY, Varadharaj S, Reyes LA, Hemann C, Talukder MA, et al. S-glutathionylation uncouples enos and regulates its cellular and vascular function. Nature (2010) 460(7277):1115–8. doi:10.1038/nature08599
38. Zweier JL, Chen CA, Druhan LJ. S-glutathionylation reshapes our understanding of endothelial nitric oxide synthase uncoupling and nitric oxide/reactive oxygen species-mediated signaling. Annu Rev Pharmacol Toxicol (2011) 51(1):769–75. doi:10.1146/annurev.pharmtox.51.120709.100158
39. Singh RJ, Hogg N, Joseph J, Kalyanaraman R. Mechanism of nitric oxide release from 5-nitrosodiols. J Biol Chem (1996) 271(31):18596–603. doi:10.1074/jbc.271.31.18596
40. Bryan NS, Calvert JW, Elrod JW, Gundewar S, Ji SY, Lefer DJ. Dietary nitrite supplementation protects against myocardial ischemia-reperfusion injury. Proc Natl Acad Sci U S A (2007) 104(48):19144–9. doi:10.1073/pnas.0706579104
41. Webb A, Bond R, McLean P, Uppal R, Benjamin N, Athowallah A. Reduction of nitrite to nitric oxide during ischemia protects against myocardial ischemia-reperfusion damage. Proc Natl Acad Sci U S A (2004) 101(37):13683–8. doi:10.1073/pnas.0402927101
42. Calvert JW, Condit ME, Aragón JP, Nicholson CK, Moody BF, Hood RL, et al. Exercise protects against myocardial ischemia-reperfusion injury via stimulation of β(3)-adrenergic receptors and increased nitric oxide signaling: role of nitrite and nitrosothiols. Circ Res (2011) 108(12):1448–58. doi:10.1161/CIRCRESAHA.111.241117

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 05 January 2015; accepted: 26 January 2015; published online: 06 February 2015.

Citation: Farah C and Reboul C (2015) NO better way to protect the heart during ischemia–reperfusion: to be in the right place at the right time. Front. Pediatr. 3:6. doi: 10.3389/fped.2015.00006

This article was submitted to Pediatric Cardiology, a section of the journal Frontiers in Pediatrics.

Copyright © 2015 Farah and Reboul. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.