Stocking density mediated stress modulates growth attributes in cage reared *Labeo rohita* (Hamilton) using multifarious biomarker approach

Himanshu Sekhar Swain1, Basanta Kumar Das1,2, Aurobinda Upadhyay2, Mitesh Hiradas Ramteke1, Vikas Kumar3, Dharmendra Kumar Meena1, Uttam Kumar Sarkar4, Narinder Kumar Chadha2 & Kiran Dube Rawat2

The present study was conducted for 240 days to evaluate the effects of stocking density based on growth attributes, digestive enzymes, muscular composition, biochemical and physiological responses of *Labeo rohita* fingerlings in tropical inland open water cages. *L. rohita* (30.35 ± 1.08 g) were randomly distributed into three treatments, namely low stocking density, LSD (10 m⁻³), medium stocking density, MSD (20 m⁻³) and high stocking density, HSD (30 m⁻³) in triplicates. Fish were fed twice daily with CIFRI CAGEGROW® floating feed (crude protein-28%, crude fat-4%). Fish growth and feed efficiency were higher \((p < 0.05)\) in LSD, however, MSD registered a higher yield. Amylase and protease activity reduced whereas lipase activity increased with increasing stocking density. Muscle crude protein and crude fat formed an inverse correlation. The fillet quality deteriorated at higher stocking densities based on Muscle pH, drip loss and frozen leakage rate. The stress biomarkers level (glucose, cortisol, superoxide dismutase and catalase) increased in serum under crowding conditions. Glutamate oxaloacetate transaminase and glutamate pyruvate transaminase in serum were significantly increased in HSD. Serum protein levels decreased with the increase in stocking densities. Body ionic imbalance \((Na^+ , Cl^- \text{ and } K^+)\) was observed under crowding stress. Based on growth attributes and multiple biomarker responses, *L. rohita* @ 10 m⁻³ was found to be the optimum density for inland open water cage culture.

Stocking density optimization is a prerequisite for the development of the protocol for practice of any candidate fish species and it differs based on species and its life stages, types of production system and the management practice followed1. Overstocking produces significant stress which leads to growth retardation, poor health, lower survival and yield loss2,3. The stocking density and growth are inversely correlated owing to the concurrence for food and space which in turn elucidate stress in fish4. However, understocking leads to poor production due to the underutilization of available space and resources2,5. As the cage culture is an intensive farming system, the apparent efficiency of culture systems can be maximized by increasing the densities to optimal levels6,7.

Stressor in aquaculture covers a broad and diverse range of biotic7 and abiotic8 factors. Stocking density mediated stress has known physiological and behavioural consequences for the cultured fish9. The biochemical responses of fish to menacing stimuli are regularly controlled by physiological modification of the nervous and humoral system in order to maintain body homeostasis10. Fish subjected to stressors can drop the muscular flesh quality11, decreased digestive enzymes12 and altered the serum biochemical parameters13. Stress can also increase adrenaline which raise blood pressure resulting increase in the blood flow through the gill lamellae and altering the exchange of ions14.

Cage culture in inland open water is considered a relatively recent aquaculture innovation, has rapidly expanded during the past decades in fresh, estuarine, and marine open water bodies. Due to pressures for aquatic products across the globe, cage culture is presently undergoing swift changes15,16. In India, reservoirs and

1ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, India. 2ICAR-Central Institute of Fisheries Education, Yari Road, Versova, Mumbai 400 061, India. 3email: basantakumard@gmail.com
The serum electrolytes like Na^+, K^+ and Cl^- were monitored and their values were represented in Table 2. The level did not vary among low and medium density. The sum of total serum protein decreased significantly ($p < 0.05$) from LSD (3.29 ± 0.01 g dl$^{-1}$) to HSD (2.33 ± 0.08 g dl$^{-1}$) in LSD. The superoxide dismutase (SOD) level was increased significantly ($p < 0.05$) in HSD (3.93 ± 0.43 U mg$^{-1}$ protein) and the extent of increase in SOD was 15% from LSD (Fig. 1A). The glucose concentration was ranged from 25.14 ± 1.02 mg dl$^{-1}$ to 42.19 ± 0.68 mg dl$^{-1}$ from LSD to HSD. The superoxide dismutase (SOD) level was increased significantly ($p < 0.05$) from LSD (39.31 ± 0.43 U mg$^{-1}$ protein) and the extent of increase in SOD was 15% from LSD (Fig. 1A). The catalase (CAT) value was significantly ($p < 0.05$) increased in MSD (28.51 ± 0.01 g dl$^{-1}$) and HSD (35.69 ± 0.06 U mg$^{-1}$ protein) than LSD (26.80 ± 0.58 U mg$^{-1}$ protein) (Fig. 1A). Cortisol level demonstrated apparently higher ($p < 0.05$) in MSD (3.29 ± 0.01 dl$^{-1}$) and HSD (3.20 ± 0.01 dl$^{-1}$) than LSD (2.20 ± 0.01 dl$^{-1}$) (Table 2). The growth characteristics among the groups significantly differed ($p < 0.05$) (Table 1). Higher growth performances in terms of final body weight (FBW), weight gain (WG) and specific growth rate (SGR) were recorded in lower stocking density ($p < 0.05$). The value of specific growth rate (SGR) was (1.29 ± 0.01%) in LSD followed by MSD (1.21 ± 0.01%) and HSD (1.07 ± 0.03%). An increase in stocking density led to a decline in fish survival percentage ($p < 0.05$) from LSD (88 ± 0.11%) to HSD (66 ± 0.18%). Fish reared at LSD reported higher ($p < 0.05$) feed and protein utilization (protein efficiency ratio—PER and feed conversion efficiency—FCE) than MSD and HSD. On contrary, the lowest feed conversion ratio (FCR) (1.96 ± 0.01) was displayed in LSD while medium and high density showed significantly deleterious FCR values ($p < 0.05$) (Table 1).

Table 2. Growth performance and feed utilization efficiency of L. rohita stocked at three different stocking densities. Values are mean ± SE. Means in the same column within each classification bearing different superscripts (a, b, c) are significantly different ($p < 0.05$).

Treatment	IBW (g)	FBW (g)	WG (g)	SGR (%)	AGR (g)	Survival (%)	FCR	PER	FCE	Yield (kg m$^{-2}$)	
LSD	30.35 ±	660.69 ±	650.54 ±	1.69 ±	2.70 ±	88.00 ±	1.96 ±	1.69 ±	0.50 ±	5.98 ±	
MSD	1.08	21.30	21.30	0.01	0.08	0.11	0.01	0.01	0.02	0.53	
HSD	1.08	560.52 ±	254.98	1.21 ±	2.30 ±	72.00 ±	2.56 ±	2.9 ±	0.01	0.38	8.059 ±

The concentration of serum glutamate oxaloacetate transaminase (SGOT) and serum glutamate pyruvate transaminase (SGPT) in LSD and MSD varied significantly from HSD ($p < 0.05$) as presented in Table 2, however, the level did not vary among low and medium density. The sum of total serum protein decreased significantly ($p < 0.05$) with increasing stocking density from 3.29 ± 0.01 g dl$^{-1}$ in LSD to 2.33 ± 0.08 g dl$^{-1}$ in HSD (Table 2). Albumin, which is an important carrier for various hormones like thyroid, steroids and fatty acids varied from 0.96 ± 0.01 to 0.72 ± 0.01 g dl$^{-1}$ from lower to higher stocking density. Serum globulins responsible for blood clotting and immunological functions proclaimed a decreasing trend from lower to higher stocking density. The ratio of albumin to globulin was found to be non-significant ($p > 0.05$) amongst LSD and MSD but significant with HSD (Table 2).

The serum electrolytes like Na^+, K^+ and Cl^- were monitored and their values were represented in Table 2. The level of Na^+, altered among lower and higher density treatments. Chloride ions decreased with the increased stocking density. The significant difference of K^+ and Cl^- values ($p < 0.05$) have been observed in the lower and higher stocking density.
The serum thyroid level was estimated using the parameters T3 (triiodothyronine) and T4 (thyroxine) (Fig. 1B). The T3 value did not differ \((p > 0.05)\) significantly except in HSD \((2.16 \pm 0.03 \text{ ngmL}^{-1})\), however, T4 was decreased \((p < 0.05)\) with an increase in stocking density and the lowest value recorded in HSD \((3.68 \pm 0.06 \text{ ngmL}^{-1})\). The IGF1 (insulin like growth factor 1) value was highest at LSD \((155.52 \pm 3.92 \text{ ngmL}^{-1})\) and it was significantly \((p < 0.05)\) declined in both MSD and HSD (Fig. 1C).

Digestive enzymes. The gut amylase, protease and lipase activities were analyzed and shown in Fig. 1D. Amylase was found to be inversely proportional to the stocking density and the value ranged from 19.30 \pm 0.35 to 22.48 \pm 0.41 \text{ U mg protein}^{-1} from HSD to LSD. Protease, which is responsible for the breakdown of proteins into smaller polypeptides or single amino acids did not differ \((p > 0.05)\) among LSD \((10.25 \pm 0.12 \text{ U mg protein}^{-1})\) and

Table 2. Serum biochemical indices of *L. rohita* stocked at three different stocking densities. Values are mean \(\pm\) SE. Means in the same column within each classification bearing different superscripts \((a, b, c)\) are significantly different \((P < 0.05)\). SGOT serum glutamate oxaloacetate transaminase, SGPT serum glutamate pyruvate transaminase, A:G ratio albumin:globulin ratio, LSD low stocking density, MSD medium stocking density, HSD high stocking density.
MSD (9.46 ± 0.18 U mg protein⁻¹) however it markedly differed in HSD (7.88 ± 0.05 U mg protein⁻¹). The lipase activity was found to be indifferent among MSD and HSD but varied in LSD (p<0.05).

Chemical composition of muscle and flesh quality. The muscular chemical compositions (pH, drip loss—DL, frozen leakage rate—FLR) at different stocking densities were measured and presented in Table 3. The crude protein content showed significant variation between HSD and LSD. The decreasing trend of crude fat content among the treatments was observed though the values were insignificant between LSD and MSD. Stocking density had no impact (p>0.05) on moisture and ash content. The muscular pH declined with an increase in stocking densities where the LSD showed the highest pH value (6.50 ± 0.11) and lowest at HSD (5.8 ± 0.17) as shown in Table 3. Muscular DL and FLR increased with increasing stocking density and the values significantly differed between LSD and HSD (Table 3).

Nucleotide ratio. The ratio of RNA:DNA is an important sign of stress in the fishes as shown in the Fig. 1E. The quantity of DNA did not vary significantly (p>0.05), however, the quantity of RNA varied significantly (p<0.05) among LSD (1.33 ± 0.08 µg mg tissue⁻¹) and HSD (1.56 ± 0.12 µg mg tissue⁻¹). The nucleotide ratio (RNA:DNA) was found to be decreased with increasing stocking density (p<0.05).

Water quality parameters. The water quality parameters of the cage are depicted in Table 4. The range of mean water temperature, transparency, DO, pH and specific conductivity was 28.50–29.00 °C, 118–136 cm, 6.98–7.70 mg l⁻¹, 7.50–7.85 and 79.50–87.21 mmho cm⁻¹ respectively. The alkalinity, hardness, total nitrogen and total phosphorus ranged from 56.10 to 58.50 mg l⁻¹, 48.16–56.00 mg l⁻¹, 0.57–0.62 mg l⁻¹ and 0.16–0.18 mg l⁻¹ respectively. No significant variation was observed in water quality parameters among different treatments (p>0.05).

Univariate and multivariate statistical analysis. Pearson correlations among the parameters are depicted in Fig. 2A. The correlation coefficient suggested that correlated parameters are closely associated and their behaviours are interdependent to each other. This correlation was further confirmed by principal component analysis (PCA). Two PC were obtained having eigenvalues >1. PC1 and PC2 constitute eigenvalues 32.23 and 4.76 and the variance 87.12% and 12.88% respectively. PC1 showed a strong positive correlation among FBW, WG, SGR, AGR, survival, PER, FCE, amylase, protease, K⁺, Cl⁻, RNA, RNA:DNA, moisture, CF, pH, serum protein, albumin, globulin, T₃, T₄, and IGF1 (Fig. 2B). However, a negative correlation exists among FCR, lipase, CP, DL, FLR, serum glucose, cortisol, SGOT, SGPT, SOD and CAT (Fig. 2B). PC2 didn't show any significant correlation among the vital parameters. Hierarchical clustering dendrogram formed two groups among the three stocking densities. Cluster one was noticed between LSD and MSD while HSD formed a separate cluster (Fig. 2C).

Table 3. Muscle chemical composition and flesh quality of *L. rohita* stocked at three different stocking densities. Values are mean ± SE. Means in the same column within each classification bearing different superscripts (a, b, c) are significantly different (p<0.05). FLR frozen leakage rate, LSD low stocking density, MSD medium stocking density, HSD high stocking density.

Treatments	Moisture (%)	Crude protein (%)	Crude fat (%)	Ash (%)	Muscle pH	Drip loss (%)	FLR (%)
LSD	77.67 ± 0.74a	13.82 ± 0.11b	2.03 ± 0.05a	3.72 ± 0.01a	6.5 ± 0.11a	2.1 ± 0.15b	0.7 ± 0.05b
MSD	77.03 ± 0.26c	14.45 ± 0.52b	1.90 ± 0.06b	3.74 ± 0.01b	6.0 ± 0.05b	3.2 ± 0.11b	1.1 ± 0.11b
HSD	75.61 ± 1.62b	15.28 ± 0.22b	1.63 ± 0.06b	3.72 ± 0.02b	5.8 ± 0.17b	3.8 ± 0.40b	1.4 ± 0.17b

Table 4. Variations in cage water quality parameters in cages. Values are mean ± SE. No significant variation was observed in water quality parameters among different treatments (p>0.05). LSD low stocking density, MSD medium stocking density, HSD high stocking density.

Parameters	LSD	MSD	HSD
Water temperature (°C)	28.5 ± 1.20	28.50 ± 1.30	29.0 ± 1.20
Water transparency (cm)	118.00 ± 4.02	127.00 ± 5.12	136.00 ± 4.65
Dissolved oxygen (mg l⁻¹)	7.20 ± 0.26	7.70 ± 0.31	6.98 ± 0.18
pH	7.85 ± 0.88	7.50 ± 0.90	7.70 ± 0.64
Specific conductivity (mmho cm⁻¹)	87.21 ± 3.30	79.50 ± 3.50	82.20 ± 2.80
Alkalinity (mg l⁻¹)	58.50 ± 0.56	56.10 ± 1.50	58.33 ± 1.02
Hardness (mg l⁻¹)	49.52 ± 2.13	48.16 ± 1.28	56.00 ± 1.36
Total nitrogen (mg l⁻¹)	0.60 ± 0.05	0.62 ± 0.04	0.57 ± 0.02
Total phosphorous (mg l⁻¹)	0.16 ± 0.01	0.17 ± 0.04	0.18 ± 0.02
Figure 2. (A) *Pearson correlation coefficient, (B) **Principal component analysis, and (C) ***Hierarchical cluster analysis using growth attributes and multiple biomarkers of *L. rohita* cultured in three stocking densities in cages. *Red coloured small eclipse showed negatively correlated variables while blue coloured small eclipse shape showed positively correlated variables, large eclipse showed less correlated variables, boxed variables showing significantly (\(P<0.05\)) correlated. **Extraction method: Principal component analysis, Rotation method: Varimax with Kaiser Normalization, ***Wards method with Euclidean method.
Discussion

Stocking density, nutrition and appropriate culture environment are considered as vital factor which affects fish growth and production\(^2\) however overcrowding negatively affect the growth of fish\(^\text{28}\). In the present study, stress led by crowding has an obvious effect on growth attributes like FBW, WG, SGR, AGR and survival which are significantly different among LSD, MSD and HSD. The present findings proclaimed that the feed utilization and protein efficiency ratio was found significantly greater in lower stocking density. However, at higher stocking density, FCR, FCE and PER was deteriorated. The degradation in growth, biomass production and feed utilization in HSD could be the result of crowding, which triggered a rising demand for energy to activate the physiological functions to combat the stress by decreasing appetite and food intake and led to a reduction in the available energy for growth\(^\text{21–25}\). The major studies on evaluation of stocking density were observed on various tropical as well as temperate fishes and also in different culture systems. A similar effect of crowding stress on growth and feed utilization was also observed in common carp, Cyprinus carpio cultured in biofloc for 49 days\(^\text{28}\), in tanks for 60 days\(^\text{27}\) and glass aquaria for 30 days; in grass carp, Ctenopharyngodon idella cultured in the tank for 60 days\(^\text{29}\) and tanks for 78 days; in olive barb, Puntius sarana reared in cages for 90 days\(^\text{30}\); in Amazon fish, Colossoma macropomum cultured in net cages for 60 days\(^\text{31}\) and Nile tilapia, Oreochromis niloticus cultured in cages for 4 months\(^\text{32}\) and tanks for 84 days\(^\text{33}\). On contrary, many authors could not establish any relation between stocking density and growth attributes in silver perch, Bidyanus bidyanus cultured in cages for 210 days\(^\text{34}\) and Atlantic sturgeon, Acipenser oxyrinchus cultured in circular tanks for 26 days\(^\text{35}\). Thus, stocking density (10 m\(^{-3}\)) of L. rohita ensured the best growth performances in terms of weight gain, survival and feed and protein utilization.

Glucose is considered an indicator of secondary stress response in fishes\(^\text{6,37}\). Stressors such as transportation, stocking density, confinement and bad handling are responsible for the increase in blood-glucose and whole body-glucose levels. The increased level of catecholamine results in the activation of glycogenolysis and gluconeogenesis, which ultimately leads to the rise of glucose levels in blood\(^\text{38}\). It is a secondary stress response that shifts the glucose to body tissue to cope with the restoration of energy-demanding activity. In the present study, increased blood glucose level (p < 0.05) from LSD to HSD was observed with an increment in stocking density followed by crowding stress. Similar findings were also observed in olive barb, P. sarana cultured in cages for 90 days; in Gilthead seabream, Sparus auratus cultured in tanks for 116 days; in Senegalese sole, Solea senegalensis cultured in partial-recirculated seawater system for 18 days; in Chinese sturgeon, Acipenser sinensis reared in recirculating aquaculture system for 3 months; in common carp, Cyprinus carpio cultured in biofloc for 49 days; in tanks for 60 days and Asian seabass, Lates calcarifer cultured in circular cages for 6 months, where stocking density mediated stress elevated the blood glucose level.

Free radicals and reactive oxygen species (ROS) are produced continuously under stressful conditions to combat the damage of antioxidant abilities and also act as a scavenger of excessive superoxide generated in the body. SOD and CAT played a key antioxidant enzyme in the animal defence system, to function against oxidative stress, and with the increase in stress; its value tends to ascend\(^\text{34,34}\). SOD level in serum of L. rohita at higher density increased significantly. Similar to the present findings, an increment of SOD and CAT with increased stocking density was observed in olive barb, P. sarana cultured in cages for 90 days; in common carp, Cyprinus carpio cultured in biofloc for 49 days and tanks for 60 days; in Nile tilapia, O. niloticus cultured in biofloc for 120 days; in GIFT strain of Tilapia cultured in biofloc for 90 days; and dourado, Salminus brasiliensis reared in the recirculating system for 80 days.

Cortisol is released as an indicator of chronic and acute stress which elevates the expenditure of energy and hence the stored somatic energy expenses also subsequently increase, which ultimately led to growth retardation in fish\(^\text{28,42}\). The cortisol level of L. rohita elevated at high density (p < 0.05). Moreover, an increase in the level of cortisol and glucose were associated with the reduction in muscular fat\(^\text{41}\). In concordance with the present study, growth retardation and cortisol level positively correlated in olive barb, P. sarana cultured in cages for 90 days; in common carp, Cyprinus carpio cultured in biofloc for 49 days; in tanks for 60 days; in glass aquaria for 30 days and tanks for 87 h of crowding and GIFT strain of Tilapia O. niloticus cultured in biofloc for 90 days. In contrast to the present finding, cortisol level remained unaffected in African catfish, Clarias gariepinus cultured in tanks for 60 days at higher density but decreased in Nile tilapia, O. niloticus in biofloc based systems cultured for 120 days\(^\text{12}\).

The major thyroid hormones, triiodothyronine (T3) and thyroxine (T4) play an important role in the growth and development of fishes\(^\text{48}\) which are majorly affected by crowding stress, hypoxic condition and starvation\(^\text{49}\). The crowding stress plays a major role in the elevation of cortisol level and the increase in cortisol level has a negative feedback mechanism on the hypothalamus-pituitary-interrenal axis thus decreasing the peripheral circulation of T3 and T4. Unless the thyroid hormones are not in free form, they cannot be utilized by the fish/animal, leading to poor growth\(^\text{50}\). The elevated crowding stress led the fishes towards growth retardation, also towards less availability of thyroid hormone in fish serum, which was observed in the present study. In our study, the decrease in the level of T3 and T4 with an increase in stocking density was supported by the earlier findings in Amur sturgeon (Acipenser schrenckii) reared in concrete tanks for 70 days; in mosquitofish (Gambusia holbrooki) cultured in glass aquaria for 8 weeks; in channel catfish (Ictalurus punctatus) cultured in recirculating aquaculture system for 60 days and olive barb (P. sarana) cultured in cages for 90 days.

The IGF1 axis has a prominent role in the regulation of various physiological responses in fishes\(^\text{54,55}\). Due to the secretion of IGF1, growth hormone has a prominent impact on growth regulation in fishes\(^\text{56}\). Due to the stress factors like overcrowding in the present study, the somatic growth was inhibited significantly in MSD and HSD; also, these groups of fishes were encountered with significantly lower IGF1 concentration in their serum. The findings were consistent with earlier studies where stress affects the secretion of IGF in tilapia, Oreochromis mossambicus stocked in circular tanks for 48 hours; Chinese sturgeon, A. sinensis cultured in recirculating aquaculture system for 3 months; Amur sturgeon, A. schrenckii cultured in concrete ponds for 70 days; Senegalese...
sole, *S. senegalensis* cultured in fiberglass tanks for 60 days. The result divulged that high cortisol levels under stressful conditions, inhibition the secretion of growth hormone and IGF1.

SGOT and SGPT, both are ubiquitous aminotransferases in the mitochondrion of fish and are used as an indicator of hepatic ruination. The enzymes are coerced to be released into the bloodstream when the liver gets damaged. In the present finding, SGOT and SGPT activity upraised in *L. rohita* due to crowding stress in HSD; however, the change in such values among LSD and MSD was not varied significantly. This result might also reflect that increase of these enzymes in the serum was occurred due to the overutilization of hydrocarbons in stressful conditions and their exchange between the body and surrounding environment called osmoregulation. Cultured in traditional ponds for 70 days and rainbow trout, and albumin concentration in Nile tilapia, *O. niloticus* cell lesions, kidney dysfunction or malnutrition. The crowding stress has also badly affected the serum protein was a clear image of compromised innate immunity which may be due to inhibition of protein synthesis, liver cell lesions, kidney dysfunction or malnutrition. The crowding stress has also badly affected the serum protein and albumin concentration in Nile tilapia, *O. niloticus* cultured in cages for four months and common carp, *C. carpio* cultured in biofloc system for 49 days.

The responses of fish to stress are related to the neuroendocrine system, which is a critical part of osmoregulatory adaptations. The present study showed that the Na’ level was highest in LSD and it varied significantly (P < 0.05) between LSD and MSD; while the lowest levels of Cl and K’ was found in HSD and varied significantly (p < 0.05) between LSD and HSD. It may be attributed to excessive blood flow in gills and the permeability of the epithelium, resulting in ionic losses in freshwater fish. A similar finding was recorded in marine fish (Atlantic salmon, *Salmo salar*) cultured in the plastic tank for 14 days and freshwater fish (dourado *Salminus brasiliensis*) cultured in tanks for 80 days; however contrasting results have been seen in the case of salmon smolts, *Salmo salar* reared in fiberglass tanks for 100 days and in rainbow trout, *Oncorhynchus mykiss* reared in raceways for 24 h.

The analysis of digestive enzyme activity is pertinent since it indicates digestion, absorption and nutrient utilization capacity of fish. The feed intake stimulates digestive enzyme secretions to break down nutrient particles into simpler building blocks (Dong et al. 2018). Insufficient secretion of the digestive enzyme leads to deficiency of nutrients as well as growth retardation. The digestive enzymes were affected by the increase in stocking density since the crowding stress could force the fish body metabolism to channelize their energy towards coping with stress conditions. Thus, it can also imply that the digestion and utilization of feed in fishes could be affected by crowding stress caused by higher stocking densities. In the present study, the amylase activity was decreased significantly with increasing stocking density. Crowding stress also caused the decline in amylase activity in olive barb, *P. sarana* cultured in cages for 90 days; in common carp, *C. carpio* cultured in biofloc for 49 days; in rainbow trout, *O. Mykiss* cultured in tanks for 84 days; in marbled eel, *A. marmorata* cultured in recirculating aquaculture system for 71 days and turbot, *Scophthalmus maximus* cultured in recirculating aquaculture system for 70 days. The increase in lipase activity with an increase in stocking density among the treatments with *L. rohita* indicates that the utilization of body fat during crowing stress led to increasing in lipase activity. In the present study, due to crowding stress, protease activity in fishes were found to decline with the increase in stocking density, although the change was not significant among LSD and MSD. The decrease in protease activity along with an increase in stocking density resounded as a sign of growth retardation which can also be proved by declining PER value. A similar correlation between stocking density, PER and protease activity has been proven in Asian seabass cultured in recirculating aquaculture system (RAS) for 60 days. Earlier studies on Japanese flounder juveniles cultured for 39 days in tanks and on blunt snout bream cultured for 42 days in concrete ponds have agreed with the fact that higher stocking densities possibly leads to goblet cell damage in the gut and successive reduction in metabolic activities, which might also be the reason for growth retardation in the present study.

Energy metabolism in fish bodies can also be indicated by flesh composition. In the present study, deterioration in growth parameters suggests a decline in metabolism. Several factors can be a reflection in change in the body flesh composition of the stocked fishes, including water quality, crowding stress, nutrient availability, feed intake and follow up utilization. In the present study, a significant decline of the fat extract was noticed in HSD which can be attributed due to chronic crowd stressing in cages followed by lesser uptake of feed resulting in lower accumulation of lipid in fish on flesh. On other hand, crowding stress enhanced the process of lipid metabolism to meet the growing energy demand followed by decreased fat content in some other fish species such as Amur sturgeon, *A. Schrenckii* cultured in flow-through tanks for 60 days; in juvenile blunt snout bream, *M. amblycephala* cultured in tanks for 12 weeks and Nile tilapia, *O. niloticus* cultured in glass aquarium for 12 weeks. In contrast, fat content increased with increasing stocking density in African catfish, *Clarias gariepinus* cultured in traditional ponds for 70 days and rainbow trout, *O. mykiss* cultured in tanks for 75 days. The dis-similar results of these above studies could be due to the differences in fish species, age, size and the exposure time of crowding stress. The crude protein content of fish muscle was increased significantly in HSD in comparison...
The muscle pH is an important flesh quality parameter and under stressful conditions, fishes produce low pH muscle. In the present study, lower pH was exhibited in higher densities. It is possibly induced by chronic crowding stress which stimulates lactate acid formation in muscle. Similar findings of lower pH and water holding capacity were obtained in the case of rainbow trout, *O. mykiss* cultured in tanks for 75 days. The DL and FLR in HSD displayed a significant increasing trend, which indicates the deterioration of flesh quality attributed to lower muscular pH. Previous studies show that DL and FLR are inversely correlated to muscular pH of channel catfish, *I. punctatus* cultured in recirculating aquaculture system for 60 days.

Materials and methods

Ethical statement. The study protocol and the experiment conducted was approved by the ethical committee of ICAR-Central Inland Fisheries Research Institute, Barrackpore (IAEC/2020/04). All methods were carried out in accordance with relevant national and international guidelines and regulations. The study is in compliance with the Animal Research: Reporting of In vivo Experiments (ARRIVE) guidelines (https://arriveguidelines.org/arrive-guidelines/experimental-procedures).

Experimental facilities and animals. The present study was carried out in Salia reservoir (N19° 48.3887’ and E85° 03.6983’), Odisha, India (Fig. 3a and b) in floating rectangular cages made of high density polyethylene (HDPE) of dimension 6 m × 4 m × 4 m with an effective volume of 84 m³ for a period of 240 days. Advance fingerlings of *L. rohita* (14.25 ± 0.19 cm and 30.35 ± 1.08 g) were stocked in three different stocking densities, namely LSD (10 m⁻³), MSD (20 m⁻³), and HSD (30 m⁻³) in triplicates as per complete randomized design (CRD). Fishes were fed with CIFRI CAGEGROW®, a commercial extruded floating feed (28% protein and 4% fat) at a rate of 3% of body weight twice (09.00 h and 16.00 h). The feed rations were adjusted based on the estimated fish biomass every week. During the study, antibiotics, chemicals and medicines were strictly avoided. The health status of fish was monitored on a regular basis (Fig. 3c).

Growth performance and feed efficiency. The growth performances were assessed every week by randomly lifting 30 fishes from cages to adjust the feed ration however other parameters were studied at the end of the experiment. Prior to sampling, the feeding was withheld for 24 h. The parameters such as weight gain (WG), absolute growth rate (AGR), specific growth rate (SGR), total yield and survival were calculated as follows: weight gain (g) = FBW (g)–IBW (g) where IBW = Initial body weight (g), FBW = Final body weight (g), absolute growth rate = (FBW (g)–IBW (g))/culture period (days), specific growth rate (%) = (In FBW–In IBW) × 100/culture period (days), yield (kg m⁻³) = total biomass of fish harvested per m³ volume at the end of experiment, survival (%) = (number of fish harvested/number of fish stocked) × 100. The feed efficiency was assessed by feed conversion ratio (FCR), feed conversion efficiency (FCE) and protein efficiency ratio (PER) and were calculated as follows: FCR = dry weight of diet fed (g)/net weight gain of fish (g), FCE = net weight gain of fish (g)/dry weight of diet fed (g), PER = net weight gain of fish (g)/crude protein intake (g).

Serum sample collection and preservation. Five fish from each cage were randomly collected and anaesthetized using clove oil at 50 µL per litre water. The blood sample was collected using 2 mL sterile dispos-
able syringe, by puncturing the caudal vein and kept in 1.5 mL eppendorf tube for 30 min for coagulation. The blood samples were centrifuged at 4000 rpm for 10 min at 4 °C, the straw-coloured serum was pipetted out. The serum samples were carried to the laboratory in dry ice and stored at −80 °C for further analysis.

Serum biochemical indices. The automated blood biochemistry analyzer (Transaia-Erba, EM-2000, USA) was used to measure serum parameters such as protein, albumin, glucose, serum glutamate oxaloacetate transaminase (SGOT) and serum glutamate pyruvate transaminase (SGPT) using necessary reagents provided by the manufacturer. With the additional use of the ISE module in the same instrument, the electrolytic balance of fish such as Na⁺, K⁺ and Cl⁻ were estimated. Serum globulin was calculated by subtracting serum albumin from serum protein, and the A/G ratio was calculated as albumin/globulin.

Superoxide dismutase (SOD) was assayed using carbonate-bicarbonate buffer (0.1 M) with epinephrine (3 mM)⁹⁶. The change in optical density was measured at 480 nm (BioTek’s Epoch™ 2). Catalase (CAT) activity was analyzed using phosphate buffer (50 mM, pH 7.0) with H₂O₂ solution. The change in OD value was measured at 240 nm (BioTek’s Epoch™ 2).

Cortisol, tri-iodothyronine (T3), thyroxine (T4) and insulin like growth factor 1 (IGF1) in serum were quantified using an enzyme-linked immune survey assay (ELISA) kit (BT BioAssay, Shanghai, China) as per the manufacturer’s instruction and the final OD value was taken at 450 nm (BioTek’s Epoch™ 2).

Digestive enzyme assay. The fish were dissected from each treatment and the gut tissues were kept in 0.25 M sucrose solution. The samples were homogenized using tissue lyser (Qiagen, Hilden, Germany), and centrifuged at 10,000 rpm in 4 °C and the supernatant was collected to store in −80 °C for further analysis. Amylase activity was assayed using 3,5-dinitrosalicylic acid method⁹⁸ by observing reducing sugar production by the glucoamylase and α-amylase. Lipase activity was measured using phenolphthalein indicator based titration method⁹⁹. The casein digestion method (triphosphate buffer- pH 7.8, trichloroacetic acid) was performed to measure protease activity⁶⁰.

Chemical composition of muscle and flesh quality. Fish flesh samples (n = 3) from all the treatments were collected. The proximate composition was assessed as per¹⁰¹. Moisture content was estimated via desiccation in an oven at 105 °C for 30 min and then cooling and weighing to a constant weight. Crude protein (nitrogen ×6.25) was determined by the Kjeldahl method using the kjeltec System (Tecater 1002 Distilling Unit), crude fat content was evaluated by using extraction with ether by soxtech system (Tecater 1043 Extraction Unit). The ash content was assessed by incineration in a muffle furnace at 550±10 °C for 12 h. Muscular pH (n = 6) was measured in three different parts of the body (two dorsal sides and one caudal side), then the average was calculated. The fish was dissected and inserted a pH probe (Thermo Orion A211) into the muscular part. Before every use, the probe was calibrated with pH 4 & pH 7 buffer. Drip loss (DL) was calculated by weighing and keeping the sample in a vacuum polythene bag and storing it at 4 °C for 72 hr¹⁰². After thawing, the fish fillets were taken out from the bag and wiped with a paper towel and weighed. The calculation of the drip loss was based on the difference of initial sample weight and the weight after 72 h. DL = [100 × (Initial weight-weight after 72 h)/Initial weight]. For FLR, the sample was weighed and kept in a vacuum polythene bag and stored at −20 °C for 72 h¹⁰³. After thawing, the fish fillets were taken out from the bag and wiped with a paper towel and weighed. The calculation of FLR was as follows; FLR = [100*(Initial weight − weight after 72 hr)/Initial weight].

Nucleotide ratio. Fish muscle tissue was collected in RNAlater and 70% ethanol for RNA and DNA isolation. DNA and RNA from muscle tissue were extracted using DNeasy and RNeasy kit (Qiagen Hilden, Germany) respectively as per manufacturer instruction. The concentration of DNA and RNA samples were measured by Nanodrop plate at 260/280 (BioTek's Epoch™ 2, USA). After quantification, the RNA/DNA ratio was calculated.

Water quality parameters. With the help of an advanced multiparameter probe (YSI PRO-DSS) and Aquaread probe (AP-7000), the water quality parameters such as temperature, dissolved oxygen (DO), pH and specific conductivity were analysed onsite. The standard protocols were followed to estimate water quality parameters like alkalinity, hardness, total nitrogen and total phosphorus¹⁰⁴. The Secchi disc was used to measure water transparency.

Statistical analyses. The data generated from all the parameters were subjected to one-way analysis of variance (ANOVA) and Duncan’s multiple range test to determine significant differences among the means and undergone principal component analysis, using statistical software SPSS 22.0, in which P < 0.05 considered statistically significant. Pearson correlation and hierarchical clustering analysis were carried out using PAST, 4.03 software.

Conclusion

In conclusion, the present study accentuates that stocking density has a distinctive effect on fish physio-biochemical responses and the importance of evaluating density stress, towards determining optimal density to warrant the fish production. The stocking density mediated crowding stress negatively affects the growth attributes like WG, SGR and percentage survival. Poor digestive enzymes (amylase and protease) activity and flesh quality, fall of thyroid activity (T3, T4 and IGF1) and serum electrolytes imbalance has been perceived with increment in stocking density. However, elevated levels of the stress response like SOD, CAT, SGOT, SGPT, serum cortisol and glucose were encountered at higher stocking density. Based on growth attributes and multiple biomarker
responses it is suggested that the optimum stocking density of Indian major carp (L. rohita) for tropical inland open water cage culture is 10 m$^{-2}$. This is the first-ever attempt in inland cage reared fish to optimize stocking density based on multiple biomarker responses.

Received: 30 September 2021; Accepted: 14 March 2022
Published online: 14 June 2022

References

1. Tolussi, C. E., Hilsdorf, A. W. S., Caneppele, D. & Moreira, R. G. The effects of stocking density in physiological parameters and growth of the endangered teleost species piabana, Brycon insignis (Steindachner, 1877). *Aquaculture* **310**, 221–228 (2010).

2. Wang, Y. et al. Effects of stocking density on growth, serum parameters, antioxidant status, liver and intestine histology and gene expression of largemouth bass (Micropterus salmoides) farmed in the in-pond raceway system. *Aquac. Res.** **51**, 5228–5240 (2020).

3. Zahiemi, S., Akbarzadeh, A., Mehrzad, J., Noori, A. & Harsij, M. Effect of stocking density on growth performance, plasma biochemistry and muscle gene expression in rainbow trout (*Oncorhynchus mykiss*). *Aquaculture* **498**, 271–278 (2019).

4. Yousefi, M., Paktinat, M., Mahmoudi, N., Pérez-Jiménez, A. & Hoseini, S. M. Serum biochemical and non-specific immune responses of rainbow trout (*Oncorhynchus mykiss*) to dietary nucleotide and chronic stress. *Fish Physiol. Biochem.* **42**, 1417–1425 (2016).

5. Duan, Y., Dong, X., Zhang, X. & Miao, Z. Effects of dissolved oxygen concentration and stocking density on the growth, energy budget and body composition of juvenile Japanese flounder, *Paralichthys olivaceus* (Temminck et Schlegel). *Aquac. Res.** **42**, 407–416 (2011).

6. Castillo-Vargasmachua, S. et al. Effect of stocking density on growth performance and yield of subadult pacific red snapper cultured in floating sea cages. *N. Am. J. Aquac.* **74**, 413–418 (2012).

7. Upadhyay, A. et al. Stocking density matters in open water cage culture: influence on growth, digestive enzymes, haematological and stress responses of *Puntius satara* (Ham, 1822). *Aquaculture* **547**, 737–745 (2021).

8. Kumar, V. et al. Assessment of the effect of sub-lethal acute toxicity of Emamectin benzoate in *Labeo rohita* used multiple biomarker approach. *Toxicol. Rep.* **9**, 102–110 (2022).

9. Rebl, A. et al. The synergistic interaction of thermal stress coupled with overstocking strongly modulates the transcriptomic activity and immune capacity of rainbow trout (*Oncorhynchus mykiss*). *Sci. Rep.* **10**, 1–15 (2020).

10. Braun, N., de Lima, R. L., Baldisserotto, B., Dafre, A. L. & de Oliveira Nuñer, A. P. Growth, biochemical and physiological responses of *Salminus brasiliensis* with different stocking densities and handling. *Aquaculture* **301**, 22–30 (2010).

11. Refaei, M. M., Tian, X., Tang, R. & Li, D. Changes in physiological responses, muscular composition and flesh quality of channel catfish *Ictalurus punctatus* suffering from transport stress. *Aquaculture* **478**, 9–15 (2017).

12. Liu, G. et al. Influence of stocking density on growth, digestive enzyme activities, immune responses, antioxidant of *Oreochromis niloticus* fingerlings in biologic systems. *Fish Shellfish Immunol.* **81**, 416–422 (2018).

13. Kumar, G. & Engle, C. R. Technological advances that led to growth of shrimp, salmon, and tilapia farming. *Rev. Fish. Sci. Aquac.* **24**, 136–152 (2016).

14. Sundin, L. Hypoxia and blood flow control in fish gills. In *Physiology of aquatic fishes* (eds Val, A. L. & Almeida-Val, V. M. F.) 353–362 (Manaus INPA, 1999).

15. Beveridge, M. C. M. Cage *Aquaculture* Vol. 5 (John Wiley & Sons, 2008).

16. Valenti, W. C., Barros, H. P., Moraes-Valenti, P., Bueno, G. W. & Cavalli, R. O. *Aquaculture* in Brazil: past, present and future. *Aquac. Rep.* **19**, 100611 (2021).

17. Das, A. K., Meena, D. K. & Sharma, A. P. Cage farming in an Indian Reservoir. *World Aquac.* **45**, 56–59 (2014).

18. Sarkar, U. K. et al. Status, prospects, threats, and the way forward for sustainable management and enhancement of the tropical Indian reservoir fisheries: an overview. *Rev. Fish. Sci. Aquac.* **26**, 155–175 (2018).

19. Singh, A. K. & Lakra, W. S. Culture of Pangasianodon hypophthalmus into India: impacts and present scenario. *Pakistan J. Biol. Sci.* **15**, 19 (2012).

20. Jena, J. et al. Evaluation of growth performance of *Labeo fimbriatus* (Bloch), *Labeo gonius* (Hamilton) and *Puntius gonionotus* (Bloeker) in polyculture with *Labeo rohita* (Bleeker) during fingerlings rearing at varied densities. *Aquaculture* **319**, 493–496 (2011).

21. Liu, B., Jia, R., Han, C., Huang, B. & Li, D. Effects of stocking density on antioxidant status, metabolism and immune response in juvenile turbot (*Scophthalmus maximus*). *Comp. Biochem. Physiol. Part C Toxicol. Pharmacol.* **190**, 1–8 (2016).

22. Wu, F. et al. Effect of stocking density on growth performance, serum biochemical parameters, and muscle texture properties of genetically improved farm tilapia, *Oreochromis niloticus*. *Aquac. Int.* **26**, 1247–1258 (2019).

23. Andrade, T. et al. Evaluation of different stocking densities in a Senegalese sole (*Solea senegalensis*) farm: implications for growth, humoral immune parameters and oxidative status. *Aquaculture* **438**, 6–11 (2015).

24. Qi, C. et al. Effect of stocking density on growth, physiological responses, and body composition of juvenile blunt snout bream, *Megalobrama amblycephala*. *J. World Aquac. Soc.* **47**, 358–368 (2016).

25. Shao, T. et al. Evaluation of the effects of different stocking densities on growth and stress responses of juvenile hybrid grouper (*Epinephelus fuscoguttatus* + *E. lanceolatus*) in recirculating aquaculture systems. *J. Fish Biol.* **95**, 1022–1029 (2019).

26. Adineh, H., Naderi, M., Hamidi, M. K. & Harjai, M. Biofloc technology improves growth, innate immune responses, oxidative stress, and resistance to acute stress in common carp (*Cyprinus carpio*) under high stocking density. *Fish Shellfish Immunol.* **95**, 440–448 (2019).

27. Fazelan, Z., Vatinek, Y. A., Kulikov, E. V., Plushikov, G. V. & Yousefi, M. Effects of dietary ginger (*Zingiber officinale*) administration on growth performance and stress, immunological, and antioxidant responses of common carp (*Cyprinus carpio*) reared under high stocking density. *Aquaculture* **518**, 734833 (2020).

28. Hoseini, S. M., Yousefi, M., Hoseinifar, S. H. & Van Doan, H. Effects of dietary arginine supplementation on growth, biochemical, and immunological responses of common carp (*Cyprinus carpio* L.) stressed by stocking density. *Aquaculture* **503**, 452–459 (2019).

29. Adineh, H., Naderi, M., Nazer, A., Yousefi, M. & Ahmadifar, E. Interactive effects of stocking density and dietary supplementation with nano selenium and garlic extract on growth, feed utilization, digestive enzymes, stress responses, and antioxidant capacity of grass carp, *Ctenopharyngodon idella*. *J. World Aquac. Soc.* **52**, 789–804 (2021).

30. Zhao, H. et al. Transcriptome and physiological analysis reveal alterations in muscle metabolisms and immune responses of grass carp (*Ctenopharyngodon idella*) cultured at different stocking densities. *Aquaculture* **503**, 186–197 (2019).

31. Frison, R. M., de Matos, E. T., Noro, G. V. & de Matos, O. S. Stocking density of Amazon fish (*Colossoma macropomum*) farmed in a continental neotropical reservoir with a net cages system. *Aquaculture* **529**, 735702 (2020).

32. Tamam, M. S., Wassef, E. A., Toutou, M. M. & El-Sayed, A. F.-M. Combined effects of surface area of periphyton substrates and stocking density on growth performance, health status, and immune response of Nile tilapia (*Oreochromis niloticus*) produced in cages. *J. Appl. Physiol.* **32**, 3419–3428 (2020).
33. Zaki, M. A. A. et al. The impact of stocking density and dietary carbon sources on the growth, oxidative status and stress markers of Nile tilapia (Oreochromis niloticus) reared under biofloc conditions. Aquac. Reports 16, 100282 (2020).
34. Rowland, S. J., Mifsud, C., Nixon, M. & Boyd, P. Effects of stocking density on the performance of the Australian freshwater silver perch (Bidyanus bidyanus) in cages. Aquaculture 253, 301–308 (2006).
35. Mohler, J. W., King, M. K. & Farrell, P. P. Growth and survival of first-feeding and fingerling Atlantic sturgeon under culture conditions. N. Am. J. Aquac. 62, 174–183 (2000).
36. Mirghaed, A. T., Hoseini, S. M. & Ghelichpour, M. Effects of dietary 1, 8-cineole supplementation on physiological, immunological and antioxidant responses to crowding stress in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol. 81, 182–188 (2018).
37. Hoseini, S. M., Mirghaed, A. T., Iri, Y. & Ghelichpour, M. Effects of dietary cineole administration on growth performance, hematological and biochemical parameters of rainbow trout (Oncorhynchus mykiss). Aquaculture 495, 766–772 (2018).
38. Barton, S. A., Morgan, J. D. & Vijayan, M. M. Physiological and condition-related indicators of environmental stress in fish. In Biological Indicators of Aquatic Ecosystem Stress (ed. Adams, S. M.) 111–148 (American Fisheries Society, 2002).
39. Varela, J. L. et al. Dietary administration of probiotic Pdp11 promotes growth and improves stress tolerance to high stocking density in gilthead seabream Sparus auratus. Aquaculture 309, 265–271 (2010).
40. Costas, B., Aragão, C., Dias, J., Afonso, A. & Conceição, L. E. C. Interactive effects of a high-quality protein diet and high stocking density on the stress response and some innate immune parameters of Senegalese sole Solea senegalensis. Fish Physiol. Biochem. 39, 1141–1151 (2013).
41. Long, L. et al. Effects of stocking density on growth, stress, and immune responses of juvenile Chinese sturgeon (Acipenser sinensis) in a recirculating aquaculture system. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 219, 25–34 (2019).
42. Sadhu, N., Sharma, S. R. K., Joseph, S., Dubé, P. & Philpouse, K. K. Chronic stress due to high stocking density in open sea cage farming induces variation in biochemical and immunological functions in Asian seabass (Lates calcarifer, Bloch). Fish Physiol. Biochem. 40, 1105–1113 (2014).
43. Zahran, E., Risha, E., AbdelHamid, F., Mahgoub, H. A. & Ibrahim, T. Effects of dietary Astragalus polysaccharides (APS) on growth performance, immunological parameters, digestive enzymes, and intestinal morphology of Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 38, 149–157 (2014).
44. Aruoma, O. I. Free radicals, oxidative stress, and antioxidants in human health and disease. J. Am. Oil Chem. Soc. 75, 199–212 (1998).
45. Haridas, H. et al. Enhanced growth and immuno–physiological response of genetically improved farmed Tilapia in indoor biofloc units at different stocking densities. Aquac. Res. 48, 4346–4355 (2017).
46. Ruane, N. M., Carballo, E. C. & Komen, J. Increased stocking density influences the acute physiological stress response of common carp Cyprinus carpio (L.). Aquac. Res. 33, 777–784 (2002).
47. Wang, X. et al. Effects of stocking density on growth, nonspecific immune response, and antioxidant status in African catfish (Clarias gariepinus). (2013).
48. Johnson, K. M. & Lema, S. C. Tissue-specific thyroid hormone regulation of gene transcripts encoding iodothyronine deiodinases and thyroid hormone receptors in striped parrotfish (Scarus iseri). Gen. Comp. Endocrinol. 172, 505–517 (2011).
49. El-Khaldi, A. T. F. Effect of different stress factors on some physiological parameters of Nile tilapia (Oreochromis niloticus), Saudi J. Biol. Sci. 17, 241–246 (2010).
50. Sharma, A., Devi, S., Singh, K. & Prabhakar, P. K. Correlation of body mass index with thyroid-stimulating hormones in thyroid patient. Asian J. Pharm. Clin. Res. 11, 65–68 (2018).
51. Li, D., Liu, Z. & Xie, C. Effect of stocking density on growth and serum concentrations of thyroid hormones and cortisol in Amur sturgeon, Acipenser schrenckii. Aquac. Res. Dev. 236, 4346–4355 (2017).
52. Park, J. W. et al. The thyroid endocrine disruptor perchlorate affects reproduction, growth, and survival of mosquitofish. Environ. Toxicol. 492, 73–81 (2018).
53. Reinecke, M. et al. Growth hormone and insulin-like growth factors in fish: where we are and where to go. Gen. Comp. Endocrinol. 142, 20–24 (2005).
54. Salas-Leiton, E. et al. Dexamethasone modulates expression of genes involved in the innate immune system, growth and stress increases susceptibility to bacterial disease in Senegalese sole (Solea senegalensis Kaup, 1858). Fish Shellfish Immunol. 32, 769–778 (2012).
55. Dyer, A. R. et al. Correlation of plasma IGF-I concentrations and growth rate in aquacultured finfish: a tool for assessing the potential of new diets. Aquaculture 236, 583–592 (2004).
56. Kajimura, S. et al. Dual mode of cortisol action on GH/IGF-1/IGF binding proteins in the tilapia, Oreochromis mossambicus. J. Endocrinol. 178, 91–99 (2003).
57. Ren, Y., Wen, H., Li, Y. & Li, J. Stocking density affects the growth performance and metabolism of Amur sturgeon by regulating expression of genes in the GH/IGF axis. J. Oceanol. Limnol. 36, 956–972 (2018).
58. Salas-Leiton, E. et al. Effects of stocking density and feed ration on growth and gene expression in the Senegalese sole (Solea senegalensis): potential effects on the immune response. Fish Shellfish Immunol. 28, 296–302 (2010).
59. Vijayan, M. M., Aluru, N. & Leatherland, J. F. Stress response and the role of cortisol. Fish Dis. Disord. 2, 182–201 (2010).
60. Hegazi, M. M., Atta, Z. I. & Ashour, O. A. Oxidative stress and antioxidant enzymes in liver and white muscle of Nile tilapia juveniles in chronic ammonia exposure. Aquat. Toxicol. 99, 118–125 (2010).
61. Kupundžić, M. D., Xu, P., Yang, H., Qiang, J. & He, J. Stocking densities and chronic zero culture water exchange stress' effects on biological performances, hematological and serum biochemical indices of GIFT tilapia juveniles (Oreochromis mossambicus). J. Aquac. Res. Dev. 4, 2 (2013).
62. Tan, C. et al. Effects of stocking density on growth, body composition, digestive enzyme levels and blood biochemical parameters of Anguilla marmorata in a recirculating aquaculture system. Turk. J. Fish. Aquat. Sci. 18, 9–16 (2018).
63. Ni, M. et al. The physiological response and immune response of juvenile Amur sturgeon (Acipenser schrenckii) to stocking density and hypoxia stress. Fish Shellfish Immunol. 36, 325–335 (2014).
64. Abdel-Tawwab, M. Effects of dietary protein levels and rearing density on growth performance and stress response of Nile tilapia, Oreochromis niloticus (L.). Int. Aquat. Res. 4, 1–13 (2012).
65. Chatterjee, N. et al. Effect of stocking density and journey length on the welfare of rohu (Labeo rohita Hamilton) fry. Aquac. Int. 18, 859–868 (2010).
66. Pahkira, C., Nagesh, T. S., Abraham, T. J., Dash, G. & Behera, S. Stress responses in rohu, Labeo rohita transported at different densities. Aquac. Rep. 2, 39–45 (2015).
67. Tahmasebi-Kohyani, A., Keyvanshokooh, S., Nematollahi, A., Mahmoudi, N. & Pasha-Zanoosi, H. Effects of dietary nucleotides supplementation on rainbow trout (Oncorhynchus mykiss) performance and acute stress response. Fish Physiol. Biochem. 38, 431–440 (2012).
68. Montero, D. et al. Effect of vitamin E and C dietary supplementation on some immune parameters of gilthead seabream (Sparus aurata) juveniles subjected to crowding stress. Aquaculture 171, 269–278 (1999).
B.K.D.: conceptualization, validation, review and editing, supervision, funding acquisition, A.U.: formal analysis, cage for the experiment and the local hospitality. Authors are thankful to the Director, ICAR-CIFRI, Kolkata, India and ICAR-CIFE, Mumbai, India for providing all kinds of facilities and financial support. The DoF, Odisha, India are highly acknowledged for providing the

70. Urbaniati, E. C., de Abreu, J. S., da Silva Camargo, A. C. & Parra, M. A. L. Loading and transport stress of juvenile matrinxã (Brycon cephalus, Characidae) at various densities. Aquaculture 229, 389–400 (2004).
71. Evans, D. H. Cell signaling and ion transport across the fish gill epithelium. J. Exp. Zool. 293, 336–347 (2002).
72. McCormick, S. D. Endocrine control of osmoregulation in teleost fish. Am. Zool. 41, 781–794 (2001).
73. Postlethwaite, E. & McDonald, D. Mechanisms of Na+ and C-regulation in freshwater-adapted rainbow trout (Oncorhynchus mykiss) during exercise and stress. J. Exp. Biol. 198, 295–304 (1995).
74. Liu, P., Du, Y., Meng, L., Li, X. & Liu, Y. Metabolic profiling in kidneys of Atlantic salmon infected with Aeromonas salmonicida based on 1H NMR. Fish Shellfish Immunol. 58, 292–301 (2016).
75. Hosfeld, C. D., Hammer, J., Handeland, S. O., Fivelstad, S. & Stefansson, S. O. Effects of fish density on growth and smoltification in intensive production of Atlantic salmon (Salmo salar L.). Aquaculture 294, 236–241 (2009).
76. Wagner, E. L., Miller, S. A. & Bosakovski, T. Ammonia excretion by rainbow trout over a 24-hour period at two densities during oxygen injection. Progress. Fish-Culturist 57, 199–205 (1995).
77. Dong, J. et al. Effect of stocking density on growth performance, digestive enzyme activities, and nonspecific immune parameters of Palaemonetes sinensis. Fish Shellfish Immunol. 73, 37–41 (2018).
78. Wang, Y. et al. Effects of stocking density on the growth performance, digestive enzyme activities, antioxidant resistance, and intestinal microflora of blunt snout bream (Megalobrama amblycephala) juveniles. Aquac. Res. 50, 236–246 (2019).
79. Trenzado, C. E. et al. Effect of dietary lipid content and stocking density on digestive enzymes profile and intestinal histology of rainbow trout (Oncorhynchus mykiss). Aquaculture 497, 10–16 (2018).
80. Li, X., Liu, Y. & Blanchetorn, J.-P. Effect of stocking density on performances of juvenile turbot (Scophthalmus maximus) in recirculating aquaculture systems. Chin. J. Oceanol. Limnol. 31, 514–522 (2013).
81. Ezehimath, S. et al. Effect of stocking density on growth performance, digestive enzyme activity, body composition and gene expression of Asian sebas reared in recirculating aquaculture system. Aquac. Res. https://doi.org/10.1111/are.15725 (2022).
82. Bolasina, S., Tagawa, M., Yamashita, Y. & Tanaka, M. Effect of stocking density on growth, digestive enzyme activity and cortisol level in larvae and juveniles of Japanese flounder, Paralichthys olivaceus. Aquaculture 259, 432–443 (2006).
83. Hoseini, S. M., Hoseinifar, S. H. & Van Doan, H. Effect of dietary eucalyptol on stress markers, enzyme activities and immune indicators in serum and haematological characteristics of common carp (Cyprinus carpio) exposed to toxic concentration of ambient copper. Aquac. Res. 49, 3045–3054 (2018).
84. Ni, M. et al. Effects of stocking density on mortality, growth and physiology of juvenile Amur sturgeon (Acipenser schrenckii). Aquac. Res. 47, 1596–1604 (2016).
85. Abdel-Tawab, M., Hagras, A. E., Elbghadly, H. A. M. & Monier, M. N. Dissolved oxygen level and stocking density effects on growth, feed utilization, physiology, and innate immunity of Nile Tilapia, Oreochromis niloticus. J. Appl. Aquac. 26, 340–355 (2014).
86. Toko, I., Fioke, E. D., Koukpode, B. & Kestemont, P. Rearing of African catfish (Clarias gariepinus) and vundu catfish (Hetero-branchus longifilis) in traditional fish ponds (whedos): effect of stocking density on growth, production and body composition. Aquaculture 262, 65–72 (2007).
87. Suárez, M. D. et al. Influence of dietary lipids and culture density on rainbow trout (Oncorhynchus mykiss) flesh composition and quality parameters. Aquac. Eng. 63, 16–24 (2014).
88. Santín, A., Grinyó, J., Bilan, M., Ambrosio, S. & Puig, P. First report of the carnivorous sponge Lycopodina hypogea (Clad-orthizaedae) associated with marine debris, and its possible implications on deep-sea connectivity. Mar. Pollut. Bull. 159, 111501 (2020).
89. Jarpseland, G., Imsland, A., Stien, L. H., Bleie, H. & Roth, B. Effects of filleting method, stress, storage and season on the quality of farmed Atlantic cod (Gadus morhua L.). Aquac. Res. 46, 1597–1607 (2015).
90. Bulow, P. J. RNA-DNA ratios as indicators of growth in fish: a review. In The Age and growth of fish (eds Summerfelt, R. C. & Hall, G. E.) 45–64 (Iowa State University Press, Ames, Iowa, 1987).
91. Regnault, M. & Luquet, P. Study by evolution of nucleic acid content of prepuberal growth in the shrimp Crangon vulgaris. Mar. Biol. 25, 291–298 (1974).
92. Tanaka, H. K. M. et al. High resolution imaging in the inhomogeneous crust with cosmic-ray muon radiography: the density structure below the volcanic crater floor of Mt. Asama, Japan. Earth Planet. Sci. Lett. 263, 104–113 (2007).
93. Gwak, W. S. & Tanaka, M. Developmental change in DNA:RNA ratios of fed and starved laboratory-reared Japanese flounder larvae and juveniles, and its application to assessment of nutritional condition for wild fish. J. Fish Biol. 59, 902–915 (2001).
94. Ali, M., Iqbal, R., Rana, S. A., Athar, M. & Iqbal, F. Effect of feeding cycle on specific growth rate, condition factor and RNA/DNA ratio of Labeo rohita. Aquaculture 10, 1551–1556 (2006).
95. Zeha, S. & Khan, M. A. Dietary lysine requirement of fingerling Catla catla (Hamilton) based on growth, protein deposition, lysine retention efficiency, RNA/DNA ratio and carcass composition. Fish Physiol. Biochem. 39, 503–512 (2013).
96. Misra, H. P. & Fridovich, I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 247, 3170–3175 (1972).
97. Takahara, S. et al. Hypocalasemia: a new genetic carrier state. J. Clin. Invest. 39, 610–619 (1960).
98. Rick, W. & Slegbauer, H. P. α-Amylase measurement of reducing groups. In Methods of Enzymatic Analysis (ed. Bergmeyer, H. G.) 385–390 (Elsevier, 1974).
99. Cherry, I. S. & Crandall, L. A. Jr. The specificity of pancreatic lipase: its appearance in the blood after pancreatic injury. Am. J. Physiol. Content 100, 266–273 (1932).
100. Drapeau, G. R. [38] Protease from Staphylococcus aureus. In Methods in Enzymology (eds Jura, N. & Murphy, J. M.) 469–475 (Elsevier, 1976).
101. AOAC. Official Methods of Analysis of AOAC International. (Association of Official Analytical Chemists Washington, DC, 2005).
102. Bosworth, B. G., Small, B. C. & Mischke, C. Effects of transport water temperature, aerator type, and oxygen level on channel catfish Ictalurus punctatus fillet quality, J. World Aquac. Soc. 38, 412–419 (2004).
103. Ma, L. Q., Qi, C. L., Cao, J. J. & Li, D. P. Comparative study on muscle texture profile and nutritional value of channel catfish (Ictalurus punctatus) reared in ponds and reservoir cages. J. Fish. China 38, 532–537 (2014).
104. APHA. Standard Methods for the Examination of Water and Wastewater. (American Public Health Association, American Water Works Association, Water Environment Federation, 2012).

Acknowledgements
Authors are thankful to the Director, ICAR-CIFRI, Kolkata, India and ICAR-CIFE, Mumbai, India for providing all kinds of facilities and financial support, The DoF, Odisha, India are highly acknowledged for providing the cage for the experiment and the local hospitality.

Author contributions
H.S.S.: conceptualization, methodology, formal analysis, investigation, data curation, writing—original draft; B.K.D.: conceptualization, validation, review and editing, supervision, funding acquisition, A.U.: formal analysis,
data curation, writing—review and editing; M.H.R.: formal analysis, data curation, writing—review and editing, V.K.: software, data curation, writing—review and editing. D.K.M.: writing—review and editing, formal analysis, data curation, U.K.S.: writing—review and editing, supervision, N.K.C.: writing—review and editing, supervision, K.D.R.: writing—review and editing, supervision.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to B.K.D.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022