CASES OF EQUALITY
IN CERTAIN MULTILINEAR INEQUALITIES
OF HARDY-RIESZ-BRASCAMP-LIEB-LUTTINGER TYPE

MICHAEL CHRIST AND TARYN C. FLOCK

ABSTRACT. Cases of equality in certain Hardy-Riesz-Brascamp-Lieb-Luttinger rearrangement inequalities are characterized.

1. STATEMENT OF RESULT

Let $m \geq 2$ and $n \geq m + 1$ be positive integers. For $j \in \{1, 2, \cdots, n\}$ let $E_j \subset \mathbb{R}$ be Lebesgue measurable sets with positive, finite measures, and let L_j be surjective linear maps $\mathbb{R}^m \rightarrow \mathbb{R}$. This paper is concerned with the nature of those n–tuples (E_1, \cdots, E_n) of measurable sets that maximize expressions

$$I(E_1, \cdots, E_n) = \int_{\mathbb{R}^m} \prod_{j=1}^{n} \mathbb{1}_{E_j}(L_j(x)) \, dx,$$

among all n–tuples with specified Lebesgue measures $|E_j|$. Our results apply only in the lowest-dimensional nontrivial case, $m = 2$, but apply for arbitrarily large n.

Definition 1. A family $\{L_j\}$ of surjective linear mappings from \mathbb{R}^m to \mathbb{R} is nondegenerate if for every set $S \subset \{1, 2, \cdots, n\}$ of cardinality m, the map $x \mapsto \{(L_j(x) : j \in S)$ from \mathbb{R}^m to \mathbb{R}^S is a bijection.

For any Lebesgue measurable set $E \subset \mathbb{R}$ with finite Lebesgue measure, E^* denotes the nonempty closed interval centered at the origin satisfying $|E| = |E^*|$. Brascamp, Lieb, and Luttinger \cite{1} proved that among sets with specified measures, the functional I attains its maximum value when each E_j equals E_j^*, that is,

\begin{equation}
I(E_1, \cdots, E_n) \leq I(E_1^*, \cdots, E_n^*).
\end{equation}

In this paper we study the uniqueness question and show that these are the only maximizing n–tuples, up to certain explicit symmetries of the functional, in those situations in which a satisfactory characterization of maximizers can exist.

Inequalities of this type can be traced back at least to Hardy and to Riesz \cite{8}. In the 1930s, Riesz and Sobolev independently showed that

$$\int_{\mathbb{R}^k \times \mathbb{R}^k} \mathbb{1}_{E_1}(x) \mathbb{1}_{E_2}(y) \mathbb{1}_{E_3}(x + y) \, dx \, dy \leq \int_{\mathbb{R}^k \times \mathbb{R}^k} \mathbb{1}_{E_1^*}(x) \mathbb{1}_{E_2^*}(y) \mathbb{1}_{E_3^*}(x + y) \, dx \, dy$$

for arbitrary measurable sets E_j with finite Lebesgue measures. Brascamp, Lieb, and Luttinger \cite{1} later proved the more general result indicated above, and in a yet more general

\textit{Date:} August 20, 2013.

The authors were supported in part by NSF grant DMS-0901569.

\footnote{A more common convention is that E^* should be open, but this convention will be convenient in our proofs. If $E = \emptyset$ then $E^* = \{0\}$, rather than the empty set, under our convention.}
form in which the target spaces \mathbb{R}^1 are replaced by \mathbb{R}^k for arbitrary $k \geq 1$, satisfying an appropriate equivariance hypothesis.

The first inverse theorem in this context, characterizing cases of equality, was established by Burchard [3], [2]. The cases $n \leq m$ are uninteresting, since $I(E_1, \ldots, E_n) = \infty$ for all (E_1, \ldots, E_n) when $n < m$, and equality holds for all sets when $n = m$. The results of Burchard [2] apply to the smallest nontrivial value of n for given m, that is to $n = m+1$, but not to larger n. We are aware of no further progress in this direction since that time. This paper treats a situation at the opposite extreme of the spectrum of possibilities, in which $m = 2$ is the smallest dimension of interest, but the number $n \geq 3$ of factors can be arbitrarily large.

Burchard’s inverse theorem has more recently been applied to characterizations of cases of equality in certain inequalities for the Radon transform and its generalizations the k–plane transforms \mathcal{A}, [7]. Cases of near but not exact equality for the Riesz-Sobolev inequality have been characterized still more recently [3], [6].

As was pointed out by Burchard [3], a satisfactory characterization of cases of equality is possible only if no set E_j is too large relative to the others. This is already apparent for the trilinear expression associated to convolution,

$$I(E_1, E_2, E_3) = \int \int \mathbb{1}_{E_1}(x) \mathbb{1}_{E_2}(y) \mathbb{1}_{E_3}(x + y) \, dx \, dy;$$

if $|E_3| > |E_1| + |E_2|$ and if E_1, E_2 are intervals, then equality holds whenever E_3 is the union of an arbitrary measurable set with the algebraic sum of those two intervals.

Consider any expression $I(E_1, \ldots, E_n)$ where the integral is taken over \mathbb{R}^n, $E_j \subset \mathbb{R}^1$, and $L_j : \mathbb{R}^m \to \mathbb{R}^1$ are linear and surjective. Set $S_j = \{x \in \mathbb{R}^m : L_j(x) \in E_j\}$. Then $I(E_1, \ldots, E_n)$ is equal to the m–dimensional Lebesgue measure of $\bigcap_j S_j$. Define also

$$(2) \quad S^*_j = \{x \in \mathbb{R}^m : L_j(x) \in E^*_j\}.$$

Definition 2. Let $(L_j : 1 \leq j \leq n)$ be an n–tuple of surjective linear mappings from \mathbb{R}^m to \mathbb{R}. An n–tuple $(E_j : 1 \leq j \leq n)$ of subsets of \mathbb{R}^1 is admissible relative to (L_j) if each E_j is Lebesgue measurable and satisfies $0 < |E_j| < \infty$, and if there exists no index k such that S^*_k contains a neighborhood of $\bigcap_{j \neq k} S^*_j$.

(E_j) is strictly admissible relative to (L_j) if each set E_j is Lebesgue measurable, $0 < |E_j| < \infty$ for all j, and there exists no index k such that S^*_k contains $\bigcap_{j \neq k} S^*_j$.

Once the maps L_j are specified, admissibility of (E_1, \ldots, E_n) is a property only of the n–tuple of measures $(|E_1|, \ldots, |E_n|)$. Its significance is easily explained. Suppose that (e_1, \ldots, e_n) is a sequence of positive numbers such that an n–tuple of sets with these measures is not admissible. The sets E^*_j, S^*_j are determined by e_j. Choose an index k such that $S^*_k \supset \bigcap_{j \neq k} S^*_j$. For $j \neq k$ set $E_j = E^*_j$. Choose the unique closed interval I centered at 0 such that the strip $S = \{x : L_k(x) \in I\}$ contains $\bigcap_{j \neq k} S^*_j$, but $|I|$ is as small as possible among all such intervals. Choose E_k to be the disjoint union of I with an arbitrary set of measure $|E_k| - |I|$. Then $I(E_1, \ldots, E_n) = I(E^*_1, \ldots, E^*_n)$, yet $E_k \setminus I$ is an arbitrariness set of the specified measure. Thus without admissibility, extremizing n–tuples are highly nonunique.

Admissibility and strict admissibility manifestly enjoy the following invariance property. Let Φ be an affine automorphism of \mathbb{R}^m, and for $j \in \{1, 2, \ldots, n\}$ let Ψ_j be affine automorphisms of \mathbb{R}^1. Each composition $\Psi_j \circ L_j \circ \Phi$ is affine mapping from \mathbb{R}^m to \mathbb{R}^1.

Write $\Psi_j \circ L_j \circ \Phi(x) = \tilde{L}_j(x) + a_j$ where $\tilde{L}_j : \mathbb{R}^m \to \mathbb{R}^1$ is linear. Define $\tilde{E}_j = \Psi_j(E_j)$ for all j. Then $(E_j : 1 \leq j \leq n)$ is admissible relative to $(L_j : 1 \leq j \leq n)$ if and only
Likewise, strict inequality is equivalent to inclusion of $\{ \tilde{L}_j : 1 \leq j \leq n \}$. Strict admissibility is invariant in the same sense.

$A \triangle B$ will denote the symmetric difference of two sets. $|E|$ will denote the Lebesgue measure of a subset of either \mathbb{R}^1 or \mathbb{R}^2. We say that sets A, B differ by a null set if $|A \triangle B| = 0$.

The following theorem, our main result, characterizes cases of equality, in the situation in which $I(E_1, \ldots, E_n)$ is defined by integration over \mathbb{R}^2 and $E_j \subset \mathbb{R}^1$.

Theorem 1. Let $n \geq 3$. Let $(L_i : 1 \leq i \leq n)$ be a nondegenerate n-tuple of surjective linear maps $L_i : \mathbb{R}^2 \to \mathbb{R}^1$. Let $(E_i : 1 \leq i \leq n)$ be an admissible n-tuple of Lebesgue measurable subsets of \mathbb{R}^1. If $I(E_1, \ldots, E_n) = I(E_1^*, \ldots, E_n^*)$ then there exist a point $z \in \mathbb{R}^2$, and for each index i an interval $J_i \subset \mathbb{R}$, such that $|E_i \triangle J_i| = 0$ and the center point of J_i equals $L_i(z)$. Conversely, $I(E_1, \ldots, E_n) = I(E_1^*, \ldots, E_n^*)$ in all such cases.

We conjecture that Theorem 1 extends to arbitrary $m \geq 2$.

The authors thank Ed Scerbo for very useful comments and copious suggestions regarding the exposition.

2. On Admissibility Conditions

For maps L_j from \mathbb{R}^m to the simplest target space \mathbb{R}^1, which is the subject of this paper, the most general case treated by Burchard concerns

\[
\int_{\mathbb{R}^m} \mathbb{1}_{E_0}(x_1 + x_2 + \cdots + x_m) \prod_{j=1}^m \mathbb{1}_{E_j}(x_j) \, dx_1 \cdots dx_m,
\]

where m is any integer greater than or equal to 2. Cases of equality are characterized under the admissibility condition

\[
|E_i| \leq \sum_{j \neq i} |E_j| \text{ for all } i \in \{0, 1, 2, \ldots, m\}.
\]

Strict admissibility is the same condition, with inequality replaced by strict inequality for all i. This single case subsumes many cases, in light of the invariance property discussed above.

Lemma 1. For the expression (3), admissibility in the sense (4) is equivalent to admissibility in the sense of Definition 2. Likewise, the two definitions of strict admissibility are mutually equivalent.

Proof. $S_0^* = \{ x : |\sum_{j=1}^n x_j | \leq \frac{1}{2} |E_0| \}$, while for $j \geq 1$, $S_j^* = \{ x : |x_j| \leq \frac{1}{4} |E_j| \}$. Thus $|E_0| \geq \sum_{j=1}^n |E_j|$ if and only if

$S_0^* \supset \{ x : |x_j| \leq \frac{1}{4} |E_j| \text{ for all } 1 \leq j \leq n \} = \cap_{j=1}^n S_j^*.$

Likewise, strict inequality is equivalent to inclusion of $\cap_{j=1}^n S_j^*$ in the interior of S_0^*.

For any $i \in \{1, \ldots, n\}$,

$\cap_{j \neq i} S_j^* = \{ x : |x_k| \leq \frac{1}{2} |E_k| \text{ for all } k \neq i \in \{1, 2, \ldots, n\} \} \cap \{ x : \sum_{l=1}^n x_j \leq \frac{1}{2} |E_0| \}$

while

$S_i^* = \{ x : |x_i| \leq \frac{1}{4} |E_i| \}$.

Therefore $|E_i| \geq \sum_{0 \leq j \neq i} |E_j|$ if and only if $S_i^* \supset \cap_{0 \leq j \neq i} S_j^*$, and strict inequality is equivalent to inclusion of $\cap_{0 \leq j \neq i} S_j^*$ in the interior of S_i^*. □
The case $m = 2, n = 3$ of Theorem 1 says nothing new. Indeed, let $(L_j : 1 \leq j \leq 3)$ be a nondegenerate family of linear mappings from \mathbb{R}^2 to \mathbb{R}^1. By making a linear change of coordinates in \mathbb{R}^2 we can make $L_1(x, y) = x$ and $L_2(x, y) = y$, so that

$$I(E_1, E_2, E_3) = \epsilon \int_{\mathbb{R}^2} 1_{E_1}(x) 1_{E_2}(y) 1_{E_3}(ax + by) \, dx \, dy$$

where a, b are both nonzero. This equals

$$c' \int_{\mathbb{R}^2} 1_{E_1}(x/a) 1_{E_2}(y/b) 1_{E_3}(x + y) \, dx \, dy = c' \int_{\mathbb{R}^2} 1_{E_1}(x) 1_{E_2}(y) 1_{E_3}(x + y) \, dx \, dy$$

where E_j are appropriate dilates and reflections of E_j.

We will need the following simple result concerning the stability of strict admissibility.

Lemma 2. Let $(L_j : 1 \leq j \leq n)$ be a nondegenerate family of surjective linear mappings from \mathbb{R}^m to \mathbb{R}^1. Let (E_1, \cdots, E_n) be a strictly admissible n-tuple of Lebesgue measurable subsets of \mathbb{R}^1. There exists $\varepsilon > 0$ such that any n-tuple (E_1', \cdots, E_n') of Lebesgue measurable subsets of \mathbb{R}^1 satisfying $|E_j' - |F_j|| < \varepsilon$ for all $j \in \{1, 2, \cdots, n\}$ is strictly admissible.

Proof. Suppose that no ε satisfying the conclusion exists. Then there exists a sequence of n-tuples $((E_{j, \nu}) : \nu \in \mathbb{N})$ such that $|E_{j, \nu}| \to |E_j|$ as $\nu \to \infty$, for each $j \in \{1, 2, \cdots, n\}$, and such that for each $\nu \in \mathbb{N}$, $(E_{n, \nu} : 1 \leq j \leq n)$ is not admissible.

Let $E_{j, \nu}^\ast \subset \mathbb{R}^1$ be the associated closed intervals centered at 0. Let

$$S_{j, \nu} = \{x \in \mathbb{R}^m : L_j(x) \in E_{j, \nu}^\ast\}$$

be the associated closed strips. The failure of strict admissibility means that for each ν there exists $J(\nu)$ such that $S_{j, \nu} \cap \bigcap_{j \neq J(\nu)} S_{j, \nu}'$. By passing to a subsequence we may assume that $J(\nu) \equiv J$ is independent of ν.

Since $|E_{j, \nu}| \to |E_j|$, the closed strips $S_{j, \nu}$ converge to the closed strips S_j^\ast as $\nu \to \infty$, in such a way that it follows immediately that $S_j^\ast \supset \bigcap_{j \neq J} S_j^\ast$. Therefore (E_1, \cdots, E_n) is not strictly admissible.

\section{Truncation}

Definition 3. Let $E \subset \mathbb{R}^1$ have finite measure. Let $\alpha, \beta > 0$. If $\alpha + \beta \leq |E|$ then the truncation $E(\alpha, \beta)$ of E is

$$E(\alpha, \beta) = E \cap [a, b]$$

where $a, b \in \mathbb{R}$ are respectively the minimum and the maximum real numbers that satisfy

$$|E \cap (-\infty, a]| = \alpha \text{ and } |E \cap [b, \infty)| = \beta.$$

In the degenerate case in which $\alpha + \beta = |E|$, $E(\alpha, \beta)$ has Lebesgue measure equal to zero, and may be empty or nonempty. According to our conventions, $E(\alpha, \beta)^\ast = \{0\}$ in this circumstance, in either case. This convention will be convenient below.

Lemma 3. Let $k \geq 1$. Let $\{E_i : i \in \{1, 2, \cdots, k\}\}$ be a finite collection of Lebesgue measurable subsets of \mathbb{R}^1 with positive, finite Lebesgue measures. Let $\alpha, \beta > 0$, and suppose that $|E_i| \geq \alpha + \beta$ for each index i. If $\bigcap_{i=1}^k E_i(\alpha, \beta) \neq \emptyset$ then

$$\int_{\mathbb{R}} \prod_{i=1}^k 1_{E_i}(y) \, dy \leq \alpha + \beta + \int_{\mathbb{R}} \prod_{i=1}^k 1_{E_i(\alpha, \beta)}(y) \, dy.$$

If E_i are closed intervals and if $\bigcap_{i=1}^k E_i(\alpha, \beta) \neq \emptyset$ then equality holds in inequality (6).
This generalizes a key element underpinning the work of Burchard \[3\], which in turn is related, but not identical, to the construction employed by Riesz \[8\].

Proof. For each index \(i\), let \(a_i, b_i \in \mathbb{R}\) respectively be the smallest and the largest real numbers satisfying \(|E_i \cap (-\infty, a_i)| = \alpha\) and \(|E_i \cap [b_i, \infty)| = \beta\). Thus \(E_i = [a_i, b_i]\). Let \(a = \max_{i} a_i\) and \(b = \min_{i} b_i\). Then \(\bigcap_i E_i(\alpha, \beta) = (\bigcap_i E_i) \cap [a, b]\). It is given that \(\bigcap_i E_i(\alpha, \beta)\) is nonempty, so \(a \leq b\).

Thus
\[
\int \prod_{i=1}^{k} 1_{E_i(\alpha, \beta)}(y) \, dy = |\bigcap_i E_i(\alpha, \beta)| = |(\bigcap_i E_i) \cap [a, b]|.
\]

Therefore
\[
\int \prod_{i=1}^{k} 1_{E_i}(y) \, dy - \int \prod_{i=1}^{k} 1_{E_i(\alpha, \beta)}(y) \, dy = |(\bigcap_i E_i) \setminus [a, b]|
\]
\[
= |(\bigcap_i E_i) \cap (-\infty, a)| + |(\bigcap_i E_i) \cap (b, \infty)|.
\]

Choose \(l\) such that \(a_l = a\). Then \((\bigcap_i E_i) \cap (-\infty, a) \subset E_l \cap (-\infty, a)\) and hence
\[
|(\bigcap_i E_i) \cap (-\infty, a)| \leq |E_l \cap (-\infty, a)| = \alpha.
\]

Similarly \(|(\bigcap_i E_i) \cap (b, \infty)| \leq \beta\).

For the converse, suppose that the \(E_i\) are closed intervals, and that \(\bigcap_i E_i(\alpha, \beta) \neq \emptyset\).

Then \(\bigcap_i E_i(\alpha, \beta) = [a, b]\) where \(a \leq b\), as above. In the same way, \(\bigcap_i E_i = [a^*, b^*]\) where \(a^*\) is the maximum of the left endpoints of the intervals \(E_i\), and \(b^*\) is the minimum of their right endpoints. Obviously \(a^* = a - \alpha\) and \(b^* = b + \beta\). \(\square\)

The next lemma is evident.

Lemma 4. Let \(0 \leq \alpha, \beta < \infty\). Let \(\{I_k\}\) be a collection of closed bounded subintervals of \(\mathbb{R}\) satisfying \(|I_k| \geq \alpha + \beta\). Suppose that \(\bigcap_k I_k(\alpha, \beta) \neq \emptyset\), and that \(J(\alpha, \beta) \supset \bigcap_k I_k(\alpha, \beta)\). Then \(J \supset \bigcap_k I_k\).

4. Deformation

We change notation: The number of sets \(E_j\) will be \(n + 1\), and the index \(j\) will run through \(\{0, 1, \cdots, n\}\). The index \(j = 0\) will have a privileged role.

Consider a functional
\[
I(E_0, \cdots, E_n) = \int_{\mathbb{R}^2} \prod_{j=0}^{n} 1_{E_j}(L_j(x)) \, dx,
\]
with \(\{L_j : 0 \leq j \leq n\}\) nondegenerate. The invariance under changes of variables noted above, together with this nondegeneracy, make it possible to bring this functional into the form
\[
I(E_0, \cdots, E_n) = c \int_{\mathbb{R}} 1_{E_0}(x) \int_{\mathbb{R}} \prod_{j=1}^{n} 1_{E_j}(y + t_j x) \, dy \, dx
\]
where \(c\) is a positive constant, and the \(t_j\) are pairwise distinct. This is accomplished by means of a linear change of variables in \(\mathbb{R}^2\) together with linear changes of variables in each of the spaces \(\mathbb{R}_j^1\) in which the sets \(E_j\) lie. The sets \(E_j\) which appear here are images

\[\footnote{Riesz considers only the case of three sets, truncates all three in this fashion, uses only the case \(\alpha = \beta\), and works directly with the integral over \(\mathbb{R}^2\) which defines \(I(E_1, \cdots, E_n)\), rather than with one-dimensional integrals.} \]
of the original sets E_j under invertible linear mappings of \mathbb{R}_1^j, but equality holds in the inequality (1) for this rewritten expression $I(E_0, \ldots, E_n)$ if and only if it holds for the original expression, and the property of admissibility is preserved.

With $I(E_0, \ldots, E_n)$ written in this form,

\[
S_0^* = \{(x, y) \in \mathbb{R}^2 : |x| \leq \frac{1}{r} |E_0|\}
\]

\[
S_j^* = \{(x, y) \in \mathbb{R}^2 : |y + t_j x| \leq \frac{1}{r} |E_j|\} \quad \text{for } 1 \leq j \leq n.
\]

Let $\pi : \mathbb{R}^2 \to \mathbb{R}^1$ be the projection $\pi(x, y) = x$. Define

\[
E_j(r) = E_j \left(\frac{1}{2} r, \frac{1}{2} r \right) \quad \text{for } j \geq 1 \text{ and } 0 \leq r \leq |E_j|,
\]

\[
E_j(0) = E_j, \quad E_0(r) = E_0.
\]

Thus $|E_j(r)| = |E_j| - r$ for $j \geq 1$. Let $S_j^*(r)$ be the associated strips; $S_0^*(r) = S_0^*$ while for $j \geq 1$,

\[
S_j^*(r) = \{(x, y) \in \mathbb{R}^2 : |y + t_j x| \leq \frac{1}{r} |E_j| - \frac{1}{r} r\}
\]

for $0 \leq r \leq \min_j |E_j|$. Thus if $j \geq 1$ and $r = |E_j|$ then $S_j^*(r)$ is a line in \mathbb{R}^2.

The cases $n \geq 3$ of the next lemma will later be used to prove Theorem 6 by induction on n.

Lemma 5. Let $n \geq 2$. Let $\{E_j : 0 \leq j \leq n\}$ be a strictly admissible family of $n + 1$ Lebesgue measurable subsets of \mathbb{R}^1. Then there exists $\bar{r} \in (0, \min_{1 \leq j \leq n} |E_j|)$ such that

\[
(E_j(\bar{r})) : 0 \leq j \leq n \quad \text{is admissible}
\]

\[
S_0^* \supset \cap_{j \geq 1} S_j^*(\bar{r}).
\]

The second conclusion says in particular that $(E_j(\bar{r}) : 0 \leq j \leq n)$ fails to be strictly admissible. Because admissibility is a property of the measures of sets only with no reference to their geometry, Lemma 5 concerns deformations of intervals centered at 0 and of associated strips, not of more general sets.

Proof. Define \bar{r} to be the infimum of the set of all $r \in [0, \min_{k \geq 1} |E_k|]$ for which $(E_j(r) : 0 \leq j \leq n)$ fails to be strictly admissible. If $r = \min_{k \geq 1} |E_k| = |E_i|$ then $|E_i(r)| = 0$ and therefore $(E_j(r) : 0 \leq j \leq n)$ is not strictly admissible. Thus \bar{r} is defined as the infimum of a nonempty set, and $0 \leq \bar{r} \leq \min_{k \geq 1} |E_k|$.

Since $(E_0, \ldots, E_n) = (E_0(0), \ldots, E_n(0))$ is strictly admissible, and since strict admissibility is stable under small perturbations of the type under consideration, the $(n + 1)$-tuple $(E_0(r), \ldots, E_n(r))$ is strictly admissible for all sufficiently small $r \geq 0$. Therefore $\bar{r} > 0$.

Consequently the definition of \bar{r} implies one of two types of degeneracy: Either $|E_i^*(\bar{r})| = 0$ for some $l \geq 1$, or there exists $i \in \{0, 1, \ldots, n\}$ such that

\[
S_i^*(\bar{r}) \supset \cap_{j \neq i} S_j^*(\bar{r}).
\]

Claim 1. The inclusion (7) must hold for at least one index $i \in \{0, 1, \ldots, n\}$.

Proof. If not, then the other alternative must hold; there exists an index l such that $|E_l^*(\bar{r})| = 0$. In that case, $S_l^*(\bar{r})$ is by definition equal to the line $\{(x, y) : y + t_l x = 0\}$, which contains 0. For each index $j \neq l$, the intersection of $S_j^*(\bar{r})$ with L is a nonempty closed interval of finite nonnegative length, centered at 0. Choose $i \neq l$ for which the length of $S_i^*(\bar{r}) \cap L$ is maximal. Then $S_i^*(\bar{r})$ contains $S_i^*(\bar{r}) \cap L$, which in turn contains $S_j^*(\bar{r}) \cap L$ for every $j \notin \{i, l\}$. Therefore (7) holds for this index i. \square
Let

\[K = \cap_{j=1}^{n} S_j^\star (\bar{r}), \]

which is a nonempty balanced convex subset of \(\mathbb{R}^2 \). \(K \) is compact, by the nondegeneracy hypothesis, since \(E_j^\star \) are compact intervals.

\(\pi(K) \subset \mathbb{R} \) is a compact interval centered at 0, as is \(E_0^\star \). Therefore \(\pi(K) \subset E_0^\star \), or \(E_0^\star \subset \pi(K) \).

Claim 2. If \(\pi(K) \supset E_0^\star \) and if an index \(i \) satisfies (7), then \(i = 0 \).

Proof. Suppose that \(\pi(K) \supset E_0^\star \) and that \(i \neq 0 \) satisfies (7). For \(1 \leq j \leq n \) define the closed intervals

\[J(x, j, r) = \{ y \in \mathbb{R} : (x, y) \in S_j^\star (r) \} \subset \mathbb{R}. \]

For any \(x \in \pi(K) \), these intervals have at least one point in common. Since \(S_i^\star (\bar{r}) \supset \cap_{j \neq i} S_j^\star (\bar{r}) \),

\[J(x, i, \bar{r}) \supset \cap_{j \neq i} J(x, j, \bar{r}) \]

for any \(x \in E_0^\star \).

Therefore by Lemma 4

\[J(x, i, 0) \supset \cap_{1 \leq j \neq i} J(x, j, 0) \]

for all \(x \in E_0^\star \).

Since \(S_0^\star = \pi^{-1} (E_0^\star) \) it then follows that

\[S_i^\star \supset S_i^\star \cap \pi^{-1} (E_0^\star) \supset \cap_{1 \leq j \neq i} S_j^\star \cap \pi^{-1} (E_0^\star) = \cap_{0 \leq j \neq i} S_j^\star, \]

contradicting the hypothesis that \((E_0, \cdots, E_n) \) is strictly admissible. \(\square \)

Claim 3. \(\pi(K) \) cannot properly contain \(E_0^\star \).

Proof. Suppose that \(\pi(K) \) properly contains \(E_0^\star \). By the preceding Claim, (7) holds for \(i = 0 \). Let \(x \in \pi(K) \setminus E_0^\star \). There exists \(y \in \mathbb{R} \) such that \((x, y) \in K\). Since \(x \notin E_0^\star \), \((x, y) \notin S_0^\star = \pi^{-1} (E_0^\star) \). Therefore \(K = \cap_{j \geq 1} S_j^\star (\bar{r}) \) is not contained in \(S_0^\star = S_0^\star (\bar{r}) \), contradicting (7). \(\square \)

Claim 4. \(\pi(K) \) is not properly contained in \(E_0^\star \).

Proof. If \(\pi(K) \) is properly contained in \(E_0^\star \), then it is contained in the interior of \(E_0^\star \), since each of these sets is a closed interval centered at 0. Consequently \(K \) is contained in the interior of \(\pi^{-1} (E_0^\star) = S_0^\star = S_0^\star (\bar{r}) \); that is, \(\cap_{j \geq 1} S_j^\star (\bar{r}) \) is contained in the interior of \(S_0^\star \). Therefore for every \(r' \prec \bar{r} \) sufficiently close to \(\bar{r} \), \(\cap_{j \geq 1} S_j^\star (r') \) is contained in \(S_0^\star \). Thus \((E_0 (r'), \cdots, E_n (r')) \) fails to be strictly admissible. This contradicts the definition of \(\bar{r} \) as the infimum of the set of all \(r \) for which \((E_0 (r), \cdots, E_n (r)) \) fails to be strictly admissible. \(\square \)

Combining the above four claims, we conclude that (7) holds for \(i = 0 \) and for no other index, and that \(\pi(K) = E_0^\star \).

Claim 5. \(|E_j (\bar{r})| > 0 \) for every index \(j \in \{0, 1, \cdots, n\} \).

Proof. If \(|E_l (\bar{r})| = 0 \) then since \(E_0 (\bar{r}) = E_0 \), the index \(l \) cannot equal 0. \(S_j^\star (\bar{r}) \) is the line \(\mathcal{L} = \{(x, y) : y + t_i x = 0\} \). For each \(j \neq l \), \(S_j^\star (\bar{r}) \cap \mathcal{L} \) is a closed subinterval of \(\mathcal{L} \) centered at 0. Therefore \(K \) is equal to the smallest of these subintervals.

Since \(\pi(K) = E_0^\star \), and since \(\pi : \mathcal{L} \to \mathbb{R} \) is injective, \(K \) must equal \(\mathcal{L} \cap S_0^\star = S_0^\star (\bar{r}) \cap \mathcal{L} \). Therefore \(S_j^\star (\bar{r}) \cap \mathcal{L} \supset S_0^\star (\bar{r}) \cap \mathcal{L} \). Therefore every \(i \notin \{0, l\} \) satisfies (7). Since \(n \geq 2 \) there are at least three indices \(0 \leq i \leq n \), so there exists at least

\footnote{This apparently innocuous step is responsible for the restriction \(m = 2 \) in our main theorem.}
one index \(i \notin \{0, l\} \). But we have shown that the only such index is \(i = 0 \), so this is a contradiction. \(\square \)

To conclude the proof of Lemma 5 it remains to show that \((E_0(\bar{r}), \cdots, E_n(\bar{r})) \) must be admissible. We have shown that \(|E_j(\bar{r})| > 0 \) for all \(j \). The failure of admissibility is a stable property for sets with positive measures, so if \((E_0(\bar{r}), \cdots, E_n(\bar{r})) \) were not admissible then there would exist \(0 < r < \bar{r} \) for which \((E_0(r), \cdots, E_n(r)) \) was not admissible, contradicting the minimality of \(\bar{r} \). \(\square \)

5. Conclusion of the Proof

The proof of Theorem 1 proceeds by induction on the degree of multilinearity of the form \(I \), that is, on the number of sets appearing in \(I(E_1, \cdots, E_n) \). The base case \(n = 3 \) is a restatement of the one-dimensional case of Burchard’s theorem, in its invariant form, since the two definitions of admissibility are equivalent.

Assuming that the result holds for expressions involving \(n \) sets \(E_j \), we will prove it for expressions involving \(n + 1 \) sets. Let \((E_0, \cdots, E_n) \) be any admissible \(n + 1 \)-tuple of sets satisfying \(I(E_0, \cdots, E_n) = I(E_0^*, \cdots, E_n^*) \).

Consider first the case in which \((E_j : 0 \leq j \leq n) \) is not strictly admissible. Then there exists \(i \) such that \(S_i^* \supset \cap_{j \neq i} S_j^* \). By permuting the indices, we may assume without loss of generality that \(i = 0 \). Then

\[
I(E_0, \cdots, E_n) \leq I(\mathbb{R}, E_1, \cdots, E_n) \leq I(\mathbb{R}, E_1^*, \cdots, E_n^*) = I(E_0^*, \cdots, E_n^*),
\]

so \(I(\mathbb{R}, E_1, \cdots, E_n) = I(\mathbb{R}, E_1^*, \cdots, E_n^*) \).

Defining

\[
J(E_1, \cdots, E_n) = I(\mathbb{R}, E_1, \cdots, E_n),
\]

we have \(J(E_1, \cdots, E_n) = J(E_1^*, \cdots, E_n^*) \). Now \((E_1, \cdots, E_n) \) is admissible relative to \(\{L_j : 1 \leq j \leq n\} \). For if not, then there would exist \(k \in \{1, 2, \cdots, n\} \) for which \(S_k^* \) properly contained \(\cap_{1 \leq j \neq k} S_j^* \). Since \(S_k^* \supset \cap_{j \geq 1} S_j^* \),

\[
\cap_{1 \leq j \neq k} S_j^* = S_k^* \cap (\cap_{1 \leq j \neq k} S_j^*).
\]

so \(S_k^* \) would properly contain \(\cap_{0 \leq j \neq k} S_j^* \), contradicting the hypothesis that \((E_0, \cdots, E_n) \) is admissible.

By the induction hypothesis, equality in the rearrangement inequality for \(J \) can occur only if \(E_j \) differs from an interval by a null set, for each \(j \geq 1 \). Moreover, there must exist a point \(z \in \mathbb{R}^2 \) such that for every \(j \in \{1, 2, \cdots, n\} \), \(L_j(z) \) equals the center of the interval corresponding to \(E_j \).

For \(j = 1 \), replace \(E_j \) by the unique closed interval which differs from \(E_j \) by a null set. By an affine change of variables in \(\mathbb{R}^2 \), we can write \(I(E_0, \cdots, E_n) \) in the form

\[
c \int E_0(x) \int \prod_{j=1}^{n} \mathbb{1}_{E_j}(y + t_j x) \, dy \, dx
\]

where \(c \in (0, \infty) \) and \(t_j \in \mathbb{R} \), and now for each \(j \geq 1 \), \(E_j \) is an interval centered at 0. The inner integral defines a nonnegative function \(F \) of \(x \in \mathbb{R} \) which is continuous, nonincreasing on \([0, \infty)\), even, and has support equal to a certain closed bounded interval centered at 0. The condition that \((E_0, \cdots, E_n) \) is admissible but \(S_k^* \supset \cap_{j=1}^{n} S_j^* \) means that this support is equal to the closed interval \(E_0^* \). Among sets \(E \) satisfying \(|E| = |E_0|\), \(\int_E F < \int_{\mathbb{R}} F \) unless \(E \) differs from \(E_0^* \) by a null set. We have thus shown that in any case of nonstrict admissibility, all the sets \(E_j \) differ from intervals by null sets, and the centers
c_j of these intervals are coherently situated, in the sense that $c_j = L_j(z)$ for a common point $z \in \mathbb{R}^2$.

Next consider the case in which (E_0, \cdots, E_n) is strictly admissible. Change variables to put $I(E_0, \cdots, E_n)$ into the form (10). This replaces the sets E_j by their images under certain invertible linear transformations, but does not affect the validity of the two conclusions of the theorem.

Let \vec{r} be as specified in Lemma 3. Set $\tilde{E}_j = E_j(\vec{r})$, and recall that $\tilde{E}_0 = E_0$. Let \tilde{S}_j be the strips in \mathbb{R}^2 associated to the rearrangements \tilde{E}_j. By Lemma 3

\[
\int_{\mathbb{R}} \prod_{j=1}^n 1_{E_j}(y + t_j x) \, dy \leq \vec{r} + \int_{\mathbb{R}} \prod_{j=1}^n 1_{\tilde{E}_j}(y + t_j x) \, dy
\]

for each $x \in E_0$. Multiplying both sides by $1_{E_0}(x)$ and integrating with respect to x gives

\[
\int_{\mathbb{R}} 1_{E_0}(x) \int_{\mathbb{R}} \prod_{j=1}^n 1_{E_j}(y + t_j x) \, dy \, dx \leq \vec{r}|E_0| + \int_{\mathbb{R}} 1_{E_0}(x) \int_{\mathbb{R}} \prod_{j=1}^n 1_{\tilde{E}_j}(y + t_j x) \, dy \, dx.
\]

Thus

\[
I(E_0, \ldots, E_n) \leq \vec{r}|E_0| + I(E_0, \tilde{E}_1, \ldots, \tilde{E}_n).
\]

By the general rearrangement inequality applied to the $n + 1$–tuple (E_0, E_1, \ldots, E_n),

\[
\vec{r}|E_0| + I(E_0, \tilde{E}_1, \ldots, \tilde{E}_n) \leq \vec{r}|E_0| + I(E_0^*, \tilde{E}_1^*, \ldots, \tilde{E}_n^*).
\]

Since $(\tilde{E}_j : 0 \leq j \leq n)$ is admissible, for each $x \in E_0$ there exists y such that $(x, y) \in \bigcap_{j \geq 1} \tilde{S}_j$. Therefore by the second conclusion of Lemma 3,

\[
\int_{\mathbb{R}} \prod_{i=1}^n 1_{E^*_i}(y + t_j x) \, dy = \vec{r} + \int_{\mathbb{R}} \prod_{i=1}^n 1_{\tilde{E}^*_i}(y + t_j x) \, dy.
\]

Integrating both sides of this inequality with respect to $x \in E_0^*$ gives

\[
I(E_0^*, E_1^*, \ldots, E_n^*) = \vec{r}|E_0^*| + I(E_0^*, \tilde{E}_1^*, \ldots, \tilde{E}_n^*).
\]

Combining (11), (12), and (13) yields

\[
I(E_0, \ldots, E_n) \leq \vec{r}|E_0| + I(E_0, \tilde{E}_1, \ldots, \tilde{E}_n) \leq \vec{r}|E_0| + I(E_0^*, \tilde{E}_1^*, \ldots, \tilde{E}_n^*).
\]

We are assuming that $I(E_0, E_1, \ldots, E_n) = I(E_0^*, \tilde{E}_1^*, \ldots, \tilde{E}_n^*)$, so equality holds in each inequality in this chain. Hence

\[
I(E_0, \tilde{E}_1, \ldots, \tilde{E}_n) = I(E_0^*, \tilde{E}_1^*, \ldots, \tilde{E}_n^*).
\]

Thus the $n + 1$–tuple $(E_0, \tilde{E}_1, \ldots, \tilde{E}_n)$ is admissible but not strictly admissible, and achieves equality in the inequality (11). This situation was analyzed above. Therefore we conclude that E_0 coincides with an interval, up to a null set.

The same reasoning can be applied to E_j for all j, by permuting the indices, so each of the sets E_j is an interval up to a null set. In this case (returning to the above discussion in which the index $j = 0$ is singled out), each interval E_j has the same center as $E_j(\vec{r})$. The discussion above has established that the centers of the intervals $E_j(\vec{r})$ are coherently situated.
REFERENCES

[1] H. J. Brascamp, E. H. Lieb, and J. M. Luttinger, A general rearrangement inequality for multiple integrals, J. Functional Analysis 17 (1974), 227–237

[2] A. Burchard, Cases of equality in the Riesz rearrangement inequality, Thesis (Ph.D.) Georgia Institute of Technology. 1994. 94 pp, ProQuest LLC

[3] _________, Cases of equality in the Riesz rearrangement inequality, Ann. of Math. (2) 143 (1996), no. 3, 499–527

[4] M. Christ, Extremizers of a Radon transform inequality, preprint math.CA arXiv:1106.0719 to appear in proceedings of Princeton symposium in honor of E. M. Stein

[5] _________, An approximate inverse Riesz-Sobolev rearrangement inequality, preprint, math.CA arXiv:1112.3715

[6] _________, Near equality in the Riesz-Sobolev inequality, in preparation.

[7] T. Flock, Uniqueness of extremizers for an endpoint inequality of the k-plane transform, preprint, math.CA arXiv:1307.6551

[8] F. Riesz, Sur une inégalité intégrale, Journal London Math. Soc. 5 (1930), 162–168

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CA 94720-3840, USA
E-mail address: mchrist@berkeley.edu
E-mail address: taryn.flock@berkeley.edu