Research Paper:
Effects of Chronic Administration of Pioglitazone on Learning and Memory in Rat Model of Streptozotocin-induced Alzheimer's Disease

Ehsan Aali1, *Mohammad Hossein Esmaeili2, Sead Shima Mahmodi1, Poriea Solimani1

1. Department of Pharmacology, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran.
2. Department of Physiology, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran.

ABSTRACT
Background: Alzheimer’s Disease (AD) is a chronic neurodegenerative disease characterized by abnormal protein accumulation, synaptic dysfunction, and cognitive impairment. Peroxisome Proliferator-Activated Receptor-γ (PPARγ) play a crucial role in regulating insulin sensitivity and may serve as potential therapeutic targets for AD. Pioglitazone (PIOG), as a PPARγ agonist, reduces β-amyloid and tau proteins, and inhibits neuroinflammation.

Objective: This study aims to evaluate the effects of PIOG chronic administration on learning and memory in rat model of Streptozotocin (STZ)-induced AD

Methods: Forty-two male Wistar rats were divided into two groups: A. Normal rats divided into three subgroups of Control, Dimethyl Sulfoxide (DMSO), and PIOG; and B. AD rats divided into four subgroups of Vehicle, STZ, STZ+DMSO and STZ+PIOG. The last two AD subgroups received 0.2 mL DMSO and PIOG (10 mg/kg per day) for 21 days. For induction of AD, STZ (3 mg/kg, 10 μl per injection site) were administered into lateral ventricles. All rats were trained under the Morris water maze task.

Findings: PIOG impaired the spatial learning and memory in normal rats. Intracerebroventricular injection of STZ significantly increased escape latency and swimming time to find the hidden platform compared to the control group (P<0.05). The amnesic effect of STZ was prevented by PIOG administration such that the escape latency and swimming time to find the hidden platform in the STZ+PIOG group were significantly lower than in the STZ+DMSO group (P<0.05). Conversely, the percentage of time spent and distance swimming in the target quadrant in the probe test in the STZ+ PIOG group rats were significantly higher than those in the STZ + DMSO group.

Conclusion: PIOG administration impaired spatial learning and memory in normal rats, but improved learning and memory in rats with STZ-induced AD. It can be useful for treatment of cognitive impairment in AD patients.

Extended Abstract
1. Introduction
Alzheimer’s Disease (AD) is the most common neurodegenerative disease characterized by progressive memory impairment [1]. Most of recent studies have shown an increased risk of AD in people with diabetes [2]. AD is closely associated with impaired insulin signaling in brain, suggesting it to be a brain-specific form of diabetes [3]. Thus, the most important method of reducing memory impairment in
patients with AD is to target insulin signaling pathway. In this regard, it has been demonstrated that antidiabetic drugs such as metformin can be effective in the treatment of memory impairment in AD people. Peroxisome Proliferator-Activated Receptor-γ (PPARγ) is a transcription factor that regulates numerous genes involved in regulation of cell differentiation and metabolism [24]. PPAR-γ agonists (thiazolidinediones) are widely used in clinical medicine for the treatment of type 2 diabetes mellitus. Recently, PPAR-γ agonists have shown neuroprotective effects on neurodegenerative diseases. Pioglitazone (PIOG), a PPARγ agonist, has effective insulin-sensitizing, anti-inflammatory, neuroprotective, and anti-excitotoxic properties that make it a good candidate for improving cognition in insulin-resistant individuals. The current study aims to investigate the effects of chronic administration of PIOG on cognitive impairment in rat model of AD.

2. Materials and Methods

Samples

Male Wistar rats (180–200 g) were housed in standard polycarbonate cages. They were given ad libitum access to Food and water. Animals were divided into two groups: Control group received Dimethyl Sulfoxide (DMSO) plus PIOG, and AD group divided into four subgroups of Vehicle (normal saline), STZ, STZ+DMSO and STZ+PIOG. The last two subgroups received DMSO and PIOG (10 mg/kg per day) for 21 days [21].

Induction of AD

For induction of AD, Streptozotocin (STZ) was administered into lateral ventricles of rats. To do this, rats were first anesthetized with an Intraperitoneal (IP) injection of ketamine (60 mg/kg) and xylazine (8 mg/kg) and placed in a Stoelting stereotaxic instrument. STZ (3 mg/kg, 5 μl/injection site) was dissolved in normal saline [9]. STZ or vehicle was administered by Intracerebroventricular (ICV) injection into lateral ventricles: Anteroposterior (AP) = -0.8 mm; Mediolateral (ML) = ±1.5 mm; Dorsoventral (DV) = -3.6 mm.

Morris Water Maze test

The Morris water maze test was performed as described in Reference [37]. Escape latency was used to show the learning ability. The time spent in the platform quadrant was recorded to indicate the spatial memory.

Data analysis

The collected data were analyzed by using one-way ANOVA and Tukey’s post hoc test. All data were presented using Standard Error of the Mean (SEM). A P<0.05 was considered as statistically significance level.

3. Results

PIOG caused impairment in spatial learning and memory in normal rats (Figure 1). The ICV injection of STZ significantly increased escape latency and swimming time to find the hidden platform compared to the control group (P<0.05). The amnesic effect of STZ was prevented by treatment with PIOG such that the escape latency and swimming time to find the platform in the STZ+PIOG group were significantly lower than in the STZ+DMSO groups (P<0.05). Conversely, the escape latency and the time spent in the target quadrant under the probe test in the STZ+PIOG group were significantly higher than in the STZ+DMSO group (Figure 2).

4. Discussion

The findings showed that PIOG administration in normal rats impaired their spatial learning and memory but improved the learning and memory in rats with STZ-induced AD. STZ caused longer escape latencies in the training trials than the control rat indicating impairment in cognitive function by STZ. The prolongation of escape latency by STZ was significantly and gradually decreased after five testing days by PIOG administration. In addition, PIOG significantly reduced the effect of STZ on swimming time spent to find hidden platform in the target quadrant under the probe test. Therefore, chronic administration of PIOG (10 mg/kg, IP for 21 days) prevented the STZ-induced deficits in memory and cognition. The results suggest that PIOG is useful for treatment of cognitive impairment in AD patients.

The improvement of spatial learning and memory by PIOG administration reported in our present study is in line with the results of previous studies. For example, Pathan et al. (2006) demonstrated that oral administration of PIOG improved cognitive function under step-through passive avoidance task in diabetic rats. Similar results have been reported by Baraka and ElGhotny (2010), where AD was induced by ICV injection of β-amyloid in rats and significant improvement in spatial learning and memory was observed after treatment daily by oral PIOG administration for 3 weeks. Consistent with our results, Allami et al. showed that PIOG improved the memory impaired by scopolamine under
Y-maze test, whereas it did not affect scopolamine-induced cognitive impairment under the passive avoidance test. This discrepancy can be related to differences in setting, dosage and duration. In contrast to our study, Nicolakakis et al. (2008) reported that PIOG could not improve memory in transgenic mice model of AD [15]. This discrepancy can also be due to shorter duration of treatment with PIOG and/or the use of transgenic mice with two mutations in their study.

5. Conclusion

Chronic administration of PIOG (10 mg/kg, IP for 21 days) prevents the STZ-induced memory and learning impairments. It can be useful for treatment of cognitive impairment in AD patients.

Ethical Considerations

Compliance with ethical guidelines

This study approved by the Research Ethics Committee of Qazvin University of Medical Sciences (Code: IR.QUMS.REC. 1398.158).

Funding

This study was extracted from the MD. thesis of third author, Department of Physiology, School of Medicine,
Qazvin University of Medical Sciences and this study did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Authors’ contributions

Writing: All authors; Resources and validation: Sead Shima Mahmodi and Poriea Solimani; Editing and project administration: Ehsan Aali; Data analysis and methodology: Mohammad Hossein Esmaeili.

Conflicts of interest

The authors declared no conflict of interest.

Figure 2. Effects of PIOG administration on spatial learning and memory in rats with sporadic AD under the Morris water maze test. Values are presented as ±SEM of (a) escape latency and (b) time spent in the target quadrant (TQ). *P<0.05 and **P<0.01 compared to control group; #P<0.05 and ##P<0.01 compared to STZ+DMSO group.
This Page Intentionally Left Blank
آثار تجویز مزمن پیوگلیتازون بر یادگیری و حافظه فضایی موش‌های سالم و آلزایمری مدل استرپتوزوتوسین

احسان علی قاسمی، محمدحسین اسماعیلی، سیده شیما محمودی، پوریا سلیمانی

1- گروه فیزیولوژی، دانشکده پزشکی قزوین، قزوین، ایران.
2- گروه فیزیولوژی، دانشکده پزشکی قزوین، قزوین، ایران.

مقدمه
تجمع داخل و خارج سلولی آلزایمری بیا و پرکشت و ایجاد آمیلوئید بتا و پروتئین های تائو آمیلوئید بتا و پروتئین های تائوی فسفریله و التهاب و استرس های اکسیداتیو و اختلال در خون‌رسانی به مغز و اختلال در مصرف گلوکز نورون‌های مغز از عوامل ایجاد کننده و از ویژگی‌های پاتولوژیک بیماری آلزایمر است. در حال حاضر این موضوع که بیماری آلزایمر با اختلال در سیگنالینگ انسولین و متابولیسم گلوکز در مغز مرتبط است به طور گسترده‌ای به رسمیت شناخته شده است و به همین دلیل پیشنهاد شده است که بیماری آلزایمر فرم خاصی از دیابت است و

یافته‌ها نشان داد که دیابت نوع دوم می‌تواند حذف گیرنده‌های انسولین از غشای نورون‌ها را تصمیم‌گیری کننده و این امر منجر به ایجاد مقاومت بیشتر به انسولین در نورون‌ها می‌شود [17]. این موضوع که این مقاومت می‌تواند میزان در دمای سیگنالینگ انسولین و مقاومت به انسولین را در نورون‌های آلزایمر از جمله اختلال‌های باعث کاهش حافظه و یادگیری در حیوانات مدل آلزایمر در ساختار تکنیکی گرفته خواهد شد.

مطالعه
نمت کلیه‌های اکسپرسیون پروتئین‌های انسولین و استرپتوزوتوسین در حیوانات آلزایمر مدل توزیعی که با تزریق داخل بطنی استرپتوزوتوسین به علت افزایش آلزایمری مدل توزیعی که با تزریق داخل بطنی استرپتوزوتوسین به وسیله پیوگلیتازون می‌سر بررسی شد. این مطالعه به شكلی مورد بررسی قرار گرفت که می‌تواند می‌تواند حذف گیرنده‌های انسولین از غشای نورون‌ها را تصمیم‌گیری کننده و این امر منجر به ایجاد مقاومت بیشتر به انسولین در نورون‌ها می‌شود [17].

پیوگلیتازون به عنوان مهاجم نورون‌ها و ایجاد مقاومت به الکترولیت‌ها می‌تواند حذف گیرنده‌های انسولین از غشای نورون‌ها را تصمیم‌گیری کننده و این امر منجر به ایجاد مقاومت بیشتر به انسولین در نورون‌ها می‌شود [17].

کلیدواژه‌ها
پیوگلیتازون، حافظه، مقاومت به انسولین، استرپتوزوتوسین
در مرحله دوم آزمایش، تأثیر نرخ‌های پیوگلیتازون بر پایان‌گیری و حل‌جویی موشچه‌ای آنزیم‌های مدل استرپتوزوتوسینی مورد بررسی قرار گرفت. در این مرحله سی سر موش در چهار گروه (تشکل‌رسانی شده در جدول) عضله بزرگ شده، گروه کنترل محلول ملیتی بود. در این راه، این تحقیق به‌طور کامل مدل‌سازی شده است و در نتیجه مقرون به صرفه‌تر کاهش می‌یافت. پیوگلیتازون (1 گرم/کیلوگرم) و دیورتیکا (0.1 میلی‌گرم/کیلوگرم) به صورت دو باره در هر 24 ساعت در هر دو گروه دریافت گردید. در این مرحله، نتایج آزمایش سه‌گروه از این دو عضله در جدول آمده است.

در گروه حامل، پیوگلیتازون (1 گرم/کیلوگرم) و دیورتیکا (0.1 میلی‌گرم/کیلوگرم) و گروه کنترل محلول ملیتی (DMSO) در هر دو گروه دریافت گردید. در این مرحله، نتایج آزمایش سه‌گروه از این دو عضله در جدول آمده است.

در این مرحله، نتایج آزمایش سه‌گروه از این دو عضله در جدول آمده است.

نتایج

1. پیوگلیتازون (1 گرم/کیلوگرم) و دیورتیکا (0.1 میلی‌گرم/کیلوگرم) به صورت دو باره در هر 24 ساعت در هر دو گروه دریافت گردید.
2. پیوگلیتازون (1 گرم/کیلوگرم) و دیورتیکا (0.1 میلی‌گرم/کیلوگرم) به صورت دو باره در هر 24 ساعت در هر دو گروه دریافت گردید.
3. پیوگلیتازون (1 گرم/کیلوگرم) و دیورتیکا (0.1 میلی‌گرم/کیلوگرم) به صورت دو باره در هر 24 ساعت در هر دو گروه دریافت گردید.

ارائه راهبردهای درمانی

1. پیوگلیتازون (1 گرم/کیلوگرم) و دیورتیکا (0.1 میلی‌گرم/کیلوگرم) به صورت دو باره در هر 24 ساعت در هر دو گروه دریافت گردید.
2. پیوگلیتازون (1 گرم/کیلوگرم) و دیورتیکا (0.1 میلی‌گرم/کیلوگرم) به صورت دو باره در هر 24 ساعت در هر دو گروه دریافت گردید.
3. پیوگلیتازون (1 گرم/کیلوگرم) و دیورتیکا (0.1 میلی‌گرم/کیلوگرم) به صورت دو باره در هر 24 ساعت در هر دو گروه دریافت گردید.

موارد و روشهای واکنش‌گیری

این مطالعه تبدیل کننده گلوکز و آدیپوژیزی می‌باشد. این تبدیل کننده گلوکز و آدیپوژیزی می‌باشد. این تبدیل کننده گلوکز و آدیپوژیزی می‌باشد. این تبدیل کننده گلوکز و آدیپوژیزی می‌باشد.
در تجزیه و تحلیل میانگین برای بررسی تفاوت‌های درون‌گروهی و بین‌گروهی (تأثیر زمان، مرحله آزمایش، به‌عنوان فاکتور بین‌گروهی و روز‌های آزمایش به‌عنوان فاکتور درون‌گروهی) از آزمون آنالوگی‌های آزمون‌های تصادفی توکی استفاده شد. سطح معنازی برای تمامی نمونه‌ها در

ارائه شده‌است. نتایج در سطح

پراکنده بود و اختلاف معنی‌دار بین آن دو گروه نشان داد. نتایج درون‌گروهی برای محیط و سطح تولید رودههای آزمایشی شاهد، سطح اخلاقی و سطح تولید به‌عنوان فاکتور بین‌گروهی و روز‌های آزمایش به‌عنوان فاکتور درون‌گروهی در تجزیه و تحلیل داده‌ها برای بررسی تفاوت‌های درون‌گروهی است.

چهار رابه فاسله‌‌های 10 دقیقه تکرر شد. در این مراحل روند پادکستین به‌عنوان فاکتور بین‌گروهی، سطح تولید محیط و سطح تولید به‌عنوان فاکتور درون‌گروهی در تجزیه و تحلیل داده‌ها برای بررسی تفاوت‌های درون‌گروهی است.

یافته‌ها

اثر پیوگلیتازون بر پادکستین و حافظه موضع‌های سالم

همانطور که در شکل شماره ۱ مشاهده می‌شود، تزریق مزمن پیوگلیتازون، پادکستین فضایی، موضع‌های سالم را مختل کرده بود.

این مطالعه از طریق اکسل ترسیم شد.

شکل ۱: تأثیر تزریق مزمن پیوگلیتازون بر تأخیر زمانی رسیدن به موضع‌های سالم در پیوند رود (۱۹۸۰).

مراتب ساختان‌های داروی میانی آگیان میکروویسکوپی است.

* اختلاف معنی‌دار بین گروه و بستر، DMSO، P<0.01.

اختلاف معنی‌دار بین گروه STZ+PIOG و DMSO، P<0.05.

شکل ۲: تأثیر تزریق مزمن پیوگلیتازون بر درجه دیسیزدی در موضع‌های سالم (۱۹۸۰).

مراتب ساختان‌های داروی میانی آگیان میکروویسکوپی است.

* اختلاف معنی‌دار بین گروه STZ+PIOG و DMSO، P<0.01.

۱۹۸۰
اثر تزریق مزمن پیوگلیتازون بر یادگیری فضایی موش‌های آلزایمری

در شکل شماره 2 نشانه‌گرکننده تأثیر تزریق مزمن پیوگلیتازون بر یادگیری فضایی موش‌های آلزایمری می‌باشد. در مقایسه با گروه کنترل، گروه پیوگلیتازون پیش از روز اول تا روز پنجم آموزش معنی‌دار بود و افزایش معنی‌دار تأخیر زمانی در تمام پنج روز آموزش نمودار اثر تزریق مزمن پیوگلیتازون بر یادگیری فضایی موش‌های آلزایمری نشان داد. به نحوی که بین گروه‌ها اختلاف معنی‌داری مشاهده نشد.
میزان حضور موش‌های آلزایمری درون این مدل STZ به درون بطن‌های جانبی مغز موش‌ها به منظور ایجاد آلزایمر تجربی باعث اختلال در حافظه فضایی موش‌ها و کاهش میزان حضور موش‌های آلزایمری درون این مدل STZ است. از این رو، درمان موش‌های آلزایمری با داروی پیوگلیتازون (گروه STZ+PIOG) باعث افزایش قابل توجهی در زمان حضور و تعداد دفعات عبور از روی محل سکو شده است. هرچند تزریق STZ+DMSO نسبت به گروه کنترل STZ به منظور ایجاد آلزایمر در موش‌های آلزایمری نسبت به گروه کنترل STZ، کاهش دیده شد. این افزایش معنی‌دار نبود. پروپیونیک اسید STZ به داشتن اثر تزریق مزمن پیوگلیتازون به موش‌های آلزایمری منجر به افزایش درصد زمان حضور موش‌های آلزایمری نسبت به گروه کنترل STZ+DMSO و STZ+PIOG است. از این رو، درمان موش‌های آلزایمری با داروی پیوگلیتازون (گروه STZ+PIOG) باعث افزایش قابل توجهی در زمان حضور و تعداد دفعات عبور از روی محل سکو شده است. هرچند تزریق STZ+DMSO نسبت به گروه کنترل STZ، کاهش دیده شد. این افزایش معنی‌دار نبود.
آمیلوئید بتای محلول می‌شود. همچنین نتایج مطالعه‌ای نشان داده‌اند که استفاده از پیوگلیتازون در موش‌های دیابتی، و درنتیجه کاهش سطح آمیلوئید بتای در مغز با اصلاح هپرگلایسمی و مهار آنزیم شکننده پروتئین پیش‌ساز قبلی نشان داده‌اند که استفاده از پیوگلیتازون در موش‌های آلزایمری کاهش حساسیت خون نیز می‌کند. محققین دومین مکانیسم کاهش سطح آمیلوئید بتای در مغز موش‌های آلزایمری نشان می‌دهد پیوگلیتازون می‌تواند اختلال متابولیسم قشر مغز را بهبود بخشی. این مکانیسم با نتایج مطالعاتی که از طریق کاهش مقاومت به انسولین می‌تواند باعث بهبود قبلی نشان داده‌اند که استفاده از پیوگلیتازون در موش‌های آلزایمری است. چراکه محققین انسولین (کاهش مقاومت به انسولین) نورون‌های مغز را بهبود بخشید. این مکانیسم در رابطه محققین نشان داده که استفاده از داروی پیوگلیتازون از طریق کاهش سایتوکاین‌ها موش‌های آلزایمری است. چراکه مطالعات قبلی نشان داده‌اند که استرس‌های اکسیداتیو مغز بر اثر تزریق مزمن پیوگلیتازون به موش‌های آلزایمری، کاهش میزان التهاب و کاهش سطح سایتوکاین‌ها را باعث بهبود نورون‌های مغز می‌کند. محققین نشان دادند درمان طولانی مدت با پیوگلیتازون سودمند باشند. در تأیید این پیش‌بینی، همکارانش روی پیوگلیتازون انجام شدند. بنابراین افزایش معنی‌داری و همکارانش نشان دادند که درمان طولانی مدت با پیوگلیتازون معنی‌دار پلاک های آمیلوئیدی نمی‌شود، ولی باعث کاهش سطح پروتئین تائو و التهاب می‌شود. در تجربه‌هایی که توسط گلدماچر و همکاران، هرچند در مطالعه مشابهی که توسط گلدماچر، گوپتا، یان و همکاران باعث بهبود حافظه فضایی موش‌های آلزایمری مدل استرپتوزوتوسین۱۴، پیوگلیتازون از طریق کاهش آمیلوئید بتا و پروتئین‌های تائو باعث بهبود حافظه فضایی و عملکرد ذهنی موش‌های آلزایمری مدل استرپتوزوتوسین انجام شده است.
اثر درمان پیوگلیتازون از طریق کاهش استرس اکسیداتیو از طریق کاهش سطح پیوگلیتازون در مغز موش بهبود متابولیسم گلوکز در مغز می‌شود. مکانیسم اصلی این اثر احتمالاً مربوط به کاهش سطح گلوکوکورتیکوئید در مغز است. در این رابطه محققین نشان داده‌اند که استرس‌های مزمن باعث افزایش سطح گلوکوکورتیکوئید مغز می‌شود که به ترتیب باعث افزایش مقاومت به انسولین و افزایش سطح بتا آمیلوئید مغز می‌شود. افزایش سطح گلوکوکورتیکوئید در مغز باعث اختلال در یادگیری و حافظه می‌شود؛ بنابراین هر عاملی که می‌تواند سطح گلوکوکورتیکوئید را کاهش دهد، به بهبود اختلالات یادگیری و حافظه کمک خواهد کرد. شاید تزریق مزمن پیوگلیتازون به موش‌های آلزایمری از طریق کاهش سطح گلوکوکورتیکوئید باعث بهبود اختلالات یادگیری و حافظه موش‌های آلزایمری شده است. این نتایج با نتایج محققینی که نشان داده‌اند که متفورمین، پردازش و تجمع آمیلوئید عمدتاً در ناحیه قشر مغز آلزایمری می‌باشد که متفورمین ممکن است مصرف کند. [17] تحقیقات نشان داده‌اند که استرس‌های مزمن باعث افزایش سطح آنتی‌اوجیزومون می‌شود که بهبود شیمیایی مغز موش را می‌کاهد. [18] همچنین، این نتایج با تحقیقات متفورمین در موش‌های آلزایمری همخوانی دارد. [19] محققین نشان دادند که متفورمین ممکن است خطر ابتلا به آلزایمر را افزایش دهد و به بقای سلول‌های عصبی ضریب دارد. [20] برای مثال، محققین متوجه شدند که درمان با متفورمین در یک موش ترانس ژنیک آلزایمری باعث افزایش بیان می‌شود که باعث تولید آمیلوئید بتا و تشکیل پت‌بئت‌سکرتاز می‌شود که باعث تولید پلاک‌های کوچک همراه است. محققین نشان دادند که غلظت بالای پیکون در سال 2015 در مفصل درمان با متفورمین به موجب افزایش سطح آمیلوئید بتا در مغز موش می‌شود. [21] این نتایج با نتایج محققینی که نشان داده‌اند که متفورمین ممکن است خطر ابتلا به آلزایمر را افزایش دهد و به بقای سلول‌های عصبی ضریب دارد. [22] برای مثال، محققین متوجه شدند که درمان با متفورمین در یک موش ترانس ژنیک آلزایمری باعث افزایش بیان می‌شود که باعث تولید پت‌بئت‌سکرتاز می‌شود که باعث تولید پلاک‌های کوچک همراه است. [23] محققین نشان دادند که متفورمین ممکن است خطر ابتلا به آلزایمر را افزایش دهد و به بقای سلول‌های عصبی ضریب دارد. [24] برای مثال، محققین متوجه شدند که درمان با متفورمین در یک موش ترانس ژنیک آلزایمری باعث افزایش بیان می‌شود که باعث تولید پت‌بئت‌سکرتاز می‌شود که باعث تولید پلاک‌های کوچک همراه است. [25] محققین نشان دادند که متفورمین ممکن است خطر ابتلا به آلزایمر را افزایش دهد و به بقای سلول‌های عصبی ضریب دارد. [26] برای مثال، محققین متوجه شدند که درمان با متفورمین در یک موش ترانس ژنیک آلزایمری باعث افزایش بیان می‌شود که باعث تولید پت‌بئت‌سکرتاز می‌شود که باعث تولید پلاک‌های کوچک همراه است. [27] محققین نشان دادند که متفورمین ممکن است خطر ابتلا به آلزایمر را افزایش دهد و به بقای سلول‌های عصبی ضریب دارد. [28] برای مثال، محققین متوجه شدند که درمان با متفورمین در یک موش ترانس ژنیک آلزایمری باعث افزایش بیان می‌شود که باعث تولید پت‌بئت‌سکرتاز می‌شود که باعث تولید پلاک‌های کوچک همراه است. [29] محققین نشان دادند که متفورمین ممکن است خطر ابتلا به آلزایمر را افزایش دهد و به بقای سلول‌های عصبی ضریب دارد. [30] برای مثال، محققین متوجه شدند که درمان با متفورمین در یک موش ترانس ژنیک آلزایمری باعث افزایش بیان می‌شود که باعث تولید پت‌بئت‌سکرتاز می‌شود که باعث تولید پلاک‌های کوچک همراه است. [31] محققین نشان دادند که متفورمین ممکن است خطر ابتلا به آلزایمر را افزایش دهد و به بقای سلول‌های عصبی ضریب دارد. [32] برای مثال، محققین متوجه شدند که درمان با متفورمین در یک موش ترانس ژنیک آلزایمری باعث افزایش بیان می‌شود که باعث تولید پت‌بئت‌سکرتاز می‌شود که باعث تولید پلاک‌های کوچک همراه است. [33] محققین نشان دادند که متفورمین ممکن است خطر ابتلا به آلزایمر را افزایش دهد و به بقای سلول‌های عصبی ضریب دارد. [34] برای مثال، محققین متوجه شدند که درمان با متفورمین در یک موش ترانس ژنیک آلزایمری باعث افزایش بیان می‌شود که باعث تولید پت‌بئت‌سکرتاز می‌شود که باعث تولید پلاک‌های کوچک همراه است. [35] محققین نشان دادند که متفورمین ممکن است خطر ابتلا به آلزایمر را افزایش دهد و به بقای سلول‌های عصبی ضریب دارد. [36] برای مثال، محققین متوجه شدند که درمان با متفورمین در یک موش ترانس ژنیک آلزایمری باعث افزایش بیان می‌شود که باعث تولید پت‌بئت‌سکرتاز می‌شود که باعث تولید پلاک‌های کوچک همراه است. [37] محققین نشان دادند که متفورمین ممکن است خطر ابتلا به آلزایمر را افزایش دهد و به بقای سلول‌های عصبی ضریب دارد. [38] برای مثال، محققین متوجه شدند که درمان با متفورمین در یک موش ترانس ژنیک آلزایمری باعث افزایش بیان می‌شود که باعث تولید پت‌بئت‌سکرتاز می‌شود که باعث تولید پلاک‌های کوچک همراه است. [39] محققین نشان دادند که متفورمین ممکن است خطر ابتلا به آلزایمر را افزایش دهد و به بقای سلول‌های عصبی ضریب دارد. [40] برای مثال، محققین متوجه شدند که درمان با متفورمین در یک موش ترانس ژنیک آلزایمری باعث افزایش بیان می‌شود که باعث تولید پت‌بئت‌سکرتاز می‌شود که باعث تولید پلاک‌های کوچک همراه است.

نمره بررسی مطالعه: 4
References

[1] Zhang J, Chen C, Hua Sh, Liao H, Wang M, Xiong Y, et al. An updated meta-analysis of cohort studies: Diabetes and risk of Alzheimer’s disease. Diabetes Res Clin Pract. 2017; 124:41-7. [DOI:10.1016/j.diabres.2016.10.024] [PMID]

[2] Biessels GJ, Staekenborg S, Brunner E, Brayne C, Schelten P. Risk of dementia in diabetes mellitus: A systematic review. Lancet Neurol. 2006; 5(1):64-74. [DOI:10.1016/S1474-4422(05)70284-2] [PMID]

[3] Accardi G, Caruso C, Colonna-Romano G, Camarda C, Monastero R, Candore G. Can Alzheimer disease be a form of type 3 diabetes? Rejuvenation Res. 2012; 15(2):217-21. [DOI:10.1089/rej.2011.1289] [PMID]

[4] Steen E, Terry BM, Rivera EJ, Cannon JL, Neely TR, Tavarez R, et al. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease -- is this type 3 diabetes? J Alzheimers Dis. 2005; 7(1):63-80. [DOI:10.3233/JAD-2005-7107] [PMID]

[5] El-Mir MY, Dettaille D, R-Villanueva G, Delgado-Esteban M, Guigas B, Attia S, et al. Neuroprotective role of antidiabetic drug metformin against apoptotic cell death in primary cortical neurons. J Mol Neurosci. 2008; 34(1):77-87. [DOI:10.1007/s12031-007-9002-1] [PMID]

[6] Wang J, Gallagher D, DeVito LM, Cancino GI, Tsui D, He L, et al. Metformin activates an atypical PKC-CBP pathway to promote neurogenesis and enhance spatial memory formation. Cell Stem Cell. 2012; 11(1):23-35. [DOI:10.1016/j.stem.2012.03.016] [PMID]

[7] Gupta A, Bisht B, Dey CS. Peripheral insulin-sensitizer drug metformin ameliorates neuronal insulin resistance and Alzheimer’s-like changes. Neuropsychopharmacology. 2011; 60(6):910-20. [DOI:10.1038/npp.2010.32] [PMID]

[8] Zhao WQ, De Felice FG, Fernandez S, Chen H, Lambert MP, Quon MJ, et al. Amyloid beta oligomers induce impairment of neuronal insulin receptors. FASEB J. 2009; 22(1):246-60. [DOI:10.1096/fj.06-7703com] [PMID]

[9] Lester-Coll N, Rivera EJ, Socia SJ, Doiron K, Wands JR, de la Monte SM. Intracerebral streptozotocin model of type 3 diabetes: Relevance to sporadic Alzheimer’s disease. J Alzheimers Dis. 2006; 9(1):13-33. [DOI:10.3233/JAD-2006-9102] [PMID]

[10] Searcy JL, Phelps JT, Pancani T, Kadiash I, Popovic J, Anderson KL, et al. Long-term pioglitazone treatment improves learning and attenuates pathological markers in a mouse model of Alzheimer’s disease. J Alzheimers Dis. 2012; 30(4):943-61. [DOI:10.3233/JAD-2012-111661] [PMID] [PMCID]

[11] Lamontagne J, Jalbert-Arsenault É, Pepin É, Peyot ML, Robert NM, et al. Pioglitazone acutely reduces energy metabolism and insulin secretion in rats. Diabetes. 2013; 62(6):2122-9. [DOI:10.2337/db12-0428] [PMID] [PMCID]

[12] Sato T, Hanuy H, Hiroko K, Kaneta H, Sakurai H, Iwamoto T. Efficacy of PPARγ agonist pioglitazone in mild Alzheimer disease. Neurobiol Aging. 2011; 32(9):1626-33. [DOI:10.1016/j.neurobiolaging.2009.10.009] [PMID]

[13] Esposito K, Ciotola M, Merante D, Giugliano D. Rosiglitazone cools down inflammation in the metabolic syndrome. Arterioscler Thromb Vasc Biol. 2006; 26(6):1413-4. [DOI:10.1161/01.ATV.0000223874.94624.11] [PMID]

[14] Landreth GE, Heneka MT. Anti-inflammatory actions of peroxisome proliferator-activated receptor gamma agonists in Alzheimer’s disease. Neurobiol Aging. 2001; 22(6):937-44. [DOI:10.1016/S0197-4580(01)00296-2] [PMID]

[15] Nicolakakis N, Aboulkassim T, Dingali B, Lecruy C, Fernandez P, Rosa-Neto P, et al. Complete rescue of cerebrovascular function in aged Alzheimer’s disease transgenic mice by antioxidants and pioglitazone, a peroxisome proliferator-activated receptor γ agonist. J Neurosci. 2008; 28(37):9287-96. [DOI:10.1523/JNEUROSCI.3348-08.2008] [PMID] [PMCID]

[16] To AWM, Ribe EM, Chuang TT, Schroeder JE, Lovestone S. The ε3 and ε4 alleles of human APOE differentially affect tau phosphorylation in hyperinsulimic and pioglitazone treated mice. PLoS One. 2011; 6(2):e16991. [DOI:10.1371/journal.pone.0016991] [PMID] [PMCID]

[17] Pancani T, Phelps JT, Searcy JL, Kilgore MW, Chen KC, Porter NM, et al. Distinct modulation of voltage-gated and ligand-gated Ca2+currents by PPAR-γ agonists in cultured hippocampal neurons. J Neurochem. 2009; 109(6):1800-11. [DOI:10.1111/j.1471-4159.2009.06107.x] [PMID] [PMCID]

[18] Escribano L, Simón AM, Gimeno E, Cuadrado-Tejedor M, López de Maturana R, García-Osta A, et al. Rosiglitazone rescues memory impairment in Alzheimer’s transgenic mice: Mechanisms involving a reduced amyloid and tau pathology. Neuropsychopharmacology. 2010; 35(7):1593-604. [DOI:10.1038/npp.2010.32] [PMID] [PMCID]

[19] Yan Q, Zhang J, Liu H, Babu-Khan S, Vassar R, Bierie AL, et al. Anti-inflammatory drug therapy alters beta-amyloid processing and deposition in an animal model of Alzheimer’s disease. J Neurosci. 2003; 23(20):7504-9. [DOI:10.1523/JNEUROSCI.23-20-07504.2003] [PMID] [PMCID]

[20] Gupta R, Gupta AK. Improvement in long term and visuospatial memory following chronic pioglitazone in mouse model of Alzheimer’s disease. Pharmacol Biochem Behav. 2012; 102(2):184-90. [DOI:10.1016/j.pbb.2012.03.028] [PMID]

[21] Esmaeili MH, Enayati M, Khazzab Abkenar F, Ebrahimian F, Salari AA. Glibenclamide mitigates cognitive impairment and hippocampal neuroinflammation in rats with type 2 diabetes and sporadic Alzheimer-like disease. Behav Brain Res. 2020; 379:112359. [DOI:10.1016/j.bbr.2019.112359] [PMID] [PMCID]

[22] Blalock EM, Phelps JT, Pancani T, Searcy JL, Anderson KL, Gant JC, et al. Effects of long-term pioglitazone treatment on peripheral and central markers of aging. PLoS One. 2010; 5(4):e10405. [DOI:10.1371/journal.pone.0010405] [PMID] [PMCID]

[23] de la Monte SM, Tong M, Lester-Coll N, Plater M Jr, Wands JR. Therapeutic rescue of neurodegeneration in experimental type 3 diabetes: Relevance to Alzheimer’s disease. J Alzheimers Dis. 2006; 10(1):89-109. [DOI:10.3233/JAD-2006-10113] [PMID]
Chen Y, Zhou K, Wang R, Liu Y, Kwak YD, Ma T, et al. Antidiabetic agonist pioglitazone reverses memory impairment and bio-
mice by reducing brain β-amyloid through PPARγ activation. Acta
ameliorates memory deficits in streptozotocin-induced diabetic
energy sensor AMPK. PLoS One. 2010; 5(2):e8996. [DOI:10.1371/
Burger C, et al. Metabolic regulation of neuronal plasticity by the
drug metformin (GlucophageR) increases biogenesis of Alzhei-
mer's amyloid peptides via up-regulating BACE1 transcription. Proc Natl Acad Sci U S A. 2009; 106(10):3907-12. [DOI:10.1073/
[PMID] [PMCID]
[36] Beheshi F, Hosseini M, Hashemzehi M, Soukhtanloo M, Khaz-
Mellitus. Diabetes Care. 2013; 36(10):2981-7. [DOI:10.2337/dc13-0229] [PMID] [PMCID]
[37] Pathan AR, Viswanad B, Sonkusare SK, Ramarao P. Chronic ad-
istration of pioglitazone attenuates intracerebroventricular streptozotocin induced-memory impairment in rats. Life Sci. 2006; 79(32):2209-16. [DOI:10.1016/j.lfs.2006.07.018] [PMID] [PMCID]
[38] Mohammad Rezaei R, Pourali-Malabadi R, Shiravi A, Rashidy-
Pour A, Vafaei AA. Interaction between 5-HT6 receptors and acute stress and corticosterone on fear memory reconsolida-
Mechanism of the role of vitamin-D on chronic stress induced-learning and memory deficits in rats. Koomesh. 2019; 21(4):708-15. [In Persian] http://koomeshjournal.semums.ac.ir/article-1-5220-en.html
[39] Choobdar S, Vafaei AA, Rashidy-Pour A, Sedaghat K. Protective role of vitamin-D on chronic stress induced-learning and memory deficits in mice. Koomesh. 2020; 22(1):185-91. [DOI:10.29252/koo-
[PMID] [PMCID]
[40] Pedersen WA, Flynn ER. Insulin resistance contributes to ab-
errant stress responses in the Tg2576 mouse model of Alzhei-
mer’s disease. Neurobiol Dis. 2004; 17(3):500-6. [DOI:10.1016/j.
[PMID] [PMCID]
[41] Picone P, Nuzzo D, Caruana L, Messina E, Barea A, Vasto S, et al. Metformin increases APP expression and processing via oxida-
tive stress, mitochondrial dysfunction and NF-κB activation: Use of insulin to attenuate metformin’s effects. Biochim Biophys Acta. 2015; 1853(5):1046-59. [DOI:10.1016/j.bbамrcr.2015.01.017] [PMID] [PMCID]

[24] Szapary PO, Bloedon LT, Samaha FF, Duffy D, Wolfe ML, Soffer D, et al. Effects of pioglitazone on lipoproteins, inflammatory markers, and adipokines in nondiabetic patients with metabolic syndrome. Arterioscler Thromb Vasc Biol. 2006; 26(1):182-8. [DOI:10.1161/01.ATV.0000195790.24631.4f] [PMID] [PMCID]
[25] Picone P, Viliasi S, Librizzì F, Contardi M, Nuzzo D, Caruana L, et al. Biological and biophysical aspects of metformin-induced effects: cortex mitochondrial dysfunction and promotion of toxic amyloid pre-fibrillar aggregates. Aging (Albany NY). 2016; 8(8):1718-34. [DOI:10.18632/aging.101004] [PMID] [PMCID]
[26] Moor EM, Mander AG, Ames D, Kotowicz MA, Carne RP, Bro-
daty H, et al. Increased risk of cognitive impairment in patients with diabetes is associated with metformin. Diabetes Care. 2013; 36(10):2981-7. [DOI:10.2337/dc13-0229] [PMID] [PMCID]
[27] Chen Y, Zhou K, Wang R, Liu Y, Kwak YD, Ma T, et al. Antidiabetic drug metformin (GlucophageR) increases biogenesis of Alzhei-
er’s amyloid peptides via up-regulating BACE1 transcription. Proc Natl Acad Sci U S A. 2009; 106(10):3907-12. [DOI:10.1073/pnas.0807991106] [PMID] [PMCID]
[28] Potter WB, O’Riordan KJ, Barnett D, Oisting SMK, Wagoner M, Burger C, et al. Metabolic regulation of neuronal plasticity by the energy sensor AMPK. PLoS One. 2010; 5(2):e8996. [DOI:10.1371/journal.
pone.0008996] [PMID] [PMCID]
[29] Imfeld P, Bodmer M, Jick SS, Meier CR. Metformin, other anti-
diabetic drugs, and risk of Alzheimer’s disease: A population-
based case-control study. J Am Geriatr Soc. 2012; 60(5):916-21. [DOI:10.1111/j.1532-5415.2012.03916.x] [PMID] [PMCID]
[30] Liu JP, Yan TH, Jiang LY, Hu W, Hu M, Wang C, et al. Pioglitazone ameliorates memory deficits in streptozotocin-induced diabetic mice by reducing brain β-amyloid through PPARγ activation. Acta Pharmacol Sin. 2013; 34(4):455-63. [DOI:10.1038/aps.2013.11] [PMID] [PMCID]
[31] Chang KL, Wong LR, Pee HN, Yang Sh, Ho PCL. Reverting meta-
oblic dysfunction in cortex and cerebellum of APP/PS1 mice, a model for Alzheimer's disease by pioglitazone, a Peroxisome Pro-
liferator-Activated Receptor Gamma (PPARγ) agonist. Mol Neurobiot. 2019; 56(11):7267-83. [DOI:10.1007/s12035-019-1586-2] [PMID] [PMCID]
[32] Jiang LY, Tang SS, Wang XY, Liu LP, Long Y, Hu M, et al. PPARγ agonist pioglitazone reverses memory impairment and bio-
chemical changes in a mouse model of type 2 diabetes mellitus. CNS Neurosci Ther. 2012; 18(8):659-66. [DOI:10.1111/j.1755-
5949.2012.03341.x] [PMID] [PMCID]
[33] Hu SH, Jiang T, Yang SS, Yang Y. Pioglitazone ameliorates intrac-
erebral insulin resistance and tau-protein hyperphosphorylation in rats with type 2 diabetes. Exp Clin Endocrinol Diabetes. 2013; 121(4):220-4. [DOI:10.1055/s-0032-1332277] [PMID] [PMCID]
[34] Fernandez-Martos CM, Atkinson RA, Chuah MI, King AE, Vick-
ers JC. Combination treatment with leptin and pioglitazone in a mouse model of Alzheimer’s disease. Alzheimers Dement (N Y). 2016; 3(1):92-106. [DOI:10.1016/j.jalz.2016.11.002] [PMID] [PMCID]
[35] Yang S, Chen Z, Cao M, Li R, Wang Z, Zhang M. Pioglitazone ame-
lorates Aβ42 deposition in rats with diet-induced insulin resist-
ance associated with AKT/GSK3β activation. Mol Med Rep. 2017; 15(5):2588-94. [DOI:10.3892/mmr.2017.6342] [PMID] [PMCID]