Academic Ranking with Web Mining and Axiomatic Analysis

1Kun Tang, 2Qiwei Jin, 2Xin Zou*, 1Jiansheng Yang, 3Michael Vannier, 4Ge Wang*

1School of Mathematical Sciences
Peking University
5 Yi He Yuan Street, Beijing 100871, China
kun-tang@pku.edu.cn
jsyang.rena@gmail.com

2Microsoft Academic Search
5 Danling Street, Haidian District
Beijing, 100085, China
qiwjin@microsoft.com
xinz@microsoft.com

3Department of Radiology
University of Chicago Medical Center
5841 South Maryland, Q-226, MC2026
Chicago, IL 60637, USA
mwvannier@gmail.com

4School of Biomedical Engineering and Sciences
Virginia Tech
Blacksburg, Virginia 24061, USA
ge-wang@ieee.org

*Corresponding authors: Xin Zou and Ge Wang

December 24, 2012

Abstract

Academic ranking is a public topic, such as for universities, colleges, or departments, which has significant educational, administrative and social effects. Popular ranking systems include the US News & World Report (USNWR), the Academic Ranking of World Universities (ARWU), and others. The most popular observables for such ranking are academic publications and their citations. However, a rigorous, quantitative and thorough methodology has been missing for this purpose. With modern web technology and axiomatic bibliometric analysis, here we perform a feasibility study on Microsoft Academic Search metadata and obtain the first-of-its-kind ranking results for American departments of computer science. This approach can be extended for fully automatic intuitional and college ranking based on comprehensive data on Internet.

Introduction

Whether it is good or bad, gaining a better rank in the US News Report & World Report (USNWR) is a priority of many university administrators and faculty members. This rank is widely used, such as for students to select universities. Other ranking systems and
reports are also of reference value; for example, the Academic Ranking of World Universities (ARWU).

The current ranking methods are based on survey, analysis and synthesis. Hence, subjective opinions play a major role. Various weighting criteria lead to different ranking lists. One can select those lists on which preferred outcomes are seen, and even make lobbying efforts to induce favorable scoring. Clearly, the inconsistency and confusion in practice compromise the credibility and impact of the current academic ranking results. Here we suggest a new ranking methodology that utilizes comprehensive web resources, credit team members/co-authors axiomatically, and quantify academic outputs objectively and rationally. As an initial effort to demonstrate the feasibility and utility, we focus on ranking American departments of computer science.

In the field of computer science, the number of annual publications (including journal and conference papers) has been greatly increased from 10,000 forty years ago to over 200,000 now. The average number of coauthors has been increased from 1.25 to 3.12 over the past 50 years. Some papers may even have more than 100 co-authors. Also, it is known that authors tend to cite their own work more often. Hence, how to assign credits to co-authors and how to exclude self-citation must be solved for least biased academic assessment.

In 2005, Hirsch defined the h-index as a bibliometric indicator (Hirsch 2005). Inspired by this work, various new bibliometric indicators were developed (Hagen 2008; Zhang 2009). Most of these indicators do not differentiate coauthors’ relative contributions. There are two popular approaches for crediting coauthors. The first one lets each co-author receive the full credit. The second one gives every coauthor an equal credit. These measures are evidently too rough, since co-authors’ contributions to a paper can be rather uneven. The harmonic allocation method (Hagen 2008) was designed to overcome the unfairness. In this scheme, the weight of the k-th co-author is subjectively set to $\frac{1}{k}/\sum_{i=1}^{n}\frac{1}{i}$, where n is the number of co-authors. An alternative credit sharing method (Zhang 2009) was proposed based on some arguable heuristics. Hirsch suggested a $hbar$ index to take into account the effect of multi-authorship (Hirsch 2010). Nevertheless, the $hbar$-index does not extract coauthors’ credit shares on any specific paper. On the other hand, the axiomatic credit-sharing scheme (Wang and Yang 2010) is a novel solution, which is referred to as the a-index since it was axiomatically derived.

Here we refine the number of citations with the a-index and exclude self-citations proportionally. After a co-author of a paper receives an appropriate credit according to the a-index, he or she will obtain his or her own share of the total number of citations to that paper. Citations will be excluded from one’s share of a paper to his/her share of another paper. Then, we define the ah-index such that a co-author has an ah-index value x if he or she has at most x papers to which his or her pure share of the total number of citations is at least x. With these sophisticated refinements and huge amounts of web-based metadata, the research output can be convincingly quantified as a foundation for fair and open ranking.

Prior Art

Since 1983, the US News & World Report (USNWR) keeps publishing annual listing of American Best Colleges. Inspired by USNWR, other ranking results emerged using...
different methods. There are now more than 50 different systems for ranking institutions. Most of these rankings use the weighted-sum mechanism. They rely on some relevant (correlated, to different degrees) indicators, and use the sum of weighted scores to determine the rank of an institution.

The Academic Ranking of World Universities (ARWU) is a good example, with annual ARWU data available since 2003. In the field of computer science, the ranking relies on the five bibliometric indicators (http://www.shanghairanking.com/ARWU-SUBJECT-Methodology-2011.html): (1) Alumni (10%), as quantified by the number of alumni winning Turning Awardees since 1961; (2) Award (15%), the number of faculty winning Turning Awardees since 1961; (3) HiCi (25%), the number of highly cited papers; (4) PUP (25%), the number of papers indexed in the Science Citation Index (SCI); and (5) TOP (25%), the percentage of papers published in the top 20% journals in the field. In each category, the university with the maximum score receives 100 points, and the other universities are measured in terms of percentages relative to the maximum score. The total credit for a university is a weighted sum of the five measures.

In addition to the above indicators, there are other variants and features (Eom 1994; Zhou 2005; Jason, Pokorny et al. 2007; Docampo 2012). It is highly non-trivial how to select from indicators and how to weight them. With rapid development of web science and technology, it would be ideal to have an intuitive ranking system applying contemporary web-based data-mining techniques to ever-expanding digital contents for authoritative ranking results.

Methods

Scientific publication is a main outcome of research and development, and the number of citations is a well-accepted key observable on the impact of a paper. Among all the ranking systems, publications and citations have been extremely important indicators but the scientific credit of a paper has not been individually assigned and comprehensively analyzed in the context of academic ranking. Here we make the first attempt to accomplish this goal.

Let us first describe how to calculate an individual co-author’s credit in a specific paper using our axiomatic approach (Wang and Yang 2010). The axiomatic system consists of the three axioms: (1) Ranking Preference: a better ranked co-author has a higher credit; (2) Credit Normalization: the sum of individual credits equals 1; and (3) Maximum Entropy: co-authors’ credit shares are uniformly distributed in the space defined by Axioms 1 and 2. As a result, if there is no evidence that some co-authors made an equal contribution, then the k-th co-author of a paper by n co-authors has a credit share $\frac{1}{n} \sum_{j=k}^{n} \frac{1}{j}$. If the last author is the corresponding author, he or she can be considered as important as the first author. If there are no other two co-authors who have the same amount of credit, then the first or last authors credit’s is $\frac{1}{n-1} \sum_{j=1}^{n-1} \frac{1}{j+1}$, and the k-th co-author’s credit is $\frac{1}{n-1} \sum_{j=k}^{n-1} \frac{1}{j+1}$, $k \neq 1$ and $k \neq n$. For the algorithmic details (Wang and Yang 2010), see Figure 1.
Algorithm 1: Pseudo Code for Computing a Co-author’s Credit

function Credit (author, paper) return real
 k <- author’s position in the list of co-authors
 n <- number of co-authors
 if the last author is the corresponding author then
 if k = 1 or k = n then
 return \(\frac{1}{n-1} \sum_{j=k}^{n-1} \frac{1}{j+1} \).
 else
 return \(\frac{1}{n} \sum_{j=k}^{n} \frac{1}{j} \).
 else
 return \(\frac{1}{n} \sum_{j=1}^{n} \frac{1}{j} \).

Figure 1. Pseudo code for computing a co-author’s credit in a paper.

Aided by the \(a \)-index, the number of citations to a paper can be proportionally assigned to each co-author. In other words, a co-author with an \(a \)-index value \(c \) for a paper being cited \(M \) times gains \(c \times M \) citations to that paper, which is referred to as the \(ac \)-index. To be more objective, it is preferred that self-citations be removed from the citations to a paper. When a researcher published a paper, his or her institution gets a credit. The credit for an institution can be measured as the sum of the credits earned by those co-authors who are with the institution. Aided by the \(a \)-index, we can exclude self-citations specific to individual co-authors and their related contributions, as shown in Figure 2. Then, we can define the institutionally-oriented \(ah \)-index using the algorithm in Figure 3.

Figure 2. Axiomatic exclusion of self-citation. The citation (indicated by the purple arrow) to Paper A from Paper B is a self-citation because an author R has his/her red shares in both the papers. The pure self-citation can be excluded if we use the axiomatic strength of the citation to the author R’s share in Paper A from the other author G’s share in Paper B (indicated by the blue arrow).
Algorithm 2: Pseudo Code for Computing an Institutional Credit

```
function ah(institution) return real
    all_citations(all_papers(institution)) <- 0;
    a list of a-index-weighted citations for each of all papers by an institution
    for each paper in papers(institution)
        citations(paper) <- 0; a-index-weighted citations for a given paper
        for each citing_paper in citing_papers(paper)
            for each author in authors(paper)
                if author does not belong to institution then continue
                for each author in authors(citing_paper)
                    if author <> author then
                        citations(paper) <- citations(paper) + Credit(author, paper)*Credit(author, citing_paper)
                if citations(paper) > 0 then all_citations <- all_citations + citations
    return the maximum x such as that there at least \[x\] entries in all_citations \[\geq x\],
    where \([x]\) is the integral part that is referred to as the ah-index.
```

Figure 3. Pseudo code for computing an institutional credit from all the involved papers.

Data Source

Microsoft Research performs basic and applied research in computer science and software engineering in more than 50 areas. It has expanded to eight locations worldwide with collaborative projects. Microsoft Academic Search (MAS) (http://academic.research.microsoft.com) is a free service of Microsoft Research to help study academic content. This service not only indexes academic papers but also reveals relationships among subjects. Under this service, the number of publications is more than 40 millions, and the number of authors more than 18.9 millions. Thousands of new papers are integrated into the database regularly. In the domain of computer science, there are more than 6-million papers. About 40% of them are from journals. About 35% of them are from conference proceedings. The other papers do not have a clear association with either a journal or a conference.

In MAS, search results are sorted, covering the entire spectrum of science, technology, medicine, social sciences, and humanities. The current partners are dozens of publishers and other content providers. The novel analytic features include the genealogy graph for advisor-advisee relationships based on the information mined from the web and user input, the paper citation graph showing the citation relationships among papers, the organization comparison in different domains, author/organization rank lists, the academic map presenting organizations geographically, the keyword detail with the Stemming Variations and Definition Context.

The MAS software was mainly written in C/C++/C#/SQL/ASP.net on a dedicated system consisting of the following modules: Offline Data Processing, Metadata Extraction, Reference Building, Name Disambiguation, Online Index Building/Servicing, Data Presentation, and tools to support users’ feedback and contribution. MAS has a heterogeneous computer network with Dell computer workstations for routine use (dual-core 2.53GHz CPU, 64G RAM). It took 5 days for us to process 1-million papers from collection of them to completion of the whole procedure including metadata extraction,
citation context extraction, reference matching within the 1-million papers and citation analysis between the existing papers and newly added papers. This system is capable of handling up to 100-million documents using existing hardware and software.

In this project, we collected all the information from MAS metadata, computed individual credits and excluded self-citations using the above-described algorithms. Currently, MAS does not collect non-English publications, which will be very likely included in the future. An author’s information includes his/her institution. The email address was extracted from the PDF file or other electronic publications. Such information was cross-checked with data mined from his/her academic homepage. Also, a user can make corrections or provide metadata using built-in tools. An automatic module was developed to analyze coauthors’ names to eliminate any ambiguity in the cases of the same person with multiple email addresses, for different working organizations, by various name spellings, different individuals with the same name, and so on. When there was any error in the metadata, the whole entry was removed; for example, if some author information was not extracted successfully, the publication would be discarded. In other words, we only used the successfully preprocessed information. A computer science paper receives a credit from a citing paper which is not necessarily also a computer science paper. The corresponding author is not easy to identify in the current database. In the calculation, if one co-author provided his/her email in the paper, we treated him/her as the corresponding author. It is not the best solution but it is fair for all the institutions and already far more comprehensive and rigorous than the current ranking systems.

Results

We calculated the ranks of American departments of computer science by our ac- and ah-indices, the aj-index that is defined as the sum of the a-index weighted by the journal impact factor for each of all the papers associated with a department, and the aac-index defined as the averaged ac-index. Table 1 shows the relevant ranks by each of all these measures. The ac-index-based ranking reflects the overall impact in terms of “pure” citations from a department, and emphasized in Table 1. The acc-index-based ranking is after the normalization with respect to the number of coauthors associated with a department. The ah-index-based results represent a refinement to the h-index-based ranking. The aj-index is advantageous in terms of promptness; that is, no need to wait for citations.

The Spearman and Kendall correlation data are in Tables 2 and 3 for the data from top 50 American universities ranked by USNWR. The reason for the use of Kendall and Spearman correlation measures, instead of the Pearson correlation coefficient, is to capture the correlative relationships better among trends in terms of different bibliometric indicators, since these relationships are not always linear; for example, the ac-index is proportional to the square of the ah-index.
Table 1. U.S. computer science departmental rankings.

Rank	Institution	ac-index	ah-index	af-index (2012)	# of authors	# of papers	ARWU* (2011)	USNWR* (2010)
1	Massachusetts Institute of Technology	274440.5	197	1	5711	43701	2	1
2	Stanford University	267123.6	205	2	5266	45798	1	1
3	Carnegie Mellon University	234860.7	170	9	4137	42258	6	1
4	University of California Berkeley	234236.7	194	3	4397	39679	3	1
5	University of Illinois Urbana Champaign	130772.0	129	4	3765	33008	11	5
6	Georgia Institute of Technology	102320.4	112	11	3719	30509	19	10
7	University of Maryland	90477.97	117	12	2740	25523	12	14
8	University of California Los Angeles	81258.45	113	6	2786	24257	17	14
9	University of Michigan	77306.04	104	8	3343	23993	14	13
10	University of Southern California	76389.19	102	14	2759	25760	9	20
11	University of Washington	75294.52	116	13	3016	22242	16	7
12	University of Texas Austin	73734.15	107	15	3224	26996	8	8
13	Cornell University	72117.64	117	28	1994	16518	7	5
14	University of Wisconsin Madison	65272.32	113	21	2281	16485	41	11
15	University of California San Diego	64355.73	102	5	2934	25860	13	14
16	University of Minnesota	59021.07	92	10	2604	18725	34	35
17	Columbia University	57890.46	91	16	1873	16475	17	17
18	Princeton University	57189.62	88	10	1276	14645	4	8
19	Purdue University	56405.08	92	19	2814	22403	15	20
20	University of Massachusetts Amherst	54316.84	103	45	1889	15288	30	20
21	University of California Irvine	51333.04	89	24	1790	16958	21	28
22	University of Pennsylvania	50660.41	90	17	1616	13004	28	17
23	Rutgers University	49438.86	92	25	1595	15981	25	28
24	California Institute of Technology	45189.05	88	13	1352	9658	10	11
25	Harvard University	42441.6	83	7	2571	14139	5	17
26	Pennsylvania State University	38848.23	71	26	2564	18193	41	28
27	University of California Santa Barbara	36009.39	74	37	1425	11964	27	35
28	University of North Carolina Chapel Hill	35917.43	80	39	1144	8830	22	20
29	Ohio State University	34019.76	67	33	2110	15015	28	28
30	University of Colorado Boulder	33237.4	74	41	1485	10236	26	39
31	Yale University	28887.68	69	18	1056	8760	20	20
32	Texas A&M University	28474.24	57	27	2141	14216	41	47
33	Rice University	26423.15	75	47	811	7948	34	20
34	New York University	26142.26	73	42	1045	8531	34	28
35	University of Virginia	26021.63	64	18	1252	8426	32	28
36	University of California Davis	25739.79	69	29	1647	11589	30	39
37	Brown University	25208.12	70	46	771	7975	34	20
38	Northwestern University	25198.38	60	35	1353	11347	33	35
39	Duke University	24907.47	62	31	1389	10625	24	27
40	Johns Hopkins University	24738.61	63	34	1582	10999	NR^4	28
41	Boston University	24193.62	68	32	1097	9774	41	47
42	Washington University in St. Louis	22161.58	65	30	1057	7645	NR^4	39

ARWU: Academic Ranking of World Universities
USNWR: U.S. News & World Report

Page 7
	University Name	ac-index	aac-index	ah-index	aj-index	ac-index	aac-index	ah-index	aj-index
43	Rensselaer Polytechnic Institute	21734.5	17.0	60	44	1280	9449	NR	47
44	Virginia Tech	20701.25	9.5	53	36	2180	13664	NR	44
45	University of Arizona	20694.63	12.7	58	38	1632	10419	34	47
46	Stony Brook University	20471.27	26.6	56	49	770	7400	NR	44
47	University of Florida	20040.97	10.2	50	22	1960	13455	34	39
48	University of Rochester	19451.28	25.7	67	50	756	5965	NR	47
49	University of Utah	17729.43	14.7	56	40	1205	7915	34	39
50	Dartmouth College	14487.19	26.7	50	51	543	4211	NR	44
51	University of Chicago	13922.64	18.4	55	43	758	5644	41	35
52	University of North Carolina Charlotte	9049.804	17.2	29	52	525	3561	23	47

- **ac-index**: total of citation shares accumulated for a department after exclusion of self-citation;
- **aac-index**: averaged ac-index with respect to the number of coauthors associated with a department;
- **ah-index**: h-index of each department after associated citation counts are weighted by corresponding a-indices;
- **aj-index**: total of a-index-based credit shares weighted by journal impact factors for a department.

1. Data collected after 1975 when the journal impact factor was introduced;
2. http://www.shanghairanking.com/SubjectCS2011.html;
3. http://grad-schools.usnews.rankingsandreviews.com/best-graduate-schools/top-science-schools;
4. Not ranked.
Table 2. Spearman correlation among competing ranks.

Spearman correlation	ac-index	aac-index	ah-index	aj-index	USNWR	ARWU
ac-index	1					
aac-index	0.6478	1				
ah-index	0.9622	0.7383	1			
aj-index	0.8349	0.3606	0.7572	1		
USNWR	0.8704	0.7082	0.8835	0.7284	1	
ARWU	0.7858	0.5662	0.7635	0.7185	0.8080	1

Table 3. Kendall correlation among competing ranks.

Kendall correlation	ac-index	aac-index	ah-index	aj-index	USNWR	ARWU
ac-index	1					
aac-index	0.4570	1				
ah-index	0.8496	0.5495	1			
aj-index	0.6696	0.2232	0.5782	1		
USNWR	0.7056	0.5431	0.7271	0.5493	1	
ARWU	0.5985	0.4136	0.6022	0.5368	0.6600	1

Discussions and Conclusion

It can be seen in Tables 1-3 that the compared ranking systems are quite different, with the range [0.3606, 0.9622] for Spearman correlation and the range [0.2232, 0.8496] for Kendall correlation. Given the dominating status and objective nature of the scientific publications and associated others' citations among all the observable variables for institutional assessment, we believe that the ac-index is a most important value for institutional ranking, and the aac-index can be easily derived after the normalization with respect to the size of an involved team of coauthors. The ah-index is a somehow convenient but quite approximate proxy. The aj-index is an indirect measure, since the journal impact factor cannot precisely predict the impact of a particular paper. It is very interesting that our data consistently show that the USNWR system is clearly better than the ARWU system.

There are large changes in rankings around a middle range among ac-index, aj-index and USNWR. Some of the changes were not unexpected. What happened that could explain such upheavals? Responsible factors might include historical reputation, total funding, student selectivity and number, and other factors used in traditional ratings. While the USNWR ranking relies on proprietary data, the ARWU ranking is more objective. In contrast to both of these rankings, our approach offers a much wider coverage of relevant data, allows a significantly higher level of mathematical sophistication, and promises a new ranking system for assessment of academic units, such as universities, institutes, colleges, departments, and research groups.

Currently, our ranking system analyzes publications only, and carries the weaknesses that cannot be addressed by publications. Complementary features are needed for improvement; for example, profits generated by spin-off companies, royalties from licensing, and other monetary amounts. It is conceivable that this type of financial credits can be shared among co-workers in the same way as we axiomatically described above, and accordingly taken into account for academic ranking. A future possibility is to study how to obtain new quantitative features and rationally combine both quantitative and qualitative features in the web-mining and axiomatic framework.
In conclusion, we have integrated the axiomatic approach and the web technology to analyze the largest amount of scientific publications in the field of computer science for departmental ranking. The proposed axiomatic indices and self-citation exclusion scheme have corrected the subjective bias of the current ranking systems. Our data is clean and authoritative. Our work suggests a new concept of academic ranking that is content-wise rich, mathematically rigorous, and dynamically accessible.
References

Docampo, D. (2012). "Adjusted sum of institutional scores as an indicator of the presence of university systems in the ARWU ranking." Scientometrics 90(2): 701-713.

Eom, S. B. (1994). "Ranking Institutional Contributions to Decision-Support Systems Research - a Citation Analysis." Data Base 25(1): 35-42.

Hagen, N. T. (2008). "Harmonic allocation of authorship credit: source-level correction of bibliometric bias assures accurate publication and citation analysis." PLoS One 3(12): e4021.

Hirsch, J. E. (2005). "An index to quantify an individual's scientific research output." Proc Natl Acad Sci U S A 102(46): 16569-16572.

Hirsch, J. E. (2010). "An index to quantify an individual's scientific research output that takes into account the effect of multiple coauthorship." Scientometrics 85(3): 741-754.

Jason, L. A., S. B. Pokorny, et al. (2007). "Ranking institutional settings based on publications in community psychology journals." Journal of Community Psychology 35(8): 967-979.

Wang, G. and J. S. Yang (2010). "Axiomatic quantification of co-authors' relative contributions." arXiv.org: arXiv:1003.3362v1001 [stat.AP].

Zhang, C. T. (2009). "A proposal for calculating weighted citations based on author rank." EMBO Rep 10(5): 416-417.

Zhou, X. G. (2005). "The institutional logic of occupational prestige ranking: Reconceptualization and reanalyses." American Journal of Sociology 111(1): 90-140.

Kendall M. and Gibbons J.D. (1990). "Rank Correlation Methods", 5th ed, Edward Arnold.