Quantum alpha-determinants and q-deformed hypergeometric polynomials

Kazufumi Kimoto

February 26, 2009

Abstract

The quantum α-determinant is defined as a parametric deformation of the quantum determinant. We investigate the cyclic $\mathcal{U}_q(\mathfrak{sl}_2)$-submodules of the quantum matrix algebra $A_q(\text{Mat}_2)$ generated by the powers of the quantum α-determinant. For such a cyclic module, there exists a collection of polynomials which describe the irreducible decomposition of it in the following manner: (i) each polynomial corresponds to a certain irreducible $\mathcal{U}_q(\mathfrak{sl}_2)$-module, (ii) the cyclic module contains an irreducible submodule if the parameter is a root of the corresponding polynomial. These polynomials are given as a q-deformation of the hypergeometric polynomials. This is a quantum analogue of the result obtained in our previous work [K. Kimoto, S. Matsumoto and M. Wakayama, Alpha-determinant cyclic modules and Jacobi polynomials, to appear in Trans. Amer. Math. Soc.].

Keywords: Quantum groups, quantum alpha-determinant, cyclic modules, irreducible decomposition, hypergeometric polynomials, q-analogue.

2000 Mathematical Subject Classification: 20G42, 33C20.

1 Introduction

The α-determinant is a common generalization of the determinant and permanent defined by

$$\det^{(\alpha)}(X) = \sum_{\sigma \in S_n} \alpha^{\nu(\sigma)} x_{\sigma(1)} x_{\sigma(2)} \cdots x_{\sigma(n)} n,$$

where α is a complex parameter and $\nu(\sigma) = n - (m_1 + m_2 + \cdots + m_n)$ if the cycle type of $\sigma \in S_n$ is $1^{m_1} 2^{m_2} \cdots n^{m_n}$ [10]. By definition, the α-determinant $\det^{(\alpha)}(X)$ agrees with the determinant $\det(X)$ when $\alpha = -1$ and with the permanent $\text{per}(X)$ when $\alpha = 1$. In other words, the α-determinant interpolates these two.

We recall an invariant property of the determinant and permanent in the following representation-theoretical context. Let $A(\text{Mat}_n)$ be the \mathbb{C}-algebra of polynomials in the n^2 commuting variables $\{x_{ij}\}_{1 \leq i,j \leq n}$, and $\mathcal{U}(\mathfrak{gl}_n)$ the universal enveloping algebra of the Lie algebra $\mathfrak{gl}_n = \mathfrak{gl}_n(\mathbb{C})$. By defining

$$E_{ij} \cdot f = \sum_{r=1}^{n} x_{ir} \frac{\partial f}{\partial x_{jr}} \quad (f \in A(\text{Mat}_n)),$$

$A(\text{Mat}_n)$ becomes a $\mathcal{U}(\mathfrak{gl}_n)$-module. Here $\{E_{ij}\}_{1 \leq i,j \leq n}$ is the standard basis of \mathfrak{gl}_n. Then, both of the determinant $\det(X)$ and the permanent $\text{per}(X)$ generate irreducible $\mathcal{U}(\mathfrak{gl}_n)$-submodules of $A(\text{Mat}_n)$. In fact, the cyclic submodules $\mathcal{U}(\mathfrak{gl}_n) \cdot \det(X)$ and $\mathcal{U}(\mathfrak{gl}_n) \cdot \text{per}(X)$ are equivalent to the skew-symmetric tensor product $\wedge^n(\mathbb{C}^n)$ and symmetric tensor product $\text{Sym}^n(\mathbb{C}^n)$ of the natural representation \mathbb{C}^n respectively, which are irreducible.

In view of this fact, it is natural and interesting to study the irreducible decomposition of the cyclic submodule $\mathcal{U}(\mathfrak{gl}_n) \cdot \det^{(\alpha)}(X)$, or more generally $\mathcal{U}(\mathfrak{gl}_n) \cdot \det^{(\alpha)}(X)^m$. Matsumoto and Wakayama tackled this problem first and obtained explicit irreducible decomposition of $\mathcal{U}(\mathfrak{gl}_n) \cdot \det^{(\alpha)}(X)$, and recently Matsumoto, Wakayama...
and the author investigated the general case \(\mathcal{U}(\mathfrak{gl}_n) \cdot \det^{(\alpha)}(X)^m \) [3]: It is proved that

\[
\mathcal{U}(\mathfrak{gl}_n) \cdot \det^{(\alpha)}(X)^m \cong \bigoplus_{\lambda \vdash mn} \mathcal{M}_n^\lambda \cong \text{rk} F_{n,m}^\lambda(\alpha)
\]

holds for certain square matrices \(F_{n,m}^\lambda(\alpha) \) whose entries are polynomials in \(\alpha \). In this direct sum, \(\lambda \) runs over the partitions of \(mn \) whose length is at most \(n \). Here we identify the dominant integral weights and partitions, and denote by \(\mathcal{M}_n^\lambda \) the irreducible representation of \(\mathcal{U}(\mathfrak{gl}_n) \) with highest weight \(\lambda \). Remark that the matrices \(F_{n,m}^\lambda(\alpha) \) are determined up to conjugacy and non-zero scalar factor. In the particular case where \(m = 1 \), we explicitly have \(F_{n,1}^\lambda(\alpha) = f_\lambda(\alpha)I \), where \(I \) is the identity matrix and \(f_\lambda(\alpha) \) is the (modified) content polynomial for \(\lambda \) [7]. It seems quite difficult to obtain an explicit expression for \(F_{n,m}^\lambda(\alpha) \) in general. However, when \(n = 2 \), all the matrices \(F_{2,m}^\lambda(\alpha) \) are \textit{one by one}, and they are explicitly given by

\[
F_{2,m}^{(m+s,m-s)}(\alpha) = (1 + \alpha)^s 2F_1 \left(\begin{array}{c} s - m, s + 1 \\ -m \end{array} ; -\alpha \right) \quad (s = 0, 1, \ldots, m),
\]

where \(2F_1(a; b; c; x) \) is the \textit{Gaussian hypergeometric function} [3].

These problems can be also formulated in the framework of \textit{quantum groups}. Namely, we define a quantum counterpart of the \(\alpha \)-determinant, which we call \textit{quantum \(\alpha \)-determinant}, by

\[
\det_q^{(\alpha)} = \sum_{\sigma \in \mathfrak{S}_n} \alpha^{\ell(\sigma)} q^{\ell(\sigma)x_{\sigma(1)}x_{\sigma(2)} \cdots x_{\sigma(n)}}
\]

in the \textit{quantum matrix algebra} \(\mathcal{A}_q(\text{Mat}_n) \) [9]. Here \(\ell(\sigma) \) denotes the inversion number of a permutation \(\sigma \). This agrees with the quantum determinant when \(\alpha = -1 \). We then introduce a \(\mathcal{U}_q(\mathfrak{gl}_n) \)-module structure on it, where \(\mathcal{U}_q(\mathfrak{gl}_n) \) is the quantum enveloping algebra of \(\mathfrak{gl}_n \) [1], and consider the cyclic module \(\mathcal{U}_q(\mathfrak{gl}_n) \cdot (\det_q^{(\alpha)})^m \). In [3], we study the case where \(m = 1 \). In contrast to the classical case, the structure of the cyclic module is much more complicated, so that we have only obtained several less explicit results.

Nevertheless, we can establish a quantum version of the result [1.1] \textit{rather explicitly}, and this is the aim of the present article. We investigate the cyclic \(\mathcal{U}_q(\mathfrak{sl}_2) \)-submodule (instead of \(\mathcal{U}_q(\mathfrak{gl}_2) \)-submodule just for simplicity of the description) of \(\mathcal{A}_q(\text{Mat}_2) \) defined by

\[
V_q^m(\alpha) = \mathcal{U}_q(\mathfrak{sl}_2) \cdot (\det_q^{(\alpha)})^m.
\]

We prove that there exists a collection of polynomials \(F_{m,j}(\alpha) \) \((j = 0, 1, \ldots, m) \) such that

\[
V_q^m(\alpha) \cong \bigoplus_{0 \leq j \leq m} \mathcal{M}_q(2j + 1),
\]

where \(\mathcal{M}_q(d) \) is the \(d \)-dimensional irreducible representation of \(\mathcal{U}_q(\mathfrak{sl}_2) \) (Theorem [3.3]), and show that the polynomials \(F_{m,j}(\alpha) \) are written in terms of a certain \(q \)-deformation of the hypergeometric polynomials (Theorem [3.4]). Taking a limit \(q \to 1 \), we also obtain the formula [1.1] again (Corollary [3.7]).

2 Preliminaries

We first fix the convention on quantum groups. We basically follow to [1, 8] and [9], but modify slightly.

Let \(q \) be an indeterminate. We always discuss over the rational function field \(\mathbb{C}(q) \). The quantum enveloping algebra \(\mathcal{U}_q(\mathfrak{sl}_2) \) is an associative algebra generated by \(k, k^{-1}, e, f \) with the fundamental relations

\[
kk^{-1} = k^{-1}k = 1, \quad kek^{-1} = q^2 e, \quad kfk^{-1} = q^{-2} f, \quad ef - fe = \frac{k - k^{-1}}{q - q^{-1}}.
\]
We recall two well-known identities involved with q-deformed hypergeometric polynomials:

The quantum matrix algebra A_q is an associative algebra generated by $x_{11}, x_{12}, x_{21}, x_{22}$ with the fundamental relations

\begin{align*}
x_{11}x_{12} &= qx_{12}x_{11}, & x_{21}x_{22} &= qx_{22}x_{21}, \\
x_{11}x_{21} &= qx_{21}x_{11}, & x_{12}x_{22} &= qx_{22}x_{12}, \\
x_{12}x_{21} &= x_{21}x_{12}, & x_{11}x_{22} - x_{22}x_{11} &= (q - q^{-1})x_{12}x_{21}.
\end{align*}

(2.1)

For convenience, we put

\[z_1 = x_{11}x_{22}, \quad z_2 = x_{12}x_{21}. \]

(2.2)

The point is that they **commute**:

\[z_1z_2 = z_2z_1. \]

The quantum α-determinant of size two is then

\[\det_q^{(\alpha)} = x_{11}x_{22} + \alpha qx_{12}x_{21} = z_1 + \alpha z_2. \]

(2.3)

Remark 2.1. The quantum α-determinant of size two interpolates the quantum counterparts of the determinant and permanent:

\[\det_q = x_{11}x_{22} - qx_{12}x_{21} = \det_q^{(-1)}, \quad \text{per}_q = x_{11}x_{22} + q^{-1}x_{12}x_{21} = \det_q^{(q^{-2})}. \]

However, the quantum α-determinant of size n does not coincide with the quantum permanent for any α if $n \geq 3$. This is because $\nu(\cdot)$ is a class function on \mathfrak{S}_n in general, whereas the inversion number $\ell(\cdot)$ is not if $n \geq 3$.

The algebra A_q becomes a $U_q(sl_2)$-module by

\begin{align*}
k_{1,1}x_{11} &= q^{\pm 1}x_{11}, & e \cdot x_{11} &= 0, & f \cdot x_{11} &= x_{12}, \\
k_{1,2}x_{12} &= q^{\pm 1}x_{12}, & e \cdot x_{12} &= x_{11}, & f \cdot x_{12} &= 0 \quad (i = 1, 2).
\end{align*}

(2.4)

These are compatible with the fundamental relations (2.1) above. Our main object is the cyclic submodule of A_q given by

\[V_q^{m}(\alpha) = U_q(sl_2) \cdot \left(\det_q^{(\alpha)} \right)^m. \]

(2.5)

We denote by $M_q(d)$ the d-dimensional irreducible representation of $U_q(sl_2)$. Notice that

\[U_q(sl_2) \cdot (x_{11}x_{21})^s \det_q^{m-s} \cong U_q(sl_2) \cdot (x_{11}x_{21})^s \cong M_q(2s+1). \]

(2.6)

Define q-analogues of numbers, factorials and binomial coefficients by

\[[n]_q := \frac{q^n - q^{-n}}{q - q^{-1}}, \quad [n]_q! := \prod_{i=1}^{n} [i]_q, \quad [n]_q! := \frac{[n]!}{[k]! [n-k]!}. \]

We recall two well-known identities involved with q-binomial coefficients which we will use later.

- **q-binomial theorem:**

\[\prod_{i=1}^{n} (x + yq^{2i}) = \sum_{r=0}^{n} q^{(n-r)(r+1)} \binom{n}{r}_q x^r y^{n-r}. \]

(2.7)

- **q-Chu-Vandermonde formula:**

\[\sum_{r=0}^{n} q^{-r(x+y)} \binom{x}{r}_q \binom{y}{r}_q = q^{-ny} \binom{x+y}{n}_q. \]

(2.8)
3 Cyclic modules generated by the quantum alpha-determinant

3.1 Some lemmas

Lemma 3.1.

\[f^j \cdot (x_{11}x_{21})^j = q^{-j(j-1)/2} |j|_q^j \sum_{r=0}^{j} q^{-r^2} [j^r]_q^2 x_{11}^{j-r} x_{22}^{j-r} (x_{12}x_{21})^r. \] \hspace{1cm} (3.1)

Proof. For \(1 \leq i \leq 2j \), put

\[f_j(i) = 1 \otimes \cdots \otimes 1 \otimes f \otimes k^{-1} \otimes \cdots \otimes k^{-1} \in \mathcal{U}_q(\mathfrak{sl}_2)^{\otimes 2j}. \]

Then

\[\Delta^{2j-1}(f) = \sum_{i=1}^{2j} f_j(i), \]

so that

\[\Delta^{2j-1}(f)^j = \sum_{1 \leq n_1, \ldots, n_j \leq 2j} f_j(n_1) \cdots f_j(n_j). \]

Since \(f_j(m)f_j(n) = q^{-2}f_j(n)f_j(m) \) if \(m > n \) and \(f^2 \cdot x_{11} = f^2 \cdot x_{21} = 0 \), we have

\[\Delta^{2j-1}(f)^j = q^{-j(j-1)/2} |j|_q^j \sum_{1 \leq n_1, \ldots, n_j \leq 2j} f_j(n_1) \cdots f_j(n_j) + R, \]

where \(R \) is a certain element in \(\mathcal{U}_q(\mathfrak{sl}_2)^{\otimes 2j} \) such that \(R \cdot (x_{11}x_{21})^j = 0 \). Here we also use the well-known identity

\[\sum_{\sigma \in \mathcal{S}_j} x^{j(\sigma)} = (1 + x)(1 + x + x^2) \cdots (1 + x + \cdots + x^{j-1}) \]

with \(x = q^{-2} \). Now we consider

\[f_j(n_1) \cdots f_j(n_j) \cdot (x_{11}^jx_{21}^j) \]

for given \(n_1, \ldots, n_j \) \((1 \leq n_1 < \cdots < n_j \leq 2j) \). Suppose that

\[n_1 < \cdots < n_r < j < n_{r+1} < \cdots < n_j, \]

for some \(r \) and define \(m_1, \ldots, m_r \) \((1 \leq m_1 < \cdots < m_r \leq j) \) by the condition

\[\{n_{r+1}, n_{r+2}, \ldots, n_j\} \cup \{j + m_1, j + m_2, \ldots, j + m_r\} = \{j + 1, j + 2, \ldots, 2j\}. \]

Then we have

\[f_j(n_1) \cdots f_j(n_j) \cdot (x_{11}^jx_{21}^j) = q^\beta \cdot x_{11}^{n_1} \cdots x_{12}^{n_r} \cdots x_{12}^{j-r} \cdots x_{21}^{m_1} \cdots x_{22}^{m_r} \]

\[= q^\beta + r \cdot x_{11}^{j-r} x_{12}^{j-r} \cdots x_{21}^{j-r} x_{22}^{j-r} \]

\[= q^\beta + r \cdot x_{11}^{j-r} x_{22}^{j-r} (x_{12}x_{21})^r, \]
Quantum alpha-determinants and q-deformed hypergeometric polynomials

where β and γ are calculated as

$$
\beta = -\{(2j - n_1) + (2j - n_2) + \cdots + (2j - n_j) - (1 + 2 + \cdots + j - 1)\} + (1 + 2 + \cdots + j - 1) \\
= \frac{j(j - 1)}{2} - rj + (n_1 + \cdots + n_r) - (m_1 + \cdots + m_r),
$$

$$
\gamma = \{(j - m_r) + (j - 1 - m_{r-1}) + \cdots + (j - r + 1 - m_1)\} \\
- \{(j - n_r) + (j - 1 - n_{r-1}) + \cdots + (j - r + 1 - n_1)\} \\
= (n_1 + \cdots + n_r) - (m_1 + \cdots + m_r).
$$

Thus we get

$$
f_j(n_1) \cdots f_j(n_j) \cdot (x_{11}^j x_{22}^j) = q^{-r^2 + j(j-1)/2 + 2(n_1 + \cdots + n_r) - 2(m_1 + \cdots + m_r)} x_{11}^{j-r} x_{22}^{j-r} (x_{12} x_{21})^r.
$$

Using this, we have

$$
f^r \cdot (x_{11}^j x_{22}^j) = q^{-j(j-1)/2} [j]_q! \sum_{1 \leq n_1 < \cdots < n_{2j} \leq 2j} f_j(n_1) \cdots f_j(n_j) \cdot (x_{11}^j x_{22}^j) \\
= [j]_q! \sum_{r=0}^{j} q^{-r^2} \sum_{1 \leq n_1 < \cdots < n_r \leq j, 1 \leq m_1 < \cdots < m_r \leq j} q^{2(n_1 + \cdots + n_r) - 2(m_1 + \cdots + m_r)} x_{11}^{j-r} x_{22}^{j-r} (x_{12} x_{21})^r \\
= [j]_q! \sum_{r=0}^{j} q^{-r^2} e_r(1, q^2, \ldots, q^{2(j-1)}) e_r(1, q^{-2}, \ldots, q^{-2(j-1)}) x_{11}^{j-r} x_{22}^{j-r} (x_{12} x_{21})^r,
$$

where $e_r(x_1, x_2, \ldots, x_j)$ denotes the r-th elementary symmetric polynomial in x_1, x_2, \ldots, x_j. Using the identity (see, e.g. [6])

$$
e_r(1, q^2, \ldots, q^{2j-2}) = q^{r(j-1)} \left[\begin{array}{c} j \\ r \end{array} \right]_q
$$

together with the symmetry $\left[\begin{array}{c} j \\ r \end{array} \right]_q = \left[\begin{array}{c} j \\ q-1 \end{array} \right]_q$, we obtain

$$
f^r \cdot (x_{11}^j x_{22}^j) = [j]_q! \sum_{r=0}^{j} q^{-r^2} \left[\begin{array}{c} j^2 \\ r \end{array} \right]_q x_{11}^{j-r} x_{22}^{j-r} (x_{12} x_{21})^r.
$$

Since $(x_{11} x_{21})^j = q^{-j(j-1)/2} x_{11}^j x_{21}^j$, we have the desired conclusion. \hfill \Box

It is straightforward to verify the relations

$$
z_1 \cdot x_{22} = x_{22} \cdot (z_1 + (q^3 - q) z_2),
$$

$$
z_2 \cdot x_{22} = q^2 x_{22} \cdot z_2.
$$

Using this, we get the

Lemma 3.2.

$$
x_{11}^l x_{22}^l = \prod_{r=1}^{l} (z_1 + (q^{2r-1} - q) z_2).
$$

Proof. By (3.2), it follows that

$$
(z_1 + (q^{2r-1} - q) z_2) \cdot x_{22} = x_{22} \cdot (z_1 + (q^{2r+1} - q) z_2),
$$

by which the lemma is proved by induction on l. \hfill \Box
3.2 Irreducible decomposition

Theorem 3.3. There exists a collection of \(\mathbb{C}(q) \)-valued functions \(F_{m,j}(\alpha) \) \((j = 0, 1, \ldots, m)\) such that

\[
V_q^m(\alpha) \cong \bigoplus_{\substack{0 \leq j \leq m \\ \text{F}_{m,j}(\alpha) \neq 0}} \mathcal{M}_q(2j + 1).
\]

Proof. Notice that

\[
\left(\det_q(\alpha) \right)^m = \sum_{j=0}^{m} \binom{m}{j} (aq)^j z_1^{m-j} z_2^j
\]

is a homogeneous polynomial of degree \(m \) in the commuting variables \(z_1 \) and \(z_2 \). On the other hand, it is also clear that the vectors

\[
v_{m,j} = (f^j \cdot (x_{11} x_{21})^j) \det_q^{m-j} \quad (j = 0, 1, \ldots, m)
\]

are linearly independent (since \(e^j \cdot v_{m,j} \neq 0 \) and \(e^{j+1} \cdot v_{m,j} = 0 \)), and they are homogeneous polynomials of degree \(m \) in \(z_1 \) and \(z_2 \) by Lemma \([3.1]\). Therefore, \(\{v_{m,j}\}_{j=0}^{m} \) form a basis of the space consisting of the homogeneous polynomials of degree \(m \) in \(z_1 \) and \(z_2 \), so that there exist \(\mathbb{C}(q) \)-valued functions \(F_{m,j}(\alpha) \) such that

\[
\left(\det_q(\alpha) \right)^m = \sum_{j=0}^{m} F_{m,j}(\alpha)v_{m,j}.
\]

Since \(\mathcal{U}_q(\mathfrak{sl}_2) \cdot v_{m,j} \cong \mathcal{M}_q(2j + 1) \), this proves the theorem. \(\square \)

The conditions for the functions \(F_{m,j}(\alpha) \) are described in terms of polynomials in \(\mathbb{C}(q)[z_1, z_2] \) by virtue of Lemmas \([3.1, 3.2]\). Since \(z_1 \) and \(z_2 \) commute, it is meaningful to consider the specialization \(z_1 = z, \ z_2 = 1 \), where \(z \) is a new indeterminate. Put

\[
g_j(z) = \prod_{i=1}^{j}(z + q^{2i-1} - q),
\]

\[
v_j(z) = q^{-j(j-1)/2} [j]_q! \sum_{r=0}^{j} q^{-r^2} \left(\begin{atms} j \end{atms} r\right)_q g_{j-r}(z).
\]

Then \([3.6]\) together with Lemmas \([3.1, 3.2]\) yields

\[
(z + qa)^m = \sum_{j=0}^{m} F_{m,j}(\alpha)v_{j}(z-q)^{m-j}.
\]

If we take the \(l \)-th derivative of this formula with respect to \(z \) \((l = 0, 1, \ldots, m)\), then we have

\[
\frac{m!}{(m-l)!}(z + qa)^{m-l} = \sum_{j=0}^{m} F_{m,j}(\alpha) \sum_{t=0}^{l} \binom{l}{t} v_{j}^{(l-t)}(z) \frac{(m-j)!}{(m-j-t)!}(z-q)^{m-j-t}.
\]

Letting \(z = q \), we get the relation

\[
\binom{m}{l} q^{m-l}(1 + \alpha)^{m-l} = \sum_{j=m-l}^{m} F_{m,j}(\alpha) v_{j}^{(l-m+j)}(q) = \sum_{s=0}^{l} F_{m,m-s}(\alpha) v_{m-s}^{(l-s)}(q).
\]
Now we calculate \(v_j^{(i)}(q)/i! \). By the \(q \)-binomial theorem \((2.7) \), we have

\[
g_j(z) = \sum_{i=0}^{j} q^{j-i} {j \choose i}_q (z - q)^i.
\]

Hence it follows that

\[
v_j(z) = q^{-j(j-1)/2} [j]_q! \sum_{r=0}^{j} q^{-r^2} {j \choose r}_q g_{j-r}(z) = q^{j(j+1)/2} [j]_q! \sum_{r=0}^{j} q^{r(i-2j)} \left\{ \sum_{r=0}^{j-i} q^{r(i-2j)} {j \choose r}_q \right\} (z - q)^i.
\]

Using the \(q \)-Chu-Vandermonde formula \((2.8) \), we get

\[
\sum_{r=0}^{j-i} q^{r(i-2j)} {j \choose r}_q = q^{j-i} {2j-i \choose j}_q.
\]

Thus provides

\[
v_j(z) = q^{-j(j-1)/2} \sum_{i=0}^{j} \frac{[j]_q! [2j-i]_q!}{[i]_q! [j-i]_q q^{2i}} (z - q)^i; \quad (3.11)
\]

or

\[
\frac{v_j^{(i)}(q)}{i!} = q^{-j} \left(\frac{[j]_q! [2j-i]_q!}{[i]_q! [j-i]_q q^{2i}} \right). \quad (3.12)
\]

Thus the formula \((3.10) \) is rewritten more explicitly as

\[
[m - l]_q! 2^l \left(\frac{m}{l} \right)_q m^{-l} (1 + \alpha)^{m-l} = \sum_{s=0}^{l} q^{-\left(\begin{array}{c} m-s \no \no z \end{array} \right)_q} \frac{[m-s]_q! [2m-l-s]_q!}{[l-s]_q!} F_{m,m-s}(\alpha). \quad (3.13)
\]

3.3 Expression of \(F_{m,j}(\alpha) \) in terms of mixed hypergeometric polynomials

From \((3.10) \) (or \((3.13) \)), we can conclude that \(F_{m,j}(\alpha) \) is a polynomial function in \(\alpha \) which is divisible by \((1 + \alpha)^j \), that is

\[
F_{m,j}(\alpha) = (1 + \alpha)^j Q_{m,j}(\alpha) \quad (3.14)
\]

for some \(Q_{m,j}(\alpha) \in \mathbb{C}(q)[\alpha] \). By \((3.14) \) and \((3.13) \), we have

\[
\left[\frac{2m-2i}{m-i} \right]_q^{-1} \left(\frac{m}{i} \right)_q m^{-i} = \sum_{j=0}^{i} \left[\frac{2i-2m+1}{i-j} \right]_q (-1)^{i-j} (1 + \alpha)^{i-j} q^{-\left(\begin{array}{c} m-j \no \no z \end{array} \right)_q} [m-j]_q Q_{m,m-j}(\alpha). \quad (3.15)
\]

To solve this, we need the following lemma.

Lemma 3.4.

\[
\left(\left[\frac{2i-2m+1}{i-j} \right]_q \right)_{0 \leq i,j \leq m}^{-1} = \left(\frac{[2m-2i+1]_q}{[2m-2j+1]_q} \right)_{0 \leq i,j \leq m}. \quad (3.16)
\]
for $0 \leq j \leq i \leq m$ since the matrices in (3.10) are lower triangular. The case where $i = j$ is clear. Assume that $i > j$. By putting $d = i - j$, $n = m - j$ and changing the running index by $r = k - j$, (3.17) is reduced to

$$
\sum_{r=0}^{d} \binom{2n+1-2r}{d-r} q^{2d-(2n+1)} \binom{2n+1}{r} = 0 \quad (0 < d \leq n).
$$

(3.18)

To prove this, it suffices to show that the function

$$
f(x) = \sum_{r=0}^{d} \binom{x-2r}{d-r} q^{2d-x} \binom{x}{r} q
$$

is constant, which is readily seen to be zero. Notice that $f(x)$ is a rational function in $z = q^x$, and its numerator is a polynomial in z of degree at most $2d$. Hence it is enough to verify that $f(l) = 0$ for $l = 0, 1, \ldots, 2d$. However, since we easily see that $f(x) + f(2d-x) = 0$, which also implies $f(2d) = 0$, we have only to check $f(l) = 0$ for $l = 0, 1, \ldots, d - 1$.

Let $l \in \mathbb{Z}$ such that $0 \leq l < d$. Then we have

$$
f(l) = \sum_{r=0}^{l} \binom{l-2r}{d-r} q^{2d-l} \binom{l}{r} = 0 \quad (l < r \leq d)
$$

$$
= \sum_{s=0}^{l} \binom{l-2(l-s)}{d-(l-s)} q^{2d-l} \binom{l}{l-s} = -f(l),
$$

which means $f(l) = 0$. This completes the proof of the lemma.

Now we define the mixed hypergeometric series by

$$
\Phi \left(\begin{array}{c}
\alpha_1, \ldots, \alpha_k \\
\beta_1, \ldots, \beta_l,
\end{array} ; q \right) := \sum_{i=0}^{\infty} \frac{\prod_{j=1}^{k} \left(a_j ; q^i \right)}{\prod_{j=1}^{l} \left(b_j ; q^i \right)} x^i,
$$

(3.19)

where $(a; q) = \prod_{i=1}^{\infty} \left(1 - a q^i \right)$ and $(a; q)_i = \prod_{j=0}^{i-1} \left(1 - a q^j \right)$ (cf. [2]).

Theorem 3.5. For $s = 0, 1, \ldots, m$,

$$
F_{m,s}(\alpha) = q^{(s+1)/2} \binom{m}{s} \frac{[s]_q!}{[2s]_q!} (1 + \alpha)^s \Phi \left(\begin{array}{c}
s-m \\
2s+1
\end{array} ; \frac{s+1}{2s+2}, q(1+\alpha) \right)
$$

(3.20)

holds.

Proof. By (3.15) and (3.16), we have

$$
Q_{m,m-i}(\alpha) = q^{(m-1)/2} \binom{m}{m-i} \prod_{j=0}^{i} \left(-1 \right)^{j} q^{m-j} \binom{2m-2i+1}{2m-2j+1} \binom{2m-2j+1}{m-j} (1+\alpha)^{m-j}
$$

$$
= q^{(m-i)/2} \binom{m-i}{m-i} \frac{[m-i]_q!}{[2m-2i+1]_q!} \prod_{r=0}^{i} \left(-q \right)^r \frac{[m-i+r]_q!}{[m-i+r]_q! (m-i+r)!} \frac{[2m-2i+r+1]_q!}{[m-i+r]_q!} (1+\alpha)^r.
$$
Quantum alpha-determinants and q-deformed hypergeometric polynomials

Since

\[(i-r)! = (-1)^r \frac{i!}{(-i-r)!}, \quad (n+r)! = n!(n+1;r), \quad [n+r]_q! = [n]_q!(n+1;r)_q,\]

we have

\[
Q_{m,m-i}(\alpha) = \frac{q^{\binom{m-i+1}{2}} m! [m-i]_q!}{i!(m-i)! [2m-2i]_q!} \sum_{r=0}^{i} \frac{(-i;r) (m-i+1;r)_q^2}{(m-i+1;r) (2m-2i+2;r)_q^2} (q(1+\alpha))^r
\]

\[
= q^{\binom{m-i+1}{2}} \binom{m}{i} \frac{[m-i]_q!}{[2m-2i]_q!} \Phi \left(m-i+1; \frac{m-i+1, m-i+1}{2m-2i+2}; q; q(1+\alpha) \right).
\]

(3.21)

If we substitute this into (3.14) and replace $m-i$ by s, then we have the conclusion.

Remark 3.6. The function Φ given by (3.21) satisfies the difference-differential equation

\[
\left\{ -(E + a_1) \cdots (E + a_k) [E + c_1]_q \cdots [E + c_m]_q
\right.

\[
+ \partial_q(E + b_1 - 1) \cdots (E + b_t - 1) [E + d_1 - 1]_q \cdots [E + d_n - 1]_q \left\} \Phi = 0,
\]

where we put

\[
E = \frac{d}{dx}, \quad [E + a]_q = \frac{q^{E+a} - q^{-E-a}}{q - q^{-1}}, \quad \partial_q f(x) = \frac{f(qx) - f(q^{-1}x)}{qx - q^{-1}x}.
\]

If we take a limit $q \to 1$, then the difference-differential equation above becomes a hypergeometric differential equation for $k+m F_{t+n}(a_1, \ldots, c_m; b_1, \ldots, d_n; x)$.

3.4 Classical case

All the discussion above also work in the classical case (i.e. the case where $q = 1$). Thus, by taking a limit $q \to 1$ in Theorem 3.3, we will obtain Theorem 4.1 in [3] again. We abuse the same notations used in the discussion of quantum case above to indicate the classical counterparts. From (3.21), we have

\[
Q_{m,s}(\alpha) = \frac{m!}{(m-s)!(2s)!} \left[\begin{array}{c} 2F_1 \left(\begin{array}{c} s-m, s+1 + s+1 \n 1+\alpha \end{array} \right) \frac{s}{2} + 2s+2 \end{array} \right]
\]

\[
= \frac{m!}{(m-s)!(2s)!} \left[\begin{array}{c} 2F_1 \left(\begin{array}{c} s-m, s+1 + s+1 \n 2s+1 \end{array} \right) \frac{1}{1+\alpha} \end{array} \right]
\]

(3.22)

Notice that

\[
2F_1 \left(\begin{array}{c} s-m, s+1 + s+1 \n 2s+2 \end{array} \right) = \frac{m!(2s+1)!}{s!(m+s+1)!} 2F_1 \left(\begin{array}{c} s-m, s+1 + s+1 \n -m \end{array} \right).
\]

(3.23)

Thus we also get

\[
Q_{m,s}(\alpha) = \frac{m!^2 (2s+1)}{(m-s)!(m+s+1)!} 2F_1 \left(\begin{array}{c} s-m, s+1 + s+1 \n -m \end{array} \right) (s = 0, 1, \ldots, m).
\]

(3.24)

Summarizing these, we have the

Corollary 3.7 (Classical case).

\[
F_{m,s}(\alpha) = \frac{m!}{(m-s)!(2s)!} (1+\alpha)^s 2F_1 \left(\begin{array}{c} s-m, s+1 + s+1 \n 2s+1 \end{array} \right) \frac{1}{1+\alpha}
\]

\[
= \frac{(2m-s) - (2m-s-1)}{(2m-s)!} (1+\alpha)^s 2F_1 \left(\begin{array}{c} s-m, s+1 + s+1 \n -m \end{array} \right) (s = 0, 1, \ldots, m).
\]

(3.25)

for $s = 0, 1, \ldots, m$.

\[\blacksquare\]
Acknowledgement

The author would like to thank Max-Planck-Institut für Mathematik for the support and hospitality.

References

[1] M. Jimbo, A q-analogue of $U(\mathfrak{gl}(N + 1))$, Hecke algebra, and the Yang-Baxter equation, Lett. Math. Phys. 11 (1986), 247–252.

[2] M. A. Khan and A. H. Khan, A note on mixed hypergeometric series, Acta Math. Vietnam. 14 (1989), no. 1, 95–98.

[3] K. Kimoto, S. Matsumoto and M. Wakayama, Alpha-determinant cyclic modules and Jacobi polynomials, to appear in Trans. Amer. Math. Soc.

[4] K. Kimoto and M. Wakayama, Invariant theory for singular α-determinants, J. Combin. Theory Ser. A 115 (2008), no. 1, 1–31.

[5] K. Kimoto and M. Wakayama, Quantum α-determinant cyclic modules of $U_q(\mathfrak{gl}_n)$, J. Algebra 313 (2007), 922–956.

[6] I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd edn., Oxford University Press, 1995.

[7] S. Matsumoto and M. Wakayama, Alpha-determinant cyclic modules of $\mathfrak{gl}_n(\mathbb{C})$, J. Lie Theory 16 (2006), 393–405.

[8] M. Noumi, H. Yamada and K. Mimachi, Finite dimensional representations of the quantum group $GL_q(n; \mathbb{C})$ and the zonal spherical functions on $U_q(n - 1)\backslash U_q(n)$, Japan. J. Math. 19 (1993) 31–80.

[9] N. Yu. Reshetikhin, L. A. Takhtadzhyan and L. D. Faddeev, Quantization of Lie groups and Lie algebras, Leningrad Math. J. 1 (1990), no. 1, 193–225.

[10] D. Vere-Jones, A generalization of permanents and determinants, Linear Algebra Appl. 111 (1988), 119–124.

Department of Mathematical Sciences, University of the Ryukyus
1 Senbaru, Nishihara-cho, Okinawa 903-0213 Japan
kimoto@math.u-ryukyu.ac.jp

Max-Planck-Institut für Mathematik
Vivatsgasse 7, 53111 Bonn, Germany
kimoto@mpim-bonn.mpg.de