Криохирургічний метод деструкції nervus vagus в експериментальних вивчениях

Якщо дослідити вплив нервової системи на фізіологічні та патофізіологічні процеси, виникає необхідність визначення вкладу кожного зі зв'язків вегетативної нервової системи. Для оцінки впливу парасимпатичного зв'язку на варіабельність серцевого ритму розроблено криохирургічний метод деструкції nervus vagus у шийному відділі, в грудній і черевній порожнінах. Показано, що між члени зв'язку «сонного» трикутника криохирургічним способом можна провести деструкцію n. vagus, а також кридоденервацію arteria carotis i таким чином «вимкнути» з регуляторної ланки розташовані на інтимі судини барорецептори. Встановлено, що з використанням ендоскопічної установки і криохирургічного способу денервації сосудів можна здійснити деструкцію барорецепторів дуги аорти збереженням анатомічної цілісності судини. Отримано, що на шиї у ділянці “сонного” трикутника криохірургічним способом можна провести деструкцію n. vagus у цілому, а також барорецептори на черевному зв'язку.

Ключеві слова: кридоденервація, nervus vagus, аорта, експеримент, денервація, барорецептори, ендоскопія.

Якщо вивчені вплив нервової системи на фізіологічні та патофізіологічні процеси виникає необхідність визначення вкладу кожного зі зв'язків вегетативної нервової системи. Для оцінки впливу парасимпатичного зв'язку на варіабельність серцевого ритму розроблено криохирургічний метод деструкції nervus vagus у шийному відділі, в грудній і черевній порожнінах. Показано, що між члени зв’язку “сонного” трикутника криохирургічним способом можна провести деструкцію n. vagus, а також кридоденервацію arteria carotis i таким чином “вимкнути” з регуляторної ланки розташовані на інтимі судини барорецептори. Встановлено, що з використанням ендоскопічної установки і криохирургічного способу денервації судин можна здійснити деструкцію барорецепторів дуги аорти збереженням анатомічної цілісності судини. Одночасно виявлення гіпок черевного відділу n. vagus у цілому, а також барорецептори на черевному зв’язку.

Ключові слова: кридоденервація, nervus vagus, аорта, експеримент, денервація, барорецептори, ендоскопія.

When studying the impact of whole-body hypothermia and/or local cryoablation on a body, it is important to assess the contribution of autonomic nervous system (ANS), whose function is to regulate the physiological processes, ensuring the body’s...
ные адаптацию организма к постоянно меняющимся условиям среды. Известно, что ВНС автономна, состоит из симпатического и парасимпатического отделов, которые участвуют в регуляции систем организма и обладают не только антагонистической, но и синергетической направленностью [14]. Парасимпатический отдел ВНС представлен парой блуждающих нервов (n. vagus – X черепно-мозговая пара), которые анатомически подразделяются на головной, шейный, грудной и брюшной отделы [7, 8].

Для определения вклада каждого из отделов ВНС в регуляцию жизненно важных функций организма физиологии используют разные подходы: блокирование или стимуляцию нервов [15]. Первый подход заключается в пересечении нервов и/или их ветвей, что при проведении экспериментальных работ технически сложно, а в ряде случаев невозможно. В частности, это выделение нерва из сосудисто-нервного пучка или денервация артериальных сосудов с целью «выключения» барорецепторов, расположенных в стенке сосуда. При проведении такой манипуляции на аорте крыс сигналы, поступающие к центральным отделам ВНС, полностью не блокируются, что объясняется разветвлённостью нервных волокон, идущих от барорецепторов к основному стволу n. vagus [6]. Полная блокада сигналов барорецепторов аорты важна для изучения механизмов регулирования частоты сердечных сокращений. Поэтому для исследования вариабельности сердечного ритма (ВСР) и правильной интерпретации частотных диапазонов спектрального анализа ВСР необходим разработка высокотехнологичных способов «выключения» барорецепторов [9].

В этом аспекте одним из наиболее эффективных методов является криохирургический. В отличие от механического пересечения нервных волокон он позволяет проводить деструкцию тканей с сохранением эластинно-коллагенового каркаса органа (сосуда, нерва) [1, 10]. После криодеструкции сосуды полностью разрушаются клетки интимы, мышечный и адвентициальный слои [10]. Следует отметить, что после криодеструкции повреждения носят обратимый характер. Нервные ткани восстанавливаются в течение нескольких месяцев [5, 13].

Цель работы – разработка методик денервации периферических отделов n. vagus криохирургическим способом.

Материалы и методы
Эксперименты на животных проводили в соответствии с Законом Украины «О защите жизнедеятельности криобиологии и криомедицины

problemy kriobiologii i kriomedicine

problems of cryobiology and cryomedicine

том/volume 30, №/issue 1, 2020
вотных от жестокого обращения» (№3447–IV от 21.02.2006) при соблюдении требований Комитета по биоэтики ИПКиК НАН Украины, согласованных с положениями «Европейской Конвенции по защите позвоночных животных, используемых для экспериментальных и других научных целей (Страсбург, 1986).

Работу выполняли на 7-месячных крысах-самцах (n = 30) линии Вистар массой 200–300 г в стационарных условиях вивария в утреннее время (с 9 до 12 ч).

Оперативные вмешательства проводили под ингаляционным наркозом. Для дополнительного обезболивания однократно внутримышечно вводили «Налбуфен» («Здоровье», Украина) в дозе 1 мг/кг.

Для криодеструкции n. vagus использовали автономный дерматологический криоинструмент КД-3 (ФТИНТ НАН Украины, г. Харьков) [2, 3] и специально изготовленный медный аппликатор в виде незамкнутой на 2/3 окружности при температуре рабочей поверхности –120°С. Общее время проведения манипуляции составляло 60 с [10].

Оперативные вмешательства на грудной полости выполняли с помощью эндоскопической установки, разработанной в отделе экспериментальной криомедицины ИПКиК НАН Украины [11,12].

После введения животного в эксперимент проводили морфологический анализ эндотелия фрагмента аорты на уровне ее дуги. Полуторные срезы получали на ультрамикротоме УМТП-7 («Электрон», Украина), окрашивали полихромным красителем на основе метиленового синего и основного фуксина, исследовали на микроскопе «Granum R 4003» («Granum», Китай), снабженном цифровой видеокамерой «Panasonic WV-CP 470» («Panasonic», Япония). Ультратонкие срезы контрастировали насыщенным водным раствором уранилцетата и раствором цитрата свинца по Рейнольдсу. Для изготовления препаратов фрагменты аорты после проконсервации и сепарирования адвентиции импрегнировали азотнокислым серебром по стандартной методике [4]. Препараты аорты заключали в глицерин-желатиновую смесь и изучали в проходящем свете под световым тринокулярным микроскопом «Granum R 4003» («Granum»), используя камеру «DCM 510» («eTrek», Китай).

Результаты и обсуждение

Методика криодеструкции n. vagus в шейном отделе. Животных фиксировали к операционному столу в положении «лежа на спине». После удаления шерстного покрова в асептических условиях вивария в утреннее время (с 9 до 12 ч).

Оперативные вмешательства проводили под ингаляционным наркозом. Для дополнительного обезболивания однократно внутримышечно вводили «Налбуфен» («Здоровье», Украина) в дозе 1 мг/кг.

Для криодеструкции n. vagus использовали автономный дерматологический криоинструмент КД-3 (ФТИНТ НАН Украины, г. Харьков) [2, 3] и специально изготовленный медный аппликатор в виде незамкнутой на 2/3 окружности при температуре рабочей поверхности –120°С. Общее время проведения манипуляции составляло 60 с [10].

Оперативные вмешательства на грудной полости выполняли с помощью эндоскопической установки, разработанной в отделе экспериментальной криомедицины ИПКиК НАН Украины [11,12].

После введения животного в эксперимент проводили морфологический анализ эндотелия фрагмента аорты на уровне ее дуги. Полуторные срезы получали на ультрамикротоме УМТП-7 («Электрон», Украина), окрашивали полихромным красителем на основе метиленового синего и основного фуксина, исследовали на микроскопе «Granum R 4003» («Granum», Китай), снабженном цифровой видеокамерой «Panasonic WV-CP 470» («Panasonic», Япония). Ультратонкие срезы контрастировали насыщенным водным раствором уранилцетата и раствором цитрата свинца по Рейнольдсу. Для изготовления препаратов фрагменты аорты после проконсервации и сепарирования адвентиции импрегнировали азотнокислым серебром по стандартной методике [4]. Препараты аорты заключали в глицерин-желатиновую смесь и изучали в проходящем свете под световым тринокулярным микроскопом «Granum R 4003» («Granum»), используя камеру «DCM 510» («eTrek», Китай).

Results and discussion

Cryoablation method for cervical n. vagus. The animals were fixed in a supine position to the operating table. An anterior midline neck incision was made at thyroid cartilage level and below after hair coat removal, under aseptic conditions. Surgical wound was formed by separating apart the skin edges and subcutaneous fat layer, then fixed with Mikulich clamps. A neurovascular bundle was isolated in the ‘carotid’ triangle between Украина, agreed to the statements of European Convention for the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes (Strasbourg, 1986).

The work was performed in 7-month-old Wistar male rats (n = 30), weighing 200–300 g under usual animal housing in the morning (from 9 to 12 a. m.).

The surgery was done with inhalation anesthesia. For additional anesthesia, Nalbuphine (Zdorovye, Ukraine) at a dose of 1 mg / kg was once administered, intramuscularly.

For n. vagus cryoablation we used the self-contained dermatological cryogenic instrument KD-3 (B. Verkin Institute for Low Temperature Physics and Engineering of National Academy of Sciences of Ukraine, Kharkiv) [8, 16] and the specially manufactured 1/3 open circle-shaped copper applicator with operating surface temperature of 120°C. Total time of manipulation was 60 s [5].

The surgeries in thoracic cavity were done using the endoscopic device, designed at the Department of Experimental Cryomedicine of the Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine [4, 6].

After animal sacrificing, the fragment of aortic endothelium at its arch level was morphologically analyzed. The semi-thin sections were obtained with UMTP-7 ultramicrotome (Elektron, Ukraine), stained with the methylene blue and basic fuchsin-based polychrome dye, then analysed with Granum R 4003 microscope (Granum, China), equipped with Panasonic WV-CP 470 digital video camera (Panasonic, Japan). The ultrathin sections were contrasted with a saturated aqueous solution of uranyl acetate and lead citrate solution according to Reynolds. To make the preparations, the aortic fragments after prefixation and adventitia separation were impregnated with silver nitrate according to the standard method [9]. Aortic preparations were embedded into a glycerol-gelatin mixture and studied in transmitted light with light trinocular microscope Granum R 4003 (Granum) using DCM 510 camera (eTrek, China).

Results and discussion

Cryoablation method for cervical n. vagus. The animals were fixed in a supine position to the operating table. An anterior midline neck incision was made at thyroid cartilage level and below after hair coat removal, under aseptic conditions. Surgical wound was formed by separating apart the skin edges and subcutaneous fat layer, then fixed with Mikulich clamps. A neurovascular bundle was isolated in the ‘carotid’ triangle between
условиях выполняли передний срединный разрез шеи на уровне и ниже щитовидного хряща. Операционную рану формировали разведением в стороны краев кожи и подкожно-жирового слоя, которые фиксировали зажимами Микулича. В «сонном» треугольнике между верхним брюшком musculus omohyoideus и передним краем musculus sternocleidomastoideus выделяли сосудисто-нервный пучок (рис. 1, A). Блузающий нерв, внутренняя яремная вена и общая сонная арterия расположены в общем соединительно-тканном влагалище [6].

Из сосудисто-нервного пучка выделяли n. vagus и проводили его локальную криодеструкцию (рис. 1, B), не повреждая окружающие ткани. Операционную рану после тщательного гемостаза послойно ушивали.

В зависимости от поставленных задач проводили одно- или двухстороннюю ваготомию шейного отдела. При этом криохирургическим способом можно выполнять денервацию arteria carotis и «выключать» из регуляторного звена расположенные на интиме сосуда барорецепторы, передающие сигналы по языкоглоточному нерву в продолговатый мозг, в котором расположены центры симпатического отдела ВНС.

Методика криодеструкции n. vagus в грудном отделе. При разработке методики криодеструкции n. vagus в грудном отделе мы проводили криоденервацию дуги аорты с целью «выключения» барорецепторов дуги аорты. Известно, что левый блузающий нерв (при входе в грудную полость) располагается на передней поверхности дуги аорты, а правый — на передней поверхности начального отдела правой подключичной артерии [6].

После наркотизации и фиксации животного к операционному столу в асептических условиях производили кожный разрез в зоне правого и левого II межреберья. Большую и малую грудные мышцы разводили в стороны.

Для точной верификации восходящего отдела и дуги аорты использовали эндоскопический метод [11, 12]. Ринопроков 0° диаметром 2,7 мм («МГВ», Германия) вводили через троакар (диаметр 3,0 мм) во II межреберье слева. Предварительно накладывали два провизорных W-образных шва с захватом II и III ребер и фиксацией нитей. Данный прием позволяет после завершения криодеструкции быстро закрыть рану и предотвратить развитие открытого пневмоторакса, поскольку операцию проводили в условиях спонтанного дыхания без использования аппарата искусственной вентиляции легких.

Рис. 1. Криодеструкция n. vagus шейного отдела крысы. A – оперативный доступ к сосудисто-нервному пучку в «сонном» треугольнике справа. Стрелкой обозначен n. vagus; B – криодеструкция n. vagus. Fig. 1. N. vagus cryoablation in rat’s cervical region. A – cutdown approach to neurovascular bundle in ‘carotid’ triangle on the right. The arrow indicates the n. vagus; B – the n. vagus cryoablation.

the superior belly of musculus omohyoideus and an anterior edge of musculus sternocleidomastoideus (Fig. 1A). The vagus nerve, internal jugular vein and common carotid artery are located in the common connective tissue sheath [11].

The n. vagus was isolated from the neurovascular bundle and its local cryoablation was carried-out (Fig. 1B) without damaging the surrounding tissues. After careful hemostasis, the surgical wound was sutured in layers.

Depending on the tasks set, the one- or two-sided cervical vagotomy was performed. This cryosurgical method provides denervation of the arteria carotis and ‘switching off’ from a regulatory link of the vascular intima-located baroreceptors, transmitting
В правой половине грудной полости с помощью троакара (диаметр 5,0 мм) в зону II межреберья вводили эндоскопический зажим, вскрывали перикард в области основания сердца и мобилизовали аорту (рис. 2, А).

Удалили зажим и троакар, вводили криоинструмент КД-3. Правосторонняя торакотомия во II межреберьи обеспечивает оптимальный доступ к дуге аорты. Применение специальной насадки в качестве криоаппликатора позволяет обхватить дугу аорты и провести криодеструкцию сосуда в полном объеме до прекращения кровотока (рис. 2, В).

Участок аорты после криовоздействия и извлечения инструмента оттаивал в течение 5–7 с, и кровоток в аорте восстанавливался. Затем риноскоп извлекали из грудной полости. После гемостаза W-образные швы с обеих сторон затягивали и послойно шили послеоперационную рану.

Световая микроскопия полутонких срезов аорты показала, что в норме структура всех слоев исследуемого сосуда сохранена. Определялось четкое разграничение по слоям (рис. 3, А).

Адвентициальная оболочка была представлена collagenовыми волокнами, фибробластами и жировыми клетками, а также пучками нервных волокон, идущих вдоль сосуда и перекрешивающихся между собой. Клетки эндотелия на полутонких срезах не определялись. Внутренняя эластическая мембрана четко выражена, ее связь с мышечным слоем сохранена.

После криоденервации нервные волокна адвентициальной оболочки претерпели значитель-
ные деструктивные изменения, приводящие к разрушению клеточных элементов (рис. 3, В), большинство из которых были фрагментированы и имели вид размытых по поверхности очагов. Определялись кровоизлияния из мелких кровеносных сосудов адвенции вследствие нарушения целостности их сосудистой стенки, что свидетельствовало о разрушении нервных окончаний, в том числе и барорецепторов [16]. В мышечной оболочке каркаса из эластических и коллагеновых волокон сохранялся, однако наблюдались их разрыхление и дезориентация.

Для верификации наличия или отсутствия эндоцелия сосуда после криодеструкции аорты изучали морфологическую структуру интимы, импрегнируя гистологические препараты серебром. Данный метод позволяет определить структуру клеток и тканей, поскольку они обладают разной способностью удерживать или восстанавливать соли серебра.

Проведенный морфологический анализ сегмента дуги аорты показал, что в норме ее интима представлена эндоцелelialной выстилкой. В препаратах аорты, импрегнированной серебром, эндоцеллалярные клетки имели форму многоугольников с четкими равномерными артифактными контурами, вытянутыми вдоль оси сосуда (рис. 4, А).

После криодеструкции структурная организация эндотелия аорты, как наиболее криолабильной ткани, претерпела существенные изменения, приводящие к его слущиванию. На препаратах обнаружены обширные участки десквамации эндотелия (рис. 4, В).
Результаты проведенных ранее исследований на arteria hepatica [10], так и наших экспериментов показали, что температура –120°С и экспозиция 60 с обеспечивают криодеструкцию как интимы, так и адвенции сосуда.

Методика криодеструкции n. vagus в брюшном отделе. Для наркотизации и фиксации животных применяли вышеописанные методики. После удаления шерстного покрова в асептических условиях вскрывали переднюю брюшную стенку. В операционную рану выводили брюшной отдел пищевода и желудок. По обе стороны кардиального отдела пищевода четко определялись ветви n. vagus (рис. 5, A). Далее

of nerve endings, including baroreceptors [15]. In muscular membrane, the scaffold of elastic and collagen fibers was preserved, but their loosening and disorientation were noted.

To verify the presence or absence of vessel endothelium after aorta cryoablation, the intima morphology was studied using the silver impregnation of histological preparations. This method enables determining the structure of cells and tissues, since they have different capability to retain or restore the silver salts.

The performed morphological analysis of the aortic arch segment under normal conditions showed its intima to be represented by endothelial lining. In the silver-impregnated aortic preparations

Рис. 4. Фрагмент стенки дуги аорты крысы. A – эндотелий аорты интактной крысы; B – эндотелий аорты после криовоздействия. Импрегнация серебром. Световая микроскопия.

Fig. 4. Rat’s aortic arch wall fragment. A – aortic endothelium of intact rat; B – aortic endothelium after cryoexposure. Silver impregnation. Light microscopy.

Рис. 5. Криодеструкция брюшного отдела n. vagus: A – выделение правой ветви брюшного отдела n. vagus; B – криодеструкция передней ветви n. vagus.

Fig. 5. Cryoablation of n. vagus abdominal portion: A – isolation of right branch of n. vagus abdominal portion; B is cryoablation of n. vagus anterior branch.
с помощью криоинструмента проводили крио-
деструкцию передней ветви n. vagus (рис. 5, B).

После тщательного гемостаза послойно уши-
вали переднюю брюшную стенку и наклады-
вали кожные швы на рану. В послеоперацион-
ном периоде осложнений, изменений в поведении
и приеме пищи, а также случаев послеопера-
ционной летальности зафиксировано не было.

Криохирургический метод деструкции нервов
открывает новые возможности для исследований
физиологических механизмов вариабельности
сердечного ритма, а также при проведении опера-
ций, предусматривающих криоденервацию серд-
ца: ветвей симпатического и парасимпатического
нервов, а также синусового узла правого предсер-
дия.

Выводы
Установлено, что криохирургический метод
позволяет проводить деструкцию n. vagus в раз-
личных анатомических областях эксперименталь-
ных животных и исключить влияние парасимпа-
тического отдела ВНС на вариабельность сердеч-
ного ритма.

Используя предложенный оперативный доступ
в грудную полость животных с помощью эндо-
скопической установки и криохирургического
метода денервации сосудов, можно осуществить
деструкцию барорецепторов дуги аорты с сох-
ранением анатомической целостности сосуда.

Относительная доступность выделения вет-
вей брюшного отдела n. vagus по латеральным
краям пищевода крысы позволяет проводить
криоденервацию как отдельных, так и обеих вет-
вей нерва вместе с пищеводом.

Литература
1. Бойко ВВ, Хворостов ЕД, Сушков СВ. Криоваготомия в ком-
плексном лечении больных хроническими дуоденальными
язвами. Вісник Харківського національного університету.
Серія Медицина. 2004; (614): 30–3.
2. Веркин БИ, Медведев ЕМ, Муринец-Маркевич БН, Утемов
ТВ. изобретатели; Физико-технический институт низких тем-
ператур Украинской ССР , патентообладатель. Устройство
для локального охлаждения ткани. Авторское свидетель-
ство № 528090. 15.09.1976.
3. Гриценко В.І, Сандомирский Б.П. Практическая криомедицина. Киев: Здоров’я; 1987. 246 с.
4. Кондаков І.К, Яковцева А.Ф, Гавриш А.С. Способи оцінки морфофункционального стану ендотелію судин. Методичні рекомендації. Харків, Київ; 2000. 19 с.
5. Миронянко М.Е, Чумасов Е.І. Регенерація седалищно-гіперіаурального нерва. Архів анатомії, гістології та амбіології. 1988; 95(10): 30–5.
6. Ноздрчев А.Д, Поляков Е.Л. Анатомія крыси (Лабораторные животные). Санкт-Петербург: Лань; 2001. 464 с.
7. Синельников Р.Д. Атлас анатомии человека. Москва: Медицина; 1987. Т. 2. 558 с.
8. Сыровнев В.А, Лебедев Д.С, Михайлов Е.Н. Стимуляция блуждающего нерва в кардиологии. Трансляционная медицина. 2017; 4(2): 6–16.
9. Чиж Н.А. Параметры спектрального анализа вариабельности сердечного ритма у крыс. Проблемы криобиологии и криomedицины. 2015; 25(3): 235–45.
10. Чиж Н.А, Марченко Я.Н, Белочкина И.В, і т. ін. Ендоскопічна уста новка для операції на експериментальних тваринах. Фізіологічний журнал. 2017; 63(2): 86–94.
11. Чиж Н.А, Миронянко М.Е, Чумасов Е.І, і т. ін. Ендоскопічна уста новка для операцій на експериментальних тваринах. Фізіологічний журнал. 2017; 63(2): 86–94.
12. Чиж Н.А, Миронянко М.Е, Чумасов Е.І, і т. ін. Ендоскопічна уста новка для операцій на експериментальних тваринах. Фізіологічний журнал. 2017; 63(2): 86–94.
13. Inoue H, Zipes DP. Changes in atrial and ventricular re- fractoriness and in atrioventricular nodal conduction produced by combinations of vagal and sympathetic stimulation that result in a constant spontaneous sinus cycle length. Circulation research. 1987; 60(6): 942–51.
14. Inoue H, Zipes DP. Changes in atrial and ventricular re- fractoriness and in atrioventricular nodal conduction produced by combinations of vagal and sympathetic stimulation that result in a constant spontaneous sinus cycle length. Circulation research. 1987; 60(6): 942–51.