The *inverse* optoacoustic (OA) problem is concerned with the reconstruction of “internal” OA properties from “external” measurements of acoustic pressure signals. In contrast to the *direct* OA problem, referring to the calculation of a diffraction-transformed pressure signal at a desired field point for a given initial stress profile \(I.1 \), one can distinguish two inverse OA problems: \(I.1 \) the *source reconstruction problem*, where the aim is to invert measured OA signals to initial stress profiles upon knowledge of the mathematical model that mediates the underlying diffraction transformation \(I.1 \), and, \(I.2 \) the *kernel reconstruction problem*, where the task is to reconstruct a proper OA stress-wave propagator to account for the apparent diffraction transformation shown by the OA signal. While, owing to its immediate relevance for medical applications \(I.1 \), current progress in the field of inverse optoacoustics is spearheaded by OA tomography and imaging applications in line with \(I.1 \) \(I.2 \), problem \(I.2 \) has not yet received much attention (note that quite similar kernel reconstruction problems are well studied in the context of inverse-scattering problems in quantum mechanics \(I.1 \)). However, under ill-conditioned circumstances that prohibit a consistent description of the stress-wave propagation or when the multitude of signals that form the inversion input to common backpropagation approaches (see, e.g., Refs. \(I.1 \)) are simply inaccessible, kernel reconstruction in terms of \(I.2 \) provides an opportunity to yield a reliable OA inversion protocol in terms of single-shot measurements.

As a remedy, we here describe a numerical approach to problem \(I.2 \), appealing from a point of view of computational theoretical physics. More precisely, in the presented letter, we focus on the kernel reconstruction problem in the paraxial approximation to the optoacoustic wave-equation, where we suggest a Fourier-expansion approach to construct an approximate stress wave propagator. We show that once \(I.2 \) is solved for a given “apparative” setup, this then allows to subsequently solve \(I.1 \) for different signals obtained using an identical apparative setup. A central and reasonable assumption of our approach is that the influence of the stress wave propagator on the shape change of the OA signal is negligible above a certain cut-off distance. After developing and testing the numerical procedure in the paraxial approximation, we assess how well the inversion protocol carries over to more prevalent optoacoustic problem instances, featuring the reconstruction for: (i) the full OA wave-equation, (ii) non Gaussian irradiation source profiles, and, (iii) measured signals exhibiting noise.

The *direct OA problem*. The dominant microscopic mechanism contributing to the generation of acoustic stress waves is expansion due to photothermal heating \(I.1 \). In the remainder we assume a pulsed photothermal source with pulse duration short enough to ensure thermal and stress confinement \(I.1 \). Then, in case of a purely absorbing material exposed to a irradiation source profile with beam axis along the \(z \)-direction of an associated coordinate system, a Gaussian profile in the transverse coordinates \(r'_\perp \) and nonzero depth dependent absorption coefficient \(\mu_a(z) \), limited to \(z \geq 0 \) and varying only along the \(z \)-direction, the initial acoustic stress response to photothermal heating takes the form

\[
p_0(\vec{r}) = f_0 \mu_a(z) \exp \left\{ - |\vec{r}_\perp|^2/a_B^2 - \int_0^z \mu_a(z') \, dz' \right\}. \tag{1}
\]

Therein \(f_0 \) and \(a_B \) signify the intensity of the irradiation source along the beam axis and the \(1/e \)-width of the beam profile orthogonal to the beam axis, respectively. Given the above initial instantaneous acoustic stress field \(p_0(\vec{r}) \), the scalar excess pressure field \(p(\vec{r}, t) \) at time \(t \) and field point \(\vec{r} \) can be obtained by solving the inhomogeneous OA wave equation \(I.2 \)

\[
\left[\partial_t^2 - c^2 \Delta \right] p(\vec{r}, t) = p_0(\vec{r}) \, \partial_t \delta(t), \tag{2}
\]

with \(c \) denoting the sonic speed within the medium. The acoustic near and far-field might be distinguished by means of the diffraction parameter \(D = 2|\vec{r}_D|/(\mu_a a_B^2) \), where near and far-field are characterized by \(D < 1 \) and \(D > 1 \), respectively.
In the paraxial approximation where the full wave equation reduces to the parabolic diffraction equation \[\partial_t \partial_z - \frac{c}{2} \Delta_z \] \([p] = 0 \] [2, 12], it can be shown that the time-retarded \((\tau = t + z_D/c)\) OA signal at a field point along the beam axis \(p_D(\tau) \equiv p(R_D, t)\) can be related to the initial \((t = 0)\) on-axis stress profile \(p_0(\tau) \equiv p_0(R_\perp = 0, t)\) via a Volterra integral equation of 2nd kind, reading [12]

\[
p_D(\tau) = p_0(\tau) - \int_{-\infty}^{\tau} K(\tau - \tau') p_0(\tau') \, d\tau'.
\]

Therein the Volterra operator features a convolution kernel \(K(\tau - \tau') = \omega_D \exp\{-\omega_D(\tau - \tau')\}\), mediating the diffraction transformation of the propagating stress waves. The characteristic OA frequency \(\omega_D = 2c|z_D|/a_B^2\) effectively combines the defining parameters of the apparative setup \(p_{sys} \equiv (c, a_B, z_D)\). Subsequently we focus on OA signal detection in backward mode, i.e. \(z_D < 0\).

The inverse OA kernel reconstruction problem. Note that the solution of the direct problem and inverse problem (1.1) in terms of Eq. (3) is feasible using standard numerical schemes based on, e.g., a trapezoidal approximation of the Volterra operator for a generic kernel [13], or highly efficient memoization techniques for the particular form of the above convolution kernel [14]. As pointed out earlier, considering inverse problem (1.2), we here suggest a Fourier-expansion of the Volterra kernel involving a sequence of \(N\) expansion coefficients \(a \equiv \{a_\ell \}_{0 \leq \ell < N}\) and a cut-off distance \(R\) above which the resulting effective kernel is assumed to be zero, i.e.

\[
K(x; a, R) = \sum_{\ell=0}^{N-1} a_\ell \ k_\ell(x; R) \ \Theta(R - x).
\]

The expansion functions \(k_\ell(x; R)\) are given by

\[
k_\ell(x; R) = \begin{cases} 1, & \text{if } \ell = 0, \\
\cos \left(\frac{2\pi}{N} \left(\frac{\ell}{N} + \frac{1}{2} \right) \right), & \text{if } \ell \text{ odd}, \\
\sin \left(\frac{2\pi}{N} \left(\frac{\ell}{N} + \frac{1}{2} \right) \right), & \text{if } \ell \text{ even}
\end{cases}
\]

and \(\Theta(\cdot)\) signifies the Heaviside step-function. Then, for a suitable sequence \(a\), the Fourier approximation to the Volterra integral equation, Eq. (3), reads

\[
p_D(\tau) = p_0(\tau) - \sum_{\ell=0}^{N-1} a_\ell \ \Phi_\ell(\tau; R),
\]

with reduced partial diffraction terms

\[
\Phi_\ell(\tau; R) = \int_{-\infty}^{\tau} k_\ell(\tau - \tau'; R) \ \Theta(R - (\tau - \tau')) p_0(\tau') \, d\tau'.
\]

Now, consider a given set of input data \((p_0, p_D)\) for known apparative parameters \(p_{sys} = (c, a_B, z_D) \equiv (1 \text{ cm/s}, 0.1 \text{ cm}, -0.5 \text{ cm})\). (a) Inversion input \(p_0\) (solid black line) and \(p_D\) (solid blue line) used to derive effective kernel for \(N = 5, 11,\) and \(51\) Fourier-coefficients and cut-off parameter \(R = 0.06\) cm. Solution of the respective source reconstruction problems yields the estimates \(p_{rl}\) (dashed and dash-dotted red curves). (b) The main plot illustrates the effective kernel \(K_{\text{eff}}(\Delta \tau) \equiv K(\Delta \tau; a^*, R)\) for two different cut-off distances \(R = 0.04\) cm, and \(0.06\) cm. The inset shows the SSR \(s(R) \equiv s(a^*, R)\) for \(N = 51\) as function of the cut-off distance where the minimum is attained at \(R = 0.06\) cm. (c) Solution \(p_{rl}\) of the source reconstruction problem for a OA signal \(p_0\) (solid blue line) resulting from a two-layer absorbing structure for the same system parameters as in (a). Source reconstruction is performed using the effective kernel for \(p_{sys} = (51, 0.06 \text{ cm})\) resulting from the gauge procedure.
in mind that $\tau_i = t_i + z_D/c$, the optimal expansion coefficient
sequence a^* can be obtained by minimizing the sum of the squared residuals (SSR)
\[s(a, R) = \sum_{i=0}^{M} \left[(p_0(\tau_i) - p_D(\tau_i)) - \sum_{\ell=0}^{N-1} a_\ell \Phi_\ell(\tau_i; R) \right]^2. \] (8)

In the above optimization formulation of inverse problem (I,2), we considered a trapezoidal rule to numerically evaluate the integrals that enter via the functions $\Phi_\ell(\tau_i; R)$. In an attempt to construct an effective Volterra kernel $K(x; a, R)$ for a controlled setup with \textit{a priori} known parameters p_{sys}, one might use the high-precision “Gaussian-beam” estimator $a_0 = (2\omega_D/R) \int_B k(x; R) \exp(-\omega_D x) dx$ to obtain an initial sequence a_0 of expansion coefficients by means of which a least-squares routine for the minimization of Eq. (8) might be started. In a situation where, say, a_{pl} is only known approximately or the assumption of a Gaussian beam profile is violated, one has to rely on a rather low-precision coefficient estimate obtained by roughly estimating the apparative parameters and resorting on the above “Gaussian-beam” estimate.

An exemplary kernel reconstruction procedure is shown in FIG. 1 where the OA signal p_D at $p_{sys} = (1\, \text{cm/s}, \ 0.1 \, \text{cm}, \ -0.5 \, \text{cm})$, i.e. $D = 3.75$, is first obtained by solving the direct OA problem for Eq. (3) for an absorbing layer with $\mu_a = 24 \text{ cm}^{-1}$ in the range $z = 0 - 0.1 \, \text{cm}$, see black (p_0) and blue (p_D) curves in FIG. 1(a). The set (p_0, p_D) is then used as inversion input to compute the effective Volterra kernel for various sets of reconstruction parameters $p_{rec} = (N, R)$. In particular, considering $N = 51$, the minimal value of $s(a^*, R^*) \approx 1.47$ is attained at $R^* = 0.06 \, \text{cm}$, see the inset of FIG. 1(b). As evident from the main plot of FIG. 1(b), the effective Volterra kernel for $p_{rec} = (51, R^*)$ follows the exact stress wave propagator for almost two orders of magnitude up to $c \Delta \tau \approx 0.05 \, \text{cm}$. Beyond that limit, the noticeable deviation between both does not seem to affect the overall SSR $s(a, R)$ too much. In this regard, note that the kernel approximated for the (non optimal) choice $p_{rec} = (51, 0.04 \, \text{cm})$ exhibits a worse SSR.

The inverse OA source reconstruction problem. Note that the above Fourier-expansion approximation might be interpreted as a gauge procedure to adjust an effective Volterra kernel $K(x; a^*, R)$ for an (possibly unknown) apparative setup p_{sys}, here indirectly accessible through the diffraction transformation of the OA signal p_D relative to p_0. That is, once the kernel reconstruction (I.2) is accomplished for a set of reference curves $(p_0, p_D)_{ref}$ under p_{sys}, the source reconstruction problem (I.1) might subsequently be tackled also for all other OA signals measured under p_{sys} by solving the OA Volterra integral equation Eq. (3) in terms of a Picard-Lindelöf “correction” scheme [12]. The latter is based on the continued refinement of a putative solution, starting off from a properly guessed “predictor” $p_{PL}^{(0)}(\tau)$, improved successively by solving
\[p_{PL}^{(n+1)}(\tau) = p_D(\tau) + \int_{-\infty}^{\tau} K(\tau - \tau'; a^*, R) p_{PL}^{(n)}(\tau') \, d\tau'. \] (9)

From a practical point of view we terminated the iterative correction scheme as soon as the max-norm $c_n \equiv \|p_{PL}^{(n+1)}(\tau) - p_{PL}^{(n)}(\tau)\|$ of two successive solutions decreases below $c_n \leq 10^{-6}$. We here refer to the final estimate simply as p_{PL}. Note that, attempting a solution of (I.1) in the acoustic near-field, a high-precision predictor can be obtained by using the initial guess $p_{PL}^{(0)} \equiv p_D$. This is a reasonable choice since one might expect the change of the OA near-field signal due to diffraction to be still quite small. Further, source reconstruction in the acous-
tic far-field might be started using a high-precision predictor obtained by integrating the OA signal p_D in the far-field approximation \[14\]. In contrast to this, low-precision predictors for both cases can be obtained by setting $p_{PLL}^{(0)} = c_0$, where, e.g., $c_0 = 0$.

The solution of the source reconstruction problem for the OA signal p_p used in the approximation of the Volterra kernel for the above setting $p_{sys} = (1 \text{ cm/s}, 0.1 \text{ cm}, -0.5 \text{ cm})$ is shown in FIG. 2(a). The apparent agreement of the data curves p_{PLL} for $p_{rec} = (51, R^*)$ and p_0 does not come as a surprise since p_D was used for the gauge procedure in the first place. As a remedy we attempt a source reconstruction for a second independent OA signal, simulated for the same apparatus setting only with two absorbing layers $\mu_{a,1} = 24 \text{ cm}^{-1}$ from $z = 0 - 0.05 \text{ cm}$ and $\mu_{a,2} = 12 \text{ cm}^{-1}$ from $z = 0.05 - 0.12 \text{ cm}$. As evident from FIG. 2(c), inversion using the effective Volterra kernel from the previous gauge procedure yields a reconstructed stress profile p_{PLL} in excellent agreement with the underlying exact initial stress profile p_0.

Inversion beyond the paraxial approximation. Given the apparent feasibility of the kernel reconstruction routine as a gauge procedure to model the diffraction transformation of OA signals in terms of an effective stress wave propagator in the framework of the OA Volterra integral equation, we next address the inversion of OA signals to initial stress profiles beyond the paraxial approximation. Therefore, we first consider a borderline far-field signal for a top-hat irradiation source

$$f(\vec{r}_⊥) = \begin{cases}
1, & \text{if } |\vec{r}_⊥| \leq \rho_0 \\
\exp\{-(|\vec{r}_⊥| - \rho_0)^2/a_B^2\}, & \text{if } |\vec{r}_⊥| > \rho_0
\end{cases}$$

recorded at the system parameters $p_{sys} = (c, \rho_0, a_B, z_0) = (1 \text{ cm/s}, 0.1 \text{ cm}, 0.1 \text{ cm}, -0.50 \text{ cm})$, and thus $D = 2|z_0|/\mu_a(a_B + \rho_0) \approx 1.04$, obtained via an independent forward solver for the full OA wave equation designed for the solution of the OA Poisson integral for layered media \[2\]. The inversion results are summarized in FIG. 2(a), where the kernel reconstruction (inset) and source reconstruction (main plot) are shown for the parameter set $p_{rec} = (41, 0.1 \text{ cm})$. The excellent agreement of the stress profiles p_0 and p_{PLL} suggests that the kernel reconstruction routine also applies to a more general OA setting, based on the full OA wave equation. Finally, we consider an OA signal resulting from an actual measurement on PVA hydrogel based tissue phantoms \[13\]. In this case we carefully estimated the apparative parameters $p_{sys} = (150000 \text{ cm/s}, 0.054 \text{ cm}, 0.081 \text{ cm/s}, -0.3 \text{ cm})$ as well as $\mu_a = 11 \text{ cm}$ in the range $z = 0 - 0.095 \text{ cm}$, i.e. $D \approx 6.73$, in order to create a set of synthetic input data by means of which an appropriate kernel gauge procedure can be carried out. The result of the procedure using $p_{rec} = (51, 0.1 \text{ cm})$ is shown in FIG. 2(b). So as to perform the source reconstruction for the experimental signal p_{ex}, we considered data within the interval $ct = [0, 0.15] \text{ cm}$, only. As evident from the figure, the reconstructed stress profile p_{PLL} fits the signal p_0 used in the gauge procedure remarkably well \[17\].

Conclusions. In the presented Letter we have introduced and discussed the kernel reconstruction problem in the paraxial approximation to the optoacoustic wave equation. We suggested a Fourier-expansion approach to approximate the Volterra kernel which takes a central role in the theoretical framework. The developed approach proved useful as gauge procedure by means of which the diffraction transformation experienced by OA signals can effectively be modeled, allowing to subsequently solve the source reconstruction problem in the underlying apparative setting. From this numerical study we found that the developed approach extends beyond the framework of the paraxial approximation and also allows for the inversion of OA signals described by the full OA wave equation. From a point of view of computational theoretical physics it would be tempting to explore other kernel expansions in terms of generalized Fourier series as well as gauge procedures involving sets of measured pressure profiles only. Such investigations are currently in progress with the aim to shed some more light on this intriguing inverse problem in the field of optoacoustics and to facilitate a complementary approach to conventional OA imaging.

Acknowledgments. We thank A. Demircan for commenting on an early draft of the manuscript and E. Blumenröhr for providing experimental data. This research work received funding from the VolkswagenStiftung within the “Niedersächsisches Vorab” program in the framework of the project “Hybrid Numerical Optics” (HYMNOS: Grant ZN 3061). Valuable discussions within the collaboration of projects MeDiOO and HYMNOS at HOT are gratefully acknowledged.

\[\text{oliver.melchert@hot.uni-hannover.de}\]

[1] G. J. Diebold, M. I. Khan, and S. M. Park, Science 250, 101 (1990); G. J. Diebold, T. Sun, and M. I. Khan, Phys. Rev. Lett. 67, 3384 (1991); I. G. Calasso, W. Craig, and G. J. Diebold, ibid. 86, 3550 (2001).

[2] V. E. Gusev and A. A. Karabutov, Laser Optoacoustics (American Institute of Physics, 1993).

[3] L. D. Landau and E. M. Lifshitz, Hydrodynamik (4th Ed.) (Akademie-Verlag (Berlin), 1981).

[4] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory (3rd Ed.) (Springer, 2013).

[5] L. Wang, Photoacoustic Imaging and Spectroscopy, Optical Science and Engineering (CRC Press, 2009).

[6] P. Kuchment and L. Kunyansky, European Journal of Applied Mathematics 19, 191 (2008).

[7] M. Xu and L. V. Wang, Rev. Sci. Instr. 77, 041101 (2006); L. V. Wang and S. Hu, Science 335, 1458.
(2012); J.-M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, Nature medicine 18, 1297 (2012); L. Wang, J. Xia, J. Yao, K. I. Maslov, and L. V. Wang, Phys. Rev. Lett. 111, 204301 (2013); L. Wang, C. Zhang, and L. V. Wang, ibid. 113, 174301 (2014); I. Stoffels, S. Morscher, I. Helfrich, U. Hillen, J. Leyh, N. C. Burton, T. C. P. Sardella, J. Claussen, T. D. Poeppel, H. S. Bachmann, A. Roesch, K. Griewank, D. Schadendorf, M. Gunzer, and J. Klode, Science Translational Medicine 7, 317ra199 (2015); 7, 319er8 (2015).

[8] M. Agranovsky and P. Kuchment, Inverse Problems 23, 2089 (2007); X. L. De´ an-Ben, A. Buehler, V. Ntziachristos, and D. Razansky, IEEE Transactions on Medical Imaging 31, 1922 (2012); Z. Belhachmi, T. Glatz, and O. Scherzer, Inverse Problems 32, 045005 (2016).

[9] S. J. Norton and M. Linzer, IEEE Trans. Biomed. Eng., 202 (1981); M. Xu and L. V. Wang, Phys. Rev. E 71, 016706 (2005); P. Burgholzer, G. J. Matt, M. Haltmeier, and G. Paltauf, 75, 046706 (2007).

[10] K. Chadan and P. Sabatier, Inverse Problems of Quantum Scattering Theory (Springer, 1989); B. Apagyi, G. Endrédí, and P. Levay, Inverse and Algebraic Quantum Scattering Theory, Lecture notes in physics (Springer, 1997); M. Münchow and W. Scheid, Phys. Rev. Lett. 44, 1299 (1980); O. Melchert, W. Scheid, and B. Apagyi, J. Phys. G: Nucl. Part. Phys. 32, 849 (2006).

[11] A. C. Tam, Rev. Mod. Phys. 58, 381 (1986).

[12] A. Karabutov, N. B. Podymova, and V. S. Letokhov, Appl. Phys. B 63, 545 (1996).

[13] W. Press, B. Flannery, S. Teukolsky, and W. Vetterling, Numerical Recipes in FORTRAN 77 (Cambridge University Press, 1992).

[14] J. Stritzel, O. Melchert, M. Wollweber, and B. Roth, “Direct and inverse solver for the 3D optoacoustic Volterra equation,” (2016), (unpublished), [arXiv:1606.04740].

[15] E. Blumenröther, O. Melchert, M. Wollweber, and B. Roth, “Detection, numerical simulation and approximate inversion of optoacoustic signals generated in multilayered PVA hydrogel based tissue phantoms,” (2016), (unpublished), [arXiv:1605.05657].

[16] E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Differential Equations I (2nd rev. Ed.): Nonstiff Problems (Springer, 1993).

[17] A PYTHON implementation of our code for the solution of inverse problems (1.1) and (1.2) can be found at https://github.com/omelchert/INVERT.git.