From Super Poincaré to Weighted Log-Sobolev and Entropy-Cost Inequalities

Feng-Yu Wang

School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China
Present: Department of Mathematics, University of Swansea, Singleton Park, SA2 8PP, UK

February 2, 2008

Abstract

We derive weighted log-Sobolev inequalities from a class of super Poincaré inequalities. As an application, the Talagrand inequality with larger distances are obtained. In particular, on a complete connected Riemannian manifold, we prove that the logδ-Sobolev inequality with $δ ∈ (1, 2)$ implies the $L^{2/(2−δ)}$-transportation cost inequality

$$W_{2/(2−δ)}^ρ(μ_1, μ_2)^{2/(2−δ)} ≤ Cμ(f \log f), \quad μ(f) = 1, f ≥ 0$$

for some constant $C > 0$, and they are equivalent if the curvature of the corresponding generator is bounded below. Weighted log-Sobolev and entropy-cost inequalities are also derived for a large class of probability measures on \mathbb{R}^d.

AMS subject Classification: 60J60, 58G32.
Keywords: Entropy-cost inequality, super Poincaré inequality, weighted log-Sobolev inequality.

1 Introduction

Let $(E, ρ)$ be a Polish space and $μ$ a probability measure on E. For $p ≥ 1$ we define the L^p-Wasserstein distance (or the L^p-transportation cost) by

$$W_p^ρ(μ_1, μ_2) := \left\{ \inf_{π \in P(μ_1, μ_2)} \int_{E \times E} ρ(x, y)^p π(dx, dy) \right\}^{1/p}$$

*Supported in part by NNSFC(10121101) and the 973-Project in China.
for probability measures μ_1, μ_2 on E, where $C(\mu_1, \mu_2)$ is the class of probability measures on $E \times E$ with marginal distributions μ_1 and μ_2.

According to [4, Corollary 4],

$$W^p_{\rho}(f\mu, \mu)^{2p} \leq C \mu(f \log f), \quad f \geq 0, \mu(f) = 1$$

holds for some $C > 0$ provided $\mu(e^{\lambda \rho(o, \cdot)^{2p}}) < \infty$ for some $\lambda > 0$, where $o \in E$ is a fixed point. See also [8] for $p = 1$. Furthermore, it is easy to derive from [14, Theorem 1.15] that for any $q \in [1, 2p)$, there exists $C > 0$ such that

$$(1.1) \quad W^p_q(f\mu, \mu)^{2p} \leq C \mu(f \log f), \quad f \geq 0, \mu(f) = 1$$

if and only if $\mu(e^{\lambda \rho(o, \cdot)^2}) < \infty$ for some $\lambda > 0$. In general, however, this concentration of μ does not imply (1.1) for $q = 2p$. Indeed, there exist a plentiful examples where $\mu(e^{\lambda \rho(o, \cdot)^2}) < \infty$ for some $\lambda > 0$ but there is no any constant $C > 0$ such that the Talagrand inequality

$$(1.2) \quad W^p_2(f\mu, \mu)^2 \leq C \mu(f \log f), \quad f \geq 0, \mu(f) = 1$$

holds, see e.g. [1] for examples with $\mu(e^{\lambda \rho(o, \cdot)^2}) < \infty$ for some $\lambda > 0$ but the Poincaré inequality does not hold, which is weaker than (1.2) (see [17, Section 7] or [2, Section 4.1]).

Therefore, to derive (1.1) with $q = 2p$, one needs something stronger than the corresponding concentration of μ. In fact, it is now well known in the literature that, the Talagrand inequality follows from the log-Sobolev inequality for a class of local Dirichlet forms, see [21, 17, 2, 25, 20] and references within.

In this paper, we aim to derive (1.1) with $q = 2p$, i.e.

$$W^p_2(f\mu, \mu)^{2p} \leq C \mu(f \log f), \quad f \geq 0, \mu(f) = 1 \tag{1.3}$$

by using functional inequalities stronger than the log-Sobolev one.

To this end, in Section 2 we study the weighted log-Sobolev inequality

$$\mu(f^2 \log f^2) \leq C \mu(\alpha \circ \rho(o, \cdot) \Gamma(f, f)), \quad \mu(f^2) = 1$$

for a positive function $\alpha(r) \to 0$ as $r \to \infty$ and a nice square field Γ. Combining this with known results on log-Sobolev and the Talagrand inequality, we derive (1.2) with the original distance ρ replaced by a larger one, which is induced by the weighted square field $\alpha \circ \rho(o, \cdot) \Gamma$. In particular, we have the following result on a Riemannian manifold.

Let M be a connected complete Riemannian manifold, and $\mu(dx) = e^{V(x)}dx$ a probability measure on M for some $V \in C(M)$. We shall use the following super Poincaré inequality (see [23])
(1.4) \[\mu(f^2) \leq r\mu(|\nabla f|^2) + \beta(r)\mu(|f|^2), \quad r > 0 \]
to establish the corresponding weighted log-Sobolev inequality

(1.5) \[\mu(f^2 \log f^2) \leq C\mu(\alpha \circ \rho(o, \cdot)|\nabla f|^2), \quad \mu(f^2) = 1. \]
By [25, Theorem 1.1], (1.5) implies

(1.6) \[W_{2}^{\rho_{\alpha}}(f\mu, \mu)^{2} \leq C\mu(f \log f), \quad f \geq 0, \mu(f^2) = 1, \]
where \(\rho_{\alpha} \) is the Riemannian distance induced by the metric

(1.7) \[\langle X, Y \rangle' := \frac{1}{\alpha \circ \rho(o, x)} \langle X, Y \rangle, \quad X, Y \in T_xM, \ x \in M. \]
The main result of the paper is the following.

Theorem 1.1. Assume that (1.4) holds for some positive decreasing \(\beta \in C((0, \infty)) \) such that

\[\eta(s) := (\log(2s))(1 \wedge \beta^{-1}(s/2)), \quad s \geq 1 \]
is bounded, where \(\beta^{-1}(s) := \inf\{t \geq 0 : \beta(t) \leq s\} \). Then (1.5) holds for some \(C > 0 \) and

\[\alpha(s) := \sup_{t \geq \mu(\rho(o, \cdot) \geq s^{-2})^{-1}} \eta(t), \quad s \geq 0. \]
Consequently, (1.6) holds.

The following consequences show that the above result is sharp in specific situations.

Corollary 1.2. Let \(\delta \in (1, 2) \).

(a) (1.4) with \(\beta(r) = \exp[c(1 + r^{-1/\delta})] \) implies (1.5) with

\[\alpha(s) := (1 + \rho(o, \cdot))^{-2(\delta-1)/(2-\delta)} \]
and (1.6) with \(\rho_{\alpha}(x, y) \) replaced by

\[\rho(x, y)(1 + \rho(o, x) \vee \rho(o, y))^{(\delta-1)/(2-\delta)}. \]
Consequently, it implies

(1.8) \[W_{2}^{\rho}((2-\delta)/(2-\delta)}(f\mu, \mu)^{2/(2-\delta)} \leq C\mu(f \log f), \quad \mu(f) = 1, \ f \geq 0 \]
for some constant \(C > 0 \).

(b) If \(V \in C^{2}(M) \) with \(\text{Ric} - \text{Hess}_{V} \) bounded below, then the following are equivalent to each other:
(1) \((1.4)\) with \(\beta(r) = \exp[c(1 + r^{1/\delta})]\) for some constant \(c > 0\);

(2) \((1.5)\) with \(\alpha(s) := (1 + \rho(o, \cdot))^{-2(\delta-1)/(2-\delta)}\) for some \(C > 0\);

(3) \((1.6)\) for some \(C > 0\) and \(\rho_\alpha(x, y)\) replaced by \(\rho(x, y)(1 + \rho(o, x) \vee \rho(o, y))^{(\delta-1)/(2-\delta)}\);

(4) \((1.8)\) for some \(C > 0\);

(5) \(\mu(\exp[\lambda \rho(o, \cdot)^{2/(2-\delta)}]) < \infty\) for some \(\lambda > 0\).

We remark that \((1.4)\) with \(\beta(r) = \exp[c(1 + r^{1/\delta})]\) for some \(c > 0\) is equivalent to the following log\(\delta\)-Sobolev inequality mentioned in the abstract (see \[23, 24, 13, 26\] for more general results on \((1.4)\) and the \(F\)-Sobolev inequality)

\[\mu(f^2 \log f) \leq C_1 \mu(|\nabla f|^2) + C_2, \quad \mu(f^2) = 1.\]

Since due to \[24\] Corollary 5.3 if \((1.4)\) holds with \(\beta(r) = \exp[c(1 + r^{1/\delta})]\) for some \(\delta > 2\) then \(M\) has to be compact, as a complement to Corollary \(1.2\) we consider the critical case \(\delta = 2\) in the next Corollary.

Corollary 1.3. \((1.4)\) with \(\beta(r) = \exp[c(1 + r^{1/\delta})]\) for some \(c > 0\) implies \((1.5)\) with \(\alpha(s) := e^{-c_1 s}\) for some \(c_1 > 0\) and \((1.6)\) with \(\rho_\alpha(x, y)\) replaced by

\[\rho(x, y)e^{c_2 |\rho(o, x) \vee \rho(o, y)|} \geq e^{c_3 \rho(x, y)} - 1\]

for some \(c_2, c_3 > 0\). If \(\text{Ric} - \text{Hess}_V\) is bounded below, they are all equivalent to the concentration \(\mu(\exp[e^{\lambda \rho(o, \cdot)}]) < \infty\) for some \(\lambda > 0\).

Example 1.1. Let \(\text{Ric}\) be bounded below. Let \(V \in C(M)\) be such that \(V + a \rho(o, \cdot)\theta\) is bounded for some \(a > 0\) and \(\theta \geq 2\). By \[23\] Corollaries 2.5 and 3.3, \((1.4)\) holds for \(\delta = 2(\theta - 1)/\theta\). Then Corollary \(1.2\) implies

\[W_\theta^\rho(f, \mu, \mu)^\theta \leq C \mu(f \log f), \quad f \geq 0, \mu(f) = 1\]

for some constant \(C > 0\).

In this inequality \(\theta\) could not be replaced by any larger number, since \(W_\theta^\rho \geq W_1^\rho\) and by Proposition \(3.1\) below for any \(p \geq 1\) the inequality

\[W_1^\rho(f, \mu, \mu)^p \leq C \mu(f \log f), \quad f \geq 0, \mu(f) = 1\]

implies \(\mu(e^{\lambda \rho(o, \cdot)^p}) < \infty\) for some \(\lambda > 0\), which fails when \(p > \theta\) for \(\mu\) specified above.
Example 1.2. In the situation of Example 1.1 but let $V + \exp[\sigma \rho(o, \cdot)]$ be bounded for some $\sigma > 0$. Then by [23] Corollaries 2.5 and 3.3, (1.4) holds with $\beta(r) = \exp[c(1+r^{-1/2})]$ for some $c > 0$. Hence, by Corollary 1.3,

$$\inf_{\pi \in \mathcal{P}(\mu, \nu)} \int_{M \times M} \rho(x, y)^2 e^{c_1 \rho(x, y)} \pi(dx, dy) \leq C \mu(f \log f), \quad f \geq 0, \mu(f) = 1$$
holds for some $c_1, C > 0$.

On the other hand, it is easy to see from Jensen’s inequality that the left hand side is larger than

$$(\exp[c_2 W_0^p(\mu, f\mu)] - 1)^2$$
for some $c_2 > 0$. So, by Proposition 3.1 below (1.9) implies $\mu(\exp[\exp(\lambda \rho(o, \cdot))]) < \infty$ holds for any $\lambda > 0$, which is the exact concentration property of the given measure μ.

In the next section we study the super Poincaré and the weighted log-Sobolev inequality in an abstract framework, and complete proofs of the above results are presented in Section 3. Finally, weighted log-Sobolev and transportation cost inequalities are also studied for probability measures on \mathbb{R}^d by using concentrations.

2 From super Poincaré to weighted log-Sobolev inequalities

We shall work with a diffusion framework as in [1]. Let (E, \mathcal{F}, μ) be a separable complete probability space, and let $(\mathcal{E}, \mathcal{D}(\mathcal{E}))$ be a conservative symmetric local Dirichlet form on $L^2(\mu)$ with domain $\mathcal{D}(\mathcal{E})$ in the following sense. Let \mathcal{A} be a dense subspace of $\mathcal{D}(\mathcal{E})$ under the $E_1/2$-norm ($\mathcal{E}_1(f, f) = \| f \|^2_2 + \mathcal{E}(f, f)$) which is composed of bounded functions, stable under products and composition with Lipschitz functions on \mathbb{R}. Let $\Gamma : \mathcal{A} \times \mathcal{A} \to \mathcal{M}_b$ be a bilinear mapping, where \mathcal{M}_b is the set of all bounded measurable functions on E, such that

1. $\Gamma(f, f) \geq 0$ and $\mathcal{E}(f, g) = \mu(\Gamma(f, g))$ for $f, g \in \mathcal{A}$;
2. $\Gamma(\phi \circ f, g) = \phi'(f) \Gamma(f, g)$ for $f, g \in \mathcal{A}$ and $\phi \in C_0^\infty(\mathbb{R})$;
3. $\Gamma(fg, h) = g \Gamma(f, h) + f \Gamma(g, h)$ for $f, g, h \in \mathcal{A}$ with $fg \in \mathcal{A}$.

It is easy to see that the positivity and the bilinear property imply $\Gamma(f, g)^2 \leq \Gamma(f, f) \Gamma(g, g)$ for all $f, g \in \mathcal{A}$. For simplicity we set below $\Gamma(f, f) = \Gamma(f)$ and $\mathcal{E}(f, f) = \mathcal{E}(f)$.

We shall denote by \mathcal{A}_{loc} the set of functions f such that for any integer n, the truncated function $f_n = \min(n, \max(f, -n))$ is in \mathcal{A}. For such functions, the bilinear map Γ automatically extends and shares the same properties than for functions in \mathcal{A}.

Next, let $\rho \in \mathcal{A}_{\text{loc}}$ be positive such that $\Gamma(\rho, \rho) \leq 1$. We shall start from the super Poincaré inequality
To derive the desired weighted log-Sobolev inequality

$$
\mu(f^2) \leq r\mathcal{E}(f, f) + \beta(r)\mu(|f|^2), \quad r > 0.
$$

we shall also need the following Poincaré inequality

$$
\mu(f^2) \leq C_0\mathcal{E}(f, f) + \mu(f)^2
$$

for some $C_0 > 0$. Here and in what follows, the reference function f is taken from \mathcal{A}.

Theorem 2.1. Assume (2.3) holds for some $C_0 > 0$. Then (2.2) implies (2.2) for some constant $C > 0$ and α given in Theorem 1.1.

Proof. (a) Let $\Phi(s) = \mu(\rho \geq s)$ which decreases to zero as $s \to \infty$. We may take $r_0 > 0$ such that

$$
r_0(1 + \sup_{s \geq 1} \eta(s)) \leq \frac{1}{32}
$$

and

$$
\beta^{-1}(e^{\rho^{-1}}/4) \leq 1.
$$

For a fixed number $r \in (0, r_0]$ we define

$$
\begin{align*}
 h_n &= (\rho - \Phi^{-1}(2e^{-r-1}) - n)_+ \land 1) \left((n + 2 + \Phi^{-1}(2e^{-r-1}) - \rho)_+ \land 1 \right), \\
 \delta_n &= \left(\log \frac{2}{\Phi(n + \Phi^{-1}(2e^{-r-1}))} \right) \beta^{-1} \left(\frac{1}{2\Phi(n + \Phi^{-1}(2e^{-r-1}))} \right), \\
 B_n &= \{ n \leq \rho - \Phi^{-1}(2e^{-r-1}) \leq n + 2 \}, \quad n \geq 0.
\end{align*}
$$

Then

$$
\sum_{n=0}^{\infty} h_n^2 \geq \frac{1}{2} 1_{\{ \rho \geq \phi^{-1}(2e^{-r-1}) \}}.
$$

By (2.1) and noting that
\[\mu(|f|h_n)^2 \leq \mu(f^2h_n^2)(\varrho > n + \Phi^{-1}(2e^{-r^{-1}})) \leq \mu(f^2h_n^2)\Phi(n + \Phi^{-1}(2e^{-r^{-1}})), \]

we have

\[
\sum_{n=0}^{\infty} \mu(f^2h_n^2) \leq \sum_{n=0}^{\infty} \{r_n\mu(\Gamma(fh_n, fh_n)) + \beta(r_n)\mu(|f|h_n)^2\} \\
\leq \sum_{n=0}^{\infty} \left\{ \frac{2r_n}{\delta_n} \mu(\Gamma(f, f)\delta_n1_{B_n}) + 2r_n\mu(f^21_{B_n}) + \beta(r_n)\Phi(n + \Phi^{-1}(2e^{-r^{-1}}))\mu(f^2h_n^2) \right\}
\]

for \(r_n > 0 \). Since by (2.5) and the definition of \(\alpha \)

\[\alpha(s) \geq \delta_n \quad \text{for} \quad s \geq n + 2 + \Phi^{-1}(2e^{-r^{-1}}), \]

letting \(r_n = \delta_n r \) we obtain

\[
\sum_{n=0}^{\infty} \mu(f^2h_n^2) \leq \sum_{n=0}^{\infty} \left\{ 2r\mu(\Gamma(f, f)\alpha \circ \varrho 1_{B_n}) + 2r\delta_n\mu(f^21_{B_n}) \\
+ \beta(r\delta_n)\Phi(n + \Phi^{-1}(2e^{-r^{-1}}))\mu(f^2h_n^2) \right\}.
\]

(2.7)

Noting that

\[A := r \log \frac{2}{\Phi(n + \Phi^{-1}(2e^{-r^{-1}}))} \geq r \log \frac{2}{\Phi(\Phi^{-1}(2e^{-r^{-1}}))} = 1, \]

we have

\[\beta(\delta_n r) = \beta \left(A^{-1} \left(\frac{1}{2\Phi(n + \Phi^{-1}(2e^{-r^{-1}}))} \right) \right) \leq \frac{1}{2\Phi(n + \Phi^{-1}(2e^{-r^{-1}}))}. \]

Thus, by (2.7) and (2.4) and the fact that \(\delta_n \leq \sup \eta \), we arrive at

\[\sum_{n=0}^{\infty} \mu(f^2h_n^2) \leq \sum_{n=0}^{\infty} \left\{ 2r\mu(\Gamma(f, f)\alpha \circ \varrho 1_{B_n}) + \frac{1}{8}\mu(f^2) + \frac{1}{2} \sum_{n=0}^{\infty} \mu(f^2h_n^2) \right\}. \]

It follows from this and (2.6) that

\[
\mu(f^21_{\{\varrho \geq n + \Phi^{-1}(2e^{-r^{-1}})}}) \leq 8r\mu(\Gamma(f, f)\alpha \circ \varrho) + \frac{1}{2}\mu(f^2).
\]

(2.8)

(b) On the other hand, since \(\alpha \) is decreasing
\[
\mu(f^2 \mathbb{1}_{\{\varrho \leq 1 + \Phi^{-1}(2e^{-r-1})\}}) \leq \mu(f^2 \{(2 + \Phi^{-1}(2e^{-r-1}) - \varrho)^2 \wedge 1\})
\]
\[
\leq 2s\mu(\Gamma(f, f) \mathbb{1}_{\{\varrho \leq 2 + \Phi^{-1}(2e^{-r-1})\}}) + 2s\mu(f^2) + \beta(s)\mu(|f|^2)
\]
\[
\leq \frac{2s}{\alpha(2 + \Phi^{-1}(2e^{-r-1}))} \mu(\Gamma(f, f) \alpha \circ \varrho) + 2s\mu(f^2) + \beta(s)\mu(|f|^2), \quad s > 0.
\]
Taking
\[
s = r\alpha(2 + \Phi^{-1}(2e^{-r-1})) \leq \frac{1}{32}
\]
due to (2.4), we obtain
\[
\mu(f^2 \mathbb{1}_{\{\varrho \leq 1 + \Phi^{-1}(2e^{-r-1})\}}) \leq 2r\mu(\Gamma(f, f) \alpha \circ \varrho) + \frac{1}{16}\mu(f^2) + \beta(r\alpha(2 + \Phi^{-1}(2e^{-r-1})))\mu(|f|^2).
\]
Since by (2.5) and the definition of \(\alpha\)
\[
r\alpha(2 + \Phi^{-1}(2e^{-r-1})) \geq \left(r \log \frac{2}{\Phi(\Phi^{-1}(2e^{-r-1}))}\right)\beta^{-1} \left(\frac{1}{2\Phi(\Phi^{-1}(2e^{-r-1}))}\right)
\]
\[
= \beta^{-1}\left(\frac{e^{r-1}}{4}\right),
\]
we obtain
\[
\mu(f^2 \mathbb{1}_{\{\varrho \leq 1 + \Phi^{-1}(2e^{-r-1})\}}) \leq 2r\mu(\Gamma(f, f) \alpha \circ \varrho) + \frac{1}{16}\mu(f^2) + \frac{e^{r-1}}{4}\mu(|f|^2).
\]
Combining this with (2.3) we conclude that
\[
\mu(f^2) \leq 40r\mu(\Gamma(f, f) \alpha \circ \varrho) + e^{r-1}\mu(|f|^2), \quad r \in (0, r_0].
\]
Therefore, there exists a constant \(c > 0\) such that
\[
(2.9) \quad \mu(f^2) \leq r\mu(\Gamma(f, f) \alpha \circ \varrho) + e^{c(1-r^{-1})}\mu(|f|^2), \quad r > 0.
\]
According to e.g. [24, Corollary 1.3], this is equivalent to the defective weighted log-Sobolev inequality
\[
(2.10) \quad \mu(f^2 \log f^2) \leq C_1\mu(\Gamma(f, f) \alpha \circ \varrho) + C_2, \quad \mu(f^2) = 1.
\]
(c) Finally, for any \(f\) with \(\mu(f) = 0\), it follows from (2.3) that
\[
\mu(f^2) \leq \mu(f^2\{(1 + R - \rho)^2 \wedge 1\}) + \|f\|_\infty^2 \mu(\rho \geq R) \\
\leq 2C_0 \mu(\Gamma(f, f)1_{(\rho \leq 1+R)}) + (2C_0 + 1)\|f\|_\infty^2 \mu(\rho \geq R) + \mu(f\{(\rho - R)^+ \wedge 1\})^2 \\
\leq \frac{2C_0}{\alpha(1 + R)} \mu(\Gamma(f, f)\alpha \circ \rho) + 2(C_0 + 1)\|f\|_\infty^2 \mu(\rho \geq R), \quad R > 0.
\]

Since \(\mu(\rho \geq R) \to 0 \) as \(R \to \infty \), the weighted weak Poincaré inequality

\[
\mu(f^2) \leq \tilde{\beta}(r)\mu(\Gamma(f, f)\alpha \circ \rho) + r\|f\|_\infty^2, \quad r > 0, \mu(f) = 0
\]

holds for some positive function \(\tilde{\beta} \) on \((0, \infty)\). By [19, Proposition 1.3], this and (2.9) implies the weighted Poincaré inequality

\[
\mu(f^2) \leq C'\mu(\Gamma(f, f)\alpha \circ \rho) + \mu(f)^2
\]

for some constant \(C' > 0 \). Combining this with (2.10) we obtain the desired weighted log-Sobolev inequality (2.2). \(\square \)

3 Proofs of Theorem 1.1 and Corollaries

Proof of Theorem 1.1. Since \(\alpha \) is bounded, the completeness of the original metric implies that of the weighted one given by (1.7). So, (1.6) follows from (1.5) due to [23, Theorem 1.1] with \(p \to 2 \). Thus, by Theorem 2.1 with \(E = M \) and \(\Gamma(f, f) = |\nabla f|^2 \), it suffices to prove that (1.4) implies the Poincaré inequality (2.3) for some \(C_0 > 0 \). Due to [23] the super Poincaré inequality (1.4) implies that the spectrum of \(L \) is discrete. Moreover, since \(M \) is connected, the corresponding Dirichlet form is irreducible so that 0 is a simple eigenvalue. Therefore, \(L \) possesses a spectral gap, which is equivalent to the desired Poincaré inequality. \(\square \)

To complete the proof of Corollary 1.2, in the spirit of [16, 3] we introduce below a deviation inequality induced by the \(L^1 \)-transportation cost inequality.

Proposition 3.1. Let \(\tilde{\rho} : M \times M \to [0, \infty) \) be measurable. For any \(r > 0 \) and measurable set \(A \subset M \) with \(\mu(A) > 0 \), let

\[
A_r = \{x \in M : \tilde{\rho}(x, y) \geq r \text{ for some } y \in A\}, \quad r > 0.
\]

If

\[
W_1^\rho(f, \mu) \leq \Phi \circ \mu(f \log f), \quad f \geq 0, \mu(f) = 1
\]

(3.1)

holds for some positive increasing \(\Phi \in C([0, \infty)) \), then
(3.2) \[\mu(A_r) \leq \exp\left[-\Phi^{-1}(r - \Phi \circ \log \mu(A)^{-1}) \right], \quad r > \Phi \circ \log \mu(A)^{-1}, \]

where \(\Phi^{-1}(r) := \inf\{s \geq 0 : \Phi(s) \geq r\}, \quad r \geq 0. \)

Proof. It suffices to prove for \(\mu(A_r) > 0. \) In this case, letting \(\mu_A = \mu(\cdot \cap A)/\mu(A) \) and \(\mu_{A_r} = \mu(\cdot \cap A_r)/\mu(A_r), \) we obtain from (3.1) that

\[r \leq W_1^\beta(\mu_A; \mu_{A_r}) \leq W_1^\beta(\mu_A; \mu) + W_1^\beta(\mu_{A_r}; \mu) \leq \Phi \circ \log \mu(A)^{-1} + \Phi \circ \log \mu(A_r)^{-1}. \]

This completes the proof. \(\square \)

Proof of Corollary 1.2. (a) Let \(\beta(r) = e^{c(1+r^{-1/\delta})} \) for some \(c > 0 \) and \(\delta > 1. \) It is easy to see that

\[1 \wedge \beta^{-1}(s/2) \leq c_1 \log^{-\delta}(2s), \quad s \geq 1 \]

holds for some constant \(c_1 > 0. \) Next, by [24 Corollary 5.3], (1.4) with this specific function \(\beta \) implies

\[\mu(\rho(o, \cdot) \geq s - 2) \leq c_2 \exp[-c_3 s^{2/(2-\delta)}], \quad s \geq 0 \]

for some constants \(c_2, c_3 > 0. \) Therefore,

\[(3.3) \quad \alpha(s) \leq c_4 (1 + s)^{-2(\delta-1)/(2-\delta)}, \quad s \geq 0 \]

holds for some constant \(c_4 > 0. \)

On the other hand, for any \(x_1, x_2 \in M \) let \(i \in \{1, 2\} \) such that \(\rho(o, x_i) = \rho(o, x_1) \vee \rho(o, x_2). \) Define

\[f(x) = (\rho(x, x_i) \wedge \frac{\rho(o, x_i)}{2})(1 + \rho(o, x_i))^{(\delta-1)/(2-\delta)}, \quad x \in \mathbb{R}^d. \]

Then

\[\alpha \circ \rho(o, \cdot) |\nabla f|^2 \leq c_4 (1 + \rho(o, \cdot))^{-2(\delta-1)/(2-\delta)} |\nabla f|^2 \]

\[\leq c_4 (\rho(o, x_i)/2 \leq \rho(o, \cdot) \leq 3\rho(o, x_i)/2) (1 + \rho(o, \cdot))^{-2(\delta-1)/(2-\delta)} (1 + \rho(o, x_i))^{2(\delta-1)/(2-\delta)} \leq c_5 \]

for some constant \(c_5 > 0. \) Since by the triangle inequality \(\rho(o, x_i) \geq \frac{1}{2} \rho(x_1, x_2), \) this implies that the intrinsic distance \(\rho_\alpha \) satisfies

\[\rho_\alpha(x_1, x_2)^2 \geq \frac{|f(x_1) - f(x_2)|^2}{c_5} \]

\[\geq c_6 \rho(x_1, x_2)^2 (1 + \rho(o, x_1) \vee \rho(o, x_2))^{2(\delta-1)/(2-\delta)} \geq c_7 \rho(x_1, x_2)^{2/(2-\delta)} \]

\[\geq c_7 \rho(x_1, x_2)^{2/(2-\delta)} \]
for some constant $c_0, c_7 > 0$. Hence the proof of (a) is completed by Theorem 1.1.

(b) Now, assume that

$$\text{Ric} - \text{Hess}_V \geq -K$$

for some $K \geq 0$. By (a) and Proposition 3.1, which ensures the implication from (4) to (5), it suffices to deduce (1) from (5). Let

$$h(r) = \mu(e^{r\rho(o, \cdot)^2}), \quad r > 0.$$

By [24, Theorem 5.7], the super Poincaré inequality (1.4) holds with

$$\beta(r) := c_0 \inf_{0 < r_1 < r} \inf_{s > 0} \frac{1}{s} h(2K + 12s^{-1})e^{s/r_1 - 1}, \quad r > 0$$

for some constant $c_0 > 0$. Since for any $\lambda > 0$ there exists $c(\lambda) > 0$ such that

$$rt^2 \leq \lambda t^{2/(2-\delta)} + c(\lambda)r^{1/(\delta-1)}, \quad r > 0,$$

it follows from (5) that

$$h(r) \leq c_1 \exp[c_1 r^{1/(\delta-1)}], \quad r > 0$$

for some constants $c_1 > 0$. Therefore,

$$\beta(r) \leq c_2 \inf_{0 < r_1 < r} \inf_{s > 0} \frac{1}{s} \exp[c_2 s^{-1/(\delta-1)}] + s/r_1], \quad r > 0$$

for some $c_2 > 0$. Taking $s = r^{(\delta-1)/2}$ and $r_1 = r$, we conclude that

$$\beta(r) \leq c^{(1+r^{-1/\delta})}, \quad r > 0$$

for some $c > 0$. Thus, (1) holds.

Proof of Corollary 1.3. The proof is similar to that of Corollary 1.2 by noting that (1.4) with $\beta(r) = \exp[c(1+r^{-1/2})]$ implies $\mu(\rho(o, \cdot) \geq s) \leq \exp[-c e^{c_1 s}]$ for some $c_1 > 0$, see [24, Corollary 5.3].

4 Weighted log-Sobolev and transportation cost inequalities on \mathbb{R}^d

Our main purpose of this section is to establish the weighted log-Sobolev inequality for an arbitrary probability measure using the concentration of this measure. We shall also prove the HWI inequality introduced in [2] for the corresponding weighted Dirichlet form. The main point is to find square fields (resp. cost functions) for a given probability measure to satisfy the log-Sobolev inequality (resp. the Talagrand transportation cost inequality).
So, the line of our study is exactly opposed to existed references in the literature, see e.g. \cite{9, 10, 11} and references within, which provided conditions on the reference measure such that the log-Sobolev (resp. transportation cost) inequality holds for a given square field (resp. the corresponding cost function).

The basic idea of the study comes from Caffarelli \cite{5} which says that for any probability measure $\mu(dx) := e^{V(x)}dx$ on \mathbb{R}^d, there exists a convex function ψ on \mathbb{R}^d such that $\nabla \psi$ pushes μ forward to the standard Gaussian measure γ; that is, letting $y(x) := \nabla \psi(x)$, $x \in \mathbb{R}^d$, which is one-to-one, one has $\gamma = \mu \circ y^{-1}$. Furthermore, $\nabla \psi$ is uniquely determined and Hess_ψ is non-degenerate with

$$\text{det}(\text{Hess}_\psi) = (2\pi)^{d/2}e^{V + |\nabla \psi|^2/2}.$$

Let

$$\rho(x_1, x_2) := |y(x_1) - y(x_2)|, \quad x_1, x_2 \in \mathbb{R}^d.$$

Let W_2 be the L^2-Wasserstein distance induced by the usual Euclidean metric. Due to Talagrand \cite{21}

$$(4.1) \quad W_2(\gamma, f^2 \gamma)^2 \leq 2\gamma(f^2 \log f^2), \quad \gamma(f^2) = 1.$$

Since $\pi \in C(\mu \circ y^{-1}, (f^2 \circ y^{-1}) \mu \circ y^{-1})$ if and only if $\pi \circ (y \otimes y) \in C(\mu, f^2 \mu)$, we obtain from (4.1) and the change of variables theorem that

$$W_2^p(\mu, f^2 \mu)^2 = W_2(\gamma, (f^2 \circ y^{-1}) \gamma)^2 \leq 2\gamma(f^2 \circ y^{-1} \log f^2 \circ y^{-1}) = 2\mu(f^2 \log f^2), \quad \mu(f^2) = 1.$$

Similarly, since

$$\nabla(f \circ y^{-1}) = (Dy^{-1})(\nabla f) \circ y^{-1} = [(Dy) \circ y^{-1}]^{-1}(\nabla f) \circ y^{-1} = [(\text{Hess}_\psi)^{-1}\nabla f] \circ y^{-1},$$

where $Dy := (\partial_i y_j)_{d \times d}$, by Gross’ log-Sobolev inequality for γ (see \cite{12}) we obtain

$$\mu(f^2 \log f^2) \leq 2\mu((\text{Hess}_\psi)^{-1}\nabla f)^2), \quad f \in C^\infty_0(\mathbb{R}^d), \mu(f^2) = 1.$$

On the other hand, however, since the transportation $\nabla \psi$ is normally inexplicit, it is hard to estimate the distance ρ and the matrix Hess_ψ. So, to derive transportation and log-Sobolev inequalities with explicit distances and Dirichlet forms, we shall construct, instead of $\nabla \psi$, an explicit map using the concentration of μ, which transports the measure into the standard Gaussian measure with a perturbation. In many cases this perturbation is bounded and hence, does not make much trouble to derive the desired inequalities.
4.1 Main results

In this subsection we provide an explicit positive function α and an explicit distance ρ on \mathbb{R}^d such that the log-Sobolev inequality

$$(4.2) \quad \mu(f^2 \log f^2) \leq 2\mu(\alpha |\nabla f|^2), \quad f \in C_0^\infty(\mathbb{R}^d), \ \mu(f^2) = 1$$

and the transportation-cost inequality

$$(4.3) \quad W_2^p(\mu, f^2 \mu)^2 \leq 2\mu(f^2 \log f^2), \quad \mu(f^2) = 1$$

hold. In a special case, we are also able to present the HWI inequality stronger than (4.2).

Let us first consider a probability measure $\mu(dx) := e^{V(x)} dx$ on $[\delta, \infty)$ for some $\delta \in [-\infty, \infty)$, where $[-\infty, \infty)$ is regarded as \mathbb{R}. Let $\Phi_\delta(r) := \frac{1}{c_\delta} \int_\delta^r e^{-s^2/2} ds, \quad \varphi(r) := \mu([\delta, r)) = \int_\delta^r e^{V(x)} dx, \quad r \geq \delta,$

where $c_\delta := \int_\delta^\infty e^{-x^2/2} dx$ is the normalization.

Theorem 4.1. Let $\mu(dx) := 1_{[\delta, \infty)}(x)e^{V(x)} dx$ be a probability measure on $[\delta, \infty)$. For the above defined Φ_δ and φ, (4.2) and (4.3) hold with \mathbb{R}^d replaced by $[\delta, \infty)$ for

$$\alpha := \left(\frac{\Phi_\delta' \circ \Phi_\delta^{-1} \circ \varphi'}{\varphi'} \right)^2,$$

$$\rho(x, y) := |\Phi_\delta^{-1} \circ \varphi(x) - \Phi_\delta^{-1} \circ \varphi(y)|, \quad x, y \geq \delta.$$

Furthermore,

$$(4.4) \quad \mu(f^2 \log f^2) + W_2^p(\mu, f^2 \mu)^2 \leq 2\sqrt{2\mu(\alpha f'^2) W_2^p(\mu, f^2 \mu)}, \quad f \in C_0^\infty([\delta, \infty)), \mu(f^2) = 1.$$

The inequality (4.4), linking the Wasserstein distance, the relative entropy and the energy, is called the HWI inequality in [2] and [18].

To extend this result to \mathbb{R}^d for $d \geq 2$, we consider the polar coordinate $(r, \theta) \in [0, \infty) \times S^{d-1}$, where S^{d-1} is the unit sphere in \mathbb{R}^d with the induced metric. Then μ can be represented as

$$d\mu = c(d)r^{d-1}e^{V(r\theta)}drd\theta =: G(r, \theta)drd\theta,$$

where $d\theta$ is the normalized volume measure on S^{d-1}, and $c(d)/d$ equals to the volume of the unit ball in \mathbb{R}^d. Let $B(0, r) := \{x \in \mathbb{R}^d : |x| < r\}$ and
\[
\Phi_0(r) := \int_{B(0,r)} \frac{e^{-|x|^2/2} \mathrm{d}x}{(2\pi)^{d/2}}, \quad r \geq 0,
\]
\[
h(\theta) := \int_{0}^{\infty} s^{d-1} e^{V(s\theta)} \mathrm{d}s, \quad \theta \in \mathbb{S}^{d-1},
\]
\[
\varphi_\theta(r) := \frac{1}{h(\theta)} \int_{0}^{r} s^{d-1} e^{V(s\theta)} \mathrm{d}s, \quad \theta \in \mathbb{S}^{d-1}, r \geq 0.
\]

Since \(\mu(\mathbb{R}^d) = 1\), we have \(h(\theta) \in (0, \infty)\) for a.e. \(\theta \in \mathbb{S}^{d-1}\).

We shall prove that the map
\[
x \mapsto \Phi_0^{-1} \circ \varphi_\theta(|x|) \frac{x}{|x|}
\]
transforms \(\mu\) into a Gaussian measure with density \(h \circ \theta\). Thus, to derive the desired inequalities for \(\mu\), we need a regularity property of this transportation specified in the following result.

Theorem 4.2. Let \(r(x) := |x|, \theta(x) := \frac{x}{|x|}, x \in \mathbb{R}^d\). If \(C(h) := \sup_{\theta_1, \theta_2 \in \mathbb{S}^{d-1}} h(\theta_1 \theta_2) < \infty\), then (4.5) holds for
\[
\rho(x_1, x_2) := C(h)^{-1/2}|(\Phi_0^{-1} \circ \varphi_\theta(r)(\theta))(x_1) - (\Phi_0^{-1} \circ \varphi_\theta(r)(\theta))(x_2)|, \quad x_1, x_2 \in \mathbb{R}^d.
\]
If moreover \(\varphi_\theta(r)\) is differentiable in \(\theta\) then (4.2) holds for
\[
\alpha := C(h) \inf_{\varepsilon > 0} \max \left\{ \frac{(1 + \varepsilon)^2}{(\Phi_0^{-1} \circ \varphi_\theta(r))^2}, \frac{\Phi_0' \circ \Phi_0^{-1} \circ \varphi_\theta(r)^2}{(\varphi_\theta'(r))^2} + \frac{(1 + \varepsilon^{-1}) |\nabla \varphi_\theta(r)|^2}{(\varphi_\theta'(r))^2} \right\}.
\]
If, in particular, \(h\) is constant (it is the case if \(V(x)\) depends only on \(|x|\)), then the following HWI inequality holds:
\[
(4.5) \mu(f^2 \log f^2) + W_2^p(\mu, f^2 \mu)^2 \leq 2 \sqrt{2} \mu(\alpha |\nabla f|^2) W_2^p(\mu, f^2 \mu), \quad f \in C_0^\infty(\mathbb{R}^d), \mu(f^2) = 1,
\]
for
\[
\alpha := \max \left\{ \frac{r^2}{(\Phi_0^{-1} \circ \varphi(r))^2}, \frac{\Phi_0' \circ \Phi_0^{-1} \circ \varphi(r)^2}{(\varphi'(r))^2} \right\}
\]
and \(\varphi = \varphi_\theta\) is independent of \(\theta\).

Note that if \(V\) is locally bounded and \(\zeta(r) := \sup_{|x| = r} V(x)\) satisfies \(\int_{0}^{\infty} r^{d-1} e^{\zeta(r)} \mathrm{d}r < \infty\), then \(C(h) < \infty\). Thus, Theorem 4.2 applies to a large number of probability measures. In particular, we have the following concrete result.
Corollary 4.3. Let V be differentiable such that $\mu(dx) := e^{V(x)} dx$ is a probability measure and

$$-c_1|x|^{\delta-1} \leq \langle \nabla V(x), \nabla |x| \rangle \leq -c_2|x|^{\delta-1}$$

holds for some constants $\delta, c_1, c_2 > 0$ and large $|x|$. If there exists a constant $c_3 > 0$ such that

$$|\nabla \theta V| \leq c_3,$$

where $\nabla \theta$ is the gradient on S^{d-1} at point θ, then there exists a constant $c > 0$ such that

$$\mu(f^2 \log f^2) \leq c\mu((1 + |x|^{\delta-1} \nabla f)^2), \quad f \in C_0^\infty(\mathbb{R}^d), \mu(f^2) = 1.$$

Consequently,

$$W_2^\rho(\mu, f^2 \mu)^2 \leq c'\mu(f^2 \log f^2), \quad \mu(f^2) = 1$$

holds for some constant $c' > 0$ and

$$\tilde{\rho}(x, y) := \frac{|x - y|}{(1 + |x| \vee |y|)^{1-\delta/2}}, \quad x, y \in \mathbb{R}^d.$$

Remark. (a) The inequalities presented in Corollary 4.3 are sharp in the sense that (4.9) (and hence also (4.8)) implies $\mu(e^{\lambda r}) < \infty$ for some $\lambda > 0$, which is the exact concentration of μ. This follows from [3, Corollary 3.2] and the fact that $\tilde{\rho}(0, x) \approx |x|^{\delta/2}$ for large $|x|$.

(b) When V is strictly concave, the matrix

$$\Lambda[v_1, v_2] := \int_0^1 s(-\text{Hess}_V)((1 - s)v_1 + sv_2)ds$$

is strictly positive definite for any $v_1, v_2 \in \mathbb{R}^d$. It is proved by Kolesnikov (see [15, Corollary 3.1]) that

$$\mu(f^2 \log f^2) \leq \int_{\mathbb{R}^d} \langle \Lambda[T_f, -1]^{-1} \nabla f, \nabla f \rangle d\mu, \quad f \in C_0^\infty(\mathbb{R}^d), \mu(f^2) = 1,$$

where $x \mapsto T_f(x)$ is the optimal transport of $f^2 \mu$ to μ. In particular, for $V(x) := -|x|^\delta + c$ with $\delta > 2$ and a constant c, [15, Example 3.2] implies (4.8) for even smooth function f^2. But Corollary 4.3 works for more general V and all smooth function f.

15
Recently, Gentil, Guillin and Miclo \cite{9} (see \cite{10, 11} for further study) established a Talagrand type inequality for $V(x) = -|x|^{\delta} + c$ with $\delta \in [1, 2]$ and a constant c. Precisely, there exist constants $a, D > 0$ such that

$$
(4.11) \inf_{\pi \in C(\mu, f^2 \mu)} \int_{\mathbb{R}^d \times \mathbb{R}^d} L_{a,D}(x - y) \pi(dx, dy) \leq D \mu(f^2 \log f^2), \quad \mu(f^2) = 1,
$$

where

$$
L_{a,D}(x) := \begin{cases}
\frac{|x|^2}{a^2 - \delta}, & \text{if } |x| \leq a, \\
\frac{a^2 - \delta}{\delta} |x|^\delta + \frac{a^2(\delta - 2)}{2a}, & \text{otherwise.}
\end{cases}
$$

Since $L_{a,D}(x - y) \geq \epsilon \tilde{\rho}(x, y)^2$ for some constant $\epsilon > 0$, this inequality implies (4.9) for $\delta \in [1, 2]$. But (4.11) is yet unavailable for $\delta / \in [1, 2]$ while (4.9) holds for more general V. In particular, if $\delta > 2$ then (4.9) with $\tilde{\rho}(x, y) \geq c(|x - y| \vee |x - y|^{\delta/2})$ for some $c > 0$, which is new in the literature.

4.2 Proofs

We first briefly prove for the one-dimensional case (i.e. Theorem 4.1), then extend the argument to high dimensions. It turns out, comparing with the one-dimensional case, that the difficulty point of the proof for high dimensions comes from the angle part. So, a restriction concerning the angle part was made in Theorem 4.2.

Proof of Theorem 4.1. Let $y(x) := \Phi^{-1}_{\delta} \circ \varphi(x), \ x \geq \delta$. We have

$$
\frac{d\mu}{dy} = \frac{d\mu}{dx} \cdot \frac{dx}{dy} = e^{V(x)} \frac{d\varphi^{-1} \circ \Phi_{\delta}(y)}{dy} = \frac{e^{V(x)}\Phi'_{\delta}(y)}{\varphi' \circ \varphi^{-1} \circ \Phi_{\delta}(y)} = \frac{e^{V(x)}\Phi'_{\delta}(y)}{\varphi'(x)} = \Phi'_{\delta}(y).
$$

Therefore, μ is the standard Gaussian measure under the new coordinate $y \in [\delta, \infty)$. In other words, one has

$$
\gamma(dx) := (\mu \circ y^{-1})(dx) = Z_{1|\delta,\infty}(x)e^{-x^2/2}dx,
$$

where Z is the normalization constant. By the HWI inequality proved in \cite{2, 17, 18} and the Gross log-Sobolev inequality which implies the Talagrand inequality, we have

$$
(4.12) \gamma(g^2 \log g^2) + W_2(\gamma, g^2 \gamma)^2 \leq 2 \sqrt{2 \gamma((g')^2)} W_2(\gamma, g^2 \gamma),
$$

$$
W_2(\gamma, g^2 \gamma)^2 \leq 2 \gamma(g^2 \log g^2), \quad \gamma(g^2) = 1.
$$
We remark that although the HWI and Gross’s log-Sobolev inequalities are stated in the above references for the global Gaussian measure, they are also true on a regular convex domain \(\Omega \), since the stronger gradient estimate

\[
|\nabla P_t f| \leq e^{-t} P_t |\nabla f|, \quad f \in C^1_b(\Omega)
\]

holds for the Neumann heat semigroup on \(\Omega \) (cf. [22] and references within).

For any \(f \in C^1_0([\delta, \infty)) \) with \(\mu(f^2) = 1 \), let \(g := f \circ y^{-1} \). We have

\[
\frac{dg}{dx} = (f' \circ y^{-1}) \frac{dy^{-1}}{dx} = (f' \circ y^{-1}) \left(\frac{\Phi_\delta' \circ \Phi_{\delta}^{-1} \circ \varphi'}{y'} \right) \circ y^{-1}.
\]

Since \(\gamma = \mu \circ y^{-1} \), this and (4.12) imply (4.3) and (4.4). Finally, (4.2) is implied by (4.4).

Proof of Theorem 4.2. Let \((r, \theta)\) be the polar coordinate introduced in Section 2, and let \(\nabla_\theta \) denote the gradient operator on \(\mathbb{S}^{d-1} \) for the standard metric induced by the Euclidean metric on \(\mathbb{R}^d \). By the orthogonal decomposition of the gradient, we have

\[
(4.13) \quad \nabla f = (\partial_r f) \frac{\partial}{\partial r} + r^{-1} \nabla_\theta f, \quad |\nabla f|^2 = (\partial_r f)^2 + r^{-2} |\nabla_\theta f|^2.
\]

Let us introduce a new polar coordinate \((\bar{r}, \theta)\), where

\[
\bar{r}(r, \theta) := \Phi_{\delta}^{-1} \circ \varphi_{\theta}(r), \quad r \geq 0, \theta \in \mathbb{S}^{d-1}.
\]

We have

\[
d\mu := G(r, \theta) dr d\theta = G(r, \theta) \frac{\partial}{\partial \bar{r}} \bar{r} d\theta = c(d) h(\theta) \Phi_{\delta}(\bar{r}) d\bar{r} d\theta = c(d) h(\theta) d\mu_0,
\]

where \(d\mu_0 := \Phi_{\delta}^{-1} d\bar{r} d\theta \) is the standard Gaussian measure under the new polar coordinate \((\bar{r}, \theta)\). Thus, letting

\[
y(x) := \bar{r}(x) \theta(x) = \Phi_{\delta}^{-1} \circ \varphi_{\frac{|x|}{|x|}}(\theta(x), \quad x \in \mathbb{R}^d,
\]

we have

\[
(\mu \circ y^{-1})(dx) = c(d) h(x/|x|)(\mu_0 \circ y^{-1})(dx) = c(d) h(x/|x|) \gamma(dx),
\]

where \(\gamma \) is the standard Gaussian measure on \(\mathbb{R}^d \). By Gross’ log-Sobolev inequality one has

\[
\gamma(g^2 \log g^2) \leq 2 \gamma(|\nabla g|^2), \quad g \in C^\infty_0(\mathbb{R}^d), \mu_0(g^2) = 1.
\]

Thus, by the perturbation of the log-Sobolev inequality (cf. [7]), we have
(4.14) \((\mu \circ y^{-1})(g^2 \log g^2) \leq 2C(h)(\mu \circ y^{-1})(|\nabla g|^2), \quad g \in W^{2,1}(\gamma), (\mu \circ y^{-1})(g^2) = 1.\)

Moreover, by [2, Corollary 3.1], (4.14) implies

(4.15) \(W_2(\mu \circ y^{-1}, g^2 \mu \circ y^{-1}) \leq 2C(h)(\mu \circ y^{-1})(g^2 \log g^2), \quad (\mu \circ y^{-1})(g^2) = 1.\)

This implies (4.3) for the desired distance \(\rho\) by using the change of variables theorem as explained above.

Similarly, to prove (4.2) we intend apply (4.14) for \(g := f \circ y^{-1}\), where \(f \in C^\infty_0(\mathbb{R}^d)\) with \(\mu(f^2) = 1\).

Since \(y^{-1} = (\varphi^{-1}_\theta \circ \Phi_0(r), \theta)\) under the polar coordinate, by the chain rule we have

\[\nabla_\theta(f \circ y^{-1}) = \nabla_\theta f(\varphi^{-1}_\theta \circ \Phi_0(r), \theta) = ((\nabla_\theta f) \circ y^{-1} + (\partial_r f) \circ y^{-1}) \nabla_\theta \varphi^{-1}_\theta \circ \Phi_0(r).\]

But \(\varphi_\theta \circ \varphi^{-1}_\theta \circ \Phi_0 = \Phi_0\) implies

\[(\nabla_\theta \varphi_\theta)(\varphi^{-1}_\theta \circ \Phi_0(r)) + \varphi'_\theta \circ \varphi^{-1}_\theta \circ \Phi_0(r) \cdot \nabla_\theta(\varphi^{-1}_\theta \circ \Phi_0(r)) = 0,
\]

where \((\nabla_\theta \varphi_\theta)(\varphi^{-1}_\theta \circ \Phi_0(r)) := \nabla_\theta \varphi_\theta(s)|_{s = \varphi^{-1}_\theta \circ \Phi_0(r)}\), we arrive at

\[
|\nabla_\theta(f \circ y^{-1})|^2 \\
\leq (1 + \varepsilon)(\partial_r f)^2 \circ y^{-1} \left(\frac{|\nabla_\theta \varphi_\theta(r)|(|\varphi^{-1}_\theta \circ \Phi_0(r)|)}{\varphi'_\theta \circ \varphi^{-1}_\theta \circ \Phi_0(r)}\right)^2 + (1 + \varepsilon^{-1})|\nabla_\theta f|^2 \circ y^{-1} \\
= (1 + \varepsilon)(\partial_r f)^2 \circ y^{-1} \left(\frac{|\nabla_\theta \varphi_\theta(r)|}{\varphi'_\theta(r)}\right)^2 \circ y^{-1} + (1 + \varepsilon^{-1})|\nabla_\theta f|^2 \circ y^{-1}
\]

for any \(\varepsilon > 0\).

On the other hand,

\[\partial_r(f \circ y^{-1}) = (\partial_r f) \circ y^{-1} \frac{\Phi'_0(r)}{\varphi'_\theta \circ \varphi^{-1}_\theta \circ \Phi_0(r)}.\]

Since

(4.17) \(r = \Phi_0^{-1} \circ \varphi_\theta(r(y^{-1})) = \Phi_0^{-1} \circ \varphi_\theta(r) \circ y^{-1},\)

we have

\[\Phi'_0(r) = (\Phi'_0 \circ \Phi_0^{-1} \circ \varphi_\theta(r)) \circ y^{-1}, \quad \varphi'_\theta \circ \varphi^{-1}_\theta \circ \Phi_0(r) = \varphi'_\theta(r) \circ y^{-1}.
\]

Thus,
\[|\partial_r(f \circ y^{-1})|^2 = \left((\partial_r f) \frac{\Phi'_0 \circ \Phi^{-1}_0 \circ \varphi_\theta(r)}{\varphi'_\theta(r)} \right)^2 \circ y^{-1}. \]

Combining this with (4.13), (4.16) and (4.17), we obtain

\[|\nabla(f \circ y^{-1})|^2 = (\partial_r(f \circ y^{-1}))^2 + r^{-2} |\nabla_\theta(f \circ y^{-1})|^2 \]

\[\leq \left((\partial_r f) \frac{\Phi'_0 \circ \Phi^{-1}_0 \circ \varphi_\theta(r)}{\varphi'_\theta(r)} \right)^2 \circ y^{-1} \]

\[+ (\Phi^{-1}_0 \circ \varphi_\theta(r))^{-2} \circ y^{-1} \left\{ (1 + \varepsilon) (\partial_r f)^2 \left(\frac{|\nabla_\theta \varphi_\theta(r)|}{\varphi'_\theta(r)} \right)^2 + (1 + \varepsilon^{-1}) |\nabla_\theta f|^2 \right\} \circ y^{-1} \]

\[= (\partial_r f)^2 \circ y^{-1} \left\{ \frac{(\Phi'_0 \circ \Phi^{-1}_0 \circ \varphi_\theta(r))^2}{(\varphi'_\theta(r))^2} + \frac{(1 + \varepsilon)|\nabla_\theta \varphi_\theta(r)|^2}{(\varphi'_\theta(r))^2(\Phi^{-1}_0 \circ \varphi_\theta(r))^2} \right\} \circ y^{-1} \]

\[+ (r \circ y^{-1})^{-2} |\nabla_\theta f|^2 \circ y^{-1} \left(\frac{(1 + \varepsilon^{-1}) r^2}{(\Phi^{-1}_0 \circ \varphi_\theta(r))^2} \right) \circ y^{-1} \]

\[\leq |\nabla f|^2 \circ y^{-1} \max \left\{ \frac{(1 + \varepsilon^{-1}) r^2}{(\Phi^{-1}_0 \circ \varphi_\theta(r))^2}, \frac{(\Phi'_0 \circ \Phi^{-1}_0 \circ \varphi_\theta(r))^2}{(\varphi'_\theta(r))^2} + \frac{(1 + \varepsilon)|\nabla_\theta \varphi_\theta(r)|^2}{(\varphi'_\theta(r))^2(\Phi^{-1}_0 \circ \varphi_\theta(r))^2} \right\} \circ y^{-1} \]

for any \(\varepsilon > 0 \). Therefore,

\[(4.18) \quad |\nabla(f \circ y^{-1})|^2 \leq (\alpha |\nabla f|^2) \circ y^{-1} \]

and hence (4.2) follows from (4.14) by letting \(g = f \circ y^{-1} \).

Finally, if \(h \) is constant then \(\mu \circ y^{-1} \) is the standard Gaussian measure. Hence, by [2, Theorem 4.3] one has

\[W_2(\mu \circ y^{-1}, (f^2 \circ y^{-1})\mu \circ y^{-1})^2 + (\mu \circ y^{-1})(f^2 \circ y^{-1} \log f^2 \circ y^{-1}) \]

\[\leq 2 \sqrt{2} (\mu \circ y^{-1}) |\nabla(f \circ y^{-1})|^2 W_2(\mu \circ y^{-1}, (f^2 \circ y^{-1})\mu \circ y^{-1}). \]

By combining this with (4.18) we prove (4.5). \(\square \)

Proof of Corollary 4.3. Since there exists a constant \(c_0 > 0 \) such that

\[\Phi'_0(r) = c_0 r^{d-1} e^{-r^2/2} = \begin{cases} \Theta(r^{d-1}) & \text{as } r \to 0, \\ \Theta(r(1 - \Phi_0(r))) & \text{as } r \to \infty, \end{cases} \]

where \(f = \Theta(g) \) means that the two positive functions \(f \) and \(g \) are asymptotically bounded by each other up to constants, there exists a constant \(c \geq 1 \) such that

\[\frac{1}{c} \Phi'_0(r) \leq \min \{ r, r^{d-1} \} (1 - \Phi_0(r)) \leq c \Phi'_0(r), \quad r \geq 0. \]

Equivalently,
Next, it is easy to see from (4.6) that

\[\Phi^{-1}_0 \circ \varphi_\theta(r) = \begin{cases} \Theta(r^{\delta/2}) & \text{as } r \to \infty, \\ \Theta(r) & \text{as } r \to 0, \end{cases} \]

and

\[\frac{1 - \varphi_\theta(r)}{\varphi'_\theta(r)} = \int_r^\infty s^{d-1} e^{V(s\theta)} ds \leq c r^{1-\delta} \]

for some constant \(c > 0\) and all \(r \geq 1\). Combining (4.19), (4.20) and (4.21) we obtain

\[\max \left\{ \frac{r^2}{(\Phi^{-1}_0 \circ \varphi_\theta(r))^2}, \frac{(\Phi'_0 \circ \Phi^{-1}_0 \circ \varphi_\theta(r))^2}{(\varphi'_\theta(r))^2} \right\} \leq c (1 + r)^{2-\delta} \]

for some constant \(c > 0\).

If (4.7) holds then

\[|\nabla_\theta \varphi_\theta(r)| = |\nabla_\theta (1 - \varphi_\theta(r))| \leq c_4 \min \left\{ r^d, \int_r^\infty s^{d-1} e^{V(s\theta)} ds \right\}, \]

so that due to (4.20) and (4.21)

\[\frac{|\nabla_\theta \varphi_\theta(r)|^2}{(\varphi'_\theta(r))^2(\Phi^{-1}_0 \circ \varphi_\theta(r))^2} \leq c_5 \left(\frac{\min \left\{ r^d, \int_r^\infty s^{d-1} e^{V(s\theta)} ds \right\}}{(r^1_{r<1} + r^{\delta/2} 1_{r \geq 1}) r^{d-1} e^{V(r\theta)}} \right)^2 \leq c_6 (1 + r)^{2-3\delta} \]

for some constants \(c_5, c_6 > 0\). Combining this with (4.22) and Theorem 4.2 we prove (4.8).

Finally, for any \(x_1, x_2 \in \mathbb{R}^d\) let \(i \in \{1, 2\}\) such that \(|x_i| = |x_1| \vee |x_2|\). Similarly to the proof of Corollary 1.2 define

\[f(x) = \frac{|x - x_i| \wedge |x_i|}{(1 + |x_i|)^{1-\delta/2}}, \quad x \in \mathbb{R}^d. \]

Then

\[\Gamma(f, f) := (1 + |\cdot|)^{2-\delta} |\nabla f|^2 \leq \frac{1}{(1 + |x_i|)^{2-\delta}} \frac{1 + |x_i|^2}{(1 + |x_i|)^{1-\delta/2}} \leq C(\delta) \]
for some constant $C(\delta) > 0$. Since $|x_i| \geq \frac{1}{2}|x_1 - x_2|$, this implies that the intrinsic distance ρ induced by Γ satisfies

$$\rho(x_1, x_2)^2 \geq \frac{|f(x_1) - f(x_2)|^2}{C(\delta)} \geq C_1(\delta)\bar{\rho}(x_1, x_2)^2$$

for some constant $C_1(\delta) > 0$, and hence is complete. Thus, by [25, Theorem 1.1] or [26, Theorem 6.3.3], (4.9) follows from (4.8).

Acknowledgement. The author would like to thank the referees for useful comments.

References

[1] D. Bakry, M. Ledoux and F.-Y. Wang, Perturbations of functional inequalities using growth conditions, J. Math. Pures Appl. 87(2007), 394-407.

[2] S. G. Bobkov, I. Gentil and M. Ledoux, Hypercontractivity of Hamilton-Jacobi equations, J. Math. Pures Appl. 80(2001), 669–696.

[3] S. G. Bobkov, and F. Götze, Exponential integrability and transportation cost related to logarithmic Sobolev inequalities, J. Funct. Anal. 163(1999), 1–28.

[4] F. Bolley and C. Villani, Weighted csiszár-Kullback-Pinsker inequalities and applications to transportation inequalities, Ann. Fac. Sci. Toulouse Math. (6), 14(2005), 331–352.

[5] L. A. Caffarelli, The regularity of mappings with a convex potential, J. Amer. Math. Soc. 5(1992), 99–104.

[6] J. D. Deuschel and D. W. Stroock, Large Deviations, Pure and Appl. Math. Ser. 137, Academic Press, San Diego, 1989.

[7] J. D. Deuschel and D. W. Stroock, Hypercontractivity and spectral gap of symmetric diffusions with applications to the stochastic Ising models, J. Funct. Anal. 92(1990), 30–48.

[8] H. Djellout, A. Guillin and L.-M. Wu, Transportation cost-information inequalities for random dynamical systems and diffusions, Ann. Probab. 32(2004), 2702–2732.

[9] I. Gentil, A. Guillin and L. Miclo, Modified logarithmic Sobolev inequalities and transportation inequalities, Probab. Theory Relat. Fields 133(2005), 409–436.

[10] I. Gentil, A. Guillin and L. Miclo, Modified logarithmic Sobolev inequalities in null curvature, Revista Mat. Ibero. 23(2007).

[11] N. Gozlan, Characterization of Talagrand’s like transportation-cost inequalities on the real line, J. Funct. Anal. 250(2007), 400–425.
[12] L. Gross, *Logarithmic Sobolev inequalities*, Amer. J. Math. 97(1976), 1061–1083.

[13] F.-Z. Gong and F.-Y. Wang, *Functional inequalities for uniformly integrable semigroups and application to essential spectrums*, Forum Math. 14(2002), 293–313.

[14] N. Gozlan, *Integral criteria for transportation cost inequalities*, Electron. Comm. Probab. 11(2006), 64–77.

[15] A. V. Kolesnikov, *Convexity inequalities and optimal transport of infinite dimensional measures*, J. Math. Pures Appl. 83(2004), 1373–1404.

[16] K. Marton, *A simple proof of the blowing-up lemma*, IEEE Trans. Inform. Theory, 32(1986), 445–446.

[17] F. Otto and C. Villani, *Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality*, J. Funct. Anal. 173(2000), 361–400.

[18] F. Otto and C. Villani, *Comment on: “Hypercontractivity of Hamilton-Jacobi equations”, by S. Bobkov, I. Gentil and M. Ledoux*, J. Math. Pures Appl. 80(2001), 697–700.

[19] M. Röckner and F.-Y. Wang, *Weak Poincaré inequalities and L²-convergence rates of Markov semigroups*, J. Funct. Anal. 185(2001), 564–603.

[20] J. Shao, *Hamilton-Jacobi semigroup in infinite dimensional spaces*, Bull. Sci. Math. 130(2006), 720–738.

[21] M. Talagrand, *Transportation cost for Gaussian and other product measures*, Geom. Funct. Anal. 6(1996), 587–600.

[22] F.-Y. Wang, *Logarithmic Sobolev inequalities on noncompact Riemannian manifolds*, Probab. Theory Related Fields 109 (1997), 417–424.

[23] F.-Y. Wang, *Functional inequalities for empty essential spectrum*, J. Funct. Anal. 170(2000), 219–245.

[24] F.-Y. Wang, *Functional inequalities, semigroup properties and spectrum estimates*, Infin. Dimens. Anal. Quant. Probab. Relat. Topics 3(2000), 263–295.

[25] F.-Y. Wang, *Probability distance inequalities on Riemannian manifolds and path spaces*, J. Funct. Anal. 206(2004), 167–190.

[26] F.-Y. Wang, *Functional Inequalities, Markov Processes, and Spectral Theory*, Science Press, Beijing 2005.