Study of thermodynamics and complex structures on spin transitions of
[Fe2(Htrz)6(trz)3]Cl and
[Fe4(Htrz)10(trz)5]Cl3 complexes using the Density Functional Theory method
by Asep Wahyu Nugraha
Study of thermodynamics and complex structures on spin transitions of $[\text{Fe}_2(\text{Htrz})_6(\text{trz})_3]\text{Cl}$ and $[\text{Fe}_4(\text{Htrz})_{10}(\text{trz})_5]\text{Cl}_3$ complexes using the Density Functional Theory method

To cite this article: A W Nugrha et al 2020 J. Phys.: Conf. Ser. 1462 012045

View the article online for updates and enhancements.
Study of thermodynamics and complex structures on spin transitions of [Fe₂(Htrz)₆(trz)₃]Cl and [Fe₄(Htrz)₁₀(trz)₈]Cl₃ complexes using the Density Functional Theory method

A W Nugraha¹, I S Jahez², D Oando³, and M A Martoprawiro³

¹ Physical Chemistry Division Faculty of Mathematics and Natural Sciences Universitas Negeri Medan, Willem Iskandar Street V Medan Estate Medan 20222
² Inorganic Chemistry Division Faculty of Mathematics and Natural Sciences Universitas Negeri Medan, Willem Iskandar Street V Medan Estate Medan 20222
³ Inorganic and Physical Chemistry Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Ganesha 10 Bandung 40132

* aw.nugraha@unimed.ac.id

Abstract. The complex of iron(II) 1,2,4 triazole chloride is a complex that has spin transition characteristics. Thermodynamic studies and determination of changes in complex structured data have been carried out on the [Fe₂(Htrz)₆(trz)₃]Cl and [Fe₄(Htrz)₁₀(trz)₈]Cl₃ complexes with the DFT method. The iron(II) 1,2,4 triazole chloride complex has a polymeric structure, so in this study used a model with 2 and 4 Fe(II) ions. The computational chemistry study using a hybrid functional basis set B3LYP/6-31G(d). The results obtained show the distance between the Fe(II) ions, the bond length of Fe-N, and the distance between the Fe(II) ions with Cl in the [Fe₂(Htrz)₆(trz)₃]Cl complex at low spin states respectively 3.71Å, 1.99Å-2.049Å, and 3.829Å, while in the high spin state respectively 3.932Å, 2.130Å, 2.60Å and 7.05Å. The distance between the Fe(II) ions, the bond length of Fe-N, and the distance between the Fe(II) ions with Cl in the [Fe₄(Htrz)₁₀(trz)₈]Cl₃ complex at low spin state respectively 3.66Å-3.68Å, 1.96Å-2.09Å, and 5.037Å, while in the high spin state respectively 3.91Å-3.96Å, 2.09Å-2.37Å and 5.28Å. Thermodynamic data in [Fe₂(Htrz)₆(trz)₃]Cl complex is $\Delta E=-24.3898\text{kJ/mol}$, $\Delta H=-24.3909\text{kJ/mol}$, $\Delta G=-47.9364\text{kJ/mol}$, and $\Delta S=-0.078\text{kJ/mol}$. Thermodynamic data of [Fe₄(Htrz)₁₀(trz)₈]Cl₃ complex is $\Delta E=-12.8564\text{kJ/mol}$, $\Delta H=-12.8564\text{kJ/mol}$, $\Delta G=-33.6454\text{kJ/mol}$, and $\Delta S=0.069\text{kJ/mol}$. The structure and thermodynamic data are compatible with experimental measurement data in the laboratory.

Key words: thermodynamic data, complex structures, spin transitions, [Fe₂(Htrz)₆(trz)₃]Cl, [Fe₄(Htrz)₁₀(trz)₈]Cl₃, and DFT.

1. Introduction

The iron(II) 1,2,4 triazole complex is a complex that has a spin transition (TS). The characteristics of TS are the characteristics of compounds which are in the two states of the spin metal ion Fe(II) due to the influence of temperature, pressure, and light radiation. It has occurred due to ligands 1,2,4 triazole are ligands 11H medium ligand field strength. The ligands with the medium ligand field strength resulting in energy differences in low spin and high spin states that are very small, so that external influences will cause changes in the spin state of this complex compounds.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 Licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd
Study of the iron(II) 1,2,4-triazole complex with various anions has been carried out by several previous researchers. Study of the Fe(tzH)2(trz)X with X=BF4−, ClO4−, and PF6− by measuring magnetism and the Mössbauer spectra. The results obtained show Fe(II) 1,2,4-triazole complex with BF4− and ClO4− anions have a transition temperature above room temperature, whereas for PF6− anions occur below room temperature [1]. A study on the properties of the iron(II) 1,2,4-triazole chloride complex shows the presence of the number of water molecules in the [Fe(tzH)2(trz)Cl] complex will shift the transition temperature to a lower temperature [2]. Paulmann et al. [3] have succeeded in getting nano-sized complex [Fe(tzH)2(trz)](BF4) using silica matrices and reporting their transition temperatures above 100°C. In this study, we study the effect of changes in the spin state of Fe(II) ion on thermodynamic variables and complex structured data using computational chemistry methods. Changes in the spin state of Fe(II) ion in the iron(II) 1,2,4-triazole chloride complex cause changes in thermodynamic variables and structural changes in this complex. The thermodynamic variables observed were Energy (E), Enthalpy (H), Gibbs free energy (G), and Entropy (S). Structure variables of iron(II) 1,2,4-triazole chloride complex observed the distance between Fe(II) ions, the bond length of Fe-N, and the distance between Fe(II) cations and Cl− anions.

The computational studies on TS complex compounds have been carried out by several previous researchers. Study of complexes with Htrz derivatives, which are one-core complex with three ligands [Fe(Rdzpt)3](BF4). In this study, eight types of ligands with different substrates on N′ atoms observed, the results obtained were only one that is a spin transition (TS), which is complex [Fe(dpdp)3](BF4)1/2H2O. [4]. The vibrational properties of [Fe(4-(2′-hydroxy-etil)-1,2,4-triazol)n]2(CF3SO3) complex, which is a three-core complex has been studied using a nuclear inelastic scattering of synchrotron radiation (NIS). The results show the complex formed has TS properties in the Fe(II) ion with the FeN3 framework while in the terminal section it has a FeN1O2 framework that does not possess TS properties [5]. The complex with two types of ligands namely thiophene and NCX (X = S, Se, and BH3) which are single-core complexes with the formula [Fe(tpy)2(NCX)] have been used studying computational chemistry methods [6]. The computational study determined the stability and structure of [Fe(4-toluene-carboxylic acid)] [Fe(4-toluene-carboxylic acid)] and [Fe(4-toluene-carboxylic acid)] complexes. This study used the UHF, B3LYP, and TPSS methods on a set basis of 3-21G, 6-31G (d), and TZVP. The results obtained show the complex [Fe(4-toluene-carboxylic acid)] is more stable than the complex [Fe(4-toluene-carboxylic acid)]. The other study of the structure parameters of Fe(II)-Htrz complex predicts the molecular formulas of Fe(II)-Htrz complex is ([Fe(Htrz)2(trz)], [7].

In this study, computational calculations use the DFT method with the B3LYP hybrid functional. There are several advantages and disadvantages of DFT compared to the HF theory approach. In some calculation cases, the HF theory is quite useful in determining the optimum structure. It is not clear in determining the amount of energy while the DFT method is better for determining the amount of energy. In Hartree-Fock theory, multi-electron wave functions expressed with the Slater determinant which is built from a set of N single-electron wave functions. As in the Hartree-Fock theory on DFT also uses a single wave function. However, the Hartree-Fock theory calculates all N electron wave functions while DFT only calculates the total electron energy globally and the electron density distribution. Fock proposed the addition of Hartree SCF with the Determinant Slater wave function. Furthermore, Hartree Product orbitals, Hartree Fock (HF) molecular orbitals can be determined individually as eigenfunctions of a set of operators for one electron but now the interaction of each electron with the static field of all other electrons. The Fock operator for one electron defined for each electron i expressed in Equation 1. Fock proposed the addition of Hartree SCF with the Determinant Slater wave function. Furthermore, Hartree Product orbitals, Hartree Fock (HF) molecular orbitals can be determined individually as eigenfunctions of a set of operators for one electron but now the interaction of each electron with the static field of all other electrons. The Fock operator for one electron defined for each electron i expressed in Equation 1.

\[
f_i = -\frac{1}{2} \nabla_i^2 - \sum_{k \neq i} \frac{\rho_k}{r_{ik}} + V^{HF}_i(i)
\]

The main idea of DFT the total electronic energy and distribution of electron densities globally. The Hohenberg-Kohn theorem shows the Thomas-Fermi model used as an approximation of the density.
functional theory (DFT). In the DFT the total electronic energy function written as a function of electron density expressed in Equation 2.

$$E = E_{\text{tot}} = E_{\text{kinetic}}(\rho) + E_{\text{nuc}}(\rho) + E_{\text{corr}}(\rho) + E_{\text{elec}}(\rho)$$

Where: $E_{\text{kinetic}}(\rho)$ is the kinetic energy, $E_{\text{nuc}}(\rho)$ is the interaction energy between nuclei, $E_{\text{corr}}(\rho)$ is the electron-electron interaction energy, and $E_{\text{elec}}(\rho)$ contains changes and contribution correlations. The interaction of all electron density is given by $E_{\text{tot}}(\rho)$ and $E_{\text{kinetic}}(\rho)$. It is necessary to write variations of components in equation 2 in the density function and then optimize energy as the density function. The components that contribute to the energy in the first 2 part equation of the density function expressed in Equation 3.

$$E(\rho) = 2 \sum \frac{\rho(r)}{2} \psi_i(r) \psi_j(r) + \int \rho(r) \psi_i(r) \psi_j(r) + \frac{1}{2} \int \rho(r) \rho(\mathbf{r}) \frac{\psi_i(r)}{\psi_j(r)}$$

For the term correlation balance $E_{\text{xc}}(\rho(r))$ several approximations must be made. The most common way to obtain this contribution is to use local density approximation based on uniform electron gas. If E_{xc} is the correlation correction energy per particle in a uniform electron gas then the total correlation balance energy E_{xc} of the system can be obtained from the results of the integration presented in Equation 4.

$$E_{\text{xc}}(\rho(r)) = \int \rho(r) \psi_i(r) \psi_j(r)$$

This result can be applied when the number of spins up is equal to the number of spins down and cannot be applied to systems with an odd number of electrons in calculating the density function, energy optimized by being dependent on density. Usually the use of Kohn and Sham densities is applied to derive from the Slater determinants with orthonormal orbitals. Using Kohn-Sham orbitals allows energy for optimization through solving a set of one electron equations but using electron correlations. It is one of the critical advantages of the density function approach. The Kohn-Sham equation stated in Equation 5.

$$\left[-\frac{\nabla^2}{2} + \psi_{\text{xc}}(r) + \int d\mathbf{r}' \frac{\rho(r')}{|r-r'|} + \psi_{\text{xc}}(r)\right] \psi_i(r) = \epsilon \psi_i(r)$$

$\psi_{\text{xc}}(r)$ can be obtained easily from an exact analytic statement of the local density approximation [9].

The B3LYP hybrid functional has been used to determine the structure, energy, vibration spectra, and spin transitions. Structural studies using the DFT method with the B3LYP hybrid function have been carried out on 13 types of compounds [10] and 4-amino-1,2,4-triazole compounds [11]. The results of the calculation of heat formation using the B3LYP method against 49 tetrazole-derived compounds, obtained there are 5 compounds of difference values with experiments smaller than 2 kJ/Mol [12]. Study of the structure and energy of 15 N2CP isomers [13], triphenylamine [14], and 3-Phenylamino-4-Phenyl-1,2,4-Triazole-5-Thione compounds [15]. The effect of adding triple-basis 6-311G basis sets on the calculation of vibrational frequencies from the combination of diffuse and function [16] and the determination of vibration spectra using B3LYP and OLYMP with base sets 6-31G(d) [17]. Calculations using B3LYP, 3-21G(\ast) and PBE/6-31G(d) used for structural prediction. A spectroscopic data from porphyrin-quinone, porphyrin-hydroquinone, supramolecules porphyrin-quinone dyads and porphyrin hetero dimers [18]. Study of transition spin and thermal hysteresis at $\text{Fe(II)}(\text{Htrz})$, (BF$_2$) and $\text{Fe(II)}(\text{Htrz})$, (BF$_3$), H_2 (Htrz) = 1,2,4-4H-triazole, trz = 1,2,4-triazolato [19]. The study of transition spin with B3LYP double-ζ basis set in the complex Fe(DAPP)(abpp), (ClO$_4$)$_2$ shows the percent error for bond lengths and bond angles at HS states respectively by 2.033% and 0.901% and in the LS situation about 2.36% and 0.930% [20].

The B3LYP method is a method of Density Functional Theory (DFT) using the electron density function $\rho(\mathbf{r})$ defined as the multiple integral spin coordinates of all electrons given in Equation 6.

$$\rho(\mathbf{r}) = N \int \ldots \int |\psi(s_1, s_2, . . . , s_N)|^2 d\mathbf{s}_1 d\mathbf{s}_2 . . . d\mathbf{s}_N$$

$\rho(\mathbf{r})$ determine the probability of finding N electrons in the volume of $d\mathbf{r}$, $\rho(\mathbf{r})$ is the probability of density.

Kohn and Sham proposed the separation of the density function $F[\rho]$ in equation 7.

$$F[\rho(\mathbf{r})] + \int \rho(\mathbf{r}) + E_{\text{xc}}[\rho(\mathbf{r})]$$

where E_{xc}, called exchange-correlation energy, is defined in equation 8.
The 6th Annual International Seminar on Trends in Science and Science Education
IOP Conf. Series: Journal of Physics: Conf. Series 1462 (2020) 012045
doi:10.1088/1742-6596/1462/1/012045

\[E_{XC}[\rho] = E_{\rho}^L[\rho] - T_S[\rho] + \frac{1}{2} \left(E_{\rho}^L[\rho] - F[\rho] \right) \]

Becke, 1993b introduces semiempirical coefficients to determine the weights of the components given in equation 9.

\[E_{XC}^{B3} = E_{\rho}^{LSD} + a \left(E_{\rho}^{LSD} - E_{\rho}^{X \sigma} \right) + b \rho \phi + c \rho \phi \]

Equation 4 has three parameters, the value of the function change is determined by \(a \), while \(b \) and \(c \) are controls of the change in contribution and correction of the correlation gradient for the local density approximation. The most popular hybrid function is B3LYP and suggested by Stephens et al. [21]. The value of the three parameters has been stated in Becke’s original paper. The statement of changes in the B3LYP correlation energy is given in equation 10.

\[E_{XC}^{B3LYP} = (1 - a) E_{\rho}^{LSD} + a E_{\rho}^{LSD} + b E_{\rho}^{LSD} + c E_{\rho}^{LSD} + (1 - c) E_{\rho}^{LSD} \]

2. Computational Method

Computational chemistry studies are studies in determining the properties of compounds using quantum chemical calculations. In computational chemistry calculations, the geometry optimized for the “trial and error” structure and the amount of energy of the structure determined. Geometry optimization is a way to determine the lowest energy using a certain basis set (molecular orbitals provided).

The computational chemistry calculations using Gaussian 09 Revision D.01 software [23] and visualization of calculation results using Molek software [24]. The method used in computational chemistry calculations is the Density Functional Theory (DFT) method with the B3LYP hybrid functional, while the basis set used 6-31G(d). The complex compounds observed in this study have a polymeric structure so that in computational chemistry calculations structural modelling performed. The model used is to use 2 Fe(II) ions with nine ligand rings 1,2,4 H-triazole and one of Cl ion and 4 Fe(II) ions with 15 ligand rings and three of Cl ion.

3. Results and Discussion

The discussion in this study grouped into three parts, namely: structure of computer simulation results, structure data, thermodynamic variable data from the iron(II) 1,2,4 H-triazole chloride complex in the low spin state and high spin state.

3.1. The structure of the iron(II) 1,2,4 H-triazole chloride complex in the low spin and high spin states.

The computational chemistry calculation results visualized using Molek software, so that the complex structure of [Fe₂(Htrz)₄(trz)₃]Cl is obtained in the low spin state and high spin state. Visually, the complex structure resulting from computational chemistry calculations at low spin states does not differ from structures at high spin states. The complex structure of [Fe₂(Htrz)₄(trz)₃]Cl visualization results with Molek software are presented in Figure 1.

Figure 1. Structure of visualization results of [Fe₂(Htrz)₄(trz)₃]Cl complex results of calculations on the hybrid functional/basis set B3LYP/6-31G(d) in the (a) low spin and (b) high spin states.
The structure of the visualization results of the $[\text{Fe}_4\text{(Htrz)$_2$}(\text{trz})_3]\text{Cl}_3$ complex for the calculation results on the hybrid functional/ basis set B3LYP/ 6-31G(d) in the low spin and high spin states shown in Figure 2.

![Figure 2](image)

Figure 2. Structure of visualization results of complex $[\text{Fe}_4\text{(Htrz)$_2$}(\text{trz})_3]\text{Cl}_3$ results of calculations on the hybrid functional/ basis set B3LYP/ 6-31G(d) in (a) low spin and (b) high spin states.

3.2. Data on the structure of iron(II) 1,2,4 H-triazole chloride complex at low spin and high spin. Visually, the complex structure in the low spin and high spin states is similar, but based on the data the structure of the value is different. Based on the visualization results on the $[\text{Fe}_4\text{(Htrz)$_2$}(\text{trz})_3]\text{Cl}_3$ complex, the distance between Fe(I) ions in the low spin state is 3.717 Å and in the high spin state is 3.932 Å. The bond length of the Fe-N in the low spin state is 1.990 Å – 2.049 Å and the high spin state is 2.130 Å – 2.360 Å. The distance between the Fe(I) ion and the Cl ion at a low spin state is 6.829 Å and a high spin state is 7.050 Å. The results of experimental measurements of the $[\text{Fe}_4\text{(Htrz)$_2$}(\text{trz})_3]BF_4$ complex show the distance between Fe(I) ions in the low spin state is 3.671(1) Å and in the high spin state is 3.891(1) Å, while the bond length of the Fe-N in the low spin state is 1.827(5) Å – 1.981(6) Å and the high spin state is 2.040(2) Å – 2.042(5) Å [25]. This data shows the distance between Fe(I) ions and the bond length of Fe-N calculated by computational chemistry by the experimental results. Based on these data, it obtained the structured data at the low spin state are smaller than the high spin state. Data on the distance between the Fe(I) ions, the bond length of Fe-N, and the distance between the Fe(I) ions and the Cl ions from the computational chemistry calculations using the hybrid functional/ basis set B3LYP/ 6-31G(d) on the $[\text{Fe}_4\text{(Htrz)$_2$}(\text{trz})_3]\text{Cl}_3$ complex are presented in Table 1.

Table 1. The distance between Fe(I) ions, the bond length of Fe-N, and distance between Fe(I) and Cl in the $[\text{Fe}_4\text{(Htrz)$_2$}(\text{trz})_3]\text{Cl}_3$ complex using the hybrid functional/ basis set B3LYP/ 6-31G(d).

Spin state	Low Spin	High Spin
The distance between Fe(I) ion (Å)	3.717	3.932
The bond length of Fe-N (Å)	1.990 – 2.049	2.130 – 2.360
The distance between Fe(I) ion with Cl ion (Å)	6.829	7.050

Based on the results of visualization on the $[\text{Fe}_4\text{(Htrz)$_2$}(\text{trz})_3]\text{Cl}_3$ complex, it found that the distance between Fe(I) ions in the low spin state is 3.661 – 3.681 Å and in the high spin state is 3.911 – 3.946 Å. The bond length of the Fe-N in the low spin state is 1.960 – 2.089 Å and in the high spin state is 2.092 – 2.367 Å. The distance between the Fe(I) ion and the Cl ion in the low spin state is 5.937 Å and in the high spin state is 5.280 Å. Based on these data, it obtained the structured data at the low spin state are smaller than the high spin state. They are changing the spin state of Fe (II) from a low spin state to a high spin state that increases in bond lengths and distances between atoms. Data on the distance between the Fe(I) ions, the bond length of the Fe-N, and the distance between the Fe(I) ions and the Cl ions from the computational chemical calculations using the hybrid functional/ basis set B3LYP/ 6-31G(d) on the complex $[\text{Fe}_4\text{(Htrz)$_2$}(\text{trz})_3]\text{Cl}_3$ presented in Table 2.
Table 2. The distance between Fe(II) ions, the bond length of Fe-N, and distance between Fe(II) and Cl⁻ in the [Fe₄(Htrz)₄(trz)₄]Cl complex using the hybrid functional/ basis set B3LYP/6-31G(d).

Spin state	Low Spin	High Spin
The distance between Fe(II) ion (Å)	3.661 – 3.681	3.911 – 3.946
The bond length of Fe-N (Å)	1.960 – 2.089	2.092 – 2.367
The distance between Fe(II) ion with Cl⁻ ion (Å)	5.037	5.280

3.3. Thermodynamic variables of the iron (II) 1,2,4 H-triazole chloride complex in the low spin and high spin states.

The changes in the spin state of Fe(II) ion also result in changes in chemical thermodynamic variables. Thermodynamic complex data of [Fe₄(Htrz)₄(trz)₄]Cl complex has a value of ΔE = -24,389.6kJ/ Mol, ΔH = -24,390.9kJ/ Mol, AG = -47.9364kJ/ Mol, and ΔS = 0.0789kJ/ Mol.K. The data obtained from computational chemistry calculations are in accordance with the experimental measurement data. The experimental results of complex [Fe₄(Htrz)₄(trz)₄](BF₄) measurements for ΔHₛ were 27.8 kJ/ Mol [19] and ΔSₛ were 0.075 kJ/ Mol.K [26]. Data E, H, G, and S computational results using the B3LYP hybrid function and base set 6-31G(d) in the [Fe₄(Htrz)₄(trz)₄]Cl complex is presented in Table 3.

No	Thermodynamic Variable	Energy (H)	The change of Energy (kJ/mol)			
		Low Spin	High Spin state			
1	E	-5165.5646	-5165.5832	-0.01857	-48.7792	-24.3896
2	H	-5165.5637	-5165.5823	-0.01858	-48.7818	-24.3909
3	G	-5165.6903	-5165.7268	-0.036516	-95.8727	-47.9364
4	S (kal/mol.K)	266.425	304.177	37.752	0.1578	0.0789

Based on the results of computational chemistry calculations with the hybrid functional/ basis set B3LYP/6-31G(d) on the complex [Fe₄(Htrz)₄(trz)₄]Cl, obtained data of ΔE = -12.8564kJ/ Mol, ΔH = -12.8564kJ/ Mol, AG = -47.645kJ/ Mol, and ΔS = 0.0697kJ/ Mol.K. The data of E, H, G, and S from computational results using the B3LYP hybrid functional and 6-31G(d) basis set in the [Fe₄(Htrz)₄(trz)₄]Cl complex is presented in Table 4.

No	Thermodynamic Variable	Energy (H)	The change of Energy (kJ/mol)			
		Low Spin	High Spin state			
1	E	-10065.4653	10065.4849	0.01959	-51.4257	-12.8564
2	H	-10065.4644	10065.4840	0.01959	-51.4257	-12.8564
3	G	-10065.6546	10065.7059	0.05126	-134.5779	-33.6445
4	S (kal/mol.K)	400.472	467.129	66.657	0.2786	0.0697

4. Conclusion

Based on the visualization results on the [Fe₄(Htrz)₄(trz)₄]Cl complex, the distance between Fe(II) ions in the low spin state is 3.717Å and in the high spin state is 3.932Å. The bond length of the Fe-N in the low spin state is 1.990Å – 2.049Å and in the high spin state is 2.130Å – 2.360Å. The distance between the Fe(II) ion and the Cl⁻ ion at a low spin state is 6.829Å and at a high spin state is 7.055Å. The data obtained the ([Fe₄(Htrz)₄(trz)₄]Cl complex show the distance between Fe(II) ions in the low spin state...
state is 3.661 – 3.681 Å and in the high spin state is 3.911 – 3.946 Å. The bond length of Fe-N in the low spin state is 1.960 – 2.089 Å and in the high spin state is 2.092 – 2.367 Å. The distance between the Fe(II) ion and the Cl ion in the low spin state is 5.037 Å and in the high spin state is 5.037 Å. The data of ΔE=-24.389kJ/ Mol, ΔH=-24.390kJ/ Mol, ΔG=-47.9364kJ/ Mol, and ΔS=-0.0789kJ/ Mol. The thermodynamic function data by the experimental data.

Acknowledgements
The State University of Medan supported this work. The Ministry of Research, Technology and Higher Education the Republic of Indonesia by the KDBK Research Grant (Project No……).

References
[1] Sugiyarto, Kristian H. and Harold A. Goodwin, (1994): Cooperative Spin Transitions in Iron (II) Derivatives of 1, 2, 4-triazole, *Aust J. Chem.*, 47, 263–277.

[2] Lavrenova, L G, O G Shakirova, V N Ikorkski, V A Varnak, L A Sheludyakova, and S V Lariyov, (2003): 'A1' — 'T; Spin Transition in New Thermochoic Iron (II) Complexes with 1,2,4-triazole and 4-amino-1,2,4-triazole, *Russian Journal of Coordination Chemistry*, 29, 1, 22 – 27.

[3] Paulmann, Christophe, Joe Chahtine, Isabelle Malfant, Dominique de Caro, Benoit Cormay, and Lydie Valade, (2011): A facile route for the preparation of nanoparticles of the spin-crossover complex [Fe2(Htrz)3(trz)](BF4)2 in xerogel transparent composite films, *Dalton Trans.*, 40, 2480 – 2485.

[4] Kitchen, J. A., White, N. G., Boyd, M., Moubaraki, B., Murray, K., Boyd, P. D. W., and Brooker, S., (2009): Iron (II) trans-[N5-substituted-3,5-di(2-pyridyl)-1,2,4-triazole] complexes: structural, magnetic, NMR, and density functional theory studies, *Inorganic Chemistry*, 48, 6670 – 6679.

[5] Wolny, Julisz A., Hauke Paulsen, Alfred X. Trautwein, and Volker Schüeinenmann, (2009), Density functional theory calculations and vibrational spectroscopy on iron spin-crossover compounds, *Coordination Chemistry Reviews*, 253, 2423–2431.

[6] Cirera Jordi and Francesco Pescani (2012): Theoretical Prediction of Spin-Crossover Temperatures in Ligand-Driven Light-Induced Spin Change Systems, *Inorganic Chemistry*, 51, 8194-8201.

[7] Nugraha, Asep Wahyu, Djulia Onggo, and Muhamad A Martoprawiro, (2015): Computational study of structure and stability of polymeric complexes of Fe4(Htrz)4(trz)44+ and [Fe2(Htrz)3]2+; *Procedia Chemistry*, 17, 9 – 15.

[8] Nugraha, A W, D Onggo, and M A Martoprawiro, (2019): Theoretical Study on Structure Prediction and Molecular Formula Determination of Polymeric Complexes Comprising Fe(II) and 1,2,4-H-Triazole Ligand, *Russian Journal of Inorganic Chemistry*, 64, 6, 755 – 761.

[9] Cramer, Christopher J., (2004): *Essentials of Computational Chemistry Theories and Models*, second edition, John Wiley & Sons, Ltd. Chichester West Sussex England, 1 – 19.

[10] Baboul, Anwar G., Larry A. Curtiss, and Paul C. Redfern, Krishnan Raghavachari, (1999), Gaussian-3 theory using density functional geometries and zero-point energies, *J. Chem. Phys.*, 110, 16, 7650-7657.

[11] Matulkova, Irena, Ivan Nemec, Karel Teubner, Petr Nemec, Zdenek Micka, (2008), Novel compounds of 4-amino-1,2,4-triazole with dicarbonylic acids –crystal structures, vibrational spectra and non-linear optical properties, *Journal of Molecular Structure*, 873, 46–60.

[12] Chen, Z. X., J. M. Xiao, H. M. Xiao, and Y. N. Chiu, (1999), Studies on Heats of Formation for Tetrazole Derivatives with Density Functional Theory B3LYP Method, *J. Phys. Chem. A*, 103, 40, 8062-8066.

[13] Furuta, Hiroyuki, Hiromitsu Maeda, and Atsuhito Osaaka, (2000), Stability and Structure of Doubly N-Confused Porphyrins, *J. Org. Chem. 2000*, 65, 13, 4222-4226.

[14] Malagoli, M., J.L. Bredas, (2000), Density functional theory study of the geometric structure and energetics of triphenylamine-based hole-transporting molecules, *Chemical Physics*.
Letters, 327, 13–17

[15] Wang, Hong-Yan, Pu-Su Zhao, Rong-Qing Li, and Su-Min Zhou, (2009), Synthesis, Crystal Structure and Quantum Chemical Study on 3-Phenylamino-4-Phenyl-1,2,4-Triazole-5-Thione, Molecules, 14, 608-620

[16] Andersson M. P. and P. Uvdal, (2005), New Scale Factors for Harmonic Vibrational Frequencies Using the B3LYP Density Functional Method with the Triple-ζ Basis Set 6-311+G(d,p), J. Phys. Chem., 109, 2937-2941

[17] Davidson Ross J., Eric W. Ainscough, Andrew M. Brodie, Geoffrey B. Jameson, Mark R. Waterland, Harry R. Allecock, Mark D. Hindenlang, Boujemaa Moutaraki, Keith S. Murray, Keith C. Gordon, Raphael Horvath, and Guy N. L. Jameson, (2012), Toward an Iron(II) Spin-Crossover Grafted Phosphazene Polymer, Inorg. Chem., 51, 8307-8316.

[18] Karr, Paul A., Melvin E. Zandler, Michael Beck, Jared D. Jager, Amy L. McCarty, Phillip M. Smith, Francis D’Souza, (2006), Predicting the site of electron transfer using DFT frontier orbitals: Studies on porphyrin attached either to quinone or hydroquinone, and quinoline self-assembled supramolecular complexes, Journal of Molecular Structure: THEOCHEM, 765, 91–103

[19] Kröber, J., Audière J., Claude R., Codjovi E., Kahn O., Haasnoot J., G., Grolière F., Jay C., Vassal A. G. (1994): Spin Transitions and Thermal Hysteresis in the Molecular- Based Materials Fe(Htrz)2(trz)](BF4)2 and [Fe(Htrz)2][BF4]2·H2O (Htrz = 1,2,4,5-tetrazole; trz = 1,2,4, triazolato), Chem. Mater., 6, 1404 – 1412

[20] Zein, Samir, Galina S. Matouzenko, Serguei A. Borishev, (2004), Quantum-chemical studies of the spin transition complex [Fe(DAPP)(abpt)](ClO4)2, Chemical Physics Letters, 397, 475–478

[21] Stephens P. J., F. J. Devlin, C. S. Ashvac, C. F. Chabalowski, and M. J. Frisch, (1994), Theoretical Calculation of Vibrational Circular Dichroism Spectra, Faraday Discuss., 99, 103-119

[22] Koch, Wolfram and Max C. Holthausen (2001): A Chemist’s Guide to Density Functional Theory, second edition, Wiley-VCH, Weinheim.

[23] Frisch M. J., G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, G. A. Petersson, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian Inc., Wallingford CT, 2013. Frisch M. J., G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian Inc., Wallingford CT, 2013.

[24] Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/
[25] Urakawa Atsushi, Wouter Van Beek, María Monrabal-Capilla, José Ramón Galán-Mascarós, Luca Palin, and Marco Milanesio, (2011): Combined, Modulation Enhanced X-ray Powder Diffraction and Raman Spectroscopic Study of Structural Transitions in the Spin Crossover Material [Fe(Htrz)2(trz)][BF4], J. Phys. Chem. C, 115, 1323-1329.

[26] Roubeau Olivier, Miguel Castro, Ramon Burriel, Jaap G. Haasnoot, and Jan Reedijk, (2011): Calorimetric Investigation of Triazole-Bridged Fe(II) Spin-Crossover One-Dimensional Materials: Measuring the Cooperativity, The Journal Physical Chemistry B, 115, 3003-3012.
Study of thermodynamics and complex structures on spin transitions of \([\text{Fe}_2(\text{Htrz})_6(\text{trz})_3]\text{Cl}\) and \([\text{Fe}_4(\text{Htrz})_{10}(\text{trz})_5]\text{Cl}_3\) complexes using the Density Functional Theory method

ORIGINAILITY REPORT

SIMILARITY INDEX	INTERNET SOURCES	PUBLICATIONS	STUDENT PAPERS
25%	17%	22%	5%

PRIMARY SOURCES

1. scholar.afit.edu
 Internet Source
 3%

2. www.infona.pl
 Internet Source
 2%

3. Michio Sorai, Motohiro Nakano, Yuji Miyazaki. "Calorimetric Investigation of Phase Transitions Occurring in Molecule-Based Magnets", Chemical Reviews, 2006
 Publication
 2%

4. Submitted to Universitas Negeri Surabaya The State University of Surabaya
 Student Paper
 1%

5. Wolfram Koch, Max C. Holthausen. "A Chemist's Guide to Density Functional Theory", Wiley, 2001
 Publication
 1%

6. M. Mikami, M. Konno, Y. Saito. "The structures of high-spin (298, 150 K) and low-spin (90 K) states and the spin phase-
transition mechanism of a spin crossover complex; tris(α-picolyamine)iron(II) chloride–ethanol", Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 1980

Naoyuki Sasaki, Takeshi Kambara. "Theory of the two-step spin conversion induced by the cooperative molecular distortions in spin-crossover compounds", Physical Review B, 1989

Zhongbing Huang. "Stability of the high-spin ground state in the Peierls-extended Hubbard model", The Journal of Chemical Physics, 2001
Page	Source	Percentage
14	www.science.gov	1%
15	biblio.ugent.be	1%
16	www.kyivtoulouse.univ.kiev.ua	1%
17	arizona.openrepository.com	<1%
18	Petra J. van Koningsbruggen, Yann Garcia,	<1%
	Olivier Kahn, Léopold Fournès et al. "	
	Synthesis, Crystal Structure, EXAFS, and	
	Magnetic Properties of Catena [μ-Tris(1,2-	
	bis(tetrazol-1-yl)propane- 1, 1′)iron(II)]	
	Bis(perchlorate). First Crystal Structure	
	of an Iron(II) Spin-Crossover Chain	
	Compound ", Inorganic Chemistry, 2000	
19	journal-spqeo.org.ua	<1%
20	pubmed.ncbi.nlm.nih.gov	<1%
21	Enrique Burzuri Linares, Amador García-	<1%
	Fuente, Víctor M. García-Suárez, Senthil	
	kumar Kuppusamy et al. "Spin-State	
	dependent Conductance Switching in Single	
Page	Author(s)	Title and Details
------	-----------	-------------------
22	Marinela M. Dîrtu, Christine Neuhausen, Anil D. Naik, Aurelian Rotar, Leonard Spinu, Yann Garcia.	"Insights into the Origin of Cooperative Effects in the Spin Transition of $[\text{Fe(NH trz)}](\text{NO })$: the Role of Supramolecular Interactions Evidenced in the Crystal Structure of $[\text{Cu(NH trz)}](\text{NO }) \cdot \text{H O}$", Inorganic Chemistry, 2010
23	Varun Kumar, Mohamed El-Massaoudi, Smaail Radi, Kristof Van Hecke, Aurelian Rotar, Yann Garcia.	"Iron() coordination pyrazole complexes with aromatic sulfonate ligands: the role of ether", New Journal of Chemistry, 2020
24	Katerina A. Vinogradova, Denis P. Pishchur, Vladislav Y. Komarov, Ludmila G. Lavrenova, Mark B. Bushuev.	"Cooperative spin transition in a 1D-polymeric complex $[\text{Fe(4-ethyl-1,2,4-triazole)3}]\text{SiF6} \cdot \text{nH2O}$", Inorganica Chimica Acta, 2020
25	Nuraini, N.	"A with-in host Dengue infection model with immune response", Mathematical
Atasi Chakraborty, Arup Chakraborty, Soma Ghosh, Indra Dasgupta. "Theoretical analysis of pressure induced spin crossover phenomenon in a di-nuclear Fe(II) molecular complex", Journal of Physics: Condensed Matter, 2020

David Nieto-Castro, Felipe A. Garcés-Pineda, Andrea Moneo-Corcuera, Breogán Pato-Doldan et al. "Effect of Mechanochemical Recrystallization on the Thermal Hysteresis of 1D Fe-triazole Spin Crossover Polymers", Inorganic Chemistry, 2020

Xiaojing Yao, Xiuyun Zhang, Jinlan Wang. "The bonding characteristics and electronic and magnetic properties of organometallic sandwich clusters and nanowires",
Page	Reference	
32	www.beilstein-journals.org	<1%
33	www.utupub.fi	<1%
34	"Spin-Crossover Materials", Wiley, 2013	<1%
35	Submitted to Higher Education Commission Pakistan	<1%
36	Submitted to University of Witwatersrand	<1%
37	Yann Garcia, Stewart J. Campbell, James S. Lord, Yves Boland, Vadim Ksenofontov, Philipp Gütlich. "Dynamics and Supramolecular Organization of the 1D Spin Transition Polymeric Chain Compound [Fe(NH trz)](NO) . Muon Spin Relaxation ", The Journal of Physical Chemistry B, 2007	<1%
38	dokumen.pub	<1%
39	link.springer.com	<1%
"Iron (II) - 1,2,4,- triazole spin transition molecular materials", Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1997

"Transition Metals in Coordination Environments", Springer Science and Business Media LLC, 2019

Djulia Onggo, Irma Mulyani, Francisco Javier Valverde-Muñoz, José Antonio Real, Gabor Molnar. "Bistable thermo-chromic and magnetic spin crossover microcrystals embedded in nata de coco bacterial cellulose biofilm", Cellulose, 2017

Galina S. Matouzenko, Azzedine Bousseksou, Serguei A. Borshch, Monique Perrin et al. "Cooperative Spin Crossover and Order–Disorder Phenomena in a Mononuclear Compound [Fe(DAPP)(abpt)](ClO4) [DAPP = [Bis(3-aminopropyl)(2-
Karr, P.A.. "Predicting the site of electron transfer using DFT frontier orbitals: Studies on porphyrin attached either to quinone or hydroquinone, and quinhydrone self-assembled supramolecular complexes", Journal of Molecular Structure: THEOCHEM, 20060615

Klokishner, S.. "Effect of hydrostatic pressure on phase transitions in spin-crossover 1D systems", Chemical Physics, 20000501

Magnetism A Supramolecular Function, 1996.

V. Briois, Ph. Sainctavit, Gary J. Long, Fernande Grandjean. "Importance of Photoelectron Multiple Scattering in the Iron K-Edge X-ray Absorption Spectra of Spin-Crossover Complexes: Full Multiple Scattering Calculations for Several Iron(II) Trispyrazolylborate and Trispyrazolylmethane Complexes", Inorganic Chemistry, 2001

thesesups.ups-tlse.fr
Marinela M. Dîrtu, Aurelian Rotaru, Damien Gillard, Jorge Linares, Epiphane Codjovi, Bernard Tinant, Yann Garcia. "Prediction of the Spin Transition Temperature in Fe One-Dimensional Coordination Polymers: an Anion Based Database", Inorganic Chemistry, 2009

Max García Melchor. "Chapter 2 Computational Methods", Springer Nature, 2013