Proton therapy in the treatment of hepatocellular carcinoma

Francesco Dionisi1,*, Daniele Scartoni2, Francesco Fracchiolla2, Irene Giacomelli2, Benedetta Siniscalchi2, Lucia Goanta3, Marco Cianchetti2, Giuseppe Sanguineti1 and Alberto Brolese4

1Department of Radiation Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy, 2Proton Therapy Unit, Azienda Provinciale per i Servizi Sanitari, Trento, Italy, 3Department of Advanced Biomedical Sciences, University of Naples “Federico II”, Napoli, Italy, 4General Surgery \& Hepato-Pancreato-Biliary Unit, Azienda Provinciale per i Servizi Sanitari, Trento, Italy

Liver cancer represents one of the most common causes of death from cancer worldwide. Hepatocellular carcinoma (HCC) accounts for 90% of all primary liver cancers. Among local therapies, evidence regarding the use of radiation therapy is growing. Proton therapy currently represents the most advanced radiation therapy technique with unique physical properties which fit well with liver irradiation. Here, in this review, we aim to 1) illustrate the rationale for the use of proton therapy (PT) in the treatment of HCC, 2) discuss the technical challenges of advanced PT in this disease, 3) review the major clinical studies regarding the use of PT for HCC, and 4) analyze the potential developments and future directions of PT in this setting.

KEYWORDS
proton therapy, hepatocellular carcinoma, active scanning, photon therapy, review

Introduction

Liver cancer represents the sixth most commonly diagnosed cancer and the third leading cause of cancer death worldwide in 2020 (1). Hepatocellular carcinoma (HCC) accounts for 90% of all liver cancers (2). Survival is poor with an average 5-year overall survival (OS) of around 20% (2). A certain level of cirrhosis is associated with the majority of HCCs. Locoregional recurrent disease is the main cause of death in HCC (3), while metastatic spread is limited even in advanced stages (4). Potential treatment strategies are extensive, ranging from curative approaches such as surgery or liver transplantation, which only selected patients (less than 20%) are eligible due to patients’ or tumors’ condition and ablation, whose efficacy is limited by tumor size or location (5), to non-curative strategies with an impact on survival for intermediate stages such as chemoembolization (6) or radioembolization (7). Advanced stages with retained liver function could benefit from systemic therapy: the recent IMbrave150 phase III trial showed the superiority of the combination of atezolizumab and bevacizumab over the standard of care treatment with sorafenib (8, 9).
In the context of localized diseases, radiotherapy (RT) represents a valid, curative, and alternative approach to surgery in various cancers (10). The case of HCC is more complex, due to several factors that historically limited the safety and efficacy of RT, such as the low radiotolerance of the liver, the need for high doses and treatment volumes of radiation for tumor control, the often impaired liver function at baseline, the impact of previous oncological treatments on liver status, and the lack of standard indications regarding the proper integration of RT with the abovementioned therapies.

However, nowadays, modern RT technologies allow safe HCC treatments with positive results in terms of local control (LC) and survival (11–13); thus, the role of RT in the treatment of HCC is slowly but steadily emerging as an effective locoregional treatment option for this disease according to several (but not all) international guidelines (14).

Proton therapy (PT) represents the most advanced radiotherapy technique currently available. In the past decade, PT registered an exponential rise in both the number of patients treated and the centers currently utilizing it worldwide, which exceeded 100 as of April 2022 (15). The unique physical properties of protons of having a finite range in tissue and a zero dose beyond the end of their path allow a dose-distribution profile which results in better sparing of healthy tissues compared with X-ray therapy at medium–low doses. These dosimetric characteristics fit well with liver irradiation and could enlarge the therapeutic window of RT in HCC treatment.

In this paper, we aim to review the rationale, the major clinical studies, the technical and economic challenges, and the potential future directions regarding the use of PT for HCC.

Protons vs. X-rays (from dosimetry to initial clinical data)

The pioneering work of the University of Michigan established the strong correlation between the mean liver dose and the risk of radiation liver toxicity (i.e., radiation-induced liver disease, RILD) (16). Baseline liver function is also a predictor of the risk of RILD (17). Several dosimetric studies established the superiority of PT dose distribution compared with photon RT in liver irradiation: in 2008, the work of Wang compared proton and photon plans for nine patients affected by primary liver tumors, showing a significant gain with PT plans in the majority of parameters with a 30% reduction in the mean liver dose resulting in a significant reduction in the risk of RILD (18). More recently, the University of Pennsylvania published a planning comparison analysis between proton and photon plans for different tumor sizes (ranging from 1 to 6 cm) and locations in the liver (four different locations: dome, caudal, left medial, and central liver), and a total of 48 plans were analyzed. Based on their analysis, the authors suggested the use of protons to preserve liver function for tumors larger than 3 cm in the dome and central locations; according to the results of their work, protons should also be considered for tumors larger than 5 cm in any location. Interestingly, 3 cm is usually the cutoff size used to consider a high risk of failure in case of ablation treatment.

Moving from *in-silico* data to initial clinical data, in recent years, an interesting research field focused on the analysis of the clinical outcomes of HCC patients treated with PT in comparison with conventional photon RT. In 2015, Qi et al. reported the results of a meta-analysis of 70 clinical studies using particle therapy (including protons and carbon ion therapy) or X-rays for HCC (stereotactic RT, SBRT, or conformal 3D RT): a comparable efficacy in terms of OS and local control (LC) was found between particle therapy and SBRT, with a significant reduction in toxicity in favor of charged particles (19). More recently, in 2019, Sanford et al. analyzed the clinical outcomes of HCC patients treated with ablative PT (n = 49) or RT (n = 84) treated at the Massachusetts General Hospital between 2008 and 2017 (20). Treatment with PT was associated with significantly improved OS in comparison with RT (median OS 31 vs. 14 months), although there was no difference in LC (93% vs. 90% at 2 years). The authors hypothesized that this survival advantage was due to a lower incidence of liver decompensation with the use of protons. However, given the retrospective nature of the study, the authors warned regarding the risk of selection bias and invited to interpret the findings only as hypothesis generating. Similarly, a very recent work by Cheng et al. analyzed the outcome of HCC patients treated at their institution with PT (n = 64) or photon (n = 349) between 2007 and 2018 (21). In order to deal with the issue of selection bias for retrospective studies, the authors used the propensity score matching (PSM) method applied to predefined patient- and tumor-related variables, thus producing more reliable and robust clinical data regarding treatment comparison. A significant advantage in OS was reported in patients treated with PT in comparison with X-rays. Moreover, although the biologically effective dose (BED) was significantly higher in the PT population, the risk of RILD was significantly lower using protons.

The evidence provided thus far confirmed that the dosimetric gain achievable with PT in comparison with X-rays translates into an effective clinical benefit for HCC patients. The next step would be to demonstrate these clinical advantages in a randomized, controlled trial, which, albeit suffering from intrinsic weaknesses such as generality, duration, and costs (22), still represents the gold standard methodology to establish evidence of new medical therapies. This is the goal of
the trial NCT03186898, a phase III randomized trial currently recruiting patients affected by unresectable HCC to determine whether OS is different between HCC patients treated with PT or X-rays.

Proton vs. other treatment options

Among the several treatment options currently available for HCC treatment, the touchstone strategies for different disease stages are surgery, radiofrequency ablation, and chemoembolization (23). In light of this, it is necessary to analyze the studies which compared PT with such strategies.

Bush et al. from the Loma Linda proton center conducted a randomized trial comparing transarterial chemoembolization (TACE) and PT for HCC patients; so far, an interim analysis has been published showing similar OS between the two treatments and a trend with better LC (88% vs. 45%, \(p = .06 \)) and progression-free survival (48% vs. 31%, \(p = .06 \)) favoring PT (24). Tamura et al. recently reported the results of a retrospective comparison between surgery and PT for single HCC ≤100 mm without vessel invasion (25). The authors found that the median survival time in the surgery group was significantly better than in the PT group. The performance status (PS) of the patients was confirmed to be an independent prognostic factor for survival; as a matter of fact, the difference in OS between surgery and PT disappeared after PSM. In the context of PT treatment in comparison with other key strategies in HCC, the most important data come from the very recent phase III study by Kim et al. (26). The authors from Korea conducted a single-center, non-inferiority, randomized trial to compare PT vs. standard of care radiofrequency ablation (RFA) for HCC lesions <3 cm. The primary endpoint was 2-year local progression-free survival (LPFS). To our knowledge, for the first time, PT demonstrated a similar outcome in terms of efficacy in comparison with the gold standard treatment in a phase III randomized clinical trial. As a matter of fact, the 2-year LPFS with PT vs. RFA was 92.8% vs. 83.2% in the intention-to-treat population. As expected, the tolerability profile of PT was excellent, with no change in Child–Pugh score ≥2 points after PT treatment.

Clinical studies

Table 1 illustrates the major clinical studies regarding PT for HCC patients. In general, it is important to underline that the quantity of clinical data is high: PT indeed has been used to treat HCC since the 1980s, the first experience being reported in 1983 by the University of Tsukuba, Japan. Since that time, the data from thousands of HCC patients treated with PT have been published. In terms of the quality of the studies’ methodology, the majority of the reports represent institutional retrospective case series with a few prospective trials; of note, two randomized trials were published. The geographical distribution of the studies is also of note: the majority of the studies come from Eastern countries, where the incidence of HCC is the highest and where there is a high concentration of proton centers (15). The rest of the studies come from the USA, with only one retrospective series coming from the European countries (27).

It is interesting to highlight that, in contrast to the European guidelines, the HCC guidelines from the USA and Asia suggest the use of PT as an effective alternative in the treatment of unresectable HCC in light of the clinical results reported in Table 1. As a matter of fact, all the studies reported positive results in terms of efficacy and safety for PT in HCC treatment. Going into detail, the comprehensive clinical experience of the University of Tsukuba assessed the effectiveness of PT for various clinical conditions of the tumor and patient. Three different treatment schedules were developed according to tumor location: lesions located adjacent to the porta hepatitis (PH) and gastrointestinal (GI) tract were treated with prolonged schedules (72–77 Gy in 22–35 fractions), while lesions located ≥2 cm away from the GI tract received a more hypofractionated regimen of 66 Gy in 10 fractions. The reported 3- and 5-year OS rates were 64.7% and 44.6%, with a 5-year LC rate of 83.3%, respectively, without relevant toxicity (28). The same institution published other reports retrospectively analyzing the clinical data of a specific HCC population of patients such as patients with tumors larger than 10 cm, patients with portal vein invasion, elderly patients, and patients with poor liver function (Child–Pugh C) (29–32). Albeit retrospective, these case series illustrated the feasibility of PT in these challenging settings.

In the USA, the pivotal prospective study from the University of Loma Linda by Bush et al. established the effectiveness of PT treatment for HCC in Western countries (33). The adopted 15-fraction treatment up to 63 Gy schedule gave positive results in terms of efficacy and safety and became the backbone of the multicenter, prospective phase II study by Hong et al. (34), published in 2016, whose positive findings led to the insertion of PT as an alternative treatment option in the NCCN guideline for unresectable HCC. The study evaluated 81 patients (44 HCC and 37 intrahepatic cholangiocarcinomas); the dose regimen was 67.5 Gy in 15 fractions for peripheral tumors and 58.05 Gy in 15 fractions for lesions within 2 cm of the porta hepatitis. The 2-year LC, PFS, and OS rates in the HCC population were 94.8%, 39.9%, and 63.2%, respectively, with only one patient in the HCC cohort developing G3 toxicity (thrombocytopenia). More recently, several other reports from different institutions in the USA and Eastern countries confirmed the safety and effectiveness of PT in the treatment of HCC (Table 1). Parzen et al. in 2020 evaluated the multi-institutional prospective proton registry database and identified...
Author, date	Center, Location, Year	Observation Period	Type of Study	Patients/Study Characteristics	N	Median age	Performance status	Liver function (Child-Pugh)	PTV technique	Treatment Regimen Range	Equivalent dose (Gy/ # of fractions)	Toxicity	5yr LFS	5yr OS	SC	Toxicity		
Su et al, 2022	Chang Gung Memorial	2016-2019	retrospective	PT combined with anti PD-L1	20	60	PS 0.06 yrs, PS 0.11yrs	CP A5 23 pts, CP A6-6 pts	PSC	109 Gy10, 96.6 Gy10, 75 Gy10, 63.5 Gy10, 54.8 Gy10	2 Gy in 19 fractions	13 mos (1.0-10)	80% at 1 yr, 63% at 2 yr	1 G3 dermatitis, 1 G4 hemorhoid, 1 G4 subphrenic, 1 G4 liver failure, 1 G4 duodenal perforations	5 G3 gastrointestinal ulcer 4 RED			
Lee et al, 2022	Chang Gung Memorial	11/2015-02/2021	retrospective	unresectable HCC with bile duct invasion	20	61.5	PS 0.07 yrs, PS 0.12 yrs	CP A5 9 pts, CP A6 7 pts, CP B7 2 pts, CP B8 1 pts	PSC	2015-2016 PSC2017-2022 PBS	72.6 Gy/22 fr	96.6 Gy10	65 cm (13-185)	19 mm (3-64.9)	1yr 94.3% (1yr cumulative local recurrence 5.7%)			
Liu et al, 2021	Chang Gung Memorial	2016-2017	retrospective	HCC patients without regional lymph node involvement or distant metastasis	45	71	PS 0.02 yrs, PS 0.19 yrs, PS 0.22 yrs	CP A 4, CP B 5	PSC	25 pts 72.6 Gy/22 fr, 28 pts 66Gy/10fr	96.6 Gy10, 108 Gy/10	5.1 cm (11-17.1)	60 mos (9-62)	5yr 95.0%	5yr 98.8% 6yr 65.8%	IG3 skin 7 Child-Pugh score obtreration of 1 point		
Bhuweg et al, 2021	Mayo Clinic, USA	06/2015-02/2018	retrospective	all patients who were treated with IMRT for HCC with extensive in	37	69	PS 0.04 yrs, PS 0.11 yrs, PS 0.24 yrs, PS 0.35 yrs	CP A5 6 26 pts, CP A6 27 pts, 11 pts	PBS	15 pts 67.5 Gy/15 13 pts	979 Gy10, 813.5 Gy10, 709 Gy10, 109 Gy10, 6.5 Gy10	5cm (2.8-11)	21 mm (17-30)	1yr 94%	1yr 70%	IG3 dermatitis		
Jeon et al, 2011	Nongeon Proton Therapy	06/2015-02/2019	retrospective	elderly >80 years old patients	71	82	PS 0.04 yrs, PS 0.12 yrs, PS 0.24 yrs, PS 0.35 yrs	CP A5 49 pts, CP A6 15 pts, CP B7 7 pts	PBS	47 pts 66 Gy/10 fr, 24 pts 72 Gy/22 fr	186.6 Gy10, 96.6 Gy10	52 mm (8-111)	55 mm (9-48)	2yr 66% (66-97%)	2yr 76% (66-87%)	IG3 dermatitis		
Dastav et al, 2020	Proton Therapy Unit, Tiento	01/2018-02/2019	retrospective	unresectable disease	14	67	PS 0.01 yrs, PS 0.15 yrs, PS 0.22 yrs	CP A5 10 pts, CP A6 7 pts, CP B7 1 pts	PBS	60Gy (50.31 Gy10, 35 Gy10, 15 Gy10)	84 Gy10	64.5 cm (1.2-13)	10mm (1-10)	100% at one year	63% at 1 y			
Kim TH et al, 2020	National Cancer Center,	05/2015-08/2018	prospective phase II	hypofractionated PBT for HCC	45	63	PS 0.05 yrs	CP A 45 pts	PSC	70Gy/106	119 Gy10, 16.0 cm (1.0-56.3)	35 mm (11.2-56.3)	3yr LFS 95.2%	3yr 96.4%	Child-Pugh score showed a 1 point decrease in two patients (1.4%) and no change in 43 patients (95.6%)			
Park et al, 2020	Center, Chang Gung	05/2015-08/2018	prospective phase II	hypofractionated PBT for HCC	30	70.5	PS 0.03 yrs, PS 0.11 yrs, PS 0.25 yrs, PS 0.31 yrs	PSC or PBS	total population of 440 Gy (45-90 Gy)	72 Gy10, 863 Gy10, 913.5 Gy10	4.3 cm (1.2-9.4)	8.2 mm	1yr 91.2%	1yr 71.5%	IG4 subphrenic, IG5 back pain			
Park et al, 2020	Samsung, Incheon, Korea	01/2016-02/2017	retrospective	Evaluation of the risk of biliary complications after high dose PRT for primary HCC	40	62	PS 0.04 yrs, PS 0.12 yrs, PS 0.27 yrs	CP A 149 pts, CP B 15 pts, CP C 3 pts, PBS, PBS	PBS	40Gy/10 fr, 29Gy/14 fr, 34Gy/14 fr	109.6 Gy10, 96.6 Gy10	14 months	2yr OS 86.6%	2yr OS 86.6%	IG2 gastroesophageal ulcer 10 RED	2 Non classic RED		
Kim TH et al, 2019	Center for Proton Therapy	2012-2017	retrospective	PTYY	30	61	PS 0.02 yrs, PS 0.14 yrs	CP A 228 pts, CP A 87 pts, CP B 15 pts	PBS	2 Gy in 19 fractions	32.5 Gy10, 108 Gy10, 86.5 Gy10, 71 Gy10	2.2 cm (1-10.17)	1.1 cm (1.1-17)	8.4 cm	10-12	31.8% 1yr 68.2%	3yr LFS 86.6%, 3yr OS 87.6%, 5yr OS 77.9%	Child-Pugh score 1 point decrease, 1 point increase, gastric or duodenal ulcers within the PBT field, IG2 IG3 IG1 in region A

(Continued)
Author, date	Center	Observation Period	Type of Study	Patients/Study Characteristics	N Patients	Median Age	Performance Status	Liver Function (Child-Pugh)	Proton Technique	Treatment Regimen Range	Equivalent dose (Gy) \# per NH = 10	tension size (Gy)	median FUP (months)	LC	OS	Toxicity (G5)			
Choudha et al. 2019	MD Anderson Cancer Center	2007-2016	retrospective	HCC pts treated with PE	46	72	PS 0 (20%), PS 1 (26%), PS 2 (51%)	A 51 (60%), A 46 (11%)	67 Gy (5.6 Gy/1.5 cm)	19 PS	1.5 cm (1-2 cm)	15 cm	86.4 Gy (84-98)	73.2 Gy	1.5 Gy	94.30% (18-92.40%)	1 yr 77%, 2 yr 62%		
Shibata et al. 2018	Proton Therapy Center, Tottori Prefectural Hospital, Japan	2011-2015	retrospective	effectiveness and toxicity of PE for hepatocellular carcinoma (HCC) ≥2 cm	29	71	PS 0: 24, PS 1: 7, PS 2: 1	A: 24, B: 5	4 pts 66Gy/10fr; 13 pts 76Gy/23fr; 1 pt 80Gy/25fr; 1 pt 67Gy/42fr; 5 pts 70Gy/46fr; 3 pts 75Gy/50fr; 4 pts 70Gy/54fr	PBS	91.3 Gy (73.4-90.0)	6.9 cm (6.5-10)	27 mos (2-72)	2yr & 4yr	95%	61%	39%	G1: skin failure, G2: encephalopathy, G3: other patients had limited complications	
Moreira et al. 2018	Proton Therapy Center, Tottori Prefectural Hospital, Japan	2015-2016	retrospective	efficacy and toxicity of respiratory-gated PRF without fiducial markers for HCC located within 2 cm of the gastrointestinal tract	40	72	PS 0: 38 %, PS 1: 2	A: 28, B: 12	1 pt 810 CIGA/25fr pt 76Gy/25fr; 17 pts 76Gy/22fr; 3 pts 76Gy/15fr; 3 pts 70Gy/32fr; 3 pts 70Gy/32fr; 1 pt 67Gy/32fr; 1 pt 60Gy/32fr; 3 pts 70Gy/32fr; 1 pt 67Gy/32fr; 1 pt 58Gy/24fr	PBS	88 Gy (76.4-98.4)	5.3 cm (1.1-12.4)	19 mos (1.2-72)	2yr 94%	86%	78%	G1: skin failure, G2: encephalopathy, G3: other patients had limited complications		
Lee et al. 2018	Chang Gung Memorial Hospital, Taiwan	2015-2016	retrospective	HCC patients with small normal liver volume (SNLV)	21	61	PS 0: 10, PS 1: 13	PBS	median 72.6 Gy/22fr	median 80 Gy (40-140)	15.7 mos (6.0-124)	95%	94%	G1: skin failure, G2: encephalopathy, G3: other patients had limited complications					
Kim et al. 2018	National Cancer Center, Goyang, Korea	2015-2016	retrospective	inspissable or recurrent HCC	21	63	PS 0: 10%, PS 1: 6	PBS	66 Gy/10fr	91.2 Gy (73.4-90.0)	15.5 cm (1.0-8.5)	31 mos (6.2-47)	3yr LPS 80% (69-100%)	74% (63-85%)	Child-Pugh score > 5 points at initial diagnosis				
Kimura et al. 2018	Radiation Oncology, Southern Tohoku Proton Beam Therapy Center	2008-2015	retrospective	HCC > 5 cm	21	73	PS 0: 16, PS 1: 8	PBS	72.6 Gy (60.8-85.8 Gy)	75 Gy (2.4-8.3 Gy/2fr)	5-18 cm	17 mos (5-64)	87%	32%	2G: radiation dermatitis				
Hong et al. 2016	Multinstitutional	2009-2015	phase II prospective	HCC and HOC	46	70	PS 0: 16, PS 1: 26, PS 2: 5	PBS	58.0 Gy (60-67.5 Gy in 15 FR)	5 cm (3.9-12.0)	APP 19.5 months (9.6-55.9 months)	94%	94%	76%	G2: gastrohepatitis				
Fukuda et al. 2016	Proton Medical Research Center, Tohoku, Japan	2002-2009	retrospective	previously untreated HCC	129	72	PS 0: 70, PS 1: 30, PS 2: 29	PBS	54 pts 66Gy/10fr; 45 pts 72Gy/22fr; 30 pts 70Gy/30fr	PBS	91.3 Gy (73.4-90.0)	55 mos (43-67)	94%	94%	62% (92-100%)	5-year OS rates were 69% (95% CI, 49-89%) for stage A patients, 66% (95% CI, 48-86%) for stage B patients, and 25% (95% CI, 11-48%) for stage C patients			
Bode et al. 2016	Johns Hopkins University Medical Center, USA	NA	randomized clinical trial: PE vs DACE	interim analysis report	27	61.4	N.A.	N.A.	PBS	70 Gy/2.5fr	48 Gy (3.0 Gy/3fr)	20 mos	84%	84%	54%	52%	42%	2 yr OS 39%	2 yrs requiring hospitalization for liver failure
Kim et al. 2018	National Cancer Center, Goyang, Korea	2007-2010	phase I	Dose-finding	27	DL1: 170 Gy, DL2: 220 Gy, DL3: 360 Gy	DL1: 160 Gy, DL2: 271.5 Gy, DL3: 380.2 Gy	DL1: 15.2 cm (2.7-15); DL2: 12.2 cm (1.5-8); DL3: 12.2 cm (1.5-8)	10 Gy (5.2 Gy/2fr)	DL1: 10 Gy/2fr; DL2: 10 Gy/2fr; DL3: 10 Gy/2fr	31 mos (5.2-64)	3yr LPS 79%	5yr LPS 63%	5yr 56% 4yr 62%	1 yr OS 84% 2 yr OS 69%	1 patient 1 point increase in CF score			

(Continued)
Author, date	Center	Observation Period	Type of Study	Patients/Study Characteristics	N° Patients	Median age	Performance status	Lower limit (Child-Pugh)	Proton technique & Treatment Regimen Range	Equivalent dose 2 Gy/# of fractions	Median FUP (range)	LC	% Toxicity	Grade					
Dionisi et al. 2014	National Cancer Center, Gyeong, Korea	2008-2011	retrospective	HCC with PVT	27	55	PS 0-1, PS 1, 9	A 1-8, B 9	NA	median 50 Gy (36-66 Gy E)	20-22 fr	Max 71.5 Gy	3 cm (0-160)	13.2 mo (2.6-51.7)	1 yr LPFS 70.7%	2 yr LPFS 61.9%	4 yr 58.6%	2 yr 33.3%	4 pts 1 point increase in CP score
Sanzieder et al. 2019	Massachusetts General Hospital, USA	2008-2017	retrospective	unresectable HCC	46	65	PS 0.25, PS 1.26, PS 2.25, 2 pts	CP A 26, CP P 8, CP B 15	PSC	Various treatments schedules, the most adopted being 58 Gy/10 Fr	67 Gy	NA	14 mm (all pts)	2 yr 93%	2 yr 51%	4 nodal GTL	1 G3 Radiation pneumonitis (1 G3 liver dysfunction and 1 G3 bile duct stenosis)	1 G3 Radiation pneumonitis on day 108 after the start of PT	
Hoyos et al. 2019	National Cancer Center Hospital East, Chiba, Japan	2008-2015	retrospective	anatomic subsegmental PT simulation	110	74	PS 0.72, PS 1.28, 2 pts	CP A 95 pts, CP B 15 pts	PSC	76 Gy (20 Fr)	74 pts < 5 cm	36.5 mm (1-99 mm)	3 yr 91.7%	3 yr 74.2%	3 yr 69.2%	3 yr 51.4%	1 G3 Gastric ulcer		
Tsumura et al. 2019	Shinshu Cancer Center Hospital, Japan	2005-2017	retrospective	single nodular HCC ≤ 100 mm without vessel invasion	34	72	PS 0.20, PS 1.10, PS 2.1	CP A 20 pts, CP B 2 pts	NA	RPS 66 Gy/10 Fr 22 pts	72-76 Gy E/20-2 Fr pts	74-76 Gy E/37-38 Fr pts	106 Gy	102 Gy, 101 Gy, 91.2 Gy/10	3.5 cm (1-9)	36.5 mm (22.2-82.9)	19.4%	Local recurrence	
Selma et al. 2019	Proton Medical Research Center, Tsukuba, Japan	2005-2014	retrospective	HCC pts with IVCTE	33	75	PS 0.01, PS 1.09, PS 2.09	CP A 12 pts, CP B 9 pts	PSS	50-74 (median 72)	106.6 Gy/10	8 cm (3.9-20)	21 mo (8-130)	100%	1 yr OS 82%, 2 yr OS 60%, 3 yr OS 30%	none			
Young et al. 2017	Samsung Medical Center, Seoul, Korea	2016-2017	retrospective	compare the on-treatment outcomes and toxicities between PBS and PBT	172	62	PS 0.06, PS 1.27, 2 pts	CP A 114 pts, CP B 18 pts	PSC	PSS (PBS)	35 pts 50 Gy in 10 fractions 110 pts	60-66 Gy in 10 fractions 23 pts other schedules	75 Gy	106 Gy, 101 Gy, 91.2 Gy/10	14 months (range: 1-10)	PBS 1 patient 2 GI G3 (PS)	2-year OS 85.9%, 2-year OS 86.4%	RILD 2 pts	PBS 1 patient 2 GI G3 (PS)
Isuwa et al. 2021	Nagaon Proton Therapy Center, Japan	2013-2016	phase II	Openable or Atowlon Trastuzumab HCC	45	68	PS 0.4, PS 1.3, 5 pts	CP A 5, CP C 11	PSC	8 pts 72.5 Gy in 20 fr, 37 pts 66 Gy in 20 fr	96.6 Gy/10	2.5 cm (1-10)	53 months (range: 35-75 months)	2 yr LC 99%, 2 yr PS 62%	1 yr LC 100%, 5 yr LC 46%, 5 yr LC 85%, 1 yr G3 65%, 2 yr G3 27%, 3 yr G3 22%	none			
Iriomote et al. 2021	Proton Medical Research Center, Okinawa, Japan	2002-2014	retrospective	patients who received PBT for HCC in the caudate lobe	30	67	PS 0.01, PS 1.17, 2 pts	CP A 17 pts in	PSC	72.6 Gy in 21.0 (70%), 55 Gy in 0.5 (50%), 60 in 15 (63%), 25 in 20 (50%)	106 Gy/10	23.5 cm (1-19)	37 months (0-152 months)	Os 95.3%, Os 68.6%, Os 62%	Os 94.6%	Os 96%	Os 91%	Os 95%	
Hatta et al. 2019	Chang Gung Memorial Hospital, Tapei and MD Anderson Cancer Center, USA	2007-2017	retrospective	HCC who underwent definitive PT.	56	68	PS 0.06, PS 1.54, PS 2.4	CP A 45, CP A 29	PSC	72 GY/22 fr 16 Gy E/24 fr 65 Gy 15 fr	86 Gy/20 fr	10 mo (range: 5-27 months)	NA	N.A.	19 (14%) pts developed RILD				
Chiba et al. 2005	Proton Medical Research Center, University of Tsukuba	1995-1998	retrospective	pts unit for surgery	92	62.5	PS 0.04, PS 1.2	CP A 82 CP K 2 CP C 10	PSC	72 Gy/16 Fr 64 courses 76 Gy/20 Fr 11 courses 84 Gy/20 Fr 10 courses 50 Gy/10 Fr 10 courses	87 Gy	104 Gy/10, 945 Gy/10	5-5 mm (108 pts)	31.7 months (11 to 152)	5 yr OS 90%	5 yr OS 82%	Elevation of transaminase level 9.7%, Thrombocytopenia 1.2%		
Kondo et al. 2011	Hokuriku Ion Beam Medical Center, Tatsuno, Japan	2001-2009	Retrospective	All pts treated with PT for HCC	362	< 70 115 pts	≥ 70 127 pts	PS 0.017, PS 1.30, PS 1.32	PSC	76 Gy/20 Fr 70 pts	60 Gy/10 Fr 89 pts	66 Gy/10 Fr 55 pts miscellaneous regimen 10 pts	104 Gy/10	1095 Gy/10	5 cm (196)	10 cm 17	31 mo	90.2% at 5 yr	38% at 3yr
30 HCC patients treated at nine institutions in the USA between 2013 and 2019 (35); the LC at 1 year was 91.2%, comparable with the historical series. A trend toward a statistically significant association between the BED and local control was observed.

Based on the recent reports from the Eastern countries, in addition to the already mentioned randomized trial of PT vs. ablation, the work of Kim et al. in 2019 retrospectively analyzed a large cohort \(n = 243 \) of HCC patients treated at their institution with a risk-adapted treatment strategy according to the proximity of target to the gastrointestinal tract. Patients were treated with three different dose schedules in 10 fractions using the simultaneous boost technique to reduce the dose within 2 cm of the gastrointestinal tract; a significant association with the dose fractionation scheme, total PT dose, and OS was found (36).

Technical challenges

Protons and, more in general, charged hadrons have the unique physical property of a finite range in tissues. The range is determined by the initial energy of the proton beam and by the stopping power of the material in the beam path.

This characteristic gives the possibility to obtain very high conformal dose distributions and the possibility to lower the mean and low dose bath around the target. The majority of clinical data depended on the passive scattering (PS) delivery method. New PT installations are mainly equipped with the pencil beam scanning (PBS) delivery technique. With PBS, given the possibility to modulate the intensity of the beam, higher dose conformity can be achieved with respect to PS at the cost of being more sensitive to uncertainties.

As a matter of fact, the quality of the nominal dose distribution can be perturbed by different sources of uncertainties like setup uncertainties, daily anatomical variations, uncertainty in machine delivery parameters, tissue inhomogeneity, inaccuracies in dose calculation algorithm, inaccuracies in CT calibration curve, and perturbations induced by internal organ motion (37). Every time a moving target is treated, the combination of its motion with an active delivery technique (such as proton pencil beam scanning, intensity-modulated radiation therapy, and volumetric arc therapy) can lead to an undesired deterioration of the dose distribution. This is the interplay effect. The management of this kind of uncertainty in particle therapy was widely discussed in an AAPM report recently published (38), and a comprehensive review on the clinical necessity of adequate imaging taking into account this effect has been published (39). The evaluation of interplay effects is the main technical challenge for the commissioning of liver treatments in free breathing and/or in breath-hold (40, 41). Different methods have been proposed to mitigate the effect of the motion on the dose distribution such as repainting (42), 4D optimization taking into account the organ.
motion during the planning (43), both 4D optimization and repainting (44), motion reduction with the use of compressor (45), or forced deep expiration breath-hold (46, 47).

The setup uncertainty has another crucial role in the treatment of liver tumors (48). In particular, a comparison between vertebral body matching, diaphragm matching, and marker matching has been analyzed concluding that the last one has the best results in terms of positioning accuracy. Consideration has to be made from a radiobiological point of view if radio-opaque markers larger than 1.5 mm are used in the context of particle therapy since they can reduce the tumor control probability (TCP) and increase the dose to the surrounding critical organs (49). The diaphragm matching can be a reliable surrogate for liver tumor alignment (50). A detailed technical report of the first 17 liver patients treated with forced deep expiration breath has been reported by Fracchiolla et al. (51).

The use of the Active Breathing Coordinator (ABC-ELEKTA®) reduced the residual motion of the internal organs during the delivery and increased the reproducibility of the patient anatomy. The authors also proposed a method to optimize the use of the range shifter in order to obtain a sharper lateral dose penumbra and, for facilities with more than a single treatment room, to optimize the beam time allocation.

Future directions

There is growing scientific evidence regarding the effectiveness and safety of the use of PT for HCC. In recent years, the strength of evidence increased, with several data coming from prospective studies and also from two randomized studies. Table 2 illustrates the clinical trials currently evaluating the use of protons for HCC. The superiority of PT in comparison with X-rays in terms of OS for HCC patients, which has been highlighted so far only in retrospective studies, will be evaluated in the already mentioned multicenter trial NCT03186898. The Mayo Clinic phase II trial has the goal to evaluate the safety of the use of 5-fraction stereotactic PT for the treatment of HCC. Another interesting trial is the NCT05203120 that is currently ongoing at the Danish Particle Center in Denmark, the first European prospective study for PT and HCC, whose results, if positive, could help in bridging the gap between Europe and the USA and Eastern countries in acknowledging the effectiveness of radiotherapy in the treatment of HCC. Other strategies to evaluate in the next future studies should include the combination of PT with other locoregional therapies. The positive results of the already mentioned IMbrave150 phase III trial demonstrated the effectiveness of combination therapy for advanced stage HCC. In the context of locoregional disease, the combination of local and locoregional therapy such as TACE and radiotherapy could have an impact on the oncological outcome, probably at a cost of higher toxicity, as reported by the meta-analysis by Meng et al. (52). The favorable toxicity profile of protons due to their intrinsic physical properties makes PT the option of choice in case of combined treatments, especially for complex settings such as large tumors and poor liver function. Furthermore, the combination of PT with immune checkpoint inhibitors, which has been recently retrospectively reported (53) (Table 1), should be evaluated in prospective trials for safety and effectiveness.

Study Title	Principal Institution	Type of trial	ClinicalTrials.gov Identifier	Estimated Enrollment	Actual Study Start Date	Estimated Study Completion Date
Feasibility of High Dose Proton Therapy On Unresectable Primary Carcinoma Of Liver: Prospective Phase II trial	Samsung Medical Center, Seoul, Korea	Monoinstitutional, Phase II	NCT02652864	66 participants	2015	2022
Proton Beam Therapy in Hepatocellular Carcinoma With Portal Vein Tumor Thrombosis (PHT)	Samsung Medical Center, Seoul, Korea	Monoinstitutional, Phase II	NCT02571946	53 participants	2015	2022
Radiation Therapy With Protons or Photons in Treating Patients With Liver Cancer	NRG Oncology Massachusetts General Hospital Cancer Center, USA	Multicentric, Phase III	NCT03186898	186 participants	2017	2029
Stereotactic Body Proton Radiotherapy for the Treatment of Liver Cancer	Mayo Clinic, USA	Multicentric, Phase II	NCT04805788	60 participants	2021	2025
A National Phase II Study of Proton Therapy in Hepatocellular Carcinoma	Aarhus University Hospital, Denmark	Multicentric, Phase II	NCT05203120	50 participants	2022	2030
Author contributions

FD, AB, and GS: manuscript conception and design of the study. FD, DS, FF, LG, BS, MC, GS, IG and AB: writing of the manuscript. All authors contributed to the article and approved the submitted version.

Funding

The authors declare that this study received funding from Azienda Provinciale per i Servizi Sanitari. The funder was not involved in the study design, collection, analysis, interpretation of data, the writing of this article or the decision to submit it for publication.

References

1. Cancer today (2022). Available at: http://gco.iarc.fr/today/home.
2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin (2018) 68(6):394-424. doi: 10.3322/caac.21492
3. Treviani F, Cantarini MC, Wands JR, Bernardi M. Recent advances in the natural history of hepatocellular carcinoma. Carcinogenesis (2008) 29(7):1299–305. doi: 10.1093/carcin/bgn113
4. Llovet JM, Bustamante J, Castells A, Vilana R, Ayuso M del C, Sala M, et al. Natural history of untreated nonsurgical hepatocellular carcinoma: rationale for the design and evaluation of therapeutic trials. Hepatology (1999) 29(1):62–7.
5. Jiang VQ, Wang ZX, Deng YN, Yang Y, Wang GY, Chen GH. Efficacy of hepatic resection vs. radiofrequency ablation for patients with very-Early-Stage or early-stage hepatocellular carcinoma: A population-based study with stratification by age and tumor size. Front Oncol (2019) 9:113. doi: 10.3389/fonc.2019.00113
6. Llovet JM, Bruix J. Systematic review of randomised trials for unresectable hepatocellular carcinoma: Chemoembolization improves survival. Hepatology (2003) 37(2):429–42. doi: 10.1053/hep.2003.50047
7. Salem R, Gordon AC, Mouli S, Hickey R, Kallini J, Gabr A, et al. Y90 radioembolization significantly prolongs tumor-free survival compared with chemoembolization in patients with hepatocellular carcinoma. Gastroenterology (2016) 151(6):1155–63.e2. doi: 10.1053/j.gastro.2016.08.029
8. Finn RS, Qin S, Ikeda M, Galle PR, Dureucx M, Kim TY, et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. J Biol Chem (2020) 295(19):24504-505. doi: 10.1074/jbc.RA120.019175
9. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanck JF, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med (2008) 359(7):378–90. doi: 10.1056/NEJMoa0708857
10. Lievens Y, Ricardi U, Poortmans P, Verellen D, Gasparotto C, Verfaillie C, et al. Radiation oncology: optimal health for all, together. ESTRO vision, 2020.
11. Brock KK. Imaging and image-guided radiation therapy in liver cancer. Semin Radiat Oncol (2011) 21(4):247–55. doi: 10.1016/j.semradonc.2011.05.001
12. Bujold A, Massey CA, Kim JJ, Brieley J, Cho C, Wong RKS, et al. Sequential phase I and II trials of stereotactic body radiotherapy for locally advanced hepatocellular carcinoma. J Clin Oncol (2013) 31(13):1631–9. doi: 10.1200/JCO.2012.44.1659
13. Jang WI, Kim MS, Bae SH, Cho CK, Yoo HJ, Seo YS, et al. High-dose stereotactic body radiotherapy correlates increased local control and overall survival in patients with inoperable hepatocellular carcinoma. Radiat Oncol (2013) 8:250. doi: 10.1186/1748-717X-8-250
14. Park S, Yoon WS, Rim CH. Indications of external radiotherapy for hepatocellular carcinoma from updated clinical guidelines: Diverse global viewpoints. World J Gastroenterol (2020) 26(4):393–403. doi: 10.3748/wjg.v26.i4.393
15. PTCOG. Facilities in operation (2022). Available at: https://www.ptcog.ch/index.php/facilities-in-operation.
16. Dawson LA, Normolle D, Balter JM, McGinn CJ, Lawrence TS, Ten Haken RK. Analysis of radiation-induced liver disease using the Lyman NTCP model. Int J Radiat Oncol Biol Phys (2002) 53(4):810–21. doi: 10.1016/S0360-3016(02)02846-8
17. Pan CC, Kavanagh BD, Dawson LA, Li XA, Dass SK, Milet MH, et al. Radiation-associated liver injury. Int J Radiat Oncol Biol Phys (2010) 76(5 Suppl): S94–100. doi: 10.1016/j.ijrobp.2009.06.092
18. Wang X, Krishnan S, Zhang X, Dong L, Brieley T, Crane CH, et al. Proton radiotherapy for liver tumors: dosimetric advantages over photon plans. Med Dosim (2008) 33(4):259–67. doi: 10.1016/j.meddos.2007.04.008
19. Qi WX, Ju S, Zhang Q, Guo XM. Charged particle therapy versus photon therapy for patients with hepatocellular carcinoma: a systematic review and meta-analysis. Radiat Oncol (2015) 114(3):289–95. doi: 10.1186/s13014-015-0445-7
20. Sanford NN, Parsley J, Nee B, Yeap BY, Goyal L, Clark JV, et al. Protons versus photons for unresectable hepatocellular carcinoma: Liver decompensation and overall survival. Int J Radiat Oncol Biol Phys (2019) 105(1):64–72. doi: 10.1016/j.ijrobp.2019.01.076
21. Cheng JY, Lui CM, Wang YM, Hsu HC, Huang EY, Huang TT, et al. Proton versus photon radiotherapy for primary hepatocellular carcinoma: a propensity-matched analysis. Radiat Oncol (2020) 15(1):159. doi: 10.1186/s13014-020-01605-4
22. Rawlins M. De testimonio: on the evidence for decisions about the use of therapeutic interventions. Clin Med (Lond) (2008) 8(6):579–88. doi: 10.1016/S1473-9046(08)70030-3
23. Forner A, Llovet JM, Bruix J. Hepatocellular carcinoma. Lancet (2012) 379(9821):1245–55. doi: 10.1016/S0140-6736(12)63147-3
24. Bush DA, Smith JC, Slater JD, Volk ML, Reeves ME, Cheng J, et al. Randomized clinical trial comparing proton beam radiation therapy with transarterial chemoembolization for hepatocellular carcinoma. Results of an interim analysis. Int J Radiat Oncol Biol Phys (2016) 95(1):477–82. doi: 10.1016/j.ijrobp.2016.02.027
25. Tamura S, Okamura Y, Sugita T, Ito T, Yamamoto Y, Ashida R, et al. A comparison of the outcomes between surgical resection and proton beam therapy for single primary hepatocellular carcinoma. Surg Today (2019) 50(4):369–78. doi: 10.1007/s00595-019-01888-5
26. Kim TH, Koh YH, Kim BH, Kim MJ, Lee JH, Park B, et al. Proton beam radiotherapy vs. radiofrequency ablation for recurrent hepatocellular carcinoma: A randomized phase III trial. J Hepatol (2021) 74(3):603–12. doi: 10.1016/j.jhep.2020.09.026
27. Dioni S, Brolese A, Siniscalchi B, Giacomelli I, Fraccholla F, Righetto R, et al. Clinical results of active scanning proton therapy for primary liver tumors. Tumori (2021) 107(1):71–9. doi: 10.1177/0300891620937809

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
28. Nakayama H, Sugahara S, Tokita M, Fukuda K, Mizumoto M, Abei M, et al. Proton beam therapy for hepatocellular carcinoma: the university of tsukuba experience. Cancer (2009) 115(23):5499–506. doi:10.1002/cncr.24619

29. Sugahara S, Oshiro Y, Nakayama H, Fukuda K, Mizumoto M, Abei M, et al. Proton beam therapy for large hepatocellular carcinoma. Int J Radiat Oncol Biol Phys (2010) 76(2):460–6. doi:10.1016/j.ijrobp.2009.02.036

30. Hata M, Tokuyue K, Sugahara S, Kagei K, Ipgki H, Hashimoto T, et al. Proton beam therapy for hepatocellular carcinoma with portal vein tumor thrombus. Cancer (2005) 104(4):794–801. doi:10.1002/cncr.21237

31. Hata M, Tokuyue K, Sugahara S, Tohno E, Nakayama H, Fukushima T, et al. Proton beam therapy for aged patients with hepatocellular carcinoma. Int J Radiat Oncol Biol Phys (2007) 69(3):805–12. doi:10.1016/j.ijrobp.2007.04.016

32. Hata M, Tokuyue K, Sugahara S, Fukushima T, Hashimoto T, Ohnishi K, et al. Proton beam therapy for hepatocellular carcinoma patients with severe cirrhosis. Strahlenther Onkol (2006) 182(12):713–20. doi:10.1007/s00066-006-1564-2

33. Bush DA, Kayali Z, Grove R, Slater JD. The safety and efficacy of high-dose proton beam radiotherapy for hepatocellular carcinoma: a phase 2 prospective trial. Cancer (2011) 117(13):3053–9. doi:10.1002/cncr.25809

34. Hong TS, Wo YJ, Yeap BY, Ben-Josef E, McDonnell EI, Blaszkowsky LS, et al. Multi-institutional phase II study of high-dose hypofractionated proton beam therapy in patients with localized, resectable hepatocellular carcinoma and intrahepatic cholangiocarcinoma. J Clin Oncol (2016) 34(5):460–8. doi:10.1200/JCO.2015.64.2710

35. Parzen JS, Hartnell W, Chang J, Apsisarthananar S, Molitoris J, Durci M, et al. Hypofractionated proton beam radiotherapy in patients with unresectable liver tumors: multi-institutional prospective results from the proton collaborative group. Radiat Oncol (2020) 15(1):255. doi:10.1186/s13014-020-01703-3

36. Kim TH, Park JW, Kim BH, Kim H, Moon SH, Kim SS, et al. Does risk-adapted proton beam therapy have a role as a complementary or alternative therapeutic option for hepatocellular carcinoma? Cancers (Basel) (2019) 11(2):E230. doi:10.3390/cancers11020230

37. Ribeiro CO, Meijers A, Korevaar EW, Mujsi CT, Both S, Langendijk JA, et al. Comprehensive 4D robustness evaluation for pencil beam scanned proton plans. Radiat Oncol (2019) 136:185–9. doi:10.1002/1551-7004.13141-01703-3

38. Li H, Dong L, Bert C, Chang J, Flampouri S, Jee KW, et al. AAPM task group 81. International commission on radiation units and measurements: 2015 recommendations for advanced proton therapy systems. Med Phys (2019) 46(6):e036–81. doi:10.1002/mp.15470

39. Knopp AC, Czereska K, Fracchilla F, Grawe C, Molinelli S, Rinaldi I, et al. Clinical necessity of multi-image-based (4D-MIB) optimization for targets affected by respiratory motion and treated with scanned particle therapy - a comprehensive review. Radiat Oncol (2022) 169:77–85. doi:10.1016/j.radonc.2022.02.018

40. Zhang Y, Beyer D, Tanner C, Lomax AJ, Knopp A. Respiratory liver motion estimation and its effect on scanned proton beam therapy. Phys Med Biol (2012) 57(7):1779–95. doi:10.1088/0031-9155/57/7/1779

41. Zhang Y, Huth J, Weber DC, Lomax AJ. A statistical comparison of motion mitigation performances and robustness of various pencil beam scanned proton systems for liver tumour treatments. Radiother Oncol (2018) 128(1):182–8. doi:10.1016/j.radonc.2018.01.019

42. Zhang Y, Huth J, Wegner M, Weber DC, Lomax AJ. An evaluation of rescanning technique for liver tumour treatments using a commercial PBS proton therapy system. Radiother Oncol (2016) 121(2):281–7. doi:10.1016/j.radonc.2016.09.011

43. Pfeifer T, Bäumer C, Engwall E, Gräsmar D, Spaan B, Timmermann B. Experimental validation of a 4D dose calculation routine for pencil beam scanning proton therapy. Z Med Phys (2018) 28(2):121–33. doi:10.1016/j.zemedi.2017.07.005

44. Streger H, Bäumer C, Blanck O, Chan M, Engwall E, Fiasse S, et al. Mitigation of motion effects in pencil-beam scanning - impact of re-optimization on 4D robustly optimized proton treatment plans for hepatocellular carcinoma. Z Med Phys (2020) 32(1):63–73. doi:10.1016/j.zemedi.2020.08.001

45. Lin L, Sours K, Kang M, Glick A, Lin H, Huang S, et al. Evaluation of motion mitigation using abdominal compression in the clinical implementation of pencil beam scanning proton therapy of liver tumors. Med Phys (2017) 44(2):703–12. doi:10.1002/mp.12040

46. Fracchilla F, Dionisi F, Giacomelli I, Hild S, Esposto PG, Lorenzini S, et al. Implementation of proton therapy treatments with pencil beam scanning of targets with limited intrafraction motion. Phys Med (2019) 57:215–20. doi:10.1016/j.ejmp.2019.01.007

47. Apsisarthananar S, Saini J, O’Ryan-Blair A, Castro J, Bowen SR. Intensity modulated proton therapy with advanced planning techniques in a challenging hepatocellular carcinoma patient. Cureus (2017) 9(9):e1674. doi:10.7759/cureus.1674

48. Takekuma K, Kato T, Narita Y, Kato M, Yamazaki Y, Ouchi H, et al. The impact of different setup methods on the dose distribution in proton therapy for hepatocellular carcinoma. J Appl Clin Med Phys (2021) 22(3):63–71. doi:10.1200/jccm.213178

49. Matsuura T, Maeda K, Sutherland K, Takayanagi T, Shimizu S, Takao S, et al. Biological effect of dose distortion by fiducial markers in spot-scanning proton therapy with a limited number of fields: a simulation study. Med Phys (2012) 39(9):5884–91. doi:10.1118/1.4754558

50. Yang J, Cui J, Wang H, Chang Z, Czito BG, Bashir MR, et al. Is diaphragm motion a good surrogate for liver tumor motion? Int J Radiat Oncol Biol Phys (2014) 90(4):952–8. doi:10.1016/j.ijrobp.2014.07.028

51. Fracchilla F, Dionisi F, Righetto R, Widesott L, Giacomelli I, Cartechini G, et al. Clinical implementation of pencil beam scanning proton therapy for liver cancer with forced deep expiration breath hold. Radiother Oncol (2021) 154:137–44. doi:10.1016/j.radonc.2020.09.035

52. Meng MB, Cui YL, Yu Y, She B, Chen Y, Guan YS, et al. Transcatheter arterial chemoembolization in combination with radiotherapy for unresectable hepatocellular carcinoma: a systematic review and meta-analysis. Radiother Oncol (2009) 92(2):184–94. doi:10.1016/j.radonc.2008.11.002

53. Su CW, Hou MM, Huang PW, Chou YC, Huang BS, Tseng JH, et al. Proton beam radiotherapy combined with anti-PD1/PDL1 immune checkpoint inhibitors for advanced hepatocellular carcinoma. Am J Cancer Res (2022) 12(4):1806–20.