Step Size is a Consequential Parameter in Continuous Cellular Automata

Q. Tyrell Davis and Josh Bongard *

Introduction

In the 1960s, John H. Conway developed a zero-player game with simple rules. This Game of Life, a cellular automaton (CA), has had a seminal impact on the study of complex systems, computation, and art. Conway’s Life followed John von Neumann’s 29-state CA \cite{vonNeumannB1966}, and Life’s impact on popular as well as academic imagination is unique, seeded by a 1970 article in Scientific American by Martin Gardner \cite{Gardner1970}.

Subsequent decades saw increasing diversity of CA research and applications. The Life framework: totalistic CA based on a Moore neighborhood and cell states, supports $2^9 \times 2^9 = 2^{18} \times 2^{18} = 262,144$ possible rules. At each step, cells with a neighborhood sum in their S rules remain unchanged, become 1 with a sum in B; all other cells become 0.

Rudy Rucker developed a continuous CA framework in the 1990s called CAPOW \cite{Rucker2003}. Later, Stephen Rafler developed a continuous CA, SmoothLife, and discovered a persistent glider therein \cite{Rafler2011}. Recently, Bert Chan described the discovery of many persistent patterns in his Lenia framework \cite{Chan2019,Chan2020}, and encoding CA updates in continuously valued neural networks has been applied to models for growth \cite{Mordvintsev2020}, image recognition \cite{Kandazz2020}, and control \cite{Variengien2021}. Continuous CA can be described as:

$$A(t + dt) = A(t) + dt \cdot f(A(t))$$

where A represents cell states, t is unitless time, dt is step size, and $f(\cdot)$ represents some function dependent on cell state.

Typically receiving little scrutiny, dt can have important effects. Persistent patterns require step size to be neither too large nor too small, and multiple patterns may exist their own dt ranges within an otherwise identical CA rule set (Figures 2 and 3). Step size can also lead to qualitatively different behavior in CA. Varying step size from 0.0125 to 0.13 in Figure 3 yields diverse movement types including hopping, meandering, and corkscrewing. While not a perfect analogy, the behavioral repertoire in Figure 3 seems to have more in common with a robot in a conventional physics simulation changing from jumping to pirouette movement patterns than with the expected catastrophic failure (or tedious slow-down) caused by an inappropriate time-step in a conventional differential equation-based numerical physics simulation. Supporting resources for this project are open-source.

Figure 1: Stability of a minimal glider in Lenia’s Scutium gravidas ruleset spans from approximately $dt = 0.25$ to 0.97. Kernel parameters $(\mu_K, \sigma_K) = (0.5, 0.15)$, update parameters $(\mu_G, \sigma_G) = (0.283, 0.0369)$.

* University of Vermont, [jdavis, jbongard]@uvm.edu

\[^1\]Life-like CA are defined by Birth and Survival rules; each may contain any or all of the possible Moore neighborhood sum values 0 through 8, yielding $2^8 \times 2^8 = 2^9 \times 2^9 = 2^{18}$ possible rules. At each step, cells with a neighborhood sum in their S rules remain unchanged, become 1 with a sum in B; all other cells become 0.

\[^2\]f(\cdot) typically includes a neighborhood operation (e.g. convolution) and an arbitrary update function.
Figure 2: This wide glider pattern is pseudostable around \(dt = 0.1 \), but tends to change size and shape (sometimes with explosive growth) at higher \(dt \), and to disappear at lower \(dt \). Kernel parameters \((\mu_K, \sigma_K) = (0.5, 0.15)\), update parameters \((\mu_G, \sigma_G) = (0.283, 0.0369)\).

Pattern stability and step size

An intuitive consequence of poor step size choice is that patterns become unstable when the step size is too large, but this also occurs when step size is too small. This defies the expectation that in simulations of physical system we typically expect greater accuracy as the step size approaches zero. What would be considered systematic error in simulating billiard ball trajectories is essential for self-organization by some CA patterns.

A minimal glider Scutium gravidus in the Lenia framework, cousin to the SmoothLife glider (Rafler, 2011), is stable between approximately \(dt = 0.245 \) to 0.978, smaller or larger step sizes lead to the glider vanishing. Sample trajectories at both extremes are shown in Figure 3.

Another pattern operating under the same neighborhood and update rules, a wide glider, is most stable at much lower step sizes around 0.1. Larger or smaller step sizes yield unconstrained growth or a vanishing pattern, respectively (Figure 2). A step size of 0.1 is pseudo-stable for this pattern, but is sensitive to initial conditions (including grid dimensions, pattern placement, and floating point precision) and can eventually (~1000s of steps) become unstable.

Pattern behavior and step size

In addition to pattern instability, step size can lead to qualitatively different behavior. Figure 3 demonstrates behavioral diversity solely by changing step size. At the “natural” step size of 0.1, it moves in a “hopping” motion. Relatively large step sizes (\(\approx 0.13 \)) bring the pattern to the edge of stability, with occasional explosive growth (responsible for a sharp turn in trajectory), and also occasional larger, surging hops. At step size 0.025 the pattern travels in a meandering trajectory and a step size of 0.0125 leads to corkscrew trajectories and a spiky morphology. The CA in Figure 3 uses the Glaberish CA framework (Davis and Bongard, 2022), splitting the update function into persistence and genesis functions dependent on cell state, with a neighborhood kernel of mixed Gaussians with parameters \((\mu_K, \sigma_K) = [(0.0938, 0.033), (0.2814, 0.033), (0.469, 0.033)]\) with weights \([0.5, 1.0, 0.667]\), a Gaussian genesis function \((\mu_g, \sigma_g) = (0.0621, 0.0088)\), and persistence function \((\mu_p, \sigma_p) = (0.2151, 0.0369)\).

Conclusions

This work demonstrates that step size is a consequential parameter in continuous CA, affecting pattern stability and qualitative behavior. This is in marked contrast to remarks in (Chan, 2019), which, noting the resemblance of the Lenia update to Euler’s method, suggested that decreasing step size asymptotically approaches the ideal simulation of a Lenia pattern, Orbium. This work demonstrates that for several patterns a lower step size does not entail a more accurate simulation, but different behavior or potential patterns entirely. Therefore, step size should be considered for optimization and learning with CA, e.g. to develop patterns with agency to avoid obstacles (Hamon et al., 2022) or for training neural CA such as in (Mordvintsev et al., 2020; Randazzo et al., 2020; Vargien et al., 2021).
Funding

This work was supported by the National Science Foundation under the Emerging Frontiers in Research and Innovation (EFRI) program (EFMA-1830870).

References

Bays, C. (1987). Candidates for the Game of Life in three dimensions. *Complex Syst.*, 1.

Chan, B. W.-C. (2019). Lenia - biology of artificial life. *Complex Systems*, 28(3):251–286.

Chan, B. W.-C. (2020). Lenia and expanded universe. *The 2020 Conference on Artificial Life*, pages 221–229.

Davis, O. T. and Bongard, J. (2022). Glaberish: generalizing the continuously-valued Lenia framework to arbitrary Life-like cellular automata. *ALIFE 2022: The 2022 Conference on Artificial Life*.

Evans, K. M. (2001). Larger than Life: Digital creatures in a family of two-dimensional cellular automata. *Discrete Mathematics & Theoretical Computer Science*, DMTCS Proceedings vol. AA,...:2288.

Gardner, M. (1970). Mathematical games: The fantastic combinations of John Conway’s new solitaire game “Life”. *Scientific American*, 223:120–123.

Hamon, G., Etcheverry, M., Chan, B. W.-C., Moulin-Frier, C., and Oudeyer, P.-Y. (2022). Learning sensorimotor agency in cellular automata. https://developmentalsystems.org/sensorimotor-lenia/.

McCaskill, J. S. and Packard, N. H. (2019). Analysing emergent dynamics of evolving computation in 2D cellular automata. *TPNC*, pages 3–40.

Mordvintsev, A., Randazzo, E., Niklasson, E., and Levin, M. (2020). Growing neural cellular automata. *Distill*. https://distill.pub/2020/growing-ca.

Pivato, M. (2007). RealLife: the continuum limit of Larger than Life cellular automata. *Theoretical Computer Science*, 372(1):46–68.

Rafler, S. (2011). Generalization of Conway’s “Game of Life” to a continuous domain - SmoothLife. *arXiv:1111.1567 [nlin]*.

Randazzo, E., Mordvintsev, A., Niklasson, E., Levin, M., and Greydanus, S. (2020). Self-classifying MNIST digits. *Distill*. https://distill.pub/2020/selforg/mnist.

Rucker, R. (2003). *Continuous-Valued Cellular Automata in Two Dimensions*. in: *New Constructions in Cellular Automata*. Oxford University Press. doi: 10.1093/oso/9780195137170.003.0016, ISBN: 978-0-19-513717-0 978-0-19-756165-3.

Variengien, A., Pontes-Filho, Sidny abd Glover, T., and Nichele, S. (2021). Towards self-organized control: Using neural cellular automata to robustly control a cart-pole agent. *Innovations in Machine Intelligence*, 1:1–14.

von Neumann, J. and Burks, A. W. (1966). *Theory of self-reproducing automata*. Urbana, University of Illinois Press.