ABSTRACT. We define and study proper permutations. Properness is a geometrically natural necessary criterion for a Schubert variety to be Levi-spherical. We prove the probability that a random permutation is proper goes to zero in the limit.

1. INTRODUCTION

Let X denote the variety of complete flags $\langle 0 \rangle \subset F_1 \subset F_2 \subset \cdots \subset F_{n-1} \subset \mathbb{C}^n$, where F_i is a subspace of dimension i. The general linear group GL_n of invertible $n \times n$ complex matrices acts naturally on X by basis change. Let $B \subset GL_n$ be the Borel subgroup of upper triangular invertible matrices. B acts on X with finitely many orbits; these are the Schubert cells X_w indexed by permutations w in the symmetric group S_n on $[n] := \{1, 2, \ldots, n\}$. Their closures $X_w := \overline{X_w}$ are the Schubert varieties; these objects are of significant interest in combinatorial algebraic geometry. A standard reference is [3] and we also point the reader to the expository papers [4, 6].

Now, $\dim X_w = \ell(w)$ where $\ell(w) = \# \{1 \leq i < j \leq n : w(i) > w(j) \}$ counts inversions of w. Also, let

$$J(w) = \{1 \leq i \leq n - 1 : \exists 1 \leq j < i, w(j) = i + 1\}$$

be the set of left descents of w. Assume $I \subseteq J(w)$ and let

$$D := [n-1] - I = \{d_1 < d_2 < \ldots < d_k\};$$

also, $d_0 := 0, d_{k+1} := n$. Let $L_I \subseteq GL_n$ be the Levi subgroup of invertible block diagonal matrices

$$L_I \cong GL_{d_1-d_0} \times GL_{d_2-d_1} \times \cdots \times GL_{d_k-d_{k-1}} \times GL_{d_{k+1}-d_k}.$$

As explained in, e.g., [5, Section 1.2], L_I acts on X_w. Moreover, X_w is said to be L_I-spherical if X_w has a dense orbit of a Borel subgroup of L_I. If in addition, $I = J(w)$, we say X_w is maximally spherical. We refer the reader to ibid., and the references therein, for background and motivation about this geometric condition on a Schubert variety.

Definition 1. Let $d(w) = \#J(w)$. $w \in S_n$ is proper if $\ell(w) - \binom{d(w)+1}{2} \leq n$.

Actually, for $1 \leq n \leq 10$, proper permutations are not rare; the enumeration is:

$$1, 2, 6, 24, 120, 684, 4348, 30549, 236394, 2006492, \ldots$$

Proposition 3.1 shows that if X_w is L_I-spherical for some $I \subseteq J(w)$, then w is proper. The proof explains the Lie-theoretic origins of the condition. In this paper, we study proper permutations using probabilistic considerations.

Theorem 1.1. If $w \in S_n$ is chosen uniformly at random, $\Pr[w \text{ is proper}] \to 0$, as $n \to \infty$.

Date: December 17, 2020.
Proposition 3.1 and Theorem 1.1 combined imply:

Corollary 1.2.

\[
\lim_{n \to \infty} \Pr[w \in S_n, X_w \text{ is } L_I\text{-spherical for some } I \subseteq J(w)] \to 0.
\]

In particular,

\[
\lim_{n \to \infty} \Pr[w \in S_n, X_w \text{ is maximally spherical}] \to 0.
\]

Theorem 1.1 resolves a conjecture from [5]. In *ibid.*, the second and third authors introduced the notion of permutation \(w \in S_n\) being *I*-spherical; in the case \(I = J(w)\) we call \(w \in S_n\) maximally spherical. This combinatorial definition (recapitulated in Section 3) conjecturally characterizes those \(w \in S_n\) such that \(X_w\) is \(L_I\)-spherical. Proposition 3.2 shows that if \(w \in S_n\) is *I*-spherical, then \(w\) is proper. That proposition, together with Theorem 1.1, confirms [5, Conjecture 3.7]:

Corollary 1.3.

\[
\lim_{n \to \infty} \Pr[w \in S_n, w \text{ is } I\text{-spherical for some } I \subseteq J(w)] \to 0.
\]

Therefore,

\[
\lim_{n \to \infty} \Pr[w \in S_n, w \text{ is maximally spherical}] \to 0.
\]

Since Corollary 1.3 is consistent with Corollary 1.2, the former provides additional evidence for the aforementioned conjectural characterization.

2. Proof of Theorem 1.1

For \(w \in S_n\), define

\[
\mathcal{E}_{ij} = \text{ the event } \{w^{-1}(i) > w^{-1}(j)\}.
\]

Let \(X_{ij}\) be the indicator for \(\mathcal{E}_{ij}\); that is, \(X_{ij} = 1\) if event \(\mathcal{E}_{ij}\) happens and \(X_{ij} = 0\) otherwise. Then if \(w\) is chosen from \(S_n\) uniformly at random, then:

\[
\mathbb{E}[X_{ij}] = \Pr[X_{ij} = 1] = \frac{1}{2!(1 - \delta_{i,j})} = 1 - \Pr[X_{ij} = 0].
\]

Since \(\ell(w) = \ell(w^{-1})\) and \(#J(w) = \#\{i : w^{-1}(i + 1) < w^{-1}(i)\}\), the random variable (r.v.)

\[
\ell(w) - \binom{d(w)+1}{2}
\]

can be modeled as the r.v.

\[
X := L - \binom{D + 1}{2},
\]

where:

\[
L = \sum_{i=1}^{n} \sum_{j=i+1}^{n} X_{ij},
\]

and \(D = \sum_{i=1}^{n-1} X_{i,i+1}\).

Notice that if \(i_1, i_2, i_3, i_4 \in [n]\) are distinct, then \(X_{i_1,i_2}\) and \(X_{i_3,i_4}\) are independent.

Lemma 2.1. For \(n \geq 2\),

\[
\mathbb{E}[X] = \frac{3n^2 - 7n + 2}{24}.
\]
Proof. It is true that:

(a) \((X_{i,j})_{i<j}\) are identically distributed,
(b) \(\mathbb{E}[X_{i,i+1}X_{i,i+1}] = \mathbb{E}[X_{i,i+1}^2] = \mathbb{E}[X_{i,i+1}] = 1/2\) since \(X_{i,i+1}\) is an indicator r.v.,
(c) \(\mathbb{E}[X_{i,i+1}X_{i+1,i+2}] = \text{Pr}[w^{-1}(i) > w^{-1}(i + 1) > w^{-1}(i + 2)] = 1/3!\),
(d) \(X_{i,i+1}\) and \(X_{j,j+1}\) are independent if \(i + 1 < j\).

With this, the expression \(\mathbb{E}[L]\) can be expanded as:

\[
\mathbb{E}[L] = \mathbb{E}\left[\sum_{i=1}^{n} \sum_{j=i+1}^{n} X_{ij}\right]
\]
\[
= \sum_{i=1}^{n} \sum_{j=i+1}^{n} \mathbb{E}[X_{ij}] \quad \text{lin. of expectation}
\]
\[
= \frac{1}{2} \left(\frac{n}{2}\right) \quad \text{identically distributed.}
\]

Similarly,
\[
\mathbb{E}[D] = \frac{n - 1}{2}.
\]

Next, the expression \(\mathbb{E}[D^2]\) can be expanded as:

\[
\mathbb{E}[D^2] = \mathbb{E}\left[\left(\sum_{i=1}^{n-1} X_{i,i+1}\right)^2\right]
\]
\[
= \mathbb{E}\left[\sum_{i=1}^{n-1} X_{i,i+1}^2 + \sum_{i=1}^{n-1} \sum_{j \neq i} X_{i,i+1}X_{j,j+1}\right]
\]
\[
= \sum_{i=1}^{n-1} \mathbb{E}[X_{i,i+1}^2] + \sum_{i=1}^{n-1} \sum_{j \neq i} \mathbb{E}[X_{i,i+1}X_{j,j+1}] \quad \text{lin. of expectation}
\]
\[
= \frac{n - 1}{2} + \sum_{i=1}^{n-1} \sum_{j \neq i} \mathbb{E}[X_{i,i+1}X_{j,j+1}] \quad \text{by (b)}
\]
\[
= \frac{n - 1}{2} + 2 \sum_{i=1}^{n-1} \sum_{j=i+1}^{n-1} \mathbb{E}[X_{i,i+1}X_{j,j+1}]
\]
\[
= \frac{n - 1}{2} + 2 \left(\sum_{i=1}^{n-2} \mathbb{E}[X_{i,i+1}X_{i+1,i+2}] + \sum_{i=1}^{n-1} \sum_{j=i+2}^{n-1} \mathbb{E}[X_{i,i+1}X_{j,j+1}]\right)
\]
\[
= \frac{n - 1}{2} + 2 \left(\frac{n - 2}{3!} + \frac{1}{2^2}\left(\binom{n-1}{2} - (n-2)\right)\right) \quad \text{by (c) and (d))}
\]
\[
= \frac{n - 1}{2} + \frac{n - 2}{3} + \frac{1}{2}\left(\binom{n-1}{2} - (n-2)\right).
\]
Thus by linearity of expectation,

\[\mathbb{E} \left[\binom{D + 1}{2} \right] = \frac{1}{2} \mathbb{E} [D^2 + D] = \frac{n - 1}{2} + \frac{n - 2}{6} - \frac{n - 2}{4} + \frac{1}{4} \binom{n - 1}{2} \]

and

\[\mathbb{E} [X] = \mathbb{E} \left[L - \binom{D + 1}{2} \right] = \mathbb{E} [L] - \mathbb{E} \left[\binom{D + 1}{2} \right] = \frac{3n^2 - 7n + 2}{24}. \quad \square \]

Lemma 2.2.

\[\mathbb{E} [X^2] = \frac{n^4}{64} + o(n^4). \]

Proof. Notice that:

\[\mathbb{E} [X^2] = \mathbb{E} [L^2] + \mathbb{E} \left[\binom{D + 1}{2} \right]^2 - 2 \mathbb{E} \left[L \binom{D + 1}{2} \right] = \mathbb{E} [L^2] + \frac{1}{4} (\mathbb{E} [D^4] + 2 \mathbb{E} [D^3] + \mathbb{E} [D^2]) - \mathbb{E} [LD^2] - \mathbb{E} [LD]. \]

Now, \(0 \leq D^3, D^2, LD \leq n^3 \), so \(\mathbb{E} [D^3], \mathbb{E} [D^2], \mathbb{E} [LD] = o(n^4) \). Thus it suffices to study the asymptotics of \(\mathbb{E} [L^2], \mathbb{E} [D^4/4], \mathbb{E} [LD^2]. \)

We will repeatedly use the following observation. For a set \(S \) with \(|S| = o(f(n)) \):

\[\sum_{(i_1,j_1,...,i_c,j_c)\in S} \mathbb{E} \left[\prod_{k=1}^{c} X_{i_k,j_k} \right] \leq |S| = o(f(n)). \]

(1)

Expanding \(\mathbb{E} [L^2] \) gives:

\[\mathbb{E} [L^2] = \sum_{i=1}^{n} \sum_{j=i+1}^{n} \sum_{i'=1}^{n} \sum_{j'=i'+1}^{n} \mathbb{E} [X_{i,j} X_{i',j'}]. \]

There are \(\binom{n}{2}^2 = n^4/4 + o(n^4) \) many terms in this summation. Further, there are \(\binom{n}{2} \binom{n-2}{2} = n^4/4 + o(n^4) \) many terms in this summation such that \(i, j, i', j' \) are distinct. Therefore, there must be \(o(n^4) \) terms where \(i, j, i', j' \) are not distinct. Now,

\[\sum_{\text{distinct } i,j,i',j' \in [n]} \mathbb{E} [X_{i,j} X_{i',j'}] = \sum_{\text{distinct } i,j,i',j' \in [n]} \mathbb{E} [X_{i,j}] \mathbb{E} [X_{i',j'}] \quad \text{(independence when indices are distinct)} \]

\[= \left(\frac{1}{2} \right)^2 \binom{n}{2} \binom{n-2}{2} = \left(\frac{1}{2} \right)^2 (n^4/4 + o(n^4)). \]
Combining this with (1) gives

\[\mathbb{E} [L^2] = \frac{1}{16} n^4 + o(n^4). \]

To expand \(\mathbb{E} [D^4/4]\), first we have

\[\mathbb{E} [D^4] = \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i' = 1}^{n-1} \sum_{j' = 1}^{n-1} \mathbb{E} [X_{i,i+1}X_{j,j+1}X_{i',i'+1}X_{j',j'+1}] . \]

There are \((n-1)^4 = n^4 + o(n^4)\) many terms in this summation. Further, there are \(4!(n-4) = n^4 + o(n^4)\) many terms in this summation such that \(i, i + 1, j, j + 1, i', i' + 1, j', j' + 1\) are distinct. Here we have used the fact that there are \(\binom{n-4}{k}\) ways to choose \(k\) non-consecutive numbers from \([n-1]\). Therefore, there must be \(o(n^4)\) terms where \(i, i + 1, j, j + 1, i', i' + 1, j', j' + 1\) are not distinct. We compute

\[
\begin{align*}
\frac{1}{4} \cdot \sum_{i,j,i',j' \in [n]} & \mathbb{E} [X_{i,i+1}X_{j,j+1}X_{i',i'+1}X_{j',j'+1}] \\
& \text{where } i,i+1,j,j+1, i',i'+1, j',j'+1 \text{ are distinct} \\
= \frac{1}{4} \cdot \sum_{i,j,i',j' \in [n]} & \mathbb{E} [X_{i,i+1}] \mathbb{E} [X_{j,j+1}] \mathbb{E} [X_{i',i'+1}] \mathbb{E} [X_{j',j'+1}] \\
& \text{where } i,i+1,j,j+1, i',i'+1, j',j'+1 \text{ are distinct} \\
= \frac{1}{4} \cdot \left(\frac{1}{2} \right)^4 \cdot 4! \left(\frac{n-4}{4} \right) \\
= \frac{1}{4} \cdot \left(\frac{1}{2} \right)^4 (n^4 + o(n^4)).
\end{align*}
\]

Hence by (1),

\[\mathbb{E} [D^4/4] = \frac{1}{64} n^4 + o(n^4). \]

Expanding \(\mathbb{E} [LD^2] \) gives:

\[\mathbb{E} [LD^2] = \sum_{i=1}^{n} \sum_{j=i+1}^{n} \sum_{i' = 1}^{n-1} \sum_{j' = 1}^{n-1} \mathbb{E} [X_{i,j}X_{i',i'+1}X_{j',j'+1}] . \]

There are \(\binom{n}{2} (n-1)^2 = n^4/2 + o(n^4)\) many terms in this summation. Further, there are \(2! \binom{n-2}{2} \binom{n-4}{2} = n^4/2 + o(n^4)\) many terms such that \(i, j, i', i' + 1, j', j' + 1\) are distinct. This can be seen by first choosing \(i'\) and \(j'\), and then choosing the pair \((i, j)\) such that \(i < j\). Therefore, there must be \(o(n^4)\) terms where \(i, j, i', i' + 1, j', j' + 1\) are not distinct. We have:

\[
\begin{align*}
\sum_{i,j,i',j' \in [n]} & \mathbb{E} [X_{i,j}X_{i',i'+1}X_{j',j'+1}] \\
& \text{where } i,j,i',i'+1,j',j'+1 \text{ are distinct} \\
= \sum_{i,j,i',j' \in [n]} & \mathbb{E} [X_{i,j}] \mathbb{E} [X_{i',i'+1}] \mathbb{E} [X_{j',j'+1}] \\
& \text{where } i,j,i',i'+1,j',j'+1 \text{ are distinct}
\end{align*}
\]
\[
\left(\frac{1}{2}\right)^3 \cdot 2! \left(\begin{array}{c} n-2 \\ 2 \end{array}\right) \left(\begin{array}{c} n-4 \\ 2 \end{array}\right)
= \left(\frac{1}{2}\right)^3 \cdot (n^4/2 + o(n^4)).
\]

Therefore by (1),

(4) \[\mathbb{E}[LD^2] = \frac{1}{16} n^4 + o(n^4). \]

Summarizing, we have shown that

\[\mathbb{E}[X^2] = \mathbb{E}[L^2] + \mathbb{E}[D^4/4] - \mathbb{E}[LD^2] + o(n^4). \]

Now the result follows from (2), (3), (4). \(\square \)

Lemma 2.3. \(\lim_{n \to \infty} \Pr[X \leq n] \to 0. \)

Proof. The event \(\{X \leq n\} \) is contained in the event \(\{|X - \mathbb{E}[X]| \geq t\} \) when \(t = \mathbb{E}[X] - n \) because \(|X - \mathbb{E}[X]| \geq t \implies \text{either} \)

(A) \(X - \mathbb{E}[X] \geq t, \)
(B) \(\mathbb{E}[X] - X \geq t, \)

and the above choice of \(t \) causes inequality (B) to be \(X \leq n \). Now, we can apply Chebyshev’s Inequality to \(X \) and \(t = \mathbb{E}[X] - n \) to get:

\[\Pr[X \leq n] \leq \Pr[|X - \mathbb{E}[X]| \geq \mathbb{E}[X] - n] \leq \frac{\text{Var}[X]}{(\mathbb{E}[X] - n)^2} \]
\[= \frac{\mathbb{E}[X^2] - (\mathbb{E}[X])^2}{(\mathbb{E}[X] - n)^2}. \]

The result follows from the fact that, by Lemma 2.2,

\[\mathbb{E}[X^2] = \frac{n^4}{64} + o(n^4) \]

and by Lemma 2.1 both

\[(\mathbb{E}[X])^2 = \frac{n^4}{64} + o(n^4) \quad \text{and} \quad (\mathbb{E}[X] - n)^2 = \Omega(n^4). \]

This completes the proof of Theorem 1.1. \(\square \)

3. PROPERNESS IS NECESSARY FOR SPHERICALITY; PROOF OF COROLLARIES 1.1 AND 1.3

Let \(T \) be the maximal torus of diagonal matrices in \(GL_n \). For \(I \subseteq J(w) \), define

\[B_I = L_I \cap B. \]

Hence \(B_I \) is the Borel subgroup of upper triangular matrices in \(L_I \). For a positive integer \(j \), let \(U_j \) be the maximal unipotent subgroup of \(GL_j \) consisting of upper triangular matrices with 1’s on the diagonal. Then

(5) \[\dim U_j = \binom{j}{2}. \]
Let U_I be the maximal unipotent subgroup of B_I. It is basic (see, e.g., [1] Chapter IV) that
\[
U_I \cong U_{d_1-d_0} \times U_{d_2-d_1} \times \cdots \times U_{d_k-d_{k-1}} \times U_{d_{k+1}-d_k}.
\]

Proposition 3.1. If X_w is L_I-spherical then w is proper.

Proof. Since L_I acts spherically on X_w, by definition, there is a Borel subgroup $K \subset L_I$ such that K has a dense orbit O in X_w. Thus
\[
\dim X_w = \dim O.
\]
Let $x \in O$. By [2, Proposition 1.11], $O = K \cdot x$ is a smooth, closed subvariety of X_w of dimension $\dim K - \dim K_x$, where K_x is the isotropy group of x. Hence
\[
\dim X_w = \dim O = \dim K - \dim K_x \leq \dim K.
\]
All Borel subgroups of a connected algebraic group are conjugate [1, §11.1], and so $\dim K = \dim B_I$. The fact that L_I acts on X_w implies $I \subseteq J(w)$, and hence $L_I \subseteq L_{J(w)}$ [5, Section 1.2]. This implies $B_I \subseteq B_{J(w)}$. By [1, Theorem 10.6.(4)], $B_I = T \rtimes U_I$. Combining all this we have
\[
\dim K = \dim B_I \leq \dim B_{J(w)} = \dim T + \dim U_{J(w)}.
\]
Let $D = [n - 1] - J(w) = \{d_1 < d_2 < \ldots < d_k\}$. It follows from (5) and (6) that
\[
\dim U_{J(w)} = \left(\frac{d_1 - d_0}{2}\right) + \left(\frac{d_2 - d_1}{2}\right) + \cdots + \left(\frac{d_{k+1} - d_k}{2}\right).
\]
The right hand side is maximized when there exists a t such that $d_t - d_{t-1} = n - k$ and $d_j - d_{j-1} = 1$ for all $j \neq t$. Thus
\[
\dim U_{J(w)} \leq \left(\frac{n - k}{2}\right) = \left(\frac{n - ((n - 1) - d(w))}{2}\right) = \left(\frac{d(w) + 1}{2}\right).
\]
Combining this with (7), (8), and the fact that $\ell(w) = \dim X_w$, we see $\ell(w) \leq n + \left(\frac{d(w)+1}{2}\right)$, that is, w is proper.

Next, we recall the definition of I-spherical permutations in S_n [5]. Let $s_i = (i \ i + 1)$ denote the simple transposition interchanging i and $i + 1$. An expression $w = s_{i_1}s_{i_2}\cdots s_{i_t}$ for $w \in S_n$ is reduced if $\ell = \ell(w)$. Let $\text{Red}(w)$ be the set of all reduced expressions for w.

Definition 2 (Definition 3.1 of [5]). $w \in S_n$ is I-spherical if $R = s_{i_1}s_{i_2}\cdots s_{i_\ell(w)} \in \text{Red}(w)$ exists such that

(I) s_i appears at most once in R

(II) $\# \{m : d_{t-1} < i_m < d_t\} \leq \left(\frac{d_t-d_{t-1}+1}{2}\right) - 1$ for $1 \leq t \leq k + 1$.

This is a combinatorial analogue of Proposition 3.1.

Proposition 3.2. Let $w \in S_n$ and $I \subseteq J(w)$. If w is I-spherical then w is proper.

Proof. First suppose $I = J(w)$. Consider a reduced word $R \in \text{Red}(w)$. By Definition 2(I), at most $n - 1 - d(w)$ of the factors of R are of the form s_x where $x \not\in J(w)$. Thus, at least
\(\ell(w) - (n - 1 - d(w)) \) factors are of the form \(s_x \) where \(x \in J(w) \). Clearly, if \(j_1, \ldots, j_k \) are positive integers then \(\sum_{i=1}^{k+1} \binom{j_i+1}{2} \leq \binom{j_1 + \ldots + j_{k+1} + 1}{2} \). Equivalently,

\[
\sum_{i=1}^{k+1} \binom{j_i + 2}{2} - 1 = \sum_{i=1}^{k+1} \binom{j_i + 1}{2} + j_i \leq \binom{j_1 + \ldots + j_{k+1} + 1}{2} + (j_1 + \ldots + j_{k+1}).
\]

Set \(j_i = d_i - d_i - 1 - 1 \) (for \(1 \leq i \leq k + 1 \)). Then \(j_1 + \ldots + j_{k+1} = d_{k+1} - d_0 - (k + 1) = n - 1 - k = d(w) \). Thus, by Definition 1(II), at most \(\binom{d(w)+1}{2} + d(w) \) factors are of the form \(s_x \) where \(x \in J(w) \). Therefore,

\[
\binom{d(w)+1}{2} + d(w) \geq \ell(w) - (n - 1 - d(w)).
\]

Rearranging, \(\ell(w) \leq n - 1 - d(w) + \binom{d(w)+1}{2} + d(w) \iff \ell(w) < n + \binom{d(w)+1}{2} \). So, \(w \) is proper.

For \(I \neq J(w) \), we use that if \(w \) is \(I \)-spherical then \(w \) is \(J(w) \)-spherical [5, Proposition 2.12].

Conclusion of proof of Corollaries 1.2 and 1.3 These claims follow immediately from Theorem 1.1 combined with Proposition 3.1 and Proposition 3.2 respectively.

Although we chose not to pursue it, using similar techniques, it should be possible to prove analogues of our results for the other classical Lie types.

ACKNOWLEDGEMENTS

We thank Mahir Can and Yibo Gao for helpful discussions. The project was completed as part of the ICLUE (Illinois Combinatorics Lab for Undergraduate Experience) program, which was funded by the NSF RTG grant DMS 1937241. AY was partially supported by a Simons Collaboration grant, and UIUC’s Center for Advanced Study. RH was partially supported by an AMS Simons Travel grant.

REFERENCES

[1] A. Borel, Linear algebraic groups. Second edition. Graduate Texts in Mathematics, 126. Springer-Verlag, New York, 1991.

[2] M. Brion, Introduction to actions of algebraic groups, Notes of the course “Actions hamiltoniennes: invariants et classification” (CIRM, Luminy, 2009), available on-line at https://www-fourier.ujf-grenoble.fr/~mbrion/notes_luminy.pdf

[3] W. Fulton, Young tableaux. With applications to representation theory and geometry. London Mathematical Society Student Texts, 35. Cambridge University Press, Cambridge, 1997. x+260 pp.

[4] M. Gillespie, Variations on a theme of Schubert calculus. In: Barcelo H., Karaali G., Orellana R. (eds) Recent Trends in Algebraic Combinatorics. Association for Women in Mathematics Series, vol 16. Springer, 2019.

[5] R. Hodges and A. Yong, Coxeter combinatorics and spherical Schubert geometry, preprint, 2020. arXiv:2007.09238

[6] S. L. Kleiman and D. Laksov, Schubert calculus. Amer. Math. Monthly 79 (1972), 1061–1082.

DEPT. OF MATHEMATICS, UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN, URBANA, IL 61801
Email address: davidb2@illinois.edu, rhodges@illinois.edu, ayong@illinois.edu