Weight Management and Physical Activity Throughout the Cancer Care Continuum

Wendy Demark-Wahnefried, PhD, RD1; Kathryn H. Schmitz, PhD, MPH, FACSM, FTOS2; Catherine M. Alfano, PhD3;
Jennifer R. Bail, PhD, RN4; Pamela J. Goodwin, MD, MSc, FRCP(C)5; Cynthia A. Thomson, PhD, RDN6;
Don W. Bradley, MD, MHS-CL7; Kerry S. Courneya, PhD8; Christie A. Befort, PhD9; Crystal S. Denlinger, MD, FACP10;
Jennifer A. Ligibel, MD11; William H. Dietz, MD, PhD12; Melinda R. Stolley, PhD13; Melinda L. Irwin, PhD, MPH14;
Marcas M. Bammann, PhD, FACSM15; Caroline M. Aposian, MD16; Bernardine M. Pinto, PhD17;
Kathleen Y. Wolin, ScD, FACSMS18; Rachel M. Ballard, MD, MPH19; Andrew J. Dannenberg, MD20; Elizabeth G. Eakin, PhD21;
Matt M. Longjohn, MD, MPH22; Susan D. Raffa, PhD23; Lucile L. Adams-Campbell, PhD24; Joanne S. Buzaglo, PhD25;
Sharyl J. Nass, PhD26; Greta M. Massetti, PhD27; Erin P. Balogh, MPH28; Elizabeth S. Kraft, MD, MHS, FAAFP, RVP29;
Anand K. Parekh, MD, MPH30; Darshak M. Sanghavi, MD31; G. Stephen Morris, PT, PhD, FACSMS32;
Karen Basen-Engquist, PhD, MPH33

Abstract: Mounting evidence suggests that weight management and physical activity (PA) improve overall health and well being, and reduce the risk of morbidity and mortality among cancer survivors. Although many opportunities exist to include weight management and PA in routine cancer care, several barriers remain. This review summarizes key topics addressed in a recent National Academies of Science, Engineering, and Medicine workshop entitled, “Incorporating Weight Management and Physical Activity Throughout the Cancer Care Continuum.” Discussions related to body weight and PA among cancer survivors included: 1) current knowledge and gaps related to health outcomes; 2) effective intervention approaches; 3) addressing the needs of diverse populations of cancer survivors; 4) opportunities and challenges of workforce, care coordination, and technologies for program implementation; 5) models of care; and 6) program coverage. While more discoveries are still needed for the provision of optimal weight-management and PA programs for cancer survivors, obesity and inactivity currently jeopardize their overall health and quality of life. Actionable future directions are presented for research; practice and policy changes required to assure the availability of effective, affordable, and feasible weight management; and PA services for all cancer survivors as a part of their routine cancer care.

Keywords: nutrition, physical activity, supportive care, survivorship, weight management

Introduction

With growing evidence of the association between obesity, excess weight, and cancer, the National Cancer Policy Forum (NCPF) of the National Academies of Science, Engineering, and Medicine hosted a workshop in 2011 on the “Role of Obesity in Cancer Survival and Recurrence.” That workshop examined epidemiologic evidence, biologic mechanisms, preclinical studies, and a limited number of randomized controlled trials (RCTs) of interventions that promoted weight loss via caloric restriction or increased physical activity (PA) in patients with cancer.1 Two scientific papers emanated from this endeavor—one that was more mechanistic in emphasis gaps in knowledge.

Corresponding author: Wendy Demark-Wahnefried, PhD, RD, Wallace Tumor Institute, University of Alabama at Birmingham, 1675 Sixth Ave South, Room 102M, Birmingham, AL 35294; demark@uab.edu

doi: 10.3322/caac.21441. Available online at cacancerjournal.com

The responsibility for the content of this article rests with the authors and does not necessarily represent the views of the National Academies of Sciences, Engineering, and Medicine, its committees, its sponsors, or its convening activities and does not represent the official position of the Centers for Disease Control and Prevention, the Veterans Health Administration, the Department of Veterans Affairs, or the US Government.

References

1. Professor of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL; 2. Professor of Public Control, Centers for Disease Control and Prevention, Hershey, PA; 3. Vice President, Survivorship, American Cancer Society, Inc., Washington, DC; 4. Post-Doctoral Fellow, Prevention Research Institute, University of Alabama at Birmingham, Birmingham, AL; 5. Professor of Medicine, Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute at the University of Toronto, Toronto, Ontario, Canada; 6. Professor of Health Promotion Sciences, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ; 7. Associate Professor of Medicine, Harvard Medical School, Boston, MA; 8. Chair, Redstone Global Center for Prevention and Wellness, George Washington University, Washington, DC; 9. Professor of Medicine, University of Arizona, Tucson, AZ; 10. Chair, Redstone Global Center for Prevention and Wellness, George Washington University, Washington, DC; 11. Associate Professor of Medicine, University of Arizona, Tucson, AZ; 12. Professor of Medicine, Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute at the University of Toronto, Toronto, Ontario, Canada; 13. Professor of Health Promotion Sciences, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ; 14. Professor of Medicine, University of Alabama at Birmingham, Birmingham, AL; 15. Associate Professor of Medicine, University of Alabama at Birmingham, Birmingham, AL; 16. Professor of Medicine, Boston University School of Medicine, Boston, MA; 17. Professor of Nursing, University of South Carolina, Columbia, SC; 18. CEO, Ceres Health, Chicago, IL; 19. Director, Prevention Research Coordination, Office of Disease Prevention, Office of the Director, National Institutes of Health, Bethesda, MD; 20. Professor of Medicine, University of Alabama at Birmingham, Birmingham, AL; 21. Professor and Director, Cancer Prevention Research Center, School of Public Health, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia; 22. Vice President and National Health Officer, YMCA of the USA, Chicago, IL; 23. National Program Director for Weight Management, Veterans Health Administration, Durham, NC; 24. Professor of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Washington, DC; 25. Senior Vice President, Research and Training Institute, Cancer Support Community, Philadelphia, PA; 26. Director, National Cancer Policy Forum and Board on Health Care Services, Health and Medicine Division, National Academies of Science, Engineering, and Medicine, Washington, DC; 27. Associate Director for Science, Division of Cancer Prevention and Control, School of Public Health, University of Georgia, Athens, GA; 28. Senior Program Officer, National Cancer Policy Forum, Health and Medicine Division, National Academies of Science, Engineering, and Medicine, Washington, DC; 29. Senior Clinical Officer, Anthem Blue Cross California, Denver, CO; 30. Chair Medical Advisor, Bipartisan Policy Center, Washington, DC; 31. Chair Medical Officer, Senior Vice President, Translation, Optum Labs, Cambridge, MA; 32. Professor of Physical Therapy, Wingate University, Wingate, NC; 33. Professor of Behavioral Science, The University of Texas MD Anderson Cancer Center, Houston, TX.
Six years later, and after considerable advances in this arena, including a position paper and campaign on obesity and cancer issued by the American Society of Clinical Oncology (ASCO), another NCPF workshop on obesity and cancer was convened—this time focusing on translating research findings into clinical practice and community-based programs. That workshop, “Incorporating Weight Management and Physical Activity Throughout the Cancer Care Continuum,” also drew international experts, but with greater emphasis on behavioral science, clinical research, public policy, dissemination science, and health economics. Workshop presentations and discussions examined the available evidence regarding the value of promoting weight management and PA across the period of cancer survivorship, from diagnosis to end of life, along with evaluation of opportunities and challenges in current approaches to promote PA and weight management. To ensure that discussions would be patient-centered, the opening session of the workshop featured 2 cancer survivors who shared their experiences with cancer treatment, weight management, and PA (for key excerpts, see Table 1). Also, throughout the workshop, presentations and discussions examined the broad spectrum of diversity among cancer survivors in terms of cancer type, stage, molecular subtype, length of survivorship, comorbidity and functional status, age, race/ethnicity, gender, and geographic location that require consideration in tailoring weight-management and PA interventions and recognition that “one size does not fit all.” The workshop culminated in a discussion of whether the strength of evidence warranted the provision and coverage of services for weight management and PA that are specifically directed toward cancer survivors and ways to enhance the delivery of these services to the growing sector of cancer survivors in this nation, who currently number well over 15 million. Herein, we report a summary of the workshop presentations, discussions, and conclusions.

Body Weight, PA, and Health Outcomes for Cancer Survivors: Knowledge and Gaps

This first section, which provides a foundation for the remainder of the article, is devoted to critically evaluating the state of knowledge regarding the relationship between body weight or PA and health outcomes for cancer survivors. It begins with an overview of the evidence on cancer outcomes and then addresses other outcomes, such as...
quality of life (QOL) and fatigue. Finally, it identifies evidence gaps addressed by ongoing and recent trials, gaps that remain, and the opportunities to fill these gaps.

Overview of Obesity and Cancer Outcomes

Excess weight gain, overweight, and obesity are associated with an increased risk of many cancers; recently, the International Agency for Research on Cancer reported that there is sufficient evidence to conclude that avoidance of excess body fat is associated with a lower risk for cancers of the endometrium, esophagus (adenocarcinoma), gastric cardia, kidney (renal cell), multiple myeloma, meningioma, liver, pancreas, colorectum, gallbladder, breast (postmenopausal), ovary, and thyroid.8 There also is growing observational evidence that obesity is associated with poorer cancer outcomes among individuals with cancer. The largest body of evidence relates to breast cancer. A meta-analysis of 82 studies involving 213,075 women with breast cancer found a 41% relative increase in all-cause mortality for women with obesity versus those of normal weight (relative increases were 75% in premenopausal women and 34% in postmenopausal women).9 That study also reported increased all-cause mortality for overweight women, albeit the relative increases were smaller. Another meta-analysis found that the risk of mortality associated with overweight and obesity was similar for patients with estrogen receptor (ER)-positive and ER-negative breast cancer, although some (but not all) subsequent individual studies have suggested that the risk may be present only in women with ER-positive disease.10 Among breast cancer survivors treated with anthracyclines, obesity also is associated with greater cardiotoxicity.11 Similarly, adverse associations of obesity with survival are reported for endometrial, prostatic, pancreatic, colorectal, and ovarian cancer as well as some hematologic malignancies.3,4 In contrast, overweight and obesity are associated with somewhat better outcomes in lung, esophageal, and kidney cancers—cancers in which the morbidity of cachexia and advanced stage at diagnosis are more common.12

The association of excess weight gain, overweight, and obesity with cancer is biologically complex. Increased adiposity results in changes in adipose tissue, including death of adipocytes, leading to infiltration of inflammatory cells, as well as secretion of cytokines and other factors that stimulate cancer cell growth, invasion, angiogenesis, and metastasis.13 Increased adiposity also is associated with changes in systemic physiology, including insulin resistance, dysglycemia, altered adipokines, and increased inflammation; together, these changes enhance signaling through key growth pathways (eg, PI3K, RAS, JAK-STAT) and alter cellular metabolism.2,14 These obesity-associated effects at the tissue and physiologic levels invoke changes in many of the hallmarks of cancer,15 including sustained proliferative signaling, activated invasion and metastasis, induced angiogenesis, and resistance to cell death.2 Overweight and obesity also enable deregulation of cellular energetics and tumor-promoting inflammation.2,15 While observational data obtained from a multitude of studies, coupled with this strong biologic rationale, provide strong support for an association of obesity with poor cancer outcomes, there is insufficient evidence to conclude that this association is causal.

Studies examining weight-related changes in the transcriptome of breast cancers indicate that cancers developing in women with obesity are biologically different from those in women of normal weight in terms of altered gene regulation and expression.16 At this time, it is unclear whether reversal of obesity will lead to reversal of these differences or lead to improved cancer outcomes. RCTs of weight loss or pharmacologic interventions that reverse obesity-associated changes related to overweight and obesity are needed.

Overview of the Evidence on Cancer Outcomes Related to PA

Evidence linking increased PA to improved cancer outcomes is preliminary but promising. A recent systematic review and pooled analysis of 26 observational studies found that cancer survivors who engaged in higher levels of PA (>18 metabolic equivalent hours per week) had a 37% lower risk of dying from cancer, compared with those who engaged in lower levels of PA (<1.5 metabolic equivalent hours per week; hazard ratio [HR], 0.63; 95% confidence interval [95% CI], 0.54–0.73).17 This risk reduction is remarkably consistent across breast, colorectal, and prostate cancer survivors. There also is growing evidence that the association between PA and cancer mortality varies by specific molecular or genetic markers, suggesting a possible precision medicine approach to exercise oncology (eg, a strong inverse association between PA and colon cancer mortality is noted for survivors whose tumors express p27 [HR, 0.32; 95% CI, 0.12–0.85]). In addition, the link between PA and cancer outcomes has strong biologic plausibility related to sex hormones, cell growth regulators, DNA damage repair, inflammatory markers, immune function, and antioxidant pathways.18

RCTs are needed to establish the causal effects of PA on cancer outcomes. The Colon Health and Life-Long Exercise Change (CHALLENGE) Trial is the first phase 3 trial examining the effects of a 3-year structured PA program on disease-free survival in patients with stage II and III colon cancer who have recently completed chemotherapy.19 To date, the trial has demonstrated feasibility in accrual20 and PA behavior change21; it has randomized over 590 of the planned 962 patients. The Intense Exercise for Survival (INTERVAL) Trial is another phase 3 trial examining the effects of a 2-year structured PA program on overall survival.
in 866 men with metastatic, castrate-resistant prostate cancer.22 These trials, and others like them, will provide the first definitive evidence on the role of PA in improving cancer outcomes.

Influence of Weight Management and PA on QOL Outcomes

Although obtaining evidence of the impact of weight management and PA on cancer progression and mortality is critical, many cancer survivors experience significant comorbidities, or cancer-related and treatment-related physical and psychosocial problems that compromise their QOL.23 Healthy eating, regular PA, and maintaining a healthy weight have been recommended for cancer survivors to prevent, mitigate, and manage these downstream sequelae.24,25

Weight gain with concomitant loss of muscle (ie, sarcopenic obesity) and bone are common after chemotherapy and hormone therapy, placing cancer survivors at risk for comorbidities, such as cardiovascular disease (CVD), diabetes, second primary cancers, osteoporosis, and functional decline.25,26 Research indicates that diet-induced and exercise-induced weight management interventions can produce clinically meaningful weight loss in cancer survivors within 6 months, resulting in improved blood lipids and metabolic health and reduced inflammation.27-31 Also, several studies have reported positive effects of targeted PA on bone health,32-34 which is important because osteoporosis and the risk of subsequent fractures is increased by 15% to 20% among cancer survivors who receive hormone treatment for breast or prostate cancer.35

Growing numbers of studies have examined the effects of PA on CVD in cancer survivors, with a meta-analysis indicating that PA improves cardiorespiratory fitness—a powerful predictor of mortality.36,37 Growing evidence also suggests that PA may improve cognitive function38 and lessen peripheral neuropathy,39 lymphedema,40 and arthropathy41 in patients treated for cancer.

In 2010, the American College of Sports Medicine (ACSM) published PA guidelines for cancer survivors based on 85 PA trials conducted during or after treatment.24 The systematic review and findings from 2 more recent meta-analyses42,43 demonstrate that PA is safe and effective in improving QOL, cancer-related fatigue, and physical function. While overall effect sizes are small, there is consistent empirical evidence to support PA promotion as part of cancer care.42,43

Evidence Gaps and Ongoing Randomized Weight Management and PA Trials in Cancer Survivors

Although many trials have evaluated the impact of weight management and PA interventions on outcomes, such as body composition, fitness, and QOL in cancer survivors, critical gaps remain. Most notably, evidence from RCTs is not yet available that weight management or increased PA after cancer diagnosis will improve survival or reduce cancer recurrence. The Women's Intervention Nutrition study, conducted among 2437 women with early stage breast cancer, provides some of the only RCT data and suggests that a mean nonprescribed weight loss of 6 pounds, resulting from a fat-restricted diet, was associated with a significant decrease in subsequent breast cancer events (local, regional, and distant recurrence; ipsilateral breast recurrence after lumpectomy; and contralateral breast cancer) compared with a control arm (ie, 9.8% vs 12.4%; \(P = .034 \)), a finding driven by women diagnosed with ER-negative disease.44 However, because the dietary fat intervention also led to weight loss in that study,45 it is impossible to disentangle whether the low-fat diet or the weight loss was most responsible for cancer control. Other questions remain about the biologic pathways that underlie the relationship between weight management and PA and malignancy; the relative contribution of body weight, diet, and/or PA to cancer outcomes; the optimal timing, dose, and duration of weight management and PA interventions; and the best ways of implementing weight management and PA interventions in diverse cancer populations.44 Moreover, the science regarding cancer outcomes and sedentary time also needs to be further developed, as well as the evaluation of potential interventions to limit sedentary time.

Several ongoing trials aim to address these evidence gaps (see Table 2).19,46-48 Each of the ongoing studies examines the impact of weight loss or increased PA, either alone or in combination with improvements in diet quality, on cancer recurrence, cancer-related mortality, or overall survival in individuals diagnosed with a single malignancy. None of the studies compares the effects of different weight management or PA interventions or of different doses or durations of intervention. one-half of the trials enroll breast cancer survivors, and the majority focus on those with no evidence of active disease.

Although these trials will provide critical information regarding the role of weight management and PA in the management of cancer survivors, several gaps will remain. Given that each trial focuses on the effect of a particular weight management or PA intervention in a specific cancer survivor population, it will be difficult to generalize the information gained from these studies across all cancer survivors or to other types of interventions. Moreover, from a feasibility and economic standpoint, it is unlikely that there will ever be trials conducted to evaluate the effect of each type of weight management and PA intervention on every malignancy. So, how do we bridge these evidence gaps and ensure that all cancer survivors have access to weight management and PA interventions that could reduce the risk of...
Study	BWEL, A011410	SUCCESS C (VILLARINI 2012)	DIANA 5 (THOMSON 2016)	LIVES, NRG0225 (JOHNSTON 2014)	CHALLENGE (COURNEYA 2008)	INTERVAL (GAP4)
No.	3136	~1400	1241	1040	962	866
Cancer site	Breast	Breast	Breast	Ovary	Colon	Prostate
Disease stage	II-III	II-III	II-III	II-IV after optimal debulking	II-III	IV, Castrate resistant
Primary endpoint	Invasive disease-free survival	Disease-free survival	Invasive disease-free survival	Progression-free survival	Disease-free survival	Overall survival
Study design	Two-arm RCT: Weight loss intervention + health education vs heath education	Two-arm RCT: General lifestyle + intensive lifestyle intervention vs general lifestyles alone	Two-arm RCT: Weight loss intervention vs general lifestyle guidance	Two-arm RCT: Diet and physical activity intervention vs attention control intervention	Two-arm RCT: Structured physical activity intervention vs general health education materials	Two-arm RCT: Supervised exercise intervention vs supportive care
Intervention target	Weight loss (diet + increased physical activity)	Mediterranean / macrobiotic dietary plan + increased physical activity	Weight loss (diet + physical activity)	Increased physical activity, low fat, increased intake of vegetables and fiber	Increased physical activity	Increased high-intensity physical activity
Intervention duration	2 y	2 y	4 y	2 y	3 y	2 y
Intervention approach	Telephone-based	Telephone-based	Clinic-based group	Telephone-based	Supervised, mixed clinic-based and home-based	Supervised, mixed clinic-based and home-based
Enrollment setting	Cooperative group	Cooperative group	Individual clinics	Cooperative group	Cooperative group	Individual clinics
Correlative specimens	Blood, tumor, and benign tissue	Blood	Blood	Blood	Blood	Blood

Abbreviations: BWEL, Breast Cancer Weight Loss; CHALLENGE, Colon Health and Lifestyle Long Exercise; DIANA-5, Diet and Androgens-5; GAP4, Global Action Plan 4; INTERVAL, Intense Exercise for Survival Among Men with Metastatic Castrate Resistant Prostate Cancer; LIVES, Lifestyle Intervention for Ovarian Cancer Enhanced Survival; NRG, NRG Oncology; RCT, randomized controlled trial.
recurrence and improve survival after a cancer diagnosis? Part of the key to expanding knowledge gained from ongoing individual trials comes from the correlative science that is embedded in each and the potential to pool data and samples across smaller studies. By evaluating the effect of weight management and PA interventions on blood-based biomarkers (and extant tumor tissue) and determining the relationship between changes in markers, such as insulin and C-reactive protein, and cancer recurrence and survival, intermediate biomarkers could be established to inform future research, akin to research in CVD, in which trials are powered to examine changes in blood pressure or lipid levels rather than on clinical endpoints, such as myocardial infarction. Correlative science also could discover predictive markers of response and determine which cancer survivor populations are most likely to derive benefit from specific interventions.

Summary
Ongoing trials will provide vital information on weight management and PA interventions with and without improvements in diet quality on cancer recurrence and survival, but several important knowledge gaps will remain. Biomarker analyses offer the potential to extend the knowledge gained from these trials to other patient populations and could ultimately determine the components of optimal interventions and how they are best applied in a personalized medicine approach to improve cancer outcomes. While more research is needed to elucidate the impact of weight management and PA on cancer-specific outcomes, it is important to note that ASCO now recommends discussion about weight management, including dietary and PA changes, among oncology providers and their patients. This recommendation stems from solid evidence that diet, PA, and reduced adiposity play critical roles in preventing CVD and diabetes and exert a positive influence on QOL, physical function, and fatigue.

Effective Approaches for Improving Weight Management and PA
Large RCTs related to weight loss and the control of chronic conditions, such as diabetes, have provided sufficient evidence to warrant changes in weight management recommendations from the US Preventive Services Task Force (USPSTF) and from professional organizations. Research evidence on the benefits of PA (including aerobic, resistance training, and flexibility and coordination) has significantly expanded. Currently, the Physical Activity Guidelines Advisory Committee is preparing a scientific report with a scheduled release date of early 2018. This evidence has contributed to the development of weight management and PA interventions for cancer survivors and RCTs to evaluate the impact on important short-term and longer term outcomes in cancer survivors, such as QOL, tolerance for cancer therapy, comorbidity, and disease-free survival. Long-term evidence from previous weight loss and PA trials has demonstrated repeatedly that a high proportion of trial participants have difficulty maintaining behavior changes outside the context of a clinical trial, in part because the current US environment provides little support for being physically active or eating a healthy diet. This recognition has led to an increase in research examining the environmental, policy, and systems changes needed to help individuals adopt and maintain recommended behaviors.

Interventions for Weight Management in Other Populations That Are Applicable to Cancer Survivors
Lifestyle modifications to alter eating behaviors and increase PA are the cornerstone of treatment for overweight and obesity and have been used successfully in several large-scale trials. The American College of Cardiology (ACC), the American Heart Association (AHA), and The Obesity Society (TOS) reviewed the results from these RCTs and concluded within the 2013 Guidelines for the Treatment of Obesity that adherence to a calorically restricted diet predicts weight loss success, independent of the type of diet or macronutrient composition. The guidelines also recommend using body mass index (BMI) and waist circumference to advise patients of their risk of developing other comorbidities and to prescribe a set number of calories (kcal) per day according to the following: 1200 to 1500 kcal per day for women and 1500 to 1800 kcal per day for men to promote a 1-pound to 2-pound weight loss per week. A sustained weight loss of as little as 3% to 5% of initial body weight reduces the risk of type II diabetes and risk factors for CVD.

The Look AHEAD (Action for Health in Diabetes) and Diabetes Prevention Program (DPP) trials are 2 of the most successful long-term studies to illustrate the ability of lifestyle interventions to reduce and maintain body weight and reduce the risk of chronic diseases; both were instrumental in informing the 2013 AHA/ACC/TOS obesity treatment guidelines. The lifestyle interventions in these 2 trials were similar (ie, low-fat, low-calorie diet with the use of meal replacements and 150-175 minutes per week of moderate-to-vigorous-intensity PA).

Subsequently, some studies have demonstrated that higher protein diets (1.2-1.6 g protein/kg of body weight per day) provide benefits beyond weight loss and may preserve lean body mass (LBM), especially in older men and women. Resistance training also has been shown to be particularly beneficial in older adults, including breast and prostate cancer survivors, to preserve LBM and bone health,
maintain a higher resting metabolic rate, preserve physical functioning, and reduce falls and injury). 59-61

Successful long-term weight management requires several behavioral strategies. 62 Tactics for weight success include: maintaining a low-fat, low-calorie dietary pattern; limiting dietary variety; eating breakfast most days of the week; daily to weekly weighing; performing 2500 kcal per week of PA (eg, brisk walking for approximately 1 hour per day); and reducing television watching.

Interventions for PA in Other Populations That Are Applicable to Cancer Survivors

Over the past few decades, numerous studies have clearly shown that PA of sufficient volume and intensity reduces the risk of several chronic diseases and improves physical function. 63 More recently, research has started to examine the impact of physical inactivity on overall morbidity and mortality. 64-66

Aerobic PA of sufficient volume and intensity (“exercise”) to improve cardiorespiratory fitness, which is a potent biomarker of morbidity and all-cause mortality, needs to be frontline care in both healthy and cancer survivor populations. 67-69 Consistent aerobic exercise can delay the onset of disability by more than 10 years and markedly increases survival among older adults with projected lifespans of at least 20 years (the length of survivorship that burgeoning numbers of cancer survivors are now achieving). 7,70 Among cancer survivors, data indicate that high versus low cardiorespiratory fitness reduces the risk of mortality by 45%. 71 Likewise, resistance PA of sufficient volume and intensity (“exercise”) to increase neuromuscular fitness (ie, LBM, strength, power, fatigue resistance) is key to frontline care. Low LBM is a major predictor of all-cause mortality and physical disability. 72 Resistance exercise has repeatedly been shown to improve neuromuscular fitness and skeletal health and to reduce the risk of disability. 73,74

Although the molecular underpinnings of PA-driven health benefits have not been fully elucidated, significant progress has been made, 25 and more information will be gleaned via the National Institutes of Health (NIH)-funded Molecular Transducers of Physical Activity Consortium (MoTrPAC), which is charged with mapping molecular responses to aerobic and resistance exercise to more fully understand the cellular and molecular signals that drive potential health benefits. This vital step will enable a precision medicine approach and the individualization of exercise prescriptions. 63,75

Interventions for Weight Management in Cancer Survivors

Data indicate that weight loss can be promoted among cancer survivors who are overweight or have obesity. 31,76 Sentinel studies of weight management are summarized in Table 3 27-30,77-95 and generally rely on cornerstone elements of weight loss (ie, dietary modification to promote caloric restriction, increased PA, and behavior modification). Nonetheless, there are acknowledged limitations to this research (eg, brief study periods, lack of repeated and objective measures [including body composition outcomes], and overrepresentation of breast cancer survivors who may be “worried, white, and well”). Many questions remain within the context of well-designed and controlled efficacy trials (eg, intervention timing, inclusion of sleep hygiene or stress management components, and discerning the full impact of weight loss across a broad range of symptoms and conditions). Discovery is needed to inform personalized medicine-based approaches and thereby elucidate molecular and metabolic predictors important for tailoring weight loss regimens for individual patients in terms of dose and optimal macronutrient distribution. In addition, there is a need for pragmatic interventions that can overcome well known barriers imposed by distance, economics, co-occurring medical conditions, and culture. The diversity of needs among cancer survivors, many of whom are older, increases the urgency of pragmatic trials to test and compare both high-touch/more-effect approaches and lower-touch/less-burden approaches. Well-designed research across the spectrum requires broad representation by cancer-type, age, sex, and race/ethnicity as well as sufficient sample sizes to conduct subgroup analyses. Ideally, interventions need to be designed with the input of oncologists, dietitians, exercise specialists, behavioral scientists, statisticians, software specialists (if needed), community stakeholders, and, most important of all, cancer survivors. The input of health economists also is key to developing programs that are sustainable and can be widely disseminated.

Interventions to Improve PA in Cancer Survivors

Various PA interventions have been evaluated in cancer survivors, although the body of evidence is primarily limited to short-term studies of 12 to 16 weeks’ duration among breast cancer survivors. Approaches are typically clinic-based or home-based (eg, telephone counseling, print, Web, social media). In general, stronger outcomes are associated with clinic-based programs, whereas greater reach and reduced participant burden are associated with home-based interventions. 96 However, this generalization is affected by the motivation of the cancer survivor; as shown by data from the LEAN (Lifestyle, Exercise, and Nutrition) study, which found no differences in effects between the modes of delivery. 80 On-site, clinic-based programs are generally supervised by exercise professionals and tend to have higher exercise intensity dose and closer supervision and monitoring. Home-based programs tend to promote...
Reference (Name)	Cancer Type	No. of Participants	Mean Age, y	Intervention	Duration	Weight Change, kg
Thompson 2015 (CHOICE)	Breast, postmenopausal	249	54.9	RD counseling, 42-d cycle menu, low fat or low carbohydrate, 3500 kcal deficit/wk, 10,000 steps/d	6 mo	−8.9, −10.5, −0.3 kg; Low fat, low carbohydrate, and control, respectively
Swisher 2015 (GetFit for Fight)	Breast, triple-negative	28	53.7	RD counseling to decrease fat intake by 200 kcal/wk; exercise physiologist-supervised, moderate aerobic PA 3 times/wk/2 unsupervised stretching + resistance training sessions	12 wk	−3.0 vs −0.4 kg: Intervention vs control
Thomson 2010 (modified Atkins)	Breast, stage I-II	40	56	RD counseling: low fat or low carbohydrate, 500 kcal deficit/d	6 mo	−6.3, −5.9 kg; Low fat vs low carbohydrate, respectively
McCarroll, 2014 (SUCCEED)	Endometrial, stage I-II	75	Not reported	Physician-led group and individual counseling, 16 sessions; diet, PA and behavior modification	6 mo	−1.5 kg/m² vs +0.1 kg/m²: Intervention vs usual care
Travier 2014	Breast, stage I-IIIb	42	55.8	Twelve wkly, 1-h group sessions with RD; 1200-1500 kcal/d; PA: 24 biwkly, 75-min supervised aerobic + strength sessions	12 wk	−7.8 kg (Completers): Phase 2, single arm
Saxton 2014	Breast	85	56	Three small-group, supervised exercise sessions/wk; aerobic + strength; weight loss on a plate Scottish Dietary Association program/600 kcal deficit; wkly small-group nutrition seminars	6 mo	−1.1 vs −0.4 kg: Intervention vs usual care
Mixed-modalities: Clinic-based and telephone counseling						
Rock 2015 (ENERGY)	Stage I-III, breast	692	56	RD-led, 4 mo of wkly group sessions, tapering to b/wkly, then monthly; reinforced by 1:1 telephone/email; deficit 500-1000 kcal/d + PA 60 min/d; tailored print materials	2 y	−3.6 vs −0.9 kg: Group + telephone vs control
von Gruenigan 2008	Stage I-II, endometrial	45	54.5	RD-led + MD-led wkly, then b/wkly, then monthly group sessions (9); telephone or newsletter every nongroup meeting wk; walking 5 d/wk for >45 min	6 mo	−3.3 vs +2.1 kg: Group + telephone vs usual care
Sheppard 2016 (Stepping Stone)	Breast, Black (analytic)	22	—	Nutritionist/exercise physiologist-led, individually tailored group sessions twice monthly/alternate wk telephone counseling by trained survivor coach; survivor and interventionist toolkit; ACS guidelines for diet (lower fat + fruits and vegetables) and PA (10,000 steps)	12 wk	−0.8 vs +0.2 kg: Intervention vs control
Telephone counseling Harrigan 2016 (LEAN)	Breast	100	59	RD/exercise physiologist-delivered: 1:1 wkly × 4 wks, b/wkly × 8 wks, monthly × 3 mo; DPP adaptation with 500 kcal/25% fat kcal = 150 min PA/wk (walking, lower sedentary time) + mindfulness; self-monitoring	6 mo	Three-arm RCT (in-person, telephone, control), −5.6, −4.8, −1.7 kg; in-person, telephone, and usual care, respectively
REFERENCE (NAME)	CANCER TYPE	NO. OF PARTICIPANTS	MEAN AGE, y	INTERVENTION	DURATION	WEIGHT CHANGE, kg
-----------------	-------------	---------------------	-------------	--------------	----------	------------------
Harris 201326 (CASTLE)	Breast, stage I-IIIa	52	52.8	Health professionals employed by Trestle-Tree, Inc (San Marcos, TX) provided 15-min to 60-min telephone coaching wkly × 25 wk; then monthly × 6 mo; behavioral targets, diet and PA	12 mo	−4.0 vs −3.3 kg: Telephone vs in-person, respectively
Goodwin 201428 (LISA)	Breast, T1-T3N0-NSM0 on letrozole	338	61	Trained lifestyle coaches; 19 calls + workbook-directed call content adapted from DPP; −500 to −1000 kcal/d; 150-200 min PA/wk; behavior modification	24 mo	−3.1 vs −0.3 kg: Telephone vs print alone (all received general health educational print material)
Befort 201226	Breast, stage I-III	91	58.9	Trained group leaders; 24 conference calls in groups of 8-14; kcal deficit, −500 to −1000 kcal/d; meal replacements; 225 min PA/wk; aerobic and resistance; self-monitoring	6 mo	−12.5: Single arm, group telephone
Befort 201629	Breast, stage I-III Rural: 210 (172 phase 2)	58	243	Phase 1, as above; maintenance: new kcal goal; 2 meal replacements/d; 225 min PA/wk; continued biwkly group conference calls or mailed newsletter	6 & 12 mo	−12.2 vs 13.2: Regain +3.3 vs +4.9 kg; group telephone vs newsletter
Community based Greenlee 2015 (Cocinar Para Su Salud)	Breast, stage I-III, Hispanic	70	56.6	RD, MD, health educators, trialists delivered; four 2-h nutrition education roundtables + three 3.5-h cooking sessions + 2 food shopping field trips over 12 wk (24 h); culturally tailored Cook for Your Life curriculum	12 wk	−2.5 vs +3.8: Intervention vs control
Stolley 2009 (Moving Forward)	Breast	23, African American	51.4	Study lead and certified exercise instructor from the community; 24 wkly classes with predetermined topics: diet, PA, and behavior modification; food shopping field trip, menu planning	6 mo	−2.52: Single arm
Commercial program Djuric 2002 (WW)	Breast, stage I-II	48	36-70	Wkly WW meetings vs 1:1 with RD wkly × 3 mo, bivwkly × 3 mo, monthly × 6 mo; both promoted low fat, 500-1000 kcal deficit/d + self-monitoring	12 mo	−2.6, −8.0, −9.4, and −0.85: Control, WW alone, individual (RD counseling), and WW + individual, respectively
Greenlee 2013 (Curves)	Breast, stage 0-IIIa	42, Hispanic, black	50.6	Curves staff-led Curves weight-management program curriculum; exercise at Curves 30 min, 3 times/wk + 2 d at home; bidirectional strength training + low-impact aerobic PA; 60% increasing to 75% maximal heart rate; six 1-h wkly nutrition classes, 1200 kcal/d increasing to 1600 kcal/d + wkly MT telephone calls	6 mo	−2.87 vs −1.42: Curves program vs waitlist control
TABLE 3. Continued

REFERENCE (NAME)	CANCER TYPE	NO. OF PARTICIPANTS	MEAN AGE, y	INTERVENTION	DURATION	WEIGHT CHANGE, kg
Home-based, print materials	Breast, prostate, colorectal	641, Older	73	Health counselor-delivered intervention; personally tailored workbook + quarterly newsletters +15 telephone counseling sessions and 8 prompts; PA: 15 min strength training twice wkly + 30 min aerobic PA/d; high fruit vegetable + low saturated and total fat; kcal restriction to promote up to 1 lb/wk	12 mo	−2.06 vs −0.92, Intervention vs control
Demark-Wahnefried 201492 (DAMES)	Breast, stage 0-III	N = 136; 68 mothers, 68 daughters	—	Tailored print materials; ACS and US Dietary Guidelines; Kcal deficit of 500-1000/d, remove or substitute 3 major diet recall-identified caloric sources; 150 min/wk PA; self-monitoring	12 mo	−3.77 vs −0.87 In mothers (individual vs control)
Technology-based	ALL	38	13	Professional, caregiver, and parent + survivor input to material development; 4-mo Web-based and text and telephone counseling: ACS and Children’s Oncology Group guidelines for healthy weight; kcal deficit, 60 min moderate-vigorous PA/d; 15,000 steps/d; self-monitoring	4 mo	−0.1 vs +1.4 Web SMS, telephone vs control
Technology-based	Stage I-II, endometrial and breast	50	58.4	Study personnel-assisted application (App) orientation (30-60 min); LoseIt! App for daily self-monitoring of diet and PA; low carbohydrate, high fiber; 150 min PA/wk, vigorous > 40 min/wk	4 wk	−2.3, Single arm
Technology-based	Endometrial, pre and stage 1	20 y	60.5	Telemedicine-adapted DPP delivered by MD and MS clinician; weekly telephone and Wi-Fi weigh-ins daily × 6 mo; SMS received Text4Diet with 3-5 personalized SMS daily with monthly themes; 2-way communications, wkly Wi-Fi weigh-ins; all educated to consume 1200-1500 kcals/d; self-monitoring	6 mo	−9.7 vs −3.9, Telemedicine vs SMS

Abbreviations: ACS, American Cancer Society; ALL, acute lymphocytic leukemia; CASTLE, Cancer Survival Through Lifestyle Change; DAMES, Daughters and Mothers Against Breast Cancer; DPP, Diabetes Prevention Program; ENERGY, Exercise and Nutrition to Enhance Recovery and Good Health for You; LEAN, Lifestyle, Exercise and Nutrition; LISA, Lifestyle Intervention in Adjuvant Treatment of Early Breast Cancer; MD, Medical Doctor; MI, Motivational Interviewing; MS, Master of Science; PA, physical activity; RD, Registered Dietitian; RENEW, Reach Out to Enhance Wellness in Older Cancer Survivors; SMS, short message service; SUGCEED, Self-Efficacy, Quality of Life, and Weight Loss in Overweight/Obese Endometrial Cancer Survivors; WW, Weight Watchers.
moderate-to-light PA, reach individuals who cannot travel or meet the scheduling requirements of on-site programs, are more likely to be theory-based, and are less costly.97 However, supervision for home-based programs may be minimal, so individuals with significant comorbidity or safety issues are generally excluded. More recently, hybrid programs that are able to support sustained PA have emerged. Generally, these programs begin with an on-site, supervised phase and then taper to an off-site phase (eg, the CHALLENGE trial).21

A review of behavior change studies, including a meta-analyses of 14 RCTs among breast cancer survivors,98 found that the key elements of effective interventions are self-monitoring of PA, individualized guidance or coaching, and setting clear goals and expectations. Because PA maintenance may be particularly challenging with long-term (eg, fatigue) or later effects of cancer treatment (eg, arthralgia), attention to symptom management (which ideally starts as prehabilitation and continues across the cancer survivorship trajectory) may be an important consideration to optimize PA uptake and adherence long term.21,99 Likewise, there is potential for interventions (especially PA) to reduce these symptoms and thus contribute to the survivor’s ability to maintain healthy behavior changes over time. Given that obesity may adversely affect adherence to PA regimens, there is a need to determine the relative timing or sequence of PA in relation to caloric restriction within the context of weight management.73,100 As indicated above, research is needed to determine what type of PA works (modality [eg, aerobic, strength], intensity, frequency, and duration) to achieve which outcomes and for whom,101 as well as when in the course of the cancer continuum programs should be offered. Identifying the minimal PA dose for QOL improvements, weight and symptom management, and survival will assist in developing pragmatic programs that target outcomes relevant to patients’ needs (eg, management of fatigue and pain). Looking ahead, improvements in the recovery and functioning of the growing numbers of cancer survivors may emerge from use of behavior change theories to inform intervention development, use of information technology and mHealth technologies to widen the reach of programs, plans for maintenance of behavior change, and assessment of program costs. There are numerous missed opportunities for health care professionals in oncology and primary care settings to promote PA for their patients at various points across the cancer care continuum. Addressing the barriers faced by providers96,102 and providing guidelines to help triage patients to effective programs (eg, clinic-based, community-based, or home-based) are sorely needed.

Summary
Research in the general population has demonstrated the benefits of weight management and PA for the prevention and management of diabetes and other chronic diseases, reducing disability, and delaying mortality. As research on weight management, PA, and cancer survivorship moves beyond small, early clinical trials that evaluate the effects of these interventions on biomarkers and QOL, larger trials are needed to test the effects of the interventions on disease-free and overall survival, especially in disease sites other than breast cancer, and to include adequate representation of population subgroups defined by comorbidity/functional status, race, ethnicity, or age. To ensure that clinical trials are appropriately designed to provide more definitive answers, the NIH has recently established new guidance related to funding applications submitted to the NIH for all clinical trials.103 Specific institutes, such as the National Cancer Institute, have used expert working groups to discuss trial design issues within their clinical trial networks, including those related to behavioral interventions.

Within the NIH Obesity Research Task Force, the National Heart Lung and Blood Institute is leading an effort to identify additional factors that may predict successful response to weight management interventions. The Accumulating Data to Optimally Predict obesity Treatment (ADOPT) Core Measures Project was developed in response to the well documented individual variability in response.104 ADOPT is designed to provide investigators with tools to generate an evidence base that may advance understanding of the behavioral, psychosocial, environmental, and biologic sources of this variability. Working with an expert panel of investigators, a trans-NIH group identified an initial core set of high-priority measures that, when consistently used in trials, may facilitate the prediction of treatment response. The NIH is now exploring approaches for increasing the use of consistent measures across trials so that data can be pooled and used to identify reliable predictors, mediators, and moderators of response. This accumulation of efficacy evidence will likely spur the translation of effective interventions into clinical practice, although research in implementation science also is needed to best adapt interventions to enhance their reach, scope, and uptake among populations and settings that may not be representative of clinical trials.

Addressing the Weight Management and PA Needs of Diverse Populations of Cancer Survivors
Low-income, minority populations, particularly African Americans and Hispanics, as well as those who are older and live in rural areas bear a disproportionate burden of cancer.7,105-107 Moreover, these populations also are more likely to be overweight or obese, physically inactive, and to manifest health conditions that are affected by these factors, such as metabolic syndrome—all of which are associated with greater comorbidity and reduced survival
(overall and cancer-specific). This section addresses weight management and PA among diverse populations.

Meeting the Needs of Diverse Survivors in Terms of Race/Ethnicity, Culture, and Language

Among cancer survivors, prevalence of overweight and obesity is high, especially among non-Hispanic blacks and Hispanics compared with non-Hispanic whites. Concordantly, cancer survivors who are members of minority groups have lower adherence to diet and PA guidelines and are more likely to report poorer health status compared with nonminority cancer survivors or racial/ethnic minorities without cancer. Thus, there is a critical need to develop and examine weight management and PA interventions among cancer survivors of racial/ethnic minority status to enhance outcomes and reduce disparities. Consideration of patients’ environmental, cultural, and survivorship context is critical to the success of these efforts. Racial and ethnic minority survivors are more likely to live in areas characterized by high segregation, traffic density, and crime and by low neighborhood socioeconomic status and access to full-service supermarkets and PA resources. Despite this, most communities, including lower socioeconomic neighborhoods, also have some assets, such as farmers’ markets, public recreation systems, and community gardens that support PA, healthy eating, and reduction of chronic disease. Partnering with community organizations to bring interventions to under-resourced neighborhoods provides opportunities to build social capital, reach more cancer survivors, and increase potential for sustainability.

Consideration of cultural norms is important. Culture varies among and within racial and ethnic groups, influencing beliefs, behaviors, and patient-provider interactions related to cancer, obesity, and lifestyle. The conceptual framework of Kreuter et al. can inform cultural tailoring and structure formative work, thereby enhancing the relevance of an intervention approach and content to a particular population (see Table 4). Similarly, because cancer survivors report greater interest in programs that acknowledge their cancer journey and concerns, it is important for programs to address these issues. In addition to context, biopsychosocial approaches to research are needed to understand and address the multilevel factors (from cells to society) that affect weight status and behavior and influence cancer control, overall health, and QOL.

To date, weight management and PA interventions among racial/ethnic minority cancer survivors have established feasibility and safety and report positive, albeit modest, results, including weight loss, behavioral changes, improved QOL and biomarker status, and decreased cancer-related anxiety. Limitations of many studies include quasi-experimental designs, small sample sizes, a focus on behavioral outcomes, and sole inclusion of breast cancer survivors. Only 3 studies assessed biomarkers, and only one targeted a cancer other than breast—none included men. Recent efforts address some of these limitations. Important steps to advance the science of obesity and lifestyle interventions in diverse populations include using more rigorous methodologies, addressing multilevel mediators and moderators of change, examining biologic mechanisms related to energy balance and cancer, and addressing more diverse cancer survivor populations.

Meeting the Needs of Cancer Survivors Across the Lifespan

Currently, 62% of cancer survivors are age 65 years and older—a subpopulation that will continue to grow with the aging of the population along with earlier diagnosis and improvements in treatment. However, cancer also affects the young. In the United States, there are almost 400,000 childhood cancer survivors and 70,000 adolescent and young adult cancer survivors, many of whom could have long lives ahead of them. Lifestyle interventions are sorely needed by survivor populations of all age groups, because suboptimal diets and insufficient PA are noted in 40% to 70% and 54% to 84% of younger cancer survivors, respectively, and in 52% to 85% and

TABLE 4. Framework to Guide Cultural Tailoring of Behavioral Interventions (Kreuter 2003)

DOMAIN	ACTION
Peripheral	Design study materials to appear culturally appropriate (ie, logo, recruitment materials)
Evidential	Enhance relevance of targeted health issues by presenting evidence of their impact (ie, cancer disparities, impact of obesity, comorbidity burden)
Constituent-involving	Draw directly on the experiences of the target group (ie, staff represent target group; inform intervention using qualitative data from target population; engage advisory group to provide feedback on study materials and procedures)
Sociocultural	Discuss health-related issues in the context of broader social and/or cultural values (ie, role of God and faith in one’s daily life, woman’s central role in families, cancer fatalism and stigma, body image ideals, and the traditional roles of food)
Linguistic	Make health education programs and materials more accessible by providing them in the dominant or native language of target group

Note: The table above is a simplified representation of the cultural tailoring framework as described in the text. The full table provides a more comprehensive list of cultural actions and considerations.
53% to 70% of older cancer survivors, respectively.142-144 In addition, up to 71% of older cancer survivors are overweight or have obesity, and these conditions also are prevalent in children, adolescents, and young adults diagnosed with acute lymphocytic leukemia and some forms of brain cancer.140,142

A unifying theme shared by both young and old cancer survivors is that of the long-term and late effects of cancer and their treatment, many of which are influenced by nutritional status and PA,145 such as increased risk of CVD, second cancers, osteoporosis, metabolic syndrome, fatigue, cognitive changes, and sarcopenia. Underlying many of these conditions is the process of accelerated aging and frailty among cancer survivors, which occurs across all age groups.

Frailty, or an “insufficient reserve to recover,” is generally preceded by diminished function,146 both of which increase with age. However, illnesses and injury, as occur with cancer and its treatment, accelerate this course, especially among females.145 Other factors, such as a poor diet, physical inactivity, and obesity, further exacerbate functional decline and the onset of frailty.147 Current data indicate that the odds of frailty are significantly increased among individuals with a BMI of 30 kg/m2 or greater (odds ratio, 1.12; 95% CI, 1.01-1.19 \([P = .003]\)).148 Weight management and PA interventions can potentially reorient neuromuscular control, increase muscle strength, and reduce frailty.33,60,61,149

Despite the potential benefits of weight management to forestall frailty and common comorbidities, caution is needed in pursuing weight loss. Until more data are available specifically on cancer survivors, the AHA/ACC/TOS and National Heart Lung and Blood Institute guidelines can inform best practices.54,150 Among these guidelines is the recommendation for a rate of weight loss of 1 to 2 pounds per week. Because sarcopenia is a common condition that accompanies cancer and its treatment and one that accelerates aging, slower rates of weight loss that minimize LBM loss, concurrent with strength training, are recommended.151 For older adults, weight loss guidelines suggest an energy deficit of 500 to 750 kcal daily to promote a weight loss of up to 1.5 pounds per week152; for childhood and adolescent cancer survivors, energy deficits of up to 250 kcal per day to invoke a maximum weight loss of 0.5 pounds per week are recommended.153 Also, behavioral approaches, such as substituting higher energy with lower energy density foods, avoiding distracted eating, and adopting slower rates of eating, are commonly used tactics to help prevent weight gain in adults and allow children to “grow into their weight.”

Regular PA is important for cancer survivors of any age to achieve optimal health. Thus the avoidance of inactivity is key, and adaptations need to be made to accommodate limitations or comorbidities because of cancer or its treatment.34 Guidelines suggest that children pursue 300 minutes per week of moderate to vigorous PA, whereas the guidelines for adults (including older adults) suggest 150 minutes of moderate PA or 75 minutes of vigorous PA per week.25,154 Strength training 2 or 3 times per week is recommended across the lifespan25,154 although, for children, this recommendation is made within the context of a sports curriculum and with adequate supervision.155 The benefits of low-intensity PA have recently been reported as well; however, to date, there are no guidelines in this area.156 The means by which weight management and PA are promoted in younger versus older cancer survivors differs.157-161 For example, children have preferences for game-based or play-based interventions, whereas older adults favor holistic interventions (eg, gardening, dancing) that have personal meaning and/or involve others. Because of prevalent functional and sensory deficits among the young and the old, it is critical that interventions use large font (and screen size), volume control, module brevity, pretraining, and support for new technologies, especially those that allow for home-based delivery.162 Exemplar interventions are featured in Table 3.91,93,163 In addition, given the key role that caregivers play in the lives of children and older adults, an unexplored area with potential is the use of dyadic approaches.

Meeting the Needs of Rural Cancer Survivors

Rural cancer survivors (ie, those residing in nonmetropolitan counties, as defined by the Office of Management and Budget)164 have higher cancer mortality rates compared with urban residents across all regions of the United States. Moreover, death rates from cancer have declined at a slower rate in rural compared with urban counties.165 Among cancer survivors, those from rural areas report poorer health status, more psychological distress,166 higher rates of depression and anxiety,167 and greater knowledge gaps related to their cancer and its treatment effects. Rural cancer survivors also report high levels of unmet support needs.168 These disparities are compounded by higher rates of comorbidities, obesity, and physical inactivity among rural compared with urban residents.169-172 Rural cancer disparities affect a significant proportion of our population. Nearly 20% of Americans,173 and an estimated 21% of cancer survivors, reside in a rural area, representing roughly 2.8 million survivors.166 Rural residents are a diverse group. Nationwide, 78% of rural residents are non-Hispanic white; however, higher proportions of African Americans and Hispanics reside in the south and southwest, respectively. Despite their diversity, rural residents often share common cultural elements, such as conventional attitudes, self-reliance, and orientation toward work, family, and religion.174 Rural residents of all racial/ethnic groups...
are also older, poorer, and have less education than their urban counterparts. These demographic differences, in addition to the contextual, cultural, and access factors stemming from place of residence, contribute to rural cancer disparities. All of these factors need to be considered when designing lifestyle interventions for rural cancer survivors.

Effective, remote-based interventions are essential to maximize reach into rural communities because of challenges with access to health care services (including specialized services for weight management and PA), travel time, and financial barriers. With approximately 3% of medical oncologists and very few specialized psycho-oncology providers practicing in rural communities, there is a gap in services for supportive care and lifestyle interventions. Travel time and transportation costs pose barriers for in-person lifestyle interventions, particularly in frontier regions.

Survey results among rural breast cancer survivors in Kansas and Illinois found that the vast majority did not meet PA guidelines but rated PA and weight management programs as a top need. To date, there is only one published trial of a full-scale lifestyle intervention done exclusively in a rural setting. Befort et al enrolled 210 breast cancer survivors into a 6-month telephone-based intervention delivered by a weekly conference calls. The study demonstrated feasibility and achieved a 12.9% weight loss—with a 10.6% net loss maintained at 18 months—through continued, but scaled back, conference calls. Lessons learned from that study are needs for: 1) direct patient recruitment through cancer registries (direct mailing yielded 84% of participants, whereas physician referrals yielded only 4%); 2) clinical integration (because of high levels of comorbid conditions); and 3) group support among rural women. While the intervention was exclusively home based, many participants arranged to meet in person with one another; therefore, some face-to-face contact may enhance intervention efficacy for some and needs to be considered in future programming. Additional research also is needed to better understand environmental determinants of diet and PA in rural areas and contextual factors influencing successful implementation across various health care and community settings.

Summary
Overall, there are limited data available on the effectiveness of weight management and PA interventions for diverse populations, although feasibility and safety have been established. In each unique population, various factors must be addressed to ensure that weight management, PA, and behavioral modification elements address physiologic needs and health issues (eg, promoting slower weight loss among pediatric and geriatric cancer survivors who are at greater risk for stunting and sarcopenia, respectively), individual preferences (eg, home-based delivery to overcome travel barriers), and community-based resources (eg, partnering with community-based organizations for program implementation). Given the higher prevalence of overweight and obesity and suboptimal lifestyle practices among certain subpopulations of cancer survivors (eg, racial/ethnic minorities, those residing in rural areas, pediatric and older cancer survivors) there is a need to target interventions to these diverse populations that are currently more likely to have poorer outcomes and shorter years of survival.

Opportunities and Challenges for the Workforce, Care Coordination, and Technologies to Support Weight Management and PA in Cancer Survivors
Several factors currently limit the ability to deliver weight management and PA programs to all cancer survivors who need them. These barriers exist at multiple levels. Barriers at the level of the cancer survivor and family have been covered in the sections above and include factors such as high costs, lack of geographic access to these programs, or lack of knowledge or motivation of how to change health behaviors. These may be compounded by barriers at the level of the clinician, such as lack of clinician comfort with discussing weight with patients or lack of knowledge of which intervention to refer or prescribe, as well as competing demands for time in the clinical encounter. Finally, barriers at the level of the health care system and the environment present further challenges; for example, a lack of prioritization of PA, weight management, or disease prevention in general; a lack of insurance coverage for lifestyle change programs; or the obesogenic environment. These challenges and current strategies to overcome them are described below.

Weight Management and PA: Clinical Care Opportunities and Challenges
A health care professional’s recommendation to exercise significantly improves PA engagement, yet many providers do not counsel patients who might benefit on the need for PA or weight management. Research shows that providers are more likely to encourage a change in health behavior if they have established a positive patient-physician relationship, have available referral resources to facilitate health behavior change, and believe that health behavior engagement will benefit cancer outcomes or overall health and well being. Several individual and systems barriers need to be overcome to promote PA and weight management in the delivery of survivorship care. Competing time demands during oncology visits dictate that oncology care providers help patients make difficult choices about therapy, monitor side effects, promote adherence to oral medications, administer screening evaluations, and help patients cope with the psychological effects of cancer diagnosis and...
treatment, presenting significant obstacles to discussions of PA and weight management. Moreover, in the current age of electronic medical records, health care professionals in general spend only one-half of their scheduled clinic visit time talking with the patient and over one-third of their time on documentation. Furthermore, most health care professionals do not receive adequate training in how to operationalize health behavior recommendations at the level of an individual patient, so a generalized lack of expertise or competency in knowing what and how to recommend changes is a major barrier. Providers also need resources for appropriate services (eg, dietitians, exercise specialists, or programs) but a lack of supportive infrastructure, including lack of access to appropriate referrals or effective strategies as well as limited insurance coverage, can inhibit provider recommendations. Care providers also may be skeptical that a cancer survivor can change behavior or may worry that engaging in weight management or PA during or after treatment may be risky to the survivor’s overall health. Finally, a lack of knowledge about the benefits of weight management and PA can result in a lack of motivation to focus on this topic. Fortunately, there are several resources available for cancer survivors and health care professionals to help promote weight management and PA (see Table 5).

Overcoming Workforce Issues and Establishing Common Competencies

The contribution of excess weight and physical inactivity to cancer and overall health outcomes emphasizes the need for health professional education and adoption of appropriate competencies. The lack of a standard of care for overweight and obesity and its associated lifestyle factors, the mismatch of disease burden with care provider capacity, and the lack of integrated clinical and community services constitute major barriers to effective care. Behavior change is the cornerstone of therapy. For the care of pediatric patients with obesity, the USPSTF recommends moderate-to-high–intensity behavioral interventions, including nutrition, PA, and behavioral counseling for a minimum of 26 contact hours. For adults with obesity, the USPSTF recommends obesity behavioral interventions that include self-monitoring and from 12 to 26 visits over the course of a year. However, few providers have been trained in the delivery of behavior change therapies; and, currently, few major insurance plans provide reimbursement for the duration of care recommended by the USPSTF.

A second gap is the lack of understanding of the most fundamental elements of obesity care. For example, less than 50% of internists, family practitioners, obstetricians/gynecologists, and nurse practitioners surveyed knew the

TABLE 5. Resources for Weight Management and Physical Activity

ORGANIZATION	RESOURCES AVAILABLE	WEB SITE	TELEPHONE
American Cancer Society	Survivorship guidelines (nutrition and physical activity; cancer-specific)	cancer.org	(800) 227-2345
American College of Sports Medicine	Physical activity guidelines for exercise professionals	acsm.org	(317) 637-9200
American Institute for Cancer Research	Health behavior information and recommendations	aicr.org	(800) 843-8114
American Physical Therapy Association/ The Oncology Section	Physical activity and safety considerations for the cancer survivor	apta.org	(800) 999-2782
American Society of Clinical Oncology	Survivorship Compendium, Obesity Toolkit	asc.cancer.org	(503) 483-1300
Cancer Nutrition Consortium	Nutrition Guidance	cancernutrition.org	(857) 301-8495
LIVESTRONG	Health behavior tools, LIVESTRONG at the YMCA	livestrong.org	(855) 220-7777
National Cancer Institute/Office of Cancer Survivorship	Facing Forward series, general recommendations, workshops and conferences	cancercontrol.cancer.gov/ocs	(800) 422-6237
National Center for Health Promotion & Disease Prevention/VHA	Weight management resources	move.va.gov	(844) 698-2311
National Comprehensive Cancer Network	Survivorship and disease-specific guidelines for health care providers	nccn.org	(215) 690-0300
National Heart, Lung, and Blood Institute	Weight management resources	nhlbi.nih.gov	(301) 592-8573
Silver Sneakers	Physical activity for older adults	silversneakers.com	(866) 584-7389

Abbreviation: VHA, Veterans Health Administration.
recommended level of PA for adults, and even fewer knew the USPSTF guidelines for treatment of obesity. Similar surveys have not been administered to oncology care providers; however, their knowledge in these areas is not likely to be better.

To address these gaps, 24 organizations involved in the care of obesity convened to develop common competencies for the prevention and treatment of obesity.191 This effort, funded by the Robert Wood Johnson Foundation, led to the development of 10 major competencies, which are shown in an abbreviated form in Table 6.192 The consensus-derived competencies are not intended to be an obesity curriculum. Rather, the expectation is that each of the groups involved in their development will adapt them to the needs of their specific profession; however, a limitation is that oncology was not represented among these groups.194

A final issue is the need for providers to be sensitive to the issue of stigma and bias. The stigma associated with obesity may be secondary only to race.193,194 Because obesity is so highly stigmatized, providers who are uncomfortable with the topic and unaware of how to discuss it with their patients often add to this burden.193 Consequently, patients with obesity may not receive the care they need. Therefore, the competencies include understanding terms that are acceptable to patients in discussions about weight and the need for joint decision making with respect to care.

Opportunities and Challenges Posed by New Technologies

Self-monitoring is a strong predictor of weight management success,195 but engagement with self-tracking declines over time.196 New technologies have improved adherence over traditional paper modes, and pairing feedback with tracking optimizes behavior change.196 However, the challenges of maintaining self-monitoring of diet and PA remain. Daily weighing, via an internet-connected scale paired with text message feedback, has been found to promote clinically meaningful weight loss of 6% within 6 months in healthy populations.197 These data suggest that self-monitoring strategies that are both discrete and simple achieve high engagement and desired clinical outcomes. However, mobile application (app) abandonment rates have been well documented in commercial and research settings.198,199 Such data indicate that multiple strategies (including Web, e-mail, interactive voice response, and text messaging) are needed to keep users connected to feedback or coaching and are necessary to complement self-monitoring strategies—strategies that may vary by population subgroup. Current research shows that feedback strategies that are real-time responsive (eg, app messages) are better positioned than those that are delayed (eg, weekly coaching calls), but there is a need to better understand the reasons why users disengage from technology. Moreover, while technology is currently used to address data collection, analytics, and integration with a goal of providing actionable feedback to users, the integration with health care professionals to provide health care decision support has yet to be made and is a needed leap.

Summary

The considerable body of research on weight management and PA interventions has documented myriad positive effects during and after cancer care. Despite the numerous challenges in delivering weight management and PA programs for cancer survivors, this is a time of unprecedented opportunity to include these programs as part of standard cancer and follow-up care. Several national trends and changes in health care are contributing to this opportunity while addressing some of the multilevel barriers to delivering these programs. At the level of the survivor and family, it is clear that engaged and activated patients participate more fully in their health care. Thus, efforts by clinical and public health groups have focused on patient activation and education about the importance of weight management and PA. Examples of this are patient education materials available on the websites of ASCO, the American Cancer Society (ACS), and the National Cancer Institute, as well as the Springboard Beyond Cancer mobile health tool (survivorship.cancer.gov) and SurvivorSHINE (survivorshine.org) websites, which help survivors change their lifestyle behaviors along with managing their ongoing symptoms and self-managing their health. The latter are examples of another ongoing trend discussed above: using technology to increase the feasibility of delivering interventions to survivors regardless of location. Technological solutions also may help reduce financial barriers to these programs for survivors who have limited economic resources.

At the level of the health care professional and clinical practice, there are now multiple guidelines from the ACS, ACSM, ASCO, NCCN, and others delineating weight management and PA as part of overall cancer care and follow-up care. The work described above, to establish weight management competencies for clinicians, will help increase

Table 6. Competencies for Health Care Professionals in Obesity Prevention and Control (Bipartisan Policy Center 2017)

Competency
Understanding the framework of obesity as a medical condition
Knowledge of epidemiology and key drivers of the epidemic
Knowledge of disparities and inequities in obesity prevention and care
Providing interprofessional obesity care
Integration of clinical and community care for obesity
Use of patient-centered communication
Recognition and mitigation of weight bias and stigma
Accommodation of people with obesity
Use of strategies for patient care related to obesity
Recognition of acute warning signs of obesity complications
the ability of the clinical workforce to deliver appropriate care. In addition, health care professionals need safe and efficacious programs available for patient referral and time during the clinical encounter to discuss these issues and resources with patients and survivors. Interventions in community settings, such as LIVESTRONG at the YMCA, the availability of ACSM-certified Cancer Exercise Trainers in gyms across the country, and other programs for cancer survivors are helping to provide sources for appropriate referral.

Finally, changes in American health care present an opportunity to integrate weight management and PA programs into cancer and follow-up care. The transition from fee-for-service to value-based payment models is also bringing attention to identifying interventions that are “good buys” (ie, that result in positive effects in multiple ways, in terms of patient outcomes and cost savings). The multiple positive effects of weight management and PA on overall health, well-being, and QOL are prompting health care funders and decision makers look more seriously at these interventions.

Weight Management and PA Programs for Cancer Survivors: Models of Care

Successful incorporation of PA and weight management services into cancer survivorship care requires effective models of care delivery services. Because survivors come with a range of needs and preferences for services, oncology health care professionals need algorithms for assessing these factors to triage survivors and refer them to appropriate programs. Guidelines for providing smoking-cessation assistance in primary care settings use a schema that may prove useful in conceptualizing this process; the 5 As (Ask if a patient is smoking, Advise quitting, Assess patient motivation for making a quit attempt, Assist with counseling referral and pharmacotherapy, and Arrange follow-up within a week of quit date).^200^ Ask/Advise

Referral of cancer survivors to PA and weight management services starts with a conversation between the health care professional and their patient about these issues. A survey of 15,254 cancer survivors in the United Kingdom found that survivors who recalled a conversation with their care provider about exercise were 88% more likely to be physically active and to meet PA recommendations;^201^ however, only 31% of the respondents recalled such a conversation. In the US, discussion about PA is documented in only 35% of patient-oncologist encounters.^202^ Therefore, provider prompts may enhance discussions on this topic within the workflow and need to be considered in models of care delivery.

Assess

Cancer survivors have a range of needs and limitations regarding their symptoms, physical limitations, and comorbid health conditions that need to be considered. A process for assessing these conditions is necessary to determine optimal programs for weight loss or PA to ensure appropriate supervision and patient safety. At the same time, the cancer survivors’ goals, preferences, and prior experience with PA and weight management need to be considered. The ACSM health screening guidelines, which take into account the patient’s current activity level, signs and symptoms of disease, and desired intensity of exercise, are used to assess capacity for PA in the general population and may be useful to implement for cancer survivor populations.^203^ Figure 1 provides an example of how survivor goals and preferences might interact in recommending an exercise program for a breast cancer survivor at risk for lymphedema.

Assist (or Refer)

Few clinical practices providing oncology/survivorship care are able to provide PA and weight management services and
often require referral to outside programs. There are growing numbers of programs available; some are cancer specific (eg, LIVESTRONG at the YMCA), but programs intended for the general population may also be appropriate (eg, Silver Sneakers). In addition, home-based or self-directed programs that rely on books and other print material, websites, mobile apps, and wearable devices (like pedometers and connected activity monitors and scales) can assist cancer survivors with PA and weight management. Cancer survivor-specific versions of such programs have shown efficacy in research studies but are not widely available outside of the research setting. Cancer survivors who have physical limitations or comorbid medical conditions may need to start with a clinic-based program, such as a cancer rehabilitation program or a medical weight-loss program. A challenge for health care professionals is knowing which programs are reliable and of high quality for cancer survivors. There is a need to develop and refine program standards and staff certification to optimize safety and effectiveness.

Connect

Even if effective programs are available, there often is a need to motivate cancer survivors to follow up on recommendations to access services. Research on smoking cessation shows that placing the onus of contact on the service provider (assuming that the patients’ permission is obtained to share their contact information) can boost enrollment by 13-fold to 30-fold. A similar connection strategy could be used by an oncology clinic referring patients to programs like LIVESTRONG at the YMCA or cancer rehabilitation.

Cancer survivors need access to a variety of safe and effective programs and clinical services to assist them with increasing PA and managing their weight. In addition, there also is a need to increase provider competencies; develop tools to assist providers; and build capacity in workflow and procedures that increase the likelihood that the patient–provider discussion about weight management and PA transpire, that referral to appropriate programs that are aligned with survivors’ needs and preferences occurs, and that follow-through takes place.

Exemplar Programs

Over the past 2 decades, and with increasing recognition of the heightened needs of cancer survivors for supportive care to improve both emotional and physical health, several PA and weight management interventions have been developed and tested. Brief descriptions of some of these exemplars follow:

MOVE!

In 2006, the Veterans Health Administration implemented the MOVE! Weight Management Program for Veterans, an evidence-based comprehensive lifestyle intervention available to veterans receiving care at all Veterans Health Administration medical centers. MOVE! assists veterans who are overweight or have obesity and an obesity-associated condition, such as cancer or CVD, to achieve clinically significant weight loss. The program adheres to evidence-based recommendations from the Department of Veterans Affairs/Department of Defense Clinical Practice Guideline for Screening and Management of Overweight and Obesity, which provides flexibility in addressing the unique needs of cancer survivors. The Department of Veterans Affairs/Department of Defense guideline recommendations include: yearly screening and documentation of overweight/obesity; pharmacotherapy and bariatric surgery as adjuncts to comprehensive lifestyle intervention; shared decision-making among providers and patients to support patient engagement based on individual values and preferences; and repeated assessment of response to treatment, with adjustments as needed to ensure clinically meaningful weight change. MOVE! and weight management care are embedded within the health care system while also supporting care coordination across primary and specialty care settings (including oncology) and inpatient and outpatient care.

LIVESTRONG at the YMCA

Over the past decade the YMCA, which consists of a national resource center (YMCA of the USA, or Y-USA) and over 2700 local YMCAs, has partnered with many public health and health care stakeholders to transform its network to better serve the health of the nation. Local YMCAs are trained to build their capacity and to develop competencies needed to become a strong partner. Thereafter, they are licensed to deliver standardized programs and services for those with special health needs (eg, the YMCA’s DPP for people with prediabetes, Healthy Weight and Your Child for families with children who are challenged by obesity, etc). To address the challenges faced by cancer survivors, Y-USA partnered with the LIVESTRONG Foundation to develop and scale a 12-week PA program.

The program model was nested within a 6-month organizational change process modeled after the Institute for Health Care Improvement’s “Plan, Do, Study, Act.” Local YMCAs that have an interest in serving cancer survivors within their communities are encouraged to submit a readiness assessment to Y-USA. The LIVESTRONG Foundation, the local YMCA leadership, and, more recently, the Centers for Disease Control and Prevention have supported YMCAs that demonstrate the highest levels of commitment to go through the organizational change process and become trained and authorized to deliver the LIVESTRONG at the YMCA program. Through the organizational change process, YMCA staff build competencies, such as those related to understanding cancer survivors’ needs, providing welcoming environments, and developing partnerships with local cancer centers and oncology health care professionals.
Data indicate that the program leads to significant improvements in PA, stamina, and QOL, and it has been scaled to over 500 locations in 39 states, serving nearly 50,000 cancer survivors. Currently, philanthropy is required to make this program free of charge to all cancer survivors, and wait lists have been established in cases where demand exceeds availability.

In 2016, Y-USA completed a claims-based cost-savings demonstration of the YMCA’s DPP that led to Medicare coverage of that program. A partnership between Y-USA and the Robert Wood Johnson Foundation was instrumental in transforming the systems behind scaling and sustainability that produced health outcomes and value within the health care system. Connections were made between the electronic medical record system of health care organizations and local YMCA business units. Health care providers are increasingly referring patients to programs like LIVESTRONG at the YMCA under alternative payment models (eg, Accountable Care Organization [ACO] structures or bundled payment models) in which the value and savings of these programs are reinvested in partnerships with the YMCA, and payers are providing coverage for the YMCA’s DPP under claims-based reimbursements.

The Physical Activity and Lymphedema and Strength After Breast Cancer trials

The challenge of knowing which cancer survivors can be safely referred to home-based and community-based exercise remains unresolved, although initiating exercise programming within the context of outpatient rehabilitation clinics is a potential approach. The Physical Activity and Lymphedema (PAL) trial was revised to use this approach among breast cancer survivors after establishing the safety and efficacy of a weight-lifting intervention for lymphedema and other side effects of cancer and its treatment. The PAL intervention was originally implemented in select YMCAs in which fitness staff received training (including preintervention safety evaluations) and ongoing support from PAL investigators. Because of high staff turnover at the YMCAs, concerns about implementing safety evaluations, and an unwillingness of participants to continue to pay for YMCA memberships, this program led to the creation of “Strength After Breast Cancer”—a dissemination and implementation study to translate PAL into the setting of outpatient rehabilitation.221

As noted in other effective interventions, the “Strength After Breast Cancer” intervention optimally begins with a referral by the oncology/primary care provider to the outpatient rehabilitation clinic, which then contacts the patient. Clinic staff implement a safety evaluation, then deliver an educational session on lymphedema, as well as 4 sessions of weight-lifting instruction, before release to a home-based program. Favorable comparison of the efficacy of this revised program with the original PAL trial led to an online continuing-education course that targets outpatient rehabilitation specialists (klosetraining.com/course/online/strength-abc). Over 400 outpatient rehabilitation clinicians have completed the course, and no difficulties have been reported in obtaining third-party payer reimbursement.

Healthy Living after Cancer

Healthy Living after Cancer (HLaC) is a partnership project among 4 Australian state-based Cancer Councils, which are funded by the Australian National Health and Medical Research Council. It is evaluating the implementation of an evidence-based, 6-month, telephone-delivered lifestyle program, delivered by the Cancer Councils through their national cancer information and support service. HLaC is provided free of charge to cancer survivors with any type of cancer after treatment with curative intent. It provides behaviorally based support to achieve internationally agreed recommendations for PA, healthy eating, and healthy weight. In this phase 4 dissemination study (single-group, pre-post design with assessments at baseline and 6 months), primary outcomes relate to program implementation: adoption (referral sources); reach (number of participants) and retention; fidelity of implementation; participant and staff satisfaction; and fixed and recurrent program costs. Secondary outcomes are patient-reported and validated measures of weight, PA, dietary intake/behavior, QOL, cancer-related side effects, and fear of recurrence. To date, 500 patients have enrolled (89% women; mean age [± standard deviation], 55 ± 11 years; average BMI [± standard deviation], 29 ± 6 kg/m²), with a wide range of cancers. The retention (program completion) rate is 57%. Among the first 200 program completers, significant (P < .05) and clinically meaningful improvements have been seen in all secondary, patient-reported outcomes. This collaborative undertaking provides an opportunity for national dissemination of an evidence-based intervention to support healthy living among cancer survivors. Rigorous evaluation of service-level and patient-reported outcomes will provide the practice-based evidence needed to achieve sustained support.

Summary

MOVE!, Strength After Breast Cancer, LIVESTRONG at the Y, and HLaC all serve as model programs that effectively address the PA and weight management needs of cancer survivors. These programs, and many others like them, have established feasibility, safety, and efficacy. Although they are successful, common challenges, such as referral, training, triage, support, and reimbursement, remain as barriers.
Insurance Coverage of Weight Management and PA in Cancer Care

Obesity presents unique challenges in patients with cancer; however, because of the high prevalence of obesity within the United States and its association with a constellation of chronic diseases,222 most payers consider it a general concern across all of their health plan membership. Although evidence of what works in the treatment of obesity is growing,54,223,224 the services that are covered and how the coverage is implemented in health benefit plans remain highly variable. Private and governmental payers of health insurance/benefit plans consider multiple factors as they decide what to cover and how to implement coverage. While many consumers and health care professionals assume that coverage decisions are based solely on cost, payers generally consider several factors in coverage decisions, including consumer/employer demand for a service, evidence for effectiveness and efficiency of the service, the ability to administer the benefit consistently and fairly, the presence of state/federal governmental mandates for a service, and how the benefit will affect the marketability/adverse selection of a health plan.

In its role as a fiduciary agent for its members, and for taxpayers in the case of the Centers for Medicare and Medicaid Services (CMS), insurers are faced with balancing their fiscal responsibilities with the mission and values of their organizations. An insurer first determines whether a service is effective, and then assesses the impact of that service on the overall cost of care for the members using that service. For example, coverage of the previously mentioned Y-USA DPP was based on relatively short-term data from a CMS Innovation Center demonstration project that indicated modest weight loss and significant savings in total costs of care. However, because the program was projected to reduce premature mortality, actuarial evaluation suggested that the program could ultimately lead to higher costs for Medicare patients who had care needs for a longer period of time. In response, CMS determined that longer life would not be considered as a cost (ie, care costs over a longer life span were zeroed-out). As a result, CMS announced that, in 2018, Medicare would begin reimbursing all DPP programs that meet CDC requirements.225

Interestingly, as value-based payment systems become more prevalent for both government and private payers, issues historically considered within the insurer’s purview will shift to health care providers who share the financial risks (eg, next-generation ACOs).226 These payment models provide payment based on a defined population of consumers and include incentives and potential penalties for both quality and cost metrics. Private payers, including multistate Anthem Blue Cross and Blue Shield and most national health plans, have developed similar value-based payment models. The expectation is that ACOs, or groups of physicians, hospitals, and other health professionals who come together voluntarily to provide coordinated high-quality care, will provide services that improve the overall health and well being for a defined set of patients, including both clinical and community services for the prevention and treatment of obesity.

Although ACOs currently account for approximately 10% of the private health insurance market, insurers such as Anthem indicate that up to 60% of their fully insured membership may be covered under value-based payment models. The US Department of Health and Human Services has set a goal of tying 90% of all Medicare fee-for-service payments to quality or value metrics by 2018.227

Value-based metrics, however, are evolving and incomplete. The National Quality Forum has only endorsed 4 screening metrics related to obesity and has yet to reach consensus on any outcome measures,228 but promising developments have transpired with Medicare coverage of the DPP, which includes an outcomes-based payment tied to both short-term and long-term patient outcomes.

The Bipartisan Policy Center has convened both commercial and government payers to discuss coverage for services related to obesity, including an effort to develop a shared-benefit design. Their discussions have focused on benchmarks of efficacy and cost effectiveness, in addition to issues related to member retention, return on investment, community partnerships, senior leadership support, and data tracking. Thus health professionals interested in working with payers to improve coverage for obesity-related services need to understand not only the needs of their patients but also the context in which payers make their coverage determinations.

Advancing Progress in Tertiary Prevention: Stakeholder Insights and Recommendations

As cancer treatment advances and survivors live significantly longer, enhancing health and QOL for cancer survivors has become a major public health goal—one that also has widespread implications for the financial well being of survivors and families and of the health care system. Evidence continues to accumulate strongly suggesting that weight management and PA can improve the management of cancer, comorbid conditions, and QOL. However, there are 3 urgent challenges that must be overcome to connect cancer survivors with interventions that can ideally help them.

The first challenge is identifying the optimal type of intervention for a given survivor (eg, specific tumor type, cultural factors, comorbidities, functional status) and a specific goal (eg, fatigue management or decreasing risk of recurrence). This involves research to test varied types of interventions and to capture multiple types of patient data.
ongoing trials that will provide evidence regarding the utility of these services. Part of this evidence will come from more affordable for survivors and drive widespread availability of these interventions. Educating health care providers about the importance of these interventions is a valuable but insufficient step. Future efforts need to address how to integrate weight management and PA interventions into standard cancer care.

The third challenge is accumulating the right data about weight management and PA programs to inform health care payer decisions to cover these interventions. Reimbursement by insurers will help make these interventions more affordable for survivors and drive widespread availability of these services. Part of this evidence will come from ongoing trials that will provide evidence regarding the benefits of postdiagnosis weight management and PA on recurrence and survival. However, even if these interventions do not specifically affect recurrence, coverage decisions may be made based on comorbidity management or effects on downstream health care utilization. Future research needs to test the cost effectiveness of these interventions on these important outcomes to inform health care coverage decisions.

The key to our success in implementing weight management and PA programs will be to bridge the silos of expertise, as represented in the NCPF workshop in 2017 in cancer biology, epidemiology, survivorship, nutrition, PA, weight management, and economics, as well as health care systems (eg, ACOs, payers, hospitals, oncology practices), care providers (eg, oncologists, primary care providers, allied health professionals, cancer rehabilitation, behavioral medicine) and the community (eg, advocacy organizations, YMCAs). The efforts to implement effective programs will need to address individual, provider/workforce, and systemic barriers, which include barriers specific to cancer survivors (symptoms and treatment side effects), as well as individual and cultural differences. The challenge is great. The opportunities and benefits of collaboration across disciplines and key stakeholders have significant potential to enhance outcomes for the growing number of cancer survivors in the United States and beyond.

References

1. Institute of Medicine. The Role of Obesity in Cancer Survival and Recurrence: Workshop Summary. Washington, DC: The National Academies Press; 2012.
2. Hursting SD, DiGiovanni J, Dannenberg AJ, et al. Obesity, energy balance, and cancer: new opportunities for prevention. Cancer Prev Res (Phila). 2012;5:1260-1272.
3. Demark-Wahnefried W, Platz EA, Ligibel JA, et al. The role of obesity in cancer survival and recurrence. Cancer Epidemiol Biomarkers Prev. 2012;21:1244-1259.
4. Ligibel JA, Alfano CM, Cournarya KS, et al. American Society of Clinical Oncology position statement on obesity and cancer. J Clin Oncol. 2014;32:3568-3574.
5. National Academies of Sciences, Engineering, and Medicine. Incorporating Weight Management and Physical Activity Throughout the Cancer Care Continuum: Proceedings of a Workshop. Washington, DC: The National Academies Press; 2017.
6. National Academies of Sciences, Engineering, and Medicine website. Washington, DC: National Academies of Sciences, Engineering, and Medicine; 2017. nationalacademies.org/hmd/Activities/Disease/NCPF/2017-FeD-B-13.aspx. Accessed October 24, 2017.
7. American Cancer Society. Cancer Treatment & Survivorship Facts & Figures 2016-2017. Atlanta, GA: American Cancer Society; 2016.
With Metastatic Castrate-Resistant Prostate Cancer (INTERVAL-MCRPC): A Movember funded multicenter, randomized, controlled phase III study [abstract]. J Clin Oncol. 2016;34(15 suppl):5092.

23. Torre LA, Siegel RL, Ward EM, Jemal A. Global cancer incidence and mortality rates and trends—an update. Cancer Epidemiol Biomarkers Prev. 2016;25:16-27.

24. Schmitz KH, Courneya KS, Matthews C, et al. American College of Sports Medicine rountable on exercise guidelines for cancer survivors. Med Sci Sports Exerc. 2010;42:1409-1426.

25. Rock CL, Doyle C, Demark-Wahnefried W, et al. Nutrition and physical activity guidelines for cancer survivors. CA Cancer J Clin. 2012;62:243-274.

26. Lustberg MB, Reinbolt RE, Shapiro CL. Bone health in adult cancer survivorship. J Clin Oncol. 2012;30:3665-3674.

27. Rock CL, Flatt SW, Byers TE, et al. Results of the Exercise and Nutrition to Enhance Recovery and Good Health for You (ENERGY) trial: a behavioral weight loss intervention in overweight or obese breast cancer survivors. J Clin Oncol. 2015;33:3169-3176.

28. Goodwin PJ, Segal RJ, Vallis M, et al. Randomized trial of a telephone-based weight loss intervention in postmenopausal women with breast cancer receiving letrozole: the LISA trial. J Clin Oncol. 2014:32:2231-2239.

29. Befort CA, Klemp JR, Sullivan DK, et al. Weight loss maintenance strategies among rural breast cancer survivors: the Trial Women Connecting for Better Health trial. Obesity (Silver Spring). 2016;24:2070-2077.

30. Harrigan M, Cartmel B, Loftfield E, et al. Randomized trial comparing telephone versus in-person weight loss counseling on body composition and circulating biomarkers in women treated for breast cancer: the Lifestyle, Exercise, and Nutrition (L3N) study. J Clin Oncol. 2016;34:669-676.

31. Chlebowski RT, Reeves MM. Weight loss randomized intervention trials in female cancer survivors. J Clin Oncol. 2016;34:4238-4248.

32. Winters-Stone KM, Laudermilk M, Woo K, Brown JC, Schmitz KH. Influence of weight training on skeletal health of breast cancer survivors with or at risk for breast cancer-related lymphedema. J Cancer Surviv. 2014;8:260-268.

33. Winters-Stone KM, Dobek J, Nail LM, et al. Impact + resistance training improves bone health and body composition in prematurely menopausal breast cancer survivors: a randomized controlled trial. Osteoporos Int. 2013;24:1637-1646.

34. Toriola AT, Liu J, Ganz PA, et al. Effect of weight loss on bone health in overweight/obese postmenopausal breast cancer survivors. Breast Cancer Res Treat. 2015;152:637-643.

35. Van Poznak CH. Bone health in adults treated with endocrine therapy for early breast or prostate cancer. Am Soc Clin Oncol Educ Book. 2015:e657-e674.

36. Jones LW, Liang Y, Pitskin EN, et al. Effect of exercise training on peak oxygen consumption in patients with cancer: a meta-analysis. Oncologist. 2011;16:112-120.

37. Adams SC, DeLorey DS, Davenport MH, et al. Effects of high-intensity aerobic interval training on cardiovascular disease risk in testicular cancer survivors: a phase 2 randomized controlled trial. Cancer. 2017;123:4057-4065.

38. Hartman SJ, Nelson SH, Myers E, et al. Randomized controlled trial of increasing physical activity on objectively measured and self-reported cognitive functioning among breast cancer survivors: the Memory & Motion study [published online ahead of print September 19, 2017]. Cancer. doi: 10.1002/cncr.30987.

39. Kleckner I, Kamen CS, Peppone LJ, et al. A URCC NCORP nationwide randomized controlled trial investigating the effect of exercise on chemotherapy-induced peripheral neuropathy in 314 cancer patients [abstract]. J Clin Oncol. 2016;34(15 suppl):10000.

40. Schmitz KH, Ahmed RL, Troxel A, et al. Weight lifting in women with breast-cancer–related lymphedema. N Engl J Med. 2009;361:664-673.

41. Irwin ML, Cartmel B, Gross CP, et al. Randomized exercise trial of aromatase inhibitor-induced arthralgia in breast cancer survivors. J Clin Oncol. 2015;33:1104-1111.

42. Buffart LM, Kalter J, Sweegers MG, et al. Effects of and moderators of exercise on quality of life and physical function in patients with cancer: an individual patient data meta-analysis of 34 RCTs. Cancer Treat Rev. 2017;52:91-104.

43. Meneses-Echavez JF, Gonzalez-Jimenez E, Ramirez-Velez R. Effects of supervised exercise on cancer-related fatigue in breast cancer survivors: a systematic review and meta-analysis [serial online]. BMC Cancer. 2015;15:77.

44. Chlebowski RT, Blackburn GL, Thomson CA, et al. Weight loss and breast cancer outcome: interim efficacy results from the Women’s Intervention Nutrition Study. J Natl Cancer Inst. 2006;98:1767-1776.

45. Rack B, Andergassen U, Neugebauer J, et al. Randomized controlled trial of increasing weight lifting in women with breast cancer. Tumori. 2011;97:112-118.

46. Cornellissen VA, Fagard RH, Coeckelberghs E, Vanheuren G. Impact of resistance training on blood pressure and other cardiovascular risk factors: a meta-analysis of randomized, controlled trials. Hypertension. 2011;58:950-958.

47. LeBlanc E, O’Connor E, Whitlock EP, Patnode C, Kapka T. US Preventive Services Task Force Evidence Syntheses, formerly Systematic Evidence Reviews. Screening for and Management of Obesity and Overweight in Adults. Rockville, MD: US Agency for Healthcare Research and Quality; 2011.

48. Moyer VA. Screening for and management of obesity in adults: US Preventive Services Task Force recommendation statement. Ann Intern Med. 2012;157:378.

49. Lyznicki JM, Young DC, Riggs JA, Davis BM. Obesity: assessment and management in primary care. Am Fam Physician. 2001;63:2185-2196.

50. American College of Obstetricians and Gynecologists. Guidelines for Women’s Health Care: A Resource Manual. Washington, DC: American College of Obstetricians and Gynecologists; 2007.

51. Jensen MD, Ryan DH, Apovian CM, et al. 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Obesity Society. J Am Coll Cardiol. 2014;63:2983-3023.

52. Look AHEAD Research Group, Wing RR. Long-term effects of a lifestyle intervention on weight and cardiovascular risk factors in individuals with type 2 diabetes mellitus: four-year results of the Look AHEAD trial. Arch Intern Med. 2010;170:1566-1575.

53. Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346:393-403.

54. Bhasin S, Apovian CM, Trivison TG, et al. Design of a randomized trial to determine the optimum protein intake to preserve lean body mass and to optimize response to a promyogenic anabolic agent in older men with physical functional limitation. Contemp Clin Trials. 2017;58:86-93.

55. Volpi E, Campbell WW, Dwyer JT, et al. Is the optimal level of protein intake for older adults greater than the recommended dietary allowance? J Gerontol A Biol Sci Med Sci. 2013;68:677-681.

56. Donnelly JE, Blair SN, Jakicic JM, et al. American College of Sports Medicine Position Stand. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med Sci Sports Exerc. 2009;41:459-471.

57. Winters-Stone KM, Nail L, Bennett JA, Schwartz A. Bone health and falls: fracture risk in breast cancer survivors with chemotheraphy-induced amenorrhea. Oncol Nurs Forum. 2009;36:315-325.

58. Winters-Stone KM, Moe E, Graff JN, et al. Falls and frailty in prostate cancer survivors: current, past, and never users of androgen deprivation therapy. J Am Geriatr Soc. 2017;65:1414-1419.

59. Thomas KG, Bond DS, Pflan P, et al. Reduction of weight maintenance in 10 years in the National Weight Control Registry. Am J Prev Med. 2014;46:17-23.
Weight Management and Physical Activity Throughout the Cancer Care Continuum

63. Bamman MM, Cooper DM, Booth FW, et al. Exercise biology and medicine: innovative research to improve global health. Mayo Clin Proc. 2014;89:148-153.

64. Wilmot EG, Edwardsson CL, Achara FA, et al. Sedentary time in adults and the association with diabetes, cardiovascular disease and death: systematic review and meta-analysis. Diabetologia. 2012;55:2895-2905.

65. Booth FW, Laye MJ, Roberts MD. Lifetime sedentary living accelerates some aspects of secondary aging. J Appl Physiol. 2011; 119:1497-1504.

66. Booth FW, Roberts CK, Laye MJ. Lack of exercise is a major cause of chronic diseases. Compr Physiol. 2012;2:1143-1211.

67. Laukkonen JA, Zaccardi F, Khan H, Kurl S, Jae SY, Rauramaa R. Long-term change in cardiorespiratory fitness and all-cause mortality: a population-based follow-up study. Mayo Clin Proc. 2016;91:1183-1188.

68. Blair SN, Kohl HW 3rd, Paffenbarger RS Jr, Clark DG, Cooper KH, Gibbons LW. Physical fitness and all-cause mortality. A prospective study of healthy men and women. JAMA. 1989;262:2395-2401.

69. Kodama S, Saito K, Tanaka S, et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. JAMA. 2009;301:2024-2035.

70. Chakravarty EF, Hubert HB, Lingala VB, Fries JF. Reduced disability and longevity among aging runners: a 21-year longitudinal study. Arch Intern Med. 2008;168:1638-1646.

71. Schmid D, Leitzmann MF. Cardiorespiratory fitness as predictor of cancer mortality: a systematic review and meta-analysis. Ann Oncol. 2015;26:272-278.

72. Kelley GA, Kelley KS. Is sarcopenia associated with an increased risk of all-cause mortality and functional disability? Exp Gerontol. 2017;96:100-103.

73. Hunter GR, McCarthy JP, Bamman MM. Effects of resistance training on older adults. Sports Med. 2004;34:329-348.

74. Cartee GD, Hepple RT, Bamman MM, Zierath JR. Exercise promotes healthy aging of skeletal muscle. Cell Metab. 2016;23:1034-1047.

75. Neuffer PD, Bamman MM, Muoio DM, et al. Understanding the cellular and molecular mechanisms of physical activity-induced health benefits. Cell Metab. 2015;22:4-11.

76. Reeves MM, Terranova CO, Eakin EG, Demark-Wahnefried W. Weight loss intervention trials in women with breast cancer: a systematic review. Obes Rev. 2014;15:749-768.

77. Thompson HJ, Sedlack SM, Playdon MC, et al. Weight loss interventions for breast cancer survivors: impact of dietary pattern [serial online]. PLoS One. 2015;10:e0127346.

78. Swisher AK, Abraham J, Bonner D, et al. Exercise and dietary advice intervention for survivors of triple-negative breast cancer: effects on body fat, physical function, quality of life, and adipokine profile. Support Care Cancer. 2015;23:2995-3003.

79. Thomson CA, Stopeck AT, Bea JW, et al. Changes in body weight and metabolic indexes in overweight breast cancer survivors enrolled in a randomized trial of low-fat vs reduced carbohydrate diets. Nutr Cancer. 2010;62:1142-1152.

80. McCarron ML, Armbruster S, Frasure HE, et al. Self-efficacy, quality of life, and weight loss in overweight/obese endometrial cancer survivors (SUCCEED): a randomized controlled trial. Gynecol Oncol. 2014;132:397-402.

81. van Gruenigen VE, Courneya KS, Gibbons HE, Kavouugh MB, Waggoner SE, Leiter E. Feasibility and effectiveness of a lifestyle intervention program in obese endometrial cancer patients: a randomized trial. Gynecol Oncol. 2008;109:19-26.

82. Saxton JM, Scott EJ, Daley AJ, et al. Effects of an exercise and hypocaloric healthy eating intervention on indices of psychological health status, hypothalamic-pituitary-adrenal axis regulation, and immune function after early-stage breast cancer: a randomised controlled trial [serial online]. Breast Cancer Res. 2014;16:R39.

83. Sheppard VB, Hicks J, Makambi K, et al. Effects of exercise and hypocaloric eating on weight loss in overweight breast cancer survivors. 2016;46:106-113.

84. Greenlee H, Gaffney AO, Aycinena AC, et al. ¡Cocinar Para Su Salud!: randomized intervention on body weight and nutritional patterns in overweight and obese breast cancer survivors. Med Oncol. 2014;31:783.

85. Harris MN, Swift DL, Myers VH, et al. Effects of an exercise and hypocaloric eating intervention for African American breast cancer survivors. Breast Cancer Res Treat. 2016;155:148-153.

86. McCarroll ML, Armbruster S, Pohle-Krauza RJ, et al. Feasibility of a lifestyle intervention for overweight/obese endometrial and breast cancer survivors using an interactive mobile application. Gynecol Oncol. 2015;137:508-515.

87. Haggerty AF, Huepenbecker S, Sarver DB, et al. The use of novel technology-based weight loss interventions for obese women with endometrial hyperplasia and cancer. Gynecol Oncol. 2016;140:239-244.

88. Jones LW, Courneya KS, Fairey AS, Mackey JR. Effects of an oncologist’s recommendation to exercise on self-reported exercise behavior in newly diagnosed breast cancer survivors: a single-blind, randomized controlled trial. Ann Behav Med. 2004;28:105-113.

89. Haggerty AF, Huepenbecker S, Sarver DB, et al. The use of novel technology-based weight loss interventions for obese women with endometrial hyperplasia and cancer. Gynecol Oncol. 2016;140:239-244.

90. Demark-Wahnefried W, Jones LW, Snyder DC, et al. Daughters and Mothers Against Secondary Aging (DAMES): main outcomes of a randomized controlled trial of weight loss in overweight mothers with breast cancer and their overweight daughters. Cancer. 2014;120:2522-2534.

91. Morey MC, Snyder DC, Sloane R, et al. Effects of home-based diet and exercise intervention on weight loss in overweight breast cancer survivors: a randomized controlled trial. JAMA. 2009;301:1883-1891.

92. Demmark-Wahnefried W, Jones LW, Snyder DC, et al. Daughters and Mothers Against Breast Cancer (DAMES): main outcomes of a randomized controlled trial of weight loss in overweight mothers with breast cancer and their overweight daughters. Cancer. 2014;120:2522-2534.

93. Huang JS, Dillon L, Terrones L, et al. Fit4Life: a weight loss intervention for children who have survived childhood leukemia. Pediatr Blood Cancer. 2014;61:894-900.

94. Bluthemann SM, Vernon SW, Gabriel KP, Murphy CC, Bartholomew LK. Taking the next step: a systematic review and meta-analysis of physical activity and behavior change interventions in recent post-treatment breast cancer survivors. Breast Cancer Res Treat. 2015;149:331-342.

95. Mutrie N, Campbell A, Barry S, et al. Five-year follow-up of participants in a randomized controlled trial showing benefits from exercise for breast cancer survivors during adjuvant treatment. Are there lasting effects? J Cancer Surviv. 2012;6:420-430.

96. Blundell JE, Gibbons C, Caudwell P, Finlayson G, Hopkins M. Appetite control and energy balance: impact of exercise. Obes Rev. 2015;16(suppl 1):67-76.

97. Courneya KS, McKenzie DC, Mackey JR, et al. Effects of exercise dose and type during breast cancer chemotherapy: multi-center randomized trial. J Natl Cancer Inst. 2013;105:1821-1832.

98. Pinto BM, Ciccolo JT. Physical activity motivation and cancer survivorship. Recent Results Cancer Res. 2011;186:367-387.

99. McCarroll ML, Armbruster S, Pohle-Krauza RJ, et al. Feasibility of a lifestyle intervention for overweight/obese endometrial and breast cancer survivors using an interactive mobile application. Gynecol Oncol. 2015;137:508-515.

100. Courneya KS, McKenzie DC, Mackey JR, et al. Effects of exercise dose and type during breast cancer chemotherapy: multi-center randomized trial. J Natl Cancer Inst. 2013;105:1821-1832.

101. Pinto BM, Papandonatos GD, Goldstein MG. A randomized trial to promote physical activity among breast cancer patients. Health Psychol. 2013;32:616-626.

102. National Institutes of Health (NIH). Clinical Trial Requirements for Grants and Contracts. Bethesda, MD: NIH; 2017. grants.nih.gov/policy/clinical-trials.htm. Accessed October 24, 2017.

103. National Institutes of Health (NIH). Clinical Trial Requirements for Grants and Contracts. Bethesda, MD: NIH; 2017. grants.nih.gov/policy/clinical-trials.htm. Accessed October 24, 2017.

104. Health Psychol. 2013;32:616-626.

105. National Institutes of Health (NIH). Clinical Trial Requirements for Grants and Contracts. Bethesda, MD: NIH; 2017. grants.nih.gov/policy/clinical-trials.htm. Accessed October 24, 2017.
105. Bail J, Meneses K, Demark-Wahnefried W. Nutritional status and diet in cancer prevention. Semin Oncol Nurs. 2016;32: 206-214.

106. King D, Miranda P, Gor B, et al. Addressing cancer health disparities using a global biobehavioral approach. Cancer. 2010;116:264-269.

107. Warnecke RB, Oh A, Breen N, et al. Approaching health disparities from a population perspective: the National Institutes of Health Centers for Population Health and Health Disparities. Am J Public Health. 2008;98:1608-1615.

108. Greenlee H, Shi Z, Sardo Molmenti CL, Zugelder JM, Warnecke RB, Oh A, Breen N, et al. Approaching health disparities from a population perspective: the National Institutes of Health Centers for Population Health and Health Disparities. Am J Public Health. 2008;98:1608-1615.

109. Dennis Parker EA, Sheppard VB, Adams-Cameron J, King D, Miranda P, Gor B, et al. Addressing health disparities from a population perspective: the National Institutes of Health Centers for Population Health and Health Disparities. Am J Public Health. 2008;98:1608-1615.

110. Paxton RJ, Phillips KL, Jones LA, et al. Associations among physical activity, body mass index, and health-related quality of life by race/ethnicity in a diverse sample of breast cancer survivors. Cancer. 2012;118:4024-4031.

111. Nayak P, Paxton RJ, Holmes H, Than Nguyen H, Elting LS. Racial and ethnic differences in health behaviors among cancer survivors. Am J Prev Med. 2015;48:729-736.

112. Nichols HB, Trentham-Dietz A, Egan KM, et al. Body mass index before and after breast cancer diagnosis: associations with all-cause, breast cancer, and cardiovascular disease mortality. Cancer Epidemiol Biomarkers Prev. 2009;18:1403-1409.

113. Weaver KE, Foraker RE, Alfano CM, et al. Cardiovascular risk factors among long-term survivors of breast, prostate, colorectal, and gynecologic cancers: a gap in survivor care. J Cancer Surviv. 2013;7:253-261.

114. Tammemagi CM, Nerenz D, Neslund-DePriest C, Feldkamp C, Nathanson D. Comorbidity and survival disparities among black and white patients with breast cancer. JAMA. 2005;294:1765-1772.

115. Ansa B, Yoo W, Whitehead M, Coughlin S, Smith S. Beliefs and behaviors about breast cancer recurrence risk reduction among African American breast cancer survivors [serial online]. Int J Environ Res Public Health. 2015;13:1290.

116. Golden SH, Ferberich A, Boyington J, et al. Transdisciplinary cardiovascular and cancer health disparities training: experiences of the Centers for Population Health and Health Disparities. Am J Public Health. 2015;105(suppl 3):S935-S942.

117. Mellerson J, Landrine H, Hao Y, Corral I, Zhao L, Cooper DL. Residential segregation and exercise among a national sample of Hispanic adults. Health Place. 2010;16:613-615.

118. Shariff-Marco S, Von Behren J, Reynolds P, et al. Impact of social and built environment factors on body size among breast cancer survivors: the Pathways Study. Cancer Epidemiol Biomarkers Prev. 2017;26:505-515.

119. Zenk SN, Mentz G, Schulz AJ, Johnson-Lawrence V, Gaines CR. Longitudinal associations between observed and perceived neighborhood food availability and body mass index in a multistudy urban sample. Health Educ Behav. 2017;44:41-51.

120. Litt JS, Soobader MJ, Turbin MS, Hafe W, Buchenau M, Marshall JA. The influence of social isolation, neighborhood aesthetics, and community garden participation on fruit and vegetable consumption. Am J Public Health. 2011;101:1466-1473.

121. Harris E. The role of community gardens in creating healthy communities. Australian Planner. 2009;46:24-27.

122. Zick CD, Smith KR, Kowaleski-Jones L, Uno C, Merrill BJ. Harvesting more than vegetables: the potential weight control benefits of community gardening. Am J Public Health. 2013:103:1110-1115.

123. Brown AF, Morris DM, Kahn KL, et al. The Healthy Community Neighborhood Initiative: rationale and design. Ethn Dis. 2016;26:123-132.

124. Kreuter MW, Lukwago SN, Bucholtz RD, Clark EM, Sanders-Thompson V. Achieving cultural appropriateness in health promotion programs: targeted and tailored approaches. Health Educ Behav. 2003;30:133-146.

125. Stolley MR, Sharp TK, Wells AM, Simon N, Schiffer L. Health behaviors and breast cancer: experiences of urban African American women. Health Educ Behav. 2006;33:604-624.

126. Wilson DB, Porter JS, Parker G, Kilpatrick DB, Rundle A, Tsai WY. Trends in obesity and physical activity among African American breast cancer survivors [serial online]. Prev Chronic Dis. 2005;2:A16.

127. Djuric Z, Mirasolo J, Kimbrough L, et al. A community-based exercise and support group program in African-American Breast Cancer Survivors (ABCs). J Phys Ther. 2013:1:15-24.

128. Spector D, Deal AM, Amos KD, Yang H, Battaglini CL. A pilot study of a home-based motivational exercise program for African American breast cancer survivors: clinical and quality-of-life outcomes. Integr Cancer Ther. 2014;13:121-132.

129. Conlon BA, Kahan M, Martinez M, et al. Development and evaluation of the curriculum for Diverse Living (Diversity for Living Daily) Healthy Living: a diabetes prevention and control program for underserved cancer survivors. J Cancer Educ. 2015;30:535-545.

130. Chung S, Zhe S, Friedmann E, et al. Weight loss with mindful eating in African American women: a pilot trial of spirituality counseling for breast cancer: a longitudinal study. Support Care Cancer. 2016;24:1875-1881.

131. Mama SK, Song J, Ortiz A, et al. Longitudinal social cognitive influences on physical activity and sedentary time in Hispanic breast cancer survivors. Psychooncology. 2017;26:214-221.

132. Rossi A, Garber CE, Ortiz M, Shankar V, Goldberg GL, Neuvadsus N. Feasibility of a physical activity intervention for obese, socioculturally diverse endometrial cancer survivors. Gynecol Oncol. 2016;142:304-310.

133. Stolley MR, Sharp LK, Funtz G, et al. Study design and protocol for moving forward: a weight loss intervention trial for African-American breast cancer survivors [serial online]. BMC Cancer. 2015;15:1018.

134. Stolley M, Sheean P, Gerber B, et al. Efficacy of a weight loss intervention for African American breast cancer survivors. J Clin Oncol. 2017;35:2820-2828.

135. National Cancer Institute, Office of Cancer Survivorship. Statistics. Bethesda, MD: National Cancer Institute; 2016. cancercontrol.cancer.gov/ocs/statistics/statistics. html. Accessed October 24, 2017.

136. Badr H, Paxton RJ, Ater JL, Urbauer D, Demark-Wahnefried W. Health behaviors and weight status of childhood cancer survivors and their parents: similarities and opportunities for joint interventions. J Am Med Assoc. 2011;111:1917-1923.

137. Demark-Wahnefried W, Werner C, Clipp EC, et al. Survivors of childhood cancer and their guardians. Cancer. 2005;103:2171-2180.

138. Zhang FF, Saltzman E, Must A, Parsons SK. Do childhood cancer survivors meet the diet and physical activity guidelines? A review of guidelines and literature. Int J Child Health Nutr. 2012;1:44-58.

139. Ford JS, Barnett M, Werk R. Health behaviors of childhood cancer survivors. Children (Basel). 2014;1:355-373.

140. Demark-Wahnefried W, Peterson B, McBride C, Lipkus I, Clipp E. Current health behaviors and strategies to pursue lifestyle changes among men and women diagnosed with early stage prostate and breast carcinomas. Cancer. 2000;86:674-684.

141. Blanchard CM, Courneya KS, Stein K. Cancer survivors’ adherence to lifestyle behavior recommendations and associations with health-related quality of life: results from the American Cancer Society’s SCS-II. J Clin Oncol. 2008;26:2198-2204.

142. Niu C, Eng L, Qiu X, et al. Lifestyle behaviors in elderly cancer survivors: a comparison with middle-age cancer survivors. J Oncol Pract. 2015;11:e450-459.

143. Henderson TO, Ness KK, Cohen HJ. Accelerated aging among cancer survivors: from pediatrics to geriatrics [serial online]. Am Soc Clin Oncol Educ Book. 2014:e423-e430.

144. Buchner DM, Wagner EH. Preventing frail health. Clin Geriatr Med. 1992;8:1-17.

145. Merckin EM, Carboneau BA, Krzyzak-Walker SM, de Cabo R. Of mice and men: the benefits of caloric restriction, exercise, and mimetics. Ageing Res Rev. 2012;11:390-398.

146. Bennett JA, Winters-Stone KM, Coburn J, Naglie G. Frailty in older breast cancer survivors.
survivors: age, prevalence, and associated factors. Oncol Nurs Forum. 2013;40:E126-134.

149. Pal SK, Katheria V, Hurria A. Evaluating the older patient with cancer: understanding frailty and the geriatric assessment. CA Cancer J Clin. 2011;60:120-132.

150. National Heart Lung and Blood Institute. Selecting a Weight Loss Program. Bethesda, MD: National Institutes of Health, Department of Health and Human Services, National Institutes of Health, National Heart, Lung, and Blood Institute; 2017. nhlbi.nih.gov/health/educational/lose_wt/wtl_prog.htm. Accessed October 24, 2017.

151. Muscaritoli M, Anker SD, Argiles J, et al. Consensus definition of sarcopenia, cachexia and pre-cachexia: joint document elaborated by Special Interest Groups (SIG) “cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics.” Clin Nutr. 2010;29:154-159.

152. Villareal DT, Apovian CM, Kushner RF, Braam KI, van der Torre P, Takken T, Pal SK, Katheria V, Hurria A. Evaluating weight management and physical activity throughout the cancer care continuum. Ann Intern Med. 2008;149:1849-1865.

153. Barlow SE. Expert committee recommendations regarding the prevention, assessment, and treatment of child and adolescent overweight and obesity: summary report. Pediatrics. 2007;120(suppl 1):S164-S192.

154. Braam KI, van der Torre P, Takken T, Veening MA, van Dulmen-den Broeder E, Kaspers GJ. Physical exercise training interventions for children and young adults with cancer: a systematic review and position statement of the American Society for Nutrition and NAASO, The Obesity Society. Obes Res. 2005;13:1849-1865.

155. McCambridge TM, Stricker PR. Strength training by children and adolescents. Pediatr Sports. 2008;12:835-840.

156. Blair CK, Morey MC, Sloane R, et al. Reach out to Enhance Wellness in Older Cancer Survivors (RENEW): design, methods and recruitment challenges of a home-based exercise and nutrition intervention to improve physical function among long-term survivors of breast, prostate, and colorectal cancer. Psychooncology. 2009;18:429-439.

157. Snyder DC, Morey MC, Sloane R, et al. Reach out to Enhance Wellness in Older Cancer Survivors (RENEW): design, methods and recruitment challenges of a home-based exercise and nutrition intervention to improve physical function among long-term survivors of breast, prostate, and colorectal cancer. Psychooncology. 2009;18:429-439.

158. Office of Management and Budget. Rural Policy Note. Washington, DC: Office of Management and Budget; 2013. ruralhome.org/storage/documents/rhrbriefs/rpb_omb_outside_metropol. Accessed October 24, 2017.

159. Henley SJ, Anderson RN, Thomas CC, Massetti GM, Peeker B, Richardson LC. Invasive cancer incidence, 2004-2013, and deaths, 2006-2015, in nonmetropolitan and metropolitan counties—United States. MMWR Surveill Summ. 2017;66:1-13.

160. Weaver KE, Geiger AM, Lu L, Case LD. Rural-urban differences in health status among US cancer survivors. Cancer. 2013;119:1050-1057.

161. Burris JL, Andrykowski M. Disparities in mental health between rural and nonrural cancer survivors: a preliminary study. Psychooncology. 2010;19:637-645.

162. Wilson SE, Andersen MR, Meischke H. Meeting the needs of rural breast cancer survivors: what still needs to be done? J Womens Health Gend Based Med. 2000;9:667-677.

163. Weaver KE, Palmer N, Lu L, Case LD, Geiger AM. Rural-urban differences in health behaviors and implications for health status among US cancer survivors. Cancer Causes Control. 2013;24:1481-1490.

164. Garcia MC, Faull M, Massetti G, et al. Reducing potentially excess deaths from the five leading causes of death in the Rural United States. MMWR Surveill Summ. 2017;66:1-7.

165. Befort CA, Nazir N, Perri MG. Prevalence of obesity among adults from rural and urban areas of the United States: findings from NHANES (2005-2008). J Rural Health. 2012;28:392-397.

166. Matthews KA, Croft JB, Liu Y, et al. Health-related behaviors by urban-rural county classification—United States, 2013. MMWR Surveill Summ. 2017;66:1-8.

167. US Census Bureau. 2010 Census Urban and Rural Classification and Urban Area Criteria. Suitland, MD: US Census Bureau; 2013. census.gov/geo/reference/ua/urban-rural-2010.html. Accessed August 30, 2017.

168. Slama K. Rural culture is a diversity issue. Minnesota Psychologist. 2004;2004:9-11.

169. Rogers LQ, Markwell SJ, Verhulst S, McAuley E, Courneya KS. Rural breast cancer survivors: exercise preferences and their determinants. Psychooncology. 2009;18:412-421.

170. Befort CA, Austin H, Klempr JR. Weight control needs and experiences among rural breast cancer survivors. Psychooncology. 2011;20:1009-1075.

171. Befort CA, Bennett L, Christifano D, Klempr JR, Kebbel H. Effective recruitment of rural breast cancer survivors into a lifestyle intervention. Psychooncology. 2015;24:487-490.

172. Fazzino TL, Sporn NJ, Befort CA. A qualitative evaluation of a group phone-based weight loss intervention for rural breast cancer survivors: themes and mechanisms of success. Support Care Cancer. 2016;24:3165-3173.

173. Park JH, Lee J, Oh M, et al. The effect of oncologists’ exercise recommendations on the level of exercise and quality of life in survivors of breast and colorectal cancer: a randomized controlled trial. Cancer. 2015;121:2740-2748.

174. Baker AM, Smith KC, Coa KI, et al. Clinical care providers’ perspectives on body size and weight management among long-term cancer survivors. Integr Cancer Ther. 2015;14:240-248.

175. Denlinger CS, Filchner K, O’Grady M, et al. Adherence to NCCN survivorship care guidelines in nonsmall cell lung cancer and colorectal cancer [abstract AB2015-2028]. J Clin Oncol. 2014;13:e71.

176. Puhringer PG, Olsen A, Cimlin M, Sargeant S, Jones LM, Keogh JW. Current nutrition promotion, beliefs and barriers among cancer nurses in Australia and New Zealand [serial online]. PeerJ. 2015;3:e1396.

177. Sharp L, Deady S, Gallagher P, et al. The magnitude and characteristics of the population of cancer survivors: using population-based estimates of cancer prevalence to inform service planning for survivorship care [serial online]. BMC Cancer. 2014;14:767.

178. Sinsky C, Colligan L, Li L, et al. Allocation of physician time in ambulatory practice: a time and motion study in 4 specialties. Ann Intern Med. 2016;165:753-760.

179. Beehler GP, Rodrigues AE, Kay MA, Kiviniemi MT, Steinbrenner L. Perceptions of barriers and facilitators to health behavior change among veteran cancer survivors. Mil Med. 2014;179:998-1005.

180. Aycinena AC, Valdivieso C, Crow KD, et al. Barriers to recruitment and adherence in a randomized controlled diet and exercise weight loss intervention among minority breast cancer survivors. J Immigr Minor Health. 2017;19:120-129.

181. Grossman DC, Bibbins-Domingo K, Curry SJ, et al. Screening for obesity in children and adolescents: US Preventive Services Task Force Recommendation Statement. JAMA. 2017;317:2417-2426.
