Mechanisms of Mutations Inhibiting Fusion and Infection by Semliki Forest Virus

Margaret Kielian, Matthew R. Klimjack, Swati Ghosh, and Wayne A. Duffus
Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461

Abstract. Semliki Forest virus (SFV) infects cells by an acid-dependent membrane fusion reaction catalyzed by the virus spike protein, a complex containing E1 and E2 transmembrane subunits. E1 carries the putative virus fusion peptide, and mutations in this domain of the spike protein were previously shown to shift the pH threshold of cell–cell fusion (G91A), or block cell–cell fusion (G91D). We have used an SFV infectious clone to characterize virus particles containing these mutations. In keeping with the previous spike protein results, G91A virus showed limited secondary infection and an acid-shifted fusion threshold, while G91D virus was noninfectious and inactive in both cell–cell and virus–liposome fusion assays. During the low pH-induced SFV fusion reaction, the E1 subunit exposes new epitopes for monoclonal antibody (mAb) binding and forms an SDS-resistant homotrimer, the virus associates hydrophobically with the target membrane, and fusion of the virus and target membranes occurs. After low pH treatment, G91A spike proteins were shown to bind conformation-specific mAbs, associate with target liposome membranes, and form the E1 homotrimer. However, both G91A membrane association and homotrimer formation had an acid-shifted pH threshold and reduced efficiency compared to wt virus. In contrast, studies of the fusion-defective G91D mutant showed that the virus efficiently reacted with low pH as assayed by mAb binding and liposome association, but was essentially inactive in homotrimer formation. These results suggest that the G91D mutant is noninfectious due to a block in a late step in membrane fusion, separate from the initial reaction to low pH and interaction with the target membrane, and involving the lack of efficient formation of the E1 homotrimer.

Within eukaryotic cells, membrane fusion reactions occur thousands of times per minute during the formation and trafficking of endocytic and exocytic vesicles (1, 32, 34, 40). Fusion also takes place between cells during such processes as myotube formation, fertilization, and polyclaryon formation (34, 39, 40). Extensive cell fusion occurs during the developmental program of many tissues in C. elegans (31) and a variety of other organisms. The ability to fuse is a critical property of cellular membranes, and is a strictly regulated event in terms of specificity, location, and kinetics. Fusion is mediated by proteins on cell membranes, which may act in concert with other proteins as part of multisubunit membrane fusion machines (32). However, the molecular mechanisms of cellular membrane fusion reactions are as yet largely undefined. Our current understanding of membrane fusion mechanisms has come in large part from the study of well-characterized viral fusion proteins.

Enveloped animal viruses have evolved a number of strategies to trigger the fusion of the virus membrane with that of the host cell, a key step in virus infection (for review see reference 2). Many viruses use the endocytic pathway and low endosomal pH as an infectious entry route, while others fuse with the plasma membrane in a pH-independent reaction. Semliki Forest virus (SFV) is a well-characterized alphavirus that infects cells by a membrane fusion reaction specifically triggered by the low pH present in endocytic vacuoles. Fusion is mediated by the SFV spike protein, which contains two transmembrane glycoprotein subunits, E1 and E2, each ~50,000 D, and a peripheral glycopolyptide, E3, of ~10,000 D (for review see references 17, 35). After SFV’s fusion in the endosome, its RNA genome is released into the cytoplasm, new RNAs, capsid proteins, and spike proteins are synthesized, and progeny virus particles assemble and bud from the host cell plasma membrane.

Recent work from several groups has yielded a fairly detailed model of the spike protein conformational changes that take place during low pH-dependent SFV fusion (for review see reference 17). After exposure to low pH, the normally strong heterodimer interaction between the E1

1. Abbreviations used in this paper: HA, hemagglutinin; SFV, Semliki Forest virus; VSV, vesicular stomatitis virus.
The wild-type infectious clone (WT-IC), G91D, or G91A constructs were propagated in the infectious SFV clone pSP6-SFV4 (26), and the plasmid DNA used as a template to generate in vitro RNA transcripts, all as previously described (6). During infection of BHK cells at 37°C, mutant spike proteins are transported to the plasma membrane and associate with nucleocapsids, but are blocked in assembly into virus particles. This assembly defect was rapidly reversed by shift to reduced temperature (28°C), and spike proteins synthesized at 37°C were assembled into morphologically normal virus particles during a 28°C chase period. The infectivity and fusion phenotypes of G91A and G91D virus particles have been characterized here, using virus assembled at 28°C. As predicted from our previous expression studies, G91A virus was fusogenic and infectious, although with reduced activity due to its pH-shift phenotype. In contrast, G91D virions were nonfusogenic and noninfectious and were unable to form the E1 homotrimer. Our results strongly suggest that E1 homotrimer formation is critical for SFV fusion activity, and that, unexpectedly, SFV membrane attachment can be uncoupled from E1 trimerization.

Materials and Methods

Virus and Cells

The wild-type infectious clone (WT-IC), G91D, or G91A constructs were propagated in the infectious SFV clone pSP6-SFV4 (26), and the plasmid DNA used as a template to generate in vitro RNA transcripts, all as previously described (6, 26). To prepare [35S]methionine and cysteine-labeled virus, BHK-21 cells were infected by electroporation with RNA, plated at 37°C for 6 h in complete BHK medium (DMEM containing 5% FCS, 100 U penicillin and 100 μg streptomycin/ml and 10% tryptose phosphate broth), and then radiolabeled overnight in methione and cysteine deficient MEM at 28°C, all as previously described (6). Virus was then purified either by pelleting through a 2.5-ml 25% (wt/wt) sucrose cushion as previously described (6) or by banding on a Pfefferkorn gradient (21). Sucrose cushion-purified virus was used throughout except as indicated in individual experiments. Care was taken to collect the radiolabeled progeny virus at a point after the early infection (beginning 6 h after electroporation), before introduction of revertants became significant. As previously discussed, two isolates of WT-IC, G91D, and G91A were characterized to control for possible mutations arising during subcloning (6). All experiments were performed in duplicate or more, and the results for duplicate isolates were the same in all cases. The figures show data from one isolate unless otherwise indicated.

Assay of Secondary Virus Infection

To assay the ability of WT-IC or mutant viruses to carry out a secondary infection, cells were infected by electroporation with the respective RNA, diluted 1:20 with uninfected cells, and allowed to adhere on coverslips for 2 h at 37°C. Cultures were then switched to complete BHK medium with or without 15 mM NH₄Cl, and cultured 16-24 h at 28°C. The cells were then fixed with methanol and stained with a rabbit polyclonal antibody to the SFV spike protein, followed by a fluorescein-conjugated goat anti-rabbit antibody (20). Cells were photographed using a Zeiss Axioshot fluorescence microscope and Kodak TMAX-400 film.

Virus-Cell Interactions

Virus binding to the BHK cell receptor was assayed by incubation of radiolabeled virus with BHK cells at the indicated pH for 2 h on ice with shaking. The cells were then scraped and washed twice with ice-cold medium at the indicated pH, followed by quantitation of cell-associated radioactivity (27). Virus uptake by endocytosis was assayed by prebinding radiolabeled virus to BHK cells on ice in medium at pH 6.8, warming cells to 37°C for various times to permit endocytosis, followed by removal of non-endocytosed virus by proteinase K digestion and quantitation of internalized virus radioactivity (27).

Fusion Assays

The cell–cell fusion activity of WT-IC and mutant virus was evaluated by infecting cells by electroporation, diluting with uninfected cells, and culturing 2 h on 22-mm square coverslips in complete BHK medium at 37°C, followed by overnight culture at 28°C. The cells were then washed once at pH 7.0, treated with medium at the indicated pH for 3 min at 28°C to trigger fusion, washed, and cultured in complete BHK medium for 3–4 h (25). The cells were then fixed with paraformaldehyde, stained as above with antibody to the SFV spike protein, permeabilized with 0.2% Triton, and the nuclei stained with propidium iodide (25). The number of nuclei per surface-positive expressing cell was evaluated by fluorescence microscopy, counting at least 200 nuclei per pH point. The fusion index was calculated as [(1–(cells/nuclei))] (25, 43). The fusion of WT-IC and G91D virus with liposomes was evaluated using [35S]methionine and cysteine-labeled virus and liposomes containing entrapped trypsin (29, 41). Large unilamellar liposomes were prepared from mixtures of phosphatidylcholine:phosphatidylethanolamine:sphingomyelin:cholesterol (molar ratio 1:1:1:1.5) by drying on a rotary evaporator and then hypotilization (23). Dried lipids were rehydrated in 20 mM MES, pH 7.0, 130 mM NaCl containing 10 mg/ml TPCK-trypsin (Type XIII, Sigma Chem. Co., St. Louis, MO), vortexed with glass beads, and treated with 10 cycles of freeze-thawing. Liposomes were then sized by 1 extrusion through 2 stacked 1-μm polycarbonate filters followed by 10 extrusions through 2 stacked 0.2 μm filters, using a high-pressure extruder from Lipex Biomembranes, Inc. (Vancouver, BC) (3). The liposomes were then purified from free trypsin by gel filtration on a 1-cm × 50-cm Sephadex G150 column. Trace amounts of [3H]-cholesterol oleate were added to follow the yield and concentration of lipids. Liposomes were mixed with radiolabeled virus to a final concentration of 0.2-0.25 mM lipid, and soybean trypsin inhibitor added to a final concentration of 125 μg/ml. Samples were treated at various pHs for 5 min at 37°C, adjusted to pH 8.0, and the incubation continued for 1 h at 37°C to permit capsid digestion. The digestion was stopped by the addition of 1 mg/ml BSA, 0.5 mM PMSF, and 1% Triton X-100. The samples were then immunoprecipitated with a polyclonal rabbit antibody to the SFV capsid protein, provided by Drs. Ilan Shieh and Ali Helenius (Yale University, New Haven, CT). The amount of capsid was quantitated by SDS-PAGE and phosphorimaging.
using a phosphorimager and Image Quant 3.2 software (Molecular Dynamics, Sunnyvale, CA). Controls included samples incubated in the absence of liposomes, to quantify the starting amount of capsid protein, and samples incubated with liposomes plus 1% Triton X-100 in the absence of soybean trypsin inhibitor, which showed complete digestion of capsid protein. WT-IC virus-liposome fusion experiments using liposomes prepared by the method and lipid composition (6 mole% phosphatidic acid) used in the liposome association assay (see below) gave results comparable to those with extruded liposomes (data not shown), as did cushion-purified virus preparations.

Fusion of radiolabeled virus with the BHK cell plasma membrane was measured by treatment of prebound virus with media of low pH to trigger fusion. Nonfused virus was removed by digestion with protease K and cell-associated radioactivity was determined (42). The background protease K resistant-radioactivity from treatment at pH 7.0 was subtracted from each experimental point.

Precipitation with Acid-Conformation Specific Antibodies

Acid-induced conformational changes in E1 were evaluated by treating [35S]methionine and cysteine-labeled virus at low pH, neutralizing, dissolving in lysis buffer, and immunoprecipitating with either mAb E1a-1 (20) or anti-E1β (36). The total E1 was determined by precipitation with a rabbit polyclonal antibody to the SFV spike protein (20). Precipitated E1 was quantitated by SDS-PAGE and phosphorimaging. The amount of E1 precipitated from pH 5.0-treated virus by a nonspecific antibody was negligible, and was subtracted from each point.

Virus-Liposome Association

Virus-liposome association was measured by colloidation of radiolabeled virus with liposomes on sucrose step gradients. Virus was treated at neutral or low pH in the presence of 1 mM liposomes containing phosphatidylcholine:phosphatidylethanolamine:sphingomyelin: phosphatidic acid:cholesterol (molar ratio 1:1:0:3:1:5), prepared as previously described (23, 41). In some experiments, liposomes contained the same lipid composition but without cholesterol. After pH treatment, samples were adjusted to pH 8.0, 40% sucrose and a volume of 0.45 ml, layered in the bottom of a TLS55 tube, and overlaid with 1.4 ml 25% sucrose and 0.3-ml 5% sucrose (wt/vol in 50 mM Tris, pH 8.0, 100 mM NaCl). Gradients were centrifuged 3 h at 54,000 rpm at 4°C, fractionated into seven 0.3-ml fractions, and the proportion of the virus radioactivity in the liposome-containing top three fractions determined (23). Recoveries of virus radioactivity ranged from 57-100%.

Assays of E1 Homotrimer Formation

For all homotrimer experiments, [35S]methionine- and cysteine-labeled virus was mixed with 1 mM cholesterol-containing liposomes prepared as in the virus-liposome association experiments above. After pH treatment for 10 min at 37°C, samples were neutralized and analyzed by several techniques to detect homotrimer. Samples were directly solubilized in SDS sample buffer for 2 min at 30°C and analyzed by electrophoresis on SDS-10% acrylamide gels (15, 38). Samples were solubilized in 1% NP-40 and centrifuged on 5-20% sucrose gradients (wt/wt in 50 mM Tris, pH 7.4, 1 mM EDTA, 100 mM NaCl, 0.1% NP-40 and 1 mM PMSF) (15). After centrifugation in the SW 41 rotor for 22 h at 40,000 rpm and 4°C, gradients were fractionated from the bottom and the virus radioactivity determined by liquid scintillation counting. The resistance of E1 to trypsin digestion was assayed by digestion of the samples for 10 min at 37°C with 200 μg/ml TPK-trypsin in PBS containing 1% Triton X-100 (19). The reaction was terminated by the addition of a threefold excess of soybean trypsin inhibitor, and the amount of E1 in each sample evaluated by acid- or antibody-precipitation, SDS-PAGE, and phosphorimaging. In pilot experiments, the trypsin resistance of the wt virus was unaffected by the presence or absence of liposomes during the acidification step (data not shown). Similar results were obtained using gradient or sucrose cushion-purified WT-IC virus (data not shown).

Generation and Analysis of G91D Revertants

BHK cells were infected with G91D RNA by electroporation, diluted 1:3 with uninfected cells, allowed to adhere and complete BHK medium for 2 h at 37°C, and then cultured in individual 35-mm plates in DMEM containing 1% FCS for various times at 28 or 37°C. The media containing poten-
Figure 1. Infectivity of wild-type and mutant viruses on BHK cells. BHK cells were electroporated with G91D, G91A, or wt-ic RNA, diluted 1:20 with nonelectroporated cells, and plated on duplicate coverslips. Cells were allowed to adhere for 2 h at 37°C, and then some cultures were switched to medium containing 15 mM ammonium chloride to prevent secondary infection. After further incubation for 16–24 h at 28°C, cells were fixed with methanol and reacted with a rabbit polyclonal antibody against the SFV spike protein, followed by fluorescein-conjugated goat anti-rabbit antibody. Representative fields were photographed by fluorescence microscopy. Bar, 100 μm.

Virus-Membrane Fusion Activity

Several assays were used to directly test the fusion activity of the mutants. First, the ability of virus-infected cells to fuse into polykaryons following low pH treatment was assayed. This experiment was performed using 28°C incubation for both virus growth and pH treatment. Under these conditions, both wild type and mutants will produce virus particles and active, budding-competent spike proteins in the plasma membrane (6). Cells infected with WT-IC showed efficient low-pH dependent cell–cell fusion activity with a pH-threshold of about pH 6.2 (Fig. 3). In contrast, cells infected with the G91A mutant showed a pH-threshold of about pH 5.4, and a decrease in the final extent of fusion even at the optimal pH. The G91D mutant was inactive in cell–cell fusion even after pH treatment as low as pH 4.7. These data agree with the previously published assay of cell–cell fusion using expressed spike proteins and 37°C conditions (25).

Although polykaryon formation is a useful fusion assay, there are examples in which virus spike proteins are unable to catalyze polykaryon formation but nonetheless can carry out fusion with liposomes or red blood cells (12). To obtain conclusive evidence for the fusion block of the G91D mutation, we used a liposome fusion assay based on the digestion of the virus contents (the capsid protein) by the liposome contents (entrapped trypsin), in the presence of external trypsin inhibitor (29, 41). This assay is quantitative and can be performed with the small amounts of radiolabeled mutant virus obtainable by growth at 28°C. Radiolabeled WT-IC and G91D virions were prepared, mixed with trypsin-containing liposomes, and treated at various pHs for 5 min at either 37°C or 28°C (Fig. 4). The WT-IC capsid was efficiently digested following exposure to liposomes under acidic conditions at either 37°C or 28°C. Quantitation of two experiments by phosphorimaging showed that WT-IC virus had 1% capsid protein digested following 37°C pH 7.0 treatment, and 70% and 59% following pH 5.0 treatment at 37°C or 28°C, respectively. In contrast, the G91D mutant had negligible capsid digestion following low pH treatment at either temperature (Fig. 4), and quantitation showed capsid digestion of 0% for 37°C incubation at pH 7.0, 2% for 37°C incubation at pH 5.0, and 1% for 28°C treatment at pH 5.0. Both viruses showed complete capsid digestion when incubated with trypsin-containing liposomes in the presence of detergent (data not shown).

In addition, the ability of radiolabeled WT-IC or G91D virus to fuse with the BHK cell plasma membrane following low pH treatment was tested by assaying its resistance to removal by proteinase K digestion (42). An average of ~12% of cell-bound WT-IC became proteinase K-resistant due to low pH treatment at 28–37°C, while only 1% of
Figure 2. pH dependence of binding of wt and mutant SFV to BHK cells. [35S]Methionine and cysteine-labeled wt-ic, G91A, and G91D viruses were bound to duplicate 35-mm plates of BHK cells at the indicated pH for 2 h on ice with shaking. The cells were scraped, washed, and the bound radioactivity quantitated by liquid scintillation counting.

G91D became resistant to removal by protease (data not shown). Taken together, and in agreement with our previous assays of the expressed spike protein (25), these results indicate that the G91A mutant has an acid-shifted fusion threshold, reduced fusion efficiency, and decreased infectivity, while the G91D mutant is virtually inactive in membrane fusion and is noninfectious.

Analysis of Steps Preceding Membrane Fusion

Having demonstrated that the mutants exhibit severe defects in membrane fusion, we next used them as a means of dissecting the molecular events during fusion. After exposure to low pH, a series of conformational changes occurs in the SFV spike protein, culminating in membrane fusion (for review see reference 17). Analysis of the G91A and G91D mutants following low pH treatment should both determine the molecular basis for their profound fusion defects, and add to our understanding of the function, importance, and sequence of the spike protein conformational changes.

The first observed alteration upon low pH treatment is an increased lability of the E1-E2 dimer interaction. As previously described, the G91D or G91A spike protein dimer is more easily dissociated than wt by the addition of non-ionic detergent, making it technically difficult to assess pH-dependent alterations in the dimer (6). The spike protein next undergoes a series of kinetically indistinguishable alterations, including exposure of new epitopes for E1 mAb binding, alterations in the protease sensitivities of both E1 and E2, and formation of an E1 homotrimer. We tested whether the mutants were defective in any of the conformational changes in the E1 subunit.

To assay mAb binding, radiolabeled WT-IC or mutant virus particles were treated for 10 min at 37°C at various pHs, and then adjusted to pH 7.0 and 1% Triton X-100 and immunoprecipitated with either of two acid conformation-specific mAbs, anti-E1’’ (36) or E1a-1 (20). E1 precipitation by the antibody was quantitated by SDS-PAGE and phosphorimaging. As shown in Fig. 5, treatment of WT-IC, G91A, and G91D E1 spike proteins at a range of pHs resulted in comparable levels of precipitation by anti-E1’’.

Treatment for 10 min at 28°C and pH 5.0 also gave compa-
imaging, and compared to the total E1 precipitated by a rabbit El'-reactive E1 was quantitated by SDS-PAGE and phosphor-
acid-conformation specific mAb anti-E1'. The amount of anti-
polyclonal antibody to the SFV spike protein. The data shown
Figure 5. SFV was treated for 10 min at 37°C at the indicated pH, neutral-
rated with an E1 acid-conformation specific monoclonal antibody.

Thus, the G91A and G91D mutant spike proteins did not
show an overall block in their response to acid pH, or a
change in the pH dependence, temperature sensitivity, or
efficiency of conformational changes detected by two spe-
cific mAbs.

After the exposure of the anti-E1' and Ela-1 epitopes,
but before membrane fusion, the virus associates hydro-
phobically with the target lipid bilayer. This hydrophobic
interaction is distinct from virus binding to the cellular
protein receptor, is specifically induced by acid pH, and
requires the presence of cholesterol in the target liposome
membrane (3, 18). To assay virus-liposome association,
radiolabeled WT-IC or mutant virus was mixed with lipos-
omes containing ~33 mole% cholesterol, treated for 10–
15 min at 37°C at the indicated pH, neutralized, and lipos-
omes plus associated virus separated from free virus on a
discontinuous sucrose gradient (23). Although both gradient-
purified WT-IC and G91A mutant showed significant lipos-
ome association following treatment at pH 4.7 or 5.4 (Ta-
ble I A), we found that the efficiency of the G91A-liposome
interaction was substantially decreased. In addition, while
WT-IC liposome association was equivalent following treat-
ment at pH 6.2, 5.4, or 4.7, G91A-liposome association was
markedly reduced at pH 6.2. Thus, G91A-liposome bind-
ing showed an acid-shifted pH threshold and decreased
overall efficiency, similar to the fusion phenotype of this
virus. Qualitatively similar results were obtained using su-
crose cushion-purified preparations of G91A and WT-IC,
but with somewhat lower overall binding than gradient pu-
rified virus. We then assayed liposome association using
The Journal of Cell Biology, Volume 134, 1996 868

Table I. Low pH-dependent Liposome Association of WT and
Mutant SFV

Percent virus cofloating with liposomes

	pH 7.0	pH 6.2	pH 5.4	pH 4.7
A.				
wt-ic	7	88	83	84
G91A	2	16	53	50
B.				
wt-ic	8 (5)	47 (12)		
G91D	8 (2)	50 (10)		

| [35S]Methionine and cysteine-labeled wt or mutant SFV was prewarmed at 37°C for
2-5 min in the presence of 1 mM cholesterol-containing liposomes, treated at the indi-
cated pH for 10–15 min at 37°C, and neutralized. Virus-liposome association was
then determined by coflotation analysis on 40-25-5% discontinuous sucrose gradi-
tents as described in methods.

A. Both virus preparations were prepared by banding on a sucrose gradient, and the
average of three experiments is shown. B. Both virus preparations were prepared by
sedimentation through a sucrose cushion, and the average of three experiments is
shown, where the number in parentheses is the standard deviation.
ily as monomers after treatment at either pH 7.0 or 5.5, and showed no peak at the homotrimer position (6).

After low pH treatment in vitro or acidification within the endosome, E1 converts to a form that is very resistant to trypsin digestion (19, 22). The trypsin resistance of E1 from WT-IC, G91A, and G91D was assayed following pH treatment in the presence of cholesterol-containing liposomes for 10 min at 37°C (Fig. 8). E1 from wild-type virus converted to trypsin resistance at pH 6.0 or below, with a maximum efficiency of ~50% of the total E1. In contrast, E1 from the G91A mutant showed a reduced overall efficiency of E1 conversion, with a maximum of ~35% of the total E1 being trypsin-resistant at pH 5.0. The pH dependence of G91A was also shifted, with E1 conversion at pH 6.0 being significantly less than that at pH 5.0. Strikingly, results with the G91D mutant showed that little or no E1 conversion to trypsin resistance occurred at any pH tested.

These data suggested that the trypsin resistance of acid-treated E1 correlated with the ability of E1 to form a homotrimer and could be a property of the protein’s highly stable quaternary structure. In a separate experiment, we treated the virus as above at pH 5.0 or 7.0, and compared the amount of E1 converting to trypsin resistance with that migrating as a homotrimer (data not shown). For WT-IC and G91A samples, a strong correlation between trypsin resistant E1 and E1 homotrimer was observed, with the amount of trypsin resistant E1 being ~1.3-2-fold higher than the amount of E1 homotrimer. The differing efficiencies presumably reflect differences in the properties of the assays. As expected, parallel G91D samples showed negligible amounts of both E1 homotrimer and trypsin resistant E1 (data not shown).

Taken together, our results indicate that the G91D mutant was inhibited in formation of the E1 homotrimer, as assayed by the properties of the protein in gel electrophoresis, gradient sedimentation, and protease resistance assays.

Generation of G91D Revertants

Since the G91D mutant was largely blocked in fusion and infectivity, a strong selection for revertants of the G91D mutation existed. Such revertants could provide information on the requirement for a glycine residue at position 91, on the ability of other amino acids to substitute at this position, and on the potential for mutations at other sites in the spike protein to compensate for the presence of aspartate 91. To select for revertants, cells were electroporated with G91D RNA and cultured for various periods of time at either 28°C or 37°C. Under the 28°C incubation conditions, the G91D mutant will assemble into virions but be blocked in secondary infection due to the fusion defect. Selection at 37°C simultaneously selects for revertants that can both assemble and fuse at this incubation temperature. The media from infected cells were titered at the relevant temperature, isolated plaques were picked, and RNA from virus-infected cells was analyzed to determine the sequence at position 91. As expected, given the high mutation rate of RNA viruses, within 48-h growth at 28°C substantial numbers of revertant viruses were released into the medium, with titers of individual culture dishes ranging from 10^3 to 10^8 pfu/ml. Sequence analysis was performed on eleven independent revertants isolated by 28°C growth conditions (Table II). All of the revertants had regained the wild-type glycine at position 91. Although the G91D mutant (GAC) could revert to glycine by changing one nucleotide to give a GCC codon, in the majority of cases the revertant had the wild-type GGG codon. This appears to reflect a viral nucleotide sequence preference or host cell codon preference, rather than contamination with wild-type virus. The wild-type virus was never present during the isolation or growth of the revertants, and RNA isolated from parallel uninfected cells never yielded a PCR product (data not shown). Four independent revertants were isolated and sequenced from the 37°C selection conditions, and all had regained the glycine at position 91 (Table II). Thus, even under 28°C conditions which favored assembly of the mutant, the selection for the wild-type phenotype was strong enough to result in the rapid reacquisition of glycine 91. Although other types of revertants may have been present in the original population, they were not stable under either 28°C or 37°C growth conditions.
Figure 7. Formation of the E1 homotrimer as detected by sucrose gradient sedimentation. [¹⁴S]Methionine and cysteine-labeled wt-ic and G91D SFV were prewarmed at 37°C for 5 min in the presence of 1 mM cholesterol-containing liposomes. The samples were centrifuged at 40,000 rpm in an SW41 rotor for 22 h at 4°C, fractionated, and the radioactivity determined. The positions of the spike protein dimer (d), monomer (m), and E1 homotrimer (t) peaks are indicated. The bottom of the gradient is fraction 1.

Discussion

The original characterization of the fusion phenotypes of the G91A and G91D mutants was performed on transiently expressed spike proteins (25). Immunofluorescence and radio-immunoassays of these mutants demonstrated efficient cell surface expression of the E1 and E2 spike protein subunits, and cell-cell fusion studies showed a pH shift and fusion efficiency decrease for G91A and a fusion block for G91D. Subsequent analysis using the SFV infectious clone revealed that both mutations conferred an unexpected virus assembly defect that was partially reversed by incubation of infected cells at 28°C (6). Since all of the original fusion assays had been performed at 37°C, it was important to determine the phenotype of mutant virus particles assembled and assayed at the permissive temperature. Results described here showed that the fusion phenotypes of the mutant viruses were identical to those previously observed for expressed spike proteins. These data

Table II. Sequence Analysis of G91D Revertants

Virus isolate	Selection conditions	Amino acid/Nucleotide sequence
wt-ic		G91/GGG
G91D		G91/GAC
28.1-28.6	48h growth at 28°C	G91/GGG (5), GGC (1)
28.7-28.11	72h growth at 28°C	G91/GGG (4), GGC (1)
37.1-37.3	29h growth at 37°C	G91/GGG (1), GGC (2)
37.4	48h growth at 37°C	G91/GGG (1)

BHK cells were electroporated with G91D RNA and cultured in individual plates under the indicated selection conditions. The media were then harvested, titered, and independent revertants isolated by picking a plaque from each original plate. Virus stocks of each revertant were prepared by growth at low multiplicity at the relevant temperature. Cells were infected with revertant stocks at the relevant temperature, and RNA prepared for sequence analysis as described in Materials and Methods. BHK and the numbers in parentheses are the number of independent revertants isolated with the indicated sequence.
together with our previous assembly studies suggest that the mutants are temperature sensitive during budding from the plasma membrane, but have wild-type temperature requirements for both spike biosynthesis and low pH-triggered fusion functions.

A number of assays have been used to follow irreversible low pH-triggered conformational changes in the SFV spike protein (for review see reference 11, 17). Our results with G91A and G91D give insights into the fusion mechanism of alphaviruses, and also enable distinctions to be drawn between several of the conformational changes in the E1 subunit. The available data indicated that with comparable kinetics the E1 protein becomes reactive with acid conformation-specific mAbs, trypsin resistant, and trimeric (3, 15). Immunodepletion and biochemical studies indicated that these three conformational changes involve the same pool of E1 (23, 38), and led to the suggestion that mAb anti-E1' recognizes the E1 homotrimer (3, 38).

However, the G91D mutant reacted efficiently with both mAb anti-E1' and E1a-1, but did not form significant E1 homotrimer in several assay systems. Thus, the mAbs identify distinct conformational changes that occur efficiently in the mutants. Data from the mutants also strongly argue that the trypsin resistance of E1 is due to its trimerization, since the levels of trimer and trypsin-resistant E1 correlate in wt and the two mutants.

Similar to this mutant's membrane fusion activity, both G91A and G91D liposome association were less efficient than wild type, and showed a clearly acid-shifted pH threshold. However, we found that both G91A membrane association and E1 trypsin resistance were maximal at pH 5.4, while G91A membrane fusion was not maximal until approximately pH 5.0. Thus, G91A was similar to G91D in that liposome association was observed under conditions in which little fusion took place. In contrast to G91D, however, the G91A liposome interaction involved virus containing the E1 homotrimer. One model to explain the G91A fusion phenotype is that at the nonpermissive pH of 5.4, homotrimer formation and E1 target membrane interaction take place, but that subsequent fusogenic rearrangements of the E1 subunits in the target membrane do not occur, resulting in the observed lack of fusion. This model is similar to that proposed to explain results with wt virus and liposomes lacking sphingolipid (29). Homotrimer-containing virus binds efficiently to sphingolipid-deficient liposomes at low pH but does not fuse, presumably due to the lack of further sphingolipid-dependent spike protein rearrangements or activation.

In kinetic studies, wt E1 trimerization occurs before membrane association, and was suggested to be required for this subsequent step in the fusion pathway (3). A surprising finding of our experiments was that, in spite of its lack of homotrimer formation, the G91D fusion block mutant efficiently associated with target liposome membranes in a cholesterol and low pH-dependent reaction. It remains possible, however, that this G91D liposome association was mediated by small amounts of E1 homotrimer below the detection limit of our assays. We measured the extent of G91D liposome binding, homotrimer formation, and fusion following 10 min of low pH treatment at 37°C. All of these processes occur within seconds of similar treatment of wt virus, and thus our experiments were end-point assays. In future studies, it will be interesting to determine if the kinetics and pH dependence of G91D-liposome association are altered from those of the wt virus, perhaps reflecting a difference in the mechanisms of their association with membranes.

Although the alphavirus system is unique in the relative ease with which mutations can be expressed in virus particles, mutagenesis of a number of other virus spike proteins has been used to identify putative fusion peptides and examine their amino acid sequence requirements. In the rhabdovirus vesicular stomatitis virus (VSV), fusion is triggered by low pH and mediated by the single spike protein, G (for review see reference 24). A conserved, uncharged region from approximately amino acids 118-139 has been suggested to be the VSV fusion peptide (7-9, 45), and mutation of alanine 133 to lysine, glycine 124 to alanine, or proline 127 to glycine or leucine greatly decreased G's cell-cell fusion activity (8, 45). Interestingly, several amino acids are conserved between the VSV and SFV putative fusion peptides, including a residue adjacent to SFV G91 (8, 45). The mechanism of inhibition by the VSV G protein mutations is unknown, but the mutations do not affect pH-dependent G protein trimer stability, which is believed to be an assay of the conformational change involved in G protein fusion. Highly conserved glycines also seem to be involved in the fusion of the VSV G protein in the VSV-independent paramyxoviruses. The viral F protein contains a hydrophobic putative fusion peptide at the cleaved amino terminus of the F1 chain. Alanine substitution of glycines 3, 7, or 12 of the SV5 F1 protein inhibited fusion activity (14), while lysine substitution of glycines 3 or 7 of the Newcastle disease virus F1 protein greatly inhibited fusion activity (33). The mechanisms responsible for these effects on paramyxovirus fusion are hypothesized to involve the conformation or membrane insertion of the fusion peptide (14, 33).

The best understood virus fusion protein is the influenza hemagglutinin (HA), a trimeric molecule containing three copies of the disulfide-bonded HA1 and HA2 subunits (for a review see references 2, 4, 40, 44). The HA1 subunits form globular head domains containing the receptor-binding sites, while the HA2 subunits make up most of the stem region and contain the protein transmembrane domain and the amino terminal hydrophobic fusion peptide. Mutagenesis of the fusion peptide and transient expression studies demonstrated the key role of this protein domain in fusion (12, 13). Mutation of the NH2-terminal glycine to glutamic acid (HA G1E) blocks all fusion activity, mutation of glycine 4 to glutamic acid raises the threshold pH and decreases the fusion efficiency, and substitution of glutamic acid 11 with glycine inhibits polykaryon formation without affecting red blood cell fusion. In spite of these drastic effects on fusion, all three mutant HAs retain the ability to undergo pH-dependent conformational changes as detected by a protease assay, and can associate hydrophobically with liposomes. Interestingly, an HA in which the normal transmembrane and intracellular domains have been replaced with a lipid glycoprophatidylinositol anchor carries out only "hemifusion," the mixing of the outer bilayer leaflets in the absence of complete membrane fusion and content mixing (16, 28). This activity has been proposed to represent a normal membrane fusion intermediate.
The phenotype of the SFV G91D mutant is striking in its association with the target bilayer in the absence of membrane fusion. Notably, the fusion assays we employed monitor either the content mixing of virus with the liposome lumen, or polykaryon formation, and thus are “complete” fusion assays. The membrane association of G91D might enable the mutant to carry out partial fusion similar to the hemifusion described for lipid-anchored HA. Alternatively, G91D may resemble the HA G1E mutant, which is blocked in both complete fusion and hemifusion, but responds generally to low pH by a change in protein conformation, and binds liposomes although with slower kinetics (12, 13). Our current studies seek to examine the characteristics of G91D liposome association, the mechanism of wt and G91D fusion peptide insertion into the membrane, and the possibility that G91D carries out hemifusion. This characterization will continue to define the role of the E1 homotrimer and other spike protein rearrangements in virus membrane fusion.

We thank Peter Liejestrøm and Henrik Garoff for the SFV infectious clone pSP6-SFV4, Jan Wiltschuk for helpful advice on the liposome fusion wt and G91D fusion peptide insertion into the membrane, and the possible role of E1 homotrimer and other spike protein rearrangements in virus membrane fusion.