Rate of convergence to self-similarity for the fragmentation equation in L^1 spaces

María J. Cáceres∗ José A. Cañizo†
Stéphane Mischler‡

December 20, 2010

Abstract
In a recent result by the authors [1] it was proved that solutions of the self-similar fragmentation equation converge to equilibrium exponentially fast. This was done by showing a spectral gap in weighted L^2 spaces of the operator defining the time evolution. In the present work we prove that there is also a spectral gap in weighted L^1 spaces, thus extending exponential convergence to a larger set of initial conditions. The main tool is an extension result in [4].

1 Introduction
In a recent paper [1] we have studied the speed of convergence to equilibrium for solutions of equations involving the fragmentation operator and first-order differential terms. In this paper we will focus on the case of self-similar fragmentation given by

\begin{align}
\partial_t g_t(x) &= -x \partial_x g_t(x) - 2g_t(x) + \mathcal{L}g_t(x) \\
g_0(x) &= g_{in}(x) \quad (x > 0).
\end{align}

Here the unknown is a function $g_t(x)$ depending on time $t \geq 0$ and on size $x > 0$, which represents a density of units (usually particles, cells or polymers) of size x at time t, and g_{in} is an initial condition. The fragmentation operator \mathcal{L} acts on a function $g = g(x)$ as

$$\mathcal{L}g(x) := \mathcal{L}_+g(x) - B(x)g(x),$$

∗Departamento de Matemática Aplicada, Universidad de Granada, E18071 Granada, Spain. Email: caceres@ugr.es
†Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain. Email: canizo@mat.uab.es
‡IUF and CEREMADE, Univ. Paris-Dauphine, Place du Maréchal de Lattre de Tassigny, 75775 Paris CEDEX 16, France. Email: mischler@ceremade.dauphine.fr
where the positive part \mathcal{L}_+ is given by
\[
\mathcal{L}_+ g(x) := \int_x^\infty b(y, x) g(y) \, dy.
\] (1.3)

The coefficient $b(y, x)$, defined for $y > x > 0$, is the fragmentation coefficient, and $B(x)$ is the total fragmentation rate of particles of size $x > 0$. It is obtained from b through
\[
B(x) := \int_0^x \frac{y}{x} b(x, y) \, dy \quad (x > 0).
\] (1.4)

We refer to [1, 5, 7, 2, 6, 8] for a motivation of (1.1) in several applications and a general survey of the mathematical literature related to it.

We call T the operator on the right hand side of (1.1a), this is,
\[
Tg(x) := -x \partial_x g(x) - 2g(x) + \mathcal{L}g(x) \quad (x > 0),
\] (1.5)
acting on a (sufficiently regular) function g defined on $(0, +\infty)$.

Assumptions on the fragmentation coefficient In order to use the results in [1] we will make the following hypotheses on the fragmentation coefficient b:

Hypothesis 1.1. For all $x > 0$, $b(x, \cdot)$ is a nonnegative measure on the interval $[0, x]$. Also, for all $\psi \in C_0([0, +\infty))$, the function $x \mapsto \int_{[0,x]} b(x, y) \psi(y) \, dy$ is measurable.

Hypothesis 1.2. There exists $\kappa > 1$ such that
\[
\int_0^x b(x, y) \, dy = \kappa B(x) \quad (x > 0).
\] (1.6)
Hypothesis 1.3. There exists $0 < B_m < B_M$ satisfying

$$2B_m x^{\gamma-1} \leq b(x, y) \leq 2B_M x^{\gamma-1} \quad (0 < y < x)$$ \hspace{1cm} (1.7)

for some $0 < \gamma < 2$.

This implies the following useful bound, as remarked in [1, Corollary 6.4]:

Lemma 1.4. Consider a fragmentation coefficient b satisfying Hypotheses 1.1–1.3. There exists a strictly decreasing function $k \mapsto p_k$ for $k \geq 0$ with $\lim_{k \to +\infty} p_k = 0$, $p_k > 1$ for $k \in [0, 1)$, $p_1 = 1$, $0 < p_k < 1$ for $k > 1$, and such that

$$\int_0^x y^k b(x, y) \, dy \leq p_k x^k B(x) \quad (x > 0, \, k > 0).$$ \hspace{1cm} (1.9)

Main results The main result of the present work is a spectral gap of T on weighted L^1 spaces.

Theorem 1.5. Assume hypotheses 1.1–1.3. For any $1/2 < m < 1$ there exists $1 < M < 2$ such that the operator (1.5) has a spectral gap in the space $X := L^1(x^m + x^M)$. More precisely, there exists $\alpha > 0$ and a constant $C \geq 1$ such that, for all g in X with $\int x g = 1$

$$\|g_t - G\|_X \leq C e^{-\alpha t} \|g_{in} - G\|_X \quad (t \geq 0).$$

2 Preliminaries

In this section we gather some known results from previous works.

2.1 Previous results on the spectral gap of T

A result like Theorem 1.5 was proved in [1], but in the L^2 space with weight xG^{-1}. This is summarized in the following theorem:

Theorem 2.6 (1). Assume Hypotheses 1.1–1.3 and consider G the self-similar profile with $\int x G = 1$. The operator T given by (1.5) has a spectral gap in the space $H = L^2(xG^{-1})$.

More precisely, there exists $\beta > 0$ such that for any $g_{in} \in H$ with $\int x g = 1$ the solution $g \in C([0, \infty); L^1(x \, dx))$ to equation (1.1) satisfies

$$\|g_t - G\|_H \leq e^{-\beta t} \|g_{in} - G\|_H \quad (t \geq 0).$$
2.2 Bounds for the self-similar profile

We recall the following result from [1, Theorem 3.1]:

Theorem 2.7. Assume Hypotheses 1.1–1.3 on the fragmentation coefficient \(b \), and call \(\Lambda(x) := \int_0^x B(s) \, ds \). Let \(G \) be the self-similar profile with \(\int x \, G = 1 \).

For any \(\delta > 0 \) and any \(a \in (0, B_m/B_M) \), \(a' \in (1, +\infty) \) there exist constants \(C' = C'(a', \delta), \, C = C(a) > 0 \) such that

\[
C' \, e^{-a' \Lambda(x)} \leq G(x) \leq C \, e^{-a \Lambda(x)} \quad \text{for} \quad x > 0.
\] (2.10)

Remark 2.8. In the case \(b(x, y) = 2 \, x^{\gamma - 1} \) (so \(B(x) = x^{\gamma} \)), the profile \(G \) has the explicit expression \(G(x) = e^{-x^{\gamma}} \) for \(\gamma > 0 \). This motivates the choice of \(e^{-a \Lambda(x)} \) as functions for comparison. For a general \(b(x, y) \) no explicit form is available.

Proof. Everything but the lower bound of \(G \) for small \(x \) is proved in [1, Section 3]. For the lower bound, we calculate as follows:

\[
\partial_x \left(x^2 \, e^{\Lambda(x)} \, G(x) \right) = x \, e^{\Lambda(x)} \int_x^\infty b(y, x) \, G(y) \, dy \quad (x > 0),
\] (2.11)

which implies that \(x^2 \, e^{\Lambda(x)} \, G(x) \) is a nondecreasing function. Hence, it must have a limit as \(x \to 0 \), and this limit must be 0 since we know \(x \, G(x) \) is integrable.

Then, integrating (2.11), and for \(0 < z < 1 \),

\[
z^2 \, e^{\Lambda(z)} \, G(z) = \int_0^z x \, e^{\Lambda(x)} \int_x^\infty b(y, x) \, G(y) \, dy \, dx
\]

\[
= \int_0^\infty G(y) \int_0^{\min\{z, y\}} b(y, x) \, x \, e^{\Lambda(x)} \, dx \, dy
\]

\[
\geq 2B_m \int_0^\infty y^{\gamma - 1} \, G(y) \int_0^{\min\{z, y\}} x \, dx \, dy
\]

\[
= B_m \int_0^\infty y^{\gamma - 1} \, G(y) (\min\{z, y\})^2 \, dy
\]

\[
\geq B_m z^2 \int_z^\infty y^{\gamma - 1} \, G(y) \, dy
\]

\[
\geq B_m z^2 \int_1^\infty y^{\gamma - 1} \, G(y) \, dy = Cz^2 \quad (0 < z < 1).
\] (2.12)

Notice that the number \(\int_1^\infty y^{\gamma - 1} \, G(y) \, dy \) is strictly positive, as the profile \(G \) is strictly positive everywhere (see [2, 3, 1]). This proves the lower bound on \(G(x) \) for \(0 < x < 1 \), and completes the proof.

2.3 A general spectral gap extension result

Our proof is based on the following result from [4], which was already used in [1] for an extension to an \(L^2 \) space with a polynomial weight:
Theorem 2.9. Consider a Hilbert space H and a Banach space X (both over the field \mathbb{C} of complex numbers) such that $H \subset X$ and H is dense in X. Consider two unbounded closed operators with dense domain T on H, Λ on X such that $\Lambda|_H = T$. On H assume that

1. There is $G \in H$ such that $TG = 0$ with $\|G\|_H = 1$;
2. Defining $\psi(f) := \langle f, G \rangle_H$, the space $H_0 := \{f \in H; \psi(f) = 0\}$ is invariant under the action of T.
3. $T - a$ is dissipative on H_0 for some $a < 0$, in the sense that $\forall g \in D(T) \cap H_0 \quad ((T - a)g, g)_H \leq 0$,
4. T generates a semigroup e^{tT} on H;
5. there exists a continuous linear form $\Psi : X \rightarrow \mathbb{R}$ such that $\Psi|_H = \psi$; and Λ decomposes as $\Lambda = A + B$ with
6. A is a bounded operator from X to H;
7. B is a closed unbounded operator on X (with same domain as $D(\Lambda)$ the domain of Λ) and the semigroup e^{tB} it generates satisfies, for some constant $C \geq 1$, that

$$\forall t \geq 0, \forall g \in X \text{ with } \Psi(g) = 0, \quad \|e^{tB}g\|_X \leq C\|g\|_X e^{at}.$$

Then, for any $a' \in (a, 0)$ there exists $C_{a'} \geq 1$ such that

$$\forall t \geq 0, \forall g \in X, \quad \|e^{tA}g - \Psi(g)G\|_X \leq C_{a'}\|g - \Psi(g)G\|_X e^{a't}.$$

3 Proof of the main theorem

The proof consists is an application of Theorem 2.9. For this, we consider the Hilbert space $H := L^2(x^m + x^M)$, where G is the unique self-similar profile with $\int G = 1$, and define $\psi(g) := \int xg$. Due to our previous results [1] we know that T and ψ satisfy points 1–4 of Theorem 2.9.

As the larger space we take $X = L^1(x^m + x^M)$, with $1/2 < m < 1 < M$, to be precised later. Observe that, due to the bounds on G from Theorem 2.7,

$$\|g\|_X \leq \int_0^\infty (x^m + x^M)|g(x)| \, dx$$

$$\leq \left(\int_0^\infty g(x)^2 \frac{x}{G(x)} \, dx \right)^{1/2} \left(\int_0^\infty (x^{m-\frac{1}{2}} + x^{M-\frac{1}{2}})^2 G(x) \, dx \right)^{1/2} = C\|g\|_H,$$
and hence \(H \subseteq X \). Similarly,
\[
\int_0^\infty x |g(x)| \, dx \leq \int_0^\infty (x^m + x^M) |g(x)| \, dx,
\]
which allows us to define \(\Psi : X \to \mathbb{R}, \Psi(g) := \int x g \), and proves that \(\Psi \) is continuous on \(X \). Obviously \(\Psi|_H = \psi \), so point 5 of Theorem 2.9 is also satisfied.

Consider \(\Lambda \) the unbounded operator on \(X \) given by the same expression (1.5) (with domain a suitable dense subspace of \(X \) which makes \(\Lambda \) a closed operator). To prove the remaining points 6 and 7 we use the following splitting of \(\Lambda \), taking real numbers \(0 < \delta < R \) to be chosen later:
\[
A g(x) := \mathcal{L}^{+,s} g(x) := \int_x^\infty b_{R, \delta}(y, x) g(y) \, dy
\]
\[
\Lambda = A + B,
\]
\[
B g := \Lambda g - A g,
\]
where we denote \(b_{R, \delta}(x, y) := b(x, y) 1_{x \geq \delta} 1_{y \leq R} \). We define
\[
\mathcal{L}^{+,r} g := \mathcal{L}^+_g - \mathcal{L}^{+,s} g
\]
\[
= \int_x^\infty b(y, x) \left(1 - 1_{1_{y \geq \delta} 1_{y \leq R} \leq 0} \right) g(y) \, dy
\]
\[
= \int_x^\infty b(y, x) 1_{y \leq \delta} g(y) \, dy + \int_x^\infty b(y, x) 1_{y \geq \delta} 1_{y \leq R} g(y) \, dy
\]
\[
=: \mathcal{L}^{+,r}_1 g + \mathcal{L}^{+,r}_2 g
\]
so we may write \(B \) as
\[
Bg = -2g - x \partial_x g - Bg + \mathcal{L}^{+,r}_1 g + \mathcal{L}^{+,r}_2 g.
\]

First, let us prove that \(A \) is bounded from \(X \) to \(H \). We compute
\[
\|Ag\|_H^2 = \int_0^\infty x (\mathcal{L}^{+,s} g)^2 G(x)^{-1} \, dx
\]
\[
\leq (2BM)^2 \left(\sup_{[0,R]} x G(x)^{-1} \right) \int_0^R \left(\int_{\max(x, \delta)}^\infty y^{-1} g(y) \, dy \right)^2 \, dx
\]
\[
\leq C_R \left(\int_0^\infty y^{-1} g(y) \, dy \right)^2 \leq C_R \delta \|g\|_X^2,
\]
which shows \(A : X \to H \) is a bounded operator. Notice that we have used here the lower bound \(G(x) \geq Cx \) for \(x \) small, proved in Theorem 2.7.

Then, let us prove that one can choose \(0 < \delta < R \) appropriately so that \(B \) satisfies point 7 of Theorem 2.9 for some \(a < 0 \). It is enough to prove that, for \(g \) a real function in the domain of \(\Lambda \) (the same as the domain of \(B \)),
\[
\int_0^\infty \text{sign}(g(x)) Bg(x) (x^m + x^M) \, dx \leq a \|g\|_X,
\]
since then one can obtain \(\text{(2.13)} \) with \(C = 1 \) by considering the time derivative of the \(L^1 \) norm of \(e^{tB}g \). If we have this for any real \(g \), it is easy to show it also holds for a complex \(g \) and some constant \(C \geq 1 \). So, we take \(g \) real and in the domain of \(\Lambda \), and calculate as follows for any \(k > 0 \), using \(\text{(3.16)} \):

\[
\int_0^\infty \text{sign}(g(x)) Bg(x) x^k \, dx \leq (k-1) \int_0^\infty x^k |g| \, dx - \int_0^\infty B(x)x^k |g| \, dx + \int_0^\infty |L_1^{+} g| x^k \, dx + \int_0^\infty |L_2^{+} g| x^k \, dx, \tag{3.18}
\]

where the first term is obtained from the terms \(-2g - \partial_x g\) through an integration by parts. We give separately some bounds on the last two terms in \(\text{(3.18)} \). On one hand, we have

\[
\int_0^\infty |L_1^{+} g| x^k \, dx \leq \int_0^\infty x^k \int_0^\infty b(y, x) \mathbf{1}_{y \leq \delta} |g(y)| \, dy \, dx \\
\leq \int_0^\delta |g(y)| \left(\int_0^y x^k b(y, x) \, dx \right) \, dy \\
\leq 2BM \int_0^\delta |g(y)| B(y) y^k \, dy \\
\leq p_k B_m \delta^\gamma \int_0^\delta |g(y)| y^k \, dy, \tag{3.19}
\]

where we have used \(\text{(1.9)} \). On the other hand, and again due to \(\text{(1.9)} \),

\[
\int_0^\infty |L_2^{+} g| x^k \, dx \leq \int_0^\infty x^k \int_0^\infty b(y, x) \mathbf{1}_{x \geq R} \mathbf{1}_{y \geq \delta} |g(y)| \, dy \, dx \\
\leq \int_0^\infty x^k \int_{x=R}^\infty b(y, x) \mathbf{1}_{x \geq R} \mathbf{1}_{y \geq \delta} |g(y)| \, dy \, dx \\
\leq \int_R^\infty |g(y)| \left(\int_R^y x^k b(y, x) \, dx \right) \, dy \\
\leq p_k \int_R^\infty |g(y)| y^k B(y) \, dy. \tag{3.20}
\]
Hence, from (3.18) and the bounds (3.19)–(3.20) we obtain
\[
\int_0^\infty Bg(x) \text{sign}(g(x))(x^m + x^M) \, dx
\leq (m - 1) \int_0^\infty x^m |g| \, dx + (M - 1) \int_0^\infty x^M |g| \, dx
- \int_0^\infty B(x)(x^m + x^M) |g| \, dx
+ p_m B_m \delta \gamma \int_0^\delta x^m |g(x)| \, dx + p_m \int_R^\infty x^m B(x) |g(x)| \, dx
+ p_M B_m \delta \gamma \int_0^\delta x^M |g(x)| \, dx + p_M \int_R^\infty x^M B(x) |g(x)| \, dx. \quad (3.21)
\]
We have to choose \(1/2 < m < 1 < M < 2\) so that this is bounded by \(-C\|g\|_X\) for some positive constant \(C\). First, fix any \(m\) with \(1/2 < m < 1\), and take \(0 < \delta < 1\) small enough such that
\[
p_m B_m \delta \gamma < \frac{1 - m}{4}, \quad B_m \delta \gamma < \frac{1 - m}{4}.
\]
(Which can be done due to \(\gamma > 0\).) Then, as \(p_M < 1\) and \(x^M < x^m\) for \(x < \delta < 1\),
\[
\int_0^\infty Bg(x) \text{sign}(g(x))(x^m + x^M) \, dx
\leq -\frac{1 - m}{2} \int_0^\infty x^m |g| \, dx + (M - 1) \int_0^\infty x^M |g| \, dx
- \int_0^\infty B(x)(x^m + x^M) |g| \, dx
+ p_m \int_R^\infty x^m B(x) |g(x)| \, dx + p_M \int_R^\infty x^M B(x) |g(x)| \, dx. \quad (3.22)
\]
Now, take \(R_0 > 0\) such that \(B(x) > 2 > M\) for \(x \geq R_0\). Then, choose \(1 < M < 2\) such that \((M - 1)x^M < \frac{1 - m}{4} x^m\) for \(0 < x < R_0\). Then whatever \(R\) is we have from (3.21):
\[
\int_0^\infty Bg(x) \text{sign}(g(x))(x^m + x^M) \, dx
\leq -\frac{1 - m}{4} \int_0^{R_0} x^m |g| \, dx - \int_{R_0}^R x^M |g| \, dx
- \int_R^\infty (B(x) - M + 1)x^M |g| \, dx
+ p_m \int_R^\infty x^m B(x) |g(x)| \, dx + p_M \int_R^\infty x^M B(x) |g(x)| \, dx. \quad (3.23)
\]
Finally, choose $R > 1$ such that
\[-(B(x)(1 - p_M) - M + 1)x^M + pmx^m \leq -x^M \quad \text{for } x > R.\]

With this, and continuing from (3.23),
\[
\int_0^\infty Bg(x) \text{sign}(g(x))(x^m + x^M) \, dx \\
\leq \frac{1 - m}{4} \int_0^{R_0} x^m |g| \, dx - \int_0^\infty x^M |g| \, dx \\
\leq -C \|g\|_X, \quad (3.24)
\]

for some number $C = C(m, M, R_0) > 0$. This shows point that \mathcal{B} is dissipative with constant $-C$, and hence point 7 of Theorem 2.9 holds with $\alpha = -C$. A direct application of Theorem 2.9 then proves our result, Theorem 1.5, with $\alpha := \min\{\beta, C\}$ (where β is the one appearing in Theorem 2.6).

Acknowledgments. The first two authors acknowledge support from the project MTM2008-06349-C03-03 DGI-MCI (Spain) and the Spanish-French project FR2009-0019. The second author is also supported by the project 2009-SGR-345 from AGAUR-Generalitat de Catalunya. The third author acknowledges support from the project ANR-MADCOF.

References

[1] M. J. Cáreres, J. A. Cañizo, and S. Mischler. Rate of convergence to an asymptotic profile for the self-similar fragmentation and growth-fragmentation equations. Journal de Mathématiques Pures et Appliquées, to appear, 2011 (preprint arXiv:1010.546).

[2] M. Doumic-Jauffret and P. Gabriel. Eigenelements of a general aggregation-fragmentation model. Mathematical Models and Methods in the Applied Sciences, 20(5):757–783, 2010.

[3] M. Escobedo, S. Mischler, and M. Rodríguez Ricard. On self-similarity and stationary problem for fragmentation and coagulation models. Ann. Inst. H. Poincaré Anal. Non Linéaire, 22(1):99–125, 2005.

[4] M. P. Gualdani, S. Mischler, and C. Mouhot. Factorization for non-symmetric operators and exponential H-theorem. Preprint, Jun 2010.

[5] J. A. J. Metz and O. Diekmann. The Dynamics of Physiologically Structured Populations, volume 68 of Lecture notes in Biomathematics. Springer, 1st edition, August 1986.

[6] P. Michel. Existence of a solution to the cell division eigenproblem. Mathematical Models and Methods in Applied Sciences, 16(1 supp):1125–1153, July 2006.
[7] B. Perthame. *Transport equations in biology.* Frontiers in Mathematics. Birkhäuser Verlag, Basel, 2007.

[8] B. Perthame and L. Ryzhik. Exponential decay for the fragmentation or cell-division equation. *Journal of Differential Equations, 210*(1):155–177, March 2005.