Machine learning applications for the prediction of surgical site infection in neurological operations

Thara Tunthanathip, MD, Sakchai Sae-heng, MD, Thakul Oearsakul, MD, Ittichai Sakarunchai, MD, Anukoon Kaewborisutsakul, MD, and Chin Taweesomboonyat, MD

Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand

OBJECTIVE Surgical site infection (SSI) following a neurosurgical operation is a complication that impacts morbidity, mortality, and economics. Currently, machine learning (ML) algorithms are used for outcome prediction in various neurosurgical aspects. The implementation of ML algorithms to learn from medical data may help in obtaining prognostic information on diseases, especially SSIs. The purpose of this study was to compare the performance of various ML models for predicting surgical infection after neurosurgical operations.

METHODS A retrospective cohort study was conducted on patients who had undergone neurosurgical operations at tertiary care hospitals between 2010 and 2017. Supervised ML algorithms, which included decision tree, naïve Bayes with Laplace correction, k-nearest neighbors, and artificial neural networks, were trained and tested as binary classifiers (infection or no infection). To evaluate the ML models from the testing data set, their sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV), as well as their accuracy, receiver operating characteristic curve, and area under the receiver operating characteristic curve (AUC) were analyzed.

RESULTS Data were available for 1471 patients in the study period. The SSI rate was 4.6%, and the type of SSI was superficial, deep, and organ/space in 1.2%, 0.8%, and 2.6% of cases, respectively. Using the backward stepwise method, the authors determined that the significant predictors of SSI in the multivariable Cox regression analysis were postoperative CSF leakage/subgaleal collection (HR 4.24, p < 0.001) and postoperative fever (HR 1.67, p = 0.04). Compared with other ML algorithms, the naïve Bayes had the highest performance with sensitivity at 63%, specificity at 87%, PPV at 29%, NPV at 96%, and AUC at 76%.

CONCLUSIONS The naïve Bayes algorithm is highlighted as an accurate ML method for predicting SSI after neurosurgical operations because of its reasonable accuracy. Thus, it can be used to effectively predict SSI in individual neurosurgical patients. Therefore, close monitoring and allocation of treatment strategies can be informed by ML predictions in general practice.

https://thejns.org/doi/abs/10.3171/2019.5.FOCUS19241

KEYWORDS surgical site infection; survival analysis; machine learning; neural network

Surgical site infection (SSI) following neurosurgical operations is a burdensome complication in the field. Such complications can impact morbidity, mortality, and economics. O’Keeffe et al. conducted a cost analysis of craniotomy infections, identifying an estimated cost per case of infection at £9283. The financial burden caused by craniotomy infections is often compounded by the direct costs incurred by prolonged hospitalization of the patient, diagnostic tests, treatment, and reoperation.

Machine learning (ML) is used for outcome prediction in the neurosurgical field. Several ML algorithms have been developed using complex mathematical models that can learn from clinical data from, for example, neuro-oncology, neurovascular surgery, traumatic brain injury,
and epilepsy. Memarian et al. reported that the multimodality of ML, including linear discriminant analysis, naïve Bayes (NB), and support vector machines, has high accuracy in surgical outcome prediction in patients with mesial temporal lobe epilepsy. Moreover, Armananzas et al. demonstrated that ML algorithms such as NB, logistic regression, and k-nearest neighbors (k-NN) may be powerful methods of selecting surgical candidates who have a high likelihood of remaining free from seizures in temporal lobe epilepsy.

From literature reviews we find evidence that ML has been applied in predicting neurosurgical complications, particularly SSI. Habibi et al. compared artificial neural networks (ANNs) and traditional logistic regression models for predicting ventriculoperitoneal shunt infections in childhood hydrocephalus. The ANNs and logistic models predicted shunt infection with an accuracy of 83.1% and 55.7%, respectively. The implementation of ML algorithms to learn from medical data may help in obtaining prognostic information on diseases. It also has potential use in predicting which patients will be in the high-risk group as well as allocating treatment strategies in general practice. Given the burden of SSI, the purpose of this study was to compare the performance of various ML models in terms of predicting surgical infection after neurosurgical operations.

Methods

Study Design and Population

This study was performed with the approval of the Ethics Committee of the Faculty of Medicine, Songklanagarind Hospital, Prince of Songkla University. We conducted a retrospective review of patients who had undergone neurosurgical operations at Songklanagarind Hospital between 2010 and 2017 and who had at least 3 months of follow-up data after surgery. Patients without available operative data and spine surgery patients were not included in our analysis. Demographic data were collected, as were baseline clinical characteristics, operative details, American Society of Anesthesiologists (ASA) classifications, and postoperative outcomes.

The initial operation was counted as the first operation performed at Songklanagarind Hospital, whereas any subsequent operations were counted as a reoperation variable in the same patient. Operative time was defined as the time from skin incision to skin closure, which was documented in the anesthesia records by an anesthesiologist. Postoperative cerebrospinal fluid (CSF) leakage was defined as visible leaking from a surgical wound, nasal cavity (trans-sphenoidal operation), or subgaleal/subcutaneous collection as observed after craniotomy or spinal operations in the same admission. Postoperative ventriculostomy was
defined as the ventriculostomy catheter inserted after the primary procedure but during the same operative case. Postoperative fever was defined as such when a patient developed a body temperature of 38°C or higher during the same admission. Bacteremia, urinary tract infection, and pneumonia were defined as any organism identified by culture or by evidence of infection involving a specific organ detected on an imaging test in the same admission. Previous infection was defined as such when a patient had a history of an SSI from a procedure at another hospital before having an operation at our hospital.

According to the SSI criteria defined by the Centers for Disease Control and Prevention (CDC), the primary outcomes were reviewed and routinely determined at hospital discharge, every follow-up appointment, and at outpatient clinics until December 31, 2018, using outpatient medical records. Additionally, SSIs were classified as superficial incisional SSI, deep incisional SSI, and organ/space SSI.6,7 Superficial incisional SSI is defined as purulent drainage from a superficial incision or as organisms identified by a culture. Deep incisional SSI is defined as purulent drainage from the deep soft tissue of an incision (e.g., fascial and muscle layers), an organism identified by a culture, or evidence of infection involving the deep incision that is detected on gross anatomical or histopathological exam or an imaging test.6,7 Moreover, organ/space SSIs include brain abscess, subdural or epidural infection, encephalitis, meningitis, and ventriculitis.6,7 An organ/space SSI is defined as such when purulent drainage comes from a drain

TABLE 1. Baseline characteristics of 1471 patients who underwent neurosurgical operations between 2010 and 2017

Factor	No. (%)
Sex	
Male	839 (57.0)
Female	632 (43.0)
Age in yrs	
<60	1079 (73.4)
≥60	392 (26.6)
Disease	
Tumor	698 (47.5)
Trauma	300 (20.4)
Vascular	337 (22.9)
Congenital	49 (3.3)
Primary infection	44 (3.0)
Other	43 (2.9)
Location	
Supratentorial	1365 (92.8)
Infratentorial	106 (7.2)
Underlying disease	
Diabetes mellitus	154 (10.5)
Previous infection	95 (6.5)
Coagulation	46 (3.1)
Preop hair removal	668 (45.4)
Dexamethasone injection	293 (19.9)
Antibiotic drug prophylaxis	1397 (95.0)
Type of wound	
Clean	1320 (89.7)
Clean-contaminated	57 (3.9)
Contaminated	84 (5.7)
Dirty	10 (0.7)
ASA classification	
I	16 (1.1)
II	288 (19.6)
III	1015 (69.0)
IV	142 (8.7)
V	10 (0.7)
Type of op	
Emergency	751 (51.1)
Elective	720 (48.9)
Procedure	
Craniotomy	588 (40.0)
Craniectomy	270 (18.4)
Shunt	179 (12.2)
Burr hole	94 (6.4)
Ventriculostomy	92 (6.3)
ICP monitoring	8 (0.5)
Transsphenoidal op	85 (5.8)
Cranioplasty	15 (1.0)
Debridement for trauma	6 (0.4)
Debridement for SSI	2 (0.1)

CONTINUED IN NEXT COLUMN »

» CONTINUED FROM PREVIOUS COLUMN

Procedure (continued)	No. (%)
Other	125 (8.5)
Intraop ventricular exposure	155 (10.5)
Finding insect in op room	31 (2.1)
Postop ventriculostomy	92 (6.3)
Postop CSF leakage/subgaleal collection	68 (4.6)
Postop fever	51 (3.5)
Bacteremia	51 (3.5)
Urinary tract infection	93 (6.3)
Pneumonia	102 (6.9)
Reop in same admission (excluding reop due to SSI)	85 (5.8)
Postop drain	561 (38.1)
SSI	67 (4.6)
Type of infection	
Superficial	17 (1.2)
Deep	12 (0.8)
Organ/space	38 (2.6)
Meningitis or ventriculitis	30 (2.0)
Brain abscess	6 (0.4)
Subdural empyema	2 (0.1)

ICP = intracranial pressure.
that is placed into the organ/space (e.g., ventriculostomy); the main part of an abscess/other infection deeper than the fascial/muscle layers is present; organisms are identified from an aseptically obtained fluid or tissue in the organ/space by a culture; or there is evidence of infection involving the organ/space that is detected on gross anatomical or histopathological exam or on imaging. 6,7

Descriptive Statistics and Survival Analysis
Clinical characteristics and therapeutic factors were first described using descriptive statistics. A survival curve was constructed from the total data using the Kaplan-Meier method. A Cox proportional-hazards regression model was used to identify the univariate and multivariate predictors of survival. In the multivariate analysis, a stepwise method with the Akaike information criterion (AIC) was used to check whether the variable deserved to be included in the model and stratification factors. A p value less than 0.05 was considered statistically significant. Statistical analysis was performed using R version 3.5.0 software (R Foundation for Statistical Computing) with the ‘survival’ package.

Machine Learning
Using random sampling without replacement, all data were divided into five subsets, as shown in Fig. 1. Therefore, 80% of each subset was used for training the ML model, while the remaining 20% was used for testing the ML model. Data preprocessing included the dichotomization of independent variables to between 0 and 1.

Supervised ML algorithms included decision tree (DT), NB with Laplace correction, k-NN with k = 5, and ANNs. The network was trained 200 times using different random weights and tested as binary outcomes (SSI or no SSI). To validate the models from the testing data set, the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of the models were determined for the predictive efficacy of each ML algorithm. Furthermore, the receiver operating characteristic (ROC) curve and the area under the ROC curve (AUC) were plotted. Additionally, AUCs revealed that values ≥ 0.9 were “excellent,” ≥ 0.80 were “good,” ≥ 0.70 were “fair,” and < 0.70 were “poor.” All mathematical analyses were done using RapidMiner Studio version 9.0 with an academic license. Moreover, the ROC curves and AUCs were created using the ‘plotROC’ package (R Foundation for Statistical Computing).

Results
The clinical characteristics of the 1471 eligible patients who underwent neurosurgical operations in the study...
TABLE 2. Cox proportional-hazards regression analysis for SSI

Factor	Univariate Analysis HR (95% CI)	p Value	Multivariable Analysis† HR (95% CI)	p Value
Sex				
Male	Reference			
Female	0.61 (0.35–1.03)	0.06		
Age in yrs				
<60	Reference			
≥60	1.94 (0.96–3.93)	0.06		
Preop KPS score				
<80	Reference			
≥80	1.01 (0.98–1.01)	0.91		
Preop GCS score				
13–15	Reference			
9–12	0.74 (0.34–1.60)	0.45		
3–8	1.14 (0.58–2.24)	0.68		
Diabetes mellitus				
Preop coagulopathy*	1.34 (0.48–3.72)	0.56		
Preop dexamethasone*	1.38 (0.79–2.40)	0.24		
History of previous SSI*	0.57 (0.31–1.03)	0.06		
ASA classification				
I–II	Reference			
≥III	1.09 (0.63–1.88)	0.74		
Tumor op				
Vascular op*	0.85 (0.40–1.79)	0.67		
Shunt op*	0.68 (0.36–1.29)	0.24		
Trauma op*	1.14 (0.57–2.27)	0.69		
Primary infectious op*	1.21 (0.61–2.41)	0.57		
Type of surgical wound				
Clean	Reference			
Contaminated	1.36 (0.69–2.68)	0.36		
Clean-contaminated	0.70 (0.32–1.52)	0.37		
Dirty	2.40 (0.93–6.18)	0.07		
Region of op				
Supratentorial	Reference			
Infratentorial	0.62 (0.23–2.38)	0.62		
Preop hair removal*	1.84 (1.10–3.08)	0.01	1.66 (0.99–2.78)	0.054
Antibiotic prophylaxis*	1.12 (0.34–3.57)	0.85		
Insect in op room*	0.71 (0.36–1.42)	0.34		
Emergency op*	1.33 (0.79–2.26)	0.27		
Op time in mins				
<240	Reference			
≥240	0.98 (0.54–1.76)	0.94		
Postop ventriculostomy*‡	0.57 (0.25–1.27)	0.17		
Postop CSF/subgaleal collection*§	4.60 (2.08–10.17)	<0.001	4.24 (1.89–9.49)	<0.001
Postop subgaleal drain*‡	0.99 (0.56–1.76)	0.99		
Postop fever§				
No	Reference			
Fever	1.79 (1.09–2.94)	0.02	1.67 (1.01–2.76)	0.04
Bacteremia*§	1.51 (0.89–2.56)	0.12		
Urinary tract infection*§	0.79 (0.24–2.53)	0.70		
Pneumonia*§	0.95 (0.37–2.38)	0.95		

CONTINUED ON PAGE 6 »
period are listed in Table 1. More than half of the study population were males. The mean age was 45.07 years (SD 21.1), and 10.5% of the patients presented with diabetes mellitus. Almost all patients (95%) received the antibiotic prophylaxis, while 19.9% received preoperative dexamethasone. Additionally, hair shaving occurred in 45.4% of cases. Common diseases in the cohort included tumors, trauma, and vascular conditions, while the most frequently performed procedures were cranial operations.

The SSI rate was 4.6%, while the types of SSIs were superficial, deep, or organ/space in 1.2%, 0.8%, and 2.6% of cases, respectively. Among the organ/space SSIs, postoperative brain abscess was found in 0.4% cases, while meningitis or ventriculitis was found in 2.0% of all cases.

Survival Analysis

Time-to-event statistical analysis was possible using the Kaplan-Meier curve shown in Fig. 2A. Mean follow-up time was 313.3 weeks (SD 137.4). Also, the overall median infection-free time was not yet reached in the cohort, while the 1-, 3-, and 12-month infection-free probabilities were 97.4%, 96.4%, and 95.5%, respectively.

According to the Cox proportional-hazards regression analysis (Table 2), the significant parameters for an increased risk of SSI included preoperative hair removal (HR 1.84, p = 0.01), postoperative fever (HR 1.79, p = 0.02), and postoperative CSF leakage/subgaleal collection (HR 4.60, p < 0.001) on univariate analysis. Using the backward stepwise method, we determined that the significant predictors of SSI in the multivariable analysis were postoperative fever (HR 1.67, p = 0.04) and postoperative CSF leakage/subgaleal collection (HR 4.24, p < 0.001).

For subgroup analysis of the Kaplan-Meier curve in Fig. 2B–D, infection-free probability was significantly lower in patients with hair removal than in those with no hair removal (p = 0.008, log-rank test). Infection-free probability was also significantly lower in patients with postoperative fever in the same admission than in those without (p = 0.009, log-rank test). Moreover, the patients with postoperative CSF leakage/subgaleal collection had a significantly lower infection-free probability than the patients without (p < 0.001, log-rank test).

Machine Learning Algorithms

After training the four algorithms, we used the test data set with each ML algorithm to obtain the performance data shown in Table 3. The NB algorithm had the highest performance with the largest AUC at 76%, sensitivity at 63%, specificity at 87%, PPV at 29%, NPV at 96%, and accuracy at 86%, whereas the other algorithms exhibited lower performance for predicting SSI with the cohort data. The ROC curve and AUC for all data sets are summarized graphically in Fig. 3. Overall, the data suggest that NB is
Discussion

The rate of diagnosed SSIs has a reported range of 1.1%–6.2%. In the present study, SSI was observed at 4.6%, which is similar to rates in previous studies. Moreover, we observed postoperative fever and postoperative CSF leakage/subgaleal collection in the same admission as being associated with an increased rate of SSI. Similarly, Chiang et al. reported that CSF leakage was a significant variable associated with SSI (OR 3.5, 95% CI 1.4–8.5). Other independent risk factors for SSI have included meningioma, longer operation time, craniotomy, dural substitute, staples in wound closure, operation performed by a specialist or senior medical officer, surgery conducted for infectious causes, ASA physical status II, and clean-contaminated wound, depending on the cohorts, although these factors were not associated with SSI in the present study.

Cranial surgery without hair removal is a modifiable risk factor that has been discussed in prior studies. Ratnapal et al. recommended not shaving hair for intracranial procedures in nonemergency neurosurgical procedures because shaving significantly increased the risk of SSI compared with not shaving. Further, Adeleye et al. mentioned that cranial surgery without hair removal is safe and does not increase the risk of surgical wound infection. In our cohort, 45.4% of cases were shaved at the discretion of the attending neurosurgeon. The patients with preoperative hair removal had a significantly increased risk of SSI on univariate analysis; however, the results were limited to interpretation of the nonrandomized data.

ML algorithms such as DT, NB, k-NN, and ANN can provide strong predictive clinical outcomes in neurosurgical practice. The DT is a ML model composed of decision rules based on optimal feature cutoff values that recursively divide independent variables into different groups in order to predict an outcome. Hostettler et al. used DT for predicting outcomes in patients with aneurysm subarachnoid hemorrhage (SAH). The prediction accuracy of the DT models for survival on day 1 was 75.2% for Hostetler et al., whereas Rau et al. reported that DT achieved an accuracy of 97.9% for the prediction of death in patients with traumatic SAH.

NB, k-NN, and ANN are the algorithms used in ML for predicting classification. Hale et al. studied the prediction of types of meningioma using several ML algorithms, reporting that ANN had the highest performance for predicting meningioma grade (AUC = 0.8895) compared with other algorithms. ANNs have been adopted widely in clinical medicine; however, their use in such settings is subject to translation. Rughani et al. demonstrated that ANNs had significantly higher performance in predicting survival following traumatic brain injury compared with regression models. Recently, Hale et al. used ANN to predict 6-month outcomes for pediatric head injury. The results showed profound accuracy (AUC = 0.9462 ± 0.0422). Moreover, Shi et al. used an ANN for the prediction of in-hospital mortality after traumatic

FIG. 3. The ROC curve and AUC of the five data sets, with the NB algorithm having the largest AUC. First data subset (A), second data subset (B), third data subset (C), fourth data subset (D), and fifth data subset (E).
brain injury surgery. The ANN model achieved high accuracy in 95.15% of cases and a better AUC in 89.14% of cases. Conversely, in the present study we found that NB was an effective ML algorithm for predicting SSI, which achieved a good AUC at 78% and good accuracy at 88.5%. The results were likely affected by imbalances between the prevalence of SSI and the lack of SSI. Moreover, this study is the first to harness the utility of ML to predict SSI, meaning that continued study is needed in the future.

Finally, certain limitations in the present study should be acknowledged. Firstly, its retrospective design may have led to bias and an inability to control for confounding factors. Secondly, the imbalance of outcomes was probably the reason why performance failed to reach an excellent level. However, a future aim is to conduct a prospective study to evaluate ML performance for the increase in SSI prevalence in order to correct the imbalance problem.

Conclusions

In summary, in this study we found that NB algorithms have potential as a tool for predicting SSI after a neurosurgical operation with reasonable accuracy, meaning that they could be applied in effectively predicting serious complications. Therefore, close monitoring and allocation of treatment strategies can be informed by ML predictions in general practice.

Acknowledgments

We would like to offer special thanks to Professor Sanguansin Ratanalert for providing beneficial advice concerning manuscript preparation.

References

1. Abu Hamdeh S, Lytsy B, Ronne-Engström L, Defelipe-Oroquieta J, Kastanauskaitė A, de Sola RG, Defelipe J, et al: Machine learning approach for the outcome prediction of temporal lobe epilepsy surgery. *PLoS One* 8:e62819, 2013
2. Adelye AO: Nonshaved cranial surgery in black Africans: technical report and a medium-term prospective outcome study. *Neurosurv Rev* 39:449–454, 2016
3. Armañanzas R, Alonso-Nanclares L, Defelipe-Oroquieta J, Kastanauskaitė A, de Sola RG, Defelipe J, et al: Machine learning approach for the outcome prediction of temporal lobe epilepsy surgery. *PLoS One* 8:e62819, 2013
4. Badia JM, Casey AL, Petrosillo N, Hudson PM, Mitchell SA, Crosby C: Impact of surgical site infection on healthcare costs and patient outcomes: a systematic review in six European countries. *J Hosp Infect* 96:1–15, 2017
5. Buang SS, Haspian MS: Risk factors for neurosurgical site infections after a neurosurgical procedure: a prospective observational study at Hospital Kuala Lumpur. *Med J Malaysia* 67:393–398, 2012
6. Centers for Disease Control and Prevention: CDC/NHIS Surveillance Definitions for Specific Types of Infections. Atlanta: Centers for Disease Control and Prevention, 2019. (http://www.cdc.gov/nhsn/pdfs/pscmanual/17pscNosInDef_current.pdf) [Accessed June 10, 2019]
7. Centers for Disease Control and Prevention: Surgical Site Infection (SSI) Event. Atlanta: Centers for Disease Control and Prevention, 2019 (https://www.cdc.gov/nhsn/pdfs/pscmanual/9pscssiCurrent.pdf) [Accessed June 10, 2019]
8. Chiang HY, Kamath AS, Pottinger JM, Greenlee JD, Howard MA III, Cavanaugh JE, et al: Risk factors and outcomes associated with surgical site infections after craniotomy or craniectomy. *J Neurosurg* 120:509–521, 2014
9. Durkin MJ, Dicks KV, Baker AW, Moehring RW, Chen LF, Sexton DJ, et al: Postoperative infection in spine surgery: does the month matter? *J Neurosurg Spine* 23:128–134, 2015
10. Erman T, Demirhindi H, Göücer AI, Tuna M, Ildan F, Boyar B: Risk factors for surgical site infections in neurosurgery patients with antibiotic prophylaxis. *Surg Neurol* 63:107–113, 2005
11. Ferroni P, Zanzotto FM, Rondino S, Scarpati N, Guadagni F, Roselli M: Breast cancer prognosis using a machine learning approach. *Cancers (Base)* 11:E328, 2019
12. Habibi Z, Ertiaei A, Nikdad MS, Mirmohseni AS, Afarideh M, Heidari V, et al: Predicting ventriculoperitoneal shunt infection in children with hydrocephalus using artificial neural network. *Childs Nerv Syst* 32:2143–2151, 2016
13. Hale AT, Stonko DP, Brown A, Lim J, Voce DJ, Gannon SR, et al: Machine-learning outperforms conventional statistical models and CT classification systems in predicting 6-month outcomes in pediatric patients sustaining traumatic brain injury. *Neurosurv Focus* 45(5):E2, 2018
14. Hale AT, Stonko DP, Wang L, Strother MK, Chambless LB: Machine learning analyses can differentiate meningioma grade by features on magnetic resonance imaging. *Neurosurv Focus* 45(5):E4, 2018
15. Hostettler IC, Muroi C, Richter JK, Schmid J, Neidert MC, Seule M, et al: Decision tree analysis in subarachnoid hemorrhage: prediction of outcome parameters during the course of aneurysmal subarachnoid hemorrhage using decision tree analysis. *J Neurosurv* 129:1499–1510, 2018
16. López Pereira P, Díaz-Agero Pérez C, López Fresañá N, Las Heras Mosteiro J, Palancar Cabrera A, Rincón Carvallía AL, et al: ‘Epidemiology of surgical site infection in a neurosurgery department’. *Br J Neurosurv* 31:10–15, 2017
17. Memarian N, Kim S, Dewar S, Engel J Jr, Staba RJ: Multimodal data and machine learning for surgery outcome prediction in complicated cases of mesial temporal lobe epilepsy. *Comput Biol Med* 64:67–78, 2015
18. O’Keeffe AB, Lawrence T, Bojanic S: Oxford craniotomy infections database: a cost analysis of craniotomy infection. *Br J Neurosurv* 26:265–269, 2012
19. Raj R, Siironen J, Skrifvars MB, Hernesniemi J, Kivisaari R: Predicting outcome in traumatic brain injury: development of a novel computerized tomography classification system (Helsinki computerized tomography score). *Neurosurv* 75:632–647, 2014
20. Ratanalert S, Suaehng S, Sripairojkul B, Liewchanpattana K, Phucpathom N: Nonshaved cranial neurosurgery. *Surg Neurol* 51:438–463, 1999
21. Rau CS, Wu SC, Chien PC, Kuo PJ, Chen YC, Hsieh HY, et al: Prediction of mortality in patients with isolated traumatic subarachnoid hemorrhage using a decision tree classifier: a retrospective analysis based on a trauma registry system. *Int J Environ Res Public Health* 14:E1420, 2017
22. Rughani AI, Dumont TM, Lu Z, Bongard J, Horgan MA, Penar PL, et al: Use of an artificial neural network to predict head injury outcome. *J Neurosurg* 113:585–590, 2010
23. Senders JT, Staples PC, Karhade AV, Zaki MM, Gormley WB, Broekman MLD, et al: Machine learning and neurosurgical outcome prediction: a systematic review. *World Neurosurg* 109:476–486, 2018
24. Senders JT, Zaki MM, Karhade AV, Chiang B, Gormley WB, Broekman ML, et al: An introduction and overview of machine learning in neurosurgical care. *Acta Neurochir (Wien)* 160:29–38, 2018
25. Sherrod BA, Rocque BG: Morbidity associated with 30-day surgical site infection following nonshunt pediatric neurosurgery. *J Neurosurv Pediatr* 19:421–427, 2017
26. Shi HY, Hwang SL, Lee KT, Lin CL: In-hospital mortality after traumatic brain injury surgery: a nationwide population-based comparison of mortality predictors used in artificial neural network and logistic regression models. *J Neurosurg* 118:746–752, 2013

27. Swets JA: ROC analysis applied to the evaluation of medical imaging techniques. *Invest Radiol* 14:109–121, 1979

Disclosures
The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.

Author Contributions
Conception and design: Tunthanathip. Acquisition of data: Tunthanathip, Taweesomboonyat. Analysis and interpretation of data: Tunthanathip. Drafting the article: Tunthanathip, Sakarunchai, Kaewborisutsakul. Critically revising the article: Tunthanathip, Oearsakul. Reviewed submitted version of manuscript: Tunthanathip, Sae-heng, Oearsakul, Sakarunchai, Taweesomboonyat. Approved the final version of the manuscript on behalf of all authors: Tunthanathip. Statistical analysis: Tunthanathip. Administrative/technical/material support: Tunthanathip, Sakarunchai, Kaewborisutsakul. Study supervision: Sae-heng, Oearsakul.

Correspondence
Thara Tunthanathip: Prince of Songkla University, Hat Yai, Songkhla, Thailand. tsus4@hotmail.com.