Clinical Therapy in Patients with Aborted Sudden Cardiac Death
due to Coronary Spasm

Shozo Sueda, Tetsuji Shinohara, Naohiko Takahashi, Junya Shite, Toshihiro Shoji, Masaharu Akao, Yoshiyuki Kijima, Tohru Masuyama, Tsuyoshi Miyaji, Katsuhito Yamamoto, Yoshihiro Iwasaki, Ritsu Yoshida, Shigeru Nakamura, Yutaka Ogino, Kazuo Kimura, Masahiro Sasai, Hiroshi Suzuki, Tetsuzo Wakatsuki, Hiroshi Asajima, Hiroki Teragawa, Tetsunori Ishikawa, Kazuo Kitamura, Tsuyoshi Oda, Takashi Nakayama, Daiki Sunada, Masaru Yamaki, Fumie Nishizaki, Hirofumi Tomita, Kazuo Usuda, Hiroyuki Fujinaga, Shoichi Kuramitsu, Kenji Ando, Takahiko Kiyooka, Kazushige Kadota, Yoshinao Ishii, Hayato Ohtani, Yuichiro Maekawa, Eiji Taguchi, Koichi Nakao, Nobuaki Kobayashi, Yoshihiko Seino, Hitoshi Nakagawa, Yoshihiko Saito, Issei Komuro, Yasuhiro Sasaki, Shuntaro Ikeda, Osamu Yamaguchi, Akiyoshi Kakutani, Takahiro Imanaka, Masaharu Ishihara, Masanobu Ishii, Koichi Kaikita, and Kenichi Tsujita

Background: Coronary artery spasm may lead to the aborted sudden cardiac death (A-SCD). Objectives: We investigated the number of coronary vasodilators, including calcium channel blocker (CCB), implantable cardioverter-defibrillator (ICD) implantation and prognosis in patients with A-SCD due to coronary spasm in the real world. Methods: We recruited 98 patients (82 men, mean age of 59.6±13.3 years old) with A-SCD due to coronary spasm using a questionnaire. Results: Ventricular fibrillation (VF) as a cause of A-SCD was observed in 83 patients (84.7%), while pulseless electrical activity (PEA) was recognized in 12 patients (12.2%). ICD was implanted in 58 patients and appropriate ICD therapies were recognized in 8 patients (13.8%). There were no differences regarding medications between patients with and without ICD or between patients who survived and those who died. Mean follow-up duration was 27±19.9 months and three patients died. Mortality during the follow-up period was not different patients with ICD from those without ICD. The mean number of coronary vasodilators including CCB in patients with spasm provocation tests under medications were significantly higher than in those without. VF as an initial cause of A-SCD was recognized in all 3 patients who died, while PEA was a final cause of death in 2 of 3 patients. Conclusions: Clinical outcomes in patients with A-SCD due to coronary spasm is satisfactory under medical and mechanical therapy. Decision of requiring the ICD implantation in patients with A-SCD due to coronary spasm is a challenging clinical problem. KEY WORDS: aborted sudden cardiac death, calcium channel blocker, coronary vasodilator, implantable cardioverter-defibrillator, spasm provocation test under the medication

Received: September 17, 2020; Accepted: November 17, 2020
doi: 10.7793/jcad.26.20-00025
I. Introduction

Medical and mechanical therapy in patients with aborted sudden cardiac death (A-SCD) due to coronary spasm is controversial in the clinic. Medication, including calcium channel blocker (CCB) and other vasodilators, is the first line therapy, while an implantable cardioverter-defibrillator (ICD) is defined as class IIa when patients have resistant coronary spasm according to the 2018 Japanese Circulation Society (JCS)/Japanese Heart Rhythm Society guideline on non-pharmacotherapy of cardiac arrhythmias. JCS guideline for the diagnosis and treatment of patients with vasospastic angina (VSA) mentioned that ICD implantation is one option for patients with A-SCD due to coronary spasm. We previously reported that appropriate ICD therapies rescued 30 out of 33 patients with A-SCD due to coronary spasm, whereas 3 patients died: 2 due to PEA and 1 due to refractory coronary spasm. ICD was effective in patients with A-SCD due to coronary spasm to suppress the next serious fatal events. In contrast, aggressive medications, including over two CCBs or more than 3 coronary vasodilators, were administered in just one-third of patients with A-SCD due to coronary spasm according to the previous report. ICD may not be always necessary for all patients with A-SCD due to coronary spasm. However, cardiologists have no answer for which A-SCD patients must receive ICD to suppress the next fatal events. Furthermore, cardiologists have no answer about the optimal medication to suppress the next fatal serious events.

In this article, we investigated the use of medications and ICD in patients with A-SCD due to coronary spasm. We also compared the prognosis and medication in patients with and without ICD. Furthermore, we investigated the usefulness of spasm provocation tests under the medications in A-SCD patients with coronary spasm.

II. Methods

We sent a questionnaire about patients with A-SCD due to coronary spasm at Mar 2019. This questionnaire was distributed among Japanese general institutions over 400–500 beds at random in 204 cardiology institutions including 101 hospitals in West Japan and 103 institutions in East Japan. The answer deadline for the questionnaire was Jun 2019. We investigated the number of SCDs due to coronary spasm, implantation of ICDs, and all spasm provocation tests, including the pharmacological spasm provocation tests under the medications, from Jan 2014 to Dec 2018 (Supplementary files 1–5).

The study protocol complied with the Declaration of Helsinki. Written informed consent was obtained before performing the pharmacological spasm provocation tests, and the protocol of this study was in agreement with the guidelines of the ethical committee at our institution and institutional review boards of their institutions.

1. The definition of VSA and positive spasm and ischemic ECG changes

According to the JCS guidelines, definite VSA was defined when myocardial ischemia or coronary spasm was obtained in examinations. Spontaneous coronary spasm or provoked positive spasm by pharmacological spasm provocation tests was defined as ≥90% transient narrowing with ischemic findings. The degree of ST-segment depression was measured 80 msec after the J point. We considered a result to be positive when at least 1 of the following ischemic ECG changes was demonstrated during spontaneous spasm or pharmacological spasm provocation test: (1) ST-segment elevation of ≥0.1 mV in at least 2 contiguous leads; (2) ST-segment depression of 0.1 mV in at least two contiguous leads.

2. Statistical analysis

Data analysis was carried out with SPSS (version 22.0, IBM Japan, Ltd., Tokyo, Japan). All data were presented as the mean±SD. Clinical characteristics were analyzed by the Fisher’s exact test with correction or the Mann-Whitney U test. Univariate analyses were performed by Cox regression proportional hazards adjusted by age, gender, number of coronary vasodilators or calcium channel blockers, multivessel spasm, spontaneous spasm, ICD implantation and positive spasm provocation test under medications. Event-free survival curves from death were constructed using the Kaplan-Meier survival method. In all analyses, p<0.05 was regarded as statistically significant.

III. Results

1. Collection rate

The percentage of reply for questionnaires was 16.7% (34/204). The response rate of questionnaire in East Japan was 13.6% (14/103), while the questionnaire collection rate in West Japan was 19.8% (20/101). Seven institutions (3.4%) answered that they could not obtain the questionnaire result due to busy daily works or strict ethics committees in their hospitals. The remaining 163 institutions (79.9%) had no answers.

2. Clinical characteristics in patients with A-SCD due to coronary spasm

We recruited 169 patients with A-SCD due to possible coronary spasm as shown in Fig. 1. However, a couple of institutions did not provide the precise data for 39 patients. Furthermore, 32 patients including 27 patients with suspected of VSA and 5 patients enrolled before Jan 2014 were excluded from our study subjects. Finally, as shown in Table 1, we recruited 98 patients...
(mean age: 59.6±13.3 years old, male: 83.7%) with A-SCD due to coronary spasm. Mean number of A-SCD per institution was 3.8±3.8 patients. Organic stenosis was found in 7 patients (7.1%). Ventricular fibrillation (VF) was observed in 83 patients (84.7%), while pulseless electrical activity (PEA) was recognized in 12 patients (12.2%). One patient had unknown cause of A-SCD, while ventricular tachycardia was found in one patient. Complete atrioventricular block was recognized in one patient. Approximately three quarters patients (73 patients (74.5%)) had provoked spasm by pharmacological spasm provocation tests, while spontaneous coronary spasm was documented in 12 patients (12.2%) and 10 patients (10.2%) showed spontaneous ST elevation. A-SCD was documented in 3 (3.1%) definite VSA patients under medication. ICD was implanted in 58 patients (59.2%), including 5 patients complicated with Brugada syndrome and 2 patients with early repolarization syndrome. The mean follow-up period was 27.1±19.9 months. During the follow-up periods, appropriate ICD therapies were recognized in 8 (13.8%) patients, including 5 VFIs and 3 ventricular tachycardias.

Table 1 Patients’ clinical characteristics of aborted sudden cardiac death due to coronary spasm

Number	98
Age (year)	59.6±13.3
Male	82 (83.7%)
Organic stenosis (>75%)	7 (7.1%)
Follow-up duration (month)	27.1±19.9
Cause of aborted SCD	
Ventricular fibrillation	83 (84.7%)
Ventricular tachycardia	1 (1.0%)
Pulseless electrical activity	12 (12.2%)
Complete atrioventricular block	1 (1.0%)
Unknown	1 (1.0%)
Diagnosis of spasm	
Provoked spasm by the pharmacological spasm provocation test	73 (74.5%)
Spontaneous spasm documented	12 (12.2%)
Spontaneous ST elevation documented	10 (10.2%)
VSA definite	3 (3.1%)
With ICD implantation	58 (59.2%)
Without ICD implantation	40 (40.8%)
With Brugada syndrome or early repolarization syndrome	7 (7.1%)
Appropriate ICD shocks	8 (13.8%)
Mean number of coronary vasodilators	2.2±1.0
Mean number of calcium channel blockers	1.3±0.5
Death	3 (3.0%)
With ICD implantation	2 (2.0%)
Without ICD implantation	1 (1.0%)

(SCD: sudden cardiac death, VSA: vasospastic angina, ICD: implantable cardioverter-defibrillator)
The mean numbers of coronary vasodilators and CCBs at the baseline were 2.2±1.0 and 1.3±0.5, respectively. During the follow-up periods, death was observed in two patients with ICD, while one patient without ICD died.

3. Comparisons between patients with and without ICD

As shown in Table 2, patients with ICD were younger than those without ICD. The frequency of VF in patients with ICD implantation was higher than in those without ICD but not significant, while the incidence of PEA in patients without ICD was significantly higher than in those with ICD (25.0% vs. 3.4%, p=0.0019). There were no differences regarding medications, including mean number of coronary vasodilators and CCBs, between the two groups. Mortality rate during the follow-up periods in patients with ICD was not different from that in those without ICD (3.4% vs. 2.5%, p=0.7591). Death-free survival in all patients with A-SCD who had ICD was not different from those without ICD, as shown in Fig. 2a. As shown in Fig. 2b, death-free survival in patients with A-SCD due to pure coronary spasm who had ICD implantation was similar to that in patients without ICD.

4. Comparisons of clinical data between patients who survived or who died

Death was observed in 3 patients, while the 95 patients remained alive during the follow-up periods. Patients who died were older than those who survived (68.7±6.8 vs. 59.3±13.4 year old, p=0.0276). VF as a cause of A-SCD in patients who survived was not different from that in those who died (84.2% vs. 100%, p=0.9807). Furthermore, there were no differences regarding medications, including mean number of coronary vasodilators and CCBs, between the two groups.

5. Comparisons of clinical data between patients with and without Brugada and early repolarization syndrome

There is no difference except mean number of CCB between the two groups. Mean number of CCB in patients with Brugada or early repolarization was markedly lower than those in patients without it (0.9±0.4 vs. 1.3±0.5, p=0.0136).

6. Comparison of clinical data between patients with and without appropriate ICD therapies

Appropriate ICD therapies were observed in 8 patients. There were no differences between the two groups. No death was observed in patients with appropriate ICD therapies, whereas two

Table 2 Comparisons of clinical data between patients with and without ICD implantation

	With ICD implantation	Without ICD implantation	p value
Number	58	40	
Age (year)	57.5 ± 13.0	62.7 ± 13.3	0.0439
Male	50 (86.2%)	32 (80.0%)	0.4464
Organic stenosis (>75%)	5 (8.6%)	2 (5.0%)	0.4743
Follow-up duration (month)	29.3 ± 21.1	23.3 ± 17.4	0.1493
Cause of aborted SCD			
Ventricular fibrillation	53 (91.4%)	30 (75.0%)	0.0509
Ventricular tachycardia	1 (1.7%)	0	0.8609
Pulseless electrical activity	2 (3.4%)	10 (25.0%)	0.0019
Complete atrioventricular block	1 (1.7%)	0	0.8609
Unknown	1 (1.7%)	0	0.8609
Diagnosis of spasm			
Provoked spasm by the pharmacological spasm provocation test	44 (75.9%)	29 (72.5%)	0.7614
Spontaneous spasm documented	6 (10.3%)	6 (15.0%)	0.7402
Spontaneous ST elevation documented	7 (12.1%)	3 (7.5%)	0.6640
VSA definite	1 (1.7%)	2 (5.0%)	0.7591
With Brugada or early repolarization	7 (12.1%)	0	0.0561
Mean number of coronary vasodilators	2.1 ± 1.0	2.3 ± 1.0	0.4614
Mean number of calcium channel blockers	1.3 ± 0.6	1.3 ± 0.6	0.8898
Death	2 (3.4%)	1 (2.5%)	0.7591

(SCD: sudden cardiac death, VSA: vasospastic angina, ICD: implantable cardioverter-defibrillator)
patients without appropriate ICD therapies died due to PEA.

7. Spasm provocation data

During the 5 years, pharmacological spasm provocation tests were performed in 5,027 examinations in 34 institutions. Table 3 shows the spasm provocation results in patients with A-SCD due to coronary spasm. There was no difference regarding the incidence of provoked positive spasm between patients with and without ICD. Left main trunk spasm was observed in 3 patients with ICD implantation, while patients without ICD implantations had no left main trunk spasm.

8. Clinical findings in patients who had spasm provocation tests under medications

As shown in Table 4, spasm provocation tests under the medications were performed in 18 (18.4%) out of 98 patients. Provoked positive spasm recognized before medications were attenuated or disappeared in 7 patients after the tests under medications. However, provoked spasm was not attenuated in 11 patients irrespective of performing the spasm provocation tests under medications. The mean number of coronary vasodilator in patients with spasm provocation tests under medications was significantly higher than in those without (3.0±1.1 vs. 2.0±0.9, p=0.0036). The mean number of CCBs in patients with spasm provocation tests under medication was also remarkably higher than in those without it (1.8±0.5 vs. 1.2±0.5, p=0.0010). During the follow-up periods, there were no death in all 18 patients with spasm provocation tests under medications, while appropriate ICD therapies were observed in 3 out of 8 patients with ICD. Two ventricular tachycardias and one ventricular fibrillation were recovered after the appropriate ICD therapies.

9. Clinical and angiographic findings in patients who died

As shown in Table 5, 3 patients died within 2 years after A-SCD. Three coronary vasodilators were administered in one patient, while one case had two CCBs. Although VF was recog-
nized in all 3 patients as an initial diagnosis, no final cause of VF was found. PEA was observed in 2 patients as a final cause of death.

10. Univariate Cox hazard regression analyses for death
No determinant factors for death-free survival was found.

IV. Discussion
In this article, we showed the satisfactory clinical outcomes in patients with A-SCD due to coronary spasm under medical and mechanical therapies. However, appropriate ICD therapy was recognized in just 8 (13.8%) patients, including 5 VFs and 3 ventricular tachycardias, whereas the remaining 86.2% of patients had no appropriate ICD therapy. There were no differences regarding the number of coronary vasodilators or CCBs between patients with and without ICD or between patients who survived and those who died. The mean number of coronary vasodilators or CCBs in patients with spasm provocation tests under medications was significantly higher than the number without tests. No deaths during the follow-up period were recognized in patients with spasm provocation tests under medications. Death due to PEA was observed in 2 patients with ICD implantation, although VF was the initial cause of A-SCD in all 3 died patients. Cardiologists should reconsider the medications administered in patients with A-SCD due to coronary spasm. Furthermore, cardiologists should select patients with A-SCD who require ICD to suppress the next fatal events due to pure coronary spasm.

1. Coronary vasodilators and CCBs
According to previous data in patients with A-SCD due to coronary spasm, the mean coronary vasodilator numbers were 2.6±0.9 (Ahn et al)\(^{10}\), 1.5±0.7 (Manero et al)\(^{11}\), or 2.0±0.8 (Sueda et al)\(^{7}\). In this study, the mean number of coronary vasodilators was 2.2±1.0, and the mean number of CCBs was 1.3±0.5. The mean number of coronary vasodilators in this study was similar to that in VSA patients without A-SCD in the study by...
Ahn et al (2.3±0.8)\(^{10}\). Variant angina is one category of higher VSA disease activity. Compared with non-variant angina, cardiologists may administer abundant coronary vasodilators to suppress the angina attacks in patients with active variant angina. Variant angina is along the same lines as coronary spasm. However, A-SCD due to coronary spasm may be another special category of VSA. These patients may have a higher risk type. Cardiologists should reconsider their thought about medications in patients with A-SCD due to coronary spasm.

2. ICDs

Although ICDs were implanted in more than half of patients with A-SCD due to coronary spasm in this study, appropriate ICD therapies were found in just 8 patients (13.8%). This number was lower than that reported by Sueda et al but not significant (24.1% (33/137) vs 13.8% (8/58), p=0.1068). In this article, we could not find any difference about medications between patients with and without ICDs. ICD implantation is not a final therapy for patients with A-SCD due to coronary spasm. Cardiologists do not currently have a precise selection tool for ICD implantation. Decision of requiring ICD implantation in patients with A-SCD due to coronary spasm is an unsolved clinical problem.

3. Clinical outcomes compared with other diseases except for congenital monogenetic cardiac disease after ICD implantation as a secondary prevention

According to previous reports, 23%-34.4% of patients without congenital monogenetic cardiac disease died in the secondary prevention after ICD implantation, and appropriate ICD therapy was recognized in 37%-39.2% of these patients during median follow-up period of approximately 5 years\(^{12, 14}\). In our study, mortality was 3.1% during median follow-up of 27.1 months in patients with A-SCD due to coronary spasm, whereas death rate was 3.4% during median follow-up of 29.3 months in patients with A-SCD due to coronary spasm after the implantation of ICD. The frequency of appropriate ICD therapy in this study was remarkably lower than previous reports. Furthermore, the clinical outcomes in patients with A-SCD due to coronary spasm were satisfactory under optimal medical and mechanical treatment.

4. Spasm provocation tests under medications

We already reported spasm provocation tests under medications in patients with refractory VSA on emergency admission and with A-SCD due to coronary spasm\(^{16-18}\). In this study, spasm provocation tests under medications were observed in 18 patients. All 18 patients were alive and had significantly large number of coronary vasodilators and CCBs. Provoked spasm attenuated or disappeared in 7 (38.9%) patients, while the remaining 11 patients (61.1%) had no attenuation of provoked spasm irrespective of spasm provocation tests under medications. In the real world, cardiologists have no method or strategy to define the real coronary spasticity or effectiveness of coronary vasodilators to suppress serious catastrophic coronary spasm. In this study, we could not prove the direct efficacy of spasm provocation tests under medications when we decided to implant an ICD in patient with A-SCD due to coronary spasm.

5. Study limitations

There are several limitations in this study. The first limitation is that sample size was small, and the response rate of questionnaire was 16.7% of all 204 institutions. In 2004 and 2005, we sent the questionnaire concerning the number of cases of coronary arteriography, percutaneous coronary intervention, invasive/non-invasive spasm provocation tests, and the clinical status of coronary spasm to the members of the JCS in 120 cardiology hospitals in the Chugoku/Shikoku area and in 1,177 cardiology hospitals in all of Japan\(^{19-21}\). The surveys were returned form 45 hospital (37.5%) and 208 hospitals (17.7%), respectively. Compared with the previous questionnaire, the collection rate in this article was not different from all Japan questionnaires. The second limitation is missing precise characteristics about coronary risk factors and serum data in this study subjects with A-SCD due to coronary artery spasm because of questionnaire flaw. The
third limitation is also missing data about the value of left ventricular ejection fraction, side effect of ICD implantation including infection and inappropriate ICD therapies because of questionnaire flaw. Further study concerning medications and the necessity for an ICD will be necessary for characterizing A-SCD due to coronary spasm in the future.

V. Conclusions

Clinical outcomes in patients with A-SCD due to coronary spasm is satisfactory under medical and mechanical therapy. The incidence of death in patients with ICD was not different from those without it. Appropriate ICD therapies were observed in just 13.8% of patients, whereas the remaining 86.2% of patients had no mechanical actuations. Medications were reinforced and no death was observed in patients with spasm provocation tests under medications. Decision of requiring the ICD implantation in patients with A-SCD due to coronary spasm is an unsettled clinical problem.

Appendix

We thank the following for the cooperation.

Mitsuru Ishii, MD (Department of Cardiology, National Hospital Organization Kyoto Medical Center), Takeo Kaneko, MD (Shimonoseki City Hospital), Jun Nakajima, MD (Yokosuka Kyosai Hospital), Jun Takahashi, MD (Shimonoseki City Hospital), Jun Nakajima, MD (Yokosuka Kyosai Hospital), and Hironobu Kikuchi, MD (The University of Tokyo Hospital).

Sources of funding

None.

Conflicts of interest

The authors declare that they have no conflict of interest.

References

1) Myerburg RJ, Kessler KM, Mallon SM, et al: Life-threatening ventricular arrhythmia in patients with silent myocardial ischemia due to coronary artery spasm. N Engl J Med 1992; 326: 1451–1455
2) Meisel SR, Mazur A, Chetboun I, et al: Usefulness of implantable cardioverter-defibrillator in refractory variant angina pectoris complicated by ventricular fibrillation in patients with angiographically normal coronary arteries. Am J Cardiol 2002; 89: 1114–1116
3) Mitchell LB: Use of the implantable cardioverter-defibrillator in patients with coronary artery spasm as the apparent cause of spontaneous life-threatening ventricular tachycardia or ventricular fibrillation: crossing the spasm sudden death chasm. J Am Coll Cardiol 2012; 60: 908–913
4) Hendriks ML, Allaart CP, Bronzwaer JGF, et al: Recurrent ventricular fibrillation caused by coronary artery spasm leading to implantable cardioverter defibrillator implantation. Europace 2008; 10: 1456–1457
5) 2018 JCS/JHRS Guidelines on non-pharmacotherapy of cardiac arhythmias. www-j-circ.or.jp/guideline/pdf/JCS2018 kurita nogami.pdf (2019, accessed 30 December 2019)
6) JCS joint working group: Guidelines for diagnosis and treatment of patients with vasospastic angina (Coronary Spastic Angina) (JCS 2013). Circ J 2014; 78: 2779–2801
7) Sueda S, Kohno H: Optimal medications and appropriate implantable cardioverter-defibrillator shocks in aborted sudden cardiac death due to coronary spasm. Intern Med 2018; 57: 1361–1369
8) Matsue Y, Suzuki M, Nishizaki M, et al: Clinical implications of an implantable cardioverter-defibrillator in patients with vasospastic angina and lethal ventricular arrhythmia. J Am Coll Cardiol 2012; 60: 908–913
9) Eschalier R, Souteyrand G, Jean F, et al: Should an implanted defibrillator be considered in patients with vasospastic angina? Arch Cardiovasc Dis 2014; 107: 42–47
10) Ahn JM, Lee KH, Yoo SY, et al: Prognosis of variant angina manifesting as aborted sudden cardiac death. J Am Coll Cardiol 2016; 68: 137–145
11) Mañero MR, Oloriz T, de Waroux JBP, et al: Long-term prognosis of patients with life-threatening ventricular arrhythmias induced by coronary artery spasm. Europace 2018; 20: 851–858
12) Almehmadi F, Porta-Sánchez A, Ha ACT, et al: Mortality implications of appropriate implantable cardioverter defibrillator therapy in secondary prevention patients: Contrasting mortality in primary prevention patients from a prospective population-based registry. J Am Heart Assoc 2017; 6: e006220. doi: 10.1161/JAHA.117.006220.
13) van Welsenes GH, van Rees JB, Willem Borleffs CJ, et al: Long-term follow-up of primary and secondary prevention implantable cardioverter defibrillator patients. Europace 2011; 13: 389–394
14) Sueda S, Fujimoto K, Sasaki Y, et al: Ventricular fibrillation survivor due to painless multiple spasm including left main trunk: is the subcutaneous implantable cardioverter-defibrillator necessary? J Cardiol Cases 2019; 20: 118–121
15) Sueda S, Kohno H, Miyoshi T, et al: Spasm provocation tests performed under medical therapy: A new approach for treating patients with refractory coronary spastic angina on emergency admission. Intern Med 2014; 53: 1739–1747
16) Sueda S, Sakaue T, Okura T: Spasm provocation tests under medical therapy may help decide on medical or mechanical therapy in patients with aborted sudden cardiac death due to coronary spasm. Intern Med 2020; 59: 1351–1359
17) Sueda S: Optimal medical or mechanical treatment for patients with aborted sudden cardiac death due to coronary spasm. J Coron Artery Dis 2020; 26: 17–23
18) Sueda S, Miyoshi T, Sasaki Y, et al: Sequential spasm provocation tests might overcome a limitation of the standard spasm provocation tests. Coron Artery Dis 2015; 26: 490–494
19) Sueda S, Izoz E, Kohno H, et al: Need for documentation of guidelines for coronary artery spasm: An investigation by questionnaire in Japan. Circ J 2005; 69: 1333–1337
20) Sueda S, Oshita A, Izoz E, et al: Potential risk caused by the lack of recognition of coronary spasm: Analysis of the coronary spasm questionnaire in Japan. J Cardiol 2006; 49: 83–90 (Article in Japanese)
21) Sueda S, Oshita A, Izoz E, et al: Survey of coronary spasm in Japan
before the establishment of spasm guideline: Analysis of questionnaire throughout Japan. J Cardiol 2006; 48: 333–343 (Article in Japanese)