Ceratopetalum (Cunoniaceae) fruits of Australasian affinity from the early Eocene Laguna del Hunco flora, Patagonia, Argentina

María A. Gandolfo1*, and Elizabeth J. Hermsen2

1L. H. Bailey Hortorium, Plant Biology Section, School of Integrative Plant Science, 412 Mann Library Building, Cornell University, Ithaca, NY 14853, USA and 2Department of Environmental and Plant Biology, Porter Hall 315, Ohio University, Athens, OH 45701, USA

*For correspondence. E-mail mag4@cornell.edu.

Received: 29 September 2016 Returned for revision: 1 November 2016 Editorial decision: 5 December 2016 Published electronically: 20 January 2017

- Background and Aims Radially symmetrical, five-winged fossil fruits from the highly diverse early Eocene Laguna del Hunco flora of Chubut Province, Patagonia, Argentina, are named, described and illustrated. The main goals are to assess the affinities of the fossils and to place them in an evolutionary, palaeoecological and biogeographic context.
- Methods Specimens of fossil fruits were collected from the Tufolitas Laguna del Hunco. They were prepared, photographed and compared with similar extant and fossil fruits using published literature. Their structure was also evaluated by comparing them with that of modern Ceratopetalum (Cunoniaceae) fruits through examination of herbarium specimens.
- Key Results The Laguna del Hunco fossil fruits share the diagnostic features that characterize modern and fossil Ceratopetalum (symmetry, number of fruit wings, presence of a conspicuous floral nectary and overall venation pattern). The pattern of the minor wing (sepal) veins observed in the Patagonian fossil fruits is different from that of modern and previously described fossil Ceratopetalum fruits; therefore, a new fossil species is recognized. An apomorphy (absence of petals) suggests that the fossils belong within crown-group Ceratopetalum.
- Conclusions The Patagonian fossil fruits are the oldest known record for Ceratopetalum. Because the affinities, provenance and age of the fossils are so well established, this new Ceratopetalum fossil species is an excellent candidate for use as a calibration point in divergence dating studies of the family Cunoniaceae. It represents the only record of Ceratopetalum outside Australasia, and further corroborates the biogeographic connection between the Laguna del Hunco flora and ancient and modern floras of the Australasian region.

Key words: Argentina, calibration, Ceratopetalum, Cunoniaceae, Eocene, fossil fruit, Laguna del Hunco, Patagonia, Schizomeriae.

INTRODUCTION

The genus Ceratopetalum includes eight species found in eastern Australia, New Guinea, New Britain and several other small islands in the same region (Fig. 1; Hoogland, 1960; Fortune Hopkins and Hoogland, 2002; Rozefelds and Barnes, 2002). It is a member of the Cunoniaceae, a primarily southern hemisphere family that comprises about 27 genera, some of which are placed into six formally recognized tribes, with seven additional genera currently not included in a tribe (Bradford and Barnes, 2001; Bradford et al., 2004; Sweeney et al., 2004). Plants of this family are woody, with opposite or whorled leaves; they typically have bisexual flowers, often with 4–5 sepals and petals, although some members are apetalous (Fortune Hopkins and Hoogland, 2002; Bradford et al., 2004). Fruits are highly variable and encompass dry dehiscence (follicles, dehiscent capsules) and indehiscent (indehiscent capsules, samaroid fruits) types, and fleshy types (drupes and berries) (Dickison, 1984; Bradford and Barnes, 2001). Morphological evolution of reproductive structures within the family, and especially of fruit types, is complex, with inflorescence, flower and fruit structure being prone to homoplasy and providing few completely unambiguous synapomorphies for the genera and tribes (Bradford and Barnes, 2001).

Ceratopetalum belongs within the monophyletic tribe Schizomeriae, which also includes the genera Anodopetalum, Platylophus and Schizomeria (Bradford and Barnes, 2001; Bradford et al., 2004). Anodopetalum and Platylophus are monotypic (Bradford et al., 2004); Anodopetalum is endemic to Tasmania (Barker and Brown, 1994), while Platylophus is restricted to south-western Cape South Africa (Dyer, 1975; Bond and Goldblatt, 1984). Schizomeria (approx. 10 species), like Ceratopetalum, is found in eastern Australia, New Guinea and other islands in the same region (Fig. 1; Hoogland, 1960; Rozefelds and Barnes, 2002; Fortune Hopkins and Hoogland, 2002). Bradford and Barnes (2001) found that the monophyly of Schizomeriae is supported by the following morphological synapomorphies: petals with incised margins; an annular floral nectary; and a heterogeneous pollen tectum. Within Schizomeriae, each genus can be distinguished in part on the basis of its fruit type. Fruits of Anodopetalum are interpreted as berries (Dickison, 1984) or septicidal capsules (Barnes and Rozefelds, 2000); Schizomeria produces drupes (Fortune Hopkins and Hoogland, 2002); and Platylophus produces...
inflated indehiscent capsules (Bradford and Barnes, 2001; Bradford et al., 2004). *Ceratopetalum* has a highly distinctive indehiscent fruit with 4–6 woody wings derived from the enlarged sepals (Hoogland, 1960; Bradford and Barnes, 2001; Rozefelds and Barnes, 2002; Bradford et al., 2004). Several studies have identified this fruit type and/or the semi-inferior ovary position of *Ceratopetalum* as unique apomorphies defining the genus amongst the genera of Schizomerieae (Hufford and Dickison, 1992; Bradford and Barnes, 2001; Rozefelds and Barnes, 2002); other genera of Schizomerieae have superior ovaries (Rozefelds and Barnes, 2002).

Cunoniaceae have a fossil record extending into the Cretaceous. Most cunoniaceous fossils are known from sediments of the Southern Hemisphere, although two taxa with ambiguous affinities for the family were reported from Cretaceous deposits of the Northern Hemisphere. The older of these, *Tropidogyne pikei*, was described by Chambers et al. (2010) based on a single flower preserved in amber from the earliest Cenomanian (Late Cretaceous) of Burma (Myanmar) and compared with *Ceratopetalum* (for revised age, see Shi et al. 2012). Given the age of this fossil, it seems unlikely that it represents a crown-group member of Cunoniaceae and, indeed, Chambers et al. (2010) suggested that the two genera might not be closely related. The younger Cretaceous taxon, *Platydiscus peltatus*, was described by Schönénberger et al. (2001) based on charcoalified flowers from the Santonian to Campanian (Late Cretaceous) of Sweden. Schönénberger et al. (2001) placed the species within Cunoniaceae but also noted a resemblance between the floral structure of *Platydiscus* and that of the unrelated rosid families Anisophyllaceae (Cucurbitales) and Cunoniaceae (Oxalidales) [see also Matthews et al. (2001) and Matthews and Endress (2002) on *Platydiscus*; see The Angiosperm Phylogeny Group IV (2016), for the current classification].

Confirmed fossil records of the Cunoniaceae are known only from Australia, Antarctica and South America. According to a review by Barnes et al. (2001), 11 modern genera of Cunoniaceae and one fossil genus (*Weinmanniaphylum*) are reported from the fossil record of Australia beginning in the late Paleocene, where they are represented by remains of leaves, cuticles, wood and reproductive structures. Cunoniaceous pollen, although it cannot be attributed with precision to modern genera, is also known (Barnes et al., 2001). Outside of Australia, the fossil record of the family is generally recognized on the basis of wood and pollen. Several species based on wood specimens have been described from the Cenomanian to early Campanian of King George Island (Isla 25 de Mayo) and Livingston Island, South Shetland Islands, Antarctica (Torres, 1985; Poole et al., 2000, 2001). Additional reports come from the Paleogene to Miocene of Chilean and Argentinean Patagonia (Petriella, 1972; Brea et al., 2004, 2012, 2015; Terada et al., 2006). Fossil pollen grains with affinities for Cunoniaceae are known from the Late Cretaceous to late Paleocene of the Antarctic Peninsula (Cranwell, 1959; Askin, 1992) and the late Paleocene to mid-Miocene of Patagonia (Petriella and Archangelsky, 1975; Romero and Castro, 1986; Barreda et al., 2007). In the Quaternary, pollen is known from deposits in Argentina and Chile (e.g. Heusser, 1974; Arbazúa et al., 2004), as well as other countries in South America, such as Colombia (e.g. Schreve-Brinkman, 1978; Hooghiemstra, 1989). The fossil record of *Ceratopetalum* was heretofore restricted to Australia, where it is based solely on fossil fruits of Eocene to Miocene age (Table 1; Fig. 1).

In this contribution, we report radially symmetrical, five-winged fossil fruits with unique characters supporting their inclusion within the genus *Ceratopetalum*. These fossils come from the early Eocene Tufolitas Laguna del Hunco flora, Chubut Province, Patagonia, Argentina (Fig. 1). They are significant because they represent the first record of Cunoniaceae based on reproductive macrofossils from South America, the oldest unambiguous record for cunoniaceous reproductive macrofossils worldwide and the first known occurrence of the genus *Ceratopetalum* (extant or fossil) outside of Australasia.

MATERIALS AND METHODS

The Tufolitas Laguna del Hunco belongs to the Middle Río Chubut Volcanic–Pyroclastic Complex (Aragón and Mazzoni, 1997; Aragón et al., 2004). Sediments of the Tufolitas Laguna del Hunco outcrop in north-western Chubut Province, Patagonia, Argentina (Fig. 1); they represent tuffaceous lacustrine deposits that have yielded one of the most species-rich Eocene macrofloras yet discovered (Wilf et al., 2003, 2005). The fossil fruits were recovered from three (LH4, LH6 and...
TABLE 1. Fossil record of Ceratopetalum

Species	Age	Locality/formation	State/country	Reference
C. priscum	Middle Miocene	Quarry H and A/Chalk Mountain	New South Wales, Australia	Holmes and Holmes (1992); Barnes and Hill, (1999)
C. westermannii	Early Miocene	Elands	New South Wales/Australia	Barnes and Hill (1999)
C. wilkinsonii	Late Eocene–early Oligocene	Old Rose Valley Lead	New South Wales/Australia	Holmes and Holmes (1992); Barnes and Hill, (1999)
C. mastinensis	Middle Eocene	Maslin Bay/North Maslin Sand	South Australia/Australia	Barnes and Hill (1999)
C. edgardoromeroi	Early Eocene	LH4, LH6 and LH25/Tufolitas Laguna del Hunco	Chubut, Argentina	This study

Additional reports considered invalid by Barnes, Hill and Bradford (2001) have been omitted. Numbers following species names correspond to the locality numbers in Fig. 1.

RESULTS

Family, Cunoniaceae R. Br. 1814

Tribe, Schizomerieae J. C. Bradford & R. W. Barnes 2001

Genus. Ceratopetalum Sm. 1793

Species. Ceratopetalum edgardoromeroi Gandolfo & Hermsen, sp. nov.

cf. Cunoniaceae, sp. no. TY129 (LH4-169 = MPEF-Pb 5087), Wilf et al. (2005), appendix table 2.

Unknown dicot sp., sp. no. TY145 (LH6-1017 = MPEF-Pb 5085), Wilf et al. (2005), appendix table 2.

Specific diagnosis. Fruit with five wings (sepals) surrounding a circular central region. Each wing obovate, apex rounded and base constricted, vascularized by three primary veins; midvein prominent and two lateral veins weaker; primary veins branching in the distal two-thirds of each wing, branches sometimes anastomosing to form a partially closed reticulum. Petals absent. Annular nectary present, prominent.

Holotype designated here. MPEF-Pb 5085a, b (LH6), Fig. 2A, B. Repository, Museo Paleontológico Egidio Feruglio (MEF).

Type locality, age and stratigraphy. Laguna del Hunco paleoflora locality LH6, Ypresian (early Eocene) Tufolitas Laguna del Hunco, Chubut Province, Argentina.

Additional material examined. MPEF-Pb 5084 (LH4), MPEF-Pb 5087 (LH4) and MPEF-Pb 5086a, b (LH25).

Etymology

The species epithet ‘edgardoromeroi’ is erected in honor of Edgardo J. Romero, a prestigious Argentinean palaeobotanist, for his many contributions to our understanding of the angiosperm palaeofloras of Patagonia, Argentina.

Species description

The fruits are radially symmetrical, apparently indehiscent and lacking petals. They are 2.3–2.6 cm in diameter. Each fruit has a calyx of five persistent wings (sepals) attached to a circular central region (Fig. 2A, C). Each wing is narrowly obovate with a rounded apex, a slightly constricted base and an entire margin (Fig. 2A, C); wing dimensions are approx. 1 cm long and 0.2–0.4 cm wide. Each wing is vascularized by three primary veins, a prominent midvein and two less prominent lateral veins (Fig. 2A, C, D). The midvein radiates from within the central region of the fruit and proceeds in a slightly sinuous pattern to the tip of the wing, giving off lateral branches (Fig. 2A, C, D). Each lateral vein is continuous basally, with the nearest lateral vein in the adjacent wing, forming an inter-wing vein that follows the edge of the central region (Fig. 2C, E). Each lateral vein also branches distally, becoming indistinct in its course as it does so (Fig. 2C, D). The branches of the primary veins anastomose occasionally, yielding a reticulum in the distal two-thirds of the wing (Fig. 2C, D).

The circular central region of the fruit is 0.5–0.6 cm in diameter and has two distinct zones, a thick outer ring and an inner circular zone (Fig. 2A–C, E). The thick outer ring is interpreted as representing an annular nectary and is 0.1–0.2 cm wide; the inner circular zone is interpreted as representing the upper part of the ovary and is 0.4–0.5 cm in diameter (Fig. 2A–C, E). Thick veins radiating from the central region of the fruit are visible on and at the edge of the nectary (Fig. 2A–C, E). Some of these radiating veins are the veins that continue into the wings of the ovary.
TABLE 2. Floral characters of Ceratopetalum species

No. of wings	Wing shape	Wing apex	Wing base	Length (mm)	Width (mm)	Petals	Nectary disc	‘Ovary’ diameter (mm)	Stamens on fruit
gun	4–6 Narrowly to broadly obovate	Acute	Not constricted	9.8–16.1	2.7–6.7	Present	Present	3.4–4.8	Present
ape	4–6 Obovate to ovoate	Acute	Constricted	6.3–8.9	2.1–4.3	Present	Absent	3.4–4	Present
cor	4–6 Obovate	Acute	Slightly constricted	At least 7	?	Absent	?	?	?
hyl	4 Narrowly obovate to lanceolate	Acute to obtuse	Slightly constricted	6.6–11.2	2.2–3	Absent	Present	3.6–4	Present
sac	4–5 Elliptical to obovate	Acute	Slightly constricted	8.3–12.6	2.4–4.1	Absent	Present	3.6–4.2	Present
vir	4–6 Obovate to lanceolate	Acute	Constricted	11.5–13.5	3.4–4.9	Absent	Present	6.1–7.3	Present
tet	4 Ovate to obovate	Acute	Slightly constricted	8.8–17	3.8–5.1	Absent	Present	6–8	Present

\(\text{gum, C. gumniferum; ape, C. apetalum; cor, C. corymbosum; hyl, C. hylandii; sac, C. succinumbrum; vir, C. virchovii; tet, C. tetramerum; iug, C. iugumensis; mac, C. macrophyllum; pri, C. priscum; wes, C. westermanii; mas, C. maslinensis; wil, C. wilkinsonii; edg, C. edgarodoromeroi.}

*Denotes fossils.

Data for extant species are gathered from Hoogland (1960), Fortune Hopkins and Hoogland (2002), and Rozefelds and Barnes (2002); data for fossil species from Holmes and Holmes (1992), Barnes and Hill (1999) and this contribution.

All measurements are given in mm.

to become the wing midveins (Fig. 2A–C, E); alternating with these are radiating veins that fuse with each inter-wing vein at its midpoint (Fig. 2B, E). Since one radiating vein that proceeds into each wing alternates with one radiating vein that fuses with an inter-wing vein (Fig. 2B, E), the fruit is interpreted as having had ten radiating veins.

A prominent vein crosses the base of a wing near the outer edge of the nectary on one specimen; this vein intersects the wing midvein at a right angle and merges with the inter-wing veins on either side (Fig. 2C, E). Given the symmetry of the fruit and the remnants of what appear to be additional, similar veins near the outer edge of the nectary, the fruit may have had a thick vein proceeding across the base of each wing and fusing with the interwing veins on either side, thus forming a continuous series of veins encircling the periphery of the nectary.

The nectary region shows remnants of tissue, perhaps including vascular tissue forming thin veins, although no particular venation pattern was observed beyond that described above (Fig. 2A–C, E). One specimen shows at least two styles, although four structures may be present (Fig. 2C, E), indicating that there were either two unlobed styles, two bilobed styles or four styles; thus, carpel number is inferred to be two or four. Based on the prominence of the annular nectary relative to the ovary (Fig. 2A–C, E), the ovary is interpreted as at least semi-inferior.

DISCUSSION

Assignment to Ceratopetalum and recognition of new species

The floral and fruit morphology of extant *Ceratopetalum* have been described in detail by, for example, Hoogland (1960), Dickison (1984), Barnes and Hill (1999), Matthews et al. (2001), Fortune Hopkins and Hoogland (2002) and Rozefelds and Barnes (2002). *Extant Ceratopetalum* species produce fruits with a radially symmetrical, persistent calyx of 4–6 wings (enlarged sepals) attached to a central receptacle (Fig. 3A–C). Stamens are persistent on the fruits and are found both alternating with and opposite the wings (Fig. 3A–C). The ovary is semi-inferior, indehiscent and composed of two or sometimes three carpels; a conspicuous annular nectary surrounds the upper portion of the ovary in the flowers (see, for example, fig. 5 in Rozefelds and Barnes, 2002), although its appearance is less pronounced in the fruit (Fig. 3A, C).

According to Barnes and Hill (1999), extant *Ceratopetalum* flowers and fruits share a similar venation pattern, as reconstructed here (Fig. 4A) based on descriptions by Dickison (1975), Barnes and Hill (1999) and Matthews et al. (2001), as well as fig. 3 of Barnes and Hill (1999): each sepal/fruit wing is fed by three primary veins that emerge from the receptacle (i.e. extra-ovarian floral tissue fused to the ovary wall), a midvein with one lateral vein on either side; additional, less prominent lateral wing veins may also be present in the wing bases of some species. The lateral primary veins from adjacent wings are continuous basally, forming inter-wing veins. Prominent veins radiating from the receptacle to form the wing midveins alternate with veins that fuse with the inter-wing veins near the edge of the receptacle. The number of veins radiating from the receptacle of the flower is thus twice the number of fruit wings, or equal to the number of stamens.

The three-veined sepals and inter-sepal veins formed by the fusion of lateral veins from adjacent sepals are characteristics shared across flowers of nearly all genera of Cunoniaceae that have been examined (Dickison, 1975; Barnes and Hill, 1999; Matthews et al., 2001; Bradford et al., 2004). Therefore, flower or fruit venation pattern alone is not necessarily diagnostic for the genus, but must be considered in conjunction with other features.

Ceratopetalum edgarodoromeroi fruits are largely consistent with extant *Ceratopetalum* in their morphology and venation pattern. *Ceratopetalum edgarodoromeroi* is a five-winged fruit...
with wings attached to a circular region interpreted here as consisting of a central ovary surrounded by a prominent annular nectary (Fig. 2A–C, E). Due to the prominence of the nectary in relation to the relatively small region interpreted as representing the gynoecium (Fig. 2A–C, E), the Patagonian fossils are interpreted as probably having had a semi-inferior ovary, although the position of the ovary cannot be definitively confirmed due to the orientation in which the fruits are preserved. Based on the presence of 2–4 structures interpreted as styles on one specimen (Fig. 2C, E), *C. edgardoromeroi* is interpreted to be bicarpellate or tetracarpellate; although bicarpellate flowers are a synapomorphy for a large clade of Cunoniaceae including tribe Schizomerieae, flowers with more than two carpels have originated separately several times, including within Schizomerieae (Bradford and Barnes, 2001). *Ceratopetalum edgardoromeroi* fruits do not have stamens preserved, which conflicts with the fruits of modern *Ceratopetalum* species. Lack of persistent stamens is, however, consistent with other fossil fruits assigned to *Ceratopetalum*, except for *C. westermannii* (Table 2).

The venation pattern of the fruits, preserved in two specimens (Fig. 2A–E), is similar to that described for extant species (cf. Fig. 4A and B). Wings have three primary veins, and lateral primary veins from adjacent wings fuse to form inter-wing
Veins (Figs 2A–C, E and 4B). Veins radiate from the circular region at the centre of the fruit, continuing into the wings or ending at the inter-wing veins (Figs 2A–C and 4B). In one specimen, these veins appear to widen at the periphery of the nectary, perhaps representing the attachment points of the stamens (Fig. 2A, B). Although the radiating veins are observed in or at the margins of the nectary in *C. edgar doromeroi*, they are assumed to be passing beneath the nectary proper, presumably through tissue beneath or surrounding the ovary (i.e. the receptacle). Large veins crossing the bases of the wings and partially or wholly encircling the periphery of the nectary in *C. edgar doromeroi* (Figs 2C, E and 4B) are one feature not noted as characterizing the extant genus. These veins may be associated with the nectary or, more probably, the rim of the receptacle or even the base of the calyx. The nectary also shows the remnants of thick tissue or perhaps minor veins (Fig. 2A–C, E); Matthews et al. (2001) noted phloem in the nectary of extant *C. gummiferum* flowers.

Within Cunoniaceae, the only other taxon that produces fruit with five wings formed by a persistent calyx is *Pullea* (tribe...
Ceratopetalum edgardoromeroi is typical of fossil Ceratopetalum fruits in having five wings (sepal) and in lacking stamens (Table 2). Based on a morphological phylogenetic analysis of Schizomeriaceae focusing on intrageneric relationships of Ceratopetalum, Rozefelds and Barnes (2002) found that tetramerous flowers are derived within the genus, and that they had originated twice: once in C. iugumensis and once in a clade including Ceratopetalum, C. succirubrum and C. tetrapterum. Thus, all fossils appear to have the plesiomorphic condition for perianth merosity. All extant Ceratopetalum species (except C. corbynorum, in which this character has not been documented) retain whole stamens or remnants of stamens on their fruits (Fig. 3A–C; Rozefelds and Barnes, 2002), whereas all fossil species, except C. westermannii (early Miocene), lack them (Holmes and Holmes, 1992; Barnes and Hill, 1999; this study). This would suggest that the stamens were routinely lost during preservation of Ceratopetalum fossils, or that persistence of the stamens on the fruits is a novel structural feature that appeared some time during the early Miocene.

Only three species of Ceratopetalum have a corolla: the extant C. gumferum (Fig. 3B) and the Australian fossil fruits C. priscum and C. wilkinsonii (Holmes and Holmes, 1992; Barnes and Hill, 1999; Rozefelds and Barnes, 2002). If the absence of petals in the fossil fruits is interpreted as a true absence of petals as in most extant species of Ceratopetalum, the remaining species lack petals (Table 2). Petals with incised margins are a synapomorphy for the tribe Schizomeriaceae as a whole (Bradford and Barnes, 2001), whereas the absence of petals is thought to be apomorphic within Ceratopetalum (Rozefelds and Barnes, 2002). The lack of petals in C. edgardoromeroi, now the oldest documented occurrence of fossils assignable to Ceratopetalum, would thus indicate that the loss of petals within the genus occurred before the early Eocene. Previously, the loss of petals was considered to have dated minimally to the early Eocene, as evidenced by lack of petals in C. maslinensis (Rozefelds and Barnes, 2002). Lack of petals in C. maslinensis was also previously considered to indicate that Ceratopetalum itself had originated prior to the middle Eocene (Rozefelds and Barnes, 2002). Since C. edgardoromeroi likewise lacks petals, suggesting that it nests within crown-group Ceratopetalum, the age of the genus must now be considered to date minimally to the early Eocene.

Criteria for choosing fossils to use in divergence dating analyses have been suggested by Gandolfo et al. (2008) and Parham et al. (2012). The age of the C. edgardoromeroi specimens is well constrained, the source locality of the fossils is well documented, the identity of the fossils is well founded on the basis of their overall structure and an apomorphy (lack of petals) convincingly places them within crown-group Ceratopetalum; thus, C. edgardoromeroi would make a suitable calibration point for divergence dating analyses. The LH4 locality occurs below a stratigraphic layer most recently dated as 52.22 ± 0.29 Ma (Wilf et al., 2003, 2005; Wilf, 2012), making the numerical minimum age currently associated with...
Table 3. Paleogene multiwinged, helicopter-type fruits (see Collinson and van Bergen, 2004)

Genus	Family	Continent	Age	Publication(s)
Asterocarpinus	Betulaceae	North America	Late Eocene–early Oligocene	Manchester and Crane (1987); Meyer and Manchester (1997)
Calycites	Unknown	Europe	Paleocene	Crane (1988); Crane (1988); Wehr (1995)
Ceratopetalum	Cunoniaceae	South America	Early Eocene	This study
Chaneya	Simaroubaceae?	Asia	Middle Eocene–middle Miocene	Holmes and Holmes (1992); Barnes and Hill (1999)
Cruciptera	Juglandaceae	Europe	Middle Eocene–? late Oligocene	Wang and Manchester (2000)
Ozakia	Unknown	North America	Middle Eocene–Oligenocine	Manchester (1991); Manchester et al. (1994)
Raskya	Unknown	Asia	Oligocene–Miocene	Manchester (1991, 1999, 2000); Wehr (1995); Meyer and Manchester (1997)
Tetrapterys	Malpighiaceae	Europe	Late Eocene–early Oligocene	Manchester and Uemura (2014)
Trilobium	Anacardiaceae?	Europe	Early Oligocene	Manchester and Uemura (2014)

C. edgardoromeroi 51.93 Ma. Notably, in addition to being the oldest fossil record of Ceratopetalum, C. edgardoromeroi is the oldest fossil record for tribe Schizomerieae.

Palaeoecology and palaeobiogeography

Extant Ceratopetalum species have a disjunct distribution confined to Australasia (Fig. 1). In Australia, Ceratopetalum is found in sub-tropical to warm temperate rain forests of eastern New South Wales and south-eastern Queensland, as well as north-eastern Queensland (Baur, 1957, 1979; Hoogland, 1960; Floyd, 1990; Rozefelds and Barnes, 2002). Only one species grows outside Australia, occurring in New Britain, New Guinea and small islands nearby (Fortune Hopkins and Hoogland, 2002; Rozefelds and Barnes, 2002), where it has been documented from sub-tropical rain forests (Takeuchi, 1999a, b, 2002; Paul, 2011). Ceratopetalum shows a biogeographic pattern typical of the Laguna del Hunco flora, since the genus is extinct in South American today but is a component of the Paleogene to recent rain forest vegetation of Australasia (see, for example, Wilf et al., 2009, 2014; Kooyman et al., 2014; Merkhofer et al., 2015).

The palaeocommunity in which C. edgardoromeroi grew was composed of pteridophytes, including Dicksonia, Sticherus, Todea and Pteridaceae (Carvalho et al., 2010, 2013); conifers, such as Agathis, Dacrycarpus and Papanoureae (Wilf et al., 2009, 2014; Wilf, 2012); the ginkgophyte Ginkgoletes (Villar de Seoane et al., 2015); and angiosperms, including magnolids (Atherospermataceae and Monimiaceae: Knight and Wilf 2013), eudicots (other Cunoniaceae, Akania, Eucalyptus, Gymnostoma, Juglandaceae and several Proteaceae: Romero and Hickey, 1976; Gandolfo et al., 1988, 2011; Zamalov et al., 2006; González et al., 2007; Gandolfo and Hermsen, 2012; Hermsen et al., 2012, Hermsen and Gandolfo, 2016), and the monocot Ripogonum (Carpenter et al., 2014). This palaeocommunity is similar in composition to modern rain forest communities of Australia and New Guinea where extant Ceratopetalum occurs. Ceratopetalum is dominant in some rain forest alliances in Australia (see Baur, 1957, 1979; Burges and Johnston, 1953; Floyd, 1990; Kooyman et al., 2014), while it is typically an occasional component of plant communities in Papua New Guinea (Takeuchi, 1999a, 2002; Paul, 2011). The few specimens (four specimens in total) of C. edgardoromeroi found in the Laguna del Hunco flora suggest that it was not a prominent component of the Laguna del Hunco palaeocommunity, but rather relatively rare.

Conclusions

In their paper on the evolution of angiosperm fruits, Collinson and van Bergen (2004) separated winged fruits into several categories based on wing position. Since the Patagonian fossils have multiple wings, they belong to Collinson and van Bergen’s (2004: p. 377) category ‘Multiple wings (‘helicopters/propellers’),’ which includes fossil fruits with at least three (and typically more) wings oriented in a more or less horizontal position. Within this category, nine genera have a Paleogene fossil record (Table 3): Asterocarpinus (Betulaceae), Ceratopetalum (Cunoniaceae), Chaneya (probably within Simaroubaceae), Cruciptera (Juglandaceae), Tetrapterys (Malpighiaceae), Trilobium (Anacardiaceae?), and Calycites, Ozakia and Raskya (affinity uncertain). With the exception of Ceratopetalum, all genera representing multiwinged helicopter-type fruits are known from Northern Hemisphere palaeoflora of Europe, eastern Asia and/or western North America (Table 3). This report of Ceratopetalum is the first documented occurrence of a multiwinged helicopter-type fruit genus showing an intercontinental connection between Southern Hemisphere continents, and the first Paleogene report of this fruit type from South America. The helicopter-type Laguna del Hunco fruits described in this study clearly represent a new record of fossil Ceratopetalum: they have five wings, an annular floral nectary, a semi-inferior ovary and a floral/fruit venation pattern consistent with Cunoniaceae and Ceratopetalum (Fig. 4A, B).

The lack of petals on C. edgardoromeroi suggests that they belong within the crown-group for the genus. The fruits are assigned to a new species, C. edgardoromeroi, primarily on the basis of the venation pattern of their wings, which differs from that described for other fossil and modern Ceratopetalum fruits (Fig. 5A–H). Due to their well-documented geographic and stratigraphic provenance, as well as the features establishing
their position within the genus Ceratopetalum, the fossils provide a robust minimum age for the genus of 51.93 Ma. Ceratopetalum edgardoromeroi fits comfortably into the biogeographic pattern already established for the Laguna del Hunco flora, as the genus Ceratopetalum has previously been described only from Australia.

ACKNOWLEDGEMENTS
We thank G. Jordan, R. Carpenter and P. Wilf for discussions related to these fossils; the curators of BH and MEL, K. C. Nixon and D. Cantrill, respectively, for access to their collections; H. Barnes (MEL, Australia) for photographs of extant Ceratopetalum fruits; J. Svitko, L. Canessa, B. Cariglino, M. Carvalho, N. R. Caffa, L. Canessa, B. Cariglino, A. Iglesias, K. R. Johnson, P. Puerta, L. Reiner, E. Ruigomez, J. Svitko, P. Wilf and S. Wing for assistance in the field, lab and collections; and the Nahueltriyap family for generously providing land access. This work was supported by the National Science Foundation grants [DEB-0345750, DEB-0419754] and a Fulbright Fellowship to M.A.G.

LITERATURE CITED

Aragón E, Mazzoni MM. 1997. Geología y estratigrafía del complejo volcánico piroclástico del río Chubut medio (Eoceno), Chubut, Argentina. Revista de la Asociación Geológica Argentina 52: 243–256.

Aragón E, Aguilería YE, Consoli VC, Cavazos CI, Ribot A. 2004. Las Andesitas Estrechada del Complejo Volcánico Piroclástico del río Chubut medio (Paleoceno-Eoceno medio). Revista de la Asociación Geológica Argentina 59: 619–633.

Arbüzov AM, Villagran C, Moreno PI. 2004. Deglacial and postglacial climate history in east-central Isla Grande de Chiloé, southern Chile (43°S). Quaternary Research 62: 49–59.

Askin RA. 1992. Late Cretaceous–Early Tertiary Antarctic outcrop evidence for past vegetation and climates. Antarctic Research System 59: 61–73.

Barker PCJ, Brown MJ. 1994. Comparison of Anodopetalum (Cunoniaceae) and its biogeographical significance. American Journal of Botany 81: 1782–1785.

Barnes RW, Hill RS, Hill RS, Bradford JC. 2001. The history of Cunoniaceae in Australia from macrofossil evidence. Australian Journal of Botany 49: 345–443.

Barnes RW, Hill RS. 1999. Ceratopetalum fruits from Australian Cainozoic sediments and their significance for petal evolution in the genus. Australian Systematic Botany 12: 635–645.

Barnes RW, Rozefelds AC. 2000. Comparative morphology of Anodopetalum (Cunoniaceae). Australian Systematic Botany 13: 267–282.

Barnes RW, Hill RS, Bradford JC. 2001. The history of Cunoniaceae in Australia from macrofossil evidence. Australian Journal of Botany 49: 301–320.

Barreda V, Anzótegui LM, Prieto AR, et al. 2007. Diversificación y cambios de las angiospermas durante el Neógeno de Argentina. Asociación Paleontológica Argentina, Publicación Especial 11: 173–191.

Baur GN. 1957. Nature and distribution of rain-forests in New South Wales. Department of the Agricultural Technical Services, Pretoria, Vols 1 and 2.

Baur GN. 1979. Forest types in New South Wales. Forestry Commission of New South Wales Research Note 17: 1–81.

Baur GN. 1957. Nature and distribution of rain-forests in New South Wales. Department of the Agricultural Technical Services, Pretoria, Vols 1 and 2.

Baur GN. 1979. Forest types in New South Wales. Forestry Commission of New South Wales Research Note 17: 1–81.

Bond P, Goldblatt P. 1984. Plants of the Cape Flora, a descriptive catalogue. Journal of South African Botany Supplement 13: 1–445.

Bradford JC, Barnes RW. 2001. Phylogenetics and classification of Cunoniaceae (Oxalidales) using chloroplast DNA sequences and morphology. Systematic Botany 26: 354–385.

Bradford JC, Fortune-Hopkins HC, Barnes RW. 2004. Cunoniaceae. In: Kubitzki K, ed. The families and genera of vascular plants, VI Flowering plants, Dicotyledons. New York: Springer-Verlag, 91–111.

Brea M, Zucol AF, Raigemborn MS, Matheos S. 2004. Leños fósiles del Paleoceno Superior (Grupo Río Chico), Provincia del Chubut, Argentina. Aneghiniana 41 (Suppl): 7R–8R (abstract).

Brea M, Zucol AF, Iglésias A. 2012. Fossil plant studies from late Early Miocene of the Santa Cruz Formation: paleoecology and paleoclimatology at the passive margin of Patagonia, Argentina. In: Vizcaíno SF, Kay RF, Bargo MS, eds. Early Miocene paleoecology in Patagonia: high-latitude paleocommunities of the Santa Cruz Formation. Cambridge: Cambridge University Press, 104–128.

Brea M, Artabe AE, Franzese JR, et al. 2015. Reconstruction of a fossil forest reveals details of the paleoecology, palaeoenvironments and climatic conditions in the late Oligocene of South America. Palaeogeography, Palaeoclimatology, Palaeoecology 418: 19–42.

Burges A, Johnston RD. 1953. The structure of a New South Wales subtropical rain forest. Journal of Ecology 41: 72–83.

Carpenter RJ, Wilf P, Conran JG, Cúneo NR. 2014. A Paleogene trans-Antarctic distribution for Ripogonum (Ripogonaceae: Liliales)? Palaeontology Electronica 17: 39A: 9p; palaeo-electronica.org/content/2014/02/early-eocene-ripogonum.

Carvalho MJ, Wilf P, Gandolfo MA, Cúneo NR, Johnson KR. 2010. Ferns from the Laguna del Hunco paleoflora (51.9 Ma). Patagonia, Argentina, reveal biogeographic links to rainforest Gondwana. Geological Society of America Abstracts with Programs 42: 373.

Carvalho MJ, Wilf P, Hersmen EJ, Gandolfo MA, Cúneo NR, Johnson KR. 2013. First record of Todea (Osmundaceae) in South American, from the early Eocene paleorainforests of Laguna del Hunco (Patagonia, Argentina). American Journal of Botany 100: 1831–1848.

Chambers KL, Poinar G, Jr, Buckley R. 2010. Tropidogyne, a new genus of Early Cretaceous eudicots (Angiospermae) from Barmese Amber. Novson 20: 23–29.

Collinson ME, van Bergen PF. 2004. Evolution of angiosperm fruit and seed dispersal biology and ecophysiology: morphological, anatomical and chemical evidence from fossils. In: Hemslcy AR, Poole I, eds. The evolution of plant physiology: from whole plants to ecosystems. London: Elsevier, 343–377.

Cane PR. 1988. Abelia-like fruits from the Paleogene of Scotland and North America. Tertiary Research 9: 21–30.

Cranwell LM. 1959. Fossil pollen from Seymour Island, Antarctica. Nature 184: 1782–1785.

Dickison WC. 1975. Studies on floral anatomy of the Cunoniaceae. American Journal of Botany 62: 433–447.

Dickison WC. 1984. Fruits and seeds of the Cunoniaceae. Journal of the Arnold Arboretum 65: 149–190.

Dyer RA. 1975. The genera of southern African flowering plants, Volume 1 Dicotyledons. Department of the Agricultural Technical Services, Pretoria, South Africa.

Floyd, AG. 1990. Australian rainforests in New South Wales, Vols 1 and 2. Chipping Norton: Surrey Beatty & Sons Pty Limited and National Parks and Wildlife Service of New South Wales.

Fortune Hopkins HC, Hoogland RD. 2002. Cunoniaceae. Flora Malesiana, Series 1 16: 53–165.

Gandolfo MA, Hersmen EJ. 2012. The emerging Patagonian fossil record of Cunoniaceae and its biogeographical significance. Japanese Journal of Palynology (Special Issue, Abstracts: IPC/IOPC 2012) 58: 66–67.

Gandolfo MA, Dibbern CM, Romero EJ. 1988. Akania patagonica n. sp. and additional material on Akania americana Romero & Hickey (Akaniaceae), from Paleocene sediments of Patagonia. Bulletin of the Torrey Botanical Club 115: 83–88.

Gandolfo MA, Nixon KC, Crepet WL. 2008. Selection of fossils for calibration of molecular dating models. Annals of the Missouri Botanical Garden 95: 34–42.

Gandolfo MA, Hersmen EJ, Zamaloa MC, et al. 2011. Oldest known Eucalyptus macrofossils are from South America. PLoS One 6: e21084. doi:10.1371/journal.pone.0021084.

Gonzalez CC, Gandolfo MA, Zamaloa MC, Cúneo NR, Wilf P, Johnson KR. 2007. Revision of the Proteaceae macrofossil records from Patagonia, Argentina. Botanical Review 73: 235–266.

Hably L, Manchester SR. 2000. Fruits of Tetrapterys (Malpighiaceae) from the Oligocene of Hungary and Slovenia. Review of Palaeobotany and Palynology 111: 93–101.

Hersmen EJ, Gandolfo MA. 2016. Fruits of Juglandaceae from the Eocene of South America. Systematic Botany 41: 316–328.
Hoogland RD. 1979.

Hufford L, Dickison WC. 1992.

Kooyman RM, Wilf P, Barreda VD, Manchester SR. 1999.

Manchester SR. 2000.

Knight CL, Wilf P. 2013. Rare leaf fossils of Monimiaceae and Atherospermataceae (Laurels) from Eocene Patagonian rainforests and their biogeographic significance. Paleaeoecologica Electronica 16: 26A; 39p; paleo-electroca/contents/2013/546-eocene-laurels-from-patagonia.

Kooyman RM, Wilf P, Barreda VD, et al. 2014. Pale-Antarctic rainforest into the modern Old World tropics: the rich past and threatened future of the "southern wet forest survivors". American Journal of Botany 101: 2121–2135.

Manchester SR. 1991. Cruciperata, a new juglandaceous winged fruit from the Eocene and Oligocene of western North America. Systematic Botany 16: 715–725.

Manchester SR. 1999. Biogeographical relationships of North American Tertiary floras. Annals of the Missouri Botanical Garden 86: 472–522.

Manchester SR. 2000. Late Eocene fossil plants of the John Day Formation, Wheeler County, Oregon. Oregon Geology 62: 51–63.

Manchester SR, Crane PR. 1987. A new genus of Betulaceae from the Oligocene of western North America. Botanical Gazette 148: 263–273.

Manchester SR, Habiy L. 1997. Revision of "Abelia" fruits from the Paleogene of Hungary, Czech Republic and England. Review of Palaeobotany and Palynology 96: 231–240.

Manchester SR, Uemura K. 2014. Ozakia, a new genus of winged fruit shared between the Miocene of Japan and western North America. Journal of Plant Research 127: 187–192.

Manchester SR, Collinson ME, Goth K. 1994. Fruits of the Juglandaceae from the Eocene of Messel, Germany, and implications for early Tertiary phyto-geographic exchange between Europe and western North America. International Journal of Plant Sciences 155: 388–394.

Matthews ML, Endress PK. 2002. Comparative floral structure and systematics in Oxalidales (Oxalidaceae, Conneraceae, Brunellaceae, Cephalotaceae, Cunoniaceae, Elaeocarpaceae, Tremandraceae). Botanical Journal of the Linnean Society 140: 321–381.

Matthews ML, Endress PK, Schonberger J, Friis EM. 2001. A comparison of floral structures of Anisophylleaceae and Cunoniaceae and the problems of their systematic position. Annals of Botany 88: 439–455.

Merkhofer L, Wilf P, Haas MT, et al. 2015. Resolving Australian analogs for an Eocene Patagonian palaeorainforest using leaf size and floristics. American Journal of Botany 102: 1160–1173.

Meyer HW, Manchester SR. 1997. The Oligocene Bridge Creek flora of the John Day Formation, Oregon. University of California Publications in Geological Sciences 141: 1–195, plates 1–75.

Parham JF, Donoghue PC, Bell CJ, et al. 2012. Best practices for justifying fossil calibrations. Systematic Biology 61: 346–359.

Paul OK. 2011. Tree species composition of Crater Mountain Wildlife Management Area, EHP-Papua New Guinea. Journal of Agricultural Science 1: 25–30.

Petriella B. 1972. Estudio de maderas petrifcadas del Terciario inferior del area central de Chubut (Cerro Bororo). Revista del Museo de La Plata Secc/0ntent/2013/546-eocene-laurels-from-patagonia.

Petriella B, Archangelsky S. 1975. Vegetación y ambiente en el Paleoceno de Chubut. Primer Congreso de Argentina de Paleontologia y Bioestratigraf/a, Actas 3: 257–270.

Poole I, Cantrill DJ, Hayes P, Francis J. 2000. The fossil record of Cunoniaceae: new evidence from Late Cretaceous wood of Antarctica? Review of Palaeobotany and Palynology 111: 127–144.

Poole I, Hunt RJ, Cantrill DJ. 2001. A fossil wood flora from King George Island: ecological implications for an Antarctic Eocene Vegetation. Annals of Botany 88: 33–54.

Romero EJ, Castro MT. 1986. Material fúngico y granos de polen de angio- spermas de la Formaci/0n /a Rio Turbio (Eoceno), provincia de Santa Cruz, Rep/ública Argentina. Anemeghiniana 23: 101–118.

Romero EJ, Hickey LJ. 1976. A fossil leaf of Akamiaeeae from Paleocene beds in Argentina. Bulletin of the Tory Botanical Club 103: 126–131.

Rozeulf AC, Barnes RW. 2002. The systematic and biogeographical relationships of Ceratopterum (Cunoniaceae) in Australia and New Guinea. International Journal of Plant Sciences 163: 651–673.

Schonberger J, Friis EM, Matthews ML, Endress PK. 2001. Cunoniaceae in the Cretaceous of Europe: evidence from fossil flowers. Annals of Botany 88: 423–437.

Scheu-Brinkman EJ. 1978. A palynological study of the Upper Quaternary sequence on the El Abra Corridor and Rock Shelters (Colombia). Palaeogeography, Palaeoclimatology, Palaeoecology 25: 1–109.

Shi G, Grimaldi DA, Harlow GE, et al. 2012. Age constraint on Burmese amber based on U-Pb dating of zircons. Cretaceous Research 37: 155–163.

Sweeney PW, Bradford JC, Lowry PP II. 2004. Phylogenetic position of the New Caledonian endemic genus Hooglandia (Cunoniaceae) as determined by matrix parsimony analysis of chloroplast DNA. Annals of the Missouri Botanical Garden 91: 266–274.

Takeuchi, W. 1999a. Botanical results from the 1995 Bismarck-Ramu expedition in Papua New Guinea. Side 18: 751–782.

Takeuchi, W. 1999b. New plants from Crater Mt. Papua New Guinea, and an annotated checklist of the species. Side 18: 941–986.

Takeuchi, W. 2002. Botanical summary of a lowland ultrabasic flora in Papua New Guinea. Side 20: 1491–1559.

Tardona K, Askawa TO, Nishida H. 2006. Fossil woods from Arroyo Cardenio, Chile Chico Province, Aisen (XI) Region, Chile. In: Nishida H. ed. Post-Cretaceous floristic changes in southern Patagonia, Chile. Tokyo, Japan: Chuoh Shuppan, 57–61.

The Angiosperm Phylogeny Group IV. 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 181: 1–20.

Thieraut M. 1999. A new locality of Raskya verusta (Eittingshausen) Manchester & Hably from France. Revue Paleobiologie Gen/0ne 18: 509–515.

Torres T. 1985. Plantas f/0siles de la Ant/ártica. Boletin Ant/ártico Chileno 5: 17–31.

Villar de Seoane L, C/0neo NR, Escapa IH, Wilf P, Gandolf MA. 2015. Ginkgosites patagonica (Berry) comb. nov. from the Eocene of Patagonia, last ginkgoalean record in South America. European Journal of Plant Sciences 161: 167–178.

Wehr WC. 1995. Early Tertiary flowers, fruits, and seeds of Washington State and adjacent areas. Washington Geology 23: 3–16.

Wilde V, Frankenhauser H. 2010. A new species of four-winged fruits (Trilobium mai sp. nov.) from the middle Eocene of Eckfeld (Eifel, Germany). Review of Palaeobotany and Palynology 159: 143–151.

Wilf P. 2012. Rainforest conifers of Eocene Patagonia: attached cones and foliage of the extant Southeast Asian and Australasian genus Dacrycarpus (Podocarpaceae). American Journal of Botany 99: 562–584.

Wilf P, C/0neo NR, Johnson KR, Hicks JF, Wing SL, Obradovich JD. 2003. First South American last ginkgoalean record in South America. American Journal of Science 300: 122–125.

Wilf P, Johnson KR, C/0neo NR, Smith ME, Singer BS, Gandolfo MA. 2005. Eocene plant diversity at Laguna del Huco and Rito Pichileuf/0, Patagonia, Argentina. American Naturalist 165: 634–650.

Wilf P, Little SA, Iglesias A et al. 2009. Papuccus (Cupressaceae) in Eocene Patagonia: a new fossil link to Australasian rainforests. American Journal of Botany 96: 2031–2047.

Wilf P, Escapa IH, C/0neo NR, Kooyman RM, Johnson KR, Iglesias A. 2014. First South American Angiol/S (Anaraciaceae), Eocene of Patagonia. American Journal of Botany 101: 156–179.

Zamoral MC, Gandolfo MA, Gonzalez CC, Romero EJ, C/0neo NR, Wilf P. 2006. Casuarinaceae from the Eocene of Patagonia, Argentina. International Journal of Plant Sciences 167: 1279–1289.