Antioxidant properties of silver nanoparticles biosynthesized from methanolic leaf extract of *Blighia sapida*

AO Akintola\(^1\)*, BD Kehinde\(^2\), PB Ayoola\(^1\), AG Adewoyin\(^1\), OT Adedosu\(^2\), JF Ajayi\(^3\), and SB Ogunsona\(^1\)

\(^1\)Department of Science Laboratory Technology, Ladoke Akintola University of Technology, Faculty of Pure and Applied Sciences, Ogbomoso, Nigeria.

\(^2\)Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria.

\(^3\)Department of Physiology, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria.

*Corresponding Author: Email: aoakintola@lautech.edu.ng; Telephone: +2348023807230

ABSTRACT

Synthesis of nanoparticles by biological methods using microorganisms, enzymes or plant extracts has been suggested as possible ecofriendly alternative to chemical and physical methods which involve the use of harmful reducing agents. In the current study, silver nanoparticles (AgNPs) were synthesized by green approach from methanolic leaf extract of *Blighia sapida*. The synthesized AgNPs were characterized by UV-visible (UV-vis) spectroscopy, Fourier Transform Infrared (FTIR) spectroscopy and Scanning Electron Microscopy (SEM). The antioxidant activity was evaluated using DPPH radical scavenging assay, determination of total reductive potential, total phenolics content (TPC) and total flavonoids content (TFC) of the synthesized AgNPs. SEM analysis revealed that the size of the synthesized silver nanoparticles ranged from 50-70 nm with maximum UV-vis absorbance at 413 nm. DPPH radical scavenging activity, reducing power, total phenolic and total flavonoid contents of the synthesized AgNPs increased in a dose dependent manner as compared to ascorbic acid the standard reference used. This result confirmed that *Blighia sapida* is a potential biomaterial for synthesizing AgNPs which can be exploited for its antioxidant activity.

Keywords: *Blighia sapida*, antioxidant activity, silver nanoparticles, DPPH radical scavenging activity, free radicals

1. Introduction

Free radicals play a key role in oxygen dependent (aerobic) living systems. They are part of cell respiration and other important cellular processes but are also involved in aging and disease development [1, 2]. Free radicals are unstable molecules with free unpaired electrons.
They are highly reactive because the free electrons always attempt to bond with other electrons and form covalent pairs. In this process, the free radicals remove the electrons from other molecules. Beyond affecting regulation of cells, it can also damage molecules such as carbohydrates, fats, proteins and nucleic acids [3, 4]. There are different sources of free radicals within the cells and its environment. In aerobic organisms, free radicals are produced during normal metabolic processes [5]. The major sources include electron transfer in the plasma membrane and cell respiration in the mitochondria membrane. Mitochondria are the main source of the oxidative damage because free radicals such as superoxide can escape from the electron transport chain [6, 7]. In order to prevent intracellular damage by free radicals, cells have built up intracellular antioxidant system. This process converts free electrons into a non-reactive form by proteins.

Antioxidants control oxidative reactions by inhibiting, delaying or hindering the oxidation of the biomolecules [8, 9]. The key antioxidant enzymes possess certain elements that shield and protect proteins [10, 11]. Non enzymatic antioxidants can also neutralize radicals for example water soluble substances such as Vitamin C, glutathione or fat-soluble substances such as Vitamin E, β-carotene [8, 12, 13]. Synthetic antioxidants such as butylated hydroxyl toluene (BHT) and butylated hydroxyl anisole (BHA) have newly been reported to be harmful for human health [14, 15]. Thus, the search for effective, non-toxic, natural compounds with antioxidative activity has been increased in recent years. Recently nanomaterials have started playing a fundamental role in human life and health owing to their substantial benefits of biomedical applications [16] like medical imaging, drug delivery, diseases diagnosis [17], cancer treatment [18, 19], treatment of infectious diseases [20, 21], treatment of neurodegenerative disorder including Parkinson disease [22] and so on.

Moreover, the strong antioxidant property exhibited by some nanomaterials is opening exciting potential to develop new regimens with enhanced and targeted actions. For example, gold, silver and selenium nanoparticles have been shown to possess ability to reduce oxidative stress due to their efficient redox-active radical-scavenging properties [23, 24, 25, 26]. *Blighia sapida* is a soap berry perennial herbaceous plant that is prominently found in Western Tropical Africa (Figure 1). It belongs to the family Sapindaceae. In Nigeria, it is commonly known as Ackee (English), Gwanja Kusa (Hausa), Isin (Yoruba) and Okpu (Igbo) [27]. It is an evergreen tree which grows to a height of between 7 and 25m. It occurs naturally from Senegal, Cameroon and Equatorial Guinea. The tree is often cultivated for its edible fruit in many areas of tropics and subtropics. When ripe, Ackee fruit splits to expose a fleshy cream colour pulp aril attached to a shiny black oblong seed [28]. The fleshy fruit can also be
curried, used in soups and stews as a meat substitute [29]. The fruit must be allowed to open fully before it is detached from the tree because unripe or overripe arils as well as the seed contain hypoglycin and its derivatives which are strongly toxic [30]. *Blighia sapida* is useful in Africa traditional medicine. In Cote d’ Ivore, it is commonly used for the treatment of yellow fever, epilepsy, oedema and as a laxative and diuretic [31]. Sap from the terminal bud is instilled in the eyes to treat ophthamia and conjunctivitis [32]. The pulp of grand up leafy twig is rubbed on the forehead to treat migraine/headache [31, 33]. The root, bark, leaves, capsules and seeds were identified for the cure of 22 diseases in Benin [34]. The plant was reported to have antioxidant activity [35, 36, 37]. Therefore the aim of this study was to synthesize silver nanoparticles from the leaves of *Blighia sapida* and to investigate its possible antioxidant potentials.

![Figure 1. Blighia sapida plant (a), Blighia sapida fruit (b), Blighia sapida ripe fruit showing a fleshy cream colour pulp aril and shiny black oblong seed (c)](image)

2 Materials and Methods

2.1 Reagents

All reagents were of analytical grade and obtained from Sigma Aldrich Chemical, Germany.

2.2 Plant materials

Fresh leaves of *Blighia sapida* were collected from the Teaching and Research Farm of Ladoke Akintola University of Technology, Ogbomoso. The plant was authenticated at the herbarium unit of the Department of Pure and Applied Biology, Ladoke Akintola University of Technology Ogbomoso (Voucher number : LHO - 538). Healthy leaves with no sign of damage were air dried under shade at room temperature for four weeks and pulverized into powdered form.
2.3 Preparation of plant extract
Methanolic leaf extract of *Blighia sapida* was prepared by soaking 2 kg of the pulverized plant material in 6 l of methanol for 4 days. The liquid portion was then separated from the leaf shaft with the aid of Whatman (No. 1) filter paper and the filtrate was concentrated using a rotary evaporator and dried on a water bath set at 40 °C to obtain a dry residue which is the crude methanolic extract (yield weight 150 g) which was stored in a desiccator until further use.

2.4 Phytochemical screening
The methanolic extract was screened for the presence or absence of alkaloids, flavonoids, tannins, phenols and steroids using standard methods [38, 39].

2.5 Synthesis of silver nanoparticles
The extract was centrifuged at 4,000 rpm for 20 min. The supernatant obtained was used to synthesize silver nanoparticles as described by Lateef *et al.* [40]. Exactly 1 ml of the supernatant was added to the reaction vessel containing 40 ml of 1 mM silver nitrate (AgNO₃) solution for the reduction of silver ion. The reaction was carried out at room temperature (30±2 °C) for 2 h. The formation of silver nanoparticles was monitored through visual observation of the change in colour.

2.6 Characterization of silver nanoparticles
The formation of silver nanoparticles from *Blighia sapida* methanolic leaf extract was also determined by measurement of the absorbance spectrum of the reaction mixture using UV-visible spectrophotometer (UV-2450 Shimadzu Model, USA). The spectrum data recorded was then plotted.

The silver nanoparticles solution was centrifuged at 10,000 rpm for 20 min. The solid residue was then dried at room temperature and the powder obtained was used for FTIR measurement using KBr pellet with an LF-45 fluorescence spectrophotometer FTIR instrument (Shimadzu Model IR, USA) in the wavelength 4000-500 cm⁻¹ [40, 41].

Scanning electron microscopy was done using a Hitachi scanning electron microscope (Model, S-2600N-Tokyo Japan) operating in the high vacuum anode with an acceleration voltage of 20 KV. Thin films of the sample were prepared on a carbon coated copper grid by just dropping a very small amount of the sample on the grid, extra solution was removed.
using a blotting paper and the film on the SEM grid were allowed to dry by putting it under a mercury lamp for 5 min.

2.7 Antioxidant assay

2.7.1 DPPH radical scavenging assay

The 1,1, diphenyl-1-2 picrylhydrazyl (DPPH) scavenging potential of the silver nanoparticles from Blighia sapida methanolic leaf extract was determined using the method of Mensor et al. [42]. Different concentrations (50, 75, 100, 125 and 150 µg/mL) of the silver nanoparticles and the standard (ascorbic acid) were taken in different test tubes. Thereafter, 1 ml of freshly prepared DPPH (0.3 mM) was added to each test tube and vortexed thoroughly. Finally, the solution was incubated in dark place for 30 min. For control, 2 ml of methanol was added instead of silver nanoparticles and run simultaneously with the test. The percentage DPPH radical scavenging activity of the silver nanoparticles was calculated using the formula.

\[
\% \text{ DPPH Radical Scavenging Activity} = \frac{A_c - A_s}{A_c} \times 100
\]

\(A_c\) is the control absorbance of DPPH radical + methanol; \(A_s\) is the sample absorbance of DPPH radical + sample AgNPs / Ascorbic acid.

2.7.2 Reducing power assay

The reducing power of the silver nanoparticles was determined by the method of Linn et al. [43] with slight modification. Different concentrations of AgNPs (50, 75, 100, 125 and 150 µg/ml) were prepared and separately mixed with 2.5 ml phosphate buffer (0.2 M, pH 6.6) and 2.5 ml of potassium ferricyanide (1%). The mixture was incubated at 50 °C for 20 min. Further, 2.5 ml of tricholoroacetic acid (10%) was added to the mixture, which was then centrifuged at 3,000 rpm for 10 min. Finally, the supernatant solution (2.5 ml) was mixed with 2.5 ml of distilled water and 0.5 ml FeCl₃ (0.01%) and absorbance were measured at 700 nm in UV-visible spectrophotometer.

2.7.3 Determination of total phenolics content

The total phenolics content (TPC) of the silver nanoparticles synthesized from methanolic leaf extract of Blighia sapida was determined using the Folin Cioclateau assay [44]. About 1 ml of different concentrations (50, 75, 100, 125 and 150 µg/mL) of the AgNPs was taken into a 25 ml volumetric flask and 10 ml of distilled water and 1.5 ml of Folin Cioclateau reagent were added to it. The mixture was kept for 5 min and then 4 ml of 20% sodium carbonate was added and made up to 25 ml with distilled water and allowed to incubate for 30 min at room
temperature. The total phenolic content was determined using spectrophotometry at 765 nm and was expressed as gallic acid (GA) equivalent (µg/g).

2.7.4 Determination of total flavonoids content

Total flavonoids content (TFC) of the silver nanoparticles from methanolic leaf extract of *Blighia sapida* was estimated using the aluminum chloride colorimetric method of Chang *et al.* [45]. About 0.1 ml of different concentrations of the silver nanoparticles (50, 75, 100, 125 and 150 µg/ml) were separately mixed with 0.1 ml of 10% AlCl₃.6H₂O, 0.1 ml of 1M sodium acetate and 2.8 ml of distilled water and incubated at room temperature for 30 min. Total flavonoid content was determined using spectrophotometry at 415 nm and was expressed as µg/g quercetin equivalent.

3. Results and Discussion

Qualitative phytochemical screening revealed the presence of phenolics, alkaloids, flavonoids, tannins, saponins and steroids. Preliminary identification of nanoparticles formation was determined by observing the colour change. The AgNPs were characterized with colour formation produced from the reduction of silver ion by the plant extract. The intensity of the colour increases as the bio-reduction of silver ion progresses and become stable when the reduction is completed. The colour of the solution changed from light yellow to dark brown (Figure 2). Varying colours including yellow, brown and dark brown has been reported by several authors [24, 40, 46].

![Figure 2. Colour change in the reaction mixture (silver nitrate + *Blighia sapida* extract)](image)

(a) Colour of the mixture after mixing the extract with silver nitrate solution (b) Colour change of the mixture after 2 h
The reduction of Ag\(^+\) to AgNPs was further confirmed using UV-Vis spectroscopy. UV-vis spectroscopy is a valuable technique used to detect the characteristics surface plasmon resonance (SPR) pattern of the metal nanoparticles. Metal nanoparticles exhibited SPR phenomena when metal electrons in the conduction band collectively oscillate in resonance with certain wavelength of incident light. Figure 3 depicts the UV-visible spectrum of the biosynthesized AgNPs from methanolic leaf extract of *Blighia sapida* with absorption spectrum at 413 nm which is a characteristic band for silver. No other peak was observed in the spectrum indicating the formation of AgNPs. These values are within the range reported for AgNPs [40, 47].

Figure 3. UV-vis spectrum of silver nanoparticles synthesized from methanolic leaf extract of *Blighia sapida*

FTIR spectroscopy was used to identify the possible biomolecules present in *Blighia sapida* leaf extract which are responsible for reducing the Ag\(^+\) to Ag\(^0\), capping and stabilizing the
silver nanoparticles. FTIR spectra recorded for the biosynthesized AgNPs is presented in Figure 4. The FTIR spectrum of the nanoparticles produced showed peaks at 3325, 2902, 2382, 2117, 1635, 1288, 1145, 505, 457 and 422 cm⁻¹. The vibrational peak around 3325 cm⁻¹ is assigned to O-H that could possibly emanate from carbohydrate or phenolics. The peak at 2902 cm⁻¹ is ascribed to C-H of the alkyl group, the peak around 2117 cm⁻¹ is due to C=C from alkene or aromatic amine, 2382 cm⁻¹ corresponds with C=C from alkyne, the peak at 1635 cm⁻¹ suggest C=O from carboxyl group or esters and N-H binding vibration of proteins, the peak at 1145 cm⁻¹ is likely due to C-O from phenols while the corresponding peaks at 505, 457 and 422 cm⁻¹ can be ascribed to O-H from phenols or conjugated chromophore. The appearance of these peaks suggested the presence of protein, carbohydrates, hydrocarbons and phytochemicals such as phenolics in the AgNPs which may be responsible for stabilizing and capping effects on the nanoparticles. The biomolecules may have interacted with the silver ions through their oxygen donor atoms and are adsorbed on the surface of the metal ions. The tentative assignment of the peak is supported by other literature reports [48].

Figure 4. FTIR spectrum of silver nanoparticles synthesized from methanolic leaf extract of Blighia sapida
The size, shape and morphology of the synthesized AgNPs were determined by scanning electron microscopy. The synthesized AgNPs were spherical in shape with diameter range of 50-70 nm (Figure 5).

Figure 5. SEM image of silver nanoparticles synthesized from methanolic leaf extract of *Blighia sapida*

In vitro antioxidant activity of the synthesized AgNPs was studied by analyzing four antioxidant capacities which are indicative of the antioxidant potential of the synthesized AgNPs. The studied parameters were DPPH radial scavenging activity, reductive potential, total phenolics and total flavonoids contents of the synthesized AgNPs at different concentrations from 50-150 µg/ml. DPPH is a stable organic free radical that has been used for investigating the free radical activities and thus antioxidant activity of various natural products [49, 50, 51]. Figure 6 shows the dose response for the DPPH scavenging activity of the synthesized AgNPs. The AgNPs synthesized from the methanolic extract of *Blighia sapida* are potential free radicals scavengers with effective inhibition activity in a dose dependent manner. The varying concentration of the AgNPs (50, 75, 100, 125 and 150 µg/ml) significantly scavenged DPPH by 58.10, 59.26, 62.33, 71.24 and 75.42% respectively. However, these activities are less than that of ascorbic acid, the standard reference used. The reducing power of a compound is related to its electron transfer ability and therefore may serve as a significant indicator of its potential antioxidant activity [52]. The reductive capabilities of the biosynthesized AgNPs is shown in Figure 7. The reducing power of the AgNPs increased with increasing amount of sample. The biosynthesized AgNPs exhibited a maximum reducing capability of 53.52% at 150 µg/ml which is lower than that of ascorbic acid.
acid (70.19%). Figures 8 and 9 depict the total phenolics and total flavonoids contents of the biosynthesized AgNPs. The AgNPs contained phenols and flavonoids in a concentration dependent manner. At a concentration of 150 µg/ml, the AgNPs has total phenolic content of 36.52 µg/g and total flavonoid content of 10.14 µg/g respectively. However, these values are less than that of phenolic and flavonoid contents of ascorbic acid, the standard antioxidant.

![Figure 6. DPPH radical scavenging activity of AgNPs and ascorbic acid](image1)

![Figure 7. The reducing power assay of the AgNPs and ascorbic acid](image2)
Phytochemicals like flavonoids, phenolics, anthocyanins have been of great interest as the sources of natural antioxidants. Plant materials such as leafy vegetables, fruits, seeds, cereals
have been reported to contain natural antioxidants [53, 54]. Flavonoids are a class of secondary plant phenols with powerful antioxidant properties [55]. Phenols are regarded as the most important oxidative components of plants hence, correlation between the concentration of total phenolics and antioxidant capabilities have been reported [56]. The antioxidant activity of phenol is mainly due to their redox properties which play an important role in scavenging and neutralizing free radicals. In the current study, the antioxidant activity of the AgNPs may be attributed to the high phenolics and flavonoids content in the plant. These plant phenolics are strong antioxidants with high reducing capacity [57]. The ability of *Blighia sapida* to reduce silver ions or to form silver nanoparticles by reducing silver ions is likely due to the presence of phenolic compounds which are electron donors.

4 Conclusion
This study reported the green synthesis of silver nanoparticles by simple and ecofriendly manner using the methanolic leaf extract of *Blighia sapida*. The leaf extract contains protein, carbohydrates and phenolic compounds which might be responsible for the bio-reduction of silver ion and capping/stabilization of the silver nanoparticles as was confirmed by FTIR studies. The biosynthesized silver nanoparticles from leaf extract of *Blighia sapida* showed antioxidant activity through its DPPH radical scavenging activity, its reductive potential, high phenolics and flavonoids contents. This study provides an insight into the usage of *Blighia sapida* leaf as a good source of naturally occurring antioxidant and could have great importance as therapeutic agent in preventing or ameliorating oxidative stress related diseases.

References

1. Harrman D 1992 Role of free radicals in aging and diseases. *Ann. N. Y. Acad. Sci.* 673 (1) pp 126-141.
2. Bagchi K and Puris S (1994) Free radical and antioxidants in health and disease. *East. Mediterr. Health J.* 4 pp 350-360.
3. Young I S and Woodside J V 2001 Antioxidants in health and disease. *J. Clin. Pathol.* 54 (3) pp 176-186.
4. Valko M, Lebfritz D, Monal J, Cronin MTD, Mazur M and Tesler J 2007 Free radicals and antioxidants in normal physiological functions and human disease. *Int. J. Biochem. Cell Biol.* **39** (1) pp 44-84.

5. Mohammed AA and Ibrahim AA 2004 Pathological roles of reactive oxygen species and their deference mechanism. *Saudi Pharmaceut. J.* **12** (6) pp 1-18.

6. Shigenaga M K, Hager T M and Ames B N 1994 Oxidative damage and mitochondrial decay in aging. *Proc. Natl. Acad. Sci. USA* **91** (23) pp 10771-10778.

7. Liu T, Stern A and Roberts L J 1999 The isoprostanes: Novel prostanglandin-like products of the free radical catalyzed peroxidation of arachidonic acid. *J. Biomed. Sci.* **6** (4) pp 226-235.

8. Sies H 1997 Oxidative stress oxidants and antioxidants. *Exp. Physiol.* **82** (2): 291-295.

9. Kumar S 2011 Free radicals and antioxidants: Human and food system. *Adv. Appl. Sci. Res.* **2** (1) pp 129-135.

10. Harris ED 1992 Regulation of antioxidant enzymes: *FASEB J.* **6** (9) pp 2675-2683.

11. Harris ED 1992 Copper as a cofactor and regulation of copper, zinc superoxide dismutase. *J. Nutr.* **122** (suppl_3) pp 636-640.

12. Trombino S, Serini S, Di-Nicuolo F, Celleno L, Ando S, Picci N, Calviello G and Palloza P 2004 Antioxidant effect of ferulic acid in isolated membranes and intact cells: synergistic interactions with alpha-tocopherol, beta-carotene and ascorbic acid. *J. Agric. Food Chem.* **52** (8) pp 2411-2420.

13. Hudson BJF and Mahgoub SEO 2006 Naturally occurring antioxidants in leaf lipids. *J. Sci. Food Agric.* **31** (7) pp 646-650.

14. Abramović H. and Abraham N 2006 Effect of added rosemary extract on oxidative stability of *Camelina sativa* oil. *Acta Agric. Slov.* **87** (2) pp 255-261.

15. Kowalski R 2007 GC analysis of changes in the fatty acid composition of sunflower and olive oils heated with quercetin, caffeic acid, protocatechuic acid and butylated hydroxyaniosle. *Acta Chromatogr.* **18** pp 15-23.

16. Zolnik BS and Sadrich N 2009 Regulatory perspective on the importance of ADME assessment of nanoscale material containing drugs. *Adv. Drug Deliv. Rev.* **61** (6) pp 422-427.

17. Miyazaki K and Islam N 2007 Nanotechnology systems of innovation. An analysis of industry and academia research activities. *Technovation* **27** (11) pp 661-675.
18. Garde D 2012 Chemo bomb nanotechnology effective in halting tumors.
http://www.fiercedrugdelivery.com/story/chemo-bomb-nanotechnology-effective-halting-tumors/. Accessed 17 January 2020.
19. Peiris PM, Bauer L, Toy R, Tran E, Pansky J, Doolittle E, Schmidt E, Hayden E, Mayer A, Keri RA and Griswold MA 2012 Enhanced delivery of chemotherapy to tumor using a multicomponent nanochain with radiofrequency tunable drug release.
ACS Nano 6 (5) pp4157-4168.
20. Banooee M, Seif S, Nazari ZE, Jafari-Fesharaki P, Shahverdi HR, Moballegh A, Moghaddam KM, Shahverdi AR 2010 ZnO nanoparticles enhanced antibacterial activity of ciprofloxacin against Staphylococcus aureus and Escherichia coli. J. Biomed. Mater. Res B: Appl. Biomater. 92 (2) pp 557-561.
21. Radovic-Moreno AF, Lu TK, Puscasu VA, Yoon CJ, Langer R, Farokhzad OC 2012 Surface charge-switching polymeric nanoparticles for bacterial cell wall-targeted delivery of antibiotics. ACS Nano 6 (5) pp 4279-4287.
22. Wong HL, Wu XY and Bendayan R 2012 Nanotechnology advances for the delivery of central nervous system therapeutics. Adv. Drug Deliv. Rev. 64 (7) pp 686-700.
23. Saad AM, Abdel-Aleem AA, Ghareeb MA, Hamed MM, Abdel-Aziz MS and Hadad AH 2017 In vitro antioxidant, antimicrobial and cytotoxic activities and green biosynthesis of silver and gold nanoparticles using Callistemon citrus leaf extract. J. Appl. Pharmaceut. Sci. 7 (6) pp 141-149.
24. Sood R and Chopra DS 2017 Improved yield of green synthesized crystalline silver nanoparticles with potential antioxidant activity. Int. Res. J. Pharm. 8 (4) pp 4-17.
25. Bhakya S, Muthukrishnan S, Sukumaran M and Muthukumar M 2016 Biogenic synthesis of silver nanoparticles and their antioxidant and antibacterial activity. Appl. Nanosci. 6 (5) pp 755-766.
26. Thilagavathi T, Kathirav G and Srinivasan K 2016 Antioxidant activity and synthesis of silver nanoparticles using the leaf extract of Limonia acidissima. Int. J. Pharm. Biosci. 7 (4): 201-205.
27. Aderinola OA, Farinu GO, Akinlade JA, Olayeni TB, Ojebiyi OO and Ogunniyi PO 2007 Nutritional potential of Blighia sapida K Konig (Ackee ackee) leaves as a dry season feed resource for West African dwarf goats in the derived savanna zone of Nigeria. Livestock Res. Rural Devel. 19 (6) paper 78.
28. Blake OA, Jackson JC, Jackson MA and Gordon CA 2002 Assessment of dietary exposure to the natural toxin hypoglycin in ackee (Blighia sapida) by Jamaican consumers. Food Res. Int. 37 (8) pp 833-838.

29. Arbonnier M 2002 Arbes, arbutus et liaries des zones seches d’ Afrique de l’Quest. Edition 2, CIRAD-MNH pp 173-179.

30. Joskow R, Belson M, Vesper H, Backer L and Rubin C 2006 Ackee fruit poisoning: an outbreak investigation in Haiti 2000-2001 and review of the literature. Clin. Toxicol. 44 (3) pp 267-273.

31. Abbiw DK 1990 The useful plants of Ghana. Intermediate Technology Publications and the Royal Gardens, Kew, UK.

32. Irvin FR 1965 Botany and Medicine West African. University Press Ibadan, Nigeria. pp 102-130.

33. Natalini B, Capodiferro V, De Luca C, Espinal R. Isolation of pure (2S, 1′ S, 2′ S)-2-(2′-carboxycyclopropyl) glycine from Blighia sapida (Akee) 2000 J. Chromatogr. 873 (2) pp 283-286.

34. Ekué MR, Sinsin B, Eyog-Matig O and Finkeldey R 2010 Uses, traditional management, perception of variation and preference in Ackee (Blighia sapida K. Koenig) fruit traits in Benin. Implications for domestication and conservation. J. Ethnobiol. Ethnomed. 6 Article Number 12. https://doi.org/10.1186/1746-4269-6-12.

35. Olawale AE, Adeduntan SA, Oyerinde OV and Adeniyi MM 2016 Antioxidant properties and proximate composition of Blighia sapida D. Koenig (Aril) in rainforest and savannah zone of South West Nigeria. Int. J. Eng. Sci. 5 (3) pp 5-15.

36. Amirah PO and Oloyede HO 2017 Antioxidant properties and proximate composition of Blighia sapida stem bark in alloxan induced diabetic rats. Global J. Med. Res. B: Pharm. Drug Discov. Toxicol. Med. 17 (2) pp 1-8.

37. Ojo OA, Ajiboye BO, Imiere OD, Adeyoun O, Olayide I and Fadaka A 2018 Antioxidative properties of Blighia sapida K.D Koenig stem bark extract and inhibitory effects on carbohydrate hydrolyzing enzymes associated with non-insulin dependent diabetes. Pharmacogn. J. 10 (2) pp 376-383.

38. Banso A and Ngbede JE 2006 Phytochemical screening and in vitro antifungal properties of Fagara zanthoxyloides. J. Food Agric. Environ. 4 (3/4) pp 8-9.

39. Ngbede JE, Yakubu RA and Nyam DA 2008 Phytochemical screening for active compound in Camarium schlveinfurthil (Atile) leaves from Jos North, Plateau State, Nigeria. Res. J. Biol. Sci. 3 (9) pp 1076-1078.
40. Lateef A, Azeez MA, Asafa TB, Yekeen TA, Akinboro A, Oladipo IC, Ajetomobi FE, Gueguim-Kana EB and Beukes LS 2015 *Cola nitida*-mediated biogenic synthesis of silver nanoparticles using seed and seed shell extracts and evaluation of antibacterial activities. *BioNanosci.* 2015; 5: 196-205.

41. Bhat R, Deshpannde R, Ganachari SV, Huh DO and Venkataraman A 2011 Photo-irradiated biosynthesis of silver nanoparticles using edible mushroom *Pleurotus florida* and their antibacterial activity studies. *Bioinorg. Chem. Applicat.* Article ID 650979. https://doi.org/10.1155/2011/650979.

42. Mensor LL, Menez FS, Leitão GG, Reis AS, Dos-Santos TC, Coube CS and Leitao SG 2001 Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. *Phytoter. Res.* 15 pp 127-130.

43. Linn ES, Yang CT, Chou HJ and Chang T 2009 Screening of antioxidant activities by the edible Basidomycete *Antrodia cinnamomea* strain in submerged culture *J. Food Biochem.* 34 (6) pp 1141-1156.

44. Harbone JB 2000 Physiochemical methods. A Guide to Modern Techniques of plant Analysis 3rd ed. Chapman and Hall, pp. 42-43.

45. Chang C, Yang M, Wen H and Chern J 2002 Estimation of total flavonoids content in propolis by two complementary colorimeter methods. *J. Food Drug Anal.* 10 (3) pp 178-182.

46. Rajakannu S, Shankar S, Perumal S, Subramanian S and Dhakshinamoorthy GP 2015 Biosynthesis of silver nanoparticles using *Garcinia mangostana* fruit extract and their antibacterial, antioxidant activity. *Int. J. Curr. Microbiol. Appl. Sci.* 4 pp 944-52.

47. Mahmoud W, Elazzazy AM and Danial EN 2017 *In vitro* evaluation of antioxidant, biochemical and antimicrobial properties of biosynthesized silver nanoparticles against multidrug-resistant bacterial pathogens. *Biotechnol. Biotechnol. Equip.* 31 (2) pp 373-379.

48. Verma A and Mehata MS 2016 Controllable synthesis of silver nanoparticles using Neem leaves and their antimicrobial activity. *J. Rad. Res. Appl. Sci.* 9 (1) pp 109-115.

49. Kumar SR, Ashish J and Satish N 2011 *Momordica charantia* Linn. A mini review. *Int. J. Biomed. Res.* 11 (2) pp 579-87.

50. Rushender R, Eerika M, Madhusudhanan N and Konda MV 2012 *In vitro* antioxidant and scavenging activity of *Nymphaea pubescens*. *J. Pharmaceut. Res.* 5 (7) pp 3804-3806.
51. Olamide EA, Adebiyi FO, Tan NH and Zeng GZ 2017 *In vitro* antioxidant activity, total phenolics and total flavonoids content of ethanol extract of stem and leaf of *Grenia carpinifolia*. *Beni-Suef Univ. J. Basic Appl. Sci.* 6 (1) pp 10-14.

52. Gülçin I, Büyükokuroğlu ME, Oktay M and Küfrevioğlu Öİ 2003 Antioxidant and analgesic activities of turpentine of *Pinus nigra* Arn. subsp. *pallasiana* (Lamb.) Holmboe. *J. Ethnopharmacol.* 86 (1) pp 51-58.

53. Akintola AO, Ayoola PB and Ibikunle GJ 2012 Antioxidant activity of two Nigerian green leafy vegetables. *J. Pharmaceut. Biomed. Sci.* 14 (15) pp 1-5.

54. Aksoy L, Kolay E, Ağılônü Y, Aslan Z and Kargıoğlu M 2013 Free radical scavenging activity total phenolic content, total antioxidant status of endemic *Thermopsis turcica*. *Saudi J. Biol. Sci.* 20 (3) pp 235-239.

55. Tarusco TG, Barney DL and Exon TJ 2004 Content and profile of flavonoid and phenolic acid compounds in conjunction with antioxidant capacity for a variety of North West *Vaccinium* berries. *J. Agric. Food Chem.* 52 (10) pp 3169-3176.

56. Moskotivz J, Yim KA, and Choke PB 2002 Free radicals and disease. *Arch. Biochem. Biophys.* 397 (2) pp 354-359.

57. Pieta PG 2000 Flavonoids as antioxidants. *J. Nat. Prod.* 2000 63 (7) pp 1035-1042.