COMPARATIVE ANALYSIS OF AN IMPELLER GEOMETRY AT DIFFERENT HEADS OF A PUMP

Abstract: Impellers designing with ten blades at different heads of a hydraulic pump (from 5 to 25 m) by means of the Ansys Workbench software environment was carried out in the article. Three-dimensional models are presented and elements description of the radial impeller of the pump is given. Calculations of the impellers geometry were carried out at volume fluid flow rate (water) of 300 m³/h. Profiles and geometric dimensions of the impeller blades are obtained in the spans: 0 and 1. It is determined that the radial impellers are recommended to be used at the pump head of 20 – 25 m. The most stable characteristic of the pump operation is observed in this range of heads. Tangential, meridional and relative velocities of fluid flow at the impeller blades are calculated.

Key words: a radial impeller, a blade, a pump head, theta, beta, thickness, a shroud, a hub, fluid, a pump.

Language: English

Citation: Chemezov, D., et al. (2018). Comparative analysis of an impeller geometry at different heads of a pump. *ISJ Theoretical & Applied Science, 12* (68), 149-192.
[Soi](http://s-o-i.org/1.1/TAS-12-68-27)
[Doi](https://dx.doi.org/10.15863/TAS.2018.12.68.27)

Introduction

Energy conversion of rotation of a motor shaft into fluid flow energy is performed by means of a radial impeller. Fluid moves from a center to a periphery of a device, i.e. centrifugal force occurs at rotation of the impeller. Vacuum is created in a central part of the radial impeller, which provides fluid supply under pressure to a suction pipe of the pump. The impellers are made of cast iron or steel.

Main elements of the radial impeller [1 – 10] are presented by the wire three-dimensional models in the Fig. 1 – 13. In a shroud it is located a hub with blades (the impeller). A gap is provided between maximum outer diameters of the shroud and the...
impeller, which is an outlet for moving fluid. Fluid is pumped into an inlet. The minimum and maximum diameters of the inlet equal to the minimum diameter of the hub and the minimum inner diameter of the pump shroud. The impeller blade profile is presented by end surfaces of the blades at the hub and the shroud. A periodic boundary defines a contour of a calculated cavity, which is located between the hub and the shroud. A centroid divides a passage area of the impeller in half. Mean lines characterize a number of the meridional flow surfaces. The camber surface of the blade is characterized by a maximum ordinate of the mean line of the profile. This parameter depends on the inlet angle and the outlet angle of fluid. The inlet and outlet edges of the blade are rounded, and a value of a rounding radius should be selected taking into account the requirements of hydrodynamics. The throat surface is defined as a distance between the low theta side and the high theta side along the blade surface. The radial impeller is built in the BladeGen module of the Ansys Workbench software environment.

Impact Factor:

	ISRA (India)	SIS (USA)	ICV (Poland)
	3.117	0.912	6.630
ISI (Dubai, UAE)	0.829	PHHH (Russia)	0.156
GIF (Australia)	0.564	ESJI (KZ)	5.015
JIF	1.500	IBI (India)	4.260
ICV (Poland)	6.630	SJIF (Morocco)	5.667

Figure 1 – The hub of the radial impeller.

Figure 2 – The shroud of the radial impeller.

Figure 3 – The inlet of the radial impeller.

Figure 4 – The outlet of the radial impeller.
Impact Factor:

Journal	Impact Factor
ISRA (India)	3.117
ISI (Dubai, UAE)	0.829
GIF (Australia)	0.564
JIF	1.500
SIS (USA)	0.912
PIIIH (Russia)	0.156
ESJI (KZ)	5.015
IBI (India)	4.260
ICV (Poland)	6.630
SIF (Morocco)	5.667
PIF (India)	1.940

Figure 5 – The periodic of the radial impeller.

Figure 6 – The blades of the radial impeller.

Figure 7 – The blades hub end of the radial impeller.

Figure 8 – The blades shroud end of the radial impeller.
Impact Factor:	ISRA (India) = 3.117	SIS (USA) = 0.912	ICV (Poland) = 6.630
ISI (Dubai, UAE) = 0.829	PHHH1 (Russia) = 0.156	PIF (India) = 1.940	
GIF (Australia) = 0.564	ESJI (KZ) = 5.015	IBI (India) = 4.260	
JIF = 1.500	SJIF (Morocco) = 5.667		

Figure 9 – The blades centroid of the radial impeller.

Figure 10 – The mean lines of the radial impeller.

Figure 11 – The camber surfaces of the radial impeller.

Figure 12 – The throat surfaces of the radial impeller.
Impact Factor:

Journal	Impact Factor
ISRA (India)	3.117
ISI (Dubai, UAE)	0.829
GIF (Australia)	0.564
JIF	1.500
ICV (Poland)	6.630
PHH (Russia)	0.156
ESJI (KZ)	5.015
IBI (India)	4.260
SIS (USA)	0.912
SJIF (Morocco)	5.667
PIF (India)	1.940
GIF (Australia)	0.564
JIF	1.500
ICV (Poland)	6.630
PHH (Russia)	0.156
ESJI (KZ)	5.015
IBI (India)	4.260
SIS (USA)	0.912
SJIF (Morocco)	5.667
PIF (India)	1.940

Figure 13 – The 3D model of the radial impeller.

The geometry calculation of the pump impellers

Initial operating conditions of the pump and the data for the geometry calculation of the impellers are presented in the table 1.

The geometry calculation of the impellers was carried out 5 times at the different values of the pump head (H). The pump head is the sum of static and velocity heads.

Table 1. Operating conditions of the pump and the geometry of the radial impeller.

Operating conditions
Duty
Rotational speed
Volume flow rate
Density
Pump head
Inlet flow angle
Merid. velocity ratio

Efficiencies
Hydraulic
Volumetric
Mechanical
Pump

Geometry
Hub diameter
Shaft min. diam. factor
Dhub/Dshaft
Tip diameter
Head coefficient
Tip diameter
Leading edge blade angles
Hub blade angle
Mean blade angle
Trailing edge blade angles
Blade angle
Rake angle
Shroud
Incidence
Shroud blade angle
Miscellaneous
Number of blades
Thickness/tip diam.
Hub inlet draft angle
The pump head varied in the range of 5 – 25 m. The remaining geometric and operating parameters of the radial impellers were constant. Volume flow rate of fluid by the value of 300 m³/h was required at rotation speed of the radial impeller of 1500 rpm. Water with density of 1000 kg/m³ was adopted as working fluid. The inlet flow angle is the angle at the leading edge of the impeller. The value of the inlet flow angle of fluid was taken 90 degrees for performing of the calculations. Approach flow without pre-rotation occurs at the given value of the inlet flow angle. The meridional velocity ratio is pattern of the linear velocity profile from the hub to the shroud at the leading edge of the radial impeller. Meridional velocity is less at the hub of the radial impeller at the value of the meridional velocity ratio of 1.1.

The efficiency coefficient of the pump is defined as the coefficients product of hydraulic, volumetric, and mechanical efficiencies. The coefficients values characterize losses of useful work of the pump at friction of the mating elements of the device.

The shaft minimum diameter factor is the safety factor of the pump shaft in conditions of maximum allowable shear stress of material. The one tenth of the factor (1.1) is increasing of the shaft diameter by 10%. The ratio of the impeller hub diameter to the shaft diameter (Dhub/Dshaft) was taken 1.5. The tip diameter was set to 280 mm at the adopted pump head coefficient equal to 0.46. The leading edge blade angles are characterized by the hub blade angle (27 degrees) and the mean blade angle (19 degrees). The trailing edge blade angles are characterized by the blade angle (22.5 degrees) and the rake angle (0 degrees). The blade angle at the shroud by the value of 16 degrees was adopted at designing of the impeller. The incidence angle at the shroud was selected by default 0 degrees.

The adopted number of the impellers blades is 10 pieces. This number of the blades gives greater control over flow direction in the pump impeller. The ratio of thickness to the tip diameter is used for determining of the impeller blade thickness. The ratio of thickness to the tip diameter equal to 0.03 indicates about a low probability of blockage to fluid flow. The hub inlet draft angle (30 degrees) is the angle between the hub and the horizontal line at the hub inlet. The hub radius of the pump impeller depends on the value of this angle.

The calculated parameters of the impeller elements in the different sections (from stub to peripheral) are presented in the summary table 2.

Parameters	Pump head, m				
	5	10	15	20	25
Span: 0					
1. Layer					
B2B throat length 0	23.2998	30.7859	33.0261	35.0692	36.0579
Segment 0 (0 to 0)	23.2997	30.7559	32.9884	35.018	36.0186
Crv throat length 0	23.2997	30.7559	32.9884	35.018	36.0186
LE pitch	32.6379	34.94	38.1708	42.7978	46.9774
TE pitch (S)	64.7102	97.6394	121.378	138.501	152.753
Centroid:Z	-10.3934	-6.99712	-3.1923	-1.75024	-1.5597
Centroid:R	48.4668	67.2025	81.5823	92.5206	101.509
Centroid:T	-38.8	-38.3	-45.6	-54.0	-61.0
Centroid:Mp	0.589379	0.805987	0.877109	0.864041	0.849385
Centroid:M	23.0234	38.4933	48.5125	54.0931	58.5061
Airfoil area	327.405	582.996	893.181	1224.9	1574.36
2. Blade & layer					
3D meanline length	67.8987	99.3529	130.444	158.032	183.85
Camber length	67.9001	99.3554	130.448	158.038	183.859
Cord length (C)	67.1055	96.7405	127.599	155.85	182.175
Meridional length (M)	39.9246	65.4698	83.0066	93.8869	102.905
Stagger angle	-53.5	-47.4	-49.4	-53.0	-55.6
Solidity (C/S)	1.03702	0.990793	1.05126	1.12526	1.19261
Pitch cord ratio (S/C)	0.964305	1.00929	0.951243	0.888686	0.838494
3. Bezier					
Stagger angle	51.8	43.6	45.5	49.8	53.0
LE theta angle	0.1	0.2	0.2	0.2	0.2
LE beta angle	41.5	31.4	33.5	39.6	44.1
TE beta angle	67.7	68.1	67.9	67.7	67.6
LE wedge angle	-2.2	-2.2	-2.8	-3.1	-3.2

The calculated parameters of the impeller elements in the different sections (from stub to peripheral) are presented in the summary table 2.
	ISRA (India)	SIS (USA)	ICV (Poland)	SIF (France)
Impact Factor	3.117	0.912	6.630	1.940

	Philadelphia	GIF (Australia)	JIF (Indonesia)
	1.500	0.564	5.667

Advanced side1 point	Value	Advanced side2 point	Value
First point %M'		First point %M'	
Last point %M'		Last point %M'	
Linear point %M'		Linear point %M'	

1. Layer	Value	2. Blade & layer	Value
B2B throat length 0	26.0818	3D meanline length	77.6836
Segment 0 (0 to 0)	26.0781	Camber length	77.6849
Crv throat length 0	26.0781	Cord length (C)	77.4054
LE pitch	47.3035	Meridional length (M)	39.171
TE pitch (S)	75.8122	Stagger angle	-59.6
Centroid:Z	-25.891	Solidity (C/S)	1.02102
Centroid:R	59.7521	Pitch cord ratio (S/C)	0.979417
Centroid:T	-38.0		
Centroid:Mp	0.420255		
Airfoil area	373.976		

Span: 0.2500

1. Layer	Value	2. Blade & layer	Value
B2B throat length 0	28.1162	3D meanline length	88.7124
Segment 0 (0 to 0)	28.0973	Camber length	88.7137
Crv throat length 0	28.0973	Cord length (C)	88.6499
LE pitch	61.9692	Meridional length (M)	38.881
TE pitch (S)	86.9141	Stagger angle	-64.0
Centroid:Z	-41.6684	Solidity (C/S)	1.01997
Centroid:R	70.985	Pitch cord ratio (S/C)	0.98042
Centroid:T	-37.2		
Centroid:Mp	0.320383		
Airfoil area	427.293		

Span: 0.5000

1. Layer	Value	2. Blade & layer	Value
B2B throat length 0	28.6997	3D meanline length	88.7124
Segment 0 (0 to 0)	28.6716	Camber length	88.7137
Crv throat length 0	28.6716	Cord length (C)	88.6499
LE pitch	76.6348	Meridional length (M)	38.881

Span: 0.7500
Main integral characteristics of the cross sections of the profiled pump impellers blades are given in the table. \(\text{Span 0.000} \) is the stub section of the impeller blade; \(\text{span 1.000} \) is the peripheral section of the impeller blade. The calculation of a pitch at the leading edge of the blade (\(LE \) pitch), the pitch at the trailing edge of the blade (\(TE \) pitch), the airfoil area, a cord length (\(C \)), the meridional length (\(M \)), the stagger angle, solidity (\(C/S \)), the pitch cord ratio (\(S/C \)) and the other parameters was performed.
At considering of the blades characteristics in the stub and peripheral sections, it could be argued that:

1. The pitch at the leading edge of the impeller blade in the stub section increases with increasing of the pump head, and the pitch in the peripheral section decreases.

2. The pitches at the trailing edge of the impeller blade are the same in the stub and peripheral sections at the pump heads of 20 and 25 m.

3. Decreasing of the airfoil area of the impeller blade is almost twice observed at the pump head of 5 m.

The contours and the dependencies graphs of the main elements geometry of the impellers from the pump head are presented in the Fig. 14 – 45. The flowing parts of the impellers blades and fluid flow direction are displayed in the meridional configuration. The blade channels (two adjacent impeller blades) are shown in the Fig. 15. θ is circumferential coordinate of the mean line points in a cylindrical coordinate system, an axis of which coincides with the axis of an engine. β (axial) is the angle between a tangent to the mean line of the profile and the axis of the impeller. θ changes in the range of 0…100 degrees. The maximum negative value of the angle is reached at the trailing edge of the blade at the pump head of 25 m. β changes in the range of 120…165 degrees. The value of the angle decreases in the stub section of the impeller blade. Thickness changing of the impellers blades is in the range of 0.09 to 0.5 mm. Changing of the inverse radius of curvature of the blade at the hub and the shroud of the impeller in meridional fraction from the leading edge to the trailing edge are shown in the Fig. 19. Maximum increasing of the inverse radius of curvature of the blade is observed at the trailing edge. The dependencies of the inverse radius of curvature of the blade in meridional fraction from the leading edge to the trailing edge (the parameters mean, side1 and side2) are presented in the Fig. 20. Mean is a default option and specifies that the θ values are for location of the mean line. Side1 specifies that the θ values locate the side of the blade (at the larger θ value). Side2 specifies that the θ values locate the side of the blade (at the smaller θ value). The inverse radius of curvature of the impeller blade (the leading edge) at mean and side1 has the positive values. The values changing of θ and β at the leading and trailing edges of the impellers blades in the range of the stub/peripheral sections are defined in the Fig. 21 and 22. θ at the leading edge of the blade is 0 degrees; θ at the trailing edge is 65…92 degrees. In the stub section β at the leading edge of the blade is more than at the trailing edge, and in the peripheral section is vice versa. A height distribution of the minor and major radii of ellipses of the leading edge of the impeller blade is shown in the Fig. 23. The relative height of the impeller blade is plotted along the horizontal axis, the values of the edges radii in mm are plotted along the vertical axis. Changing of the lean angle of the impeller blade at the hub and the shroud from the relative axial chord is calculated in the Fig. 24. Significant changing of the values of this angle is determined at the pump head of 20 – 25 m. The quasi-orthogonal area was calculated with and without the flow angle correction of fluid, with and without the blades. It is determined that the quasi-orthogonal area of the blade with correction in 2 – 3 times is less than the quasi-orthogonal area of the blade without correction. The airfoil areas of the impellers blades in the height are calculated on the graphs (the Fig. 26). The airfoil area of the blade from the hub to the shroud increases linearly at the pump head of 5 m. The airfoil area decreases according to a non-linear law at the pump head of 15 – 20 m at the distance from the stub section to the mean line, and the airfoil area increases according to the non-linear law at the distance from the mean line to the peripheral section. The maximum spherical diameter at the leading edge of the impeller blade is 85 mm at the pump head of 10 m. This is the maximum value of this parameter. The dependencies of θ and β from M-Prime (the current blade angle with the horizontal axis using the radius normalized meridional distance), M (the current blade angle with the horizontal axis using the meridional distance), Z (the current blade angle with the horizontal axis using axial location) and R (the current blade angle with the horizontal axis using radial location) are shown in the Fig. 28 – 31. Changing of θ and β from the stub to peripheral sections of the impellers blades are presented in the Fig. 32 – 39. θ from M at the leading edge of the blade (in all sections) is 0 degrees; θ from M at the trailing edge is 65 degrees. The impeller blade profile has maximum curvature at the high pump heads. The dependencies of β from θ for all sections are presented in the Fig. 40. It is noted that in the stub section β decreases, and in the peripheral section β increases.

Impact Factor:

Journal	Impact Factor
ISRA (India)	3.117
ISI (Dubai, UAE)	0.829
GIF (Australia)	0.564
JIF	1.500
SIS (USA)	0.912
PHHI (Russia)	0.156
PIF (India)	1.940
ESJI (KZ)	5.015
IB (India)	4.260
SJIF (Morocco)	5.667

Philadelphia, USA
Impact Factor:

Journal	Impact Factor
ISRA (India)	3.117
ISI (Dubai, UAE)	0.829
GIF (Australia)	0.564
JIF	1.500
SIS (USA)	0.912
PHHI (Russia)	0.156
ESJI (KZ)	5.015
PIF (India)	1.940
ICV (Poland)	6.630
SJIF (Morocco)	5.667
PIF (India)	1.940

Figure 14 – The meridional configuration of the impeller blade: A) $H = 5$ m, B) $H = 10$ m, C) $H = 15$ m, D) $H = 20$ m, E) $H = 25$ m.
Impact Factor:

Journal	Impact Factor
ISRA (India)	3.117
ISI (Dubai, UAE)	0.829
GIF (Australia)	0.564
JIF	1.500
SIS (USA)	0.912
PHHII (Russia)	0.156
ESJI (KZ)	5.015
ICV (Poland)	6.630
PIF (India)	1.940
IBI (India)	4.260
ICV (USA)	5.667

Figure 15 – The blade-to-blade view: A) $H = 5$ m, B) $H = 10$ m, C) $H = 15$ m, D) $H = 20$ m, E) $H = 25$ m.
Impact Factor:

ISRA (India) = 3.117
ISI (Dubai, UAE) = 0.829
GIF (Australia) = 0.564
JIF = 1.500

SIS (USA) = 0.912
PHHI (Russia) = 0.156
ESJI (KZ) = 5.015
SJIF (Morocco) = 5.667

ICV (Poland) = 6.630
PIF (India) = 1.940
IBI (India) = 4.260

Figure 16 – Theta (blade location): A) $H = 5$ m, B) $H = 10$ m, C) $H = 15$ m, D) $H = 20$ m, E) $H = 25$ m.
Impact Factor:

Journal	Impact Factor
ISRA (India)	3.117
ISI (Dubai, UAE)	0.829
GIF (Australia)	0.564
JIF	1.500
SIS (USA)	0.912
PHHH (Russia)	0.156
ESJI (KZ)	5.015
IBI (India)	4.260
ICV (Poland)	6.630
PIF (India)	1.940
ESJI (KZ)	5.015
SJIF (Morocco)	5.667

Figure 17 – Beta (blade angle): A) $H = 5\ m$, B) $H = 10\ m$, C) $H = 15\ m$, D) $H = 20\ m$, E) $H = 25\ m$.
Figure 18 – Normal thickness: A) $H = 5$ m, B) $H = 10$ m, C) $H = 15$ m, D) $H = 20$ m, E) $H = 25$ m.
Impact Factor:

- ISRA (India) = 3.117
- ISI (Dubai, UAE) = 0.829
- GIF (Australia) = 0.564
- JIF = 1.500
- GIF (Russia) = 0.156
- SIS (USA) = 0.912
- ESJI (KZ) = 5.015
- PIIH (Poland) = 6.630
- IRN (Russia) = 0.156
- SJIF (Morocco) = 5.667
- PI F (India) = 1.940
- IBI (India) = 4.260

Figure 19 – The meridional curvature graph: A) $H = 5$ m, B) $H = 10$ m, C) $H = 15$ m, D) $H = 20$ m, E) $H = 25$ m.
Impact Factor:

ISRA (India) = 3.117
ISI (Dubai, UAE) = 0.829
GIF (Australia) = 0.564
JIF = 1.500

SIS (USA) = 0.912
PHHII (Russia) = 0.156
ESJI (KZ) = 5.015
PIF (India) = 1.940
IBI (India) = 4.260

ICV (Poland) = 6.630
RIHNC (Russia) = 0.156
ESJI (KZ) = 5.015
SJIF (Morocco) = 5.667

Figure 20 – The blade-to-blade curvature graph: A) $H = 5$ m, B) $H = 10$ m, C) $H = 15$ m, D) $H = 20$ m, E) $H = 25$ m.
Impact Factor:

Source	Impact Factor
ISRA (India)	3.117
ISI (Dubai, UAE)	0.829
GIF (Australia)	0.564
JIF	1.500
SIS (USA)	0.912
PIII (Russia)	0.156
ESJ (KZ)	5.015
IBI (India)	4.260
ICV (Poland)	6.630
PIF (India)	1.940
ESJI (KZ)	5.015
SJIF (Morocco)	5.667

Figure 21 – The LE/TE theta graph: A) \(H = 5\) m, B) \(H = 10\) m, C) \(H = 15\) m, D) \(H = 20\) m, E) \(H = 25\) m.
ISRA (India) = 3.117
ISI (Dubai, UAE) = 0.829
GIF (Australia) = 0.564
JIF = 1.500

ISRA (India) = 3.117
ISI (Dubai, UAE) = 0.829
GIF (Australia) = 0.564
JIF = 1.500

ICV (Poland) = 6.630
PHHI (Russia) = 0.156
ESJI (KZ) = 5.015
IBI (India) = 4.260

SIS (USA) = 0.912
RIHNC (Russia) = 0.156
ESJI (KZ) = 5.015
IBI (India) = 4.260

SJIF (Morocco) = 5.667

Figure 22 – The LE/TE beta graph: A) $H = 5$ m, B) $H = 10$ m, C) $H = 15$ m, D) $H = 20$ m, E) $H = 25$ m.
Figure 23 – The LE/TE parameter graph: A) $H = 5$ m, B) $H = 10$ m, C) $H = 15$ m, D) $H = 20$ m, E) $H = 25$ m.
Impact Factor:

Journal	Impact Factor
ISRA (India)	3.117
SI (Dubai, UAE)	0.829
GIF (Australia)	0.564
JIF	1.500
PIIH (Russia)	0.156
ESJI (KZ)	5.015
IBI (India)	4.260
SIS (USA)	0.912
ICV (Poland)	6.630
RIJC (Russia)	0.156
ESJI (KZ)	5.015
SJIF (Morocco)	5.667

Figure 24 – The blade lean angle graph: A) $H = 5\,\text{m}$, B) $H = 10\,\text{m}$, C) $H = 15\,\text{m}$, D) $H = 20\,\text{m}$, E) $H = 25\,\text{m}$.
Impact Factor:

Journal	Impact Factor
ISRA (India)	3.117
SIS (USA)	0.912
ICV (Poland)	6.630
ISI (Dubai, UAE)	0.829
PIIH (Russia)	0.156
PIF (India)	1.940
GIF (Australia)	0.564
ESJI (KZ)	5.015
IBII (India)	4.260
JIF	1.500
SJIF (Morocco)	5.667

Figure 25 – The quasi-orthogonal area graph: A) $H = 5$ m, B) $H = 10$ m, C) $H = 15$ m, D) $H = 20$ m, E) $H = 25$ m.
Impact Factor:

Source	Impact Factor
ISRA (India)	3.117
SIS (USA)	0.912
ICV (Poland)	6.630
ISI (Dubai, UAE)	0.829
РИНЦ (Russia)	0.156
PIF (India)	1.940
GIF (Australia)	0.564
ESJI (KZ)	5.015
JIF	1.500
SIS (USA)	0.912
РИНЦ (Russia)	0.156
ESJI (KZ)	5.015
JIF	1.500
ICV (Poland)	6.630
SIS (USA)	0.912
РИНЦ (Russia)	0.156
ESJI (KZ)	5.015
JIF	1.500
ICV (Poland)	6.630
SIS (USA)	0.912
РИНЦ (Russia)	0.156
ESJI (KZ)	5.015
JIF	1.500
ICV (Poland)	6.630

Figure 26 – The airfoil area graph: A) $H = 5$ m, B) $H = 10$ m, C) $H = 15$ m, D) $H = 20$ m, E) $H = 25$ m.
Impact Factor:

ISRA (India) = 3.117 SIS (USA) = 0.912 ICV (Poland) = 6.630
ISI (Dubai, UAE) = 0.829 PIIHI (Russia) = 0.156 PIF (India) = 1.940
GIF (Australia) = 0.564 ESJI (KZ) = 5.015 IBI (India) = 4.260
JIF = 1.500 SJIF (Morocco) = 5.667

Figure 27 – The maximum diameter graph: A) $H = 5$ m, B) $H = 10$ m, C) $H = 15$ m, D) $H = 20$ m, E) $H = 25$ m.
Impact Factor:

Source	Impact Factor
ISRA (India)	3.117
ISI (Dubai, UAE)	0.829
GIF (Australia)	0.564
JIF	1.500
SIS (USA)	0.912
PIIH (Russia)	0.156
ESJI (KZ)	5.015
ICV (Poland)	6.630
PIF (India)	1.940
IBI (India)	4.260
GIF (Australia)	0.564
JIF	1.500
SJIF (Morocco)	5.667

Figure 28 – The blade angle graph vs. M-prime position: A) $H = 5$ m, B) $H = 10$ m, C) $H = 15$ m, D) $H = 20$ m, E) $H = 25$ m.
Impact Factor:

Journal	Impact Factor
ISRA (India)	3.117
ISI (Dubai, UAE)	0.829
GIF (Australia)	0.564
JIF	1.500
ISIC (Russia)	0.156
ESJI (KZ)	5.015
IBI (India)	4.260
SIS (USA)	0.912
GIF (Australia)	0.564
ICV (Poland)	6.630
RIHNC (Russia)	0.156
ESJI (KZ)	5.015
SJIF (Morocco)	5.667

Figure 29 – The blade angle graph vs. Meridional position: A) $H = 5$ m, B) $H = 10$ m, C) $H = 15$ m, D) $H = 20$ m, E) $H = 25$ m.
Impact Factor:

Journal	ISRA (India)	SIS (USA)	ICV (Poland)	ISI (Dubai, UAE)	PIIH (Russia)	PIF (India)	GIF (Australia)	ESJI (KZ)	IBI (India)	JIF	SISI (USA)	ESJI (KZ)	ICV (Poland)	ISI (Dubai, UAE)	PIIH (Russia)	PIF (India)	GIF (Australia)	ESJI (KZ)	JIF
	3.117	0.912	6.630	0.829	0.156	1.940	0.564	5.015	4.260	1.500	0.912	5.015	6.630	0.829	0.156	1.940	0.564	5.015	1.500

Figure 30 – The blade angle graph vs. Axial location (Z): A) H = 5 m, B) H = 10 m, C) H = 15 m, D) H = 20 m, E) H = 25 m.
Figure 31 – The blade angle graph vs. Radial location (R): A) $H = 5$ m, B) $H = 10$ m, C) $H = 15$ m, D) $H = 20$ m, E) $H = 25$ m.
Impact Factor:

Journal (Location)	Impact Factor
ISRA (India)	3.117
ISI (Dubai, UAE)	0.829
GIF (Australia)	0.564
JIF	1.500
PIF (India)	0.912
ICV (Poland)	3.055
ESJI (KZ)	0.156
ICV (Poland)	0.564
PIIF (India)	0.390
ICV (Poland)	3.055
SIS (USA)	0.156
ICV (Poland)	3.055
RIHN (Russia)	0.290
ESJI (KZ)	1.500
SJIF (Morocco)	5.667

Figure 32 – The theta graph vs. M-prime position: A) $H = 5$ m, B) $H = 10$ m, C) $H = 15$ m, D) $H = 20$ m, E) $H = 25$ m.
ISRA (India) = 3.117 SIS (USA) = 0.912 ICV (Poland) = 6.630
ISI (Dubai, UAE) = 0.829 РННІ (Russia) = 0.156 PIF (India) = 1.940
GIF (Australia) = 0.564 ESJI (KZ) = 5.015 IBI (India) = 4.260
JIF = 1.500 SJIF (Morocco) = 5.667

Figure 33 – The theta graph vs. Meridional position: A) $H = 5$ m, B) $H = 10$ m, C) $H = 15$ m, D) $H = 20$ m, E) $H = 25$ m.
Impact Factor:

ISRA (India) = 3.117 SIS (USA) = 0.912 ICV (Poland) = 6.630
ISI (Dubai, UAE) = 0.829 РНН (Russia) = 0.156 PIF (India) = 1.940
GIF (Australia) = 0.564 ESJI (KZ) = 5.015 IBI (India) = 4.260
JIF = 1.500 SJIF (Morocco) = 5.667

Philadelphia, USA

Figure 34 – The theta graph vs. Axial location (Z): A) $H = 5\text{ m}$, B) $H = 10\text{ m}$, C) $H = 15\text{ m}$, D) $H = 20\text{ m}$, E) $H = 25\text{ m}$.
Impact Factor:

Journal	Impact Factor
ISRA (India)	3.117
ISI (Dubai, UAE)	0.829
GIF (Australia)	0.564
JIF	1.500
SIS (USA)	0.912
GIF (Dubai, UAE)	0.829
GIF (Australia)	0.564
JIF	1.500
ICV (Poland)	6.630
PIIH (Russia)	0.156
ESJI (KZ)	5.015
IBI (India)	4.260
PIIF (India)	1.940
SJIF (Morocco)	5.667

Figure 35 – The theta graph vs. Radial location (R): A) $H = 5$ m, B) $H = 10$ m, C) $H = 15$ m, D) $H = 20$ m, E) $H = 25$ m.
Figure 36 – The beta graph vs. M-prime position: A) $H = 5$ m, B) $H = 10$ m, C) $H = 15$ m, D) $H = 20$ m, E) $H = 25$ m.
Impact Factor:

Journal	Impact Factor
ISRA (India)	3.117
SIS (USA)	0.912
ICV (Poland)	6.630
ISI (Dubai, UAE)	0.829
PII H (Russia)	0.156
PIF (India)	1.940
GIF (Australia)	0.564
ESJI (KZ)	5.015
IBI (India)	4.260
JIF	1.500
SIF (Morocco)	5.667
ICV (Poland)	6.630
PIF (India)	1.940
GIF (Australia)	0.564
ESJI (KZ)	5.015
IBI (India)	4.260
JIF	1.500
SIF (Morocco)	5.667

Figure 37 – The beta graph vs. Meridional position: A) $H = 5$ m, B) $H = 10$ m, C) $H = 15$ m, D) $H = 20$ m, E) $H = 25$ m.
Source	Impact Factor
ISRA (India)	3.117
ISI (Dubai, UAE)	0.829
GIF (Australia)	0.564
JIF	1.500
ICV (Poland)	6.630
PII (Russia)	0.156
ESJI (KZ)	5.015
IBI (India)	4.260
PIF (India)	1.940
SJIF (Morocco)	5.667

Figure 38 – The beta graph vs. Axial location (Z): A) $H = 5$ m, B) $H = 10$ m, C) $H = 15$ m, D) $H = 20$ m, E) $H = 25$ m.
Impact Factor:

Journal	Impact Factor
ISRA (India)	3.117
ISI (Dubai, UAE)	0.829
GIF (Australia)	0.564
JIF	1.500
ICV (Poland)	6.630
PIIHII (Russia)	0.156
ESJI (KZ)	5.015
PIF (India)	1.940
IBI (India)	4.260
SJIF (Morocco)	5.667

Figure 39 – The beta graph vs. Radial location (R): A) $H = 5$ m, B) $H = 10$ m, C) $H = 15$ m, D) $H = 20$ m, E) $H = 25$ m.
Figure 40 – The beta vs. theta graph: A) $H = 5$ m, B) $H = 10$ m, C) $H = 15$ m, D) $H = 20$ m, E) $H = 25$ m.
Figure 41 – The blade thickness graph vs. M-prime position: A) $H = 5$ m, B) $H = 10$ m, C) $H = 15$ m, D) $H = 20$ m, E) $H = 25$ m.
Figure 42 – The blade thickness graph vs. Meridional position: A) $H = 5$ m, B) $H = 10$ m, C) $H = 15$ m, D) $H = 20$ m, E) $H = 25$ m.
Figure 43 – The blade thickness graph – % camber vs. % camber length: A) $H = 5$ m, B) $H = 10$ m, C) $H = 15$ m, D) $H = 20$ m, E) $H = 25$ m.
Journal	Impact Factor
ISRA (India)	3.117
SIS (USA)	0.912
ICV (Poland)	6.630
ISI (Dubai, UAE)	0.829
РННЦ (Russia)	0.156
PIF (India)	1.940
GIF (Australia)	0.564
ESJI (KZ)	5.015
IBI (India)	4.260
JIF	1.500
SJIF (Morocco)	5.667

Impact Factor:

Figure 44 – The blade thickness graph vs. Axial location (Z):

A) $H = 5$ m, B) $H = 10$ m, C) $H = 15$ m, D) $H = 20$ m, E) $H = 25$ m.
Figure 45 – The blade thickness graph vs. Radial location (R): A) $H = 5$ m, B) $H = 10$ m, C) $H = 15$ m, D) $H = 20$ m, E) $H = 25$ m.
Impact Factor:

	ISRA (India)	SIS (USA)	ICV (Poland)	ISI (Dubai, UAE)	PHHI (Russia)	PIF (India)	GIF (Australia)	ESJI (KZ)	JIF	SIS (USA)	RIHNC (Russia)	ESJI (KZ)	SJIF (Morocco)
	3.117	0.912	6.630	0.829	0.156	1.940	0.564	5.015	1.500	0.912	0.156	5.667	

The dependencies of the impellers blades thickness from M-Prime, M, % camber length (the current thickness graph with the vertical axis displaying the blade thickness as the percent of the total camber length and the horizontal axis displaying location as the percent of the total camber length), Z and R are calculated in the Fig. 41 – 45. These graphs are an addition to the color contours of normal thickness of the impellers blades.

The three-dimensional models of the impellers blades at the different pump heads (the Fig. 46) were built in the Model module of the Ansys Workbench software environment. The transparent volume is the created area for the calculation. The dimensions of the leading edge of the blade are presented in a foreground of the created area; the dimensions of the trailing edge of the blade are presented in a background of the created area.

![Blade Thickness Graphs](image)

Figure 46 – The three-dimensional model of the impeller blade: A) $H = 5$ m, B) $H = 10$ m, C) $H = 15$ m, D) $H = 20$ m, E) $H = 25$ m.

Results and discussion

The calculated values of the operating and geometric parameters of the impellers at the different pump heads values are presented in the summary table 3. The parameters of specific speed determine a geometric shape of the pump. Ω_s is the non-dimensional coefficient of specific speed. A type of the pump impeller is determined by the value of this coefficient. It is necessary to choose the mixed flow impeller at the pump head is 5 – 15 m. The radial impeller is selected at the pump head more than 20 m. Ns and nq are equivalent forms of Ω_s. These
The calculated operating and geometrical parameters of the impellers/pump.

Overall performance	Parameter	Ωs	Ns	nq	Nss	Power, kW	Head coeff	Flow coeff	Ks	NPSHr, m	Diff ratio
5		2.48	6789	131.5	3.15	5.6	0.289	0.239	0.87	3.64	0.088
10		1.48	4037	78.2	3.15	10.5	0.392	0.134	0.897	3.64	0.121
15		1.09	2978	57.7	3.15	15.7	0.453	0.085	0.953	3.64	0.101
20		0.88	2400	46.5	3.15	20.9	0.455	0.059	0.996	3.64	0.073
25		0.74	2030	39.3	3.15	26.2	0.467	0.044	1.028	3.64	0.049

Impeller inlet	Parameter	D1, mm	Cu1, m/s	Cm1, m/s	U1, m/s	W1, m/s	β1, deg	β2, deg	Inc, deg	Dh, mm	De, mm	Thk, mm
5		62.3	0	3.69	4.9	6.13	42.65	37.01	5.65	25.6	172.6	5
10		118.4	0	4.1	9.3	10.16	25.88	23.8	2.08	31.6	172.6	6
15		174.4	0	4.51	13.7	14.42	18.23	18.23	0	36.1	172.6	7
20		120.3	0	4.27	9.45	10.37	26.41	24.3	2.11	39.7	172.6	7.9
25		173.9	0	4.69	13.66	14.44	18.97	18.97	0	42.8	172.6	8.8

Impeller exit	Parameter	D2, mm	B2, mm	Lean, deg	β2, deg	W2, m/s	α2, deg	C2, m/s	Wslip/U2	U2, m/s	Cu2, m/s
5		166	71.5	0	19.37	9.26	35.53	5.28	0.1	13.04	4.3
10		201.3	68.6	0	16.84	9.11	20.42	7.57	0.15	15.81	7.09
15		234.2	57.3	0	16.35	9.64	16.53	9.54	0.15	18.4	9.14
20		264.5	47.8	0	16.12	10.39	14.95	11.17	0.15	20.78	10.8
25		291.7	40.9	0	15.96	11.11	14.01	12.61	0.14	22.91	12.24

Impact Factor:

ISRA (India) = 3.117 SIS (USA) = 0.912 ICV (Poland) = 6.630
ISI (Dubai, UAE) = 0.829 PIIHI (Russia) = 0.156 PIF (India) = 1.940
GIF (Australia) = 0.564 ESJI (KZ) = 5.015 IBI (India) = 4.260
JIF = 1.500 SJIF (Morocco) = 5.667

Suction specific speed Nss characterizes intensity of the pump cavitation. The calculated values of Nss were 3.15. This indicates about good cavitation characteristic of the pump. The shaft power is increased in average by 5.2 kW at increasing of the pump head by 5 m. The head coefficient ψ has characteristic of energy transfer measure to fluid. Maximum difference of energy transfer to fluid was determined at the small values of the pump head. Changing determination of flow rate through the pump is carried out by the value of the flow coefficient. The flow coefficient is 0.239 at the pump head of 5 m, the flow coefficient is 0.044 at the pump head of 25 m. The stability factor Ks determines stable characteristic of the pump performance. Unstable characteristic of the pump performance is observed at head of 5 and 10 m (Ks < 0.9). Net positive suction head required (NPSHr) for the pump performance provides reduction of noise and damage due to cavitation. NPSHr for all considered pumps is 3.64 m. The diffusion ratio determines stable of head-flow curve. Maximum stable was determined at the diffusion ratio is 0.049; minimum stable was determined at the diffusion ratio is 0.121.

The hub diameter (Dh) changes by 17.2 mm at increasing of the pump head by 20 m and the eye diameter (De) does not change (172.6 mm). The blades thickness of the impellers is increased in the range from 5 to 8.8 mm with increasing of the pump head. The values of the diameter (D1), tangential velocity (Cu1), meridional velocity (Cm1), the blade speed (U1), flow relative velocity (W1), the blade angle (β1), relative flow angle (β2) and incidence (Inc) were calculated in the sections of the hub, the mean line and the shroud of the impellers. Incidence is calculated as difference of the angles of β1 and β2. Increasing of the D1 parameter at the hub and decreasing at the shroud is required with increasing of the pump head. Tangential velocity was not taken into account. Maximum meridional velocity is achieved at the impeller shroud. The blade speed of
the impeller increases in the sections of the hub and the mean line. Flow relative velocity of fluid at the impeller inlet varies from 6.13 to 14.88 m/s. Maximum changing of flow relative velocity of fluid is determined at the impeller hub. The blade angle of the impeller decreases at the hub, the relative flow angle increases at the mean line. The values of β_I and β_I are equal at the shroud.

The calculated parameters at the impeller trailing edge were written in the title **Impeller exit** (the table 3). The tip diameter (D_2) changes in average by 31 mm at changing of the pump head by 5 m. Maximum changing of the tip width of the impeller (B_2) is observed at the pump head of 10 – 20 m. The calculated value of the lean angle was 0 degrees according to the results of five researches. The ratios of U_1 to tip speed at the impeller outlet (U_2) are from 0.375 to 0.594. Flow relative velocity at the impeller outlet (W_2) is higher than W_1 at the hub and lower than at the mean line and the shroud. Relative flow angle (β_2) at the impeller outlet is less than at the inlet. The absolute flow angle (α_2) is more than β_2 at the pump head values of 5 – 15 m. Flow tangential velocity (Cu_2) at the impeller outlet increases in the range of 4.3 – 12.24 m/s, i.e. increases in 3 times at increasing of the pump head in 5 times. The values of flow absolute velocity (C_2) at the impeller outlet were determined in the range of 5.28 – 12.61 m/s. The slip factor (W_{slip}/U_2) characterizes the deviation degree of fluid flow from the impeller blade.

The minimum degree of deviation of fluid flow is calculated at the pump head of 5 m and the corresponding geometry of the impeller blade.

Conclusion

Based on the performed analysis of the designed geometry of the impellers in conditions of changing of the pump head, it is possible to draw the following conclusions:

1. The impeller blades with the larger profile curvature should be made at the pump head of more than 20 m.
2. Required performance of the pump (by conditions of the performed experiments) is provided by the mixed flow impellers at the pump head of up to 15 m and the radial impellers at the pump head of more than 20 m.
3. The surfaces cavitation of the impellers occurs with the same intensity at the different pump heads and geometric characteristics of the blades.
4. Stable characteristic of the pump is observed at operation of the radial impellers with the calculated geometry. The calculated geometry of the impeller at the pump head of less than 10 m leads to unstable characteristic of the pump.
5. Calculated deviation of fluid flow from the impeller blade at the pump heads of 10 – 20 m is more by 5% than at the pump head of 5 m.

References:

1. Baljé, O. (1981). *Turbomachines - a guide to design, selection and theory.* J. Wiley & Sons, New York.
2. Smith, A. G. (1957). On the generation of the Streamwise Component of Vorticity for Flows in a Rotating Passage. *Aeronautical Quarterly, Vol. 8*, 369-383.
3. Rusetskaya, G. V. (2005). Mathematical model of a liquid - discharge channel system of a radial impeller pump. *Chemical and petroleum engineering, vol. 41*, issue 7-8, 377-382.
4. Ben-Nun, R., Sheintuch, M., Kysela, B., Konfršt, J., & Fořt, I. (2015). Semianalytical characterization of turbulence from radial impellers, with experimental and numerical validation. *Aiche Journal, issue 4*, vol. 61, 1413-1426.
5. Van den Braembussche, R. A. (2006). *Optimization of Radial Impeller Geometry, In Design and Analysis of High Speed Pumps* (pp. 13-1 – 13-28). Educational Notes RTO-EN-AVT-143, Paper 13. Neuilly-sur-Seine, France: RTO.
6. Harinck, J., Alsalihi, Z., Van Buijtenen, J. P., & Van den Braembussche, R. A. (2005). Optimization of a 3D Radial Turbine by means of an improved Genetic Algorithm. Proceedings of the 5th European Conference on Turbomachinery. (pp.1033-1042).
7. Lewis, R. I. (1996). *Turbomachinery Performance Analysis.* Elsevier Science & Technology Books.
8. Chemezov, D. A. (2016). The parameters of the gas turbine blade when changing of the ratio of the output/input radius of the hub. *ISJ Theoretical & Applied Science, 02* (34), 75-85.
9. Epple, P., Miclea, M., Luschmann, C., Llic, C., & Delgado, A. (2010). An extended analytical and numerical design method with applications of radial fans. Proceedings ASME International Mechanical Engineering Congress and Exposition. (pp.1119-1129).
10. Chemezov, D. A. (2015). Computer design and analysis of pressure distribution on the surface of the blade of the impeller radial turbine. *ISJ Theoretical & Applied Science, 01* (21), 1-6.