Mechanisms of Transmission Ratio Distortion at Hybrid Sterility Loci Within and Between Mimulus Species

Rachel E. Kerwin and Andrea L. Sweigart
Department of Genetics, University of Georgia, Athens, Georgia 30602

ABSTRACT Hybrid incompatibilities are a common correlate of genomic divergence and a potentially important contributor to reproductive isolation. However, we do not yet have a detailed understanding of how hybrid incompatibility loci function and evolve within their native species, or why they are dysfunctional in hybrids. Here, we explore these issues for a well-studied, two-locus hybrid incompatibility between hybrid male sterility 1 (hms1) and hybrid male sterility 2 (hms2) in the closely related yellow monkeyflower species Mimulus guttatus and M. nasutus. By performing reciprocal backcrosses with introgression lines (ILs), we find evidence for gametic expression of the hms1-hms2 incompatibility. Surprisingly, however, hybrid transmission ratios at hms1 do not reflect this incompatibility, suggesting that additional mechanisms counteract the effects of gametic sterility. Indeed, our backcross experiment shows hybrid transmission bias toward M. guttatus through both pollen and ovules, an effect that is particularly strong when hms2 is homozygous for M. nasutus alleles. In contrast, we find little evidence for hms1 transmission bias in crosses within M. guttatus, providing no indication of selfish evolution at this locus. Although we do not yet have sufficient genetic resolution to determine if hybrid sterility and transmission ratio distortion (TRD) map to the same loci, our preliminary fine-mapping uncovers a genetically independent hybrid lethality system involving at least two loci linked to hms1. This fine-scale dissection of TRD at hms1 and hms2 provides insight into genomic differentiation between closely related Mimulus species and reveals multiple mechanisms of hybrid dysfunction.

Hybrid incompatibilities are a common outcome of genomic divergence among closely related species. Across diverse taxa, a number of genes for hybrid inviability and sterility have been identified [see Presgraves (2010), Maheshwari and Barbash (2011), Sweigart and Willis (2012), Ouyang and Zhang (2013)], but we still know very little about how such genes function and initially evolve within their native species. One possibility is that the initial mutations are selectively neutral and become fixed by random genetic drift. Alternatively, the mutations might increase in frequency because they benefit the native species for reasons that are incidental to their role in reproductive isolation, for example by promoting ecological adaptation (Schluter and Conte 2009). Yet another possibility is that hybrid incompatibilities arise through recurrent bouts of intragenomic conflict within species (Frank 1991; Hurst and Pomiankowski 1991). In this last scenario, selfish genetic elements (e.g., transposons, meiotic drivers, and "gamete killers") manipulate host reproduction to bias their own transmission. Because these actions are often detrimental to host fitness, there is then selective pressure for compensatory mutations or suppressors to neutralize the effects of selfish evolution (Burt and Trivers 2006).

The idea that intragenomic conflict involving segregation distorters might be a major source of hybrid incompatibilities has resurfaced in recent years (Johnson 2010; McDermott and Noor 2010; Presgraves 2010; Crespi and Nosil 2013), largely due to influential studies in Drosophila that have mapped hybrid segregation distortion and hybrid sterility to the same genomic locations (Tao et al. 2001; Phadnis and Orr 2009; Zhang et al. 2015). Similarly, in plants, classic and recent crossing studies have revealed gamete killers that affect both transmission ratios and fertility; at these loci, one parental allele causes the abortion of gametes carrying the other allele (e.g., tobacco: (Cameron and Moav 1957), wheat: (Loegering and Sears 1963), tomato: (Rick

Supplemental material is available online at www.g3journal.org/lookup/suppl/doi:10.1534/g3.117.300148/-/DC1.

Corresponding author: Department of Genetics, University of Georgia, 120 East Green St., Davison Life Sciences Bldg., Athens, GA 30602. E-mail: sweigart@uga.edu
cies carry null alleles in distinct components of the killer tightly linked genes (Yang 2013). Although it is conceivable that intragenomic con-
ness costs within species. However, it is not yet clear if these themes are generalizable to other plant systems.

Here, we investigate patterns of TRD associated with a two-locus hybrid sterility system between the closely related monkeyflower species, *Mimulus guttatus* and *M. nasutus*. Previously, we fine-mapped the two incompatibility loci—*hms1* and *hms2*—to small nuclear genomic regions of ~60 kb each on chromosomes 6 and 13 (Sweigart and Flagel 2015). We also discovered evidence that the *hms1* incompatibility allele is involved in a partial selective sweep within a single population of *M. guttatus*, but the underlying cause of the sweep is unknown (Sweigart and Flagel 2015). Additionally, because the *hms1* sterility allele is embedded in a nearly invariant, 320 kb haplotype, it is not yet clear whether *hms1* or a linked locus is the target of the sweep. This polymorphic hybrid sterility system provides a unique opportunity to test directly whether selfish evolution within species can lead to in-
compatibilities between species.

Previously, in crosses between *M. guttatus* and *M. nasutus*, we observed TRD of genotypes at both *hms1* and *hms2* (Sweigart et al. 2006; Sweigart and Flagel 2015), but the causes have remained unexplored. Additionally, these previous studies did not test directly whether the *hms1-hms2* incompatibility acts in the gametophyte or sporophyte, although patterns of F2 hybrid sterility seemed to sug-
gest the latter. Results from these studies suggested that the incom-
compatibility acts in the diploid sporophyte, with the *M. guttatus* allele at *hms1* acting dominantly in combination with recessive *M. nasutus* alleles at *hms2* to cause nearly complete male sterility and partial female sterility (Sweigart et al. 2006). Consistent with this genetic model, pollen viability is ~20% in F2 hybrids that are heterozygous for *hms1* and homozygous for *M. nasutus* alleles at *hms2* (hms1_{1C2S}; hms2_{2S2S}), much lower than the 50% expected for a strictly gen-

The current study, we used ILS and a reciprocal backcross design to distinguish among at least four possibilities for TRD in genomic regions linked to *hms1* and *hms2*: (1) distortion through male gametes due to pollen competition and/or pollen sterility, (2) distortion through female gametes due to female meiotic drive (e.g., Fishman and Saunders 2008) and/or ovule sterility, (3) TRD through both male and female gametes due to an incompatibility that affects both gametophytes (e.g., Kubo et al. 2016a), and (4) distortion caused by selection against zygototes. In a series of crossing experiments, we investigated the mechanism of TRD at *hms1* and *hms2* and addressed the following specific questions. Is hybrid transmission bias at *hms1* and/or *hms2* a simple byproduct of gametic hybrid sterility? Is there evidence for hybrid transmission bias at these loci independent of gamete sterility? Are hybrid sterility and TRD genetically separable? Does TRD at *hms1* occur within *M. guttatus*? Our results provide insight into the mechanisms of hybrid sterility and transmission distortion, and into the evolutionary dynamics of incompat-

selection (Long et al. 2008; Sweigart and Willis 2012). A key feature of these gamete killers is that they are caused by two or more tightly
linked, epistatic genes (Long et al. 2008; Yang et al. 2012; Kubo 2013, 2016a). Adding to the complexity, some of them require additional, unlinked loci that act sporophytically (Kubo et al. 2011, 2016a,b). Taken together, these studies suggest that hybrid sterility in rice is polygenic and might evolve without significant fitness costs within species.
MATERIALS AND METHODS

Study system and plant lines

The *M. guttatus* species complex is a group of phenotypically diverse wildflowers with abundant natural populations throughout much of western North America. In this study, we focus on *M. guttatus* and *M. nasutus*, two members of the complex that diverged roughly 200,000 yr ago (Brandvain et al. 2014). These species occupy a partially overlapping range, and are primarily differentiated by mating system. *M. guttatus* is predominantly outcrossing with showy, insect-pollinated flowers, whereas *M. nasutus* is highly self-fertilizing with reduced flowers. In geographic regions where the two species cooccur, they are partially reproductively isolated by differences in floral morphology, flowering phenology, and pollen-pistil interactions (Diaz and Macnair 1999; Martin and Willis 2007; Fishman et al. 2014). Hybrid incompatibilities are also common, but variable (Vickery 1978; Christie and Macnair 1987; Sweigart et al. 2007; Case and Willis 2008; Martin and Willis 2010). Despite these barriers to interspecific gene flow, sympatric populations display evidence of genome-wide introgression (Sweigart and Willis 2003; Brandvain et al. 2014; Kenney and Sweigart 2016).

Previous work identified two nuclear incompatibility loci, *hms1* and *hms2*, which cause nearly complete male sterility and partial female sterility in a fraction of F2 hybrids between an inbred line of *M. guttatus* from Iron Mountain, Oregon (IM62), and a naturally inbred *M. nasutus* line from Sherar’s Falls, Oregon (SF5) (Sweigart et al. 2006). In 2015, Sweigart and Flagel generated a large SF5-IM62 F2 mapping population (*N* = 5487) to fine-map *hms1* and *hms2* to regions of ~60 kb on chromosome 6 and chromosome 13, respectively. Hybrids carrying at least one incompatible *M. guttatus* allele at *hms1* in combination with two incompatible *M. nasutus* alleles at *hms2* display extreme male sterility (*i.e.*, ~0–5% pollen viability) and partial female sterility (Sweigart et al. 2006). Furthermore, the *hms1* locus is polymorphic within the Iron Mountain population (Sweigart et al. 2007) and several inbred lines derived from that site are known to carry compatible alleles that do not cause hybrid sterility when crossed to *M. nasutus* (Sweigart and Flagel 2015). In experimental crosses to test for TRD at *hms1* within *M. guttatus*, we used a compatible line called IM767. In total, three inbred lines were used in different crossing schemes to test for TRD within and between species (see below). SF5 is compatible at *hms1* and incompatible at *hms2*. IM62 is incompatible at *hms1* and compatible at *hms2*, and IM767 is compatible at *hms1* and *hms2*.

All plants were grown in the greenhouse at the University of Georgia. For all crosses, seeds were sown into 96-cell flats containing Fafard 3B potting mix (Sun Gro Horticulture, Agawam, MA), stratified for 7 d at 4°C, and then placed in a greenhouse with supplemental lights set to 16 hr day. Plants were bottom-watered daily and temperatures were maintained at 24°C during the day and 16°C at night.

IL crossing design to investigate mechanisms of TRD between *M. guttatus* and *M. nasutus*

Previously, two reciprocal nearly isogenic line (NIL) populations carrying *M. nasutus* (SF5) or *M. guttatus* (IM62) introgressions in the opposite genetic background were generated (Fishman and Willis 2005). Briefly, a single SF5 × IM62 F1, and IM62 × SF5 F1, individual each served as the initial seed parent then underwent four generations of backcrossing to create a BN4 NIL population (SF5 × IM62 F1, *M. nasutus* recurrent parent) and a BG4 NIL population (IM62 × SF5 F1, *M. guttatus* recurrent parent). Within the BN4 and BG4 populations, each NIL carries a unique complement of heterozygous introgressions in a genome that is expected to be 93.75% homozygous for the recurrent parent’s alleles. To determine the genomic locations of the heterozygous introgressed regions, the NILs were genotyped at microsatellite and gene-based markers distributed throughout the genome (L. Fishman, unpublished). We selected three NILs with introgressions spanning *hms1* or *hms2* for further genetic analyses. Against a largely *M. guttatus* background, the BG4.149 NIL is heterozygous for an introgression that includes *hms1* and ~78% of the physical distance along chromosome 6. The BG4.149 line is heterozygous for an introgression

\[hms1, hms2 \]

IL-G

- **GN; GN**
 - self-fertilize

IL-N

- **GN; GG**
 - self-fertilize

- **NN; GN**
- **GN; GN**

reciprocal crosses to recurrent parents

- **M. guttatus** (IM62)
- **M. nasutus** (SF5)

TRD in progeny?

Figure 1 Crossing design for backcross experiment using introgression lines (ILs). For each genotype, two chromosome pairs are shown (one with *hms1* and one with *hms2*). We constructed two sets of ILs with heterozygous introgressions at both *hms1* and *hms2*; the IL-G has an *M. guttatus* genetic background (gray shading) and the IL-N has an *M. nasutus* genetic background (white). These doubly heterozygous ILs were self-fertilized to generate progeny with two-locus genotypes that are heterozygous at *hms1* and/or *hms2*. These five progeny types were then reciprocally backcrossed to *M. guttatus* and *M. nasutus*. G = *M. guttatus* allele (gray); N = *M. nasutus* allele (white). TRD, transmission ratio distortion.
that spans ~71% of chromosome 13 and includes \textit{hms}2. Against a \textit{M. nasutus} background, the BN6.62 line is heterozygous for ~75% of chromosome 13, including \textit{hms}2. In addition to these NILs, we used an \textit{hms}1 IL, RSB4, created after four generations of recurrent selection for hybrid fertility with backcrossing to \textit{M. nasutus}, starting from a sterile SF5-IM62 BC1 individual (Sweigart et al. 2006); the heterozygous introgression spans ~50% of chromosome 6.

To characterize TRD between \textit{M. guttatus} and \textit{M. nasutus}, we used a multi-step crossing scheme, starting with the NILs and RSB4 (described above), to create a set of lines carrying specific two-locus genotypes at \textit{hms}1 and \textit{hms}2. First, to generate ILs that carry heterozygous alleles at both \textit{hms}1 and \textit{hms}2 in an otherwise \textit{M. guttatus} or \textit{M. nasutus} genetic background, we crossed BG4.476 to BG4.149, and BN6.62 to RSB4. From those progeny, we identified \textit{hms}1-\textit{hms}2 double heterozygotes by genotyping with markers that flank \textit{hms}1 (M8 and M24) and \textit{hms}2 (M51 and MgSTS193), as described previously (Sweigart and Flagel 2015). Next, to generate individuals that carry various two-locus combinations at \textit{hms}1 and \textit{hms}2, we self-fertilized doubly heterozygous ILs from each genetic background (i.e., IL-G and IL-N = \textit{M. guttatus} and \textit{M. nasutus} backgrounds, respectively). These crosses are expected to yield nine different two-locus genotypes each (typical of an F2), five of which are heterozygous at \textit{hms}1 and/or \textit{hms}2 (Figure 1). Surprisingly, one of the relevant IL-N \textit{hms}1-\textit{hms}2 genotypes was not recovered (\textit{hms}1\textit{ckg}; \textit{hms}2\textit{cgn}, see Figure 1); the \textit{hms}1-introgression could not be made homozygous for \textit{M. guttatus} alleles against an \textit{M. nasutus} genetic background (see Results). We assessed male fertility (i.e., pollen viability) for the nine experimental IL genotypes (five for IL-G and four for IL-N) as described previously (Sweigart et al. 2006, 2007).

To test the effect of \textit{hms}1 genotype on transmission at \textit{hms}2 and vice versa, we reciprocally backcrossed each of the nine ILs to both \textit{M. guttatus} (IM62) and \textit{M. nasutus} (SF5) (Figure 1). Thus, for each IL, we generated four reciprocal backcross populations allowing us to dissect sex-specific TRD. For each IL, two of the backcrosses used the emasculated IL as the seed parent in crosses to IM62 and SF5 lines (i.e., IL-IM62 and IL-SF5) and two used the IL as the pollen parent in crosses to emasculated IM62 and SF5 plants (i.e., IM62-IL and SF-IL). If \textit{hms} distortion occurs through pollen (due to pollen competition or a gametic incompatibility), we expect TRD in one or both of the backcrosses using the IL as the maternal parent, but not as the paternal parent. If, instead, female meiotic drive and/or a female gametic incompatibility occurs at these \textit{hms} loci, we would expect to see TRD in both backcrosses with the IL as the seed parent, but not with the IL as the pollen parent. Finally, if TRD is caused by the loss of diploid zygotes (or seedlings), it should be apparent in both reciprocal crosses to the same recurrent parent (i.e., regardless of the sex of the IL). For all crosses, the female parent was emasculated 1–2 d before hand-pollination to prevent self-pollination. Sample sizes for the progeny classes ranged from 33 to 215 individuals (average \(N = 136 \)).

For each \textit{hms} locus, we performed factorial ANOVAs in JMP Pro 13.0 to examine if genotype ratios were affected by four factors: (1) IL genetic background, (2) IL genotype at the interacting \textit{hms} locus, (3) backcross direction, and (4) identity of the recurrent parent.

\section*{Crossing design to examine TRD within \textit{M. guttatus}}

To determine whether TRD at the polymorphic \textit{hms}1 incompatibility locus occurs between incompatible and compatible alleles from the Iron Mountain population of \textit{M. guttatus}, we generated reciprocal F2 and backcrossed populations with IM62 and IM767. We previously determined that the IM767 inbred line carries a compatible allele at \textit{hms}1 (\textit{i.e.}, one that does not carry the 320 kb haplotype or cause sterility in combination with SF5 alleles at \textit{hms}2). The IM62 and IM767 inbred lines were intercrossed reciprocally and a single F1 hybrid from each was self-fertilized to form reciprocal F2 populations (IM62 × IM767: \(N = 267 \) and IM767 × IM62: \(N = 315 \)). To identify putative female- and male-specific sources of TRD, and to distinguish between meiotic/gametic mechanisms vs. zygotic selection, we generated reciprocal backcrosses with IM62 and IM767. We used a single F1 hybrid (IM62 × 767; maternal parent listed first) to generate four backcross populations to the recurrent parents (F1-IM62 BC1, IM62-BC1, F1-IM767 BC1, and IM767-BC1). Two of these backcrosses used the emasculated F1 as the seed parent and two used the F1 as the pollen donor in crosses to the emasculated recurrent parents.

We also wanted to examine the effect of \textit{M. nasutus} \textit{hms}2 alleles on patterns of within-\textit{M. guttatus} TRD at \textit{hms}1. We wondered if having \textit{M. nasutus} alleles at \textit{hms}2 has the potential to unleash severe distortion at \textit{hms}1, even in an otherwise \textit{M. guttatus} genetic background. To address this question, we intercrossed IM767 with a BG4-NIL (BG4.275) that is heterozygous for an SF5 introgression spanning ~36% of chromosome 13 including \textit{hms}2 (in an IM62 genetic background; Supplemental Material, Figure S2). We self-fertilized two of the resulting F1s to generate F2 hybrids segregating for SF5 alleles at \textit{hms}2 against an IM62-IM767 F2-like genetic background. We then genotyped at \textit{hms}-linked markers (M183 for \textit{hms}1 and MgSTS193 for \textit{hms}2) to identify IM62-IM767 \textit{hms}1 heterozygotes in combination with three different \textit{hms}2 genotypes: (1) IM62 homozygotes, (2) IM767 homozygotes, or (3) SF5 homozygotes. Using each of these three genotypic classes, we performed reciprocal backcrosses to IM767 (Figure S2).

\section*{Assessment of TRD}

To examine patterns of TRD at the \textit{hms}1 and \textit{hms}2 loci, we collected leaf tissue from individual plants and isolated genomic DNA using a rapid extraction protocol (Cheung et al. 1993) modified for 96-well format. To infer the \textit{hms}1 and \textit{hms}2 genotypes of hybrid progeny generated from crosses between IM62 and SF5, we determined genotypes at a multiplexed set of fluorescently labeled markers that flank \textit{hms}1 (M8 and M24) and \textit{hms}2 (MgSTS193 and M51) following amplification protocols used previously (Sweigart et al. 2006, 2017). We excluded individuals with crossovers between either pair of flaming markers; based on expected frequency of double crossovers between flaming markers, genotyping error rates for \textit{hms}1 and \textit{hms}2 were each < 1%. For experimental crosses involving IM62 and IM767, only one tightly linked marker was used to infer genotype at \textit{hms}1 (M183). Based on expected crossovers between \textit{hms}1 and M183, the genotyping error rate was < 1%. All fluorescently labeled marker products were run on an ABI 3730 at the University of Georgia Genomics Facility. Genotypes were scored automatically using GeneMarker (SoftGenetics), with additional hand scoring when necessary. We used \(\chi^2 \) tests with two degrees of freedom to determine if \textit{hms}-linked genotypes were significantly distorted.

\section*{Data availability}

All plant lines are available upon request. Genotype data for fine-mapping TRD at \textit{hms}1 and \textit{hms}2 are provided in Table S1.

\section*{RESULTS}

\subsection*{TRD in \textit{M. nasutus}-\textit{M. guttatus} F2 hybrids}

As part of previous efforts to fine-map \textit{Mimulus} hybrid incompatibility loci (Sweigart and Flagel 2015), we generated a large \textit{M. nasutus-\textit{M. guttatus} F2 hybrid mapping population (\(N = 5487 \)) and genotyped all individuals at gene-based markers flanking \textit{hms}1 (M8 and M24) and \textit{hms}2 (M51 and MgSTS193). As previously reported (Sweigart et al.
Table 1 Genotype and allele frequencies at hms1 and hms2 in an M. nasutus-M. guttatus F2 population (N = 5487)

Locus	Allele Frequencya	Genotype Frequencyb
	O	E
hms1	0.49:0.51	0.22:0.55:0.23
hms2	0.62:0.38	0.38:0.48:0.14

aP < 0.0001 based on χ2 tests of observed frequencies vs. the Mendelian expectation with 2 d.f. for genotypes and 1 d.f. for allele frequencies. O, observed; E, expected.

Table 2 illustrates the genotype and allele frequencies at hms1 and hms2 in an M. nasutus-M. guttatus F2 population. The observed allele frequencies are reported as M. guttatus-M. nasutus (G:N). At hms2, but not hms1, allele frequencies significantly differ from the Mendelian expectation (0.5:0.5). O and expected E genotype frequencies are reported as M. guttatus homozygotes/M. nasutus heterozygotes (GG:GN:NN). Expected genotype frequencies are shown calculated from the random union of gametes with the observed frequencies. At hms1, genotypes differ significantly (P < 0.0001) from both the Mendelian expectation (0.25:0.5:0.25) and from the expectation given the random union of gametes with the observed allele frequencies. At hms2, genotypes differ significantly (P < 0.0001) from the Mendelian expectation but not from the expectation given the random union of gametes with the observed allele frequencies.

In 2006; Sweigart and Flagel (2015), we observed significant TRD in F2 genotypes at both hybrid sterility loci (Table 1). At hms1, we observed a significant excess of heterozygotes, but allelic transmission did not differ from the Mendelian expectation. The observed genotype ratios at hms1 also differed significantly from the expectation given the random union of two gametes with the observed allele frequencies. At hms2, we observed an excess of M. guttatus homozygotes and a deficit of M. nasutus homozygous genotypes, as well as a significant bias toward M. guttatus alleles. However, genotype ratios at hms2 do not differ from what is expected given the observed allele frequencies. Taken together, these patterns suggest TRD at hms1 might be driven primarily by zygotic selection, whereas hms2 appears to be influenced primarily by selection among gametes.

When considered together, the two-locus genotypes at hms1 and hms2 differ significantly from the Mendelian expectation (P < 0.0001, N = 5487). Although the two-locus genotypes are also significantly different from the expectation given the observed allele frequencies at hms1 and hms2 shown in Table 1 (P < 0.0001). The values are much more closely aligned (Table 2). Particularly notable is the deficit of two genotypic classes (hms1_G:hms2_N and hms1_N:hms2_G) and the excess of two others (hms1_G:hms2_G and hms1_N:hms2_N) shown in Table 2. This pattern of two-locus disequilibrium follows the expectation for gametic action of hms1-2 sterility (i.e., with hms1_G:hms2_Q gametes tending to be sterile). However, the observed F2 transmission ratios at hms1 and hms2 cannot be entirely explained by hms1_G:hms2_Q gametic sterility (Table 2). This phenomenon, whether acting through one or both parents, would be expected to reduce the transmission of M. guttatus alleles at hms1, in the same way that it reduces M. nasutus alleles at hms2. However, there is no indication of allelic transmission bias at hms1 in the F2 hybrids. Taken together, these results suggest that gametic expression of the hms1-hms2 incompatibility is important, but not the sole contributor, to patterns of TRD in F2 hybrids.

M. nasutus-M. guttatus IL crosses reveal multiple causes of F2 distortion

To investigate several possible causes of F2 TRD at hms1 and hms2, we performed a crossing experiment using the IL-Gs and IL-Ns. In this crossing design (Figure 1), individuals with one of several possible two-locus hms1-hms2 genotypes, in each of the IL genetic backgrounds, were crossed reciprocally to M. guttatus (IM62) and M. nasutus (SF5). By scoring hms1 and hms2 genotypes in the progeny of these crosses, we were able to examine the effects of several factors, including parental genotype, genetic background, and cross direction, on transmission ratios at the two-hybrid sterility loci. Of the 36 crosses performed, 12 showed significant TRD at hms1 and/or hms2 (Table 3; note that two crosses were unsuccessful due to hybrid male sterility). For both hms1 and hms2, paternal genotype at one locus has a strong effect on allelic transmission at the other (hms1 affects hms2; F = 37.69, P < 0.0001 and hms2 affects hms1; F = 7.80, P = 0.004; Figure S1). For hms2, cross direction is also important, with stronger TRD occurring through pollen (F = 72.33, P < 0.0001). Neither the genetic background nor the identity of the recurrent parent significantly affected transmission ratios at hms1 or hms2 (results not shown).

The pattern of TRD at hms2 follows what is expected if hybrid sterility acts through gametes. For example, if pollen grains are inviable when they carry M. guttatus alleles at hms1 in combination with M. nasutus alleles at hms2, the effect of hms1 paternal genotype on TRD at hms2 should be additive. Indeed, progeny from males that carry one or two M. guttatus alleles at hms1 show a 28 or 76% undertransmission of M. nasutus alleles at hms2 relative to the Mendelian expectation (Figure S1). Consistent with the action of a gametic incompatibility, backcross progeny of doubly heterozygous IL parents (i.e., hms1_G:hms2_Q) are much less likely to come from gametes with an M. guttatus allele at hms1 in combination with an M. nasutus allele at hms2 (Table 4). In these crosses, the hms1_G:hms2_Q gamete type is undertransmitted through both sexes, though the effect is stronger through males. Undertransmission is also more severe in crosses to IM62 (M. guttatus) and against the IL-N genetic background (Table S3).

If the hms1-hms2 incompatibility acts through gametes, we might expect patterns of pollen viability to predict rates of TRD through males. To examine this possibility, we measured pollen viability in various two-locus genotypes of the IL-Gs and IL-Ns (Table 5). In general, patterns of male fertility and TRD are indeed related. For example, pollen viability is 64% in IL-Gs that are hms1_G:hms2_Q. For this genotype, if we assume equal transmission of M. guttatus and M. nasutus alleles into pollen and attribute all sterility to hms1_G:hms2_Q, then the M. guttatus allele at hms2 should be present in 78% of progeny when this individual is used as the paternal parent in a cross (which is close to the observed frequency of 86%, Table 3). Similarly, for IL-Gs that are hms1_Q:hms2_Q, if we assume that all hms1_G:hms2_Q gametes are inviable (and divide the remaining 7% sterility equally among the other three two-locus genotypes), we expect M. guttatus allele frequencies of 33 and 66% at hms1 and hms2, respectively. These values are very similar to what we observe when this IL-G genotype is backcrossed to M. guttatus (37 and 67%, Table 3).

At hms1, TRD is more complex. On the one hand, M. guttatus alleles at hms1 are undertransmitted due to the hms1_G:hms2_Q gametic sterility discussed above (Table S3). On the other hand, in many of the IL-backcrosses, M. guttatus alleles at hms1 are overrepresented among the progeny (Table 2). This effect is most pronounced when the IL parent is heterozygous at hms1 and homozygous for M. nasutus alleles at hms2 (Figure S1; note that this genotype is not completely sterile so crosses can still be performed). Remarkably, this direction of TRD is exactly the opposite of what is expected if hms1 transmission is primarily influenced by the hms1_G:hms2_Q gametic incompatibility. Moreover, pollen viability in IL-Gs and IL-Ns with the genotype hms1_Q:hms2_Q is much lower than the 50% expected for gametic expression of hybrid male sterility (Table 5), consistent with overtransmission of M. guttatus hms1 alleles into pollen. Note that if these two TRD mechanisms—hms1_G:hms2_Q gamete sterility and overtransmission of
M. guttatus hms1 alleles—counteract each other in F1 hybrids and in doubly heterozygous ILs, it could explain why their progeny carry hms1 alleles in roughly Mendelian proportions (Figure S1 and Table 2). Consistent with this idea, backcross progeny of doubly heterozygous ILs are most often products of the hms1\textsubscript{G}; hms2\textsubscript{G} gamete type (Table 4).

Additionally, a genetically distinct hybrid incompatibility appears to affect transmission of hms1 against an M. nasutus genetic background. Self-fertilization of a doubly heterozygous IL-N individual produces no M. guttatus homozygotes at the hms1 locus (Table 2), a genotype expected to appear in a quarter of the progeny (IL-N F\textsubscript{2} N = 200, expected frequency = 50). When instead this same doubly heterozygous IL-N genotype is crossed to IM62 (in either direction), progeny homozygous for M. guttatus alleles at hms1 are recovered (Table S4). Note that selfing the doubly heterozygous IL-N produces offspring with isogenic M. nasutus genetic backgrounds, whereas the backcross to IM62 results in progeny with genetic backgrounds that are F1-like. Taken together, these results suggest that the hms1 region is involved in yet another hybrid incompatibility. This one causes lethality in hybrids that are homozygous for M. guttatus alleles at hms1-linked loci and homozygous for M. nasutus alleles at one or more unlinked loci. Given the large size of the hms1-containing IL (representing 50% of chromosome 6), it seems likely that additional genetic loci contribute to hybrid lethality, rather than hms1 itself.

By scoring genotype frequencies in the progeny of reciprocal backcrosses involving the doubly heterozygous ILs (hms1\textsubscript{G}; hms2\textsubscript{G}), it is possible to track which two-locus hms1-hms2 meiotic products are transmitted through pollen and ovules. If we use these observed two-locus gametic allele frequencies (instead of assuming equal proportions of the four two-locus gamete types) to calculate expected genotype frequencies in the selfed progeny of doubly heterozygous ILs (i.e., IL-F\textsubscript{2} populations), the resulting values do not significantly differ from observed proportions (Table 2 and Table 4). To fully account for observed genotype frequencies in the IL-N F\textsubscript{2}, it is also necessary to assume complete lethality of M. guttatus homozygotes at hms1 (Table 2; note that this hybrid lethality is not reflected in IL backcross allele frequencies because progeny do not carry the requisite M. nasutus genetic background for expression of the incompatibility).

In summary, we have identified at least three sources of hms1-hms2 TRD in M. nasutus-M. guttatus F\textsubscript{2} hybrids: (1) undertransmission of pollen and, to a lesser extent, ovules that carry an M. guttatus allele at hms1 in combination with an M. nasutus allele at hms2, presumably due to gametic inviability; (2) overtransmission of M. guttatus alleles at hms1, an effect that occurs through males and females, and does not depend on genetic background; and (3) hybrid lethality in individuals homozygous for M. guttatus alleles at hms1 (and linked genomic regions) in combination with M. nasutus homozygosity at one or more unlinked loci.

Fine-mapping TRD

In previous (Sweigart and Flagel 2015) and ongoing efforts to fine-map hms1 and hms2, we identified a small subset of SF5-IM62 F\textsubscript{2} hybrids that were recombinant for one or both sets of hms-flanking markers. With the goal of genetically mapping TRD in both regions, we self-fertilized these recombinants to generate F\textsubscript{3} progeny and examined genotype frequencies at both sets of flanking markers (Figure 2 and Figure 3). We reasoned that TRD in the F\textsubscript{3} progeny should only be observable if the causal locus is heterozygous in the F\textsubscript{2} parent. If, instead, the TRD-causing locus is homozygous (for either M. guttatus or M. nasutus alleles), loci in the adjacent heterozygous region should segregate in a Mendelian fashion.

As in the IL crosses, patterns of hms2-linked TRD were consistent with the action of hms1\textsubscript{G}; hms2\textsubscript{G} gametic sterility. In this genomic region, the most extreme TRD occurred in the two F\textsubscript{2} families that descended from F\textsubscript{2} hybrids with the hms1\textsubscript{G}; hms2\textsubscript{G} genotype (Figure 2). Despite this general support for hms1-hms2 gametic sterility, hms2-linked TRD could not be unambiguously mapped to a particular genomic region (no interval in Figure 2 is perfectly associated with presence/absence of TRD). Presumably, genetic background in these F\textsubscript{2} hybrids can mask TRD associated with hms1\textsubscript{G}; hms2\textsubscript{G} gametic sterility (e.g., 28_22) or mimic it (e.g., 02_66).

At hms1, the two contributors to TRD were decoupled in F\textsubscript{2} recombinants, with M. guttatus homozygotes overrepresented in some F\textsubscript{2} families and underrepresented in others (Figure 3). As with the IL experiments, the most significant overtransmission of M. guttatus alleles at hms1 appears in the progeny of F\textsubscript{2} hybrids that are homozygous for M. nasutus alleles at hms2 (Figure 3, first two F\textsubscript{2}s). This TRD phenotype maps to an 800 kb region that includes hms1, but we have too few recombinants to determine if the hybrid TRD phenotype is genetically separable from hybrid sterility. For a distinct set of hms1 F\textsubscript{2}
Table 3 Allelic transmission ratios at hms1 and hms2 in IL-backcross progeny

Q^a	α^a	g1	g2^b	N^c	g1 %G^d	g2 %G^d
IL-G	G	GN; GG	101	0.56		
	G	GN; NN	171	0.60		
	G	GG; GN	163	0.53		
	N	GN; GN	158	0.47		
	N	GN; GG	293	0.46 0.54		
IL-G	N	GN; GG	189	0.55		
	N	GN; NN	119	0.64[*]		
	N	GG; GN	49	0.53		
	N	NN; GN	132	0.50		
	N	GN; GG	232	0.52 0.54		
G	IL-G	GN; GG	382	0.55		
	G	GN; NN No seeds	–			
	G	GG; GN	120	0.86^{****}		
	N	GN; GN	298	0.37^{***} 0.67^{****}		
N	IL-G	GN; GG	636	0.62^{****}		
	G	GN; NN No seeds	–			
	G	GG; GN	158	0.90^{****}		
	N	GN; NN	187	0.52		
	N	GG; GN	450	0.53 0.64^{****}		
IL-N	G	GN; GG	266	0.44		
	G	GN; NN	593	0.48		
	G	GG; NN N/a	–			
	N	NN; GN	325	0.55		
	N	GN; GN	354	0.42[*] 0.59[*]		
IL-N	N	GN; GG	211	0.48		
	N	GN; NN	317	0.52		
	N	GG; NN N/a	–			
	N	NN; GN	43	0.54		
	N	GN; GN	320	0.58^{**} 0.66^{****}		
G	IL-N	GN; GG	113	0.46		
	G	GN; NN	85	0.71^{**}		
	G	GG; NN N/a	–			
	N	NN; GN	250	0.53		
	N	GN; NN	104	0.37^{**} 0.64[*]		
N	IL-N	GN; GG	177	0.51		
	N	GN; NN	194	0.72^{****}		
	N	GG; NN N/a	–			
	N	NN; GN	188	0.57		
	N	GN; GN	212	0.42 0.61^{****}		

- P < 0.05, ** P < 0.01, *** P < 0.005, and **** P < 0.0001 based on χ² tests of observed frequencies vs. the Mendelian expectation. G, M. guttatus background; N, M. nasutus background; IL, introgression line. aBackcrosses using ILs (M. guttatus background = IL-G; M. nasutus background = IL-N) to the IM62 line of M. guttatus (G) and the SF5 line of M. nasutus (N). bQ indicates the maternal parent and α indicates the paternal parent. cTwo-locus genotype for hms1 and hms2. g1 = M. guttatus homozygote; GN = heterozygote, and NN = M. nasutus homozygote. dNumber of progeny assessed. ePercent M. guttatus (G) alleles at hms1 transmitted to progeny from heterozygous IL parent. fPercent M. guttatus (G) alleles at hms2 transmitted to progeny from heterozygous IL parent.

Table 4 Two-locus transmission ratios at hms1 and hms2 in backcross progeny of doubly heterozygous ILs

Q^a	α^a	g1	g2^b	N^c	g1 %G^d	g2 %G^d	P
IL-G	G	GN; GG	293	0.31 0.20 0.24 0.25			
	G	NN; GG	232	0.28 0.24 0.25 0.22			
	N	GN; GG	354	0.30 0.13 0.30 0.28			
	N	NN; GG	320	0.43 0.15 0.22 0.19			
IL-N	G	GN; GG	104	0.34 0.03 0.30 0.34			
	N	NN; GG	212	0.32 0.10 0.30 0.29			
Average							
	G	IL-G	0.34 0.08 0.30 0.28				
	N	IL-N	0.21 0.04 0.28 0.26				

- P < 0.05, ** P < 0.01, *** P < 0.005, and **** P < 0.0001 based on χ² tests of observed frequencies vs. the Mendelian expectation. G, M. guttatus background; N, M. nasutus background; IL, introgression line. aTwo-locus allelic combination at hms1 and hms2 inherited from IL parent. G = M. guttatus allele; N = M. nasutus allele. bBackcrosses using ILs (M. guttatus background = IL-G; M. nasutus background = IL-N) to the IM62 line of M. guttatus (G) and the SF5 line of M. nasutus (N). Q indicates the maternal parent and α indicates the paternal parent. cNumber of progeny assessed.

TRD at hms1 within M. guttatus

To investigate whether hms1-linked TRD is a strictly hybrid phenomenon or also occurs within M. guttatus, we generated reciprocal F2 progeny between IM62 and IM767. These two inbred lines carry distinct alleles at hms1 and show very different patterns of variation in the surrounding genomic region. The IM62 line carries an incompatible, hybrid sterility-causing hms1 allele embedded within a distinctive 320 kb haplotype, whereas IM767 carries a compatible (i.e., nonsterility causing) allele at hms1 and typical levels of nucleotide variation in the region (Sweigart and Flagel 2015). Because genotype frequencies at hms1 did not differ significantly between reciprocal F2 populations (data not shown), we pooled data from both directions of the cross. We observed modest but significant TRD at hms1 with an excess of IM62 homozygotes (frequency of IM62 homozygotes to heterozygotes to IM767 homozygotes: expected 0.50:0.50, observed 0.54:0.46, χ² = 0.151, d.f. = 1, P < 0.151, N = 582). However, the bias in allelic transmission toward IM62 was not significant (frequency of IM62:IM767 alleles: expected 0.5:0.5, observed 0.54:0.46, χ² = 2.025, d.f. = 2, P = 0.0027, N = 3725). These results suggest that there is little to no transmission bias favoring the hms1 incompletely or also occurs within M. nasutus alleles at hms2 increases the transmission bias of IM62 at hms1, even in an otherwise M. guttatus genetic background. To address this question, we examined genotype frequencies in the reciprocal backcross progeny of individuals that were heterozygous IM62/IM767 and segregating for an M. nasutus introgression at hms2 (against an otherwise IM62/IM767 F2 genetic background; Figure S2). Indeed, extreme TRD at hms1 (i.e., bias toward the IM62 allele > 70%) was only observed in the backcross progeny of one
individual (08_60) that was also homozygous for *M. nasutus* alleles at *hms2* (Table 6). These results suggest that overtransmission of the IM62 allele at *hms1*, which appears to require *M. nasutus* alleles at *hms2*, may occur exclusively in hybrids.

DISCUSSION

TRD is commonly observed among hybrid offspring of recently diverged species, but the evolutionary significance is not always clear. In this study, we identified multiple contributors to hybrid TRD in genomic regions linked to two *Mimulus* hybrid sterility loci *hms1* and *hms2*, revealing a fine-scale complexity reminiscent of several previously characterized hybrid incompatibilities (Davis and Wu 1996; Long et al. 2008; Yang et al. 2012; Kubo et al. 2016b). We have discovered that hybrid transmission bias is caused, in part, by gametic action of the *hms1-hms2* incompatibility itself. However, the effects of the gametic hybrid sterility are partially obscured by an opposing (and currently unknown) mechanism that results in overtransmission of the *M. guttatus hms1* incompatibility allele in certain hybrid genetic backgrounds. In addition, our genetic analyses uncovered an independent hybrid lethality system with at least two incompatibility loci tightly linked to *hms1*. Strikingly, we found no evidence of biased transmission of the *hms1* incompatibility allele within *M. guttatus*, providing little support for selfish evolution as the cause of a recent, partial sweep at *hms1* (Sweigart and Flagel 2015). Instead, it appears that TRD at *hms1* and *hms2* might occur exclusively in hybrids.

Gametic action of hms1-hms2 hybrid incompatibility

Our finding that the *hms1*/*hms2* gametic type is severely undertransmitted in six of the eight backcrosses involving doubly heterozygous ILs (*hms1*/*hms2*) is strong evidence of gametic action of the incompatibility. This result runs counter to our previous interpretation of the finding that pollen viability is reduced from the F1 to F2 generation, which seemed to suggest a diploid (sporophytic) genetic basis for the *hms1-hms2* incompatibility (Sweigart et al. 2006). In general, for a hybrid incompatibility that affects the gametophyte, sterility is expected to be less severe in the F2 generation due to the inviability of recombinant F1 gametes and regeneration of parental combinations. However, in this case, it appears that removal of *hms1*/*hms2* F1 gametes is somewhat balanced by overtransmission of *M. guttatus* alleles at *hms1*. Moreover, incomplete penetrance of F1 hybrid gametic sterility (i.e., some *hms1*/*hms2* gametes do contribute to the F2 generation, see Table 4) produces a small fraction of F2 hybrids that are completely sterile because they are homozygous for incompatible alleles (i.e., *hms1*/*hms2*).

As an independent line of evidence for gametic expression of the *hms1-hms2* incompatibility, it is apparently difficult to introgress *M. nasutus* *hms2* alleles into an *M. guttatus* genetic background. In the BG4-NIL population (i.e., fourth-generation NILs that carry SF5 introgressions in an IM62 genetic background; see Materials and Methods from this study and Fishman and Willis 2005), only 2.8% of individuals (5/175) are heterozygous at MgSTS45, a marker ~2 cM from *hms2* (L. Fishman, unpublished results). This level of distortion is notable: of the 194 markers genotyped in this BG4 population, only four of them show lower heterozygosity and three of those map near a meiotic drive locus that strongly favors the *M. guttatus* allele (Fishman and Saunders 2008). In the BN4-NIL population (i.e., fourth-generation NILs that carry IM62 introgressions in an SF5 genetic background; see Materials and Methods), heterozygous introgressions at MgSTS45 are much more common, occurring in 10% of individuals (18 of 181). This result is not unexpected given that *M. guttatus* alleles at *hms2* are perfectly compatible with *M. nasutus* alleles at *hms1*.

Unlike in animals, hybrid incompatibilities in plants are often gametic (Morishima et al. 1991; Koide et al. 2008b; Leppala et al. 2013). Based on his studies of hybrid sterility between the *indica* and *japonica* varieties of *O. sativa*, Oka (1974) first suggested that defects in...
pollen development might be caused by loss-of-function alleles at duplicate genes (Oka 1974). Indeed, two cases of this duplicate gametic lethal model have now been demonstrated at the molecular level (Mizuta et al. 2010; Yamagata et al. 2010). For *Mimulus hms1* and *hms2*, there is no evidence that gene duplicates are involved (Sweigart and Flagel 2015), but a similar pattern of hybrid sterility is expected to result from a two-locus hybrid incompatibility between any genes expressed in the gametophyte. Additionally, the fact that the *hms1-hms2* incompatibility seems to affect both the male and female gametophyte (the *hms1l:hms2l* gamete type is undertransmitted through both sexes) is consistent with our finding that these loci contribute to both hybrid male sterility and hybrid female sterility (Sweigart et al. 2006). Gametic hybrid incompatibilities that affect the fertility of both sexes have also been discovered in tomato, rice, and *Arabidopsis* (Rick 1966; Koide et al. 2008a; Leppala et al. 2013), though they are apparently less common than those that act in only one sex (Morishima et al. 1991; Koide et al. 2008b).

Additional sources of TRD

Our fine-scale dissection of TRD at *hms1* and *hms2* provides insight into genomic differentiation between closely related *Mimulus* species and reveals a potentially complex genetic basis for hybrid dysfunction. In other systems, fine-mapping has often revealed multiple, tightly linked hybrid incompatibility loci that show independent effects (Wu and Davis 1993; Kubo et al. 2016a; Simon et al. 2016) or epistasis (Long et al. 2008; Yang et al. 2012; Kubo et al. 2016b). In one particularly complex example from *indica* and *japonica*, fine-mapping revealed two tightly linked genes involved in independent two-locus pollen killer systems (Kubo et al. 2016b). Because of this tight linkage, pollen killing had initially appeared to be caused by a single, three-locus interaction (Kubo et al. 2008). Remarkably, both of these pollen killer systems involve interactions between sporophytic and gametophytic genes, as well as additional modifier loci (Kubo et al. 2016b). The picture emerging from such studies is one of hybrid sterility regulated by multiple, interconnected molecular networks, potentially involving many genes.

A key question for *hms1* and *hms2* is whether the same genes cause the gametic incompatibility and transmission bias of *M. guttatus* at *hms1*. The latter is particularly strong when *hms2* is homozygous for *M. nasutus* alleles (Figure S1 and Table 3), suggesting that it might be caused by an interaction between the two loci. Additionally, the presence of *hms2NN* also appeared to unleash severe *hms1* TRD in one of the two IM62-IM767 F2 populations in which it was present (Table 6), suggesting that *hms2* might be necessary but not sufficient for *hms1* TRD. On the other hand, overtransmission of *hms1* does not seem to absolutely require *hms2NN* (e.g., we observed 62% transmission of *hms1* in *M. nasutus* × IL-Genotypes Table 3), which might argue against its direct involvement. Indeed, for the IL-Gs, there is a bias toward *hms1* in all backcross populations except those involving doubly heterozygous IL parents (i.e., *hms1G; hms2G*), which, because they express the *hms1G; hms2N* gametic inviability, might obscure additional sources of *hms1* TRD. Going forward, additional rounds of high-resolution fine-mapping will be needed to pinpoint the causal genes and determine if *Mimulus* hybrid sterility and TRD are genetically separable. Such efforts in rice have been successful in disentangling the complex phenotypic effects of linked hybrid sterility loci (e.g., Kubo et al. 2016a).

Identifying the molecular genetic basis of *hms1* TRD might also provide insight into its mechanisms. Because the bias toward *M. guttatus* alleles at *hms1* occurs through both males and females, the simplest single explanation is a gamete-killing system that affects pollen and seeds. Alternatively, it is possible that independent mechanisms (and genetic loci) cause sex-specific TRD, such as pollen competition in males (e.g., Fishman et al. 2008) and meiotic drive in females (e.g., Fishman and Saunders 2008). Whatever the cause, overtransmission of *hms1* is apparently exacerbated by *M. nasutus* alleles at *hms2* to the point of overwhelming the effects of the *hms1; hms2N* gametic interaction.
incompatibility. Indeed, the direction of TRD in the backcross progeny of \(hms1_{NN} \times hms2_{NN} \) ILSs is counterintuitive: because of the \(hms1_{GC} \times hms2_{GC} \) gametic incompatibility, one expects transmission bias to be toward \(M. nasutus \) alleles. Instead, we observed exactly the opposite, unlikely that there has been sufficient selection to drive this bias. In other words, some fraction of \(hms1_{GC}, hms2_{GC} \) gametes must survive, and in greater numbers than expected under Mendelian inheritance. However, to explain the transmission bias, one must consider that even if gamete eliminators do arise within species and evolve selfishly to bias their own transmission, they might do so without any cost to individual fitness. Only for pollen killers, a sufficient number of viable pollen grains might still remain to fertilize all available ovules. Under a scenario of selfish evolution with no fitness costs, there is no conflict and, thus, no mechanism for generating hybrid incompatibilities.

Despite evidence for a recent selective sweep of the \(hms1 \)-associated haplotype in the Iron Mountain population (Sweigart et al. 2015), our crossing experiments suggest there is no transmission bias favoring the \(IM62 hms1 \) incompatibility allele. One caveat to this finding is that TRD at \(hms1 \) might vary in different genetic backgrounds; even if there is no transmission bias between the IM62 and IM767 \(hms1 \) alleles, TRD might occur in other heterogeneous combinations. Alternatively, Iron Mountain individuals, including IM62 and IM767, might carry suppressors at \(hms2 \). However, given the recentness of the \(hms1 \)-associated (i.e., ~63 generations old, Sweigart and Flagel 2015), it seems unlikely that there has been sufficient time for a suppressor to evolve. Instead, \(M. guttatus \) from Iron Mountain and elsewhere may carry a “permissive” allele at \(hms2 \) that allowed the evolution of the IM62 \(hms1 \) variant without it expressing any transmission bias or sterility. Consistent with this idea, the incompatibility allele at \(hms2 \) seems to be specific to \(M. nasutus \) (Sweigart et al. 2007), indicating this species likely carries the derived allele. Thus, instead of being driven by selfish evolution within \(M. guttatus \), it appears that TRD at \(hms1 \) is limited only to hybrids. These findings leave open the possibility that \(hms1 \) evolution within Iron Mountain may have been driven by ecological adaptation. Further molecular characterization of these hybrid incompatibility loci and direct investigations of the fitness effects of alternative alleles at \(hms1 \) will be important steps toward identifying the evolutionary causes of this reproductive barrier.

ACKNOWLEDGMENTS

We thank Lilis Fishman for sharing her BG1 and BN1 nearly isogenic lines, and for valuable discussions. We are also grateful to Matt ZueLL and Madeleine Smith for making thoughtful comments on an earlier draft, which improved the manuscript. We are especially indebted to Taylor Harrell and Rachel Hughes for expert greenhouse care and genotyping assistance. This work was supported by a National Science Foundation grant.
LITERATURE CITED

Barreau, C., E. Benson, E. Gudmannsdottir, F. Newton, and H. White-Cooper, 2008 Post-meiotic transcription in Drosophila testes. Development 135: 1897–1902.

Brandvain, Y., A. M. Kenney, L. Flagel, G. Coop, and A. L. Sweigart, 2014 Speciation and introgression between Mimulus nasutus and Mimulus guttatus. PLoS Genet. 10: e1004410.

Braun, R. E., R. R. Behringer, J. J. Peschon, R. L. Brinster, and R. D. Palmiter, 1989 Genetically haploid spermatids are phenotypically diploid. Nature 337: 373–376.

Burt, A., and R. Trivers, 2006 Genes in Conflict: The Biology of Selfish Genetic Elements. Harvard University Press, Cambridge, MA.

Cameron, D. R., and R. M. Moav, 1957 Inheritance in Nicotiana tabacum XXVII. Pollen killer, an alien genetic locus inducing abortion of microspores not carrying it. Genetics 42: 326–335.

Case, A. L., and J. H. Willis, 2008 Hybrid male sterility in Mimulus (Phrymaceae) is associated with a geographically restricted mitochondrial rearrangement. Evolution 62: 1026–1039.

Case, A. L., F. R. Finseth, C. M. Barr, and L. Fishman, 2016 Selfish evolution of cytonuclear hybrid incompatibility in Mimulus. Proc. Biol. Sci. 283: 20161493.

Christie, P., and M. R. Macnair, 1987 The distribution of postmating reproductively isolating genes in populations of the yellow monkey flower, Mimulus guttatus. Evolution 41: 571–578.

Crespi, B., and P. Nosil, 2013 Confictual speciation: species formation via genomic conflict. Trends Ecol. Evol. 28: 48–57.

Davis, A. W., and C.-I. Wu, 1996 The broom of the sorcerer. Philos. Trans. R. Soc. Lond. B Biol. Sci. 351: 2478–2479.

Fishman, L., and J. Aagaard, and J. C. Tuthill, 2008 Toward the evolutionary genomics of gametophytic divergence: patterns of transmission ratio distortion in monkeyflower (Mimulus) hybrids reveal a complex genetic basis for conspecific pollen precedence. Evolution 62: 2958–2970.

Fishman, L., A. L. Sweigart, A. M. Kenney, and S. Campbell, 2014 Major quantitative trait loci control divergence in critical photoperiod for flowering between selfing and outcrossing species of monkeyflower (Mimulus). New Phytol. 201: 1498–1507.

Frank, S. A., 1991 Divergence of meiotic drive-suppression systems as an explanation for sex-biased hybrid sterility and inviability. Evolution 45: 262–267.

Gossmann, T., T. M. W. Schmid, U. Grossniklaus, and K. J. Schmid, 2014 Selection-driven evolution of sex-biased genes is consistent with sexual selection in Arabidopsis thaliana. Mol. Biol. Evol. 31: 574–583.

Gossmann, T. I., D. Saleh, M. W. Schmid, M. A. Spence, and K. J. Schmid, 2016 Transcripts of plant gametophytes have a higher proportion of rapidly evolving and young genes than sporophytes. Mol. Biol. Evol. 33: 1669–1678.

Hurst, L. D., and A. Pomiankowski, 1991 Causes of sex ratio bias may account for unisexual sterility in hybrids: a new explanation of Haldane’s Rule and related phenomena. Genetics 128: 841–858.

Johnson, N. A., 2010 Hybrid incompatibility genes: remnants of a genomic battlefield? Trends Genet. 26: 317–325.

Kenney, A. M., and A. L. Sweigart, 2016 Reproductive isolation and introgression between sympatric Mimulus species. Mol. Ecol. 25: 2499–2517.

Koide, Y., M. Ikenaga, N. Sawamura, D. Nishimoto, K. Matsubara et al., 2008a The evolution of sex-independent transmission ratio distortion involving multiple allelic interactions at a single locus in rice. Genetics 180: 409–420.

Koide, Y., K. Onishii, A. Kanazawa, and Y. Sano, 2008b Genetics of speciation in rice, pp. 247–259 in Rice Biology in the Genomics Era, edited by Hirano, H. Y., A. Hirai, and Y. Sano. Springer-Verlag, Berlin.

Kubo, T., 2013 Genetic mechanisms of postzygotic reproductive isolation: an epistatic network in rice. Breed. Sci. 63: 359–366.

Kubo, T., A. Yoshimura, and N. Kurata, 2011 Hybrid male sterility in rice is due to epistatic interactions with a pollen killer locus. Genetics 189: 1083–1092.

Kubo, T., T. Takashi, M. Ashikari, A. Yoshimura, and N. Kurata, 2016a Two tightly linked genes at the hls1 locus cause both F1 and F2 hybrid sterility in rice. Mol. Plant 9: 221–232.

Kubo, T., A. Yoshimura, and N. Kurata, 2016b Pollen killer gene S35 function requires interaction with an activator that maps close to S24, another pollen killer gene in rice. G3 (Bethesda) 6: 1459–1468.

Leppala, J., F. Bokma, and O. Savolainen, 2013 Investigating incipient speciation in Arabidopsis lyrata from patterns of transmission ratio distortion. Genetics 194: 697–708.

Loegering, W. Q., and E. R. Sears, 1963 Distorted inheritance of stem-rust resistance of Tustine wheat caused by a pollen-killen gene. Can. J. Genet. Cytol. 5: 65–72.

Long, Y., L. Zhao, B. Niu, J. Su, H. Wu et al., 2008 Hybrid male sterility in rice controlled by interaction between divergent alleles of two adjacent genes. Proc. Natl. Acad. Sci. USA 105: 18871–18876.

Lynch, M., and A. G. Force, 2000 The origin of interspecific genomic incompatibility via gene duplication. Am. Nat. 156: 590–605.

Mareshwari, S., and D. A. Barbash, 2011 The genetics of hybrid incompatibilities. Annu. Rev. Genet. 45: 331–355.

Martin, N. H., and J. H. Willis, 2007 Ecological divergence associated with mating system causes nearly complete reproductive isolation between sympatric Mimulus species. Evolution 61: 68–82.

Martin, N. H., and J. H. Willis, 2010 Geographical variation in postzygotic isolation and its genetic basis within and between two Mimulus species. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365: 2469–2478.

McDermott, S. R., and M. A. Noor, 2010 The role of meiotic drive in hybrid male sterility. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365: 1265–1272.

Mizuta, Y., Y. Harushima, and N. Kurata, 2010 Rice pollen hybrid incompatibility caused by reciprocal gene loss of duplicated genes. Proc. Natl. Acad. Sci. USA 107: 20417–20422.

Morishima, H., Y. Sano, and H.-I. Oka, 1991 Sterility barriers developed between and within taxa. Pp. 159–166. Evolutionary studies in rice. Oka, H.-I., 1974 Analysis of genes controlling F, sterility in rice by the use of isogenic lines. Genetics 77: 521–534.

Ouyang, Y., and Q. Zhang, 2013 Understanding reproductive isolation based on the rice model. Annu. Rev. Plant Biol. 64: 111–135.

Phadnis, N., and H. A. Orr, 2009 A single gene causes both male sterility and segregation distortion in Drosophila hybrids. Science 323: 376–379.

Presgraves, D., 2008 Drive and sperm: the evolution and genetics of male meiotic drive. 471–506.

Presgraves, D. C., 2010 The molecular evolutionary basis of species formation. Nat. Rev. Genet. 11: 175–180.

Rick, C. M., 1966 Abortion of male and female gametes in the tomato determined by allelic interaction. Genetics 53: 85–96.

Rutley, N., and D. Twell, 2015 A decade of pollen transcriptomics. Plant Reprod. 28: 73–89.

Sano, Y., 1990 The genic nature of gamete eliminator in rice. Genetics 125: 183–191.

Schluter, D., and G. L. Conte, 2009 Genetics and ecological speciation. Proc. Natl. Acad. Sci. USA 106: 9955–9962.

Simon, M., S. Durand, N. Pluta, N. Gobron, L. Botran et al., 2016 Genomic conflicts that cause pollen mortality and raise reproductive barriers in Arabidopsis thaliana. Genetics 203: 1353–1367.

Sweigart, A. L., and L. E. Flagel, 2015 Evidence of natural selection acting on a polymorphic hybrid incompatibility locus in Mimulus. Genetics 199: 543–554.
Sweigart, A. L., and J. H. Willis, 2003 Patterns of nucleotide diversity in two species of *Mimulus* are affected by mating system and asymmetric introgression. Evolution 57: 2490–2506.

Sweigart, A. L., and J. H. Willis, 2012 Molecular evolution and genetics of postzygotic reproductive isolation in plants. F1000 Biol. Rep. 4: 23.

Sweigart, A. L., L. Fishman, and J. H. Willis, 2006 A simple genetic incompatibility causes hybrid male sterility in *Mimulus*. Genetics 172: 2465–2479.

Sweigart, A. L., A. R. Mason, and J. H. Willis, 2007 Natural variation for a hybrid incompatibility between two species of *Mimulus*. Evolution 61: 141–151.

Tao, Y., D. L. Hartl, and C. C. Laurie, 2001 Sex-ratio segregation distortion associated with reproductive isolation in *Drosophila*. Proc. Natl. Acad. Sci. USA 98: 13183–13188.

Vickery, R. K. J., 1978 Case studies in the evolution of species complexes in *Mimulus*. Evol. Biol. 11: 405–507.

Walbot, V., and M. M. Evans, 2003 Unique features of the plant life cycle and their consequences. Nat. Rev. Genet. 4: 369–379.

Werth, C. R., and M. D. Windham, 1991 A model for divergent, allopatric speciation of polyploid pteridophytes resulting from silencing of duplicate-gene expression. Am. Nat. 137: 515–526.

Wu, C.-L., and A. W. Davis, 1993 Evolution of postmating reproductive isolation: the composite nature of Haldane’s rule and its genetic bases. Am. Nat. 142: 187–212.

Wuest, S. E., K. Vrijverberg, A. Schmidt, M. Weiss, J. Gheyselinck et al., 2010 *Arabidopsis* female gametophyte gene expression map reveals similarities between plant and animal gametes. Curr. Biol. 20: 506–512.

Yamagata, Y., E. Yamamoto, K. Aya, K. T. Win, K. Doi et al., 2010 Mitochondrial gene in the nuclear genome induces reproductive barrier in rice. Proc. Natl. Acad. Sci. USA 107: 1494–1499.

Yang, J., X. Zhao, K. Cheng, H. Du, Y. Ouyang et al., 2012 A killer-protector system regulates both hybrid sterility and segregation distortion in rice. Science 337: 1336–1340.

Yu, Y., Z. Zhao, Y. Shi, H. Tian, L. Liu et al., 2016 Hybrid sterility in rice (*Oryza sativa L.*) involves the tetricopeptide repeat domain containing protein. Genetics 203: 1439–1451.

Zhang, L., T. Sun, F. Wolde sellassie, H. Xiao, and Y. Tao, 2015 Sex ratio meiotic drive as a plausible evolutionary mechanism for hybrid male sterility. PLoS Genet. 11: e1005073.

Communicating editor: J. Ross-Ibarra