Supporting Information

Simultaneous Detection ofCircularly Polarized Luminescence and Raman Optical Activity in an Organic Molecular Lemniscate

L. Palomo, L. Favereau, K. Senthilkumar, M. Stępień, J. Casado*, F. J. Ramírez*
Supporting Information

Contents:

Section	Page
Spectroscopic Measurements	2
Computational Details	3
Experimental and Calculated Raman Spectrum	4
Vibrational Eigenvectors	5
Group Coupling Matrices	6
Molecular Fragment Definition	7
Calculated UV-vis and ECD Spectra	8
Electric transition dipole moments	9
Magnetic transition dipole moments	10
ETDM and MTDM of D4 and D6 transitions	11
Assignment of electronic transitions	11
Molecular orbital topologies	12
ROA Spectra in Several Solvents	13
References	14
Spectroscopic Measurements

Raman and ROA spectra were recorded simultaneously in a BioTools ChiralRAMAN © spectrometer (BioTools Inc, Jupiter FL, USA). Raman Optical Activity (ROA) was measured as the intensity difference between the scattered radiation right and left circularly polarized (SCP-ROA). Spectra were recorded at the room temperature from 100 μl of saturated solutions in deuterated dichloromethane, CD₂Cl₂. Excitation wavelength at 532 nm was used as generated by a Nd:VO₄ laser operating at 20 mw. Only radiation scattered in the backward direction with respect to the incident laser was led to the detector. Spectral resolution was always better than 7 cm⁻¹, and the standard acquisition times were greater than 24 h. Each spectrum was confirmed by at least two different Raman/ROA experiments recorded from independently prepared samples.

Electronic absorption and Electronic Circular Dichroism (ECD) spectra were recorded on a Jasco 815 spectrometer working at the room temperature and continuously purged with dry N₂ gas. Spectra in the 300-700 nm range were achieved from 200 μl of solutions 0.05 mol/l in CH₂Cl₂ placed in a 0.1 cm path cell. The recording parameters were time constant of 1 second, scan rate of 100 nm/min, bandwidth of 1 nm and blank correction over a pure CH₂Cl₂ solution. Final spectra were obtained as the average of a minimum of three scans after a blank correction.
Computational Methods

Density Functional Theory (DFT) quantum chemical calculations were performed with the Gaussian’16 suite of programs51. The hybrid exchange–correlation functional B3LYP was used in combination with the Becke (B3) gradient-corrected exchange functional, with the Lee-Yang-Parr (LYP) non-local correlations and the Tawada52,53 long-range corrections, and the Dunning’s correlation consistent basis set CC-PVDZ,54,55 which includes polarization functions for hydrogen and heavy atoms. Raman and ROA spectra were obtained from the calculated DFT intensities and vibrational wavenumbers uniformly scaled by 0.977.56 Every band was represented by a Gaussian function of 10 cm-1 half-height width. Electronic excitation energies were obtained by using the time-dependent DFT (TDDFT) formalism57,58 for which up to the twenty low-lying energy states were considered.

A sharp vibrational analysis was carried out with the Pyvib2 program,59 developed by M. Fedorovsky. This implements a vibrational correlation interface able to compare the nuclear motions of vibrations of different molecules. It also uses the molecular decomposition method, proposed by W. Hug,60 in order to obtain a topological and more friendly description of the Raman and ROA intensities. In this method, the three invariants which determine the circular difference differential scattering cross section of a normal mode, namely aG', β_G^2 and β_A^2,29 are dissected into additive quasi-atomic terms. Then, the atomic contributions of a specific molecular fragment to any vibrational eigenvalue can be added up to obtain a topological and more friendly description of its whole ROA activity.
Figure S1. (a) Experimental Raman spectrum of CPPL in dichloromethane solution. (b) Calculated Raman spectrum (scaled by a uniform factor of 0.977) of CPPL.
Figure S2. Calculated eigenvectors of selected ν(C=C/C-C) modes of (M)-CPPL. The scaled (0.977) wavenumbers are inserted. The colours represent the phase of the atomic vibrations, whereas the volume of each sphere is proportional to the vibrational amplitude.
Figure S3. Group coupling matrices (GCM) obtained for selected \(v(C=C/C-C)\) modes of \((M)\)-CPPL Groups in GCM are defined in the Fig. S4. The circle and sphere sizes are normalized to the maximum value obtained for the 1607 cm\(^{-1}\) vibration.
Figure S4. Molecular fragments for the GCM analysis of (M)-CPPL. A (green): the bicarbazole group; B (blue) and C (pink): the two equivalent oligophenyl groups; D (light blue): the hydrogens.
Figure S5. Calculated absorption UV-vis and ECD spectra of \((P-)\) and \((N-)\) enantiomers of CPPL in dichloromethane solution.
Table S1. Ground to excited state transition electric (ETDM) dipole moments (atomic units) calculated for the 25 lowest energy excited states of \((M)\)-CPPL. TD-DFT calculations were performed at the B3LYP/CC-PVDZ level of theory.

state	X	Y	Z	Dip. S.	Osc.
1	-0.4991	0.7251	0.0001	0.7749	0.0554
2	-0.0008	-0.0000	-0.9640	0.9293	0.0691
3	-4.9753	-0.0043	0.0001	24.7536	1.9791
4	-3.7989	-0.1557	0.0001	14.4560	1.1655
5	0.0006	-0.0001	0.1574	0.0248	0.0020
6	0.0174	-0.9968	-0.0001	0.9939	0.0814
7	0.0000	-0.0002	0.0695	0.0048	0.0004
8	0.5696	-2.0098	-0.0000	4.3637	0.3737
9	0.0004	0.0001	-0.3295	0.1086	0.0094
10	-0.0008	0.0039	0.0229	0.0005	0.0000
11	-0.0836	0.4100	-0.0001	0.1751	0.0154
12	0.1043	3.1074	0.0002	9.6668	0.8602
13	0.0008	0.0007	-0.3285	0.1079	0.0098
14	-0.0012	-0.0008	-0.1220	0.0149	0.0014
15	-0.0144	-0.0078	-0.7032	0.4948	0.0450
16	0.5745	0.3181	-0.0178	0.4316	0.0393
17	-0.0003	-0.0002	0.0741	0.0055	0.0005
18	-0.0002	0.0001	0.4764	0.2269	0.0210
19	-0.0001	0.0004	-0.3071	0.0943	0.0088
20	2.8426	0.0162	0.0002	8.0807	0.7564
21	0.4575	0.1347	-0.0000	0.2275	0.0216
22	-0.9434	0.1348	-0.0001	0.9081	0.0866
23	0.0008	0.0002	-0.1049	0.0110	0.0011
24	-0.0009	0.0002	-0.0808	0.0065	0.0006
25	1.8069	-0.1330	-0.0000	3.2827	0.3167
Table S2. Ground to excited state transition magnetic (MTDM) dipole moments (atomic units) calculated for the 25 lowest energy excited states of (M)-CPPL. TD-DFT calculations were performed at the B3LYP/CC-PVDZ level of theory.

state	X	Y	Z
1	-1.0625	-4.5538	0.0003
2	0.0002	0.0006	-12.0128
3	1.3504	0.8395	0.0010
4	1.2083	1.3559	0.0018
5	-0.0002	-0.0002	1.9901
6	0.5920	2.0352	0.0001
7	0.0001	0.0006	-0.6618
8	-0.2165	-1.0107	-0.0006
9	-0.0002	-0.0006	0.0196
10	0.0007	0.0035	0.4556
11	0.0962	0.4084	-0.0032
12	-0.1746	0.5789	-0.0001
13	-0.0006	-0.0005	2.6292
14	0.0007	0.0007	-2.1392
15	0.0065	0.0062	-4.5128
16	-0.2615	-0.2410	-0.1249
17	0.0000	-0.0003	3.2315
18	-0.0001	-0.0000	1.0290
19	-0.0001	-0.0000	0.6026
20	-1.0834	-0.6240	0.0005
21	-0.3480	-0.0782	-0.0003
22	0.3505	0.2177	0.0000
23	-0.0005	-0.0002	0.1504
24	-0.0002	0.0005	0.2059
25	0.0461	-0.6286	-0.0000
Figure S6. ETDM \((10^{-18} \text{ esu cm, blue vectors})\) and MTDM \((10^{-21} \text{ erg G}^{-1}, \text{ red vectors})\) of the D4 and D6 electronic transitions calculated for \((P)\)-CPPL.

Table S3. Assignment of the D2 and D3 electronic transitions of \((M)\)-CPPL. TD-DFT calculations were performed at the B3LYP/CC-PVDZ level of theory.

Transition D2: \[2.9623 \text{ eV} \quad 418.54 \text{ nm} \quad f=0.0681 \quad <S^{**2}> = 0.000\]

- homo-1 → lumo \[0.52949\]
- homo → lumo+1 \[-0.44832\]

Transition D3: \[3.1994 \text{ eV} \quad 387.52 \text{ nm} \quad f=1.8934 \quad <S^{**2}> = 0.000\]

- homo-2 → lumo \[0.10277\]
- homo → lumo+2 \[0.68353\]
Figure S7. Topological representation of the molecular orbitals involved in the D2 and D3 electronic transitions of (M)-CPPL.
Figure S8. Comparison between the ROA spectra of CPPL in dichloromethane and decalin.
Supporting References

S1 M. J. Frisch et al. Gaussian 16, Revision A.03, Gaussian, INc. Wallingford CT, 2016.
S2 A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652.
S3 C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785-789.
S4. R.A. Kendall, T.H. Dunning, Jr., R.J. Harrison, J. Chem. Phys. 1992, 96, 6796-6806.
S5 E.R. Davidson, Chem. Phys. Lett. 1996, 260, 514-518.
S6 A.P. Scott, L. Radom J. Phys. Chem. 1996, 100, 16502-16513.
S7 E. Runge, E.K.U. Gross Phys. Rev. Lett. 1984, 52, 997-1000.
S8 E.K.U. Gross, W. Kohn Adv. Quant. Chem. 1990, 21, 255-294.
S9. W. Hug, Chem. Phys., 2001, 264, 53-69.
S10. M. Fedorovsky, Comput. Lett. 2006, 2 (4), 233-236.