Analysis of β-lactamase phenotypes and carriage of selected β-lactamase genes among *Escherichia coli* strains obtained from Kenyan patients during an 18-year period

John Kiiru1,2,3*, Samuel Kariuki1,1, Bruno M Goddeeris2,4† and Patrick Butaye3,5†

Abstract

Background: Although β-lactam antibiotics are heavily used in many developing countries, the diversity of β-lactamase genes (bla) is poorly understood. We screened for major β-lactamase phenotypes and diversity of bla genes among 912 *E. coli* strains isolated from clinical samples obtained between 1992 and 2010 from hospitalized and non-hospitalized patients.

Results: None of the isolates was resistant to carbapenems but 30% of all isolates were susceptible to cefepime, cephamycins and piperacillin-tazobactam. Narrow spectrum β-lactamase (NSBL) phenotype was observed in 278 (30%) isolates that contained blaTEM-1 (54%) or blaSHV-1 (35%) or both (11%). Extended Spectrum β-lactamase (ESBL) phenotype was detected in 247 (27%) isolates which carried blaCTX-M-14 (29%), blaCTX-M-15 (24%), blaCTX-M-9 (26%), blaCTX-M-18 (4%), blaCTX-M-3 (11%), blaSHV-5 (6%), blaSHV-12 (5%), and blaTEM-52 (16%). Complex Mutant TEM-like (CMT) phenotype was detected in 220 (24%) isolates which carried blaTEM-125 (29%), while blaTEM-50, blaTEM-78, blaTEM-106, blaTEM-152 and blaTEM-158 were detected in lower frequencies of between 7% and 11%. Majority of isolates producing a combination of CTX-M-15 + OXA-1 + TEM-1 exhibited resistance phenotypes barely indistinguishable from those of CMT-producers. Although 73 (8%) isolates exhibited Inhibitor Resistant TEM-like (IRT) phenotype, blaTEM-103 was the only true IRT-encoding gene identified in 18 (25%) of strains with this phenotype while the rest produced a combination of TEM-1 + OXA-1. The pAmpC-like phenotype was observed in 94 (10%) isolates of which 77 (82%) carried blaCMY-2 while 18% contained blaCMY-1.

Isolates from urine accounted for 53%, 53%, 74% and 72% of strains exhibiting complex phenotypes such as IRT, ESBL, CMT or pAmpC respectively. On the contrary, 55% isolates from stool exhibited the relatively more susceptible NSBL-like phenotype. All the phenotypes, and majority of the bla genes, were detected both in isolates from hospitalized and non-hospitalized patients but complex phenotypes were particularly common among strains obtained between 2000 and 2010 from urine of hospitalized patients.

Conclusions: The phenotypes and diversity of bla genes in *E. coli* strains implicated in clinical infections in non-hospitalized and hospitalized patients in Kenya is worryingly high. In order to preserve the efficacy of β-lactam antibiotics, culture and susceptibility data should guide therapy and surveillance studies for β-lactamase-producers in developing countries should be launched.

* Correspondence: jndemi@yahoo.com
† Equal contributors
1 Centre for Microbiology Research, Kenya Medical Research Institute, P.O Box 19464-00202, Nairobi, Kenya
2 Department of Biosystems, Faculty of Bio-Science Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 30, B-3001, Heverlee, Belgium
Full list of author information is available at the end of the article

© 2012 Kiiru et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Background

β-lactam antibiotics are an important arsenal of agents used against both Gram-negative and Gram-positive bacteria. Resistance to this class of antimicrobials is therefore of immense clinical significance. It is important to investigate the epidemiology of strains that are resistant to β-lactam antibiotics especially in Sub-Saharan Africa where treatment with alternative or more effective agents may be beyond the reach of majority of patients. Before treatment using β-lactam antibiotics is initiated, proper and timely identification of the β-lactamase phenotype is of critical importance. Failure or delay to do this may lead to therapeutic failure and death of patients [1]. In order to guide therapy and in order to understand the molecular epidemiology of β-lactamase-producers, a combination of susceptibility profiling, PCR and sequencing techniques may be required [2-4]. These techniques are not always available or affordable in resource-poor settings. Therefore, the prevalence of β-lactamasers in developing countries is largely undetermined and the use of β-lactam antibiotics in such countries remains largely empiric.

Based on resistance to β-lactam/β-lactamase inhibitor antibiotics, bacteria strains may be conveniently categorized into various resistant phenotypes [5]. Strains exhibiting Narrow Spectrum β-lactam Phenotypes (NSBLs) normally produce TEM-1 and/or SHV-1 enzymes that effectively degrade penicillins but are susceptible to other classes of β-lactams [6]. However, mutations on the promoter region of the gene encoding TEM-1 may result to over-production of these otherwise narrow-spectrum enzymes. This overproduction may in turn confer resistance to other classes of β-lactams besides penicillins [7-10]. Point mutations on these enzymes may also generate inhibitor resistant enzymes such as the Inhibitor Resistant TEMs (IRTs) that degrade penicillins but are not impeded by β-lactamase inhibitors such clavulanic acid or sulbactam [4,11]. Extended Spectrum β-Lactamases (ESBLs) may also be derived from TEM- and SHV-type enzymes. ESBLs exhibit a wide hydrolytic ability to different generations of cephalosporins but remain susceptible to β-lactamase inhibitors [12]. Complex Mutant TEMs (CMTs) are also derived from TEM-1 or TEM-2 and degrade most β-lactams but are susceptible to β-lactamase inhibitors including tazobactam. The CMTs are also susceptible to cephemycins and carbapenemases [13]. Plasmid-encoded AmpC (pAmpC) such as CMYs mediate resistance to most classes of β-lactams except to fourth generation cephalosporins and carbapenemases [14]. The β-lactamases with the worst clinical implications are those that degrade carbapenemases, the most potent class of β-lactam antibiotics available today. Some carbapenemases such as the *Klebsiella pneumoniae* carbapenemases (KPC) degrade virtually all classes of β-lactams [15-17]. Some carbapenemases such as metallo-β-lactamases (MBLs) are however susceptible to aztreonam, a monobactam [18]. It is therefore clear that determination of β-lactamase phenotypes may not only aid the choice of agents to treat patients but may also guide the screening of *bla* genes and therefore save costs in surveillance studies. Understanding molecular epidemiology of *bla* gene is also important because majority of broad-spectrum resistant enzymes, especially the ESBLs and CMYs are encoded in conjugative plasmids that may be acquired across species barrier. Therefore, such genes have a high potential for spread via horizontal gene transfer mechanisms [19-22].

The phenotypic diversity of β-lactamase-producers in Kenya is poorly described and the diversity of *bla* genes has not been properly investigated [23-28]. The aim of the current study was to determine the β-lactamase phenotypes and carriage of *bla* genes of critical importance in *E. coli* obtained from blood, stool and urine obtained from hospitalised and non-hospitalised patients seeking treatment in Kenyan hospitals during an 18-year period (1992 to 2010).

Results

Phenotypic diversity of β-lactamase-producers

None of the 912 isolates tested in this study were resistant to carbapenems. Cefepime, (a fourth generation cephalosporin), cefoxitin (a cephamycin), and piperacillin-tazobactam (TZP), were effective against majority (60%) of these isolates. The NSBL-like phenotype was the most dominant phenotype in our collection and was observed in 278 (30%) of the 912 isolates compared to 73 (8%), 247 (27%) and 94 (10%) of isolates found to exhibit IRT-, ESBL-, CMT and pAmpC-like phenotypes respectively, Table 1. Based on resistance phenotypes, 247 ESBL-producers fit into two sets. The first set comprised of 142 isolates exhibiting resistance to combinations of aztreonam and multiple cephalosporins including ceftazidime. The other set of 105 isolates were resistant to the same panel of antibiotics but not to ceftazidime. The 220 isolates with a CMT-like phenotype were resistant to all generations of cephalosporins but were susceptible to cephamycins and carbapenems. Resistance to all β-lactamase inhibitors including TZP was observed in 160 (73%) of the CMT-producers. Among 40 isolates with a CMT-like phenotype that had intermediate resistance to TZP, tiny ghost zones (≤ 3 mm) were observed between amoxicillin-clavulanic acid (AMC) and ceftazidime (CAZ) and/or Cefotaxime (CTX). These isolates therefore exhibited a combination of both ESBL- and CMT-like phenotypes. The most resistant strains were those exhibiting a pAmpC-like phenotype. These 94 isolates comprising
Table 1 β-lactamase phenotypes encountered among the 912 strains analyzed

Penicillins, 1st & 2nd generation cephalosporins	3rd Generation cephalosporins & Monobactams	4th Generation cephalosporins	inhibitors	Cephamycins	Most probable Phenotypea	Total (%) n = 912
AMP, KF, AMX	−	−	−	−	NSBL	103 (11)
AMP, AMX, KF OXA	−	−	−	−	NSBL	175 (19)
AMP, AMX, KF OXA	−	−	AMC, AMS	−	IRT	65 (7)
AMP, AMX, KF	−	−	AMC, AMS	−	IRT	8 (1)
AMP, AMX, KF, CXM	CTXb, AZTb	−	−	−	ESBL	105 (12)
AMP, AMX, KF, CXM	CTX, CAZb, AZT	−	−	−	ESBL	75 (8)
AMP, AMX, OXA KF, CXM	CTXb, CAZb, AZT	FEP	AMS	−	ESBL	67 (7)
AMP, AMX, OXA KF, CXM	CTX, CAZb, AZT	FEP	AMC, AMS	−	CMT	40 (4)
AMP, AMX, OXA KF, CXM	CTX, CAZ, AZT	FEP	AMC, AMS, TZP	−	CMT	180 (20)
AMP, AMX, OXA KF, CXM	CTX, CAZ, AZT	FEP	AMC, AMS, TZP, FOX	−	pAmpC	94 (10)

Resistance phenotypes of the 912 isolates investigated:

a: β-lactamase phenotypes observed in different isolates were defined as follow:- Narrow spectrum β-lactamases (NSBLs) were resistant to penicillins but were susceptible to other classes of β-lactam antibiotics. Isolates exhibiting the inhibitor resistant TEM phenotype (IRT) were those capable of degrading penicillins, were not inhibited by β-lactamase inhibitors but were susceptible to other classes of β-lactam antibiotics. The ESBL-producers were resistant to penicillins, 2nd and most 3rd generation cephalosporins, and exhibited intermediate resistance to 4th generation cephalosporins and were fully susceptible to cephemycins, carbapenems and β-lactamase inhibitors. The complex mutant TEMs (CMTs) were resistant to most β-lactams and β-lactamase inhibitors including TZP but were susceptible to cephemycins and carbapenems. Isolates with the pAmpC phenotypes were resistant to all generations of β-lactam antibiotics, were susceptible to carbapenems and were either susceptible or exhibited intermediate resistance to 4th generation cephalosporins.

b: appearance of zones of synergy between a given cephalosporin or monobactam and amoxicillin-clavulanic acid (AMC).

(−) isolate with a given phenotype were susceptible to a given set of antibiotics.
about 10% of all the isolates in our collection were resistant to most generations of cephalosporins and β-lactamase inhibitors including TZP but were susceptible to carbapenems.

Distribution of β-lactamase-producers
All the β-lactamase phenotypes reported in this study were observed in isolates from all specimen-types obtained during the 1990s and 2000s and from both hospitalized and non-hospitalized patients, Table 2. While majority of isolates from stool exhibited the relatively susceptible NSBL-like phenotype, isolates from urine accounted for 55%, 53%, 57% and 72% of strains with complex resistances such as IRT-, ESBL-, CMT- and pAmpC-like phenotypes respectively. Majority of isolates from hospitalized patients, especially those diagnosed with UTIs, exhibited such complex phenotypes compared to those obtained from patients seeking outpatient treatment. These complex resistances were also more common among isolates obtained in recent years (2000–2010).

Carriage of bla genes
Carriage of bla _TEM_1 or bla _SHV_1 was associated with the NSBL-like phenotype in 54% and 35% of the 155 isolates exhibiting this phenotype respectively. The two genes were also found together in 11% of the NSBL-producers, Table 3. The only IRT-encoding gene identified in this study was _bla_ _TEM_103 that was detected in 18 (25%) of the 73 isolates with an IRT-like phenotype. The other 55 (75%) of isolates with this phenotype carried a combination of _bla_ _TEM_1, _bla_ _OXA_1 genes. Majority (78%) of the 247 isolates with an ESBL-like phenotype tested positive for CTX-M-type ESBLs. While _bla_ _CTX-M_14 and _bla_ _CTX-M_15 were detected in 29% and 24% of these isolates respectively, _bla_ _CTX-M_1, _bla_ _CTX-M_3, _bla_ _CTX-M_9 and _bla_ _CTX-M_8 were detected in lower frequencies of 6%, 11%, 2% and 4% respectively, Table 3. Isolates which carried _bla_ _CTX-M_1 alone exhibited intermediate resistances to aztreonam and cefotaxime and were fully susceptible to ceftazidime. The _bla_ _TEM_2 that was detected in 22 (16%) of ESBL-producers was the only TEM-type ESBL identified in this study. The carriage and diversity of SHV-type ESBL genes was also low in which case, only _bla_ _SHV_5 and _bla_ _SHV_12 ESBL-encoding genes were detected in 3% and 5% of the ESBL-producers respectively. Resistance to ceftazidime among the ESBL-producers was attributed mainly to carriage of _bla_ _CTX-M_15 or a combination of _bla_ _CTX-M_6, _bla_ _OXA_1, _bla_ _TEM_1 genes. A significant proportion (39%) of isolates containing _bla_ _CTX-M_6 or _bla_ _SHV_1-type ESBLs in the absence of _bla_ _OXA_1 or _bla_ _TEM_1 were susceptible to ceftazidime.

The _bla_ _TEM_125 was detected in 29% of the 124 isolates exhibiting a CMT-like phenotype and was therefore the most common CMT-encoding gene detected in this study. Other CMT genes: _bla_ _TEM_50, _bla_ _TEM_78, _bla_ _TEM_152 and _bla_ _TEM_158 were detected in much lower prevalences of 8%, 7%, 11%, and 8% respectively, Table 3. Carriage of CMT genes did not account for CMT-like phenotypes in 30% of isolates with this phenotype. None of such isolates tested positive for a combination of _bla_ _TEM_14, _bla_ _OXA_1, _bla_ _TEM_1 while 14 strains carried a combination of _bla_ _TEM_15 + _bla_ _OXA_1, _bla_ _TEM_1. Another 15 isolates tested positive for a combination of a _bla_ _TEM_52 (a TEM-type ESBL gene), and _bla_ _OXA_1. Production of OXA-1 and TEM-1 enzymes in the presence of CTX-M enzymes apparently masked the ESBL-phenotype that is otherwise conferred by CTX-M enzymes. Therefore, isolates producing a combination of such enzymes could hardly be distinguished from genuine CMT-producers. The _bla_ _CMY_2 that was present in 77 (72%) of all isolates in our collection was the most common pAmpC-encoding genes detected in this study. The CMYs were also detected in strains co-producing TEM-1 and SHV-type ESBLs suggesting a possible co-evolution of penicillinases, ESBLs and AmpCs genes in the same isolate. While majority of _bla_ _OXA_1 genes were detected in strains bearing ESBL genes such as _bla_ _CTX-M_6 or _bla_ _TEM_52, the _bla_ _OXA_2 were detected in strains carrying _bla_ _CMY_2, Table 3. None of the isolates investigated tested positive for _bla_ _PER_ like, _bla_ _ACC_ like, _bla_ _VEB_ like, or _bla_ _DHA_1 like genes.

Distribution of bla genes
We also analyzed for the distribution of _bla_ genes among strains obtained from different specimen-types

Specimen-type	NSBL	IRT	ESBL	CMT	pAmpC
Total	278	73	247	220	94
Stool	153	18	65(26)	21(10)	13(14)
Urine	15(14)	38(53)	130(53)	163(74)	68(72)
Blood	39(14)	17(22)	52(21)	36(16)	13(14)
Year of isolation	1990s	2000s	1990s	2000s	1990s
Inpatient	82(29)	60(82)	170(69)	163(74)	87(92)
Outpatient	196(71)	13(18)	77(31)	57(26)	7(8)
Number (%) of isolates exhibiting a given phenotype among those obtained from different specimen-types and different category of patients during the 1990s and 2000s period.					
and among those obtained from hospitalized and non-hospitalized patients, Figure 1. Majority of bla genes were present in all specimen-types regardless of their clinical backgrounds. However, \textit{bla}_{CTX-M-3} was only detected in isolates from urine while \textit{bla}_{TEM-78} was not detected among isolates from blood. \textit{bla}_{TEM-109} and \textit{bla}_{CTX-M-8} on the other hand, were exclusively detected among isolates obtained from hospitalized patients. All \textit{bla} genes described in this study were found in isolates obtained from both the 1990s and 2000s except \textit{bla}_{CMY-1} that was exclusively detected among isolates obtained during the 2000-2010 period.

\(\beta\)-lactamase genes	NSBL \(n=155\)	IRT \(n=73\)	ESBL \(n=140\)	CMT \(n=124\)	pAmpC \(n=94\)
TEM-1	84 (54)	–	–	–	–
SHV-1	54 (35)	–	–	–	–
TEM-1 and OXA-1	–	55 (75)	–	–	–
TEM-1 + SHV-1	17 (11)	–	–	–	–
SHV-5	–	–	4 (3)	–	–
SHV-12	–	–	7 (5)	–	–
CTX-M-1 + OXA-1	–	–	9 (6)	–	–
CTX-M-3	–	–	15 (11)	–	–
CTX-M-8	–	–	6 (4)	–	–
CTX-M-9	–	–	3 (2)	–	–
CTX-M-14	–	–	41 (29)	–	–
CTX-M-14 + TEM-1 + OXA-1	–	–	–	9 (7)	–
CTX-M-15	–	–	34 (24)	–	–
CTX-M-15 + TEM-1 + OXA-1	–	–	–	14 (11)	–
TEM-103	–	18 (25)	–	–	–
TEM-109	–	–	–	9 (7)	–
TEM-50	–	–	–	10 (8)	–
TEM-52	–	–	22 (16)	–	–
TEM-52 + OXA-1	–	–	–	15 (12)	–
TEM-78	–	–	–	9 (7)	–
TEM-125	–	–	–	36 (29)	–
TEM-152	–	–	–	14 (11)	–
TEM-158	–	–	–	10 (8)	–
CMY-1 + OXA-2	–	–	–	–	16 (17)
CMY-1	–	–	–	–	1 (1)
CMY-2	–	–	–	–	5 (5)
CMY-2 + SHV-5 + TEM-1	–	–	–	–	14 (15)
CMY-2 + SHV-12	–	–	–	–	12 (13)
CMY-2 + OXA-2	–	–	–	–	46 (49)

Combination of \textit{bla} genes detected in isolates exhibiting different \(\beta\)-lactamase phenotypes. (−) isolate with a given phenotype did not test positive for a given set of \textit{bla} genes.

Discussion

In this study, we describe the diversity of \(\beta\)-lactamase genes in a large collection of \textit{E. coli} from different types of clinical specimen obtained from hospitalized and non-hospitalized patients in Kenya. This study suggests that carbapenems and to a less extent, cefepime, cephamycins and piperacillin-tazobactam may still be potent against majority of the isolates investigated. Although we do not rule out that the panel of \textit{bla} genes in our strains is wider than what is reported in this study, there was a general agreement between phenotypic data and the panel of \textit{bla} genes detected in the strains analysed. The
diversity of \textit{bla} genes encountered in isolates from blood, stool and urine specimen of hospitalized patients was almost identical to the panel of genes encountered in corresponding specimens from non-hospitalized patients. This partially suggests a possible exchange of strains between hospitalized and non-hospitalized patients or a flow of genes among strains from different clinical backgrounds. Based on the resistance profiles, we identify ESBL-, CMT- and pAmpC-producers as the most important set of strains whose spread in hospital and community settings should be closely monitored. If the prevalence of isolates with such highly resistant strains continues to rise, majority of \(\beta\)-lactam antibiotics may cease to be effective agents for management of community- and hospital-acquired infections in Kenya.

It is highly likely that heavy use of antibiotics to treat different infections, and urethral tract infections (UTI) in particular, has selected for isolates carrying multiple

| Table 4 Primers used for screening for \(\beta\)-lactamase genes |

Target Gene	Primer name	5’-3’ sequence	T°C	Size (bp)	Gene accession number
\textit{blaTEM}	TEM-F	ATGAGTATCACAAT TTC CG	55	840	EF125012-related
	TEM-R	CCAATGCTTAATACG TGA GG			
\textit{blaSHV}	SHV-F	TTCGCCTTGATTATCCTCCCTG	50	854	AF148850-related
	SHV-R	TTAGCCTGACCAGTGYTCG			
\textit{blaCTX-M concensus}	MA1	ATGTGCAGYACCATAAGRTKATGGC	60	593	Y10278-related
	MA2	TGGTGARATARTGSCAGAAYCAGCCGG			
\textit{CTX-M group I}	CTXM1-F	GAC GAT GTG ACT GGC TGA GC	55	499	X92506-related
	CTXM1-R2	AGC CG C CGA CGC TAA TAC A			
\textit{CTX-M group II}	TOHO1-2 F	GCC ACC TGG TTA ACT ACA ATC C	55	351	X92507-related
	TOHO1-1R	CGG TAG TAT TGC CCT TAA GGC			
\textit{CTX-M group III}	CTXM825F	GC GTT GCC ATG TGC AGC ACC	55	307	AF189721-related
	CTXM825R	GCT TAC TAT GAT CGA GCC			
\textit{CTX-M group IV}	CTXM914F	GCT GAA GAA AAC CAG CGG AG	62	474	AF252622-related
	CTXM914R	GTA AGC TGA CGC AAC GTC TG			
\textit{blaCMY (consensus)}	CF1	ATGATGAAAAATGCTATAGC	55	1200	U77414-related
	CF2	TTCGGCAGTTTTTAAAGGATGCGC			
\textit{blaCMY-1 group}	CMY-1 F	GTCGGGATGCCCAGCATCC	58	915	AJ291609-related
	CMY-1R	GGGTCGCCGGCTTGTGTC			
\textit{blaCMY-2 group}	CMY-2 F	GCACCTGACCACACATATCGCAGCG	58	758	AF305559-related
	CMY-2R	GCTTTTCAAGAATGCGGCAGG			
\textit{blaOXA-1}	OXA-1 F	ATGAAAACACAAATCATACTCAACTTCGCC	62	820	JO2967-related
	OXA-1R	GTGGTATGAAATGTGATGCGATT			
\textit{blaOXA-2}	OXA-2 F	ACGATGTTTGGCCAGACGAAAC	62	602	AF300985-related
	OXA-2R	ATCGTGGTTTGGCCATATCGTA			
\textit{blaPER-concensus}	PER-F	ATGAAATGCTATTATAAAAAG	55	925	Z21957-related
	PER-R	ATTTTGCGCTACTATGCGCAAA			
\textit{blaACC-like}	ACC-F	AGCCCTCAGACCCGGTATCC	53	818	AJ133121-related
	ACC-R	GAAGCCCTGGTATGATCC			
\textit{blaVEB-concensus}	VEB-F	ATTTAACCAGATAGACTACA	55	1000	Z21957-related
	VEB-R	CGTTTGGGCTATGGCCAGG			
\textit{blaDHA-concensus}	DHA-F	TGATGCAGACCGAGATATTCC	55	997	EF406115-related
	DHA-R	GCTTTAGCTTCTGCAGTATCC			

Primer combinations used for screening and sequencing \textit{bla} genes. The consensus primers were used for screening and sequencing purposes except for \textit{blaCTX-M} and \textit{blaOXA} that were sequenced using group-specific primers. CTX-M group I primers detect genes encoding CTX-M−1, −3, −10 to −12, −15, −22, −23, −28, −29 and −30 while primers for CTX-M group II primers detect genes encoding CTX-M−2, −4, −7, and −20. Group III primers detect only CTX-M−8 while group IV primers detect genes encoding CTX-M−9, −13, −14, −16 to 19, -21, and 27.

T°C: annealing temperature.

Y = T or C, R = G or A, S = G or C, K = G or T.
bla genes such as those encountered in this study. Since the antibiotic-use policy is rarely enforced in Kenya, and since most prescriptions are issued without culture and susceptibility data, β-lactam antibiotics are likely to be glossily misused. This may partially explain why complex phenotypes such as ESBL-, CMT- and pAmpC-like phenotypes were observed even among isolates from stool. The current study also shows that 41% of the isolates were resistant to at least one β-lactamase inhibitor. High resistances to inhibitor antibiotics may emerge as a result of over-reliance on amoxicillin-clavulanic acid to treat different infections in Kenya even without a valid prescription. It is however interesting to note that the prevalence of inhibitor resistant bla genes is still very low among strains exhibiting an IRT-like phenotype. Similar studies conducted in Spain reported a similar low prevalence of IRTs [29,30]. The only true IRT reported in this study was TEM-103 while majority (75%) of isolates with an IRT-like phenotype carried a combination of blaTEM-1 + blaOXA-1. These two genes were also frequently detected in isolates exhibiting a combination of an ESBL- and CMT-like phenotypes. However, blaOXA-1 and blaTEM-1 were also detected in isolates susceptible to inhibitors. We speculate that besides conferring resistance to narrow spectrum penicillins, some TEM-1 and OXA-1 may be implicated in resistance to other classes of antimicrobials such as various generations of cephalosporins and possibly, β-lactam/β-lactamase inhibitor combinations. These hypothesis is partially based on findings from a recent study conducted in Kenya that described novel blaOXA-1 enzymes in Salmonella strains that contain promoter mutations.

![Figure 1](image_url) Occurrence of bla genes among isolates from different clinical backgrounds. (a) Occurrence of bla genes among isolates from blood, stool and urine. (b) Occurrence of bla genes among isolates from inpatient and outpatient populations. (c) Occurrence of bla genes among isolates obtained in the 1990s and 2000s periods.
that confer resistance to broad-spectrum β-lactam antibiotics including β-lactamase inhibitors [23]. Furthermore, studies conducted elsewhere have also reported resistance to multiple β-lactam antibiotics due to promoter mutations that result to over-production of TEM-1 enzymes [30]. It is therefore important to further investigate genetic basis of resistance and the role of these otherwise narrow-spectrum β-lactamas (TEM-1 and OXA-1) in mediating resistance to advanced classes of β-lactam antibiotics in developing countries.

In the current study, we found a high diversity of CMTs, yet these enzymes have been reported only in a few countries [13]. It is possible that the ease of access to β-lactam/β-lactamase inhibitor combinations in Kenya without valid susceptibility data has selected for strains with CMT genes that are rarely reported from other countries. In contrast, majority of CTX-M- and SHV-type ESBLs and CMY-type pAmpCs genes identified are those with a global-like spread pattern [31-39]. Similarly, TEM-52, the only TEM-type ESBL reported in this study, is frequently reported in USA [39] and Europe [40]. The wide dissemination of genes encoding these ESBLs and pAmpCs is attributed to physical association between these genes and mobile genetic elements such as ISEcp1, transposons and conjugative plasmids [41-43]. Such genetic affiliations further underline the potential of these genes described in this study to spread to susceptible strains through horizontal gene transfer mechanisms.

Conclusions
This study demonstrates the need to combine phenotypic and molecular methods in order to understand important aspects of resistance to β-lactam antibiotics in developing countries. We recommend that measures be put in place to minimize possible exchange of strains between hospitalized and non-hospitalized patients. Prudent use of β-lactam antibiotics in developing countries should be advocated and in such countries, the existing empiric treatment regimes should be revised occasionally in order to reflect prevailing resistance phenotypes. Such measures may help to preserve the potency of β-lactam antibiotics and improve success of chemotherapy. Finally, the diversity of bla genes described in this study is relatively high and majority of genes in circulation among E. coli strains investigated have a global-like spread. We recommend that attempts be made to investigate the role of Africa and other developing countries as sources or destinations of β-lactamase-producing strains.

Methods
Bacterial strains
Between 1992 and 2010, our laboratory at the KEMRI Centre for Microbiology Research received 912 E. coli isolates from 13 health centres in Kenya. All the 912 isolates were resistant to penicillins alone (e.g. ampicillin), or a combination of penicillins and different classes of β-lactam antibiotics. These isolates were from urine (395), blood (202), stool (315) and were obtained from confirmed cases of urethral tract infections (UTIs), septicaemia and diarrhoea-like illnesses respectively. Out of the 912 isolates, 255 (28 %) were obtained between 1992 and 1999 while 657 (72 %) were obtained between 2000 and 2010. This difference was as a result of an increase in isolation rates as a result of better detection and screening techniques in recent years. These isolates were obtained from 350 patients seeking outpatient treatment and 562 were from hospitalised patients. Upon receipt, the isolates were sub-cultured on MacConkey agar (Oxoid, Basingstoke, United Kingdom) and species identification done using standard biochemical tests as described before [44]. Ethical clearance to carry out this study was obtained from the KEMRI/National Ethics Committee (Approval: SSC No. 1177).

Antimicrobial susceptibility profiles
Antimicrobial susceptibility tests were performed for all the 912 isolates using antibiotic discs (Cypress diagnostics, Langdorp, Belgium) on Mueller Hinton agar (Oxoid, Basingstoke, United Kingdom). E. coli ATCC 25922 was included as a control strain on each test occasion. Susceptibility tests were interpreted using the Clinical and Laboratory Standards Institute (CLSI) guidelines [45]. The antibiotics included in this panel were: - ampicillin (AMP, 10 μg), oxacillin (OXA, 30 μg), amoxicillin (AML, 30 μg), cephalothin (KF, 30 μg), cefuroxime (CXM 30 μg), cefotaxime (CTX, 30 μg) and ceftazidime (CAZ, 30 μg). Other antibiotics included cefepime (FEP, 30 μg), aztreonam (AZT, 30 μg), and cefoxitin (FOX, 30 μg).

β-lactam/β-lactamase inhibitor combinations included amoxicillin/clavulanic acid (AMC, comprising amoxicillin 20 μg and clavulanic acid 10 μg), ampicillin/sublactam (AMS) combinations in ratios of 20 μg and 10 μg respectively, and piperacillin/tazobactam (TZP) in potency ratio of 100/10 μg respectively. Imipenem (IM 30 μg) was used to test susceptibility to carbapenems.

Detection and Interpretation of β-lactamase phenotype
Two strategies were used for detection of β-lactamase phenotypes as detailed in the CLSI guidelines [45], and in other related studies [46]. The first strategy was the double-disc synergy test (m-DDST) in which the β-lactam antibiotics were placed adjacent to the amoxicillin/clavulanic (AMC) disc at inter-disc distances (centre to centre) of 20 mm. A clear extension of the edge of the disc zones towards the AMC (ghost zones or zones of synergy) was interpreted as positive for ESBL production. In the combined disc method (CDM), tests were
first done using β-lactam antibiotics and then repeated using discs containing combinations of β-lactam/β-lacta-
mase inhibitors. A result indicating a ≥5 mm increase in zone diameter for the β-lactam/β-lactamase inhibitor
disc was interpreted as production of ESBLs [45,46]. The results from the m-DDST and CDM methods were also
used for empiric categorization of strains into NSBL-, IRT-, ESBL- CMT- and pAmpC-like β-lactamase pheno-
types as detailed before [5].

PCR detection of β-lactamase genes
Preparation of DNA used as template in PCR reactions
was obtained by boiling bacteria suspension from an 8 hr culture at 95 °C for 5 minutes. The supernatant
was stored at -20 °C until further use. Subsequent PCR
amplifications were carried out in a final volume of 25 µL or 50 µL. A minimum of 5 µL of template DNA and
1 µL of 10 mM concentration of both forward and re-
verse primers were used in PCR reactions. Isolates from
our collection that had been found to carry various bla
genes in past studies [24,27,47], were used as positive
controls in PCR screening for genes of interest. Sterile
distilled water or E. coli strains susceptible to all β-
lactam antibiotics were used as negative controls. PCR
products were analyzed using electrophoresis in 1.5 % agarose gels and stained with ethidium bromide. Visualiza-
tion of the PCR products was done under UV
light and the image recorded with the aid of a gel docu-
mentation system (Bio-Rad Laboratories, Hercules, CA,
USA).

Selection of isolates for further analysis
Isolates from each phenotype were selected for further
analysis using PCR and sequencing strategies. For pheno-
types with a high number of isolates (i.e. more than a
hundred strains), at least 56% of the isolates were
selected for further analysis. In order to minimize bias,
the isolates selected from each phenotype were propor-
tion to the total number of isolates obtained during each
year of isolation (1992 to 2010). Similarly, the number of
isolates selected from urine, stool and blood specimen
was proportional to the total number of strains isolated
from each specimen-type obtained from both hospita-
lized and non-hospitalized patients. Using this criterion,
586 (64%) of the 912 isolates were selected for further
analysis. Regardless of the source phenotype, all the
selected isolates were investigated for carriage of the
complete panel of bla genes screened for in this study.

Screening for bla genes
The strains were screened for genes frequently reported
among members of family Enterobacteriaceae [11]. The
list of primers used is indicated in Table 4. Consensus
primers published in past studies were used for
screening for blaSHV and blaTEM [48,49], blaCTX-M [50]
and blaCMY [51]. Isolates positive using blaCTX-M consen-
sus primers were screened using primers specific for
CTX-M group I to IV as described in a previous study
[52]. Isolates positive using the blaCMY primers were ana-
alyzed using primers for blaCMY-1-like and blaCMY-2-like
genes [53]. Detection of other β-lactamase genes was
done as previously described for blaOXA-like [53,54],
blaPER-like [55], blaACC-like [53], blaVEB-like [56], and
blaOHA-like genes [57].

Sequencing
Amplicons used as template in sequencing reactions
were purified using the QIAquick PCR purification kit
(Qiagen Ltd., West Sussex, UK). Bi-directional sequen-
cing of the products was done using the DiDeoxy chain
termination method in ABI PRISM 310 automatic sequen-
cer (PE Biosystems, Foster City, CA, USA). Consensus
primers were used for sequencing except for blaCTX-M and
blaOXA genes that were sequenced using group-specific
primers. Translation of nucleotide sequences was done
using bioinformatics tools available at the website of the
National Center of Biotechnology Information on http://
www.ncbi.nlm.nih.gov. Alignment of the translated en-
zyme amino acid sequence was done against that of the
wild-type using the ClustalW program on http://
www.ebi.ac.uk [58]. Identification of enzyme mutations at amino
acid level was determined by comparing the translated
amino acid sequence with that of the wild-type enzyme
published at http://www.lahey/org/studies.

Competing interests
None of the authors have competing interests.

Authors’ contributions
JK designed the study, carried out the experiments and wrote the
manuscript. SK, BM and PB designed the study and participated in
manuscript write-up and review. All authors read and approved the final
manuscript.

Authors’ information
JK and SK are research Scientist at the Kenya Medical Research Institute
(KEMRI). BMG is Professor at the KULLeuven (Faculty of Bioscience
Engineering) while PB is a Senior Research Scientist at the Veterinary and
Agrochemical Research Centre (VAR).

Acknowledgements
The authors would like to thank staff and students attached to the CMR-WT
unit lab at KEMRI and staff members of Bacteriology unit at VAR-Belgium.
This work was supported by a PhD scholarship grant from the Vlaamse
Interuniversitaire Raad (VLIR), Belgium (Grant number BTIP2007-0009-1086).
This work is published with permission from the Director, KEMRI.

Author details
1Centre for Microbiology Research, Kenya Medical Research Institute, P.O Box
19464-00202, Nairobi, Kenya. 2Department of Biosystems, Faculty of Bio-
Science Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 30,
B-3001, Heverlee, Belgium. Veterinary and Agrochemical Research Centre,
Groeselberg 99, B-1180, Ukkel, Belgium. 3Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, University of
Ghent, Salisbuyulaan 133, 9620, Merelbeke, Belgium. 4Department of
References

1. Huang SS, Lee MH, Leu HS. Bacteremia due to extended-spectrum beta-lactamase-producing Enterobacteriaceae other than Escherichia coli and Klebsiella. J Microbial Immunol Infect 2006, 39:496–502.

2. Bush K, Jacoby GA, Medeiros AA: A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 1995, 39:1211–1233.

3. Bush K: New beta-lactamases in gram-negative bacteria: diversity and impact on the selection of antimicrobial therapy. Clin Infect Dis 2001, 32:1085–1089.

4. Canton R, Coque TM: TheCTX-M beta-lactamase pandemic. Curr Opin Microbiol 2006, 9:466–475.

5. Canton R, Morosini M, de la Maza OM, de la Pedrosa EIG, Irig and CMT beta-lactamases and inhibitor resistance. Clin Microbiol Infect 2008, 14(Suppl 1):53–62.

6. Jacoby GA, Medeiros AA: More extended-spectrum beta-lactamases. Antimicrob Agents Chemother 1991, 35:1697–1704.

7. Becerre A, Maharan J, Gaulton T, Doumid M, Soares NC, Dhanji H, Warner M, Doyle M, Hickey M, Downie G, Bou G, Livermore DM, Nordmann P, Nicolas-Chanoine MH: False extended-spectrum (beta)-lactamase phenotype in clinical isolates of Escherichia coli associated with increased expression of OXA-1 or TEM-1 penicillinases and loss of porins. J Antimicrob Chemother 2011, 66:2006–2010.

8. Tristram SG, Hawes R, Soupiounov J: Variation in selected regions of blaTEM genes and promoters in Haemophilus influenzae. J Antimicrob Chemother 2005, 56:481–484.

9. Nelson EC, Segal H, Elisa BG: Outer membrane protein alterations and blaTEM-1 variants: their role in beta-lactam resistance in Klebsiella pneumoniae. J Antimicrob Chemother 2003, 52:899–903.

10. Lartigue MF, Leflon-Guibout V, Poirel L, Nordmann P, Nicolas-Chanoine MH: Promotion P3, Pa/Pb, P4, and P5 upstream from bla(TEM) genes and promoters P3, Pa/Pb, P4, and P5 found in clinical Klebsiella pneumoniae isolates from Kenya. Antimicrob Agents Chemother 2001, 45:2141–2143.

11. Ecker C, Gauvier T, Arlet G: DNA sequence analysis of the genetic environment of various blaCTX-M genes. J Antimicrob Chemother 2006, 57(1):14–23.

12. Escher-Panaro P, Genet K, Le MA, Rode L, Salgado E, Amorin C, Gouriou S, Picard B, Rahimi MC, Andremont A, Denamur E, Ruymy R: Large-scale population structure of human commensal Escherichia coli isolates. Appl Environ Microbiol 2004, 70:5698–5700.

13. Boyle F, Healy G, Halle J, Kariuki S, Cormican M, Morris D: Characterization of a novel extended-spectrum betalaactamase phenotype from OXA-1 expression in Salmonella Typhimurium strains from Africa and Ireland. Diagn Microbiol Infect Dis 2011, 70:549–553.

14. Kariuki J, Kariuki S, Goddeeris BM, Revathi G, Mawna TM, Ndewwa DW, Muoydi J, Butaye P: Escherichia coli strains from Kenyan patients carrying conjugatelly transferable broad-spectrum beta-lactamase, qnr, aac(6’)-cb-cr and 16 S rRNA methyltransferase genes. J Antimicrob Chemother 2011, 66:1639–1642.

15. Poirel L, Revathi G, Bernabeu S, Nordmann P: Detection of NDM-1-producing Klebsiella pneumoniae in Kenya. Antimicrob Agents Chemother 2011, 55:934–936.

16. Poutou JD, Revathi G, Chow BL, Kabera B, Kariuki S, Nordmann P, Poirel L: Metallo-beta-lactamase-producing Pseudomonas aeruginosa isolated from a large tertiary centre in Kenya. Clin Microbiol Infect 2008, 14:755–759.

17. Kariuki S, Corkill JE, Revathi G, Musoke R, Hart CA: Molecular characterization of a novel plasmid-encoded cefotaxime (CTX-M-12) found in clinical Klebsiella pneumoniae isolates from Kenya. Antimicrob Agents Chemother 2001, 45:2141–2143.

18. Kariuki S, Gilks CF, Kimari J, Muoydi J, Wayaki P, Hart CA: Plasmid diversity of multi-drug-resistant Escherichia coli isolated from children with diarrhoea in a poultry-farming area in Kenya. Ann Trop Med Parasitol 1997, 91:57–94.

19. Miro E, Navarro F, Mirelís B, Sabate M, Rivera A, Coll P, Prats G: Prevalence of clinical isolates of Escherichia coli producing inhibitor-resistant beta-lactamases at a University Hospital in Barcelona, Spain, over a 3-year period. Antimicrob Agents Chemother 2002, 46:4035–4037.

20. Knox JR: Extended-spectrum and inhibitor-resistant TEM-type beta-lactamases: mutations, specificity, and three-dimensional structure. Antimicrob Agents Chemother 1995, 39:2593–2601.

21. Sirot D, Sirot J, Labia R, Morand A, Courvalin P, Darfeuille-Michaud A, Perroux R, Cluzel R: Transferable resistance to third-generation cephalosporins in clinical isolates of Klebsiella pneumoniae: identification of CTX-1, a novel beta-lactamase. J Antimicrob Chemother 1987, 20:323–334.

22. Henquell C, Chanal C, Sirot D, Labia R, Sirot J: Molecular characterization of nine different types of mutants among 107 inhibitor-resistant TEM beta-lactamases from clinical isolates of Escherichia coli. Antimicrob Agents Chemother 1995, 39:427–430.

23. Caroff N, Espasa E, Gauvreaux D, Richert H, Reynaud A: Analysis of the effects of –42 and –32 ampic promoter mutations in clinical isolates of Escherichia coli hyperproducing ampC. J Antimicrob Chemother 2000, 45:783–788.

24. da Silva RM, Traebert J, Galato D: Klebsiella pneumoniae carbapenemase (KPC)-producing Klebsiella pneumoniae: a review of epidemiological and clinical aspects. Expert Opin Biol Ther 2012, 12:663–671.

25. Canton R, Akova M, Carmeli Y, Giske CG, Grupczynsky Z, Gniadkowski M, Livermore DM, Mirigou V, Naas T, Rossolini GM, Samuelsen O, Seifert H, Woodford N, Nordmann P: Rapid evolution and spread of carbapenemases among Enterobacteriaceae in Europe. Clin Microbiol Infect 2012, 18:415–431.

26. Nordmann P, Dortet L, Poirel L: Carbapenem resistance in Enterobacteriaceae: here is the storm! Trends Mol Med 2012, 18(5):263–272.

27. Nordmann P, Poirel L: Emerging carbapenemases in Gram-negative aerobes. Clin Microbiol Infect 2002, 8:321–331.

28. Coulton FE, Hanson NO, Climo MW: Occurrence of extended-spectrum and AmpC beta-lactamases in bloodstream isolates of Klebsiella pneumoniae: isolates harbor plasmid-mediated FOX-5 and ACT-1 AmpC beta-lactamases. J Clin Microbiol 2003, 41(2):772–777.

29. Deolaska M, Frolkova P, Florek M, Jamborova I, Purgertova M, Kutilova I, Czek A, Guenther S, Leterik I:CTX-M-15-producing Escherichia coli clone B2–D258–S71T1 and Klebsiella spp. isolates in municipal wastewater treatment plant effluents. J Antimicrob Chemother 2011, 66:2784–2790.

30. Eckert C, Gauvier T, Arlet G: DNA sequence analysis of the genetic environment of various blactX-M genes. J Antimicrob Chemother 2006, 57(1):14–23.
CTX-M: changing the face of ESBLs in Europe. J Antimicrob Chemother 2007, 59:165–174.
38. Pitout JD, Thomson KS, Hanson ND, Ehrhardt AF, Moland ES, Sanders CC: beta-Lactamases responsible for resistance to expanded-spectrum cephalosporins in Klebsiella pneumoniae, Escherichia coli, and Proteus mirabilis isolates recovered in South Africa. Antimicrob Agents Chemother 1998, 42:1532–1534.
39. Doy D, Adams J, O’Keefe A, Quereshi Z, Ewan L, Paterson DL: Community-acquired extended-spectrum beta-lactamase producers, United States. Emerg Infect Dis 2013, 13:1121–1123.
40. Cloeckaert A, Praud K, Doubiet B, Bertini A, Carattoli A, Butaye P, Imberechts H, Bertrand S, Collard JM, Arlet G, Weill FX, Nakaya R: Dissemination of an extended-spectrum-beta-lactamase blaTEM-52 gene-carrying IncI1 plasmid in various Salmonella enterica serovars isolated from poultry and humans in Belgium and France between 2001 and 2005. Antimicrob Agents Chemother 2007, 51:1872–1875.
41. Nicolas-Chanoine MH, Blanco J, Leffon-Guibout V, Demarty R, Alonso MP, Canica MM, Park YJ, Lavigne JP, Pitout J, Johnson JR: Intercontinental emergence of Escherichia coli clone Q35-M-5T31 producing CTX-M-15. J Antimicrob Chemother 2008, 61:273–281.
42. Bae IK, Lee YN, Lee WG, Lee SH, Jeong SH: Novel complex class 1 integron bearing an ISCR1 element in an Escherichia coli isolate carrying the blaCTX-M-14 gene. Antimicrob Agents Chemother 2007, 51:3017–3019.
43. Hopkins KL, Liebana E, Villa L, Barchelor M, Threlfall EJ, Carattoli A: Replicon typing of plasmids carrying CTX-M or CMY beta-lactamases circulating among Salmonella and Escherichia coli isolates. Antimicrob Agents Chemother 2006, 50:3203–3206.
44. Cowan ST: Cowan and Steel's manual for identification of medical bacteria. 2nd edition. Cambridge: Cambridge University Press; 1985.
45. Clinical and Laboratory Standards Institute (CLSI): Performance standards for antimicrobial susceptibility testing; 15th informational supplement (M100-S15). Wayne PA, USA: CLSI Clinical Laboratory Standards Institute; 2007.
46. Karisik E, Ellington MJ, Pike R, Warren RE, Livermore DM, Woodford N: Molecular characterization of plasmids encoding CTX-M-15 beta-lactamases from Escherichia coli strains in the United Kingdom. J Antimicrob Chemother 2006, 58:665–668.
47. Kariuki S, Revathi G, Corkill J, Kiiru J, Mwituria J, Mirza N, Hart CA: Escherichia coli from community-acquired urinary tract infections resistant to fluoroquinolones and extended-spectrum beta-lactams. J Infect Dev Ctries 2013, 7:1257–1262.
48. Arlet G, Rouveau M, Philippon A: Substitution of alanine for aspartate at position 179 in the SHV-6 extended-spectrum beta-lactamase. FEMS Microbiol Lett 1997, 152:163–167.
49. Arlet G, Brani G, Decro G, Filippo A, Gallot O, Lagrange PH, Philippon A: Molecular characterisation by PCR-restriction fragment length polymorphism of TEM beta-lactamases. FEMS Microbiol Lett 1995, 134:203–208.
50. Lartigue MF, Poirel L, Nordmann P: Diversity of genetic environment of blaCTX-M genes. FEMS Microbiol Lett 2004, 234:201–207.
51. Winokur PL, Buegegeman A, DeSalvo DL, Hoffmann L, Apley MD, Uhrenhopp BK, Pfaller MA, Doern GV: Animal and human multidrug-resistant, cephalexin-resistant salmonella isolates expressing a plasmid-mediated OMY-2 AmpC beta-lactamase. Antimicrob Agents Chemother 2000, 44:2777–2783.
52. Pitout JD, Hossain A, Hanson ND: Phenotypic and molecular detection of CTX-M-beta-lactamases produced by Escherichia coli and Klebsiella spp. J Clin Microbiol 2004, 42:5715–5721.
53. Hasman H, Mevis D, Veldman K, Olesen I, Aarestrup FM: beta-Lactamases among extended-spectrum beta-lactamase (ESBL)-resistant Salmonella from poultry, poultry products and human patients in The Netherlands. J Antimicrob Chemother 2005, 56:115–121.
54. Olesen I, Hasman H, Aarestrup FM: Prevalence of beta-lactamases among ampicillin-resistant Escherichia coli and Salmonella isolated from food animals in Denmark. Microb Drug Resist 2004, 10:334–340.
55. Poirel L, Karim A, Mercant L, Thomas L, Vahaboglu H, Richard C, Nordmann P: Extended-spectrum beta-lactamase-producing strain of Acinetobacter baumannii isolated from a patient in France. J Antimicrob Chemother 1999, 43:157–158.
56. Kim JY, Park YJ, Kim SI, Kang MW, Lee SO, Lee KY: Nosocomial outbreak by Proteus mirabilis producing extended-spectrum beta-lactamase VEB-1 in a Korean university hospital. J Antimicrob Chemother 2004, 54:1144–1147.
57. Verdet C, Benzerara Y, Gautier V, Adam O, Ould-Hocine Z, Arlet G: Emergence of DHA-1-producing Klebsiella spp. in the Parisian region: genetic organization of the ampC and ampF genes originating from Morganella morganii. Antimicrob Agents Chemother 2006, 50:607–617.
58. Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994, 22:4673–4680.