Zhong–Yang type eigenvalue estimate with integral curvature condition

Xavier Ramos Olivé · Shoo Seto · Guofang Wei · Qi S. Zhang

Received: 3 January 2019 / Accepted: 29 October 2019 / Published online: 5 December 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
We prove a sharp Zhong–Yang type eigenvalue lower bound for closed Riemannian manifolds with control on integral Ricci curvature.

Keywords Laplace eigenvalue · Integral Ricci curvature · Integral curvature · Eigenvalue estimate · Laplacian

1 Introduction

One trend in Riemannian geometry since the 1950’s has been the study of how curvature affects global quantities like the eigenvalues of the Laplacian. On a closed Riemannian manifold \((M^n, g)\), assuming that \(\text{Ric}_M \geq (n-1)H (H > 0)\), Lichnerowicz [16] proved the lower bound \(\lambda_1 (M) \geq Hn\), where \(\lambda_1\) is the first nonzero eigenvalue of the Laplace–Beltrami operator in \((M^n, g)\),

\[
\text{div}(\nabla u) := \Delta u = -\lambda_1 u.
\]

G.W. is partially supported by NSF DMS 1811558.
Q.S.Z. is partially supported by Simons Foundation Grant 282153.

✉ Guofang Wei
wei@math.ucsb.edu

Xavier Ramos Olivé
xramosolive@wpi.edu

Shoo Seto
shoos@uci.edu

Qi S. Zhang
qizhang@math.ucr.edu

1 Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester, MA 01609, USA
2 Department of Mathematics, University of California, Irvine, CA 92617, USA
3 Department of Mathematics, University of California, Santa Barbara, CA 93106, USA
4 Department of Mathematics, University of California, Riverside, CA 92521, USA
Obata [17] proved the rigidity result that equality holds if and only if M^n is isometric to S^n_H. In the case $\text{Ric}_M \geq 0$, one can not prove a positive lower bound without a constraint on the diameter of M. Note that the diameter constraint is automatic when $H > 0$ by Myers’ theorem. If the diameter of M is D, Li and Yau [14,15] proved a gradient estimate for the first nontrivial eigenfunction and showed that

$$\lambda_1(M) \geq \frac{\pi^2}{2D^2}.$$

Zhong and Yang [30] improved this result, and obtained the optimal estimate

$$\lambda_1(M) \geq \frac{\pi^2}{D^2}.$$

Hang and Wang [12] proved the rigidity result that equality holds if and only if M is isometric to S^1 with radius $\frac{D}{\pi}$. When $H < 0$, improving Li–Yau’s estimate [15], Yang showed the following explicit estimate in [26],

$$\lambda_1(M) \geq \frac{\pi^2}{D^2} e^{-C_n \sqrt{(n-1)|H|D}}, \quad (1.1)$$

where $C_n = \max\{\sqrt{n-1}, \sqrt{2}\}$. The general optimal lower bound estimate for $\lambda_1(M)$ for all H is proved in [1,8,13,27] using gradient estimate, probabilistic ‘coupling method’ and modulus of continuity, respectively, see also [2,4]. The general lower bound gives a comparison of the first eigenvalue to a one-dimensional model and an explicit lower bound was given by Shi and Zhang [24] which takes the form

$$\lambda_1(M) \geq 4(s - s^2) \frac{\pi^2}{D^2} + s(n - 1)H \quad \text{for all } s \in (0, 1). \quad (1.2)$$

In recent years, there has been an increasing interest in relaxing the pointwise curvature assumption, by assuming a bound in an L^p sense as in [10]. In the fundamental work [19] the basic Laplacian comparison and Bishop–Gromov volume comparison have been extended to integral Ricci curvature. Many topological invariants can be expressed in terms of L^p norms of the curvature, and these bounds are also more suitable than pointwise bounds in the study of Ricci flow. To be more precise, let $\rho(x)$ be the smallest eigenvalue for the Ricci tensor.

For a constant $H \in \mathbb{R}$, let ρ_H be the amount of Ricci curvature lying below $(n - 1)H$, i.e.

$$\rho_H = \max\{-\rho(x) + (n - 1)H, 0\}. \quad (1.3)$$

We will be concerned mainly with ρ_0, the negative part of Ric. The following quantity measures the amount of Ricci curvature lying below $(n - 1)H$ in an L^p sense

$$\tilde{k}(p, H) = \left(\frac{1}{\text{vol}(M)} \int_M \rho_H^p d\nu\right)^{\frac{1}{p}} = \left(\int_M \rho_H^p d\nu\right)^{\frac{1}{p}}.$$

Clearly $\tilde{k}(p, H) = 0$ iff $\text{Ric}_M \geq (n - 1)H$.

In [10], Gallot obtained a lower bound for $\lambda_1(M)$ for closed manifolds with diameter bounded from above and $\tilde{k}(p, H)$ small by a heat kernel estimate, see Theorem 2 below. The estimate is not optimal though. When $H > 0$, Aubry [3] obtained an optimal lower bound estimate for the first nonzero eigenvalue, which recovers the Lichnerowicz estimate. Recently the second and third authors [23] extended this to the p-Laplacian. See [5] for improvement in the Kahler case.

In this paper we obtain an optimal estimate for $H = 0$, recovering the Zhong–Yang estimate. Namely,
Theorem 1 Let (M^n, g) be a closed Riemannian manifold with diameter $\leq D$ and $\lambda_1(M)$ be the first nonzero eigenvalue. For any $\alpha \in (0, 1)$, $p > \frac{n}{2}$, $n \geq 2$, there exists $\epsilon(n, p, \alpha, D) > 0$ such that if $\tilde{k}(p, 0) \leq \epsilon$, then

$$\lambda_1(M) \geq \alpha \frac{\pi^2}{D^2}.$$

The constant ϵ can be explicitly computed, see Appendix.

The proofs for $\lambda_1(M)$ we mentioned before for pointwise lower Ricci curvature bound do not work well with integral curvature condition. Here we use a gradient estimate similar to the one of Li and Yau. Their technique can not be applied directly in the integral curvature case, as it relies on a pointwise lower bound to control the term $\text{Ric}(\nabla u, \nabla u)$ coming from the Bochner formula. To overcome this difficulty, we use the technique developed by Zhang and Zhu [28,29]. See [6,20,21] for other applications of this technique. The strategy consists in introducing an auxiliary function J via a PDE that absorbs the curvature terms appearing in the Bochner formula, and to find appropriate bounds for J (see Sect. 2). We also follow the approach of [14], that uses an ODE comparison technique instead of the original barrier functions of [30] (see Sect. 3).

Remark 1 In general, $p > \frac{n}{2}$ and the smallness of $\tilde{k}(p, 0)$ are both necessary conditions, see e.g. [9]. In particular, for our estimate, the example of the dumbbells of Calabi shows that only assuming that $\tilde{k}(p, 0)$ is bounded is not enough: consider a dumbbell $D_{\epsilon} \subseteq \mathbb{R}^3$, consisting of two equal spheres joined by a thin cylinder of length l and radius ϵ, with smooth necks. Assume without loss of generality that $\text{vol}(D_{\epsilon}) \leq 1$. Then, as explained in [7], $\lambda_1(D_{\epsilon}) \leq C\epsilon^2$, so no positive lower bound is possible, as we can consider a sequence of dumbbells with $\epsilon \to 0$. Notice that in this example, $\tilde{k}(p, 0)$ can not be made small. This follows from Gauss–Bonnet: since D_{ϵ} is homeomorphic to S^2, the integral of the sectional curvature over D_{ϵ} is 4π. However, over the two spheres it is close to 8π, and over the cylinder it’s 0. Hence, the two necks contain negative curvature, that amounts to almost -4π. This implies that $\text{vol}(D_{\epsilon})\tilde{k}(1, 0) \approx 4\pi$. We can make the construction so that $\tilde{k}(1, 0) > 2\pi$, thus for $p > \frac{n}{2} = 1$ we have $\tilde{k}(p, 0) \geq \tilde{k}(1, 0) > 2\pi$, so the integral curvature can not be made small.

Remark 2 Since in the case $\text{Ric}_M \geq 0$ one has rigidity, a natural question would be to ask if one could get almost rigidity in the Gromov–Hausdorff sense (see [22]), i.e. if $\lambda_1(M)$ is close to $\lambda_1(S^1) = \frac{\pi^2}{D^2}$, can we conclude that M is close to S^1 in the Gromov–Hausdorff topology? As was explained in [12, page 8], this is not true, as one could consider the shrinking sequence of boundaries of ϵ-neighborhoods of a line segment with length π, whose eigenvalues converge to 1, but that converges in the Gromov–Hausdorff sense to the line segment.

Remark 3 As the proof given in [26] for the case $H < 0$ is similar to the case $H = 0$, adjusting our proof accordingly should yield an integral curvature version of the estimate (1.1). We conjecture that integral curvature versions of the estimate (1.2) and the optimal lower bound estimate when $H < 0$ should also hold.

The paper is organized as follows: in Sect. 2 we prove estimates on the auxiliary function J mentioned above, in Sect. 3 we prove the sharp gradient estimate needed to derive our main theorem, and we prove Theorem 1 in Sect. 4. Finally, in Appendix we have an appendix with explicit estimates on ϵ (the upper bound of $\tilde{k}(p, 0)$) depending on the Sobolev and Poincaré constants, p, n and D.

Springer
2 Estimates on the auxiliary function

In what follows, for \(f \in L^p(M) \), we use the notation
\[
\|f\|_p^* := \left(\int_M |f|^p \, dv \right)^{1/p}.
\]

First we recall an earlier eigenvalue and Sobolev constant estimate for closed manifolds with integral Ricci curvature bounds which we will use.

Theorem 2 [10, Theorem 3.6] Given \(M^n \) closed Riemannian manifold with diameter \(D \), for \(p > n/2 \), \(H \in \mathbb{R} \), there exist \(\varepsilon(n, p, H, D) > 0 \), \(C(n, p, H, D) > 0 \) such that if \(\tilde{k}(p, H) \leq \varepsilon \), then \(I_s(M) \leq C(n, p, H, D) \sqrt{\frac{\text{vol}(\Omega) - \frac{1}{\sqrt{n}}}{\text{vol}(\partial \Omega)}} : \Omega \subset M, \text{vol}(\Omega) \leq \frac{1}{2} \text{vol}(M) \). In particular,
\[
\lambda_1(M) \geq \Lambda_{\text{rough}}(n, p, H, D) > 0, \quad (2.1)
\]
and for any \(u \in W^{1,2}(M) \),
\[
\|u - \bar{u}\|_{2p \frac{p}{p-1}} \leq C_s \|\nabla u\|_2 \quad (2.2)
\]
\[
\|u\|_{2p \frac{p}{p-1}} \leq C_s \|\nabla u\|_2 + \|u\|_2 \quad (2.3)
\]
where \(\bar{u} = \frac{1}{f_M} u \), the average of \(u \), and \(C_s = \left(\frac{p}{p-1} \right)^{\frac{1}{2}} C(n, p, H, D) \).

In [10] the weaker isoperimetric constant was obtained, it was improved to the optimal power above in [18].

Remark 4 From the estimate on \(\lambda_1 \) we can derive a Poincaré inequality. Notice that
\[
\Lambda_{\text{rough}} \leq \lambda_1 = \inf_{J \neq 0} \frac{\int_M |\nabla f|^2 \, dv}{\int_M f^2 \, dv} \leq \frac{\int_M |\nabla w|^2 \, dv}{\int_M w - \bar{w}^2 \, dv},
\]
where \(w \in H^1(M) \). Hence we have
\[
(\|w - \bar{w}\|_2^2)^2 \leq \Lambda_{\text{rough}}^{-1} (\|\nabla w\|_2^2)^2. \quad (2.4)
\]

As mentioned in the introduction, in the proof of the gradient estimate in Proposition 4 we introduce an auxiliary function \(J \) that absorbs the curvature terms. To be able to derive a sharp lower bound for \(\lambda_1(M) \), we need to construct and estimate \(J \) from a PDE as follows. For \(\tau > 1 \) and \(\sigma \geq 0 \), consider
\[
\Delta J - \tau \frac{|\nabla J|^2}{J} - 2J \rho_0 = -\sigma J. \quad (2.5)
\]
Here \(\rho_0 \) is defined as in (1.3). Using the transformation \(J = w^{-\frac{1}{\tau-1}} \), we see that this equation is equivalent to
\[
\Delta w + V \, w = \tilde{\sigma} \, w, \quad (2.6)
\]
where \(V = 2(\tau - 1) \rho_0 \) and \(\tilde{\sigma} = (\tau - 1) \sigma \). We choose \(-\tilde{\sigma}\) be the first eigenvalue of the operator \(\Delta + V \); in particular, if \(\text{Ric}_M \geq 0 \) we have \(\sigma = \tilde{\sigma} = 0 \), and \(J \equiv 1 \) is a solution to (2.5). The main goal of this section is to prove the following propositions.
Proposition 1 There exists $\epsilon(n, p, D, \tau) > 0$ such that if $\tilde{k}(p, 0) \leq \epsilon$, then there is a number σ and a corresponding function J solving (2.5) such that
\begin{equation}
0 \leq \sigma \leq 4\epsilon.
\end{equation}

Proof Since $-\tilde{\sigma}$ is the first eigenvalue, w does not change sign. In particular, by possibly scaling w, we can assume that $w \geq 0$, $\|w\|^*_2 = 1$. By integrating Eq. (2.6) over M we get
\begin{equation}
\int_M V w dv = \tilde{\sigma} \int_M w dv.
\end{equation}

Since $w \geq 0$ and $V \geq 0$, we conclude that $\tilde{\sigma} \geq 0$, so $\sigma \geq 0$.

To obtain the upper bound, multiply Eq. (2.6) by w, integrate over M, and divide by $\text{vol}(M)$. This way, we obtain:
\begin{equation}
\tilde{\sigma} = \tilde{\sigma} \int_M w^2 dv = \int_M w \Delta w dv + \int_M V w^2 dv = -\int_M |\nabla w|^2 dv + \int_M V w^2 dv.
\end{equation}

Define the average of w
\begin{equation}
\bar{w} := \int_M w dv \leq \|w\|_2^* = 1.
\end{equation}

Then, using the Sobolev inequality (2.2), for $p > n/2$
\begin{equation}
\tilde{\sigma} \leq -\int_M |\nabla w|^2 dv + \int_M V (w + \bar{w} - \bar{w})^2 dv \\
\leq -\int_M |\nabla w|^2 dv + 2\int_M V (w - \bar{w})^2 dv + 2\int_M (\bar{w})^2 dv \\
\leq -\int_M |\nabla w|^2 dv + 2\|V\|_p^* \left(\int_M (w - \bar{w})^{2p} dv\right)^{\frac{1}{p-1}} + 2\|V\|_1^* \\
\leq -\int_M |\nabla w|^2 dv + 2C_s^2 \|V\|_p^* \int_M |\nabla w|^2 dv + 2\|V\|_1^*.
\end{equation}

where C_s is the Sobolev constant. Since $2C_s^2 \|V\|_p^* \leq 4C_s^2 (\tau - 1)\epsilon$, choosing $\epsilon > 0$ small enough so that $4C_s^2 (\tau - 1)\epsilon \leq 1$, we deduce
\begin{equation}
\tilde{\sigma} \leq 2\|V\|_1^* \leq 2\|V\|_p^* \leq 4(\tau - 1)\epsilon.
\end{equation}

Hence
\begin{equation}
\sigma \leq 4\epsilon.
\end{equation}
\hfill \Box

Proposition 2 For any $\delta > 0$, there exists $\epsilon(n, p, D, \tau) > 0$ and a solution J to (2.5) such that if $\tilde{k}(p, 0) \leq \epsilon$ then
\begin{equation}
|J - 1| \leq \delta.
\end{equation}

Proof Claim 1 $\|w - \bar{w}\|_2^* \leq K_1 \sqrt{\epsilon}$, where $K_1 = K_1(p, n, D, \tau)$.

Going back to Eq. (2.6), we have that, since $\bar{w} \leq 1$,
\begin{equation}
-\Delta w(w - \bar{w}) = (V - \tilde{\sigma}) w(w - \bar{w}) \\
= (V - \tilde{\sigma}) (w - \bar{w})^2 + \bar{w} (w - \bar{w}) (V - \tilde{\sigma}).
\end{equation}
\[
\begin{align*}
\leq & \ |V - \tilde{\sigma}|(w - \overline{w})^2 + \overline{w}((w - \overline{w})^2|V - \tilde{\sigma}| + |V - \tilde{\sigma}|) \\
\leq & \ 2(w - \overline{w})^2|V - \tilde{\sigma}| + |V - \tilde{\sigma}|.
\end{align*}
\]

After integration by parts and dividing by \(\text{vol}(M)\):
\[
\begin{align*}
\frac{1}{2} \int_M |\nabla w|^2 \, dv & \leq 2 \int_M |V - \tilde{\sigma}|(w - \overline{w})^2 \, dv + \int_M |V - \tilde{\sigma}| \, dv \\
& \leq 2 \left(\int_M |V - \tilde{\sigma}|^p \, dv \right)^{1/p} \left(\int_M (w - \overline{w})^{2p/(p+1)} \, dv \right)^{p/(p+1)} + |V - \tilde{\sigma}|_1^p \\
& \leq 2C_{s}^2 \left(\left\| w \right\|_p^p + \left\| \overline{\sigma} \right\|_p^p \right) \int_M |\nabla w|^2 \, dv + \left\| V \right\|_1^p + \left\| \overline{\sigma} \right\|_1^p \\
& \leq 12C_{s}^2 (\tau - 1) \epsilon \int_M |\nabla w|^2 \, dv + 6(\tau - 1) \epsilon.
\end{align*}
\]

Then choosing \(\epsilon\) small enough so that \(12C_{s}^2 (\tau - 1) \epsilon \leq \frac{1}{2}\), we deduce
\[
\int_M |\nabla w|^2 \, dv \leq 12(\tau - 1) \epsilon.
\]

Finally, using Poincaré inequality (2.4),
\[
\begin{align*}
\left(\left\| w - \overline{w} \right\|_\infty^2 \right) & = \int_M |w - \overline{w}|^2 \, dv \leq \Lambda_{\text{rough}}^{-1} \int_M |\nabla w|^2 \, dv \leq 12\Lambda_{\text{rough}}^{-1}(\tau - 1) \epsilon \equiv K_1^2 \epsilon.
\end{align*}
\]

Claim 2 \(\left\| w - \overline{w} \right\|_\infty \leq K_2(\sqrt{\epsilon} + \epsilon)\).

Denote \(h := w - \overline{w}\). To derive the \(L^\infty\) bound for \(h\), we will use Moser’s iteration on a closed manifold. The technique written below is a slight modification of the one used in [25], introducing a potential term, (c.f. [11]). Notice that \(h\) satisfies
\[
-\Delta h = (V - \tilde{\sigma})h + \overline{w}(V - \tilde{\sigma}).
\]

Let \(g = V - \tilde{\sigma}\) and \(f = \overline{w}(V - \tilde{\sigma})\), then \(h\) satisfies
\[
-\Delta h = gh + f.
\]

Thus, \(h\) is a weak solution, in the sense that
\[
\int_M \nabla h \nabla \phi \, dv = \int_M gh \phi \, dv + \int_M f \phi \, dv
\]
for all nonnegative \(\phi \in W^{1,2}(M)\).

Define \(\overline{h} = h^+ + k\), where \(k = \left\| f \right\|_p^p\). Notice that \(\nabla \overline{h} = 0\) if \(h \leq 0\), and \(\nabla h = \nabla \overline{h}\) if \(h > 0\). Consider \(\phi = \frac{\overline{h}}{\text{vol}(M)} \in W^{1,2}(M)\). Then for some \(l \geq 1\) we have
\[
l \int_M |\nabla \overline{h}|^2 \overline{h}^{l-1} \, dv \leq \int_M gh \overline{h}^l \, dv + \int_M f \overline{h}^l \, dv.
\]

Hence

\(\Box\) Springer
\[l \int_M |\nabla h|^2 \frac{h^{l-1}}{h} \, dv \leq \int_M |g| \frac{h^{l-1}}{h} \, dv + \int_M |f| \frac{h^{l-1}}{k} \, dv \]
\[\leq \int_M \psi \frac{h^{l-1}}{h} \, dv \]
\[\leq \|\psi\|_p \left(\|\nabla h\|^{l+1}_{(l+1) \frac{p}{p-1}} \right)^{l+1}, \quad (2.10) \]

where \(\psi = |g| + \frac{|f|}{k} \) (in particular \(1 \leq \|\psi\|_p \leq 1 + \|g\|_p \)). Note that
\[\left| \nabla \left(\frac{l+1}{2} \frac{h^{l-1}}{h} \right) \right|^2 = \left| \frac{l+1}{2} \frac{h^{l-1}}{h} \nabla h \right|^2 = \frac{(l+1)^2}{4} \frac{h^{l-1}}{h} |\nabla h|^2. \]

So
\[\left(\|\nabla (\frac{l+1}{2} \frac{h^{l-1}}{h})\|_2 \right)^2 \leq \frac{(l+1)^2}{4l} \|\psi\|_p \left(\|\nabla h\|^{l+1}_{(l+1) \frac{p}{p-1}} \right)^{l+1}. \]

Let \(s = \frac{2p}{n} > 1 \) and \(r = \frac{s+1}{2} > 1 \). Note that \(\frac{p}{p-1} = \frac{sn}{s-2} \). Using the Sobolev inequality (2.3) for \(u \in W^{1,2} (M) \) and \(q > \frac{n}{2} \),
\[\|u\|_p \leq C_x \|\nabla u\|_2 + \|u\|_2, \]
and let \(q = \frac{rn}{n} \). We make this choice, \(q > n/2 \), so that we can treat the cases \(n = 2 \) and \(n > 2 \) together. Note that if \(q = n/2 \), then \(\frac{2p}{(q-1)} = \frac{2n}{(n-2)} \) is the usual Sobolev exponent. Then we have
\[\left(\|\nabla h\|^{l+1}_{(l+1) \frac{rn}{n}} \right)^{\frac{1}{2}} = \|\nabla h\|^s_{(l+1) \frac{2r}{n-2}} \leq C_x \|\nabla (\frac{l+1}{2} \frac{h^{l-1}}{h})\|_2 + \|\nabla h\|^s_2 \]
\[\leq \mathcal{A}_I \left(\|\nabla h\|^s_{(l+1) \frac{sn}{n}} \right)^{\frac{1}{2}} + \left(\|\nabla h\|^{l+1}_2 \right)^{\frac{1}{2)}, \quad (2.11) \]

where \(\mathcal{A}_I = C_x \frac{l+1}{2} \sqrt{\|\psi\|_p} \) from (2.10).

Let \(a := \frac{n(s-r)}{sn-2} > 0 \) so that it satisfies
\[a + (1-a) \left(\frac{rn}{rn-2} \right) = \frac{sn}{sn-2}. \]

Then by Hölder and Young’s inequality
\[xy \leq \xi x^\gamma + \xi^{-\frac{\gamma^*}{\gamma}} y^{\gamma^*}, \]
with \(\gamma = \left((1-a) \left(\frac{rn}{rn-2} \right) \left(\frac{sn-2}{sn} \right) \right)^{-1} \) and \(\gamma^* = \left(\frac{sn-2}{sn} \right)^{-1} \),
\[\left(\frac{sn}{sn-2} \right)^{\frac{1}{2}}, \]
\[\leq \xi \left(\int_M \frac{h^{l+1}}{h} \frac{rn}{sn} \, dv \right)^{\frac{sn-2}{2sn}} \]
\[\leq \xi \left(\int_M \frac{h^{l+1}}{h} \frac{rn}{sn} \, dv \right)^{\frac{sn}{2sn} a} + \xi^{-\frac{1-a}{a}} \frac{rn}{sn} \left(\int_M \frac{h^{l+1}}{h} \, dv \right)^{\frac{1}{2}}. \]
Inserting this into inequality (2.11) and setting $\xi = \frac{1}{2} A_l^{-1}$, we have
\[
\left(\| \mathbf{h} \|_*(l+1) \frac{rn}{rn-2} \right)^{\frac{l+1}{2}} \leq A_l \left(\xi \left(\int_M h^{(l+1)} \frac{rn}{rn-2} dv \right)^{\frac{rn-2}{2}} + \xi \left(\int_M h^{(l+1)} dv \right)^{\frac{1}{2}} + \left(\| \mathbf{h} \|_*(l+1) \right)^{\frac{l+1}{2}} \right) \leq \frac{1}{2} \left(\| \mathbf{h} \|_*(l+1) \frac{rn}{rn-2} \right)^{\frac{l+1}{2}} + \left(2 A_l^{-1} \right)^{\frac{1}{2}} \left(\| \mathbf{h} \|_*(l+1) \frac{rn}{rn-2} \right)^{\frac{l+1}{2}}.
\]
Renaming $l+1$ by $l > 1$, and $\mu = \frac{rn}{rn-2}$, we obtain
\[
\| \mathbf{h} \|_*(l) \leq \left(2 A_l^{-1} \right)^{\frac{1}{2}} \| \mathbf{h} \|_*(l).
\]
Let $l_k = l \mu^k$. Then
\[
\| \mathbf{h} \|_{l_k}^* \leq \prod_{j=1}^{k} \left(2 A_l^{-1} \right)^{\frac{1}{2}} \| \mathbf{h} \|_*(l).
\]
Note that $A_l = O(\sqrt{l})$ so that $A_l = \lim_{k \to \infty} \prod_{j=1}^{k} \left(2 A_l^{-1} \right)^{\frac{1}{2}} \| \mathbf{h} \|_*(l) < \infty$ hence
\[
\| \mathbf{h} \|_\infty \leq A \| \mathbf{h} \|_*(l) \tag{2.12}
\]
for $l > 1$. In particular, let $l = 2$ so that
\[
\sup h^+ \leq \| \mathbf{h} \|_\infty \leq A \| \mathbf{h} \|_2^*
\]
\[
= A \| h^+ \| + \| f \|_p \|_2^*
\]
\[
\leq A (\| h \|_2^* + \| \mathbf{w} (V - \tilde{\sigma}) \|_p)
\]
\[
\leq A (K_1 \sqrt{\epsilon} + 6 (\tau - 1) \epsilon)
\]
\[
\leq A (K_1 + 6 (\tau - 1)) (\sqrt{\epsilon} + \epsilon) \equiv K_2 (\sqrt{\epsilon} + \epsilon).
\]
Here we have used Claim 1. Since $-h$ satisfies the same equation (except for a sign in f), we conclude that
\[
| w - \mathbf{w} | = | h | \leq K_2 (\sqrt{\epsilon} + \epsilon).
\]
Claim 3 For ϵ small enough, $\mathbf{w} > \frac{1}{2}$.

From the previous claim, we know that $w \leq \mathbf{w} + K_2 (\sqrt{\epsilon} + \epsilon)$. Since $\| w \|_2^* = 1$ and $\mathbf{w} \leq 1$,
\[
1 = \int_M w^2 dv \leq \int_M (\mathbf{w} + K_2 (\sqrt{\epsilon} + \epsilon))^2 dv
\]
\[
= (\mathbf{w} + K_2 (\sqrt{\epsilon} + \epsilon))^2 \leq \mathbf{w}^2 + 2 K_2 (\sqrt{\epsilon} + \epsilon) + K_2^2 (\sqrt{\epsilon} + \epsilon)^2.
\]
Hence, choosing $\epsilon > 0$ small enough
\[
\frac{1}{4} < 1 - 2 K_2 (\sqrt{\epsilon} + \epsilon) - K_2^2 (\sqrt{\epsilon} + \epsilon)^2 \leq \mathbf{w}^2,
\]
so that \(\omega > \frac{1}{2} \). This allows us to finish the proof of the lemma. Consider the function \(w_2 := \frac{w}{\omega} \). \(w_2 \) satisfies the same equation as \(w \), and we know by claims 2 and 3 that
\[
1 - \tilde{\delta} \leq w_2 \leq 1 + \tilde{\delta},
\]
where \(\tilde{\delta} := 2K_2(\sqrt{c} + \epsilon) \). Define \(J := w_2^{-1} \). We can establish the bounds for \(J \) using the 1st order Taylor polynomial of \(f(x) = x^{-\frac{1}{\tau - 1}} \) near \(x = 1 \), on the domain \((1 - \tilde{\delta}, 1 + \tilde{\delta})\).

We know that
\[
f(x) = 1 + R_1(x),
\]
where the remainder can be estimated by
\[
|R_1| = |f'(x^*)(x - 1)| \leq \frac{2\tilde{\delta}}{(\tau - 1)(1 - \tilde{\delta})},
\]
where \(x^* \in (1 - \tilde{\delta}, 1 + \tilde{\delta}) \). Choosing \(\epsilon > 0 \) small enough so that \(\frac{2\tilde{\delta}}{(\tau - 1)(1 - \tilde{\delta})} \leq \delta \), we get the estimate
\[
|J - 1| \leq \delta,
\]
concluding the proof of the proposition.

3 Sharp gradient estimate

As in the \(\text{Ric}_{\text{M}} \geq 0 \) case, to obtain a sharp estimate we need to consider the following ODE with an additional parameter \(\eta \in \mathbb{R} \),
\[
\begin{align*}
(1 - u^2)Z''(u) + uZ'(u) &= -\eta u \quad \text{on } [-1, 1] \\
Z(0) &= 0 \\
Z(\pm 1) &= 0,
\end{align*}
\]
which has the explicit solution
\[
Z(u) = \frac{2\eta}{\pi} \left(\arcsin(u) + u\sqrt{1 - u^2} \right) - \eta u.
\]
Furthermore, the function \(Z(u) \) satisfies the following inequalities.

Proposition 3 For numbers \(\eta = 1 + \delta \) and \(J \leq \eta \), we have
\[
\eta^{-1}(Z')^2 - 2J^{-1}Z''Z + Z' \geq 0, \quad (3.2)
\]
\[
2Z - uZ' + 1 \geq 1 - \eta, \quad u \in [-1, 1], \quad (3.3)
\]
\[
\eta(1 - u^2) \geq 2|Z|. \quad (3.4)
\]

Proof By direct computation,
\[
Z'(u) = -\eta + \frac{4\eta}{\pi} \sqrt{1 - u^2},
\]
\[
Z''(u) = -\frac{4\eta}{\pi} \frac{u}{\sqrt{1 - u^2}}.
\]
We first show the inequality (3.2). It was shown in [14] that the solution to (3.1) when \(\eta = 1 \), namely, \(z(u) = \frac{4}{\pi} (\arcsin(u) + u\sqrt{1 - u^2}) - u \) satisfies
\[
(z')^2 - 2z''z + z' \geq 0.
\]
For \(\eta > 0 \), the solution is simply given by rescaling \(Z = \eta z \). Note that \(z, u \), and \(-z''\) shares sign, so that \(-zz'' \geq 0 \) on \([-1, 1]\). Since \(J \leq \eta \),

\[
\eta^{-1}(z')^2 - 2J^{-1}z''Z + Z' = \eta(z')^2 - 2J^{-1}\eta^2z''z + \eta z' \geq \eta((z')^2 - 2z''z + z') \geq 0.
\]

Similarly, for (3.4), the case \(\eta = 1 \) was shown in [14] and we obtain the result by rescaling. Direct computation yields (3.3).

We mention that in Proposition 3, \(u, J \) are generic parameters, and \(u \) is a variable. In order to prove the main result, we need to make the following choice.

Let \(\phi \) be a nontrivial eigenfunction corresponding to \(\lambda_1 \) and normalized so that for \(0 \leq a < 1 \), \(a + 1 = \sup \phi \) and \(a - 1 = \inf \phi \). Set \(u := \phi - a \), so that \(\Delta u = -\lambda_1(u + a) \).

Proposition 4 Let \(\delta > 0 \) be fixed. Let \(J \) be the solution (2.5) with \(\tau = \frac{3+4\delta}{2\delta} \). Suppose \(M \) is a closed Riemannian manifold with \(\tilde{k}(p, 0) \leq \epsilon \) so that Proposition 1 and 2 holds for this choice of \(\delta \). Then \(u \) defined as above satisfies the gradient estimate

\[
J|\nabla u|^2 \leq \tilde{\lambda}(1 - u^2) + 2a\lambda_1Z(u), \tag{3.5}
\]

where \(\tilde{\lambda} := C_1\lambda_1 + C_2 \) with

\[
C_1 := \frac{1 + \delta + \sqrt{A}}{1 - \sqrt{B}} \tag{3.6}
\]

and

\[
C_2 := \frac{\sigma}{2(1 - \sqrt{B})} \left(\frac{\tilde{Z}}{\sqrt{A}} + \frac{1}{2\sqrt{B}} \right), \tag{3.7}
\]

where \(A = A(\delta) := 2\delta(1 + \delta), B = B(\delta) := \frac{\delta(5 + \delta)}{(1 - \delta)}, \) and \(Z(u) \) is defined as in (3.1) for \(\eta = 1 + \delta \) with \(\sup\[{-1, 1}\] Z = \tilde{Z} \leq (0.116)\eta \), and \(\sigma \) is given in Proposition 1.

Remark 5 Note that when \(\delta \to 0 \), then \(C_1 \to 1 \). Also, when \(\sigma/\sqrt{\delta} \to 0 \), then \(C_2 \to 0 \).

Proof Consider \(\xi < 1 \), and denote, for simplicity, \(u := \xi(\phi - a) \). Note that comparing with the previously defined \(u \), there is an extra factor \(\xi \) so that \(-\xi \leq u \leq \xi \). Then this \(u \) satisfies

\[
\Delta u = -\lambda_1(u + \xi a). \tag{3.8}
\]

Consider for a constant \(c \),

\[
Q := J|\nabla u|^2 - c(1 - u^2) - 2a\lambda_1Z(u).
\]

To obtain (3.5), we want to show that \(Q \leq 0 \). By (3.4) and compactness of \(M \), we can choose a suitable \(c \) so that \(Q = 0 \) at the maximum point of \(Q \). For the rest of the proof, we fix such a constant \(c \) so that max \(Q = 0 \).

Our goal is to show that \(c \leq C_1\lambda_1 + C_2 \) for some constants \(C_1, C_2 \) such that \((C_1, C_2) \to (1, 0)\) as \(\delta \to 0 \), \(\sigma/\sqrt{\delta} \to 0 \). Taking \(\xi \to 1 \) will give us the gradient estimate.

If \(c \leq (1 + \delta)\lambda_1 \), then we are done so we can assume that

\[
c > (1 + \delta)\lambda_1, \tag{3.9}
\]

and in particular, \(c > J\lambda_1 \). Let the maximum point of \(Q \) be \(x_0 \). Then \(|\nabla u(x_0)| > 0 \), since if \(\nabla u(x_0) = 0 \), then

\[\square\] Springer
Again by direct computation,
\[0 = -c(1 - u^2(x_0)) - 2a\lambda_1 Z(u(x_0)) \]
\[\leq -c(1 - \xi^2) + a\lambda_1 \eta(1 - \xi^2) \]
\[= (a\lambda_1 \eta - c)(1 - \xi^2) < 0, \]
a contradiction.

For convenience, we write \(Z = Z(u) \). By direct computation,
\[\nabla Q = (\nabla J|\nabla u|^2 + J \nabla(|\nabla u|^2) + 2cu \nabla u - 2a\lambda_1 Z' \nabla u, \]
which at the maximum point is
\[\nabla(|\nabla u|^2) = -\frac{\nabla J}{J} |\nabla u|^2 - 2J^{-1} cu \nabla u + 2J^{-1} a\lambda_1 Z' \nabla u. \quad (3.10) \]
Let \(e_1 = \frac{\nabla u}{|\nabla u|} \) and complete to an orthonormal basis \(\{e_j\}_{j=1}^2 \). Then at the maximal point we have
\[\text{Hess } u(\nabla u, \nabla u) = -\frac{1}{2J} \langle \nabla J, \nabla u \rangle |\nabla u|^2 - c \frac{u}{J} |\nabla u|^2 + \frac{a\lambda_1 Z'}{J} |\nabla u|^2 \]
so that
\[\text{Hess } u(e_1, e_1) = -\frac{1}{2J} \langle \nabla J, \nabla u \rangle - c \frac{u}{J} + \frac{a\lambda_1 Z'}{J}, \quad (3.11) \]
and for \(j \neq 1 \),
\[\text{Hess } u(e_1, e_j) = -\frac{1}{2J} \langle \nabla J, e_j \rangle |\nabla u|. \quad (3.12) \]
Again by direct computation,
\[\Delta Q = (\Delta J)|\nabla u|^2 + 2\langle \nabla J, \nabla(|\nabla u|^2) \rangle + J \Delta |\nabla u|^2 \]
\[+ 2c|\nabla u|^2 + 2cu \Delta u - 2a\lambda_1 Z'' |\nabla u|^2 - 2a\lambda_1 Z' \Delta u. \]
By Bochner formula and (3.8),
\[\Delta Q = (\Delta J)|\nabla u|^2 + 2\langle \nabla J, \nabla(|\nabla u|^2) \rangle \]
\[+ J \left(2 |\text{Hess } u|^2 - 2\lambda_1 |\nabla u|^2 + 2 \text{Ric}(\nabla u, \nabla u) \right) \]
\[+ 2c|\nabla u|^2 - 2cu \lambda_1 (u + \xi a) - 2a\lambda_1 Z'' |\nabla u|^2 + 2a\lambda_1^2 Z'(u + \xi a). \]
At the maximal point of \(Q \), using \(\text{Ric} \geq -\rho_0 \) and (3.10), we have
\[0 \geq (\Delta J)|\nabla u|^2 - 2\frac{|\nabla J|^2}{J} |\nabla u|^2 - 4c \frac{u}{J} \langle \nabla J, \nabla u \rangle + 4 \frac{a\lambda_1 Z'}{J} \langle \nabla J, \nabla u \rangle \]
\[+ 2J |\text{Hess } u|^2 - 2\lambda_1 J |\nabla u|^2 - 2J \rho_0 |\nabla u|^2 \]
\[+ 2c|\nabla u|^2 - 2cu \lambda_1 (u + \xi a) - 2a\lambda_1 Z'' |\nabla u|^2 + 2a\lambda_1^2 Z'(u + \xi a). \]
Using (3.11) and (3.12) we also have the lower bound of the Hessian term.
\[
|\text{Hess } u|^2 \geq \sum_{j=1}^{n} (\text{Hess } u(e_1, e_j))^2 \\
= \frac{1}{4J^2} |\nabla J|^2 |\nabla u|^2 + \frac{c}{J^2} u^2 \langle \nabla J, \nabla u \rangle - \frac{a\lambda_1 Z'}{J^2} \langle \nabla J, \nabla u \rangle \\
+ \frac{c^2 u^2}{J^2} - \frac{2cu\lambda_1 Z'}{J^2} + \frac{a^2 \lambda^2_1 (Z')^2}{J^2}.
\]

Inserting the Hessian lower bound we have
\[
0 \geq \left((\Delta J) - \frac{3}{2} \frac{|\nabla J|^2}{J} - 2J \rho_0 \right)|\nabla u|^2 - 2c \frac{u}{J} \langle \nabla J, \nabla u \rangle + \frac{2a\lambda_1 Z'}{J} \langle \nabla J, \nabla u \rangle \\
+ \frac{2c^2 u^2}{J} - \frac{4cu\lambda_1 Z'}{J} + \frac{2a^2 \lambda^2_1 (Z')^2}{J} - 2\lambda_1 |\nabla u|^2 \\
+ 2c|\nabla u|^2 - 2cu\lambda_1 (u + \xi a) - 2a\lambda_1 Z'' |\nabla u|^2 + 2a\lambda^2_1 Z'(u + \xi a).
\]

Let \(\beta = \frac{2\delta}{1 + \delta} \). By Cauchy–Schwarz, we bound the mixed term as follows,
\[
2a\lambda_1 Z' \left(\frac{\nabla J}{\sqrt{J}}, \nabla u \right) \geq -\beta \frac{a^2 \lambda^2_1 (Z')^2}{J} - \frac{|\nabla J|^2}{\beta J} |\nabla u|^2
\]
and
\[
-2c \frac{u}{\sqrt{J}} \left(\frac{\nabla J}{\sqrt{J}}, \nabla u \right) \geq -\delta c^2 u^2 - \frac{|\nabla J|^2}{\delta J} |\nabla u|^2.
\]

Plugging these into (3.13) we deduce
\[
0 \geq \left((\Delta J) - \left(\frac{3 + 4\delta}{2\delta}\right) \frac{|\nabla J|^2}{J} - 2J \rho_0 \right)|\nabla u|^2 \\
+ (2 - \delta) \frac{c^2 u^2}{J} - \frac{4cu\lambda_1 Z'}{J} + \frac{2a^2 \lambda^2_1 (Z')^2}{J} - 2\lambda_1 |\nabla u|^2 \\
+ 2c|\nabla u|^2 - 2cu\lambda_1 (u + \xi a) - 2a\lambda_1 Z'' |\nabla u|^2 + 2a\lambda^2_1 Z'(u + \xi a).
\]

Now using the fact that \(Q = 0 \) at the maximal point, written explicitly
\[
|\nabla u|^2 = cJ^{-1}(1 - u^2) + 2a\lambda_1 J^{-1} Z,
\]
we substitute to the second and third lines of the above so that
\[
0 \geq \left((\Delta J) - \left(\frac{3 + 4\delta}{2\delta}\right) \frac{|\nabla J|^2}{J} - 2J \rho_0 \right)|\nabla u|^2 \\
- \frac{4cu\lambda_1 Z'}{J} - 2\lambda_1 \left(c(1 - u^2) + 2a\lambda_1 Z \right) \\
+ 2cJ^{-1} \left(c(1 - u^2) + 2a\lambda_1 Z \right) - 2cu\lambda_1 (u + \xi a) \\
- 2a\lambda_1 Z'' J^{-1} \left(c(1 - u^2) + 2a\lambda_1 Z \right) + 2a\lambda^2_1 Z'(u + \xi a) \\
+ (2 - \delta) \frac{c^2 u^2}{J} + (2 - \beta) \frac{a^2 \lambda^2_1 (Z')^2}{J}.
\]

Using the Eq. (2.5) with \(\tau = \frac{3 + 4\delta}{2\delta} \), substituting (3.14) again, and noting that \(2 - \beta = 2\eta^{-1} \),
\[0 \geq -\sigma \left(c(1 - u^2) + 2a\lambda J \right) \\
+ 2a^2\lambda_1^2(\xi Z' - 2J^{-1}Z''Z + \eta^{-1}J^{-1}(Z')^2) \\
- 2ac\lambda J^{-1}((1 - u^2)Z'' + uZ' + \xi uJ) \\
+ 2a\lambda_1(cJ^{-1} - \lambda_1)(Z - uZ') \\
- 2\lambda_1c + 2c^2J^{-1} - 2ac\lambda J^{-1} + 2a\lambda_1^2 \\
- \delta J^{-1}c^2u^2 + 2ac\lambda J^{-1} - 2a\lambda_1^2. \]

After some rearranging we have

\[0 \geq 2a^2\lambda_1^2(\xi Z' - 2J^{-1}Z''Z + \eta^{-1}(Z')^2) + 2a^2\lambda_1^2\eta^{-1}(J^{-1} - 1)(Z')^2 \\
- 2ac\lambda J^{-1}(\xi J - \eta)u \\
+ 2a\lambda_1(cJ^{-1} - \lambda_1)(1 - \eta) \\
+ 2(cJ^{-1} - \lambda_1)(c - a\lambda_1) \\
- c\sigma - 2a\sigma\lambda J - c^2J^{-1}\delta. \]

The first line is grouped by terms with \(a^2\lambda_1^2\), then using (3.9), we group terms as products of \(cJ^{-1} - \lambda_1\) since it has a sign, the second line grouped from the remaining terms with a factor \(ac\lambda_1\), and the last are remaining terms which would mostly be zero for the pointwise bounded case since \(\sigma = 0\). Using the ODE (3.1), the inequalities (3.2), (3.3), and (3.9), we have

\[0 \geq 2a^2\lambda_1^2(\xi Z' - 2J^{-1}Z''Z + \eta^{-1}(Z')^2) + 2a^2\lambda_1^2\eta^{-1}(J^{-1} - 1)(Z')^2 \\
- 2ac\lambda J^{-1}(\xi J - \eta)u \\
+ 2a\lambda_1(cJ^{-1} - \lambda_1)(1 - \eta) \\
+ 2(cJ^{-1} - \lambda_1)(c - a\lambda_1) \\
- c\sigma - 2a\sigma\lambda_1 Z - c^2J^{-1}\delta. \]

Since \(\eta > 1\) and \(u \geq -\xi \geq -1, -\eta \leq Z' \leq \eta(\frac{4}{\pi} - 1) \leq \eta\), and using Proposition 2 we replace \(J\) by either \(1 - \delta\) or \(1 + \delta\) appropriately, and noting that \(2a^2\lambda_1^2\eta^{-1}(J^{-1} - 1)(Z')^2 \geq -2\delta c^2\) we get

\[0 \geq -2a^2\lambda_1^2\eta(1 - \xi) \\
- 2ac\lambda_1\left(\eta - \xi + \frac{\delta\eta}{1 - \delta}\right) \\
- 2a\lambda_1\left(c - \lambda_1 + \frac{c\delta}{1 - \delta}\right)(\eta - 1) \\
+ 2(c - \lambda_1 - \delta c)(c - a\lambda_1) \\
- c\sigma - 2a\sigma\lambda_1 Z - \frac{c^2\delta}{1 - \delta} - 2\delta c^2. \]

Recall that \(\bar{Z} := \sup Z = O(\eta)\). Our goal now is to obtain a quadratic inequality in terms of \((c - \lambda_1)\). Using \(\eta \geq 1\), we first rewrite the first term and split the remaining terms so that
\[0 \geq -2a^2\lambda_1^2\eta(\eta - \xi) \]
\[- 2ac\lambda_1(\eta - \xi) - 2ac\lambda_1 \frac{\delta\eta}{1 - \delta} \]
\[- 2a\lambda_1(c - \lambda_1)(\eta - 1) - 2a\lambda_1 \frac{c\delta}{1 - \delta}(\eta - 1) \]
\[+ 2(c - \lambda_1)(c - a\lambda_1) - 2\delta(c - a\lambda_1) \]
\[- c\sigma - 2a\sigma\lambda_1\tilde{Z} - \frac{c^2\delta}{1 - \delta} - 2\delta c^2. \]

Since \(0 \leq a < 1\) and noting that \(\xi \leq 1, \eta \geq 1,\) and \(c \geq \lambda_1,\) we replace \(a\) by 1 or 0 according to the sign so that
\[0 \geq -2\lambda_1^2\eta(\eta - \xi) \]
\[- 2c\lambda_1(\eta - \xi) - 2c\lambda_1 \frac{\delta\eta}{1 - \delta} \]
\[- 2\lambda_1(c - \lambda_1)(\eta - 1) - 2\lambda_1 \frac{c\delta}{1 - \delta}(\eta - 1) \]
\[+ 2(c - \lambda_1)^2 - 4\delta c^2 \]
\[- c\sigma - 2\sigma\lambda_1\tilde{Z} - \frac{c^2\delta}{1 - \delta}. \]

Combining the first two terms, and adding and subtracting \(\lambda_1,\) we get
\[0 \geq -2\lambda_1(\eta - \xi)(c - \lambda_1 + \lambda_1\eta + \lambda_1) - 2c\lambda_1 \frac{\delta\eta}{1 - \delta} \]
\[- 2\lambda_1(c - \lambda_1)(\eta - 1) - 2\lambda_1 \frac{c\delta}{1 - \delta}(\eta - 1) \]
\[+ 2(c - \lambda_1)^2 - 4\delta c^2 - c\sigma - 2\sigma\lambda_1\tilde{Z} - \frac{c^2\delta}{1 - \delta}. \]

After further rearranging we have,
\[0 \geq -2\lambda_1^2(\eta - \xi)(\eta + 1) + 2(c - \lambda_1)^2 - 4\delta c^2 - c\sigma - 2\sigma\lambda_1\tilde{Z} - \frac{c^2\delta}{1 - \delta} \]
\[- 2\lambda_1(c - \lambda_1)(2\eta - \xi - 1) - 2\lambda_1 \left(\frac{c\delta}{1 - \delta}\right)(2\eta - 1). \]

Completing the square in terms of \((c - \lambda_1),\) we get
\[\left((c - \lambda_1) - \frac{\lambda_1}{2}(2\eta - \xi - 1)\right)^2 \leq \lambda_1^2 \frac{4(\eta - \xi)(\eta + 1) + (2\eta - \xi - 1)^2}{4} + \sigma\lambda_1\tilde{Z} \]
\[+ c\lambda_1 \left(\frac{\delta}{1 - \delta}\right)(2\eta - 1) + c^2 \left(\frac{\delta(4 - \delta)}{(1 - \delta)}\right) + \frac{c\sigma}{2}. \]

Using \(\lambda_1 \leq c\) we get
\[\left((c - \lambda_1) - \frac{\lambda_1}{2}(2\eta - \xi - 1)\right)^2 \leq \lambda_1^2 \frac{4(\eta - \xi)(\eta + 1) + (2\eta - \xi - 1)^2}{4} + \sigma\lambda_1\tilde{Z} \]
\[+ c^2 \left(\left(\frac{\delta}{1 - \delta}\right)(2\eta - 1) + \frac{\delta(4 - \delta)}{(1 - \delta)}\right) + \frac{c\sigma}{2}. \]
Let

\[A = A(\eta, \xi) := \frac{4(\eta - \xi)(\eta + 1) + (2\eta - \xi - 1)^2}{4}, \]

\[B = B(\delta) := \left(\frac{\delta(5 + \delta)}{(1 - \delta)} \right). \]

Then

\[\left((c - \lambda_1) - \frac{\lambda_1}{2}(2\eta - \xi - 1) \right)^2 \leq A \left(\lambda_1 + \frac{\sigma \tilde{Z}}{2A} \right)^2 - \frac{\sigma^2 \tilde{Z}^2}{4A} + B \left(c + \frac{\sigma}{4B} \right)^2 - \frac{\sigma^2}{16B} \]

\[\leq A \left(\lambda_1 + \frac{\sigma \tilde{Z}}{2A} \right)^2 + B \left(c + \frac{\sigma}{4B} \right)^2. \]

Using the inequality \(\sqrt{a^2 + b^2} \leq a + b \), for \(a, b \geq 0 \),

\[c - \lambda_1 \leq \frac{\lambda_1}{2}(2\eta - \xi - 1) + \sqrt{A} \left(\lambda_1 + \frac{\sigma \tilde{Z}}{2A} \right) + \sqrt{B} \left(c + \frac{\sigma}{4B} \right). \]

Letting \(\xi \to 1 \), we have

\[c \leq \frac{\lambda_1}{1 - \sqrt{B}} \left(\eta + \sqrt{A} + \frac{\sigma \tilde{Z}}{2\lambda_1 \sqrt{A}} \right) + \left(\frac{\sigma}{4\sqrt{B}(1 - \sqrt{B})} \right) \]

recalling that \(\eta = 1 + \delta \) so that \(A := A(1 + \delta, 1) = 2\delta(1 + \delta). \) \(\square \)

4 Proof of Theorem 1

We now give the sharp eigenvalue lower bound. By Proposition 4 we have

\[J|\nabla u|^2 \leq (C_1 \lambda_1 + C_2)(1 - u^2) + 2a \lambda_1 Z(u). \]

By (2.1), we have a rough lower bound of the first eigenvalue, \(\lambda_1 \geq \Lambda_{\text{rough}} > 0 \) so that

\[\lambda_1 \geq \frac{J|\nabla u|^2}{(C_1 + C_2 \Lambda_{\text{rough}}^{-1})(1 - u^2) + 2a Z(u)}. \]

Let \(b := C_1 + C_2 \Lambda_{\text{rough}}^{-1} \) and let \(\gamma \) be the shortest geodesic connecting the minimum and maximum point of \(u \) with length at most \(D \). Recalling that \(\max u = 1 \) and \(\min u = -1 \) from the construction given above Proposition 4, integrating the gradient estimate along the geodesic and using change of variables \(x(s) = u(\gamma(s)) \) and that \(Z \) is odd,

\[D \sqrt{\lambda_1} \geq \sqrt{\lambda_1} \int_\gamma |\nabla u| ds \]

\[\geq (1 - \delta) \int_\gamma \frac{|\nabla u| ds}{\sqrt{b(1 - u^2) + 2a Z(u)}} \]

\[= (1 - \delta) \int_{-1}^1 \frac{dx}{\sqrt{b(1 - x^2) + 2a Z(x)}} \]
\[
= (1 - \delta) \int_{0}^{1} \left(\frac{1}{\sqrt{b(1 - x^2) + 2aZ(x)}} + \frac{1}{\sqrt{b(1 - x^2) + 2aZ(x)}} \right) dx
\]
\[
= \frac{1 - \delta}{\sqrt{b}} \int_{0}^{1} \frac{1}{\sqrt{1 - x^2}} \left(\frac{1}{\sqrt{1 + 2aZ(x)/b(1-x^2)}} + \frac{1}{\sqrt{1 - 2aZ(x)/b(1-x^2)}} \right) dx
\]
\[
\geq \frac{1 - \delta}{\sqrt{b}} \int_{0}^{1} \frac{1}{\sqrt{1 - x^2}} \left(2 + \frac{3a^2(Z(x))^2}{b^2(1-x^2)^2} \right) dx
\]
so that
\[
\lambda_1 \geq \frac{(1 - \delta)^2 \pi^2}{b D^2}.
\]

Recall in the limiting case (c.f. Remark 5) that \(b \to 1 \) as \(\delta \to 0 \) and \(\sigma/\sqrt{\delta} \to 0 \). Let \(\alpha := \frac{(1 - \delta)^2}{b} \) to obtain the result.

Acknowledgements The authors would like to thank Christian Rose for his interest in the paper and Hang Chen for helpful comments in an earlier version of the paper. We also thank Jian Hong Wang for carefully checking the earlier version and finding a typo.

Appendix: Estimate of \(\epsilon \)

In this appendix we will give explicit bounds for \(\epsilon \) depending on \(p, n, D \), and in terms of the Sobolev \(C_2 \) and Poincaré \(\Lambda_{\text{rough}}^{-1} \) constants, which have explicit expressions in [10]. Note that the Sobolev and Poincaré constants can be estimated and do not change for \(\epsilon \) smaller than some fixed number. We show that it suffices to choose

\[
\epsilon < \min \left\{ (n - 1) \left(\frac{1}{BD} \ln \left(1 + \frac{1}{2^{p+1}} \right) \right)^2, \frac{\delta}{12C^2_2(3 + 2\delta)}, \left(\frac{\sqrt{7} - 2}{K_2} \right)^2, \frac{1}{8K_2 \left(\frac{4}{\pi^2 + 2\delta} \right)^{\frac{9 + 6\delta}{3 + 2\delta}}} \right\}
\]

(4.1)

where \(B(p, n) = \left(\frac{2p-1}{p} \right)^{\frac{1}{2}} (n - 1)^{1 - \frac{1}{2p}} \left(\frac{2p-2}{2p-n} \right)^{\frac{p-1}{2p}} \), \(K_2 = \mathcal{A}(K_1 + \frac{9 + 6\delta}{3 + 2\delta}) \), \(K_1 = \sqrt{6\Lambda_{\text{rough}}^{-1}(2 + \frac{\delta}{2})} \) and \(\mathcal{A}(n, p, D) \) is the constant that appears from Moser’s iteration (2.12).

It suffices to choose \(\epsilon \) smaller than the worst of the following conditions:

1. To apply the Sobolev inequalities that follow from Theorem 2, \(\epsilon \) needs to be small enough so that the theorem holds. Using our notation, the condition that needs to be satisfied in [10, Theorem 3, 6] is

\[
\int_M \left(\frac{\rho_0}{(n - 1)\tilde{\alpha}^2 - 1} \right)^p dv \leq \frac{1}{2} \left(e^{B\tilde{\alpha}D} - 1 \right)^{-1}
\]

(4.2)
for some $\tilde{\alpha} > 0$. Multiplying (4.2) by $\tilde{\alpha}^2 p$ and raising both sides to the power $1/p$ we get
\[
\left(\int_M \left(\frac{\rho_0}{n-1} - \tilde{\alpha}^2 \right)^p \, dv \right)^{1/p} \leq \frac{\tilde{\alpha}^2}{2^p} \left(e^{B\tilde{\alpha} D} - 1 \right)^{-1/p}.
\]
Note that
\[
\left(\int_M \left(\frac{\rho_0}{n-1} - \tilde{\alpha}^2 \right)^p \, dv \right)^{1/p} \leq \left\| \frac{\rho_0}{n-1} - \tilde{\alpha}^2 \right\|^* \leq \frac{\tilde{k}(p, 0)}{n-1} + \tilde{\alpha}^2 \leq \frac{\epsilon}{n-1} + \tilde{\alpha}^2.
\]
Thus, it suffices to impose that for some fixed $\tilde{\alpha} > 0$ we have
\[
\frac{\epsilon}{n-1} + \tilde{\alpha}^2 \leq \frac{\tilde{\alpha}^2}{2^p} \left(e^{B\tilde{\alpha} D} - 1 \right)^{-1/p},
\]
or equivalently
\[
\epsilon \leq (n-1)\tilde{\alpha}^2 \left(\frac{1}{2^p \left(e^{B\tilde{\alpha} D} - 1 \right)^{1/p}} - 1 \right).
\]
So choosing $\tilde{\alpha} = \frac{1}{BD} \ln \left(1 + \frac{1}{2^{p+1}} \right)$ we obtain
\[
\epsilon \leq (n-1) \left(\frac{1}{BD} \ln \left(1 + \frac{1}{2^{p+1}} \right) \right)^2 \tag{4.3}
\]
(2) In Proposition 1 and in Claim 1 of Proposition 2 we need ϵ to satisfy
\[
\epsilon \leq \frac{1}{24C_s^2 (\tau - 1)}, \tag{4.4}
\]
where C_s is the Sobolev constant of (2.2). From the proof of Proposition 4, $\tau = \frac{3 + 4\delta}{2\delta}$ so we get
\[
\epsilon < \frac{\delta}{12C_s^2 (3 + 2\delta)}.
\]
(3) In Claim 3 of Proposition 2 we need ϵ to satisfy
\[
\frac{1}{4} < 1 - 2K_2(\sqrt{\epsilon} + \epsilon) - K_2^2(\sqrt{\epsilon} + \epsilon)^2.
\]
This implies that
\[
\epsilon < \left(-\frac{1}{2} + \sqrt{\frac{1}{4} + \frac{\sqrt{7} - 2}{2K_2}} \right)^2
\]
To get a cleaner estimate, notice that since $A > 1$, then $K_2 > 6$, thus $\frac{\sqrt{7} - 2}{2K_2} < \frac{\sqrt{7} - 2}{12} < \frac{3}{4}$. Using that for $0 < x < 3$ we have that $-1 + \sqrt{1 + x} > x$, letting $x = \frac{2(\sqrt{7} - 2)}{K_2}$, we get
\[
\epsilon < \left(\frac{\sqrt{7} - 2}{K_2} \right)^2. \tag{4.5}
\]
(4) In Claim 3 of Proposition 2 we also need ϵ to be small enough so that
\[
\frac{2\tilde{\delta}}{(\tau - 1)(1 - \tilde{\delta})^{\frac{\tau - 1}{\tau}}} \leq \delta,
\]
where $\tilde{\delta} = 2K_2(\sqrt{\epsilon} + \epsilon)$. This condition is equivalent to
\[
\left(\frac{1}{\tilde{\delta}} - 1\right)\tilde{\delta}^{\frac{1}{\tau}} \geq \left(\frac{2}{\delta(\tau - 1)}\right)^{\frac{\tau - 1}{\tau}} = \left(\frac{4}{3 + 2\delta}\right)^{\frac{3 + 2\delta}{3 + 6\delta}} \equiv C_3(\delta).
\]
Note that since $\delta < 1$, we have that $\tau > \frac{3}{2}$. Then we get that $\tilde{\delta}^{\frac{1}{\tau}} > \tilde{\delta}^{\frac{2}{3}}$. It suffices to choose ϵ small enough so that
\[
\left(\frac{1}{\tilde{\delta}} - 1\right)\tilde{\delta}^{\frac{2}{3}} \geq C_3.
\]
Notice that if $\delta < \frac{1}{2}$, then $C_3 > 1$. Thus, choosing $\tilde{\delta} < \frac{1}{8C_3}$ we get that
\[
\left(\frac{1}{\tilde{\delta}} - 1\right)\tilde{\delta}^{\frac{2}{3}} > (2C_3)^{3} - \frac{1}{(2C_3)^{2}} > C_3 + 7C_3^{3} - \frac{1}{4C_3} > C_3 + 7 - \frac{1}{4} > C_3,
\]
so the condition is satisfied. This gives us the last condition
\[
\epsilon < -\frac{1}{2} + \sqrt{\frac{1}{4} + \frac{1}{16K_2\left(\frac{4}{3 + 2\delta}\right)^{\frac{9 + 6\delta}{3 + 2\delta}}} \cdot 16K_2\left(\frac{4}{3 + 2\delta}\right)^{\frac{9 + 6\delta}{3 + 2\delta}}}.
\]
As above, to get a cleaner estimate, notice that if $\delta < \frac{1}{2}$ then
\[
\frac{1}{16K_2\left(\frac{4}{3 + 2\delta}\right)^{\frac{9 + 6\delta}{3 + 2\delta}}} < \frac{1}{16K_2} < \frac{1}{96} < \frac{3}{4},
\]
so using the same property as in (3) we get that it suffices to assume
\[
\epsilon < \frac{1}{8K_2\left(\frac{4}{3 + 2\delta}\right)^{\frac{9 + 6\delta}{3 + 2\delta}}}.
\]
(4.6)
From (4.3), (4.4), (4.5), and (4.6), we arrive at (4.1).

References

1. Andrews, B., Clutterbuck, J.: Sharp modulus of continuity for parabolic equations on manifolds and lower bounds for the first eigenvalue. Anal. PDE 6(5), 1013–1024 (2013)
2. Andrews, B., Ni, L.: Eigenvalue comparison on Bakry–Emery manifolds. Commun. Partial Differ. Equ. 37(11), 2081–2092 (2012)
3. Aubry, E.: Finiteness of π_1 and geometric inequalities in almost positive Ricci curvature. Ann. Sci. École Norm. Sup. (4) 40(4), 675–695 (2007). (English, with English and French summaries)
4. Bakry, D., Qian, Z.: Some new results on eigenvectors via dimension, diameter, and Ricci curvature. Adv. Math. 155(1), 98–153 (2000)
5. Blacker, C., Seto, S.: First eigenvalue of the p-Laplacian on Kähler manifolds. Proc. Am. Math. Soc. 147(5), 2197–2206 (2019). https://doi.org/10.1090/proc/14395
6. Carron, G.: Geometric inequalities for manifolds with Ricci curvature in the Kato class. arXiv:1612.03027
Zhong–Yang type eigenvalue estimate with integral curvature condition

7. Cheeger, J.: A lower bound for the smallest eigenvalue of the Laplacian. In: Problems in Analysis (Papers Dedicated to Salomon Bochner, 1969), pp. 195–199. Princeton Univ. Press, Princeton (1970)
8. Chen, M., Wang, F.: General formula for lower bound of the first eigenvalue on Riemannian manifolds. Sci. China Ser. A 40(4), 384–397 (1997)
9. Dai, X., Wei, G., Zhang, Z.: Local Sobolev constant estimate for integral Ricci curvature bounds. Adv. Math. 325, 1–33 (2018). https://doi.org/10.1016/j.aim.2017.11.024
10. Gallot, S.: Isoperimetric inequalities based on integral norms of Ricci curvature. Astérisque 157–158, 191–216 (1988). (Colloque Paul Lévy sur les Processus Stochastiques (Palaiseau, 1987))
11. Han, Q., Lin, F.: Elliptic Partial Differential Equations, Courant Lecture Notes, vol. 1. American Mathematical Society, Providence (2011)
12. Hang, F., Wang, X.: A remark on Zhong–Yang’s eigenvalue estimate. Int. Math. Res. Not. IMRN 18, 9 (2007). https://doi.org/10.1093/imrn/rnm064. (Art. ID rnm064)
13. Kröger, P.: On the spectral gap for compact manifolds. J. Differ. Geom. 36(2), 315–330 (1992)
14. Li, P.: Geometric Analysis, Cambridge Studies in Advanced Mathematics, vol. 134. Cambridge University Press, Cambridge (2012). https://doi.org/10.1017/CBO9781139105798
15. Li, P., Yau, S.T.: Estimates of eigenvalues of a compact Riemannian manifold. In: Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979), Proc. Sympos. Pure Math., XXXVI, pp. 205–239. Amer. Math. Soc., Providence (1980)
16. Lichnerowicz, A.: Géométrie des groupes de transformations. Travaux et Recherches Mathématiques, III. Dunod, Paris (1958) (French)
17. Obata, M.: Certain conditions for a Riemannian manifold to be isometric with a sphere. J. Math. Soc. Japan 14, 333–340 (1962)
18. Petersen, P., Sprouse, C.: Integral curvature bounds, distance estimates and applications. J. Differ. Geom. 50(2), 269–298 (1998)
19. Petersen, P., Wei, G.: Relative volume comparison with integral curvature bounds. Geom. Funct. Anal. 7(6), 1031–1045 (1997). https://doi.org/10.1007/s000390050036
20. Ramos Olivé, X.: Neumann Li–Yau gradient estimate under integral Ricci curvature bounds. Proc. Am. Math. Soc. 147(1), 411–426 (2019). https://doi.org/10.1090/proc/14213
21. Rose, C.: Li–Yau gradient estimate for compact manifolds with negative part of Ricci curvature in the Kato class. Ann. Glob. Anal. Geom. 55(3), 443–449 (2019). https://doi.org/10.1007/s10455-018-9634-0
22. Sakai, T.: Curvature-up through the twentieth century, and into the future? [translation of Sūgaku 54(3), 292–307 (2002)]. Sugaku Expos. 18(2), 165–187 (2005)
23. Seto, S., Wei, G.: First eigenvalue of the p-Laplacian under integral curvature condition. Nonlinear Anal. 163, 60–70 (2017)
24. Shi, Y.M., Zhang, H.C.: Lower bounds for the first eigenvalue on compact manifolds. Chin. Ann. Math. Ser. A 28(6), 863–866 (2007). (Chinese, with English and Chinese summaries)
25. Wei, G., Ye, R.: A Neumann type maximum principle for the Laplace operator on compact Riemannian manifolds. J. Geom. Anal. 19(3), 719–736 (2009). https://doi.org/10.1007/s12220-009-9080-0
26. Yang, H.C.: Estimates of the first eigenvalue for a compact Riemann manifold. Sci. China Ser. A 33(1), 39–51 (1990)
27. Zhang, Y., Wang, K.: An alternative proof of lower bounds for the first eigenvalue on manifolds. Math. Nachr. 290(16), 2708–2713 (2017)
28. Zhang, Q.S., Zhu, M.: Li–Yau gradient bound for collapsing manifolds under integral curvature condition. Proc. Am. Math. Soc. 145(7), 3117–3126 (2017). https://doi.org/10.1090/proc/13418
29. Zhang, Q.S., Zhu, M.: Li–Yau gradient bounds on compact manifolds under nearly optimal curvature conditions. J. Funct. Anal. 275(2), 478–515 (2018). https://doi.org/10.1016/j.jfa.2018.02.001
30. Zhong, J.Q., Yang, H.C.: On the estimate of the first eigenvalue of a compact Riemannian manifold. Sci. Sin. Ser. A 27(12), 1265–1273 (1984)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.