The BRASS (BRaest Angiosarcoma Surveillance Study): Protocol for a retrospective multicentre cohort study to evaluate the management and outcomes of angiosarcoma of the breast and chest wall

Jenny Banks, Charlotte Ives, Shelley Potter, Chris Holcombe, On behalf of the BRASS Steering Group

1. Introduction

Breast angiosarcomas (AS) are rare malignant endothelial cell tumours of vascular or lymphatic origin [1]. They account for less than 1% of all breast malignancies [2] and are poorly understood. Angiosarcomas may develop spontaneously as a primary malignancy, often in younger women between the ages of 20–40 or occur secondary to chronic lymphoedema (Stewart-Treves Syndrome) or radiotherapy in women who have undergone treatment for breast cancer [3,4].

Primary angiosarcomas arise de novo, occurring most commonly in the head and neck area as cutaneous lesions, followed by the breasts and extremities [1]. Primary breast angiosarcomas are found to tend towards the development of metastases, whereas secondary cases show a high local recurrence rate. Regardless of subtype, the overall outlook is similarly bleak [5].

Radiotherapy associated angiosarcoma (RAAS) is a rare, but established complication of treatment for early breast cancer. Defined as the development of a sarcoma in a previous radiotherapy field with a latency period of at least three years [6], its aetiology and precise relation to the radiotherapy given is poorly understood: The incidence of RAAS is estimated at between 0.04 and 0.18% [7] in women treated with radiotherapy and although this does not appear to be influenced by the type of surgery performed (mastectomy or wide local excision), there may be a potential interaction of radiotherapy and lymphoedema following treatment [8]. There may also be a dose response relationship between the dose of radiotherapy given and the incidence of RAAS with a minimum of 10 Gy associated with the development of the condition (but usually associated with higher doses) [9]. The impact of new techniques such as intensity modulated radiotherapy or hypofractionation are unclear and further study is needed [8].

Data on the optimal management and subsequent prognosis of RAAS is similarly lacking [8,9]. While surgery remains the mainstay of treatment, local recurrence rates range from 54 to 92% and the addition of further radiotherapy with or without hypothermia has been investigated in several small studies and may be beneficial [8,9]. Chemotherapy with taxanes or other agents targeted against vascular endothelial growth factor (VEGF) or components of the Ret proto-oncogene (RET) signalling pathway rarely found to be upregulated (V-myc myelocytomatosis viral oncogene homologue [MYC], V-Kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homologue[KIT] and RET) or downregulated ((cyclin-dependent kinase inhibitor 2C (CDKN2C)) specifically in secondary angiosarcoma may also be valuable [10] although so far results of such approaches have been disappointing [11].

Data on prognostic factors is similarly lacking although five year survival is poor ranging from 27 to 43% in two recent systematic reviews [8,9]. These reviews, however, are based on small, single centre largely retrospective studies published between 1970 and 2013 with inconsistent definitions and outcomes which are unlikely to reflect current practice. This is particularly important given that wide local excision and radiotherapy has become the standard of care for early breast cancer and the incidence of RAAS may be increasing.

Knowing how to adequately manage these tumours is imperative; however there is currently no conclusive or valuable evidence looking specifically at breast sarcomas to guide surgical management. Much of the current proposals are derived from either small retrospective case reviews or extrapolated from non-breast sarcoma studies. Furthermore, a lot of the recent data consider breast sarcomas as a whole, despite the fact angiosarcomas can behave dependent kinase inhibitor 2C (CDKN2C)) specifically in secondary angiosarcoma and the incidence of RAAS may be increasing.

Attention has recently been focused on how we might make outcomes for patients with rare tumours better, and argument for breast sarcoma as a whole, despite the fact angiosarcomas can behave differently, with the survival rate of the latter being 40% lower [12]. There is evidence to suggest that improved adherence to specific guidelines can improve outcomes for sarcomas, especially when applied in referral centres [14].

http://dx.doi.org/10.1016/j.jsp.2017.05.001
2468-3574/© 2017 The Authors. Published by Elsevier Ltd on behalf of Surgical Associates Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
it is our experience that these tumours are currently managed heterogeneously between the plastic, oncology and breast teams. We wish to review current practice and outcomes with a view to better understanding this disease and furthermore, improve care. Due to small numbers involved it is difficult to collate adequate data regarding this patient group within one centre, and a more cohesive, collaborative approach is required.

There is therefore a need to collect high-quality contemporaneous data regarding the current incidence and management of both primary breast AS and RAAS to describe variations in practice and inform the design of future prospective studies.

The challenges to the design and conduct of large-scale cohort studies are well-documented, but the trainee collaborative model has emerged as a time and cost-effective means of delivering high-quality prospective research and audit [15–20]. The iBRA study [21], a national audit of the practice and outcomes of implant-based breast surgery has demonstrated the model is transferable to breast and plastic surgery and has established a network of centres willing and able to participate in future projects. It is hypothesised that this network of highly-motivated enthusiastic breast and plastic surgical trainees and consultants can be utilised to deliver further high-quality audits in breast and reconstructive surgery.

2. Methods and analysis

2.1. Aims and objectives

BRASS aims to use the trainee collaborative model to describe the current practice in diagnosis, staging and management of primary breast and secondary AS in relation to the National Comprehensive Cancer Network (NCCN) Clinical Practice Guidelines in Oncology Soft Tissue Sarcoma [22]. Evaluate the outcomes of patients treated for primary breast and secondary AS in the UK and describe prognostic factors. Generate data to help guide best practice guidelines in the future.

To inform a potential prospective study of primary breast AS and RAAS.

2.2. Definition

Radiation associated angiosarcoma of the breast will be defined as

- an angiosarcoma occurring in the breast or chest wall (if previous mastectomy) following previous diagnosis and treatment with radiotherapy of breast cancer.

2.3. Hypothesis

Breast angiosarcoma is managed according to NCCN guidelines [22] for soft tissue sarcoma within the UK. Despite this, recurrence rates remain high (54–92%) and outcomes are poor with 5 year survival quoted as being as low as 27–43% [8,9].

2.4. Study design

This is a trainee-led retrospective multicentre audit coordinated by members of the BRASS steering group supported by members of the Mammary Fold Academic and Research Collaborative (MFAC) and the Reconstructive Surgery Trials Network (RSTN).
Table 1: Outcome measures.

Outcome measure	Definition
Sarcoma MDT referral rate	All patients (100%) should be evaluated by a multidisciplinary team with experience of sarcoma
Core or incisional biopsy rate	All patients should have a biopsy (core or incisional) to establish grade and histological sub-type
Cross sectional imaging rate	All patients should have cross-sectional imaging (MRI ± CT) to provide details of tumour size, relationship to nearby visceral structures and neurovascular landmarks
Resectable disease: Margin clearance	Surgical excision should be performed with adequate oncological radial margin (usually greater than 10 mm)
Non-resectable disease: Chemotherapy offered	Patients should be considered for palliative chemotherapy or neoadjuvant chemotherapy in view of potentially improving surgical treatment options
Recurrence rate	Rate of recurrence (local and metastatic) following initial treatment

Patient care will in no way be affected by this study. Therefore research ethics approval is not required, as confirmed by the Health Research Authority (HRA) online decision tool. (www.Hra-decisiontools.org.uk/research). Local audit approvals will need to be obtained, with a supervising named consultant, if the unit lead is a trainee. This approval will be collected by the BRASS team.
Table 2
Data fields for BRASS.

Field	Options
Section 1: Patient demographics	
Sex	Male/Female
Age at diagnosis of breast cancer (if relevant)	Age in years
Age at diagnosis of AS	Age in years
Tobacco smoking status	Nonsmoker/smoker/ex-smoker
Medical co-morbidities:	Free text
- At time of diagnosis of breast cancer (if RAAS)	
- At time of diagnosis of AS (if primary AS)	
Section 2: Breast cancer treatment data	DD/MM/YY
Date of diagnosis (date of diagnostic biopsy)	
Side	Right/left/bilateral
Date of final breast surgery	DD/MM/YY
Final surgery performed to breast	(WLE/Mastectomy only)
Final surgery performed to axilla	Auxillary sample/sentinel node
Breast cancer histology data	Invasive ductal/ invasive lobular/ LCIS/DCIS/Mixed/Other: Specify 1–3 Low-High Single/Multifocal
Type of lesion	
Grade	
Single or Multifocal (if multifocal enter worst diagnosis for following fields)	
Size of invasive lesion	In millimetres
Total size of whole lesion including DCIS, if any	In millimetres
Number of involved lymph nodes	Number
Total number of lymph nodes in specimen	Number
Receptor status	ER:Positive/negative/not known PR: Positive/negative/not known HER2: Positive/negative/not known Yes/No
Lymphovascular invasion	In millimetres
Closest radial margin	
Breast cancer adjuvant therapy details	
Intraoperative radiotherapy to breast or chest wall?	Yes/No
If yes: Dose	Dose in Gy and Energy
External beam radiotherapy to breast or chest wall?	Yes/No
Dose	In Gy and energy Number
Number of fractions	Yes/No
Number of fractions	DD/MM/YY
Treated daily	
Date radiotherapy started	DD/MM/YY
Date radiotherapy completed	Yes/No
Axilla treated with radiotherapy?	Yes/No
Supraclavicular fossa treated with radiotherapy?	Yes/No
Was a Boost given?	Yes/No
Boost Electrons	Energy – MeV Energy – MeV Energy kV
Boost Megavoltage	Gy Number
Boost Orthovoltage	Yes/No
Boost Number of fractions	Yes/No/Don’t know
Did the patient receive chemotherapy?	Free text
Chemotherapy: regimen given	DD/MM/YY
Chemotherapy: Start date	DD/MM/YY
Chemotherapy: End date	Yes/No
Was the patient treated with Herceptin?	DD/MM/YY
Herceptin: start date	DD/MM/YY
Herceptin: end date	Yes/No
Was the patient treated with endocrine therapy?	
Section 3: Angiosarcoma (AS) Data	
Date of diagnosis (diagnostic biopsy)	DD/MM/YY
Location of tumour	Free Text
AS: Route of diagnosis	
Clinical presentation	Visible (cutaneous)/Palpable/ Radiological
Medical photography undertaken	Yes/No/Don’t know
Histology: FNA	Yes: give details of report (free text)/ No
Histology: Punch biopsy	Yes: give details of report (free text)/ No
Histology: Excision biopsy	Yes: give details of report (free text)/ No
Imaging: Mammmogram	Yes: Give findings/ No
Imaging: USS Breast/Axilla	Yes: Give findings/ No
Imaging: CT Thorax/Abdomen	Yes: Give findings/ No
Imaging: MRI	Yes: anatomical region, findings/ No
Imaging: Other (e.g. PET)	Yes: anatomical region, findings/ No
Was the patient discussed at a sarcoma MDT?	Yes/No
Was the patient discussed at a breast MDT?	
Stage at diagnosis	Tumour: T1a/T1b/T2a/T2b Lymph nodes: N0/N1 Metastasis: M0/M1
Was tumour considered resectable?	
Metastatic disease at presentation?	
AS: Management	
Lead care provider	
If regional sarcoma centre led care, which specialty led the patients follow up?	
Lead surgeon specialty	Breast/Plastic/Sarcoma
Lead oncologist sub-specialty interest	Breast/Sarcoma/Unknown
Type of operation performed	
Post-operative complications	
AS: Histology	
Is tissue banked?	Yes/No/Don’t know
Size of tumour	
Tumour markers: CD31	
Tumour markers: CD34	
Tumour markers: C-myc	
Tumour markers: Other IHC	
Distance to margins: Superior, Inferior, Medial, Lateral, Posterior	
Excision deemed adequate?	Yes/No

(continued)
prior to the commencement of data collection. Patient consent is not required as no patient identifiable data is being recorded.

Dissemination of the protocol will be via national trainee collaborative groups: The Reconstructive Surgery Trials Network (RSTN) and the Mammary Fold Breast Trainee Group Academic and Research Collaborative (MFAC). Individual centres will have access to their own data, and data will be fed back to participating centres at the end of the study.

Results of the study will be presented at scientific meetings and published in peer-reviewed journals.

The study report will be prepared according to the STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) reporting guidelines for observational studies [27].

The BRASS project is registered with ResearchRegistry.com, UIN: 2129.

Authors contributions

All authors conceived the study. Author 1 and 3 drafted the protocol. Author 1 wrote the first draft of the paper. All authors critically revised the manuscript and approved the final version prior to submission.

Ethical approval

None required.

Competing interests

The authors have no competing interests to declare.

Funding

Funding towards the publication of this study was obtained from the Exeter Breast Care Support Fund.

References

[1] R.J. Young, N.J. Brown, M.W. Reed, D. Hughes, P.J. Woll, Angiosarcoma, Lancet Oncol. 11 (10) (2010) 983–991.
[2] C. Fraga-Guedes, H. Gobbi, M.G. Mastropasqua, E. Botteri, A. Luni, C. Viale, Primary and secondary angiosarcomas of the breast: a single institution experience, Breast Cancer Res. Treat. 132 (3) (2011) 1081–1088.
[3] A.T. Monroe, S.J. Feigenberg, N.P. Mendenhall, Angiosarcoma after breast-conserving therapy, Cancer 97 (8) (2003) 1832–1840.
[4] M. Jessner, F.G. Zak, C.R. Rein, Angiosarcoma in postmastectomy lymphedema (Stewart-Treves syndrome), AMA Archives of Dermatology and Syphilology 65 (2) (1952) 123–129.
[5] T. Hillenbrand, F. Menge, P. Hohenberger, B. Kasper, Primary and secondary angiosarcomas: a comparative single-center analysis, Clin. Sarcoma Res. 5 (1) (2015) 1.
[6] W.G. Cahan, H.Q. Woodard, N.L. Higinbotham, F.W. Stewart, B.L. Coley, Sarcoma arising in irradiated bone, Cancer 82 (1) (1998 Jan 1) 8–34.
[7] K.E. Torres, V. Ravi, K. Kin, M. Yi, B.A. Guidugnolo, C.D. May, B.K. Arun, et al., Long-term outcomes in patients with radiation-associated angiosarcomas of the breast following surgery and radiotherapy for breast cancer, Ann. Surg. Oncol. 20 (4) (2013) 1267–1274.
[8] G.R. Sheth, L.D. Cranmer, B.D. Smith, L. Grasso-LeBeau, J.E. Lang, Radiation-induced sarcoma of the breast: a systematic review, Oncologist 17 (3) (2012) 405–418.
[9] A.L. Depla, C.H. Schlaafs-Kares, M.A.A. de Jong, S. Oldenborg, M.W. Kolff, S.B. Oei, F. van Coevorden, G.C. van Rhoon, E.A. Baartman, et al., Treatment and prognostic factors of radiation-associated sarcoma (RAAS) after primary breast cancer: a systematic review, Eur. J. Cancer 50 (10) (2014) 1779–1788.
[10] E. Styring, J. Seinen, M. Dominguez-Valentin, H.A. Domanski, M. Jonsson, F.V. von Steyern, H.J. Hoekstra, A.J.H. Suurmeijer, M. Nilbert, Key Roles for MYC, KIT and RET signaling in secondary angiosarcomas, Br. J. Cancer 111 (2) (2014) 313–314.
[11] M.R. Cooney, A. Lurkin, N. Mitton, R. Blondet, C. Saba, D. Ranchère, M.P. Sunyach, P. Thiesse, P. Biron, J.V. Blay, J. Ray-Coquard, Sarcomas and malignant phyllodes tumours of the breast—a retrospective study, Eur. J. Cancer 42 (16) (2006) 2715–2721.
[12] S. Sandrucci, G. Gatta, A. Trama, A.P. Dei Tos, P.G. Casali, Specialized teams or specialist networks for rare cancers?, Eur. J. Surg. Oncol. 41 (9) (2015) 1115–1117.
[13] J. Ray-Coquard, T. Philip, G. de Laroche, X. Froger, J.P. Suchaud, A. Voloch, H. von Steyern, F. van Coevorden, J. Banks et al. / International Journal of Surgery Protocols 5 (2017) 5–10
[14] NCCN soft tissue sarcoma guidelines. Available at: www.nccn.org/professionals/physician_gls/PDF/sarcomas.pdf. (accessed March 2016).

Table 2 (continued)

Field	Options
AS: Adjunct therapy	
Patient received chemotherapy	Yes/No/Don't know
Chemotherapy regimen	
Chemotherapy start date	MM/YY
Chemotherapy end date	MM/YY
Patient received biological therapy?	Yes/No/Don't know
Biological agent used	
Biological therapy start date	MM/YY
Biological therapy end date	MM/YY
Patient received Electrochemotherapy	
Electrochemotherapy regimen	
Date of Electrochemotherapy	MM/YY
Patient received external beam radiotherapy?	
Radiotherapy dose	Gy/Energy
Number of fractions	
Section 4: Follow up surveillance	
Recurrence	Yes/No
Date of recurrence	MM/YY
Type of recurrence	Local/Metastatic; give location
Management of recurrence	
Closest margin of re-excision	mm
Chemotherapy used for recurrence?	Yes/No
Chemotherapy: Regimen	
Chemotherapy: Start date	MM/YY
Chemotherapy: End date	MM/YY
Other salvage treatments used?	Yes/No/Don't know
Further recurrence?	Yes (Repeat section 4 thus far)/No
Outcome	
Patient deceased?	Yes/No
Cause of death	
Last patient contact	MM/YY
Last imaging date	MM/YY
Imaging modality	CT/MI/Plain film
Imaging site	
Imaging result	

Funding

Funding towards the publication of this study was obtained from the Exeter Breast Care Support Fund.
10

[23] P.A. Harris, R. Taylor, R. Thielke, J. Payne, N. Gonzalez, J.G. Conde, Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support, J. Biomed. Inform. 42 (2) (2009) 377–381.

[24] Collaborative, B.R.R., P016. Exploring the potential of using the trainee collaborative model to deliver high-quality, large-scale prospective multicentre studies in reconstructive breast surgery: The iBRA (implant Breast Reconstruction evaluation) study. Eur. J. Surg. Oncol. (EJSO), 41(6) (2015) S32.

[25] A. Goldhirsch, E.P. Winer, A.S. Coates, R.D. Gelber, M. Piccart-Gebhart, B. Thirlimann, H.J. Senn, K.S. Albain, F. André, J. Bergh, H. Bonnefoi, Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013, Ann. Oncol. 24 (9) (2013) 2206–2223.

[26] E. Baker, B. Kim, T. Rattay, K. Williams, C. Ives, D. Remoundos, C. Holcombe, M. D. Cardiner, A. Jain, R. Sutton, R. Achuthan, The TeaM (Therapeutic Mammaplasty) study: Protocol for a prospective multi-centre cohort study to evaluate the practice and outcomes of therapeutic mammaplasty, Int. J. Surg. Protoc. 1 (2016) 3–10.

[27] E. Von Elm, D.G. Altman, M. Egger, S.J. Pocock, P.C. Gotzsche, J.P. Vandenbroucke, Strobe initiative. the strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies, Prev. Med. 45 (4) (2007 Oct 31) 247–251.