ERRATUM FOR RICCI-FLAT GRAPHS WITH GIRTH AT LEAST FIVE

DAVID CUSHING, RIIKKA KANGASLAMPI, YONG LIN, SHIPING LIU, LINYUAN LU, AND SHING-TUNG YAU

Abstract. This erratum will correct the classification of Theorem 1 in [1] that misses the Triplex graph.

In Theorem 1 of [1], the classification of Ricci-flat graph with girth \(g(G) \geq 5 \) missed one graph – the Triplex graph, as discovered by three authors: Cushing, Kangaslampi, and Liu. Here is the correct theorem.

Theorem 1. Suppose that \(G \) is a Ricci-flat graph with girth \(g(G) \geq 5 \). Then \(G \) is one of the following graphs,

1. the infinite path,
2. cycle \(C_n \) with \(n \geq 6 \),
3. the dodecahedral graph,
4. the Petersen graph,
5. the half-dodecahedral graph,
6. the Triplex graph.

![四個圖形](image)

Figure 1. The four Ricci-flat graphs with girth 5

This error was caused by an incorrect implicit statement (in [1]) that any 3-regular Ricci-flat graph \(G \) has a surface embedding whose faces are all pentagons. In this erratum, we analyze the case that \(G \) does not have a surface embedding whose faces are all pentagons. We will show that this case leads a unique missing graph — the Triplex graph. An alternative method to correct Theorem 1 in [1] is given in [2].

Recall that Lemma 3 item 2 in [1] states:

Lemma 1. For any edge \(xy \) of a graph of girth at least 5, if \(d_x = d_y = 3 \) and \(\kappa(x, y) = 0 \), then \(xy \) belongs to two 5-cycles \(P_1 \) and \(P_2 \) such that \(P_1 \cap P_2 = xy \).

Date: February 9, 2018.
Since G contains no cycle of length 3 or 4, any C_5 contains the edge xy is uniquely determined by a 3-path passing through xy. Since $d_x = d_y = 3$, there are four 3-paths of form x_iyy_j for $i, j = 1, 2$. Here x_1, x_2 are two neighbors of x other than y and y_1, y_2 are two neighbors of y other than x. We say two C_5's are opposite to each other at xy if one C_5 passes through x_iyy_j and the other one passes through $x_{3-i}yy_{3-j}$. The above lemma says that there is a pair of opposite C_5's sharing the edge xy. We say an edge xy is irregular if there are exactly three C_5 passing through it.

From this lemma, we have the following corollary.

Corollary 1. If G is a 3-regular Ricci-flat graph and contains no irregular edge, then G can be embedded into a surface so that all faces are pentagons.

Proof. View G as 1-dimension skeleton and glue pentagons to G recursively. Starting with any C_5 and glue a pentagon to it as a face, call the two-dimensional region M. If M contains a boundary edge xy, by induction, xy is on one face C_5. We glue a pentagon face to the opposite C_5 at xy to enlarge M. Since every edge is not irregular, the process will continue until M has no boundary edge. When this process ends, we get an embedding of G into some surface so that every face is a C_5.

We are ready to fix the proof of Theorem 1 in [1].

Proof of Theorem 1. Since in the original proof of Theorem 1 in [1], we have taken care of all the cases except that G is 3-regular and contains an irregular edge xy. Let us show this case leads to a unique graph — the Triplex graph.

Let xy is an irregular edge. It is contained in three C_5's: ux_2xyy_2u, vx_1xyy_1v, and wx_2xyy_1w. The path x_1xyy_2 is not in any C_5. Let w_1 be the third neighbor of x_1, and w_2 be the third neighbor of y_2. Then w_1, w_2 are two distinct vertices, and they cannot be coincident with any vertex on the three C_5's. This is our starting configuration (See Figure 2 with solid lines).

Now consider the edge xx_1. Observe that the path w_1x_1xy is not on any C_5. Thus, the path $w_1x_1xx_2$ must be extended to a C_5. Either w_1u is an edge or w_1w is an edge. Similarly, by considering the edge yy_2, either w_2v or w_2v is an edge. These four possible edges
are shown as dashed lines i), ii), iii), and iv) in Figure 2. There are four combinations: i)+iii), i)+iv), ii)+iii), ii)+iv). The combination i)+iii) is impossible since $d_w = 3$. The two cases i)+iv) and ii)+iii) are symmetric. Essentially we have two cases to consider:

Case: i)+iv): Now consider the edge $w_1 x_1$. By Lemma 1, there are a pair of opposite C_5 sharing the edge $w_1 x_1$. The unmarked third neighbor of w_1 must be u. But this creates a C_4: $w_1 w x_2 u w_1$. Contradiction!

Case: ii)+iv). Let w_3 be the third neighbor of w. (w_3 is distinct from w_1 and w_2 since the girth of G is at least 5.) Applying Lemma 1 on the edge wx_2, we have a pair of opposite C_5’s passing through wx_2. This will force $w_3 w_1$ to be an edge. Similarly, by considering wy_1, we conclude that $w_3 w_2$ must be an edge. This completes a 3-regular graph. It is easy to check this is the Triplex graph.

□
Figure 4. Unique way to complete into the Triplex graph.

References

[1] Y. Lin, L. Lu, and S.-T. Yau, *Ricci-flat graphs with girth at least five*, Comm. Anal. Geom. 22 (2014), no 4, 671-687.

[2] D. Cushing, R. Kangaslampi, Y. Lin, S. Liu, L. Lu, and S.-T. Yau, *Ricci-flat cubic graphs with girth five*, preprint.

D. Cushing, Department of Mathematical Sciences, Durham University, Durham DH1 3LE, UK
E-mail address: david.cushing@durham.ac.uk

R. Kangaslampi, Department of Mathematics and Systems Analysis, Aalto University, Aalto FI-00076, Finland
E-mail address: riikka.kangaslampi@aalto.fi

Y. Lin, Department of Mathematics, School of Information, Renmin University of China, Beijing 100872, China
E-mail address: linyong01@ruc.edu.cn

S. Liu, School of Mathematical Sciences, University of Science and Technology of China, Hefei 230026, China
E-mail address: spliu@ustc.edu.cn

L. Lu, Department of Mathematics, University of South Carolina, Columbia, SC 29208, USA
E-mail address: lu@math.sc.edu

S.-T. Yau, Department of Mathematics, Harvard University, Cambridge, MA 02138, USA
E-mail address: yau@math.harvard.edu