Genomic Alteration During Metastasis of Lung Adenocarcinoma

Qiang Tan, Jian Cui, Jia Huang, Zhengping Ding, Hao Lin, Xiaomin Niu, Zhiming Li, Guan Wang, Qingquan Luo, Shun Lu

Department of Shanghai Lung Tumor Clinic Center, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, BioGenius Biotechnology (Shanghai) CO., LTD., Shanghai, People's Republic of China

Key Words
Genome • Lung • Adenocarcinoma

Abstract

Background/Aims: Recurrent gene mutation has been identified by the analysis of exonic DNA from lung adenocarcinoma, but its progression has not been extensively profiled. The investigation of the mutational landscape of tumors provides new insights into cancer genome evolution and further discovers the interplay of somatic mutation, adaptation of clones to their environment and natural selection. Cancer development involves cycles of genomic damage, epigenetic deregulation, and increased cellular proliferation that eventually culminate in the carcinoma phenotype.

Methods: Comparative whole exome sequencing of both primary and metastatic tumor tissues from four patients of stage IV lung adenocarcinoma patients with chest wall metastasis was performed. Both primary and metastatic tumors were diagnosed through biopsy followed by surgical resection. All tumor specimens were cut into several pieces to assess potential heterogenic clones within the tumor tissue. Adjacent normal lung tissue was also obtained to provide germline mutation background.

Results: By modeling and analyzing progression of the cancer metastasis based on non-synonymous variants, we defined the extent of heterogeneity of cancer genomes and identified similar cancer evolution pattern in the four patients: metastasis was an early event occurring right after the primary cancer formation and evolution in the metastatic tumor was continuously and simultaneously in progression with that in the primary tumor. By characterizing the clonal hierarchy of genetic lesions, we further charted a pathway of oncogenic events along which genes may drive lung adenocarcinoma metastasis, such as TAS2R31 and UMODL1, involving in G-protein coupled receptor protein signaling pathway.

Conclusion: The candidate genes identified in this study may become targets for the treatment of lung adenocarcinoma metastasis.

Q. Tan and J. Cui contributed equally to this paper.
Introduction

Lung cancer is currently the leading cause of cancer-related death worldwide, accounting for approximately a third of all cancer diagnoses and death. The high mortality rate associated with lung cancer has prompted numerous exhaustive efforts to identify novel therapeutic targets and treatment modalities for this lethal disease [1]. Most lung cancer patients died of metastasis, especially lung adenocarcinoma, which often metastasizes when the primary tumor size is still quite small. The molecular mechanism underlying the early metastasis of lung adenocarcinoma has been instrumental in developing novel therapeutic strategies to target this aggressive metastatic disease. It is necessary to further investigate the molecular determinants of treatment resistance and to develop novel therapeutic strategies to improve a better understanding of the molecular origins and evolution of it in the future.

Previous studies in lung adenocarcinoma genome focused on mutations for targeted chemotherapy, recurrence of genetic mutations, genome-wide structure variants and copy number variants. In this regard, EGFR mutations and ALK fusions have been used as targeted chemotherapy for lung cancer treatment [7, 8]. In lung adenocarcinoma, KRAS, BRAF, ERBB2 and PIK3CA or translocations in RET and ROS1 are found as frequently recurrent and loss-of-function mutations, or deletions in tumor suppressor genes TP53, STK11, RB1, NF1, CDKN2A, SMARCA4 and KEAP1 [9-11]. Recently, many array-based profiling [12], targeted re-sequencing [12, 13], and next generation sequencing-based exome and/or whole genome sequencing data [14, 15] have all characterized the special targeted mutation genes or structure variants in lung adenocarcinoma genomes. A recent study describing whole-exome sequencing of 16 lung adenocarcinomas enumerated several mutated genes but did not identify genes undergoing positive selection for mutation in the studied tumors [16]. Using arrays profiling, somatic focal amplifications of NKX2-1 (NK2 homebox 1) was identified in lung adenocarcinomas [12]. In another systemic characterization of somatic mutations, it was found that 26 genes out of 623 genes in 188 human lung adenocarcinomas, including ERBB4, EPHA3, KDR and NTRK, were in mutation with significantly high frequencies and thus were considered to be probably involved in carcinogenesis [9]. Meanwhile, somatic mutations of several tumor suppressor genes, including NF1, APC, RB1, ATM, PTPRD, and LRPIB, are considered as contributing to the development of primary lung adenocarcinoma and other cancers. A transforming KIF5B and RET gene fusion were found in lung adenocarcinoma by whole-genome and transcriptome sequencing [13]. A study on exome and genome sequences of 183 lung adenocarcinoma (tumor/normal DNA pairs) revealed that recurrent somatic mutations occurred in the splicing factor gene U2AF1, truncating mutations affected RBM10 and ARID1A, and the mutation signatures were correlated with smoking history [16]. Unfortunately, such recurrent alterations in genes or transcriptome are difficult to exploit the molecular basis of lung cancer metastasis. Therefore, knowledge of additional genes altered in lung adenocarcinoma metastasis is needed to further guide diagnosis and treatment.

Recently, increasing number of somatic mutations in variety kinds of cancers have been found with the development of sequencing technique. The historically proven approach of understanding evolution is the comparative analysis of extant species, whose power was greatly increased by whole genome sequencing in recent years. The concept of clonal evolution in cancer was originally proposed by Peter Nowell, who theorized that acquired genetic instability increases as a neoplasm progress, resulting in heterogeneity [17]. Consequently, numerous genetically distinct subclones, which developed within the neoplasm, lead to intra-tumor diversity. As sublines evolve from the original primary clone, a Darwinian selection process occurs to allow the cancer to become more malignant [18]. This "survival of the fittest" within cancers, and cancer cell heterogeneity in general, have been studied with increasing sensitivity as technology has developed [19]. Based on the
evolutionary lineage trees, comparisons of somatic genomes from a single individual could shed light on somatic evolution in principle. In this regard, given the large number of genomic changes during tumor evolution, it may be possible to dissect the evolutionary history of a cancer by comparing its genome to clinically recognized precursor lesions.

In the current study, therefore, using next-generation sequencing of the whole exomes of DNA from 4 lung adenocarcinomas with seven multiple regions for each subject, including 1 matched normal adjacent tissue, 3 pieces from primary adenocarcinomas section and 3 pieces from metastasis adenocarcinomas section, we not only verified the genes with frequent somatic alterations that has been reported in the previous studies of lung adenocarcinoma, but also determined novel mutation genes in total 28 exome sequencing data that likely contribute to metastatic evolution; confirmed lineage relationship of primary and metastatic tumor; quantified mutational load and mutation spectra during progression from normal tissue to primary tumor, and to metastatic tumor; and found the earliest detectable mutations. Findings of the current analyses revealed that variation exist among the four cases in the specific evolution of primary and metastatic tumor. The mechanistic commonalities among the cases, however, bear significant implications for our conceptualization of lung adenocarcinoma origins and progression.

Materials and Methods

Patient and Sample Characteristics

Primary lung adenocarcinomas (4 patients), metastatic lung adenocarcinomas and adjacent normal tissue specimens were obtained from surgically resected lung tissue. Both cancerous and normal tissue specimens were grossly dissected and preserved immediately in liquid nitrogen. Each specimen of lung adenocarcinoma was segregated into six parts, that is, three primary adenocarcinomas and three metastatic adenocarcinomas. DNA was extracted from each segregated tumor tissue and adjacent normal lung tissue. Protocol of tissue collection was approved by the Ethic Committee of School of Medicine, Shanghai Jiao Tong University, and a written consent was obtained from each patient. Samples estimated to contain more than 80% tumor cells were used. SNP arrays were conducted in all samples to demonstrate that they were from the same individual and to confirm the presence of copy number changes.

Massively Parallel Sequencing and Analysis

Whole-exome sequencing of paired tumor/normal DNA samples from the 4 patients was performed. Briefly, DNA libraries were prepared according to the Illumina library generation protocol version 2.3. Each sample was tagged with a custom-designed unique 4-base-long index within the Illumina adaptor, pooled, captured by TruSeq Exome Enrichment Kit and sequenced using Illumina HiSeq2000 system. All samples were co-sequenced together within the Genery Genomic Sequencing Center to an average coverage of 48.5 × for each sample, with 74.60 % of targeted bases covered at ≥ 20 × and 86.09 % of targeted bases covered at ≥10 × per base position. Median 94.47 % of the exonic regions were covered at average ≥ 10 × in all twenty-eight samples. Paired-end sequencing was carried out for 100 bases from each end of around 200-bp insert fragment libraries using standard Illumina protocols, and each read was aligned to hg19 (Feb.2009 GRCh37/hg19) from UCSC Genome Browser using BWA (Burrows-Wheeler Aligner) with default parameters [20]. PCR duplicates with the same start site for both ends were removed using picard tools. Variants were called using GATK (The Genome Analysis Toolkit 1.6) tools and VQSR (Variant quality score recalibration) method, which builds an adaptive error model using known variant sites, and it was applied to estimate the probability that each variant is a true genetic variant or a machine artifact [21]. The variants were annotated using the annovar (Functional annotation of genetic variants from high-throughput sequencing data) [22] and all annotation databases were downloaded from the UCSC Genome Browser [23]. Last, the somatic variants from each paired samples with the following criteria [24] were identified: (1) SNP and indels quality score ≥ 255; (2) Genotype score as a Phred-scaled confidence at the true genotype ≥ 40.0; (3) The number of read depth which read’s mapping quality >= 17 be calculated, >= 20. (4) Variants between tumor and normal were different (tumor contains more variant alleles than normal) based on the genotypes called by GATK and aforementioned filtering criteria (somatic mutations: 0/1 in tumor; 0/0 in normal; 1/1
in tumor, and 0/1 in normal, or 1/1 in tumor; 0/0 in normal). Variants were further filtered by examining whether they were within the protein coding sequence as defined by RefSeq gene models, and not listed in dbSNP132.

Evolution analysis

All non-synonymous variants passed the filtering in exonic regions were assembled across all specimens from the same patient and was then conducted the phylogenetic tree using neighbor-joining algorithm in ClustalW to construct trees from the distance matrix. Visualization of the tree was performed under the software Phyloviewer. In each phylogenetic tree, the nested structure of variants defined a phylogenetic tree of relationships among the metastases and primary tumor. The length of black lines is proportional to the genetic distance between nodes.

The GO-enriched analysis was done by DAVID (https://david.ncifcrf.gov/gene2gene.jsp) using all confident somatic genes. (Cutoff of enriched GO: P <= 1.0e-3). We extended the traditional enrichment analysis logic so that a gene group was more important if the majority of its gene members were associated with highly enriched annotation terms as found in the traditional enrichment analysis of the total gene list. Thus, the enrichment score of each group was measured by the geometric mean of the EASE Scores (modified Fisher Exact) associated with the enriched annotation terms that belonged to this gene group. Importantly, the multiple testing correction issues were considered in the individual EASE scores, and all EASE scores (significant or insignificant) associated with the group participation in the algorithm. In order to emphasize that the geometric mean was a relative score rather than an absolute p value, minus log transformation was applied in the geometric mean (Additional data file 6). Therefore, the group enrichment scores were intended to order the relative importance of the gene groups instead of an absolute decision values. A higher score for a group indicates that the group members were involved in more important (enriched) roles. However, all gene groups were potentially interesting despite lower rankings.

Statistical Analyses

The hierarchical clustering was performed on the somatic mutations on gene level for each patient using R scripts. All figures were output as JPEG format using illustrator software.

Results

Exome sequence analysis of lung adenocarcinoma

We examined four primary lung adenocarcinoma and their chest wall metastasis nodules (S183604, S183744, S183948, S183138) in comparison to their matched normal tissues by paired-end massively parallel sequencing technology [25]. In order to identify heterogeneity of the tumor and to reconstruct the path of the cancer metastasis, both primary tumor and metastatic nodules were cut into 3 pieces. The primary lung adenocarcinoma, metastatic nodule and corresponding normal lung tissue were sequenced to a median 5727.379 Mb data for each sample. Patients’ clinical and histopathological information was presented in the Table 1. Sequence characteristics, and major variants for each patient in the study were presented in the Table 2. Exome was sequenced to median fold coverage of 48.5 on 62 Mb of target sequence with 61.77% capture efficiency (Table 3). Sequencing variances across the

Table 1. Summary of Clinical Features of the subjects in study
Patient
183138
183604
183744
183948
four patients was not statistically significant because all patients contained similar exome capture efficiency and sequencing depth according to the total data yields. Otherwise, exome was sequenced to a median coverage of 48 X in the normal control, 49X in the primary lung adenocarcinoma, and 48 X in the metastatic specimen.

Somatic mutations in lung adenocarcinoma

Somatic mutations and small insertions or deletions (indels) through statistical comparison of paired primary and metastatic tumor versus normal sequence data were identified by using algorithms calibrated for heterogeneous cancer tissues. Officially targeted regions of the 28 specimens (including normal tissue) contained 542,064 SNP variants in average, and 86.4% SNP variants were annotated in dbSNP database and 76% in 1000G. Exonic regions in 7 specimens from the 4 patients (S183138, S183604, S183744 and S183948, respectively) contained 33294, 33457, 34345, and 33429 SNP variants (Mean 33631), in which non-synonymous SNP number is 13268, 13110, 13480 and 13291, respectively. As the indels, high quality of 26938, 26191, 29243
Table 3. Whole-Exome Sequencing Statistics

Statistics Items	Median total	Median_Control	Median_T	Median_M
Sample sequenced	28	4	12	12
Total effective data yield(Mb):	5727.36	6245.63	5511.69	5424.26
Total effective reads:	57273790	62456317	55116854	54242617
Uniquely mapping reads rate	79.43%	77.40%	79.98%	79.93%
No-mismatch mapping reads rate	63.61%	62.96%	63.61%	63.61%
Mismatch alignment bases rate	0.66%	0.77%	0.64%	0.65%
The ratio of reads alignment to reference genome	96.08%	95.28%	96.24%	96.16%
Capture efficiency rate on target regions:	61.77%	67.46%	61.52%	62.76%
Capture efficiency rate on or near +150 target regions:	72.74%	74.83%	70.35%	74.93%
Capture efficiency rate on or near +500 target regions:	79.21%	94.20%	73.73%	79.07%
Fraction of official target covered:	94.47%	97.30%	94.47%	94.28%
Fraction of official target covered at least 4X:	91.11%	95.00%	91.01%	90.73%
Fraction of official target covered at least 10X:	86.09%	90.37%	85.64%	84.84%
Fraction of official target covered at least 20X:	74.60%	78.94%	74.91%	73.62%
Mean coverage sequencing depth on official target:	48.50	48.00	49.00	48.00

Table 4. Somatic mutations in lung adenocarcinomas

Variant Statistics Items	S183138	S183604	S183744	S183948	Mean
Total SNPs number	491531	387170	806671	482885	542064.3
dbSNP:	421265(85.7%)	325448(84.1%)	695683(86.2%)	417144(86.4%)	86.40%
1000G:	372451(75.8%)	283485(73.2%)	624973(77.5%)	366964(76.0%)	76.00%
UTR3:	23666	24590	24996	23291	24135.75
UTR5:	4853	4834	5028	4919	4908.3
downstream:	5763	5656	7583	5740	6185.5
exonic:	26199	26036	26638	26302	26293.75
exonic,splicing:	335	354	334	358	345.25
intergenic:	217169	144039	412055	211792	246263.8
intronic:	184758	155435	290311	182151	203163.8
ncRNA,UTR3:	398	453	406	396	413.25
ncRNA,UTR5:	67	75	70	68	70.00
ncRNA,exonic:	6500	6800	7097	6493	6722.5
ncRNA, intronic:	14467	11890	22773	14108	15089.5
ncRNA,splicing:	32	34	37	35	34.50
splicing:	228	233	239	241	235.25
upstream:	6779	6434	8702	6678	7148.25
upstream,downstream:	312	302	397	308	329.75
Exon_nonexonic SNV:	13268	13110	13480	13291	13287.25
Exon_stopsin SNV:	117	108	107	104	109.00
Exon_stopsout SNV:	11	10	10	13	11.00
Exon_synonymous SNV:	12625	12606	12860	12708	12699.75
Exon_Unknown:	513	556	515	544	532.00
Exonic region total	33294	33457	34345	33429	33631.25
dbSNP:	85.70%	84.10%	86.20%	86.40%	86.40%
1000G:	75.80%	73.20%	77.50%	76.00%	76.00%

and 26165 indels were called in meantime. Exonic indels in 7 of each patient were 12, 209, 25 and 616 for each subject (Table 4).

Using matched normal as control and remaining exonic or splicing non-synonymous variants that changed the protein amino acid sequence, the S183138 patient had 277 somatic variants corresponding to 166 somatic mutation genes and a mean of 4.47 mutations/Mb; the S183604 patient had 319 somatic variants (SNP) in 133 genes with 5.14 mutations/Mb rate; the S183744 patient had 361 somatic variants in 125 genes corresponding to 5.82 mutations/Mb; and the fourth patient had 317 somatic variants in 124 genes corresponding
to 5.11 mutations/Mb. The somatic point mutations were mapped onto their regional distribution across the tumors and shown in Fig. 1-4.

The somatic mutation genes found in the current study were compared with that described in the latest COSMIC database (version v64) [http://www.sanger.ac.uk/genetics/CGP/cosmic] [26], which includes study of multiple lung adenocarcinomas. Of the 21,030 total driver and passenger mutated genes, 9,698 genes had more than 1 % recurrence and 870 genes had more than 5 % recurrence. Of 419 total somatically mutated genes found in all four specimens, 63 (15.04 %) were overlapped with the top 5 % recurrent variants and 297 (70.88 %) were overlapped with the top 1 % recurrent variants in COSMIC. In addition, compared to another study of 183 Whole-genome/Exome sequencing of lung adenocarcinomas [16], 362 (86.40 %) somatically mutated genes found in the current study were among the 14,760 somatically mutated genes published in the literature (14), including TP53, MUC16, and USH2A (> 30 % mutated frequency reported in COSMIC, too). These findings suggested that lung adenocarcinoma have most of consistency with knowledge about recurrent genes in lung adenocarcinoma, and the data quality was normal and passed for our further analysis. Although it was highly consistent between our results and that of others, we further explored the driver somatic genes in cancer clonal evolution, which may contribute to the cancer metastasis, and to focus on the recurrent genes.

Heterogeneity of the mutational landscape and branched evolution within an individual cancer

Data was analyzed from the whole exome sequencing on multiple spatially separated samples of the primary and metastatic biopsies. The results showed that lung adenocarcinoma tissues were heterogeneous. Heterogeneity is central to cancer genome evolution, and we described this at the level of cancer genes and within individual patients. Total of 166 somatic non-synonymous point mutations were identified in exonic regions in the patient S18313B. A metastasis specimen (S18313BM) contained very similar genetic and somatic variant pattern with a primary tumor specimen (S18313T), when compared with the common normal control (S18313L) (Fig. 1A). There were a total of 133, 125 and 124 somatic mutations found in patients S183604 (Fig. 2A), S183744 (Fig. 3A) and S183948 (Fig. 4A) across the primary or metastasis cancer, respectively.

To further elucidate the evolution of lung adenocarcinoma, we analyzed ancestral relationships and reconstructed a phylogenetic tree of every lung adenocarcinoma by ordering clonal sequence, following the previously described methods [27, 28]. The evolutionary tree revealed branched evolutionary tumor growth in all intra-tumors with their special patterns. Mutations in a primary and a metastatic tumor tissue have nested convergent event, which suggested a punctuated evolution event just after the primary tumor development. In analysis for four patients, branch lengths are proportional to the number of non-synonymous mutations separating the branching points (cancer local specimen with particular tumor developmental stage). Potential driver mutations were acquired by the indicated genes in the branch.

Next, according to the functional mis-sense mutations, we conducted phylogenetic analysis to reconstruct the evolution path. It was shown that this metastasis onset event occurred right after the primary tumor event. As known from clinical phenotypes, the primary and the metastasis specimen may have experienced punctuated evolutionary events. In contrast to conditional knowledge, the patient S18313B had different evolution pattern and early onset of metastasis (Fig. 1B). Pylogenetic analysis of other three patients revealed the similar branching pattern with punctuated evolution characters between primary and metastasis.

The 183604M and 183604T located in nearest distance from the normal control specimen (183604L) (Fig. 2B). Another two metastasis specimens 183604m-1 and 183604m-2 harbored branches near the two primary specimens: 183604-1 and 183604-2. The 183744M and 183744T had converged and punctuated evolution from 183744L (Fig. 3B). Primary tumor, 183744-2 and 183744-1, and metastasis tumor, 183744m-1 and
Fig. 1. Genetic intra-tumor heterogeneity and phylogeny in the patient S183138. (A) Heat map showing regional distribution of non-synonymous mutations detected in the whole exome sequencing of S183138. Primary lung adenocarcinoma regions of the specimen T, t1 and t2, metastasis regions of the specimen M, m1 and m2 were detected by exome sequencing. The green indicated presence of a mutation and the white indicated absence of a mutation. Gene name was shown in the bottom. (B) Phylogenetic relationships of the tumor regions. Branch lengths are proportional to the number of non-synonymous mutations separating the branching points. Potential driver mutations were acquired by the indicated genes in the branch.

183744m-2, were converged enduring more accumulation of mutations and harboring long distances from 183744M and 183744T loci. Phylogenetic tree also revealed similar punctuated evolution for metastasis and primary tumor. The 183948M and 183948T were converged, and the other two primary (183948t-1) or two metastasis loci (183948t1 and t2) were converged in another branch direction and seemed to extend from the former primary (183948T) and metastasis (183948M) clones (Fig. 4B).

Heterogeneity drives mutation of genes in cancer metastasis

To examine which key mutation genes is the driver force to initialize metastasis, we compared the nearest primary tumor and metastasis lesions with the normal control using phylogenetic analysis. In the case of S183138, somatic non-synonymous point mutations in exonic regions of metastasis tumor (183138M) and primary tumor (183138T) were compared. It was found that NT5C3 and FAM 194B were the only genes, which were specifically occurred in the metastasis specimen 183138M and at least one of two metastasis loci. The NT5C3 gene recurrently appeared in 183138m-2 specimens. From clustering analysis of non-synonymous point mutations, we also identified 183138M and 183138m-2 were nearest in distance.

In the case of S183604, FAM194B and PRG4 were detected as driver genes for tumor metastasis. PRG4 (proteoglycan 4), or known as migration-stimulating factor (MSF) recurrently shown in two branched primary loci (183604-1 and 183604-2) and metastasis loci (183604m-1 and 183604m-2), not in 183604T.

In the case of S183744, we detected eight genes including PABPC1, CYLC2, KRTAP4-5,
Highly recurrent somatic mutation genes in primary tumor

In order to further determine the driver and passenger mutation genes in different patients, frequency of recurrent somatic mutation genes in primary or metastatic tumors were counted and sorted. The frequency of recurrent somatic mutation genes in primary or metastasis was defined as the ratio of the frequency in primary/metastasis tumor and the total number of the tested specimens in particular group (for example, 12 primary and 12 metastasis in total, respectively). We identified 329 somatically mutated genes correlated with primary tumors with 8.33%~75% frequency in 12 specimens from the 4 subjects, and 298 somatic mutated genes correlated with the metastasis tumor progression with 8.33~83.33 % frequency in other 12 specimens from the 4 subjects. Of total 329 somatic primary-associated mutated genes, 208 genes were recurrently shown in metastasis. A total of 14 genes had more than 50 % frequency, including MUC4, PRG4, KRTAP5-7, IGFN1, KRTAP9-1, MUC5B, PRR21, CHIT1, ZNF141, MYOSB, IVL, NACAD, NEFH, and HOMEZ.

Recurrent mutation genes for secondary metastasis

In order to understand differences of the genetic architecture between any primary and any metastasis, using somatic mutation pattern of the four patients, we counted frequency
of the recurrently mutated genes, which was occurred only in the metastatic tumors. It was found that total of 113 genes were detected as driver genes from global scale via comparing primary and metastasis tumor, and that the genes TAS2R31 and UMOD1 had 50 % recurrent frequency (Table 5).

In the aforementioned 113 metastasis-potentially somatic mutation genes, we used functional enrichment analysis and found that most of the mutated genes function in the Olfactory transduction pathway (p=0.037) and Gene Ontology. Analysis revealed that these genes involve in functions like sensory perception of chemical stimulus, sensory perception, inositol or phosphatidylinositol phosphatase activity, G-protein coupled receptor protein signaling pathway, and phosphatase activity.

Discussion

Whole exome sequencing and integrative analysis of genomic data provided the mutational landscape of tumors and new insights into cancer genome evolution, laying bare the interplay of somatic mutations, adaptation of clones to their environment and natural selection. Multiregional genetic analysis of four consecutive tumors provided evidence of intra-tumor heterogeneity in every lung adenocarcinoma, with spatially separated heterogeneous. Heterogeneous somatic mutations led to phenotypic intra-tumor diversity activating mutation and uniformity. Of all somatic mutations found on multiregional sequencing, most of them were heterogeneous and thus not detectable in every sequenced
region. In the metastasis lesions of every lung adenocarcinoma, it was also showed that high heterogeneity due to the different patterns of somatic mutations to drive cancer metastasis.

Evolution is the result of natural selection, so is the progression of cancer. In this study, we updated the understanding of the dynamic evolution of the cancer genome in a lung adenocarcinoma. The implications for lung adenocarcinoma metastasis is counterintuitive that most of metastasis occur early after the primary tumor with punctuated mode in our study.

Evolution includes gradual and punctuated evolution, the latter occurs where the increment of change is very large compared to that of time in discrete intervals. It looks like abrupt emergence of forms with little or no transitional stages, when in reality the evolution process is gradual. This punctuated evolution is indicated by the heat map and phylogenetic tree in Figure 4B, where there are periods of little change followed by large changes at certain points.

Table 5. Functional enrichment for the highly frequent somatic mutated genes in the primary tumor

Term	Count	%	PValue	Genes
GO:0005882--intermediate filament	3	21.43	5.39E-03	KRTAP5-7, KRTAP9-1, NEFH
GO:0045111--intermediate filament cytoskeleton	3	21.43	5.63E-03	KRTAP5-7, KRTAP9-1, NEFH
GO:0005856--cytoskeleton	5	35.71	6.64E-03	KRTAP5-7, KRTAP9-1, NEFH, IVL, MYOSB
Signal transduction mechanisms	2	14.29	1.63E-02	PBR21, MUC4
GO:0044430--cytoskeletal part	4	28.57	1.74E-02	KRTAP5-7, KRTAP9-1, NEFH, IVL, MYOSB
GO:0005198--structural molecule activity	3	21.43	4.25E-02	IVL, MUCSB, MUC4
GO:0005201--extracellular matrix structural constituent	2	14.29	4.55E-02	MUCSB, MUC4
had occurred through intermediate stages. The detection of private mutations in specific regions suggested clonal evolution. Cancer metastasis occurs after long time progression of primary tumor and accumulation of serial mutations or epigenetic changes, such as renal-cell carcinoma [27], secondary acute myeloid leukemia [29, 30], relapsed acute myeloid leukemia [31] or acute myeloid leukemia evolved from pre-leukemic hematopoietic stem cells [32] and triple-negative breast cancers [33].

Primary and metastasis cancer can still evolved simultaneously in a prolonged time with clonality properties. Branched tumor evolution underscores the importance of targeting ubiquitous alterations in the trunk of the phylogenetic tree. Larger multiregional series will probably identify genes that can be targeted in the trunks of the phylogenetic tree for lung carcinoma. Intra-tumor heterogeneity within the primary tumor may account for ubiquitous alterations in the trunk of the phylogenetic tree. Larger multiregional series will probably identify genes that can be targeted in the trunks of the phylogenetic tree for lung carcinoma. Intra-tumor heterogeneity within the primary tumor may account for metastatic lesions have early onset from the primary tumor, need little time to accumulate or process on genetic alterations in the trunk of the phylogenetic tree. Larger multiregional series will probably identify genes that can be targeted in the trunks of the phylogenetic tree for lung carcinoma. Intra-tumor heterogeneity within the primary tumor may account for metastatic lesions have early onset from the primary tumor, need little time to accumulate or process on genetic alterations in the trunk of the phylogenetic tree.
Akt pathway [51]. It was also characterized as a factor in the fetal-like fibroblasts of breast cancer patients but not from normal adult cells, and cancer patient fibroblasts undergo certain transitions [52] and was presumably responsible for the characteristically elevated levels of migration [53]. In the mice immunized with human esophageal cancer endothelial cells (HECEC), PRG4-targeted treatment significantly suppressed tumor growth through inhibition of human tumor-related angiogenesis [54]. PRG4 is a new molecule associated with the M2 polarization of M phase and expressed by tumor-associated macrophages (TAMs). Its biological function may contribute to M-mediated promotion of cancer cell invasion and metastasis [55].

We detected eight genes in the patient S183744, including PABPC1, CYLC2, KRTAP4-5, FAM194B, IGFN1, MCF2, MUC4, and PAK2. These genes may contribute to the initial metastasis from the primary tumor 183744T, and represented intratumor heterogeneity in other primary and metastasis loci. Except for CYLC2, other 7 genes were also shown in at least one of the other two primary tumors (183744-1 or 183744-2). The mutation events for the above genes have been reported in the lung adenocarcinoma [16], leaving FAM194B gene alone. CYLC2 mutation was only shown in 183744M, but not in other primary and metastasis loci. It indicated that the tumor heterogeneity between each of the two metastasis loci or primary tumor loci. CYLC2 may be the driver mutation gene only for 183744M, but not for other metastasis tumor loci.

Most of these genes were reported in COSMIC and previous lung adenocarcinoma study [16], except for FOXH1 (forkhead box H1). However, function of these genes in metastasis is rarely known. FOXH1, one of FOX gene family protein, can binds SMAD2 and activates activin responsive element via binding the DNA motif and deregulation of FOX family genes may lead to carcinogenesis [56]. Consistently, it has been reported that Smad/FOXH1-mediated transcriptional activation may play a role in lung tumorigenesis [57].

This comprehensive integrative analysis of 4 lung adenocarcinoma/normal pairs provides a number of insights into the biology and identifies potential therapeutic targets. We demonstrated that 329 somatically mutated genes correlated with primary tumors with 8.33%~75% frequency in 12 specimens from the 4 subjects, and 298 somatic mutated genes correlated with the metastasis tumor progression with 8.33%~83.33% frequency in other 12 specimens from the 4 subjects. Of total 329 somatic primary-associated mutated genes, 208 genes were recurrently shown in metastasis. MUC4, PRG4, KRTAP5-7, IGFN1, KRTAP9-1, MUC5B, PRR21, CHIT1, ZNF141, MYOSB, IVL, NACAD, NEFH, and HOMEZ were shown high frequency.

From the GO and pathway enrichment analysis, we learned that most of the primary somatically mutated genes were correlated with intermediate filament and cytoskeleton signal transduction regulations, and involved in extracellular matrix structural constituent. As we know, genes involving in intermediate filament are usually expressed in non-small cell lung cancer [58], prostate cancer [59], pancreatic cancer [60], breast cancer [61] and malignant melanoma18 from transcriptional and post-transcriptional levels via immunohistochemical analysis, and were specified their functions in cell motility and a cancer progression pathways. It suggested that these keratin genes with genetic changes maybe the drivers for the primary tumor.

TAS2R31 and UMODL1 have also been reported in lung adenocarcinoma [16], but limited descriptions about their functions was found. Of the 113 somatic mutation genes, mutation occurred only once in many genes in any metastasis loci in one patient. It revealed great intra-tumor heterogeneity in potential metastasis genes. For the two highest frequent somatic genes, UMODL1 was up-regulated in about 20% non-small cell lung cancers [21], and was also up-regulated in metastatic prostate cancer [22] or acute myeloid leukemia [23]. Mutation rate of TAS2R31 was 0.98% in lung and 1.82% in upper Aero digestive tract in COSMIC (v69). In colon cancer, TAS2R31 was also highly mutated in protein coding region [24].

The heterotrimeric G-protein subunits Go and Gβγ are involved in cellular transformation and tumor development. Heterotrimeric G-proteins and cAMP signaling pathways play
a pivotal role in post-receptor transduction and immediate cellular responses, such as secretory processes (e.g., hormone release and the production of autocrine/paracrine growth factors, cytokines, and matrix metalloproteinases), actin cytoskeleton reorganization, cellular adhesion and migration, and delayed responses linked to gene transcription, cell growth and differentiation. Several lines of evidence [62] demonstrate that the signaling pathways governed by Rho-like GTPases and heterotrimeric G-proteins are interdependent and contribute to cellular adhesion, transformation, and tumor cell invasiveness. In our study, mutation of genes such as GPR144, OR5M10, OR1A1, OR4M2, OR5M3, GABBR2, OR4C16, EMR1, OR4A16, OR13F1, TAS2R43, TAS2R31 and PRKD3, which are associated with G-protein coupled receptor protein signaling pathway, was detected (data not shown). These findings suggested that G-protein coupled receptor protein signaling pathway act very important function in the lung cancer metastasis.

Taken together, development of tumor involves a various evolution modes, which makes therapy complicated. Genomic analyses from single tumor-biopsy specimens may underestimate the mutational burden of heterogeneous tumors. Intra-tumor heterogeneity may explain the difficulties encountered in the validation of oncology biomarkers owing to sampling bias. Tumor clonal architectures and common mutations located in the trunk of the phylogenetic tree may be novel targets to explore more robust biomarkers and therapeutic approaches.

Acknowledgements

This research was supported by the Chinese Ministry of Science and Technology, Sino-Swiss International Collaboration project (2012DFG31320). The authors thank all the patients who participated in this study.

Disclosure Statement

All the authors declare that they have no conflict of interest.

References

1 Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D: Global cancer statistics. CA Cancer J Clin 2011; 61: 69-90.
2 Gerber DE, Schiller JH: Maintenance chemotherapy for advanced non-small-cell lung cancer: new life for an old idea. J Clin Oncol 2013;31:1009-1020.
3 Li T, Kung HJ, Mack PC, Gandara DR: Genotyping and genomic profiling of non-small-cell lung cancer: implications for current and future therapies. J Clin Oncol 2013;31:1039-1049.
4 Cagle PT, Allen TC: Lung cancer genotype-based therapy and predictive biomarkers: present and future. Arch Pathol Lab Med 2012;136:1482-1491.
5 Niu H, Wu B, Jiang H, Li H, Zhang F, Peng Y, He P: Mechanisms of RhoGD12 mediated lung cancer epithelial-mesenchymal transition suppression. Cell Physiol Biochem 2014;34:2007-2016.
6 Wan L, Zhu L, Xu J, Lu B, Yang Y, Liu F, Wang Z: MicroRNA-409-3p functions as a tumor suppressor in human lung adenocarcinoma by targeting c-Met. Cell Physiol Biochem 2014;34:1273-1290.
7 Kwak EL, Bang YJ, Camidge DR, Shaw AT, Solomon B, Maki RG, Ou SH, Dezube BJ, Janne PA, Costa DB, Varella-Garcia M, Kim WH, Lynch TJ, Fidias P, Stubbs H, Engelman JA, Sequist LV, Tan W, Gandhi L, Minokudun M, Wei GC, Shreeve SM, Ratain MJ, Settleman J, Christensen JG, Haber DA, Wilner K, Salgia R, Shapiro GI, Clark JW, Iafrate AJ: Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med 2010;363:1693-1703.
8 Tan et al.: Genomic Alteration in Lung Adenocarcinoma

Cellular Physiology and Biochemistry

DOI: 10.1159/000438644
Published online: February 01, 2016 © 2016 S. Karger AG, Basel www.karger.com/cpb

8 Pao W, Chmielecki J: Rational, biologically based treatment of EGFR-mutant non-small-cell lung cancer. Nat Rev Cancer 2010;10:670-774.
9 Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis K, Sougnez C, Greulich H, Muzny DM, Morgan MB, Fulton L, Fulton RS, Zhang Q, Wendt MC, Lawrence MS, Larson DE, Chen K, Dooling DJ, Sabo A, Hawes AC, Shen H, Jiangiani S, Lewis LR, Hall O, Zhu Y, Mathew T, Ren Y, Yao J, Scherer SE, Clerc K, Metcalf GA. N B, Milosavljevic A, Gonzalez-Garay ML, Osborne JR, Meyer R, Shi X, Tang Y, Koboldt DC, Lin L, Abbott R, Miner TL, Poh C, Fewell G, Haipack C, Schmidt H, Dunford-Shore BH, Kraja A, Croshy SD, Sawyer CS, Vickery T, Sander S, Robinson J, Windkler W, Baldwin J, Chirieac LR, Dutt A, Fennell T, Hanna M, Johnson BE, Onofrio RC, Thomas RK, Tson G, Wei B, Zhao X, Ziaugra L, Zody MC, Giordano T, Orringer MB, Roth JA, Spitz MR, Wistuba II, Ozenberger B, Good PJ, Chang AC, Beer DG, Watson MA, Ladanyi M, Broderick S, Yoshizawa A, Travis WD, Pao W, Province MA, Weinstock GM, Varmus HE, Gabriel SB, Lander ES, Gibbs RA, Meyerson M, Wilson RK: Somatic mutations affect key pathways in lung adenocarcinoma. Nature 2008;455:1069-1075.
10 Kan Z, Jaiswal BS, Stinson J, Janakiramani V, Bhatt D, Stern HM, Yue P, Haverty PM, Bourgon R, Zheng J, Moorhead M, Chaudhuri S, Tomsho LP, Peters BA, Pujara K, Cordes S, Davis DP, Carlton VE, Yuan W, Li L, Wang W, Eigenbrot C, Kaminker JS, Eberhard DA, Waring P, Schuster SC, Modrusan Z, Zhang Z, Stokoe D, de Sauvage FJ, Faham M, Seshagiri S: Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 2010;466:869-873.
11 Sanchez-Cespedes M, Parrella P, Esteller M, Nomoto S, Trink B, Engles JM, Westra WH, Herman JG, Sidransky D: Inactivation of LKB1/STK11 is a common event in adenocarcinomas of the lung. Cancer Res 2002;62:3659-3662.
12 Weir BA, Woo MS, Getz G, Perner S, Ding L, Beroukhim R, Lin WM, Province MA, Kraja A, Johnson LA, Shah K, Sato T, Thomas RK, Barletta JA, Borei BI, Broderick S, Chang AC, Chiang DY, Chirieac LR, Cho J, Fuji Y, Gazdar AF, Giordano T, Greulich H, Hanna M, Johnson BE, Kris MG, Lash A, Lin L, Lindeman N, Mardis ER, McPherson JD, Minna JD, Morgan MB, Nadel M, Orringer MB, Osborne JR, Ozenberger B, Ramos AH, Robinson J, Roth JA, Rusch V, Sasaki H, Shepherd F, Sougnez C, Spitz MR, Tsaos MS, Tomayev D, Verhaak RG, Weinstock GM, Wheeler DA, Winckler W, Yoshizawa A, Yu S, Zakowski MF, Zhang Q, Beer DG, Wistuba II, Watson MA, Garraway LA, Ladanyi M, Travis WD, Pao W, Rubin MA, Gabriel SB, Gibbs RA, Varmus HE, Wilson RK, Lander ES, Meyerson M: Characterizing the cancer genome in lung adenocarcinoma. Nature 2007;450:893-898.
13 Ju YS, Lee WC, Shin JY, Lee S, Bleazard T, Won JK, Kim YT, Kim JJ, Kang JH, Seo JS: A transforming KIF5B and RET gene fusion in lung adenocarcinoma revealed from whole-genome and transcriptome sequencing. Genome Res 2012;22:436-445.
14 Lee W, Jiang Z, Liu J, Haverty PM, Guan Y, Stinson J, Yue P, Zhang Y, Pant KP, Bhatt D, Ha C, Johnson S, Krenneler MI, Mohan S, Nazarenko I, Watanabe C, Sparks AB, Shames DS, Gentleman R, de Sauvage FJ, Stern H, Pandita T, Ballinger DG, Drmacan R, Modrusan Z, Seshagiri S, Zhang Z: The mutation spectrum revealed by paired genome sequences from a lung cancer patient. Nature 2010;465:473-477.
15 Liu P, Morrison C, Wang L, Xiong D, Vedell P, Cui J, Hua X, Lu Y, James M, Ebben JD, Xu H, Adjei AA, Head K, Andrae JW, Tschannen MR, Jacob H, Pan J, Zhang Q, Van den Bergh F, Xiao H, Lo KC, Pelt J, Richmond T, Watt MA, Albert T, Selzer R, Anderson M, Wang J, Wang Y, Starnes S, Yang P, You M: Identification of somatic mutations in non-small cell lung carcinomas using whole-exome sequencing. Carcinogenesis 2012;33:1270-1276.
16 Imielinski M, Berger AH, Hammerman PS, Hernandez B, Pugh TJ, Hodis E, Cho J, Suh J, Capelletti M, Sivachenko A, Sougnez C, Auclair D, Lawrence MS, Stojanov P, Cibulskis K, Choi K, de Waal L, Sharifinia T, Brooks A, Greulich H, Banerjee S, Zander T, Seidel D, Leenders F, Ansen S, Ludwig C, Engel-Riedel W, Stoelben E, Wolf J, Goparju C, Thompson K, Winckler W, Kwisikowski D, Johnson BE, Janne PA, Miller VA, Pao W, Travis WD, Pass HI, Gabriel SB, Lander ES, Thomas RK, Garraway LA, Getz G, Meyerson M: Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell 2012;150:1107-1120.
17 Cahill DP, Kinzler KW, Vogelstein B, Lengauer C: Genetic instability and darwinian selection in tumours. Trends Cell Biol 1999;9:567-570.
18 Nowell PC: The clonal evolution of tumor cell populations. Science 1976;194:23-28.
19 Brosnan JA, Iacobuzio-Donahue CA: A new branch on the tree: next-generation sequencing in the study of cancer evolution. Semin Cell Dev Biol 2012;23:237-242.
20. Satelli A, Li S: Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell Mol Life Sci 2011;68:3033-3046.

21. Sanchez-Palencia A, Gomez-Morales M, Gomez-Capilla JA, Pedraza V, Boyero L, Rosell R, Farre-Vidal ME: Gene expression profiling reveals novel biomarkers in nonsmall cell lung cancer. Int J Cancer 2011;129:355-364.

22. Varambally S, Yu J, Laxman B, Rhodes DR, Mehra R, Tomlins SA, Shah RB, Chandran U, Monzon FA, Beech MJ, Wei JT, Pienta KJ, Ghosh D, Rubin MA, Chinnaiyan AM: Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression. Cancer Cell 2005;8:393-406.

23. Figueroa M, Wouters BJ, Skrabanek L, Glass J, Li Y, Erpelinck-Verschaeren CA, Langerak AW, Lowenberg B, Fazzari M, Greally JM, Valk PJ, Melnick A, Delwel R: Genome-wide epigenetic analysis delineates a biologically distinct immature acute leukemia with myeloid/T-lymphoid features. Blood 2009;113:2795-2804.

24. Nehrl NL, Peterson TA, Park D, Kamm MG: Domain landscapes of somatic mutations in cancer. BMC Genomics 2012;13:59.

25. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown GG, Hall KP, Evers DJ, Barnes CL, Bignell HR, Boulton JM, Bryant J, Carter RJ, Keira Cheetham R, Cox AJ, Ellis DJ, Flatbush MR, Gormley NA, Humphray SJ, Irving LJ, Karbelashvili MS, Kirk SM, Li H, Liu X, Maisinger KS, Murray LJ, Obradovic B, et al.: Accurate whole human genome sequencing using reversible terminator chemistry. Nature 2008;456:53-59.

26. Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, Beare D, Jia M, Shepherd R, Leung K, Menzies A, Teague JW, Campbell PJ, Stratton MR, Futreal PA: COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res 2011;39:D945-950.

27. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, Martinez P, Matthews N, Stewart A, Tarpey P, Varela I, Philpmore B, Begum S, McDonald NQ, Butler A, Jones D, Raine K, Latimer C, Santos CR, Nohadani M, Eklund AC, Spencer-Dene B, Clark G, Pickering L, Stamp G, Gore M, Szallasi Z, Downward J, Futreal PA, Swanton C: Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 2012;366:883-892.

28. Merlo LM, Pepper JW, Reid BJ, Maley CC: Cancer as an evolutionary and ecological process. Nat Rev Cancer 2006;6:924-935.

29. Walter MJ, Shen D, Shao J, Ding L, White BS, Kandoth C, Miller CA, Niu B, McEllan MD, Dees ND, Fulton R, Elliott K, Heath S, Grillot M, Westervelt P, Link DC, DiPersio JF, Mardis E, Ley TJ, Wilson RK, and Graubert TA: Clonal diversity of recurrently mutated genes in myelodysplastic syndromes. Leukemia 2013;27:1275-1282.

30. Walter MJ, Shen D, Ding L, Shao J, Kobohtk DC, Chen K, Larson DE, McEllan MD, Dooling D, Abbott R, Fulton R, Magrini V, Schmidt H, Kaliciki-Weizer J, O’Laughlin M, Fan X, Grillot M, Witowski S, Heath S, Frater JL, Eades W, Tomasson M, Westervelt P, DiPersio JF Link DC, Mardis ER, Ley TJ, Wilson RK, and Graubert TA: Clonal architecture of secondary acute myeloid leukemia. N Engl J Med 2012;366:1090-1098.

31. Ding L, Ley TJ, Larson DE, Miller CA, Koboldt DC, Welch JS, Ritchey JK, Young MA, Lamprecht T, McEllan MD, McMichael JF, Wallis JW, Lu C, Shen D, Harris CC, Dooling DJ, Fulton RS, Fulton LL, Chen K, Schmidt H, Kaliciki-Weizer J, Magrini VJ, Cook L, McGrath SD, Vickery TL, Wendt MC, Heath S, Watson MA, Link DC, Tomasson MH, Shannon WD, Payton JE, Kulkarni S, Westervelt P, Walter MJ, Graubert TA, Mardis ER, Wilson RK, DiPersio JF: Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 2012;481:506-510.

32. Jan M, Snyder TM, Corces-Zimmerman MR, Wyas P, Weissman IL, Quake SR, Majeti R: Clonal evolution of preleukemic hematopoietic stem cells precedes human acute myeloid leukemia. Sci Transl Med 2012;4:149ra118.
Tan et al.: Genomic Alteration in Lung Adenocarcinoma

Cellular Physiology and Biochemistry

© 2016 S. Karger AG, Basel
www.karger.com/cpb

485

DOI: 10.1159/000438644
Published online: February 01, 2016

CJ, Wasserman WW, Jones S, Huntsman D, Hirst M, Caldas C, Marra MA, and Aparicio S: The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature 2012;486:395-399.

Dijkstra AE, Postma DS, van Ginneken B, Wielopitz MO, Schmidt M, Becker N, Owsiwietzch M, Kauczor HU, de Koning HJ, Lammers JW, Oudkerk M, Brandsma CA, Bosse Y, Nickle DC, Sin DD, Hiemstra PS, Wijmenga C, Smolonska J, Zanen P, Yonk JM, van den Berge M, Boezen HM, Groen HJ: Novel genes for airway wall thickness identified with combined genome-wide association and expression analyses. Am J Respir Crit Care Med 2015;191:547-556.

Berger ME, Hodis E, Heffernan TP, Deribe YL, Lawrence MS, Protopopov A, Ivanova E, Watson IR, Nickerson E, Ghosh P, Zhang H, Zeid R, Ren X, Cibulskis K, Sivachenko AV, Wagle N, Sucker A, Sougnez C, Onofrio R, Ambrogi L, Auclair D, Fennell T, Carter SL, Drier Y, Stojanov P, Singer MA, Voet D, Jing R, Saksena G, Barretina J, Ramos AH, Pugh TJ, Stranks N, Parkin M, Winckler W, Mahan S, Ardlie K, Baldwin J, Wargo J, Schadendorf D, Meyerson M, Gabriel SB, Golub TR, Wagner SN, Lander ES, Getz G, Chin L, Garraway LA: Melanoma genome sequencing reveals frequent PREX2 mutations. Nature 2012;485:502-506.

Cancer Genome Atlas N: Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012;487:330-337.

Parsons DW, Li M, Zhang X, Jones S, Leary RJ, Lin JC, Boca SM, Carter H, Samayoa J, Bettegowda C, Gallia GL, Jallo GI, Binder ZA, Nikolsky Y, Hartigan J, Smith DR, Gerhard DS, Fults DW, VandenBerg S, Berger MS, Marie SK, Shinjo SM, Clara C, Phillips PC, Minturn JE, Biegel JA, Judkins AR, Resnick AC, Storm PB, Curran T, He Y, Rasheed BA, Friedman HS, Keir ST, McLendon R, Northcott PA, Taylor MD, Berger PC, Riggins GJ, Karchin R, Parmigiani G, Bigner DD, Yan H, Papadopoulos N, Vogelstein B, Kinzler KW, Velculescu VE: The genetic landscape of the childhood cancer medulloblastoma. Science 2011;331:435-439.

Stransky N, Egloff AM, Tward AD, Kostic AD, Cibulskis K, Sivachenko A, Kryukov GV, Lawrence MS, Sougnez C, McKenna A, Sheller E, Ramos AH, Stojanov P, Carter SL, Voet D, Cortes ML, Auclair D, Berger MF, Saksena G, Guiducci C, Onofrio RC, Parkin M, Romkes M, Weissfeld JL, Seethala RR, Wang L, Rangel-Escareno C, Fernandez-Lopez J, Hidalgo-Miranda A, Melendez-Zaigla J, Winckler W, Ardlie K, Gabriel SB, Meyerson M, Lander ES, Getz G, Golub TR, Garraway LA, Grandis JR: The mutational landscape of head and neck squamous cell carcinoma. Science 2011;333:1157-1160.

Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL, Olivi A, McLendon R, Rasheed BA, Keir S, Nikolskaya T, Nikolsky Y, Busam DA, Tekleab H, Diaz LA, Jr, Hartigan J, Smith DR, Strausberg RL, Marie SK, Shinjo SM, Yan H, Riggins GJ, Bigner DD, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE, Kinzler KW: An integrated genomic analysis of human glioblastoma multiforme. Science 2008;321:1807-1812.

Jones SJ, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Kamiyama H, Jimeno A, Hong SM, Fu B, Lin MT, Calhoun ES, Kamiyama M, Walter K, Nikolskaya T, Nikolsky Y, Hartigan J, Smith DR, Hidalgo M, Leach SD, Klein AP, Jaffee EM, Goggins M, Maitra A, Iacobuzio-Donahue C, Eshleman JR, Kern SE, Hruban RH, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE, Kinzler KW: Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 2008;321:1801-1806.

Mitra AK, Kirstein MN, Khatri A, Skubitz KM, Dudek AZ, Greeno EW, Kratzke RA, Lamba JK: Pathway-based pharmacogenomics of gemcitabine pharmacokinetics in patients with solid tumors. Pharmacogenomics 2012;13:1009-1021.

Soo RA, Wang LZ, Ng SS, Chong PY, Yong WP, Lee SC, Liu JJ, Choo TB, Tham LS, Lee HS, Goh BC, Soong R: Distribution of gemcitabine pathway genotypes in ethnic Asians and their association with outcome in non-small cell lung cancer patients. Lung Cancer 2009;63:121-127.

Galmarmi CM, Crox E, Thomas X, Jordheim L, Dumontet C: The prognostic value of c-N-II and c-N-III enzymes in adult acute myeloid leukaemia. Haematologica 2005;90:1699-1701.

Li L, Fridley B, Kalari K, Jenkins G, Batzler A, Salgren S, Hildebrandt M, Ames M, Schaid D, Wang L: Gemcitabine and cytosine arabinoside cytotoxicity: association with lymphoblastoid cell expression. Cancer Res 2008;68:7050-7058.

Erculj N, Kovac V, Hmeljak J, Franko A, Dodic-Filfak M, Dolzan V: The influence of gemcitabine pathway polymorphisms on treatment outcome in patients with malignant mesothelioma. Pharmacogenet Genomics 2012;22:58-68.
Tan et al.: Genomic Alteration in Lung Adenocarcinoma

Cellular Physiology and Biochemistry 2016;38:469-486

DOI: 10.1159/000438644
Published online: February 01, 2016
© 2016 S. Karger AG, Basel
www.karger.com/cpb

46 Whirl-Carrillo M, McDonagh EM, Hebert JM, Gong L, Sangkuhl K, Thorn CF, Altman RB, Klein TE: Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther 2012;92:414-417.

47 Hodis E, Watson IR, Kryukov GV, Arslan ST, Inielnski M, Theurillat JP, Nickerson E, Auclair D, Li L, Place C, Dicara D, Ramos AH, Lawrence MS, Cibulskis K, Sivachenko A, Voet D, Saksena G, Stransky N, Onofrio RC, Wincler W, Ardile K, Wagle N, Wargo J, Chong K, Morton DL, Stemke-Hale K, Chen G, Noble M, Meyerson M, Ladbury JE, Davies MA, Gershwenwald JE, Wagner SN, Hoon DS, Schadendorf D, Landers ES, Gabriel SB, Getz G, Garraway LA, Chin L: A landscape of driver mutations in melanoma. Cell 2012;150:251-263.

48 Lindberg J, Mills IG, Kleevreng D, Liu W, Neiman M, Xu J, Wijkstra P, Wiklund P, Wiklund F, Egevad L, Gronberg H: The mitochondrial and autosomal mutation landscapes of prostate cancer. Eur Urol 2013;63:702-708.

49 Le Gallo M, O’Hara AJ, Rudd ML, Urick ME, Hansen NF, O’Neil NJ, Price JC, Zhang S, England BM, Godwin AK, Sgroi DC, Program NIHISCSCS, Hieter P, Mullikin JC, Merino MJ, Bell DW: Exome sequencing of serous endometrial tumors identifies recurrent somatic mutations in chromatin-remodeling and ubiquitin ligase complex genes. Nat Genet 2012;44:1310-1315.

50 Pugh Tj, Weeraratne SD, Archer TC, Pomeranz Krummel DA, Auclair D, Bochicchio J, Carneiro MO, Carter SL, Cibulskis K, ErlIch RL, Greulich H, Lawrence MS, Lemon NJ, McKenna J, Meldrim J, Ramos AH, Ross MG, Russ C, Sheller E, Sivachenko A, Sogoloff B, Stojanov P, Tamayo P, Mesirov JP, Amani V, Teider N, Sengupta S, Francois JP, Northcott PA, Taylor MD, Yu F, Crabtree GR, Kautzmann AG, Gabriel SB, Getz G, Jager N, Jones DT, Lichten P, Pfister SM, Roberts TM, Meyerson M, Pomeroy SL, Cho YJ: MeDulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature 2012;488:106-110.

51 Chen Z, Liu F, Ren Q, Zhao Q, Ren H, Lu S, Zhang L, Han Z: Hemangiopoeitin promotes endothelial cell proliferation through PI-3K/Akt pathway. Cell Physiol Biochem 2008;22:307-314.

52 Schor SL, Schor AM, Rushton G: Fibroblasts from cancer patients display a mixture of both foetal and adult phenotypic characteristics. J Cell Sci 1988;90:401-407.

53 Schor SL, Schor AM, Grey AM, Rushton G: Foetal and cancer patient fibroblasts produce an autocrine migration-stimulating factor not made by normal adult cells. J Cell Sci 1988;90:391-399.

54 Hu H, Ran Y, Zhang Y, Zhou Z, Harris SJ, Yu L, Sun L, Pan J, Liu J, Lou J, Yang Z: Antibody library-based tumor endothelial cells surface proteomic functional screen reveals migration-stimulating factor as an anti-angiogenic target. Mol Cell Proteomics 2009;8:816-826.

55 Solinas G, Schiarea S, Liguori M, Fabbrì M, Pesce S, Zammataro L, Pasqualini F, Nebuloni M, Chiabrando C, Mantovani A, Allavena P: Tumor-conditioned macrophages secrete migration-stimulating factor: a new marker for M2-polarization, influencing tumor cell motility. J Immunol 2010;185:642-652.

56 Katoh M, Katoh M: Human FOX gene family (Review). Int J Oncol 2004;25:1495-1500.

57 Yanagisawa K, Uchida K, Nagatake M, Masuda A, Sugiyama M, Saito T, Yamaki K, Takahashi T, Osada H: Heterogeneities in the biological and biochemical functions of Smad2 and Smad4 mutants naturally occurring in human lung cancers. Oncogene 2000;19:2305-2311.

58 Ryuge S, Sato Y, Wang QQ, Matsumoto T, Jiang SX, Katono K, Inoue H, Sato Y, Masuda N: Prognostic significance of nestin expression in resected non-small cell lung cancer. Chest 2011;139:862-869.

59 Kleeberger W, Bova GS, Nienke ME, Herawi M, Chuang AY, Epstein JJ, Berman DF: Roles for the stem cell associated intermediate filament Nestin in prostate cancer migration and metastasis. Cancer Res 2007;67:9199-9206.

60 Su HT, Weng CC, Hsiao PJ, Chen LH, Kuo TL, Chen YW, Kuo KK, Cheng KH: Stem cell marker nestin is critical for TGF-beta1-mediated tumor progression in prostate cancer. Mol Cancer Res 2013;11:768-779.

61 Mackinder MA, Evans CA, Chowdry J, Staton CA, Corfe BM: Alteration in composition of keratin intermediate filaments in a model of breast cancer progression and the potential to reverse hallmarks of metastasis. Cancer Biomark 2012;12:49-64.

62 Regnauld K, Nguyen QD, Vakaet L, Bruyneel E, Launay JM, Endo T, Mareel M, Gespach C, Emami S: G-protein alpha(olf) subunit promotes cellular invasion, survival, and neuroendocrine differentiation in digestive and urogenital epithelial cells. Oncogene 2002;21:4020-4031.