On obtaining the convex hull of quadratic inequalities via aggregations

Santanu Dey\(^1\), Gonzalo Muñoz\(^2\) and Felipe Serrano\(^3\)

DANniversary - MIP 2022

\(^1\)Georgia Tech, USA

\(^2\)Universidad de O'Higgins, Chile

\(^3\)I\(^2\)DAMO GmbH, Germany
Context
Quadratically Constrained Quadratic Program

QCQP

Quadratic objective, quadratic constraints:

\[
\begin{align*}
\min & \quad x^T Q_0 x + b_0^T x \\
\text{s.t.} & \quad x^T Q_i x + b_i^T x \leq d_i \quad \forall i \in [m]
\end{align*}
\]
Quadratically Constrained Quadratic Program

QCQP
May be equivalently written as:

\[
\begin{align*}
& \text{min } c^T x \\
& \text{s.t. } x^T Q_i x + b_i^T x \leq d_i \; \forall i \in [m]
\end{align*}
\]
QCQP
May be equivalently written as:

\[
\begin{align*}
\text{min} & \quad c^\top x \\
\text{s.t.} & \quad x^\top Q_i x + b_i^\top x \leq d_i \quad \forall i \in [m]
\end{align*}
\]

• Thus, we care about

\[
\text{conv} \{ x \mid x^\top Q_i x + b_i^\top x \leq d_i \quad \forall i \in [m] \}
\]
Quadratically Constrained Quadratic Program

QCQP
May be equivalently written as:

\[
\begin{align*}
\min & \quad c^\top x \\
\text{s.t.} & \quad x^\top Q_i x + b_i^\top x \leq d_i \quad \forall i \in [m]
\end{align*}
\]

- Thus, we care about
 \[
 \text{conv} \left\{ x \mid x^\top Q_i x + b_i^\top x \leq d_i \quad \forall i \in [m] \right\}
 \]
- Challenging to compute! So we can consider “partial” convexifications
Two-row relaxations

- Single rows are not really useful to convexify.
Two-row relaxations

- Single rows are **not really useful to convexify**.
- We can select **two rows** and try to find the convex hull of their intersection:

\[C_2 = \{ x \in \mathbb{R}^n \mid x^T Q_i x + b_i^T x \leq d_i \quad \forall i \in [2] \} \]
Two-row relaxations

- Single rows are **not really useful to convexify**.
- We can select **two rows** and try to find the convex hull of their intersection:

\[C_2 = \{ x \in \mathbb{R}^n \mid x^\top Q_i x + b_i^\top x \leq d_i \ \forall i \in [2] \} \]

- For some technical reasons, we consider the “open version” of the above set:

\[O_2 = \{ x \in \mathbb{R}^n \mid x^\top Q_i x + b_i^\top x < d_i \ \forall i \in [2] \} \]
Two-row relaxations

• Single rows are **not really useful to convexify**.

• We can select **two rows** and try to find the convex hull of their intersection:

\[
\mathcal{C}_2 = \{ x \in \mathbb{R}^n \mid x^\top Q_i x + b_i^\top x \leq d_i \ \forall i \in [2] \}
\]

• For some technical reasons, we consider the “open version” of the above set:

\[
\mathcal{O}_2 = \{ x \in \mathbb{R}^n \mid x^\top Q_i x + b_i^\top x < d_i \ \forall i \in [2] \}
\]

• It turns out the convex hull of \(\mathcal{O}_2 \) is well understood!
Let’s first talk about aggregations

Given \(\lambda \in \mathbb{R}^m \) and

\[
S := \{ x \mid x^T Q_i x + b_i^T x < d_i \ \forall i \in [m] \},
\]

is a relaxation of \(S \). We are multiplying \(i \)-th constraint by \(\lambda_i \) and then adding them together.
Let’s first talk about aggregations

Given $\lambda \in \mathbb{R}_+^m$ and

$$S := \{ x \mid x^\top Q_i x + b_i^\top x < d_i \; \forall i \in [m] \},$$

$$S^\lambda := \left\{ x \mid x^\top \left(\sum_{i=1}^{m} \lambda_i Q_i \right) x + \left(\sum_{i=1}^{m} \lambda_i b_i \right)_x < \left(\sum_{i=1}^{m} \lambda_i d_i \right) \; \forall i \in [m] \right\}$$

is a relaxation of S.

We are multiplying i^{th} constraint by λ_i and then adding them together.
Convex hull of O_2

$$O_2 = \left\{ x \in \mathbb{R}^n \middle| x^T Q_i x + b_i^T x < d_i \, \forall i \in [2] \right\}$$
Convex hull of O_2

$$O_2 = \left\{ x \in \mathbb{R}^n \mid x^T Q_i x + b_i^T x < d_i \; \forall i \in [2] \right\}$$

Theorem (Yildiran (2009))

Given a set O_2, such that $\text{conv} \left(O_2 \right) \neq \mathbb{R}^n$, there exists $\lambda_1, \lambda_2 \in \mathbb{R}_+^2$ such that:

$$\text{conv} \left(O_2 \right) = (O_2)_{\lambda_1} \cap (O_2)_{\lambda_2}.$$
Convex hull of \mathcal{O}_2

\[
\mathcal{O}_2 = \left\{ x \in \mathbb{R}^n \mid x^T Q_i x + b_i^T x < d_i \, \forall i \in [2] \right\}
\]

Theorem (Yildiran (2009))

Given a set \mathcal{O}_2, such that $\text{conv}(\mathcal{O}_2) \neq \mathbb{R}^n$, there exists $\lambda_1, \lambda_2 \in \mathbb{R}_+^2$ such that:

\[
\text{conv}(\mathcal{O}_2) = (\mathcal{O}_2)^{\lambda_1} \cap (\mathcal{O}_2)^{\lambda_2}.
\]

- Yildiran (2009) also gives an algorithm to compute λ_1 and λ_2.
- The quadratic constraints in $(\mathcal{O}_2)^{\lambda_i} \, i \in \{1, 2\}$ have very nice properties:
 - $\sum_{j=1}^{2} \lambda_j^i Q_j$ has at most one negative eigenvalue for both $i \in \{1, 2\}$.
Convex hull of \mathcal{O}_2

$$\mathcal{O}_2 = \left\{ x \in \mathbb{R}^n \left| x^T Q_i x + b_i^T x < d_i \quad \forall i \in [2] \right. \right\}$$

Theorem (Yildiran (2009))

Given a set \mathcal{O}_2, such that $\text{conv}(\mathcal{O}_2) \neq \mathbb{R}^n$, there exists $\lambda^1, \lambda^2 \in \mathbb{R}^2_+$ such that:

$$\text{conv}(\mathcal{O}_2) = (\mathcal{O}_2)^{\lambda^1} \cap (\mathcal{O}_2)^{\lambda^2}.$$

- Yildiran (2009) also gives an algorithm to compute λ_1 and λ_2.
- The quadratic constraints in $(\mathcal{O}_2)^{\lambda^i}$ $i \in \{1, 2\}$ have very nice properties:
 - $\sum_{j=1}^2 \lambda_j^i Q_j$ has at most one negative eigenvalue for both $i \in \{1, 2\}$
 - Basically, the sets $(\mathcal{O}_2)^{\lambda^i}$ $i \in \{1, 2\}$ are either ellipsoids or hyperboloids (union of two convex sets).
Convex hull of O_2

$$O_2 = \left\{ x \in \mathbb{R}^n \mid x^\top Q_i x + b_i^\top x < d_i \; \forall i \in [2] \right\}$$

Theorem (Yildiran (2009))

Given a set O_2, such that $\text{conv} \left(O_2 \right) \neq \mathbb{R}^n$, there exists $\lambda_1, \lambda_2 \in \mathbb{R}_+^2$ such that:

$$\text{conv} \left(O_2 \right) = \left(O_2 \right)^{\lambda_1} \cap \left(O_2 \right)^{\lambda_2}.$$

- Yildiran (2009) also gives an algorithm to compute λ_1 and λ_2.
- The quadratic constraints in $\left(O_2 \right)^{\lambda_i} \; i \in \{1, 2\}$ have very nice properties:
 - $\sum_{j=1}^{2} \lambda_j^i Q_j$ has at most one negative eigenvalue for both $i \in \{1, 2\}$
 - Basically, the sets $\left(O_2 \right)^{\lambda_i} \; i \in \{1, 2\}$ are either *ellipsoids* or *hyperboloids* (union of two convex sets).
 - Henceforth, we call a quadratic constraint with the “quadratic part” having at most one negative eigenvalue a *good constraint.*
Example

\[S := \left\{ x, y \ \bigg| \begin{array}{c} -xy < -1 \\ x^2 + y^2 < 9 \end{array} \right\} \]
Example

conv(S) := \{ x, y \mid (x - y)^2 < 7, x^2 + y^2 < 9 \}
Example

\[
S := \left\{x, y \mid -xy < -1, x^2 + y^2 < 9\right\}
\]

\[
\text{conv}(S) := \left\{x, y \mid (x - y)^2 < 7, x^2 + y^2 < 9\right\}
\]

With the blue quadratic coming from \(\lambda^1 = (2, 1)\)

\[
\begin{align*}
-xy &< -1 \cdot 2 \\
+ x^2 + y^2 &< 9 \cdot 1
\end{align*}
\]
Example

\[S := \left\{ x, y \mid \begin{array}{c} -xy < -1 \\ x^2 + y^2 < 9 \end{array} \right\} \]

\[\text{conv}(S) := \left\{ x, y \mid \begin{array}{c} (x - y)^2 < 7 \\ x^2 + y^2 < 9 \end{array} \right\} \]

With the blue quadratic coming from \(\lambda^1 = (2, 1) \)

\[-xy < -1 \cdot 2 + x^2 + y^2 < 9 \cdot 1 \]

\[x^2 - 2xy + y^2 < 7 \equiv (x - y)^2 < 7 \]
Literature survey

Related results:

- [Yildiran (2009)]
- [Burer and Kılınc-Karzan (2017)] (second order cone intersected with a nonconvex quadratic)
- [Modaresi and Vielma (2017)] (closed version of results)
Related results:

- [Yildiran (2009)]
- [Burer and Kılınç-Karzan (2017)] (second order cone intersected with a nonconvex quadratic)
- [Modaresi and Vielma (2017)] (closed version of results)

Other related papers:

- [Tawarmalani, Richard, Chung (2010)] (covering bilinear knapsack)
- [Santana and Dey (2020)] (polytope and one quadratic constraint)
- [Ye and Zhang (2003)], [Burer and Anstreicher (2013)], [Bienstock (2014)]
 [Burer (2015)], [Burer and Yang (2015)], [Anstreicher (2017)] (extended trust-region problem)
- [Burer and Ye (2019)], [Wang and Kılınç-Karzan (2020, 2021)], [Argue, Kılınç-Karzan, and Wang (2020)] (general conditions for the SDP relaxation being tight)
- [Bienstock, Chen, and Muñoz (2020)], [Muñoz and Serrano (2020)] (cuts for QCQP using intersection cuts approach)
- ...
The question we consider...

We want to understand the power of aggregations for $m \geq 3$
The question we consider...

We want to understand the power of aggregations for $m \geq 3$

Main contribution
Under some technical conditions, intersection of aggregations yield the convex hull for three quadratic constraints.
We want to understand the power of aggregations for \(m \geq 3 \).

Main contribution
Under some technical conditions, intersection of aggregations yield the convex hull for three quadratic constraints.

Additional contribution
The above result represents the limit of aggregations.
We want to understand the power of aggregations for \(m \geq 3 \).

Main contribution
Under some technical conditions, intersection of aggregations yield the convex hull for three quadratic constraints.

Additional contribution
The above result represents the limit of aggregations. Basically, aggregations \(\not\to \) convex hull if the technical sufficient condition does not hold for \(m = 3 \) or when \(m \geq 4 \).
Main results
Theorem

Let $n \geq 3$ and

$$
O_3 = \left\{ x \in \mathbb{R}^n \mid [x \quad 1] \begin{bmatrix} A_i & b_i & c_i \\ b_i^T & c_i & 1 \end{bmatrix} [x] < 0, \ i \in [3] \right\}.
$$
Three rows: main result

Theorem

Let \(n \geq 3 \) and

\[
O_3 = \left\{ x \in \mathbb{R}^n \mid [x \ 1] \begin{bmatrix} A_i & b_i \\ b_i^\top & c_i \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix} < 0, \ i \in [3] \right\}.
\]

Assume

- (PDLC) There exists \(\theta \in \mathbb{R}^3 \) such that \(\sum_{i=1}^{3} \theta_i \begin{bmatrix} A_i & b_i \\ b_i^\top & c_i \end{bmatrix} \succ 0. \)

- (Non-trivial convex hull) \(\text{conv}(O_3) \neq \mathbb{R}^n. \)
Theorem

Let $n \geq 3$ and

$$
\mathcal{O}_3 = \left\{ x \in \mathbb{R}^n \mid [x \ 1] \begin{bmatrix} A_i & b_i \\ b_i^T & c_i \end{bmatrix} [x \ 1] < 0, \ i \in [3] \right\}.
$$

Assume

- *(PDLC)* There exists $\theta \in \mathbb{R}^3$ such that $\sum_{i=1}^{3} \theta_i \begin{bmatrix} A_i & b_i \\ b_i^T & c_i \end{bmatrix} \succ 0$.

- *(Non-trivial convex hull)* $\text{conv}(\mathcal{O}_3) \neq \mathbb{R}^n$.

Let $\Omega := \left\{ \lambda \in \mathbb{R}_+^3 \mid \mathcal{O}_3^\lambda \supset \text{conv}(\mathcal{O}_3) \text{ and } (\mathcal{O}_3)^\lambda \text{ is good} \right\}$,
Theorem

Let $n \geq 3$ and

$$\mathcal{O}_3 = \left\{ x \in \mathbb{R}^n \mid [x \ 1] \begin{bmatrix} A_i & b_i \\ b_i^T & c_i \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix} < 0, \ i \in [3] \right\}.$$

Assume

- (PDLC) There exists $\theta \in \mathbb{R}^3$ such that $\sum_{i=1}^{3} \theta_i \begin{bmatrix} A_i & b_i \\ b_i^T & c_i \end{bmatrix} \succ 0$.
- (Non-trivial convex hull) $\text{conv}(\mathcal{O}_3) \neq \mathbb{R}^n$.

Let $\Omega := \left\{ \lambda \in \mathbb{R}_+^3 \mid (\mathcal{O}_3)^\lambda \supseteq \text{conv}(\mathcal{O}_3) \text{ and } (\mathcal{O}_3)^\lambda \text{ is good} \right\}$, then

$$\text{conv}(\mathcal{O}_3) = \bigcap_{\lambda \in \Omega} (\mathcal{O}_3)^\lambda.$$
Example

\[S := \left\{ (x, y, z) \mid \begin{array}{c} x^2 + y^2 < 2 \\ -x^2 - y^2 < -1 \\ -x^2 + y^2 + z^2 + 6x < 0 \end{array} \right\} \]
Example

\[S := \left\{ (x, y, z) \mid \begin{array}{l} x^2 + y^2 < 2 \\ -x^2 - y^2 < -1 \\ -x^2 + y^2 + z^2 + 6x < 0 \end{array} \right\} \]

\[\text{conv}(S) := \left\{ (x, y, z) \mid \begin{array}{l} x^2 + y^2 < 2 \\ -2x^2 + z^2 + 6x < -1 \\ -x^2 + y^2 + z^2 + 6x < 0 \end{array} \right\} \]
Comparsion of results

Two quadratic constraints	Three quadratic constraints
Yildiran (2009)	This talk
Comparsion of results

	Two quadratic constraints	Three quadratic constraints
Yildiran (2009)	conv(S) $\neq \mathbb{R}^n$	PDLC condition, conv(S) $\neq \mathbb{R}^n$
This talk		
When does it hold?	conv(S) $\neq \mathbb{R}^n$	
Comparison of results

	Two quadratic constraints	Three quadratic constraints
When does it hold?	$\text{conv}(S) \neq \mathbb{R}^n$	PDLC condition, $\text{conv}(S) \neq \mathbb{R}^n$
How many aggregated inequalities needed?	2	∞ (Conjecture!)

- **Yildiran (2009)**
- **This talk**

Note: PDLC stands for Pseudo-Dual Linear Condition.
Comparison of results

	Two quadratic constraints	Three quadratic constraints
Author	Yildiran (2009)	This talk
When does it hold?	$\text{conv}(S) \neq \mathbb{R}^n$	$\text{PDLC condition, conv}(S) \neq \mathbb{R}^n$
How many aggregated inequalities needed?	2	∞ (Conjecture!)
Structure of aggregated inequalities	Polynomial-time algorithm exists to find them	Even checking if $\lambda \in \Omega$ is not clear.
Theorem

Let $n \geq 3$ and let

$$C_3 = \left\{ x \in \mathbb{R}^n \ \mid \begin{bmatrix} x & 1 \end{bmatrix} \begin{bmatrix} A_i & b_i \nosep 1
\end{bmatrix} \begin{bmatrix} x
\n1 \end{bmatrix} \leq 0, \ i \in [3] \right\}.$$
The closed case

Theorem

Let $n \geq 3$ and let

$$C_3 = \left\{ x \in \mathbb{R}^n \mid [x \ 1] \begin{bmatrix} A_i & b_i \\ b_i^T & c_i \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix} \leq 0, \ i \in [3] \right\}.$$

Assume

- *(PDLC)* There exists $\theta \in \mathbb{R}^3$ such that $\sum_{i=1}^{3} \theta_i \begin{bmatrix} A_i & b_i \\ b_i^T & c_i \end{bmatrix} \succ 0.$

- *(Non-trivial convex hull)* $\text{conv}(C_3) \neq \mathbb{R}^n.$
The closed case

Theorem

Let $n \geq 3$ and let

$$C_3 = \left\{ x \in \mathbb{R}^n \mid \begin{bmatrix} x & 1 \end{bmatrix} \begin{bmatrix} A_i & b_i \\ b_i^T & c_i \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix} \leq 0, \; i \in [3] \right\}.$$

Assume

- **(PDLC)** There exists $\theta \in \mathbb{R}^3$ such that $\sum_{i=1}^{3} \theta_i \begin{bmatrix} A_i \\ b_i^T \\ c_i \end{bmatrix} \succ 0$.

- **(Non-trivial convex hull)** $\text{conv}(C_3) \neq \mathbb{R}^n$.

- **(No low-dimensional components)** $C_3 \subseteq \text{int}(C_3)$.

Let $\Omega := \left\{ \lambda \in \mathbb{R}^3_+ \mid (C_3)^\lambda \supseteq \text{conv}(C_3) \text{ and } (C_3)^\lambda \text{ is good} \right\}$,
The closed case

Theorem

Let $n \geq 3$ and let

$$C_3 = \left\{ x \in \mathbb{R}^n \left| \begin{bmatrix} A_i & b_i \\ b_i^T & c_i \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix} \leq 0, \ i \in [3] \right\}.$$

Assume

- (PDLC) There exists $\theta \in \mathbb{R}^3$ such that $\sum_{i=1}^{3} \theta_i \begin{bmatrix} A_i \\ b_i^T \\ c_i \end{bmatrix} \succ 0$.

- (Non-trivial convex hull) $\text{conv}(C_3) \neq \mathbb{R}^n$.

- (No low-dimensional components) $C_3 \subseteq \text{int}(C_3)$.

Let $\Omega := \left\{ \lambda \in \mathbb{R}_+^3 \mid (C_3)^\lambda \supseteq \text{conv}(C_3) \text{ and } (C_3)^\lambda \text{ is good} \right\}$, then

$$\overline{\text{conv}(C_3)} = \bigcap_{\lambda \in \Omega} (C_3)^\lambda.$$
Counterexamples
$m = 3$ but not satisfying PDLC condition

\[S := \left\{ (x, y, z) \mid \begin{array}{c} x^2 < 1 \\ y^2 < 1 \\ -xy + z^2 < 0 \end{array} \right\} \]

- PDLC condition does not hold,
 \(\text{conv}(S) \neq \mathbb{R}^3 \)
$m = 3$ but not satisfying PDLC condition

\[S := \{ (x, y, z) \mid \begin{array}{c} x^2 < 1 \\ y^2 < 1 \\ -xy + z^2 < 0 \end{array} \} \]

- PDLC condition does not hold,
 \[\text{conv}(S) \neq \mathbb{R}^3 \]

\[\text{conv}(S) \neq \bigcap_{\lambda \in \Omega} S^\lambda \]
$m = 4$ and satisfying PDLC

$S := \left\{ (x, y, z) \right\} \middle| \begin{array}{l}
x^2 + y^2 + z^2 + 2.2(xy + yz + xz) < 1 \\
-2.1x^2 + y^2 + z^2 < 0 \\
x^2 - 2.1y^2 + z^2 < 0 \\
x^2 + y^2 - 2.1z^2 < 0
\end{array}$

- PDLC condition holds, $\text{conv}(S) \neq \mathbb{R}^3$
\(m = 4 \) and satisfying PDLC

\[
S := \left\{ (x, y, z) \mid \begin{array}{l}
 x^2 + y^2 + z^2 + 2.2(xy + yz + xz) < 1 \\
 -2.1x^2 + y^2 + z^2 < 0 \\
 x^2 - 2.1y^2 + z^2 < 0 \\
 x^2 + y^2 - 2.1z^2 < 0
\end{array} \right\}
\]

- PDLC condition holds, \(\text{conv}(S) \neq \mathbb{R}^3 \)

\[
\text{conv}(S) \neq \bigcap_{\lambda \in \Omega} S^\lambda
\]
Do we need a finite number of aggregations?

A non-counterexample:

\[S := \{ x, y \mid x^2 \leq 1, \ y^2 \leq 1, \ (x - 1)^2 + (y - 1)^2 \geq 1 \}, \]

\[\Omega^+ := \{ \lambda \in \mathbb{R}^3_+ \mid S^\lambda \supseteq \text{conv}(S) \} \]
Do we need a finite number of aggregations?

A non-counterexample:

\[S := \{ x, y \mid x^2 \leq 1, \ y^2 \leq 1, \ (x - 1)^2 + (y - 1)^2 \geq 1 \} , \]

- Let \(\Omega^+ := \{ \lambda \in \mathbb{R}^3_+ \mid S^\lambda \supseteq \text{conv}(S) \} \)
- \(\text{conv}(S) = \bigcap_{\lambda \in \Omega^+} S^\lambda \).
- \(\text{conv}(S) \not\subseteq \bigcap_{\lambda \in \tilde{\Omega}^+} S^\lambda \) for any \(\tilde{\Omega}^+ \subseteq \Omega^+ \) which is finite.
A non-counterexample:

\[S := \{ x, y \mid x^2 \leq 1, \ y^2 \leq 1, \ (x - 1)^2 + (y - 1)^2 \geq 1 \} , \]

- Let \(\Omega^+ := \{ \lambda \in \mathbb{R}_+^3 \mid S^\lambda \supseteq \text{conv}(S) \} \)
- \(\text{conv}(S) = \bigcap_{\lambda \in \Omega^+} S^\lambda . \)
- \(\text{conv}(S) \subsetneq \bigcap_{\lambda \in \check{\Omega}^+} S^\lambda \) for any \(\check{\Omega}^+ \subseteq \Omega^+ \) which is finite.

But PDLC does not hold!
Main proof outline
A new S-Lemma for 3 quadratic constraints

Lemma

Let \(n \geq 3 \) and let \(g_1, g_2, g_3 : \mathbb{R}^n \to \mathbb{R} \) be homogeneous quadratic functions:

\[
g_i(x) = x^\top Q_i x.
\]

Assuming there is a linear combination of \(Q_1, Q_2, Q_3 \) that is positive definite, the following equivalence holds

\[
\{ x \in \mathbb{R}^n : g_i(x) < 0, \ i \in [3] \} = \emptyset \iff \exists \lambda \in \mathbb{R}_+^3 \setminus \{0\}, \ \sum_{i=1}^{3} \lambda_i Q_i \succeq 0.
\]
$\text{conv}(S) = \bigcap_{\lambda \in \Omega} S^\lambda$ proof idea

$\text{conv}(S) \subseteq \bigcap_{\lambda \in \Omega} S^\lambda$ is straight-forward
conv(S) = \bigcap_{\lambda \in \Omega} S^\lambda \quad \text{proof idea}

conv(S) \subseteq \bigcap_{\lambda \in \Omega} S^\lambda \quad \text{is straight-forward}

conv(S) \supseteq \bigcap_{\lambda \in \Omega} S^\lambda:
\(\text{conv}(S) = \bigcap_{\lambda \in \Omega} S^\lambda \) proof idea

\(\text{conv}(S) \subseteq \bigcap_{\lambda \in \Omega} S^\lambda \) is straight-forward

\(\text{conv}(S) \supseteq \bigcap_{\lambda \in \Omega} S^\lambda \):

- Pick \(x^* \in \mathbb{R}^n \) such that \(x^* \notin \text{conv}(S) \). We want to show that is lies outside some aggregation
Conv(S) = \bigcap_{\lambda \in \Omega} S^\lambda \text{ proof idea}

Conv(S) \subseteq \bigcap_{\lambda \in \Omega} S^\lambda \text{ is straight-forward}

Conv(S) \supseteq \bigcap_{\lambda \in \Omega} S^\lambda:

- Pick \(x^* \in \mathbb{R}^n \) such that \(x^* \notin \text{conv}(S) \). We want to show that is lies outside some aggregation
- Separation theorem \(\Rightarrow \) there exists \(\alpha^T x < \beta \) valid for conv(S) that separates \(x^* \).
$\text{conv}(S) = \bigcap_{\lambda \in \Omega} S^\lambda$ proof idea

- **(Homogenization)** The above can be shown to imply: $\{x | \alpha^T x = \beta x_{n+1}\}$ (call it H) does not intersect homogenization of S:

$$H \cap \left\{ (x, x_{n+1}) | \begin{bmatrix} \alpha^T & x_{n+1} \end{bmatrix} \begin{bmatrix} A_i & b_i \\ b_i^T & c_i \end{bmatrix} \begin{bmatrix} x \\ x_{n+1} \end{bmatrix} < 0, \ i \in [3] \right\} = \emptyset.$$
\[\text{conv}(S) = \bigcap_{\lambda \in \Omega} S^\lambda \]

Proof Idea

- **Applying S-lemma** we obtain \(\lambda \in \Omega \) such that

\[
H \cap \left\{ (x, x_{n+1}) \mid [x \ x_{n+1}] \left(\sum_{i=1}^{3} \lambda_i \begin{bmatrix} A_i & b_i & c_i \end{bmatrix} \right) \begin{bmatrix} x \\ x_{n+1} \end{bmatrix} < 0, \right\} = \emptyset.
\]
conv\((S) = \bigcap_{\lambda \in \Omega} S^\lambda \) proof idea

- **Dehomogenizing**, we obtain \(S^\lambda \supseteq \text{conv}(S) \) that excludes \(x^* \)
• We have shown that, under technical assumptions, aggregations are enough to describe the convex hull of 3 quadratics
• We have also shown that the result is not true if some conditions are relaxed.
Summary and open questions

• We have shown that, under technical assumptions, aggregations are enough to describe the convex hull of 3 quadratics.
• We have also shown that the result is not true if some conditions are relaxed.
• We do not know if \(\Omega \) can be refined to a finite set.
• We do not completely understand the PDLC condition. What is its geometrical meaning? Can we replace it by another condition and obtain a similar result?
Summary and open questions

- We have shown that, under technical assumptions, aggregations are enough to describe the convex hull of 3 quadratics.
- We have also shown that the result is not true if some conditions are relaxed.
- We do not know if Ω can be refined to a finite set.
- We do not completely understand the PDLC condition. What is its geometrical meaning? Can we replace it by another condition and obtain a similar result?

Thank you!