Complexity of the conditional colorability of graphs

Xueliang Li, Xiangmei Yao and Wenli Zhou
Center for Combinatorics and LPMC-TJKLC, Nankai University
Tianjin 300071, P.R. China. Email: lxl@nankai.edu.cn

Abstract

For an integer \(r > 0 \), a conditional \((k, r)\)-coloring of a graph \(G \) is a proper \(k \)-coloring of the vertices of \(G \) such that every vertex \(v \) of degree \(d(v) \) in \(G \) is adjacent to vertices with at least \(\min\{r, d(v)\} \) different colors. The smallest integer \(k \) for which a graph \(G \) has a conditional \((k, r)\)-coloring is called the \(r \)th order conditional chromatic number, denoted by \(\chi_r(G) \). It is easy to see that the conditional coloring is a generalization of the traditional vertex coloring for which \(r = 1 \). In this paper, we consider the complexity of the conditional colorings of graphs. The main result is that the conditional \((3, 2)\)-colorability is \(NP \)-complete for triangle-free graphs with maximum degree at most 3, which is different from the old result that the traditional 3-colorability is polynomial solvable for graphs with maximum degree at most 3. This also implies that it is \(NP \)-complete to determine if a graph of maximum degree 3 is \((3, 2)\)- or \((4, 2)\)-colorable. Also we have proved that some old complexity results for traditional colorings still hold for the conditional colorings.

Keywords. vertex coloring, conditional coloring, (conditional) chromatic number, \(NP \)-complete

AMS Subject Classification 2000. 05C15, 05C85, 68Q25

1 Introduction

We follow the terminology and notations of [1] and, without loss of generality, consider simple connected graphs only. \(\delta(G) \) and \(\Delta(G) \) denote the minimum degree and maximum degree of a graph \(G \), respectively. For a vertex \(v \in V(G) \), the neighborhood of \(v \) in \(G \) is \(N_G(v) = \{u \in V(G) : u \text{ is adjacent to } v \text{ in } G\} \), and the degree of \(v \) is \(d(v) = |N_G(v)| \). Vertices in \(N_G(v) \) are called neighbors of \(v \). \(P_n \) denotes the path of \(n \) vertices. An edge \(e \) is said to be subdivided when it is deleted and replaced by

*Supported by NSFC, PCSIRT and the “973” program.
a path of length two connecting its ends, the internal vertex of this path is a new vertex.

For an integer \(k > 0 \). A proper \(k \)-coloring of a graph \(G \) is a surjective map \(c : V(G) \rightarrow \{1, 2, \ldots, k\} \) such that if \(u, v \) are adjacent vertices in \(G \), then \(c(u) \neq c(v) \). The smallest \(k \) such that \(G \) has a proper \(k \)-coloring is the chromatic number of \(G \), denoted by \(\chi(G) \).

In the following we will consider a generalization of the traditional coloring. For integers \(k > 0 \) and \(r > 0 \), a proper \((k, r)\)-coloring of a graph \(G \) is a surjective map \(c : V(G) \rightarrow \{1, 2, \ldots, k\} \) such that both of the following two conditions hold:

(C1) if \(u, v \in V(G) \) are adjacent vertices in \(G \), then \(c(u) \neq c(v) \); and

(C2) for any \(v \in V(G) \), \(|c(N_G(v))| \geq \min\{d(v), r\} \), where and in what follows, \(c(S) = \{c(u) | u \in S \text{ for a set } S \subseteq V(G)\} \).

For a given integer \(r > 0 \), the smallest integer \(k > 0 \) such that \(G \) has a proper \((k, r)\)-coloring is the \((r \text{th order}) \) conditional chromatic number of \(G \), denoted by \(\chi_r(G) \).

By the definition of \(\chi_r(G) \), it follows immediately that \(\chi(G) = \chi_1(G) \), and so \(\chi_r(G) \) is a generalization of the traditional graph coloring. The conditional chromatic number has very different behavior from the traditional chromatic number. For example, when \(r = 2 \), from [7] we know that for many graphs \(G \), \(\chi_2(G - v) > \chi_2(G) \) for at least one vertex \(v \) of \(G \), and there are graphs \(G \) for which \(\chi_r(G) - \chi(G) \) may be very large.

From [6] we know that if \(\Delta(G) \leq 2 \), for any \(r \) we can easily have an algorithm of polynomial time to give the graph \(G \) a \((k, r)\)-coloring. In [8], Lai, Montgomery and Poon got an upper bound of \(\chi_2(G) \) that if \(\Delta(G) \geq 3 \), then \(\chi_2(G) \leq \Delta(G) + 1 \). The proof is very long compared with the proof of a similar result for the traditional coloring. In [6] and [7], Lai, Lin, Montgomery, Shui and Fang got many new and interesting results on the conditional coloring. In the present paper, we are going to investigate the complexity of deciding if a graph is \((k, r)\)-colorable. We first give a simple proof that for any \(k \geq 3 \) and \(r \geq 2 \) it is \(NP \)-complete to check if a graph is \((k, r)\)-colorable. Then we give the main theorem in the paper that the conditional \((3, 2)\)-colorability is \(NP \)-complete for triangle-free graphs with maximum degree at most 3, which is different from the old result that the traditional 3-colorability is polynomial solvable for graphs with maximum degree at most 3. At last we show that the \((3, 2)\)-colorability is also \(NP \)-complete for some special classes of graphs, planar graphs, hamiltonian graphs and so on.

2 The complexity of the conditional colorings

In this section, we shall analyze the complexity of the \((k, r)\)-colorability of graphs. We refer to [3] for terminology, notations and basic results on complexity not given
If a connected graph G has only one vertex, then $\chi_r(G) = 1$; if a connected graph G has only two vertices, then $\chi_r(G) = 2$. For the other connected graphs G, we have $\chi_r(G) \geq 3$ for $r \geq 2$. But the following theorem show that for any $2 \leq r < k$ the (k, r)-Col is NP-complete.

The (k, r)-colorable problem, denoted by (k, r)-Col, is defined as follows:

Input: A graph $G = (V, E)$ and two integers $k > r \geq 2$.

Question: Can one assigns each vertex a color, so that only k colors are used and the two conditions C1 and C2 are satisfied? i.e., Is $\chi_r(G) \leq k$?

Theorem 2.1 For every fixed (k, r), $2 \leq r < k$, (k, r)-Col is NP-complete.

Proof. First, it is easy to see that the problem (k, r)-Col is in NP.

Second, it is known that the traditional k-colorable problem is NP-complete. So, to show the NP-completeness, it is sufficient to reduce the traditional k-colorable problem to the (k, r)-Col. We want to relate any instance G of the k-colorable problem to a graph G', such that G is k-colorable if and only if G' is (k, r)-colorable.

For each vertex v in $V(G)$, we add a new complete graph K_r and add new edges such that v and K_r form a complete graph of order $r + 1$. The resultant graph is denoted by G'. So, G' has $(r + 1)|V(G)|$ vertices, and every vertex in G' is contained in a K_{r+1}. It is easy to see that G is k-colorable if and only if G' is (k, r)-colorable.

It is known that in traditional colorings, all graphs with maximum degree 3 are 3-colorable except for K_4 (by Brook’s theorem). So the 3-colorable problem is trivial for this class of graphs. But the next theorem tells us that the problem $(3, 2)$-Col remains NP-complete for triangle-free graphs with maximum degree 3.

Theorem 2.2 The problem $(3, 2)$-Col remains NP-complete for triangle-free graphs with maximum degree at most 3.

Proof. First, the problem $(3, 2)$-Col for triangle-free graphs with maximum degree at most 3 is obviously in NP.

We want to modify the method given in [4] to prove the NP-completeness. We reduce the 3-SAT problem to the problem $(3, 2)$-Col for graphs with maximum degree at most 3. We want to relate any instance I of the 3-SAT problem to a graph G with $\Delta(G) \leq 3$, such that I is satisfiable if and only if G is $(3, 2)$-colorable. Let the set of literals, of the input I to the 3-SAT problem, be $\{x_1, x_2, \ldots, x_n, \bar{x}_1, \bar{x}_2, \ldots, \bar{x}_n\}$ and the clauses be C_1, C_2, \ldots, C_m.

The graph $G(V, E)$ with $\Delta(G) \leq 3$ is defined as follows:
First, for each clause \(C_i\) (1 \(\leq\) \(i\) \(\leq\) \(m\)) we construct the first kind of building-block \(H_i\) (see Figure 1). The second graph in Figure 1 is the shorthand notation of \(G\).

Now, it is easy to check that the graph constructed in Figure 1 has the following two properties:

1. If we use colors \(\{0, 1, 2\}\), and \(u_1, u_2, u_3\) are all colored by 0, then in every \((3, 2)-\)coloring, \(v\) is forced to be colored by 0;

2. If the three vertices \(u_1, u_2, u_3\) are colored only by 0 or 1 (the other vertices in \(G\) can also be colored by 0, 1 or 2), and not all the three vertices are colored by 0, then there is a \((3, 2)-\)coloring such that \(v\) can be colored by 1.

From the above properties we know that if \(v\) is not colored by 0, then one of \(u_1, u_2, u_3\) must be colored by 1, which means that if 1 represents ‘true’, 0 represents ‘false’, and the clause \(C = u_1 \lor u_2 \lor u_3\) must be satisfied.

Second, we construct two paths \(P_{6n-1} (P_{6n-1} = a_1a_2\cdots a_{6n-1})\) and \(P_{3m-2} (P_{3m-2} = b_1b_2\cdots b_{3m-2})\).

Third, for each pair \(x_i\) and \(\bar{x}_i\) (1 \(\leq\) \(i\) \(\leq\) \(n\)) we construct the second kind of building-block \(B_i\) (it is represented by a rectangle in Figure 2). The second kind of building-block \(B_i\) (1 \(\leq\) \(i\) \(\leq\) \(n\)) is constructed as follows:

1. Let \(t_i\) be the number of clauses which contain \(x_i\), and let \(\bar{t}_i\) be the number of clauses which contain \(\bar{x}_i\);

2. We construct a path \(P_{x_i}\) of \(3t_i - 2\) vertices corresponding to the vertex \(x_i\), and construct another path \(P_{\bar{x}_i}\) of \(3\bar{t}_i + 2\) vertices corresponding to the vertex \(\bar{x}_i\);

3. Let \(x_{ij}\) be the \((3j - 2)\)th (1 \(\leq\) \(j\) \(\leq\) \(t_i\)) vertex in the path \(P_{x_i}\), and let \(\bar{x}_{ij}\) be the \((3j - 2)\)th (1 \(\leq\) \(j\) \(\leq\) \(\bar{t}_i + 1\)) vertex in the path \(P_{\bar{x}_i}\);

4. Join \(x_{ij}\) with an edge to \(\bar{x}_{ij}\).
Finally, join x_i with an edge to a_{6i-5} and join \bar{x}_i with an edge to a_{6i-2} ($1 \leq i \leq n$). And each v_i is joined with an edge to b_{3i-2} ($1 \leq i \leq m$). The vertex a_1 is joined with an edge to the vertex b_1. Each x_{ij} ($1 \leq j \leq t_i$) or \bar{x}_{ij} ($2 \leq j \leq t_i + 1$) joins with an edge to some H_l ($1 \leq l \leq m$) which represents the clause that contains the jth x_i or the $(j-1)$th \bar{x}_i. The final resultant graph is shown in Figure 2. It is easy to see that the maximum degree of the graph is at most 3 and the graph is triangle-free.

![Figure 2: The entire construction](image)

The graphs B_i ($1 \leq i \leq n$) in the final resultant graph (Figure 2) have the following properties:

1. If G is $(3, 2)$-colorable, the vertices x_{ij} ($1 \leq j \leq t_i$) must be colored by the same color, and the vertices \bar{x}_{ij} ($1 \leq j \leq t_i + 1$) must also be colored by the same color. But

2. The color of the vertices x_{ij} ($1 \leq j \leq t_i$) must be colored by different color from the color of the vertices \bar{x}_{ij} ($1 \leq j \leq \bar{t}_i + 1$).

The two paths P_{6n-1} and P_{3m-2} in the final resultant graph have the following properties:

1. If G is $(3, 2)$-colorable, the vertices a_{3i-2} ($1 \leq j \leq 2n$) must be colored the same color, and the vertices b_{3i-2} ($1 \leq i \leq m$) must also be colored by the same color. But

2. The color of the vertices a_{3i-2} ($1 \leq i \leq 2n$) must be colored by different color from the color of the vertices b_{3i-2} ($1 \leq i \leq m$).
Now if I is satisfiable, we give a proper $(3,2)$-coloring of the graph in Figure 2 as follows: Let $c(x_{ij}) = 1$ (1 $\leq j \leq t_i$) if x_i is true, and of course let $c(x_{ij}) = 0$ (1 $\leq j \leq t_i$); let $c(x_{ij}) = 0$ (1 $\leq j \leq t_i$) if x_i is false, and of course let $c(x_{ij}) = 1$ (1 $\leq j \leq t_i + 1$). The rest vertices in B_i can be colored easily to satisfy the conditions C1 and C2. By the properties given in the first step, we know that v_i (i = 1, ..., m) can be colored by 1 since each clause is satisfied. Let $c(a_i) = 2$ (i = 1, 4, 7, ..., 6n-2), $c(a_i) = 1$ (i = 2, 5, 8, ..., 6n-1), $c(a_i) = 0$ (i = 3, 6, 9, ..., 6n-3); let $c(b_i) = 0$ (i = 1, 4, 7, ..., 3m-2), $c(b_i) = 1$ (i = 2, 5, 8, ..., 3m-3), $c(b_i) = 2$ (i = 3, 6, 9, ..., 3m-4). Then it is easy to check that c is a proper $(3,2)$-coloring.

Conversely, if G is $(3,2)$-colorable, there is a proper $(3,2)$-coloring c. Without loss of generality, suppose $c(a_1) = 2$ and $c(b_1) = 0$. Then, from the properties of the two paths we give above, all the vertices a_{3i-2} (1 $\leq i \leq 2n$) are colored by 2, while all the vertices b_{3i-2} (1 $\leq i \leq m$) are colored by 0. By the properties of the graph B_i described above, $c(x_{ij})$ (1 $\leq j \leq t_i$) and $c(x_{i})$ (1 $\leq j \leq t_i + 1$) are colored by 1 or 0, and $c(v_i)$ cannot be colored by 0. Then, let x_i be true if $c(x_{ij}) = 1$, and let x_i be false if $c(x_{ij}) = 0$. Since $c(v_i)$ cannot be colored by 0, each C_i is satisfiable, and thus I is satisfiable. \hfill \blacksquare

From [6] we know that if $\Delta(G) = 1$ or 2, $\chi_2(G)$ can be determined in polynomial time. From [8] we know that if $\Delta(G) = 3$, then $\chi_2(G) = 3$ or 4. So by Theorem 2.2 we can get the following result.

Corollary 2.3 When $\Delta(G) = 3$, it is NP-complete to determine whether $\chi_2(G) = 3$ or $\chi_2(G) = 4$.

Next we will consider the other special classes of graphs, hamiltonian graphs, planar graphs, claw-free graphs.

Theorem 2.4 The problem $(3,2)$-Col is NP-complete when restricted to hamiltonian graphs with $\Delta(G) \leq 6$.

Proof. A known result is that to determine whether a hamiltonian graph with maximum degree at most 4 is 3-colorable is NP-complete. Now, given a hamiltonian graph G with $V(G) = \{v_1, v_2, ..., v_n\}$ and, without loss of generality, $v_1v_2...v_nv_1$ is a hamiltonian cycle of G. We construct a new hamiltonian graph G' as follows: For each v_i we add two new vertices x_{i1} and x_{i2} and three new edges v_ix_{i1}, $x_{i1}x_{i2}$ and $x_{i2}v_i$ (a triangle). Then, add new edges $x_{12}x_{21}$, $x_{32}x_{41}$, $x_{52}x_{61}$, ..., $x_{(n-1)2}x_{n1}$ for n even; add new edges $x_{12}x_{21}$, $x_{32}x_{41}$, $x_{52}x_{61}$, ..., $x_{(n-2)2}x_{(n-1)1}$ and add a new vertex u and three edges $x_{11}u$, $x_{12}u$ and $x_{(n-1)2}u$ for n odd.

It is easy to see that G' is also a hamiltonian graph with $\Delta(G) \leq 6$. First, if G' is $(3,2)$-colorable, then restrict a proper $(3,2)$-coloring to the vertices $v_1, v_2, ..., v_n$, it is a proper coloring for G. Second, if G is 3-colorable, then the vertices $v_1, v_2, ..., v_n$ in G' are colored by the same color as they are colored in G, and since there are 3 colors, the rest vertices of G' can be colored properly, and so G' is 3-colorable.
Since every vertex in G' is contained in a triangle, G' is 3-colorable means G' is $(3, 2)$-colorable. Then G is 3-colorable if and only if G' is $(3, 2)$-colorable. Then we get the result.

Now we consider planar graphs. From [2] we know that the 3-colorable problem for planar hamiltonian graphs is NP-complete. Then we have the following theorem.

Theorem 2.5 The problem $(3, 2)$-Col is NP-complete for planar hamiltonian graphs.

Proof. Given a planar hamiltonian graph G with $V(G) = \{v_1, v_2, \ldots, v_n\}$ and, without loss of generality, $v_1v_2 \ldots v_nv_1$ is a hamiltonian cycle C_n of G. For any edge v_iv_{i+1} of C_n, we do the local transformation to get a new graph G' as follows: For each edge v_iv_{i+1} in C_n, we add 4 new vertices $x_{i1}, x_{i2}, y_{(i+1)1}, y_{(i+1)2}$ and 7 new edges $x_{i1}v_i, x_{i2}v_i, x_{i1}x_{i2}, y_{(i+1)1}v_{i+1}, y_{(i+1)2}v_{i+1}, y_{(i+1)1}y_{(i+1)2}, x_{i2}y_{(i+1)1}$, two triangles with an edge connecting them. Then G' has $5|V(G)|$ vertices, and every vertex is in a triangle, and moreover, each “two triangles with an edge joining them” can be drawn in the local space of v_iv_{i+1} without crossing the boundary of any face, so that the new graph G' remains planar. It is easy to see that is is also hamiltonian. By the same reason as in Theorem 2.4, it is easy to see that G is 3-colorable if and only if G' is $(3, 2)$-colorable. The proof is complete.

For claw-free graph G, we can similarly add vertices and edges to make every vertex $v \in V(G)$ in a triangle, and show that $(3, 2)$-Col is NP-complete for claw-free graphs.

To conclude the paper, we point out that there are polynomial algorithms to solve the k, r-Col problem for some special classes of graphs. From the proof of [8], one can design a polynomial algorithm to color the graph G by $\Delta(G) + 1$ colors when $\Delta(G) \geq 3$. For some classes of perfect graphs, such as triangulated graphs and comparability graphs, there are polynomial algorithms to color the graph G by $\chi(G)$ colors for traditional coloring in [5]. For these kinds of graphs, one can also design polynomial algorithms to get the conditional coloring number and the way to color these graphs, with a little change of the original algorithms in [5]. The details are omitted.

References

[1] J.A. Bondy and U.S.R Murty, Graph Theory with Applications, North-Holland, Elsevier, 1981.

[2] P. Bonsma, The complexity of the Matching-Cut problem for planar graphs and other graph classes, Lecture Notes in Computer Science, 2880(2003), 93–105.

[3] M.R. Garey and D.S. Johnson, Computers and Intractability, A Guide to the Theory of NP-Completeness, Freeman, 1979.

[4] M.R. Garey, D.S. Johnson and L.J. Stockmeyer, Some simplified NP-complete graph problems, Theor. Comput. Sci. 1(1976), 237–267.
[5] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, 1980.

[6] H.J. Lai, J. Lin, B. Montgomery, T. Shui and S. Fan, Conditional colorings of graphs, Discrete Math. 306(2006), 1997–2004.

[7] H.J. Lai and B. Montgomery, Dynamic Coloring of Graphs, available in: http://jacobi.math.wvu.edu/~hjlai/Pdf/Dynamic-Gen.pdf.

[8] H.J. Lai, B. Montgomery and H. Poon, Upper bounds of dynamic chromatic number, Ars Combin. 68(2003), 193–201.