RELATIVE COMPLETIONS AND K_2 OF CURVES

KEVIN P. KNUDSON

Abstract. We compute the completion of the special linear group over the coordinate ring of a curve over a number field k relative to its representation in $SL_n(k)$, and relate this to the study of K_2 of the curve.

Introduction

The algebraic K-groups of curves defined over number fields are mysterious objects and have received a great deal of scrutiny. There is a plethora of conjectures about the groups K_1 and K_2 and a few results supporting these guesses. For example, if A is the coordinate ring of a smooth affine curve over a number field k, then a conjecture of Vaserstein asserts that $SK_1(A)$ is torsion. This is supported by calculations of Raskind [11], who showed that $SK_1(A) \otimes \mathbb{Q}/\mathbb{Z} = 0$, and by more recent work of Østvaer and Rosenschon [10].

The group K_2 is even more troublesome, but the work of several authors ([2], [3], [4], [8], [12]) has shed some light on the structure of $K_2(A)$. For example, the existence of regulator maps shows that nontrivial elements exist; the rank of $K_2(A)$ is conjectured to be related to the number of infinite places of k when C is an elliptic curve; the second level of the rank filtration, $r_2K_2(A)_{\mathbb{Q}}$, vanishes when C is an elliptic curve. Still, it is not known for any curve whether or not $K_2(A)$ has finite rank.

In this note, we use Deligne’s notion of relative completion to study the group $K_2(A)$. A full summary of this construction is given in Section 1, but the basic idea is the following. Let S be a reductive algebraic group over a field F and let $\rho : \Gamma \to S$ be a map of a discrete group Γ into S with Zariski dense image. The completion of Γ relative to ρ is a proalgebraic group \mathcal{G} over F together with a lift $\tilde{\rho} : \Gamma \to \mathcal{G}$ such that the diagram

\[
\begin{array}{ccc}
\Gamma & \xrightarrow{\tilde{\rho}} & \mathcal{G} \\
\downarrow^{\rho} & & \downarrow \\
S & &
\end{array}
\]

2000 Mathematics Subject Classification. 55P60 19D55.
Key words and phrases. relative completion, K-theory of curves.
Partially supported by the National Security Agency.
commutes. Using a suitably defined notion of the continuous cohomology of \(G, H^*_{cts}(G; F) \), there is an injective map
\[
H^2_{cts}(G; F) \longrightarrow H^2(\Gamma; F).
\]
This allows one to obtain a lower bound on the rank of \(H^2(\Gamma; F) \).

Here, we consider the group \(\Gamma = SL_n(A), n \geq 3, \) and \(\rho : SL_n(A) \rightarrow SL_n(k) \) given by reduction modulo the maximal ideal of a \(k \)-rational point on the curve (we assume one exists, for simplicity). The main result of this paper is the following calculation of the completion of \(SL_n(A) \) relative to \(\rho \).

Theorem 3.1 The completion of \(SL_n(A) \) relative to \(\rho \) is isomorphic to the group \(SL_n(k[[T]]) \).

Unfortunately, this provides no information about the rank of \(H^2(SL_n(A)) \) (which is related to \(K_2(A) \)) in light of the following result.

Proposition 4.1 For \(n \geq 3 \), \(H^2_{cts}(SL_n(k[[T]]); k) = 0 \).

Thus, to obtain a complete understanding of \(K_2(A) \), one needs to compute the group \(H_2(SL_n(A); \mathbb{Z}), n \geq 3 \). Such a calculation remains elusive, however.

Acknowledgements. The author thanks Chuck Weibel for many useful conversations.

Notation. Throughout this paper, \(k \) denotes a number field and \(C \) denotes a smooth affine curve over \(k \). We denote the coordinate ring \(k[C] \) by \(A \). We assume, for simplicity, that \(C \) has a \(k \)-rational point \(x \) and we denote the associated maximal ideal of \(A \) by \(\mathfrak{m}_x \). We also assume that \(SK_1(A) \otimes \mathbb{Q} = 0 \). For a group \(G \), \(\Gamma^i G \) denotes the \(i \)-th term of the lower central series.

Remark. The results of this paper are also valid for finite fields, but the interest in that case is subsumed by Quillen’s calculations \([6]\).

1. **Relative Completions**

Relative completion is a generalization of the classical Malcev (or unipotent) completion. Proofs of the results in this section may be found in \([7]\) or \([9]\).

Let \(\Gamma \) be a discrete group and let \(S \) be a reductive linear algebraic group over a field \(F \). Suppose that \(\rho : \Gamma \rightarrow S \) is a homomorphism with Zariski dense image. The completion of \(\Gamma \) relative to \(\rho \) is a proalgebraic group \(\mathcal{G} \), defined over \(F \), which is an extension of \(S \) by a prounipotent group \(\mathcal{U} \),
\[
1 \rightarrow \mathcal{U} \rightarrow \mathcal{G} \rightarrow S \rightarrow 1,
\]
together with a lift \(\tilde{\rho} : \Gamma \rightarrow \mathcal{G} \) of \(\rho \). The group \(\mathcal{G} \) is required to satisfy the obvious universal mapping property. If \(S \) is the trivial group then this reduces to the usual unipotent completion (first defined by Malcev in the case \(F = \mathbb{Q} \)).
Examples of this construction may be found in [9]. We recall some relevant facts that will be used below. Suppose \(S \) is trivial so that we are considering the unipotent \(F \)-completion.

Proposition 1.1. Let \(G \) be a group with a filtration
\[
G = G^1 \supseteq G^2 \supseteq G^3 \supseteq \cdots
\]
satisfying the following conditions.

1. The graded quotients \(G^i/G^{i+1} \) are finite-dimensional \(F \)-vector spaces.
2. For all \(i \), \((G^i/\Gamma^i G) \otimes F = 0 \).

Then \(\mathcal{U} = \varprojlim G/G^i \) is the unipotent \(F \)-completion of \(G \).

Proof. This is a modification of Proposition 3.5 of [9]. The unipotent \(F \)-completion of \(G \) is obtained as the inverse limit of the \(F \)-completions of each \(G/\Gamma^i G \). Since \((G^i/\Gamma^i G) \otimes F = 0 \) for all \(i \), and since \(G^i/G^{i+1} \) is an \(F \)-vector space, the completion of \(G/\Gamma^i G \) over \(F \) is the group \(G/G^i \). Thus, \(\mathcal{U} = \varprojlim G/G^i \) is the unipotent \(F \)-completion of \(G \). \(\square \)

The extension
\[
1 \longrightarrow \mathcal{U} \longrightarrow G \longrightarrow S \longrightarrow 1
\]
is split ([9], p. 195). An obvious question to consider is the relationship between the group \(\mathcal{U} \), which is prounipotent, and the unipotent completion of the kernel of \(\rho : \Gamma \rightarrow S \). Denote this kernel by \(T \) and let \(\mathcal{T} \) be its unipotent \(F \)-completion. Then the map \(T \rightarrow \mathcal{U} \) induces a map \(\Phi : \mathcal{T} \rightarrow \mathcal{U} \). Let \(L \) be the image of \(\rho \).

Proposition 1.2. Suppose that \(H_1(T; F) \) is finite-dimensional. If the action of \(L \) on \(H_1(T; F) \) extends to a rational representation of \(S \) (for example, if \(L = S \)), then the kernel of \(\Phi \) is central in \(\mathcal{T} \).

Proof. See [9], Proposition 4.2. \(\square \)

Proposition 1.3. Suppose that \(H_1(T; F) \) is finite-dimensional. If \(\rho : \Gamma \rightarrow S \) is surjective, then \(\Phi : \mathcal{T} \rightarrow \mathcal{U} \) is surjective.

Proof. See [9], Proposition 4.3. \(\square \)

2. Continuous Cohomology

Suppose that \(\pi \) is a projective limit of groups,
\[
\pi = \varprojlim \pi_\alpha,
\]
and let \(F \) be a field. We define the continuous cohomology of \(\pi \) to be
\[
H^i_{cts}(\pi; F) = \varinjlim H^i(\pi_\alpha; F).
\]
For example, if \(\pi \) is the Galois group of a field extension \(L/K \), then \(H^i_{cts}(\pi; F) \) is simply the usual Galois cohomology.

This construction is relevant here in light of the following result.
Proposition 2.1. Let $\rho : \Gamma \to S$ be a split surjective representation and let G be the completion relative to ρ. Assume that $H_1(T;F)$ is finite-dimensional ($T = \ker \rho$) and that $\Phi : T \to U$ is an isomorphism. Then the restriction map

$$H^2_{\text{cts}}(G;F) \to H^2(\Gamma;F)$$

is injective.

Proof. See [9], Corollary 5.5. \qed

3. The Completion of $SL_n(A)$

Recall that k denotes a number field and C is a smooth affine curve over k. The coordinate ring of C is denoted by A. Assume that x is a k-rational point of C and let m_x be the associated maximal ideal of A. We also assume that $SK_1(A) \otimes \mathbb{Q} = 0$. With these assumptions, we now proceed to compute the completion of $SL_n(A)$, $n \geq 3$.

Let $\rho : SL_n(A) \to SL_n(k)$ be the map induced by reducing modulo m_x. Note that ρ is split surjective. Denote by \hat{A} the m_x-adic completion of A; this is a complete regular local ring of dimension 1 and is thus isomorphic to the power series ring $k[[T]]$.

Theorem 3.1. The completion of $SL_n(A)$ relative to ρ is the group $SL_n(\hat{A})$.

Proof. Let K be the kernel of ρ and define a central series K^\bullet by

$$K^i = \{X \in SL_n(A) : X \equiv I \mod m_x^i \}.$$

Then for $n \geq 3$, we have isomorphisms [11]

$$K^i/E_n(A,m_x^i) \cong SK_1(A,m_x^i)$$

for all i. Here, E_n denotes the subgroup generated by elementary matrices. By considering the long exact K-theory sequence associated to (A,m_x^i), our hypothesis that $SK_1(A) \otimes \mathbb{Q} = 0$ yields a surjective map

$$K_2(A/m_x^i) \otimes \mathbb{Q} \to SK_1(A,m_x^i) \otimes \mathbb{Q}.$$

By choosing a uniformizing parameter t at x, we obtain an isomorphism of rings $A/m_x^i \cong k[t]/t^i$. Note that for all i,

$$K_2(k[t]/t^i) \cong K_2(k[t]/t^i, (t)) \oplus K_2(k) \cong (\Omega_{k[|z|]}^1)^{i-1} \oplus K_2(k)$$

(see [5]) and hence $K_2(k[t]/t^i) \otimes \mathbb{Q} = 0$. Thus, $SK_1(A,m_x^i) \otimes \mathbb{Q} = 0$.

Now, since we have a sequence of inclusions

$$E_n(A,m_x^i) \subseteq \Gamma^i K \subseteq K^i,$$

and since $K^i/E_n(A,m_x^i)$ is torsion, we see that $K^i/\Gamma^i K$ is torsion. Note that the graded quotients K^i/K^{i+1} are finite-dimensional k-vector spaces:

$$K^i/K^{i+1} \cong sl_n(m_x^i/m_x^{i+1}) \cong sl_n(k).$$
By Proposition 1.1, the unipotent k-completion of K is the group

$$K(\hat{A}) = \varprojlim K/K^i.$$

This group fits into the split extension

$$(1) \quad 1 \rightarrow K(\hat{A}) \rightarrow SL_n(\hat{A}) \rightarrow SL_n(k) \rightarrow 1.$$

Now, if the completion of $SL_n(A)$ relative to ρ is the extension

$$1 \rightarrow \mathcal{U} \rightarrow \mathcal{G} \rightarrow SL_n(k) \rightarrow 1,$$

we have a homomorphism $\Phi : K(\hat{A}) \rightarrow \mathcal{U}$. Note that $H_1(K; k) \cong K/K^2 \oplus (K/\Gamma^2 K \otimes k) \cong K/K^2$

is a finite-dimensional k-vector space. By Proposition 1.3 Φ is surjective and since the center of $K(\hat{A})$ is trivial, Proposition 1.2 implies that Φ is injective. Since the extension (1) is split, we have $\mathcal{G} \cong SL_n(\hat{A})$. \hfill \square

4. Application to K-theory

For $n \geq 3$, we have the following chain of isomorphisms:

$$H^2(SL_n(A); k) \cong H_2(SL_n(A); k)$$
$$\cong (H_2(SL_n(A); \mathbb{Z}) \otimes k) \oplus \text{Tor}^1(H_1(SL_n(A); \mathbb{Z}), k)$$
$$\cong (K_2(A) \otimes k) \oplus \text{Tor}^1(SK_1(A), k)$$
$$\cong K_2(A) \otimes k.$$

This is the primary motivation for calculating the completion of $SL_n(A)$. By Proposition 2.1 we have an injection

$$H^2_{cts}(SL_n(\hat{A}); k) \rightarrow H^2(SL_n(A); k),$$

and therefore we obtain a lower bound on $K_2(A) \otimes k$. Unfortunately, the lower bound is not useful.

Proposition 4.1. For $n \geq 3$, $H^2_{cts}(SL_n(\hat{A}); k) = 0$.

Proof. Note that $\hat{A} \cong k[[T]]$ and so we may as well consider the curve $C = \mathbb{A}^1$, $A = k[t]$. Then we have the following:

$$H^2_{cts}(SL_n(k[[T]]); k) \leftarrow H^2(SL_n(k[t]); k)$$
$$\cong H_2(SL_n(k[t]); k)$$
$$\cong H_2(SL_n(k); k)$$
$$\cong K_2(k) \otimes k$$
$$= 0.$$

\hfill \square
References

[1] H. Bass, Algebraic K-theory, Benjamin, New York, 1968.
[2] A. Beilinson, Higher regulators and values of L-functions of curves, Funct. Anal. Appl. 14 (1980), 116–118.
[3] S. Bloch, Higher regulators, algebraic K-theory, and zeta functions of elliptic curves, Irvine lecture notes, 1977.
[4] S. Bloch, D. Grayson, K_2 and L-functions of elliptic curves: computer calculations, Contemp. Math. 55 (1986), 79–88.
[5] J. Graham, Continuous symbols on fields of formal power series, in Algebraic K-theory II, Lecture Notes in Mathematics 372 (1973), 474–486.
[6] D. Grayson, Finite generation of K-groups of a curve over a finite field (after Daniel Quillen), in Algebraic K-theory, Part I (Oberwolfach, 1980), Lecture Notes in Mathematics 966 (1982), 69–90.
[7] R. Hain, Completions of mapping class groups and the cycle $C - C^-$, in Mapping class groups and moduli spaces of Riemann surfaces (Göttingen, 1991/Seattle, 1991), Contemp. Math. 150 (1993), 75–105.
[8] K. Knudson, On the K-theory of elliptic curves, J. reine angew. Math. 507 (1999), 81–91.
[9] K. Knudson, Relative completions and the cohomology of linear groups over local rings, J. London Math. Soc. (2) 65 (2002), 183–203.
[10] P. Østvær, A. Rosenschon, K-theory of curves over number fields, J. Pure Appl. Algebra 178 (2003), 307–333.
[11] W. Raskind, On K_1 of curves over global fields, Math. Ann. 288 (1990), 179–193.
[12] K. Rolshausen, N. Schappacher, On the second K-group of an elliptic curve, J. reine angew. Math. 495 (1998), 61–77.

Department of Mathematics & Statistics, Mississippi State University, P.O. Box MA, Mississippi State, MS 39762
E-mail address: knudson@math.msstate.edu