Resumo

Objetivo: Identificar a prevalência e os fatores associados a eventos adversos (EA) relacionados à ventilação mecânica (VM) invasiva em pacientes internados na Unidade de Terapia Intensiva Pediátrica (UTIP) de hospital público terciário.

Métodos: Trata-se de estudo transversal realizado entre julho de 2016 e junho de 2018, com dados coletados ao longo da rotina de atendimento dos pacientes na unidade pela equipe assistencial. Neste estudo, foram analisados características demográficas, clínicas, ventilatórias e os EA ocorridos. O modelo de regressão logística foi utilizado para análise multivariada quanto aos fatores associados aos EA.

Resultados: Neste estudo, foram incluídos 306 pacientes, com tempo de ventilação total de 2.155 dias. Ocorreram EA em 66 pacientes (21,6%), dos quais 11 (16,7%) sofreram dois EA, totalizando 77 eventos (36 EA por mil dias de ventilação). O EA mais comum foi o estridor pós-extubação (25,9%), seguido da extubação não planejada (16,9%). Os episódios ocorreram predominantemente no turno da tarde (49,3%) e associados a grau de dano leve (54,6%). Na análise multivariada, observou-se maior ocorrência de EA associado a tempo de internação igual ou superior a sete dias (Odds Ratio [OR]=2,6; 95% intervalo de confiança [IC95%] 1.49–4.66; p=0.001).

Conclusões: Evidenciou-se número significativo de EA que podem ser prevenidos, destacando-se o estridor pós-extubação e a extubação acidental, com ocorrência mais frequentemente associada ao maior tempo de internação.

Palavras-chave: Qualidade dos cuidados de saúde; Ventilação mecânica; Crianças; Adolescentes; Unidades de terapia intensiva; Evento adverso.

Conclusão

O EA mais comum foi o estridor pós-extubação (25,9%), seguido da extubação não planejada (16,9%). Os episódios ocorreram predominantemente no turno da tarde (49,3%) e associados a grau de dano leve (54,6%). Na análise multivariada, observou-se maior ocorrência de EA associado a tempo de internação igual ou superior a sete dias (Odds Ratio [OR]=2,6; 95% confidence interval [95%CI] 1.49–4.66; p=0.001).

Conclusions: The results of the present study show a significant number of preventable adverse events, especially stridor after extubation and accidental extubation. The higher frequency of these events is associated with longer hospitalization.

Keywords: Quality of health care; Respiratory, artificial; Child; Adolescent; Intensive care unit; Adverse event.
INTRODUÇÃO

O processo de ventilação mecânica (VM) em pacientes críticos é complexo, invasivo e repleto de interações, englobando uma série de fases em que dinamismo e intervencionismo no processo assistencial são de extrema importância. Isso somado à gravidade frequente da condição do paciente pode produzir uma ininfinitade de incidentes que colocam a segurança do paciente em dano potencial ou real, podendo desencadear sequelas graves e até mesmo a morte.1

O incidente que resulta em dano é considerado evento adverso (EA) e, habitualmente, é não intencional, mas decorrente da assistência e não relacionado à evolução natural da doença de base.2 Diversos são os EA relacionados ao uso de VM invasiva, tais como: atelectasia, extubação acidental, intubação seletiva, pneumonia associada à VM (PAV), lesão no local de fixação do tubo orotraqueal (TOT), traumatismo por aspiração e obstrução do TOT por secreção. Alguns desses eventos são passíveis de identificação e/ou intervenção direta do enfermeiro, médico ou fisioterapeuta, e por isso estão relacionados à qualidade da assistência.3 A ocorrência de EA em pacientes em terapia intensiva pediátrica é comum, variando de 27 a 97 EA/mil pacientes dia,4,5 estando especialmente relacionada aos procedimentos invasivos e com significativa letalidade.3

Os sistemas de saúde devem estar preparados para enfrentar os riscos advindos da exposição às tecnologias em saúde, com ações integradas para minimizar os danos a partir da intervenção sobre os fatores de risco identificados.6 Portanto, identifica-se a necessidade de avaliar os processos de trabalho, considerando o potencial impacto de mudanças recentes na prática ventilatória e nos cuidados com o paciente quando da avaliação da epidemiologia e da incidência de EA associados à VM.7

Considerando o número limitado de estudos em crianças e adolescentes sobre o tema, o presente estudo teve como objetivo identificar a prevalência e os fatores associados a EA relacionados à VM invasiva em pacientes internados na Unidade de Terapia Intensiva Pediátrica (UTIP) de hospital público terciário.

MÉTODO

Trata-se de estudo transversal com coleta de dados de julho de 2016 a junho de 2018, realizado na UTIP de hospital universitário público terciário, que admite pacientes de 29 dias de vida a 18 anos incompletos. Foram incluídos os pacientes submetidos à VM na UTIP no intervalo de tempo definido. Os dados foram coletados diariamente ao longo do seguimento pelos pesquisadores, a partir dos registros realizados na rotina assistencial pela equipe de fisioterapia e demais membros assistenciais. Neste estudo, foram analisadas características demográficas (sexo, idade, peso, procedência), clínicas (diagnóstico primário, razões para admissão, óbitos) e ventilatórias (causa da VM, tipo de via aérea artificial, tempo de VM, presença de balonete/cuff, pressão inspirada positiva (PIP), pressão expiratória final positiva (PEEP) e fração inspirada de oxigênio (FIO2)).

No presente estudo, foram avaliados os seguintes EA durante o seguimento: PAV,6 estridor pós-extubação, traqueomáscaras, disfagia, aspiração pós-extubação, imobilidade atelectasia, pneumotórax, extubação não planejada (ENP), decanulação, obstrução do TOT, falha de extubação, úlceras na face, infeções dos seios nasais e/ou ouvido, hemorragia gástrica por estresse, lesão de compressão, TOT seletivo, troca de TOT e pressão de cuff acima de 30 cmH2O e instabilidade cardiovascular secundária a altos parâmetros da VM.

Para identificação do grau de dano, utilizou-se a classificação da Organização Mundial da Saúde (OMS),16 que o define em leve, moderado, grave e óbito.

1. Leve: Sintomas leves, perda de função ou danos mínimos ou moderados, mas com duração rápida, e apenas intervenções mínimas sendo necessárias.
2. Moderado: Paciente sintomático, com necessidade de intervenção.
3. Grave: Paciente sintomático, necessidade de intervenção para suporte de vida, ou intervenção clínica/cirúrgica de grande porte, causando diminuição da expectativa de vida, com grande dano ou perda de função permanente ou de longo prazo.
4. Óbito: Dentro das probabilidades, em curto prazo o evento causou ou acelerou a morte.

O presente estudo foi aprovado no Comitê de Ética em Pesquisa (CEP), com Parecer nº 2.093.157.

A análise estatística foi realizada por meio do programa estatístico Statistical Package for the Social Sciences (SPSS) versão 20.0 (IBM Corp., Armonk, Nova Iorque, Estados Unidos). As variáveis categóricas foram expressas por frequência absoluta e porcentagens. As variáveis contínuas sem distribuição normal foram expressas por média e intervalo interquartil 25–75% (IQ 25–75%) e comparadas pelo teste não paramétrico de Mann-Whitney. A comparação da variável categórica foi realizada por teste do qui-quadrado de Pearson assintótico (quando 20% do valor esperado entre 1 e 5) e teste do qui-quadrado de Pearson exato (quando mais que 20% do valor esperado entre 1 e 5). A probabilidade de significância foi considerada significativa quando inferior a 0,05 (p<0,05).

O método estatístico para análise multivariada quanto aos fatores associados ao EA foi o de regressão logística. Para as variáveis contínuas, quando transformadas em categóricas, foi realizada a identificação dos pontos de corte (PCs) por análise de Receiver Operating Characteristic Curve (curva ROC), sendo...
investigados apenas os PCs daquelas com Area Under the Curve (AUC)>0,50. O ponto de corte discriminatório foi determinado pela melhor relação entre sensibilidade e especificidade que apresentasse menor discrepância.

O método estatístico para análise multivariada quanto aos fatores associados ao EA foi o de regressão logística. Todas as variáveis com p<0,20 na análise univariada foram incluídas na análise multivariada. Na avaliação do modelo estático, passo a passo, foram retiradas as variáveis com maiores valores p, até restarem no modelo final as variáveis significantes ao nível de 0,05. A medida de efeito do risco utilizada foi a Odds Ratio (OR), com intervalo de confiança de 95% (IC95%) para as variáveis associadas ao primeiro episódio de EA. A qualidade de ajuste foi avaliada pelo teste de Hosmer-Lemeshow.

Quanto ao tamanho da amostra, baseado nos achados de literatura que demonstraram EA variando de 40 a 51,3%3,11-15, o cálculo amostral teria “n” entre 260 e 664 pacientes. Neste estudo, considerando a presença de EA ao redor de 20%, com amplitude de intervalo de confiança de 0,10 e nível de confiança de 95%, o “n” mínimo para que a objetividade estatística não fosse prejudicada seria de 246 crianças.

RESULTADOS

Durante o período analisado, 953 pacientes foram internados na UTIP, dos quais 335 (35,2%) foram submetidos à VM invasiva, e destes, 29 foram excluídos (29/335 – 8,6%) devido a dados incompletos durante o acompanhamento (Figura 1).

Assim, foram incluídos 306 pacientes, com tempo de ventilação total de 2.155 dias. A mediana de idade do grupo foi de 24 meses (IQ 25–75%: 8–96), com 158 (51,6%) pacientes do gênero masculino e uma mediana de peso de 12 kg (IQ 25–75%: 6–23,5). Quanto ao motivo de admissão, em 163 (53,3%) pacientes foi o período pós-operatório e em 143 (46,7%), causas clínicas. Os casos cirúrgicos foram cirurgia geral pediátrica, em 79 (48,5%) pacientes; neurocirurgia, em 32 (19,6%); cirurgia cardiovascular, em 37 (22,7%); ortopedia, em oito (4,9%); e otorrinolaringologia, em sete (4,3%).

Os pacientes apresentaram mediana de internação de seis dias (IQ 25–75%: 3–13), Escore Pediatric Index Mortality 3 (PIM 3) à admissão de 1,7 (IQ 25–75%: 0,87–6,95) e mortalidade global de 18,3% (56/306). Quanto à via aérea artificial, 282 (92,2%) pacientes utilizaram TOT e 24 (7,8%) foram ventilados via cânula de traqueostomia (TQT). Do total de 282 pacientes com TOT, 175 utilizaram TOT com cuff, dos quais 34 (19,4%) apresentaram EA, enquanto no grupo cujo TOT era sem cuff, 20 apresentaram EA (p=0,920).

Entre as causas para o uso de VM, a principal foi pós-operatório, em 163 (53,3%) pacientes, seguida de falência respiatória, em 60 (19,6%), rebaixamento do nível de consciência, em 39 (12,7%), instabilidade hemodinâmica, em 15 (5,9%), pós-procedimento, em 13 (4,3%) e pós-parada cardiorrespiratória (PCR), em 13 (4,3%). Em relação aos parâmetros ventilatórios, a PIP teve mediana de 16 cmH2O (IQ 25–75%: 15–19), a PEEP, de 5 cmH2O (IQ 25–75%: 5–6), FIO2 de 35% (IQ 25–75%: 30–45) e volume corrente (VC) de 8 mL/kg (IQ 25–75%: 7–9). A mediana de duração total de VM foi de 38 horas (IQ 25–75%: 16–120) (Tabela 1).

Observou-se a ocorrência de EA em 66 (21,6%) pacientes, dos quais 11 (16,7%) sofreram dois EA, totalizando 77 eventos (36 EA por mil dias de ventilação). O EA prevalente foi o estridor pós-extubação, com 20 eventos (25,9%); seguido pela ENP, com 13 (16,9%); obstrução do TOT ou cânula traqueostomia, com nove (11,7%); TOT seletivo, com seis (7,8%); e falha de extubação, com seis (7,8%). Os episódios ocorreram mais comumente no turno da tarde (49,3%) e com grau de dano leve (54,6%) (Tabela 2).

Comparando-se na análise univariada a ocorrência de EA, evidenciou-se diferença com significância estatística quando avaliados a idade (p=0,028), o tempo de internação (p=0,001), o tempo de sedação (p=0,030), o tempo de VM (p=0,0085) e o tempo em modo assisto-controlado (p=0,002) (Tabela 1).

Nas análises da área da curva ROC, observou-se que o melhor PC quanto aos pacientes terem maiores chances de sofrer um EA ocorreu a partir de 50 horas de VM e a partir de sete dias de internação, variáveis contínuas estas que apresentaram AUC>0,5. O tempo de internação a partir de sete dias...
apresentou AUC de 0,63 (IC95% 0,56–0,70), com sensibilidade de 65,2%, especificidade de 58,7%, valor preditivo positivo de 1,57 e valor preditivo negativo de 0,59. Tempo acima de 50 horas de VM apresentou AUC de 0,60 (IC95% 0,53–0,69), sensibilidade de 57,6%, especificidade de 60,4%, valor preditivo positivo de 1,45 e valor preditivo negativo de 0,70.

A regressão logística multivariada final demonstrou que crianças internadas por sete ou mais dias apresentaram 2,63 vezes maior chance de sofrer um EA (p=0,001) (Tabela 3). O resultado da estatística do teste de Hosmer-Lemeshow apresentou p=0,887.

DISCUSSÃO

A VM é medida invasiva aplicada em situações urgentes como suporte de vida que pode causar complicações e EA. O tipo e o número de EA e complicações dependem em cada centro das características dos pacientes, da experiência da equipe e de seus recursos. Estudos na faixa pediátrica ainda são restritos, com casuística limitada descrevendo mais comumente a PAV, reforçando o propósito e a relevância deste estudo de avaliação da prevalência, tipos de eventos e fatores associados à ocorrência de EA relacionados à VM em crianças e adolescentes. Os resultados do presente estudo evidenciam número significativo de EA que podem ser prevenidos, identificando o tempo de internação como fator de risco a ser monitorado e avaliado quanto à prevenção dessas ocorrências.

No presente estudo foi observada prevalência de 21,6% de EA (36 EA/INC por mil dias de VM), inferior aos estudos de Kendirli et al. (42,8%), Meligy et al. (39,9% ou 29,5 EA por mil dias de VM), De Jesus et al. (51,3%) e Principi et al. (40% ou 114 EA por mil dias de VM). Verificamos ainda que 16,6% dos pacientes sofreram dois EA, semelhante ao do estudo de Meligy et al., em que 11,9% sofreram mais de um EA. A variação de prevalência encontrada pode ser influenciada pela seleção feita por cada autor de quais eventos analisar. Assim, os parâmetros associados à cultura de segurança e vigilância de eventos como indicador de qualidade também variam muito entre os serviços.
O EA mais encontrado neste estudo foi o estridor pós-extubação (25,9% dos eventos), semelhante aos estudos de Dave et al.,16 que também encontraram o estridor como evento predominante em 15,7% dos pacientes. Principi et al.15 e Anitha et al.17 também apontaram valores semelhantes, com 13,3 e 15,8%, respectivamente. Os principais fatores que levam ao estridor são o tempo prolongado de VM, o trauma relacionado a intubação e idades menores, sobretudo abaixo de quatro anos.18-20 Jansaithong21 cita ainda o tamanho do TOT, episódios de tosse, movimentos excessivos de cabeça e infecções das vias aéreas. Estudos demonstraram não haver associação entre tubos com e sem cuff e estridor pós-extubação.18,22,23

A obstrução das vias aéreas superiores pós-extubação é uma complicação frequente na população pediátrica, e estima-se que seja responsável por um terço de falhas de extubação.24 Como medida preventiva para esse EA, existem testes de permeabilidade das vias aéreas,25 porém ainda sem evidência na literatura para serem aplicados de rotina na faixa etária pediátrica, motivo de não termos utilizado na rotina do nosso serviço.

A ENP ocorreu em 13 (16,9%) pacientes, e nota-se grande amplitude na frequência entre os diversos estudos da literatura. No estudo de Jesus et al.,14 a ENP foi o evento mais frequente, com 31,9%, enquanto Principi et al.15 e Dave et al.16 encontraram, respectivamente, 3,3 e 3,4%. Segundo Da Silva et al.,26 os fatores de risco para ENP podem ser relacionados ao paciente ou ao processo e à unidade. Os fatores relacionados ao paciente englobam o nível de consciência (inquietação, agitação, uso de contenções físicas). Já os fatores de risco relacionados ao processo incluem atividades que envolvem cuidados da equipe assistencial ao paciente, como procedimentos, manipulações do doente crítico e cuidados com a fixação do TOT.27 Por outro lado, os fatores de risco relacionados à unidade estão associados ao quantitativo de enfermeiro responsável por paciente, à carga de trabalho e à sobrecarga de atribuição da enfermagem.26

A obstrução do TOT/traqueostomia (TQT) foi observada em nove (2,9%) pacientes, índice pequeno se comparado aos dados de Dave et al.16 (6,5%) ou Arriagada et al.11 (11,3%). Apesar da baixa frequência, deve ser dada extrema importância na prevenção desse evento, pois leva a outro EA, que é a troca de TOT/TQT sem planejamento prévio. Esse procedimento feito de urgência pode levar a hipoxemia e parada cardiorespiratória. Além disso, a obstrução do TOT/TQT por roda de secreção espessa é quase sempre um evento evitável, a partir da chegagem da umidificação nos ventiladores mecânicos e da observação mais rigorosa com os pacientes de secreção mais espessa ou que apresentam sangramento pelo TOT.

Neste estudo, tempo de internação foi apontado como fator de risco para EA, também observado nos estudos de Anitha et al.,17

Tabela 2 Características dos 77 eventos adversos encontrados nos pacientes em ventilação mecânica no período de julho de 2016 a junho de 2018.

Características dos eventos adversos	n (%)
Estridor pós-extubação	20 (25,9%)
Extubação não planejada	13 (16,9%)
Obstrução de TOT/TQT	9 (11,7%)
Tubo orotraqueal seletivo	6 (7,8%)
Falha de extubação	6 (7,8%)
Pressão de balonete elevada	5 (6,5%)
Atelectasia	5 (6,5%)
Pneumotórax	5 (6,5%)
Troca de TOT/TQT	4 (5,2%)
Pneumonia associada à ventilação mecânica	3 (3,9%)
Decanulação não planejada	1 (1,3%)

Turno

Turno	
Tarde	35 (49,3%)
Noite	20 (28,2%)
Manhã	16 (22,5%)

Grau de dano

Grau de dano	
Leve	42 (54,6%)
Moderado	17 (22,1%)
Grave	12 (15,6%)
Nenhum (incidente sem dano)	6 (7,8%)
Óbito	0 (0%)

TOT: tubo orotraqueal; TQT: traqueostomia.

Tabela 3 Análise de regressão logística multivariada da presença de eventos adversos.

Variáveis	Odds Ratio	IC95%	p-valor
Tempo de internação ≥7 dias	2,63	1,49–4,66	0,001
Tempo de VM>50 horas	1,02	0,98–1,04	0,127
Tempo de sedação (horas)	0,99	0,88–1,02	0,186
PEEP (cmH2O)	1,03	0,87–1,23	0,687
FiO2 (%)	0,98	0,96–1,08	0,371
Tempo assistido controlado (horas)	0,97	0,95–1,01	0,112
Idade (meses)	0,79	0,59–1,04	0,100

IC95%: intervalo de confiança de 95%; VM: ventilação mecânica; PEEP: pressão expiratória final positiva; FiO2: fração inspirada de oxigênio.
Eventos adversos relacionados à ventilação mecânica

Torres-Castro,
De Jesus et al., 14 Meligy et al.13 e Ramirez.29 Portanto, fica evidente a importância do manejo desses pacientes no menor tempo possível de internação. No entanto, esse achado deve ser avaliado com cautela neste estudo, uma vez que a associação do maior tempo de internação ao maior risco de EA pode não ser uma variável independente da gravidade do quadro clínico ou do motivo de internação na UTIP, uma vez que no ajuste do modelo final essas variáveis não foram incluídas, sendo uma limitação a ser considerada.

É frequentemente relatado na população neonatal que quanto menor a idade, maiores as chances de sofrerem um EA relacionado à VM.30 Embora a idade não tenha entrado no modelo multivariado final deste estudo, essa variável teve diferença estatisticamente significativa na análise univariada. Isso pode estar associado ao fato de crianças mais novas serem mais difíceis no manejo de sedação, usarem vias aéreas artificiais de menor calibre, apresentarem maior salivação, além de características específicas anatômicas das vias aéreas que as tornam mais propensas aos eventos.30,31

O EA caracteriza-se por lesão ou dano não intencional causado ao paciente pela intervenção assistencial e não pela doença de base, enquanto as complicações podem se originar da doença de base. No entanto, a semelhança relevante é que EA e complicações associadas a doenças podem ser evitados por meio da implementação de protocolos de prevenção. Na literatura, os protocolos de medidas preventivas para EA relacionados à VM em geral estão mais voltados para eventos específicos, como a PAV e a ENP.32 Estabelecer protocolos de prevenção é importante, uma vez que a ocorrência de EA, principalmente PAV, estidor pós-extubação e ENP, traz como conseqüência aumento no tempo de internação, aumento esse que eleva a chance de novos eventos ocorrerem, principalmente considerando que, neste estudo, foi encontrada uma associação da ocorrência de eventos ao maior tempo de internação.

Este estudo, por ter sido realizado em um único centro, apresenta como limitação o número de pacientes incluídos, o que pode influenciar os resultados, especialmente para a análise multivariada — limitação essa também encontrada nos estudos sobre o tema na literatura.3,11-17 Apesar da importância em se estudar os EA relacionados à VM, o número e o tipo de EA em um único centro podem limitar extrapolações, reforçando a necessidade de estudos multicêntricos que elucidem os principais fatores de risco e possibilitando medidas preventivas.

Conclui-se, neste estudo, que as crianças têm maior chance de sofrer um EA quando expostas a tempo de internação igual ou superior a sete dias, o que sugere menor atenção a essa população e a necessidade de implementação de protocolos com maior rigoridade quanto aos cuidados relacionados à VM. Entre os EA encontrados, o estidor pós-extubação e a ENP foram os principais, ambos perfetamente passíveis de serem prevenidos.

Financiamento
O estudo não recebeu financiamento.

Conflito de interesses
Os autores declararam não haver conflito de interesses.

REFERÊNCIAS

1. Alonso-Ovies A, Nin N, Martín MC, Gordo F, Merino P, Añón JM, et al. Safety incidents in airway and mechanical ventilation in Spanish ICUs: The IVEMVA study. J Crit Care. 2018;47:238-44. https://doi.org/10.1016/j.jcrc.2018.07.012
2. Council of Europe. Committee of Experts on Management of Safety and Quality in Healthcare (SP-SQS). Expert group on safe medication practices: glossary of terms related to patient and medication safety. França: Council of Europe; 2005.
3. Jesus D, Almeida PC, Chaves EM. Analysis of complications of use of mechanical ventilation in children of a pediatric intensive care unit. Rev Rene Fortaleza. 2008;9:57-64.
4. Pedrosa TM, Couto RC. Errors and adverse events in medical and hospital assistance. Rev Med Minas Gerais. 2014;24:210-6. https://doi.org/10.5935/2238-3182.20140054
5. Stamboully JJ, McLaughlin LL, Mandel FS, Boxer RA. Complications of care in a pediatric intensive care unit: a prospective study. Intensive Care Med. 1996;22:1098-104. https://doi.org/10.1007/bf01699236
6. Brazil – Ministério da Saúde. Agência Nacional de Vigilância Sanitária. Segurança do paciente e qualidade em serviços de saúde [homepage on the Internet]. Medidas de prevenção de infecção relacionada à assistência à saúde [cited 2016 Nov 03]. Brasília: ANVISA; 2013. Available from: <http://www20.anvisa.gov.br/segurancadopaciente/images/documentos/livros/Livre2-CriteriosDiagnosticosIRASaude.pdf>.
7. Marraro GA. Innovative practices of ventilatory support with pediatric patients. Pediatr Crit Care Med. 2003;4:8-20. https://doi.org/10.1097/00130478-200301000-00003
8. Tablan OC, Anderson LJ, Besser R, Bridges C, Hajjeh R; Center for Disease Control and Prevention (CDC), et al. Guidelines for preventing health-care-associated pneumonia, 2003: recommendations of CDC and the Healthcare Infection Control Practices Advisory Committee. MMWR Recomm Rep. 2004;53:1-36.
9. Kaul TK, Bhat D. Endotracheal tubes in children - cuffed or uncuffed. J Anesthesiol Clin Pharmacol. 2007;23:229-30.
10. World Health Organization [homepage on the Internet]. Conceptual framework for patient safety [cited 2018 Jan 30]. Geneva: WHO; 2009. Available from: <http://www.who.int/patientsafety/taxonomy/lcps_full_report.pdf>.

11. Arriagada S, Cordero J, Baeza J. Complications of mechanical ventilation in children. Rev Chil Pediatr. 1994;65:255-9.

12. Kendirli T, Kavaz A, Yalaki Z, Öztürk Hişmi B, Derelli E, Incê E. Mechanical ventilation in children. Turk J Pediatr. 2006;48:323-7.

13. Meligy BS, Kamal S, El Sherbini AS. Mechanical ventilation practice in Egyptian pediatric intensive care units. Electron Physician. 2017;9:4370-77. https://doi.org/10.19082/4370

14. Lucas da Silva PS, Fonseca MC. Incidence and risk: factors for cardiovascular collapse after unplanned extubations in the Pediatric ICU. Respir Care. 2017;62:896-903. https://doi.org/10.4187/respcare.05346

15. Principi T, Fraser DD, Morrison GC, Al Farsi S, Carrelas JF, Maurice EA, et al. Complications of mechanical ventilation in the pediatric population. Pediatr Pulmonol. 2011;46:452-7. https://doi.org/10.1002/ppul.21389

16. Dave H, Kumar V, Tandon K, Tandon R. Mechanical ventilation practices in a paediatric intensive care unit located at rural tertiary care teaching hospital of Gujarat – a retrospective descriptive study. J Pediatr Crit Care. 2017;4:27-33. https://doi.org/10.21304/jpcc.20160134

17. Anitha GF, Lakshmi S, Shanthi S, Darlington CD, Vinoth S. Clinical profile of children mechanically ventilated in a pediatric intensive care unit of a limited resource setting. Int J Contemp Pediatr. 2016;3:542-5. http://dx.doi.org/10.18203/2349-3291.ijcp20161034

18. Nascimento MS, Prado C, Troster EJ, Valério N, Alith MB, Almeida JF. Fatores de risco para estridor pós-extubação em crianças: o papel da cânula orotraqueal. Einstein (São Paulo). 2015;13:226-31. https://doi.org/10.1590/S1679-45082015AO3255

19. Khemani RG, Hotz J, Morzov R, Flink R, Derelli E, Incê E. Mechanical ventilation in children. Turk J Pediatr. 2006;48:323-7.

20. Jansaithong J. The use of dexamethasone in the prevention of post extubation stridor in pediatric patients in PICU/NICU settings: an analytical review. J Soc Pediatr Nurs. 2001;6:182-91. https://doi.org/10.1111/j.1744-6155.2001.tb00242.x

21. Crankshaw D, McViey J, Entwistle M. A review of cuffed vs uncuffed endotracheal tubes in children. PACCJ. 2014;2:70-3. https://doi.org/10.14587/paccj.2014.16

22. De Orange FA, Andrade RG, Lemos A, Borges PS, Figueiroa JN, Kovatsis PG. Cuffed versus uncuffed endotracheal tubes for general anaesthesia in children aged eight years and under. Cochrane Database Syst Rev. 2017;11:CD011954. https://doi.org/10.1002/14651858.CD011954.pub2

23. Kurachek SC, Newth CJ, Quasney MW, Rice T, Sachdeva RC, Patel NR, et al. Exubation failure in pediatric intensive care: a multiple-center study of risk factors and outcomes. Crit Care Med. 2003;31:2657-64. https://doi.org/10.1097/01.CCM.0000094228.90557.85

24. Saback LM, Vieira GF, Costa MD. The use of the cuff leak test as a factor to predict laryngospasm. Rev Bras Ter Intensiva. 2008;20:77-81.

25. Lucas da Silva PS, de Carvalho WB. Unplanned extubation in pediatric critically ill patients: A systematic review and best practice recommendations. Pediatr Crit Care Med. 2010;11:287-94. https://doi.org/10.1097/01.PCC.0b013e3181b80951

26. Fitzgerald RK, Davis AT, Hanson SJ; National Association of Children’s Hospitals and Related Institution PICU Focus Group Investigators. Multicenter analysis of the factors associated with unplanned extubation in the PIC. Pediatr Crit Care Med. 2015;16:217-23. https://doi.org/10.1097/PCC.0000000000000496

27. Torres-Castro C, Valle-Leal J, Martínez-Limón AJ, Lastra-Jiménez Z, Delgado-Bojórquez LC. Pulmonary complications associated with mechanical ventilation in neonates. Bol Med Hosp Infant Mex. 2016;73:318-24. https://doi.org/10.1016/j.bmhixm.2016.08.001

28. Balcells Ramírez J, López-Herce CJ, Modesto Alapont V; Grupo de Respiratorio de la Sociedad Española de Cuidados Intensivos Pediátricos. Prevalence of mechanical ventilation in pediatric intensive care units in Spain. An Pediatr (Barc). 2004;61:533-41. https://doi.org/10.1016/s1695-4033(04)78440-4

29. García-París M, Valenzuela-González L, Espinosa-Aguirre E, Porta-Moles J, Barreda-Pérez F, Vitale-Andrade M, et al. Factors related to unplanned extubation in pediatric intensive care units. J Pediatr (Rio J). 2015;91:712-7. https://doi.org/10.1016/j.jped.2014.12.006

30. França DF. Adverse events related to ventilatory therapy in high risk newborns [master’s thesis]. Natal: UFRN; 2016.

31. Miller KA, Naglieri J. Advances in emergent airway management in pediatric. Emerg Med Clin N Am. 2019;37:473-91. https://doi.org/10.1016/j.emc.2019.03.006

32. Merkel L, Beers K, Lewis MM, Stauffer J, Mujsce DJ, Kresch JA, et al. Evaluating risk factors for pediatric post-extubation stridor and reintubation in children. Indian J Pediatr. 2009;76:555-7. https://doi.org/10.1007/s12098-009-0067-4

33. Jansaihtong J. The use of dexamethasone in the prevention of post extubation stridor in pediatric patients in PICU/NICU settings: an analytical review. J Soc Pediatr Nurs.