A novel IgY-Aptamer hybrid system for cost-effective detection of SEB and its evaluation on food and clinical samples

Venkataramana Mudili¹, Shivakiran S. Makam², Naveen Sundararaj⁴, Chandranayaka Siddaiah³, Vijai Kumar Gupta¹ & Putcha V. Lakshmana Rao¹

In the present study, we introduce a novel hybrid sandwich ALISA employing chicken IgY and ssDNA aptamers for the detection of staphylococcal enterotoxin B (SEB). Cloning, expression and purification of the full length recombinant SEB was carried out. Anti-SEB IgY antibodies generated by immunizing white leg-horn chickens with purified recombinant SEB protein and were purified from the immunized egg yolk. Simultaneously, ssDNA aptamers specific to the toxin were prepared by SELEX method on microtiter well plates. The sensitivity levels of both probe molecules i.e., IgY and ssDNA aptamers were evaluated. We observed that the aptamer at 250 ngmL⁻¹ concentration could detect the target antigen at 50 ngmL⁻¹ and the IgY antibodies at 250 ngmL⁻¹, could able to detect 100 ngmL⁻¹ antigen. We further combined both the probes to prepare a hybrid sandwich aptamer linked immune sorbent assay (ALISA) wherein the IgY as capturing molecule and biotinylated aptamer as revealing probe. Limit of detection (LOD) for the developed method was determined as 50 ngmL⁻¹. Further, developed method was evaluated with artificially SEB spiked milk and natural samples and obtained results were validated with PCR. In conclusion, developed ALISA method may provide cost-effective and robust detection of SEB from food and environmental samples.

Staphylococcus aureus is a major human pathogen that elicits wide range of exotoxins that are responsible for diverse disease symptoms in humans. Some S. aureus exotoxins are pyrogenic, which includes staphylococcal enterotoxins (SETs) and toxic shock syndrome toxin 1 (TSST-1). Among the diseases caused by S. aureus, staphylococcal food poisoning is one of the most commonly explored food-borne illnesses in humans that results from the consumption of foods contaminated with staphylococcal enterotoxins (SETs). SETs, with diverse serotypes, cause various types of disease symptoms to human globally. Staphylococcal enterotoxin B (SEB) is one of the most frequently existing toxin serotypes in staphylococcal food poisoning. SEB is a 28-kDa-protein superantigen and one of the most potent mitogens reported. The biological effects of super-antigens include pyrogenicity, enhancement of lethal endotoxin shock, and induction of inflammatory cytokines, such as tumor necrosis factor and interleukin. SEB mediates its biological effects by binding to the major histocompatibility complex (MHC) class II at a different site and is distinct from other antigens in that it does not have to be preprocessed. SEB is a protein with no potential for high mortality, but its high emetic potency (LD₅₀ - 0.02 mgkg⁻¹) and fast action (2 to 8h) raised an interest as devastating agent. The toxin is especially attractive as a biological warfare agent because much lower quantities of SEB (LD₅₀ value - 0.02 mgkg⁻¹ by both the inhalational and the intravenous routes) were needed than of synthetic chemicals to produce intoxicating effects in humans.

¹DRDO-BU-CLS, Bharathiar University Campus, Coimbatore, Tamil Nadu- 641046, India. ²DOS in Biotechnology, University of Mysore, Manasagangotri, Mysore, India. ³Molecular Glyco-biotechnology Group, Discipline of Biochemistry, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland. Correspondence and requests for materials should be addressed to P.V.L.R. (email: pvlrao@rediffmail.com)
humans and ease of bulk production. Besides, they are potent gastrointestinal exotoxins, resistant to proteolytic enzymes, high temperature (upto 100°C), and extreme pH values owing to their compact tertiary structures, which will be retained even after enzymatic activities in the digestive tract. Hence it is currently listed as a category B select Bio-weapon agent.

It is therefore implied that there is an urgent need to develop cost effective, rapid, accurate, and reliable diagnostic methods for sensitive detection of SEB from contaminated food and environmental samples as well as therapeutic strategies to protect public health against SEB. Nearly sixty-eight methods based on antibodies and analytical instrumentation, including surface plasmon resonance, piezoelectric crystal immunosensing, magnetoelectric sensing, liquid chromatography mass spectrometry, surface-enhanced Raman scattering probe, cantilever sensing, electrochemical and photonic crystal lab-on-a-chip methods are already available for the detection of SEB. These reported methods have their own limitations such as requirement of expertise personnel for data interpretation, unsatisfied instrumentation, lengthy protocol times, and dis ease. Also most of these methods depend either directly or indirectly on antibodies against target agent. However, these antibodies are sensitive to temperature and pH alterations, and also have limited lifetimes. Moreover, there are still several other problems in the production of antibodies against toxic proteins, such as batch to batch variation in polyclonal antibody development, stringent regulations in animal ethical committee approvals to handle large number of animals or high cost involvement in maintaining hybridoma cell lines for bulk production of monoclonal antibodies. Besides all the above limitations, interference by staphylococcal protein A is most important issue in diagnostic development against staphylococcal exotoxins. SpA is a protein displayed by S. aureus on the cell surface and also released outside and it strongly binds to all IgG produced in mammals. Therefore, the antibodies when used for the detection of any toxin of S. aureus will produce false positive results. Hence, it is still a great challenge to create new ideas and strategies for the development of a simple to use reliable, rapid and low-cost detection systems which can be adopted to resource-poor settings in developing countries to overcome the problems associated with SEB.

Recently aptamers and chicken antibodies (IgY) have attracted significant attention of researchers over existing high-cost and conventional antibody based approaches to detect target threat agents. Aptamers are single stranded DNA/RNA (ssDNA or ssRNA) molecules, which possess high recognition ability toward specific targets and have a potential application as bio-probes for targeted drug delivery and bio-sensing applications. Aptamers have many advantages over antibodies, such as more stable, easier modification, easier synthesis, and higher affinity, and they can be fluorescently labeled and do not require experimental animals for synthesis. Due to these properties, a variety of aptamer-based analytical methods including electrochemistry, fluorescence, atomic force microscope, and quartz crystal microbalance have been developed for molecular recognition and detection of threat agents.

Due to the utility of two different bio-ligands raised against same target molecule, sandwich immunoassays play a crucial role in sensitive and selective detection of target toxic agents like SEB. In development of sandwich immunoassays for detection of SEB, utility of IgY is great advantage, since IgY is free from interaction with protein A, which is major obstacle in development of SEB detection systems. Moreover, easy of production in bulk quantities, moderate sensitivities and high specificities together with free from animal ethical committee issues makes it significance to be a better alternative over monoclonal as well as polyclonal antibodies. Till date utilization of IgY for development SEB detection systems is scanty. Hence, sensitive immunoassays continue to provide a more realistic alternative for detection of SEB from food and environmental samples are needed.

In the present study, we developed such a system, based on sandwich immunoassay, in which IgY as a capture agent and single strand biotinylated DNA aptamer as a reveling probe. To evaluate the reliability of the detection, developed method was evaluated on several food and clinical samples originated from India were undertaken and results of the developed method showed very promising for detection of SEB in tested samples.

Results

Cloning of recombinant SEB. In order to prepare recombinant SEB toxin that could facilitate SELEX process for ssDNA aptamer generation, we cloned full length of SEB toxin encoding gene into pET22 (b+) expression vector and the cloning strategy was followed as shown in Fig. 1A. Care has been taken during designing of primers for amplification of SEB to accommodate open reading frame of the vector as well as C-terminal histidine tag encoding sequence existing in vector. After successful cloning, the expression host E. coli BL21 DE3 colonies transformed with desired gene was recovered and sub cloned on to LB agar medium with suitable antibiotics as well as same was inoculated into LB broth. Plasmid extraction was performed from transformed E. coli BL21 DE3 colonies and was sequenced to check the sequence similarity with the native gene sequence of SEB before conducting the expression analysis.

Expression and purification of recombinant SEB. The presence of full length recombinant SEB toxin from expression host E. coli BL21 DE3 harboring pET22 (b+) SEB vector was analyzed by SDS-PAGE after 5 hours induction with 1.5, 1 and 0.5 mM IPTG concentrations at 28°C (Fig. 1B) and was confirmed by western-blotting analysis using anti Histidine antibodies (Fig. 1C). It was found to be 1 mM concentration of IPTG for 5 hrs induction at 28°C showed significant expression compared with uninduced control cells. The SDS-PAGE and western-blotting analysis revealed that a 28 KD recombinant
SEB was expressed by host cells and was purified by Ni-NTA affinity chromatography. The bulk expression of rSEB was performed in 500 ml LB broth from which, we could achieve protein yield of 15.4 mg.

The purified protein fractions after affinity chromatography were pooled and dialyzed against 1X PBS for 72 h with 3 buffer changes to remove excess salts.

Selection of ssDNA aptamers against SEB. Using rSEB toxin as a coating antigen, ssDNA aptamers were generated from randomized DNA library with known 5′ and 3′ over hangs. After 8 rounds of SELEX process, we obtained the highly specific ssDNA aptamers against the target antigen. Out of 7 aptamers obtained which were generated against the antigen (Table 1B), SEB-1 and SEB-2 were found highly specific to the target and rest were shown low sensitivity with nonspecific interactions with other toxins. Hence present study was conducted with SEB-1 and SEB-2 aptamers for ALISA method development and selected aptamer secondary structures were represented in Fig. 2.

Generation, characterization and purification of IgY. The chickens were immunized five times in 10 days intervals to elicit good immune response. At the end of fifth immunization, blood was collected from the chicken to determine the antibody response. When the end point titer of immunized chickens was found to be 1:32,000, then eggs were collected to extract the IgY antibodies. A total of 20 eggs were collected from each bird. Each egg could yield about 3 mg of antibodies and from all the eggs, we could achieve 60 mg of anti-SEB IgY antibodies as determined by Lowry’s protein estimation. The precipitated antibodies were found to be pure and not contaminated with any other components of egg yolk as confirmed by SDS-PAGE (results not shown).

Specificity of the aptamer and IgY. The specificity of the aptamers for rSEB was evaluated by dot ELISA in which other related protein toxins such as SEA, SEC, TSST and a-hemolysin were coated. Results showed that, selected aptamers reacted exclusively with SEB toxin with no cross reactivity to the other related protein toxins were found (Fig. 3A). Similarly, cross reactivity of anti SEB-IgY was also evaluated by indirect plate ELISA and results showed that, anti-SEB-IgY was highly reactive to SEB toxin than the other studied toxins. However, some cross reactivity was observed with SEC and SEA. But, interestingly there was no cross reactivity with protein-A which, present in S. aureus and common interference during ELISA reactions with antibodies (Fig. 3B). By employing these bio-ligands (anti-SEB-Aptamer and IgY)
in the present study, we developed a sandwich dot-ALISA method was robust and low cost detection of SEB as well to avoid the residual cross reactivity of Protein A of Staphylococcus spp., thus to freed from false positive results in the diagnostic assay.

Sandwich-dot-ALISA for cost effective detection of SEB. After success full characterization of generated bioligands including anti SEB-IgY and anti SEB aptamers, a simple to use cost effective dot-ALSIA method was standardized for detection of SEB from food and other contaminated samples. The schematic representation of the sandwich ALISA is depicted in Fig. 4. Developed method was further characterized in terms of sensitivity, specificity and reliability.

Sensitivity of sandwich dot ALISA. The sensitivity of the aptamers and anti-SEB antibodies were first compared and evaluated prior to the development of sandwich dot ELISA. Initially, aptamer and IgY were tested at various concentrations against 100 ng of antigen (SEB) per spot. The aptamer could display
Figure 3. Specificity evaluation of anti SEB-aptamer (A) and anti anti-SEB IgY (B). (A) 1 and 2 replicates of the assay; SEA- Staphylococcal Enterotoxin A; SEC- Staphylococcal Enterotoxin C; SEB- Staphylococcal Enterotoxin B; TSST- Toxic Shock Syndrome Toxin; HLA- α-Hemolysin. Different toxins (1μg/mL) of S. aureus were coated onto nitrocellulose membrane and probed with biotinylated anti SEB aptamer. (B) SEB- Staphylococcal Enterotoxin B; SEC- Staphylococcal Enterotoxin C; SEA- Staphylococcal Enterotoxin A; TSST- Toxic Shock Syndrome Toxin; HLA- α-Hemolysin. Different toxins (1μg/mL) of S. aureus were coated onto microtitre plate wells and probed with anti SEB-IgY.

Figure 4. Schematic representation of IgY sandwich-ALISA.
the colored spot at 250 ng mL\(^{-1}\) concentration whereas the IgY could develop color at 500 ng mL\(^{-1}\) concentration and the sensitivity of the aptamer was stayed as twofold higher than the IgY antibody. Hence these concentrations were chosen for the assay development. Similarly evaluation of the aptamer and IgY at 250 ng mL\(^{-1}\) and 500 ng mL\(^{-1}\), respectively was performed with various concentrations of the antigen ranging from 10 \(\mu\)g mL\(^{-1}\) to 0.01 \(\mu\)g mL\(^{-1}\). It was deduced that the aptamer at 250 ng mL\(^{-1}\) concentration could detect 25 ng ml\(^{-1}\) of target antigen (SEB), whereas IgY antibodies at 500 ng mL\(^{-1}\) concentration could detect 50 ng mL\(^{-1}\) of SEB. Moreover, as determined IgY was showed some cross reactivity with other enterotoxins as well, hence we decided to use IgY as capturing molecule and aptamer as revealing probe in the sandwich dot-ALISA method. Upon development of hybrid sandwich-ALISA method, it was tested on various concentrations of the toxin and we found that developed method was able to detect 50 ng mL\(^{-1}\) of target antigen as revealed by IgY capture antibody (Fig. 5A,B). We further evaluated the same matrix with microtitre plate format onto various toxigenic and non toxigenic strains of S. aureus and other related bacteria and study results revealed that, developed method was highly specific to the SEB toxin alone (Fig. 6).

Evaluation of sandwich dot-ALISA onto natural samples. Further the ALISA method was tested on the contaminated food and environmental samples. All the samples contaminated with S. aureus positive for SEB have displayed brick-red dots in dot-ALISA (Fig. 7). These samples were also verified by PCR for SEB gene and the developed dot-ALISA method results were consistent with PCR assay for SEB encoding gene (Table 1).

Discussion

Staphylococcus aureus is one of the most important pathogenic organisms posing greatest threats in clinical infections. The pathogen is unique and notorious owing to its range of infection missiles viz., \(\alpha\)-hemolysin, several enterotoxins (as many as 23, ranging from SEA to SHV), TSST and other secretory proteins. As if insufficient, it is also rapidly gaining resistance for most of the antibiotics. Among its defensive mechanisms, SEB forms the most important one because of several reasons such as (a) most potent toxin capable of crossing gastro-intestinal barrier; (b) possible to aerosolize the toxin which also implies that SEB can be made into biological weapon; (c) ingestion of even at nanogram levels cause staphylococcal infections in children and (d) enterotoxins are heat resistant. Hence, there is plethora of literature available dealing with the detection of SEB from various substances such as food, clinical and suspected samples. Among these detection methods, antibody based methods such as immuno affinity assay (Luminex), lateral flow systems and ELISAs and nucleic acid based methods such as PCRs, real time PCRs, dot blots are available. And several advanced immunoassays developed such as Semiconductor
Nanocrystal Immunoassays, Western blotting, SET-RPLA kits, sandwich ELISAs and chemiluminescence enzyme immunoassay which were highly specific to SEB.

Immuo based systems are found to be more convenient, cost effective and robust than conventional nucleic acid based methods for toxin detection because conventional nucleic acid assays demand additional steps of sample purification and the sensitivity will be easily compromised by interfering substances such as cell debris, media components or other substances. Therefore, in the present study, we generated the anti-SEB bio-ligands including, IgYs and ssDNA aptamers that were shown to be high reactive and specific towards SEB. With the use of these bio-ligand molecules, we were able to develop sandwich hybrid system for cost effective, rapid and sensitive detection of SEB from contaminated food and clinical samples. In particular, the system was able to detect SEB at 50 ng mL$^{-1}$ level from contaminated food matrix, which is far beyond the proposed LD$_{50}$ limits of the SEB to humans. SpA is a cell wall associated protein present in nearly all strains of *S. aureus*. It is also secreted into the culture supernatant during exponential phase. SpA binds to Fc region of all the major classes of mammalian immunoglobulins and...
produce false positives during immunoassays. In a previous study comparing Vidas SET2 to Transia plate SET detection kits, all test samples were submitted to a protein extraction step and pretreatment with non-immunized rabbit plasma to avoid possible interference by protein A. In the case of Vidas SET2, a specific treatment for removing the Fc fragment from IgG was used to avoid any interference by protein A. Recent reports reveal that the incubation in DEPC for 10 min inhibits binding of SpA to both capture antibody in sandwich ELISA and detecting antibody in Western blotting procedures. Though DEPC treatment is effective in blocking SpA binding to mammalian IgG to great extent, there are certain setbacks like DEPC also interferes with binding of specific antibodies with antigens of *S. aureus* because it can modify amino acid residues such as histidine, lysine, tyrosine, serine and threonine which may be present in the antigen binding paratopes thus reducing the sensitivity of the assay.

Another suitable alternative thus explored was to develop IgY antibodies from chicken eggs. It is relatively cheaper, less painful to the animals and avoids costly hybridoma. Earlier reports also showed that the involvement of IgY instead of IgG eliminated SpA interference in immunoassays. Some earlier studies have reported that IgY is not a suitable molecule for capturing antigens since its flexibility at the hinge region is restricted. But many workers have successfully utilized IgY for capturing the antigens. Besides, production of monoclonal antibodies from mice which is most explored and widely popular the main limitation is that the generation and their characterization are time and resource intensive. It also demands technical expertise in hybridoma technology. In the present study too, we could efficiently employ IgY as capturing molecule. In our study, without any pretreatment on samples, anti-rSEB IgY, as expected, did not react with protein A. The samples were directly added to the NC membrane precoated with capturing molecule.

For revealing probes, we developed aptamers specific to SEB by SELEX method. Earlier, several workers have employed ssDNA aptamers for the detection of SEB. The first ssDNA aptamer to SEB was reported by Bruno et al. in 2002. Later Purschke et al. discovered spiegelmer ssDNA aptamer which was promising. However, these aptamers were never assessed their specificity towards SEB against other toxins. Later, ssDNA aptamers were reported by DeGrasse designated APTSEB1, found to be specific to SEB even in the presence of mixture of other SEs. Apart from these reports, very little work has progressed in the development of DNA aptamers against SEB toxin. Besides, aptamers are more flexible and able to configure around the antigen firmly. Aptamers are very versatile molecules for utilization in detection systems in comparison to antibodies as aptamers are equally specific to the target and also achieve similar sensitivity as monoclonal antibodies but the production of aptamers is easy, cost effective and able disseminate the sequence information that allow other scientists to replicate to suit their needs. However, antibodies are more suitable for capturing the target molecules from different matrices than aptamers as the antibodies possess structural rigidity that is not disturbed by chemicals and other interfering substances present in the source substances. Combining the advantages of both aptamers and IgY, in the present study, we focused on development of sandwich immuno and aptamer based dot ELISA platform. To our knowledge, this is the first report describing a novel sandwich ELISA involving DNA aptamers and chick antibodies for the detection of SEB.

Materials & Methods

Chemicals, media and reagents. All the salts and bacteriological media were purchased from Himedia, India, except mentioned specifically. The aptamer library, primers and biotinylated probes were synthesized at 1 mM and 250 nM scale, respectively at IDT, USA. The stock and working dilutions of the library and the primers were maintained in milliQ water.

Preparation of recombinant SEB (rSEB) protein. The full length SEB encoding gene from *S. aureus* ATCC 51740 was amplified by standard PCR protocol. Primers of SEB gene were designed to insert *Bgl II* and *Hind III* sites at 5' and 3' ends respectively. The primer sequences Ent (F) – GGAAGATCTACCAAGATCCGAATACCGATG and Ent B (R) – TAGAAGCTTGTGTTGACGTTGATG CG representing forward and reverse primers, respectively were used to amplify the SEB gene. Construction of *SEB-pET22B* vector was carried out by standard cloning procedure described by Sambrook *et al.* (2001). Briefly, PCR amplified product was purified and restriction digestion was carried out with appropriate restriction enzymes. Simultaneously, *pET22B* vector DNA was also digested with the same enzymes. Digested products were purified by gel extraction kit (Sigma, USA) and ligation was performed using T4 DNA ligase kit (Promega, Germany) at 4°C for overnight. Ligation was confirmed by PCR with T7 promoter primers and the cloned vector was transformed into expression host, *E. coli* BL21(DE3) competent cells (Invitrogen, USA). The positive clones were confirmed by colony PCR using T7 promoter primers. Expression optimization of recombinant protein SEB (rSEB) was undertaken using IPTG induction. Native form of expressed rSEB was purified from *E. coli* host cells by Ni-NTA affinity chromatography (Qiagen, Germany) following manufacturer’s instructions (Qiexpressinonist). The purified fractions of rSEB was dialyzed against 1X PBS at 4°C with 3 buffer changes and confirmed by SDS-PAGE and Western blotting analysis using anti-SEB polyclonal.
Selection of ssDNA aptamers against SEB by SELEX method. The ssDNA aptamer library used in the present study consists of a central region of 40 randomized nucleotides flanked 22 bases forward and 25 bases of reverse primer binding regions necessary for PCR amplification (Table 1A).

SELEX method
Purified rSEB was coated onto microtiter 96 well ELISA plate at 1 μg per well in 50 mM coating buffer (50 mM carbonate and bio-carbonate buffer, pH 9.4) and incubated for 60 min at room temperature (RT), followed by blocking the unbound spaces in wells with 5% defatted milk solution for 2 h at 42°C. The SELEX method was performed as per the protocol by Pan et al., (2010)44 and complete protocol of SELEX method was given in Supplementary methods section-2. A total of 8 rounds of SELEX were performed and after 5th round of SELEX procedure noncompetitive SELEX was done using protein A, SEC, SEA and TSST toxins (kindly provided by Prakash Narayana Reddy, CFTRI, Mysore). Only the specific ssDNA aptamer sequence against SEB was obtained. After 8 rounds of SELX protocol, a cloned pool of ssDNA aptamers reactive only against rSEB. Highly reactive pool was cloned into T7 cloning vector and sequenced (Xcelris Genomics, Ahmedabad, India). The ssDNA aptamer sequences were used to predict the structure and KD values by M-fold software tool.

Specificity & sensitivity evaluation. The specificity and sensitivity of the aptamers developed in this study were determined by dot ELISA method as described elsewhere for antibodies with suitable modifications45. Briefly, the selected aptamers were amplified in bulk by PCR using the primers for the flanked regions with the biotinylated reverse primer. Different toxins secreted by S. aureus such as SEA, SEC, TSST, α-hemolysin and Protein A along with rSEB protein were coated onto nitrocellulose membrane at a concentration of 50 μg/mL. The rSEB toxin was used as the positive control and PBS as a negative control. After coating, the membrane was blocked with 5% milk solution at 45°C for 1 h. Then, the membrane was incubated for 60 min at room temperature (RT) with ssDNA aptamer dissolved in binding buffer (5 mM Tris–HCl with 1 M NaCl, pH 7.5). Following this, the membrane was stringently washed with PBST to remove the non-specific binding of aptamer molecules and then incubated with Streptavidin-HRP conjugate (Sigma, USA) for 30 min at room temperature. The unbound HRP-streptavidin was washed off thoroughly with PBS and coloring substrate TMB-H₂O₂ (Arystogene Biosciences, Bengaluru, India) (1X) solution and 3,3′,5,5′-diamine benzidine tetrahydrochloride (DAB) (Sigma, India) were added. The color development was observed and documented. The colorimetric reaction was stopped by rinsing the membrane in tap water.

Similarly, the sensitivity of the ssDNA aptamer was determined by applying a series of rSEB dilutions ranging from 10 μg to 10 ng to nitrocellulose membrane followed by dot-ELISA as mentioned above.

Animal Ethical Statement. An animal experiment was reviewed and approved by the Institutional Animal Ethical Committee (Letter No. UOM/IAEC/13/2012; Dated 10-11-2012) University of Mysore, Mysore. Animal handling and experiments were carried out in accordance with the guidelines of the Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA).

Generation and characterization of anti SEB-IgY antibodies
Immunoisolation of chicken with rSEB toxin. White leghorn chickens were purchased from the authorized suppliers (Suguna, Coimbatore, India). The birds were brought to the facility and checked for the presence of anti-SEB IgY with the pre immunized serum by indirect-ELISA method before immunization27. After negative confirmation, the fowls were immunized intramuscularly (i.m.) with 100 μg of rSEB emulsified with equal volumes of Incomplete Freund's adjuvant at 12 day intervals. At the end of fifth immunization, the eggs were collected and checked for antibody titer by indirect ELISA against rSEB.

Purification of chicken IgY antibodies from egg. After attaining the desired immune-reactivity (1:12,000), IgY was purified from immunized chicken eggs by PEG precipitation method46,47. In brief, the collected egg yolks were mixed with equal volumes of PBS containing 0.01% NaN₃, followed by addition of PEG6000 at a final concentration of 3.5% (V/V). Then the content was mixed vigorously and centrifuged at 13,000 × g for 10 min and the supernatant was collected. To this, PEG was added to a final concentration of 8.5% and then centrifuged. After centrifugation, pellet was dissolved in equal volume of PBS and precipitated with 12% PEG. The pellet was separated after centrifugation and redissolved in PBS. The purity and concentration IgY was determined by SDS-PAGE and Lowry's protein estimation method, respectively.

Specificity and Sensitivity evaluation of anti-SEB-IgY. The reactivity of IgY with SEB and the other toxins produced by S. aureus such as SEA, SEC, TSST and α-hemolysin was determined by indirect-ELISA method27.

Development of IgY-aptamer based sandwich dot ELISA against SEB. In the present study, a novel IgY-aptamer sandwich ELISA was developed for specific and sensitive detection of SEB. Anti-SEB
IgY antibodies and ssDNA aptamer-biotin probe were used as the capturing and the revealing probes for SEB, respectively. Sandwich ELISA protocol was followed as per the previous reports of Reddy et al. (2013) with minor changes. In the present study, we employed ssDNA aptamer as the revealing probe instead of rabbit anti SEB antibodies.

Specificity and sensitivity evaluation of sandwich dot ELISA. To check the specificity, the developed method was evaluated onto a series of toxigenic and notoxigenic S. aureus and other species of staphylococcus as well as other bacterial genera including E. coli, Salmonella, Shigella isolated from food and environmental sources (Table 2). Sensitivity of the developed method was evaluated on to purified SEB toxin collected from enterotoxigenic S. aureus (ATCC-14458).

Table 2. Comparative detection of SEB harboring strains by PCR and IgY-sandwich ALISA.

Sl. No.	Source	PCR	IgY-sandwich ALISA
01	ATCC-70069	+	+
02	ATCC-29213	+	+
03	NCIM-2079	+	+
04	NCIM-2654	+	+
05	NCIM-2657	+	+
06	NCIM-5021	+	+
07	ATCC-19095 (SEC positive)	−	−
08	E-2167 (SEE positive)	−	−
09	ATCC-12228	−	−
10	ATCC-14028	−	−
11	ATCC-10876	−	−
12	ATCC-9207	−	−
13	ATCC-10536	−	−
14	ATCC-10031	−	−

American Type Culture Collection, Manassas, VA, USA. NCIM — National Collection of Industrial Organisms, Pune, India.

Table 3. Enriched field samples.

Sl. No.	Source	PCR	IgY-sandwich ALISA
01	Cake isolate 01	+	+
02	Cake isolate 03	−	−
03	Cake isolate 06	−	−
04	Cake isolate 07	+	+
05	Milk isolate 02	−	−
06	Milk isolate 03	+	+
07	Milk isolate 04	−	−
08	Milk isolate 05	−	−
09	Milk isolate 06	−	−
10	Meat isolate 02	−	−
11	Meat isolate 04	−	−
12	Clinical isolate 01	+	+
13	Clinical isolate 03	+	+
14	Clinical isolate 04	+	+
15	Clinical isolate 05	−	−
16	Clinical isolate 07	+	+
17	Clinical isolate 08	+	+
Purification of SEB. Staphylococcus aureus (ATCC-14458) capable of producing enterotoxin B (SEB) was purchased from ATCC, USA. Pure colony of S. aureus was inoculated in 100 mL BHI broth and grown overnight at 37°C under shaking at 175 rpm. The following day, the supernatant was collected by centrifuging the cells at 12,000 rpm for 3 min. The SEB toxin was extracted by methanol-chloroform method followed by standard protein precipitation protocols.

Evaluation of sandwich dot ELISA on natural samples. To check the reliability, usability and readability, the developed method was evaluated onto naturally contaminated samples from food and clinical centers of India were included in the present study (Table 3). These field samples were subjected to enrichment in BHI broth for 4 h at 37°C prior to sandwich indirect plate-ALISA and dot-ELISA. The present method was compared with standard PCR method for SEB.

References
1. Novick, R., Schlievert, P. & Ruzin, A. Pathogenicity and resistance islands of staphylococci. Microbiol. Mol. Biol. Rev. 65, 585–594 (2001).
2. Balaban, N. & Rasooly, A. Staphylococcal enterotoxins. Int. J. Food. Microbiol. 61, 1–10 (2000).
3. Schlievert, P. M., Gotschlich, E. C. & Ikenebomeh, M. J. Microbiological quality assessment of gari with reference to thermolabile activity. Food Control 13, 535–541 (2002).
4. Umoh, V. I. & Odoba, M. B. Safety and quality evaluation of street foods sold in Zaria, Nigeria. Food Control 10, 9–14 (1999).
5. Bohach, G. A., Fast, D. J., Nelson, R. D. & Schlievert, P. M. Staphylococcal and streptococcal pyrogenic toxins involved in toxic shock syndrome and related illnesses. Crit. Rev. Microbiol. 17, 251–272 (1990).
6. Brosnanal, A. J. & Schlievert, P. M. Gram-positive bacterial superantigen outside in signaling causes toxic shock syndrome. EBERS, 1, 278, 4649–4667 (2011).
7. Argudin, M. A., Mendoza, M. C. & Rodicio, M. R. Food Poisoning and Staphylococcus aureus Enterotoxins. Toxins 2, 1751–1773 (2010).
8. Ulich, R. G., Sidell, S., Taylor, T. J., Wilhelmsen, C. L. & Franz, D. A. K. The textbook of military medicine. warfare, weaponry, and the casualty. Medical aspects of chemical and biological warfare. Falls Church, VA: Office of the Surgeon General, Department of the Army. Available at: www.bordeninstitute.army.mil/cwbw/Ch31.pdf (1997). Date of access 13-3-2015.
9. Slavik, R., Homola, J. & Brynda, E. A miniature fiber optic surface plasmon resonance sensor for fast detection of Staphylococcal enterotoxin B. Biosens. Bioelectron. 17, 591–595 (2002).
10. Lin, H. C. & Tsai, W. C. Piezoelectric crystal immunosensor for the detection of staphylococcal enterotoxin B. Biosens. Bioelectron. 18, 1479–1483 (2003).
11. Ruan, C., Zeng, K., Varghese, O. K. & Grimes, C. A. A staphylococcal enterotoxin B magnetoelectric immunosensors. Biosens. Bioelectron. 20, 585–591 (2004).
12. Callahan, J. H., Shafcheck, K. J., Williams, T. L. & Fass, S. M. Detection, confirmation, and quantification of staphylococcal enterotoxin B in food matrices using liquid chromatography-mass spectrometry. Anal. Chem. 78, 1789–1800 (2006).
13. Temur, E. et al. Attomole sensitivity of staphylococcal enterotoxin B detection using an aptamer-modified surface-enhanced Raman scattering probe. Anal. Chem. 84, 10600–10606 (2012).
14. Campbell, G. A., Medina, M. M. & Smith, A. R. Detection of Staphylococcus enterotoxin B at picogram levels using piezoelectric-excited millimeter wave sensors for sensors. Sens. Actuat. B: Chem. 126, 354–360 (2007).
15. Sharma, A., Rao, V. K., Kambhoj, D. V. & Gupta, R. Electrochemical immunosensor for Staphylococcal enterotoxin B (SEB) based on platinum nanoparticle-modified electrode using hydrogen evolution inhibition approach. Electro. anal. 26, 2320–2327 (2014).
16. Han, J. H. et al. Photonic crystal lab-on-a-chip for detecting staphylococcal enterotoxin B at low attomolar concentration. Anal. Chem. 85, 3101–3109 (2013).
17. Urasibahata, H., Kitoh, K., Dlishima, M. & Seto, Y. Generation of Fab fragment-like molecular recognition proteins against staphylococcal enterotoxin B by phage display technology. Clin. Vac. Immunol. 17, 1708–1717 (2010).
18. Huang, R., Xi, Z. & He, N. Recent progress of aptamers for chemistry analysis, medicine and food security. Sci. China Chemistry 58, 1122–1130 (2015).
19. Zhuang, R. et al. Selection of HBsAg-specific DNA Aptamers Based on Carboxylated Magnetic Nanoparticles and Their Application in the Rapid and Simple Detection of Hepatitis B Virus Infection. ACS Appl. Mater. Interfaces. 7, 11215–11223 (2015).
20. Li, J. & Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510 (1990).
21. Selsing, R. K. & Bowser, M. T. Microfluiddic selection and applications of aptamers J. Sep. Sci. 30, 1420–1426 (2007).
22. Rusconi, C. P. et al. RNA aptamers as reversible antagonists of coagulation factor Ixa. Nature 419, 90–94 (2002).
23. Liu, B. et al. Aptamer-Functionalized Nanoparticles for Drug Delivery. J. Biomed. Nanotechnol. 10, 3189–3203 (2014).
24. Wang, C. et al. Strategies for Combination of Aptamer and Targeted Drug Delivery. J. Nanosci. Nanotechnol. 14, 501–512 (2014).
25. Fialova, M., Kypr, J. & Vorlickova, M. The thrombin binding aptamer GGTGGTGTTGGTG forms a bimolecular guanine tetraplex. Biochem. Biophys. Res. Commun. 34, 50–54 (2006).
26. Reddy, P. N., Nagaraj, S., Sriraj, M. H. & Batra, H. V. Use of biotin-labeled IgY overcomes protein A interference in immunomas using Staphylococcus aureus antigens. Ann. Microbiol. doi: 10.1007/s13213-014-1029-2 (2015).
27. Reddy, P. N., Shekar, A., Kington, J. J., Sriraj, M. H. & Batra, H. V. Evaluation of IgY capture ELISA for sensitive detection of Alpha hemolysin of Staphylococcus aureus without staphylococcal protein A interference. J. Immunol. Methods 391, 31–38 (2013).
28. Sapsford, K. E. et al. Optimizing Two-Color Semiconductor Nanocrystal Immunoassays in Single Well Microtiter Plate Formats. Sensors 11, 7879–7891 (2011).
29. Rasooly, A. & Rasooly, R. S. Detection and analysis of Staphylococcal enterotoxin A in food by Western immunoblotting. Int. J. Food Microbiol. 41, 205–212 (1998).
30. Clarisse, T. et al. Detection and quantification of staphylococcal enterotoxin A in foods with specific and sensitive polyclonal antibodies. Food Control 32, 255–261 (2013).
31. Kuan, H. et al. Monoclonal Antibody-Based Sandwich ELISA for the Detection of Staphylococcal Enterotoxin A. Int. J. Environ. Res. Pub. Health 10, 1598–1608 (2013).
32. Liu, F. et al. Highly sensitive microplate chemiluminescence enzyme immunoassay for the determination of staphylococcal enterotoxin B based on a pair of specific monoclonal antibodies and its application to various matrices. Anal. Chem. 82, 7758–7765 (2010).
33. Steindl, F., Armbruster, C., Hahn, R. & Katinger, H. W. A simple method to quantify staphylococcal protein A in the presence of human or animal IgG in various samples. J. Immunol. Methods 235, 61 (2000).
34. Hennekinne, J. A. et al. Intralaboratory validation according to the EN ISO 16 140 Standard of the Vidas SET2 detection kit for use in official controls of staphylococcal enterotoxins in milk products J. Appl. Microbiol. 102, 1261–1272 (2007).
35. Nguyen, H. M., Rocha, M. A., Chintalacharuvu, K. R. & Beenhouwer, D. O. Detection and quantification of Panton-Valentine leukocidin in Staphylococcus aureus cultures by ELISA and Western blotting: diethylpyrocarbonate inhibits binding of protein A to IgG. J. Immunol. Methods 356, 1–5 (2010).
36. Mendona, V. L. & Vachet, R. W. Protein Surface Mapping Using Diethylpyrocarbonate with Mass Spectrometric Detection. Anal. Chem. Anal. Chem. 80, 2895–2904 (2008).
37. Mizutani, N. et al. Advantages of immunoglobulin Y for the detection of Staphylococcal enterotoxin A in a double-antibody sandwich enzyme-linked immunosorbent assay. Int. J. Food Sci. Technol. 47, 155–159 (2012).
38. Bruno, J. G. & Kiel, J. L. Use of magnetic beads in selection and detection of biotinyl aptamers by electrochemiluminescence and enzymatic methods. Biotechniques 32, 178–183 (2002).
39. Purschke, W. G., Radtke, F., Kleinjung, F. & Klussmann, S. A. DNA Spiegelmer to staphylococcal enterotoxin B. Nuc. Acid. Res. 31, 3027–3032 (2003).
40. J. A. DeGrasse A Single-Stranded DNA Aptamer That Selectively Binds to Staphylococcus aureus Enterotoxin B. PLOSCONE 7, e33410 (2012).
41. Zhijiang, Xi., Huang, R., Deng, Y. & Nongyue, H. E. Progress of Selection and Biomedical Application of Aptamers. J. Biomed. Nanotechnol. 10, 3043–3062 (2014).
42. Kumar, T. D. K., Balakrishna, K., Murali, H. S. & Batra, H. V. Simultaneous detection of pathogenic B. cereus, S. aureus and L. monocytogenes by multiplex PCR. J. Med. Microbiol. 58, 577–583 (2009).
43. Sambrook, J. & Russell, D. W. Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor New York: Cold Spring Harbor Laboratory (2001).
44. Pan W. & Clawson, G. A. Primer-free aptamer selection using a random DNA library J. Vis. Exp. 1, 3084 (2011).
45. Pulla, D., Chacana, P. A., Calzado, E. G., Brems, B. & Schade, R. IgY Technology: Extraction of Chicken Antibodies from Egg Yolk by Polyethylene Glycol (PEG) Precipitation J. Vis. Exp. 1, 3084 (2011).

Acknowledgements
Authors are thankful to the Joint Director, DRDO-BU-CLS for his support to conduct the present study. And Dr. Prakash Narayana Reddy from CFTRI, Mysore to provide the toxins.

Author Contributions
Venkataramana Mudili (V.M.), Shivakiran S. Makam (S.S.M.), Chandranayaka Siddaiah (C.N.S.) PutchaV. Lakshmana Rao (P.V.L.R), Vijai Kumar Gupta (V.K.G.) designed the experiments; V.M. and S.S.M., Naveen Sundararaj (N.S.C.) performed experiments; V.M., S.S.M. and C.N.S. prepared the manuscript; V.K.G. and P.V.L.R reviewed the manuscript.

Additional Information
Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Mudili, V. et al. A novel IgY-Aptamer hybrid system for cost-effective detection of SEB and its evaluation on food and clinical samples. Sci. Rep. 5, 15151; doi: 10.1038/srep15151 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/