Interactive models of communication at the nanoscale using nanoparticles that talk to one another

Antoni Llopis-Lorente1,2,3, Paula Díez4, Alfredo Sánchez4, María D. Marcos1,2,3, Félix Sancenón1,2,3, Paloma Martínez-Ruiz5, Reynaldo Villalonga4 & Ramón Martínez-Máñez1,2,3

‘Communication’ between abiotic nanoscale chemical systems is an almost-unexplored field with enormous potential. Here we show the design and preparation of a chemical communication system based on enzyme-powered Janus nanoparticles, which mimics an interactive model of communication. Cargo delivery from one nanoparticle is governed by the biunivocal communication with another nanoparticle, which involves two enzymatic processes and the interchange of chemical messengers. The conceptual idea of establishing communication between nanodevices opens the opportunity to develop complex nanoscale systems capable of sharing information and cooperating.

1 Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, Valencia 46022, Spain. 2 Departamento de Química, Universitat Politècnica de València. Camino de Vera s/n, Valencia 46022, Spain. 3 CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain. 4 Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Madrid 28040, Spain. 5 Department of Organic Chemistry I, Faculty of Chemistry, Complutense University of Madrid, Madrid 28040, Spain. Correspondence and requests for materials should be addressed to R.V. (email: rvillalonga@quim.ucm.es) or to R.M.-M. (email: rmaez@qim.upv.es).
Nanotechnology has undergone a remarkable growth in recent years, and a large number of nanodevices such as nanomotors, nanobatteries, nanocontainers and nanomachines have already been developed. Nevertheless, communication between human-made nanodevices remains almost unexplored. Experts in telecommunication and computer engineering have already envisioned the interconnection of nanodevices in ‘nanonetworks’ and their virtually-unlimited applications in different fields. At the nanoscale, traditional communication technologies are not applicable given the large size and power requirements of classical transceivers, receivers and other components. In this context, an interesting approach for establishing communication at the nanometric level is to mimic how nature communicates. Chemical or molecular communication, based on transmitting and receiving information by means of molecules (chemical messengers), is the communication form used by living organisms. For instance, cells communicate with neighbours by exchanging chemicals; neurons propagate, share and process information by using neurotransmitters and, and insects, bacteria and many mammals use pheromones to communicate with members of their same species. Inspired by biological organisms and cells, scientists have reported, for instance, the use of DNA enzymatic processes and the exchange of two chemical messengers, is the communication form used by living organisms. For instance, cells communicate with neighbours by exchanging chemicals; neurons propagate, share and process information by using neurotransmitters and, and insects, bacteria and many mammals use pheromones to communicate with members of their same species. Inspired by biological organisms and cells, scientists have reported, for instance, the use of DNA enzymes and enzymatic cascades as a tool for information processing and computing. Moreover, chemical logic systems based on individual molecules and bio-molecular networks have also been developed. However, despite these interesting advances, communication between nanodevices has barely been explored. In this scenario, there are many unanswered questions about the construction of nanonetworks that integrate nanodevices and molecules, such as: Which molecules should be used to encode information? How will these molecules be recognized? How can recognition be converted into propagation of information, and how can this information be reported? Addressing these questions is no trivial matter, and the experimental realization of these systems is still to come.

In communication theory terms, communication can be defined as the process of establishing a connection between two points for information exchange. At one point of the communication process, there is the sender of information, which receives a stimulus to send a message across. The sender converts information into a code and transmits the message through an appropriate medium. The receiver perceives the message and decodes it. Communication models are systematic representations of the process that helps to understand how communication can be done. For example, in the linear model of communication, the message flows in a straight line from the sender to the receiver, and there is no feedback concept. In the interactive model of communication shown in Fig. 1, the first nanomachine (S1) is loaded with (Ru(bpy))₃²⁺, capped with β-cyclodextrin (β-CD) attached through disulfide bonds to the mesoporous face and functionalized with enzyme β-galactosidase on the Au face. The second nanomachine (S2) is loaded with β-acetyl-L-cysteine, capped with a pH-responsive β-CD:benzimidazole supramolecular nanovalue on the mesoporous face and functionalized with glucose oxidase (GOx) on the Au face. When S1 and S2 are placed together in an aqueous medium, addition of lactose triggers the communication process. First, lactose is hydrolysed by β-galactosidase into galactose and glucose. The produced glucose is transmitted through the aqueous medium towards the Au face of S2, where it is recognized by glucose oxidase and hydrolysed into gluconic acid. The generated gluconic acid induces a local drop in pH that causes the protonation of benzimidazole groups; the mesoporous face of S2 and the dethreading of the supramolecular nanovalue. S2 uncapping results in the delivery of entrapped β-acetyl-L-cysteine, which diffuses as feedback toward S1. Finally, N-acetyl-L-cysteine induces the rupture of the disulfide linkages on the mesoporous face of S1, and (Ru(bpy))₃²⁺ is released into the medium. Delivery of (Ru(bpy))₃²⁺ (output) is expected to occur only when the two nanoparticles communicate.

In terms of the interactive model of communication shown in Fig. 1, the first nanomachines (the sender) receive a stimulus (lactose) and transmit information to the receiver (S2, via a messenger (glucose). At this point the receiver (S2) perceives the message and operates as a new sender by channelling the message to the original sender (S1) by using a second chemical messenger (N-acetyl-L-cysteine). Finally the new receiver (S1) interprets the message, which results in a final desired response (that is, delivery of (Ru(bpy))₃²⁺).

Synthesis of the nanodevices. In order to prepare S1 and S2, mesoporous silica (MS) nanoparticles were first obtained by the hydrolysis and condensation of tetraethyloxyethyl orthosilicate in basic media using n-cetyltrimethylammonium bromide as a template. The surfactant was removed by calcination in air at a high temperature, which yielded the starting mesoporous support. In a second step, gold nanoparticles were prepared according to the Turkевич-Frens method. Then, MS nanoparticles were confined at the interface of Pickering emulsion between paraffin and an aqueous face in order to achieve their partial functionalization with (3-mercaptopropyl)trimethoxysilane, on which Au nanoparticles were attached by the formation of Au-Au bonds. Paraffin wax was removed by washing the solid with CHCl₃, which yielded the initial Janus Au-MS nanoparticles (S0). To prepare S1, the mesoporous face of S0 was loaded with (Ru(bpy))₃²⁺ and was first functionalized with 3-mercaptopropionic acid on the Au face, and later with (3-mercaptopropyl)trimethoxysilane on the mesoporous face. This solid was capped by the attachment of previously modified β-CDs through disulfide linkages, which yielded solid S1. Finally, the β-galactosidase enzyme was covalently immobilized by crosslinking the primary amine groups in the enzyme with carboxylic acid moieties on the Au face, which yielded the final nanoparticles S1. To obtain S2, firstly a fraction of the S0 was functionalized with (3-iodopropyl)trimethoxysilane on the mesoporous face. Then benzimidazole moieties were attached to the iodopropyl moieties through a nucleophilic substitution reaction and the Au face was functionalized with 3-mercaptopropionic acid. Next, pores were

Results

Communication system design and operation. A representation of the communication process we report herein is depicted in Fig. 2. The first nanomachine (S1) is loaded with (Ru(bpy))₃²⁺, capped with β-cyclodextrin (β-CD) attached through disulfide bonds to the mesoporous face and functionalized with enzyme β-galactosidase on the Au face. The second nanomachine (S2) is loaded with N-acetyl-L-cysteine, capped with a pH-responsive β-CD:benzimidazole supramolecular nanovalue on the mesoporous face and functionalized with glucose oxidase (GOx) on the Au face. When S1 and S2 are placed together in an aqueous medium, addition of lactose triggers the communication process. First, lactose is hydrolysed by β-galactosidase into galactose and glucose. The produced glucose is transmitted through the aqueous medium towards the Au face of S2, where it is recognized by glucose oxidase and hydrolysed into gluconic acid. The generated gluconic acid induces a local drop in pH that causes the protonation of benzimidazole groups; the mesoporous face of S2 and the dethreading of the supramolecular nanovalue. S2 uncapping results in the delivery of entrapped β-acetyl-L-cysteine, which diffuses as feedback toward S1. Finally, N-acetyl-L-cysteine induces the rupture of the disulfide linkages on the mesoporous face of S1, and (Ru(bpy))₃²⁺ is released into the medium. Delivery of (Ru(bpy))₃²⁺ (output) is expected to occur only when the two nanoparticles communicate.

In terms of the interactive model of communication shown in Fig. 1, the first nanomachines (the sender) receive a stimulus (lactose) and transmit information to the receiver (S2, via a messenger (glucose). At this point the receiver (S2) perceives the message and operates as a new sender by channelling the message to the original sender (S1) by using a second chemical messenger (N-acetyl-L-cysteine). Finally the new receiver (S1) interprets the message, which results in a final desired response (that is, delivery of (Ru(bpy))₃²⁺).

Synthesis of the nanodevices. In order to prepare S1 and S2, mesoporous silica (MS) nanoparticles were first obtained by the hydrolysis and condensation of tetraethyloxyethyl orthosilicate in basic media using n-cetyltrimethylammonium bromide as a template. The surfactant was removed by calcination in air at a high temperature, which yielded the starting mesoporous support. In a second step, gold nanoparticles were prepared according to the Turkевич-Frens method. Then, MS nanoparticles were confined at the interface of Pickering emulsion between paraffin and an aqueous face in order to achieve their partial functionalization with (3-mercaptopropyl)trimethoxysilane, on which Au nanoparticles were attached by the formation of Au-Au bonds. Paraffin wax was removed by washing the solid with CHCl₃, which yielded the initial Janus Au-MS nanoparticles (S0). To prepare S1, the mesoporous face of S0 was loaded with (Ru(bpy))₃²⁺ and was first functionalized with 3-mercaptopropionic acid on the Au face, and later with (3-mercaptopropyl)trimethoxysilane on the mesoporous face. This solid was capped by the attachment of previously modified β-CDs through disulfide linkages, which yielded solid S1. Finally, the β-galactosidase enzyme was covalently immobilized by crosslinking the primary amine groups in the enzyme with carboxylic acid moieties on the Au face, which yielded the final nanoparticles S1. To obtain S2, firstly a fraction of the S0 was functionalized with (3-iodopropyl)trimethoxysilane on the mesoporous face. Then benzimidazole moieties were attached to the iodopropyl moieties through a nucleophilic substitution reaction and the Au face was functionalized with 3-mercaptopropionic acid. Next, pores were
The sender receives a stimulus and encodes a message for the receiver. The receiver interprets the message and returns feedback to the first point.

Characterization of the nanodevices. The different nanoparticles were characterized by standard methods (see Methods and Supplementary Methods for details). The mesoporous voids were characterized by standard methods (see Methods and Characterization of the nanodevices). The mesoporous structure of the nanodevices was confirmed by transmission electron microscopy (TEM). The starting gold colloid shows a single absorption band at 520 nm, which confirmed the Au-MS architecture observed by TEM. The morphology of the MS nanoparticles (81 ± 18 nm) and the presence of the Au nanoparticles (19 ± 4 nm) in Janus colloids was confirmed by transmission electron microscopy (TEM) analysis (see Fig. 3a,b). The powder X-ray diffraction (PXRD) pattern of the starting MS nanoparticles showed the characteristic mesoporous reflection peak (100) at around 2.4°, which thus confirmed the ordered mesoporous structure (see Fig. 3c). The preservation of this typical peak in the following solids (S0, S1, S2, S1gal, S2gox) (Supplementary Fig. 1) clearly confirmed that the surface functionalization and cargo loading processes did not damage the mesoporous scaffolding. The diffraction pattern at high angles for all the Janus colloids showed the characteristic cubic gold nanocrystals (111), (200), (220) and (311) peaks, which confirmed the Au-MS architecture observed by TEM. The starting gold colloid shows a single absorption band at 520 nm, whereas there is a redshift of the absorbance maximum (535 nm) for S0 (Supplementary Fig. 2). Regarding the N₂ adsorption-desorption isotherms, starting MS and Janus nanoparticles showed an adsorption step at intermediate P/P₀ values (0.1–0.3), which indicates the presence of empty pores in the solid structure (Supplementary Fig. 3). As a result of cargo loading and capping the N₂ adsorption-desorption isotherms for the S1 and S2 nanoparticles led to a considerable reduction in the N₂ volume absorbed, and curves were flat compared to the parent solids (Supplementary Fig. 3). The Brunauer–Emmett–Teller (BET) total specific surface area, pore volumes and pore sizes were calculated from N₂ adsorption-desorption isotherms.
Nanoparticles that talk to one another. Having characterized the single nanodevices, next we addressed the actual interactive communication process between them. In this complex system, the final release of the reporter (Ru(bpy)_3)^{2+} from nanocarrier S1gal was expected to be related with the information shared between S1gal and S2gox via the exchange of encoding molecules (glucose and N-acetyl-L-cysteine). In a typical experiment, S1gal and S2gox were suspended in aqueous solution at pH 7.5 and shaken over time at 25°C in the presence or absence of 5 mM lactose, which acted as the input signal (see Methods for details). At scheduled times, aliquots were taken, centrifuged to remove nanoparticles, and the absorbance at 453 nm (maximum of the absorption band of (Ru(bpy)_3)^{2+}) was measured. Figure 4 shows the time course of the (Ru(bpy)_3)^{2+} delivery from S1gal in the presence and absence of lactose. When there was no input (black curve), no communication between the nanodevices occurred and no output signal was observed. In contrast, when lactose was introduced into the system (red curve), the biunivocal communication in the nanonetwork was triggered, which resulted in the clear (Ru(bpy)_3)^{2+} reporter release. In the presence of lactose, a total amount of 81 μM of (Ru(bpy)_3)^{2+} was released after 210 min which corresponds to a 39% release efficiency (maximum theoretical release efficiency was calculated by dissolving of S1gal in 20% NaOH solution). The final release of (Ru(bpy)_3)^{2+} was ascribed to an effective interactive model of communication between S1gal and S2gox as indicated in Fig. 2.

For communication to take place, all the individual nanocomponents act together and cooperatively to produce collective behaviour. To demonstrate the crucial role played by the molecules and enzymes in the nanonetwork, additional experiments were carried out with S1 (lacking β-galactosidase), S2 (lacking glucose oxidase) and S2blank (lacking the N-acetyl-L-cysteine messenger). If in the community S1gal/S2gox the information was shared and the final desired response (that is, delivery of (Ru(bpy)_3)^{2+} was observed, mixtures S1/S2gox, S1gal/S2 and S1gal/S2blank should not be able to communicate, which would result in no dye release occurring. The delivery experiments with S1/S2gox, S1gal/S2 and S1gal/S2blank were performed by suspending nanoparticles in an aqueous solution at pH 7.5 in the presence of lactose. In the three uncompleted communities, communication was broken at a certain stage, and the information loop could not close. Therefore, no output signal ((Ru(bpy)_3)^{2+} delivery) was observed (see the release profiles shown in Fig. 5). These experiments clearly stress the essential role played by the different system components. Moreover, the operation in the presence of lactose of the community S1gal/S2gox was compared with the system S1/S2/free enzymes, in which enzymes are freely dissolved in the bulk solution. In these experiments, the enzyme-free solids S1 and S2 were placed in a solution containing β-galactosidase (2 U 1^{-1}) and glucose oxidase (0.8 U ml^{-1}) (enzymes were dissolved in the bulk solution at an equivalent concentration to that found in the community S1gal/S2gox). As can be seen in Fig. 5 (purple curve), in the community S1/S2/free enzymes, the response (that is, delivery of the dye from S1) was very low and far from that found for the S1gal/S2gox system. This indicated that in order to have an effective communication, enzymes, in particular glucose oxidase, must be placed in the proximity of the β-CD:benzimidazole complex to be able to generate a local pH drop around the nanoparticle. If the enzymes are in the solution, communication was broken and dye delivery from S1 was not observed.

A highly desirable characteristic for a communication system is to be selective to a certain input, and it should not respond to other similar inputs that may be in the surroundings. To demonstrate the specificity of the interactive communication between S1gal and S2gox triggered by lactose, the performance of aqueous suspensions of the S1gal/S2gox community in the presence of disaccharides maltose and lactulose was also studied. In these studies, no (Ru(bpy)_3)^{2+} delivery was observed (see Fig. 6). Maltose is not recognized by β-galactosidase on S1gal, whereas lactulose is hydrolysed by β-galactosidase into galactose and fructose, but these species are not recognized by glucose oxidase on S2gox. In both cases, communication is disrupted and no output signal was found.

Interactive communication is illustrated in Table 2 in a Boolean logic table that indicates how the final output (delivery of (Ru(bpy)_3)^{2+} from S1gal) is found only when using the complete community of gated nanoparticles (S1gal/S2gox mixture) in the presence of lactose, but not in its absence or when the sender/receiver is not complete (S1, S2, S2blank, nanoparticles that lack β-galactosidase, glucose oxidase or N-acetyl-L-cysteine, respectively).

In conclusion, we have developed an example of communication between nanodevices based on Janus Au-mesoporous silica
Table 1 | The BET specific surface values, pore volumes and pore sizes calculated from the N2 adsorption-desorption isotherms for the selected materials.

Material	S_{BET} (m2 g$^{-1}$)	Pore volume* (cm3 g$^{-1}$)	Pore size* (nm)
MCM-41	1093.9	0.72	2.52
S0	879.1	0.62	2.33
S1	95.12	0.10	—
S2	285.32	0.17	—

*Total pore volume according to the Barrett–Joyner–Halenda (BJH) model.

*Pore size estimated by using the BJH model applied to the adsorption branch of the isotherm, for $P/P_0<0.6$, which can be associated with the surfactant-generated mesopores.

Figure 5 | Cargo release from uncompleted communities of nanoparticles. (Ru(bpy)$_3$)$_2$$^{2+}$ release in aqueous solution at pH 7.5 in the presence of lactose (5 mM) that contained communities of nanoparticles $S_1 + S_2$gox (lacking β-galactosidase, blue curve, circles), S_1gal + S_2 (lacking glucose oxidase, green curve, triangles), S_1gal + S_2blank (lacking the N-acetyl-L-cysteine messenger, grey curve, squares) and $S_1 + S_2$ + free enzymes (purple curve, circles), (error bars correspond to the s.d. from two independent experiments). Delivery from the full-equipped S_1gal + S_2gox system (red curve) is also displayed for comparative purposes. Error bars correspond to the s.d. from two independent experiments.

Figure 6 | Specificity of the interactive communication. Release of dye in aqueous solution at pH 7.5 for the full-equipped nanonetwork S_1gal + S_2gox after 2 h in the presence of three different disaccharides: lactose, maltose and lactulose. Error bars correspond to the s.d. from two independent experiments.

Synthesis of gold nanoparticles. Gold nanoparticles were synthesized based on the Turkevich–Frens method40,41. Briefly, 100 ml of a 3 μM HAuCl$_4$ · 3H$_2$O solution was heated to boiling under stirring and refluxing. Then, 750 μl of a 3.9 μM trisodium citrate solution was added to synthesize 20 nm gold nanoparticles. The initially faint yellow colour turned to blue-black and finally red-wine in 10 min. After this, the colloidal suspension was let to cool at room temperature.

Synthesis of Janus Au-MS nanoparticles (S0). Janus nanoparticles were synthesized following a method recently reported by us36,37. MCM-41 mesoporous silica nanoparticles (200 mg) were dispersed in 10 ml of aqueous solution (6.7% ethanol) and n-cetyltrimethylammonium bromide (CTABr) was added for a 1 μM final concentration. The mixture was heated at 75 °C, and then 1 g of paraffin wax was added. Once the paraffin was melted, the mixture was vigorously stirred at 25,000 r.p.m. for 10 min using an Ultra-Turrax T-10 homogenizer (IKA, Germany). Afterward, the mixture was further stirred for 1 h at 4,000 r.p.m. and 75 °C using a magnetic stirrer. The resulting Pickering emulsion was then cooled to room temperature, diluted with 10 ml of methanol and reacted with 200 μl of (3-mercaptopropyl) trimethoxysilane. After 3 h under magnetic stirring, the solid was collected by filtration and washed with methanol. For gold attachment, the partially mercaptop-functionalized MCM-41 nanoparticles were dispersed in 75 ml of methanol and added over 400 ml of the as-synthesized gold nanoparticles. The mixture was stirred overnight. Then, the solid was isolated by filtration and exhaustively washed with ethanol and with chloroform. The solid was dried and ground. This process finally yielded the Janus Au-MS nanoparticles (S0).

Methods

Synthesis of MCM-41 mesoporous silica nanoparticles. Approximately 1.00 g (2.74 mmol) of n-cetyltrimethylammonium bromide (CTABr) was dissolved in 480 ml of deionized water. Then, the pH was basified by adding 3.5 ml of a 2 mol l$^{-1}$ NaOH solution and the temperature was increased to 80 °C. Afterward, TEOS (5.00 ml, 22.4 mmol) was added dropwise to this solution. Magnetic stirring was kept for 2 h to give a white precipitate. Finally, the solid was isolated by centrifugation, washed several times with water and dried at 70 °C overnight (as-synthesized MCM-41). To obtain the final mesoporous nanoparticles (MCM-41), the as-synthesized solid was calcined at 550 °C using an oxidant atmosphere for 5 h in order to remove the surfactant.

Synthesis of β-CD-S-SO$_4$CH$_3$. NaSO$_3$CH$_3$ (70 mg, 0.52 mmol) was added to a solution of mono 6-soda-6-deoxy-β-cyclodextrin (0.5 g, 4.0 \times 10$^{-4}$ mmol) in anhydrous DMF (3 ml) under Argon and warmed to 50 °C while stirring48. After 18 h, the solution was cooled and the solvent evaporated. The residue was washed with EtOH (2 × 3 ml) and acetone (2 × 3 ml), yielding 470 mg of a white solid (94%).
The solid was isolated by centrifugation, washed with acetonitrile and dried at 70°C overnight. To functionalize the surface with benzimidazole moieties, the resulting solid was ground and suspended in 8 ml of a saturated solution of benzimidazole in water and let to dry at room temperature for 1 day. 100 mg of this solid was treated with 100 mg of potassium tert-butoxide, isolated by centrifugation and washed several times with cold 50 mM sodium phosphate buffer at pH 7.5 and dried under vacuum for 12 h. This process resulted in the capped Janus solid S1.

Synthesis of S1gal. Around 20 mg of Janus Au-MS nanoparticles (S0) were suspended in a concentrated solution of (Ru(bpy)3)Cl2 (25 mg) in acetonitrile (5 ml), and stirred during 24 h in order to achieve the loading of the pores. Then, the suspension was treated with 50 μl of 3-mercaptopropionic acid for 1 h, filtered, and washed with toluene. Afterwards, this solid was suspended in 6 ml of toluene and reacted with an excess of (3-mercaptopropyl) trimethoxysilane (50 μl) for 24 h. The thiol-functionalized solid was treated with 100 mg of potassium tert-butoxide, isolated by centrifugation and washed with toluene and dimethylformamide (DMF). Finally, the solid was suspended with 50 mg of the as-synthesized β-CD-S-SO2CH3 in 10 ml of DMF under inert atmosphere for 24 h in order to cap the pores. Afterwards, the solid was isolated by centrifugation, washed with DMF and acetonitrile and dried under vacuum. This process resulted in the capped Janus solid S1gal.

Synthesis of S1blank. Solid S1blank was prepared following the same procedure described for S1gal but the mesoporous container was not loaded. First, the mesoporous surface on S0 was modified with benzimidazole moieties and the gold surface was protected with 3-mercaptopropionic acid as described above. 10 mg of this solid was suspended in 5 ml of 50 mM sodium phosphate buffer at pH 7.5 containing β-cyclodextrin (1.2 mg ml⁻¹) and stirred overnight. Then, the solid was filtered off, washed with 50 mM phosphate buffer (pH 7.5) and dried under vacuum for 12 h. To functionalize this solid with the enzyme, we followed the same procedure, as described above. The solid was suspended in 5 ml of 50 mM sodium phosphate buffer (pH 7.5) and 2.5 mg of EDC, 2.5 mg of NHS and 2.5 mg of glucose oxidase were added. The mixture was stirred overnight at 0°C. Finally, the nanoparticles were isolated by centrifugation and washed several times with cold 50 mM sodium phosphate buffer (pH 7.5). The resulting S2blank was kept wet in the refrigerator until use.

Table 2 | Summary of the response of the communication system when using the full-equipped (S1gal and S2gox) or partially-equipped (S1, S2, S2blank) nanoparticles and the presence or absence of input (lactose).

External trigger† (lactose)	Presence of effector 1† (β-galactosidase)	Presence of effector 2§ (GOx)	Presence of messenger 3¶ (NAC)	Response (Ru(bpy)3(II)⁺)†‡
0	0	0	0	0
1	0	0	0	0
1	1	0	0	0
1	1	1	1	0
1	0	0	0	0
1	1	0	0	0
0	0	0	0	0
0	0	0	0	0
1	1	0	0	0
0	0	0	0	0
0	1	0	0	0
0	0	0	0	0
1	1	1	1	1

*The presence or absence of the trigger (lactose), enzymes (β-galactosidase and glucose oxidase) and N-acetyl-l-cysteine (NAC) in the community of nanoparticles is represented by '1' and '0', respectively.
†Delivery or not of (Ru(bpy)3(II)⁺)²⁺ dye is represented by 0—no release, 1—release.

Synthesis of S2gox. Solid S2gox was prepared following the same procedure described for S2blank but the mesoporous container was loaded with (Ru(bpy)3)Cl2. First, the mesoporous surface on S0 was modified with benzimidazole moieties and the gold surface was protected with 3-mercaptopropionic acid, as described above. 10 mg of this solid was suspended in 5 ml of aqueous solution of (Ru(bpy)³)Cl²⁺ (5 mg). After 12 h, 10 ml of 50 mM sodium phosphate buffer at pH 7.5 containing β-cyclodextrin (1.2 mg ml⁻¹) were added to the solid suspension and stirred overnight. Then, the solid was filtered off, washed thoroughly with 50 mM phosphate buffer at pH 7.5 and dried under vacuum for 12 h. Finally, we follow the same procedure, as described above in order to attach the enzyme glucose oxidase to the Au face. This process finally yields the solid S2gox that was kept wet in the refrigerator until use.

Chemical communication studies. To demonstrate the performance of the nanonetwork, the refrigerated superspans of nanoparticles were aliquoted, washed separately with aqueous solution (20 mM Na₂SO₄) at pH 7.5 and placed together in the same recipient. In a typical experiment, S1gal and S2gox (4 mg ml⁻¹ and 1 mg ml⁻¹, respectively) were suspended together and shaken overnight at 25°C in the presence or absence of 5 mM lactose, which acts as the input signal. Aliquots were taken at scheduled times, centrifuged to remove the nanoparticles and the absorbance at 453 nm corresponding to the (Ru(bpy)3)Cl2 released was measured. In order to demonstrate the crucial role played by the components of the system, the same procedure was followed with suspensions of S1/S2gal, S1gal/S2gox, and S1gal/S2blank. For the release experiments with the community S1/S2/free enzymes, S1 and S2 (4 mg ml⁻¹ and 1 mg ml⁻¹, respectively) were placed in a recipient with Gal (2 U ml⁻¹) and GOx (0.8 U ml⁻¹). For specificity experiments, the procedure was the same but maltose (5 mM) and lactose (5 mM), instead of lactose, were added as the inputs to suspensions of S1gal/S2gox.

Data availability. The authors declare that data supporting the findings of this study are available within the paper and its Supplementary information files. All other relevant data are available from the corresponding authors on request.
References

1. Tseng, R., Huang, J., Ouyang, J., Kaner, R. & Yang, Y. Polyvanilene nanofiber/ gold nanoparticle nanovolatiles memory. Nano Lett. 5, 1077–1080 (2005).
2. Liu, R. & Sen, A. Autonomous nanomotor based on copper-platinum segmented nanobattery. J. Am. Chem. Soc. 133, 20064–20067 (2011).
3. Valov, I. et al. Nanobatteries in redox-based resistive switches require extension of memristor theory. Nat. Commun. 4, 1771 (2013).
4. Tarn, D. et al. Mesoporous silica nanoparticles: nanocarrier functionality and biocompatibility. Acc. Chem. Res. 46, 792–801 (2013).
5. Kline, T. & Paxton, W. Catalytic nanomotors: remote-controlled autonomous movement of striped metallic nanorods. Angew. Chem. Int. Ed. 117, 754–756 (2005).
6. Akyildiz, I. F., Brunetti, F. & Blázquez, C. Nanonetworks: a new communication paradigm. Comput. Netw. 52, 2260–2279 (2008).
7. Suda, T., Moore, M., Nakano, T., Egashira, R. & Enomoto, A. Exploratory research on molecular communication between nanomachines. Nat. Comput. 25, 1–30 (2005).
8. Malak, D. & Akan, O. B. Molecular communication nanonetworks inside human body. Nano Comput. Netw. 3, 19–35 (2012).
9. Akyildiz, I. F., Jornet, J. M. & Pierobon, M. Nanonetworks: a new frontier in communications. Commun. ACM 54, 84–99 (2011).
10. Nakano, T., Moore, M. J., Wei, F., Vasilakos, A. V. & Shiui, J. Molecular communication and networking: opportunities and challenges. IEEE Trans. Nanobiosci. 11, 135–148 (2012).
11. Water, C. S., Yu, Y. & Bashir, R. L. Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21, 319–346 (2005).
12. Dickschat, J. S. Quorum sensing and bacterial biofilms. Nat. Prod. Rep. 27, 343–369 (2010).
13. Kerenyi, A., Bihary, D., Venturi, V. & Pongor, S. Stability of multispecies bacterial communities: signaling networks may stabilize microbiomes. PLoS ONE 8, e5794 (2013).
14. Gotti, C. & Clementi, F. Neuronal nicotinic receptors: from structure to pathology. Prog. Neurobiol. 74, 363–396 (2004).
15. Betke, K. M., Wells, C. A. & Hamm, H. E. GPCR mediated regulation of synaptic transmission. Prog. Neurobiol. 96, 504–531 (2012).
16. Qian, L., Winfree, E. & Bruck, J. Neural network computation with DNA strand displacement cascades. Nature 475, 368–372 (2011).
17. Benenson, Y. Biomolecular computing systems: principles, progress and potential. Nat. Rev. Genet. 13, 455–468 (2012).
18. Ball, P. Chemistry meets computing. Nature 406, 118–120 (2000).
19. de Silva, A. P. & McColgan, N. D. Molecular-Scale Logic Gates. Chem. Eur. J. 10, 574–586 (2004).
20. Condon, A. Automata make antisense. Nature 429, 351–352 (2004).
21. Seelig, G., Soloveichik, D., Zhang, D. Y. & Winfree, E. Enzyme-free nucleic acid logic circuits. Science 314, 1585–1588 (2006).
22. Douglas, S. M., Bachelet, I. & Church, G. M. A logic-gated nanorobot for targeted transport of molecular payloads. Science 335, 831–834 (2012).
23. Angelos, S., Yang, Y., Karmakar, W. K., Shahab, N. M., Stoddart, J. F. & Zink, J. I. Dual-controlled nanorobots exhibiting AND logic. J. Am. Chem. Soc. 131, 11344–11346 (2009).
24. Liu, H. et al. Dual-responsive surfaces modified with phenylboronic acid-containing polymer brush to reversibly capture and release cancer cells. J. Am. Chem. Soc. 135, 7603–7609 (2013).
25. Lee, J. W. & Klein, R. Dual-responsive nanoparticles that aggregate under the simultaneous action of light and CO2. Chem. Commun. 51, 2036–2039 (2015).
26. Liu, D. et al. Resettable, multi-readout logic gates based on controllably reversible aggregation of gold nanoparticles. Angew. Chem. Int. Ed. 53, 12629–12633 (2014).
27. Davis, B. G., Lloyd, R. C. & Jones, J. B. Controlled site-selective glycosylation of proteins by a combined site-directed mutagenesis and chemical modification approach. J. Org. Chem. 63, 9614–9615 (1998).

Acknowledgements

A.L.-L. is grateful to ‘La Caixa’ Banking Foundation for his PhD fellowship. We wish to thank the Spanish Government (MINECO Projects MAT2015-64139-C4-1, CTQ2014-58989-P and CTQ2015-71936-REDT and AGL2015-70235-C2-2-R) and the Generalitat Valenciana (Project PROMETEOII/2014/047) for support. The Comunidad de Madrid (S2013/MIT-3029, Programme NANOAVANCES) is also gratefully acknowledged.

Authors contributions

A.L.-L. and P.D. performed the experiments. A.L.-L., P.D., A.S., R.V. and R.M.-M. designed and conceived the experiments. A.L.-L. and R.M.-M. wrote the manuscript. F.S. revised and helped in the elaboration of the manuscript. M.D.M. and P.M.-R. helped in useful discussions and technical issues. All authors discussed the results and commented on the manuscript.

Additional information

Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Llopis-Lorente, A. et al. Interactive models of communication at the nanoscale using nanoparticles that talk to one another. Nat. Commun. 8, 15511 (2017) doi: 10.1038/ncomms15511

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2017

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/