Universal behavior of the Shannon and Rényi mutual information of quantum critical chains

F. C. Alcaraz1 and M. A. Rajabpour1

1 Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, 13560-970, São Carlos, SP, Brazil

(Dated: August 13, 2014)

We study the Shannon and Rényi mutual information (MI) in the ground state (GS) of different critical quantum spin chains. Despite the apparent basis dependence of these quantities we show the existence of some particular basis (we will call them conformal basis) whose finite-size scaling function is related to the central charge c of the underlying conformal field theory of the model. In particular, we verified that for large index n, the MI of a subsystem of size ℓ in a periodic chain with L sites behaves as $\frac{\pi}{2} \frac{n}{\ell^2} \ln \left(\frac{\ell}{\pi n} \right)$, when the ground-state wavefunction is expressed in these special conformal basis. This is in agreement with recent predictions. For generic local basis we will show that, although in some cases $b_n \ln \left(\frac{\ell}{\pi n} \right)$ is a good fit to our numerical data, in general there is no direct relation between b_n and the central charge of the system. We will support our findings with detailed numerical calculations for the transverse field Ising model, $Q = 3, 4$ quantum Potts chain, quantum Ashkin-Teller chain and the XXZ quantum chain. We will also present some additional results of the Shannon mutual information ($n = 1$), for the parafermionic Z_Q quantum chains with $Q = 5, 6, 7$ and 8.

PACS numbers: 11.25.Hf, 03.67.Bg, 89.70.Cf, 75.10.Pq

I. INTRODUCTION

Quantum entanglement measures have been frequently used recently to detect quantum phase transition in many body quantum systems. Measures like von Neumann and Rényi entanglement entropy, concurrence and quantum discord are among the most frequently used ones, see for example [1, 2]. One of the important reasons for the success of these measures in detecting quantum phase transition and ultimately identifying the universality class of quantum critical behavior of the system is the simplicity in their calculation by using numerical techniques such as the power method and the density matrix renormalization group (DMRG) [3]. Since at the critical point one can usually describe the system with a conformal field theory (CFT) it is natural to look for observables that can be related to the important quantities in CFT. This program has been carried out in one dimension with significant detail by relating the von Neumann and Rényi entanglement entropy of a bipartite system to the central charge of the underlying CFT, see for example [4]. Although these quantities can be calculated relatively easily by numerical calculations they have been out of reach from experimental point of views. Recently another measure, the Shannon entropy, which is based on specific measurements in the system [5], has been also introduced in the context of quantum critical chains.

The Shannon entropy of the system \mathcal{X} is defined as

$$ Sh(\mathcal{X}) = - \sum_x p_x \ln p_x, \quad (1) $$

where p_x is the probability of finding the system in a configuration x. These probabilities, in the case where \mathcal{A} is a subsystem of a quantum chain with wave function $|\Psi_{\mathcal{A}\mathcal{B}}\rangle = \sum_{n,m} c_{n,m} |\phi^n_{\mathcal{A}}\rangle \otimes |\phi^m_{\mathcal{B}}\rangle$, are given by the marginal probabilities $p_{\phi^n_{\mathcal{A}}} = \sum_m |c_{n,m}|^2$ of the subsystem \mathcal{A}, where $\{|\phi^n_{\mathcal{A}}\rangle\}$ and $\{|\phi^m_{\mathcal{B}}\rangle\}$ are the vector basis in subspaces \mathcal{A} and \mathcal{B}. In our study we will always take the whole system $\mathcal{X} = \mathcal{L}$ which also indicates the size of the system then the subsystems \mathcal{A} and \mathcal{B} will be denoted by ℓ and $L - \ell$, respectively. We will call the Shannon entropy of a subsystem of size ℓ as the reduced Shannon entropy $Sh(\ell)$ [6]. Notice that the Shannon entropy is basis independent in opposite to the von Neumann entanglement entropy which is a basis independent quantity. However as we will see along this paper, it also contains universal aspects in a specific sense that we will clarify later.

As we will see in the next sections the reduced Shannon entropy has an extensive part which is non-universal. In order to extract this non-universal harmless part it is useful to define the so called Shannon mutual information. It is defined as

$$ I(\ell, L) = Sh(\ell) + Sh(L - \ell) - Sh(L), \quad (2) $$

where as before $Sh(\ell)$ and $Sh(L - \ell)$ are the reduced Shannon entropies of the subsystems and $Sh(L)$ is the Shannon entropy of the whole system. The Shannon mutual information has an information theoretic meaning. It is one of the measures used to quantify the amount of information shared among two subsystems. It tells us how much information one can get about the subsystem $L - \ell$ by doing measurements in the subsystem ℓ and vice versa. This quantity has been calculated numerically for the quantum Ising model in [3, 6] and for many other critical quantum spin chains in [7]. It is worth mentioning that in [10] it was proved that the Shannon mutual information of classical systems, like the entanglement entropy, should also follow the area law. Recently there has...
been also some developments in calculating the Shannon and Rényi entropy of two dimensional quantum critical systems [11, 12]. Note that by changing $\Sh(\ell)$ with the von Neumann entanglement entropy in [2] one can define the von Neumann mutual information which is a different quantity from the Shannon mutual information $I(\ell, L)$. For recent developments in this direction see [13, 14].

One can also generalize the above definitions to the Rényi entropy as

$$\Sh_n(\mathcal{X}) = \frac{1}{1-n} \ln \sum_x p^*_n.$$

(3)

The $n \to 1$ limit gives back the Shannon entropy. Similarly one can also generalize the Shannon mutual information by using the above definition. We consider in this paper the simple naive definition:

$$I_n(\ell, L) = \Sh_n(\ell) + \Sh_n(L-\ell) - \Sh_n(L).$$

(4)

Differently from the entanglement entropy the Shannon and Rényi entropies are both basis dependent, however, as we will study in this paper in some particular basis these entropies show universal behavior at the critical point that can be connected with the underlying CFT governing the long-distance physics at the quantum critical point. It is worth mentioning that these entropies were first studied in the context of Rokhsar-Kivelson wave functions [15, 16] for two dimensional quantum systems. By, [17] and references therein. Introducing the logarithmic constant term σ one can map the 1D quantum chain into a 2D classical model. From this classical model we can define a Rokhsar-Kivelson wave function. It is the wave function of a two dimensional quantum system expressed on basis with one-to-one correspondence with the configurations of the 2D classical model and whose coefficients are the corresponding Boltzmann weights. It is shown in [2] that the Shannon entropy of the periodic quantum spin chain is equal to the entanglement entropy of the half of the cylinder in the 2D Rokhsar-Kivelson wave function.

In this paper we will study the Shannon and Rényi mutual information in different quantum critical spin chains such as Ising model, Q-state Potts model, Ashkin-Teller model and the XXZ quantum chain. We will restrict ourselves to the case where the quantum chains are in the pure state formed by their GS. We will also analyse, in all these critical quantum chains, the importance of the basis used to express the wave functions. We will clarify which are the basis that possibly can have a direct connection to the central charge of the system. In the conclusions we will also present the results for the Shannon mutual information of the Z_Q-parafermionic quantum chains, with $Q = 5, 6, 7$ and 8.

II. MUTUAL INFORMATION IN QUANTUM SPIN CHAINS

In this section we study different aspects of the Shannon and Rényi entropies in the transverse field Ising chain, three and four-state Potts model, the Ashkin-Teller model and the XXZ chain. As it was already discussed in [21] we should expect a significant difference between the first four cases and the last one. We will start by discussing the known conjectures about different cases and then we will present our numerical results and, based on them, some conjectures. We will largely emphasize in this paper the important role played by the basis used to calculate the different kinds of entropies. In our study we will always confine ourselves to critical chains.

A. Mutual information in the transverse field Ising spin chain

The Hamiltonian of this model is given by

$$H = -\lambda \sum_{i=1}^L \sigma^x_i \sigma^x_{i+1} - \sum_{i=0}^{L} \sigma^z_i,$$

(5)

where (σ^x, σ^y) are spin-1/2 Pauli matrices localized at the sites $i = 1, \ldots, L$. The system is critical at $\lambda = 1$. The Shannon entropy of the periodic system at the critical point was studied numerically in [3] and [22]. The numerical results suggested the following form for the Rényi entropy of the GS of the whole chain:

$$\Sh_n(L) = \mu_n L + \gamma_n,$$

(6)

where μ_n and γ_n are non-universal and universal constants, respectively. The numerical results for the universal constant term γ_n for the periodic chain with ground state wavefunction expressed in the σ^z basis are [22]

$$\gamma_n(\lambda = 1) = \begin{cases} 0, & n < 1 \\ 0.2543925(5), & n = 1 \\ \ln 2, & n > 1. \end{cases}$$

(7)

The discontinuity with respect to n means that the replica trick is probably not suitable to calculate the standard Shannon entropy from the Rényi ones. The very interesting fact is the constant value of γ_n for $n > 1$. This indicates that it can probably be calculated by looking to the asymptotic behavior $n \to \infty$ of \Sh_n in the σ^z basis. This observation has very interesting consequences when one considers the reduced Rényi entropy for the transverse field Ising model. Due to the ferromagnetic nature of the quantum chain the configurations with the highest probability in the Ising model are the ones with all the spins up or spins down, so in principle when one considers the reduced Rényi entropy the most important configurations are those with all the spins in the subsystem are up or down. The corresponding probability P is usually called emptiness formation probability (EFP) and it has been calculated for conformal field theories in [21] and references therein. Introducing the logarithmic emptiness formation probability (LEFP) as $E = -\ln P$
one can summarize the result for the periodic boundary condition as \([21]\)

\[E(\ell) = a\ell + \frac{c}{8} \ln \left(\frac{L}{\pi} \sin \left(\frac{\pi \ell}{L} \right) \right) + ..., \quad (8) \]

where here and hereafter we denote by ... the sub-leading terms. The idea behind this calculation is as follows: the configuration with all spins up, in the \(\sigma^x\) basis, can be seen in the two dimensional classical Ising model as a free boundary condition. This happens because the classical spins in the transfer matrix approach actually correspond to the eigenstates of the matrix \(\sigma^z\). Considering a CFT with a free boundary condition on the slit one can extract the above formula for the LEFP in the \(\sigma^x\) basis \([21]\). The crucial point is that the free boundary conditions in the euclidean approach is a conformal boundary condition \([23]\) and so one can use CFT techniques. One can follow a similar argument in the \(\sigma^z\) basis: it is not difficult to show that fixing the spins in the \(\sigma^z\) basis is equivalent of fixing the spins in the two dimensional classical counterpart. This boundary condition is also a conformal boundary condition and by following the arguments in \([21]\) one can get the same formula as equation \((5)\).

Using the LEFP and the fact that the behavior of the Rényi entropy for \(n > 1\) is controlled by \(n \rightarrow \infty\) it was conjectured \([21]\) that the reduced Rényi entropy of the GS should have the following form

\[S_{h_n}(\ell) = \frac{n}{n-1} a\ell + c \frac{n}{8} \ln \left(\frac{L}{\pi} \sin \left(\frac{\pi \ell}{L} \right) \right) + \gamma_n + ... \quad (9) \]

where \(c = \frac{1}{2}\) is the central charge of the Ising model. As it was already mentioned one can not get the result for \(n = 1\) by analytical continuation of the above result. Based on numerical results presented in our previous work \([9]\) we conjectured that the result for \(n = 1\) is

\[S_h(\ell) = a\ell + \frac{c}{8} \ln \left(\frac{L}{\pi} \sin \left(\frac{\pi \ell}{L} \right) \right) + \gamma_1 + ... \quad (10) \]

Based on the above formulas one can conjecture the
following formula for the Rényi mutual information of spin chains in the above two basis that are related to boundary CFT (from now on we will call them conformal basis) [9]

\[I_n(\ell, L) = \frac{c_n}{4} \ln \left(\frac{L}{\pi \sin(\frac{n\ell}{L})} \right) + \ldots, \]

where

\[c_n = c \begin{cases} 1, & n = 1 \\ \frac{n}{n-1}, & n > 1. \end{cases} \]

(12)

The above formula for \(n = 1 \) has already been checked for many different quantum spin chains in [9] and the results looked consistent with the coefficient being very close to the central charge. However, recently [24] this result has been questioned in the case of Ising model, where the numerical estimated value is 0.480 instead of the central charge value \(c = \frac{3}{2} \). In Fig. 1 we show the results of \(c_n \) in the quantum Ising chain in the two different basis \(\sigma^x \) and \(\sigma^z \). These results were obtained by considering the fitting of (11) considering the subsystem sizes \(\ell = 4, \ldots, L/2 \). The results confirm the validity of (12) nicely for values of \(n \) bigger than \(n_c \sim 2 \). Taking spin chains with bigger lattice sizes might lead to a better compatibility with the formula (12) in the region \(1 < n < 2 \), see for example [24]. Our results also indicates that the formula (11) may also be valid for \(0 < n < 1 \) with the \(c_n \) values shown in the Fig. 1 [25].

Let us make an important remark about the numerical results presented in Fig. 1, that will also be valid for all the subsequent numerical results presented in this paper. Although we obtained results for lattice sizes up to \(L = 30 \) it is difficult to obtain reliable results for \(c_n \) with precision smaller than a few percent by using extrapolating techniques. This is due to two reasons. The first one comes from the fact that the finite-size estimator \(c_n(L) \), for a given lattice size \(L \), is obtained from a fit of the data to (11), in which the effect of a given sublattice size \(\ell \) is distinct for each lattice size \(L \). In Fig. 2 we show the finite estimators \(c_n(L) \), for \(L = 12, 14, \ldots, 30 \) obtained for the GS expressed in the \(\sigma^z \) basis. The second reason, that is more restrictive, come from the fact that we do not know the functional dependence on \(L \) of the finite-size corrections of (11). These corrections may decay as powers of \(\ln L \), that makes the precise evaluation quite difficult using lattice sizes \(L \lesssim 100 \).

It is interesting to stress at this point that all the above results are presumably correct if we work in the \(\sigma^x \) or \(\sigma^z \) basis which correspond to free and fixed conformal boundary conditions in the euclidean approach. On the other hand we know that in the Ising model we have just these two conformal boundary conditions. Consequently if one works with different basis, other than \(\sigma^x \) and \(\sigma^z \), one might not get the same results as above because the corresponding boundary conditions are not conformal. In order to test this we consider the general local basis,

![Graph showing the coefficient of the logarithmic term of the Rényi MI in the Q = 3 Potts model](image)

\[\begin{bmatrix} | a > \\ | b > \end{bmatrix} = \begin{bmatrix} \cos \theta & -e^{-i\alpha} \sin \phi + e^{-i(\alpha + \phi)} \end{bmatrix} \begin{bmatrix} | \uparrow > \\ | \downarrow > \end{bmatrix}, \]

(13)

where \(| \uparrow > \) and \(| \downarrow > \) are the spin up and down components in the \(\sigma^z \) basis. We calculate the Shannon and Rényi entropies in different basis. The numerical results for the \(\sigma^y \) basis \((\theta = \pi/4, \alpha = \pi/2, \phi = 0) \) and for another arbitrary \(B \) basis where \(\theta = \pi/3, \alpha = \pi/2 \) and \(\phi = \pi/5 \) are shown in the Fig. 3. We clearly see in this figure that the finite-size scaling function (11) looks valid even if we chose non-conformal basis, however the \(n \) dependence of the coefficients are quite different from the one obtained in the two conformal basis.

B. Mutual information in the Q = 3 and Q = 4 state Potts quantum chain

The Q-state Potts model in a periodic lattice is defined by the Hamiltonian [27]

\[H_Q = -\sum_{i=1}^{L} \sum_{k=1}^{Q-1} (S_i^k S_{i+1}^k + \lambda R_i^k), \]

(14)

where \(S_i \) and \(R_i \) are \(Q \times Q \) matrices satisfying the following \(Z(Q) \) algebra: \([R_i, R_j] = [S_i, S_j] = [S_i, R_j] = 0 \) for \(i \neq j \) and \(S_i R_j = e^{i2\pi Q j / Q} R_j S_i \) and \(R_i^Q = S_i^Q = 1 \).
In the previous section, we discussed the 3-state Potts model which follows a similar behavior to the Ising model due to its critical points at the self-dual point. In this section, we will concentrate on the 3-state Potts model itself, as claimed in [24] for the Ising model.

As one can see in Figs. 4 and 5, the n-behavior of the Rényi mutual information depends on the basis that one chooses. For the two basis, R or S diagonal (see Fig. 4), this dependence is

$$I_n(\ell, L) = \frac{c_n}{4} \ln \left(\frac{L}{\pi \sin \left(\frac{\pi \ell}{L} \right)} \right) + \ldots,$$

with

$$c_n = c \begin{cases} 1, & n = 1 \\ \frac{n}{n-1}, & n > 1.5 \end{cases},$$

where $c = \frac{4}{3}$ is the central charge of the model. Based on our numerical calculation, it is hard to conclude the existence or not of a discontinuity at $n = 1$, however, this is the case for the Ising model. Note that the C basis means that starting from the S basis we choose $A_3 \left(\frac{\phi}{2}, \frac{\theta}{2} \right)$ in (10) does not follow a similar structure. Even if we try to fit the data to $(\ell, L) = \left(\frac{L}{\pi \sin \left(\frac{\pi \ell}{L} \right)} \right)$ by taking just the last four or five points it is clear that the trend for large n is not compatible with $c_n = c \frac{n}{n-1}$. It is intriguing that even in this basis the results for $n = 1$ are quite compatible with the results coming from the conformal basis. Although we checked few non-trivial basis and not found any other conformal basis our study does not necessarily exclude some other possible complicated conformal basis. This is just simply because the boundary conformal field theory of the 3-state Potts model is much richer than just the two cases (free and fixed) that we studied. Finding other possible conformal basis can be very interesting.

![Potts Q=3 L=18](image)

FIG. 5: (Color online) Rényi MI with respect to $\ln \left(\frac{1}{n} \sin \left(\frac{\pi \ell}{L} \right) \right)$ in the $Q = 3$ Potts model in the R and C basis $(\theta, \phi) = (\frac{\pi}{3}, \frac{\pi}{3})$. In the R basis the data shows a good fit for all values of n. In the C basis (except at $n = 1$) the fitting is reasonable only if we take just the last five or six points. Notice also that, in the large n limit, the linear coefficient of the fitting that give c_n, are very different in the two basis.
with the results for the Ising and different basis. The structure is perfectly compatible with

The Rényi mutual information, in the $S\sum_{i=1}^{\infty} i n/(n-1)$.

The coefficients were found by conditioning the fitting to the subsystem sizes $\ell = 4, 5, ..., \text{Int}[L/2]$. The dashed straight lines are guidelines for $n = 1$ and for the central charge $c = 1$.

We now study the $Q = 4$ Potts model which has a very similar structure as the $Q = 3$ Potts model. In the basis where the S matrix is diagonal the S and R matrices are given by:

$$S = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \omega & 0 & 0 \\ 0 & 0 & \omega^2 & 0 \\ 0 & 0 & 0 & \omega^3 \end{pmatrix}, \quad R = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix},$$

where $\omega = \exp(2\pi i/4)$. Like in the $Q = 3$ case one can get the basis which makes the R matrix diagonal by just exchanging the two matrices $S \leftrightarrow R$. The most general basis has a complicated form. Here we work with a subset of the possible non-trivial basis which are obtained by just using the transformation matrix A_3 of the $Q = 3$ Potts chain. Starting with the basis $(|0\rangle, |1\rangle, |2\rangle, |3\rangle)$ where R or S is diagonal we obtain the basis $(|0\rangle, |1\rangle, |2\rangle, |3\rangle)$:

$$\begin{bmatrix} |0\rangle \\ |1\rangle \\ |2\rangle \\ |3\rangle \end{bmatrix} = \begin{bmatrix} \cos \theta & 0 & \sin \theta & 0 \\ \sin \theta \sin \phi & \cos \phi & -\sin \phi \cos \theta & 0 \\ -\sin \theta \cos \phi & \sin \phi & \cos \phi \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} |0\rangle \\ |1\rangle \\ |2\rangle \\ |3\rangle \end{bmatrix}.$$

We have calculated the Rényi mutual information in different basis. The structure is perfectly compatible with the results for the Ising and $Q = 3$ Potts model. The Rényi mutual information, in the S and R basis, are shown in Fig. 6. They follow the equations (19) and (20) with $c = 1$. The difference we see from the results of the two basis is probably due to the finite-size corrections since the largest lattice we considered is $L = 14$ for the $Q = 4$ Potts chain. In the other basis we found a similar structure as we found in the case of the $Q = 3$ Potts model (see Fig. 5), indicating that even assuming the $c_n \ln(\frac{L}{\ell} \sin(\ell \pi/L))$ behavior the coefficient c_n for n large is not given by (20). Here we summarize the results for the Q-state Potts chain:

1. The mutual Rényi entropy follows the formulas (19) and (20) in the S and R basis.

2. In the region $1 < n < 1.5$ the c_n coefficient has a maximum. Our numerical calculation is consistent but non conclusive with the possible presence of discontinuity at $n = 1$.

3. For arbitrary basis the large n behavior of c_n is not given by (19).

C. Mutual information in the Ashkin-Teller quantum spin chain

The next model that we study is the Ashkin-Teller model which has a $Z(2) \otimes Z(2)$ symmetry and whose Hamiltonian is given by:

$$H = - \sum_{i=1}^{L} \left([S_i S_{i+1} + S_i^3 S_{i+1} + \Delta S_i^2 S_{i+1}^2] + [R_i R_{i+1} + \Delta R_i^3 R_{i+1}^3] \right),$$

(23)
were found by restricting the fitting to the subsystem sizes \(n \) invariant for \(Q = 4 \) Potts model. The model is critical and conformal invariant for \(\Delta = 0 \) and \(\Delta = \frac{1}{2} \). The mutual Shannon entropy follows the formula

\[
I_n = \frac{c}{4} \ln \left(\frac{L}{\pi} \sin \left(\frac{\pi \ell}{L} \right) \right),
\]

independent of \(\Delta \) in the two conformal basis where \(S \) and \(R \) are diagonal.

2. The mutual Rényi entropy is in general \(\Delta \) dependent for \(1 < n < 2 \) even in the conformal basis (basis where \(S \) or \(R \) are diagonal), however, it follows the finite-size scaling function

\[
I_n = \frac{n}{4(n-1)} \ln \left(\frac{L}{\pi} \sin \left(\frac{\pi \ell}{L} \right) \right)
\]

for \(n > 2 \), independent of the \(\Delta \), in the two basis where \(S \) or \(R \) are diagonal. Presumably as we had in the \(Q = 2 \) and \(Q = 3 \) cases these two basis are also related to the fixed and free conformal boundary conditions. If we accept the picture that we had in the quantum Potts case one might argue that the difference in the two cases \(\Delta = 0 \) and \(\Delta = \frac{1}{2} \) in the region \(1 < n < 2 \) is just a finite-size effect and, in the limit of large system sizes, the results are independent of \(\Delta \) in the two conformal basis.

3. For the non-trivial basis like the \(F \) basis, obtained by using in \(\Theta = \frac{\pi}{2} \), we found that the logarithmic fit is reasonable for both values of \(\Delta = 0, \frac{1}{2} \). However the coefficients \(c_n \) could be very different from the conformal basis. See Figs. 7 and 8. Due to the large and uncontrolled finite-size corrections it is difficult to predict a convergence towards the asymptotic behavior \(n/(n-1) \).

D. Mutual information in the XXZ quantum spin chain

The Hamiltonian of the XXZ chain is defined as

\[
H_{XXZ} = -\sum_{i=1}^{L} \left(\sigma_i^x \sigma_{i+1}^x + \sigma_i^y \sigma_{i+1}^y + \Delta \sigma_i^z \sigma_{i+1}^z \right),
\]

where \(\sigma^x, \sigma^y \) and \(\sigma^z \) are spin-\(\frac{1}{2} \) Pauli matrices and \(\Delta \) is an anisotropy. The model is critical and conformal invariant for \(-1 \leq \Delta < 1 \). The long-distance critical fluctuations are ruled by a CFT with central charge \(c = 1 \) described by a compactified boson whose action is given by

\[
S = \frac{1}{8\pi} \int d^2 x (\nabla \phi)^2, \quad \phi \equiv \phi + 2\pi R,
\]

where the compactification radius depends upon the values of \(\Delta \), namely:

\[
R = \sqrt{\frac{2}{\pi} \arccos \Delta}.
\]

The Shannon entropy of the system in the \(\sigma^z \) basis was already studied in many papers \([6, 13, 19]\). The analytical and numerical results, for the periodic case, indicate that:

\[
Sh(L) = \mu L + \ln R - \frac{1}{2},
\]

where \(R \) is given by \([28]\). The extension of these results to the Rényi entropies are \([6, 13, 20]\):

\[
Sh_n(L) = \mu_n L + \begin{cases}
\ln R - \frac{\ln n}{2(n-1)}, & n < n_c, \\
\frac{1}{n-1} \ln (n \ln R - \ln d), & n \geq n_c,
\end{cases}
\]

where \(n_c = \frac{d}{2} \) and the parameter \(d \) can be understood as the degeneracy of the configuration with the highest probability in the ground state. Since in this paper we will always fix the total magnetization in the \(\sigma^z \) basis to zero we will always have \(d = 2 \).
In this section we extend the above results to the reduced Shannon and the reduced Rényi entropies of the quantum chains on their GS. An important point to notice is that the techniques used in the previous subsection for the Ising model are not necessarily applicable in the present case because the configuration with the highest probability in the σ^z basis has antiferromagnetic nature (for $\Delta \leq 0$) rather than a simple ferromagnetic one [20]. The interesting point is that these kinds of spin alternating configurations are supposed to be renormalized to Dirichlet boundary conditions in the Luttinger liquid representation of the XXZ model [28] and one can hope that they might be connected to the underlying CFT [21, 24] ruling the long-distance physics of the quantum chain. We conjecture, see also [24], that the reduced Rényi entropy for the sub-system size ℓ, in the σ^z basis, is given by

$$S_{\Delta}(\ell) = b_{\Delta} \ell + \frac{c_n}{2} \ln \left(\frac{L}{\pi} \sin \left(\frac{\pi \ell}{L} \right) \right) + \ldots,$$

which consequently leads to the following result for the mutual information

$$I_n(\ell, L) = \frac{c_n}{4} \ln \left(\frac{L}{\pi} \sin \left(\frac{\pi \ell}{L} \right) \right) + \ldots,$$

where c_n is shown in Fig. 9. The coefficient of the logarithm, in this case is dependent on n and Δ. In an interesting development, in [24], it was conjectured that the form of the c_n follows:

$$c_n = \begin{cases} 1, & n < n_c, \\ \frac{n}{n-1}, & n > n_c. \end{cases}$$

Based on [24] at $n = n_c$ the result has a discontinuity. The presence of the discontinuity at $n = n_c$ is attributed to the least irrelevant operator $V_d = \cos(\frac{d}{R}\phi)$. As far as $n < n_c$ it was argued in [24] that this operator is irrelevant and one can get $c_n = 1$ by simple Luttinger model arguments. However, when $n > n_c$ this operator is relevant and consequently the field gets locked into one of the minima of the potential $V_d = \cos(\frac{d}{R}\phi)$. This simply leads again to the $\frac{n}{n-1}$ behavior as we had in the Ising model case. Although our numerical results do not show any discontinuity it is consistent with the general arguments in [24]. In Fig. 9 one can see the results of c_n for different values of Δ. Interestingly all of them follows the behavior $\frac{n}{n-1}$ after a value of n close to $n_c = \frac{1}{\pi \tau}$.

One can also do the same kind of analysis in the other two special basis where σ^x or σ^y are diagonal. Because of the symmetry one expect the same results for these two cases and since the basis with fixed σ^z is connected to the Dirichlet boundary condition of the dual field in the Luttinger model representation [28] one can simply consider it as the Neumann boundary condition of the Luttinger field. This boundary condition is also a conformal boundary condition and consequently one might...
hope to be able to find the finite-size scaling behavior \(\frac{\ln}{\ln(n)} \) in the mutual information calculations. Interestingly one can make the same kind of argument used in the \(\sigma^z \) basis and say that the field \(V_{\ell} = \cos(dR\phi) \), with \(\phi \equiv \phi + \frac{2\pi}{R} \) as the dual field, will be relevant at some value of \(n_c = R^2 \) and consequently one would expect the logarithmic behavior with coefficient \(\frac{n}{R} \) for \(n > n_c \). A very simple check for this guess comes from analyzing the point \(\Delta = -1 \) which is a point which all the basis should give the same result because of the \(U(1) \) symmetry. Indeed one can simply see that this point has \(R = \sqrt{2} \) and so both formulas for the critical \(n \) give the same answer.

The numerical results we obtained are consistent with the above argument. The prefactor \(c_n \) for different \(\Delta \)’s are shown in the Fig. 10. It is important to stress here that the results for \(n = 1 \), apart from small deviations that we believe will disappear in the \(L \to \infty \), are independent of \(\Delta \) and equal to the result calculated in the \(\sigma^z \) basis. However, the results for \(n \neq 1 \) are in general different for distinct values of \(\Delta \), except when \(n > n_c = R^2 \), where we found the same behavior as we found in the Ising model (or also in the \(\sigma^z \) basis). In other words the prefactor of the Rényi mutual information of XXZ model in the \(\sigma^x \) basis follows the following formula

\[
c_n = \begin{cases}
1, & n = 1, \\
\frac{n}{n-1}, & n > R^2,
\end{cases}
\]

Our numerical calculations are not conclusive regarding the presence or absence of a discontinuity in the \(c_n \) at \(n_c = R^2 \). Further numerical calculations with much bigger sizes are needed to make a conclusive argument in this respect. In addition based on our numerical results it is not clear that in the regime \(1 < n < R^2 \) the prefactor is constant or not. Another intriguing point is that apart from \(\Delta = -1 \) case in all the other cases the mutual Rényi entropy for \(n \to 0 \) goes to zero. This behavior is different from what we had in the \(\sigma^z \) basis.

Finally we should stress here that by considering some other basis, e. g., non-conformal basis, will lead again to the finite-size scaling function \(\frac{\ln}{\ln(n)} \) for the mutual information. This is shown for some basis in Fig. 11. In this figure we choose in \(\{1, 2, 3\} \) the two non-trivial basis \(D \) and \(E \) where \((\theta, \pi, \alpha) = (\frac{\pi}{4}, \pi, \frac{\pi}{2}) \) and \((\theta, \pi, \alpha) = (\frac{\pi}{4}, \pi, \frac{\pi}{2}) \), respectively. However, as we might expected from the results of the previous sections, the pre factors are not even close to the central charge of the system, differently as happens in the conformal basis where \(\sigma^z \) or \(\sigma^x \) are diagonal.

III. Conclusions

In this paper we have studied different aspects of the mutual Shannon and mutual Rényi information of a bipartite system in different quantum critical spin chains such as the Ising model, Q-state Potts model, the Ashkin-Teller model and the XXZ quantum chain. We showed that although the MI is in general basis dependent, there are some special basis, connected with the conformal boundary conditions of the underlying CFT, that it is related to the central charge. We showed that the general behavior is the same for the four models: Ising model, \(Q = 3 \) and \(Q = 4 \) Potts models and Ashkin-Teller Model. In all these four models the MI calculations, in the conformal basis, show the behavior \(c_n = \frac{n}{n-1} \ln(\frac{1}{\sqrt{2}} \sin(\pi L/\ell)) \) for \(n > 2 \) with a possible extension of this regime also to \(1 < n < 2 \). At \(n = 1 \) we always get something very close to \(\frac{1}{2} \) as the coefficient of the logarithmic term. For non-conformal basis the results for the coefficient of the logarithm are completely different and can not be simply related to the central charge of the system. In the case of the Ashkin-Teller model we showed that in the conformal basis the results are independent of the anisotropy parameter. We also studied the same quantities in the XXZ model and showed that in the two conformal basis, where \(\sigma^x \) or \(\sigma^z \) are diagonal, the results are different. In general one expects a special value of \(n = n_c \) where beyond this value \(n > n_c \) the finite-size scaling behavior is \(c_n = \frac{n}{n-1} \ln(\frac{1}{\sqrt{2}} \sin(\pi L/\ell)) \). In more general basis although one can fit the results with a logarithmic function the coefficients do not follow the results obtained in the conformal basis.

Before closing this paper let us consider again the possible relationship of the Shannon mutual information \(I(X;Y) \) with the central charge \(c \) of the critical chains. In [9], suggested by the analytical studies of cou-
pled harmonic oscillators and by the numerical results of the quantum critical chains presented in earlier sections, and also for the spin-1 Fateev-Zamolodchikov quantum chain, we conjectured that the Shannon mutual information, like the von Neumann entanglement entropy, is exactly related to the central charge of the critical chain: \(I_1(\ell, L) = \frac{1}{\ell} \ln \left(\frac{L}{\pi} \sin(\ell \pi / L) \right) + c_1 \), where \(c_1 = c \). The numerical results obtained for all these models, in relative small system sizes, deviate from the predicted results, just a few percent. In [24], a numerical calculation for the quantum Ising model in \(\sigma^Z \) basis, based on lattice sizes up to \(L = 56 \) indicates that the constant \(c_1 \) may not be exactly given by the central charge but by a close number (0.480 instead 0.5). If this disagreement is an effect or not of the unknown finite-size corrections is something that only further numerical results with larger lattices can decide. This makes the problem even more interesting, and rise a natural question: if it is not the central charge, what should be this number that is quite close to the central charge for quite distinct critical quantum chains? In order to further illustrate this problem to other quantum chains we also considered the parafermionic \(Z_\gamma \) quantum spin chain [29], with Hamiltonian given by [30, 31]

\[
H = -\sum_{i=1}^{L} \sum_{k=1}^{Q-1} \left(S_i^k S_{i+1}^{Q-k} + R_i^k \right) / \sin(\pi k / Q),
\]

where \(S_i \) and \(R_i \) are the \(Q \times Q \) matrices that appeared in [14]. This model is critical and conformal invariant with a central charge \(c = 2(Q - 1) / (Q + 2) \). For the case where \(Q = 2 \) and \(Q = 3 \) we recover the Ising and 3-state Potts model, and for case where \(Q = 4 \) we obtain the Ashkin-Teller model with the anisotropy value \(\Delta = \frac{\sqrt{2}}{2} \).

TABLE I: Numerical estimates for the constant \(c_1 \) for the \(Z_\gamma \)-parafermionic quantum chain given in [33]. The results were obtained using all the subsystem sizes, with the ground-state wavefunction expressed either in \(S \) or \(R \) basis. The lattice sizes used as well the central charge \(c = 2(Q - 1) / (Q + 2) \) are also shown.

\(Z_\gamma \) basis (\(L \))	\(c_1 \)	\(c = 2(Q - 1) / (Q + 2) \)
\(Z_5 \) \(S(12) \)	1.124 \(\frac{5}{9} \) = 1.1427 \(\cdots \)	1.124 \(\frac{5}{9} \) = 1.1427 \(\cdots \)
\(R(13) \)	1.153	1.153
\(Z_6 \) \(S(11) \)	1.250 \(\frac{6}{7} \) = 1.25	1.250 \(\frac{6}{7} \) = 1.25
\(R(12) \)	1.273	1.273
\(Z_7 \) \(S(10) \)	1.352 \(\frac{7}{8} \) = 1.3333 \(\cdots \)	1.352 \(\frac{7}{8} \) = 1.3333 \(\cdots \)
\(R(11) \)	1.372	1.372
\(Z_8 \) \(S(9) \)	1.443 \(\frac{8}{9} \) = 1.4	1.443 \(\frac{8}{9} \) = 1.4
\(R(10) \)	1.456	1.456

In Fig. 12 and table 1 we plot the results obtained for the \(Z_5, Z_6, Z_7 \) and \(Z_8 \) spin models. We clearly see in Fig. 12 that in the basis where either \(S \) or \(R \) is diagonal, except for the first point (subsystem size \(\ell = 2 \)), the finite-size scaling function is quite well represented by the function \(\ln(\sin(\ell \pi / L)) \). In table 1 we show the

FIG. 12: (Color online) The Shannon mutual information \(I_1(\ell, L) \) for the \(Z_5, Z_6, Z_7, \) and \(Z_8 \) parafermionic quantum chains with Hamiltonian given in [33]. The results were obtained for lattice sizes \(L \) and in the basis where \(S \) or \(R \) is diagonal.

results obtained for \(c_1 \) by considering in the numerical for all the system sizes (\(\ell = 2, \ldots, \ln(\frac{L}{12}) \)). These results show, like happened in the other models, an estimate of \(c_1 \), for both basis, that deviates a few percent from the central charge. It is remarkable that, although the lattice sizes are quite small we were able to get values quite close to the predicted central charge. We hope that subsequent numerical and analytical studies of the Shannon mutual information, that certainly will come, will shed light to this interesting problem. Finally we should emphasize that all the presented results are valid just for critical chains. In the gapped phases we expect different behaviors.

Acknowledgment:

We would like to thank to P. Calabrese, V. Pasquier, K. Najafi, D. Caravajal Jara, and V. Rittenberg for useful related discussions. This work was supported in part by FAPESP and CNPq (Brazilian agencies).

[1] L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Rev. Mod. Phys. **80**, 517 (2008).
[2] K. Modi, A. Brodutch, H. Cable, T. Paterek, and V. Vedral, Rev. Mod. Phys. **84**, 1655 (2012).
[3] U. Schollwöck, Rev. Mod. Phys. **77**, 259 (2005).
[4] P. Calabrese, J. Cardy, J. Phys. A **42**, 504005 (2009) and
Distinctly from the von Neumann entanglement entropy of a subsystem of size ℓ, that requires the full tomography of the entire system, the reduced Shannon entropy of a relatively small subsystem requires only the tomography of a relative small number of configurations.

Although this statement is expected physically we have also checked numerically for all lattice sizes we considered.

The fittings in the region $0 < n < 0.5$ are not as good as for the other values of n since as a function of $\ln(\pi \sin(\ell \pi / L))$ the data show some curvature compared to the other regions, and the values of c_n are quite small. The negative values we found are probably due to finite-size effects.