Sneaky leaks: Old devil, new location

Sir,

The anaesthesia machine is a well-recognised source for leakage of anaesthesia gases. There are several areas in the machine that have already been identified as possible contributors to leak. With advancing technology, newer anaesthesia machines have integrated many more components than the older machines and therefore, there can be more sources for leakage of anaesthesia gases. Inability to correctly identify these defects can be quite dangerous as they may lead to life-threatening complications during the conduct of anaesthesia. Daily stringent machine checks as per existing guidelines help in minimising mishaps by identifying the leak before use. We wish to report a unique source for gas leak from Datex Ohmeda Aespire 5 anaesthesia machine (Datex Ohmeda Aespire/5 GE healthcare, Madison, USA).

A 45-year-old female was scheduled for excision of pineal gland tumour. Before shifting the patient to the operating room, a machine check was carried out along with circle system which showed significant gas leak (3 L/min). Vapourisers (sevoflurane and isoflurane, Tec 7) were removed, but the leak continued to exist. Replacing the breathing circuit with a fresh one, readjusting the CO₂ canister and replacing the reservoir bag did not help minimise the leak. Since the source of leak could not be located despite all these measures and the leak was approximately 3 L/min and nearly 30 min was spent holding the patient outside the operating room, it was decided to proceed with the induction process with the total fresh gas flows adjusted to correct for the leak of 3 L/min. Following intravenous anaesthesia induction, positive pressure ventilation was commenced with bag and mask. At this juncture, one of the anaesthesiologist started appreciating the gas leak from the handle of the bag arm [black arrow, Figure 1a] that is connected to the reservoir bag. The leak was actually happening from the threaded ring covering the port into which the bag arm of the machine is tightly screwed. In fact, this joint was practically invisible. After rectifying this defect by screwing in the connecting ring which covers the joint between machine and bag arm [black arrow, Figure 1b], total gas flows could be reduced to <1 L/min and subsequent management of the patient was possible under very low flow anaesthesia and was uneventful. At the end of the procedure, after the patient was shifted out of the operating room, the anaesthesia machine was again tested for leak which showed <50 mL/min leak. Further, as we kept opening this port that connected the bag arm to the anaesthesia machine, the quantity of leak kept increasing indicating this to be a potential source for large gas leak if ignored during machine check. Authors, therefore, believe that this source of leak should be kept in mind during Datex Ohmeda machine checks while the manufacturers may take note of this and attempt to redesign this assembly point.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

REFERENCES
1. Goneppanavar U, Prabhu M. Anaesthesia machine: Checklist, hazards, scavenging. Indian J Anaesth 2013;57:533-40.
2. Dorsch JA, Dorsch SE, editors. Hazards of anesthesia machines
and breathing systems. In: Understanding Anesthesia Equipment. 5th ed. Philadelphia, USA: Lippincott Williams & Wilkins; 2007. p. 373-403.

Sir,

Cannulation of the internal jugular vein (IJV) is a commonly performed percutaneous intervention to deliver medications including hyperosmolar drugs, intravenous fluids, parenteral nutrition, haemodialysis and for monitoring of haemodynamic variables. The IJV is a superficial and easily accessible structure.

Ultrasound (US)-guided cannulation of IJV allows the user to predict variant anatomy and to assess the patency of a target vein. This results in lower technical failure rate, a reduction in complications and faster access as compared to landmark technique. However, anatomical variations in neck vessels may preclude easy cannulation.

A 64-year-old (95 kg, 165 cm) obese male patient arrived in the emergency department with altered sensorium following an episode of status epilepticus. On investigation, it was found that the patient had suffered subarachnoid haemorrhage due to rupture of anterior communicating artery aneurysm and thus was scheduled for clipping of the aneurysm. Concomitantly, the patient had gross thyromegaly with hypothyroidism that was controlled with medication. Ventilation and tracheal intubation were difficult as anticipated. During the ultrasound scanning of neck vessels in 30° left rotation of head, the IJV was found to be anteromedial to the common carotid artery (CCA) with a large thyroid tissue mass pushing CCA laterally. With the head in neutral position, the IJV lay anterior to CCA [Figure 1]. Thus, the IJV was cannulated in neutral position of head with the orientation of transducer probe perpendicular to the floor at the apex of the clavicle-sternocleidomastoid triangle.

A frequent complication of IJV access is the accidental injury of the CCA, which can be dangerous in some circumstances. In settings where US is not available, cannulation of IJV is done by conventional landmark technique based on the anatomical relationship of lateral position of the IJV with respect to CCA. However, anatomical variations between the two vessels Figure 1:

Internal jugular vein (IJV), common carotid artery (CCA), catheter tip (CT) and thyroid tissue (t) when ultrasound probe placed perpendicular to floor in neutral head position.