First characterization of a taxonomically well-resolved trophic network composed by host plants and gall midges (Diptera: Cecidomyiidae) in the Neotropical region

Walter Santos de Araújo¹ & Valéria Cid Maia²

¹ Universidade Estadual de Montes Claros (UNIMONTES), Centro de Ciências Biológicas e da Saúde (CCBS), Departamento de Biologia Geral. Montes Claros, MG, Brasil. ORCID: http://orcid.org/0000-0003-0157-6151. E-mail: walterbioaraujo@gmail.com (corresponding author)

² Universidade Federal do Rio de Janeiro (UFRJ), Museu Nacional (MN), Departamento de Entomologia, Laboratório de Diptera. Rio de Janeiro, RJ, Brasil. ORCID: http://orcid.org/0000-0001-9396-5618. E-mail: maiavcid@acd.ufrj.br

Abstract. In the present study we described the structure of a trophic network composed by gall-midge species (Diptera: Cecidomyiidae) and their host plants in the Restinga of Barra de Maricá (Maricá, Rio de Janeiro, Brazil). Species data were retrieved from literature and different topological descriptors (links per species, connectance, and modularity of interactions) were used. All gall-midge species were monophages, with connectance of 2.8% of the 2,016 possible interactions. The network of host plants and gall midges had low number of links per species and high modularity, which indicates high specificity and specialization of plant-galling interactions in the area. This is the first characterization of a trophic network with good taxonomic resolution for the Neotropical gall midges.

Keywords. Atlantic Forest; Cecidomyiidae; Diptera; Plant-galling interactions; Specificity.

INTRODUCTION

Cecidomyiidae (Diptera) is the most diverse group of gall-inducing insects in the world, with more than 6,500 described species (Gagné & Jaschhof, 2017). Nevertheless, the Neotropical fauna comprises only about 8% of the known species, a very low percentage, considering that in this region there are some megadiverse countries (Fernandes & Santos, 2014). The Brazilian fauna includes about 50% of the described Neotropical species (Gagné, 1994; Gagné & Jaschhof, 2017), most of them from the Atlantic Forest. This situation reflects the scarcity of taxonomical studies about gall midges (Araújo et al., 2019a), which makes it difficult to understand biological and ecological processes involving these insects and their host plants.

In the present study, we described for the first time a taxonomically well-resolved network composed by host plants and gall midges at the Restinga of Barra de Maricá, municipality of Maricá, State of Rio de Janeiro, Southeastern Brazil. Restinga or coastal shrub zone is one of the most endangered vegetal physiognomy of the Brazilian Atlantic Forest due to anthropic action (Santos et al., 2017). For explore the network structure we used different topological descriptors (links per species, connectance, modularity, and robustness of interactions) commonly indicated to describe the architecture of binary bipartite networks (review in Dormann et al., 2009).

MATERIAL AND METHODS

Data compilation

Maia studied the Restinga of Barra de Maricá for several years, from 1992 to 2011, during which this author and collaborators recorded a great amount of insect galls and their host plants, and described many gall midge species. In the present study, we compiled these data and arranged them in a database containing the gall-midge species and their host plants in order to building a list of plant-galling interactions (Table 1). All data used were previously published (Appendix 1). Only plants and gall midges identified at specific level were used in the compilation. All botanical names were updated using the database Flora do Brasil (2020) and nomenclature of gall midges was verified using Gagné & Jaschhof (2017).
Table 1. Checklist of host plants and gall midges recorded in the Restinga of Barra de Maricá (Maricá, RJ, Brazil).

Host species	Gall midge species
Bornien verticillata (L.) G. Mey.	Asphondylia borniae Rubsaamen, 1905
Byrsonima sericea DC.	Bruegmannella byrsonorma (Maia & Cout, 1992)
Byrsonima sericea DC.	Dasineura byrsonorma Maia, 2010
Clusia fluminensis Planch. et Triana	Parasipistoius clusiae Maia, 2001
Clusia lanceolata Cambess.	Clusia myia nitida Maia, 1996
Couepia ovalifolia (Schout.) Benth. ex Hook.f.	Dasineura couepiae Maia, 2001
Couepia ovalifolia (Schout.) Benth. ex Hook.f.	Lapesia marginalis Maia, 2001
Dalbergia ecostaphylum (L.) Taub.	Lapesia grandis Maia, 2001
Erythroxylum ovalifolium Peyer.	Dasineura ovalifolii Maia & Fernandes, 2011
Erythroxylum ovalifolium Peyer.	Lapesia erythrophyi Rodrigues & Maia, 2010
Eugenia astringens Cambess.	Dasineura globosia Maia, 1995
Eugenia astringens Cambess.	Dasineura margini Maia, 2005
Eugenia astringens Cambess.	Stephanomyia natudoflorum Maia, 1993
Eugenia copacabambensis Klaers.	Stephanomyia espinis Maia, 1993
Eugenia copacabambensis Klaers.	Stephanomyia tetetoblo Maia, 1993
Eugenia unifolia L.	Clododiplosis profusa Maia, 2001
Eugenia unifolia L.	Eugeniamyia triangularis Maia, 2011
Eugenia unifolia L.	Neolasioptron eugeniae Maia, 1993
Fredericia anjogueata (Vell.) L.G. Lohmann	Arrabadasania serrata Maia, 2001
Guapira opposita (Vell.) Reitz	Bruegmannia acarudota Maia, 2004
Guapira opposita (Vell.) Reitz	Bruegmannia elongata Maia & Cout, 1993
Guapira opposita (Vell.) Reitz	Bruegmannia monteros Maia & Cout, 1993
Guapira opposita (Vell.) Reitz	Bruegmannia robusta Maia & Cout, 1993
Guapira opposita (Vell.) Reitz	Psophodina brasiliensis Cout & Maia, 1992
Guapira opposita (Vell.) Reitz	Prasodiplosis funifera Maia, 1993
Guapira opposita (Vell.) Reitz	Prasodiplosis guapiac Maia, 1993
Heteropterys nitida (Lam.) DC.	Clododiplosis florios Novo-Guedes & Maia, 2008
Hylocereus setaceus (Salis-Dyck) R.Bauer	Neolasioptron cenr (Rubsaamen, 1905)
Jacquiermonta holosericea (Weinm.) O’Donell	Schizomyia santorii Maia & Araújo, 2009
Lantana camara L.	Schizotetradiplosis lanatae (Rubsaamen, 1916)
Manilkara subsericea (Mart.) Dubard	Manilkaramyia robactis Maia, 2001
Melissia officinalis L.	Clododiplosis melissa Maia, 1994
Micromandra vaculinata (Langsd. & Fich.) Copel.	Primadiplosis microgramma Maia, 2011
Microstachys camicula (Vahl) Griseb.	Clododiplosis conia Oliveira & Maia, 2008
Microstachys camicula (Vahl) Griseb.	Schizomyia spheric Maia & Oliveira, 2007
Monteverdia obtusifolia (Mart.) Bailral	Bruegmannalia monteiros Maia & Cout, 1992
Monteverdia obtusifolia (Mart.) Bailral	Maytenella distincta Maia, 2001
Myrcia ovata Cambess.	Myrciamyia maricaensis Maia, 1996
Myrcia floribunda (H.West ex Willd.) O. Berg	Dasineura myrica Maia, 1995
Myrcia floribunda (H.West ex Willd.) O. Berg	Miycariumyia bisulva Maia, 1994
Neomantodes obscura (DC.) N.Silveira	Neomantodes robusta Maia, 1995
Neomantodes obscura (DC.) N.Silveira	Stephanomyia mine Maia, 1993
Paulinia weinmanniifolia Mart.	Clododiplosis costa Maia, 2005
Paulinia weinmanniifolia Mart.	Pauliniamyia amipla Maia, 2001
Peplonia astenii (Vell.) Fontella & E.A. Schwartz	Asphondylia peplonea Maia, 2001
Pouetia caimito (Ruiz & Pacr.) Radkl.	Youngomyia pouetii Maia, 2001
Pouetia venosa (Mart.) Baehni	Lapesia singularis Maia, 2010
Protium brasiliense (Spreng.) Engl.	Lapesia maricaensis Rodrigues & Maia, 2010
Psychotria dichosea (Mart.) Mart.	Costadiplosis maricaensis Viecente & Maia, 2009
Senna bicapsularis (L.) Rothb.	Asphondylia senor Maia & Cout, 1992
Smitax rufulescens Griseb.	Smilaxoecia candelari Mohn, 1975
Struthanthus tubiflorus Eichler	Asphondylia maricaensis Maia & Cout, 1992
Tetrapteryx phyllooids (Spreng.) Nied.	Schizomyia maricaensis Souza & Maia, 2007
Varronia curassavica Jacq.	Asphondylia caricae Mohn, 1959
Varronia curassavica Jacq.	Cordamia globosa Maia, 1996
Ximenia americana L.	Asphondylia communinis Maia & Cout, 1992

The Restinga of Barra de Maricá is located in the municipality of Maricá, Rio de Janeiro, Brazil (22°52’-22°54’S and 42°48’-42°54’W). This restinga has 8 km of extension and 844.16 ha of total area (Santos et al., 2017). The climate of the Maricá region is classified as hot tropical, super humid, with a dry season (Alves et al., 2013). The region has an average annual temperature of 23.2°C and the average annual precipitation is 1,230.8 mm (Santos et al., 2017). It comprises several microenvironment and vegetal formations, which characterize this complex ecosystem with a very diverse flora (Oliveira & Silva, 1989).

Data analyses

The structure of interactions between host plants and gall midges was evaluated using three topological descriptors: connectance, number of links per species, modularity, and robustness. Connectance (C) is the proportion of observed interactions compared to the possible interactions in the network ranging of 0 (totally specialized) to 1 (totally connected) (Dormann et al., 2009). Number of links per species (L) is the sum of links divided by number of species. Modularity (M) is a measure of the occurrence of densely connected modules within the network (Dormann et al., 2009), ranging between 0 (when the network is not modular) and 1 (when a network is very modular). Robustness (R) is a measure of the resistance level of the network to coextinctions (Dormann et al., 2009), measured as the exponent of the curve generated by the proportion of remaining species of gall midges in function of the proportion of primary random extinctions of host plant species. The significance of observed values of each network descriptor was calculated using null models (Dormann et al., 2009). All network analyses were performed using bipartite package (Dormann et al., 2008) in the R software version 3.6.1 (R Core Team, 2020).

RESULTS

In total, we recorded 56 species of 27 genera of gall midges and 36 species of 29 genera and 24 families of host plants (Table 1). The richest gall-midge genera were Asphondylia Loew, 1850 and Dasineura Rondani, 1840, each with six species. All gall midge species recorded are gall-inducers, except Clododiplosis florica Novo-Guedes & Maia, 2008 that is a free-living herbivore. All gall-midge species were monophagous, inducing galls on only one plant species (Table 1).

The host plants Guapira opposita (Vell.) Reitz (Nyctaginaceae), Eugenia astringens Cambess. and Eugenia uniflora L. sheltered more gall midges, with seven, three and three species, respectively (Table 1). The most important host family was Myrtaceae with six plant species and 13 gall-midge species. The genus Eugenia L. (Myrtaceae) stands out for having three species of host plants and eight species of gall midges.

The plant-galling network comprised 56 interactions (Fig. 1), corresponding to only 2.8% of the 2,016 possi-
ble interactions. The observed connectance (C = 0.028) was lower than expected from null model values (Null C = 0.032 ± 0.001, p < 0.001). Similarly, the observed number of links per species (L = 0.608) also was lower than expected by chance (Null L = 0.710 ± 0.020, p < 0.001). The observed modularity for plant-galling network was very high (M = 0.958), but did not differ from null model values (Null M = 0.959 ± 0.001, p > 0.05). Robustness observed was relatively low (R = 1.343), but was higher than expected by chance (Null R = 1.334 ± 0.232, p < 0.001).

DISCUSSION

We found a high specialization of interactions between host plants and gall midges in the present study, confirming previous studies (Carneiro et al., 2009; Araújo et al., 2019b). All species of gall midges were recorded on a single host plant species (i.e., monophagous species). The percentage of specialist species recorded in our study is higher than found by Carneiro et al. (2009) which recorded 92% of monophagous gall midges for Brazil. In other study, Araújo et al. (2019b) recorded that 79% of gall-midge species were monophages in the Slovakian region. These results suggest a lower specialization of gall midges in temperate environments when compared to the Neotropical region, which have more specific gallers in their host plants, as observed for the Restinga of Barra de Maricá. It is important to note that there are differences in the duration and frequency of sampling between the present study and the others mentioned. Our network was sampled for a much longer period of time than any previously published study (almost two decades), which enhances the sampling of rarer interactions, and consequently increases the specialization of the network. However, this fact reinforces the relevance of the observed patterns, because even with such a long sampling, only species-specific plant-galling interactions were registered.

The structure of the network formed by the gall midges and their host plants proved to be highly specialized. The connectance observed in the present study (2.8%) was low as compared to other plant-phytophagous networks (review in Araújo et al., 2015). However, comparing with other networks of galling arthropods, the value observed here was higher than observed by Araújo et al. (2017) (2.3%) but lower to that observed by Araújo & Kollar (2019) (5.4%), which sampled networks in temperate forests. Our plant-galling network also showed a low number of links per species (0.608) and a high modularity (0.958), corroborating the pattern observed in other galling networks (Araújo et al., 2017). Our results provide evidence that supports the high specificity and specialization of plant-galling interactions (Araújo et al., 2019b). Furthermore, our results show that the network of host plants and gall midges is few robust to coextinctions. This result is due to the high specificity of the plant-galling interactions, since each species of plant lost, represents the loss of at least one species of gall midge (Araújo et al., 2017).

Main genera of gall midges recorded in our study were Dasineura and Asphondylia. The genus Dasineura is the richest in Cecidomyiidae family with 476 described species (Gagné & Jaschhof, 2017). For the Neotropical region, only 39 species in this genus are described, 10 species from Brazil (Maia & Silva, 2013). In the present study,
Dasineura induced galls mainly on Myrtaceae (but also on Chrysobalanaceae, Erythroxylaceae, and Malpighiaceae). The genus Asphondyliella is cosmopolitan and includes 272 gall-inducing species in the 100 and 100 in the Neotropical region (Gagné & Jaschhof, 2017). In Brazil, Flor & Maia (2017) listed 58 species of Asphondyliella, being 20 already known and 38 are still undetermined. In the Restinga of Maricá, Asphondyliella induced galls on host plants of six families (Asclepiadaceae, Boraginaceae, Fabaceae, Loranthaceae, Olacaceae, and Rubiaceae). These two genera are characterized by highly specialized galling species, most of which are monophagous (Carneiro et al., 2009), which contributed to the low connectivity of the plant-galling network.

Myrtaceae was the plant family that sheltered more gall-midge species (13 species) and presented important host plants (in terms of the number of interactions), such as Eugenia astringens, and Eugenia uniflora (three gall midge species each). Myrtaceae are one of the most diverse families of Angiospermae, with thousands of species, being important in several Neotropical ecosystems (Wilson et al., 2001). Eugenia, with about 1,000 species, is one of the most diverse genera of Myrtaceae, distributed mainly in the Central and South Americas (Merwe et al., 2004), being the genus with the greatest number of species at restingas in the State of Rio de Janeiro (Araújo & Henriques, 1984). The great number of gall midges associated to Myrtaceae plants contributed to the high modularity of the plant-galling network, since the family forms a compartment of interactions within the network. Similarly, Guapira opposita, which was the host plant species that sheltered more gall-midge species with seven species, it also contributed to the formation of a module within the network. This species is one of the most expressive plants in Quaternary coastal plains of the Atlantic Coast of Southern Brazil, very frequent at restingas, where it is widespread and one of the dominant species (Reitz, 1970).

The frequency and abundance of these plant taxa can explain the great diversity of gall-inducers associated with them. In fact, Myrtaceae have been cited in several gall inventories at restinga areas as super host family, not only in the State of Rio Janeiro, as Maricá and Carapebus (Maia, 2001), Grumari (Oliveira & Maia, 2005), Ilha da Marambaia (Rodrigues et al., 2014), Ilha Grande (Maia & Oliveira, 2010), Região dos Lagos (Carvalho-Fernandes et al., 2016), but also in Espirito-Santo (in Guarapari) (Bregonci et al., 2010), São Paulo (in Bertioga) (Maia et al., 2008), and Santa Catarina (in Babinbonga and São Francisco do Sul) (Melo-Júnior et al., 2018; Arriola et al., 2015). The frequent presence of Myrtaceae in gall inventories at Brazilian restinga is an indication of the importance of this family for the structuring of plant-galling communities in these ecosystems. Similarly, Guapira opposita is cited as super host species in almost all inventories at restinga (review in Maia, 2013), except in Grumari and Guarapari. Recent evidence suggests that the presence of super host taxa can modify the structure of plant-galling networks in Neotropical environments, increasing the diversity and connectivity of interactions (Araújo et al., 2019c). In addition, the presence of super host species can impact the robustness of the network, because although it increases the robustness for random extinctions, the presence of closely connected species makes the network more vulnerable to directional attack (Iyer et al., 2013). These evidences suggest that Guapira opposita may have a great importance in structuring plant-galling networks in restingas, but more data are needed to measure its real role.

There is a large Linear gap in the knowledge of Neotropical cecidomyiids (Araújo et al., 2019a), which is one of the main limitations for the advancement of studies on the biology and ecology of gall-midge interactions with other species. In the present study, by using a taxonomically well-defined trophic assemblage, we elucidated for the first time the structure of a network involving host plants and gall midges in the Neotropical region. Our results show highly specialized patterns both for the interactions of gall midges with their plants. The low connectivity and high modularity observed for plant-galling interactions indicates a high level of ecological and phylogenetic restrictions for the structuring of interactions within the network, which demonstrates that eventual losses of species or interactions can be hardly substituted. Thus, this high level of specificity reinforces the important of conserving this threatened ecosystem, as each restinga area has a peculiar flora and consequently a unique assemblage of host plants and gall-midge species.

ACKNOWLEDGMENTS

We are grateful to the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial support (Proc. 301481/2017-2).

AUTHORS’ CONTRIBUTIONS

W.S.A.: Conceptualization, Formal analysis, Writing – original draft, Visualization, Investigation, Writing – review & editing. V.C.M.: Conceptualization, Methodology, Data curation, Writing – original draft, Visualization, Investigation, Writing – review & editing. All the authors actively participated in the discussion of the results, they reviewed and approved the final version of the paper. Authors declare there are no conflicts of interest.

REFERENCES

Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M. & Sparovek, G. 2013. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6): 711-728.

Araújo, W.S. & Maia, V.C.: Trophic network of host plants and gall midges

Araújo, W.S. & Kollár, J. 2019. First characterization of a highly specialized ecological network composed by gall-inducing mites and their host plants. International Journal of Aacology, 45(4): 223-226.
APPENDIX S1

List of published data compiled in the present study.

RESTINGA OF THE BARRA DE MARICÁ (APA)

1) **Host plant:** Fridericia conjugata (Vell.) L.G. Lohmann (Bignoniaceae) (= Arrabidaea conjugata) (native to Brazil)
 Galler: Arrabiadaeamyia serrata Maia 2001a
 Parasitoid: Eurytoma sp. 1 (Eurytomidae)
 Refs.: Maia 2001a, b, Maia & Azevedo 2009

2) **Host plant:** Borreria verticillata (L.) G. Mey. (Rubiaceae) (native to Brazil)
 Galler: Asphondylia borreriae Rübsaamen 1905
 Parasitoids: Horismenus sp. (Eulophidae), Eupelmidae, Rileya sp. 7 (Eurytomidae)
 Refs.: Rübsaamen 1905, Maia 2001b, Maia & Azevedo 2009

3) **Host plant:** Ximenia americana L. (Olacaceae) (native to Brazil)
 Galler: Asphondylia communis Maia & Couri 1992
 Parasitoids: Encyrtidae, Eupelmidae
 Refs.: Maia & Couri 1992, Maia 2001b, Maia & Azevedo 2009

4) **Host plant:** Varronia curassavica Jacq. (= Cordia curassavica DC. = Cordia curassavica (Jacq.) Roem. & Schult.) (Boraginaceae) (native to Brazil)
 Galler: Asphondylia cordiae Möhn 1959
 Parasitoid: Eurytoma sp. 2 (Eurytomidae)
 Refs.: Möhn 1959, Maia 2001b, Maia & Azevedo 2009

Galler: Cordiamyia globosa Maia 1996a
 Parasitoids: Cirrospilus sp. 1, Galeopsomyia sp. 1 (Eulophidae), Synopeas sp. (Platygastridae), Lyrcus sp. (Pteromalidae), Dimeromicrus ceccidomyiae, Torymoides sp.; Torymus sp. (Torymidae)
 Refs.: Maia 1996a, Maia 2001b, Maia & Azevedo 2009

5) **Host plant:** Struthanthus taubatensis Eichler (= S. maricensis Rizzini ex Profice (Loranthaceae) (endemic to Brazil)
 Galler: Asphondylia maricensis Maia & Couri 1992
 Parasitoids: Eurytomidae, Platygaster sp. (Platygastridae)
 Refs.: Maia & Couri 1992, Maia 2001b, Maia & Azevedo 2009

6) **Host plant:** Peplonia asteria (Vell.) Fontella & E.A. Schwarz (Asclepiadaceae) (endemic to Atlantic Forest)
 Galler: Asphondylia peploniae Maia 2001a
 Parasitoids: Eupelmidae, Rileya sp. 1 (Eurytomidae), Torymidae
 Refs.: Maia 2001a, b, Maia & Azevedo 2009

7) **Host plant:** Senna bicapsularis (L.) Roxb. (Fabaceae) (exotic)
 Galler: Asphondylia sennae Maia & Couri 1992
 Parasitoids: No parasitoids.
 Refs.: Maia & Couri 1992

8) **Host plant:** Guapira opposita (Vell.) Reitz (Nyctaginaceae) (native to Brazil)
 Galler: Brugmannia acuata Maia 2004
 Parasitoids: Galeopsomyia sp. 1 (Eulophidae), Eupelmidae, Eurytoma sp. 9, Rileya sp. 3 (Eurytomidae), Torymidae
 Refs.: Maia 2001b, Maia 2004, Maia & Azevedo 2009

 Galler: Brugmannia elongata Maia & Couri 1993
 Parasitoids: Eupelmidae, Galeopsomyia sp. 1, Chrysotomymia sp., Cirsospilus sp. (Eulophidae), Rileya sp. 3, Eurytoma sp. 9 (Eurytomidae), Platygaster sp. (Platygastridae)
 Refs.: Maia & Couri 1993, Maia 2001b, Maia & Azevedo 2009

 Galler: Brugmannia monteiri Maia & Couri 1993
 Parasitoids: No parasitoids.
 Refs.: Maia & Couri 1993

 Galler: Brugmannia robusta Maia & Couri 1993
 Parasitoids: Eupelmidae, Galeopsomyia sp. 1, Chrysotomymia sp. (Eulophidae), Eurytoma sp. 3 (Eurytomidae), Platygaster sp. (Platygastridae)
 Refs.: Maia & Couri 1993, Maia 2001b, Maia & Azevedo 2009

 Galler: Brugmannia brasiliensis Couri & Maia 1992
 Parasitoids: No parasitoids.
 Refs.: Couri & Maia 1992, Maia 2001b

 Galler: Proasphondylia formosa Maia 1994a
 Parasitoids: No parasitoids.
 Refs.: Maia 1994a, Maia & Azevedo 2009

 Galler: Proasphondylia guapirea Maia 1994a
| No. | Host Plant | Galler | Parasitoids |
|-----|------------------------------------|---|--|
| 9 | Host plant: Byrsonima sericea DC. | Galler: Bruggmanniella byroninanae | Eupelmidae, Rileya sp. 3, 5, 7 (Eurytomidae), Platygastrida |
| | (Malpighiaceae) (native to Brazil) | Refs.: Maia 1994a, Maia 2001b, Maia & Azevedo 2009 | Refs.: Maia & Couri 1992, Maia 2001b, Maia & Azevedo 2009 |
| 10 | Host plant: Monteverdia obtusifolia | Galler: Bruggmanniella maytenune | Encyrtidae, Eupelmidae, Eurytomidae, Torymidae |
| | (Mart.) Biral (= Maytenus obtusifolia | Refs.: Maia & Couri 1992, Maia 2001b, Maia & Azevedo 2009 | Refs.: Maia & Couri 1992, Maia 2001a, b, Maia & Azevedo 2009 |
| | (Celastraceae) (endemic to Brazil) | | Eulophidae |
| 11 | Host plant: Paulinia weinmanniiholana | Galler: Pauliniamyia ampla | No parasitoids. |
| | Mart. (Sapindaceae) (endemic to Atlantic Forest) | Refs.: Maia 2001a, b, Maia & Azevedo 2009 | Refs.: Maia 2001a, b, Maia & Azevedo 2009 |
| 12 | Host plant: Eugenia uniflora L. | Galler: Clinodiplosis florcola | Chrysonotomyia sp., gen. nov. 2 sp. nov. 1, Aprostocetus sp. 1 (Euphidae), Eupelmidae, Rileya sp. 8 (Eurytomidae), Eupelmidae, Eurytoma sp. 8 (Eurytomidae), Eupelmidae, Eurytomidae, Platygastrida, Pteromalidae, Dimeromicrus cecidomyiae (Torymidae) |
| | (Myrtaceae) (native to Brazil) | Refs.: Maia 2001a, Maia & Azevedo 2009 | Refs.: Maia 2001a, Maia & Azevedo 2009 |
| 13 | Host plant: Clusia lanceolata Cambess. | Galler: Clinodiplosis profusa | 14) Host plant: Erythroxylum ovalifolium Peyr. (Erythroxylaceae) (endemic to Atlantic Forest) |
| | (Clusiaceae) (endemic to Atlantic Forest) | Refs.: Maia 2001a, Maia & Azevedo 2009 | Galler: Dasineura ovalifoliae Fernandes & Maia 2011 |
| | | | Eupelmidae, Mymaridae, Pteromalidae, Torymidae, gen. nov. 6 sp. nov. 1 (Euphidae) |
| 14 | Host plant: Erythroxylum ovalifolium Peyr. | Refs.: Maia 2001a, Maia & Azevedo 2009 | Refs.: Maia 2001b, Fernandes & Maia 2011, Maia & Azevedo 2009 |
| | (Erythroxylaceae) (endemic to Atlantic Forest) | Galler: Lopesia erythroxyl Rodrigues & Maia 2010 | Refs.: Maia 2001b, Rodrigues & Maia 2010, Maia & Azevedo 2009 |
| | | | Eupelmidae, Eurytoma sp. 6 (Eurytomidae), Mymaridae, Pteromalidae, gen. nov. 6 sp. nov. 3 (Euphidae) |
| | | | Parasitoids: No parasitoids. |
| 15 | Host plant: Eugenia uniflora L. | Galler: Cynadosia profusa | Parasitoids: No parasitoids. |
| | (Myrtaceae) (native to Brazil) | Refs.: Maia 2001a, Maia & Azevedo 2009 | Refs.: Maia 2001a, Maia & Azevedo 2009 |
| 16 | Host plant: Clusia lanceolata Cambess. | Galler: Cynadosia profusa | Parasitoids: No parasitoids. |
| | (Clusiaceae) (endemic to Atlantic Forest) | Refs.: Maia 2001a, Maia & Azevedo 2009 | Refs.: Maia 1993, Maia 2001b, Maia & Azevedo 2009 |
17) **Host plant:** Melissa officinalis L. (Lamiaceae) (exotic)
 Galler: Clinodiplosis melissae Maia 1994b
 Parasitoids: No parasitoids.
 Refs.: Maia 1994b

18) **Host plant:** Psittacanthus dichroos (Mart.) Mart. (Loranthaceae) (endemic to Brazil)
 Galler: Costadiplosis maricaensis Viceconte & Maia 2009
 Parasitoids: Aprostocetus sp.1 (Eulophidae), Pteromalidae
 Refs.: Maia 2001b, Viceconte & Maia 2009, Maia & Azevedo 2009

19) **Host plant:** Couepia ovalifolia (Schott) Benth. ex Hook.f. (Chrysobalanaceae) (endemic to Atlantic Forest)
 Galler: Dasineura couepiae Maia 2001a
 Parasitoids: Aphelinidae, Braconidae, Eulophidae, Eupelmidae, Torymidae
 Refs.: Maia 2001a, b, Maia & Azevedo 2009

20) **Host plant:** Stephomyia marginalis Maia 2001a
 Parasitoids: Eupelmidae, Pteromalidae, Torymidae
 Refs.: Maia 2001a, b, Maia & Azevedo 2009

21) **Host plant:** Eugenia astringens Cambess. (= Eugenia rotundifolia Casar) (Myrtaceae) (endemic to Atlantic Forest)
 Galler: Dasineura globosa Maia 1996b
 Parasitoids: Eulophidae, Platygaster sp. (Platygastridae), Torymidae
 Refs.: Maia 1996b, Maia 2001b, Maia & Azevedo 2009

22) **Host plant:** Myrcia floribunda (H. West ex Willd.) O. Berg (Myrtaceae) (native to Brazil)
 Galler: Dasineura myrciariae Maia 1996
 Parasitoids: Dimeromicrus cecidomyiae (Torymidae)
 Refs.: Maia 1996b, Maia 2001b, Maia & Azevedo 2009

23) **Host plant:** Dalbergia ecastophyllum (L.) Taub. (Fabaceae) (native to Brazil)
 Galler: Lopesia grandis Maia 2001a
 Parasitoid: Torymidae
 Refs.: Maia 2001a, b, Maia & Azevedo 2009

24) **Host plant:** Neomitranthes obscura (DC.) N. Silveira (Myrtaceae) (endemic to Atlantic Forest)
 Galler: Neomitranthella robusta Maia 1996c
 Parasitoids: Quadrastichus sp., Tetrastichinae (gen. nov.) (Eulophidae)
 Refs.: Maia 1996c, Maia 2001b, Maia & Azevedo 2009

25) **Host plant:** Pouteria venosa (Mart.) Baehni (Sapotaceae) (native to Brazil)
 Galler: Lopesia singularis Maia 2001a
 Parasitoids: Tetrastichinae (gen. nov.) (Eulophidae), Eupelmidae, Eurytomidae, Platygastridae, Torymidae
 Refs.: Maia 2001a, b, Maia & Azevedo 2009

26) **Host plant:** Manilkara subsericea (Mart.) Dubard (Sapotaceae) (endemic to Atlantic Forest)
 Galler: Manilkaramyia notabilis Maia 2001a
 Parasitoids: No parasitoids.
 Refs.: Maia 2001a, b

27) **Host plant:** Myrcia ovata Cambess. (Myrtaceae) (endemic to Atlantic Forest)
 Galler: Myrciamyia maricaensis Maia 1996c
 Parasitoids: gen. nov. 1 sp. nov. 1, gen. nov. 3 sp. nov. 1, Aprostocetus sp. 3 (Eulophidae)
 Refs.: Maia 1996c, Maia 2001b, Maia & Azevedo 2009
28) **Host plant:** *Hylocereus setaceus* (Salm-Dyck) R. Bauer (= *Selenicereus setaceus* (Salm-Dyck) Berg (Cactaceae) (native to Brazil))
 Galler: *Neolasioptera cerei* (Rübsaamen 1905):
 Parasitoids: No parasitoids.
 Refs.: Rübsaamen 1905, Maia 2001b

29) **Host plant:** *Clusia fluminensis* Planch. & Triana (Clusiaceae) (endemic to Atlantic Forest)
 Galler: *Parazalepidota clusiae* Maia 2001a
 Parasitoid: *Rileya* sp. 2 (Eurytomidae)
 Refs.: Maia 2001a, b, Maia & Azevedo 2009

30) **Host plant:** *Microgramma vacciniifolia* (Langsd. & Fisch.) Copel. (Polypodiaceae) (native to Brazil)
 Galler: *Primadiplosis microgramma* Maia 2011
 Parasitoids: Eulophidae, Torymidae
 Refs.: Maia 2011, Maia & Santos 2015

31) **Host plant:** *Lantana camara* L. (Verbenaceae) (naturalised)
 Galler: *Schismatodiplosis lantanae* (Rübsaamen 1908)
 Parasitoids: Eulophidae, Platygastridae, Pteromalidae, Scelionidae
 Refs.: Rübsaamen 1908, Maia 2001b, Maia & Azevedo 2009

32) **Host plant:** *Tetrapterys phlomoides* (Spreng.) Nied. (Malpighiaceae) (native to Brazil)
 Galler: *Schizomyia maricaensis* Sousa & Maia 2007
 Parasitoids: No parasitoids.
 Refs.: Maia 2001b, Sousa & Maia 2007

33) **Host plant:** *Jacquemontia holosericea* (Weinm.) O’Donell (Convolvulaceae) (native to Brazil)
 Galler: *Schizomyia santosi* Maia & Araújo 2009
 Parasitoids: No parasitoids.
 Refs.: Maia 2001b, Maia & Azevedo 2009

34) **Host plant:** *Smilax rufescens* Griseb. (Smilacaceae) (endemic to Brazil)
 Galler: *Smilasioptera candelariae* Möhn 1975
 Parasitoids: *Pentastichus* sp. 3 (Eulophidae), Eupelmidae
 Refs.: Möhn 1975, Maia 2001b, Maia & Azevedo 2009

35) **Host plant:** *Eugenia copacabanensis* Klaersk. (Myrtaceae) (endemic to Atlantic Forest)
 Galler: *Stephomyia espiralis* Maia 1994c
 Parasitoid: Tetrastichinae (gen. nov.) (Eulophidae)
 Refs.: Maia 1994c, Maia 2001b, Maia & Azevedo 2009

36) **Host plant:** *Pouteria caimito* (Ruiz & Pav.) Radlk (= *Pouteria caimito* var. *laurifolia*) (Sapotaceae) (native to Brazil)
 Galler: *Youngomyia pouteriae* Maia 2001a
 Parasitoids: Xanthobium sp. (Eulophidae), Eupelmidae, Dimeromicrus ceccidomyiae (Torymidae)
 Refs.: Maia 2001a, b, Maia & Azevedo 2009

RESTINGA OF THE ITAIPUAÇU

1) **Host plant:** *Fridericia conjugata* (Vell.) L.G. Lohmann (Bignoniaceae) (= *Arrabidaea conjugata*) (native to Brazil)
 Galler: *Arrabiadamyia serrata* Maia 2001a
 Parasitoid: *Eurytoma* sp. 1 (Eurytomidae)
 Refs.: Maia 2001a, b, Maia & Azevedo 2009

2) **Host plant:** *Ximenia americana* L. (Olacaceae) (native to Brazil)
 Galler: *Asphondylia communis* Maia & Couri 1992
 Parasitoids: Encyrtidae, Eupelmidae
 Refs.: Maia & Couri 1992, Maia 2001b, Maia & Azevedo 2009

3) **Host plant:** *Varronia curassavica* Jacq. (= *Cordia verbenaecae* DC. = *Cordia curassavica* (Jacq.) Roem. & Schult.) (Boraginaceae) (native to Brazil)
 Galler: *Asphondylia cordiae* Möhn 1959
 Parasitoid: *Eurytoma* sp. 2 (Eurytomidae)
 Refs.: Möhn 1959, Maia 2001b, Maia & Azevedo 2009

Araújo, W.S. & Maia, V.C.: Trophic network of host plants and gall midges Pup. Avulsos Zool., 2021; v.61: e20216134
4) **Host plant:** Struthanthus taubatensis Eichler (= *S. maricensis* Rizzini ex Profice (Loranthaceae)) (endemic to Brazil)
 Galler: Eurytomidae, Platygaster sp. (Platygastridae)
 Refs.: Maia & Couri 1992, Maia 2001b, Maia & Azevedo 2009

5) **Host plant:** Peplonia asteria (Vell.) Fontella & E.A. Schwarz (Asclepiadaceae) (endemic to Atlantic Forest)
 Galler: Asphondylia peploniae Maia 2001a
 Parasitoids: Eulophidae, Rileya sp. 1 (Eurytomidae), Torymidae
 Refs.: Maia 2001a, b, Maia & Azevedo 2009

6) **Host plant:** Guapira opposita (Vell.) Reitz (Nyctaginaceae) (native to Brazil)
 Galler: Bruggmannia elongata Maia & Couri 1993
 Parasitoids: Eupelmidae, Galeopsomyia sp. 1, Chrysotomyia sp., Cirrospilus sp. (Eulophidae), Rileya sp. 3, Eurytoma sp. 9, Platygastridae
 Refs.: Maia & Couri 1993, Maia 2001b, Maia & Azevedo 2009

7) **Host plant:** Byrsonima sericea DC. (Malpighiaceae) (native to Brazil)
 Galler: Dasineura byrsonimae Maia 2010
 Parasitoids: Mymaridae, Eulophidae
 Refs.: Maia 2001b, Maia 2010, Maia & Azevedo 2009

8) **Host plant:** Heteropterys nitida (Lam.) DC. (Malpighiaceae) (native to Brazil)
 Free-living herbivore: Clinodiplosis floricola Novo-Guedes & Maia 2008
 Parasitoid: Aprostocetus sp. 1 (Eulophidae)
 Refs.: Maia 2001b, Novo-Guedes & Maia 2008, Maia & Azevedo 2009
14) **Host plant:** *Clusia lanceolata* Cambess. (Clusiaceae) (endemic to Atlantic Forest)
Galler: *Clusia* sp. (Clusiaceae)
Parasitoids: *Encarsia* sp. (Aphelinidae), Eulophidae, Eupelmidae, *Eurytoma* sp. 5 (Eurytomidae), *Inostemma* sp., *Platygaster* sp. (Platygastridae), Pteromalidae
Refs.: Maia 1997, Maia 2001b, Maia & Azevedo 2009

15) **Host plant:** *Eugenia astringens* Cambess. (={*Eugenia rotundifolia*} Casar) (Myrtaceae) (endemic to Atlantic Forest)
Galler: *Dasineura* globosa Maia 1996b
Parasitoids: Eulophidae, *Platygaster* sp. (Platygastridae), *Torymidae*
Refs.: Maia 1996b, Maia 2001b, Maia & Azevedo 2009

16) **Host plant:** *Myrciaria floribunda* (H. West ex Willd.) O. Berg (Myrtaceae) (native to Brazil)
Galler: *Dasineura myricariae* Maia 1996
Parasitoids: *Dimeromicros cecidomyiae* (Torymidae)
Refs.: Maia 1996b, Maia 2001b, Maia & Azevedo 2009

17) **Host plant:** *Pouteria venosa* (Mart.) Baehni (Sapotaceae) (native to Brazil)
Galler: *Lopsea singularis* Maia 2001a
Parasitoids: Tetrastichinae (gen. nov.), *Eupelmidae*, *Eurytomidae*, Platygastridae, *Torymidae*
Refs.: Maia 2001a, b, Maia & Azevedo 2009

18) **Host plant:** *Hylodera setaeus* (Salm-Dyck) R. Bauer (={*Selenicereus setaeus*} Salm-Dyck) *Berg* (Cactaceae) (native to Brazil)
Galler: *Neolasionoptera cerei* (Rübsaamen 1905)
Parasitoids: No parasitoids.
Refs.: Rübsaamen 1905, Maia 2001b

19) **Host plant:** *Jacquemontia holosericea* (Weinm.) O’Donell (Convolvulaceae) (native to Brazil)
Galler: *Schizomyia santosii* Maia & Araújo 2009
Parasitoids: No parasitoids.
Refs.: Maia 2001b, Maia & Araújo 2009

20) **Host plant:** *Smilax rufescens* Griseb. (Smilacaceae) (endemic to Brazil)
Galler: *Smilasioptera candelariae* Möhn 1975
Parasitoids: *Pentastichus* sp. 3 (Eulophidae), Eupelmidae
Refs.: Möhn 1975, Maia 2001b, Maia & Azevedo 2009

21) **Host plant:** *Pouteria cainito* (Ruiz & Pav.) Radkl (={*Pouteria cainito*} var. *laurifolia*) (Sapotaceae) (native to Brazil)
Galler: *Youngomyia pouteri* Maia 2001c
Parasitoids: *Xanthobium* sp. (Eupelmidae), *Eupelmidae*, *Platygastridae*, *Dimeromicros cecidomyiae* (Torymidae)
Refs.: Maia 2001a, c, Maia & Azevedo 2009

REFERENCES

Couri, M.S. & Maia, V.C. 1992. Considerações sobre *Pispophyndia* Mohn, 1960 (Diptera, Cecidomyiidae, Asphondylliidi), com descrição de uma espécie nova do Brasil. *Revista Brasileira de Entomologia*, 37: 717-721.

Fernandes, S.P.C. & Maia, V.C. 2011. Pp. 522-525. In: Maia, V.C. & Fernandes, S.P.C. Two new species of gall midges (Diptera, Cecidomyiidae) associated with *Erythroxylum ovalifolium* Peyr. (Erythroxylaceae) from the Barra de Maricá restinga, Maricá, Rio de Janeiro, Brasil. *Brazilian Journal of Biology*, 71: 521-526.

Maia, V.C. 1993. Descrição de duas espécies novas de Cecidomyiidae (Diptera) associadas a *Eugenia* sp. (Myrtaceae). *Revista Brasileira de Entomologia*, 37: 717-721.

Maia, V.C. 1994c. Considerações sobre *Paspophyndia* Felt (Diptera, Cecidomyiidae), com descrição de duas espécies novas associadas com *Guapiρa opposita* (Vellos) Reitz (Nyctaginaceae). *Revista Brasileira de Zoologia*, 10: 215-218.

Maia, V.C. 1994b. Uma nova espécie de *Clindiplosis* Kieffer (Diptera, Cecidomyiidae), associada com *Melissa officinalis* Linnaeus (Labiatae) no Brasil. *Revista Brasileira de Zoologia*, 10: 695-697.

Maia, V.C. 1994c. Considerações sobre *Stephomyia* Tavares (Diptera, Cecidomyiidae, Asphondylliidi), com descrição de quatro espécies novas associadas com *Eugenia* L. e *Neomithranthes* obscura (DC.) L. (Myrtaceae). *Revista Brasileira de Zoologia*, 10: 521-530.

Maia, V.C. 1995. *Myricariamyia bivalve*, gen. n. e sp. n. (Diptera, Cecidomyiidae, Oligotrophini), associado com *Myricaria floribunda* (Camb.) Legr. (Myrtaceae) no Brasil. *Revista Brasileira de Zoologia*, 11: 635-638.

Maia, V.C. 1996a. *Cardiomyia globosa* gen. n. e sp. n. (Diptera, Cecidomyiidae) associado com *Condria verbenacea* DC. (Boraginaceae) no Brasil. *Revista Brasileira de Zoologia*, 13: 579-583.
Maia, V.C. 1996b. Três espécies novas de *Dasineura* Rondani (Diptera, Cecidomyiidae) associadas a Myrtaceae, na restinga de Barra de Maricá, Rio de Janeiro. *Revista Brasileira de Zoologia*, 12: 1001-1008.

Maia, V.C. 1996c. Dois gêneros novos de Cecidomyiidae (Diptera) associados a Myrtaceae, na restinga de Barra de Maricá, Rio de Janeiro, Brasil. *Revista Brasileira de Zoologia*, 12: 567-574.

Maia, V.C. 1997. *Clusiamyia nitida* gen. e sp. n. (Diptera, Cecidomyiidae, Cecidomyiidi) associada com *Clusia lanceolata* Camb. (Clusiaceae) no Brasil. *Revista Brasileira de Zoologia*, 13: 829-832.

Maia, V.C. 2001a. New genera and species of gall midges (Diptera, Cecidomyiidae) from three restings of Rio de Janeiro State, Brazil. *Revista Brasileira de Zoologia*, 18(Suppl. 1): 1-32.

Maia, V.C. 2001b. The gall midges (Diptera, Cecidomyiidae) from three restings of Rio de Janeiro State, Brazil. *Revista Brasileira de Zoologia*, 18(2): 583-629.

Maia, V.C. 2001c. Two new species of gall midges (Diptera, Cecidomyiidae) associated with *Pouteria caimito var. laurifolia* (Sapotaceae) in Brazil. *Studia Dipterologica*, 8: 103-110.

Maia, V.C. 2004. Description of a new species of *Bruggmannia* Tavares (Diptera, Cecidomyiidae) associated with *Guapira opposita* (Vell.) Reltz (Nyctaginaceae) in Brazil. *Revista Brasileira de Zoologia*, 21: 761-764.

Maia, V.C. 2005a. Clionidiosoma costai, a new galler species (Diptera, Cecidomyiidae) associated with *Paulinia weinmanniacefolia* Mart. (Sapindaceae). *Revista Brasileira de Zoologia*, 32: 677-679.

Maia, V.C. 2005b. Pp. 348-352. In: Maia, V.C.; Constantino, P. de A.L. & Monteiro, R.F. New gall midges (Diptera, Cecidomyiidae) associated with two species of *Eugenia* (Myrtaceae). *Revista Brasileira de Bionociencias*, 8(4): 337-380.

Maia, V.C. 2010. A new species of *Dasineura* Rondani, 1840 (Diptera, Cecidomyiidae) associated with *Byronima sericea* (Malpighiaceae). *Revista Brasileira de Zoologia*, 49: 347-352.

Maia, V.C. 2011. Pp. 41-43. In: Maia, V.C. & Santos, J.C. A new genus and species of gall midge (Diptera, Cecidomyiidae) associated with *Microgramma vaccinifolia* (Langsd. & Fisch.) Copel (Polypodiaceae) from Brazil. *Revista Brasileira de Entomologia*, 55: 40-44.

Maia, V.C. & Araújo, W.S. de. 2009. Uma nova espécie de *Schizomyia* (Diptera, Cecidomyiidae) induzora de galhas nos botões florais de *Jacquemontia holosericea* (Convolvulaceae). *Revista Brasileira de Entomologia*, 53: 356-260.

Maia, V.C. & Azevedo, M.A.P. de. 2009. Micro-himenópteros associados com galhas de Cecidomyiidae (Diptera) em Restingas do Estado do Rio de Janeiro (Brasil). *Biota Neotropical*, 9(2): 151-164.

Maia, V.C. & Couri, M.S. 1992. Pp. 655-660. In: Maia, V.C., M.S. Couri, & Monteiro, R.F. Sobre seis espécies de *Asphondylia* Loew, 1850 do Brasil (Diptera, Cecidomyiidae). *Revista Brasileira de Entomologia*, 36: 653-661.

Maia, V.C. & Couri, M.S. 1993. Descrição de três espécies novas de *Bruggmannia* Tavares, 1906 (Diptera, Cecidomyiidae, Asphondylidi) do Brasil associadas com *Guapira opposita* (Nyctaginaceae). *Revista Brasileira de Biologia*, 53: 209-215.

Maia, V.C. & Nava, D.E. 2011. New gall midges (Diptera, Cecidomyiidae) associated with *Eugenia uniflora* and *Psidium cattleianum* (Myrtaceae). *Iheringia, Série Zoologia*, 101(1-2): 69-74.

Maia, V.C. & Oliveira, U.P. de. 2007. Uma nova espécie de Cecidomyiidae (Diptera) associada com *Sebastiana glandulosa* (Euphorbiaceae). *Iheringia, Série Zoologia*, 97: 97-101.

Maia, V.C. & Santos, M.G. 2015. Record of insects in two fern species of the genus *Microgramma* (Polypodiaceae) in the Atlantic Rain Forest, Rio de Janeiro state, Brazil. *Brazilian Journal of Biology*, 75(4), suppl. 1: S253-S254.

Möhn, E. 1959. Gallmucken (Diptera, Itoniidiidae) aus El Salvador. I. Teil. *Senckenbergiana Biologica*, 40: 297-368.

Möhn, E. 1975. Gallmucken (Diptera, Itoniidiidae) aus El Salvador. II. Teil. *Lasiopeterida. Stuttgarter Beiträge zur Naturkunde*, No. 276: 1-101.

Novo-Guedes, R. & Maia, V.C. 2008. Gall midges (Diptera, Cecidomyiidae) associated with *Heteropteris nitida* (Malpighiaceae). *Arquivos do Museu Nacional*, 66: 359-362.

Oliveira, U.P. de & Maia, V.C. 2008. A new species of gall midge (Diptera, Cecidomyiidae) associated with *Sebastiana glandulosa* (Euphorbiaceae). *Arquivos do Museu Nacional*, Rio de Janeiro, 66: 355-358.

Rudollegues, A.R. & Maia, V.C. 2010. Duas novas espécies de *Lopesia Rubsaamen* (Diptera, Cecidomyiidae) do Brasil, com chave para as espécies. *Biota Neotropical*, 10: 85-99.

Riochaa, E.H. 1905. Beitrag zur Kenntnis aussereuropäischer Zoociciden. II. Beitrag: Gallen aus Brasilien und Peru. (Vorlaufige Mitteilung.) *Marcellia* 4: 65-85.

Riochaa, E.H. 1908. Beitrag zur Kenntnis aussereuropäischer Zoociciden. III. Beitrag: Gallen aus Brasilien und Peru. *Marcellia* 6: 110-173.

Sousa, L.I. de & Maia, V.C. 2007. A new species of *Schizomyia* (Diptera, Cecidomyiidae, Asphondylidiini) associated with *Tetrapteryx phломoides* (Malpighiaceae). *Iheringia, Série Zoologia*, 97: 311-313.

Vicente, K.S. de M. & Maia, V.C. 2009. Novo gênero e nova espécie de Diptera, Cecidomyiidae, associada com *Psittacanthus dichrous* (Loranthaceae). *Arquivos do Museu Nacional*, 67: 35-40.