Classical and Quantum Fermions Linked by an Algebraic Deformation

Ali Mostafazadeh

Department of Mathematics, Koç University, Rumelifeneri Yolu, 80910 Sariyer, Istanbul, Turkey

Abstract

We study the regular representation ρ_ζ of the single-fermion algebra A_ζ, i.e., $c^2 = c^{+2} = 0$, $cc^+ + c^+ c = \zeta \, 1$, for $\zeta \in [0,1]$. We show that ρ_0 is a four-dimensional nonunitary representation of A_0 which is faithfully irreducible (it does not admit a proper faithful subrepresentation). Moreover, ρ_0 is the minimal faithfully irreducible representation of A_0 in the sense that every faithful representation of A_0 has a subrepresentation that is equivalent to ρ_0. We therefore identify a classical fermion with ρ_0 and view its quantization as the deformation: $\zeta : 0 \rightarrow 1$ of ρ_ζ. The latter has the effect of mapping ρ_0 into the four-dimensional, unitary, (faithfully) reducible representation ρ_1 of A_1 that is precisely the representation associated with a Dirac fermion.

1 Introduction

The description of fermions in terms of the Clifford algebra relations

$$cc^+ + c^+ c = 1,$$

$$c^2 = c^{+2} = 0,$$

$\zeta \in [0,1]$.
dates back to early days of quantum physics. This algebra may be obtained by quantizing a classical system with fermionic variables, e.g., a free fermion or a fermionic oscillator. The classical fermionic variables satisfy the Grassmann algebra relations

\[cc^+ + c^+ c = 0, \]
\[c^2 = c^{+2} = 0. \]

Therefore similarly to the case of bosonic variables, the quantization of a fermionic variable may be viewed as the deformation of the algebraic relations

\[cc^+ + c^+ c = \zeta 1, \]
\[c^2 = c^{+2} = 0, \]

where the deformation parameter \(\zeta \) takes values in \([0, 1]\). Motivated by the method used in [3] to study the representation theory of orthofermions, we investigate in this paper the effect of the deformation \(\zeta \to 0 \) on the representations of the associative algebra \(\mathcal{A}_\zeta \) generated by 1, c, and \(c^+ \) and subject to relations (5) and (6).

It is well-known [4, 3] that the representations of the Clifford algebra \(\mathcal{A}_1 \) are, up to equivalence, direct sums of copies of the trivial representation \(\rho_{\text{trivial}} \):

\[\rho_{\text{trivial}}(1) = \rho_{\text{trivial}}(c^+) = \rho_{\text{trivial}}(c) = 0, \]

and the two-dimensional unitary (or *) representation \(\rho_\ast \):

\[\rho_\ast(1) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \rho_\ast(c) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad \rho_\ast(c^+) = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \rho_\ast(c)^\dagger. \]

For \(\zeta \neq 0 \), one can simply absorb the deformation parameter \(\zeta \) in the definition of \(c \) and/or \(c^+ \). Therefore the representations of \(\mathcal{A}_\zeta \) for \(\zeta \neq 0 \) are the same as those of \(\mathcal{A}_1 \). As we shall see below, for \(\zeta = 0 \) the situation is completely different.

Before, we begin our analysis, we wish to make note of the following facts about the Grassmann algebra \(\mathcal{A}_0 \).

1. \(\mathcal{A}_0 \) does not admit nontrivial unitary representations. In order to see this we first note that in view of Eqs. (5) and (6) the algebra \(\mathcal{A}_\zeta \) is spanned by the basis elements

\[1, c^+, c, c^{+2} \]
1, \(c^+, c \) and \(n \), where \(n := c^+c \). Now, let \((\mathcal{H}, \langle \cdot, \cdot \rangle)\) be an inner-product space and \(\rho : \mathcal{A}_0 \to \text{End}(\mathcal{H}) \) be a representation of \(\mathcal{A}_0 \) where ‘End’ abbreviates ‘Endomorphism’ (a linear operator mapping \(\mathcal{H} \) into \(\mathcal{H} \)). By definition, if \(\rho \) is a unitary representation, then \(\rho(c^+) = \rho(c)^\dagger \), where a dagger stands for the adjoint of the corresponding operator. According to Eqs. (3) and (4), the unitarity of \(\rho \) implies for all \(|\psi\rangle \in \mathcal{H} \),

\[
||\rho(n)|\psi\rangle||^2 = \langle \psi|\rho(n)^\dagger\rho(n)|\psi\rangle = \langle \psi|\rho(n)^2|\psi\rangle = \langle \psi|\rho(n^2)|\psi\rangle = 0.
\]

Hence \(\rho(n)|\psi\rangle = 0 \). On the other hand,

\[
||\rho(c)|\psi\rangle||^2 = \langle \psi|\rho(c)^\dagger\rho(c)|\psi\rangle = \langle \psi|\rho(n)|\psi\rangle = 0.
\]

Therefore for all \(|\psi\rangle \in \mathcal{H} \), \(\rho(c)|\psi\rangle = 0 \), so that \(\rho(c) = 0 \), \(\rho(c^+) = 0 \), and \(\rho \) is trivial.

2. The only irreducible representation of \(\mathcal{A}_0 \) is the one-dimensional representation defined by

\[
\rho_\theta^{(1)}(1) = 1, \quad \rho_\theta^{(1)}(c^+) = \rho_\theta^{(1)}(c) = 0. \tag{7}
\]

To see this let \(\rho : \mathcal{A}_0 \to \text{End}(V) \) be an arbitrary representation. Then \(V_\theta = \text{Im}(\rho(n)) := \{\rho(n)v|v \in V\} \) is an invariant (\(\rho \)-stable) subspace \([4]\), because for all \(x \in \mathcal{A}_0 \) and for all \(v \in V_\theta \), \(\rho(x)v \in V_\theta \). This shows that \(\rho \) is reducible. Furthermore, the subrepresentation obtained by restricting \(\rho \) to \(V_\theta \) is clearly equivalent to \(\rho_\theta^{(1)} \).

Next, consider the regular representation \(\rho_\zeta : \mathcal{A}_\zeta \to \text{End}(\mathcal{A}_\zeta) \) of \(\mathcal{A}_\zeta \) that is defined by

\[
\forall x, y \in \mathcal{A}_\zeta, \quad \rho_\zeta(x)y := xy. \tag{8}
\]

In the basis \(\{1, c^+, c, n\} \), where

\[
1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad c^+ = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \quad c = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \quad n = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix},
\]
we have

\[
\rho_\zeta(1) = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{pmatrix}, \quad \rho_\zeta(c^+) = \begin{pmatrix}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\end{pmatrix},
\]

(9)

\[
\rho_\zeta(c) = \begin{pmatrix}
0 & \zeta & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & \zeta \\
0 & -1 & 0 & 0 \\
\end{pmatrix}, \quad \rho_\zeta(n) = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & \zeta & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & \zeta \\
\end{pmatrix}.
\]

(10)

Here we have made use of Eqs. (5), (6), and (8).

It is not difficult to show that \(\zeta \neq 0 \) if and only if \(\rho_\zeta \) is a pseudo-unitary representation \([6]\). This is equivalent to the requirement that there is a linear Hermitian invertible operator \(\eta \) such that

\[
\rho_\zeta(c^+) = \rho_\zeta(c)^\sharp := \eta^{-1} \rho_\zeta(c)^\dagger \eta. \tag{11}
\]

This can be easily checked by taking \(\eta \) to be an arbitrary \(4 \times 4 \) matrix and imposing the condition \(\eta \rho_\zeta(c^+) = \rho_\zeta(c)^\dagger \eta \) to determine the matrix elements of \(\eta \). It follows that the determinant of \(\eta \) is proportional to \(\zeta \). Therefore \(\rho_0 \) is not pseudo-unitary. For \(\zeta \neq 0 \) there are many invertible matrices \(\eta \) satisfying (11), e.g.,

\[
\eta = \begin{pmatrix}
0 & \zeta^{-1} & \zeta^{-1} & 0 \\
\zeta^{-1} & 0 & 0 & 1 \\
\zeta^{-1} & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
\end{pmatrix}.
\]

(12)

Furthermore, in this case, there are similarity transformations

\[
\rho_\zeta(x) \to \rho'_\zeta(x) := S^{-1} \rho_\zeta(x) S \tag{13}
\]

that reduce \(\rho_\zeta \) into the direct sum of two nontrivial two-dimensional irreducible represen-
tions. A convenient choice is

\[
S = \begin{pmatrix}
\zeta & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-1 & 0 & 0 & 1
\end{pmatrix}.
\] (14)

Using Eqs. (9), (10), (13), and (14), we have

\[
\rho_\zeta'(1) = \begin{pmatrix}
1 & 0 \\
0 & 1 \\
1 & 0 \\
0 & 1
\end{pmatrix}, \quad \rho_\zeta'(c^+) = \begin{pmatrix}
0 & 0 \\
\zeta & 0 \\
0 & 0 \\
1 & 0
\end{pmatrix},
\] (15)

\[
\rho_\zeta'(c) = \begin{pmatrix}
0 & 1 \\
0 & 0 \\
0 & \zeta \\
0 & 0
\end{pmatrix}, \quad \rho_\zeta'(n) = \begin{pmatrix}
0 & 0 \\
0 & \zeta \\
0 & 0 \\
0 & \zeta
\end{pmatrix},
\] (16)

where the empty entries are zero. Clearly \(\rho_1'\) is the direct product of two copies of the basic unitary representation \(\rho_\ast\) of the Clifford algebra \(\mathcal{A}_1\). Also note that for \(\zeta = 0\) the matrix \(S\) is not invertible, and the above construction does not apply.

In fact, it is not difficult to show that the Grassmann algebra \(\mathcal{A}_0\) does not admit one, two, or three-dimensional representations that are faithful. In order to see this, consider an arbitrary representation \(\rho : \mathcal{A}_0 \rightarrow \text{End}(V)\) where \(V\) is a complex (or real) vector space, and suppose that \(\rho\) is faithful (one-to-one). Then there is \(v_1 \in V\) such that \(v_4 := \rho(n)v_1 \neq 0\). This together with the fact that \(\rho(n) = \rho(c^+)\rho(c)\) imply \(v_2 := \rho(c^+)v_1 \neq 0\) and \(v_3 := \rho(c)v_1 \neq 0\). Next let \(\lambda_i \in \mathbb{C}\), with \(i \in \{1, 2, 3, 4\}\), satisfy

\[
\sum_{i=1}^{4} \lambda_i v_i = 0.
\] (17)

Applying \(\rho(n)\) to both sides of this equation yields \(\lambda_1 = 0\). Substituting this equation in (17) and acting by \(\rho(c)\) and \(\rho(c^+)\) on both sides of the resulting equation lead to \(\lambda_2 = 0\) and \(\lambda_3 = 0\), respectively. Therefore \(\lambda_i = 0\) for all \(i \in \{1, 2, 3, 4\}\); \(v_i\) are linearly independent,
and \(\dim(V) \geq 4\). This in particular shows that the regular representation \(\rho_0\) is the ‘lowest’
dimensional faithful representation. In the following we shall use the term ‘faithfully
irreducible representation’ by which we mean a faithful representation that does not admit
a proper faithful subrepresentation. Note that a faithfully irreducible representation may
very well be reducible. The typical example is the regular representation \(\rho_0\).

Next, consider the span of \(v_i\):

\[
V_{v_1} := \text{Span}(v_1, v_2, v_3, v_4) = \left\{ \sum_{i=1}^{4} \lambda_i v_i \right\}, \lambda_i \in \mathbb{C}
\]

It is not difficult to see that for all \(v \in V_{v_1}\) and \(x \in A_0\), \(\rho(x)v \in V_{v_1}\). Hence the restriction
\(\rho_{v_1} : A_0 \to \text{End}(V_{v_1})\) of \(\rho\) to \(V_{v_1}\), which is defined by

\[
\forall x \in A_0 \quad \forall v \in V_{v_1}, \quad \rho_{v_1}(x)v := \rho(x)v,
\]

provides a representation of \(A_0\). Clearly, \(\rho_{v_1}\) is equivalent to the regular representation \(\rho_0\). This proves the following.

Theorem: Every faithful representation of the Grassmann algebra \(A_0\) has a sub-
representation that is equivalent to the regular representation \(\rho_0\). In particular, \(\rho_0\)
is (up to equivalence) the unique 4-dimensional faithfully irreducible representation
of \(A_0\).

This is analogous to the well-known fact about the Clifford algebra \(A_1\), namely that every
faithful representation of \(A_1\) has a subrepresentation that is equivalent to the canonical
representation \(\rho_*\). In particular, \(\rho_*\) is (up to equivalence) the unique 2-dimensional faith-
ful irreducible representation of \(A_1\). However there is a stronger result \[\text{[3]}\] indicating that
every representation of \(A_1\) is a direct product of copies of the trivial representation \(\rho_{\text{trivial}}\)
and the canonical representation \(\rho_*\). A similar result does not hold for \(A_0\). This is mainly
because there are, besides the trivial representation, one, two and three-dimensional non-
faitful representations, namely \(\rho_{0}^{(1)} : A_0 \to \text{End}(\mathbb{C}) = \mathbb{C}\) of \([7]\) and \(\rho_{0}^{(2)} : A_0 \to \text{End}(\mathbb{C}^2)\)
and \(\rho_{0}^{(3)} : A_0 \to \text{End}(\mathbb{C}^3)\) defined by

\[
\begin{align*}
\rho_{0}^{(2)}(1) & = 1, & \rho_{0}^{(2)}(c) & = 0, & \rho_{0}^{(2)}(c^+) & = \mu, \\
\rho_{0}^{(3)}(1) & = 1, & \rho_{0}^{(3)}(c) & = \nu, & \rho_{0}^{(3)}(c^+) & = \nu^+,
\end{align*}
\]

\[\text{(18)}\]

\[\text{(19)}\]
where
\[
\mu := \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad \nu := \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \nu^+ := \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.
\] (20)

In view of the above-stated uniqueness property of the regular representation \(\rho_0\) of the Grassmann algebra \(A_0\), we propose to identify a ‘classical fermion’ with \(\rho_0\). Then the quantization of \(\rho_0\) may be viewed as the deformation \(\zeta: 0 \rightarrow 1\) of the regular representation \(\rho_\zeta\) of the one-fermion algebra \(A_\zeta\) that maps the classical fermion \(\rho_0\) to the ‘quantum fermion’ \(\rho_1\). The latter is a four-dimensional unitary reducible representation of the Clifford algebra \(A_1\) that is associated with a Dirac fermion. In this sense Dirac fermions are naturally linked with the quantization of the classical fermions.

This work has been supported by the Turkish Academy of Sciences in the framework of the Young Researcher Award Program (EA-TÜBA-GEBİP/2001-1-1).

References

[1] F. A. Berezin and M. S. Marinov, Ann. Phys. (N. Y.) 104, 336 (1977).

[2] B. DeWitt, Supermanifolds (Cambridge University Press, Cambridge, 1992).

[3] A. Mostafazadeh, J. Phys. A: Math. Gen. 34, 8601 (2001).

[4] H. B. Lawson, Jr. and M.-L. Michelsohn, Spin geometry (Princeton University Press, Princeton, 1989).

[5] J. M. G. Fell and R. S. Doran, Representations of *-Algebras, Locally Compact Groups, and Banach *-Algebraic Bundles (Academic Press, San Diego, 1988).

[6] A. Mostafazadeh, preprint: math-ph/0302050 to appear in J. Math. Phys.; See also A. Mostafazadeh, J. Math. Phys. 43, 205 (2002).