Adsorption and Photocatalytic Mineralization of Bromophenol Blue Dye with TiO\textsubscript{2} Modified with Clinoptilolite/Activated Carbon

Emmanuel Kweinor Tetteh * and Sudesh Rathilal

Green Engineering and Sustainability Research Group, Department of Chemical Engineering, Faculty of Engineering and the Built Environment, Durban University of Technology, 70 Mansfield Road, Berea, Durban 4001, South Africa; rathilals@dut.ac.za
* Correspondence: ektetteh34@gmail.com or emmanuelk@dut.ac.za; Tel.: +27-313-732-123

Abstract: This study presents a hybridized photocatalyst with adsorbate as a promising nanocomposite for photoremediation of wastewater. Photocatalytic degradation of bromophenol blue (BPB) in aqueous solution under UV-irradiation of wavelength 400 nm was carried out with TiO\textsubscript{2} doped with activated carbon (A) and clinoptilolite (Z) via the co-precipitation technique. The physiochemical properties of the nanocomposite (A–TiO\textsubscript{2} and Z–TiO\textsubscript{2}) and TiO\textsubscript{2} were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier-transform infrared (FTIR) spectroscopy. Results of the nanocomposite (A–TiO\textsubscript{2} and Z–TiO\textsubscript{2}) efficiency was compared to that with the TiO\textsubscript{2}, which demonstrated their adsorption and synergistic effect for the removal of chemical oxygen demand (COD) and color from the wastewater. At an optimal load of 4 g, the photocatalytic degradation activity (Z–TiO\textsubscript{2} > A–TiO\textsubscript{2} > TiO\textsubscript{2}) was found favorably by the second-order kinetic model. Consequently, the Langmuir adsorption isotherms favored the nanocomposites (Z–TiO\textsubscript{2} > A–TiO\textsubscript{2}), whereas that of the TiO\textsubscript{2} fitted very well on the Freundlich isotherm approach. Z–TiO\textsubscript{2} evidently exhibited a high photocatalytic efficacy of decomposition over 80% of BPB (COD) at reaction rate constant (k) and coefficient of determination (R2) values of 5.63 × 10−4 min−1 and 0.989, respectively.

Keywords: activated carbon; adsorption; bromophenol blue dye; clinoptilolite; nanocomposite; photocatalysis; titanium dioxide

1. Introduction

The recent uprising of industrialization is being associated with the depletion of water resources owing to its consumption rate, making it essential to maintain healthy living [1,2]. Notwithstanding, the impact of anthropogenic activities and socio-economic development has resulted in poor sanitation and inadequate freshwater supply for drinking, even in countries or regions considered as water-rich [1]. Water shortages in many developing countries have been reported as one of the most significant political and societal problems confronting them [1,3].

South Africa, like many African countries, continues to suffer from the fresh water supply, which is declining in quality because of an increase in the pollution index and impeding of river catchments being caused by urbanization, deforestation, industrial and agricultural activities [4–6]. Furthermore, dyes and pigments produced by various industries such as cosmetics, textile, paper, leather, pharmaceutical, nutrition, and plastics are the foremost common contaminants in wastewater [7]. Distinctively, with a yearly estimation of over 70,000 tons of dyes produced, during the dyeing processes, 15% are being misapplied [8,9]. The release of these dyes and other organic pollutants into wastewater and the aquatic environment, even at low concentrations, are noticeable to be highly toxic with low transparency [9,10]. Additionally, emerging contaminants (antibiotics, pesticides, nanoplastics) complexity opposing water quality poses a great threat to aquatic life and...
human health [7,11]. Therefore, it is essential to develop a viable technology for the treatment of wastewater, most especially textile effluent. Conventionally, decontamination technologies such as coagulation, ion flotation, sedimentation, filtration, biological treatment, and chlorination are limited in handling dye effluents [11–15]. Furthermore, most of the technologies end up generating secondary pollutants associated with complex sludge and toxic byproducts, which requires further treatment [6,16]. These setbacks make most of the treatment technologies to be cost-ineffective and time and energy-intensive in nature [11,14,17]. Therefore, a balanced technology is required to simultaneously improve water quality and debase dyes in wastewater settings.

Currently, advanced oxidation processes (AOPs) emerges as the needful technology to remediate poor water quality associated with conventional wastewater treatment technologies to mitigate high strength organic pollutants [18–22]. Among the different AOPs, heterogeneous photocatalysis as a principal component of green chemistry has inspired extensive research on designing eco-friendly and effective photocatalysts [23,24]. These photocatalysts are primarily semiconductors, which include TiO$_2$, ZnO, Fe$_2$O$_3$, CdS, and ZnS [7,23]. Among them, TiO$_2$ has been the most widely used due to its ability to break down organic pollutants to achieve complete mineralization with high reactivity, reduced toxicity, low cost, and being chemically stable [25,26]. Conversely, photodegradation of dyes under ultra-violet (UV) irradiation with TiO$_2$ is reported to have some setbacks [27,28]. Thus, the presence of dye on the surface of TiO$_2$ induces its negative charge ions by reducing the energy required for their excitation, hence extends its adsorption efficiency under a visible region of the spectrum. Even though TiO$_2$ powders are easy to agglomerate, their adsorption capacity is very poor, with difficulties in recycling and separation [27,28]. Adsorbents, on the other hand, after regeneration, reduces their adsorption capacity as compared to photocatalysts [29–31]. To overcome these setbacks, a combination of photocatalysts and adsorbents have been reported to be very promising for wastewater treatment. One such way is by catalyst fixation onto a support such as gold nanoparticles, activated carbon, and zeolites (e.g., ZSM-5) [31,32].

However, only a few reports have cited the use of TiO$_2$ nanocomposite doped on clinoptilolite (Z) or activated carbon (AC) for the mineralization of bromophenol blue dye (BPD) from wastewater. BPD was selected as the functional model for the wastewater simulation because of the role it plays as a dye and pigments for the wide usage in art decoration and textile industries, with the end product being wastewater [8,9]. Therefore, this study presents photocatalytic degradation of BBD using the TiO$_2$/UV system. Furthermore, the influence of Z, AC, and hybridized photocatalysts (Z–TiO$_2$ and AC–TiO$_2$) loading rate (1–6 g), as well as their adsorption capacity, was investigated. Decolonization and degrading of the organics in the form of color, turbidity, and chemical oxygen demand (COD) was considered as the performance criteria.

2. Results and Discussion
2.1. Physiochemical Properties of TiO$_2$-Based Composite (A–TiO$_2$/Z–TiO$_2$)
2.1.1. Crystalline Size

The change in the crystallographic structure of TiO$_2$ after being modified into A–TiO$_2$ and Z–TiO$_2$ nanocomposites were determined by X-ray diffraction (XRD). As can be seen (Figure 1), the XRD results showed the presence of crystalline phases in phase mixtures, with most of the TiO$_2$ structures as the anatase phase. Comparatively, the change in the intensities of the TiO$_2$ peaks to that of A–TiO$_2$ and Z–TiO$_2$ signpost the effect that the isomorphic interaction may have occurred during the modification mechanism [32,33]. Notwithstanding, the dominating phase of the TiO$_2$ pattern in all the samples by the XRD peaks (Figure 1) within the angle range of 20 ($5^\circ > 20 > 70^\circ$) is anatase corresponding to the JCPDS Files No.21-1272 [33,34]. The peaks observed at 20 values of 25.28°, 38.68°, 48.16°, 54.05°, 62.87°, and 68.98°, respectively, are attributed to 101, 112, 200, 105, 211 and 116 crystalline structures of the anatase (α) plane. The lowest Bragg angle of the anatase (α) phase is around 25.28°, and that of rutile (β) is about 27.45°. Activated carbon being an
amorphous material is being revealed (Figure 1) by the broad bump of A–TiO₂ around 2θ = 25.28°. Adding to this, the reflection peak in the A–TiO₂ of the anatase around 2θ = 25.67° decreased, whereas the rutile peak at 2θ = 27.45° (002) became sharper and stronger. However, the anatase peak in the Z–TiO₂ remained unchanged, even though the rutile peak intensity heightened. The most intense reflection of clinoptilolite (Z) was found at 2θ = 9.88°. Conversely to this result, Zhong et al. [33] suggested the steadiest rutile polymorph of TiO₂ observed at 2θ = 27.45° of the Z–TiO₂ displayed the same signal characterized for natural zeolite (clinoptilolite). In terms of A–TiO₂, there is no peak at 2θ = 25.28°, whereas the rutile peak at 2θ = 24.67° position, which is generally characterized as a crystalline plane (002) of activated carbon (A), which seems to be isolated by the TiO₂ (anatase peak at 2θ = 25.28°). This makes A–TiO₂ be in an amorphous state, by its carbon suppressing the TiO₂ (anatase peak at 2θ = 25.45°) transition to reveal the rutile peak at 2θ = 27.45°. Additionally, peaks at 2θ values of 52.06° (004), 55.2° (211) and 58.68° (204) of A–TiO₂ and Z–TiO₂ aside it being rutile, might also be attributed to reflections of crystallographic phases of impurities as some are depicted in Table 1. Additionally, the anatase being the predominant phase, therefore, expedited the nanocomposite for the photocatalytic activity [35]. Furthermore, the dominant crystal size (22–34 nm) of TiO₂ present in the nanocomposites (A–TiO₂ and Z–TiO₂) as anatase was calculated by using the Scherer’s Equation (1) and the diffraction peak at the 2θ = 25.28° (101) plane [27], where δ is the wavelength of X-ray radiation (CuKα = 0.15406 nm), K is a constant taken as 0.98, β is the first line width at half maximum height (FWHM) of the peak (determined using Origin software, version 2018), and θ is the diffracting angle (2θ = 25.28° for 101 planes).

\[
D = \frac{K\delta}{\beta \cos \theta}
\]

where δ is the wavelength of X-ray radiation (CuKα = 0.15406 nm), K is a constant taken as 0.98, β is the first line width at half maximum height (FWHM) of the peak (determined using Origin software), and θ is the diffracting angle (2θ = 25.28° for 101 planes).

Figure 1. XRD pattern of TiO₂ (black), A–TiO₂ (red) and Z–TiO₂ (blue); Λ—anatase, and ℜ—rutile.
2.1.2. Morphological Analysis

Scanning electron microscopy (SEM) at the University of Cape Town, South Africa was employed to characterize the surface morphologies of the TiO$_2$, A–TiO$_2$, and Z–TiO$_2$ nanocomposites, and the results obtained are presented in Figure 2. It is observed (Figure 2a) that the TiO$_2$ with no covering has very hexagonal and unformulated structures with abundant pores to accommodate other materials [31,33,35]. The average grain size (Figure 2a) of the pores was 4.15 µm under the scale of 1 µm with a magnification of 50 kx and a working distance (WD) of 6.36 mm. Conversely, for the A–TiO$_2$ and Z–TiO$_2$ representing a WD of 6.11 mm (Figure 2b) and 6.14 mm (Figure 2c), respectively, a grain pore size of 20.8 µm under the same scale of 5 µm and magnification of 10 kx was obtained.

Figure 2. SEM images of (a) TiO$_2$, (b) A–TiO$_2$ and (c) Z–TiO$_2$.

Table 1. Elemental distribution of TiO$_2$, A–TiO$_2$, and Z–TiO$_2$ for their average spectra (Figure 3).

Elemental Composition	TiO$_2$ (%)	Std. Dev.	A–TiO$_2$ (%)	Std. Dev.	Z–TiO$_2$ (%)	Std. Dev.
C	13.08	3.69	17	1.1	19.72	6.74
O	45.64	2.41	31.4	11.41	35.64	6.59
Na	10.73	1.35	0.27	0.21	1.01	0.55
Ti	30.55	5.78	16.02	0.26	23.15	1.69
Mg	0.4	0.08	0.64	0.63		
Al	2.66	0.6	1.18	1.11		
Si	0.86	0.14	16.57	1.94		
K	23.23	2.17	1.6	0.51		
Ca	0.48	0.33	0.49	0.64		
P	1.17	0.36				
S	0.28	0.07				
Cl	6.23	2.17				
Total	100	100				100

2.1.2. Morphological Analysis

Subsequently, the EDX images at 100 µm for the TiO$_2$ (Figure 3a), A–TiO$_2$ (Figure 3b), and Z–TiO$_2$ (Figure 3c) revealed the possible hybridization with well-dispersed TiO$_2$ on the A–TiO$_2$ and Z–TiO$_2$ nanocomposites. Evidently, the hexagonal structure (Figure 3a) of TiO$_2$ nanoparticles was well dispersed and intertwined on the surface of A–TiO$_2$ or Z–TiO$_2$ [33], which transformed their surface structures (Figure 3b,c). The porous and agglomerated structures are revealed in the A–TiO$_2$ (Figure 3b) and Z–TiO$_2$ (Figure 3c). However, the surface chemistry of A–TiO$_2$ or Z–TiO$_2$ with other elements present, as shown in Table 1, may have obstructed the TiO$_2$ surface coating and photocatalytic activities. The elemental compositions of the TiO$_2$, A–TiO$_2$, and Z–TiO$_2$ nanocomposites, is shown in Table 1. This revealed the elements in the TiO$_2$ (O > Ti > C > Na) were distinctively present in the A–TiO$_2$ and Z–TiO$_2$ which proofed the success of hybridizing the nanocomposite. Considering the elemental structures, Z–TiO$_2$ contained O > Ti > C > Si > K > Al > Na > Mg > Ca, where Si,
Al, O and other cationic elements forms the internal framework of Z [34,35]. The unique pores of Z provided a large surface area and improved the homogeneous dispersion of TiO$_2$ nanoparticles on the surface (Figure 3c) of A–TiO$_2$ constituted O > K > C > Ti > Cl > Al > P > Si > Ca > Mg > S, whereby most of the cationic carriers suppressed the presence of the Ti composition (Figure 3b). In addition, the strong synergy between Al and Si decreased the charge carriers of the Ti as there is a high possibility of forming composite oxides [33,35].

![Figure 3. EDX images of (a) TiO$_2$, (b) A–TiO$_2$ and (c) Z–TiO$_2$.](image)

2.1.3. Molecular Structures and Functional Groups

The nanocomposites (A–TiO$_2$ and Z–TiO$_2$) and TiO$_2$ were furthermore analyzed by Fourier-transform infrared (FTIR) spectroscopy. The chemical bonds and functional groups within a fingerprint region of wavenumber of 400–2000 cm$^{-1}$ revealed by the FTIR spectra are presented in Figure 4. The spectrum also reveals the vibration bands between the reactive hydroxyl groups, as well as the hydrophilic nature of the TiO$_2$ [28,36]. The peaks observed around 3250 cm$^{-1}$ was attributed to the strong vibrations of OH groups bonded with water or TiO$_2$, where the shift in the OH bonding or the overlayer might be due to the combined A or Z with the TiO$_2$. The peaks detected around 1630–1820 cm$^{-1}$ were ascribed to the OH and C=O vibration band. The single band around 1635 cm$^{-1}$ associated with the vibration mode of the Ti-O bond and other oxygenated functional groups [30,33]. The weak absorption band around 1590 cm$^{-1}$ and 1450 cm$^{-1}$ for the A–TiO$_2$ and Z–TiO$_2$ were attributed to the carboxyl (C-OH/C-H) and hydroxyl (H-O-H) bending vibration mode, which might have occurred by the nanocomposite adsorbing moisture during the preparation [36]. Furthermore, the broad and weak peaks observed around 1070 cm$^{-1}$ for the A–TiO$_2$ and Z–TiO$_2$ might also be due to the modification of the TiO$_2$ spectrum being attributed to the C-O-C stretching vibrations [36,37]. Finally, the broad peaks within the range of 400 cm$^{-1}$ to 1000 cm$^{-1}$ may be instigated by the vibration stretch of Ti-O and –OH, as observed in all the samples [35].

2.2. Photocatalytic Degradation

2.2.1. Effect of pH on Photocatalytic Degradation

The pH of an effluent strongly plays an important role in photocatalytic degradation of organic compounds, such as dyes in an aqueous suspension with TiO$_2$ NPs. First and foremost, the pH of the BPB synthesized effluent was investigated to ascertain the TiO$_2$, Z–TiO$_2$, and A–TiO$_2$ photocatalytic activities on COD removal. This was carried out by varying the pH of the effluent from 5–9 while keeping the catalyst load and reaction time constant at 2 g and 30 min, respectively. Figure 5 shows the degradation efficiency obtained by the TiO$_2$, Z–TiO$_2$ and A–TiO$_2$ on the COD removal. Evidently, the pH affected the adsorption shift of the organic substrates onto the surface of the photocatalyst as well as their photodegradation efficiency from the neutral to the acidic and basic mediums. The degradation efficiencies recorded for the acidic medium (pH 5–6) were 75–79%, 75–77%, and 77–80% for TiO$_2$, Z–TiO$_2$ and A–TiO$_2$, respectively. Under the neutral medium, almost the same degradation efficiency of about 63% was recorded for all the catalysts.
In the basic or alkaline medium (pH 8–9), the degradation efficiency of 66%, 64%, and 63% was, respectively recorded for the TiO₂, Z–TiO₂, and A–TiO₂. The results confirm the occurrence of photocatalysis on the surface of NPs are mostly influenced by their charged ions and the pH of the solutions [18,24]. Thus, the charged ions and change in pH promoted the pollutant’s stability, neutralization, agglomeration, and adsorption onto the photocatalyst surface [24]. The high acidic medium-efficiency can be attributed to the presence of negatively charged contaminants in the effluent, which were attracted and adsorbed onto the surface of the positively charged photocatalysts (TiO₂, Z–TiO₂ and A–TiO₂) [21,24]. In addition, the low-efficiency exhibited within the basic medium (pH 8–9) may be due to the electrostatic repulsion between the positively charged NPs and the cationic charges in the solution.

![Figure 4. FTIR spectra of TiO₂ (red) < A–TiO₂ (black) < Z–TiO₂ (blue).](image)

![Figure 5. Effect of pH on photocatalytic degradation of chemical oxygen demand (COD) at a catalyst load of 2 g and reaction time of 30 min.](image)

2.2.2. Effects of Photocatalyst Dosage

The photocatalytic performance of single (A, Z, TiO₂) and binary nanocomposites (A–TiO₂ and Z–TiO₂) were investigated by measuring catalyst-load-dependent degradation of the COD (367.7 mg/L), and color (458 Pt. Co) initial concentrations from the BPD simulated
effluent under a UV-light. The effluent pH was kept constant at an acidic medium of 6.5 to enhance the protonation of the active sites of the catalyst. Subsequently, to ascertain the optimal dosage (2–4 g) of the nanocomposites (A–TiO$_2$ and Z–TiO$_2$), first, the load (1–6 g) of a single catalyst (A, Z, and TiO$_2$) was investigated at the reaction time of 30 min.

Figure 6 shows that photocatalytic degradation efficiency increased with an increase in the catalyst load until an optimal dosage is attained. As seen (Figure 6a,b), an increase in the catalyst load (1–5 g) promoted the photodegradation rate with more active sites, whereby after the optimal load (5 g), there was a degeneration as compared to the A and Z loads at 6 g. Thus, an increase in the active sites of the catalyst surfaces was too dense to interact with the contaminant, thereby destabilizing and deactivating them as they agglomerate [20,30]. At a single catalyst load of 5 g, about 60–80% and 65–90% of the initial concentration of color (Figure 6a) and COD (Figure 6b) was respectively removed. In addition, the increasing order of the single catalyst loads was observed for the color (Z > TiO$_2$ > A) and COD removal (TiO$_2$ > Z > A).

Evidently, the single catalyst load results favored the TiO$_2$ due to its high active sites and hydroxyl radicals, which entrapped the contaminants [31,32]. This affirms that the photocatalytic nature of TiO$_2$, once activated by UV radiations, produces a very reactive species, which led to the degradation of the organic substance in the solutions [29,36].

However, in the subsequent investigation of the nanocomposites in 1:1 ratio (A–TiO$_2$ and Z–TiO$_2$) loads (2–4 g), there is a prompt increase in the contaminant removal efficiency (Figure 6c,d) as compared to the individual components (Figure 6a,b). Thus, the TiO$_2$ in the nanocomposite was photo-activated by producing a high amount of the hydroxyl radicals [30,36]. Thus, an increase in the nanocomposite load to a high level (4 g) produced more of the photogenerated electron holes [37]. This increased the removal efficiency of the A–TiO$_2$ by 20% as compared to the TiO$_2$, for the removal of color and COD, as shown in Figure 6c,d, respectively. In addition, the increasing order of color (Figure 6c) and COD (Figure 6d) removal by the catalyst was found as A–TiO$_2$ > Z–TiO$_2$ > TiO$_2$. However, among the nanocomposites, activated carbon (A) is recounted as a good electron acceptor, whereas TiO$_2$ is also known to be an effective electron donor [33,34]. Consequently, the A–TiO$_2$ was found to be very effective in suppressing the photogenerated species from destabilization during overload as compared to that of the TiO$_2$ [35,37]. Therefore, the synergistic effect of hybridizing A–TiO$_2$ (Figure 6) eventually reduced the destabilization of the hole-pair electrons at the high dosage which increased its efficiency [36].

2.3. Adsorption and Photocatalysis

Figure 7 presents the adsorption and photocatalytic degradation performance of the nanocomposites (A–TiO$_2$ and Z–TiO$_2$) and TiO$_2$, which were simultaneously achieved with a catalyst load of 4 g by monitoring the removal of COD. Firstly, the dark adsorption (no UV-light) was carried out within a stipulated time interval of 60 minutes, after which the solution was illuminated for another 60 minutes to enhance the photodegradation. However, the adsorption and photocatalytic activities of the supported TiO$_2$ (A–TiO$_2$ and Z–TiO$_2$) under the irradiation time of 60 min led to higher degradation (>85% COD) as compared to the unsupported TiO$_2$ (80% COD). In the dark adsorption experiment, TiO$_2$ was seen to be less efficient because of its deactivated reactive sites, which makes it slow to react with other complex compounds. Even though the increasing order (Z–TiO$_2$ > A–TiO$_2$ > TiO$_2$) of the photocatalytic degradation efficiency favored Z–TiO$_2$ (Figure 7b), the hybridized A–TiO$_2$ also had effective adsorptive (Figure 7a) capacity owing to its low density and surface area [33,35]. Thus, the support on TiO$_2$ with A and Z increased the irradiated surface area and adsorption capacity of the TiO$_2$. According to Zhong et al. [33], the high specific surface area of the nanocomposite creates an interface, which tolerates immobilization and destabilization of the photocatalyst to trap the organic pollutants. Results obtained have also confirmed the three steps of the decomposition mechanism of TiO$_2$ such as (i) movement of the excited radicals, (ii) adsorption and photodegradation of the organic pollutants from the bulk solution onto the photocatalyst surface [34].
whereas TiO2 is also known to be an effective electron donor [33,34]. Consequently, the rate of degradation in (2) can then be expressed as a first-order model (3).

$$\frac{d[\text{pollutant}]}{dt} = -k_{1} [\text{pollutant}]$$

However, the degradation and adsorption processes can be monitored either by a first-order (3) or the second-order kinetic models (5) [38,39].

$$\frac{d[\text{pollutant}]}{dt} = \frac{-k_{2} [\text{pollutant}][\text{catalyst}]}{[\text{catalyst}]}$$

2.3. Adsorption and Photocatalysis

2.3.1. Kinetic Models

The kinetics of heterogeneous photocatalyst reactions in the slurry is usually described by the Langmuir–Hinshelwood model expressed in (2). However, the degradation and mobilization of the photocatalyst to trap the organic pollutants. Results obtained have also confirmed the three steps of the decomposition mechanism of TiO2 [35,37]. Therefore, the destabilization during overload as compared to that of the TiO2 [35,37].

Figure 6. Effects of catalyst load at 1–6 g for the removal of (a) color (458 Pt. Co) and (b) COD (367.7 mg/L) with subsequent binary catalyst load effect of 2–4 g (c,d) at a reaction time of 30 min.

Figure 7. Adsorption (a) and photocatalytic (b) degradation of COD (367.7 mg/L) at 4 g catalyst loading of TiO2 (black) < A–TiO2 (blue) < Z–TiO2 (red).

To estimate the rate of reaction constants for the first and second-order kinetic models, the rate constant (min −1), k_{1} is the first-order rate constant (min −1), k_{2} is the second-order rate constant (min −1), $[\text{pollutant}]_{0}$ is the initial COD concentration, t is time, and $[\text{pollutant}]$ is the concentration at the specified time.

$[\text{pollutant}] = [\text{pollutant}]_{0}e^{-k_{1}t}$

Figure 8a) and photocatalytic (Figure 8b), respectively, was plotted. Where, $[\text{pollutant}] = [\text{pollutant}]_{0}e^{-k_{1}t}$ and $[\text{pollutant}] = \frac{1}{1 + \frac{k_{2}[\text{catalyst}]}{[\text{pollutant}]_{0}}t}$.

$[\text{pollutant}] = \frac{1}{1 + \frac{k_{2}[\text{catalyst}]}{[\text{pollutant}]_{0}}t}$

2.3.1. Kinetic Models

The kinetics of heterogeneous photocatalyst reactions in the slurry is usually described by the Langmuir–Hinshelwood model expressed in (2). However, the degradation and
adsorption processes can be monitored either by a first-order (3) or the second-order kinetic models (5) [38,39].

\[
r = \frac{K_r K_a e}{1 + K_a e}
\]

(2)

where \(r \), \(K_r \) and \(K_a e \) represents the reaction rate, the rate constant (mg/min) and adsorption constant (mg^{-1}), respectively. Assuming \(K_a e \) is negligible at a low concentration, the rate of degradation in (2) can then be expressed as a first-order model (3).

\[
r = \frac{-dC}{dt} = K_r K_a e = k_1 C
\]

(3)

where \(k_1 \) is the first-order rate constant (min^{-1}). Equation (3) can then be integrated into (4).

\[
ln \frac{C_o}{C} = k_1 t
\]

(4)

\[
\frac{1}{C} - \frac{1}{C_o} = k_2 t
\]

(5)

To estimate the rate of reaction constants for the first and second-order kinetic models, \(ln \frac{C_o}{C} \) vs. \(t \) (Figure 8a) and \(\frac{1}{C} - \frac{1}{C_o} \) vs. \(t \) (Figure 8b), respectively, was plotted. Where, \(k_2 \) is the second-order rate constant (min^{-1}), \(C_0 \) is the initial COD concentration, \(t \) is time, and \(C \) is the concentration at the specified time.

Table 2 presents the kinetics data obtained, indicating that the reactions do not fit well on the first-order kinetic model. However, all the reactions fitted well on the second–order kinetic model as observed based on their rate constants (k) and coefficient of determination (R^2) values. A 95% confidence level with a difference of less than 0.2 between the \(R^2 \) and Adjusted \(R^2 \), also suggests the significance and accuracy of the model predictability. Additionally, the probability functions (\(p < 0.05 \)) were significantly different from the zero levels. The increasing order of the \(k \) and \(R^2 \) values were seen as Z–TiO_2 > A–TiO_2 > TiO_2, whereby Z–TiO_2 had the highest \(k \) and \(R^2 \) values of 5.63 × 10^{-4} \text{ min}^{-1} and 0.989, respectively. This validates the trend observed for the highest removal of the COD by photocatalytic degradation (Z–TiO_2 > A–TiO_2 > TiO_2), as shown in Figure 7, the data obtained favored the second–order kinetic model. In addition, the adsorbates (A) presence in the nanocomposites (A–TiO_2) suppressed the TiO_2, which made it more favorable for adsorption [40,41].

![Figure 8. Photocatalytic degradation of COD (367.7 mg/L) as a function of time; (a) first-order and (b) second-order kinetic models.](image-url)
2.3.2. Kinetic Isotherms

Figure 9 presents Freundlich and Langmuir isotherms best fits of the data obtained from the adsorption of COD. The adsorption was done in the dark until equilibrium was achieved, whereas the photocatalytic degradation was carried out under UV-irradiation for 60 min. The Langmuir isotherm defined by (6) is expressed in a linearized form as (7).

\[q_e = q_m \frac{K_f C_e}{1 + K_f C_e} \]

(6)

\[\frac{C_e}{q_e} = \frac{1}{q_m} C_e + \frac{1}{K_f q_m} \]

(7)

where, \(q_e \) is the adsorbate at equilibrium (mg/g), \(q_m \) is the theoretical maximum adsorption capacity (mg/g), \(K_f \) is the Langmuir adsorption constant (L/mg) and \(C_e \) is the supernatant concentration at equilibrium (mg/L). From (7), a plot of \(\frac{C_e}{q_e} \) vs. \(C_e \) gives a straight line (Figure 9b) with slope \(\frac{1}{q_m} \) and intercept \(\frac{1}{K_f q_m} \). The Freundlich isotherm described in (8) is expressed in a linear form as (9), where \(K_f \) and \(n \) are the Freundlich isotherm constants representing the adsorbate capacity (mg/L) and intensity, respectively.

\[q_e = K_f C_e^\frac{1}{n} \]

(8)

\[\ln q_e = \ln K_f + \frac{1}{n} \ln C_e \]

(9)

Figure 9. Freundlich (a) and Langmuir (b) adsorption isotherms for the degradation of COD (367.7 mg/L) using 4 g of Z–TiO₂ > A–TiO₂ > TiO₂.

A plot of \(\ln q_e \) vs. \(\ln C_e \) gives a straight line (Figure 9a) with \(\frac{1}{n} \) as the slope and \(\ln K_f \) as the intercept. The Freundlich isotherm (Figure 9a), which is used for non-ideal adsorption containing heterogeneous surfaces with different affinity, was preferred for the TiO₂ adsorption. The order of increasing the deactivated sites towards adsorption in the Freundlich...
isotherm (Figure 9a) was TiO$_2$ > Z–TiO$_2$ > A–TiO$_2$, whereby TiO$_2$ fits well with the R2 value of 0.984. This confirms that adsorption occurred at reactive sites with different strengths of affinity, whereby the adsorption efficiency reduced (Figure 7) as the reactive sites being occupied increased [38,39]. Conversely, the nanocomposites (Z–TiO$_2$ > A–TiO$_2$) were well fitted with the Langmuir isotherms (Figure 9b), which assumes unchanging monolayer adsorption with no interaction between the adsorbates as compared to TiO$_2$. However, Z–TiO$_2$ was found to fit on both Freundlich (R2 = 0.929) and Langmuir (R2 = 0.988) isotherms. This can be attributed to the heterogeneous surface of Z–TiO$_2$ which, with the presence of the TiO$_2$, makes it possible to exhibit different energy or affinity levels [36–38]. Wolf [39], therefore itemized that (i) monolayer adsorption occurs on the adsorbent surface, which has a finite number of similar active sites, (ii) the interaction does not take place between adjacent adsorbed molecules, (iii) the active sites have equal affinities towards the adsorbate molecules and finally (iv) the adsorption process is reversible.

3. Materials and Methods

3.1. Chemicals and Synthetic Effluent

A locally manufactured TiO$_2$ used in this study was supplied by Huntsman Tioxide, South Africa (Pty). Its crystal structure composes of anatase (75%) and rutile (25%) with a mean particle size of 25 nm, specific surface area and density of 48 m2/g and 4.26 g/cm3, respectively. AC with a specific surface area, pore-volume and ash content of 1576 m2/g, 0.967, and 3%, respectively, was supplied by a local South Africa industry (RTB Chemicals). Natural zeolite powder (95–98% of clinoptilolite balanced with silica, 125–250) was supplied by Pratley Minerals, South Africa.

Synthetic textile effluent for the experiment was simulated according to a modified protocol of ISO (9887;1992) to mimic a local South African textile effluent based in Kwazulu Natal province. The constituents of the effluent included bromophenol blue (BPB) dye (505 ± 15 mg/L) and other metal salts of ionic and inorganic derivatives such as Zn (9 ± 75 mg/L), Fe (18 ± 3 mg/L), Cu (25 ± 53 mg/L), Mg (5 ± 15 mg/L), Mn (24 ± 13 mg/L), Al (3 ± 25 mg/L), Ca (33 ± 8 mg/L) and Na (34 ± 22 mg/L) dissolved with deionized water (25 L) [42]. All chemicals used were of analytical grade supplied by Sigma-Aldrich, Johannesburg, South Africa.

Nanocomposite Synthesis (A–TiO$_2$ and Z–TiO$_2$)

The composites (A–TiO$_2$, Z–TiO$_2$) were synthesized based on a modified low-temperature co-precipitation method [31,35]. First, 30 g of AC and 10 g of TiO$_2$ was added to 200 mL of deionized water and sonicated (45 kHz at 80 °C) for 1 h. After the sonication, the samples were oven-dried at 80 °C for 24 h, which resulted in A–TiO$_2$. This was then washed with deionized water, filtered, and dried for 1 hour at 110 °C. Prior to usage, the A–TiO$_2$ was calcined at 600 °C for 1 h at a ramp speed of 15 s. The above procedure was also repeated for the Z–TiO$_2$.

3.2. Characterization of Composite (A–TiO$_2$ and Z–TiO$_2$)

3.2.1. X-Ray Diffraction (XRD) Analysis

X-ray diffractometer equipment (Bruker AXS, D8 Advance) coupled with PANanalytical software (version 6.01) (Empyrean, PRO MPD, Almelo, The Netherlands) operated at 40 kV with a target current of 40 mA was used for the analysis. The samples were closely packed in a rectangular glass cell and scanned with a J–J scan coupled with the copper anode (Cu-K$_\alpha$ radiation: λ = 1.5406 Å) and Bragg–Brentano configuration. This was carried out at a room temperature with a speed of 0.033° min$^{-1}$ over a region of 5 to 70 (2θ) [43].

3.2.2. Fourier Transform Infrared Spectroscopy (FTIR) Analysis

The FTIR spectra of the samples were obtained by using an FTIR-spectrometer (Shimadzu FTIR 8400) in the wavenumber range of 400–4000 cm$^{-1}$ with a resolution of...
4 cm$^{-1}$ [43]. This method provided information about the molecular structure and functional groups of the composite.

3.2.3. Scanning Electronic Microscope (SEM) Analysis

A Scanning electronic microscope at the University of Cape Town, South Africa (Nova NanoSEM coupled with EDT and TLD detector) was used to analyze the morphological structure of the samples. This was operated at an acceleration voltage of 5 kV with a magnification in the range of 10–50 kx [43].

3.3. Experimental Procedure

The adsorption and photocatalytic experiments were carried out with a modified jar tester reactor, which consisted of six 1 L beakers, stirred at a speed of 150 rpm. At a distance less than 2 cm, the setup was exposed to a UV light of wavelength 400 nm and power rating of 18 W (T8 blacklight-blue bulb 400 nm, 18 W, Philips, and Netherland). Three sets of experiments, as presented in Table 3, were used to investigate the effects of single catalyst load (1–6 g), binary catalyst load (2–4 g), and reaction time (10–60 min). Furthermore, the adsorption capacity of the binary composites was investigated without the UV radiation for the 60 min reaction time, whereas samples were collected in 10 min intervals. The supernatant samples collected with a syringe were filtered through a Whatman filter (Grade 5; 2.5 µm). The effluent was initially characterized for COD (367.7 mg/L) and color (458 Pt. Co) using HACH DR 3900 within the wavelength of 455–635 nm (Hach Company, Loveland, CO, USA) as well as turbidity (14.48 NTU) using HI 98,703 portable turbidimeter (Hanna Instruments, Veneto, Italy). Likewise, the Hannah pH-meter (HI98130, Hanna Instruments, Woonsocket, RI, USA) was used to measure the pH (7.5) of the effluent. Based on primary studies, the pH (6.5) was kept constant by adjusting it with 1 M HCl and NaOH. Upon analyzing the treated samples, the contaminants removal efficiency was calculated using the following Equation (10).

\[
\text{Removal efficiency (\%) } = \frac{C_0 - C_f}{C_0} \times 100\%
\]

where C_0 and C_f are initial and final concentrations of contaminants before and after treatment. The removal rate of COD obtained by the Z–TiO$_2$ and A–TiO$_2$ composites contributed to the adsorption and photocatalysis process. All the experiments were carried out in triplicates, and the average values obtained were reported.

Table 3. Adsorption and photocatalysis experimental design.
Category

1
2
3

4. Conclusions

In this study, the treatability of bromophenol blue (BPB) dye in aqueous solution by adsorption and photocatalytic degradation with and without UV light of wavelength 400 nm and a power rating of 18 W, was investigated. This was carried out under different catalyst loads (1–6 g) and reaction times (10–60 min) for the removal of COD, color, and turbidity. Furthermore, nanocomposites (A–TiO$_2$ and Z–TiO$_2$) were synthesized, where their physicochemical analyses (SEM, FTIR, and XRD) demonstrated large pore size (20.8 µm) and crystalline size (22–34 nm) with high surface area and chemical stability improvement as compared to the uncoated TiO$_2$. At the optimal single catalyst load of 5 g, above 70%
removal of color (Z > TiO₂ > A), turbidity (TiO₂ > A > Z) and COD (TiO₂ > Z > A) with their respective increasing order index were observed, whereby TiO₂ demonstrated the highest photocatalytic activity. In comparing the nanocomposite loads (2–4 g), at an optimal load of 4 g, the photocatalytic efficiency increased by 20% with an increasing order index for color and COD removal as A–TiO₂ > Z–TiO₂ > TiO₂, whereas TiO₂ > Z–TiO₂ > A–TiO₂ was observed for turbidity removal. The hybridized A–TiO₂ and Z–TiO₂ maximized the adsorption and photocatalysis as a viable prospect for remediation of BPB as compared to the TiO₂. Kinetically, the photodegradation of the COD by Z–TiO₂ > A–TiO₂ > TiO₂ were well fitted on the second–order kinetic model, of which Z–TiO₂ had the highest k and R² values of 5.63 × 10⁻⁴ min⁻¹ and 0.989, respectively. Under the same operating conditions, the Langmuir adsorption isotherms favored the nanocomposites (Z–TiO₂ > A–TiO₂ > TiO₂), whereas that of the TiO₂ fitted on the Freundlich isotherm (TiO₂ > Z–TiO₂ > A–TiO₂). Above all, hybridization of the photocatalyst with the adsorbent (Z–TiO₂) was found to be potentially effective for photoremediation of wastewater for future work of separation and recovery of the TiO₂ photocatalyst.

Author Contributions: Conceptualization, methodology, investigation, and writing of the original draft preparation was done by E.K.T., whereas supervision, review, and editing was done by S.R. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Water Research Commission of South Africa under project identification WRC Project: C2019/2020-00212.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article.

Acknowledgments: The authors wish to thank the Durban University of Technology, Green Engineering and Sustainability Research Group, and the Water Research Commission of South Africa for their support on the project identification WRC Project: C2019/2020-00212.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References
1. Gleeson, T.; Wada, Y.; Bierkens, M.F.P.; Van Beek, L.P.H. Water balance of global aquifers revealed by groundwater footprint. Nature 2012, 488, 197–200. [CrossRef]
2. Wada, Y.; Van Beek, L.P.H.; Van Kempen, C.M.; Reckman, J.W.T.M.; Vasak, S.; Bierkens, M.F.P. Global depletion of groundwater resources. Geophys. Res. Lett. 2010, 37. [CrossRef]
3. Richey, A.S.; Thomas, B.F.; Lo, M.H.; Famiglietti, J.S.; Swenson, S.; Rodell, M. Uncertainty in global groundwater storage estimates in a Total Groundwater Stress framework. Water Resour. Res. 2015, 51, 5198–5216. [CrossRef] [PubMed]
4. Edokpayi, J.N.; Odiyo, J.O.; Durowoju, O.S. Impact of Wastewater on Surface Water Quality in Developing Countries: A Case Study of South Africa. In Water Quality; IntechOpen: London, UK, 2017.
5. Barnard, J.L. Biological nutrient removal without the addition of chemicals. Water Res. 1975, 9, 485–490. [CrossRef]
6. Adewumi, J.R.; Ilemobade, A.; Van Zyl, J. Treated wastewater reuse in South Africa: Overview, potential and challenges. Resour. Conserv. Recycl. 2010, 55, 221–231. [CrossRef]
7. Tetteh, E.K.; Opoku, M.A.; Armah, E.K.; Rathiilal, S. Fate of COVID-19 Occurrences in Wastewater Systems: Emerging Detection and Treatment Technologies—A Review. Water 2020, 12, 2680. [CrossRef]
8. Gao, Y.; Yang, B.; Wang, Q. Biodegradation and Decolorization of Dye Wastewater: A Review. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2018.
9. Arora, S. Textile Dyes: It’s Impact on Environment and its Treatment. J. Bioremediat. Biodegrad. 2014, 5, 1. [CrossRef]
10. Wang, Z.; Xue, M.; Huang, K.; Liu, Z. Textile Dyeing Wastewater Treatment. In Advances in Treating Textile Effluent; IntechOpen: London, UK, 2011.
11. Cheremisinoff, P.N. Handbook of Water and Wastewater Treatment Technology; Butterworth-Heinemann: Oxford, UK, 2019.
12. Salgot, M.; Folveh, M. Wastewater treatment and water reuse. Curr. Opin. Environ. Sci. Health 2018, 2, 64–74. [CrossRef]
13. Mohanty, K.; Purkait, M.K. Membrane Technologies and Applications; CRC Press: Boca Raton, FL, USA, 2011.
14. Xu, P.; Zeng, G.; Huang, D.L.; Feng, C.L.; Hu, S.; Zhao, M.H.; Lai, C.; Wei, Z.; Huang, C.; Xie, G.X.; et al. Use of iron oxide nanomaterials in wastewater treatment: A review. Sci. Total. Environ. 2012, 424, 1–10. [CrossRef]
15. Chen, G. Electrochemical technologies in wastewater treatment. Sep. Purif. Technol. 2004, 38, 11–41. [CrossRef]
16. Tetteh, E.K.; Rathilal, S. Application of Organic Coagulants in Water and Wastewater Treatment. Org. Polym. 2019. [CrossRef]
17. Tetteh, E.K.; Rathilal, S. Application of magnetized nanomaterial for textile effluent remediation using response surface methodology. Mater. Today Proc. 2020. [CrossRef]
18. Miklos, D.B.; Remy, C.; Jekel, M.; Linden, K.G.; Drewes, J.; Hübner, U. Evaluation of advanced oxidation processes for water and wastewater treatment—A critical review. Water Res. 2018, 139, 118–131. [CrossRef] [PubMed]
19. Garcia-Segura, S.; Ocon, J.D.; Chong, M.N. Electrochemical oxidation remediation of real wastewater effluents—A review. Process Saf. Environ. Prot. 2018, 113, 48–67. [CrossRef]
20. Jin, J.; El-Din, M.G.; Bolton, J.R. Assessment of the UV/Chlorine process as an advanced oxidation process. Water Res. 2011, 45, 1890–1896. [CrossRef]
21. Kanakaraju, D.; Glass, B.D.; Oelgemöller, M. Advanced oxidation process-mediated removal of pharmaceuticals from water: A review. J. Environ. Manag. 2018, 219, 189–207. [CrossRef]
22. Sievers, M. Advanced Oxidation Processes. In Treatise on Water Science; Elsevier: Amsterdam, The Netherlands, 2010.
23. Durgalakshmi, D.; Rakke, R.A.; Rajendran, S.; Naushad, M. Principles and Mechanisms of Green Photocatalysis; Springer: Cham, Switzerland, 2020.
24. Sacco, O.; Vaiano, V.; Sannino, D. Main parameters influencing the design of photocatalytic reactors for wastewater treatment: A mini review. J. Chem. Technol. Biotechnol. 2020, 95, 2608–2618. [CrossRef]
25. Zakaria, W.F.W.; Jalil, A.; Hassan, N.S.; Ibrahim, M.; Jalil, A.A. Visible-light driven photodegradation of phenol over niobium oxide-loaded fibrous silica titania composite catalyst. J. Chem. Technol. Biotechnol. 2020, 95, 2638–2647.
26. Wafi, A.; Szabol-Bárdos, E.; Horváth, O.; Pósfai, M.; Mako, É.; Juzsakova, T.; Fónagy, O. The Photocatalytic and Antibacterial Performance of Nitrogen-Doped TiO2: Surface-Structure Dependence and Silver-Deposition Effect. Nanomaterials 2020, 10, 2261. [CrossRef] [PubMed]
27. Tetteh, E.K.; Rathilal, S.; Naidoo, D.B. Photocatalytic degradation of oily waste and phenol from a local South Africa oil refinery wastewater using TiO2. Mater. Lett. 2020, 263, 113775. [CrossRef]
28. Khan, W.Z.; Najeeb, I.; Tuyebayeva, M.; Makhtayeva, Z. Refinery wastewater degradation with titanium dioxide, zinc oxide, and hydrogen peroxide in a photocatalytic reactor. Process Saf. Environ. Prot. 2015, 94, 479–486. [CrossRef]
29. Naushad, M.; Rajendran, S.; Lichtfouse, E. Green Photocatalysts; Springer Nature: Cham, Switzerland, 2020.
30. Raja, S.; Mattoso, L.H.C. Functionalized Polymer-Based Composite Photocatalysts; Springer Nature: Cham, Switzerland, 2020.
31. Huang, C.W.; Wu, M.C. Photocatalytic degradation of methylene blue by UV-assistant TiO2 and natural sercite composites. J. Chem. Technol. Biotechnol. 2020, 95, 2715–2722.
32. Zanrosso, C.D.; Piazza, D.; Lansarin, M.A. Solution mixing preparation of PVDF/ZnO polymeric composite films engineered for heterogeneous photocatalysis. J. Appl. Polym. Sci. 2020, 137, 48417. [CrossRef]
33. Zhong, J.; Chen, F.; Zhang, J. Ceramic Deposited TiO2: Synthesis, Characterization, and Visible Photocatalytic Performance. J. Phys. Chem. C 2010, 114, 933–939. [CrossRef]
34. Shen, M.; Wu, Z.; Huang, H.; Du, Y.; Zou, Z.; Yang, P. Carbon-doped anatase TiO2 obtained from TiCl4 for photocatalysis under visible light irradiation. Mater. Lett. 2006, 60, 693–697. [CrossRef]
35. Lee, Y.-F.; Chang, K.-H.; Hu, C.-C.; Lin, K.-M. Synthesis of activated carbon-surrounded and carbon-doped anatase TiO2 nanocomposites. J. Mater. Chem. 2010, 20, 5682–5688. [CrossRef]
36. haq, I.U.; Ahmad, W.; Ahmad, I.; Yaseen, M. Photocatalytic oxidative degradation of hydrocarbon pollutants in refinery wastewater using TiO2 as catalyst. Water Environ. Res. 2020, 92, 2086–2094. [CrossRef]
37. Derikvandi, H.; Nezamzadeh-Ejhieh, A. An effective wastewater treatment based on sunlight photodegradation by SnS2–ZnS/clinoptyllolite composite. Solid State Sci. 2020, 101, 106127. [CrossRef]
38. Ibhadon, A.O.; Fitzpatrick, P. Heterogeneous photocatalysis: Recent advances and applications. Catalysts 2013, 3, 189–218. [CrossRef]
39. Wolf, D. Kinetics of Heterogeneous Catalytic Reactions; Springer Series in Chemical Physics; Springer: Berlin/Heidelberg, Germany, 2004.
40. Ross, J.R.H. The Kinetics and Mechanisms of Catalytic Reactions. In Heterogeneous Catalysis; Elsevier: Oxford, UK, 2012.
41. Vannice, M.A. Kinetics of Catalytic Reactions; Springer: Berlin/Heidelberg, Germany, 2005.
42. Ashfaq, A.; Khatoon, A. Waste Management of Textiles: A Solution to The Environmental Pollution. Int. J. Curr. Microbiol. App. Sci. 2014, 3, 780–787.
43. Tetteh, E.K.; Rathilal, S. Kinetics and Nanoparticle Catalytic Enhancement of Biogas Production from Wastewater Using a Magnetized Biochemical Methane Potential (MBMP) System. Catalysts 2020, 10, 1200. [CrossRef]