PARTICIPAÇÃO DA NAD(P)H OXIDASE NO DIRECIONAMENTO DO METABOLISMO INDUZIDO PELO ÁCIDO OLÉICO DURANTE O PROCESSO DE SECREÇÃO DE INSULINA

Tese apresentada ao Programa de Pós-Graduação em Fisiologia Humana do Instituto de Ciências Biomédicas da Universidade de São Paulo, para obtenção do Título de Doutor em Ciências.

Área de Concentração: Fisiologia Humana

Orientador: Prof. Dr. Angelo Rafael Carpinelli

São Paulo
2010
RESUMO

Santos L.R.B. Participação da NAD(P)H oxidase no Direcionamento do Metabolismo Induzido pelo Ácido Oléico Durante o Processo de Secreção de Insulina. [tese (Doutorado em Fisiologia Humana)]. São Paulo: Instituto de Ciências Biomédicas da Universidade de São Paulo; 2010.

Ácidos graxos são requeridos para a manutenção da função celular. Em ilhotas pancreáticas possui função moduladora da secreção de insulina induzida pela glicose. O metabolismo das células é responsável pelo aumento de EROs e estes parecem estar envolvidos no processo de secreção de insulina. Dentre os importantes sítios de formação de EROs estão a mitocôndria e a NAD(P)H oxidase, a primeira pode induzir aumento ou queda na produção de EROs em função da atividade metabólica celular e a segunda a tem sua atividade regulada por diversos fatores, dentre eles a PKC. O ácido oléico, junto com o palmítico, é um dos AGs mais abundantes na circulação. O tratamento agudo (1 hora) com 100 µM de ácido oléico (concentração fisiológica) induziu aumento na secreção de insulina associado ao aumento no metabolismo do AG em detrimento do metabolismo da glicose. A oxidação desse ácido graxo induziu aumento no conteúdo de EROs na presença de 16,7 mM de glicose com participação da NAD(P)H oxidase. Apesar da reconhecida função da EROs como sinalizadores, a diminuição de EROs induzida pela inibição da NAD(P)H oxidase promoveu aumento relativo na oxidação da glicose, que estava inibida após estímulo com AO. A secreção relativa de insulina também aumentou após inibição da NAD(P)H oxidase, sugerindo, portanto, uma função regulatória das EROs geradas pelo metabolismo do AO através da ativação da NAD(P)H oxidase no metabolismo da glicose e, consequentemente, da secreção de insulina. Dessa forma, o ácido oléico é capaz de aumentar a secreção de insulina induzida pela alta concentração de glicose com participação da NAD(P)H oxidase e as EROs produzidas por essa enzima promovem a regulação do metabolismo da glicose, que parece ser mais susceptível à regulação por essas moléculas.

Palavras-chave: Ilhota pancreática. Ácidos Graxos. Metabolismo da glicose. NAD(P)H oxidase. Secreção de insulina.
ABSTRACT

Santos L.R.B. NAD(P)H oxidase Participates in the Oleic Acid-Induced Metabolic Channelling During Insulin Secretion. [Ph.D. thesis (Human Physiology)]. São Paulo: Instituto de Ciências Biomédicas da Universidade de São Paulo; 2010.

Fatty acids are required to maintain cellular functioning and are able to modulate glucose stimulated insulin secretion from pancreatic islets. The metabolism of cells is source of reactive oxygen species (ROS) and may be involved in the process of insulin release. The important sites of ROS production are the mitochondria and the NAD(P)H oxidase. The mitochondrial ROS release depends on cellular activity and NAD(P)H oxidase activity depends on many factors, including PKC phosphorylation of p47PHOX. Oleic and palmitic acid are the most abundant fatty acids in the circulation. Acute (1 hour) exposure to a physiological concentration of oleic acid (100 µM + 0.1% BSA) induced increased insulin secretion at high glucose concentration. The insulin secretion induced by OA was associated to increased fatty acid oxidation and decreased glucose metabolism. Also, at 16.7 mM glucose, ROS production was increased by OA oxidation through modulation by NAD(P)H oxidase in pancreatic islets. The decreased ROS content induced by NAD(P)H oxidase inhibition induced re-establishment of glucose oxidation after OA stimulus. The relative secretion was stimulated by NAD(P)H oxidase inhibition after OA stimulus. This suggests that ROS produced by NAD(P)H oxidase act as glucose metabolism regulators in the pancreatic β cell after OA stimulus. The consequence of glucose metabolism re-establishment was the insulin secretion raise. In conclusion, oleic acid was able to stimulate glucose induced insulin secretion through NAD(P)H oxidase induced ROS production. The ROS produced by NAD(P)H oxidase acted as regulators of glucose metabolism, that may be more susceptible to regulation by these molecules. The glucose metabolism may be in part responsible for the increased insulin secretion induced by ROS.

Key-words: Pancreatic islets. Fatty Acids. Glucose metabolism. NAD(P)H oxidase. Insulin secretion.
1 INTRODUÇÃO
1.1 Secreção de Insulina Induzida pela Glicose

As células β das ilhotas pancreáticas são responsáveis pela produção e liberação de insulina, hormônio responsável pela manutenção dos níveis plasmáticos de glicose. A glicose é, portanto, o principal estimulador da célula β a secretar o hormônio. A glicose do plasma entra na célula β sem restrição, pois o transportador de glicose dessa célula, o GLUT2, apresenta grande capacidade de transporte e não é saturado por altas concentrações glicose. Assim, a concentração de glicose dentro da célula β está sempre em equilíbrio com o plasma. Em seguida à sua entrada a glicose é prontamente fosforilada a glicose-6-fosfato por ação da enzima de alto Km, a glicoquinase (GK), que é determinante para manutenção do fluxo de substrato para a glicólise. Uma vez fosforilada a glicose é metabolizada pela glicólise, onde dará origem a piruvato, NADH e ATP. O piruvato é posteriormente oxidado na mitocôndria, onde será convertido em NADH e FADH$_2$ e dará origem à maior parte do ATP gerado durante o metabolismo da glicose.

Segundo diversos autores a indução da secreção de insulina pela glicose é desencadeada pelo aumento na produção de ATP e, consequentemente, da razão ATP/ADP, através de sua metabolização a piruvato e posterior oxidação no ciclo de Krebs$^{1,2-4}$. O aumento na razão ATP/ADP, induzido pelo metabolismo da célula β, gera inibição dos canais de K$^+$ sensíveis ao ATP (K$_{ATP}$) e consequente despolarização celular, que promove a abertura dos canais de cálcio (Ca$^{2+}$) voltagem dependentes (VDCC). O aumento na concentração de Ca$^{2+}$ intracelular é reconhecido como principal indutor de secreção de insulina. O envolvimento de proteínas cinases foi inferido ao se observar aumento na translocação de algumas de suas isoformas para a membrana após aumento de Ca$^{2+}$ intracelular5. A fosfolipase C (PLC) é ativada levando à formação de inositol trifosfato (IP$_3$) e diacilglicerol (DAG). Este último ativa a proteína cinase C (PKC) e pode interagir diretamente com proteínas envolvidas na sinalização celular6,7. O IP$_3$ também promove a abertura dos canais de Ca$^{2+}$ presentes na membrana do retículo endoplasmático liberando mais Ca$^{2+}$ para o citosol, o que potencializa o processo secretório.

O metabolismo da glicose é o principal regulador da secreção de insulina ao aumentar a produção de ATP, que é gerado principalmente na mitocôndria. O metabolismo mitocondrial participa da geração de outros sinais intracelulares indutores de secreção de insulina além do ATP, tais como intermediários metabólicos e NADPH8,9. O cálcio intracelular controla muitas funções na célula β, dentre elas o metabolismo mitocondrial.
Ca\(^{2+}\) intracelular alcança a mitocôndria e aumenta o Ca\(^{2+}\) na organela com consequente estímulo às NADH desidrogenases, induzindo potencialização no aumento da razão ATP/ADP\(^{10}\). A importância da mitocôndria no processo de secreção de insulina induzido pela glicose foi comprovada em estudos realizados com células Rho (deficientes em DNA mitocondrial) nas quais subunidades catalíticas da cadeia respiratória estão ausentes e impossibilitam a geração de ATP mitocondrial. Essas células mantêm resposta frente ao KCl e maquinaria exocitótica intacta, porém a ausência de aumento na concentração de ATP induzido pela glicose impossibilita secreção de insulina normal frente a glicose e substratos mitocondriais\(^{11}\).

Umas das características da célula β é o forte acoplamento entre glicólise e o metabolismo mitocondrial. O acoplamento entre a glicólise e o metabolismo mitocondrial decorre da baixa atividade da lactato desidrogenase (LDH) na célula β, que prioriza a entrada de piruvato na mitocôndria e posterior metabolização no ciclo de Krebs\(^{12}\). Para que o piruvato entre na mitocôndria e possa ser catalisado há duas vias possíveis: a da piruvato desidrogenase (PDH), formadora de acetil-CoA, ou a da piruvato carboxilase (PC) geradora de oxalacetato. Em muitas células a via da PDH predomina, mas a ilhota pancreática apresenta alta concentração e atividade da PC em níveis semelhantes aos de tecidos com atividade gliconeogênica como figado e rins, dessa forma, em ilhotas pancreáticas, o piruvato é metabolizado tanto pela PDH, quanto pela PC\(^{13}\) (Figura 1). A PC é essencial para anaplerose, que é necessária para a manutenção do ciclo de Krebs e de seus intermediários, que são exauridos por muitos processos como lipogênese e síntese de certos aminoácidos\(^{14,15}\). Na célula β o armazenamento de lipídios não é função primordial, assim, a liberação de intermediários do ciclo de Krebs para o citosol apresenta relevância no processo de secreção de insulina. O oxalacetato formado a partir de piruvato pode ser exportado para o citosol, onde ocorre a formação de malato pela malato desidrogenase (MDH). Enzima MDH utiliza como co-fator o NADH, que, ao ser oxidado, gera NAD\(^+\), essencial para o funcionamento da via glicolítica, o que implica na grande associação entre a glicólise e o metabolismo mitocondrial. Em seguida o malato é convertido novamente a piruvato pela enzima málica (EM) e retorna para a mitocôndria, pelo chamado desvio malato-piruvato com a concomitante formação de NADPH, um importante agente redutor que está altamente relacionado com a secreção de insulina induzida pela glicose\(^{16}\).
Figura 1. Representação do mecanismo de metabolização da glicose na mitocôndria.

Mecanismos através dos quais a glicose pode ser metabolizada após a entrada do piruvato (Pir) na mitocôndria. Há duas vias de entrada do piruvato na mitocôndria: via piruvato desidrogenase (PDH) ou piruvato carboxilase (PC), e dar origem a metabólitos importantes no processo de secreção de insulina. Os ácidos graxos entram no Ciclo de Krebs sob a forma de acetil-CoA regulando a atividade da PC e da PDH.
Fonte: modificada de 17, 18.

No diabetes tipo II a falha da célula beta coincide com a reduzida atividade da PC e PDH 19-22. Estudos demonstraram também, em células e ilhotas pancreáticas, a coincidência entre a redução na resposta secretória de insulina e a menor expressão ou atividade da PC após tratamento crônico com glicose e/ou ácidos graxos 23.

1.2 Ácidos Graxos

Além da glicose, outros nutrientes são capazes de controlar a secreção de insulina, dentre eles estão os ácidos graxos (AGs), que provêm energia para as células e contribuem
para a manutenção de componentes celulares. A exposição a altas concentrações de glicose e palmitato induz aumento de LC-CoA, que modula a PKC e aumentam a secreção de insulina. Por outro lado, o excesso de AG pode provocar danos à célula β, os quais são causados pelo acúmulo de metabólitos derivados desses ácidos graxos. Dentre outros efeitos, o aumento excessivo de LC-CoA resultante de exposição prolongada aos ácidos graxos, pode abrir canais K_ATP e hiperpolarizar a célula. Reduzindo a probabilidade de fechamento desse canal a consequente despolarização da membrana não ocorre e a secreção é prejudicada. Efeitos crônicos dos AGs também geram alteração do metabolismo da célula β, elevação do estado redox e aumento do consumo de oxigênio basal, o que sugere um efeito via geração de ATP. O tratamento crônico com ácidos graxos saturados aumenta a concentração de ceramidas na célula. Em células β os efeitos crônicos e deletérios de altas concentrações de ácidos graxos saturados forma associados à menor oxidação dos mesmos e posterior acúmulo sob a forma de ceramidas ao invés de lipídios neutros. Foi demonstrado que ceramidas podem alterar a atividade do complexo III mitocondrial e diminuir a formação de ATP em mitocôndrias de tecido cardíaco. O excesso de oleato parece ser menos danoso às células β uma vez que, se comparado ao palmitato e linoleato, praticamente não induz apoptose e diminui a formação de ceramidas induzida por AGs saturados. No entanto, os mecanismos pelos quais os ácidos graxos interferem na secreção e expressão da insulina ainda não estão totalmente esclarecidos, mesmo porque agudamente aumentam e cronicamente reduzem a secreção do hormônio.

A oxidação dos ácidos graxos apresenta grande importância no processo de secreção de insulina. Para que os ácidos graxos entrem na mitocôndria e sejam oxidados há a necessidade de formação de LC-CoA e transporte via enzima carnitina palmitoil transferase (CPT-1). Foi observado um rápido aumento na expressão gênica da CPT-1 após tratamento da célula B (INS-1) com ácidos graxos. No entanto, já foi demonstrado que a indução de aumento da expressão dessa enzima está associado à perda da resposta frente a glicose observada após tratamento prolongado com ácidos graxos.

A administração de ácidos graxos em diversos tipos celulares pode alterar também o metabolismo da glicose e, ao menos em células β, diminuir a oxidação de açúcares concomitantemente com a secreção de insulina. Foi caracterizado primeiramente em músculo uma fina regulação entre o metabolismo de ácidos graxos e glicose em diversos tipos celulares, posteriormente caracterizada também na célula β. Nesse ciclo, que ficou conhecido como ciclo de Randle, foi proposto que o acetil-CoA produzido pelo metabolismo...
dos ácidos graxos inibiria o metabolismo da glicose tanto diretamente, quanto pela geração de citrato. O acetil-CoA é um potente inibidor de enzimas importantes da via glicolítica, como a fosfofrutoquinase-1 (PFK-1) e PDH, e é ativador alostérico da PC. Com a inibição da via glicolítica a oxidação da glicose é prejudicada, mas a secreção pode ser elevada, ao menos durante a ação aguda dos ácidos graxos.

Apesar de não estar totalmente estabelecida a relação entre oxidação de ácidos graxos e secreção de insulina, esta é uma via importante de modulação da secreção de insulina induzida por AGs. Nos últimos anos porém tem emergido outra via de ação dos ácidos graxos em ilhotas pancreáticas da qual participam receptores acoplados a proteínas Gq. Esses receptores são ativados especificamente por ácidos graxos e são chamados GPRs. Os GPR41 e GRP43 são ativados por ácidos graxos de cadeia curta e o GPR40, expresso principalmente em ilhotas pancreáticas, é ativado por ácidos graxos de cadeia média e longa tendo como seus principais ligantes oleato, linoleato e palmitato. Essa família de receptores apresenta grande homologia apresentando sete domínios transmembrana.

A indução na secreção de insulina por ácidos graxos via GPR40 está acoplada a proteínas Gq, via PKC. Shapiro e colaboradores (2005) demonstraram ação do palmitato atua na linhagem de célula B INS-1E via GPR40 e sugerem um mecanismo para indução da secreção de insulina que consiste na ativação do receptor seguida de ativação da PLC. A PLC ativada promoveria a formação de IP3, que, ao se ligar a receptores no retículo endoplasmático promoveria a liberação de cálcio. Esse cálcio liberado de estoques intracelulares induziria entrada de cálcio a partir de canais de cálcio CCSV e promoveriam a secreção de insulina na presença de AGs e concentrações estimulatórias de glicose.

Estudos realizados com camundongos “knockout” (KO) ou que super-expressam o GPR40 sugerem grande importância desse receptor nas ações agudas e crônicas dos ácidos graxos. A super-expressão do GPR40 induz redução da expressão do RNAm da proteína GLUT-2 em células β de ratos. Esse resultado é semelhante ao observado em ilhotas expostas a concentrações elevadas de ácidos graxos, sugerindo papel do GPR40 nos processos fisiológicos e fisiopatológicos envolvendo o processo secretório de insulina induzidos por AG. Animais “knockout” (KO) para o GPR40 não desenvolvem esteatose hepática após alimentação com dieta hiperlipídica. No entanto, o GPR40 parece não estar envolvido no processo de lipotoxicidade na ilhota, pois as ilhotas pancreáticas dos animais KO não foram protegidas dos efeitos deletérios dos ácidos graxos. Além disso, a maioria dos trabalhos realizados utilizou ilhotas isoladas ou linhagens celulares que apresentaram efeitos evidentes do GPR40, mas sem interferência do metabolismo celular nesse processo. Essas respostas são
diferentes do que ocorre in vivo, onde o metabolismo dos ácidos graxos também é bastante importante para o processo de secreção de insulina \(^46\) (Figura 2). Portanto, ainda há controvérsias quanto aos efeitos do GPR40 no diabetes e também em indivíduos normais.

Figura 2. Representação dos mecanismos de secreção de insulina induzidos pelos ácidos graxos (AGs).

Possíveis mecanismos envolvidos na secreção de insulina induzida por ácidos graxos. Através do o metabolismo de AGs na mitocôndria após formação de LC-CoA e entrada na mitocôndria ou através da via GPR40. GPR40 é ativado pelo ácido graxo, estimula Gqα – PLC – PKC e aumenta Ca\(^{2+}\) intracelular e entrada de Ca\(^{2+}\) por canais sensíveis a voltagem. Fonte: modificada de \(^57\).

O ácido oléico (C18:1) é um ácido graxo de cadeia longa monoinsaturado (omega-9), tornando-o muito menos susceptível à oxidação do que os ácidos graxos polinsaturados \(^58\). Junto com o palmitato é um dos mais abundantes no plasma de ratos e humanos e seus efeitos também podem ser mediados via GPR40 \(^59-62\). Em humanos o oleato e palmitoleato (C16:1) reduzem a apoptose e a citotoxicidade induzida por citocinas e reverter a diminuição da viabilidade celular induzida pelo palmitato em células B e células de câncer de mama \(^63\). Em cardiomiócitos, onde a alta concentração de AGs também está relacionada com citotoxicidade, o aumento na produção de espécies reativas de oxigênio e apoptose induzidos pelo palmitato pode ser revertido após aumento na oxidação desse ácido graxo quando se co-administra AO \(^64\). Coll e colaboradores (2008) também observaram efeito protetor do AO em...
diminuir a resposta inflamatória induzida pelo palmitato em células musculares. A reversão da citotoxicidade gerada pelo palmitato se deve à maior incorporação em triglicérides e aumento da β-oxidação, que protegem células como linfócitos da citotoxicidade induzida pelos ácidos graxos \(^{31, 65}\). Como já visto o AO exerce alguns efeitos diferentes de ácidos graxos saturados promovendo muitas vezes proteção frente aos efeitos deletérios de AGs saturados. O AO não foi capaz de provocar respostas significativas em células musculares, por isso alguns autores o denominam como ácido graxo “neutro”, pois não induziria efeitos significativos nas células quando não é administrado em associação com outros ácidos graxos. Porém, em células INS-1 a administração de AO durante 3 dias induziu alterações tais como aumento do consumo de \(O_2\), aumento da sua oxidação associada à diminuição da oxidação da glicose e aumento de EROs\(^{35, 66, 67}\).

Apesar de alguns estudos terem estabelecido ações benéficas da exposição crônica ao ácido oléico, poucos trabalhos avaliaram o efeito agudo deste AG na secreção de insulina. Os trabalhos até hoje realizados avaliaram a secreção após infusão com diferentes AGs ou após administração de rica em ácido oléico \(^{68-70}\). Apenas avaliações indiretas da funcionalidade da célula β foram avaliadas recentemente tais como o influxo de \(Ca^{2+}\) e atividade de canais importantes para a secreção de insulina \(^{71, 72}\).

1.3 Espécies Reativas de Oxigênio (EROs)

Apesar de serem associadas ao desenvolvimento de diversas patologias, as EROs são produzidas fisiologicamente durante o metabolismo celular e cerca de 3 – 5% do \(O_2\) consumido pela célula sofre redução incompleta formando radical superóxido (\(O_2^{•−}\)) ao invés de \(H_2O\) no fim da cadeia transportadora de elétrons \(^{72}\). Portanto, alterações no metabolismo das células frente a diferentes estímulos podem induzir maior ou menor produção de EROs e, consequentemente, alterar a geração de ATP mitocondrial.

Dentre as espécies reativas de oxigênio, ou radicais de oxigênio, amplamente denominadas como pró-oxidantes há espécies radicais, como o ánion superóxido (\(O_2^{•−}\)) e os radicais hidroxila (\(OH^{•}\)) e espécies não radicais como o peróxido de hidrogênio (\(H_2O_2\)). As espécies radicais apresentam pelo menos um elétron desemparelhado que é capaz de sequestrar um elétron ou átomo de hidrogênio de outra molécula e as espécies não radicais são capazes de gerar novos pró-oxidantes \(^{71}\).

Para combater o excesso desses radicais as células apresentam o sistema de defesa antioxidantes (DAs), composto por sequestradores de radicais como as vitaminas E e C e a
glutationa reduzida (GSH); quelantes como a ceruloplasmina e a metalotioneína; e por enzimas antioxidantes como a superóxido dismutase (SOD - CuZn-SOD citoplasmática e Mn-SOD mitocondrial), a catalase (CAT) e a glutatonia peroxidase (GPx) \(^{73, 74}\). A SOD é uma das mais importantes, pois ao promover a dismutação do \(O_2^-\) evita a geração de radicais hidroxila, que é o mais reativo dos radicais. Em ilhotas pancreáticas o aumento na concentração de glicose ativa a SOD, que a partir do superóxido produz H\(_2\)O\(_2\), um reconhecido sinalizador intracelular \(^{71, 75}\). A Mn-SOD é muito importante, pois evita a geração de danos às enzimas presentes na mitocôndria.

A produção de espécies reativas de oxigênio na mitocôndria ocorre na cadeia transportadora de elétrons (CTE), na qual agentes reductores como FADH\(_2\) e NADH doam elétrons para o complexo enzimático presente na membrana mitocondrial. Há vários complexos distribuídos em sequencia na membrana mitocondrial dispostos de I a IV. Os elétrons doados pelo NADH entram no complexo I, enquanto a conversão de succinato a fumarato gera elétrons no complexo II. O fluxo de elétrons é direcionado para o intermediário ubiquinona, seguido pela oxidação do ubiquinol pelo complexo III. Os elétrons em seguida são transferidos para a citocromo c, a qual direciona o fluxo para o complexo IV. O complexo V, ou ATP sintase, consiste em uma ATPase responsável pelo acoplamento entre o fluxo de prótons e a conversão de ADP a ATP. Esses complexos recebem elétrons de substratos e transferem prótons para o espaço intermembrana da mitocôndria e produzem uma diferença de potencial (\(\Delta\psi\)) que é responsável pela força motriz com energia suficiente para formar ATP a partir de ADP. Porém durante o transporte de elétrons alguns podem “escapar” e reduzir o oxigênio parcialmente formando \(O_2^-\) \(^{76-78}\).

Quando há produção em excesso de EROs, e/ou expressão ou atividade das enzimas antioxidantas reduzida, associada a danos aos componentes celulares como DNA, proteínas e membranas pode ocorrer estresse oxidativo. Cronicamente, como no diabetes tipo 2, a presença de altas concentrações de glicose e ácidos graxos pode aumentar a produção de EROs, que podem não ser totalmente eliminadas pelas defesas antioxidantes e promover danos à funcionalidade da célula \(\beta\) \(^{65}\). A inibição da secreção de insulina induzida por ácidos graxos está associada ao aumento de EROs em ilhotas isoladas e “in vivo”, pois a administração de antioxidantes como taurina, N-acetilcisteína (NAC) e TPO (mimetiza a SOD) reduz os efeitos de ácidos graxos como oleato \(^{79-81}\). A ação deletária de EROs na célula \(\beta\) é comprovada após diminuição de disfunções induzidas por altas concentrações de glicose e ácidos graxos em células \(\beta\) após administração de antioxidantes \(^{82}\).
Os ácidos graxos são oxidados na mitocôndria, pela β-oxidação, e durante esse processo podem ser geradas EROs. A relação entre a oxidação dos ácidos graxos e a produção de EROs é conhecida. Ácidos graxos podem alterar a produção de EROs na mitocôndria ao interagir com subunidades da cadeia transportadora de elétrons; ou ao atuar como desacopladores, dissipando a diferença de potencial na membrana mitocondrial entre outros mecanismos revisto por 83. A oxidação dos ácidos graxos gera acetil-CoA, que entra no ciclo de Krebs e produz NADH e FADH₂, que transferem elétrons principalmente para o complexo II mitocondrial. O aumento excessivo no potencial de membrana mitocondrial pode prejudicar o fluxo normal de elétrons e provocar um fluxo reverso e eventualmente aumentar a produção de EROs. Assim sendo, com o aumento na oxidação dos ácidos graxos a mitocôndria aumenta a respiração, o potencial de membrana e geração de EROs revisto em 84. No entanto, esse aumento de EROs parece ter função sinalizadora. O ácido oléico, por exemplo, em músculo liso vascular estimula o aumento de EROs via PKC após 5 minutos de estímulo e esse aumento parece estar associado a proliferação e remodelamento vascular 85.

Apesar da relevante importância da mitocôndria na produção de EROs na maioria das células, em neutrófilos a produção de EROs é dependente da NAD(P)H oxidase. Em células Jurkat e Raiji (linhagens de linfócitos T e B, respectivamente), o aumento de EROs induzido por ácidos graxos de 18 carbonos é mediado pela enzima NAD(P)H oxidase 86. Similarmente, em células vasculares, o aumento de EROs por altas concentrações de glicose e ácidos graxos ocorre através da ativação da NAD(P)H oxidase 87.

1.4 A Enzima NAD(P)H oxidase

Além da reconhecida importância da mitocôndria como sítio gerador de EROs a NAD(P)H oxidase também apresenta representatividade em diversos tecidos inclusive na célula β pancreática 88-92. Está presente em grande concentração em células de defesa como neutrófilos e linfócitos B catalisando a redução do oxigênio a superóxido através da doação de um elétron do NAD(P)H como representado no esquema abaixo.

\[2O_2 + \text{NAD(P)H} \rightarrow 2O_2^{\cdot-} + \text{NAD(P)}^+ + H^+ \]

Essa enzima é formada por 5 subunidades principais: p40^{PHOX}, p47^{PHOX}, p67^{PHOX}, p22^{PHOX} e gp91^{PHOX} (ou Nox2). Os três primeiros são citosólicos e os outros dois componentes (p22^{PHOX} e Nox2) encontram-se na membrana formando o citocromo b558.
Essas subunidades e seus homólogos já foram caracterizados em ilhotas pancreáticas e parecem ter grande importância no diabetes e em condições fisiológicas. A p22PHOX, por exemplo, tem sua expressão aumentada no diabetes induzido por estreptozotocina.

Quando há exposição a um estímulo, o componente citosólico (p47PHOX) é fosforilado e o complexo todo migra para a membrana onde se associa ao citocromo b558 ativando enzima (Figura 3). Evidências do conceito de que a p47PHOX deve estar associada à p67PHOX para que migre para a membrana vêm de neutrófilos deficientes em p47PHOX, onde a p67PHOX não pode ser translocada para a membrana após estímulo. A enzima ativada está apta para transferir elétrons do substrato (NADPH) para o oxigênio e reduzi-lo para formação de superóxido (O$_2^•$) via Nox2. A ativação requer a participação também das proteínas de baixo peso molecular Rac2 (citoplasmática) e Rap1A, localizada na membrana. Durante a ativação a Rac2 se liga ao GTP e junto com todo complexo citoplasmático migra para a membrana para sua associação ao citocromo b558 (Figura 3).

A Nox2 apresenta dois homólogos recentemente caracterizados na ilhota pancreática, o Nox1 e Nox4. Nox1 foi o primeiro homólogo de Nox2 caracterizado e os dois apresentam estrutura semelhante. A subunidade Nox4 apresenta menores semelhanças com outras Nox e possui apenas 39% de homologia com a Nox2, o que torna sua ativação diferente de outras Nox. A Nox4 não necessita de subunidades citosólicas, mas só produz de EROs de forma dependente de p22PHOX. Alguns estudos demonstraram atividade constitutiva da Nox4 dependente de seu RNA mensageiro (RNAm) e, diferentemente das outras Nox, gera principalmente peróxido de hidrogênio ao invés de superóxido.

Os homólogos de p47PHOX e p67PHOX são, respectivamente Noxo1 e Noxa1. Tanto Noxo1 quanto p47PHOX apresentam domínios SH3, que proporcionam interação com p22PHOX. Os domínios SH3 da p47PHOX possuem 2 funções principais: mantêm a conformação em repouso por interações intramoleculares impedindo o contato prematuro desses sítios com o flavocitocromo b558; e contribuem diretamente para interação de sua porção aminoterinal com o p22PHOX e carboxitermal com o p67PHOX. O domínio auto-inibitório está ausente na Noxo1, o que implica em ativação constitutiva dessa subunidade. A interação de Nox1 pode ocorrer com p47PHOX ou Nox1 sugerindo que subunidades citosólicas não são específicas para uma determinada Nox. No entanto, a interação entre Nox1, Noxo1 e Noxa1 ainda não está totalmente esclarecida, pois ainda não foi comprovada atividade constitutiva ou dependência de ativação via PKC.
Figura 3. Representação da ativação da enzima NAD(P)H oxidase em neutrófilos.

Durante o processo de ativação da enzima NAD(P)H oxidase a subunidade p47^{PHOX} é ativada via fosforilação e migra junto com a p67^{PHOX} e p40^{PHOX} para a membrana, onde se acoplam ao citocromo b558 e promovem a produção do radical ânion superóxido após oxidação do NAD(P)H.

A inibição farmacológica da NAD(P)H oxidase reduz a produção de superóxido em macrófagos, que expressam em grande quantidade a enzima \(^9^1\). Em ilhotas pancreáticas, tanto a inibição farmacológica quanto a induzida pelo oligonucleotídeo antisense específico para a subunidade p47^{PHOX} da NAD(P)H oxidase diminuíram a produção de superóxido induzida por alta concentração de glicose \(^9^0-9^2,1^0^0\). A inibição da NAD(P)H oxidase em ilhotas pancreáticas reduz a secreção de insulina comprovando a participação dessa enzima no processo de secreção de insulina induzido pela glicose \(^8^6,9^1,1^0^1,1^0^2\). O aumento de glicose e ácidos graxos estimula a produção de EROs através da ativação da NAD(P)H oxidase dependente de PKC e PI3K em células endoteliais, musculares lisas e pancreáticas \(^1^0^3\). Por outro lado, o aumento na atividade da NAD(P)H oxidase e a redução na atividade de algumas enzimas antioxidantes possibilitam aumento de \(O_2^-\) e os possíveis efeitos danosos dos EROs \(^1^0^4\).

Em ilhotas pancreáticas a ação do ácido oléico na regulação da produção de EROs e da função celular via NAD(P)H oxidase ainda não foi caracterizada. Porém, o ácido palmitico aumenta a produção de EROs via atividade da NAD(P)H oxidase e dessa forma regula a secreção de insulina em ilhotas pancreáticas \(^1^0^5\). O ácido oléico modula a atividade da PKC em hepatócitos \(^1^0^6\). Em neutrófilos o ácido oléico induz aumento da produção de EROs mediado pela NAD(P)H oxidase \(^1^0^7\).
6 CONCLUSÃO
• Concentração fisiológica de ácido oléico (100 µM + 0,1% BSA) induz aumento na secreção de insulina na presença de alta concentração de glicose.
• O efeito dessa concentração de ácido oléico na secreção de insulina não é mediado pelo GPR40.
• A oxidação aumentada do AO está envolvida no processo de secreção induzido pelo AO.
• O ácido oléico induz aumento na produção de EROs via NAD(P)H oxidase.
• As EROs produzidas pela atividade da NAD(P)H oxidase induzida pelo AO são responsáveis pela regulação do metabolismo da glicose.
• O aumento na oxidação da glicose observado após inibição da NAD(P)H oxidase parece ter sido responsável pelo aumento na secreção de insulina.
REFERÊNCIAS
1. Carpinelli AR, Malaisse WJ. Regulation of 86Rb outflow from pancreatic islets. IV. Effect of cyclic AMP, dibutyryl-cyclic AMP and theophylline. Acta Diabetol Lat. 1980;17:199-205.

2. Ashcroft F, Rorsman P. ATP-sensitive channels: a link between B-cell metabolism and insulin secretion. Biochem Soc Trans. 1990;18:109-11.

3. MacDonald MJ, Fahien LA, Brown LJ, Hasan NM, Buss JD, Kendrick MA. Perspective: emerging evidence for signaling roles of mitochondrial anaplerotic products in insulin secretion. Am J Physiol Endocrinol Metab. 2005;288:E1-15.

4. MacDonald PE, Joseph JW, Rorsman P. Glucose-sensing mechanisms in pancreatic beta-cells. Philos Trans R Soc Lond B Biol Sci. 2005;360:2211-25.

5. Yaney GC, Korchak HM, Corkey BE. Long-chain acyl CoA regulation of protein kinase C and fatty acid potentiation of glucose-stimulated insulin secretion in clonal beta-cells. Endocrinology. 2000;141:1989-98.

6. Maechler P, Wollheim CB. Mitochondrial signals in glucose-stimulated insulin secretion in the beta cell. J Physiol. 2000;529 (Pt 1):49-56.

7. Maechler P, Carobbio S, Rubi B. In beta-cells, mitochondria integrate and generate metabolic signals controlling insulin secretion. Int J Biochem Cell Biol. 2006;38:696-709.

8. Maechler P, Kennedy ED, Pozzan T, Wollheim CB. Mitochondrial activation directly triggers the exocytosis of insulin in permeabilized pancreatic beta-cells. EMBO J. 1997;16:3833-41.

9. Rutter GA, Burnett P, Rizzuto R, Brini M, Murgia M, Pozzan T, Tavare JM, Denton RM. Subcellular imaging of intramitochondrial Ca2+ with recombinant targeted aequorin: significance for the regulation of pyruvate dehydrogenase activity. Proc Natl Acad Sci U S A. 1996;93:5489-94.

10. Kennedy ED, Maechler P, Wollheim CB. Effects of depletion of mitochondrial DNA in metabolism secretion coupling in INS-1 cells. Diabetes. 1998;47:374-80.

11. Sekine N, Cirulli V, Regazzi R, Brown LJ, Gine E, Tamarit-Rodriguez J, Girotti M, Marie S, MacDonald MJ, Wollheim CB, et al. Low lactate dehydrogenase and high mitochondrial glycerol phosphate dehydrogenase in pancreatic beta-cells. Potential role in nutrient sensing. J Biol Chem. 1994;269:4895-4902.

12. MacDonald MJ. Glucose enters mitochondrial metabolism via both carboxylation and decarboxylation of pyruvate in pancreatic islets. Metabolism. 1993;42:1229-31.
13 Jitrapakdee S, Wallace JC. Structure, function and regulation of pyruvate carboxylase. Biochem J. 1999;340 (Pt 1):1-16.

14 MacDonald MJ. Influence of glucose on pyruvate carboxylase expression in pancreatic islets. Arch Biochem Biophys. 1995;319:128-32.

15 Ivarsson R, Quintens R, Dejonghe S, Tsukamoto K, in ’t Veld P, Renstrom E, Schuit FC. Redox control of exocytosis: regulatory role of NADPH, thioredoxin, and glutaredoxin. Diabetes. 2005;54:2132-42.

16 Jensen MV, Joseph JW, Ilkayeva O, Burgess S, Lu D, Ronnebaum SM, Odegaard M, Becker TC, Sherry AD, Newgard CB. Compensatory responses to pyruvate carboxylase suppression in islet beta-cells. Preservation of glucose-stimulated insulin secretion. J Biol Chem. 2006;281:22342-51.

17 MacDonald MJ, Tang J, Polonsky KS. Low mitochondrial glycerol phosphate dehydrogenase and pyruvate carboxylase in pancreatic islets of Zucker diabetic fatty rats. Diabetes. 1996;45:1626-30.

18 MacDonald MJ, Efendic S, Ostenson CG. Normalization by insulin treatment of low mitochondrial glycerol phosphate dehydrogenase and pyruvate carboxylase in pancreatic islets of the GK rat. Diabetes. 1996;45:886-90.

19 Xu J, Han J, Long YS, Epstein PN, Liu YQ. The role of pyruvate carboxylase in insulin secretion and proliferation in rat pancreatic beta cells. Diabetologia. 2008;51:2022-30.

20 Boucher A, Lu D, Burgess SC, Telemaque-Potts S, Jensen MV, Mulder H, Wang MY, Unger RH, Sherry AD, Newgard CB. Biochemical mechanism of lipid-induced impairment of glucose-stimulated insulin secretion and reversal with a malate analogue. J Biol Chem. 2004;279:27263-71.

21 Liu YQ, Jetton TL, Leahy JL. beta-Cell adaptation to insulin resistance. Increased pyruvate carboxylase and malate-pyruvate shuttle activity in islets of nondiabetic Zucker fatty rats. J Biol Chem. 2002;277:39163-68.

22 Liu YQ, Tornheim K, Leahy JL. Glucose-fatty acid cycle to inhibit glucose utilization and oxidation is not operative in fatty acid-cultured islets. Diabetes. 1999;48:1747-53.

23 Kotarsky K, Nilsson NE, Flodgren E, Owman C, Olde B. A human cell surface receptor activated by free fatty acids and thiazolidinedione drugs. Biochem Biophys Res Commun. 2003;301:406-10.

24 Deeney JT, Gromada J, Hoy M, Olsen HL, Rhodes CJ, Prentki M, Berggren PO, Corkey BE. Acute stimulation with long chain acyl-CoA enhances exocytosis in insulin-secreting cells (HIT T-15 and NMRI beta-cells). J Biol Chem. 2000;275:9363-68.
25 Assimacopoulos-Jeannet F, Thumelin S, Roche E, Esser V, McGarry JD, Prentki M. Fatty acids rapidly induce the carnitine palmitoyltransferase I gene in the pancreatic beta-cell line INS-1. J Biol Chem. 1997;272:1659-64.

26 McGarry JD. Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes. 2002;51:7-18.

27 El-Assaad W, Buteau J, Peyot ML, Nolan C, Roduit R, Hardy S, Joly E, Dbaibo G, Rosenberg L, Prentki M. Saturated fatty acids synergize with elevated glucose to cause pancreatic beta-cell death. Endocrinology. 2003;144:4154-63.

28 Liang Y, Buettger C, Berner DK, Matschinsky FM. Chronic effect of fatty acids on insulin release is not through the alteration of glucose metabolism in a pancreatic beta-cell line (beta HC9). Diabetologia. 1997;40:1018-27.

29 Dobbins RL, Chester MW, Stevenson BE, Daniels MB, Stein DT, McGarry JD. A fatty acid-dependent step is critically important for both glucose- and non-glucose-stimulated insulin secretion. J Clin Invest. 1998;101:2370-76.

30 Azevedo-Martins AK, Monteiro AP, Lima CL, Lenzen S, Curi R. Fatty acid-induced toxicity and neutral lipid accumulation in insulin-producing RINm5F cells. Toxicol In Vitro. 2006;20:1106-13.

31 Segall L, Lameloise N, Assimacopoulos-Jeannet F, Roche E, Corkey P, Thumelin S, Corkey BE, Prentki M. Lipid rather than glucose metabolism is implicated in altered insulin secretion caused by oleate in INS-1 cells. Am J Physiol. 1999;277:E521-28.

32 Gudz TI, Tserng KY, Hoppel CL. Direct inhibition of mitochondrial respiratory chain complex III by cell-permeable ceramide. J Biol Chem. 1997;272:24154-4158.

33 Lupi R, Dotta F, Marselli L, Del Guerra S, Masini M, Santangelo C, Patane G, Boggi U, Piro S, Anello M, Bergamini E, Mosca F, Di Mario U, Del Prato S, Marchetti P. Prolonged exposure to free fatty acids has cytostatic and pro-apoptotic effects on human pancreatic islets: evidence that beta-cell death is caspase mediated, partially dependent on ceramide pathway, and Bcl-2 regulated. Diabetes. 2002;51:1437-42.

34 Maedler K, Spinas GA, Dyntar D, Moritz W, Kaiser N, Donath MY. Distinct effects of saturated and monounsaturated fatty acids on beta-cell turnover and function. Diabetes. 2001;50:69-76.

35 Picinato MC, Curi R, Machado UF, Carpinelli AR. Soybean- and olive-oils-enriched diets increase insulin secretion to glucose stimulus in isolated pancreatic rat islets. Physiol Behav. 1998;65:289-94.

36 Gravena C, Mathias PC, Ashcroft SJ. Acute effects of fatty acids on insulin secretion from rat and human islets of Langerhans. J Endocrinol. 2002;173:73-80.
Dixon G, Nolan J, McClenaghan NH, Flatt PR, Newsholme P. Arachidonic acid, palmitic acid and glucose are important for the modulation of clonal pancreatic beta-cell insulin secretion, growth and functional integrity. Clin Sci (Lond). 2004;106:191-99.

Yaney GC, Corkey BE. Fatty acid metabolism and insulin secretion in pancreatic beta cells. Diabetologia. 2003;46:1297-12.

Stein DT, Esser V, Stevenson BE, Lane KE, Whiteside JH, Daniels MB, Chen S, McGarry JD. Essentiality of circulating fatty acids for glucose-stimulated insulin secretion in the fasted rat. J Clin Invest. 1996;97:2728-35.

McGarry JD, Brown NF. The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur J Biochem. 1997;244:1-14.

Rubi B, Antinozzi PA, Herrero L, Ishihara H, Asins G, Serra D, Wollheim CB, Maechler P, Hegardt FG. Adenovirus-mediated overexpression of liver carnitine palmitoyltransferase I in INS1E cells: effects on cell metabolism and insulin secretion. Biochem J. 2002;364:219-26.

Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1963;1:785-89.

Randle PJ. Regulatory interactions between lipids and carbohydrates: the glucose fatty acid cycle after 35 years. Diabetes Metab Rev. 1998;14:263-83.

Briscoe CP, Tadayyon M, Andrews JL, Benson WG, Chambers JK, Eilert MM, Ellis C, Elshourbagy NA, Goetz AS, Minnick DT, Murdock PR, Sauls HR, Jr., Shabon U, Spinage LD, Strum JC, Szekeres PG, Tan KB, Way JM, Ignar DM, Wilson S, Muir AI. The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J Biol Chem. 2003;278:11303-11.

Hirasawa A, Tsumaya K, Awaji T, Katsuma S, Adachi T, Yamada M, Sugimoto Y, Miyazaki S, Tsujimoto G. Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat Med. 2005;11:90-94.

Shapiro H, Shachar S, Sekler I, Hershfinkel M, Walker MD. Role of GPR40 in fatty acid action on the beta cell line INS-1E. Biochem Biophys Res Commun. 2005;335:97-104.

Fujiwara K, Maekawa F, Yada T. Oleic acid interacts with GPR40 to induce Ca2+ signaling in rat islet beta-cells: mediation by PLC and L-type Ca2+ channel and link to insulin release. Am J Physiol Endocrinol Metab. 2005;289:E670-77.

Tikhonova IG, Sum CS, Neumann S, Thomas CJ, Raaka BM, Costanzi S, Gershengorn MC. Bidirectional, iterative approach to the structural delineation of the
functional "chemoprint" in GPR40 for agonist recognition. J Med Chem. 2007;50:2981-89.

49 Brown AJ, Jupe S, Briscoe CP. A family of fatty acid binding receptors. DNA Cell Biol. 2005;24:54-61.

50 Sum CS, Tikhonova IG, Neumann S, Engel S, Raaka BM, Costanzi S, Gershengorn MC. Identification of residues important for agonist recognition and activation in GPR40. J Biol Chem. 2007;282:29248-55.

51 Bollheimer LC, Kemptner DM, Kagerbauer SM, Kestler TM, Wrede CE, Buettner R. Intracellular depletion of insulin: a comparative study with palmitate, oleate and elaidate in INS-1 cells. Eur J Endocrinol. 2003;148:481-86.

52 Itoh Y, Kawamata Y, Harada M, Kobayashi M, Fujii R, Fukusumi S, Ogi K, Hosoya M, Tanaka Y, Uejima H, Tanaka H, Maruyama M, Satoh R, Okubo S, Kizawa H, Komatsu H, Matsumura F, Noguchi Y, Shinohara T, Hinuma S, Fujisawa Y, Fujino M. Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature. 2003;422:173-76.

53 Poitout V. The ins and outs of fatty acids on the pancreatic beta cell. Trends Endocrinol Metab. 2003;14:201-03.

54 Gromada J. The free fatty acid receptor GPR40 generates excitement in pancreatic beta-cells. Endocrinology. 2006;147:672-73.

55 Steneberg P, Rubins N, Bartoov-Shifman R, Walker MD, Edlund H. The FFA receptor GPR40 links hyperinsulinemia, hepatic steatosis, and impaired glucose homeostasis in mouse. Cell Metab. 2005;1:245-58.

56 Latour MG, Alquier T, Oseid E, Tremblay C, Jetton TL, Luo J, Lin DC, Poitout V. GPR40 is necessary but not sufficient for fatty acid stimulation of insulin secretion in vivo. Diabetes. 2007;56:1087-94.

57 Waterman E, Lockwood B. Active components and clinical applications of olive oil. Altern Med Rev. 2007;12:331-42.

58 Fujiwara K, Maekawa F, Yada T. Oleic acid interacts with GPR40 to induce Ca2+ signaling in rat islet beta-cells: mediation by PLC and L-type Ca2+ channel and link to insulin release. Am J Physiol Endocrinol Metab. 2005;289:E670-77.

59 Hardy S, Langelier Y, Prentki M. Oleate activates phosphatidylinositol 3-kinase and promotes proliferation and reduces apoptosis of MDA-MB-231 breast cancer cells, whereas palmitate has opposite effects. Cancer Res. 2000;60:6353-58.
23

60 Hardy S, St-Onge GG, Joly E, Langelier Y, Prentki M. Oleate promotes the proliferation of breast cancer cells via the G protein-coupled receptor GPR40. J Biol Chem. 2005;280:13285-91.

61 Maedler K, Oberholzer J, Bucher P, Spinas GA, Donath MY. Monounsaturated fatty acids prevent the deleterious effects of palmitate and high glucose on human pancreatic beta-cell turnover and function. Diabetes. 2003;52:726-33.

62 Welters HJ, Tadayyon M, Scarpello JH, Smith SA, Morgan NG. Mono-unsaturated fatty acids protect against beta-cell apoptosis induced by saturated fatty acids, serum withdrawal or cytokine exposure. FEBS Lett. 2004;560:103-08.

63 Miller TA, LeBrasseur NK, Cote GM, Trucillo MP, Pimentel DR, Ido Y, Ruderman NB, Sawyer DB. Oleate prevents palmitate-induced cytotoxic stress in cardiac myocytes. Biochem Biophys Res Commun. 2005;336:309-15.

64 Cury-Boaventura MF, Gorjao R, de Lima TM, Newsholme P, Curi R. Comparative toxicity of oleic and linoleic acid on human lymphocytes. Life Sci. 2006;78:1448-56.

65 Oprescu AI, Bikopoulos G, Naassan A, Allister EM, Tang C, Park E, Uchino H, Lewis GF, Fantus IG, Rozakis-Adcock M, Wheeler MB, Giacca A. Free fatty acid-induced reduction in glucose-stimulated insulin secretion: evidence for a role of oxidative stress in vitro and in vivo. Diabetes. 2007;56:2927-37.

66 Crespin SR, Greenough WB, 3rd, Steinberg D. Stimulation of insulin secretion by long-chain free fatty acids. A direct pancreatic effect. J Clin Invest. 1973;52:1979-84.

67 Stein DT, Stevenson BE, Chester MW, Basit M, Daniels MB, Turley SD, McGarry JD. The insulinotropic potency of fatty acids is influenced profoundly by their chain length and degree of saturation. J Clin Invest. 1997;100:398-403.

68 Tian Y, Corkey RF, Yaney GC, Goforth PB, Satin LS, Moitoso de Vargas L. Differential modulation of L-type calcium channel subunits by oleate. Am J Physiol Endocrinol Metab. 2008;294:E1178-86.

69 Branstrom R, Aspinwall CA, Valimaki S, Ostensson CG, Tibell A, Eckhard M, Brandhorst H, Corkey BE, Berggren PO, Larsson O. Long-chain CoA esters activate human pancreatic beta-cell KATP channels: potential role in Type 2 diabetes. Diabetologia. 2004;47:277-83.

70 Speier S, Yang SB, Sroka K, Rose T, Rupnik M. KATP-channels in beta-cells in tissue slices are directly modulated by millimolar ATP. Mol Cell Endocrinol. 2005;230:51-58.

71 Halliwell B, Gutteridge JMC Free radicals in biology and medicine, 3rd ed. Oxford: Clarendon Press; 1999.
Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82:47-95.

Oliveira HR, Curi R, Carpinelli AR. Glucose induces an acute increase of superoxide dismutase activity in incubated rat pancreatic islets. Am J Physiol. 1999;276:C507-10.

Stone JR, Yang S. Hydrogen peroxide: a signaling messenger. Antioxid Redox Signal. 2006;8:243-70.

Sivitz WI, Yorek MA. Mitochondrial dysfunction in diabetes: from molecular mechanisms to functional significance and therapeutic opportunities. Antioxid Redox Signal. 12:537-77.

Robertson RP. Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. J Biol Chem. 2004;279:42351-54.

Robertson RP, Harmon J, Tran PO, Poitout V. Beta-cell glucose toxicity, lipotoxicity, and chronic oxidative stress in type 2 diabetes. Diabetes. 2004;53 Suppl 1:S119-24.

Robertson RP, Harmon JS. Diabetes, glucose toxicity, and oxidative stress: A case of double jeopardy for the pancreatic islet beta cell. Free Radic Biol Med. 2006;41:177-84.

Robertson RP, Harmon J, Tran PO, Tanaka Y, Takahashi H. Glucose toxicity in beta-cells: type 2 diabetes, good radicals gone bad, and the glutathione connection. Diabetes. 2003;52:581-87.

Tanaka Y, Tran PO, Harmon J, Robertson RP. A role for glutathione peroxidase in protecting pancreatic beta cells against oxidative stress in a model of glucose toxicity. Proc Natl Acad Sci U S A. 2002;99:12363-68.

Piro S, Anello M, Di Pietro C, Lizzio MN, Patane G, Rabuazzo AM, Vigneri R, Purrello M, Purrello F. Chronic exposure to free fatty acids or high glucose induces apoptosis in rat pancreatic islets: possible role of oxidative stress. Metabolism. 2002;51:1340-47.

Schonfeld P, Wojtczak L. Fatty acids as modulators of the cellular production of reactive oxygen species. Free Radic Biol Med. 2008;45:231-41.

Hue L, Taegtmeyer H. The Randle cycle revisited: a new head for an old hat. Am J Physiol Endocrinol Metab. 2009;297:E578-91.

Lu G, Greene EL, Nagai T, Egan BM. Reactive oxygen species are critical in the oleic acid-mediated mitogenic signaling pathway in vascular smooth muscle cells. Hypertension. 1998;32:1003-10.
Cury-Boaventura MF, Curi R. Regulation of reactive oxygen species (ROS) production by C18 fatty acids in Jurkat and Raji cells. Clin Sci (Lond). 2005;108:245-53.

Inoguchi T, Li P, Umeda F, Yu HY, Kakimoto M, Imamura M, Aoki T, Etoh T, Hashimoto T, Naruse M, Sano H, Utsumi H, Nawata H. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes. 2000;49:1939-45.

Babior BM. NADPH oxidase: an update. Blood. 1999;93:1464-76.

Oliveira HR, Verlengia R, Carvalho CR, Britto LR, Curi R, Carpinelli AR. Pancreatic beta-cells express phagocyte-like NAD(P)H oxidase. Diabetes. 2003;52:1457-63.

Nakayama M, Inoguchi T, Sonta T, Maeda Y, Sasaki S, Sawada F, Tsubouchi H, Sonoda N, Kobayashi K, Sumimoto H, Nawata H. Increased expression of NAD(P)H oxidase in islets of animal models of Type 2 diabetes and its improvement by an AT1 receptor antagonist. Biochem Biophys Res Commun. 2005;332:927-33.

Uchizono Y, Takeya R, Iwase M, Sasaki N, Oku M, Imoto H, Iida M, Sumimoto H. Expression of isoforms of NADPH oxidase components in rat pancreatic islets. Life Sci. 2006;80:133-39.

Morgan D, Oliveira-Emilio HR, Keane D, Hirata AE, Santos da Rocha M, Bordin S, Curi R, Newsholme P, Carpinelli AR. Glucose, palmitate and pro-inflammatory cytokines modulate production and activity of a phagocyte-like NADPH oxidase in rat pancreatic islets and a clonal beta cell line. Diabetologia. 2007;50:359-69.

Morgan D, Rebelato E, Abdulkader F, Graciano MF, Oliveira-Emilio HR, Hirata AE, Rocha MS, Bordin S, Curi R, Carpinelli AR. Association of Nad(P)H Oxidase with Glucose-Induced Insulin Secretion by Pancreatic Beta Cells. Endocrinology. 2009;150:2197-2201.

Femling JK, Cherny VV, Morgan D, Rada B, Davis AP, Czirjak G, Enyedi P, England SK, Moreland JG, Ligeti E, Nauseef WM, DeCoursey TE. The antibacterial activity of human neutrophils and eosinophils requires proton channels but not BK channels. J Gen Physiol. 2006;127:659-72.

Babior BM, Lambeth JD, Nauseef W. The neutrophil NADPH oxidase. Arch Biochem Biophys. 2002;397:342-44.

Serrander L, Cartier L, Bedard K, Banfi B, Lardy B, Plastre O, Sienkiewicz A, Forro L, Schlegel W, Krause KH. NOX4 activity is determined by mRNA levels and reveals a unique pattern of ROS generation. Biochem J. 2007;406:105-14.
de Mendez I, Homayounpour N, Leto TL. Specificity of p47phox SH3 domain interactions in NADPH oxidase assembly and activation. Mol Cell Biol. 1997;17:2177-85.

Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 2007;87:245-313.

Nauseef WM. Assembly of the phagocyte NADPH oxidase. Histochem Cell Biol. 2004;122:277-91.

O'Donnell BV, Tew DG, Jones OT, England PJ. Studies on the inhibitory mechanism of iodonium compounds with special reference to neutrophil NADPH oxidase. Biochem J. 1993;290 (Pt 1):41-49.

Pi J, Bai Y, Zhang Q, Wong V, Floering LM, Daniel K, Reece JM, Deeney JT, Andersen ME, Corkey BE, Collins S. Reactive oxygen species as a signal in glucose-stimulated insulin secretion. Diabetes. 2007;56:1783-91.

Tsubouchi H, Inoguchi T, Inuo M, Kakimoto M, Sonta T, Sonoda N, Sasaki S, Kobayashi K, Sumimoto H, Nawata H. Sulfonylurea as well as elevated glucose levels stimulate reactive oxygen species production in the pancreatic beta-cell line, MIN6-a role of NAD(P)H oxidase in beta-cells. Biochem Biophys Res Commun. 2005;326:60-65.

Kinoshita H, Matsuda N, Kaba H, Hatakeyama N, Azma T, Nakahata K, Kuroda Y, Tange K, Iranami H, Hatano Y. Roles of phosphatidylinositol 3-kinase-Akt and NADPH oxidase in adenosine 5'-triphosphate-sensitive K+ channel function impaired by high glucose in the human artery. Hypertension. 2008;52:507-13.

Roberts CK, Barnard RJ, Sindhu RK, Jurczak M, Eehdaie A, Vaziri ND. Oxidative stress and dysregulation of NAD(P)H oxidase and antioxidant enzymes in diet-induced metabolic syndrome. Metabolism. 2006;55:928-34.

Graciano MF, Santos LR, Curi R, Carpinelli AR. NAD(P)H oxidase participates in the palmitate-induced superoxide production and insulin secretion by rat pancreatic islets. J Cell Physiol. 2010; in press.

Chen S, Lam TK, Park E, Burdett E, Wang PY, Wiesenthal SR, Lam L, Tchipashvili V, Fantus IG, Giacca A. Oleate-induced decrease in hepatocyte insulin binding is mediated by PKC-delta. Biochem Biophys Res Commun. 2006;346:931-37.

Padovese R, Curi R. Modulation of rat neutrophil function in vitro by cis- and trans-MUFA. Br J Nutr. 2009;101:1351-59.

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402-08.
Bindokas VP, Kuznetsov A, Sreenan S, Polonsky KS, Roe MW, Philipson LH. Visualizing superoxide production in normal and diabetic rat islets of Langerhans. Journal of Biological Chemistry. 2003;278:9796-01.

Zhao H, Kalivendi S, Zhang H, Joseph J, Nithipatikom K, Vasquez-Vivar J, Kalyanaraman B. Superoxide reacts with hydroethidine but forms a fluorescent product that is distinctly different from ethidium: potential implications in intracellular fluorescence detection of superoxide. Free Radic Biol Med. 2003;34:1359-68.

Tietz NW Textbook of Clinical Chemistry. 2nd ed. Edn. Philadelphia; 1994.

Carpentier A, Mittelman SD, Lamarche B, Bergman RN, Giacca A, Lewis GF. Acute enhancement of insulin secretion by FFA in humans is lost with prolonged FFA elevation. Am J Physiol. 1999;276:E1055-66.

Nogueira TC, Anhe GF, Carvalho CR, Curi R, Bordin S, Carpinelli AR. Involvement of phosphatidylinositol-3 kinase/AKT/PKCzeta/lambda pathway in the effect of palmitate on glucose-induced insulin secretion. Pancreas. 2008;37:309-15.

Carpinelli AR, Picinato MC, Stevanato E, Oliveira HR, Curi R. Insulin secretion induced by palmitate—a process fully dependent on glucose concentration. Diabetes Metab. 2002;28:3S37-44; discussion 33S108-12.

Hirabara SM, Curi R, Maechler P. Saturated fatty acid-induced insulin resistance is associated with mitochondrial dysfunction in skeletal muscle cells. J Cell Physiol. 2010;222:187-94.

Haber EP, Ximenes HM, Procopio J, Carvalho CR, Curi R, Carpinelli AR. Pleiotropic effects of fatty acids on pancreatic beta-cells. J Cell Physiol. 2003;194:1-12.

Conget I, Rasschaert J, Sener A, Leclercq-Meyer V, Villanueva-Penacarrillo M, Valverde I, Malaisse WJ. Secretory, biosynthetic, respiratory, cationic, and metabolic responses of pancreatic islets to palmitate and oleate. Biochem Med Metab Biol. 1994;51:175-84.

Abdul-Ghani MA, Muller FL, Liu Y, Chavez AO, Balas B, Zuo P, Chang Z, Tripathy D, Jani R, Molina-Carrion M, Monroy A, Folli F, Van Remmen H, DeFronzo RA. Deleterious action of FA metabolites on ATP synthesis: possible link between lipotoxicity, mitochondrial dysfunction, and insulin resistance. Am J Physiol Endocrinol Metab. 2008;295:E678-85.

Newgard CB, Lu D, Jensen MV, Schissler J, Boucher A, Burgess S, Sherry AD. Stimulus/secretion coupling factors in glucose-stimulated insulin secretion: insights gained from a multidisciplinary approach. Diabetes. 2002;51 Suppl 3:S389-93.
Fransson U, Rosengren AH, Schuit FC, Renstrom E, Mulder H. Anaplerosis via pyruvate carboxylase is required for the fuel-induced rise in the ATP:ADP ratio in rat pancreatic islets. Diabetologia. 2006;49:1578-86.

Stark R, Pasquel F, Turcu A, Pongratz RL, Roden M, Cline GW, Shulman GI, Kibbey RG. Phosphoenolpyruvate cycling via mitochondrial pepek links anaplerosis and mitochondrial GTP with insulin secretion. J Biol Chem. 2009; 284:26578-90.

Iizuka K, Nakajima H, Namba M, Miyagawa J, Miyazaki J, Hanafusa T, Matsuzawa Y. Metabolic consequence of long-term exposure of pancreatic beta cells to free fatty acid with special reference to glucose insensitivity. Biochim Biophys Acta. 2002;1586:23-31.

Itoh Y, Hinuma S. GPR40, a free fatty acid receptor on pancreatic beta cells, regulates insulin secretion. Hepatol Res. 2005;33:171-73.

Doshi LS, Brahma MK, Sayyed SG, Dixit AV, Chandak PG, Pamidiboina V, Motiwala HF, Sharma SD, Nemmani KV. Acute administration of GPR40 receptor agonist potentiates glucose-stimulated insulin secretion in vivo in the rat. Metabolism. 2009;58:333-43.

Salehi A, Flodgren E, Nilsson NE, Jimenez-Feltstrom J, Miyazaki J, Ownman C, Olde B. Free fatty acid receptor 1 (FFA(1)R/GPR40) and its involvement in fatty-acid-stimulated insulin secretion. Cell Tissue Res. 2005;322:207-15.

Zhao YF, Pei J, Chen C. Activation of ATP-sensitive potassium channels in rat pancreatic beta-cells by linoleic acid through both intracellular metabolites and membrane receptor signalling pathway. J Endocrinol. 2008;198:533-40.

Bikopoulos G, da Silva Pimenta A, Lee SC, Lakey JR, Der SD, Chan CB, Ceddia RB, M BW, Rozakis-Adcock M. Ex vivo transcriptional profiling of human pancreatic islets following chronic exposure to monounsaturated fatty acids. J Endocrinol. 2008;196:455-64.

Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest. 2004;114:1752-61.

Li Y, Cao Z, Zhu H. Upregulation of endogenous antioxidants and phase 2 enzymes by the red wine polyphenol, resveratrol in cultured aortic smooth muscle cells leads to cytoprotection against oxidative and electrophilic stress. Pharmacol Res. 2006;53:6-15.

Rebelato E, Abdulkader F, Curi R, Carpinelli AR. Low doses of hydrogen peroxide impair glucose-stimulated insulin secretion via inhibition of glucose metabolism and intracellular calcium oscillations. Metabolism. 2010;59:409-13.
130 Morgan D, Rebelato E, Abdulkader F, Graciano MF, Oliveira-Emilio HR, Hirata AE, Rocha MS, Bordin S, Curi R, Carpinelli AR. Association of NAD(P)H oxidase with glucose-induced insulin secretion by pancreatic beta-cells. Endocrinology. 2009;150:2197-01.

131 Cocco T, Di Paola M, Papa S, Lorusso M. Arachidonic acid interaction with the mitochondrial electron transport chain promotes reactive oxygen species generation. Free Radic Biol Med. 1999;27:51-59.

132 Seifert EL, Estey C, Xuan JY, Harper ME. Electron transport chain-dependent and -independent mechanisms of mitochondrial H2O2 emission during long-chain fatty acid oxidation. J Biol Chem. 285:5748-58.

133 Nakamura S, Takamura T, Matsuzawa-Nagata N, Takayama H, Misu H, Noda H, Nabemoto S, Kurita S, Ota T, Ando H, Miyamoto K, Kaneko S. Palmitate induces insulin resistance in H4IIEC3 hepatocytes through reactive oxygen species produced by mitochondria. J Biol Chem. 2009;284:14809-18.

134 Inoguchi T, Tsubouchi H, Etoh T, Kakimoto M, Sonta T, Utsumi H, Sumimoto H, Yu HY, Sonoda N, Inoue M, Sato N, Sekiguchi N, Kobayashi K, Nawata H. A possible target of antioxidative therapy for diabetic vascular complications-vascular NAD(P)H oxidase. Curr Med Chem. 2003;10:1759-64.

135 Newsholme P, Haber EP, Hirabara SM, Rebelato EL, Procopio J, Morgan D, Oliveira-Emilio HC, Carpinelli AR, Curi R. Diabetes associated cell stress and dysfunction: role of mitochondrial and non-mitochondrial ROS production and activity. J Physiol. 2007;583:9-24.

136 Sawada F, Inoguchi T, Tsubouchi H, Sasaki S, Fujii M, Maeda Y, Morinaga H, Nomura M, Kobayashi K, Takayanagi R. Differential effect of sulfonylureas on production of reactive oxygen species and apoptosis in cultured pancreatic beta-cell line, MIN6. Metabolism. 2008;57:1038-45.

137 Guichard C, Moreau R, Pessayre D, Epperson TK, Krause KH. NOX family NADPH oxidases in liver and in pancreatic islets: a role in the metabolic syndrome and diabetes? Biochem Soc Trans. 2008;36:920-29.

138 Nishikawa T, Kukidome D, Sonoda K, Fujisawa K, Matsuhisa T, Motoshima H, Matsumura T, Araki E. Impact of mitochondrial ROS production in the pathogenesis of insulin resistance. Diabetes Res Clin Pract. 2007;77 (Suppl 1):S161-64.

139 Lee HB, Yu MR, Song JS, Ha H. Reactive oxygen species amplify protein kinase C signaling in high glucose-induced fibronectin expression by human peritoneal mesothelial cells. Kidney Int. 2004;65:1170-79.
Espinosa A, Garcia A, Hartel S, Hidalgo C, Jaimovich E. NADPH Oxidase and Hydrogen Peroxide Mediate Insulin-induced Calcium Increase in Skeletal Muscle Cells. J Biol Chem. 2009;284:2568-75.

Yun MR, Lee JY, Park HS, Heo HJ, Park JY, Bae SS, Hong KW, Sung SM, Kim CD. Oleic acid enhances vascular smooth muscle cell proliferation via phosphatidylinositol 3-kinase/Akt signaling pathway. Pharmacol Res. 2006;54:97-102.

Talior I, Yarkoni M, Bashan N, Eldar-Finkelman H. Increased glucose uptake promotes oxidative stress and PKC-delta activation in adipocytes of obese, insulin-resistant mice. Am J Physiol Endocrinol Metab. 2003;285:E295-302.

Nishikawa T, Edelstein D, Brownlee M. The missing link: a single unifying mechanism for diabetic complications. Kidney Int Suppl. 2000;77:S26-30.

Lee SB, Bae IH, Bae YS, Um HD. Link between mitochondria and NADPH oxidase 1 isozyme for the sustained production of reactive oxygen species and cell death. J Biol Chem. 2006;281:36228-35.

Wosniak J, Santos CX, Kowaltowski AJ, Laurindo FR. Cross-Talk Between Mitochondria and NADPH Oxidase: Effects of Mild Mitochondrial Dysfunction on Angiotensin II-Mediated Increase in Nox Isoform Expression and Activity in Vascular Smooth Muscle Cells. Antioxid Redox Signal. 2009;11:1265-78.

Du XL, Edelstein D, Rossetti L, Fantus IG, Goldberg H, Ziyadeh F, Wu J, Brownlee M. Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc Natl Acad Sci U S A. 2000;97:12222-26.

Cerella C, D'Alessio M, Cristofanon S, De Nicola M, Radogna F, Dicato M, Diederich M, Ghibelli L. Subapoptogenic oxidative stress strongly increases the activity of the glycolytic key enzyme glyceraldehyde 3-phosphate dehydrogenase. Ann N Y Acad Sci. 2009;1171:583-90.