INTERMEDIATE VALUES AND INVERSE FUNCTIONS ON NON-ARCHIMEDEAN FIELDS

KHODR SHAMSEDDINE AND MARTIN BERZ

Abstract. Continuity or even differentiability of a function on a closed interval of a non-Archimedean field are not sufficient for the function to assume all the intermediate values, a maximum, a minimum or a unique primitive function on the interval. These problems are due to the total disconnectedness of the field in the order topology. In this paper, we show that differentiability (in the topological sense), together with some additional mild conditions, is indeed sufficient to guarantee that the function assume all intermediate values and have a differentiable inverse function.

1. Introduction

Let K be a totally ordered non-Archimedean field extension of \mathbb{R}. We introduce the following terminology.

Definition 1.1 ($\sim, \approx, \ll, H, \lambda$). For $x, y \in K$, we say $x \sim y$ if there exist $n, m \in \mathbb{N}$ such that $n|x| > |y|$ and $m|y| > |x|$; for nonnegative $x, y \in K$, we say that x is infinitely smaller than y and write $x \ll y$ if $nx < y$ for all $n \in \mathbb{N}$, and we say that x is infinitely small if $x \ll 1$ and x is finite if $x \sim 1$; finally, we say that x is approximately equal to y and write $x \approx y$ if $x \sim y$ and $|x - y| \ll |x|$. We also set $\lambda(x) = [x]$, the class of x under the equivalence relation \sim.

The set H of equivalence classes under the relation \sim, which we call magnitudes, is naturally endowed with an addition via $[x] + [y] = [x \cdot y]$ and an order via $[x] < [y]$ if $|y| \ll |x|$ (or $|x| \gg |y|$), both of which are readily checked to be well-defined. It follows that $(H, +, <)$ is a totally ordered group, often referred to as the Hahn group or skeleton group, whose neutral element is the class of 1. The projection λ from K to H satisfies $\lambda(x \cdot y) = \lambda(x) + \lambda(y)$ and is a valuation.

The theorem of Hahn [5] provides a complete classification of any non-Archimedean extensions K of \mathbb{R} in terms of their skeleton group H. In fact, invoking the axiom of choice it is shown that the elements of K can be written as formal power series over the group H with real coefficients, and the set of appearing "exponents" forms a well-ordered subset of H. The coefficient of the qth power in the Hahn representation of a given x will be denoted by $x[q]$, and the number d will be defined by $d[1] = 1$ and $d[q] = 0$ for $q \neq 1$. It is easy to check that $0 < d^q \ll 1$ if and only if $q > 0$ and $d^q \gg 1$ if and only if $q < 0$; moreover, $x \approx x[\lambda(x)]d^\lambda(x)$ for all $x \neq 0$.

1991 Mathematics Subject Classification. 26E30, 12J25, 11D88.

Key words and phrases. Non-Archimedean calculus, intermediate value theorem, inverse function theorem, Levi-Civita fields.

This research was supported by an Alfred P. Sloan fellowship and by the United States Department of Energy, Grant # DE-FG02-95ER40931.
From general properties of formal power series fields [9, 11], it follows that if H is divisible then K is real-closed. For a general overview of the algebraic properties of formal power series fields, we refer to the comprehensive overview by Ribenboim [12] and the book by Fuchs [4]; and for an overview of the related valuation theory the book by Krull [6]. A thorough and complete treatment of ordered structures can also be found in [10].

Throughout the following, \mathcal{N} will denote any totally ordered non-Archimedean field extension of \mathbb{R} that is complete in the order topology and whose skeleton group is Archimedean; i.e. a subgroup of \mathbb{R}. The smallest such field is the field of the formal Laurent series whose skeleton group is \mathbb{Z}; and the smallest such field that is also real-closed is the field \mathcal{R}, first introduced by Levi-Civita [7, 8]. In this case $H = \mathbb{Q}$, and for any element $x \in \mathcal{R}$, the set of exponents in the Hahn representation of x is a left-finite subset of \mathbb{Q}, i.e. below any rational bound there are only finitely many exponents. For a detailed study of the Levi-Civita field \mathcal{R}, we refer the reader to [1, 2, 3, 13, 14, 15].

In this paper, we will derive conditions under which a differentiable function assumes all intermediate values on a closed interval and has a differentiable inverse function. Previous versions of the intermediate value theorem were proved for the case of finite domain and range, and they were based on stronger smoothness criteria, namely equidifferentiability [2] and double derivate differentiability [3]. For the important class of locally analytic functions studied in detail in [15], we prove an intermediate value theorem (as well as a maximum theorem and a mean value theorem) without any requirements on the magnitude of the first derivative or the restriction of scaling into finite domains.

2. Review of Continuity and Differentiability

Like in any other metric space, continuity and differentiability at a point or on a domain of \mathcal{N} are preserved under addition, multiplication and composition of functions. We also have the following useful result.

Proposition 2.1. Let $D \subset \mathcal{N}$ be open, and let $f : D \to \mathcal{N}$ be differentiable on D and have a local extremum (maximum or minimum) at $x_0 \in D$. Then $f'(x_0) = 0$.

Proof. Suppose not; then $|f'(x_0)| > 0$. Since D is open and since f is differentiable at x_0, there exists $\delta > 0$ in \mathcal{N} such that $(x_0 - \delta, x_0 + \delta) \subset D$ and $|(f(x) - f(x_0))/(x - x_0) - f'(x_0)| < |f'(x_0)|$ for all $x \neq x_0$ in $(x_0 - \delta, x_0 + \delta)$; which entails that $(f(x) - f(x_0))/(x - x_0)$ has the same sign for all $x \neq x_0$ in $(x_0 - \delta, x_0 + \delta)$; and this contradicts the fact that f has a local extremum at x_0. □

However, contrary to the real case, the following examples show that continuity or differentiability of a function on a closed interval of \mathcal{N} are not always sufficient for the function to assume all intermediate values, extrema, or even be bounded.

Example 2.2. Let $f : [0, 1] \to \mathcal{N}$ be given by

$$f(x) = \begin{cases}
 d^{-1} & \text{if } 0 \leq x < d \\
 d^{-1/\lambda(x)} & \text{if } d \leq x \ll 1 \\
 1 & \text{if } x \sim 1
\end{cases}$$

Then f is continuous on $[0, 1]$; but for $d \leq x \ll 1$, $f(x)$ grows without bound.
Example 2.3. Let \(f : [0,1] \rightarrow \mathcal{N} \) be given by
\[
 f(x) = \begin{cases}
 1 & \text{if } x \sim 1 \\
 0 & \text{if } 0 \leq x \ll 1
\end{cases}.
\]

Then \(f \) is differentiable on \([0,1]\), with derivative \(f'(x) = 0 \) for all \(x \). However, \(f \) does not assume the intermediate value \(d \) on \([0,1]\). Moreover, although \(f'(x) \) is identically null, \(f \) is not constant on \([0,1]\).

Example 2.4. Let \(f : [-1,1] \rightarrow \mathcal{N} \) be given by \(f(x) = x - x[0] \).

Then \(f \) is continuous on \([-1,1]\). However, \(f \) assumes neither a maximum nor a minimum on \([-1,1]\). The set \(f([-1,1]) \) is bounded above by any positive real number and below by any negative real number; but it has neither a least upper bound nor a greatest lower bound.

In the following section, we study a large class of differentiable functions and show that they assume all intermediate values on a closed interval and a differentiable inverse function.

3. INTERMEDIATE VALUE THEOREM AND INVERSE FUNCTION THEOREM

First we state the following result which will be used in the proof of Theorem 3.17, and we refer the reader to [2] for its proof.

Theorem 3.1 (Fixed Point Theorem). Let \(q_M \in \mathbb{R} \) be given. Define \(M \subset \mathcal{N} \) to be the set of all elements \(x \) of \(\mathcal{N} \) such that \(\lambda(x) \geq q_M \). Let \(f : M \rightarrow \mathcal{N} \) satisfy \(f(M) \subset M \). Suppose there exists \(k > 0 \) in \(\mathbb{R} \) such that for all \(x_1, x_2 \in M \), \(\lambda(f(x_2) - f(x_1)) \geq k + \lambda(x_2 - x_1) \). Then there exists a unique solution \(x \in M \) of the fixed point equation \(x = f(x) \).

Definition 3.2. Let \(a < b \) be given in \(\mathcal{N} \), and let \(f : [a,b] \rightarrow \mathcal{N} \) be differentiable. Then we say that \(f \) is an IVT-function on \([a, b]\) if there exists \(n \in \mathbb{N} \) such that
\[
 (3.1) \quad \frac{f(y) - f(x)}{y - x} \sim \frac{f(b) - f(a)}{b - a} \quad \text{and} \\
 (3.2) \quad \frac{|f(y) - f(x) - f'(x)(y - x)|}{|y - x|^2} \leq n \cdot \frac{|f(b) - f(a) - f'(a)(b - a)|}{(b - a)^2}
\]
for all \(y \neq x \) in \([a, b]\).

The acronym IVT in Definition 3.2 stands for Intermediate Value Theorem. As we will see in Theorem 3.17, an IVT-function on a closed interval \([a, b]\) assumes every intermediate value between \(f(a) \) and \(f(b) \); hence the name. It follows immediately from Definition 3.2 that
\[
(3.3) \quad f'(x) \sim \frac{f(b) - f(a)}{b - a} \quad \text{for all } x \in [a, b].
\]

Remark 3.3. It is easy to check that the property introduced in Definition 3.2 is preserved under scaling and translation. That is, if \(f : [a, b] \rightarrow \mathcal{N} \) is an IVT-function on \([a, b]\), then for all \(c_1 \neq 0, c_2, c_3, c_4 \) in \(\mathcal{N} \), the function
\[
g : \left[\frac{a - c_2}{c_1}, \frac{b - c_2}{c_1}\right] \rightarrow \mathcal{N}, \text{ given by } g(x) = c_3 f(c_1 x + c_2) + c_4,
\]
is an IVT-function on \([(a - c_2)/c_1, (b - c_2)/c_1]\). In fact, replacing \(f \) by \(g \), \(a \) by \((a - c_2)/c_1 \), and \(b \) by \((b - c_2)/c_1\) yields the same factor \(c_1 c_3 \) on both sides of Equation (3.1), and the same factor \(c_1^2 c_3 \) on both sides of Equation (3.2).
Remark 3.6. Examples of IVT-functions on $[0,1]$ are polynomials and power series with real coefficients and with finite first derivative throughout the interval, functions that are equidifferentiable on $[0,1]$ as in [2], and functions that are twice differentiable on $[0,1]$ in the derivate sense of [3] with finite first and second derivatives. Thus, the intermediate value theorem we prove below is a generalization of the previous two versions in [2] and [3]; moreover, it will apply for functions on an interval of any size and not just intervals of finite length.

Lemma 3.7. Let $a < b$ be given in \mathbb{N}, and let $f : [a, b] \to \mathbb{N}$ be an IVT-function. Then there exists $m \in \mathbb{N}$ such that
\begin{equation}
|f(y) - f(x) - f'(x)| \leq m|f(b) - f(a)|/(b - a)^2 |y - x| \text{ for all } y \neq x \text{ in } [a, b].
\end{equation}
Proof. Let \(n \in \mathbb{N} \) be as in Equation (3.2). Using Equation (3.3), we have that
\[
|f'(a)| \sim \frac{|f(b) - f(a)|}{|b - a|};
\]
and hence there exists \(k \in \mathbb{N} \) such that \(|f'(a)| \leq k \cdot \frac{|f(b) - f(a)|}{|b - a|} \). Thus,
\[
\frac{|f(b) - f(a) - f'(a)(b - a)|}{b - a} \leq \frac{|f(b) - f(a)|}{b - a} + |f'(a)| \leq (1 + k) \frac{|f(b) - f(a)|}{b - a}.
\]
Hence
\[
\left| f(y) - f(x) \right| - f'(x) \leq \frac{n|f(b) - f(a) - f'(a)(b - a)|}{|b - a|^2} |y - x|
\]
\[
\leq n(1 + k) \frac{|f(b) - f(a)|}{|b - a|^2} |y - x|
\]
for all \(y \neq x \) in \([a, b]\).

Corollary 3.8 (Remainder Formula). Let \(a < b \) be given in \(\mathcal{N} \), and let \(f : [a, b] \to \mathcal{N} \) be an IVT-function. Then for all \(x, y \in [a, b] \),
\[
f(y) = f(x) + f'(x)(y - x) + r(x, y)(y - x)^2, \quad \text{with} \quad \lambda(r(x, y)) \geq \lambda \left(\frac{f(b) - f(a)}{(b - a)^2} \right).
\]

Proof. For \(x, y \in [a, b] \), let
\[
r(x, y) = \begin{cases} \frac{f'(x)(y - x)}{y - x} & \text{if } y \neq x, \\ 0 & \text{if } y = x. \end{cases}
\]
Then \(f(y) = f(x) + f'(x)(y - x) + r(x, y)(y - x)^2 \) for all \(x, y \in [a, b] \). Moreover, using Lemma 3.7, we obtain that \(\lambda(r(x, y)) \geq \lambda \left(\frac{f(b) - f(a)}{(b - a)^2} \right) \), as claimed.

Remark 3.9. The remainder formula here resembles that obtained in [3] as a result of the derivate differentiability, but we have the extra condition that \(\lambda(r(x, y)) \geq \lambda \left(\frac{f(b) - f(a)}{(b - a)^2} \right) \), which is useful for proving Theorem 3.17.

Lemma 3.10. Let \(a < b \) be given in \(\mathcal{N} \), and let \(f : [a, b] \to \mathcal{N} \) be an IVT-function. Then \(f \) is continuously differentiable on \([a, b]\).

Proof. Let \(m \in \mathbb{N} \) be as in Lemma 3.7, and let \(x \neq y \) in \([a, b]\) be given. Then
\[
|f'(y) - f'(x)| \leq \left| \frac{f(y) - f(x)}{y - x} - f'(y) \right| + \left| \frac{f(y) - f(x)}{y - x} - f'(x) \right|
\]
\[
\leq 2m \frac{|f(b) - f(a)|}{(b - a)^2} |y - x|.
\]
Hence \(f' \) is continuous on \([a, b]\).

Corollary 3.11. Let \(a < b \) be given in \(\mathcal{N} \), and let \(f : [a, b] \to \mathcal{N} \) be an IVT-function. Then for all \(x, y \in [a, b] \),
\[
\lambda(f'(y) - f'(x)) \geq \lambda \left(\frac{f(b) - f(a)}{b - a} \right) + \lambda \left(\frac{y - x}{b - a} \right).
\]

Lemma 3.12. Let \(a < b \) be given in \(\mathcal{N} \), and let \(f : [a, b] \to \mathcal{N} \) be an IVT-function. If \(f(a) = f(b) \), then \(f \) is constant on \([a, b]\).

Proof. Let \(x \in [a, b] \) be given. Then \((f(x) - f(a))/(x - a) \sim (f(b) - f(a))/(b - a) = 0 \), which entails that \(f(x) = f(a) \).
Lemma 3.13. Let \(a < b \) be given in \(\mathcal{N} \), let \(f : [a, b] \to \mathcal{N} \) be a nonconstant IVT-function, and let \(g : [0, 1] \to \mathcal{N} \) be given by
\[
g(x) = \frac{f((b-a)x+a)-f(a)}{f(b)-f(a)}.
\]
Then \(g \) is an IVT-function on \([0, 1]\), with \(\lambda(g(x)) = \lambda(x) \geq 0 \) and \(\lambda(g'(x)) = 0 \) for all \(x \in [0, 1] \).

Proof. That \(g \) is an IVT-function on \([0, 1]\) follows from Remark 3.3. Now let \(x \in [0, 1] \) be given. Then,
\[
\lambda(g(x)) = \lambda\left(\frac{f((b-a)x+a)-f(a)}{f(b)-f(a)} \right).
\]
Next we show that \((g)(X) = g(X)[0]\). Then \(g \) is (uniformly) continuous on \([0, 1]\cap \mathbb{R}\) (in the real sense), with derivative \((gR)'(X) = g'(X)[0] \neq 0\) for all \(X \in [0, 1]\cap \mathbb{R}\).

Let \(a < b \) be given in \(\mathcal{N} \), let \(f : [a, b] \to \mathcal{N} \) be a nonconstant IVT-

function, and let \(g : [0, 1] \to \mathcal{N} \) be as in Lemma 3.13. Let \(g_R : [0, 1]\cap \mathbb{R} \to \mathbb{R} \) be given by \(g_R(X) = g(X)[0] \). Then \(g_R \) is continuously differentiable on \([0, 1]\cap \mathbb{R}\) (in the real sense), with derivative \((g_R)'(X) = g'(X)[0] \neq 0\) for all \(X \in [0, 1]\cap \mathbb{R}\).

Proof. Since \(g \) is an IVT-function on \([0, 1]\) by Lemma 3.13, there exists \(m \in \mathbb{N} \) by Lemma 3.7 such that
\[
\left| \frac{g(y) - g(x)}{y-x} - g'(x) \right| \leq m|y-x| \text{ for all } y \neq x \text{ in } [0, 1].
\]
Now let \(X \in [0, 1]\cap \mathbb{R} \) be given. Then
\[
\left| \frac{g(Y) - g(X)}{Y-X} - g'(X) \right| \leq m|Y-X| \text{ for all } Y \neq X \text{ in } [0, 1]\cap \mathbb{R}.
\]
Thus, for all \(Y \neq X \in [0, 1]\cap \mathbb{R} \), we have that
\[
\left| g_R(Y) - g_R(X) \right| - g'(X)[0] = \left| \left(\frac{g(Y) - g(X)}{Y-X} - g'(X) \right) \right| \leq 2m|Y-X|,
\]
which entails that \(g_R \) is differentiable (in the real sense) at \(X \) with derivative \((g_R)'(X) = g'(X)[0] \neq 0\), since \(\lambda(g'(X)) = 0 \) by Lemma 3.13.

Next we show that \((g_R)' \) is continuous on \([0, 1]\cap \mathbb{R} \). As in the proof of Lemma 3.10, we have that \(|g'(y) - g'(x)| \leq 2m|y-x| \) for all \(x, y \in [0, 1] \). In particular, \(|g'(Y) - g'(X)| \leq 2m|Y-X| \) for all \(X, Y \in [0, 1]\cap \mathbb{R} \). It follows that
\[
\left| (g_R)'(Y) - (g_R)'(X) \right| = |g'(Y)[0] - g'(X)[0]| \leq 3m|Y-X|
\]
for all \(X, Y \in [0, 1]\cap \mathbb{R} \), which entails that \((g_R)' \) is (uniformly) continuous on \([0, 1]\cap \mathbb{R} \). Thus, \(g_R \) is continuously differentiable on \([0, 1]\cap \mathbb{R} \). \qed
Lemma 3.16. Let $a < b$ be given in N, and let $f : [a, b] \to N$ be a nonconstant IVT-function. Then f is strictly monotone on $[a, b]$.

Proof. Let $g : [0, 1] \to N$ be as in Lemma 3.13. We show that g is strictly increasing on $[0, 1]$. Let g_R be as in Lemma 3.15. Then g_R is continuously differentiable on $[0, 1] \cap R$ and $(g_R)'(X) \neq 0$ for all $X \in [0, 1] \cap R$. Thus, g_R is strictly monotone on $[0, 1] \cap R$. Since $g_R(0) = 0 < 1 = g_R(1)$, we obtain that g_R is strictly increasing on $[0, 1] \cap R$. Now let $x, y \in [0, 1]$ be such that $x < y$, and let $X = x[0]$ and $Y = y[0]$. As a first case, assume that $X < Y$; then $g_R(X) < g_R(Y)$. Hence

$$g(y) - g(x) = (g_R(Y) - g_R(X)) + (g(y) - g(Y)) + (g(Y) - g_R(Y)) + (g_R(X) - g(X)) + (g(X) - g(x)),$$

where the first term is positive and real. From Equations (3.5) and (3.6), we obtain that $\lambda(x) = g'(x) = g'(y) = 0$, and $\lambda(r(x, y)) \geq 0$. Hence $|g(y) - g(Y)|$ is infinitely small. Similarly, $|g(X) - g(x)|$ is infinitely small. Since $\lambda(g(y)) \geq 0$ and $g(x) = g'(x)$, we obtain that $|g(Y) - g_R(Y)|$ is infinitely small. Similarly, $|g_R(X) - g(X)|$ is infinitely small. So $g(y) - g(x) \approx g_R(Y) - g_R(X) > 0$; and hence $g(x) < g(y)$.

As a second case, assume that $X = Y$. Then $y - x \ll 1$, and hence

$$g(y) - g(x) = g'(x)(y - x) + r(x, y)(y - x)^2 \approx g'(x)(y - x)$$

since $|r(x, y)|$ is at most finite and hence

$$\lambda(x) = \lambda(r(x, y)(y - x)^2) = \lambda(r(x, y)) + 2\lambda(y - x) \geq 2\lambda(y - x) > \lambda(y - x) = \lambda(g'(x)) + \lambda(y - x) = \lambda(g'(x)(y - x)).$$

By Corollary 3.14, we have that $\lambda(g'(x) - g'(X)) \geq \lambda(x - X) > 0$. Since $g'(x) \sim 1$, since $g'(X) \sim 1$ and since $|g'(x) - g'(X)| \ll 1$, we obtain that $g'(x) \approx g'(X) \approx (g_R)'(X) > 0$.

From Equations (3.5) and (3.6), we obtain that $g(y) - g(x) > 0$. Thus, $g(x) < g(y)$ for all $x < y$ in $[0, 1]$; and hence g is strictly increasing on $[0, 1]$. Since $f(x) = (f(b) - f(a))g\left(\frac{x - a}{b - a}\right) + f(a)$ for all $x \in [a, b]$ and since g is strictly increasing on $[0, 1]$, we obtain that f is strictly increasing on $[a, b]$ if $f(a) < f(b)$, and f is strictly decreasing on $[a, b]$ if $f(a) > f(b)$.

Theorem 3.17 (Intermediate Value Theorem). Let $a < b$ be given in N, and let $f : [a, b] \to N$ be an IVT-function. Then f assumes every intermediate value between $f(a)$ and $f(b)$.

Proof. If $f(a) = f(b)$, then f is constant on $[a, b]$ by Lemma 3.12, and there is nothing to prove. So we may assume that $f(a) \neq f(b)$. Let $g : [0, 1] \to N$ be as in Lemma 3.13. For all $x \in [a, b]$, we have that

$$f(x) = (f(b) - f(a))g\left(\frac{x - a}{b - a}\right) + f(a) = l_2 \circ g \circ l_1(x),$$

where l_1 and l_2 are linear functions. Hence it suffices to show that g assumes every intermediate value between $g(0) = 0$ and $g(1) = 1$.

Let g_R be as in Lemma 3.15, let $S \in (0, 1)$ be given, and let $S_R = S[0]$. Then $S_R \in [0, 1] \cap R$. Since g_R is continuous on $[0, 1] \cap R$ by Lemma 3.15, there exists
is proved; so we may assume that $g_R(X) = S_R$. If $g(X) = S$ then the result of the theorem is proved; so we may assume that $g(X) \neq S$. Thus, $|S - g(X)| \leq |S - S_R| + |g_R(X) - g(X)|$ is infinitely small.

Now we proceed to find x such that $0 < |x| \ll 1$, $X + x \in [0, 1]$ and $g(X + x) = S$. Since g is differentiable on $[0, 1]$, we have, using Corollary 3.8, that

$$S = g(X + x) = g(X) + g'(X)x + r(X, X + x)x^2,$$

where $|r(X, X + x)|$ is at most finite.

Transforming Equation (3.7) into a fixed point problem yields

$$x = \frac{s}{g'(X)} - \frac{r(X, X + x)}{g'(X)}x^2 = h(x),$$

where $s = S - g(X)$, and $|s|$ is infinitely small. Let $M = \{z \in \mathcal{N}: \lambda(z) \geq \lambda(s)\}$ and let $x \in M$ be given. Since $|r(X, X + x)|$ is at most finite and since $g'(X) \sim 1$, we have that

$$\lambda\left(\frac{r(X, X + x)x^2}{g'(X)}\right) \geq 2\lambda(x) > \lambda(x) \geq \lambda(s) = \lambda\left(\frac{s}{g'(X)}\right).$$

Thus, $h(x) = s/g'(X)$; and hence $\lambda(h(x)) = \lambda(s)$ for all $x \in M$. Hence $h(M) \subset M$. Now let $x_1 \neq x_2$ be given in M. Then

$$|h(x_1) - h(x_2)| = \left|\frac{r(X, X + x_2)x^2 - r(X, X + x_1)x^2}{g'(X)} + x_1 - x_2\right|.$$

But $g(X + x_2) = g(X + x_1) + g'(X + x_1)(x_2 - x_1) + r(X + x_1, X + x_2)(x_2 - x_1)^2$, where $|r(X + x_1, X + x_2)|$ is at most finite. Thus,

$$|h(x_1) - h(x_2)| = \left|\frac{g'(X + x_1)(x_2 - x_1) + r(X + x_1, X + x_2)(x_2 - x_1)^2}{g'(X)} + x_1 - x_2\right| \leq |x_1 - x_2| \left(\frac{|g'(X + x_1) - g'(X)|}{g'(X)} + \frac{|r(X + x_1, X + x_2)|}{g'(X)}|x_1 - x_2|\right).$$

Using Corollary 3.14 and the fact that $g'(X) \sim 1$, we have that

$$\lambda\left(\frac{|g'(X + x_1) - g'(X)|}{g'(X)}\right) = \lambda(g'(X + x_1) - g'(X)) \geq \lambda(x_1) \geq \lambda(s) > \frac{\lambda(s)}{2}.$$

Also

$$\lambda\left(\frac{|r(X + x_1, X + x_2)|}{g'(X)}|x_1 - x_2|\right) \geq \lambda(x_1 - x_2) \geq \min\{\lambda(x_1), \lambda(x_2)\} > \frac{\lambda(s)}{2}.$$

Hence $\lambda(h(x_1) - h(x_2)) > \lambda(s)/2 + \lambda(x_1 - x_2)$, where $\lambda(s) > 0$. So h and M satisfy the requirements of Theorem 3.1; and hence h has a fixed point x in M.

Finally we show that $X + x \in (0, 1)$. First assume that $X = 0$; then $S > 0 = g(X)$ and hence $s = S - g(X) > 0$. Since $g'(0) \approx (g_R)'(0) > 0$, we obtain that $X + x = x \approx s/g'(0) > 0$. Moreover, $x \ll 1$; hence $X + x = x \in (0, 1)$. Now assume that $X = 1$; then $S < 1 = g(1)$ and hence $s < 0$. It follows that $x \approx s/g'(1) < 0$.
and hence $X + x = 1 + x < 1$. Since $|x| \ll 1$, we obtain that $X + x = 1 + x \in (0, 1)$. Finally assume that $0 < X < 1$; then X is finitely away from 0 and 1. Since $|x| \ll 1$, we obtain that $X + x \in (0, 1)$.

Using Lemma 3.16 and Theorem 3.17, we readily obtain the following two results.

Corollary 3.18. Let $a < b$ be given in N, and let $f : [a, b] \to N$ be a nonconstant IVT-function. Let $m = \min \{f(a), f(b)\}$ and $M = \max \{f(a), f(b)\}$. Then $f([a, b]) = [m, M]$.

Theorem 3.19 (Closed Mapping Theorem). Let a, b, f, m and M be as in Corollary 3.18. Then for all $a_1 < b_1$ in $[a, b]$, there exist $m_1 < M_1$ in $[m, M]$ such that $f([a_1, b_1]) = [m_1, M_1]$. Conversely, for all $m_1 < M_1$ in $[m, M]$, there exist $a_1 < b_1$ in $[a, b]$ such that $f([a_1, b_1]) = [m_1, M_1]$.

We note here that even though the conditions in Definition 3.2 depend on the end points a and b, the function f assumes all intermediate values between $f(a_1)$ and $f(b_1)$ for any subinterval $[a_1, b_1]$ of $[a, b]$.

Theorem 3.20 (Inverse Function Theorem). Let $a < b$ be given in N, and let $f : [a, b] \to N$ be a nonconstant IVT-function. Let $m = \min \{f(a), f(b)\}$ and $M = \max \{f(a), f(b)\}$. Then the inverse function $f^{-1} : [m, M] \to [a, b]$ exists and is differentiable; moreover,

$$
(f^{-1})' = \frac{1}{f' \circ f^{-1}}.
$$

Proof. That f^{-1} exists follows from Lemma 3.16. To show that f^{-1} is differentiable on $[m, M]$, let $y_0 \in [m, M]$ be given and let $x_0 = f^{-1}(y_0)$. Let $\epsilon > 0$ in N be given and let $\epsilon_1 \in (0, \epsilon)$ be such that $|(f(x) - f(x_0))/ (x - x_0) - f'(x_0)| < \min \{ |f'(x_0)|/2, \epsilon |f'(x_0)|^2 / 2 \}$ for $x \in [a, b]$ satisfying $0 < |x - x_0| < \epsilon_1$. It follows that $|f(x) - f(x_0)| < |f'(x_0)| |x - x_0|/2$ when $x \in [a, b]$ and $0 < |x - x_0| < \epsilon_1$. By Theorem 3.19, there exist $\delta_1, \delta_2 > 0$ such that $f([a, b] \cap [x_0 - \epsilon_1, x_0 + \epsilon_1] = [y_0 - \delta_1, y_0 + \delta_2]$. Let $\delta = \min \{\delta_1, \delta_2\}$. Then $f^{-1}((y_0 - \delta, y_0 + \delta)) \subset [a, b] \cap (x_0 - \epsilon_1, x_0 + \epsilon_1)$.

Now let $y \in [m, M]$ be such that $0 < |y - y_0| < \delta$. Then

$$
\left| \frac{f^{-1}(y) - f^{-1}(y_0)}{y - y_0} - \frac{1}{f'(x_0)} \right| = \left| \frac{x - x_0}{f(x) - f(x_0)} - \frac{1}{f'(x_0)} \right| = \left| \frac{f'(x_0) \cdot f(x) - f'(x_0) \cdot f(x_0)}{x - x_0} \right| < \frac{|f'(x_0)| \cdot |f(x) - f(x_0)|}{|x - x_0|} < \frac{|x - x_0| \cdot |f'(x_0)|^2 / 2}{|f'(x_0)| \cdot |f(x) - f(x_0)|} = \frac{|x - x_0| \cdot |f'(x_0)|^2 / 2}{|f'(x_0)| \cdot |f(x) - f(x_0)|} = \epsilon.
$$

Hence f^{-1} is differentiable at y_0, and $(f^{-1})'(y_0) = 1/f'(x_0) = 1/f'([f^{-1}(y_0)])$.

References

[1] M. Berz. Calculus and Numerics on Levi-Civita Fields. In M. Berz, C. Bischof, G. Corliss, and A. Griewank, editors, *Computational Differentiation: Techniques, Applications, and Tools*, pages 19–35, Philadelphia, 1996. SIAM.
[2] M. Berz. Analytical and Computational Methods for the Levi-Civita Fields. In Lecture Notes in Pure and Applied Mathematics, pages 21–34. Marcel Dekker, Proceedings of the Sixth International Conference on P-adic Analysis, July 2-9, 2000, ISBN 0-8247-0611-0.
[3] M. Berz. Elements of Analysis on Non-Archimedean Levi-Civita Fields. submitted.
[4] L. Fuchs. Partially Ordered Algebraic Systems. Pergamon Press, Oxford, 1963.
[5] H. Hahn. Über die nichtarchimedischen Größensysteme. Sitzungsbericht der Wiener Akademie der Wissenschaften Abt. 2a, 117:601–655, 1907.
[6] Wolfgang Krull. Allgemeine Bewertungstheorie. J. Reine Angew. Math., 167:160–196, 1932.
[7] Tullio Levi-Civita. Sugli infiniti ed infinitesimi attuali quali elementi analitici. Atti Ist. Veneto di Sc., Lett. ed Art., 7a, 4:1765, 1892.
[8] Tullio Levi-Civita. Sui numeri transfiniti. Rend. Acc. Lincei, 5a, 7:91,113, 1898.
[9] S. MacLane. The universality of formal power series fields. Bulletin American Mathematical Society, 45:888, 1939.
[10] S. Priess-Crampe. Angeordnete Strukturen: Gruppen, Körper, projektive Ebenen. Springer, Berlin, 1983.
[11] F. J. Rayner. Algebraically Closed Fields Analogous to Fields of Puiseux Series. J. London Math. Soc., 8:504–506, 1974.
[12] Paulo Ribenboim. Fields: Algebraically Closed and Others. Manuscripta Mathematica, 75:115–150, 1992.
[13] K. Shamseddine and M. Berz. Exception Handling in Derivative Computation with Non-Archimedean Calculus. In M. Berz, C. Bischof, G. Corliss, and A. Griewank, editors, Computational Differentiation: Techniques, Applications, and Tools, pages 37–51, Philadelphia, 1996. SIAM.
[14] K. Shamseddine and M. Berz. Convergence on the Levi-Civita Field and Study of Power Series. In Lecture Notes in Pure and Applied Mathematics, pages 283–299. Marcel Dekker, Proceedings of the Sixth International Conference on P-adic Analysis, July 2-9, 2000, ISBN 0-8247-0611-0.
[15] K. Shamseddine and M. Berz. Analytical Properties of Power Series on Non-Archimedean Fields. submitted. see also Michigan State University report MSUCL-1163.

Department of Mathematics, Michigan State University, East Lansing, MI 48824
E-mail address: khodr@math.msu.edu

Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824
E-mail address: berz@msu.edu