Coherence time of a Bose-Einstein condensate in an isolated harmonically trapped gas

Yvan Castin, Alice Sinatra

Laboratoire Kastler Brossel, ENS-PSL, CNRS, Sorbonne Université and Collège de France, Paris, France

Abstract

We study the condensate phase dynamics in a low-temperature equilibrium gas of weakly interacting bosons, harmonically trapped and isolated from the environment. We find that at long times, much longer than the collision time between Bogoliubov quasiparticles, the variance of the phase accumulated by the condensate grows with a ballistic term quadratic in time and a diffusive term affine in time. We give the corresponding analytical expressions in the limit of a large system, in the collisionless regime and in the ergodic approximation for the quasiparticle motion. When properly rescaled, they are described by universal functions of the temperature divided by the Thomas-Fermi chemical potential. The same conclusion holds for the mode damping rates. Such universality class differs from the previously studied one of the homogeneous gas.

Keywords: Bose gases; Bose-Einstein condensate; temporal coherence; trapped gases; ultracold atoms

1. Introduction and overview

We consider here an unsolved problem of the theory of quantum gases: the coherence time of a spinless boson gas in the weakly interacting regime, in a harmonic trap. The gas is prepared at thermal equilibrium at a temperature \(T \) much lower than the critical temperature \(T_c \), that is in the strongly condensed regime, and it is perfectly isolated in its subsequent evolution. The coherence time of the bosonic field is then intrinsic and dominated by that of the condensate. In view of recent technical developments [1, 2, 3], this question could soon receive an experimental response in cold gases of atoms confined in non-dissipative magnetic potentials [4, 5, 6] and, unlike other solid state systems [7, 8, 9, 10], well decoupled from their environment and showing only low particle losses. Our theoretical study is also important for future applications in atom optics and matter wave interferometry.

Following the pioneering work of references [11, 12, 13], our previous studies [14, 15, 16, 17] performed in a spatially homogeneous boson gas, rely on the Bogoliubov method, which reduces the system to a weakly interacting quasiparticle gas. They have identified two mechanisms limiting the coherence time, both involving the dynamics of the phase operator \(\hat{\theta}(t) \) of the condensate:

— **phase blurring**: when the conserved quantities (the energy \(E \) of the gas and its number of particles \(N \)) fluctuate from one experimental realization to another, the average rate of evolution of the phase \(\langle \hat{\theta}(t) - \hat{\theta}(0) \rangle/t \) in one realization, as a function of these conserved quantities, fluctuates too. After averaging over realizations, this induces a ballistic spread of the phase shift \(\hat{\theta}(t) - \hat{\theta}(0) \), that is a quadratic divergence of its variance, with a ballistic coefficient \(A \) [14]:

\[
\text{Var}[\hat{\theta}(t) - \hat{\theta}(0)] \sim A t^2
\]

this holds at long times with respect to \(\gamma_{\text{coll}}^{-1} \), where \(\gamma_{\text{coll}} \) is the typical collision rate between thermal Bogoliubov quasiparticles;

— **phase diffusion**: even if the system is prepared in the microcanonical ensemble, where \(E \) and \(N \) are fixed, the interactions between quasiparticles cause their occupation numbers, and therefore the instantaneous speed \(\dot{\hat{\theta}} \) of the phase, which depends on them, to fluctuate. This induces a diffusive spread of \(\dot{\hat{\theta}}(t) - \dot{\hat{\theta}}(0) \) at the times \(t \gg \gamma_{\text{coll}}^{-1} \), with a coefficient \(D \) [15, 16]:

\[
\text{Var}_{\text{mc}}[\hat{\theta}(t) - \hat{\theta}(0)] \sim 2 D t
\]
In the general case, both mechanisms are present and the variance of the phase shift admits (1) as the dominant term, and (2) as a subdominant term. The condensate phase spreading directly affects its first-order temporal coherence function
\[g_1(t) = \langle \hat{a}_0^\dagger(t)\hat{a}_0(0) \rangle \]
(3)
where \(\hat{a}_0 \) is the annihilation operator of a boson in the condensate mode, thanks to the approximate relation
\[g_1(t) \approx e^{-i(\hat{\theta}(t) - \hat{\theta}(0))} e^{-\text{Var}(\hat{\theta}(t) - \hat{\theta}(0))/2} \]
(4)
admitted in reference [17] under the hypothesis of a Gaussian distribution of \(\hat{\theta}(t) - \hat{\theta}(0) \), then justified in reference [18] at sufficiently low temperature under fairly general assumptions. \(^1\) We propose here to generalize these first studies to the experimentally more usual case of a harmonically trapped system (see however reference [19]). As the dependence of the damping rates of the Bogoliubov modes on the energy or the temperature are already very different from those of the homogeneous case, as it was shown in reference [20], it will certainly be the same for the spreading of the condensate phase. The trapped case is non-trivial, since the Bogoliubov modes are not known analytically, and there is no local density approximation applicable to the phase evolution (as verified by reference [21]). Fortunately we have the possibility to consider:
- the classical limit for the Bogoliubov quasiparticles motion in the trapped gas. Indeed, at the thermodynamic limit \((N \to +\infty \text{ with constant Gross-Pitaevskii’s chemical potential } \mu_{GP} \text{ and constant temperature}) \), the trapping angular frequencies \(\omega_\alpha \), \(\alpha \in \{x,y,z\} \), tend to zero as \(1/N^{1/3} \):
\[\hbar \omega_\alpha \ll \mu_{GP}, k_B T \]
(5)
so that we can cleverly reinterpret the thermodynamic limit as a classical limit \(h \to 0 \);
- the limit of very weak interactions between Bogoliubov quasiparticles:
\[\gamma_{coll} \ll \omega_\alpha \]
(6)
This implies that all the modes, even those of weaker angular frequency \(\approx \omega_\alpha \), are in the collisionless regime (by opposition to hydrodynamics), and makes it possible to make a secular approximation on the kinetic equations describing the collisions between the quasiparticles;
- ergodicity in a completely anisotropic trap: as shown by references [22, 23], the classical motion of quasiparticles in a non isotropic harmonic trap with cylindrical symmetry is highly chaotic at energies \(\epsilon \approx \mu_{GP} \) but almost integrable when \(\epsilon \to 0 \) or \(\epsilon \to +\infty \). In a completely anisotropic trap, at temperatures neither too small nor too large with respect to \(\mu_{GP}/k_B \), we can hope to complete the secular approximation by the hypothesis of ergodicity, which we will endeavor to show.

Our article is articulated as follows. In section 2, after a few reminders about Bogoliubov’s theory in a trap, we specify the state of the system and introduce the quantities to formally describe the phase spread, namely the derivative of the condensate phase operator and its time correlation function. In section 3, we give an expression of the ballistic coefficient \(A \) in the thermodynamic limit in any harmonic trap (including isotropic), first in the most general state of system considered here, then in the simpler case of a statistical mixture of canonical ensembles of the same temperature \(T \). In the long section 4, we tackle the heart of the problem, calculating the correlation function \(C_{\text{sec}}(\tau) \) of \(\partial \hat{\theta}/\partial t \) in the microcanonical ensemble, which gives access in general terms to the sub-ballistic

\(^1\) Let us recall the assumptions used in reference [18] to establish equation (4). (i) The relative fluctuations of the modulus of \(\hat{\theta} \) are small, the system being strongly Bose condensed. (ii) The system is close enough to the thermodynamic limit, with normal fluctuations and asymptotically Gaussian laws for the energy and number of particles. This is used in particular to put the ballistic contribution of the phase shift to \(g_1(t) \) in the form (4). (iii) The diffusion coefficient of the phase (of order \(1/N \)) must be much smaller than the typical collision rate \(\gamma_{coll} \) between Bogoliubov quasiparticles (of order \(N^0 \)) but much larger than the spacing of the energy levels (of order \(N^{-2} \)) of quasiparticle pairs created or annihilated during Beliaev collision processes. This is used, for a system prepared in the microcanonical ensemble, to show that \(g_1(t) \) is of the form (4) on time intervals \(t = O(N^0) \) and \(t = O(N^1) \), with the same diffusion coefficient. (iv) The correlation function of \(\hat{\theta} \) is real, as predicted by kinetic equations. (v) We ignore the commutator of \(\hat{\theta}(t) \) with \(\hat{\theta}(0) \), which introduces a \(O(1/N) \) phase error into the factor \(e^{i(\hat{\theta}(t) - \hat{\theta}(0))} \). This is an error of order unity at times \(t = N \) but \(g_1(t) \) then began to decrease under the effect of phase diffusion in the microcanonical ensemble (and is otherwise already very strongly damped under the effect of ballistic phase blurring after a time \(t = N^{1/3} \)).
spreading independent terms of the phase, since they are independent of the state of the system in the thermodynamic limit at fixed average energy and fixed average number of particles. We first introduce the semiclassical limit in subsection 4.1, the Bogoliubov quasiparticles motion being treated classically but the bosonic field of quasiparticles remaining quantum; the semiclassical form of $d\hat{θ}/dt$ is deduced from a correspondence principle. We then write, in subsection 4.2, kinetic equations on the quasiparticle occupation numbers in the classical phase space (r,p) and we show how, once linearized they formally lead to $C_{mc}(τ)$. The problem remains formidable, since the occupation numbers depend on the six variables (r,p) and time. In the secular limit $γ_{coll} ≪ ω_0$ and in the ergodic approximation for the quasiparticles motion (which excludes isotropic or cylindrically-symmetric traps), we reduce in subsection 4.3 to occupation numbers that are functions only of the energy of the classical motion $ε$ and the time, which leads to explicit results on $C_{mc}(τ)$, on phase diffusion and, an interesting by-product, on the damping rate of Bogoliubov’s modes in the trap, in subsection 4.4 where we also evaluate the condensate phase shift due to particle losses. Finally, we make a critical discussion of the ergodic approximation in subsection 4.5, estimating in particular the error that it introduces on the quantities controlling the phase diffusion of the condensate. We conclude in section 5.

2. Summary of the formalism and results

The derivative of the phase - As we recalled in the introduction, the coherence time of a condensate is controlled by the dynamics of its phase operator $\hat{θ}(t)$ at times long with respect to the typical collision time $γ_{coll}^{-1}$ of quasiparticles. The starting point of our study is therefore the expression of the temporal derivative of $\hat{θ}(t)$, smoothed temporally (that is, coarse-grained over a short time with respect to $γ_{coll}^{-1}$ but long with respect to the typical inverse frequency $ε_1/ℏ$ of thermal quasiparticles). As it has been established in all generality in reference [18], to order one in the non-condensed fraction:

$$-ℏ\frac{d\hat{θ}}{dt} = \mu_0(\hat{N}) + \sum_{k∈F} \frac{dε_k}{d\hat{N}} \hat{n}_k \equiv \hat{μ}$$

(7)

Here $\mu_0(N)$ is the chemical potential of the gas in the ground state and \hat{N} is the total number of particles operator. The sum over the generic quantum number k (it’s not a wavenumber) deals with the Bogoliubov modes of eigenenergy $ε_k$, and \hat{n}_k is the operator number of quasiparticles in the k mode. The expression (7) is a quantity version of the second Josephson relation: its right-hand side is a chemical potential operator $\hat{μ}$ of the gas, since it is the adiabatic derivative (with the occupation numbers \hat{n}_k fixed) with respect to N of the Bogoliubov Hamiltonian

$$\hat{H}_{Bog} = E_0(\hat{N}) + \sum_{k∈F} ε_k \hat{n}_k$$

(8)

The Bogoliubov modes are of the are family F_+, according to the terminology of reference [24] in the sense that their modal functions $(u_k(r)v_k(r))$ are solutions of the eigenvalue equation

$$ε_k(\frac{|u_k|}{|v_k|}) = \left(H_{GP} + Qg\rho(\hat{r})Q \right) - \left[H_{GP} + Qg\rho(\hat{r})Q \right] \left(\frac{|u_k|}{|v_k|} \right) \equiv \hat{L}(\hat{r},\hat{p}) \left(\frac{|u_k|}{|v_k|} \right)$$

(9)

with the normalization condition $\int d^3r (|u_k(r)|^2 - |v_k(r)|^2) = 1 > 0$. We took the wave function $φ_0(r)$ of the condensate real, normalized to one ($\int d^3r φ_0^2(r) = 1$), and written to the order zero in the non-condensed fraction, that is to the Gross-Pitaevskii approximation:

$$H_{GP}|φ_0⟩ = 0 \quad \text{with} \quad H_{GP} = \frac{ℏ^2}{2m} + U(\hat{r}) + gρ_0(\hat{r}) - μ_{GP}$$

(10)

so that at this order, the condensed density is $ρ_0(r) = Nφ_0^2(r)$. Here, $g = 4πℏ^2α/m$ is the coupling constant, proportional to the s-wave scattering length $α$ between bosons of mass m, and $U(\hat{r}) = \sum r = \sum mω_0^2r^2/2$ is the trapping potential. The projector Q projects orthogonally to $|φ_0⟩$ and ensures that $|φ_0⟩⊥|u_k⟩$ and $|φ_0⟩⊥|v_k⟩$ as it should be [24]. Since the condensate is in its ground mode ($φ_0$ minimizes the Gross-Pitaevskii energy functional), the $ε_k$ are positive.

The state of the system - Evaporative cooling in cold atom gases does not lead a priori to any of the usual ensembles of statistical physics. To cover all reasonable cases, we therefore suppose that the gas is prepared at time 0 in a
generalized ensemble, statistical mixture of eigenstates \(|\phi_i\rangle \) of the complete Hamiltonian \(\hat{H} \), with \(N_i \) particles and energy \(E_i \), hence of density operator

\[
\hat{\rho} = \sum_i \Pi_i |\phi_i\rangle \langle \phi_i|
\]

(11)

with, as the only restriction, the existence of narrow laws on \(E_i \) and \(N_i \), of variances and covariance not growing faster than the averages \(\bar{E} \) and \(\bar{N} \) in the thermodynamic limit.

\section{Average phase shift - Let's average expression (7) in the steady state \(|\psi_t\rangle \). At the right-hand side appears the expectation in \(|\phi_j\rangle \) of the chemical potential operator. Because of the interactions between Bogoliubov quasiparticles, the \(N \) body system is expected to be ergodic in the quantum sense of the term, that is, to obey to the, so called in the Anglo-American literature, "Eigenstate Thermalisation Hypothesis" (see references [25, 26, 27]),

\[
\langle \psi_t | \hat{h} | \psi_t \rangle = \mu_{mc}(E_i, N_i)
\]

(12)

where \(\mu_{mc}(E, N) \) is the chemical potential in the microcanonical ensemble of energy \(E \) with \(N \) particles. For a large system, it suffices to expand to first order in the fluctuations, to obtain :

\[
\mu_{mc}(E_i, N_i) = \mu_{mc}(\bar{E}, \bar{N}) + (E_i - \bar{E}) \partial_{\bar{E}} \mu_{mc}(\bar{E}, \bar{N}) + (N_i - \bar{N}) \partial_{\bar{N}} \mu_{mc}(\bar{E}, \bar{N}) + O(1/\bar{N})
\]

(13)

It remains to average on the states \(|\phi_j\rangle \) with the weights \(\Pi_i \) as in equation (11) to get the first brick of the time coherence function (4), that is the average phase shift :

\[
\langle \hat{\theta}(t) - \hat{\theta}(0) \rangle = -\mu_{mc}(\bar{E}, \bar{N}) t / \hbar
\]

(14)

with an error \(O(1/\bar{N}) \) on the coefficient of \(t \).

\section{Average quadratic phase shift - Proceeding in the same way for the second moment of the phase shift of the condensate, we find as it is written implicitly in [16, 18] that

\[
\text{Var} [\hat{\theta}(t) - \hat{\theta}(0)] = A t^2 + 2 \int_0^t d\tau (t - \tau) \text{Re} C_{mc}(\tau)
\]

(15)

with the ballistic coefficient

\[
A = \text{Var} [(N_i - \bar{N}) \partial_{\bar{N}} \mu_{mc}(\bar{E}, \bar{N}) + (E_i - \bar{E}) \partial_{\bar{E}} \mu_{mc}(\bar{E}, \bar{N})] / \hbar^2
\]

(16)

and the correlation function of the phase derivative in the microcanonical ensemble of energy \(\bar{E} \) and \(\bar{N} \) particles :

\[
C_{mc}(\tau) = \left\langle \frac{d\hat{\theta}}{d\tau}(\tau) \frac{d\hat{\theta}}{d\tau}(0) \right\rangle_{mc} - \left\langle \frac{d\hat{\theta}}{d\tau} \right\rangle_{mc}^2
\]

(17)

This completes our formal knowledge of \(g_3(t) \).

In view of future experimental observations, however, it remains to calculate explicitly \(A \) and \(C_{mc}(\tau) \) for a harmonically trapped system. It will be necessary in particular to verify that \(C_{mc}(\tau) \) in the trapped case decreases fast enough so that one finds a diffusive law (2) as in the spatially homogeneous case.

\section{Calculation of the ballistic coefficient in the phase shift variance

In the \textit{generalized statistical ensemble} - To calculate the average phase shift (14) and the ballistic coefficient (16) in the general case, we must know the microcanonical chemical potential \(\mu_{mc}(\bar{E}, \bar{N}) \) and its derivatives in the harmonic trap. At the thermodynamic limit, \(\mu_{mc} \) coincides with the chemical potential \(\mu_{can} \) in the canonical ensemble of temperature \(T \) and number of particles \(\bar{N} \), more convenient to calculate, provided that the temperature \(T \) is adjusted so that there is equality of mean energies \(E_{can}(T, \bar{N}) \) and \(\bar{E} \). In other words,

\[
\mu_{mc}(E_{can}(T, \bar{N}), \bar{N}) \sim \mu_{can}(T, \bar{N})
\]

(18)
one just takes the derivative of this relation with respect to \(T \) or \(\bar{N} \) to get the useful derivatives of \(\mu_{\text{inc}} \), then one replaces \(E_{\text{can}} \) by \(\bar{E} \), to obtain:

\[
\partial_{\bar{E}} \mu_{\text{inc}}(\bar{E}, \bar{N}) \sim \frac{\partial_{T} \mu_{\text{can}}(T, \bar{N})}{\partial T E_{\text{can}}(T, \bar{N})}
\]

\[
\partial_{\bar{N}} \mu_{\text{inc}}(\bar{E}, \bar{N}) \sim \frac{\partial_{N} \mu_{\text{can}}(T, \bar{N})}{\partial T E_{\text{can}}(T, \bar{N})} - \frac{\partial_{N} E_{\text{can}}(T, \bar{N})}{\partial T E_{\text{can}}(T, \bar{N})} \frac{\partial_{T} \mu_{\text{can}}(T, \bar{N})}{\partial T E_{\text{can}}(T, \bar{N})}
\]

(19) (20)

At the first order in the non-condensed fraction, the canonical chemical potential is deduced from the free energy \(F \) of the ideal gas of Bogoliubov quasiparticles of Hamiltonian \((8) \) by the usual thermodynamic relation \(\mu_{\text{can}} = \partial_{N} F \).

The free energy is a simple functional of the density of states (9) by taking the classical limit \(\hbar \to 0 \), by local density approximation, and the density of states \(\rho(\epsilon) \) of quasiparticles,

\[
F(T, \bar{N}) = E_0(\bar{N}) + \frac{k_B T}{(2\pi \hbar)^3} \int_{0}^{\infty} d\epsilon \rho(\epsilon) \ln \left(1 - e^{-\beta \epsilon}\right)
\]

with \(\beta = 1/k_B T \). At the thermodynamic limit, the ground state energy \(E_0 \) of the gas in the harmonic trap is deduced from that of the homogeneous system [28] by a local density approximation, and the density of states \(\rho(\epsilon) \) is obtained by taking the classical limit \(h \to 0 \), thanks to inequality (5) [6]:

\[
\rho(\epsilon) = \frac{1}{2} \hbar \omega [15 \bar{N} a (m \bar{\omega} / \hbar)^{1/2}]^{2/5}
\]

(22)

The classical Hamiltonian \(\epsilon(\mathbf{r}, \mathbf{p}) \) is the positive eigenvalue of the Bogoliubov’s \(2 \times 2 \) matrix of equation (9) with the position \(\mathbf{r} \) and the momentum \(\mathbf{p} \) treated classically \(^2\) and the condensed density \(\rho_0(\mathbf{r}) \) written at the classical limit that is in the Thomas-Fermi approximation:

\[
g_{\rho_0}^{TF}(\mathbf{r}) = \begin{cases}
\mu_{TF} - U(\mathbf{r}) \equiv \mu_{\text{loc}}(\mathbf{r}) & \text{if } U(\mathbf{r}) < \mu_{TF} \\
0 & \text{elsewhere}
\end{cases}
\]

(23)

Here, the Thomas-Fermi chemical potential, classical limit of \(\mu_{GP} \) of Gross-Pitaevskii, is

\[
\mu_{TF} = \frac{1}{2} \hbar \bar{\omega} [15 \bar{N} a (m \bar{\omega} / \hbar)^{1/2}]^{2/5}
\]

(24)

and \(\bar{\omega} = (\omega_x, \omega_y, \omega_z)^{1/3} \) is the geometric average of the trapping angular frequencies. We deduce that

\[
\epsilon(\mathbf{r}, \mathbf{p}) = \left\{ \frac{p^2}{2m} + \left[\frac{1}{2m} + 2 \mu_{\text{loc}}(\mathbf{r}) \right]^{1/2} \right\}^{1/2}
\]

if \(U(\mathbf{r}) < \mu_{TF} \)

\[
\epsilon(\mathbf{r}, \mathbf{p}) = \frac{1}{2} \lbrack 2m(\mathbf{p}^2/2m + U(\mathbf{r})) - \mu_{TF} \rbigr]^{1/2}
\]

elsewhere

(25)

The six-fold integral (22) has been calculated in reference [29].\(^3\) Here we give the result in a somewhat more compact form:

\[
\rho(\epsilon) = \frac{\mu_{TE}^3}{(\hbar \omega)^3} f(\bar{\epsilon} \equiv \epsilon / \mu_{TF})
\]

\[
f(\bar{\epsilon}) = \frac{1}{\pi} \left[-2 \sqrt{2 \bar{\epsilon}^2} \cos \left(\frac{\bar{\epsilon} - 1}{(1 + \bar{\epsilon}^2)^{1/2}} \right) + 2 \sqrt{2 \bar{\epsilon}} \ln \left(\frac{1 + \sqrt{2 \bar{\epsilon} + \bar{\epsilon}^2}}{(1 + \bar{\epsilon}^2)^{1/2}} + \sqrt{2(5 \bar{\epsilon} - 1) + (1 + \bar{\epsilon})^2 \cos \left(\frac{1}{(1 + \bar{\epsilon})^{1/2}} \right)} \right) \right]
\]

(27)

We finally obtain the canonical chemical potential

\[
\mu_{\text{can}}(T, \bar{N}) = \mu_0(\bar{N}) + \frac{6k_B T}{5N} \left(\frac{\mu_{TF}}{(\hbar \omega)} \right)^3 \int_{0}^{\infty} d\bar{\epsilon} f(\bar{\epsilon}) \ln \left(1 - e^{-\beta \bar{\epsilon}}\right) + \frac{2k_B T}{5N} \left(\frac{\mu_{TF}}{(\hbar \omega)} \right)^3 \int_{0}^{\infty} d\bar{\epsilon} \frac{f(\bar{\epsilon}) \bar{\epsilon}}{e^{\beta \bar{\epsilon}} - 1}
\]

(28)

\(^2\) The projector \(Q \), projecting on a space of codimension one, can be omitted at the thermodynamic limit.

\(^3\) The case of an anisotropic harmonic trap comes down to the isotropic case treated in [29] by performing the change of variable (with unit Jacobian) \(r_{ai} = l_a r_{ai}', \) with \(\omega_a l_a = \bar{\omega}, \) such that \(U(\mathbf{r}) = \frac{4}{5} m \bar{\omega}^2 r^2 \).
with the contribution of the ground state \[\mu_0(\tilde{N}) = \mu_{TF} \left[1 + \pi^{1/2} \left(\mu_{TF} a^3 / \hbar \right)^{1/2} \right] \] (29)

When one takes the derivative of (28) with respect to \(T \) and \(\tilde{N} \) to evaluate expressions (19) and (20), one will remember that \(\tilde{\beta} = \mu_{TF} / k_B T \) depends on \(\tilde{N} \) through \(\mu_{TF} \). For brevity, we do not give the result here.

In a slightly less general ensemble - A simpler expression\[4\] of the ballistic coefficient \(A \) can be obtained when the state of the system is a statistical mixture of canonical ensembles of the same temperature \(T \) but of variable number of particles. By expressing the various coefficients in (16, 19, 20) as derivatives of the free energy \(F(T, \tilde{N}) \) with respect to \(\tilde{N} \) and \(T \), and remembering the expression \(\text{Var}_{\text{can}} E = k_B T^2 \partial_T \text{Var}_{\text{can}} \) of the variance of the energy in the canonical ensemble, we find to the dominant order \(1 / \tilde{N} \) that

\[
A(T) = (\text{Var} N) \left(\frac{\partial_N \mu_{\text{can}}(T, \tilde{N})}{\hbar} \right)^2 + \frac{k_B T^2}{\hbar^2} \frac{\partial_T \mu_{\text{can}}(T, \tilde{N})}{\partial_T \text{Var}_{\text{can}}(T, \tilde{N})} \tag{30}
\]

At zero temperature, only the first term contributes, and we find the prediction of references [30, 31] pushed to order one in the non-condensed fraction \(f_{nc} \). A \(T \neq 0 \) but in the absence of fluctuations of \(N \), only the second term contributes; it is none other than the ballistic coefficient \(A_{\text{can}}(T) \) in the canonical ensemble. In the validity regime of the Bogoliubov approximation, \(f_{nc} \ll 1 \), the chemical potential \(\mu_{\text{can}}(T, \tilde{N}) \) of the gas remains close to that of a Thomas-Fermi pure condensate, so that

\[
\partial_N \mu_{\text{can}}(T, \tilde{N}) = \partial_N \mu_{TF} + O\left(\frac{f_{nc}}{\tilde{N}} \right) \tag{31}
\]

\(\partial_T \mu_{\text{can}}(T, \tilde{N}) \) is immediately first-order in \(f_{nc} \), and the same goes for the second term in equation (30). It is therefore only for strongly subpoissonian fluctuations of \(N \) (\(\text{Var} N \ll \text{Var}_{\text{Pois}} N \equiv \tilde{N} \)) that the second term of (30), that is the effect of thermal fluctuations, is not dominated by the first one. Assuming this condition satisfied in the experiment, we represent in figure 1 the canonical coefficient \(A_{\text{can}}(T) \) scaled by the \(A_{\text{Pois}} \) value of \(A \) in a pure condensate with Poissonian fluctuations of \(N \),

\[
A_{\text{Pois}} = \tilde{N} \left(\frac{\partial_N \mu_{TF}}{\hbar} \right)^2 \tag{32}
\]

all divided by the small parameter of the Bogoliubov theory at zero temperature,\[5\] proportional to \(f_{nc}(T = 0) \):

\[
\left[\rho_0(0)a^3 \right]^{1/2} = \frac{2 \sqrt{\pi}}{15 \pi^{1/2} \tilde{N} \left(\frac{\mu_{TF}}{\hbar \omega} \right)^3} \tag{33}
\]

The ratio thus formed is a universal function of \(k_B T / \mu_{TF} \). From the low and high energy expansions of the quasiparticle density of states,

\[
f(\tilde{\epsilon}) \underset{\tilde{\epsilon} \to 0}{\approx} \frac{32}{3\pi} \tilde{\epsilon}^{3/2} - 2 \sqrt{\pi} \tilde{\epsilon} + O(\tilde{\epsilon}^{5/2}) \tag{34}
\]

\[
f(\tilde{\epsilon}) \underset{\tilde{\epsilon} \to \infty}{\approx} \frac{1}{2} \tilde{\epsilon}^2 + \tilde{\epsilon} + \frac{1}{2} + O(\tilde{\epsilon}^{-1/2}) \tag{35}
\]

\[4\] The general expression (16) of \(A \) is a little tricky to grasp. Since the energy of the ground state depends on \(N \), fluctuations of \(N \) mechanically cause energy fluctuations. For example, if \(N \) fluctuates at \(T = 0 \) (in each subspace of fixed \(N \), the system is in the ground state), we can, to find \(A(T = 0) \) of equation (30) from equation (16), use the fact that \(E_1 - E = (N_1 - \tilde{N}) \mu_0(N) + O(N^0) \) and that \(\partial_N \mu_{\text{can}}(\tilde{E}, \tilde{N}) \underset{\tilde{N} \to \infty}{\rightarrow} -2/\tilde{N} \) (25 \(\tilde{N} \)), whose report in (20) gives \(\partial_N \mu_{\text{can}}(\tilde{E}, \tilde{N}) \underset{\tilde{N} \to \infty}{\rightarrow} \partial_N \mu_0(N) + 2\mu_0(N)/(25 \tilde{N}) \).

\[5\] One sometimes prefers to take as a small parameter \(1/[\rho_0(0)a^3] \), where the healing length \(\xi \) of the condensate at the center of the trap is such that \(\hbar^2/(m \xi^2) = \mu_{TF} \). One can easily go from one small parameter to the other using the relation \([\rho_0(0)a^3]^{1/2} / \rho_0(0) \xi^3 = 1/(8\pi^{1/2}) \).
are shown as dashed lines on figure 30. In the value window of figure 6, the coefficient of ballistic spreading \(\gamma^{1/2}_{\text{coll}} \) of quasiparticles, for a gas of \(\bar{N} \) bosons prepared in the canonical ensemble in a harmonic trap (isotropic or not), depending on the temperature. The result is at the thermodynamic limit where the trapping angular frequencies \(\omega_{k} \) are negligible compared to Thomas-Fermi’s chemical potential \(\mu_{TF} \) (24). Full line : second term of equation (30), deduced from the canonical chemical potential (28) to the Bogoliubov approximation (weak interactions, \(T \ll T_{c} \)). Dashes : equivalents at low and high temperature (dominant terms of equations (36, 37)). The division of \(A_{\text{can}}(T) \) by the small parameter (33) of Bogoliubov’s theory and by the value (32) of the ballistic coefficient for Poissonian fluctuations of \(N \) leads to a universal function of \(k_{B}T/\mu_{TF} \).

\[
A_{\text{can}}(T) = \frac{A_{\text{Pois}}[\rho_{\text{ini}}(0)u_{\text{ini}}]}{\sqrt{2}} \begin{cases} \frac{21\zeta(7/2)}{\sqrt{2}} & T \to 0 \\ \frac{15\pi^{1/2}}{2} \frac{3\zeta(3)^{2}}{4\zeta(4)} & T \to +\infty \end{cases}
\]

whose dominant terms\(^{6}\) are shown as dashed lines on figure 1. Let us note a particularly simple and beautiful reworking of the high temperature equivalent, accidentally already operational at \(k_{B}T/\mu_{TF} \geq 2 \):

\[
\frac{A_{\text{can}}(T)}{A_{\text{Pois}}} = \frac{3\zeta(3)}{4\zeta(4)} \left(\frac{T}{T_{c}^{(0)}} \right)^{3}
\]

where \(T_{c}^{(0)} \) is the critical temperature of an ideal gas of bosons in a harmonic trap at the thermodynamic limit, \(k_{B}T_{c}^{(0)} = \hbar\omega[\bar{N}/\zeta(3)]^{1/3} \). In this limit, \(A_{\text{can}}(T) \) is therefore lower than \(A_{\text{Pois}} \) by a factor proportional to the non-condensed fraction \((T/T_{c}^{(0)})^{3} \ll 1 \).

4. Variance of the condensate phase shift in the microcanonical ensemble

Here we calculate the correlation function of \(\dot{\theta}/d\text{t} \), namely \(C_{\text{mc}}(\tau) \), for a system prepared in the microcanonical ensemble, using at the thermodynamic limit \(\frac{\partial N}{\partial u_{\text{ini}}} \to 0 \) a semiclassical description of the quasiparticles and taking into account the effect of their interaction by quantum Boltzmann kinetic equations on their classical phase space distribution \(n(\text{r}, \text{p}) \).

4.1. Semi-classical form of Bogoliubov’s Hamiltonian and \(d\theta/d\text{t} \)

In the semiclassical description, the motion of Bogoliubov quasiparticles is treated classically, that is that they have at each moment a well defined position \(\text{r} \) and momentum \(\text{p} \) [6], whose evolution in phase space derives from the Hamiltonian \(\epsilon(\text{r}, \text{p}) \) given in equation (25) [22]:

\[
\frac{d\text{r}}{d\text{t}} = \partial_{\text{p}} \epsilon(\text{r}, \text{p})
\]

\[
\frac{d\text{p}}{d\text{t}} = -\partial_{\text{r}} \epsilon(\text{r}, \text{p})
\]

\(^{6}\) In the value window of figure 1, in practice \(1/10 \leq \bar{T} \leq 10 \), the inclusion of subdominant terms does not usefully approximate the exact result.
but we treat in a quantum way the bosonic field of quasiparticles by introducing their occupation numbers operators $\hat{n}(r, p)$ in the phase space, which allows us to take into account the discrete nature of the numbers of quasiparticles and the quantum statistical effects (with the Bose law rather than the equipartition law of the classical field at equilibrium).

In this semiclassical limit, the Bogoliubov Hamiltonian (8) (without interaction between quasiparticles) is written immediately

$$H_{\text{Bog}}^{\text{sc}} = E_0(\hat{N}) + \int \frac{d^3r d^3p}{(2\pi \hbar)^6} \epsilon(r, p) \hat{n}(r, p)$$

(41)

One might think, given formula (7), that $d\dot{\theta}/dt$ admits a similar writing, with $\epsilon(r, p)$ replaced by $\frac{d}{d\tau} \hat{\epsilon}(r, p)$. This is not so, the reason being that the derivative $\frac{d}{d\tau} \hat{\epsilon}(r, p)$ is not constant on the classical trajectory. The $d\dot{\theta}/dt$ operator is part of a general class of so-called Fock quantum observables (diagonal in the Fock basis of quasiparticles thus - here linear - functionals of Bogoliubov’s occupation numbers):

$$\hat{A} = \sum_{k \in \mathbb{F}} a_k \hat{n}_k \quad \text{with} \quad a_k = \langle \langle u_k |, \langle v_k | \rangle \rangle \mathcal{A}(\hat{r}, \hat{p}) | u_k \rangle | v_k \rangle$$

(42)

where $\mathcal{A}(\hat{r}, \hat{p})$ is a 2×2 hermitian matrix operator and a_k its average in the Bogoliubov mode of eigenenergy ϵ_k. The observable $d\dot{\theta}/dt$ corresponds to the choice $\mathcal{A}_0 = \sigma_x \frac{1}{N} \mathcal{L}$ where σ_x is the third Pauli matrix and $\mathcal{L}(\hat{r}, \hat{p})$ is the operator appearing in equation (9). By using Hellmann-Feynman’s theorem,\footnote{The theorem is here generalized to the case of a non-Hermitian operator \mathcal{L}, $\langle \langle u_k |, \langle v_k | \rangle \rangle$ being the dual vector of the eigenvector $| u_k \rangle$, $| v_k \rangle$ of \mathcal{L}.} we have indeed

$$\langle \langle u_k |, \langle v_k | \rangle \rangle \frac{d}{d\tau} \mathcal{L} \langle | u_k \rangle | v_k \rangle = \frac{d\epsilon_k}{d\tau}$$

(43)

For these Fock operators we use the semiclassical correspondence principle

$$\hat{A}^{\text{sc}} = \int \frac{d^3r d^3p}{(2\pi \hbar)^6} a(r, p) \hat{n}(r, p)$$

(44)

where $a(r, p) = (U(r, p), V(r, p)) \mathcal{A}(r, p) \langle | u_k \rangle | v_k \rangle$, $\mathcal{A}(r, p)$ being the classical equivalent of $\mathcal{A}(\hat{r}, \hat{p})$, and $a(r, p)$ represents the time average of $a(r, p)$ on the only classical trajectory passing through (r, p) at time $t = 0$:

$$a(r, p) \equiv \lim_{t \to \infty} \frac{1}{t} \int_0^t d\tau a(r(\tau), p(\tau))$$

(45)

The vector $(U(r, p), V(r, p))$, normalized according to the condition $U^2 - V^2 = 1$, is eigenvector of the classical equivalent $\mathcal{L}(r, p)$ of $\mathcal{L}(\hat{r}, \hat{p})$ with eigenvalue $\epsilon(r, p)$:

$$\begin{pmatrix} U(r, p) \\ V(r, p) \end{pmatrix} = \begin{pmatrix} 1 \\ \frac{1}{2} \left(\frac{p^2/2m}{\epsilon(r, p)} \right)^{1/2} + \left(\frac{p^2/2m}{\epsilon(r, p)} \right)^{-1/2} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

if $U(r) < \mu_{\text{TF}}$

$$\begin{pmatrix} U(r, p) \\ V(r, p) \end{pmatrix} = \begin{pmatrix} 1 \\ \frac{1}{2} \left(\frac{p^2/2m}{\epsilon(r, p)} \right)^{1/2} - \left(\frac{p^2/2m}{\epsilon(r, p)} \right)^{-1/2} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

elsewhere

(46)

At the basis of this correspondence principle lies the idea that the equivalent of a stationary quantum mode $(| u_k \rangle, | v_k \rangle)$ in the classical world is a classical trajectory of the same energy, itself also stationary as a whole by temporal evolution. To the quantum expectation a_k of the observable $\mathcal{A}(\hat{r}, \hat{p})$ in the mode $(| u_k \rangle, | v_k \rangle)$ thus we must associate an average

$$\langle \langle u_k |, \langle v_k | \rangle \rangle \frac{d}{d\tau} \mathcal{L} \langle | u_k \rangle | v_k \rangle$$

(43)

For these Fock operators we use the semiclassical correspondence principle

$$\hat{A}^{\text{sc}} = \int \frac{d^3r d^3p}{(2\pi \hbar)^6} a(r, p) \hat{n}(r, p)$$

(44)

where $a(r, p) = (U(r, p), V(r, p)) \mathcal{A}(r, p) \langle | u_k \rangle | v_k \rangle$, $\mathcal{A}(r, p)$ being the classical equivalent of $\mathcal{A}(\hat{r}, \hat{p})$, and $a(r, p)$ represents the time average of $a(r, p)$ on the only classical trajectory passing through (r, p) at time $t = 0$:

$$a(r, p) \equiv \lim_{t \to \infty} \frac{1}{t} \int_0^t d\tau a(r(\tau), p(\tau))$$

(45)

The vector $(U(r, p), V(r, p))$, normalized according to the condition $U^2 - V^2 = 1$, is eigenvector of the classical equivalent $\mathcal{L}(r, p)$ of $\mathcal{L}(\hat{r}, \hat{p})$ with eigenvalue $\epsilon(r, p)$:

$$\begin{pmatrix} U(r, p) \\ V(r, p) \end{pmatrix} = \begin{pmatrix} 1 \\ \frac{1}{2} \left(\frac{p^2/2m}{\epsilon(r, p)} \right)^{1/2} + \left(\frac{p^2/2m}{\epsilon(r, p)} \right)^{-1/2} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

if $U(r) < \mu_{\text{TF}}$

$$\begin{pmatrix} U(r, p) \\ V(r, p) \end{pmatrix} = \begin{pmatrix} 1 \\ \frac{1}{2} \left(\frac{p^2/2m}{\epsilon(r, p)} \right)^{1/2} - \left(\frac{p^2/2m}{\epsilon(r, p)} \right)^{-1/2} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

elsewhere

(46)

At the basis of this correspondence principle lies the idea that the equivalent of a stationary quantum mode $(| u_k \rangle, | v_k \rangle)$ in the classical world is a classical trajectory of the same energy, itself also stationary as a whole by temporal evolution. To the quantum expectation a_k of the observable $\mathcal{A}(\hat{r}, \hat{p})$ in the mode $(| u_k \rangle, | v_k \rangle)$ thus we must associate an average
over a trajectory of the expectation \(a(\mathbf{r}, \mathbf{p}) \) of the classical equivalent \(\mathcal{A}(\mathbf{r}, \mathbf{p}) \) in the local mode \((U(\mathbf{r}, \mathbf{p}), V(\mathbf{r}, \mathbf{p})) \). We therefore retain for the semiclassical version of the derivative of the condensate phase operator:

\[
-\hbar \frac{d\hat{\theta}_{sc}}{dr} = \mu_0(\hat{N}) + \int \frac{d^3r \, d^3p}{(2\pi\hbar)^3} \frac{d\epsilon(\mathbf{r}, \mathbf{p})}{d\hat{N}} \, \hat{h}(\mathbf{r}, \mathbf{p})
\]

(47)

Here, let us repeat it, the expectation \(a(\mathbf{r}, \mathbf{p}) = \frac{\delta\epsilon(\mathbf{r}, \mathbf{p})}{\delta\hat{N}} \) is not a constant of motion, unlike \(\epsilon(\mathbf{r}, \mathbf{p}) \), so we can not omit as in (41) the temporal average.

4.2. About the usefulness of kinetic equations in calculating the correlation function of \(\hat{\theta}/dr \)

We must determine, in the semiclassical limit, the correlation function of \(\hat{\theta}/dr \), for a system prepared in the microcanonical ensemble. Given equations (17) and (47) we must calculate

\[
C_{mc}^{sc}(\tau) = \int \frac{d^3r \, d^3p}{(2\pi\hbar)^3} \int \frac{d^3r' \, d^3p'}{(2\pi\hbar)^3} \frac{d\epsilon(\mathbf{r}, \mathbf{p})}{d\hat{N}} \frac{d\epsilon(\mathbf{r}', \mathbf{p}')}{d\hat{N}} \langle \hat{h}(\mathbf{r}, \mathbf{p}, \tau) \hat{h}(\mathbf{r}', \mathbf{p}', 0) \rangle
\]

(48)

where \(\langle \ldots \rangle \) represents the mean in the state of the system and where we introduced the fluctuations of the occupation number operators in phase space at time \(\tau \),

\[
\delta\hat{h}(\mathbf{r}, \mathbf{p}, \tau) = \hat{h}(\mathbf{r}, \mathbf{p}, \tau) - \hat{n}(\mathbf{r}, \mathbf{p})
\]

(49)

The microcanonical ensemble can be seen in the semiclassical phase space as a constant-energy statistical mixture of Fock states \(|F\rangle = |n(\mathbf{r}', \mathbf{p}'), \mathbf{r}', \mathbf{p}'\rangle \), eigenstates of \(H_{Bos}^{sc} \), where all \(n(\mathbf{r}', \mathbf{p}') \) are integers. It is assumed at first that the system is prepared in one of such Fock states \(|F\rangle \) at the initial time \(t = 0 \), eigenstate of \(\delta\hat{h}(\mathbf{r}', \mathbf{p}', 0) \) with the eigenvalue \(n(\mathbf{r}', \mathbf{p}') - \hat{n}(\mathbf{r}', \mathbf{p}') \); it remains then to calculate in equation (48) the quantity

\[
\langle F|\delta\hat{h}(\mathbf{r}, \mathbf{p}, \tau)|F\rangle = n(\mathbf{r}, \mathbf{p}, \tau) - \hat{n}(\mathbf{r}, \mathbf{p}) \equiv \delta n(\mathbf{r}, \mathbf{p}, \tau)
\]

(50)

at \(\tau > 0 \), that is the evolution of the mean occupation numbers \(n(\mathbf{r}, \mathbf{p}, \tau) \) in phase space, their initial values being known, taking into account (i) the Hamiltonian quasiparticle transport and (ii) the effect of quasiparticle collisions by the Beliaev or Landau three-quasiparticles processes\(^8\) represented in figure 2. This is exactly what the usual Boltzmann-type quantum kinetic equations can do, with the difference that the semiclassical distribution function \(n(\mathbf{r}, \mathbf{p}, \tau) \) does not correspond here to a local thermal equilibrium state of the system, but to the mean occupation number at time \(\tau \) knowing that the initial state of the system is a quasiparticle Fock state. The evolution equation of the average occupation numbers \(n(\mathbf{r}, \mathbf{p}, \tau) \) is of the form

\[
\frac{D}{D\tau} n(\mathbf{r}, \mathbf{p}, \tau) + l_{coll}(\mathbf{r}, \mathbf{p}, \tau) = 0
\]

(51)

The first term is the convective derivative resulting from the classical Hamilton equations:

\[
\frac{D}{D\tau} = \partial_r + \partial_p \epsilon(\mathbf{r}, \mathbf{p}) \cdot \partial_r - \partial_r \epsilon(\mathbf{r}, \mathbf{p}) \cdot \partial_p
\]

(52)

8. Four-quasiparticle processes, of higher order in the non-condensed fraction, are assumed here negligible.
It preserves the density in the phase space along a classical trajectory (Liouville’s theorem). The second term describes the effect of collisions between quasiparticles, local in position space, and which can only occur, at the order of Beliaev-Landau, at points where the Thomas-Fermi density of the condensate \(\rho_0(\mathbf{r}) \) is nonzero (see the diagrams in figure 2):^9

\[
I_{\text{coll}}(\mathbf{r}, \mathbf{p}, \tau) = \frac{1}{2} \int \frac{d^3 q}{(2\pi \hbar)^3} \frac{2\pi}{\hbar} \left[2 \xi \hbar \beta \langle p \rangle (\mathbf{r}) \mathcal{A}^\beta_{q,p,q}(\mathbf{r}) \right]^2 \delta (\epsilon(\mathbf{r}, \mathbf{q}) + \epsilon(\mathbf{r}, \mathbf{p} - \mathbf{q}) - \epsilon(\mathbf{r}, \mathbf{p})) \times [n(\mathbf{r}, \mathbf{p}, \tau)[1 + n(\mathbf{r}, \mathbf{q}, \tau)] + n(\mathbf{r}, \mathbf{p}, \tau)n(\mathbf{r}, \mathbf{p} - \mathbf{q}, \tau)[1 + n(\mathbf{r}, \mathbf{p}, \tau)]] + \int \frac{d^3 q}{(2\pi \hbar)^3} \frac{2\pi}{\hbar} \left[2 \xi \hbar \beta \langle p \rangle (\mathbf{r}) \mathcal{A}^\beta_{p,q,q}(\mathbf{r}) \right]^2 \delta (\epsilon(\mathbf{r}, \mathbf{p}) + \epsilon(\mathbf{r}, \mathbf{q}) - \epsilon(\mathbf{r}, \mathbf{p} + \mathbf{q})) \times [n(\mathbf{r}, \mathbf{p}, \tau)n(\mathbf{r}, \mathbf{q}, \tau)[1 + n(\mathbf{r}, \mathbf{p} + \mathbf{q}, \tau)] + n(\mathbf{r}, \mathbf{p} + \mathbf{q}, \tau)[1 + n(\mathbf{r}, \mathbf{p}, \tau)][1 + n(\mathbf{r}, \mathbf{q}, \tau)]] \quad (53)
\]

In this process are involved, at point \(\mathbf{r} \), a quasiparticle of momentum \(\mathbf{p} \) (whose evolution of the average occupation number \(n(\mathbf{r}, \mathbf{p}, \tau) \) has to be determined), a second outgoing or incoming quasiparticle of momentum \(\mathbf{q} \) on which it is necessary to integrate, and a third quasiparticle whose momentum is fixed by momentum conservation. In equation (53) the first integral takes into account the Beliaev processes; it shows a factor of 1/2 to avoid double counting of the final or initial two quasiparticle states \((\mathbf{q}, -\mathbf{q} - \mathbf{p}) \) and \((\mathbf{p} - \mathbf{q}, -\mathbf{q}) \); the second integral takes into account the Landau processes. Note in both cases: (i) the factor \(\frac{2\pi}{\hbar} \) from Fermi’s golden rule, (ii) the – sign taking direct processes into account (they depopulate the \(\mathbf{p} \) mode at point \(\mathbf{r} \)) and the + sign for inverse processes, with the bosonic amplification factors \(1 + n \), (iii) the presence of an energy conservation Dirac function at \(\mathbf{r} \). The reduced coupling amplitudes for three-quasiparticles processes at point \(\mathbf{r} \) are given by [14, 32]

\[
\mathcal{A}^\beta_{q,p,q}(\mathbf{r}) = \frac{s^2(\mathbf{r}, \mathbf{p}) + s^2(\mathbf{r}, \mathbf{p}) - s^2(\mathbf{r}, \mathbf{p})}{4s(\mathbf{r}, \mathbf{p})s(\mathbf{r}, \mathbf{p})} + \frac{3}{4}s(\mathbf{r}, \mathbf{p})s(\mathbf{r}, \mathbf{p}) \quad (54)
\]

with \(s(\mathbf{r}, \mathbf{p}) = U(\mathbf{r}, \mathbf{p}) + V(\mathbf{r}, \mathbf{p}) \). As expected, the kinetic equations admit the average thermal equilibrium occupation numbers as a stationary solution:\^10

\[
\bar{n}(\mathbf{r}, \mathbf{p}) = \frac{1}{e^{\beta \epsilon(\mathbf{r}, \mathbf{p})} - 1} \quad (55)
\]

The well-known property of the Bose law \(1 + \bar{n} = e^{\beta \epsilon} \bar{n} \) allows to verify it easily: supplemented with energy conservation, it leads to the perfect compensation in all points of direct and inverse processes, that is to the cancellation of the quantities between curly brackets in equation (53), following the principle of microreversibility; we also have \(\frac{\partial}{\partial \tau} \bar{n} = 0 \) since \(\bar{n}(\mathbf{r}, \mathbf{p}) \) is a function of \(\epsilon(\mathbf{r}, \mathbf{p}) \), a quantity that is conserved by the Hamiltonian transport.

As our system fluctuates weakly around the equilibrium, we linearise the kinetic equations around \(n = \bar{n} \) as in reference [16] to get

\[
\frac{D}{D\tau}\delta n(\mathbf{r}, \mathbf{p}, \tau) = -\Gamma(\mathbf{r}, \mathbf{p}, \tau) \delta n(\mathbf{r}, \mathbf{p}, \tau) + \int \frac{d^3 q}{(2\pi \hbar)^3} K(\mathbf{r}, \mathbf{p}, \mathbf{q}) \delta n(\mathbf{r}, \mathbf{q}, \tau) \quad (56)
\]

the diagonal term comes from the fluctuation \(\delta n(\mathbf{r}, \mathbf{p}, \tau) \) in the right-hand side of equation (53), and the non-local momentum term comes from fluctuations \(\delta n(\mathbf{r}, \mathbf{q}, \tau) \) and \(\delta n(\mathbf{r}, \mathbf{p} + \mathbf{q}, \tau) \) whose contributions are collected by changing the variables \(\mathbf{q}' = \mathbf{p} + \mathbf{q} \) in \(\int d^3 q \). The expression of \(K(\mathbf{r}, \mathbf{p}, \mathbf{q}) \) is not useful for the following, so let us only give the expression of the local damping rate of the Bogoliubov quasiparticles of momentum \(\mathbf{p} \) at point \(\mathbf{r} \):

\[
\Gamma(\mathbf{r}, \mathbf{p}) = \frac{4\pi \rho_0(\mathbf{r})q^2}{\hbar} \int \frac{d^3 q}{(2\pi \hbar)^3} \left[\mathcal{A}^p_{q,p,q}(\mathbf{r}) \right]^2 \delta (\epsilon(\mathbf{r}, \mathbf{q}) + \epsilon(\mathbf{r}, \mathbf{p} - \mathbf{q}) - \epsilon(\mathbf{r}, \mathbf{p})) [1 + \bar{n}(\mathbf{r}, \mathbf{q}) + \bar{n}(\mathbf{r}, \mathbf{p} - \mathbf{q})] \nonumber
\]

\[
+ \frac{8\pi \rho_0(\mathbf{r})q^2}{\hbar} \int \frac{d^3 q}{(2\pi \hbar)^3} \left[\mathcal{A}^{q,p,q}_{q}(\mathbf{r}) \right]^2 \delta (\epsilon(\mathbf{r}, \mathbf{p}) + \epsilon(\mathbf{r}, \mathbf{q}) - \epsilon(\mathbf{r}, \mathbf{p} + \mathbf{q})) [\bar{n}(\mathbf{r}, \mathbf{q}) - \bar{n}(\mathbf{r}, \mathbf{p} + \mathbf{q})] \quad (57)
\]

9. These diagrams imply a hidden process of absorption or stimulated emission in the condensate mode.

10. Strictly speaking, this stationary solution corresponds to the average occupation numbers in the canonical ensemble, rather than in the microcanonical one. The difference, computable as in Appendix C of reference [16], but out of reach of our kinetic equations, tends to zero at the thermodynamic limit and is negligible here. It should also be noted that the non-conservation of the total number of quasiparticles by the Beliaev-Landau processes requires the Bose’s law to have unit fugacity.
This expression coincides with the damping rate of a momentum p mode in a spatially homogeneous condensed gas of density $g_{0}(r)$ [32]. Just like $\delta n(r, p, \tau)$, $\langle F | \delta n(r, p, \tau) \delta n(r', p', 0) | F \rangle$ considered as a function of (r, p, τ), obeys equation (56); the same is true for its average $\langle \delta n(r, p, \tau) \delta n(r', p', 0) \rangle$ over all initial Fock states $| F \rangle$, since the coefficients Γ and K do not depend on $| F \rangle$. Let’s contract the latter by the quantity

$$B(r', p') \equiv \frac{1}{\hbar} \frac{\partial \delta n(r', p')}{\partial N}$$

as in equation (48) to form the auxiliary unknown

$$X(r, p, \tau) = \int \frac{d^{3}r' d^{3}p'}{(2\pi \hbar)^{3}} B(r', p') \langle \delta n(r, p, \tau) \delta n(r', p', 0) \rangle$$

Then $X(r, p, \tau)$ evolves according to the linear kinetic equations (56) with the initial condition

$$X(r, p, 0) = \int \frac{d^{3}r' d^{3}p'}{(2\pi \hbar)^{3}} Q(r, p; r', p') B(r', p')$$

where the matrix of covariances at equal times of the number of quasiparticles has been introduced :

$$Q(r, p; r', p') = \langle \delta n(r, p, 0) \delta n(r', p', 0) \rangle$$

whose expression in the microcanonical ensemble will be connected to that in the canonical ensemble in due time, in sub-section 4.3. The sought microcanonical correlation function of $\bar{\delta}^{ic}/dt$ is then

$$C_{mc}^{ic}(\tau) = \int \frac{d^{3}r d^{3}p}{(2\pi \hbar)^{3}} B(r, p) X(r, p, \tau)$$

4.3. Solution in the secular-ergodic approximation

Our study restricts to the collisionless regime $\Gamma_{in} \ll \omega_{0}$ where Γ_{in} is the typical thermal value of the quasiparticles damping rate $\Gamma(r, p)$ and ω_{0} are the trapping angular frequencies. The quasiparticles then have time to perform a large number of Hamiltonian oscillations in the trap before undergoing a collision. We can therefore perform the secular approximation that consists in replacing the coefficients of the linearized kinetic equation (56) by their temporal average over a trajectory. Thus,

$$\Gamma_{sec}^{approx}(r, p) = \lim_{t \to +\infty} \frac{1}{t} \int_{0}^{t} d\tau \Gamma(r(\tau), p(\tau))$$

the auxiliary unknown $X(r, p, \tau)$ of equation (59), just like the fluctuations of the occupation numbers $\delta n(r, p, t)$, depend only on the trajectory $\tau \mapsto (r(\tau), p(\tau))$ passing through (r, p) and on time. Still the problem remains formidable.

Fortunately, as we have said, in a completely anisotropic trap, the Hamiltonian dynamics of quasiparticles should be highly chaotic, except within the limits of very low energy $\epsilon \ll \mu_{TF}$ or very high energy $\epsilon \gg \mu_{TF}$ [22, 23]. We thus use the ergodic hypothesis, by identifying the temporal average on an trajectory of energy ϵ to the “uniform” mean in the phase space on the energy shell ϵ

$$\Gamma_{sec}^{approx}(r, p) \equiv (\Gamma \epsilon(r, p))_{\epsilon} = \lim_{\epsilon \to +\infty} \frac{1}{\rho(\epsilon)} \int d^{3}r d^{3}p \Gamma(r, p) \delta(\epsilon - \epsilon(r, p))$$

where the density of states $\rho(\epsilon)$ is given by equation (22). We will come back to this hypothesis in section 4.5. In this case, the function $X(r, p, \tau)$ depends only on the energy $\epsilon = \epsilon(r, p)$ and time :

$$X(r, p, \tau) \equiv X(\epsilon, \tau)$$
We obtain the evolution equation of $X(\epsilon, \tau)$ by averaging that of $X(r, p, \tau)$ on the energy shell ϵ:

$$
\partial_\tau X(\epsilon, \tau) = -\Gamma(\epsilon)X(\epsilon, \tau) - \frac{1}{2\mu(\epsilon)} \int_0^\infty d\epsilon' L(\epsilon - \epsilon', \epsilon') [X(\epsilon', \tau) [\tilde{n}(\epsilon) - \tilde{n}(\epsilon')] + X(\epsilon - \epsilon', \tau) [\tilde{n}(\epsilon) - \tilde{n}(\epsilon')]]
$$

$$
- \frac{1}{\mu(\epsilon)} \int_0^{+\infty} d\epsilon' L(\epsilon, \epsilon') [X(\epsilon', \tau) [\tilde{n}(\epsilon) - \tilde{n}(\epsilon + \epsilon')] - X(\epsilon + \epsilon', \tau) [1 + \tilde{n}(\epsilon) + \tilde{n}(\epsilon')]]
$$

with

$$
\Gamma(\epsilon) = \frac{1}{2\mu(\epsilon)} \int_0^{\infty} d\epsilon' L(\epsilon - \epsilon', \epsilon') [1 + \tilde{n}(\epsilon') + \tilde{n}(\epsilon - \epsilon')] + \frac{1}{\mu(\epsilon)} \int_0^{+\infty} d\epsilon' L(\epsilon, \epsilon') [\tilde{n}(\epsilon) - \tilde{n}(\epsilon + \epsilon')]
$$

In these expressions, the first integral, limited to energies ϵ' lower than the energy of the quasiparticle ϵ considered, corresponds to Beliaev processes, and the second integral to Landau processes. The integral kernel

$$
L(\epsilon, \epsilon') = \int \frac{d^3r \, d^3p \, d^3q}{(2\pi\hbar)^6} \frac{8\pi^2 \rho_0(r)}{\hbar} \left[A_{\epsilon, \epsilon'}^{\text{TF}}(p) \right] \frac{1}{2} \delta(\epsilon - \epsilon(r, p)) \delta(\epsilon' - \epsilon(r, q)) \delta(\epsilon + \epsilon' - \epsilon(r, p + q))
$$

$$
= \frac{32\sqrt{2}}{\pi^{11/2}} \frac{\rho_0(0) a^{11/2}}{\hbar \pi \epsilon R^6} \left(\frac{\mu_0}{\hbar}\right)^3 \int_0^{\text{TF}} \mu_0 d\mu_0 (\mu_0 - \mu_0)^{1/2} \epsilon(\epsilon + \epsilon' - \epsilon(r, q)) \left[A_{\epsilon, \epsilon'}^{\text{TF}}(\mu_0) \right]^2
$$

uses the reduced coupling amplitude (54) at point r, reparametrized in terms of energies $\epsilon_i = \epsilon(r, p_i)$ ($1 \leq i \leq 3$) or even in terms of the local Gross-Pitaevskii chemical potential $\mu_0 = g \rho_0(r)$. It has the symmetry property $L(\epsilon, \epsilon') = L(\epsilon', \epsilon)$. We write the result before giving some indications on its obtention (one will also consult reference [16]). In the secularo-ergodic approximation, the microcanonical correlation function of $d\delta \rho/c dt$ is

$$
C^{\text{sec"or}}(\tau) = \int_0^{+\infty} d\epsilon \rho(\epsilon) B(\epsilon) X(\epsilon, \tau)
$$

(70)

Here $B(\epsilon)$ is the ergodic average of the quantity $B(r, p)$ introduced in equation (58):

$$
B(\epsilon) = \frac{1}{\rho(\epsilon)} \int \frac{d^3r \, d^3p \, d\epsilon(r, p)}{(2\pi\hbar)^3} \delta(\epsilon - \epsilon(r, p))
$$

(71)

$$
= \frac{d\mu_0/dN}{h \pi f(\tilde{e})} \left[2^{1/2}(\tilde{e} + 1 - \sqrt{2}(\tilde{e} + 1) \argsh \frac{(2\tilde{e})^{1/2}}{(1 + \tilde{e})^{1/2}} - (1 + \tilde{e})^{1/2} \arccos \frac{1}{(1 + \tilde{e})^{1/2}}
ight]
$$

(72)

$$
B(\epsilon) \equiv \frac{d\mu_0/dN}{h \pi f(\tilde{e})} \left[-1 + \frac{32}{3\pi} (\tilde{e}^{-1/2} + O(\tilde{e}^{-1/2})
ight]
$$

(73)

with $\tilde{e} = \epsilon/\mu_0$ and $f(\tilde{e})$ the reduced density of states (27). The auxiliary unknown $X(\epsilon, \tau)$ is a solution of the linear equation (66) with the initial condition

$$
X(\epsilon, 0) = \bar{n}(\epsilon)[1 + \tilde{n}(\epsilon)][B(\epsilon) - \Lambda \epsilon]
$$

(74)

where $h\Lambda$ is the derivative of the microcanonical chemical potential with respect to to the total energy E of the gas 13, as in equation (19):

$$
\Lambda = \int_0^{+\infty} d\epsilon \rho(\epsilon) e^2 \tilde{n}(\epsilon)[1 + \tilde{n}(\epsilon)]
$$

(75)

The equation (70) is the ergodic rewriting of equation (62). The initial condition (74) is the difference of two contributions:

11. The simplest is to average the complete kinetic equations (51), then linearize the result around the stationary solution (55).
12. To get (69), we reduced equation (68) to a single integral on the r modulus (after having formally reduced to the case of an isotropic trap as in note 3) by integrating in spherical coordinates on p, q and r, the cosine of the angle between p and q. In $\int_1^{+\infty} du$, the argument of the third Dirac vanishes at a point u_0 and only one, given the inequalities $\epsilon_{p-q}^{\text{Bog}} \leq \epsilon_{p+q}^{\text{Bog}} + \epsilon_{p-q}^{\text{Bog}} \leq \epsilon_{p+q}^{\text{Bog}}$ satisfied by the Bogoluibov dispersion relation $\epsilon_{p+q}^{\text{Bog}} = [(p^2 + q^2)/2u_0]^{1/2}$, we have $\epsilon_{p+q}^{\text{Bog}} \geq 0$.
13. The deep reason for the appearance of this derivative is given in reference [16]. It explains why the kinetic equations allow to find in the canonical ensemble the ballistic term $A\tau$ of equation (15) with the correct expression of the coefficient $A = (\partial g/\partial E)^2 \varphi^2 E$.

12
— the first is the one that one would obtain in the canonical ensemble. The ergodic mean of the covariance matrix (61) would then be simply $Q_{\text{can}}(\epsilon, \epsilon') = \bar{n}(\epsilon)[1 + \bar{n}(\epsilon)]\delta(\epsilon - \epsilon')/\rho(\epsilon)$;

— the second comes from a projection of δn canonical fluctuations on the subspace of the δn fluctuations of zero energy, $\int_{-\infty}^{\infty} \delta \rho(\epsilon) \epsilon \delta n(\epsilon) = 0$, the only one eligible in the microcanonical ensemble. Only subtle point, this projection must be carried out parallel to the stationary solution $\epsilon_0(\epsilon) = \epsilon \bar{n}(\epsilon)[1 + \bar{n}(\epsilon)]$ of the linearized kinetic equations (66). We then check that, for the value of Λ given, $X(\epsilon, 0)$ is in the subspace of zero energy fluctuations.

4.4. Results and discussion

We present some results in graphic form, after a clever scaling making them independent of the trapping angular frequencies (provided they are quite distinct two by two to allow the ergodic hypothesis) and of the strength of the interactions μ_{TF}. These results illustrate the universality class of the completely anisotropic harmonic traps, different from that of the spatially homogeneous systems of reference [16].

An interesting by-product of our study is shown in figure 3: it is the damping rate $\Gamma(\epsilon)$ in the secular-ergodic approximation of the Bogoliubov modes of energy ϵ. In a cold atom experiment it is possible to excite such modes and to follow their decay in time. The rate we predict is then measurable and it can be compared to the experiments, at least in its validity regime of classical motion $\epsilon \gg \hbar \omega_0$ (deviations from the ergodic hypothesis are discussed in section 4.5). The limiting behaviors

$$h \Gamma(\epsilon) \sim \frac{3I}{4} \left(\frac{\epsilon}{\mu_{\text{TF}}} \right)^{1/2} k_B T [\rho_0(0) \rho_0^2]^{1/2} \quad \text{with} \quad I = 4.921 \, 208 \ldots$$

$$h \Gamma(\epsilon) \sim \frac{128}{15 \sqrt{\pi}} \frac{\mu_{\text{TF}}^2}{\epsilon} \rho_0(0)^{3/2}$$

shown in dashed lines in figure 3, are derived in Appendix A. They are very different from the spatially homogeneous case, where the damping rate vanishes linearly in ϵ at low energy and diverges as $\epsilon^{1/2}$ at high energy. In particular, the behavior (76) in $\epsilon^{1/2}$ results from the existence of the Thomas-Fermi edge of the condensate.

Let’s go back to the condensate phase spreading in the microcanonical ensemble. In figure 4, we represent in black solid line the variance of the phase shift $\hat{\theta}(t) - \hat{\bar{\theta}}(0)$ of the condensate as a function of time t in the ergodic approximation (70) at the temperatures $T = \mu_{\text{TF}}/k_B$ and $T = 10 \mu_{\text{TF}}/k_B$. The variance has a parabolic departure in time, which corresponds to the precollisional regime $t \ll t_{\text{coll}}$, where t_{coll} is the typical collision time between quasiparticles: we can then assume that $C_{\text{mc}}(t) \approx C_{\text{mc}}(0)$, so that the integral contribution to equation (15) is $C_{\text{mc}}(0)t^2$. At long times, $t \gg t_{\text{coll}}$, the correlation function of $d\hat{\theta}/dt$ seems to quickly reach zero (red solid line); a more detailed numerical study (see the inset in figure 4 b) reveals however the presence of a power law tail $t^{-\alpha}$,

$$C_{\text{mc}}(t) \sim \frac{C}{t^3}$$

the exponent $\alpha = 5$ is greater than the one $\alpha_0 = 3$ of the decay law of $C_{\text{mc}}(t)$ in the spatially homogeneous case [16]. Its value can be found by a rough heuristic approximation, called rate approximation or projected Gaussian [15], already used for α_0 with success in this same reference [16]: we keep in the linearized kinetic equations (66) only.

14. For this projection to be compatible with linearized kinetic evolution, it is necessary that the projection direction and the hyperplane on which we project be invariant by temporal evolution, the second point being ensured by conservation of energy. The form of $e_\text{can}(\epsilon)$ derives from the fact that (55) remains a stationary solution for an infinitesimal variation of $\hat{\pi}, \hat{\pi} \rightarrow \hat{\pi} + \delta \hat{\pi}$, around its physical value.

15. In a first step, we show that the results can depend on the trapping frequencies ω_α, only through their geometric mean $\bar{\omega}$. This is a direct consequence of the ergodic hypothesis and the fact that the observables involved here, including the Hamiltonian, depend only on the position r of the quasiparticles via the trapping potential $U(r) = \frac{1}{2m} \sum \omega_\alpha^2 r_\alpha^2$. In the integral $\int d^3r$ participating in the ergodic mean, one can then perform the isotropising change of variables of note 3.

16. For $k_B T = \mu_{\text{TF}}, \Gamma(\epsilon)/\epsilon^{1/2}$ has a deceptive maximum in the neighborhood of $\epsilon/\mu_{\text{TF}} = 0.02$ of about 5% above its limit in $\epsilon = 0$.

13
must be in the regime of an almost pure condensate, \(\rho(0) \equiv \rho \), at the thermodynamic limit, in the secular-ergodic approximation (63, 64, 67), at temperature (a) \(k_B T = \mu_{TF} \) and (b) \(k_B T = 10 \mu_{TF} \), where \(\mu_{TF} \) is the Thomas-Fermi’s chemical potential of the condensate. Thanks to the chosen units, the curve is universal; in particular, it does not depend on the trapping angular frequencies \(\omega_\alpha \). The Bogoliubov modes considered must be in the classical motion regime \(\epsilon \gg \hbar \omega_\alpha \) and the system must be in the regime of an almost pure condensate, \(|\rho(0)\alpha|^{1/2} \ll 1 \) and \(T \ll T_c \), where \(\rho(0) = \mu_{TF}/\hbar \) is the density of the condensate in the center of the trap and \(T_c \) the critical temperature. In dashed lines, the equivalents (76) and (77) of \(\Gamma(\epsilon) \) at low and high energy.

![Figure 3](image1.png)

Figure 3: Beliaev-Landau damping rate \(\Gamma(\epsilon) \) of Bogoliubov modes of a condensate in a completely anisotropic harmonic trap as a function of the mode energy \(\epsilon \), at the thermodynamic limit, in the secular-ergodic approximation (63, 64, 67), at temperature (a) \(k_B T = \mu_{TF} \) and (b) \(k_B T = 10 \mu_{TF} \), where \(\mu_{TF} \) is the Thomas-Fermi’s chemical potential of the condensate. Thanks to the chosen units, the curve is universal; in particular, it does not depend on the trapping angular frequencies \(\omega_\alpha \). The Bogoliubov modes considered must be in the classical motion regime \(\epsilon \gg \hbar \omega_\alpha \) and the system must be in the regime of an almost pure condensate, \(|\rho(0)\alpha|^{1/2} \ll 1 \) and \(T \ll T_c \), where \(\rho(0) = \mu_{TF}/\hbar \) is the density of the condensate in the center of the trap and \(T_c \) the critical temperature. In dashed lines, the equivalents (76) and (77) of \(\Gamma(\epsilon) \) at low and high energy.

the term of pure decay \(-\Gamma(\epsilon)X(\epsilon, \tau)\) in the right-hand side, which makes them immediately integrable and leads to the estimate

\[
C_{mc}(t) \approx \int_0^{\infty} d\epsilon \rho(\epsilon) |B(\epsilon) - \Lambda \epsilon|^2 \hat{n}(\epsilon) [1 + \hat{n}(\epsilon)] e^{-\Gamma(\epsilon)\tau} \tag{79}
\]

The power law behavior of the density of states \(\rho(\epsilon) \) at low energy [see (34)], of the coefficients \(B(\epsilon) \) in \(\hat{\theta}(\epsilon)/d\tau \) [see (73)], of the occupation numbers \(n(\epsilon) \sim k_B T/\epsilon \) and of the damping rate \(\Gamma(\epsilon) \) [see (76)] then reproduce the exponent \(\alpha = 5 \) found numerically. Since \(C_{mc}(t) \) tends to zero faster than \(1/e^{\epsilon^2/\alpha} \), for some \(\eta > 0 \), we obtain the following important result: the variance of the condensate phase shift \(\text{Var}(\hat{\theta}(t) - \hat{\theta}(0)) \) exhibits at long times the typical affine growth of a diffusive regime with delay:

\[
\text{Var}(\hat{\theta}(t) - \hat{\theta}(0)) = 2D(t - t_0) + o(1) \tag{80}
\]

17. Care has been taken to account for the projection on the microcanonical subspace of zero energy fluctuations not only in the initial condition (74), but also in the contraction by \(B(\epsilon) \) in (70), replacing \(B(\epsilon) \) with \(\hat{\theta}(\epsilon) - \Lambda \epsilon \); this precaution, optional in the exact formulation, is necessary here since the rate approximation conserves evolution of energy.

18. In contrast, the predicted value for the coefficient \(C \) in (78) for \(k_B T = 10 \mu_{TF} \), that is \(\sim 10^{-5} \), differs significantly from the numerical value \(\sim 7 \times 10^{-5} \).
We compare it to the estimate \(1/\Gamma (e = k_B T) \) of the typical collision time \(t_{\text{coll}} \) between quasiparticles, in dashed line: this one gives a good account of the sudden rise of \(t_0 \) at low temperatures, but reproduces with much delay and greatly underestimating that at high temperatures. The rise of \(t_0 \) is well represented by a \(T^{-3/2} \) low temperature law, and appears to be linear in \(T \) at high temperature (see dashed line).

Let us find by a simple reasoning the observed power laws. If a scaling law exists, it should survive the rate approximation on the linearized kinetic equations; we can therefore take the approximate expression (79) of \(C_{\text{mc}}(\tau) \) as a starting point and put it in the expressions (81) and (82) of \(D \) and \(t_0 \).

At high temperature, the integrals on \(\epsilon \) giving \(D \) and \(t_0 \) in the rate approximation are dominated by energies of order \(k_B T \); we set \(\epsilon = k_B T \tilde{\epsilon} \) and send \(T \) to \(+\infty \) at fixed \(\tilde{\epsilon} \) under the integral. The behaviors of \(\rho(\epsilon) \) and \(B(\epsilon) \) at high energy are known. Only that of \(\Gamma(k_B T \tilde{\epsilon}) \) is missing; to get it, we notice on (69) that \(L(k_B T \tilde{\epsilon}, k_B T \tilde{\epsilon}') \) tends to a constant when \(T \to +\infty \). The approximation \(L(\epsilon, \epsilon') \approx L(\epsilon - \epsilon', \epsilon') \approx \text{const} \) however, triggers a logarithmic infrared divergence in the integrals on \(\epsilon' \) in (67), which stops at \(\epsilon' \lesssim k_B \Gamma T \), so that

\[
\frac{\hbar \Gamma(k_B T \tilde{\epsilon})}{\mu_T [D_0(0) \mu_T]^{1/2}} \sim \frac{512 \sqrt{7}}{15 \pi^{1/2}} \frac{1}{\epsilon^2} \frac{\mu_T}{k_B T} \ln \frac{k_B T}{\mu_T}.
\]

All this leads to the scaling laws \(D \approx T^4 \) and \(t_0 \approx T \) at high temperature, up to logarithmic factors.

At low temperatures, we proceed in the same way. The behavior of \(\Gamma(k_B T \tilde{\epsilon}) \) is as \(T^{3/2} \) when \(T \to 0 \) at fixed \(\tilde{\epsilon} \), as one could expect it from the equivalent (76) and as it is confirmed by a calculation. The only trap to avoid is that

\[
19. \text{A more accurate calculation leads to replace in (83) the symbol } \sim \text{ by } = \text{ and the factor } \ln \frac{k_B T}{\mu_T} \text{ by } [\ln \frac{k_B T}{\mu_T} + \frac{\tilde{\epsilon}}{4} + \ln(1 - \epsilon^2) + \frac{\tilde{\epsilon}}{4} - 3 \ln 2 + O(\mu_T/k_B T)].
\]
$B(k_B T \tilde{e}) \sim \Lambda k_B T \tilde{e}$ scales as $T^{3/2}$ when $T \to 0$, not as T as one might think, because the dominant terms of $B(k_B T \tilde{e})$ and $\Lambda k_B T \tilde{e}$, both linear in $k_B T \tilde{e}$, exactly compensate each other, see equation (75). This leads to the exact power laws (without logarithmic corrections) $D \propto T^4$ and $\Gamma_0 \propto T^{-3/2}$ at low temperature; only the second one is accessible on the temperature interval of figure 5, but we checked the first one numerically on a larger temperature range.

To encourage an experimental study with cold atoms, let’s finish with a small study of the fundamental limits to the observability of phase diffusion of a trapped condensate. There are, of course, several practical difficulties to overcome, such as (i) significant reduction of the fluctuations in the energy and number of particles in the gas to mitigate the ballistic blurring of the phase, which is a dangerous competitor of the diffusion, (ii) the introduction of a sensitive and unbiased detection scheme for the condensate phase shift or coherence function $g_1(t)$, of the Ramsey type as proposed in references [17, 18], (iii) reduction of the technical noise of the experimental device, (iv) trapping of the atoms in a cell with a sufficiently high vacuum to make cold atom losses by collision with the residual hot gas negligible (one-body losses) : lifetimes of the order of the hour are possible under cryogenic environment [33, 34]. These practical aspects vary according to the experimental groups and are beyond the scope of this article. In contrast, particle losses due to three-body collisions, with the formation of a dimer and a fast atom, are intrinsic to alkaline atoms and constitute a fundamental limit. Each atom loss changes, at a random time, the rate of variation of the particle number decay rate, related as follows to the three-body losses and to the Thomas-Fermi $\rho_0(r)$ density profile of the condensate :

$$\frac{d}{dt} N \equiv -\Gamma_3 N = -\int d^3r [\rho_0(r)]^3$$

We obtain a more meaningful writing, directly comparable to our results without losses, by writing (84) in dimensioned form :

$$\overline{\text{Var}}_{\text{losses}}[\hat{\theta}(t) - \hat{\theta}(0)] \sim \frac{8}{525\pi} \frac{\bar{K}_3}{f^3}$$

where $\overline{\text{Var}}$ and \bar{f} are the variance of the phase shift and the elapsed time in the units of figure 4, and $\bar{K}_3 = mK_3/(\hbar a^4)$. The reduced constant \bar{K}_3 is an intrinsic property of the atomic species used in the experiment (even if it can be varied using a magnetic Feshbach resonance [36]). To estimate the order of magnitude of \bar{K}_3 in a gas of cold atoms, consider the example of rubidium 87 in the ground hyperfine sublevel $|F = 1, m_F = -1\rangle$ at vanishing magnetic field : measurements give $K_3 = 6 \times 10^{-42}$ m6/s and $a = 5.31$nm [37] so $\bar{K}_3 \approx 10$. In figure 4a ($k_B T = \mu \text{TF}$), at the reduced entrance time $\bar{t} = 5$ in the asymptotic regime of phase diffusion we see that the loss-induced parasitic variance for this value of \bar{K}_3 is about three times the useful variance; their very different time dependencies should, however, make it possible to separate them. The situation is much more favorable at higher temperature, $k_B T \gg \mu \text{TF}$, the effect of the losses on the phase shift variance being for example still negligible at the reduced time $\bar{t} = 100$ in figure 4b ($k_B T = 10\mu \text{TF}$).

4.5. Discussion of ergodic hypothesis

As shown by references [22, 23] in the case of a harmonic trap with cylindrical symmetry, the classical motion of Bogoliubov quasiparticles is highly chaotic at energies $\epsilon \approx \mu \text{TF}$ but even at this energy, the Poincaré sections reveal patches of stability in the phase space, which are not crossed by the trajectories of the chaotic sea : there is no ergodicity in the strict sense.

What about the case of a completely anisotropic trap ? We want to test the ergodic hypothesis for two physical quantities. The first one appears in our linearized kinetic equations, it is the $\Gamma(r, p)$ damping rate. The second appears
The temporal averaging of the histograms of these quantities after time averaging on each trajectory over times, but never eliminates a small lateral peak far from the ergodic average. This narrowing dynamics continues over very long times, but never eliminates a small lateral peak far from the ergodic average.

Figure 7: For the classical Hamiltonian dynamics of Bogoliubov quasiparticles in a harmonic potential, stability of the linear motion along an eigenaxis \(\Omega_y \) of the trap for an infinitesimal initial perturbation (a displacement) along another eigenaxis \(\Omega_x \), as a function of the energy \(\epsilon \) of the trajectory and the ratio \(\omega_{\Omega_x}/\omega_{\Omega_y} \) of the trapping frequencies (the shaded areas are stable).

In the initial conditions of the \(C_{eq}(r) \) correlation function of \(d\hat{\theta}/dt \), it is \(d\epsilon(\mathbf{r}, \mathbf{p})/d\epsilon_{TF} \). For a uniform sampling of the energy surface \(\epsilon \), that is with the probability distribution \(\delta(\epsilon - \epsilon(\mathbf{r}, \mathbf{p}))/\rho(\epsilon) \) in the phase space, we show in figure 6 the histograms of these quantities after time averaging on each trajectory over times \(t = 0 \), \(t = 5000/\tilde{\omega} \) and \(t = 250000/\tilde{\omega} \), at the energy \(\epsilon = \hbar k_B T = \mu_{TF} \) for incommensurable trapping frequencies. The temporal averaging leads to a spectacular narrowing of the probability distribution, which peaks around the ergodic mean (dashed line on the left), which goes in the direction of the ergodic hypothesis. This narrowing dynamics continues over very long times, but never eliminates a small lateral peak far from the ergodic average.

An inspection of the trajectories contributing to the lateral peak shows that they are small perturbations of the stable linear trajectories along the most confining trap axis. The temporal average value of the two quantities considered on these linear trajectories is represented by the right dashed vertical lines in figure 6, it is actually close to the peak in

20. Equations of motion (39, 40), put together as \(\frac{dX}{dt} = f(X) \), are numerically integrated with a semi-implicit scheme of the second order, \(X(t + dt) = X(t) + dt[1 - \frac{2}{3}M]^t f(X(t)) \) where \(M \) is the first differential of \(f(X) \) in \(X(t) \) [38]. If the trajectory crosses the surface of the condensate between \(t \) and \(t + dt \), we must determine the crossing time \(t_c \) with an error \(O(dt^2) \), then apply the diagram semi-implicit successively on \([t, t_c] \) and \([t_c, t + dt] \), to overcome the discontinuity of \(f(X) \) and its derivatives.
The stability diagram of a linear trajectory along an eigenaxis α of the trap, with respect to a perturbation along another eigenaxis β is shown in figure 7, in the plane (energy, ratio $\omega_\beta/\omega_\alpha$). It shows that the linear trajectory along the most confining axis is stable at all energies. The Poincaré sections of the planar trajectories in the $\alpha\beta$ planes in figure 8 specify the width of the stability island and reveal the existence of secondary islands, etc. There is therefore no full ergodicity of our classical dynamics, even at the energies $\epsilon \approx \mu_{\text{TF}}$, even in the completely anisotropic case.

To quantitatively measure the error made by the ergodic hypothesis in the computation of $C_{\text{mc}}(0)$ and $C_{\text{mc}}(\tau > 0)$, we consider the differences between

$$\left< \frac{d\epsilon(r,p)}{d\mu_{\text{TF}}} \right>_{\epsilon} \quad \text{and} \quad \left< \frac{d\epsilon(r,p)}{d\mu_{\text{TF}}} \right>_{\epsilon}^2$$

and

$$\left< \frac{1}{f(r,p)} \right>_{\epsilon} \quad \text{and} \quad \left< \frac{1}{G(r,p)} \right>_{\epsilon} = \frac{1}{\Gamma(\epsilon)}$$

where we recall that the horizontal bar $\overline{O(r,p)}$ above a physical quantity represents the time average on the trajectory.

21. The linear trajectory of a quasiparticle of energy ϵ along the proper axis $O\alpha$ of the trap is written $m^{1/2} \dot{r}_\alpha = i \epsilon / \mu_{\text{TF}} + i \epsilon \sin(\sqrt{3} \alpha_0 t) / \sqrt{C(0)}$ and $p_{\alpha}(t)/(2m)^{1/2} = \epsilon / \sqrt{\epsilon^2 + \epsilon^2}$ with $G(t) = \mu_{\text{TF}} + i \epsilon \cos(\sqrt{3} \alpha_0 t)$. This corresponds to the choice $r_{\alpha}(0) = 0, p_{\alpha}(0) \geq 0$ and is for $-\tau_s \leq t \leq \tau_s$, where the time to reach the surface of the condensate is given by $\sqrt{\alpha_0 t_s} = \cos \left(\frac{\mu_{\text{TF}}}{\sqrt{\epsilon^2}} \right)$. Outside the condensate, the quasiparticle oscillates harmonically like a free particle for a time $2\alpha_0^{-1} \arctan(\epsilon / \mu_{\text{TF}})^{1/2}$ before regaining the condensate, to cross it in a time $2\tau_s$, and so on. The knowledge of the trajectory makes immediate the linear analysis of numerical stability. It also allows to calculate analytically the time average of $d\epsilon(r,p)/d\mu_{\text{TF}}$ on the linear trajectory; if we put $\bar{\epsilon} = \epsilon / \mu_{\text{TF}}$, the result is written

$$\frac{d\epsilon(r,p)}{d\mu_{\text{TF}}} = \ln \left(\frac{1 + \sqrt{\epsilon^2}}{1 + \sqrt{\bar{\epsilon}^2}} \right) - \sqrt{\epsilon} \arctan \sqrt{\epsilon}$$

$$\arcsin \left(\frac{1 + \sqrt{\epsilon^2}}{1 + \sqrt{\bar{\epsilon}^2}} \right) + \sqrt{\epsilon} \arctan \sqrt{\bar{\epsilon}}$$

Figure 8: For the classical Hamiltonian dynamics of Bogoliubov quasiparticles in a harmonic potential, Poincaré sections in the plane $(r_\alpha = 0, p_\alpha(\epsilon) > 0)$ of planar trajectories in $\alpha\Omega_0$ (200 independent trajectories, evolution time 5000/ω_0, with a ratio $\omega_\alpha : \omega_\beta$ taking all possible values in the trap of figure 6 : $\sqrt{3}$, $\sqrt{3} : 1$, $\sqrt{3} : \sqrt{3} - 1$, $\sqrt{3} : \sqrt{3} - 1$ and $\sqrt{3} : \sqrt{3}$. The sections are ordered by increasing ratio $\omega_\alpha/\omega_\beta$ from left to right and from top to bottom (given that $1/\sqrt{3} < (\sqrt{3} - 1)/\sqrt{3} < 1/((\sqrt{3} - 1) < 1)$. This shows that the Poincaré section is more chaotic as the ratio $\omega_\alpha/\omega_\beta$ is larger. r_α is in units of $(\mu_{\text{TF}}/m\omega_0^2)^{1/2}$ and p_α in units of $(\mu_{\text{TF}})^{1/2}$.
going through \((\mathbf{r}, p)\) in phase space, as in equation (63), and the brackets \(\langle O(\mathbf{r}, p) \rangle_e\) represent the uniform mean over the energy shell \(\epsilon\) as in equation (64). In equations (87, 88), the left column contains the quantities appearing in \(C_{mc}(0)\) or in the secular kinetic equations before the ergodic approximation, and the right column what they become after ergodic approximation. Importantly, we consider in equation (88) \(1/\bar{\Theta}\) rather than \(\bar{\Theta}\) because it is the inverse \(M^{-1}\) and \(M^{-2}\) that appear in expressions (81, 82) of the diffusion coefficient \(D\) and the delay time \(t_0\), \(M\) being the operator representing the right-hand side of linearized kinetic equations (66). The quantities to be compared (87, 88) are represented as functions of the energy \(\epsilon\) in figure 9 at temperature \(T = \mu_{TF}/k_B\). There is a remarkable agreement on a wide range of energies around \(\epsilon = \mu_{TF}\). Deviations from the ergodic approximation at very low energy and very high energy were expected: within these limits, the classical dynamics becomes integrable [22]. At high energy, we obtain for the quantity \(\Gamma(\mathbf{r}, p)\) the following analytic prediction:

\[
\Gamma(\mathbf{r}, p) \sim \frac{\pi^{5/2}}{56 \sqrt{2} \mu_{TF}^3} \left(\frac{\epsilon}{\mu_{TF}} \right)^{3/2} \frac{1}{\rho(0)|a|^4} \sqrt{\frac{1}{\epsilon}} \label{eq:89}
\]

It differs from the ergodic prediction (77) by a numerical coefficient, and reproduces well the results of the numerical simulations (see the red dashed line in figure 9 b). This prevents us from calculating the diffusion coefficient \(D\) and the delay diffusion \(t_0\) in the secular-ergodic approximation at a too high temperature. Concerning \(d(\mathbf{r}, p)/d\mu_{TF}\), which tends to \(-1\) at high energy, the deviation can only be significant at low energy; in fact it does so only at very low energy, and it would be a problem for our ergodic calculation of \(D\) and \(t_0\) only at temperatures \(k_B T \ll \mu_{TF}\) rarely reached in cold atom experiments.

22. Should it be recalled, \(\bar{\Theta}(\mathbf{r}, p)\), the uniform mean being invariant by time evolution. So, the inequality between arithmetic mean and harmonic mean imposes \(1/\bar{\Theta}(\mathbf{r}, p) \geq 1/\Gamma(\epsilon)\).

23. At the dominant order in \(\epsilon\), we get \(\bar{\Theta}(\mathbf{r}, p)\) using the equivalent (97) (in which \(\mu_0 = g_{\lambda}(r)\)) on a harmonic trajectory undisturbed by the condensate, \(r_{\alpha}(t) = A_\lambda \cos(\omega_\lambda t + \phi_\lambda), \forall \alpha \in \{x, y, z\}\). Let us consider cleverly the quantity \(g_{\lambda}(r)\) to be averaged as a function \(\bar{f}(\theta)\) of the angles \(\theta \alpha = \omega_\lambda t + \phi_\lambda\). It is a periodic function of period \(2\pi\) in each direction, expandable in Fourier series, \(\bar{f}(\theta) = \sum_{n \in \mathbb{Z}} c_n e^{in\theta}\). In the incommensurable case, \(\mathbf{n} \cdot \omega \neq 0\) and the time average of \(e^{in\theta}\) is zero \(\forall n \in \mathbb{Z}\), so that \(\bar{f}(\theta) = c_0\). In the usual integral expression of \(c_0\), we make the change of variable \(x_\alpha = X_\alpha \cos \theta_\alpha\), where \(X_\alpha = (\epsilon_{\alpha}/\mu_{TF})^{1/2}\) and \(\epsilon_{\alpha}\) is the energy of the motion along \(\mathbf{a}_\alpha\). It remains to take the limit of all \(X_\alpha\) tending to \(+\infty\) under the integral sign to get

\[
\frac{\langle \Gamma(\mathbf{r}, p) \rangle}{\mu_{TF} \sqrt{\rho(0)|a|^4}} \sim \frac{32 \sqrt{2}}{15 \pi^{1/2}} \left(\frac{\epsilon}{\mu_{TF}} \right)^{1/2} \left(\frac{1}{\epsilon} \right)^{1/2} \prod_{\alpha} \left(\frac{\epsilon_{\alpha}}{\epsilon_{0}} \right)^{1/2}
\]

By averaging the inverse of this equivalent over the probability distribution \(2e^{-2\bar{\Theta}(\epsilon - \sum \epsilon_{\alpha})}\) of the energies per direction for a harmonic oscillator of total energy \(\epsilon\), we find \((89)\).
5. Conclusion

Motivated by recent experimental advances in the manipulation of trapped cold atom gases [1, 2, 3], we theoretically studied the coherence time and the phase dynamics of a Bose-Einstein condensate in an isolated and harmonically trapped boson gas, a fundamental problem important for interferometric applications. The variance of the phase shift experienced by the condensate after a time t increases indefinitely with t, which limits the intrinsic coherence time of the gas. For $t \gg t_{\text{coll}}$, where t_{coll} is the typical collision time between Bogoliubov quasiparticles, it becomes a quadratic function of time,

$$\text{Var}[\hat{\theta}(t) - \hat{\theta}(0)] = \Lambda t^2 + 2D(t - t_0) + o(1)$$

(90)

where $\hat{\theta}$ is the phase operator of the condensate. This asymptotic law has the same form as in the spatially homogeneous case previously studied [16], which was not guaranteed, but the coefficients of course differ. To calculate them, we consider the thermodynamic limit in the trap, in which the number of particles tends to infinity, $N \to +\infty$, at fixed temperature T and fixed Gross-Pitaevskii chemical potential μ_{GP}. This requires that the reduced trapping frequencies tend to zero, $\hbar \omega_{\alpha} / \mu_{\text{GP}} \to 0$, which we reinterpret as a classical limit $\hbar \to 0$.

The dominant term Λt^2 is due to the fluctuations in the initial state of the quantities conserved by temporal evolution, N and E, where E is the total energy of the gas. We give an explicit expression (16) - (19) - (20) of the coefficient Λ in a generalized ensemble, any statistical mixture of microcanonical ensembles with at most normal fluctuations of N and E. In this case, $\Lambda = O(1/N)$. We obtain a simpler form (30) in the case of a statistical mixture of canonical ensembles of the same temperature but of variable number of particles. At usual temperatures, larger than μ_{GP} / k_B, and for Poissonian particle number fluctuations, the contribution to Λ of thermal fluctuations of E is rendered negligible by a factor of order the non-condensed fraction $\propto (T/T_c)^3$. The variance of N must be reduced to see the effect of thermal fluctuations on the ballistic spread of the condensate phase.

The subdominant term $2D(t - t_0)$ does not depend on the ensemble in which the system is prepared, at least to the first non-zero order $1/N$ at the thermodynamic limit, and it is the only one that remains in the microcanonical ensemble. The calculation of its two ingredients, the diffusion coefficient D of the phase and the diffusion delay t_0, requires the knowledge at all times of the correlation function of $d\hat{\theta}/dt$ in the microcanonical ensemble, and thus the resolution of linearized kinetic equations on the Bogoliubov quasiparticle occupation numbers. It is indeed the temporal fluctuations of these occupation numbers for a given realization of the system which stochastic the evolution of the phase of the condensate. To this end, we adopt a semiclassical description, in which the motion of quasiparticles in the trapped gas is treated classically in the phase space (r, p), but the quasiparticle bosonic field is still quantum, through the occupation number operators $\hat{n}(r, p)$. In quantum observables of the form $\hat{A} = \sum_k a_k \hat{n}_k$, such as $d\hat{\theta}/dt$, the average a_k and the sum on the Bogoliubov quantum modes k are then replaced, according to a correspondence principle, by a temporal mean and an integral on the classical trajectories (see equations (42)-(44)). The linearized kinetic equations on the fluctuations $\delta \hat{n}(r, p)$ include a transport part, according to the classical Hamiltonian motion of quasiparticles, and a collision integral, local in position, which describes the Beliaev-Landau interaction processes among three quasiparticles. They take the same form as the linearized quantum Boltzmann equations on the semiclassical distribution function $n(r, p, t)$ of quasiparticles in phase space. We simplify them in the secular limit $\omega_{\alpha} t_{\text{coll}} \gg 1$ and under the assumption of a classical ergodic motion of quasiparticles. This hypothesis, according to which the fluctuations $\delta \hat{n}(r, p)$ averaged on a trajectory depend only on the energy of the trajectory, only holds if the trap is completely anisotropic; in this case we give a careful numerical justification.

The desired quantities D and t_0, correctly adimensioned, are universal functions of $k_B T / \mu_{\text{TF}}$, where μ_{TF} is the Thomas-Fermi limit of μ_{GP}, and are independent of the ratios $\omega_{\alpha} / \omega_0$ of the trapping frequencies. They are represented on figure 5. An interesting and more directly measurable by-product of our study are the $\Gamma(\epsilon)$ damping rates of the Bogoliubov modes of energy ϵ in the trap. Once the adimensioned temperature $k_B T / \mu_{\text{TF}}$ is fixed, the rate is also described by a universal function of $\epsilon / \mu_{\text{TF}}$ independent of the trapping frequencies, see figure 3. These results are part of a new class of universality, that of the completely anisotropic harmonic traps, very different from that, theoretically better explored, of spatially homogeneous systems, and will hopefully receive an experimental confirmation soon.
Acknowledgments

We thank the members of the cold fermions and the atom chips teams of LKB, especially Christophe Salomon, for useful discussions.

Appendix A. Behavior of $\Gamma(\epsilon)$ at low and high energy

To get the limiting behaviors (76) and (77) of the $\Gamma(\epsilon)$ damping rates of the Bogoliubov modes in a trap in the secularo-ergodic approximation, we rewrite the integral in phase space (64) as an average on the local Gross-Pitaevskii chemical potential $\mu_0 = g\rho_0(\mathbf{r})$ of the damping rate $\Gamma_0(\epsilon, \mu_0, k_B T)$ of a mode of energy ϵ in a homogeneous system of density ρ_0/g and temperature T:

$$\Gamma(\epsilon) = \int_0^{\mu_0} \int d\mu_0 P_\epsilon(\mu_0) \Gamma_0(\epsilon, \mu_0, k_B T)$$

with

$$P_\epsilon(\mu_0) \equiv \frac{1}{\rho(\epsilon)} \int \frac{d^3r \, d^3p}{(2\pi \hbar)^6} \delta(\epsilon - \epsilon(\mathbf{r}, \mathbf{p})) \delta(\mu_0 - g\rho_0(\mathbf{r})) = \frac{4}{\pi \rho(\epsilon)} \frac{1}{(\mu_0^2 + 2\epsilon)^{1/2}(\mu_0^2 + 2\epsilon + 1/2)^{1/2} + \mu_0^{1/2}}$$

In the $\epsilon \to 0$ limit, we first heuristically replace the integrand in equation (91) with a low energy equivalent, using:

$$P_\epsilon(\mu_0) \sim \frac{3}{8\sqrt{2}} \frac{\epsilon^{1/2}(\mu_0^{1/2} - \mu_0^{1/2})^{1/2}}{\mu_0^{1/2} \mu_0^{1/2}}$$

$$\frac{h\Gamma_0(\epsilon, \mu_0, k_B T)}{2} \sim \epsilon \left(\frac{\mu_0^{1/2}}{4}\right) F(k_B T/\mu_0)$$

In equation (93), we used equation (34); the result (94) is in reference [32], where the function F is computed and studied. As $F(\theta) \sim 2\pi^{1/2}/4$, this causes in equation (91) the divergent integral $\epsilon^{1/2} \int_0^{\mu_0} d\mu_0/\mu_0^2$ to appear. It is clear, however, that one should cut this integral to $\mu_0 > \epsilon$ so that the equivalent (94) remains usable, hence the scaling law $\Gamma(\epsilon) \approx \epsilon^{1/2}$, dominated by the edge of the trapped condensate and very different from the linear law of the homogeneous case. To find the prefactor in the law, we simply make the change of scale $\mu_0 = \epsilon v_0$ in the integral and use the "high temperature " approximation of reference [39] on Γ_0 uniform valid near the edge of the trapped condensate,

$$\frac{h\Gamma_0(\epsilon, \mu_0, k_B T)}{2} \sim \epsilon k_B T \left(\frac{\mu_0^{1/2}}{4}\right) \phi(\epsilon/\mu_0)$$

before going to the $\epsilon \to 0$ limit under the integral sign, which leads to the sought equation (76) with 24

$$I = \int_0^{v_0} dv_0 \frac{\phi(1/v_0)}{(1 + (v_0^2)^{1/2})^2} = 4.921 \ldots$$

In the limit $\epsilon \to +\infty$, we use the fact that, in the homogeneous case, the damping rate of quasiparticles is reduced to the collision rate $\rho_0 c v$ of a particle of velocity $v = (2e/m)^{1/2}$ with condensate particles, with zero velocity and density ρ_0, with the cross section $\sigma = 8\pi a^2$ for indistinguishable bosons (this is a Beliaev process):

$$\frac{\hbar\Gamma_0(\epsilon, \mu_0, k_B T)}{2} \sim \epsilon \rho_0 c \frac{(2me)^{1/2}}{h}$$

Using the same high energy expansion (35) for $\rho(\epsilon)$, we find that $P_\epsilon(\mu_0) \sim (8\pi/\pi)(\mu_0^{1/2} - \mu_0^{1/2})^{1/2} / \epsilon^{3/2}$. The insertion of these equivalents in equation (91) gives (77).

24. In practice, the function ϕ is deduced from equation (57) by doing the classical field approximation $1 + \delta(\mathbf{r}, \mathbf{q}) = \delta(\mathbf{r}, \mathbf{q}) = k_B T/c(\epsilon, \mathbf{q})$. In the numerical calculation of I, done by taking $\delta = 1/v_0$ as the integration variable, we reduce the effect of digital truncation with the help of the development asymptotic $\phi(\epsilon) \approx 4(\pi)^{1/2} \left[2 \ln \frac{\epsilon}{\epsilon} + \frac{\ln(\epsilon/2)}{2} + \frac{3\ln(\epsilon/2)}{4} \right]$, which corrects and improves equation (35) of reference [39].
Références

[1] R. Schmied, J.-D. Bancal, B. Allard, M. Fadel, V. Scarani, P. Treutlein, N. Sangouard, “Bell correlations in a Bose-Einstein condensate”, Science 352, 441 (2016).

[2] W. Muessel, H. Strobel, D. Linnemann, D.B. Hume, M.K. Oberthaler, “Scalable Spin Squeezing for Quantum-Enhanced Magnetometry with Bose-Einstein Condensates”, Phys. Rev. Lett. 113, 103004 (2014).

[3] T. Berrada, S. van Frank, R. Bücker, T. Schumm, J.-F. Schaff, J. Schmiedmayer, “Integrated Mach-Zehnder interferometer for Bose-Einstein condensates”, Nature Comm. 4, 2077 (2013).

[4] M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, “Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor”, Science 269, 198 (1995).

[5] K.B. Davis, M.-O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, W. Ketterle, “Bose-Einstein condensation in a gas of sodium atoms”, Phys. Rev. Lett. 75, 3969 (1995).

[6] F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, “Theory of Bose-Einstein condensation in trapped gases”, Rev. Mod. Phys. 71, 469 (1999).

[7] H. Deng, G. Weihs, C. Santoro, J. Bloch, Y. Yamamoto, “Condensation of semiconductor microcavity exciton polaritons”, Science 298, 199 (2002).

[8] J. Kasprzak, M. Richard, S. Kuebler, A. Baas, P. Jeambaum, J.M.J. Keeling, M.M. Marchetti, M.H. Szymańska, R. André, J.L. Schmiedmayer, V. Savona, P.B. Littlewood, B. Deveaud, Le Si Dang, “Bose-Einstein condensation of exciton polaritons”, Nature 443, 409 (2006).

[9] A. Arno, J. Lefèvre, S. Pigeon, C. Adrados, C. Cutri, I. Carusotto, R. Houdré, E. Giacobino, A. Bramati, “Superfluidity of Polaritons in Semiconductor Microcavities”, Nature Phys. 5, 805 (2009).

[10] M. Fliesser, A. Csordás, R. Graham, P. Szépfalusy, “Classical quasiparticle dynamics in trapped Bose condensates”, Phys. Rev. A 57, 4241 (1998).

[11] M. Fliesser, R. Graham, “Decoherence of Bose-Einstein Condensates in Traps at Finite Temperature”, Phys. Rev. A 58, 1450 (1998).

[12] A. B. Kuklov, J. L. Birman, “Orthogonality catastrophe and decoherence of a confined Bose-Einstein condensate at finite temperature”, Phys. Rev. A 63, 013609 (2000).

[13] A. Sinatra, Y. Castin, E. Witkowski, “Nondiffusive phase spreading of a Bose-Einstein condensate at finite temperature”, Phys. Rev. A 75, 033616 (2007).

[14] A. Sinatra, Y. Castin, “Genuine phase diffusion of a Bose-Einstein condensate in the microcanonical ensemble: A classical field study”, Phys. Rev. A 78, 053615 (2008).

[15] A. Sinatra, Y. Castin, E. Witkowski, “Coherence time of a Bose-Einstein condensate”, Phys. Rev. A 80, 033614 (2009).

[16] A. Sinatra, Y. Castin, “Spatial and temporal coherence of a Bose-condensed gas”, in "Condensed Matter Physics, Quantum Gravity and Information", ed. by R. K. Kikuchi, World Scientific, Singapore (2010).

[17] H. Kurkjian, Y. Castin, A. Sinatra, “Brouillage thermique d’un gaz cohérent de fermions”, Comptes Rendus Physique 17, 789 (2016) [open access, doi: 10.1016/j.crhy.2016.02.005].

[18] A. L. Gaunt, T. F. Schmidt, I. Götthovych, R. P. Smith, Z. Hadzibabic, “Bose-Einstein Condensation of Atoms in a Uniform Potential”, Phys. Rev. Lett. 110, 200406 (2013).

[19] P. O. Fedichev, G. V. Shlyapnikov, J. T. M. Walraven, “Damping of Low-Energy Excitations of a Trapped Bose-Einstein Condensate at Finite Temperatures”, Phys. Rev. Lett. 89, 2269 (1998).

[20] A. Sinatra, Y. Castin, E. Witkowski, “Limit of spin squeezing in trapped Bose-Einstein condensates”, EPL 102, 40001 (2013).

[21] M. Fliesser, A. Coard, R. Graham, P. Szépfalusy, “Classical quasiparticle dynamics in trapped Bose condensates”, Phys. Rev. A 56, 4879 (1997).

[22] M. Fliesser, R. Graham, “Classical quasiparticle dynamics and chaos in trapped Bose condensates”, Physica D 131, 141 (1999).

[23] Y. Castin, R. Dun, “Low temperature Bose-Einstein condensates in time dependent traps: beyond the $U(1)$-symmetry breaking approach”, Phys. Rev. A 57, 3008 (1998).

[24] J. M. Deutsch, “Quantum statistical mechanics in a closed system”, Phys. Rev. A 43, 2046 (1991).

[25] M. Srednicki, “Chaos and quantum thermalization”, Phys. Rev. E 50, 888 (1994).

[26] M. Rigol, V. Dunjko, M. Olshanii, “Thermalization and its mechanism for generic isolated quantum systems”, Nature 452, 854 (2008).

[27] T. D. Lee, C. N. Yang, “Many-Body Problem in Quantum Mechanics and Quantum Statistical Mechanics”, Phys. Rev. 105, 1119 (1957).

[28] L. Carr, Y. Castin, G. Shlyapnikov, “Achieving a BCS transition in an atomic Fermi gas”, Phys. Rev. Lett. 92, 150404 (2004).

[29] E. M. Wright, D. F. Walls, J. C. Garrison, “Collapses and Revivals of Bose-Einstein Condensates Formed in Small Atomic Samples”, Phys. Rev. Lett. 77, 2156 (1996).

[30] Y. Castin, J. Dalibard, “Relative phase of two Bose-Einstein condensates”, Phys. Rev. A 55, 4330 (1997).

[31] S. Giorgini, “Damping in dilute gases : a mean-field approach”, Phys. Rev. A 57, 2949 (1998).

[32] A. Sinatra, Y. Castin, “Phase Dynamics of Bose-Einstein Condensates : Losses versus Revivals”, Eur. Phys. J. D 4, 247, (1998).

[33] A. Sinatra, Y. Castin, “Phase Dynamics of Bose-Einstein Condensates : Losses versus Revivals”, Eur. Phys. J. D 4, 247 (1998).

[34] Z. Shotan, O. Machety, S. Kokkelmans, L. Khaykovich, “Three-Body Recombination at Vanishing Scattering Lengths in an Ultracold Bose Gas”, Phys. Rev. Lett. 113, 053202 (2014).

[35] M. Egorov, B. Opanchuk, P. Drummond, B.V. Hall, P. Hannaford, A.I. Sidorov, “Measurement of s-wave scattering lengths in a two-component Bose-Einstein condensate”, Phys. Rev. A 87, 053614 (2013).

[36] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes (Cambridge University Press, Cambridge, 1988).

[37] P. O. Fedichev, G. V. Shlyapnikov, “Finite-temperature perturbation theory for a spatially inhomogeneous Bose-condensed gas”, Phys. Rev. A 58, 3146 (1998).
Abstract
We study the condensate phase dynamics in a low-temperature equilibrium gas of weakly interacting bosons, harmonically trapped and isolated from the environment. We find that at long times, much longer than the collision time between Bogoliubov quasi-particles, the variance of the phase accumulated by the condensate grows with a ballistic term quadratic in time and a diffusive term affine in time. We give the corresponding analytical expressions in the limit of a large system, in the collisionless regime and in the ergodic approximation for the quasi-particle motion. When properly rescaled, they are described by universal functions of the temperature divided by the Thomas-Fermi chemical potential. The same conclusion holds for the mode damping rates. Such universality class differs from the previously studied one of the homogeneous gas.

Keywords: Bose gases; Bose-Einstein condensate; temporal coherence; trapped gases; ultracold atoms

Résumé
Nous étudions la dynamique de phase à l’équilibre d’un condensat dans un gaz de bosons en interaction faible harmoniquement piégé et isolé de l’environnement. Nous trouvons qu’au bout d’un temps long devant le temps de collision typique entre les quasi-particules de Bogolioubov, la variance du déphasage du condensat comporte en général un terme balistique quadratique en temps et un terme diffusif affine en temps. Nous donnons des expressions analytiques des coefficients correspondants, à la limite d’un grand système, dans le régime faiblement collisionnel et dans l’approximation ergodique pour le mouvement des quasi-particules. Correctement adimensionnés, ils sont décrits, tout comme les taux d’amortissement des modes, par des fonctions universelles de la température ramenée au potentiel chimique de Thomas-Fermi du condensat. Cette classe d’universalité diffère de celle précédemment étudiée du gaz spatialement homogène.

Mots-clés : gaz de bosons ; condensat de Bose-Einstein ; cohérence temporelle ; gaz piégés ; atomes froids

1. Introduction et vue d’ensemble

Nous considérons ici un problème encore non résolu de la théorie des gaz quantiques, celui du temps de cohérence d’un gaz de bosons sans spin en interaction faible de portée négligeable, préparé dans un piège harmonique à l’équilibre thermique à une température T très inférieure à la température critique T_c, c’est-à-dire dans un régime fortement condensé de Bose, et parfaitement isolé dans son évolution ultérieure. Le temps de cohérence du champ bosonique est alors intrinsèque et dominé par celui du condensat. Au vu de progrès techniques récents [1, 2, 3], cette question pourrait recevoir bientôt une réponse expérimentale dans les gaz d’atomes froids confinés dans des potentiels magnétiques non dissipatifs [4, 5, 6] et, contrairement à d’autres systèmes de gaz de bosons en physique du solide [7, 8, 9, 10], bien découplés de leur environnement et ne présentant que de faibles pertes de particules. Aussi notre étude théorique est-elle importante pour les applications à venir en optique atomique et interférométrie à ondes de matière.
Faisant suite aux travaux pionniers des références [11, 12, 13], nos études théoriques [14, 15, 16, 17], effectuées dans un gaz de bosons spatialement homogène, s’appuient sur la méthode de Bogolioubov, qui réduit le système à un gaz de quasi-particules en interaction faible. Elles ont identifié deux mécanismes limitant le temps de cohérence et faisant intervenir tous deux la dynamique de l’opérateur phase \(\hat{\theta}(t) \) du condensat :

— le brouillage de phase : lorsque les quantités conservées (l’énergie \(E \) du gaz et son nombre de particules \(N \)) fluctuent d’une réalisation expérimentale à l’autre, la vitesse moyenne d’évolution de la phase \((\hat{\theta}(t) - \hat{\theta}(0))/t \) sur une réalisation, fonction de ces quantités conservées, fluctue elle aussi. Après moyenne sur les réalisations, ceci induit un étalonnage balistique du déphasage \(\hat{\theta}(t) - \hat{\theta}(0) \), c’est-à-dire une divergence quadratique de sa variance, avec un coefficient balistique \(A \) [14] :

\[
\text{Var}[\hat{\theta}(t) - \hat{\theta}(0)] \sim At^2
\]

(1) ceci aux temps longs devant \(\gamma^{-1}_\text{coll} \), où \(\gamma\text{coll} \) est le taux de collision typique entre les quasi-particules de Bogolioubov thermiques ;

— la diffusion de phase : même si le système est préparé dans l’ensemble microcanonique, où \(E \) et \(N \) sont fixés, les interactions entre quasi-particules font fluctuer leurs nombres d’occupation, et donc la vitesse instantanée \(\dot{\theta} \) de la phase, en particulier. Ceci induit un étalonnage diffusif de \(\hat{\theta}(t) - \hat{\theta}(0) \) aux temps \(t \gg \gamma^{-1}_\text{coll} \), avec un coefficient de diffusion \(D \) [15, 16] :

\[
\text{Var}_{\text{mc}}[\hat{\theta}(t) - \hat{\theta}(0)] \sim 2Dt
\]

Dans le cas général, les deux mécanismes sont présents et la variance du déphasage admet (1) comme terme dominant, (2) comme terme sous-dominant. L’étalement de la phase du condensat renseigne directement sur sa fonction de cohérence temporelle du premier ordre,

\[
g_1(t) = \langle \hat{a}_0^\dagger(t)\hat{a}_0(0) \rangle
\]

où \(\hat{a}_0 \) est l’opérateur d’annihilation d’un boson dans le mode du condensat, en vertu de la relation approchée

\[
g_1(t) \approx e^{-i(\hat{\theta}(t) - \hat{\theta}(0))} e^{-\text{Var}[\hat{\theta}(t) - \hat{\theta}(0)]/2}
\]

(4) admise dans la référence [17] sous l’hypothèse d’une distribution gaussienne de \(\hat{\theta}(t) - \hat{\theta}(0) \), puis justifiée dans la référence [18] à suffisamment basse température sous des conditions assez générales.1

Nous nous proposons ici de généraliser ces premières études au cas expérimentalement plus habituel d’un système préparé dans l’ensemble microcanonique, à montrer que

\[
f(\theta) \approx \text{const} \times e^{-\gamma^{-1}_\text{coll} (\theta - \theta(0))/D}
\]

(3) est la fonction de corrélation de \(\hat{\theta}(t) - \hat{\theta}(0) \) sur une réalisation, fonction de ces quantités conservées, fluctue elle aussi. Après moyenne sur les réalisations, ceci induit un étalement balistique du déphasage \(\hat{\theta}(t) - \hat{\theta}(0) \), c’est-à-dire une divergence quadratique de sa variance, avec un coefficient balistique \(A \) [14] :

\[
\text{Var}[\hat{\theta}(t) - \hat{\theta}(0)] \sim At^2
\]

(1) ceci aux temps longs devant \(\gamma^{-1}_\text{coll} \), où \(\gamma\text{coll} \) est le taux de collision typique entre les quasi-particules de Bogolioubov thermiques ;

— la diffusion de phase : même si le système est préparé dans l’ensemble microcanonique, où \(E \) et \(N \) sont fixés, les interactions entre quasi-particules font fluctuer leurs nombres d’occupation, et donc la vitesse instantanée \(\dot{\theta} \) de la phase, en particulier. Ceci induit un étalonnage diffusif de \(\hat{\theta}(t) - \hat{\theta}(0) \) aux temps \(t \gg \gamma^{-1}_\text{coll} \), avec un coefficient de diffusion \(D \) [15, 16] :

\[
\text{Var}_{\text{mc}}[\hat{\theta}(t) - \hat{\theta}(0)] \sim 2Dt
\]

Dans le cas général, les deux mécanismes sont présents et la variance du déphasage admet (1) comme terme dominant, (2) comme terme sous-dominant. L’étalement de la phase du condensat renseigne directement sur sa fonction de cohérence temporelle du premier ordre,

\[
g_1(t) = \langle \hat{a}_0^\dagger(t)\hat{a}_0(0) \rangle
\]

où \(\hat{a}_0 \) est l’opérateur d’annihilation d’un boson dans le mode du condensat, en vertu de la relation approchée

\[
g_1(t) \approx e^{-i(\hat{\theta}(t) - \hat{\theta}(0))} e^{-\text{Var}[\hat{\theta}(t) - \hat{\theta}(0)]/2}
\]

(4) admise dans la référence [17] sous l’hypothèse d’une distribution gaussienne de \(\hat{\theta}(t) - \hat{\theta}(0) \), puis justifiée dans la référence [18] à suffisamment basse température sous des conditions assez générales.1

Nous nous proposons ici de généraliser ces premières études au cas expérimentalement plus habituel d’un système harmoniquement piégé (voir cependant la référence [19]). Les lois de dépendance des taux d’amortissement des modes de Bogolioubov en l’énergie propre des modes ou en la température sont déjà très différentes de celles du cas homogène, comme l’a montré la référence [20]. Il en ira certainement de même pour l’étalement de la phase du condensat. Le cas piégé est non trivial, puisque les modes de Bogolioubov ne sont pas connus analytiquement, et qu’il n’y a pas d’approximation d’homogénéité locale applicable à l’évolution de la phase (comme l’a vérifié la référence [21]). Nous disposons heureusement d’échappatoires :

— la limite classique pour le mouvement des quasi-particules de Bogolioubov dans le gaz piégé. En effet, à la limite thermodynamique \((N \rightarrow +\infty \text{ à potentiel chimique de Gross-Pitaevskii } \mu_{\text{GP}} \text{ et température fixée}) \), les pulsations de piégeage \(\omega_\alpha, \alpha \in \{x, y, z\} \), tendent vers zéro comme \(1/N^{1/3} \) si bien que

\[
\hbar\omega_\alpha \ll \mu_{\text{GP}}, k_BT
\]

(5) ce que l’on peut réinterpréter astucieusement comme une limite classique \(\hbar \rightarrow 0 \).

1. Rappelons les hypothèses utilisées dans la référence [18] pour établir l’équation (4). (i) Les fluctuations relatives du module de \(\hat{a}_0 \) sont faibles, le système étant fortement condensé de Bose. (ii) Le système est suffisamment proche de la limite thermodynamique, avec des fluctuations normales et des lois asymptotiquement gaussiennes pour l’énergie et le nombre de particules. Ceci sert en particulier à mettre la contribution balistique du déphasage à \(g_1(t) \) sous la forme (4). (iii) Le coefficient de diffusion de la phase (d’ordre \(1/N \)) doit être beaucoup plus faible que le taux de collision typique \(\gamma_{\text{coll}} \) entre quasi-particles de Bogolioubov (d’ordre \(N^2 \)) mais beaucoup plus grand que l’espace des niveaux d’énergie (d’ordre \(N^{-2} \)) des paires de quasi-particules créées ou annihilées lors des processus de collision Belaev-Landau. Ceci sert, pour un système préparé dans l’ensemble microcanonique, à montrer que \(g_1(t) \) est de la forme (4) sur les intervalles de temps \(t = O(N^0) \) et \(t = O(N^3) \), avec le même coefficient de diffusion. (iv) La fonction de corrélation de \(\hat{\theta}(t) - \hat{\theta}(0) \) est réelle, comme le prédissent les équations cinétiques. (v) On néglige le commutateur de \(\hat{\theta}(t) \) avec \(\hat{\theta}(0) \), ce qui introduit une erreur de phase \(\text{O}(t/N) \) dans le facteur \(\exp[-i(\hat{\theta}(t) - \hat{\theta}(0))]. \) C’est une erreur d’ordre unité aux temps \(t = N \) mais \(g_1(t) \) a alors commencé à décroître sous l’effet de la diffusion de phase dans l’ensemble microcanonique et (s’est sinon déjà très fortement amortie sous l’effet du brouillage de phase balistique au bout d’un temps \(t = N^{1/3} \).
— la limite d’interactions très faibles entre les quasi-particules de Bogolioubov :

\[\gamma_{\text{coll}} \ll \omega_\mu \]

Ceci implique que tous les modes du condensat, même ceux de plus basse pulsation \(\approx \omega_\mu \), sont dans le régime faiblement collisionnel (par opposition à hydrodynamique), et permet d’effectuer une approximation séculaire sur les équations cinétiques décrivant les collisions entre les quasi-particules ;

— l’ergodicité dans un piège complètement anisotrope : comme l’ont montré les références [22, 23], le mouvement classique des quasi-particules dans un piège harmonique non isotrope à symétrie de révolution est fortement chaotique aux énergies \(\epsilon \approx \mu_{\text{GP}} \) mais quasi intégrable lorsque \(\epsilon \to 0 \) ou \(\epsilon \to +\infty \). Dans un piège complètement anisotrope, aux températures ni trop petites ni trop grandes devant \(\mu_{\text{GP}}/k_B \), on peut espérer compléter l’approximation séculaire par l’hypothèse d’ergodicité, ce que nous nous attacherons à montrer.

Notre article est articulé comme suit. Dans la section 2, après quelques rappels minimaux sur la théorie de Bogolioubov dans un piège, nous spécifions l’état du système et introduisons les quantités permettant de décrire formellement l’étalonnage de la phase, à savoir la dérivée de l’opérateur phase du condensat et sa fonction de corrélation temporelle. Dans la section 3, nous donnons une expression du coefficient balistique \(A \) à la limite thermodynamique dans un piège harmonique quelconque (y compris isotrope), d’abord dans l’état du système le plus général considéré ici puis dans le cas plus simple d’un mélange statistique d’ensembles canoni ques de même température \(T \). Dans la longue section 4, nous nous attaquons au cœur du problème, le calcul de la fonction de corrélation \(C_{\text{mc}}(\tau) \) de \(d\hat{\theta}/dt \) dans l’ensemble microcanonique, qui donne accès en toute généralité aux termes d’étalonnage sous-balistiques de la phase, puisqu’ils sont indépendants de l’état du système à la limite thermodynamique à énergie moyenne et nombre moyen de particules fixés. Nous passons d’abord à la limite semi-classique dans la sous-section 4.1, le mouvement des quasi-particules de Bogolioubov étant traité classiquement mais le champ des quasi-particules restant quantique bosonique ; la forme semi-classique de \(d\hat{\theta}/dt \) est déduite d’un principe de correspondance. Nous écrivons ensuite, dans la sous-section 4.2, des équations cinétiques sur les nombres d’occupation des quasi-particules dans l’espace des phases classique \((r, p)\) et nous montrons comment, une fois linéarisées, elles conduisent formellement à \(C_{\text{mc}}(\tau) \). Le problème reste formidable, puisque les nombres d’occu pation dépendent des six variables \((r, p, t)\) et du temps. À la limite séculaire \(\gamma_{\text{coll}} \ll \omega_\mu \) et dans l’approximation ergodique sur le mouvement des quasi-particules (ce qui exclut le piège iso trope ou à symétrie de révolution), nous nous ramenons dans la sous-section 4.3 à des nombres d’occupation fonction de la seule énergie \(\epsilon \) du mouvement classique et du temps, ce qui conduit à des résultats explicites sur \(C_{\text{mc}}(\tau) \), sur la diffusion de phase et, sous-produit intéressant, sur le taux d’amortissement des modes de Bogolioubov dans le piège, dans la sous-section 4.4 où nous évaluons également le déphasage du condensat dû aux pertes de particules. Enfin, nous procédons à une discussion critique de l’approximation ergodique dans la sous-section 4.5, en estimant en particulier l’erreur qu’elle introduit sur les quantités pilotant la diffusion de phase du condensat. Nous concluons dans la section 5.

2. Rappels sur le formalisme et les résultats

La dérivée de la phase – Comme nous l’avons rappelé dans l’introduction, le temps de cohérence d’un condensat est contrôlé par la dynamique de son opérateur phase \(\hat{\theta}(t) \) aux temps longs devant le temps de collision \(\gamma_{\text{coll}}^{-1} \) typique des quasi-particules. Le point de départ de notre étude est donc l’expression de la dérivée temporelle de \(\theta(t) \), lissée temporellement (c’est-à-dire moyennée sur un temps court devant \(\gamma_{\text{coll}}^{-1} \) mais long devant l’inverse de la pulsation typique \(\epsilon_{\text{th}}/\hbar \) des quasi-particules thermiques), telle que l’a établie en toute généralité la référence [18] à l’ordre un en la fraction non condensée :

\[-\hbar \frac{d\hat{\theta}}{dt} = \mu_0(\hat{N}) + \sum_{k \in \Gamma} \frac{d\epsilon_k}{d\hat{N}} \hat{n}_k \equiv \hat{\mu}. \]

(7)

Ici \(\mu_0(\hat{N}) \) est le potentiel chimique du gaz dans l’état fondamental et \(\hat{N} \) est l’opérateur nombre total de particules. La somme sur le nombre quantique générique \(k \) (ce n’est pas un nombre d’onde) porte sur les modes de Bogolioubov d’énergie propre \(\epsilon_k \), et \(\hat{n}_k \) est l’opérateur nombre de quasi-particules dans le mode \(k \). L’expression (7) est une version quantique de la seconde relation de Josephson : son second membre est un opérateur potentiel chimique \(\hat{\mu} \)
du gaz, puisque c’est la dérivée adiabatique (aux nombres d’occupation \hat{n}_k fixés) par rapport à N du hamiltonien de Bogolioubov

$$
\hat{H}_{\text{Bog}} = E_0(N) + \sum_{k \epsilon \mathcal{F}} \epsilon_k \hat{n}_k
$$

Les modes de Bogolioubov sont de la famille \mathcal{F}, suivant la terminologie de la référence [24], au sens où leurs fonctions modales $(\mu_s(r), v_s(r))$ sont solutions de l’équation aux valeurs propres

$$
\epsilon_k \begin{pmatrix} \mu_k \\ v_k \end{pmatrix} = \begin{pmatrix} \hat{H}_G \rho + Q g_0(\hat{F}) \rho & Q g_0(\hat{F}) \rho \\ -Q g_0(\hat{F}) \rho & -[\hat{H}_G + Q g_0(\hat{F}) \rho] \end{pmatrix} \begin{pmatrix} \mu_k \\ v_k \end{pmatrix} \equiv \mathcal{L}(\hat{F}, \hat{p}) \begin{pmatrix} \mu_k \\ v_k \end{pmatrix}
$$

avec la condition de normalisation $\int \mathrm{d}^3 r |(\mu_s(r)|^2 - |v_s(r)|^2) = 1 > 0$. On a pris la fonction d’onde $\phi_0(r)$ du condensat réelle, normalisée à l’unité $(\int \mathrm{d}^3 r \hat{\phi}_0^2(r) = 1)$, et écrite à l’ordre zéro en la fraction non condensée, c’est-à-dire à l’approximation de Gross-Pitaevskii :

$$
H_{\text{GP}} \phi_0 = 0 \quad \text{avec} \quad H_{\text{GP}} = \frac{\hat{p}^2}{2m} + U(\hat{r}) + g \rho_0(\hat{r}) - \mu_{\text{GP}}
$$

si bien qu’à cet ordre, la densité condensée vaut $\rho_0(r) = N \hat{\phi}_0^2(r)$. Ici, $g = 4 \pi \hbar^2 a / m$ est la constante de couplage, proportionnelle à la longueur de diffusion a dans l’onde s entre les bosons de masse m, et $U(r) = \sum_\alpha m \omega_\alpha^2 r_\alpha^2 / 2$ est leur potentiel de piégeage. Le projecteur Q projette orthogonalement à $|\phi_0\rangle$ et assure que $|\phi_0\rangle \perp |\mu_k\rangle$ et $|\phi_0\rangle \perp |v_k\rangle$ comme il se doit [24]. Comme le condensat est dans son mode fondamental $(\phi_0$ minimise la fonctionnelle énergie de Gross-Pitaevskii), les ϵ_k sont positifs.

L’état du système — Le refroidissement des gaz d’atomes froids par évaporation ne conduit a priori à aucun des ensembles habituels de la physique statistique. Pour couvrir tous les cas raisonnables, nous supposons donc que le gaz est préparé à l’instant 0 dans un ensemble généralisé, mélange statistique d’états propres $|\phi_0\rangle$ du hamiltonien complet \hat{H} à N_s corps et d’énergie E_s, donc d’opérateur densité

$$
\hat{\sigma} = \sum_j \Pi_j|\phi_j\rangle \langle \phi_j|
$$

avec comme seule restriction l’existence de lois étroites sur E_s et N_s, de variances et covariance ne croissant pas plus vite que les moyennes E et N à la limite thermodynamique.

Déphasage moyen — Moyennons l’expression (7) dans l’état stationnaire $|\phi_s\rangle$. Au second membre apparaît l’espérance de l’opérateur potentiel chimique dans $|\phi_s\rangle$. À cause des interactions entre les quasi-particules de Bogolioubov, on s’attache à ce que le système à N corps soit ergodique au sens quantique du terme, c’est-à-dire qu’il souscrive au principe de microcanonicité des états propres (Eigenstate Thermalisation Hypothesis dans la littérature anglo-américaine, voir les références [25, 26, 27]), soit

$$
\langle \phi_s| [\hat{H}, |\phi_s\rangle] = \mu_{\text{mc}}(E_s, N_s)
$$

où $\mu_{\text{mc}}(E, N)$ est le potentiel chimique dans l’ensemble microcanonique d’énergie E à N particules. Pour un grand système, il suffit de développer au premier ordre en les fluctuations, étant donné la faiblesse de leurs valeurs relatives :

$$
\mu_{\text{mc}}(E, N, \epsilon) = \mu_{\text{mc}}(\bar{E}, \bar{N}) + (E_s - \bar{E}) \partial_E \mu_{\text{mc}}(\bar{E}, \bar{N}) + (N_s - \bar{N}) \partial_N \mu_{\text{mc}}(\bar{E}, \bar{N}) + O(1/N)
$$

Il reste à moyennier sur les états $|\phi_s\rangle$ avec les poids Π_j comme dans l’équation (11) pour obtenir la première brique à la fonction de cohérence temporelle (4), le déphasage moyen :

$$
\langle \hat{\theta}(t) - \hat{\theta}(0) \rangle = -\mu_{\text{mc}}(E, N) t / \hbar
$$

avec une erreur $O(1/N)$ sur le coefficient de t.

Déphasage quadratique moyen — En procédant de la même manière pour le second moment du déphasage du condensat, nous trouvons comme il est écrit un peu implicitement dans [16, 18] que

$$
\text{Var} [\hat{\theta}(t) - \hat{\theta}(0)] = \text{Var} [\hat{\theta}(t)] + 2 \int_0^t \mathrm{d}r (t - r) \text{Re} C_{\text{mc}}(r)
$$

(15)
avec le coefficient balistique

\[A = \text{Var}(N_k - \bar{N}) \partial_N \mu_{mc}(E, \bar{N}) + (E_v - \bar{E}) \partial_E \mu_{mc}(E, \bar{N}) \right\}/\hbar^2 \]

(16)

et la fonction de corrélation de la dérivée de la phase dans l’ensemble microcanonique d’énergie \(\bar{E} \) à \(\bar{N} \) particules :

\[C_{mc}(\tau) = \left\{ \frac{\partial \hat{\mu}}{\partial t}(\tau) \frac{\partial \hat{\mu}}{\partial t}(0) \right\}_{mc} - \left(\frac{\partial \hat{\mu}}{\partial t} \right)_{mc}^2 \]

(17)

Voici qui complète notre connaissance formelle de l’état fondamental du gaz dans le piège harmonique. À la limite thermodynamique, l’énergie \(\bar{E} \) à \(\bar{N} \) et \(\bar{E} - \bar{\mu} \) tendent vers 0, alors que l’énergie libre \(E_{\text{can}}(T, \bar{N}) \) tend vers le potentiel chimique canonique \(\mu_{can}(T, \bar{N}) \).

3. Calcul du coefficient balistique dans la variance du déphasage

Dans l’ensemble statistique généralisé – Pour calculer le déphasage moyen (14) et le coefficient balistique (16) dans le cas général, nous devons connaître le potentiel chimique microcanonique \(\mu_{mc}(E, \bar{N}) \) et ses dérivées dans le piège harmonique. À la limite thermodynamique, \(\mu_{mc} \) coïncide avec le potentiel chimique \(\mu_{can} \) dans l’ensemble canonique de température \(T \) et nombre de particules \(\bar{N} \), plus commode à calculer, si la température \(T \) est ajustée pour qu’il y ait égalité des énergies moyennes \(E_{\text{can}}(T, \bar{N}) \) et \(\bar{E} \). En d’autres termes,

\[\mu_{mc}(E_{\text{can}}(T, \bar{N}), \bar{N}) \sim \mu_{can}(T, \bar{N}) \]

(18)

Il suffit de dériver cette relation par rapport à \(T \) ou \(\bar{N} \) pour obtenir les dérivées utiles de \(\mu_{mc} \), puis de remplacer \(E_{\text{can}} \) par \(\bar{E} \), ce qui donne :

\[\partial_E \mu_{mc}(E, \bar{N}) \sim \frac{\partial \mu_{can}(T, \bar{N})}{\partial T E_{\text{can}}(T, \bar{N})} \]

(19)

\[\partial_N \mu_{mc}(E, \bar{N}) \sim \frac{\partial \mu_{can}(T, \bar{N})}{\partial T E_{\text{can}}(T, \bar{N})} - \frac{\partial N E_{\text{can}}(T, \bar{N})}{\partial T E_{\text{can}}(T, \bar{N})} \frac{\partial \mu_{can}(T, \bar{N})}{\partial T} \]

(20)

Au premier ordre en la fraction non condensée, le potentiel chimique canonique se déduit de l’énergie libre \(F \) du gaz parfait de quasi-particules de Bogolioubov de hamiltonien (8) par la relation thermodynamique habituelle \(\mu_{can} = \partial_N F \). L’énergie libre est une fonctionnelle simple de la densité d’états \(\rho(\epsilon) \) des quasi-particules,

\[F(T, \bar{N}) = E_0(\bar{N}) + k_B T \int_0^{\gamma} d\epsilon \rho(\epsilon) \ln \left(1 - e^{-\beta \epsilon} \right) \]

(21)

avec \(\beta = 1/k_B T \). À la limite thermodynamique, l’énergie \(E_0 \) de l’état fondamental du gaz dans le piège harmonique se déduit de celle du système homogène [28] par une approximation d’homogénéité locale, et la densité d’états \(\rho(\epsilon) \) s’obtient par prise de la limite classique \(h \to 0 \), en vertu de l’inégalité (5) [6] :

\[\rho(\epsilon) = \int \frac{d^3r d^3p}{(2\pi\hbar)^3} \delta(\epsilon - \epsilon(\mathbf{r}, \mathbf{p})) \]

(22)

Le hamiltonien classique \(\epsilon(\mathbf{r}, \mathbf{p}) \) est la valeur propre positive de la matrice \(2 \times 2 \) de Bogolioubov de l’équation (9) avec la position \(\mathbf{r} \) et l’impulsion \(\mathbf{p} \) traitées classiquement² et la densité condensée \(\rho_0(\mathbf{r}) \) écrite à la limite classique c’est-à-dire dans l’approximation de Thomas-Fermi :

\[g_{TF}^0 \mu_{\text{loc}}(\mathbf{r}) = \begin{cases} \mu_{TF} - U(\mathbf{r}) & \text{si} \ U(\mathbf{r}) < \mu_{TF} \\ 0 & \text{sinon} \end{cases} \]

(23)

2. Le projecteur \(\hat{Q} \), projetant sur un espace de codimension un, peut être omis à la limite thermodynamique.
Ici, le potentiel chimique de Thomas-Fermi, limite classique de celui μ_{GP} de Gross-Pitaevskii, vaut
\[
\mu_{\text{TF}} = \frac{1}{2} \hbar \omega [15N\tilde{a}(m\tilde{\omega}/\hbar)^{1/2}]^{2/5}
\]
et $\tilde{\omega} = (\omega_x\omega_y\omega_z)^{1/3}$ est la moyenne géométrique des pulsations de piégeage. On en déduit que
\[
e(r, p) = \begin{cases}
\frac{p^2}{2m} + 2\mu_{\text{loc}}(r) & \text{si } U(r) < \mu_{\text{TF}} \\
\frac{p^2}{2m} + U(r) - \mu_{\text{TF}} & \text{sinon}
\end{cases}
\]

L’intégrale sextuple (22) a été calculée dans la référence [29]. Nous donnons ici le résultat sous une forme un peu plus compacte :

\[
\rho(\tilde{\varepsilon}) = \frac{\hbar}{\pi m} f(\tilde{\varepsilon})\equiv \frac{\epsilon}{\mu_{\text{TF}}}
\]
\[
f(\tilde{\varepsilon}) = \frac{1}{\pi} \left[-2 \sqrt{\tilde{\varepsilon}} \text{acos} \left(\frac{\tilde{\varepsilon} - 1}{(1 + \tilde{\varepsilon})^{1/2}}\right) + 2 \sqrt{\tilde{\varepsilon}} \ln \left(1 + \frac{\sqrt{\tilde{\varepsilon}}}{(1 + \tilde{\varepsilon})^{1/2}} + \sqrt{\tilde{\varepsilon}}(\tilde{\varepsilon} - 1) + (1 + \tilde{\varepsilon})^{1/2}\right)\right]^{1/2}
\]

Nous obtenons finalement le potentiel chimique canonique
\[
\mu_{\text{can}}(T, \tilde{N}) = \mu_0(\tilde{N}) + \frac{6k_B T}{5N} \left(\frac{\mu_{\text{TF}}}{\hbar}\right)^3 \int_0^{+\infty} d\tilde{\varepsilon} f(\tilde{\varepsilon}) \ln \left(1 - e^{-\beta \tilde{\varepsilon}}\right) + \frac{2\mu_{\text{TF}}}{5N} \left(\frac{\mu_{\text{TF}}}{\hbar}\right)^3 \int_0^{+\infty} d\tilde{\varepsilon} f(\tilde{\varepsilon}) \tilde{\varepsilon} \ln \left(1 - e^{-\beta \tilde{\varepsilon}}\right)
\]

avec la contribution de l’état fondamental [6]
\[
\mu_0(\tilde{N}) = \mu_{\text{TF}} \left[1 + \pi^{1/2} \left(\frac{\mu_{\text{TF}} \alpha^2}{g}\right)^{1/2}\right]
\]

Lorsqu’on dérivera (28) par rapport à T et \tilde{N} pour évaluer les expressions (19) et (20), on se souviendra que $\tilde{\beta} = \mu_{\text{TF}}/k_B T$ dépend de \tilde{N} au travers de μ_{TF}. Pour abréger, nous ne donnons pas le résultat.

Dans un ensemble un peu moins général – Une expression plus simple du coefficient balistique A peut être obtenue lorsque l’état du système est un mélange statistique d’ensembles canoniques de même température T mais de nombres de particules variable. En exprimant les différents coefficients dans (16,19,20) comme des dérivées de l’énergie libre $F(T, \tilde{N})$ par rapport à \tilde{N} et T, et en nous souvenant de l’expression $\text{Var}_{\text{can}} E = k_B T^2 \partial_T E_{\text{can}}$ de la variance de l’énergie dans l’ensembles canonique, nous trouvons à l’ordre dominant $1/\tilde{N}$ que
\[
A(T) = \left(\text{Var}_{\text{can}} \right) \left(\frac{\partial N \mu_{\text{can}}(T, \tilde{N})}{\hbar}\right)^2 + \frac{k_B T^2}{h^2} \left(\frac{\partial T \mu_{\text{can}}(T, \tilde{N})}{\hbar}\right)^2 + \frac{k_B T}{h \partial T E_{\text{can}}(T, \tilde{N})}
\]

À température nulle, seul le premier terme contribue, et l’on retrouve la prédiction des références [30, 31] poussée à l’ordre un en la fraction non condensée f_{loc}. À $T \neq 0$ mais en l’absence de fluctuations de N, seul le second terme contribue ; il n’est autre que le coefficient balistique $A_{\text{can}}(T)$ dans l’ensemble canonique. Dans le régime de validité de l’approximation de Bogolioubov, $f_{\text{loc}} \ll 1$, le potentiel chimique $\mu_{\text{can}}(T, \tilde{N})$ du gaz restant proche de celui de Thomas-Fermi du condensat pur, si bien que

\[
\partial_N \mu_{\text{can}}(T, \tilde{N}) = \partial_N \mu_{\text{TF}} + O\left(\frac{f_{\text{loc}}}{\tilde{N}}\right)
\]
En revanche, $\partial_T \mu_{\text{can}}(T, \bar{N})$ est immédiatement du premier ordre en f_{nc}, et il en va de même pour le second terme dans l’équation (30). C’est donc seulement pour des fluctuations de N fortement subpoissonniennes ($\text{Var} \ N \ll \text{Var}_{\text{Pois}}N \equiv \bar{N}$) que le second terme de (30), c’est-à-dire l’effet des fluctuations thermiques, n’est pas dominé par le premier. En supposant cette condition satisfaite dans l’expérience, nous représentons sur la figure 1 le coefficient canonique $A_{\text{can}}(T)$ adimensionné par la valeur A_{Pois} de A dans un condensat pur avec des fluctuations de N poissonniennes,

$$A_{\text{Pois}} = \bar{N} \left(\frac{\partial_N \mu_{\text{TE}}}{\hbar} \right)^2$$ \hspace{1cm} (32)

le tout divisé par le petit paramètre de la théorie de Bogolioubov à température nulle,\(^5\) proportionnel à $f_{\text{nc}}(T = 0)$:

$$[\rho_0(0)a^3]^{1/2} = \frac{2 \sqrt{2}}{15\pi^{1/2}N} \left(\frac{\mu_{\text{TE}}}{\hbar^2} \right)^{3/2}$$ \hspace{1cm} (33)

Le rapport ainsi formé est une fonction universelle de $k_B T / \mu_{\text{TE}}$. À partir des développements à basse et à haute énergie de la densité d’états des quasi-particules,

$$f(\tilde{\varepsilon}) \approx \begin{cases} \frac{32}{3\pi} \tilde{\varepsilon}^{3/2} - 2 \sqrt{2} \tilde{\varepsilon}^2 + O(\tilde{\varepsilon}^{5/2}) & \text{à } \tilde{\varepsilon} \rightarrow 0 \\ \frac{1}{2} \tilde{\varepsilon}^2 + \tilde{\varepsilon} + \frac{1}{2} + O(\tilde{\varepsilon}^{-1/2}) & \text{à } \tilde{\varepsilon} \rightarrow +\infty \end{cases}$$ \hspace{1cm} (34, 35)

nous obtenons les développements à basse et à haute température ($\tilde{T} = k_B T / \mu_{\text{TE}} = 1/\tilde{\beta}$)

$$\frac{A_{\text{can}}(T)}{A_{\text{Pois}}[\rho_0(0)a^3]^{1/2}} \approx \frac{21\zeta(7/2)}{\sqrt{2}} \frac{\tilde{T}^{9/2}}{\tilde{T}^{1/2}} \left[1 + \frac{4 \sqrt{2} \tilde{T}^{9/2}}{525\zeta(7/2)} + O(\tilde{T}) \right]$$ \hspace{1cm} (36)

$$= \frac{15\pi^{1/2}}{2\sqrt{2}} \frac{3\zeta(3)^2}{4\zeta(4)^2} \frac{\tilde{T}^{3}}{\tilde{T}^{1/2}} \left[1 + \tilde{\beta} \left(\frac{4\tilde{\varepsilon}(2)}{3\tilde{\varepsilon}(3)} \right) + O(\tilde{\beta}^{3/2}) \right]$$ \hspace{1cm} (37)

dont les termes dominants\(^6\) sont représentés en tireté sur la figure 1. Signalons une récriture particulièrement simple et belle de l’équivalent à haute température, accidentellement opérationnel déjà à $k_B T / \mu_{\text{TE}} \geq 2$:

$$\frac{A_{\text{can}}(T)}{A_{\text{Pois}}} \approx \frac{3\zeta(3)}{4\zeta(4)} \left(\frac{T}{T_c^{(0)}} \right)^3$$ \hspace{1cm} (38)

où $T_c^{(0)}$ est la température critique du gaz parfait de bosons dans un piège harmonique à la limite thermodynamique, $k_B T_c^{(0)} = \hbar \omega [\bar{N}/\zeta(3)]^{1/3}$. Dans cette limite, $A_{\text{can}}(T)$ est donc plus faible que A_{Pois} par un facteur proportionnel à la fraction non condensée $(T/T_c^{(0)})^3 \ll 1$.

4. Variance du déphasage du condensat dans l’ensemble microcanonique

Nous calculons ici la fonction de corrélation de $d\theta/d\tau$, à savoir $C_{\text{me}}(\tau)$, pour un système préparé dans l’ensemble microcanonique, en utilisant à la limite thermodynamique $\frac{\hbar^2}{\mu_{\text{TE}}} \rightarrow 0$ une description semi-classique des quasi-particules et en prenant en compte l’effet de leur interaction par des équations cinétiques de type Boltzmann quantique sur leur distribution dans l’espace des phases classique (r, p).

\(^5\) On préfère parfois prendre comme petit paramètre $1/[\rho_0(0)a^3]$, où la longueur de relaxation ξ du condensat au centre du piège est telle que $\hbar^2/(m^2c^2) = \mu_{\text{TE}}$. On peut passer aisément d’un petit paramètre à l’autre à l’aide de la relation $[\rho_0(0)a^3]^{1/2} \rho_0(0)\xi^3 = (1/8\pi^3)^2$.

\(^6\) Dans la fenêtre de valeurs de la figure 1, en pratique $1/10 \leq \tilde{T} \leq 10$, l’inclusion des termes sous-dominants ne rapproche pas utilement du résultat exact.
4.1. Forme semi-classique du Hamiltonien de Bogolioubov et de $d\theta/dt$

Dans la description semi-classique, le mouvement des quasi-particules de Bogolioubov est traité classiquement, c’est-à-dire qu’elles ont à chaque instant une position r et une impulsion p bien définies [6], dont l’évolution dans l’espace des phases dérive du hamiltonien $\epsilon(r, p)$ donné dans l’équation (25) [22] :

$$\frac{dr}{dt} = \frac{\partial}{\partial p} \epsilon(r, p)$$

(39)

$$\frac{dp}{dt} = -\frac{\partial}{\partial r} \epsilon(r, p)$$

(40)

mais l’on traite quantiquement le champ bosonique des quasi-particules en introduisant leurs opérateurs nombres d’occupation $\hat{n}(r, p)$ dans l’espace des phases, ce qui permet de prendre en compte la nature discrète des nombres de quasi-particules et les effets de statistique quantique (loi de Bose plutôt que loi d’équipartition du champ classique à l’équilibre).

Dans cette limite semi-classique, le hamiltonien de Bogolioubov (8) (sans interaction entre les quasi-particules) s’écrit immédiatement

$$H_{\text{Bog}}^\epsilon = E_0(\bar{N}) + \int \frac{d^3r}{(2\pi \hbar)^3} \epsilon(r, p) \hat{n}(r, p)$$

(41)

On pourrait croire, au vu de la formule (7), que $d\theta/dt$ admet une écriture similaire, avec $\epsilon(r, p)$ remplacé par $\frac{d}{dN} \epsilon(r, p)$. Il n’en est rien, la raison étant que la dérivée $\frac{d}{dN} \epsilon(r, p)$ n’est pas constante sur la trajectoire classique. L’opérateur $d\theta/dt$ fait partie d’une classe générale d’observables quantiques dites de Fock (diagonales dans la base de Fock des quasi-particules donc fonctionnelles - ici linéaires - des nombres d’occupation des modes de Bogolioubov) :

$$\hat{A} = \sum_{k \in \mathbb{Z}} a_k \hat{a}_k$$

(42)

avec $a_k = \langle u_k |, \langle v_k | \rangle \mathcal{A}(r, \hat{p}) \left(\begin{array}{c} u_k \\ v_k \end{array} \right)$

où $\mathcal{A}(r, \hat{p})$ est un opérateur matriciel 2×2 hermitien et a_k sa moyenne dans le mode de Bogolioubov d’énergie propre ϵ_k. L’observable $d\theta/dt$ correspond au choix $\mathcal{A}_0 = \sigma_m / 2 \mathcal{L}$ où σ_m est la troisième matrice de Pauli et $\mathcal{L}(\hat{r}, \hat{p})$ est l’opérateur apparaissant dans l’équation (9) : en vertu du théorème de Hellmann-Feynman 7, on a en effet

$$\langle \langle u_k |, -\langle v_k | \rangle \left(\frac{d}{dN} \mathcal{L} \right) \left(\begin{array}{c} u_k \\ v_k \end{array} \right) \rangle = \frac{d\epsilon_k}{dN}$$

(43)

7. Le théorème est ici généralisé au cas d’un opérateur \mathcal{L} non hermitien, $\langle \langle u_k |, -\langle v_k | \rangle$ étant le vecteur dual du vecteur propre $(|u_k\rangle, |v_k\rangle)$ de \mathcal{L}.

Figure 1: Coefficient de l’étalonnage balistique (1) de la phase du condensat aux temps longs devant le temps de collision γ_\perp des quasi-particules, pour un gaz de N bosons préparé dans l’ensemble canonique dans un piège harmonique isotope ou pas, en fonction de la température. Le résultat vaut à la limite thermodynamique où les pulsations de piégeage α_n sont négligeables par rapport au potentiel chimique μ_{TF} de Thomas-Fermi (24). Trait plein : second terme de l’équation (30), déduit du potentiel chimique canonique (28) à l’approximation de Bogolioubov (interactions faibles, $T \ll T_c$). Tiretés : équivalents à basse et à haute température (termes dominants des équations (36,37)). La division de $A_{\text{wq}}(T)$ par le petit paramètre (33) de la théorie de Bogolioubov et par la valeur (32) du coefficient balistique pour des fluctuations de N poissonniennes conduit à une fonction universelle de $k_B T / \mu_{TF}$.

8
Pour les opérateurs de Fock nous utilisons le principe de correspondance semi-classique

\[\hat{A}^{sc} = \int \frac{d^3r \, d^3p}{(2\pi\hbar)^3} a(r, p) \hat{n}(r, p) \]

(44)

où \(a(r, p) = (U(r, p), V(r, p)) \mathcal{A}(r, p) \) l'équation cinétique dans le calcul de la fonction de corrélation de \(\hat{L} \) dans l'ensemble microcanonique. Compte tenu des équations (4.2). De l'utilité des équations cinétiques dans le calcul de la fonction de corrélation de \(\hat{L} \), nous utilisons le principe de correspondance semi-classique

\[\overline{a(r, p)} \equiv \lim_{t \to +\infty} \frac{1}{t} \int_0^t d\tau \, a(r(\tau), p(\tau)) \]

(45)

Le vecteur \((U(r, p), V(r, p))\), normalisé selon la condition \(U^2 - V^2 = 1 \), est vecteur propre de l'équivalent classique \(\mathcal{L}(r, p) \) de \(\mathcal{L}(\hat{r}, \hat{p}) \) avec la valeur propre \(\epsilon(r, p) \); d'où

\[\begin{pmatrix} U(r, p) \\ V(r, p) \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \left(\frac{p^2/2m}{\epsilon(r, p)} \right)^{1/2} + \left(\frac{p^2/2m}{\epsilon(r, p)} \right)^{-1/2} \\ \frac{1}{\sqrt{2}} \left(\frac{p^2/2m}{\epsilon(r, p)} \right)^{1/2} - \left(\frac{p^2/2m}{\epsilon(r, p)} \right)^{-1/2} \end{pmatrix} \]

si \(U(r) < \mu_{TF} \)

sinon

À la base de ce principe de correspondance réside l'idée que l'équivalent d'un mode quantique stationnaire \((|u_k^0\rangle, |v_k^0\rangle)\) dans le monde classique est une trajectoire classique de même énergie, elle aussi stationnaire dans son ensemble par évolution temporelle. À l'espérance quantique \(\delta_k \) de l'observable \(\mathcal{A}(\hat{r}, \hat{p}) \) dans le mode \((|u_k^0\rangle, |v_k^0\rangle)\) il faut donc associer une moyenne sur une trajectoire de l'espérance \(a(r, p) \) de l'équivalent classique \(\mathcal{A}(r, p) \) dans le mode local \((U(r, p), V(r, p))\). Nous retenons donc pour la version semi-classique de la dérivée de l'opérateur phase du condensat :

\[-\hbar \frac{d\delta_n^{sc}}{dt} = \mu_0(N) + \int \frac{d^3r \, d^3p}{(2\pi\hbar)^3} \frac{d\epsilon(r, p)}{dN} \hat{n}(r, p) \]

(47)

Ici, répétons-le, l'espérance \(a(r, p) = \frac{d\epsilon(r, p)}{dN} \) n'est pas une constante du mouvement, au contraire de \(\epsilon(r, p) \), donc on ne peut pas faire comme dans (41) l'économie de la moyenne temporelle.

4.2. De l'utilité des équations cinétiques dans le calcul de la fonction de corrélation de \(d\hat{n}/dt \)

Nous devons déterminer, dans la limite semi-classique, la fonction de corrélation de \(d\hat{n}/dt \) pour un système préparé dans l'ensemble microcanonique. Compte tenu des équations (17) et (47) il faut calculer

\[C_{sc}^{(\tau)} = \int \frac{d^3r \, d^3p}{(2\pi\hbar)^3} \int \frac{d^3r' \, d^3p'}{(2\pi\hbar)^3} \frac{d\epsilon(r, p)}{dN} \frac{d\epsilon(r', p')}{dN} \langle \delta\hat{n}(r, p, \tau) \delta\hat{n}(r', p', 0) \rangle \]

(48)

où \((...)\) représente la moyenne dans l'état du système et où l'on a introduit les fluctuations des opérateurs nombres d'occupation dans l'espace des phases à l'instant \(\tau \),

\[\delta\hat{n}(r, p, \tau) = \hat{n}(r, p, \tau) - \bar{n}(r, p) \]

(49)

L'ensemble microcanonique peut être vu semi-classiquement comme un mélange statistique à énergie constante d'états de Fock \(|\mathcal{F}\rangle = \{|n(r', p')\rangle_{r', p' \in \mathcal{E}}\rangle \) dans l'espace des phases, états propres de \(H_{\text{Born}}^{sc} \), où tous les \(n(r', p') \) sont entiers. On suppose dans un premier temps que le système est préparé dans un tel état de Fock \(|\mathcal{F}\rangle \) à l'instant initial \(t = 0 \). C'est un état propre de \(\delta\hat{n}(r', p', 0) \) avec la valeur propre \(n(r', p') - \bar{n}(r', p') \); il reste donc à calculer dans l'équation (48) la quantité

\[\langle \mathcal{F} | \delta\hat{n}(r, p, \tau) | \mathcal{F} \rangle = n(r, p, \tau) - \bar{n}(r, p) = \delta\hat{n}(r, p, \tau) \]

(50)
à $\tau > 0$, c’est-à-dire l’évolution des nombres moyens d’occupation $n(r, p, \tau)$ dans l’espace des phases, leurs valeurs initiales étant connues, en tenant compte (i) du transport hamiltonien des quasi-particules et (ii) de l’effet des collisions entre quasi-particules par les processus à trois quasi-particules de Beliaev ou de Landau représentés sur la figure 2. C’est exactement ce que les équations cinétiques habituelles de type Boltzmann quantique savent faire, à la différence que la fonction de distribution semi-classique $n(r, p, \tau)$ ne correspond pas ici à un état d’équilibre thermique local du système, mais au nombre moyen d’occupation à l’instant τ conditionné au fait que l’état initial du système est un état de Fock de quasi-particules. L’équation d’évolution des nombres d’occupation moyens $n(r, p, \tau)$ est de la forme

$$\frac{D}{D\tau} n(r, p, \tau) + I_{coll}(r, p, \tau) = 0$$

(51)

Le premier terme est la dérivée convective résultant des équations de Hamilton classiques:

$$\frac{D}{D\tau} = \partial_{r} + \partial_{p} \epsilon(r, p) \cdot \partial_{r} - \partial_{p} \epsilon(r, p) \cdot \partial_{p}$$

(52)

Il conserve la densité dans l’espace des phases le long d’une trajectoire classique (théorème de Liouville). Le second terme décrit l’effet des collisions entre les quasi-particules, locales dans l’espace des positions, et qui ne peuvent se produire, à l’ordre de Beliaev-Landau, qu’aux points où la densité de Thomas-Fermi du condensat $\rho_0(r)$ est non nulle (voir les diagrammes sur la figure 2) :

$$I_{coll}(r, p, \tau) = 1 \times \frac{d^3 q}{(2\pi\hbar)^3} \left[2g p^{1/2}(r) \mathcal{A}_{p,q}^p q^{-q}(r) \right] \left[\delta(\epsilon(\mathbf{r}, \mathbf{q}) + \epsilon(\mathbf{r}, \mathbf{p} - \mathbf{q}) - \epsilon(\mathbf{r}, \mathbf{p})) \right] \times \{ -n(\mathbf{r}, \mathbf{p}, \tau)[1 + n(\mathbf{r}, \mathbf{q}, \tau)][1 + n(\mathbf{r}, \mathbf{p} - \mathbf{q}, \tau)] + n(\mathbf{r}, \mathbf{p}, \tau)[1 + n(\mathbf{r}, \mathbf{p} - \mathbf{q}, \tau)] \} + \frac{d^3 q}{(2\pi\hbar)^3} \left[2g p^{1/2}(r) \mathcal{A}_{p,q}^p q^{-q}(r) \right] \left[\delta(\epsilon(\mathbf{r}, \mathbf{p}) + \epsilon(\mathbf{q}, \mathbf{r}) - \epsilon(\mathbf{r}, \mathbf{p} + \mathbf{q})) \right] \times \{ -n(\mathbf{r}, \mathbf{p}, \tau)n(\mathbf{r}, \mathbf{q}, \tau)[1 + n(\mathbf{r}, \mathbf{p} + \mathbf{q}, \tau)] + n(\mathbf{r}, \mathbf{p} + \mathbf{q}, \tau)[1 + n(\mathbf{r}, \mathbf{p}, \tau)] \}$$

(53)

Dans ce processus sont mis en jeu, au point \mathbf{r}, une quasi-particle d’impulsion \mathbf{p} (dont il faut déterminer l’évolution du nombre moyen $n(\mathbf{r}, \mathbf{p}, \tau)$), une deuxième quasi-particle sorte ou entrante d’impulsion \mathbf{q} sur laquelle il faut intégrer, et une troisième quasi-particle dont l’impulsion est fixée par la conservation de la quantité de mouvement. Dans l’équation (53) la première intégrale prend en compte les processus de Beliaev ; elle est affectée d’un facteur $1/2$ pour éviter le double comptage des états finals ou initiaux à deux quasi-particules $(\mathbf{q}, \mathbf{p} - \mathbf{q})$ et $(\mathbf{p} - \mathbf{q}, \mathbf{q})$; la deuxième intégrale prend en compte les processus de Landau. On notera dans les deux cas : (i) le facteur $\frac{1}{2}$, provenant de la règle d’or de Fermi, (ii) la prise en compte des processus directs avec un signe – (ils dépeuplent le mode \mathbf{p} au point \mathbf{r}) et des processus inverses avec un signe +, avec les facteurs d’amplification bosonique $1 + n$, (iii) la présence d’un Dirac de conservation de l’énergie au point \mathbf{r}. Les amplitudes de couplage réduites à trois quasi-particules sont données au point \mathbf{r} par [14, 32]

$$\mathcal{A}_{p_1}^{p_1 p_2 p_3}(r) = \frac{s^3(r, p_1) + s^3(r, p_2) - s^3(r, p_3)}{4s(r, p_1)s(r, p_2)s(r, p_3)} + \frac{3}{4}s(r, p_1)s(r, p_2)s(r, p_3)$$

(54)

8. Les processus à quatre quasi-particules, d’ordre supérieur en la fraction non condensée, sont supposés ici négligeables.
9. Ces diagrammes font intervenir de manière cachée des processus d’absorption ou d’émission stimulée dans le mode du condensat.
avec \(s(\mathbf{r}, \mathbf{p}) = U(\mathbf{r}, \mathbf{p}) + V(\mathbf{r}, \mathbf{p}) \). Les équations cinétiques admettent bien comme solution stationnaire les nombres d’occupation moyens de l’équilibre thermique

\[
\tilde{n}(\mathbf{r}, \mathbf{p}) = \frac{1}{e^{\beta \epsilon(\mathbf{r}, \mathbf{p})} - 1}
\]

(55)

La propriété bien connue de la loi de Bose \(1 + \tilde{n} = e^{\beta \epsilon} \) permet de le vérifier aisément : jointe à la conservation de l’énergie, elle conduit à la compensation parfaite en tout point des processus directs et inverses, c’est-à-dire à l’annulation des quantités entre accolades dans l’équation (53), suivant le principe de microréversibilité ; on a également \(\frac{\partial}{\partial t} \tilde{n} = 0 \) puisque \(\tilde{n}(\mathbf{r}, \mathbf{p}) \) est une fonction de \(\epsilon(\mathbf{r}, \mathbf{p}) \), quantité conservée par le transport hamiltonien.

Comme notre système fluctue faiblement autour de l’équilibre, nous linéarisons les équations cinétiques autour de \(n = \tilde{n} \) comme dans la référence [16] pour obtenir

\[
\frac{D}{Dt} \delta n(\mathbf{r}, \mathbf{p}, \tau) = -\Gamma(\mathbf{r}, \mathbf{p}, \tau) \delta n(\mathbf{r}, \mathbf{p}, \tau) + \int \frac{d^3q}{(2\pi\hbar)^3} K(\mathbf{r}, \mathbf{p}, \mathbf{q}) \delta n(\mathbf{r}, \mathbf{q}, \tau)
\]

(56)

Le terme diagonal provient de la fluctuation \(\delta n(\mathbf{r}, \mathbf{p}, \tau) \) au second membre de l’équation (53), et le terme non local en impulsion provient des fluctuations \(\delta n(\mathbf{r}, \mathbf{q}, \tau) \) et \(\delta n(\mathbf{r}, \mathbf{p} \pm \mathbf{q}, \tau) \) dont on regroupe les contributions grâce aux changements de variables \(\mathbf{q}' = \mathbf{p} \pm \mathbf{q} \) dans \(d^3q \). L’expression de \(K(\mathbf{r}, \mathbf{p}, \mathbf{q}) \) n’est pas utile pour la suite, donnons donc seulement celle du taux d’amortissement local des quasi-particules de Bogolioubov d’impulsion \(\mathbf{p} \) au point \(\mathbf{r} \):

\[
\Gamma(\mathbf{r}, \mathbf{p}) = \frac{4\pi \nu(\mathbf{p}) g^2}{\hbar} \int \frac{d^3q}{(2\pi\hbar)^3} \left[\mathcal{H}_{\mathbf{p} \mathbf{q} \mathbf{q}'}(\mathbf{r}) \right]^2 \delta(\epsilon(\mathbf{r}, \mathbf{q}) + \epsilon(\mathbf{r}, \mathbf{p} - \mathbf{q}) - \epsilon(\mathbf{r}, \mathbf{p})) \left[1 + \tilde{n}(\mathbf{r}, \mathbf{q}) + \tilde{n}(\mathbf{r}, \mathbf{p} - \mathbf{q}) \right] + \frac{8\pi \nu(\mathbf{p}) g^2}{\hbar} \int \frac{d^3q}{(2\pi\hbar)^3} \left[\mathcal{H}_{\mathbf{p} \mathbf{q} \mathbf{q}'}(\mathbf{r}) \right]^2 \delta(\epsilon(\mathbf{r}, \mathbf{p}) + \epsilon(\mathbf{r}, \mathbf{p} + \mathbf{q}) - \epsilon(\mathbf{r}, \mathbf{p} + \mathbf{q})) \left[\tilde{n}(\mathbf{r}, \mathbf{p} + \mathbf{q}) \right]
\]

(57)

Cette expression coïncide avec le taux d’amortissement d’un mode d’impulsion \(\mathbf{p} \) dans un gaz spatialement homogène de densité condensée \(g\nu(\mathbf{r}) \) [32]. Tout comme \(\delta n(\mathbf{r}, \mathbf{p}, \tau), \langle F | \delta n(\mathbf{r}, \mathbf{p}, \tau) \delta n(\mathbf{r}', \mathbf{p}', 0) | F \rangle \) considéré comme une fonction de \((\mathbf{r}, \mathbf{p}, \tau) \), obéit à l’équation (56) ; il en va de même pour sa moyenne \(\langle \delta n(\mathbf{r}, \mathbf{p}, \tau) \delta n(\mathbf{r}', \mathbf{p}', 0) \rangle \) sur tous les états de Fock initiaux \(|F \rangle \), puisque les coefficients \(\Gamma \) et \(K \) ne dépendent pas de \(|F \rangle \). Contractons cette dernière par

\[
B'(\mathbf{r}', \mathbf{p}') \equiv \frac{1}{\hbar} \frac{\partial \epsilon(\mathbf{r}', \mathbf{p}')}{\partial N}
\]

(58)

comme dans l’équation (48) pour former l’inconnue auxiliaire

\[
X(\mathbf{r}, \mathbf{p}, \tau) = \int \frac{d^3r'd^3p'}{(2\pi\hbar)^3} B'(\mathbf{r}', \mathbf{p}') \langle \delta n(\mathbf{r}, \mathbf{p}, \tau) \delta n(\mathbf{r}', \mathbf{p}', 0) \rangle
\]

(59)

Alors \(X(\mathbf{r}, \mathbf{p}, \tau) \) évolue selon les équations cinétiques linéarisées (56) avec la condition initiale

\[
X(\mathbf{r}, \mathbf{p}, 0) = \int \frac{d^3r'd^3p'}{(2\pi\hbar)^3} Q(\mathbf{r}; \mathbf{r}', \mathbf{p}') B'(\mathbf{r}', \mathbf{p}')
\]

(60)

où l’on a introduit la matrice des covariances des nombres de quasi-particules aux temps égaux :

\[
Q(\mathbf{r}; \mathbf{r}', \mathbf{p'}) = \langle \delta n(\mathbf{r}, \mathbf{p}, 0) \delta n(\mathbf{r}', \mathbf{p}', 0) \rangle
\]

(61)

dont l’expression dans l’ensemble microcanonique sera reliée à celle dans l’ensemble canonique en temps utile, dans la sous-section 4.3. La fonction de corrélation microcanonique de \(dB'/dt \) cherchée vaut alors

\[
C_{mc}(\tau) = \int \frac{d^3r'd^3p}{(2\pi\hbar)^3} B(\mathbf{r}, \mathbf{p}) X(\mathbf{r}, \mathbf{p}, \tau)
\]

(62)

10. À strictement parler, cette solution stationnaire correspond aux nombres d’occupation moyens dans l’ensemble canonique, plutôt que dans l’ensemble microcanonique. La différence, calculable comme dans l’appendice C de la référence [16], mais hors de portée de nos équations cinétiques, tend vers zéro à la limite thermodynamique et est négligeable ici. On notera aussi que la non-conservation du nombre total de quasi-particules par les processus Beliaev-Landau impose à la loi de Bose \(n \) d’avoir une fugacité unité.
4.3. Solution dans l’approximation séculairo-ergodique

Notre étude se place dans le régime faiblement collisionnel $\Gamma_{\text{th}} \ll \omega_s$ où Γ_{th} est la valeur thermique typique du taux d’amortissement $\Gamma(r, p)$ des quasi-particles et ω_s sont les pulsations de piégeage. Les quasi-particles ont alors le temps d’effectuer un grand nombre d’oscillations hamiltoniennes dans le piège avant de subir une collision. Nous pouvons donc effectuer l’approximation séculaire consistant à remplacer les coefficients de l’équation cinétique linéarisée (56) par leur moyenne temporelle sur une trajectoire. Ainsi

$$\Gamma(r, p) \approx \lim_{t \to +\infty} \frac{1}{I} \int_0^I \Gamma(r(\tau), p(\tau)) \, d\tau$$

(63)

et l’inconnue auxiliaire $X(r, p, \tau)$ de l’équation (59), tout comme les fluctuations des nombres d’occupation $\delta n(r, p, t)$, dépendent seulement de la trajectoire $\tau \mapsto (r(\tau), p(\tau))$ passant par (r, p) et du temps. Le problème reste formidable.

Heureusement, comme nous l’avons dit, dans un piège complètement anisotrope, la dynamique hamiltonienne des quasi-particles devrait être fortement chaotique, sauf dans les limites de très basse énergie $\varepsilon \ll \mu_{\text{TF}}$ ou de très haute énergie $\varepsilon \gg \mu_{\text{TF}}$ [22, 23]. Nous effectuons donc l’hypothèse ergodique, en identifiant la moyenne temporelle sur une trajectoire d’énergie ε à la moyenne « uniforme » dans l’espace des phases sur la couche d’énergie ε :

$$\Gamma(r, p, \varepsilon) \equiv \frac{1}{\rho(\varepsilon)} \int_0^{+\infty} \text{d}t \Gamma(r, p, \varepsilon(t))$$

(64)

où la densité d’états $\rho(\varepsilon)$ est donnée par l’équation (22). Nous reviendrons sur cette hypothèse dans la section 4.5. Dans ce cas, la fonction $X(r, p, \tau)$ dépend seulement de l’énergie $\varepsilon = \varepsilon(r, p)$ et du temps :

$$X(r, p, \varepsilon) \equiv \frac{1}{\rho(\varepsilon)} \int_0^{+\infty} \text{d}t X(r, p, \varepsilon(t))$$

(65)

Nous obtenons l’équation d’évolution de $X(\varepsilon, \tau)$ en moyennant celle de $X(r, p, \tau)$ sur la couche d’énergie ε :11

$$\partial_\tau X(\varepsilon, \tau) = -\Gamma(\varepsilon) X(\varepsilon, \tau) = -\frac{1}{2\rho(\varepsilon)} \int_0^{+\infty} \text{d}\varepsilon' \partial_\tau X(\varepsilon, \tau)(\varepsilon, \tau)[\delta(\varepsilon - \varepsilon')X(\varepsilon, \tau)(\varepsilon, \tau)]$$

et

$$\partial_\tau X(\varepsilon, \tau) = -\frac{1}{2\rho(\varepsilon)} \int_0^{+\infty} \text{d}\varepsilon' \partial_\tau X(\varepsilon, \tau)(\varepsilon, \tau)[\delta(\varepsilon - \varepsilon')X(\varepsilon, \tau)(\varepsilon, \tau)] = -\frac{1}{\rho(\varepsilon)} \int_0^{+\infty} \text{d}\varepsilon' \partial_\tau X(\varepsilon, \tau)(\varepsilon, \tau)[\delta(\varepsilon - \varepsilon')X(\varepsilon, \tau)(\varepsilon, \tau)]$$

(66)

avec

$$\Gamma(\varepsilon) = \frac{1}{2\rho(\varepsilon)} \int_0^{+\infty} \text{d}\varepsilon' \partial_\tau X(\varepsilon, \tau)(\varepsilon, \tau)[\delta(\varepsilon - \varepsilon')X(\varepsilon, \tau)(\varepsilon, \tau)] + \frac{1}{\rho(\varepsilon)} \int_0^{+\infty} \text{d}\varepsilon' \partial_\tau X(\varepsilon, \tau)(\varepsilon, \tau)[\delta(\varepsilon - \varepsilon')X(\varepsilon, \tau)(\varepsilon, \tau)]$$

(67)

Dans ces expressions, la première intégrale, limitée à des énergies ε' inférieures à l’énergie de la quasi-particle ε considérée, correspond aux processus de Beliaev, et la deuxième intégrale aux processus de Landau. Le noyau intégral12

$$L(\varepsilon, \varepsilon') = \frac{32 \sqrt{2}}{\pi^{1/2}} \frac{[\rho_0(0)^{1/2}]}{h \mu_{\text{TF}}} \left[\frac{\mu_{\text{TF}}}{\hbar \omega_0}\right]^3 \int_0^{+\infty} \text{d}\varepsilon' \delta(\varepsilon - \varepsilon(\mu, p)) \delta(\varepsilon - \varepsilon(\mu, q)) \delta(\varepsilon' - \varepsilon(\mu, q))$$

(68)

$$= \frac{32 \sqrt{2}}{\pi^{1/2}} \frac{[\rho_0(0)^{1/2}]}{h \mu_{\text{TF}}} \left[\frac{\mu_{\text{TF}}}{\hbar \omega_0}\right]^3 \int_0^{+\infty} \text{d}\varepsilon' \delta(\varepsilon - \varepsilon(\mu, p)) \delta(\varepsilon - \varepsilon(\mu, q))$$

(69)

fait intervenir l’amplitude de couplage réduite (54) au point r, reparamétrée en termes des énergies $\varepsilon_i = \varepsilon(r, p_i)$ (1 $\leq i \leq 3$) ou même du potentiel chimique de Gross-Pitaevskii local $\mu_0 = g\rho_0(\mathbf{r})$. Il jouit de la propriété de symétrie $L(\varepsilon, \varepsilon') = L(\varepsilon', \varepsilon)$.

11. Le plus simple est de moyennier les équations cinétiques complètes (51), puis de linéariser le résultat autour de la solution stationnaire (55).

12. Pour obtenir (69), on a réduit l’équation (68) à une intégrale simple sur le module r (après s’être ramené formellement au cas d’un piège isotope comme dans la note 3) en intégrant en coordonnées sphériques sur ρ, q et sur u, le cosinus de l’angle entre p et q. Dans $\int_1^1 d\rho$, l’argument du troisième Dirac s’anule en un point ρ_0 et est un seul, compte tenu des inégalités $\varepsilon_{\text{Bog}} \leq \varepsilon_{\text{p}}$ et $\varepsilon_{\text{Bog}} \leq \varepsilon_{\text{q}}$ satisfaites par la relation de dispersion de Bogoliubov $\varepsilon_{\text{Bog}} = \left[\frac{\mu_0}{\mu_0^2 + 2\mu_0} \right]^{1/2}$, $\forall \mu_0 \geq 0$.

12
Écrivons d’abord le résultat avant de donner quelques indications sur son obtention (on consultera aussi la référence [16]). Dans l’approximation sécularo-ergodique, la fonction de corrélation microcanonique de \(d\tilde{\delta}^2/d\tau \) vaut

\[
C_{\text{mcr}}^e(\tau) = \int_0^\infty d\varepsilon \rho(\varepsilon)B(\varepsilon)X(\varepsilon, \tau)
\]

(70)

Ici \(B(\varepsilon) \) est la moyenne ergodique de la quantité \(B(r, p) \) introduite dans l’équation (58):

\[
B(\varepsilon) = \frac{1}{\rho(\varepsilon)} \int d^3r d^3p \frac{d\varepsilon}{\hbar}\delta(\varepsilon - \varepsilon(r, p))
\]

(71)

\[
B(\varepsilon) = \frac{d\mu_{\text{TF}}}{\hbar N} \left[\frac{\varepsilon}{5} - \frac{3\pi}{40\sqrt{2}} \varepsilon^{3/2} + O(\varepsilon^2) \right], \quad B(\varepsilon) = \frac{d\mu_{\text{TF}}}{\hbar N} \left[-1 + \frac{32}{3\pi} \varepsilon^{-3/2} + O(\varepsilon^{-5/2}) \right]
\]

(72)

avec \(\varepsilon = \varepsilon/\mu_{\text{TF}} \) et \(f(\varepsilon) \) la densité d’états réduite (27). L’inconnue auxiliaire \(X(\varepsilon, \tau) \) est solution de l’équation linéaire (66) avec la condition initiale

\[
X(\varepsilon, 0) = \bar{n}(\varepsilon)[1 + \bar{n}(\varepsilon)]B(\varepsilon) - \Lambda \varepsilon
\]

(74)

où \(\Lambda \) est la dérivée du potentiel chimique microcanonique par rapport à l’énergie totale \(E \) du gaz \(^{13}\), comme dans l’équation (19):

\[
\Lambda = \int_0^\infty d\varepsilon \rho(\varepsilon)X(\varepsilon, 0)[1 + \bar{n}(\varepsilon)]B(\varepsilon) - \Lambda \varepsilon
\]

(75)

L’équation (70) est la réécriture ergodique de l’équation (62). La condition initiale (74) est la différence de deux contributions:

— la première est celle qu’on obtiendrait dans l’ensemble canonique. La moyenne ergodique de la matrice des covariances (61) serait en effet simplement \(Q_{\text{can}}(\varepsilon, \varepsilon') = \bar{n}(\varepsilon)[1 + \bar{n}(\varepsilon)]\delta(\varepsilon - \varepsilon')/\rho(\varepsilon) \);

— la seconde provient d’une projection des fluctuations \(\delta n \) canoniques sur le sous-espace des fluctuations \(\delta n \) d’énergie nulle. \(\int_0^\infty d\varepsilon \rho(\varepsilon)\delta n = 0 \), seules admissibles dans l’ensemble microcanonique. Seul point subtil, cette projection doit être effectuée parallèlement à la solution stationnaire \(\rho_{0}(\varepsilon) = \bar{n}(\varepsilon)[1 + \bar{n}(\varepsilon)] \) des équations cinématiques linéarisées (66). \(^{13}\) On vérifie alors que, pour la valeur de \(\Lambda \) donnée, \(X(\varepsilon, 0) \) est bien dans le sous-espace des fluctuations d’énergie nulle.

4.4. Résultats et discussion

Nous présentons maintenant quelques résultats sous forme graphique, après un adimensionnement astucieux les rendant indépendants des pulsations de piégeage (pourvu qu’elles soient assez distinctes deux à deux pour autoriser l’hypothèse ergodique) et de la force des interactions \(^{15}\); il suffit de connaître la température en unités du potentiel chimique de Thomas-Fermi \(\mu_{\text{TF}} \). Ces résultats témoignent donc de la classe d’universalité des piégeages complètement anisotropes, différente de celle des systèmes spatialement homogènes de la référence [16].

Un sous-produit intéressant de notre étude est présenté sur la figure 3 : il s’agit du taux d’amortissement \(\Gamma(\varepsilon) \) à l’approximation sécularo-ergodique des modes de Bogolioubov d’énergie \(\varepsilon \). Comme on sait dans une expérience d’atomes froids exciter de tels modes et suivre leur décroissance en temps, ce taux est mesurable et notre prédiction

\(^{13}\) La raison profonde de l’apparition de cette dérivée est donnée dans la référence [16]. Elle explique pourquoi les équations cinématiques permettent de retrouver dans l’ensemble canonique le terme balistique \(A \) de l’équation (15) avec la bonne expression du coefficient \(A = (\delta \mu_{\text{mac}}/\hbar)^2 \text{Var} E \).

\(^{14}\) Pour que cette projection soit compatible avec l’évolution cinématique linéarisée, il faut en effet que la direction de projection ainsi que l’hyperplan sur lequel on projette soient invariants par évolution temporelle, le second point étant assuré par la conservation de l’énergie. La forme de \(\rho_{0}(\varepsilon) \) découle du fait que (55) reste une solution stationnaire pour une variation infinitésimale de \(\beta, \beta \rightarrow \beta + \delta \beta \), autour de sa valeur physique.

\(^{15}\) Dans une première étape, on montre que les résultats ne peuvent dépendre des pulsations de piégeage \(\omega_{\text{fr}} \) que par l’intermédiaire de leur moyenne géométrique \(\bar{\omega} \). Ceci est une conséquence assez directe de l’hypothèse ergodique et du fait que les observables mises en jeu ici, dont le hamiltonien, dépendent seulement de la position \(r \) des quasi-particules via le potentiel de piégeage \(U(r) = \frac{1}{2} \hbar m \sum_{\text{eff}} \omega_{\text{fr}}^2 r_{\text{eff}}^2 \). Dans l’intégrale \(\int d^3r \) participant à la moyenne ergodique, on peut alors effectuer le changement de variables isotropisant de la note 3.
4.5

La température (a) $k_B T = \mu_{TF}$ et (b) $k_B T = 10\mu_{TF}$, où μ_{TF} est le potentiel chimique de Thomas-Fermi du condensat. Grâce à l’adimensionnement choisi, la courbe est universelle ; en particulier, elle ne dépend pas des pulsations de piégeage ω. Les modes de Bogolioubov considérés doivent être dans le régime de mouvement classique $\epsilon \gg h\omega_0$, et le système doit être dans le régime d’un condensat presque pur, $\rho_0(0) = \rho_{TF}/g$ est la densité du condensat au centre du piège et T_c la température critique. En tiré, les équivalents (76) et (77) de $\Gamma(\epsilon)$ à basse et à haute énergie.

peut être comparée aux expériences, au moins dans son régime de validité, en particulier de mouvement classique $\epsilon \gg h\omega_0$ (les écarts à l’hypothèse ergodique sont discutés dans la section 4.5). Les comportements aux limites

$$ h\Gamma(\epsilon) \sim \left\{ \begin{array}{ll} \frac{3I}{4}(\frac{\epsilon}{\mu_{TF}})^{1/2} & \text{avec } I = 4,921,208 \ldots \\
\frac{128\sqrt{2}\mu_{TF}^2}{15\sqrt{\epsilon}} \rho_{0}(0) \alpha^3 & \text{limite supérieure} \end{array} \right. \quad (76) $$

$$ h\Gamma(\epsilon) \sim \left\{ \begin{array}{ll} \frac{3I}{4}(\frac{\epsilon}{\mu_{TF}})^{1/2} & \text{avec } I = 4,921,208 \ldots \\
\frac{128\sqrt{2}\mu_{TF}^2}{15\sqrt{\epsilon}} \rho_{0}(0) \alpha^3 & \text{limite supérieure} \end{array} \right. \quad (77) $$

représentés en tiré sur la figure 3, sont établis dans l’Annexe A. Ils sont fort différents du cas spatialement homogène, où le taux d’amortissement s’annule linéairement en ϵ à basse énergie et diverge comme $\epsilon^{1/2}$ à haute énergie. En particulier, le comportement (76) en $\epsilon^{1/2}$ résulte de l’existence du bord Thomas-Fermi du condensat.

Revenons à l’étallement de phase du condensat dans l’ensemble microcanonique. Sur la figure 4, nous représentons en trait plein noir la variance du déphasage $\theta(t) - \theta(0)$ du condensat en fonction du temps t dans l’approximation

16. Pour $k_B T = \mu_{TF}$, $\Gamma(\epsilon)/\epsilon^{1/2}$ présente un maximum trompeur au voisinage de $\epsilon/\mu_{TF} = 0,02$ d’environ 5% supérieur à sa limite en $\epsilon = 0$.

Figure 3: À la limite thermodynamique, taux d’amortissement Beliaev-Landaus $\Gamma(\epsilon)$ des modes de Bogolioubov d’un condensat dans un piège harmonique complètement anisotrope en fonction de leur énergie ϵ, dans l’approximation sécularo-ergodique (63,64,67), à la température (a) $k_B T = \mu_{TF}$ et (b) $k_B T = 10\mu_{TF}$, où μ_{TF} est le potentiel chimique de Thomas-Fermi du condensat. Grâce à l’adimensionnement choisi, la courbe est universelle ; en particulier, elle ne dépend pas des pulsations de piégeage ω. Les modes de Bogolioubov considérés doivent être dans le régime de mouvement classique $\epsilon \gg h\omega_0$, et le système doit être dans le régime d’un condensat presque pur, $\rho_0(0) = \rho_{TF}/g$ est la densité du condensat au centre du piège et T_c la température critique. En tiré, les équivalents (76) et (77) de $\Gamma(\epsilon)$ à basse et à haute énergie.

Figure 4: Dans les conditions de la figure 3, pour un système préparé à l’instant 0 dans l’ensemble microcanonique à la température (a) $k_B T = \mu_{TF}$ ou (b) $k_B T = 10\mu_{TF}$, et isolé de son environnement dans son évolution ultérieure, variance du déphasage $\theta(t) - \theta(0)$ du condensat en fonction du temps t (trait plein noir) et son comportement diffus asymptotique (80) (tiré). On a représenté sur la même figure la fonction de corrélation $C_m(t)$ de $d\theta/dt$ dans l’approximation sécularo-ergodique (70) en fonction du temps (trait plein rouge, graduations à droite) et, pour (b), dans une vignette en échelle log-log aux temps longs (trait plein noir) pour montrer qu’à une loi de décroissance quasi-exponentielle en la racine du temps (ajustement en $\alpha \exp(-C \sqrt{t})$ en tiré rouge) succède une loi de puissance $\propto t^{-1}$ (tiré bleu). Comme dans la figure 3, la multiplication des quantités sur les axes par des facteurs bien choisis rend ces résultats universels.
ergodique (70) aux températures $T = \mu_{TF}/k_B$ et $T = 10\mu_{TF}/k_B$. La variance a un départ parabolique en temps, qui correspond au régime précollisionnel $t \ll t_{coll}$, où t_{coll} est le temps de collision typique entre les quasi-particules : on peut alors supposer que $C_{mc}(t) \approx C_{mc}(0)$, si bien que la contribution intégrale à l’équation (15) est $\approx C_{mc}(0)t^2$. Aux temps longs, $t \gg t_{coll}$, la fonction de corrélation de $d\hat{\theta}/dt$ semble tendre rapidement vers zéro (trait plein rouge) ; une étude numérique plus poussée (voir la vignette incluse dans la figure 4b) révèle cependant la présence d’une queue en loi de puissance $t^{-\alpha}$.

$$C_{mc}(t) \sim \frac{C}{t}$$ \hspace{1cm} (78)

L’exposant $\alpha = 5$ est supérieur à celui, $\alpha_2 = 3$, de la loi de décroissance de $C_{mc}(t)$ dans le cas spatialement homogène [16]. Sa valeur peut être retrouvée par l’approximation heuristique grossière, dite de faux ou gaussienne projetée [15], déjà utilisée pour t_{coll} avec succès dans cette même référence [16] : on ne garde dans les équations cinétiques linéarisées (66) que le terme de décroissance pure $-\Gamma(\epsilon)X(\epsilon, \tau)$ au second membre, ce qui rend leur intégration immédiate et conduit à l’estimation 17

$$C_{mc}(t) \approx \int_0^{+\infty} d\epsilon \rho(\epsilon) [B(\epsilon) - \Lambda \epsilon^2]\hat{\theta}(\epsilon)[1 + \bar{n}(\epsilon)]e^{-\Gamma(\epsilon)\tau}$$ \hspace{1cm} (79)

Les comportements en loi de puissance à basse énergie de la densité $\rho(\epsilon)$ [voir (34)], des coefficients $B(\epsilon)$ dans $d\hat{\theta}/dt$ [voir (73)], des nombres d’occupation $n(\epsilon) \sim k_B T/\epsilon$ et du taux d’amortissement $\Gamma(\epsilon)$ [voir (76)] reproduisent alors l’exposant $\alpha = 5$ constaté numériquement. 18 Comme $C_{mc}(t)$ tend vers zéro plus vite que $1/t^5$, pour un certain $\eta > 0$, nous obtenons le résultat important suivant : la variance du déphasage du condensat $\text{Var}_{mc}[\hat{\theta}(t) - \bar{\hat{\theta}}(0)]$ présente aux temps longs une croissance affine typique d’un régime diffusif avec retard :

$$\text{Var}_{mc}[\hat{\theta}(t) - \bar{\hat{\theta}}(0)] = 2D(t-t_0) + o(1)$$ \hspace{1cm} (80)

en tireté sur la figure 4, le retard t_0 étant dû à la largeur non nulle de la fonction de corrélation $C_{mc}(\tau)$:

$$D = \int_0^{+\infty} d\tau C_{mc}(\tau)$$ \hspace{1cm} (81)

$$t_0 = \int_0^{+\infty} d\tau \frac{\tau C_{mc}(\tau)}{\int_0^{+\infty} d\tau C_{mc}(\tau)}$$ \hspace{1cm} (82)

Nous représentons le coefficient de diffusion D de la phase du condensat en fonction de la température sur la figure 5a. Il présente une croissance à haute température $(k_B T > \mu_{TF})$ bien plus rapide que dans le cas spatialement homogène : elle n’était que linéaire (à des facteurs logarithmiques près), elle semble ici être en T^4 (pointillé sur la figure). Le temps de retard à la diffusion t_0 est porté en fonction de la température sur la figure 5b. Nous le comparons à l’estimation $t_{coll} \approx 1/\tau(\epsilon = k_B T)$ du temps de collision entre quasi-particules, en tireté : celle-ci rend bien compte de la remontée brutale de n_0 à basse température mais reproduit avec beaucoup de retard et en la sous-estimant grandement celle à haute température. La remontée de t_0 est bien représentée par une loi en $T^{-3/2}$ à basse température, et semble être linéaire en T à haute température (voir les pointillés).

Cherchons à retrouver par un raisonnement simple les lois de puissance constatées. Si loi d’échelle il y a, elle doit survivre à l’approximation de taux sur les équations cinétiques linéarisées ; nous pouvons donc prendre l’expression approchée (79) de $C_{mc}(t)$ comme point de départ et la reporter dans les expressions (81) et (82) de D et t_0.

À haute température, les intégrales sur ϵ donnant D et t_0 dans l’approximation de taux sont dominées par les énergies d’ordre $k_B T$; nous posons donc $\epsilon = k_B T\bar{\epsilon}$ et faisons tendre T vers $+\infty$ à $\bar{\epsilon}$ fixé sous le signe intégral. Les comportements de $\rho(\epsilon)$ et $B(\epsilon)$ à haute énergie sont connus. Seul celui de $\Gamma(k_B T\bar{\epsilon})$ manque ; pour l’obtenir, nous remarquons sur (69) que $L(k_B T\bar{\epsilon}, k_B T\bar{\epsilon}')$ tend vers une constante lorsque $T \rightarrow +\infty$. L’approximation $L(\epsilon, \epsilon') \approx L(\epsilon -$}

17. On a pris soin de tenir compte de la projection sur le sous-espace microcanonique des fluctuations d’énergie nulle non seulement dans la condition initiale (74), mais aussi dans la contraction par $B(\epsilon)$ dans (70), en y remplaçant $B(\epsilon)$ par $B(\epsilon) - \Lambda \epsilon$; cette précaution, optionnelle dans la formulation exacte, ne l’est plus ici puisque l’approximation viola la conservation de l’énergie.

18. En revanche, la valeur prédite pour le coefficient C dans (78) pour $k_B T = 10\mu_{TF}$, soit 10^{-5}, diffère significativement de la valeur $= 7 \times 10^{-5}$ constatée numériquement.
\[\epsilon', \epsilon'' \approx \text{déclenche cependant une divergence infinie logarithmique dans les intégrales sur } \epsilon' \text{ dans } (67), \text{ qui s’interrompt à } \epsilon' \lesssim \mu_{TF}, \text{ si bien que} \]

\[\frac{\hbar \Gamma(k_B T \tilde{\epsilon})}{\mu_{TF} \rho_0(0) \sigma^3 \epsilon^{3/2}} \approx \frac{1}{512 \sqrt{\pi}} \frac{1}{15 \pi^{1/2}} \frac{\mu_{TF}}{k_B T} \frac{\ln \frac{k_B T}{\mu_{TF}}}{\bar{\epsilon}} \]

(83)

Tout ceci conduit bien aux lois d’échelle \(D \approx T^4 \) et \(t_0 \approx T \) à haute température, à des facteurs logarithmiques près.

À basse température, nous procédons de même. Le comportement de \(\Gamma(k_B T \tilde{\epsilon}) \) est en \(T^{3/2} \) lorsque \(T \to 0 \) à \(\tilde{\epsilon} \) fixé, comme l’équivalent (76) le laissait entrevoir et comme un calcul le confirme. Le seul piège à éviter est que \(B(k_B T \tilde{\epsilon}) - N k_B T \tilde{\epsilon} \) est d’ordre \(T^{3/2} \) lorsque \(T \to 0 \), et non pas \(T \) comme on pourrait le croire, car les termes dominants de \(B(k_B T \tilde{\epsilon}) \) et de \(N k_B T \tilde{\epsilon} \), tous deux linéaires en \(k_B T \tilde{\epsilon} \), se compensent exactement, voir l’équation (75). Ceci conduit aux lois de puissance exactes (sans facteur correctif logarithmique) \(D \propto T^4 \) et \(t_0 \propto T^{-3/2} \) à basse température ; seule la seconde est accessible sur l’intervalle en température de la figure 5, mais nous avons vérifié la première numériquement.

Afin d’encourager une étude expérimentale avec des atomes froids, terminons par une petite étude des limites fondamentales à l’observabilité de la diffusion de phase d’un condensat piégé. Il existe bien entendu plusieurs difficultés pratiques à surmonter, comme (i) la réduction significative des fluctuations de l’énergie et du nombre de particules dans le gaz pour atteindre le brouillage balistique de la phase, concernant différemment de la phase, (ii) la mise en place d’un système de détection sensible et non biaisé du déphasage du condensat ou de la fonction de cohérence \(g_1(t) \), (iii) la réduction des bruits techniques du dispositif expérimental, (iv) le piégeage des atomes dans une cellule sous un vide suffisamment poussé pour rendre négligeables les pertes d’atomes froids par collision avec le gaz chaud résiduel (pertes à un corps) ; des durées de vie de l’ordre de l’heure sont envisageables sous environnement cryogénique [33, 34]. Ces aspects pratiques varient suivant les équipements et sont du cadre de cet article. En revanche, les pertes de particules dues aux collisions à trois corps, avec formation d’un dimère et d’un atome rapide, sont intrinsèques aux gaz d’alcalins et constituent une limite fondamentale. Chaque perte d’un atome change, à un instant aléatoire, la vitesse de variation de la phase \(\dot{\hat{\epsilon}} \), puisque celle-ci est fonction de \(N \), ce qui ajoute une composante stochastique à son évolution [16, 35]. Pour calculer la variance du déphasage du condensat induit par les pertes à trois corps, nous nous plaçons à l’ordre zéro en la fraction non condensée, c’est-à-dire dans le cas d’un condensat pur à température nulle préparé à l’instant 0 avec un nombre initialement bien défini \(N \).

19. Un calcul plus précis conduit à remplacer dans (83) le symbole \(- \) par = et le facteur \(\ln \frac{k_B T}{\mu_{TF}} \) par \(\ln \left[\frac{k_B T}{\mu_{TF}} + \frac{1}{8} + \ln(1 - e^{-\tilde{\epsilon}}) + \frac{1}{16} - 3 \ln 2 + O(\mu_{TF}/k_B T) \right] \).
particules, comme dans la référence [16] dont nous pouvons récupérer (en les adaptant au cas piégé et aux pertes à trois corps) les expressions (G7) et (64):

\[
\text{Var}_{\text{pertes}}[\hat{\theta}(t) - \hat{\theta}(0)] = \frac{\left(\frac{d\Gamma}{dN}\right)^2}{\hbar N} \int_0^t dt \int_0^t dt' \left[\langle \hat{N}(r)\hat{N}(r') \rangle - \langle \hat{N}(r) \rangle \langle \hat{N}(r') \rangle \right] \frac{\left(\frac{d\Gamma}{dN}\right)^2}{\hbar N N \Gamma} N \Gamma \ell^3 \tag{84}
\]

Nous avons introduit le taux de décroissance \(\Gamma_3 \) du nombre de particules, relié comme suit à la constante \(K_3 \) des pertes à trois corps et au profil de densité Thomas-Fermi \(\rho_0(r) \) du condensat:

\[
\frac{d}{dt} \frac{1}{N} \equiv - \Gamma_3 N = - K_3 \int d^3r [\rho_0(r)]^3 \tag{85}
\]

Nous obtenons une écriture plus parlante, directement comparable à nos résultats sans pertes, en récrivant (84) sous forme adimensionnée :

\[
\text{Var}_{\text{pertes}}[\hat{\theta}(t) - \hat{\theta}(0)] \sim \frac{8}{525 \pi} \frac{K_3 \ell^3}{m_3 \ell^3} \tag{86}
\]

où \(\text{Var} \) et \(\ell \) sont la variance du déphasage et le temps écoulé dans les unités de la figure 4, et \(\bar{K}_3 = m K_3 / (\hbar a^4) \).

La constante réduite \(\bar{K}_3 \) est une propriété intrinsèque de l’espèce atomique utilisée dans l’expérience (même s’il est possible de la faire varier à l’aide d’une résonance de Feshbach magnétique [36]). Pour estimer l’ordre de grandeur de \(\bar{K}_3 \) dans un gaz d’atomes froids, prenons l’exemple du rubidium 87 dans le sous-niveau hyperfin basal \(|F = 1, m_F = -1 \rangle \) en champ magnétique quasi nul : les mesures donnent \(\bar{K}_3 = 6 \times 10^{-42} m^3 /s \) et \(a = 5,31 \) nm [37] donc \(\bar{K}_3 = 10 \). Sur la figure 4a (\(k_B T = \mu_{TF} \)), au temps réduit \(\bar{t} = 5 \) d’entrée dans le régime asymptotique de la diffusion de phase, on voit que la variance parasite induite par les pertes pour cette valeur de \(\bar{K}_3 \) est environ le triple de la variance utile ; leurs dépendances en temps très différentes devraient cependant permettre de les séparer. La situation est beaucoup plus favorable à plus haute température, \(k_B T \approx \mu_{TF} \), l’effet des pertes sur la variance du déphasage étant par exemple encore négligeable au temps réduit \(\bar{t} = 100 \) sur la figure 4b (\(k_B T = 10 \mu_{TF} \)).

4.5. Discussion de l’hypothèse ergodique

Le mouvement classique des quasi-particules de Bogolioubov, comme l’ont montré les références [22, 23] dans le cas d’un piège harmonique à symétrie de révolution, est fortement chaotique aux énergies \(\epsilon = \mu_{TF} \) mais même à cette énergie, les sections de Poincaré révèlent des îlots de stabilité dans l’espace des phases, qui ne sont pas traversés par les trajectoires de la mer chaotique : il n’y a donc pas ergodicité au sens strict.
Qu’en est-il dans le cas d’un piège complètement anisotrope ? Nous souhaitons tester l’hypothèse ergodique pour deux grandeurs physiques. La première apparaît dans nos équations cinétiques linéarisées, il s’agit du taux d’amortissement $\Gamma(r, p)$. La seconde intervient dans les conditions initiales de la fonction de corrélation $C_{\text{mc}}(\tau)$ de $d\theta/dt$, il s’agit de $\text{de}(r, p)/d\mu_{\text{TF}}$. Pour un échantillonnage uniforme de la surface d’énergie ϵ, c’est-à-dire avec la distribution de probabilité $\delta(\epsilon - \epsilon(r, p))/\rho(\epsilon)$ dans l’espace des phases, nous montrons sur la figure 6 les histogrammes de ces grandeurs après moyen temporel sur chaque trajectoire pendant des temps respectivement de $t = 0$, $t = 5000/\omega$ et $t = 250000/\omega$, à l’énergie $\epsilon = k_B T = \mu_{\text{TF}}$ pour des pulsations de piégeage incommensurables.\(^{20}\) Le moyen temporel conduit bien à un rétrécissement spectaculaire de la distribution de probabilité, qui se pique autour de la moyenne ergodique (ligne tiretée à gauche), ce qui va dans le sens de l’hypothèse ergodique. Cette dynamique de rétrécissement se poursuit sur des temps très longs, mais ne vient jamais à bout d’un petit pic latéral éloigné de la moyenne ergodique.

Un examen des trajectoires contribuant au pic latéral montre qu’il s’agit de perturbations de trajectoires linéaires stables le long de l’axe propre du piège de raideur maximale. La valeur moyenne temporelle des deux grandeurs considérées sur ces trajectoires linéaires est représentée par le tireté à droite sur la figure 6, elle est effectivement proche du pic en question. Le diagramme de stabilité d’une trajectoire linéaire le long d’un axe propre α quelconque du piège vis-à-vis d’une perturbation le long d’un autre axe propre β est représenté sur la figure 7, dans le plan (énergie, rapport $\omega_\beta/\omega_\alpha$). Il montre que la trajectoire linéaire selon l’axe le plus confinant est bien stable, à toute énergie.\(^{21}\) Les sections de Poincaré des trajectoires planes dans les plans $\alpha\beta\bar{\alpha}$ sur la figure 8 précisent la largeur de l’îlot de stabilité et révèlent l’existence d’îlots secondaires, etc. Il n’y a donc pas pleine ergodicité de notre dynamique classique, même aux énergies $\epsilon \approx \mu_{\text{TF}}$, même dans le cas complètement anisotrope.

Pour mesurer quantitativement l’erreur commise par l’hypothèse ergodique dans le calcul de $C_{\text{mc}}(0)$ et de $C_{\text{mc}}(\tau > 0)$.

\(^{20}\) Pour la dynamique hamiltonienne classique des quasi-particules de Bogolioubov dans un potentiel harmonique, stabilité du mouvement linéaire selon un axe propre $O\alpha$ du piége vis-à-vis d’une perturbation initiale infinitésimale (un déplacement) selon un autre axe propre $O\beta$, en fonction de l’énergie ϵ de la trajectoire et du rapport $\omega_\beta/\omega_\alpha$, des pulsations de piégeage (les zones hachurées sont stables).

\(^{21}\) Pour mesurer quantitativement l’erreur commise par l’hypothèse ergodique dans le calcul de $C_{\text{mc}}(0)$ et de $C_{\text{mc}}(\tau > 0)$, les équations du mouvement ($\frac{d^2}{dt^2}X = f(X)$, sont intégrées numériquement avec un schéma semi-implicite du second ordre, $X(t + dt) = X(t) + dt\left[1 - \frac{d}{2}M\right]^{-1}f(X(t))$ où M est la différentielle première de $f(X)$ en $X(t)$ [38]. Si la trajectoire traverse la surface du condensat entre t et $t + dt$, il faut déterminer l’instant t_1 de la traversée avec une erreur $O(dt)^3$, puis appliquer le schéma semi-implicite successivement sur $[t, t_1]$ et $[t_1, t + dt]$, pour pallier la discontinuité de $f(X)$ et de ses dérivées. Pour une trajectoire linéaire d’une quasi-particule d’énergie ϵ selon l’axe propre $O\alpha$ du piége d’une pulsation $2\omega_\alpha$, le résultat s’écrit $\frac{\text{de}(r, p)}{d\mu_{\text{TF}}} = -\frac{\ln(\frac{\epsilon}{\epsilon_{\text{TF}}})}{\sqrt{\epsilon^2 - \epsilon_{\text{TF}}}} - \sqrt{\epsilon^2 - \epsilon_{\text{TF}}} \frac{\text{atan} \sqrt{\epsilon}}{\epsilon}$. À l’extérieur du condensat, la quasi-particule oscille harmoniquement comme une particule libre pendant un temps $2\omega_\alpha^{-1} \text{atan}(\epsilon/\epsilon_{\text{TF}})^{1/2}$ avant de regagner le condensat, pour le traverser en un temps $2t_1$, et ainsi de suite. La connaissance de la trajectoire rend immédiate l’analyse linéaire de stabilité numérique. Elle permet aussi de calculer analytiquement la moyenne temporelle de $\text{de}(r, p)/d\mu_{\text{TF}}$ sur la trajectoire linéaire ; si l’on pose $\bar{\epsilon} = \epsilon/\epsilon_{\text{TF}}$, le résultat s’écrit

\[
\frac{\text{de}(r, p)}{d\mu_{\text{TF}}} = \frac{\ln(\frac{\epsilon}{\epsilon_{\text{TF}}} + \sqrt{\epsilon^2 - \epsilon_{\text{TF}}})}{\epsilon_{\text{TF}} \sqrt{\epsilon^2 - \epsilon_{\text{TF}}}} - \frac{\sqrt{\epsilon^2 - \epsilon_{\text{TF}}}}{\epsilon \sqrt{\epsilon_{\text{TF}}}} \text{atan} \frac{\sqrt{\epsilon^2 - \epsilon_{\text{TF}}}}{\epsilon_{\text{TF}}}.
\]
Pour la dynamique hamiltonienne classique des quasi-particles de Bogolioubov dans un potentiel harmonique, sections de Poincaré dans le plan de coupe \(r_y = 0\), \(p_y(\epsilon) > 0\) de trajectoires planes dans \(xOy\) (200 trajectoires indépendantes, temps d’évolution 5000/\(\bar{\omega}\)), avec un rapport \(\omega_x/\omega_y\) prenant toutes les valeurs possibles dans le piège de la figure 6 : 1 : \(\sqrt{3}\), \(\sqrt{3} : 1\), \(\sqrt{3} - 1\), \(\sqrt{3} : \sqrt{3} - 1\) et \(\sqrt{3} - 1 : \sqrt{3}\). Les sections ont été ordonnées dans le sens d’un rapport \(\omega_x/\omega_y\) croissant de gauche à droite et de haut en bas (en effet, \(1/\sqrt{3} < (\sqrt{3} - 1)/\sqrt{3} < 1/(\sqrt{3} - 1) < 1\)). Ceci révèle que la section de Poincaré est d’autant plus chaotique que le rapport \(\omega_x/\omega_y\) est plus grand.

\(r_x\) est en unités de \((\mu TF/\bar{\mu} \omega^2)^{1/2}\) et \(p_x\) en unités de \((\bar{\mu} \mu TF)^{1/2}\).

0), nous considérons les écarts entre

\[
\frac{\langle \frac{d\epsilon(r,p)}{d\epsilon} \rangle_\epsilon}{\langle \frac{d\epsilon(r,p)}{d\epsilon} \rangle_\epsilon^2} \quad \text{et} \quad \frac{\langle \frac{d\epsilon(r,p)}{d\epsilon} \rangle_\epsilon}{\langle \frac{d\epsilon(r,p)}{d\epsilon} \rangle_\epsilon^2} = \frac{1}{\langle \Gamma(r,p) \rangle_\epsilon} \quad (87)
\]

\[
\frac{1}{\langle \Gamma(r,p) \rangle_\epsilon} \quad \text{et} \quad \frac{1}{\langle \Gamma(r,p) \rangle_\epsilon} = \frac{1}{\langle \Gamma(\epsilon) \rangle} \quad (88)
\]

où, rappelons-le, la barre horizontale \(\langle \cdots \rangle_\epsilon\) au-dessus d’une grandeur physique représente la moyenne temporelle sur la trajectoire passant par \((r,p)\) dans l’espace des phases comme dans l’équation (63), et les crochets \(\langle \cdots \rangle_\epsilon\) représentent la moyenne uniforme sur la couche d’énergie \(\epsilon\) comme dans l’équation (64). Dans le tableau d’équations (87,88), la colonne de gauche contient les grandeurs apparaissant dans \(C_{mc}(0)\) ou dans les équations cinétiques séculaires avant l’approximation ergodique, et la colonne de droite ce qu’elles deviennent après approximation ergodique. Point important, nous considérons dans l’équation (88) \(1/\Gamma\) plutôt que \(\Gamma\) car ce sont les inverses \(M^{-1}\) et \(M^{-2}\) qui apparaissent dans l’expression (81,82) du coefficient de diffusion \(D\) et du temps de retard \(t_0\), \(M\) étant l’opérateur représentant le second membre des équations cinétiques linéarisées (66). Les quantités à comparer (87,88) sont représentées en fonction de l’énorme \(\epsilon\) sur la figure 9 à la température \(T = \mu TF/k_B\). Il y a un accord remarquable sur une large plage d’énergie autour de \(\epsilon = \mu TF\). Les écarts à l’approximation ergodique à très basse énergie et à très haute énergie étaient attendus : dans ces limites, la dynamique classique devient intégrable [22]. À haute énergie, nous

\[22. \text{Faut-il le rappeler,} \langle \Gamma(r,p) \rangle_\epsilon = \Gamma(\epsilon), \text{la moyenne uniforme étant invariante par évolution temporelle. Du coup, l’inégalité entre moyenne harmonique et moyenne arithmétique impose} \langle 1/\Gamma(r,p) \rangle_\epsilon \geq 1/\langle \Gamma(\epsilon) \rangle.\]
obtenons pour la grandeur $\Gamma(r, p)$ la prédiction analytique suivante :
\[
\left\langle \frac{1}{h^2 \Gamma(r, p)} \right\rangle \sim \frac{\pi^{5/2}}{56 \sqrt{\mu_T^2}} \frac{1}{\left[\epsilon(0) \mu_T^2 \right]^{1/2}}
\]
(89)

Elle diffère de la prédiction ergodique (77) par un coefficient numérique, et reproduit bien les résultats des simulations numériques (voir la tireté rouge sur la figure 9b). Ceci nous interdit de calculer le coefficient de diffusion D et le retard à la diffusion t_0 dans l’approximation sécularo-ergodique à trop haute température. En ce qui concerne la grandeur $\frac{\langle \mu_T \rangle}{\partial \mu_T}$, qui tend vers -1 à haute énergie, l’écart peut être significatif qu’à basse énergie ; il ne le devient en fait qu’à très basse énergie, et ne poserait problème à notre calcul ergodique de D et t_0 qu’à des températures $k_B T \ll \mu_T$ rarement atteintes dans les expériences sur les atomes froids.

5. Conclusion

Motivés par des progrès expérimentaux récents dans la manipulation des gaz d’atomes froids piégés [1, 2, 3], nous avons étudié théoriquement le temps de cohérence et la dynamique de phase d’un condensat de Bose-Einstein dans un gaz de bosons isolé et piégé harmoniquement, un problème fondamental important pour les applications interférométriques. La variance du déphasage subi par le condensat au bout d’un temps t croît indéfiniment avec t, ce qui limite le temps de cohérence intrinsèque du gaz. Pour $t \gg t_{\text{coll}}$, où t_{coll} est le temps de collision typique entre les quasi-particules de Bogolioubov, elle devient une fonction quadratique du temps,

\[
\text{Var}[\hat{T}(t) - \hat{T}(0)] = A t^2 + 2D(t - t_0) + o(1)
\]
(90)

23. À l’ordre dominant en ϵ, on obtient $\Gamma(r, p)$ en moyennant l’équivalent (97) (dans lequel $\mu_T = g \delta_0(r)$) sur une trajectoire harmonique non perturbée par le condensat, $\tau_T(t) = \tau\delta_0(0(t))$, $\forall t \in \{x, y, z\}$. Considérons astucieusement la quantité $g \delta_0(r)$ à moyennner comme une fonction $f(\theta)$ des angles $\theta = (\alpha, \beta, \gamma)$. C’est une fonction périodique de période 2π selon chaque direction, décomposable en série de Fourier, $f(\theta) = \sum_{n \in \mathbb{Z}^3} e^{in\theta}$. Dans le cas incommensurable, $n \cdot \omega \neq 0$ et la moyenne temporelle de $e^{in\theta}$ est nulle $\forall n \in \mathbb{Z}$, c’est que $\tau_T = \tau_0$. Dans l’habitué expression intégrale de c_{θ}, on effectue le changement de variable $x_0 = X_\omega \cos \theta_\omega$, où $X_\omega = (\epsilon_\omega / \mu_T)^{1/2}$ et ϵ_ω est l’énergie du mouvement selon Ox. Il reste à faire tendre les X_ω vers $+\infty$ sous le signe intégral pour obtenir

\[
\frac{\mu_T}{\mu_T \delta_0(0) \omega^{3/2}} e^{-\omega} \sim \frac{32 \sqrt{\pi}}{15 \pi^{3/2}} \left(\frac{\epsilon}{\mu_T} \right)^{1/2} \prod_{\alpha} \left(\frac{\mu_T}{\epsilon_\alpha} \right)^{1/2}
\]

En moyennant l’inverse de cet équivalent sur la distribution de probabilité $2e^{-\epsilon} (\epsilon - \sum_{\alpha} \epsilon_\alpha)$ des énergies par direction pour un oscillateur harmonique d’énergie totale ϵ, on tombe sur (89).
où $\hat{\omega}$ est l’opérateur phase du condensat. Cette loi asymptotique a la même forme que dans le cas spatialement homogène précédemment étudié [16], ce qui n’était pas garanti, mais les coefficients diffèrent bien entendu. Pour les calculer, nous considérons la limite thermodynamique dans le piège, dans laquelle le nombre de particules tend vers l’infini, $N \to +\infty$, à température T et potentiel chimique de Gross-Pitaevskii μ_{GP} fixés. Ceci impose que les pulsations de piégeage réduites tendent vers zéro, $\hbar \omega_a / \mu_{GP} \to 0$, ce que nous réinterprétons avantageusement comme une limite classique $\hbar \to 0$.

Le terme dominant $\Delta^2 (t - t_0)$ ne dépend pas de l’ensemble dans lequel le système est préparé, du moins au premier ordre non nul $1/N$ à la limite thermodynamique, et il est le seul qui subsiste dans l’ensemble microcanonique. Le calcul de ses deux ingrédients, le coefficient de diffusion D de la phase et le retard à la diffusion t_0, nécessite la connaissance à tout temps de la fonction de corrélation de $\hat{d}/\hat{d}t$ dans l’ensemble microcanonique, et donc la résolution d’équations cinétiques linéarisées sur les nombres d’occupation des quasi-particules de Bogolioubov. Ce sont en effet les fluctuations temporelles de ces nombres d’occupation pour une réalisation donnée du système qui stochastisent l’évolution de la phase du condensat.

Le terme sous-dominant $2D(t - t_0)$ ne dépend pas de l’ensemble dans lequel le système est préparé, du moins au premier ordre non nul $1/N$ à la limite thermodynamique, et il est le seul qui subsiste dans l’ensemble microcanonique. Le calcul de ses deux ingrédients, le coefficient de diffusion D de la phase et le retard à la diffusion t_0, nécessite la connaissance à tout temps de la fonction de corrélation de $\hat{d}/\hat{d}t$ dans l’ensemble microcanonique, et donc la résolution d’équations cinétiques linéarisées sur les nombres d’occupation des quasi-particules de Bogolioubov. Ce sont en effet les fluctuations temporelles de ces nombres d’occupation pour une réalisation donnée du système qui stochastisent l’évolution de la phase du condensat. Nous adoptons pour ce faire une description semi-classique, dans laquelle le mouvement des quasi-particules dans le gaz piégé est traité classiquement dans l’espace des phases (r, p), mais le champ bosonique des quasi-particules est traité quantiquement, au travers des opérateurs nombres d’occupation $\hat{n}(r, p)$. Dans les observables quantiques de la forme $\hat{A} = \sum_k a_k \hat{n}_k$, comme $\hat{d}/\hat{d}t$, la moyenne ω_k et la somme sur les modes quantiques k de Bogolioubov sont alors remplacées, selon un principe de correspondance, par une moyenne temporelle et une intégrale sur les trajectoires classiques (voir les équations (42)-(44)). Les équations cinétiques linéarisées sur les fluctuations $\delta \hat{n}(r, p)$ comportent une partie de transport, selon le mouvement hamiltonien classique des quasi-particules, et une intégrale de collision, locale en position, qui décrivit les processus d’interaction Beliaev-Landau à trois quasi-particules. Elles prennent la même forme que les équations de Boltzmann quantiques linéarisées sur la fonction de distribution semi-classique $n(r, p, t)$ des quasi-particules dans l’espace des phases. On les simplifie dans la limite séculaire $\omega_{vol\text{-}coll} \gg 1$ et sous l’hypothèse d’un mouvement classique ergodique des quasi-particules. Cette hypothèse, selon laquelle les fluctuations $\delta \hat{n}(r, p)$ moyennées sur une trajectoire ne dépendent plus que de l’énergie de cette dernière, ne tient que si le piège est complètement anisotrope ; nous lui apportons dans ce cas une justification numérique soigneuse.

Les quantités cherchées D et t_0, correctement adimensionnées, sont des fonctions universelles de $k_B T / \mu_{TF}$ où μ_{TF} est la limite Thomas-Fermi de μ_{GP}, et sont en particulier indépendantes des rapports ω_a / ω_p des pulsations de piégeage. Elles sont représentées sur la figure 5. Un sous-produit intéressant et plus directement mesurable de notre étude est le taux d’amortissement $\Gamma(\epsilon)$ des modes de Bogolioubov d’énergie ϵ dans le piège. À la température adimensionnée $k_B T / \mu_{TF}$ fixée, il est lui aussi décrit par une fonction universelle de ϵ / μ_{TF} indépendante des pulsations de piégeage, voir la figure 3. Ces résultats participent d’une nouvelle classe d’universalité, celle des pièges harmoniques complètement anisotropes, fort différente de celle théoriquement mieux défrichée des systèmes spatialement homogènes, et recevront, espérons-le, une confirmation expérimentale prochaine.

Remerciements

Nous remercions les membres de l’équipe « fermions froids » et « puces à atomes » du LKB, en particulier Christophe Salomon, pour d’utiles discussions.
Annexe A. Comportement de $\Gamma(\epsilon)$ à basse et à haute énergie

Pour obtenir les comportements aux limites (76) et (77) du taux d’amortissement $\Gamma(\epsilon)$ des modes de Bogolioubov dans un piège à l’approximation sécuro-logique, nous récrivons l’intégrale dans l’espace des phases (64) comme une moyenne sur le potentiel chimique de Gross-Pitaevski local $\mu_0 = g\rho_0(r)$ du taux d’amortissement $\Gamma_b(\epsilon, \mu_0, k_0T)$ des modes d’énergie ϵ dans un système homogène de densité μ_0/g et de température T :

$$\Gamma(\epsilon) = \int_0^{\pi \tau_T} d\mu_0 P_\epsilon(\mu_0) \Gamma_b(\epsilon, \mu_0, k_0T)$$ \hspace{1cm} (91)

avec

$$P_\epsilon(\mu_0) \equiv \frac{1}{\rho(\epsilon)} \int \frac{d^3r}{(2\pi h)^3} \delta(\epsilon - \epsilon(r, p)) \delta(\mu_0 - g\rho_0(r)) = \frac{4}{\pi \rho(\epsilon) (\hbar \omega)^3} \frac{\epsilon^2 (\mu_T - \mu_0)^{1/2}}{(\mu_0^2 + \epsilon^2)^{1/2}((\mu_0^2 + \epsilon^2)^{1/2} + \mu_0)^{1/2}}$$ \hspace{1cm} (92)

Dans la limite $\epsilon \to 0$, nous remplacions d’abord heuristiquement l’intégrande dans l’équation (91) par un équivalent à basse énergie, en utilisant :

$$P_\epsilon(\mu_0) \sim \frac{3}{8 \sqrt{2}} \epsilon^{1/2} (\mu_T - \mu_0)^{1/2} \mu_0^{1/2} \rho_0 \psi_\epsilon(\mu_0)$$ \hspace{1cm} (93)

$$\frac{\hbar \Gamma_b(\epsilon, \mu_0, k_0T)}{2} \sim \epsilon \frac{(\mu_0 a^3)}{\mu} F(k_0T/\mu_0)$$ \hspace{1cm} (94)

Dans l’équation (93), nous avons utilisé l’équation (34) ; le résultat (94) se trouve dans la référence [32], où la fonction F est calculée et étudiée. Comme $F(\theta) \sim 2 e^{-\theta}$, ceci fait apparaître dans l’équation (91) l’intégrale divergente $\epsilon^{3/2} \int_0^{\pi \tau_T} d\mu_0/\mu_0^3$. On voit bien cependant qu’il faut couper cette intégrale à $\mu_0 > \epsilon$ pour que l’équivalent (94) reste utilisable, d’où la loi d’échelle $\Gamma(\epsilon) \sim \epsilon^{1/2}$, dominée par le bord du condensat piégé et très différente de la loi d’annulation linéaire du cas homogène. Pour trouver le préfacteur dans la loi, il suffit de faire le changement d’échelle $\mu_0 = \epsilon \gamma_0$ dans l’intégrale et d’utiliser l’approximation de « haute température » de la référence [39] sur Γ_b, uniformément valable près du bord du condensat piégé,

$$\frac{\hbar \Gamma_b(\epsilon, \mu_0, k_0T)}{2} \sim \epsilon^{1/2} a^3 \phi(\epsilon/\mu_0)$$ \hspace{1cm} (95)

avant de passer à la limite $\epsilon \to 0$ sous le signe intégral, ce qui conduit à l’équation cherchée (76) avec 24

$$I = \int_0^{\pi \tau_T} d\mu_0 \frac{\gamma_0^{1/2} \phi(1/\gamma_0)}{(1 + \gamma_0^2)^{1/2}(1 + \gamma_0^3)^{1/2})^{1/2}} = 4.921 208 \ldots$$ \hspace{1cm} (96)

Dans la limite $\epsilon \to +\infty$, nous utilisons le fait que, dans le cas homogène, le taux d’amortissement des quasi-particules se réduit au taux de collision $\rho_0 \sigma v$ d’une particule de vitesse $v = (2\epsilon/m)^{1/2}$ avec les particules du condensat, de vitesse nulle et de densité ρ_0, avec la section efficace $\sigma = 8\pi a^2$ des bosons indiscernables (c’est un processus de Beliaev) :

$$\frac{\hbar \Gamma_b(\epsilon, \mu_0, k_0T)}{2} \sim \mu_0 a^3 \frac{(2\pi e)}{\hbar}$$ \hspace{1cm} (97)

En utilisant de même le développement à haute énergie (35) de $\rho(\epsilon)$, nous trouvons que $P_\epsilon(\mu_0) \sim (8/\pi)(\mu_T - \mu_0)^{1/2} \epsilon^{-3/2}$. Le report de ces équivalents dans l’équation (91) donne bien (77).

24. En pratique, la fonction ϕ se déduit de l’équation (57) en effectuant l’approximation de champ classique $1 + \Re\langle r, q \rangle = \Re\langle r, q \rangle = \Re\langle r, q \rangle = \Re\langle r, q \rangle$. Dans le calcul de I, effectué en prenant $\tau_T = 1/\gamma_0$ comme variable d’intégration, on réduit l’effet de la troncature numérique à l’aide du développement asymptotique $\phi(\epsilon) = 4 \left(\frac{2}{\gamma_0} \right)^{1/2} \left[2 \ln \frac{\gamma_0}{2} + \frac{1}{2} \ln(2\gamma_0^2) + 2 \frac{\ln(4\gamma_0^2)}{8\pi} + O(\gamma_0^{-3/2}) \right]$, qui corrige et améliore celui de l’équation (35) de la référence [39].
Références

[1] R. Schmied, J.-D. Bancel, B. Allard, M. Fadel, V. Scarani, P. Treutlein, N. Sangouard, « Bell correlations in a Bose-Einstein condensate », Science 352, 441 (2016).

[2] W. Maussel, H. Strobel, D. Linnemann, D.B. Hume, M.K. Obrehtaler, « Scalable Spin Squeezing for Quantum-Enhanced Magnetometry with Bose-Einstein Condensates », Phys. Rev. Lett. 113, 103004 (2014).

[3] T. Berrada, S. van Frank, R. Bücker, T. Schumm, J.-F. Schaff, J. Schmiedmayer, « Integrated Mach-Zehnder interferometer for Bose-Einstein condensates », Nature Comm. 4, 2077 (2013).

[4] M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, « Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor », Science 269, 198 (1995).

[5] K.B. Davis, M.-O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, W. Ketterle, « Bose-Einstein condensation in a gas of sodium atoms », Phys. Rev. Lett. 75, 3969 (1995).

[6] F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, « Theory of Bose-Einstein condensation in trapped gases », Rev. Mod. Phys. 71, 469 (1999).

[7] H. Deng, G. Weihs, C. Santori, J. Bloch, Y. Yamamoto, « Condensation of semiconductor microcavity exciton polaritons », Science 298, 199 (2002).

[8] J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J.M.J. Keeling, F.M. Marchetti, M.H. Szymańska, R. André, J.L. Staehli, V. Savona, P.B. Littlewood, B. Deveaud, Le Si Dang, « Bose-Einstein condensation of exciton polaritons », Nature 443, 409 (2006).

[9] A. Arno, J. Lefèvre, S. Pigeon, C. Adrados, C. Cutti, I. Carusotto, R. Houdré, E. Giacobino, A. Bramati, « Superfluidity of Polaritons in Semiconductor Microcavities », Nature Phys. 5, 805 (2009).

[10] M. Alloing, M. Beian, M. Lewenstein, D. Faster, Y. Gonzalez, L. Gonzalez, R. Combescot, M. Combescot, F. Dubin, « Evidence for a Bose-Einstein condensate of excitons », Europhys. Lett. 107, 10012 (2014).

[11] D. Jaksch, C.W. Gardiner, K.M. Gheri, P. Zoller, « Quantum kinetic theory. IV. Intensity and amplitude fluctuations of a Bose-Einstein condensate at finite temperature including trap loss », Phys. Rev. A 58, 1450 (1998).

[12] R. Graham, « Decoherence of Bose-Einstein Condensates in Traps at Finite Temperature », Phys. Rev. Lett. 81, 5262 (1998).

[13] A.B. Kuklov, J.L. Birman, « Orthogonality catastrophe and decoherence of a confined Bose-Einstein condensate at finite temperature », Phys. Rev. A 63, 013609 (2000).

[14] A. Sinatra, Y. Castin, E. Witkowska, « Nondiffusive phase spreading of a Bose-Einstein condensate at finite temperature », Phys. Rev. A 75, 033616 (2007).

[15] A. Sinatra, Y. Castin, « Genuine phase diffusion of a Bose-Einstein condensate in the microcanonical ensemble: A classical field study », Phys. Rev. A 78, 053615 (2008).

[16] A. Sinatra, Y. Castin, E. Witkowska, « Coherence time of a Bose-Einstein condensate », Phys. Rev. A 80, 033614 (2009).

[17] A. Sinatra, Y. Castin, « Spatial and temporal coherence of a Bose-condensed gas », in Physics of Quantum Fluids: new trends and hot topics in atomic and polariton condensates, édité par M. Modugno, A. Bramati, Springer Series in Solid-State Sciences 177 (Springer, Berlin, 2013).

[18] H. Kurkjian, Y. Castin, A. Sinatra, « Brouillage thermique d’un gaz cohérent de fermions », Comptes Rendus Physique 17, 789 (2016) [fibre accès, doi : 10.1016/j.crhy.2016.02.005].

[19] A.L. Gaunt, T.F. Schmidtutz, I. Gotlibovych, R.P. Smith, Z. Hadzibabic, « Bose-Einstein Condensation of Atoms in a Uniform Potential », Phys. Rev. Lett. 110, 200406 (2013).

[20] P.O. Fedichev, G.V. Shlyapnikov, J.T.M. Walraven, « Damping of Low-Energy Excitations of a Trapped Bose-Einstein Condensate at Finite Temperatures », Phys. Rev. Lett. 80, 2269 (1998).

[21] A. Sinatra, Y. Castin, E. Witkowska, « Limit of spin squeezing in trapped Bose-Einstein condensates », EPL 102, 40001 (2013).

[22] M. Fliesser, A. Cordas, R. Graham, P. Szepfalusy, « Classical quasiparticle dynamics in trapped Bose condensates », Phys. Rev. A 56, 4879 (1997).

[23] M. Fliesser, R. Graham, « Classical quasiparticle dynamics and chaos in trapped Bose condensates », Physica D 131, 141 (1999).

[24] Y. Castin, R. Dum, « Low temperature Bose-Einstein condensates in time dependent traps : beyond the U(1)-symmetry breaking approach », Phys. Rev. A 57, 3008 (1998).

[25] J.M. Deutsch, « Quantum statistical mechanics in a closed system », Phys. Rev. A 43, 2046 (1991).

[26] M. Srednicki, « Chaos and quantum thermalization », Phys. Rev. E 50, 888 (1994).

[27] M. Rigol, V. Dunjko, M. Olshanii, « Thermalization and its mechanism for generic isolated quantum systems », Nature 452, 854 (2008).

[28] T.D. Lee, C.N. Yang, « Many-Body Problem in Quantum Mechanics and Quantum Statistical Mechanics », Phys. Rev. 105, 1119 (1957).

[29] L. Carr, Y. Castin, G. Shlyapnikov, « Achieving a BCS transition in an atomic Fermi gas », Phys. Rev. Lett. 92, 150404 (2004).

[30] E.M. Wright, D.F. Walls, J.C. Garrison, « Collapses and Revivals of Bose-Einstein Condensates Formed in Small Atomic Samples », Phys. Rev. Lett. 77, 2158 (1996).

[31] Y. Castin, J. Dalibard, « Relative phase of two Bose-Einstein condensates », Phys. Rev. A 55, 4330 (1997).

[32] S. Giorgini, « Damping in dilute Bose-Einstein condensates : A mean-field approach », Phys. Rev. A 57, 2949 (1998).

[33] P.A. Willems, K.G. Libbrecht, « Creating long-lived neutral atom traps in a cryogenic environment », Phys. Rev. A 51, 1403 (1995).

[34] The ALPHA collaboration, « Confinement of anti-hydrogen for 1000 seconds », Nature Physics 7, 558 (2011).

[35] A. Sinatra, Y. Castin, « Phase Dynamics of Bose-Einstein Condensates : Losses versus Revivals », Eur. Phys. J. D 4, 247 (1998).

[36] Z. Shoton, O. Machtey, S. Kokkelmans, L. Khaykovich, « Three-Body Recombination at Vanishing Scattering Lengths in an Ultracold Bose Gas », Phys. Rev. Lett. 113, 053202 (2014).

[37] M. Egorov, B. Opanchuk, P. Drummond, B.V. Hall, P. Hannaford, A.I. Sidorov, « Measurement of s-wave scattering lengths in a two-component Bose-Einstein condensate », Phys. Rev. A 87, 053614 (2013).

[38] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes (Cambridge University Press, Cambridge, 1988).

[39] P.O. Fedichev, G.V. Shlyapnikov, « Finite-temperature perturbation theory for a spatially inhomogeneous Bose-condensed gas », Phys. Rev. A 58, 3146 (1998).