Problems with empirical bounds for strangelet production at RHIC

Adrian Kent

Department of Applied Mathematics and Theoretical Physics, University of Cambridge,
Silver Street, Cambridge CB3 9EW, U.K.
(September 10, 2000)

Recent papers by Busza et al. and Dar et al. have considered empirical bounds on the risk of producing a hypothetical stable negatively charged strangelet at the Brookhaven relativistic heavy ion collider (RHIC) experiments, and thereby destroying the Earth. We examine here ways in which these bounds could, hypothetically, be evaded. We find several, some of which have not previously been considered. These possible flaws do not affect the theoretical arguments against the existence of negatively charged strangelets or the possibility of producing them at RHIC if they were to exist.

PACS numbers: 25.75.-q, 87.52.Px, 06.60.Wa, 01.52.+r

I. INTRODUCTION

A. Background

High energy collider experiments tend to explore new realms of physics, in which theory tends to be uncertain. Catastrophic phenomena clearly occur in nature, and with sufficient speculation one can imagine theoretical mechanisms by which catastrophe could ensue from a collider experiment. Such mechanisms, of course, tend to be discussed and investigated for plausibility whenever any new experiment is proposed.

The experiments considered here are relativistic heavy ion collisions scheduled to take place at Brookhaven (RHIC) and CERN (ALICE). Several speculative catastrophe mechanisms have been discussed. We examine here the one which seems at first sight the least implausible and which has attracted most attention, namely the possibility that, if negatively charged metastable strange matter exists, it could be produced in the experiments and go on to destroy the Earth in a runaway reaction.

This possibility was investigated by Busza et al. (BJSW), who were requested to review candidate mechanisms for catastrophe scenarios at RHIC following public concern. Their initial report concluded that the possibility of strangelet-induced catastrophe can be firmly excluded by compelling theoretical arguments, and that very large safety factors can also be derived from the survival of the Moon and other astrophysical evidence. This analysis partly relies on independent work by Dar et al. (DDH), who noted a theoretical hypothesis which would imply that the survival of the Moon would provide no useful risk bounds, but concluded that the observed rate of supernovae provides large safety factors even under this hypothesis.

Following criticisms, Busza et al. produced a revised version of their report. In this version, BJSW shift their ground considerably, explicitly disclaiming any attempt to decide what might be an acceptable bound on the risk of catastrophe, and acknowledging explicitly the possibility that all empirical bounds on that risk would be invalidated if the hypothetical strangelets had particular unfortunate properties. However, they underline their view that compelling theoretical arguments provide sufficient, albeit unquantifiable, reassurance that there will be no catastrophe.

B. Scope of this paper

Considering the possibility, however remote, of so large a catastrophe is particularly difficult, since normal scientific practice is in some important respects inadequate. In everyday research, a hypothesis which has perhaps at best a 1% chance of being correct is often dismissed as not worth pursuing, and a scenario which relies on two or three such hypotheses is very unlikely to be taken seriously. Such judgements have to be made: science would progress much more slowly if disproportionate attention was paid to unlikely hypotheses and implausible explanations. However, when trying to exclude the possibility of global catastrophe, a 10^{-2}, 10^{-4} or even 10^{-6} probability of error is far from negligible, indeed alarmingly high. So every argument and every piece of conventional wisdom needs to be very carefully scrutinised in case it might have some neglected flaw.
A good way of trying to uncover such flaws, which I gather is often used in analysing risks of large disasters, is to give different roles to different teams of people. One team is required to make the case for safety. The other is required to try to find flaws in that case, to look out for the unexpected, to search for ways in which things could go wrong — in short, to play devil’s advocate. This paper is written in the spirit of a contribution from the second, contrarian, team.

The discussion here focusses on the empirically based arguments for bounds on the risk of catastrophe, which form an important part of the case made for safety at RHIC and have been widely publicized in an attempt to allay public fears. Its aim is to probe the robustness of those arguments, not to argue that the risk is in fact overly large.

I also consider a potential danger that could arise from the production of positively charged strangelets. While the risk of catastrophe arising this way appears pretty small — the strangelets would have to be somehow transported to the Sun, or introduced into an artificial fusion reaction — it deserves careful consideration.

This paper does not examine whether the reassurance given by theoretical arguments is sufficient in itself, as BJSW suggest. Nor does it consider what might be an acceptable bound on the risk of catastrophe. These questions will be addressed elsewhere.

C. Empirically derived risk bounds: general comments

Approximately 2×10^{11} high energy collisions of pairs of gold ions are scheduled to take place over the 10 year lifetime of RHIC. Following BJSW and DDH, we consider the speculative “killer strangelet” scenario in which the experiment might lead to disaster.

The scenario requires the following hypotheses. Small atomic mass metastable negatively charged strangelets must exist. It must be possible to produce them in heavy ion collisions. They must be sufficiently stable to survive long enough after production to interact with matter in the surrounding environment. Then, strange matter must be stable in bulk, with a spectrum of stable strangelets such that a negatively charged metastable strangelet can begin a runaway reaction by fusing successively with positively charged nuclei, producing larger negatively charged strangelets, and eventually consuming the Earth.

Empirical bounds on the risk of such a catastrophe can be derived because the type of collisions planned at RHIC also occur naturally when high energy cosmic rays collide, either with each other or with heavy nuclei in celestial bodies. If the probability of dangerous strangelet production in such collisions is sufficiently large, natural catastrophes should be induced, and we should be able to observe the consequences. The fact that we see no evidence of strangelet-induced catastrophes means we can bound the probability of strangelet production per collision, and hence the overall probability of catastrophe at RHIC. As quantum processes are probabilistic, small bounds on the probability of catastrophe are the best we can hope for from this line of reasoning. Empirical bounds cannot show that the probability is zero.

Moreover, no bound can be established from empirical data alone. Any argument establishing a bound must also rely on some theoretical hypotheses. Hence, to establish a bound of the form $p_{\text{catastrophe}} < p_0$, we need to have at least the same level of confidence in all the relevant hypotheses. It will immediately be seen that this is likely to pose a serious problem, since on the one hand no bound will be thought reassuring unless p_0 is very small indeed, and on the other the necessary hypotheses involve a physical regime where theory is fairly uncertain.

The failure to consider this problem carefully and systematically is one of the weakest and most troubling points of BJSW and DDH’s analyses of the empirical evidence. The discussion below highlights some gaps in their arguments.

II. RISK BOUNDS DERIVED FROM THE SURVIVAL OF THE MOON

BJSW first consider the value of the Moon’s survival as empirical evidence against the possibility of catastrophe at RHIC. They note that cosmic rays, including high energy heavy nuclei, are constantly bombarding the Moon. The cosmic ray flux is believed to have been at the present level or higher during the Moon’s lifetime, roughly 5 billion years. Since the Moon, unlike the larger planets in the solar system, is unprotected by an atmosphere, these cosmic rays collide with its surface, which contains a significant component of heavy nuclei and, in particular, is iron-rich. To derive a risk bound from these observations requires a series of assumptions.

- We need to decide precisely which types of heavy nuclei collisions should be considered good models for those at RHIC (or other collider experiments). RHIC involves gold-gold collisions. BJSW suggest considering all nuclei...
with $Z > 70$ as ‘gold’, that is, effectively equivalent to gold for the purposes of this analysis. They also suggest, as a less conservative alternative, taking iron ($Z=26$) as effectively equivalent to gold.

BJSW then produce estimates the rate of relevant collisions on the Moon by the following reasoning. The flux of iron nuclei in cosmic rays at the relevant energies is fairly reliably known, and the flux of ‘gold’ nuclei can be estimated by extrapolating from lower energy data. The iron abundance on the Moon can conservatively be estimated by taking the lowest value of the abundance measured at six Apollo spacecraft landing sites; BJSW round this value down from 4.2% to 4%.

Accepting BJSW’s estimates and extrapolations, and the equivalence of ‘gold’ to gold, then gives four possible bounds, derived by considering respectively iron-iron, iron-‘gold’, ‘gold’-iron and ‘gold’-‘gold’ collisions. BJSW consider the first and third of these. The fourth, which most closely parallels the RHIC experiments, turns out to give no useful bound at all. BJSW note this important caveat in their analysis, but neglect it when summarising their conclusions.

- Any strangelets produced with high speed in Moon centre-of-mass frame may break up while being slowed down by lunar matter; if so, they will not survive to begin a catastrophic runaway reaction. We thus need some assumption about the rapidity distribution of strangelets produced, and some assumption about how likely a strangelet of any given rapidity is to survive the slowing process and begin a runaway reaction. These assumptions should also apply to any strangelets produced at RHIC. They lead to estimates for “suppression factors” — the fraction of those strangelets produced which survive to begin a runaway reaction — in the two cases.

Here, BJSW and DDH take different approaches. DDH consider the worst case hypothesis: a rapidity distribution which implies that no strangelet produced on the Moon will survive to begin a runaway reaction, while all strangelets produced at RHIC will. BJSW propose the rapidity distribution

$$\frac{d\Pi}{dy} = Npy^a e^{-by},$$ \hspace{1cm} (1)

where a, b are free parameters, $2p$ is the strangelet production probability per collision, and N is a normalisation constant. They model the survival probability as a function of rapidity, atomic number and charge as

$$P(y, A, Z) = \exp(-4.85(1 + 1/3A^{1/3})^2(\cosh y - 1)A/Z^2).$$ \hspace{1cm} (2)

This expression is derived on the assumption that the strangelet break-up cross-section is independent of energy.

BJSW proceed by calculating the various relative suppression factors for $a = 1, 2, 3, 4$, and conservatively using the largest of these factors (corresponding to $a = 4$) in their calculations.

They conclude that, if iron-iron collisions at RHIC energies are a good model for RHIC collisions, the probability of producing a dangerous strangelet at RHIC energies can be bounded by $p_{\text{catastrophe}} < 10^{-5}$. If only ‘gold’-iron (or ‘gold’-‘gold’) collisions at RHIC energies are taken as relevant, no bound can be derived.

BJSW also calculate bounds using collisions at the lower energies of the AGS experiment, which they believe are (slightly) more plausible for strangelet production. They obtain $p_{\text{catastrophe}} < 2 \times 10^{-11}$ if iron-iron is a good model, and $p_{\text{catastrophe}} < 2 \times 10^{-6}$ if ‘gold’-iron is a good model, and no useful bound if only ‘gold’-‘gold’ collisions are relevant.

BJSW summarise the situation thus: “If, however, one insists on recreating exactly the circumstances at RHIC and insists on the worst case rapidity distribution, then lunar limits are not applicable.” They add, in the penultimate paragraph of Ref. [3], “The rapidity distribution necessary to wipe out lunar limits is bizarre.”

But no assumption about the rapidity distribution is necessary to wipe out the lunar limits. They would not apply if there were a significant difference between the dangerous strangelet production rates for collisions involving iron and those involving gold (or ‘gold’). If only ‘gold’-‘gold’ collisions contribute significantly to the rate of strangelets which are produced and survive slowing, then, even granting BJSW’s rapidity distribution, none of their bounds are valid.

Other questionable assumptions in BJSW’s analysis are whether the precise forms of their rapidity distribution or survival probability function are correct, and whether, if so, a must necessarily lie in the range $1 \leq a \leq 4$. To give a convincing argument that $p_{\text{catastrophe}}$ is less than 2×10^{-6} (let alone 2×10^{-11}), one would need to argue that we can be all but certain that each of these assumptions is true. BJSW offer no such argument.
III. RISK BOUNDS DERIVED FROM SUPERNOVA OBSERVATIONS

Dar, De Rujula and Heinz’s analysis [2] of the killer strangelet scenario starts by noting that the bounds based on lunar survival may contain a potential loophole. They suggest that the rapidity distribution eq. (1) might be replaced by a distribution which approximates a delta function:

\[
\frac{d\Pi}{dy} = p\delta(y - Y/2),
\]

(3)

Y being the total rapidity interval. If so, no strangelets produced on the Moon by cosmic ray collisions would survive slowing and cause a catastrophic runaway reaction, but strangelets produced at RHIC could. BJSW, while finding this hypothesis impossible to justify theoretically, review DDH’s analysis and reconsider their proposed bounds.

As noted above, one need not adopt DDH’s rapidity distribution (3) in order to challenge the lunar bounds, which are open to question for a variety of reasons. So their independent analysis, which claims “to derive a fool-proof and stringent limit on the potential danger of the BNL experiments”, needs and deserves careful examination.

DDH’s idea is the following. High energy collisions between heavy nuclei cosmic rays occur in space. If these collisions are capable of producing killer strangelets, some of the strangelets produced in the past will have survived slowing interactions with ambient hydrogen and eventually will have been swept up into protostellar material. If killer strangelets are capable of destroying the Earth catastrophically, they will be equally capable of causing catastrophic supernova-like explosions, which we should see. Even if killer strangelets are capable of causing only a very slow destruction of the Earth, over tens or hundreds of millions of years, they would add significantly to the luminosity of stars. So, the observed rate of supernovae, and the observed luminosities, should allow us to derive bounds on the probability of strangelet-induced catastrophe at RHIC.

Though DDH claim their limit is fool-proof, it actually relies on some important assumptions. First, they assume that killer strangelets produced with relative speed \(v < v_{\text{crit}} = 0.1c \) with respect to ambient hydrogen will survive slowing collisions until it reaches the local mean velocity. Second, they assume that killer strangelets will then survive (growing as they occasionally hit and absorb hydrogen nuclei) during the long time interval before they form part of a proto-star.

The first of these assumptions is justified by assuming that the strangelet will have binding energy per nucleon similar to that of a typical nucleus, and will behave similarly in collisions with other nuclei. At first sight, neither claim seems beyond reasonable doubt. Yet the assumption is crucial in deriving DDH’s bounds, since the rate of dangerous strangelet production depends strongly on the value assumed for \(v_{\text{crit}} \) (cf. equation (3) of Ref. [2]).

This seems to be the weakest point in DDH’s argument. However, their second assumption could also, in principle, be invalid, for at least three reasons.

First, killer strangelets could be metastable rather than stable. If their lifetime were somewhere between, say, \(10^{-6} \) seconds and \(10^6 \) years, strangelets produced at RHIC would still cause catastrophes, while almost no strangelets produced in space would survive long enough to produce observable effects. [6]

Second, it could be that the spectrum of stable strangelets is such that the strangelets produced in collisions tend to interact with hydrogen nuclei so as to produce harmless end-products, although they tend to produce larger negatively charged strangelets when interacting with other nuclei. Again, if so, strangelets produced in space would not survive to cause catastrophes, while strangelets produced on Earth would.

Third, it could be that, in the process of absorbing ambient hydrogen nuclei and producing decay products, an initially slowly moving strangelet would tend to be re-accelerated with respect to the ambient rest frame by randomly directed impulses from the decays. If so, it might tend to reach speeds greater than the relevant \(v_{\text{crit}} \), and then break up harmlessly in subsequent collisions with further hydrogen nuclei, long before forming part of a proto-star. It is not obvious that, if this was the typical fate of a strangelet produced in space, a similar fate should necessarily be expected for strangelets produced at RHIC: the respective environments are very different.

IV. POSSIBLE THREAT FROM A POSITIVELY CHARGED STRANGELET?

Empirical evidence aside, one of the theoretical arguments against the “killer strangelet” catastrophe scenario is that the existence of negatively charged strangelets would be theoretically surprising. Such a strangelet would have to contain a proportion greater than 1/3 of s quarks, which seems unlikely, since the higher mass of the s quark suggests their proportion should be lower.
For this reason, it is generally believed that, if any strangelets were produced in RHIC or other collider experiments, they would be positively charged. Neither BJSW nor DDH seriously consider the possibility of producing positively charged strangelets, since they state that positively charged strangelets would pose no threat whatsoever.

The reason for this is that a positively charged strangelet, embedded in solid matter — for instance, the wall of a collider — would simply behave like an exotic nucleus. Coulomb repulsion would prevent it from approaching other nuclei and fusing with them, and so there would be no runaway reaction.

This argument does not, however, apply in all environments. In particular, if a positively charged strangelet reached the interior of the Sun, it seems quite possible that it would initiate a catastrophic runaway reaction, in the same way that a negatively charged strangelet would. So long as the Coulomb repulsion is overwhelmed by gravitational pressure (as it certainly would be initially) the strangelet charge would be essentially irrelevant.

The probability of a strangelet produced on Earth reaching the Sun without active human intervention, before the Earth is consumed by the Sun (by when it presumably would not matter), is presumably negligible. However, the possibility of human intervention needs to be considered. We do send spacecraft towards and even into the Sun, and objects in the vicinity of particle physics colliders — for instance, reused detector components — are considerably more likely than most to be included in these probes. Laboratory material potentially contaminated by positively charged strangelets would thus pose a potential danger which, though small, would need careful handling.

It should be stressed that BJSW give two theoretical arguments which suggest that the production of positively charged strangelets at RHIC, while less implausible, is still unlikely. These are the fact that theory seems to weigh against the possibility of stable strange matter of any type, and the fact that theory argues against the possibility of producing any form of strangelet in heavy ion collisions. BJSW find the second of these arguments particularly compelling. If either conclusion is correct, then, of course, there is no cause at all for concern. Still, theorists’ opinions do seem rather unsettled on this question. As recently as July 1999, the possibility of producing a (presumably positively charged) strangelet at RHIC was described as “a speculative but quite respectable possibility”.

Interestingly, DDH’s empirical arguments against the possibility of producing negatively charged strangelets at RHIC apply equally well to positively charged strangelets — though, of course, the weaknesses noted above remain. BJSW’s empirical arguments do not apply, since a positively charged strangelet created on the Moon would cause no catastrophe. Weaker bounds using similar reasoning might, however, be derived given that asteroids are also potentially vulnerable to strangelet production via cosmic ray impact, and that the infall rate of asteroid matter into the Sun has been estimated.

It is worth noting here that stronger bounds could be derived by assuming that our solar system is not very atypical and then combining BJSW’s and DDH’s lines of argument. Suppose that a significant proportion of stars are orbited by asteroids, satellites or planetoids unprotected by atmosphere, that those bodies tend to have similar chemical compositions to those of our solar system, and that the stellar infall rate of these bodies is similar to that of our solar system. Quantifying these assumptions, we could estimate the rate at which strangelets, created by cosmic ray impact on asteroids, were introduced into stars, causing supernovae. The bounds derived would apply whether the strangelets created are positively or negatively charged, assuming that the infall rate of asteroids converted into strange matter would be at least as great as that of unaffected asteroids. Unfortunately, though it seems very likely that our solar system is indeed not atypical, we have no firm evidence. Moreover, the potential flaws in DDH’s arguments, noted above, also apply to this line of reasoning. Nonetheless, it would be interesting to pursue it further.

V. CONCLUSIONS

To reiterate: this paper is written from the point of view of a devil’s advocate trying to point out potential flaws in the empirical arguments of BJSW and DDH. Those arguments rely on hypotheses which seem reasonable, but which could be wrong. To place any confidence in BJSW’s and DDH’s quantitative bounds on the risk of catastrophe, we need to be confident that the probability of their hypotheses being wrong is very low. BJSW and DDH have not carefully addressed this question.

1 Another possible concern might be that a malicious entity could, at some point in the future, obtain material contaminated by positive strangelets and then deliberately threaten to cause catastrophe. Presumably, though, any group with the technological resources to send a spacecraft to the Sun, or to cause a fusion reaction on Earth, could credibly threaten catastrophe by less exotic means, if so inclined.
Among the potential flaws in BJSW’s lunar survival arguments are (i) the possibility that the behaviour of iron nuclei may not be a reasonable model for that of gold nuclei; (ii) the possibility that their best guess at the strangelet rapidity distribution may be significantly wrong (without necessarily taking the extreme form suggested by DDH); (iii) the possibility that, although their distribution is roughly correct, the parameter a lies outside the range they consider; (iv) the possibility that their strangelet survival probability function may be significantly wrong.

Among the potential flaws in DDH’s arguments based on supernovae observations are (i) the possibility that the critical speed above which strangelets are broken up in collisions with hydrogen nuclei might be substantially lower than their guess; (ii) the possibility that “killer strangelets” might be metastable; (iii) the possibility that they might tend to produce harmless end-products after combining with hydrogen nuclei, but not after combining with larger nuclei; (iv) the possibility that the process of absorbing stray hydrogen nuclei and emitting decay products might tend to re-accelerate a slowed strangelet in interstellar space, leading to its eventual breakup in a collision with a hydrogen nucleus.

It would be reassuring if all of these possibilities could be convincingly rebutted.

VI. ACKNOWLEDGEMENTS

Friends and colleagues too numerous to list here have provided invaluable help. I am very grateful to them all. This work was supported by the Royal Society and PPARC.

[1] W. Busza et al., hep-ph/9910333, version 1 (October 1999).
[2] A. Dar et al., Phys. Lett. B, 470 142-148 (1999); hep-ph/9910471.
[3] W. Busza et al., hep-ph/9910333, version 2 (May 2000).
[4] F. Calogero, Might a laboratory experiment now being planned destroy planet Earth?, to appear in Interdisciplinary Science Reviews.
[5] A. Kent, papers in preparation.
[6] This point was made in private correspondence to BJSW, and subsequently discussed in the second version of their report; see reference 5 of Ref. [3].
[7] F. Wilczek, Scientific American, July 1999, p. 5.
[8] P. Farinella et al., Nature, 371, 314-317 (1994).