Proteases and phosphatases during Leishmania-macrophage interaction

Paving the road for pathogenesis

Maria Adelaida Gómez¹ and Martin Olivier²,³,*

¹Centro Internacional de Entrenamiento e Investigaciones Médicas-CIDEIM; Cali, Colombia; ²Departments of Medicine and of Microbiology & Immunology; McGill University; Montréal, QC Canada; ³Centre for the Study of Host Resistance and the Research Institute of the McGill University Health Centre; Montréal, QC Canada

The outcome of Leishmania infection depends both on host and pathogen factors. Macrophages, the specialized host cells for uptake and intracellular development of Leishmania, play a central role in the control of infection. Leishmania has evolved strategies to downregulate host cell functions, largely mediated by the parasite-induced activation of macrophage protein tyrosine phosphatases (PTPs). We have recently identified PTP1B and TCPTP as two additional PTPs engaged upon Leishmania infection and have unraveled an intimate interaction between the Leishmania surface protease GP63 and host PTPs, which mediates a mechanism of cleavage-dependent PTP activation. Here we discuss new perspectives for GP63-mediated parasite virulence and propose putative mechanisms of GP63 internalization into host macrophages and access to intracellular substrates.

Infectious and parasitic diseases represent the second leading cause of deaths in the World after cardiovascular diseases.¹ Among these is leishmaniasis, a neglected tropical disease which currently affects more than 12 million people globally, with over two million new infections occurring per year.² Leishmaniasis is a sandfly-transmitted infectious disease caused by eukaryotic protozoan parasites of the genus Leishmania.³ It comprises a complex of diseases which, depending on the infecting Leishmania species, can range from self-healing cutaneous ulcers, disfiguring mucocutaneous lesions, to the fatal visceral form if left untreated. In the absence of an available vaccine, and the compromised usefulness of available chemotherapy due to toxicity and increased emergence of drug resistance, research on transmission, drug targets, vaccine development and host-pathogen interactions are priorities of high relevance to public health in the developing world.

The outcome of Leishmania infection depends both on host and pathogen factors. Macrophages, the specialized host cells for uptake and intracellular development of Leishmania, are central in the control of infection and parasite clearance. Despite this, most Leishmania species display strategies to overcome the innate immune response during the early stages of infection, rapidly triggering the downregulation of multiple host cell functions such as interleukin-12 (IL-12), nitric oxide (NO) and tumor necrosis factor-alpha (TNFα) production, phagolysosomal maturation and major histocompatibility complex class II (MHC II) antigen presentation (reviewed in ref. 4). Underlying macrophage effector and accessory functions is the activation of signaling pathways, largely controlled by events of protein phosphorylation. Consequently, the regulation of protein kinase and phosphatase activities is critical for signal transduction, and therefore, for the control of antimicrobial and inflammatory phagocyte functions. Although the complete mechanistic panorama has not been fully elucidated, and inter-species/subgenus variations need to be considered, the inactivation of macrophage protein

Key words: Leishmania, protein tyrosine phosphates, GP63, signal transduction, macrophage, innate immunity, proteases

Submitted: 03/16/10
Revised: 04/23/10
Accepted: 04/28/10

Previously published online: www.landesbioscience.com/journals/virulence/article/12194

*Correspondence to: Martin Olivier; Email: martin.olivier@mcgill.ca

Addendum to: Gomez MA, Contreras I, Hallé M, Tremblay ML, McMaster RW, Olivier M. Leishmania GP63 alters host signaling through cleavage-activated protein tyrosine phosphatases. Sci Signal 2009;2:ra58; PMID: 19797268; DOI: 10.1126/scisignal.2000213.
kinases and activation of protein tyrosine phosphatases (PTPs) by Leishmania fundamentally contribute to the downregulation of host cell functions.5

By screening the PTP activity profile of Leishmania-infected and uninfected macrophages using an in-gel PTP activity assay, we have recently identified Protein-tyrosine phosphatase 1B (PTP1B) and T cell phosphatase (TCPTP) as two novel PTPs engaged upon Leishmania infection.5 Leishmania GP63 (glycoprotein of 63 KDa) is a glycosylphosphatidylinositol (GPI)-anchored zinc metalloproteinase6 and is the most abundant surface protein of Leishmania promastigotes.7 Although the important role of GP63 for Leishmania virulence and mammalian pathogenesis has been documented for more than two decades,8,9 the underlying events responsible for GP63-mediated regulation of mammalian signaling molecules that are proteolytically processed and/or modulated thus far remain elusive. We have identified a number of mammalian signaling molecules that are potentially for GP63-mediated regulation of host immune responses remained elusive.

Engage with the reader and maintain a consistent style throughout.
Figure 1. GP63 cleaves and modulates the activity of multiple intracellular signaling molecules. Once inside the host cell, GP63 directly interacts with and cleaves signaling molecules involved in actin cytoskeleton remodeling (p130Cas, PTP-PEST), cytokine and mitogen signaling (SHP-1, PTP1B, TCPTP, TAB-1, PTP-PEST) and gene transcription (transcription factor AP-1). Cleavage modulates the activities of these molecules, resulting in the alteration of cellular functions.

Conclusions

Our investigations have elucidated a novel regulatory mechanism of macrophage PTP activity by Leishmania based on the delivery and proteolytic activity within the host cell of the parasite virulence factor GP63. Early activation of
PTPs via GP63-mediated cleavage promotes an environment for the successful establishment of Leishmania parasites. Having identified TCPTP and PTP1B as additional host PTPs engaged upon \textit{L. major} infection, and having provided novel insights into the mechanism of Leishmania-induced host PTP regulation, many new questions arise: do TCPTP, PTP1B and SHP-1 have redundant functions in downregulation of immune cell functions, onset and progression of leishmaniasis? Do SHP-1, PTP1B and TCPTP physically co-exist in the same multi-protein complex upon Leishmania infection? Are these PTPs similarly important for the development of the various pathologies associated with Leishmania infection, including the devastating visceral form? Does GP63-mediated PTP cleavage alter PTP substrate specificity? Experiments in this direction will grant fruitful understanding of the delicate roles of these three macrophage PTPs in the context of leishmaniasis.

References

1. WHO. The global burden of disease: 2004 update.: World Health Organization 2008.
2. WHO. Leishmaniasis, magnitude of the problem. http://www.who.int/leishmaniasis/burden/magnitude/burden_magnitude/en/index.html
3. Murray HW, Berman JD, Davies CR, Saravia NG. Advances in leishmaniasis. Lancet 2005; 366:1561-77.
4. Olivier M, Gregory DJ, Forger G. Subversion mechanisms by which Leishmania parasites can escape the host immune response: a signaling point of view. Clin Microbiol Rev 2005; 18:293-305.
5. Gomez MA, Contreras I, Halle M, Tremblay ML, McMaster RW, Olivier M. Leishmania GP63 alters host signaling through cleavage-activated protein tyrosine phosphatases. Sci Signal 2009; 2:58.
6. Schlagenhauf E, Erges R, Metcalf P. The crystal structure of the \textit{Leishmania major} surface proteinase leishmanolysin (gp63). Structure 1998; 6:1035-46.
7. Yao C, Donelson JE, Wilson ME. The major surface protease (MSP or GP63) of Leishmania sp. Biosynthesis, regulation of expression, and function. Mol Biochem Parasitol 2003; 132:1-16.
8. Chang CS, Chang KP. Monoclonal antibody affinity purification of a \textit{Leishmania} membrane glycoprotein and its inhibition of \textit{leishmania}-macrophage binding. Proc Natl Acad Sci USA 1986; 83:100-4.
9. Yao C. Major surface protease of trypanosomarids: one size fits all? Infect Immun 78:22-31.
10. Hallé M, Gomez MA, Stuible M, Shimizu H, McMaster WR, Olivier M, et al. The Leishmania surface protease GP63 cleaves multiple intracellular proteins and actively participates in p38 mitogen-activated protein kinase inactivation. J Biol Chem 2009; 284:6893-908.
11. Heinenon KM, Nestel FP, Newell EW, Chaurette G, Seemayer TA, Tremblay ML, et al. T-cell protein tyrosine phosphatase deletion results in progressive systemic inflammatory disease. Blood 2004; 103:3457-64.
12. Heinonen KM, Dube N, Bourdeau A, Lapp WS, Tremblay ML. Protein tyrosine phosphatase 1B negatively regulates macrophage development through CSF-1 signaling. Proc Natl Acad Sci USA 2006; 103:2776-81.
13. Olivier M, Romero-Gallo BJ, Matte C, Blanchette J, Posner BL, Tremblay MJ, et al. Modulation of interferon-gamma-induced macrophage activation by phosphotyrosine phosphatases inhibition. Effect on murine Leishmaniaa progressi. J Biol Chem 1998; 273:13944-9.
14. Corradin S, Ransijn A, Corradin G, Roggero MA, Schmitz AA, Schneider P, et al. MARCKS-related protein (MRP) is a substrate for the Leishmania major surface protease leishmanolysin (gp63). J Biol Chem 1999; 274:25411-8.
15. Gregory DJ, Godbout M, Contreras I, Forger G, Olivier M. A novel form of NFkappaB is induced by Leishmania infection: Involvement in macrophage gene expression. Eur J Immunol 2008; 38:1071-81.
16. Bouvier J, Schneider P, Etges R, Bordier C. Peptide substrate specificity of the membrane-bound metallopeptase of Leishmania. Biochemistry 1990; 29:10113-9.
17. Moraes TF, Speer T, Strynadka NC. Piecing together the type III injectisome of bacterial pathogens. Curr Opin Struct Biol 2008; 18:258-66.
18. Le Roy C, Wizana JL. Clathrin- and non-clathrin-mediated endocytic regulation of cell signalling. Nat Rev Mol Cell Biol 2005; 6:112-26.
19. Leppert BJ, Mansfield JM, Paulinock DM. The soluble variant surface glycoprotein of African trypanosomases is recognized by a macrophage scavenger receptor and induces IkappaBalpha degradation independently of TRAF6-mediated TLR signaling. J Immunol 2007; 179:548-56.
20. Winberg ME, Holm A, Sarandahl E, Vinet AF, Descoteaux, A Magnusson, KE, et al. Microbes and Infection. Institut Pasteur 2009; 11:215-222.
21. Silverman JM, Cloo J, deOliveira CC, Shirvani O, Fang Y, Wang C, et al. An exosome-based secretion pathway is responsible for protein export from Leishmania and communication with macrophages. J Cell Sci.
22. Brittingham A, Morrison CJ, McMaster WR, McGwire BS, Chang KP, Mosser DM. Role of the Leishmania surface protease gp63 in complement fixation, cell adhesion and resistance to complement-mediated lysis. J Immunol 1995; 155:3302-11.
23. McConville MJ, Mullin KA, Ilgouz SC, Teasdale RD. Secretory pathway of trypanosomatid parasites. Microbiol Mol Biol Rev 2002; 66:122-54.