Efficient desalination by layered heating of saline water

Ronak H Virani¹, B S Patel², H G Katariya³
¹,²,³Mechanical Engineering Department, Birla Vishvakarma Mahavidyalaya Engineering College, Vallabh Vidyanagar – 38812, Gujarat, India

e-mail: ¹viranironak1996@gmail.com

Abstract. Thin layer heating technology for desalination is one of the topics that is catching eye of many researchers recently. The sun is a very good renewable energy source that can solve many human being’s problems such as water scarcity. Solar energy can be utilized for water desalination. Nowadays, parabolic trough collector and dish reflector and other optical concentrators are used to concentrate the solar radiation to get more power. They are complex and costly. Efficiency of basin type solar still and other conventional solar still is decreases as we increase water quantity, due to the heat loss to water. Due to this reason need of solar desalination devices that use localized heating of a thin layer of water. In the past few years, significant research is done for the developing thin layer heating desalination. In this paper, basin type solar still is discussed, properties of wood and titanium dioxide materials for substrate and absorber have been discussed and results carried out by experimental performance is discussed. This paper is concerned with effects of change in radiation, effects of change in water depth in basin and effects of change in salinity of water.

Keywords: Desalination, Basin type solar still, Titanium dioxide, Wood.

1. INTRODUCTION

In future, we need to fulfil the increasing demand for fresh water because of the increasing world population [1]. There are many freshwater resources available but these will not be enough. Desalination is considered as very useful to fulfil water demand. There are two methods which are used for desalination of saline water is thermal desalination and reverse osmosis technology. Solar water desalination uses a renewable energy source. It has less impact on the environment. So, this method can be used to reach water demand. Therefore, we need to develop low-cost desalination devices for getting fresh water. In past years it is seen increasing fast advances for the development of layered heating of water type desalination devices.
Bi-layered desalination device is made up of substrate material which is thermal insulator a thin layer of absorber material is deposited onto it as shown in fig. 1. The solar radiation is energy input given to the system. This input is used to evaporation of water. The energy which is absorbed by absorber material is used to heat the thin water layer. The total enthalpy of heat required to change the phase of water from liquid to vapour is reached, the water layer starts to evaporate. Evaporation of water takes place in the absorber layer by water wicked in the micro-pores of substrate material, by the capillary action. If a thin layer of water is heated locally for desalination, water bulk is not heated but the only thin layer is heated. If we heat water bulk there is more heat loss occurs [2].

To get efficient desalination using this device the following features are required:

- The absorber material should have good sunlight absorption to convert sunlight energy into heat.
- Thermal conductivity of substrate material should be very low.
- Whole bi-layered desalination device should float on water.

Conventional solar stills are less efficient and involve more cost. parabolic trough collector and dish reflector and other optical concentrators are used to concentrate the solar radiation to get more power. They are more complex and costly. Efficiency of basin type solar still and other conventional solar still is decreases as we increase water quantity in basin, due to the heat loss to water. To increase efficiency, additional methods required. Due to these reasons we can do more research on methods to increase efficiency of solar stills and we can get low cost and more efficient solar desalination.

Based on above theory, we have made a solar still which is made up of a thin layer acts as an absorber of sunlight, which is deposited layer by layer onto a substrate material acting as thermal insulator between water and the absorbing material. This insulator is floating on the water and the substrate consists of porous structure so water wick up to the absorber surface by using capillary action and absorber absorbs the sunlight. The energy which is absorbed by absorber material is used to heating the thin water layer. Total enthalpy of heat required to change phase of water from liquid to vapour is reached, water layer starts evaporating. Because of layered heating of water, heat loss is reduced and we are getting more efficiency.

Here, we give a brief overview of efficient solar desalination, materials used for substrate and absorbers, new solar desalination device which has titanium dioxide deposited on wood and experimental result and conclusion.

This paper is arranged as follows: Section 2 presents various substrate materials and why wood is used. Section 3 presents experimental setup section 4 presents methodology 5 presents assumptions 6 presents calculations 7 presents result and discussions.

2. SUBSTRATE AND ABSORBER MATERIALS

Absorber which is deposited onto a substrate material acting as a thermal insulator between absorber and water. The substrate should have a low thermal conductivity, it should have good hydrophilicity characteristics for transport water from the water basin to surface. The substrate should consist of porous structure so water wick up to the absorber surface by using capillary action and absorber absorbs the sunlight. The whole structure should have low density and it can float on the water. Various substrate
materials which are easily available are paper, gauze, wool, carbon fabric, cotton fabric, wood, aerogel etc. These materials are porous and possess low density [2].

Paper cannot be used in the real-world application in desalination, because it has very less life in water and its mechanical properties are poor. Carbon fabric and cotton fabric also have less life against water and thermal conductivity of these materials also more [5]. For substrate material, wood and aerogels are more promising materials as they have more life in water, have more strength, good machinability, hydrophilicity, low thermal conductivity [13]. So, these materials can be used as a substrate. Aerogel is more costly than other materials [6]. Wood has the benefit of abundancy and more availability and has low cost [7].

An absorber is deposited onto a substrate. Absorber should good absorber of sunlight to get better conversion of sunlight to heat. Absorber should give chemical stability and non-toxicity. Absorber should have high light to heat conversion capacity. Absorber should be porous material. So, it can easily evaporate water. Various absorber materials which are available are Aluminium, gold, silver, polypyrrole, graphite, graphene oxide, cermet, titanium dioxide, ferroferric oxide etc [2].

Coating of aluminium nanoparticles on the substrate is difficult [8]. Gold and silver have superior optical properties but the cost is high. Materials which are made up of carbon like graphite and graphene oxide are easily available at low cost. High sunlight absorption with the good conversion of light into heat, titanium dioxide and other metal oxides are a good choice. Titanium dioxide has low cost, Non-toxic and good chemical stability. For this reason, titanium dioxide preferred against other absorber materials [9]. Titanium dioxide exists naturally in three crystalline forms anatase, brookite and rutile. Rutile has more light to heat conversion rate [17].

3. EXPERIMENTAL SETUP

A basin type solar still with wood-Titanium dioxide is used for experimental work and other instruments used is shown in figure 2.
3.1. Specifications of setup

- Area of collector – 0.5 m² (8 Wood plate of 0.0625 m²)
- Top cover tilt angle - 23°
- Thickness of wood - 15 mm
- Material of basin - Galvanized iron sheet
4. METHODOLOGY

Titanium dioxide hydro sol is deposited on radial cut pine wood by using paint brush. Wood-Titanium dioxide is placed inside the basin filled with water. Desalination experiment were carried out for 12 days by changing depth of water and salinity of water. 25 February 2020 to 28 February 2020 and 4 March to 7 March, 11 March, 12 March and 14 July, 15 July from 9 A.M. to 5 P.M. at B.V.M. engineering college, Vallabh Vidyanagar, Anand District, Gujarat, India.

For experiment without wood-TiO₂ only basin is used and for experiment with wood-TiO₂ Titanium dioxide deposited wood placed inside the same basin. Titanium dioxide hydro sol has made by using chemical reaction [21].

Different measuring instruments are used for measure temperature, solar radiation and TDS are show in Table No: 1.

Parameters	Measuring Instrument	Range
Temperature	Temperature sensor	-10 °C – 110 °C
TDS	TDS meter	0 – 9990 ppm
Solar Radiation	Pyranometer	0 – 1000 W/m²

Experiments conducted for 12 days.

Day	Experiment with/without wood-TiO₂	TDS of water in basin (ppm)	TDS of output water (ppm)	Water depth in basin (cm)
Day 1	without wood-TiO₂	524	33	10
Day 2	with wood-TiO₂	526	35	10
Day 3	without wood-TiO₂	542	36	05
Day 4	with wood-TiO₂	543	35	05
Day 5	without wood-TiO₂	2500	41	10
Day 6	with wood-TiO₂	2500	40	10
Day 7	without wood-TiO₂	2500	45	05
Day 8	with wood-TiO₂	2500	49	05
Day 9	without wood-TiO₂	5000	52	10
Day 10	with wood-TiO₂	5000	54	10
Day 11	without wood-TiO₂	5000	55	05
Day 12	with wood-TiO₂	5000	52	05

Water output reading and water temperature was taken at every 30 minutes.

5. ASSUMPTIONS

1. Total volume of water in basin remains same.
2. TDS of basin water remains same.
3. Heat loss from system is negligible.
4. Properties of glass uniform.
5. Heat gain is utilised for evaporation.

6. CALCULATIONS

\[\eta = \frac{(m \times h \nu) + (M \times C p \times \Delta T)}{I} \]
Where,
- \(\hat{m} \) = Evaporation rate, kg/m\(^2\)s.
- \(h_{lv} \) = Enthalpy requires for change phase of water from liquid to vapour, 2250 kJ/kg.
- \(M \) = Total mass of water, 48 kg.
- \(C_p \) = Specific heat, 4.186 kJ/kg\(\cdot\)K.
- \(\Delta T \) = Change in temperature.
- \(I \) = Incident power density of solar radiation, W/m\(^2\).

7. Results and discussions

Water output and efficiency of experiment is shown in tables. Details of experiments given below.

1. Experiments performed with and without wood-TiO\(_2\).
2. Depth of water – 5 cm and 10 cm.
3. Tds of water - 524 ppm, 2500 ppm, 5000 ppm

Table 3. Experimental data

Time	Output without wood-TiO\(_2\) (kg)	Water temperature without wood-TiO\(_2\)	Radiation	Efficiency without wood-TiO\(_2\)	Output with wood-TiO\(_2\)(kg)	Water temperature with wood-TiO\(_2\)	Radiation	Efficiency with wood-TiO\(_2\)
10:30	0.012	29.2	511	1.87	0.029	29.4	492	1.94
11:00	0.028	29.3	540	1.17	0.112	30	532	6.52
11:30	0.049	29.9	593	3.23	0.202	30.8	591	6.95
12:00	0.078	31.5	630	7.05	0.294	32.6	666	9.73
12:30	0.108	33.6	633	8.89	0.398	35.1	657	12.80
01:00	0.142	36.5	694	10.92	0.502	40.1	637	22.33
01:30	0.174	40.2	662	14.20	0.613	44.9	614	22.69
02:00	0.221	43.2	635	12.83	0.739	50.6	603	27.20
02:30	0.258	45.4	584	10.34	0.838	54.8	568	21.55
03:00	0.285	46.8	560	7.01	0.932	57.8	508	18.35
03:30	0.315	47	461	2.63	1.023	58.6	369	11.20
04:00	0.338	47.1	379	2.13	1.128	58.7	357	8.00
04:30	0.363	47.2	320	2.67	1.2	58.7	239	7.53
05:00	0.391	47.1	245	1.90	1.268	58.5	152	8.12
05:30	0.412	46.9	45	1.33	1.326	58	91	3.15

Figure 6. Efficiency comparison for with and without wood-TiO\(_2\)

Table III shows result of experiments at 10 cm water depth and TDS of water is 524 ppm which is normal tank water. Experiments conducted on 25 February, 2020 without wood-TiO\(_2\) and on 26 February, 2020 with wood-TiO\(_2\). Cumulative water output with wood-TiO\(_2\) is more compared to without
In morning time radiation of sun is low, so we get less water output in morning. As radiation increases water output also increases. After 2:00 pm radiation starts decreasing, but decline in water temperature is less because of latent heat of water. Cumulative water output with and without wood-TiO$_2$ is 1.326 kg and 0.412 kg respectively. Maximum temperature with wood-TiO$_2$ is 58.7°C compared to 47.2°C without wood-TiO$_2$.

Maximum efficiency difference with and without wood-TiO$_2$ is 13% between 1:30 pm to 2:00 pm.

Table 4. Experimental data

Time	Output without wood-TiO$_2$ (kg)	Water temperature without wood-TiO$_2$	Radiation	Efficiency without wood-TiO$_2$	Output with wood-TiO$_2$ (kg)	Water temperature with wood-TiO$_2$	Radiation	Efficiency with wood-TiO$_2$
10:30	0.018	30.9	568	1.61	0.022	30.9	514	1.97
11:00	0.042	31.2	582	1.63	0.112	31.8	577	5.71
11:30	0.071	32.5	652	3.43	0.205	33.2	563	7.02
12:00	0.101	36.1	678	7.28	0.298	36.8	663	9.82
12:30	0.138	39.9	702	7.61	0.401	41.9	667	12.75
01:00	0.168	46.5	755	11.15	0.529	47	710	12.85
01:30	0.223	54.2	723	14.28	0.658	56.4	686	20.63
02:00	0.292	59.5	707	11.15	0.782	62.9	656	16.24
02:30	0.346	63.9	624	10.36	0.909	67.4	622	13.51
03:00	0.401	65.9	604	6.12	1.033	70.5	555	12.08
03:30	0.451	66.5	502	2.72	1.159	70.7	511	6.61
04:00	0.495	66.7	431	2.55	1.268	70.7	416	6.55
04:30	0.535	65.8	338	2.27	1.373	70.2	326	6.26
05:00	0.566	65.6	258	2.10	1.462	69.5	228	6.18
05:30	0.594	65.1	102	1.16	1.531	68.2	111	1.92

Figure 7. Efficiency comparison for with and without wood-TiO$_2$

Table IV shows result of experiments at 5 cm water depth and TDS of water is 542 ppm, which is normal tank water. Experiments conducted on 27 February, 2020 without wood-TiO$_2$ and on 28 February, 2020 with wood-TiO$_2$. Cumulative water output with wood-TiO$_2$ is more compared to without wood-TiO$_2$. In morning time radiation of sun is low, so we get less water output in morning. As radiation increases water output also increases. After 2:00 pm radiation starts decreasing, but decline in water temperature is less because of latent heat of water. Cumulative water output with and without wood-TiO$_2$ is 1.531 kg and 0.594 kg respectively.
Maximum temperature with wood-TiO$_2$ is $70.7^\circ C$ compared to $66^\circ C$ without wood-TiO$_2$.

Maximum efficiency difference with and without wood-TiO$_2$ is 6.35% between 1:30 pm to 2:00 pm.

Table 5. Experimental data

Time	Output without wood-TiO$_2$ (kg)	Water temperature without wood-TiO$_2$	Radiation Efficiency without wood-TiO$_2$	Output with wood-TiO$_2$ (kg)	Water temperature with wood-TiO$_2$	Radiation Efficiency with wood-TiO$_2$
10:30	0.017	30	626	1.05	0.02	29.4
11:00	0.038	30.1	654	1.15	0.114	29.9
11:30	0.06	30.5	430	3.44	0.211	30.7
12:00	0.082	32.2	689	6.53	0.32	32.5
12:30	0.113	34.1	710	7.31	0.418	35.1
01:00	0.142	36.8	737	9.50	0.522	40.1
01:30	0.176	40.5	685	13.80	0.633	45.2
02:00	0.213	43.8	723	11.89	0.759	51.9
02:30	0.247	46.7	641	11.84	0.868	55.8
03:00	0.279	47.4	593	4.09	0.971	58.8
03:30	0.309	47.8	552	3.04	1.083	59.1
04:00	0.335	47.7	202	2.06	1.188	59.2
04:30	0.357	47.7	356	1.54	1.289	59
05:00	0.374	47.6	180	1.06	1.378	58.7
05:30	0.388	47.5	106	1.10	1.466	58

Figure 8. Efficiency comparison for with and without wood-TiO$_2$
Table V shows result of experiments at 10 cm water depth and TDS of water is 2500 ppm, which is salt water. Experiments conducted on 4 March, 2020 without wood-TiO$_2$ and on 5 March, 2020 with wood-TiO$_2$. Cumulative water output with wood-TiO$_2$ is more compared to without wood-TiO$_2$. In morning time radiation of sun is low, so we get less water output in morning. As radiation increases water output also increases. After 2:00 pm radiation starts decreasing, but decline in water temperature is less because of latent heat of water. Cumulative water output with and without wood-TiO$_2$ is 1.466 kg and 0.388 kg respectively. Maximum temperature with wood-TiO$_2$ is 59.2°C compared to 47.8°C without wood-TiO$_2$.

Maximum efficiency difference with and without wood-TiO$_2$ is 13.15% between 1:30 pm to 2:00 pm.

Table 6. Experimental data

Time	Output without wood-TiO$_2$ (kg)	Water temperature without wood-TiO$_2$	Radiation	Efficiency without wood-TiO$_2$	Output with wood-TiO$_2$ (kg)	Water temperature with wood-TiO$_2$	Radiation	Efficiency with wood-TiO$_2$
10:30	0.017	30.9	626	0.9	0.022	30.9	540	1.23
11:00	0.044	31.2	654	1.56	0.112	31.8	568	5.8
11:30	0.071	32.2	630	2.91	0.205	33.2	640	6.17
12:00	0.101	35.8	689	7.16	0.298	36.8	698	9.32
12:30	0.138	39.5	710	7.36	0.401	42	705	12.22
01:00	0.168	45.5	754	10.24	0.507	47.5	712	12.70
01:30	0.217	52.9	698	14.08	0.645	56.4	705	19.57
02:00	0.272	57.9	693	10.3	0.773	62.9	695	15.47
02:30	0.329	60.8	611	7.85	0.901	66.8	646	11.97
03:00	0.386	60.9	576	2.67	1.033	67.8	564	7.91
03:30	0.441	60.8	552	2.28	1.159	67.9	522	6.25
04:00	0.495	60.2	302	2.16	1.268	67.8	448	5.82
04:30	0.535	59.8	256	2.08	1.361	67.2	350	4.64
05:00	0.563	59.6	180	2.59	1.439	66.1	223	3.00
05:30	0.58	59.3	72	1.05	1.498	65	103	1.90

Figure 9. Efficiency comparison for with and without wood-TiO$_2$

Table VI shows result of experiments at 5 cm water depth and TDS of water is 2500 ppm, which is salt water. Experiments conducted on 6 March, 2020 without wood-TiO$_2$ and on 7 March, 2020 with wood-TiO$_2$. Cumulative water output with wood-TiO$_2$ is more compared to without wood-TiO$_2$. In
morning time radiation of sun is low, so we get less water output in morning. As radiation increases water output also increases. After 2:00 pm radiation starts decreasing, but decline in water temperature is less because of latent heat of water. Cumulative water output with and without wood-TiO$_2$ is 1.498 kg and 0.580 kg respectively. Maximum temperature with wood-TiO$_2$ is 67.9°C compared to 60.9°C without wood-TiO$_2$.

Maximum efficiency difference with and without wood-TiO$_2$ is 5.49% between 1:30 pm to 2:00 pm.

Table 7. Experimental data

Time	Output without wood-TiO$_2$ (kg)	Water temperature without wood-TiO$_2$	Radiation	Efficiency without wood-TiO$_2$	Output with wood-TiO$_2$ (kg)	Water temperature with wood-TiO$_2$	Radiation	Efficiency with wood-TiO$_2$
10:30	0.014	28	635	0.98	0.015	29.3	546	1.29
11:00	0.026	29.2	649	4.76	0.103	29.8	568	5.92
11:30	0.046	30.3	649	4.71	0.194	30.7	656	6.65
12:00	0.068	31	666	3.27	0.286	32.2	704	8.22
12:30	0.102	32.1	718	4.74	0.381	35.2	736	12.70
01:00	0.131	36.4	737	14.55	0.492	39.9	721	19.00
01:30	0.158	40.6	703	14.85	0.602	45.2	705	21.38
02:00	0.191	44.9	723	14.97	0.722	50.8	684	23.42
02:30	0.222	46.7	641	7.73	0.826	55.2	645	19.89
03:00	0.256	47.1	593	3.00	0.935	58.8	586	18.93
03:30	0.281	47.2	552	1.55	1.042	59	526	5.96
04:00	0.311	47.1	326	1.58	1.112	59.2	458	4.83
04:30	0.332	47	319	0.91	1.195	59	350	4.59
05:00	0.352	47	302	1.65	1.268	58.7	292	3.86
05:30	0.364	46.9	91	0.74	1.362	57.9	184	2.66

![Figure 10. Efficiency comparison for with and without wood-TiO$_2$](image_url)
increases water output also increases. After 2:00 pm radiation starts decreasing, but decline in water temperature is less because of latent heat of water. Cumulative water output with and without wood-TiO$_2$ is 1.362 kg and 0.364 kg respectively. Maximum temperature with wood-TiO$_2$ is 59.2°C compared to 47.2°C without wood-TiO$_2$.

Maximum efficiency difference with and without wood-TiO$_2$ is 9.24% between 1:30 pm to 2:00 pm.

Table 8. Experimental data

Time	Output without wood-TiO$_2$ (kg)	Water temperature without wood-TiO$_2$	Radiation	Efficiency without wood-TiO$_2$	Output with wood-TiO$_2$ (kg)	Water temperatur with wood-TiO$_2$	Radiation	Efficiency with wood-TiO$_2$
10:30	0.016	30.4	700	0.86	0.02	30.2	700	1.19
11:00	0.048	31	477	3.13	0.112	31.2	636	5.44
11:30	0.069	32.1	520	3.46	0.201	32.8	580	7.04
12:00	0.092	33.2	916	2.02	0.304	36.1	916	7.00
12:30	0.121	39.1	1012	7.49	0.398	41.5	928	9.29
01:00	0.158	45.5	432	19.36	0.504	46.9	432	20.66
01:30	0.192	52.4	515	17.22	0.632	56.6	720	20.10
02:00	0.224	57.4	897	7.37	0.748	62.8	624	16.20
02:30	0.258	59.1	884	3.19	0.852	66.9	884	8.33
03:00	0.286	60.9	830	3.36	0.962	67.7	830	4.43
03:30	0.315	60.7	735	0.66	1.059	67.9	735	3.61
04:00	0.339	60.3	490	0.27	1.145	67.8	586	3.47
04:30	0.368	59.8	374	0.38	1.236	67.1	412	3.54
05:00	0.391	59.4	207	0.53	1.322	66	238	3.65
05:30	0.421	58.9	172	0.98	1.403	64.3	148	0.32
Table VIII shows result of experiments at 5 cm water depth and and TDS of water is 5000 ppm, which is salt water. Experiments conducted on 14 July, 2020 without wood-TiO₂ and on 15 July, 2020 with wood-TiO₂. Cumulative water output with wood-TiO₂ is more compared to without wood-TiO₂. In morning time radiation of sun is low, so we get less water output in morning. As radiation increases water output also increases. After 2:00 pm radiation starts decreasing, but decline in water temperature is less because of latent heat of water. Cumulative water output with and without wood-TiO₂ is 1.403 kg and 0.421 kg respectively. Maximum temperature with wood-TiO₂ is 67.9°C compared to 60.9°C without wood-TiO₂.

Maximum efficiency difference with and without wood-TiO₂ is 4.89% between 1:30 pm to 2:00 pm.

7. CONCLUSION
4.
5. From above discussions we can conclude that,
1) From graphs of result and discussion section we can conclude that efficiency with wood-TiO₂ is more compared to without wood-TiO₂.
2) Efficiency difference in both with wood-TiO₂ and without wood-TiO₂ is more for 10 cm water depth compared to 5 cm water depth. Because we got more efficiency as depth of water decreases.
3) As TDS of water increases output is decreases for both with and without wood-TiO₂.
4) Water temperature with wood-TiO₂ is more compared to without wood-TiO₂ for all depth and different TDS of water.

Acknowledgment
We are greatfully acknowledge contribution of college principal, head of department and lab assistant for our work.

Nomenclature
TDS - Total dissolved solids
TiO₂ – Titanium dioxide
ppm – Parts per million

REFERENCES
[1] Mark A. Shannon, Anne M. Mayes, Paul W. Bohn, Science and technology for water purification in the coming decades, Nature 2008, 452, 301-310.
[2] Ammar H. Elsheikh, Swellam W. Sharshir, J. Shaibo, Thin film technology for a solar steam generation: A new dawn, Solar energy (elsevier) 177(2019)561-575.
[3] T. Arunkumar, K. Vinothkumar, Amimul Ahsan, Experimental Study on Various Solar Still Designs, ISRN Renewable Energy, 2012.
[4] V. K. Dwivedi, G. N. Tiwari, Annual energy and exergy analysis of single and double slope passive solar stills, Academic Journals Inc. 2008, 225-241.
[5] Yuchao Wang, Lianbin Zhang, Peng Wang, Self-Floating Carbon Nanotube Membrane on
Macroporous Silica Substrate for Highly Efficient Solar-Driven Interfacial Water Evaporation. ACS Appl. Mater. Interfaces 2015, 7 (24), 13645-13652.

[6] Prakash C. Thapliyal and Kirti Singh, Aerogels as Promising Thermal Insulating Materials: An Overview, Journal of Materials, Journal of materials, 2014.

[7] Michael Plötz, Peter Niemz, Porosity and pore size distribution of different wood types as determined by mercury intrusion porosimetry, Eur. J. Wood Prod. 69:649–657 (2011).

[8] Lin Zhou, Jia Zhu, Yingling Tan, 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination, Nature photonics, 393-399, 2016.

[9] Guilian Zhu, Jijian Xu, Wenli Zhao, Fuqiang Huang, Constructing Black Titania with Unique Nanocage Structure for Solar Desalination. ACS Appl. Mater. Interfaces, 31716-31721, 2016.

[10] Keng-Ku Liu, Rajesh R. Naik, Qisheng Jiang, Wood-Graphene Oxide Composite for Highly Efficient Solar Steam Generation and Desalination, ACS Publication, 7675-7681, 2017.

[11] Dandan Hao, Yudi Yang, Bi Xu, Bifunctional Fabric with Photothermal Effect and Photocatalysis for Highly Efficient Clean Water Generation, ACS publication, 2018.

[12] M. W. Higgins, Shakeel Rahman, Neetu Jha, Carbon fabric-based solar steam generation for wastewater treatment, Solar energy (Elsevier) 159(2018)800-810.

[13] Sipkova Veronika, Korbelova Sarka, Labudek Jir, Comparison Thermal Conductivity and Cost of Materials Specified for Thermal Insulation, Advanced Materials Research Vol. 1020 (2014) pp 545-549.

[14] Tian Li, He Liu, Xinpeng Zhao, Scalable and Highly Efficient Mesoporous Wood-Based Solar Steam Generation Device: Localized Heat, Rapid Water Transport, Advanced functional materials, 1707134, 2018.

[15] S. Joe Patrick Gnanaraj, S. Ramachandran, G. Mageshwaran, Experimental Analysis of Single Basin Solar Still with Internal Reflector and Sensible Heat Storage Medium, International Journal of ChemTech Research, Vol.9, No.08 pp 328-337, 2016.

[16] Irina V. Stepina, a study on the capillary-porous structure of wood modified with boron-nitrogen compounds, Procedia Engineering 153 (2016) 687 – 691.

[17] Adawiyah J. Haider, Zainab N. Jameel, Imad H. M. Al-Hussaini, Review on Titanium dioxide applications, TMREES18, 19-21 (2018).

[18] Xiuqiang Li, Weichao Xu, Mingyao Tang, Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path, PNAS, vol. 113 13953–13958(2016).

[19] J. W. Bloemer, J. A. Aibling, J. R. Irwin, a practical basin types solar still, Conference paper Vol. 9 No. 4, 1965.

[20] GuiLong Peng, Hongru Ding, S.W. Sharshir, Xiaojia Li, Low-cost high-efficiency solar steam generator by combining thin film evaporation and heat localization: both experimental and theoretical study, Applied Thermal Engineering, 1359-4311 (2018).

[21] S. Perumal, C. Gnana Sambandam, S. Ananthakumar, Synthesis and characterisation studies of nano TiO2 prepared via sol gel method, IJRET, Volume 3, 2014.