ヒトトロンポイエチン遺伝子の発現調節機構

嘉村 巧*

Characterization of the Human Thrombopoietin Gene Promoter

Takumi KAMURA*

Key words: Thrombopoietin, gene expression, TATA-less promoter, E4TF1

緒 言

トロンポイエチン（TPO）は1994年複数のグループによりクローニングされたサイトカイナンドで受容体であるc-MPLを介して巨核球—血小板系の増殖と成熟を促進する作用を持っている。そのcDNA配列より、ヒトTPOは21アミノ酸残基からなるシグナルペプチドを含んだ353アミノ酸残基からなる蛋白質と考えられる。ヒト成熟型TPOは153～154番目のアミノ酸残基を境に2つの領域に分けられる。153アミノ酸残基からなるN末端領域はエリスロポイエチンと高い相関性を示し活性発現に必須であり、また79アミノ酸残基からなるC末端領域は既知のタンパクと類似性はみられず、複数の糖鎖付加部位が存在しているのが特徴である。ヒトTPO遺伝子は染色体3q26, 33-q27に位置している9, 3q21q26症候群といわれる転倒を伴う白血病では血小板の異常増加を伴うことが多く、TPOとの関連が指摘されたが、これらの白血病では血小板の異常増加を伴うことが多い、TPOとの関連が示唆されたが、これらの白血病細胞でTPOの発現増加が認めなかったという報告もある9。ヒトTPOの遺伝子構造は4つのグループより報告されているが、全長約6.2kbで6つのエクソンと5つのイントロンからなるという説と異なり約1kb5'上流にも1つのエクソンが存在するという説がある9,7-9。またこれらの報告ではそれぞれ異なった転写開始点をしめしている。このようにヒトTPO遺伝子の5'側上流、特にプロモーター領域はひとつの争点である。

TPOmRNAの発現部位は、主に肝、そして、腎、腸、脳、骨髄間質細胞など広範囲な組織にわたっている。血中のTPOレベルがどのように制御されているかについては諸説がある。抗腫瘍剤や放射線照射による血小板減少時には血中TPOレベルは上昇するが、肝およびTPOmRNAの発現増加は認められず、また血小板輸血によりTPO濃度が減少することより、Kuterらは、TPOの産生は一定であり、血中TPOレベルは、血小板に存在するTPOレセプターであるc-MPLを介した結合により制御されていると提唱している10, 11, 一方、McCartyらは血小板減少時に、肝、腎におけるTPOmRNAの発現に変化はないが骨髄間質細胞において発現の増加を認めると報告していて、骨髄間質細胞由来のTPOが巨核の分化増殖を促進していることも考えられる11, 12, 13，

以上のようにTPOの遺伝子構造、血中レベル

* 九州大学医学部臨床医学講座 (〒812-82 福岡県福岡市東区馬出 3-1-1) : Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Faculty of Medicine, Fukuoka 812-82, Japan.
ルの調節機構にはまだ不明な点が多い。本研究は肝細胞癌細胞株を用いて、TPO 遺伝子の発現機構を明らかにすることにより、これらのことの解明のさらなることを目的としている。

なお文中の図は文献iptc の引用によった。

方法および結果

1) TPO 遺伝子のクローニングおよび転写開始点の決定

TPOcDNA の一部をプローブとしてヒト遺伝子ライブラリーより約 1×10⁶のプラックをスクリーニングして、1 個の TPO 遺伝子クローンを単離した。このクローンは全長約 15 kb の 5' 側隣接領域と 6 つのエクソンを含んでいた。肝細胞に加えて、ノーザン法により肝細胞癌由来の細胞株 PLG, HepG2 にも TPOmRNA の発現を認めたので、これらの細胞を用いて、5'-RACE 法および RNase protection 法により転写開始点を解析した。

Fig. 1 Determination of the transcription initiation sites. (A) 5'-RACE analysis of human adult liver. Thirty-one clones of 5'-RACE reaction products were sequenced. Sequences of fusion with adaptor of four independent clones were shown. Arrows show the positions of the 5' ends of the cDNA. (B) RNase protection analysis. Twenty μg of mRNAs from human adult liver, HepG2 cells, PLC cells, or yeast tRNA was hybridized with cRNA probe spanning the nucleotides from -239 to +100. After treatment with RNase, the protected products were separated on a 6% sequencing gel. Arrows at +24, and +51 indicate the protected products. Arrow at -189 represents the position of expected band when the TPO gene transcription initiated at exon 1 of Chang (8). (C) Summary of the transcription initiation sites. The number of clones obtained by 5'-RACE analysis were shown below each arrowhead.
2) TPO遺伝子の転写調節領域の同定
制限酵素あるいはPCR法を用いてTPOの5′側上流の最長−4063から最短−39までを含むTPO・ルシフェラーゼ連続プラスミドを作製し(図2A),これらのプラスミドを細胞株PLCに一過性に感染させてルシフェラーゼ活性を測定した。図2Bに示すように、−4063から−88までの5′側上流をもつプラスミドはルシフェラーゼ基本プラスミドに較べ有意に高い活性を持っていたが、さらに短くなった−58,−39のプラスミドでは、著しい活性の低下を認めた。このことより、−88から−58の領域に転写を促進する配列が存在することが明らかになった。

さらに転写促進領域を限定するために5′側上流−158を含むプラスミドpLUC−T158を酵素として各種点突然変異を導入して(図3A),転写活性を測定した。その結果として、最も5′位の転写開始点の上流−69～−63に位置する配列−ACTTCCG−がTPOの発現にポジティブに作用するシスエレメントとして働いていることが判明した(図3B)。この配列はノンコードリングの酵母と−CGGAGTとなりEts転写因子のコンセンサス配列(C/A)CGA(A/T)を含んでいた1314。この配列に変異を加えたM5, M6, M8, M9, そしてM10では著明な活性の低下を認めた。さらに、M5の変異を−1318および−4063の5′側上流を持つプラスミドに導入したところ、同様に活性の低下を認めた。一方、M7で活性にさほど変化がみられなかったが、この変異ではEts転写因子の認識配列を保持しているためと推測される。M1, M2, そしてM14の変異はそれぞれGTTTGA(CACCC)配列、GGGAAG(ets様)配列、ATTGG(CCAAT)配列に対するものであるが、活性に変化がみられないことより、これらの配列はTPOの発現に重要な役割は果していないと考えられた1314–15。

3) バンドシフトアッセイ
TPO遺伝子上−76～−46に位置しシスエレメント−ACTTCCG−を含む天然型および変異型のオリゴ(同時に相補鎖も)を合成した(図4A)。天然型オリゴWを相補鎖とアニールし、32Pで末端標識後、これをプロープとして、PLCおよびHeLa細胞よりDigmanらの方法で抽出した核蛋白質を用いてバンドシフトアッセイを行った14。図4Bに示すように、PLCの核蛋白質で3つのバンドI, II, IIIを認めた。これらバンドは50倍量の非標識オリゴWで著しく抑制された。また変異を導入したオリゴを用いた拮抗実験の結果は、上述したルシフェラ
Fig. 3 Site-directed mutational analysis of the TPO gene promoter. (A) Mutations (M1 through M14) generated in the region from -127 to -47 were shown. An unique sequence with dyad symmetry was underlined. Bent arrows indicate the start sites of the plasmids pLUC-T158, pLUC-T107, pLUC-T88, pLUC-T58, and Pluc-t39, respectively. (B) Site-directed mutants shown in (A) were transiently expressed in PLC cells. After normalization of luciferase activity to that of β-galactosidase, relative luciferase activity was expressed as a percentage of that of pLUC-T158. The data represent the mean of three independent experiments with a standard error bar.
Fig. 4 Band shift assay. (A) Sequences of oligonucleotides used in this study were shown. W is wild type containing the cis-element from -70 to -52. M3, M4, M5, M9, M10, M11, and M13 contain the same mutations as M3, M4, M5, M9, M10, M11 and M13 in Fig. 3. The essential sequence of the cis-element was underlined. (B) Bindings of nuclear proteins with the sequence of the cis-element. The radiolabelled W was incubated with 5 ug bovine serum albumin (lane 1), or 5 ug PLC cell nuclear extracts (lanes 2-10), or 5 ug HeLa cell nuclear extracts (lanes 11-19). Binding reactions were performed in the absence (−) or presence of a 50-fold molar excess of the oligonucleotides depicted on the top of each lane.

結合する蛋白質で普遍的に発現していることが予想された。Ets転写因子群のなかでEts-2とE4TF1が普遍的あるいは少なくとも肝臓で発現していることから報告されている。そこでEts-2とE4TF1のそれぞれの認識配列を用いて拮抗実験を行ったところ、E4TF1のオリゴで著しい阻害作用を認めた。これらの結果より、Ets family、特にE4TF1の関与が考えられた。

4) E4TF1はTPO遺伝子プロモーターのシスエレメントに結合する

E4TF1はDNA結合能をもつE4TF1-60と転写活性を持つE4TF1-53/47の3つのサブ
Fig. 5 E4TF1-60 and E4TF1-53/47 bind to the human TPO cis-element.
(A) The radiolabelled oligonucleotide was incubated with 5 μg PLC cell nuclear extracts (lanes 1-4), or 5 μg HeLa cell nuclear extracts (lanes 5-8). Binding reactions were performed with antibody against E4TF1-60 (lanes 2 and 6), antibody against E4TF1-53/47, or control antibody against human albumin. The super-shifted complexes using antibody against E4TF1-60 and E4TF1-53/47 are indicated by the arrow and the arrowhead, respectively. (B) In vitro translated E4TF1-60 and/or E4TF1-53/47 were incubated with the radiolabeled oligonucleotide. The complexes of binding with E4TF1-60 and E4TF1-53, E4TF1-60 and E4TF1-47, and E4TF1 alone are indicated by a, b, and c, respectively. NS indicated nonspecific binding.
はcの位置にバンドを認めたが、E4TF1-60とE4TF1-53の混合体ではaの位置に、またE4TF1-60とE4TF1-47の混合体ではbは位置にそれぞれバンドを認めた。そしてバンドa/bそしてcはPLC核蛋白を用いた際のバンドIとIIIに移動度が非常に似通っていた。抗体およびin vitro発現系の結果より、バンドIIIはE4TF1-60単体とオリゴの複合体そしてバンドIはE4TF1-60とE4TF1-53/47とオリゴの複合体からなっていることが明らかになった。またバンドIIはE4TF1-60の抗体で減少するよりin vivoでなんらかの修飾を受けたE4TF1-60とオリゴの複合体と考えられた。

5) E4TF1-60とE4TF1-53の過剰発現の影響
これまでのデータよりE4TF1のTPO遺伝子発現への関与が示唆された。そこで、E4TF1-60とE4TF1-53を過剰に発現させて、TPOのプロモーター活性への影響を検討した（図6）。E4TF1-60単独あるいはE4TF1-60とE4TF1-53の両方を発現させた場合、プラスミドDNAの量依存性にプロモーター活性の抑制を認めた。一方、E4TF1-53単独発現させた場合、多量のプラスミドDNAでは同様にプロモーター活性の抑制を認めたが、少量のプラスミドDNAでは逆にプロモーター活性の上昇を認めた。これは細胞

Fig. 6 Effects of E4TF1-60, E4TF1-53, and E4TF1-47 expression on the human TPO promoter activity. PLC cells were transiently transfected with 1μg each of pLUC-T158, PCI-β-gal, and either pCAGGS-E4TF1-60, pCAGGS-E4TF1-53 (21), or combinations of each plasmid as indicated. After normalization of luciferase activity to that of β-galactosidase, relative luciferase activity was expressed as a percentage of that of pLUC-T158. The data represent the mean of at least three independent experiments with a standard error bar.
内においてE4TF1-60の発現に較べE4TF1-53の発現が限られていて（バンドシフトアッセイでのバンドIIIはE4TF1-60単体とオリゴの複合体でこれは細胞内でE4TF1-53/47と結合していないフリーのE4TF1-53を発現させることで、転写活性を促進したと考えられた。同様なsqueezingがインスリンを介したプロラクチン遺伝子の発現でも報告されている10）。

考 察

本研究によりTPO遺伝子の発現機構に関してさまざまな点が明らかになった。転写開始点の解析では、従来の報告の－20あるいは＋48とは違って、＋24と＋25を中心に50塩基に渡って複数の転写開始点が存在することが明らかになった。Changらは5'側上流にも1つのエクソンがあると報告しているが、われわれの5'－RACE法、RNAsese protection法では明らかでなかった。そこでさらにRT-PCR法を用いて解析したところ、Changらのエクソン2と4のプライマーで予測長のバンドが増幅されたけれども、エクソン2と4のプライマーのバンドと較べて明らかに少量であった。これらより、Changらのエクソン1は頻度は低いけれども、複数ある転写開始点の1つとして使われていると考えられた。あるいは、本実験では成人肝を、Changらは胎児肝を用いており、肝の発達に伴うTPO遺伝子の発現調節の違いを反映するのかもしれないが今後の解析を待つ必要がある6)。

欠失および変異を用いたルシフェラーゼアセイにより、－69～－63に位置するACTTCCG－配列がTPO遺伝子の高レベルの発現に必須であることが判明した。この配列はEts転写因子群のコンセンサス配列（C/A）GGA（A/T）をノンコーディング領域に含んでいた。更に、抗体を用いたバンドシフトアッセイ、in vitroへの過剰発現実験の結果、Ets転写因子群に属するE4TF1がこのシスエレメント－ACTTCCG－に結合しTPOの遺伝子の発現を制御していることが明らかになった。

Ets転写因子群は鳥の赤血病ウイルス（E26 transformation-specific）の癌遺伝子に含まれる約80アミノ酸からなるDNA结合配列を保

持しており、ハエ、マウス、ヒトなど広範囲に渡って認められこれまで30以上の転写因子が報告され、細胞の増殖、分化に深くかかわっていると考えられている13)4)。E4TF1はアデノウイルス初期遺伝子4のEts転写因子群の認識配列に結合する因子としてHeLa細胞より単離されている18)20)。E4TF1-60、－53、－47の3つのサブユニットからなっていて広範囲の臓器に渡って普遍的に発現している。E4TF1-60はC未側にあるEts領域を介してEts認識配列を持つDNAと特異的に結合し、一方、E4TF1-53、47はN未側にある4つの連続したNotch-ankyrinモチーフを介してE4TF1-60と結合し、そしてC未側を介して転写を活性化すると報告されている18)20)。

肝におけるTPO遺伝子の発現にE4TF1の関与が明らかになったが、他のどのような機序で普遍的に発現しているE4TF1が臓器間の発現レベルの違いを制御しているのであろうか。1)E4TF1のリン酸化などの細胞内での修飾、2)E4TF1と基本転写因子の間の肝特異的な介在因子の存在、3)臓器間での染色体構造上のTPO遺伝子プロモーター領域の違い、このような可能性が考えられるが詳細は現段階では不明である。

最後に、本研究により肝におけるTPOの遺伝子の発現には－69～－63に位置するACTTCCG－配列がシセテメントとして作用し、そして同部位にEts転写因子群のE4TF1が結合することが明らかになった。TPO遺伝子の転写調節に関する研究は始まったばかりであり、今後の更なる解析が必要と思われる。

謝 語：E4TF1の抗体および発現ベクターを提供していただきました東京工業大学分子生命半田宏教授に深謝いたします。また終始指導していただきました九州大学医学部臨床検査医学講座鶴崎直孝教授、北澤繁孝助教授（現東京医科歯科大学難治疾患研究所教授）に深謝いたします。

文 献

1) de Sauvage, FJ, Hass PE, Spencer SD, Malloy BE, Curney AL, Spencer SA, Darbonne WC,
Henzel WJ, Wong SC, Kuang W-J, Oles KJ, Hultgren B, Solberg Jr LA, Goeddel DV, and Eaton DL. (1994) Stimulation of megakaryocytopoiesis and thrombopoiesis by the c-Mpl ligand. Nature. 369: 533-538.

2) Bartley TD, Bogenberger, I., Hunt P, Li Y -S, Lu HS, Martin F, Chang M -S, Samal B, Nichol JL, Swift S, Johnson MJ, Hsu R -Y, Parkeer VP, Suggs S, Skrine JD, Merewether LA, Clogston C, Hus E, Hokom MM, Hornkohl A, Choi E, Pangelinan M, Sun Y, Mar V, McNinch J, Simonet L, Jacobson R, Xie C, Shutter H, Chute H, Basu R, Selandor, T, Trollinger D, Sieu L, Padilla D, Trail G, Elliott G, Izumi R, Covey T, Crouse J, Garcia A, Xu W, Del Castillo J, Biron J, Cole S, Hu M C-T, Paciﬁc R, Ponting I, Saris C, Wen D, Yung YP, Lin H, and Bosselman RA. (1994) Identificaiton and cloning of a megakaryocyte growth and development factor that is a ligand for the cytokine receptor mpl. Cell. 77: 1117-1124.

3) Kaushansky K, Lok S, Holly RD, Broudy VC, Lin N, Bailey MC, Forstrom JW, Buddle MM, Oort PJ, Hagen FS, Roth GJ, Papayannopoulou T, and Foster DC (1994) Promotion of megakaryocyte progenitor expansion and differentiation by the c-mpl ligand thrombopoietin. Nature. 369: 568-571 113-124.

4) Wendling F, Marakskovsky E, Debili N, Florindo C, Teepe M, Titeux M, Methia N, Breton-Gorius J, Cosman D, and Vainchenker, W. (1994) C-mpl ligand is a humoral regulation of megakaryocytopoiesis. Nature. 369: 571-573.

5) Soma Y, Akahori H, Seki N, Hori T, Ogami K, Kato T, Shimada Y, Kawamura K, and Miyazaki H (1994) Molecular cloning and chromosomal localization of the human thrombopoietin gene. FEBS letters. 353: 57-61.

6) Bouscary D, Fontenay-Roupie M, Chretien S, Hardy AC, Viguie F, Picaro F, Melle J, and Dreyfus F (1995) Thrombopoietin is not responsible for the thrombocytosis observed in patients with acute myeloid leukemias and 3q21q26 syndrome. Br. J. Haematol. 91: 425-427.

7) Foster DC, Sprecher CA, Grant FJ, Kramer JM, Kuipjer JL, Holly RD, Whitmore TE, Heipel MD, Bell LA and Ching AF (1994) Human thrombopoietin: gene structure, cDNA sequence, expression and chromosomal localization. Proc. Natl. Acad. Sci. USA. 91: 13023-13027.

8) Chang M-S, McNinch J, Basu R, Shutter J, Hsu R-Y, Perkins, C, Mar V, Suggs S, Welcher A, Li L, Lu H, Bartley T, Hunt P, Martin F, Samal B, and Bogenberger J (1995) Cloning and characterization of the human megakaryocyte growth and development factor (MGDF) gene. J. Biol. Chem. 270: 511-514.

9) Gurney AL, Kuang, W -J, Xie M -H, Malloy BE, Eaton DL, and de Sauvage FJ (1995) Genomic structure, chromosomal localization, and conserved alternative splice forms of thrombopoietin. Blood. 85 : 981-988.

10) Kuter DJ, and Rosenberg RD (1995) The reciprocal relationship of thrombopoietin (c-Mplligand) to changes in the platelet mass during Busulfan-induced thrombocytopenia in the rabbit. Blood. 85 : 2720-2730.

11) McCarty JM, Sprugel KH, Fox NE, Sabath DE, and Kaushansky K (1995) Murine thrombopoietin mRNA levels are modulated by platelet count. Blood. 86: 3668-3675.

12) Kamura T, Handa H, Hamasaki N, and Kitajima S (1997). Characterization of the human thrombopoietin gene promoter. A possible role of an ets transcription factor, E4TF1/GABP. J. Biol. Chem. 272 : 11361-11368.

13) Karim FD, Urness LD, Thummel CS, Klemasz MJ, McKercher SR, Celada A, Beveren CV, Maki RA, Gunther CV, Nye JA, and Graves BJ (1990) The ETS-domain: a new DNA-binding motif that recognizes a purine-rich core DNA sequence. Genes & Dev. 4 : 1451-1453.

14) Wasylyk B, Hahn SL, and Giovane A (1993) The Ets family of transcription factor. Eur. J. Biochem. 211 : 7-18.

15) Miller, I. J., and Bieker, J.J. (1993) A novel, erythroid cell-specific murine transcription factor that binds to the CACCC element and is related to the Kruppel family of nuclear proteins. Mol. Cell. Biol. 13 : 2776-2786.
16) Dignam JD, Levovitz RM, and Roeder RG (1983) Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11:1475-1489.

17) Wasylyk C, Gutman A, Nicholson R and Wasylyk B (1991) The c-Ets oncoprotein activates the stromelysin promoter through the same elements as several non-nuclear oncoproteins. EMBO J. 10:1127-1134.

18) Watanabe H, Sawada J, Yano K, Yamaguchi K, Goto M, and Handa H (1993) cDNA cloning of transcription factor E4TF1 subunits with Ets and Notch motifs. Mol. Cel. Biol. 13:1385-1391.

19) Ouyang L, Jacob KK, and Stanley FM (1996) GABP mediates insulin-increased prolactin gene transcription. J. Biol. Chem. 271:10425-10428.

20) Swada J, Goto M, Sawa C, Watanabe H, and Handa H (1994) Transcriptional activation through the tetrameric complex formation of E4TF1 subunits. EMBO J. 13:1396-1402.

21) Rosmarin AG, Caprio DG, Kirsch DG, Handa H, and Simkevich CP (1995) GABP and PU.1 compete for binding, yet cooperate to increase CD 18 (β2 leukocyte integrin) transcription. J. Biol. Chem. 1995. 270:23627-23633.