EMG finger movement classification based on ANFIS

To cite this article: W Caesarendra et al 2018 J. Phys.: Conf. Ser. 1007 012005

View the article online for updates and enhancements.

You may also like

- A Human-Robot Interaction for a Mecanum Wheeled Mobile Robot with Real-Time 3D Two-Hand Gesture Recognition
Xueling Luo, Andrea Amighetti and Dan Zhang

- Design of an Intelligent Controller for Myoelectric Prostheses based on Multilayer Perceptron Neural Network
M N Raheema, J S Hussain and A M Al-Khazzar

- Support vector machines to detect physiological patterns for EEG and EMG-based human–computer interaction: a review
L R Quitadamo, F Cavrini, L Sbernini et al.
EMG finger movement classification based on ANFIS

W Caesarendra*1,2, T Tjahjowidodo*2, Y Nico2, S Wahyudati3 and L Nurhasanah3

1 Department of Mechanical Engineering, Diponegoro University, Semarang, Indonesia
2 School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
3 Medical Specialty Programs Physical Medicine and Rehabilitation, Medical Faculty, Diponegoro University, Semarang, Indonesia

E-mail: *wc026@uowmail.edu.au

Abstract. An increase number of people suffering from stroke has impact to the rapid development of finger hand exoskeleton to enable an automatic physical therapy. Prior to the development of finger exoskeleton, a research topic yet important i.e. machine learning of finger gestures classification is conducted. This paper presents a study on EMG signal classification of 5 finger gestures as a preliminary study toward the finger exoskeleton design and development in Indonesia. The EMG signals of 5 finger gestures were acquired using Myo EMG sensor. The EMG signal features were extracted and reduced using PCA. The ANFIS based learning is used to classify reduced features of 5 finger gestures. The result shows that the classification of finger gestures is less than the classification of 7 hand gestures.

1. Introduction
Cerebral vascular accident, well-known as stroke is a major cause of long-term disability in the world, with over 775,000 cases in United States alone in 2014 [1]. The main cause of stroke is the damage in the brain cells as a result of an interruption in the blood flow that supplies nutrient and oxygen to the brain, causes paralysis on one side of the body (hemiparesis). Relearning the basic movement is one way to treat this disability. Repetitive training is highly suggested as to speed up the recovery of the paralyzed limbs. However, the conventional treatment method is labour intensive as it requires at least one assistant to guide the patient while using the treatment equipment. Many research has been done to create an independent rehabilitation equipment as a method to increase the treatment frequency and reduce number of assistant needed. One solution that has current been developed is by creating an exoskeleton to guide and control the movement of the paralyzed limb [2].

The previous research that introduced the exoskeleton equipment was an actuated finger exoskeleton (AFX) that provided treatment specifically only to the joints of the index finger and thumb [3]. It was designed to provide independent control of pinch and reach-to-pinchi of each joint of both fingers. Another exoskeleton device that provide control to all five fingers was Hand EXOskeleton Rehabilitation Robot (HEXORR), which used electric motors and a low-friction gears-trains [4].

This paper is the preliminary study of finger exoskeleton design that allows the non-paralyzed fingers to guide, control and enable self-therapy the paralyzed fingers in order to recover the motor
function. The first stage of study is identifying the characteristics of EMG signal acquired from 5 finger gestures. Previous studies has analysed the EMG signals for the purpose of the classification of several hand movements[5-8]. Methods such as ANN[5], SVM[6] and ANFIS[7] has been employed and examined. The result show that ANFIS is over performed than other methods. Therefore this paper used ANFIS as a classification method for EMG signals.

2. Methods

2.1. Features extraction

This paper employed sixteen feature extraction methods as presented in table 1.

No	Method	Equation
1.	Integrated EMG	Integrated EMG (IEMG) is used as an onset detection index in clinical application [9, 10].
2.	Mean absolute value	Mean absolute value (MAV) is also used as an onset index, especially in detection of the surface EMG signal[9, 10].
3.	Modified mean absolute value type 1	Modified mean absolute value type 1 (MAV1) is an extension of MAV feature [9, 10].
4.	Modified mean absolute value type 2	Modified mean absolute value type 2 (MAV2) is an expansion of MAV feature which is similar to MAV1 [9, 10].
5.	Simple square integral	Simple square integral (SSI) or integral square uses energy of the EMG signal as feature [9, 10].
6.	Variance of EMG	Variance of EMG (VAR) is defined as an average of square values of the deviation of the EMG signal[9, 10].
7.	Root mean square	Root mean square (RMS) is a measure that relate to constant force and non-fatiguing contraction [9, 10].
8.	Waveform length	Waveform length (WL) is a measure of complexity of the EMG signal[9, 10].
9.	Difference absolute standard deviation value (DASDV)	DASDV is a standard deviation of the wavelength [9, 10].
10.	Autoregressive	Autoregressive (AR) is a common approach for modeling univariate time series as AR model follows [9, 10].
11.	Hjorth activity	Hjorth activity (H1) can indicate the surface of power spectrum in the frequency domain [11].
IOP Conf. Series: Journal of Physics: Conf. Series 1007 (2018) 012005 doi:10.1088/1742-6596/1007/1/012005

2. Dimensional features reduction and feature classification method

This paper employed principal component analysis (PCA) for dimensional features reduction and adaptive neuro-fuzzy inference system (ANFIS) for reduced features classification. The PCA is a technique using sophisticated underlying mathematical principles to transforms a number of possibly correlated variables into a significant smaller number of uncorrelated variables called principal components[12]. The visualisation of dimensional features reduction using PCA used in this paper is presented in figure 1(a). Where F1, F2, F3, …, F16 is the number of features and a subscript index a, b, …, e is the number of finger gestures (there are 5 finger gestures in this paper). It can be seen from figure 1(a) that the PCA reduced 16 features into 3 new features namely principal components (PCs). We can select how many new features are required, in this paper three PCs is obtained which are PC1, PC2 and PC3.

The adaptive neuro-fuzzy inference system (ANFIS) [13] is a specific kind of neuro-fuzzy classifier approach which integrates the ANNs adaptive capability and the fuzzy logic qualitative approach. The ANFIS architecture consists of five layers as shown in figure 1(b). A detail of PCA and ANFIS algorithm is presented in previous study [12]. Both PCA and ANFIS method is used for pattern recognition method of seven hand gestures [12].

\[
\begin{bmatrix}
F_{1a} & F_{1b} & \ldots & F_{1e} \\
F_{2a} & F_{1b} & \ldots & F_{2e} \\
F_{3a} & F_{1b} & \ldots & F_{3e} \\
\vdots & \vdots & \ddots & \vdots \\
F_{16a} & F_{16b} & \ldots & F_{16e}
\end{bmatrix}
\Rightarrow
\begin{bmatrix}
PC_{1a} & PC_{1b} & \ldots & PC_{1e} \\
PC_{2a} & PC_{2b} & \ldots & PC_{2e} \\
PC_{3a} & PC_{3b} & \ldots & PC_{3e}
\end{bmatrix}
\]

Figure 1. (a) Dimensional feature reduction using PCA; (b) Two-input ANFIS architecture with first-order Sugeno fuzzy model and two rules.

2.3 Experimental setup

The EMG datasets were collected from each individual finger. The subject is person with no neurological or muscular disorders. The participant was seated on an armchair with his arm supported on the armchair, and levelled with the heart to avoid the variation generated by the arm position on the EMG signal. EMG signals were acquired by using Myo gesture controlled armband with 200 Hz sampling rate. The EMG electrodes were attached near to the flexor digitorum superficialis. The photograph of Myo device attached on the arm during the measurement is presented in figure 2. The Myo device consist of 8 EMG sensors. This paper discussed the result of EMG sensor 1. The participant was instructed to elicit a contraction (flexor) from the rest and hold on that position for the period of 5 seconds, continued with the relaxation (extensor) for about the same 5 seconds. The data collection was repeated ten times, until we collected 10 flexor and 10 extensor data. The example of EMG signals and the 5 fingers gesture are shown in figure 3.
There are in fingers. The features of 7 hand gestures are computationally calculated from 16 features for each EMG signal. Both training and testing feature dataset from features extraction resulted from 5 finger gestures times 5 measurement. Prior to the feature classification, the feature dimensional reduction using PCA to obtain more sensitive features for each finger gesture. As mentioned in Section 3 that 10 EMG signal data acquisition were acquired for each finger gesture. We used 5 signals for training and another 5 signals for testing. Sixteen features were extracted from each EMG signal. Both training and testing feature dataset from features extraction process is 16 by 25. Where 16 indicate the number of features and 25 is the number of EMG data resulted from 5 finger gestures times 5 measurement. Prior to the feature classification, the feature datasets were reduced using PCA to obtain more sensitive features for each finger gesture. The three new features are computationally calculated from 16 features namely principal component1 (PC1), principal component2 (PC2) and principal component3 (PC3). The feature dimensional reduction using PCA for training and testing data is presented in figure 4 and 5. Compare to previous study in [11], the PCA plot for 7 hand gestures are easier to identify rather than the PCA plot of 5 finger gestures. The features of 7 hand gestures are groups in certain area and there is no overlapping between one feature group to other feature groups. In contrast, the PCA of five finger gestures are grouped in close distance between group and others, for instance index finger group, middle finger group and little finger group. Only the ring finger group that located in far away from other groups. In addition there is one obvious scattered group i.e. thumb finger. This is because the muscle of one finger to other fingers in the arm are anatomically closed, therefore, once the EMG signal is acquired, there are influenced each other.

Figure 2. (a) The position of the armband on the arm; (b) The EMG channel assignments.

Figure 3. Finger gestures during EMG signal data acquisition.

3. Results and discussion

3.1. Dimensional features reduction using PCA

This paper employed As mentioned in Section 3 that 10 EMG signals were acquired for each finger gesture. We used 5 signals for training and another 5 signals for testing. Sixteen features were extracted from each EMG signal. Both training and testing feature dataset from features extraction process is 16 by 25. Where 16 indicate the number of features and 25 is the number of EMG data resulted from 5 finger gestures times 5 measurement. Prior to the feature classification, the feature datasets were reduced using PCA to obtain more sensitive features for each finger gesture. The three new features are computationally calculated from 16 features namely principal component1 (PC1), principal component2 (PC2) and principal component3 (PC3). The feature dimensional reduction using PCA for training and testing data is presented in figure 4 and 5. Compare to previous study in [11], the PCA plot for 7 hand gestures are easier to identify rather than the PCA plot of 5 finger gestures. The features of 7 hand gestures are groups in certain area and there is no overlapping between one feature group to other feature groups. In contrast, the PCA of five finger gestures are grouped in close distance between group and others, for instance index finger group, middle finger group and little finger group. Only the ring finger group that located in far away from other groups. In addition there is one obvious scattered group i.e. thumb finger. This is because the muscle of one finger to other fingers in the arm are anatomically closed, therefore, once the EMG signal is acquired, there are influenced each other.
3.2. Reduced features classification using ANFIS

The first-order Sugeno type ANFIS was trained with new three features obtained from PCA result. The reduce dataset for training process is 3 x 25. Where 3 is the dimension of principal component and 25 is the result from 5 finger gestures by 5 EMG signal acquisition. The membership function (MF) result from training process is presented in figure 5(a). Three input was indicate the number of PCs and the five membership indicate the finger gestures (classes). Once the ANFIS was trained, the ANFIS model was then tested using another datasets (testing datasets) and the MF is presented in figure 5(b). It can be seen from figure 5 that some MFs of finger gestures were obviously changed, particularly in PC1 i.e. class #1 to #4 and PC2 i.e. class #1.

![Figure 4](image1.png)

Figure 4. Three principal components plot resulted from PCA feature reduction method: (a) for training process; (b) from testing process.

![Figure 5](image2.png)

Figure 5. ANFIS MFs for 3 PCs and 5 finger gestures: (a) training process; (b) testing process.

The classification result of five finger gestures is presented in figure 6. The ANFIS training parameters used in this paper such as number of training and testing set, membership function, learning rules and number of epoch are similar to the parameters used in [11]. The x-axis and y-axis of figure 6 represents the number of features for each finger gesture and the number of class (finger gestures) respectively. Where 1, 2, 3, 4 and 5 is thumb finger, index finger, middle finger, ring finger and little finger. The classification accuracy is presented on each finger gesture. Where the thumb finger has lowest accuracy result of 20% and ring and little fingers achieved 100% accuracy. The average classification
accuracy of 72%. The missed classification are occurred one in index and middle finger and most of missed classification are occurred in thumb finger. This result is corresponding to the MF result where the class #1 to class #4 in PC1 were changed from training MF and testing MF. In addition, the class #1 in PC2 was also changed.

Figure 6. ANFIS classification result for 5 finger gestures.

4. Conclusions
A study of pattern recognition on 5 finger gestures based on EMG signal analysis has been presented. Finger therapy is the most difficult part in post-stroke rehabilitation and physical therapy. The EMG signal of finger gestures is more difficult to be analysed than the EMG signal from hand gestures that conducted in previous study. This is because the position of muscles that connect to certain finger are close each other. Once a certain finger was moved, the other muscle may also be moved. Therefore the accuracy result of classification of finger gestures especially for thumb finger is less than the classification accuracy of hand gestures. However, there is a future work that will be done in the future that is to identify the proper muscle position for each finger movement through the Myo EMG sensor.

Through the study to find the appropriate sensor corresponding to certain finger, the classification accuracy will be improve.

References
[1] A. S. Go, D. Mozaffarian, V. L. Roger, E. J. Benjamin, J. D. Berry, M. J. Blaha, et al. (2014, Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation129(3), e28–e292. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5408159/
[2] P. Heo, G. M. Gu, S.-j. Lee, K. Rhee, and J. Kim, "Current hand exoskeleton technologies for rehabilitation and assistive engineering," International Journal of Precision Engineering and Manufacturing, vol. 13, pp. 807-824, 2012
[3] T. Worsnopp, M. Peshkin, J. Colgate, and D. Kamper, "An actuated finger exoskeleton for hand rehabilitation following stroke," in Rehabilitation Robotics, 2007. ICORR 2007. IEEE 10th International Conference on, 2007, pp. 896-901
[4] C. N. Schabowsky, S. B. Godfrey, R. J. Holley, and P. S. Lum, "Development and pilot testing of HEXORR: hand EXOskeleton rehabilitation robot," Journal of neuroengineering and rehabilitation, vol. 7, p. 36, 2010
[5] W. Caesarendra, S. U. Lekson, K. A. Mustaqim, A. R. Winoto, and A. Widiotriatmo, "A classification method of hand EMG signals based on principal component analysis and artificial neural network," in Instrumentation, Control and Automation (ICA), 2016 International Conference on, 2016, pp. 22-27
[6] W. Caesarendra and M. Irfan, "Classification Method of Hand Gestures based on Support Vector Machine," presented at the 1st International Conference on Informatics, Robotics, Network, Control and Systems (IRONCONS), 2016

[7] W. Caesarendra, T. Tjahjowidodo, and D. Pamungkas, "EMG based Classification of Hand Gestures using PCA and ANFIS," presented at the 2nd International Conference on Robotics, Biomimetics, & Intelligent Computational Systems (Robionetics), Bali, Indonesia, 2017

[8] M. Ariyanto, W. Caesarendra, K. A. Mustaqim, M. Irfan, J. A. Pakpahan, J. D. Setiawan, et al., "Finger movement pattern recognition method using artificial neural network based on electromyography (EMG) sensor," in Automation, Cognitive Science, Optics, Micro Electro-Mechanical System, and Information Technology (ICACOMIT), 2015 International Conference on, 2015, pp. 12-17

[9] A. Phinyomark, P. Phukpattaranont, and C. Limsakul, "Feature reduction and selection for EMG signal classification," Expert Systems with Applications, vol. 39, pp. 7420-7431, 2012

[10] B.-S. Yang and A. Widodo, Introduction of intelligent machine fault diagnosis and prognosis: Nova Science Publishers, 2009

[11] R. N. Khushaba, S. Kodagoda, M. Takruri, and G. Dissanayake, "Toward improved control of prosthetic fingers using surface electromyogram (EMG) signals," Expert Systems with Applications, vol. 39, pp. 10731-10738, 2012

[12] S. Theodoridis, A. Pikrakis, K. Koutroumbs, and D. Cavouras, Introduction to pattern recognition: a matlab approach: Academic Press, 2010.

[13] J.-S. R. Jang, C.-T. Sun, and E. Mizutani, "Neuro-fuzzy and soft computing; a computational approach to learning and machine intelligence," 1997

Acknowledgement
Authors thank to Medical Specialty Programs Physical Medicine and Rehabilitation, Medical Faculty, Diponegoro University, Semarang, Indonesia.