On the electronic structure of CaCuO$_2$ and SrCuO$_2$

H. Rosner†, M. Diviš‡, K. Koepernik§, S.-L. Drechsler†, and H. Eschrig†
† Institut f. Festkörper und Werkstofforschung Dresden, P.O Box 270016, D-01171 Dresden, Germany
‡ Charles University, Department of Electron Systems, Ke Karlovu 5, 12116 Praha 2, Czech Republic
§ Max-Planck-Institut f. Chemische Physik fester Stoffe, D-01187 Dresden, Germany

Abstract. Recent electronic structure calculations for the title compounds performed by Wu et. al. [1] are critically reconsidered, applying high precision full-potential bandstructure methods. It is shown that the bandstructure calculations presented by the authors contain several important inconsistencies, which make their main conclusions highly questionable.

In a recent paper Wu et. al. [1] presented bandstructure calculations for the quasi one-dimensional CuO-chain compound SrCuO$_2$ and the quasi two-dimensional material CaCuO$_2$, both being of prototypical character and therefore of general interest. Wu et. al. used a full-potential linear combination of atomic orbitals method [2] in the framework of the local spin density approximation (LSDA) and included on-site Coulomb interaction corrections (LSDA+U). The authors of Ref. [1] claim that on the basis of their full-potential band structure experimental findings can be well fit with an U of 5 eV, significantly smaller than U values reported in previous calculations [3].

However, there are obvious inconsistencies and important differences between the calculations of Ref. [1] and previous studies [3, 4, 5, 6], concerning (i) the proper symmetry in k-space, (ii) the widths and the orbital character of the shown bands, (iii) the total (DOS) as well as the partial densities of states (PDOS). Therefore, we reinvestigated the electronic structures of CaCuO$_2$ and SrCuO$_2$ using two independent, well basis converged full-potential bandstructure methods to find out whether or not the differences mentioned above could be understood as a consequence of the differences between a full-potential [1] and the earlier non-full-potential calculations [3, 4, 5, 6]. We carried out LSDA bandstructure calculations for CaCuO$_2$ within a full-potential minimum-basis local-orbital scheme (FPLO) [7] and within a full-potential linearized augmented plane wave (FLAPW) scheme [8], both in scalar relativistic versions. (We note that relativistic effects are in the order of 0.1 eV only.) In the FPLO-scheme, modified Ca 3d, 4s, 4p, (Sr 5s, 5p, 6d), Cu 3d, 4s, 4p, and O 2s, 2p, 3d states were used as valence states for CaCuO$_2$ (SrCuO$_2$), the lower lying states were treated as core states. The WIEN97-code [8] employs local orbitals (LO) to relax linearisation errors and to treat the O-2s and semicore Cu-3p and Ca-3s, 3p states. Well converged basis sets of over 500 APW functions plus LOs were used. The radii of the atomic spheres in the latter case were 1.8 a.u. for all atoms. The basic calculations were performed with 125 and 90 k-points in the FPLO-scheme and in the WIEN97-code, respectively, for the irreducible part of the Brillouin zone using the tetrahedron method. We itasize that the numerical convergence (with respect to the number of k-points N_{k}, the valence basis set, the potential and the density
representation of all calculated properties was carefully checked. Following Ref. [1], we will discuss first \(\text{CaCuO}_2 \) and afterwards \(\text{SrCuO}_2 \).

\(\text{CaCuO}_2 \) First, we will concentrate on the bandstructure and then on the DOS. Both bandstructures obtained with the FPLO and WIEN97 codes agree excellently with each other (see Fig. 1(a)) and with previously published results [4, 5]. Considering the bands in Ref. [1] one realizes the following points: The authors show a bandstructure with \textit{orthorhombic} symmetry for the \textit{tetragonal} crystal structure [9] (note the different dispersions in Fig. 1(a) of Ref. [1] along the \(\Gamma-(100) \) and \(
\Gamma-(010) \) direction, respectively, which must be equivalent for the tetragonal case). Also, the band degeneracies at symmetry points are incorrect. As a consequence, the number of degeneracies in \(\Gamma-(001) \) direction (c-direction) differs from all other calculations (11 different bands instead of 8 different bands allowed by the crystal symmetry). Contrary to our results and to the results of Refs. [4, 5], the authors find an additional, third band with sizable dispersion with its maximum at \((001) \). We analyzed the orbital character of our bands, in particular to find out which states are responsible for the relatively large dispersion in c-direction of about 1-2 eV discussed also by Mattheiss et al. [5]. Our calculations show that these two strongly dispersive bands have predominant \(O \ 2p_z \) character with a small admixture of \(\text{Cu} \ 3d_{3z^2-r^2} \) states. In contrast, the c-dispersion of the antibonding band essentially made up by \(O \ 2p-\sigma \) and \(O \ 2p-\pi \) orbitals with the \(\text{Cu} \ 3d_{x^2-y^2} \) orbital is only about 350 meV. Just these states mediate the magnetic coupling between different layers. This confirms the quasi two-dimensional character of the magnetic Hamiltonian.

In Fig. 1(b) we compare our results for the DOS with those of Fig. 2(a) in Ref. [1]. The width of their \textit{pd}-complex is too large by about 2 eV. The authors attribute this discrepancy to their choice of an ionic basis, which only means that their calculations are not basis set converged. The reason for the large discrepancy between the DOS of Ref. [1] and our’s is evident from Figs. 1(c) and 1(d). Due to the ionic orbital basis used in Ref. [1], the \(O \ 2p \) states are shifted downwards by about 2 eV and the hybridisation with \(\text{Cu} \ 3d \) states is consequently reduced. We attribute simply the reduction of the
bandwidth in the LSDA+U in the calculation of Ref. to a downwards shift of their Cu 3d states towards the incorrectly positioned oxygen 2p states.

SrCuO$_2$ For our paramagnetic calculation the resulting DOS is in excellent agreement with the DOS reported in Refs. 1, 11. One should note that the occurrence of van-Hove singularities at the band edges of the antibonding band, due to the nearly one-dimensional electronic structure of the compound, depends critically on the sufficiently large N_k used in the calculation.

For the supercell calculation, we doubled the unit cell along the chain direction and started the self-consistent calculation with an antiferromagnetic arrangement of the Cu spins along the chains [12]. To describe properly some peculiarities related to the nearly one-dimensional electronic structure, we made several calculations varying N_k. In particular, we enlarged N_k along the chain direction. The results are shown in Fig. 2. Due to the nearly ideal one-dimensional dispersion of SrCuO$_2$, the calculation results in an erroneous insulating groundstate for an insufficient N_k. At least for $N_k > 250$, the artificial gap and the related singularities disappear and the results converge towards those of our paramagnetic calculation. Possibly, the gap of 0.55 eV in Ref. 1 can be attributed qualitatively to an insufficient number of k-points. The reported relatively big magnetic moment of 0.33 μ_B is related to this artificial gap and to the unusually small hybridisation of the Cu 3d states with the O 2p states. An antiferromagnetic solution has been reported also by other authors though with an even much smaller gap and extremely small magnetic moments for the SrCuO$_2$-system. Again, we attribute this gap (notably smaller than that in Ref. 1, due to a larger N_k) to a still too small number of k-points. To make this point more clear let us consider schematically the band structure in the folded zone picture in Γ - (001) direction near the antiferromagnetic Bragg point (see Fig. 3). The weak hybridisation between the two subchains of the double chain leads to two slightly split bands. After the folding of these two bands in the doubled unit cell, new crossing points appear close to the new symmetry plane. Therefore, DOS routines result in a wrong interpolation if the crossing points are not at calculated k-points. The mentioned above splitting $\Delta_{max} \approx 150$ meV (see Fig. 3) provides an upper bound for the artificial gap 13. Hence, for supercell calculations, especially for quasi one-dimensional electronic structures, one has to be very careful choosing N_k in applying standard interpolation methods.

In Fig. 4(a) of Ref. 1 one finds the Cu 3d states in the PDOS with a too small
Figure 3. Schematic picture of the folded antibonding bands in Γ-(001) direction in SrCuO$_2$. The solid lines are the correct bands, the dashed lines show the interpolated bands for the k points given by the open circles. For explanation see text.

width as already discussed for CaCuO$_2$. Moreover, for an orbital projected DOS, it is reasonable to use symmetry related orbitals with their quantization axis perpendicular to the CuO$_4$ plaquette. In this representation only the Cu 3$d_{x^2−y^2}$ orbital contributes considerably to the antibonding band (instead of two Cu 3d orbitals shown in Fig. 4 of Ref. [4]), as found for CaCuO$_2$ (Fig. 1(a) of Ref. [4]). The LSDA+U procedure used in Ref. [4] depends on the basis set representation and would require therefore the application of the same local orbital symmetry for both compounds in order to ensure a proper comparison between them.

To summarize, we discussed the main differences between the results of Wu et al. and our/or previously published data [3, 4, 5, 6, 11] basic paramagnetic LDA calculations contain several serious inconsistencies, all conclusions reported in Ref. [1] with respect to LSDA+U are highly questionable. In particular, the large gap in SrCuO$_2$ at moderate U might result from the artificial gap found in their LSDA calculations.

Acknowledgment: Support for H.R. and M.D. by the SFB 463 and the Grant Agency of Czech Republic (grant 202/99/0184 and 202/00/1602) is greatfully acknowledged. We thank M. Richter for stimulating discussions.

References

[1] H. Wu, Q. Q. et al., J. Phys.: Condens. Matter 11, 4637 (1999).
[2] H. Wu, M. C. Qian, and Q. Zheng, J. Phys.: Condens. Matter 11, 209 (1999).
[3] V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44, 943 (1991).
[4] D. Singh, W. Pickett, and H. Krakauer, Physica C 162-164, 1431 (1989).
[5] L. F. Mattheiss and D. R. Hamann, Phys. Rev. B 40, 2217 (1989).
[6] Z. S. Popović and F. R. Vukajlović, Solid State Comm. 106, 415 (1998).
[7] K. Koepenik and H. Eschrig, Phys. Rev. B 59, 1743 (1999).
[8] B. Blaha, K. Schwarz, and J. Luitz, Comput. Phys. Commun. 59, 399 (1990).
[9] D. Vaknin et al., Phys. Rev. B 39, 9122 (1989).
[10] W. E. Pickett, Rev. Mod. Phys. 61, 433 (1989).
[11] N. Nagasako et al., J. Phys. Soc. Jpn. 66, 1756 (1997).
[12] We suppose that the authors calculated the same magnetic unit cell and spin structure, but there is no information about that in Ref. [1].
[13] A similar value of $\Delta_{\text{max}} \approx 150$ meV can be derived from Fig. 3 of Ref. [3]. The large gap of 550 meV reported in Ref. [4] clearly contradicts the claim of Wu et. al. to reproduce the bandstructure of Ref. [3] by backfolding.