Clinical and biochemical improvement following low-dose intravenous iron therapy in a patient with erythropoietic protoporphyria

Erythropoietic protoporphyria (EPP) affects porphyrin and iron metabolism and is most often due to dominant inheritance of a mutation in the ferrochelatase gene (FECH, EC 4.99.1.1) with penetrance dependant on the co-inheritance of a single nucleotide polymorphism, IVS3-48C, which reduces the expression of the remaining wild-type gene (Gouya et al, 2002). This leads to inadequate iron insertion into protoporphyrin IX (PPIX), which can be metabolized only after its conversion to haem. Impaired ferrochelatase activity therefore causes PPIX accumulation at the sites of blocked haem synthesis. The exposure of PPIX to solar radiation generates reactive oxygen species and, by largely indiscriminate macromolecular damage, causes severe cutaneous reactions. EPP patients also have a subnormal iron status (Holme et al, 2007a; Delaby et al, 2009).

A 23-year-old Caucasian male, heterozygous both for a T→C substitution at nucleotide 557 of FECH and the IVS3-48C allelic variant, suffered life-long photosensitivity which had previously responded to oral iron therapy (Holme et al, 2007b). He consented to intravenous (IV) iron therapy offered because of incapacitating gastrointestinal symptoms. Immediately prior to treatment (Fig 1, week 1) his free erythrocyte protoporphyrin concentration (FEP) was 32.1 μmol/l; during the previous 2 years this had fluctuated between 30 and 40 μmol/l, unrelated to the intermittent oral iron therapy. Serum ferritin concentration (SFn) was 63.8 μg/l and had not previously exceeded 50 μg/l. His serum erythropoietin concentration was normal at 10-7 μIU/ml.

Haemoglobin concentration (Hb) was typical at 126 g/l and remained without significant change throughout the study. A proprietary iron hydroxide sucrose preparation (Venofer®; Synermed, (Pharmaceutical Products Ltd) Purley Surry, UK) was administered intravenously to augment iron stores in smaller doses and given at greater intervals than required by anaemic patients. A SFn target was set at 100–200 μg/l to provide adequate iron reserves without the risk of iron overload.

© 2013 The Authors. British Journal of Haematology published by John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
British Journal of Haematology, 2013, 163, 277–291
An initial course of 400 mg of IV iron (100 mg on each occasion) given over 5 weeks increased the SFn predictably (Walters et al, 1973) to 113 l g/l (Fig 1) but this fell to 26 l g/l after 8 months without treatment. The possibility of urinary iron loss was noted in the product literature and on only the first day after an iron infusion, mild haemosiderinuria was detected and an iron loss of 8 mg/24 h determined. There was no overt evidence of significant intravascular haemolysis (falling Hb, red cell fragmentation, reticulocytosis, hyperbilirubinaemia or fall in serum haptoglobin concentration). Except immediately after an iron infusion his serum iron concentration varied between 10 l mol/l and 33 l mol/l (reference range 8–32 l mol/l), as was found prior to treatment and unrelated to any other parameter.

A striking improvement in his general health (Table I) was evident within the first 2 months of treatment. His tolerance to solar radiation increased, he became asymptomatic and developed a suntan without discomfort. There was a visible and sustained increase in musculature. There had been no exposure to anabolic steroids. No adverse effects were experienced.

Unexpectedly, the FEP fell immediately during the first course of treatment (Fig 1) and closely followed a linear time-dependence (r² = 0.96), indicating stable, intracellular retention of PPIX and a non-random age-dependent loss of PP1X-containing red cells. As the red cell lifespan cannot be prolonged and there is no haem synthesis in post-reticulocyte stage red cells, the slope (−0.08 µmol/d) of the decay is the net effect of the decreasing number of residual PPIX-rich red cells and their replacement by new red cells with lower, but still significant, PPIX concentrations. This was confirmed by fluorescent flow cytometry of a random whole blood sample, taken between courses of treatment, which indicated the presence of two discrete red cell populations with different, but elevated PPIX (data not shown). From these data the maximum red cell lifespan of 120 d would imply that a minimum FEP of 22 l mol/l could be achieved in this patient with this schedule of iron treatment.

At 90 d from the beginning of treatment the FEP became stable but resumed a linear (−0.03 µmol/d; r² = 0.852) decay after iron therapy was reintroduced. These findings confirm the link between the iron therapy and the fall in FEP. A median FEP of 21 l mol/l has been maintained for over 5 years with intermittent doses of 200 mg of iron up to three times yearly with neither symptoms of EPP appearing nor evidence of iron overload (SFn 150–240 l g/l). Liver function has remained normal throughout.

Only small, controlled doses of iron are required to give this patient a significantly improved quality of life. Enhanced iron stores, haemoglobin, myoglobin and a significant urinary loss account for all the iron administered.

The iron deficit in EPP patients has been attributed to defective iron absorption (Holme et al, 2007a). This is supported by the findings in the current patient in whom the over-

Table I. Symptoms recorded by the patient before regular iron therapy was taken, after oral iron and after intravenous iron.

Symptoms	Before iron given	After oral iron therapy	After intravenous iron therapy
Solar sensitivity	Rapid burning	Some burning	Improved
Ulceration	Improved	Absent	
Scarring	Improved	Absent	
Oedema	Improved	Absent	
Up to 3 d in bed	Improved	No need for bed rest	
Wind sensitivity	Exposed areas painful	No change	Improved
Hands feel cold	No change	No change	No change
Sweating palms	No change	Improved	
Tachycardia	No change	Absent	
Oedema	Improved	Absent	
Nail changes	Discolouration	Improved	Normal
Brittle	Brittle	Improved	
Lateral ridges	Improved	Normal	
Lifting	Improved	Normal	
Cutaneous abnormalities	Pale; never tans	Improved	Now tans without discomfort
Translucency	Substantial improve	Now normal	
Fragile; easy bruising	Improved	Improved	
Tactile epidermolysis	Improved	Absent	
Scarring on exposed areas	No change	Absent	
Other symptoms	Fatigue	Substantial improve	Now normal
Stamina	Substantial improve	Improved	Now normal
Poor mental concentration	Substantial improve	Improved	Now normal
Poor musculature	Improved	Substantial improve	
Body fat	10%	6%	

Correspondence
all iron administered indicated a requirement of 1.5–2 mg daily i.e. approximating to that needed to compensate for the insensible iron loss and for the augmentation of iron stores in an adult male.

The evidence for the value of iron therapy in EPP is contradictory, with a report of benefit in one patient (Gordeuk et al. 1968) whilst others reported an unexplained exacerbation of symptoms developing up to several weeks after the beginning of treatment (Milligan et al., 1988). There is anecdotal evidence of benefit from hypertransfusion of red cells and haematin infusions, both of which would increase iron availability, but no definitive evidence of these inducing a symptomatic relapse. In vitro studies have shown (Crooks et al., 2010) that iron availability determines the stability of early ferrochelatase and we suggest that this mechanism may decrease FEP and alleviate symptoms in EPP. The effect of iron status on the expression of genes relevant in EPP merits exploration.

For EPP patients considered for iron therapy on the basis of intractable symptoms or evidence of low iron status (Holme et al., 2007a), it is suggested that small doses of intravenous iron may be administered safely and an early fall in FEP used as an indicator of response. Doses of 1 mg iron/kg IV intermittently to patients with a SFn <100 \(\mu \text{g/l} \) are likely to be effective and it is unnecessary to achieve an FEP <25 \(\mu \text{mol/l} \) to obtain a symptomless remission.

Acknowledgements

We would like to thank Dr. M.N. Badminton and Ms. J. Woolf of the Porphyrin Laboratory for the protoporphyrin assays, Mr. S. Smith of the Heavy Metal Laboratory for the urine iron assays and Dr C. J. Pepper, Haematology Research for the flow cytometry, all of the University Hospital of Wales.

Funding

This work was funded by unsolicited charitable donations.

Authorship and disclosures

DPB was responsible for all clinical aspects and wrote the paper. EMM collected and analysed the data and assisted in writing the paper. Neither author has a gainful financial interest in this work.

Conflicts of interest

The authors report no conflict of interest.

Douglas P. Bentley
Elizabeth M. Meek
Department of Pathology, Spire Cardiff Hospital, Cardiff, UK
E-mail: dpbentley45@gmail.com

Keywords: Erythropoietic protoporphyria, low-dose intravenous iron therapy, depletion of intracellular free erythrocyte protoporphyrin

First published online 29 July 2013
doi: 10.1111/bjh.12485

References

Crooks, D.R., Ghosh, M.C., Haller, R.G., Tong, W.-H. & Rouault, T.A. (2010) Posttranslational stability of the heme biosynthetic enzyme ferrochelatase is dependent on iron availability and intact iron-sulphur cluster assembly machinery. Blood, 115, 860–869.

Delabry, C., Lyoumi, S., Decamp, S., Martin-Schmitt, C., Gouya, L., Deybach, J.C., Beaumont, C. & Puy, H. (2009) Excessive erythrocyte PPIX influences the hematologic status and iron metabolism in patients with dominant erythropoietic protoporphyria. Cellulare and Molecular Biology, 55, 45–52.

Gordeuk, V.R., Brittenham, G.M., Hawkins, C.W., Mukhtar, H. & Bickers, D.R. (1968) Iron therapy for hepatic dysfunction in erythropoietic protoporphyria. Annals of Internal Medicine, 105, 27–31.

Holme, S.A., Worwood, M., Anstey, A.V., Elder, G.H. & Badminton, M.N. (2007b) Symptomatic response of Erythropoietic Protoporphryia to iron supplementation. Journal of the American Academy of Dermatology, 56, 1070–1072.

Milligan, A., Graham-Brown, R.A.C., Sarkany, I. & Baker, H. (1988) Erythropoietic protoporphyria exacerbated by oral iron therapy. British Journal of Dermatology, 119, 63–66.

Walters, G.O., Miller, T.M. & Worwood, M. (1973) Serum ferritin concentration and iron stores in normal subjects. Journal of Clinical Pathology, 26, 770–772.