FAILURE OF THE WEIERSTRASS PREPARATION THEOREM IN QUASI-ANALYTIC DENJOY-CARLEMAN RINGS

FRANCESCA ACQUISTAPACE, FABRIZIO BROGLIA, MICHAEL BRONSHTEIN, ANDREEA NICOARA, AND NAHUM ZOBIN

ABSTRACT. It is shown that Denjoy-Carleman quasi-analytic rings of germs of functions in two or more variables fail to satisfy the Weierstrass Preparation Theorem. The result is proven via a non-extension theorem.

CONTENTS

1. Introduction 1
2. Preliminaries 4
3. Extension of Functions from Denjoy-Carleman Classes 8
4. A Strong Failure of the Weierstrass Preparation Theorem 11
5. An Explicit Non-Extendable Function 12
References 16

1. INTRODUCTION

Denjoy-Carleman rings of infinitely differentiable functions have been classically studied in Partial Differential Equations, Function Theory and other fields of Analysis. Since the mid 1970’s, their algebraic structure, which is necessary for understanding the geometry of zero sets of Denjoy-Carleman functions, has also been attracting quite a lot of attention.

The technical complication for Denjoy-Carleman quasi-analytic classes of functions is that applying Weierstrass division to a function in a Denjoy-Carleman class might produce a quotient and a remainder outside that class as shown by Childress in 1976. Since Weierstrass division is the standard method via which the Weierstrass...
Preparation Theorem is proven, the Weierstrass Preparation Theorem became problematic as well as difficult to establish in the wake of Childress’ result. Most experts expected it to fail, but a counterexample turned out to be elusive to construct. Partial results on Weierstrass division in the Denjoy-Carleman classes due to Childress, Chaumat, and Chollet gave a glimpse into what a counterexample to the Weierstrass Preparation Theorem needed to be. A function has the Weierstrass division property if it divides any other function in the ring, and the quotient and remainder of that division are inside the ring. A very elementary argument then shows that every function that has the Weierstrass division property satisfies the Weierstrass Preparation Theorem. By Childress’ work in 1976 [9] (one direction of the equivalence) and Chaumat-Chollet’s work in 2004 [8] (the other direction), a normalized Weierstrass polynomial has the Weierstrass division property in a Denjoy-Carleman ring iff it is hyperbolic, i.e. it only has real roots. This indicated that if the Weierstrass Preparation Theorem failed, it did so on functions that did not have the Weierstrass division property, of which there existed some by Childress’ work.

Further complications, however, arise for two reasons. First of all, failure of Weierstrass division seemingly does not imply the failure of the Weierstrass Preparation Theorem, i.e. these two conditions are not equivalent unlike in the classically known cases of holomorphic and real analytic germs. In fact, we are not aware of any example of a ring of smooth functions for which the Weierstrass Preparation Theorem holds, but the Weierstrass division fails. With respect to this question of the existence of Weierstrass division, of the Weierstrass Preparation Theorem, and of their relationship for subrings of formal power series, A’Campo gave an interesting treatment in [1]. Second of all, standard methods in commutative algebra do not yield any information about the Weierstrass Preparation Theorem.

By contrast, non-quasi-analytic Denjoy-Carleman rings behave much more like rings of smooth functions in the sense that they possess analogs of the Weierstrass (Malgrange) Preparation and Division Theorems as shown in Bronshtein [4]. In establishing such properties of non-quasi-analytic classes, a very important role is played by the fact that functions from these classes can be extended with a controlled widening of the class. Various extension results for non-quasi-analytic Denjoy-Carleman classes were proven by Carleson [6], Mityagin [13], Ehrenpreis [10], Wahde [17], Zobin [18, 19] as well as many other authors.

In the case of quasi-analytic classes, however, there are important non-extension results, due to Carleman [5], Lyubich-Tkachenko [12], and, more recently, Langenbruch [11] and Thilliez [16]; see also Nowak [14]. When working on the problems discussed in this article we discovered that the failure of the Weierstrass Preparation Theorem for a quasi-analytic ring (even if we allow any quasi-analytic widening of this ring) follows (and is actually more or less equivalent) to the failure of the extension
property for such classes. Unlike these previous results, we prove a different non-extension theorem by producing a very explicit example of non-extendable function with important additional properties that are potent enough to permit contradicting the Weierstrass Preparation Theorem. Therefore, the main result of this paper is the following:

1.1. **Theorem.** The Weierstrass Preparation Theorem does not hold in any quasi-analytic class (strictly containing the real analytic class) in dimension ≥ 2. Moreover, it does not hold even if we allow the unit and the distinguished polynomial to be in any wider quasi-analytic class.

The main theorem is proven via the following non-extension result:

1.2. **Theorem.** Let $M = \{m_n\}$ and $\tilde{M} = \{\tilde{m}_n\}$ be two sequences. Then there exists a function f with the following properties:

1. $f \in C^M[0, \infty)$.
2. $\forall x \in \mathbb{R}, \forall p \in \mathbb{N} \quad |f^{(p)}(x)| \leq p! 2^{p+1} \tilde{m}_p$, so in particular, $f \in C^{\tilde{M}}(\mathbb{R})$.
3. There exists a sequence $\{x_p\} \subset \mathbb{R}$ with $x_p < 0$ and $\lim_{p \to \infty} x_p = 0$ and a sequence $\{n_p\} \subset \mathbb{N}$, $\lim_{p \to \infty} n_p = \infty$ such that

$$\forall p \quad |f^{(n_p)}(x_p)| \geq n_p! \tilde{m}_{n_p}.$$

4. f is analytic outside of any neighborhood of 0.

Specifically, this result shows that if we choose a sequence K such that the class $C^K(\mathbb{R})$ is quasi-analytic and $C^K(\mathbb{R}) \subsetneq C^{\tilde{M}}(\mathbb{R})$, then there exists a function from the quasi-analytic class $C^M[0, \infty)$ which cannot be extended to a function from $C^K(\mathbb{R})$, since a quasi-analytic extension, if it exists, is unique, so it should coincide with this function on the whole axis, and this function does not belong to $C^K(\mathbb{R})$.

It should be noted that the function constructed to satisfy the conclusion of this theorem bears a relationship to the very first example of a Denjoy-Carleman function, which is not real analytic, given by Émile Borel in [2] and [3]; see also [10]. Furthermore, examining the Taylor expansion at 0 of f reveals another important fact. $T_0 f \in F^M$, so $T_0 f$ is a formal power series satisfying all the derivative bounds given by the sequence M, and yet it corresponds to f, which is not a function in C^M in any neighborhood around the origin as soon as the sequence \tilde{M} is suitably chosen; see Theorem 3.5 below. Using a functional theoretic argument that produced a lacunary series, Torsten Carleman showed in [5] as early as 1926 that there exist non-convergent formal power series whose coefficients satisfy the Denjoy-Carleman bounds but which do not correspond to Denjoy-Carleman functions in the same class. The function f in Theorem 1.2 finally gives an explicit example of a function of this kind.
The authors of this work who come from quite different mathematical backgrounds were very fortunate to meet at the American Institute of Mathematics in Palo Alto, CA for a SQuaRE workshop. They wish to express their gratitude to AIM for the hospitality and financial support. They are also indebted to Michel Coste for his help in the proof of Lemma 3.1 to Edward Bierstone for his suggestions that led to a more elegant proof of the main result, and to the referee for his observations that improved the clarity of this paper.

The paper is organized as follows: A preliminary section is devoted to describing in detail the classes of Denjoy-Carleman functions considered as well as the intricacies of Weierstrass division in the Denjoy-Carleman settings and its relation to Weierstrass Preparation. Section 3 deals with extension of functions in quasi-analytic classes. In Section 4, Theorem 1.1 is proven assuming Theorem 1.2. Finally, Section 5 constructs the non-extendable function that proves Theorem 1.2.

2. Preliminaries

Denjoy-Carleman classes – basic definitions and results. The set-up explained below constitutes the most standard one for Denjoy-Carleman classes as detailed in [16].

For a multi-index $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}^n$, we will employ the following notation:

$$|\alpha| := \alpha_1 + \cdots + \alpha_n,$$

$$\alpha! := \alpha_1! \cdots \alpha_n!,$$

$$D^\alpha := \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1} \cdots \partial x_n^{\alpha_n}},$$

$$x^\alpha := x_1^{\alpha_1} \cdots x_n^{\alpha_n}.$$

We also use the following notations:

$\mathcal{E}(U)$ is the space of infinitely smooth complex functions on an open set $U \subset \mathbb{R}^n$,

\mathcal{E}_0 is the ring of germs at the origin of such functions,

\mathcal{F}_n (or simply \mathcal{F}) is the ring of formal power series in n variables,

\mathcal{O}_n (or simply \mathcal{O}) is the ring of convergent power series.

Let $M = \{m_0, m_1, m_2, \ldots\}$ be an increasing sequence of positive real numbers with $m_0 = 1$.
2.1. **Definition.** We say that a function \(f \in \mathcal{E}(U) \) belongs to the Denjoy-Carleman class \(C_n^M(U) \) if there are constants \(A, B \) depending on \(f \), such that
\[
\forall x \in U, \forall \alpha \in \mathbb{N}^n \quad |D^\alpha f(x)| \leq |\alpha|! AB^{\langle \alpha \rangle} m_{|\alpha|}.
\]

2.2. **Definition.** The ring of germs \(C_{n,0}^M \) is the inductive limit of \(C_n^M(U) \), for \(U \) in the family of neighborhoods of the origin.

2.3. **Definition.** We say that a formal power series
\[
f = \sum_{\alpha \in \mathbb{N}^n} \frac{a_\alpha}{\alpha!} z^\alpha \in \mathcal{F}_n
\]
belongs to the Denjoy-Carleman class \(\mathcal{F}_n^M \) if there are constants \(A, B \) such that
\[
\forall \alpha \in \mathbb{N}^n \quad |a_\alpha| \leq |\alpha|! AB^{\langle \alpha \rangle} m_{|\alpha|}.
\]

In order to get classes of functions with some good structural properties, we must impose some conditions on the sequence \(M = \{m_n\} \).

\[
\frac{m_{j+1}}{m_j} \leq \frac{m_{j+2}}{m_{j+1}} \quad \text{for all} \quad j \geq 0 \quad (\text{logarithmic convexity})
\]

and

\[
\sup_j \sqrt{\frac{m_{j+1}}{m_j}} < \infty
\]

We summarize the properties of \(C_{n,0}^M \) when the sequence \(M \) verifies conditions (2.1, 2.2). We omit the \(n \) and write simply \(C_0^M \). For the proof and further references, one can consult [16].

2.4. **Proposition.** The following properties hold for \(C_0^M \):
- \(C_0^M \) is a local ring containing \(\mathcal{O} \) with maximal ideal \(\mathfrak{m} = \{ f \in C_0^M : f(0) = 0 \} = (x_1, \ldots, x_n) C_0^M \).
- \(C_0^M \) is closed under division by coordinates functions \(x_1, \ldots, x_n \).
- \(C_0^M \) is closed under composition.
- \(C_0^M \) is closed under differentiation.
- The Implicit Function Theorem holds for \(C_0^M \).
- The Inverse Function Theorem holds for \(C_1^M \).

2.5. **Definition.** A Denjoy-Carleman class \(C_0^M \), properly containing the ring \(\mathcal{O} \), is called quasi-analytic if the Taylor map \(T_0 : C_0^M \to \mathcal{F}_n^M \)
\[
T_0 f = \sum_{\alpha \in \mathbb{N}^n} \frac{f^{(\alpha)}(0)}{\alpha!} z^\alpha
\]
sending each germ to its Taylor series at 0 is injective.
By the Denjoy-Carleman Theorem, the Taylor map is injective if and only if
\[(2.3) \sum_{k=0}^{\infty} \frac{m_k}{(k+1)m_{k+1}} = \infty.\]

Also \(C_0^M \supseteq \mathcal{O}\) if and only if
\[(2.4) \lim_{j \to \infty} \sqrt{m_j} = \infty.\]

This last condition combined with logarithmic convexity is easily proved to be equivalent to the following one:
\[(2.5) m_{j+1} = \alpha_j m_j \text{ with } \lim_{j \to \infty} \alpha_j = \infty.\]

We will use both in what follows.

Finally, we recall that the inclusion \(C_0^M \subset C_0^\tilde{M}\) is equivalent to the condition
\[\sup_{n \geq 0} \sqrt{n} < \infty.\]

Basics of Weierstrass Division and Preparation. Assume \(n \geq 2\).

We say that \(\varphi \in C_{n-1,0}^M[x_n]\), a monic polynomial in \(x_n\) of degree \(d\),
\[\varphi(x) = x_n^d + a_1(x')x_n^{d-1} + \ldots + a_d(x'),\]
where \(x = (x', x_n)\) and \(a_j \in C_{n-1,0}^M\), is a distinguished Weierstrass polynomial in \(x_n\) if \(a_j(0) = 0\), for all \(1 \leq j \leq d\).

Such a polynomial \(\varphi\) is called hyperbolic in \(x_n\) if there exists a neighborhood \(U\) of \(0\) in \(\mathbb{R}^{n-1}\) such that \(\forall x' \in U\), all the roots of \(\varphi(x', \cdot)\) are real; otherwise, \(\varphi\) is called non-hyperbolic in \(x_n\).

A germ \(f \in C_{n,0}^M\) is regular in \(x_n\) of order \(d\) if there exists a unit \(u\) in the ring \(C_{n,0}^M\) such that \(f(0, x_n) = u(0, x_n) x_n^d\).

Note this is equivalent to saying that
\[f(0, 0) = \frac{\partial}{\partial x_n} f(0, 0) = \cdots = \frac{\partial}{\partial x_n^{d-1}} f(0, 0) = 0,\]
while
\[\frac{\partial}{\partial x_n^d} f(0, 0) \neq 0.\]

A germ \(f \in C_{n,0}^M\) is strictly regular in \(x_n\) of order \(d\) if
\[\frac{\partial}{\partial x_n^d} f(0, 0) \neq 0,\]
but for any \(\alpha \in \mathbb{N}^n\), \(|\alpha| \leq d - 1\), \(D^\alpha f(0, 0) = 0.\)
2.6. Remark. Note that any germ of a smooth function and any formal power series can be made strictly regular with respect to a chosen variable via a linear change of variables.

2.7. Definition. A ring R_n of germs of infinitely differentiable functions in n variables at 0 is said to satisfy the Weierstrass Preparation Theorem if for any $d \geq 1$ and any $f \in R_n$ that is regular of order d in x_n can be prepared in R_n, i.e., there exist a unit $u \in \mathbb{R}_n$ and a distinguished Weierstrass polynomial $\varphi \in R_{n-1}[x_n]$ of order d, such that $f = u\varphi$.

2.8. Definition. We say that the Weierstrass Division Property holds in $C^M_{n,0}$ for a function f that is regular in x_n of order d if for every $g \in C^M_{n,0}$, there exist $q \in C^M_{n,0}$ and $h \in C^M_{n-1,0}[x_n]$, a polynomial of degree $\leq (d - 1)$ in x_n, such that $g =fq + h$.

2.9. Remark. It is classically known that in the ring of holomorphic function germs, the ring of real analytic function germs, and the ring of smooth germs, the Weierstrass Preparation Theorem holds true and they also have the Weierstrass Division Property.

2.10. Remark. What are the relations between the two Weierstrass properties? The Weierstrass Division Property for an element f regular in x_n of order d in a ring of germs R_0 implies that the same f can be prepared. Indeed, it is enough to divide x_n^d by f, and we obtain $x_n^d = qf + r$ with $q,r \in R_0$. Comparing orders we see that q must be a unit and the remainder r is a polynomial in x_n of degree $d - 1$ whose coefficients must vanish at 0. Hence $f = q^{-1}(x_n^d - r)$ is prepared.

We do not know if the Weierstrass Preparation Theorem for a ring R_0 implies the Weierstrass Division Property for this ring. A natural way to establish this hits an obstacle: assume the Weierstrass Preparation Theorem holds true in R_0 and take $f,g \in R_0$. We can assume both are regular in the same variable, so that there exist units u,v and Weierstrass polynomials p,q such that $f = up$, $g = vq$. Perform the Euclidean division between the two Weierstrass polynomials p and q, we get $p =aq+r$ and thus $f = up = v^{-1}(ua)vq + ur = v^{-1}uag + ur$. There is no guarantee, however, that ur can be reduced to a polynomial.

From Childress [9] and Chaumat-Chollet [8], we know that for $n \geq 2$ a Weierstrass polynomial $g \in C^M_{n,0}$ has the Weierstrass Division Property if and only if it is a hyperbolic polynomial. In particular, the Weierstrass Division Property does not hold in general in $C^M_{n,0}$ (the reader can find specific examples of functions for which it fails in [9] and [16]), but this fact does not imply the failure of the Weierstrass Preparation Theorem.

Note that the Weierstrass Division Property, and, hence, the Weierstrass Preparation, both hold in the ring \mathcal{F}^M, and, moreover, this ring is Noetherian. This was proved
by Chaumat et Chollet in [7]. Yet, the Taylor morphism $C^M_0 \rightarrow \mathcal{F}^M$ is not surjective as proven long ago by Carleman in [5], so the better algebraic properties of \mathcal{F}^M do not automatically transfer to C^M_0.

2.11. Remark. What about the Weierstrass Division and Preparation in non-quasi-analytic Denjoy-Carleman rings $C^{(m_k)}_{n,0}$? M. Bronshtein [4] has shown that the Weierstrass Division Property holds weakly: for any $d \in \mathbb{N}$, for every $f \in C^{(m_k)}_{n,0}$, regular of order d in x_n, and for every function $g \in C^{(m_k)}_{n,0}$, there exist a function q from the wider Denjoy-Carleman ring $C^{(m_{dk})}_{n,0}$ and a polynomial $h \in C^{(m_{dk})}_{n-1,0}[x_n]$ over this wider ring, such that

$$g = fq + h.$$

From this result, he deduced that, given $d \in \mathbb{N}$, every $f \in C^{(m_k)}_{n,0}$ regular of order d in x_n can be prepared in this wider ring $C^{(m_{dk})}_{n,0}$, meaning that there exist a unit $u \in C^{(m_{dk})}_{n,0}$ and a distinguished Weierstrass polynomial $\varphi \in C^{(m_{dk})}_{n-1,0}[x_n]$ of degree d, such that

$$f = u\varphi.$$

So a controlled widening of the ring (depending upon the regularity of f) saves the day for both Weierstrass theorems. This widening is optimal.

This result suggests that in the non-quasi-analytic case one should consider a wider ring,

$$\widetilde{C}^M(U) = \bigcup_{d \in \mathbb{N}} C^{(m_{dk})}(U).$$

In this new class, the Weierstrass Division Theorem holds and therefore every function can be prepared.

When we started working on the quasi-analytic case, we expected to find a wider quasi-analytic ring containing all the objects we were looking for. Instead, it turned out that the situation is drastically different in the quasi-analytic case.

Our main result asserts:

Let $C^M_{n,0}$, $n \geq 2$ be a quasi-analytic Denjoy-Carleman ring. Choose ANY wider quasi-analytic Denjoy-Carleman ring $\widetilde{C}^M_{n,0}$. There exists $f \in C^M_{n,0}$, regular of order 2 in x_n, which cannot be prepared in $\widetilde{C}^M_{n,0}$.

So we say that the Weierstrass Preparation Theorem strongly fails in quasi-analytic Denjoy-Carleman rings in dimensions ≥ 2.

3. Extension of Functions from Denjoy-Carleman Classes

Given a quasi-analytic local ring $C^M_0 \supseteq \mathcal{O}$, we will need to find a wider ring \widetilde{C}^M_0 verifying two conditions pulling in opposite directions. On one hand, we require \widetilde{C}^M_0 to be quasianalytic, that is to verify 2.3. On the other hand, we ask that
\[
\lim_{n \to \infty} \sqrt[m_n]{m_n} = \infty, \text{ which in particular implies } C_0^M \subset C_0^\widetilde{M}. \text{ This is done in the following lemma:}
\]

3.1. **Lemma.** For any quasi-analytic local ring \(C_0^M\) there exists a quasi-analytic local ring \(C_0^\widetilde{M}\) with \(C_0^M \subset C_0^\widetilde{M}\) and \(\lim_{j \to \infty} \sqrt[j]{\tilde{m}_j} = \infty\).

Proof. Since \(C_0^M\) is quasi-analytic, we have \(\sum_{j \geq 1} \frac{m_{j-1}}{j : m_j} = \infty\). Put \(\alpha_j = \frac{m_j}{m_{j-1}}\) and \(\mu_j = \sum_{k=1}^{j} \frac{1}{k \alpha_k}\). So \(\lim_{j \to \infty} \mu_j = \infty\). Define \(\beta_j = \alpha_j \sqrt[1]{\mu_j}\), so that \(\lim_{j \to \infty} \beta_j = \infty\).

Then \(\sum_{j=1}^{j} \frac{1}{j \beta_j}\) diverges. Indeed, its partial sums verify

\[\sum_{k=1}^{j} \frac{1}{k \beta_k} = \sum_{k=1}^{j} \frac{1}{k \alpha_k \sqrt[1]{\mu_k}} > \frac{1}{\sqrt[1]{\mu_j}} \sum_{k=1}^{j} \frac{1}{k \alpha_k} = \sqrt[1]{\mu_j}.\]

Now let us define \(\tilde{m}_j = \beta_j \tilde{m}_{j-1}\), \(\tilde{m}_0 = 1\). We obtain that

- \(C_0^\widetilde{M}\) is quasi-analytic by construction.
- \(\frac{\tilde{m}_j}{m_j} = \frac{\beta_j \tilde{m}_{j-1}}{\alpha_j m_{j-1}}\), so \(\lim_{j \to \infty} \beta_j = \infty\) gives \(\lim_{j \to \infty} \sqrt[j]{\tilde{m}_j} = \infty\).
- The previous limit implies \(\sup_{j \geq 0} \left(\frac{m_j}{\tilde{m}_j} \right)^{\frac{1}{j}} < \infty\) as needed for \(C_0^M \subset C_0^\widetilde{M}\).

\[\square\]

3.2. **Definition.** For \(U = [0, \varepsilon) \subset \mathbb{R}_+\) let

\[C_+^M(U) = \{ f \in \mathcal{E}(U) : \exists A, B > 0 \ \forall k \in \mathbb{N}, \ \forall x \in U \ \ |D^k f(x)| \leq k!AB^k m_k \}.\]

The space \(C_+^M,0\) is the space of germs at 0 of such functions.

It is very natural to ask whether every germ in \(C_+^M,0\) is the restriction of some germ in \(C_+^{1,0}\), i.e., if

\[C_+^M,0 \subset C_+^{1,0}|_{\mathbb{R}_+},\]

or, more generally, if

\[C_+^M,0 \subset C_+^{\widetilde{M}}|_{\mathbb{R}_+}\]

for a wider class \(C_+^{\widetilde{M}},\) with \(\widetilde{M}\) depending only upon \(M\).

If this is true, we say, respectively, that \(C_+^M,0\) has the strong extension property or the weak extension property.
3.3. Remark. For a non-quasi-analytic class $C_{M+1,0}$, there are various descriptions of (generally, wider) classes $C_{M+1,0}$ satisfying (3.1); see for example the papers mentioned in the introduction. So the weak (but usually not the strong) extension property holds for non-quasi-analytic Denjoy-Carleman classes.

The situation of quasi-analytic Denjoy-Carleman classes is quite different. The crucial difference from the previous case is that if a germ from a quasi-analytic class $C_{M+1,0}$ extends to a germ from another quasi-analytic class $C_{\tilde{M}+1,0}$, then this extension is unique due to the quasi-analyticity. In fact, this uniqueness of extension often prevents the existence of an extension.

In this framework, there are interesting results by Langenbruch [11] and Thilliez [15]; see also Nowak [14]. From there we extract the following statement:

3.4. Theorem. Let $C_{M+1,0}$ and $C_{\tilde{M}+1,0}$ be a quasi-analytic local rings. If $C_{M+1,0}$ properly contains the ring of analytic germs O_1 and $C_{M+1,0} \subset C_{\tilde{M}+1,0}$, then $C_{M+1,0} \cap \left(C_{\tilde{M}+1,0} \right) \neq \emptyset$.

So Theorem 3.4 asserts that any quasi-analytic local ring $C_{M+1,0}$ containing O fails the weak extension property, i.e., no matter how wide is the quasi-analytic class $C_{M+1,0}$ we choose, there still exist germs in $C_{M+1,0}$, which do not extend to germs from $C_{\tilde{M}+1,0}$.

In the last section, we reprove this result by a very explicit construction of non-extendible germs, which have useful additional properties that we plan to use in our further research. Our construction yields another result not implied in an evident way by Theorem 3.4 that we need in the next section. Namely, the following is an easy consequence of Theorem 1.2:

3.5. Theorem. Let $C_{M+1,0}$, $C_{N+1,0}$ be quasi-analytic Denjoy-Carleman rings. Assume that $C_{M+1,0}$ properly contains O_1. Then there exists a quasi-analytic ring $C_{K+1,0}$ such that $C_{N+1,0} \subset C_{K+1,0}$, and

$$(C_{M+1,0} \cap C_{K+1,0} \mid \mathbb{R}_+) \setminus C_{N+1,0} \mid \mathbb{R}_+ \neq \emptyset.$$

Proof. First, let us note that, due to Lemma 3.1 there exists a sequence $K = \{k_p\}$, such that $C_{K+1,0}$ is a quasi-analytic ring, $C_{M+1,0} \subset C_{K+1,0}$ and

$$\lim_{j \to \infty} \left(\frac{k_j}{n_j} \right)^{1/j} = \infty. \quad (3.2)$$

Next, let f be a function as in Theorem 1.2 for $\tilde{M} = K$. Let us verify that $f \mid \mathbb{R}_+ \in \left(C_{M+1,0} \cap C_{K+1,0} \right) \setminus C_{N+1,0} \mid \mathbb{R}_+$.

According to Theorem 1.2 $f \in C_{K+1,0}$, and $f \mid \mathbb{R}_+ \in C_{M+1,0} \setminus C_{N+1,0}$. Let us show that $f \notin C_{N+1,0}$, which will prove the Theorem, since the restriction map $C_{K+1,0} \to C_{K+1,0} \mid \mathbb{R}_+$ is injective.
Assume the opposite, \(f \in C^N_{1,0} \). Then there exist \(A, B > 0 \) such that \(|f^{(p)}(x)| \leq p!AB^pn_p \) for all \(p \in \mathbb{N} \) and for all points \(x \) in a neighborhood of 0.

By Theorem 1.2 we have

\[
|f^{(p_j)}(x_j)| \geq p_j!k_{p_j}.
\]

Therefore we get

\[
\forall j \quad p_j!k_{p_j} \leq p_j!AB^{p_j}n_{p_j}.
\]

So for any \(j \)

\[
\sqrt{\frac{k_{p_j}}{n_{p_j}}} \leq A^{\frac{1}{p_j}}B,
\]

which contradicts 3.2.

\[\square\]

4. A Strong Failure of the Weierstrass Preparation Theorem

4.1. Theorem. For any quasi-analytic local ring \(C^M_{n,0} \), \(n \geq 2 \), and for any wider local quasi-analytic ring \(C^M_{n,0} \) there exists \(g \in C^M_{n,0} \), regular of order 2, which cannot be prepared in \(C^M_{n,0} \).

Proof. It suffices to consider the case of dimension 2.

By Theorem 3.5 there exist a quasi-analytic ring \(C^K_{1,0} \) and a function \(f \) on a neighborhood \(U \subset \mathbb{R} \) of 0 such that

\[
f|_{U \cap \mathbb{R}^+} \in C^M(U \cap \mathbb{R}^+), \quad f \in C^K(U), \quad \text{but} \quad f \notin C^M(U).
\]

We can assume that \(f(0) = 0 \) and \(f'(0) > 0 \). If this is not the case, it suffices to take \(f(x) + kx + b \), which is in the same class as \(f \) and has the desired property for suitable constants \(k \) and \(b \).

Define \(g(t, x) = f(t^2) - x \). Since \(t^2 \geq 0 \), by Proposition 2.4 \(g(t, x) \) is a \(C^M_{2,0} \) germ. Since \(f'(0) \neq 0 \), \(g(t, x) \) is regular of order 2 with respect to the variable \(t \). Let us show that \(g \) cannot be prepared in \(C^M_{2,0} \). In the ring of formal power series \(F_2 \), there exist a second degree Weierstrass polynomial \(P(t, x) \) and a unit \(Q(t, x) \) such that the Taylor expansion \(T_0g \) of \(g \) at 0 can be represented as \(T_0g(t, x) = P(t, x)Q(t, x) \), and this representation is unique. Since \(g(t, x) = g(-t, x) \) and the Taylor morphism taking a germ to its Taylor expansion at 0 is injective by quasi-analyticity, \(P \) does not have degree 1 terms in \(t \), so \(P(t, x) = t^2 - a(x) \). Setting \(T_0g(t, x) = T_0f(t^2) - x = 0 \) and plugging in \(x = T_0f(t^2) \), one obtains \(t^2 = a(x) \), which implies \(x = T_0f(a(x)) \).

Hence, as a formal series, \(a = (T_0f)^{-1} \). The inverse series of the Taylor series of a function in some quasi-analytic class is the Taylor series of a function in the same class. Therefore, if \(g \) could be prepared in \(C^M_{2,0} \), then \(P(t, x) \) would have to be the formal power series of an element in \(C^M_{2,0} \), i.e. \(a(x) \) would have to correspond to an element of \(C^M_{1,0} \), which is impossible because \(f \notin C^M(U) \).

\[\square\]
5. An Explicit Non-Extendable Function

In this section, we prove Theorem 1.2 by constructing an explicit example of a function in question.

Proof. Our bricks for constructing the function \(f \) will be functions

\[
g_n = \frac{A_n}{2^n(z_n - x)}.
\]

where \(z_n = x_n + iy_n \) with \(x_n < 0, y_n > 0, \lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n = 0, \) and \(A_n \) suitably chosen.

To select appropriate \(A_n \)'s and \(x_n \)'s, consider functions \(\varphi(\xi) \) and \(\tilde{\varphi}(\xi) \) related to one of the classic ways of gauging the growth of sequences \(\{m_t\} \) and \(\{\tilde{m}_t\} \):

\[
\varphi(\xi) = \sup_{t > 0} \frac{\xi^{t+1}}{m_t}
\]

and

\[
\tilde{\varphi}(\xi) = \sup_{t > 0} \frac{\xi^{t+1}}{\tilde{m}_t}.
\]

\(\varphi(\xi) \) and \(\tilde{\varphi}(\xi) \) satisfy the following:

- They are increasing for \(\xi > 0 \) since each is the supremum of monotonically increasing functions.
- For every \(\xi > 0 \), we get \(\varphi(\xi) < \infty \), \(\lim_{\xi \to \infty} \varphi(\xi) = \infty \), \(\xi^{t+1} \leq \varphi(\xi) \cdot m_t \) and similarly \(\tilde{\varphi}(\xi) < \infty \), \(\lim_{\xi \to \infty} \tilde{\varphi}(\xi) = \infty \), \(\xi^{t+1} \leq \tilde{\varphi}(\xi) \cdot \tilde{m}_t \).
- Both are continuous, which combined with monotonicity implies they are increasing bijections of \((0, +\infty)\).

All properties but continuity are easy to see. We establish the latter in Step 1 for \(\tilde{\varphi}(\xi) \), and obviously, the same argument applies for \(\varphi(\xi) \).

Step 1. Call \(b_n = \frac{\tilde{m}_n}{m_{n-1}} \). Then for all \(z \in [b_n, b_{n+1}] \), one has

\[
\tilde{m}_n = \sup_{\xi > 0} \frac{\xi^{n+1}}{\tilde{\varphi}(\xi)} = \frac{z^{n+1}}{\tilde{\varphi}(z)}.
\]

Furthermore, \(\tilde{\varphi}(\xi) \) is continuous.

Proof. a) \(\forall j \leq n \quad \frac{z^{j-1}}{\tilde{m}_{j-1}} \leq \frac{z^j}{\tilde{m}_j} \).

Indeed, \(\frac{z^j}{\tilde{m}_j} = \frac{z^{j-1}}{\tilde{m}_{j-1}} \cdot \frac{z}{b_j} \geq \frac{z^{j-1}}{\tilde{m}_{j-1}} \) since \(z \geq b_n \geq b_j \).
b) \(\forall j \geq n \ \frac{z^{j+1}}{m_{j+1}} \leq \frac{z^j}{m_j} \).

Indeed, \(\frac{z^{j+1}}{m_{j+1}} = \frac{z^j}{m_j} \cdot \frac{z}{b_{j+1}} \leq \frac{z^j}{m_j} \) since \(b_{j+1} \geq b_{n+1} \geq z \).

Thus

\[
\forall z \in [b_n, b_{n+1}] \quad \tilde{\varphi}(z) = \sup_{k>0} \frac{z^{k+1}}{m_k} = \frac{z^{n+1}}{m_n}.
\]

Therefore, \(\tilde{\varphi} \) is continuous.

From the above, it follows that

\[
\tilde{\varphi}(z) = \sup_{k>0} \frac{z^{k+1}}{m_k} \geq \frac{z^{n+1}}{m_n} \geq \frac{z^{n+1}}{\tilde{m}_p}.
\]

because \(\xi^{t+1} \leq \tilde{\varphi}(\xi) \tilde{m}_t \) for all \(\xi > 0, \ t > 0 \).

Consequently, these inequalities are equalities. \(\square \)

Step 2. We can choose \(A_n \) in such a way that \(|g_n^{(p)}(x)| \leq p! \frac{1}{2^n} \tilde{m}_p \) for every \(x \in \mathbb{R} \).

Proof. For any \(x \in \mathbb{R} \), we have

\[
|\frac{A_n}{(z_n - x)^{p+1}}| \leq \frac{|A_n|}{|y_n|^{p+1}}.
\]

Taking \(A_n = \frac{1}{\tilde{\varphi}(y_n^{-1})} \) yields

\[
|g_n^{(p)}(x)| = p! \frac{A_n}{2^n|z_n - x|^{p+1}} \leq p! \frac{1}{2^n} \frac{(y_n^{-1})^{p+1}}{\tilde{m}_p} \leq p! \frac{1}{2^n} \tilde{m}_p.
\]

since \(\xi^{p+1} \leq \tilde{\varphi}(\xi) \tilde{m}_p \). \(\square \)

Step 3. A suitable choice of \(\{x_n\} \) implies \(|g_n^{(p)}(x)| \leq p! \frac{1}{2^n} m_p \) for every \(x \in [0, \infty) \).

Proof. Observe that for \(x \geq 0 \), we have

\[
|\frac{A_n}{(z_n - x)^{p+1}}| \leq \frac{|A_n|}{|x_n|^{p+1}} = \frac{|x_n^{-1}|^{p+1}}{\tilde{\varphi}(y_n^{-1})}.
\]

Since both \(\varphi(\xi) \) and \(\tilde{\varphi}(\xi) \) are continuous bijections on \((0, +\infty) \), we can take \(x_n \) such that

\[
\varphi(x_n^{-1}) = \tilde{\varphi}(y_n^{-1}).
\]

Letting \(x_n = -x_n \), we obtain
Proof.

(5.2) \[|g_n^{(p)}(x)| \leq p! \frac{1}{2^n} \cdot \frac{|A_n|}{|x|^{|p+1|}} = p! \frac{1}{2^n} \cdot \frac{|x_n^{-1}|^{p+1}}{\varphi(y_n^{-1})} = p! \frac{1}{2^n} \cdot \frac{|x_n^{-1}|^{p+1}}{\varphi(|x_n|^{-1})} \leq p! \frac{1}{2^n} m_p. \]

\[\square \]

In order to have a function \(f \) verifying property (3), we have to extract a suitable subsequence \(\{g_{n_j}\} \subset \{g_n\} \) and we must be careful in choosing the sequence \(\{y_{n_j}\} \).

Let \(\{n_j\} \) any subsequence of \(\mathbb{N} \). We shall estimate the \(n_j^{th} \) derivative of the function \(S = \sum_{i} g_{n_i} \) at the point \(x_{n_j} \) as follows:

(5.3) \[|S^{(n_j)}(x_{n_j})| = |g_{n_j}^{(n_j)}(x_{n_j}) + \sum_{t \neq j} g_{n_t}^{(n_t)}(x_{n_j})| \geq |g_{n_j}^{(n_j)}(x_{n_j})| - \sum_{t \neq j} |g_{n_t}^{(n_t)}(x_{n_j})|. \]

On the right side of the inequality above, there are three terms, namely

a) \[|g_{n_j}^{(n_j)}(x_{n_j})| = n_j! \frac{(y_{n_j}^{-1})^{n_j+1}}{2^{n_j} \varphi(y_{n_j}^{-1})} \]
b) \[\sum_{t<j} |g_{n_t}^{(n_t)}(x_{n_j})| \]
c) \[\sum_{t>j} |g_{n_t}^{(n_t)}(x_{n_j})| \]

We shall evaluate them in subsequent steps.

Step 4. Choosing \(y_{n}^{-1} \in [b_n, b_{n+1}] \), we have

\[|g_n^{(n)}(x_n)| = 2^{-n} n! \tilde{m}_n \quad \forall n \in \mathbb{N} \]

Proof. \[|g_n^{(n)}(x_n)| = n! \frac{(y_{n}^{-1})^{n+1}}{2^n \varphi(y_{n}^{-1})} = 2^{-n} n! \tilde{m}_n. \]

\[\square \]

Step 5. \(\forall l \exists N > l \) such that \(\forall t \leq l \) and \(\forall n > N \) the following inequality holds

\[\frac{(y_t^{-1})^{n+1}}{\varphi(y_t^{-1})} < 2^{-(n+2)} \tilde{m}_n \]

Proof.

\[\frac{(y_t^{-1})^{n+1}}{\varphi(y_t^{-1})} = \frac{(y_t^{-1})^{t+1}}{\varphi(y_t^{-1})} \cdot (y_t^{-1})^{n-t} = \tilde{m}_t \frac{y_t^{-1}}{b_{t+1}} \cdots \frac{y_t^{-1}}{b_n} \leq \tilde{m}_n 2^{-(n+2)}. \]

The second equality comes directly from Step 1.

For the last inequality, take \(N' \) such that \(b_{N'} > 4b_{l+1} \). Note that with this assumption the factors up to index \(N' - 1 \) are all bounded above by 1, while the rest are bounded
Choosing \(n > N \) bound (1/4)\(^{n-N'+1}\). Since there are \(n - N' + 1 \) of the latter factors, we obtain the upper bound (1/4)\(^{n-N'+1}\).

Choosing \(n > N = 2N' \), we obtain that \(N' < n/2 \), and

\[
\frac{1}{4^{n-N'+1}} < \frac{1}{4^{(n/2)+1}} = \frac{1}{2^{n+2}}.
\]

\[\square \]

Step 6.

\[
|S^{(n_j)}(x_{n_j})| \geq n_j! \left[2^{-n_j} \tilde{m}_{n_j} - \max_{t<j} \frac{(y_{n_j}^{-1})^{n_j+1}_t \varphi(y_{n_j}^{-1})}{\tilde{\varphi}(y_{n_j}^{-1})} - 2^{1-n_j+1} \tilde{m}_{n_j} \right]
\]

Proof. From equation (5.3), we have

\[
|S^{(n_j)}(x_{n_j})| \geq \left| g^{(n_j)}_{n_j}(x_{n_j}) \right| - \sum_{t \neq j} \left| g^{(n_j)}_{nt}(x_{n_j}) \right| \geq
\]

\[
\geq \left| g^{(n_j)}_{n_j}(x_{n_j}) \right| - \sum_{t<j} \left| g^{(n_j)}_{nt}(x_{n_j}) \right| - \sum_{t>j} \left| g^{(n_j)}_{nt}(x_{n_j}) \right| \geq
\]

\[
\geq n_j! \left[\frac{(y_{n_j}^{-1})^{n_j+1}}{2^{n_j} \tilde{\varphi}(y_{n_j}^{-1})} - \max_{t<j} \frac{(y_{n_j}^{-1})^{n_j+1}_t \varphi(y_{n_j}^{-1})}{\tilde{\varphi}(y_{n_j}^{-1})} - 2^{1-n_j+1} \max_{\xi>0} \frac{\xi_{n_j+1}}{\tilde{\varphi}(\xi)} \right] =
\]

\[
= n_j! \left[2^{-n_j} \tilde{m}_{n_j} - \max_{t<j} \frac{(y_{n_j}^{-1})^{n_j+1}_t \varphi(y_{n_j}^{-1})}{\tilde{\varphi}(y_{n_j}^{-1})} - 2^{1-n_j+1} \tilde{m}_{n_j} \right]
\]

\[\square \]

Step 7. Finally, we define the sequence \(\{n_j\} \) recursively. Suppose we have already defined \(n_{j-1} \). Define \(n_j \) as \(N \) in Step 5 with \(l = n_{j-1} \), also making sure that

\[
n_j - n_{j-1} \geq 3.
\]

Step 8. Now we have

\[
\max_{t<j} \frac{(y_{n_j}^{-1})^{n_j+1}_t \varphi(y_{n_j}^{-1})}{\tilde{\varphi}(y_{n_j}^{-1})} \leq 2^{-(n_j+2)} \tilde{m}_{n_j}
\]

and

\[
2^{1-n_j+1} \tilde{m}_{n_j} \leq 2^{2-n_j} \tilde{m}_{n_j}.
\]

Putting it all together, we obtain the inequality

\[
|S^{(n_j)}(x_{n_j})| \geq n_j! 2^{-n_j} \left(1 - \frac{1}{4} - \frac{1}{4} \right) \tilde{m}_{n_j} = \frac{1}{2} n_j! 2^{-n_j} \tilde{m}_{n_j}
\]

for all \(j \).

Since our construction always gives

\[
\lim_{n \to \infty} A_n = 0 \quad \text{and} \quad \lim_{n \to \infty} x_n = 0,
\]

Weierstrass Preparation Theorem 15
we have uniform convergence of the series $\sum g_n(x)$ on a complex neighborhood of any set $\mathbb{R} \setminus (-\varepsilon, \varepsilon)$, which guarantees the analyticity of $f(x) = 2S(2x)$ on any such set. Note that Equation (5.1) shows $f \in C^\infty(\mathbb{R})$, Equation (5.2) gives $f \in C^M[0, \infty)$, and the conclusion of Step 8 establishes property (3). Therefore, f satisfies all properties in Theorem 1.2. □

References

[1] Norbert A’Campo. Divisions dans des sous-anneaux de $\mathbb{R}[[X_1, \cdots, X_n]]$. *J. Math. Pures Appl.* (9), 46:279–298, 1967.
[2] Émile Borel. Sur la généralisation du prolongement analytique. *C. R. Acad. Sci. Paris*, 130:1115–1118, 1900.
[3] Émile Borel. Sur les séries de polynômes et de fractions rationnelles. *Acta Math.*, 24:309–387, 1901.
[4] M. D. Bronshtein. Division with a remainder in spaces of smooth functions. *Trudy Moskov. Mat. Obshch.*, 52:110–137, 247, 1989.
[5] Torsten Carleman. *Les fonctions quasi-analytiques*. Gauthiers Villars, Paris, 1926.
[6] Leennart Carleson. On universal moment problems. *Math. Scand.*, 9:197–206, 1961.
[7] Jacques Chaumat and Anne-Marie Chollet. Caractérisation des anneaux noethériens de séries formelles à croissance contrôlée. Application à la synthèse spectrale. *Publ. Mat.*, 41(2):545–561, 1997.
[8] Jacques Chaumat and Anne-Marie Chollet. Division par un polynôme hyperbolique. *Canad. J. Math.*, 56(6):1121–1144, 2004.
[9] C. L. Childress. Weierstrass division in quasianalytic local rings. *Canad. J. Math.*, 28(5):938–953, 1976.
[10] Leon Ehrenpreis. *Fourier analysis in several complex variables*. Pure and Applied Mathematics, Vol. XVII. Wiley-Interscience Publishers A Division of John Wiley & Sons, New York-London-Sydney, 1970.
[11] Michael Langenbruch. Extension of ultradifferentiable functions. *Manuscripta Math.*, 83(2):123–143, 1994.
[12] Ju. I. Ljubič and V. A. Tkachenko. The reconstruction of infinitely differentiable functions from the values of their derivatives at zero. *Teor. Funkciĭ Funkcional. Anal. i Priložen. Vyp.*, 9:134–141, 1969.
[13] B. S. Mitjagin. An infinitely differentiable function with the values of its derivatives given at a point. *Dokl. Akad. Nauk SSSR*, 138:289–292, 1961.
[14] Krzysztof Jan Nowak. A counter-example concerning quantifier elimination in quasianalytic structures. Preprint., May 18 2012.
[15] Vincent Thilliez. On the Non-extendability of Quasianalytic Germs. Preprint. arXiv:1006.4171v1, [math.CA] 21 Jun 2010.
[16] Vincent Thilliez. On quasianalytic local rings. *Expo. Math.*, 26(1):1–23, 2008.
[17] Gösta Wahde. Interpolation in non-quasi-analytic classes of infinitely differentiable functions. *Math. Scand.*, 20:19–31, 1967.
[18] N. M. Zobin. Extension and representation theorems for Gevrey type spaces. *Dokl. Akad. Nauk SSSR*, 212:1280–1283; letter to the editors, ibid. 216 (1974), viii, 1973.
[19] Nahum Zobin. Szegő-type extremal problems. In *Voronezh Winter Mathematical Schools*, volume 184 of *Amer. Math. Soc. Transl. Ser. 2*, pages 253–263. Amer. Math. Soc., Providence, RI, 1998.
