Astronomy and Calendrical Science in Early Mikkyō in Japan: Challenges and Adaptations

Jeffrey Kotyk

Department of Asian Studies, University of British Columbia, 607-1871 West Mall, Vancouver, BC V6T 1Z2, Canada; jeffrey.kotyk@ubc.ca

Abstract: This study examines the use, adaptation, modification and omission of astronomical and calendrical elements in early Japanese Mikkyō (ninth century) in large part from the perspective of exact sciences. Shingon and Tendai inherited a Sinicized system of Indian astrology from their respective beginnings, but the significance of this fact in the study of Japanese religions is underrecognized despite the reality that astrology was both studied and technically required in Mikkyō. This study will examine how Mikkyō negotiated the demand for orthopraxical use of Indian models with the contingent realities of only possessing in practice a Chinese calendar and system of observational astronomy. Japanese monks were compelled to observe Indian astrology according to their own scriptures, which by extension necessitated knowledge of Indian astronomy, but substitutions and omissions had to be made in the absence of the required resources and knowledge.

Keywords: astronomy; Japanese Buddhism; calendar; astrology; Mikkyō

1. Introduction

This study explores the reception and interpretation of astronomy (tenmon 天文) and calendrical science (rekihō 曆法) in early Mikkyō in Japan (with our interest here primarily being the ninth century). As we will observe, although astrology was clearly a component of Mikkyō both in Shingon and Taimitsu from their respective beginnings, less attention has been directed to how these traditions understood and implemented foreign astronomical and calendrical systems. This topic has been addressed in the past to some extent by Momo Hiroyuki, Yamashita Katsuaki, Yano Michio and myself, but here, we will specifically ask to what extent Mikkyō actually used the non-Chinese materials and how they negotiated the differences between these and Chinese astronomy, especially considering the impracticalities involved. In short, how much authenticity to Indian models was required or even pursued in practice (taking into consideration, of course, that Indian models were neither monolithic nor static over the centuries)?

This study seeks to push the interpretative boundaries around Mikkyō by examining the topic at hand primarily from the perspective of exact sciences (i.e., a methodology of inquiry based on precise and objective rules from which observations are measured in detail, such as the fields of astronomy and mathematics). This angle allows us to critically evaluate and compare astronomical and calendrical models in a technical manner. Its application within the fields of Classics and Indology was pioneered by David Pingree (1933–2005), who famously examined astrological texts of antiquity based on mathematics and astronomy.

This methodology might be applied to relevant materials in Mikkyō to evaluate the extent to which astronomy was practiced as an exact science. I argue that we might extend our understanding of Mikkyō to recognize astronomy (and by extension astrology) as an essential component within its orthopraxy at least in theory, but as we will observe upon closely examining the materials at hand, this science was not actually implemented according to Indian models, even when scriptures and authorities expressly called for this.
In fact, a close study reveals that Mikkyō used Chinese models, atop which was overlain Indian lore. We should recognize that Mikkyō did not practice authentic Indian astronomy or astrology.

That being said, we will demonstrate that Mikkyō tried to grapple with the complex challenges of incorporating various elements of astronomy and astrology within an entirely borrowed Chinese framework, all the while trying to remain faithful to Indian astral lore. To this end, I will provide a survey of the historical foundation atop which Mikkyō’s engagement with astronomy occurred. I will then show that the non-Chinese concepts were ultimately just used in modified applications, in a purely symbolic manner, or omitted altogether. One exception to this observation, which I will point out, is the seven-day week, which was implemented in Mikkyō in a way no different from elsewhere in Eurasia, although it was used purely as a religious rather than civil way of reckoning the passage of time.

In short, Mikkyō attempted to engage in the exact sciences of astronomy and calendrical computations because their scriptures and inherited tradition called for this, but the end result was something very different from what was employed in India.

2. Historical Background: Chinese Astronomy and Calendrical Science in Japan

Premodern Japanese astronomy and the closely connected subject of calendrical science are in large part traced back to China and Korea. Tanisaki (2016), however, importantly points out a third-century Chinese account of the Japanese archipelago, which records that people there merely followed the custom of plowing in spring and harvesting in autumn. This was done without any knowledge of the “proper” (i.e., Chinese) year or the four seasons. Based on this and other data, Tanisaki theorizes that, in fact, an autochthonous solar calendar was utilized prior to the introduction of the lunisolar Chinese calendar. This theory, Tanisaki proposes, potentially explains the differences in a number of regnal years between the Kojiki 古事記 (712) and Nihon shoki 日本書紀 (720). These are the earliest extant Japanese histories. Tanisaki believes that the authors of these two histories faced the challenging task of converting over dates from an old calendrical system into the new model, which was based entirely on the Chinese system. The extant Japanese literature from antiquity shows no obvious traces of an earlier calendrical model, although as Goto (2021) has demonstrated, diverse indigenous astral lore was preserved in Okinawan and Ainu communities, among other peoples in Japan, up to the present day.¹

Foreign calendrical models were introduced from abroad, and these became standard for the state and also Buddhist institutions in Japan. Advanced calendrical science would have become critical to the Japanese court only starting in the Asuka Period (592–710), when there was a conscious movement toward emulating the Chinese system of governance. One aspect of this model was a centralized government that utilized and moreover exclusively issued a standardized calendar for all subjects. The Nihon shoki (vol. 2, p. 538) records that in the year 602, the monk Gwalleuk (Kanroku 觀勒) from the kingdom of Baekje (Kudara 百濟) on the Korean peninsula offered to the Japanese court a calendar and books on astronomy (Kotyk 2018c, p. 41; Masuo 2013, p. 21). This type of literature would have presumably included material dealing with celestial omenology based on ancient Chinese sources. Predictions could be made concerning the state rather than individuals specifically on the basis of astral phenomena such as, for example, anomalous comets, eclipses (solar and lunar), and apparent irregularities in the movements of the planets. In a later decade, we observe that state resources were directed toward astronomy. Goto (2021, p. 33) points out this important fact. According to the Nihon shoki, during the reign of Tenmu 天武 (r. 673–686), “For the first time, a platform for divining the stars was erected 始興占星臺 (Nihon shoki vol. 3, p. 358).”² Looking ahead a few centuries, we see state regulations which govern astronomy and omenology. The Engi shiki 延喜式 (Procedures of the Engi Era, 927; maki 16, p. 4), which extensively describes religious and legal procedures, lists a professional title of Tenmon hakase 天文博士 (Academician of Astronomy). The primary
responsibility of this appointment was to record in a daily log whatever anomalies might have been observed in the heavens above (Masuo 2013, p. 22).

Chinese calendrical science was adopted wholesale in Japan, as evidenced by the dating conventions used in the \textit{Nihon shoki}. This science includes numerous elements. The sexagenary cycle, a repeating cycle of 60 terms comprised of the earthly branches (\textit{chishi 地支}) and heavenly stems (\textit{jikkan 十干}), was used to record the passage of days and years, exactly as was performed in China. This calendrical system is a lunisolar calendrical model with 12 months, recurring intercalary months, and 24 solar terms (Wilkinson 2000, pp. 176–87). The first day of each month occurs approximately on the New Moon (\textit{tsuitachi 朔}), when the Sun and Moon are conjunct. The Moon is unseen at the New Moon, from which time it then commences its period of waxing. The 15th day occurs approximately on the Full Moon (\textit{mochi 望}), at which time the Sun and Moon are positioned opposite to one another (e.g., when the Full Moon is setting in the west and the Sun is rising in the east). The Moon then commences its waning period. Early Japanese historical records already utilize this system to date events. It is highly probable, however, that this adoption already occurred some centuries prior to the eighth century.

The Chinese in antiquity discovered and observed the cyclical movements of the Sun, Moon, and five visible planets (Saturn, Jupiter, Mars, Venus, and Mercury). The astronomers of the court scientifically calculated their individual periodicities with increasing precision over time through the use of arithmetic and some physical instruments. They devised formulas for predicting their movements. This was already well-established by the first century CE. Their cosmology, however, was entirely different from that of the Greeks with their geocentric spherical earth model. The Chinese, in contrast, used a geocentric flat earth model without any reference to a terrestrial globe or sphere (the shape of the sky could be conceived of as spherical or semi-spherical (i.e., the \textit{hun tian 渾天}). Cullen (1980, p. 42) observes that “Chinese astronomers, many of them brilliant men by any standards, continued to think in flat-earth terms until the seventeenth century.” This same observation would apply equally to Japan. Japanese cosmology envisioned the world as flat until modern times, but this did not mean that they could not accurately track and predict the movements of the planets, since this was performed using arithmetical formulas that allowed for mostly accurate predictions. These formulas are utilized within a sidereal positioning system based on constellations of fixed stars, primarily in relation to the celestial equator. This system has 28 “lunar stations” (\textit{niiju hachi suku 二十八宿}). These altogether comprise approximately \(365.25\)° (the original Mesopotamian value of the celestial equator and ecliptic, which was adopted into Greek and Indian systems, is \(360\)°). The positions of the planets are denoted using the degrees of the lunar stations in the East Asian system. (The degrees of the zodiac signs, which demarcate the ecliptic, were used in the Hellenistic system.)

I am unaware of any evidence which would suggest that peoples in the Japanese archipelago had systematic knowledge of the planets prior to the introduction of Chinese astronomy. This point would explain why the planets historically were generally known by their adopted Chinese names in Japan (e.g., \textit{mokusei 木星} and \textit{saisei 歳星} (Jupiter) are Chinese loanwords). One exception to this is Venus, as the evening star for which an indigenous name is attested in the \textit{Wamyô ruiju shô} (\textit{Digest of Classifications of Japanese Words}). This is a dictionary compiled by Minamoto no Shitagô 源順 around 931–938. The word \textit{長庚}, which is identified as Venus (i.e., the Chinese \textit{Taibai 太白}), when visible in the evening in the west, is given the indigenous reading of \textit{yûzutsu 由不豆々 (maki 1, p. 2).} This word alone, however, does not denote or necessitate full knowledge of the planets and their orbits. One other exception is the very rare instances in Mikkyô, in which the planets are denominated with their Sanskrit and even Sogdian names transliterated into \textit{kanji}, which we will discuss further below (Yano 2013, p. 110).

There also existed Japanese words for some of the constellations associated with the Chinese lunar stations. This fact is also evident from the astronomical vocabulary in the \textit{Wamyô ruiju shô}. For example, the Japanese reading therein for the \textit{kanji 星} (referring to
the constellation Pleiades, though it is also a lunar station in Chinese astronomy) is given as *Subaru 須八流 (maki 1, p. 3). However, one complicating factor is that, as Jonathan Smith (2015, pp. 19–21) points out, there is an alternative early reading, *Sumaru, in other early Japanese sources. Concerning the origin of *Sumaru, he suggests considering the Old Chinese *meru; hence, the Japanese reading might originally stem from an Old Chinese reading. In any case, a constellation and lunar station are not identical (the lunar stations as spatial segments only derive their names from constellations). Japanese speakers likely used the local readings in practice, such as Subaru and Sumaru, rather than the Middle Chinese readings. This is an early example of the localization of Chinese astronomy in Japan.

In light of the above discussion, we can observe that the Chinese calendar and system of astronomy were implemented wholesale in Japan early on, but it was not only the Chinese models which reached Japan. There was, in fact, abundant Indian astral lore which came to Japan via Buddhism. How much of this, however, was actually implemented?

3. Indian Astronomy in the Buddhist Literature

The Buddhist literature in Chinese translation also introduced new astronomical and calendrical concepts into East Asia. Some of these were important to observe for ecclesiastical purposes. The *vinaya in particular establishes a schedule for the *sangha. Not all of these concepts, however, were implemented by the Buddhist community in China, let alone in Japan; instead, they functioned as a kind of canonical lore, albeit without any practical implementation.

The Indian month was commonly divided into two parts (Skt. *paksas). These include the periods of lunar waxing (Skt. *sukla-paksas) and waning (Skt. *kṛṣṇa-paksas). Each *paka consists of 15 days ("lunar days" specifically, called *tithis). Some of these are auspicious, and therefore monastic meetings (Skt. *posadhas) were supposed to be scheduled on these days according to the monastic codes of the *vinaya. An Indian belief in the descent of deities into the world on these days underpinned this model, which itself was not necessarily auspicious, since these deities could also create problems for humanity (Kotyk 2018a, pp. 148–51). This schedule could be easily implemented within the framework of the Chinese calendar, since one-to-one correspondences were easily made. There would have been no need to even adopt Indian nomenclature in this regard when the existing Chinese system functioned in a largely similar way.

Other elements of Indian timekeeping, however, were not so practically implemented in East Asia. One such element was the 28 or 27 *nakṣatras (the number varies according to Indic sources), which are similar to the Chinese lunar stations, but the Indian parameters in any one of several attested systems are entirely different from the Chinese models. (There were also slight modifications to the lunar stations in China over the centuries.) The various recensions of the Śārdūlaṅkāraṇavoḍāna, for example, in Sanskrit, Chinese, and Tibetan define the lengths of the *nakṣatras in *muhūrtas with different values (Zenba 1952, pp. 174–82). A *muhūrta is a unit of time. India divided the day and night into 30 *muhūrta altogether, but East Asia utilized a different system of daily timekeeping, comprised of 12 "double hours" (ji 時) represented by the earthly branches (e.g., zi 子 (Jp. shi) signifies north and the period of time when the Sun is directly positioned there under the horizon, corresponding approximately to the time from 11:00 p.m. to 1:00 a.m. in modern equinoctial hours). The Hellenistic model of 24 h is not attested in any of the East Asian sources under consideration. We can see that the "double hours" were used on a daily basis throughout the travelogue of the Tendai monk Ennin 圆仁 (794–864), who visited China between the years 838 and 847. Ennin noted the time of day or night using this system but never mentioned the *muhūrtas. The *muhūrtas were known relatively early on, since they are explained in the major treatise, whose title is reconstructed as *Mahāprajñāpāramitā-upadeśa (Dazhidu lun 大智度論). This text is attributed to Nāgārjuna, and it was translated into Chinese by Kumārajīva in the early fifth century. This text even explains the seasonal adjustments to account for longer or shorter days. Yet, as far as I am aware, nobody in China or Japan attempted to implement
this Indian model of timekeeping, even though it was actually a part of Buddhist orthopraxy (it was also normative and moreover expected in Brahmanical society). This further meant that, by extension, a model of naksatras based on the muhūrtas could not be implemented in a Chinese context without recourse to some formula for converting measurements, but it does not appear that anyone attempted to do this. Buddhists in East Asia instead simply used the Chinese lunar stations as functional equivalents when translating the naksatras, even though in reality they were completely different systems.

The naksatras were introduced as a kind of element of canonical lore, which also brought with it the deification of the lunar stations in East Asia, where they were not originally considered to be sentient deities like in India. This development occurred based on Buddhist literature, such as the aforementioned Śārīrakānapāda. For instance, Kṛttikā (equated to Subaru 論神) is associated with the Vedic god of fire Agni (T. 1301, 21: p. 415b6-8). The Indian model of divine naksatras is traced back even further to Vedic precedents. This model of naksatra–deity associations is given in the Naksatralakṣaṇa of the Atharvavedaparīṣṭā (I.4.3): “kṛttikā agnidevatyā (Bolling and Negelein 1909, p. 3).” Later Buddhist texts, such as the Candragarbha-parivarta (Yuezang fen 月藏分) in the Mahāsamānipata collection (Daji jing 大集經), introduced the 12 zodiac signs (Mak 2015, p. 65). The zodiac signs were also regarded as deities in Buddhist literature, but these were not part of Buddhism in its earlier historical stage, since they are not attested in the Āgamas or Nikāyas. The zodiac signs were originally devised in Mesopotamia based on constellations (although they were not deified), and they eventually made their way into India following the introduction of Hellenistic astrology in the early centuries CE. The Mesopotamian system divided the ecliptic into 360°, and each zodiac sign was assigned a uniform 30°, while the positions of the planets were indicated using these degrees of the zodiac signs (Barton 1994, p. 14). The zodiac signs in East Asia, however, were never used for indicating planetary positions in premodern times.

4. Astrology as a Requisite Element in Mantrayāna

Unlike earlier forms of Mahāyāna, in which matters related to astronomy were strictly unnecessary for the success of a bodhisattva’s career, the situation changed considerably with the advent of Mantrayāna in the seventh century in India. Śubhakarasimha (Ch. Shan-wuwei 善無畏; 637–735), one of the early Indian pioneers of this practice who facilitated its introduction to China, translated the Susiddhikara-sūtra (Ch. Suxidijieluo jing 蘇悉地羯羅經). Therein, we observe the critical importance of astronomical knowledge:

During a lunar eclipse, achieve supreme activities. During a solar eclipse, do upper, middle, and lower things related to attainment. On the fifteenth, seventh, first, or thirteenth of the month, or on the third, one should carry out [things related to] attainment and all activities. If carrying out supreme attainments, one should select a time with a naksatra and planet that is upper [in quality]. The method for middle and lower should be understood in this sort of manner; but among the naksatras, Puṣya is foremost. In the case of a wrathful attainment, rely upon times suited to wrathful naksatras and planets.7 (T. 893a, 18: p. 625c9-16)

Here, not only is the selection of auspicious naksatras held as important, but the reader is told that the foremost ritual activities are to be carried out during a lunar eclipse. Predicting a lunar eclipse in ancient times was no easy task, since it required knowledge of
advanced mathematical astronomy. This way of timing specific rituals—a form of electional astrology—is unprecedented in the earlier Buddhist literature. A properly timed occasion based on astrological factors is also made necessary when creating a *mandala* according to another major text: the *Vairocana*bhisaṃbodhi (Ch. *Dari jing* 大日經), which Śubhakarasimha and Yixing 一行 (673–727) translated in 724. (This text became foundational for both Shingon and Tendai in the following century.) Regarding the creation of the *mandala*, the *Vairocana*bhisaṃbodhi reads as follows:

> On the morning of a propitious day, having determined a day on which the time, lunar mansion [*naksatra*], and planets are all in harmony, and at a time before the [morning] meal, with an auspicious sign [...]. (T. 848, 18: p. 4c4–5)

The cleric presiding over the *mandala* must select an auspicious time based on these factors. The *mandala* is one element in the ritualized incorporation of the three mysteries of body, speech, and mind. The three mysteries are the means to complete awakening (i.e., buddhahood) in a single lifetime. This accelerated model does away with the need to pass through the 10 bodhisattva stages. This break from Mahāyāna ideas about a bodhisattva requiring three incalculable aeons is one of the major innovations of Mantrayāna. This potential for accelerated development—the goal in practice—is expressly affirmed in the *Vairocana*bhisaṃbodhi at the beginning of the scripture:

> Moreover, he assumed the appearance of vajradhara and the bodhisattvas Samantabhadra, Padmapāni, and so on, and proclaimed everywhere in the ten directions the Dharma of the pure words of the mantra path so that [all the steps from] the initial generation of the [bodhi]-mind up to the ten stages may be progressively satisfied in this lifetime [...]. (T. 848, 18: p. 1b2-4)

It is necessary to take into consideration astrology in order to properly create the *mandala*, since it cannot be produced at any random time. The astrological factors to consider are further explained and emphasized in the Chinese commentary to the *Vairocana*bhisaṃbodhi, which incorporated the oral explanations of Śubhakarasimha, as well as Yixing’s own notes. It logically follows that knowledge of astrology is one requisite element in the wider set of skills and practices necessary to successfully achieve *bodhi* in a single lifetime according to the framework of Mantrayāna. The powers who preside over astrology (e.g., the planets, zodiac signs, and *naksatras*) also therefore have a role in enabling this process toward *bodhi*, and hence they also appear in the *mandala*.

One problem is that the commentary to the *Vairocana*bhisaṃbodhi only offers a basic overview of astrology. The commentary moreover defers to the “Indian calendar” (Ch. *fan li* 梵曆), but barely any information on Indian calendrical science was available at the time in Chinese (Kotyk 2018b, pp. 17–18). A few years earlier in 718, the *jiuzhi li* 九執曆 (Calendar of the Nine Planets; Skt. *Navagraha-karaṇa*) was translated by a member of the Gautama family, named either Siddhārtha or Siddha (Ch. Qutan Xida 瞿昙悉達), but this is a manual of advanced mathematical astronomy that moreover would have required previous familiarity with Indian timekeeping. Yixing might have had the opportunity to rectify this problem of a lack of authoritative materials in Chinese, which would explain the Indian calendar, given his background expertise in astronomy (he reformed the state calendar), but he died prematurely in 727. The need for an authoritative manual on astrology in Chinese remained after Yixing’s passing. In the following generation, the eminent monk Amoghavajra (Ch. *Bukong* 不空; 705–774) and his team compiled the first draft of the *Xiuyao jing* 宿曜經 (Sūtra of Lunar Stations and Planets) in 759. This version was problematic, and a revision was undertaken in 764. The text was adequate for understanding only the mere basics of Indian astrology, but it also introduced ideas about natal astrology (e.g., predictions about a person based on their time of birth). Astrology in Mikkyō came to be almost entirely understood based on this text after it arrived in Japan.
5. Astrology in Early Mikkyō: Challenges in Defining the Stars

The importance of the Xiuyao jing (Jp. Sukuyō kyō) to Mikkyō cannot be understated, since it became the primary manual to consult when scheduling rituals and other religious activities in Mikkyō, and it was moreover also read by people outside said tradition. Minamoto no Shitagō, for instance, cites it in the Wanyō ruiju shō with a variant kanji: Sukuyō kyō 宿曜経 (maki 1, p. 3). The Xiuyao jing was first brought to Japan by Kūkai 空海 (774–835), the founder of Shingon, when he returned home in 806. The text is recorded in his catalog of items brought from China (T. 2161, 55: p. 1062a23-24). In the following generation, Tendai monks also took an interest in astrology early on. Enchin lists the Xiuyao jing in his catalog of texts and other items brought back to Japan in 857 (T. 2172, 55: 1098b8). Takada (1992, p. 40) showed that Enchin composed some works on the Xiuyao jing: Sukuyō gishū 宿曜疑集 (Compilation of Concerns on Xiuyao) and Sukuyōkyō mondo 宿曜經問答 (Questions and Answers on the Xiuyao jing).

It is clear that Kūkai took an interest in the astrology of the Xiuyao jing and furthermore facilitated its implementation. This fact is demonstrated by the oral testimony recorded in the Hino’o kuketsu 嵐尾口訣 (Oral Transmission at Hino’o). This is a record of Kūkai’s instructions preserved by his disciple, Jichie 實慧 (786–847) of Tō-ji 東寺 (see discussion in Yamashita 1996, p. 297). The explanations address two problems: those of intercalary months and short months, neither of which are discussed in the Xiuyao jing. The following is recorded in the Hino’o kuketsu:

Inquiry concerning which naksatras to use during an intercalary month and method for assigning naksatras for missing days in a short month. Recorded based on oral instructions. When there is an intercalary month, the naksatra convergences of the true month repeat themselves in the intercalary month. Supposing the twelfth month has an intercalary month, the naksatra convergence of 12/1 will be Dhanisţhā, the naksatra convergence of [12/15 will be Maţha and the naksatra convergence of [12/30 will be *Pārvabhādrapāda. The naksatra convergences of an intercalary twelfth month will be identical like this. There are no differences. The preceding month is the true twelfth month. The intercalary month is the contingent twelfth month. The naksatra convergences and 30 days of the contingent month all use the naksatra convergences of the true twelfth month without any different naksatras. The other months and intercalary months can be understood according to this.\(^{13}\) (T. 2465, 78: p. 30c13-c21)

The Xiuyao jing provides a system of correspondences between each day of the lunar months and a naksatra. The days of the 12th month, for example, run as follows: (1) ्त Dhanisţhā, (2) ्त Šatabhīṣaj, (3) ्त Pārvabhādrapāda, (4) ्त Uttarabhādrapāda, (5) ्त Revatt, (6) ्त Aśvint, (7) ्त Bharant, (8) ्त Kṛttika, (9) ्त Rohint, (10) ्त Mrgaśīra, (11) ्त Ādrā, (12) ्त Punavarsa, (13) ्त Pusya, (14) ्त Aślesa, (15) ्त Maţha, (16) ्त Pārvapalagunt, (17) ्त Uttaraphālguṇi, (18) ्त Hasta, (19) ्त Cīrā, (20) ्त Svāti, (21) ्त Viśākhā, (22) ्त Anuṛādhā, (23) ्त Jyeṣṭha, (24) ्त Māla, (25) ्त Pārśādā, (26) ्त Uttarāṣādha, (27) ्त Śravana, (28) ्त Dhanisţhā, (29) ्त Šatabhīṣaj, and (30) ्त Pārvabhādrapāda. In the case of an intercalary 12th month (or any other month), one simply reproduces this exact sequence, and then the following ordinary month resumes.

This is a reasonable solution, but the reality is that this model of assigning days to naksatras (which was devised by Amoghavajra and his team) is actually divorced from the precisely observed position of the Moon and would have appeared irregular from the perspective of any Indian astronomer at the time. The Xiuyao jing also interestingly describes an Indian model of 27 naksatras of uniform dimensions that are aligned with the zodiac signs (Wakita 1897, vol. 1, pp. 6–8). The spatial dimensions are defined according to pādas (“limbs, i.e., quarters”) rather than muhūrtas. (This new model in Sanskrit is called the navamīsas, meaning “ninths” of a zodiac sign.) This is completely different from the earlier model described in the Śīrādhākārayathodāna and reflects a later reformulation of the astrometric parameters for measuring the stars in India. The resulting model is a
practical system of dividing the ecliptic into manageable divisions. The described model is illustrated below (Figure 1).

![Diagram of zodiac signs and nakṣatras (lunar stations) described in Xiuyao jing. Graphic by Jeffrey Kotyk.](image)

Figure 1. Configuration of zodiac signs and nakṣatras (lunar stations) described in Xiuyao jing. Graphic by Jeffrey Kotyk.

Amoghavajra and Kūkai were certainly aware of this model, but nobody in either Chinese or Japanese Buddhism ever attempted to implement it, as far as I am aware. This model was also endorsed in the commentary to the Vairocanābhisambodhi, and hence we know that Śubhakarasimha himself was also aware of it (T. 1796, 39: p. 618a8-13). It simply remained as an astrometric system left unused, albeit still known, in East Asia.

The other system of assigning days of the lunar month to nakṣatras aligns easily with the East Asian calendar and, in practice, requires no knowledge of astronomy or even observation of the Moon. Adopting a new foreign system of astronomical measurements would have been impractical, even though, according to scriptures, an orthodox model of the nakṣatras (such as that of the navāṅśas) was technically necessary in order to time rituals according to Indian astrology. The author(s) of the Susiddhi-kara clearly had observational astronomy in mind when their writings pointed to the prediction of eclipses. The Vairocanābhisambodhi also clearly states that nakṣatras must be considered. The elite members of the Chinese sangha in the capital might have been able to directly consult with Indian astronomers about these matters in detail, but the Japanese sangha did not have this opportunity. Technical works on Indian astronomy, such as the Navagraha-karaṇa, were never brought to Japan (they were also not widely studied in China). Another obstacle to employing astronomy was the fact that unauthorized study of this topic was technically illegal according to the law codes of the Tang, although the relevant laws were enforced less and less in the later years of the dynasty (Whitfield 1998). Japanese monks such as Kūkai simply would not have had easy access to astronomy. Japanese students of astronomy as part of the Kentōshi 遗唐使 (“Missions to the Tang”) would have studied astronomy (the Chinese, not Indian, system) under the supervision of the state. Local and foreign monks did not have this opportunity, apart from the unique career of Yixing, who was a court astronomer (Kotyk 2018d). The adaptations employed in Mikkyō resulted in a form of hemerology based only vaguely on the Indian calendar, which was clearly an inevitable
compromise given the circumstances. The explanation in the *Hino’o kuketsu* continues as follows:

Method for selecting the *nakṣatra* convergence on the missing thirtieth day in a short month. Suppose the first month lacks the thirtieth day. Even without that thirtieth day, that day still has a *nakṣatra* convergence, hence the first half of the first day of the following second month is assigned the *nakṣatra* convergence of the missing day in the first month, while the second half is that day’s *nakṣatra* convergence. Thus, even if there are fluctuations with the days, in the case of a short month lacking a day, the *nakṣatra* convergence will always apply to a day. The actual *nakṣatra* of the first day in the following month does not change.15 (T. 2465, 78: p. 30c21-c26)

This explanation further illustrates that the calendrical day, rather than the observed position of the Moon, is of primary importance. In the case of short months, one half of a day is assigned to one *nakṣatra*. This would be irregular if the position of the Moon were involved since, in practice, it would only account for half of the Moon’s time in a given *nakṣatra*. This problem, however, does not arise, because the assigned *nakṣatra* is a nominal designation. This system devised by Amoghavajra attempts to align the days of the lunar month so that the Full Moons transit through the *nakṣatra* from which a given month derives its name in Sanskrit (e.g., the Full Moon, i.e., the 15th day, should be aligned with *Kṛttika* 昴宿 in the 9th month), but the resulting model is unwieldy and not based on observation.

On this point, we might ask how Mikkyō understood *nakṣatras* as asterisms (i.e., as actual constellations visible in the sky). There was an awareness that the asterisms connected to the Chinese lunar stations only vaguely correspond to *nakṣatras*. In other words, the constellations which are used for spatial identification are, in fact, different between the Indian and Chinese models. Unlike the typeset editions of the *Xiuyao jing*, the manuscript of the *Xiuyao jing* from 1322, held at Doshisha University (148.8|F9632), reproduces the illustrations of asterisms. The text explicitly states that the *nakṣatras* are different from what is used in China and provides illustrations:

In the astronomy of the country of Tang, *Mao* is seven stars. Now according to the explanation in this sūtra, the stars are not the same as those of the Great Tang, thus we rely on the astronomy of the Great Tang. Each are illustrated following the corresponding lunar station.16

Early Indic sources such as the *Nakṣatrakalpa* of the Atharvaveda, *Śārdulakarnāvatāna*, and *Gargasanāhitā* all define *Kṛttikā* as comprising six determinative stars, called *yogatārāṇas* (Pingree and Morrissey 1986, p. 102). The *Mātāṅga-sūtra* in Chinese also gives six stars (T. 1300, 21: p. 404c10-11).

The Japanese side did not necessarily always favor the Chinese definition, and in some instances, the Indian number is cited. For instance, the section on astronomy in the *Jiu Tang shu* 旧唐書 (Old Book of Tang), the dynastic history of the Tang finished in 945 by Liu Xu 劉昫 (887–946), clearly states in its section on astronomy that “*Mao* is seven stars 昴七星 (*Jiu Tang shu* 35.1300).” In contrast, the *Wannyō ruiju shō* (maki 1, p. 3) reads “The *Xiuyao jing* states that the asterism *Subaru* is six stars and of the fire god [Agni] 宿耀經云昴星六星火神也.” It is significant that the *Xiuyao jing* was cited in this dictionary, since it demonstrates that in the 10th century, people outside the immediate Buddhist fold indeed read the *Xiuyao jing*, but more important to our present discussion, we can observe that the official star counts of state sources from China did not necessarily take precedence in Japan.

The ambiguity concerning star counts is also reflected in the iconographical record. It is through illustrations that we can also see how different models of uranography (the illustration and mapping of the heavens) were present in Japan. This points to the fact that Mikkyō possessed astronomical materials originating from diverse sources. For example, the famous *Kara zu* 火羅圖 (Hora Diagram) for *Mao/Subaru* displays seven stars (the Chinese number) alongside a bodhisattva or Buddha-like figure (Figure 2).
The illustration of the asterism in the Kara zu is noteworthy, in light of seven stars being illustrated. We can point to other variants in the literature available to early Mikkyō. There are unique icons in the Qiyao xingchen bie xingfa 七曜星辰別行法 (Special Practices for the Seven Planets and Stars; T.1309). This is an illustrated manual that documents spirits who affect people on specific days of the month. It is nominally attributed to Yixing based on the fantastical story told in the text about him summoning down the stars (Kotyk 2018d, pp. 23–27). We know this text was brought to Japan by Eun 儀運 (798–869) in 847 as it appears in his catalog of items (T. 2168A, 55: p. 1088b11). The spirits, apart from a few, are all associated with lunar stations, but these depictions, primarily anthropomorphic and zoomorphic, are unlike anything seen in contemporary Indic or Chinese sources (Figure 3).

Mao/Subaru shows six stars, which correspond to the classical Indian number. Nū/Urukiiboshi, however, displays what appears to be 2 asterisms with 11 stars in total. The Chinese number is four stars according to the Jiu Tang shu (Jiu Tang shu 35.1299). The corresponding nakṣatra, Sravana, is three stars in the ancient Indian texts. We might compare these asterisms to three other sources: the Dōshisha manuscript of the Xiuyao jing, the “Dunhuang Star Chart” (British Museum Or 8210/53326), which is the oldest extant complete star chart from East Asia, and a later but quite valuable resource in the history of astronomy, the Gujin lüli kao 古今律曆考 (Study of Ancient and Present Tunes and Calendrical Sciences), which is a compendium with rich information on Chinese astronomy compiled by Xing Yunlu 邢雲路 (1549–?). In the last item, we see a detailed uranographical illustration titled Yaodian zhong xingtu 優典中星圖 (Star Chart from the Classic of Yao). This displays the classical constellations connected to the Chinese lunar stations. When comparing these sources, it is evident that the respective illustrators were drawing from various sources. We might imagine that a scribe might have mistakenly merged the constellations of Nū and Dou 斗 in the case of Nū in T. 1309. A Mikkyō monk in the late ninth century with access to the Xiuyao jing and T. 1309 would have been looking at often dissimilar asterisms, which would have furthermore differed from “canonical” or official Chinese sources.

Figure 2. Mao 師/Subaru/Krtitā (lunar station) in Kara zu. SAT Taishōzō Image DB ver. 0.2. Creative Commons attribution: ShareAlike 4.0 International License.
Figure 3. Mao/Subaru (asterisms on left) and Nü/Urukiboshi 女宿 (asterisms on right) compared. Image from Gujin lüli kao courtesy of Kanseki Repository. Attribution: ShareAlike 4.0 International (CC BY-SA 4.0).

The depicted anthropomorphic figures in T. 1309 are also anomalous and require a brief explanation. Mao/Kṛttikā is associated with Agni in Buddhist and more broadly Indic lore. Nü/Śravaṇa is associated with Viṣṇu (Yano 2003, p. 380). The depictions display nothing conceivably connected to Vedic deities. The clue to identifying the source of these figures is the illustrated nails driven into them. The text tells us their function as follows:

It was instructed that should someone see the forms of the spirits with their eyes, then nail the top and bottom of the forms of the spirits and the following day bind them. The victim [of the spirit] will recover that day. When the nails are removed,
the spirit will gain release and dare not come before one’s gate.17 (T. 1309, 21: 456c29-457a2)

I believe these spirits are \textit{jinn} (djinn) based on their visual representations, often with bestial and zoomorphic features, and the fact that nails are used to bind them.18 The latter in particular is a key element in \textit{jinn} lore. Omidsalar (2000) explains that “the jinn are especially afraid of iron, and anyone who manages to insert an iron needle in their bodies or clothes, gains control of them because their great fear of iron prevents them from pulling the needle out of their persons or attire.”19 If these spirits are in fact derived from \textit{jinn} lore, then it is plausible that variant uranographical material also might have entered into the wider body of the astrological literature in East Asia, although this is only a speculative possibility at present. In any case, we can see that Mikkyō possessed variable illustrations of asterisms, but there was not an evident grasp on the canonical Indian asterisms linked to the \textit{naksatras}.

A similar observation can be made with respect to the zodiac signs. The zodiac signs appear in the \textit{Taizō mandara} 胎藏曼荼羅, which is the \textit{mandala} of the \textit{Vairocanābhisambodhi} as preserved in Japan. There are even seed syllables assigned to each of the zodiac signs (Somekawa 2013). Yet, we might ask, did anyone in early Mikkyō know about the original constellations associated with the zodiac signs? How were the zodiac signs understood? Again, we can look back to the commentary to the \textit{Vairocanābhisambodhi}, where we read what is likely Yixing’s voice:

> The ecliptic is divided into twelve chambers like the twelve [Jupiter] stations here [in China]. Each station has nine quarters [pūda].19 (T. 1796, 39: p. 618a8-9.)20

Here, the zodiac signs are simply equated to Jupiter stations. The latter are an ancient Chinese concept that demarcates the celestial equator into 12 spaces based on the orbital period of Jupiter. This period is approximately 12 years, or more precisely, the sidereal orbital period is 11.86 years. A zodiac sign, in contrast, is one of 12 30° segments of the ecliptic (not the celestial equator). One of the tables in the first fascicle of the \textit{Xiuyao jing} 修要经 illustrates how Amoghavajra understood the zodiac signs as equivalent to Jupiter stations. For example, Scorpio (Ch. \textit{Xie gong} 蛇宮) is positioned among three lunar stations—\textit{Xin心}, \textit{Fang房}, and \textit{Di氏}—but no spatial degrees are indicated (Figure 4). Scorpio is equated to “Great Fire” (Ch. \textit{Da huo} 大火), one of the Jupiter stations. Below this, “fire” (Ch. \textit{huo火}) denotes Mars, since Scorpio is the domicile of Mars in classical astrology (Libra is the domicile of Venus). The doctrine of domiciles is a concept which was originally a part of Hellenistic astrology that was adopted into Indian astrology.21

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Figure_4.png}
\caption{Excerpt from table in \textit{Xiuyao jing} showing lunar stations, Scorpio, and the Jupiter station Great Fire. See text reproduced by Wakita (1897, vol. 1, p. 12).}
\end{figure}
The zodiac signs were part of the canonical lore of Mikkyō, but they only exercised a symbolic role. As deities of the Tairō mandara, they appear in the Tairō zuzō (Figure 5) in forms mostly recognizable to anyone familiar with the classical zodiac. Here, we even see Sagittarius as a centaur-like or satyr-like Bowman, one of the rare instances in which this type of icon is found in premodern East Asia. Although Kūkai and Enchin would have known about Leo and Sagittarius, did they know which constellations were associated with the zodiac signs? Unlike the lunar stations, I am unaware of any unanographical depictions of zodiac signs in the Mikkyō corpus or any East Asian materials from the period in question. The zodiac signs in the Kara zu are each associated with one of the months, so in that way, they were connected to the passage of time, but this is different from a precisely defined tropical or sidereal zodiac. In this sense, in Mikkyō, the zodiac signs were even more symbolic in function than the nakṣatras. This is noteworthy because in Indian astrology and astronomy, the zodiac signs were important in various ways, whether it be for making astrological predictions or positioning the planets.

There is one example from the ninth century in which the zodiac signs were loosely connected to the degrees of lunar stations. This is found in the Qiyaō rangzai jue 七曜攘災决 (Secrets of the Seven-Planet Apotropaism). This is a manual of horoscopy compiled sometime between 806 and 865 which includes ephemerides (astronomical tables) and enough information to calculate the positions of the planets, in addition to a number of spells and mantras to ward off the prognosticated baneful effects of the planets. Shōei 宗絛 (809–884) brought it to Japan in 865. It is recorded in his catalog of items brought from China (T. 2174, 55: p. 1111b20-21). In this instance, the approximate numbers of degrees for each lunar station are listed under the zodiac signs, which seems to imply that a zodiac sign includes all the degrees of any lunar station subsumed under them (Figure 6). This results in uneven allocations; Aries is 27, and Taurus is 27, but Gemini is 48, although Zi 虫 ought to be 1, and therefore Gemini would be 39 (cf. table in Yano 1986, p. 30). The zodiac signs are not of significance in the text, so here they appear to only be loosely defined. Each

Figure 5. Leo (top left), Sagittarius (top right), Pisces (bottom left), and Cancer (bottom right) in Tairō zuzō (a collection of icons of the Tairō mandara). Images adapted from TZ. vol. 2, pp. 284–86. Vectorized for clarity. SAT Taishōzō Image DB ver. 0.2. Creative Commons attribution: ShareAlike 4.0 International License. Note that in the icon of Pisces, the fish are not facing opposite directions, as was standard in classical representations elsewhere.
zodiac sign is associated with an earthly branch, which again denotes Jupiter stations (i.e., Taurus is 酉, which corresponds to “Great Bridge” (Ch. Da liang 大梁). Again, this is only a vague way of defining the zodiac signs.

Figure 6. Excerpted quadrant (Aries to Gemini) from horoscopic table in Qiyao rangzai jue (T. 1308, 21: p. 451a).

6. The Seven-Day Week in Mikkyō

The above discussion demonstrates that astronomy, timekeeping, and uranography from India (and possibly elsewhere to some extent) were largely left unimplemented or even unstudied in Mikkyō. However, the seven-day week was, in fact, implemented from the very beginning. The concept of the week was easily implemented, since one need only keep track of the passage of days. The main source of information in Mikkyō about the days of the week was evidently the Xiuyao jing. The seven-day week was used primarily as a kind of schedule for religious activities rather than for timekeeping.

The earliest we can trace the seven-day week in the case of Japan is to Kūkai’s return in 806, when he brought with him a copy of the Xiuyao jing. Shingon traditionally credits Kūkai with introducing the concept of Sunday to Japan. Shōken 聖賢 (1083–1147) in 1118 wrote the following:

Before the Daidō reign era [806–810], calendar experts did not know of Sunday. This is why there was confusion about astrological auspiciousness and inauspiciousness. People often violated this. After the Great Master [Kūkai] returned to court, he transmitted this practice.23 (Kōya Daishi go kōden, p. 661b14–17)

The essential concept here is that some days are more auspicious than others for certain activities. This is all explained in detail in the Xiuyao jing. The existing civil calendar, based on the Chinese system, divided the month into 3 segments of 10 days each (jun 句). The seven-day week did not supplant this earlier system. During the ninth century, we also see Sunday cited alongside the conventional date. For example, the Ono rokuchō 小野六帖 by the Shingon monk Ningai 仁海 (951–1046) records the following date and highlights that it was a Sunday:

12/13 in year 10 of Jōwa, Sunday, at Tō-ji [6 January 844] (T. 2473, 78: p. 76b19).24

It is clear that Tendai also adopted the seven-day week early on. The biography of Ennin, the jigaku Daishi den 慈覺大師傳 (Biography of Great Master jigaku) by Minamoto no Fusaakira 源英明 (d. 939), states that in the year 849, Ennin had to identify an auspicious day on which to create the Vajradhātu-maṇḍala (Kongōkai mandara 金剛界曼茶羅). He found
a suitable day using *sukuyō* 宿曜, which at this point seems to have primarily denoted hemerology based on the *Xiuyao jing* rather than astrology in the sense of prognosticating the fate of an individual. Ennin identified a *kanro nichi* 甘露日 or “Day of Amṛta” (8-2: 691b5–8). This is a concept from the *Xiuyao jing*, in which a “Day of Amṛta” (especially favorable for religious rites) becomes constituted when there is a specific configuration of a *naksatra* and day of the week (Wakita 1897, vol. 1, p. 33). In this case, Ennin found that lunar 5/8, which is associated with Hasta (Ch. *Zhen* 軫), fell on a Sunday, and thus this auspicious day was identified (Yamashita 1996, p. 297). The Sanskrit name underlying this concept is not given in any East Asian sources of which I am aware, but this concept is attested in Indic sources and even still in modern India as *amṛtaśiddhiyoga*. It is indeed noteworthy that Mikkyō and Indian astrology both continue to observe this practice.

The seven-day week, with each day associated with a planet, clearly became an important element within Mikkyō, but we must point out that, in reality, this is not strictly connected to astronomy. The positions of the planets are unrelated to the days of the week. The original system was Greco-Egyptian in origin, in which each of the 24 h of a day was associated with a planet in the order of Saturn, Jupiter, Mars, the Sun, Venus, Mercury, and the Moon (the Chaldean ordering, running from the slowest to fastest moving planets from a geocentric perspective). The ruler of the first hour of a day becomes the ruler of that day. This results in the ordering of Sunday (Sun), Monday (Moon), Tuesday (Mars), etc. (Yano 2003, p. 383). The planetary hours are unknown in East Asian sources, but the days of the week were adopted from the eighth century in China and then the ninth in Japan. The recurring cycle of seven days could be easily tracked alongside the progression of the sexagenary cycle without any need for observation of the sky. The week therefore was, strictly speaking, another form of hemerology, rather than an element of astrology requiring astronomical knowledge.

The iconographical data from early Mikkyō suggests that the seven planets were more associated with the days of the week, rather than being wandering stars in the sky to be carefully tracked. In this sense, the planets take on a more abstract form rooted in the passage of time (meaning they rule over days) rather than the movement of visible planetary bodies above, much in the same way that the *naksatras* were not generally treated as asterisms or spatial divisions based on astrometrics in Mikkyō. We can infer that this was, in fact, the reality, based on the *Kuyō hiryaku* 九曜秘暦 (Secret Calendar of the Nine Planets). This text includes rich lore about each of the seven planets as days of the week, as well as the pseudo-planets Rāhu and Ketu, although comments about these two are limited (Figure 7). The well-preserved manuscript at the NYC Metropolitan Museum is a reproduction by Sōkan 宗観 in the year 1125, but the postscript states that the original manuscript was an earlier copy produced in Tengyō 天慶 3 (940), although it is uncertain whether the text was originally a Chinese or Japanese composition. This earlier copy was apparently a reproduction of an earlier manuscript, so we might assume the original text was composed sometime before 940, perhaps in the ninth century. The text provides mantras and even some spells to counter the influences of the planets. Illustrated icons of the planets in anthropomorphic and even zoomorphic forms are provided, a fact that highlights their deified quality (Figure 8). Several of these are entirely unlike earlier Indian precedents, but they share common features with Arabic and Persian codices of a somewhat later period (e.g., Venus as a lute player and Mercury as a scribe). An Iranian heritage has been proposed (Kotyk 2017b).
The situation became even more complex for Japanese monks who had to operate using materials, in particular the scriptures and orthopraxy of Mantrayana required an understanding of astrology and, in some cases, expertise in observational astronomy. Although such sciences were available in India, the circumstances were different in China, where legal codes and precedents, but they share common features with Arabic and Persian codices of a somewhat later period (e.g., Venus as a lute player and Mercury as a scribe). An Iranian precedent, but they share common features with Arabic and Persian codices of a somewhat later period (e.g., Venus as a lute player and Mercury as a scribe). An Iranian precedent, but they share common features with Arabic and Persian codices of a somewhat later period (e.g., Venus as a lute player and Mercury as a scribe). An Iranian precedent, but they share common features with Arabic and Persian codices of a somewhat later period (e.g., Venus as a lute player and Mercury as a scribe).

When we examine how early Mikkyō received and understood the orthodox materials, in particular the Xiuyao jing, it becomes clear that many of the critical elements in Indian astronomy and astrology, such as the nakṣatras and zodiac signs, were known but omitted from actual implementation. Regular observation of the planets and stars was not generally required in Mikkyō, which stands in contrast to what the Indian literature advises if not requires. Moreover, exact identification of the constellations connected to the nakṣatras and zodiac signs was not undertaken in Mikkyō, perhaps because this information was not available. The Xiuyao jing itself adopts Chinese lunar stations, but confusingly, it also explains in detail an astrometric system of nakṣatras and zodiac signs completely unlike the Chinese model. Other texts available to monks in Japan offered no more clarity on

7. Conclusions

The above discussion has demonstrated that while Chinese calendrical science and observational astronomy were introduced to Japan, at the same time, there were abundant Indian materials directly or indirectly related to astronomy, astrology, and calendars also transmitted via Buddhism. Although these were arguably unimportant to earlier types of Buddhism (at least as far as the attainment of bodhi or advancement along the bodhisattva path were concerned), the situation changed considerably with the advent of Mikkyō. The scriptures and orthopraxy of Mantrayāna required an understanding of astrology and, in some cases, expertise in observational astronomy. Although such sciences were available to the sangha in India, the circumstances were different in China, where legal codes and even just the impracticalities of converting between Indian and Chinese systems existed. The situation became even more complex for Japanese monks who had to operate using borrowed Chinese models and only a handful of resources. Still, the available data shows that early Mikkyō monks were aware of astrology, and it was taken into consideration. This fact is not widely recognized in scholarship on Mikkyō.

When we examine how early Mikkyō received and understood the orthodox materials, in particular the Xiuyao jing, it becomes clear that many of the critical elements in Indian astronomy and astrology, such as the nakṣatras and zodiac signs, were known but omitted from actual implementation. Regular observation of the planets and stars was not generally required in Mikkyō, which stands in contrast to what the Indian literature advises if not requires. Moreover, exact identification of the constellations connected to the nakṣatras and zodiac signs was not undertaken in Mikkyō, perhaps because this information was not available. The Xiuyao jing itself adopts Chinese lunar stations, but confusingly, it also explains in detail an astrometric system of nakṣatras and zodiac signs completely unlike the Chinese model. Other texts available to monks in Japan offered no more clarity on

![Figure 7. Ketu, Sun, Moon, and Jupiter (right to left) in Kuyō hiryaku. NYC Met. Public domain.](image-url)

![Figure 8. Sun in Kuyō hiryaku. NYC Met (1975.268.4). Public domain.](image-url)
the matter. The zodiac signs were similarly employed in a nominal way, but they were not defined in any precise way, and instead they were left as minor figures in the Taizō mandara. This is an interesting example in the history of science in which the figures of the zodiac signs (e.g., Sagittarius as a satyr bowman or Aries as a ram) were available as illustrations, but the constellations associated with them were unknown. Instead, the zodiac signs were just tied to the Jupiter stations, which served as functional equivalents, even if they were technically incompatible. The seven-day week, in contrast, could be and in fact was implemented in Mikkyō, but this did not require any observational astronomy. The practice of astronomy changed considerably within Japanese Buddhism with the advent of Sukuyōdō, a community of astrologer-monks that lasted until the late 14th century, but this happened after the late 10th century and is outside the scope of the present study.

An important observation to take away from this study is that although astronomy and calendrical science were critical components within Mikkyō, we have to recognize the severe limitations these communities faced with regard to access to expertise and clear explanations. Although one may speak of “Indian astrology” or even “Buddhist astrology” in Japan, there were actually so many major revisions and omissions of key concepts and practices to the point that we ought to recognize the limited extent to which non-Chinese systems were, in reality, understood and implemented. This situation is quite comparable to the premodern Japanese understanding of Sanskrit, which was largely limited to word lists, phonetics, and Siddham (all of these through a Chinese medium) but lacked any comprehensive study of grammar (Kotyk 2021b). The survey above shows that Mikkyō was more of an heir to a Sinicized form of Indian astrology, which itself was a product of Amoghavajra’s time. Amoghavajra had to create an authoritative manual with which the local sangha could time rituals according to Indian conventions. The result was certainly functional, but from the perspective of Indian astronomers at the time, I think they would have detected many irregularities and compromises. In this sense, Mikkyō astrology was, we might say, more based on Indian astrology (and apparently some other types of astrology) than actually being a faithful transmission of it.

Funding: This research received no external funding.

Acknowledgments: This study was written with the support of the Sheng Yen Education Foundation Postdoctoral Fellowship in Chinese Buddhism at the University of British Columbia in Vancouver, Canada.

Conflicts of Interest: The author declares no conflict of interest.

Abbreviations

SNKBZ Shinpen Nihon koten bungaku zenshū 新編日本古典文学全集. 88 vols. Tokyo: Shōgakkan, 1994–2002.
T Taishō shinshū daizōkyō 大正新修大藏経. Edited by Takakusu Junjirō 高倉順次郎 and Watanabe Kaigyoku 渡辺海旭 et al. 85 vols. Tokyo: Taishō Issaikyō kankōkai, 1924–1932.
TZ Taishō shinshū daizōkyō Zuzō-bu 大正新修大藏経画像部. Edited by Ono Genmyō 小野玄妙 et al. 12 vols (reprint). Tokyo: Daizō shuppan, 1988–1989.

Notes

1 For further discussion of Goto’s monograph, see my review (Kotyk 2021a).
2 Goto translates this as “a platform for the first time was erected from which to do horoscopes by means of the stars”. I suggested an alternative translation (Kotyk 2021a, p. 364), cited above, based on the fact that horoscopes did not yet exist in Japan in the seventh century. Compare with this translation by Aston (1972, vol. 2, p. 326): “A platform was for the first time erected from which to divine by means of the stars.”
3 I must thank Alexander Vovin for pointing out this source (16 November 2021).
4 Ennin’s travelogue is titled Nittō guhō juurei kōki 入唐求法巡禮行記 (Pilgrimage Travelogue of a Journey to the Tang in Search of the Dharma). From the very beginning of this work, Ennin denotes the time of day using the Chinese system. For example: “At the time of mi [hour of the snake, 9a.m.–11a.m.], we arrived at the Eastern Sea at Shiغا no Shima 巳時到志賀東海.” B18, no. 95, p. 5a6.
23 大同以往, 曆家無知密日, 是故日辰吉凶雜亂, 人多犯之, 大師歸朝之後傳此事. This account is in the...

6 See list of associations in Yano (2003, p. 380). The first known complete list of 28 nakṣatras appears in the Atharva Veda. See Yano (2004, p. 333).

10 See translation and discussion of this section of the commentary in Kotyk (2018b).

12 Yano (2013, pp. 226–64) has importantly shown that there exist two major recensions of the Xiuyao jing. He denotes them as Mainland and Japanese. The former is reproduced in the Taishō canon (T. 1299) but significantly postdates Amoghavajra and moreover includes a number of editorial revisions. The latter recension was first reproduced as a typeset edition by Wakita (1897), although the alternate Mainland recension was instead incorporated into the Taishō canon. The Japanese recensions are arguably more faithful to the original version created by Amoghavajra, as Yano shows.

13 勸宿曜經取潤月之宿及小月之闕月分宿法, 依口訣記. 若有潤月時, 其正月直宿即亦重直角月. 假令十二月有潤月, 而其十二月一日直宿是虛宿. 十五日直宿是星宿, 乃至三十日直宿是星宿. 如是潤月十二日直宿卽同之, 更無異也. 先月是正十二月, 賢月是隠十二月. 故數月直宿三十日皆用正十二月直宿, 更不異宿也. 餘月潤月准之知耳. Reading shō 星 (Magha) as shitsu 室 (Pārvatābhradapādā).

14 See the translation in Kotyk (2018b), pp. 15–17.

24 For an outline of the domiciles in Hellenistic astrology, see Greenbaum (2015, pp. 407–9).

25 Molesworth’s Marathi-English dictionary (Molesworth 1857, p. 41) provides the following definition: “अमरतिद्विगोऽ अर्थात्सिद्धियोगा m S A common term for certain periods in astrology, viz. the days of the week, beginning with Sunday, on which occur...
respectively the following nakshatras, राशि, वृषभ, विक्रम, विजय, कुंभ, भिन्न, रेष्वी, [Skt. Hasta, Śravaṇa, Aśvinī, Anurādhā, Puṣya, Revati, Rohini]—the day having its proper nakshatra, or the occurrence of the proper nakshatra on the proper day.”

26 For further data and information about a separate manuscript, see Nakano (1969).

27 On Sukuyōdō, see the studies by Yamashita (1990), Yano (2013), Momo (1975) and Kotyk (2018c).

References

Primary Sources

Byakushū kushō 白曆口抄 (teaching by Ryōzen 亮尊, 1258–1341). In TZ., vol. 6, pp. 343–516, and vol. 7: pp. 1–384.

Engi shiki 延喜式 (927). Fujiwara no Tadahira 藤原平忠 (880–949) et al. Waseda Library (“03_01594”). Available online: https://archiv.wule.waseda.ac.jp/kosho/wal03/wal03_01594/ (accessed on 5 February 2022).

Eun Zenji shōrai kyōhō mokuroku 恵運師師将来自法目録 (847). Eun 恵運 (798–869). In T. 2168A.

Go shōrai mokuroku 御請來目録 (806). Kūkai 空海 (774–835). In T. 2161.

Guin lüli kao 古今律曆考. Xing Yunlu 邢雲路 (1549–?). In Siku quanshu 四庫全書, vol. 787: pp. 1–754.

Jikaku Daishi den 惠覺大師傳. Minamoto no Fusaikara 潤英明 (d. 939). In Zoku gunshoruijō 經續群類 from 8–2. Edited by Hanawa Hokiichi 堯保己一. Tokyo: Zoku Gunshoruijō Kaneikai, pp. 683–99.

Jiu Tang shu 舊唐書 (945). Liu Xu 劉昫 (887–946). 1975. Beijing: Zhonghua Shuju.

Jiu zhi li 九執曆, Skt.”Navagaha-karana” (718). Gautama Siddhārtha or Siddha (Ch. Qutan Xida 曹壘悉達). Preserved as juan 卷 #104 in Tang Kaiyuan zhan jing 唐開元占經. Siku quanshu, vol. 807: pp. 933–43.

Kyuō hiryaku 九曜秘訣. NYC Met (1975.268.4). See also typset edition in TZ. vol. 7, pp. 769–73.

Kōya Daishi go kōden 高野大師御講伝 (1118). Shōken 聖賢 (1083–1147). In Zoku gunshoruijō 8-2, pp. 607–66.

Mahāprajñāpāramitā-upadesa (Dazhidu lun 大智度論) (402–405). Translated by Kumārajīva (344–413). In T. 1509.

Mahāsaṃmānīpata (Daji jing 大集經). Various translators. In T. 397.

Māttarā-sūtra (Modengjia jing 摩登伽經). Traditionally attributed to Zhu Lüyan 竹律炎 (d.u.) and Zhiguan 賢範 (fl. 223–53) in the year 230, but this dating is contested (see Kotyk 2017a, pp. 28–29). In T. 1300.

Nihon biku Enchin nittō guhō mokuroku 日本比丘圓真入唐求法目録 (857). Enchin 圓珍 (814–891). In T. 2172.

Nihon shoki 日本書紀 (720). 2006. In SNKZB, 3 vols. Tokyo: Shōgakkak. Digital edition of japanknowledge.com.

Nittō guhō junrei kō 古唐求法巡禮記 (838 to 847). Ennin 圓仁 (794–864). In CBETA B18n0095.

Ono rokuchō 小野六帖. Ningai 尼戒 (951–1046). In T. 2473.

Qiuyao rangzai jue 七曜攘灾诀 (806–865). Attributed to Jjinjuzha 金術訶. In T. 1308.

Qiuyao xingcen bie xingfa 七曜星辰別行法. Attributed to Yixing (673–727). In T. 1309.

Sārdīlakarnvatadhāna (Shetujvantai ershiba xiujing 舍頭讃太子十八宿經). Translation by Dharmaraksa 立法護 (c.329–316). In T. 1301.

Shin shōrai hōmon tō mokuroku 新書寫請來法門等目録 (865). Shūrei 宗來 (809–884). In T. 2174A.

Taizō kuizuo 胎藏密藏圖. In TZ. vol. 2: pp. 477–566.

Taizō zuuo 胎藏圖像. In TZ. vol. 2: pp. 191–328.

Wamō ruiju shō 娙母名類聚抄 (931–938). Minamoto no Shitatō �ToFront. Print from 1617. National Diet Library of Japan (WA7-102).

Xiuju jing 宿曜經 (764). Amoghavajra (705–774). Dōshisha University manuscript at Available online: https://dgcl.doshisha.ac.jp/digital/collections/MD00000266/ (accessed on 5 February 2022).

Secondary Sources

Aston, William George. 1972. Nihon: Chronicles of Japan from the Earliest Times to A.D. 697. Rutland: C.E. Tuttle Co.

Barton, Tamsyn S. 1994. Ancient Astrology. London: Routledge.

Bolling, George Melvillem, and Julius Von Negelein, eds. 1909. The Pariśīṣṭas of the Atharvaveda. Leipzig: Otto Harrassowitz.

Cullen, Christopher. 1980. Joseph Needham on Chinese Astrology. Past & Present 87: 39–53.

Giebel, Rolf W. 2005. The Vairacanābhisambodhi Sūtra. Berkeley: Numata Center for Buddhist Translation and Research.

Goto, Akira. 2021. Cultural Astrology of the Japanese Archipelago: Exploring the Japanese Skycape. Abingdon: Routledge.

Greenbaum, Dorian Gieseler. 2015. The Dätōn in Hellenistic Astrology: Origins and Influence. Leiden: Brill.

Kotyk, Jeffrey. 2017a. Iranian Elements in Late-Tang Buddhist Astrology. Asia Major 30: 23–58.

Kotyk, Jeffrey. 2017b. Astral Iconography of Planetary Deities in Tang China: Near Eastern and Indian Icons in Chinese Buddhism. Journal of Chinese Buddhist Studies 30: 33–88.

Kotyk, Jeffrey. 2018a. Astral Determinism in Indian Buddhism. Journal of the International Association of Buddhist Studies 41: 145–67.

Kotyk, Jeffrey. 2018b. Early Tantric Hemerology in Chinese Buddhism: Timing of Rituals According to Subhakarasimha and Yixing. Canadian Journal of Buddhist Studies 13: 1–29.

Kotyk, Jeffrey. 2018c. Japanese Buddhist Astrology and Astral Magic: Mikkyō and Sukuyōdō. Japanese Journal of Religious Studies 45: 37–86. [CrossRef]

Kotyk, Jeffrey. 2018d. Yixing and Pseudo-Yixing: A MISunderstood Amonster-Monk. Journal of Chinese Buddhist Studies 31: 1–37.

Kotyk, Jeffrey. 2020. The Chinese Buddhist Approach to Science: The Case of Astronomy and Calendars. Journal of Dharmic Studies: Philosophy, Theology, Ethics, and Culture 3: 273–89. [CrossRef]
Kotyk, Jeffrey. 2021a. Review of Cultural Astronomy of the Japanese Archipelago: Exploring the Japanese Skyscape by Akira Goto. *Monumenta Nipponica* 76: 363–66. [CrossRef]

Kotyk, Jeffrey. 2021b. The Study of Sanskrit in Medieval East Asia: China and Japan. *Hualin International Journal of Buddhist Studies* 4: 240–73. [CrossRef]

Mak, Bill M. 2015. The Transmission of Astral Science from India to East Asia: The Central Asian Connection. *Historia Scientiarum* 24: 59–75.

Mammitzsch, Ulrich. 1990. On the Evolution of the Garbhadhvā Manḍala. *Acta Orientalia Academiae Scientiarum Hungaricae* 44: 25–50.

Masuo, Shin’ichiro. 2013. Chinese Religion and the Formation of Omnyō. *Japanese Journal of Religious Studies* 40: 19–43. [CrossRef]

Molsworth, James Thomas. 1857. *A Dictionary, Marathi and English* Edited by Kodaigaku Kyōkai. Tokyo: Hōzokan. 2 vols. Nagoya: Wakita Bunshō. [CrossRef]

On the Identification of the Yogatāraś of the Indian Naksatras. *Journal for the History of Astronomy* 20: 99–119. [CrossRef]

Pingree, David, and Patrick Morrissey. 1986. On the Evolution of the Garbhadhvā Manḍala. *Acta Orientalia Academiae Scientiarum Hungaricae* 44: 25–50.

Smith, Jonathan. 2015. Pleiades retrieved: A Chinese Asterism’s Journey to Japan. In *Daoism in Japan: Chinese Traditions and Their Influence on Japanese Religious Culture*. Edited by Jeffrey L. Richey. London: Routledge, pp. 11–23.

Somekawa, Eisuke 染川英輔. 2013. *Mandara Zuten* 姫曼荼羅圖典. Tokyo: Daiborinkaku.

Takada, Yoshihito 高田義人. 1992. *Rekike Kamo-shi no keisei 藻池宿社の建立* 吉野賀持の研究. Kyoto: Hozokan.

Tanisaki, Toshiyuki 染崎俊之. 2016. Wajin no koyomi wo saguru: Sūji kara yomitoku rekishi ni nazo 倭人の観を探る: 数字から読み解く歴史の謎. *Sugaku Seminar* 55: 1–9.

Wakitaka, Bunshō 和田文昭. ed. 1897. *Sukuyō-kyō Shukusatsu 宿曜経編修*. 2 vols. Nagoya: Wakita Bunshō.

Whitfield, Susan. 1998. Under the Censor’s Eye: Printed Almanacs and Censorship in Ninth-Century China. *The British Library Journal* 24: 4–22.

Wilkinson, Endymion. 2000. *Chinese History: A Manual, Revised and Enlarged*. Cambridge: Harvard University Press.

Yamashita, Katsuaki 山下克明. 1990. *Sukuyō-dō no keisei to tenkai 宿曜道の形成と展開*. In *Kōki sekkan jidaishi no kenkyū 後期摂閔時代の研究*. Edited by Kodaigaku Kyōkai 古代学協会. Tokyo: Yoshikawa Kōbunkan, pp. 481–527.

Yamashita, Katsuaki 山下克明. 1996. *Heian jidai no shikyō bunka to onyō-dō 平安時代の宗教文化と陰陽道*. Tokyo: Iwata Shoin 岩田書院.

Yano, Michio 矢野雄. 1986. *The Chi’yao jang-tsai-chueh and Its Ephemerides*. *Centaurus* 29: 28–35. [CrossRef]

Yano, Michio 矢野雄. 2003. Calendar, Astrology, and Astronomy. In *The Blackwell Guide to Hinduism*. Edited by Gavin Flood. Oxford: Blackwell Publishing, pp. 376–92.

Yano, Michio 矢野雄. 2004. Planet Worship in Ancient India. In *Studies in the History of the Exact Sciences in Honour of David Pingree*. Edited by Charles Burnett, Jan P. Hogendijk, Kim Plofker and Yano Michio. Leiden: Brill, pp. 331–48.

Yano, Michio 矢野雄. 2013. *Mikkō senseijutsu: Sukuyō-dō to Indo senseijutsu* 咒星占術とインド占星術. Tokyo: Tōyoshoin.

Zenba, Makoto 善波周. 1952. Matōga gyō no nenmonrekišū ni tsuite 摩登伽經的天文數についてUTF8min. In *Tōgūgakku Ronso: Konishi, Takabata, Maeda san kyōju shōjū kinen* 東洋学論叢: 小西高昌前田三教授顕蹟記念. Edited by Bukkyō daigaku 佛教大学. Kyoto: Heirakuji Shoten, pp. 171–214.