Study Protocol on Hormonal Mediation of Exercise on Cognition, Stress and Immunity (PRO-HMECSI): Effects of Different Exercise Programmes in Institutionalized Elders

Ana Maria Teixeira1*, José Pedro Ferreira1, Eef Hogervorst2, Margarida Ferreira Braga3, Stephan Bandelow4, Luis Rama1, António Figueiredo1, Maria João Campos1, Guilherme Eustáquio Furtado1,4, Matheus Uba Chupel1,4 and Filipa Martins Pedrosa1

1Faculty of Sport Sciences and Physical Education, University of Coimbra, Coimbra, Portugal, 2National Centre for Sports and Exercise Medicine, Loughborough University, Loughborough, UK, 3Medical Psychology Unit, Department of Clinical Neurosciences and Mental Health, Faculty of Medicine, Porto University, Porto, Portugal, 4CAPES Foundation, Ministry of Education, Brasilia, Brazil

Physical activity (PA) in elders has been shown to have positive effects on a plethora of chronic diseases and to improve immunity, mental health, and cognition. Chronic stress has also been shown to have immuno-suppressive effects and to accelerate immunosenescence. Exercise could be a significant factor in ameliorating the deleterious effects of chronic stress, but variables such as the type, intensity, and frequency of exercise that should be performed in order to effectively reduce the stress burden need to be defined clearly. PRO-HMECSI will allow us to investigate which hormonal and immunological parameters are able to mediate the effects of exercise on mucosal immunity, psychological/biological stress, and cognitive functioning in older people. Phase I consists of an observational cross-sectional study that compares elders groups (n = 223, >65 years) by functional fitness levels aiming to identify biomarkers involved in maintaining immune and mental health. Neuroendocrine and immune biomarkers of stress, psychological well-being related to mental health, neurocognitive function, functional fitness, and daily PA will be evaluated. Phase II consists of a 28-week intervention in elders with...

Abbreviations: α-amyl, salivary alpha amylase; 2ST, 2-minute step test; 8-UGT, 8-foot up-and-go test; ACSM, American College of Sport Medicine Science; ACT, 30 seconds arm-curl test; AD, Alzheimer disease; ADL, Katz index of independence in activities of daily living; BDNF, brain-derived neurotrophic factor; BST, back stretch test; CAW, chair aerobic to improve walking exercises; CCI, Charlson comorbidity index; CRP, C-reactive protein; CSE, chair elastic-band strength exercises; CSHS, Centers for Social and Health Care Support; CSR, chair sit-and-reach test; CST, 30 second chair-and-stand test; CYE, chair yoga type flexibility exercises; DHEA, dehydroepiandrosterone; DST, digital span test; ES, effect size; FES, falls efficacy scale; HADS, hospital anxiety and depression scale; HPA axis, hypothalamic–pituitary–adrenal axis; HRmax, maximal heart rate; HVLT, Hopkins verbal learning task; IADL, Lawton independence activities day living scale; IFN-γ, interferon gamma; IL-1β, interleukin-1 beta; IL-10, interleukin 10; IL-6, interleukin 6; K-S, Kolmogorov–Smirnov test with Lilliefors; MCI, mild cognitive impairment; MMSE, mini mental state examination; MOCl, moderate cognitive impairment; NCP, normal cognitive profile; PA, physical activity; PF, physical fitness; PRO-HMECSI, hormonal mediation of exercise on cognition, stress, and immunity project; PSS, perceived stress scale; RSES, Rosenberg self-esteem scale; SCI, severe cognitive impairment; sCoR, salivary cortisol; sIgA, salivary immunoglobulin-A; SMT, symbol modality test; SWLS, satisfaction with life scale; TNF-α, tumor necrosis factor alpha; VFT, verbal fluency.
INTRODUCTION

Mild cognitive impairment (MCI) refers to a stage in which a person experiences memory loss to a greater extent than one would expect for that age, but do not yet meets currently accepted criteria for clinically probable Alzheimer disease (AD) or other types of dementia (1, 2). The recently coined concept of frailty – decreased resistance to stressors and increased risk for adverse health outcomes (3), has been reported to modulate the risk of several types of dementias and cognitive impairment (4). Vascular, inflammatory, nutritional, and metabolic factors appear to be involved in late life frailty and are targeted as preventive causes of dementia (5). Recently published longitudinal studies report that muscle mass and physical performance may constitute an independent frailty component, according to the type of dementia, pointing to the need of further research (6).

In general, the relationship between general cognitive function and physical frailty has been well documented (7). Although less consistently with dementia (8), but some authors argue that a dynamic perspective conveyed by longitudinal approaches of frailty may contribute to better understand transitions in cognitive status (9).

Immunosenescence is also a part of the aging process and is associated with an increased risk for autoimmune disorders, tumors, or infectious disease and neurocognitive disorders (10). The mucosal immune system, including the upper respiratory tract, is considered a first barrier to the colonization by pathogenic agents, reducing the incidence of upper respiratory tract infections (URTI) in humans (11). During aging, there is a decrease on salivary immunoglobulin-A (sIgA) secretion which is also linked to higher URTI incidence (12). Engaging in regular sports, exercise or systematic physical activity (PA) is known to protect against many factors associated with poor physical and psychological health and improves life expectancy (13). Cognitive functions sensitive to early dementia and age-related cognitive decline, such as memory and executive functions and simple and complex information processing reaction times have been shown to respond and be sensitive to the effects of exercise in both young and old ages (14). Six months of moderate levels of aerobic activity were sufficient to produce significant improvements in cognitive function, with the most dramatic effects occurring on measures of episodic memory and executive control (15). Dementia and vascular disease are leading causes of mortality in women, but risk seems to be reduced with exercise (16). Depressive symptoms are present in 12–30% elders (17), frequently associated with cognitive impairment (18). Furthermore, the presence of immune system dysfunction and inflammation has been reported to predict depressive symptoms during aging and appears to be the link between depression and dementia (19). It is very important for public health to identify the main factors associated with cognitive decline in the elders, subsidizing the creation of new methods of therapy. Exercise may have the largest positive effects on older women who have low levels of sex steroids after menopause which at the same time increase the risk for cardiovascular disease and dementia (20). The type of exercise seems to be crucial on increasing the aerobic capacity, but the evidence to support the involvement of flexibility, aerobic, and strength resistance exercise in improving cognition and psychological well-being related to mental health are not clear (14), and their effectiveness should to be investigated. Promising results have been reported in the reduction of depressive symptoms with PA interventions when including flexibility/resistance and low intensity exercise (21). In the older persons, PA appears to be beneficial for those presenting clinical depression, although the effect of different programs is still unclear (22). A few studies have looked at the effect of regular moderate exercise on S1gA, and there is no sufficient evidence to support the effect of exercise on IFN-γ and C-reactive protein (CRP) levels in elders (10). Regular exercise has also been shown to diminish the level of stress and anxiety and the risk of psychological diseases and emotional decline in elders (23). The responses of saliva flow rate and their composition during exercise are influenced by sympathetic nervous system activity and the hypothalamic–pituitary–adrenal axis (HPA-axis), the salivary glands being enervated by both parasympathetic and sympathetic nerves (24). Recent studies have identified salivary α-amylase (α-Amy) as a potential marker of sympathetic activity, while salivary cortisol (sCor) seems to be a valid measure for the HPA-axis activity (25). α-Amy is an enzyme that catalyzes starch into maltose and can be important to host
defend by inhibiting the adherence and growth of certain bacteria (26). Testosterone levels decline with aging as well as cognitive function, and their levels seem to be diminished in patients with AD and MCI (27). Dehydroepiandrosterone (DHEA) is another steroid hormone involved in metabolism, produced mainly in the adrenal cortex, its functions are linked with anti-glucocorticoid, anti-oxidant anti-inflammatory, and immunomodulatory effects (28). Recently, DHEA has been investigated for its relationship to mental and physical stress and also in psychological and behavioral disorders. The DHEA plasma concentration and the ratio SCor/DHEA have also been shown to increase with PA (29). Salivary markers may serve as potential non-invasive tools for evaluation of the relationship between the central nervous system and mucosal immunity following psychological and/or physical stress and how these may affect cognitive functions (24).

In addition to these measures in saliva, peripheral blood concentrations of inflammatory biomarkers, such as interleukin-1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), and interleukin-6 (IL-6), have previously been found to be elevated in cases of MCI and depression in comparison to healthy age-matched controls (23, 24, 29). Evidence shows that immunological and hormonal parameters are able to mediate the effects of exercise on mucosal immunity, psychological stress, cognitive improvement, and risk of dementia in the elders who are regularly active (30) and that regular exercise may provide an effective strategy in the treatment and prevention of associated disorders by anti-inflammatory benefits. IL-1β, IL-6, IL-10, IFN-γ, TNF-α, and CRP are important immune markers that interact in anti- and proinflammatory processes triggered by aging, and affecting the cognitive profile of the elderly. Studies have implicated the inflammatory pathway on increased severity of white matter hyperintensities and brain atrophy as mechanisms to develop brain alterations and cognitive decline in older subjects (31, 32).

Highlighted as an important neuroendocrine marker, the brain-derived neurotrophic factor (BDNF), is involved in neuroplasticity, differentiation, neuronal growth, learning, and memory (33, 34). Its decrease is reported in individuals with Parkinson’s, AD, depression, and MCI, this last one a clinical condition evidenced through cognitive testing (35). Differences in BDNF polymorphisms may have consequences on antidepressant efficacy (36), and the presence of depressive symptoms is associated with lower BDNF peripheral levels before antidepressant treatment (37). Exercise can act as a positive mediator of cognitive functioning in individuals suffering from early dementia and mental disorders, these responses being attributed to a possible role of BDNF (15, 38).

AIMS OF THE STUDY

(a) To examine the multivariate associations between physical fitness (PF), cognitive indexes, biomarkers of inflammation, stress, and neurotrophic factors, associated with psychological well-being and mental health, in a cross-sectional study in older women subjects;

(b) To verify the hypothetical effect of different types of regular exercise practice on PF, hormonal responses related to immunological and neurocognitive systems in healthy older participants and those with MCI after 14 and 28 weeks of regular practice;

(c) To explore the associations between changes in neurocognitive and immunological systems, functional fitness, psychological well-being, and mental health by different exercise programs after 14 and 28 weeks of regular practice.

INITIAL PROCEDURES

All CSHS and participants (or responsible) will be required to give a full informed consent before beginning the study. Individuals who express interest in participating in the program will sign a statement of responsibility, in which the privacy of identity and data collected will be guaranteed as well as the possibility of accessing the medical report of the subject. The contact with the medical center was established as one of the criteria to verify the eligibility of each subject to perform the exercise program (Figure 1). Once individuals were interviewed to participate in the study, they were informed of the procedures for data collection and of the class sessions that would occur in the pilot study. An information session about the study protocol was created for presentation to local organizations and to all the individuals that express interest in participating in the study. The study protocol has been approved by Faculty of Sport Sciences and Physical Education Ethical Committee – University of Coimbra (number reference: CE/FCDEF-UC/000202013), and it is integrated in the research project entitled "PRO-HMECSI: Hormonal mediation of exercise on cognition, stress and immunity"; respected the Portuguese Resolution (Art. 4st; Law no. 12/2005, 1st series) on ethics in research with humans (39); follows the guidelines for ethics in scientific exercises in exercise science research (40).

![FIGURE 1 | Flow chart of the PRO-MHESCI study design.](image-url)
FIGURE 2 | Timeline of the PRO-MHESCI: study 1 (cross-sectional), study 2 (Intervention), and study 3 (washout period).
results involving the effects of exercise on immunological and
cognitive parameters of elderly samples with MCI. Estimating the
incidence of MCI in institutionalized elders to be around 30 and
57% (44), a total of 223 participants will be recruited for study 1.
The sample size for study 2 was estimated adjusting MANOVA
for repeated measures effects, alpha (Type I error rate) at 0.05,
and power (Type II error rate) at 0.85 were computed using G*
Power Version 3.1.9.2 (45, 46). A total of 149 participants are
estimated to provide enough information about the outcome
variability in our study design. It is predicted that only 70% of
the participants will complete the full program (47) justifying
a minimum sample size of 25 individuals for both intervention
and control group.

EXERCISE ADHERENCE

Exercise sessions will be offered 2–3 times/week, during 28 weeks,
in a total of 78 sessions. The percentage of exercise adherence
to group classes is calculated individually through the total sum
of participation. Entries will be recorded in a database. When a
participant has two consecutive absences, she will be contacted
to return to the group classes. According to a recent systematic
review, an adherence to the exercise program of 55% was estab-
lished as minimum for each participant to be included in the
study (47).

PILOT STUDY

A pilot study was conducted during 4 weeks with an exercise ses-
sion per week. At the same time, interviews, psychometric scales,
cognitive, and functional tests were applied to check the subject's
conditions and evaluate the methods of application of the study.
Classes with duration of 30 min were given during this period
(pre-training, easy-level), to gain insight to the implementation of
CBE programs, adequacy of the spaces and structures where the
classes would take place, and test the rating of perceived exertion
by the participants.

MASKING

The fitness instructor of the all CBE sessions will not take part
in data collection procedures. Collection of saliva and blood
samples as well as the global health assessment will be performed
by a registered nurse. The assessment of psychometric, cognitive
scales, and physical–functional fitness battery was organized
by the principal investigators and will be applied by special-
ists and co-investigators of the research team. This assessment
can be done in different days, respecting the motivation of the
elders, interrupting the test, and continuing on another day if
they feel tired or uncomfortable. To minimize differences in
procedures the same evaluators that will perform the data col-
lection will apply both baseline and follow-up questionnaires
and physical–functional fitness battery tests. The specialists of
PF, psychometric, and cognitive assessments will not make any
reference to the exercise program and do not have access to the
remaining data.

OUTCOME MEASURES

All outcome measures will be collected at baseline (study 1). After
14 and 28 weeks of exercise intervention (study 2) and after week
42 (washout period), biosocial and global health status will not
be included. The primary outcomes are measures of cognitive
function, biosocial, and global health status. One session will
be used to administer a short test battery to measure biosocial,
global health status, cognition (MCI screening), and PF (mobility
screening) in this specific order. Secondary measures comprise
psychological well-being, cognition, PF, anthropometric, immu-
nological, and neurotrophic markers.

BIOSOCIAL STATUS

Information on sociodemographic characteristics such as chron-
ological age (continuous and category form), gender (category),
and education (continuous and category) will be collected and
used for adjusting models.

NEUROCOGNITIVE PROFILE I: MEMORY
COMPLAINTS AND MCI SCREEN

Participants included will be institutionalized older adults with
memory complaints, i.e., those with possible MCI, who are at risk
for developing dementia. For this purpose, the combination of
two cognitive tests and respective cut-off values will be used.

MINI MENTAL STATE EXAMINATION

The mini mental state examination (MMSE) assesses five areas of
cognition: orientation, immediate recall, attention and calcula-
tion, delayed recall, and language (48). The maximum score is
30 points and a score below 24 points is considered abnormal
and used for dementia and MCI screening (49). The MMSE will
be used to classify participants by cognitive profile as a category
variable, following the criteria described by Mungas (1): (a)
severe cognitive impairment (SCI, values between 01 and 09),
(b) moderate cognitive impairment (MOCI, between 10 and
18); (c) MCI (values between 19 and 24); (d) normal cognitive
profile (NCP, values between 25 and 30). The MSSE was included
because it was shown to be sensitive to the effects of exercise in
an older population (50).

HOPKINS VERBAL FLUENCY TEST

The Hopkins verbal learning task (HVLT) is one of the most
commonly used memory tests in clinical neuropsychological
evaluation of older adults and is used to assess verbal episodic
memory, including immediate memory (48). It is a 4-min test,
easy to administer, to score, and to well tolerate even by signifi-
cantly impaired individuals. This test requires recall of a series of
12 words (nouns) from 3 semantic categories (precious stones,
animals, and human dwellings) over 3 learning trials (35). Scores
between 15.5 and 24.5 on this test indicate a risk of dementia or
MCI (48). Recent studies indicate that this test has satisfactory
construct and concurrent validity and good test–retest reliability, range 0.80 to 0.98 values (51, 52).

GLOBAL HEALTH STATUS EVALUATION

This evaluation includes the initial contact with the medical staff of the CSHS, in order to collect information on the medical history and current health of the participants that may condition their participation in the exercise programs. Additionally, comorbidity severity will be evaluated using the Charlson comorbidity index (CCI), in association with the medical drug record of the elders.

CHARLSON COMORBIDITY INDEX

The CCI is a method of predicting mortality by classifying or weighting comorbid conditions that has been widely utilized by health researchers to measure burden of disease. It has a weighted index based on 17 comorbid conditions that has been shown to predict 1- and 10-year mortality (53, 54). A recent study aimed to update the index of 12 comorbidities showed adequate discrimination in predicting and classifying comorbidities, when analyzing data from six countries (55). In this study, the total score of the ICC is used as a continuous variable.

FUNCTIONAL FITNESS ASSESSMENT I: MOBILITY SCREEN

To assess quickness, agility, and dynamic balance, the “8-foot up-and-go test” (8-UGT) will be used. The time needed for the participant to get up from the chair, walk as quickly as possible around either side of the cone, and to sit back down in the chair is registered (56). According to recent research, the 8-UGT can be used to effectively screen older people at risk for low mobility (57, 58).

SECONDARY OUTCOMES

In total, three sessions will be used for collection of secondary outcomes. In the first session, cognitive and psychological tests will be applied. In the second day, blood and saliva samples will be collected. Anthropometric measures and PF tests will be applied in the third session.

NEUROCOGNITIVE PROFILE II: MULTIDIMENSIONAL COGNITIVE SCREEN

The cognitive profile assessment will be evaluated using the Portuguese version of the multidimensional evaluation cognitive battery developed by Hogervorst–Bandelow and used worldwide in many treatment and observational studies (13, 32). The cognitive testing requires <20 min, including MMSE and HVLT. These tests have in earlier interventions also shown to respond and be sensitive to the effects of exercise in the elders (59).

VERBAL FLUENCY TEST

Verbal fluency is a cognitive function that enables the retrieval of information from memory linked to executive and linguistic abilities (60). The verbal fluency test (VFT) evaluates an individual’s ability to retrieve specific information within restricted search parameters, such as the semantic fluency, tested by asking the participant to generate a semantic category with names of animals (61). This test consists of giving the person 60 s to verbally list as many animals as possible.

DIGITAL SPAN TEST

The digital span test (DST) consists of two tests: in the first one, the examiner says a series of numbers and asks the participant to repeat them back in the same order. The test finishes when the subject fails two times in the same series or completes all the series (up to nine numbers). In the second one, the subject is asked to repeat a series of numbers in the inverse order. The first series begins with two numbers, and then continues in the same manner by increasing one number at each time. The test finishes when the subject fails two times in the same series or completes all the series (up to eight numbers). Administering the test forward assesses both attention and short-term memory. When the backwards version of the test is given, it also measures working memory (62).

SYMBOL MODALITY TEST

This is a measure of attention, perceptual speed, motor speed, visual scanning, and memory. A piece of paper with nine symbols corresponding to nine digits is given to the participants. On another sheet of paper, there are several rows of digits with empty spaces below them. The subjects are asked to fill in as many corresponding symbols as possible in 90 s (63).

PSYCHOLOGICAL WELL-BEING/MENTAL HEALTH

The test battery will be administrated by the same research team after a short briefing on the purpose of the study and requires <10 min. Standardized instructions will be given to all participants as well as encouragement to ask for help. Individual attention will be provided to participants with interpretation doubts, questions will be read to clarify the meaning assuring that no emphasis will be put on the question in order to avoid directing the answer. The test battery to be used in this study includes the Portuguese version of the tests describing below. All the tests scores will be analyzed as continuous variables.

ROSENBERG SELF-ESTEEM SCALE

A 10-item scale that measures global self-worth by measuring both positive and negative feelings about one self. The scale is believed to be unidimensional. All items are answered using a four-point Likert scale format ranging from “strongly agree” to “strongly disagree” (64). For items 1, 2, 4, 6, and 7, a reversal of the scores is done. The global self-esteem is represented by the sum of all scores and gives results between 10 and 40 points, where higher values represent higher levels of global self-esteem. Many
studies have shown it to respond and be sensitive to the effects of exercise in the elders (65).

SATISFACTION WITH LIFE SCALE

The satisfaction with life scale (SWLS) is a short five-item instrument designed to measure global cognitive judgments of satisfaction with one’s life. The scale usually requires only about 2 min of the participants’ time (66). It uses a seven-point Likert scale, indicating your agreement with each item by placing the appropriate number on the line preceding that item. Results range between 1 and 35 points, with higher values representing higher levels of life’s satisfaction (67).

PERCEIVED STRESS SCALE

The perceived stress scale (PSS) was originally developed as a 14-item scale that assesses the perception of stressful experiences by asking the participant to rate the frequency of his/her feelings and thoughts related to events and situations that occurred over the previous month. Seven out of the 14 items of PSS-14 are considered negative and the remaining 7 as positive, representing perceived helplessness and self-efficacy, respectively (68). For items 4, 5, 6, 7, 9, 10, and 13, a reversal of the scores is done. Final scores vary from 14 to 70 points. A higher score indicates greater stress (69).

HOSPITAL ANXIETY AND DEPRESSION SCALE

This questionnaire consists of two subscales, one measuring anxiety, with seven items, and one measuring depression, with seven items, which are scored separately. Each item is answered on a 4-point (0–3) response category, so that the possible scores range from 0 to 21 for anxiety and from 0 to 21 for depression. It takes 2–5 min to complete. The hospital anxiety and depression scale (HADS) manual indicates that a score between 0 and 7 is “normal,” between 8 and 10 “mild,” between 11 and 14 “moderate,” and between 15 and 21 “severe” (70).

THE LAWTON INSTRUMENTAL ACTIVITIES OF DAILY LIVING SCALE

The Lawton scale is a suitable questionnaire to assess independent living skills. The instrument is most useful for identifying how a person is functioning at the present time and for identifying improvement or deterioration over time (71). There are eight domains of function measured with the Lawton independence activities day living (IADL) scale. Current recommendations are to assess all domains for both genders, although cultural differences with regard to the proposed tasks to be evaluated may exist. Participants are scored according to their highest level of functioning in that category (72). A summary score ranges from 0 (low function, dependent) to 8 (high function, independent).

KATZ INDEX OF INDEPENDENCE IN ACTIVITIES OF DAILY LIVING

The Katz index of independence in activities of daily living (ADL) is the most appropriate instrument to assess functional status as a measurement of the older person’s ability to perform ADL independently (73). The index ranks adequacy of performance in the six functions of bathing, dressing, toileting, transferring, continence, and feeding. Participants are scored yes/no for independence in each of the six functions (74). A score of 6 indicates full function, 4 indicates moderate impairment, and 2 or less indicates severe functional impairment (75).

FALLS EFFICACY SCALE

The falls efficacy scale (FES) contains questions that assess the concern about the possibility of falling during the performance of 10 activities (76). The trust that the elders have to perform the activities without falling is represented on a 10 points analog scale ranging from “No confidence” (10 points) to “Completely confident” (1 point). The score of the FES is the sum of the scores obtained in each of the 10 items. The minimum score possible is 10 and the maximum is 100. Accordingly, the lower the score, the greater the confidence, resulting in a high self-efficacy (77).

BIOCHEMICAL ASSESSMENT I: COLLECTION OF SALIVA SAMPLE

Saliva will be collected by passive drool (the participant allows saliva to collect on the floor of the mouth, then leans forward and dribbles into a tube), for 3 min in high quality polypropylene vials to avoid problems with analyte retention or the introduction of contaminants that can interfere with the immunoassays. The collection times are always at the same time in the morning in order to minimize the circadian effect seen with some of the markers under study. Prior to the saliva collection subjects will be asked to rinse their mouth with water to remove food residues 10 min before sample collection and to avoid: alcohol for 12 h, dairy products for 20 min, a big meal for 60 min, foods with high sugar or acidity, or high caffeine content immediately before sample collection. The tubes containing the saliva will then be frozen, then defrosted and centrifuged in order to collect the saliva sample. The volumes measured, the flow rate calculated, and the samples will be store at −20°C until determination of the saliva markers proposed for this study. IgA, testosterone, cortisol, and DHEA will be analyzed by ELISA (Salimetrics, UK), and Alpha-Amylase by a kinetic-assay (Salimetrics, UK), according to standard procedures (78).

BIOCHEMICAL ASSESSMENT II: COLLECTION OF BLOOD SAMPLE

Blood will be collected by venopuncture, in a fasted state, by a registered nurse. Determination of blood counts done after the blood collection, and then the tubes will be centrifuged for the collection of plasma and serum and these stored in cryovials.
The development of the exercises programs will include the selection of intervention programs, defining the types of exercise, conducting literature review, consultation with specialists from each exercise program, presentation of the final version of the chair-based exercise program design, and beginning of implementation of the pilot study in care centers. All classes, of each exercise program, will be administered by two instructors.

The classes of chair aerobic to improve walking exercises (CAW) include activities that involve minutes of walking, chair-based sit, and reach exercises and activities for upper and lower body members. The walking time is expected to increase gradually during the program (81). The session has a maximum duration of 45 min divided into three parts with the following characteristics: warm-up (5–10 min) six exercises for body mobilization and dynamic stretching, 7–10 specific exercises to improve walking in a sitting and standing position, lasting 20–30 min, and cool-down easy stretching exercises to promote cool down lasting 15 min. Exercise intensity will be measured with heart rate (HR) monitors and real effort is expected to be 60–85% of maximum HR.

The chair elastic-band strength exercises (CSE) consist of an exercise class performing a determined number of sets, repetitions, cadence of execution, and rest between sets using a Thera-band® elastic bands exercise system (86), that takes into account the ACSM guidelines for muscle-strength exercises prescriptions for older populations (81). The session consist of six exercises for body mobilization and dynamic stretching (5 min warm-up); between 8 and 10 elastic-band exercises using the three first levels of elastic bands (yellow, red, and green), for the development of muscle-strengthening activity (20–30 min); five easy stretching exercises to promote cool down lasting 15 min. We will expect real effort to be 60–85% of maximum heart-rate values recommended by the ACSM as the work intensity for the older people submitted to exercise programs. This would allow the training stimulus dosage to be precisely controlled in both the session in progress and between different sessions (86).

Music will not be used during the sessions, since the objective is to test the influence of exercise without music for some cognition parameters and therapy of music alone (84) or combined with physical exercise (85) can positively influence cognition. All exercise programs will have the same number of sessions. Detailed exercise description is presented in Table 1.

The chair-based group exercise classes can vary in intensity from vigorous chair aerobics designed to provide muscle conditioning and aerobic benefits for healthy adults to movement that concentrates or maintaining a basic level function for older participants (82, 83). Music will not be used during the sessions, since the objective is to test the influence of exercise without music for some cognition parameters and therapy of music alone (84) or combined with physical exercise (85) can positively influence cognition. All exercise programs will have the same number of sessions. Detailed exercise description is presented in Table 1.

The chair elastic-band strength exercises (CSE) consist of an exercise class performing a determined number of sets, repetitions, cadence of execution, and rest between sets using a Thera-band® elastic bands exercise system (86), that takes into account the ACSM guidelines for muscle-strength exercises prescriptions for older populations (81). The session consist of six exercises for body mobilization and dynamic stretching (5 min warm-up); between 8 and 10 elastic-band exercises using the three first levels of elastic bands (yellow, red, and green), for the development of muscle-strengthening activity (20–30 min); five easy stretching exercises to promote cool down lasting 15 min. We will expect real effort to be 60–85% of maximum heart-rate values recommended by the ACSM as the work intensity for the older people submitted to exercise programs. This would allow the training stimulus dosage to be precisely controlled in both the session in progress and between different sessions (86).

Music will not be used during the sessions, since the objective is to test the influence of exercise without music for some cognition parameters and therapy of music alone (84) or combined with physical exercise (85) can positively influence cognition. All exercise programs will have the same number of sessions. Detailed exercise description is presented in Table 1.

The classes of chair aerobic to improve walking exercises (CAW) include activities that involve minutes of walking, chair-based sit, and reach exercises and activities for upper and lower body members. The walking time is expected to increase gradually during the program (81). The session has a maximum duration of 45 min divided into three parts with the following characteristics: warm-up (5–10 min) six exercises for body mobilization and dynamic stretching, 7–10 specific exercises to improve walking in a sitting and standing position, lasting 20–30 min, and cool-down easy stretching exercises to promote cool down lasting 15 min. Exercise intensity will be measured with heart rate (HR) monitors and real effort is expected to be 60–85% of maximum HR.

Music will not be used during the sessions, since the objective is to test the influence of exercise without music for some cognition parameters and therapy of music alone (84) or combined with physical exercise (85) can positively influence cognition. All exercise programs will have the same number of sessions. Detailed exercise description is presented in Table 1.
the modification of postures itself and of how to “enter” and “leave” the postures, which simplifies working with limiting conditions in group classes with various levels of physical ability and can be reviewed according to the participants evolution (88). Additionally, the methods of design of the exercise programs include the ACSM guidelines for stretching exercises prescriptions.

TABLE 1 | Overview of the two phases of chair-based exercise programs intervention and some specifics exercises.

Modality	Warm-up phase*	% HR	Main part of the workout/conditioning	% HR	Cool-down phase	% HR	
	(7 min.)	RPE		RPE	(7 min.)	RPE	
Phase I – the first 14 weeks							
AEW	General body mobilization and dynamic stretching	-50–60	1–3	Aerobic walking activity: divided in 7–10 sets. They will be held a series containing 4–8 chair-based aerobic exercises. After performing 2–3 sets, the participants will be encouraged to combine the walk around the gym-room during 2–3 min. Walking time may be increased gradually during the program. Example of exercises: (1) chair-based sit and reach, leg extension, and overhead reach and standing rear leg extension (2–3 sets x 10 reps); (2) 2-min walking; (3) arm rising, hip marching, chair stand, and upper-body twist; (4) 2-min walking	-60–70	General body mobilization and static stretching chair-based exercises	-50–55
EB-RT	Eight exercises performed in two sets of six repetitions (reps) for general body mobilization	-50–60	1–3	Muscle-strengthening activity; 8–10 exercises using the first level of elastic Thera-band. Will consisted in to pull up the elastic-band for 10 reps x 2 sets, with the concentric phase for 1 s and eccentric phase for 2 s with 45 s rest between sets and exercises. Examples of exercises: (1) front squat, (2) unilateral hip flexion in the chair, (3) bench over row, (4) chest press, (5) standing reverse fly, (6) spine twist extension arm, (7) shoulder press/twist arm front position, (8) frontal total raiser, (9) toeips arm curl stand/chair, and (10) overhead triceps exer	-60–70	General body mobilization and static stretching chair-based exercises	-50–55
YTF	Standing or sitting exercises of joint mobilization and exercises to promote respiratory body awareness	-40–50	1–2	Standing or sitting practice of āsanas and postures sequences. Ex: (1) “Seated Forward Bend” (Paschimottanasana), (2) “Butterfly” (Baddha Konasana), (3) “Seated Spinal Twist” (Ardha Matsyendrasana), (4) “Cow face pose” (Gomukhasana), (5) “Cat” (Cakravakasana), (6) “Child’s Pose” (Balasana), (7) “Snake” (Bhujangasana), (8) “Child’s Pose with arms extended” (Utthita Balasana), (9) “Side Bending Stretch” (Tiryaka Tadasana), (10) “Dorsal Torsion” (Kati Chakrasana), (11) “Triangle” (Trnikonasana), and (12) “Eagle” or “Half eagle” (Garudasana)	-50–60	Sitting or lying respiratory body awareness exercises, located massages, exercises for muscle relief, and meditation and vocalization	-40–45

Phase II – the last 14 weeks

AEW	General body mobilization, dynamic flexibility chair-based exercises, and 3 min of “easy walking”	50–60	1–3	The progress of the program will be followed according to aerobic endurance activity guidelines, therefore basing on the inclusion of more difficult and complex chair-based aerobic exercises and challenges sequences. Additionally, it will be increased walking time and placed obstacles during the walking route (cones, floor markers, arcs) to work handedness, changes in direction and coordination	60–70	1–2 min easy walking, general body mobilization, and static stretching chair-based exercises	50–55
EB-RT	Six exercises (3 sets x 6 reps) for general body mobilization and dynamic stretching	50–60	1–3	The progress of the program will be grounded on the muscle-strengthening activity guidelines, therefore basing on the inclusion of more exercises sets. Also, the same exercises in the Phase I will be used, but with more complex progressions. Example: 2–3 sets x 10 reps of front Squat in the chair + frontal raiser	60–70	General body mobilization and static stretching chair-based exercises	50–55
YTF	Standing or sitting exercises of joint mobilization and exercises to promote respiratory body awareness	-40–50	1–2	The progress of the program will be grounded on the Hatha Yoga philosophy, therefore basing on the inclusion of more difficult and complex āsanas and challenging sequences. Postures will be modified or added, sequences should have more postures with more difficult transitions, and the goal range of each posture will be increased	-50–60	Sitting or lying respiratory body awareness exercises, located massages, exercises for muscle relief, and meditation and vocalization	-40–45

*CBE, chair-based exercises; RPE, rated perceived exertion; % HR, percentage of the estimated maximal heart rate; Reps, number of repetitions; Rest, interval recovery.

*Specific exercises for different body segments, i.e., neck and shoulders, back and chest, waist and legs.

*Easy walking, 2–3 min of walking around the fitness room.
for older populations (81). The global exercise intensity will be measured with HR monitors, and it is expected that the real effort will be 50–75% of maximum HR, the values recommended by the ACSM.

EXERCISE INTENSITY CONTROL

Heart rate monitors will randomly be used in five participants, during the exercise sessions in all exercise programs, as aid adjustment and control of training loads. For safety reasons, exercise intensity is indirectly predicted using the Karvonen’s formula to predict target HR but with maximal heart rate (HR$_{\text{max}}$) being calculated using Franklin, Whaley, and Howley formula’s for older people (HR$_{\text{max}} = 207$ beat per minute – 0.7 × chronological age) (89).

EXERCISE ADHERENCE TO THE INTERVENTION PROTOCOL

The instructors will document attendance to each class and the levels of exercise adherence will be calculated using the number of sessions attended as a covariable in secondary analysis of the exercise results. Intervention groups are asked to attend at least 70% of the classes. The instructors and research team staff will be asked to motivate the participants every time an absence to two consecutive classes occurs (47).

DATA ANALYSIS

The assumption of normality will be checked by the Kolmogorov–Smirnov test with Lilliefors’ (K–S) significance correction and by visual inspection of normality plots. In study 2, comparison between groups will be accomplished using Univariate Statistics, in particular the independent T-test for 2 paired samples, and one-way analysis of variance (ANOVA) for K-independent samples. To elucidate which pathways (as biological, psychological, and behavioral parameters) will play a significant role in the effects of exercise on cognitive function in the participants, we will conduct mediation analysis. In this case, hormonal mediation will be analyzed by including hormone levels as covariates in the models with cognitive and immunological outcomes, to see if they partially or fully explain the exercise effects (make exercise effects less or non-significant), where there are exercise effects. These analyses will be conducted using SPSS and R (www.r-project.org) at a significance threshold of alpha = 0.05, adjusted for multiple comparisons where relevant. Data analysis will include repeated measures ANOVA models for block designs of different exercise conditions (SPPS and R), and mixed effects models to include graded dose-dependent exercise effects whilst also allowing for repeated measures data (using R). ANOVA models require principally that variance between cells does not differ too strongly (not more than factor 2), which will be checked in the assumptions checking stage. Mixed effects models allow very flexibly for non-normal outcome data distributions, for example, binomial for accuracy data (e.g., correct/wrong answers on cognitive tests) or Poisson for count data. Biological and psychological data are also often log-normally distributed (e.g., hormone levels, reaction times), variables where this is applicable will be log-transformed if the resulting distribution shows a better match with a normal distribution. Model residuals will also be checked for deviations from normality. Because a large number of outcome variables will be collected in this study, variable grouping and compound score selection will be based initially on theoretical domains (90, 91). The between-subject SD for each dependent variable was used to convert the changes in all variables into standardized [Cohen effect size (ES)] changes in the mean. Using Hopkins as guide (92), ESs were considered as trivial ($d \leq 0.2$), small ($0.2 < d < 0.6$), moderate ($0.6 < d < 1.2$), large ($1.2 < d < 2.0$), very large ($2.0 < d < 4.0$), and nearly perfect ($d > 4.0$). This will be confirmed by correlation matrices (all variables in a group should correlate with at least 50%) and principal component analyses where the first component should carry at least 70% of the variance.

DISCUSSION

This study will allow us to investigate which hormonal parameters are able to mediate the effects of exercise on immunity, psychological stress, and cognitive improvement and dementia risk in older people who are regularly active and which type of exercise is more effective in promoting immune and psychological health and cognitive improvement. The final goal is to develop exercise protocols that may lead to prevention of disease and a better quality of life. This study also sustains the hypothetical premise that exercise improves neurocognitive functions, following a current trend study in the field of aging (23, 59, 93). However, to the best of our knowledge, no large intervention study has yet been conducted on the effect of these exercise interventions on cognitive decline in subjects with MCI. The pilot study for this type of population is essential as it will reveal to what extent adherence to exercise suffers influence of psychosocial factors in chronic diseases (94, 95). It is important to monitor the effectiveness of the program, as evidence shows that a low cognitive profile may compromise the trainability of the participants (96). This study also shows a strong multidisciplinary approach, since it is prudent to investigate the combined effects of some independent variables. In addition, we will also look at the hypothetical premise that some objective measures have strong associations with subjective perception measures.

AUTHOR CONTRIBUTIONS

AT and JF designed and coordinated the research project. GF and MC drafted the paper. All the authors have made a substantial contribution in their respective areas of expertise, critically revised the work, approved the final version, and agreed to be accountable for all aspects of the work.
ACKNOWLEDGMENTS

The authors would like to thank the Institutions that accepted to participate in this study: Santa Casa da Misericórdia de Coimbra, Caritas Diocesana de Coimbra e Venerável Ordem Terceira de Penitência de S. Francisco. The authors would also like to thank the students Fábio Direito, Tais Rieping, Nelba Souza, Sandra Pereira, and Rafael Carvalho for volunteering to help with exercise implementation and data collection. Thera-band® elastic bands were kindly provided by Prof. Juan Colado, Valencia University, Spain.

REFERENCES

1. Mungas D. In-office mental status testing: a practical guide. Geriatrics (1991) 46(7):54–8.
2. Doi T, Shimada H, Park H, Makizako H, Tsutsunimoto K, Uemura K, et al. Cognitive function and falling among older adults with mild cognitive impairment and slow gait. Geriatr Gerontol Int (2015) 15:1087–93. doi:10.1111/ggi.14076
3. Panza F, Seripa D, Solfrizzi V, Tortelli R, Greco A, Pilotto A, et al. Targeting cognitive frailty: clinical and neurobiological roadmap for a single complex phenotype. J Alzheimers Dis (2015) 47(4):793–813. doi:10.3233/JAD-150358
4. Han ES, Lee Y, Kim J. Association of cognitive impairment with frailty in community-dwelling older adults. Int Psychogeriatr (2014) 26(1):155–63. doi:10.1017/S1041610213001841
5. Panza F, Solfrizzi V, Barulli MR, Santamato A, Seripa D, Pilotto A, et al. Cognitive frailty: a systematic review of epidemiological and neuropathological evidence of an age-related clinical condition. Rejuvenation Res (2015) 18(5):389–412. doi:10.1089/rej.2014.1637
6. Chong MS, Tay L, Chan M, Lim WS, Ye R, Tan EK, et al. Prospective longitudinal study of frailty transitions in a community-dwelling cohort of older adults with cognitive impairment. BMC Geriatr (2015) 15:175. doi:10.1186/s12877-015-0174-1
7. Robertson DA, Savva GM, Kenny RA. Frailty and cognitive impairment – a review of the evidence and causal mechanisms. Ageing Res Rev (2013) 12(4):480–51. doi:10.1016/j.arr.2013.06.004
8. Bilotta C, Bergamaschi I, Nicolini P, Casè A, Pina G, Rossi SV, et al. Frailty syndrome diagnosed according to the study of osteoporotic fractures criteria and mortality in older outpatients suffering from Alzheimer’s disease: a one-year prospective cohort study. Aging Ment Health (2012) 16(3):273–80. doi:10.1080/13607863.2011.609534
9. Lee JSW, Auyeung T-W, Leung J, Kwok T, Woo J. Transitions in frailty states among community-living older adults and their associated factors. J Am Med Dir Assoc (2014) 15(4):281–6. doi:10.1016/j.jamda.2013.12.002
10. Walsh NP, Gleeson M, Shephard R, Gleeson M, Woods A, Bishop NC, et al. Position statement. Part one: immune function and exercise. Exerc Immunol Rev (2011) 17:6–63.
11. Gruber AL, Hudson LL, Sempowski GD. Immunosenescence of ageing. J Pathol (2007) 211(2):144–56. doi:10.1002/path.2104
12. Sato S, Kiyono H, Fujisaki H. Mucosal immunosenescence in the gastrointestinal tract: a mini-review. Gerontology (2015) 61(4):336–42. doi:10.1159/000368897
13. Wullens JA, Verschueren SMP, Degens H, Morse CI, Onnambélé GL. A review of the assessment and prevalence of sedentarism in older adults, its physiology/health impact and non-exercise mobility counter-measures. Biogerontology (2016) 17(3):547–65. doi:10.1007/s10522-016-9640-1
14. Williams JW, Plassman BL, Burke J, Benjamin S. Preventing Alzheimer’s disease and cognitive decline. Evid Rep Technol Assess (Full Rep) (2010) (193):1–72.
15. Erickson KI, Kramer AF. Aerobic exercise effects on cognitive and neural plasticity in older adults. Br J Sports Med (2009) 43(1):22–4. doi:10.1136/bjsm.2008.052498
16. Middleton LE, Mittnacht A, Fallah N, Kirkland SA, Rockwood K. Changes in cognition and mortality in relation to exercise in late life: a population based study. PLoS One (2008) 3(9):e3124. doi:10.1371/journal.pone.0003124
17. Blazer DG. Depression in late life: review and commentary. J Gerontol A Biol Sci Med Sci (2003) 58(3):249–65. doi:10.1093/gerona/58.3.M249
18. Koenig AM, Bhalla RK, Butters MA. Cognitive functioning and late-life depression. J Int Neuropsychol Soc (2014) 20(5):661–7. doi:10.1017/S1355617714000198
19. Leonard BE, Myint A. Changes in the immune system in depression and dementia: causal or coincidental effects? Dialogues Clin Neurosci (2006) 8(2):163–74.
20. Allison DJ, Ditor DS. The common inflammatory etiology of depression and cognitive impairment: a therapeutic target. J Neuroinflammation (2014) 11(1):151. doi:10.1186/s12974-014-0151-1
21. Conn VS. Depressive symptom outcomes of physical activity interventions: meta-analysis findings. Ann Behav Med (2010) 39(2):128–38. doi:10.1007/s11916-010-9172-x
22. Sjöstén K, Kivelä S-L. The effects of physical exercise on depressive symptoms among the aged: a systematic review. Int J Geriatr Psychiatry (2008) 23(1):410–8. doi:10.1002/gps.1494
23. Chodzko-Zajko W, Shwingel A. Successful aging: the role of physical activity. Am J Lifestyle Med (2008) 3(1):20–8. doi:10.1177/1559827608325456
24. Papacosta E, Nassis GP. Saliva as a tool for monitoring steroid, peptide and immune markers in sport and exercise science. J Sci Med Sport (2011) 14(5):342–4. doi:10.1016/j.jsams.2011.03.004
25. van Stegeren AH, Wolf OT, Kindt M. Salivary alpha amylase and cortisol responses to different stress tasks: impact of sex. Int J Psychophysiol (2008) 69(1):33–40. doi:10.1016/j.ijpsycho.2008.02.008
26. Scanneli FA, Solomon L, Wadenny RO. Emergence in human dental plaque and host distribution of amylase-binding streptococci. J Dent Res (1994) 73(10):1627–35.
27. Beauchet O. Testosterone and cognitive function: current clinical evidence of a relationship. Eur J Endocrinol (2006) 155(6):773–81. doi:10.1530/eje.1.02306
28. Maninger N, Wolkowiz OM, Reus VI, Epel ES, Mellon SH. Neurobiological and neuropsychiatric effects of dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS). Front Neuroendocrinol (2009) 30(1):65–91. doi:10.1016/j.yfan.2008.11.002
29. Straub RH, Tankó LB, Christiansen C, Larsen PJ, Jessop DS. Higher physical activity is associated with increased androgens, low interleukin 6 and less aortic calcification in peripheral obese elderly women. J Endocrinol (2008) 199(1):61–8. doi:10.1677/EIO-08-0319
30. Guerreiro RJ, Santana I, Brás JM, Santiago B, Paiva A, Oliveira C. Peripheral inflammatory cytokines as biomarkers in Alzheimer’s disease and mild cognitive impairment. Neurodegener Dis (2007) 4(6):406–12. doi:10.1159/000107700
31. Satzabal CL, Zhu YC, Mazoyer B, Dufouil C, Tzourio C. Circulating IL-6 and CRP are associated with MRI findings in the elderly: the 3C-Dijon study. Neurology (2012) 78(10):720–7. doi:10.1212/wnl.0b013e318248e5f0
32. Sudheimer DKD, O’Hara R, Spiegel D, Powers B, Kraemer CHC, Nerl E, et al. Cortisol, cytokines, and hippocampal volume interactions in the elderly. Front Aging Neurosci (2014) 6:1–7. doi:10.3389/fnagi.2014.00153

FUNDING

This work was financed by FEDER funds through COMPETE and national funds through FCT-Portuguese Foundation for Science and Technology in the framework of project PTDC/DTP-DEN/0154/2012. The PhD students GF and MC were financed by a grant from CAPES/CNPQ – Ministry of Education, Brazil (BEX: 11929/13-8 and BEX: 13642/13-8, respectively). AT, JF, LR, AF, and MC are registered at CIDAF (UID/PDT/04213/2013).
33. Gomez-Pinilla F, Hillman C. The influence of exercise on cognitive abilities. *Compr Physiol* (2013) 3(1):403–28. doi:10.1002/cphy.c110063
34. Vaughan S, Matthew S, Shum D, O’Dwyer S, Polt D. Study protocol: a randomized controlled trial of the effects of a multi-modal exercise program on cognition and physical functioning in older women. *BMC Geriatr* (2012) 12(1):60. doi:10.1186/1471-2318-12-60
35. Jager CA, Hogervorst E, Combrinck M, Budge MM. Sensitivity and specificity of neuropsychological tests for mild cognitive impairment, vascular cognitive impairment and Alzheimer’s disease. *Psychol Med* (2003) 33(6):1039–50. doi:10.1017/S0033291703008031
36. Kocabas NA, Antonjevic I, Fagghei C, Forfar K, Capper S, Lecrubier Y, et al. Brain-derived neurotrophic factor gene polymorphisms: influence on treatment response phenotypes of major depressive disorder. *Int Clin Psychopharmacol* (2011) 26(1):1–10. doi:10.1097/YIC.0b013e32834d18f8
37. Shimizu E, Hashimoto K, Okamura N, Koike K, Komatsu N, Kumakiri K, et al. Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. *Biol Psychiatry* (2003) 70–5. doi:10.1016/S0006-3223(03)00181-1
38. Verdelho A, Madureira S, Moleiro C, Santos CO, Ferro JM, Erkijnjutti T, et al. Self-perceived memory complaints predict progression to Alzheimer disease. *The LADIS study. J Alzheimers Dis* (2011) 27(3):491–8. doi:10.3233/JAD-2011-110494
39. Broga R. Ética na publicação de trabalhos científicos. *Rev Port Med Geral e Fam* (2004) 29(6):354–6.
40. Shepard RJ. Ethics in exercise science research. *Sports Med* (2002) 32(3):169–83. doi:10.2165/00007256-200232030-00002
41. Petrini C. Helsinki 50 years on. *Clin Ter* (2014) 165(4):179–81. doi:10.7417/CT.2014.1729
42. Bischoff HA, Stahelin HB, Monsch AU, Iversen MD, Weyh A, von Dechend M, et al. Identifying a cut-off point for normal mobility: a comparison of the timed “up and go” test in community-dwelling and institutionalised elderly women. *Age and Ageing* (2003) 32(3):315–20. doi:10.1093/ageing/32.3.315
43. Jensen CS, Hasselbalch SG, Waldemar G, Simonsen AH. Biochemical comparison of the timed “up and go” test in community-dwelling and institutionalised elderly women. *Age and Ageing* (2003) 32(3):169–83. doi:10.1093/ageing/aft176
44. McAlwee E, Elavsky S, Motl RW, Konopack JF, Hu L, Marquez DX. Physical activity, self-efficacy, and self-esteem: longitudinal relationships in older adults. *J Gerontol B Psychol Sci Soc Sci* (2005) 60(5):268–75. doi:10.1093/geronb/50.3.268
45. Barros F, Nieto J. Satisfacción con la vida: diferencias conforme a religión y a la cultura. *Psicol Educ Cult* (2004) 7(2):243–78.
46. Parker SJ, Strath SJ, Swartz AM. Physical activity measurement in older adults: relationships with mental health. *J Aging Phys Act* (2008) 16(4):369–80.
47. Trigo M, Canudo N, Branco F, Silva D. Estudo das propriedades psicométricas da perceved stress scale (PSS) na população portuguesa. *Phychologia* (2010) 53:33–58. doi:10.14195/1647-8606_53_17
48. Remor E. Psychometric properties of a European Spanish version of the perceived stress scale (PSS). *Span J Psychol* (2006) 9(1):86–93. doi:10.1017/S1138741606008661
49. Pais-Ribeiro J, Silva I, Ferreira T, Martins A, Meneses R, Baltar M. Validation study of a Portuguese version of the hospital anxiety and depression scale. *Psychol Health Med* (2007) 12:225–35. doi:10.1080/13548500600740488
50. Lawton MP, Brody EM. Assessment of older people: self-maintaining and instrumental activities of daily living. *Gerontologist* (1969) 9(3):179–86. doi:10.1093/geront/9.3_Part_1.179
51. Graf C. The Lawton instrumental activities of daily living scale. *Am J Nurs* (2008) 108(1):52–62. quiz 62–3. doi:10.1097/01.NAJ.0000314140.46029.74
52. Furtz S, Downs TD, Cash HR, Grota RC. Progress in development of the index of ADL. *Gerontologist* (1970) 10(1):20–30. doi:10.1093/geront/10.1 Part_1.20
53. Charmson ME, Pompel P, Aleski KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. *J Chronic Dis* (1987) 40(3):373–83. doi:10.1016/0021-9681(87)90171-8
54. Charmson ME, Stzrowski TP, Peterson J, Gold J. Validation of a combined comorbidity index. *J Clin Epidemiol* (1994) 47(11):1245–51. doi:10.1016/0895-4356(94)90129-5
55. Quan H, Li B, Couris CM, Fushimi K, Graham P, Hider P, et al. Updating and validating the Charlson comorbidity index and score for risk adjustment in hospital discharge abstracts using data from 6 countries. *Am J Epidemiol* (2011) 173(6):676–82. doi:10.1093/aje/kwq433
56. Jensen CS, Hasselbalch SG, Waldemar G, Simonsen AH. Biochemical comparison of the timed “up and go” test in community-dwelling and institutionalised elderly women. *Age and Ageing* (2003) 32(3):169–83. doi:10.1093/ageing/aft176
57. Lottie JJ, Remington R, Hoffmann H, Shea TB. Lack of correlation of WAIS digit span with clox 1 and the dementia rating scale in MCI. *J Alzheimers Dis* (2012) 21:3000.e117. doi:10.3233/JAD-2011-110494
58. Berrigan LI, Fisk JD, Walker LAS, Wojtowicz MR, Rees LM, Freedman MS, et al. Reliability of regression-based normative data for the oral symbol digit modal test: an evaluation of demographic influences, construct validity, and impairment classification rates in multiple sclerosis samples. *Clin Neuropsychol* (2014) 28(2):281–99. doi:10.1080/13854064.2013.871337
59. Fernandes HM, Vasconcelos-Raposo J, Pereira E, Ramalho J, Oliveira S. A influência da actividade física na saúde mental positiva de idosos. *Motricidade Revista Motricidade/Edifícios Desafio Singular* (2009) 5(1):33–50. doi:10.6063/motricidade.5(1).186
60. McCaulley E, Elavsky S, Motl RW, Konopack JF, Hu L, Marquez DX. Physical activity, self-efficacy, and self-esteem: longitudinal relationships in older adults. *J Gerontol B Psychol Sci Soc Sci* (2005) 60(5):268–75. doi:10.1093/geronb/50.3.268
61. Barros F, Nieto J. Satisfacción con la vida: diferencias conforme a religión y a la cultura. *Psicol Educ Cult* (2004) 7(2):243–78.
62. Parker SJ, Strath SJ, Swartz AM. Physical activity measurement in older adults: relationships with mental health. *J Aging Phys Act* (2008) 16(4):369–80.
63. Trigo M, Canudo N, Branco F, Silva D. Estudo das propriedades psicométricas da perceived stress scale (PSS) na população portuguesa. *Phychologia* (2010) 53:33–58. doi:10.14195/1647-8606_53_17
64. Remor E. Psychometric properties of a European Spanish version of the perceived stress scale (PSS). *Span J Psychol* (2006) 9(1):86–93. doi:10.1017/S1138741606008661
65. Pais-Ribeiro J, Silva I, Ferreira T, Martins A, Meneses R, Baltar M. Validation study of a Portuguese version of the hospital anxiety and depression scale. *Psychol Health Med* (2007) 12:225–35. doi:10.1080/1354850050042808
66. Lawton MP, Brody EM. Assessment of older people: self-maintaining and instrumental activities of daily living. *Gerontologist* (1969) 9(3):179–86. doi:10.1093/geront/9.3_Part_1.179
67. Graf C. The Lawton instrumental activities of daily living scale. *Am J Nurs* (2008) 108(1):52–62. quiz 62–3. doi:10.1097/01.NAJ.0000314140.46029.74
older adults. *Arch Gerontol Geriatr* (2015) 61(3):344–50. doi:10.1016/j. archger.2015.08.019

75. Brem BM, van Munster BC, Korevaar JC, de Haan RI, de Rooij SE. Variability in measuring (instrumental) activities of daily living functioning and functional decline in hospitalized older medical patients: a systematic review. *J Clin Epidemiol* (2011) 64(6):619–27. doi:10.1016/j.jclinepi.2010.07.005

76. Tinetti ME, Richman D, Powell W. Falls efficacy as a measure of fear of falling. *J Gerontol* (1990) 45(6):239–43. doi:10.1093/geronj/45.6.P239

77. Morgan MT, Frisica LA, Whitney SL, Furman JM, Sparto PJ. Reliability and validity of the falls efficacy scale-international (FES-I) in individuals with dizziness and imbalance. *Otol Neurotol* (2013) 34(6):1104–8. doi:10.1097/MAO.0b013e318281df5d

78. Allgrove JE, Gomes E, Hough J, Gleson M. Effects of exercise intensity on salivary antimicrobial proteins and markers of stress in active men. *J Sports Sci* (2008) 26(6):653–61. doi:10.1080/02640410701716790

79. Rikli RE, Jones CJ. Development and validation of criterion-referenced clinically relevant fitness standards for maintaining physical independence in later years. *Gerontologist* (2013) 53(2):255–67. doi:10.1093/geront/gns071

80. Chumlea W, Baumgartner N. Status of anthropometry in elderly subjects with composition data. *Am J Clin Nutr* (1989) 50:1158–66.

81. Nelson ME, Rejeski WJ, Blair SN, Judge JO, King AC, et al. Physical activity and public health in older adults: recommendation from the American College of Sports Medicine and the American Heart Association. *Med Sci Sports Exerc* (2007) 39(8):1435–45. doi:10.1249/01.mss.0000264010.701716a2

82. Robinson KR, Leighton P, Logan P, Gordon AL, Anthony K, Harwood RH, et al. Developing the principles of chair based exercise for older people: a modified Delphi study. *BMC Geriatr* (2014) 14(1):65. doi:10.1186/1471-2318-14-65

83. Anthony K, Robinson K, Logan P, Gordon AL, Harwood RH, Masud T. Chair-based exercises for frail older people: a systematic review. *Biomed Res Int* (2013) 2013:309506. doi:10.1155/2013/309506

84. Hars M, Herrmann FR, Gold G, Rizzoli R, Trombetti A. Effect of music-based multitask training on cognition and mood in older adults. *Age Ageing* (2014) 43(2):196–200. doi:10.1093/ageing/afu163

85. Nikolić G. Narrow capture beat. *Heart Lung* (2004) 33(3):194–5. doi:10.1016/S0147-9563(03)00118-3

86. Colado JC, Garcia-Masso X, Triplett NT, Calatayud J, Flandez J, Behm D, et al. Construct and concurrent validation of a new resistance intensity scale for exercise with Thera-band® elastic bands. *J Sports Sci Med* (2014) 13(4):758–66.

87. Patel NK, Newstead AH, Ferrer RL. The effects of yoga on physical functioning and health related quality of life in older adults: a systematic review and meta-analysis. *J Altern Complement Med* (2012) 18(10):902–17. doi:10.1089/acm.2011.0473

88. Büsing A, Ostermann T, Lüdtke R, Michalsen A. Effects of yoga interventions on pain and pain-associated disability: a meta-analysis. *J Pain* (2012) 13(1):3–9. doi:10.1016/j.jpain.2011.10.001

89. Gudervani B, Johnson A, Mathiowetz V. Impact of exercise frequency on hand strength of the elderly. *Phys Occup Ther Geriatr* (2013) 31(3):268–79. doi:10.3109/02703181.2013.796583

90. Gillespie LD, Robertson MC, Gillespie WJ, Sherrington C, Gates S, Cumming RM, et al. Interventions for preventing falls in older people living in the community. *Cochrane Database Syst Rev* (2012) 9:CD007146. doi:10.1002/14651858.CD007146.pub3

91. Robitaille AL, Muniz G, Lindwall M, Piccinin AM, Hoffman L, Johansson B, et al. Physical activity and cognitive functioning in the oldest old: within- and between-person cognitive activity and psychosocial mediators. *Eur J Ageing* (2014) 11(4):333–47. doi:10.1007/s10433-014-0314-z

92. Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. *Med Sci Sports Exerc* (2009) 41(1):3–12. doi:10.1249/MSS.0b013e31818cb278

93. Carlson MC, Erickson KI, Kramer AF, Voss MW, Bolea N, Mielke M, et al. Evidence for neurocognitive plasticity in at-risk older adults: the experience corps program. *J Gerontol A Biol Sci Med Sci* (2009) 64(12):1275–82. doi:10.1093/gerona/grp117

94. Mille R, Crotty M. Musculoskeletal health, frailty and functional decline. *Best Pract Res Clin Rheumatol* (2014) 28(3):395–410. doi:10.1016/j.bpr.2014.07.005

95. Macklai NS, Spagnoli J, Junod J, Santos-Eggimann B. Prospective association of the SHARE-operationalized frailty phenotype with adverse health outcomes: evidence from 60+ community-dwelling Europeans living in 11 countries. *BMC Geriatr* (2013) 13(1):3. doi:10.1186/1471-2318-13-3

96. Uemura K, Shimada H, Makizako H, Doi T, Yoshida D, Tsutsumimoto K, et al. Cognitive function affects trainability for physical performance in exercise intervention among older adults with mild cognitive impairment. *Clin Interv Aging* (2013) 8:97–102. doi:10.2147/CIA.S39434

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2016 Teixeira, Ferreira, Hogervorst, Praga, Bandelow, Rama, Figueiredo, Campos, Furtado, Chupel and Pedrosa. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.