Identification and expression analyses of the alanine aminotransferase (AlaAT) gene family in poplar seedlings

Zhiru Xu1,2, Jing Ma2, Chunpu Qu1,3, Yanbo Hu2, Bingqing Hao2, Yan Sun1, Zhongye Liu1, Han Yang1, Chengjun Yang3, Hongwei Wang2, Ying Li4 & Guanjun Liu1,3

Alanine aminotransferase (AlaAT, E.C.2.6.1.2) catalyzes the reversible conversion of pyruvate and glutamate to alanine and α-oxoglutarate. The AlaAT gene family has been well studied in some herbaceous plants, but has not been well characterized in woody plants. In this study, we identified four alanine aminotransferase homologues in Populus trichocarpa, which could be classified into two subgroups, A and B. AlaAT3 and AlaAT4 in subgroup A encode AlaAT, while AlaAT1 and AlaAT2 in subgroup B encode glutamate:glyoxylate aminotransferase (GGAT), which catalyzes the reaction of glutamate and glyoxylate to α-oxoglutarate and glycine. Four AlaAT genes were cloned from P. simonii × P. nigra. PnAlaAT1 and PnAlaAT2 were expressed predominantly in leaves and induced by exogenous nitrogen and exhibited a diurnal fluctuation in leaves, but was inhibited in roots. PnAlaAT3 and PnAlaAT4 were mainly expressed in roots, stems and leaves, and was induced by exogenous nitrogen. The expression of PnAlaAT3 gene could be regulated by glutamine or its related metabolites in roots. Our results suggest that PnAlaAT3 gene may play an important role in nitrogen metabolism and is regulated by glutamine or its related metabolites in the roots of P. simonii × P. nigra.

Nitrogen is an essential nutrient element for plant growth. The use of nitrogen directly affects plant growth and development, biomass and grain yield. Poplar has great potential applications in CO2 mitigation and biofuel production1, and is perhaps more often used for pulpwod and nowadays as a biomass crop2. Poplar can exchange N with the environment by opening or closing the N cycle3, and thus plays a critical role in the ecosystem N cycle4,4. However, usually acting as a shelter forest, poplar is often established on marginal lands where the soil N is limited5. To achieve sustainable high productivity and decrease N fertilization, it is important to obtain a better understanding of the molecular regulatory mechanisms of N utilization.

Nitrate (NO$_3^-$) and ammonium (NH$_4^+$) are the main sources of inorganic N in the soil. They can be absorbed by roots through at least two transport systems6–7. NO$_3^-$ is transported into roots by nitrate transporters (NRT), and then reduced to NH$_4^+$ by nitrate reductase (NR) and nitrite reductase (NiR). NH$_4^+$ is transported into roots by ammonium transporters (AMT), assimilated into glutamine and glutamate through the glutamine synthetase (GS) and glutamate synthase (GOGAT) cycle, and further incorporated into other amino acids by aminotransferase8. NH$_4^+$ and NO$_3^-$ have different effects on plant growth, as the pH of the medium is reduced after NH$_4^+$ is absorbed and increased after NO$_3^-$ is absorbed, which affects the availability of other nutrients9. When NH$_4^+$ is supplied as the sole N source, many plants showed negative effects, such as reduced leaf area, relative growth rate and dry matter yield10–12. In contrast to NH$_4^+$, the presence of NO$_3^-$ stimulated the germination of dormant seeds of Arabidopsis thaliana13, regulated shoot-root allocation in tobacco and floral induction in A. thaliana14,15 and inhibited root growth of maize16. Many Populus species showed better growth on NO$_3^-$ than on NH$_4^+$, but some authors have reported a preference for NH$_4^+$17. Because different N forms have different effects on plant growth and development, the elucidation of the molecular regulatory mechanisms of N utilization is still needed.
growth and metabolism, the expression of related plant genes might be altered. It is therefore necessary to study the effects of N forms on the expression of genes in N metabolism.

Alanine aminotransferase (AlaAT, E.C.2.6.1.2) is a pyridoxal phosphate-dependant enzyme that catalyses the reversible conversion of alanine and α-oxoglutarate to pyruvate and glutamate. AlaAT is widely distributed in various plant tissues and organs. It is found to be active not only in leaves, roots and flowers, but also in other tissues, such as those of fruit as well as the inner endosperm tissues of developing rice seeds. The diverse distribution of AlaAT suggests that it may play important roles in the life cycle of plants. Previous research on AlaAT has mainly focused on its role in hypoxic conditions, which has been characterized in Hordeum vulgare, Medicago truncatula, and Arabidopsis thaliana. AlaAT transcript levels could be induced by hypoxia during hypoxia condition induced by waterlogging, AlaAT linked glycolysis and the tricarboxylic acid cycle in Lotus japonicus. AlaAT is a limiting factor in alanine synthesis under low-oxygen conditions; the primary role of AlaAT variants is to break down alanine when it is in excess in A. thaliana.

Nevertheless, we are more interested in the role of AlaAT in nitrogen and carbon metabolisms. AlaAT expression is not only regulated by hypoxia but also by light and N uptake. AlaAT has been widely studied using genetic engineering methods in recent years. Over-expression of a barley AlaAT in Brassica napus (canola) and Oryza sativa (rice) increased the yield and biomass of the transgenic plants. The transcriptome of transgenic rice roots and shoots over-expressing alanine aminotransferase under the control of a tissue-specific promoter was not significantly different from that of controls. Sugarcane lines transformed with barley alanine aminotransferase gene driven by rice aldehyde dehydrogenase gene (OxAnt1) promoter showed improved N use efficiency compared with untransformed ones in a pot trial under low nitrogen conditions.

Recent studies have indicated that the over-expression of AlaAT variants other than barley AlaAT in A. thaliana could further increase the N use efficiency phenotype(s).

Studies on the AlaAT gene family have mainly focused on herbaceous plant species. In A. thaliana, four AlaAT genes have been cloned, including AtAlaAT1 and AtAlaAT2 encoding alanine aminotransferase (E.C.2.6.1.2), and AtGGAT1 and AtGGAT2 encoding GGAT (E.C.2.6.1.4) with glutamate:glyoxylate aminotransferase activity. In Glycine max, two subclasses were identified, with each subclass represented by two highly similar members with the same gene structure. Similarly, four AlaATs were found to be encoded in M. truncatula. Unlike herbaceous plants, tree species have a long lifespan, long generation times and a perennial woody growth habit. The N nutrition of trees is sustained by seasonal and internal cycling. Studying the molecular regulatory mechanisms of N in poplar has great environmental significance. In the present study, we characterized the AlaAT gene family members in P. trichocarpa, and cloned them from P. simonii × P. nigra. We then investigated the expression profile of the PtAlaAT genes with real-time quantitative PCR in leaves, stems and roots of P. simonii × P. nigra supplied with different N sources and light levels. Additionally, the regulation of PtAlaAT3 in roots was studied under treatment with methionine sulfoximine (MSX), an inhibitor of glutamine synthetase.

Results

Identification of AlaAT genes in *P. trichocarpa*.

According to the methods of Wang et al., the Hidden Markov Model (HMM) profile of Pf00155 was searched against the *P. trichocarpa* genome to identify *AlaAT* genes. Four sequences (XM_000315639, XM_002312643, XM_006369021, XM_002304219) located on different chromosomes were found in the *P. trichocarpa* genome. The total length of each of the four sequences was 1446 bp, encoding 481 amino acids (Table 1).

S.N.	Name	Accession Number	Chromosome Location	ORF(bp)	Exon Number	Location	E-value
1	PtAlaAT1	XM_002315639	Chr10:7600723–7606675	1446	13	62–461	4.8E-38
2	PtAlaAT2	XM_002312643	Chr08:12923980–12938537	1446	13	64–461	2.2E-140
3	PtAlaAT3	XM_006369021	Chr01:13606954–13612423	1446	16	80–468	1.6E-38
4	PtAlaAT4	XM_002304219	Chr03:10141011–10146425	1446	15	86–468	2.2E-34

Table 1. AlaAT gene family in *Populus trichocarpa*.

Regulatory regions in the poplar AlaAT genes.

To get insight into the functions of the *AlaAT* genes in poplar, the putative regulatory elements in their 5’-upstream regions were investigated. Abscisic acid (ABA) responsive elements were identified in the promoters of PtAlaAT2 and PtAlaAT3, MeJA-responsive elements were found exclusively in the PtAlaAT1 promoter, a gibberellin-responsive element (GA element) were found only in the PtAlaAT3 promoter, and salicylic acid responsive elements were present in the promoters of PtAlaAT1 and PtAlaAT3. All of the promoters contained...
anaerobic, circadian control, endosperm expression, defense and stress responsive elements, as well as many light-responsive elements, especially the PtAlaAT3 promoter.

Cloning the cDNAs of AlaAT family genes from P. simonii × P. nigra. Total RNA from mixed samples of roots, stems and leaves from P. simonii × P. nigra plants (about 30 cm tall) were reverse transcribed and full-length AlaAT cDNAs were amplified using the RT-PCR technique. Four clones (PnAlaAT1, PnAlaAT2, PnAlaAT3 and PnAlaAT4) were obtained. The open reading frames (ORFs) of PnAlaAT1, PnAlaAT2, PnAlaAT3 and PnAlaAT4 each encoded proteins of 481 amino acid residues. The cDNA sequences were aligned and the AlaAT gene sequences were found to be highly homologous (99%) between P. simonii × P. nigra and P. trichocarpa. The percentage identity (94%) between PnAlaAT1 and PnAlaAT2 was highest, followed by that (93%) between PnAlaAT3 and PnAlaAT4 (Figure S2). However, the percentage identity between PnAlaAT1/PnAlaAT2 and PnAlaAT3/PnAlaAT4 was low, only about 50%. According to Igarashi et al.18, the carboxy-terminal tripeptides of PnAlaAT1 (SRL) and PnAlaAT2 (SRL) are conserved peroxisome-targeting signal-like (PTS1-like) sequences.

Expression analysis of PnAlaATs in different organs of P. simonii × P. nigra. Determining the expression of gene family members in different organs provides important information on gene functions. To help characterizing of the functions of the PnAlaAT isogenes, their expression profiles were identified by quantitative real-time PCR in roots, stems and leaves. The leaves were divided into three groups to better characterize the expression patterns during leaf development. Four pairs of PCR primers were designed in 3′- or 5′-untranslated regions for specific amplification of each PnAlaAT isogene. The result showed (Fig. 4) that PnAlaAT1 and PnAlaAT2 were expressed mainly in the leaves, and the expression levels of these two genes in L3 were highest among all the organs. PnAlaAT3 and PnAlaAT4 were expressed in all the tested organs. The expression level of
PnAlaAT4 in leaves was higher than in roots, but significantly lower than the levels of PnAlaAT1 and PnAlaAT2 in leaves. In roots, the expression level of PnAlaAT3 was higher than those of PnAlaAT1 and PnAlaAT2 in roots.

Effects of nitrogen sources on PnAlaATs expression in different organs of P. simonii × P. nigra. AlaAT genes play an important role in the N metabolism process. To investigate the impact of N sources on the PnAlaAT genes expression, the expression profiles of PnAlaATs were studied by real-time quantitative PCR in leaves, stems and roots grown on different N sources at different concentrations. The result showed that the expression of PnAlaAT1 in L1 and L2 was induced by different N sources; however, expression in L3 was not induced significantly by exogenous N (Fig. 5). PnAlaAT1 expression in L1 increased with treatment time under low NO₃⁻, and reached a peak after 12 h of 1 mM NO₃⁻ supply. PnAlaAT1 transcript levels in L1 were lower under 10 mM NO₃⁻ treatment than that of 1 mM NO₃⁻. However, PnAlaAT1 transcript levels did not change significantly in L1 when treated with different concentrations of NH₄⁺ except 1 mM NH₄⁺ for 12 h and 10 mM NH₄⁺ for 72 h. Compared with L1, PnAlaAT1 abundance in L2 was induced to a high level, irrespective of N form or concentration. Expression of PnAlaAT1 was the highest in L3 compared with L1 and L2, but was not induced by the N sources. However, PnAlaAT1 expression in roots was strongly inhibited by different N sources. In stems, PnAlaAT1 expression levels were low and effectively negligible compared with that in other organs. The expression patterns of PnAlaAT2 were similar to those of PnAlaAT1, but the expression levels in the former were clearly lower than that in the latter (Figure S3).

Expression of PnAlaAT3 genes was strongly induced by exogenous N sources in roots irrespective of N forms (Fig. 6). Notably, the expression levels of PnAlaAT3 increased by more than 100 times when the plants were

Figure 3. Regulatory regions of the *P. trichocarpa* AlaAT genes. The 5′ upstream regions of AlaAT genes are represented. Regulatory elements conserved in each promoter are marked by colours. The position of the ATG is marked on the right.

Figure 4. Relative transcript levels of PnAlaAT genes in different organs of *P. simonii × P. nigra*. Quantitative RT-PCR was performed using total RNA extracted from leaves, stems and roots of 30 cm tall plants. Results are the mean ± SE of three replicates. (*P* < 0.05). L1: 1st–3rd leaves from the top of the plant; L2: 4th–6th leaves from the top of the plant; L3: 1st–3rd leaves from the bottom of the plant.
treated with 10 mM NH_4^+ for 12 h and 72 h in roots. The expression levels of *PnAlaAT3* in leaves were very weak, but increased significantly under high-N treatment. *PnAlaAT3* expression in stems was also induced by exogenous N, but at a level significantly lower than that in roots. In contrast, *PnAlaAT4* was expressed at a negligible level in all tested conditions (Figure S4).

Effects of the diurnal cycle on *PnAlaATs* expression in different organs of *P. simonii* × *P. nigra*. It is well documented that the transcriptional levels of several plant genes are subject to diurnal control42,43. To investigate whether the diurnal cycle affects the *PnAlaATs*, diurnal changes of expression level in leaves during a day/night cycle were determined. *PnAlaAT1* and *PnAlaAT2* expression fluctuated in different leaves during the diurnal cycle, and had the same periodicity (Fig. 7). *PnAlaAT3* and *PnAlaAT4* showed a similar
expression pattern in leaves, with low fluctuation and expression levels during the diurnal cycle. In addition, the expression levels of \(PnAlaAT1 \) were clearly higher than that of \(PnAlaAT2 \).

To evaluate the effect of light induction on \(PnAlaAT \) gene family members, the transcript levels in plants kept for 2 days in the dark or 2 days in the light were examined (Fig. 8). The mRNA levels of \(PnAlaAT1 \) increased significantly in L1 and L3 after 2 days of continuous dark, and the mRNA abundance of \(PnAlaAT1 \) was highest in L2 after this treatment. The mRNA level of \(PnAlaAT2 \) was lower than that of \(PnAlaAT1 \) in all tested sections, and didn't change significantly except in L2. \(PnAlaAT3 \) and \(PnAlaAT4 \) showed low expression levels in all conditions.

Figure 7. Diurnal fluctuation of expression patterns of \(PnAlaAT \) genes in leaves. Quantitative RT-PCR was performed using total RNA extracted from leaves. \(PnAlaAT1 \) and \(PnAlaAT2 \) refer to the left Y axis and \(PnAlaAT3 \) and \(PnAlaAT4 \) refer to the right Y axis. Results are the mean ± SE of three replicates.

Figure 8. Light effects on the expression patterns of \(PnAlaAT \) genes in leaves. Plants were grown in darkness for 2 days, or grown in light for 2 days. Quantitative RT-PCR was performed using total RNA extracted from leaves.
glutamate:glyoxylate aminotransferase activity (GGAT, E.C.2.6.1.4)18,36. PTSs were also found in PnAlaAT1 and PnAlaAT2 (Supplementary Figure 1). To reveal the biological roles of the glutamate:glyoxylate aminotransferase (GOGAT cycle) to generate glutamine from NH₄⁺, GS activity. GS functions in the glutamine synthetase/glutamine:ammonia (α-GOGAT) cycle to generate glutamine from NH₄⁺ and glutamate44. MSX blocks the enzyme activity of GS and prevents glutamine synthesis. NH₄⁺ application followed the N starvation increased PnAlaAT3 mRNA levels significantly in roots (Fig. 9). However, PnAlaAT3 expression showed no significant change when MSX was applied alone or with NH₄⁺. In contrast, PnAlaAT3 mRNA levels were significantly induced by MSX with Gln. These treatments had no impact on PnAlaAT1, PnAlaAT2 and PnAlaAT4. This suggested that glutamine rather than NH₄⁺ itself controlled the expression of PnAlaAT3 gene in roots.

Discussion

The present work is the first report of AlaAT homologues in Populus. We identified four AlaAT genes in P. trichocarpa, namely PtAlaAT1, PtAlaAT2, PtAlaAT3 and PtAlaAT4. The four genes were classified into two subgroups (Fig. 1) based on comparison with the sequences of AlaAT genes from A. thaliana, G. max and M. truncatula22. Subgroup A contained PtAlaAT3 and PtAlaAT4, which were closely related to A. thaliana alanine aminotransferase (AtAlaAT1 and AtAlaAT2), G. max alanine aminotransferase (GmAlaAT1 and GmAlaAT4) and M. truncatula alanine aminotransferase (MtAlaAT4); subgroup B contained PtAlaAT1 and PtAlaAT2, which were closely related to A. thaliana glutamate:glyoxylate aminotransferase (AtGGAT1 and AtGGAT2), G. max alanine aminotransferase (GmAlaAT2 and GmAlaAT3) and M. truncatula alanine aminotransferase (MtAlaAT). According to Tuskan et al.21, some segments on chromosomes I and III and chromosomes VIII and X are presumed to have arisen from the salicoid-specific genome duplication. PtAlaAT1–4 are located in these duplicated segments. This indicates that the two members of each subgroup might derive from a duplication event.

Many metabolic processes occur in leaves, such as synthesis of organic compounds, photosynthesis and photorespiration. Several studies have shown the N concentration of leaves generally decreases with increasing plant age46. In the chaparral shrub Lepechinia calycina growing in its natural habitat, photosynthetic capacity, leaf N content and stomatal conductance decrease with increasing leaf age47. In Portulaca oleracea L., the absolute amount of both ribulose bisphosphate carboxylase/oxygenase (rubisco) and phosphoenolpyruvate carboxylase was lower in senescent leaves than in mature leaves, and rubisco activity was reduced to a lesser degree48. In Nicotiana tabacum, metabolic, biochemical and molecular events occur during leaf ageing, with a particular emphasis on N metabolism. The sink/source transition also occurs at a particular leaf stage49. Additionally, the concentration of N supplied has an effect on leaf senescence50. On the basis of these results, we took leaf development and senescence into account. In our test conditions, we observed that the lower, old leaves wilted first, the amount of both ribulose bisphosphate carboxylase/oxygenase (rubisco) and phosphoenolpyruvate carboxylase was lower in senescent leaves than in mature leaves, and rubisco activity was reduced to a lesser degree48. In Figure 9, however, PnAlaAT3 expression showed no significant change when MSX was applied alone or with NH₄⁺. In contrast, PnAlaAT3 mRNA levels were significantly induced by MSX with Gln. These treatments had no impact on PnAlaAT1, PnAlaAT2 and PnAlaAT4. This suggested that glutamine rather than NH₄⁺ itself controlled the expression of PnAlaAT3 gene in roots.
PnAlaAT2 was expressed mainly in leaves, with the highest level in L3, but was negligibly expressed in stems and roots. In *A. thaliana*, the expression of *AtGGAT1* and *AtGGAT2* was much higher in green leaves than in other organs, but the *AtGGAT2* mRNA level was lower than that of *AtGGAT1* in all organs. The very high similarity of PnAlaAT1/PnAlaAT2 to *AtGGAT1*/AtGGAT2 indicated that they might be peroxisomal proteins and should have the same function in the photosynthetic process, catalyzing the reaction of glutamate and glyoxyxlate to oxoglutarate and glycine. However, it needs to be further confirmed. Given the expression pattern of PnAlaAT1 in response to light induction (Fig. 8), it seems interesting that PnAlaAT1 expression was higher at night, while photosynthesis only happens during the daytime. It is possible that PnAlaAT1 is highly expressed at night and its products Gly would be used during the subsequent day. The further studies were needed to examine this hypothesis.

PnAlaAT1 expression in L1 was affected by different NO\textsubscript{3}- concentrations, but different NH\textsubscript{4}+ concentrations did not cause a significant change (Fig. 5). NO\textsubscript{3}- reduction is related to photosynthesis, which is the light-stimulated oxidation of photosynthesis intermediates to CO\textsubscript{2}. This process occurs primarily in higher plants that fix CO\textsubscript{2} via the C3 pathway of photosynthesis. Photosynthesis protects C3 plants from photooxidation and occurs in the chloroplast, peroxisome, and mitochondrion. In the peroxisome, glutamate:glyoxylate aminotransferase catalyzes the reaction of glutamate and glyoxylate to oxoglutarate and glycine. Two isoforms exist in *A. thaliana*, with GGAT1 representing the major form in leaves. Photosynthesis stimulates provision of a reductant source for nitrate reductase. Most NO\textsubscript{3}- is reduced in leaves and is supplied to L1 predominantly. Additionally, NO\textsubscript{3}- is considered not only a major macronutrient, but also a powerful signal molecule. NO\textsubscript{3}- triggered signals can be rapidly and specifically sensed by plant cells and then the expression of a large set of genes regulating plant metabolism and growth are induced or inhibited. In our results, PnAlaAT1 expression in L1 was affected by different NO\textsubscript{3}- concentrations and reached a peak after 12 h of 1 mM NO\textsubscript{3}- supply. However, this kind of response didn’t occur in other organs. Based on the above results, we speculated that photosynthesis in L1 was affected predominantly when NO\textsubscript{3}- was supplied.

The expression level of PnAlaAT1 and PnAlaAT2 exhibited a diurnal fluctuation in leaves (Fig. 8). This periodic fluctuation may be controlled by an endogenous circadian clock, whose phase can be entrained by light, possibly through the phytochrome system. The presence of putative light-regulation and circadian elements in the promoter regions of PnAlaAT1 and PnAlaAT2 is consistent with our data and may partially explain the expression patterns of these genes in leaves. Previous studies showed that both AlaAT and GGAT activities were present in etiolated wheat seedlings but their activity was half of that observed in light-grown seedlings, and exposure of etiolated seedlings to light caused an increase in enzyme activities and upregulated AlaAT1 gene didn’t respond. But in our study, the expression of PnAlaAT1 and PnAlaAT2 exhibited a diurnal fluctuation in leaves (Fig. 8) and PnAlaAT1 increased significantly in L1 and L3 after 2 days of continuous dark (Fig. 9), while PnAlaAT3 and PnAlaAT4 didn’t exhibit these characteristics. The regulatory mechanism of PnAlaAT1 and PnAlaAT2 need to be further studied. Additionally, OsAlaAT1 plays an essential role in the regulation of starch storage in rice endosperm. This is consistent with our finding that endosperm expression elements existed in the promoter regions of the PnAlaAT1 genes.

The expression of AlaAT genes was diverse in different species. In soybean, GmAlaAT1 and GmAlaAT4 were expressed only in the roots of non-nodulated plants, with very low expression in the roots of nodulated plants. In *M. truncatula*, m-AlaAT was expressed at very similar levels in roots, stems and leaves of adult plants and in the embryo axes of young seedlings. In our study, PnAlaAT3 and PnAlaAT4 were expressed in all organs, while PnAlaAT2 was expressed at a much higher level in roots than in the other organs (Fig. 4).

NO\textsubscript{3}- and NH\textsubscript{4}+ are absorbed by roots through NRT and AMT, respectively. NO\textsubscript{3}- is reduced to NH\textsubscript{4}+ by NR and NiR, and then enters the glutamine synthetase (GS) and glutamate synthase (GOGAT) cycle. NH\textsubscript{4}+ is mainly assimilated in roots, whereas most NO\textsubscript{3}- reduction occurs in the leaves of poplars. Additionally, N concentration affects the NH\textsubscript{4}+ content and NR activities in poplar roots. It has been confirmed that GS activity in roots is promoted by ammonium. Ammonium has been identified as a signaling molecule. In our study, PnAlaAT3 expression in roots was increased more than 100 times after treatment with 10 mM NH\textsubscript{4}+ (Fig. 6). To determine whether this was due to the effect of the ammonium signal or the promotion of GS activity, we designed an experiment in which the GS activity was inhibited.

Glutamine, one of the assimilation products, can be synthesized from ammonium and glutamate by GS. Glutamine is the main transportable form of organic N and is a N-storing compound in plants. As a major amino donor for the synthesis of amino acids and other N-containing compounds, glutamine can be taken up from the soil. In addition to its role in nutrition and metabolism, glutamine can also function as a signal molecule inducing the expression of at least 35 genes involved in metabolism, transport, signal transduction, and stress responses within 30 min in rice. Can Glu induce the expression of AlaAT genes? We showed in this study that Glu affected the expression level of PnAlaAT3 in roots, but not the other three PnAlaAT genes. That is, NH\textsubscript{4}+ participated in the GS/GOGAT cycle to synthesize glutamine after being absorbed by the roots, and then glutamine or its related metabolites induced the expression of PnAlaAT3. However, Glu didn’t promote the expression of PnAlaAT3. This result suggests that PnAlaAT3 might play an important role in nitrogen metabolism.

In our previous study, we found that long-term application of different forms of nitrogen may cause morphological changes of poplar roots. However, we did not find significantly differentially expressed genes related to N metabolism pathway, mitochondrion electron transport/ATP synthesis and mineral nutrition in our previous report of global gene expression analysis utilizing RNA-seq. On the contrary, we found that the significantly differentially expressed genes are largely associated with fermentation, glycolysis, and tricarboxylic acid cycle (TCA), secondary metabolism, hormone metabolism and transport processing. In the study of Beatty et al.,
the alanine aminotransferase (AlaAT) gene was transferred into rice plants and ectopically expressed under the control of a tissue-specific promoter to investigate their functions in uses of nitrogen sources. Consistent with our findings, the authors found the transgenic plants displayed a strong N use efficiency but less changes in the transgenic transcriptome compared with the controls, with only 0.11 and 0.07% differentially regulated genes in roots and shoots, respectively. We speculate that N metabolism related genes might play an important role in the regulation of short-time N metabolism, and affect morphology changes of poplar roots through regulating fermentation, glycolysis and tricarboxylic acid cycle (TCA), secondary metabolism, hormone metabolism and transport processing.

Methods

Tissue culture and growth of plants. Young leaves were collected from cuttings of *P. simonii × P. nigra* grown at Northeast Forestry University Forest Farm, Harbin, China. Explants were surface sterilized with 70% absolute ethyl alcohol for 1 min and 0.5% NaOCl (Purui, Shanghai, China) solution for 7 min, and then rinsed three times with sterile double-distilled water. The leaves were cut into squares (1 cm²). The leaf squares were cultivated in Petri dishes (diameter 9 cm) on MS medium with 0.5 mg/L 6-benzyl-aminopurine (PhytoTechnology, Lenexa, USA) and 0.05 mg/L β-naphthaleneacetic acid (PhytoTechnology, Lenexa, USA), shoots were induced on MS medium with 0.1 mg/L 6-benzyl-aminopurine and 0.05 mg/L β-naphthaleneacetic acid, and roots were induced on MS medium with 0.2 mg/L indole-3-butyric acid (PhytoTechnology, Lenexa, USA). When they reached a height of 10 cm, the plantlets were transferred to a greenhouse with a photosynthetic photon flux density (PPFD) of 100 μmol m⁻² s⁻¹, a 16-h-light/8-h-dark photoperiod, and a temperature of 22 °C. There were 114 plants from the hybrids of *P. simonii × P. nigra* were studied in this research and 546 samples (leaves, stems and roots) were collected for all the analysis.

Nitrogen and inhibitor treatment. Each plant was grown in one plastic pot filled with sterilized vermiculite as a substrate and supplied with 200 mL of sterile modified Long-Ashton nutrient solution (1 mM nitrogen) every 2 days. The treatments were performed when the seedlings were 30 cm tall. The plants were supplied with 200 mL of sterile N-free nutrient solution for 4 days. The effects of different N sources on the plants were then tested by adding NH₄Cl or NaNO₃ or both to the N-free nutrient solution to final concentrations of 0.1, 1 and 10 mM. To avoid changing the osmotic pressure, 0.5 mM KCl and 0.9 mM CaCl₂ (Bodi, Tianjin, China) were used (Table S1). The plant tissues (1st-3rd (L1) and 4th-6th (L2) leaves from the top of the plant, 1st-3rd leaves (L3) from the bottom of the plant, stems and roots) were harvested after 0 h (control), 3 h, 12 h and 72 h treatment (Fig. 10). The plants were treated at different times, however, at the same time harvested at 11 o’clock. Three repeated samples were frozen in liquid nitrogen and stored at −80 °C for further analysis.
To examine the effect of methionine sulfoximine (MSX, an inhibitor of glutamine synthase), we supplied various test nutrient solutions (N-free nutrient solution, N-free nutrient solution plus 10 mM NH₄Cl, N-free nutrient solution plus 1 mM MSX; N-free nutrient solution plus 10 mM NH₄Cl and 1 mM MSX; N-free nutrient solution plus 10 mM Gln and 1 mM MSX). The plant seedlings were cultivated in nitrogen-free nutrient solution for 4 days, and then were transferred to the five aforementioned culturing solutions, respectively. After 12 h treatment, plant samples were harvested, frozen in liquid nitrogen immediately, and stored at −80 °C for future analysis.

Light treatment. Plantlets grown in tissue culture vessels were directly transferred to soil supplied with water every 2 days. To examine the influence of the diurnal cycle, samples were harvested every 3 h over one day. To examine the effect of light, the plants were grown in darkness for 2 days and then transferred to a 16-h-light/8-h-dark photoperiod for 4 days. Three repeated samples were frozen in liquid nitrogen and stored at −80 °C for analysis.

Identification of AlaAT gene family members in P. trichocarpa. We downloaded the Hidden Markov Model (HMM) profile file (Aminotran_1_2.hm) of the Pfam Aminotran_1_2 domain (PF00155) from the Pfam database.[70] The protein sequences of P. trichocarpa were downloaded from Phytozome 9.0 (http://www.phytozome.net/poplar_er.php). We used the HMM modules of PF00155 with the HMMER (v 3.0) software to search the proteome of P. trichocarpa.[71] Proteins with e-values less than 2.2E-34 were included in further analyses. We searched the Aminotran_1_2-domain in all the collected proteins using the Interproscan (http://www.ebi.ac.uk/Tools/pfa/iprscan/) and SMART software.[72] We used the Gene Structure Display Server (GSDS) program to illustrate the exon/intron organization of individual AlaAT genes.[73]

RNA extraction and reverse transcription. Total RNA was extracted from leaf, stem, and root tissues using the pBIOZOL plant total RNA Extraction Reagent (BioFlux, Hangzhou, China) according to the manufacturer’s protocol. The integrity of the RNA was verified by 1.5% agarose gel electrophoresis. After removing genomic DNA with gDNA Eraser, approximately 2 μg RNA was used to synthesize the first-strand cDNA using the PrimerScript RT Reagent Kit (Takara Biotechnology, Dalian, China).

Real-time PCR (RT-PCR). The Primer Premier 5.0 (Premier Biosoft, Palo Alto, CA, USA) software was used to design specific primers for real-time PCR analysis and the primer sequences of each gene were included in Table 2. The following gene-specific primers were used: for PtActin2.[76] Real-time PCR was performed using a 7500 Real-Time PCR System (Applied Biosystems) with SYBR Green PCR Master Mix (Applied Biosystems) according to the manufacturer’s protocol. Each reaction was performed on 5 μL of a 1:5 (v/v) dilution of the first-strand cDNA, synthesized as described above, with 0.3 μM of each primer in a total reaction of 20 μL. The specificity of the PCR amplification procedures was checked with a heat dissociation protocol after the final cycle. The amplification program had three steps: (1) 1 cycle (95 °C, 10 min); (2) 40 cycles, cDNA denaturing (95 °C, 15 s), hybridization and extension (60 °C, 1 min); (3) 1 cycle (95 °C, 15 s; 60 °C, 1 min; 95 °C, 15 s; 60 °C, 15 s) to generate a dissociation curve to confirm the specific amplification of each individual reaction. Each reaction was done in triplicate and the corresponding Ct values were determined. In the expression analyses, transcript levels were normalized to the PtActin2 gene (accession number: XM_002298946) as it is expressed stability independently of tissues, N sources, N concentration and developmental stage. The 2−ΔΔCT method was used to analyze the relative changes in gene expression.[74,75]

Promoter analysis. Regulatory elements in the 5’-upstream regions of the poplar AlaAT genes were predicted starting from the ATG codon for initiation of translation. Sequence identity was analyzed to identify putative cis-acting elements using the PlantCARE database.[76] Sequence stretches of 1500 bp for each gene were compared.

Statistical analysis. Statistical tests were performed with SPSS 19.0 (IBM, USA), and the data were tested to confirm their normality before statistical analysis. For experimental variables, one-way analysis of variance (ANOVA) was used with N-treatment as a factor. Differences between means were considered significant when P < 0.05 according to the ANOVA F-test.

Table 2. Details of primers used for polymerase chain reaction analysis.

Primer name	Sequences(from 5’to 3’)
AlaAT1- sense	GATCCAAATGTGGGGTGCTATA
AlaAT1- antisense	CTGCTAACCTTCTAATCTCCA
AlaAT2- sense	TATGAGCGACCGTGGTTATT
AlaAT2- antisense	TTAGAGCTTGATGATCAGCAGGT
AlaAT3- sense	CTTTTACGTTCGAGGCACTCT
AlaAT3- antisense	GTTCAGGGCAACATCTTATTTTG
AlaAT4- sense	AGTTGCTCCGCTTCACAGAG
AlaAT4- antisense	CTTCGATGGAGGAGGAAAT
PtActin2- sense	CACAACCTGCTCAAGGCAAT
PtActin2- antisense	CAGGGCAACCGGAAACACTCT
Our work demonstrated that the poplar genome contained four genes encoding alanine aminotransferase (PnAlaAT3 and PnAlaAT4) and glutamate-glyoxylate aminotransferase (PnAlaAT1 and PnAlaAT2). PnAlaAT1 and PnAlaAT2 were closely related to AtGGAT1 and AtGGAT2, and contained PTS1-like sequences in their promoters. They were expressed predominantly in leaves and induced by NH$_4^+$ and NO$_3^-$. Their expression exhibited a diurnal fluctuation in leaves. The expression level of PnAlaAT1 was higher than that of PnAlaAT2 in all conditions. PnAlaAT3 and PnAlaAT4 were expressed in roots, stems and leaves. The expression level of PnAlaAT3 was higher than that of PnAlaAT4. PnAlaAT3 expression was increased significantly by NH$_4^+$ in roots, because of Gln or its related metabolites. We speculated that PnAlaAT1 and PnAlaAT3 might play important roles in leaves and roots, respectively. These results offered new insight into the AlaAT gene family in woody plants and the involvement of AlaAT genes in woody plant responses to exogenous N and light.

References

1. Luo, Z. B. & Polle, A. Wood composition and energy content in a poplar short rotation plantation on fertilized agricultural land in a future CO$_2$ atmosphere. *Global Change Biol.* 15, 38–47 (2009).
2. Testa, R., Di Trapani, A. M., Foderà, M., Sgroi, F. & Tudisca, S. Economic evaluation of introduction of poplar as biomass crop in Italy. *Renew Sust Energ Rev.* 38, 775–780 (2014).
3. Rennenberg, H., Wildhagen, H. & Ehillng, B. Nitrogen nutrition of poplar trees. *Plant Biology*. 12, 275–291 (2010).
4. Rennenberg, H. et al. Nitrogen balance in forest soils: nutritional limitation of plants under climate change stresses. *Plant Biology*. 11, 4–23 (2009).
5. Balasus, A., Bischoff, W. A., Schwarz, A., Scholz, V. & Kern, J. Nitrogen fluxes during the initial stage of willows and poplars in short-rotation coppices. *J Plant Nutr Soil Sci*. 175, 729–738 (2012).
6. Forde, B. G. Nitrate transporters in plants: structure, function and regulation. *BBA-BiOMEMBRANES*. 1465, 219–235 (2000).
7. Howitt, S. M. & Udvardi, M. K. Structure, function and regulation of ammonium transporters in plants. *Biochim Biophys Acta*. 1465, 152–170 (2000).
8. McAllister, C. H., Beatty, P. H. & Good, A. G. Engineering nitrogen use efficient crop plants: the current status. *Plant Biotechnol J.* 10, 1011–1025 (2012).
9. Mengel, K., Robin, P. & Salsac, L. Nitrate reductase activity in shoots and roots of maize seedlings as affected by the form of nitrogen nutrition and the pH of the nutrient solution. *Plant Physiol.* 71, 618–622 (1983).
10. Errebi, M. & Wilcox, G. Tomato growth and nutrient uptake pattern as influenced by nitrogen form ratio. *J Plant Nutr.* 13, 1031–1043 (1990).
11. Raah, T. K. & Terry, N. Nitrogen source regulation of growth and photosynthesis in Beta vulgaris L. *Plant Physiol.* 105, 1159–1166 (1994).
12. Walch-Liu, P., Neumann, G., Bangerth, F. & Engels, C. Rapid effects of nitrogen form on leaf morphogenesis in tobacco. *J Exp Bot.* 51, 227–237 (2000).
13. Albornoz, A. et al., A nitrate signal relieving seed dormancy in Arabidopsis. *Plant Cell Environ.* 28, 500–512 (2005).
14. Scheible, W. R., Lauerer, M., Schulze, E. D., Cuhboche, M. & Stitt, M. Accumulation of nitrate in the shoot acts as a signal to regulate shoot-root allocation in tobacco. *Plant J.* 11, 671–691 (1997).
15. Marín, L. C. et al. Nitrate regulates floral induction in Arabidopsis, acting independently of light, gibberellin and autonomous pathways. *Planta.* 233, 539–552 (2011).
16. Tian, Q., Chen, F., Liu, J., Zhang, F. & Mi, G. Inhibition of maize root growth by high nitrogen supply is correlated with reduced IAA levels in roots. *J Plant Physiol.* 165, 942–951 (2008).
17. DesRochers, A., Van Den Drieische, R. & Thomas, B. R. The interaction between nitrogen source, soil pH, and drought in the growth and physiology of three poplar clones. *Can J Bot.* 85, 1046–1057 (2007).
18. Igarashi, D. et al. Identification of photorespiratory glutamate: glycineaminotransferase (GGAT) gene in Arabidopsis. *Plant J.* 33, 975–987 (2003).
19. Reich, J. & Crouzet, J. Partial purification and initial studies of the tomato L-alanine: 2-oxoglutarate aminotransferase. *Biochim Biophys Acta*. 350, 392–399 (1974).
20. Kikuchi, H., Hirose, S., Toki, S., Akama, K. & Takawa, F. Molecular characterization of a gene for alanine aminotransferase from rice (Oryza sativa). *Plant Mol Biol*. 39, 149–159 (1999).
21. Good, A. G. & Crosby, W. L. Anaerobic induction of alanine aminotransferase in barley root tissue. *Plant Physiol.* 90, 1305–1309 (1989).
22. Ricoult, C., Echeverria, L. O., Cliquet, J. B. & Limami, A. M. Characterization of alanine aminotransferase (AlaAT) multigene family and hypoxic response in young seedlings of the model legume Medicago truncatula. *J Exp Bot.* 57, 3079–3089 (2006).
23. Miyashita, Y., Dolferus, R., Ismond, K. P. & Good, A. G. Alanine aminotransferase catalyses the breakdown of alanine after hypoxia in Arabidopsis thaliana. *Plant J.* 49, 1108–1121 (2007).
24. Good, A. G. & McAllister, D. G. Purification and characterization of an anaerobically induced alanine aminotransferase from barley roots. *Plant Physiol.* 99, 1520–1525 (1992).
25. Good, A. G. & McAllister, D. G. Long-term anaerobic metabolism in root tissue (metabolic products of pyruvate metabolism). *Plant Physiol.* 101, 1163–1168 (1993).
26. McAllister, D. G. & Good, A. G. Hypoxically inducible barley alanine aminotransferase: cDNA cloning and expression analysis. *Plant Mol Biol*. 24, 417–427 (1994).
27. de Sousa, C. A. E. & Sodek, I. Alanine metabolism and alanine aminotransferase activity in soybean (Glycine max) during hypoxia of the root system and subsequent return to normoxia. *Environ Exp Bot.* 50, 1–8 (2003).
28. Rocha, M. et al. Glycolysis and the tricarboxylic acid cycle are linked by alanine aminotransferase during hypoxia induced by waterlogging of Lotus japonicus. *Plant Physiol.* 152, 1501–1513 (2010).
29. Son, D., Købe, A. & Sugiyama, T. Nitrogen-dependent regulation of the gene for alanine aminotransferase which is involved in the C4 pathway of Panicum miliaceum. *Plant Cell Physiol.* 33, 507–509 (1992).
30. McAllister, C. H. & Good, A. G. Alanine aminotransferase variants conferring diverse NUE phenotypes in Arabidopsis thaliana. *Plant J.* 10, e021830 (2015).
31. Good, A. G. & McAllister, C. H. Genetic engineering of improved nitrogen use efficiency in crop plants. *Can J Bot.* 85, 252–262 (2007).
32. Shrawat, A. K., Carroll, R. T., DePauw, M., Taylor, G. J. & Good, A. G. Genetic engineering of improved nitrogen use efficiency in rice by the tissue-specific expression of alanine aminotransferase. *Plant Biotechnol J.* 6, 722–732 (2008).
33. Beatty, P. H., Shrawat, A. K., Carroll, R. T., Zhu, T. & Good, A. G. Transcriptome analysis of nitrogen-efficient rice over-expressing alanine aminotransferase. *Plant Biotechnol J.* 7, 562–576 (2009).
34. Smynar, S. J., Hajari, E., Watt, M. P., Lu, Y. & Kridl, J. C. Improved nitrogen use efficiency in transgenic sugarcane: phenotypic assessment in a pot trial under low nitrogen conditions. *Plant Cell Rep.* 34, 667–669 (2015).
35. McAllister, C. H. & Good, A. G. Alanine aminotransferase variants conferring diverse NUE phenotypes in Arabidopsis thaliana. *Plant J.* 10, e021830 (2015).
Universities (DL13EA03-01).

This project was financially supported by the Innovation Project of the State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University) (3C03), the National High Technology Research and Development Program of China (863 Program, 2013AA102702), and by Fundamental Research Funds for the Central Universities (DL13EA03-01).

Acknowledgements

61. Y. Yang, J.
62. Luo, J.
63. Marwaha, R. S. & Juliano, B. O. Aspects of nitrogen metabolism in the rice seedling. Plant Physiol. 128, 717–724 (2002).
64. O. Borello, U., Ceccarelli, E. & Giuliano, G. Constitutive, light‐responsive and circadian clock‐responsive factors compete for the binding of the plant CREB‐type transcription factor proteins. Semin. Cell Dev. Biol. 14, 119–128 (2003).
65. Nasholm, T., Kielland, K. & Ganeteg, U. Uptake of organic nitrogen by plants. Annu. Rev. Plant Biol. 45, 423–458 (1994).
66. Kan, C. C., Chung, T. Y., Juo, Y. A. & Hsieh, M. H. Glutamine rapidly induces the expression of key transcription factor genes involved in nitrogen and stress responses in rice roots. Plant Cell, 7, 435–455 (2005).
67. Qu, C. P.
68. Murashige, T. & Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plantarum 15, 319–331 (1976).
69. Dluzniewska, P.
70. Finn, R. D. et al. The Pfam protein families database. Nucleic acids research. gkp985 (2009).
71. Eddy, S. R. A new generation of homology search tools based on probabilistic inference. Genome Inform. 23, 205–211 (2009).
72. Letunic, I., Doerks, T. & Bork, P. SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res. 40, 302–305 (2012).
73. Guo, A., Zhu, Q., Chen, X. & Luo, J. GSDS: a gene structure display server. Hereditas. 29, 1023–1026 (2007).
74. Schmittgen, T. D. & Livak, K. J. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 3, 1101–1108 (2008).
75. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 25, 402–408 (2001).
76. Lescot, M. et al. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 30, 325–327 (2002).
Author Contributions
Jing Ma, Yan Sun, Bingqing Hao, Zhongye Liu, Zhiru Xu and Guanjun Liu conceived and designed the experiments; Jing Ma, Yan Sun and Bingqing Hao conducted the experiments and analyzed the data; Han Yang, Chunpu Qu and Chengjun Yang helped to conduct experiment and data analysis; Zhiru Xu and Jing Ma wrote the manuscript; Zhiru Xu, Guanjun Liu, Ying Li and Yanbo Hu revised the manuscript. All authors have read and approved the final version of the paper.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep

Competing Interests: The authors declare no competing financial interests.

How to cite this article: Xu, Z. et al. Identification and expression analyses of the alanine aminotransferase (AlaAT) gene family in poplar seedlings. Sci. Rep. 7, 45933; doi: 10.1038/srep45933 (2017).

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2017