Asymptotic behavior of numerical solutions of the Schrödinger equation

F.M. Pen’kov¹ and P.M. Krassovitskiy ¹,²

¹Institute of nuclear physics, 1, Ibragimov Str., 050032, Almaty, Kazakhstan
²Join institute for nuclear research, 6, Joliot-Curie Str., 141980, Dubna, Russia
e-mail: fmp56@mail.ru

Many problems of numerically solving the Schrödinger equation require that we choose asymptotic distances many times greater than the characteristic size of the region of interaction. The problems of resonance diffraction for composite particles or the problem of nucleon scattering by nonspherical atomic nuclei are examples of the need to use a large spatial domain for calculations. If the solution to one-dimensional equations can be immediately chosen in a form that preserves unitarity, the invariance of probability (in the form of, e.g., fulfilling an optical theorem) is a real problem for two-dimensional equations. An addition that does not exceed the discretization error and ensures a high degree of unitarity is proposed as a result of studying the properties of a discrete two-dimensional equation.

The problem for scattering of rigid molecules by the disks was successfully solved using an improved sampling scheme that provides the correct asymptotic behavior. Corresponding diffraction scattering curves are of a pronounced resonance nature.

Key words: Numerov’s method, resonance diffraction, Babine’s principle.
PACS numbers 2.60.-x, 03.65.Nk, 34.50.-s

1 Introduction

In numerically solving problems whose mathematical notation is expressed in terms of the two-dimensional Schrödinger equation, there is the problem of a loss of accuracy for finite difference schemes. It is associated with the need to travel long distances relative to the characteristic size of the potential range. Such situations arise in the scattering of slow particles at long scattering distances or with the scattering of fast particles with pronounced diffraction when we need to go beyond the region of the diffraction shadow in the calculations.

The problems of resonance diffraction for composite particles [1, 2] or the problem of nucleon scattering by nonspherical atomic nuclei are examples of the need to use a large spatial domain for calculations. Expansion in spherical functions in this case loses both physical and mathematical meaning because of the non conservation of the angular momentum in the scattering process. The standard approach, which uses amplitude notation in an explicitly unitary form, thus becomes an inoperative tool. We can, of course, choose a solving scheme based on some averaging of the nonspherical potential (by, e.g., means of folding [3]) and leaving the error of the means of solving without any possibility of analysis. This problem arises not only in the two examples given above, and it is solved in different ways for specific cases in theoretical physics, nanostructure physics, and related fields of chemistry, medicine, and atomic interferometry [4-8].

2 Material and methods

Let us write the Schrödinger equation in a two-dimensional axially symmetric case for a scattering problem (here and below, we use a system of units in which the Planck constant and the Boltzmann constant are 1 in analogy with [4]).
Asymptotic behavior of numerical solutions ...

\[\Delta \Psi(\vec{r}) - V(\vec{r}) \Psi(\vec{r}) = -k^2 \Psi(\vec{r}), \quad (1) \]

\[\Delta = \frac{\partial^2}{\partial r^2} + 2 \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial}{\partial \theta} \sin(\theta) \frac{\partial}{\partial \theta} \]

Here, \(k^2 = 2mE \) is a wave parameter, \(E \) is the energy of the system, and \(\Psi(r) = \Psi(r, \theta) \) is the wave function. Note that the energy in the selected system of units is measured in ones that are inverse to the square of the length. The potential is limited in some area \(V = 0 \) with \(r > r_s \). The asymptotic form of the wave function in a region greater than some asymptotic radius \(r_{as} : r > r_{as} \gg r_s \):

\[\Psi(\vec{r}) \rightarrow e^{ik\theta} + f(\theta) \frac{e^{ikr}}{r} \left(1 + O\left(\frac{1}{r} \right) \right), \]

determines scattering amplitude \(f(\theta) \), which obeys optical theorem [9]

\[\sigma = 2\pi \int_0^\pi |f(\theta)|^2 \sin(\theta) d\theta = \frac{4\pi}{k} \text{Im} f(0), \]

where \(\sigma \) is the total cross section. This ratio (the condition for invariance of probability) can be used as a criterion of accuracy for the numerical solution to the problem. We must choose a sufficiently high value of parameter \(r_{as} \) that determines the region of the asymptotic solution in the numerical solution to the scattering problem. Asymptotic distances several hundred units of the problem’s length for characteristic values \(r_v = 1 - 3 \) and \(k \leq 30 \) must extend beyond shadow region \(r_{as} > r_s (kr_v) \) in the problem of the quantum scattering of particles on a nonspherical potential [1].

The limiting accuracy of calculations for such distances is determined by the ignored asymptotic term (i.e., it can be a fraction of a percent). The form of potential \(V(r) \) requires the use of a small parameter for the sampling step. This ensures the accuracy of the solution, but considerably extends the estimated time. Two sampling steps are used to advance the calculations for continuing quantum scattering studies on nonspherical potentials [1,2]. For \(r \leq r_s \approx r_v \), we choose fairly small step \(\Delta r = 0.001 \), which guarantees sufficient accuracy \(O(\Delta r^2) \) in the range of potentials, and step \(\Delta r_s = 2^n \Delta r \) with \(n = 4 - 5 \) for \(r > r_s \). However, this choice results in as much as 10% deviation in fulfilling the optical theorem. These deviations are much larger than the sampling error \(O(\Delta r_s^2) \) for finding the wave function. Such an error in the phase of asymptotic wave function nevertheless results in considerable deviation from the optical theorem.

The importance of loss of accuracy can be expressed in a one-dimensional example. Let us consider a one-dimensional free equation for \(\phi = r \Psi \) and its finite difference approximation

\[\frac{d}{dr^2} \phi + k^2 \phi(r) = 0 \rightarrow \phi(r + \Delta r) - 2\phi(r) + \phi(r - \Delta r) + \frac{(\Delta r)^2}{k^2} \phi(r) + O((\Delta r)^3) = 0. \]

Replacing the value of the function at points \(\phi(r \pm \Delta r) \) with a Taylor expansion, we obtain

\[\frac{d^2}{dr^2} \phi(r) + \frac{(\Delta r)^2}{12} \frac{\partial^4}{\partial r^4} \phi(r) + k^2 \phi(r) + O((\Delta r)^4) = 0. \]

The solutions to this equation have the form

\[\exp \left(\frac{\sqrt{2\sqrt{3} - 3 + 9 - 3(\Delta r)^2}}{\Delta r} r \right). \]

Expanding the exponent in a series with respect to \(\Delta r \), we obtain

\[ikr + \frac{1}{24} ikr(\Delta r)^2 + O((\Delta r)^4). \quad (2) \]

Since this expression is in the exponent, the second term can be ignored only if it is small in comparison to unity \(\left(\frac{1}{24} k \Delta r (\Delta r)^2 \right)^2 << 1 \). The inequality is certainly not satisfied for very large \(r \). For example, phase term \(\left(\frac{1}{24} k \Delta r (\Delta r)^2 \right)^2 = 0.05543 \) at \(\Delta r = 0.016 \), \(k = \sqrt{300} \), and becomes equal to 5.5 when \(r = 100 \). The problem of the loss of
accuracy is thus due to the incongruity of the exact asymptotic form and the asymptotic behavior when solving the equation in finite differences. The same result can be obtained in general form. Let us find the solution to finite difference equation

\[\phi(r + \Delta r) - 2\phi(r) + \phi(r - \Delta r) + k^2 \phi(r) = 0, \ldots \]

(3)

by substituting function \(\varphi = \exp(ik_{\text{eff}} r) \) in it. This leads to the equation for \(k_{\text{eff}} \):

\[4\sin^2 \left(\frac{k_{\text{eff}} \Delta r}{2} \right) = k^2 (\Delta r)^2. \]

The finite difference equation thus has an exponential solution with wave parameter \(k_{\text{eff}} \):

\[\left(1 + \frac{(k \Delta r)^2}{12} \right) \exp(ik_{\text{eff}} \Delta r) - 2 \left(1 + \frac{(k \Delta r)^2}{12} \right) + \left(1 + \frac{(k \Delta r)^2}{12} \right) \exp(-ik_{\text{eff}} \Delta r) + k^2 = 0, \ldots \]

(4)

It yields

\[k_{\text{eff}} = 2\arcsin \left(\frac{3k \Delta r}{36 + 3(k \Delta r)^2} \right) \]

(5)

without quadratic terms with respect to \(\Delta r \) as a series expansion

\[k_{\text{eff}} = k + \frac{1}{480} k^3 (\Delta r)^4 + O((\Delta r)^6) \]

The deviation of the correct asymptotic behavior from the solution to Eq. (4) thus occurs at much greater distances when using Numerov’s scheme. For example, the value \(\frac{1}{480} r_{\text{as}} k^2 (\Delta r k)^4 \) at \(r_{\text{as}} = 100 \) is 0.02, determining error of 2% in the unitarity condition when using the problem parameters \(\Delta r = 0.016, k = \sqrt{300} \). Such a scheme can be used for a two-dimensional equation with twice differentiable interaction potentials.

Expanding \(k_{\text{eff}} \) in a series with respect to \(\Delta r \), we obtain

\[k_{\text{eff}} = k + \frac{1}{24} k (k \Delta r)^2 + \frac{3}{640} k (k \Delta r)^4 + \frac{5}{7168} k (k \Delta r)^6 + O((k \Delta r)^8). \]

As expected, the first terms of the series coincide with Eq. (2). In a similar manner, we can obtain the value of \(k_{\text{eff}} \) for more complicated problems, e.g., for two-dimensional Schrödinger equation (1), sampled using Numerov’s method to an accuracy of \(O((\Delta r)^4) \). We must in this case solve the following finite difference equation

\[\frac{d^2 \phi}{dr^2} + k^2 \phi(r) = 0 \rightarrow \phi(r + \Delta r) - 2\phi(r) + \phi(r - \Delta r) + k^2 \frac{(k \Delta r)^2}{12} \phi(r) = 0. \]

(6)

In this case, we obtain for \(k_{\text{eff}} \) the equation

\[k_{\text{eff}} = \frac{2\arcsin \left(\frac{k \Delta r}{12} \right)}{\Delta r}. \]
whose series expansion

\[k_{\text{eff}} = k - \frac{1}{720} k^4 (\Delta r)^4 + O((\Delta r)^5). \]

has a numerical factor in front of \((\Delta r)^4\) that is even less than in expansion (5), ensuring 99–97% unitarity with the most stringent parameters of the problem. The computational error does not exceed 0.5% in test reductions of the sampling step (down to \(\Delta r = 0.008\)).

3 Results and discussions

The problem of the scattering of a rigid diatomic molecule on a thin disk was solved by using the correct asymptotic behavior. The barrier potential of a disk in cylindrical coordinates \(\rho = r \cos \vartheta\) and \(z = r \sin \vartheta\) is written in the form

\[V_b = \begin{cases} V_{b0} : & \rho \leq R \text{ и } |z| \leq a/2, \\ 0 : & \rho > R \text{ и и } |z| > a/2. \end{cases} \]

Parameters \(V, a\) determine the disk size. In analogy with the problem of a rigid molecule passing through a barrier [4], the potential in Eq. (1) for the model of a rigid molecule has the form

\[V_s(\rho, z + d/2) + V_s(\rho, z - d/2), \]

where parameter \(d\) corresponds to the size of a scattered rigid molecule. The difference between the scattering of a molecule and a point particle equal to its mass is best seen in backscattering, so not only the scattering cross sections of the molecule but also the backscattering cross section for a particle with a mass equal to that of two atoms are shown in the figures below. This cross section must have the form of monotonic energy and rapidly shrink at energies above that of potential barrier (the disk potential). Barrier height \(V_{b0}\) in the above calculations was assumed to be 333.2 Å\(^2\) (4000 \(K\) for a hydrogen molecule). The figures show the total cross sections along with those into the front and rear hemispheres. The cross section into the front (rear) hemisphere is determined in the same way as the total cross section, but the limits of integration over the angle are from 0 to \(\pi/2\) (from \(\pi/2\) to \(\pi\)).

![Graph](image.png)

Figure 1 – The scattering cross sections of the hydrogen molecule on the disk at \(R = 3\) Å. 1 – \(\sigma_1\), 2 – \(\sigma_2\), 3 – \(\sigma_3\), 4 – backward scattering cross section for a particle with a doubled hydrogen atom mass.
Figure 1 shows the results from calculating the dependence of the total scattering cross section of rigid hydrogen molecule H₂ by a thin disk with a radius of 3 Å and a width of 0.2 Å on the energy. Parameter d is 0.7416 Å for hydrogen [10]. It can be seen that the backscattering cross section of the molecule generally repeats the pattern of the scattering cross section for an unstructured particle, but it has characteristic resonance deviations.

The diffraction scattering cross sections of rigid beryllium molecule Be₂ are given for comparison in Figure 2. Parameter d is 2.47 Å [11, 12]. The greater number of quasi-bound states are due to the greater distance between atoms that is observed on the cross section by a large number of resonances. The main dips in the cross section (resonances) coincide with the positions of the energy levels in a rectangular one-dimensional well with a width of d, just as in the pattern for the resonant passage of a rigid molecule [4]. This leads to the differences between the scattering of hydrogen and beryllium molecules observed in the figures. Thenumber of minima in the total scattering cross section of a rigid beryllium molecule is much higher.

![Figure 2 – The scattering cross sections of the Beryllium molecule on the disk at $R = 3$ Å. Numerical line are liked one in Figure 1.](image)

The calculation of two-dimensional scattering at non-symmetrical center can be used for problem of scattering at holes in infinity wall. The Babinet's principle [13] has been used for it. The numerical example is presented by Figure 3.
Asymptotic behavior of numerical solutions ...

Figure 3 – Comparison of beryllium atom scattering at an energy of 100 Å⁻². R3 is the scattering on a disk of 3 Å, R1 is scattering on a disk of 1 Å, Ring is scattering on a ring 3 Å wide with a hole of 1 Å.

It can be seen that calculated scattering on the disk with big radius is equivalent to the sum of scattering on ring with external radius equal to big disk’s one and little disk with radius equal to hole’s one.

The calculation of scattering on hole is presented at Figure 4. It can be seen that the resonance structure is exist here too.
4 Conclusions

The problem for scattering of rigid molecules by the disks was successfully solved using an improved asymptotic sampling scheme that provides the correct asymptotic behavior. The result could be useful for analogical topics of investigation [14-22]. Corresponding diffraction scattering curves are of a pronounced resonance nature. The units of the problem length E were determined by the interaction parameters. A femtometer (fm) is inconveniently chosen as units of length in problems of nuclear physics. The proposed way of correcting for the wave parameter in asymptotic behavior can thus be applied in different areas that study diffraction using two-dimensional differential equations (e.g., in studying particle scattering by nonspherical atomic nuclei).

References

1. P. Krassovitskiy, F. Pen’kov. Quantum scattering by nonspherical objects. // Bull. Russ. Acad. Sci.: Phys.-2017. - Vol. 81, – No. 6. – P. 730-734.
2. G. Satchler, Direct Nuclear Reactions. Oxford: Oxford Univ. Press, – 1983.
3. P. Krassovitskiy, F. Pen’kov. Contribution of resonance tunneling of molecule to physical observables // J. Phys. B. – 2014. – Vol. 47. – No. 22. – P. 225210-225214.
4. R. Mathaes, et al. Non-spherical micro-and nanoparticles: fabrication, characterization and drug delivery applications. // Expert Opin. Drug Delivery.-2015 – Vol. 12. – No.3. – P. 481-492.
5. A. Ikot, et al. Exact solutions of Schrodinger equation with improved ring-shaped non-spherical harmonic oscillator and Coulomb potential // Commun. Theor. Phys. – 2015. – Vol. 65. – No.5. – P. 569-574.
6. A. Statt, et al. Crystal nuclei in melts: a Monte Carlo simulation of a model for attractive colloids. Mol. Phys.-2015. – Vol. 113. – No.17-18. – P. 2556-2570.
7. A. Cronin, et al. Optics and interferometry with atoms and molecules. Rev. Mod. Phys. – 2009. -Vol. 81. -No. 3. – P. 1051-1129.
8. L. Landau, E. Lifshitz. Kvantovaya mekhanika (nerelyativistskaya teoriya) (Quantum Mechanics: Non-Relativistic Theory), Moscow: Nauka, – 1989. – P. 583.
9. Spravochnik khimika (Chemistry Handbook), Moscow–Leningrad: GNTI Khim. Lit., – 1966, – Vol. 1. – P. 338.
Asymptotic behavior of numerical solutions...

10. W. Jinlan, et al. Density functional study of beryllium clusters with gradient correction. // Phys.: Condens. Matter. – 2001. – Vol. 13. – P. L753-L758.

11. J. Merritt, et al. Beryllium Dimer—Caught in the act of bonding // Science. – 2009. – Vol. 324. – No. 5934. – P. 1548.

12. M. Born, E. Wolf. Principles of Optics. Cambridge: Cambridge University Press. – 1999.

14. A. Gusev, et al. Adiabatic representation for atomic dimers and trimers in collinear configuration // Physics of Atomic Nuclei. – 2018. – Vol. 81, – No 6. – P. 911-936.

15. A. Gusev, et al. Metastable states of a composite system tunneling through repulsive barriers // Theoretical and Mathematical Physics. -2016. – Vol. 186. – No.1.- P. 21-40.

16. O. Chuluunbaatar et al. Quantum transparency of barriers and reflection from wells for clusters of identical particles // Bull. Russ.Acad. Sci.: Phys. – 2018. – Vol. 82. – No. 6. – P. 648-653.

17. O. Chuluunbaatar et al. Solution of quantum mechanical problems using finite element method and parametric basis functions // Bull. Russ.Acad. Sci.: Phys. – 2018. – Vol. 82. – No. 6. – P. 654-660.

18. A. Gusev, et al. Resonant tunneling of a few-body cluster through repulsive barriers. // Physics of Atomic Nuclei. – 2014. – Vol. 77. – No. 3. – P. 389-413.

19. A. Gusev, et al. Parametric bases for elliptic boundary value problem // Journal of Physics Conference Series. – 2018. – Vol. 965. – P. 012016-1-7.

20. A. Gusev, et al. Symbolic-numerical algorithms for solving elliptic boundary-value problems using multivariate simplex lagrange elements // Lecture Notes in Computer Science. – 2018. – Vol. 11077. – P. 197-213.

21. A. Gusev, et al. “Interpolation hermite polynomials for finite element method // EPJ Web of Conferences. – 2018. – Vol. 173. – P.03009.

22. S. Vinitsky, et al. Three-body scattering model: diatomic homonuclear molecule and atom in collinear configuration // Proceedings of SPIE. – 2017. – Vol. 10337. – P. 103370j.