MORE SMOOTHLY REAL COMPACT SPACES

ANDREAS KRIEGL AND PETER W. MICHOR

(Communicated by Andrew M. Bruckner)

Abstract. A topological space X is called \mathcal{A}-real compact if every algebra homomorphism from \mathcal{A} to the reals is an evaluation at some point of X, where \mathcal{A} is an algebra of continuous functions. Our main interest lies on algebras of smooth functions. Arias-de-Reyna has shown that any separable Banach space is smoothly real compact. Here we generalize this result to a huge class of locally convex spaces including arbitrary products of separable Fréchet spaces.

In [KMS] the notion of real compactness was generalized by defining a topological space X to be \mathcal{A}-real-compact if every algebra homomorphism $\alpha: \mathcal{A} \to \mathbb{R}$ is just the evaluation at some point $a \in X$, where \mathcal{A} is some subalgebra of $C(X, \mathbb{R})$. In case \mathcal{A} equals the algebra $C(X, \mathbb{R})$ of all continuous functions this condition reduces to the usual real-compactness. Our main interest lies on algebras \mathcal{A} of smooth functions. In particular we showed in [KMS] that every space admitting \mathcal{A}-partitions of unity is \mathcal{A}-real-compact. Furthermore any product of the real line \mathbb{R} is C^∞-real-compact. A question we could not solve was whether ℓ^1 is C^∞-real-compact, despite the fact that there are no smooth bump functions. [AdR] had already shown that this is true not only for ℓ^1, but for any separable Banach space.

The aim of this paper is to generalize this result of [AdR] to a huge class of locally convex spaces, including arbitrary products of separable Fréchet spaces.

Convention. All subalgebras $\mathcal{A} \subseteq C(X, \mathbb{R})$ are assumed to be real algebras with unit and with the additional property that for any $f \in \mathcal{A}$ with $f(x) \neq 0$ for all $x \in X$ the function $1/f$ lies also in \mathcal{A}.

1. Lemma. Let $\mathcal{A} \subseteq C(X, \mathbb{R})$ be a finitely generated subalgebra of continuous functions on a topological space X. Then X is \mathcal{A}-real-compact.

Proof. Let $\alpha: \mathcal{A} \to \mathbb{R}$ be an algebra homomorphism. We first show that for any finite set $\mathcal{T} \subseteq \mathcal{A}$ there exists a point $x \in X$ with $f(x) = \alpha(f)$ for all $f \in \mathcal{T}$.

For $f \in \mathcal{A}$ let $Z(f) := \{x \in X : f(x) = \alpha(f)\}$. Then $Z(f) = Z(f - \alpha(f)1)$, since $\alpha(f - \alpha(f)1) = 0$. Hence we may assume that all $f \in \mathcal{T}$ are even contained in $\ker \alpha = \{f : \alpha(f) = 0\}$. Then $\bigcap_{f \in \mathcal{T}} Z(f) = Z(\sum_{f \in \mathcal{T}} f^2)$. The
sets \(Z(f) \) are not empty, since otherwise \(f \in \ker \alpha \) and \(f(x) \neq 0 \) for all \(x \), so \(1/f \in \mathcal{A} \) and hence \(1 = f/f \in \ker \alpha \), a contradiction to \(\alpha(1) = 1 \).

Now the lemma is valid, whether the condition "finitely generated" is meant in the sense of an ordinary algebra or even as an algebra with the additional assumption on non-vanishing functions, since then any \(f \in \mathcal{A} \) can be written as a rational function in the elements of \(\mathcal{F} \). Thus \(\alpha \) applied to such a rational function is just the rational function in the corresponding elements of \(\alpha(\mathcal{F}) = \mathcal{F}(x) \) and is thus the value of the rational function at \(x \). \(\Box \)

2. **Corollary.** Any algebra-homomorphism \(\alpha: \mathcal{A} \rightarrow \mathbb{R} \) is monotone.

Proof. Let \(f_1 \leq f_2 \). By Lemma 1 there exists an \(x \in X \) such that \(\alpha(f_i) = f_i(x) \) for \(i = 1, 2 \). Thus \(\alpha(f_1) = f_1(x) \leq f_2(x) = \alpha(f_2) \). \(\Box \)

3. **Corollary.** Any algebra-homomorphism \(\alpha: \mathcal{A} \rightarrow \mathbb{R} \) is bounded, for every convenient algebra structure on \(\mathcal{A} \).

By a convenient algebra structure we mean a convenient vector space structure for which the multiplication \(\mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A} \) is a bilinear bornological mapping. A convenient vector space is a separated locally convex vector space that is Mackey complete, see [FK].

Proof. Suppose that \(f_n \) is a bounded sequence, but \(|\alpha(f_n)| \) is unbounded. Replacing \(f_n \) by \(f_n^2 \) we may assume that \(f_n \geq 0 \) and hence also \(\alpha(f_n) \geq 0 \). Choosing a subsequence we may even assume that \(\alpha(f_n) \geq 2^n \). Now consider \(\sum_n f_n/2^n \). This series converges in the sense of Mackey, and since the bornology on \(\mathcal{A} \) is complete, the limit is an element \(f \in \mathcal{A} \). Applying \(\alpha \) yields

\[
\alpha(f) = \alpha \left(\sum_{n=0}^{N} \frac{1}{2^n} f_n + \sum_{n>N} \frac{1}{2^n} f_n \right) = \sum_{n=0}^{N} \frac{1}{2^n} \alpha(f_n) + \alpha \left(\sum_{n>N} \frac{1}{2^n} f_n \right)
\]

\[
\geq \sum_{n=0}^{N} \frac{1}{2^n} \alpha(f_n) + 0 = \sum_{n=0}^{N} \frac{1}{2^n} \alpha(f_n),
\]

where we applied to the function \(\sum_{n>N} \frac{1}{2^n} f_n \geq 0 \) that \(\alpha \) is monotone. Thus the series \(\sum_{n=0}^{N} \alpha(f_n)/2^n \) is bounded and increasing, hence converges, but its summands are bounded by 1 from below. This is a contradiction. \(\Box \)

4. **Definition.** We recall that a mapping \(f: E \rightarrow F \) between convenient vector spaces is called smooth (\(C^\infty \) for short) if the composite \(f \circ c: \mathbb{R} \rightarrow F \) is smooth for every smooth curve \(c: \mathbb{R} \rightarrow E \). It can be shown that under these assumptions derivatives \(f^{(p)}: E \rightarrow L^p(E, F) \) exist. See [FK].

A mapping is called \(C^\infty_c \) if in addition all derivatives considered as mappings \(d^p f: E \times E^p \rightarrow F \) are continuous.

Now we generalize Lemma 5 and Proposition 7 of [AdR] to arbitrary convenient vector spaces.

5. **Definition.** Let \(\mathcal{A} \subseteq C(X, \mathbb{R}) \) be a set of continuous functions on \(X \). We say that a space \(X \) admits large carriers of class \(\mathcal{A} \) if for every neighborhood \(U \) of a point \(p \in X \) there exists a function \(f \in \mathcal{A} \) with \(f(p) = 0 \) and \(f(x) \neq 0 \) for all \(x \notin U \).
Every \(\mathcal{A} \)-regular space \(X \) admits large \(\mathcal{A} \)-carriers, where \(X \) is called \(\mathcal{A} \)-regular if for every neighborhood \(U \) of a point \(p \in X \) there exists a function \(f \in \mathcal{A} \) with \(f(p) > 0 \) and \(f(x) = 0 \) for \(x \notin U \). The existence of large \(\mathcal{A} \)-carriers follows by using the modified function \(\bar{f} := f(a) - f \).

In [AdR, Proof of Theorem 8] it is proved that every separable Banach space admits large \(C^\infty_c \)-carriers. The carrying functions can even be chosen as polynomials as shown in Lemma 7 below.

6. Lemma. Let \(E \) be a convenient vector space, \(\{x'_n : n \in \mathbb{N}\} \subset E' \) be bounded, \((\lambda_n) \in \ell^1(\mathbb{N}) \). Then the series \((x, y) \mapsto \sum_{n=1}^{\infty} \lambda_n x_n'(x) x_n'(y) \) converges to a continuous symmetric bilinear function on \(E \times E \).

\textbf{Proof.} Clearly the function converges pointwise. Since the sequence \(\{x'_n\} \) is bounded, it is equicontinuous, hence bounded on some neighborhood \(U \) of 0, so there exists a constant \(M \in \mathbb{R} \) such that \(|x'_n(U)| \leq M \) for all \(n \in \mathbb{N} \). For \(x, y \in U \) we have \(|\sum_{n=1}^{\infty} \lambda_n x_n'(x) x_n'(y)| \leq \sum_{n=1}^{\infty} |\lambda_n| M^2 \), which suffices for continuity of a bilinear function. \(\square \)

7. Lemma. Let \(E \) be a Banach space that is separable or whose dual is separable for the topology of pointwise convergence. Then \(E \) admits large carriers for continuous polynomials of degree 2.

\textbf{Proof.} If \(E \) is separable there exists a dense sequence \((x_n) \) in \(E \). By the Hahn-Banach theorem [J, 7.2.4] there exist \(x'_n \in E' \) with \(x'_n(x_n) = |x_n| \) and \(|x'_n| \leq 1 \).

Claim. \(\sup_n |x'_n(x)| = |x| \).

Since \(|x'_n| \leq 1 \) we have \((\leq) \). For the converse direction let \(\delta > 0 \) be given. By denseness there exists an \(n \in \mathbb{N} \) such that \(|x_n - x| < \frac{\delta}{2} \). So we have

\[
|x| \leq |x_n| + |x - x_n| < |x'_n(x_n)| + \frac{\delta}{2} \\
\leq |x'_n(x)| + |x'_n(x - x_n)| + \frac{\delta}{2} < |x'_n(x)| + \delta.
\]

If the dual \(E' \) is separable for the topology of pointwise convergence, then let \(x'_n \) be a sequence that is weakly dense in the unit ball of \(E' \). Then \(|x| = \sup_n |x'_n(x)| \).

In both cases the continuous polynomials of Lemma 6

\[
x \mapsto \sum_{n=1}^{\infty} x'_n(x - a)^2 / n^2
\]

vanish exactly at \(a \). \(\square \)

8. Lemma. Let \(\alpha : \mathcal{A} \rightarrow \mathbb{R} \) be an algebra homomorphism and assume that some subset \(\mathcal{A}_0 \subset \mathcal{A} \) exists and a point \(a \in X \) such that \(\alpha(f_0) = f_0(a) \) for all \(f_0 \in \mathcal{A}_0 \) and such that \(X \) admits large carriers of class \(\mathcal{A}_0 \).

Then \(\alpha(f) = f(a) \) for all \(f \in \mathcal{A} \).

\textbf{Proof.} Let \(f \in \mathcal{A} \) be arbitrary. Since \(X \) admits large \(\mathcal{A}_0 \)-carriers, there exists for every neighborhood \(U \) of \(a \) a function \(f_U \in \mathcal{A}_0 \) with \(f_U(a) = 0 \) and \(f_U(x) \neq 0 \) for all \(x \in U \). By Lemma 1 there exists a point \(a_U \) such that \(\alpha(f) = f(a_U) \) and \(\alpha(f_U) = f_U(a_U) \). Since \(f_U \in \mathcal{A}_0 \), we have \(f_U(a_U) = \ldots \)
\[\alpha(f_U) = f_U(a) = 0, \text{ hence } a_U \in U. \] Thus the net \(a_U \) converges to \(a \) and consequently \(f(a) = f(\lim a_U) = \lim f(a_U) \) since \(f \) is continuous. \(\square \)

Now we generalize Proposition 2 and Lemma 3 of [BBL]. For every convenient vector space \(E \), let a subalgebra \(\mathcal{A}(E) \) of \(C(E, \mathbb{R}) \) be given, such that for every \(f \in L(E, F) \) the image of \(f^* \) on \(\mathcal{A}(F) \) lies in \(\mathcal{A}(E) \). Examples are \(C_c^{\infty}, \mathcal{C}^{\infty} \cap \mathcal{C}, \mathcal{C}^o := C_c^{\infty} \cap \mathcal{C}^o, \mathcal{C}^o \cap \mathcal{C} \), where \(\mathcal{C}^o \) denotes the algebra of real analytic functions in the sense of [KM] and suitable algebras of functions of finite differentiability like \(\text{Lip}^m \) (see [FK]) or \(C_c^m \).

9. Theorem. Let \(E_i \) be \(\mathcal{A} \)-real-compact spaces that admit large carriers of class \(\mathcal{A} \). Then any closed subspace of the product of the spaces \(E_i \) and, in particular, every projective limit of these spaces, has the same properties.

Proof. First we show that this is true for the product \(E \). We use Lemma 8 with \(\mathcal{A}(E) \) for \(\mathcal{A} \) and the vector space generated by \(\bigcup_i \{ f \circ \text{pr}_i : f \in \mathcal{A}(E_i) \} \) for \(\mathcal{A}_0 \), where \(\text{pr}_i : E = \prod E_i \to E_j \) denotes the canonical projection. Let the finite sum \(f = \sum_i f_i \circ \text{pr}_i \) be an element of \(\mathcal{A}_0 \). Since \(\alpha \circ \text{pr}_i{}^* : \mathcal{A}(E_i) \to \mathcal{A}(E) \to \mathbb{R} \) is an algebra homomorphism, there exists a point \(a_i \in E_i \) such that \(\alpha(f_i \circ \text{pr}_i) = \alpha(\alpha \circ \text{pr}_i{}^*)(f_i) = f_i(a_i) \). Let \(a \) be the point in \(E \) with coordinates \(a_i \). Then

\[\alpha(f) = \alpha\left(\sum_i f_i \circ \text{pr}_i \right) = \sum_i \alpha(f_i \circ \text{pr}_i) = \sum_i f_i(a_i) = \sum_i (f_i \circ \text{pr}_i)(a) = f(a). \]

Now let \(U \) be a neighborhood of \(a \) in \(E \). Since we consider the product topology on \(E \), we may assume that \(a \in \prod U_i \subset U \), where \(U_i \) are neighborhoods of \(a_i \) in \(E_i \) and are equal to \(E_i \) except for \(i \) in some finite subset \(F \) of the index set. Now choose \(f_i \in \mathcal{A}(E_i) \) with \(f_i(a_i) = 0 \) and \(f_i(x) \neq 0 \) for all \(x \notin U_i \). Consider \(f = \sum_{i \in F}(f_i \circ \text{pr}_i)^2 \in \mathcal{A}_0 \). Then \(f(a) = \sum_{i \in F} f_i(a_i)^2 = 0 \). Furthermore \(x \notin U \) implies that \(x_i \notin U_i \) for some \(i \), which turns out to be in \(F \), and hence \(f(x) \geq f_i(x_i)^2 > 0 \). So we may apply Lemma 8 to conclude that \(\alpha(f) = f(a) \) for all \(f \in \mathcal{A}(E) \).

Now we prove the result for a closed subspace \(F \subset E \). Again we want to apply Lemma 8, this time with \(\mathcal{A}(F) \) for \(\mathcal{A} \) and \(\{ f|_F : f \in \mathcal{A}(E) \} \) for \(\mathcal{A}_0 \). Since \(\alpha \circ \text{incl}^* : \mathcal{A}(E) \to \mathcal{A}(F) \to \mathbb{R} \) is an algebra homomorphism there exists an \(a \in E \) with \(\alpha(f|_F) = f(a) \) for all \(f \in \mathcal{A}(E) \) with \(a \in F \). Now let \(U \) be a neighborhood of \(a \) in \(E \); then there exists an \(f_U \in \mathcal{A}(E) \) with \(f_U(a) = 0 \) and \(f_U(x) \neq 0 \) for all \(x \notin U \). By Lemma 1 there exists a point \(a_U \in F \) such that \(f_U(a_U) = \alpha(f_U|_F) = f_U(a) = 0 \). Hence \(a_U \) is in \(U \), and thus is a net in \(F \) that converges to \(a \). In particular, \(a \in F \) since \(F \) is closed in \(E \). If \(V \) is a neighborhood of \(a \) in \(F \) then there exists a neighborhood \(U \) of \(a \) in \(E \) with \(U \cap F \subset V \) and hence an \(f \in \mathcal{A}_0 \) with \(f(a) = 0 \) and \(f(x) \neq 0 \) for all \(x \notin U \). So again Lemma 8 applies. \(\square \)

10. Remark. Theorem 9 shows that a closed subspace of a product of certain \(\mathcal{A} \)-real-compact spaces is again \(\mathcal{A} \)-real-compact. Of course the natural question arises of whether the result remains true for arbitrary \(\mathcal{A} \)-real-compact spaces.

The question is even open—whether the product of two \(\mathcal{A} \)-real-compact spaces is \(\mathcal{A} \)-real-compact, or whether a closed subspace of an \(\mathcal{A} \)-real-compact space is \(\mathcal{A} \)-real-compact.
space is \(\mathcal{A} \)-real-compact, or whether a projective limit of a projective system of \(\mathcal{A} \)-real-compact spaces is \(\mathcal{A} \)-real-compact.

11. **Corollary.** Let \(E \) be a separable Fréchet space (e.g., a Fréchet-Montel space); then every algebra homomorphism on \(C^\infty(E, \mathbb{R}) \) or on \(C^\infty_c(E, \mathbb{R}) \) is a point evaluation. The same is true for any product of separable Fréchet spaces.

Proof. Any Fréchet space has a countable Basis \(\mathcal{U} \) of absolutely convex 0-neighborhoods, and since it is complete, it is a closed subspace of the product \(\prod_{u \in \mathcal{U}} E(u) \). The \(E(u) \) are the normed spaces formed by \(E \) modulo the kernel of the Minkowski functional generated by \(U \). As quotients of \(E \) the spaces \(E(u) \) are separable if \(E \) is such. So the completion \(\widehat{E(u)} \) is a separable Banach space, and hence by [AdR, Theorem 8] \(\widehat{E(u)} \) is \(C^\infty_c \)-real-compact and admits large \(C^\infty_c \)-carriers. By Theorem 9 the same is true for the given Fréchet space. So the result is true for \(C^\infty_c(E, \mathbb{R}) \). Since \(E \) is metrizable this algebra coincides with \(C^\infty(E, \mathbb{R}) \), see [K, 82].

Now for a product \(E \) of metrizable spaces the two algebras \(C^\infty(E, \mathbb{R}) \) and \(C^\infty_c(E, \mathbb{R}) \) again coincide. This can be seen as follows. For every countable subset \(A \) of the index set, the corresponding product is separable and metrizable, hence \(C^\infty \)-real-compact. Thus there exists a point \(x_A \) in this countable product such that \(\alpha(f) = f(x_A) \) for all \(f \) that factor over the projection to that countable subproduct. Since for \(A_1 \subset A_2 \) the projection of \(x_{A_1} \) to the product over \(A_1 \) is just \(x_{A_1} \) (use the coordinate projections composed with functions on the factors for \(f \)), there is a point \(x \) in the product whose projection to the subproduct with index set \(A \) is just \(x_A \). Every Mackey continuous function and, in particular, every \(C^\infty \)-function, depends only on countably many coordinates, thus factors over the projection to some subproduct with countable index set \(A \), hence \(\alpha(f) = f(x_A) = f(x) \). This can be shown by the same proof as for a product of factors \(\mathbb{R} \) in [FK, Theorem 6.2.9] since the result of [M, 1952] is valid for a product of separable metrizable spaces. □

References

[BBL] Peter Biström, Sten Bjon, and Mikael Lindström, *Homomorphisms on some function algebras*, Monatsh. Math. **11** (1991), 93–97.

[FK] Alfred Frölicher and Andreas Kriegl, *Linear spaces and differentiation theory*, Pure Appl. Math., Wiley, Chichester, 1988.

[K] Andreas Kriegl, *Eine kartesisch abgeschlossene Kategorie glatter Abbildungen zwischen beliebigen lokalkonvexen Vektorräumen*, Monatsh. Math. **95** (1983), 287–309.

[KM] Andreas Kriegl and Peter W. Michor, *A convenient setting for real analytic mappings*, Acta Math. **165** (1990), 105–159.

[KMS] Andreas Kriegl, Peter W. Michor, and Walter Schachermayer, *Characters on algebras of smooth functions*, Ann. Global Anal. Geom. **7** (1989), 85–92.

[M] S. Mazur, *On continuous mappings on cartesian products*, Fund. Math. **39** (1952), 229–238.

[AdR] Juan Arias-de-Reyna, *A real valued homomorphism on algebras of differentiable functions*, Proc. Amer. Math. Soc. **104** (1988), 1054–1058.

Institut für Mathematik, Universität Wien, Strudlhofgasse 4, A-1090 Wien, Austria

E-mail address: KRIEGL@AWIRAP.BITNET

E-mail address: MICHOR@AWIRAP.BITNET