Comparison K-Medoids Algorithm and K-Means Algorithm for Clustering Fish Cooking Menu from Fish Dataset

Nana Suarna¹, Yudhistira Arie Wijaya², Mulyawan³, Tuti Hartati⁴, Tati Suprapti⁵

STMIK IKMI Cirebon, Cirebon, Indonesia

*st_nana@yahoo.com

Abstract. The production of fish-based food processing has become a commodity for restaurants, restaurants, catering and home consumption, but there are still many people who don't know how fish can be processed in various dishes for their daily needs. To find out how to make fish-based dishes, the researchers provide a solution to cooking any kind of food, starting from the grouping of types of dishes, the basic ingredients that must be prepared, how to cook them, to the address of the cooking link with ingredients from fish. This study aims so that people can cook various menus whose basic ingredients come from fish. This research uses clustering algorithm, k-means and k-medoids. The stages of this research consisted of data collection, data selection, modeling, data training, data testing and evaluation. The object in the study of menu data for various processed fish dishes consisted of 978 datasets of processed fish dishes. The data used for data relating to fish food ingredients with fish food attributes and the number of likes via the website, the fish dataset is sourced from https://ipm.bps.go.id/data/dataset/ikan. From the two algorithms, the best accuracy results are -1.777 for the k-means algorithm, while -1.535 results are obtained for the accuracy of the k-medoids algorithm.

1. Introduction

Clustering analysis is a multivariate technique which has the main objective of grouping objects based on their characteristics, that the data is reliable and widely used in scientific studies [1]. Clustering as an exploratory mapping tool to analyze accurate data, can also group data objects that are expressed as observational features into subsets or clusters associated with members or data objects from the same or similar sub data, while the sub data groups can differ in the same perception[2]. The aim of the analysis of individual patient data was to identify groups of patients with the same baseline symptom pattern, in evaluating the effectiveness of VEN vs placebo in each group, to explore the effect of dose on the efficacy of VEN in each group [3]The k-means algorithm is a non-parametric clustering method for grouping functional data, in the literature the k-means clustering algorithm is based on two-norms from the original functional data [4]

K-means clustering algorithm for image segmentation, remedial measures of each are proposed for two shortcomings namely randomness of cluster number and initial cluster center. The segmented image is handled by morphological processing to obtain complete contours. This algorithm is improved to realize the separation between fish and background images in complex conditions, compared to other segmentation algorithms, the result has high accuracy and stability[5]

The k-medoids algorithm is a form of grouping of similar data objects of the same value in one cluster. The decision boundary resulting from the given k-medoid model is the perpendicular hyper
bisector plane of the line segment from the medoid of one cluster to another [5]. Another opinion suggests that the k-medoids algorithm is well known, supported by various datamining and machine learning software packages, including heuristics, pam, clara, claras, and affinity propagation [6]. Clustering algorithms are widely applied in various fields such as data mining, statistics, and machine learning, however, the number of initial groupings and central grouping can affect clustering accuracy. In research, the entropy function and the average information density are used to determine the initial clustering number and center, respectively based on fuzzy c-means clustering [7].

Research conducted by S. Gangga and Dr. T. Meyyappan in his journal discusses grouping data using the K-Means algorithm to find the closest possibility and group similar groups [7]. According to Saeful Anwar and Yudhistira in their journal entitled Classifying the Level of Understanding of the KKNI-Based Curriculum Using the X-Means Clustering Method. In this study, using the clustering method with the X-Means algorithm on the questionnaire results on the understanding of the KKNI curriculum in the students of STMIK IKMI Cirebon[8]. Fuzzy set theory was introduced by Zadeh, and was successfully applied to image segmentation. The fuzzy c-means algorithm, proposed by Bezdek is based on fuzzy theory, is the most widely used algorithm in image segmentation because of its simplicity and ability to store more information [9].

2. Methodology
2.1 Object and data

Objects in the research menu data for various processed fish dishes consisted of 1392 datasets of fish dishes. The data used for data related to fish cooking ingredients with fish food data attributes and the number of likes via the https page or via the web, fish dataset according to data at https://ipm.bps.go.id/data/fish data set as shown in figure 2.1

![Figure 1. Site of IPM BPS](https://ipm.bps.go.id/data/fish data set)

The data analysis steps in this study are as follows:

1. Collecting secondary data, which is based on the types of fish dishes including: shredded, pickled, tamarind, meatball, balado, milkfish, skipjack, capcay, brengkes, cireng, mortar, dory, pomfret, chilli, omelette, dancis, bloated, curry, garang, snapper, fish, pindang, grilled, catfish, tilapia, catfish, tilapia, pempek, soup, tuna, woku, mackerel, mangut, stir-fry, tuna, stir-fry, sardines, carp.
2. Coding the predictor variables, 3. Divide the data into training data and testing data, 4. Clustering using the Clustering algorithm, k-means and k-medoids, 5. Determining the number of label values and calculating clustering predictions.

Literature that uses data mining techniques related to food menus sourced from fish has been widely shared on several internet media. This research focuses on Comparing Cdp Optimization On the Algorithm Of Fish Based Cooking Menu Clusterization, namely the k-means, k-medoids clustering algorithm, by comparing the predicted results of the algorithm to get the best results.
2.2 Dataset
In this case the dataset used in the clustering process is a public dataset obtained from https://ipm.bps.go.id, namely the structure of the fish dataset as in Table 1 below:

Name	Type	Information
id	Integer	attribute
Type of cuisine	polynominal	attribute
Love	integer	attribute
url	polynominal	attribute

2.3 Process Model using Rapid Miner
The model is made, starting with data collection, then preprocessing, where preprocessing is done data normalization and attribute selection. The next step was cross validation which divided the data into 90% training data and 10% test data. Then the next process is to perform classification using several machine learning algorithms. One of the algorithms used is k-means and k-medoids, as described in the steps in Figure 2.

![Figure 2. Rapid Miner Process Model](image)

1. Clustering
Clustering is a process for grouping data into several clusters so that the data in one cluster has a maximum similarity level and the data between clusters has a minimum similarity. A good clustering result will result in a high level of similarity within one class and a low level of similarity between classes. The similarity in question is a numerical measurement of two objects. The similarity value between the two objects will be higher if the two objects being compared have high similarities. Likewise, vice versa. The quality of the clustering results really depends on the method used[10] The following formula is used to calculate the distance with the Euclidean distance:

\[Distance(p, q) = \left(\sum_{k}^{N} \mu_k |P_k - q_k|^r \right)^{1/r} \]

Information:
N = Number of data records
K = Order data fields
r = 2
\(\mu_k \) = Field weight given by user
2. K-Means
K-means clustering is a non-hierarchical cluster analysis method that attempts to partition existing objects into one or more clusters or groups of objects based on their characteristics, so that objects that have the same characteristics are grouped into the same cluster and objects that have different characteristics, grouped into other clusters. The K-Means Clustering method seeks to classify existing data into several groups, where the data in one group have the same characteristics as each other and have different characteristics from the data in other groups[11]. The K-Means Clustering method aims to minimize the objective function set in the clustering process by minimizing the variation between data in a cluster and maximizing variation with data in other clusters. It also aims to find groups in the data, with the number of groups represented by variable K. The variable K itself is the number of clusters desired. Divide data into groups. This algorithm accepts input in the form of data without class labels. This is different from supervised learning which accepts input in the form of vectors (x1, y1), (x2, y2), ..., (xi, yi), where xi is data from a training data and yi is the class label for xi

3. K-Medoids
K-Medoid is a classic partition clustering technique that groups data sets of ni objects into k groups known a priori. Compared to K-Mens, K-Medoid is more powerful for noise (noise) and outliers because it minimizes the number of paired dissimilarities, not the sum of squares of the Euclidean distance. A medoid can be defined as a cluster object whose average difference for all objects in the cluster is minimal, namely the most located point in the cluster some data [12]. K-Medoid algorithm steps:
a. Initialize k cluster centers (number of clusters)
b. Allocate each data (object) to the nearest cluster using the Euclidian Distance measure equation with the equation:
\[d(x, y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}; i = 1, 2, \ldots, n\]
c. Randomly select from a new medoid candidate cluster object
d. Calculate the distance of each object in each cluster with the new medoid candidate.
e. Calculate the total deviation(S) by calculating the value of the new total distance - the old total distance. If S <0, swap cluster data objects to form a new set of k objects medoid.
f. Repeat steps 3 to 5 until there is no change in medoid, so that you get the cluster and the members of each cluster.

3. Result and Discussion
The results of the clustering algorithm comparison process used are the K-Means algorithm, and the K-Medoids using fish data sets divided into 5 clustering, namely the results of the evaluation of each clustering algorithm and also the results of the t-test process.

3.1 Process Clustering Distance Performance
a. The K-Means Algorithm
From the results of processing the dataset using the K-Means clustering algorithm, the avg distance between centroids is -2.062, while for cluster 0 models are 8 items, cluster 1 is 738 items, cluster 2 is 40 items, cluster 3 is 1 item and cluster 4 is 93, of a total of 880 items. For more details, it can be seen in table 2:

| Table 2. Results of the Cluster Distance Performance Process |
|---------------------|---------------------|---------------------|---------------------|---------------------|
| Algorithm | Cluster 0 | Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4 |
| K-MEANS | 8 items | 738 items | 40 items | 1 items | 93 items |

So that when it is depicted in the graph about the results of the AVG Within Distance K-Means algorithm in Figure 2.
Davies Bouldin Index

The Davies bouldin index (DBI) is one of the methods introduced by David L. Davies and Donald W. Bouldin. Davies Bouldin Index is used to evaluate clusters in general based on the quantity and proximity between cluster members. The calculation of the value of the Davies Bouldin Index is based on the ratio of the ratio of the ith cluster to the jth cluster. The smaller the Davies Bouldin Index value, the better the resulting cluster. Calculation of the DBI value with an accuracy of -1.777.

3.2 Algorithm K-Medoids

a. The K-Means Algorithm

From the results of processing the dataset using the K-Medoids clustering algorithm, the avg distance between centroids is -4,241, while for cluster 0 model is 698 items, cluster 1 is 74 items, cluster 2 is 98 items, cluster 3 is 9 items and cluster 4 is 1, of a total of 880 items. For more details, please note in Table 3:

Algorithm	Cluster 0	Cluster 1	Cluster 2	Cluster 3	Cluster 4
K-MEANS	698 items	74 items	98 items	9 items	1 items

So that when it is depicted in the graph about the results of the AVG Within Distance Algorithm K-Medoids in Figure 3.

Davies Bouldin Index’s

The Davies bouldin index (DBI) is one of the methods introduced by David L. Davies and Donald W. Bouldin. And used to evaluate clusters in general based on the quantity and proximity between cluster members. The calculation of the value of the Davies Bouldin Index is based on the ratio of the ratio of the with cluster to the jth cluster. The smaller the Davies Bouldin Index value, the better the resulting cluster. Calculation of the DBI value with an accuracy of -1.535.
4. Conclusion

The results of the two research scenarios that have been carried out show consistent DBI values between K-means and K-medoids clustering to measure the results of the fish dataset is grouped into 5 clusters, with the best DBI results on the k-means algorithm with an accuracy of -1.535, while the DBI results on the k-medoids algorithm are accurate to -1.777.

References

[1] C. C. Blanco, F. Caro, and C. J. Corbett, “Do carbon abatement opportunities become less profitable over time? A global firm-level perspective using CDP data,” *Energy Policy*, vol. 138, no. October 2018, p. 111252, 2020, doi: 10.1016/j.enpol.2020.111252.

[2] K. K. Sharma and A. Seal, “Clustering analysis using an adaptive fused distance,” *Eng. Appl. Artif. Intell.*, vol. 96, no. September, p. 103928, 2020, doi: 10.1016/j.engappai.2020.103928.

[3] M. Kato et al., “Clustering patients by depression symptoms to predict venlafaxine ER antidepressant efficacy: Individual patient data analysis,” *J. Psychiatr. Res.*, vol. 129, pp. 160–167, 2020, doi: 10.1016/j.jpsychires.2020.06.011.

[4] A. B. S. Serapião, G. S. Corrêa, F. B. Gonçalves, and V. O. Carvalho, “Combining K-Means and K-Harmonic with Fish School Search Algorithm for data clustering task on graphics processing units,” *Appl. Soft Comput. J.*, vol. 41, pp. 290–304, 2016, doi: 10.1016/j.asoc.2015.12.032.

[5] H. Yao, Q. Duan, D. Li, and J. Wang, “An improved K-means clustering algorithm for fish image segmentation,” *Math. Comput. Model.*, vol. 58, no. 3–4, pp. 790–798, 2013, doi: 10.1016/j.mcm.2012.12.025.

[6] P. S. Lai and H. C. Fu, “Variance enhanced K-medoid clustering,” *Expert Syst. Appl.*, vol. 38, no. 1, pp. 764–775, 2011, doi: 10.1016/j.eswa.2010.07.030.

[7] A. V. Ushakov and I. Vasilyev, “Near-optimal large-scale k-medoids clustering,” *Inf. Sci. (Ny)*, vol. 545, pp. 344–362, 2021, doi: 10.1016/j.ins.2020.08.121.

[8] S. Anwar, N. D. Nuris, and Y. A. Wijaya, “Pengelompokkan Tingkat Pemahaman Kurikulum Berbasis KKNI Menggunakan Metode X-Means Clustering,” vol. 04, no. 2, pp. 187–190, 2019, doi: 10.30591/jpit.v4i2-2.1869.

[9] W. Zhu, J. Jiang, C. Song, and L. Bao, “Clustering algorithm based on fuzzy c-means and artificial fish swarm,” *Procedia Eng.*, vol. 29, pp. 3307–3311, 2012, doi: 10.1016/j.proeng.2012.01.485.

[10] A. N. Benaichouche, H. Oulhadj, and P. Siarry, “Improved spatial fuzzy c-means clustering for image segmentation using PSO initialization, Mahalanobis distance and post-segmentation correction,” *Digit. Signal Process. A Rev. J.*, vol. 23, no. 5, pp. 1390–1400, 2013, doi: 10.1016/jdsp.2013.07.005.

[11] P. Verma and R. D. S. Yadava, “Polymer selection for SAW sensor array based electronic noses by fuzzy c-means clustering of partition coefficients: Model studies on detection of freshness and spoilage of milk and fish,” *Sensors Actuators, B Chem.*, vol. 209, pp. 751–769, 2015, doi: 10.1016/j.snb.2014.11.149.

[12] M. Sun, X. Sun, and D. Shan, “Pedestrian crash analysis with latent class clustering method,” *Accid. Anal. Prev.*, vol. 124, no. November 2018, pp. 50–57, 2019, doi: 10.1016/j.aap.2018.12.016.