Review

Principles of antibody-mediated TNF receptor activation

H Wajant*1

From the beginning of research on receptors of the tumor necrosis factor (TNF) receptor superfamily (TNFRSF), agonistic antibodies have been used to stimulate TNFRSF receptors in vitro and in vivo. Indeed, CD95, one of the first cloned TNFRSF receptors, was solely identified as the target of cell death-inducing antibodies. Early on, it became evident from in vitro studies that valency and Fcγ receptor (FcγR) binding of antibodies targeting TNFRSF receptors can be of crucial relevance for agonistic activity. TNFRSF receptor-specific antibodies of the IgM subclass and secondary cross-linked or aggregation prone dimeric antibodies typically display superior agonistic activity compared with dimeric antibodies. Likewise, anchoring of antibodies to cell surface-expressed FcγRs potentiate their ability to trigger TNFRSF receptor signaling. However, only recently has the relevance of oligomerization and FcγR binding for the in vivo activity of antibody-induced TNFRSF receptor activation been straightforwardly demonstrated in vivo. This review discusses the crucial role of oligomerization and/or FcγR binding for antibody-mediated TNFRSF receptor stimulation in light of current models of TNFRSF receptor activation and especially the overwhelming relevance of these issues for the rational development of therapeutic TNFRSF receptor-targeting antibodies.

Facts

- Ligands of the TNF superfamily (TNFSF) occur as trimeric transmembrane proteins but also as soluble trimeric molecules.
- A subgroup of the TNF receptor superfamily (TNFRSF) is not or only slightly activated by soluble TNFSF ligands.
- Oligomerization and cell surface-anchoring of soluble TNFSF ligands provide these molecules with membrane TNFSF ligand-like activities.
- Dimeric TNFRSF receptor-specific antibodies have typically no or only a moderate agonistic activity.
- Oligomerization and Fcγ receptor-binding frequently converts dimeric TNFRSF receptor-specific antibodies into strong agonists.

Open Questions

- What are the mechanisms underlying the FcγR binding-independent agonistic activity of TNFRSF receptor-specific human IgG2 isoform B antibodies?

General Principles of TNFRSF Receptor Activation by Ligands of the TNF Superfamily

Receptors of the tumor necrosis factor (TNF) receptor superfamily (TNFRSF) are naturally activated by ligands of the TNF superfamily.1,2 Cytokines are assigned to the TNF superfamily (TNFSF) based on a conserved carboxy-terminal homology domain called the TNF homology domain (THD) (Figure 1).1,2 The THD promotes the assembly of homotrimeric molecules, or in rare cases the formation of dimeric (murine GITRL)3,4 or heterotrimeric (LTαβ2)5 ligands, and is essential for interaction with receptors of the TNFRSF. With exception of LTα, TNFSF ligands are expressed as trimeric type II transmembrane proteins in which the THD is separated from the transmembrane domain by a stalk region of variable length (Figure 1). Due to proteolytic processing in the stalk region or by alternative splicing, TNFSF ligands can also be found in the form of soluble trimeric molecules (Figure 1). Soluble TNFSF ligands still contain the THD and thus retain the ability to interact with TNFRSF receptors.1,2 X-ray crystallographic studies of various soluble TNFSF ligands, alone or in complex

1Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
*Corresponding author: H Wajant, Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Röntgenring 11, Würzburg 97070, Germany. Tel/Fax: +49 931 201 71010; E-mail: harald.wajant@mail.uni-wuerzburg.de

Abbreviations: ADCC, antibody-dependent cellular cytotoxicity; CDC, complement-dependent cytotoxicity; cIAP1/2, cellular inhibitor of apoptosis; FcγR, Fcγ receptor; Fn14, fibroblast growth factor inducible; NfκB, nuclear factor κB; NIK, NfκB inducing kinase; PLAD, pre-ligand assembly domain; TACI, transmembrane activator and CAML interactor; TNFR1, TNF receptor-1; TNFRSF, tumor necrosis factor (TNF) receptor superfamily; TRAF2, TNF receptor associated factor-2; TRAIL, TNF-related apoptosis inducing ligand; TWEAK, (TNF)-like weak inducer of apoptosis.

Received 02.4.2015; revised 26.6.2015; accepted 01.7.2015; Edited by G Melino; published online 21.8.15
with TNFRSF receptor ectodomains (Table 1), not only confirmed the trimeric organization of TNFSF ligands deduced from biochemical assays but also revealed that each of the three protomer–protomer interfaces of a TNFSF ligand trimer binds a single TNFRSF receptor molecule.

In view of the structural organization of TNFSF ligand/TNFRSF receptor complexes, a sequential model of TNFRSF receptor activation was initially assumed. According to this model, a single TNFRSF receptor molecule initially interacts with a TNFSF trimer and the resulting cell surface-associated TNFSF ligand–TNFRSF receptor complex then recruits in two further steps two additional monomeric TNFSF receptor molecules to form an active TNFSF ligand–TNFRSF receptor 3 complex (Figure 2a). This early model of TNFRSF receptor activation, however, is incompatible with some fundamental observations. First, ligand binding studies gave no evidence for a sequential assembly of TNFSF ligand–TNFRSF receptor complexes and consistently argued for a single binding site interaction between TNFSF ligands and TNFRSF receptors. Second, the affinity of a single soluble TNFRSF receptor ectodomain for its ligand is usually rather low (\(> 1 \mu M \))\(^{6,7} \). Indeed, efficient functional neutralization of TNFSF ligands with soluble TNFRSF receptor variants requires the assembly of two or more receptor molecules, for example, by genetic fusion with dimerizing or trimerizing protein domains (e.g., Holler et al.\(^{8} \)). Third, the sequential TNFRSF receptor activation model cannot explain why some mutants of the TNFRSF receptors CD95 and TACI, which are defective in ligand binding, nevertheless act in a dominant-negative manner and cause autoimmune lymphoproliferative syndrome (ALPS)\(^{9} \) and common variable immunodeficiency (CVID).\(^{10} \)

The limitations of the sequential TNFRSF receptor activation model were solved by the discovery of a protein domain...
Structure	PDB ID	Resolution (Å)	Ref.
Human TNFR1-LTα	1TNR	2.85	99
Human TNF	1TNF	2.6	100
Human LTα	1.9	101	
Human TNFR1	1EXT	1.85	102
	1NCF		103
Human TNFR2	3ALQ	3	104
Human LTαββ2-LTβR	4MXW	3.6	105
Human CD40L	1ALY	2	106
Human CD40L-CD40	3QD6	3.5	107
Murine OX40L	2HEW	1.45	108
Murine OX40L-humanOX40		2	108
Human OX40L-humanOX40	2HEV	2.41	108
Human 4-1BB	2X39	2.3	109
Human TRAIL	1DG6	1.3	110
	1D2Q	2.8	111
Human TRAILR2-TRAIL	1DU3	2.2	112
	1D0G	2.4	113
	1DV1	2.2	114
Murine RANKL	1J7Z	2.6	115
	1SSS	1.9	not recorded in Pubmed
	1IQA	2.2	116
Murine RANK	3M64	2.01	117
Human RANKL-OPG	3URF	2.7	118
Murine RANKL-RANK	3BQG	2.5	119
	4GIQ	2.7	7
	3ML2	2.8	117
Murine RANKL-OPG	4E4D	2.7	7
Murine GITRL	2Q8O	1.75	4
	3BC9, 2QDN	1.76	120
Human GITRL	2R32, 2Q1M	1.95, 2.3	121
Human TL1A	2QF3	2.5	122
	2RE9, 2000	2.1, 3	123
Human DcR3	3MHD	2.9	124
Human TL1A-DcR3	3MIB, 3K51	2.95, 2.45	124
Human CD95L-DcR3	4MSV	2.5	not recorded in Pubmed
Human LIGHT-DcR3	4J6G	2.4	125
Human LIGHT	4EN0	2.59	125
Human LIGHT-HVEM	4RSU	2.3	not recorded in Pubmed
Human APRIL	1USZ	2.4	126
	1USY	2.3	126
	1USX	1.8	126
Human Baff	1JHS	3.0	127
	1KD7	2.8	128
	1KXG	2	129
Human BaffR	1OSX	Solution NMR	130
Human TACI-CRD2	1XUT	Solution NMR	131
Human BCMA	2KN1	Solution NMR	132
Human Baff-BCMA	1OQE	2.5	133
Human Baff-BCMA			134
	1OTZ, 1P0T	3.3	134
Human APRIL-TAC1	1UX1	1.9	131
Human APRIL-BCMA	1UX2	2.35	131
Human Fn14	2KMQ	Solution NMR	132
	2RPJ	Solution NMR	135
Xenopus Fn14	2KN0	Solution NMR	132
Human EDA-A1	1RJ7	2.3	136
Human EDA-A2	1RS8	2.23	136
Human DR6	3Q04	2.2	137
	3U3V	2.96	138
	3U3T	3.21	138
	3U3S	2.7	138
	3U3Q	2.7	138
	3U3P	2.09	138
Rat NT3-NGFRp75	3BUK	2.6	139
Rat NGF-NGFRp75	3UJ2	3.75	140
	1SG1	2.4	141
within several TNFRSF receptors that mediates self-assembly in the absence of ligand. The self-affinity of TNFRSF receptors would not only allow to explain TNFSF ligand binding by formation of high affinity dimeric or trimeric TNFRSF complexes but may also drive secondary interaction of TNFSF ligand–TNFRSF receptor₂ complexes. The initially formed TNFSF ligand–TNFRSF receptor₂ complexes may already allow the recruitment of TNFRSF receptor-associated signaling molecules but do not ensure full activation of these molecules by transactivation. Please note, the capacity of soluble TNFSF ligand-induced TNFSF ligand–TNFRSF receptor₂ complexes to secondary aggregate spontaneously into fully active receptor clusters may vary considerably between TNFRSF receptors. In some cases (right, upper part) the self-affinity of TNFRSF receptors is maybe too low to trigger spontaneous clustering of soluble TNFSF ligand-induced receptor complexes while in other cases (right, lower part) the self-affinity is high enough to trigger this

Figure 2 PLAD-assisted oligomerization model of TNFRSF receptor activation. This model is based on the fundamental observation that at least some TNFRSF receptors pre-assembles in the absence of ligand. The self-affinity of TNFRSF receptors would not only allow to explain TNFSF ligand binding by formation of high affinity dimeric or trimeric TNFRSF complexes but may also drive secondary interaction of TNFSF ligand–TNFRSF receptor₂ complexes. The initially formed TNFSF ligand–TNFRSF receptor₂ complexes may already allow the recruitment of TNFRSF receptor-associated signaling molecules but do not ensure full activation of these molecules by transactivation. Please note, the capacity of soluble TNFSF ligand-induced TNFSF ligand–TNFRSF receptor₂ complexes to secondary aggregate spontaneously into fully active receptor clusters may vary considerably between TNFRSF receptors. In some cases (right, upper part) the self-affinity of TNFRSF receptors is maybe too low to trigger spontaneous clustering of soluble TNFSF ligand-induced receptor complexes while in other cases (right, lower part) the self-affinity is high enough to trigger this
molecules would become accessible for ligand binding via the ligand-free PLAD-assembled TNFRSF receptors despite the rare occurrence of this receptor species. Currently, it is not possible to differentiate between the two extremes and there are certainly TNFRSF receptor type-dependent quantitative differences in the PLAD–PLAD interaction that may considerably affect the dynamic equilibrium between monomeric and PLAD-assembled TNFRSF receptors.

The PLAD-based model for the formation of TNFSF ligand3–TNFRSF receptor3 complexes alone, however, does not adequately explain one fundamental observation of overwhelming functional importance namely why a significant fraction of TNFRSF receptors bind soluble TNFSF ligands with high affinity but nevertheless fail to efficiently activate receptor-associated signaling pathways. While interaction with a membrane-bound TNFSF ligand in any case results in strong receptor activation, TNFRSF receptors differ in their response to binding of soluble ligand trimers. Some TNFRSF receptors strongly stimulate intracellular signaling pathways in response to soluble TNFSF ligands whereas another group of TNFRSF receptors binds soluble ligand molecules with a limited effect on signal transduction (Table 2). The limited responsiveness to soluble TNFSF ligands of this second type of TNFRSF receptors reflects an intrinsic quality of the TNFRSF receptor type and not an insufficiency of the soluble ligand. For example, soluble TNF efficiently stimulates TNFR1 signaling but fails to properly activate TNFR2 despite efficient binding.15,16 Similarly, soluble APRIL interacts with the TNFRSF receptors TAC1 and Baff receptor-3 (BR3) but only activates the latter17,18 TNFRSF receptors that fail to signal properly in response to binding of soluble ligand trimers, typically respond quite well when the ligand molecules become secondarily oligomerized (Table 2). The latter can be achieved for example by antibodies recognizing a tag attached to the cytokine molecules or by genetic fusion with protein domains triggering the assembly of two or more ligand trimers in a single molecule (Table 3). Because oligomerization has no major effect on the apparent affinity of TNFSF ligand–TNFRSF receptor interaction,19,20 this indicates that secondary interaction of two or more TNFSF ligand3–TNFRSF receptor3 complexes is a key event in stimulation of TNFRSF receptor-associated signaling pathways.

There is, however, initial evidence that different types of TNFRSF receptor-associated signaling pathways differ in the need for secondary interaction of two or more TNFSF ligand3–TNFRSF receptor3 complexes for activation. The need for clustering of TNFSF ligand3–TNFRSF receptor3 complexes for receptor activation has been typically observed in experiments where apoptosis induction or activation of the classical NFκB pathway has been investigated (see Table 2). Recent studies indicated that soluble CD95L, at low concentrations where it typically fails to trigger apoptosis without crosslinking, induces cell migration and proliferation (for review, see Wajant21). Soluble TWEAK ((TNF)-like weak inducer of apoptosis) furthermore stimulates strong and efficient activation of the alternative NFκB pathway but activates the classical NFκB pathway only weakly whereas both NFκB pathways were strongly activated by membrane TWEAK and oligomerized soluble TWEAK.22 The different oligomerization requirement for CD95L-induced apoptosis and CD95L-induced cell migration as well as the different need of oligomerization for soluble TWEAK-triggered classical and alternative NFκB signaling correspond in both cases to different mechanisms how these pathways are activated. Interestingly, form studies comparing ligand- and antibody-induced activation of CD40 and Fn14, there is also evidence for pathway-specific activation requirements of TNFRSF receptors. For example, it has been reported that antibody production and IL6 secretion in B cells are induced after CD40 stimulation with membrane-bound CD40L while an agonistic CD40-specific antibody triggered antibody but not IL6 production.23 Fn14 targeting antibodies, furthermore, can stimulate the alternative NFκB pathway without a significant effect on the classical NFκB pathway.24

Fn14-mediated activation of the classical NFκB pathway requires the recruitment of the adapter protein TRAF2 and the TRAF2-interacting E3 ligases CIAP1 and CIAP2.25,26 TRAF2 forms homotrimmers that binds tightly to a probably monomeric and thus inactive CIAP1 or CIAP2 E3 ligase molecule.27–30 Dimerization of two CIAPs results in an active form which can promote signaling via the classical NFκB pathway.27,31 Thus, in view of the data discussed above soluble TWEAK seems to induce the formation of complexes that only contain a single CIAP1/2 molecule (TWEAK3-Fn14–TRAF2–CIAP1/2) and which are still unable to trigger the classical NFκB pathway but are competent to do this upon CIAP1/2 transactivation-enabling crosslinking. In contrast, the formation of TWEAK-Fn14 complexes containing only one TRAF2 trimer and a single CIAP1/2 molecule is already sufficient to activate the alternative NFκB pathway, because in this case, it is sufficient to withdraw TRAF2–CIAP1/2 complexes from the cytosolic22,32,33 where they are involved in triggering the destruction of the alternative NFκB inducing kinase NIK. In the case of CD95-
induced apoptosis, there is crystallographic evidence that a pentameric/oligomeric complex of the CD95-recruited death domain-containing adapter protein FADD has to be formed to trigger efficient dimerization and activation of caspase-8 in oligomeric structures.34–38 In contrast, soluble CD95L-induced CD95-mediated cell migration and proliferation are independent from FADD and occur by help of tyrosine kinases that directly interact with CD95.39 In this case, signaling pathway activation could already emerge from CD95L–CD95 complexes. In sum, the evidence for oligomerization-independent selective activation of only certain receptor-associated signaling pathways by soluble TWEAK and soluble CD95L favors a two-step model of TNFRSF receptor activation. In a first step, there is ligand-induced formation of signaling competent TNFSF ligand–TNFRSF receptor complexes, which might already trigger certain signaling pathways. In a second step, there is then oligomerization of TNFSF ligand–TNFRSF receptor complexes that eventually enables activation of signaling pathways requiring transactivation/oligomerization of TNFSF ligand–TNFRSF receptor complex-associated signaling intermediates (Figure 2b).

The capacity of membrane-bound TNFSF ligands to trigger TNFRSF receptor clustering has not been extensively investigated. The finding that membrane-bound CD95L but not soluble CD95L induces the formation of durable supra-molecular ligand-receptor clusters, however, is in good accordance with this idea.40 In accordance with the evidence discussed above that activation of only a subset of CD95-induced signaling pathways, including apoptosis induction, requires oligomerization of CD95L–CD95 complexes and thus membrane-bound CD95L, O’Reilly et al. reported that mice expressing only soluble CD95L have defective CD95-induced apoptosis but also obtained evidence for soluble CD95L-mediated non-apoptotic activities.41 It is furthermore worth mentioning that artificially anchoring soluble TNFSF ligands to the cell surface is all that is required to equip these molecules with the activity of the corresponding membrane-bound cytokine. For example, soluble TNFSF ligand fusion proteins with interaction domains recognizing a cell surface exposed molecular structure/protein acquire membrane ligand-like activity after target binding.50,42,43 Similarly, soluble CD95L gain high apoptotic activity after fibronectin binding and APRIL stimulates Baff-R when trapped by the extracellular matrix via a heparan sulfate proteoglycan binding motif in the stalk region.18,44,45 Moreover, it has been observed that the enhanced TNFR2-stimulating activity of a cell surface-anchored fusion protein of soluble TNF is accompanied by clustering of TNFR2 complexes.46

The two-step model of TNFRSF receptor activation is based on data of the subgroup of TNFRSF receptors that do not or only poorly activate apoptosis and classical NFκB signaling in response to binding of soluble TNFSF ligands. An obvious question that has not been addressed so far is how TNFRSF receptors that are readily activated by soluble TNFSF ligands, such as TNFR1, fit in the two-step model of TNFRSF activation. One possibility is that the PLAD-dependent self-affinity of these TNFRSF receptors is simply high enough to drive secondary clustering of initially formed TNFSF ligand–TNFRSF receptor complexes. However, it cannot be ruled out that this TNFRSF receptor type uses still unknown

Table 3 TNFSF ligand fusion protein molecules containing two or more TNF trimers

TNFSF fusion protein	Number of TNF trimers	Examples	EC50 (μg/mL)
Fc-TNFSF	2	CD95L	1000
		OX40L	~10
		TWEAK	>100
ACRP-TNFSF	2	CD95L	100
		CD40L	>100
Fe-scTNFSF	2	TRAIL	>100
EDH2-scTNFSF	2	TRAIL	>10 - 100
TNC-scTNFSF	3	TNF	inactive
			versus highly
			active
Fe-TNC-TNFSF	2	4-IBBL	~100
SP-D-TNFSF	4	CD40L	Improved
		BaF	max. responses
		4-IBBL	highly active
		OX40L	highly active
Fe-ILZ-TNFSF	2	OX40L	highly active

Abbreviations: ACRP, adiponectin collagen domain; EDH2, immunoglobulin E heavy-chain domain 2; Fc, constant IgG1 domain; ILZ, trimerizing isoleucine zipper domain; scTNFSF, three THD domains connected by peptide linkers; SP-D, surfactant protein D scaffold; TNC, tenascin-C

*The enhancing effect observed in this study depends on the TWEAK-induced pathway considered. Fc-TWEEK showed a 100-fold lower EC50 for classical NFκB signaling compared with Flag-TWEAK while both molecules were equally effective in triggering p100 processing

*Soluble TNFSF ligand trimers have not been analyzed
mechanisms/factors enabling these receptors to promote oligomerization of TNFRSF-associated adapter proteins without oligomerization of TNFSF ligand–TNFRSF receptor complexes.

Relevance of Isotype and Oligomerization for Agonistic Activity of TNFRSF Receptor-Specific Antibodies

Agonistic receptor-specific antibodies were important tools for studying functions of TNFRSF receptors as long as their corresponding TNFSF ligands were unknown and are accordingly still of special relevance for the analysis of the orphan TNFRSF receptors DR6, TROY and RELT. Agonistic antibodies are also a great help for research on TNFRSF receptors that share a common TNFSF ligand, as for example the TNF-related apoptosis inducing ligand (TRAIL) receptors. Above all, however, agonistic antibodies are still the means of choice in scenarios where activation of TNFRSF receptors is needed. Indeed, antibodies have superior pharmacokinetics compared with recombinant TNFSF ligands that have quite low serum half-life of around 10–30 min and therefore require elaborate clinical treatment regimes, such as infusion. Moreover, there is broad experience in the development, production and approval of antibodies. Accordingly, there are various agonistic TNFRSF receptor-specific antibodies that are currently under consideration in clinical trials (Table 4).

Typically, TNFRSF receptor-specific antibodies are used with the intention to activate TNFRSF receptors on tumor cells to trigger cell death (TRAILR1, TRAILR2) or to activate costimulatory receptors on immune cells to promote antitumor immunity (4-1BB, GITR, CD27, OX40 CD40). In some cases (CD30, Fn14), the tumor-associated expression pattern of certain TNFRSF receptors is exploited to target tumor cells with ADCC-inducing antibodies or antibody immunotoxins.

Soon after the description of the first TNFRSF receptor-specific agonistic antibodies, it turned out that the valency of antibodies, thus the antigen binding sites per molecule, is of crucial relevance for the agonistic activity. In a panel of 17 human TNFR1-specific IgG2a and IgG2b antibodies, Engelmann et al. identified only two antibodies that moderately mimicked the cytotoxic activity of TNF while all of the these antibodies showed strong TNFR1-mediated killing upon cross-linking with secondary antibodies. Likewise, it was found that cross-linking converts the antagonistic TNFR1-specific IgG2a antibody H398 into a potent TNFR1 agonist.

Another study characterized the in vitro activities of two IgG1 antibodies and an IgM specific for TNFR1 and reported superior agonistic activity for the pentameric IgM variant. Related data have been reported for CD95-specific antibodies. The highly agonistic CD95-specific antibody APO-1 is an IgG3 and has thus a considerable tendency to self-aggregate. In contrast, IgG1, IgG2a, IgG2b and IgA variants of APO-1, that have no or only a low capacity to aggregate, elicit no or less efficient CD95 activation in vitro. Cross-linking with protein A or secondary antibodies, however, restored the high agonistic activity of these APO-1 variants.

In line with this, various other CD95-specific mAbs of the IgG1 and IgG2a/b subclass have been described that only display strong agonistic activity after cross-linking while the pentameric CD95-specific IgM CH-11, but not Fab2-fragments derived of this antibody, has high, aggregation-independent agonistic activity. The potentiating, or even uncovering, effect of cross-linking on the agonistic activity of dimeric antibodies has also been broadly documented for other TNFRSF receptors including CD40, TRAILR1/DR4, TRAILR2/DR5 and Fn14. The relevance of cross-linking for the agonistic activity of dimeric TNFRSF receptor-specific antibodies is also reflected by the fact that antibodies recognizing non-overlapping epitopes synergistically induce receptor activation. In a variation of this theme, it has been recently demonstrated that the therapeutic agonistic activity of the rat IgG2a murine 4-1BB-specific antibody 3H3 in mouse models of experimental autoimmune encephalomyelitis and allergic asthma is based on the expression of galectin-9 which binds to 4-1BB without affecting antibody binding. Thus, the endogenously present galectin-9 molecule may act as a natural crosslinker here. Although antibody-specific factors, such as affinity and epitope localization in the targeted TNFRSF receptor, certainly play a role for agonistic activity, the data discussed, in sum suggest that the valency of TNFRSF receptor-specific antibodies and antibody preparations is the dominant factor that determines their receptor-stimulatory capacity. In particular in view of the importance of clustering of trimeric ligand–receptor complexes for the activation of TNFRSF receptor-associated signaling pathways, it seems natural that interaction of two or more receptor–antibody complexes is required to form active [receptor–antibody]n aggregates (Figure 3a).

The need for secondary interaction of initially formed trimeric ligand–receptor complexes for full TNFRSF receptor activation is nicely reflected by the ability of some per se non-agonistic TNFRSF receptor-specific antibodies to synergistically stimulate receptor signaling in concert with soluble TNFSF ligands. Already in the 1990s, we described the TNFR2-specific monoclonal antibody 80M2 that allowed robust TNFR2 activation by soluble TNF which alone is an inefficient stimulator of TNFR2 signaling. Likewise, it has been found that poorly active, soluble CD95L trimers synergistically induce cell death with non-apoptotic CD95-specific antibodies and that some CD40-specific antibodies enhance soluble CD40L activity. Of course, a straightforward explanation of these observations is that these TNFRSF receptor antibodies bring together individually assembled trimeric ligand–receptor complexes.

The typically quite limited agonistic potential of bivalent TNFRSF receptor-specific antibodies may further suggest that monomeric receptors are the dominant receptor species in the equilibrium of monomeric receptors and PLAD-assembled receptors. In the case of a significant fraction of PLAD-assembled receptors, one would predict the formation of flexible ‘chains’ or clusters formed due to the bivalency of the antibodies and the two or three epitopes present in dimeric (or trimeric) PLAD-assembled receptors. It is not so obvious why further cross-linking should have here the huge functional relevance that has been observed experimentally. In the case of a low degree of PLAD-driven complex formation, however, cross-linking of dimeric antibodies would have an almost obligate impact on the secondary interaction of receptor–
Antibody	Target	Isotype	Status	ID	Condition	
Brentuximab-Vedotin SGN-35	CD30	Drug conjugate, chimerized IgG1	Approved, > 70 studies	—	Lymphoma	
XmAb2513	CD30	IgG1 Enhanced FcyR binding	Phase 1	Completed	NCT00606645	Hodgkin lymphoma
MDX-1401	CD30	IgG1	Phase 1	Completed	NCT00634542	Hodgkin lymphoma
HeFi-1	CD30	Murine IgG1 Agonist	Phase 1	Completed	NCT00048880	Neoplasms
PF-05082566 4-1BB	IgG2	Phase 1	Recruiting	NCT02179918	Advanced solid tumors	
Urelumab BMS-663513	IgG4	Phase 1	Recruiting	NCT01775631	B-cell malignancies	
TRX518	GITR	IgG1 N297 Fc-disabled	Phase 1	Recruiting	NCT01239134	Stage III/IV melanoma
MK-4166	GITR	Phase 1	Recruiting	NCT02132754	Solid tumors	
Varilumab CDX-1127	IgG1	Phase 1	Recruiting	NCT01460134	Solid tumors, B-cell NHL	
MEDI6469	QX40	Murine IgG1	Phase 1	Unknown	NCT01644968	Advanced cancer
MEDI0562	QX40	IgG1 humanized Agonist	Phase 1	Recruiting	NCT02318934	Solid tumors
CP-870,893	IgG2	Phase 1	Completed	NCT0103635	Recurrent/IV melanoma	
PG102 FFP104	IgG4	Termination (poor recruitment)	NCT00787137	Psoriatic arthritis		
Lucatumumab HCD122	IgG1	Phase 2	Completed	NCT00231166	Multiple myeloma	
Chi Lob 7/4	IgG1 chimeric Agonist	Phase 1	Terminated	NCT0010108	CLL	
ASKP1240	IgG4	Phase 1	Completed	NCT01555681	Healthy volunteers	
Enavatuzumab PDL192	IgG1 humanized	Phase 1	Completed	NCT00738764	Advanced solid tumors	
Conatumumab AMG655 TRAILR2/DR5	IgG1	Phase 1b	Completed	NCT00791011	Lymphoma	
Lexatumumab HGS-ETR2 TRAILR2/DR5	IgG1	Phase 1	Completed	NCT00428272	Sarcoma neuroblastoma	
antibody complexes and thus on receptor–antibody chain/cluster formation.

The overwhelming importance of the intrinsically limited activity of soluble TNFSF ligand trimers and dimeric anti-TNFRSF receptor antibodies for the development of TNFRSF receptor-targeting therapeutic concepts becomes particularly apparent in the development of TRAIL death receptor-targeting drugs. TRAIL has been initially identified due to its homologies to TNF. TRAIL binds to five different receptor types that all belong to the TNFRSF receptor family: TRAILR1 to TRAILR4 and osteoprotegerin (OPG). While TRAILR3, TRAILR4 and OPG act as membrane-associated or soluble

Antibody	Target	Isotype	Status	ID	Condition	
Mapatumumab	TRAILR1/DR4	IgG1	Phase 2	NCT00092924	NSCLC	
			Completed	NCT00094848	NHL	
Tigatuzumab	TRAILR2/DR5	IgG1	Phase 1	NCT01220999	CRC neoplasms	
CS-1008			Completed	NCT01307891	Breast cancer	
			Terminated	NCT00969033	Metastatic CRC	
			Completed	NCT00991796	NSCLC	
			Completed	NCT00521404	Pancreatic cancer	
			Completed	NCT00945191	OC	
			Completed	NCT01124630	Metastatic CRC	
			Ongoing	NCT01033240	Liver cancer	
			Completed	NCT00320827	Malignancies, lymphoma	
Drozitumab	TRAILR2/DR5	IgG1	Phase 2	NCT00543712	Chondrosarcoma	
PRO95780			Terminated	NCT00480831	NSCLC	
			Completed	NCT00497497	CRC	
			Completed	NCT00517049	NHL	
			Completed	NCT00851136	Metastatic CRC	
LBY135	TRAILR2/DR5	IgG1	Phase 2	NCT01529307	Advanced solid tumors	
			Terminated	NCT01220999	Advanced solid tumors	
			Ongoing	NCT01033240	Liver cancer	
			Terminated	NCT00320827	Malignancies, lymphoma	
TAS266	TRAILR2/DR5	Tetrameric nanobody	Phase 1	Terminated	NCT01529307	Advanced solid tumors

Abbreviations: CLL, chronic lymphocytic leukemia; CRC, colorectal cancer; HNC, head and neck cancer; NHL, non-Hodgkin lymphoma; NSCLC, non-small cell lung cancer; OC, ovarian cancer

Figure 3 TNFRSF receptor activation by oligomerized and FcγR-bound dimeric antibodies. The binding of two TNFRSF molecules by a bivalent antibody may lead, to some extent, to the recruitment of TNFRSF-associated proteins but with lower efficiency than in the case of stimulation by trimeric ligand. There is, however, no transactivation of TNFRSF receptor-associated signaling complexes. Optimal recruitment of adapter proteins as well as transactivation of receptor-bound effector molecules, thus full receptor activation, only occurs after secondary crosslinking of antibody–TNFRSF receptor complexes by protein A or G or secondary antibodies (a) or can be promoted by the self-affinity of the TNFRSF receptors when there is assistance by the spatial and mobility constraints given by binding to plasma membrane localized FcγRs (b)
decay receptors, TRAILR1 and TRAILR2 are typical representatives of the death receptor type of TNFRSF receptors. Early on, it has been observed that TRAIL triggers apoptosis in a variety of transformed cell lines but not or only rarely in non-transformed cell types. Accordingly, there were considerable efforts of a variety of research groups and companies to develop TRAIL death receptor-targeting therapeutics for tumor treatment. Indeed, recombinant soluble TRAIL (Dulanermin) and several TRAIL death receptor-specific antibodies have been subjected to clinical trials (Table 4). As monotherapy but also in combination with other anticancer drugs, all these TRAIL death receptor-targeting therapeutics have found to be well tolerated to date. Unfortunately, however, there was also no or quite limited clinical efficacy. From the beginning a variety of in vitro studies demonstrated that oligomerization potentiates the activity of soluble TRAIL (e.g., Schneider et al. and Wiley et al.) and TRAILR1/2 targeting antibodies (see above). Thus, the TRAIL death receptor-targeting reagents tested so far in the clinic obviously failed to unleash the full apoptotic activity of the two TRAIL death receptors and the poor therapeutic activity, but also the excellent tolerability, is therefore perhaps no real surprise. It is noteworthy that in accordance with the already discussed fact that poorly active soluble TNFSF ligand trimers can co-operate with barely active TNFRSF receptor-specific antibodies to trigger maximal receptor activation, it has been recently shown in vitro and in vivo that co-treatment with soluble TRAIL and the TRAILR2-specific antibody AMG655 (Conatumumab) results in enhanced apoptosis induction and improved antitumor responses. Soluble TRAIL and the murine TRAILR2-specific antibody MD5-1 also synergistically induce cell death in vitro in various murine cell lines. More importantly, the combined treatment with these reagents showed superior antitumor activity and good tolerability in vivo. This suggests that it is possible to target at least TRAILR2 with highly active agonists without paying with detrimental off-target effects.

TNFRSF Receptor Activation by Fcy Receptor-Bound Antibodies

TNFRSF receptor-specific bivalent antibodies not only resemble soluble TNFSF ligands with respect to the agonistic activity-potentiating effect of oligomerization but also mirror the differential ability of soluble and membrane-bound TNFSF ligands to activate certain types of TNFRSF receptors. Similar to soluble TNFSF ligand fusion proteins that functionally mimic membrane TNFSF ligands upon anchoring to cell surface-exposed molecules (Figure 3b), antigen-bound antibodies naturally anchor to certain cell types in an antigen-independent manner by interaction with Fc receptors recognizing the constant parts of antibodies. For the clinically most important IgG isotypes, there are five human and four murine Fc receptors, the so-called Fcy receptors (FcγR; Table 5) that are expressed to a varying extent on B cells and myeloid cell types. After binding of antigen–antibody complexes the activatory Fcy receptors (human: FcγRIIa, FcγRIIa, FcγRIIC, FcγRIIIA, FcγRIIB; murine: FcγRI, FcγRII, FcγRIII, FcγRIV) trigger immune effector functions, such as cytokine release, phagocytosis, antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). The activity of these activatory Fcy receptors is antagonized by the inhibitory FcγRIIB. There is now broad in vitro and in vivo evidence that Fcy receptor-bound antibodies display strongly enhanced agonistic activity. Crystallographic studies showed that a single IgG molecule interacts with a single FcγR molecule arguing against activation of TNFRSF receptors by sole FcγR-mediated cross-linking of receptor–antibody complexes as discussed above for protein A and secondary antibodies. Instead, it is tempting to speculate that in analogy to membrane-bound TNFSF ligands and cell surface anchored fusion proteins of soluble TNFSF ligands, the plasma membrane-associated spatial and mobility constraints of FcγR-bound antibodies assist TNFRSF receptor self-affinity driven clustering of receptor–antibody complexes (Figure 3b).

The potential relevance of FcγR binding for TNFRSF antibody activity in vivo became already indirectly obvious in the early studies with antibody class switch variants of the CD95 targeting APO-1 antibody. While it turned out that the IgG2b isoform of APO-1 is inactive in vitro, it nevertheless displayed significant antitumor activity in vivo. Although, it was not clarified in an early report to which extent antibody-dependent-effector functions, such as ADCC and CDC, and FcyR binding-dependent agonistic activity of APO-1 IgG2b contributed to the antitumoral effect, in vitro studies performed with the hamster IgG2 anti-mouse CD95 mAb Jo2 revealed later strong FcγR binding-dependent agonistic activity. Most importantly, however, in vivo studies with Jo2 and various mice strains with defective expression of one or more FcγRs revealed a crucial role of the inhibitory FcγRII receptor in Jo2-induced hepatotoxicity, the deadly hallmark of systemic CD95 activation. This straightforwardly showed for the first time that the FcγR binding-dependent agonistic activity of a TNFRSF receptor-specific IgG antibody, and thus receptor activation, is decisive for the observed in vivo effects.

Some important factors that determine the FcγR binding-dependent agonistic activity of TNFRSF receptor-specific antibodies have been revealed in recent years in preclinical studies by investigating the mode of action of CD40- and TRAILR2-specific antibodies by help of FcγR-deficient mice and FcγR discriminating antibody panels. In a vaccination model where the mouse CD40-reactive rat anti-CD40 IgG2a mAb 1C10 has been used as an adjuvant, Li and Ravetch observed abrogation of CD40-dependent T-cell expansion/activation and antitumor activity in mice without the common Fc receptor γ (FcγR) chain. As all three activating FcγRs in mice require the common FcγR chain for expression and signaling, this observation pointed to a crucial role of the remaining inhibitory FcγRII for the adjuvant activity of 1C10 and ruled out a major role of ADCC. In line with the idea of a FcγRII-dependent mode of CD40 activation, it turned out furthermore that 1C10-derived Fab2 preparations and a deglycosylated form of 1C10, thus 1C10 variants that fail to interact with Fcγ receptors, elicit no adjuvant activity in this model, too. Similar findings were made with 3/23, another murine CD40-specific rat IgG2a. A chimeric murine IgG1 variant of 3/23, which significantly binds to FcγRII and the activating FcγRIII, showed in vitro and in vivo strong...
stimulatory effects on antigen-presenting cells (B cells, dendritic cells) that are indicative for CD40 activation. In contrast, a chimeric murine IgG2a variant of 3/23 displaying strong binding to the murine activating Fcγ receptors but only poor binding to FcγRII showed no or only marginal immune stimulatory activities. Analogous results were also revealed in studies with the murine TRAILR2/DR5-specific hamster IgG2 antibody MD5-1 and the human TRAILR2/DR5-specific human IgG1 Drozitumab. Again, the activating FcγRs were found to be dispensable for agonistic antibody activity in vivo. A murine IgG1 variant of Drozitumab, which does not interact with FcγRIV, retained antitumoral activity in FcγRI/FcγRII double deficient mice. Similarly, the well-documented mouse strain-specific hepatotoxicity and tumoricidal activity of MD5-1 was completely abrogated in FcγRII mice. Moreover, Fc domain mutants of MD5-1 and Drozitumab devoid of Fcγ binding lost in vivo activity and a variant of MD5-1 with enhanced binding to human FcγRIIB showed improved activity in FcγRII KO mice with a human FcγRIIB transgene.

It is worth note that upon immobilization on plastic the aforementioned murine 3/23 chimeras were highly effective with respect to triggering CD40 activation irrespective of their FcγR preferences. In vitro studies with cells expressing a cytoplasmic deletion mutant of FcγRII indicated furthermore that triggering of intracellular signaling pathways is dispensable for FcγRII to unleash the agonistic activity of 3/23. Last but not least, it has been shown that all the activating FcγRs also promote CD40 activation by anti-CD40 IgGs and TRAILR2 activation by Drozitumab in vitro and a similar FcγR type-independent enhanced activity of FcγR-bound IgGs have also been reported for Fn14-specific antibodies.

Table 5 Fcγ receptors

Human Fcγ receptors	Murine Fcγ receptors																		
FcγRI CD64	FcγRIIA CD32A	FcγRIIB CD32B	FcγRIIC CD32C	FcγRIIIA CD16A	FcγRIIB CD16B	FcγRI CD16	FcγRIIB CD16	FcγRIIA CD16	FcγRIIB CD16										
Yes	No	No	No	Yes	No	Yes	No	Yes	Yes										
Effect	activating	activating	inhibitory	activating	Activating	Activating	Inhibitory	activating	activating										
Main Expression	DCs	Monos	Myeloid	cell types	Macros	DCs	Monos	Macros	Neutros	Neutros	Neutros	DCs	Myeloid	cell types	NK cells	NK cells	Monos	Macros	Neutros
K0	8.8 nM	0.8-1 nM	0.29 μM	1.7 μM	6 μM	8.3 μM	9-11 μM	0.9 μM	0.5 μM	0.44 μM	5 μM	4.5 μM	0.1 μM						
K1	205 μM	2.2 μM	10 μM	1.2 μM	50 μM	33 μM	14 μM	55 μM	n.m.	n.m.	9 μM	1.1 μM							
K0	3.3 nM	1.1 μM	11 μM	1.1 μM	5.9 μM	0.12 μM	0.1 μM	n.m.	n.m.	n.m.	n.m.	n.m.							
K0	26.2 nM	5.9 μM	4.8 μM	5 μM	5 μM	5 μM	4 μM	n.m.	n.m.	n.m.	n.m.	n.m.							

K0 < 10 nM, high affinity
K0 > 10 nM and < 1 μM, medium affinity
K0 > 1 μM, low affinity

58See Lu et al. 78
59See Luo et al. 160
60See Bruhns et al. 161
61See Nimmesgern et al. 162
62See Vafa et al. 163
63See White et al. 164
64See White et al. 165
65H131 allele of FcγRIIA
66R131 allele of FcγRIIA
67F158 allele of FcγRIIB
68V158 allele of FcγRIIB
69Human FcγRIIB variant NA1 (R36 N65 D82 V106)
70Human FcγRIIB variant NA2 (S36 S65 N82 I106)
At the first glance, in sum these data suggest that the sole binding of dimeric antibodies to cell surface-expressed molecules or a plastic surface is sufficient to enable these molecules to activate TNFRSF receptors. However, this simple view is challenged by the observation that inhibitors of the actin cytoskeleton strongly inhibit the receptor-stimulating activity of CD95- and DR5-specific IgG antibodies without affecting their binding to FcγRs.

Against the background that binding to all FcγR types is sufficient to confer strong agonistic activity to TNFRSF receptor-specific antibodies in vitro, it is tempting to speculate that the observed dominant role of the inhibitory FcγRII in vivo reflects its better bioavailability compared with the activating FcγRs. In further accordance with the idea that the available number of Fcγ receptors is important for the in vivo activity of dimeric anti-TNFFRSF receptor antibodies, Li and Ravetch reported that the agonistic in vivo activities of the CD40-specific 1C10 and the TRAILR2-specific mAb MD5-1 are abrogated not only in FcγRII KO mice but also in heterozygous FcγRII–/– animals.

Taked together, FcγR-bound bivalent antibodies display high, membrane-bound TNFSF ligand mimicking TNFRSF receptor-stimulating activity and resemble in this regard extracellular matrix-bound soluble TNFSF ligands and soluble TNFSF ligand fusion proteins that have been anchored to a cell surface-expressed molecular target. Of course, this does not mean that ‘conventional’ Fc effector activities of antibodies, such as ADCC or CDC, are unimportant for the in vivo effects of TNFRSF receptor-specific antibodies. Indeed, the antimortal activity of IgGs targeting the costimulatory TNFSF receptors GITR and OX40 have been found to be dominated by ADCC of tumor-associated regulatory T cells.

Conclusion and Perspective

The knowledge accumulated in recent years on the relevance of valency, oligomerization and FcγR binding for the agonistic activity of TNFRSF receptor-targeted antibodies will certainly improve the rational design of antibody-derived TNFRSF receptor agonists but will also help to avoid pitfalls. The agonism-generating effects of oligomerization and FcγR binding are also of obvious relevance for the development of antagonistic ligand binding-blocking TNFRSF antibodies. Corresponding efforts have not only to avoid the use of antibody variants that bind FcγRs but must also ensure lack of immunogenicity to prevent the development of cross-linking secondary antibodies.

The recognition of the overwhelming importance of FcγRII/FcγRIIB binding for the agonistic activity of most TNFRSF receptor-specific IgGs may revitalize/enhance efforts to target the TRAIL death receptors in cancer therapy with antibody variants with FcγRII-binding properties superior to the antibodies used so far. In cases where FcγRIIB anchoring has its limitations, for example, due to poor bioavailability of FcγRIIB expressing cells, artificial oligomerization of TNFRSF receptor-specific antibodies or antibodies fragments may deliver an alternative solution to overcome the poor agonistic activity of conventional IgGs. Indeed, high, secondary oligomerization-independent activity has been described for trimeric, tetrameric and pentameric TRAILR2/DR5-specific nanobody/scFv variants. A first clinical trial with the tetravalent nanobody TAS266 revealed reversible hepatotoxicity. Thus, multivalent highly active TRAILR2-targeting antibody constructs may offer the promise of increased antitumoral activity but there is also a need to reconsider the possible side effects of systemic TRAILR2 activation when potent agonists are used in vivo.

The relevance of oligomerization and FcγRIIB anchoring for the agonistic activity of bivalent TNFRSF receptor-specific antibodies has been clearly recognized yet and corresponds very well with current concepts of TNFRSF receptor activation by secondary interaction of TNFSF ligand3–5–TNFRSF receptorR complexes. Oligomerization and FcγRIIB anchoring of bivalent antibodies, however, are presumably not the only factors that determine agonistic activity of TNFRSF-specific IgGs. There are at least two basal observations that cannot be straightforwardly integrated in a TNFRSF receptor activation model where oligomerized and cell surface-anchored IgGs promote the clustering of TNFSF ligand3–5–TNFRSF receptorR complexes. First, only just, an unexpected, clinically potentially relevant, FcγR binding-independent agonistic activity has been observed for CD40-targeting human IgG2 isoform B antibodies. Here, future studies must show whether this type of bivalent antibody indeed activates TNFRSF receptor-associated pathways without TNFRSF receptor clustering or have to clarify how this antibody type triggers TNFRSF receptor clustering without an obvious capacity to auto-aggregate and without evidence for antigen-independent cell surface binding. Second, it is currently not understood why the agonistic activity of FcγR-bound CD95- and TRAILR2/DR5-specific IgG antibodies is abrogated by pretreatment of the FcγR-expressing cells with actin inhibitors although this do not interfere with antibody binding.

Conflict of Interest

The author declares no conflict of interest.

Acknowledgements. This work was supported by research grants from Deutsche Forschungsgemeinschaft (DFG, grant WA 1025/24-1) and from Deutsche Krebshilfe (111703).

1. Bodmer JL, Schneider P, Tschopp J. The molecular architecture of the TNF superfamily. Trends Biochem Sci 2002; 27: 19–26.
2. Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 2001; 104: 487–501.
3. Chattopadhyay K, Ramagopal UA, Brenowitz M, Nathenson SG, Almo SC. Evolution of GITR immune function: murine GITR exhibits unique structural and biochemical properties within the TNF superfamily. Proc Natl Acad Sci USA 2008; 105: 635–640.
4. Zhou Z, Tone Y, Song X, Furuchchi K, Lear JD, Waldmann H et al. Structural basis for ligand-mediated mouse GITR activation. Proc Natl Acad Sci USA 2008; 105: 641–645.
5. Androlewicz MJ, Browning JL, Ware CF. Lymphotixin is expressed as a heteromeric complex with a distinct 33-kDa glycoprotein on the surface of an activated human T cell hybridoma. J Biol Chem 1992; 267: 2542–2547.
6. Day ES, Cachero TG, Qian F, Sun Y, Wen D, Pelletier M et al. Selectivity of BAFF/BLyS and APRIL for binding to the TNF family receptors BAFF/BR3 and BCMA. Biochemistry 2005; 44: 1919–1931.
7. Nelson CA, Warren JT, Wang MW, Teitelbaum SL, Fremont DH. RANKL employs distinct binding modes to engage RANK and the osteoprotegerin decay receptor. Structure 2012; 20: 1971–1982.
8. Holler N, Kataoka T, Bodmer JL, Romero P, Romero J, Dapertet D et al. Development of improved soluble inhibitors of Fasl and CD40L based on oligomeric receptors. J Immunol Methods 2000; 237: 159–173.

9. Siegel RM, Frederiksen JK, Zacharias DA, Chan FK, Johnson M, Lynch D et al. Fas preassociation required for apoptosis signaling and dominant inhibition by pathogenic mutations. Science 2000; 288: 2354–2357.

10. Garbian Y, Lobito AA, Siegel RM, Call ME, Wucherpfennig KW, Gehe RS. Dominant-negative effect of the heterozygous C104R TACI mutation in common variable immunodeficiency (CVID). J Clin Invest 2007; 117: 1550–1557.

11. Chan FK, Ohn-HJ, Zhang L, Siegel RM, Bi KL, Lenardo MJ. A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling. Science 2000; 288: 2351–2354.

12. Neumann S, Hasenauer J, Polnik N, Scheurich P. Dominant negative effects of tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) receptor 4 on TRAIL receptor 1 signaling by formation of heteromeric complexes. J Biol Chem 2014; 289: 16576–16587.

13. Papoff G, Hauser P, Eramo A, Pagano MG, Di Leo G, Signore A et al. Identification and characterization of a ligand-independent oligomerization domain in the extracellular region of the CD95 death receptor. J Biol Chem 1999; 274: 38241–38250.

14. Caubet J, Meek JG. TRAF2, a weak inducer of apoptosis differentially activates the classical and noncanonical NF-kappa B pathway. J Immunol 2010; 185: 1593–1605.

15. Grell M, Douni E, Wajant H, Lohden M, Clauss M, Maxeiner B et al. The transmembrane form of tumor necrosis factor is the prime activating ligand of the 60 kDa tumor necrosis factor receptor. Cell 1995; 85: 783–802.

16. Grell M, Wajant H, Zimmermann G, Schuerch P. The type 1 receptor (CD120a) is the high-affinity receptor for soluble tumor necrosis factor. Proc Nat Acad Sci USA 1998; 95: 570–575.

17. Bossen C, Cachero TG, Tardivel A, Ingold K, Willen L, Dobies M et al. TACI, unlike BAFF-R, is solely activated by oligomeric BAFF and APRIL, to support survival of activated B cells and plasmablasts. Blood 2012; 111: 1004–1012.

18. Ingold K, Zumsteg A, Tardivel A, Huard B, Steiger OG, Cachero TG et al. Identification of proteoglycans as the APRIL-specific binding partners. Proc Natl Acad Sci USA 2005; 102: 1375–1380.

19. Fick A, Lang I, Schater V, Seher A, Trebing J, Weisberger D et al. Studies of binding of tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) to fibroblast growth factor inducible 14 (Fn14). J Biol Chem 2012; 287: 484–489.

20. Lang I, Fick A, Schater V, Giner T, Siegmund D, Wajant H. Signaling active CD95 receptor clusters of high stability. J Biol Chem 2012; 287: 24026–24032.

21. Wajant H. Principles and mechanisms of CD95 activation. Biol Chem 2014; 395: 1401–1416.

22. Roos C, Wicovsky A, Muller N, Salzmann S, Rosenthal T, Kalthoff H et al. Fas preassociation and TACI/LTBR binding both contribute to Fas co-stimulatory activity of murine CD27. J Exp Med 2005; 198: 1097–1098.

23. Baccam M, Bishop GA. Membrane-bound CD154, but not CD40-specific antibody, is a potent TNF-like weak inducer of apoptosis. J Biol Chem 2004; 279: 13466–13471.

24. Hendriks J, Planelles L, de Jong-Odding J, Hardenberg G, Palis ST, Hahne M et al. Heparan sulfate proteoglycan binding promotes APRIL-induced tumor cell proliferation. Cell Death Differ 2005; 12: 637–648.

25. Mhawech-Fauceglia P, Kaya G, Sauter G, McKee T, Donze O, Schwaller J et al. The source of APRIL up-regulation in human solid tumor lesions. J Leukoc Biol 2006; 80: 697–704.

26. Greppach J, Muller D, Munkel S, Selchow O, Nemeth J, Noack M et al. Restoration of membrane TNF-like activity by cell surface targeting and matrix metalloproteinases-mediated processing of a TNF prodrug. Cell Death Differ 2006; 13: 273–284.

27. Beutter BA, Misak IA, Cerami A. Cachectin/tumor necrosis factor: production, distribution, and metabolic fate in vivo. J Immunol 1985; 135: 3972–3977.

28. Dick F, Gillette GD. Pharmacokinetics of murine tumor necrosis factor. J Pharm Pharmacol 1986; 38: 97–103.

29. Kelley SK, Harris IA, Xie D, Deforge L, Topal K, Bussiere J et al. Predictive studies to predict the disposition of Apo2L/tumor necrosis factor-related apoptosis-inducing ligand in humans: characterization of in vivo efficacy, pharmacokinetics, and safety. J Pharmacol Exp Ther 2001; 299: 31–38.

30. Engvall E, Hoffmann H, Dalkkoebusch C, Anni VS, Sarov I, Nophar Y et al. Antibodies to a soluble form of a tumor necrosis factor receptor have TNF-like activity. J Biol Chem 1999; 274: 14497–14504.

31. Grell M, Schuerch P, Meager A, Pfizenmaier K. TR60 and TR80 tumor necrosis factor receptors: two additional death receptors. J Exp Med 1998; 185: 71–77.

32. De Mestral P, Schumacher H, Enright P, Kündig T, Castegnaro P, Hengartner C et al. Expression in CD95 death-inducing signaling complex: experimental and modeling evidence for a death effector domain chain model. Mol Cell 2012; 47: 291–305.

33. DiSano D, Sankar A, Morgner N, Robinson CV, Rittinger K, Driscoll PC. Solution NMR characterization of a ligand-independent oligomerization domain of a natural N-terminal pre-assembly domain of tumor necrosis factor receptor 1 (TNFR1 PLAD) and preliminary activity determination. Protein J 2011; 30: 281–289.

34. Dickens LS, Boyd RS, Jukes-Jones R, Hughes MA, Robinson GL, Fairall L et al. A death effector domain chain DISC model reveals a crucial role for caspase-8 chain assembly in mediating apoptotic cell death. Mol Cell 2012; 47: 291–305.

35. Flick DA, Gifford GE. Pharmacokinetics of murine tumor necrosis factor. J Leukoc Biol 2001; 802.

36. Wajant H, Gerspach J, Pfizenmaier K. Engineering death receptor ligands for cancer therapy. Cancer Lett 2013; 323: 172–183.

37. Hendriks J, Planelles L, de Jong-Odding J, Hardenberg G, Palis ST, Hahne M et al. Heparan sulfate proteoglycan binding promotes APRIL-induced tumor cell proliferation. Cell Death Differ 2005; 12: 637–648.

38. Fick A, Lang I, Schater V, Giner T, Siegmund D, Wajant H. Signaling active CD95 receptor clusters of high stability. J Biol Chem 2012; 287: 24026–24032.

39. Roos C, Wicovsky A, Muller N, Salzmann S, Rosenthal T, Kalthoff H et al. Fas preassociation and TACI/LTBR binding both contribute to Fas co-stimulatory activity of murine CD27. J Exp Med 2005; 198: 1097–1098.

40. O'Reilly LA, Tai L, Lee L, Kruse EA, Grabow S, Fairlie WD et al. Membrane-bound Fas ligand only is essential for Fas-induced apoptosis. Nature 2009; 461: 659–663.

41. Fauche A, Broquet H, Helfrich W. Antibody-based fusion proteins to target death receptors in cancer. Cancer Lett 2013; 323: 172–183.

42. Hendriks J, Planelles L, de Jong-Odding J, Hardenberg G, Palis ST, Hahne M et al. Heparan sulfate proteoglycan binding promotes APRIL-induced tumor cell proliferation. Cell Death Differ 2005; 12: 637–648.

43. Hendriks J, Planelles L, de Jong-Odding J, Hardenberg G, Palis ST, Hahne M et al. Heparan sulfate proteoglycan binding promotes APRIL-induced tumor cell proliferation. Cell Death Differ 2005; 12: 637–648.

44. Hendriks J, Planelles L, de Jong-Odding J, Hardenberg G, Palis ST, Hahne M et al. Heparan sulfate proteoglycan binding promotes APRIL-induced tumor cell proliferation. Cell Death Differ 2005; 12: 637–648.

45. Hendriks J, Planelles L, de Jong-Odding J, Hardenberg G, Palis ST, Hahne M et al. Heparan sulfate proteoglycan binding promotes APRIL-induced tumor cell proliferation. Cell Death Differ 2005; 12: 637–648.

46. Hendriks J, Planelles L, de Jong-Odding J, Hardenberg G, Palis ST, Hahne M et al. Heparan sulfate proteoglycan binding promotes APRIL-induced tumor cell proliferation. Cell Death Differ 2005; 12: 637–648.
62. Li J, Knee DA, Wang Y, Zhang Q, Johnson JA, Chang J et al. LBV135, a novel anti-DR5 agonistic antibody induces tumor cell-specific cytotoxic activity in human colon tumor cell lines and xenografts. Drug Resist Rev 2006; 69: 69–82.

63. Natoni A, Macfarlane M, Inoue S, Walewska R, Majid A, Knee D et al. TRAIL signals to apoptosis in chronic lymphocytic leukemia cells primarily through TRAIL-R1 whereas cross-linked agonistic TRAIL-R2 antibodies facilitate signalling via TRAIL-R2. Br J Haematol 2007; 139: 568–577.

64. Yada A, Yazawa M, Ishida S, Yoshida H, Ichikawa K, Kurakata S et al. A novel humanized anti-human death receptor 5 antibody CS-1008 induces apoptosis in tumor cells without toxicity in hepatocytes. Ann Oncol 2008; 19: 1068–1076.

65. Zhang L, Zhang X, Barratt GW, Oumi AF, Lelawatumbal (TRAIL-receptor 2 mAb) induces expression of DR5 and promotes apoptosis in primary and metastatic renal cell carcinoma in a mouse orthotopic model. Cancer Lett 2007; 251: 146–157.

66. Michaelsson JS, Amato A, Kelly R, Su L, Garber E, Day ES et al. Development of an Fn14 antibody as an anti-tumor agent. MAbs 2011; 3: 362–375.

67. Purcell JW, Kim HK, Tanlimco SG, Doan M, Fox M, Lambert P et al. Nuclear Factor kappaB is required for tumor growth inhibition mediated by Enavatuzumab (PDL192), a humanized monoclonal antibody to TweakR. Front Immunol 2014; 4: 505.

68. Trebing J, Lang I, Chopra M, Salzmann S, Moshil S, Silence K et al. A novel llama disease modeling atFn14 exhibits anti-metastatic activity in vivo. MAbs 2014; 6: 297–306.

69. Madreddi S, Eun SY, Lee SW, Nemecovicova I, Mehta AK, Zajc JM et al. Galeadin-9 controls the therapeutic activity of 4-1BB-targeting antibodies. J Exp Med 2014; 211: 1433–1448.

70. Xiao S, Jodo S, Sung SS, Marshall-Rotstein A, Ju ST. A novel signaling mechanism for soluble CD69 ligand. Synergy with anti-CD59 monoclonal antibodies for apoptosis and NF-kappaB nuclear translocation. J Biol Chem 2002; 277: 5097–50913.

71. Lemke J, von Karstedt S, Zinngrebe J, Walczak H. Getting TRAIL back on track for cancer therapy. Blood 2010; 119: 1300–1306.

72. Schneider P, Keller N, Bomer JL, Hahne M, Frei K, Fontana A et al. Conversion of membrane-bound Fas(CD95) ligand to its soluble form is associated with downregulation of its proapoptotic activity and loss of liver toxicity. J Exp Med 1998; 187: 1205–1213.

73. Wiley SR, Schooley K, Smolak PJ, Din WS, Huang CP, Nicholl JK et al. Characterization and identification of a novel member of the TNF family that induces apoptosis. J Biol Chem 1994; 269: 27553–27561.

74. Bando M, Miyake Y, Shiina M, Wachi M, Nagai K, Kataoka T. Actin cytoskeleton is required for tumor growth inhibition mediated by Enavatuzumab (PDL192), a humanized monoclonal antibody to TweakR. J Immunol 2014; 193: 11235–11244.

75. Rifkind WM, Tanlimco SG, Doan M, Fox M, Lambert P et al. Nuclear Factor kappaB is required for tumor growth inhibition mediated by Enavatuzumab (PDL192), a humanized monoclonal antibody to TweakR. Front Immunol 2014; 4: 505.

76. Trebing J, Lang I, Chopra M, Salzmann S, Moshil S, Silence K et al. A novel llama disease modeling atFn14 exhibits anti-metastatic activity in vivo. MAbs 2014; 6: 297–306.

77. Pincetic A, Bournazos S, DiLillo DJ, Maamary J, Wang TT, Dahan R et al. Identification and characterization of a new member of the TNF family that induces apoptosis. J Biol Chem 1994; 269: 27553–27561.

78. Natoni A, Macfarlane M, Inoue S, Walewska R, Majid A, Knee D et al. TRAIL signals to apoptosis in chronic lymphocytic leukemia cells primarily through TRAIL-R1 whereas cross-linked agonistic TRAIL-R2 antibodies facilitate signalling via TRAIL-R2. Br J Haematol 2007; 139: 568–577.

79. Mizushima T, Yagi H, Takekoto E, Shibata-Koyama M, Isoda Y, Iida S et al. Galectin-9 TRAIL-R2 complex with Fc reveals the importance of glycan recognition for high-affinity IgG binding. J Biol Chem 2010; 285: 2693–2697.

80. Bando M, Miyake Y, Shiina M, Wachi M, Nagai K, Kataoka T. Actin cytoskeleton is required for tumor growth inhibition mediated by Enavatuzumab (PDL192), a humanized monoclonal antibody to TweakR. J Immunol 2014; 193: 11235–11244.

81. Nakamura T, Yoshikawa M, Yoshida Y, Tsunoda S, Nakagawa S et al. Solution of the structure of the TNF-TNFFR2 complex. Sci Signal 2010; 3: e333.

82. Sudhamsu J, Yin J, Chiang EY, Starovasnik MA, Grogan JL, Hymowitz SG. Dimerization of the human immunoglobulin G2 hinge imparts superagonist properties to immunostimulatory anticancer antibodies. Cancer Cell 2015; 27: 138–148.

83. Bando M, Miyake Y, Shiina M, Wachi M, Nagai K, Kataoka T. Actin cytoskeleton is required for tumor growth inhibition mediated by Enavatuzumab (PDL192), a humanized monoclonal antibody to TweakR. J Immunol 2014; 193: 11235–11244.

84. Jodo S, Kung JT, Xiao S, Chan DV, Kobayashi S, Iida S et al. Structural basis for improved efficacy of therapeutic antibodies on deactivation of their Fc glycans. Genes Cells 2011; 16: 1071–1080.

85. Radaeva S, Motyka S, Fridman WH, Sautes-Fridman C, Sun PD. The structure of a human type III Fcgamma receptor in complex with Fc. J Biol Chem 2001; 276: 16469–16477.

86. Ramsland PA, Farugia W, Bradford TM, Sardjono CT, Esponar S, Trist HM et al. Structural basis for Fc gammaRIIA recognition of human IgG and formation of inflammatory signaling complexes. J Immunol 2011; 187: 3028–3037.

87. Sondermann P, Huber R, Oosthuizen V, Jacob U. The 3.2-A crystal structure of the human IgG1 Fc fragment-Fc gammaRIIA complex. Nature 2000; 406: 267–273.

88. Bando M, Miyake Y, Shiina M, Wachi M, Nagai K, Kataoka T. Actin cytoskeleton is required for early apoptosis signaling induced by anti-Fas antibody but not Fas Ligand in murine B lymphoma A20 cells. Biochem Biophys Res Commun 2002; 290: 269–274.

89. Jodo S, Kung JT, Xiao S, Chan DV, Kobayashi S, Tateno M et al. Anti-CD95-induced lethality requires radiodissociated FcgammaRII+ cells. A novel mechanism for fulminant hepatic failure. J Biol Chem 2003; 278: 7553–7557.

90. Xu Y, Szalai AJ, Zhou T, Zhen KR, Chaudhuri TR, Li X et al. Fc gamma RIIA-mediated trapping of anti-Fas antibodies: implications for agonistic antibody-based therapeutics. J Immunol 2003; 171: 562–566.

91. Li F, Ravetch JV. Inhibitory Fcgamma receptor engagement drives adjuvant and anti-tumor activity of agonistic CD40 antibodies. Science 2011; 333: 1030–1034.

92. White AL, Chan HT, Rognlien D, Mcloughlin DJ, Tutt AL et al. Interaction with FcgammaRIIB is critical for the agonistic activity of anti-CD40 monoclonal antibody. J Immunol 2011; 187: 1754–1763.

93. Li F, Ravetch JV. Apoptotic and anti-tumor activity of death receptor antibody requires inhibitory Fcgamma receptor engagement. Proc Natl Acad Sci USA 2012; 109: 10966–10971.
