The Role of Text messaging Intervention in Inner Mongolia among Patients with Type 2 Diabetes Mellitus: A Randomized Controlled Trial

CURRENT STATUS: UNDER REVIEW

Xuemei Wang
Inner Mongolia Medical University

Dan Liu
Inner Mongolia Medical University

Maolin Du dumaolin2016@163.com
Inner Mongolia Medical University
Corresponding Author
ORCiD: 0000-0003-3740-0043

Ruiqi Hao
Inner Mongolia Medical University

Huiqiu Zheng
Inner Mongolia Medical University

Chaoli Yan
Inner Mongolia Medical University

DOI: 10.21203/rs.2.19637/v1

SUBJECT AREAS Medical Informatics

KEYWORDS Type 2 diabetes, SMS, text messaging,
Abstract

Background

Short messages service (SMS) provides a practical medium for delivering content to address patients to adherence to self-management. The aim of study was to design some patient-centered health education messages, evaluate the feasibility of messages, and explore the effect of this model.

Methods

The messages were designed by a panel of experts, and SMS Quality Evaluation Questionnaire was used to evaluate their quality. Two-arm randomized controlled trial was conducted to evaluate the effect of this management model. Participants were randomly divided into an intervention group (IG) who received evaluated messages and a control group (CG) who received regular education. The primary outcomes were changes in plasma glucose and control rates, and secondary outcomes were improvements in diet control, physical activities, weight control, etc.

Results

A total of 42 messages covering five main domains: health awareness, diet control, physical activities, living habits and weight control were designed, and the average scores of the messages were 8.0 (SD 0.7), 8.5 (SD 0.6), 7.9 (SD 1.0), 8.0 (SD 0.7), and 8.4 (SD 0.9), respectively. In SMS intervention, 171 patients with a mean age of 55.1 years to participate, including 86 in the CG and 85 in the IG. At 12 months, compared with the control group (CG), the decrease of fasting plasma glucose (FPG) (1.5 vs. 0.4, P = 0.011) and control rate (49.4% vs. 33.3%, P = 0.034), the postprandial glucose (PPG) (5.8 vs. 4.2, P = 0.009) and control rate (57.8% vs. 33.7%, P = 0.002) were better in the intervention group (IG). In terms of self-
management, improvements in weight control (49.3% vs. 28.2%, P =0.031),
vegetables consumption (87.3% vs. 29.0%, P <0.001), fruits consumption (27.5% vs.
7.4%, P =0.022), and physical activities (84.7% vs. 70.0%, P =0.036) were better in
the IG than in the CG.

Conclusions

The overall quality of the messages was high. It was effective and feasible to carry
out an SMS intervention to improve the behavioral habits of patients with chronic
diseases in remote and undeveloped areas.

1. Introduction

According to the eighth edition of the global diabetes map released by the
International Diabetes Federation, there were 425 million adults with diabetes
worldwide in 2017, and this number is expected to increase to 629 million by 2045
[1]. The prevalence of diabetes in China (11.6%) is three percentage points higher
than the global prevalence, which is growing especially rapidly in low-and middle-
icome countries [2,3]. Moreover, individuals with diabetes are at a higher risk of
heart disease, stroke, and kidney disease, and diabetes carries a heavy financial
burden for these patients’ families [4]. According to a report on the global medical
expenses of patients with diabetes, China ranks second, with $110 billion in
expenses in 2017 [5]. Faced with such a huge expenditure, the level of glycemic
control in China also does not inspire optimism, only 32.6% of adult’s plasma
glucose levels have been controlled [5].

Type 2 diabetes mellitus (T2DM) and its complications can be controlled by long-
term management [6,7], but most patients cannot adhere to an extended time after
discharge. Therefore, a real-time health education and reminder are essential. With
the development of science and technology, the mobile phone technologies have presented a possible solution to this problem. Some small-scale study on diabetes management using information technology has shown advantages for improving glycemic control [8, 9, 10, 11]. Intervention through application (APP) and short message service (SMS) of mobile phones were common methods. The APP is widely used, but it requires that the mobile phone must be smartphone and needs 4G networks or Wi-Fi, the coverage is relatively limited, especially in underdeveloped area. In contrast, the SMS, it is a feature of all mobile phones that receive information have the advantages of economical, convenient, real-time, and easy to operate [12]. In particular, SMS intervention applies to non-smartphones, which is suitable for the economically undeveloped areas. On the other hand, while the rapid advancement of the internet has brought a lot of information and convenience to people, it has also leaded to the inequality of access to information for different economic, educational and age groups. The SMS for health education has relatively eliminated this inequality.

Inner Mongolia, a remote economically underdeveloped region, with limited medical resources, is located in northern China. Smartphones is not widespread, especially among the elderly. The SMS is more suitable for the Inner Mongolia. Most herders are far from medical institutions, who have a high demand for health management of the disease. According to the investigation data analysis of a surveillance survey of chronic disease and nutrition in Chinese adults in Inner Mongolia in 2015, the prevalence of diabetes is 8.75%, the treatment rate and control rate are 46.17% and 18.22%, respectively. The application of the SMS for self-management not only to solve the problem of a shortage of medical resources, but also to avoid the difficulties with face-to-face instruction caused by poor services accessibility [13].
Therefore, the objective of this study was to design a series of patient-centered health education messages for patients with type 2 diabetes mellitus, based on American Diabetes Association on Taking Care of Diabetes, following a standard process and then evaluate its effect of the management model by SMS to provide an economic and effective model for elderly diabetes management in poor areas.

2. Methods

2.1 Study design

This was a randomized, single-blind (only the researcher knows the grouping of patients), parallel-group, controlled trial. The study included two aspects, the first was the SMS design, involving the SMS quality evaluation, conducted between August 2016 and April 2017. The second was the SMS intervention with 12 months follow-up period, conducted between May 2017 and April 2018.

2.2 Patient population

Patients with diabetes were all admitted to the Department of Endocrinology at the Affiliated Hospital of Inner Mongolia Medical University from October 2016 to March 2017 were selected for participation in the study.

Based on the results of a previous study [14], we expected an effect size of 0.26 in the plasma glucose level between baseline and at the end of intervention. The sample size was estimated with 80% power and a two-sided significance level of $\alpha = 0.05$. We estimated a 10% dropout rate in the follow-up because of inconvenience or the time-consuming nature of the trial. We calculated a minimum sample size of 73 participants in each group.

Inclusion criteria for SMS quality evaluation participants were the willingness and ability to participate in the SMS quality evaluation. Exclusion criteria were having a
severe illness or being unable to complete the SMS assessment.

For the SMS intervention research participants, inclusion criteria were as follows:

(1) Diagnosed with T2DM, and aged \geq 18 years;

(2) Participants or a family member living together were literate and had a mobile phone;

(3) Clear consciousness and normal thinking; and

(4) Provided informed consent for the study.

Exclusion criteria for the SMS intervention research participants were as follows:

(1) Inability to complete the questionnaire because of serious illness; or

(2) Participants and their relatives had a lower level of education and could not read text messages.

The study protocol was approved by the Biomedical Research Ethics Committee of Inner Mongolia Medical University, and all selected participants signed informed consent forms. Over the course of the study, staff members protected the participants’ personal information. The research subjects were free to withdraw, and the researchers ensured that the participants’ rights were not affected.

2.3 Data Collection

Data were collected at the baseline using the Diabetes Questionnaire, which was designed based on the Chinese Adult Chronic Diseases and Nutrition Monitoring Personal Questionnaire (2015). The content mainly included socio-demographic data, health-related behaviors, disease status, and dietary conditions, etc. And biochemical indicators, including fasting plasma glucose (FPG), postprandial glucose (PPG), glycosylated hemoglobin (HbA1c), Total cholesterol, triglyceride, high density lipoprotein-c (HDL-C), and low density lipoprotein-c (LDL-C), were assessed using discharge data.
2.4 Design and Methodology of SMS

2.4.1 SMS design

The messages were designed by a panel of experts, including endocrinology, chronic disease management, health education, disease prevention, etc. The content of messages was based on the report of the American Diabetes Association on Taking Care of Diabetes [15] involving five main domains, health awareness, diet control, physical activity, weight control and living habits, respectively. In terms of health awareness, we considered that participants need to have a full understanding of the etiology, process, and complications of diabetes, which is beneficial to the plasma glucose control. For diet control, this was considered to be the most direct factor affecting glycemic control [16,17]. The diet in this study included intake of vegetables, fruits, salt, protein, fat and food, and a low glycemic index, especially for cooking and eating habits. In terms of physical activity and weight control, as we all known, patients with diabetes can effectively lower plasma glucose and lose their weight through exercise. Therefore, we help patients choose the best mode of exercise, and ensure the best time and frequency of exercise through SMS intervention. Smoking and drinking are almost all risk factors for chronic diseases including diabetes. Studies have shown that plasma glucose can be controlled by quitting smoking and limiting alcohol [18]. Therefore, we intervened on unhealthy living habits. Each text message covered only one topic, and contained 70 words or fewer. The language expression was simple, direct, and easy to understand. Final list of SMS were shown in Appendix 1.

The message design was based on the trans-theoretical model (TTM) [19], which is a theory of health behavior promotion that is currently widely used. For diabetes, the pre-contemplation stage is almost non-existent, and combined with the SMS quality
evaluation, we directly intervened from the contemplation stage. Therefore, in our study, the intervention was divided into four stages: the contemplation stage, the preparation stage, the action stage, and the reinforcement stage. The contemplation stage focused on education on basic knowledge about diabetes. This stage aimed to make participants aware of the importance of integrated diabetes management and to develop awareness of health management. The preparation and action stages focused on providing tips and suggestions for changing behaviors and on guiding participants to gradually develop the attitudes and actions necessary to change their behaviors. The reinforcement stage aimed to consolidate the changes in behaviors and transform healthy behaviors into habits. Examples of message in different stages were shown in Appendix 2.

2.4.2 SMS Quality Evaluation

The overall quality of short message was assessed using the SMS Quality Assessment Questionnaire, which included three aspects: the understanding of the text messages, the willingness to act on the text messages, and the current status of the response to the text messages. Specifically, five questions were asked regarding each short message: Questions 1 and 2 reflected the participant’s understanding of the text message (yes=1, no=0), questions 3 and 4 reflected the participant’s willingness to act on the text message (yes=2, no=0), and question 5 reflected the status of the participant’s response to the text message (known and have done=1, unknown but have done=2, known but not have done=3, unknown and not have done=4). The setting of the score was based on the principle of scoring the scale and the patient’s demand for message, the higher the demand, the higher the score setting [20]. The total score of each message was calculated as the sum of the scores of the five questions, reflecting the overall quality of the
message, with a maximum total of 10 points. We classified >7 as high quality, 4-7 as medium quality and <4 as low quality, and deleted the average score of messages <4 after SMS quality evaluation. The SMS Quality Assessment Questionnaire was shown in Appendix 3.

2.5 SMS Intervention

The intervention period was from May 2016 to May 2017. A total of 171 discharged participants with diabetes were randomly divided into two groups using random number. Participants in the intervention group (IG, 85) received evaluated messages, which were sent twice a week, only one text message at a time. The content of the text messages during the same stage included five different domains. Combined with the SMS evaluation results, we added the transmission frequency. Simultaneously, in order to reduce the rate of loss to follow-up, participants in the control group (CG, 86) were sent regular messages, mostly limited to general theoretical knowledge. Examples of regular message that CG received are shown in Appendix 4.

Telephone follow-up after each stage of the intervention was conducted. The purpose of the telephone follow-up was to ensure participants compliance and thus to ensure the quality of the study. The follow-up questionnaire was shown in Appendix 5.

2.6 Outcomes and Measurement

The main outcomes were the changes in plasma glucose, and the control rate of each index. The Guidelines for the Prevention and Treatment of Type 2 Diabetes in China (2017 edition) [2], defines FPG control rate as the proportion of all managed participants with FPG from 4.4 to 7.0 mmol/L and PPG control rate as participants with PPG < 10.0 mmol/L as a percentage of all managed participants. The secondary
outcomes were changes in diet control (vegetables and fruits consumption), physical activities (more than 30 minutes per exercise, three to five times per week), living habits (smoking and drinking) and weight control. Each outcome measure was obtained by telephone follow-up.

2.7 Statistical Analysis

Data were recorded using EpiData 3.1 software. Data analysis was performed using IBM SPSS Statistics, Version 19.0 (IBM Corp, Armonk, NY, USA) software. Continuous variables were expressed as means (standard deviation, SD), and t-test was used for comparisons between the two groups. Categorical variables were expressed as percentages, and c2 test was used for comparisons between the two groups. P ≤ 0.05 was considered statistically significant.

To compare the health behavior of the two groups over time, we converted the behavior change including vegetable and fruit intake, weight control, and physical activities into score at baseline and 12 months. Each instance of behavior change from healthy to unhealthy status was assigned a score of -1, change from unhealthy to healthy status was assigned a score of 1, and no change was assigned a score of 0. The scores for each of the four behaviors were then summed, generating a composite change score that ranged from -4 (when all four behaviors changed from healthy to unhealthy) to 4 (when all four behaviors changed from unhealthy to healthy after the intervention). We then compared the difference in total scores between the two groups.

3. Results

A flow diagram of the participant selection process was shown in Figure 1. A total of 72 were selected to complete the SMS quality evaluation questionnaire. And 171
eligible participants were eventually enrolled in the SMS intervention, a total of 146 participants completed the one-year intervention to the end of the follow-up period.

3.1 SMS Quality Evaluation

Table 1 showed the characteristics of the SMS quality evaluation population and the SMS intervention population. There were no significant differences in age, gender, body mass index (BMI), urban and rural, residence, education, and smoking, drinking, or hypertension (all \(P > 0.05 \)).

Table 2 showed the results for the overall quality of the text messages. The average scores for health awareness, diet control, physical activities, living habits, and weight control were 8.0 (SD 0.7), 8.5 (SD 0.6), 7.9 (SD 1.0), 8.0 (SD 0.7), and 8.4 (SD 0.9) respectively.

Table 3 showed the result of the participants’ understanding of the message content. The participants who completed the SMS quality evaluation, more than 98.0% believed that all kinds of text messages were understandable and approved.

Table 4 showed the results of the participant’s willingness to act on the message content. The participants who completed the SMS quality evaluation, 90.5% indicated they were willing to act on the diet control messages and that they found it helpful and can be persistent, 68.3% indicated they were willing to act on the living habits messages and that they found it helpful and can be persistent.

Table 5 showed the results of the participants’ current status in response to the text messages. The participants who completed the SMS quality evaluation, 79.8% believed that the living habits messages were known but who reported not having taken action. The participants who completed the SMS quality evaluation believed that the weight control, diet control and physical activities messages were unknown and who reported not having taken action were 44.7%, 42.5%, 35.7%, respectively.
3.2 SMS Intervention Effect Evaluation

Table 6 showed there were no statistical differences in the baseline characteristics between the two groups (all $P < 0.05$). The participants were 97 males and 74 females. The average age for the total population was 55.1 (SD 10.8) years. The average level of FPG was 9.0 (SD 2.6), and the average level of PPG was 16.6 (SD 4.4). The control rates of FPG and PPG were 28.4% (48/171), 9.6% (16/171), respectively. 97.6% (80/85) in the IG and 90.5% (76/86) in the CG were receiving hypoglycemic therapy. And 36.5% (31/85) in the IG and 33.7% (29/86) in the CG were receiving antihypertensive therapy.

Table 7 showed changes in plasma glucose, and diabetes risk factors over the entire intervention period. At 12 months, compared with the CG, the decrease in the FPG (1.5 vs. 0.4, $P = 0.011$), and the PPG (5.8 vs. 4.2, $P = 0.009$) were better in the IG.

Table 8 showed results of plasma glucose control rate and health behaviors improvements at 12 month. The FPG control rate (49.4% vs. 33.3%, $P = 0.034$), and the PPG control rate (57.8% vs. 33.7%, $P = 0.002$) were better in the IG, compared with the CG. In terms of self-management, improvements in weight control (49.3% vs. 28.2%, $P = 0.031$), vegetables consumption (87.3% vs. 29.0%, $P < 0.001$), fruits consumption (27.5% vs. 7.4%, $P = 0.022$), and physical activities (84.7% vs. 70.0%, $P = 0.036$) were better in the IG than in the CG. There was no difference between the two groups in terms of quitting smoking or drinking (both $P > 0.05$).

Figure 2 showed the comparison of FPG and PPG changes between the baseline and the end of the four intervention stages. The FPG level in the IG was superior to that in the CG at the end of the preparation stage, the end of the action stage, and the end of the reinforcement stage ($P < 0.05$). The PPG level in the IG was superior to that in the CG at the end of the action stage and the end of the reinforcement stage.
Figure 3 showed the composition of behavior change scores for the two groups. Negative scores represent behaviors that deteriorated at 12 months, compared to baseline. The score of IG ≤ -1 accounted for 20.0% (17/85), while that of CG was 44.2% (38/86). Positive scores represent behaviors that improved at 12 months, compared to baseline. A total of 67.1% (57/85) of participants in the IG scored ≥ 1, while only 25.6% (22/86) in the CG. The mean of the total score was greater for the IG than for the CG (1.1 vs -0.3, \(P < 0.001 \)).

4. Discussion and Conclusions

4.1 Discussion

4.1.1 SMS Quality Evaluation

Patients with diabetes need long-term self-management, especially in the community. High-quality messages not only to meet the needs of participants, but also to drive active behavior changes among diabetes and to ensure the effective of an SMS intervention on diabetes. In order to ensure the quality of messages, we judged by SMS quality evaluation questionnaire. The results showed that, all of the messages had a mean score of approximately 8 points, indicating the overall quality of the message was high. Diet control messages had the highest willingness to act, consistent with the patient’s higher awareness of diet control, and believed that diets were the most direct and effective way to glycemic control [21]. The proportion of participants who reported not having taken action on diet control, living habits, and weight control messages were relatively high, which were consistent with their lower willingness to act on the one hand. Participants may also have lacked relevant theoretical knowledge or failed to establish corresponding
health behaviors although they had a certain degree of awareness of the importance of glycemic control. Health beliefs and behaviors establishment must be based on correct knowledge about diabetes. Without this knowledge, the importance of glycemic control cannot translate into behavioral improvement, but only to conception. Especially for middle-aged and elderly patients, completely changing the bad habits they have cultivated over the years requires a process. Therefore, we need to carry out comprehensive systemic interventions to encourage patients to increase their knowledge regarding treatment attitudes and then expand this to changes in behavior.

4.1.2 SMS Intervention Effect Evaluation

The SMS intervention was successful in improving participants’ continuous exercise and weight control, which were similar to previous results [22]. Sustained message alerts can improve the subjective initiative of participants [23]. Some participants reported that the SMS intervention served as a reminder to guide them to choose appropriate physical activities so that they gradually developed the habit of continuous exercise, which encouraged participants to engage in weekly exercise, and in turn, also contributed to weight control. The SMS messages contained a large amount of dietary information, covering all aspects of a balanced diet, which guided participants to choose foods that were beneficial to glycemic control. The SMS interventions did not affect smoking cessation or alcohol restriction, which were consistent with previous research [24,25,26]. An in-depth analysis was 18.2% (8/44) of smokers in this study indicated that they would quit smoking but not act within one year. In addition, 36.4% (16/44) said that they did not want to quit smoking. Among the drinkers, 79.6% (43/54) were employed, and they said drinking is a social necessity. Therefore, society and the media need to take measures to control
tobacco and alcohol. Consistent with a study in India [27], the SMS intervention group had a greater improvement in awareness of diabetes risk factors. Participants had high adherence when health care professionals were able to use mobile phones to maintain close contact with participants to provide individualized education and management [28]. Behavioral change has been observed to be a gradual, phased, and complex process, characterized by jumps or reversals in between periods of progress [29], suggesting that we have to implement long patients behavioral intervention to promote the transformation of patient behavior.

The successful reductions in FPG and PPG levels observed in our study can be attributed to the synergistic effects of improvements in health behaviors. Participants might not be aware of the conditions or factors that can exacerbate plasma glucose levels. Previous studies have shown [30] that better self-management behavior among patients with diabetes is associated with better glycemic control. Participants in the IG had increased knowledge of the etiology, development process, complications, and influencing factors of diabetes—a first step in the process of glycemic control. Limited knowledge about diabetes resulted in poorer protective practices against the disease [31]. Diabetes and hypertension are lifestyle diseases. Hypertension is the most common complication of diabetes [32], and may worsen the condition of people with diabetes [33]. Therefore, because of the common risk factors between two diseases, significant content on the management of BP was added in the design of the SMS messages, and in a long time, effective diabetes management can also promote stability in BP.

Through comparisons of the IG and CG at each intervention stage, we have shown that the levels of FPG and PPG were different between the two groups after the second and third stages. This finding indicated the effectiveness of the application
of the trans-theoretical model, which provided targeted intervention education based on the physical activities intentions and behavioral characteristics of participants at different stages. The contemplation stage aimed to impart knowledge to the participants, the preparation stage prompted participants to elevate their knowledge to therapeutic attitudes and to develop plans to change their behaviors, and the action stage aimed to further elevate therapeutic attitudes to behavior changes. The goal was to gradually improve the participants’ multiple objective physiological indicators and reduce the risk of recurrence.

4.2 Conclusions

The overall quality of the SMS content that we designed was high to meet the needs of the participants in the present study. Our results support the feasibility, acceptability, and preliminary effectiveness of a low-cost, low-burden text messaging intervention to promote the effective control of plasma glucose and to prevent the degradation of health behaviors over time. This model has the potential to significantly reduce the required medical resources and to be widely popularized in economically backward areas.

Abbreviations

T2D: type 2 diabetes mellitus

SMS: short message service

IG: intervention group

CG: control group

SD: standard deviation

BP: blood pressure

FBG: fasting blood glucose
PBG: postprandial blood glucose

SBP: systolic blood pressure

DBP: diastolic blood pressure

declarations

Ethics approval and consent to participate

The study protocol was approved by the Biomedical Research Ethics Committee of Inner Mongolia Medical University, and all selected participants signed informed consent forms.

Consent for publication

Not applicable.

Availability of data and materials

The datasets used and/or analysed during this study are available from the corresponding author upon reasonable request.

Competing interests

The authors’ declare that they have no competing interests.

Funding

This study was supported by Inner Mongolia Science and Technology Project (Intelligent Health Monitoring and Modern Medical Information System Development Based on Internet of Things Technology).

Authors’ contributions

Xuemei Wang conceived and design the protocol. Xuemei Wang and Dan Liu conducted the statistical analysis and prepared the manuscript. Maolin Du, Ruiqi Hao, Chaoli Yan contributed to data collection. Huiqiu Zheng, Danyan Liang, and Ruiqi Wang participated in clearing and analyzing the data. Xuemei Wang and Dan
Liu produced the final revised manuscript. Maolin Du reviewed the paper and approved its final version.

Acknowledgements

In addition, we thank Jennifer Barrett, Ph.D, from Liwen Bianji, Edanz Editing China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Contributor Information

Xuemei Wang, Email: wangxm_zsu@163.com.

Dan Liu, Email: liudan_summer@163.com

Maolin Du, Email: dumao Lin2016@163.com

Ruiqi Hao, Email: haor qimmu@163.com

Huiqiu Zheng, Email: zhxq jye1988@163.com

Chaoli Yan, Email: aliceyzl@126.com

references

1. Cho N H, Shaw J E, Karuranga S, et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Research and Clinical Practice. 2018; 138: 271-281. doi: 10.1016/j.diabres.2018.02.023.

2. Branch CMAD. Guidelines for prevention and treatment of type 2 diabetes in China (2017 edition). Chinese Diabetes Journal. 2018; 10(1): 4-67. doi:10.3760/cma.j.issn.1674-5809.2018.01.003.

3. Hwang C K, Han P V, Zabetian A, Ail M K, Narayan K M. Rural diabetes prevalence quintuples over twenty-five years in low- and middle-income countries: A systematic review and meta-analysis. Diabetes Research and Clinical Practice. 2012; 96(3): 271-285. doi: 10.1016/j.diabres.2011.12.001.

4. Dedov II, Koncevaya AV, Shestakova MV, et al. Economic evaluation of type 2
diabetes mellitus burden and its main cardiovascular complications in the Russian Federation. Diabetes Mellitus. 2016; 19(6):518. doi: http://dx.doi.org/10.14341/DM8153.

5. Chen R, Ji L, Chen L, et al. Glycemic Control Rate of T2DM Outpatients in China: A Multi-Center Survey. Medical science monitor: international medical journal of experimental and clinical research. 2015; 21: 1440-1446. doi: 10.12659/MSM.892246.

6. Desveaux L, Agarwal P, Shaw J, et al. A randomized wait-list control trial to evaluate the impact of a mobile application to improve self-management of individuals with type 2 diabetes: a study protocol. BMC Medical Informatics and Decision Making. 2015; 16(1):144. doi: 10.1186/s12911-016-0381-5.

7. Peimani M, Rambod C, Omidvar M, et al. Effectiveness of short message service-based intervention (SMS) on self-care in type 2 diabetes: A feasibility study. Primary Care Diabetes, 2016, Aug; 10(4):251-258. doi: 10.1016/j.pcd.2015.11.001.

8. Fang R, Deng X. Electronic messaging intervention for management of cardiovascular risk factors in type 2 diabetes mellitus: a randomised controlled trial. Journal of Clinical Nursing. 2018; 27(3-4): 612-620. doi: 10.1111/jocn.13962.

9. Wu I X Y, Kee J C Y, Threapleton D E, et al. Effectiveness of smartphone technologies on glycaemic control in patients with type 2 diabetes: systematic review with meta-analysis of 17 trials. Obesity Reviews. 2018; 19(6): 825-838. doi: 10.1111/obr.12669.

10. Morita P P, Yeung M S, Ferrone M, et al. A Patient-Centered Mobile Health System That Supports Asthma Self-Management (breathe): Design,
Development, and Utilization. JMIR Mhealth & Uhealth. 2019; 7(1): e10956. doi: 10.2196/10956.

11. Marcolino MS, Oliveira JAQ, D'Agostino M, Ribeiro AL, Alkmim MBM, Novillo-Ortiz D. The Impact of mHealth Interventions: Systematic Review of Systematic Reviews. JMIR Mhealth & Uhealth. 2018; 6(1): e23. doi: 10.2196/mhealth.8873.

12. Whitehead L, Seaton P. The Effectiveness of Self-Management Mobile Phone and Tablet Apps in Long-term Condition Management: A Systematic Review. Journal of Medical Internet Research. 2016; 18(5): e97. doi: 10.2196/jmir.4883.

13. Bensong X, Haihong F, Nan Z, Huijuan L, Lili K, Yancun F. Study on the current situation of health resource allocation and the trend of equity in the Inner Mongolia Autonomous Region during the 12th Five-year Plan period. Chinese Health Resources. 2018; 21(1): 32-36. doi: 10.13688/j.cnki.chr.2018.17545.

14. Qunying J. Evaluation of Effect of Community Health Education on Patients with Type 2 Diabetes Mellitus. Journal of Practical Nursing. 2013; 5: 4-6. doi: 3969/j.issn.1671-8933.2013.05.002.

15. Association AD. Taking care of your type 2 diabetes. 2016. URL: http://www.diabetes.org

16. Otten J, Stomby A, Waling M, et al. Effects of a Paleolithic diet with and without supervised exercise on fat mass, insulin sensitivity, and glycemic control: a randomized controlled trial in individuals with type 2 diabetes. Diabetes/metabolism Research & Reviews. 2017; 33(1). doi: 10.1002/dmrr.2828.

17. Kant, Ashima K. Dietary patterns: biomarkers and chronic disease risk. Applied Physiology, Nutrition, and Metabolism. 2010; 35(2): 199-206. doi: 10.1139/H10-005.
18. Onyesom I, Onyesom H C, Uzugbu U E, Esume C O, Ojieh A E. Gender differences in blood glucose and uric acid levels induced by varying doses of alcohol in man. Trastornos Adictivos. 2009; 11(1): 35-38. doi: 10.1016/S1575-0973(09)71377-7.

19. Savage C. The Trans-Theoretical Model of Behavior Change and Substance Use Interventions. Journal of Addictions Nursing, 2005, 16(1):85-86. doi: 10.1080/10884600490501130.

20. Diez-Canseco F, Zavala-Loayza JA, Beratarrechea A, et al. Design and Multi-Country Validation of Text Messages for an mHealth Intervention for Primary Prevention of Progression to Hypertension in Latin America. JMIR Mhealth & Uhealth. 2015; 3(1): e19. doi: 10.2196/mhealth.3874.

21. Jiajia F, Jie L. KAP of diabetes prevention and health education demands with diabetes patients in hospital. Chinese Journal of Health Education. 2015; 31(5): 508-510. doi:10.16168/j.cnki.issn.1002-9982.2015.05.021.

22. Spark LC, Fjeldsoe BS, Eakin EG, Reeves MM. Efficacy of a Text Message-Delivered Extended Contact Intervention on Maintenance of Weight Loss, Physical Activity, and Dietary Behavior Change. JMIR Mhealth & Uhealth 2015; 3(3): e88. doi: 10.2196/mhealth.4114.

23. Siminerio L, Ruppert K, Huber K, Toledo FG. Telemedicine for Reach, Education, Access, and Treatment (TREAT): Linking Telemedicine With Diabetes Self-management Education to Improve Care in Rural Communities. Diabetes Educator. 2014; 40(6):797-805. doi: 10.1177/0145721714551993.

24. Nilsen O, Wangberg SC, Gram IT. Text messaging as an addition to an internet based smoking cessation intervention: a randomized controlled trial. International Journal of Integrated Care. 2016; 16(5): 31. doi:
25. Palmer M, Sutherland J, Barnard S, et al. The effectiveness of smoking cessation, physical activity/diet and alcohol reduction interventions delivered by mobile phones for the prevention of non-communicable diseases: A systematic review of randomised controlled trials. Plos One. 2018; 13(1): e0189801. doi: 10.1371/journal.pone.0189801.

26. Scott-Sheldon LA, Lantini R, Jennings EG, et al. Text Messaging-Based Interventions for Smoking Cessation: A Systematic Review and Meta-Analysis. JMIR Mhealth & Uhealth. 2016; 4(2): e49. doi: 10.2196/mhealth.5436.

27. Pfammatter A, Spring B, Saligram N, et al. mHealth Intervention to Improve Diabetes Risk Behaviors in India: A Prospective, Parallel Group Cohort Study. J Med Internet Research. 2016; 18(8): e207. 10.2196/jmir.5712.

28. Shetty AS, Chamukuttan S, Nanditha A, Raj RK, Ramachandran A. Reinforcement of adherence to prescription recommendations in Asian Indian diabetes patients using short message service (SMS)--a pilot study. J Assoc Physicians India. 2011 Nov; (59): 711-714. PMID: 22616337.

29. Prochaska JO, Norcross JC, DiClemente CC. Applying the stages of change [online]. Psychotherapy in Australia. 2013; 19(1): 10-16. Availability: https://search.informit.com.au/documentSummary;dn=254435778545597;res=IELHEA.

30. Yu P, Xiao X, Wang L, Wang L. Correlation between self-management behaviors and blood glucose control in patients with type 2 diabetes mellitus in community. J Cent South Univ (Med Sci). 2013; 38(4): 425-431. doi: 10.3969/j.issn.1672-7347.2013.04.015.

31. Aung M N, Aung, Logra, et al. Public knowledge of diabetes in Karen Ethnic
rural residents: a community-based questionnaires study in the far north-west of Thailand. International Journal of General Medicine. 2012; 5: 799-804. doi: 10.2147/IJGM.S33177.

32. Hurst C, Thinkhamrop B, Tran HT. The Association between Hypertension Comorbidity and Microvascular Complications in Type 2 Diabetes Patients: A Nationwide Cross-Sectional Study in Thailand. Diabetes & Metabolism Journal. 2015; 39(5): 395-404. doi: 10.4093/dmj.2015.39.5.395.

33. Nj Lstad I. Diabetic complications are associated with high blood pressure for type-2 diabetes patients. Evidence-based Healthcare. 2001; 5(1): 16. doi: 10.1054/ebhc.2000.0366.

Appendix Captions

[Insert Appendix 1. Final list of SMS]

[Insert Appendix 2. Stages of change, type of content, and number of SMS text messages per key domain]

[Insert Appendix 3. SMS evaluation questionnaire]

[Insert Appendix 4. Examples of regular messages]

[Insert Appendix 5. Follow-up record sheet]

Tables

Table 1 Comparison the characteristics of the SMS quality evaluation population and the SMS intervention population
	SMS intervention populations N = 171	SMS quality evaluation population (N = 72)	\(\chi^2 \)	P value
Age			0.001	0.98
<50	52 (30.4)	22 (30.6)		
\(\geq 50 \)	119 (69.6)	50 (69.4)		
Gender			0.400	0.52
male	97 (56.7)	44 (61.1)		
female	74 (43.3)	28 (38.9)		
BMI			0.761	
<18.5	4 (2.4)	3 (3.7)		
18.5–24.0	44 (26.3)	19 (23.2)		
\(\geq 24.0 \)	119 (71.3)	60 (73.2)		
Distribution			0.957	0.32
urban	133 (77.8)	60 (83.3)		
rural	38 (22.2)	12 (16.7)		
Education			0.412	0.52
below high school	68 (40.0)	32 (44.4)		
high school and above	102 (60.0)	40 (55.6)		
Marital status			0.77	
married	161 (94.2)	67 (93.1)		
other	10 (5.8)	5 (6.9)		
Employment status			2.605	0.10
employed	90 (52.6)	46 (63.9)		
non-employed	81 (47.4)	26 (36.1)		
Smoking			0.011	0.91
yes	44 (25.7)	19 (26.4)		
no	127 (74.3)	53 (73.6)		
Drinking			1.317	0.25
yes	58 (33.9)	30 (41.7)		
no	113 (66.1)	42 (58.3)		
Hypertension			0.262	0.60
yes	65 (39.6)	26 (36.1)		
no	99 (60.4)	46 (63.9)		

SMS: short message service; BMI: body mass index. † Fisher probabilities method
Table 2 Comprehensive quality of the message content (%).

Main domain	Average score (SD)	Maximum score	Minimum score
Health awareness	8.0 (0.7)	9.6	6.6
Diet control	8.5 (0.6)	9.8	6.8
Physical activities	7.9 (1.0)	10.0	6.8
Living habits	8.0 (0.7)	9.2	6.8
Weight control	8.4 (0.9)	10.0	5.5

Table 3 Participants’ understanding of the message content (%).

Main domain	Understandable and approved	Cannot understand but approved	Understandable but disapproved	Cannot understand and disapproved
Health awareness	99.8	0.0	0.2	0.0
Diet control	99.9	0.0	0.1	0.0
Physical activities	99.7	0.0	0.3	0.0
Living habits	98.5	0.0	1.5	0.0
Weight control	99.5	0.0	0.5	0.0

Table 4 Participants’ willingness to act on the message content (%).

Main domain	Helpful and persistent	Unhelpful but persistent	Helpful but cannot insist	Unhelpful and cannot insist
Health awareness	90.1	1.8	7.3	0.8
Diet control	90.5	1.8	5.8	1.8
Physical activities	80.8	1.6	7.3	10.3
Living habits	68.3	1.4	26.2	4.4
Weight control	81.3	1.8	12.7	4.2

Table 5 Current status of the participant in response to the text message content (%).
Main domain	Known and have done	Unknown but have done	Known but not have done	Unknown and not done
Health awareness	44.6	2.4	36.7	16.3
Diet control	29.6	7.0	20.8	42.5
Physical activities	40.4	6.8	17.2	35.7
Living habits	8.7	1.6	79.8	9.9
Weight control	28.5	6.7	20.1	44.7

Table 6 Baseline characteristics of the participants in the intervention group and control group.

	Total	IG (n=85)	CG (n=86)	t/c²
Demographic, Mean(SD)				
Gender (Male/Female)	97/74	42/43	55/31	3.682
Age (years)	55.1 (10.8)	55.4 (9.7)	54.7 (11.8)	-0.416
BMI (Kg/m²)	25.8 (3.8)	25.9 (3.5)	25.8 (4.1)	-0.255
Indicators, Mean (SD)				
FPG (mmol/L)	9.0 (2.6)	9.2 (2.8)	8.8 (2.4)	-0.954
PPG (mmol/L)	16.6 (4.4)	16.8 (4.6)	16.4 (4.3)	-0.599
SBP (mmHg)	132.3 (17.0)	131.0 (16.1)	134.3 (17.8)	1.137
DBP (mmHg)	80.8 (11.8)	79.8 (9.8)	81.8 (13.5)	1.034
FPG control (%)	48 (28.4)	25 (29.8)	23 (27.1)	0.152
PPG control (%)	16 (9.6)	10 (12.0)	6 (7.2)	1.107
SBP control (%)	90 (60.8)	51 (68.0)	39 (53.4)	3.298
DBP control (%)	92 (63.4)	50 (68.5)	42 (58.3)	1.613
Total cholesterol (mg/l)	4.7 (1.2)	4.8 (1.2)	4.7 (1.2)	-0.747
Triglycerides (mg/l)	1.9 (1.3)	1.9 (1.3)	1.9 (1.2)	0.275
HDL-C (mg/l)	1.1 (0.3)	1.1 (0.2)	1.1 (0.3)	-1.062
LDL-C (mg/l)	3.0 (0.9)	3.0 (0.9)	2.9 (1.0)	-0.739
HbA1C (%)	9.2 (2.0)	9.2 (2.0)	9.1 (2.0)	-0.339
Risk factors				
Hypertension (%)	65 (39.6)	32 (39.0)	33 (40.2)	0.025
Dyslipidemia (%)	96 (56.1)	46 (54.1)	50 (58.1)	0.126
Smoking (%)	44 (25.7)	23 (27.1)	21 (24.4)	0.156
Drinking (%)	58 (33.9)	26 (30.6)	32 (37.2)	0.361
Overweight (%)	97 (58.1)	50 (61.0)	47 (55.3)	0.553
Pain (%)	94 (55.3)	41 (48.2)	53 (62.4)	3.427
Anxiety (%)	82 (48.2)	43 (50.6)	39 (45.9)	0.377
Hypoglycemic therapy (%)	156 (94.0)	80 (97.6)	76 (90.5)	2.534
Medication way (%)				3.058
Insulin	80 (51.9)	46 (57.5)	34 (45.9)	
Oral medication + insulin	48 (31.2)	20 (25.0)	28 (37.8)	
Oral medication	26 (16.9)	14 (17.5)	12 (16.2)	
Antihypertensive therapy (%)	60 (35.1)	31 (36.5)	29 (33.7)	

CG: control group; IG: intervention group; SD: standard deviation; BMI: body mass index; FPG: fasting plasma glucose; PPG: postprandial glucose; SBP: systolic blood pressure; DBP: diastolic blood pressure; HDL-C: high density lipoprotein-c; LDL-C: low density lipoprotein-c.

†Fisher probabilities method
Table 7 Change in primary outcomes during the intervention.

	Total	CG	IG			
	At 12 month	Change†	At 12 month	Change†	At 12 month	Change†
Primary outcomes, Mean(SD)						
FPG (mmol/L)	8.0 (2.1)	-0.9 (2.9)	8.4 (2.2)	-0.4 (2.8)	7.7 (1.9)	-1.5 (3.0)
PPG (mmol/L)	11.1 (2.8)	-5.4 (4.8)	11.9 (3.2)	-4.2 (4.7)	10.4 (2.2)	-5.8 (5.1)

*P < 0.05. †Change = Endpoint value - Baseline value; ‡The t value was the comparative result of the changes between CG and IG.

FPG: fasting plasma glucose; PPG: postprandial glucose; CG: control group; IG: intervention group; SD: standard deviation.

Table 8 Control rate of plasma glucose and improvements of health behaviors at 12 month.
Primary outcomes	Total	CG	IG	t/c²
FPG control (%)	70 (41.4)	28 (33.3)	42 (49.4)	4.501
PPG control (%)	76 (45.8)	28 (33.7)	48 (57.8)	9.708
Secondary outcomes				
Body Weight (%)				6.972
Increased from Baseline	27 (19.0)	17 (23.9)	10 (14.1)	
Decreased from Baseline	55 (38.7)	20 (28.2)	35 (49.3)	
Unchanged from Baseline	60 (42.3)	34 (47.9)	26 (36.6)	
Vegetables consumption (%)				49.081
Increased from Baseline	82 (58.6)	20 (29.0)	62 (87.3)	
Decreased from Baseline	19 (13.6)	16 (23.2)	3 (4.2)	
Unchanged from Baseline	39 (27.9)	33 (47.8)	6 (8.5)	
Fruits consumption (%)				7.634
Increased from Baseline	15 (16.0)	4 (7.4)	11 (27.5)	
Decreased from Baseline	44 (46.8)	26 (48.1)	18 (45.0)	
Unchanged from Baseline	35 (37.2)	24 (44.4)	11 (27.5)	
Physical activities (%)				4.407
Continuous exercise	110 (77.5)	49 (70.0)	61 (84.7)	
Discontinuous exercise	32 (22.5)	21 (30.0)	11 (15.3)	
Quit smoking (%)	12 (25.5)	3 (13.6)	9 (36.0)	3.078
Quit drinking (%)	17 (39.5)	9 (34.6)	8 (47.1)	0.666

*P < 0.05; **P < 0.001

FPG: fasting plasma glucose; PPG: postprandial glucose; CG: control group; IG: intervention group.

Figures
Figure 1

Study flow diagram.

Figure 2

Comparison of FPG and PPG levels at the end of each intervention stage.

*Statistically significant difference ($P < 0.05$).

FPG: fasting plasma glucose; PPG: postprandial glucose.
Figure 3

Composite change in scores by intervention group.

Supplementary Files
This is a list of supplementary files associated with the primary manuscript. Click to download.

- CONSORT 2010 Checklist.doc
- Appendix 2.doc
- Appendix 4.doc
- Appendix 5.doc
- Appendix 3.doc
- Appendix 1.doc