Long-term and baseline recreational physical activity and risk of endometrial cancer: the California Teachers Study

C M Dieli-Conwright*,1, H Ma1, J V Lacey Jr1, K D Henderson1, S Neuhausen1, P L Horn-Ross2, D Deapen3, J Sullivan-Halley1 and L Bernstein1

1Division of Cancer Etiology, Department of Population Sciences, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, California 91010, USA; 2Cancer Prevention Institute of California, 2201 Walnut Avenue, Suite 300, Fremont, California 94538, USA and 3Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, 2001 Soto Street, Los Angeles, California 90032, USA

Background: Physical activity may be associated with decreasing endometrial cancer risk; it remains unclear whether the association is modified by body size.

Methods: Among 93,888 eligible California Teachers Study participants, 976 were diagnosed with incident endometrial cancer between 1995–1996 and 2007. Cox proportional hazards regression methods were used to estimate relative risks (RRs) and 95% confidence intervals (CIs) for endometrial cancer associated with long-term (high school through age 54 years) and baseline (3 years prior to joining the cohort) strenuous and moderate recreational physical activity, overall and by body size.

Results: Increased baseline strenuous recreational physical activity was associated with decreased endometrial cancer risk (P trend = 0.006) with approximately 25% lower risk among women exercising > 3 h per week per year than among those exercising < 1/2 h per week per year (RR, 0.76; 95% CI, 0.63–0.92). This inverse association was observed among overweight/obese women (body mass index ≥ 25 kg/m²; P trend = 0.006), but not among thinner women (P trend = 0.12). Baseline moderate activity was associated with lower risk among overweight/obese women.

Conclusion: Increasing physical activity, particularly strenuous activity, may be a lifestyle change that overweight and obese women can implement to reduce their endometrial cancer risk.

Endometrial cancer is the most common gynaecological malignancy and the fourth most frequent cancer diagnosis of women in developed countries, accounting for 6% of all new cancer cases among women in the United States (Jemal et al., 2008). Established risk factors for endometrial cancer include obesity, diabetes mellitus, use of unopposed oestrogen therapy, family history of endometrial cancer, nulliparity, earlier age at menarche and later age at menopause (Gruber and Thompson, 1996; McPherson et al., 1996; McPherson et al., 1996; Kaaks et al., 2002). One potential modifiable risk factor related to obesity is physical activity. Studies investigating the association between physical activity and endometrial cancer risk have been mixed; some cohort (Zheng et al., 1993; Moradi et al., 1998; Terry et al, 1999; Schouten et al, 2006) and case–control studies (Salazar-Martinez et al., 2000; Matthews et al, 2005; John et al, 2010) have suggested that higher levels of physical activity decrease endometrial cancer risk, while other studies have reported no evidence for such an association (Colbert et al, 2003; Furberg and Thune, 2003; Friberg et al, 2006; Friedenreich et al, 2007).

Two recent reviews concluded that endometrial cancer risk was reduced approximately 20–40% in women with the highest level of physical activity (Cust et al, 2007; Voskuil et al, 2007). Owing to the diversity of physical activity assessments used in prior studies,
additional studies using detailed, standardised physical activity assessments are needed to confirm these findings and address remaining questions such as the type, intensity and timing of physical activity that is most effective in reducing endometrial cancer risk.

We investigated the association between physical activity and endometrial cancer in the prospective California Teachers Study (CTS) cohort, using information reported on the baseline (enrolment) CTS questionnaire about strenuous and moderate recreational physical activity during several extended time periods throughout participants’ lives. Further, we examined whether body mass index (BMI; kg m\(^{-2}\)) at baseline modified any observed association between physical activity and endometrial cancer risk.

MATERIALS AND METHODS

Study population

A detailed description of the CTS has been published previously (Bernstein et al., 2002). In brief, the CTS is a prospective cohort of current, recently employed, and retired female public school teachers, administrators and other professionals who were vested members of the California State Teachers Retirement System in 1995. Cohort participants completed a baseline questionnaire in 1995–1996 that collected information on personal medical history, family history of cancer, reproductive factors, medication and hormone use, and lifestyle factors such as recreational physical activity, diet, alcohol intake and smoking history. Use of human subjects’ data in this study was approved by the Institutional Review Board at each collaborating institution as well as the California Committee for the Protection of Human Subjects in accord with assurances approved by the US Department of Health and Human Services.

A total of 133,479 participants comprised the entire CTS cohort. For this analysis, we excluded, in sequence, participants who, at baseline, lived outside of California (\(n = 8867\)), had a prior or unknown history of any cancer (\(n = 2284\)), limited their participation to breast cancer research (\(n = 18\)), reported having had a hysterectomy (\(n = 27794\)), had missing data on physical activity (\(n = 594\)), or had invalid physical activity responses (\(n = 34\)). The resulting cohort for this analysis consisted of 93,888 participants. Participants with missing data on BMI (\(n = 3537\)) were excluded from analyses of effect modification by BMI.

Case ascertainment and Follow-up

Incident diagnoses of endometrial cancer were identified through annual linkage with the California Cancer Registry (CCR). The CCR is a population-based cancer registry established by state legislation mandating cancer reporting; the CCR is estimated to be over 99% complete (Kwong et al., 2001). The high standards maintained by the CCR ensure that follow-up for cancer outcomes are virtually complete as long as cohort members reside in California. Linkage between the CTS cohort and the CCR database is based on full name, date of birth, address and social security number and includes manual review of possible matches. California and national mortality files were used to ascertain date and cause of death. Follow-up time was calculated as the number of days between the date of baseline questionnaire completion and the first occurrence of a first diagnosis of endometrial cancer. The end date of follow-up is defined as the date of endometrial cancer diagnosis, date of a move for >4 months out of California, date of death – or the end date of follow-up – whichever came first.

A total of 997 incident cases of endometrial cancer were diagnosed between baseline and end of follow-up on 31 December 2007, including 840 women with type 1 endometrial cancers (International Classification of Diseases for Oncology–3 (ICD-O-3) histology codes 8050, 8140, 8210, 8260, 8323, 8380, 8382, 8480, 8481, 8560, 8570), 53 women with type 2 endometrial cancers (ICD-O-3 histology codes 8255, 8310, 8441, 8460, 8461), 83 women with other histology codes (ICD-O-3 histology codes 8950, 8951, 8980, 8890, 8896, 8930, 8933 or other).

Measures of recreational physical activity

Participants provided detailed information on the baseline questionnaire regarding their recreational physical activity during various time periods in their lives. These time periods included: while in high school, between the ages of 18–24, 25–34, 35–44 and 45–54 years, and during the 3 years before completing the questionnaire, herein referred to as ‘baseline’ activity. For each time period, participants were asked to indicate the average amount of time spent participating in strenuous intensity physical activity (e.g., swimming laps, aerobics/calisthenics, running and jogging) and moderate-intensity activity (e.g., brisk walking, recreational tennis, golf, softball and volleyball). Participants reported the average number of hours per week (none, 0.5, 1, 1.5, 2, 3, 4–6, 7–10, and ≥11 h per week) and average number of months per year (1–3, 4–6, 7–9 and 10–12 months per year) for each level of physical activity intensity in which they participated. For each time period and intensity level, the average annual hours per week was multiplied by months per year of participation and divided by total years to estimate average hours per week per year. The midpoint value of the hours per week and months per year categories was assigned, when appropriate, in making these calculations. A conservative value of 12 was assigned to the category ≥11 h per week. Long-term recreational physical activity was calculated by multiplying the average hours per week per year for each time period by the number of total years spent in that time period. These values were then summed across all time periods and divided by the total number of years. Long-term average annual strenuous recreational physical activity and long-term average annual moderate recreational physical activity were then categorised into approximate quartiles (≤0.50, 0.51–1.50, 1.51–2.99, ≥3.00 hours per week per year). Recent physical activity was calculated in a manner similar to that outlined for long-term activity, by calculating the average hours per week per year of strenuous and moderate physical activity for the 3 years prior to cohort enrolment (baseline).

A combined strenuous plus moderate physical activity variable was created for long-term recreational physical activity and for baseline recreational physical activity by summing the hours per week per year of strenuous recreational physical activity and hours per week per year of moderate recreational physical activity, and categorising the total into approximate quartiles based on person-years (≤0.50, 0.51–2.59, 2.60–5.49, ≥5.50 hours per week per year).

Assessment of endometrial cancer risk factors

Information on other potential endometrial cancer risk factors was collected in the baseline questionnaire, including race and ethnicity, personal and family history of endometrial cancer, hormone therapy (HT) use, oral contraceptive use, reproductive history, menopausal status, height, weight, and history of other cancers and conditions including diabetes (Bernstein et al., 2002). Body mass index was categorised into six groups: <20, 20.0–22.9, 23.0–24.9, 25.0–29.9, 30.0–34.9, ≥35 kg m\(^{-2}\) or unknown.

Participants reporting ongoing menstrual periods, who had never used hormones for menopausal symptoms, were considered premenopausal. Participants were classified as perimenopausal if their periods had stopped within the 6 months prior to completing the baseline questionnaire and they were not currently pregnant, and as postmenopausal if they met any of the following criteria: (1) their periods stopped for >6 months, (2) they had a bilateral oophorectomy, (3) they were of age 56 years or older at baseline and not already classified as premenopausal or perimenopausal or (4) they started using HT to treat menopausal symptoms before their periods stopped. Hormone therapy use at the time of cohort entry was characterised with respect to pattern of HT use over time.
and formulations used (oestrogen alone or oestrogen–progestin combination). Menopausal status and HT use were combined to create a six category variable: premenopausal, postmenopausal/never used HT, postmenopausal/used only unopposed oestrogen, postmenopausal/used only an oestrogen plus progesterone formulation, postmenopausal/used both unopposed oestrogen and oestrogen plus progesterone formulations, and unknown as to menopausal status or HT use status. Perimenopausal participants were combined with premenopausal participants for the analyses described here.

Statistical analyses. Multivariable Cox proportional hazards regression methods were used to estimate the hazard rate ratios, presented as a relative risks (RRs) and 95% confidence intervals (CIs), for the association between exposures of interest and risk of endometrial cancer, using ages at start and end of follow-up (in days) to define time on study. All models were stratified by age at baseline (in single years of age) and models were adjusted for race (white, Non-white). In addition, we examined the potential confounding effects of relevant risk factors including family history of endometrial cancer, age at menarche, oral contraceptive use, menopausal status/HT use, number of full-term pregnancies, number of total pregnancies, BMI, smoking history, alcohol intake, history of hypertension and history of diabetes. Each factor was added to the race-adjusted model to determine whether its inclusion changed the magnitude of the main effect association. We then included potential confounding variables in a single model to assess their combined effect on the association between physical activity and endometrial cancer risk. With the exception of BMI, none of the potential confounding factors affected the association, either alone or in combination. Therefore, only BMI was included as a potential confounder in the final model. The two physical activity variables, strenuous physical activity and moderate physical activity, were mutually adjusted for each other in the models examining the association between these physical activity measures and endometrial cancer risk.

To assess the proportional hazards assumption using physical activity variables (long-term, recent; strenuous, moderate, and strenuous plus moderate intensities), we first visually examined whether Kaplan–Meier survival curves had parallel lines (Therneau, 1996). We also plotted scaled Schoenfeld residuals by time to test for a zero slope and tested the null hypothesis of no correlation between the residuals and time on study (Schoenfeld, 1982). No evidence for a violation of the proportional hazards assumption was apparent.

Trend tests for each physical activity variable were performed by fitting the median value of exposure categories in the statistical models and determining whether the estimated slope coefficient differed from zero (Wald test). We evaluated effect modification by BMI (<=25, >25 kg m\(^{-2}\)) by constructing likelihood ratio tests that assessed homogeneity of trends across categories of the potential effect modifier. Two-sided P-values are reported for tests for trend and for homogeneity of trends. We did not adjust CIs or P-values for multiple comparisons. All statistical analyses were performed using the SAS software program (SAS version 9.2; SAS Institute, Cary, NC, USA).

RESULTS

The median follow-up time for the 93 888 participants in this study is 12.1 years. The mean age at diagnosis was 66.9 years (s.d. ± 10.9 years) for the 976 women diagnosed with endometrial cancer during follow-up and median time to diagnosis was 5.8 years. Table 1 presents age-adjusted percentages for selected baseline characteristics of women included in the analytic cohort by category of baseline strenuous recreational physical activity.
Table 1. Distribution of selected age-adjusted baseline characteristics among 93 888 California Teachers Study participants, under follow-up for endometrial cancer from baseline (c. 1995–1996) through 31 December 2007, by category of baseline strenuous recreational physical activity

Baseline strenuous recreational physical activity (hours per week per year)	Baseline characteristics	n (cases)	Person-years	<0.50, %	0.51–1.50, %	1.51–3.00, %	>3.00, %
Total participants	93 888	976		55.5	15.4	7.3	21.8
Endometrial cancer cases				66.8	13.3	5.9	13.9
Age (years)							
20–29	5364 (2)	58 051	35.8	21.9	10.5	31.8	
30–39	15 543 (17)	175 075	42.5	19.3	9.7	28.5	
40–49	28 040 (153)	322 019	53.2	16.9	7.8	22.1	
50–59	21 653 (303)	241 276	60.6	13.9	6.4	19.1	
60–69	12 552 (286)	135 694	63.1	11.7	5.7	19.5	
70–79	75 79 (156)	75 933	68.5	10.0	4.7	16.8	
≥80	3 157 (59)	23 410	78.7	8.7	3.5	9.2	
Race							
White	80 830 (876)	885 873	54.7	15.7	7.4	22.1	
Non-white	13 058 (100)	145 587	57.9	15.7	7.1	19.3	
Body mass index (kg m⁻²)							
<25	56 954 (436)	628 560	49.5	15.8	8.0	26.7	
25–29.9	21 407 (269)	235 520	60.6	16.3	7.1	16.1	
≥30	11 990 (224)	131 742	70.9	14.7	5.2	9.3	
Unknown	3537 (47)	35 638	60.4	14.4	6.2	19.0	
Body mass index (kg m⁻²)							
<20	10 584 (71)	115 815	48.4	16.0	8.1	27.5	
20–22	30 344 (211)	335 739	47.6	15.7	8.2	28.5	
23–24	16 026 (154)	177 005	53.8	16.1	7.5	22.6	
25–29	21 407 (269)	235 520	60.6	16.3	7.1	16.1	
30–34	7624 (108)	84 027	67.7	15.6	5.9	10.8	
35+	4366 (116)	47 715	76.2	13.0	4.1	6.6	
Unknown	3537 (47)	35 638	60.4	14.4	6.2	19.0	
Menopausal status							
Peri- or premenopausal	50 289 (239)	570 082	50.9	17.3	8.2	23.6	
Postmenopausal	38 337 (692)	402 025	62.6	12.7	5.9	18.8	
Unknown	5262 (45)	59 352	58.4	15.4	6.8	19.5	
Smoking status							
Never	63 133 (607)	698 187	55.3	16.0	7.5	21.3	
Former	25 599 (314)	278 774	53.8	15.2	7.2	23.8	
Current	46 61 (51)	49 324	60.7	15.5	6.5	17.3	
Unknown	495 (4)	5174	58.3	13.9	6.8	21.0	
# Full-term pregnancies							
Never pregnant	20 338 (221)	221 227	50.7	16.0	7.6	25.8	
0	6124 (44)	67 235	44.9	17.1	8.7	29.3	
1–4	63 340 (657)	699 880	57.2	15.8	7.2	20.0	
5–9	20 07 (30)	21 540	65.2	13.8	5.7	15.3	
10+	21 (0)	223	64.1	10.2	0	25.6	
Unknown	2058 (24)	21 354	55.7	15.0	6.6	22.7	
# Full-term pregnancies							
Never pregnant	20 338 (221)	221 227	50.7	16.0	7.6	25.8	
0	6124 (44)	67 235	44.9	17.1	8.7	29.3	
1	15 073 (117)	164 835	54.3	16.6	8.0	21.1	
2	29 999 (303)	334 211	57.2	15.4	7.3	20.2	
3	13 637 (182)	150 321	59.1	15.4	6.9	18.6	
4+	6659 (85)	72 277	62.8	13.8	5.3	18.1	
Unknown	2058 (24)	21 354	55.7	15.0	6.6	22.7	
cohort studies have found an inverse association between recreational physical activity and endometrial cancer risk (Sturgeon et al., 1993; Terry et al., 1999; Furberg and Thune, 2003; Friberg et al., 2006), which is in accordance with our findings, and baseline recreational physical activity appears to be more strongly associated with endometrial cancer risk than long-term recreational physical activity.

Importantly our study investigated the effects of different intensities of physical activity throughout a woman’s life. Our findings for baseline strenuous activity are consistent with a recently reported pooled estimate of the association between endometrial cancer and physical activity from cohort studies published through 2006, which showed a 23% decreased risk of endometrial cancer for the most active compared with the least active women (OR = 0.77; CI, 0.70–0.85) (Voskuil et al., 2007).

Regarding moderate physical activity, several previous case–control (Littman et al., 2001; Matthews et al., 2005) and cohort (Terry et al., 1999; Schouten et al., 2004; Matthews et al., 2005) studies have demonstrated risk reductions for moderate physical activities. We found that long-term and baseline moderate physical activity was not significantly associated with endometrial cancer risk as did Gierach et al. (2009).

As obesity is a strong risk factor for endometrial cancer, we investigated whether BMI has a modifying effect on the inverse

Table 1. Baseline strenuous recreational physical activity (hours per week per year)*

Family history of endometrial cancer	n (cases)	Person-years	≤ 0.50, %	0.51–1.50, %	1.51–3.00, %	> 3.00, %
No	88,224 (910)	970,388	55.1	15.7	7.4	21.7
Yes	26,383 (39)	28,706	55.7	15.0	6.8	22.5
Unknown	30,262 (27)	32,365	56.0	16.4	6.3	21.3

Abbreviations: n = number; BMI = body mass index.

*Values are presented as % of participants who participate in the respective level of physical activity and who represent the specific baseline characteristic category.

**Unadjusted values presented.

Table 2. Adjusted* relative risks (RRs) and 95% confidence intervals (CIs) for the risk of incident invasive endometrial cancer associated with long-term and baseline recreational physical activity among 93,888 California Teachers Study women between 1995 and 2007

Long-term physical activity by intensity (hours per week per year)	Baseline physical activity by intensity (hours per week per year)
Strenuousb	
Person-years Cases, n, RR (95% CI)	Person-years Cases, n, RR (95% CI)
≤ 0.50	≤ 0.50
282,940	282,940
385	1.00 (reference)
0.51–1.50	0.51–1.50
242,240	242,240
248	1.01 (0.86–1.19)
1.51–2.99	1.51–2.99
229,105	229,105
171	0.90 (0.75–1.10)
≥ 3.00	≥ 3.00
277,173	277,173
172	0.92 (0.75–1.13)
P _trend_	*P* _trend_
0.31	0.31
Moderateb	
Person-years Cases, n, RR (95% CI)	Person-years Cases, n, RR (95% CI)
≤ 0.50	≤ 0.50
209,732	209,732
247	1.00 (reference)
0.51–1.50	0.51–1.50
262,605	262,605
258	1.04 (0.87–1.24)
1.51–2.99	1.51–2.99
262,243	262,243
239	1.05 (0.87–1.26)
≥ 3.00	≥ 3.00
296,878	296,878
232	0.91 (0.75–1.11)
P _trend_	*P* _trend_
0.24	0.24
Strenuous plus moderate	
Person-years Cases, n, RR (95% CI)	Person-years Cases, n, RR (95% CI)
≤ 0.50	≤ 0.50
90,597	90,597
134	1.00 (reference)
0.51–2.59	0.51–2.59
307,874	307,874
351	1.03 (0.84–1.26)
2.60–5.49	2.60–5.49
320,794	320,794
282	1.00 (0.81–1.23)
≥ 5.5	≥ 5.5
312,193	312,193
209	0.85 (0.68–1.06)

*RRs are from multivariable Cox proportional hazards regression models using age (in days) as the time metric and stratified by age (in years) with the adjustment for race and body mass index (BMI; using the following BMI categories: < 20; 20–22.9; 23–24.9; 25–29.9; 30–34.9; 35 + kg m–2). Trends are fit to the median for each category.

bBoth moderate physical activity and strenuous physical activity variables are fit simultaneously in a single model.
through various direct and indirect mechanisms, which may be et al. induced in women (Mayer-Davis et al., 2004). Under those mechanisms, we would expect long-term physical activity to be most strongly associated with reduced endometrial cancer risk, thus our results are somewhat puzzling. However, baseline activity could have a more immediate effect thereby reducing the chances that existing hyperplasia progresses to endometrial cancer.

Strengths of this study include its prospective design, large number of incident endometrial cancer cases, and ability to identify and confirm cancer diagnoses through California’s high-quality statewide cancer registry. As we used age as the time metric in our analyses, this ensured that women of the same age were compared with each other. We collected detailed measures of physical activity over multiple age periods, from high school to age 54 years and in the recent past. Thus, we were able to examine not only the effects of intensity of physical activity but also the timing and duration of activity on endometrial cancer risk. We were unable to differentiate between similar activities performed over a different number of days per week.

A potential limitation of our study is that we did not collect information on occupational or household physical activity. These additional sources of physical activity may be important contributors to total energy expenditure and may affect the association between physical activity and endometrial cancer (Moradi et al., 1998; John et al., 2010). A recent case–control study examined various sources of physical activity (recreation, transportation, chores and occupation activity) and found an inverse association with total, occupational and recreational physical activities (John et al., 2010). The CTA cohort consists of active and retired teachers, administrators and other public school professionals, and although we did not measure occupational activity, it is likely that most women who are active in the California public school system would have similar occupational activity levels, with the possible

Table 3. Adjusted relative risks (RRs) and 95% confidence intervals (CIs) for the risk of incident invasive endometrial cancer associated with long-term and baseline recreational physical activity by body mass index (BMI) among 90,351 California Teachers Study women between 1995 and 2007

Category of physical activity	0.51-1.50 (hours per week per year)	1.51-2.99 (hours per week per year)	3.00 (hours per week per year)								
BMI category	Cases, n	RR (95% CI)	Cases, n	RR (95% CI)	Cases, n	RR (95% CI)	P_{value}	P-homogeneity			
Strenuous											
<25 kg m⁻²	167	1.00	98	0.91 (0.70-1.17)	84	0.96 (0.73-1.26)	87	0.96 (0.73-1.28)	0.82	0.25	0.59
≥25 kg m⁻²	199	1.00	138	1.09 (0.87-1.35)	80	0.85 (0.65-1.11)	76	0.88 (0.66-1.18)	0.25	0.59	
Moderate											
<25 kg m⁻²	102	1.00	112	1.07 (0.83-1.37)	110	1.07 (0.83-1.39)	112	0.93 (0.71-1.23)	0.42	0.26	0.72
≥25 kg m⁻²	130	1.00	136	1.01 (0.80-1.27)	120	1.02 (0.79-1.31)	107	0.86 (0.66-1.13)	0.26	0.72	

*RRs are from multivariable Cox proportional hazards regression models using age (in days) as the time metric and stratified by age (in years) with the following variables included in each model: race, and BMI. Both, moderate physical activity and strenuous physical activity are fit simultaneously in a single model.

Trends are fit to the median for each category.
exception of physical education teachers. However, the length of time that the active teachers had been employed in the school system varies substantially, and we do not have information on other occupations held. We collected information on strenuous and moderate levels of physical activity by self-report, providing examples of activities at each level. Although it is possible that the reported levels may overestimate or underestimate actual activity, information was collected before endometrial cancer diagnosis and should not differ by disease status overall. Additionally, our measure for recent physical activity was not updated during follow-up; thus, how recent the variable is relative to endometrial cancer risk varies as duration of follow-up is extended. To address this, we did examine the association between recent physical activity and endometrial cancer during two time periods, 1995–2001 and 2002–2007, and the associations did not differ from that reported overall (data not shown). Further, due to the fact that we did not ask our participants to provide the exact forms of physical activity (i.e., running, walking, swimming, etc.) that they participated in, we were unable to calculate metabolic equivalent (MET) values and could not perform our analyses based on average MET values at varying stages of one’s life. However, of importance, we examined the validity and reliability of our physical activity questionnaire. We found our questionnaire to be valid and reliable; however, these data are not yet published. We collected information on height and weight by self-report to calculate BMI; thus, it is possible that reported values may overestimate or underestimate actual height and weight. Nonetheless, information was collected before endometrial cancer diagnosis and should not differ by disease status.

In summary, these results add to the growing epidemiologic evidence that physical activity may be an important modifiable lifestyle factor affecting the risk of endometrial cancer. As few risk factors identified to date are potentially modifiable, the findings of this study are of particular public health relevance. Furthermore, women with higher body weight may have an added benefit from regular participation in physical activity as a means to reduce the risk of endometrial cancer. Of importance is to clarify the underlying mechanisms involved in the association between physical activity and endometrial cancer risk, particularly those relating to hormonal alterations.

ACKNOWLEDGEMENTS

We thank the participants of the CTS and other current and former members of the CTS steering committee (Hoda Anton-Culver, Ellen Chang, Christina Clarke, Rosemary Cress, David Nelson, David Peel, Richard Pinder, David Purdie, Peggy Reynolds, Ronald K Ross (deceased), Daniel Stram, Giske Ursin, Sophia Wang, Dee West, William Wright and Al Ziogas). This work was supported by the National Cancer Institute’s Surveillance, Epidemiology and End Results Program under contract N01-PC-35136 awarded to the Public Health Institute; and the Centers for Disease Control and Prevention’s National Program of Cancer Registries, under agreement U55/CCCR921930-02 awarded to the Public Health Institute.

The ideas and opinions expressed herein are those of the authors and endorsement by the State of California, Department of Health Services, the National Cancer Institute, and the Centers for Disease Control and Prevention or their contractors and subcontractors is not intended nor should be inferred.

REFERENCES

Allen NE, Appleby PN, Kaaks R, Rinaldi S, Davey GK, Key TJ (2003) Lifestyle determinants of serum insulin-like growth-factor-I (IGF-I), C-peptide and hormone binding protein levels in British women. Cancer Causes Control 14(1): 65–74.

Bernstein L, Allen M, Anton-Culver H, Deapan D, Horn-Ross PL, Peel D, Pinder R, Reynolds P, Sullivan-Halley J, West D, Wright W, Ziogas A, Ross RK (2002) High breast cancer incidence rates among California teachers: results from the California Teachers Study (United States). Cancer Causes Control 13(7): 625–635.

Cauley JA, Guitai JP, Kuller LH, DeLone D, Powell JG (1989) The epidemiology of serum sex hormones in postmenopausal women. Am J Epidemiol 129(6): 1120–1131.

Colbert LH, Lacey Jr. JV, Schaier C, Albert P, Schatzkin A, Albames D (2003) Physical activity and risk of endometrial cancer in a prospective cohort study (United States). Cancer Causes Control 14(6): 559–567.

Conroy MB, Sattelmair JR, Cook NR, Manson JE, Buring JE, Lee IM (2009) Physical activity, adiposity, and risk of endometrial cancer. Cancer Causes Control 20(7): 1107–1115.

Cust AE, Armstrong BK, Friedenreich CM, Slimani N, Bauman A (2007) Physical activity and endometrial cancer risk: a review of the current evidence, biologic mechanisms and the quality of physical activity assessment methods. Cancer Causes Control 18(3): 243–258.

Dosemeci M, Hayes RB, Vetter R, Hoover RN, Tucker M, Engin K, Unsal M, Blair A (1993) Occupational physical activity, socioeconomic status, and risks of 15 cancer sites in Turkey. Cancer Causes Control 4(4): 313–321.

Friberg E, Mantzoros CS, Wolk A (2006) Physical activity and risk of endometrial cancer: a population-based prospective cohort study. Cancer Epidemiol Biomarkers Prev 15(11): 2136–2140.

Friedenreich C, Cust A, Lahmann PH, Steindorf K, Boutron-Ruault MC, Clavel-Chapelon F, Mesrine S, Linsense J, Rohrmann S, Pischon T, Schulz M, Tjonneland A, Johnsen NF, Overvad K, Mendez M, Arguelles MV, Garcia CM, Larranaga N, Chiracle MD, Ardanaz E, Bingham S, Khaw KT, Allen N, Key T, Trichopoulou A, Dilos V, Trichopoulous D, Pala V, Palli D, Tumino R, Panico S, Vineis P, Bueno-de-Mesquita HB, Peeters PH, Monninkhof E, Berghult G, Manjer J, Slimani N, Ferrari P, Kaaks R, Riboli E (2007) Physical activity and risk of endometrial cancer: the European prospective investigation into cancer and nutrition. Int J Cancer 121(2): 347–355.

Furberg AS, Thune I (2003) Metabolic abnormalities (hypertension, hyperglycemia and overweight), lifestyle (high energy intake and physical inactivity) and endometrial cancer risk in a Norwegian cohort. Int J Cancer 104(6): 669–676.

Gierach GL, Chang SC, Brinton LA, Lacey Jr. JV, Hollenbeck AR, Schatzkin A, Leitzmann MF (2009) Physical activity, sedentary behavior, and endometrial cancer risk in the NIH-AARP Diet and Health Study. Int J Cancer 124(9): 2139–2147.

Goodman MT, Hankin JH, Willekens LR, Lyu LC, McDuffie K, Liu LQ, Kolonel LN (1997) Diet, body size, physical activity, and the risk of endometrial cancer. Cancer Res 57(22): 5077–5085.

Gruber SB, Thompson WD (1996) A population-based study of endometrial cancer and familial risk in younger women. Cancer and Steroid Hormone Study Group. Cancer Epidemiol Biomarkers Prev 5(6): 411–417.

Hirose K, Tajima K, Hamajima N, Takezaki T, Inoue M, Kuroishi T, Kuzuya K, Nakamura S, Tokudome S (1996) Subsite (cervix/endometrium)-specific risk and protective factors in uterus cancer. Int J Cancer 87(9): 1001–1009.

Irwin ML, Ainsworth BE, Mayer-Davis EJ, Addy CL, Pate RR, Durstine JJ. (2002) Physical activity and the metabolic syndrome in a tri-ethnic sample of women. Obes Res 10(10): 1030–1037.

Irwin ML, Mayer-Davis EJ, Addy CL, Pate RR, Durstine JL, Stolarczyk LM, Ainsworth BE (2000) Moderate-intensity physical activity and fasting insulin levels in women: the Cross-Cultural Activity Participation Study. Diabetes Care 23(4): 449–454.

Jemal A, Siegel R, Ward E, et al. (2010) Cancer statistics. 2008. Cancer J Clin 58(2): 71–96.

John EM, Koo J, Horn-Ross PL (2010) Lifetime physical activity and risk of endometrial cancer. Cancer Epidemiol Biomarkers Prev 19(5): 1276–1283.

Kaaks R, Lukanova A (2002) Effects of weight control and physical activity in cancer prevention: role of endogenous hormone metabolism. Ann NY Acad Sci 963: 268–281.
Littman AJ, Voigt LF, Beresford SA, Weiss NS (2001) Recreational physical activity and endometrial cancer risk. Br J Cancer 154(10): 924–933.

Lukanova A, Zeleniuch-Jacquotte A, Lundin E, Micheli A, Arslan AA, Schouten LJ, Goldbohm RA, van den Brandt PA, Brinton LA, Hoover RN (2002) Obesity, endogenous hormones, and endometrial cancer risk: results from the Netherlands cohort study. J Natl Cancer Inst 94(3): 239–241.

Matthes CE, Xu WH, Zheng W, Gao YT, Ruan ZX, Cheng JR, Xiang YB, Shu XO (2005) Physical activity and risk of endometrial cancer: a report from the Shanghai endometrial cancer study. Cancer Epidemiol Biomarkers Prev 14(4): 779–785.

Mayer-Davis EJ, D’Agostino Jr. R, Karter AJ, Haffner SM, Rewers MJ, Saad M, Bergman RN (1998) Intensity and amount of physical activity in relation to insulin sensitivity: the Insulin Resistance Atherosclerosis Study. JAMA 279(9): 669–674.

McPherson CP, Sellers TA, Potter JD, Bostick RM, Folsom AR (1996) Reproductive factors and risk of endometrial cancer. The Iowa Women’s Health Study. Am J Epidemiol 143(12): 1195–1202.

McTiernan A, Ulrich C, Slate S, Potter (1998) Physical activity and cancer etiology: associations and mechanisms. Cancer Causes Control 9(5): 487–509.

Moradi T, Nyren O, Bergstrom R, Gridley G, Linet M, Wolk A, Dosemeci M, Adami HO (1998) Risk for endometrial cancer in relation to occupational physical activity: a nationwide cohort study in Sweden. Int J Cancer 76(5): 665–670.

Moradi T, Weiderpass E, Signorello LB, Persson I, Nyren O, Adami HO (2000) Physical activity and postmenopausal endometrial cancer risk (Sweden). Cancer Causes Control 11(9): 829–837.

Olson SH, Vena JE, Dorn JP, Marshall JR, Zielezny M, Laughlin R, Graham S (1997) Exercise, occupational activity, and risk of endometrial cancer. Ann Epidemiol 7(1): 46–53.

Patel AV, Feigelson HS, Talbot JT, McCullough ML, Rodriguez C, Patel RC, Thun MJ, Calle EE (2008) The role of body weight in the relationship between physical activity and endometrial cancer: results from a large cohort of US women. Int J Cancer 123(8): 1877–1882.

Pukkala E, Poskiparta M, Apter D, Vihko V (1993) Life-long physical activity and cancer risk among Finnish female teachers. Eur J Epidemiol 2(5): 369–376.

Salazar-Martinez E, Lanzano-Ponce EC, Lira-Lira GG, Escudero-De los Rios P, Salmeron-Castro J, Larrea F, Hernandez-Avilia M (2000) Case-control study of diabetes, obesity, physical activity and risk of endometrial cancer among Mexican women. Cancer Causes Control 11(8): 707–711.

Schoenfeld D (1982) Partial residuals for the proportional hazards regression model. Biometrika 69(1): 239–241.

Schouten LJ, Goldbohm RA, van den Brandt PA (2004) Anthropometry, physical activity, and endometrial cancer risk: results from the Netherlands cohort study. J Natl Cancer Inst 96(21): 1635–1638.

Shu XO, Hatch MC, Zheng W, Gao YT, Brinton LA (1993) Physical activity and risk of endometrial cancer. Epidemiology (Cambridge, MA) 4(4): 342–349.

Siiteri PK (1987) Adipose tissue as a source of hormones. The Am J Clin Nutri 45(1 Suppl): 277–282.

Sturgeon SR, Brinton LA, Berman ML, Mortel R, Twigg LB, Barrett RJ, Wilbanks GD (1993) Past and present physical activity and endometrial cancer risk. Br J Cancer 68(3): 584–589.

Tavani A, Bravi F, Dal Maso L, Zucchetto A, Bosetti C, Pelucchi C, Montella M, Franceschi S, La Vecchia C (2009) Physical activity and risk of endometrial cancer: an Italian case-control study. Eur J Cancer 45(4): 303–306.

Terry P, Baron JA, Weiderpass E, Yuen J, Lichtenstein P, Nyren O (1999) Lifestyle and endometrial cancer risk: a cohort study from the Swedish Twin Registry. Int J Cancer 82(1): 38–42.

Therneau T (1996) Extending the Cox Model. Technical Report Series No. 59, Department of Health Science research, Mayo Clinic: Rochester, MN, USA.

Troisi R, Potoschman N, Hoover RN, Siiteri P, Brinton LA (1997) Insulin and endometrial cancer. Am J Epidemiol 146(6): 476–482.

Voskuil DW, Monnikhof EM, Elias SG, Vlems FA, van Leeuwen FE (2007) Physical activity and endometrial cancer risk, a systematic review of current evidence. Cancer Epidemiol Biomarkers Prev 16(4): 639–648.

Zheng W, Shu XO, McLaughlin JK, Chow WH, Gao YT, Blot WJ (1993) Occupational physical activity and the incidence of cancer of the breast, corpus uteri, and ovary in Shanghai. Cancer 71(11): 3620–3624.

This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License.