Full Length Research Paper

Effect of n-hexane extract of baobab (Adansonia digitata) fruit on biochemical parameters of L-nG-nitro arginine methyl ester induced hypertension in rats

Ediale Joshua Richard, Innocent Abi* and Olasupo Stephen Adeniyi

Department of Physiology, College of Health Sciences, Benue State University, Makurdi, Nigeria.

Received 28 June, 2021; Accepted 25 August, 2021

L-nG-Nitro arginine methyl ester (L-NAME) was used to induce hypertension in this experiment and the intervention plant extract was Adansonia digitata fruit. A total of 30 rats were used for this research and divided into 6 groups of 5 animals each. Group 1 was control (water and feed ad libidum), group 2 (L-NAME), group 3 (ramipril 10 mg/kg), group 4 (A. digitata 200 mg/kg), group 5 (A. digitata 400 mg/kg) and group 6 (A. digitata 400 mg/kg no induction). Extract administration lasted 21 days after which animals were anesthetized and blood samples taken for analyses. Prior to this, recordings of blood pressure and weights were recorded. The fruits extract of the baobab plant was found to significantly reduce (P<0.05) the blood pressure in the hypertensive animals compared to the control and test drug. The Na and Cl concentrations in blood were significantly reduced compared to the control and L-NAME group at dose of 400 mg/kg. It was also found to prevent hyperkalemia and normalized creatinine as well as serum protein levels. The extract also significantly reduced the body weight of the animals at same dose. In conclusion, the extract reduced blood pressure in this experiment by reduction of Na (salt) concentration. It is a promising plant that will help sufferers from hypertension. Further studies are needed to study about molecular mechanisms involved in its activities.

Key words: L-name, adansonia digitata, hypertension, NaCl, antioxidant.

INTRODUCTION

Hypertension is a chronic medical condition characterized by sustained elevation in arterial blood pressure. High blood pressure remains one of the strongest singular risk factor for cerebrovascular accidents, coronary artery diseases and kidney injuries (Rehab et al., 2017). Hypertension is a pandemic that affects over 600 million people globally, and is responsible for 13% of deaths worldwide. It ranks third in terms of disability-adjusted-life-years and it has been estimated that by 2025, 20% of the world’s adults will be hypertensive (Ramanathan and Thekkumalai, 2019).

L-nG-Nitro arginine methyl ester (L-NAME) is an L-arginine analogue and is a principal agent of nitric oxide synthase (NOS) with variable influence on blood pressure (Blanc et al., 1999; Jana et al., 2012). Several studies have shown that short term administration of L-NAME...
in experimental animals result in a sharp rise in arterial blood pressure especially by its inhibitory effect on NOS (Ayse et al., 2012; Zelilha et al., 2015). The acute inhibition of nitric oxide (NO) synthesis by L-NAME causes increase in vascular smooth muscle tone and sympathetic discharges via a neurogenic mechanism which results in an elevated blood pressure (Xavier et al., 2000; Theward et al., 2015).

Baobab (*Adansonia digitata*) is a majestic tree indigenous to Africa. Every part of the tree has variable medicinal and nutritional value. It has been used in managements of ailments like diarrhea, malaria and various microbial diseases. The fruits of *A. digitata* are ten times richer than oranges in vitamin C content making this plant a potent antioxidant (Kamatou et al., 2012; Sami et al., 2019). It has also been found to have hepatoprotective effect in CCL4-induced hepatotoxicity in rats (Musab et al., 2015).

Therapeutic effects of a varying range of herbal formulas in L-NAME induced hypertension have been reported in a number of researches (Vishal et al., 2012). Works using the baobab fruit for same purpose are unavailable. The present study seeks to find the effect of the baobab fruit extracts on biochemical parameters that could be affected by L-NAME induced hypertension.

MATERIALS AND METHODS

Plant collection and identification

The sample used for this research were fresh and matured Baobab fruit purchased from a local market in Kaduna, which were identified and authenticated in the herbarium unit of Biological Science, Benue State University Makurdi, Nigeria and samples were collected after identification and kept at herbarium unit.

Preparation of baobab fruit

The baobab fruit were washed thoroughly with clean water to reduce the microbial load and other contaminants that might adhere to the baobab fruit. The baobab fruit were chopped into smaller sizes with a clean knife and air dried at room temperature. They were pulverized using a laboratory mechanical grinder and the fine powder obtained was stored until needed. 825 g was extracted with 100 ml N-Hexane for 48 h. 110 mm Whatman filter paper was used to filter the solution. The extract was subsequently evaporated to adequate concentration of normal saline to make up the concentrations of the stock solution. The extract was subsequently evaporated to adequate concentration of normal saline to make up the concentrations of the stock solution.

Determination of blood pressure

Hypertension was induced by oral administration of 40 mg/kg L-NAME the rats after their baseline body weight and blood pressure were measured. The blood pressure of the rats was measured daily until sustained hypertension was attained using non-invasive, tail-cuff blood pressure meter by PANLAB (NIBP; LE5001).

Experimental design

Thirty male rats after acclimatization were used in the current study. Their basal blood pressure and body weight were recorded before the commencement of the experiment which lasted for 21 days. After 1 week acclimatization and hypertension induction using L-NAME the rats were randomly divided into the following experimental groups.

- **Group A (n-5)** Normotensive (control group)
- **Group B (n-5)** Hypertensive no treatment
- **Group C (n-5)** Hypertensive + Rampril 10 mg/kg
- **Group D (n-5)** Hypertensive + *A. digitata* 200 mg/kg
- **Group E (n-5)** Hypertensive + *A. digitata* 400 mg/kg
- **Group F (n-5)** Normotensive + 400 mg/kg *A. digitata* (why you used the high concentration dose and not the lower dose or used 200 and 400 mg)

Determination of body weight

The body weights of the experimental rats were determined prior to the commencement of the experiment at the end of the experiment. Their body weights were taken using a digital top loading weighing scale (XY3002C).

Phytochemical analysis

The N-Hexane extract of *A. digitata* fruit was subjected to phytochemical screening test to detect the presence or absence of flavonoids, tannins, alkaloids, saponins and glycosides(Table 1 and 2). Also, proximate analysis was done to determine the presence or absence of moisture, protein, crude fibres, ash, fats and oil and carbohydrates (Table 3). The phytochemical analysis and proximate analysis were done at the laboratory of the Chemistry Department, Benue State University, Makurdi. The Standard method of Harbone (1983) was used in the phytochemical determination. Proximate analysis was determined according to the method of Association of Official Analytical Chemist (AOAC, 1990).

Five grams of each powdered extract were soaked in 100 ml N-Hexane for 48 h. 110 mm Whatman filter paper was used to filter the solution. The extract was subsequently evaporated to adequate concentration of normal saline to make up the concentrations of the stock solution which was labeled appropriately and refrigerated at 4°C until required for use.

Experimental animals

A total of 30 adult male Sprague Dawley rats weighing 200 to 270 g were used for the experiment, they were purchased from the animal house unit, College of Health Sciences, Benue State University, Makurdi. The animals were housed in wooden cages and were provided with growers mash produced by grand cereals oil and mills limited, Jos Plateau State, Nigeria. Clean water *ad libitum* was provided. The animals were maintained under standard laboratory condition (25°C) with relative humidity of 62 to 73% under a 12 h light dark cycle (ethical approval ID: ABU.LABRESEARCH.08381). They were acclimatized for 14 days prior to the experiment.
Table 1. Qualitative result of phytochemical screening of *A. digitata* fruit.

Parameter	Ethanol or Hexane	Water
Alkaloids	+	+
Tanin	-	-
Flavonoid	+	-
Glycoside	+	+
Saponin	+	+
Terpenoid	+	-
Phenol	-	-

The *A. digitata* fruit contains alkaloids, flavinoids, glycoside, saponin and terpinoid.

Table 2. Quantitative results of phytochemical screening of *A. digitata* fruit.

Parameter	Value (%)
Alkaloid	1.33
Flavonoid	4.21
Glucoside	0.32
Saponin	1.93
Terpenoid	1.14

The *A. digitata* fruit contains high concentration of flavinoids compared to other phytochemicals.

Table 3. Result of proximate analysis of *A. digitata* fruit.

Parameter	Value (%)
Moisture	2.31
Protein	19.3
Crude Fibre	9.4
Ash	1.6
Fat and Oil	12.1
Carbohydrate	76.1

The *A. digitata* fruit is rich in carbohydrate, proteins and fats.

systolic blood pressure (SBP) and diastolic blood pressure (DBP) measurement. Rats were held in a restrainer on a preheated platform with the tail exposed and a hand towel was used to cover the restrainer to keep the rat calm. The tail was massaged gently to encourage blood circulation to the tail, the occlusion cuff and a volume pressure-recording cuff were placed close to the base of the tail. The digital values for the systolic and diastolic blood pressure (SBP) were recorded. All measurements were taken by the same person in the same quiet environment at the same time in the morning daily.

Blood collection

Rats were sacrificed after being anaesthetized with ethyl ether at the end of 21 days. Blood was collected by cardiac puncture into plan tubes, after clotting the blood was dislodged and centrifuge at 1200 rpm for 5 min using bench centrifuge. The serum was collected and used immediately for the biochemical test.

Biochemical analysis

Serum potassium, sodium, chloride, carbonate, urea, creatinine, phosphate, uric acid, albumin, calcium and total protein were determined using clinical chemistry kit (ERBA Diagnostics Mannlelin GrusH, German) and Spectrumlab 23A (Gullex Medical & Scientific England) according to the manufacturers specification.

Statistical analysis

Data obtained from the study were expressed as mean ± SEM. The differences between the groups were analyzed by one-way analysis of variance (ANOVA) followed by Tukey post hoc test for multiple comparisons using SPSS statistical tool version 20. Values of P<0.05 were considered significant.

RESULTS AND DISCUSSION

This study showed that *A. digitata* has a potent antihypertensive action. The 400 mg/kg dose reduced the L-NAME induced blood pressure better than the control drug (Figure 1). Doses of 200 and 400 mg/kg of the fruit extract was found to significantly reduce the serum concentrations of sodium and chloride ion levels compared to control and L-NAME induced group (Figure 2). Concomitant reduction of sodium and chloride (NaCl) is a relevant pathway for reduction in blood pressure as it possesses a strong correlation with development of hypertension (Theodore, 2005; Miguel et al., 2019). Water retention by NaCl is known to worsen hypertension (McGregor, 1986). Also, a newer theory shows that NaCl in elevated levels causes high Na-evoked cerebrospinal fluid volume and secondary increase in sympathetic nerve activity which triggers vasoconstriction and ultimately hypertension (Mordecai et al., 2012). Fidele et al. (2020) demonstrated that aqueous extract of *A. digitata* stem bark (100 and 200 mg/kg) significantly reduced systolic, diastolic and mean arterial blood pressures in L-NAME induced hypertensive rats. Their proposed mechanisms were corrections of dyslipidemia and partial nitric oxide bioavailability. The present studies...
Figure 1. L-NAME significantly elevated the blood pressure (BP) of the mice compared to control. The treated group (400 mg/kg) significantly reduced the BP to normal. *Indicate significant reduction compared to **p˂0.05.

Figure 2. The A. digitata at 400 mg/kg significantly reduced (P<0.05) serum concentrations of potassium, sodium, chloride and bicarbonate compared to the other groups. Only sodium concentration was reduced significantly at 200 mg/kg.
Figure 3. The A. digitata fruit significantly increased (P˂0.05) serum calcium concentration at 200 and 400 mg/kg and phosphate levels at all doses. It also caused a significant increase in urea levels only at 400 mg/kg but had no effect on uric acid levels in all doses.

The extract however maintained normal serum calcium level which was found to be reduced by the test drug – ramipril ((Figure 3). A. digitata also maintained a normal total serum protein levels comparable to control levels ((Figure 5). Matawalli et al. (2004) showed that aqueous leaf extract of A. digitata caused hypoalbuminemia. This contradicts our study as the fruit extract used normalized serum albumin and total protein levels. The only study that tends to corroborate our studies was by Sola-Ojo et al. (2016) that demonstrated a stable serum protein levels though using the seed extract in broilers unlike the fruit extract we used in rats. In this study also the serum calcium levels were significantly higher in the fruit extract groups. This could be as a result of the rich concentration of calcium found in the fruit. Jitin et al. (2015) reported a calcium level of 293 mg/100 g; which is equivalent to milk of 125 mg/100 mg. Finally, in this study 200 mg/kg A. digitata significantly reduced the body weight of the rats compared to other doses, the test group and the control group ((Figure 6). This finding is supported by a recent study that showed that fruit extracts of A. digitata can cause weight reduction dose dependently (Hayat et al., 2020). On the contrary, a study by Ogunleye et al. (2019) demonstrated significant weight gain with the fruit extracts in rats at doses of 40, 80 and 160 mg/kg, respectively. These doses are lower when compared with the present study showing that higher doses of the
Figure 4. *A. digitata* fruit significantly reduced (P<0.05) serum concentration of creatinine at 400mg/kg compared to the control and L-NAME groups.

Figure 5. *A. digitata* fruit significantly reduced (P<0.05) total serum protein at 400 mg/dl compared ramipril but significantly increased serum albumin at all doses compared to control group.
Figure 6. *A. digitata* at 200 mg/kg caused a significant (P<0.05) decrease in body weight compared to other groups.

Conclusion

This study demonstrated antihypertensive action as well as amelioration of the negative effects of elevated blood pressure using the fruit extracts of *A. digitata* in L-NAME-induced hypertension model. The dose of 400 mg/kg seems to be more effective in reducing blood pressure by the salt (NaCl) reduction pathway. The fruit extract was also found to be both cardio and reno-protective by preventing hyperkalemia and rise in creatinine levels. It also shows promise in management of obesity as it is found to significantly reduce body weight of the animals.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.
Kamatou GPP, Vermaak I, Viljoen AM (2012). An updated review of *Adansonia digitata*: a commercially important African tree. South African Journal of Botany 77(4):908-919.

Matawalli AG, Sunday AO, Kokori AM (2004). Effect of methanolic leaf extract of *Adansonia digitata* (Linn) on serum electrolyte levels in normal and alcohol fed rats. Pakistani journal of biological science 7(8):1404-1406.

McGregor GA (1986). Sodium chloride and blood pressure. Primary hypertension pp. 3-12. doi.org/10.1007/978-3-642-71125-1_1

Mordecai PB, Frans HHL, Ling C, Vera AG, John MH, Thomas LP, James WVH, Jin Z, Gil WW (2012). How NaCl raises blood pressure: a new paradigm for the pathogenesis of salt-dependent hypertension. American Journal of Physiology-Heart and Circulatory Physiology 302(5):1031-1049. doi: 10.1152/ajpheart.00899.2011

Musab AM, Imad MT, Abd-Elawahab HM, Hozeifa MH (2015). Hepatoprotective effect of *Adansonia Digitata L.* (BAOBAB) fruits pulp extract on CCL4- induced hepatotoxicity in rats. World Journal of Pharmaceutical Research 4(8):368-377.

Ogunleye OO, Jatau ID, Natala AJ, Idehen CO, Salami O, Mamman SA (2019). In vivo effects of the aqueous extract of *Adansonia digitata* (Linn) fruit pulp on trypanosoma brucei brucei infection in wistar rats. Sokoto journal of veterinary sciences 17(4):1-8.

Ramanathan V, Thekkumalai M (2019). Chrysin pretreatment improves angiotensin system, cGMP concentration in L-NAME induced hypertensive rats. Indian Journal of clinical biochemistry 34(3):288-295.

Rehab FA, Alyaa FH, Marwan A, Hanan AO, Reham MA, Salah MH (2017). Antihypertensive effect of roselle-olive combination in L-NAME-induced hypertensive rats. Oxidative medicine and cellular longevity. https://doi.org/10.1155/2017/8460653

Thewarid B, Pattanapong B, Sarawoot B, Jariya UW, Upa K, Veerapol K, Poungrat P, Parichat P (2015). Ellagic acid prevents L-NAME-induced hypertension via restoration of eNOS and p47phox expression in rats. Nutrients 30(7):5268-5280.

Vishal RM, Mohan V, Subhash LB (2012). Antihypertensive and cardioprotective effects of the *Lagenaria siceraria* fruit in Nω-nitro-L-arginine methyl ester (L-NAME) induced hypertensive rats. Pharmaceutical biology 50(11):1428-1435.

Zeliha S, Ilknur O, Osman C, Mehmet FG, Ahmet S (2015). Antioxidant effect of ethanolic extract of propolis in liver of L-NAME treated rats. Advances in clinical and experimental medicine 24(2):227-232.