2D PROBLEMS IN GROUPS

ADITI KAR AND NIKOLAY NIKOLOV

Abstract. We investigate a conjecture about stabilisation of deficiency in finite index subgroups and relate it to the D2 Problem of C.T.C. Wall and the Relation Gap problem. We verify the pro-p version of the conjecture, as well as its higher dimensional abstract analogues.

Given a finitely presented group G, the deficiency $\delta(G)$ of G is defined as the maximum of $|X| - |R|$ over all presentations $G = \langle X \mid R \rangle$. We related deficiency of a group with 2-dimensionality in [8] and proposed the following conjecture.

2D Conjecture ([8]). Let G be a residually finite finitely presented group such that $\delta(H) - 1 = [G : H](\delta(G) - 1)$ for every subgroup H of finite index in G. Then G has a finite 2-dimensional classifying space $K(G, 1)$.

In this paper, we relate the above conjecture with two well-known problems in topological group theory: Wall’s D2 problem and the Relation Gap problem. The main purpose of the paper is to explain the implications affirmative D2 problem \Rightarrow no relation gap \Rightarrow 2D conjecture

1. Background

Let G be a finitely presented group. Set $d(G)$ to be the cardinality of a minimal generating set of G.

We denote by $b_1(G) = \dim_\mathbb{Q} H_1(G, \mathbb{Q})$ and note that $\delta(G) \leq b_1(G) \leq d(G)$. Starting with a presentation $\langle X \mid R \rangle$ for G, one obtains a Schreier presentation for H with $[G : H](|X| - 1) + 1$ generators and $[G : H]|R|$ relations showing that

$$\delta(H) - 1 \geq [G : H](\delta(G) - 1).$$

We are interested in the situation when the above inequality is in fact equality for every finite index subgroup H of G.

We next introduce the invariant $\mu_n(G)$ of Swan [13]. Let $n \in \mathbb{N}$. A partial free resolution of \mathbb{Z} of length n is an exact sequence

$$\mathcal{F} : (\mathbb{Z}G)^{f_n} \to (\mathbb{Z}G)^{f_{n-1}} \to \cdots \to (\mathbb{Z}G)^{f_0} \to \mathbb{Z} \to 0$$

and we define $\mu_n(\mathcal{F}) = \sum_{i=0}^{n}(-1)^{n-i} f_i$.

Recall the well-known Morse inequalities.
Proposition 1. Let $n \in \mathbb{N}$ and F be a partial free resolution (1) as above. Then

$$\sum_{i=0}^{n} (-1)^{n-i}b_i(G) \leq \mu_n(F).$$

R. Swan [13] defined the following invariant while studying free resolutions of modules of finite groups.

Definition 2. Let $n \in \mathbb{N}$. The invariant $\mu_n(G)$ is defined as the minimum of $\mu_n(F)$ as F ranges over all partial free resolutions F of Z.

Given a presentation of G with e_1 generators and e_2 relations one has the partial free resolution

$$(ZG)^{e_2} \xrightarrow{\partial_2} (ZG)^{e_1} \xrightarrow{\partial_1} ZG \xrightarrow{\partial_0} Z \to 0$$

arising as the cellular chain complex of the universal cover of the presentation complex of G. By taking a presentation which realizes the deficiency of G we obtain $\mu_2(G) \leq 1 - \delta(G)$. The case $n = 2$ of the Morse inequalities applied to (2), together with $b_0(G) = 1$ gives the well-known inequality $\delta(G) \leq b_1(G) - b_2(G)$.

1.1. Groups with two dimensional classifying spaces. The deficiency is easy to compute for groups which have finite two-dimensional classifying spaces. Examples of such groups are surface groups or more generally, torsion-free one relator groups and direct products of two free groups.

Lemma 3. If a group G has a finite two-dimensional space $K(G, 1)$, then $\delta(G) = 1 - \chi(G)$ and consequently, $\delta(H) - 1 = |G : H|/(\delta(G) - 1)$ for every subgroup H of finite index in G.

For example $\delta(F_n \times F_m) = -(n - 1)(m - 1)$ while the deficiency of a torsion-free one relator group defined on d generators is $d - 2$.

The 2D Conjecture stated in the introduction proposes that the converse of Lemma 3 holds. Note that its 1-dimensional analogue is true as shown by R. Strebel [12] (see also [11, Theorem 7] for a different perspective).

Proposition 4 ([12]). Let G be a finitely generated residually finite group. Then G is a free group if and only if $d(H) - 1 = |G : H|/(d(G) - 1)$ for every subgroup H of finite index in G.

Strebel proved Proposition 4 as an answer to a question of Lubotzky and van den Dries [10], who had shown that its analogue does not hold in the class of profinite groups. At the same time Lubotzky [9, Proposition 4.2] proved that the analogue of Proposition 4 is true in the class of pro-p groups. We will return to pro-p groups in section 5 below.

We remark that the 2D conjecture is closely connected with gradients in groups and their L^2 cohomology. The following basic result characterizes groups G with two dimensional classifying spaces in terms of their L^2 Betti numbers $\beta_i(G)$.
Lemma 5 ([8]). Let \(G \) be an infinite finitely presented group. Then \(\delta(G) - 1 \leq \beta_1(G) - \beta_2(G) \) with equality if and only if \(G \) has a two dimensional classifying space.

In particular any counterexample to the 2D conjecture must be a group \(G \) with deficiency gradient strictly less than \(\beta_1(G) - \beta_2(G) \), see [8] for more details on this connection.

2. Wall’s D2 Problem

Wall’s D2 problem is a generalisation of the Eilenberg Ganea Conjecture and belongs to the class of questions that explore links between homological and geometric dimensions. A finite CW-complex \(X \) is said to be a D2 complex if it has cohomological dimension 2. The D2 Problem for a finitely presented group \(G \) asks if every finite D2 complex with fundamental group \(G \) is homotopy equivalent to a finite 2-complex. If the answer is affirmative we shall say that \(G \) has the D2 property. The problem was proposed by C.T.C. Wall in 1965 [14] and little is known about it except in the case when \(G \) is finite, free or abelian, see [7].

The Eilenberg-Ganea Conjecture asks if every group of cohomological dimension 2 is of geometric dimension 2. Note that a group of cohomological dimension 2 does not necessarily have a finite classifying space, as famously shown by M. Bestvina and N. Brady [2]. However, if one assumes that a group \(G \) of cohomological dimension 2 has a finite classifying space \(X \), then \(X \) is a D2 complex. If in addition \(G \) has the D2 property, then \(X \) is homotopy equivalent to a finite 2-complex. So, \(G \) has geometric dimension two, as predicted by Eilenberg-Ganea.

3. The Relation Gap problem

Suppose that a finitely presented group \(G \) is given by the quotient \(F/N \) where \(F \) is free on the group generators \(X \) and \(N \) is normally generated in \(F \) by the relators \(R \subseteq F \). The action of \(F \) by conjugation on \(N \) induces an action of \(G \) on the abelianisation \(N^{ab} \) of \(N \). This makes \(N^{ab} \) into a \(G \)-module called the relation module of the presentation. Evidently, the \(G \)-module \(N^{ab} \) can be generated by \(|R| \) elements and so the \(G \)-rank of \(N^{ab} \), written \(d_G(N^{ab}) \), satisfies \(d_G(N^{ab}) \leq d_F(N) \), where \(d_F(N) \) is the minimum number of normal generators required for \(N \).

A presentation is said to have a relation gap if \(d_G(N^{ab}) \neq d_F(N) \) and the relation gap problem asks, if there exists a finitely presented group with a relation gap. As with the D2 problem, very little is known about the relation gap problem and most proposed counterexamples are not torsion-free, see [5].

We give a proof to the following.

Theorem 6. A finitely presented group \(G \) with the D2 property does not have a relation gap for presentations realizing \(\delta(G) \).
This may be known to topological group theorists but we have not found it in the literature. There is a result of Dyer [4] Theorem 3.5 with the same statement but with the additional hypothesis $H^3(G, ZG) = 0$.

We need the following.

Proposition 7 ([3] Proposition 4.3, or [3], Remark 1.3). Let G be a finitely presented group with the D2 property. Then $\mu_2(G) = 1 - \delta(G)$.

For completeness we give a proof of Proposition 7 following [3], based on the following theorem of Wall.

Theorem 8 ([14], Theorem 4). Let X be a connected CW-complex, $G = \pi_1(X)$ and let A_* be a positive free chain complex equivalent to the cellular chain complex $C_*(X)$ of the universal cover of X. Let K^2 be a connected CW-complex with fundamental group G. There exists another CW complex Y and a homotopy equivalence $h : Y \to X$ such that Y is obtained from K^2 by adding 2-cells and 3-cells at the base point to obtain a D2 complex Y_0 and then further cells such that $C_*(Y, Y_0)$ is the part of A_* in dimension ≥ 3.

If the symbol α_i denotes the number of i-cells or of generators in degree i then

$$\begin{align*}
\alpha_2(Y_0 - K^2) &= \alpha_2(A) + \alpha_1(K) + \alpha_0(A), \\
\alpha_3(Y^0 - K^2) &= \alpha_2(K) + \alpha_1(A) + \alpha_0(K).
\end{align*}$$

Proof of Proposition 7. Let

$$(ZG)^{f_2} \to (ZG)^{f_1} \to (ZG)^{f_0} \to Z \to 0$$

be a partial free resolution of Z with $f_2 - f_1 + f_0 = \mu_2(G)$. Extend this to a free resolution A_* and let X be a CW complex which is a classifying space for G. Now A_* is homotopy equivalent to the cellular complex $C_*(X)$ of X and therefore starting with any finite presentation complex K^2 for G we can apply Theorem 8 above. In particular there exists a finite 3-dimensional D2 complex Y_0 with $\pi_1(Y_0) = G$ and we compute

$$\chi(Y_0) = \sum_{i=0}^{3} (-1)^i \alpha_i(Y_0) = \sum_{i=0}^{2} (-1)^i \alpha_i(A_*) = \mu_2(G).$$

We are assuming that the D2 Problem has positive solution for G, therefore Y_0 is homotopy equivalent to a finite 2-dimensional complex L. We have $G = \pi_1(K) = \pi_1(L)$ and $\chi(L) = \chi(Y_0) = \mu_2(G)$. Hence

$$\delta(G) - 1 \geq \alpha_1(L) - \alpha_0(L) - \alpha_2(L) = -\chi(L) = -\mu_2(G).$$

Therefore $1 - \delta(G) \leq \mu_2(G)$. Since the opposite inequality $\mu_2(G) \leq 1 - \delta(G)$ always holds we have equality.

Proof of Theorem 6. Let G be a group with the D2 property. Take a presentation $\langle X \mid R \rangle$ for G with e_1 generators and e_2 relations such that $e_1 - e_2 = \delta(G)$. We have $G \cong F/N$ where F is a free group of rank e_1.
on X and N is the normal closure of the relations R. Since $e_1 - e_2$ realises the deficiency of G it follows that $e_2 = d_F(N)$. Let $M = N^{ab}$ be the relation module of this presentation. Recall the chain complex $\{2\}$ above. We have $M \cong \ker \partial_1 = \text{im} \partial_2$. If M has relation gap then $u := d_G(M) < e_2$ and in particular there is a surjection of $\mathbb{Z}G$ modules $f : (\mathbb{Z}G)^u \to \ker \partial_1$. Therefore we can amend the partial resolution above to

$$(\mathbb{Z}G)^u \xrightarrow{f} (\mathbb{Z}G)^{e_1} \xrightarrow{\partial_1} \mathbb{Z}G \xrightarrow{\partial_2} \mathbb{Z} \to 0.$$

This gives $\mu_2(G) \leq 1 + u - e_2 < 1 - \delta(G)$ contradicting Proposition $[7]$. Therefore presentations of G which realize $\delta(G)$ have no relation gap.

\[\square \]

4. Relation Gap Problem v.s. 2D Conjecture

Theorem 9. If G is a counterexample to the 2D conjecture then there exists a finite index subgroup H of G such that H has a presentation with relation gap.

Proof. Suppose that G is a finitely presented group; assume that X is a presentation 2-complex for G realising the deficiency $\delta(G)$. If X is not aspherical, then by Whitehead’s Theorem, $H_2(\tilde{X}) \neq 0$. Let e_i denote the number of i-cells in X. So $\delta(G) - 1 = e_1 - e_2 - 1$. We have the exact sequence of G-modules

$$F : 0 \to H_2(\tilde{X}) \to \mathbb{Z}G^{e_2} \xrightarrow{\partial_2} \mathbb{Z}G^{e_1} \xrightarrow{\partial_1} \mathbb{Z}G \to \mathbb{Z} \to 0$$

where $H_2(\tilde{X}) = \ker \partial_2$. The relation module R associated to X is isomorphic to $\ker \partial_1 = \text{im} \partial_2 \cong \mathbb{Z}G^{e_2}/H_2(\tilde{X})$. Take a non-zero element ρ of $H_2(\tilde{X})$. As an element of $\mathbb{Z}G^{e_2}$, ρ has a representation as a non-zero tuple (a_1, \ldots, a_{e_2}), where each a_i is a linear combination in $\mathbb{Z}G$ with support C_i as follows:

$$a_i = \sum_{g \in C_i} a_i^g g$$

Let $C = \cup C_i$; this is a finite collection of elements of G. There exists a finite index normal subgroup of G, say H such that the elements of C project to distinct cosets in G/H. The natural structure of $\mathbb{Z}G$ as a ZH-module makes F into the chain complex for the action of H on \tilde{X}. Let E be a collection of coset representatives for H in G such that $C \subseteq E$. Consider

$$\mathbb{Z}G^{e_2} = \left(\bigoplus_{g \in E} \mathbb{Z}H.g \right)^{e_2} \cong \mathbb{Z}H^{e_2[G:H]}$$

Let d be the greatest common divisor of the integers $\{a_i^g \mid g \in C_i, \ i = 1, 2, \ldots, e_2\}$. Then $\rho = d\rho'$, where $\rho' \in \mathbb{Z}G^{e_2}$ and all its coefficients are coprime. As ρ is an element of $\ker \partial_2$, ρ is a homomorphism of torsion-free abelian groups, we deduce that ρ' is also an element of $\ker \partial_2$. Therefore, we can assume that $d = 1$.

2D PROBLEMS IN GROUPS

5
Consider the presentation for H arising from the action of H on \tilde{X}: this presentation has $(e_1 - 1)[G : H] + 1$ generators and $e_2[G : H]$ relations. The relation module R' for this presentation of H is the restriction $R'_{\downarrow H}$ of the relation module R, wherein ρ represents the zero element. We have assumed that the coefficients of ρ are co-prime and so ρ is a primitive element in the abelian group $(\mathbb{Z}E)^{e_2}$ containing its support in $\mathbb{Z}H^{e_2[G:H]}$. Consequently $R' \cong \mathbb{Z}H^{e_2[G:H]}/H_2(\tilde{X})$ can be generated by fewer than $e_2[G : H]$ elements as an H-module. If the above presentation of H has no relation gap then it needs strictly fewer than $e_2[G : H]$ relations and hence $\delta(H) - 1 > [G : H](e_1 - e_2 - 1) = [G : H](\delta(G) - 1)$, contradiction.

Therefore if X is not aspherical some finite index subgroup of G has a relation gap. \hfill \Box

We note that the argument above gives the following general criterion for freeness of $\mathbb{Z}G$-modules.

Proposition 10. Let G be a residually finite group and let M be a finitely generated $\mathbb{Z}G$-module. Assume that M is torsion free as an abelian group and let $f : (\mathbb{Z}G)^r \to M$ be a surjective homomorphism of $\mathbb{Z}G$ modules. Then f is an isomorphism if and only of $d_H(M) = r[G : H]$ for each subgroup H of finite index in G.

In particular M is a free module if and only if $d_H(M) = [G : H]d_G(M)$ for each subgroup H of finite index in G.

Proof. If f is not injective we can find an element $\rho = (a_1, \ldots, a_r) \in \ker f$ with support $C = \cup_{i=1}^r C_i$ and coefficients $a_i^j \in \mathbb{Z}$ defined by $a_i = \sum_{g \in C_i} a_i^j g$. Since M is torsion free we can assume that the greatest common divisor of all integers a_i^j is 1. There is a finite index subgroup H of G such that C projects injectively into G/H and arguing in the same way as in the proof of Theorem 9, we deduce $d_H(M) < r[G : H]$, contradiction. Therefore f is a bijection and M is a free module. \hfill \Box

5. The 2D Conjecture for pro-p groups.

In this section G denotes a finitely presented pro-p group, where we consider presentations in the category of pro-p groups. We keep the notation $\delta(G)$ for the maximum of $|X| - |R|$ over all pro-p presentations $\langle X, R \rangle$ of G.

Below we prove the analogue of the 2D conjecture for G:

Theorem 11. Let G be a finitely presented pro-p group. The following are equivalent:

(i) $\delta(G) - 1 = [G : H](\delta(H) - 1)$ for every open subgroup H of G.

(ii) $cd_p(G) \leq 2$.

It will be interesting to find a characterization of the finitely presented profinite groups G for which the condition (i) above holds. Note that already the 1-dimensional situation for profinite groups is quite different. See [10] for examples of profinite groups which satisfy Schreier’s rank-index formula for all open subgroups, but are not projective.
We have the partial free resolution arising from the presentation of \(\delta \) with \(\nu \) normal subgroup \(\langle d \rangle \) of \(\langle F \rangle \) of type \(F \).

\[\text{Proof.} \]

For pro-p groups \(\delta(G) = \dim_{\mathbb{F}_p} H^1(G) - \dim_{\mathbb{F}_p} H^2(G) \) where we write \(H^i(G) = H^i(G, \mathbb{F}_p) \), see [11] I.4.2 & I.4.3. Hence, if \(cd_p(G) \leq 2 \) then \(\delta(G) - 1 = -\chi(G) \), the pro-p Euler characteristic of \(G \) and therefore (1) holds.

Conversely, suppose that (1) holds and let \(\nu_i = \dim_{\mathbb{F}_p} H^i(G) \) for \(i = 1, 2 \). We have the partial free resolution

\[\mathbb{F}_p[[G]]^{e_2} \xrightarrow{d_2} \mathbb{F}_p[[G]]^{e_1} \xrightarrow{d_1} \mathbb{F}_p[[G]] \longrightarrow \mathbb{F}_p \longrightarrow 0, \]

arising from the presentation of \(G \) with \(e_1 \) generators and \(e_2 \) relations. We claim that \(J := \ker d_2 \) must be zero. Suppose not. Then we can find an open normal subgroup \(N \) of \(G \) such that the image \(\tilde{J} \) of \(J \) under the reduction \((\mathbb{F}_p[[G]])^{e_2} \rightarrow (\mathbb{F}_p[G/N])^{e_2} \) is non-zero.

Note that the free \(\mathbb{F}_p[[G]] \) resolution above is also a partial free resolution of \(\mathbb{F}_p[[N]] \) modules. We apply the functor \(\text{Hom}_N(-, \mathbb{F}_p) \) to the above resolution, using \(\text{Hom}_N(\mathbb{F}_p G, \mathbb{F}_p) \simeq (\mathbb{F}_p[G/N])^* \), where by \(V^* \) we denote the dual of the vector space \(V \) over \(\mathbb{F}_p \). We obtain the chain complex

\[0 \leftarrow \tilde{J}^* \leftarrow (\mathbb{F}_p[G/N]^*)^{e_2} \xrightarrow{d_2^*} (\mathbb{F}_p[G/N]^*)^{e_1} \xrightarrow{d_1^*} \mathbb{F}_p[G/N]^* \leftarrow 0. \]

which is exact at \(\tilde{J}^* \) and whose homology group in degree \(i \) is \(H^i(N) \). Therefore

\[\delta(N) - 1 = \sum_{i=0}^{2} (-1)^{i+1} \dim H^i(N) = \]

\[= (e_1 - e_2 - 1)[G : N] + \dim \tilde{J}^* > [G : N](\delta(G) - 1), \]

since \(\tilde{J}^* \neq \{0\} \), a contradiction to (i). Therefore \(J = \{0\} \) and \(cd_p(G) \leq 2 \). \(\square \)

6. Higher dimensional analogues

Deficiency can be viewed as one of the partial Euler characteristics, which are defined as follows:

Let \(n \geq 2 \) be an integer and let \(G \) be a group of type \(F_n \). Define \(\nu_n(G) \) to be the minimum of \(-1)^n \chi(X) \) where \(X \) is a finite CW complex of dimension \(n \) such that \(\pi_1(X) = G \) and \(\pi_i(X) = \{0\} \) for \(i = 2, 3, \ldots, n-1 \) (i.e its universal cover \(\tilde{X} \) is \(n-1 \)-connected). Note that \(\nu_2(G) = 1 - \delta(G) \) and for completeness we define \(\nu_1(G) = d(G) - 1 \). From the definition of \(\nu_n \) and \(\mu_n \) we have \(\nu_n(G) \geq \nu_n(G) \) for all \(n \). We note that Theorem [8] above implies

Proposition 12. \(\nu_n(G) = \mu_n(G) \) when \(n \geq 3 \).

Here we prove the higher dimensional analogue of the 2D conjecture.

Theorem 13. Let \(n > 2 \) be an integer and let \(G \) be a residually finite group of type \(F_n \). Then \(G \) has finite classifying space of dimension \(n \) if and only if \(\nu_n(H) = \nu_n(G)[G : H] \) for every subgroup \(H \) of finite index in \(G \).
Proof. Suppose that X is an n-dimensional $K(G,1)$ complex for G, then
$$\nu_n(G) \leq (-1)^n \chi(X)$$ from the definition of $\nu_n(G)$. On the other hand the
Morse inequalities give
$$\nu_n(G) \geq \sum_{i=0}^{n} (-1)^{n-i} b_i(G) = (-1)^n \chi(X).$$
Therefore $\nu_n(G) = (-1)^n \chi(X)$ and in the same way $\nu_n(H) = (-1)^n \chi(X')$, where
X' is the cover of X corresponding to H. Since $\chi(X') = [G : H] \chi(X)$ the
equality follows.

For the other direction we could use Proposition \[12\]. Instead we take a
more elementary approach and argue directly using Proposition \[10\].

Suppose that $\nu_n(H) = \nu_n(G)[G : H]$ for every subgroup H of finite index
in G. Let X be the n-dimensional CW complex which realises $\nu_n(G)$. Let
e$_i$ be the number of i-dimensional cells of X and let
$$F_n \xrightarrow{\partial_n} F_{n-1} \xrightarrow{\partial_{n-1}} \cdots \xrightarrow{\partial_1} F_0 \rightarrow \mathbb{Z} \rightarrow 0$$
with $F_i = (\mathbb{Z}G)^{e_i}$ be the chain complex of the universal cover \tilde{X}. By the
Hurewicz theorem $\pi_n(X) \simeq H_n(X) = \ker \partial_n$ and thus X is aspherical if and
only if ∂_n is injective.

Suppose ker $\partial_n \neq \{0\}$ and consider $M = \ker \partial_{n-1} = \text{im}\partial_n$. We apply
Proposition \[14\] to the $\mathbb{Z}G$-homomorphism $\partial_n : F_n \rightarrow M$, where $F_n = (\mathbb{Z}G)^{e_n}$ to
deduce that $u := d_H(M) < e_n[G : H]$ for some subgroup H.

Choose a set of generators $\alpha_1, \ldots, \alpha_u$ of the $\mathbb{Z}H$-module M. Let Y be
the cover of X with degree $[Y : X] = [G : H]$ and $\pi_1(Y) = H$. Let
p : $\tilde{X} \rightarrow Y$ be the universal covering map. Denote by Y_n the
$(n-1)$-skeleton of Y and \tilde{X} respectively and observe that $\pi_{n-1}(Y_n) \simeq
H_{n-1}(\tilde{X}_n) = \ker \partial_{n-1} = M$ by the Hurewicz theorem. Therefore for each
i = 1, \ldots, u we can find a cellular map $j_i : S^{n-1} \rightarrow \tilde{X}_n$ representing α_i.
This means that $H_{n-1}(j_i)$ sends the generator of $H_{n-1}(S^{n-1})$ to the element
$\alpha_i \in H_{n-1}(\tilde{X}_n) = M$.

We now attach n-dimensional cells σ_i^n to Y_n for $i = 1, \ldots u$ with boundary
attaching maps
$$S^{n-1} \xrightarrow{j_i} \tilde{X}_n \xrightarrow{p} Y_n$$
and define $Z := Y_n \cup \bigcup_{i=1}^{u} \sigma_i^n$. Note that since $Y_n = Z^n$ we have
$\pi_i(Z) = \pi_i(Y)$ for $i = 1, \ldots n - 2$. We claim that $\pi_{n-1}(Z) = \{0\}$. It
is sufficient to prove that $H_{n-1}(\tilde{Z}) = \{0\}$ for the universal cover \tilde{Z} of Z.
Since the $(n-1)$-skeletons of Z and X coincide, the boundary maps ∂_{n-1} on the
chain complex of \tilde{Z} and \tilde{X} are the same and hence ker $\partial_{n-1} = M$. On the
other hand the boundary map $\partial_n : (\mathbb{Z}H)^u \rightarrow M$ of degree n of the
chain complex of \tilde{Z} is surjective since by construction its image contains the
generators α_i. Therefore $H_{n-1}(\tilde{Z}) = \{0\}$ and so \tilde{Z} is $(n-1)$-connected
as claimed.

Note that Z has $[G : H] e_i$ cells in dimension i for $i = 0, 1, \ldots, n - 1$ and
u cells in dimension n. Since $u < e_n[G : H]$ it follows that
$$\nu_n(H) \leq (-1)^n \chi(Z) = u + \sum_{i=0}^{n-1} (-1)^{n-i} e_i[G : H] \nu_n(G)[G : H],$$
contradiction. Therefore $H_n(\tilde{X}) = \{0\}$ and X is a finite $K(G,1)$-complex of dimension n. □

References

[1] M. Abért, A. Jaikin-Zapirain and N. Nikolov, The rank gradient from a combinatorial viewpoint, Groups Geom. Dyn. 5 (2011), 213-230.

[2] M. Bestvina and N. Brady, Morse theory and finiteness properties of groups, Invent Math (1997) 129: 445-470.

[3] I. Hambleton, Two Remarks on Wall’s D2 Problem, [arXiv:1708.08532v1].

[4] J. Harlander, Some aspects of efficiency, GroupsKorea 98 (Pusan), de Gruyter, Berlin, 2000, pp. 165180.

[5] J. Harlander, On the relation gap and relation lifting problem, Groups St. Andrews 2013, London Math. Soc. Lecture Note Ser., vol. 422, (2015), pp. 278-285.

[6] F. Ji and S. Ye, Partial Euler Characteristic, Normal Generations and the stable $D(2)$ problem, arxiv.org/abs/1503.01987.

[7] F. E. A. Johnson, Stable modules and Walls D(2)-problem, Comment. Math. Helv. 78 (2003) 18-44.

[8] A. Kar and N. Nikolov, On Deficiency Gradient of Groups, International Mathematics Research Notices, Vol. 2016 (2016), No. 3, 696 -716.

[9] A. Lubotzky, Combinatorial group theory for pro-p groups, J. Pure and Applied Algebra, 25 (1982) 311-325.

[10] A. Lubotzky and L. van den Dries, Subgroups of free profinite groups and large subfields of \mathbb{Q}, Israel J. Math. 39 (1981), no. 1-2, 25-45.

[11] J.-P. Serre, Galois Cohomology, Springer-Verlag, Berlin, 1964.

[12] R. Strebel, A converse to Schreier’s index-rank formula, arxiv.org/abs/1801.03078.

[13] R. Swan, Minimal resolutions of finite groups, Topology, Vol. 4, Issue 2, (1965), 193-208.

[14] C.T.C. Wall, Finiteness conditions for CW complexes II, Proc. Roy. Soc. Ser. A 295 (1966), 129-139.