Regulation of ClC-2 Activity by SPAK and OSR1

Jamshed Warsi Zohreh Hosseinzadeh Bernat Elvira Rosi Bissinger
Ekaterina Shumilina Florian Lang

Department of Physiology I, University of Tübingen, 72076 Tübingen, Germany

Key Words
Cl− channels • Cell volume regulation • WNK • Voltage clamp • Oocytes

Abstract
Background/Aims: SPAK (SPS1-related proline/alanine-rich kinase) and OSR1 (oxidative stress-responsive kinase 1) are powerful regulators of diverse transport processes. Both kinases are activated by cell shrinkage and participate in stimulation of regulatory cell volume increase (RVI). Execution of RVI involves inhibition of Cl− channels. The present study explored whether SPAK and/or OSR1 regulate the activity of the Cl− channel ClC-2. Methods: To this end, ClC-2 was expressed in Xenopus laevis oocytes with or without additional expression of wild type SPAK, constitutively active SPAK T233E, WNK1 insensitive inactive SPAK T233A, catalytically inactive SPAK D212A, wild type OSR1, constitutively active OSR1 T185E, WNK1 insensitive inactive OSR1 T185A, and catalytically inactive OSR1 D164A. Cl− channel activity was determined by dual electrode voltage clamp. Results: Expression of ClC-2 was followed by the appearance of a conductance (G Cl), which was significantly decreased following coexpression of wild type SPAK, SPAK T233E, wild type OSR1 or OSR1 T185E, but not by coexpression of SPAK T233A, SPAK D212A, OSR1 T185A, or OSR1 D164A. Inhibition of ClC-2 insertion by brefeldin A (5 μM) resulted in a decline of G Cl which was similar in the absence and presence of SPAK or OSR1, suggesting that SPAK and OSR1 did not accelerate the retrieval of ClC-2 protein from the cell membrane. Conclusion: SPAK and OSR1 are powerful negative regulators of the cell volume regulatory Cl− channel ClC-2.

Introduction

SPAK (SPS1-related proline/alanine-rich kinase) [1-3] and OSR1 (oxidative stress-responsive kinase 1) [4, 5] are related kinases involved in the regulation of ion transport and thus blood pressure. The activity of SPAK and OSR1 is controlled by WNK (with-no-K[Lys]) kinases [1, 6-9], which are again involved in the regulation of ion transport and
blood pressure [10-14]. Along those lines, mutations of genes encoding WNK kinases may lead to hypertension and hyperkalaemia [7, 8, 15, 16]. Carriers upregulated by SPAK and OSR1 include the Na⁺-Cl⁻ cotransporter and the Na⁺,K⁺,2Cl⁻ cotransporter [4-6, 9, 10, 17-25]. Moreover, OSR1 and/or SPAK may modify further transport systems, including Na⁺-coupled glucose transporter SGLT1 [26], Na⁺-coupled phosphate transport [27, 28], and Na⁺/H⁺ exchanger [29]. SPAK and OSR1 are activated by cell shrinkage and the kinases are involved in regulatory cell volume decrease [30]. Cell volume regulation is in part accomplished by Cl⁻ channels [31-33] including the ubiquitously expressed inwardly rectifying Cl⁻ channel ClC-2 [33, 34]. Cell shrinkage leads to inhibition of Cl⁻ channels thus curtailing cellular Cl⁻ loss [35, 36].

The present study explored whether SPAK and/or OSR1 modify the activity of the Cl⁻ channel ClC-2. To this end, cRNA encoding ClC-2 was injected into Xenopus laevis oocytes with or without cRNA encoding wild-type SPAK, WNK1 insensitive SPAK T233A, constitutively active SPAK T233E, catalytically inactive SPAK D212A, wild-type OSR1, WNK1 insensitive inactive OSR1 T185A, constitutively active OSR1 T185E, and catalytically inactive OSR1 D164A [9]. ClC-2 activity in those oocytes was estimated from cell membrane conductance, which was quantified by dual electrode voltage clamp.

Materials and Methods

Constructs

Constructs encoding wild-type human ClC-2 [37, 38], wild-type SPAK, WNK1 insensitive inactive SPAK T233A, constitutively active SPAK T233E, and catalytically inactive SPAK D212A, wild-type OSR1, WNK1 insensitive inactive OSR1 T185A, constitutively active OSR1 T185E, and catalytically inactive OSR1 D164A [9] were used for generation of cRNA as described previously [39, 40]. All mutants were kindly provided by Dario Alessi.

Voltage clamp in Xenopus laevis oocytes

Xenopus laevis oocytes were prepared as previously described [41]. Where not indicated otherwise, 15 ng cRNA encoding ClC-2 were injected on the first day and 10 ng cRNA encoding SPAK, SPAK T233A, SPAK T233E, SPAK D212A, OSR1, OSR1 T185A, OSR1 T185E, or OSR1 D164A were injected on the second day or the same day after preparation of the oocytes [27, 42]. The oocytes were maintained at 17°C in ND96-A solution containing (in mM): 88.5 NaCl, 2 KCl, 1 MgCl₂, 1.8 CaCl₂, 2.5 NaOH and 5 HEPES, 5 sodium pyruvate (C₃H₃NaO₃), pH 7.4, gentamycin (100 mg/l), tetracycline (50 mg/l), ciprofloxacin (1.6 mg/l), and theophiline (90 mg/l) [43]. Where indicated, brefeldin A (5 µM) was added to the respective solutions [44]. The voltage clamp experiments were performed at room temperature 3 days after injection. Two-electrode voltage-clamp recordings [45] were obtained utilizing a pulse protocol of 10 s pulses from -140 mV to +40 mV in 20 mV increments. The intermediate holding voltage was -60 mV. The data were filtered at 2 kHz, and recorded with a DigiData 1322A converter and the pClamp 9.2 software for data acquisition and analysis (Axon Instruments, USA) [46]. The superfusate (ND96) contained (in mM): 93.5 NaCl, 2 KCl, 1.8 CaCl₂, 1 MgCl₂, 2.5 NaOH and 5 HEPES, pH 7.4. The flow rate of the superfusion was approx. 20 ml/min, and a complete exchange of the bath solution was reached within about 10 s [47, 48].

Statistical analysis

Data are provided as means ± SEM, n represents the number of oocytes. All voltage clamp experiments were repeated with at least 3 batches of oocytes; in all repetitions qualitatively similar data were obtained. Data were tested for significance using ANOVA. Results with p < 0.05 were considered statistically significant.

Results

The present study explored whether SPAK (STE20/SPS1-related proline/alanine-rich kinase) and OSR1 (oxidative stress-responsive kinase 1) influence the activity of ClC-2 Cl⁻ channels. To this end cRNA encoding ClC-2 was injected into Xenopus laevis oocytes with
or without additional injection of cRNA encoding SPAK or OSR1 and the cell membrane conductance determined utilizing dual-electrode voltage-clamp. In water injected oocytes the cell membrane conductance was low (Fig. 1). As illustrated in Fig. 1, expression of ClC-2 resulted in a marked increase of cell membrane conductance. As shown in Fig. 1, the cell membrane conductance of ClC-2 expressing \textit{Xenopus laevis} oocytes was significantly decreased by additional expression of wild type SPAK. Similarly, coexpression of OSR1 was followed by a significant decrease of cell membrane conductance in ClC-2 expressing \textit{Xenopus laevis} oocytes (Fig. 2).

The effect of wild type SPAK was mimicked by the constitutively active mutant SPAKT233E. Accordingly, the conductance was significantly lower in \textit{Xenopus laevis} oocytes expressing ClC-2 together with SPAKT233E than in \textit{Xenopus laevis} oocytes expressing ClC-2 alone (Fig. 3). In contrast, ClC-2 activity was not significantly modified by WNK1 insensitive inactive SPAKT233A or by catalytically inactive SPAKD212A (Fig. 3).

The effect of wild type OSR1 was mimicked by the constitutively active mutant OSR1T185E. Again, coexpression of OSR1T185E significantly decreased cell membrane conductance of ClC-2 expressing \textit{Xenopus laevis} oocytes and the conductance was significantly lower in \textit{Xenopus laevis} oocytes expressing ClC-2 together with OSR1T185E than in \textit{Xenopus laevis} oocytes expressing ClC-2 alone (Fig. 4). In contrast, ClC-2 activity was not significantly modified by coexpression of WNK1 insensitive inactive OSR1T185A or by coexpression of catalytically inactive OSR1D164A (Fig. 4).
Fig. 2. Effect of wild-type OSR1 coexpression on Cl⁻ conductance in ClC-2-expressing Xenopus laevis oocytes. A: Representative original tracings showing currents in *Xenopus laevis* oocytes injected with DEPC water (a), as well as in oocytes expressing ClC-2 without (b) or with (c) additional coexpression of wild type OSR1. B: Arithmetic means ± SEM (n = 16-34) of the current (I) as a function of the potential difference across the cell membrane (V) in *Xenopus laevis* oocytes injected with water (circles), expressing ClC-2 alone (squares) or expressing ClC-2 together with wild type OSR1 (triangles). C: Arithmetic means ± SEM (n = 16-34) of the conductance calculated by linear fit of I/V-curves shown in B between -140 mV and -80 mV in *Xenopus laevis* oocytes injected with water (dotted bar), expressing ClC-2 alone (white bar) or expressing ClC-2 together with wild type OSR1 (black bar). **(p<0.01) indicates statistically significant difference to expression of ClC-2 alone.

At least in theory, SPAK and OSR1 could have decreased ClC-2 channel activity by accelerating the retrieval of channel protein from the cell membrane. In order to test this possibility, *Xenopus laevis* oocytes expressing ClC-2 with or without SPAK were treated with 5 µM brefeldin A, a substance disrupting insertion of new channel protein into the cell membrane. As illustrated in Fig. 5A, the decline of conductance in the presence of brefeldin A was similar in oocytes expressing ClC-2 together with SPAK and oocytes expressing ClC-2 alone. The same observations were made in *Xenopus laevis* oocytes expressing ClC-2 with or without OSR1. As shown in Fig. 5B, the decline of conductance in the presence of brefeldin A was again similar in oocytes expressing ClC-2 together with OSR1 and in oocytes expressing ClC-2 alone. Thus, neither SPAK nor OSR1 accelerated the retrieval of channel protein from the cell membrane.

Discussion

The present study reveals that the WNK-dependent STE20/SPS1-related proline/alanine-rich kinase SPAK and the oxidative stress-responsive kinase OSR1 are both powerful negative regulators of the ubiquitously expressed Cl⁻ channel ClC-2. The kinases do not significantly modify the decline of the current following inhibition of channel insertion into the cell membrane indicating that the kinases are not effective by accelerating the clearance of Cl⁻ from the cell. This suggests that the kinases might exert their effects by decreasing the activity of the channel itself rather than by accelerating its retrieval from the membrane.
Fig. 3. Effect of expression of constitutively active SPAK^{T233E}, inactive SPAK^{T233A} and catalytically inactive SPAK^{D212A} on Cl⁻ conductance in ClC-2-expressing Xenopus laevis oocytes. A: Representative original tracings showing currents in Xenopus laevis oocytes injected with DEPC water (a), as well as in oocytes expressing ClC-2 without (b) or with additional coexpression of constitutively active SPAK^{T233E} (c), inactive SPAK^{T233A} (d) and catalytically inactive SPAK^{D212A} (e). B: Arithmetic means ± SEM (n = 18-25) of the current (I) as a function of the potential difference across the cell membrane (V) in Xenopus laevis oocytes injected with water (black circles), expressing ClC-2 alone (black squares) or expressing ClC-2 together with constitutively active SPAK^{T233E} (black triangles), inactive SPAK^{T233A} (white diamonds) and catalytically inactive SPAK^{D212A} (white squares). C: Arithmetic means ± SEM (n = 18-25) of the conductance calculated by linear fit of I/V-curves shown in B between -140 mV and -80 mV in Xenopus laevis oocytes injected with water (dotted bar), expressing ClC-2 alone (white bar) or expressing ClC-2 together with constitutively active SPAK^{T233E} (black bar), inactive SPAK^{T233A} (dark grey bar) and catalytically inactive SPAK^{D212A} (light grey bar). *** (p<0.001) indicates statistically significant difference to expression of ClC-2 alone.

The effect of SPAK/OSR1 on ClC-2 may participate in the regulation of cell volume, as inhibition of Cl⁻ channels interferes with Cl⁻ exit thus leading to hyperpolarization of the cell membrane with subsequent decrease of K⁺ exit. The inhibition of KCl exit prevents further loss of osmotically obliged water. Cell shrinkage is well known to inhibit cell volume regulatory Cl⁻ channels [35, 36]. ClC-2 has been shown to be regulated by cell volume [32] and down regulation of ClC-2 could well participate in the SPAK/OSR1 sensitive regulation of cell volume.

Cl⁻ channels participate in the regulation of cell proliferation [49]. Activation of Cl⁻ channels fosters cell shrinkage, a prerequisite for triggering oscillations of cytosolic Ca²⁺ activity in proliferating cells [50].
Warsi/Hosseinzadeh/Elvira/Bissinger/Shumilina/Lang: SPAK and OSR1 Sensitive ClC-2

Fig. 4. Effect of expression of constitutively active OSR1T185E, inactive OSR1T185A and catalytically inactive OSR1D164A on Cl− conductance in ClC-2-expressing Xenopus laevis oocytes. A: Representative original tracings showing currents in Xenopus laevis oocytes injected with DEPC water (a), as well as in oocytes expressing ClC-2 without (b) or with additional coexpression of constitutively active OSR1T185E (c), inactive OSR1T185A (d) and catalytically inactive OSR1D164A (e). B: Arithmetic means ± SEM (n = 21-25) of the current (I) as a function of the potential difference across the cell membrane (V) in Xenopus laevis oocytes injected with water (black circles), expressing ClC-2 alone (black squares) or expressing ClC-2 together with constitutively active OSR1T185E (black triangles), inactive OSR1T185A (white diamonds) and catalytically inactive OSR1D164A (white squares). C: Arithmetic means ± SEM (n = 21-25) of the conductance calculated by linear fit of I/V-curves shown in B between -140 mV and -80 mV in Xenopus laevis oocytes injected with water (dotted bar), expressing ClC-2 alone (white bar) or expressing ClC-2 together with constitutively active OSR1T185E (black bar), inactive OSR1T185A (dark grey bar) and catalytically inactive OSR1D164A (light grey bar). *(p<0.05) indicates statistically significant difference to expression of ClC-2 alone.

Cl− channels further participate in the regulation of cell volume during apoptosis [51-61] and SPAK/OSR1 sensitive ClC-2 activity could - at least in theory - counteract apoptotic cell shrinkage. ClC-2 Cl− channels particularly impact on survival of male germ cells and photoreceptors [62]. SPAK/OSR1 sensitive ClC-2 activity may further participate in the regulation of cytosolic Cl− activity, cell membrane potential and thus excitability of neurons [63]. ClC-2 participates in the regulation of pulmonary chloride and water secretion, a prerequisite for fetal lung development [64]. Clearly, further experiments are required to fully elucidate the physiological functions dependent on SPAK/OSR1 sensitive regulation of ClC-2.

Conclusion

SPAK and OSR1 both downregulate ClC-2 and thus contribute to the regulation of this ubiquitously expressed Cl− channel.
Fig. 5. Effect of brefeldin A on ClC-2 channel activity with or without coexpression of SPAK or OSR1. A: Arithmetic means ± SEM (n = 18-30) of conductance calculated by linear fit of I/V-curves between -140 mV and -80 mV in *Xenopus laevis* oocytes injected with ClC-2 alone (ClC-2, white bars) or expressing ClC-2 together with SPAK (black bars) prior to (left bars, 0h) and following (middle and right bars) incubation with brefeldin A (5 µM) for 16 h or 24 h. B: Arithmetic means ± SEM (n = 16-30) of conductance calculated by linear fit of respective I/V-curves between -140 mV and -80 mV in *Xenopus laevis* oocytes injected with ClC-2 alone (ClC-2, white bars) or expressing ClC-2 together with OSR1 (black bars) prior to (left bars, 0h) and following (middle and right bars) incubation with brefeldin A (5 µM) for 16 h or 24 h. *** (p<0.001) indicates statistically significant difference from expression of ClC-2 alone. # (p<0.05), ## (p<0.01) and ### (p<0.001) indicate statistically significant difference from absence of brefeldin A.

Disclosure Statement

The authors state that they do not have any conflict of interests and nothing to disclose.

Acknowledgements

The authors acknowledge the meticulous preparation of the manuscript by Sari Rübe and technical support by Elfriede Faber. This study was supported by the Deutsche Forschungsgemeinschaft, GRK 1302, SFB 773 B4/A1, La 315/13-3 and the Open Access Publishing Fund of Tuebingen University.

References

1. Rafiqi FH, Zuber AM, Glover M, Richardson C, Fleming S, Jovanovic S, Jovanovic A, O'Shaughnessy KM, Alessi DR: Role of the WNK-activated SPAK kinase in regulating blood pressure. EMBO Mol Med. 2010;2:63-75.

2. Castaneda-Bueno M, Gamba G: SPAKling insight into blood pressure regulation. EMBO Mol Med 2010;2:39-41.

3. Yang SS, Lo YF, Wu CC, Lin SW, Yeh CJ, Chu P, Sytwu HK, Uchida S, Sasaki S, Lin SH: SPAK-knockout mice manifest Gitelman syndrome and impaired vasoconstriction. J Am Soc Nephrol 2010;21:1868-1877.

4. Lin SH, Yu IS, Jiang ST, Lin SW, Chu P, Chen A, Sytwu HK, Sohara E, Uchida S, Sasaki S, Yang SS: Impaired phosphorylation of Na(+)-K(+)-2Cl(-) cotransporter by oxidative stress-responsive kinase-1 deficiency manifests hypotension and Bartter-like syndrome. Proc Natl Acad Sci USA 2011;108:17538-17543.
5 Villa F, Deak M, Alessi DR, van Aalten DM: Structure of the OSR1 kinase, a hypertension drug target. Proteins 2008;73:1082-1087.
6 Vitari AC, Thastrup J, Rafaqi FH, Deak M, Morrice NA, Karlsson HK, Alessi DR: Functional interactions of the SPAK/OSR1 kinases with their upstream activator WNK1 and downstream substrate NKCC1. Biochem J 2006;397:223-231.
7 Glover M, Zuber AM, O’Shaughnessy KM: Hypertension, dietary salt intake, and the role of the thiazide-sensitive sodium chloride transporter NCCl. Cardiovasc Ther 2011;29:68-76.
8 O’Reilly M, Marshall E, Speirs HJ, Brown RW: WNK1, a gene within a novel blood pressure control pathway, tissue-specifically generates radically different isoforms with and without a kinase domain. J Am Soc Nephrol 2003;14:2447-2456.
9 Vitari AC, Deak M, Morrice NA, Alessi DR: The WNK1 and WNK4 protein kinases that are mutated in Gordon’s hypertension syndrome phosphorylate and activate SPAK and OSR1 protein kinases. Biochem J 2005;391:17-24.
10 Kahle KT, Rinehart J, Lifton RP: Phosphorylation of the Na-K-2Cl and K-Cl cotransporters by the WNK kinases. Biochim Biophys Acta 2010;1802:1150-1158.
11 Flatman PW: Cotransporters, WNKs and hypertension: an update. Curr Opin Nephrol Hypertens 2008;17:186-192.
12 Furgeson SB, Linas S: Mechanisms of type I and type II pseudohypoaldosteronism. J Am Soc Nephrol 2010;21:1842-1845.
13 Uchida S: Pathophysiological roles of WNK kinases in the kidney. Pflugers Arch 2010;460:695-702.
14 Wilson FH, Disse-Nicodeme S, Choate KA, Ishikawa K, Nelson-Williams C, Desitter I, Gunel M, Milford DV, Lipkin GW, Achar DJ, Feely MP, Ballesta L, Unwin RJ, Mayan H, Simon DB, Farfel Z, Jeunemaitre X, Lifton RP: Human hypertension caused by mutations in WNK kinases. Science 2001;293:1107-1112.
15 Achar DJ, Disse-Nicodeme S, Fiquet-Kempf B, Jeunemaitre X: Phenotypic and genetic heterogeneity of familial hyperkalaemic hypertension (Gordon syndrome). Clin Exp Pharmacol Physiol 2001;28:1048-1052.
16 Capasso G, Cantone A, Evangelista C, Zacchia M, Trepiccione F, Accone D, Rizzo M: Channels, carriers, and pumps in the pathogenesis of sodium-sensitive hypertension. Semin Nephrol 2005;25:419-424.
17 Delpire E, Gagnon KB: SPAK and OSR1, key kinases involved in the regulation of chloride transport. Acta Physiol (Oxf) 2006;187:103-113.
18 Delpire E, Gagnon KB: SPAK and OSR1: STE20 kinases involved in the regulation of ion homeostasis and volume control in mammalian cells. Biochem J 2008;409:321-331.
19 Gimenez I: Molecular mechanisms and regulation of furosemide-sensitive Na-K-Cl cotransporters. Curr Opin Nephrol Hypertens 2006;15:517-523.
20 Richardson C, Sakamoto K, de los HP, Deak M, Campbell DG, Prescott AR, Alessi DR: Regulation of the NKCC2 ion cotransporter by SPAK-OSR1-dependent and -independent pathways. J Cell Sci 2011;124:789-800.
21 Gagnon KB, Delpire E: On the substrate recognition and negative regulation of SPAK, a kinase modulating Na+/K+ -2Cl- cotransport activity. Am J Physiol Cell Physiol 2010;299:C614-C620.
22 Glover M, O’Shaughnessy KM: SPAK and WNK kinases: a new target for blood pressure treatment? Curr Opin Nephrol Hypertens 2011;20:16-22.
23 Huang CL, Yang SS, Lin SH: Mechanism of regulation of renal ion transport by WNK kinases. Curr Opin Nephrol Hypertens 2008;17:519-525.
24 Mercier-Zuber A, O’Shaughnessy KM: Role of SPAK and OSR1 signalling in the regulation of NaCl cotransporters. Curr Opin Nephrol Hypertens 2011;20:534-540.
25 Richardson C, Alessi DR: The regulation of salt transport and blood pressure by the WNK-SPAK/OSR1 signalling pathway. J Cell Sci 2008;121:3293-3304.
26 Pasham V, Pathare G, Fajol A, Redheepur R, Michael D, Pakladok T, Alesutan I, Rotte A, Follér M, Lang F: OSR1-sensitive small intestinal Na+ transport. Am J Physiol Gastrointest Liver Physiol 2012;303:G1212-G1219.
27 Pathare G, Follér M, Daryadel A, Mutig K, Bogatikov E, Fajol A, Almilaji A, Michael D, Stange G, Voelld J, Wagner CA, Bachmann S, Lang F: OSR1-Sensitive Renal Tubular Phosphate Reabsorption. Kidney Blood Press Res 2012;36:149-161.
28 Pathare G, Follér M, Michael D, Walker B, Hierlmierz M, Mannheim JG, Pickler BJ, Lang F: Enhanced FGF23 Serum Concentrations and Phosphaturia in Gene Targeted Mice Expressing WNK-Resistant Spak. Kidney Blood Press Res 2012;36:355-364.
29 Pasham V, Rotte A, Yang WT, Zelenak C, Bhandaru M, Foller M, Lang F: OSR1-sensitive regulation of Na+/H+ exchanger activity in dendritic cells. Am J Physiol Cell Physiol 2012;303:C416-C426.

30 Delpire E, Austin TM: Kinase regulation of Na+/K+-2Cl- cotransport in primary afferent neurons. J Physiol 2010;588:3365-3373.

31 Furukawa T, Ogura T, Katayama Y, Hiraoka M: Characteristics of rabbit CIC-2 current expressed in Xenopus oocytes and its contribution to volume regulation. Am J Physiol 1998;274:C500-512.

32 Grunder S, Thiemann A, Pusch M, Jentsch TJ: Regions involved in the opening of CIC-2 chloride channel by voltage and cell volume. Nature 1992;360:759-762.

33 Thiemann A, Grunder S, Pusch M, Jentsch TJ: A chloride channel widely expressed in epithelial and non-epithelial cells. Nature 1992;356:57-60.

34 Jentsch TJ, Gunther W, Pusch M, Schwappach B: Properties of voltage-gated chloride channels of the CIC gene family. J Physiol 1995;482:195-255.

35 Lang F, Busch GL, Volkl H: The diversity of volume regulatory mechanisms. Cell Physiol Biochem 1998;8:1-45.

36 Macri P, Breton S, Marsolais M, Lapointe J, Laprade R: Hypertonicity decreases basolateral K+ and Cl- conductances in rabbit proximal convoluted tubule. J Membr Biol 1997;155:229-237.

37 Pusch M, Jordt SE, Stein V, Jentsch TJ: Chloride dependence of hyperpolarization-activated chloride channel gates. J Physiol 1999;515:341-353.

38 Stegen C, Matskevich I, Wagner CA, Paulmichl M, Lang F, Broer S: Swelling-induced taurine release without chloride channel activity in Xenopus laevis oocytes expressing anion channels and transporters. Biochim Biophys Acta 2000;1467:91-100.

39 Pakladok T, Almilaji A, Munoz C, Alesutan I, Lang F: PIKfyve sensitivity of hERG channels. Cell Physiol Biochem 2013;31:785-794.

40 Mia S, Munoz C, Pakladok T, Siraskar G, Voelkl J, Alesutan I, Lang F: Downregulation of Kv1.5 K channels by the AMP-activated protein kinase. Cell Physiol Biochem 2012;30:1039-1050.

41 Henrion U, Zumhagen S, Steinke K, Strutz-Seebom N, Stallmeyer B, Lang F, Schulze-Bahr E, Seebom G: Overlapping cardiac phenotype associated with a familial mutation in the voltage sensor of the KCNQ1 channel. Cell Physiol Biochem 2012;29:809-918.

42 Hosseinzadeh Z, Bhavsar SK, Lang F: Downregulation of CIC-2 by JAK2. Cell Physiol Biochem 2012;29:737-742.

43 Alesutan I, Sopjani M, Dermaku-Sopjani M, Munoz C, Voelkl J, Lang F: Upregulation of Na-coupled glucose transporter SGLT1 by Tau tubulin kinase 2. Cell Physiol Biochem 2012;30:458-465.

44 Hosseinzadeh Z, Dong L, Bhavsar SK, Warsi J, Almilaji A, Lang F: Upregulation of peptide transporters PEPT1 and PEPT2 by Janus kinase 2. Cell Physiol Biochem 2013;31:673-682.

45 Almilaji A, Munoz C, Hosseinzadeh Z, Lang F: Upregulation of Na+,Cl(-)-coupled betaine/gamma-amino-butycryl acid transporter BGT1 by Tau tubulin kinase 2. Cell Physiol Biochem 2013;32:334-343.

46 Bogatikov E, Munoz C, Pakladok T, Alesutan I, Shojaiemard M, Seebom G, Foller M, Palmada M, Bohmer C, Broer S, Lang F: Up-regulation of amino acid transporter SLC6A19 activity and surface protein abundance by PI3K/Akt and PIKfyve. Cell Physiol Biochem 2012;30:1538-1546.

47 Almilaji A, Szteyn K, Fein E, Pakladok T, Munoz C, Elvira B, Towhid ST, Alesutan I, Shumilina E, Bock CT, Kandolf R, Lang F: Down-regulation of Na/K+ ATPase activity by human parvovirus B19 capsid protein VP1. Cell Physiol Biochem 2013;31:638-648.

48 Dermaku-Sopjani M, Almilaji A, Pakladok T, Munoz C, Hosseinzadeh Z, Blecua M, Sopjani M, Lang F: Down-regulation of the Na-coupled phosphate transporter NaPi-IIa by AMP-activated protein kinase. Kidney Blood Press Res 2013;37:334-343.

49 Lang F, Foller M, Lang K, Lang P, Ritter M, Vereninov A, Szabo I, Huber SM, Gulbins E: Cell volume regulatory ion channels in cell proliferation and cell death. Methods Enzymol 2007;428:209-225.

50 Ritter M, Woll E, Waldegger S, Haussinger D, Lang HJ, Scholz W, Scholkens B, Lang F: Cell shrinkage stimulates bradykinin-induced cell membrane potential oscillations in NIH 3T3 fibroblasts expressing the ras- oncogene. Pflugers Arch 1993;423:221-224.

51 Elinder F, Akannda N, Tofghi R, Shimizu S, Tsujimoto Y, Orrenius S, Ceccatelli S: Opening of plasma membrane voltage-dependent anion channels (VDAC) precedes caspase activation in neuronal apoptosis induced by toxic stimuli. Cell Death Differ 2005;12:1134-1140.
52 Lang F, Shumilina E, Ritter M, Gulbins E, Vereninov A, Huber SM: Ion channels and cell volume in regulation of cell proliferation and apoptotic cell death. Contrib Nephrol 2006;152:142-160.

53 Myssina S, Lang PA, Kempe DS, Kaiser S, Huber SM, Wieder T, Lang F: Cl- channel blockers NPPB and niflumic acid blunt Ca(2+)-induced erythrocyte ‘apoptosis’. Cell Physiol Biochem 2004;14:241-248.

54 Okada Y, Maeno E: Apoptosis, cell volume regulation and volume-regulatory chloride channels. Comp Biochem Physiol A Mol Integr Physiol 2001;130:377-383.

55 Okada Y, Maeno E, Shimizu T, Manabe K, Mori S, Nabelkura T: Dual roles of plasmalemal chloride channels in induction of cell death. Pflugers Arch 2004;448:287-295.

56 Porcelli AM, Ghelli A, Zanna C, Valente P, Ferroni S, Rugolo M: Apoptosis induced by staurosporine in ECV304 cells requires cell shrinkage and upregulation of Cl- conductance. Cell Death Differ 2004;11:655-662.

57 Shimizu T, Numata T, Okada Y: A role of reactive oxygen species in apoptotic activation of volume-sensitive Cl(-) channel. Proc Natl Acad Sci USA 2004;101:6770-6773.

58 Souktani R, Berdeaux A, Ghaleh B, Giudicelli JF, Guize L, Le Heuzey JY, Henry P: Induction of apoptosis using sphingolipids activates a chloride current in Xenopus laevis oocytes. Am J Physiol Cell Physiol 2000;279:C158-C165.

59 Szabo I, Lepple-Wienhues A, Kaba KN, Zoratti M, Gulbins E, Lang F: Tyrosine kinase-dependent activation of a chloride channel in CD95-induced apoptosis in T lymphocytes. Proc Natl Acad Sci USA 1998;95:6169-6174.

60 Wei L, Xiao AY, Jin C, Yang A, Lu ZY, Yu SP: Effects of chloride and potassium channel blockers on apoptotic cell shrinkage and apoptosis in cortical neurons. Pflugers Arch 2004;448:325-334.

61 Zuo W, Zhu L, Bai Z, Zhang H, Mao J, Chen L, Wang L: Chloride channels involve in hydrogen peroxide-induced apoptosis of PC12 cells. Biochem Biophys Res Commun 2009;387:666-670.

62 Bosl MR, Stein V, Hubner C, Zdebik AA, Jordt SE, Mukhopadhyay AK, Davidoff MS, Holstein AF, Jentsch TJ: Male germ cells and photoreceptors, both dependent on close cell-cell interactions, degenerate upon CIC-2 Cl(-) channel disruption. EMBO J 2001;20:1289-1299.

63 Staley K, Smith R, Schaack J, Wilcox C, Jentsch TJ: Alteration of GABAA receptor function following gene transfer of the CIC-2 chloride channel. Neuron 1996;17:543-551.

64 Blaisdell CJ, Edmonds RD, Wang XT, Guggino S, Zeitlin PL: pH-regulated chloride secretion in fetal lung epithelia. Am J Physiol Lung Cell Mol Physiol 2000;278:L1248-1255.