q-Peano Kernel and Its Applications

Gülter Budakçı*

Department of Mathematics, Dokuz Eylül University
Fen Bilimleri Enstitüsü, Tınaztepe Kampüsü, 35390 Buca, İzmir

Halil Oruc†

Department of Mathematics, Dokuz Eylül University
Fen Fakültesi, Tınaztepe Kampüsü, 35390 Buca, İzmir

Abstract

We introduce a q-analogue of the Peano kernel theorem by replacing ordinary derivatives and integrals by quantum derivatives and quantum integrals. In the limit $q \to 1$, the q-Peano kernel reduces to the classical Peano kernel. We also give applications to polynomial interpolation and construct examples in which classical remainder theory fails whereas q-Peano kernel works. Furthermore we derive a relation between q-B-splines and divided differences via the q-Peano kernel.

Keywords: Peano Kernel - q-Taylor formula - divided differences - quantum derivatives - quantum integrals - q-B-splines

Mathematics Subject Classification (2000) 65D07 65D17 41A15

1 Introduction

The Peano kernel theorem provides a useful technique for computing the errors of approximations such as interpolation, quadrature rules and B-splines. The errors are represented by a linear functional that operates on functions $f \in C^{n+1}[a, b]$ and annihilates all polynomials of degree at most n.

Namely, if $L(f) = 0$ for all $f \in P_n$, the space of polynomials of degree n, then

$$L(f) = \int_a^b f^{(n+1)}(t)K(x,t)dt,$$

where $K(x,t) = \frac{1}{n!}L((x-t)^n).$

An important application of this result is the Kowalewski’s interpolating polynomial remainder. Let $t_0, t_1, \ldots, t_n \in [a, b]$ be fixed and distinct, and

$$L(f) = f(x) - \sum_{k=0}^n f(t_k)I_{nk}(x)$$

where $I_{nk}(x) = \prod_{v \neq k} \frac{x-t_v}{t_k-t_v}$. If $f \in C^{m+1}[a, b]$, then

$$L(f) = \frac{1}{m!} \sum_{k=0}^n I_{nk}(x) \int_{t_k}^x (t-t)^m f^{(m+1)}(t)dt,$$

for each $m = 0, 1, \ldots, n$.

*Electronic address: gulter.budakci@deu.edu.tr
†Electronic address: halil.oruc@deu.edu.tr; Corresponding author
is the error functional, see [5]. Our purpose is to extend the Peano kernel when classical derivatives are replaced by q-derivatives. This extension is important because there are functions whose q-derivatives exist but whose classical derivatives fail to exist.

Section 2 contains definitions and properties of the quantum calculus which we use in the next sections. In Section 3, we give the q-Taylor theorem and develop a q-analogue of the Peano kernel (q-Peano kernel). Furthermore, we present a simple way to find the kernel under some conditions. Section 4 demonstrates how the q-Peano kernel is used to find the error of Lagrange interpolation. A q-analogue of the trapezoidal rule is also given. Moreover, we discuss the error bounds of quadrature formula on the remainder. Finally, we establish a relation between the q-B-splines and the q-Peano kernel in Section 5.

2 Preliminaries

We begin by giving basic definitions and theorems of the q-calculus that are required in the next section. For a fixed parameter $q \neq 1$, the q-derivatives are defined by,

$$D_q f(t) = \frac{f(qt) - f(t)}{(q-1)t}$$

$$D^n_q f(t) = D_q(D^n_{q-1} f(t)), \quad n \geq 2.$$

Note that if f is a differentiable function, then

$$\lim_{q \to 1} D_q f(x) = D f(x).$$

For polynomials the q-derivative is easy to compute. Indeed it follows easily from the definition of the q-derivative that

$$D_q x^n = [n]_q x^{n-1},$$

where the q-integers $[n]_q$ are defined by,

$$[n]_q = \begin{cases}
(1-q^n)/(1-q), & q \neq 1, \\
 n, & q = 1.
\end{cases}$$

Moreover, the q-factorial is defined by

$$[n]_q! = [1]_q \cdots [n]_q.$$

Quantum integrals are the analogues of classical integrals for the quantum calculus. Quantum integrals satisfy a quantum version of the fundamental theorem of calculus, see [7] for details.

Definition 2.1. Let $0 < a < b$. Then the definite q-integral of a function $f(x)$ is defined by

$$\int_0^b f(x)d_q x = (1-q)b \sum_{i=0}^\infty q^i f(q^i b)$$

and

$$\int_a^b f(x)d_q x = \int_0^b f(x)d_q x - \int_0^a f(x)d_q x.$$

Theorem 2.2. [Fundamental Theorem of Calculus]

If $F(x)$ is continuous at $x = 0$, then

$$\int_a^b D_q F(x)d_q x = F(b) - F(a)$$

where $0 \leq a < b \leq \infty$.

The work [11] gives the mean value theorem in the q-calculus which will be needed in one of our results.
Theorem 2.3. If F is continuous and G is $1/q$-integrable and is nonnegative (or nonpositive) on $[a, b]$, then there exists $\tilde{q} \in (1, \infty)$ such that for all $q > \tilde{q}$ there exists a $\tilde{\xi} \in (a, b)$ for which

$$\int_a^b F(x)G(x)d_{1/q}x = F(\tilde{\xi}) \int_a^b G(x)d_{1/\tilde{q}}x.$$

We also require a q-Hölder inequality and appropriate notions of distance in q-integrals, see [2], [4] and [13].

Definition 2.4. We will denote by $L_{p,q}([0,b])$ with $1 \leq p < \infty$ the set of all functions f on $[0,b]$ such that

$$||f||_{p,q} := \left(\int_0^b |f|^q d_{1/q}t \right)^{1/q} < \infty.$$

Furthermore let $L_{\infty,q}([0,b])$ denote the set of all functions f on $[0,b]$ such that

$$||f||_{\infty,q} := \sup_{x \in [0,b]} |f(x)| < \infty.$$

Theorem 2.5. Let $x \in [0,b]$, $q \in [1, \infty)$ and $p_1, p_2 > 1$ be such that $\frac{1}{p_1} + \frac{1}{p_2} = 1$. Then

$$\int_0^x |f(x)||g(x)|d_{1/q}t \leq \left(\int_0^x |f(x)|^{p_1}d_{1/q}t \right)^{1/p_1} \left(\int_0^x |g(x)|^{p_2}d_{1/q}t \right)^{1/p_2}.$$

3 q-Peano Kernel Theorem

In this section we derive a generalization of the Peano kernel theorem. This generalization is based on the q-Taylor expansion analogous to the proof of the classical Peano kernel Theorem. So we start by giving the q-Taylor expansion with integral representation. A detailed treatment of the classical Peano Kernel theorem can be found in [5], [9] and [10].

We use the notation q-$C^k[a,b]$ to denote the space of functions whose q-derivatives of order up to k are continuous on $[a,b]$.

Theorem 3.1. (q-Taylor Theorem) Let f be $n+1$ times $1/q$-differentiable in the closed interval $[a,b]$. Then

$$f(x) = \sum_{k=0}^n q^k \frac{k^{k-1/2}(D_{1/q}^k)(q^k a)}{[k]_q!} (x-a)^k + R_a(f),$$

where

$$(x-t)^{n,q} = (x-q^{n-1}t) \cdots (x-qt)(x-t)$$

and

$$R_a(f) = q^n \frac{n^{n+1/2}}{[n]_q!} \int_a^x (D_{1/q}^n f)(q^n t)(x-t)^{n,q}d_{1/q}t.$$

Another way to express the remainder $R_a f$ is to employ the truncated power function. That is

$$R_a(f) = q^n \frac{n^{n+1/2}}{[n]_q!} \int_a^b (D_{1/q}^n f)(q^n t)(x-t)^{n,q}_+d_{1/q}t,$$

where

$$(x-t)^{n,q}_+ = (x-q^{n-1}t) \cdots (x-qt)(x-t)_+.$$

3
Here \((x - t)_+\) is the truncated power function
\[
(x - t)_+ = \begin{cases}
 x - t, & \text{if } x > t \\
 0, & \text{otherwise}.
\end{cases}
\]

There are other forms of \(q\)-Taylor Theorem, see for example [11, 8, 6].

Theorem 3.2. Let \(g_t(x) = (x - t)^{n,q}\) and let \(L\) be a linear functional that commutes with the operation of \(q\)-integration and also satisfies the conditions: \(L(g_t)\) exists and \(L(f) = 0\) for all \(f \in \mathcal{P}_n\). Then for all \(f \in 1/q - C^{n+1}[a,b]\)
\[
L(f) = \int_a^b (D^q_{1/q} f)(q^n t) K(x,t) d_{1/q}^t,
\]
where
\[
K(x,t) = \frac{q^{n(n+1)/2}}{[n]_q!} L(g_t).
\]

Proof. Recall that here the function \((x - t)^{n,q}\) is a function of \(t\) and \(x\) behaves as a parameter. When we say \(L(g_t)\) we mean that \(L\) is applied to the truncated power function, regarded as a function of \(x\) with \(t\) as a parameter. Hence we find real number that depends on \(t\). We apply \(L\) to the equation \(1\). Since \(L\) is linear and annihilates polynomials, we have
\[
L(f) = \frac{q^{n(n+1)/2}}{[n]_q!} \int_a^b (D^q_{1/q} f)(q^n t) (x - t)^{n,q} d_{1/q}^t.
\]
Since \(L\) commutes with the operation of \(q\)-integration,
\[
L(f) = \frac{q^{n(n+1)/2}}{[n]_q!} \int_a^b (D^q_{1/q} f)(q^n t) L((x - t)^{n,q}) d_{1/q}^t.
\]

Corollary 3.3. If the conditions in Theorem 3.2 are satisfied and also the kernel \(K(x,t)\) does not change sign on \([a,b]\), then
\[
L(f) = \left(D^q_{1/q} f \right) \left(\frac{\xi}{[n+1]_q} \right) q^{n(n+1)/2} L(x^{n+1})
\]

Proof. Since \(D^q_{1/q} f\) is continuous and \(K(x,t)\) does not change sign on \([a,b]\), we can apply the Mean Value Theorem 2.3. Thus we have
\[
L(f) = \left(D^q_{1/q} f \right) \left(\frac{\xi}{[n+1]_q} \right) \int_a^b K(x,t) d_{1/q}^t, \quad a < \xi < b.
\]
Replacing \(f(x)\) by \(x^{n+1}\) gives
\[
L(x^{n+1}) = \frac{[n+1]_q!}{q^{n(n+1)/2}} \int_a^b K(x,t) d_{1/q}^t,
\]
so
\[
\int_a^b K(x,t) d_{1/q}^t = \frac{q^{n(n+1)/2}}{[n+1]_q!} L(x^{n+1}),
\]
and this completes the proof.
4 Application to polynomial interpolation

The main idea in this section is to apply the q-Peano kernel Theorem on the remainder of polynomial interpolation. Findings demonstrate the advantage of using the q-Peano kernel Theorem where the classical theorem does not work.

Proposition 4.1. Suppose $t_0, t_1, \ldots, t_n \in [a, b]$ are distinct points. For a fixed $x \in [a, b]$, define the corresponding error functional by

$$L(f) = f(x) - \sum_{k=0}^{n} f(t_k) l_{nk}(x).$$

Then

$$L(f) = \frac{q^{m(m+1)/2}}{|m|_q^1} \sum_{k=0}^{n} l_{nk}(x) \int_{t_k}^{x} (t_k - t)^{m,q} \left(D_{1/q}^{m+1} f \right) (q^m t) dt_{1/q} \quad \text{for each } m = 0, 1, \ldots, n.$$

Proof. Since $\sum_{k=0}^{n} l_{nk}(x) = 1$, by the q-Peano kernel Theorem 3.2 we get,

$$\frac{|m|_q^1}{q^{m(m+1)/2}} K(x, t) = L((x - t)^{m,q} +) = (x - t)^{m,q} - \sum_{k=0}^{n} (t_k - t)^{m,q} l_{nk}(x) = \sum_{k=0}^{n} [(x - t)^{m,q} - (t_k - t)^{m,q} -] l_{nk}(x).$$

From the fact that

$$\int_{a}^{b} [(x - t)^{m,q} - (t_k - t)^{m,q} -] \left(D_{1/q}^{m+1} f \right) (q^m t) dt_{1/q} = \int_{a}^{x} [(x - t)^{m,q} - (t_k - t)^{m,q} -] \left(D_{1/q}^{m+1} f \right) (q^m t) dt_{1/q} + \int_{t_k}^{x} (t_k - t)^{m,q} \left(D_{1/q}^{m+1} f \right) (q^m t) dt_{1/q}$$

we have

$$\frac{|m|_q^1}{q^{m(m+1)/2}} \int_{a}^{b} K(x, t) \left(D_{1/q}^{m+1} f \right) (q^m t) dt_{1/q} = \int_{a}^{x} \left(D_{1/q}^{m+1} f \right) (q^m t) \sum_{k=0}^{n} [(x - t)^{m,q} - (t_k - t)^{m,q} -] l_{nk}(x) dt_{1/q} + \sum_{k=0}^{n} l_{nk}(x) \int_{t_k}^{x} (t_k - t)^{m,q} \left(D_{1/q}^{m+1} f \right) (q^m t) dt_{1/q}.$$

For each $m \leq n$, since the interpolation operator is a projection, it reproduces polynomials and the term in the square brackets vanishes in the last equation for $f(x) = (x - t)^{m,q}$. Accordingly,

$$L(f) = \int_{a}^{b} K(x, t) \left(D_{1/q}^{m+1} f \right) (q^m t) dt_{1/q} = \frac{q^{m(m+1)/2}}{|m|_q^1} \sum_{k=0}^{n} l_{nk}(x) \int_{t_k}^{x} (t_k - t)^{m,q} \left(D_{1/q}^{m+1} f \right) (q^m t) dt_{1/q} \quad \text{for each } m = 0, 1, \ldots, n.$$

Now we give examples that show how we can find the q-Peano kernel.
Example 4.2. Suppose that we interpolate a function $f \in 1/q - C^3[-1,1]$ by a polynomial $p \in \mathcal{P}_2$. Here $n = 2$ and $m = 2$. Let $t_0 = -1$, $t_1 = 0$, $t_2 = 1$. Then the error function becomes

$$L(f) = \frac{q^3}{2^q} \sum_{k=0}^{2} I_{2k}(x) \int_{\frac{x}{t_k}}^{1} (l_k - t)^{2q} \left(D_{1/4}^q f\right) (q^2 t) d_{1/q} t$$

with $l_{20}(x) = \frac{1}{2} x (x - 1)$, $l_{21}(x) = (1 - x^2)$, $l_{22}(x) = \frac{1}{2} x (x + 1)$. Then,

$$\frac{[2]^1}{q^2} L(f) = \int_{-1}^{x} (-1 - t)^{2q} \left(D_{1/4}^q f\right) (q^2 t) d_{1/q} t - l_{21}(x) \int_{x}^{1} (-1 - t)^{2q} \left(D_{1/4}^q f\right) (q^2 t) d_{1/q} t + l_{22}(x) \int_{0}^{1} (1 - t)^{2q} \left(D_{1/4}^q f\right) (q^2 t) d_{1/q} t.$$

Now if $x \leq 0$, then

$$\frac{[2]^1}{q^2} L(f) = \int_{-1}^{x} (1 - t)^{2q} \left(D_{1/4}^q f\right) (q^2 t) d_{1/q} t - l_{22}(x) \int_{0}^{1} (1 - t)^{2q} \left(D_{1/4}^q f\right) (q^2 t) d_{1/q} t.$$

Hence,

$$L(f) = \frac{q^3}{2^q} \int_{-1}^{1} K(x,t) \left(D_{1/4}^q f\right) (q^2 t) d_{1/q} t$$

where

$$K(x,t) = \begin{cases} l_{20}(x)(-1 - t)^{2q}, & -1 \leq t \leq x \\ -l_{21}(x)(1 - t)^{2q} - l_{22}(x)(1 - t)^{2q}, & x \leq t \leq 0 \\ -l_{22}(x)(1 - t)^{2q}, & 0 \leq t \leq 1. \end{cases}$$

Similarly for $x \geq 0$,

$$\frac{[2]^1}{q^2} L(f) = \int_{-1}^{x} (1 - t)^{2q} \left(D_{1/4}^q f\right) (q^2 t) d_{1/q} t + l_{20}(x) \int_{0}^{1} (1 - t)^{2q} \left(D_{1/4}^q f\right) (q^2 t) d_{1/q} t + l_{21}(x) \int_{0}^{1} (1 - t)^{2q} \left(D_{1/4}^q f\right) (q^2 t) d_{1/q} t$$

and the Peano kernel becomes

$$K(x,t) = \begin{cases} l_{20}(x)(-1 - t)^{2q}, & -1 \leq t \leq 0 \\ l_{20}(x)(-1 - t)^{2q} + l_{21}(x)(-t)^{2q} - l_{22}(x)(1 - t)^{2q}, & 0 \leq t \leq x \\ -l_{22}(x)(1 - t)^{2q}, & x \leq t \leq 1. \end{cases}$$
Example 4.3. Let

\[
f(x) = \begin{cases}
\frac{q^3 x^3}{6}, & 0 \leq x < 1 \\
\frac{1}{6} (4 - 4[3]_q x + 4q[3]_q x^2 - 3q^3 x^3), & 1 \leq x < 2 \\
\frac{1}{6} (-44 + 20[3]_q x - 8q[3]_q x^2 + 3q^3 x^3), & 2 \leq x < 3 \\
-\frac{1}{6} (-4 + x)(-4 + qx)(-4 + q^2 x), & 3 \leq x < 4 \\
0, & \text{otherwise.}
\end{cases}
\]

It is obvious that for \(q \neq 1 \), \(f \in C[0,4] \) but \(f \notin C^1[0,4] \). However, one may check that \(f \in 1/q - C^2[0,4] \). Classical error functionals cannot work but we may find the error via the \(q \)-Peano kernel theorem. Let \(t_0 = 0, t_1 = 1 \) and \(t_2 = 4 \). Then the error functional

\[
L(f) = q \sum_{k=0}^{2} l_{2k}(x) \int_{a}^{x} (t_k - t) \left(D^{2}_{1/q} f \right) (qt) dt/q
\]

where \(l_{20}(x) = \frac{1}{8} (x - 2)(x - 4) \), \(l_{21}(x) = -\frac{1}{4} x(x - 4) \) and \(l_{22}(x) = \frac{1}{8} x(x - 2) \). Then,

\[
\frac{1}{q} L(f) = l_{20}(x) \int_{0}^{x} (-t) \left(D^{2}_{1/q} f \right) (qt) dt/q + l_{21}(x) \int_{2}^{x} (2 - t) \left(D^{2}_{1/q} f \right) (qt) dt/q + l_{22}(x) \int_{4}^{x} (4 - t) \left(D^{2}_{1/q} f \right) (qt) dt/q.
\]

Now we will find the kernel. If \(0 \leq x < 2 \), then

\[
K(x,t) = \begin{cases}
-l_{20}(x)t, & 0 \leq t < x \\
l_{21}(x)(2 - t) - l_{22}(x)(4 - t), & x \leq t < 2 \\
l_{22}(x)(4 - t), & 2 \leq t < 4.
\end{cases}
\]

Similarly, for \(2 \leq x < 4 \),

\[
K(x,t) = \begin{cases}
-l_{20}(x)t, & 0 \leq t < 2 \\
-l_{20}(x)t + l_{21}(x)(2 - t), & 2 \leq t < x \\
l_{21}(x)(2 - t) - l_{22}(x)(4 - t), & x \leq t < 4.
\end{cases}
\]

The function \(f(x) \) given above is indeed a cubic \(q \)-B-spline. \(q \)-B-splines form a basis for quantum splines which are piecewise polynomials whose quantum derivatives agree up to some order at the joins, see [12].

4.1 Trapezoidal rule in \(q \)-integration

Consider the \(1/q \)-integral of a function \(f \) on the interval \([a,b]\). We want to evaluate the \(q \)-integral approximately using linear interpolant formula. That is,
Let us define the operator L as
\[L(f) = \int_a^b f(x) \frac{d_{1/q}x}{x} - b - aq f(a) - b - aq f(b). \]

Since $L(f) = 0$ for all functions $f \in \mathcal{P}_1$, for all $f \in 1/q - C^2[a,b]$ we have
\[L(f) = \int_a^b \left(D_{1/q}^2 f\right)(qt)K(x,t)\frac{d_{1/q}t}{t} \]

and
\[K(x,t) = qL((x-t)^+). \]

What follows we find the kernel $K(x,t)$. First,
\[K(x,t) = q \left\{ \int_t^b (x-t)_{+}d_{1/q}x - b - aq (a-t)_{+} - b - aq (b-t)_{+} \right\}. \]

Then for $t \in [a,b],$
\[\int_a^b (x-t)_{+}d_{1/q}x = \int_t^b (x-t)d_{1/q}x, \quad (a-t)_{+} = 0 \quad \text{and} \quad (b-t)_{+} = (b-t). \]

Thus,
\[K(x,t) = q \left\{ \int_t^b (x-t)d_{1/q}x - b - aq (b-t) \right\} = q \left\{ \int_t^b (b-t)(b - \xi)_{+} - b - aq (b-t) \right\} = q \frac{[2]_q}{[2]_q}(b-t)(a-t) \]

for $a \leq t \leq b$.

Notice that $K(x,t) < 0$ on $[a,b]$. Then we can apply Mean Value Theorem. So, we have
\[L(f) = D_{1/q}^2 f(\xi), \]

where
\[L(x^2) = \int_a^b x^2d_{1/q}x - b - aq a^2 - b - aq b^2 \]
\[= \frac{b^3 - a^3}{[3]_q!} - b - aq a^2 - b - aq b^2 \]
\[= \frac{-(b-a)(bq-a)(b-aq)}{[3]_q!}. \]
Finally, we derive

\[
L(f) = \int_a^b f(x) \frac{d_{1/q}x}{2q} - \frac{b-aq}{2q} f(a) - \frac{bq-a}{2q} f(b)
\]

\[
= -q(b-a)(bq-a)(b-aq) \frac{1}{[3]q!} [2]q! D_{1/q}^2 f(\xi)
\]

where \(a < \xi < b\).

When \(q = 1\), the above equation reduces to the well-known trapezoidal rule, see [9].

4.2 Remainder on quadrature

We now discuss error bounds of quadrature formulas on remainders given by

\[
R_n(f; q) = \int_0^b f(x) d_{1/q}x - \sum_{k=0}^n \gamma_k f(t_k)
\]

which appear in numerical integration. Assuming \(f \in 1/q - C^{m+1}[0,b]\) and \(R_n(f; q) = 0\) for all \(f \in \mathcal{P}_m\), we can apply the \(q\)-Peano kernel theorem. Hence

\[
R_n(f; q) = \int_0^b K(x,t) \left(D_{1/q}^{m+1} f\right)(q^{m} t) d_{1/q} t.
\]

By applying the \(q\)-Hölder inequality, we have

\[
|R_n(f; q)| \leq \left[\int_0^b \left|D_{1/q}^{m+1} f\right|^p (q^{m} t) d_{1/q} t \right]^{1/p} \left[\int_0^b |K(x,t)|^q d_{1/q} t \right]^{1/q}
\]

for all \(1 \leq p, q \leq \infty\) and \(\frac{1}{p} + \frac{1}{q} = 1\). Since the second integral in the above equation is independent of \(f\), by choosing coefficients and nodes appropriately we can minimize the remainder.

(i) For \(p_1 = \infty\) and \(p_2 = 1\),

\[
|R_n(f; q)| \leq \left| D_{1/q}^{m+1} f \right|_\infty \int_0^b |K(x,t)| d_{1/q} t
\]

(ii) For \(p_1 = p_2 = 2\),

\[
|R_n(f; q)| \leq \left| D_{1/q}^{m+1} f \right|_2 \left[\int_0^b |K(x,t)|^2 d_{1/q} t \right]^{1/2}
\]

The Peano kernel \(K(x,t)\) can be written as

\[
K(x,t) = q^{m(m+3)/2} \frac{(b - \frac{t}{q})^{m+1} q}{[m+1]q^q} - s(t; q),
\]

where \(s(t; q) = \frac{q^{m(m+1)/2}}{[m]q^q} \sum_{k=0}^n \gamma_k (t_k - t)^m q\) is a quantum spline with the knot sequence \(\{t_k\}_{k=0,...,n}\).

Eventually, the problem of minimizing the \(q\)-integral

\[
\left[\int_0^b |K(x,t)|^p d_{1/q} t \right]^{1/p}
\]

is equivalent to finding the best approximation of the polynomial \(q^{m(m+3)/2} \frac{(b - \frac{t}{q})^{m+1} q}{[m+1]q^q} \) in \(t\) by a quantum spline with respect to the norm \(||||_{p_1}\).
5 Application to divided differences

For about a half century, B-splines have played a central role in approximation theory, geometric modeling and wavelets. Recently their q-analogues or quantum B-splines has been introduced and studied in [2], [3].

In this section we establish certain relations between q-B-splines and q-Peano kernels. When $q = 1$, Theorem 5.1 reduces to its classical counterpart which can be found in [10].

The work [3] finds that q-B-splines of degree n are essentially divided differences of q-truncated power functions. That is, the q-B-splines are given by

$$N_{k,n}(t;q) = (t_{k+n} - t_k)[t_k, \ldots, t_{k+n}](x-t)_+^{n,q}. $$

Now recall the fact that a divided difference $f[t_0, t_1, \ldots, t_{n+1}]$ can be represented as symmetric sum of $f(t_j)$, see [10],

$$f[t_0, t_1, \ldots, t_{n+1}] = \frac{1}{(n+1)!} \sum_{i=0}^{n+1} f(t_i) \prod_{j \neq i} (t_i - t_j). \tag{3} $$

Hence we can readily derive

$$N_{k,n}(t;q) = (t_{k+n} - t_k) \sum_{i=k}^{k+n} (t_i - t_k)_+^{n,q} \prod_{j \neq i} \frac{1}{(t_i - t_j)}. $$

The following theorem is also derived in [3] by a different method.

Theorem 5.1.

$$f[t_0, t_1, \ldots, t_{n+1}] = \frac{q^{n(n+1)/2}}{|n|q!} \int_a^b N_{0,n}(t;q) \left(\frac{D_{1/q}^{n+1} f}{t_{n+1} - t_0} \right) (q^2 t) d_{1/q} t. $$

Proof. We first set L as

$$f[t_0, t_1, \ldots, t_{n+1}] = \sum_{i=0}^{n+1} f(t_i) \prod_{j \neq i} (t_i - t_j) = L(f). $$

We see that, for any fixed and distinct points $\{t_i : i = 0, 1, \ldots, n+1\}$, L is a bounded linear operator. From the q-Peano Kernel Theorem [5,2] we have

$$L(f) = \int_a^b K(x,t) (D_{1/q}^{n+1} f)(q^2 t) d_{1/q} t, $$

where

$$K(x,t) = \frac{q^{n(n+1)/2}}{|n|q!} L \left((x-t)_+^{n,q} \right) = \frac{q^{n(n+1)/2}}{|n|q!} \sum_{i=0}^{n+1} (t_i - t)_+^{n,q} \prod_{j \neq i} (t_i - t_j). $$

Thus

$$K(x,t) = \frac{q^{n(n+1)/2} N_{0,n}(t;q)}{|n|q!} \frac{1}{t_{n+1} - t_0} $$

Combining the last equation with (3) we derive

$$f[t_0, t_1, \ldots, t_{n+1}] = \frac{q^{n(n+1)/2}}{|n|q!} \int_a^b N_{0,n}(t;q) \left(\frac{D_{1/q}^{n+1} f}{t_{n+1} - t_0} \right) (q^2 t) d_{1/q} t. $$

Acknowledgements

This research is supported by a grant from DEU BAP 2012.KB.FEN.003 and also the first author was supported by a grant (BIDEB-2211) from TÜBİTAK (Scientific and Technological Research Council of Turkey).
References

[1] Al-Salam W.A., Verma, A., A Fractional Leibniz q-Formula, Pacific Journal of Mathematics, 60(2) (1972)

[2] Anastassiou G. A., Intelligent Mathematics: Computational Analysis. Springer-Verlag, Berlin Heidelberg (2010)

[3] Budakçi G., Dişibüyük Ç., Goldman R., Oruç H., Extending Fundamental Formulas from Classical B-Splines to Quantum B-Splines, Journal of Computational and Applied Mathematics, 282, 17-33 (2015)

[4] Gauchman H., Integral Inequalities in q-Calculus, Computers and Mathematics with Applications, 47, 281-300 (2004)

[5] Hammerlin G., Hoffmann K., Ewing J., Gehring F., Halmos P., Numerical Mathematics. Springer-Verlag, New York (1991)

[6] Ismail M.E.H., Stanton D., Applications of q-Taylor theorems, Journal of Computational and Applied Mathematics, 153, 259-272 (2003)

[7] Kac V., Cheung P., Quantum Calculus. Universitext Series, IX, Springer Verlag (2002)

[8] Pashaev O.K., Nalci S., q-analytic functions, fractals and generalized analytic functions, Journal of Physics A-Mathematical and Theoretical, 47(4), 045204 (2014)

[9] Phillips G.M., Interpolation and Approximation by Polynomials. Springer-Verlag, New York (2003)

[10] Powell M.J.D., Approximation Theory and Methods. Cambridge University Press (1981)

[11] Rajković P. M., Stanković M. S., Marinković S. D., Mean value theorems in q-calculus, Proceedings of the 5th International Symposium on Mathematical Analysis and its Applications, Mat. Vesnik, 54, 3-4, 171-178 (2002)

[12] Simeonov P., Goldman R, Quantum B-splines, BIT Numerical Mathematics, Vol. 53, pp. 193-223 (2013)

[13] Tariboon J., Ntouyas S.K., Quantum integral inequalities on finite intervals, Journal of Inequalities and Applications, 2014:121 (2014)