SPARTAN: Sparse Hierarchical Memory for Parameter-Efficient Transformers

Ameet Deshpande1, Md Arafat Sultan2, Anthony Ferritto3, Ashwin Kalyan4, Karthik Narasimhan1, Avirup Sil2
Princeton University1, IBM Research AI2, Amazon AWS AI3, The Allen Institute for AI4

\texttt{asd@cs.princeton.edu, arafat.sultan@ibm.com, ferritta@amazon.com, ashwinkv@allenai.org, karthikn@cs.princeton.edu, avi@us.ibm.com}

Abstract

Fine-tuning pre-trained language models (PLMs) achieves impressive performance on a range of downstream tasks, and their sizes have consequently been getting bigger. Since a different copy of the model is required for each task, this paradigm is infeasible for storage-constrained edge devices like mobile phones. In this paper, we propose SPARTAN, a parameter efficient (PE) and computationally fast architecture for edge devices that adds hierarchically organized sparse memory after each Transformer layer. SPARTAN freezes the PLM parameters and fine-tunes only its memory, thus significantly reducing storage costs by re-using the PLM backbone for different tasks. SPARTAN contains two levels of memory, with only a sparse subset of parents being chosen in the first level for each input, and children cells corresponding to those parents being used to compute an output representation. This sparsity combined with other architecture optimizations improves SPARTAN’s throughput by over 90\% during inference on a Raspberry Pi 4 when compared to PE baselines (adapters) while also outperforming the latter by 0.1 points on the GLUE benchmark. Further, it can be \textit{trained} 34\% faster in a few-shot setting, while performing within 0.9 points of adapters. Qualitative analysis shows that different parent cells in SPARTAN specialize in different topics, thus dividing responsibility efficiently.1

1 Introduction

Pre-trained language-models (PLMs) (Radford et al.; Devlin et al., 2019) have achieved impressive performance on a wide range of natural language processing (NLP) tasks, leading to deployment in the real world (Bommasani et al., 2021). Users typically adapt these large models by fine-tuning a separate copy for each task, making storage prohibitively expensive as the number of tasks grows. Parameter-efficient (PE) methods (Houlsby et al., 2019) solve this issue by fine-tuning only a small fraction of model parameters, thus allowing re-use of the PLM backbone which leads to a reduction in storage space (\approx 90\%). While these works have tailored their architectures and performance towards GPUs, an increased adoption of PLMs in resource-constrained devices like mobile phones (de Barcelos Silva et al., 2020) requires PE methods that can run on the edge. In this work, we introduce SPARTAN, which uses a sparse hierarchical memory to provide a storage and computationally efficient architecture, as illustrated in Figure 1.

SPARTAN is motivated by cognitive science stud-
ies, which posit that information and functional states are sparsely and hierarchically organized in human memory (Mishkin et al., 1997; Hasson et al., 2015; Ahmad and Hawkins, 2015). SPARTAN adds a hierarchical memory module after each Transformer layer. During fine-tuning, it freezes the PLM parameters and adapts its memory via back-propagation to optimize the task loss. SPARTAN’s memory is organized in two layers containing parent (purple) and children (blue) cells. The input chooses the top-K parent cells by inducing an attention map over them, and their corresponding children are used to compute and aggregate an output representation which is added to the input. SPARTAN’s sparse parent selection thus allows it to ignore irrelevant children parameters and makes it computationally efficient (§5).

On the GLUE benchmark (Wang et al., 2018), SPARTAN performs 0.1 points better than PE baselines (adapters), while being 90% faster on Raspberry Pi 4 (throughput). Furthermore, in a few-shot setting, SPARTAN can be fine-tuned 34% faster while performing within 0.9 points of baselines. Qualitatively, on a news classification dataset (example labels: entertainment, sports), we observe that SPARTAN distributes responsibility among parent cells by specializing them in different topics (Figure 2). We believe that SPARTAN’s strong performance and speed coupled with its qualitative interpretability can improve the adoption of PE methods on the edge.

2 Related Work

Parameter-efficient architectures Parameter-efficient (PE) architectures minimize the number of trainable parameters to improve storage efficiency. Houlsby et al. (2019) proposed adapters, which add two feed-forward bottleneck layers (an Adapter) after each Transformer layer while freezing the rest of the model. Other works have optimized this architecture by experimenting with the placement-order of different components (Pfeiffer et al., 2020; Stickland and Murray, 2019; Karimi Mahabadi et al., 2021; Rücklé et al., 2021; Ding et al., 2022). Another line of work fine-tunes a subset of the model’s parameters (Zhao et al., 2020; Lee et al., 2019; Zaken et al., 2022; Guo et al., 2021), and as a result, are typically architecture-dependent, whereas SPARTAN works with all Transformers. Prompting LMs (Gao et al., 2021; Hu et al., 2022; Li and Liang, 2021) is another popular paradigm, but it involves construction of task-specific templates and is used for smaller datasets (Le Scao and Rush, 2021), whereas SPARTAN is task-agnostic and works for any dataset size.

Memory networks Prior works (Weston et al., 2015; Miller et al., 2016; Dinan et al., 2019) have explored the usage of memory in language models. However, the flat structure of memory makes them computationally expensive. Chandar et al. (2016) propose hierarchically-organized memory which uses approximate KNN to improve computation speed, with several applications adapting it (Andrychowicz and Kurach, 2016; Lu et al., 2020; Chen et al., 2018). But to the best of our knowledge, SPARTAN is the first PE architecture for Transformers with sparse hierarchical memory.

NLP on the edge NLP methods are increasingly being adopted in mobile and IoT devices (de Barcelos Silva et al., 2020; Sun et al., 2020; Guo et al., 2022; Chen and Ran, 2019), and can have lower latency than methods deployed on the cloud (Cartas et al., 2019; Tambe et al., 2021). With the introduction of federated learning (McMahan et al., 2016), where participating devices like mobile phones compute and provide updates to a central model, computing on the edge has become important (Yang et al., 2018; Ramaswamy et al., 2019; Stremmel and Singh, 2021; Liu et al., 2021). We believe that SPARTAN is an important step in the direction of PE architectures for such devices. SPARTAN is also loosely related to mixture-of-experts (MoE) architectures (Aljundi et al., 2017; Shazeer et al., 2017; Lepikhin et al., 2021; Du et al., 2022; Wright and Augenstein, 2020; Fedus et al., 2022; Zoph, 2022; Jacobs et al., 1991). But unlike SPARTAN, MoE methods are not parameter-efficient, because all their parameters are trained or fine-tuned. This significantly increases the storage space of MoE on device, making it less preferable than SPARTAN.

3 Methodology

SPARTAN is a parameter-efficient architecture for pre-trained Transformers (Vaswani et al., 2017) with a sparse, hierarchically organized memory added after each Transformer layer (see Figure 1). SPARTAN draws inspiration from cognitive science studies which argue that human memory is sparsely and hierarchically arranged (Mishkin et al., 1997). During fine-tuning, the parameters of the Transformer backbone are frozen and can be re-used,
while memory cells are written through gradient updates. The hierarchical memory contains parent cells and children cells in the first and second levels, respectively. Each parent cell has multiple exclusive children cells associated with it. Intuitively, spartan first chooses a sparse subset of parent cells conditioned on the input, and uses the children corresponding to the chosen parent cells to compute an output representation that is added back to the input through a residual connection. Each position in the input sequence shares the memory. We provide a mathematical description using the following notation: Let \(v_I \in \mathbb{R}^d \) be the input to the module, \(N_p \) the number of parent cells, and \(N_c \) the number of children cells associated with each parent. Let the stacked parent cells be the matrix \(P \in \mathbb{R}^{N_p \times d} \) and the stacked children cells corresponding to parent \(P_i \) be the matrix \(C_i \in \mathbb{R}^{N_c \times d} \).

1. **Choosing the relevant parents** The input \((v_I) \) is used to select the top-\(K \) parent cells \((P_{IND}) \) by inducing an attention distribution computed using an inner product, which allows spartan to sparsely select a subset of relevant parent cells.

\[
g_{parent} = \text{softmax}(Pv_I) \\
P_{IND} = \text{top-}K(g_{parent}) \tag{1}
\]

2. **Computing the children’s cell representation** As shown in Figure 1, the children cells contain key and value components (Weston et al., 2015), which we denote by \(C^K_i \) and \(C^V_i \), respectively, where \(i \) is the parent index. For each chosen parent \(P_i \), we calculate a representation using its children cells:

\[
v_i = C^V_i \text{softmax}(C^K_i v_I) \tag{2}
\]

3. **Hierarchical aggregation** spartan now combines the children representations by weighting and aggregating them based on the corresponding parent’s attention \((g_{parent}) \). Since only \(K \) parents are chosen, \(g_{parent} \) is re-normalized after ignoring parents not selected in the first stage. The aggregated output is added back to the input using a residual connection (He et al., 2016) and serves as the input to the next layer:

\[
Z = \sum_{i \in P_{IND}} g_{parent}[i] \\
v_O = \frac{1}{Z} \sum_{i \in P_{IND}} v_i \cdot g_{parent}[i] \\
\text{SPARTAN output} = v_I + v_O \tag{3}
\]

4. **Experimental Setup**

Datasets We use the nine datasets from GLUE (Wang et al., 2018), which are CoLA (Warstadt et al., 2019), SST-2 (Socher et al., 2013), MRPC (Dolan and Brockett, 2005), QQP (qqp), STS-B (Cer et al., 2017), MNLI (Williams et al., 2018), QNLI (Wang et al., 2018), RTE (Wang et al., 2018), and WNLI (Levesque et al., 2012). We use the evaluation metrics suggested by Wang et al. (2018) for all datasets; the metrics and averaging are described in Appendix C.

Baselines and spartan We use RoBERTa (Liu et al., 2019) as the backbone for all the models and also as a baseline; for the latter, we fine-tune all its parameters. We also compare with two strong parameter-efficient baselines which are variants of adapters: Houlsby (Houlsby et al., 2019) and Pfeiffer (Pfeiffer et al., 2021). Pfeiffer and spartan use the same number of added parameters, while Houlsby uses twice as many because it has two bottleneck layers. We provide model training and implementation details in Appendix A.

Speed benchmarking We benchmark our models on two resource-constrained edge devices, the Raspberry Pi 4 (4 cores, 8GB RAM) and the iPhone 11 Apple A13 Bionic (6 cores, 4GB RAM), by emulating the corresponding hardware (Buchert et al., 2010). Following Chen and Ran (2019), we measure the throughput, which is the number of instances processed per minute during inference. More details regarding the benchmarking and emulation are provided in Appendix F.

5. **Results**

Comparing performance and speed on GLUE Results in Table 1 show that spartan is the best performing model with a 0.1 improvement over Houlsby. It even outperforms RoBERTa, which uses \(9 \times \) the storage space and \(100 \times \) the number of trainable parameters. Even though spartan adds memory after each Transformer layer of RoBERTa, its inference throughput is only \(3\% \) lower. spartan’s throughput is significantly higher than Houlsby and Pfeiffer, with a \(10 \times \) improvement on Raspberry Pi 4 and a \(1.6 \times \) improvement on iPhone. spartan’s speed-up advantage comes from two factors: (1) The sparse hierarchical memory ignores children cells corresponding...
Table 1: Full fine-tuning performance on all datasets in the GLUE benchmark. SPARTAN has the best performance on GLUE (0.1 point improvement), while being 10× faster than parameter-efficient baselines, and using 87% less storage space when compared to RoBERTa. All numbers are averaged over three random seeds. Individual dataset scores are displayed in gray to improve readability. We provide details about storage computation in Appendix E.

Model	Storage (×)	Throughput (G)	GLUE Performance											
		Ras-Pi	iPhone	ColA	SST	MRPC	QQP	STSB	MNLI	QNLI	RTE	WNLI		
RoBERTa	9	207.6	366.2	80.9	60.5	94.3	88.2	91.3	90.7	87.5	87.3	92.4	75.3	47.9
Pfeiffer	1.1	20.0	216.1	80.9	59.7	94.2	88.0	89.5	90.3	86.8	86.9	92.4	76.8	50.7
Houlsby	1.2	19.5	204.8	81.0	59.1	94.3	86.9	89.9	90.5	87.1	87.2	92.6	76.8	51.6
SPARTAN	1.1×	201.3	332.6	81.1	60.5	94.4	89.2	89.6	90.3	86.5	86.5	91.9	75.0	52.1

Table 2: Few-shot results (200 instances) on GLUE. SPARTAN provides the best storage-throughput-performance trade-off, with 1.5× faster fine-tuning throughput when compared to Pfeiffer and Houlsby, and significant storage savings when compared to RoBERTa. All results are averaged over 3 seeds. Implementation details are presented in Appendix B.

Model	Storage (×)	Fine-tune Throughput (G)	Avg. GLUE
RoBERTa	9	90.1	63.3
Pfeiffer	1.1	32.1	64.8
Houlsby	1.2	34.7	63.7
SPARTAN	1.1×	53.3	63.9

Figure 2: Different parent cells specialize in different topics when trained on the BBC news classification dataset. Parent 3 exclusively specializes in sports while parents 1, 2, 4 mainly specialize in business, entertainment and politics, respectively. This shows that SPARTAN’s strong performance might be due to different parents sharing responsibilities with regard to different topics.

6 Conclusion

In this work, we propose SPARTAN, a parameter-efficient architecture that is computationally inexpensive for resource-constrained devices. SPARTAN uses a two-level sparse and hierarchically-organized memory which allows it to choose only relevant parents and hence parameters, thus speeding up computation. We believe SPARTAN’s strong performance, which can be coupled with orthogonal methods like pruning (Voita et al., 2019) and distillation (Hinton et al., 2015), makes it a useful architecture for edge devices. From a qualitative perspective, we find that SPARTAN allows different parents to specialize in different topics, thus ensuring a distribution of responsibility between different groups of parameters. We believe that these

to irrelevant parents, and (2) it does not use Layer-Norm (Ba et al., 2016), which can hurt performance on resource-constrained devices (Sun et al., 2020).

Few-shot results We now consider a few-shot setting, where the model is fine-tuned on resource-constrained devices using just 200 examples. Table 2 shows the results. SPARTAN achieves the best throughput out of all parameter-efficient methods (1.5×) while using only 11% of RoBERTa’s storage space. Crucially, SPARTAN beats RoBERTa by 0.6 points, and we posit that it is because of the regularizing effect of having significantly lower trainable parameters, which can be beneficial for the few-shot setting. SPARTAN gives the best storage-performance-throughput trade-off among all the models. We note that SPARTAN performs slightly worse than Pfeiffer (0.9 points), and leave few-shot performance optimization as future work.

Qualitatively analyzing parent cells We train SPARTAN on the BBC news classification dataset (Greene and Cunningham, 2006) and analyze the 5 parent cells in the last layer. For each parent, we plot the ground truth label of the instance which picks that parent cell (see Figure 2), with implementation details in Appendix D. We notice that parent cells specialize in certain topics, with parent 3 specializing in sports and parents 1, 2, 4 specializing business, entertainment and politics, respectively. This shows that SPARTAN’s strong performance might be due to different parents sharing responsibilities with regard to different topics.
properties can pave the way for more interpretable parameter-efficient properties in the future.

References

Quora. data.quora.com/First-Quora-Dataset-Release-Question-Pairs. Accessed: 2022-10-15.

Subutai Ahmad and Jeff Hawkins. 2015. Properties of sparse distributed representations and their application to hierarchical temporal memory. arXiv preprint arXiv:1503.07469.

Rahaf Aljundi, Punarjay Chakravarty, and Tinne Tuytelaars. 2017. Expert gate: Lifelong learning with a network of experts. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3366–3375.

Marcin Andrychowicz and Karol Kurach. 2016. Learning efficient algorithms with hierarchical attentive memory. arXiv preprint arXiv:1602.03218.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer normalization. arXiv preprint arXiv:1607.06450.

Rishi Bommassani, Drew A Hudson, Elshan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. 2021. On the opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258.

Tomasz Buchert, Lucas Nussbaum, and Jens Gustedt. 2010. Accurate emulation of cpu performance. In European Conference on Parallel Processing, pages 5–12. Springer.

Alejandro Cartas, Martin Kocour, Aravindh Raman, Ilías Leontiadis, Jordi Luque, Nishanth Sastry, Jose Nuñez-Martinez, Diego Perino, and Carlos Segura. 2019. A reality check on inference at mobile networks edge. In Proceedings of the 2nd International Workshop on Edge Systems, Analytics and Networking, pages 54–59.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-Gazpio, and Lucia Specia. 2017. Semeval-2017 task 1: Semantic textual similarity multilingual and crosslingual focused evaluation. In Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017), pages 1–14.

Jiasi Chen and Xukan Ran. 2019. Deep learning with edge computing: A review. Proceedings of the IEEE, 107(8):1655–1674.

Allan de Barcelos Silva, Marcio Miguel Gomes, Cristiano André de Costa, Rodrigo da Rosa Righi, Jorge Luís Victoria Barbosa, Gustavo Pessin, Geert De Doncker, and Gustavo Federizzi. 2020. Intelligent personal assistants: A systematic literature review. Expert Systems with Applications, 147:113193.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota. Association for Computational Linguistics.

Emily Dinan, Stephen Roller, Kurt Shuster, Angela Fan, Michael Auli, and Jason Weston. 2019. Wizard of wikipedia: Knowledge-powered conversational agents. In 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu, Yulin Chen, Chi-Min Chan, Weize Chen, et al. 2022. Delta tuning: A comprehensive study of parameter efficient methods for pre-trained language models. arXiv preprint arXiv:2203.06904.

William B Dolan and Chris Brockett. 2005. Automatically constructing a corpus of sentential paraphrases. In Proceedings of the Third International Workshop on Paraphrasing (IWP2005).

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. 2022. Glam: Efficient scaling of language models with mixture-of-experts. In International Conference on Machine Learning, pages 5547–5569. PMLR.

William Fedus, Barret Zoph, and Noam Shazeer. 2022. Switch transformers: Scaling to trillion parameter models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2021. Making pre-trained language models better few-shot learners. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 3816–3830.

Derek Greene and Padraig Cunningham. 2006. Practical solutions to the problem of diagonal dominance in kernel document clustering. In Machine Learning, Proceedings of the Twenty-Third International
Conference (ICML 2006), Pittsburgh, Pennsylvania, USA, June 25-29, 2006, volume 148 of ACM International Conference Proceeding Series, pages 377–384. ACM.

Demi Guo, Alexander M Rush, and Yoon Kim. 2021. Parameter-efficient transfer learning with diff pruning. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 4884–4896.

Liwei Guo, Wonkyo Choe, and Felix Xiaozhu Lin. 2022. Efficient NLP inference at the edge via elastic pipelining. CoRR, abs/2207.05022.

Uri Hasson, Janice Chen, and Christopher J Honey. 2015. Hierarchical process memory: memory as an integral component of information processing. Trends in cognitive sciences, 19(6):304–313.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019. Parameter-efficient transfer learning for nlp. In International Conference on Machine Learning, pages 2790–2799. PMLR.

Shengding Hu, Ning Ding, Huadong Wang, Zhiyuan Liu, Jingang Wang, Juanzi Li, Wei Wu, and Maosong Sun. 2022. Knowledgeable prompt-tuning: Incorporating knowledge into prompt verbalizer for text classification. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 2225–2240.

RA Jacobs, MI Jordan, SJ Nowlan, and GE Hinton. 1991. Adaptive mixtures of local experts. Neural Computation, 3(1):79–87.

Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa Dehghani, and James Henderson. 2021. Parameter-efficient multi-task fine-tuning for transformers via shared hypernetworks. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 565–576, Online. Association for Computational Linguistics.

Teven Le Scao and Alexander M Rush. 2021. How many data points is a prompt worth? In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 2627–2636.

Jaejun Lee, Raphael Tang, and Jimmy Lin. 2019. What would else do? freezing layers during transformer fine-tuning. arXiv preprint arXiv:1911.03090.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang, Maxim Krikun, Noam Shazeer, and Zhifeng Chen. 2021. Gshard: Scaling giant models with conditional computation and automatic sharding. In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3–7, 2021. OpenReview.net.

Hector Levesque, Ernest Davis, and Leora Morgenstern. 2012. The winograd schema challenge. In Thirteenth international conference on the principles of knowledge representation and reasoning.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning: Optimizing continuous prompts for generation. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 4582–4597.

Ming Liu, Stella Ho, Mengqi Wang, Longxiang Gao, Yuan Jin, and He Zhang. 2021. Federated learning meets natural language processing: A survey. arXiv preprint arXiv:2107.12603.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.

Junru Lu, Gabriele Pergola, Lin Gui, Binyang Li, and Yulan He. 2020. Chime: Cross-passage hierarchical memory network for generative review question answering. In Proceedings of the 28th International Conference on Computational Linguistics, pages 2547–2560.

H Brendan McMahan, Eider Moore, Daniel Ramage, and Blaise Agüera y Arcas. 2016. Federated learning of deep networks using model averaging. arXiv preprint arXiv:1602.05629, 2.

Alexander Miller, Adam Fisch, Jesse Dodge, Amir-Hossein Karimi, Antoine Bordes, and Jason Weston. 2016. Key-value memory networks for directly reading documents. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1400–1409.

Mortimer Mishkin, Wendy A Suzuki, David G Gadian, and Faranbeh Vargha-Khadem. 1997. Hierarchical organization of cognitive memory. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 352(1360):1461–1467.
Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna Gurevych. 2021. Adapterfusion: Non-destructive task composition for transfer learning. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pages 487–503.

Jonas Pfeiffer, Andreas Rücklé, Clifton Poth, Aishwarya Kamath, Ivan Vulić, Sebastian Ruder, Kyunghyun Cho, and Iryna Gurevych. 2020. Adapterhub: A framework for adapting transformers. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 46–54.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language understanding by generative pre-training.

Swaroop Ramaswamy, Rajiv Mathews, Kanishka Rao, and Françoise Beaufays. 2019. Federated learning for emoji prediction in a mobile keyboard. arXiv preprint arXiv:1906.04329.

Andreas Rücklé, Gregor Geigle, Max Gloc kner, Tilman Beck, Jonas Pfeiffer, Nils Reimers, and Iryna Gurevych. 2021. Adapterdrop: On the efficiency of adapters in transformers. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 7930–7946.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc V. Le, Geoffrey E. Hinton, and Jeff Dean. 2017. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and Christopher Potts. 2013. Recursive deep models for semantic compositionality over a sentiment treebank. In Proceedings of the 2013 conference on empirical methods in natural language processing, pages 1631–1642.

Asa Cooper Stickland and Iain Murray. 2019. Bert and pals: Projected attention layers for efficient adaptation in multi-task learning. In International Conference on Machine Learning, pages 5986–5995. PMLR.

Joel Struemmel and Arjun Singh. 2021. Pretraining federated text models for next word prediction. In Future of Information and Communication Conference, pages 477–486. Springer.

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou. 2020. Mobilebert: a compact task-agnostic bert for resource-limited devices. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 2158–2170.

Thierry Tambe, Coleman Hooper, Lillian Pentricost, Tianyu Jia, En-Yu Yang, Marco Donato, Victor Sanh, Paul Whatmough, Alexander M Rush, David Brooks, et al. 2021. Edgebert: Sentence-level energy optimizations for latency-aware multi-task nlp inference. In MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture, pages 830–844.

Iulia Ture, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. Advances in neural information processing systems, 30.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. 2019. Analyzing multi-head self-attention: Specialized heads do the heavy lifting, the rest can be pruned. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 5797–5808.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. 2018. Glue: A multi-task benchmark and analysis platform for natural language understanding. In International Conference on Learning Representations.

Alex Warstadt, Amanpreet Singh, and Samuel Bowman. 2019. Neural network acceptability judgments. Transactions of the Association for Computational Linguistics, 7:625–641.

Jason Weston, Sumit Chopra, and Antoine Bordes. 2015. Memory networks. In 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.

Adina Williams, Nikita Nangia, and Samuel R Bowman. 2018. A broad-coverage challenge corpus for sentence understanding through inference. In NAACL-HLT.

Dustin Wright and Isabelle Augenstein. 2020. Transformer based multi-source domain adaptation. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, Online, November 16-20, 2020, pages 7963–7974. Association for Computational Linguistics.

Timothy Yang, Galen Andrew, Hubert Eichner, Haicheng Sun, Wei Li, Nicholas Kong, Daniel Ramage, and Françoise Beaufays. 2018. Applied federated learning: Improving google keyboard query suggestions. arXiv preprint arXiv:1812.02903.

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. 2022. Bitfit: Simple parameter-efficient fine-tuning for transformer-based masked language-models. In Proceedings of the 60th Annual Meeting of the
A Implementation details

We use the RoBERTa-Base model (Liu et al., 2019) as the backbone for all the models. All models are trained on NVIDIA RTX 2080s. For each dataset and model, we perform a hyperparameter search using 10% of the training data. We use a batch size of 16 for all the models. Across all models, MNLI, QQP, SST-2, and WNLI performed best when fine-tuned on 3 epochs, and other datasets needed 20 epochs. We used a grid of \{3, 20\} by following (Houlsby et al., 2019). Further, we find that the following are the best performing hyperparameters for specific baselines and models when we use 10% of the train dataset to choose them.

1. RoBERTa: Learning rate: $2e^{-5}$
2. Pfeiffer: Learning rate: $1e^{-4}$, Reduction factor: 12 (Bottleneck size: 64)
3. Houlsby: Learning rate: $1e^{-4}$, Reduction factor: 12 (Bottleneck size: 64)
4. SPARTAN: Learning rate: $1e^{-3}$, Number of parent cells: 16, Number of children cells per parent: 3. The top $K = 8$ parents are chosen for children memory computation. SPARTAN adds exactly the same number of trainable parameters as Pfeiffer and half that of Houlsby. As explained in Section 3, both the parent and children cells are of dimensionality $d = 768$, the same as the hidden dimensionality of the base Transformer model they are using.
5. Learning rate grid search: \{$2e^{-5}, 1e^{-4}, 1e^{-3}$\}, Reduction factor grid search: \{12, 16\}, Parent cells grid search: \{12, 16\}

B Few-shot full results

We present the full version of Table 2 in Table 3 which includes the breakdown for all the GLUE datasets. We use $K = 200$ examples in the train dataset and following Gao et al. (2021), we train all models on 1000 steps and evaluate it on the same validation dataset. All other hyperparameters are the same as ones mentioned in Appendix A.

C GLUE evaluation metrics

We use accuracy for SST, QQP, MNLI, QNLI, RTE, and WNLI, combined score of pearson and spearman correlation for STS-B, and matthews correlation for CoLA. When averaging, we use only the
Table 3: Few shot ($K = 200$) full results on all datasets in the GLUE benchmark. SPARTAN provides the best storage-throughput-performance trade-off, with significant improvements in fine-tuning throughput when compared to other parameter efficient methods (Pfeiffer and Houlsby), significant storage savings when compared to RoBERTa. All results are averaged over 3 seeds.

MNLI-m score for the MNLI task. All results are reported on the validation dataset of GLUE. No hyperparameter tuning was performed on the validation set.

D Model and dataset details for qualitative analysis

We use a BERT-small architecture (Turc et al., 2019) and consider SPARTAN model with 5 parent cells and 1 child cell corresponding to each parent to make the qualitative analysis transparent. Thus, choosing a certain parent is equivalent to choosing the corresponding child. We train the model on the BBC-news classification dataset for 10 epochs.

E Storage details and parameter computation

For the nine GLUE datasets, RoBERTa uses 4.43 GB of storage space, Houlsby uses 0.58 GB, and Pfeiffer and SPARTAN use 0.53 GB. In terms of the number of parameters, RoBERTa uses 1107 million, Houlsby uses 144.23 million, and Pfeiffer and SPARTAN use 133.62 million. The formula for SPARTAN’s calculation is the following, where T is the number of tasks, P is the number of parents, C is the number of children, d is the hidden dimensionality, and L is the number of layers, and $N_{RoBERTa}$ is the number of parameters in the base RoBERTa model.

$$N_{RoBERTa} + 2T \times (P + P \times C) \times dL$$

F Speed benchmarking

To emulate Raspberry Pi 4 and iPhone, we use the Linux cgroups command to enforce the memory limit. The number of CPU cores are enforced using the slurmctld command. All experiments are conducted using the CPU version of PyTorch. To measure the throughput, we consistently use a batch size of 32.

G Limitations

Our speed benchmarking results have been thoroughly conducted and emulated on the hardware we have available, but we could not run the experiments on a physical Raspberry Pi and iPhone 11. We also wish to extend our work to languages other than English.

H Risks

We do not see any potential risks for our architecture and do not release any model weights. But we will open source our code and have provided it as part of the supplementary material.