Blood Pressure Control in Traumatic Subdural Hematomas

David R. Hallan 1

1. Neurosurgery, Penn State Health Milton S. Hershey Medical Center, Hershey, USA

Corresponding author: David R. Hallan, david_hallan@yahoo.com

Abstract

Background

There is debate over optimal systolic blood pressure (SBP) after traumatic subdural hematoma. Increased SBP has the benefit of increasing cerebral perfusion pressure and limiting the detrimental secondary effects of traumatic brain injury but poses a risk of hematoma expansion. While prior studies have shown that SBP<90mmHg is associated with worsened morbidity and mortality in subdural hematoma patients, clinical guidelines and expert opinion have differing initial SBP goals. The aim of this study is to leverage a large database to determine the effects of two such goals, namely SBP 100-150mmHg versus SBP<180mmHg in this patient population.

Methods

A de-identified database network (TriNetX Research Network) was used to retrospectively query all patients with a first instance diagnosis of acute traumatic SDH, who also had a recorded GCS, with maintenance of SBP 100-150 within the first 24 hours (cohort 1) versus patients with an SBP<180 (cohort 2). Data came from 68 health care organizations (HCOs) with a total of 105,897,964 patients on 9/1/2022. The primary outcome of interest was mortality within 30 days. Secondary outcomes include gastrostomy tube placement, craniotomy/craniectomy/burr hole drainage, venous thromboembolism, ischemic stroke, myocardial infarction, seizure, falls, cardiac arrest, and acute kidney injury within 30 days. Cohorts were propensity-score matched for confounders.

Results

After propensity score matching, 1,243 patients were identified in each cohort. Age at index was 57.97+/−23.21 years and 58.28+/−22.35 years for cohorts 1 and 2, respectively. Mortality was seen in 243 patients (19.756%) vs. 209 (16.992%) (OR 1.203, 95% CI (0.98,1.476), p=0.0767) in cohorts 1 and 2, respectively. There was no statistical difference in secondary outcomes.

Conclusion

The results of this study demonstrate that the primary outcome of mortality at 30 days is not statistically different in acute traumatic SDH patients, whether their SBP is kept at 100-150 or below 180. Likewise, it shows no statistical difference in the subsequent incidence of gastrostomy tube placement, craniotomy/craniectomy/burr holes, venous thromboembolism, ischemic stroke, myocardial infarction, seizure, falls, or acute kidney injury.

Categories: Neurosurgery, Trauma

Keywords: map, sbp, tbi, sdh, mortality, outcomes, systolic blood pressure, blood pressure, traumatic brain injury, subdural hematoma

Introduction

There is debate over optimal systolic blood pressure (SBP) after traumatic subdural hematoma (SDH) [1]. While hypotension, defined as SBP<90mmHg, is predictive of increased mortality in traumatic brain injury (TBI) patients [1-8], hypertension is associated with an increased risk of hematoma expansion [9-11], or the cause of the hematoma itself [12]. While Brain Trauma Foundation (BTF) fourth edition guidelines and expert opinion suggest SBP>100 for patients aged 50-69, SBP>110 for patients aged 15-49 or >70 years, and mean arterial pressure (MAP) >70 [2], Seattle International Brain Injury Consensus Conference recommendations are for SBP>90 and goal cerebral perfusion pressure (CPP) of 70 [5]. Attending physician preference at our institution (Penn State Milton S. Hershey Medical Center) for traumatic SDH blood pressure management in the absence of invasive intracranial monitoring has the propensity to gravitate towards one of two schools of management: keeping SBP 100-150 with MAP>65, or maintaining SBP<180 and MAP>65. The study aims to leverage an extensive database (TriNetX) to determine if there is a difference in 30-day outcomes in traumatic acute subdural hemorrhage patients who have maintained these two different SBP goals for at least 24 hours after their brain injury after propensity score matching for...
initial Glasgow coma score (GCS), and common comorbidities and risk factors.

Materials And Methods

A de-identified database network (TriNetX) was used to retrospectively query via International Classification of Disease (ICD-10) codes and Common Procedural Terminology (CPT) codes to evaluate all patients with a first instance diagnosis of acute traumatic SDH, who also had a recorded GCS, with the maintenance of SBP 100-150 within the first 24 hours (cohort 1) versus patients with an SBP<180 (cohort 2). Data came from 68 health care organizations (HCOs) with a total of 105,897,964 patients on 9/1/2022. Data includes demographics, diagnoses, medications, laboratory values, and procedures. The identity of the patients and HCOs is not disclosed to comply with ethical guidelines prohibiting data re-identification. An IRB waiver was granted. Previous literature informed our use of this database and its validity, and the network’s exact details have been previously described [13-16].

The primary outcome of interest was mortality within 30 days. Secondary outcomes include gastrostomy tube placement, craniotomy/craniectomy/burr hole drainage, venous thromboembolism, ischemic stroke, myocardial infarction, seizure, falls, cardiac arrest, and acute kidney injury within 30 days. To adjust for hypothesized confounders on the relationship between SDH and the outcomes of interest, medical information, including age at the date of SDH, as well as sex, race, GCS scores 13-15, 9-12, and 3-8, and the comorbidities of traumatic subarachnoid hemorrhage, epidural hematoma, hypertension, obesity, ischemic heart disease, diabetes, chronic kidney disease, prior acute kidney failure, atrial fibrillation and flutter, smoking history, alcohol abuse, liver cirrhosis, and antiplatelet and anticoagulant medications was gathered. Analysis was performed using unmatched and propensity score-matched cohorts, with the greedy-nearest neighbor algorithm with a caliper of 0.1 pooled standard deviations. Chi-square analysis and logistic regression were performed on categorical variables.

Results

After propensity score matching, 1,243 patients were identified in each cohort. Age at index was 57.97+/−23.21 years and 58.28+/−22.35 years for cohorts 1 and 2, respectively. 67.578% vs. 67.820% of patients were male. Average SBP was 125+/−19 mmHg vs. 159+/−30.1 mmHg. Initial GCS score, based on both GCS at emergency arrival and GCS at hospital admission, was approximately 13-15 for 59.131% of patients in cohort 1 and 59.936% in cohort 2, 9-12 for 8.287% vs. 7.964%, and 3-8 for 34.726% vs. 34.353%. Baseline demographics and characteristics, both pre- and post-matching are shown in Table 1.

Code	Diagnosis	Before Matching	After Matching				
		Cohort 1, n (%)	Cohort 2, n (%)	Std diff.	Cohort 1, n (%)	Cohort 2, n (%)	Std diff.
AI	Age at Index	52.68+/−25.26 years	60.19+/−21.88 years	-	57.97+/−23.21 years	58.28+/−22.35 years	-
M	Male	1261 (67.003)	997 (61.834)	0.028465	840 (65.78)	843 (68.20)	0.0051612
F	Female	620 (32.944)	462 (31.666)	0.0273345	403 (31.22)	400 (31.8)	0.0051612
2106-3	White	1325 (70.404)	902 (61.823)	0.1820345	818 (65.809)	824 (66.291)	0.0101936
2131-1	Unknown Race	256 (13.603)	274 (18.78)	0.140898	206 (16.543)	201 (16.171)	0.0108713
2054-5	Black or African American	236 (12.54)	201 (13.777)	0.0365912	166 (13.355)	166 (13.355)	0
2028-9	Asian	22 (1.169)	17 (1.165)	0.0003527	14 (1.126)	14 (1.287)	0.0147366
R40.2412	Glasgow coma scale score 13-15, at arrival to emergency department	871 (46.281)	627 (42.975)	0.0665401	539 (43.363)	548 (44.087)	0.0145969
R40.2413	Glasgow coma scale score 13-15, at hospital admission	288 (15.303)	246 (16.861)	0.0424197	196 (15.768)	197 (15.849)	0.0022052
R40.2422	Glasgow coma scale score 9-12, at arrival to emergency department	108 (5.739)	100 (6.854)	0.0459343	77 (6.195)	76 (6.114)	0.0033476
R40.2423	Glasgow coma scale score 9-12, at hospital admission	42 (2.232)	25 (1.714)	0.0372694	26 (2.092)	23 (1.85)	0.0173637
R40.2432	Glasgow coma scale score 3-8, at arrival to emergency department	426 (22.635)	355 (24.332)	0.0400235	309 (24.859)	303 (24.377)	0.0112054
R40.2433	Glasgow coma scale score 3-8, at hospital	200 (10.627)	137 (9.39)	0.0412265	126 (10.137)	124 (9.976)	0.00535

2022 Hallam et al. Cureus 14(10): e30654. DOI 10.7759/cureus.30654
I10-I16 Hypertensive diseases 824 (43.783) 901 (61.755) 0.3659574 709 (57.039) 718 (57.763) 0.0146428
S06.6 Traumatic subarachnoid hemorrhage 942 (50.053) 690 (47.293) 0.0552499 619 (49.799) 591 (47.546) 0.0450796
E78 Disorders of lipoprotein metabolism and other lipemias 485 (25.77) 487 (33.379) 0.1672987 396 (31.858) 407 (32.743) 0.0189253
F17 Nicotine dependence 440 (23.379) 332 (22.755) 0.0148147 304 (24.457) 274 (22.043) 0.0571578
I20-I25 Ischemic heart diseases 357 (18.969) 321 (22.001) 0.0751828 280 (22.526) 283 (22.767) 0.0557665
E08-E13 Diabetes mellitus 310 (16.472) 346 (23.715) 0.1815031 264 (21.239) 271 (21.802) 0.0137035
N17-N19 Acute kidney failure and chronic kidney disease 335 (17.8) 324 (22.207) 0.1103295 284 (21.239) 266 (21.4) 0.0039286
Z87.891 Personal history of nicotine dependence 346 (18.385) 304 (20.836) 0.0617723 258 (20.756) 256 (20.595) 0.0039731
S06.3 Focal traumatic brain injury 420 (22.317) 275 (18.849) 0.08586 257 (20.676) 247 (19.871) 0.0200117
R13 Aphasia and dysphagia 317 (16.844) 322 (22.07) 0.1323054 245 (19.71) 243 (19.549) 0.0040509
R53 Malaise and fatigue 353 (18.757) 255 (17.478) 0.0332094 233 (18.745) 239 (19.228) 0.012308
J40-J47 Chronic lower respiratory diseases 313 (16.631) 247 (16.929) 0.0079788 218 (17.538) 221 (17.78) 0.0063294
I48 Atrial fibrillation and flutter 290 (15.409) 243 (16.655) 0.0398675 215 (17.297) 213 (17.136) 0.004262
F10.1 Alcohol abuse 304 (16.153) 224 (15.353) 0.0219626 201 (16.171) 188 (15.125) 0.0287902
S06.9 Unspecified intracranial injury 286 (15.197) 213 (14.599) 0.0167828 187 (15.044) 185 (14.883) 0.0045106
S06.1 Traumatic cerebral edema 269 (14.293) 215 (14.736) 0.0125713 183 (14.722) 177 (14.24) 0.013717
S06.2 Diffuse traumatic brain injury 259 (13.762) 172 (11.789) 0.059132 161 (12.953) 153 (12.309) 0.0193752
IS0 Heart failure 205 (10.893) 167 (11.446) 0.0175736 150 (12.068) 150 (12.068) 0.0
E65-E68 Overweight, obesity and other hyperalimentation 188 (9.889) 177 (12.132) 0.0683414 146 (11.746) 139 (11.183) 0.0176772
R51 Headache 234 (12.434) 164 (11.241) 0.0369631 146 (11.746) 146 (11.746) 0
F10.2 Alcohol dependence 161 (8.555) 132 (9.047) 0.0173867 117 (9.413) 103 (8.286) 0.0396645
R63 Symptoms and signs concerning food and fluid intake 157 (8.342) 127 (8.705) 0.012979 109 (8.769) 107 (8.608) 0.0057124
S06.4 Epidermal hemorrhage 181 (9.617) 94 (6.443) 0.1170189 84 (6.758) 89 (7.16) 0.0158089
I73 Other peripheral vascular diseases 93 (4.942) 81 (5.552) 0.0273689 69 (5.551) 71 (5.712) 0.0069797
K74 Fibrosis and cirrhosis of liver 51 (2.71) 45 (3.084) 0.0223249 39 (3.138) 37 (2.977) 0.0093465
1191 Aspirin 375 (19.926) 372 (25.497) 0.1332724 299 (24.055) 296 (23.813) 0.0056565
32968 Clopidogrel 100 (5.313) 102 (6.991) 0.0698588 80 (6.436) 84 (6.758) 0.0129642
11289 Warfarin 122 (6.482) 86 (5.894) 0.0244064 77 (6.195) 83 (6.677) 0.016715
1364430 Apixaban 59 (3.135) 38 (2.605) 0.0317754 38 (3.057) 37 (2.977) 0.0047033
1114195 Rivaroxaban 35 (1.86) 28 (1.919) 0.0043627 28 (2.253) 26 (2.092) 0.0110379
31500 Intubation, endotracheal, emergency procedure 291 (15.462) 203 (13.914) 0.044 191 (15.366) 188 (15.125) 0.0067143

TABLE 1: Baseline demographics and characteristics before and after propensity score matching

Mortality was seen in 243 patients (19.756%) vs. 209 (16.992%) (OR 1.205, 95% CI (0.98,1.476), p=0.0767) in cohorts 1 and 2, respectively. Gastrostomy tube was seen in 75 (5.945%) vs. 79 (6.397%) (OR 0.925, 95% CI (0.666,1.284), p=0.641) patients in cohorts 1 and 2, respectively. Craniotomy/Craniectomy/Burr holes was seen in 158 (12.711%) vs. 150 (12.068%) (OR 1.061, 95% CI (0.836,1.347), p=0.6265) patients in cohorts 1 and 2, respectively. Venous thromboembolism was seen in 90 (7.673%) vs. 74 (6.254%) (OR 1.25, 95% CI (0.909,1.719), p=0.1694). Ischemic stroke was seen in 65 (5.334%) vs. 74 (6.314%) (OR 0.836, 95% CI
Myocardial infarction was seen in 26 (2.174%) vs. 23 (1.921%) (OR 1.134, 95% CI (0.643,1.999), p=0.6628). Seizure was seen in 158 (13.763%) vs. 161 (14.135%) (OR 0.969, 95% CI (0.765,1.228), p=0.7975). Falls was seen in 242 (24.08%) vs. 267 (25.165%) (OR 0.943, 95% CI (0.772,1.152), p=0.5672). Cardiac arrest was seen in 33 (2.696%) vs. 52 (4.221%) (OR 0.629, 95% CI (0.403,0.98), p=0.0387). Acute kidney injury was seen in 52 (4.183%) vs. 66 (5.310%) (OR 0.779, 95% CI (0.537,1.13), p=0.1867). Table 2 shows outcomes after propensity score matching.

Outcome	Cohort 1, n (%)	Cohort 2, n (%)	Odds ratio (95% CI)	95% CI	P-value
Deceased	243 (19.756)	209 (16.992)	1.203	(0.98,1.476)	0.0767
Gastrostomy tube	73 (5.945)	79 (6.397)	0.925	(0.666,1.284)	0.641
Craniotomy/Craniectomy/Burr holes	158 (12.711)	150 (12.068)	1.061	(0.836,1.347)	0.6263
Venous thromboembolism	90 (7.673)	74 (6.234)	1.25	(0.909,1.719)	0.1694
Ischemic stroke	63 (5.334)	74 (6.314)	0.836	(0.591,1.182)	0.3103
Myocardial infarction	26 (2.174)	23 (1.921)	1.134	(0.643,1.999)	0.6628
Seizure	158 (13.763)	161 (14.135)	0.969	(0.765,1.228)	0.7973
Falls	242 (24.08)	267 (25.165)	0.943	(0.772,1.152)	0.5672
Cardiac arrest	33 (2.696)	52 (4.221)	0.629	(0.403,0.98)	0.0387
Acute kidney injury	52 (4.183)	66 (5.310)	0.779	(0.537,1.13)	0.1867

TABLE 2: Outcomes after propensity score matching

Discussion

The results of this study demonstrate that the primary outcome of mortality at 30 days is not statistically different in traumatic SDH patients, whether their SBP is kept at 100-150mmHg or below 180mmHg. Likewise, it shows no statistical difference in the subsequent incidence of gastrostomy tube placement, craniotomy/craniectomy/burr holes, venous thromboembolism, ischemic stroke, myocardial infarction, seizure, falls, or acute kidney injury.

TBI is a leading cause of death and disability, and SDH accounts for approximately 11% of TBI [5,11]. SDH management has room for improvement [11]. While the primary brain insult cannot be reversed, secondary damage can be limited [7]. Secondary brain injury can result from impaired cerebral blood flow, impairment of autoregulation, disruption of tissue oxygenation and brain metabolism, tissue inflammation and necrosis, edema, oxidative stress, and vasospasm, and from hematoma expansion due to factors such as hypertension [5,6,9-12]. On the other hand, any episode of hypotension, defined as SBP<90, has been associated with increased mortality and worsened neurological outcomes in severe TBI [1-8,17]. This could be due to the critical importance of maintaining optimal cerebral perfusion pressure, which can mitigate the detrimental effects of cerebrovascular autoregulation impairment in TBI patients, thus reducing ischemic and hypoxic brain damage [2-4,17-20]. While SBP goals have been established for intraparenchymal hemorrhage, it is less clear for subdural hematomas. Some guidelines and consensus/expert opinions suggest SBP>90, and others SBP>110 or SBP>115 [2,6]. There are no clear clinical trials that address a specifically targeted SBP in SDH [11,12].

In balancing the alteration of SBP goals to limit the progression of hematoma and hemorrhagic transformation and reducing hypoperfusion and secondary cerebral ischemic insult, prior studies provide some elucidation.

In 2021, Asmar et al. performed a retrospective review of the American College of Surgeons Trauma Quality Improvement Program database looking at adult patients with TBI, their SBP, and the primary outcome of in-hospital mortality. A subgroup analysis was likewise performed based on the GCS score. The authors found that of 94,411 TBI patients, the mean SBP was 147±28, and overall mortality was 8.6%. They found that the lowest mortality was between SBP 110-149 and the highest mortality for SBP<90 and SBP>190. SBP 110-149 also had the lowest mortality for their GCS subgroup analysis [1].

The IMPACT prospective database looked at 8,172 TBI patients and found that SBP<120 was associated with poor neurological recovery [2,8].
Erickson et al. in 2021 published a study looking at MAP and discharge outcomes for pediatric patients with severe TBI. The authors examined 166 children (aged <18 years) with GCS<9. 20.4% of the patients had a poor discharge outcome (defined as in-hospital mortality or discharge to a skilled nursing facility or long-term care facility). This poor outcome was most common in patients who were <5th percentile for low MAPs in the first 12 hours and the second most common for patients with MAPs in the 5th-9th percentile in the first 12 hours. Likewise, the authors found that SBP below the 5th percentile in the first 12 hours was likewise associated with poor discharge outcomes. The authors concluded that low MAPs were more strongly associated with poor discharge outcomes for pediatric TBI patients than low SBP, noting that low SBP had a higher predictive ability [17].

In 2019, a paper by Heino et al. looked at risk factors for recurrent hematoma after surgery for acute traumatic SDH, with a total of 132 patients at one center in Finland. They retrospectively reviewed demographic, clinical, and laboratory data and found that patients with post-craniotomy hematoma (after evacuation of SDH) were more likely to have a lower maximum SBP. The mean maximal SBP in patients with post-craniotomy hematoma was 148 mmHg versus 160 mmHg in patients without post-craniotomy hematoma [21].

Kow et al. in 2020 examined the escalation of MAPs in severe TBI in 28 patients. They found that increasing MAPs to raise CPP was associated with a reduction in ICP in two-thirds of the cases, and an increase in ICP in one-third of the cases. This could be because an increase in MAP induces vasoconstriction; however, caution must be used in severe TBI patients due to dys-autoregulation. The authors found that the absence of hypotension at initial evaluation was associated with a lower ICP burden. The authors noted that prior studies have shown that in the majority of TBI patients, when MAP rises significantly, then ICP will fall, but that is not the case for all TBI patients. The authors concluded that the direction of ICP changes in the first 15 minutes after MAP increase can be useful to see if a MAP challenge is beneficial in guiding the management of intracranial hypertension [4].

A paper by Powers et al. in 2018 looked at factors associated with the progression of conservatively managed acute traumatic SDH. It followed 117 patients. The authors found that high systolic blood pressure, the presence of subarachnoid hemorrhage, and initial SDH volume were associated with changes in SDH size. Authors concluded that higher SBP was associated with increased expansion of SDH [11].

Looking at acceptable blood pressure levels in the prehospital setting for patients with traumatic brain injury, Shibahashi et al. examined a total of 34,175 adult patients from the Japan Trauma Data Bank. They found that an SBP<110 was associated with an OR 1.52 (95% CI 1.39-1.65) of in-hospital mortality [22].

For pediatric patients, Suttipongkaset et al. published a paper examining blood pressure thresholds and mortality in pediatric traumatic brain injury. The National Trauma Data Bank was queried for 10,473 children with severe TBI, with populations divided into percentile categories of SBP less than fifth percentile, SBP 5th-24th percentile, 25th-74th percentile, 75th to 94th percentile, and >=95th percentile. The authors found that 2588 (22.8%) died while in the hospital, and that the relative risk of in-hospital mortality was 3.2 (95% CI 2.9-3.6) in the SBP <5th percentile, 2.5 (95% CI 2.0-2.7) in the 5th-24th percentile, and 1.4 (95% CI 1.2-1.6) in the 25th to 74th percentile, as compared to the SBP 75th-94th percentile group. The authors concluded that in children with severe TBI, SBP below the 75th percentile was associated with increased risk of in-hospital mortality [22].

This study is not without limitations. The major limitation is that this study is retrospective. Furthermore, although GCS was able to be identified at the time of SDH, information was unable to be obtained on GCS at 15 minutes after MAP increase can be useful to see if a MAP challenge is beneficial in guiding the management of intracranial hypertension [4].

A paper by Powers et al. in 2018 looked at factors associated with the progression of conservatively managed acute traumatic SDH. It followed 117 patients. The authors found that high systolic blood pressure, the presence of subarachnoid hemorrhage, and initial SDH volume were associated with changes in SDH size. Authors concluded that higher SBP was associated with increased expansion of SDH [11].

Looking at acceptable blood pressure levels in the prehospital setting for patients with traumatic brain injury, Shibahashi et al. examined a total of 34,175 adult patients from the Japan Trauma Data Bank. They found that an SBP<110 was associated with an OR 1.52 (95% CI 1.39-1.65) of in-hospital mortality [22].

For pediatric patients, Suttipongkaset et al. published a paper examining blood pressure thresholds and mortality in pediatric traumatic brain injury. The National Trauma Data Bank was queried for 10,473 children with severe TBI, with populations divided into percentile categories of SBP less than fifth percentile, SBP 5th-24th percentile, 25th-74th percentile, 75th to 94th percentile, and >=95th percentile. The authors found that 2588 (22.8%) died while in the hospital, and that the relative risk of in-hospital mortality was 3.2 (95% CI 2.9-3.6) in the SBP <5th percentile, 2.5 (95% CI 2.0-2.7) in the 5th-24th percentile, and 1.4 (95% CI 1.2-1.6) in the 25th to 74th percentile, as compared to the SBP 75th-94th percentile group. The authors concluded that in children with severe TBI, SBP below the 75th percentile was associated with increased risk of in-hospital mortality [22].

This study is not without limitations. The major limitation is that this study is retrospective. Furthermore, although GCS was able to be identified at the time of SDH, information was unable to be obtained on GCS at 30 days. Likewise, radiologic data was unavailable, and thus the degree of midline shift and size and location of SDH was unable to be identified. In addition, some degree of misidentification is always inevitable in large database studies.

Conclusions

This retrospective cohort study compares acute traumatic SDH patients with initial management of SBP 100-150 mmHg versus less than 180 mmHg in the first 24 hours of brain injury. The results of this study demonstrate that the primary outcome of mortality at 30 days is not statistically different and similarly shows no statistical difference in the subsequent incidence of gastrostomy tube placement, craniotomy/craniectomy/burr holes, venous thromboembolism, ischemic stroke, myocardial infarction, seizure, falls, or acute kidney injury.

Additional Information

Disclosures

Human subjects: Consent was obtained or waived by all participants in this study. **Animal subjects:** All authors have confirmed that this study did not involve animal subjects or tissue. **Conflicts of interest:** In compliance with the ICMJE uniform disclosure form, all authors declare the following: **Payment/services**
References

1. Asmar S, Cherub M, Bible L, Khurram M, Castanon L, Dilillo M, Joseph B: The emergency department systolic blood pressure relationship after traumatic brain injury. Surg Res. 2021, 257:493-500. 10.1016/j.sur.2020.07.062

2. Carteron I, Taccone FS, Oddo M: How to manage blood pressure after brain injury? Minerva Anestesiol. 2017, 83:412-21. 10.23736/S0375-9395(15)33915-2

3. Ferring M, Berre J, Vincent JL: Induced hypertension after head injury. Intensive Care Med. 1999, 25:1006-9. 10.1007/s001340050997

4. Kow CY, Harley B, Li C, et al.: Escalating mean arterial pressure in severe traumatic brain injury: A prospective, observational study. Neurotrauma. 2021, 38:1995-2002. 10.1089/neu.2020.7289

5. Rakhit S, Nordness MP, Lombardo SR, Cook M, Smith L, Patel MB: Management and challenges of severe traumatic brain injury. Semin Resp Crit Care Med. 2021, 42:127-44. 10.1055/s-0040-1716495

6. Shibahashi K, Hoda H, Okura Y, Hamabe Y: Acceptable blood pressure levels in the prehospital setting for patients with traumatic brain injury: A multicenter observational study. World Neurosurg. 2021, 149:e504-11. 10.1016/j.wneu.2021.01.145

7. Vella MA, Crandall ML, Patel MB: Acute management of traumatic brain injury. Surg Clin North Am. 2017, 97:1015-30. 10.1016/j.suc.2017.06.003

8. Maas AI, Murray GD, Rozenbeek B, et al.: Factors associated with the progression of conservatively managed acute traumatic subdural hemorrhage. J Neurosurg. 2015, 121:702-5. 10.1016/j.jns.2013.05.002

9. Kalfas IH, Little JR: Postoperative hemorrhage: A survey of 4992 intracranial procedures. Neurosurgery. 1988, 23:343-7. 10.1227/00006123-198809000-00010

10. Vassiloutsou E, Anagnostaras S, Papandreou A, Dourdoumas E: Is postoperative haematoma an avoidable complication of intracranial surgery? Br J Neurosurg. 1999, 13:154-7. 10.1016/S0268-8694(99)00316-9

11. Powers AV, Pinto MB, Aldridge AM, et al.: Factors associated with the progression of conservatively managed acute traumatic subdural hemorrhage. J Crit Care. 2018, 48:245-50. 10.1016/j.jccase.2018.09.014

12. Haddadin F, Munoz Estrella A, Herzog E: Hypertensive emergency presenting with acute spontaneous subdural hematoma. J Cardiol Cases. 2019, 19:25-39. 10.1016/j.jccase.2018.09.001

13. Taquet M, Geddes JR, Husain M, Luciano S, Harrison PJ: 6-month neurological and psychiatric outcomes in 236 519 survivors of COVID-19: a retrospective cohort study using electronic health records. Lancet Psychiatry. 2021, 8:416-27. 10.1016/S2215-0366(21)00084-5

14. Raker R, DeYoung C, Pachkchanian H, Ahmed S, Kavadichanda C, Gupta L, Kardeş S: Cerebrovascular consequences of elevated intracranial pressure. World Neurosurg. 2021, 149:e504-11. 10.1016/j.wneu.2021.10.062

15. Erickson SL, Killien EY, Wainwright M, Mills B, Vavilala MS: Acute management of traumatic brain injury: A retrospective cohort study of 537,913 COVID-19 cases. EClinicalMedicine. 2021, 39:101064. 10.1016/j.eclinm.2021.10.061

16. Escalating mean arterial pressure in severe traumatic brain injury: A prospective cohort study of 257,951 COVID-19 cases. EClinicalMedicine. 2021, 39:101064. 10.1016/j.eclinm.2021.10.061

17. Erickson SL, Killien EY, Wainwright M, Mills B, Vasišta MS: Mean arterial pressure and discharge outcomes in severe pediatric traumatic brain injury. Neurocrit Care. 2021, 34:1017-25. 10.1007/s12028-020-01121-5

18. Petkus V, Preikšaitis A, Chalcecas E, et al.: Optimal cerebral perfusion pressure: Targeted treatment for severe traumatic brain injury. Neurotrauma. 2020, 37:589-96. 10.1089/neu.2019.6531

19. Calviello LA, Zeiler FA, Donnelly J, et al.: Cerebrovascular consequences of elevated intracranial pressure after traumatic brain injury. Acta Neurochir Suppl. 2021, 121:43-8. 10.1007/978-3-030-79436-7_10

20. Crippa IA, Creteur J, Smielewski P, Taccone FS, Czosnyka M: Delay of cerebral autoregulation in traumatic brain injury patients. Clin Neurol Neurosurg. 2021, 202:106478. 10.1016/j.clinneu.2021.10.06478

21. Heino I, Frantzién J, Rinne J, et al.: Risk factors for recurrent hematoma after surgery for acute traumatic subdural hematoma. World Neurosurg. 2019, 125:1016-25. 10.1016/j.wneu.2018.12.155

22. Suttipongkaset P, Chaukitikitsupa N, Vasišta MS, Lele AV, Watanitanon A, Chandee T, Krishnamoorthy V: Blood pressure thresholds and mortality in pediatric traumatic brain injury. Pediatr Crit Care Med. 2018, 19:10.1053/j.pedcc.2018.04.003