Cohomology of $\mathfrak{sl}(2)$ acting on the space of n-ary differential operators on \mathbb{R}

Mabrouk Ben Ammar Maha Boujelben Rabeb Sidaoui *

November 13, 2017

Abstract

We compute the cohomological space $H^1_{\text{diff}}(\mathfrak{sl}(2), D_{\lambda,\mu})$ where $\mu \in \mathbb{R}$, $\lambda = (\lambda_1, \ldots, \lambda_n) \in \mathbb{R}^n$ and $D_{\lambda,\mu}$ is the space of multilinear differential operators from $\mathcal{F}_{\lambda_1} \otimes \cdots \otimes \mathcal{F}_{\lambda_n}$ to \mathcal{F}_μ.

The structure of these spaces was conjectured in [M. Ben Ammar et al. in International Journal of Geometric Methods in Modern Physics Vol. 9, No. 4 (2012) 1250033 (15 pages).]

Mathematics Subject Classification (2000). 53D55

Key words: Cohomology, Weighted Densities.

1 Introduction

The space of weighted densities of weight μ on \mathbb{R} (or μ-densities for short), denoted by:

$$\mathcal{F}_\mu = \{ f dx^\mu, \ f \in C^\infty(\mathbb{R}) \}, \ \mu \in \mathbb{R},$$

is the space of sections of the line bundle $(T^*\mathbb{R})^\otimes^\mu$. The Lie algebra Vect($\mathbb{R}$) of vector fields $X_h = h \frac{d}{dx}$, where $h \in C^\infty(\mathbb{R})$, acts on \mathcal{F}_μ by the Lie derivative L^μ. Alternatively, this action can be written as follows:

$$X_h \cdot (f dx^\mu) = L^\mu_{X_h}(f dx^\mu) := (hf' + \mu h' f) dx^\mu, \ (1.1)$$

where f', h' are $\frac{df}{dx}$, $\frac{dh}{dx}$. For $\lambda = (\lambda_1, \ldots, \lambda_n) \in \mathbb{R}^n$ and $\mu \in \mathbb{R}$ we denote by $D_{\lambda,\mu}$ the space of multilinear differential operators A from $\mathcal{F}_{\lambda_1} \otimes \cdots \otimes \mathcal{F}_{\lambda_n}$ to \mathcal{F}_μ. The Lie algebra Vect(\mathbb{R}) acts on the space $D_{\lambda,\mu}$ of these differential operators by:

$$X_h \cdot A = L^\mu_{X_h} \circ A - A \circ L^\lambda_{X_h} \ (1.2)$$

where $L^\lambda_{X_h}$ is the Lie derivative on $\mathcal{F}_{\lambda_1} \otimes \cdots \otimes \mathcal{F}_{\lambda_n}$ defined by the Leibnitz rule. If we restrict ourselves to the Lie algebra $\mathfrak{sl}(2)$ which is isomorphic to the Lie subalgebra of Vect(\mathbb{R}) spanned by $\{X_1, X_x, X_{x^2}\}$,

*Université de Sfax, Faculté des Sciences, Département de Mathématiques, Laboratoire d’Algèbre, Géométrie et Théorie Spectrale (AGTS) LR11ES53, BP 802, 3038 Sfax, Tunisie. E.mail: mabrouk.benammar@fss.rnu.tn
we have a family of infinite dimensional \(\mathfrak{sl}(2) \)-modules still denoted by \(D_{\lambda, \mu} \).

According to Nijenhuis-Richardson [3], the space \(H^1(\mathfrak{g}; \text{End}(V)) \) classifies the infinitesimal deformations of a \(\mathfrak{g} \)-module \(V \) and the obstructions to integrability of a given infinitesimal deformation of \(V \) are elements of \(H^2(\mathfrak{g}; \text{End}(V)) \). While the spaces \(H^1(\mathfrak{g}; L(\otimes^n V, V)) \) appear naturally in the problem of normalization of nonrepresentations of \(\mathfrak{g} \) in \(V \). To be more precise, let

\[
T : \mathfrak{g} \to \sum_{n \geq 0} L(\otimes^n V, V), \quad X \mapsto T_X = \sum T^n_X,
\]

be a nonlinear representation of \(\mathfrak{g} \) in \(V \), that is, \(T_{[X, Y]} = [T_X, T_Y] \). In [1], it is proved that the representation \(T \) is normalized if \(T^1_X \) is in a supplementary of \(B^1(\mathfrak{g}; L(\otimes^n V, V)) \) in \(Z^1(\mathfrak{g}; L(\otimes^n V, V)) \).

In fact if \(A \) is a differential operator on the line, \(A \) can be viewed as an homomorphism from \(\mathcal{F}_\tau \) to \(\mathcal{F}_\mu \). If \(A \) is with order \(n \), we can define its symbol as an element in \(S^n_\beta = \bigoplus_{j=0}^n \mathcal{F}_{\beta-j} \) for \(\beta = \tau - \lambda \). If \(n \) goes to \(+\infty \), the space \(S_{\beta} = \bigoplus_{j \geq 0} \mathcal{F}_{\beta-j} \) appears as the space symbols for all differential operators. The space \(H^1(\mathfrak{sl}(2); L(\otimes^n V, V)) \) can be decomposed as a sum of some spaces \(H^1(\mathfrak{sl}(2), D_{\lambda, \mu}) \) with \(\lambda = (\lambda_1, \ldots, \lambda_n) \in \mathbb{R}^n \). Thus, for \(\lambda \in \mathbb{R}^n \), the knowledge of the spaces \(H^1(\mathfrak{sl}(2), D_{\lambda, \mu}) \) is useful to compute the terms \(T^\mu \) of a normalized nonlinear representation \(T \) of \(\mathfrak{sl}(2) \) in \(S_{\beta} \).

For \(\lambda \in \mathbb{R} \) the spaces \(H^1(\mathfrak{sl}(2), D_{\lambda, \mu}) \) are computed by Gargoubi [6] and Lecomte [7], and for \(\lambda \in \mathbb{R}^2 \) the spaces \(H^1_{\text{diff}}(\mathfrak{sl}(2), D_{\lambda, \mu}) \) are computed by Bouarroudj [4], while we are interested in this paper to generalize this study to \(\lambda \in \mathbb{R}^n \) solving a conjecture given by Ben Ammar et al in [3].

\section{The space \(H^1_{\text{diff}}(\mathfrak{sl}(2), D_{\lambda, \mu}) \)}

\subsection{Cohomology}

We will compute the first cohomology space of \(\mathfrak{sl}(2) \) with coefficients in \(D_{\lambda, \mu} \) where \(\lambda \in \mathbb{R}^n \) and \(\mu \in \mathbb{R} \). Let us first recall some fundamental concepts from cohomology theory (see, e.g., [5]). Let \(\mathfrak{g} \) be a Lie algebra acting on a space \(V \) and let \(\mathfrak{h} \) be a subalgebra of \(\mathfrak{g} \). (If \(\mathfrak{h} \) is omitted it assumed to be \(\{0\} \).) The space of \(\mathfrak{h} \)-relative \(n \)-cochains of \(\mathfrak{g} \) with values in \(V \) is the \(\mathfrak{g} \)-module

\[
C^n(\mathfrak{g}, \mathfrak{h}; V) := \text{Hom}_{\mathfrak{h}}(A^n(\mathfrak{g}/\mathfrak{h}); V).
\]

The \emph{coboundary operator} \(\partial^n : C^n(\mathfrak{g}, \mathfrak{h}; V) \to C^{n+1}(\mathfrak{g}, \mathfrak{h}; V) \) is a \(\mathfrak{g} \)-map satisfying \(\partial^n \circ \partial^{n-1} = 0 \). The kernel of \(\partial^n \), denoted \(Z^n(\mathfrak{g}, \mathfrak{h}; V) \), is the space of \(\mathfrak{h} \)-relative \(n \)-cocycles, among them, the elements in the range of \(\partial^{n-1} \) are called \(\mathfrak{h} \)-relative \(n \)-coboundaries. We denote \(B^n(\mathfrak{g}, \mathfrak{h}; V) \) the space of \(n \)-coboundaries.

By definition, the \(n \)th \(\mathfrak{h} \)-relative cohomology space is the quotient space

\[
H^n(\mathfrak{g}, \mathfrak{h}; V) = Z^n(\mathfrak{g}, \mathfrak{h}; V)/B^n(\mathfrak{g}, \mathfrak{h}; V).
\]

We will only need the formula of \(\partial^n \) (which will be simply denoted \(\partial \)) in degrees 0 and 1. For \(v \in C^0(\mathfrak{g}, \mathfrak{h}; V) = V^\mathfrak{h} \),

\[
\partial v(g) := g \cdot v,
\]

where \(V^\mathfrak{h} \) is the subspace of \(\mathfrak{h} \)-invariant elements of \(V \). For \(\Upsilon \in C^1(\mathfrak{g}, \mathfrak{h}; V) \) and \(g, h \in \mathfrak{g} \),

\[
\partial(\Upsilon)(g, h) := g \cdot \Upsilon(h) - h \cdot \Upsilon(g) - \Upsilon([g, h]).
\]
Here we consider \(\mathfrak{g} = \mathfrak{sl}(2), \mathfrak{h} = \text{aff}(1) \) the subalgebra of \(\mathfrak{sl}(2) \) spanned by \(\frac{d}{dx} \) and \(x \frac{d}{dx} \) and we consider \(V = D_{\lambda, \mu} \). We compute \(H^1(\mathfrak{sl}(2); D_{\lambda, \mu}) \) and \(H^1(\mathfrak{sl}(2), \text{aff}(1); D_{\lambda, \mu}) \).

2.2 The spaces \(H^1_{\text{diff}}(\mathfrak{sl}(2), D_{\lambda, \mu}) \) and \(H^1(\mathfrak{sl}(2), \text{aff}(1); D_{\lambda, \mu}) \)

Let \(\mu \in \mathbb{R}, \alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}^n \) and \(\lambda = (\lambda_1, \ldots, \lambda_n) \in \mathbb{R}^n \), we consider \(\delta = \mu - \sum_{i=1}^n \lambda_i \) and \(|\alpha| = \sum \alpha_i \). For \(F = f_1 \otimes \cdots \otimes f_n \in \mathcal{F}_{\lambda_1} \otimes \cdots \otimes \mathcal{F}_{\lambda_n} \), we define \(F^{(\alpha)} := f_1^{(\alpha_1)} \cdots f_n^{(\alpha_n)} \).

We also define

\[
\alpha^i = (\alpha_1, \ldots, \alpha_i + 1, \ldots, \alpha_n) \quad \text{and} \quad \alpha^{-i} = (\alpha_1, \ldots, \alpha_i - 1, \ldots, \alpha_n).
\]

Recall that the space \(\mathcal{F}_{\lambda_1} \otimes \cdots \otimes \mathcal{F}_{\lambda_n} \) is an \(\mathfrak{sl}(2) \)-module:

\[
X_h \cdot F := L^\lambda_{X_h}(F) = \sum_{i=1}^n f_1 \otimes \cdots \otimes L^\lambda_{X_h}(f_i) \otimes \cdots \otimes f_n.
\]

The following lemma gives the general form of any 1-cocycle.

Lemma 2.1. Up to a coboundary, any 1-cocycle \(c \in Z^1_{\text{diff}}(\mathfrak{sl}(2), D_{\lambda, \mu}) \) can be expressed as follows. For all \(F = f_1 \otimes \cdots \otimes f_n \in \mathcal{F}_{\lambda_1} \otimes \cdots \otimes \mathcal{F}_{\lambda_n} \) and for all \(X_h \in \mathfrak{sl}(2) \):

\[
c(X_h, F) = \sum_{\alpha} B_{\alpha} h' F^{(\alpha)} + \sum_{\alpha} C_{\alpha} h'' F^{(\alpha)},
\]

where \(B_{\alpha} \) and \(C_{\alpha} \) are constants satisfying:

\[
2(\delta - |\alpha| - 1)C_{\alpha} + \sum_i (\alpha_i + 1)(\alpha_i + 2\lambda_i)B_{\alpha^i} = 0.
\]

Proof. Any 1-cocycle on \(\mathfrak{sl}(2) \) should retains the following general form:

\[
c(X_h, F) = \sum_{\alpha} U_{\alpha} h F^{(\alpha)} + \sum_{\alpha} V_{\alpha} h' F^{(\alpha)} + \sum_{\alpha} W_{\alpha} h'' F^{(\alpha)},
\]

where \(U_{\alpha}, V_{\alpha} \) and \(W_{\alpha} \) are, a priori, functions. First, we prove that the terms in \(h \) can be annihilated by adding a coboundary. Let \(b : \mathcal{F}_{\lambda_1} \otimes \cdots \otimes \mathcal{F}_{\lambda_n} \rightarrow \mathcal{F}_{\mu} \) be a multilinear differential operator defined by

\[
b(F) = \sum_{\alpha} D_{\alpha} F^{(\alpha)},
\]

We have

\[
\partial b(X_h, F) = h(b(F))' + \mu h'b(F) - b(X_h \cdot F)
\]

\[
= \sum_{\alpha} D_{\alpha}' h F^{(\alpha)} + \sum_{\alpha} (\delta - |\alpha|) D_{\alpha} h' F^{(\alpha)}
\]

\[
- \frac{1}{2} \sum_{\alpha} \sum_{i=1}^n \alpha_i(\alpha_i + 2\lambda_i - 1)D_{\alpha} h'' F^{(\alpha^{-i})}.
\]

Note that the terms in \(F^{(\alpha^{-i})} \) do not appear for \(\alpha_i = 0 \).

Thus, if \(D_{\alpha}' = U_{\alpha} \) then \(c - \partial b \) does not contain terms in \(h \). So, we can replace \(c \) by \(c - \partial b \). That is, up to a coboundary, any 1-cocycle on \(\mathfrak{sl}(2) \) can be expressed as follows:

\[
c(X_h, F) = \sum_{\alpha} B_{\alpha} h' F^{(\alpha)} + \sum_{\alpha} C_{\alpha} h'' F^{(\alpha)},
\]

\[
X_{\alpha}\cdot F := L_{X_{\alpha}}(F) = \sum_{i=1}^n f_1 \otimes \cdots \otimes L_{X_{\alpha}}(f_i) \otimes \cdots \otimes f_n.
\]
Now, consider the 1-cocycle condition:

\[c([X_{h_1}, X_{h_2}], F) - X_{h_1} \cdot c(X_{h_2}, F) + X_{h_2} \cdot c(X_{h_1}, F) = 0, \]

where \(X_{h_1}, X_{h_2} \in \mathfrak{sl}(2) \). That is,

\[
\sum_{\alpha} B'_{\alpha} (h_1 h_2' - h_1' h_2) F^{(\alpha)} + \sum_{\alpha} C'_{\alpha} (h_1 h_2'' - h_1'' h_2') F^{(\alpha)} + \frac{1}{2} \sum_{\alpha} \left(2(\delta - |\alpha| - 1) C_{\alpha} + \sum_{i} (\alpha_i + 1)(\alpha_i + 2\lambda_i) B_{\alpha_i} \right) (h_1 h_2'' - h_1'' h_2') F^{(\alpha)} = 0.
\]

So, for all \(\alpha \), we have \(B'_{\alpha} = C'_{\alpha} = 0 \) and

\[
2(\delta - |\alpha| - 1) C_{\alpha} + \sum_{i} (\alpha_i + 1)(\alpha_i + 2\lambda_i) B_{\alpha_i} = 0.
\]

\[\square \]

Theorem 2.2.

1) If \(\delta \notin \mathbb{N} \) then \(H_1^{\text{diff}}(\mathfrak{sl}(2), D_{\lambda, \mu}) = 0 \).

2) If \(\delta = k \in \mathbb{N} \) then, up to a coboundary, any 1-cocycle \(c \in Z_1^{\text{diff}}(\mathfrak{sl}(2), D_{\lambda, \mu}) \) can be expressed as follows. For all \(F = f_1 \otimes \cdots \otimes f_n \in \mathcal{F}_{\lambda_1} \otimes \cdots \otimes \mathcal{F}_{\lambda_n} \) and for all \(X_h \in \mathfrak{sl}(2) \):

\[
c(X_h, F) = \sum_{|\alpha| = k} B_{\alpha} h' F^{(\alpha)} + \sum_{|\beta| = k-1} C_{\beta} h'' F^{(\alpha)}, \tag{2.4}
\]

where, for any \(\alpha \) with \(|\alpha| = k - 1 \), the \(B_{\alpha_i} \) are constants satisfying:

\[
\sum_{i} (\alpha_i + 1)(\alpha_i + 2\lambda_i) B_{\alpha_i} = 0.
\]

3) If the \(B_{\alpha} \) are not all zero then the cocycles (2.4) are nontrivial.

Proof. 1) Indeed, according to Lemma 2.1, we can easily show the 1-cocycle \(c \) defined by (2.1) is nothing but the operator \(\partial b \) where

\[
b(F) = \sum_{\alpha} \frac{B_{\alpha}}{\delta - |\alpha|} F^{(\alpha)},
\]

2) Consider the 1-cocycle \(c \) defined by (2.1) and consider the operator \(\partial b \) where

\[
b(F) = \sum_{|\alpha| \neq k} \frac{1}{k - |\alpha|} B_{\alpha} F^{(\alpha)}.
\]

We have

\[
\partial b(X_h, F) = \sum_{|\alpha| \neq k} B_{\alpha} h' F^{(\alpha)} - \frac{1}{2} \sum_{|\alpha| \neq k} \sum_{i=1}^{n} \frac{\alpha_i (\alpha_i + 2\lambda_i - 1)}{k - |\alpha|} B_{\alpha} h'' F^{(\alpha^{-i})}.
\]

Let \(\beta = \alpha^{-i} \), so, we have

\[
\alpha = \beta^i, \quad |\beta| \neq k - 1, \quad \beta_j = \alpha_j \quad \text{for} \quad j \neq i \quad \text{and} \quad \beta_i = \alpha_i - 1.
\]
Therefore
\[
\partial b(X_h, F) = \sum_{|\alpha|\neq k} B_\alpha h' F^{(\alpha)} - \frac{1}{2} \sum_{|\beta|\neq k-1} \sum_{i=1}^n \frac{\beta_i + 1)(\beta_i + 2\lambda_i)}{k - |\beta| - 1} B_\beta h'' F^{(\beta)}.
\]

According to (2.2) we have
\[
-\frac{1}{2} \sum_{i=1}^n (\beta_i + 1)(\beta_i + 2\lambda_i) \frac{1}{k - |\beta| - 1} B_\beta = C_\beta
\]

Thus,
\[
\partial b(X_h, F) = \sum_{|\alpha|\neq k} B_\alpha h' F^{(\alpha)} + \sum_{|\alpha|\neq k-1} C_\alpha h'' F^{(\alpha)}
\]

and then
\[
(c - \partial b)(X_h, F) = \sum_{|\alpha|=k} B_\alpha h' F^{(\alpha)} + \sum_{|\alpha|=k-1} C_\alpha h'' F^{(\alpha)}.
\]

In this case (2.2) becomes:
\[
\sum_i (\alpha_i + 1)(\alpha_i + 2\lambda_i) B_\alpha = 0.
\]

3) In fact, for \(\delta = \mu - |\lambda| = |\alpha| = k \) there are no terms in \(h' F^{(\alpha)} \) in the expression of \(\partial b(X_h, F) \) for any \(b \in D_{\lambda,\mu} \) (see (2.3)).

Now, we prove that, generically, we can annihilate the term \(h'' \) in the expression of the 1-cocycle (2.4) by adding a coboundary.

Theorem 2.3. If \(\delta = k \in \mathbb{N}^* \) and \(-2\lambda \notin \{0, \ldots, k-1\} \) then, any 1-cocycle \(c \in \mathbb{Z}_1^{\text{odd}}(\mathfrak{sl}(2), D_{\lambda,\mu}) \) can be expressed as follows. For all \(F \in \mathcal{F}_{\lambda_1} \otimes \cdots \otimes \mathcal{F}_{\lambda_n} \) and for all \(X_h \in \mathfrak{sl}(2) \):
\[
c(X_h, F) = \sum_{|\alpha|=k} B_\alpha h' F^{(\alpha)},
\]
where, for \(|\alpha| = k-1 \), the \(B_\alpha \) are constants satisfying:
\[
\sum_i (\alpha_i + 1)(\alpha_i + 2\lambda_i) B_\alpha = 0.
\]

Proof. By Theorem 2.2, for \(\delta = k \in \mathbb{N} \), any 1-cocycle \(c \) can be expressed as follows:
\[
c(X_h, F) = \sum_{|\alpha|=k} B_\alpha h' F^{(\alpha)} + \sum_{|\beta|=k-1} C_\beta h'' F^{(\beta)}.
\]

Let \(b : \mathcal{F}_{\lambda_1} \otimes \cdots \otimes \mathcal{F}_{\lambda_n} \rightarrow \mathcal{F}_\mu \) be a multilinear differential operator defined by
\[
b(F) = \sum_{|\alpha|=k} D_\alpha F^{(\alpha)}.
\]

We have
\[
\partial b(X_h, F) = -\frac{1}{2} \sum_{|\alpha|=k} \sum_{i=1}^n \alpha_i (\alpha_i + 2\lambda_i - 1) D_\alpha h'' F^{(\alpha^{-1})}.
\]

5
Let \(\beta = \alpha^{-i} \), so, we have
\[
\alpha = \beta^i, \quad |\beta| = k - 1, \quad \beta_j = \alpha_j \quad \text{for} \quad j \neq i \quad \text{and} \quad \beta_i = \alpha_i - 1.
\]
Therefore, we have
\[
\partial b(X_h, F) = -\frac{1}{2} \sum_{|\beta|=k-1} \sum_{i=1}^{n} (\beta_i + 1)(\beta_i + 2\lambda_i)D_{\beta}h^n F(\beta).
\]

Consider the linear system
\[
\frac{1}{2} \sum_{i=1}^{n} (\beta_i + 1)(\beta_i + 2\lambda_i)D_{\beta} = C_{\beta}, \quad |\beta| = k - 1.
\]

(2.6)

The number \(N_k \) of unknowns \(D_{\beta} \) is the cardinal of the set \(\{ \alpha \in \mathbb{N}^n, |\alpha| = k \} \) and the number of equations is the cardinal of the set \(\{ \alpha \in \mathbb{N}^n, |\alpha| = k - 1 \} \). We prove recurrently that
\[
N_k = \binom{n + k - 1}{k}.
\]

We consider the lexicographic order and we denote by \(a_1 > \cdots > a_{N_{k-1}} \) the elements of the set \(\{ \alpha \in \mathbb{N}^n, |\alpha| = k - 1 \} \). So, we choose an order on the unknowns \(D_{\beta_i} \) such that the first are those indexed by \(a_1^1, \ldots, a_{N_{k-1}}^1 \).

Thus, the matrix of the system (2.6) has the following form:
\[
\Lambda = \left(\begin{array}{cccccc}
\Lambda_1^{k-1} & \Lambda_2^0 & \Lambda_3^0 & \cdots & \Lambda_{n}^0 & 0 & \cdots & \cdots \\
0 & \Lambda_1^{k-2} & 0 & \cdots & 0 & \Lambda_2^0 & \cdots & \cdots \\
0 & 0 & \Lambda_1^{k-2} & 0 & \cdots & 0 & \Lambda_2^0 & \cdots \\
\vdots & \ddots \\
\vdots & \ddots \\
\vdots & \ddots \\
0 & \cdots & 0 & \Lambda_1^j & 0 & \cdots & \cdots & \cdots \\
0 & \cdots & 0 & \Lambda_1^j & 0 & \cdots & \cdots & \cdots \\
\end{array} \right)
\]
(2.7)

where \(\Lambda_j^i = (j + 1)(j + 2\lambda_i) \), \(j = 0, \ldots, k - 1 \) and \(i = 1, \ldots, n \).

Without loss of generality, assume that \(-2\lambda_1 \notin \{0, \ldots, k - 1\}\) then \(\Lambda_1^i \) does never vanish, therefore obviously the system (2.6) is of rank \(N_{k-1} \). Thus, we can choose the operator \(b \) such that \((c + \partial b)(X_h, F) \) does not contain terms in \(h^n \).

For \(n = 2 \), we have:
\[
\Lambda = \left(\begin{array}{cccc}
\Lambda_1^{k-1} & \Lambda_2^0 & 0 & \cdots & 0 \\
0 & \Lambda_1^{k-2} & \Lambda_2^1 & \cdots & \vdots \\
\vdots & \ddots & \ddots & \cdots & \ddots \\
0 & \cdots & 0 & \Lambda_1^0 & \Lambda_2^{k-1} \\
\end{array} \right)
\]
(2.8)

\[\square \]

Theorem 2.4. If \(\delta = k \geq 1 \) and \(-2\lambda \notin \{0, \ldots, k - 1\}^n \) then, we have
\[
\dim \Pi_1(sl(2), D_{\lambda, \mu}) = \binom{n + k - 2}{k}.
\]
These spaces are spanned by the cocycles:

$$c(X_h, F) = \sum_{|\alpha| = k} B_{\alpha} h' F(\alpha),$$

where, for $|\alpha| = k - 1$, the B_{α} are constants satisfying:

$$\sum_i (\alpha_i + 1)(\alpha_i + 2\lambda_i)B_{\alpha} = 0.$$ \hspace{1cm} (2.9)

For $\delta = 0$ the space $H^1(\mathfrak{sl}(2), D_{\lambda, \mu})$ is one dimensional spanned by the 1-cocycle C_0 defined by

$$C_0(X_h, f_1 \otimes \cdots \otimes f_n) = h' f_1 \cdots f_n.$$

Remark 2.1. For $n = 1$ and for $n = 2$ we refined the results of Lecomte and Bouarroudj (see [7], [4]).

Proof. According to Theorem 2.3 the space $H^1(\mathfrak{sl}(2), D_{\lambda, \mu})$ is isomorphic to the space of solutions of the system of linear equations (2.5). The linear system (2.5) has \(\binom{n + k - 2}{k - 1}\) equations with \(\binom{n + k - 1}{k}\) unknowns B_{α}. As in Theorem 2.3 we see that this system is with maximal rank, so, we have

$$\dim H^1(\mathfrak{sl}(2), D_{\lambda, \mu}) = \binom{n + k - 1}{k} - \binom{n + k - 2}{k - 1} = \binom{n + k - 2}{k}.$$

\hspace{1cm} \(\square\)

Corollary 2.2. If $\delta = k \geq 0$ and $-2\lambda \notin \{0, \ldots, k - 1\}^n$ then, we have

$$H^1(\mathfrak{sl}(2), \text{aff}(1); D_{\lambda, \mu}) = 0.$$

In fact, in this case, there are no nontrivial 1-cocycles vanishing on \(\text{aff}(1)\).

Theorem 2.5. If $\delta = k$ and $-2\lambda \in \{0, \ldots, k - 1\}^n$ then

$$\binom{n + k - 2}{k} \leq \dim H^1(\mathfrak{sl}(2), D_{\lambda, \mu}) \leq \binom{n + k - 2}{k} + 2 \binom{n + k - r - 3}{k - r - 1}$$

where $r = \max(-2\lambda_i)$.

Proof. Without loss of generality, assume that $r = -2\lambda_1$, then $\Lambda^r_1 = 0$ and Λ^r_1 appears \(\binom{n + k - r - 3}{k - r - 1}\) times in the matrix Λ defined by (2.7). So,

$$N_{k-1} - \binom{n + k - r - 3}{k - r - 1} \leq \text{rank}(\Lambda) \leq N_{k-1}.$$ \hspace{1cm} (2.10)

Obviously the number \(\binom{n + k - r - 3}{k - r - 1}\) is minimal if r is maximal.
Now, any nontrivial cocycle
\[c(X_h, F) = \sum_{|\alpha|=k} B_\alpha h' F^{(\alpha)} + \sum_{|\beta|=k-1} C_\beta h'' F^{(\beta)} \]
can be decomposed into two cocycles
\[c_1(X_h, F) = \sum_{|\alpha|=k} B_\alpha h' F^{(\alpha)} \quad (2.11) \]
and
\[c_2(X_h, F) = \sum_{|\beta|=k-1} C_\beta h'' F^{(\beta)} \quad (2.12) \]
indeed, the coefficients \(B_\alpha \) are independent of the coefficients \(C_\beta \) (see (2.2)). The space of nontrivial cocycles (2.11) is generated by the system of linear equations (2.5), so, it is with dimension \(N_k - \text{rank}(\Lambda) \). The space of nontrivial cocycles (2.12) is managed by the system of linear equations (2.6), so, it is with dimension \(N_{k-1} - \text{rank}(\Lambda) \).

Thus, \(\dim H^1(\mathfrak{sl}(2), D_{\lambda,\mu}) = N_k + N_{k-1} - 2\text{rank}(\Lambda) \).

We conclude by using (2.10). \(\square \)

Obviously, the nontrivial cocycles (2.12) managed by the system of linear equations (2.6) are \text{aff}(1)-invariant vanishing on \text{aff}(1), so, we have:

Theorem 2.6.
\[\dim H^1(\mathfrak{sl}(2), \text{aff}(1); D_{\lambda,\mu}) = N_{k-1} - \text{rank}(\Lambda) \]

These spaces are generated by the cocycles (2.12).

References

[1] Arnal D, Ben Ammar M and Selmi M, Normalisation d’une représentation non linéaire d’une algèbre de Lie, Annales de la faculté des sciences de Toulouse, 5e série, tome 9, no 3, (1988), p 355–579.

[2] Basdouri I, Ben Ammar M, Cohomology of \(\mathfrak{osp}(1|2) \) acting on linear differential operators on the supercircle \(S^{1|1} \). Letters in Mathematical Physics (2007) 81:239–251.

[3] Ben Ammar M, Jabeur A, Safi I, cohomology of \(\mathfrak{osp}(1|2) \) acting on the space of bilinear differential operators on the superspace \(\mathbb{R}^{1|1} \), International Journal of Geometric Methods in Modern Physics Vol. 9, No. 4 (2012) 1250033 (15 pages)

[4] Bouarroudj S, Cohomology of the vector fields Lie algebras on \(\mathbb{R}P^1 \) acting on bilinear differential operators, International Journal of Geometric Methods in Modern Physics (2005), 2; N 1, 23-40.

[5] Fuchs D B, Cohomology of infinite-dimensional Lie algebras, Plenum Publ. New York, 1986.

[6] Gargoubi H, Sur la géométrie de l’espace des opérateurs différentiels linéaires sur \(\mathbb{R} \), Bull. Soc. Roy. Sci. Liège. Vol. 69, 1, 2000, 2147.
[7] Lecomte B P A, *On the cohomology of \(\mathfrak{sl}(n + 1; \mathbb{R}) \) acting on differential operators and \(\mathfrak{sl}(n + 1; \mathbb{R}) \)-equivariant symbols*, Indag. Math. NS. 11 (1), (2000), 95 114.

[8] A. Nijenhuis, R.W. Richardson, *Cohomology and deformations in graded Lie algebras*. Bull. Amer. Math. Soc., 72 (1966), 1-29.