The purpose of the study was to model the investment risk of implementation of resource-saving technological changes at enterprises and to develop a method for consideration of risk for the substantiation of projects for introducing resource-saving technologies. Risk management is an important condition for increasing the expediency of technological change activities. In turn, the correct consideration of a risk factor can increase the confidence of owners of enterprises in the expediency of introduction of resource-saving technologies, which will increase the scale of such implementation.

We determined principles, an information base, and a sequence of assessment of the potential of resource-saving technological changes at enterprises.

We modeled an influence of prices for production resources, for which enterprises acquire industrial resources, on the effectiveness of resource-saving technologies implementation. The simulation results showed that the level of such efficiency is quite high only in a certain range of prices for resources. In this connection, we obtained expressions for determining the price ranges for a certain type of resource, which correspond to the three main options for the application of existing technological process. Such options are: to continue operation of the existing technology; to terminate its operation with the existing technological process. Such options are: to continue operations for determining the price ranges for a certain type of resource, to determine the maximum acceptable amount of investments based on a constructed set of scenarios of values of those project indicators that have a low level of predictability. There is no need to substantiate a value of a discount rate, which often has a high degree of subjectivity, for this approach to a risk factor.

Application of the developed method of substantiation of projects for resource-saving technological changes will increase reasonableness of relevant investment decisions due to the comprehensive consideration of a risk factor in the practice of enterprises.
A generalized mathematical model of disk interaction with soil was built under general assumptions regarding the mode of the disk knife motion in soil, namely, in a mode of slippage, skidding or rolling without slippage and skidding. Previously constructed models follow from it as particular cases at certain values of parameters. However, because of computational complexity for this model of the case for a freely rotating disk knife consisting in the need for a preliminary numerical solution of a transcendental equation to determine the mode of disk motion, the generalized mathematical model has not found wide application. Therefore, an analytical two-dimensional approximation of a generalized model of disk interaction with soil which is a new model of approximation type was constructed on the basis of a computer experiment using the least squares method.

An explicit expression was obtained for the kinematic parameter of a freely rotating disk knife which determines its mode of motion. It was established that this parameter is a rational function of relative depth of the disk penetration and the dimensionless dynamic coefficient characterizing soil properties. Also, explicit expressions were obtained for the projections of the resultant soil reaction forces acting on the blade of the disk knife and its side faces depending on the data of dimensionless parameters. It has been established that the horizontal component of the reaction which determines tractive resistance of the disk is also a rational function of relative depth of the disk penetration and the dimensionless dynamic coefficient characterizing soil properties. These expressions make it possible to significantly simplify experiments to determine the resultant soil reaction forces acting on the blade of the disk knife and its side faces. These expressions make it possible to carry out strength calculations of soil-cultivating working tools with disks and determine their optimal parameters according to the strength criteria and the minimum specific energy consumption with accuracy sufficient for engineering practice. Adequacy of the obtained expressions was confirmed by comparison with experimental data of the disk knife dynamometry.

Keywords: freely rotating disk, interaction with soil, power characteristics, analytical approximation, explicit expressions.

References

1. Hann, M. J., Giessibl, J. (1998). Force Measurements on Driven Discs. Journal of Agricultural Engineering Research, 69 (2), 149–157. doi: https://doi.org/10.1006/jaer.1997.0241

2. Singh, S. P., Singh, B., Vatsa, D. K. (1995). Design and development of powered one-way plough. Agricultural mechanization in Asia, Africa and Latin America, 26 (3), 9–12.

3. Nalavade, P. P., Salokhe, V. M., Niyamapa, T., Soni, P. (2010). Performance of Free Rolling and Powered Tillage Discs. Soil and

** DOI:** 10.15587/1729-4061.2018.148500

AN APPROXIMATING MATHEMATICAL MODEL OF INTERACTION BETWEEN A FREELY ROTATING DISK AND SOIL (p. 17–27)

Aleksandr Akimov
Federal State Budgetary Educational Institution of Higher Education «Chuvash State Agricultural Academy», Cheboksary, Chuvash Republic, Russia
ORCID: http://orcid.org/0000-0003-4629-8394

Yuriy Konstantinov
Federal State Budgetary Educational Institution of Higher Education «Chuvash State Agricultural Academy», Cheboksary, Chuvash Republic, Russia
ORCID: http://orcid.org/0000-0002-2076-0432

Vladimir Medvedev
Federal State Budgetary Educational Institution of Higher Education «Chuvash State Agricultural Academy», Cheboksary, Chuvash Republic, Russia
ORCID: http://orcid.org/0000-0001-8007-3525

Petr Mishin
Federal State Budgetary Educational Institution of Higher Education «Chuvash State Agricultural Academy», Cheboksary, Chuvash Republic, Russia
ORCID: http://orcid.org/0000-0002-2728-3579

Mikhail Volkhonov
Federal State Budget Educational Institution of Higher Education «Kostroma State Agricultural Academy», Karavaevo Village, Kostroma Region, Russia
ORCID: http://orcid.org/0000-0003-0332-8848

Petr Lekomtsev
Federal State Budgetary Educational Institution of Higher Education «Izhevsk State Agricultural Academy», Izhevsk, Udmurt Republic, Russia
ORCID: http://orcid.org/0000-0002-9554-7636

Nikolai Obolensky
State Budget Educational Institution of Higher Education «Nizhny Novgorod State Engineering and Economics University», Noginsk, Nizhny Novgorod region, Russia
ORCID: http://orcid.org/0000-0001-6292-7230

Gubeysulla Yunusov
Federal State Budgetary Educational Institution of Higher Education «Mari State University», Yoshkar-Ola, Republic of Mari El, Russia
ORCID: http://orcid.org/0000-0001-8498-8030
Tillage Research, 109 (2), 87–93. doi: https://doi.org/10.1016/j.till.2010.05.004

4. Kumar, S., Singh, T. P. (2015). Assessment of power requirement of a powered disc through soil bin study. International Journal of Basic and Applied Agricultural Research, 13 (1), 105–111.

5. Nerli, N. (1929–1930). Sul Problema dinamico dell’aratro a disco. Annali delle Università di Torino, 48 (14), 31–78.

6. Nerli, N. (1940). Sul vantaggio dinamico del coltore rotante. Sborn. soch. Vol. IV. Moskva: Sel’hozizdat, 231.

7. Nartov, P. S. (1972). Diskovye pochvoobrabatyvayushchie orudyia. Voronezh: izd-vu VGU, 184.

8. Sineokov, G. N. (1949). Diskovye rabochie organy pochvoobrabatyvayushchih mashin. Moskva: Mashgiz, 86.

9. Lachinskiy, N. D. (1977). Nekotorye voprosy zemledel’cheskoy mekhaniki. Teoreticheskie osnovy mekhanizatsii vazhnymeshchikh proizvodstva sel’skokhozyaystvennogo proizvodstva: Trudy VIM, 75, 3–77.

10. Medvedev, V. I., Vedeneev, A. I., Akimov, A. P. (1974). Metodika rascheta dvuzhivushchej sily na ploskom diske-dvuzhiditele. Traktory i sel’skohozaystvennaya., 8, 18–20.

11. Medvedev, V. I., Konstantinov, Yu. V., Akimov, A. P. (2001). Obobshchennaya matematicheskaya model’ vzaimodeystviia diskovogo nozha s pochvoy. Traktory i sel’skokhozyaystvennoe mashinostroenie, 2, 34–37.

12. Konstantinov, Yu. V. (2000). Vybor optimal’nyh parametrov i rezhimov funkcionirovaniya rotatsionnyh rabochih organov. Cheboksary, 176.

13. Akimov, A. P.; Konstantinov, Yu. V. (2005). Skol’zhenie-buksovanie diskovogo nozha s pochvoy. Traktory i sel’skohozyaystvennye mashiny, 4, 30–34.

14. Niewenburg, P. I. J. J., Speelman, L., Wensink, H. E. (1992). An engineering research, 51, 67–80. doi: https://doi.org/10.1016/0021-8634(92)80628-o

15. Turovskiy, B. V., Efremova, V. N. (2013). Zavisimost’ energoemkosti diskovogo nozha ot rezhimov rastenii. Tekhnika i oborudovanie, 6, 10–18.

16. Kobaykov, I. D., Evchenko, A. V. (2016). Issledovanie dvuzhivushenya shestuoshchogo i kruglogo diskov rabochih organov pochvoobrabatyvayushchih orudyi. Traktory i sel’skohoz, 1, 49–51.

17. Kobaykov, I. D., Evchenko, A. V. (2017). Research of the moments of rotation dircular knives. Aekonomika: ekonomika i sel’skoe hozaystvo. Available at: https://cyberleninka.ru/article/n/isledovaniya-momentov-vrazsheniya-diskovih-nozheiy

18. Kurilov, E. V., Furmanov, D. V. (2014). Razrabotka dorozhnyh asfal’tobetona diskovym svobodnovrashchayushchimisya instrumentom. Mehanizaciya stroitel’stva, 8, 4–7.

19. Furmanov, D. V., Kurilov, E. V. (2013). Teoreticheske obosnovanie processa rezannya asfal’tobetona diskovym nozhom. Ekologiya i nauchno-teknicheskiy progress. Urbanistika, 2, 498–505.

20. Kurilov, E. V. (2013). Vliyanie iznosa rezushchey kromki diskovogo nozha na energoemkost’ kosogo rezannya gruntu. Mehanizaciya stroitel’stva, 832 (10), 28–31.

21. Kurilov, E. V., Sabuhrakov, A. S. (2010). K voprosu efektivnosti kosogo rezannya gruntu diskovym nozhom. Vestnik Belorus’skogo-Ra-siyskogo universiteta, 26 (1), 24–32.

22. Lachinskiy, N. D. (1979). O bukovaniy diskovych pochvoobrabatyvayushchih orudyi. NTB VIM, 39, 13.

23. Kanarev, F. M. (1993). Rotacionshchaya pochvoobrabatyvayushchaya mashinostroenie i orudiiya. Moscow: Mashinostroenie, 142.

24. Mamatov, F. M. (1977). Eksperimental’noe issledovanie razlichnyh tipov ploskich diskovych nozhei. Sel’skokhozyaystvennye mashiny, XIV (1), 5–7.

25. Akimov, A., Konstantinov, Y., Mazayarov, V. (2018). Mathematical model of interaction of free rolling flat disk with soil. Vestnik of Kazan State Agrarian University, 13 (1), 96–101. doi: https://doi.org/10.12737/article_5a0e9ce38773a1.96690513

26. Ahmad, F., Weimin, D., Qishou, D., Rehim, A., Jabran, K. (2017). Comparative Performance of Various Disc-Type Furrow Openers in No-Till Paddy Field Conditions. Sustainability, 9 (7), 1143. doi: https://doi.org/10.3390/su9071143

27. Ahmad, F., Weimin, D., Qishou, D., Hussain, M., Jabran, K. (2015). Forces and Straw Cutting Performance of Double Disc Furrow Opener in No-Till Paddy Soil. PLOS ONE, 10 (3), e0119648. doi: https://doi.org/10.1371/journal.pone.0119648

28. Bianchini, A., Magalhães, P. S. G. (2008). Evaluation of coulters for cutting sugar cane residue in a soil bin. Biosystems Engineering, 100 (3), 370–375. doi: https://doi.org/10.1016/j.biosystemseng.2008.04.012

29. Magalhães, P. S. G., Bianchini, A., Braunbeck, O. A. (2007). Simulated and Experimental Analyses of a Toothed Rolling Coulter for Cutting Crop Residues. Biosystems Engineering, 96 (2), 193–200. doi: https://doi.org/10.1016/j.biosystemseng.2006.10.014

30. Dhuramkarr, M. S., Galhe, D. S. (2017). Design development of self suspended dispenser. International Journal of Engineering Sciences & Research Technology, 6 (2), 688–690.

31. Karada, P. R., Gaikwad, A. (2018). Design and Analysis of Disk Furrow Opener. International Journal of Engineering Technology Science and Research, 5 (3), 1777–1780.

32. Blekhman, I. I., Myshlis, A. D., Panovko, Ya. G. (1976). Prikladnaya matematika: Predmet, logika i osobennosti podhodov. Kyiv: Naukova dumka, 270.

33. Gulin, A. V., Dmitriev, V. I. (Eds.) (2010). Izbrannye trudy A. A. Samarskogo. Moscow: MAKs Press, 531.

34. Danilov, A. M., Gar’kina, I. A. (2014). Interpoliacya, apsroksima- cyia, optimizacia: analiz i sintez slozhnyh sistem. Penza: PGUAS, 168.

DOI: 10.15587/1729-4061.2018.148984

DEVELOPMENT OF A TECHNOLOGY FOR INTERACTIVE DESIGN OF GARMENTS USING ADD-ONS OF A VIRTUAL MANNEQUIN (p. 28–39)

Alla Slavinska
Khmelnytskyi National University, Khmelnytskyi, Ukraine ORCID: http://orcid.org/0000-0003-0663-9422

Oksana Syrotenko
Khmelnytskyi National University, Khmelnytskyi, Ukraine ORCID: http://orcid.org/0000-0002-6816-6467

Oksana Zakharkevich
Khmelnytskyi National University, Khmelnytskyi, Ukraine ORCID: http://orcid.org/0000-0002-6542-9727

Svetlana Kuleshova
Khmelnytskyi National University, Khmelnytskyi, Ukraine ORCID: http://orcid.org/0000-0003-2361-2050

The problem of development of the technology of interactive garment designing by engineering methods was studied, which makes it possible to use the passive mode for automated preparation of design documentation. The theoretical background for modular approaches to formalization of the structural design of clothing is the stated principles of coordination of the actions in the algorithms of transformation of the sets of a research object. The technology of construction of a geometric model of an object is represented by three kinds of information models: digital, meshed, and surface. The analytical and experimental research resulted in substantiation of the algorithm of project situations of the transformation of the surface of the original object in the form of an electronic mannequin, into the garment design. The original database for construction and modification of the frame 3D mannequin models was theoretically substantiated with a view to ensuring the reliability of their visualization.
We studied the mechanism of interactive modification of surface shells of clothing in the cycle of its silhouette deformation and of the construction of flat sweeps of clothes, adapted to the vectors of modifying the mannequin surface sections in order to receive the garment designs identical to the original of the morphological structure of the consumer’s body.

4 scenarios of design situations of the reproduction and transformation of the 3D-model of the silhouette surface of a mannequin and of the garment by the optimal route were proposed to improve the speed and the quality of processes of computer-aided design of clothing parts for the figures of typical and atypical physique. The image construction apparatus of the digital model of a three-dimensional object takes into consideration the topology of the geometrical structure of a shape and the morphological field of synergies of the elements in the processes of transition from 3D to 2D designing.

The scenario of the adaptation of silhouette 3D images of a garment to the modified 2D design documents grounded on database verification was proposed. Assessment of the effectiveness of the garment design technology was made by the number of iterations of project operations in design procedures with the quality level check.

Keywords: mathematical model, 3D mannequin, 2D sweep of clothing, surface deformation, silhouette transformation, modeling effect, universal design.

References

1. Voroncova, E. A., Danilova, O. N., Slesarchuk, I. A. (2015). Kombinirovannyy metod sozdaniya razlichnyh form odezhdy na osnove 3D proektirovaniya. Fundamental’nye issledovaniya, 7, 111–115.

2. Nayak, R., Padhye, R., Wang, L., Chatterjee, K., Gupta, S. (2015). The role of mass customisation in the apparel industry. International Journal of Fashion Design, Technology and Education, 8 (2), 162–172. doi: https://doi.org/10.1080/17543266.2015.1045041

3. Porterfield, A., Lamar, T. A. M. (2016). Examining the effectiveness of virtual fitting with 3D garment simulation. International Journal of Fashion Design, Technology and Education, 10 (3), 320–330. doi: https://doi.org/10.1080/17543266.2016.1250290

4. Sayem, A. S. M., Kennon, R., Clarke, N. (2010). 3D CAD systems for the clothing industry. International Journal of Fashion Design, Technology and Education, 2 (4), 53–55. doi: https://doi.org/10.1080/17543266.2010.503988

5. Slavinska, A. L. (2012). Metody i zasoby antropometrichnykh doslidzhen dlia proektuvannya odzhdy. Khmelnytskyi: KhNU, 191.

6. Razdomahin, N. N., Basuev, A. G., Surzhenko, E. Ya. (2012). Sistematicheskoe izuchenie masovogo vyrobnytstva. Problemy legkoy i tekstil'noy promyshlennosti, 2, 198–201. doi: https://doi.org/10.15587/2313-8416.2015.39363

7. Kuleshova, S. G. (2015). Preconditions using of fractal art for structural analysis of the fashionable costume. Visnyk Khmelnytskogo natsionalnoho universytetu, 5, 72–78.

8. Syrotenko, O. P., Slavinska, A. L. (2009). Doslidzhennia zakonomirnosti zminuvannya proektstruktyvnix vymiriv tuluba zhinochych fihur. Visnyk Khmelnytskogo natsionalnoho universytetu, 2, 198–201.

9. Seleznova, A. V., Slavinska, A. L. (2014). Odpravlenie mod-chynnykh efektiv zaobshchenoj figury, svozlivago korsetom, s uchetom psihofiziologicheskogo komforta. Izvestiya vysshix uchebnix zavedeni. Tekhnologiya tekstil'nyh promyshlennosti, 2 (350), 102–106.

10. Slavinska, A. L., Vovk, Yu. V. (2010). Patent: Sposob perevody konstruktsiy zhinochej opalubki v konstruktsiyi svodnoho vyrobnytstva. Khmel'nyts'kyi natsional'nyi universytet, 191.

11. Liu, Y.-J., Zhang, D.-L., Yuen, M. M.-F. (2010). A survey on CAD methods in 3D garment design. Computers in Industry, 61 (6), 576–593. doi: https://doi.org/10.1016/j.compind.2010.03.007

12. Krzywinski, S., Siegmund, J. (2017). 3D Garment Development for Loose-Fitting Garments Based on Parametric Human Models. IOP Conference Series: Materials Science and Engineering, 254, 12006. doi: https://doi.org/10.1088/1757-899x/254/15/12006

13. Dabolič, I., Vlašić, A., Dabolič, J., Strazdiene, E., Lapkovska, E. (2017). Usability of 3D anthropometrical data in CAD/CAM patterns. International Journal of Fashion Design, Technology and Education, 11 (1), 41–52. doi: https://doi.org/10.1080/17543266.2017.1298848

14. Andreeva, E. G., Petrosova, I. A., Boyarov, M. S. (2013). Proektirovanie veshchnoy formy muzyckoy odezhdy na osnovite trekkhernogo skanirovaniya. Shveynaya promyshlennost', 2, 33–34.

15. Baranova, T. M. (2010). Avtomatyzatsiya protsesu formuvannya antropometrichnoyi bazy dlya rozroby konstruktsiy v univerkalnogomu vyrobnytstva. Problemy legkoy i tekstil'noy promyshlennosti Ukrainy, 1, 5–8.

16. Guo, M., Kuzmichev, V. E., Adolph, D. C. (2015). Human-Friendly Design of Virtual System «female Body-dress.» Autex Research Journal, 15 (1), 19–29. doi: https://doi.org/10.2478/aut-2014-0033

17. Menga, G., Kuzmichev, V. E. (2015). Pressure and comfort perception in the system «female body-dress.» Autex Research Journal, 13 (3), 71–78. doi: https://doi.org/10.2478/v10304-012-0032-6

18. Murahovskaya-Pechenezhskaya, E. Yu., Ryabchikov, N. L. (2015). Estimation of accuracy of the dimensional characteristics of complex objects with kinect systems. ScienceRise, 3 (2 (8)), 86–91. doi: https://doi.org/10.15587/2313-8416.2015.39363

19. Kuleshova, S. G. (2015). Preconditions using of fractal art for structural analysis of the fashionable costume. Visnyk Khmelnytskogo natsionalnoho universytetu, 2 (22), 53–61.

20. Mokeeva, N. S., Yurina, Yu. V. (2012). Osobennosti proektirovaniya novykh modeley odezhdy iz unificirovannykh elementov. Shveynaya promyshlennost', 1, 40–42.

21. Zakharkevich, O. V., Kuleshova, S. G. (2017). Development of the method of scaling patterns and virtual garments forms. Vlakna a Textil, 4, 34–40.

22. Ihnatyshyn, M. I., Matviychuk, S. S. (2012). Osoblyvosti aproksymatsiyi konturu detalii oduhui polinomamy ta lininamy drugoho poriadku. Visnyk Khmelnytskogo natsionalnoho universytetu, 7, 52–78.

23. Syrotenko, O. P., Slavinska, A. L. (2009). Doslidzhennia zako-nomirnosti zminuvannya proektstruktyvnix vymiriv tuluba zhino-chychih fihur. Visnyk Khmelnytskogo natsionalnoho universytetu, 2, 198–201.

24. Seleznova, A. V., Slavinska, A. L. (2014). Opredelenie mod-chynnykh efektiv zaobshchenoj figury, svozlivago korsetom, s uchetom psihofiziologicheskogo komforta. Izvestiya vysshix uchebnix zavedeni. Tekhnologiya tekstil'nyh promyshlennosti, 2 (350), 102–106.

25. Slavinska, A. L., Vovk, Yu. V. (2010). Patent: Sposob perevody konstruktsiy zhinochej opalubki v konstruktsiyi svodnoho vyrobnytstva. Shveynaya promyshlennost', 2, 33–34.

DOI: 10.15587/1729-4061.2018.150794

IMPROVING A TECHNIQUE FOR THE ESTIMATION AND ADJUSTMENT OF COUNTERBALANCE OF SUCKER-ROD PUMPING UNITS’ DRIVES (p. 40–46)

Victor Karun
Ivano-Frankivsk National Technical University of Oil and Gas, Ivano-Frankivsk, Ukraine

ORCID: http://orcid.org/0000-0003-1422-6003

Andriy Dzhus
Ivano-Frankivsk National Technical University of Oil and Gas, Ivano-Frankivsk, Ukraine

ORCID: http://orcid.org/0000-0002-2660-5134
In order to reduce the impact of uneven load on the operation of drives at downhole sucker rod pumping units, it has been proposed, based on the results of this study, to apply an improved technique for estimating and adjusting their counterbalancing. The technique implies determining the required position of crank counterweights based on dependences of change in the active power and the rotation speed of the motor shaft. The experimental research aimed to derive the aforementioned dependences was carried out by using a portable information-measuring complex. Its operation is based on the technology of virtual instruments, methods of digital signal processing, and graphical programming of algorithms for applied software. According to the proposed technique, the optimal position of crank counterweights is determined based on the condition for the equality of maximum of the cumulative torque at the output shaft of the reduction gear. In this case, the diagram of change in the momentum of forces of useful weights is determined based on the condition for the equality of maximum of the cumulative torque at the output shaft of the reduction gear. To implement the improved technique for adjusting the equilibration of drives was confirmed, with a sufficient accuracy, by results from the repeated wattmeter measurement, performed upon repositioning the crank loads in accordance with the devised recommendations. It has been substantiated that a sufficient accuracy of parameters controlled in order to implement the technique could be achieved under condition that the crank turning angle between measurement points ranges from 5° to 1°. Introduction of the technique would make it possible to minimize the time required for the implementation of the balancing process and to reduce the impact of uneven load on the drive's operation.

Keywords: beam pumping unit, counterbalancing estimation, wattmeter diagram, crank torque, measurement discreteness.

References

1. Steliga, I., Gryzdzhuk, J., Dzhus, A. (2016). An experimental and theoretical method of calculating the damping ratio of the sucker rod column oscillation. Eastern-European Journal of Enterprise Technologies, 2 (7)(80), 20–25. doi: https://doi.org/10.15587/1729-4061.2016.66193

2. Popovych, V. Ya., Kharun, V. R. (2013). Doslidzhennia prychynny zmogu vuzha ziedannia kryshovhia ta shatuma verstasta-hoidalny. Rozvidka ta rozroba naitovykhy i hazovyk rodovishch, 4 (49), 60–66.

3. Velichkovich, A. S. (2005). Shock Absorber for Oil-Well Sucker-Rod Pumping Unit. Chemical and Petroleum Engineering, 41 (9-10), 544–546. doi: https://doi.org/10.1007/s10556-006-0015-3

4. Feng, Z.-M., Tan, J.-J., Li, Q., Fang, X. (2017). A review of beam pumping energy-saving technologies. Journal of Petroleum Exploration and Production Technology, 8 (1), 299–311. doi: https://doi.org/10.1007/s13202-017-0383-6

5. Popadyuk, I. Y., Shats'kyi, I. P., Shopa, V. M., Velychkovsky, A. S. (2016). Frictional Interaction of a Cylindrical Shell with Deformable Filler Under Nonmonotonic Loading. Journal of Mathematical Sciences, 213 (2), 243–253. doi: https://doi.org/10.1007/s10958-016-2834-x

6. Myrzahmetov, B. A., Latypov, A. S. (2014). Dlinnoodovoye pri-vody shtangovych nasosov na baze seriyhnych stankov-kachalok dlya eksploitaci v svolzhennym usloviih. Vesen KNTU im. K. I. Satpayev, 5 (105), 253–259.

7. Maliar, A. V. (2009). Optimization of balance of electric drive of the rod oil-pumping unit. Electrical engineering & Electromechanics, 3, 29–31. Available at: http://repository.kpi.kharkov.ua/handle/KhPI-Press/11888

8. Smorodov, E. A., Deev, V. G. (2001). Operativnyi kontrol' shalansirovannosti stanka-kachalki na osnove dinamometriovaniya. Neftyanoe khozayastvo, 7, 57–58.

9. Romero, O. J., Almeida, P. (2014). Numerical simulation of the sucker-rod pumping system. Ingenieria e Investigacion, 34 (3), 4–11. doi: https://doi.org/10.15446/ing.investig.v34n3.40835

10. Knytskyi, Ya. T. (2004). Korotkyi kurs teoriyi mekhanizmiv i mashyn. Lviv: Alisha, 272.

11. Takacs, G., Kis, L., Koncz, A. (2015). The calculation of gearbox torque components on sucker-rod pumping units using dynamometer card data. Journal of Petroleum Exploration and Production Technology, 6 (1), 101–110. doi: https://doi.org/10.1007/s13202-015-0172-z

12. Hakim'yanov, M. I. (2014). Energy intensity in artificial lift of sucker rod pumping units. Vestnik Ufimskogo gosudarstvennogo avia-cionsionogo tekhnicheskogo universiteta, 18 (2 (63)), 54–60.

13. Balans-SK. Vybro-Tsentr. Available at: http://vybrocenter.ru/ balanssk.htm

14. Sof'ina, N. N., Shishlyannikov, D. I., Kornilov, K. A., Vagin, E. O. (2016). Method of control parameters and technical condition of the downhole sucker rod pumping units. Master’s Journal, 1, 247–257.

15. Hakimyanov, M. I., Pachin, M. G. (2011). Monitoring of sucker rod pump units on result of the analysis wattmeter cards. Elektronny nauchny zhurnal «Neftegazovoe delo», 5, 26–36.

16. Hlad, I. V., Solomchak, A. O. (214). Research of nonlinearity of electrical group loads settlements. Visnyk Vinnyts'koho politekhnichnoho intytutu, 2, 86–89.

17. Hlad, I. V., Kiyaniuk, O. I. (2016). Inkrementalnyi enkoder yak mobilnyi vymiruvach shvydkosti obertannia. Problemy enerhore-sursuro-zberezhennia v promyslovomu rehioni. Nauka i praktyka: II Vsesukiranska NPK molodyh uchenykh, spetsialistiv, aspirantiv. Maripol, 19–21.

DOI: 10.15587/1729-4061.2018.148443

UNIVERSAL MULTIFUNCTIONAL DEVICE FOR HEAT AND MASS EXCHANGE PROCESSES DURING ORGANIC RAW MATERIAL PROCESSING (p. 47–54)

Aleksey Zavorulko
Khartov State University of Food Technology and Trade, Kharkiv, Ukraine
ORCID: http://orcid.org/0000-0003-1186-3832

Andrii Zaborulko
Khartov State University of Food Technology and Trade, Kharkiv, Ukraine
ORCID: http://orcid.org/0000-0001-7768-6571
The proposed innovative design solution of universal multifunctional device ensures implementation of the maximum number of heat exchange processes. They are: aging, drying, blanching, boiling, boiling soft, infusion, mixing, dissolution and partial extraction. Combination of main heat and mass exchange processes in a single device ensures its technological multipurpose character and mobility; due to its location on a mobile platform. On the platform, there are an engine section; a central support for fixing of the operation mode in 1.5 minutes, an ease of maintenance and reloading of the capacity installed.

The structural solution of the multifunctional device ensures a use of replaceable section-modular elements. Heating of the technological process occurs due to flexible radiating resistive electric heater. A use of replaceable section-modular elements. Heating of the technological process occurs due to flexible radiating resistive electric heater.

Keywords: universal processing, organic products, multi-operability, farming enterprises, resource efficiency, flexible film resistive electric heater.

References

1. Shkuratov, O. I., Drebot, O. I., Chudovska, V. A. et. al. (2014). Konseptsiya rozvytku orhanichnoho zemlerobstva v Ukraini do 2020 roku. Kyiv: TOV «Ekoinvestkom», 16.

2. Vyrobnytstvo orhanichnoi silhosprodutsiui si ta syrovyny. Ahrobiznes sobodni. Available at: http://agro-business.com.ua/ago/u-pravovomu-poli/item/1858-vyrobnytstvo-orhanichnoi-silospro-duksii-ta-syrovyny.html

3. Abramiuk, V. (2013). Perspektivy rozvytku kharchovoi promy- lovostsi. Vseukrainska studentska internet-konferentsiya. Available at: http://conf-cvat.ua/forum/127-13988-1

4. Markovick, M. S., Radovanovic, D. B., Pavićević, V. P., Ristić, M. S., Mileojević, S. Ž., Bošković-Vragolović, N. M., Veljković, V. B. (2018). Influence of common juniper berries pretreatment on the essential oil yield, chemical composition and extraction kinetics of classical and microwave-assisted hydrodistillation. Industrial Crops and Products, 122, 402–413. doi: https://doi.org/10.1016/j.indcrop.2018.06.018

5. Telezhenko, L. N., Bezinov, A. T. (2004). Biologicheski aktivnye voskhodcheta fruktov i ovoshchev: sohranenie pri pererabotke. Odessa: Optimum, 268.

6. Cherevko, O. I., Poperechnyi, A. M. (2002). Prosesy i aparaty khar- chovykh vyrobrystv. Kharkiv: KhDUK, 420.

7. Proses podilu plodov i ovoshchov na odnoridni za rozmiramy partii. Studiodedia. Vash slohodopedia. Available at: http://studiodedia.com.ua/1_35784_prosesy-podilu-plodov-ova-chiv-na-odnoridni- za- rozmirami-partii.html

8. Hladushniak, O. K. (2015). Tekhnolohichne obladannia konser- vnykh zavodiv. Kherson: D.S., 348.

9. Mustafina, A. S., Fedyayev, K. S. (2013). Classification of extraction objects. European Science and Technology. Materials of the IV international research and practice conference. Vol. I. Munich, 296–300.

10. Arancibia-Avila, P., Namiesnik, J., Toledo, F., Werner, E., Martinez-Ayala, A. L., Rocha-Guzman, N. E. et. al. (2012). The influence of different time durations of thermal processing on berries quality. Food Control, 26 (2), 587–593. doi. doi: https://doi.org/10.1016/j.foodcont.2012.01.036

11. Adalja, A., Lichtenberg, E. (2018). Implementation challenges of the food safety modernization act: Evidence from a national survey of produce growers. Food Control, 89, 62–71. doi: https://doi.org/10.1016/j.foodcont.2018.01.024

12. Pogozhikh, M., Pak, A. (2017). The development of an artificial energetotechnological process with the induced heat and mass transfer. Eastern-European Journal of Enterprise Technologies, 1 (8 (85)), 50–57. doi: https://doi.org/10.15587/1729-4061.2017.91748

13. Zahorulko, A. M., Zahorulko, O. Ye. (2016). Pat. No. 108041 UA. Hnuchi plivkoviy rozstuvyntsi elektronahrivach vyprominyinuchoho typu. No. u201600827; declareted: 02.02.2016; published: 24.06.2016, Bul. No. 12. URL: http://apatents.com/5-108041-gnuchkijj-plivko-vij-rezistivnij-elektronahrivach-vyprominyinuchogo-tipu.html

14. Kotel vakuumnny KVM. Available at: http://www.agro-mash.ru/ 280111_kotel_vak_KBM.html

15. Cherevko, O. I., Afukova, N. O., Kaptelja, L. V. (2002). Pat. No. 53975 UA. Kotel vakuumniy KVM. Available at: http://www.agro-mash.ru/ 280111_kotel_vak_KBM.html

DOI: 10.15587/1729-4061.2018.148036
MODERNIZATION OF THE TECHNIQUE FOR ROTARY SHAPE-FORMATION OF OUTER PROFILeD SURFACeS (p. 55–61)

Anatoly Vasilyev
Poltava National Technical Yuri Kondratyuk University, Poltava, Ukraine
ORCID: http://orcid.org/0000-0002-1767-8509

Stanislav Popov
Poltava National Technical Yuri Kondratyuk University, Poltava, Ukraine
ORCID: http://orcid.org/0000-0003-2381-152X
We have proposed a technique for obtaining outer profiled surfaces, which is characterized by affordability and low cost of equipment used. The technique is based on that a regular rotating center is fixed in a lathe's tool holder in a special way. A basic socket head of the required profile is applied as a profile-forming matrix. A tool holder's rotation angle ensures a fracture angle of the rotating center's axis relative to the axis of a workpiece rotation. A value for the fracture angle reaches 1.5°. The end surface edge of the matrix executes a reciprocating motion per every rotation of the lathe chuck along the surface of a workpiece. In this case, the end surface of the matrix and a workpiece are in contact at a single point, going deeper by the magnitude of feed per every rotation of the chuck.

Application of a given technique is an alternative to existing technique of rotational shape-formation of outer profiled surfaces, whose implementation requires specialized equipment and specialized cutting tools, the price for which is quite high (UAH 57,000 and UAH 6,000, respectively). In addition, changing the size or shape of the required profile necessitates installing a new cutting tool, replacing which requires additional adjustment.

The tests were carried out when manufacturing the twelve-point outer surface the size of S10. An analysis of vibrograms from the shape-formation process has established the most rational variant of equipment for manufacturing profiled outer surfaces. We have manufactured pilot outer profiled surfaces, such as hexagon the size of S10, the TORX surface the size of E14, and others. They con-figured cutting tools, the price for which is quite high (UAH 57,000 and UAH 6,000, respectively). In addition, changing the size or shape of the required profile necessitates installing a new cutting tool, replacing which requires additional adjustment.

The tests were carried out when manufacturing the twelve-point outer surface the size of S10. An analysis of vibrograms from the shape-formation process has established the most rational variant of equipment for manufacturing profiled outer surfaces. We have manufactured pilot outer profiled surfaces, such as hexagon the size of S10, the TORX surface the size of E14, and others. They confirmed a possibility for successful manufacturing of different profiled outer surfaces using the proposed tooling.

Using the proposed technique, which implies low cost and does not require specialized equipment, could significantly expand the scope of application of conjugated surfaces with a profiled shape in mechanical engineering.

Keywords: profiled outer surfaces, rotating center, rotary broaching, socket head.

References
1. Axinte, D., Boud, F., Penny, J., Gindy, N., Williams, D. J. (2005). Broaching of Tr-6-4 – Detection of Workpiece Surface Anomalies on Dovetail Slots through Process Monitoring. CIRP Annals, 54 (1), 87–90. doi: https://doi.org/10.1016/s0007-8502(06)60056-0
2. Kong, X., Li, B., Jin, Z., Geng, W. (2011). Broaching Performance of Superalloy GH4169 Based on FEM. Journal of Materials Science & Technology, 27 (12), 1178–1184. doi: https://doi.org/10.1016/s0965-9775(12)60015-2
3. Vasylyev, A. V., Popov, S. V., Datsenko, V. D. (2015). Development of the construction of the cut-off blade from circular saws. Technological and production reserves, 3 (1 (23)), 60–64. doi: https://doi.org/10.15587/2312-8372.2015.43396
4. Klocke, F., Döbbeler, B., Seimann, M. (2016). Dry Broaching Using Carbon Free Steel as Tool Material. Procedia CIRP, 46, 496–499. doi: https://doi.org/10.1016/j.procir.2016.04.076
5. Meier, H., Ninomiya, K., Dornfeld, D., Schulze, V. (2014). Hard Broaching of Case Hardened SAE 5120. Procedia CIRP, 14, 60–65. doi: https://doi.org/10.1016/j.procir.2014.03.074
6. Albanskiy, P. P., Kolominov, B. V., Kuz'min, V. A., Muraev, V. I., Rodin, I. I., Sysoev, A. M., Harchenko, K. S. (1989). Instrument i tekhnologicheskiaya osnastka dlya slesary. Moscow: Mashinostroenie, 200.
7. Vasylyev, A., Popov, S., Vasylyev, E., Pveliieva, A. (2017). Improving the method of rotational broaching in the production of profile openings on the lathes of turning group. Eastern-European Journal of Enterprise Technologies, 1 (1 (85)), 4–9. doi: https://doi.org/10.15587/1729-4061.2017.92236
8. Hiegemann, L., Wedeling, C., Tekkaya, A. E. (2016). Analytical contact pressure model for predicting roughness of ball burnished surfaces. Journal of Materials Processing Technology, 232, 63–77. doi: https://doi.org/10.1016/j.jmatprotec.2016.01.024
9. Kuznetsov, V. P., Tarasov, S. Y., Dmitriev, A. I. (2015). Nano-structuring burnishing and subsurface shear instability. Journal of Materials Processing Technology, 217, 327–335. doi: https://doi.org/10.1016/j.jmatprotec.2014.11.023
10. Schulze, V., Zanger, F., Krause, M., Boev, N. (2013). Simulation Approach for the Prediction of Surface Deviations Caused by Process-Machine-Interaction During Broaching. Procedia CIRP, 8, 252–257. doi: https://doi.org/10.1016/j.procir.2013.06.098
11. Korzynski, M., Zarski, T. (2016). Slide diamond burnishing influence on of surface stereometric structure of an AZ91 alloy. Surface and Coatings Technology, 307, 590–595. doi: https://doi.org/10.1016/j.surfcoat.2016.09.045
12. Rotary broach tooling. Available at: http://www.waltertools.com/
13. Complete broaching solutions. Available at: http://www.brighetti-broaching.com/
14. Proshivnaya golovka BR-G16L KM4. Available at: https://dp.prom.ua/p599348099-15.
15. Proshivka GL 16-E-8. Available at: https://dp.prom.ua/p399348099-proshivka.gl16e8.all.html
16. Schroeter, R. B., Bastos, C. M., Crichigno Filho, J. M. (2007). Simulation of the main cutting force in Crankshaft turn broaching. International Journal of Machine Tools and Manufacture, 47 (12-13), 1884–1892. doi: https://doi.org/10.1016/j.ijmachtools.2007.03.008

DOI: 10.15587/1729-4061.2018.149739
RESEARCH INTO THE PROCESS OF LOADING THE SURFACE OF A VIBROSIYE WHEN A LOOSE MIXTURE IS FED UNEVENLY (p. 62–70)

Mykhaïlo Piven
Kharkiv Petro Vasylenko National Technical University of Agriculture, Kharkiv, Ukraine
ORCID: http://orcid.org/0000-0002-9487-1450

Vadim Volokh
Luhansk National Agrarian University, Kharkiv, Ukraine
ORCID: http://orcid.org/0000-0001-7975-6377

Alyona Piven
Kharkiv Petro Vasylenko National Technical University of Agriculture, Kharkiv, Ukraine
ORCID: http://orcid.org/0000-0002-3795-1112

Sergei Kharchenko
Kharkiv Petro Vasylenko National Technical University of Agriculture, Kharkiv, Ukraine
ORCID: http://orcid.org/0000-0002-4883-2565

The work examines the influence of uneven feeding of a loose mixture on the process of loading a vibrating sieve. In this work, we established regularities of layer thickness, longitudinal and trans-
verse components of velocity, density of loose mixture and specific load on the entire area of a vibrating sieve at uneven feeding at the inlet. The uneven feed was assigned by using a convex profile, a concave profile, and a triangular profile of the initial velocity for width at the inlet of a sieve.

Flow characteristics change equally along the length of a sieve for the profiles considered. Flow characteristics change according to the initial velocity profile for width of the sieve. For a convex profile, the thickness is constant, the surface density and the longitudinal component of the velocity are the greatest along the longitudinal axis of the sieve, and they are the smallest near the side walls, the direction of the transverse component of the velocity is from the longitudinal component to the side walls. For a concave profile, the thickness is constant, the surface density and the longitudinal component of the velocity are the greatest along the side walls, and they are the smallest along the longitudinal axis, the direction of the transverse component of the velocity is from the side walls to the axis. For a triangular profile, the thickness is constant, the surface density and the longitudinal component of the velocity are the greatest along the side walls, and they are the smallest along the opposite wall, the direction of the transverse component of the velocity is toward the first mentioned side wall.

For a convex profile of the initial velocity, the surface is overloaded along the longitudinal axis of the sieve and it is underloaded along the side walls. For a triangular profile, the surface is overloaded near the side walls and it is underloaded along the longitudinal axis of the sieve. For a triangular profile - the surface is overloaded along one side wall and it is underloaded along the opposite one. The largest deviations of the specific load occur near the inlet section of the flow, the smallest ones - near the outlet section.

The regularities of distribution of the specific load of the sieve are decisive in the design of feeders and distributors of loose mixtures, as well as in calculation of separation modes.

Keywords: vibrating sieve, loose mixture, specific surface load, uneven mixture feeding.

References
1. Zaika, P. M. (2006). Teoriya selskohospodarskykh mashyn. Ochystka i sortuvannia zerna. Kharkiv: Oko, 408.
2. Zaika, P. M. (1998). Vibrationnoe peremeshchenie tverdykh i syupuchih tel v sel'skokhozyaystvennych mashinah. Kyiv: USKHA, 625.
3. Tishtchenko, L. N., Ol'shanskiy, V. P., Kharchenko, F. M., Kharchenko, S. A. (2014). Design of dynamics of grain mixture at a separation on the riffled sieve of vibroseparator. Inzheneriya pryrodorozhystvuval'nyh napriamky tekhnolohiyi ta mekhanizatsiyi protsesiv pererobnykh i kharchovychykh vyrobnytstv, 1, 139–141.
4. Tishtchenko, L. N., Harchenko, S. A. (2013). K primeneniyu metodov mekhaniki sploshnych sred dlya opisaniya dvizheniya zernovykh smesey na vibroreshetah. MOTROL. Commission of Motorization and Energetics in Agriculture, 15 (7), 94–99.
5. Tishtchenko, L. N., Ol'shanskiy, V. P., Ol'shanskiy, S. V. (2011). Vibroreshetnaya separatsiya zernovykh smesey. Kharkiv: «Miskdruk», 280.
6. Tishtchenko, L. N. (2012). Gidrodinamicheskoe modelirovanie dvizheniya sloya zerna po ploskim naklonnym vibroreshetam. Nosoviti naukovo-protsessuval'nyh materialy VIII Mezhdunar. nauchno-prakt. konf. Vol. 8. Bolgariya: Sofiya «Byal.Grad.-BG» OOD, 59–67.
7. Harchenko, S. A. (2015). By simplifying of the equations of dynamics of bubble fluidized of grain mixture on the structural three-dimensional vibroseive. Mechanization in agriculture, 5, 9–13.
8. Olshanskii, V., Olshanskii, A., Kharchenko, S., Kharchenko, F. (2016). About motion of grain mixture of variable porosity in the cylindrical sieve of vibrocentrifuge. TEKA. Commission of motorization and energetics in agriculture, 16 (3), 31–34.
9. Kaceva, R. Z. (1972). Vylyanie neravnomenosti raspredeleniya nagruzki po shirine na prosevaemnost' reshet. Trudy ChIMESKh, 62, 202–211.
10. Akhmadiev, F., Gizzjatoev, R. (2013). Separation Processes of Granular Materials by Sizes at the Sieve Classifiers. Journal of Chemistry and Chemical Engineering, 1 (7), 56–63.
11. Akhmadiev, F. G., Gizzjatoev, R. F., Kiyamov, K. G. (2013). Mathematical modeling of thin-layer separation of granular materials on sieve classifiers. Theoretical Foundations of Chemical Engineering, 47 (3), 254–261. doi: https://doi.org/10.1134/s0040579513030019
12. Ravshanov, N. (2015). The Mathematical Model and New Criteria for a Separation Process of Granular Mixtures. Vestnik TOGU, 1 (36), 83–92.
13. Goncharov, E. S. (1973). Teoriya neustoychivogo dvizheniya zerna po poverhnosti vertikal'nyh cilindricheskikh centrobezhnovibratsionnyh reshet. Mehanizaciya i elektrifikatsiya sel'skogo hozaystva, 25, 39–44.
14. Tishtchenko, L. N., Ol'shanskiy, V. P. (2008). Reshenija uproschenykh uravneniy gidrodinamiki pri modelirovanii dvizheniya zernovoy smesi po naklonnomu ploskomu reshetu. Visnyk KnHTUSH. Suchasni napriamky tekhnolohiyi ta mehanizatsiyi protsesiv pererobnykh i kharchovychykh vyrobnytstv, 74, 306–312.
15. Akhmadiev, G. F., Gizzjatoev, R. F., Nazipov, I. T. (2017). Hydrogas-dynamics and Kinetics of Separation of Disperse Media on Sieve Classifiers. Journal of Engineering Physics and Thermophysics, 90 (5), 1077–1086. doi: https://doi.org/10.1007/s10951-017-1659-x
16. Tishtenko, L. N. (2001). Gidrodinamicheskie harakteristiki psevdozhezhihennykh syupuchyh sred pri vibrocentrovezhnoznom separirovanii na zernopererabatyvayushchihchih predpriatijax. Visnyk KnHTUSH. Suchasni napriamky tekhnolohiyi ta mehanizatsiyi protsesiv pererobnykh i kharchovychykh vyrobnytstv, 5, 13–32.
17. Tishtenko, L. N., Ol'shanskiy, S. V., Ol'shanskiy, V. P. (2009). Oprodenenie zakonemernostey skorosti potoka zernovoy smesi na vibroreshete pri nеравномерном подаче. Visnyk KnHTUSH. Suchasni napriamky tekhnolohiyi ta mehanizatsiyi protsesiv pererobnykh i kharchovychykh vyrobnytstv, 8, 5–11.
18. Samurganov, E. E. (2016). About the motion of the vibroliquefied separated layer of grain on the flat sieve of finite width. Polytechnic Online Scientific Journal of Kuban State Agrarian University, 123 (99). doi: https://doi.org/10.21515/1990-4665-123-036
19. Piven, M. (2015). Grain flow dynamics on vibrating flat sieve of finite width. TEKA. Commission of motorization and energetics in agriculture, 15 (3), 113–119.
20. Piven, M. (2016). Equation of the planned flow of granular mixture. TEKA. Commission of motorization and energetics in agriculture, 16 (4), 63–72.
21. Piven, M. (2017). Numerical solution of the problem of spatial movement of a loose mixture in a vibrolot. TEKA. Commission of motorization and energetics in agriculture, 17 (2), 19–28.
22. Kovenya, V. M. (2014). Algoritmy raschhepleniya pri reshenii mno-gomernyh zadach aerogidrodinamiki. Novosibirsk: SO RAN, 278.
We have developed an analytical model of the stressed-strained state of the two-layered powdered core in a metal sheath in the deformation zone when fabricating a composite material by rolling. Based on the constructed mathematical model, we performed a theoretical analysis of the influence of starting parameters on the course of the process of rolling a composite material. By using a finite element method, we simulated the process of rolling diverse powders in a metal sheath. The result of the theoretical research is the established effect of a material and the thickness of a sheath on the geometrical characteristics of a deformation site, as well as the influence of an asymmetry factor on a change in the zone of plastic shape alteration and the density of a powdered material. We have determined the distributions of normal contact stresses and relative density over a deformation site under different clamping. We calculated the components of rolling forces under deformation of a powdered core and a metal sheath. It was established that an increase in the thickness of a sheath leads to an increase in energy-force parameters of the process. In this case, the component of a rolling force due the sheath deformation can be both comparable to the component from the deformation of a powdered core, and exceed it by several times. The undertaken experimental study into the process has confirmed the validity of the constructed mathematical model that could be applied for determining the optimal technological regimes for rolling a 2-layer powdered core in a metal sheath.

A technology for rolling a 2-layer powdered core in a metal sheath has been proposed, which includes rolling in two runs, filling the metal sheath consistently with components. It was established that at rolling based on the proposed technology the core’s relative density increases under the same rolling modes. In this case, the size of a powder’s fraction is retained, which is a prerequisite for a given production technology.

Keywords: powder metallurgy, powdered tape, powder, mathematical model, stressed-strained state.

References

1. Tseng, H.-C., Hung, C., Huang, C.-C. (2009). An analysis of the formability of aluminum/copper clad metals with different thicknesses by the finite element method and experiment. The International Journal of Advanced Manufacturing Technology, 49 (9-12), 1029–1036. doi: https://doi.org/10.1007/s00170-009-2446-4
2. Qwamizadeh, M., Kadhkhoaei, M., Salimi, M. (2014). Asymmetrical rolling analysis of bonded two-layer sheets and evaluation of outgoing curvature. The International Journal of Advanced Manufacturing Technology, 73 (1-4), 521–533. doi: https://doi.org/10.1007/s00170-014-8283-4
3. Parvizi, A., Afrouz, F. (2016). Slab analysis of asymmetrical clad sheet bonded before rolling process. The International Journal of Advanced Manufacturing Technology, 87 (1-4), 137–150. doi: https://doi.org/10.1007/s00170-016-8419-5
4. Ishfaq, K., Mufti, N. A., Mughal, M. P., Saleem, M. Q., Ahmed, N. (2018). Investigation of wire electric discharge machining of stainless-steel clad steel for optimization of cutting speed. The International Journal of Advanced Manufacturing Technology. doi: https://doi.org/10.1007/s00170-018-1630-9
5. Amirkhanlou, S., Jamati, R., Nirooand, B., Toroghinejad, M. R. (2011). Manufacturing of High-Performance AlSi35/SiCpComposite by CAR Process. Materials and Manufacturing Processes, 26 (7), 902–907. doi: https://doi.org/10.1080/10426914.2011.773789
6. Chigarev, V. V., Belik, A. G., Gribkov, E. P., Gavrish, P. A. (2014). A mathematical model of the process of rolling flux-cored tapes. Welding International, 29 (1), 70–74. doi: https://doi.org/10.1080/09507116.2014.888192
7. Gribkov, E. P., Perig, A. V., Danilyuk, V. A. (2014). Research into the process of producing powder tapes. The International Journal of Advanced Manufacturing Technology, 77(5-8), 1087–1104. doi: https://doi.org/10.1007/s00170-014-6496-x
8. Fedorinov, V. A., Satonin, A. V., Gribkov, E. P. (2010). Matematicheskoe modelirovanie napryazheniy, deformacii i osnovnykh pokazateley kachestva pri prokatke otnositel’no shirokih listov i polos. Kramatorsk: DGMA, 244.
9. Volkogon, G. M., Dimitrev, A. M., Dobryakov, E. P. (1991). Advanced technological processes stamping parts from powders and equipment. Mechanical Engineering.
10. Zheng, Z.-X., Xia, W., Zhou, Z. Y. (2013). Experimental and numerical modeling for powder rolling. Review of Advanced Material Science, 33, 330–336. Available at: http://www.ipm.ri/cjournals/RAMS/no_43315/05_433_zheng.pdf

DOI: 10.15587/1729-4061.2018.148739

DEVELOPMENT OF A METHOD FOR ESTIMATING THE RESISTANCE OF FIBERS AND THREADS TO A SLIDING BEND BASED ON ENERGY CONSUMPTION FOR EXTERNAL AND INTERNAL FRICTION (p. 80–87)

Evgeny Pashin
Federal State Budget Educational Institution of Higher Education «Kostroma State Agricultural Academy», Karavaevo village, Kostroma region, Russia

ORCID: http://orcid.org/0000-0002-5871-874X

Alexande Orlov
Federal State Budget Educational Institution of Higher Education «Kostroma state University», Kostroma, Kostroma region, Russia

ORCID: http://orcid.org/0000-0002-4995-3939

Mikhail Volkhonov
Federal State Budget Educational Institution of Higher Education «Kostroma State Agricultural Academy», Karavaevo village, Kostroma region, Russia

ORCID: http://orcid.org/0000-0003-0332-8848

We present materials for constructing an instrumental method for assessing resistance of threads to the sliding bend relative to cylindrical surfaces in order to solve tasks on control and prediction of conditions for their processing at minimal cost of production. Underlying the method is the differential accounting of energy consumed to overcome the internal and external friction.

The main objective of this study was to improve informativeness of the results obtained in the analysis of fires and threads through...
manifestations of physical-mechanical properties predetermined by patterns in their structure and composition, as well as by characteristics of the streamlined surfaces. It has been proposed to test the thread based on the simulated actual conditions for frictional interaction when bending radius \(r \) of the working bodies’ edges should be commensurate with the thickness of the thread. Given such a variant of testing, we have identified conditions that ensure the manifestation of parameters for the internal and external friction, which made it possible to devise a technological scheme of tests and to conduct comparative analyses of threads in materials with different structure and properties.

We have proposed, as an estimate that characterizes the manifestation of only the external friction at a cylindrical surface of curvature \(1/r \); the magnitude of energy \(\Delta_\text{ext} \) consumed to displace a thread (of rigidity \(EI \) and with a stretched force) under condition \(2(T)^2/\pi \geq 1500 \). To account for the total energy \(E \) due to the external and internal friction, as an estimate that characterizes the resistance of a thread against a sliding bending, the test conditions imply the application of a bending surface with elevated curvature \(1/r \), that is \(r \ll r \).

In order to calculate the estimate \(D \) as the proportion of energy \(\Delta_\text{norm} \) required to overcome the internal friction, the dependence \(D = (A - \Delta_\text{norm})/A \cdot 100 \% \), is used. It has been proposed to perform tests in two stages, each of which implies that a thread, stretched by a constant force, should streamline cylindrical surfaces at an unchanged capture angle, while the radius of the curvature varies at each stage.

Effectiveness of the proposed method for assessing resistance against a sliding bend has been confirmed by the results of experiments. We have established a possibility to differentiate the tested thread in two stages, each of which implies that a thread, stretched by a constant force, should streamline cylindrical surfaces at an unchanged capture angle, while the radius of the curvature varies at each stage.

Keywords: thread, rolling, sliding bend, thread-guiding gear, consumed energy, external and internal friction, control method.

References

1. Pakshver, A. B., Mel'nikov, B. N., Usenko, V. A. et. al. (1975). Svoyastra i osobennosti pererabotki himicheskikh volokon. Moscow: Himiya, 495.
2. Kagan, V. M. (1984). Vzaimodeystvie niti s rabochimi organami tekstil'nyh mashin. Moscow, 118.
3. Kagan, A. G., Skobova, N. V. (2009). Tekhnologiya i oborudovanie dlya proizvodstva rovnicy i pryazhi. Vitebsk: VGTU, 239.
4. Citovich, I. G. (1992). Tekhnikogicheskoe obspechenie kachestva i efektivnosti proyazhtsa pokorechnogo triktota. Moscow: Legprombytizdat, 240.
5. Nikolaev, S. D.; Vlasov, P. V. et. al. (1995). Teoriiya procesov tekhnologii i oborudovanie tkackogo proizvodstva. Moscow, 256.
6. Chaykin, V. A. (2001). Praktichnye zadachi teorii niti. Sankt-Peterburg, 178.
7. Krutikova, V. R. (2006). Vzaimodeystvie niti s rabochimi organami plskogo- i kruglovyazal'nih mashin. Kostroma: KGTU, 103.
8. Sevost'yanov, A. G., Os'min, N. A., Shcherbakov, V. P., Galkin, V. F., Kozlov, V. G., Gilyarevskiy, V. S., Litvinov, M. S.; Sevost'yanov, A. G. (Ed.) (1989). Mekhanicheskaya tekhnologiya tekstil'nyh materialov. Moscow: Legprombytizdat, 512.
9. Sinoimeri, A. (2009). Friction in textile fibers and its role in fiber processing. Wear, 267 (9–10), 1619–1624. doi: https://doi.org/10.1016/j.wear.2009.06.010
10. Ahmad, S., Sinoimeri, A., Nowrouzieh, S. (2012). The Effect of the Sliver Fiber Configuration on the Cotton Inter-fiber Frictional Forces. Journal of Engineered Fibers and Fabrics, 7 (2), 1558925012007000. doi: https://doi.org/10.1177/155892501200700213
11. Gao, X., Wang, L., Hao, X. (2015). An improved Capstan equation including power-law friction and bending rigidity for high performance yarn. Mechanism and Machine Theory, 90, 84–94. doi: https://doi.org/10.1016/j.mechmachthry.2015.03.005
12. Ehrmann, A., A. B., Bjahowicz, T. (2017). Examination of textiles with mathematical and physical methods. Cham: Springer, 180. doi: https://doi.org/10.1007/978-3-319-47408-3
13. Shcherbakov, V. P. (2007). Ocherk o mehanike niti. Izv. vuzov. Tekhnologiya tekstil'nyy promyshlennosti, 6, 86–89.
14. Ogibalov, P. M., Babovich, A. L., Fedotov, N. M. (1939). O sialah vznosmejestyviya mehdu trosom i skliovom. Pratiklnaymatematika i mekhanika, 3 (3), 111–123.
15. Efremov, E. D. (1958). Vlyianie tobschiny niti i geometricheskih parametrov rabochih organov na natyazhenie niti. Izv. vuzov. Tekhnologiya tekstil'nyy promyshlennasti, 6, 63–67.
16. Migushov, I. I. (1967). Natyazhenie niti s uchctom zhetskosti i razmerov pokorechnogo secheniya. Izv. vuzov. Tekhnologiya tekstil'nyy promyshlennosti, 3, 138–142.
17. Surkov, K. V. (1974). Vlyianie zhetskosti niti na ve natyazhenie pri vzaimodeyestviy s petleobrazuyushchimi organami triktotazhnyh mashin. Leningrad: Izd. LGU, 107.
18. Migushov, I. I. (1978). Natyazhenie nelineyno– upgrulostchnykh zhestkoj niti na zykhzhie po cilindrui. Izv. vuzov. Tekhnologiya tekstil'nyy promyshlennosti, 3, 48–53.
19. Shcherbakov, V. P. (2013). Praktiklnay i strukturohka mehanyka voloknistyh materialov: Moscov: Tiso Print, 304.
20. Korytyskaya, T. Ya. (1976). O metodike opredeleniya zhetskosti niti. Izv. vuzov. Tekhnologiya tekstil'nyy promyshlennosti, 3, 25–27.
21. Shcherbakov, V. P. (1987). Teoreticheskoe osnovy opredeleniya zhetskosti niti pri izgibe. Izv. vuzov. Tekhnologiya tekstil'nyy pro-
myshlennosti, 4, 13–16.
22. Nikolaev, S. D. (1989). Teoreticheskoe osnovy opredeleniya izgibnoy zhetskosti niti pri izgibe. Izv. vuzov. Tekhnologiya tekstil'nyy pro-
myshlennosti, 2, 14–17.
23. Migushov, I. I. Kutuzova, I. E. (1988). Metod opredeleniya karakter-
ristik izgibnoy zhetskosti tekstil'nyh i drugih materialov. Izv vuzov. Tekhnologiya tekstil'nyy promyshlennosti, 8, 8–10.
24. Krutikova, V. R., Oshchanskaya, I. V., Lustgarten, N. V. (2004). Opredelenie zhetskosti niti pri izgibe. Izv. vuzov. Tekhnologiya tekstil'nyy pro-
myshlennosti, 2, 11–14.
25. Grechuhin, A. P. (2014). Sposob opredeleniya zhetskosti niti pri izgibe. Izv. vuzov. Tekhnologiya tekstil'nyy promyshlennosti, 5, 47–51.
26. Egorov, N. V., Shcherbakov, V. P. (2010). Novyi metod rascheta zhetskosti niti pri izgibe. Izv. vuzov. Tekhnologiya tekstil'nyy pro-
myshlennosti, 5, 23–27.
27. GOSt 29104.21-91. Industrial fabrics. Method for determination of flexural rigidity (2004). Moscow: IPK Inatel'stvo standartov.
28. Migushov, I. I., Fernando, S., Krasnov, A. A. (1991). Pat. No. 1824530 RF . Sposob izmereniya koeficienta zhetskosti niti pri izgibe. No. 4954555, declared: 15.02.1991; published: 30.06.1993.
29. Krutikova, V. R., Oshchanskaya, I. V., Oshchanskaya, I. V., Lust-
garten, N. V. (2002). Pat. No. 2219544 RF. Method establishing rigidity of textile fiber in bending. No RU2002121244A; declared: 05.08.2002; declared: 20.12.2003.
30. Grechuhin, A. P., Selverstov, V. Yu. (2013). Pat. No. 2315333 RF. Method of determining stiffness of textile fiber in its bending. RU2013125636A; declared: 03.06.2013; declared: 10.12.2014.
31. Kagan, V. M., Citovich, I. G. (1974). K raschetu natyazheniya niti pri dvizhenii po povorhnosti s bols'hoj krviznoy. Izv. vuzov. Tekhnologiya legkoj promyshlennosti, 4, 129–134.
32. Suharev, V. A., Matyushev, I. I. (1982). Raschet tel namotki. Moscow: Mashinostroenie, 136.
33. Tiranov, V. G., Chaykin, V. A. (1998). Скользжение вязконеупругой нити по цилиндрической поверхности. Изв. вузов. Технология текстильной промышленности, 3, 78–82.
34. Feodos’ev, V. I. (1967). Избранные задачи и вопросы по сопротивлению материалов. Москва: Наука, 376.
35. Protalinskiy, S. E. (1998). Дискретная модель контактного взаимодействия нити при продольном движении. Изв. вузов. Технология текстильной промышленности, 3, 82–85.
36. Pashin, E. L. (2003). Учет эффекта смазываемости волокна при скольжении его по цилиндрической поверхности. Вестник ВНЦАЛК, 1, 28–30.
37. Lapshin, A. B., Pashin, E. L., Verizhnikova, N. M. (1999). Влияние смазываемости нити на силу натяжения при трении. Изв вузов. Технология текстильной промышленности, 1, 19–22.
38. Chaykin, V. G., Chaykin, V. A., Mazin, L. S. (1998). Колебания упругого тела, индуцируемые скольжением по нему нити. Изв. вузов. Технология текстильной промышленности, 3, 78–82.
39. Bordeianu, D., Hristian, L., Lupu, I., Vilcu, A. (2014). Bending behavior of rayon and wool type polyester fibers thermal treated. Annals of the University of Oradea: Fascicle of Textiles, Leatherwork, XV (1), 15–18.
40. Manin, V. N., Gromov, A. N., Grigor’ev, A. P. (1986). Дефектность и эксплуатационные свойства полимерных материалов. Москва: Химия, 184.
41. Shao, X., Qiu, Y., Wang, Y. (2005). Theoretical modeling of the tensile behavior of low-twist staple yarns: Part I – theoretical model. Journal of the Textile Institute, 96 (2), 61–68. doi: https://doi.org/10.1533/joti.2004.0002
42. Gafurov, J., Mardonov, B., Gafurov, K., Rakhmatov, S. (2017). Elastic and elastic-plastic deformation of fibers under axial loading in twisted yarn. Vestnik Vitebskogo gosudarstvennogo universiteta, 2, 7–13.
43. Perepelkin, K. E. (1985). Структура и свойства волокна. Москва: Химия, 208.
44. Coy, B., Kartashov, E. M., Shevelev, V. V. (1999). Прочность и разрушение полимерных пленок и волокон. Москва: Химия, 496.
45. Vil’deman, V. E., Sokolkin, Yu. V., Tashkinov, A. A. (1997). Механика неупругого деформирования и разрушения композиционных материалов. Москва: Наука, 288.
46. Bolhoeva, L. A. (2007). Особенности расчета на прочность элементов конструкций из изотропных и композиционных материалов с допускими дефектами. Улан-Удэ: VSGTU, 192.
47. Banakova, N. V., Krutikova, V. R. (2015). Анализ параметров технологических процессов приготовительного, текстильного и трикотажного производства по тензораммам нити. Изв. вузов. Технология текстильной промышленности, 5, 100–105.
48. Citovich, I. G. (1984). Теоретические основы стабилизации процесса вязания. Москва: Легкая и пищевая пром-ть, 136.