Aggressiveness Overcomes Body-Size Effects in Fights Staged between Invasive and Native Fish Species with Overlapping Niches

Fábio Henrique Carretero Sanches¹, Caio Akira Miyai¹, Tânia Márcia Costa², Ronaldo Adriano Christofoletti³, Gilson Luiz Volpato¹, Rodrigo Egydio Barreto¹*

¹ Departamento de Fisiologia, Instituto de Biociências, Caunesp, UNESP, Botucatu, São Paulo, Brazil, ² Campus Experimental do Litoral Paulista, UNESP, São Vicente, São Paulo, Brazil, ³ Universidade de São Paulo, Centro de Biologia Marinha (CEBIMar/USP), São Sebastião, São Paulo, Brazil

Abstract

Approximately 50 years ago, Nile tilapia were accidentally introduced to Brazil, and the decline of pearl cichlid populations, which has been intensified by habitat degradation, in some locations has been associated with the presence of Nile tilapia. There is, however, little strong empirical evidence for the negative interaction of non-native fish populations with native fish populations; such evidence would indicate a potential behavioural mechanism that could cause the population of the native fish to decline. In this study, we show that in fights staged between pairs of Nile tilapia and pearl cichlids of differing body size, the Nile tilapia were more aggressive than the pearl cichlid. Because this effect prevailed over body-size effects, the pearl cichlids were at a disadvantage. The niche overlap between the Nile tilapia and the pearl cichlid in nature, and the competitive advantage shown by the Nile tilapia in this study potentially represent one of several possible results of the negative interactions imposed by an invasive species. These negative effects may reduce population viability of the native species and cause competitive exclusion.

Introduction

Invasive species are a serious ecological problem. The management of non-native populations that become naturalized requires attention because intense competition for limited resources usually occurs between native and invader species [1] and can alter natural communities [2]. Niche overlap is usually high in this situation, and intense competition may cause the rapid decline and even the extinction of native populations [1,3–7]. This effect has become widespread in aquatic ecosystems, where the introduction of exotic fish species has caused deleterious consequences to native fish species worldwide [8–12]. These negative effects on native species have been attributed to the higher competitive ability of the invasive fish species [10,12]. However, strong empirical evidence of negative interactions between non-native fish populations and native fish populations is lacking. Such evidence should demonstrate the mechanisms underlying the invader’s competitive advantage over the native fish and should, therefore, potentially suggest approaches to the management of the invasive species.

The Nile tilapia was accidentally introduced in Brazil approximately 50 years ago. This cichlid is one of the most frequently cultivated fish worldwide and is of great economic importance, particularly for Brazilian aquaculture [13]. However, the Nile tilapia is a generalist species, and its ability to adjust readily to stream environments probably facilitated its rapid spread throughout the Brazilian river systems [14]. The decline of the pearl cichlid populations has been associated with the occurrence of Nile tilapia, and this decline has been further intensified by habitat degradation [14]. In fact, other species are reported to be extinct in other localities worldwide where the Nile tilapia has been introduced [8,15]. In laboratory studies, the displacement of a native species (sunfish, Lepomis miniatus) from their preferred structured habitats has been linked to agonistic interactions with Nile tilapia [12]. The effect of the Nile tilapia on pearl cichlid populations is not the only deleterious effect of this exotic species. The pearl cichlid is a predator of the snail that is the vector for Schistosoma [16], whereas the Nile tilapia does not feed on molluscs [17]. The loss of this predatory species could therefore cause problems for human health.

The Nile tilapia and the pearl cichlid are both aggressive fish species [18–21], yet the Nile tilapia appears to show a competitive advantage over the pearl cichlid [14]. In nature, the most common type of resource competition involves aggressive disputes [22], and the contestants are likely to differ in their fighting ability, termed ‘resource-holding potential’ (RHP) [23–25], reviewed by Arnott & Elwood [26]. Body size is commonly used as a proxy for RHP and is one of the most obvious indicators of fight outcomes because strength is related to size; in intraspecific contests, the larger animal tends to dominate [26–30]. In interspecific contests (e.g., a native species against an invader in the presence of niche overlap),
the success of an invasive species in competition with a native species can be difficult to explain mainly based on differences in body size. A species-specific asymmetry in aggressiveness, for instance, might be sufficient to overcome an asymmetry in body size. Aggressiveness is a trait that can vary between individuals and therefore could contribute to RHP. Unlike other metrics of RHP (e.g. body size), however, 'aggressiveness' cannot be measured independently of agonistic encounters. In a recent study, for example, repeated observations of the same individuals in multiple agonistic encounters revealed aggressiveness to be both an RHP trait and a personality trait [31]. Thus, even a larger-bodied pearl cichlid might be less aggressive than a Nile tilapia and not have an advantage in a fight and would not be likely to gain access to a contested resource. This hypothesis agrees with a recent discussion that in intraspecific contest between green swordtails (Xiphophorus helleri), aggressiveness is determined only in part by the relative size (RHP) of an opponent towards which agonistic acts are directed, but also because it is a trait of individual personality [31]. In this context, as personality can modulate the aggressiveness of individuals, we postulate that aggressiveness might also be involved in interspecific contests; that is, some species would be more aggressive than others, irrespective of their body size. In this study, we compared dyadic interspecific fights staged between individual Nile tilapia and pearl cichlids differing in body size. The outcomes of these fights were examined to determine whether interspecific differences in aggressiveness might overcome the body-size effect. Our findings potentially identify a behavioural mechanism that could be linked to the competitive advantage of an invasive species against a native species. We tested this hypothesis using an invasive African cichlid, the Nile tilapia (Oreochromis niloticus), against a native Brazilian cichlid, the pearl cichlid (Geophagus brasilienensis).

Materials and Methods

Animal welfare statement

This research agrees with the Ethical Principles in Animal Research adopted by the National Council for the Control of Animal Experimentation - Brazil (CONCEA - Conselho Nacional de Controle de Experimentação Animal - Brazil) and was approved by the Ethical Committee for Animal Research from the Instituto de Biociências/UNESP (CEUA - Comissão de Ética no Uso de Animais), protocol 331.

Animals and holding conditions

The pearl cichlid, Geophagus brasilienensis (Quoy & Gaimard 1824), were obtained from a lagoon system at Jardim Britânia, in a rural area of São Paulo city (23°25'46.34"S, 46°47'19.47"W), while the Nile tilapia, Oreochromis niloticus (L.), from a lagoon system at the aquacultural facility of CAUNESP (Centre of Aquaculture of São Paulo State University, Jaboticabal city, São Paulo state, Brazil). The mean standard length of the Nile tilapia specimens was 7.6±1.2 cm, and the standard length (the length of the caudal fin is excluded) of the pearl cichlid specimens was 7.7±1.4 cm. Sexually immature fishes were used because, in nature, competition among juveniles appears to be more relevant during competitive exclusion [14]. In this juvenile age, sex is not easily distinguishable and thus was not determined. The fishes were housed in separate stock tanks, therefore, communication between the individuals of the two study species was prevented prior to the beginning of the experiment. During this period, the individuals of each species were housed in a 120-L glass tank (70x35x50 cm; 1 fish/1.5 L) with a water temperature of 25±1°C, continuous aeration and mechanical and biological filtration, a natural photoperiod and natural indirect illumination. The levels of ammonia and nitrite were <0.3 ppm and <0.05 ppm, respectively. The animals were fed daily with commercial dry pellets (32% protein, Presence; Evialis do Brasil Nutrição Animal, Paulínia, SP, Brasil). Leftover food was removed periodically, and 60% of water was changed (dechlorinated water) at least once a week or when necessary (tendency of ammonia to increase).

Experimental protocol and procedures

Our basic approach was to evaluate the frequency of attacks and dominance relations in pairs of fish consisting of a Nile tilapia and a pearl cichlid of specified body sizes. The fish were removed from the holding tanks, transferred to individual 20-L glass tanks (40x20x25 cm) and kept in isolation for 5 days to eliminate the effects of prior social experience [32]. The feeding regime and the water quality were identical to those used in the holding tanks. On the sixth day, a fish of each species was gently placed into the same neutral arena (40x20x25 cm) at the same time, and the agonistic interactions of the fish were video-recorded for 30 min. Six independent experimental pairings conditions, with n=8 replicates each, were used to investigate the effects of differences in body size between the members of a pair. Each trial was conducted using the basic procedures outlined above. The size pairings used in the study involved pearl cichlids 30% or 10% smaller than the Nile tilapia, similar in size to the Nile tilapia, and Nile tilapia 10%, 30% or 50% smaller than the pearl cichlids. The standard body lengths used are given in Table 1.

Behavioural analyses

We quantified the aggressive interactions occurring in the videotaped experiments using previously published ethograms for the Nile tilapia [33] and the pearl cichlid [20]. We quantified the directed attacks by counting the numbers of biting on anterior (head), tail fin, median or ventral area; lateral fighting (a sudden slap between fish bodies) with fish oriented with the head in the same direction or in opposite directions; chasing; and mouth wrestling. The initiator of an attack was identified by observing who approached the opponent and directed the attack; the loser was the fish that left the place of attack or retreat. We identified the social status (dominant or subordinate) of each individual by calculating the dominance index, defined as the number of attacks directed by a fish divided by the total number of interactions exhibited by the pair [34].

Statistical Analyses

A Kolmogorov-Smirnov test showed that the data were not normally distributed. A Bartlett’s test revealed that the data were not homocedastic, even after transformation. Because analysis of

| Table 1. Standard body length of pearl cichlid and Nile tilapia. |
|------------------------|------------------------|
| Size parings | Species mean (±SD) standard length (cm) |
| PC<NT (30%) | Pearl cichlid (PC) | Nile tilapia (NT) |
| PC<NT (10%) | 6.6±0.2 | 9.4±0.3 |
| PC=NT | 7.0±0.3 | 7.8±0.3 |
| NT<PC (10%) | 7.3±0.3 | 7.3±0.3 |
| NT<PC (30%) | 9.3±0.4 | 6.5±0.3 |
| NT<PC (50%) | 10.8±0.5 | 5.7±0.2 |

doi:10.1371/journal.pone.0029746.t001
The body size of the tilapia, and the frequency of these attacks. The rates of attack by the pearl cichlids did not vary with body size were 30% or 50% smaller than the pearl cichlids (less than 35 attacks by the tilapia decreased significantly when the Nile tilapia was similar in size or when Nile tilapia was 10% smaller than the pearl cichlid). In these pairs, the mean value of the number of directed aggression was 30% smaller than the Nile tilapia, 10% smaller, no difference in the dominance index was observed; moreover, when the Nile tilapia was 30% smaller than the pearl cichlid, the attack frequency was substantially reduced. Thus, the Nile tilapia was the dominant fish in the pair when the pearl cichlid was 30% or 10% smaller than the Nile tilapia, similar in size, or Nile tilapia was 10% smaller than the pearl cichlid. When the Nile tilapia was 30% smaller than the pearl cichlid, no difference in the dominance index was observed; moreover, when the Nile tilapia was 30% smaller than the pearl cichlid, the attack frequency was substantially reduced. Thus, the Nile tilapia and highlight the clear tendency of the Nile tilapia to become the dominant fish. Interestingly, body size did not have a strong influence on the outcomes of the fights or the determination of dominance.

Discussion

This study demonstrates the marked success in fighting and the dominance of the invasive Nile tilapia over the native pearl cichlid (Brazil). This success occurred despite body-size differences and provides evidence of a behavioural mechanism for the extinction or drastic reduction of a native species by the Nile tilapia. The results of this study also indicate that ecological problems are possible in places where the Nile tilapia is grown in aquaculture, where accidental introductions of this species are likely to occur (e.g., see Garcia et al. [37], in Argentina).

The Nile tilapia and the pearl cichlid are aggressive fish species [18–21] and, in nature, the former appears to demonstrate a competitive advantage over the pearl cichlid. Evidence for this advantage is suggested by the association between the occurrence of Nile tilapia and the decline of pearl cichlid populations, a phenomenon intensified by habitat degradation [14]. Body size (RHP) commonly modulates aggressive encounters among individuals of the same species and influences the outcome of an aggressive dispute, where the largest individual will generally dominate [26–30]. In the context of the interspecific aggressive interactions of the present study, Nile tilapia is generally more aggressive and pearl cichlid must be substantially larger to mitigate the aggression advantage of this invader species. Thus, the effects of body size (RHP) on the outcome of the fights or dominance in an interspecific context seem to figure as a secondary trait that does not occur in the way predicted for intraspecific aggressive encounters. However, Wilson et al. [31] state that intraspecific aggression should be explained by a connection between contest (RHP - body size) and personality (aggressiveness) theories. In the context of Wilson et al. ’s conclusion, our conclusion is in line with this predicted direction and extends the connections between these...
aggressive encounters that we staged between the juveniles of these species. Dominance hierarchies produce unequal distributions of resources, and the dominant individuals are able to monopolise the resources [38]. For instance, in a laboratory study of intraspecific contests, the dominant Nile tilapia made a patch of food unavailable to the subordinate specimens [39]. In the context of the present study, it is possible to extrapolate the effects of this sort to interspecific interactions between the pearl cichlids and Nile tilapia and to suggest an explanation based on the long-term competitive exclusion that has been reported by Linsé et al. [14].

Field observations of fish (serranid – e.g., groupers and seabass) species have shown that agonistic interactions occur even between individuals of different life-history stages [40]. These interactions segregate spatially individuals of different body sizes, thus avoiding food overlap and, consequently, competitive exclusion [40]. However, contests between the Nile tilapia and the pearl cichlid have been reported to involve niche overlap [14]. Thus, the competitive advantage shown by the Nile tilapia in this study potentially represents one of several possible mechanisms of the negative interactions caused by an invasive species. These negative effects may reduce the viability of native species populations and cause competitive exclusion.

Author Contributions

Conceived and designed the experiments: REB FHCS CAM TMC RAC GLV. Performed the experiments: FHCS CAM TMC. Analyzed the data: REB FHCS CAM. Contributed reagents/materials/analysis tools: REB TMC. Wrote the paper: REB FHCS CAM TMC RAC GLV. Provided financial background support: GLV.

References

1. Bohn T, Amundsen PA, Sparrow A (2008) Competitive exclusion after invasion? Biological Invasions 10: 359–368.
2. Parker IM, Simberloff D, Loudal WM, Goodell K, Wonham M, et al. (1999) Impact toward a framework for understanding the ecological effects of invaders. Biological Invasions 1: 3–19.
3. Volterra V (1931) Variations and fluctuations of the numbers of individuals in animal species living together. In: Chapman RN, ed. Animal ecology McGraw-Hill. pp 609–648.
4. Hardin G (1960) Competitive exclusion principle. Science 131: 1292–1297.
5. Pianka ER (2000) Evolutionary ecology. San Francisco: Benjamin-Cummings. pp 409–448.
6. Webb CO, Ackery DD, Mcpeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annual Review of Ecology and Systematics 33: 475–505.
7. Novacek MJ, Clulow J (2001) The current biodiversity extinction event: scenarios for mitigation and recovery. Proceedings of the National Academy of Sciences of USA 98: 5466–5470.
8. Ogutu-Ohwayo R, Hecke RE (1991) Fish introductions in Africa and some of their implications. Canadian Journal of Fisheries and Aquatic Sciences 48: 8–12. Suppl. 1.
9. Mills MD, Rader RB, Belk MC (2004) Complex interactions between native and invasive fishes: the simultaneous effects of multiple negative interactions. Oecologia 141: 713–721.
10. Vinale JRS, Freire CA, Simberloff D (2009) Introduction of non-native freshwater fish can certainly be bad. Fish and Fisheries 10: 98–108.
11. Brooks WR, Jordan RC (2010) Enhanced interspecific territoriality and the contests between the invasive mosquitofish (Gambusia affinis) and the chub (Lotaichys phleg Rath in Walter Spring, Utah, USA have been reported [9] and in laboratory experiments between the invasive Nile tilapia and the native sunfish, Lepomis minius (estuaries of the Gulf of Mexico) [12]. These studies, however, evaluated other behavioural mechanisms.

In a competitive interaction, small Nile tilapias could easily exclude pearl cichlids of different sizes. Due to its aggressiveness, the Nile tilapia exhibited a tendency to win in the contest with the pearl cichlid, or it did not succumb easily, irrespective of the size of the pearl cichlid. Thus, the Nile tilapia had a tendency to dominate in the fights against the pearl cichlid in most of the aggressive encounters that we staged between the juveniles of these species.
32. Hsu YY, Earley RL, Wolf LL (2006) Modulation of aggressive behaviour by fighting experience: mechanisms and contest outcomes. Biological Reviews 81: 33–74.
33. Alvarenga CMD, Volpato GL (1995) Agonistic profile and metabolism in alevins of the Nile tilapia. Physiology & Behavior 57: 75–80.
34. Bailey J, Alanara A, Brannas E (2000) Methods for assessing social status in Arctic charr. Journal of Fish Biology 57: 258–261.
35. Underwood AJ (1997) Experiments in ecology: their logical design and interpretation using analysis of variance. Cambridge: Cambridge University Press.
36. Briffa M, Elwood RW (2010) Repeated measures analysis of contests and other dyadic interactions: problems of semantics, not statistical validity. Animal Behaviour 80: 583–586.
37. García ML, Cuello M, Solari A, Milessi AC, Cortés F, et al. (2010) Is Oreochromis niloticus invading the Samborombón Bay, Río de la Plata, Argentina? Revista del Museo Argentino de Ciencias Naturales 12: 117–120.
38. Harwood AJ, Armstrong JD, Metcalfe NB, Griffiths SW (2003) Does dominance status correlate with growth in wild stream-dwelling Atlantic salmon (Salmo salar)? Behavioral Ecology 14: 902–908.
39. Delicio HC, Luciari AC, Barreto RE, Marcondes AL (2006) Testing time-place learning in the cichlid fish Nile tilapia. Journal of Ethology 24: 195–200.
40. Gibran FZ (2007) Activity, habitat use, feeding behavior, and diet of four sympatric species of Serranidae (Actinopterygii: Perciformes) in southeastern Brazil. Neotropical Ichthyology 5: 387–398.