Imaging biomarkers for the treatment of esophageal cancer

Koichi Hayano, Gaku Ohira, Atsushi Hirata, Tomoyoshi Aoyagi, Shunsuke Imanishi, Toru Tochigi, Toshiharu Hanaoka, Kiyohiko Shuto, Hisahiro Matsubara

ORCID number: Koichi Hayano (0000-0003-4733-8220); Gaku Ohira (0000-0001-7246-5390); Atsushi Hirata (0000-0001-5931-7596); Tomoyoshi Aoyagi (0000-0001-5280-3751); Shunsuke Imanishi (0000-0001-7534-210X); Toru Tochigi (0000-0002-8734-3975); Toshiharu Hanaoka (0000-0001-9106-3442); Kiyohiko Shuto (0000-0001-7265-8117); Hisahiro Matsubara (0000-0002-2335-4704).

Author contributions: Hayano K contributed to conception and design; all authors contributed to manuscript writing and preparing figures; all authors reviewed and approved this article to be published.

Conflict-of-interest statement: We confirm that there are no known conflicts of interest associated with this publication, and there has been no significant financial support for this work that may have influence on the contents.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Invited

Abstract

Esophageal cancer is known as one of the malignant cancers with poor prognosis. To improve the outcome, combined multimodality treatment is attempted. On the other hand, advances in genomics and other “omic” technologies are paving way to the patient-oriented treatment called “personalized” or “precision” medicine. Recent advancements of imaging techniques such as functional imaging make it possible to use imaging features as biomarker for diagnosis, treatment response, and prognosis in cancer treatment. In this review, we will discuss how we can use imaging derived tumor features as biomarker for the treatment of esophageal cancer.

Key words: Esophageal cancer; Computed tomography perfusion; Dynamic-contrast-enhanced magnetic resonance imaging; Texture analysis; Diffusion-weighted imaging; Positron emission tomography

©The Author(s) 2019. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Advances in imaging techniques enable us to assess tumor biology such as viability, vascular physiology, heterogeneity, or metabolism, which can be new approaches to investigate biomarker for cancer treatment. In this review, we will discuss various functional imaging techniques including computed tomography/magnetic resonance perfusion, texture analysis, diffusion-weighted imaging, and positron emission tomography in terms of prediction of treatment response or prognosis in esophageal cancer.

Citation: Hayano K, Ohira G, Hirata A, Aoyagi T, Imanishi S, Tochigi T, Hanaoka T, Shuto WJG 2019 June 28; 25(24): 3021-3029

ISSN 1007-9327 (print) ISSN 2219-2840 (online)

June 28, 2019 Volume 25 Issue 24
ESOPHAGEAL CANCER: AN EMERGING IMPACT ON CANCER TREATMENT

INTRODUCTION

Esophageal cancer is the seventh most common cancer, and sixth leading cause of death in the world\(^1\). Surgical resection is the only curative method for esophageal cancer, but is limited to early stage disease, and the recurrence rate after radical resection of esophageal cancer is reported to be approximately 50%, and most cases of recurrence occur within two years after surgery\(^\text{[2-4]}\).

In this context, personalized or precision medicine, which enables the best choice of treatment based on certain biomarkers, is highly desirable, preventing side-effect and extra expenses, leading to more effective multidisciplinary treatments. Angiogenesis, tumor stroma, hypoxia, heterogeneity, and metabolism are known as typical biological features in malignancies, and these have been investigated to be biomarkers for diagnosis, prognosis, and treatment response. These biological features are usually investigated by the cell and molecular biology, but recent advances in imaging technique enable non-invasive assessment of various tumor functions, which have been investigated their biomarker value in malignancies. Imaging derived markers have the advantage of being non-invasive, spatially resolved and repeatable, compared to bio-specimen biomarkers which are obtained by removing a sample from a patient. Recent increasing interests in "Radiomics", which is an emerging field that converts imaging data into a high dimensional mineable feature space using a large number of automatically extracted data-characterization algorithms, makes imaging derived biomarkers more valuable. In these contexts, this review will discuss how we can use various imaging derived biomarkers including perfusion analysis using computed tomography (CT) or magnetic resonance imaging (MRI), texture analysis, diffusion-weighted imaging (DWI), and positron emission tomography (PET) in terms of prediction of treatment response or prognosis to improve outcome of esophageal cancer patients.

PERFUSION ANALYSIS

Perfusion analysis using dynamic contrast-enhanced CT (DCE-CT/CT perfusion) and DCE-MRI (MR perfusion) can quantify tissue hemodynamics by measuring the temporal changes in tissue attenuation after administration of intravenous contrast media\(^\text{[5-7]}\). Since "angiogenesis" plays an important role in almost all types of cancer progression\(^\text{[8-9]}\), quantification of vascular physiology using CT or MR perfusion techniques may reflect tumor angiogenesis, and has a potential to be a biomarker in cancer treatment\(^\text{[10]}\). These perfusion techniques are readily incorporated into the existing CT and MRI protocol, and enables in vivo quantification of tissue hemodynamics using the modeling tracer kinetics on the imaging workstation (Figure 1)\(^\text{[11]}\)."
in tumor blood flow during CRT survived significantly longer than those with lower
in tumor blood flow reduction. It is speculated that the tissue fibrosis due to CRT leads
to compression of tumor capillaries and increased flow resistance, results in decrease
of blood flow/perfusion after CRT. In fact, it was reported that patients who achieved
pathological complete response (pCR) after neoadjuvant CRT had tumors with lower
blood flow than non-pCR[17].

Regarding relationship between CT/MR perfusion and angiogenesis, published
results are controversial. For example, Chen et al[18] demonstrated that tumor blood
volume measured by CT perfusion was significantly correlated with micro-vessel
density in esophageal cancer, while Sato et al[19] reported that there was no significant
correlation of tumor blood flow with the micro-vessel density in CT perfusion study
of gastric cancer. Sato et al[19] speculated that blood flow assessed with perfusion
imaging reflected only the functional vessels with a lumen, and not the functionless
tumor vascularity; and therefore, micro-vessel density studied immunohistochemically in vitro using surgical specimens might be inadequate for “in vivo
tumor vascular physiology. These factors may affect controversial results on
relationship of CT/MR perfusion with immunohistochemically evaluated angiogenesis.

This perfusion technique using CT and MRI is very interesting and exciting
technique with a potential to be a useful biomarker, but this technique is still
considered a research tool in the realm of oncology. A consensus and standardization
of data acquisition and analysis methods have yet to be established. The definition of
the tumor region of interest (ROI) is subject to similar consideration, because the
method used to draw the ROI clearly influences the perfusion parameters. Relatively
high radiation dose and complicated procedure should be improved to be more
common examination in clinical practice of esophageal cancer.

TEXTURE ANALYSIS

Analysis of texture within tumor on medical imaging such as CT, MRI, and PET,
which reflects structural abnormality or heterogeneity in the tumor, is emerging as a
potential biomarker to predict prognosis and treatment response in patients with
cancer[20], because most malignant tumors show a striking amount of intratumor
heterogeneity, which has implications for diagnosis, treatment efficacy, and the
identification of drug targets[21]. There are various methods including statistical-
model-based methods with various texture parameters[22]. Common
Texture parameters are entropy (a measure of irregularity), uniformity (a measure of
uniform distribution of grey-levels), skewness (a measure of asymmetry of the
histogram), kurtosis (a measure of peakedness and tailedness), and fractal dimension
(a measure of complexity)[23-25]. Ganeshan et al[26] reported that tumor heterogeneity
(uniformity) assessed on unenhanced CT was correlated with 18F-fluorodeoxyglucose
(18F-FDG) uptake, and was an independent predictor of survival in 21 patients with
esophageal cancers. Yip et al[27] reported that post-treatment uniformity and entropy of
the tumor measured on contrast-enhanced CT were correlated with overall survival in
esophageal cancer patients treated with CRT. In fractal analysis of PET imaging,
Tochigi et al[28] reported that the low fractal dimension of tumor 18F-FDG uptake was
associated with favorable survival, and they concluded that metabolic heterogeneity
measured by fractal analysis can be a novel imaging biomarker for survival in patients
with esophageal squamous cell carcinoma.

These texture analysis is a post-processing mathematical technique, which can
apply to any medical imaging with no additional radiation exposure, special protocol,
and cost, and maximizes the information obtained from current standard medical
imaging (Figure 2). This technique still needs further investigation and
standardization to be used in clinical practice, but has a potential to be a valuable
clinical tool in the management of esophageal cancer.

DIFFUSION-WEIGHTED IMAGING

In 1905, Einstein described molecular diffusion or Brownian motion formally on the
basis of the random translational motion of molecules[29]. Recent advances in magnetic
resonance gradient technology have allowed acquisition of the apparent diffusion
coefficient (ADC) value, which can be calculated by the DWI measurements acquired
with a different gradient duration and amplitude (b-values)[30]. DWI has been
discussed in terms of its biomarker value for cancer treatment in a consensus meeting,
and a publication on consensus and recommendations for DWI as a cancer biomarker
Table 1 Summary of reports on computed tomography or magnetic resonance perfusion in esophageal cancer

Year	Patients	Biomarker candidate	Prediction of treatment outcome	
Hayano et al\cite{14}	2007	31	Baseline BF (CT perfusion)	High baseline BF associated with good response and OS after CRT (31)
Makari et al\cite{15}	2007	46	Baseline BF (CT perfusion)	High baseline BF associated with good response and OS after chemotherapy (36) and CRT (10)
Djuric-Stefanovic et al\cite{17}	2015	40	Post-therapeutic BF (CT perfusion)	Post-therapeutic BF < 30 mL/min/100 g can predict pCR with 100% of sensitivity and specificity
Lei et al\cite{13}	2015	25	Baseline Ktrans (MR perfusion)	Ktrans was significantly different between CR and non-CR after CRT
Sun et al\cite{12}	2018	59	Change of Ktrans (MR perfusion)	Change in Ktrans was the best parameter to assess treatment response

BF: Blood flow; pCR: Pathological complete response; CRT: Chemoradiation therapy; OS: Overall survival; CT: Computed tomography.

In esophageal cancer, there are seven papers evaluating DWI for prediction of CRT response and prognosis\cite{32}, but the results are controversial (Table 2). In 2011, Aoyagi et al\cite{33} reported that higher baseline tumor ADC was associated with better survival. Another study also suggested that high baseline tumor ADC was associated with good response to CRT\cite{34}, while De Cobelli et al\cite{35} reported that the high baseline tumor ADC was associated with poor response to CRT. Because of these conflicting results, it is still unclear whether pre-therapeutic tumor ADC can really predict response or survival after CRT. Cheng et al\cite{32} performed meta-analysis, and reported that change of ADC and post-therapeutic ADC of the tumor were promising reliable and valuable predictor for the response to CRT, rather than pre-therapeutic ADC. Interestingly, Imanishi et al\cite{36} reported that early increase of tumor ADC (> 15% after 20 Gy) could predict treatment response with 85% of accuracy and 100% of positive predictive value. Similarly, three studies suggested importance of post-CRT ADC and the change of ADC after 2-3weeks of CRT in terms of prediction of response to CRT in esophageal cancer\cite{37-39}.

Because DWI does not need radiation exposure and contrast agents, it can be an ideal biomarker. However, standardization of data acquisition and analysis methods have yet to be established for DWI. Low spatial resolution, especially in high b-value image, should be improved for accurate detection and quantification of the tumor.

POSITRON-EMISSION TOMOGRAPHY

PET is a quantitative imaging technique with use of various types of tracers. 18F-FDG, which can quantify glucose metabolism of the tissue, is the most common clinical PET tracer. Theoretically, malignant tumor cells exhibit strongly enhanced energy consumption, and lead to increased 18F-FDG uptake due to the increased number of glucose transporters and the increased hexokinase activity (Figure 4). The standardized uptake value (SUV) is generally used to quantify the tissue glucose metabolism, which has been reported its biomarker value in the treatment response and prognosis in various types of malignancies.

Regarding the biomarker value of pre-therapeutic PET in surgically treated esophageal cancer, Fukunaga et al\cite{40} reported that a high SUV of the tumor before surgery had a poorer prognosis compared with those with low FDG uptake in esophageal cancer patients who received curative surgery without neoadjuvant therapy in 1998. After this paper had been published, seven papers on this subject were published\cite{41-47}, and all those papers suggested that high tumor SUV before surgery was associated with poor survival in surgically treated esophageal cancer (neoadjuvant therapy)\cite{48}. On the other hand, interestingly, pretherapeutic tumor SUV may not associate with survival in patients who received neoadjuvant chemotherapy.
or CRT\cite{49,50}, while the tumor SUV after neoadjuvant therapy can be a biomarker for survival. Swisher et al. reported that the tumor SUV after CRT is the most accurate test to predict survival in esophageal cancer patients (87% is adenocarcinoma) who were treated CRT followed by curative surgery\cite{43}. Higuchi et al\cite{52} also demonstrated that post-CRT SUV uptake in the tumor (cut-off 2.5) was the preoperative prognostic factor in esophageal squamous cell carcinoma patients who were treated neoadjuvant CRT or chemotherapy. Regarding change in tumor SUV during neoadjuvant therapy, early decrease (after 2 wk of neoadjuvant therapy) in FDG uptake is reported to be a predictive marker for response and survival\cite{53-59}. However, some studies included patients with a wide range of disease (adenocarcinomas and squamous cell carcinomas, stage I through IV), and studies used different neoadjuvant treatment regimens.

Nevertheless, FDG-PET seems to be served as a useful biomarker for treatment response and prognosis in various types of treatments, and we need further investigation with a large multicenter prospective trial to confirm usefulness of FDG-PET in the management of esophageal cancer.

CONCLUSION

Ideal biomarker should be simple, non-invasive, reproducible, and widely available. Given the wide availability and the less invasiveness, imaging has a big potential to be an ideal biomarker. As we reviewed, various imaging biomarkers showed interesting results, and some of them are ready to use in clinical practice of esophageal cancer patients, which would provide patients more personalized and effective treatment, leading better outcome.
Table 2 Summary of reports on diffusion-weighted imaging in esophageal cancer

Year	Patients	Biomarker candidate	Prediction of treatment outcome
Aoyagi et al [33]	2011	Baseline ADC	High baseline ADC associated with favorable survival after CRT
Imanishi et al [36]	2013	Early change of ADC, post-CRT ADC	Increase of ADC/high post-CRT ADC associated with good response to CRT
De Cobelli et al [35]	2013	Baseline ADC	High baseline ADC associated with poor response to CRT
Van Rossum et al [39]	2013	Early change of ADC	Increase of ADC associated with good response to CRT
Wang et al [37]	2016	Early change of ADC, post-CRT ADC	Increase of ADC/high post-CRT ADC associated with good response to CRT
Li et al [38]	2017	Early change of ADC, post-CRT ADC	Increase of ADC/high post-CRT ADC associated with good response to CRT
Cong et al [34]	2019	Baseline ADC	High baseline ADC associated with good response to RT

ADC: Apparent diffusion coefficient; CRT: Chemoradiation therapy; RT: Radiation therapy.

Figure 2 Histogram analysis of diffusion-weighted imaging. Histogram analysis is one of the texture analyses. This is the histogram analysis of apparent diffusion coefficient (ADC) map. Region of interest (ROI) for the tumor is drawn on ADC map, and distribution of pixels in the ROI is quantified as histogram parameters such as kurtosis and skewness. ADC: Apparent diffusion coefficient; ROI: Region of interest.

Figure 3 Advanced esophageal squamous cell carcinoma in contrast enhanced computed tomography image and diffusion-weighted imaging at b = 1000. A: Contrast enhanced computed tomography image; B: Diffusion-weighted imaging. The tumor showed conspicuous high signal intensity on high b-value diffusion-weighted imaging.

Figure 4 18F-fluorodeoxyglucose positron emission tomography image of esophageal cancer. A: Axial image; B: Coronal image. Malignancies exhibit strongly enhanced energy consumption, resulting in increased 18F-fluorodeoxyglucose uptake.
Tochigi T, Shuto K, Kono T, Ohira G, Tohma T, Gunji H, Hayano K, Narushima K, Fujiishiro T, Hanaoka T, Akutsu Y, Okazumi S, Matsubara H. Heterogeneity of Glucose Metabolism in Esophageal Cancer Measured by Fractal Analysis of Fluorodeoxyglucose Positron Emission Tomographic Image: Correlation between Metabolic Heterogeneity and Survival. *Dig Surg* 2017; 34: 186-191 [PMID: 27931038 DOI: 10.1159/000447751]

Einstein A. On the theory of the brownian movement. 1st ed. New York: Dover Publications, 1956.

Koh DM, Padhani AR. Diffusion-weighted MRI: A new functional clinical technique for tumour imaging. *Br J Radiol* 2006; 79: 633-635 [PMID: 16793851 DOI: 10.1259/bjr/29792965]

Padhani AR, Liu G, Koh DM, Chenevert TL, Thoeny HC, Takahara T, Dzik-Jurasz A, Ross BD, Van Cauteren M, Collins D, Hammoud DA, Rustin GJ, Taouli B, Choyke PL. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: Consensus and recommendations. *Neoplasia* 2009; 11: 102-125 [PMID: 19186405 DOI: 10.1593/neo.083128]

Cheng B, Yu J. Predictive value of diffusion-weighted MR imaging in early response to chemoradiotherapy of esophageal cancer: A meta-analysis. *Dis Esophagus* 2019; 32: pii: doy065 [PMID: 30010733 DOI: 10.1093/dote/doy065]

Aoyagi T, Shuto K, Okazumi S, Shimada H, Kazama T, Matsubara H. Apparent diffusion coefficient values measured by diffusion-weighted imaging predict chemoradiotherapeutic effect for advanced esophageal cancer. *Dig Surg* 2011; 28: 252-257 [PMID: 21654173 DOI: 10.1159/000332870]

Cong Q, Li G, Wang Y, Zhang S, Zhang H. DW-MRI for esophageal squamous cell carcinoma, correlations between ADC values with histologic differentiation and VEGF expression: A retrospective study. *Oncol Lett* 2019; 17: 2770-2776 [PMID: 30854051 DOI: 10.3892/ol.2019.9934]

De Ceobelli F, Giganti F, Orsengo E, Cellina M, Esposito A, Agostini G, Albarello L, Mazza E, Ambrosi A, Socci C, Staadacher C, Del Maschio A. Apparent diffusion coefficient modifications in assessing gastro-esophageal cancer response to neoadjuvant treatment: Comparison with tumour regression grade at histology. *Eur Radiol* 2013; 23: 2165-2174 [PMID: 23588582 DOI: 10.1007/s00330-013-2807-0]

Imanishi S, Shuto K, Aoyagi T, Kono T, Saito H, Matsubara H. Diffusion-weighted magnetic resonance imaging for predicting and detecting the early response to esophageal squamous cell carcinoma. *Dig Surg* 2013; 30: 240-248 [PMID: 23880636 DOI: 10.1159/000351435]

Wang L, Liu L, Han C, Liu S, Tian H, Li Z, Ren X, Shi G, Wang Q, Wang Q. The diffusion-weighted magnetic resonance imaging (DWI) predicts the early response of esophageal squamous cell carcinoma to concurrent chemoradiotherapy. *Radiother Oncol* 2016; 121: 246-251 [PMID: 27838148 DOI: 10.1016/j.radonc.2016.10.021]

Li QW, Qiu B, Wang B, Wang DL, Yin SH, Yang H, Liu JL, Fu JH, Liu MZ, Xie CM, Liu H. Prediction of pathologic responders to neoadjuvant chemoradiotherapy by diffusion-weighted magnetic resonance imaging in locally advanced esophageal squamous cell carcinoma: A prospective study. *Dis Esophasus* 2018; 31 [PMID: 29036529 DOI: 10.1093/dote/dox012]

van Rossum PS, van Lier AL, van Vulpes E, Reerink O, Lagendijk JJ, Liu SH, van Hillegersberg R, Ruurda JP, Meijer GJ, Lips IM. Diffusion-weighted magnetic resonance imaging for the prediction of pathologic response to neoadjuvant chemoradiotherapy in esophageal cancer. *Radiother Oncol* 2015; 115: 163-170 [PMID: 26002307 DOI: 10.1016/j.radonc.2015.04.027]

Fukunaga T, Okazumi S, Koido Y, Inoue K, Imazeki K. Evaluation of esophageal cancers using fluorine-18-fluorodeoxyglucose PET. *J Nucl Med* 1998; 39: 1002-1007 [PMID: 9627333]

Choi JY, Jung HJ, Shim YM, Kim K, Lee KS, Lee KH, Choi Y, Cho YS, Kim BT. 18F-FDG PET in patients with esophageal squamous cell carcinoma undergoing curative surgery: Prognostic implications. *J Nucl Med* 2004; 45: 1843-1850 [PMID: 15348653]

Choi JY, Jung K, Shim YM, Kim K, Ahn G, Lee KH, Choi Y, Cho YS, Kim BT. Prognostic significance of vascular endothelial growth factor expression and microvessel density in esophageal squamous cell carcinoma: Comparison with positron emission tomography. *Ann Surg Oncol* 2006; 13: 1054-1062 [PMID: 1665594 [PMID: 10.1259/ASO.2006.08.012]

Kato H, Kawanou H, Nakajima M, Miyazaki T, Yoshikawa M, Ojima H, Tsukada K, Oriuchi N, Inoue T, Endo K. Comparison between positron emission tomography and computed tomography in the assessment of advanced esophageal cancer: A prospective study. *Ann Cancer Res* 2003; 23: 3263-3272 [PMID: 12926662 DOI: 10.1111/j.1532-5415.2003.01796.x]

Rizk N, Downey RJ, Akhurst T, Gonen M, Bains MS, Larson S, Rusch V. Preoperative 18F-fluorodeoxyglucose positron emission tomography standardized uptake values predict survival after esophageal adenocarcinoma resection. *Ann Thorac Surg* 2006; 81: 1076-1081 [PMID: 16488725 DOI: 10.1016/j.athoracsur.2005.09.063]

van Westreenen HL, Plukker JT, Cobben DC, Verhoogt CJ, Groen H, JPL. Prognostic value of the standardized uptake value in esophageal cancer. *AJR Am J Roentgenol* 2005; 185: 436-440 [PMID: 16637517 DOI: 10.2214/aJR.185.1054036]

Olmoo JM, Sloot GW, Boellaard R, Hoekstra OS, JPL, van Dullemen HM, Fockens P, Plukker JT, van Lanschot JJ. Importance of fluorodeoxyglucose-positron emission tomography (FDG-PET) and endoscopic ultrasonography parameters in predicting survival following surgery for esophageal cancer. *Endoscopy* 2008; 40: 464-471 [PMID: 18543134 DOI: 10.1055+s-2008-1077302]

Olmoo JM, van Heijl M, Hoekstra OS, van Berge Henegouwen MI, van Lanschot JJ, Sloof GW. FDG-PET parameters as prognostic factor in esophageal cancer patients: A review. *Ann Surg Oncol* 2011; 18: 3338-3352 [PMID: 21537872 DOI: 10.1245/s10434-011-1721-1]

Chatterton BE, Ho Shon I, Baldey A, Lenzo N, Patreikos A, Kelley B, Wong D, Ramshaw JE, Scott AM. Positron emission tomography changes management and prognostic stratification in patients with esophageal cancer: Results of a multicentre prospective study. *Eur J Nucl Med Mol Imaging* 2009; 36: 354-361 [PMID: 19318159 DOI: 10.1007/s00259-008-0959-y]

Hong D, Lunagomez S, Kim EE, Lee JH, Bresalier RS, Swisher SG, Wu TT, Morris J, Liao Z, Komaki R, Ajani JA. Value of baseline positron emission tomography for predicting overall survival in patient with nonmetastatic esophageal or gastroesophageal junction cancer. *Cancer* 2005; 104: 1620-1626 [PMID: 16188804 DOI: 10.1002/atc.21356]

Swisher SG, Maish M, Romans JJ, Correa AM, Ajani JA, Bresalier R, Komaki R, Macapinlac H, Munden
RF, Putnam JB, Rice D, Smythe WR, Vaporciyan AA, Walsh GL, Wu TT, Roth JA. Utility of PET, CT, and EUS to identify pathologic responders in esophageal cancer. Ann Thorac Surg 2004; 78: 1152-60; discussion 1152-60 [PMID: 15464463 DOI: 10.1016/j.athoracsur.2004.04.046]

52 Higuchi I, Yasuda T, Yano M, Doki Y, Miyata H, Tsutsumi M, Fukunaga H, Takiguchi S, Fujiwara Y, Hatazawa J, Monden M. Lack of fluodeoxyglucose F 18 uptake in posttreatment positron emission tomography as a significant predictor of survival after subsequent surgery in multimodality treatment for patients with locally advanced esophageal squamous cell carcinoma. J Thorac Cardiovasc Surg 2008; 136: 205-212, 212.e1-212.e3 [PMID: 18603077 DOI: 10.1016/j.jtcvs.2008.02.016]

53 Lordick F, Ott K, Krause RJ, Weber WA, Becker K, Stein HJ, Lorenzen S, Schuster T, Wieder H, Herrmann K, Bredenkamp R, Höfler H, Fink U, Peschel C, Schweiger M, Siewert JR. PET to assess early metabolic response and to guide treatment of adenocarcinoma of the oesophagogastric junction: The MUNICON phase II trial. Lancet Oncol 2007; 8: 797-805 [PMID: 17693134 DOI: 10.1016/S1470-2045(07)70244-9]

54 Westerterp M, Oomloo JM, Sloof GW, Hulshof MC, Hoekstra OS, Creeze H, Boelhaar R, Vervenne WL, ten Kate FJ, van Lanschot JJ. Monitoring of response to pre-operative chemoradiation in combination with hyperthermia in oesophageal cancer by FDG-PET. Int J Hyperthermia 2006; 22: 149-160 [PMID: 16754598 DOI: 10.1080/02656730500513523]

55 Ott K, Weber WA, Lordick F, Becker K, Busch R, Herrmann K, Wieder H, Fink U, Schweiger M, Siewert JR. Metabolic imaging predicts response, survival, and recurrence in adenocarcinomas of the esophagogastric junction. J Clin Oncol 2006; 24: 4692-4698 [PMID: 16966684 DOI: 10.1200/JCO.2006.06.7801]

56 Port JL, Lee PC, Kors J, Liso Y, Meherally D, Christos P, Mazumdar M, Ahlorki NK. Positron emission tomographic scanning predicts survival after induction chemotherapy for esophageal carcinoma. Ann Thorac Surg 2007; 84: 393-400; discussion 400 [PMID: 17643605 DOI: 10.1016/j.athoracsur.2007.03.094]

57 Weber WA, Ott K, Becker K, Dittler HJ, Helmberger H, Avril NE, Meiselschläger G, Busch R, Siewert JR, Schweiger M, Fink U. Prediction of response to preoperative chemotherapy in adenocarcinomas of the esophagogastric junction by metabolic imaging. J Clin Oncol 2001; 19: 3058-3065 [PMID: 11408502 DOI: 10.1200/JCO.2001.19.12.3058]

58 Wieder HA, Brücher BL, Zimmermann F, Becker K, Lordick F, Beer A, Schweiger M, Fink U, Siewert JR, Stein HJ, Weber WA. Time course of tumor metabolic activity during chemoradiotherapy of esophageal squamous cell carcinoma and response to treatment. J Clin Oncol 2004; 22: 900-908 [PMID: 14999046 DOI: 10.1200/JCO.2004.07.122]

59 Wieder HA, Ott K, Lordick F, Becker K, Stahl A, Herrmann K, Fink U, Siewert JR, Schweiger M, Weber WA. Prediction of tumor response by FDG-PET: Comparison of the accuracy of single and sequential studies in patients with adenocarcinomas of the esophagogastric junction. Eur J Nucl Med Mol Imaging 2007; 34: 1925-1932 [PMID: 17680242 DOI: 10.1007/s00259-007-0521-3]
