Report on a new type - mixed V and U binomials’ recurrence.

Andrzej Krzysztof Kwaśniewski

Member of the Institute of Combinatorics and its Applications, Winnipeg, Manitoba, Canada
PL-15-674 Białyjstok, Konwaliowa 11/11, Poland
e-mail: kwandr@gmail.com

Summary
In [1, 2011] we had proposed $H(x)$-binomials’ recurrence formula appointed by Ward-Horadam $H(x) = \langle H_n(x) \rangle_{n \geq 0}$ functions’ sequence i.e. any functions’ sequence solution of the second order recurrence with functions’ coefficients.

Then we had delivered a new type $H(x)$-binomials’ ”mixed” recurrence for primordial case. Here we report on this new type - mixed V and U binomials’ recurrence - in brief.

For the abundant list of references on the generalized binomials recurrences subject we refer the reader to [1, 2011].

AMS Classification Numbers: 05A10, 05A30.

Keywords: extended Lucas polynomial sequences, generalized binomial and multinomial coefficients.

1 Sketchy introduction to the history of the subject

Up to our knowledge it was François Édouard Anatole Lucas in [2, 1878] who was the first who had not only defined fibonomial coefficients as stated in [3, 1989] by Donald Ervin Knuth and Herbert Saul Wilf but who was the first who had defined $U_n \equiv n_{p,q}$-binomial coefficients $\binom{n}{k}_U \equiv \binom{n}{k}_{p,q}$ and had derived a recurrence for them: see page 27, formula (58) [2, 1878]. Then - referring to Lucas - the investigation relative to divisibility properties of relevant number Lucas sequences D, S as well as numbers’ D - binomials and numbers’ D - multinomials was continued in [4, 1913] by Robert Daniel Carmichel; see pp. 30, 35 and 40 in [4, 1913] for $U \equiv D = \langle D_n \rangle_{n \geq 0}$ and $\binom{n}{k_1,k_2,...,k_s}_D$ - respectively. Note there also formulas (10), (11) and (13) which might perhaps serve to derive explicit untangled form of recurrence for the V- binomial coefficients $\binom{n}{k}_V \equiv \binom{n}{k}_S$ denoted by primordial Lucas sequence $\langle S_n \rangle_{n \geq 0} = S \equiv V$.

Multinomial coefficients’ recurrences are not present in that early and other works and up to our knowledge a special case of such appeared at first in [5,
1979] by Anthony G. Shannon. More on that - in what follows after Definition 3?

1.2. We deliver here - a new $H(x)$-binomials’ recurrence formula appointed by Ward-Horadam $H(x) = \langle H_n(x) \rangle_{n \geq 0}$ field of zero characteristic nonzero valued functions’ sequence which comprises for $H \equiv H(x = 1)$ number sequences case - the V-binomials’ recurrence formula determined by the primordial Lucas sequence of the second kind $V = \langle V_n \rangle_{n \geq 0}$ [1, 2011] as well as its well elaborated companion fundamental Lucas sequence of the first kind $U = \langle U_n \rangle_{n \geq 0}$ which gives rise in its turn to the U-binomials’ recurrence as in [2, 1878], [6, 1949], [7, 1964], [8, 1969], [9, 1989] or in [3, 1989] and so on.

We do it by following recent applicable work [10, 2009] by Nicolas A. Loehr and Carla D. Savage (see more in [1, 2011]).

This looked for here new $H(x)$-binomials’ overall recurrence formulas -(recall: these should be encompassing V-binomials for primordial Lucas sequence V) - this looked for here recurrence for V is not present neither in [2] nor in [10], nor in [11, 1915], nor in [12, 1936], nor in [6, 1949]. Neither we find it in all 206 quoted in [1, 2011] references.

Interrogation. Might it be so that such an overall recurrence formula including V does not exist? The method to obtain formulas is more general than actually produced family of formulas? See Theorems 2a and 2b, and Example 1 in what follows.

2 Prerequisites

The Lucas sequence $V = \langle V_n \rangle_{n \geq 0}$ is called the Lucas sequence of the second kind - see: [13, 1977, Part I], or primordial - see [14, 1979].

The Lucas sequence $U = \langle U_n \rangle_{n \geq 0}$ is called the Lucas sequence of the first kind - see: [13, 1977, Part I], or fundamental - see p. 38 in [6, 1949] or see [5, 1979] and [14, 1979].

In the sequel - following [1, 2011] - we shall deliver the looked for recurrences for H-binomial coefficients $\binom{n}{k}_H$ determined by the Ward-Horadam sequence H - defined below. It appears to be mixed V and U binomials’ recurrence in the primordial case $H = V$.

In compliance with Edouard Lucas’ [2, 1878] and twenty, twenty first century p, q-people’s notation [1, 2011] we at first review here in brief the general second order recurrence; (compare this review with the recent ”Ward-Horadam” peoples’ paper [15, 2009] by Tian-Xiao He and Peter Jau-Shyong Shiue or earlier p, q-papers [16, 2001] by Zhi-Wei Sun, Hong Hu, J.-X. Liu and [17, 2001] by Hong Hu and Zhi-Wei Sun). And with respect to natation: If in [2, 1878] Francois Edouard Anatole Lucas had been used $a = p$ and $b = q$ notation, he
would be perhaps at first glance notified and recognized as a Great Grandfather of all the \((p, q)\) - people. Let us start then introducing reconciling and matched denotations and nomenclature.

\[(1) \quad H_{n+2} = P \cdot H_{n+1} - Q \cdot H_n, \quad n \geq 0 \text{ and } H_0 = a, \ H_1 = b.\]

which is sometimes being written in \(\langle P, -Q \rangle \mapsto \langle s, t \rangle\) notation.

\[(2) \quad H_{n+2} = s \cdot H_{n+1} + t \cdot H_n, \quad n \geq 0 \text{ and } H_0 = a, \ H_1 = b.\]

We exclude the cases when (2) is recurrence of the first order, therefore we assume that the roots \(p, q\) of (5) are distinct \(p \neq q\) and \(\frac{p}{q}\) is not the root of unity. We shall come back to this finally while formulating this note observation named Theorem 2a.

Simultaneously and collaterally we mnemonically pre adjust the starting point to discuss the \(F(x)\) polynomials’ case via - if entitled - antecedent "\(\mapsto\) action": \(H \mapsto H(x), \ s \mapsto s(x), \ t \mapsto t(x), \) etc.

\[(3) \quad H_{n+2}(x) = s(x) \cdot H_{n+1}(x) + t(x) \cdot H_n, \quad n \geq 0, \ H_0 = a(x), \ H_1 = b(x).\]

enabling recovering explicit formulas also for sequences of polynomials correspondingly generated by the above linear recurrence of order 2 - with Pafnuty Lvovich Tchebysheff polynomials and the generalized Gegenbauer-Humbert polynomials included. See for example Proposition 2.7 in the recent "Ward-Horadam peoples’" paper [15, 2009] by Tian-Xiao He and Peter Jau-Shyong Shiu.

The general solution of (1): \(H(a, b; P, Q) = \langle H_n \rangle_{n \geq 0}\) is being called throughout this note - Ward-Horadam number’sequence [1, 2011].

The Lucas \(U\)-binomial coefficients \(\binom{n}{k}_U \equiv \binom{n}{k}_{p,q}\) are then defined as follows: ([2, 1878], [11, 1915], [12, 1936], [6, 1949], [7, 1964], [8, 1969] etc.)

Definition 1 Let \(U\) be as in [2, 1878] i.e \(U_n \equiv n_{p,q}\) then \(U\)-binomial coefficients for any \(n, k \in \mathbb{N} \cup \{0\}\) are defined as follows.

\[(4) \quad \binom{n}{k}_U \equiv \binom{n}{k}_{p,q} = \frac{n_{p,q}!}{k_{p,q}! \cdot (n-k)_{p,q}!} = \frac{n_{p,q}^k}{k_{p,q}!}.\]

where \(n_{p,q}! = n_{p,q} \cdot (n-1)_{p,q} \cdot \ldots \cdot 1_{p,q}\) and \(n_{p,q}^k = n_{p,q} \cdot (n-1)_{p,q} \cdot \ldots \cdot (n-k+1)_{p,q}\)

and \(\binom{n}{k}_U = 0\) for \(k > n.\)
Definition 2 Let \(V \) be as in [2, 1878] i.e \(V_n = p^n + q^n \), hence \(V_0 = 2 \) and \(V_1 = p + q = s \). Then \(V \)-binomial coefficients for any \(n, k \in \mathbb{N} \cup \{0\} \) are defined as follows

\[
\binom{n}{k}_V = \frac{V_n!}{V_k! \cdot V(n-k)!} = \frac{V_n^k}{V_k!}
\]

where \(V_n! = V_n \cdot V_{n-1} \cdot \ldots \cdot V_1 \) and \(V_n^k = V_n \cdot V_{n-1} \cdot \ldots \cdot V_{n-k+1} \) and \(\binom{n}{k}_V = 0 \) for \(k > n \).

One automatically generalizes number \(F \)-binomial coefficients’ array to functions \(F(x) \)-\textit{multinomial} coefficients’ array (see [20, 2004] and references to umbral calculus therein) while for number sequences \(F = F(x = 1) \) the \(F \)-multinomial coefficients see p. 40 in [4, 1913] by Robert Daniel Carmichel, see [12, 1936] by Morgan Ward and [8, 1969] by Henri W. Gould; (see more in [1, 2011]).

\(\psi(x) \)-\textit{multinomial} coefficients.

Considerations in [5, 1979] by Anthony G. Shannon and an application in [18, 2001] by Thomas M. Richardson as well as relevance to umbral calculus [19, 2003] or [21, 2001] constitute motivating circumstances for considering now functions’ \(F(x) \)-\textit{binomial} and \(F(x) \)-\textit{multinomial} coefficients. This is the case \((F(x) = \psi(x))\) for example in [20, 2004] wherein we read:

\[
(x_1 + \psi x_2 + \psi \ldots + \psi x_k)^n = \sum_{s_1, \ldots, s_k = 0}^{n} \binom{n}{s_1, \ldots, s_k}_\psi x_1^{s_1} \ldots x_k^{s_k}
\]

where

\[
\binom{n}{s_1, \ldots, s_k}_\psi = \frac{n!}{(s_1)! \ldots (s_k)!}. \]

Here above the \(u \)-\textit{multinomial} number sequence formula from [12, 1936] by Morgan Ward is extended mnemonically to \(\psi(x) \) function sequence definition of shifting \(x \) arguments formula written in Kwaśniewski upside-down notation (see for example [19, 2003], [21, 2001], [22, 2002], [23, 2005] for more ad this notation).

The above formulas introduced in case of number sequences in [12, 1936] by Morgan Ward were recalled from [12, 1936] by Alwyn F. Horadam and Anthony G. Shannon in [24, 1976] were the Ward Calculus of sequences framework (including umbral derivative and corresponding exponent) was used to enunciate two types of Ward’s Staudt-Clausen theorems pertinent to this general calculus of number sequences.
3 \(H(x) \)-binomial and mixed binomial coefficients’ recurrence

3.1. Let us recall convention resulting from (3).

Recall. The general solution of (3):

\[
H(x) \equiv H(a(x), b(x); s(x), t(x)) = \langle H_n(x) \rangle_{n \geq 0}
\]

is being called throughout this paper - Ward-Horadam functions’ sequence.

Theorem 1 Let us admit shortly the abbreviations: \(g_k(r, s)(x) = g_k(r, s) \), \(k = 1, 2 \). Let \(s, r > 0 \). Let \(F(x) \) be any zero characteristic field nonzero valued functions’ sequence \((F_n(x) \neq 0) \). Then

\[
(6) \quad \binom{r + s}{r, s} F(x) = g_1(r, s) \cdot \binom{r + s - 1}{r - 1, s} F(x) + g_2(r, s) \cdot \binom{r + s - 1}{r, s - 1} F(x)
\]

where \(\binom{r}{0, s} F(x) = 1 \) and

\[
(7) \quad F(x)_{r+s} = g_1(r, s) \cdot F(x)_r + g_2(r, s) \cdot F(x)_s.
\]

are equivalent.

An on the way historical note Donald Ervin Knuth and Herbert Saul Wilf in [3, 1989] stated that Fibonomial coefficients and the recurrent relations for them appeared already in 1878 Lucas work (see: formula (58) in [2, 1878] p. 27 ; for \(U \)-binomials which "Fibonomials" are special case of). More over on this very p. 27 Lucas formulated a conclusion from his (58) formula which may be stated in notation of this paper formula (2) as follows: if \(s, t \in \mathbb{Z} \) and \(H_0 = 0 \), \(H_1 = 1 \) then \(H \equiv U \) and \(\binom{n}{k} \equiv \binom{n}{k}_{n, p, q} \in \mathbb{Z} \).

Consult for that also the next century references: [25, 1910] by Paul Gustav Heinrich Bachmann or later on - [4, 1913] by Robert Daniel Carmichel [p. 40] or [6, 1949] by Dov Jarden and Theodor Motzkin where in all quoted positions it was also shown that \(n_{p, q} \)-binomial coefficients are integers - for \(p \) and \(q \) representing distinct roots of the characteristic equation for (3) - see below.

It seems to be the right place now to underline that the *addition formulas* for Lucas sequences below with respective hyperbolic trigonometry formulas and also consequently \(U \)-binomials’ recurrence formulas - stem from commutative ring \(R \) identity: \((x - y) \cdot (x + y) \equiv x^2 - y^2 \), \(x, y \in R \).

Indeed. Recall the characteristic equation notation: \(z^2 = s \cdot z + t \) as is common in many publications with the restriction: \(p, q \) roots are distinct. Recall that
\(p + q = s \) and \(p \cdot q = -t \). Let \(\Delta = s^2 - 4t \). Then \(\Delta = (p - q)^2 \). Hence we have as in [2, 1878]

\[
2 \cdot U_{r+s} = U_r V_s + U_s V_r, \quad 2 \cdot V_{r+s} = V_r V_s + \Delta \cdot U_s U_r.
\]

Taking here into account the U-addition formula i.e. the first of two trigonometric-like \(L \)-addition formulas (42) from [2, 1878] \(L = U, V \) one readily recognizes that the \(U \)-binomial recurrence from the Corollary 18 in [10, 2009] is the \(U \)-binomial recurrence (58) [2, 1878] which may be rewritten after François Édouard Anatole Lucas in multinomial notation and stated as follows: according to the Theorem 2a below the following is true:

\[
2 \cdot U_{r+s} = U_r V_s + U_s V_r
\]
is equivalent to

\[
2 \cdot \binom{r+s}{r,s} = V_s \cdot \binom{r+s-1}{r-1,s} + V_r \cdot \binom{r+s-1}{r,s-1}.
\]

However there is no companion \(V \)-binomial recurrence i.e. for \(\binom{r+s}{r,s} \), neither in [2, 1878] nor in [10, 2009] as well as all other quoted papers - up to knowledge of this note author.

The End of the on the way historical note.

The looked for \(H(x) \)-binomial recurrence (6) accompanied by (7) might be then given right now in the form of (10) adapted to - Ward-Lucas functions’ sequence case notation while keeping in mind that of course the expressions for \(h_k(r,s)(x) \), \(k = 1, 2 \) below are designated by this \(F(x) = H(x) \) choice and as a matter of fact are appointed by the recurrence (3).

For the sake of commodity to write down an observation to be next let us admit shortly the abbreviations: \(h_k(r,s)(x) = h_k(r,s) = h_k , \ k = 1, 2. \) Then for \(H(x) \) of the form (21?) we evidently have what follows.

Theorem 2a.

\[
\binom{r+s}{r,s} = h_1(r,s) \binom{r+s-1}{r-1,s} + h_2(r,s) \binom{r+s-1}{r,s-1},
\]

where \(\binom{r}{r,0}_{H(x)} = \binom{s}{0,s}_{H(x)} = 1, \) is equivalent to

\[
H_{r+s}(x) = h_1(r,s)H_r(x) + h_2(r,s)H_s(x).
\]
where $H_n(x)$ is explicitly given by (21) and (22) formulas in [1, 2011].

The end of the Theorem 2a.

Let us now come back to consider the case of V-binomials recurrence. For that to do carefully let us at first make precise the main item. $H(x) = \langle H_n(x) \rangle_{n \geq 0}$ is considered as a solution of second order recurrence (3) with peculiar case of (3) becoming the first order recurrence excluded. This is equivalent to say that $0 \neq p \neq q \neq 0$ and $A \neq 0 \neq B$ (compare with [26, 1974] by Anthony J. W. Hilton), where for notation convenience we shall again use awhile shortcuts for (3):

$$a(x) \equiv a, b(x) \equiv b, s(x) \equiv s, t(x) \equiv t,$$

$$p(x) \cdot q(x) = -t(x) \equiv p \cdot q = -t,$$

$$H(x) = H(A(x), B(x), p(x), q(x)) = H(A, B) = A \cdot H(1, 1;),$$

$$H(1, 1) = V(x) = V = (p-q)U(1, -1), \quad U = U(x) = U(1, 1), U(A, B) = U(A, B, p, q)$$

referring to this note (23) and the next to (23) abbreviations:

$$H(x) \equiv H(a(x), b(x); s(x), t(x)) \equiv H(A(x), B(x); s(x), t(x)),$$

$$H_n(x) \equiv H_n(a(x), b(x); s(x), t(x)),$$

$$H_n(x) = H_n(A, B) = A \cdot p^n + B \cdot q^n \quad H_n(1, 1) = V_n(x) = V_n.$$

Now although $H(A, B) = (p-q) \cdot U(A, -B)$ the corresponding recurrences are different. Recall and then compare corresponding recurrences:

The identity

$$(p-q) \cdot (p^{r+s} - q^{r+s}) \equiv (p^{s+1} - q^{+1}) \cdot (p^r - q^r) - p \cdot q(p^{r-1} - q^{r-1}) \cdot (p^s - q^s)$$

due to $p \cdot q = -t$ is equivalent to

$$U_{r+s}(p, q) = U_{s+1} \cdot U_r(p, q) + t \cdot U_{r-1} \cdot U_s(p, q)$$

(combinatorial derivation - see [27, 1999],[28, 1999]). This recurrence in its turn is equivalent to

$$\binom{r+s}{r, s}_U = U_{s+1} \cdot \binom{r+s-1}{r-1, s}_U + t \cdot U_{r-1} \cdot \binom{r+s-1}{r, s-1}_U.$$

Similarly the identity

$$(p-q) \cdot (p^{r+s} + q^{r+s}) \equiv (p^{s+1} - q^{+1}) \cdot (p^r + q^r) - p \cdot q(p^{r-1} + q^{r-1}) \cdot (p^s - q^s)$$

due to $p \cdot q = -t$ is equivalent to
\begin{equation}
V_{r+s}(p,q) = U_{s+1} \cdot V_r(p,q) + t \cdot V_{r-1} \cdot U_s(p,q)
\end{equation}

For combinatorial interpretation derivation of the above for Fibonacci and Lucas sequences \((t = 1 = s)\) see [27, 1999], [28, 1999] and then see for more [\textit{?}, 2003] also by Arthur T. Benjamin and Jennifer J. Quinn. A fundamental progress in combinatorial interpretation of generalized binomials was made in [29, 2009] by Bruce E. Sagan and Carla D. Savage.

\textbf{Definition 3} Let \(\{n(x)\} \equiv U_n\cdot \langle n(x) \rangle \equiv V_n = p^n(x) + q^n(x)\), hence \(V_0 = 2\) and \(V_1 = p + q = s(x)\). Let \((p(x) - q(x)) \cdot U_n = p^n(x) - q^n(x)\), hence \(U_0 = 0\) and \(V_1 = 1\); (roots are distinct). Then \(V\)-mixed-\(U\) binomial coefficients for any \(r, s \in \mathbb{N} \cup \{0\}\) are defined as follows

\begin{equation}
\binom{r+s}{r, s}_{\langle \rangle/\langle \rangle} = \frac{V_{r+s}!}{V_r! \cdot U_s!},
\end{equation}

\(\binom{n}{k}_{\langle \rangle/\langle \rangle} = 0\) for \(k > n\) and \(\binom{n}{0}_{\langle \rangle/\langle \rangle} = 1\).

Note that: \(\binom{r+s}{r, s}_{\langle \rangle/\langle \rangle} \neq \binom{r+s}{s, r}_{\langle \rangle/\langle \rangle}\).

Note that: \(\binom{r+s}{r, s}_{\langle \rangle/\langle \rangle} \neq \binom{r+s}{s, r}_{\langle \rangle/\langle \rangle}\).

\textbf{Theorem 2b.} The recurrence (12) is equivalent to

\begin{equation}
\binom{r+s}{r, s}_{\langle \rangle/\langle \rangle} = U_{s+1} \cdot \binom{r+s-1}{r-1, s}_{\langle \rangle/\langle \rangle} + t \cdot U_s \cdot \binom{r+s-1}{r, s-1}_{\langle \rangle/\langle \rangle}.
\end{equation}

\textbf{Example 1.} Application of Theorems 1, 2a and the Theorem 2b method. Recall the characteristic equation notation: \(z^2 = z^2 = s \cdot z + t\) with the restriction that \(p, q\) roots are distinct. Recall that \(p + q = s\) and \(p \cdot q = -t\). Let \(\Delta = s^2 - 4t\). Then \(\Delta = (p - q)^2\). Hence we have as in [2, 1878]

\[2 \cdot U_{r+s} = U_r V_s + U_s V_r, \quad 2 \cdot V_{r+s} = V_r V_s + \Delta \cdot U_s U_r.\]

Consider \(V\)-\textit{addition formula} i.e. the second of two trigonometric-like addition formulas (42) from [2, 1878]. One readily recognizes that \textit{according to the Theorem 2b the following is true}: \(2 \cdot V_{r+s} = V_r V_s + \Delta \cdot U_s U_r\) is equivalent to

\begin{equation}
2 \cdot \binom{r+s}{r, s}_{\langle \rangle/\langle \rangle} = V_s \cdot \binom{r+s-1}{r-1, s}_{\langle \rangle/\langle \rangle} + \Delta \cdot U_r \cdot \binom{r+s-1}{r, s-1}_{\langle \rangle/\langle \rangle}.
\end{equation}

The effort to discover combinatorial interpretation of mixed binomials is part of a dream of a forthcoming "in statu nascendi" note.
s for mixed $F(x)$-multinomial coefficients' arrays - there are many kinds of them. This is also a part of a subject of a forthcoming "in statu nascendi" note.

References

[1] Andrzej Krzysztof Kwaśniewski, Note on Ward-Horadam $H(x)$ - binomials' recurrences and related interpretations, II, arXiv:1101.1516v3 [v3] Wed, 19 Jan 2011

[2] François Édouard Anatole Lucas, Théorie des Fonctions Numériques Simplement Périodiques, American Journal of Mathematics, Volume 1, (1878): 184-240 (Translated from the French by Sidney Kravitz, Edited by Douglas Lind Fibonacci Association 1969.

[3] Donald Ervin Knuth, Herbert Saul Wilf, The Power of a Prime that Divides a Generalized Binomial Coefficient, J. Reine Anlev. Math. 396 (1989): 212-219.

[4] Robert Daniel Carmichel, On the numerical factors of the arithmetic forms $\alpha^n \pm \beta^n$, Ann. of Math. (2) 15 (1913): 30-70.

[5] Anthony G. Shannon, A Recurrence Relation for Generalized Multinomial Coefficients, The Fibonacci Quarterly, vol. 17, No 4, (1979): 344-346.

[6] Dov Jarden and Theodor Motzkin, The product of Sequences with the common linear recursion formula of Order 2, Riveon Lematimatica 3, (1949): 25-27.

[7] Roseanna F. Torretto, J. Allen Fuchs Generalized Binomial Coefficients, The Fibonacci Quarterly, vol. 2, (1964): 296-302.

[8] Henri W. Gould The Bracket Function and Fontené-Ward Generalized binomial Coefficients with Applications to Fibonomial Coefficients, The Fibonacci Quarterly vol.7, (1969): 23-40.

[9] Ira M. Gessel, Xavier Gérard Viennot, Determinant Paths and Plane Partitions, (1989):- Preprint; see(10.3) page 24

http://people.brandeis.edu/ gessel/homepage/papers/pp.pdf

[10] Nicholas A. Loehr, Carla D. Savage August 26, 2009 Generalizing the combinatorics of binomial coefficients via ℓ-nomials, Integers, Volume 9 (2009), A 45. with corrections noted (thanks to Bruce Sagan) http://www4.ncsu.edu/ savage/PAPERS/605nom5c.corrections.pdf
[11] Fontené Georges *Généralisation d'une formule connue*, Nouvelles Annales de Mathématiques (4) 15 (1915): 112

[12] Ward Morgan, *A calculus of sequences*, Amer.J. Math. 58 (1936): 255-266.

[13] Kenneth K. Kubota, *On a conjecture of Morgan Ward, I, II, III*; Acta Arith. 33 (1977), 11 - 28, 29 - 48, 99 - 109.

[14] A.G. Shannon and A. F. Horadam, *Special Recurrence Relations Associated with the Sequence* \{w_n(a,b;p,q)\}, The Fibonacci Quarterly 17.4 (1979): 294-299.

[15] Tian-Xiao He, Peter Jau-Shyong Shiue, *On Sequences of Numbers and Polynomials Defined by Linear Recurrence Relations of Order 2*, International Journal of Mathematics and Mathematical Sciences, Volume 2009, Article ID 709386, 21 pages

[16] Zhi-Wei Sun, H. Hu and J.-X. Liu, *Reciprocal sums of second-order recurrent sequences*, Fibonacci Quart., 39 (2001), no.3, 214-220.

[17] Hong Hu and Zhi-Wei Sun, *An Extension of Lukas’ Theorem*, Proc. Amer. Math. Soc. 129 (2001), no. 12, 3471-3478.

[18] Thomas M. Richardson, *The Filbert Matrix*, The Fibonacci Quart. 39 no.3 (2001): 268-275. arXiv: math/9905079v1 [v1] Wed, 12 May 1999

[19] A. Krzysztof Kwaśniewski: *Main Theorems of Extended Finite Operator Calculus*, Integral Transforms and Special Functions Vol 14, No 6. (2003), pp.499-516

[20] Andrzej Krzysztof Kwaśniewski, *On basic Bernoulli-Ward polynomials*, Bull. Soc. Sci. Lett. Lodz 54 Ser. Rech. Deform.45 (2004): 5-10. arXiv: math/0405577v1 [v1] Sun, 30 May 2004

[21] A. Krzysztof Kwaśniewski: *On Extended Finite Operator Calculus of Rota and Quantum Groups*, Integral Transforms and Special Functions Vol 2, No 4, (2001), pp.333-340

[22] A. Krzysztof Kwaśniewski, *On Characterizations of Sheffer ψ-polynomials and Related Propositions of the Calculus of Sequences*, Bulletin de la Soc. des Sciences et des Lettres de Lodz, 52, Ser.Rech.Deform.36(2002)pp.45-65, ArXiv:math.CO/0312397

[23] A. Krzysztof Kwaśniewski, *Extended finite operator calculus - an example of algebraization of analysis*, Bulletin of the Allahabad Mathematical Society, Vol 20 (2005): 1-24. arXiv:0812.5027v1 [v1] Tue, 30 Dec 2008 08:09:29 GMT
[24] Alwyn F. Horadam, Anthony G. Shannon, *Ward’s Staudt-Clausen problem*, Math. Scand., 39 no. 2, (1976): 239-250.

[25] Paul Gustav Heinrich Bachmann, *Niedere Zahlentheorie* (Zweiter Teil), Leipzig, Teubner, 1910; republished as Additive Zahlentheorie by Chelsea Publishing Co., New York, 1968.

[26] Anthony J. W. Hilton, *On the Partition of Horadam’s Generalized Sequences into Generalized Fibonacci and Generalized Lucas Sequences*, The Fibonacci Quarterly 12 (1974): 339 - 345.

[27] Arthur T. Benjamin, Jennifer J. Quinn, *Recounting Fibonacci and Lucas Identities*. The College Mathematics Journal, Vol [27, 1999],

[28] Arthur T. Benjamin, Jennifer J. Quinn, *Fibonacci and Lucas Identities through Colored Tilings*. Utilitas Mathematica, Vol 56, pp. 137-142, Nov. 1999.

[29] Bruce E. Sagan, Carla D. Savage, *Combinatorial Interpretation of Binomial Coefficient Analogues Related to Lucas Sequences*, INTEGERS: Electronic Journal of Combinatorial Number Theory Volume 9 (2009), A52