Examples of S–expansions of Lie Algebras

Javier Rosales G.
Departamento de Física, Facultad de Ciencias Básicas, Universidad de Antofagasta
E-mail: Javier.rosales.gomez@ua.cl

Abstract. In this note, we give examples of S–expansions of Lie algebras of finite and infinite dimension. For the finite dimensional case, we expand all real three-dimensional Lie algebras. In the case of infinite dimension, we perform contractions obtaining new Lie algebras of infinite dimension.

1. Introduction

S–expansions were introduced in the field of Physics in [1], and have been used in different contexts. This method uses abelian semigroups, which play an important role in this construction, since different semigroups generate different S–expanded algebras. In this work, we apply the S–expansions method an real three-dimensional Lie algebras given in [2].

The theory of infinite dimensional Lie algebras is a very active field of research. Krichever-Novikov algebras KN are of interest because they arise from geometric objects and are generalizations of the Virasoro algebra. In this note we carry out the S–expansions method to an example of KN algebras. Furthermore, we will perform contractions to S–expanded algebras, comparing them with the S–expansions of the contractions.

2. Preliminaries

Consider a Lie algebra G of dimension n, over the field \mathbb{R} or \mathbb{C}. Let $\{e_i\}_{1 \leq i \leq n}$ be a basis for G with Lie brackets $[e_i, e_j] = C_{ij}^k e_k$, where the coefficients C_{ij}^k are the structure constants. We recall the classification of real three dimensional Lie algebras give in [2];
Table 1. Three-dimensional real Lie Algebra

Lie algebra	Lie product		
G^1	0		
G^2	$[e_1, e_3] = e_1$		
G^3	$[e_1, e_3] = e_2$		
G^4	$[e_1, e_3] = e_1$, $[e_2, e_3] = e_1 + e_2$		
G^5	$[e_1, e_3] = e_1$, $[e_2, e_3] = e_2$		
G^6	$[e_1, e_3] = e_1$, $[e_2, e_3] = -e_2$		
G^7	$[e_1, e_3] = e_1$, $[e_2, e_3] = ae_2$, $0 <	a	< 1$
G^8	$[e_1, e_3] = -e_2$, $[e_2, e_3] = e_1$		
G^9	$[e_1, e_3] = be_1 - e_2$, $[e_2, e_3] = e_1 + be_2$, $b > 0$		
G^{10}	$[e_1, e_3] = e_1$, $[e_2, e_3] = -e_2$, $[e_1, e_2] = 2e_3$		
G^{11}	$[e_1, e_2] = e_3$, $[e_2, e_3] = e_1$, $[e_3, e_1] = e_2$		

2.1. The $S-$expansions procedure

In general, this process consists of through an Abelian semigroup S and Lie algebra G, a new Lie algebra is generated [1]. In this work, we will consider $S-$expansions of Lie algebra that admit the following subspace decomposition $G = G_0 \oplus G_1$, with a \mathbb{Z}_2-graded structure,

$$[G_0, G_0] \subset G_0, [G_0, G_1] \subset G_1, [G_1, G_1] \subset G_0.$$ (2.1)

We will consider expansions with the finite semigroup $S = \{\lambda_i\}$, provided with a closed associative and commutative product. In particular we consider the semigroup $S_N = \{\lambda_0, ..., \lambda_{N+1}\}$, with product $\lambda_i \lambda_j = \lambda_{i+j}$, for $i + j \leq N$ and $\lambda_i \lambda_j = \lambda_{N+1}$ for $i + j > N$, and λ_{N+1} acts like the element zero [4]. The semigroup is considered together with the following resonant decomposition

$$S^0_N = \{\lambda_{2k}\} \cup \{\lambda_{N+1}\}, S^1_N = \{\lambda_{2k+1}\} \cup \{\lambda_{N+1}\},$$

which is compatible with (2.1) in the sense that

$$S^0_N \cdot S^0_N \subset S^0_N, S^0_N \cdot S^1_N \subset S^1_N, S^1_N \cdot S^1_N \subset S^1_N.$$
and therefore resonant with the choice of \(G_0, G_1 \). Thus, a reduced resonant expanded algebra can be defined as the

\[G_{SN} = \langle \{ S_N \otimes G_0 \} \rangle \cup \langle \{ S_N \otimes G_1 \} \rangle, \]

where the reduction condition in the algebra is implemented by the constraints

\[\lambda_{N+1} \otimes e_i = 0, \]

for all \(i \).

Theorem: Let the Lie algebra \(G \) and the semigroup \(S_N \) then \(G_{SN} = S_N \times G \) is a Lie algebra.

3. \(S_N \)-expansions of three-dimensional Lie Algebras

We will write an element \(E_{ij} \in S_N \times G \) as \(E_{ij} = \lambda_i \otimes e_j \). Let \(G \) be a three dimensional Lie algebra together with the \(\mathbb{Z}_2 \)-graduation;

\[G^0 = \langle \{ e_3 \} \rangle \]
\[G^1 = \langle \{ e_1, e_2 \} \rangle \]

We will illustrate a case in detail, the other cases are deduced analogously. For example, let us take the algebra \(G^{11} \) from the table and perform the process of \(S_N \) expansion. If \(N = 2n + 1 \), then an algebra is generated

\[G^{11}_{SN} = \langle \{ E_{(1+2l)1}, E_{(1+2l)2}, E_{(2m)3} \} \rangle \]

where \(0 \leq l \leq \left[\frac{N-1}{2} \right], 0 \leq m \leq \left[\frac{N}{2} \right] \). The brackets are given by

\[[E_{(2m)3}, E_{(1+2l)1}] = \lambda_{2m} \otimes e_3, \lambda_{1+2l} \otimes e_1] \]
\[= \lambda_{1+2l+2m} \otimes [e_3, e_1] \]
\[= \lambda_{1+2l+2m} \otimes e_2 \]
\[= E_{(1+2l+2m)2}, \]
\[[E_{(1+2l)2}, E_{(2m)3}] = \lambda_{1+2l} \otimes e_2, \lambda_{2m} \otimes e_3] \]
\[= \lambda_{1+2l+2m} \otimes [e_2, e_3] \]
\[= \lambda_{1+2l+2m} \otimes e_1 \]
\[= E_{(1+2l+2m)1}, \]

for \(0 \leq l \leq \left[\frac{N-1}{2} \right], 0 \leq m \leq \left[\frac{N}{2} \right] \) and \(1 + 2l + 2n \leq N + 1 \).
\[[E_{(1+2\tilde{l})1}, E_{(1+2\tilde{m})2}] = [\lambda_{1+2\tilde{l}} \otimes e_1, \lambda_{1+2\tilde{m}} \otimes e_2] = \lambda_{2+2\tilde{l}+2\tilde{m}} \otimes [e_1, e_2] = \lambda_{2+2\tilde{l}+2\tilde{m}} \otimes e_3 = E_{(2+2\tilde{l}+2\tilde{m})3}, \]

where \(0 \leq \tilde{l}, \tilde{m} < \left\lfloor \frac{N-1}{2} \right\rfloor \).

For \(N = 2n + 2 \), the generated algebra can be written as

\[G_{S_N}^{11} = \langle \{ E_{(1+2\tilde{l})1}, E_{(1+2\tilde{l})2}, E_{(2\tilde{m})3} \} \rangle \]

where \(0 \leq l \leq \left\lfloor \frac{N-1}{2} \right\rfloor \), \(0 \leq m \leq \left\lfloor \frac{N}{2} \right\rfloor + 1 \). The brackets are given by (3.1)-(3.8), and

\[[E_{(1+2\tilde{l})1}, E_{(1+2\tilde{m})2}] = [\lambda_{1+2\tilde{l}} \otimes e_1, \lambda_{1+2\tilde{m}} \otimes e_2] = \lambda_{2+2\tilde{l}+2\tilde{m}} \otimes [e_1, e_2] = \lambda_{2+2\tilde{l}+2\tilde{m}} \otimes e_3 = E_{(2+2\tilde{l}+2\tilde{m})3}, \]

where \(0 \leq \tilde{l}, \tilde{m} \leq \left\lfloor \frac{N-1}{2} \right\rfloor \).

The algebras generated by \(S_N \)-expansion process are given by:

(i) If \(N = 2n + 1 \), algebras of dimension \(3(n + 1) \) are generated
for $0 \leq l \leq \left[\frac{N-1}{2}\right]$, $0 \leq m \leq \left[\frac{N}{4}\right]$ and $0 \leq \tilde{l}, \tilde{m} < \left[\frac{N-1}{2}\right]$.

(ii) If $N = 2n + 2$, algebras of dimension $3(n + 1) + 1$ are generated. These algebras, except for the case G^{10} and G^{11}, are central extensions of the algebras generated for the case $N = 2n + 1$.

4. S_N–expansions of \mathcal{KN} algebras

\mathcal{KN} type algebras are examples of infinite dimensional Lie algebras. The elements of the \mathcal{KN} types algebras are meromorphic objects on a compact Riemann surface which are holomorphic outside a fixed set of points and the are related to the Virasoro algebra. Virasoro algebra is a much studied object, both mathematics and physics. An example of algebras of type \mathcal{KN} can be obtained with the following basis [5]:

$$B_n(t) := t(t - \alpha)^{n-1}(t + \alpha)^{n-1} \frac{d}{dt},$$

$$F_n(t) := (t - \alpha)^{n-1}(z + \alpha)^{n-1} \frac{d}{dt},$$

for $\alpha \in \mathbb{C}$, which satisfy the Lie brackets
\[[B_n, B_m] = 2(m - n)(B_{n+m-1} + \alpha^2 B_{n+m-2}) , \]
\[[B_n, F_m] = (2(m - 1) - 1)F_{n+m-1} + 2(m - n)\alpha^2 F_{n+m-2} , \]
\[[F_n, F_m] = 2(m - n)B_{n+m-2} . \]

Considering the semigroup S_3 we obtain the generators

\[B_n^0 = \lambda_0 \otimes B_n , \]
\[B_n^2 = \lambda_2 \otimes B_n , \]
\[F_n^1 = \lambda_1 \otimes F_n , \]
\[F_n^3 = \lambda_3 \otimes F_n , \]

which satisfy the Lie brackets,

\[[B_n^0, B_m^0] = 2(m - n)(B_{n+m-1}^0 + \alpha^2 B_{n+m-2}^0) , \]
\[[B_n^0, B_m^2] = 2(m - n)(B_{n+m-1}^2 + \alpha^2 B_{n+m-2}^2) , \]
\[[B_n^0, F_m^1] = (2(m - 1) - 1)F_{n+m-1}^1 + 2(m - n)\alpha^2 F_{n+m-2}^1 , \]
\[[B_n^2, F_m^1] = (2(m - 1) - 1)F_{n+m-1}^3 + 2(m - n)\alpha^2 F_{n+m-2}^3 , \]
\[[F_n^1, F_m^1] = 2(m - n)B_{n+m-2}^2 . \]

Now we perform contractions of the KN algebras and the S_N–expanded KN algebra, obtaining six new subalgebras of infinite dimension.

4.1. Contractions of S_N–expanded KN algebras

The commutation relations of a contracted Lie algebra, or contractions of a Lie algebra \mathcal{G}, are given by the limit [3]:

\[[e_i, e_j]_\epsilon := \lim_{\epsilon \to \epsilon_0} U_{\epsilon}^{-1}[U_{\epsilon}(e_i), U_{\epsilon}(e_j)], \tag{4.1} \]

where U_{ϵ} is a non-singular linear transformation of \mathcal{G}, with ϵ_0 being a singularity point of its inverse U_{ϵ}^{-1}. Considering the splitting of the Lie algebra \mathcal{G} into an arbitrary number of subspace $\mathcal{G} = \mathcal{G}_0 + ... + \mathcal{G}_p$ where $p \leq \dim \mathcal{G}$, and the diagonal $U_{\epsilon} = \oplus_j e^{n_j} \text{id}_{\mathcal{G}_j}$, with $\epsilon > 0, n_j \in \mathbb{R}$ and $j = 1, ..., p$ is obtained $[e_i, e_j]_\epsilon = \lim_{\epsilon \to 0} e^{n_i + n_j - nk} C_{ij}^k e_k$. Then the exponent must satisfy $n_i + n_j - nk \geq 0$ unless $C_{ij}^k = 0$. The constants of the contracted algebra are given by $(C_{\epsilon}^{ik})_{ij} = C^{ik}_{ij}$ if $n_i + n_j = n_k$, and $(C_{\epsilon})^{ik}_{ij} = 0$ if $n_i + n_j > n_k$. Two trivial contractions are: the Abelian algebra and the original Lie algebra, for which the commutation relations are unchanged.

Through contractions we can obtain new non-isomorphic Lie algebras. For this, let U_{ϵ} be such that

\[U_{\epsilon} := e^{n_0} \text{id}_{\mathcal{G}_0} + e^{n_1} \text{id}_{\mathcal{G}_1} + e^{n_2} \text{id}_{\mathcal{G}_2} + e^{n_3} \text{id}_{\mathcal{G}_3} , \]
where $\mathcal{G}_0 = \langle \{B^0_n\} \rangle$, $\mathcal{G}_1 = \langle \{F^1_n\} \rangle$, $\mathcal{G}_2 = \langle \{B^2_n\} \rangle$ and $\mathcal{G}_3 = \langle \{F^3_n\} \rangle$ with $n \in \mathbb{Z}$. The Lie brackets are modified to

\[
[B^0_n, B^0_m] = \epsilon n_0 [2(m-n)(B^0_{n+m-1} + \alpha^2 B^0_{n+m-2})], \\
[B^0_n, B^2_m] = \epsilon n_0 [2(m-n)(B^2_{n+m-1} + \alpha^2 B^2_{n+m-2})], \\
[B^0_n, F^1_m] = \epsilon n_0 [(2(m-1) - 1)F^1_{n+m-1} + 2(m-n)\alpha^2 F^1_{n+m-2}], \\
[B^2_n, F^1_m] = \epsilon n_0 + a n_0 \cdot [(2(m-1) - 1)F^3_{n+m-1} + 2(m-n)\alpha^2 F^3_{n+m-2}], \\
[B^0_n, F^3_m] = \epsilon n_0 [(2(m-1) - 1)F^3_{n+m-1} + 2(m-n)\alpha^2 F^3_{n+m-2}], \\
[F^1_n, F^3_m] = \epsilon n_0 - a n_0 [2(m-n)B^2_{n+m-2}].
\]

Non-trivial cases in the choice of n_0, n_1, n_2, n_3 are given in the limit $\epsilon \to 0$:

(i) For $n_0 = 0$:

(a) $n_1 = n_2 = n_3 = 1$,

\[
[B^0_n, B^0_m] = 2(m-n)(B^0_{n+m-1} + \alpha^2 B^0_{n+m-2}), \\
[B^0_n, B^2_m] = 2(m-n)(B^2_{n+m-1} + \alpha^2 B^2_{n+m-2}), \\
[B^0_n, F^1_m] = (2(m-1) - 1)F^1_{n+m-1} + 2(m-n)\alpha^2 F^1_{n+m-2}, \\
[B^0_n, F^3_m] = (2(m-1) - 1)F^3_{n+m-1} + 2(m-n)\alpha^2 F^3_{n+m-2}.
\]

(b) $n_1 = n_2 = 1, n_3 = 2$,

\[
[B^0_n, B^0_m] = 2(m-n)(B^0_{n+m-1} + \alpha^2 B^0_{n+m-2}), \\
[B^0_n, B^2_m] = 2(m-n)(B^2_{n+m-1} + \alpha^2 B^2_{n+m-2}), \\
[B^0_n, F^1_m] = (2(m-1) - 1)F^1_{n+m-1} + 2(m-n)\alpha^2 F^1_{n+m-2}, \\
[B^0_n, F^3_m] = (2(m-1) - 1)F^3_{n+m-1} + 2(m-n)\alpha^2 F^3_{n+m-2}.
\]

(c) $n_1 = n_3 = 1, n_2 = 2$,

\[
[B^0_n, B^0_m] = 2(m-n)(B^0_{n+m-1} + \alpha^2 B^0_{n+m-2}), \\
[B^0_n, B^2_m] = 2(m-n)(B^2_{n+m-1} + \alpha^2 B^2_{n+m-2}), \\
[B^0_n, F^1_m] = (2(m-1) - 1)F^1_{n+m-1} + 2(m-n)\alpha^2 F^1_{n+m-2}, \\
[B^0_n, F^3_m] = (2(m-1) - 1)F^3_{n+m-1} + 2(m-n)\alpha^2 F^3_{n+m-2}.
\]

(ii) For $n_0 > 0$:

(a) $n_1 = 1, n_2 = 2, n_3 = 3$,

\[
[B^2_n, F^1_m] = (2(m-1) - 1)F^3_{n+m-1} + 2(m-n)\alpha^2 F^3_{n+m-2}, \\
[F^1_n, F^3_m] = 2(m-n)B^2_{n+m}.
\]
(b) \(n_1 = n_3 = 1, n_2 = 2, \)
\[
[F^1_n, F^1_m] = 2(m - n)B^2_{n+m}.
\]
(c) \(n_1 = 1, n_2 = 2, n_3 = 3, \)
\[
[B^2_n, F^1_m] = (2(m - 1) - 1)F^3_{n+m-1} + 2(m - n)\alpha^2 F^3_{n+m-2}.
\]

The cases i(b) and ii(b) correspond to the \(S_3 \)-expansions of the contractions for this examples of \(\mathcal{KN} \) algebra analogously to [3].

Acknowledgements
The author is supported by MINEDUC-UA ANT-20992 and thanks the program Doctorado en Física mención Física Matemática from Universidad de Antofagasta. Also thanks the Semillero de Investigación SEM 18-02 from Universidad de Antofagasta.

5. References
[1] Izaurieta F, Rodriguez E and Salgado P 2006 J. Math. Phys. 47 123512
[2] Nesterenko M and Popovych R 2006 J. Math. Phys. 47 123515
[3] Fialowski A and Montigny M 2005 J. Phys. A: Math. Gen. 38 6335–6349
[4] Gomis J, Kleinschmidt A, Palmkvist J and Salgado P 2020 JHEP 02 009
[5] Schlichenmaier M 1993 J.Math.Phys. 34 3809-3824