IN-VITRO CULTURE STUDIES FOR CALLUS AND ROOT GENERATION OF BOERHAAVIA DIFFUSA LINN

Vandana Jain, D. Singh, Swarnalata Saraf and S. Saraf*

B.R. Nahata College of Pharmacy, Mandsaur-458 001, M.P.
*Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur-492 010. C.G.

Received : 12-01-2003 Accepted: 26-02-2003

ABSTRACT : Leaf and stem explants excised from young plant of B.diffusa were cultured on Murashige and Skoog (MS) medium containing agar (0.8%), sucrose (2.5%) and varied concentration of Indole butyric acid (IBA), Naphyl acetic acid (NAA), 2,4 – dichloro phenoxy acetic acid (2,4-D) and Picrolam. Leaf explants has given better response for both rooting and callus formation. IBA in a concentration of 5µM has shown maximum regeneration (69.7%) with induction period of 7 days. The developed roots were similar to that of naturally grown roots with little anatomical changes. For callus formation 20µM 2, 4-D has given maximum amount and percentage response 979.5% with an induction period of 8 days. Picrolam (10µM) has shown 36.6% response and the average weight of callus was less as compared with 2,4-D. The callus obtained was friable and opaque in nature.

INTRODUCTION

Punarnava consists of whole plant of Boerhaavia diffusa Linn family Nyctaginaceae. It is mainly cultivated at high altitudes mainly in hot Himalayan valleys.

The chief active constituents are punarnavoside, an anti-fibrinolytic glycoside (0.03 – 0.05%), boer avine, fla vones, is o-flavones, ste rol, boera viones, hypoxanthi ne 9-L arabi nofuranoside, large amount of potassium nitrate and lignanes. The plant has anti-fibrinolytic and anti-inflammatory properties, it is used for its diuretic, hepatoprotective properties and in the treatment of menorrhagia and loss of appetite2-4.

B. diffusa being a valuable plant of Indian system of medicine, the present study was undertaken to establish its in vitro culture requirements which will provide a lead for improving and establishing the biosynthetic pathway of its active principles.

MATERIALS AND METHODS

The plant of punarnava was obtained from medicinal garden of B.R.N. College of Pharmacy, Mandsaur and identified by Agriculture College, Mandsaur. Leaf and stem explants were collected from nature plants.

Surface sterilization of explants (both leaf and stems) were done first with an antifungal agent bavastin (0.2%) for 7-8 min, followed by 0.1% mercuric chloride treatment of 2-3 min. The explants were then washed thrice with sterile distilled water; the explants of 1*1 cm size were cultured on the MS medium containing 2.5% sucrose5. The MS medium containing 2.5% sucrose was solidified using 0.8% agar. The MS medium was supplemented with different hor mones like IBA and NAA in varying concetrations for rooting purpose. Various concentrations of
2,4-D and picrolam were for callus generation. The pH of the medium was adjusted to 5.75 before autoclaving at 121°C, 15 lbs for 15 min. The cultures were incubated at 25°C under white fluorescent light with 12 hr's photoperiod and RH of 55-60%. Each treatment included 15 replicates. The percent response, fresh weight and dry weight were determined after 4 weeks. The table 1 & 2 shows the results of various hormones and their different concentration tried for the generation of callus and roots of B. diffusa in Murashige and Skoog medium.

RESULTS AND DISCUSSION

With 2,4-D as plant growth regulator, leaf explants have given a better callus formation as compared to stem explants. The best results in terms of percent response and dry weight were obtained at concentration of 20µM, the induction period was 8 days and the callus obtained was friable and opaque in nature. When leaf and stem explants were cultured on MS medium supplemented with picrolam ranging from concentrations 1 – 30 µM, callus was maximum in 10 µM but the induction period was 12 days and also the % dry weight was less than 2,4-D as plant growth regulator.

For root generation, among various concentrations of IBA and NAA tried, 5µM IBA has generated maximum roots in terms of number, fresh wt and dry weight basis, stem explants have shown poor results for root regeneration. The roots grown have shown a negative geotropic development. The cultured roots exhibited normal development without gross morphological and anatomical change.

CONCLUSION

In conclusion, the optimized media requirement for callus culture of B. diffusa is by using 20µM 2,4-D in MS medium while MS medium with 5µM IBA has generated a large biomass of roots using leaf explants. Further estimation of active constituents and by using suitable precursor in this optimized media; an improvement in the yield of active principles of B. diffusa can be achieved.

REFERENCES

1. Indian Herbal Pharmacopoeia, Vol.1, A Joint Publication of Regional Research Lab and Indian Drug Manufacture Association, 38.
2. Kokate C.K., Gokhale S.B., Purohit A. P., Pharmacognosy, 17th Edition, Nirali Prakashan, 520.
3. Nadkarni K.M., Indian Materia Medica, Vol.1, Bombay Popular Prakashan, 202.
4. Kirtikar K.R., Basu B., D. Indian Medicinal Plants, Vol. III, II Edition, International Book Distributor, 2046.
5. Murashige T., and Skoog F., A Revised Medium for Rapid Growth and Bioassay with Tobacco Tissue Cultures, Physiol Plant, 15, 1962, 473.
6. Dodds H. John, lori n W. Robters, Experiemtns in Plant Tissue Culture, III Edition, Cambridge University Press, 42 -55.
7. Chawla H.S., Introduction of Plant Biotechnology, Oxford and IBH Publishing Co. Pvt. Ltd, 17-19

8. Dixon A. Richard, Gonzales A. Robert, Plant Cell Culture: A Practical Approach, II Edition, Oxford University Press, 4-12.

9. Thorpe A. Trevor, Plant Tissue Culture: Methods and Application in Agriculture, 1981, Academic Press, 181 – 182.

Table 1: Response of different concentration of growth regulators supplement in MS media on callus formation by stem and leaf explant of *B. diffusa* Linn.

Explant	Growth regulator	Conc (mM)	Result %	Fresh wt. (gms)	Dry wt. (gsm)	
			response	Means ± S.E.M.	Mean ± S.E.M	
Leaf 2,4-D	2,4- D	0.1	--	--	--	--
Leaf 2,4-D	2,4- D	1.0	--	--	--	--
Leaf 2,4-D	2,4- D	2.0	--	--	--	--
Leaf 2,4-D	2,4- D	5.0	--	--	--	--
Leaf 2,4-D	2,4- D	10	Callus with roots	30.2	0.24 ± 0.015	0.025 ± 0.002
Leaf 2,4-D	2,4- D	15	Callus with roots	35.6	0.32 ± 0.025	0.041 ± 0.009
Leaf 2,4-D	2,4- D	20	Callus	75.9	0.71 ± 0.031	0.11 ± 0.003
Leaf 2,4-D	2,4- D	25	Callus	40.1	0.029 ± 0.024	0.027 ± 0.011
Leaf 2,4-D	2,4- D	30	Callus with roots	30.2	0.24 ± 0.015	0.025 ± 0.002
Stem 2,4-D	2,4- D	0.1	--	--	--	--
Stem 2,4-D	2,4- D	1.0	--	--	--	--
Stem 2,4-D	2,4- D	5.0	Callus	15.2	0.035 ± 0.0100	0.004 ± 0.009
Stem 2,4-D	2,4- D	10.0	Callus	18.7	0.032 ± 0.007	0.003 ± 0.001
Stem 2,4-D	2,4- D	15.0	Callus	24.3	0.071 ± 0.012	0.015 ± 0.002
Stem 2,4-D	2,4- D	20.0	Callus	22.0	0.045 ± 0.008	0.009 ± 0.002
Stem 2,4-D	2,4- D	25.0	--	--	--	--
Stem 2,4-D	2,4- D	30.0	--	--	--	--
Leaf Picrolam	Picrolam	0.1	--	--	--	--
Leaf Picrolam	Picrolam	1.0	--	--	--	--
Leaf Picrolam	Picrolam	5.0	Callus	27.0	0.092 ± 0.012	0.012 ± 0.005
Leaf Picrolam	Picrolam	10.0	Callus	35.6	0.131 ± 0.057	0.045 ± 0.008
Leaf Picrolam	Picrolam	20.0	Callus	23.1	0.061 ± 0.014	0.034 ± 0.006
Leaf Picrolam	Picrolam	30.0	--	--	--	--
Stem Picrolam	Picrolam	0.1	--	--	--	--
Stem Picrolam	Picrolam	1.0	--	--	--	--
Stem Picrolam	Picrolam	5.0	--	--	--	--
Stem Picrolam	Picrolam	10.0	Callus	13.8	0.061 ± 0.012	0.010 ± 0.004
Stem Picrolam	Picrolam	20.0	Callus	11.2	0.024 ± 0.009	0.008 ± 0.005
Stem Picrolam	Picrolam	30.0	--	--	--	--
Table 2: Response of different concentration of growth regulators (Auxins) supplemented in MS medium on root formation from stem and leaf explant of *B. diffusa* Linn.

Explant	Growth regulator	Conc (mM)	Result %	Fresh wt. (gms)	Dry wt. (gsm)
				Means ± S.E.M	Mean ± S.E.M
Leaf IBA	0.1	--	--	--	--
Leaf IBA	1.0	--	--	--	--
Leaf IBA	2.0	Roots with little callus	12.1	0.231 ± 0.0124	0.021 ± 0.003
Leaf IBA	5.0	Roots	69.7	0.546 ± 0.068	0.081 ± 0.011
Leaf IBA	10	Roots	31.0	0.253 ± 0.017	0.033 ± 0.007
Leaf IBA	20	Roots	19.2	0.113 ± 0.013	0.017 ± 0.005
Leaf IBA	30	--	--	--	--
Stem IBA	0.1	--	--	--	--
Stem IBA	1.0	--	--	--	--
Stem IBA	5.0	Roots	13.2	0.076 ± 0.012	0.018 ± 0.005
Stem IBA	10.0	Roots	11.5	0.069 ± 0.014	0.015 ± 0.006
Stem IBA	15.0	--	--	--	--
Stem IBA	20.0	--	--	--	--
Leaf NAA	0.1	--	--	--	--
Leaf NAA	1.0	Roots	11.5	0.074 ± 0.007	0.019 ± 0.004
Leaf NAA	5.0	Roots	22.6	0.095 ± 0.015	0.026 ± 0.007
Leaf NAA	10.0	Roots	19.8	0.088 ± 0.012	0.023 ± 0.006
Leaf NAA	20.0	--	--	--	--
Leaf NAA	30.0	--	--	--	--
Stem NAA	0.1	--	--	--	--
Stem NAA	1.0	Roots	8.2	0.033 ± 0.008	0.010 ± 0.002
Stem NAA	5.0	Roots	15.7	0.045 ± 0.007	0.015 ± 0.003
Stem NAA	10.0	Roots	6.4	0.035 ± 0.004	0.011 ± 0.003
Stem NAA	20.0	--	--	--	--
Stem NAA	30.0	--	--	--	--
Fig No.1 (A&B): Callus cultured in 20µM 2,4-D and 10µM Picrolam

Fig No.2: Roots cultured in 5µM Indole butyric acid