Hyponormality on General Bergman Spaces

Houcine Sadraoui

Abstract. A bounded operator T on a Hilbert space is hyponormal if $T^*T - TT^*$ is positive. We give a necessary condition for the hyponormality of Toeplitz operators on weighted Bergman spaces, for a certain class of radial weights, when the symbol is of the form $f + \overline{g}$, where both functions are analytic and bounded on the unit disk. We give a sufficient condition when f is a monomial.

1. Introduction

Let $w(r)$ be a nonnegative measurable function defined on $(0, 1)$, and assume $0 < \int_0^1 rw(r)dr < \infty$. Define the Hilbert space $L^2_{a,w}$ to be the space of analytic functions on the unit disk U such that

$$\int_0^1 \int_0^{2\pi} |f(re^{i\theta})|^2 rw(r) \frac{d\theta}{\pi} < \infty.$$

We set $\alpha_n = 2 \int_0^1 r^{2n+1}w(r)dr$. Then

$$L^2_{a,w} = \{ f = \sum a_n z^n \text{ analytic on the unit disk such that } \|f\|^2 = \sum \alpha_n |a_n|^2 < \infty \}$$

and its orthonormal basis is given by $e_n = \frac{z^n}{\sqrt{\alpha_n}}$. Toeplitz operators on $L^2_{a,w}$ are defined by $Tf(k) = Pfk$, with f bounded measurable on U, k in $L^2_{a,w}$, and P the orthogonal projection on $L^2_{a,w}$. Hankel operators are defined by $Hf(k) = (I - P)fk$ where f and k are as before. A bounded operator on a Hilbert space is said to be hyponormal if $T^*T - TT^*$ is positive. Unweighted Bergman spaces are considered in [2, 3, 11]. Hyponormality on the Hardy space was first considered in [4, 5]. The first results on hyponormality of Toeplitz operators on Bergman spaces are in [10] and the necessary condition is improved in [1]. All the known results on hyponormality on weighted Bergman spaces consider particular types of polynomials as a symbol. We cite for example [8] and [9]. In this work we consider hyponormality of Toeplitz operators on $L^2_{a,w}$. Under a condition on the weight we give a general necessary condition for the hyponormality of Toeplitz operators on $L^2_{a,w}$ with a symbol of the form $f + \overline{g}$, where f and g are bounded analytic on the unit disk. We give sufficient conditions for hyponormality when f is a monomial and g is a polynomial. A necessary and sufficient condition for normality of $T_{f + \overline{g}}$, when f and g are analytic in an open set containing U, is also obtained as a consequence.

2. Basic properties of Toeplitz operators and equivalent forms of hyponormality

These properties are known on the Bergman space and they hold also for weighted Bergman spaces. We assume f, g are in $L^\infty(U)$. Then we have:

2010 Mathematics Subject Classification. Primary 47B35, 47B20; Secondary 15B48.
Keywords. Toeplitz operator, weighted Bergman spaces, hyponormality, positive matrices.
Received: 11 February 2019; Accepted: 19 May 2019
Communicated by Dragana Cvetković-Ilić
This project was supported by King Saud University, Deanship of Scientific Research, College of Science Research Center.
Email address: sadrawi@ksu.edu.sa (Houcine Sadraoui)
1. \(T_{f+g} = T_f + T_g \).
2. \(T_f^* = T_f \).
3. \(T_f^*T_g = T_gT_f \) if \(f \) or \(g \) analytic on \(U \).

The use of these properties leads to describing hyponormality in more than one form. These are easy to prove, and one of the forms uses Douglas lemma [6].

Proposition 2.1. Let \(f, g \) be bounded and analytic on \(U \). Then the following are equivalent:
1. \(T_{f+g} \) is hyponormal.
2. \(H_f^*H_g \leq H_f^*T_f \).
3. \(\|(I-P)(gk)\| \leq \|(I-P)(f\bar{k})\| \) for any \(k \) in \(L^2_{m,w} \).
4. \(\|f\|^2 \leq \|f\|^2 + \|P(f\bar{k})\|^2 \) for any \(k \) in \(L^2_{m,w} \).
5. \(H_f = LH_f \) where \(L \) is of norm less than or equal to one.

We also need the following two lemmas. The symbols \(m, n, p \) etc denote nonnegative integers.

Lemma 2.2. For \(m \) and \(n \) integers we have \(P\left(z^n\bar{z}^m\right) = \begin{cases} 0, & \text{if } n < m \\ \frac{\alpha_m}{\sqrt{\alpha_m}}z^{n-m}, & \text{if } n \geq m. \end{cases} \)

Proof. If \(n < m \) we have \(\left(P\left(z^n\bar{z}^m\right), z^n\right) = \langle z^n\bar{z}^m, z^n \rangle = \langle z^n, z^{n+m} \rangle = 0 \) for any integer \(p \). Thus \(P\left(z^n\bar{z}^m\right) = 0 \). For \(n \geq m \), \(\left(P\left(z^n\bar{z}^m\right), z^n\right) = \langle z^n, z^{n+m} \rangle = 0 \) if \(p \neq n - m \). So \(P\left(z^n\bar{z}^m\right) = \lambda z^{n-m} \) and \(\left(P\left(z^n\bar{z}^m\right), z^n \right) = \lambda \|z^{n-m}\|^2 = \lambda \alpha_{n-m}. \)

Since \(\left(P\left(z^n\bar{z}^m\right), z^n \right) = \langle z^n, z^n \rangle = \alpha_n \), we deduce that \(\lambda = \frac{\alpha_n}{\alpha_{n-m}} \) and the result follows.

Lemma 2.3. For \(f = \sum a_nz^n \) bounded and analytic on the unit disk. The matrix of \(T_f^*T_f - T_fT_f^* \) in the orthonormal basis \(\{e_n\} \) is given by

\[
\Lambda_i = \sum_{m \geq j, m \geq 0} a_{m-i, j} \alpha_{i-m} - \sum_{j \geq m \geq 0} a_{m, j} \alpha_m \sqrt{\alpha_j} \sqrt{\alpha_i}.
\]

Proof. We have \(T_f(e_j) = \frac{1}{\sqrt{\alpha_j}} \sum_n a_n z^{n+j} \) and \(T_f^*T_f(e_j) = \frac{1}{\sqrt{\alpha_j}} P\left(\sum_{m,n} a_{m,n}z^{n+j}z^\ast\right) = \frac{1}{\sqrt{\alpha_j}} \sum_{m-n \leq j} a_{m,n} \alpha_m \alpha_{i-m} \) which can be written

\[
T_f^*T_f(e_j) = \frac{1}{\sqrt{\alpha_j}} \sum_{p \geq 0, m \geq j} \frac{\alpha_{m+p}}{\alpha_m} a_{m+p} \bar{a}_m z^{n+j}.
\]

We deduce that

\[
\langle T_f^*T_f(e_j), e_i \rangle = \frac{1}{\sqrt{\alpha_i}} \sum_{m \geq j, m \geq 0} a_{m-i,j} \alpha_{i-m} \sqrt{\alpha_i} \sqrt{\alpha_j}.
\]

Similarly, we show that

\[
\langle T_fT_f^*(e_j), e_i \rangle = \sum_{i \leq m \geq 0} a_{m, j} \alpha_m \sqrt{\alpha_i} \alpha_{i-m}
\]

and the proof is complete.

Corollary 2.4. The following holds

\[
\Lambda_{i+n, j+n+p} = \sum_{l \geq i+n} \frac{(\alpha_{l+i+n+p}(\alpha_{l+i+n} - 2\alpha_{i+n} \alpha_{i+n+p}) + \alpha_{i+n+p} \alpha_{l+i+n+p}) \sqrt{\alpha_l} \sqrt{\alpha_i}}{\sqrt{\alpha_{i+n} \sqrt{\alpha_{i+n+p}}}} + \sum_{l \geq i+n} \frac{\alpha_{l+i+n+p} \sqrt{\alpha_{l+i+n+p}}}{\sqrt{\alpha_{i+n} \sqrt{\alpha_{i+n+p}}}}.
\]

Proof. This follows from the previous lemma by putting \(m = p + l \) in the first sum and \(m = l \) in the second.
3. The results

Denote by \((\theta_{i,j})\) the matrix of the, possibly unbounded, Toeplitz operator on \(H^2\) with symbol \(|f|^2\). Our main result uses the following lemma, where \(C\) denotes a constant.

Lemma 3.1. Let \(f = \sum a_n z^n\) be bounded on \(U\). Assume \(f' \in H^2\) and \((a_n)\) satisfies the following conditions:

\[n^2 \left| \frac{\alpha_{i+n+p} \alpha_{i+n-1} - \alpha_{i+n} \alpha_{i+n+p}}{\sqrt{\alpha_{i+n+p}} \sqrt{\alpha_{i+n-1}}} \right| \leq C(l + p), \quad l \leq i + n \quad (1) \]

\[n^2 \left(\frac{\alpha_{i+n+p} \alpha_{i+n-1} - \alpha_{i+n} \alpha_{i+n+p}}{\sqrt{\alpha_{i+n+p}} \sqrt{\alpha_{i+n-1}}} \right) \to l(l + p) \quad (2) \]

Then

\[n^2 \Lambda_{i+n,i+n+p} \to n \to \theta_{i,i+p} \]

Proof. We have \(\sum |l| < \infty\) since \(f' \in H^2\). Using the previous lemma we have

\[n^2 \Lambda_{i+n,i+n+p} = \sum_{l \leq i+n} n^2 \left(\frac{\alpha_{i+n+p} \alpha_{i+n-1} - \alpha_{i+n} \alpha_{i+n+p}}{\sqrt{\alpha_{i+n+p}} \sqrt{\alpha_{i+n-1}}} \right) \frac{\alpha_{i+n+p}}{\sqrt{\alpha_{i+n+p}}} + \sum_{l > i+n} n^2 \left(\frac{\alpha_{i+n+p} \alpha_{i+n-1} - \alpha_{i+n} \alpha_{i+n+p}}{\sqrt{\alpha_{i+n+p}} \sqrt{\alpha_{i+n-1}}} \right) \frac{\alpha_{i+n+p}}{\sqrt{\alpha_{i+n+p}}} \]

Set \(h_n(l) = \frac{n^2 \alpha_{i+n+p} \alpha_{i+n-1} - \alpha_{i+n} \alpha_{i+n+p}}{\sqrt{\alpha_{i+n+p}} \sqrt{\alpha_{i+n-1}}} \). From (1) we have \(|h_n(l)| \leq (C/2)(l^2|a|^2 + (l + p)^2|a_{l+p}|^2) = l(l + p)\) and \(\int_0^\infty l(l)(l)\text{d}v(l) < \infty\), where \(v\) is the counting measure. Using (2) and the dominated convergence theorem we obtain

\[\lim_{n \to \infty} \sum_{l \leq i+n} n^2 \left(\frac{\alpha_{i+n+p} \alpha_{i+n-1} - \alpha_{i+n} \alpha_{i+n+p}}{\sqrt{\alpha_{i+n+p}} \sqrt{\alpha_{i+n-1}}} \right) \frac{\alpha_{i+n+p}}{\sqrt{\alpha_{i+n+p}}} = \sum_{l > i+n} l(l + p)|a_{l+p}|^2. \]

We also have, for \(l > i + n\)

\[\frac{n^2 \alpha_{i+n+p} \alpha_{i+n-1} - \alpha_{i+n} \alpha_{i+n+p}}{\sqrt{\alpha_{i+n+p}} \sqrt{\alpha_{i+n-1}}} \leq 1/2(l^2|a|^2 + (l + p)^2|a_{l+p}|^2). \]

By the dominated convergence theorem we see that

\[\sum_{l > i+n} n^2 \left(\frac{\alpha_{i+n+p} \alpha_{i+n-1} - \alpha_{i+n} \alpha_{i+n+p}}{\sqrt{\alpha_{i+n+p}} \sqrt{\alpha_{i+n-1}}} \right) \frac{\alpha_{i+n+p}}{\sqrt{\alpha_{i+n+p}}} \to 0. \]

The result follows since \(\theta_{i,i+p} = \sum l(l + p)|a_{l+p}|^2. \)

Remark 3.2. Examples of weights satisfying conditions (1) and (2) of the previous lemma are: \(w(r) = r^s,\) \(s > -\frac{1}{2}\), \(w(r) = |\log r|\), and \(w(r) = 1 - r^2\).

From now on we assume \((a_n)\) satisfies the hypotheses of the previous lemma. We state our main result.

Theorem 3.3. Let \(f\) and \(g\) be bounded analytic functions on \(U\), and assume \(f' \in H^2\). If \(T_{f,g}\) is hyponormal on \(L^2_{a,w}\) then \(g' \in H^2\) and \(|g'| \leq |f'|\) a.e on the unit circle.
Proof. Denote by \((T_n)\) the matrix of \(T^n T - T^n T^n\) and put \(g = \sum b_n z^n\). Hyponormality of \(T_{f*g}\) leads to the inequality \(n^2 \lambda_{i+n,i+n} \leq n^2 \lambda_{i+n,i+n} + \sum_{l \leq i+n} n^2 (a_{i+1+n, a_{i+1-n}} - (a_{i+1,n})^2)\). We deduce that
\[
\sum_{l \leq i+n} n^2 (a_{i+1+n, a_{i+1-n}} - (a_{i+1,n})^2) \leq \sum_{l \leq i+n} n^2 (a_{i+1+n, a_{i+1-n}} - (a_{i+1,n})^2) + \sum_{l \leq i+n} n^2 (a_{i+1+n, a_{i+1-n}})\]
Write the left hand side as an integral \(\int \frac{u_n(l)}{dv(l)}\). By Fatou’s lemma, condition (2) of the previous lemma and taking the limit on both sides we get
\[\sum \int n^2 [b_n]^2 \leq \sum \int n^2 [b_n]^2\]
Thus \(g' \in H^2\). From the previous lemma we deduce that \(n^2 (\lambda_{i+n,i+n} - \lambda_{i+n,i+n}) \to \theta_{i+n} - \phi_{i+n}\) where \((\phi_{i+1})\) is the matrix of the Hardy space Toeplitz operator \(T_{g'f}\). Hyponormality leads to the positivity of \(T_{g'f}\) and a property of Toeplitz forms [7] implies that \(|g'| \leq |f'|\) a.e on the unit circle. The proof is complete.

Corollary 3.4. Let \(f\) and \(g\) be analytic and univalent in an open set containing \(U\). Then \(T_{f*g}\) is normal if and only if \(g = cf + d\) for some constants \(c\) and \(d\) with \(|c| = 1\).

Proof. If \(g = cf + d\) with \(|c| = 1\), it is easy to see that \(T_{f*g}\) is normal. Conversely if \(T_{f*g}\) is normal then \(|g'| = |f'|\) on the circle and a maximum modulus argument shows that \(g' = cf + d\) with \(|c| = 1\). Thus \(g = cf + d\).

We now find a sufficient condition for hyponormality when \(f = z^p\). We begin with the case \(g = \lambda z^q\). We set
\[\mu_1 = \min \left\{ \frac{\alpha_{i+1}}{\alpha_i} : 0 \leq i < q \right\}, \quad \mu_2 = \min \left\{ \frac{\alpha_{i+1}}{\alpha_i} : q \leq i < p \right\}, \quad \mu_3 = \inf \left\{ \frac{\alpha_{i+1}}{\alpha_i} : p \leq i \right\}.
\]

Proposition 3.5. Assume \(p > q\). The operator \(T_{z^p,z^q}\) is hyponormal if and only if \(|\lambda| \leq \lambda_{p,q} = \min(\mu_1, \mu_2, \mu_3)\).

Proof. In this case hyponormality is equivalent to \(|\lambda|^2 H^2_{z^p} \leq H^2_{z^q}\). A computation shows that the matrix of \(H^2_{z^p} H^2_{z^q}\) is diagonal and its diagonal term is given by:
\[D_i = \frac{\alpha_{i+1}}{\alpha_i} \text{ if } m > i, \quad D_i = \frac{\alpha_{i+1}}{\alpha_i} \text{ if } m \leq i.
\]

Hyponormality is thus equivalent to the following inequalities:
\[i) |\lambda|^2 \frac{\alpha_{i+1}}{\alpha_i} \leq \frac{\alpha_{i+1}}{\alpha_i} \leq \frac{\alpha_{i+1}}{\alpha_i} 0 \leq i < q\]
\[ii) |\lambda|^2 \frac{\alpha_{i+1}}{\alpha_i} \leq \frac{\alpha_{i+1}}{\alpha_i} \leq \frac{\alpha_{i+1}}{\alpha_i} q \leq i < p\]
\[iii) |\lambda|^2 \left(\frac{\alpha_{i+1}}{\alpha_i} - \frac{\alpha_{i+1}}{\alpha_i} \right) \leq \frac{\alpha_{i+1}}{\alpha_i} \frac{\alpha_{i+1}}{\alpha_i} p \leq i \]

Obviously inequality i) is equivalent to \(|\lambda| \leq \mu_1 = \min \left\{ \frac{\alpha_{i+1}}{\alpha_i} : 0 \leq i < q \right\}, \text{ and ii) is equivalent to } |\lambda| \leq \mu_2 = \min(\sqrt{\alpha_{i+1},0 \leq i < q} q \leq i < p\). The last inequality is equivalent to \(|\lambda| \leq \mu_3 = \inf(\sqrt{\alpha_{i+1},p \leq i} q \leq i < p\). Thus hyponormality of \(T_{z^p,z^q}\) is equivalent to \(|\lambda| \leq \lambda_{p,q} = \min(\mu_1, \mu_2, \mu_3)\).

Remark 3.6. If \(p = q\) then clearly hyponormality of \(T_{z^p,z^p}\) is equivalent to \(|\lambda| \leq 1\). Thus if \(p \geq q\) from the previous theorem \(|\lambda_{p,q} | \leq \frac{q}{p}\).

In the following proposition we assume \(q \geq 2\) (the case \(q = 1\) being trivial). We set
\[\tau_1 = \min(\sqrt{\alpha_{i+1},0 \leq i < p}, \tau_2 = \min(\sqrt{\alpha_{i+1},0 \leq i < q}, p \leq i < q) \text{ and } \tau_3 = \inf(\sqrt{\alpha_{i+1},p \leq i} q \leq i < p)\).

Proposition 3.7. Assume $p < q$ then $T_{f^+, \tau}$ is hyponormal if and only if $|\lambda| \leq \sigma_{p,q} = \min\{\tau_1, \tau_2, \tau_3\}$.

The proof, being similar to the proof given above, is omitted. We set $\sigma_{q,q} = 1$. Note that hyponormality of $T_{f^+, \tau}$ implies that $\|g\| \leq \|f\|$ in particular $\sigma_{p,q} \leq \sqrt{\frac{p}{q}}$. In what follows we give a sufficient condition for the hyponormality of $T_{f^+, \tau}$. We denote by B_1 the unit ball of $L_{\alpha,\omega}^2$.

Definition 3.8. For $f \in L_{\alpha,\omega}^2$, set

$$G_f = \left\{ g \in L_{\alpha,\omega}^2 : \sup \{ \| \langle g, k \rangle, u \| : u \in B_1 \} \leq \sup \{ \| \langle f, k \rangle, u \| : u \in B_1 \} \text{ for any } k \in H^\infty \right\}.$$

By the density of H^∞ in $L_{\alpha,\omega}^2$, we see that $g \in G_f$ is equivalent to $T_{f^+, \tau}$ is hyponormal. We list the properties of G_f in the following proposition:

Proposition 3.9. Let $f \in L_{\alpha,\omega}^2$, the following holds:

i) G_f is convex and balanced.

ii) If $g \in G_f$, and c is a constant the $g + c \in G_f$.

iii) $f \in G_f$.

iv) G_f is weakly closed.

Proof. i), ii) and iii) follow from the definition of G_f. For the proof of iv) assume (g_n) is a net in G_f such that $g_n \rightarrow g$. We have for $v \in B_1$ and $k \in H^\infty,$ $\| \langle g_n, k \rangle, v \| \leq \sup \{ \| \langle f, k \rangle, u \| : u \in B_1 \}$. Taking the limit we get $\| \langle g, k \rangle, v \| \leq \sup \{ \| \langle f, k \rangle, u \| : u \in B_1 \}$. Taking the supremum on the left hand side we get: $\sup \{ \| \langle g, k \rangle, u \| : u \in B_1 \} \leq \sup \{ \| \langle f, k \rangle, u \| : u \in B_1 \}$ for any $v \in B_1$. Thus (iv) completes the proof.

Corollary 3.10. Assume (λ_n) is a sequence of complex numbers satisfying $\sum |\lambda_n| \leq 1$. Then $T_{z^1 \sum \lambda_n z^n, \sum \lambda_n |z|^m}$ is hyponormal.

Proof. Set $g_N = \sum_{n=1}^{N} \lambda_n |z|^m$ for $N \geq q + 1$ and let $h = \sum_{n=1}^{\infty} h_n z^n$ be in $L_{\alpha,\omega}^2$. We have the following inequalities for $M > N \geq q + 1$

$$|\langle g_M - g_N, h \rangle| \leq \sum_{N} |\lambda_n| |h_n| |\alpha_m| \leq \left(\sum_{N} |\lambda_n|^2 |\alpha_m|^2 \right)^{1/2} \left(\sum_{N} |h_n|^2 |\alpha_m|^2 \right)^{1/2}.$$

Thus (g_n) converges weakly and a similar argument shows that the limit is $\sum_{n=1}^{q} \lambda_n |z|^m + \sum_{q+1}^{\infty} \lambda_n |h_n| |z|^m$.

The result follows from the previous proposition.

References

[1] P. Ahern and Z. Cuckovic, A mean value inequality with applications to Bergman space operators, Pac.J.Math, Vol173.no2(1996) 295–305.

[2] S. Axler, Bergman spaces and their operators, in Surveys of Some Recent results in Operator Theory, Vol.1, Pitman Research Notes in Math, Vol.171, Longman, Harlow, (1988) 1–50.

[3] S. Axler, Bergman space, the Bloch space and commutators of multiplication operators, Duke Math.J., 53(1986)315–332.

[4] C. Cowen, Hyponormal and subnormal Toeplitz operators, in Surveys of Some Results in Operator Theory, Vol.1, Pitman Research Notes in Math, Vol.171, Longman, Harlow, (1988) 155–167.

[5] C. Cowen, Hyponormality of Toeplitz operators, Proc.Amer.Math.Soc., 103(1988) 809–812.

[6] R. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc.Amer.Math.Soc., 17(1966) 21–32.

[7] U. Grenander and G. Szegö, Toeplitz Forms and Their Applications, University of California Press, Berkeley and Los Angeles,1958.

[8] M. Hazzah, On hyponormality of Toeplitz operators on the weighted Bergman space, Communications in Mathematics and Applications, Vol3(2012), 2. 147–157.

[9] S. Hwang and J. Lee, Hyponormal Toeplitz operators on the weighted Bergman spaces, Mathematical Inequalities and Applications, 15(2012) 323–330.

[10] H. Sadoraoui, Hyponormality of Toeplitz operators and composition operators, Thesis, Purdue University, 1992.

[11] K. Zhu, Operator Theory in Function Spaces, Dekker, New York, 1990.