Reexploration of interacting holographic dark energy model: cases of interaction term excluding the Hubble parameter

Hai-Li Li¹, Jing-Fei Zhang¹, Lu Feng¹, Xin Zhang¹,²,a

¹ Department of Physics, College of Sciences, Northeastern University, Shenyang 110004, China
² Center for High Energy Physics, Peking University, Beijing 100080, China

Received: 23 November 2017 / Accepted: 15 December 2017 / Published online: 27 December 2017
© The Author(s) 2017. This article is an open access publication

Abstract In this paper, we make a deep analysis for the five typical interacting holographic dark energy models with the interaction terms \(Q = 3\beta H_0\rho_{de}, \) \(Q = 3\beta H_0\rho_c, \) \(Q = 3\beta H_0(\rho_{de} + \rho_c), \) \(Q = 3\beta H_0\sqrt{\rho_{de}\rho_c}, \) and \(Q = 3\beta H_0\frac{\rho_{de}\rho_c}{\rho_{de} + \rho_c}, \) respectively. We obtain observational constraints on these models by using the type Ia supernova data (the Joint Light-Curve Analysis sample), the cosmic microwave background data (Planck 2015 distance priors), the baryon acoustic oscillations data, and the direct measurement of the Hubble constant. We find that the values of \(\chi^2_{\text{min}} \) for all the five models are almost equal (around 699), indicating that the current observational data equally favor these IHDE models. In addition, a comparison with the cases of an interaction term involving the Hubble parameter \(H \) is also made.

1 Introduction

The accelerated expansion of the universe has been discovered by the type Ia supernova observations [1,2] and further confirmed by various other cosmological observations [3–6]. Dark energy that has negative pressure has been proposed to explain the phenomenon of cosmic acceleration [7–15]. In the present universe, dark energy contributes about 70% of the cosmic energy density, and thus it is now dominating the evolution of the universe. The study of dark energy has become one of the most important issues in theoretical physics and modern cosmology. Although enormous efforts have been made to investigate dark energy, its nature is still in the dark.

The primary candidate of dark energy is the so-called “cosmological constant” (denoted as \(\Lambda \)), which is equivalent to the density of vacuum energy and thus is a constant in space and time. The cosmological constant \(\Lambda \) has a constant equation-of-state parameter (EoS) \(w_\Lambda \equiv p_\Lambda/\rho_\Lambda = -1. \) The cosmological model with \(\Lambda \) and cold dark matter (CDM) is called the \(\Lambda \)CDM model, which can explain the current various cosmological observations quite well [16]. However, the cosmological constant always suffers from serious theoretical challenges, i.e., the so-called “fine-tuning” and “cosmological coincidence” puzzles [17,18]. The value of the vacuum energy density calculated by quantum field theory is higher than the fit value of the cosmological constant by cosmological observations by about the 120 orders of magnitude, and so a bare cosmological constant needs to be introduced to make an offset, leading to the fine-tuning problem. The coincidence problem asks why the densities of vacuum energy and matter are in the same order today, although their evolutionary histories differ enormously. These two puzzles have been frustrating the \(\Lambda \)CDM cosmology in theoretical aspect.

Actually, there are many other candidates for dark energy, for which the vast majority believes that dark energy has dynamics, often realized by some scalar field [19–29]. However, more theoretically, it is believed that the dark energy problems are closely related to the theory of quantum gravity in nature. It is actually obvious that \(\Lambda \) has a quantum origin and at the same time it yields repulsive gravity leading the current universe to accelerate. Therefore, it is of great interest to explore the nature of dark energy from the perspective of quantum gravity. In the current circumstance that we have no a complete theory of quantum gravity, we have to appeal to the holographic principle of quantum gravity for an effective theory of dark energy.

Together with the effective quantum field theory, the holographic principle leads to a model of dark energy, named “holographic dark energy” (HDE) model, which can solve the two theoretical puzzles of cosmological constant at the same time to some extent [30] and can explain the current cosmological observations well (see Ref. [31] for a recent review). By considering the holographic principle, it is required that in a spatial region there is an upper limit for the number of degrees of freedom involved in it, due to the gravita-

a e-mail: zhangxin@mail.neu.edu.cn
tional effects of them (the condition of black hole formation sets such a bound) [32]. That is to say, in this theory, the infrared (IR) cutoff (with length scale L) is related to the ultraviolet (UV) cutoff (with energy scale k_{max}). Recall that for the vacuum energy density we have the evaluation $\rho_{\text{vac}} \approx k_{\text{max}}^4/(16\pi^2)$. Thus, one finds that by such a theoretical consideration the density of dark energy can be decided by some IR cutoff length scale of the universe. The holographic reasoning gives the density of dark energy of the form [30]

$$\rho_{\text{de}} = 3c^2 M_{\text{pl}}^2 L^{-2},$$

(1)

where $M_{\text{pl}} = \frac{1}{\sqrt{8\pi G}}$ is the reduced Planck mass and c is a dimensionless constant characterizing ambiguous factors in the effective theory. In the HDE model, Li [30] argues that L should be chosen as the future event horizon of the universe, which can lead to a cosmic acceleration. Namely, in the HDE model, we have

$$L = a(t) \int_{t_a}^{\infty} \frac{da'}{a'(t')} = a \int_{a}^{\infty} \frac{da'}{Ha'^2}.\quad \text{(2)}$$

The HDE model has been widely studied in [33–52]. There are also some variants of this kind [53–62]. In the HDE model, it is found that the parameter c solely determines the evolution of dark energy, by solving a differential equation (see, e.g., Ref. [30]). When $c > 1$, the dark energy has $w > -1$ (in the case of $c = 1$, w will eventually evolve to get -1); when $c < 1$, the EoS of dark energy w will cross the phantom divide -1 from $w \rightarrow -1/3$ to $w \rightarrow -1/3 - 2/(3c)$ [63]. The cosmological constraints show that c is around 0.7 (see, e.g., Refs. [64–66]). A recent work [67] on comparing popular dark energy models shows that the HDE model is still a competitive model in the aspect of fitting the current cosmological observations.

On the other hand, there might be some direct interaction between dark energy and dark matter, which is capable of helping resolve (or alleviate) the coincidence problem of dark energy [68–70]. Therefore, in addition to probing the dynamics of dark energy, another important mission for the investigation of dark energy is to detect such a “fifth force” between dark energy and dark matter by accurate cosmological observations. The interacting dark energy models have been widely studied [71–109]. The interacting models in the framework of holographic dark energy have also been deeply explored (see, e.g., Refs. [110–112]).

In interacting models of dark energy, one considers that there is an energy transfer between dark energy and dark matter in the background universe (and in a perturbed universe there is also a momentum transfer between them). In a concrete model, a form of the energy (density) transfer rate (denoted as Q) should be assumed. Usually, consulting from the theories of nuclear decay and inflationary reheating, the form of Q is assumed to be proportional to the density of dark energy or dark matter, i.e., $Q = 3\beta H\rho_{\text{de}}$ or $Q = 3\beta H\rho_{\text{c}}$, where ρ_{de} and ρ_{c} are the densities of dark energy and cold dark matter, respectively, H is the Hubble parameter, and β denotes the dimensionless coupling between dark energy and dark matter. Note that here $3H$ appears only for mathematical convenience. In our recent work [112], Feng and Zhang explored the interacting models in the framework of holographic dark energy and made a comparison for five interacting cases ($Q = 3\beta H\rho_{\text{de}}$, $Q = 3\beta H\rho_{\text{c}}$, $Q = 3\beta H\rho_{\text{de}}\rho_{\text{c}}$, and $Q = 3\beta H\rho_{\text{c}}\rho_{\text{de}}$), according to the constraint results of current observations.

However, in the research area of interacting dark energy, there is another perspective that Q should not involve the Hubble parameter H because the local interaction should not depend on the global expansion of the universe [102]. According to this perspective, one should write down the form of Q as, e.g., $Q = 3\beta H_0\rho_{\text{de}}$ or $Q = 3\beta H_0\rho_{\text{c}}$, where the appearance of H_0 is only for a dimensional consideration. In this paper, we will revisit the exploration of interacting holographic dark energy models by adopting this perspective. We will consider the five cases with $Q = 3\beta H_0\rho_{\text{de}}$, $Q = 3\beta H_0\rho_{\text{c}}$, $Q = 3\beta H_0(\rho_{\text{de}} + \rho_{\text{c}})$, $Q = 3\beta H_0\rho_{\text{de}}\rho_{\text{c}}$, and $Q = 3\beta H_0\rho_{\text{c}}\rho_{\text{de}}$. We constrain the models by using the current cosmological observations, and we report the results and make an analysis for them.

This paper is organized as follows. In Sect. 2, we briefly describe the interacting holographic dark energy model. In Sect. 3, we present the analysis method and the observational data used in this paper. In Sect. 4, we report the constraint results and make a deep discussion for them. Conclusion is given in Sect. 5.

2 The interacting model of holographic dark energy

In this section, we briefly derive the equations describing the interacting holographic dark energy (IHDE) model for a flat cosmology.

In the context of the flat Friedmann–Roberston–Walker universe, the Friedmann equation can be written as

$$3M_{\text{pl}}^2 H^2 = \rho_c + \rho_b + \rho_{\text{r}} + \rho_{\text{de}},$$

(3)

where $3M_{\text{pl}}^2 H^2$ is the critical density of the universe, ρ_c, ρ_b, ρ_{r}, and ρ_{de} represent the energy densities of cold dark matter, baryon, radiation, and dark energy, respectively. For convenience, we define the fractional energy densities of various components as

$$\Omega_c = \frac{\rho_c}{3M_{\text{pl}}^2 H^2}, \quad \Omega_b = \frac{\rho_b}{3M_{\text{pl}}^2 H^2},$$

$$\Omega_{\text{r}} = \frac{\rho_{\text{r}}}{3M_{\text{pl}}^2 H^2}, \quad \Omega_{\text{de}} = \frac{\rho_{\text{de}}}{3M_{\text{pl}}^2 H^2}.\quad \text{(4)}$$

$$\Box$$ Springer
By definition, we have
\[\Omega_c + \Omega_{bh} + \Omega_{\tau} + \Omega_{de} = 1. \] (5)

In the IHDE model, there is some direct, non-gravitational interaction between holographic dark energy and dark matter, and thus we have the following continuity equations for the various components:
\begin{align*}
\dot{\rho}_c + 3H\rho_c &= Q, \\
\dot{\rho}_{de} + 3H(\rho_{de} + p_{de}) &= -Q, \\
\dot{\rho}_b + 3H\rho_b &= 0, \\
\dot{\rho}_r + 4H\rho_r &= 0,
\end{align*}
where \(Q \) is the phenomenological interaction term [113–122], denoting the energy transfer rate between dark energy and dark matter. In this paper, we consider the following five cases in the IHDE model:
\begin{align*}
Q_1 &= 3\beta H_0\rho_{de}, \\
Q_2 &= 3\beta H_0\rho_c, \\
Q_3 &= 3\beta H_0(\rho_{de} + \rho_c), \\
Q_4 &= 3\beta H_0\sqrt{\rho_{de}\rho_c}, \\
Q_5 &= 3\beta H_0\frac{\rho_{de}\rho_c}{\rho_{de} + \rho_c}.
\end{align*}
As has been mentioned above, \(\beta \) is a dimensionless coupling parameter describing the strength of interaction between dark energy and dark matter.

Combining Eqs. (3) and (5)–(9), we obtain
\[\rho_{de} = -\frac{2}{3} H^2 \rho_c - \rho_c - \frac{1}{3} \rho_r. \] (15)
Substituting Eq. (15) into Eq. (7), we obtain
\[\frac{2H}{H}(\Omega_{de} - 1) + \dot{\Omega}_{de} + H(3\Omega_{de} + \Omega_t - 3 - \Omega_r) = 0. \] (16)

Here, for convenience, following Ref. [110] we define
\[\Omega_t = \frac{1}{3M_{pl}^2 H^3}. \] (17)

From Eq. (1) (i.e., the definition of density of holographic dark energy), we can get the relation
\[L = \frac{c}{H\sqrt{\Omega_{de}}}. \] (18)
We now write the IR cutoff length scale \(L \) as the form
\[L = a\tau(t). \] (19)
Combining Eqs. (18) and (19), we get
\[r(t) = \frac{L}{a} = \frac{c}{Ha\sqrt{\Omega_{de}}}. \] (20)
Combining Eqs. (2) and (20), we have the relation
\[\int_{t}^{\infty} \frac{dr'}{a(t')} = \frac{c}{Ha\sqrt{\Omega_{de}}}. \] (21)
Taking the derivative of Eq. (21) with respect to \(t \), we can get the equation
\[\frac{\dot{\Omega}_{de}}{2\Omega_{de}} + H + \frac{\dot{H}}{H} = \frac{H}{c} \sqrt{\Omega_{de}}. \] (22)

Combining Eqs. (16) and (22), we get the following two differential equations governing the dynamical evolution of dark energy in the IHDE model for a flat cosmology:
\begin{align*}
\frac{1}{E} \frac{dE}{dz} &= -\frac{\Omega_{de}}{1+z} \left(\frac{1}{c} \sqrt{\Omega_{de}} + \frac{1}{2} \frac{\Omega_t - 3 - \Omega_r}{2\Omega_{de}} \right), \\
\frac{d\Omega_{de}}{dz} &= -\frac{2(1 - \Omega_{de})\Omega_{de}}{1+z} \left(\frac{1}{c} \sqrt{\Omega_{de}} + \frac{1}{2} + \frac{\Omega_t - \Omega_r}{2(1 - \Omega_{de})} \right),
\end{align*}
where \(E(z) = H(z)/H_0 \) is the dimensionless Hubble expansion rate, \(\Omega_{de}(z) \) is the fractional density of dark energy, and \(\Omega_r(z) = \Omega_{eq}(1+z)^4/E(z)^2 \) is the fractional density of radiation. Here we have \(\Omega_{eq} = \Omega_{m0}/(1+z_{eq}) \), where \(\Omega_{m0} = \Omega_{eq} + \Omega_{b0} \) and \(z_{eq} = 2.5 \times 10^4 \Omega_{m0} h^2 (T_{cmb}/2.7 K)^{-4} \), with \(T_{cmb} = 2.7255 K \). The initial conditions of these equations are \(E_0 = 1 \) and \(\Omega_{de0} = 1 = \Omega_{m0} - \Omega_{r0} \) at \(z = 0 \).

In this paper, for convenience, we occasionally call the cases with \(Q_1 \sim Q_5 \) [described by Eqs. (10)–(14)] the IHDE1–IHDE5 models, respectively.

3 Method and data

In a flat universe, the IHDE models have four free parameters, \(c, h, \Omega_{m0}, \) and \(\beta \). We will use the current observational data to constrain the models.

We use the \(\chi^2 \) statistic to estimate the model parameters. The form of \(\chi^2 \) function is as follows:
\[\chi^2 = \sum_\xi \frac{(\xi_{th} - \xi_{obs})^2}{\sigma_\xi^2}, \] (25)
where \(\xi_{th} \) is the theoretically predicted value for the observable \(\xi \), \(\xi_{obs} \) is the corresponding experimentally measured value, and \(\sigma_\xi \) is the standard deviation. The total \(\chi^2 \) is the sum of all \(\chi^2 \).

The observational data we use in this paper include the type Ia supernova (SN) data, the cosmic microwave background (CMB) anisotropy data, the baryon acoustic oscillation data, and the microwave background radiation (CMB) anisotropy data. The likelihood function used is
\[L = \frac{1}{(2\pi)^{N/2} \sigma^N} \exp\left(-\frac{1}{2} \sum_\xi \frac{(\xi_{th} - \xi_{obs})^2}{\sigma_\xi^2} \right), \] (26)
where \(N \) is the number of data points and \(\sigma \) is the error on each data point.

The observational data we use in this paper include the type Ia supernova (SN) data, the cosmic microwave background (CMB) anisotropy data, the baryon acoustic oscillation data, and the microwave background radiation (CMB) anisotropy data. The likelihood function used is
\[L = \frac{1}{(2\pi)^{N/2} \sigma^N} \exp\left(-\frac{1}{2} \sum_\xi \frac{(\xi_{th} - \xi_{obs})^2}{\sigma_\xi^2} \right), \] (26)
where \(N \) is the number of data points and \(\sigma \) is the error on each data point.
tion (BAO) data, and the direct measurement of the Hubble constant \(H_0 \). Thus the total \(\chi^2 \) function is

\[
\chi^2 = \chi_{\text{SN}}^2 + \chi_{\text{CMB}}^2 + \chi_{\text{BAO}}^2 + \chi_{H_0}^2.
\] (27)

Since these IHDE models have the same parameter values, we can directly compare them with their \(\chi^2 \) values. But when we compare them with the \(\Lambda \)CDM model and the HDE model (without interaction), the \(\chi^2 \) comparison becomes unfair because their parameter numbers are different. We thus employ the Akaike information criterion (AIC) [123] and the Bayesian information criterion (BIC) [124] to do the model comparison in this situation. By definition, we have

\[
\text{AIC} = -2 \ln L_{\text{max}} + 2k \quad \text{and} \quad \text{BIC} = -2 \ln L_{\text{max}} + k \ln N,
\]

where \(k \) is the number of parameters, and \(N \) is the number of data points. Since we wish to measure the difference between models, we are more interested in the relative values of them. In this work, we choose the \(\Lambda \)CDM model as a reference model, and then calculate \(\Delta \text{AIC} = \Delta \chi^2_{\text{min}} + 2\Delta k \) and \(\Delta \text{BIC} = \Delta \chi^2_{\text{min}} + \Delta k \ln N \). A model with a lower value of AIC or BIC is believed to be more favored by data.

3.1 Type Ia supernovae

We use the JLA compilation of type Ia supernovae [125] in this work. It is from a joint analysis of type Ia supernova observations. The JLA compilation consists of 740 Ia supernovae data points, obtained by the SDSS-II and SNLS collaborations. The distance modulus of a SN Ia is

\[
\hat{\mu} = m_B^* - (M_B - \alpha X_1 + \beta X_2 + C),
\] (28)

where \(m_B^* \) is the observed peak magnitude, \(M_B \) is the absolute magnitude, \(X_1 \) is the time stretching of the light curve, and \(C \) is the supernova color at maximum brightness. The luminosity distance \(d_L \) of a supernova in a spatially flat FRW universe is defined as

\[
d_L(z_{\text{hel}}, z) = \frac{1 + z_{\text{hel}}}{H_0} \int_0^z \frac{dz'}{E(z')},
\] (29)

where \(z \) and \(z_{\text{hel}} \) are the CMB frame and heliocentric redshifts, respectively. The \(\chi^2 \) function for the JLA SN observation is

\[
\chi^2_{\text{SN}} = (\hat{\mu} - \mu_{\text{th}})^T C_{\text{SN}}^{-1}(\hat{\mu} - \mu_{\text{th}}),
\] (30)

where \(C_{\text{SN}} \) is the covariance matrix of the JLA SN observation and \(\mu_{\text{th}} \) denotes the theoretical distance modulus, defined as

\[
\mu_{\text{th}} = 5 \log_{10} \frac{d_L}{10 \text{pc}}.
\] (31)

3.2 Cosmic microwave background

For the CMB data, we use the “Planck distance priors” from the Planck 2015 data [126]. The distance priors contain the shift parameter \(R \), the “acoustic scale” \(\ell_A \), and the baryon density \(\omega_b \equiv \Omega_{b0} h^2 \). \(R \) and \(\ell_A \) are defined as

\[
R = \sqrt{\Omega_{m0} H_0^2 (1 + z_*) D_A(z_*)},
\] (32)

\[
\ell_A = (1 + z_*) \pi D_A(z_*) / r_s(z_*)
\] (33)

where \(\Omega_{m0} \) is the present-day fractional energy density of matter, \(D_A(z_*) \) is the proper angular diameter distance at the redshift of the decoupling epoch of photons \(z_* \), and \(r_s(z_*) \) is the comoving size of the sound horizon at \(z_* \). In a flat universe, \(D_A \) can be expressed as

\[
D_A(z) = \frac{1}{H_0(1 + z)} \int_0^z \frac{dz'}{E(z')},
\] (34)

and \(r_s(z) \) can be expressed as

\[
r_s(z) = \frac{1}{\sqrt{3}} \int_0^{1/(1+z)} \frac{da}{a^2 H(a) \sqrt{1 + (3\Omega_{b0}/4\Omega_{r0})a^2}},
\] (35)

where \(\Omega_{b0} \) and \(\Omega_{r0} \) are the present-day fractional energy densities of baryons and photons, respectively. From the measurement of CMB, we have \(3\Omega_{b0}/4\Omega_{r0} = 0.00124 \) \((T_{\text{cmb}}/2.7 \text{ K})^{-4} \), where \(T_{\text{cmb}} = 2.7255 \text{ K} \). The fitting formula of \(z_* \) is given by [127]

\[
z_* = 1048[1 + 0.00124(\Omega_{b0} h^2)^{-0.738}]^{-1}
\] (36)

[1 + g_1(\Omega_{m0} h^2)^{g_2}],

where

\[
g_1 = \frac{0.0783(\Omega_{b0} h^2)^{-0.238}}{1 + 39.5(\Omega_{b0} h^2)^{0.765}},
\] (37)

\[
g_2 = \frac{0.560}{1 + 21.1(\Omega_{b0} h^2)^{1.81}}.
\]

Using the Planck TT + LowP data, the values of the three quantities are obtained: \(R = 1.7488 \pm 0.0075 \), \(\ell_A = 301.76 \pm 0.15 \), and \(\omega_b h^2 = 0.02228 \pm 0.00023 \). The inverse covariance matrix for them, \(\text{Cov}_{\text{CMB}}^{-1} \), can be found in Ref. [126],

\[
\text{Cov}_{\text{CMB}}^{-1} = \begin{pmatrix}
1 & 0.54 & -0.63 \\
0.54 & 1 & -0.43 \\
-0.63 & -0.43 & 1
\end{pmatrix}.
\]

The \(\chi^2 \) function for CMB is thus given by

\[
\chi^2_{\text{CMB}} = \Delta p_1^T [\text{Cov}_{\text{CMB}}^{-1}(p_1, p_j)] \Delta p_j,
\] (38)

where \(p_1 = \ell_A, p_2 = R, \) and \(p_3 = \omega_b \).

3.3 Baryon acoustic oscillations

The BAO data can be used to measure the angular diameter distance \(D_A(z) \) and the expansion rate of the universe \(H(z) \). The BAO measurements can provide the ratio of the effective distance measure \(D_V(z) \) and the comoving sound horizon.
size $r_s(z_d)$ for us [i.e., $\xi(z) = D_V(z)/r_s(z_d)$]. The expression of $D_V(z)$ from the spherical average is

$$D_V(z) = \left[(1 + z)^2 D_A(z) \frac{z}{H(z)} \right]^{1/3}, \quad (39)$$

where $D_A(z)$ is the proper angular diameter distance [see Eq. (34)], $r_s(z_d)$ is the comoving sound horizon [see Eq. (35)] at the drag epoch with redshift z_d. Its fitting formula is given by [128]

$$z_d = \frac{1219(\Omega_m h^2)^{0.251}}{1 + 0.659(\Omega_m h^2)^{0.828}} [1 + b_1 (\Omega_m h^2)^{b_2}], \quad (40)$$

where

$$b_1 = 0.313(\Omega_m h^2)^{-0.419} [1 + 0.607(\Omega_m h^2)^{0.674}], \quad (41)$$

$$b_2 = 0.657(\Omega_m h^2)^{0.223}. \quad (42)$$

We use four BAO points from the six-degree-field galaxy survey (6dFGS) at $z_{\text{eff}} = 0.106$ [129], the SDSS main galaxy sample (MGS) at $z_{\text{eff}} = 0.15$ [130], the baryon oscillation spectroscopic survey (BOSS) “LOWZ” at $z_{\text{eff}} = 0.32$ [131], and the BOSS CMASS at $z_{\text{eff}} = 0.57$ [131]. The χ^2 function for BAO is given by

$$\chi^2_{\text{BAO}} = \sum_{i=1}^{4} \frac{(z_i^{\text{obs}} - z_i^{\text{th}})^2}{\sigma_i^2}. \quad (43)$$

4. The Hubble constant

The direct measurement of the Hubble constant we use in this work is given by Efstathiou [132], $H_0 = 70.6 \pm 3.3$ km s$^{-1}$ Mpc$^{-1}$. It is a re-analysis of the Cepheid data of Riess et al. [133]. The χ^2 function of the Hubble constant measurement is

$$\chi^2_{H_0} = \left(\frac{h - 0.706}{0.033} \right)^2. \quad (44)$$

4 Results and discussion

In this section, we report the fitting results of the IHDE models and discuss the implications of these results. We use the observational data combination SN + CMB + BAO + H_0 to constrain the models (the ΛCDM model, the HDE model, and the IHDE1–5 models). The fitting results are summarized in Tables 1 and 2.

Table 1 Summary of the information criteria results

Model	χ^2_{min}	ΔAIC	ΔBIC
ΛCDM	699.3776	0	0
HDE	704.6058	7.2282	11.8456
IHDE1	699.6552	4.2776	13.5124
IHDE2	699.8078	4.4302	13.6650
IHDE3	699.7468	4.3692	13.6040
IHDE4	699.7050	4.3274	13.5622
IHDE5	699.7330	4.3554	13.5902

Table 2 Fitting results of the models. Best-fit values with $\pm 1\sigma$ errors are presented

Parameter	HDE	IHDE1	IHDE2	IHDE3	IHDE4	IHDE5
Ω_m	0.3242$^{+0.0081}_{-0.0079}$	0.3148$^{+0.0084}_{-0.0103}$	0.3139$^{+0.0101}_{-0.0091}$	0.3133$^{+0.0101}_{-0.0091}$	0.3135$^{+0.0099}_{-0.0090}$	0.3119$^{+0.0117}_{-0.0080}$
Ω_b	0.0522$^{+0.0011}_{-0.0012}$	0.0501$^{+0.0031}_{-0.0035}$	0.0500$^{+0.0016}_{-0.0015}$	0.0498$^{+0.0018}_{-0.0015}$	0.0499$^{+0.0016}_{-0.0015}$	0.0497$^{+0.0019}_{-0.0014}$
c	0.7331$^{+0.0354}_{-0.0421}$	0.7133$^{+0.0499}_{-0.0636}$	0.6964$^{+0.0576}_{-0.0511}$	0.6933$^{+0.0727}_{-0.0468}$	0.6959$^{+0.0637}_{-0.0490}$	0.6895$^{+0.0754}_{-0.0413}$
β	\ldots	0.0340$^{+0.0108}_{-0.0237}$	0.0253$^{+0.0183}_{-0.0108}$	0.0134$^{+0.0089}_{-0.0195}$	0.0286$^{+0.0247}_{-0.0195}$	0.0558$^{+0.0587}_{-0.0358}$
h	0.6565$^{+0.0076}_{-0.0068}$	0.6665$^{+0.0115}_{-0.0090}$	0.6678$^{+0.0106}_{-0.0113}$	0.6685$^{+0.0100}_{-0.0118}$	0.6683$^{+0.0101}_{-0.0115}$	0.6702$^{+0.0083}_{-0.0135}$
IHDE models in Fig. 1. We also find that the values of \(\Delta_1 \) and \(\Omega_1 \) of the results of HDE performs better. We show the graphical representation that, only considering the factor of number of parameters equally favor these IHDE models (see also Fig. 1).

The blue contours and the pink contours correspond to the models (in Ref. [112]), respectively. In Fig. 2, we find that the interaction between dark energy and dark matter can be detected at more than 2\(\sigma \) level, for all the cases. But for the c models, we obtain \(c \sim 0.06 \) and \(\sigma_c \sim 0.04–0.06 \).

In Figs. 2, 3 and 4, we show the 1\(\sigma \) and 2\(\sigma \) confidence level contours in the \(\Omega_{m0}–c \), \(\Omega_{m0}–\beta \), and \(c–\beta \) planes, respectively. The blue contours and the pink contours correspond to the \(Q = 3\beta H_0 \rho \) models (in the present work) and the \(Q = 3\beta H_0 \rho \) models (in Ref. [112]), respectively. In Fig. 2, we find that the interaction between dark energy and dark matter can be detected at more than 1\(\sigma \) level but less than 2\(\sigma \) level, for all the cases. But for the \(Q = 3\beta H_0 \rho \) models investigated in Ref. [112], it was shown that the interaction between dark energy and dark matter cannot be detected at more than 2\(\sigma \) significance; for example, for the IHDE1 model, \(\beta > 0 \) is favored at the 2.3\(\sigma \) level, and for the IHDE5 model, \(\beta > 0 \) is favored at the 2.1\(\sigma \) level.

From Fig. 4, we find that for all the IHDE models \(\beta \) and \(c \) are in positive correlation. A positive \(\beta \) means that dark energy decays into dark matter, and thus the result of \(\beta > 0 \) will affect the parameter estimation of \(c \). The positive correlation between \(\beta \) and \(c \) implies that the decay of dark energy into dark matter will decrease the possibility of a big rip in a finite future.

In Fig. 5, we show the one-dimensional marginalized posterior distributions of \(\beta \) (left panel) and \(c \) (right panel) for the HDE model and the IHDE models from the current observations. The blue dashed lines in the figure denote the cases of \(\beta = 0 \) (left panel) and \(c = 1 \) (right panel). We can see from the right panel that the \(c \) values for the IHDE models are almost the same and slightly smaller than the \(c \) value of the HDE model. But, although the \(c \) value of the IHDE models is smaller, thanks to the positive \(\beta \), the risk of a big rip in the IHDE models, compared to the HDE model, is still decreased. (Note that, in the model of holographic dark energy, \(c < 1 \) will lead to a late-time phantom and thus a big rip in the finite future; see, e.g., Ref. [134].) In Fig. 6,
Fig. 2 The SN + CMB + BAO + H_0 constraints on the HDE model and the IHDE models. The 68.3 and 95.4% confidence level contours are shown in the $\Omega_m - c$ plane.

Fig. 3 The SN + CMB + BAO + H_0 constraints on the HDE model and the IHDE models. The 68.3 and 95.4% confidence level contours are shown in the $\Omega_m - \beta$ plane. The red dashed line denotes the case of $\beta = 0$.
Fig. 4 The SN + CMB + BAO + H_0 constraints on the IHDE models. The 68.3 and 95.4% confidence level contours are shown in the c–β plane. The red dashed line denotes the case of $\beta = 0$.

Fig. 5 One-dimensional marginalized posterior distributions of parameters β (left panel) and c (right panel) for the HDE model and the IHDE models, from the SN+CMB+BAO+H_0 data. The blue dashed lines denote the cases of $\beta = 0$ (left panel) and $c = 1$ (right panel). We show the reconstructed evolution of w (with 1–3σ errors) for the HDE model and the IHDE models. The red dashed line in the figure denotes the cosmological constant boundary $w = -1$. We can clearly see that, compared to the HDE model, the risk in the IHDE models is indeed decreased.

5 Conclusion

In this paper, we have investigated the interacting holographic dark energy models in which the interaction term Q does not involve the Hubble parameter H. We consider five typical IHDE models with the interaction terms $Q = 3\beta H_0 \rho_{de}$, $Q = 3\beta H_0 \rho_c$, $Q = 3\beta H_0 (\rho_{de} + \rho_c)$, $Q = 3\beta H_0 \sqrt{\rho_{de} \rho_c}$, and $Q = 3\beta H_0 \rho_{de} \rho_c / (\rho_{de} + \rho_c)$, respectively. We use the current observational data, including SN (JLA) data, CMB (Planck 2015 distance priors) data, BAO data, and H_0 measurement, to constrain these models.

We find that the current observational data equally favor these IHDE models. We also find that in all the cases the coupling parameter $\beta > 0$ is favored at more than 1σ level (but less than 2σ level), indicating that the current observations slightly favor the decay of dark energy into dark matter in the current framework of IHDE (with Q excluding H).

We have made a comparison of our results in the present work with those in the previous work [112] in which the IHDE models with Q involving H are investigated. In Ref.
it was shown that the IHDE5 ($Q = 3\beta H \rho_{de} \rho_{c}$) model and the IHDE1 ($Q = 3\beta H \rho_{de}$) model are most favored by the current data, and the IHDE2 ($Q = 3\beta H \rho_{c}$) model is relatively not favored by the current data; and, in some cases, the coupling of $\beta > 0$ can be detected at more than 2σ level (e.g., 2.3σ in the IHDE1 model and 2.1σ in the IHDE5 model). The comparison is shown in Figs. 2, 3 and 4. We also show that for all the cases β and c are in positive correlation, and as a result in the IHDE models the risk of a big rip is decreased, compared to the HDE model.

Acknowledgements This work was supported by the National Natural Science Foundation of China (Grants nos. 11522540 and 11690021), the National Program for Support of Top-Notch Young Professionals, and the Provincial Department of Education of Liaoning (Grant no. L2012087).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Funded by SCOAP3.

References

1. A.G. Riess et al. [Supernova Search Team Collaboration], Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998) arXiv:astro-ph/9805201
2. S. Perlmutter et al. [Supernova Cosmology Project Collaboration], Measurements of Omega and Lambda from 42 high redshift supernovae. Astrophys. J. 517, 565 (1999). arXiv:astro-ph/9812133
3. D.N. Spergel et al. [WMAP Collaboration], First year Wilkinson microwave anisotropy probe (WMAP) observations: determination of cosmological parameters. Astrophys. J. Suppl. 148, 175 (2003). arXiv:astro-ph/0302209
4. C.L. Bennett et al. [WMAP Collaboration], First year Wilkinson microwave anisotropy probe (WMAP) observations: preliminary maps and basic results. Astrophys. J. Suppl. 148, 1 (2003). arXiv:astro-ph/0302207
5. M. Tegmark et al. [SDSS Collaboration], Cosmological parameters from SDSS and WMAP. Phys. Rev. D 69, 103501 (2004). arXiv:astro-ph/0310723
6. K. Abazajian et al. [SDSS Collaboration], The second data release of the Sloan digital sky survey. Astron. J. 128, 502 (2004). arXiv:astro-ph/0403325
7. V. Sahni, A. Starobinsky, Reconstructing dark energy. Int. J. Mod. Phys. D 15, 2105 (2006). arXiv:astro-ph/0601026
8. K. Bamba, S. Capozziello, S. Nojiri, S.D. Odintsov, Dark energy cosmology: the equivalent description via different theoretical models and cosmography tests. Astrophys. Space Sci. 342, 155 (2012). arXiv:arXiv:1205.3421 [gr-qc]
9. S. Weinberg, The cosmological constant problem. Rev. Mod. Phys. 61, 1 (1989)
10. P.J.E. Peebles, B. Ratra, The cosmological constant and dark energy. Rev. Mod. Phys. 75, 559 (2003). arXiv:astro-ph/0207347
11. E.J. Copeland, M. Sami, S. Tsujikawa, Dynamics of dark energy. Int. J. Mod. Phys. D 15, 1753 (2006). arXiv:hep-th/0603057
12. J. Frieman, M. Turner, D. Huterer, Dark energy and the accelerating universe. Ann. Rev. Astron. Astrophys. 46, 385 (2008). arXiv:0803.0982 [astro-ph]
I. A 4 per cent distance measure at $z = 0.15$. Mon. Not. R. Astron. Soc. 449, 835 (2015). arXiv:1409.3242 [astro-ph.CO]

131. L. Anderson et al. [BOSS Collaboration], The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in the Data Releases 10 and 11 Galaxy samples. Mon. Not. R. Astron. Soc. 441(1), 24 (2014). arXiv:1312.4877 [astro-ph.CO]

132. G. Efstathiou, H0 revisited. Mon. Not. R. Astron. Soc. 440(2), 1138 (2014). arXiv:1311.3461 [astro-ph.CO]

133. A.G. Riess et al., A 3% solution: determination of the Hubble constant with the Hubble space telescope and wide field camera 3. Astrophys. J. 730, 119 (2011) Erratum: [Astrophys. J. 732, 129 (2011)]. arXiv:1103.2976 [astro-ph.CO]

134. X. Zhang, Statefinder diagnostic for holographic dark energy model. Int. J. Mod. Phys. D 14, 1597 (2005). arXiv:astro-ph/0504586