ABSTRACT

Reactive oxygen species (ROS) have been shown or at least suggested to play an essential role for cellular signaling as second messengers. NADPH oxidases represent a source of controlled ROS formation. Accordingly, understanding the role of individual NADPH oxidases bears potential to interfere with intracellular signaling cascades without disturbing the signaling itself. Many tools have been developed to study or inhibit the functions and roles of the NADPH oxidases. This short review summarizes diseases, potentially associated with NADPH oxidases, genetically modified animals, and inhibitors.

Main

The family of NADPH oxidases consists of 7 members. Those are Nox1 through 5 and Duox1 and 2. All NADPH oxidases are able to transfer electrons across biological membranes. Those electrons are provided by NADPH. While passing the membrane through the Nox subunit, electrons are transferred onto molecular oxygen to generate superoxide anions ($\bullet O_2^{-}$). $\bullet O_2^{-}$ can be released unmodified or protonated and therefore is constitutively active. Due to a special loop in its structure Nox4 is capable to restrain single reduced $\bullet O_2^{-}$ and reduce it further to H_2O_2 [4].

Additionally the non-NADPH oxidase specific G-protein Rac binds to the NADPH oxidase complex in order to activate the formation of superoxide radical anions ($O_2^\bullet^{-}$) by the members of group 1.

The second group of NADPH oxidases consists of the Ca$^{2+}$ activated Nox5, DUOX1 and DUOX2. These NADPH oxidases are independent of cytosolic factors but instead have EF-hands that facilitate the Ca$^{2+}$ sensing. While Nox5 produces mainly $\bullet O_2^{-}$, DUOX1 and 2 produce both, $\bullet O_2^{-}$ as well as H_2O_2 probably with the aid of their peroxidase domain (POD). Both Duoxes require the maturation factors DuoxA1 and 2 for their activity.

The sole member of the third group of NADPH oxidases is Nox4. Like Nox1-3, Nox4 is stabilized by and associated with p22phox. Despite from that Nox4 does not require any further cytosolic subunit and therefore is constitutively active.

Over and above their different mode of action, NADPH oxidases also have individual intracellular localization and tissue specific expression patterns [5]. Expression and activity of NADPH oxidases are tightly controlled which enables the individual members of the family to interfere with numerous paths of signal transduction. Those include oxidation of phosphatases or kinases [6,7]. According to their complex role in regulation of cellular signaling, individual members of the family have been assigned for a number of diverse diseases in humans. Some of those are summarized in Table 1.

Table 1 shows basically two clusters of diseases associated with NADPH oxidases: chronic granulomatous disease and thyroid hormone production. This reflects the so far identified physiological role of the parties thereto. Nox2 and its associates p47phox and p67phox are needed for a proper fist line host defense, known as “the oxidative burst”. Accordingly, CGD (chronic granulomatous disease), a disease with improper function or absence of one of the components of the Nox2...
NADPH oxidases can be classified into three groups according to their mode of activation. Nox1-3 are activatable via the assembly of cytosolic subunits and produce $\cdot O_2^-$. Nox5 and the Duoxes can be activated by Ca^{2+} and produce $\cdot O_2^-$ or H_2O_2. The single member of group three is Nox4, which produces H_2O_2 in a direct manner independent from cytosolic subunits. Further explanations can be found in the text.
complex, represents with frequent infections by fungi and bacteria [8]. Duox2's physiological function is to oxidize iodine for its incorporation into the thyroid hormone. In case Duox2 or its maturation partner DuoxA2 is not present, the formation of the hormone is reduced and all kind of subsequent diseases phenotypes such as goiter and hypothyroidism occur [9]. Besides those clear cases of a physiological function of NADPH oxidases, that lead to a more or less defined and namable disease, many functions of the members of the family are unclear. Accordingly, no diseases have been identified with are solely based on the function or dysfunction of Nox1, Nox3, Nox5 or Duox1. Nevertheless, they appear to play a role in prevention or as contributors to several diseases, where their exact role often remains to be defined. In conclusion, NADPH oxidases obviously rather modulate (the development of) than cause a disease. Most literature indicates a detrimental role of NADPH oxidases in human diseases. However, beneficial roles of NADPH oxidases and ROS formation become more and more clear. As an example, Nox4 plays a role in angiogenesis, prevents bone loss upon estrogen depletion and protects from atherosclerosis [10–12]. Accordingly, research of the role of specific NADPH oxidases is needed to obtain a deeper understanding of their physiological roles. Tools such as knock out models or specific inhibitors have been developed. An overview of currently available animals with knock out, knock in and loss of function mutants of NADPH oxidases is provided in Table 2. This table however, might be incomplete and just provides an overview. Besides full animal approaches, the CrispR/Cas9 method opens a variety of possibilities to study the role of individual subunits of the NADPH oxidase complexes on cellular level. This approach has been successfully used, for example in Hek293 [13] and human HCT116 colon cancer cells [14].

Additionally, a brief collection of available inhibitors was added here (Table 3). For a detailed overview on NADPH oxidase inhibitors, the reader is referred to Ref. [47]. In that specific publication, the authors highlight the evolution as well as the limitations of Nox-inhibitors, antioxidants and other related compounds.

Table 1
List of some diseases associated with NADPH oxidases.

Disease associated with the indicated Nox-homologue	Nox3	Nox4	Nox2	Nox1	Nox4pox	Nox5	Nox2pox	DuoxA1	DuoxA2	DuoxA1	DuoxA2
Brachioedystrophy	3.15	4.45	1.04	1.45	1.90	1.48	2.33	2.77	1.31	1.73	1.51
Myasthenia	3.66	2.37	3.98	1.86	3.98	1.89	3.99	3.96	1.86	2.07	1.82
Acute graft versus host reaction	1.09	3.55	3.64	2.42	1.50	3.11	1.48	1.48	1.50	4.01	3.01
Chronic granulomatous disease	1.65	1.73	2.25	2.25	1.41	2.29	2.27	1.56	2.24	4.01	4.01

All diseases listed were obtained through www.gencards.com. The analysis shows the results in the disease section of each gene in GeneCards, which is based on the Malacard website and score. The Malacards score ranks diseases by how closely they are associated with the gene, factoring in the relative reliability of the sources that associate them. Green indicates no relevant entry. Relevant entries are represented by numbers and the color scale indicated.
Besides specific inhibitors, many global inhibitors for NADPH oxidases (or flavoproteins in general) and antioxidants are used. Those included diphenyleneiodonium (DPI), apocynin, diapocynin and ebselen [68]. Some derivatives of the antioxidant ebselen, such as JM-77b, had a selectivity for Nox2 over Nox1, Nox4 and Nox5 [69]. This however does not mean, ebselen derivatives are specific Nox2 inhibitors. Especially in the light of the fact that ebselens are reported to display glutathione peroxidase-like activity [70].

In contrast, potential specific inhibitors often have been proved to be not specific or display off-target effects. The best investigated NADPH oxidase, Nox2, may serve as an example: Formerly known Nox2 inhibitors such as VAS2870 [71, 72] and VAS3947 [73] did not fulfill their assigned roles as specific inhibitors. Both have been identified to exhibit off-target effects through thiol alkylation and inhibition of mitochondrial respiration and cytotoxicity [74, 75]. Substances like celestrol inhibit Nox1, Nox2, Nox4 and Nox5, as it interferes with the binding of the proline rich region of p22phox to the tandem SH3 domain of p47phox and NoxO1 [76]. Alike, the PR-39 peptide binds other SH3-containing proteins, such as p130Cas and PI3Kp85α [77, 78]. Recently, it was documented that also the Nox1/Nox4 inhibitors GKT136901 and 137831 are in fact non-specific [68, 79]. Additionally, the Nox1 inhibitor ML-171 was also shown to be unspecific [80]. It appears that specificity of the inhibitors targeting a common domain in NADPH oxidases can be impeached. For further reading on how inhibitors work and fail the reader is referred to the work of Vincent Jaquet (Geneva) and Harald Schmidt (Maastricht).

Concluding remarks

Understanding the role of individual NADPH oxidases bears potential to interfere on a modulatory basis with intracellular signaling cascades. Within the last years, the collection of tools to analyze and target NADPH oxidases increased constantly. Therefore, it is important to provide an overview from time to time. This short review summarizes diseases potentially associated with NADPH oxidases, genetically modified animals, and inhibitors for some members of the family. Most references either point to a location, where to get the animals or to the first description of the animal or inhibitor. This should enable the reader to find a way to his/her tool of interest.

Funding

This work was supported by grants from the Deutsche Forschungsgemeinschaft (DFG) (to KS SCHR1241/1-1, SFB815/TP1, SFB834/TPA2).

Table 2

Target	Tool
Nox1	knock out animal Mouse [15] Mouse floxed [16] Zebrafish [17]
Nox2	Mouse full ko [18] Mouse floxed [19] Zebrafish [17]
Nox3	Mouse [20, 21]
Nox4	Mouse full and floxed [23]
Nox5	Rabbit [24, 25] Mouse [26]
DUOX1	Mouse [27]
DUOX2	Mouse floxed [28]
p22phox	Mouse floxed [31]
p47phox	Mouse [36] Mouse [37]
NoxO1	Mouse [40]
NoxA1	Mouse [41] Mouse [42]
NoxA2	Mouse [43]
p40phox	Mouse [45]

Besides specific inhibitors, many global inhibitors for NADPH oxidases (or flavoproteins in general) and antioxidants are used. Those include diphenyleneiodonium (DPI), apocynin, diapocynin and ebselen [68]. Some derivatives of the antioxidant ebselen, such as JM-77b, had a selectivity for Nox2 over Nox1, Nox4 and Nox5 [69]. This however does not mean, ebselen derivatives are specific Nox2 inhibitors. Especially in the light of the fact that ebselens are reported to display glutathione peroxidase-like activity [70].

Table 3

Target	Inhibitor peptide	Pharmacological inhibitor
Nox1	NoxA1ds (mimics a putative activation domain of NoxA1 and p67phox amino acids 199–210 in the FAD with substitution of Y199 by alanine 196 EPVDALGKAKV-CONH2 [48])	ML171 [49] GKT136901 and GKT137831 [50, 51] GSK2795039 [57] CYR5999 [58] Bridged tetrahydroisoquinolines: CPP11G and CPP11H [59] Perhexiline and Suramin (cell impermeable) [60] GLX7301114 [61] GKT137831 [50] GKT137928 [62] ACD084 [63] Rosmarinic acid [64]
Nox2	Endogenous PR-39 (RRR PRP PYL PRP RPP PFP PPR PFP PFP RFP) [52] several peptides (peptide walking) [53] B-loop peptide of Nox2 that binds to p47phox: c6SRVBRQL [54] → Nox2ds-tat [55] works in vitro and in vivo (specifically inhibits the interaction of Nox2 and p47phox [56])	
Nox4	peptides pep1 and pep3 containing a KDSIT sequence at the c-terminus (D637−G661 + Y and R621−T660) [65] S-P-Re-J-L, wherein Re is a reactive electrophile and J is G or P [66]	
Nox5	S-P-Re-J-L, wherein Re is a reactive electrophile and J is G or P [66]	
Duox1 and Duox2		Acrolein [67]
Declaration of competing interest

The authors declare no conflict of interest.

References

[1] K. Schröder, N. Weissmann, R.P. Brandes, Organizers and activators: cytosolic NADPH proteins impacting on vascular function, Free Radic. Biol. Med. 109 (2017) 22–32, https://doi.org/10.1016/j.freeradbiomed.2017.03.017.
[2] F. Moll, M. Walter, F. Rezende, V. Helfinger, E. Vasconez, T. de Oliveira, F.R. Green, C. Olesch, A. Weigert, P. Janetzko, C.H. Radeke, K. Schröder, NoxO1 controls proliferation of colon epithelial cells, Front. Immunol. 9 (2018) 973, https://doi.org/10.3389/fimmu.2018.00973.
[3] F. Rezende, F. Moll, M. Walter, V. Helfinger, F. Hahner, P. Janetzko, C. Ringel, A. Weigert, P. Janetzko, C.H. Radeke, C. Kurene, M. Leow, M.A. Rieger, P. Nawroth, T. Fleming, R.P. Brandes, K. Schröder, The NADPH oxidase Nox1 and p47phox are both mediators of diabetes-induced vascular dysfunction in mice, Redox Biol 15 (2018) 12–21, https://doi.org/10.1016/j.redoxbiol.2017.11.014.
[4] I. Takai, K. Schröder, L. Zhang, B. Lardy, N. Anilkumar, J.D. Lambeth, A.M. Shah, J. McCoy, R.S. Hilgarth, Detail MGI Mouse (MGI:3526726), accessed, http://www.informatics.jax.org/marker/111.00546.
[5] J. Jha, A. Dai, C. Kennedy, E. Ekinci, M. Cooper, K. Jandeleit-Dahm, SUN-302 the relative roles of pro-oxidant enzymes Nox4 versus Nox5 in diabetic kidney disease, Kidney International Reports 4 (2019) S285, https://doi.org/10.1016/j.ekir.2019.05.003.
[6] Funding Drives New Directions in Oxidative Stress Research for Diabetes and Heart Disease, (2018) accessed https://www.monash.edu/medicine/news/latest/2018-articles/funding-drives-new-directions-in-oxidative-stress-research-for-diabetes-and-heart-disease, Accessed date: 10 December 2019.
[7] P.W.M. Kleikers, V.T. Deo, E. Gob, C. Hoogenjum, J. Debetts, H. van Essen, C. Kleinschnitz, H.H.H.W. Schmidt, SFFREY Young Investigator AwardeeNOXing out stroke: identification of NOX4 and Sax targets in blood-brain-barrier stabilisation and neuroprotection, Free Radic. Biol. Med. 75 (Suppl 1) (2014) S16, https://doi.org/10.1016/j.freeradbiomed.2014.09.004.
[8] J.-S. Park, T.-I. Choi, O.-H. Kim, T.H. Hong, W.-K. Kim, W.-J. Lee, C.-H. Kim, Targeted knockout of dxoxo4 causes defects in zebrafish growth, thyroid develop- ment, and social interaction, Journal of Genetics and Genomics 46 (2019) 101–104, https://doi.org/10.1016/j.jgg.2019.07.002.
[9] Á. Donkó, É. Ruisanchez, A. Oriente, B. Enyedi, Z. Péterfi, X. de Deken, Z. Benyó, M. Geiszt, Urothelial cells produce hydrogen peroxide through the activation of Duox1, Free Radic. Biol. Med. 49 (2010) 2040–2046, https://doi.org/10.1016/j.freeradbiomed.2010.09.027.
[10] The Jackson Laboratory, 005543 - B6(129)Duox<tm2>+/J, accessed https://www.jax.org/strain/005543, Accessed date: 19 December 2019.
[11] H. Graaberga, X. de Deken, O.B. Mayo, H. Raad, M. Weiss, K.-H. Liao, S. Reftetoff, Mice deficient in dual oxidase maturation factors are severely hypothyroid, Mol. Endocrinol. 26 (2012) 481–492, https://doi.org/10.1210/me.2011-1320.
[12] H.E. Leh, D. Schultz, P.J. Marvar, R.L. Davison, D.G. Harrison, Role of the NADPH oxidases in the subfornical organ in angiotensin II-induced hypertension, Hypertension 61 (2013) 382–387, https://doi.org/10.1161/HYPERTENSIONAHA.111.05646.
[13] International Mouse Strain Resource, Cydb<tm1Jkk>/J, accessed http://imr.mammalangenesis.co.uk/aleky/35281, Accessed date: 19 December 2019.
[14] Y. Nakano, C.M. Longo-Guess, D.E. Bergstrom, W.M. Nauseef, S.M. Jones, B. Bánfi, Mutation of the Cyb gene encoding p22phox causes vestibular and immune defects in mice, J. Clin. Invest. 118 (2008) 1176–1185, https://doi.org/10.1172/JCI38555.
[15] The Jackson Laboratory, 005445 - A.B6.Tcr<+> > +Cyb<tm3Jkk>/J, https://www.jax.org/strain/005445 (accessed 29 December 2019).
[16] M. Mori, G. Li, M. Hashimoto, A. Nishio, H. Tomozawa, N. Suzuki, S.-i. Usami, K. Hirauchi, K. Matsumoto, F. Blaesse, M. Paller, A reduction in in- tercellular adhesion molecule-1 and p40phox are both mediators of diabetes-induced vascular dysfunction in mice, J. Clin. Invest. 123 (2008) 1738–1927, https://doi.org/10.1172/JCI67603.
[17] F.R. Greten, C. Olesch, A. Weigert, H.H. Radeke, K. Schröder, NoxO1 controls epithelial repair, J. Clin. Invest. 123 (2008) 443–454, https://doi.org/10.1172/JCI32835.
[18] Á. Donkó, É. Ruisanchez, A. Oriente, B. Enyedi, Z. Péterfi, X. de Deken, Z. Benyó, M. Geiszt, Urothelial cells produce hydrogen peroxide through the activation of Duox1, Free Radic. Biol. Med. 49 (2010) 2040–2046, https://doi.org/10.1016/j.freeradbiomed.2010.09.027.
[19] C.D. Ellson, K. Davidson, G.J. Ferguson, R. O’Connor, L.R. Stephens, P.T. Hawkins, 568–575, https://doi.org/10.1002/dvg.20655.
[20] Á. Donkó, É. Ruisanchez, A. Oriente, B. Enyedi, Z. Péterfi, X. de Deken, Z. Benyó, M. Geiszt, Urothelial cells produce hydrogen peroxide through the activation of Duox1, Free Radic. Biol. Med. 49 (2010) 2040–2046, https://doi.org/10.1016/j.freeradbiomed.2010.09.027.

