High-throughput search for magnetic topological materials using spin-orbit spillage, machine-learning and experiments

Kamal Choudhary1,2, Kevin F. Garrity1, Nirmal J. Ghimire3,4, Naween Anand5, Francesca Tavazza1

1 Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA.
2 Theiss Research, La Jolla, CA 92037, USA.
3 Department of Physics and Astronomy, George Mason University, Fairfax, VA 22030, USA.
4 Quantum Science and Engineering Center, George Mason University, Fairfax, VA 22030, USA.
5 Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA.

Abstract

Magnetic topological insulators and semi-metals have a variety of properties that make them attractive for applications including spintronics and quantum computation, but very few high-quality candidate materials are known. In this work, we use systematic high-throughput density functional theory calculations to identify magnetic topological materials from the \(\approx 40000\) three-dimensional materials in the JARVIS-DFT database (https://jarvis.nist.gov/jarvisdft). First, we screen materials with net magnetic moment \(> 0.5 \mu B\) and spin-orbit spillage \(> 0.25\), resulting in 25 insulating and 564 metallic candidates. The spillage acts as a signature of spin-orbit induced band-inversion. Then, we carry out calculations of Wannier charge centers, Chern numbers, anomalous Hall conductivities, surface bandstructures, and Fermi-surfaces to determine interesting topological characteristics of the screened compounds. We also train machine learning models for predicting the spillage, bandgaps, and magnetic moments of new compounds, to further accelerate the screening process. We experimentally synthesize and characterize a few candidate materials to support our theoretical predictions.
Corresponding author: kamal.choudhary@nist.gov

Introduction

The interplay of topology\(^1,2\) and electronic band structures in non-magnetic materials has led to several new material categories, most notably topological insulators (TI)\(^1,3\), Dirac semi-metals, and broken-inversion Weyl semimetals (SM)\(^4,5\), topological crystalline insulators\(^6\), nodal line semimetals\(^7,8\). However, many potentially useful quantum effects\(^9-13\), like anomalous Hall conductivity (AHC), are only possible in topological materials with broken time reversal symmetry (TRS), including exotic phases such as Chern insulators\(^9,14\), magnetic axion insulators\(^9,15\), and magnetic semimetals\(^16\). Experiments such as anomalous Hall conductivity\(^17\), spin-Seebeck\(^18\), spin-torque ferromagnetic resonance\(^19\), and angle-resolved photoemission spectroscopy (ARPES)\(^20\), Fourier transform scanning tunneling spectroscopy (FT-STS)\(^21\), and Shubnikov de Haas (SdH) oscillations can be useful for analyzing the topological behavior. Only a few such materials are reported experimentally, and many of those materials are limited to very low temperatures or have trivial bands that overlap with the topological band features, limiting their utility. There is a significant opportunity to find more robust magnetic topological materials and to further our understanding of the underlying mechanisms leading to their topological properties.

A common feature of many topological materials classes is the presence of spin-orbit induced band inversion, where the inclusion of spin-orbit coupling in a calculation causes the character of the occupied wavefunctions at a k-point to change. Spin-orbit spillage (SOS)\(^22-24\) is a method to measure this band inversion by comparing the wavefunctions with and without spin-orbit coupling (SOC). SOS is based on density functional theory (DFT) calculations based wavefunction analysis and has been proven to be a useful technique for finding topological materials. Previous studies\(^22-24\) have looked at three-dimensional (3D) non-magnetic materials as well as two-dimensional (2D)
materials with and without magnetism. Due to its ease of calculation, without any need for symmetry analysis or dense k-point interpolation, the SOS is an excellent tool for identifying candidate materials to many topological phases. Advantages of the spillage technique include that it can apply to materials with low or no symmetries, including disordered or defective materials, and that it can identify the fundamental driver of topological behavior, the band inversion, even if the exact topological classification a material will depend on detailed features like the exact magnetic ordering, spin-direction, or sample thickness. After identifying high spillage materials, further analysis is necessary to identify the specific topological phases that may arise from the band inversion.

Stoichiometric magnetic topological insulators (MTIs) are very rare. MnBi₂Te₃²⁵,²⁶, an antiferromagnetic TI, is one of the most studied and well-characterized examples of a 3D MTI, and thin films of MnBi₂Te₃ exhibit quantized AHC²⁶. Several magnetic semimetals (MSM), such as CuMnAs, Fe₃GeTe₂, LaCl, EuCd₂As₂ have been reported as well¹⁶. Recently there have been several efforts to systematically identify topological materials, especially for the non-magnetic systems²³,²⁴,²⁷-²⁹. The spin orbit spillage technique has been successfully used to identify thousands of 3D non-magnetic insulators, semi-metals²³ as well as 2D non-magnetic and magnetic insulators and semimetals such as VAg(PSe₃)₂, ZrFeCl₆, MnSe and TiCl₃²⁴. Identification of MTIs and MSMs has been developed by topological quantum chemistry groups³⁰,³¹ in which wavefunction symmetry indicators are used to identify topological materials.

In this work, we screen for 3D magnetic topological insulators (MTI) and semimetals using the SOS technique. We then analyze the resulting high-spillage materials using conventional Wannier tight-binding Hamiltonian-based techniques to calculate Chern numbers, anomalous Hall conductivities, Berry-curvatures, and Fermi-surfaces, as well as to local band crossings. Starting
with crystal structures optimized using the OptB88vdW32 van der Walls functional, we first identify materials using the Perdew-Burke-Ernzerhof (PBE)33 generalized gradient approximation (GGA) functional, and then carry out Strongly Constrained and Appropriately Normed (SCAN)34 meta-GGA functional calculations of a subset of materials.

While our DFT-based computational screening is relatively efficient, it is still computationally expensive when applied to a set of thousands of materials. To further accelerate the identification and characterization process, we develop classification machine learning models for metals/non-metals, magnetic/non-magnetic and high-spillage/low-spillage materials, which acting together can screen topological materials in different classes. Specifically, we use JARVIS-ML based classical force-field inspired descriptors (CFID)35 and gradient boosting decision tree (GBDT) for developing the ML models. CFID based models have been successfully been used for developing more than 25 high-accurate ML property prediction models36. Using this approach, we can first predict topological materials using ML, then confirm with SOS and Wannier tight-binding approaches. The selected materials can be promising for experimental synthesis and characterizations. All the data and models generated through this work are publicly distributed through JARVIS-DFT23,24,36, JARVIS-WTB37 and JARVIS-ML webapps36. We also share the computational tools and workflows developed for this work through JARVIS-Tools open access software to enhance the reproducibility and transparency of our work. As spillage is a computational screening technique for topological materials, there are many experimental techniques to delineate topological characteristics such as ARPES, SHE, and QHE. In this paper, we use some of these techniques to support the findings of spillage based two screened materials.

This paper is organized as follows: first we show the screening strategy for high-spillage magnetic materials and present statistical analysis of some of their properties. Next, we show bandstructures
and k-point dependent spillage for a few example candidate materials to illustrate the strategy. After that we further analyze selected insulating and metallic band structures with Wannier tight-binding approaches. Then, we analyze the periodic table distribution trends and develop machine learning classification models to accelerate the identification processes. Finally, we show experimental characterizations of a few candidate materials.

Results and discussion

![Flow-chart for screening high-spillage materials and analysis.](image)

Fig. 1 Flow-chart for screening high-spillage materials and analysis. a) flowchart for screening, b) spillage distribution analysis for all the materials under investigation, c) pie chart showing high spillage insulators and metals, d) magnetic moment distribution for high-spillage materials, e) PBE vs SCAN bandgaps.

A flow chart for screening magnetic topological materials is shown in Fig. 1a. First, we screen for materials with net magnetic moment (>0.5 μB) in the ferromagnetic phase, which leads to 8651 candidates out of 39315 materials in the JARVIS-DFT database. Then we look for materials that
are reasonably stable and are likely to display topological band inversion by screening for materials that: a) are less than 0.5 eV/atom above the convex hull38, b) have small non-SOC bandgaps (<1.5 eV), and c) have at least one atom with high atomic mass (M>64). This results in 4734 remaining materials. We have computed the spin-orbit spillage (SOS) with PBE+SOC for 1745 materials (prioritizing the calculations of the number of atoms in unit cell less than 20). Next, we perform Wannier tight-binding Hamiltonian (WTBH) calculations with high quality (MaxDiff<0.1 eV)37 to predict topological invariants, surface bandstructures, Fermi-surfaces, and anomalous Hall conductivity. So far, we have obtained high-quality WTBHs for 146 candidate materials. To study the effects of exchange-correlation, we run (SCAN)34 meta-GGA functional calculations for high-spillage materials. Note that it may be difficult to carry out high dense k-point DFT calculations with SOC for thousands of materials, so after the WTBH generation, we carry our high-density k-point calculation Wannier TB models to find if the bandgap truly exists. Most of the materials studied in this work come from experimentally determined structures from the inorganic crystal structure database (ICSD) 39.

In Fig. 1b we show the spillage distribution of the materials investigated in this work. As the spillage can be related to the number of band-inverted electrons at a k-point, we observe spikes at integer numbers22-24. Spin-orbit coupling can also change the mixing between different orbitals, rather than pure band inversion, which results in fractional spillage amounts. As shown in Fig. 1b using a spillage threshold of 0.25 for screening eliminates 51 % of materials, leaving 25 insulating and 564 metallic candidate materials with high spillage and non-zero magnetic moment. Similarly, in our previous works for 3D non-magnetic and 2D materials22-24, spillage technique was shown to discard more than 50 % candidates in the initial screening steps also. A material with non-zero spillage is a candidate topological material and we choose a threshold of 0.25 to narrow down the
options. In Fig. 1c we show the pie chart for high spillage insulating and metallic materials distribution. This suggests that magnetic topological insulators (MTI) are far rarer than semimetals. In the later sections, we discuss with examples some of the insulating and metallic high-spillage materials and characterize them using Wannier tight-binding Hamiltonian approach also. Next in Fig 1d, we observe that the magnetic moment of the systems could be up to 6 μB with mostly integer or close to integer values for the magnetic moments. Due to the large computational expense of searching for magnetic ground states, we only considered ferromagnetic spin configuration i.e., all spins of the system in a fixed direction. We expect that many of high-spillage materials that we find to be ferromagnetic may turn out to have lower energies in the anti-ferromagnetic or ferri-magnetic configurations. In Fig. 1e, we compare the bandgaps of the materials with PBE+SOC and SCAN+SOC for 65 high-spillage materials. Recently the SCAN functional has been proposed as the functional to solve the bandgap and high correlated system issues which can be important for magnetic topological materials. SCAN has been shown to predict bandgaps and magnetic moments better than LDA, LDA+U, and PBE in many cases40-42. We observe that SCAN+SOC bands are very close or in some cases slightly higher than PBE+SOC bandgaps for most of the materials. However, for some systems, it can be up to 10 times larger such as for LiVH$_2$OF$_5$ (JVASP-47705). Some of the materials that are metallic in PBE turns into insulating in SCAN predictions (for example, LiMnAsO$_4$(JVASP-55805), Li$_3$Fe$_3$CoO$_8$ (JVASP-42538)), which indicates that magnetic metals found to be high spillage using PBE may in fact be small gap topological insulators. We provide more detailed PBE vs. SCAN comparisons in the supplementary information (Table S1).
Fig. 2 Examples of bandstructure and k-dependent spin-orbit spillage plots for a few selected candidate materials with PBE+SOC. Bandstructures are shown in a) Mn$_2$Sb (JVASP-15693), b) NaMnTe$_2$ (JVASP-16806), c) Rb$_3$Ga (JVASP-38248), d) CoSI (JVASP-78508), i) Mn$_2$Sn (JVASP-18209), j) Sc$_3$In (JVASP-17472), k) Sr$_3$Cr (JVASP-37600), l) Mn$_3$Ge (JVASP-78840), q) NaRuO$_2$ (JVASP-8122), r) CoNb$_3$S$_6$ (JVASP-21459), s) Y$_3$Sn (JVASP-37701), t) CaMnBi$_2$ (JVASP-18532). The red and blue lines show SOC and non-SOC bandstructures respectively. The k-dependent spillage is shown in (e), (f), (g), (h), (m), (n), (o), (p), (u), (v), (w) and (x) respectively.
In Fig. 2 we show the non-spin orbit and spin-orbit bandstructures for a few screened insulating and semi-metallic systems along with corresponding spin-orbit spillage plots such as a) Mn$_2$Sb (JVASP-15693), b) NaMnTe$_2$ (JVASP-16806), c) Rb$_3$Ga (JVASP-38248, d) CoSI (JVASP-78508), i) Mn$_3$Sn (JVASP-18209), j) Sc$_3$In (JVASP-17472), k) Sr$_3$Cr(JVASP-37600), l) Mn$_3$Ge (JVASP-78840), q) NaRuO$_2$(JVASP-8122), r) CoNb$_3$S$_6$ (JVASP-21459), s) Y$_3$Sn (JVASP-37701), t) CaMnBi$_2$ (JVASP-18532). The red and blue lines show SOC and non-SOC bandstructures respectively. The k-dependent spillage is shown in (e), (f), (g), (h), (m), (n), (o), (p), (u), (v), (w) and (x) respectively. Such bandstructures and spillage plots for 11483 materials (including 2D and 3D magnetic and non-magnetic systems) are distributed through the JARVIS-DFT website along with several other materials properties such as crystal structure, heat of formation, elastic, piezoelectric, dielectric, and thermoelectric constants. In all the cases, the spillage is higher than 0.25 and the magnetic moments in the ferromagnetic configuration for these systems are more than 1 μB. The NaRuO$_2$ shows a PBE+SOC gap of 56 meV while other materials are metallic. We note that in some cases, the magnetic ordering or magnetic moment can change significantly when adding SOC to a calculation, resulting in a high spillage value without any direct relation to band inversion. Hence, it is important to further analyze the candidate materials by directly computing topological behavior, and we show examples of this analysis for NaRuO$_2$ and Y$_3$Sn below.

In our earlier work37, we created a database of automatically generated WTBH, which we use here to analyze topological behavior and support our findings from the spillage-based screening. The accuracy of the WTBH is evaluated based on the MaxDiff criteria37 which compares the maximum band-energy difference between DFT and WTB on k-points within and beyond our DFT calculations k-points. We set a MaxDiff (maximum energy difference at all k-points between
Wannier and DFT bands) value of 0.1 eV as the tolerance for a good-quality WTBH. Out of all
the spillage-based candidate materials we observe at least 146 high of them have low MaxDiff.
For the systems with high spillage and high-quality WTBH, we predict Wannier charge centers,
surface bandstructures, and anomalous Hall conductivity for the insulating cases and AHC, Fermi-
surfaces and node plots for the metallic cases. Our Wannier database is available at
https://jarvis.nist.gov/jarviswtb/ with interactive features. We provide heat of formation,
spacegroup, convex hull and other important details for each material in the corresponding
webpage (such as https://www.ctcms.nist.gov/~knc6/static/JARVIS-DFT/JVASP-8122.xml) as
well as in the supplementary information (Table S2) These webpages can also be downloaded as
XML documents containing raw data for replotting or analysis by the users.

We identify NaRuO$_2$ as a candidate 3D Chern insulator through the above systematic screening
process based on PBE+SOC and SCAN+SOC. NaRuO$_2$ is a trigonal system, belonging to R$ar{3}$m
spacegroup. The heat of formation of the system is negative (-1.293 eV/atom) suggesting the
system should be thermodynamically favorable. Also, the system has a formation energy that is
0.089 eV/atom above the convex hull, suggesting that the system is slightly unstable but in a range
where is may be synthesizable, and it has in fact been synthesized experimentally43. We observe
that this material is metallic without SOC (Fig. 2a), but as we turn on SOC, a gap opens at the B
and X points, which results in high spillage of 0.56. At least 18 materials show bandgap opening
due to inclusion of spin-orbit coupling. Next, we calculate the Chern number using the Wannier
charge centers as shown in Fig. 3a and b. We observe gapless charge centers, indicating that the
material is a 3D Chern insulator. The Chern number of four planes i.e., k_1=0.0; k_1=0.5; k_2=0.0;
k_2=0.5 (k_3=0.0; k_3=0.5 and k_2=0.0; k_2=0.5 remaining the same); where k_1, k_2, k_3 is in fractional
units is determined as -2. In Fig. 3c we see a conducting channel in the (001) surface suggesting
that the material is conducting at its surface, but the bulk is insulating even though the time reversal is broken in the system. The Chern number is directly proportional to the anomalous Hall conductivity which is an experimentally measured quantity. For a 3D Chern material, AHC is calculated as \(\frac{C_3 b_3 e^2}{2\pi h} \) which turns out to be 1540 ohm\(^{-1}\)cm\(^{-1}\), which is what we find using Wannier calculation-based quantity in the Fig. 3d. In this case the AHC in Fig. 3d is quantized which can be leveraged for precise quantum control from the perspective of building devices. In addition, we analyzed this material using SCAN+SOC, and we find that the band structure is very similar to the PBE+SOC result, and the topological properties are the same (see the supplementary information Fig. S1).
In Fig. 4 we show the analysis of an example candidate topological metal Y$_3$Sn. Y$_3$Sn crystallizes in P6$_3$mmc space group and hexagonal system, has negative formation energy (-0.43 eV/atom) and 0.1 eV/atom energy above convex hull, suggesting that it should be experimentally synthesizable. The bandstructures in Fig. 1s show multiple band crossings for this system and has a spillage of 0.25. We plot the Fermi surface of this system in Fig. 4a which shows several conducting Fermi-channels represented by deep blue spots. The lighter colors indicate that there are not bands at the Fermi level. This material belongs to the Kagome lattice and such Fermi-surfaces have recently gained interest due to unique nodal line like features44,45. The (001) surface for this material also shows multiple bands crossing Fermi-level, which is shown in Fig. 4c. We observe several nodes in this material as shown in Fig. 4c with color coded energy level values. Energy levels with null value or blue color represents bands at Fermi level. The calculated anomalous Hall conductivity of this system is shown in Fig. 4d. The AHC is not quantized such as NaRuO$_2$, but still has a non-zero value at zero field which can be due to the topological features of the bandstructure. The SCAN+SOC and PBE+SOC bandstructure comparison for this system is also shown in the supplementary section (Fig. S2), which shows shifts in energy for several bands.
Fig. 4 Analysis for Y₃Sn (JVASP-37701) as a candidate semi-metal with PBE+SOC. a) Fermi-surface, b) (001) surface bandstructure, c) nodal points/lines, d) anomalous Hall conductivity.

Next, in Fig. 5a, we show the likelihood that a compound containing a given element has a high-spillage for the 4734 materials screened from step a. More specifically, for every compound containing a given element, we calculate the percentage that have a spillage greater than 0.25. Consistent with known TMs, we observe that materials containing the elements such as Mn, Re, Fe, Ir, Pt, Bi and Pb are by far the likeliest ones to have high spillage. To contribute to SOC-induced band inversion, an element must both have significant SOC and contribute to bands located near the Fermi level, which favors heavy elements with moderate electronegativity. We use similar analysis for materials for thermoelectrics, solar cells, elastic constants etc. We can see some basic trends in the data but we intend to move towards more machine-learning prediction based on ML. To further accelerate the screening of magnetic topological materials we train three
classification models using classical force-field inspired descriptors (CFID)\(^{35}\) descriptors to predict the spillage, magnetic moment and bandgaps, based on data from the JARVIS-DFT database. The CFID descriptors provide a complete set of structural chemical features (1557 for each material) which we use with the Gradient Boosting Decision Tree (GBDT) algorithm as implemented in LightGBM\(^{46}\) to train high accuracy ML models. The accuracy of the classification can be measured in terms of Receiver Operating Characteristic (ROC) Area Under Curve (AUC), which is 0.81 for spillage, and 0.97 for both the magnetic and bandgap models (using a 90 % to 10 % train test strategy). The ROC AUC is 0.5 for a random model, and 1.0 for a perfect model. The models trained for this work have ROC AUC greater than 0.81, signifying useful predictive power. The gradient boosting algorithm allows for feature importance to be extracted after training the model. Some of the high-importance descriptors of the ML models are: unfilled \(d\)-orbitals, and electronegativity which is intuitively reasonable. After training the ML models, we apply them on 1399770 materials from JARVIS, AFLOW\(^{47}\), Materials-Project (MP)\(^{48}\) and Open Quantum Materials Database (OQMD)\(^{49}\) to find 77210 likely high-spillage materials using machine learning. The ML screened materials can then be subjected to the DFT workflow used in this work (see Fig. 1a) to further accelerate the search for magnetic topological materials. The ML models are distributed through the JARVIS-ML webapp.
Fig. 5 Periodic table trends and classification model receiver operating characteristics (ROC) curves.

(a) Periodic table trends of compounds with high-spillage values. The elements in a material are weighed 1 or 0 if the material has high or low-values. Then the percentage probability of finding the element in a high-value material is calculated.

(b) For high/low spillage model (threshold 0.25),

(c) high/low magnetic moment (threshold 0.5 μB),

(d) Metals/non-metals based on electronic bandgaps (threshold 0.05 eV).

Next, we discuss experimental results that support some of our theoretical findings. The AHE was first observed in ferromagnets where its origin lies in the interplay between spin–orbit coupling (SOC) and magnetization. Berry phase calculations have been proven accurate to predict SOC-induced intrinsic AHE in ferromagnets including Weyl (semi)metals, non-collinear antiferromagnets, non-coplanar magnets, and other nontrivial spin textures. In Fig. 6a, we show the experimental anomalous Hall conductivity as a function of magnetic field at 23 K, 25 K and
23 K for CoNb$_3$S$_6$. A large anomalous Hall conductivity at 23 K takes the value 27 Ω^{-1} cm$^{-1}$, which is a signature of experimental non-trivial band topology. Corresponding computational non-SOC, SOC bandstructures for this system, which has a maximum spillage value of 0.5 are shown in Fig. 2t. In Fig. 6b, we show the spin-pumping ferromagnetic resonance (SP-FMR) measurements by utilizing the inverse spin Hall effect (ISHE). In ISHE, a pure spin current \vec{J}_S gets converted to a charge current \vec{J}_C due to spin dependent asymmetric scattering phenomena. For spin pumping FMR measurements, Mn$_3$Ge (100 nm)/ Permalloy (Py) (10 nm), Pt (10 nm)/Py (10 nm) and Py (10 nm) samples were prepared on sapphire substrate. A Pt device was also fabricated and analyzed because it provides an ideal benchmark for ISHE comparison. Fig. 6b shows the comparison between the ISHE charge current (V_{ISHE}/R_{eq}) for all three devices, where R_{eq} is the total device resistance across the contact pads. Resistance values R_{eq} for all devices were measured at room temperature in four-probe configuration. As expected, the Py single layer device is unaffected by ISHE, and thus V_{sp} is entirely antisymmetric. On the other hand, the peak V_{ISHE}/R_{eq} value of the Mn$_3$Ge/Py device is significantly larger than that of the Pt/Py device. The ratio of spin-Hall angles $\theta_{SH}^{Mn3Ge}/\theta_{SH}^{Pt}$ is estimated to be around 8 ± 2. The larger spin-Hall angle of Mn$_3$Ge is a result of non-trivial band-topology which is consistent with the spillage signature.
In summary, we have demonstrated the applicability of spin-orbit spillage, machine learning and experimental techniques to identify and characterize magnetic topological materials. We have also shown several remarkable trends in the topological chemistry with statistical analysis and periodic table distribution plots. Because we employ a high-throughput approach to screen a large database, we employ several assumptions, including assuming a ferromagnetic spin ordering and not performing detailed analysis of the dynamic or thermodynamic stability of our candidate materials. Detailed investigation of each material is out of the scope of this paper and will be undertaken in future work. We have made our datasets and tools publicly available to enhance the reproducibility and transparency of our work. We believe that our work can be of great help to guide future computational or experimental efforts to discover and characterize new magnetic topological materials.

Methods
Density functional theory: DFT calculations were carried out using the Vienna Ab-initio simulation package (VASP)50,51 software using the workflow50 given on our Github page (https://github.com/usnistgov/jarvis). We use the OptB88vdW functional32, which gives accurate lattice parameters for both vdW and non-vdW (3D-bulk) solids52. We optimize the crystal-structures of the bulk and monolayer phases using VASP with OptB88vdW. The initial screening step for <1.5 eV bandgap materials is done with OptB88vdW bandgaps from the JARVIS-DFT database. Because SOC is not currently implemented for OptB88vdW in VASP, we carry out spin-polarized PBE and spin-orbit PBE calculations in order to calculate the spillage for each material. Such an approach has been validated by Refs.23,53. The crystal structure was optimized until the forces on the ions were less than 0.01 eV/Å and energy less than 10^{-6} eV. We use Wannier9054 and Wannier-tools55 to perform the Wannier-based evaluation of topological invariants.

As introduced in Ref.56, we calculate the spin-orbit spillage, $\eta(k)$, given by the following equation:

$$\eta(k) = n_{occ}(k) - \text{Tr}(P \tilde{P})$$

where,

$$P(k) = \sum_{n=1}^{n_{occ}(k)} |\psi_{nk}\rangle\langle\psi_{nk}|$$

is the projector onto the occupied wavefunctions without SOC, and \tilde{P} is the same projector with SOC for band n and k-point k. We use a k-dependent occupancy $n_{occ}(k)$ of the non-spin-orbit calculation so that we can treat metals, which have varying number of occupied electrons at each k-point23. Here, ‘Tr’ denotes trace over the occupied bands. We can write the spillage equivalently as:

$$\eta(k) = n_{occ}(k) - \sum_{m,n=1}^{n_{occ}(k)} |M_{mn}(k)|^2$$

(2)
where $M_{mn}(\textbf{k}) = \langle \psi_{mk} | \tilde{\psi}_{nk} \rangle$ is the overlap between occupied Bloch functions with and without SOC at the same wave vector \textbf{k}. If the SOC does not change the character of the occupied wavefunctions, the spillage will be near zero, while band inversion will result in a large spillage. After spillage calculations, we run Wannier based Chern and Z_2-index calculations for these materials.

The Chern number, C is calculated over the Brillouin zone, BZ, as:

$$C = \frac{1}{2\pi} \sum_n \int d^2 \textbf{k} \Omega_n$$ (3)

$$\Omega_n(\textbf{k}) = -\text{Im} \langle \nabla_\textbf{k} u_{nk} \rangle \times \langle \nabla_\textbf{k} u_{nk} \rangle = \sum_{m \neq n} \frac{2\text{Im} \langle \psi_{nk} | \tilde{\psi}_{mk} \rangle \langle \psi_{mk} | \tilde{\psi}_{nk} \rangle}{(\epsilon_m - \epsilon_n)^2}$$ (4)

Here, Ω_n is the Berry curvature, u_{nk} being the periodic part of the Bloch wave in the nth band, $E_n = \hbar \omega_n$, v_x and v_y are velocity operators. The Berry curvature as a function of \textbf{k} is given by:

$$\Omega(\textbf{k}) = \sum_n \int f_{nk} \Omega_n(\textbf{k})$$ (5)

Then, the intrinsic anomalous Hall conductivity (AHC) σ_{xy} is given by:

$$\sigma_{xy} = -\frac{e^2}{\hbar} \int \frac{d^3 \textbf{k}}{(2\pi)^3} \Omega(\textbf{k})$$ (6)

In addition to searching for gapped phases, we also search for Dirac and Weyl semimetals by numerically searching for band crossings between the highest occupied and lowest unoccupied band, using the algorithm from WannierTools55. This search for crossings can be performed efficiently because it takes advantage of Wannier-based band interpolation. In an ideal case, the band crossings will be the only points at the Fermi level; however, in most cases, we find additional trivial metallic states at the Fermi level. The surface spectrum was calculated by using the Wannier functions and the iterative Green’s function method57,58.
Starting from ~40000 materials in the JARVIS-DFT database, we screened for materials with magnetic moment >0.5 μB and having heavy elements (atomic weight ≥ 65) and bandgaps <1.5 eV. After carrying out spin-orbit spillage calculations on them, we broadly classify them into insulators and semimetals with non-vanishing and vanishing electronic bandgaps. For materials with high spillage, we run Wannier calculations to calculate the Chern number, anomalous hall conductivity, surface bandstructures and Fermi-surfaces. We also run SCAN functional based calculations on the high spillage materials to check the changes in bandgaps and magnetic moments. So far, we have calculated 11483 SOSs for both magnetic/non-magnetic, metallic/non-metallic systems.

Machine learning model:

The machine-learning models are trained using classical force-field inspired descriptors (CFID) descriptors and supervise machine learning techniques using gradient boosting techniques in the LightGBM⁴⁶ package⁵⁹. The CFID gives a unique representation of a material using structural (such as radial, angle and dihedral distributions), chemical, and charge descriptors. The CFID provides 1557 descriptors for each material. We use ‘VarianceThreshold’ and ‘StandardScaler’ preprocessing techniques available in scikit-learn before applying the ML technique to remove low-variance descriptors and standardize the descriptor set. We use DFT data for developing machine learning models for high/low spillage (threshold 0.5), high/low magnetic moment (threshold 0.5 μB), high/low bandgap (threshold 0.0 eV) to further accelerate the screening process.

The CFID has been recently used to develop several high-accuracy ML models for material properties such as formation energies, bandgaps, refractive index, bulk and shear modulus and exfoliation energies k-points, cut-offs, and solar-cell efficiencies. The accuracy of the model is
evaluated based on area under curve (AUC) for the receiver operating characteristic (ROC). We provide a sample script for the ML training in the supplementary information.

Experimental details:

CoNb₃S₆:

Single crystals of CoNb₃S₆ were grown by chemical vapor transport using iodine as the transport agent. First, a polycrystalline sample was prepared by heating stoichiometric amounts of cobalt powder (Alfa Aesar 99.998%), niobium powder (Johnson Matthey Electronics 99.8%), and sulfur pieces (Alfa Aesar 99.9995%) in an evacuated silica ampoule at 900 °C for 5 days. Subsequently, 2 g of the powder was loaded together with 0.5 g of iodine in a fused silica tube of 14 mm inner diameter. The tube was evacuated and sealed under vacuum. The ampoule of 11 cm length was loaded in a horizontal tube furnace in which the temperature of the hot zone was kept at 950 °C and that of the cold zone was ≈850 °C for 7 days. Several CoNb₃S₆ crystals formed with a distinct, well-faceted flat plate-like morphology. The crystals of CoNb₃S₆ were examined by single crystal X-ray diffraction at room temperature. Compositional analysis was done using an energy dispersive X-ray spectroscopy (EDS) at the Electron Microscopy Center, ANL.

Transport measurements were performed on a quantum design PPMS following a conventional 4-probe method. Au wires of 25 μm diameter were attached to the sample with Epotek H20E silver epoxy. An electric current of 1 mA was used for the transport measurements. The following method was adopted for the contact misalignment correction in Hall effect measurements. The Hall resistance was measured at H = 0 by decreasing the field from the positive magnetic field (RH+), where H represents the external magnetic field. Again, the Hall resistance was measured at H = 0 by increasing the field from negative magnetic field (RH−). Average of the absolute value
of (RH+) and (RH−) was then subtracted from the measured Hall resistance. The conventional antisymmetrization method was also used for the Hall resistance measured at 28 K (above TN) and at 2 K (where no anomalous Hall effect was observed), which gave same result as obtained from the former method.

Mn₃Ge:

In ISHE, a pure spin current \vec{J}_S gets converted to a charge current \vec{J}_C due to spin dependent asymmetric scattering phenomena\(^5^9\). To maximize the ISHE signal, the external magnetic field is applied along [1\(\bar{1}00\)] and dc voltage is measured along [1\(\bar{1}20\)] directions. An optical image of the spin-pumping device is shown in Fig. 6b. For spin pumping FMR measurements, (i) Mn₃Ge (100 nm)/Py (10 nm) and (ii) Pt (10 nm) Py (10 nm) (iii) Py (10 nm) samples were prepared on sapphire substrate. They were fabricated into 1000 \(\mu\)m×200 \(\mu\)m bars by photolithography and ion milling. Coplanar waveguides (CPW) with 170-nm thick Ti (20 nm)/Au (150 nm) were subsequently fabricated. Using ICP-CVD method, an additional SiN (150 nm) layer is deposited between CPW and the sample for electric isolation. The microwave frequencies were tuned between 10 GHz to 18 GHz with varying power (12 dBm - 18 dBm) while magnetic field was swept between -0.4 T to 0.4 T along the CPW axis. Measurements were performed at room temperature and field resolution of 2 mT was adopted throughout.

Data availability

JARVIS-related data is available at the JARVIS-API (http://jarvis.nist.gov), and JARVIS-DFT (https://jarvis.nist.gov/jarvisdft/) webpages.
Code availability

Python-language based codes with examples are available at JARVIS-tools page: https://github.com/usnistgov/jarvis.

Contributions

K.C. designed the computational workflows, carried out high-throughput calculations, analysis, and developed the websites. K.F.G helped in developing the workflow and analysis of the data. N.J.G. performed the experiments for CoNb₃S₆. N.A. performed the experiments for Mn₃Ge. All authors contributed to writing the manuscript.

Acknowledgements

K.C., K.F.G., and F.T. thank the National Institute of Standards and Technology for funding, computational, and data-management resources. NJG acknowledges support from U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division.

References

1. Ortmann, F., Roche, S. & Valenzuela, S. O. *Topological insulators: Fundamentals and perspectives*. (John Wiley & Sons, 2015).
2. Vanderbilt, D. *Berry Phases in Electronic Structure Theory: Electric Polarization, Orbital Magnetization and Topological Insulators*. (Cambridge University Press, 2018).
3. Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. *Reviews of Modern Physics* **82**, 3045 (2010).
4. Novoselov, K. S. *et al.* Two-dimensional gas of massless Dirac fermions in graphene. *Nature* **438**, 197 (2005).
5. Huang, S.-M. *et al.* A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class. *Nature communications* **6**, 7373 (2015).
6. Fu, L. Topological crystalline insulators. *Physical Review Letters* **106**, 106802 (2011).
7. Bian, G. *et al.* Topological nodal-line fermions in spin-orbit metal PbTaSe 2. *Nature communications* **7**, 10556 (2016).
8. Burkov, A., Hook, M. & Balents, L. Topological nodal semimetals. *Physical Review B* **84**, 235126 (2011).
Varnava, N. & Vanderbilt, D. Surfaces of axion insulators. Phys.Rev. B 98, 245117 (2018).

Raghu, S., Qi, X.-L., Honerkamp, C. & Zhang, S.-C. Topological mott insulators. Phys. Rev. Lett. 100, 156401 (2008).

Schindler, F. et al. Higher-order topological insulators. Science 4, eaat0346 (2018).

Zhou, Y., Kanoda, K. & Ng, T.-K. Quantum spin liquid states. J. Rev. Mod. Phys. 89, 025003 (2017).

Sun, K., Yao, H., Fradkin, E. & Kivelson, S. A. Topological insulators and nematic phases from spontaneous symmetry breaking in 2D Fermi systems with a quadratic band crossing. Phys. Rev. Lett. 103, 046811 (2009).

Thonhauser, T. & Vanderbilt, D. Insulator/Chern-insulator transition in the Haldane model. Physical Review B 74, 235111 (2006).

Tokura, Y., Yasuda, K. & Tsukazaki, A. Magnetic topological insulators. Nat Rev Phys 1, 126-143 (2019).

Zhou, Y., Kanoda, K. & Ng, T.-K. Quantum spin liquid states. J. Rev. Mod. Phys. 89, 025003 (2017).

Sun, K., Yao, H., Fradkin, E. & Kivelson, S. A. Topological insulators and nematic phases from spontaneous symmetry breaking in 2D Fermi systems with a quadratic band crossing. Phys. Rev. Lett. 103, 046811 (2009).

Thonhauser, T. & Vanderbilt, D. Insulator/Chern-insulator transition in the Haldane model. Physical Review B 74, 235111 (2006).

Tokura, Y., Yasuda, K. & Tsukazaki, A. Magnetic topological insulators. Nat Rev Phys 1, 126-143 (2019).

Zou, J., He, Z. & Xu, G. The study of magnetic topological semimetals by first principles calculations. npj Comput. Mater. Nat Phys 5, 1-9 (2019).

Ghimire, G. et al. Anomalous Hall effect of CoNb3S6 – from Ghimire et. al. Nat. Comm. 9, 3280 (2018).

Hong, D. et al. Large anomalous Nernst and inverse spin-Hall effects in epitaxial thin films of kagome semimetal Mn 3 Ge. Phys. Rev. Mater. 4, 094201 (2020).

Liu, L., Moriyama, T., Ralph, D. & Buhrman, R. Spin-torque ferromagnetic resonance induced by the spin Hall effect. Phys. Rev. Lett. 106, 036601 (2011).

Lv, B., Qian, T. & Ding, H. Angle-resolved photoemission spectroscopy and its application to topological materials. Nat. Rev. Phys. 1, 609-626 (2019).

Simon, L., Bena, C., Vonau, F., Cranney, M. & Aubel, D. J. Fourier-transform scanning tunnelling spectroscopy: the possibility to obtain constant-energy maps and band dispersion using a local measurement. J. Phys. D 44, 464010 (2011).

Liu, J. & Vanderbilt, D. Spin-orbit spillage as a measure of band inversion in insulators. Physical Review B 90, 125133 (2014).

Choudhary, K., Garrity, K. F. & Tavazza, F. High-throughput Discovery of Topologically Non-trivial Materials using Spin-orbit Spillage. Scientific Reports 9, 8534 (2019).

Choudhary, K. et al. Computational search for magnetic and non-magnetic 2D topological materials using unified spin–orbit spillage screening. npj Computational Materials 6, 1-8 (2020).

Otrokov, M. M. et al. Prediction and observation of an antiferromagnetic topological insulator. Nature 576, 416-422 (2019).

Li, J. et al. Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials. Sci. Adv. 5, eaaw5685 (2019).

Vergniory, M. et al. A complete catalogue of high-quality topological materials. Nature 566, 480-485 (2019).

Tang, F., Po, H. C., Vishwanath, A. & Wan, X. Comprehensive search for topological materials using symmetry indicators. Nature 566, 486-489 (2019).

Bradlyn, B. et al. Topological quantum chemistry. Nature 547, 298-305 (2017).

Xu, Y. et al. High-throughput calculations of magnetic topological materials. Nature 586, 702-707 (2020).

Frey, N. C. et al. High-throughput search for magnetic and topological order in transition metal oxides. Sci Adv 6, eabd1076 (2020).

Klimeš, J., Bowler, D. R. & Michaelides, A. Chemical accuracy for the van der Waals density functional. J. Phys. Cond. Mat. 22, 022201 (2009).

Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).
Sun, J., Ruzsinszky, A. & Perdew, Strongly constrained and appropriately normed semilocal density functional. Phys. Rev. Lett. 115, 036402 (2015).

Choudhary, K., DeCost, B. & Tavazza, F. Machine learning with force-field-inspired descriptors for materials: Fast screening and mapping energy landscape. Phys. Rev. Mater. 2, 083801 (2018).

Choudhary, K. *et al.* The joint automated repository for various integrated simulations (JARVIS) for data-driven materials design. npj Computational Materials 6, 1-13 (2020).

Garrity, K. F. & Choudhary, K. Database of Wannier Tight-binding Hamiltonians using High-throughput Density Functional Theory. arXiv:2007.01205 (2020).

De Jong, M. *et al.* Charting the complete elastic properties of inorganic crystalline compounds. Sci Data 2, 1-13 (2015).

Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).

Tran, F. *et al.* Semilocal exchange-correlation potentials for solid-state calculations: Current status and future directions. J. App.Phys. 126, 110902 (2019).

Nokelainen, J. *et al.* Ab initio description of the Bi 2 Sr 2 CaCu 2 O 8+ δ electronic structure. Phys. Rev. B 101, 214523 (2020).

Zhang, Y., Sun, J., Perdew, J. P. & Wu, X. Comparative first-principles studies of prototypical ferroelectric materials by LDA, GGA, and SCAN meta-GGA. Phys. Rev. B 96, 035143 (2017).

Shikano, M., Delmas, C. & Darriet, J. NaRuO2 and Na x RuO2 y H2O: New Oxide and Oxyhydrate with Two Dimensional RuO2 Layers. J. Inorg. Che. 43, 1214-1216 (2004).

Ali, M. N. *et al.* Butterfly magnetoresistance, quasi-2D Dirac Fermi surface and topological phase transition in ZrSiS. Sci Adv 2, e1601742 (2016).

Müller, C. *et al.* Determination of the Fermi surface and field-induced quasiparticle tunneling around the Dirac nodal loop in ZrSiS. Sci Adv 2, 023217 (2020).

Ke, G. *et al.* in Advances in neural information processing systems. 3146-3154.

Curtarolo, S. *et al.* AFLOWLIB. ORG: A distributed materials properties repository from high-throughput ab initio calculations. Comp Mat Sci 58, 227-235 (2012).

Jain, A. *et al.* Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater 1, 011002 (2013).

Kirklin, S. *et al.* The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies. npj Comp Mat 1, 15010 (2015).

Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54, 11169 (1996).

Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp Mat Sci 6, 15-50 (1996).

Choudhary, K., Kalish, I., Beams, R. & Tavazza, F. High-throughput Identification and Characterization of Two-dimensional Materials using Density functional theory. Scientific Reports 7, 5179 (2017).

Cao, G. *et al.* Rhombohedral S b 2 S e 3 as an intrinsic topological insulator due to strong van der Waals interlayer coupling. Phys Rev B 97, 075147 (2018).

Mostofi, A. A. *et al.* wannier90: A tool for obtaining maximally-localised Wannier functions. Comp Phys Comm 178, 685-699 (2008).

Wu, Q., Zhang, S., Song, H.-F., Troyer, M. & Soluyanov, A. A. WannierTools: An open-source software package for novel topological materials. Comp Phys Comm 224, 405-416 (2018).

Liu, J. & Vanderbilt, D. Spin-orbit spillage as a measure of band inversion in insulators. Phys Rev B 90, 125133 (2014).

Marzari, N. & Vanderbilt, D. Maximally localized generalized Wannier functions for composite energy bands. Phys Rev B 56, 12847 (1997).
Souza, I., Marzari, N. & Vanderbilt, D. Maximally localized Wannier functions for entangled energy bands. Phys Rev B 65, 035109 (2001).

Please note commercial software is identified to specify procedures. Such identification does not imply recommendation by National Institute of Standards and Technology (NIST).

Supplementary information: High-throughput search for magnetic topological materials using spin-orbit spillage, machine-learning and experiments

Kamal Choudhary¹,², Kevin F. Garrity¹, Nirmal J. Ghimire³,⁴, Naween Anand⁵, Francesca Tavazza¹

1 Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA.
2 Theiss Research, La Jolla, CA 92037, USA.
3. Department of Physics and Astronomy, George Mason University, Fairfax, VA 22030, USA.
4. Quantum Science and Engineering Center, George Mason University, Fairfax, VA 22030, USA.
5. Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA.

Table S1 Bandgap comparison for PBE+SOC and SCAN+SOC functionals with 1000/atom k-point settings.

JID	PBE+SOC(eV)	SCAN+SOC(eV)
JVASP-44705	0.02	1.2337
JVASP-2817	0.37	1.3048
JVASP-12648	0.27	1.1202
JVASP-10484	0.13	0.9678
JVASP-57388	0.14	0.91
JVASP-16408	0.28	0.5995
JVASP-55805	0.09	0.35
JVASP-21389	0.21	0.4312
JVASP-42538	0.03	0.2225
JVASP-8385	0.2	0.3273
JVASP-44991	0.04	0.116
JVASP-49890	0.01	0.072
JVASP-43466	0.03	0.0865
JVASP-82132	0.03	0.0528
JVASP-26528	0.35	0.3722
JVASP-81597	0.53	0.5518
JVASP-8384	0.01	0.0266
JVASP-16409	0.3	0.3104
JVASP-52135	0	0.0046
JVASP-59757	0	0
JVASP-17989	0	0
JVASP-43095	0	0
JVASP-17898	0	0
JVASP-16012	0	0
JVASP-59630	0	0
JVASP-55644	0	0
JVASP-8538	0	0
JVASP-59509	0	0
JVASP-26231	0	0
JVASP-39287	0	0
JVASP-26527	0	0
JVASP-38244	0	0
JVASP-38246	0	0
JVASP-38201	0	0
JVASP-38157	0	0
JVASP-38248	0	0
JVASP-17268	0	0
JVASP-37701	0	0
JVASP-45925	0	0
JVASP-34486	0	0
JVASP-81304	0	0
JVASP-76959	0	0
JVASP-80606	0	0
JVASP-81275	0	0
JVASP-81033	0.01	0
JVASP-76869	0.06	0.048
JVASP-80151	0.03	0.0142
JVASP-24841	0.04	0.0205
JVASP-16201	0.02	0
JVASP-18368	0.02	0
JVASP-44742	0.02	0
JVASP-76813	0.02	0
JVASP-77062	0.17	0.1493
JVASP-50689	0.03	0
JVASP-17265	0.39	0.3555
JVASP-79685	0.29	0.2462
JVASP-ID	J_1	J_2
-----------	--------	---------
JVASP-22442	0.16	0.1138
JVASP-81240	0.15	0.103
JVASP-8122	0.11	0.056
JVASP-21125	0.2	0.1449
JVASP-76930	0.16	0.1028
JVASP-21502	0.06	0
JVASP-26681	0.18	0.1136
JVASP-21417	0.07	0

Fig. S1 PBE+SOC and SCAN+SOC bandstructures for NaRuO$_2$.
Fig. S2 PBE+SOC and SCAN+SOC bandstructures for Y₃Sn.

Table S2 High-spillage material candidates.

JID	Formula	Spillage	Gap	Magmom	Ehull	
JVASP-53555	MnIn₂Te₄	0.828	0	4.963	0	
JVASP-53226	Ca₅MnPb₃	7.203	0	9.001	0	
JVASP-15074	YCo₅	0.376	0	6.796	0	
JVASP-14699	MnTe	1.038	0	8.073	0.012265	
JVASP-60253	UTe₃	3.323	0	4.89	0	
JVASP-84812	RbMnAs	0.44	0	3.772	0	
JVASP-53303	MnTe	0.293	0	13.39	0.061846	
JVASP-43433	Li₂NbFe₃O₈	2.936	0	3	0	
JVASP-60477	RuCl₃	0.264	0	1.985	0	
JVASP-43643	Li₂CoSnO₄	0.322	0	2.789	0.003284	
JVASP-43846	MnP₂WO₈	1.539	0	6	0	
JVASP-16176	Li₂NbF₆	0.432	0	1	0	
JVASP-18583	TiAgHg₂	1.104	0	1.649	0.234241	
JVASP-18620	Mn₂Au₅	0.282	0	8.357	0.0225	
JVASP-48582	Li₆Mn₅SbO₂	5.953	0	21.945	0	
JVASP-49957	Li₂RhO₃	0.459	0	1.826	0	
JVASP-14962	PuFe₂	4.719	0	3.591	0	
JVASP-84911	RbMnAs	0.367	0	3.967	0	
JVASP-18519	SrMnBi₂	1.428	0	7.883	0	
JVASP-18467	K₂MoCl₆	0.263	0	2	0	
JVASP	Compound	Value1	Value2	Value3	Value4	
---------	---------------	--------	--------	--------	--------	
JVASP-18551	RbMnSe2	0.302	0	4	0	
JVASP-18468	K2OsBr6	0.934	0	1.994	0	
JVASP-14964	Mn3Rh	0.815	0	0.903	0.059416	
JVASP-14584	CrPt3	2.521	0	2.791	0	
JVASP-15006	CrSb2	0.545	0	4.192	0.205306	
JVASP-44114	Li2V3SnO8	1.008	0	0.988	0.038036	
JVASP-43542	Li3YNi2O6	2.944	0	1.998	0	
JVASP-15562	RbFeS2	0.278	0	3.13	0	
JVASP-48117	Li2Fe3TeO8	3.823	0	2.025	0.003622	
JVASP-60294	UIN	1.201	0.03	4	0	
JVASP-43107	Li2Fe3SnO8	0.252	0	4	0.031039	
JVASP-14926	VSb	1.02	0	2.891	0.123297	
JVASP-20094	Co3Mo	1.016	0	0.9	0	
JVASP-54386	NbFeO4	0.523	0	2.015	0	
JVASP-18625	VAu2	2.102	0	3.782	0.022372	
JVASP-15649	MnCuSb	1.015	0	4.296	0.187604	
JVASP-14711	FeAs	0.919	0	1.923	0.002932	
JVASP-14928	MnNbSi	1.02	0	2.14	0	
JVASP-11974	NbCo3	1.094	0	11.578	0.078038	
JVASP-87133	UTe2	2.541	0	4.916	0	
JVASP-43362	Li2Fe3TeO8	0.469	0	9.606	0	
JVASP-15567	MnCo2Sb	0.304	0	5.793	0.041562	
JVASP-43661	Li4Mn3Co3Sn2O6	4.974	0	8.016	0	
JVASP-15104	Mn3ZnC	0.551	0	6.801	0.009448	
JVASP-15237	HfGaCo2	4.98	0	0.876	0	
JVASP-42681	Ti2Co3Te3O6	3.082	0	9.495	0	
JVASP-19910	CoPt	1.378	0	4.447	0	
JVASP-14889	RuF3	1.989	0	1.975	0	
JVASP-50360	Bi2PO6	0.329	0	0.737	0	
JVASP-52375	HfMn6Sn6	0.391	0	13.037	0.009234	
JVASP-54439	FeB2W2	0.645	0	3.35	0	
JVASP-43466	Li2Fe3SbO8	5.063	0.03	3	0.012412	
JVASP-18924	FePt3	1.348	0	4.197	0	
JVASP-21561	Nb4CrS8	1.024	0	4.931	0	
JVASP-14934	CrCuSe2	0.296	0	3	0.254504	
JVASP-43125	Cr3SbP4O6	3.53	0.12	9	0	
JVASP-42156	Li4Fe3SbO8	2.151	0	8.995	0	
JVASP-48191	Li2P2WO8	1.162	0	4	0.007233	
JVASP-50895	PrTiO3	0.721	0	2	0	
JVASP-18525	Rb2WBr6	0.569	0	2	0	
JVASP-52305	Ga2CuO4	0.393	0	1.989	0	
JVASP-16908	TiBi2O6	1.081	0	1.891	0.252842	
JVASP-16201	MgRhF6	0.902	0.02	0.991	0	
Code	Compound	A	m	V	Z	
----------	-----------------	--------	------	-----	-----	
JVASP-53381	Cr4Cu3Se8	0.629	0	11.097	0.037619	
JVASP-53248	Co2B6W2	0.537	0	17.019	0	
JVASP-47467	TaFeO4	0.69	0	2	0.016797	
JVASP-19524	UI3	2.823	0.04	6	0	
JVASP-50977	Li2CuBiO4	0.594	0	0.723	0	
JVASP-15326	CaMn2Sb2	0.517	0	7.131	0	
JVASP-16161	ScFeGe	0.446	0	4.543	0	
JVASP-42352	HfCrO4	2.027	0	8	0	
JVASP-15617	SrCo2P2	0.266	0	0.591	0	
JVASP-53515	Mn2SbTe	0.333	0	15.725	0.298565	
JVASP-16001	K2RhF6	1.338	0.13	0.994	0	
JVASP-6145	US3	1.769	0	4	0	
JVASP-60459	UTe3	1.707	0	3.409	0	
JVASP-18528	Ti2WCl6	1.043	0	2	0	
JVASP-53265	AlFe2Mo	0.389	0	0.789	0	
JVASP-50093	TiNbO4	0.654	0	0.533	0	
JVASP-43389	Li4MnW3O2	1.119	0.42	4.99	0	
JVASP-52989	Sr3Mn4O2	0.462	0	9.994	0	
JVASP-43935	Li4Mn3V3Sn2O6	2.408	0	14.756	0	
JVASP-43390	Li4Cr5SbO2	7.516	0	3	0	
JVASP-43694	CdFeO3	0.395	0	12.87	0	
JVASP-15511	FeAgS2	0.276	0	2.056	0.054059	
JVASP-726	CrS2	0.308	0	2.047	0	
JVASP-14679	VPt3	1.294	0	1.357	0.014238	
JVASP-19895	CoPt3	1.687	0	2.833	0	
JVASP-15663	MnSbAu	0.904	0	4.559	0.151837	
JVASP-53544	Cr4Cu3Te8	1.05	0	11.359	0	
JVASP-47523	Co3SbO8	0.28	0	3.696	0	
JVASP-42538	Ta2CrNO5	2.788	0.03	6	0	
JVASP-6097	VCl3	0.973	0	4	0	
JVASP-50922	CuAuO2	0.456	0	0.51	0.012338	
JVASP-20076	FeSe	0.421	0	4.509	0.198073	
JVASP-18532	CaMn2Bi2	1.171	0	8.652	0.264587	
JVASP-49890	Ba4IrO6	2.44	0.01	1.651	0	
JVASP-43616	LiFeSbO4	0.354	0	8.13	0.052363	
JVASP-51442	GaFe2Co	0.735	0	5.679	0.07515	
JVASP-15583	MnAlAu2	0.289	0	3.785	0	
JVASP-20110	MnPt3	2.412	0	4.245	0	
JVASP-6766	HfFeCl6	1.042	0.02	4	0	
JVASP-15211	FeSiRu2	0.394	0	3.686	0	
JVASP-50689	Li4Ti3Cu3Te2O6	1.026	0.03	2.771	0	
JVASP-1867	FeAgO2	0.75	0	1.032	0.000927	
JVASP-16213	MnNbGe	0.381	0	3.711	0	
Material	Structure	a	b	c	Band Gap	
--------------	------------	----	----	----	----------	
Col2		0.852	2.409	0		
ZrFeCl6		1.015	0.03	4		
Sr3Fe2Cu2Se2O5		1.014	7.634	0		
MnSb		1.005	0	6.273	0.0527	
TaFe2		2.098	0	2.382	0	
Mg2TiIrO6		2.476	0	1.21	0	
Ti4CrI6		0.295	0	8	0.00395	
V4ZnS8		1.181	0	1.81	0	
Sr2Mn3Bi2O2		0.516	0	11.681	0	
BaCr4O8		0.354	0	9.992	0	
RbTiBr3		0.347	0	2.621	0	
TiCrTe2		0.401	0	3.054	0	
Na2IrO3		1.294	0	1.798	0	
Sr3Fe2Cu2Se2O5		1.014	0	7.634	0	
Sr2CoCl2O2		0.421	0	2.108	0	
Ca2TiIrO6		2.291	0	0.82	0	
FeBiO3		0.322	0	2.811	0.100464	
GaFe2Ni		0.255	0	4.509	0.08455	
MnRh2Pb		0.881	0	4.674	0	
NiRh2O4		0.359	0	3.986	8.42E-05	
TiZn2IrO6		1.96	0	1.126	0	
Mn3Sn		0.477	0	1.01	0.216904	
Mg2SnIrO6		1.657	0	0.865	0	
Mn3P6Pd2O20		1.106	0	14.047	0	
BaTi4O7		0.408	0	3.473	0.119577	
FeCuPt2		1.662	0	3.93	0	
RbW3Cl9		0.579	0.06	1.616	0	
Mg2MnIrO6		1.523	0	4.194	0	
ZnCr2S4		0.303	0	12	0.158825	
ZnFe4S8		1.05	0	6.979	0	
MnCoSn		1.013	0	8.783	0.348821	
YMnGe		0.411	0	11.184	0	
Mg2CoIrO6		1.673	0	2.154	0	
Mn2Sb		0.5	0	11.488	0.333028	
ThCo2Si2		1.149	0	0.97	0	
FeCu2SnS4		0.313	0	3.874	0.006128	
KCo2Se2		1.006	0	2.002	0	
MnAsRh		0.347	0	9.719	0	
FeBiO3		2.269	0	13.908	0.005442	
MnBiAsO5		3.258	0.14	10	0	
YCu3Sn4O2		1.146	0	2.015	0	
Zn2CoIrO6		1.813	0	1.382	0	
SrCo2As2		0.471	0	0.846	0	
TaF3		0.497	0	1.99	0.448904	
Material Code	Formula	Density	a	b	c	Volume
---------------	---------	---------	---	---	---	---------
JVASP-18575	Rb2WCl6	0.591	2	0	0	
JVASP-58507	Ca2CuIrO6	2.84	3.717	0		
JVASP-49616	ZnFeO3	0.9	8.717	0.063702		
JVASP-57848	Ba6Ru3Cl2O2	0.513	3.365	0		
JVASP-55136	Fe3PtN	1.033	7.954	0		
JVASP-57242	Sr2Fe2S2OF2	0.472	7.526	0		
JVASP-59737	Ta2CuO6	0.354	1.997	0		
JVASP-21401	NaSr3IrO6	3.184	0.23	3.893		
JVASP-54949	Co2Sn	1.118	2.772	0		
JVASP-19286	Y2Fe2O7	3.858	8.012	0		
JVASP-57319	Ba2YFe3O8	0.506	4.125	0.079199		
JVASP-8616	Sr2CoBr2O2	0.282	2.128	0		
JVASP-55156	Fe3RhN	1.011	8.232	0		
JVASP-59673	Y2Ru2O7	2.262	1.468	0		
JVASP-57430	Ba2Mn2Bi2O	2.292	19.266	0		
JVASP-15076	FePd	0.28	6.495	0.024811		
JVASP-15057	Fe3Se4	0.506	4.125	0.079199		
JVASP-60098	YFeO3	0.805	24.747	0.037703		
JVASP-8096	Cr2FeSe4	0.613	5.997	0		
JVASP-58040	Ba2TiFe2O7	1.942	19.266	0		
JVASP-54955	KMnAg3C6N6	1.008	1.009	0.166123		
JVASP-14753	HFZn2	1.052	1.177	0.002773		
JVASP-55644	KFeBr3	0.339	16	0		
JVASP-38339	RbAuO3	1.701	1.329	0.414073		
JVASP-58042	Ba2TiCo2O7	0.317	5.352	0		
JVASP-8618	CrPbO3	1.021	2	0		
JVASP-5314	UC15	1.152	0.41	2		
JVASP-59564	V2CdO4	1.025	8	0		
JVASP-58337	KY2Ti2S2O5	0.326	0.917	0		
JVASP-59847	YMn3Se2ClO8	0.419	18.612	0		
JVASP-60099	YCoO3	1.365	11.449	0.139314		
JVASP-36101	Er2Co3Ge5	1.248	0.916	0		
JVASP-57577	TiFeBi2O6	0.284	4.001	0		
JVASP-56803	Ba3Fe3Se7	0.484	19.803	0		
JVASP-8619	SrCrO3	0.639	1.973	0		
JVASP-57326	Ni2Ag3O4	1.039	2.738	0.02373		
JVASP-56962	CrGaCo2	1.008	3.035	0		
JVASP-58227	BaMgCo4O8	0.411	11.524	0		
JVASP-7958	MnAsRh	0.32	8.557	0.087241		
JVASP-59570	Ba3Cr2O8	0.409	2	0		
JVASP-8018	MnIr	2.046	2.495	0		
JVASP-37845	CuSeO4	0.455	1.95	6.24E-05		
JVASP-58095	YCoO3	1.009	3.761	0.163071		
JVASP-7892	BaY2NiO5	1.009	0	1.252	0	
JVASP-57868	CrSn2	0.29	0	1.647	0.181985	
JVASP-60101	YMoO3	0.837	0	10.18	0.053661	
JVASP-12919	CuPtF6	0.631	0	1.999	0	
JVASP-59682	RbHgN3O6	1.012	0	4	0.343516	
JVASP-56072	MnBi	2.039	0	6.924	0.277582	
JVASP-21191	Ca2NiIrO6	1.31	0	1.549	0	
JVASP-59496	Cd2Re2O7	2.491	0	1.746	0	
JVASP-42985	Li5Nb2V5O2	1.047	0	3.417	0	
JVASP-59573	Sr3NiIrO6	2.902	0	16.86	0	
JVASP-59637	Mn4Ge6Ir7	1.728	0	16.86	0	
JVASP-41091	Ta2FeOs	0.945	0	1.545	0	
JVASP-55190	Rb2FeI4	0.373	0	8	0.000214	
JVASP-60102	YVO3	1.014	0	10.626	0.087396	
JVASP-8623	FeBiO3	0.323	0	3.258	0.041491	
JVASP-56304	TiCoCl3	1.032	0	5.985	0	
JVASP-21588	Sr25ClrO6	3.617	0	3.152	0	
JVASP-58461	BaFe4O8	0.266	0	10.253	0	
JVASP-2817	K4IrO4	0.632	0.37	2.88	0	
JVASP-14308	Ta2InCuTe4	0.508	0	2.969	0.336609	
JVASP-13174	Ta2CrO6	0.451	0	7.356	0	
JVASP-56818	MnSbPt	0.854	0	3.913	0.372015	
JVASP-59580	BaVO3	0.653	0	1.154	0	
JVASP-49659	Nb2Co2O9	1.003	0	3.882	0.15346	
JVASP-8538	CeNiSb2	2.223	0	0.546	0	
JVASP-58250	YCo4B	0.544	0	6.681	0	
JVASP-59704	Fe2CuGe2	0.393	0	0.508	0	
JVASP-59773	Mn3GeIr	0.859	0	38.663	0.138852	
JVASP-54797	CrCoPt2	1.687	0	1.199	0	
JVASP-58411	Rb2CoSe2	1.034	0	5.996	0	
JVASP-59709	In2CoS4	0.547	0	5.991	0	
JVASP-55805	LiMnAsO4	8.433	0.09	20	0	
JVASP-59509	Ta3Co3C	1.468	0	4.005	0	
JVASP-59587	YMnO3	1.006	0	7.998	0	
JVASP-8240	YFeO3	0.618	0	2.557	0.197367	
JVASP-41131	Hf2Colr	1.023	0	0.69	0	
JVASP-59648	Mn3SiIr	2.239	0	25.834	0.052054	
JVASP-21327	Zn2BiWO6	1.488	0	1.15	0	
JVASP-20932	Cr2CuSe4	0.45	0	10.336	0	
JVASP-58257	FeRh2S4	1.214	0	6.105	0	
JVASP-7856	YCrO3	1.228	0	2.978	0.144098	
JVASP-59882	YCo2S4	3.012	0	1.785	0.142833	
JVASP-21582	MnNb3S6	1.016	0	8.337	0	
JVASP-ID	Compound	V	O	Z	X	
-----------	-----------------	-----	----	-----	------	
57296	SrFe2Se4O2	1.933	0	5.999	0	
8323	CoBi2O6	2.093	0	1.784	0.180329	
59593	NiRh2O4	0.322	0	3.986	0	
20447	FePt	0.413	0	3.243	0	
38273	KRhO3	0.349	0	1.784	0	
21693	HF2Mn2	2.318	0	2.938	0	
45533	YFeO3	1.32	0	11.999	0	
7858	TiFeO2	1.084	0	5.29	0	
21125	Sr3LiIrO6	4.647	0.2	3.869	0	
20414	Cr2HgSe4	1.029	0	11.956	0	
26876	CeH2	0.973	0	0.763	0	
38639	Ni3Au	1.081	0	1.538	0.088389	
21589	Ba2SclrO6	2.197	0	3.073	0	
59107	Zr6Co23	0.415	0	25.261	0	
41448	TmUTc2	2.133	0	0.877	0	
20397	ZrMn2	0.234	0	1.538	0.000832	
26231	Co2B6Mo2	0.255	0	0.833	0.096612	
21589	Sr3CaIrO6	2.334	0	1.645	0	
22381	Ba2SrIrO6	2.334	0	1.645	0	
28125	Sr4IrO6	2.334	0	1.645	0	
22441	Na3Cd2IrO6	1.503	0.23	1.831	0	
22442	Ba3NaIrO6	1.853	0.16	3.946	0	
49567	MgMo6O6	2.044	0	2.361	0	
39364	Ni3Hg	1.068	0	0.883	0.285456	
25704	NbVF6	0.466	0	4	0	
15904	MnSblr	1.029	0	3.103	0	
8204	NiPt	2.669	0	1.828	2.00E-05	
26047	Co2Re2B6	0.768	0	17.729	0	
8335	ZnCr2N2	0.288	0	5.855	0.382623	
39275	FeAu3	0.315	0	3.117	0.168094	
8122	NaRuO2	0.496	0.11	1	0.021784	
26796	Li2MoF6	1.034	0	4	0	
7922	BaMn2P2	0.342	0	5.29	0	
7868	FeAgO2	0.766	0	2.083	0	
JVASP-38211	Rb3Pb	1.125	0	0.912	0	
JVASP-38310	RblnO3	0.298	0	2	0.284021	
JVASP-39279	FePbO3	0.298	0	3.441	0	
JVASP-7869	Sr2MnO4	0.283	0	3	0	
JVASP-26074	Rb3Fe2Se4	1.094	0	30.015	0	
JVASP-16563	MnSnIr	0.672	0	3.447	0.344516	
JVASP-7702	TiAu	1.023	0	0.934	0.113969	
JVASP-38264	MnTl3	1.228	0	8.367	0.456432	
JVASP-38317	RbF3	0.411	0	2	0.161013	
JVASP-20801	Cr2Te3	1.454	0	24.218	0	
JVASP-21389	Sr3CuPtO6	2.174	0.21	1.919	0	
JVASP-14273	TiCdHg2	0.529	0	0.835	0.175958	
JVASP-15949	ZnFe3C	0.295	0	4.078	0	
JVASP-38325	RbNIO3	0.387	0	3.441	0	
JVASP-22401	Sr3MnN3	1.01	0	2.866	0	
JVASP-38492	K3Rh	1.073	0	0.501	0.477367	
JVASP-15926	MnSn3	0.302	0	7.979	0.339145	
JVASP-21417	Sr3ZnIrO6	2.193	0.07	1.436	0	
JVASP-38325	RbNIO3	0.383	0	2.666	0	
JVASP-26526	Ba2Fe2S2OF2	0.314	0	7.827	0	
JVASP-8301	MgMoF6	1.013	0	2	0	
JVASP-15918	LiTlTe2	1.022	0	0.843	0	
JVASP-26527	SrCrF6	0.284	0	2	0	
JVASP-21422	Ba2CaOsO6	0.603	0	1.822	0	
JVASP-38183	Rb3Tl	1.317	0	1.175	0.035357	
JVASP-8567	Li2FeBr4	0.852	0	4	0	
JVASP-8609	Sr2CoCl2O2	0.414	0	2.115	0.000768	
JVASP-16654	CoCu2SnSe4	0.616	0	2.458	0	
JVASP-26528	Rb2IrF6	1.404	0.35	0.996	0	
JVASP-27213	Ni2Hg2OF6	1.058	0	8.165	0	
JVASP-37387	Th3U	2.582	0	2.336	0.250054	
JVASP-15391	TiCo2Se2	0.426	0	1.794	0	
JVASP-16407	LiRhF6	0.561	0	1.999	0	
JVASP-21502	Li2RhF6	2.022	0.06	1.993	0	
JVASP-16367	MnAlPt	1.054	0	6.85	0	
JVASP-27661	Zn2Fe3O8	0.465	0	12	0	
JVASP-38614	MgPbO3	0.391	0	2	0.092507	
JVASP-16368	MnAlPt2	1.057	0	4.176	0	
JVASP-38289	RbSrO3	0.331	0	3	0	
JVASP	Formula	First	Second	T1	c/a	
----------	------------------------	--------	--------	-------	-------	
JVASP-16408	LiIrF6	1.158	0.28	2	0	
JVASP-26623	Ba3Nir2O9	3.343	0	9.097	0	
JVASP-19598	V3Te4	0.92	0	6.915	0.008259	
JVASP-16409	K2IrF6	1.396	0.3	0.995	0	
JVASP-22415	Sr3MglrO6	1.99	0.12	1.588	0	
JVASP-16823	CrTe4Au	0.542	0	2.872	0	
JVASP-14403	Mn2Sb	0.5	0	11.488	0.333028	
JVASP-38341	RbAgO3	1.28	0	1.663	0.39356	
JVASP-8383	YWF5	1.5	0	3.498	0	
JVASP-17460	Ba2Mn3As2O2	3.292	0	3.371	0	
JVASP-858	Co	0.531	0	3.153	5.10E-06	
JVASP-55303	Mn3TeO6	0.305	0	29.848	0.054318	
JVASP-17641	CaMnGe	0.313	0	4.563	0	
JVASP-55470	Co2Mo3O8	7.451	0	0.623	0	
JVASP-19739	TiHg	1.407	0	1.372	0.148755	
JVASP-17315	CrAsRh	0.259	0	10.625	0.000782	
JVASP-8384	YNiF5	0.372	0.01	2	0	
JVASP-38244	Rb3In	0.418	0	1.284	0.094258	
JVASP-39452	RuAu3	1.302	0	1.719	0.368509	
JVASP-17265	BaIrF6	1.356	0.39	0.997	0	
JVASP-17509	RhO2F6	3.993	0	4.048	4.00E-06	
JVASP-8349	ZnCoF6	0.321	0	1	0	
JVASP-19704	NbF4	0.254	0	0.682	0	
JVASP-17643	CoNiSn	1.014	0	1.788	0.007715	
JVASP-39453	RuAu3	1.487	0	3.489	0.397432	
JVASP-38515	KAgO3	0.91	0	1.549	0.394317	
JVASP-37981	CoTeO3	0.544	0	0.729	0.307307	
JVASP-16338	FeTe	0.654	0	3.87	0.207063	
JVASP-37453	TaTiFe2	1.042	0	0.83	0	
JVASP-8385	YCoF5	1.175	0.2	3	0	
JVASP-12407	TiFe6Ge6	1.016	0	8.704	0	
JVASP-38248	Rb3Ga	0.469	0	1.472	0.112694	
JVASP-17730	FeSn	1.009	0	3.584	0.176643	
JVASP-16719	YFe2B2	0.429	0	1.027	0	
JVASP-47356	Li2Si2WO7	0.887	0	4	0	
JVASP-12287	ZrMnGe	0.267	0	8.375	0	
JVASP-12608	Sr3Co2Cl2O5	0.693	0	3.49	0	
JVASP-17854	Mn3SnC	0.392	0	3.33	0.009175	
JVASP-17646	RbMnAs	0.255	0	3.881	0	
JVASP-37314	SrAlO3	2.995	0	0.526	0	
JVASP-36857	MnAuO2	0.374	0	3.984	0	
JVASP-46728	Li4Mn3SbP4O6	3.224	0.09	15.761	0	
JVASP-21188	Ca2FeIrO6	0.982	0	5.586	0	
JVASP	Compound	a (Å)	c (Å)	V (Å³)	ρ (g/cm³)	
-----------	----------------	-------	-------	--------	-----------	
JVASP-17462	Sr2Mn3As2O2	3.371	0	7.453	0	
JVASP-18123	FePd3	0.402	0	4.169	0	
JVASP-19789	CrSb	0.378	0	5.604	0.153325	
JVASP-17168	MoPt3	1.132	0	1.472	0.15261	
JVASP-37028	TiInFe2	2.041	0	0.907	0	
JVASP-16723	CrIr3	1.093	0	1.237	0	
JVASP-10854	YFe2O4	0.834	0	14	0.213896	
JVASP-37407	TePdO3	0.99	0	1.019	0	
JVASP-37144	NbFe3	1.008	0	5.132	0	
JVASP-49613	Y2Co2O7	0.266	0	1.903	0	
JVASP-44414	Li2Mn3WO8	1.054	0	16.292	0	
JVASP-46240	CoBi2O6	4.185	0	0.549	0	
JVASP-12612	Ba2UCoO6	1.058	0	3.011	0	
JVASP-18049	CeB6	0.88	0	0.721	0	
JVASP-15970	Cr3SnN	1.006	0	1.687	0	
JVASP-16474	TiCdHg2	0.529	0	0.835	0.175958	
JVASP-44705	Mn5b4O2	1.432	0.02	3	0	
JVASP-10855	ZnFe2O4	3.993	0	4.001	5.50E-05	
JVASP-37189	Mn3Ga	0.754	0	3.11	0.095038	
JVASP-11508	TiBi2O6	1.145	0	3.857	0.332215	
JVASP-11584	Sr4MgFe2S2O6	0.343	0	3.837	0	
JVASP-37701	Y3Sn	0.286	0	1.596	0.106332	
JVASP-8357	AIWF5	1.143	0	3.97	0	
JVASP-8414	BaYCoCuO5	0.557	0	2.252	0	
JVASP-49615	YMoO3	0.705	0	3.257	0.001451	
JVASP-44418	Na3CrBAsO7	6.077	1.09	6	0	
JVASP-17654	MnGaPt	0.463	0	3.336	0.246664	
JVASP-37190	MnGaFeCo	1.018	0	3.068	0	
JVASP-17478	Sc3In	1.013	0	2.465	0	
JVASP-45802	Li8Cr3TeO2	3.222	0	5.932	0	
JVASP-27678	Mn4ZnCu3O2	1.061	0	9.079	0	
JVASP-18328	NaMNbI	0.348	0	8.108	0.057047	
JVASP-11811	Ba2Mn2Sb2O	0.444	0	19.229	0	
JVASP-18131	FeCu2Sn	0.881	0	2.688	0.263135	
JVASP-12355	Zr2Fe3Ge	0.336	0	7.794	0	
JVASP-38645	Ni3Al	1.248	0	3.103	0.097749	
JVASP-11692	RbFeMo2O8	0.7	0	1	0	
JVASP-37208	SiPdO3	1.016	0	1.954	0	
JVASP-44507	Li2MnBAsO7	2.041	1.17	6	0	
JVASP-10857	ZnCr2Se4	1.012	0	11.98	0	
JVASP-17618	Mn2GaCo	2.034	0	2.019	0	
JVASP-37946	Co3Bi	1.067	0	2.899	0.443311	
JVASP-18209	Mn3Sn	0.789	0	10.047	0.202535	
Code	Compound	a (Å)	b (Å)	c (Å)	V (Å³)	Density (g cm⁻³)
---------	----------------	-------	-------	-------	--------	-----------------
JVASP-18104	VCo2Sn	0.411	0	2.813	0	8.277
JVASP-17328	Mn3ZnN	1.005	0	4.201	0	8.277
JVASP-38764	ZnFeRh2	0.52	0	4.221	0	8.277
JVASP-52119	MnReO4	2.649	0	7.645	1.75E-06	8.277
JVASP-17828	ZnFeSb	0.582	0	2.538	0.474698	8.277
JVASP-18136	NdCoSi	0.936	0	0.511	0	8.277
JVASP-37600	Sr3Cr	1.006	0	4.864	0.495398	8.277
JVASP-8416	BaYVCuO5	3.021	0	1.571	0	8.277
JVASP-44720	P2WO7	2.354	0	4	0.008388	8.277
JVASP-37040	TiAu	1.722	0	1.708	0.04604	8.277
JVASP-18366	K2RuCl6	1.011	0	2	0	8.277
JVASP-42952	Li4Co3TeO8	0.945	0	9.012	0	8.277
JVASP-19792	Fe3Pt	1.068	0	8.229	0.057277	8.277
JVASP-46260	Li2Ni3BiO8	2.085	0	2.988	0	8.277
JVASP-37424	Ta2Be2O5	1.309	0	0.702	0	8.277
JVASP-10656	ZnMo2O4	0.664	0	3.853	0.156794	8.277
JVASP-36884	TiFeF3	0.305	0	4	0	8.277
JVASP-16803	MnAu	0.38	0	4.067	0.121371	8.277
JVASP-44512	Li4Mn5NbO2	0.993	0	2.81	0	8.277
JVASP-44654	LiZnFeO6	8.443	0	15.74	0	8.277
JVASP-16853	Ni3Pt	1.307	0	2.199	0	8.277
JVASP-16804	MnAu	1.04	0	4.069	0.121112	8.277
JVASP-36885	TiCoF3	0.297	0	3	0	8.277
JVASP-17300	BaMn2As2	0.35	0	3.707	0	8.277
JVASP-17454	Sr2CoO4	0.271	0	1.953	0	8.277
JVASP-18213	MnCu2SnSe4	0.296	0	4.636	0	8.277
JVASP-16854	CoCu2Sn	0.4	0	0.955	0.222465	8.277
JVASP-17624	PuFe2Si2	2.996	0	4.569	0	8.277
JVASP-18302	VGaCo2	0.415	0	1.943	0.55E-05	8.277
JVASP-16806	NaMnTe2	1.044	0	4.052	0.093483	8.277
JVASP-18368	K2OsCl6	1.079	0.02	1.999	0	8.277
JVASP-11590	Sr4CaFe2S2O6	0.482	0	8.477	0	8.277
JVASP-37044	TiFe2As	0.274	0	1.008	0	8.277
JVASP-45852	Li2Nb2Fe3O0	1.282	0.08	8.067	0	8.277
JVASP-17625	Mn3GeC	0.333	0	2.997	0	8.277
JVASP-44318	Li5Nb2Fe5O2	5.969	0	15	0.043384	8.277
JVASP-18303	MnTePd	0.49	0	4.838	0	8.277
JVASP-20640	FePt	0.413	0	3.243	0	8.277
JVASP-17790	Mn2Sb	1.03	0	2.746	0.124949	8.277
JVASP-17237	FeNiPt2	0.661	0	4.629	0	8.277
JVASP-18214	BaMn2Ge2	1.008	0	4.419	0	8.277
JVASP-34926	Sr5Bi3	1.492	0	1.639	0	8.277
JVASP-17471	Sr2Mn3Sb2O2	3.303	0	8.403	0	8.277
JVASP-36950	CaTcO3	0.45	0	1.819	0	
JVASP-9317	YFeW2O8	4.021	0	3.593	0	
JVASP-18255	InFe2CuSe4	1.021	0	7.611	0	
JVASP-46173	HfFeO3	1.518	0	16	0	
JVASP-18349	TiI3	0.969	0	0.704	0.003149	
JVASP-45854	Li3Nb2Fe3O0	2.947	0	5.002	0.026501	
JVASP-17457	Ba2Mn3Sb2O2	1.028	0	9.098	0	
JVASP-11697	LiFeAs2O7	0.353	0	4.997	0	
JVASP-17394	MnCu2Sb	0.752	0	3.86	0.300664	
JVASP-18174	Co2As	1.064	0	4.734	0.27925	
JVASP-44438	Li2Co3SnO8	2.947	0	5.002	0.026501	
JVASP-19978	NbF3	0.308	0	2	0.08838	
JVASP-37051	Ti2GaFe	0.856	0	0.982	0	
JVASP-44593	Li4Mn3Sn5O6	3.986	0	12.94	0	
JVASP-19388	Ca2FeSbO6	0.337	0	8.905	0	
JVASP-44528	Li2Co3TeO8	1.45	0	0.962	0	
JVASP-17637	MnGaNi2	0.298	0	4.013	0.00848	
JVASP-45210	NbV3O8	4.062	0	7.962	0	
JVASP-18176	Rb2RhF6	1.013	0.19	0.996	0	
JVASP-46361	TaFeO4	2.096	0	4.012	0	
JVASP-34315	CuSeO4	0.457	0	1.95	0	
JVASP-20585	ZrMn2	0.264	0	2.878	0.000832	
JVASP-17721	MnSnPd2	0.25	0	4.136	0	
JVASP-9209	Ba2YCo3O7	1.016	0	6.49	0	
JVASP-18028	FeTe	0.283	0	4.155	0.104371	
JVASP-36838	NiAuO2	0.432	0	1.669	0	
JVASP-18220	Mn2CoSn	0.357	0	1.885	0.150639	
JVASP-8486	PuNi5	3.485	0	3.303	0	
JVASP-12626	InFeO3	0.624	0	5.654	0	
JVASP-20602	Co3W	0.255	0	0.833	0.096613	
JVASP-17304	HgRhF6	0.701	0	0.981	0	
JVASP-44617	Li2Fe3SbO8	0.503	0	4.156	0.085692	
JVASP-44472	Li5NiS5Sn2O2	5.359	0.02	8.956	0	
JVASP-46857	Li2Co3SbO8	0.27	0	0.859	0.020608	
JVASP-44461	VBi3	0.756	0	8	0.014917	
JVASP-19396	Ca2SbMoO6	0.43	0	2.121	0	
JVASP-12627	Sr3Fe2Cl2O5	0.288	0	7.522	0	
JVASP-18082	MnSnPt	0.399	0	3.63	0	
JVASP-17803	FeSb2	0.727	0	1.72	0	
JVASP-46861	FeSbO4	0.268	0	5.77	0	
JVASP-42911	LiMnSbO4	4.231	0	9.477	0	
JVASP-10907	AlBi3O9	0.588	0	5.951	0.027749	
JVASP-18193	FeCo2Ge	0.291	0	5.279	0	
JVASP-43066	CoSbO4	0.357	0	0.776	0	
JVASP-44991	FeSb4O2	2.071	0.04	2	0	
JVASP-44750	Li2Ni3WO8	0.456	0	2	0	
JVASP-12631	CdFe2O4	1.621	0	4.006	0	
JVASP-10484	Ba2SrIrO6	0.824	0.13	2.617	0	
JVASP-9343	VW2O8	0.773	0	0.894	0	
JVASP-9897	Mg2CrWO6	1.216	0	3.683	0	
JVASP-12217	ZnFe2O4	6.588	0	4.93E-06	0	
JVASP-9466	Ba2TiNi2O7	0.465	0	3.151	0	
JVASP-34389	FeSnF6	0.503	0	4.039	0	
JVASP-9216	Ba2YNi3O7	0.288	0	6.03	0	
JVASP-12231	KFeMo2O8	0.529	0	1	0	
JVASP-12637	FeMoClO4	2.006	0	4.497	0	
JVASP-11536	YV2O4	0.506	0	9.995	0.094075	
JVASP-10731	ZnCo4O8	0.253	0	1.777	0.01025	
JVASP-9469	Ba2YTi2O7	2.984	0	3.127	0	
JVASP-9640	YCu2O4	1.012	0	5.939	0.335261	
JVASP-9527	VZnSF5	1.25	0	3.998	0	
JVASP-9203	Ba2AlNi3O8	1.083	0	1.341	0	
JVASP-9676	ZnCr2Se4	1.012	0	11.98	1.06E-05	
JVASP-9196	Ba2AlCr3O8	3.056	0	9	0	
JVASP-34404	NbCrF6	3.008	0	2.115	0	
JVASP-52140	Ba3Ti3O8	0.38	0	1.571	0.016329	
JVASP-34347	BaFeF4	0.924	0	8	0	
JVASP-9363	BaZnFe4O8	1.021	0	18.898	0	
JVASP-11670	Sr2CoMoO6	0.312	0	2.993	0	
JVASP-9258	Sr2AlTi2O7	3.397	0	4	0	
JVASP-11731	MnPt3O6	0.276	0	4.87	0	
JVASP-9962	V2ZnO4	0.342	0	6.627	0.117976	
JVASP-9185	Ba2YV3O8	1.012	0	2.24	0	
JVASP-12643	Ba2UMnO6	1.931	0	5	0	
JVASP-34878	KZr7Cl8	0.894	0	1.885	0	
JVASP-34479	Ba4Fe2S4I5	0.512	0	0.957	0	
JVASP-10839	YMnO3	1.006	0	7.998	1.11E-05	
JVASP-9366	BaCaCo4O8	0.802	0	7.42	0	
JVASP-9966	ZnFe2O4	0.529	0	12.329	0.144093	
Code	Compound	X	Y	Z	DA	DZ
------------	-----------------------	---	---	---	----	----
JVASP-34752	KCdN3O6	0.544	0	4.001	0.377445	
JVASP-12648	MnSnB2O6	0.926	0.27	5	0	
JVASP-34485	ZrCoF6	0.875	0.18	3	0	
JVASP-9267	Sr2YTl2O7	1.041	0	2.878	0	
JVASP-24743	Fe3W3N	1.934	0	4.38	0	
JVASP-34425	Ba6Ru2PtCl2O2	4.102	0	5.99	0	
JVASP-9187	Ba2YCo3O8	1.025	0	2.726	0	
JVASP-9269	Ba2TlBi2O7	1.109	0	0.555	0	
JVASP-78840	Mn3Ge	3.009	0	1.039	0.000129	
JVASP-9491	Sr2FeCuSO3	0.348	0	8.072	0.059007	
JVASP-9541	YFeO3	1.004	0	4	0.013753	
JVASP-10342	Ge2MoO6	0.277	0	3.999	0	
JVASP-52113	Sr2CoReO6	0.407	0	2.047	0	
JVASP-24596	RbCoCl3	0.390	0	5.992	0	
JVASP-79568	Mn2GeF2	1.942	0	2.075	0	
JVASP-78684	MnSnPt	0.274	0	3.406	0.210315	
JVASP-79239	Mn3Pt	0.791	0	1.908	0.093006	
JVASP-9495	Sr2CoSO3	1.033	0	4.155	0	
JVASP-79241	MnGePd2	0.428	0	4.112	0	
JVASP-79574	NbFe3	0.886	0	3.23	0.06218	
JVASP-9931	ZnFe2O4	5.142	0	4.001	0	
JVASP-9496	Sr2MnSO3	0.286	0	6.149	0	
JVASP-79576	MnGaFe2	0.319	0	6.399	0.037086	
JVASP-78859	NiBrO	1.006	0	1.299	0	
JVASP-79583	Mn2CuGe	0.438	0	0.669	0.107469	
JVASP-79200	VGaCo2	0.4	0	1.943	0	
JVASP-24841	Y6OsI0	1.144	0.04	1.177	0	
JVASP-80740	Ti2GaFe	0.849	0	0.982	8.37E-05	
JVASP-79431	MgMnPt2	1.202	0	4.386	0	
JVASP-79586	VFeCoAs	1.004	0	2.944	0	
JVASP-16934	YCoO3	1.005	0	1.171	0.25161	
JVASP-78508	CoSl	0.685	0	1.969	0.44561	
JVASP-78280	Mn2Sb	1.068	0	1	0.143192	
JVASP-79206	FeSe	0.421	0	4.509	0.198133	
JVASP-79916	NbZnCo2	0.537	0	0.74	0	
JVASP-78380	BaN	0.442	0	1	0.268514	
JVASP-78429	NaSe	0.252	0	0.915	0.374696	
JVASP-79435	Mn2CoSn	0.729	0	1.883	0.150843	
JVASP-78470	RbSe	0.288	0	0.998	0.455465	
JVASP-78658	NiPt	2.665	0	1.828	0	
JVASP-79097	Mg3Re	1.082	0	0.51	0.361552	
JVASP	Compound	1st Coord	2nd Coord	3rd Coord	4th Coord	
------------	--------------	------------	-----------	-----------	------------	
79593	Fe3Pt	1.068	0	8.23	0.057144	
80098	MnTe	1.038	0	8.073	0.012304	
78434	KSe	0.252	0	0.996	0.421998	
79500	VFeCoGe	0.629	0	1.954	0	
82132	MnBi2Te4	1.368	0.03	4.998	0	
80251	CrSnRh2	0.297	0	2.89	0.238679	
78832	MnBi	2.039	0	6.925	0.277638	
79457	CrInNi2	0.459	0	3.557	0.082176	
79604	VGaFeCo	0.413	0	0.952	0	
79562	GaFeNi2	0.339	0	3.035	0.004254	