On the $SU(3)$ Parametrization of Qutrits

A. T. Bölükbaşı, T. Dereli
Department of Physics, Koç University
34450 Sarıyer, İstanbul, Turkey

Abstract

Parametrization of qutrits on the complex projective plane $\mathbb{C}P^2 = SU(3)/U(2)$ is given explicitly. A set of constraints that characterize mixed state density matrices is found.

Many recent ideas of quantum information theory are based on the notion of qubits. A qubit may be represented by a point on the Poincaré sphere $S^2$ that is homeomorphic to the complex projective line $\mathcal{H}^{(2)} = \mathbb{C}P^1 = SU(2)/U(1)$. A similar parametrization in the case of higher dimensional quantum systems is desirable both from theoretical [1] and technical points of view [2], [3]. A qutrit may be represented by a point on the complex projective plane $\mathcal{H}^{(3)} = \mathbb{C}P^2 = SU(3)/U(2)$. Such a representation is given explicitly in terms of Gell-Mann matrices [4]. We determine a set of constraints that characterize mixed states of qutrits below.

A qutrit $|\psi\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle + \alpha_2 |2\rangle$ with $\alpha_0, \alpha_1, \alpha_2 \in \mathbb{C}$, $|\alpha_0|^2 + |\alpha_1|^2 + |\alpha_2|^2 = 1$, is a state vector in the Hilbert space of states $\mathcal{H}^{(3)}$ of a 3-level system. It is spanned by an orthonormal basis $\{|0\rangle, |1\rangle, |2\rangle\}$ which in matrix notation reads

$$
|0\rangle \rightarrow \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix},
|1\rangle \rightarrow \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix},
|2\rangle \rightarrow \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.
$$

Therefore

$$
|\psi\rangle \rightarrow \begin{pmatrix} \alpha_0 \\ \alpha_1 \\ \alpha_2 \end{pmatrix} \in \mathbb{C}^3 \simeq \mathbb{R}^6.
$$

Since $|\alpha_0|^2 + |\alpha_1|^2 + |\alpha_2|^2 = 1$ and since $|\psi\rangle$ is determined up to a multiplicative phase factor, $\dim\mathcal{H}^{(3)} = 4$.

---

1Paper presented at The 12th Central European Workshop on Quantum Optics, 6-9 June 2005, Ankara, Turkey.
2E.mail: abolukbasi@ku.edu.tr
3E.mail: tdereli@ku.edu.tr
Any $3 \times 3$ density matrix can be written as

$$\rho = \frac{1}{3}(I + \sqrt{3}\vec{n} \cdot \vec{\lambda})$$

where $\vec{n}$ is a real 8-vector, and components of $\vec{\lambda}$ are the (Hermitian, traceless) Gell-Mann matrices

$$\lambda_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \lambda_2 = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \lambda_4 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix},$$

$$\lambda_5 = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}, \quad \lambda_6 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad \lambda_7 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix},$$

$$\lambda_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \lambda_8 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}.$$  

The product of two Gell-Mann matrices is given by

$$\lambda_j \lambda_k = \frac{2}{3}\delta_{jk} + \sum_l d_{jkl}\lambda_l + i \sum_l f_{jkl}\lambda_l$$

where $j, k = 1, 2, \ldots, 8$. The $f$-symbols (structure constants of the Lie algebra $su(3)$) are totally anti-symmetric:

$$f_{123} = 1, f_{458} = f_{678} = \frac{\sqrt{3}}{2},$$

$$f_{147} = f_{246} = f_{257} = f_{345} = f_{516} = f_{637} = \frac{1}{2},$$

and the $d$-symbols are totally symmetric:

$$d_{118} = d_{228} = d_{338} = -d_{888} = \frac{1}{\sqrt{3}}, \quad d_{448} = d_{558} = d_{668} = d_{778} = -\frac{1}{2\sqrt{3}},$$

$$d_{146} = d_{157} = -d_{247} = d_{256} = d_{344} = d_{355} = -d_{366} = -d_{377} = \frac{1}{2}.$$ 

Given two real 8-vectors $\vec{a}$ and $\vec{b}$, we define their Euclidean inner product

$$\vec{a} \cdot \vec{b} = \sum_k a_k b_k.$$
skew-symmetric vector $\wedge$-product
\[
(a \wedge b)_j = \sqrt{3} \sum_{k,l} f_{jkl} a_k b_l,
\]
and symmetric vector $\star$-product
\[
(a \star b)_j = \sqrt{3} \sum_{k,l} d_{jkl} a_k b_l.
\]
The pure states that satisfy $\rho^2 = \rho$ are therefore characterized by
\[
|\vec{n}|^2 = 1 \quad \text{and} \quad \vec{n} \star \vec{n} = \vec{n}.
\]
Suppose that $\rho = \frac{1}{3}(I + \sqrt{3} \vec{n} \cdot \vec{\lambda})$ is the density matrix of a mixed state. It is Hermitian, positive with trace equal to 1. Therefore all the eigenvalues $x_1, x_2, x_3$ are positive and add to one: $x_1 + x_2 + x_3 = 1$. The Cayley-Hamilton equation satisfied by $\rho$ reads
\[
\rho^3 - \rho^2 + (x_1 x_2 + x_2 x_3 + x_1 x_3)\rho - x_1 x_2 x_3 I = 0.
\]
The following inequalities hold:
\[
\frac{1}{3} \geq x_1 x_2 + x_2 x_3 + x_1 x_3 \geq 0, \quad \frac{1}{27} \geq x_1 x_2 x_3 \geq 0.
\]
Starting from these, a straightforward computation shows that the necessary and sufficient conditions for $\rho = \frac{1}{3}(I + \sqrt{3} \vec{n} \cdot \vec{\lambda})$ to be a density matrix of a mixed state are given by
\[
1 \geq |\vec{n}|^2 \geq 0 \quad \text{and} \quad 1 \geq 3|\vec{n}|^2 - 2\vec{n} \cdot (\vec{n} \star \vec{n}) \geq 0.
\]
An arbitrary diagonal density matrix of a 3-level system will be
\[
\rho = \frac{1}{3}(I + \sqrt{3}(n_3 \lambda_3 + n_8 \lambda_8)).
\]
In this case, the mixed-state density matrix constraints reduce to
\[
0 \leq n_3^2 + n_8^2 \leq 1 \quad \text{and} \quad 0 \leq 2n_3^2 - 6n_3^2 n_8 + 3n_3^2 + 3n_8^2 \leq 1.
\]
The region in the $n_3 n_8$-plane where both the constraints are satisfied is bound by an equilateral triangle with vertices at the points
\[
(n_3, n_8)_R = \left( \frac{\sqrt{3}}{2}, \frac{1}{2} \right) \leftrightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad (n_3, n_8)_B = \left( -\frac{\sqrt{3}}{2}, \frac{1}{2} \right) \leftrightarrow \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix},
\]
Vertices of the above triangle correspond to three mutually orthogonal pure-states. We labeled them Red, Blue, Green in analogy with colored quarks [2]. In fact two pure-state vectors $|\psi\rangle$ and $|\psi'\rangle$ are orthogonal if and only if $<\psi|\psi'\rangle = 0$, so that $Tr(\rho\rho') = 0$. This implies $\vec{n} \cdot \vec{n}' = -\frac{1}{2}$. Then $\arccos(\vec{n} \cdot \vec{n}') = \pm \frac{2\pi}{3}$. This is equal to the geodesic distance between two orthogonal pure-states as measured by the standard Fubini-Study metric on $CP^2$.

Points on the edges of the triangle correspond to mixing of two orthogonal pure-states of qutrits. In particular, at mid-points where bi-sectors intersect with the edges we have

$$(n_3, n_8)_C = (0, \frac{1}{2}) \leftrightarrow \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad (n_3, n_8)_B = (\frac{\sqrt{3}}{4}, -\frac{1}{4}) \leftrightarrow \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

$$(n_3, n_8)_A = (-\frac{\sqrt{3}}{2}, -\frac{1}{4}) \leftrightarrow \frac{1}{2} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$
Triply mixed-states correspond to points inside the triangle. In particular the origin

\[(n_3, n_8)_O = (0, 0) \leftrightarrow \frac{1}{3} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}\]

corresponds to the maximally mixed state.

For 2-level systems, the orbit of any diagonal $2 \times 2$ density matrix of qubits

\[
\rho = \frac{1}{2} \begin{pmatrix} 1 + n_3 & 0 \\ 0 & 1 - n_3 \end{pmatrix} \leftrightarrow (0, 0, n_3)
\]

under the action of the unitary group $SU(2)$,

\[\rho \rightarrow U \rho U^\dagger\]

where $U \in SU(2)$ (i.e. adjoint representation of $SU(2)$, which is $SO(3)$ applied on $n_3$) sweeps the whole Poincaré sphere $S^2$. Adjoint representation $\text{Ad}$ of a given $U \in SU(2)$ is explicitly

\[\text{Ad}(U)_{ij} = \frac{1}{2} \text{Tr}(\sigma_i U \sigma_j U^\dagger) \in SO(3),\]

so that $n_j \rightarrow \text{Ad}(U)_{jk} n_k$.

In a similar way, for 3-level systems the orbit of each point $(n_3, n_8)$ of the above triangle under the unitary action of $SU(3)$ (i.e. adjoint representation of $SU(3)$) will provide a generalization of the Poincaré sphere to 3-level systems. Adjoint representation $\text{Ad}$ of a given $U \in SU(3)$ is found as follows:

\[\text{Ad}(U)_{ij} = \frac{1}{2} \text{Tr}(\lambda_i U \lambda_j U^\dagger) \in SO(8)\]

so that $n_j \rightarrow \text{Ad}(U)_{jk} n_k$.

In fact $\text{Ad}(SU(3))$ is an 8-parameter subgroup of the 28-parameter rotation group $SO(8)$.

We also consider the entropy of mixing of $\rho$ defined as

\[E(\rho) = -x_1 \log_3(x_1) - x_2 \log_3(x_2) - x_3 \log_3(x_3)\]

Since in diagonal form

\[
\rho = \frac{1}{3} \begin{pmatrix} 1 + \sqrt{3}n_3 + n_8 \\ 1 - \sqrt{3}n_3 + n_8 \\ 1 - 2n_8 \end{pmatrix},
\]
the entropy of mixing of $\rho$ becomes

$$E(\rho) = -\left(\frac{1 + \sqrt{3}n_3 + n_8}{3}\right) \log_3\left(\frac{1 + \sqrt{3}n_3 + n_8}{3}\right) - \left(\frac{1 - \sqrt{3}n_3 + n_8}{3}\right) \log_3\left(\frac{1 - \sqrt{3}n_3 + n_8}{3}\right)$$

$$- \left(\frac{1 - 2n_8}{3}\right) \log_3\left(\frac{1 - 2n_8}{3}\right).$$

The equi-mixing curves in the $n_3n_8$-plane are shown on the following diagram:

Acknowledgement
We thank Professor A. Shumovsky for bringing Ref.[2] to our attention and Professor V. Manko for comments.

References
[1] C. M. Caves, G. J. Milburn, Opt. Commun. 179, 439 (2000)
[2] A. V. Burlankov, D. N.Klyshko, JETP Letters 69, 839 (1999)
[3] M. V. Chekova, L. A. Krivitsky, S. P. Kulik, G. A. Maslennikov, Phys. Rev. A70, 053801 (2004)
[4] G. Khanna, S. Mukhopadhyay, R. Simon, N. Mukunda, Ann. Phys. 253,55 (1997)