Design and Analysis of Grass Cutting Machine By Using DFMA Method

Nur Syaiyidah Mohamad Salikan¹, M F Rosli ¹,², Nor Nasyitah Mohammad¹, Irfan Abd Rahim¹,² and M K Fadzly²,³

¹School of Manufacturing Engineering, Universiti Malaysia Perlis (UniMAP), Kampus Tetap Ulu Pauh, Jalan Arau-Changlun, 02600 Arau, Perlis, Malaysia.
²Green Design and Manufacture Research Group, Center of Excellence Geopolymer and Green Technology (CEGeoGTech), Universiti Malaysia Perlis, 01000 Kangar, Perlis, Malaysia.
³Centre of Diploma Studies (CDS), Universiti Malaysia Perlis (UniMAP), S2-L1-26, Kampus UniCITI Alam Sg. Chuchuh, 02100 Padang Besar (U), Perlis, Malaysia

Email: farizuan@unimap.edu.my

Abstract. This paper describes about the implementation of redesign the component of grass cutting machine by using the application of Design for Manufacturing and Assembly (DFMA) methodology. The scope based on the existing grass cutting machine and the appropriate of DFMA methodology. The data was analysed by using Boothroyd-Dewhurst Design for Manufacture and Assembly method to verify the design efficiency, handling ratio and fitting ratio to achieve. The new proposed design of grass cutting machine drawn using CATIA V5 software based. As a result, the assembly time for redesign showed an improvement of 18.68% where the assembly time was reduced from 568.84 s to 462.59 s and design efficiency was increased 8.33% from 24.40% to 34.70%. The total part, handling ratio fitting ratio and cost of existing design is reduced. Eventually, the improvement of redesign grass cutting machine the best design with optimal value is accomplished.

1. Introduction

Design for manufacture and assembly (DFMA) is a combination of design for assembly (DFA) and design for manufacture (DFM). The term DFMA is defined as a set of guidelines developed to ensure that a product is designed so that it can be easily and efficiently manufactured and assembled with a minimum laborious effort, assemble time, and cost to manufacture the product [1-4]. DFA is considering and resolving the possible problems in the assembly process at the early stage of the design which can make sure the part will be assembled with high speed, low cost and productivity [5]. DFM is that by considering the limitations related to the manufacturing at the early stage of the design which is the design engineer can make selection among the different materials, different technologies and estimate the manufacturing time [6,19]. The quality of new product was increased with the good development period including design, technology, manufacturing, service and so on [7-9]. Simultaneously, the cost also decrease, including the cost of design, technology, manufacturing, delivery and technical support. The short developing cycle time, including the time of design, manufacturing preparing, and repeatedly calculation [10-11].
2. Research Objective

The main objective of this research is to analyse design efficiency on current design and redesign of grass cutting machine by using DFMA method. By using the DFMA as the benchmark tool was used to increase the design efficiency and minimize the quantity of part in manufacturing and assembly costing [2-4,20,21].

3. Design For Manufacture and Assembly (DFMA) of Grass Cutting Machine

3.1. CAD Drawing

CAD design is capable of producing the designer with extremely precise designs and prospects. CAD drawing also helps the designer in evaluating the design and redesigning the drawing. Figure 1 shows the first process in Boothroyd-Dewhurst DFMA method is to design the concept [12]. Figure 2 shows the features of current grass cutting machine by using CAD drawing.

![Figure 2. CAD Modelling of Grass Cutting Machine.](image)

3.2. Design For Assembly (DFA)

Design for Assembly (DFA) is an approach to reduce the cost of the product and time of assembly by simplifying the product and process. There are two uses of DFA. It may use to redesign a product already in manufacture or product being remarked or reversed engineering. Beside that DFA may also use for analysis of a product while it is in design [13,14, 18, 22]. The DFA method should be considered at all stages of the design process especially in the early stages [15, 23-25]. In this paper, type of assembly that must be considered is manual assembly by. The manual assembly can be measured by using DFA tool, which is the handling and insertion time table.

Table 1 shows the current quantity parts used, handling time, insertion time, theoretical part count and assembly time for each part for current grass cutting machine. The parts should be consider the orientation of the part rotating (Alpha – α and Beta - β) from X and Y-axis. While handling time and insertion time are selected based on the table estimate time For Manual Handling Time and Manual Insertion Time. The theoretical part count states the important of the part for grass cutting machine. If the part is important to the main function of the grass cutting machine, the value of theoretical part count is 1 and the less important part to the function of the grass cutting machine which is that parts can be eliminated or redesign is 0 [15].
Table 1. Existing Part Assembly Time.

No	Part Name	Quantity	Theoretical Part Count	α (°)	β (°)	Handling Time (s)	Insertion Time (s)	Total Assembly Time (s)
1	Bolt M10 X 25	1	0	360	0	1.5	3.5	5
2	Washer	1	0	180	0	1.88	2.5	4.38
3	Bolt Protection Cover	1	1	360	0	1.5	1.5	3
4	Cutter Holder Cap	1	1	360	0	1.5	1.5	3
5	Cutter Holder	1	1	360	0	1.5	1.5	3
6	Gear Case	1	1	360	360	3	6	9
7	Bolt M6 X 12	2	0	360	0	3	7	10
8	Screw M5 X 20	3	0	360	0	4.5	10.5	15
9	Aluminium Pipe	1	1	180	0	1.5	5.5	7
10	Shaft Drive	1	1	180	90	1.13	5.5	6.63
11	Bushing	1	1	360	0	1.5	2.5	4
12	Flexible Inner	1	1	180	0	2	5.5	7.5
13	Flexible Shaft	1	1	180	0	1.13	5.5	6.63
14	Bolt M6 X 25	2	0	360	0	3	7	10
15	Safety Guard Bracket	1	1	360	360	1.95	6	7.95
16	Safety Guard	1	1	360	360	1.95	5	6.95
17	Handle	1	1	360	360	1.95	4	5.95
18	Handle Bracket	1	0	360	360	1.95	6	7.95
19	Bolt M6 X 45	2	0	360	0	3	7	10
20	Grip	1	1	360	360	3	5	8
21	Joint Pipe	1	1	360	360	2.73	5	7.73
22	Screw M5 X 10	1	0	360	0	1.5	3.5	5
23	Screw M5 X 25	1	0	360	0	1.5	3.5	5
24	Stop Button	1	1	360	0	1.5	2.5	4
25	Stop Button Bracket	1	1	360	0	1.5	1.5	3
26	Throttle Lever	1	1	360	360	1.95	6	7.95
27	Bolt M5 X 25	1	0	360	0	1.5	3.5	5
28	Blade	1	1	360	180	1.8	6	7.8
29	Shoulder Frame	1	1	360	360	1.95	0	1.95
30	Lifting Metal	1	1	360	360	1.95	4.5	6.45
31	Shoulder Plate Holder A	1	1	360	360	1.95	6	7.95
32	Shoulder Plate Holder B	1	1	360	360	1.95	6	7.95
33	Screw M5 X 12	8	0	360	0	12	28	40
34	Shoulder Plate	1	1	360	360	3	6	9
35	Bolt M6 X 16	3	0	360	0	4.5	10.5	15
36	Shoulder Belt	1	1	360	360	1.95	2.5	4.45
Table 1. Existing Part Assembly Time (Continued…).

No.	Part Name	Quantity	Theoretical Part Count	α (°)	β (°)	Handling Time (s)	Insertion Time (s)	Total Assembly Time (s)
37	Engine Base A	1	360	360	1.95	6	7.95	
38	Engine Base B	1	360	360	1.95	6	7.95	
39	Cushion Rubber	4	180	0	6	10	16	
40	Rotating Shaft	1	180	0	1.5	2.5	4	
41	Bearing	1	180	0	1.5	5	6.5	
42	Nut M10	2	360	0	3	7	10	
43	Screw M6 X 12	3	360	0	4.5	10.5	15	
44	Fuel Tank	1	360	360	3.9	13.5	6.45	
45	Lid Tank	1	360	0	1.5	1.5	3	
46	Fuel Tank Band	2	360	360	3.9	12	15.9	
47	Screw M5 X 20	2	360	0	3	7	10	
48	Fuel Pipe Protection Coil	1	180	0	1.5	2.5	4	
49	Fuel Pipe	1	180	0	1.5	2.5	4	
50	Fuel Pipe Clip	2	180	0	3	5	8	
51	Tank Holder Metal	1	360	360	1.95	6	7.95	
52	Engine Cover	1	360	360	1.95	5	6.95	
53	Screw M4 X 12	1	360	0	1.5	3.5	5	
54	Screw M4 X 10	2	360	0	3	7	10	
55	Rope	1	180	0	1.88	2.5	4.38	
56	Recoil Starter Body	1	360	360	1.95	6	7.95	
57	Starter Handle	1	360	0	1.5	1.5	3	
58	Starter Rope Reel	1	180	0	1.88	5	6.88	
59	Screw M5 X 12	1	360	0	1.5	3.5	5	
60	Cleaner Body	1	360	360	1.95	6	7.95	
61	Cleaner Fixing Base	1	360	180	1.5	2.5	4	
62	Cleaner Element	1	360	180	1.5	2.5	4	
63	Screw M4 X 25	2	360	0	3	7	10	
64	Clutch Case	1	360	360	1.95	2.5	4.45	
65	Locking Pin	1	360	0	1.5	1.5	3	
66	Fan Case	1	360	360	2.73	6	8.73	
67	Screw M5 X 20	6	360	0	9	21	30	
68	Muffler	1	360	360	1.95	6	7.95	
69	Screw M6 X 65	2	360	0	3	7	10	
70	Plug Cap	1	360	360	2.73	4	6.73	
71	Stop Wire	1	180	0	1.5	2.5	4	
72	Engine	1	360	360	5	8	13	
	Total parts	72	**50**				**568.84**	
3.3. Design Efficiency

The important data in the DFA method is the used the "Efficiency of assembly" of the proposed design. Basically, there have two major factors affecting cost of product assemblies or subassembly are:

i) Parts number.

ii) The easy of manual insertion, handling and fastening.

\[DE = \frac{\text{Theoretical Part Count} \times 3s}{\text{Total Assembly Time} (s)} \]

\[DE = \frac{NM}{TM} \times T_a \]

\[DE = \frac{50}{56.84} \times 3s \]

\[DE = 0.264 \times 26.4\% \]

Based on the calculation above, the current design efficiency of grass cutting machine is 26.4%. Therefore, the redesign efficiency of grass cutting machine must be higher than the current design efficiency.

3.4. Design for Manufacturing (DFM)

Design for Manufacturing (DFM) is to make easier for manufacturing and concerned with reducing overall part production cost by minimizes complexity of manufacturing operations [16-18]. The DFM will be analysing the material and process used to ease the design for grass cutting machine. Table 2 shows the Manufacturing Process and Material used for Each Part of grass cutting machine.

No.	Part Name	Material	Process
1	Bolt M10 X 25	Carbon Steel	Machining
2	Washer	Carbon Steel	Sheet Metal Stamping
3	Bolt Protection Cover	Carbon Steel	Sheet Metal Stamping
4	Cutter Holder Cap	Carbon Steel	Die Casting
5	Cutter Holder	Carbon Steel	Die Casting
6	Gear Case	Carbon Steel	Die Casting
7	Bolt M6 X 12	Carbon Steel	Machining
8	Screw M5 X 20	Carbon Steel	Machining
9	Aluminium Pipe	Aluminium	Hot Extrusion
10	Shaft Drive	Carbon Steel	Hot Extrusion
11	Bushing	Carbon Steel	Die Casting
12	Flexible Liner	Rubber	Injection Molding
13	Flexible Shaft	Carbon Steel	Die Casting
14	Bolt M6 X 25	Carbon Steel	Machining
15	Safety Guard Bracket	Abs	Injection Molding
No.	Part Name	Material	Process
-----	----------------------------	----------------	------------------
16.	Safety Guard	Abs	Injection Molding
17.	Handle	Abs	Injection Molding
18.	Handle Bracket	Abs	Injection Molding
19.	Bolt M6 X 45	Carbon Steel	Machining
20.	Grip	Rubber	Injection Molding
21.	Joint Pipe	Aluminium	Hot Extrusion
22.	Screw M5 X 10	Carbon Steel	Machining
23.	Screw M5 X 25	Carbon Steel	Machining
24.	Stop Button	Abs	Injection Molding
25.	Stop Button Bracket	Abs	Injection Molding
26.	Throttle Lever	Abs	Injection Molding
27.	Bolt M5 X 25	Carbon Steel	Machining
28.	Blade	Carbon Steel	Powder Metal
29.	Shoulder Frame	Carbon Steel	Hot Extrusion
30.	Lifting Metal	Carbon Steel	Die Casting
31.	Shoulder Plate Holder A	Carbon Steel	Die Casting
32.	Shoulder Plate Holder B	Carbon Steel	Die Casting
33.	Screw M5 X 12	Carbon Steel	Machining
34.	Shoulder Plate	Carbon Steel	Die Casting
35.	Bolt M6 X 16	Carbon Steel	Machining
36.	Engine Base A	Carbon Steel	Die Casting
37.	Engine Base B	Carbon Steel	Die Casting
38.	Cushion Rubber	Rubber	Extrusion
39.	Rotating Shaft	Carbon Steel	Die Casting
40.	Bearing	Carbon Steel	Die Casting
41.	Nut M10	Carbon Steel	Machining
42.	Screw M6 X 12	Carbon Steel	Machining
43.	Fuel Tank	Abs	Injection Molding
44.	Lid Tank	Abs	Injection Molding
45.	Fuel Tank Band	Carbon Steel	Die Casting
46.	Screw M5 X 20	Carbon Steel	Machining
47.	Fuel Pipe Protection Coil	Carbon Steel	Machining
48.	Fuel Pipe	Rubber	Injection Molding
49.	Bolt M6 X 16	Carbon Steel	Machining
50.	Fuel Pipe Clip	Carbon Steel	Die Casting
51.	Tank Holder Metal	Carbon Steel	Die Casting
52.	Engine Cover	Abs	Injection Molding
53.	Screw M4 X 12	Carbon Steel	Machining
54.	Screw M4 X 10	Carbon Steel	Machining
Table 2. Manufacturing process and material used of grass cutting machine (Continued…).

No.	Part Name	Material	Process
55.	Rope	Nylon	Machining
56.	Recoil Starter Body	Abs	Injection Molding
57.	Starter Handle	Abs	Injection Molding
58.	Starter Rope Reel	Abs	Injection Molding
59.	Screw M5 X 12	Carbon Steel	Machining
60.	Cleaner Body	Abs	Injection Molding
61.	Cleaner Fixing Base	Abs	Injection Molding
62.	Cleaner Element	Abs	Injection Molding
63.	Screw M4 X 25	Carbon Steel	Machining
64.	Clutch Case	Carbon Steel	Die Casting
65.	Locking Pin	Carbon Steel	Die Casting
66.	Fan Case	Carbon Steel	Die Casting
67.	Screw M5 X 20	Carbon Steel	Machining
68.	Muffler	Abs	Injection Molding
69.	Screw M6 X 65	Carbon Steel	Machining
70.	Plug Cap	Rubber	Injection Molding
71.	Stop Wire	Rubber	Injection Molding
72.	Engine	Carbon Steel	Die Casting

4. Result and Discussion
The assemble and dissemble process of existing design of the grass cutting machine will be identified which parts to undergo redesign process and some part can be eliminated, minimizing, or combined together for achieving higher design efficiency. The parts of the grass cutting machine are evaluated to identify which part has a higher potential to be eliminate or combined. The parts are that not necessary for the existing product of grass cutting machine can also be reduced. Table 3 has shown the assemble of tank and assemble of exhaust before and after redesign.

The shoulder frame was improving the design of addition support to hold the tank for purpose of minimizing the assembly time by eliminates 6 parts from current tank assembly. The tank holder was design for extra support to hold the tank. By doing so, the number of part count has reduced with minimize the time required for assembly. Thus, the design efficiency for the grass cutting machine will be increased.

Next, the improvements were made to the exhaust assembly. The current exhaust assembly was design with 4 parts and combination of three manufacturing process which is die casting, bending and welding. The design is also quite complicated and can be increase the production time of assembly and material cost. Therefore, the redesign of exhaust was made by reducing the manufacturing process with eliminate the bending process. The production time for insertion between parts and material costs were reduced simultaneously. There is also no impact on the function of exhaust.

Table 4 shows the comparison for the part quantity, handling time, insertion time, assembly time, and design efficiency in between the existing design and improved design of grass cutting machine.
Table 3. Comparison between original design and redesign for grass cutting machine.

Part	Quantity of part	Quantity of screw
Assemble of Tank	6	4
Assemble of Exhaust	5	1

Table 4. Comparison Between Original Design And Improved Grass Cutting Machine.

Part Quantity	Existing Design	Redesign	Differences	Improvement
Handling Time (s)	178.79	149.53	29.26	16.37 %
Insertion Time (s)	390.05	303.06	87.05	22.31 %
Assembly Time (s)	568.84	462.59	106.25	18.68%
Design Efficiency	26.4 %	34.70 %	8.33 %	8.33 %

From the Table 4, there is an increase in design efficiency of 8.33 %; this is due to 8 components part has eliminated during the redesign process. For the percentage of part count, the result is 12.50 % which considered as good outcomes as one quarter of total numbers of the components has eliminated via the redesign process. Based on calculation, the result shows that insertion time being minimized is more than the handling time, which are 87.05 s and 29.26 s respectively. For total assembly time, a total time of 106.25 s is being eliminated. Therefore, the redesign is able to reduce the total production time and minimize the cost by having less part count.

5. Conclusions

This paper presented the redesign of grass cutting machine by applying the manufacturing and assembly design (DFMA) method [26-29]. It can be conclude that the design performance for grass cutting machine of the redesign has been enhanced after the redesign process resulting in reduced part count and overall assembly time. The design efficiency has come out of 26.4 percent of the original design efficiency by 8.33 percent from the report. However, this is not the perfect possible configuration for grass cutting machine, there can be a lot of change. The design consideration of the function of the part and the vibration issue was important in order to prevent the performance of the grass cutting machine. Therefore, some of the screws and bolt can be modified and eliminated by consider the function of that parts.
References

[1] Boothroyd G G, Dewhurst P and Knight W A 2011 Product Design for Manufacture and Assembly 3rd (CRC Boca raton Press) p 112
[2] Farahin K, Effendi M S M and Radhwan H 2019 AIP Conf. Proc. 2129 p 020163
[3] Xin T J, Farizuan R M, Radhwan H, Shayfull Z and Fathullah M 2019 AIP Conf. Proc. 2129 p 020159
[4] Tan J X, Effendi M S M and Radhwan H 2019 AIP Conf. Proc. 2129 p 020162
[5] Bettles 1992 Design for manufacture & assembly (DFMA) – the Boothroyd & Dewhurst Approach 3rd (York: International Conference on Competitive Performance Through Advanced Technology) p 316
[6] Affifiuddin M A R 2013 Product Design Simplification Throught DFMA Methods p 12
[7] Hamzah N A S, Rosli M F and Effendi M S M 2018 AIP Conf. Proc. 2030 p 020137
[8] Radhwan H, Shayfull Z, Farizuan M R, Effendi M S M and Irfan A R 2019 AIP 2129 p 020153
[9] Stienstra D 2005 Introduction to Design for Cost Effective Assembly and Manufacturing vol 2 (W Woodruff, Georgia) p 159
[10] Bieseke F L and Ferreira C V 2016 A Model for Advanced Manufacturing Engineering in R&D Technology Projects Through DFMA and MRL Integration (ISPE TE Press) p 705-714
[11] Tan N Y 2012 Product Simplification Design Improvement By Using DFMA Method p 56
[12] Ishammudin M Y M 2008 Design and Development of Grass Cutting Machine using DFMA Methodology pp 316–321
[13] Samsudin H A, Rosli M F, Effendi M S M and Abdullah M H 2018 AIP Conf. Proc. 2030 p 020138
[14] Hui H K 2012 Cost Reduction Study of Bicycle By Using Dfa Methods p 31-32
[15] Boothroyd G and Knight W 1993 Manufacturing À La Carte: Efficiency:Design for assembly (IEEE Spectrum Conference) p 51-53
[16] Fadzly M K, Mardhiati M M , Foo W T and Fakhirah W N 2019 AIP Conf. Proc. 2129 p 020148
[17] Fadzly M K, Natasha A and Nordin F 2019 2019 AIP Conf. Proc. 2129 p 020149
[18] Ismalina H N, Amarul T, Yusra A Z N, Zahidah M N N, Rakeish K P, Nasuha M N T and Vikneswaran P 2018 AIP Conf. Proc. 2030 p 020021
[19] Haris N I, Wahab M And Talip A 2014 Applied Mechanics and Material 465 p 725-729
[20] Fadzly M K, Foo W T, Amarul T, Mardhiati M M and Fakhirah W N 2019 AIP Conf. Proc. 2129 p. 020146
[21] Masniza Y, Zulfabli H M, Amarul T, Khaifunnisa S N, Zilawati N A R N N, Nazera D and Ismalina H N 2019 AIP Conf. Proc. 2129 p 020056
[22] Zulfabli H M, Ismalina H N, Amarul T, and Ahmad S 2019 AIP Conf. Proc. 2129 p 020055
[23] Ismalina H N, Zulfabli H M, Amarul T, Idham M T M A, Fahmi A Z M I, Syuhadah M H N and Fatihah R F N 2019 AIP Conf. Proc. 2129 p 020054
[24] Asyiqin N A, Fadzly M K and Amarul T 2019 AIP Conf. Proc. 2129 p 020145
[25] Razak N H, Rosli M F and Effendi M S M 2018 AIP Conf. Proc. 2030 p 020141.
[26] Fatima S B A, Effendi, M S M and Rosli M F 2018 AIP Conf. Proc. 2030 p 020070.
[27] Zaidi N A, Rosli M F, Effendi M S M and Abdullah M H 2017 AIP Conf. Proc. 1885 p 020005.
[28] Azri N M, Effendi M S M and Rosli M F 2018 AIP Conf. Proc. 2030 p 020069.