Original Article

Associations between feeding practices and maternal and child weight among mothers who do and do not correctly identify their child’s weight status

R. G. Tabak, C. D. Schwarz and D. L. Haire-Joshu

1Washington University in St. Louis, The Brown School of Social Work and Public Health, and The School of Medicine, St. Louis, MO, USA;

Received 20 June 2016; revised 1 November 2016; accepted 8 November 2016

Address for correspondence: RG Tabak, PhD, RD Prevention Research Center in St. Louis, Washington University in St. Louis, One Brookings Drive, Campus Box 1196 St. Louis, MO 63130, USA. E-mail: rtabak@wustl.edu

Summary

Objective

This study aimed to explore factors associated with accuracy of maternal weight perception and determine if maternal feeding practices are associated with weight status.

Methods

Overweight/obese mothers reported demographics and perception of their child’s weight and completed a modified preschooler feeding questionnaire. Mother’s and child’s height and weight were measured. Logistic regression was used to explore associations between demographic factors and accuracy. Correlations between the preschooler feeding questionnaire scales and mom’s body mass index (BMI) and child’s BMI-percentile were explored for the total sample and accurate and underestimating moms.

Results

Among mothers whose child was overweight or obese, only 20% of mothers correctly identified the child as overweight. Forty percent of moms were underestimaters. There was a positive correlation between concern the child was overweight/overeating and the child’s BMI-percentile among underestimating moms; in the total sample ($r = 0.32, p < .001$) and accurate moms ($r = 0.52, p < .001$). In underestimators only, there was a negative relationship between child BMI-percentile and pressure to eat ($r = -0.30, p < .001$) and concern about child underweight ($r = -0.47, p < .001$).

Conclusions

This study identified different associations between child weight and mother’s feeding practices in mothers accurately and inaccurately perceiving her child’s weight. Intervention studies should explore targeting education on feeding practices based on these perceptions.

Keywords: Child feeding practices, maternal weight perception, obesity.

Introduction

From 2011 to 2012, 24% of US children aged 2–5 years were overweight, and 11% were obese (1). The high prevalence of overweight and obesity in young children is associated with numerous health risks during childhood (2–6) and adulthood (7–9). Parental feeding practices can shape a child’s dietary behaviours (10–13). Parents, especially mothers, typically control the family’s food environment. Child dietary behaviours, such as fruit and vegetable intake, are associated with parent feeding practices including dietary modelling, food rules and encouragement (12,14–16). Although studies suggest that mothers play an important role in shaping children’s eating patterns (10–12), many are unaware of their children’s weight status (17–25). This is particularly true for young children (18,23,24).

While considerable research has investigated the prevalence of parental underestimation of weight status, fewer studies have investigated the implications for this...
underestimation in terms of healthy eating behaviours and obesity prevention (26,27). For example, a mother may be less motivated to promote healthier behaviours if she underestimates her child’s weight status.(28) Despite the importance of parental feeding practices in shaping dietary behaviours, there is limited research into how these practices might be related to weight status among mothers who do and do not accurately perceive their child’s weight status, and none among a sample of overweight and obese parents.(29–33)

To fill this gap, the purpose of this paper is to explore factors associated with accuracy of maternal perception of her child’s weight, to determine whether maternal feeding practices are associated with maternal and/or child weight status, and to assess whether the association between maternal feeding practices and child weight status differs depending on accuracy of maternal weight perceptions of her child. We have outlined the hypothesized conceptual model for this work in Figure 1, which describes the hypothesized relationship between maternal factors and accuracy of maternal weight perception, and hypothesized associations between feeding practices and child weight status, which differs depending on the accuracy of the mother’s perception of her child’s weight status.

Methods

Participants

This study was a cross-sectional, baseline analysis of the Healthy Eating and Active Living Taught at Home study, which evaluated the translation of the Diabetes Prevention Program into the Parents As Teachers child development programme. The Healthy Eating and Active Living Taught at Home study included 230 overweight and obese mothers and their preschool child living in the St. Louis region. To be eligible, mothers had a preschool-aged child at risk for obesity (60th to 84th percentile for body mass index (BMI)) (34) or already overweight or obese (≥85th percentile for BMI), and the mother had to be able to read in English. Mothers were recruited through parent–child organizations, maternal child health care settings and through media outlets. All mothers provided informed consent, and baseline data was obtained on the mother and her youngest eligible child at one observation. During the consent process mothers were told that the purpose of the study was to evaluate the standard Parents as Teachers lessons plus additional information about how families can live healthy and active lives while reaching a healthy weight. This study was approved by the University’s Human Research Protection Office. Participants received a $50 gift card for completing the baseline survey.

Measures

The demographic survey measures described in the following analyses were identical to those from our prior studies with Parents As Teachers and assessed age, race/ethnicity, current education level, employment status and number of children (35,36). Height and weight of the mother and preschooler were measured by trained staff in accordance with National Health And Nutrition Examination Survey procedures.(37). Mothers completed a survey that assessed her and her child’s demographic characteristics, her perception of her child’s weight (I think my child is; Very Underweight; A little Underweight; About the right weight; A little Overweight; Very Overweight), and included a modified version of the preschooler feeding questionnaire (PFQ) (Table S1). (38,39).

The 32-item PFQ asked parents about feeding practices and beliefs and concerns about child’s weight using a five-point scale. The tool assessed contextual factors, such as how, when and why children are fed. These included the following factors: (1) Difficulty in Child Feeding ($\alpha = 0.85$); (2) Concern about Child Overeating or Being Overweight ($\alpha = 0.81$); (3) Pushing the Child to Eat More ($\alpha = 0.67$); (4) Using Food to Calm the Child ($\alpha = 0.60$); (5) Concern about Child Being Underweight ($\alpha = 0.72$); (6) Child’s Control of Feeding Interactions ($\alpha = 0.53$); (7) Structure During Feeding Interactions ($\alpha = 0.49$); and (8) Age-Inappropriate Feeding ($\alpha = 0.23$) (Table S1).

![Figure 1](image-url) Conceptual model for hypothesized relationship between maternal body mass index (BMI), accuracy of maternal weight perceptions, feeding practices and child weight status

© 2016 The Authors
Obesity Science & Practice published by John Wiley & Sons Ltd, World Obesity and The Obesity Society. Obesity Science & Practice
Moms were categorized into three groups based on the accuracy of their perception of their child’s weight, comparing the mother’s categorization of her child’s weight status with the measured weight status ([1] accurately perceiving their child as normal weight if the child was normal weight or accurately perceiving the child as overweight if the child was overweight; [2] perceiving the child as underweight or normal weight if the child was overweight or obese (underestimators); or [3] perceiving the child as overweight if the child was normal weight). Because of the very small number of participants falling in the third category, these mothers were not included in the stratified analyses. Unadjusted bivariate logistic regression was used to explore whether demographic factors predicted accuracy of mom’s perception; these models were then adjusted (child’s gender, child’s race/ethnicity, number of children in the home, mom’s education, mom’s employment status, number of hours mom works and income), based on a priori hypotheses.

Scales from the PFQ were used in the current analysis (38,39). The factors and their internal consistency are described in the Supporting Information. Correlations between the scores on each scale with mom’s BMI and with her child’s BMI percentile were explored for the total

Table 1	Demographics of the 230 participants in the Healthy Eating and Active Living Taught at Home study	
Frequency	**Percent**	
Child’s gender		
Male	125	54.3
Female	105	45.7
Child’s race/ethnicity		
Caucasian/non-Hispanic	110	47.8
African American/non-Hispanic	73	31.7
Other	47	20.4
Mom’s race/ethnicity		
Caucasian/non-Hispanic	118	51.3
African American/not-Hispanic	72	31.3
Other	40	17.4
Number of children in the home		
0	64	27.8
1	94	40.9
2	41	17.8
≥3	31	13.5
Mom’s education		
High school/GED or less	39	17.0
At least some college/tech	86	37.4
College/graduate school	103	44.8
Total	228	99.1
Missing	2	0.9
Mom’s employment status		
No	78	33.9
Yes	150	65.2
Total	228	99.1
Missing	2	0.9
Number of hours mom works		
<30 h week⁻¹	40	17.4
31–40 h week⁻¹	76	33.0
>40 h week⁻¹	34	14.8
Total	150	65.2
Missing	80	34.8
Income		
<$19,999	62	27.0
$20,000–$49,999	63	27.4
$50,000–$74,999	44	19.1
≥$75,000	50	21.7
Total	219	95.2
Missing	11	4.8
Mom’s BMI category		
Overweight (≥25)	39	17.0
Obese (≥30)	89	38.7
Morbid obesity 1 (≥35)	62	27.0
Morbid obesity 2 (≥40)	40	17.4
Child’s BMI percentile category		
At risk I (≥60)	88	38.3
At risk II (≥75)	43	18.7
Severe overweight (≥85)	54	23.5
Obese (≥95)	45	19.6
Worry child is overweight		
Disagree	173	75.2
No strong feelings either way	33	14.3
Agree	22	9.6

© 2016 The Authors
Obesity Science & Practice published by John Wiley & Sons Ltd, World Obesity and The Obesity Society. Obesity Science & Practice
sample. Then, to explore moderation, the sample was stratified based on accurately and inaccurately perceiving her child’s weight, and the correlations were explored in each stratum. The presence of a significant association in one stratum, but not the other was used to compare the presence of a difference in the association between the strata.

Results

Table 1 provides a summary of participant characteristics for mothers and their participating child. On average mothers were 32 years old (SD = 6), and children were 3.4 years old (SD = 0.8). Most mothers reported their race and the race of their child as Caucasian/non-Hispanic (51% and 48%, respectively) or African American/non-Hispanic (31% and 32%, respectively). Approximately half the children were male (54%). The income distribution of the sample was distributed relatively evenly from <$20,000 to >$75,000. The mean BMI for mothers was 35 (SD = 5). For children, the mean BMI percentile was 81 (SD = 13); all children had a BMI in at least the 60th percentile, and 23.5% of the sample is overweight (BMI ≥ 85) and 19.6% obese (BMI ≥ 95). Eighty-one percent of mothers thought their child was ‘about the right weight’, while 11% thought their child was a little overweight and 7% thought their child was a little underweight. When asked if they were worried their child was overweight, 75% of mothers disagreed, while only 9.6% agreed.

Accuracy of mom’s perception of her child weight

Only 57% of moms accurately identified their child’s weight status (Table 2). Among mothers with a child who was at a healthy weight, 85% correctly identified her child as normal weight, and among mothers with a child who was overweight or obese, 20% correctly identified her child as overweight. Only 3% of moms overestimated their child’s weight. Forty-one percent of mom’s underestimated their child’s weight. Of these, most of the children were overweight (49%) or obese (34%); however, moms rated their child’s weight as about right.

The child’s BMI percentile was significantly associated with accuracy of prediction (Table 3), with greater likelihood of accuracy as BMI percentile increased; this strengthened after adjustment. No other demographic factors were associated with accuracy of prediction.

Table 2 Accuracy of mom’s perception of child’s weight by category of mom’s weight status (% (n)) (n = 230)

Accuracy of categorization	Overweight (≥25)	Obese (≥30)	Morbid obesity 1 (≥35)	Morbid obesity 2 (≥40)	Total
Correct	61.5% (24)	56.8% (50)	53.2% (33)	57.5% (23)	56.8% (130)
Healthy weight	56.4% (22)	48.9% (43)	43.5% (27)	45.0% (18)	48.9% (110)
Overweight	5.1% (2)	3.4% (3)	3.2% (2)	2.5% (1)	6.1% (8)
Obese	0.0% (0)	4.5% (4)	6.5% (4)	10.0% (4)	9.2% (12)
Underestimate	38.5% (15)	39.8% (35)	43.5% (27)	40.0% (16)	40.6% (93)
Healthy weight	7.7% (3)	10.2% (9)	3.2% (2)	2.5% (1)	16.1% (15)
Overweight	15.4% (6)	22.7% (20)	19.4% (12)	20.0% (8)	49.5% (46)
Obese	15.4% (6)	6.8% (6)	21.0% (13)	17.5% (7)	34.4% (32)
Overestimate*	0.0% (0)	3.4% (3)	3.2% (2)	2.5% (1)	2.6% (6)
Total	100.0% (39)	100.0% (88)	100.0% (62)	100.0% (40)	100.0% (229)

*It was only possible for mothers to over-estimate the weight of their child if the child was normal weight (BMI < 85th percentile)

BMI, body mass index.

Associations with the preschooler feeding questionnaire

Table 4 presents the correlations between feeding practices and weight status. There was a positive correlation between concern about the child being overweight or overeating and the child’s BMI percentile in the total sample (r = 0.32, p < .001) and among mothers who accurately identified the weight category for her child (r = 0.52, p < .001). This indicates that mothers accurately perceiving their child’s weight status were acting based on this perception (e.g. stopping their child from eating too much or getting upset when s/he ate too much). This association was not significant among underestimating moms.

Among underestimating mothers, there was a negative relationship between pressuring the child to eat more and a higher child’s BMI percentile (r = −0.30, p < .001). There was also a negative relationship between the child BMI percentile and concern about the child being underweight (r = −0.47, p < .001) among underestimating mothers. Neither of these associations were significant in the total
Table 3 Crude and adjusted* associations between demographic characteristics and accuracy of mom’s perceptions of her child’s weight status (correct perception vs. underestimate) (n = 230)

Characteristic	OR (95% CI) for accuracy of weight status perception	Adjusted OR (95% CI) for accuracy of weight status perception
Mom’s BMI	1.05 (0.80–1.39)	0.96 (0.66–1.41)
Child’s BMI	1.11 (1.08–1.14)	1.12 (1.08–1.17)
Child’s gender	0.68 (0.40–1.17)	
Child’s race/ethnicity	1.16 (0.83–1.63)	
Mom’s race/ethnicity	1.01 (0.71–1.43)	
Number of children in the home	1.10 (0.84–1.45)	
Mom’s education	0.95 (0.66–1.36)	
Mom’s employment status	0.85 (0.49–1.49)	
Number of hours mom works	1.39 (0.86–2.23)	
Income	0.79 (0.62–1.01)	

*Adjusted for child’s gender, child’s race/ethnicity, number of children in the home, mom’s education, mom’s employment status, number of hours mom works, and income
CI, confidence interval; OR, odd ratio.

32–38%. The underestimating in the current study did not appear to be associated with any demographic characteristics aside from the child’s actual BMI percentile including race/ethnicity. Mothers have been shown to underestimate the weight status of younger children and those with lower BMIs more frequently in national (USA), (18) school based, (22) and clinical (19) samples. Many other studies have found demographic factors to be associated with accuracy of perception of child weight. This is particularly true for factors reflecting maternal socioeconomic status such as education (40–43); however, the current study did not find such associations. Doolen et al. found associations between parental weight status and underestimation of the child’s weight status (21). The current study included only mothers who were overweight or obese, which may, in part, explain the high rate of underestimation. This is also concerning in the light of recent research showing children of obese mothers were less likely to recognize their own weight as well as that of their mother and therefore may be related to shifting attitudes towards weight status, where overweight is less recognized because of its prevalence (44).

Discussion
In a sample where 43% of the children were overweight or obese, only approximately 20% of mothers with an overweight or obese child considered their child to be overweight. The current study found that 41% of mothers underestimated their child’s weight status. This is much lower (17) than some studies, which have found 79% of mothers underestimating, but much higher (18,19) than other studies, in which the rate of misreporting was sample or among mothers accurately perceiving their child’s weight.

Associations among accurately perceiving mothers
Several feeding practices appeared to be associated with child weight among mothers who accurately perceived her child’s weight. Among those mothers, our results showed an increased concern that her child is overweight or overeats as the child’s BMI percentile increased. The mothers’ accurate perception of their child’s weight status may be influencing these mothers to be more concerned about their child’s weight and his/her eating behaviour. Although the current study did not assess the association between maternal concern about her child’s weight status and feeding practices, such concern has

Table 4 Correlations (r*) between PFQ factors scores and child BMI percentile for the total sample, and among moms accurately perceiving and underestimating her child’s BMI

PFQ Factor	Total Sample	Only underestimate of child’s weight	Only correct perception of child’s weight
Difficulty in child feeding (F1)	-0.03	-0.11	-0.09
Concern about child overeating or being overweight (F2)	**0.32** **p < .05**	0.16	**0.52** **p < .05**
Pushing the child to eat more (F3)	-0.07	-0.30**	-0.10
Using food to calm the child (F4)	0.04	0.01	-0.05
Concern about child being underweight (F5)	-0.12	-0.47**	-0.06
Child’s control of feeding interactions (F6)	0.03	0.04	0.02
Structure during feeding interactions (F7)	-0.06	-0.14	0.06
Age-inappropriate feeding (F8)	-0.01	-0.14	-0.06

*r = Pearson Correlation; **p < .05
BMI, body mass index; PFQ, preschooler feeding questionnaire.
been associated with restrictive feeding (45), which has been associated with unhealthy eating behaviours and increased weight status (46,47), particularly among obese mothers (29,48).

Associations among in-accurately perceiving mothers

There appeared to be associations between the child’s actual weight status and two of the mother’s feeding practices even among the 41% of mothers that underestimated their child’s weight status. Mothers who underestimated their child’s weight status tended to report less pressure to eat and less concern about the child being underweight as the child’s BMI percentile increased. In previous studies, pressure to eat has also shown negative associations with child BMI; these studies hypothesize that mothers pressure children who are thinner to eat more than children who are heavier (29,46–50). Similarly, these same mothers’ concern that their child is underweight also decreased as the child’s BMI increased, which is also consistent with previous work (45–47). That we only found this association in mothers underestimating their child’s weight is interesting and may indicate that, although these mothers underestimated their child’s weight status in relation to their BMI, they accurately worry less about the child being underweight and perceive less of a need to apply pressure to eat. Both of these findings indicate that although mothers may not consciously or accurately identify that their child was overweight/obese, their feeding behaviours and perceptions were related to the child’s weight status, such that they are not pressuring their child to eat and were less concerned about the child being underweight. Their behaviour seems to indicate they were still recognizing something about their child’s weight. This is consistent with an investigation by Webber et al. that found the association between child weight status and pressure to eat was not modified by maternal perception of the child’s weight (29). The current study did not explore the association between accuracy of maternal perception of the child’s weight status and feeding practices, thus it is not possible to conclude whether mothers who underestimate child weight status are less concerned about the child’s weight status or use less pressure to eat.

Associations in the total sample

The current study found that few maternal feeding practices were related to child weight, and that these differed depending on whether the mothers accurately perceived their child’s weight status. Much of the literature has found associations with some feeding practices such as those related to rewarding with food, pressure to eat, and control over feeding interactions with child weight and/or dietary behaviours, although the findings have largely been mixed (41,43,46–48,50–53). The mixed results from the literature as well as the lack of strong associations observed in the current study may be related to the survey measure and the difficulty in measuring parent-feeding practices. The population in the current study is also different from many previous studies, thus the survey may perform differently, leading to disparate conclusions. Other studies have found that the association between child weight and feeding practices such as restriction are mediated by maternal concern about the child being overweight (29,40,45). This may help explain the differential associations between child weight status and mom’s feeding practices observed in the current study.

Important feeding behaviours

Although not all factors were associated with maternal perception of child weight or with mom or child BMI, a number of potentially problematic feeding behaviours were very common in this diverse sample of overweight mothers. Forty-three percent of mothers reported that the child at least sometimes watches TV at meals. Further, nearly half (47%) of mothers reported feeding her child herself if she thought her child did not eat enough at least some of the time. These are feeding practices, which have been suggested to be related to development of obesigenic behaviours, and are frequent in the study population (46,47,53–56). This is particularly important in this study sample, as all children in the study had a BMI percentile of at least 60%, a cutoff that may be important to begin monitoring children for development of obesity (34).

Strengths/limitations

The current study is not able to determine the direction of the relationships explored or whether the associations are causal, as it is cross-sectional. Additionally, the analysis relied on maternal report of feeding practices using self-report questionnaires. While these measures have some evidence for reliability and validity, issues with accuracy remain (39). Further, because this is a population of overweight and obese mothers participating in an intervention study, the findings may not be generalizable to all parents of young children. While this study assessed maternal weight perceptions, it did not assess perceptions from the child perspective as the children were very young (mean 3.4 years old, SD = 0.8), which may be important for future obesity development. Also, the mothers were told about the purpose of the study before completing the questions, which could have
influenced their responses. This study is strengthened by the diverse sample of overweight mothers, which enhances the generalizability of the findings to a broader population and the objective measurement of height and weight.

Conclusions

Nearly half of the mothers asked underestimated their child’s weight, considering them to be about the right weight, when they were actually overweight or obese. The current study identified different associations between a child’s actual weight status and the mother’s reported feeding practices among mothers accurately and inaccurately perceiving her child’s weight. Future intervention studies should explore screening participants for accuracy of their child’s weight status and incorporating this information into education on feeding practices.

Conflict of interest statement

No conflict of interest was declared.

Author contributions

R.G.T. performed statistical analyses and drafted the manuscript. D. L. H. and C. D. S. contributed to the design of the study, interpretation of results and provided critical reviews of the manuscript.

Acknowledgements

This project was funded by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) of the National Institutes of Health (NIH) (grant no. R18DK089461). This study was also supported in part by The NIDDK Center for Diabetes Translation Research (P30DK092950) and by the Cooperative Agreement Number U48/DP001903 from the CDC (the Prevention Research Centers Program). The content is solely the responsibility of the authors and does not necessarily represent the official view of the NIH. The funding sources had no involvement in the conduct of the research and preparation of the article.

References

1. Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of childhood and adult obesity in the United States, 2011–2012. JAMA 2014; 311: 806–14.
2. Dabelea D, Mayer-Davis EJ, Saydah S, et al. Prevalence of type 1 and type 2 diabetes among children and adolescents from 2001 to 2009. JAMA 2014; 311: 1778–86.
3. Halfon N, Larson K, Slusser W. Associations between obesity and comorbid mental health, developmental, and physical health conditions in a nationally representative sample of US children aged 10 to 17. Acad Pediatr 2013; 13: 6–13.
4. Koebnick C, Black MH, Wu J, et al. High blood pressure in overweight and obese youth: implications for screening. J Clin Hypertens (Greenwich) 2013; 15: 793–805.
5. Vivante A, Golan E, Tzur D, et al. Body mass index in 1.2 million adolescents and risk for end-stage renal disease. Archives of Internal Medicine 2012; 172: 1644–50.
6. Jago R, Mendoza JA, Chen T, Baranowski T. Longitudinal associations between BMI, waist circumference, and cardiometabolic risk in US youth: monitoring implications. Obesity (Silver Spring) 2013; 21: E271–9.
7. Freedman DS, Khan LK, Serdula MK, Ogden CL, Dietz WH. Racial and ethnic differences in secular trends for childhood BMI, weight, and height. Obesity (Silver Spring) 2006; 14: 301–8.
8. Reinehr T, de Sousa G, Andler W. Longitudinal analyses among overweight, insulin resistance, and cardiovascular risk factors in children. Obesity Research 2005; 13: 1824–33.
9. Lai CC, Sun D, Cen R, et al. Impact of long-term burden of excessive adiposity and elevated blood pressure from childhood on adulthood left ventricular remodeling patterns: the bogalusa heart study. Journal of the American College of Cardiology 2014; 64: 1580–7.
10. Rosenkranz RR, Dzewaltowski DA. Model of the home food environment pertaining to childhood obesity. Nutr Rev 2008; 66: 123–40.
11. Hughes SO, Shewchuk RM, Baskin ML, Nicklas TA, Qu H. Indulgent feeding style and children’s weight status in preschool. J Dev Behav Pediatr 2008; 29: 403–10.
12. van der Horst K, Oenema A, Ferreira I, et al. A systematic review of environmental correlates of obesity-related dietary behaviors in youth. Health Educ Res 2007; 22: 203–26.
13. Rhe K. Childhood overweight and the relationship between parent behaviors, parenting style, and family functioning. Annals of the American Academy of Political and Social Science 2008; 615: 12–37.
14. Blissett J. Relationships between parenting style, feeding style and feeding practices and fruit and vegetable consumption in early childhood. Appetite 2011; 57: 826–31.
15. Pearson N, Biddle SJ, Gorely T. Family correlates of fruit and vegetable consumption in children and adolescents: a systematic review. Public Health Nutr 2009; 12: 267–83.
16. Rasmussen M, Krolner R, Klepp KI, et al. Determinants of fruit and vegetable consumption among children and adolescents: a review of the literature. Part I: Quantitative studies. Int J Behav Nutr Phys Act 2006; 3: 22.
17. Baughcum AE, Chamberlin LA, Deeks CM, Powers SW, Whitaker RC. Maternal perceptions of overweight preschool children. Pediatrics 2000; 106: 1380–6.
18. Maynard LM, Galuska DA, Biancik HM, Serdula MK. Maternal perceptions of weight status of children. Pediatrics 2003; 111(5 Part 2): 1226–31.
19. Manios Y, Kondaki K, Kourlabou G, Vasilopoulou E, Grammatikaki E. Maternal perceptions of their child’s weight status: the GENESIS study. Public Health Nutr 2009; 12: 1099–105.
20. de Hoog ML, Stronks K, van Eijden M, Genmek RJ, Vrijkott TG. Ethnic differences in maternal underestimation of offspring’s weight: the ABCD study. Int J Obes (Lond) 2012; 36: 53–60.
21. Doolen J, Alpert PT, Miller SK. Parental disconnect between perceived and actual weight status of children: a metasynthesis of the current research. Journal of the American Academy of Nurse Practitioners 2009; 21: 160–6.
22. Cernell S, Edwards C, Croker H, Boniface D, Wardle J. Parental perceptions of overweight in 3–5 y olds. Int J Obes (Lond) 2005; 29: 353–5.
23. Towns N, D Auria J. Parental perceptions of their child’s overweight: an integrative review of the literature. Journal of Pediatric Nursing 2009; 24: 115–30.

24. Eckstein KC, Mikhail LM, Ariza AJ, Thomson JS, Millard SC, Binns HJ. Parents’ perceptions of their child’s weight and health. Pediatrics 2008; 117: 681–90.

25. Jain A, Sherman SN, Chamberlin DL, Carter Y, Powers SW, Whitaker RC. Why don’t low-income mothers worry about their preschoolers being overweight? Pediatrics 2001; 107: 1138–46.

26. Lundahl A, Kidwell KM, Nelson TD. Parental underestimates of child weight: a meta-analysis. Pediatrics 2014; 133: e689–703.

27. Rietmeijer-Mentink M, Paulis WD, van Middelkoop M, Bindels PJ, van der Wouden JC. Difference between parental perception and actual weight status of children: a systematic review. Matern Child Nutr 2013; 9: 3–22.

28. Rhee KE, De Lago CW, Arscock-Mills T, Mehta SD, Davis RK. Factors associated with parental readiness to make changes for overweight children. Pediatrics 2005; 116: e94–101.

29. Webber L, Hill C, Cooke L, Carnell S, Wardle J. Associations between child weight and maternal feeding styles are mediated by maternal perceptions and concerns. European Journal of Clinical Nutrition 2010; 64: 259–65.

30. Wen X, Hui SS. Chinese parents’ perceptions of their children’s weight and their relationships to parenting behaviours. Child Care Health Dev 2011; 37: 343–51.

31. Crawford D, Timperio A, Telford A, Salmon J. Parental concerns about childhood obesity and the strategies employed to prevent unhealthy weight gain in children. Public Health Nutr 2006; 9: 889–95.

32. Lydecker JA, Grilo CM. The apple of their eye: attitudinal and behavioral correlates of parents’ perceptions of child obesity. Obesity (Silver Spring) 2016; 24: 1124–31.

33. Wyden K, Sisson SB, Lora K, et al. Relationship between parental perception and concern for child weight and influence on obesogenic parenting practices. Adv Pediatr Res 2015; 2: 12.

34. Nader P, O’Brien M, Houts R, et al. Identifying risk for obesity in early childhood. Pediatrics 2006; 118: e594–601.

35. Haire-Joshu D, Brownson RC, Nanney MS, et al. Improving dietary behavioral change in African Americans: the Parents As Teachers High 5 Low Fat Program. Prev Med 2003; 36: 684–91.

36. Haire-Joshu D, Elliott MB, Caio NM, et al. High 5 for kids: the impact of a home visiting program on fruit and vegetable intake of parents and their preschool children. Prev Med 2008.

37. CDC NHANES. Center for Disease Control and Prevention. National Health and Nutrition Examination Survey: Anthropometry Procedures Manual. In: 2011.

38. Baughcum AE, Powers SW, Johnson SB, et al. Maternal feeding practices and beliefs and their relationships to overweight in early childhood. J Dev Behav Pediatr 2001; 22: 391–408.

39. Jain A, Sherman SN, Chamberlin LA, Whitaker RC. Mothers misunderstand questions on a feeding questionnaire. Appetite 2004; 42: 249–54.

40. May AL, Donohue M, Scanlon KS, et al. Child-feeding strategies are associated with maternal concern about children becoming overweight, but not children’s weight status. Journal of the American Dietetic Association 2007; 107: 1167–75.

41. McPhie S, Skouteris H, Daniels L, Jansen E. Maternal correlates of maternal child feeding practices: a systematic review. Matern Child Nutr 2014; 10: 18–43.

42. Evans A, Seth JG, Smith S, et al. Parental feeding practices and concerns related to child underweight, picky eating, and using food to calm differ according to ethnicity/race, acculturation, and income. Matern Child Health J 2011; 15: 899–909.

43. Kroller K, Warschburger P. Associations between maternal feeding style and food intake of children with a higher risk for overweight. Appetite 2008; 51: 166–72.

44. Paul TK, Sciaccia RR, Bier M, Rodriguez J, Song S, Giardina EG. Size misperception among overweight and obese families. Journal of General Internal Medicine 2015; 30: 43–50.

45. Gregory JE, Paxton SJ, Brozovic AM. Pressure to eat and restriction are associated with child eating behaviours and maternal concern about child weight, but not child body mass index, in 2- to 4-year-old children. Appetite 2010; 54: 550–556.

46. Faith MS, Scanlon KS, Birch LL, Francis LA, Sherry B. Parent–child feeding strategies and their relationships to child eating and weight status. Obesity Research 2004; 12: 1711–22.

47. Rodgers RF, Paxton SJ, Massey R, et al. Maternal feeding practices predict weight gain and obesogenic eating behaviors in young children: a prospective study. Int J Behav Nutr Phys Act 2013; 10: 24.

48. Powers SW, Chamberlin LA, van Schaick KB, Sherman SN, Whitaker RC. Maternal feeding strategies, child eating behaviors, and child BMI in low-income African-American preschoolers. Obesity (Silver Spring) 2006; 14: 2026–33.

49. Spruijt-Metz D, Lindquist C, Birch L, Fisher J, Goran M. Relation between mothers’ child-feeding practices and children’s adiposity. American Journal of Clinical Nutrition 2002; 75: 581–6.

50. Wardle J, Carnell S. Parental feeding practices and children’s weight. Acta Paediatrica. Supplement 2007; 96: 5–11.

51. Peters J, Dollman J, Petkov J, Parletta N. Associations between parenting styles and nutrition knowledge and 2â€Œ5-year-old children’s fruit, vegetable and non-core food consumption. Public Health Nutrition 2012; 16: 1979–1987.

52. Carnell S, Wardle J. Associations between multiple measures of parental feeding and children’s adiposity in United Kingdom preschoolers. Obesity (Silver Spring) 2007; 15: 137–44.

53. Hurley KM, Cross MB, Hughes SO. A systematic review of responsive feeding and child obesity in high-income countries. Journal of Nutrition 2011; 141: 495–501.

54. Marsh S, Ni Mhurchu C, Maddison R. The non-advertising effects of screen-based sedentary activities on acute eating behaviours in children, adolescents, and young adults. A systematic review. Appetite 2013; 71: 259–73.

55. Marsh S, Ni Mhurchu C, Jiang Y, Maddison R. Comparative effects of TV watching, recreational computer use, and sedentary video game play on spontaneous energy intake in male children. A randomised crossover trial. Appetite 2014; 77: 13–8.

56. Fuller-Tyszkiewicz M, Skouteris H, Hardy LL, Halse C. The associations between TV viewing, food intake, and BMI. A prospective analysis of data from the Longitudinal Study of Australian Children. Appetite 2012; 59: 945–8.

Supporting Information

Additional supporting information may be found in the online version of this article at the publisher’s web site.

Table S1: Scales from the Preschooler Feeding Questionnaire by factor including item characteristics and internal consistency.