Supplementary Information for
Oxygen-Driven Enhancement of Electron
Correlation in Hexagonal Iron at Earth’s Inner
Core Conditions

Bo Gyu Jang,†,‡ Yu He,†,¶ Ji Hoon Shim,§∥ Ho-kwang Mao,† and Duck Young Kim*†

†Center for High Pressure Science and Technology Advanced Research (HPSTAR),
Shanghai 201203, China
‡Korea Institute for Advanced Study, Seoul 02455, Korea
¶Key Laboratory of High-Temperature and High-Pressure Study of the Earth’s Interior,
Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
§Department of Chemistry, Pohang University of Science and Technology, Pohang 37673,
Korea
∥Division of Advanced Materials Science, Pohang University of Science and Technology,
Pohang 37673, Korea.

E-mail: duckyoung.kim@hpstar.ac.cn
DFT+DMFT calculation

One should note that the proper values of U and J are method-dependent. They sensitively depend on the screening by the bands included in the model. The DFT+DMFT with Wannierized correlated orbitals usually use a smaller U value since the Wannierization energy window is usually smaller than the energy window used in our calculation (−10 to 10 eV with respect to the Fermi level), resulting in a smaller screening effect. In addition, the Wannier functions contain a substantial amount of uncorrelated orbital subsets. As a result, the proper U value can be smaller. The more detailed explanation can be found in the supplementary material of Ref.1,2

The inverse quasiparticle lifetime Γ is given by $-Z \text{Im}(i\omega^+)$, where $Z^{-1} = 1 - \partial \text{Im}\Sigma(i\omega)/\partial \omega$. Here we used averaged imaginary part of self-energy ($\text{Im}\Sigma$) of five d orbitals of Fe atom.

The dc electrical resistivity ρ_{e-e} can be obtained using the Kubo-Greenwood formula:

$$ (\rho_{e-e})^{-1} = \frac{\pi e^2}{V} \sum_k d\epsilon(\sum_{\mathbf{k}}\rho_k(\epsilon)\rho_k(\epsilon)v_k)^2 $$ \hspace{1cm} (S1)

where $\rho_k(\epsilon)$ is the spectral function at wave vector k and is related to the Green’s function $G(\epsilon)$ by $\rho_k = (G^\dagger - G)/(2\pi i)$, v_k is the velocity vector, and f is the Fermi-Dirac distribution function.

AIMD calculation

The elastic properties of crystal are expressed as the relationship between stress and strain:

$$ \sigma_{ij} = C_{ijkl}\epsilon_{kl} $$ \hspace{1cm} (S2)

where σ_{ij} refers to stress tensor, ϵ_{kl} refers to strain tensor, and C_{ijkl} represents fourth-order elastic modulus. Considering the symmetry of C_{ijkl}, the equation is simplified as follows:
$$\sigma_i = C_{ij}\epsilon_j$$ \hspace{1cm} (S3)

Non-equivalent elastic constants of hcp Fe alloys were calculated by applying following
distortion matrices to the structures:

$$\begin{pmatrix} \delta & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \delta \end{pmatrix}, \text{ and } \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & \delta/2 \\ 0 & \delta/2 & 0 \end{pmatrix}$$ \hspace{1cm} (S4)

where \(\delta \) is the magnitude of distortion. For \(\delta \) in \(\pm 0.01, \pm 0.005, \) and 0, five groups of
strains were added by

$$a' = a(I + \epsilon)$$ \hspace{1cm} (S5)

where \(a' \) represents third-order cell parameter matrix, and \(\epsilon \) represents added strain
\(\Delta \epsilon \), and \(I \) represents third-order identity matrix. Over 10000-time steps (10 ps) of NVT
simulations were carried out for each direction of deformation to ensure the reliability and
full convergence of the results. The final results of strain-stress data show a very good linear
relationship and were fitted to equation [2] employing central difference method.

The Voigt scheme was used to estimate the elastic properties of Fe alloys. The bulk and
shear modulus are defined as:

$$K_V = \frac{2(C_{11} + C_{12}) + 4C_{13} + C_{33}}{9}, \quad G_V = \frac{12C_{44} + 7C_{11} - 5C_{12} + 2C_{33} - 4C_{13}}{30}$$ \hspace{1cm} (S6)

With the calculated moduli and density, the compression \((V_p) \) and shear \((V_s) \) velocities
in Fe and Fe\(_9\)O are obtained.
\[V_P = \sqrt{\frac{B + \frac{4G}{3}}{\rho}}, \quad V_S = \sqrt{\frac{G}{\rho}} \]

(S7)

The calculated elastic constants, densities, moduli, and seismic velocities of Fe and Fe\(_9\)O are presented in Table S1 and seismic velocities are compared with the geophysical observed PREM.
Figure S1: Crystal structures of oxygen, FeO$_2$, and Fe$_2$O used in the convex hull plot of Fig.1 in the main text.

Figure S2: Crystal structures of FeO and the enthalpy difference between three different phases at 300 GPa as a function of U. At $U = 0$ eV (DFT 0 K), R3m phase is the most stable phase like the previous studies. As U value increases in DFT+DMFT calculation, R3m phase becomes unstable and B2 phase becomes the most stable phase with $U = 10$ eV. The uncertainty denoted by error bar arises from the Monte Carlo sampling in DMFT calculations. This result clearly indicates the importance of electron correlation effect of Fe 3d orbitals.
Figure S3: Partial density of states (PDOS) and Imaginary self-energy on real frequency for Fe$_9$O and hcp-Fe ($U = 5$ eV, $J = 0.943$ eV, $T = 7000$ K) (a) PDOS of Fe$_9$O and hcp-Fe. Due to the interaction and charge transfer between Fe1 and O atom, PDOS of Fe1 atom is different from those of other Fe atoms in Fe$_9$O. The peak at -12 eV indicates the hybridization between O 2p and Fe1 E'' orbitals. Density of states of Fe1 atom of Fe$_9$O at the Fermi level (E_F) is larger than those of hcp-Fe and other Fe atoms in Fe$_9$O. From Fe2 atom, PDOS is almost identical to that of hcp-Fe. (b) Imaginary self-energy ($\text{Im}\Sigma(\omega)$) of Fe$_9$O and hcp-Fe. Like PDOS, the self-energy is converged to that of hcp-Fe from Fe2 atom. However, $\text{Im}\Sigma(\omega)$ of Fe1 atom shows a clear difference. First, $-\text{Im}\Sigma(\omega)$ of Fe1 atom is larger than those of hcp-Fe and other Fe atoms in Fe$_9$O, indicating the enhanced electron-electron scattering. Second, $\text{Im}\Sigma(\omega)$ of E'', which is strongly hybridized with O 2p orbitals, shows a clear difference from others.
Figure S4: k-resolved spectral function obtained from DFT+DMFT calculations ($U = 5$ eV, $J = 0.943$ eV, $T = 7000$ K) Due to the charge transfer from Fe1 to O atom, the flat band located around 1 eV in the pure hcp-Fe moves toward E_F. This feature can be clearly seen from Fe$_7$O case and induces the larger density of state near E_F as shown in Fig. S2 and Fig. 2c in the main text.

Figure S5: Directional resistivity obtained from DFT+DMFT calculations In the main text, the averaged value of ρ_{xx} and ρ_{zz} are shown for simplicity.
Figure S6: Calculated mean square displacements (MSDs) of Fe and O ions in hcp Fe$_9$O at 360 GPa and temperatures from 4000 to 6000 K. No ionic diffusion is observed in hcp Fe$_9$O indicating the stability of hcp Fe$_9$O under inner core conditions.
Table S1: The density and compression velocity (V_P) obtained from DFT calculations at 300 GPa and comparison with the previous theoretical results

Phase	hcp-Fe	Fe$_9$O		
	Vočadlo et al.	This work	This work	
Method	AIMD 5500 K, 300 GPa	AIMD 0 K, 300 GPa	DFT 300 GPa	DFT 300 GPa
Density (g/cm2)	13.16	13.70	13.78	13.28
V_P (km/s)	11.17	12.59	12.66	12.80

Table S2: The calculated elastic constants, densities, moduli and seismic velocities of Fe and Fe$_9$O at high P-T

Phase	P (GPa)	T (K)	Density (g/cm2)	C_{11} (GPa)	C_{12} (GPa)	C_{13} (GPa)	C_{33} (GPa)	C_{44} (GPa)	K_V (GPa)	G_V (GPa)	V_P (Km/s)	V_S (km/s)
Fe	359.5	4992.7	13.90	1996.3	1235.5	1085.6	2047.7	308.4	1428.2	375.0	11.78	5.19
Fe	359.5	5990.0	13.77	1855.7	1287.0	1028.5	1928.9	225.8	1367.2	300.3	11.33	4.67
Fe$_9$O	359.6	4000.1	13.49	2042.2	1255.2	1115.8	2133.5	302.9	1465.7	381.9	12.10	5.32
Fe$_9$O	359.1	5000.4	13.36	1904.9	1290.7	1103.3	2037.8	242.1	1417.1	321.9	11.76	4.91
Fe$_9$O	360.8	6000.2	13.24	1769.6	1268.6	1170.3	205.7	205.4	1406.0	254.4	11.48	4.38
Fe$_9$O	330.9	6000.5	12.95	1684.7	1138.9	1027.7	1733.6	169.4	1276.8	249.6	11.15	4.39
Supplementary References

(1) Zhang, H.; Haule, K.; Vanderbilt, D. Effective $J = 1/2$ Insulating State in Ruddlesden-Popper Iridates: An LDA+DMFT Study. *Phys. Rev. Lett.* **2013**, *111*, 246402.

(2) Kim, H.-S.; Haule, K.; Vanderbilt, D. Mott Metal-Insulator Transitions in Pressurized Layered Trichalcogenides. *Phys. Rev. Lett.* **2019**, *123*, 236401.

(3) Vočadlo, L.; Dobson, D. P.; Wood, I. G. Ab initio calculations of the elasticity of hcp-Fe as a function of temperature at inner-core pressure. *Earth Planet. Sci. Lett.* **2009**, *288*, 534–538.