Computing the Fixing Group of a Rational
Function

Jaime Gutierrez Rosario Rubio David Sevilla

Abstract

Let Aut$_K$K(x) be the Galois group of the transcendental degree one pure field extension $K \subseteq K(x)$. In this paper we describe polynomial time algorithms for computing the field $Fix(H)$ fixed by a subgroup $H \subseteq$ Aut$_K$K(x) and for computing the fixing group G_f of a rational function $f \in K(x)$.

1 Introduction

Let K be an arbitrary field and $K(x)$ be the rational function field in the variable x. Let Aut$_K$K(x) be the Galois group of the field extension $K \subseteq K(x)$.

In this paper we develop an algorithm for computing the automorphism group of an intermediate field in the extension $K \subseteq K(x)$. By the classical Lüroth’s theorem any intermediate field F between K and $K(x)$ is of the form $F = K(f)$ for some rational function $f \in K(x)$, see [3, 5] and for a constructive proof [2]. Thus, this computational problem is equivalent to determine the fixing group G_f of a univariate rational function f. We also present an algorithm for computing $Fix(H)$, the fixed field by a subgroup $H \subseteq$ Aut$_K$K(x). Again, this computational problem is equivalent to finding a Lüroth’s generator of the field fixed by the given subgroup H. Both algorithms are in polynomial time if the field K has a polynomial time algorithm for computing the set of the roots of a univariate polynomial.

The algorithm for computing the fixing group of a rational function uses several techniques related to the rational function decomposition problem. This problem can be stated as follows: given $f \in K(x)$, determine whether there exists a decomposition (g, h) of f, $f = g(h)$, with g and h of degree greater than one, and in the affirmative case, compute one. When such a decomposition exists some problems become simpler: for instance, the evaluation of a rational function f can be done with fewer arithmetic operations, the equation $f(x) = 0$ can be solved more efficiently, improperly parametrized algebraic curves can be reparametrized properly, etc. see [8], [1] and [6]. In fact, a motivation of this paper is to obtain results on rational functional decomposition. As a consequence of our study of G_f we provide new and interesting conditions of decomposability of rational functions. Another application of this paper is
to study the number m of indecomposable components of a rational function $f = f_1 \circ \cdots \circ f_m$ which is strongly related to the group G_f, see [7].

The other algorithm presented for computing the field $\text{Fix}(H)$ is based on Galois theory results and the constructive proof of Lüroth’s theorem.

The paper is divided in four sections. In Section 2 we introduce our notations and the background of rational function decomposition. Section 3 studies the Galois group of $\mathbb{K}(x)$ over \mathbb{K}, the fixing group G_f and the field $\text{Fix}(H)$, including general theoretical results, and its relation with the functional decomposition problem. Section 4 presents algorithms for computing the fixing group and fixed field. We also give in this section examples illustrating our algorithms.

2 Background on rational function decomposition

The set of all non–constant rational functions is a semigroup with identity x, under the element–wise composition of rational functions (symbol \circ for composition): i.e., given non–constant rational functions $g, h \in \mathbb{K}(x)$, $g \circ h = g(h)$. The units of this semigroup are of the form $\frac{ax+b}{cx+d}$. We will identify these units with the elements of the Galois group of $\mathbb{K}(x)$ over \mathbb{K}. We will denote this group by $\Gamma(\mathbb{K}) = \text{Aut}_{\mathbb{K}} \mathbb{K}(x)$.

Given $f \in \mathbb{K}(x)$, we will denote as f_N, f_D the numerator and denominator of f respectively, assuming that f_N and f_D are relatively prime. We define the degree of f as $\deg f = \max\{\deg f_N, \deg f_D\}$.

If $g, h \in \mathbb{K}(x)$ are rational functions of degree greater than one, $f = g \circ h = g(h)$ is their (functional) composition, (g, h) is a (functional) decomposition of f, and f is a decomposable rational function.

The following lemma describes some basic properties of rational function decomposition, see [1] for a proof.

Theorem 1. With the above notations and definitions, we have the following:

- $[\mathbb{K}(x) : \mathbb{K}(f)] = \deg f$.
- $\deg g \circ h = \deg g \cdot \deg h$.
- The units with respect to composition are precisely the rational functions u with $\deg u = 1$.
- Given $f, h \in \mathbb{K}(x) \setminus \mathbb{K}$, if there exists g such that $f = g(h)$, it is unique. Furthermore, it can be computed from f and h by solving a linear system of equations.

If $f, h \in \mathbb{K}(x)$ satisfy $\mathbb{K}(f) \subset \mathbb{K}(h) \subset \mathbb{K}(x)$, then $f = g(h)$ for some $g \in \mathbb{K}(x)$. From this fact the following natural concept arises:

Definition 1. Let $f = g \circ h = g' \circ h'$. (g, h) and (g', h') are called equivalent decompositions if there is a unit u such that $h' = u \circ h$ (then also $g' = g \circ u^{-1}$).
The next result is an immediate consequence of Lüroth’s theorem.

Corollary 1. Let \(f \in \mathbb{K}(x) \) be a non-constant rational function. Then the equivalence classes of the decompositions of \(f \) correspond bijectively to intermediate fields \(F, \mathbb{K}(f) \subseteq F \subseteq \mathbb{K}(x) \).

3 The Galois Correspondences in the Extension \(\mathbb{K} \subseteq \mathbb{K}(x) \).

We start defining our main notions and tools.

Definition 2. Let \(\mathbb{K} \) be any field.\n
- Let \(f \in \mathbb{K}(x) \). The **fixing group** of \(f \) is \(G_f \),
 \[G_f = \{ u \in \Gamma(\mathbb{K}) : f \circ u = f \} \].
- Let \(H \) be a subgroup of \(\Gamma(\mathbb{K}) \). The **fixed field** by \(H \) is \(\text{Fix}(H) \),
 \[\text{Fix}(H) = \{ f \in \mathbb{K}(x) : f \circ u = f \ \forall \ u \in H \} \].

Before we discuss the computational aspects of these concepts, we will need some properties based on general facts from Galois theory.

Theorem 2.

- Let \(H < \Gamma(\mathbb{K}) \).
 - \(H \) is infinite \(\Rightarrow \) \(\text{Fix}(H) = \mathbb{K} \).
 - \(H \) is finite \(\Rightarrow \) \(\mathbb{K} \subseteq \text{Fix}(H) \), \(\text{Fix}(H) \subset \mathbb{K}(x) \) is a normal extension, and in particular \(\text{Fix}(H) = \mathbb{K}(f) \) with \(\deg f = |H| \).
- Given a finite subgroup \(H \) of \(\Gamma \), there is a bijection between the subgroups of \(H \) and intermediate fields in \(\text{Fix}(H) \subset \mathbb{K}(x) \). Also, if \(\text{Fix}(H) = \mathbb{K}(f) \), there is a bijection between the right components of \(f \) (up to equivalence by units) and the subgroups of \(H \).
- Given \(f \in \mathbb{K}(x) \setminus \mathbb{K} \), the order of \(G_f \) divides \(\deg f \). Moreover, for every \(\mathbb{K} \) there is an \(f \in \mathbb{K}(x) \) such that \(1 < |G_f| < \deg f \), for example if \(f = x^2(x-1)^2 \) then \(G_f = \{ x, 1-x \} \).
- If \(|G_f| = \deg f \) then the extension \(\mathbb{K}(f) \subset \mathbb{K}(x) \) is normal. Moreover, if the extension \(\mathbb{K}(f) \subset \mathbb{K}(x) \) is also separable, then \(\mathbb{K}(f) \subset \mathbb{K}(x) \) is normal implies \(|G_f| = \deg f \).
- \(G_f \) depends on the field \(\mathbb{K} \): let \(f = x^4 \), then for \(\mathbb{K} = \mathbb{Q}, G_f = \{ x, -x \} \) but for \(\mathbb{K} = \mathbb{Q}(i), G_f = \{ x, -x, ix, -ix \} \).
- If \(\mathbb{K} \) is infinite, then \(f \in \mathbb{K} \Leftrightarrow G_f \) is infinite.
Let $f \in \mathbb{K}(x)$ and u, v be two units. Let $H < \Gamma(\mathbb{K})$

- Let $f' = u \circ f \circ v$, then $G_f = v \cdot G_{f'} \cdot v^{-1}$.
- If $\text{Fix}(H) = \mathbb{K}(f)$ then for any α, $\text{Fix}(\alpha H \alpha^{-1}) = \mathbb{K}(f \circ \alpha^{-1})$.

- It is possible that f is decomposable but G_f is trivial: for $\mathbb{K} = \mathbb{C}$, $f = x^2(x - 1)^2(x - 3)^3$; for $\mathbb{K} = \mathbb{Q}$, $f = x^9$.

- It is possible that f has a non-trivial decomposition $f = g(h)$ and G_f is not trivial but G_h is not a proper subgroup of G_f: for $\mathbb{K} = \mathbb{C}$, $f = (x^2 - 1)(x^2 - 3) \Rightarrow G_f = \{x, -x\}$; for $\mathbb{K} = \mathbb{Q}$, $f = x^4 \Rightarrow G_f = \{x, -x\}$.

Unfortunately, it is not true that $[\mathbb{K}(x) : \mathbb{K}(f)] = |G_f|$. However, some interesting results about decomposability can be given.

Theorem 3. Let f be indecomposable.

- If $\deg f = p$ is prime, then either $G_f \cong C_p$ or G_f is trivial.
- If $\deg f = n$ is not prime, then G_f is trivial.

According of above theorem if H is infinite then $\text{Fix}(H)$ is trivial. Some times it is interesting to see the element of $\Gamma(\mathbb{K})$ as matrices.

Proposition 1. The group $\Gamma(\mathbb{K})$ is isomorphic to $PGL_2(\mathbb{K}) = GL_2(\mathbb{K})/D_2(\mathbb{K})$ where $D_2(\mathbb{K}) = \{\lambda I_2 : \lambda \in \mathbb{K}^*\}$. Moreover, if \mathbb{K} is algebraically closed, then it is also isomorphic to $PSL_2(\mathbb{K}) = SL_2(\mathbb{K})/\{\pm I_2\}$.

The study of the finite subgroups of $\Gamma(\mathbb{C})$ has a long history. Any finite subgroup corresponds to a rotation or reflection of the Riemann sphere, so the finite subgroups correspond to the regular solids in three dimensions. Klein [4] gave the first geometric proof of the following classification of the finite subgroups of $\Gamma(\mathbb{C})$.

Theorem 4. [Klein] Every finite subgroup of $\Gamma(\mathbb{C})$ is isomorphic to one of the following groups:

- C_n, the cyclic group of order n;
- D_n, the dihedral group of order n;
- A_4, the alternating group on four letters or tetrahedral group;
- S_4, the symmetric group on four letters or octahedral group;
- A_5, the alternating group on five letters or icosahedral group.

In the case $\mathbb{K} = \mathbb{Q}$, the correspondence between functions and groups is not so good as in the complex case, see Theorem [2]. On the other hand, it is not difficult (personal communication of Prof. Walter Feit) to obtain from Theorem [4] a classification of all finite subgroups of $\Gamma(\mathbb{Q})$.

Now, suppose that \mathbb{K} is finite, that is, $\mathbb{K} = \mathbb{F}_q$ where q is a power of a prime p, $q = p^n$. We denote the set of all linear polynomials with coefficients in \mathbb{F}_q by $\Gamma_0(\mathbb{F}_q) = \{ax + b : a \in \mathbb{F}_q^*, b \in \mathbb{F}_q\}$.

4
Theorem 5. With the above notation, we have the following:

- \(|\Gamma_0(F_q)| = q^2 - q, |\Gamma(F_q)| = q^2 - q.\)
- \(\Gamma_0(F_q) < \Gamma(F_q), \text{ but } \Gamma_0(F_q) \not\subset \Gamma(F_q).\)
- The group \(\Gamma(F_q)\) is generated by \(\Gamma_0(F_q)\) and the linear rational function \(1/x\), that is, \(\Gamma = \langle \Gamma_0, 1/x \rangle.\)
- \(\text{Fix}(\Gamma_0(F_q)) = F_q(f_0), \text{ where } f_0 = (x^q - x)^{q-1}.\)
- \(\text{Fix}(\Gamma(F_q)) = F_q(h(f_0)), \text{ where } h = \frac{x^{q+1} + x + 1}{x^q}.\)

As a consequence of Theorem 5 we have the following theoretical result:

Theorem 6. For every \(K\), the extension \(K \subset K(x)\) is Galois if and only if \(K\) is infinite.

4 Algorithms

Now, we have all ingredients to give a computational solution to both problems.

4.1 Algorithm for computing the fixed field

As the next theorem shows, it is easy to compute a generator for the fixed field of an explicitly given group (suggested by Dr. Peter Müller).

Theorem 7. Let \(G = \{g_1, \ldots, g_m\} \subseteq K(x)\) be a finite group. Let \(P(t) = \prod_{i=1}^{m} (t-g_i) \in K(x)[t]\). Then any non-constant coefficient of \(P(t)\) generates \(F_G\).

The following example illustrates the algorithm over the field \(\mathbb{C}\).

Example 1. Let

\(G = \{\pm \frac{t-i}{t+i}, \pm \frac{t+i}{t-i}, \pm \frac{1}{t}, \pm t, \pm \frac{i(t-1)}{t+1}, \pm \frac{i(t+1)}{t-1}\} < \Gamma(\mathbb{C})\)

which is isomorphic to \(A_4\). All the symmetric functions in the elements of \(G\) are in \(\text{Fix}(G)\), and any non–constant symmetric function generates it. We compute those functions:

- \(\sigma_1 = \sigma_3 = \sigma_5 = \sigma_7 = \sigma_9 = \sigma_{11} = 0\) by symmetry in the group.
- \(\sigma_2 = \sigma_{10} = \frac{-1 + 33t^4 + 33t^8 - t^{12}}{t^{10} - 2t^6 + t^2}.\)
- \(\sigma_4 = \sigma_8 = \frac{-33t^4 - 66t^2 - 33}{t^4 + 2t^2 + 1}.\)
- \(\sigma_6 = \frac{2 - 66t^4 - 66t^8 + 2t^{12}}{t^2 - 2t^6 + t^{10}}.\)
- \(\sigma_{12} = 1.\)
4.2 Algorithm for computing the fixing group

The most straightforward method of computing the fixing group of a rational functions is solving a polynomial system of equations. Given

$$f = \frac{a_n x^n + \cdots + a_0}{b_m x^m + \cdots + b_0}$$

we have the system given by equating to 0 the coefficients of the numerator of $f \circ \left(\frac{ax+b}{cx+d}\right) - f(x)$. We can alternatively solve the two systems given by $f \circ (ax+b) - f(x) = 0$ and $f \circ \left(\frac{ax+b}{cx+d}\right) - f(x) = 0$. This method is simple but inefficient; we will present another method that is faster and will allow us to extract useful information even if the group is not computed completely.

We will assume that \mathbb{K} has sufficiently many elements; if it is not the case, we can work in an extension and check later which elements are in $\Gamma(\mathbb{K})$.

Definition 3. Let $f \in \mathbb{K}(x)$. We say f is in normal form if $\deg f_N > \deg f_D$ and $f_N(0) = 0$.

Theorem 8. Let $f \in \mathbb{K}(x)$. If \mathbb{K} has sufficiently many elements, there exist units u and v such that $u \circ f \circ v$ is in normal form.

Theorem 9. Let $f \in \mathbb{K}(x)$ be in normal form and $u = \frac{ax+b}{cx+d}$ such that $f \circ u = f$.

- $a \neq 0$ and $d \neq 0$.
- $f_N(b/d) = 0$.
- If $c = 0$, that is $u = ax + b$, then $f_N(b) = 0$ and $a^n = 1$ where $n = \deg f$.
- If $c \neq 0$ then $f_D(a/c) = 0$.

In order to compute G_f, we use the previous theorem to compute the polynomial and rational units separately.

Thus, if we can compute the roots of any polynomial in $\mathbb{K}[x]$, we have the following algorithm:

Algorithm

Input: $f \in \mathbb{K}(x)$.

Output: $G_f = \{u \in \mathbb{K}(x) : f \circ u = f\}$.

A. Compute units u, v such that $f' = u \circ f \circ v$ is in normal form. Let $n = \deg f$.

Let L be an empty list.

B. Compute $A = \{\alpha \in \mathbb{K} : \alpha^n = 1\}$, $B = \{\beta \in \mathbb{K} : f'_N(\beta) = 0\}$ and $C = \{\gamma \in \mathbb{K} : f'_N(\gamma) = 0\}$.

C. For each $(\alpha, \beta) \in A \times B$, check if $f' \circ (ax+b) = f'$. If that is the case, add $ax+b$ to L.

6
D. For each \((\beta, \gamma) \in B \times C\), let \(w = \frac{c\beta x + \gamma}{cx + 1}\) and compute all values of \(c\) for which \(f' \circ w = f'\). For each solution, add the resulting unit to \(L\).

E. Let \(L = \{w_1, \ldots, w_k\}\). Then, RETURN \(\{v \circ w_i \circ v^{-1} : i = 1, \ldots, k\}\).

Example 2. Let

\[
f = \frac{(-3x + 1 + x^3)^2}{x(-2x - x^2 + 1 + x^3)(-1 + x)} \in \mathbb{Q}(x).
\]

First we normalize \(f\): let \(u = 1/(x - 9/2)\) and \(v = 1/x - 1\), then

\[
f' = u \circ f \circ v = \frac{-4x^6 - 6x^5 + 32x^4 - 34x^3 + 14x^2 - 2x}{27x^5 - 108x^4 + 141x^3 - 81x^2 + 21x - 2}
\]

is in normal form.

The roots of the numerator and denominator of \(f'\) in \(\mathbb{Q}\) are \(\{0, 1, 1/2\}\) and \(\{1/3, 2/3\}\) respectively. The only sixth roots of unity in \(\mathbb{Q}\) are 1 and \(-1\); as \(\text{char} \ \mathbb{Q} = 0\) there are no elements of the form \(x + b\) in \(G_{f'}\). Therefore, there are two polynomial candidates to test: \(-x + 1/3\) and \(-x + 2/3\). It is easy to check that none of them leaves \(f\) fixed.

Let \(w = \frac{c\beta x + \alpha}{cx + 1}\).

\(\alpha = 0, \beta = 1/3\) : the unit \(\frac{cx/3}{cx + 1}\) does not leave \(f\) fixed for any value of \(c\).

\(\alpha = 1, \beta = 1/3\) : the unit \(\frac{cx/3+1}{cx+1}\) does not leave \(f\) fixed for any value of \(c\).

\(\alpha = 1/2, \beta = 1/3\) : the unit \(\frac{cx/3+1/2}{cx+1}\) leaves \(f\) fixed for \(c = -3/2\).

\(\alpha = 0, \beta = 2/3\) : the unit \(\frac{2cx/3}{cx+1}\) does not leave \(f\) fixed for any value of \(c\).

\(\alpha = 1, \beta = 2/3\) : the unit \(\frac{2cx/3+1}{cx+1}\) leaves \(f\) fixed for \(c = -3\).

\(\alpha = 1/2, \beta = 2/3\) : the unit \(\frac{2cx/3+1/2}{cx+1}\) does not leave \(f\) fixed for any value of \(c\).

Therefore,

\[
G_{f'} = \{x, \frac{-x + 1}{-3x + 2}, \frac{-2x + 1}{-3x + 1}\}
\]

and

\[
G_f = v \cdot G_{f'} \cdot v^{-1} = \{x, \frac{1}{1-x}, \frac{x - 1}{x}\}.
\]

From this group we can compute a proper component of \(f\) using Theorem 7, an we obtain

\[
h = \frac{-3x + 1 + x^3}{(-1 + x)x}
\]

which is indeed a right–component for \(f\), since \(f = g \circ h\) with

\[
g = \frac{x^2}{x - 1}.
\]
Now we present an example illustrating the algorithm over a finite field.

Example 3. Let $\mathbb{K} = \mathbb{F}_2$ and

$$f = \frac{(x^2 + 1)(x^6 + x^4 + x^2 + 1 + x^3)}{x^8 + x^4 + 1 + x^5 + x^3}.$$

First we normalize f: let $u = \frac{x^2 + 1}{x}$ and $v = \frac{1}{x} + 1$. Then

$$f' = u \circ f \circ v = \frac{(x + 1)^4 x^4}{(x^2 + x + 1)(x^4 + x + 1)}.$$

As $B = \{0, 1\}$ and $C = \emptyset$, we only have to check the unit $x + 1$. As it leaves f' fixed, we have that $G_{f'} = \{x, x + 1\}$ and

$$G_f = v \cdot G_{f'} \cdot v^{-1} = \{x, \frac{1}{x}\}.$$

Therefore, a generator of $\text{Fix}(G_f)$ is

$$h = x + \frac{1}{x}$$

which is also a component of f: $f = g \circ h$ with

$$g = \frac{x^4 + x}{x^4 + x + 1}.$$

Acknowledgments

This research is partially supported by the National Spanish project PB97-0346 and Grant Movilidad del Personal de Investigador.

References

[1] C. Alonso, J. Gutierrez, T. Recio: *A Rational Function Decomposition Algorithm by Near-separated Polynomials*. J. Symbolic Comput. 19, 1995, pp.527–544.

[2] J. Gutierrez, R. Rubio, D. Sevilla: *Unirational Fields of Transcendence Degree One and Functional Decomposition*. Proc. of ISAAC–01. ACM Press, 2001, pp. 167–174.

[3] P. Lüroth: *Beweis eines Satzes über rationale Curven*. Mathematische Annalen, 9, 1876, pp. 163-165.

[4] F. Klein: *Lectures on the Icosahedron and the Solution of Equations of the Fifth Degree*. Dover, New York, 1956.
[5] A. Schinzel: *Selected Topics on Polynomials*. Ann Arbor, University Michigan Press, 1982.

[6] T.W. Sederberg: *Improperly Parametrized Rational Curves*. Computed Aided Geometric Design, 3, 1986, pp. 67–75.

[7] D. Sevilla: *The Ritt’s Theorems for Rational Functions*. Dept. of Mathematics, University of Cantabria, Spain, preprint, 2002.

[8] R. Zippel: *Rational Function Decomposition*. Proc. of ISSAC-91. ACM press, 1991, 1–6.