You Talking to Me? A Corpus and Algorithm for Conversation Disentanglement

Micha Elsner and Eugene Charniak

Brown Laboratory for Linguistic Information Processing (BLLIP)
Life in a Multi-User Channel

Does anyone here shave their head?
I shave part of my head.
A tonsure?
Nope, I only shave the chin.

How do I limit the speed of my internet connection?
Use dialup!
Hahaha :P No I can’t, I have a weird modem.
I never thought I’d hear ppl asking such insane questions...
Real Life in a Multi-User Channel

Does anyone here shave their head?

How do I limit the speed of my internet connection?

I shave part of my head.

A tonsure?

Use dialup!

Nope, I only shave the chin.

- A common situation:
 - Text chat
 - Push-to-talk
 - Cocktail party
Why Disentanglement?

- A natural discourse task.
 - Humans do it without any training.
- Preprocess for search, summary, QA.
 - Recover information buried in chat logs.
- Online help for users.
 - Highlight utterances of interest.
 - Already been tried manually: Smith et al ‘00.
 - And automatically: Aoki et al ‘03.
Outline

• Corpus
 – Annotations
 – Metrics
 – Agreement
 – Discussion

• Modeling
 – Previous Work
 – Classifier
 – Inference
 – Baselines
 – Results
Dataset

- Recording of a Linux tech support chat room.
- 1:39 hour test section.
 - Six annotations.
 - College students, some Linux experience.
- Another 3 hours of annotated data for training and development.
 - Mostly only one annotation by experimenter.
 - A short pilot section with 3 more annotations.
Annotation

- Annotation program with simple click-and-drag interface.
- Conversations displayed as background colors.

	Laurena: does anyone here shave their head
2	**Felicia:** Chanel: though load balancing and such do have their rightful places
0	**Matha** entered the room.
0	**Jaymie:** perspective makes the difference between a whistleblower and a snitch.
3	**Cory** left the room (quit: Read error: 110 (Connection timed out)).
10	**Jeanice:** Laurena: i shave part of my head
8	**Caroll** left the room (quit: Read error: 104 (Connection reset by peer)).
8	**Evita** left the room.
5	**Jesse:** Jeanice: a tonsure? ;)
7	**Chanel:** Felicia: come on, please!
2	**Rea** entered the room.
2	**Gale:** a snitch is much worse than a whistleblower
2	**Felicia:** Gale: i wonder if they give you some Cash back like the Utilities do when your meter spins backwards from your Solar panel PVs
1	**Lilliana:** PoNg
One-to-One Metric

Two annotations of the same dataset.
One-to-One Metric

Transform according to the optimal mapping:

Whole document considered at once.

Annotator one Transformed Annotator two
One-to-One Metric

Whole document considered at once.

Transform according to the optimal mapping:

Annotator one

Transformed

Annotator two

70%
Local Agreement Metric

Sliding window: agreement is calculated in each neighborhood of three utterances.

Annotator 1

Annotator 2
Local Agreement Metric

Annotator 1

Same or different?

Different

Same

Different

Annotator 2
Local Agreement Metric

Annotator 1

Annotator 2

Same or different?

66%
Interannotator Agreement

	Min	Mean	Max
One-to-One	36	53	64
Local Agreement	75	81	87

- Local agreement is good.
- One-to-one not so good!
How Annotators Disagree

	Min	Mean	Max
# Conversations	50	81	128
Entropy	3	4.8	6.2

- Some annotations are much finer-grained than others.
Schisms

- Sacks et al ‘74: Formation of a new conversation.
- Explored by Aoki et al ‘06:
 - A speaker may start a new conversation on purpose...
 - Or unintentionally, as listeners react in different ways.
- Causes a problem for annotators...
I grew up in Romania till I was 10. Corruption everywhere.
And my parents are crazy. Couldn’t stand life so I dropped out of school.

You’re at OSU?
Man, that was an experience.
You still speak Romanian?
Yeah.
I grew up in Romania till I was 10. Corruption everywhere.

And my parents are crazy. Couldn’t stand life so I dropped out of school.

You’re at OSU?

Man, that was an experience.

You still speak Romanian?

Yeah.
Accounting for Disagreements

	Min	Mean	Max
One-to-One	36	53	64
Many-to-One	76	87	94

Many-to-one mapping from high entropy to low:

- First annotation is a strict refinement of the second.
- One-to-one: only 75%
- Many-to-one: 100%
Pauses Between Utterances

A classic feature for models of multiparty conversation.

Pause length in seconds (log scale)

Frequency

Peak at 1-2 sec. (turn-taking)

Heavy tail
Is there an easy way to extract files from a patch?

Sara: No.

Sara: Patches are diff deltas.

Carly, duh, but this one is just adding entire files.

Very frequent: about 36% of utterances.

A coordination strategy used to make disentanglement easier.

- O’Neill and Martin ‘03.

Usually part of an ongoing conversation.
Previous Work

- Aoki et al ‘03, ‘06
 - Conversational speech
 - System makes speakers in the same thread louder
 - Evaluated qualitatively (user judgments)

- Camtepe ‘05, Acar ‘05
 - Simulated chat data
 - System intended to detect social groups
Previous Work

- Based on pause features.
 - Acar ‘05: adds word repetition, but not robust.
- All assume one conversation per speaker.
 - Aoki ‘03: assumed in each 30-second window.
Conversations Per Speaker

A scatter plot showing the relationship between utterances and threads. The average number of threads per speaker is 3.3.
Our Method: Classify and Cut

- Common NLP method: Roth and Yih ‘04.
- Links based on max-ent classifier.
- Greedy cut algorithm.
 - Found optimal too difficult to compute.
Classifier

- Pair of utterances: same conversation or different?

- Chat-based features (F 66%):
 - Time between utterances
 - Same speaker
 - Name mentions

- Most effective feature set.
Classifier

• Pair of utterances: same conversation or different?

• Chat-based features (F 66%)

• Discourse-based (F 58%):
 – Detect questions, answers, greetings &c

• Lexical (F 56%):
 – Repeated words
 – Technical terms
Classifier

- Pair of utterances: same conversation or different?
 - Chat-based features (F 66%)
 - Discourse-based (F 58%)
 - Lexical (F 56%)
 - Combined (F 71%)
Inference

Greedy algorithm: process utterances in sequence

Classifier marks each pair “same” or “different” (with confidence scores).

Pro: online inference
Con: not optimal
Inference

Greedy algorithm: process utterances in sequence

Treat classifier decisions as votes.

Pro: online inference
Con: not optimal
Inference

Greedy algorithm: process utterances in sequence

Treat classifier decisions as votes.

Color according to the winning vote.

If no vote is positive, begin a new thread.

Pro: online inference
Con: not optimal
Baseline Annotations

- All in same conversation
- All in different conversations
- Speaker’s utterances are a monologue

- Consecutive blocks of k
- Break at each pause of k
 - Upper-bound performance by optimizing k on the test data.
Results

	Humans	Model	Best Baseline	All Diff	All Same
Max 1-to-1					
	64	51	56 (Pause 65)	16	54
Mean 1-to-1					
	53	41	35 (Blocks 40)	10	21
Min 1-to-1					
	36	34	29 (Pause 25)	6	7

			Best Baseline	All Diff	All Same
Max local					
	87	75	69 (Speaker)	62	57
Mean local					
	81	73	62 (Speaker)	53	47
Min local					
	75	70	54 (Speaker)	43	38
Some annotators agree better with baselines than other humans...
Local Agreement Plot

All annotators agree first with other humans, then the system, then the baselines.
Mention Feature

• Name mention features are critical.
 – When they are removed, system performance drops to baseline.

• But not sufficient.
 – With only name mention and time gap features, performance is midway between baseline and full system.
Plenty of Work Left

- Annotation standards:
 - Better agreement
 - Hierarchical system?
- Speech data
 - Audio channel
 - Face to face
- Improve classifier accuracy
- Efficient inference
- More or less specific annotations on demand
Data and Software is Free

- Available at: www.cs.brown.edu/~melsner

- Dataset (text files)
- Annotation program (Java)
- Analysis and Model (Python)
Acknowledgements

- Suman Karumuri and Steve Sloman
 - Experimental design
- Matt Lease
 - Clustering procedure
- David McClosky
 - Clustering metrics (discussion and software)
- 7 test and 3 pilot annotators
- 3 anonymous reviewers
- NSF PIRE grant