Illumina high-throughput sequencing for the genome of emerging fowl adenovirus D species and C species simultaneously

Ning Cui,*1 Mei Lu,5,1 Shiping Sun,*1,4,1 Shouli Sun,*1 Chuantian Xu,*1 Shuai Su,1 Nataliia Hrabchenko,*1 and Qinghua Huang*1

*Shandong Key Laboratory of Animal Disease Control and Breeding; Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, PR China; 1Key Laboratory of Livestock and Poultry Multi-omics of MARA, PR China; 5Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China; and 4Weifang Engineering Vocational College, Qingzhou, China

ABSTRACT

In recent years, clinical cases of inclusion body hepatitis (IBH) and hydropericardium syndrome (HPS) have been emerging and increasing in chicken flocks worldwide. Mixed infections with 2 or more fowl adenovirus (FAdV) serotypes were common in these cases. Herein, we collected a clinical sample that was positive for FAdV from 40-day-old broilers with IBH and HPS symptoms in Shandong province of China and determined the complete genome of FAdVs on the Illumina HiSeq4000 platform. The results showed that the sample contained 2 FAdV strains of D species and C species and named SD1763-1 and SD1763-2 respectively. The genome of SD1763-1 strain was 43,913 nt in length, with a G+C content of 53.51%, whereas SD1763-2 strain was 43,721 nt in length, with a G+C content of 54.87%. Sequence alignment and phylogenetic analysis revealed that strain SD1763-1 was clustered together with serotype 2/11 of FAdV-D, and SD1763-2 was clustered together with FAdV-4. There is no recombination between the genomes of the 2 viruses of FAdV-D and FAdV-C in the present study. This is the first report of obtaining 2 genomic sequences of FAdV strains simultaneously by direct use of deep sequencing in one clinical individual chicken sample, which provided direct evidence for mixed infections of adenovirus serotypes in the clinic and enriched the genome data to explore the geographic biomarkers and virulence signatures of the genus Aviadenovirus.

Key words: fowl adenovirus, mix infection, high-throughput, genome, evolution

INTRODUCTION

The family Adenoviridae is divided into 6 genera Atadenovirus, Aviadenovirus, Ichtadenovirus, Mastadenovirus, Siadenovirus and Testadenovirus, and can cause infectious diseases in a broad spectrum of vertebrate hosts (Benkó et al., 2022). Fowl adenoviruses (FAdVs) belong to the genus Aviadenovirus and are grouped into 5 species (FAdV-A to E) based on restriction fragment length polymorphism (RFLP) and molecular structure. They were further divided into 12 serotypes (FAdV-1 to 8a and -8b to 11) as a result of serum cross-neutralization tests within the 5 species (Hess, 2000). FAdVs are reported in the poultry industry worldwide and are mainly responsible for naturally acquired outbreaks of inclusion body hepatitis (IBH), hydropericardium syndrome (HPS), and gizzard erosions (GE) in chickens, causing substantial economic losses. Previously published documents showed that most commonly FAdVs isolated from IBH cases belong to various serotypes of species FAdV-D and FAdV-E, whereas new emerging pathogenic FAdV-4 strains from FAdV-C are directly connected to HPS outbreak, and GE cases are mostly caused by FAdV-A infection (Schachner et al., 2018). However, some FAdVs may be isolated from asymptomatic chickens with no or mild clinical signs, and are considered ubiquitous in poultry populations (Schachner et al., 2021). Mixed infections with 2 or more adenovirus serotypes were also common in IBH and HPS cases, thus aggravating the infection caused by a single nonpathogenic virus (Meulemans et al., 2001). Natural recombination likely occurs in these co-infected clinical samples as reported in some HAdV and FAdV species, which

© 2022 Published by Elsevier Inc. on behalf of Poultry Science Association Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Received June 19, 2022.
Accepted October 22, 2022.
1Equal contributors.
2Corresponding author: ssu6307@163.com
served as the primary source of adenovirus evolution (Schachner et al., 2019).

FAdVs are icosahedral nonenveloped viruses containing double-stranded linear DNA genomes encoding proteins on both strands (Hess, 2000). Avianadenoviruses have the largest genome (43–45 kb) among adeno-
noviruses (Benkő et al., 2022). Previously, we and other teams have employed high-throughput sequencing technology to obtain the genome of different FAdV strains (Huang et al., 2019; Schachner et al., 2019). In the present study, we collected a clinical sample that was positive for FAdV from 40-day-old commercial broilers with IBH and HPS symptoms in Shandong province of China and obtained 2 genomic sequences of FAdV strains simultaneously by direct use of high-throughput sequencing in one clinical individual chicken sample.

MATERIALS AND METHODS

A clinical case with IBH and HPS symptoms occurred in 40-day-old broiler chickens with 3% mortality rate in Shandong province of China in 2019. Heart and liver tissue from each dead broiler chicken were collected and homogenized individually to obtain a 10% suspension. After low-speed centrifugation, the tissue suspensions were detected by PCR targeting a 507 nt fragment of the hexon gene using primer set FAdV-F: AATTTCGACCCCCATGACGCCGAGG and FAdV-R: TGGC GAAAGGCCTACCGAAGTAAGC. The FAdV-positive supernatants were propagated on the confluent monolayers of a chicken hepatoma cell line respectively. The collected supernatants were clarified by low-speed centrifugation and then ultracentrifuged to obtain the pelleted cell-free virions. Total DNA of FAdV strain for sequencing was extracted from ultracentrifuged virus suspensions obtained in the same branch on the entire genomic and some previously suspected FAdV-11 isolates were clustered in the same branch on the entire genomic and

RESULTS AND DISCUSSION

The SD1763 isolate contained the genome of 2 fowl adenovirus serotypes and named SD1763-1 and SD1763-2 respectively. The genome of FAdV-D strain SD1763-1 was 43,913 nt in length, with a G+C content of 53.51%, whereas FAdV-C strain SD1763-2 was 43,721 nt in length, with a G+C content of 54.87%. The whole genome sequences of SD1763-1 and SD1763-2 have been deposited to GenBank database under accession numbers ON260920 and ON260919. The PRKM ratio of the SD1763-1 to SD1763-2 is 1.417, which demonstrated that the SD1763-1 strain possessed more viral genomes than the SD1763-2 strain. This is the first report of obtaining two viral genomes by direct use of deep sequencing in one individual chicken sample co-infected with FAdVs.

Molecular characteristics of potentially devastating FAdVs like FAdV-D which has long been circulating in China are relatively lacking. The genome sequences of all FAdV-D members until now show high sequence conservation throughout the genome. Initially, FAdV typing was achieved with a cross-neutralization test and the SR48 strain was primarily considered as the FAdV-2 reference strain (Hess, 2000). However, there is a common evolutionary origin between the SR48 strains and FAdV-11 strain 380 as evidenced by hexon gene sequences. Further cross-neutralization results in more recent studies also support the proposed reclassification of the SR48 prototype into FAdV-11 (Meulemans et al., 2001). The evolution of the whole genome (Figure 1A) and adequate phylogenetic analysis of important antigenic proteins Hexon, Fiber and Penton (Figure 1C) in the present study systemically proved the close relationship of SR48 and 380, which supports the grouping of FAdV-2 and -11 into a single type. Prototype strain 685 from Northern Ireland has been proposed as an antigenic variant with prime relationships to FAdV-2/-11. The FAdV-D isolate SD1763-1 in the present study and some previously suspected FAdV-11 isolates were clustered in the same branch on the entire genomic and

PRKM = \frac{\text{total viral genome reads}}{\text{mapped reads (millions) \times viral genome length (KB)}}

Multiple sequence alignment with other FAdVs worldwide (Table 1) was carried out using the sequence analysis software Lasergene 1 (DNASTAR Inc., Madison, WI) and the NCBI BLAST program (http://blast.ncbi.nlm.nih.gov/Blast.cgi). The sequenced strain was compared to all published whole genome sequences of avian FAdVs representing the different genera. The evolutionary history of FAdV genomes was inferred using Neighbor-joining method (MEGA 6). Phyloge-
netic analysis of the Hexon, Fiber, and Penton proteins of isolates from recent years was carried out. ORF identifi-
cation and gene prediction were carried out by Gene-MarkS v 4.28. Multiple genome alignments were analyzed with the suite of recombination detection algorithms using MEGA6 and SimPlot v 3.5.1 to detect possible recombination events among FAdV strains. Genetic features of geographical characteristics and genomic signatures associated with biological properties were explored based on the genomic analysis and patho-
genic properties of all document strains.
Table 1. FAdV strains used in comparison with the genome of SD1763-1 and SD1763-2.

Species	Prototype	Isolate	Accession no.	Year	Country of origin
A	1	CELO	NC_001720	1957	USA
B	5	340	KF493646	1970s	Northern Ireland
C	4	KR5	HE608152	1950s/1960s	Japan
	10	C2-B	MK572851	—	USA
	ON1		GU188428	2004	Canada
	JP/LVP-1-96		LC628937	1996	Japan
	BI-7		KU342001	2011	India
	MX-SHP95		KP235475	1995	Mexico
	AG234-CORR		MK572849	1995	Mexico
	INT4-ATTENUATED-AG234	MK572850	1995	Mexico	
	SCDY		MK629523	2018	China
	AH-F19		MN781666	2019	China
	JSJ13		KM096544	2013	China
	CH/AHMGC/2018		MN603933	2018	China
	AQ		KY343520	2016	China
	SCnij1601		KY3927938	2016	China
	ZJ2015		MF521611	2015	China
	D9		KY379035	2016	China
	JS7		KY435619	2015	China
	AH726		KY435621	2016	China
	AH712		KY435622	2016	China
	HLJ-J160826		KY59422	2016	China
	CH/S/JCN/2015		MG924745	2015	China
	GX-1		MH454598	2017	China
	D2004737		MT813039	2020	USA
	HLJDAd15		KX538980	2015	China
	SDX1		KY636140	2015	China
	HLJFA15		KU991797	2015	China
	CH/AHW/2018		MN66092	2018	China
	SDTA2		MW349185	2019	China
	AH-F18		MN781665	2018	China
	CH/AHBZ/2015		KU569295	2015	China
	CH SDDZ 2015		KU569276	2015	China
	CH/SXZ/2015		KU569276	2015	China
	CH/HSZ/2015		KU569276	2015	China
	CH/SXZ/2015		KU569276	2015	China
	ZZ		MN337322	2016	China
	CH/GDFY/201706		MK387062	2017	China
	HB1502		KX424101	2015	China
	SD1501		KX424101	2015	China
	HN1501		KX424103	2015	China
	SD1511		MF496037	2015	China
	FAdv-n22		MT119964	2019	China
	NIVD2		MG547384	2017	China
	SD1601		MH00602	2016	China
	HN/151092		KX090424	2015	China
	CH/AHMC/2015		MG143335	2015	China
	HB1510		KU585719	2015	China
	GDMZ		MG556954	2016	China
	HLJ/151118		KX067150	2015	China
	HN/151025		KU245450	2015	China
	AHFY19		MN54222	2019	China
	SR48		KT862806	1950s/1960s	Japan
	SR49		KT862807	1950s/1960s	Japan
	A-2A		NC_008909	1999	Canada
	380		KT862812	1950s/1960s	United Kingdom
	389-CORR		MK572873	1971	United Kingdom
	P7-A		MK572866	—	USA
	GB528		MK572867	1998	Switzerland
	13-11324		MK572872	2012	Austria
	685-CORR		MK572874	1950s/1960s	United Kingdom
	685		KRT862805	1950s/1960s	United Kingdom
	08-9513		MK572870	2008	Germany
	08-8872		MK572869	2008	Germany
	GB591		MK572868	1998	Germany
	FAdv-D		MN509168	2018	Australia
	GA-1358/1995		MN711799	1995	USA
	Iran/UT-Kiaae/2018		MK757569	2018	Iran
	PKFAd18		MN428137	2018	Pakistan
	08-18926		MK572871	2008	Austria
	MX05-S11		KU746935	1995	Mexico
	ON P2		KU310942	2005	Canada
	ON NP2		KP231537	2005	Canada
	FAdv-D		KM696546	2014	China

(continued)
segmental phylogenetic trees, which is closer to FAdV-2 prototype strain 685 than SR48 and FAdV-11 strain 380. Before re-genotyping the FAdV-D group, we consider these isolates more likely to belong to the FAdV-2 type, which remains to be precisely determined by the systemic cross-neutralization test. FAdV-D isolates are global distribution and not grouped phylogenetically according to geographic regions, but all Chinese isolates were grouped in the same branch with three North American isolates ON NP2, ON P2, and MX95-S11.

Table 1 (Continued)

Species	Prototype	Isolate	Accession no.	Year	Country of origin
HBQ12	JL/1407	KM096545	2012	China	
LN/1507		KU497449	2015	China	
E	6	CR119	KT862808	1950s/1960s	Japan
7	YR36	KT862809	1950s/1960s	Japan	
8a	TR59	KT862810	1950s/1960s	Japan	
8b	764	KT862811	1950s/1960s	United Kingdom	
HG		GU734104	2011	Canada	

— indicated that the information was not queried.

Figure 1. Phylogenetic analysis and sequence alignment of Chinese FAdV strains SD1763-1 and SD1763-2 based on the whole genome sequences of FAdVs. (A) Phylogenetic analysis of the entire genome of all FAdV-D strains with full-length sequences available and comparison of the longer repeat region (TR-2) present in the FAdV-D genomes. FAdV-9 prototype strain A-2A was used as a reference strain. (B) Phylogenetic analysis of all FAdV-C strains with full-length sequences available and comparison of all FAdV-4 complete genomes. FAdV-4 prototype strain KR5 was used as a reference strain. The repeated region subunit is marked by a separated blue box and the box numbers represent the repeats numbers. Red box represents deletion and other blue box represents insertion at the indicated position. Open reading frames (ORFs). (C) Phylogenetic trees based on amino acid sequences of hexon, fiber and penton genes of SD1763-1, SD1763-2 and other FAdVs. For each gene, deduced amino acid sequences from SD1763-1 and 1763-2 were aligned with other representative FAdV isolates of different serotypes for which full-length sequences were available in GenBank using DNASTAR (version 7.1.3). All phylogeny trees in Figure 1 were created by the neighbor-joining method with MEGA (version 5.05). The numbers at the branch points show the bootstrap values calculated from 1000 bootstrap replicates, and the scale bars indicate the numbers of nucleotide/amino acid substitutions per site. The blue branches represent Chinese isolates, and the red branches represent isolates from other countries. The red triangle represents FAdV prototype strains and the blue circle represents SD1763-1 and SD1763-2 strains.
Genomes of FADV-D and FADV-C Species

According to the genome evolution, indicating a close evolutionary relationship between these isolates.

Experimental trials to determine the genomic signatures associated with FAdV-D virulence have been conducted with inconsistent results. However, genomic signatures associated with FAdV-4 virulence are not clearly attributed to a specific gene until now (Schachner et al., 2021). The longer repeat region (TR-2) present at the right end of the genome has been considered a potential marker of pathogenic FAdV-D (Ojic and Nagy, 2001). The nonpathogenic ON-NP2 recovered from a healthy flock and the nonpathogenic FAdV-9 had 13 TR-2 repeats, while all pathogenic isolates contained 8 or fewer repeats in the TR-2 region. In contrast, FAdV-11 strain MX95-S11, which was also isolated from a healthy farm, contains only 6 repeats in the TR-2 region. The genome of SD1763-1 strain in the present study contained only four identical and contiguous 135 bp TR-2 repeats, as shown in Figure 1A. The TR-2 subunit repeats are required for efficient virus replication in vitro in FAdV-9. A large number of TR repeats at the 3’ end of gam-1 reduces the amount of GAM-1 protein, which increases in the late stage of infection and facilitates the spread of human adenovirus on the host tissue. The detailed function and its mechanism of the TR repeat in FAdV-D pathogenesis remains to be defined. Currently, only a few complete genomes of FAdV-D are available in the public database, and many of which have not been systematically studied for their pathogenicity. Further whole genome of FAdV-D and pathological characterization studies are needed to explore the genetic determinants of virulence.

Based on enlarged FAdV-4 cohort genome data, we were able to systematically explore the evolutionary relationship and genomic features among geographically distinct isolates worldwide. All Chinese FAdV-4 isolates were phylogenetically grouped in the same branch based on the entire genome, while the FAdV-4 isolates from other countries were clustered with FAdV-10 strains in the region of the genome compared to the corresponding nucleotide positions within the KR5 reference strain. Deletion of CCCCCCT at residue 28785 leads to the absence of a continuous Pro in 22KDa protein. Deletion of A at residue 35328 leads to the frameshift of ORF42 to encode a shorter protein. The 1966bp deletion resulted in the absence of ORF19, ORF27, and ORF48. Insertion of AAT at residue 38330 encoded an additional Ile in ORF43 (Figure 1B). These results indicate that there is a certain evolutionary relationship between D2004737 strain and the epidemic FAdV-4 isolates in China (Mete et al., 2021).

The emergence of high pathogenic FAdV-4 isolates is a concern for the poultry industry (Zhang et al., 2018). MX-SHP95 is a highly virulent FAdV that causes 100% mortality in 1-day-old chicks when challenged with a higher dosage of the virus, and leads to 40% mortality when administrated a lower dose of virus. The American isolate D2004737 recently reported induced IBH in adult chicken (Mete et al., 2021). However, some FAdV-4 strains are reportedly nonvirulent based on clinical observations or experimental infections, such as ON1 and KR5. B1-7 was also a nonvirulent strain isolated from healthy poultry birds in India reported in 2011. INT4-ATTENUATED-AG234 was generated by in vitro-attenuation of FAdV-4 isolate of AG234/INT4. Fiber2 and hexon genes play partial roles in the virulence of the emerging and highly pathogenic FAdV-4 isolates (Zhang et al., 2018). It is not clear whether there are other genetic features that enable a pathogenic FAdV-4 to cause a specific disease. The molecular differences in the entire genomes between highly virulent strains and nonvirulent strains of FAdV-4 were therefore further investigated (Figure 1B). The above nonpathogenic strains KR5, ON1, B1-7, and INT4-ATTENUATED-AG234 possessed 4, 3, 3, and 1 TR-E smallest units respectively, whereas the pathogenic strains including Chinese FAdV-4 isolates, AG234-CORR, D2004737, and MX-SHP95 lack the TR-E unit in the genome, it suggest that the region may also have a role in pathogenesis. The Japanese isolate JP/LVP/96 also contains 2 repeats of TR-E smallest unit suggesting that this strain is more likely to be a nonpathogenic virus. In addition, these virulent viruses contain a conservative Ser mutation at residue 66 and GGA insertion coding Gly at residue 56 in ORF16, the exact role of which remains to be determined.

It would be interesting to analyze the recombinants between whole genomes of isolate among different FAdV species. The homology of the entire genome sequence of FAdV-D strain SD1763-1 and FAdV-C strain SD1763-2 is relatively low, and there is no recombinant signal between the genomes of the two viruses of FAdV-D and FAdV-C in the present study, which is consistent with previous report (Schachner et al., 2019). However, it is worth noting that a single clinical specimen containing FAdV-D and FAdV-E cannot be sequenced and successfully assembled in a single next-generation sequencing reaction because recombinations are common among these specimens. The viral strains in such mixed infection samples should first be cloned for purification in order to obtain each accurate genome sequence.
ACKNOWLEDGMENTS

This study is supported by High-Level Talents and Innovative Team Recruitment Program of the Shandong Academy of Agricultural Sciences (CXGC2018E10 and CXGC2021B03), Natural Science Fund of Shandong Province (ZR2020MC180 and ZR2021MC096), and Modern Agro-industry Technology Research System (CARS-41-Z17).

DISCLOSURES

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

REFERENCES

Benko, M., K. Aoki, N. Arnberg, A. J. Davison, M. Echavarría, M. Hess, M. S. Jones, G. L. Kaján, A. E. Kajon, S. K. Mittal, I. I. Podgorski, C. San Martín, G. Wadell, H. Watanabe, and B. Harrach. 2022. C. Ictv Report. 2022. ICTV virus taxonomy profile: adenoviridae 2022. J. Gen. Virol. 103.

Hess, M. 2000. Detection and differentiation of avian adenoviruses: a review. Avian Pathol. 29:195–206.
Huang, Q., X. Ma, X. Huang, Y. Huang, S. Yang, L. Zhang, N. Cui, and C. Xu. 2019. Pathogenicity and complete genome sequence of a fowl adenovirus serotype 8b isolate from China. Poult. Sci. 98:573–580.
Mete, A., A. G. Armien, D. Rejmanek, M. Mott, and B. M. Crossley. 2021. Emergence of fowl aviadenovirus C-4 in a backyard chicken flock in California. J. Vet. Diagn. Invest. 33:806–809.
Meulemans, G., M. Boschmans, T. P. Berg, and M. Decaesstecker. 2001. Polymerase chain reaction combined with restriction enzyme analysis for detection and differentiation of fowl adenoviruses. Avian Pathol. 30:655–660.
Ojkic, D., and E. Nagy. 2001. The long repeat region is dispensable for fowl adenovirus replication in vitro. Virology 283:197–206.
Schachner, A., G. Gonzalez, L. Endler, K. Ito, and M. Hess. 2019. Fowl adenovirus (FAdV) recombination with intertypic crossovers in genomes of FAdV-D and FAdV-E, displaying hybrid serological phenotypes. Viruses 11:1094.
Schachner, A., M. Matos, B. Graff, and M. Hess. 2018. Fowl adenovirus-induced diseases and strategies for their control - a review on the current global situation. Avian Pathol. 47:111–126.
Zhang, Y., R. Liu, K. Tian, Z. Wang, X. Yang, D. Gao, Y. Zhang, J. Fu, H. Wang, and J. Zhao. 2018. Fiber2 and hexon genes are closely associated with the virulence of the emerging and highly pathogenic fowl adenovirus 4. Emerg. Microbes Infect. 7:199.