Sphingolipid Profiling Reveals Different Extent of Ceramide Accumulation in Bovine Retroperitoneal and Subcutaneous Adipose Tissues

Yue Hei Leung
City University of Hong Kong

Sonja Baessler
Universitat Hohenheim Fakultat Agrarwissenschaften

Christian Koch
Education and Research Centre for Animal Health, Hofgut Neumuehle

Theresa Scheu
Education and Research Centre for Animal Husbandry, Hofgut Neumuehle

Ulrich Meyer
Friedrich-Loeffer-Institut Institut fur Tierernahrung

Sven Dänicke
Friedrich-Loeffer-Institut Institut fur Tierernahrung

Korinna Huber
Universitat Hohenheim Fakultat Agrarwissenschaften

Ákos Kenéz
City University of Hong Kong
https://orcid.org/0000-0002-9041-3452

Research

Keywords: sphingolipid, retroperitoneal adipose tissue, subcutaneous adipose tissue, ceramide, lipidomics, metabolomics

Posted Date: August 19th, 2020

DOI: https://doi.org/10.21203/rs.3.rs-60859/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background: Sphingolipids are bioactive lipids that can modulate insulin sensitivity, cellular differentiation, and apoptosis in a tissue-specific manner. Previous studies in dairy cattle reported that the retroperitoneal adipose tissue (RPAT) was more active than the subcutaneous adipose tissue (SCAT) in terms of insulin sensitivity, lipolytic activity, and pro-inflammatory signaling. Sphingolipids were discussed to be involved in inflammation, however, their comparative profiles in bovine RPAT and SCAT are currently unknown. We aimed to characterize the sphingolipid profiles using a targeted lipidomics approach and to assess whether potentially related sphingolipid pathways are different between SCAT and RPAT. Holstein bulls (n = 6) were slaughtered, and SCAT and RPAT samples were collected for sphingolipid profiling. A total of 70 sphingolipid species were detected, including 24 species of ceramide (Cer) and dihydroceramide (DHCer), 18 species of sphingomyelin (SM) and dihydrosphingomyelin (DHSM), 11 species of ceramide-1-phosphate (C1P) and sphingosine-1-phosphate (S1P), 9 species of galactosylceramide (GalCer), glucosylceramide (GluCer), lactosylceramide (LacCer), and 8 species of sphinganine (DHSph) and sphingosine (Sph). The concentration of each sphingolipid was quantified by UPLC-MRM/MS.

Results: Our results showed that sphingolipids of the *de novo* synthesis pathway such as DHSph, DHCer, and Cer, were more concentrated in RPAT than in SCAT. Sphingolipids of the salvage pathway and the sphingomyelinase pathway such as Sph, S1P, C1P, glycosphingolipid, and SM were more concentrated in SCAT. Our results indicate that RPAT had a greater extent of ceramide accumulation, and thereby increased the concentration of further sphingolipid intermediates in the *de novo* synthesis pathway.

Conclusion: This distinctive sphingolipid distribution pattern in RPAT and SCAT can potentially explain the tissue-specific activity in insulin sensitivity, pro-inflammation, and oxidative stress in RPAT and SCAT.

Background

Sphingolipid is a class of structural lipids in eukaryotic cells that not only constitutes the cell membrane but also exhibits cell signaling function to modulate insulin sensitivity, differentiation, and apoptosis in a tissue-specific manner [1, 2]. Although associations between bovine metabolic health and sphingolipid function have partially been established [3], most of this research merely focused on ceramides. Even less studies have discussed the physiological role of sphingolipids in bovine adipose tissue. To better understand the sphingolipid function in bovine adipocytes, it is important to consider the dynamics in the metabolic pathways of sphingolipid synthesis, degradation, and modification: the *de novo* synthesis pathway, the salvage pathway, and the sphingomyelinase pathway (Fig. 1). The *de novo* synthesis pathway is essential to the survival and normal metabolic activity of adipocytes. It was demonstrated that an interruption of the *de novo* synthesis pathway by adipocyte-specific serine palmitoyltransferase (SPT) mutation reduces adipose tissue size, decreases the downstream sphingolipid quantity and significantly decreases the circulating level of adipokines leptin and adiponectin in mice [4]. The salvage pathway is important for sphingolipid recycling and turnover. Large sphingolipids such as
glycosphingolipids and ceramide-1-phosphates (C1P) are broken down into sphingosine, and further transformed into ceramide [5]. The sphingomyelinase pathway or sphingomyelin hydrolysis pathway is essential for cellular function and health. It was observed that human adipose tissues affected by inflammation featured greater gene expression levels of sphingomyelinase [6]. This implied that sphingomyelin-driven ceramides could be associated with inflammation, under the transformation by sphingomyelinase [7]. Studying sphingolipid biology, particularly in adipose tissue, is critical in dairy cattle because the physiological function of sphingolipids are suggested to represent a potential link between metabolic stress and physiological adaptation [1].

Adipocyte metabolism is important for sphingolipid biology not only because of its role in lipid storage and release but also because of its active role in regulating homeostasis and inflammatory response [8]. However, adipose metabolism differs to some extent between adipose depots. Retroperitoneal (RPAT) and subcutaneous adipose tissue (SCAT) in dairy cows are suggested to be different in insulin signaling, proinflammatory signaling, and lipolytic activity [9–11]. It was demonstrated that RPAT is more responsive than SCAT regarding the insulin signaling pathway, with greater Akt and AMPK phosphorylation, as well as greater FAS expression, shown by an ex vivo study [9]. Also, RPAT had greater proinflammatory cytokines and chemokines mRNA expression than SCAT during energy overfeeding [10]. LF Locher, N Meyer, EM Weber, J Rehage, U Meyer, S Danicke and K Huber [11] demonstrated that the hormone-sensitive lipase (HSL) activity was higher in RPAT than SCAT as reflected by a greater extent of phosphorylation at Ser 660, an activation marker of HSL. Additionally, RPAT had higher lipolytic activity than SCAT under catecholamine stimulation [12]. In contrast to SCAT, RPAT accumulated and lost adipose mass with greater fluctuation during the peripartum period [13]. Collectively, these studies demonstrated that RPAT responds more dynamically to metabolic stimuli than SCAT, which is in agreement with human adipose biology [14].

To study the systemic relationship of sphingolipids in adipose tissues, particularly in SCAT and RPAT, the comparative distribution pattern of various sphingolipid moieties in these adipose depots has to be determined. However, the sphingolipid profiles of bovine SCAT and RPAT have not yet been reported. We hypothesized that the sphingolipid profiles differ between RPAT and SCAT, particularly ceramides may be more concentrated in RPAT than in SCAT, given that RPAT was shown to be more prone to proinflammatory signaling than SCAT. In this study, we aim to characterize the sphingolipid profiles using a lipidomics approach and to determine whether SCAT and RPAT differ in the concentration of various sphingolipid species. Hence, the objectives of this study were to compare and contrast the sphingolipid species in SCAT and RPAT, and to distinguish the major differences in the sphingolipid biochemical pathways of both tissues.

Materials And Methods

Animals and Sampling
Six German Holstein bulls, intended for beef production, were used for adipose tissue sample collection for this study. Animals were kept at the Educational and Research Centre for Animal Husbandry, Hofgut Neumuehle (Muenchweiler a.d. Alsenz, Germany). They were a subgroup of a larger cohort used for a nutritional trial, approved by the relevant Department for Animal Welfare Affairs (Landesuntersuchungsamt Rheinland-Pfalz, Koblenz, Germany) in agreement with the German Animal Welfare Act (permit number: G-17-20-070). Bulls were housed on slatted floor with rubber mats in groups of four animals and were fed a total mixed ration based on grass silage and corn silage. Although the current study’s objectives did not include the study of nutritional influence on adipose depot dependent sphingolipid abundance, the diet of three of the six bulls included an additional 6 kg per day concentrate for 7 months before slaughter. This is because the larger nutritional trial that these animals derived from had a focus on intensive and moderate fattening regimens (intensive: 11.4 vs. moderate: 10.2 MJ ME /kg of DM). However, the number of replicates per dietary group (n = 3) was considered to be insufficient in terms of statistical power to confirm or reject any dietary effects, and so this aspect was not further investigated. Bulls were slaughtered at an age of 20 months (live weight 755 ± 73 kg; means ± SD), and tissue samples of the subcutaneous adipose depot (at the tail head) and the retroperitoneal adipose depot were collected within 30 minutes. Samples were immediately rinsed in ice-cold physiological saline solution and cut into approx. 100 mg pieces, before snap-freezing them in liquid nitrogen. Samples were then stored at -80 °C until analysis.

Sphingolipid Measurement

Samples were submitted to The Metabolomics Innovation Centre (TMIC UVic Node at The University of Victoria, Genome BC Proteomics Centre, Victoria, BC, Canada) for sphingolipid profiling. The detailed experimental procedures were described in previous studies [15, 16]. In brief, lipid extraction was accomplished by methanol-chloroform bilayers separation [17]. After the samples were mechanically homogenized with metal beads, 10 mL per mg of methanol-chloroform (5:2, v/v) was added into the mixture with 0.1 mg/mL of antioxidant butylated hydroxytoluene (BHT). The mixture was then homogenized, sonicated, and centrifuged in an Eppendorf 5420R centrifuge for 15 min at 21,000 x g and 10 °C for the first lipid extraction. The precipitated pellet was homogenized with methanol-chloroform (1:1, v/v) at 10 µL/mg tissue weight again using the same setup for the second lipid extraction. After centrifugation, the clear supernatant was pulled and dried by nitrogen gas at 30 °C. The residue was dissolved in methanol with two internal standards: C17:0-sphinganine as the positive-ion internal standard, and C17:1-sphingosine-1-phosphate as the negative-ion internal standard.

After the lipid extraction, the mixed standard stock solution (S1) was serially diluted with methanol in a ratio of 1:4 (v/v) into stock solution S2 to S10. 10 µL of sample was injected into UPLC-MS/MS for lipid detection. The Waters UPLC system coupled with 4000 QTPAP mass spectrometer was operated in the multiple reaction monitoring (MRM) mode. The mobile phase in UPLC was made of 0.01% formic acid in water and acetonitrile-isopropanol (2:1, v/v) for binary-solvent gradient elution. The UPLC-MRM/MS data were documented with Sciex Analyst software and processed with Sciex MultiQuant software. The concentrations of sphingolipids were quantified from the calibration standard curves with the measured
peak areas. 77 sphingolipid species were targeted and 70 species were detected, including 24 species of ceramide (Cer) and dihydroceramide (DHCer), 16 species of sphingomyelins (SM), 2 species of dihydrosphingomyelin (DHSM), 11 species of ceramide-1-phosphate (C1P) and sphingosine-1-phosphate (S1P), 9 species of galactosylceramide (GalCer), glucosylceramide (GluCer), lactosylceramide (LacCer), and 8 species of 3-ketosphinganine, sphinganine (DHSph) and sphingosine (Sph).

Statistical Analyses

To visualize the fold-change and P-value of a t-test analyzed between SCAT and RPAT, a volcano plot was drawn in R version 4.0.0 with the package ggplot2 [18]. No criteria were set for fold-change, and the threshold for P-value was set at 0.1. The data frames were reshaped with the packages dplyr and reshape [19, 20]. To show the distribution of sphingolipids in SCAT and RPAT, bar plots of the three pathways of interest were drawn in GraphPad Prism version 8.3.0 for Mac (GraphPad Software, La Jolla, CA). P-values between SCAT and RPAT were calculated by paired Student's t-test with false discovery rate (FDR) correction. The standard error of mean (SEM) was shown by the error bar. Levels of statistical trends and statistical significance were indicated as: † P < 0.1, * P < 0.05; ** P < 0.01.

Results

Comparative Sphingolipid Distribution in SCAT and RPAT

The fold-change of RPAT to SCAT over respective P-values of sphingolipids are shown in the volcano plot in Fig. 2. In the de novo synthesis pathway (red), 11 out of 28 sphingolipid species were more concentrated in RPAT (P < 0.1, log₂FC > 0), while 3 out of 28 sphingolipid species were more concentrated in SCAT (P < 0.1, log₂FC < 0). In the salvage pathway (green), 16 out of 24 sphingolipid species were more concentrated in SCAT (P < 0.1, log₂FC < 0), while none of them were more concentrated in RPAT with a significant difference. In the sphingomyelinase pathway (blue), 15 out of 18 sphingolipid species were more concentrated in SCAT (P < 0.1, log₂FC < 0), and C22:0-SM was the only sphingolipid in this category which was more concentrated in RPAT (P = 0.014, log₂FC > 0). Collectively, RPAT was more concentrated with the sphingolipids of the de novo synthesis pathway, and SCAT was more concentrated with the sphingolipids of the salvage and sphingomyelinase pathways.

Distribution of Sphingolipids in the De Novo Synthesis Pathway

The distribution of sphingolipids of the de novo synthesis pathway in SCAT and RPAT is shown in Fig. 3. 3-ketosphinganine concentration was not significantly different between SCAT and RPAT. Among the sphinganines, C16:0- and C18:0-DHSph did not show significant differences, while C20:0-DHSph was more concentrated in RPAT than in SCAT (P = 0.082). Among the dihydroceramide, C17:0-DHCer did not show significant differences, while C12:0-DHCer was more concentrated in SCAT than RPAT (P = 0.091),
and the rest of DHCer were more concentrated in RPAT than in SCAT: C16:0-, C18:0-DHCer (P < 0.1),
C14:0-, C20:0-, C22:0-, C24:0-DHCer (P < 0.05). Among the dihydroceramide-1-phosphates, none of the
detected species, C16:0-, C18:0-, C18:1-, C20:0-DHCer1P, showed significant differences between SCAT
and RPAT. Among the ceramides, C12:0-, C17:0-, C18:1-, C20:4-, C24:1- and C26:0-Cer did not show
significant differences, while C14:0- and C16:0-Cer were more concentrated in SCAT than in RPAT (P <
0.05), and the rest of Cer were more concentrated in RPAT than in SCAT: C18:0-, C20:0-, C24:0-Cer (P <
0.05), and C22:0-Cer (P = 0.0092). In summary, the majority of the sphingolipid species in the de novo
synthesis pathway were more concentrated in RPAT, compared with SCAT, except for C12:0-, C14:0- and
C16:0-Cer, which were more concentrated in SCAT.

Distribution of Sphingolipids in the Salvage Pathway

The distribution of sphingolipids of the salvage pathway in SCAT and RPAT is shown in Fig. 4. Among
the sphingosines, C20:1-Sph did not show significant differences, while the rest of Sph were more
concentrated in SCAT than in RPAT: C17:1-Sph (P = 0.051), and C16:1-, C18:1-Sph (P < 0.05). Concerning
sphingosine-1-phosphate, C18:1-S1P was more concentrated in SCAT than in RPAT (P = 0.028). Among
the ceramide-1-phosphates, C18:0-, C20:0- and C22:0-C1P did not show significant differences, while the
rest of C1P was more concentrated in SCAT than in RPAT: C12:0-, C14:0-, C16:0-, C18:1-, C24:0-, C26:0-
C1P (P < 0.05). Among the glucosylceramides, C18:1-GluCer did not show significant differences, while
C18:0-GluCer was more concentrated in SCAT than in RPAT (P = 0.04). Among the lactosylceramides,
C18:0- and C18:1-LacCer were not significantly different between adipose tissues, while C16:0-LacCer
was more concentrated in SCAT than in RPAT (P = 0.052). Among the galactosylceramides, C24:1-GalCer
were not significantly different, while the rest of the GalCer were more concentrated in SCAT than in RPAT:
C16:0-, C22:0-, C24:0-GalCer (P < 0.05). Collectively, all sphingolipid species in the salvage pathway were
more concentrated in the SCAT, compared with RPAT.

Distribution of Sphingolipids in the Sphingomyelinase Pathway

The distributions of sphingolipids of the sphingomyelinase pathway in SCAT and RPAT are shown in
Fig. 5. Concerning dihydrosphingomyelin, C12:0-DHSM was more concentrated in SCAT than in RPAT (P
= 0.027). Among the sphingomyelins, C18:0-, C20:0-SM did not show significant differences, C22:0-SM
was more concentrated in RPAT than in SCAT (P = 0.014), and the rest of the SM were more concentrated
in SCAT than in RPAT: C20:1-, C28:0-SM (P < 0.1), and C12:0-, C14:0-, C16:0-, C16:1-, C17:0-, C18:1-, C18:2-,
C20:4-, C22:6-, C24:0-, C24:1-, C26:0-SM (P < 0.05). Collectively, sphingolipids in the sphingomyelinase
pathway were generally more concentrated in SCAT, compared with RPAT, except for C22:0-SM, which
was more concentrated in RPAT.

Discussion

This study analyzed 70 sphingolipid species, and the concentrations of 46 species were found to be
statistically different between RPAT and SCAT (P < 0.1), indicating that the sphingolipid profiles of these
two adipose tissue depots were remarkably different. The differential concentration of sphingolipid species can reflect dissimilar sphingolipid pathway activities, affecting downstream signaling function [2]. For instance, ceramide synthesis via the de novo pathway was more related to insulin resistance [21], whereas ceramide formation from the sphingomyelinase pathway was more associated with inflammation, oxidative stress, and apoptosis through the one-step rapid transformation from SM to ceramide [7]. Little was known about the salvage pathway in sphingolipid signaling, but it was reported that ceramides from the salvage pathway could be responsible for the dephosphorylation of the p38 cascade and the PKC signaling pathway [5]. Combining the potential signaling function of various sphingolipids to the sphingolipid profile of RPAT and SCAT, we could better understand the physiologic role of these two adipose tissues. Limitations of this study include the relatively small sampling size, restricting the assessment of any possible dietary influence. Sphingolipid metabolism was shown to be altered by dietary factors in dairy cows [22], however, whether the diet has an effect on adipose dependent distribution of sphingolipids should be tested in further studies. The novelty of this study is confirming that bovine SCAT and RPAT are distinct in their metabolism, by providing the sphingolipid profiles of these two depots in a lipidomics approach.

Backward Accumulation in the De Novo Synthesis Pathway in RPAT

The distribution patterns of the salvage pathway and the sphingomyelinase pathway were more similar than that of the de novo synthesis pathway (Fig. 2). Connecting all sphingolipids with the sphingolipid metabolic map, a unique distribution pattern was shown in Fig. 6. Our results showed that the sphingolipid species that act downstream of 3-ketosphinganine, such as sphinganine, DHCer, and Cer were more concentrated in RPAT (red in Fig. 6), while sphingolipids that act downstream of DHCer and Cer, such as DHSM, Sph, S1P, SM, and glycosphingolipids, were more concentrated in SCAT (blue in Fig. 6). This pattern suggested that there was a ceramide accrual, and even a possible backward accumulation in the de novo synthesis pathway in RPAT either due to a higher influx rate of substrates at the origin of the de novo synthesis, or due to a lower transformation rate of ceramide at the end of the synthesis, or due to a combination of both [2].

The higher substrate influx rate in RPAT could be supported by the greater dynamics of adipose mass, and higher HSL activity in bovine RPAT [23]. It was shown that the adipose mass of RPAT in periparturient German Holstein cows had a greater fluctuation than that of SCAT [13, 24]. Additionally, RPAT had a higher HSL phosphorylation at residues 563 and 660 detected by Western blot analysis, indicating greater enzyme activation [11]. A similar experiment performed in rodents also showed a higher HSL phosphorylation at residues 563 and 660 in the visceral adipose tissue under forskolin stimulation, compared with the subcutaneous adipose tissue [25]. Together with the greater adipose mass in abdominal adipose depot (66.7% of total body fat) than the subcutaneous adipose tissue (17.9% of total body fat) [26], it is suggested that triglycerides stored in RPAT undergo greater facilitated hydrolysis into NEFA than SCAT. Meanwhile, palmitic acid is one of the most prevalent fatty acids among circulating
NEFA [27, 28]. The influx of palmitic acid could drain into the de novo synthesis pathway, and result in the accumulation of ceramide [29, 30].

Besides the high influx rate at the origin of the de novo synthesis pathway, the inhibition in the transformation, or a backward synthesis of ceramide should also be considered as a possible explanation for the accrual of ceramides [2]. The balance between ceramides, sphingomyelins, sphingosines, and other sphingolipid metabolites are controlled by the enzymes involved in their biotransformation. For instance, acid sphingomyelinase (ASMase) is the enzyme converting sphingomyelin into ceramide in the sphingomyelinase pathway, under the activation of oxidative stress, pathogens, and the proinflammatory cytokine interleukin-1β (IL-1β) [31, 32]. In dairy cows, Ji et al. demonstrated that the IL-1β mRNA signal was higher in the mesenteric adipose tissue than the subcutaneous depot [10]. Hence, the ceramide accumulation in the RPAT profile could be the consequence of the increased enzyme activity of sphingomyelinase, driven by pro-inflammatory signals. The enzyme that acts in the opposite direction, sphingomyelin synthase (SMS), converts ceramide to sphingolipid in the endoplasmic reticulum [33]. Although the activation mechanism and the physiological role of SMS in adipose tissue in dairy cattle has not yet been identified, it is evident that SMS could downregulate the reactive oxidative species (ROS) level by breaking down sphingomyelin into ceramide, triggering the release of ROS [34, 35], and opposing the action of ASMase. Further mechanistic studies are warranted to elucidate the role of these metabolic pathways in driving adipose depot specific sphingolipid distribution.

Comparing two sources of ceramide accrual, Rico et al. demonstrated that the de novo synthesis pathway might play a more crucial role than the sphingomyelinase pathway in dairy cattle physiology [36]. It was shown that cows with an intravenous triglyceride (TAG) infusion had a higher ceramide synthase 2 (CerS2) mRNA expression, compared with the control. High level of CerS2 indicated an upregulation of the de novo synthesis pathway as CerS2 is the enzyme promoting the synthesis of C22:0- and C24:0 ceramide [37]. Additionally, it was shown that the SM concentration was not altered with the TAG level, indicating that the sphingomyelinase pathway was not involved in the surge of ceramide. Thus, this provided compelling evidence that the de novo synthesis pathway was more important than the sphingomyelinase pathway in contributing to the ceramide accrual [1]. The salvage pathway could be, but to a lesser extent, contributing to the accumulation of ceramide.

Insulin Resistance, Inflammation, and Oxidative Stress in RPAT and SCAT

Our data showed that ceramides were more concentrated in RPAT, and less concentrated in SCAT. As ceramide is the upstream regulator of Akt, confirmed in an ex vivo study in Holstein steers [38], this ceramide distribution suggested that RPAT would be more associated with insulin resistance because of its ceramide profile. Ceramide has been suggested to be a mediator of obesity and insulin resistance. Previously, it was shown that ceramide could bind with SET, releasing its inhibitory function to PP2A for the inactivation of Akt [39]. Recently, it was shown that ceramide could inhibit Akt by dephosphorylating
Ser 473 [40], which was in line with bovine adipocytes research using C2:0-ceramide [38]. Besides, it was demonstrated that dairy cows with ceramide accrual in plasma, liver, and skeletal muscle had higher lipolytic activity and lower insulin sensitivity [3]. This provides evidence that adipose tissue with more ceramides would more suppress insulin sensitivity and have an enhanced sphingolipid dynamic. In contrast to SCAT, Kenéz et al. demonstrated that Akt and HSL phosphorylation were greater in the insulin signaling pathway in dairy cow RPAT during the peripartum period [9]. This indicated that RPAT may be more sensitive and responsive in insulin signaling than SCAT. As RPAT had a greater concentration of ceramides, RPAT may likely have a sphingolipid profile more associated with insulin resistance. Hence, RPAT may contribute to the total insulin sensitivity greater in dairy cattle.

Not only insulin sensitivity but also the inflammatory response was found to be different between RPAT and SCAT in cows [10]. Here, we observed that ceramides were more concentrated in RPAT, whereas sphingosines and S1P were more concentrated in SCAT. The distribution of Cer, Sph, and S1P in RPAT and SCAT may provide an explanation in the different expression of pro-inflammatory cytokines in the two adipose depots. Ceramide, derived from the transformation of sphingomyelin, was shown to affect the proinflammatory cytokine IL-1β and tumor necrosis factor (TNF) signaling pathway [41]. Down to the ceramide species level, Brodlie et al. showed that C16:0, C18:0, C20:0-ceramide levels were increased in the lower airway epithelium in human patients with lung inflammation [42]. Furthermore, sphingomyelinase, the enzyme transforming SM to Cer, was shown to be expressed to a greater extent in inflamed adipose tissues than the non-inflamed adipose tissues in humans [6]. Collectively, these studies showed a strong correlation between ceramides and inflammation via the sphingomyelinase pathway. Besides ceramides, Samad et al. demonstrated that Sph and S1P could also increase the mRNA expression of pro-inflammatory proteins (TNF-α, MCP-1, IL-6, and KC) [23]. In particular, Sph induced more TNF-α expression, and S1P induced more IL-6 mRNA expression in 3T3-L1 adipocytes cell culture, compared with C2:0- and C6:0-ceramide. These studies showed that not only ceramide but also its downstream sphingolipid species such as Sph and S1P could be associated with inflammation. In dairy research, Ji et al. demonstrated that the pro-inflammatory cytokines (IL-1β, IL-6R, CCL2, CCL5) mRNA expression of omental and mesenteric adipose tissue was greater than the subcutaneous adipose tissue in overfed dairy cows [10]. As RPAT had a greater pro-inflammatory cytokines signal and a greater concentration of ceramides, it is suggested that RPAT is associated with a stronger inflammatory response, compared with SCAT.

In addition to pro-inflammatory signaling, it was shown that ceramide and sphingosine could also be the downstream mediators of oxidative stress, and regulate the apoptosis signaling pathway in both human and rat cell line [34]. Here, we observed that ceramides were more concentrated in RPAT, whereas sphingosines were more concentrated in SCAT. These are two important mediators in regulating apoptosis under oxidative stress. Goldkorn et al. demonstrated that ROS such as hydrogen peroxide (H$_2$O$_2$) could activate sphingomyelinases and promote the transformation of SM to Cer in the tracheobronchial epithelial cells [43]. The surge of ceramide from the transformation could, therefore, activate cathepsin D and pro-apoptotic protein BID to induce apoptosis [2, 44]. Besides, the elevated
ceramide could be converted into sphingosine, and act as a second messenger to induce apoptosis by inhibiting MAP kinase activity [45, 46]. In specific, Osawa et al. demonstrated that C16:0-ceramide induced apoptosis in rat primary hepatocytes [47], and Seumois et al. showed that C16:0 and C24:0-ceramide are pro-apoptotic signals in human blood neutrophil cells [48]. These findings showed that ceramide and sphingosine are important mediators in response to oxidative stress, and therefore induce apoptosis. Although the oxidative stress level of two adipose tissues in dairy cattle was not measured, it is shown that the visceral depots in mice are more sensitive to oxidative stress than the subcutaneous depots by comparing the stress signaling pathway JNK and MAPK [49]. Thus, the visceral adipocytes might be more susceptible to apoptosis than the subcutaneous adipocytes [50]. As ceramide is the precursor of sphingosine, ceramide might take a more important role in apoptosis signaling. Therefore, it is suggested that the sphingolipid profile of RPAT would be more associated with oxidative stress and apoptosis, compared with SCAT.

The Third Ceramide Regulating Pathway: Phosphorylation Pathway

In addition to the ceramide profile, we observed that DHCer1P and C1P were highly concentrated in both adipose tissues, particularly in SCAT. The concentration of DHCer1P was roughly 10 folds higher than that of DHSph, DHCer, and Cer; and the concentration of C1P was roughly 4 folds higher than that of Sph, S1P, and glycosphingolipid. To explain the high concentration of DHCer1P, it seems likely that the DHCer kinase was more active, or the dihydroceramide desaturase (Des1) was less active in the adipocytes [2]. Des1 is the enzyme promoting the transformation from DHCer to Cer [51]. When the kinase activity is higher than Des1, DHCer may shift the synthesis from Cer to DHCer1P. However, the DHCer kinase activity in bovine cells was not reported yet. The physiological role and the downstream signaling pathway of DHCer1P are still elusive. More research has to be done to understand the high concentration of DHCer1P in both RPAT and SCAT. Similarly, the high concentration of C1P might because of a high level of ceramide kinase (CerK), or lower expression of phosphatase [52]. On the whole, as the concentration of DHCer1P, C1P, and SM were similarly concentrated in the sphingolipid profile, the phosphorylated sphingolipids could regulate the synthesis of ceramides through its one-step transformation with phosphatase, like the one-step SM-Cer pathway, to give a rapid response. Thus, besides two major regulating pathways: de novo synthesis pathway and sphingomyelinase pathway, the phosphorylation pathway could be the third pathway in the sphingolipid metabolic network regulating the synthesis of ceramide, in agreement with JW McFadden and JE Rico [1].

Conclusion

To conclude, this study revealed that the sphingolipid profiles differed between bovine RPAT and SCAT, in particular the concentration of ceramides were higher in RPAT than in SCAT. This suggested that the activity of the pathways of sphingolipid metabolism, such as the de novo synthesis of ceramide, were also different in RPAT and SCAT. Consistently with previous findings, this indicated that the physiological role of RPAT could be more responsive than SCAT in insulin signaling, pro-inflammatory signaling, and...
oxidative stress response. More research has to be done to understand the metabolic stimuli and signaling pathways of other sphingolipids, such as DHCer, Sph, S1P and C1P in adipose tissue, to provide a comprehensive comparison of the physiological role of RPAT and SCAT.

Abbreviations

C1P: Ceramide-1-phosphate
Cer: Ceramide
CerK: Ceramide kinase
CerS: Ceramide synthase
Des1: Dihydroceramide desaturase
DHCer: Dihydroceramide
DHCer1P: Dihydroceramide-1-phosphate
DHSm: Dihydrosphingomyelin
DHSph: Sphinganine
FDR: False discovery rate
GalCer: Galactosylceramide
GluCer: Glucosylceramide
HSL: Hormone-sensitive lipase
LacCer: Lactosylceramide
RPAT: Retroperitoneal adipose tissue
S1P: Sphingosine-1-phosphate
SCAT: Subcutaneous adipose tissue
SM: Sphingomyelin
Sph: Sphingosine
SPT: Palmitoyltransferase
UPLC-MRM/MS: Ultra-performance liquid chromatography electrospray ionization-tandem mass spectrometry in multiple reactions monitoring mode.

Declarations

Acknowledgements

The lipidomics analyses were carried out in the laboratories of The Metabolomics Innovation Centre (Canada). The assistance of the staff at the Educational and Research Centre for Animal Husbandry (Hofgut Neumuehle, Muenchweiler a.d. Alsenz, Germany) and at the Institute of Animal Nutrition (Federal Research Institute for Animal Health, Braunschweig, Germany) is acknowledged.

Authors’ contributions

CK, SB, TS performed the animal experiment at the Educational and Research Centre for Animal Husbandry (Muenchweiler a.d. Alsenz, Germany); AK, KH, SD conceived and designed the adipose tissue study; SB, CK, TS, UM performed the laboratory experiments; YHL, AK analyzed the data; YHL, SB, CK, TS, UM, SD, AK, KH wrote the manuscript. All authors read and approved the final manuscript.

Funding

No external funding sources were used for the metabolomics analyses.

Availability of data and material

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate

The experiment was approved by the relevant Department for Animal Welfare Affairs (Landesuntersuchungsamt Rheinland-Pfalz, Koblenz, Germany) in agreement with the German Animal Welfare Act (permit number: G-17-20-070).

Consent for publication

Not applicable

Competing interests

The author declare that they have no competing interests.

References
1. McFadden JW, Rico JE: Invited review: Sphingolipid biology in the dairy cow: The emerging role of ceramide. *J Dairy Sci* 2019, **102**(9):7619-7639.

2. Hannun YA, Obeid LM: Principles of bioactive lipid signalling: lessons from sphingolipids. *Nat Rev Mol Cell Bio* 2008, **9**(2):139-150.

3. Rico JE, Bandaru VV, Dorskind JM, Haughey NJ, McFadden JW: Plasma ceramides are elevated in overweight Holstein dairy cows experiencing greater lipolysis and insulin resistance during the transition from late pregnancy to early lactation. *J Dairy Sci* 2015, **98**(11):7757-7770.

4. Alexaki A, Clarke BA, Gavrilova O, Ma YY, Zhu HL, Ma XR, Xu LY, Tuymetova G, Larman BC, Allende ML et al: De Novo Sphingolipid Biosynthesis Is Required for Adipocyte Survival and Metabolic Homeostasis. *Journal of Biological Chemistry* 2017, **292**(9):3929-3939.

5. Kitatani K, Idkowiak-Baldys J, Hannun YA: The sphingolipid salvage pathway in ceramide metabolism and signaling. *Cell Signal* 2008, **20**(6):1010-1018.

6. Kolak M, Gertow J, Westerbacka J, Summers SA, Liska J, Franco-Cereceda A, Oresic M, Yki-Jarvinen H, Eriksson P, Fisher RM: Expression of ceramide-metabolising enzymes in subcutaneous and intra-abdominal human adipose tissue. *Lipids Health Dis* 2012, 11.

7. Norris GH, Blesso CN: Dietary and Endogenous Sphingolipid Metabolism in Chronic Inflammation. *Nutrients* 2017, **9**(11).

8. Kabara E, Sordillo LM, Holcombe S, Contreras GA: Adiponectin links adipose tissue function and monocyte inflammatory responses during bovine metabolic stress. *Comp Immunol Microbiol Infect Dis* 2014, **37**(1):49-58.

9. Kenéz Ā, Ruda L, Danicke S, Huber K: Insulin signaling and insulin response in subcutaneous and retroperitoneal adipose tissue in Holstein cows during the periparturient period. *J Dairy Sci* 2019.

10. Ji P, Drackley JK, Khan MJ, Loor JJ: Inflammation- and lipid metabolism-related gene network expression in visceral and subcutaneous adipose depots of Holstein cows. *J Dairy Sci* 2014, **97**(6):3441-3448.

11. Locher LF, Meyer N, Weber EM, Rehage J, Meyer U, Danicke S, Huber K: Hormone-sensitive lipase protein expression and extent of phosphorylation in subcutaneous and retroperitoneal adipose tissues in the periparturient dairy cow. *J Dairy Sci* 2011, **94**(9):4514-4523.

12. Kenéz Ā, Locher L, Rizk A, Dānicke S, Rehage J, Huber K: Lipolytic capacity of visceral adipose tissue in the dairy cow. In: *Energy and protein metabolism and nutrition in sustainable animal production; Wageningen*. Edited by Oltjen J.W. KE, Lapierre H. . Wageningen Academic Publishers 2013.

13. Ruda L, Raschka C, Huber K, Tienken R, Meyer U, Danicke S, Rehage J: Gain and loss of subcutaneous and abdominal fat depot mass from late pregnancy to 100 days in milk in German Holsteins. *J Dairy Res* 2019, **86**(3):296-302.

14. Votruba SB, Jensen MD: Regional fat deposition as a factor in FFA metabolism. *Annu Rev Nutr* 2007, **27**:149-163.

15. Bielawski J, Szulc ZM, Hannun YA, Bielawska A: Simultaneous quantitative analysis of bioactive sphingolipids by high-performance liquid chromatography-tandem mass spectrometry. *Methods*
16. Merrill AH, Jr., Sullards MC, Allegood JC, Kelly S, Wang E: Sphingolipidomics: high-throughput, structure-specific, and quantitative analysis of sphingolipids by liquid chromatography tandem mass spectrometry. Methods 2005, 36(2):207-224.

17. Bligh EG, Dyer WJ: A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959, 37(8):911-917.

18. R Core Team: A language and environment for statistical computing. In., 3.6.1 edn. Vienna, Austria: R Foundation for Statistical Computing; 2019.

19. Wickham H: Reshaping Data with the reshape Package. Journal of Statistical Software 2007, 21(12):1-20.

20. Wickham H, François R, Henry L, and Müller K: dplyr: A Grammar of Data Manipulation. In.; 2019.

21. Holland WL, Brozinick JT, Wang LP, Hawkins ED, Sargent KM, Liu Y, Narra K, Hoehn KL, Knotts TA, Siesky A et al: Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell Metab 2007, 5(3):167-179.

22. Rico JE, Mathews AT, Lovett J, Haughey NJ, McCadden JW: Palmitic acid feeding increases ceramide supply in association with increased milk yield, circulating nonesterified fatty acids, and adipose tissue responsiveness to a glucose challenge. J Dairy Sci 2016, 99(11):8817-8830.

23. Samad F, Hester KD, Yang G, Hannun YA, Bielawski J: Altered adipose and plasma sphingolipid metabolism in obesity - A potential mechanism for cardiovascular and metabolic risk. Diabetes 2006, 55(9):2579-2587.

24. von Soosten D, Meyer U, Weber EM, Rehage J, Flachowsky G, Danicke S: Effect of trans-10, cis-12 conjugated linoleic acid on performance, adipose depot weights, and liver weight in early-lactation dairy cows. J Dairy Sci 2011, 94(6):2859-2870.

25. Gaidhu MP, Anthony NM, Patel P, Hawke TJ, Ceddia RB: Dysregulation of lipolysis and lipid metabolism in visceral and subcutaneous adipocytes by high-fat diet: role of ATGL, HSL, and AMPK. Am J Physiol Cell Physiol 2010, 298(4):C961-971.

26. De Koster J, Hostens M, Van Eetvelde M, Hermans K, Moerman S, Bogaert H, Depreester E, Van den Broeck W, Opsomer G: Insulin response of the glucose and fatty acid metabolism in dry dairy cows across a range of body condition scores. Journal of Dairy Science 2015, 98(7):4580-4592.

27. Mittendorfer B, Liem O, Patterson BW, Miles JM, Klein S: What does the measurement of whole-body fatty acid rate of appearance in plasma by using a fatty acid tracer really mean? Diabetes 2003, 52(7):1641-1648.

28. Malau-Aduli AE, Siebert BD, Bottema CD, Pitchford WS: A comparison of the fatty acid composition of triacylglycerols in adipose tissue from Limousin and Jersey cattle. Australian Journal of Agricultural Research 1997, 48(5):715.

29. Cowart LA, Hannun YA: Selective substrate supply in the regulation of yeast de novo sphingolipid synthesis. Journal of Biological Chemistry 2007, 282(16):12330-12340.
30. Merrill AH, Jr., Wang E, Mullins RE: Kinetics of long-chain (sphingoid) base biosynthesis in intact LM cells: effects of varying the extracellular concentrations of serine and fatty acid precursors of this pathway. *Biochemistry* 1988, 27(1):340-345.

31. Zeidan YH, Hannun YA: The acid sphingomyelinase/ceramide pathway: biomedical significance and mechanisms of regulation. *Curr Mol Med* 2010, 10(5):454-466.

32. Sanvicens N, Cotter TG: Ceramide is the key mediator of oxidative stress-induced apoptosis in retinal photoreceptor cells. *J Neurochem* 2006, 98(5):1432-1444.

33. Tafesse FG, Ternes P, Holthuis JC: The multigenic sphingomyelin synthase family. *J Biol Chem* 2006, 281(40):29421-29425.

34. Andrieu-Abadie N, Gouaze V, Salvayre R, Levade T: Ceramide in apoptosis signaling: relationship with oxidative stress. *Free Radic Biol Med* 2001, 31(6):717-728.

35. Yano M, Watanabe K, Yamamoto T, Ikeda K, Senokuchi T, Lu MH, Kadowatsu T, Tsukano H, Ikawa M, Okabe M et al: Mitochondrial Dysfunction and Increased Reactive Oxygen Species Impair Insulin Secretion in Sphingomyelin Synthase 1-null Mice. *Journal of Biological Chemistry* 2011, 286(5):3992-4002.

36. Rico JE, Giesy SL, Haughey NJ, Boisclair YR, McFadden JW: Intravenous Triacylglycerol Infusion Promotes Ceramide Accumulation and Hepatic Steatosis in Dairy Cows. *J Nutr* 2018, 148(10):1529-1535.

37. Levy M, Futterman AH: Mammalian Ceramide Synthases. *Iubmb Life* 2010, 62(5):347-356.

38. Rico JE, Myers WA, Laub DJ, Davis AN, Zeng Q, McFadden JW: Hot topic: Ceramide inhibits insulin sensitivity in primary bovine adipocytes. *J Dairy Sci* 2018, 101(4):3428-3432.

39. Saddoughi SA, Gencer S, Peterson YK, Ward KE, Mukhopadhyay A, Oaks J, Bielawski J, Szulc ZM, Thomas RJ, Selvam SP et al: Sphingosine analogue drug FTY720 targets I2PP2A/SET and mediates lung tumour suppression via activation of PP2A-RIPK1-dependent necroptosis. *EMBO Mol Med* 2013, 5(1):105-121.

40. Schubert KM, Scheid MP, Duronio V: Ceramide inhibits protein kinase B/Akt by promoting dephosphorylation of serine 473. *Journal of Biological Chemistry* 2000, 275(18):13330-13335.

41. Kolesnick R, Golde DW: The sphingomyelin pathway in tumor necrosis factor and interleukin-1 signaling. *Cell* 1994, 77(3):325-328.

42. Brodlie M, McKean MC, Johnson GE, Gray J, Fisher AJ, Corris PA, Lordan JL, Ward C: Ceramide Is Increased in the Lower Airway Epithelium of People with Advanced Cystic Fibrosis Lung Disease. *Am J Resp Crit Care* 2010, 182(3):369-375.

43. Goldkorn T, Balaban N, Shannon M, Chea V, Matsukuma K, Gilchrist D, Wang H, Chan C: H2O2 acts on cellular membranes to generate ceramide signaling and initiate apoptosis in tracheobronchial epithelial cells. *J Cell Sci* 1998, 111 (Pt 21):3209-3220.

44. Heinrich M, Neumeyer J, Jakob M, Hallas C, Tchikov V, Winoto-Morbach S, Wickel M, Schneider-Brachert W, Trauzold A, Hethke A et al: Cathepsin D links TNF-induced acid sphingomyelinase to Bid-mediated caspase-9 and -3 activation. *Cell Death Differ* 2004, 11(5):550-563.
45. Sakakura C, Sweeney EA, Shirahama T, Hagiwara A, Yamaguchi T, Takahashi T, Hakomori S, Igarashi Y: Selectivity of sphingosine-induced apoptosis. Lack of activity of DL-erythro-dihydrosphingosine. Biochem Biophys Res Commun 1998, 246(3):827-830.

46. Abrahan CE, Miranda GE, Agnolazza DL, Politi LE, Rotstein NP: Synthesis of sphingosine is essential for oxidative stress-induced apoptosis of photoreceptors. Invest Ophthalmol Vis Sci 2010, 51(2):1171-1180.

47. Osawa Y, Uchinami H, Bielawski J, Schwabe RF, Hannun YA, Brenner DA: Roles for C16-ceramide and sphingosine 1-phosphate in regulating hepatocyte apoptosis in response to tumor necrosis factor-alpha. J Biol Chem 2005, 280(30):27879-27887.

48. Seumois G, Fillet M, Gillet L, Faccinetto C, Desmet C, Francois C, Dewals B, Oury C, Vanderplasschen A, Lekeux P et al: De novo C16- and C24-ceramide generation contributes to spontaneous neutrophil apoptosis. J Leukoc Biol 2007, 81(6):1477-1486.

49. Liu R, Pulliam DA, Liu Y, Salmon AB: Dynamic differences in oxidative stress and the regulation of metabolism with age in visceral versus subcutaneous adipose. Redox Biol 2015, 6:401-408.

50. Niesler CU, Siddle K, Prins JB: Human preadipocytes display a depot-specific susceptibility to apoptosis. Diabetes 1998, 47(8):1365-1368.

51. Fabrias G, Munoz-Olaya J, Cingolani F, Signorelli P, Casas J, Gagliostro V, Ghidoni R: Dihydroceramide desaturase and dihydrosphingolipids: Debutant players in the sphingolipid arena. Prog Lipid Res 2012, 51(2):82-94.

52. Arana L, Gangoiti P, Ouro A, Trueba M, Gomez-Munoz A: Ceramide and ceramide 1-phosphate in health and disease. Lipids Health Dis 2010, 9.

53. Maceyka M, Spiegel S: Sphingolipid metabolites in inflammatory disease. Nature 2014, 510(7503):58-67.

54. Merrill AH, Jr.: Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics. Chem Rev 2011, 111(10):6387-6422.

Figures
Figure 1

Sphingolipid metabolic pathways according to M Maceyka and S Spiegel [53], AH Merrill, Jr. [54]. The de novo synthesis pathway (red) starts with the condensation of serine and palmitoyl CoA to form ceramide through a series of reactions including the conversion of 3-ketosphinganine, sphinganine, and dihydroceramide. Ceramide can be modified into sphingomyelin via the sphingomyelinase pathway (blue), or into glycosphingolipid, sphingosine, and ceramide-1-phosphate via the salvage pathway (green). Double arrows indicate reversible reactions.
Volcano plot visualizing the fold change (RPAT to SCAT) over the P-value of sphingolipids in two adipose tissues. The P-value of each sphingolipid species is calculated by paired Student's t-test with FDR correction. The dotted horizontal line indicated a statistical threshold of $P < 0.1$. The figure shows that sphingolipid species in the de novo synthesis pathway were more concentrated in the retroperitoneal adipose tissue (RPAT). In contrast, sphingolipid species in the salvage pathway and the sphingomyelinase pathway were more concentrated in the subcutaneous adipose tissue (SCAT). Cer: ceramide; C1P: ceramide-1-phosphate; DHCer: dihydroceramide; GalCer: galactosylceramide; Sph: sphingosine; SM: sphingomyelin.
Figure 3

The distribution of sphingolipids in the de novo synthesis pathway in subcutaneous (SCAT) and retroperitoneal adipose tissue (RPAT) in German Holstein bulls (n = 6). Data are presented as mean ± standard error of mean (SEM). 3-Keto: 3-ketosphinganine concentration; DHSph: sphinganine concentration; DHCer: dihydroceramide concentration; DHCer1P: dihydroceramide-1-phosphate concentration; Cer: ceramide concentration. Asterisks indicate significant differences († P < 0.1; * P < 0.05; ** P < 0.01) between two adipose tissues by paired Student’s t-test with FDR correction.
Figure 4

The distribution of sphingolipids in the salvage pathway in subcutaneous (SCAT) and retroperitoneal adipose tissue (RPAT) in German Holstein bulls (n = 6). Data are presented as mean ± standard error of mean (SEM). Sph: sphingosine concentration; S1P: sphingosine-1-phosphate concentration; C1P: ceramide-1-phosphate concentration; GluCer: glucosylceramide concentration; LacCer: lactosylceramide concentration; GalCer: galactosylceramide concentration. Asterisks indicate significant differences († P < 0.1; * P < 0.05) between two adipose tissues by paired Student's t-test with FDR correction.
Figure 5

The distribution of dihydroceramide and sphingolipids of the sphingomyelinase pathway in subcutaneous (SCAT) and retroperitoneal adipose tissue (RPAT) in German Holstein bulls (n = 6). Data are presented as mean ± standard error of mean (SEM). DHSM: dihydrosphingomyelin concentration; SM: sphingomyelin concentration. Asterisks indicate significant differences († P < 0.1; * P < 0.05) between two adipose tissues by paired Student's t-test with FDR correction.
Figure 6

The concentration of sphingolipids across the sphingolipid pathways in subcutaneous (SCAT) and retroperitoneal adipose tissue (RPAT). Sphinganine, dihydroceramide, and ceramide were more concentrated in RPAT (red) than in SCAT. Dihydrosphingomyelin, sphingomyelin, ceramide-1-phosphate, sphingosine, sphingosine-1-phosphate, glucosylceramide, galactosylceramide, and lactosylceramide were more concentrated in SCAT (blue) than RPAT. There was no statistical difference in 3-ketosphinganine and dihydroceramide-1-phosphate between RPAT and SCAT. The sphingolipid pathway map was drawn according to Maceyka and Spiegel [53], Merrill [54].