Conservation, acquisition, and functional impact of sex-biased gene expression in mammals

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation	Naqvi, Sahin et al. “Conservation, acquisition, and functional impact of sex-biased gene expression in mammals.” Science 365 (2019): aaw7317 © 2019 The Author[s]
As Published	10.1126/SCIENCE.AAW7317
Publisher	American Association for the Advancement of Science (AAAS)
Version	Author’s final manuscript
Citable link	https://hdl.handle.net/1721.1/125098
Terms of Use	Creative Commons Attribution-Noncommercial-Share Alike
Detailed Terms	http://creativecommons.org/licenses/by-nc-sa/4.0/
Conservation, acquisition, and functional impact of sex-biased
gene expression in mammals

Sahin Naqvi1,2, Alexander K. Godfrey1,2, Jennifer F. Hughes1, Mary L. Goodheart1,3, Richard N. Mitchell4, David C. Page1,2,3,*
1Whitehead Institute, Cambridge MA 02142
2Department of Biology, Massachusetts Institute of Technology, Cambridge MA 02139
3Howard Hughes Medical Institute, Whitehead Institute, Cambridge MA 02142
4Brigham and Women’s Hospital, Harvard Medical School, Boston MA 02115

Abstract

Sex differences abound in human health and disease, as in other mammals employed as models. Unknown is the extent to which sex differences are conserved at the molecular level across species and tissues. We surveyed sex differences in gene expression in human, macaque, mouse, rat, and dog, across 12 tissues. In each tissue, we identified hundreds of genes with conserved sex-biased expression – findings that, combined with genomic analyses of human height, explain ~12% of the difference in height between females and males. We surmise that conserved sex biases in expression of genes otherwise operating equivalently in females and males contribute to sex differences in traits. However, most sex-biased expression arose during the mammalian radiation, suggesting careful attention to interspecies divergence when modeling human sex differences.

One sentence summary:

RNA sequencing of twelve tissues in five species reveals conservation, acquisition, and the functional impact of sex-biased gene expression.

Males and females exhibit differences across a wide range of biological processes. Studies in humans have documented sex differences in anthropometric traits (1), energy metabolism (2), brain morphology (3), and immune (4) and cardiac (5) function. Sex differences are also evident in the incidence, prevalence, and mortality across diseases, including autoimmune disorders (6), cardiovascular diseases (7), and autism (8). Beyond humans, sex differences are common in other mammals, many of which are models of sex-biased human traits and diseases (9). For example, males are larger than females in most mammalian species (10),

*Correspondence to: dcpage@wi.mit.edu.

Author contributions: S.N., A.K.G, J.F.H., and D.C.P. designed the study. J.F.H. procured cyno tissue samples. M.L.G. procured mouse and rat tissue samples, with assistance from S.N. S.N. processed tissue samples and performed computational analyses, with assistance from A.K.G. R.N.M. performed histological evaluations on human tissue sections. D.C.P. supervised work. S.N. and D.C.P. wrote the paper.

Data and code availability: Raw RNA sequencing data (.fastq files) have been deposited in the Gene Expression Omnibus (accession number GSE125483). Processed data (expression count/TPM matrices and sample metadata) and code required to reproduce the analyses are available at http://pagelab.wi.mit.edu/page/papers/Naqvi_et_al_2019 and at Zenodo (doi: 10.5281/zenodo.2658829).
while sex differences in brain structures (11) and immune (12) and cardiac (13) function have been observed in rodents. These phenotypic sex differences are likely associated with, and may be caused by, sex differences in gene activity or function.

The sex chromosomes are one source of sex differences in gene activity. The Y chromosome harbors male-specific genes (14), some broadly expressed (15). Incomplete inactivation of the second X chromosome in females results in female-biased expression of some X-linked genes (16). However, given the scale and complexity of gene networks, and the greater number of autosomal genes, it is unlikely that sexually dimorphic expression of sex-linked genes accounts for all phenotypic sex differences in mammals. Understanding the molecular origins of these sex differences therefore requires a genome-wide, multi-tissue, and comparative approach to sex biases in gene expression.

Our understanding of sex bias in mammalian gene expression is lacking in three regards. First, the degree to which sex-biased expression is conserved across the mammalian lineage, and the extent of conservation in different tissues and organ systems, are unknown. Multi-tissue studies of sex bias in gene expression focused on humans (17, 18) or mice (19). Multi-species studies in Drosophila (20–24) examined RNA from whole carcasses or gonads, while studies in mammals that examined non-reproductive tissues focused on single tissues (25, 26). Second, little is known about how sex differences in gene expression across the body cumulatively result in phenotypic sex differences. Sex-biased expression of the autosomal genes VGLL3 (27) and IL-33 (28), as well as the X-linked gene TLR7 (29), appear to contribute to sexually dimorphic immune phenotypes. However, most complex traits are polygenic and underpinned by variation in hundreds or even thousands of genes (30). Third, apart from single-gene studies in Drosophila (31), lineage-specific regulatory changes that drive the evolution of sex-biased expression remain unexplored. Progress has been made in understanding mechanisms of X-linked dosage compensation (32, 33), the lack of which can lead to sex-biased expression on the X chromosome, but additional mechanisms likely contribute to genome-wide sex-biased gene expression. Thus, previous studies sought to understand the extent of sex-biased expression across either tissues (17–19) or species (25,26), or explored its phenotypic impact (27–29) or underlying evolutionary mechanisms (31) for individual genes. Assessing sex-biased expression across tissues and species, together with its cumulative contribution to phenotypic sex differences, would advance our understanding of molecular differences between males and females.

RESULTS

A five-species, 12-tissue survey of sex differences in gene expression

To assess sex differences in non-human mammals, we collected RNA sequencing data from three males and three females from cynomolgus macaque (Macaca fascicularis, cyno), mouse (Mus musculus), rat (Rattus norvegicus), and dog (Canis familiaris). Together with human, these five species, whose last common ancestor lived 80–100 million years ago, span the evolution of the boroeutheria including all placental mammals except Afrotheria and Xenarthra (which include the elephant and anteater, respectively). We sampled 12 tissues from each individual: adipose, adrenal gland, brain, colon, heart, liver, lung, muscle, pituitary, skin, spleen, and thyroid. These tissues represent many organ systems, and all three
germ layers (Fig. 1A). We designed tissue collection and processing procedures to minimize biological and technical variation (34) (Table S1). We used our RNA-seq data to systematically improve the transcriptome annotations of each non-human mammalian species, which we then assessed using the percentage of reads from independent studies that mapped to our novel annotations versus existing annotations (e.g. a 16% increase in read mapping rate in dog, Fig. S1).

To assess sex differences in humans, we analyzed RNA-seq data from the Genotype Tissue Expression Consortium (GTEx, v6p release) (35). To reduce the possibility of sex biases in cell type composition, pathology, or other factors driving our results, we performed stringent quality control for samples from each of the 12 target tissues using individual- and sample-level metadata from GTEx and our own evaluation of histological images (34) (Table S2). We adjusted gene expression values using top principal components to remove variation due to hidden technical or biological confounders. In three tissues (adipose, brain, skin) for which expression data from purified cell populations is available, there is a correlation between sample-level cell-type proportions estimated by CIBERSORT (36) and top principal component loadings (Fig. S2). While this approach controls for variation in cell-type composition in the human samples, we acknowledge that some sex biases, especially those specific to non-human mammals, could reflect sex differences in cell-type composition.

We removed outlier samples (34) to obtain 740 human and 277 non-human RNA-seq samples (see Table S3 for human sample sizes by sex and tissue). We clustered all non-human samples and a randomly chosen subset of human samples, using the expression levels of 12,939 one-to-one orthologous protein-coding genes. With the exception of human adipose tissue and lung, which cluster closely together, samples cluster first by tissue, and then by species (Fig. 1B). This tissue-dominated clustering agrees with prior studies (37, 38), and indicates consistent sampling of tissues across species, and that the non-human data generated in this study are comparable to the human data from GTEx (35). There are no cases where samples cluster by sex before tissue or species, indicating that species effects dominate over sex effects. Nevertheless, sex contributes significantly to gene expression variation as pairwise within-sex distances in each tissue-species combination are significantly lower than pairwise between-sex distances (Fig. S3).

Both our re-analysis of GTEx data and our analysis of new data replicated published estimates of sex bias in six human and mouse tissues (27, 39–45) (Pearson’s r 0.29 to 0.92, Fig. S4,5). These results indicate that expression values are comparable across species and yield reproducible estimates of sex bias.

Conserved sex-biased gene expression exists across the body

Within each tissue, we used a linear mixed model to identify genes that showed a consistent sex bias (FDR 4.5% as estimated by permutation of male/female sample labels) across species while controlling for differences in expression variability and sample size between species. We further required that genes show a fold change ≥1.05 in the same direction in at least four of the five species studied. We assume that such genes likely had a conserved sex bias in the common ancestor of boroeutheria (example in Fig. 2A). Of 113,853 expressed
gene-tissue pairs, 3,885 pairs (corresponding to 3,161 genes) show a conserved sex bias. We used a rank-based statistic to confirm that gene-tissue pairs with conserved sex bias also have low p-values for sex bias in each of the individual species (fig. S6). Conserved sex bias is generally of modest magnitude (~90% of sex-biased gene-tissue pairs had < 2-fold change between the sexes, Fig. S7) but reproducible in independent datasets (Pearson’s r 0.18 to 0.78, Fig. S8). The number of genes with conserved sex bias per tissue varies from 128 in colon to 805 in pituitary (Fig. 2B, Table S4), and is not correlated with tissue sample size or rates of between-species gene expression divergence (Pearson’ r = 0.093 and 0.0083, p = 0.77 and 0.97, respectively, Fig. S9). A naïve approach, requiring a p-value < 0.05 in at least four of five species within each tissue, found a smaller number of gene-tissue pairs with conserved sex bias but revealed between-tissue patterns that were correlated with results from the linear mixed model (Fig. S10). Of genes with conserved sex bias in any of the 12 tissues examined, 562 genes (18%) are sex-biased in more than one tissue (Fig. 2C). In cases of multi-tissue sex bias, the bias is significantly more likely to be in the same direction in multiple tissues (p = 0.00035, two-sided Fisher’s exact test, Fig. 2D). Thus, conserved sex bias in gene expression is mostly tissue-specific, but a significant minority of genes shows concordant sex bias across multiple tissues, implying that some regulatory factors result in similar profiles of sex-biased expression in multiple tissues or cell types.

We considered the extent to which genes with conserved sex-biased expression were enriched for sex linkage. All assayed Y-linked genes are male-biased (Fig. S11A), as expected, while X-linked genes are significantly enriched for conserved female bias (2.1 to 10.2-fold increase relative to autosomes two-sided Fisher’s exact test, Fig. S11B). The enrichment for X-linked genes is driven by genes that escape X-inactivation in females. In turn, the enrichment for X-escape genes is largely driven by the subset of X-escape genes that have a non-recombining Y-linked homolog in mammals (two-sided Fisher’s exact test, Fig. S11B). Despite these enrichments, most (85 to 95%, depending on tissue) genes with conserved sex bias are autosomal (Fig. S12). We compared the magnitude of sex bias between autosomal and X-linked genes, using independent, publicly available datasets (27, 39, 40, 43, 44) (seven mouse, three human) to avoid ascertainment bias. X-linked genes show significantly higher magnitudes of sex bias in four of the ten datasets (adjusted p < 0.05, two-sided Wilcoxon rank-sum test, Fig. S13). Thus, the sex chromosomes, primarily as a result of harboring genes with both X- and Y-linked homologs, contribute a small but significant fraction of conserved sex bias in gene expression.

Most sex bias in gene expression has arisen since the last common ancestor of boroeutherian mammals

We investigated sex-biased gene expression specific to subsets of the five species, mindful that differences in statistical power between species could result in false positive calls of lineage-specific sex bias. For example, a gene with true primate-specific male bias might falsely appear to have a human-specific male bias if its expression is significantly biased in humans but does not reach statistical significance in cyno. At the same time, false positive calls of sex bias in single species will by necessity appear to be species-specific. We utilized mashr (46) to model the covariation in sex bias across tissues and species and more confidently determine the lineage of sex bias. We repeated the mashr procedure using
permuted male/female sample labels to empirically estimate the FDR for any given set of sex-biased genes (34). This increased the number of rodent-specific gains of sex bias in most tissues (Fig. S14). After using mashr to estimate sex bias in each tissue-species combination, we assigned each sex-biased gene-tissue pair (other than those with conserved sex bias) to one of 12 lineage-specific categories by parsimony: primate-specific gains or losses, rodent-specific gains or losses, gains specific to one of the five species, multiple gains or losses, and more complex patterns of sex bias inconsistent with single gains or losses (examples in Fig. 3A, Table S4). In each category, we used the permutation-estimated FDR to estimate the number of true positive sex-biased gene-tissue pairs.

We assessed how much of the sex-biased gene expression observed in the five species was present in the common ancestor of boroeutheria (i.e., ancestral). Instances of ancestrally sex-biased expression included gene-tissue pairs that we previously identified as having a “conserved” sex bias as well as gene-tissue pairs that lost sex bias in the primate or rodent lineages or in multiple lineages. Instances of acquired sex bias included gene-tissue pairs with primate-, rodent-, or species-specific sex bias, as well as multiple gains of sex bias. By this logic, 6,539 (23%) of sex-biased gene-tissue pairs were likely sex-biased in the common ancestor, and 22,194 (77%) likely acquired sex bias after divergence from a common ancestor. An additional 8,495 gene-tissue pairs exhibited more complex patterns and could not be confidently assigned as ancestrally sex-biased or acquired (Fig. 3B). If all such “complex” events were ancestral, the ancestral fraction of sex bias would be 40%, whereas if they were acquired, the fraction would be 18%. Performing these calculations in each tissue separately we found that ancestral sex bias constituted the minority of total sex bias in all tissues except the pituitary (Fig. 3C). We also quantified the fraction of ancestral bias using a range of fold-change cutoffs up to 1.5 and found that for all cases ancestral sex bias was in the minority (Fig. S15). Repeating this analysis with conserved sex bias called by mashr rather than the linear mixed model yielded similar results, with both methods detecting similar numbers of gene-tissue pairs with conserved sex bias (Fig. S15). We conclude that most sex bias in gene expression in non-reproductive tissues arose during, rather than prior to, the boroeutherian radiation.

Sex-biased gene expression is associated with reduced selective constraint

We assessed the degree of selective constraint operating on sex-biased gene expression. Reasoning that genes functioning across many tissues and cell types face increased selective constraint on gene expression levels, we compared the breadth of expression of genes with and without sex bias, in each tissue. Sex-biased genes showed significantly lower expression breadth than genes with no bias, with the exception of lung, where sex-biased genes were more broadly expressed (adjusted p < 0.05, two-sided Wilcoxon rank-sum test, Fig. 4A). These differences in expression breadth could either be downstream consequences of, or have predated, the observed sex bias. We thus analyzed expression breadth in chicken, an evolutionary outgroup to mammals, reasoning that patterns found in both human and chicken were likely present in the common mammalian ancestor prior to the acquisition of sex bias. Again, genes sex-biased in mammals showed almost uniformly lower expression breadth in chicken than unbiased genes (adjusted p < 0.05, two-sided Wilcoxon rank-sum test, Fig. S16).
To assess conservation of expression levels in a tissue-specific manner, we used estimates of mammalian gene expression-level constraint learned from 16 species (47) and seven tissues, five of which were also assessed in our study. As with expression breadth, sex-biased genes showed lower constraint than unbiased genes in heart, muscle, and liver, but higher constraint in lung (adjusted p < 0.05, two-sided Wilcoxon rank-sum test, Fig. 4B).

We observed that genes sex-biased in heart, spleen, and liver showed lower sequence conservation than unbiased genes, while genes sex-biased in adipose, brain, and lung showed higher sequence conservation than unbiased genes (adjusted p < 0.05, two-sided Wilcoxon rank-sum test, Fig. 4C). Thus, some sex-biased genes are relatively strongly constrained at the sequence level, perhaps because they perform important or pleiotropic functions. However, considering both expression levels and sequence conservation, our findings indicate that sex-biased gene expression is primarily associated with reduced selective constraint, from prior to the divergence of the boroeutherian lineages.

Conserved sex bias in autosomal gene expression contributes to sex differences in mammalian height and body size

Males are larger than females in most mammalian taxa (10). Human males are, on average, 10–15 cm (7–13%) taller than females, but the distributions of height in males and females overlap substantially (Fig. 5A). The genetic architecture of human height is polygenic and largely shared between the sexes. A recent meta-analysis reported 712 genome-wide significant loci (48), and only a handful of sex-specific associations with height have been discovered (49, 50); recent human studies reported a between-sex genetic correlation of 0.96 (50, 51). Studies in humans and other mammals have concluded that height is likely subject to opposing selective pressures between the sexes where increased height enhances reproductive success in males, while decreased height favors reproductive success in females (52, 53).

Could sex-biased gene expression contribute to the sex difference in height and body size observed in humans and other mammals? To link variation in gene expression to variation in height, we turned to transcriptome-wide association studies (TWAS) that integrate an expression quantitative trait loci (eQTL) study from a given tissue or cell type and genome-wide association studies (GWAS) of a given trait (54).

If sex-biased gene expression contributes to sex differences in height, genes with male-biased expression levels should mostly identify height-increasing effects, as measured by TWAS, while female-biased genes should identify height-decreasing effects. We considered genes with genome-wide significant associations for height, as annotated in the NCBI-EBI GWAS catalog (55). We used TWAS to combine height GWAS statistics from a meta-analysis (48) of data from the UK Biobank (56) and GIANT consortium (57) (which we verified were correlated, Pearson’s r = 0.83, p < 2.2 × 10⁻¹⁶, Fig. S17) with reference eQTL panels from 43 different tissues generated using data from GTEx (35). TWAS Z-scores largely agree in sign across the 43 tissues (Fig. S18,19, see Table S5 for all TWAS Z-scores). We therefore combined Z-scores for each gene across tissues by meta-analysis. Sixty-two genome-wide significant height genes have both computed TWAS Z-scores and conserved sex bias in at least one tissue. Genes with conserved male-biased expression have more
positive TWAS Z-scores than genes with conserved female-biased expression (mean Z-score difference = 18, p = 0.023, group permutation test), but this difference was not seen when analyzing genes with human-specific or primate-specific sex bias (Fig. 5B). Expanding our analyses to include TWAS results for all genes allowed for greater stringency by only considering TWAS Z-scores calculated for the same tissue in which sex-biased expression was observed. Five hundred sixty gene-tissue pairs have both computed TWAS Z-scores and conserved sex bias; these are distributed across all 12 tissues, with the largest numbers in muscle, adipose, and pituitary (Fig. S20), and they are enriched for metabolic functions (adjusted p-value < 0.05, two-sided Fisher’s exact test, Table S6). Gene-tissue pairs with conserved male bias have more positive TWAS Z-scores than those with conserved female bias (mean Z-score difference = 0.7, p = 0.039, group permutation test), but this difference was not seen when considering gene-tissue pairs with human- or primate-specific sex bias (Fig. 5C). Together, these results indicate that genes with conserved male-biased expression show height-increasing effects, while genes with conserved female-biased expression show height-decreasing effects.

We sought to quantify the fraction of sex difference in height explained by conserved sex bias in gene expression, focusing on cases where the sex bias was in the same tissue as the TWAS Z-score (i.e. Fig 5C). We estimated the contribution of conserved sex bias to the height sex difference with two approaches. One approach used a physical scale with the effect sizes of eQTLs in GWAS, and the other examined a relative fold-change based on TWAS Z-scores (34) (Fig. S21). The two approaches yielded similar estimates of the contribution of conserved sex-biased gene expression: approximately 1.6 cm, or 12% of the observed sex difference in mean height.

That differences between TWAS Z-scores for male- and female-biased genes are most apparent when considering conserved sex bias suggests a contribution to sex differences in size in other mammals. Indeed, all five species assessed in this study exhibit sex differences in size (Fig. S22). Consider the transcription factor LCORL, which shows conserved female bias in the pituitary (Fig. S23A) and is height-decreasing in humans (cross-tissue TWAS Z-score = −28.7). Although LCORL lacks a predictive TWAS model in the pituitary, an allele at the LCORL locus associated with increased expression in the pituitary is associated with decreased height (Fig. S23B). Notably, genetic variation at the LCORL locus has been associated with height or body size in dogs (58), cattle (59), and horses (60). Re-analysis of publicly available RNA-seq data (61) shows that LCORL is one of the most strongly female-biased autosomal genes in the cattle pituitary (1.6-fold higher in females, Fig. S23C, Table S7). An allele associated with increased body size in horses is associated with decreased LCORL expression in hair root (62), indicating that the negative association between LCORL expression and height likely extends beyond humans. These observations suggest that female-biased expression of LCORL contributes to sex differences in size in multiple species. Beyond LCORL, studies have observed significant overlap in genome-wide significant height loci between humans (57), dogs (58), and cattle (59) (Table S8), suggesting a broader contribution of conserved sex-biased gene expression to sex differences in body size in a range of mammals.
Conserved and acquired sex biases in gene expression are similarly enriched for specific biological pathways and show similar magnitudes of bias

Our results indicate that while sex-biased gene expression overall shows signs of lowered selective constraint, conserved sex bias contributes to sex differences in height or body size. This raises the possibility that more recently acquired sex bias in expression has little or no functional impact. To assess this possibility, we compared genes with either conserved or acquired sex bias with respect to i) overrepresentation in specific biological pathways via Gene Ontology (GO) category enrichment, and ii) the magnitude of their sex bias.

We observed similar degrees of enrichments for biological pathways among conserved and acquired sex biases. Genes with conserved male bias in pituitary are enriched for cyclic AMP signaling, which functions in response to stress (63). Genes with conserved female bias in colon and thyroid are enriched for adaptive immune pathways, while genes with conserved female bias in adipose tissue are enriched for mitochondrial translation and ribosomal RNA processing. At the same time, genes with acquired male bias in the liver, adipose tissue, and heart are enriched for functions related to fatty acid metabolism, regulation of hormone secretion, and nucleotide metabolism, respectively, while genes with acquired female bias in the liver are enriched for extracellular matrix organization (adjusted p < 0.05, two-sided Fisher’s exact test, Table S6).

We compared the magnitude of conserved and acquired sex bias using ten independent human and mouse datasets to minimize differences due to ascertainment; we found no significant differences (adjusted p > 0.05, two-sided Wilcoxon rank-sum test, Fig. S24). Considering that conserved sex bias, while generally small in magnitude, can nevertheless contribute to sex differences in height, these results suggest that acquired sex bias could also be functionally consequential. Additional studies are needed to demonstrate the functional impact of acquired sex-biased gene expression.

Evolutionary turnover of motifs for sex-biased transcription factors reflects lineage-specific changes in sex bias

One mechanism by which sex-biased expression could evolve is via sex-biased transcription factors (TFs). For example, male-biased TF expression in muscle would result in higher TF activity in male muscle. Genes that acquired motifs for this TF in, for example, the primate lineage would then show a primate-specific sex bias in muscle. To test this idea, we searched for motifs enriched in the promoters of sex-biased genes with lineage-specific changes in a given tissue, relative to their unbiased orthologs. We repeated this analysis with random, equally sized sets of genes showing no lineage-specific sex bias in order to calculate an empirical p-value for motif enrichment (34). Because of the nonparametric nature of this p-value calculation and our desire to analyze enriched motifs inclusively, as a set, we considered motifs at a 10% FDR. We found 83 instances in which such motifs matched predicted binding sites of transcription factors (TFs) with sex bias in the same tissue (Fig. 6A, Table S9). This was significantly more (p = 0.014, tissue permutation test) than the ~67 instances of matches expected when randomly assigning the tissue of sex bias for each TF (Fig. 6B), which combined with the 10% FDR for motif discovery yields ~6.7 matches expected by chance. By quantifying the enrichment of each motif in its corresponding set of
sex-biased orthologs (34), we estimated that these 83 instances account for the lineage-specific sex bias of 6,073 gene-tissue pairs, or 27% of all lineage-specific sex bias. Furthermore, 13 TFs showed matches to enriched motifs in more than one tissue, significantly (p = 0.032, tissue permutation test) more than ~1 such TF expected by chance, as determined by the motif discovery FDR and permuting the tissue of TF sex bias as described above (Fig. S25). This suggests that gains and losses of motifs for sex-biased TFs could, in some cases, coordinate the evolution of sex-biased gene expression across multiple tissues or cell-types.

To confirm that genes with lineage-specific gains or losses of motifs for sex-biased TFs are TF-bound in living cells, we leveraged publicly available data from chromatin immunoprecipitation sequencing (ChIP-seq) in human and mouse (Table S9). Although these assays were almost invariably performed in a different cell type than the tissue of TF sex bias and motif gain, we reasoned that sex-biased genes with gained motifs in a given tissue should nevertheless show enrichment for TF ChIP-seq signal. Consistent with this prediction, 11 of 15 cases with available data showed significant enrichment of ChIP-seq peaks in the promoters of genes with a gain or loss of sex bias and the relevant motif, relative to a background set of genes lacking the motif (two-sided Fisher’s exact test, Fig. 6C). Thus, the evolutionary gains and losses of motifs we observed likely correspond to gains and losses of binding by cognate TFs.

If gains and losses of motifs for sex-biased TFs contribute to lineage-specific changes in sex bias in their target genes, there should be directional agreement between the activating or repressive effect of the TF, the sex bias of the TF, and the sex bias of the target gene. For example, target genes activated (or repressed) by a male-biased TF should be male (or female)-biased, and the opposite should be true for female-biased TFs. Rigorously testing this prediction requires experimental manipulation of the TF in the tissue where lineage-specific changes in sex bias are observed. Such data is available for PKNOX1, a homeobox TF with conserved male-biased expression in muscle (64) (Fig. S14). Genes with loss of muscle-specific sex bias in the primate lineage show depletion (at a stringent 5% FDR) of PKNOX1-matching motifs relative to mouse, rat, and dog (Fig. 5A, examples of PKNOX1 targets in fig. S14). Genes with a PKNOX1-matching motif show significant positive correlation between the effect of PknX1 knockout (64) and the effect of sex on muscle gene expression (Pearson’s r = 0.40, p = 9.02 × 10^{-6}, Fig. 6D). Thus, both ChIP-seq and TF knockout data support that gains and losses of regulation by sex-biased transcription factors have contributed to the evolution of sex bias.

DISCUSSION

Comparative studies of sex-biased gene expression have implications for the use of non-human mammals as models of sex-biased human traits or diseases. Conserved sex bias in gene expression across the body indicates that certain molecular sex differences in humans are amenable to study in a wide range of mammalian model organisms. However, in many cases non-human models may not adequately recreate the human sex differences in question. This is supported by two lines of evidence – i) within each tissue, samples cluster by species rather than sex, and ii) most sex bias in gene expression has arisen recently and is thus not
shared between most mammals. Indeed, genetic variants that decrease expression of the transcription factor KLF14 in human adipose tissue tend to increase insulin resistance and risk for Type 2 diabetes only in females, but elimination of Klf14 expression in mouse adipose tissue leads to analogous phenotypes in both sexes (65). Non-human mammals may still be useful as models of physiological or systems-level sex differences, but caution should be exercised when extrapolating specific molecular findings to humans.

We find that conserved sex bias in autosomal gene expression explains approximately 12% of the sex difference in mean human height, while all common SNPs are thought to explain 60% of the heritability of height (66). While these two numbers are not directly comparable (the former relates to between-group differences, the latter to between-individual variation), these height heritability estimates suggest that additional genes and instances of sex bias relevant to sex differences in height remain to be discovered. Deletions of the SHOX gene, located in the pseudoautosomal region of the human X and Y chromosomes, contribute to short stature in Turner syndrome (67), while increases in sex chromosome number (and thus SHOX dosage) increase height (68). While the height GWAS used here excluded the pseudoautosomal regions, precluding analysis of SHOX, targeted studies indicate that SHOX dosage is positively correlated with height (67, 68). In light of reports that expression of SHOX is male-biased in multiple tissues (16), it may be that SHOX contributes a fraction of the sex difference in height (discussed further in (69)).

Studies of selection on height have illustrated how males and females can have different optimal values for a quantitative trait, with increased height favored in males and decreased height favored in females (53). Our finding that conserved sex bias in gene expression contributes to sex differences in height suggests one way in which such optimal values can be reached – through the acquisition and maintenance of sex-biased gene expression (70). Thus, while some conserved sex bias in gene expression may have arisen through selectively neutral processes, opposing selective forces between the sexes appear to have been at work here. Height is also subject to balancing selection, in which extreme variation in either direction negatively impacts reproductive fitness (53). A recent study in Drosophila found a strong signature of balancing selection at loci with opposite fitness effects in females and males, establishing that sexual antagonism and balancing selection can coincide (71). Future studies may identify mechanisms that reduce fitness at the extremes of the height distributions in both sexes. While our study focused exclusively on height, genetic pleiotropy may broaden the reach of our findings. Sex-biased gene expression achieved due to opposing selective pressures on male and female height could result in sex differences in phenotypes yet to be identified.

Our results also illustrate one way in which sex-biased gene expression can lead to phenotypic sex differences: autosomal genes, operating identically in males and females to influence a trait, can be expressed more abundantly in one sex. Although most genetic variation influencing height acts identically between the sexes, pronounced sex-specific genetic effects have been demonstrated for waist-to-hip ratio, body mass index (72–74), thyroid hormone levels (75), and obsessive-compulsive disorder (76). Fully accounting for such sex differences in genetic architecture in association mapping (77), and integrating this...
information with sex biases in gene expression, may reveal additional mechanisms underlying phenotypic sex differences.

Our finding of sex-biased transcription factors underlying lineage-specific changes in sex bias provides molecular insight into mechanisms underlying the evolution of sex-biased gene expression in non-reproductive mammalian tissues. We focused on regulatory changes in promoter regions due to the lack of tissue-specific enhancer annotations in cyno, rat, or dog. However, single-gene studies in Drosophila indicate that sex-biased gene expression can evolve through more complex changes in cis-regulatory elements at larger genomic distances from their target gene (31). Studying gains and losses of transcription factor binding motifs in promoters, while an important first step, is a simplifying approach. It is thus necessary to catalog both tissue- and species-specificity of mammalian enhancers to enable detailed analyses of the cis-regulatory changes driving gains or losses of sex-biased gene expression during mammalian evolution. Most of the sex-biased transcription factors we identified as contributing to lineage-specific evolution of sex bias are autosomal, indicating that their sex biases could arise as a result of trans-regulatory effects of sex chromosomes or sex hormones. Distinguishing between these two possibilities is an important future direction of research.

Materials and methods summary

Human (GTEx) samples were filtered on the basis of cause of death, medical history, and notes from GTEx pathologists (35), and additional detailed evaluations were conducted on samples with available histology. Samples from cynomolgus macaque, mouse, rat, and dog were collected within 1 hour of sacrifice of healthy animals, and only tissues from non-estrous females were used. RNA extraction, library preparation, and RNA sequencing of non-human mammals were performed in batches randomized with respect to tissue, species, and sex. Analyzing the combined human and non-human dataset, a linear mixed model (78) was used to identify genes showing consistent sex bias across species within each tissue, while mashr was used to identify lineage-specific changes in sex bias. These analyses were repeated with permuted male/female sample labels to empirically estimate false discovery rates. Magnitudes of sex bias were assessed in independent datasets by reanalyzing raw data where available. For lineage-specific sex biases in each tissue, motif analysis (79, 80) was used to identify TF binding sites enriched in the set of sex-biased orthologs relative to the unbiased orthologs. Height-increasing or -decreasing effects of gene-tissue pairs were determined by combining publicly available TWAS predictive models (54) based on eQTL information from GTEx with height GWAS summary statistics from the UK Biobank (56), GIANT consortium (57), and a meta-analysis of the two studies (48).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements:

We thank Daniel W. Bellott, Lukas Chmatal, and Richard Ransohoff for critically reading the manuscript.
Funding: S.N. and A.K.G were supported under a research grant from Biogen, Inc. This work was supported by Biogen, Whitehead Institute, National Institutes of Health (grant numbers R01HG007852 and U01HG007857), Howard Hughes Medical Institute, generous gifts from Brit and Alexander d’Arbeloff and Arthur W. and Carol Tobin Brill. Present address of S.N.: Departments of Chemical and Systems Biology and Genetics, Stanford University, Stanford, CA 94305.

References

1. Wells JCK, Sexual dimorphism of body composition. Best Pract. Res. Clin. Endocrinol. Metab 21, 415–430 (2007). [PubMed: 17875489]

2. Green HJ, Fraser IG, Ranney DA, Male and female differences in enzyme activities of energy metabolism in vastus lateralis muscle. J. Neurol. Sci 65, 323–331 (1984). [PubMed: 6238135]

3. Ruigrok ANV et al., A meta-analysis of sex differences in human brain structure. Neurosci. Biobehav. Rev 39, 34–50 (2014). [PubMed: 24374381]

4. Klein SL, Flanagan KL, Sex differences in immune responses. Nat. Rev. Immunol 16, 626–638 (2016). [PubMed: 27546235]

5. Hayward CS, Kalnins WV, Kelly RP, Gender-related differences in left ventricular chamber function. Cardiovasc. Res 49, 340–350 (2001). [PubMed: 11164844]

6. Ngo ST, Steyn FJ, McCombe PA, Gender differences in autoimmune disease. Front. Neuroendocrinol 35, 347–369 (2014). [PubMed: 24793874]

7. Regitz-Zagrosek V et al., Gender in cardiovascular diseases: Impact on clinical manifestations, management, and outcomes. Eur. Heart J 37, 24–34 (2016). [PubMed: 26530104]

8. Werling DM, Geschwind DH, Sex differences in autism spectrum disorders. Curr. Opin. Neurol 26, 146–153 (2013). [PubMed: 23406909]

9. Olson H et al., Concordance of the toxicity of pharmaceuticals in humans and in animals. Regul. Toxicol. Pharmacol 32, 56–67 (2000). [PubMed: 11029269]

10. Lindenfors P, Gittleman JL, Jones K, in Evolutionary Studies of Sexual Size Dimorphism (Oxford University Press, 2007), pp. 16–26.

11. Gorski RA, Gordon JH, Shryne JE, Southam AM, Evidence for a morphological sex difference within the medial preoptic area of the rat brain. Brain Res. 148, 333–346 (1978). [PubMed: 656937]

12. Scotland R, Stables M, Sex differences in resident immune cell phenotype underlie more efficient acute inflammatory responses in female mice. Blood. 118, 5918–5928 (2011). [PubMed: 21911834]

13. Shioura KM, Geenen DL, Goldspink PH, Sex-related changes in cardiac function following myocardial infarction in mice. Am. J. Physiol. - Regul. Integr. Comp. Physiol 295, R528–R534 (2008). [PubMed: 18550865]

14. Skeatsky H et al., The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature. 423, 825–838 (2003). [PubMed: 12815422]

15. Bellott DW et al., Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators. Nature. 508, 494–499 (2014). [PubMed: 24759411]

16. Tukiainen T et al., Landscape of X chromosome inactivation across human tissues. Nature. 550, 244–248 (2017). [PubMed: 29022598]

17. Mele M et al., The human transcriptome across tissues and individuals. Science. 348, 660–665 (2015). [PubMed: 25954002]

18. Gershoni M, Pietrokovski S, The landscape of sex-differential transcriptome and its consequent selection in human adults. BMC Biol. 15, 1–15 (2017). [PubMed: 28100223]

19. Yang X et al., Tissue-specific expression and regulation of sexually dimorphic genes in mice. Genome Res. 16, 995–1004 (2006). [PubMed: 16825664]

20. Ranz M, Castillo-davis CI, Meiklejohn CD, Sex-dependent gene expression and evolution of the Drosophila transcriptome. Science. 300, 1742–1745 (2003). [PubMed: 12805547]

21. Zhang Y, Sturgill D, Parisi M, Kumar S, Oliver B, Constraint and turnover in sex-biased gene expression in the genus Drosophila. Nature. 450, 233–237 (2007). [PubMed: 17994089]
22. Grath S, Parsch J, Rate of amino acid substitution is influenced by the degree and conservation of male-biased transcription over 50 Myr of drosophila evolution. Genome Biol. Evol 4, 346–359 (2012). [PubMed: 22321769]
23. Assis R, Zhou Q, Bachtrog D, Sex-biased transcriptome evolution in drosophila. Genome Biol. Evol 4, 1189–1200 (2012). [PubMed: 23097318]
24. Perry JC, Harrison PW, Mank JE, The ontogeny and evolution of sex-biased gene expression in drosophila melanogaster. Mol. Biol. Evol 31, 1206–1219 (2014). [PubMed: 24526011]
25. Reinius B et al., An evolutionarily conserved sexual signature in the primate brain. PLoS Genet. 4, e1000100 (2008).
26. Blekhman R, Marioni JC, Zumbo P, Stephens M, Gilad Y, Sex-specific and lineage-specific alternative splicing in primates. Genome Res. 20, 180–189 (2010). [PubMed: 20009012]
27. Liang Y et al., A gene network regulated by the transcription factor VGLL3 as a promoter of sex-biased autoimmune diseases. Nat. Immunol 18, 152–160 (2017). [PubMed: 27992404]
28. Russi AE, Ebel ME, Yang Y, Brown MA, Male-specific IL-33 expression regulates sex-dimorphic EAE susceptibility. Proc. Natl. Acad. Sci. 201710401 (2018).
29. Souyris M et al., TLR7 escapes X chromosome inactivation in immune cells. Sci. Immunol 3, eaap8855 (2018).
30. Boyle EA, Li YI, Pritchard JK, An expanded view of complex traits: from polygenic to omnigenic. Cell. 169, 1177–1186 (2017). [PubMed: 28622505]
31. Williams TM et al., The regulation and evolution of a genetic switch controlling sexually dimorphic traits in Drosophila. Cell. 134, 610–623 (2008). [PubMed: 18724934]
32. Distecher CM, Dosage compensation of the sex chromosomes. Annu. Rev. Genet 46, 537–560 (2012). [PubMed: 22974302]
33. Distecher CM, Dosage compensation of the sex chromosomes and autosomes. Semin. Cell Dev. Biol 56, 9–18 (2016). [PubMed: 27112542]
34. Material and methods are available as supplementary materials.
35. The GTEx Consortium, Genetic effects on gene expression across human tissues. Nature. 550, 204–213 (2017). [PubMed: 29022597]
36. Newman AM et al., Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods. 12, 453–457 (2015). [PubMed: 25822800]
37. Merkin J, Russell C, Chen P, Burge CB, Evolutionary dynamics of gene and isoform regulation in Mammalian tissues. Science. 338, 1593–9 (2012). [PubMed: 23258891]
38. Brawand D et al., The evolution of gene expression levels in mammalian organs. Nature. 478, 343–8 (2011). [PubMed: 22012392]
39. Werling DM, Parikshak NN, Geschwind DH, Gene expression in human brain implicates sexually dimorphic pathways in autism spectrum disorders. Nat. Commun 7, 1–11 (2016).
40. Lindholm ME et al., The human skeletal muscle transcriptome: Sex differences, alternative splicing, and tissue homogeneity assessed with RNA sequencing. FASEB J. 28, 4571–4581 (2014). [PubMed: 25016029]
41. Newman MS, Nguyen T, Watson MJ, Hull RW, Yu H-G, Transcriptome profiling reveals novel BMI- and sex-specific gene expression signatures for human cardiac hypertrophy. Physiol. Genomics. 49, 355–367 (2017). [PubMed: 28500252]
42. Viguerie N et al., Determinants of human adipose tissue gene expression: impact of diet, sex, metabolic status, and cis genetic regulation. PLoS Genet. 8 (2012), doi:10.1371/journal.pgen.1002959.
43. Marin R et al., Convergent origination of a Drosophila-like dosage compensation mechanism in a reptile lineage. Genome Res, 1–14 (2017).
44. Li B et al., A comprehensive mouse transcriptomic body map across 17 tissues by RNA-seq. Sci. Rep 7, 1–10 (2017). [PubMed: 28127051]
45. De Franco M et al., Transcriptome of normal lung distinguishes mouse lines with different susceptibility to inflammation and to lung tumorigenesis. Cancer Lett. 294, 187–194 (2010). [PubMed: 20189714]
46. Urbut SM, Wang G, Carbonetto P, Stephens M, Flexible statistical methods for estimating and testing effects in genomic studies with multiple conditions. Nat. Genet. 51, 187–195 (2019). [PubMed: 30478440]

47. Chen J et al., A quantitative framework for characterizing the evolutionary history of mammalian gene expression. Genome Res. 29, 53–63 (2018). [PubMed: 30552105]

48. Yengo L et al., Meta-analysis of genome-wide association studies for height and body mass index in ~700000 individuals of European ancestry. bioRxiv (2018).

49. Tukiainen T et al., Chromosome X-wide association study identifies loci for fasting insulin and height and evidence for incomplete dosage compensation. 10 (2014), doi:10.1371/journal.pgen.1004127.

50. Sidorenko J et al., The effect of X-linked dosage compensation on complex trait variation. bioRxiv, 433870 (2018).

51. Rawlik K, Canela-Xandri O, Tenesa A, Evidence for sex-specific genetic architectures across a spectrum of human complex traits. Genome Biol. 17, 1–8 (2016). [PubMed: 26753840]

52. Stulp G, Barrett L, Evolutionary perspectives on human height variation. Biol. Rev 91, 206–234 (2016). [PubMed: 25530478]

53. Sanjak JS, Sidorenko J, Robinson MR, Thornton KR, Visscher PM, Evidence of directional and stabilizing selection in contemporary humans. Proc. Natl. Acad. Sci 115, 201707227 (2017).

54. Gusev A et al., Integrative approaches for large-scale transcriptome-wide association studies. Nat. Genet 48, 245–252 (2016). [PubMed: 26854917]

55. MacArthur J et al., The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res. 45, D896–D901 (2017). [PubMed: 27899670]

56. Loh P, Kichaev G, Gazal S, Schoech AP, Price AL, Mixed-model association for biobank-scale datasets. Nat. Genet 50, 906–908 (2018). [PubMed: 29892013]

57. Wood AR et al., Defining the role of common variation in the genomic and biological architecture of adult human height. Nat. Genet 46, 1173–1186 (2014). [PubMed: 25282103]

58. Hayward JJ et al., Complex disease and phenotype mapping in the domestic dog. Nat. Commun 7, 1–11 (2016).

59. Bouwman AC et al., Meta-analysis of genome-wide association studies for cattle stature identifies common genes that regulate body size in mammals. Nat. Genet 50, 362–367 (2018). [PubMed: 29459679]

60. Signer-Hasler H et al., A genome-wide association study reveals loci influencing height and other conformation traits in horses. PLoS One. 7, 3–8 (2012).

61. Seo M et al., Comprehensive identification of sexually dimorphic genes in diverse cattle tissues using RNA-seq. BMC Genomics. 17, 1–18 (2016). [PubMed: 26818753]

62. Metzger J, Schrimpf R, Philipp U, Distl O, Expression levels of LCORL are associated with body size in horses. PLoS One. 8, 1–9 (2013).

63. Stroth N, Holighaus Y, Ait-Ali D, Eiden LE, PACAP: A master regulator of neuroendocrine stress circuits and the cellular stress response. Ann. N. Y. Acad. Sci 1220, 49–59 (2011). [PubMed: 21388403]

64. Kanzleiter T et al., Pknox1/Prep1 regulates mitochondrial oxidative phosphorylation components in skeletal muscle. Mol. Cell. Biol 34, 290–298 (2014). [PubMed: 24216763]

65. Small KS et al., Regulatory variants at KLF14 influence type 2 diabetes risk via a female-specific effect on adipocyte size and body composition. Nat. Genet 50, 572–580 (2018). [PubMed: 29632379]

66. Yang J et al., Common SNPs explain a large proportion of the heritability for human height. Nat. Genet 42, 565–569 (2010). [PubMed: 20562875]

67. Rao E et al., Pseudoautosomal deletions encompassing a novel homeobox gene cause growth failure in idiopathic short stature and Turner syndrome. Nat. Genet 16, 54–63 (1997). [PubMed: 9140395]

68. Ogata T, Matsuo N, Sex chromosome aberrations and stature: deduction of the principal factors involved in the determination of adult height. Hum. Genet 91, 551–562 (1993). [PubMed: 8340109]
69. Roman A. K. San, Page DC, A strategic research alliance: Turner syndrome and sex differences. Am. J. Med. Genet. Part C Semin. Med. Genet 181, 92–100 (2019).
70. Parsch J, Ellegren H, The evolutionary causes and consequences of sex-biased gene expression. Nat. Rev. Genet 14, 83–87 (2013). [PubMed: 23329110]
71. Ruzicka F et al., Genome-wide sexually antagonistic variants reveal long-standing constraints on sexual dimorphism in fruit flies. PLoS Biol. 17, e3000244 (2019).
72. Randall JC et al., Sex-stratified genome-wide association studies including 270,000 individuals show sexual dimorphism in genetic loci for anthropometric traits. PLoS Genet. 9 (2013), doi: 10.1371/journal.pgen.1003500.
73. Winkler TW et al., The influence of age and sex on genetic associations with adult body size and shape: a large-scale genome-wide interaction study. PLoS Genet 11 (2015), pp. 1–42.
74. Shungin D et al., New genetic loci link adipose and insulin biology to body fat distribution. Nature. 518, 187–196 (2015). [PubMed: 25673412]
75. Porcu E et al., A meta-analysis of thyroid-related traits reveals novel loci and gender-specific differences in the regulation of thyroid function. PLoS Genet. 9 (2013), doi:10.1371/journal.pgen.1003266.
76. Khramtssova EA et al., Sex differences in the genetic architecture of obsessive–compulsive disorder. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 1–14 (2018).
77. Kang EY et al., Genetics, in press, doi:10.1534/genetics.117.300501.
78. Ritchie ME et al., Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).
79. Bailey TL, DREME: Motif discovery in transcription factor ChIP-seq data. Bioinformatics. 27, 1653–1659 (2011). [PubMed: 21543442]
80. McLeay RC, Bailey TL, Motif Enrichment Analysis: A unified framework and an evaluation on ChIP data. BMC Bioinformatics. 11 (2010), doi:10.1186/1471-2105-11-165.
81. Dobin A et al., STAR: Ultrafast universal RNA-seq aligner. Bioinformatics. 29, 15–21 (2013). [PubMed: 23104886]
82. Hughes JF et al., Strict evolutionary conservation followed rapid gene loss on human and rhesus Y chromosomes. Nature. 483, 82–86 (2012). [PubMed: 22367542]
83. Langmead B, Trapnell C, Pop M, Salzberg SL, Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).
84. Gordon D, Green P, Consed: A graphical editor for next-generation sequencing. Bioinformatics. 29, 2936–2937 (2013). [PubMed: 23995391]
85. Pertea M et al., StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol 33, 290–295 (2015). [PubMed: 25690850]
86. Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C, Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods. 14, 417–419 (2017). [PubMed: 28263959]
87. Robinson MD, McCarthy DJ, Smyth GK, Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Research. 4, 1521 (2016).
88. Robinson MD, McCarthy DJ, Smyth GK, edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 26, 139–140 (2009). [PubMed: 19910308]
89. Zhang Y et al., Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron. 89, 37–53 (2016). [PubMed: 26687838]
90. Reemann P et al., Melanocytes in the skin - Comparative whole transcriptome analysis of main skin cell types. PLoS One. 9, 1–17 (2014).
91. Glastonbury CA, Small KS, Alves AC, Moustafa JSE-S, Cell-type heterogeneity in adipose tissue is associated with complex traits and reveals disease-relevant cell-specific eQTLs. bioRxiv, 283929 (2018).
92. Liu R et al., Why weight? Modelling sample and observational level variability improves power in RNA-seq analyses. Nucleic Acids Res. 43 (2015), doi:10.1093/nar/gkv412.
93. Storey JD, Tibshirani R, Statistical significance for genomewide studies. PNAS. 100, 9440–5 (2003). [PubMed: 12883005]
94. Engelhardt BE, Stephens M, Analysis of population structure: A unifying framework and novel methods based on sparse factor analysis. PLoS Genet. 6 (2010), doi:10.1371/journal.pgen.1001117.
95. Li B et al., A comprehensive mouse transcriptomic BodyMap across 17 tissues by RNA-seq. Sci. Rep 7, 1–10 (2017). [PubMed: 28127051]
96. Viguerie N et al., Determinants of human adipose tissue gene expression: Impact of diet, sex, metabolic status, and cis genetic regulation. PLoS Genet. 8 (2012), doi:10.1371/journal.pgen.1002959.
97. Zhang Y et al., Transcriptional profiling of human liver identifies sex-biased genes associated with polygenic dyslipidemia and coronary artery disease. PLoS One. 6, e23506 (2011).
98. Mohammadi P, Castel SE, Brown AA, Lappalainen T, Quantifying the regulatory effect size of cis-acting genetic variation using allelic fold change. Genome Res. 27, 1872–1884 (2017). [PubMed: 29021289]
99. Lesch BJ, Silber SJ, McCarrey JR, Page DC, Parallel evolution of male germline epigenetic poising and somatic development in animals. Nat. Genet 48, 888–894 (2016). [PubMed: 27294618]
100. Mathelier A et al., JASPAR 2016: A major expansion and update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 44, D110–D115 (2016). [PubMed: 26531826]
101. Gupta S, Stamatoyannopoulos JA, Bailey TL, Noble WS, Quantifying similarity between motifs. Genome Biol. 8 (2007), doi:10.1186/gb-2007-8-2-r24.
102. Quinlan AR, Hall IM, BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics. 26, 841–842 (2010). [PubMed: 20110278]
103. Grant CE, Bailey TL, Noble WS, FIMO: Scanning for occurrences of a given motif. Bioinformatics. 27, 1017–1018 (2011). [PubMed: 21330290]
104. Dittus W, in Macaque societies: a model for the study of social organization, Thierry B, Singh M, Kaumanns W, Eds. (Cambridge University Press, Cambridge (UK), 2004), pp. 87–112.
105. Frynta D, Baudyšová J, Hradcová P, Faltusová K, Kratochvíl L, Allometry of sexual size dimorphism in domestic dog. PLoS One. 7, 5–10 (2012).
106. Gregorová S et al., Mouse consomic strains: Exploiting genetic divergence between Mus m. musculus and Mus m. domesticus subspecies. Genome Res. 18, 509–515 (2008). [PubMed: 18256238]
107. Porter FH et al., Morphometric and demographic differences between tropical and temperate Norway rats (Rattus norvegicus). J. Mammal 96, 317–323 (2015).
Fig. 1: Five-species, twelve-tissue survey of sex differences in gene expression.
(A) Schematic of study design, with tissues chosen for analysis in all five species highlighted in humans. (B) Hierarchical clustering of 349 RNA-seq samples. Top, pairwise estimates of Jensen-Shannon divergence (JSD) between pairs of samples. Six random human samples per tissue, in addition to all non-human samples, were included for display purposes. Middle, tree dendrogram obtained by hierarchical clustering (average linkage) based on pairwise JSD values. Bottom, sample labels by tissue, species, sex.
Fig. 2: Conserved sex bias in gene expression across the body.
(A) Example of gene with conserved female-biased expression. (B) Heatmap of conserved male (blue) and female (orange) sex bias across genes (rows) and tissues (columns). (C) Y-axis represents number of genes with conserved sex bias in one (left) or multiple (right) tissues. (D) Of genes with conserved sex bias in multiple tissues, the number concordant (same direction) or discordant (opposite direction) in multiple tissues is plotted. Significance as assessed by two-sided Fisher’s exact test comparing to equal proportions.
Fig. 3: Most sex bias in gene expression has arisen since the last common ancestor of boroeutheria.

(A) Examples of genes with lineage-specific sex bias. (B) Number of true-positive sex-biased gene-tissue pairs (y-axis) in each evolutionary class was calculated as the difference between the total number discovered across all tissues using true or permuted sex labels. Evolutionary classes defined in main text are designated as ancestral, acquired, or complex relative to last common ancestor of boroeutheria (the five species considered here). (C) Comparisons of ancestral to acquired sex biases as in (B), but performed in each tissue separately. Upper and lower confidence intervals represent fraction of sex bias estimated to be ancestral when counting all complex events as ancestral or acquired, respectively.
Fig. 4: Sex-biased gene expression is associated with reduced selective constraint.
Within each tissue, genes were binned as showing no sex bias, or sex bias of any evolutionary type. Human breadth (A) was calculated based on median expression values in the 12 selected GTEx tissues (34), expression constraint (B) represents the genome-wide percentile, and sequence conservation (C) is calculated as the mean coding phyloP score (34). In each heatmap, the group median of the indicated gene-level trait is plotted; asterisks indicate a Benjamini-Hochberg-adjusted p-value < 0.05 from a two-sided Wilcoxon rank-sum test, placed on the group (“No bias” or “Sex-biased”) with the lower value of the gene-level trait.
Fig. 5: Conserved sex bias in autosomal gene expression contributes to sex differences in human height.

(A) Overlapping but shifted distributions of male and female heights. Theoretical normal distributions using published means and standard deviations of male and female heights in individuals of European ancestry from the United Kingdom (53). (B) TWAS Z-scores for genome-wide significant height genes with either female (orange) or male (blue) bias in one of 12 tissues, either (left) conserved across mammals, (middle) specific to humans, or (right) specific to primates. For each gene, TWAS Z-scores were meta-analyzed across 48 GTEx tissues. (C) TWAS Z-scores for gene-tissue pairs with either female (orange) or male (blue)
bias, either (left) conserved across mammals, (middle) specific to humans, or (right) specific to primates, in all cases in same tissue as computed TWAS Z-score. Points represent group means; whiskers represent 95% confidence intervals. P-value for mean difference calculated by 1000 permutations of male/female point labels.
Fig. 6: Evolutionary turnover of motifs for sex-biased transcription factors (TFs) is associated with gains and losses of sex bias.

(A) Representative gained or lost motifs in promoters of genes with lineage-specific gains or losses of sex bias (top) aligned with motifs for sex-biased TFs in same tissue (bottom). The lineage of sex bias gain or loss is indicated above each motif; the sex-biased TF and lineage of its sex bias are indicated below. (B) Total number of matches between gained/lost motifs and sex-biased TFs when considering tissue of TF sex bias (black) or randomly chosen tissues (grey). (C) Enrichment of ChIP-seq peaks in promoters of genes with lineage-specific sex biases containing gained or lost motifs for the TF. The sex-biased TF, along with tissue of sex bias and motif gain/loss and cell-type in which ChIP-seq was performed, are indicated to left. The log₂ odds ratio for genes with lineage-specific sex bias and containing the motif as compared to a background set of genes with no motif is shown on x-axis, with 95% confidence intervals by Fisher’s exact test. (D) Effect of Pknox1 knockout (x-axis) (64) versus sex bias (y-axis), both in mouse muscle, for genes that show loss of sex bias in primate lineage and contain a motif for PKNOX1 in mouse.