Neuroleptic malignant syndrome with thyroid disorder
An unusual case report

Fan Zhang, MD, PhDa,b,*, Parisa Kanzali, MDb, Vadim Rubin, MDa, Chris Paras, DOa, Joel Goldman, MDc

Abstract
Rationale: Neuroleptic malignant syndrome (NMS) is a life threatening neurologic emergency associated with neuroleptic or antipsychotic agent use. NMS is rarely related to thyroid disease.

Patient concerns: We report a case of NMS in a 66-year-old male with past medical history of paranoid schizophrenia on chlorpromazine, diabetes, hypertension and asthma, who presented with a humeral fracture after a fall. Patient developed hyperpyrexia, altered consciousness, autonomic instability, elevated serum creatine kinase (CK) without rigidity.

Diagnoses: CT head and workup for infection were negative. Electroencephalogram (EEG) showed generalized slow wave activity. Ultrasound revealed a large goiter with nodules.

Interventions: Chlorpromazine was stopped due to concern of NMS. Patient was treated with cooling, fluid and electrolyte maintenance.

Outcomes: Patient slowly improved and CK level normalized. Thyroid-stimulating hormone (TSH) level trended down from 10.2 mIU/L to 0.02 mIU/L. Patient was discharged with aripiprazole.

Lessons: Hypothyroidism predisposes patients to NMS by altering central dopaminergic systems. The typical symptoms may be masked by hypothyroidism. Thyroid dysfunction should be excluded in all patients with NMS. Discontinuing antipsychotic agents decreases TSH levels which maybe due to the negative feedback of dopaminergic activity. This is the first case report describing dramatic changes in TSH after discontinuing chlorpromazine in NMS.

Abbreviations: CK = creatine kinase, CT = computed tomography, EEG = electroencephalogram, HPT axis = hypothalamic-pituitary-thyroid axis, MC = myxedema coma, NMS = neuroleptic malignant syndrome, TSH = thyroid-stimulating hormone.

Keywords: chlorpromazine, hypothyroidism, neuroleptic malignant syndrome (NMS)

1. Introduction
Neuroleptic malignant syndrome (NMS) is the disturbance of hypothalamic and basal ganglia dopaminergic function. It may occur during treatment with neuroleptic or antipsychotic drugs.[1] The tetrad of syndrome are mental status changes, rigidity, fever, and dysautonomia. The typical symptoms may be masked by hypothyroidism which also predisposes the patient to NMS by a general increase in brain dopaminergic activity.[2,3] We report the first case with dramatic changes in thyroid-stimulating hormone (TSH) after discontinuing chlorpromazine in a patient of NMS with schizophrenia. Thyroid dysfunction should be excluded in a patient with NMS.

2. Case report
Patient is a 66-year-old African American male with past medical history of paranoid schizophrenia, diabetes, hypertension, and asthma. The patient felt dizzy and fell down on his right shoulder. He missed his morning insulin dose. Patient was alert, awake, oriented, and complained of right arm pain. On physical examination, patient had ecchymosis over the right upper arm, BP 90/68 mmHg, heart rate (HR) 66, and respiratory rate (RR) 18. Laboratory investigation revealed glucose 455 mg/dL, bicarbonate 18.3 mEq/L, venous blood gas (VBG) pH 7.27, creatinine 1.3, white blood cell (WBC) 7.3, and TSH 10.2 mIU/L (normal range 0.45–4.68 mIU/L). Patient was treated with intravenous hydration, subcutaneous insulin, and chlorpromazine 200 mg 3 times daily, which he had taken for 10 years previously for schizophrenia. Computed tomography (CT) of the head showed mild cortical atrophy with no acute changes. X-ray revealed mildly displaced fracture of the right humeral neck. Orthopedic surgery suggested no surgical intervention. On the
second day, glucose level was 123, VBG pH 7.44, and creatinine 0.4 (normal). However, patient developed tachycardia with HR 110 and BP 144/90mmHg. Over the next 3 days, patient’s BP fluctuated from 103/70 to 150/94mmHg and HR from 109 to 128. Patient was lethargic with slurring, mumbling, and mostly inaudible speech. He was able to follow simple commands and name 3 objects. On day 6, patient developed a fever of 38.4°C (101.1°F), tachycardia HR 130, BP 151/94mmHg which was significantly increased from BP 113/75mmHg within the past 24 hours. On day 7, patient was stuporous with fever 40.1°C (104.2°F), BP 119/67, HR 142, and tachypnea RR 29. CT head was negative for acute changes. EEG revealed generalized slowing. CT chest angiogram ruled out pulmonary embolic disease. Screening for infection was negative. Lumbar puncture revealed diffusely enlarged and heterogeneous thyroid gland. Thyroid stimulating immunoglobulin, thyroid peroxidase antibodies, and thyroglobulin antibody were negative. Patient was treated with vigorous cooling, fluid, and electrolyte maintenance.

On the morning of day 8, patient was lethargic with improved vital signs: T 37°C (98.6°F), BP 104/69mmHg, HR 125. Notably, TSH decreased to 0.127 mIU/L with free T4 1.77 ng/dL (normal range 0.78–2.19 ng/dL) with elevated CK 610 U/L (normal range 55–170 U/L), and WBC 10.4. For an unclear reason, patient received 1 dose of chlorpromazine 200 mg in the morning. Repeated labs showed an increase in TSH 0.998 mIU/L with free T4 1.77 ng/dL and CK dropped to 540 U/L (Fig. 1). CT chest, abdomen, and pelvis showed no acute pulmonary or intra-abdominal findings, but revealed diffusely enlarged and heterogeneous thyroid gland.

Chlorpromazine was discontinued again and serial CK levels showed a declining trend from 610 to 384, 137, 119, 101, 72 U/L within the next 12 days (Fig. 1). His temperature varied from 36.4°C (97.5°F) to 37.5°C (99.5°F). Patient was still lethargic and had recurrent tachycardia with HR ranging from 94 to 158. Transthoracic echocardiogram revealed vigorous systolic function of left ventricle without regional wall motion abnormalities or structural heart disease. Holter monitor showed sinus tachycardia with average HR range between 101 and 142 per minute with occasional premature ventricular contractions and premature atrial contractions. On day 13, patient showed negative symptoms of alogia and flat affect with staring into space with delayed and minimal responses. He seemed internally preoccupied. His speech was slurred and difficult to understand. Patient stated he was hearing voices telling him to take his medications.

On day 21, patient had an episode of agitation. Patient was started on aripiprazole 5 mg daily per psychiatric consultation. His vital signs were within normal range. TSH was 0.05 mIU/L and free T4 was 1.81 ng/dL. Thyroid sonogram showed prominent enlarged thyroid gland with right thyroid lobe 7.4 cm × 1.9 cm × 3.4 cm and left thyroid lobe 6.6 cm × 2.4 cm × 3.0 cm. There are bilateral thyroid nodules with 2 nodules in the right thyroid lobe and 3 nodules on the left side. The largest nodule was 1.9 cm × 1.1 cm × 1.4 cm (Fig. 2).

Patient’s delusion and agitation slowly remitted and was stabilized on aripiprazole. He was discharged on day 27 with T 36.7°C (98°F), BP 120/70 mmHg, HR 94, and CK level 54 U/L. TSH was low 0.028 mIU/L and free T4 was normal 1.81 ng/dL. Thyroid stimulating immunoglobulin, thyroid peroxidase antibodies, and thyroglobulin antibody were negative. Patient’s movement and mental status returned to his baseline and he was able to answer questions and ambulate. Patient’s past medical record was obtained showing that he was diagnosed with schizophrenia since the age of 24 years and was hearing voices on and off during his life. He was euthyroid one and a half years previously with TSH 1.21 mIU/L. He was discharged to be followed by psychiatry and endocrinology.

3. Discussion

NMS is a life-threatening neurological emergency associated with the use of neuroleptic agents which block dopamine transmission and characterized by a tetrad clinical syndrome of mental status...
change, fever, rigidity, and autonomic instability. The incident rates of NMS range from 0.02% to 3% among patients taking neuroleptic agents and the mortality is estimated between 10% and 20%. NMS is seen in every class of neuroleptic drugs with the most often occurring in the typical high potency neuroleptic agents (e.g., haloperidol, fluphenazine). Low potency (e.g., chlorpromazine), atypical antipsychotic drugs (e.g., clozapine, risperidone, olanzapine), and antiemetic drugs (e.g., metoclopramide, promethazine) have been implicated as well.

There are several risk factors for development of NMS, such as dehydration, polypharmacy, depot neuroleptic, metabolic encephalopathy, and acute medical illness (e.g., trauma, surgery, and infection). In our patient, a fracture after a fall along with hyperglycemia associated with acidosis might have precipitated his development of NMS in the background of hypothyroidism with TSH of 10.2mIU/L.

The typical clinic presentations of NMS usually evolves over 1 to 3 days with mental status changes as the initial symptoms, followed by rigidity, then hyperthermia and autonomic dysfunction. Atypical NMS occurs in milder cases, diagnosed early cases or associated with lower potency agents. The symptom of rigidity or fever may be mild, delayed, and even absent. The diagnosis of NMS should be considered when any 2 of the tetrad of symptoms are present in the setting of neuroleptic agents use. The degree of CK elevation is correlated with the severity of rigidity and prognosis of NMS. Although CK is typically more than 1000IU/L and can be as high as 100,000 IU/L, normal CK can be seen if no clear rigidity developed. Our patient exhibited NMS symptoms without rigidity which maybe due to the milder form of NMS with the use of the low potency antipsychotic agent, chlorpromazine. On the other hand, his TSH was 10.2mIU/L on admission compared with 1.2mIU/L one and a half year earlier. This suggests that new onset of hypothyroidism may predispose the patient to NMS along with other precipitating factors including metabolic dysfunction and trauma. Furthermore, hypo-metabolic state with flaccidity of hypothyroidism may mask rigidity.

Hypothyroidism is often not diagnosed. Several cases of hypothyroidism with NMS have been reported. Hypothyroidism was found in both the initial episode of NMS and the recurrence. In the background of thyroid hormone deficiency, antipsychotic medications can even precipitate myxedema coma (MC). Interestingly, in 1 case of MC, similar to our patient, CK normalized after discontinuing antipsychotics for 12 days and patient was also discharged on hospital day 27 with aripiprazole.

The relationship between chlorpromazine and thyroid function has been studied in the past at the thyroid gland level, circulation level, and hypothalamic-pituitary-thyroid (HPT) axis level. It may interfere with iodine capture by thyroid cells, increase deiodination, and exert a thyroid immunogenic effect. At the circulation level, drug-iodine complexes have formation constants, Kc, that estimate the electron-donating potential of the drug. Phenothiazines with high Kc (e.g., chlorpromazine) may lead to iatrogenic hypothyroidism through increased protein-bound iodine. At the thyroid gland level, chlorpromazine treatment has been shown to result in lowered serum T4 levels and decreased radioactive uptake of iodine by the thyroid gland in animal studies. At the HPT axis level, chlorpromazine can cause changes in TSH levels by inducing formation of antithyroid antibodies. Our patient, however, tested negative for thyroid stimulating immunoglobulin, thyroid peroxidase antibodies, and thyroglobulin antibodies. Infrequently, phenothiazines may induce thyroiditis and a hyperthyroid state. This is unlikely to have played a role in our patient’s autonomic instability because the free T4 level was within normal limits and thyroid sonogram revealed chronic changes with multiple nodules in a bilateral enlarged thyroid.

The diagnostic criteria for NMS was established by an international multispecialty consensus group based on positive

Figure 2. Diffuse enlarged thyroid gland with multiple nodules was shown in thyroid sonogram.
clinical and laboratory findings as well as the exclusion of alternative causes.[23,24] Our patient scored 73 based on these criteria, including exposure to a dopamine antagonist within past 72 hours (score 20), hyperthermia (>38°C or >100.4°F on at least 2 occasions) (score 18), mental status alteration (score 13), sympathetic nervous system lability with BP elevation (>25% above baseline) and BP fluctuation (>20 mmHg diastolic changes or >25 mmHg systolic change within 24 hours) (score 10), hypermetabolism (HR >25% above baseline), RR increase (>50% above baseline) (score 5), and negative workup for infectious, toxic, metabolic, or neurologic causes (score 7). The initial level of CK during the early onset of NMS was unknown in this patient, which could be more than at least 4 times the upper limit of normal 170U/L (score 10) based on the trending down pattern of CK from 610 to 550U/L on the same day and then 384, 166, 137U/L, on the next several days, respectively.

The single most important treatment in NMS is removal of the causative agent. The mean recovery times of NMS are 7 to 11 days.[8,10] To minimize risk of recurrence, guidelines of how to restart neuroleptic medications were recommended.[4]

Table 1

Author/Year	Age/sex	Diagnosis	Thyroid levels	Neuroleptic medication	CK levels and NMS symptoms	Treatments	
Moore 1990	55 F	Encephalopathy with personality change	TSH during NMS 50 mIU/L (normal <7.4) T4 during NMS 40 nmol/L (normal 50–150)	Thoridazine 50 mg	CK 12,360 IU (normal <175) Pyrexia 41°C	Thyroxine IV fluid, Cooling	
Moore 1990	52 F	Obsessive compulsive disorder	TSH during NMS >50–70 mIU/L T4 during NMS 14.4 pmol/L (normal 11–22)	Thoridazine 50 mg Haloperidol 10 mg	CK >2000 IU Pyrexia 38.5°C Rigidity	Thyroxine Cooling, Dantrolene	
Hatch 2001	54 M	Alzheimer’s disease Hypothyroidism	Unknown Quetiapine 50 mg				
Kawaijir 2002	59 M	Parkinson’s disease	TSH during NMS 108.7 mIU/L (normal 0.2–4.2)	L-DOPA Amtriptyline	CK unknown Pyrexia 38.5°C	Thyroxine Levothyroxine, Dantrolene	
Taskapan 2005	54 F	Schizophrenia Adrenal Insufficiency Hypothyroidism	TSH during NMS 1.14 mIU/L	Fluphenazine 20 mg	CK 12,980 IU Pyrexia	Hydrocortisone Levothyroxine, Dantrolene	
Dixit 2015	40 F	Schizophrenia	TSH 165.85 mIU/L (normal 0.55–4.78)	Biperiden 4 mg Olanzapine	CK 100 IU Pyrexia	Dantrolene Replace antipsychotic with Aripiprazole 10 mg/d	
Zhang 2017	66 M	Schizophrenia	TSH during NMS 10.2 mIU/L (normal 0.465–4.68) T4 1.77 nmol/L (normal 0.78–2.19) TSH after discontinue of antipsychotics 0.127 mIU/L	Chlorpromazine 200 mg	CK 610 IU (normal 55–170 IU/L) Pyrexia	IV fluid Cooling	

CK = Creatine kinase, NMS = neuroleptic malignant syndrome, TSH = thyroid-stimulating hormone.
The pathogenesis of NMS is related to dopamine receptor blockade by antipsychotic medications (Fig. 3). Its effect in the hypothalamus causes hyperthermia and dysautonomia. The interference with nigrostriatal dopamine pathways leads to Parkinsonian type symptoms, including rigidity and tremor; the effect on tuberoinfundibular dopamine pathway results in Parkinsonian type symptoms, including rigidity and tremor; the effect on tuberoinfundibular dopamine pathway results in hyperprolactinemia and changes of anterior pituitary hormones; the disruption of the sympathetic nervous system leads to increased muscle tone and metabolism, ineffective heat dissipation, and labile blood pressure, and HR. The direct toxic effect by neuroleptics on skeletal muscle also contribute to the rigidity and muscle damage.

The general increase in dopaminergic activity secondary to hypothyroidism in the central dopamine systems predisposes the patient to NMS. Thyrotropin-releasing hormone induced increases of the sensitivity of postsynaptic dopamine receptors in the striatum and limbic forebrain lead to compensatory increases of the sensitivity of postsynaptic dopamine receptors. It has been confirmed in a hypothyroid animal model that dopaminergic activity is increased in the tuberoinfundibular neurons and elevated TSH levels cause increases of thyrotrophic dopamine receptor numbers. On the other hand, dopaminergic activity inhibits TSH release as a negative feedback. When chlorpromazine was discontinued in our patient, the increased dopaminergic activity could inhibit TSH release. This is suggested by the trending down of TSH from 10.2 to 0.988, 0.472, 0.05, and then 0.028 mIU/L (Fig. 1). Interestingly, when one dose of chlorpromazine was given back after it was initially discontinued on hospital day 3, TSH increased from 0.127 to 0.998 mIU/L. This further supports that dopaminergic activity inhibits TSH secretion. We are the first to report such TSH changes after discontinuing chlorpromazine in NMS.

4. Conclusion

We report a rare case of NMS with thyroid dysfunction. Hypothyroidism predisposes patients to NMS by altering central dopaminergic tracts which are vulnerable to neuroleptic blockade by anti-psychotic agents. Physicians should be alert to recognize the atypical manifestations of NMS in hypothyroidism patients. Neuroleptic agents should be stopped with suspicion of NMS. Thyroid dysfunction should be excluded in patients of NMS.

Acknowledgments

The authors would like to thank the medical staff who treated the patient and provided support.

References

1. Guze BH, Baxter LRJr. Current concepts. Neuroleptic malignant syndrome. N Engl J Med 1985;313:163–6.
2. Moore AP, Macfarlane IA, Blumhardt LD. Neuroleptic malignant syndrome and hypothyroidism. J Neurol Neurosurg Psychiatry 1990;53:517–8.
3. Dixit S, Dutta MK, Namdeo M. A rare case of myxedema coma with neuroleptic malignant syndrome (NMS). J Clin Diagn Res 2015;9:VD01–3.
4. Velamoor VR. Neuroleptic malignant syndrome. Recognition, prevention and management. Drug Saf 1998;19:73–82.
5. Levenson JL. Neuroleptic malignant syndrome. Am J Psychiatry 1985;142:1137–45.
6. Shaley A, Hermesh H, Manniz H. Mortality from neuroleptic malignant syndrome. J Clin Psychiatry 1989;50:18–25.
7. Setz DP, Gill SS. Neuroleptic malignant syndrome complicating antipsychotic treatment of delirium or agitation in medical and surgical patients: case reports and a review of the literature. Psychosomatics 2009;50:8–15.
8. Garoff SN, Mann SC. Neuroleptic malignant syndrome. Med Clin North Am 1993;77:185–202.
9. Kogoj A, Velkonja I. Olanzapine induced neuroleptic malignant syndrome—a case review. Hum Psychopharmacol 2003;18:301–9.
10. Rosebush P, Stewart T. A prospective analysis of 24 episodes of neuroleptic malignant syndrome. Am J Psychiatry 1989;146:717–25.
11. Thomas A, Onofrj M. Akinetic crisis, acute akinesia, neuroleptic malignant-like syndrome, Parkinsonism-hypertension syndrome, and malignant syndrome are the same entity and are often independent of treatment withdrawal. Mov Disord 2003;20:1671 author reply 1671-2.
12. Carbone JR. The neuroleptic malignant and serotonin syndromes. Emerg Med Clin North Am 2000;18:317–25.
13. Herrmann H, Manor I, Shaloh R, et al. High serum creatinine kinase level: possible risk factor for neuroleptic malignant syndrome. J Clin Psychopharmacol 2002;22:252–6.
14. Kawajiri M, et al. [A patient with Parkinson’s disease complicated by hypothyroidism who developed malignant syndrome after discontinuation of etizolam]. Rinsho Shinkengaku 2002;42:136–9.
Zhang et al. Medicine (2017) 96:39

[15] Hatch CD, Lund BC, Perry PJ. Failed challenge with quetiapine after neuroleptic malignant syndrome with conventional antipsychotics. Pharmacotherapy 2001;21:1003–6.

[16] Taskapan C, et al. Possible malignant neuroleptic syndrome that associated with hypothyroidism. Prog Neuropsychopharmacol Biol Psychiatry 2005;29:745–8.

[17] Church CO, Callen EC. Myxedema coma associated with combination aripiprazole and sertraline therapy. Ann Pharmacother 2009;43:2113–6.

[18] Bou Khalil R, Richa S. Thyroid adverse effects of psychotropic drugs: a review. Clin Neuropharmacol 2011;34:248–55.

[19] Sauvage MF, et al. Relationship between psychotropic drugs and thyroid function: a review. Toxicol Appl Pharmacol 1998;149:127–35.

[20] Wiseman R Jr. The effect of acute and chronic administration of chlorpromazine on the I-131 distribution in normal rats. J Pharmacol Exp Ther 1962;138:269–76.

[21] Mayer SW, Kelly FH, Morton ME. The direct antithyroid action of reserpine, chlorpromazine and other drugs. J Pharmacol Exp Ther 1956;117:197–201.

[22] Ramschak-Schwarzer S, et al. Interaction between psychotropic drugs and thyroid hormone metabolism—an overview. Acta Med Austriaca 2000;27:8–10.

[23] Gurrera RJ, et al. An international consensus study of neuroleptic malignant syndrome diagnostic criteria using the Delphi method. J Clin Psychiatry 2011;72:1222–8.

[24] Gurrera RJ, et al. A validation study of the international consensus diagnostic criteria for neuroleptic malignant syndrome. J Clin Pharmacol 2017;37:67–71.

[25] Boulant JA. Role of the preoptic-anterior hypothalamus in thermoregulation and fever. Clin Infect Dis 2000;31(Suppl):S157–61.

[26] Henderson VW, Wooten GF. Neuroleptic malignant syndrome: a pathogenetic role for dopamine receptor blockade? Neurology 1981;31:132–7.

[27] Adnet P, Lestavel P, Krivosic-Horber R. Neuroleptic malignant syndrome. Br J Anaesth 2000;85:129–35.

[28] Gurrera RJ. Is neuroleptic malignant syndrome a neurogenic form of malignant hyperthermia? Clin Neuropharmacol 2002;25:183–93.

[29] Funatsu KS, Inanaga K. Modulation of dopamine receptors by thyrotropin-releasing hormone in the rat brain. Peptides 1987;8:319–25.

[30] Reymond MJ, Benotto W, Lemarchand-Beraud T. The secretory activity of the tuberoinfundibular dopaminergic neurons is modulated by the thyroid status in the adult rat: consequences on prolactin secretion. Neuroendocrinology 1987;46:62–8.