Causas y efectos en la falta de sueño en niños hospitalizados

Causes and effects of lack of sleep in hospitalized children

Dr. Carlos R. Vecchi

RESUMEN
El sueño es una función vital en la que transcurre un tercio de nuestras vidas. Su restricción puede provocar trastornos físicos y psíquicos a corto y largo plazo. La internación hospitalaria, sin tener en cuenta la enfermedad que la originó, no favorece un sueño reparador y suficiente. Los factores que interfieren son externos (luz, ruidos) e internos (procedimientos, fármacos, cuidados). La Unidad de Cuidados Intensivos es el lugar con mayor dificultad para la conciliación y el mantenimiento del sueño. Se suma la gravedad de la enfermedad y las características de su estructura y funcionamiento. El deterioro de la cantidad o calidad del sueño podría desencadenar un cuadro de confusión mental agudo que, con frecuencia, afecta a los niños internados, reconocido como delirium. Promover, en el medio institucional, un trabajo conjunto de todos los estamentos para proteger el sueño dentro de lo posible es una tarea por realizar.

Palabras clave: ritmos circadianos, medioambiente, delirio, sueño.

http://dx.doi.org/10.5546/aap.2020.e143
Texto completo en inglés: http://dx.doi.org/10.5546/aap.2020.eng.e143

Cómo citar: Vecchi CR. Causas y efectos en la falta de sueño en niños hospitalizados. Arch Argent Pediatr 2020;118(2):e143-e147.

INTRODUCCIÓN
La enfermedad y su gravedad, a las que se les suman factores externos provistos por el medio, rompen con el equilibrio del día y la noche, y alteran el sueño en su continuidad y estructura. Los desórdenes se tornan, muchas veces, prolongados en su duración y la falta de sueño es la consecuencia. Se ha señalado, en individuos sanos, que la privación por un sueño igual o inferior a las 4 horas puede provocar un rendimiento cognitivo deficiente.

No deja de sorprender que los equipos y las instituciones que velan por la salud subestimen el sueño, pese a su reconocido poder de sanación. En una encuesta en Estados Unidos sobre 626 pediatras, se reveló que un grupo numeroso no realizaba preguntas sobre el dormir y sus desviaciones. El 74 % no preguntaba o lo hacía con una pregunta cuando los pacientes eran adolescentes (el 42 % en edad preescolar y escolar). El tiempo de formación dedicado al tema en cuestión en las residencias de la especialidad alcanzaba 4,8 horas. Mindel reportó que los libros de texto más consultados en pediatría tenían un contenido del tema sueño que llegaba al 1,8 %.

Nuestro objetivo principal es exponer el impacto negativo que el medioambiente hospitalario tiene sobre el sueño en los pacientes pediátricos hospitalizados, sus causas y efectos, y tratar de aportar medidas para su prevención y tratamiento. Con el propósito de interpretar lo que provoca la restricción del sueño sobre los aspectos físicos y mentales, es necesario considerar, en primer lugar, aspectos esenciales del sueño según la edad. Luego, se describen los factores medioambientales que perturban el descanso de los pacientes pediátricos internados, con especial referencia a la Unidad de Cuidados Intensivos.
EL SUEÑO Y LOS RITMOS CIRCADIANOS

En los dos primeros años de vida, el ser humano duerme 10 000 horas mientras está despierto 7000. Es la etapa en que el cerebro crece con mayor rapidez. En el recién nacido, el sueño ocupa de 16 a 18 horas diarias y no hay distinción entre el sueño diurno y el nocturno. La relación sueño de día/sueño de noche cambia del 0,93 a la semana al 0,15-0,20 a los 12 meses.

En nuestra vida, son tres los estados por los cuales se transita: la vigilía, el sueño no rapid eye movements (REM) y el sueño REM. Luego de los 8 primeros meses, a grandes rasgos, el sueño atraviesa etapas de somnolencia, sueño liviano y sueño profundo, llamadas N1, N2 y N3, respectivamente. La etapa N1 ocupa un porcentaje que, en toda la noche, no es mayor de un 5 %. Luego le sigue el sueño liviano (N2), que se reitera en toda la noche y que, en la infancia, orilla un 50 % del tiempo total de sueño. Por último, la etapa N3, de sueño profundo, preeminente en la infancia (el 20 %).

El sueño lento profundo es un marcador del núcleo supraquiasmático (NSQ), a cargo de la planta mostraba, así, un ritmo oscilación entre la luz y la oscuridad es la norma. Los organismos vivos viven sus existencias en ritmos y el reloj biológico los asiste hace millones de años.

Se denominan ritmos circadianos a los que se ubican alrededor de las 24 horas (cortisol, temperatura, la función cardiovascular y la pulmonar, etc.). Infradianos son aquellos cuyo período es mucho menor de las 24 horas (secreciones hormonales, los períodos REM y no REM cada 40 minutos en el recién nacido y 90 en el adulto). Ulfradianos, aquellos más prolongados (ciclo menstrual, hibernación en ciertos animales). No existe función en el organismo que no responda a un ritmo. El director de orquesta es el núcleo supraquiasmático (NSQ), alojado en el hipotálamo y formado por un pequeño grupo de neuronas, como la secreción de hormona de crecimiento.

Entre los 60 y los 90 minutos del inicio del dormir, hace su presencia el primer sueño REM, breve en tiempo y con movimientos oculares rápidos acompañados de una atonía total de los músculos (solo ocurren movimientos de los ojos y del diafragma). La responsabilidad de esta abolición del tono muscular está a cargo de núcleos del tronco cerebral. El estado de desacople entre el sueño y el reloj biológico los asiste hace millones de años.

Hace unos años, investigadores alemanes estudiaron colonias de abejas poseedoras de una memoria del tiempo, ya que buscaban su alimento todos los días a la misma hora. Trasladadas por avión a Nueva York, salían en busca de su comida a la misma hora en que lo hacían en suelo alemán.

La tierra rota, cada 24 horas, 360 grados, y la oscilación entre la luz y la oscuridad es la norma. Se denominan ritmos circadianos a los que se ubican alrededor de las 24 horas (cortisol, temperatura, la función cardiovascular y la pulmonar, etc.). Infradianos son aquellos cuyo período es mucho menor de las 24 horas (secreciones hormonales, los períodos REM y no REM cada 40 minutos en el recién nacido y 90 en el adulto). Ulfradianos, aquellos más prolongados (ciclo menstrual, hibernación en ciertos animales). No existe función en el organismo que no responda a un ritmo. El director de orquesta es el núcleo supraquiasmático (NSQ), alojado en el hipotálamo y formado por un pequeño grupo de neuronas, como la secreción de hormona de crecimiento.

La variabilidad existe en las personas, ya que, en algunas, el reloj biológico cicla cada 24,3, 24,4 horas. Este retardo obliga a resetearlo y eso se hace con las guías ambientales que el medio le provee. Cuando se produce un desacople entre el reloj y las guías externas (luz, actividad física, comidas), el control interno (NSQ) impone su supremacía. La luz es el principal sincronizador externo. Luego de impactar en la retina, viaja un largo camino a través del haz retinohipotalámico hacia su destino final, el NSQ. El ciclo luz-oscuridad es esencial para el respeto del esquema de la vigilia y el sueño. “El tiempo entra por nuestros ojos. Y eso quién no lo sabe” (Julio Cortázar).

Los ritmos diurnos son diferentes de los nocturnos y la coordinación del NSQ con los relojes periféricos que funcionan en todas las células a través de innumerables cantidades de genes permite armonizar lo central con lo periférico. Esta sincronía se establece por medios humorales y/o neurales.
Cuando no se respete el ciclo vigilia-sueño, se provoca una desalineación, y los relojes periféricos funcionan a diferentes velocidades, como si fueran instrumentos de una orquesta que ha perdido su armonía. La reinstauración del equilibrio es esencial.

En esa tarea sincronizadora, cronobiótica, se destaca la presencia de la melatonina, una hormona de la oscuridad elaborada a partir del triptófano y segregada por la glándula pineal. Es fuertemente inhibida por la luz y su nivel en el día es nulo. Se inicia su secreción alrededor de las 19 horas (dím light melatonin onset; DLMO, por sus siglas en inglés), junto con la temperatura, son marcadores de fase.2,12,15

El sueño guarda una relación estrecha con la temperatura. Es más intenso cuando esta llega a sus niveles más bajos y eso ocurre entre las 14 y las 15 horas (siesta) y entre las 4 y las 5 a.m. El sueño sigue a la temperatura corporal como la sombra a su cuerpo.23 Ascende con el despertar matutino y, entre las 18 y las 21 horas, hay un resaltar de la actividad vigíl en estrecha relación con el aumento de la temperatura.

EL MEDIO HOSPITALARIO

En este punto, se hará referencia al sueño de los pacientes dentro de una sala general del hospital. Se podría asegurar que los recaudos ambientales para lograr un sueño normal dentro de los muros de un hospital distan de ser amigables. Las alarmas, celulares, las visitas, los pases, las camillas y carros de curaciones, etc., son una verdadera endemia de ruido. Son la causa más frecuente de los despertares y, por ende, de la fragmentación del sueño. La invasión de su presencia produce una cadena de eventos fisiológicos que provocan la activación cortical con vasoconstricción y aumento de la presión arterial, midriasis y mayor tensión muscular, asociada a una descarga simpática con liberación de adrenalina.17

El ruido supera, por lo general, los valores recomendados por la Organización Mundial de la Salud (25-30 decibeles), aunque el nivel de sonoridad se desconoce, porque no se estila medirlo. Friedman utilizó la polisomnografía en 22 pacientes durante 24-48 horas y encontró que el 17 % de los despertares y microdespertares eran provocados por el ruido.16,19

El otro factor ambiental que guarda una relación negativa con el sueño es el exceso de luminosidad. El nivel de luz al aire libre es de, aproximadamente, 10000 unidades lux (lux = un lumen por metro cuadrado).20,21 En una noche de luna llena, alcanza 0,25 y, en una habitación cerca de la ventana, el valor es de 1000 lux. Una mesa quirúrgica tiene 2000 lux y una sala de espera puede estar cerca de 200 unidades, y es mayor en lugares de procedimientos.

La sola presencia de 100 lux alcanza a inhibir la secreción de melatonina.2,20 La excesiva luz nocturna suprime la liberación de melatonina, la molécula que sincroniza ritmos (central y periférico). Durante la noche, si la luminancia fuera medida, sorprendería por su intensidad, ya que no se evalúan las fuentes secundarias que parten de lugares vecinos a la cama del paciente.

Se reportan, en la bibliografía, los beneficios sobre el sueño diurno o nocturno del uso de máscaras para los ojos y protectores acústicos para ambos oídos, como medidas no farmacológicas. Hay revisiones que muestran que una sola medida que atenúe el uso de la luz a valores permisibles mejora el sueño.22 Los controles rutinarios estructurados que se cumplen mecánicamente son de dudoso beneficio para el paciente y consumen un tiempo útil del personal de enfermería. Las interrupciones durante el sueño de los pacientes obligan a programar un cambio acorde a cada situación clínica. Además, no es inusual una disomnia como secuela crónica luego de una internación.

EL SUEÑO EN LA UNIDAD DE CUIDADOS INTENSIVOS

Eckle afirma que solo se han realizado escasos intentos para minimizar la cronodisrupción en los pacientes críticos, como si se tratara de una situación de importancia menor.23 En pacientes pediátricos internados en la Unidad de Cuidados Intensivos, es frecuente la presencia de disturbios en el sueño. Las causas son multifactoriales.2,20,24 Entre el 18 % y el 65 % de los niños internados en la Unidad de Cuidados Críticos con edades de entre 2 y 18 años presentan un cuadro clínico de confusión mental aguda, más conocido como delirium. En forma aguda y por una multiplicidad de factores, entre ellos, la falta de sueño, se instala este proceso de curso fluctuante y cuya comprensión no está bien aclarada.20,24

Es un proceso complejo asociado a la reducción del alerta y deterioro de la atención, que se acompaña de disturbios perceptuales y cognitivos.22 Los factores de riesgo aumentados son la edad menor de los 3 años, retardo mental previo, historia familiar positiva, problemas emocionales.25 Se mencionan como
factores precipitantes el ruido, la iluminación restringida de día, la ausencia de ventanas, los opioides, el propofol y los esteroides, así como anticolinérgicos.21,26 La fragmentación, el tiempo total del sueño disminuido, la ausencia del sueño lento profundo y del sueño REM, así como el desplazamiento hacia los horarios diurnos, constituyen alteraciones que pueden funcionar como desencadenantes. Su presencia agrava la evolución, prolonga la estadía y aumenta el riesgo de complicaciones y la mortalidad.2,27,28

Las alteraciones del dormir son alarmas que deben ser estrechamente observadas y, si bien la terapéutica empleada no ha sido exitosa, el diagnóstico precoz podría acortar el tiempo del delirium.26,33 Se describen una forma hiperactiva con agresión e irritabilidad y, por contrapartida, una presentación con hipoactividad. No es infrecuente que los pacientes experimenten una forma alternante (forma mixta). El hiperactivo es explícito.30 El hipoactivo, o síndrome de apatía aguda, expone síntomas negativos (escasa movilidad e inatención), y su diagnóstico es más complejo. Es más frecuente en los niños y el pronóstico es de mayor compromiso.31

Algunos autores recomiendan, por ello, que participen en la elaboración del diagnóstico los especialistas en Psiquiatría Infantil, así como que se utilicen instrumentos de evaluación estructurados, si bien los empleados carecen de detalles sobre la duración y la calidad del sueño.31,32 La sensatez en la administración de drogas sedantes en el manejo del delirium es la recomendación esencial y el objetivo es minimizar los efectos adversos. Todas producen cambios desfavorables sobre la arquitectura del sueño, ya que disminuyen el sueño restaurador (N3) y el REM.28,36

Los fármacos con propiedades anticolinérgicas, utilizados con frecuencia en los pacientes ventilados, y las benzodiazepinas podrían facilitar la presentación del delirium en los adultos y los niños. En los pacientes críticos, las benzodiazepinas son un factor independiente de riesgo para el desarrollo del delirium.26,33

La relación temporal sugiere causalidad y, de alguna manera, supone una contraindicación a su uso, pese a ser las más utilizadas como drogas de primera línea.30,28,34 En los adultos, nuevos agentes, como el suvorexant (estudio controlado aleatorizado), tendrían un efecto beneficioso en la prevención del delirium en los adultos.35

Por último, los niveles de melatonina están disminuidos en los pacientes críticos, lo que abre expectativas para su uso y es probable que eviten el desencadenamiento del proceso evolutivo hacia el delirium. Hay trabajos que reportan buenos resultados con el empleo de melatonina o agonistas.28,36

La luz inapropiada en intensidad y horarios, el ruido con picos en decibeles mayores que los que se registran en cualquier lugar del hospital, los procedimientos quirúrgicos inevitables, las necesarias extracciones (varias veces al día), los baños de cama, los controles de enfermería constantes, las visitas, las alarmas y sensores, las charlas y conversaciones en los pasos son un grupo de causas perturbadoras del sueño.

Patel y, recientemente, otros autores destacan cambios significativos de reducción de la tasa de delirium al aplicar medidas no farmacológicas sobre el empleo excesivo de la luz, la disminución del ruido, el control racional nocturno, el necesario contacto familiar, el evitar cambios en el personal, las guías ambientales, todas medidas tendientes a lograr reducir los niveles de ansiedad.25

Finalmente, para la evaluación del sueño, se utilizan cuestionarios, diarios, actigrafía, y se reconoce que la polisomnografía, pese a las dificultades en su realización e interpretación, sigue siendo el estándar de oro para detectar las alteraciones con mayor precisión y diferenciar el sueño normal del patológico.

En menor medida, eso acontece con el electroencefalograma prolongado. En muchas ocasiones, en los pacientes críticos privados de sueño que atraviesan procesos graves, ventilados o quemados, se registran características bioeléctricas que difieren de aquellas que se observan en el sueño normal. Por ejemplo, se pueden ver, en estado vigil, ritmos lentos de la banda delta de 0,5-3 ciclos por segundo (cps) o theta (4-7 cps), patrimonio del sueño lento, paradojal.37 En la vigilía, el ritmo de base normal es el de la banda alfa, con ritmos de 9 a 12 cps. Estos hallazgos cuestionan su confiabilidad. De todas maneras, siguen siendo recomendados como métodos de evaluación.

Insistir en la observación clínica, así como en la probable utilización de instrumentos (apps) de aplicación tecnológica masiva, cuya validación científica no ha sido todavía probada, podrían ser aspectos para discutir y tratar de implementar, en un futuro cercano, en cierto tipo de pacientes.38 El sueño es interrumpido en forma frecuente en los pacientes críticamente enfermos debido a numerosos factores, ambientales, procedimientos
invasivos, cuidados de enfermería, dolor, fármacos, etc. Instalar en todos los miembros del equipo dentro de las paredes del medio hospitalario y, en especial, en la Unidad de Cuidados Intensivos la protección del sueño es una responsabilidad compartida.

Lo que confririó al Homo sapiens una ventaja sobre los demás animales y nos convirtió en los amos del planeta no fue nuestra racionalidad individual, sino nuestra capacidad sin parangón de pensar de manera conjunta en grupos numerosos.29

REFERENCIAS

1. Dalmasio A. El Error de Descartes. Lisboa: Temas de Debate; 1994.
2. Drouot X, Quentin S. Sleep neurobiology and critical care illness. Crit Care Clin. 2015; 31(3):379-91.
3. Owens J. The practice of pediatric sleep medicine: results of a community survey. Pediatrics. 2001; 108(3):E51.
4. Mindell J, Moline M, Zendell S, Brown LW, et al. Pediatricians and sleep disorders: training and practice. Pediatrics. 1994; 94(2 Pt 1):194-200.
5. Mindell J, Owens J (eds.). Clinical guide to pediatric sleep: diagnosis and management of sleep problems. 3rd ed. Philadelphia: Wolters Kluver Press; 2015.
6. Killgore W. Effects of sleep deprivation on cognition. Prog Brain Res. 2010; 185:105-29.
7. Hill C, Hogan A, Karmiloff-Smith A. To sleep: perchance we dream. Arch Dis Child. 2010; 95(8):637-43.
8. Pin Arboledas P, Lluch Rosello A. El sueño en el primer año de vida: ¿cómo lo enfocamos? Rev Pediatr Aten Primaria. 2015; 24(10):535-40.
9. Fillary J, Chaplin H, Jones H, Thompson A, et al. Noise at night in hospital general wards: a mapping of the literature. Br J Nurs. 2015; 24(10):535-40.
10. Tembo A, Parker V. Factors that impact on sleep in intensive care patients. Intensive Crit Care Nurs. 2009; 25(6):314-22.
11. Hobson J. Sleep is of the brain, by the brain and for the brain. Nature. 2005; 437(7063):1254-6.
12. Billings M, Watson N. Circadian dysrhythmias in the Intensive care unit. Crit Care Clin. 2015; 31(3):393-402.
13. Krause A, Simon E, Mander B, Greer S, et al. The sleep-deprived human brain. Nature Rev Neurosci. 2017; 18(7):404-18.
14. Dement W. History of sleep physiology and medicine. In: Kriger M, RothT, Dement W (eds.). Principles and practice of sleep medicine. 3rd ed. Philadelphia: Saunders; 1995. Págs.1-6.
15. Anders T, Avi S, Apparadey V. Normal sleep in neonates and children. In: Ferber R, Kriger M (eds.). Principles and practice of sleep medicine in the child. Philadelphia: Saunders; 1995. Págs. 7-18.
16. Billings M, Watson N. Circadian dysrhythmias in the Intensive care unit. Crit Care Clin. 2015; 31(3):393-402.
17. Krause A, Simon E, Mander B, Greer S, et al. The sleep-deprived human brain. Nature Rev Neurosci. 2017; 18(7):404-18.
18. Darbyshire J, Young J. An investigation of sound levels on intensive care units with reference to WHO guidelines. Crit Care. 2013; 17(3):R187.
19. Traube C, Silver G, Gerber L, Kaur S, et al. Delirium and Mortality in Critically Ill Children: Epidemiology and Outcomes of Pediatric Delirium. Crit Care Med. 2017; 45(5):891-8.
20. Engwall M, Fridh I, Johansson L, Bergbom I, et al. Lighting, sleep and circadian rhythm: An intervention study in the intensive care unit. Intensive Crit Care Nurs. 2015; 31(6):325-35.
21. Hu R, Jiang X, Chen J, Zeng Z, et al. Non-pharmacological intervention for sleep promotion in the intensive care unit. Cochrane Database Syst Rev. 2015; 6(10):CD008880.
22. Eckle T. Delirium - A dysfunctional circadian rhythm. Int J Anesthesiol Res. 2016; 4(1e):1-3.
23. Patel J, Baldwin J, Bunting P, Laha S. The effect of a multicomponent multidisciplinary bundle of interventions on sleep and delirium in medical and surgical intensive care patients. Anaesthesia. 2014; 69(6):540-9.
24. Van Tuitt S, Van Cauterrer YJ, Pithard T, Engel M, et al. Management of pediatric delirium illness: a practical update. Minerva Anestesiol. 2015; 81(3):333-41.
25. Mladen K, Hussain K, Tasker R. Anticolinergic Medication Burden in Pediatric Prolonged Critical Illness: A Potentially Modifiable Risk Factor for Delirium. Pediatr Crit Care Med. 2018; 19(10):917-24.
26. Kudchadkar S, Aljohani O, Punjabi N. Sleep of critically ill children in the pediatric intensive care: a systematic review. Sleep Med Rev. 2014; 18(2):103-10.
27. Calandriello A, Tylka J, Patwari P. Sleep and delirium in pediatric critical illness. What is the relationships? Med Sci (Basel). 2018; 6(4):E90.
28. Zaal IJ, Devlin JW, Hazelbag M, Klein Klouwenberg P, et al. Hypoactive delirium is more frequent in preterm neonates. J Clin Sleep Med. 2015; 11(12):1449-54.