EXISTENCE OF SOLUTIONS FOR A CLASS OF FRACTIONAL HAMILTONIAN SYSTEMS WITH IMPULSIVE EFFECTS

JIANWEN ZHOU, YANNING WANG AND YONGKUN LI

(Communicated by N. Mahmudov)

Abstract. In this paper, we are concerned with a class of fractional Hamiltonian systems containing right Riemann-Liouville fractional derivatives and left Caputo fractional derivatives with impulsive effects. Under certain conditions, the existence of solutions are obtained for this class of systems by means of the least action principle, the saddle point theorem as well as some skills of inequalities. One of the innovations of this paper is that the variational functional of these problems are established in a proper fractional derivative space. Moreover, in order to show the feasibility and effectiveness of our results, we present two examples.

1. Introduction

In this paper, we study the following fractional Hamiltonian system with impulsive effects

\[
\begin{aligned}
\dot{I}_D^{\alpha} T \left(\left(c_0 D^{\alpha} u(t) \right)^+ \right) (t) &= F(t, u(t)), \quad \text{a.e. } t \in [0, T], \\
u(0) &= u(T) = 0, \\
\Delta \left(I_D^{\alpha} T \left(c_0 D^{\alpha} u(t) \right) \right) (t_j) &= I_{ij}(u(t_j)), \quad i = 1, 2, \ldots, N, \quad j = 1, 2, \ldots, p,
\end{aligned}
\]

where \(I_D^{\alpha} \) is the right Riemann-Liouville fractional derivatives of order \(\frac{1}{2} < \alpha \leq 1 \), \(c_0 D^{\alpha} \) is the left Caputo fractional derivatives of order \(\frac{1}{2} < \alpha \leq 1 \), \(t_0 = 0 < t_1 < t_2 < \ldots < t_p < t_{p+1} = T \), \(u(t) = (u^1(t), u^2(t), \ldots, u^N(t)) \) and

\[
\begin{aligned}
\Delta \left(I_D^{\alpha} T \left(c_0 D^{\alpha} u(t) \right) \right) (t_j) &= I_D^{\alpha} T \left(c_0 D^{\alpha} u(t) \right) (t_j) - I_D^{\alpha} T \left(c_0 D^{\alpha} u(t) \right) (t_j^-), \\
I_D^{\alpha} T \left(c_0 D^{\alpha} u(t) \right) (t_j^+) &= \lim_{t \to t_j^+} I_D^{\alpha} T \left(c_0 D^{\alpha} u(t) \right) (t), \\
I_D^{\alpha} T \left(c_0 D^{\alpha} u(t) \right) (t_j^-) &= \lim_{t \to t_j^-} I_D^{\alpha} T \left(c_0 D^{\alpha} u(t) \right) (t),
\end{aligned}
\]

\(I_{ij} : \mathbb{R} \to \mathbb{R} \) \((i = 1, 2, \ldots, N, \quad j = 1, 2, \ldots, p) \) are continuous and \(F : [0, T] \times \mathbb{R}^N \to \mathbb{R} \) satisfies the following assumption:

Mathematics subject classification (2010): 34B37, 34K37, 34K45, 49J40.

Keywords and phrases: Fractional Hamiltonian systems, impulses, variational approach, critical point theorem.

This work is supported by the National Natural Sciences Foundation of People’s Republic of China under Grants 11361072 and 11561072, the Natural Sciences Foundation of Yunnan Province under Grant 2016FB011 and Yunnan Province, Young Academic and Technical Leaders Program (2015HB010).
\(F(t,x) \) is measurable in \(t \) for every \(x \in \mathbb{R}^N \) and continuously differentiable in \(x \) for a.e. \(t \in [0,T] \) and there exist \(a \in C(\mathbb{R}^+,\mathbb{R}^+) \) and \(b \in L^1(0,T;\mathbb{R}^+) \) such that

\[
|F(t,x)| \leq a(|x|)b(t), \quad |\nabla F(t,x)| \leq a(|x|)b(t)
\]

for all \(x \in \mathbb{R}^N \) and a.e. \(t \in [0,T], \) where \(\nabla F(t,x) \) denotes the gradient of \(F(t,x) \) in \(x. \)

For the sake of convenience, in the sequel, we denote \(\Lambda_1 = \{1,2,\ldots,N\} \) and \(\Lambda_2 = \{1,2,\ldots,p\}. \)

When \(\alpha = 1 \) and \(I_{ij} \equiv 0, \) \(i \in \Lambda_1, \) \(j \in \Lambda_2, \) (1) is the second order Hamiltonian system

\[
\begin{aligned}
-\ddot{u}(t) &= \nabla F(t,u(t)), \text{ a.e. } t \in [0,T]; \\
\dot{u}(0) &= u(T) = 0.
\end{aligned}
\]

Many solvability conditions for problem (2) are obtained in [1] by some critical point theorems.

When \(\alpha = 1 \) and \(I_{ij} \not\equiv 0, \) \(i \in \Lambda_1, \) \(j \in \Lambda_2, \) (1) is the second order Hamiltonian system with impulsive effects

\[
\begin{aligned}
-\ddot{u}(t) &= \nabla F(t,u(t)), \text{ a.e. } t \in [0,T]; \\
\dot{u}(0) &= u(T) = 0, \\
\Delta \dot{u}(t_j) &= \dot{u}^+(t_j) - \dot{u}^-(t_j) = I_{ij}(u(t_j)), \quad i \in \Lambda_1, \quad j \in \Lambda_2.
\end{aligned}
\]

Zhou and Li in [2] studied the existence of solutions for (3) using variational methods.

Moreover, when \(0 < \beta < 1, \) \(I_{ij} \not\equiv 0, \) \(i \in \Lambda_1, \) \(j \in \Lambda_2, \) up to now, problem (1) has received considerably less attention.

On the one hand, fractional differential equations involving the Riemann-Liouville fractional derivative or the Caputo fractional derivative have recently been proved to be valuable tools in the modeling of many phenomena in various fields of science, engineering, physics and economics. Indeed, fractional differential equations have applications in many areas including fluid flow, electrical networks, probability and statistics, viscoelasticity, chemical physics and signal processing, and so on, see [3–7] and references therein. There has been a significant development in fractional differential equations in recent years, since the behavior of physical systems can be properly described by using fractional order system theory. So fractional differential equations got the attention of many researchers and considerable work has been done in this regard, see [8–11], and the references therein. Especially, fractional Hamiltonian systems have received increasing attention in various fields of science and engineering, with a growing number of applications in electrochemistry, physics, rheology and biology, probability, fluid flow, control theory, etc., for instance see the monographs of Kilbas et al. [12], Podlubny [13], Zhou [14], the papers [15, 16] and the references therein. As stated in [13], the qualitative theory of differential equations can be very highly useful in applications. When \(N = 1, \) the authors in [17] investigated the existence of solutions for a class of impulsive fractional Hamiltonian systems

\[
\begin{aligned}
\{&D_T^\alpha \left(D_t^\alpha u(t)\right) + \kappa(t)u(t) = f(t,u), \quad t \in [0,T], \quad t \neq t_j, \\
&\dot{u}(0) = u(T) = 0, \\
&\Delta(D_T^\alpha \left(D_t^\alpha u(t)\right))(t_j) = I_{ij}(u(t_j)), \quad i = 1,2,\ldots,N, \quad j = 1,2,\ldots,m
\end{aligned}
\]
by using Morse theory coupled with local linking arguments.

On the other hand, the study of boundary value problems for fractional differential equations is an intensively developed area. Recently, there have appeared a very large number of papers which are devoted to the existence of solutions of boundary value problems for fractional differential equations (see [18–21]). Especially, impulsive boundary value problems for fractional differential equations are intensively studied recently. Such problems appear in mathematical models with sudden changes of their states in population dynamics, pharmacology, optimal control (see [22–24]). There have been many approaches to study solutions of boundary value problems for fractional differential equations with or without impulses, such as lower and upper solution method, monotone iterative method ([25, 26]), fixed-point theorems ([11, 27]), Leray-Schauder theory ([22–29]), and so on. However, there have been very few papers published on the existence of solutions for fractional Hamiltonian systems (when \(N > 1 \)) with or without impulses which are done by using the variational method ([30, 31]), since it is often very difficult to establish a suitable space and an appropriate variational functional for fractional differential equations boundary value problems. Since variational method is, to the best of our knowledge, a novel, powerful and promising approach to deal with nonlinear boundary value problems for fractional differential equations with some type of discontinuities such as impulses, it is interesting and necessary for us to continue to explore using the variational method to study such problems.

Motivated by the above, we investigate the existence of a variational construction for problem (1) in an appropriate space of functions in this paper. Then, we study the existence of solutions for (1) using some critical point theorems. All of our these results are new.

The rest of this paper is organized as follows. In Section 2, we give some necessary notation, definitions and properties of the fractional calculus involving the Riemann-Liouville fractional derivative and the Caputo fractional derivative. In Section 3, we introduce critical point theorems as variational tools. In Section 4, we make the variational structure of problem (1). In Section 5, based on some critical point theorems, we establish three theorems on the existence of solutions of (1). In Section 6, we give two examples to show the feasibility and effectiveness of the existence results.

2. Preliminaries

Now, we introduce some basic definitions and properties of the fractional calculus involving the Riemann-Liouville fractional derivative and the Caputo fractional derivative which will be used in later sections. We first briefly recall some basic definitions and results concerning fractional calculus.

Definition 1. [32, 33] Let \(f(t) \) be a function defined on \([a, b]\) and \(\gamma > 0 \). The left and right Riemann-Liouville fractional integrals of order \(\gamma \) for function \(f(t) \) denoted by \({}_aD_t^{-\gamma}f(t) \) and \({}_bD_t^{-\gamma}f(t) \), respectively, are defined by

\[
{}_aD_t^{-\gamma}f(t) = \frac{1}{\Gamma(\gamma)} \int_a^t (t - s)^{\gamma - 1} f(s)ds, \quad t \in [a, b], \quad \gamma > 0
\]
and
\[D_b^{-\gamma} f(t) = \frac{1}{\Gamma(\gamma)} \int_t^b (s-t)^{\gamma-1} f(s) ds, \quad t \in [a,b], \quad \gamma > 0, \]
provided the right hand sides are pointwise defined on \([a,b]\), where \(\Gamma > 0\) is the gamma function.

Definition 2. ([32, 33]) Let \(f(t)\) be a function defined on \([a,b]\) and \(\gamma > 0\). The left and right Riemann-Liouville fractional derivatives of order \(\gamma\) for function \(f(t)\) denoted by \(D^\gamma_a f(t)\) and \(D^\gamma_b f(t)\), respectively, are defined by
\[
D^\gamma_a f(t) = \frac{d^n}{dt^n} D^{\gamma-n}_a f(t) = \frac{1}{\Gamma(n - \gamma)} \frac{d^n}{dt^n} \left(\int_a^t (t-s)^{n-\gamma-1} f(s) ds \right)
\]
and
\[
D^\gamma_b f(t) = (-1)^n \frac{d^n}{dt^n} D^{\gamma-n}_b f(t) = \frac{1}{\Gamma(n - \gamma)} (-1)^n \frac{d^n}{dt^n} \left(\int_t^b (s-t)^{n-\gamma-1} f(s) ds \right),
\]
where \(t \in [a,b]\), \(n-1 \leq \gamma < n\) and \(n \in \mathbb{N}\). In particular, if \(0 \leq \gamma < 1\), then
\[
D^\gamma_a f(t) = \frac{d}{dt} D^{\gamma-1}_a f(t) = -\frac{1}{\Gamma(1-\gamma)} \frac{d}{dt} \left(\int_a^t (s-t)^{-\gamma} f(s) ds \right), \quad t \in [a,b]
\]
and
\[
D^\gamma_b f(t) = -\frac{d}{dt} D^{\gamma-1}_b f(t) = -\frac{1}{\Gamma(1-\gamma)} \frac{d}{dt} \left(\int_t^b (s-t)^{-\gamma} f(s) ds \right), \quad t \in [a,b]. \tag{1}
\]

The left and right Caputo fractional derivatives are defined according to the above Riemann-Liouville fractional derivatives (see [32], p. 91). Especially, they are defined for the function belonging to the space of absolutely continuous functions.

Definition 3. ([32]) Let \(\gamma \geq 0\) and \(n \in \mathbb{N}\).

(i) If \(\gamma \in [n-1,n)\) and \(f \in AC^n([a,b], \mathbb{R}^N)\), then the left and right Caputo fractional derivatives of order \(\gamma\) for function \(f(t)\) denoted by \(c D^\gamma_a f(t)\) and \(c D^\gamma_b f(t)\), respectively, exist almost everywhere on \([a,b]\). \(c D^\gamma_a f(t)\) and \(c D^\gamma_b f(t)\) are represented by
\[
c D^\gamma_a f(t) = a D^{\gamma-n} f^{(n)}(t) = \frac{1}{\Gamma(n-\gamma)} \left(\int_a^t (t-s)^{n-\gamma-1} f^{(n)}(s) ds \right), \quad t \in [a,b]
\]
and
\[
c D^\gamma_b f(t) = (-1)^n c D^{\gamma-n} f^{(n)}(t) = \frac{(-1)^n}{\Gamma(n-\gamma)} \left(\int_t^b (s-t)^{n-\gamma-1} f^{(n)}(s) ds \right), \quad t \in [a,b],
\]
respectively. In particular, if \(0 < \gamma < 1\), then
\[
c D^\gamma_a f(t) = a D^{\gamma-1} f^1(t) = \frac{1}{\Gamma(1-\gamma)} \left(\int_a^t (t-s)^{n-\gamma-1} f^{(n)}(s) ds \right), \quad t \in [a,b] \tag{2}
\]
and
\[
c D^\gamma_b f(t) = (-1)^n c D^{\gamma-1} f^1(t) = \frac{(-1)^n}{\Gamma(1-\gamma)} \left(\int_t^b (s-t)^{n-\gamma-1} f^{(n)}(s) ds \right), \quad t \in [a,b].
\]
(ii) If $\gamma = n - 1$ and $f \in AC^{n-1}([a,b], \mathbb{R}^N)$, then $cD_t^{\gamma-1}f(t)$ and $cD_b^{\gamma-1}f(t)$ are represented by

$$cD_t^{\gamma-1}f(t) = f^{(n-1)}(t) \quad \text{and} \quad cD_b^{\gamma-1}f(t) = (-1)^{n-1}f^{(n-1)}(t), t \in [a,b].$$

In particular, $cD_0^0f(t) = cD_b^0f(t) = f(t), t \in [a,b].$

In view of these definitions, it should be noted some of the properties of the Riemann-Liouville fractional integral and derivative operators.

PROPERTY 1. ([32]) We have the following property of fractional integration

$$\int_a^b \left[aD_t^{-\gamma}f(t) \right]g(t)dt = \int_a^b \left[bD_b^{-\gamma}g(t) \right]f(t)dt, \quad \gamma > 0,$$

provided that $f \in L^p([a,b], \mathbb{R}^N)$, $g \in L^q([a,b], \mathbb{R}^N)$ and $p \geq 1, q \geq 1, \frac{1}{p} + \frac{1}{q} \leq 1 + \gamma$ or $p \neq 1, q \neq 1, \frac{1}{p} + \frac{1}{q} = 1 + \gamma$.

Throughout this paper, we denote by the norm of the space $L^p([0,T], \mathbb{R}^N)$ for $1 \leq p < +\infty$ as $\|u\|_{L^p} = \left(\int_0^T |u(t)|^p dt \right)^{\frac{1}{p}}$ and $\|u\|_{\infty} = \max_{u \in [0,T]} |u(t)|$.

DEFINITION 4. ([30]) Let $0 < \alpha \leq 1$ and $1 < p < \infty$. The fractional derivative space $E_0^{\alpha,p}$ is defined by the closure of $C_0^\infty([0,T], \mathbb{R}^N)$ with respect to the norm

$$\|u\|_{\alpha,p} = \left(\int_0^T |u(t)|^p dt + \int_0^T \|D_t^{\alpha}u(t)\|^p dt \right)^{\frac{1}{p}}, \quad \forall u \in E_0^{\alpha,p},$$

where

$$C_0^\infty([0,T], \mathbb{R}^N) = \{ u : [0,T] \rightarrow \mathbb{R}^N | u(0) = u(T) = 0, u \in C^\kappa([0,T], \mathbb{R}^N), \kappa \in \mathbb{R} \}.$$

REMARK 1. ([30])

(i) It is obviously that this fractional derivative space $E_0^{\alpha,p}$ is the space of functions $u \in L^p([0,T], \mathbb{R}^N)$ having an α-order Caputo fractional derivative $cD_t^{\alpha}u \in L^p([0,T], \mathbb{R}^N)$ and $u(0) = u(T) = 0$.

(ii) For any $u \in E_0^{\alpha,p}$, noting the fact that $u(0) = 0$, we have $cD_t^{\alpha}u(t) = cD_b^{\alpha}u(t), t \in [0,T].$

PROPOSITION 1. ([30], Proposition 3.1) Let $0 < \alpha \leq 1$ and $1 < p < \infty$. The fractional derivative spaces $E_0^{\alpha,p}$ are reflexive and separable Banach spaces.

PROPOSITION 2. ([30], Proposition 3.2) Let $0 < \alpha \leq 1$ and $1 < p < \infty$. $E_0^{\alpha,p} \hookrightarrow L^p([0,T], \mathbb{R}^N)$ is compact and for all $u \in E_0^{\alpha,p}$, we have

$$\|u\|_{L^p} \leq \frac{T^\alpha}{\Gamma(\alpha + 1)} \|cD_t^{\alpha}u\|_{L^p}.$$
Moreover, if \(\alpha > \frac{1}{p} \) and \(\frac{1}{p} + \frac{1}{q} = 1 \), then
\[
\|u\|_\infty \leq \frac{T^{\alpha - \frac{1}{p}}}{\Gamma(\alpha)((\alpha - 1)q + 1)^{\frac{1}{q}}} \|D_0^{\alpha}u\|_{L^p}.
\]

Proposition 3. ([30], Proposition 3.3) Let \(0 < \alpha \leq 1 \) and \(1 < p < \infty \). Assume that \(\alpha > \frac{1}{p} \) and the sequence \(\{u_n\} \) converges weakly to \(u \) in \(E_{0}^{\alpha,p} \), i.e., \(u_k \rightharpoonup u \). Then \(\{u_k\} \) converges strongly to \(u \) in \(C([0,T],\mathbb{R}^N) \), i.e., \(\|u_k - u\|_\infty \to 0 \), as \(k \to +\infty \).

In this paper, we study problem (1) in the Hilbert space \(E^{\alpha} \equiv E_{0}^{\alpha,2} \) with the inner product and the corresponding norm defined by
\[
\langle u,v \rangle = \int_0^T (u(t),v(t)) \, dt + \int_0^T (\partial_t^\alpha u(t),\partial_t^\alpha v(t)) \, dt \quad \forall u,v \in E^{\alpha}
\]
and
\[
\|u\|_\alpha = \|u\|_{\alpha,2} = \left(\int_0^T |u(t)|^2 \, dt + \int_0^T |\partial_t^\alpha u(t)|^2 \, dt \right)^{\frac{1}{2}}, \quad \forall u \in E^{\alpha}. \tag{3}
\]

Now, we will prove a continuous differentiability theorem for a class of functionals in space \(E^{\alpha} \).

Theorem 1. Let \(0 < \alpha \leq 1 \), \(\frac{1}{p} < \alpha \leq 1 \), \(L : [0,T]_T \times \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R} \), \((t,x,y) \to L(t,x,y) \) be measurable in \(t \) for each \((x,y) \in \mathbb{R}^N \times \mathbb{R}^N \) and continuously differentiable in \((x,y) \) for almost every \(t \in [0,T] \). If there exist \(a \in C(\mathbb{R}^+,\mathbb{R}^+) \), \(b \in L^1([0,T],\mathbb{R}^+) \) and \(c \in L^q([0,T],\mathbb{R}^+) \) (\(1 < q < +\infty \)) such that for almost \(t \in [0,T] \) and every \((x,y) \in \mathbb{R}^N \times \mathbb{R}^N \), one has
\[
\begin{align*}
|L(t,x,y)| &\leq a(|x|)(b(t) + |y|^p), \\
|L_x(t,x,y)| &\leq a(|x|)(b(t) + |y|^p), \\
|L_y(t,x,y)| &\leq a(|x|)(c(t) + |y|^{p-1}),
\end{align*}
\]
where \(\frac{1}{p} + \frac{1}{q} = 1 \), then the functional \(E_{0}^{\alpha,p} \to \mathbb{R} \) defined as
\[
\Phi(u) = \int_0^T L(t,u(t),\partial_t^\alpha u(t)) \, dt
\]
is continuously differentiable on \(E_{0}^{\alpha,p} \) and
\[
\langle \Phi'(u),v \rangle = \int_0^T \left[\left(L_x(t,u(t),\partial_t^\alpha u(t)),v(t) \right) + \left(L_y(t,u(t),\partial_t^\alpha u(t)),\partial_t^\alpha v(t) \right) \right] \, dt. \tag{5}
\]

Proof. It suffices to prove that \(\Phi \) has at every point \(u \) a directional derivative \(\Phi'(u) \in (E_{0}^{\alpha,p})^* \) given by (5) and that the mapping
\[
\Phi' : E_{0}^{\alpha,p} \to (E_{0}^{\alpha,p})^*
\]
is continuous.

Firstly, it follows from (4) that \(\Phi \) is everywhere finite on \(E_0^{\alpha,p} \). We define, for \(u \) and \(v \) fixed in \(E_0^{\alpha,p} \), \(t \in [0,T] \), \(\lambda \in [-1,1] \),

\[
G(\lambda, t) = L(t,u(t) + \lambda v(t), \partial_t^\alpha u(t) + \lambda \partial_t^\alpha v(t))
\]

and

\[
\Psi(\lambda) = \int_{[0,T]} G(\lambda, t) \, dt = \Phi(u + \lambda v).
\]

From (4), we have

\[
|D_\lambda G(\lambda, t)| \leq |(D_x L(t,u(t) + \lambda v(t), \partial_t^\alpha u(t) + \lambda \partial_t^\alpha v(t)), v(t))| + |(D_y L(t,u(t) + \lambda v(t), \partial_t^\alpha u(t) + \lambda \partial_t^\alpha v(t)), \partial_t^\alpha v(t))| \\
\leq a(|u(t) + \lambda v(t)|)(b(t) + |\partial_t^\alpha u(t) + \lambda \partial_t^\alpha v(t)|^p|v(t)| \\
+ a(|u(t) + \lambda v(t)|)(c(t) + |\partial_t^\alpha u(t) + \lambda \partial_t^\alpha v(t)|^{p-1}|\partial_t^\alpha v(t)| \\
\leq \overline{a}(b(t) + (|\partial_t^\alpha u(t)| + |\partial_t^\alpha v(t)|)^p|v(t)| \\
+ \overline{a}(c(t) + (|\partial_t^\alpha u(t)| + |\partial_t^\alpha v(t)|)^{p-1}|\partial_t^\alpha v(t)| \\
= d(t),
\]

where

\[
\overline{\alpha} = \max_{(\lambda, s) \in [-1,1] \times [0,T]} a(|u(t) + \lambda v(t)|),
\]

thus, \(d \in L^1([0,T], \mathbb{R}^+) \). Since \(b \in L^1([0,T], \mathbb{R}^+) \), \((|\partial_t^\alpha u| + |\partial_t^\alpha v|)^p \in L^1([0,T], \mathbb{R}) \), \(c \in L^q([0,T], \mathbb{R}^+) \), we have

\[
|D_\lambda G(\lambda, t)| \leq d(t),
\]

and

\[
\Psi'(0) = \int_0^T D_\lambda G(0,t) \, dt = \int_0^T [(L_x(t,u(t), \partial_t^\alpha u(t)), v(t)) + (L_y(t,u(t), \partial_t^\alpha u(t)), \partial_t^\alpha v(t))] \, dt.
\]

On the other hand, it follows from (4) that

\[
|D_x L(t,u(t), \partial_t^\alpha u(t))| \leq a(|u(t)|)(b(t) + |\partial_t^\alpha u(t)|^p) \triangleq \psi_1(t),
\]

\[
|D_y L(t,u(t), \partial_t^\alpha u(t))| \leq a(|u(t)|)(c(t) + |\partial_t^\alpha u(t)|^{p-1}) \triangleq \psi_2(t),
\]

thus \(\psi_1 \in L^1([0,T], \mathbb{R}^+) \), \(\psi_2 \in L^q([0,T], \mathbb{R}^+) \). Thereby, by Theorem 2.7, (7), (8) and (9), there exists positive constants \(C_2, C_3, C_4 \) such that

\[
\int_0^T [(L_x(t,u(t), \partial_t^\alpha u(t)), v(t)) + (L_y(t,u(t), \partial_t^\alpha u(t)), \partial_t^\alpha v(t))] \, dt \\
\leq C_1\|v\|_{\infty} + C_2\|\partial_t^\alpha v\|_{L^p} \\
\leq C_3\|v\|_{\alpha,p}
\]
and Φ has a directional derivative at u and $\Phi'(u) \in (E^{\alpha,p})^*$ given by (5).

Moreover, (4) implies that the mapping from $E^{\alpha,p}$ into $L^1([0,T],\mathbb{R}^N)$ \times $L^q([0,T],\mathbb{R}^N)$ defined by

$$u \mapsto \left(D_xL(\cdot,u,\partial_t^\alpha u), D_yL(\cdot,u,\partial_t^\alpha u)\right)$$

is continuous, so that Φ' is continuous from $E^{\alpha,p}$ into $(E^{\alpha,p})^*$. The proof is complete. □

3. Variational tools

For the sake of the proof for the existence of solutions to problem (1), the following definitions and critical point theorems are needed as tools.

DEFINITION 5. ([1], p. 81) Let X be a real Banach space and $I \in C^1(X,\mathbb{R})$. I is said to satisfy (PS) condition on X if any sequence $\{x_n\} \subseteq X$ for which $I(x_n)$ is bounded and $I'(x_n) \to 0$ as $n \to \infty$, possesses a convergent subsequence in X.

DEFINITION 6. ([1]) Let X be a real Banach space and $I \in C^1(X,\mathbb{R})$. I is said to satisfy (PS) condition on X if any sequence $\{x_n\} \subseteq X$ for which $I(x_n) \to c$ and $I'(x_n) \to 0$ as $n \to \infty$, possesses a convergent subsequence in X.

REMARK 2. It is clear that the (PS) condition implies the (PS)$_c$ condition for any constant.

THEOREM 2. (Theorem 1.2, [1]) If X is a normed space and $\varphi : X \to (-\infty, +\infty)$ is lower semi-continuous and convex, then φ is weakly lower semi-continuous.

THEOREM 3. (Theorem 4.7, [1]) Let X be a Banach space and let $\Phi \in C^1(X,\mathbb{R})$. Assume that X splits into a direct sum of closed subspace $X = X^- \oplus X^+$ with

$$\dim X^- < \infty$$

and

$$\sup_{S^-_R} \Phi < \inf_{X^+} \Phi,$$

where $S^-_R = \{u \in X^- : \|u\| = R\}$. Let

$$B^-_R = \{u \in X^- : \|u\| \leq R\},$$

$$M = \{h \in C(B^-_R,X) : h(s) = s \text{ if } s \in S^-_R\}$$

and

$$c = \inf_{h \in M} \max_{s \in B^-_R} \Phi(h(s)).$$

Then, if Φ satisfies the (PS)$_c$ condition, c is a critical value of Φ.
4. Variational framework

In this section, we will establish a variational framework that enables us to reduce the existence of solutions of problem (1) to the one of finding critical points of corresponding functional.

Take \(v \in E^\alpha \) and multiply the two sides of the equality

\[
i D_T^\alpha (\mathring{\alpha} D_t^\alpha u(t)) = \nabla F(t, u(t))
\]

by \(v \) and integrate from 0 to \(T \), we have

\[
\int_0^T \left[i D_T^\alpha (\mathring{\alpha} D_t^\alpha u(t)) - \nabla F(t, u(t)) \right] v(t) \, dt = 0.
\]

(1)

Moreover, by Remark 1, 1, (1) and (2), one has

\[
\int_0^T \left(i D_T^\alpha (\mathring{\alpha} D_t^\alpha u(t)), v(t) \right) \, dt = - \sum_{j=0}^p \int_{t_j}^{t_{j+1}} \left(\frac{d}{dt} \left(i D_T^\alpha (\mathring{\alpha} D_t^\alpha u(t)) \right), v(t) \right) \, dt
\]

\[
= - \sum_{j=0}^p \left[\left(i D_T^\alpha (\mathring{\alpha} D_t^\alpha u(t), v(t)) - \left(i D_T^\alpha (\mathring{\alpha} D_t^\alpha u(t), v(t)) \right) \right)
\]

By means of (1), we have

\[
\int_0^T \left(\mathring{\alpha} D_T^\alpha u(t), i D_t^\alpha v(t) \right) \, dt + \sum_{j=1}^N I_j v(j) + \int_0^T \left(\mathring{\alpha} D_T^\alpha u(t), i D_t^\alpha v(t) \right) \, dt = 0.
\]

On account of above, we give the following concept solution for problem (1).
DEFINITION 7. A function $u \in E^\alpha$ is a weak solution of problem (1) if the identity
\[\int_0^T (\partial_i^0 D^\alpha_t u(t), \partial_i^0 D^\alpha_t v(t)) \, dt + \sum_{j=1}^p \sum_{i=1}^N I_{ij} u^i(t_j) v^j(t_j) = \int_0^T (\nabla F(t,u(t)), v(t)) \, dt = 0 \]
holds for any $v \in E^\alpha$.

We define the functional $\Phi : E^\alpha \to \mathbb{R}$ as
\[\Phi(u) = \frac{1}{2} \int_0^T |\partial_i^0 D^\alpha_t u(t)|^2 \, dt + \sum_{j=1}^p \sum_{i=1}^N \int_0^T I_{ij}(t) \, dt - \int_0^T F(t,u(t)) \, dt \]
\[= \psi(u) + \phi(u), \tag{2} \]
where
\[\psi(u) = \frac{1}{2} \int_0^T |\partial_i^0 D^\alpha_t u(t)|^2 \, dt - \int_0^T F(t,u(t)) \, dt \]
and
\[\phi(u) = \sum_{j=1}^p \sum_{i=1}^N \int_0^T I_{ij}(t) \, dt. \]

Then, we can prove the following facts.

THEOREM 4. The functional Φ is continuously differentiable on E^α and
\[\langle \Phi'(u), v \rangle = \int_0^T (\partial_i^0 D^\alpha_t u(t), \partial_i^0 D^\alpha_t v(t)) \, dt + \sum_{j=1}^p \sum_{i=1}^N I_{ij}(u^i(t_j)) v^j(t_j) \]
\[- \int_0^T (\nabla F(t,u(t)), v(t)) \, dt. \]

The proof of this theorem is very simple, we omit it.

THEOREM 5. If $u \in E^\alpha$ is a critical point of Φ in E^α, i.e., $\Phi'(u) = 0$, then u is a weak solution of problem (1).

Proof. Since $\Phi'(u) = 0$, in the light of Theorem 4, one has
\[\int_0^T (\partial_i^0 D^\alpha_t u(t), \partial_i^0 D^\alpha_t v(t)) \, dt + \sum_{j=1}^p \sum_{i=1}^N I_{ij}(u^i(t_j)) v^j(t_j) = \int_0^T (\nabla F(t,u(t)), v(t)) \, dt = 0. \]
By means of Definition 7, u is a weak solution of problem (1). \qed
5. Existence results

In order to use the saddle point theorem (Theorem 3), we decompose the space E^α. For $u \in E^\alpha$, let $\overline{u} = \frac{1}{T} \int_0^T u(t) \, dt$ and $\tilde{u}(t) = u(t) - \overline{u}$, then

$$E^\alpha = \mathbb{R}^N \oplus \tilde{E}^\alpha,$$

where $\tilde{E}^\alpha = \{ u \in E^\alpha \mid \int_0^T u(t) \, dt = 0 \}$

Lemma 1. The functional $H : E^\alpha \to \mathbb{R}$ denoted by

$$H(u) = \frac{1}{2} \int_0^T \| \tilde{D}_t^\alpha u(t) \|^2 \, dt$$

is convex and continuous on E^α.

This lemma is trivial, hence, we omit the proof of this lemma.

Lemma 2. Φ is weakly lower semi-continuous on E^α.

Proof. On the basis of Theorem 2 and Lemma 1, we can deduce that H is weakly lower semi-continuous on E^α. More than this, by Proposition 3, the functional $G : E^\alpha \to \mathbb{R}$ denoted by

$$G(u) = \int_0^T F(t, u(t)) \, dt$$

is weakly continuous on E^α. Consequently, ψ is weakly lower semi-continuous on E^α. So far, it suffices to show that ϕ is weakly continuous on E^α. In fact, if $\{u_k\}_{k \in \mathbb{N}} \subseteq E^\alpha$, $u_k \rightharpoonup u$, then from Proposition 3, $\{u_k\}_{k \in \mathbb{N}}$ converges uniformly to u on $[0, T]$. Thereby, there exists $C_4 > 0$ such that

$$\|u_k\|_{\infty} \leq C_4, \quad \forall k \in \mathbb{N}.$$

Accordingly, we can assert that

$$|\phi(u_k) - \phi(u)| = \left| \sum_{j=1}^N \sum_{i=1}^N \int_0^{u_k(t)} I_{ij}(t) \, dt - \sum_{j=1}^N \sum_{i=1}^N \int_0^{u(t)} I_{ij}(t) \, dt \right|$$

$$\leq \sum_{j=1}^N \sum_{i=1}^N \left| \int_0^{u_k(t)} I_{ij}(t) \, dt \right|$$

$$\leq \frac{pNc_5}{2} \|u_k - u\|_{\infty} \to 0,$$

where $c_5 = \max_{i \in A, j \in B, \|\| \leq C_4} |I_{ij}(t)|$. In view of the above, Φ is weakly lower semi-continuous on E^α. □

Theorem 6. Suppose that the following conditions hold.
(i) There exist \(f, g \in L^1(0, T; \mathbb{R}^+) \) and \(\zeta \in [0, 1) \) such that
\[
|\nabla F(t, x)| \leq f(t) |x|^{\zeta} + g(t)
\]
for all \(x \in \mathbb{R}^N \) and a.e. \(t \in [0, T] \).

(ii) \(|x|^{-2\zeta} \int_0^T F(t, x) \, dt \to -\infty \) as \(|x| \to \infty \).

(iii) For any \(i \in \Lambda_1, j \in \Lambda_2 \),
\[
I_{ij}(t) \geq 0, \quad \forall t \in \mathbb{R}.
\]

Then problem (1) has at least one weak solution which minimizes the function \(\Phi \).

Proof. Combining (i) with Proposition 2, we can get
\[
\left| \int_0^T (F(t, u(t)) - F(t, \bar{u})) \, dt \right|
\leq \left| \int_0^T \int_0^1 (\nabla F(t, \bar{u} + s\bar{u}(t)), \bar{u}(t)) \, ds \, dt \right|
\leq \int_0^T \int_0^1 f(t)|\bar{u} + s\bar{u}(t)|^{\zeta}|\bar{u}(t)| \, ds \, dt + \int_0^T g(t)|\bar{u}(t)| \, dt
\leq 2\left(\|\bar{u}\|^{\zeta} + \|
\bar{u}\|^{\zeta} \right) \|\bar{u}\|_\infty \int_0^T f(t) \, dt + \|\bar{u}\|_\infty \int_0^T g(t) \, dt
\leq \frac{\Gamma(2\alpha)(2\alpha - 1)}{4T^{2\alpha - 1}} \|\bar{u}\|_\infty + \frac{4T^{2\alpha - 1}}{\Gamma(2\alpha)(2\alpha - 1)} |\bar{u}|^{2\zeta} \left(\int_0^T f(t) \, dt \right)^2
+ 2\|\bar{u}\|^{\zeta + 1} \int_0^T f(t) \, dt + \|\bar{u}\|_\infty \int_0^T g(t) \, dt
\leq \frac{1}{4} \int_0^T |\partial_t^\alpha u(t)|^2 \, dt + C_6 |\bar{u}|^{2\zeta} + C_7 \left(\int_0^T |\partial_t^\alpha u(t)|^2 \, dt \right)^{\frac{\zeta + 1}{2}} + C_8 \left(\int_0^T |\partial_t^\alpha u(t)|^2 \, dt \right)^{\frac{1}{2}}
\]
for all \(u \in E^\alpha \), where \(C_6 = \frac{4T^{2\alpha - 1}}{\Gamma(2\alpha)(2\alpha - 1)} \left(\int_0^T f(t) \, dt \right)^2 \), \(C_7 = 2\left(\frac{T^{\alpha - \frac{1}{2}}}{\Gamma(\alpha)(2\alpha - 1)} \right)^{\zeta + 1} \int_0^T |f(t)| \, dt \)
and \(C_8 = \frac{T^{\alpha - \frac{1}{2}}}{\Gamma(\alpha)(2\alpha - 1)} \int_0^T |g(t)| \, dt \).

According to (iii), one has
\[
\phi(u) \geq 0, \quad u \in E^\alpha.
\]

Hence, for any \(u \in E^\alpha \), we can get
\[
\Phi(u) = \frac{1}{2} \int_0^T |\partial_t^\alpha u(t)|^2 \, dt - \int_0^T F(t, u(t)) \, dt + \phi(u)
\leq \frac{1}{2} \int_0^T |\partial_t^\alpha u(t)|^2 \, dt - \int_0^T \left(F(t, u(t)) - F(t, \bar{u}) \right) \, dt - \int_0^T F(t, \bar{u}) \, dt + \phi(u)
\leq \frac{1}{4} \int_0^T |\partial_t^\alpha u(t)|^2 \, dt - |\bar{u}|^{2\zeta} \left(|\bar{u}|^{-2\zeta} \int_0^T F(t, \bar{u}) \, dt + C_6 \right)
- C_7 \left(\int_0^T |\partial_t^\alpha u(t)|^2 \, dt \right)^{\frac{\zeta + 1}{2}} - C_8 \left(\int_0^T |\partial_t^\alpha u(t)|^2 \, dt \right)^{\frac{1}{2}}.
\]
As \(\|u\|_\alpha \to \infty\) if and only if \((\|\mu\|^2 + \int_0^T |\xi_t D_\xi^\alpha u(t)|^2 \, dt)^{\frac{1}{2}} \to \infty\), (1) and (ii) imply that \(\Phi(u) \to +\infty\) as \(\|u\|_\alpha \to \infty\).

Combining Proposition 1, Theorem 1.1 in [1] with Lemma 2, \(\Phi\) has a minimum point on \(E^\alpha\), which is a critical point of \(\Phi\). Therefore, problem (1) has at least one weak solution. \(\Box\)

Theorem 7. Assume that condition (i) of Theorem 6 and the following conditions are satisfied.

(iii) There exist \(a_{ij}, b_{ij} > 0\) and \(\beta_{ij} \in (0, 1)\) such that

\[|I_{ij}(t)| \leq a_{ij} + b_{ij}|t|^\beta_{ij} \quad \text{for every } t \in \mathbb{R}, \quad i \in \Lambda_1, \quad j \in \Lambda_2.\]

(vii) For any \(i \in \Lambda_1, \ j \in \Lambda_2,\)

\[I_{ij}(t) \leq 0, \ \forall \ t \in \mathbb{R}.\]

Then problem (1) has at least one weak solution.

Before proving Theorem 7, we prove the following lemma firstly,

Lemma 3. If the conditions of Theorem 7 hold, then \(\Phi\) satisfies P.S. condition.

Proof. Let \(\{u_n\} \subseteq E^\alpha\) be a P.S. sequence for \(\Phi\), that is, \(\{\Phi(u_n)\}\) is bounded and \(\Phi'(u_n) \to 0\) as \(n \to \infty\). We will prove that \(\{u_n\}\) consists of a convergent subsequence in \(E^\alpha\). In deed, for all \(n \in \mathbb{N}\), according to (i) and Proposition 2, one has

\[
\left| \int_0^T (F(t,u_n(t)) - F(t,u_n)) \, dt \right| \\
\leq \left| \int_0^T \int_0^1 (\nabla F(t,u_n + s\tilde{u}_n(t)), \tilde{u}_n(t)) \, ds \, dt \right| \\
\leq \int_0^T \int_0^1 f(t)|\mu_n + \tilde{u}_n(t)|^\xi |\tilde{u}_n(t)| \, ds \, dt + \int_0^T \int_0^1 g(t)|\tilde{u}_n(t)| \, ds \, dt \\
\leq 2(\|\mu_n\|^\xi + \|\tilde{u}_n\|^\xi) \|\tilde{u}_n\|_\infty \int_0^T f(t) \, dt + \|\tilde{u}_n\|_\infty \int_0^T g(t) \, dt \\
\leq \frac{\Gamma^2(\alpha)(2\alpha - 1)}{4T^{2\alpha - 1}} \|\tilde{u}_n\|_\infty^2 + \frac{4T^{2\alpha - 1}}{\Gamma^2(\alpha)(2\alpha - 1)} |\mu_n|^{2\xi} \left(\int_0^T f(t) \, dt \right)^2 \\
+ 2\|\tilde{u}_n\|_\infty^{\xi + 1} \int_0^T f(t) \, dt + \|\tilde{u}_n\|_\infty \int_0^T g(t) \, dt \\
\leq \frac{1}{4} \int_0^T |\xi_t D_\xi^\alpha u_n(t)|^2 \, dt + C_6|\mu_n|^{2\xi} \\
+ C_7 \left(\int_0^T |\xi_t D_\xi^\alpha u_n(t)|^2 \, dt \right)^\frac{\xi + 1}{2} + C_8 \left(\int_0^T |\xi_t D_\xi^\alpha u_n(t)|^2 \, dt \right)^\frac{1}{2}. \tag{2}
\]
For convenience, we let \(a = \max_{i \in A_1, j \in A_2} a_{ij}, \ b = \max_{i \in A_1, j \in A_2} b_{ij} \). From (2), (iv) and Young inequality, for sufficiently large \(n \), we have
\[
\| \tilde{u}_n \|_\alpha \\
\geq \langle \Phi'(u_n), \tilde{u}_n \rangle \\
= \int_0^T |\partial_\alpha u_n(t)|^2 \, dt - \int_0^T (\nabla F(t, u_n(t), \tilde{u}_n(t))) \, dt + \sum_{j=1}^p \sum_{i=1}^N I_{ij}(u_n(t)) \tilde{u}_n(t) \\
\geq \frac{3}{4} \int_0^T |\partial_\alpha u_n(t)|^2 \, dt - C_6 |\tilde{u}_n|^2 \xi - C_7 \left(\int_0^T |\partial_\alpha u_n(t)|^2 \, dt \right)^{\frac{\xi+1}{2}} \\
- C_8 \left(\int_0^T |\partial_\alpha u_n(t)|^2 \, dt \right)^{\frac{1}{2}} - \sum_{j=1}^p \sum_{i=1}^N (a_{ij} + b_{ij}) |u_n(t)| \xi_{ij} |\tilde{u}_n|^2 \\
= \frac{3}{4} \int_0^T |\partial_\alpha u_n(t)|^2 \, dt - C_3 |\tilde{u}_n|^2 \xi - C_4 \left(\int_0^T |\partial_\alpha u_n(t)|^2 \, dt \right)^{\frac{\xi+1}{2}} \\
- C_5 \left(\int_0^T |\partial_\alpha u_n(t)|^2 \, dt \right)^{\frac{1}{2}} - \sum_{j=1}^p \sum_{i=1}^N (a_{ij} + b_{ij}) \| \tilde{u}_n(t) \xi_{ij} |\tilde{u}_n|^2 \\
= \frac{3}{4} \int_0^T |\partial_\alpha u_n(t)|^2 \, dt - C_6 |\tilde{u}_n|^2 \xi - C_7 \left(\int_0^T |\partial_\alpha u_n(t)|^2 \, dt \right)^{\frac{\xi+1}{2}} \\
- C_8 \left(\int_0^T |\partial_\alpha u_n(t)|^2 \, dt \right)^{\frac{1}{2}} - ap N \| \tilde{u}_n \|_{\infty} - b \sum_{j=1}^p \sum_{i=1}^N 2 (|\bar{u}_i| \xi_{ij} + \| \tilde{u}_n \|_{\infty} \| \xi_{ij} |\tilde{u}_n|^2 \\
= \frac{3}{4} \int_0^T |\partial_\alpha u_n(t)|^2 \, dt - C_6 |\tilde{u}_n|^2 \xi - C_7 \left(\int_0^T |\partial_\alpha u_n(t)|^2 \, dt \right)^{\frac{\xi+1}{2}} \\
- C_8 \left(\int_0^T |\partial_\alpha u_n(t)|^2 \, dt \right)^{\frac{1}{2}} - ap N \frac{T^{\alpha - \frac{1}{2}}}{\Gamma(\alpha) \sqrt{2(\alpha - 1) + 1}} \left(\int_0^T |\partial_\alpha u_n(t)|^2 \, dt \right)^{\frac{1}{2}} \\
- b \sum_{j=1}^p \sum_{i=1}^N \beta_{ij} |\tilde{u}_n|^{2\xi} - 2b \sum_{j=1}^p \sum_{i=1}^N \frac{2 - \beta_{ij}}{2} \| \tilde{u}_n \|^2_{\infty} - 2b \sum_{j=1}^p \sum_{i=1}^N \| \tilde{u}_n \|_{\infty}^{\xi_{ij} + 1} \\
= \frac{3}{4} \int_0^T |\partial_\alpha u_n(t)|^2 \, dt - C_6 |\tilde{u}_n|^2 \xi - C_7 \left(\int_0^T |\partial_\alpha u_n(t)|^2 \, dt \right)^{\frac{\xi+1}{2}} \\
- C_8 \left(\int_0^T |\partial_\alpha u_n(t)|^2 \, dt \right)^{\frac{1}{2}} - ap N \frac{T^{2\alpha - \frac{1}{2}}}{\Gamma(\alpha) \sqrt{2(\alpha - 1) + 1}} \left(\int_0^T |\partial_\alpha u_n(t)|^2 \, dt \right)^{\frac{1}{2}} \\
- b \sum_{j=1}^p \sum_{i=1}^N \beta_{ij} |\tilde{u}_n|^{2\xi} - 2b \sum_{j=1}^p \sum_{i=1}^N \frac{T^{2\alpha - 1}}{(\Gamma(\alpha))^2 (2(\alpha - 1) + 1)} \int_0^T |\partial_\alpha u_n(t)|^2 \, dt \right)^{\frac{\xi_{ij} + 1}{2}} \\
- 2b \sum_{j=1}^p \sum_{i=1}^N (2 - \beta_{ij}) \left(\frac{T^{2\alpha - 1}}{(\Gamma(\alpha))^2 (2(\alpha - 1) + 1)} \int_0^T |\partial_\alpha u_n(t)|^2 \, dt \right)^{\frac{1}{2} - \beta_{ij}}. \quad (3)
According to Proposition 2, one has
\[\int_0^T |\partial_0 D_t^\alpha u_n(t)|^2 \leq \|\tilde{u}_n\|_\alpha^2 \leq \left(1 + \frac{T^{2\alpha}}{(\Gamma(\alpha + 1))^2}\right) \int_0^T |\partial_0 D_t^\alpha u(t)|^2 \, dt. \] (4)

The inequalities (3) and (4) imply that for all large \(n \), there exist some positive constants \(C_9 \) and \(C_{10} \) such that

\[C_9 |\pi_n|^{\alpha} \geq \left(\int_0^T |\tilde{u}_n(t)|^2 \, dt\right)^{\frac{1}{2}} - C_{10}. \] (5)

The same as the proof of Theorem 6, for all \(n \), we have

\[\left| \int_0^T (F(t, u_n(t)) - F(t, \pi_n)) \, dt \right| \leq \frac{1}{4} \int_0^T |\partial_0 D_t^\alpha u_n(t)|^2 \, dt + C_6 |\pi_n|^{2\xi} + C_7 \left(\int_0^T |\partial_0 D_t^\alpha u(t)|^2 \, dt\right)^{\frac{\xi+1}{2}} + C_8 \left(\int_0^T |\partial_0 D_t^\alpha u(t)|^2 \, dt\right)^{\frac{1}{2}}. \] (6)

It follows from the boundedness of \(\{\Phi(u_n)\} \), (v), (5) and (6) that for all large \(n \), there exists constant \(C_{11} \) and some constant \(C_{12} \) such that

\[C_{11} \leq \Phi(u_n) \]

\[= \frac{1}{2} \int_0^T |\partial_0 D_t^\alpha u_n(t)|^2 \, dt - \int_0^T (F(t, u_n(t)) - F(t, \pi_n)) \, dt - \int_0^T F(t, \pi_n) \, dt + \phi(u) \]

\[\leq \frac{1}{2} \int_0^T |\partial_0 D_t^\alpha u_n(t)|^2 \, dt - \int_0^T (F(t, u_n(t)) - F(t, \pi_n)) \, dt - \int_0^T F(t, \pi_n) \, dt \]

\[\leq \frac{3}{4} \int_0^T |\partial_0 D_t^\alpha u_n(t)|^2 \, dt + C_6 |\pi_n|^{2\xi} - \int_0^T F(t, \pi_n) \, dt \]

\[+ C_7 \left(\int_0^T |\partial_0 D_t^\alpha u(t)|^2 \, dt\right)^{\frac{\xi+1}{2}} + C_8 \left(\int_0^T |\partial_0 D_t^\alpha u(t)|^2 \, dt\right)^{\frac{1}{2}} \]

\[\leq -|\pi_n|^{2\xi} \left(\frac{1}{|\pi_n|^{2\xi}} \int_0^T F(t, \pi_n) \, dt + C_{12}\right). \] (7)

According to (7) and (vi) that \(\{|\pi_n|\} \) is bounded. Thus, \(\{u_n\} \) is bounded in \(E^\alpha \) from (4) and (5). Thereby, there exists a subsequence of \(\{u_n\} \) (for simplicity denoted again by \(\{u_n\} \)) such that

\[u_n \rightarrow u \text{ in } E^\alpha. \] (8)

In view of Proposition 3, we have

\[u_n \rightarrow u \text{ in } C([0, T], \mathbb{R}^N). \] (9)
Furthermore, one has
\[
\langle \Phi'(u_n) - \Phi'(u), u_n - u \rangle
\]
\[= \int_0^T |c D_t^\alpha u_n(t) - c D_t^\alpha u(t)|^2 \, dt + \int_0^T (\nabla F(t, u_n(t)) - \nabla F(t, u(t)), u_n(t) - u(t)) \, dt
\]
\[+ \sum_{j=1}^p \sum_{i=1}^N (I_{ij}(u_n'(t_j)) - I_{ij}(u'(t_j))) (u_n(t_j) - u(t_j)).
\]
(10)

From (8), (9), (10), (A) and the continuity of \(I_{ij} \), we admit that \(u_n \rightarrow u \) in \(E^\alpha \). Hence, \(\Phi \) satisfies P.S. condition. □

Now, we prove Theorem 7.

Proof. As mentioned earlier,
\[
E^\alpha = \mathbb{R}^N \oplus \widetilde{E}^\alpha,
\]
where \(\widetilde{E}^\alpha = \{ u \in E^\alpha | \int_0^T u(t) \, dt = 0 \} \). We show that
\[
\Phi(u) \rightarrow +\infty \text{ as } u \in \widetilde{E}^\alpha, \quad \|u\| \rightarrow \infty.
\]
(11)

In reality, for \(u \in \widetilde{E}^\alpha \), then \(\bar{u} = 0 \), similar to the proof of Theorem 6, one has
\[
\left| \int_0^T (F(t, u(t)) - F(t, 0)) \, dt \right|
\]
\[\leq \frac{1}{4} \int_0^T \|c D_t^\alpha u(t)\|^2 \, dt + C_7 \left(\int_0^T \|c D_t^\alpha u(t)\|^2 \, dt \right)^{\frac{\xi + 1}{2}} + C_8 \left(\int_0^T \|D_t^\alpha u(t)\|^2 \, dt \right)^{\frac{1}{2}}.
\]
(12)

Combining (iv) with Proposition 2, we can find
\[
|\phi(u)| = \left| \sum_{j=1}^p \sum_{i=1}^N \int_0^T I_{ij}(t) \, dt \right|
\]
\[\leq \sum_{j=1}^p \sum_{i=1}^N \int_0^T \left(a_{ij} + b_{ij} |t|^{\xi \beta_{ij}} \right) \, dt
\]
\[\leq a p N \|u\|_{\infty} + b \sum_{j=1}^p \sum_{i=1}^N \|u\|_{\infty}^{\xi \beta_{ij} + 1}
\]
\[\leq a p N T^{\alpha - \frac{1}{2}} \Gamma(\alpha) \sqrt{2 \alpha - 1} \left(\int_0^T \|c D_t^\alpha u_n(t)\|^2 \, dt \right)^{\frac{1}{2}}
\]
\[+ b \sum_{j=1}^p \sum_{i=1}^N \left(\frac{T^{2 \alpha - 1}}{\Gamma^2(\alpha)(2 \alpha - 1)} \int_0^T \|c D_t^\alpha u_n(t)\|^2 \, dt \right)^{\frac{\xi \beta_{ij} + 1}{2}}.
\]
(13)
for all $u \in \tilde{E}^\alpha$. From (12) and (13), we can get

$$\Phi(u) = \frac{1}{2} \int_0^T |D_0^\alpha u(t)|^2 dt - \int_0^T \left(F(t, u(t)) - F(t, 0) \right) dt - \int_0^T F(t, 0) dt + \phi(u)$$

$$\geq \frac{1}{4} \int_0^T |D_0^\alpha u(t)|^2 dt - C_7 \left(\int_0^T |D_0^\alpha u(t)|^2 dt \right)^{\frac{\alpha+1}{2}} - C_8 \left(\int_0^T |D_0^\alpha u(t)|^2 dt \right)^{\frac{1}{2}}$$

$$- b \sum_{j=1}^p \sum_{i=1}^N \left(\frac{T^{2\alpha-1}}{(\Gamma(\alpha))^2 (2(\alpha - 1) + 1)} \int_0^T |D_0^\alpha u(t)|^2 dt \right)^{\frac{\alpha+1}{2}}$$

$$- \frac{apNT^{\alpha-\frac{1}{2}}}{\Gamma(\alpha) \sqrt{2\alpha - 1}} \left(\int_0^T |D_0^\alpha u(t)|^2 dt \right)^{\frac{1}{2}} + \int_0^T F(t, 0) dt$$

(14)

for all $u \in \tilde{E}^\alpha$. Due to Proposition 2, one has

$$\|u\| \to \infty \iff \|\dot{u}\|_{L^2} \to \infty$$

on \tilde{E}^α. Therefore, (11) follows from (14).

Moreover, from (v), we can see

$$\phi(u) \leq 0$$

(15)

for all $u \in E^\alpha$. Thereby, combining (15) with (vi), we obtain

$$\Phi(u) = - \int_0^T F(t, u) dt + \phi(u) \leq - |u|^{2\xi} \left(|u|^{-2\xi} \int_0^T F(t, u) dt \right) \to -\infty$$

as $|u| \to \infty$ in \mathbb{R}^N. It follows from Theorem 3 and Lemma 3 that problem (1) has at least one weak solution. □

Theorem 8. Assume that assumption (iii) and the following condition hold.

(vii) $F(t, \cdot)$ is concave for a.e. $t \in [0, T]$ and that

$$\int_0^T F(t, x) dt \to +\infty \text{ as } |x| \to \infty.$$

Then problem (1) has at least one weak solution which minimizes the function Φ.

Proof. Seeing that (iii), we find

$$\phi(u) \geq 0$$

(16)

for all $u \in E^\alpha$. In addition, from assumption (A), the function $G : \mathbb{R}^N \to \mathbb{R}$ defined by

$$G(x) = - \int_0^T F(t, x) dt$$

has a minimum at some point \bar{x} for which

$$\int_0^T \nabla F(t, \bar{x}) dt = 0.$$

(17)
For any minimizing sequence \(\{ u_k \} \) of \(\Phi \), by Proposition 1.4 in [1], (16) and (17), we claim that
\[
\Phi(u_k) = \frac{1}{2} \int_0^T |\partial_t \tilde{\alpha} u_k(t)|^2 \, dt - \int_0^T F(t, u_k(t)) \, dt - \int_0^T F(t, x) \, dt + \phi(u)
\]
\[
\geq \frac{1}{2} \int_0^T |\partial_t \tilde{\alpha} u_k(t)|^2 \, dt - \int_0^T F(t, x) \, dt - \int_0^T (\nabla F(t, x), u_k(t) - \bar{x}) \, dt
\]
\[
= \frac{1}{2} \int_0^T |\partial_t \tilde{\alpha} u_k(t)|^2 \, dt - \int_0^T F(t, x) \, dt - \int_0^T (\nabla F(t, x), \tilde{u}_k(t)) \, dt,
\]
where \(\tilde{u}_k(t) = u_k(t) - \bar{u}_k \), \(\bar{u}_k = \frac{1}{T} \int_0^T u_k(t) \, dt \). As a result of (18), (A) and Proposition 2.2, there exist some positive constants \(C_{13} \) and \(C_{14} \) such that
\[
\Phi(u_k) \geq \frac{1}{2} \int_0^T |\partial_t \tilde{\alpha} u_k(t)|^2 \, dt - \int_0^T F(t, x) \, dt - \left(\int_0^T |\nabla F(t, x)| \, dt \right) \| \tilde{u}_k \|_{\infty}
\]
\[
\geq \frac{1}{2} \int_0^T |\partial_t \tilde{\alpha} u_k(t)|^2 \, dt + C_{13} - C_{14} \left(\int_0^T |\partial_t \tilde{\alpha} u_k(t)|^2 \, dt \right)^{\frac{1}{2}}.
\]
Hence, from (19), there exists \(C_{15} > 0 \) such that
\[
\int_0^T |\partial_t \tilde{\alpha} u_k(t)|^2 \, dt \leq C_{15}.
\]
On the other hand, Proposition 2 and (20) imply that there exists \(C_{16} > 0 \) such that
\[
\| \tilde{u}_k \|_{\infty} \leq C_{16}.
\]
According to (vii), we have
\[
F \left(t, \frac{\bar{u}_k}{2} \right) = F \left(t, \frac{u_k(t) - \tilde{u}_k(t)}{2} \right)
\]
\[
\geq \frac{1}{2} F(t, u_k(t)) + \frac{1}{2} F(t, -\tilde{u}_k(t))
\]
for a.e. \(t \in [0, T] \) and all \(k \in \mathbb{N} \). By means of (16) and (22), we obtain
\[
\Phi(u_k) \geq \frac{1}{2} \int_0^T |\partial_t \tilde{\alpha} u_k(t)|^2 \, dt - 2 \int_0^T F \left(t, \frac{\bar{u}_k}{2} \right) \, dt + \int_0^T F(t, -\tilde{u}_k(t)) \, dt.
\]
Connecting (21) and (23), there exists \(C_{17} > 0 \) such that
\[
\Phi(u_k) \geq -2 \int_0^T F \left(t, \frac{\bar{u}_k}{2} \right) \, dt - C_{17}.
\]
According to inequality (24) and (vii), \(\{ \bar{u}_k \} \) is bounded. This shows that \(\{ u_k \} \) is bounded in \(E^\alpha \) via Proposition 2.2 and inequality (20). In consideration of Proposition 1, Theorem 1.1 in [1] and Lemma 2, \(\Phi \) has a minimum point on \(E^\alpha \), which is a critical point of \(\Phi \). This means that problem (1) has at least one weak solution which minimizes the function \(\Phi \). \(\square \)
6. Examples

In this section, let’s give two examples to illustrate the feasibility and effectiveness of our main results.

Example 1. Let $\alpha = \frac{2}{3}$, $T = \pi$, $N = 4$, $t_1 = 2$. Consider the fractional Hamiltonian system with impulsive effects

$$
\begin{align*}
\begin{cases}
\frac{1}{t} D^\alpha_T (\gamma D^\alpha_T u(t)) = \nabla F(t, u(t)), & \text{a.e. } t \in [0, \pi], \\
u(0) = u(\pi) = 0, \\
\Delta \left(\frac{1}{t} D^\alpha_{T}^{-1} (\gamma D^\alpha_T u^i) \right)(2) = I_{ij}(u^i(2)), & i = 1, 2, 3, 4, j = 1,
\end{cases}
\end{align*}
$$

(1)

where $F(t,x) = (t - 6)|x|^{\frac{3}{2}} + ((1, 2, 3, 4), x)$. In view of $F(t,x) = (t - 6)|x|^{\frac{3}{2}} + ((1, 2, 3, 4), x)$, $I_{ij}(t) = t^{\frac{3}{2}}$, $\zeta = \frac{1}{2}$, all of the conditions of Theorem 6 are satisfied. It follows from Theorem 6 that problem (1) has at least one weak solution. Not only this, from Definition 7, 0 is not the weak solution of problem (1). This means that problem (1) has at least one nontrivial weak solution.

Example 2. Let $\alpha = \frac{3}{4}$, $T = 1$, $N = 3$, $t_1 = \frac{1}{2}$. Consider the fractional Hamiltonian system with impulsive effects

$$
\begin{align*}
\begin{cases}
\frac{1}{t} D^\alpha_T (\gamma D^\alpha_T u(t)) = \nabla F(t, u(t)), & \text{a.e. } t \in [0, 1], \\
u(0) = u(1) = 0, \\
\Delta \left(\frac{1}{t} D^\alpha_{T}^{-1} (\gamma D^\alpha_T u^i) \right)(\frac{1}{2}) = I_{ij}(u^i(\frac{1}{2})), & i = 1, 2, 3, j = 1,
\end{cases}
\end{align*}
$$

(2)

where $F(t,x) = (t - \frac{\pi}{6})|x|^{\frac{3}{4}} + ((1, 1, 1), x)$, $I_{1i}(t) = -t^{\frac{3}{4}}$. Owing to $F(t,x) = (t - \frac{\pi}{6})|x|^{\frac{3}{4}} + ((1, 1, 1), x)$, $I_{1i}(t) = -t^{\frac{3}{4}}$, $\zeta = \frac{1}{2}$, $\beta_{1i} = \frac{1}{4}$, by calculation, every condition of Theorem 7 holds. According to Theorem 7, problem (2) has at least one weak solution. Furthermore, by Definition 7, 0 is not the weak solution of problem (2). Hence, problem (2) has at least one nontrivial weak solution.

Remark 3. If (2) without impulses, that is, $I_{1i}(t) \equiv 0$, each condition of Theorem 7 holds. As a result of Theorem 7, problem (2) has at least one weak solution. By calculus, 0 is not the weak solution of problem (2). Therefore, problem (2) has at least one nontrivial weak solution.

Conflict of Interest. The authors declare that they have no conflict of interest.
REFERENCES

[1] J. MAWHIN, M. WILLEM, Critical Point Theory and Hamiltonian Systems, Springer-Verlag, Berlin, 1989.
[2] J. W. ZHOU, Y. K. LI, Existence of solutions for a class of second-order Hamiltonian systems with impulsive effects, Nonlinear Anal. 72, (2010) 1594–1603.
[3] W. G. GLOCKLE, T. F. NONNENMACHER, A fractional calculus approach of self-similar protein dynamics, Biophys. J. 68, (1995) 46–53.
[4] F. MAINARDI, Fractional calculus: Some basic problems in continuum and statistical mechanics, Springer-Verlag, Wien, 1997.
[5] K. DIETHELM, A. D. FREED, On the solution of nonlinear fractional order differential equations used in the modeling of viscoelasticiy, Scientific Computing in Chemical Engineering II, (1999) 217–224.
[6] R. HILFER, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
[7] J. W. KIRCHNER, X. FENG, C. NEAL, Fractal streamchemistry and its implications for contaminant transport in catchments, Nature 403, (2000) 524–526.
[8] J. ZHAO, H. B. CHEN, C. J. XU, Nontrivial solutions for impulsive fractional differential equations via Morse theory, Appl. Math. Comput. 307, (2017) 170–179.
[9] K. H. ZHAO, Impulsive boundary value problems for two Classes of fractional differential equation with two different Caputo fractional derivatives, Mediterr. J. Math. 13, 3 (2016) 1033–1050.
[10] A. A. KILBAS, H. M. SRIVASTAVA, J. J. TRUJILLO, Theory and applications of fractional differential equations, in: North-Holland Mathematics Studies 204, Elsevier Science, Amsterdam, 2006.
[11] I. PODLUBNY, Fractional Differential Equations, Academic Press, New York, 1993.
[12] Y. ZHOU, Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2014.
[13] H. SHI, H. CHEN, Multiplicity results for a class of boundary value problems with impulsive effects, Math. Nachr. 289 (2016) 718–726.
[14] H. SHI, H. CHEN, H. LIU, Morse theory and local linking for a class of boundary value problems with impulsive effects, J. Appl. Math. Comput. 51 (2016) 353–365.
[15] Y. L. ZHAO, H. B. CHEN, C. J. XU, Nontrivial solutions for impulsive fractional differential equations via Morse theory, Appl. Math. Comput. 307 (2017) 170–179.
[16] T. S. ALEROEV, H. T. ALEROEVA, J. F. HUANG, M. V. TAMM, Y. ZHAO, Boundary value problems of fractional Fokker-Planck equations, Compt. Math. Appl. 73, (2017) 959–969.
[17] Y. J. LIU, S. P. CHEN, L. M. OU, Solvability of Sturm-Liouville boundary value problems for multiple order fractional differential equations, Arab J. Math. Sci. 22, (2016) 207–231.
[18] Y. J. CUI, Uniqueness of solution for boundary value problems for fractional differential equations, Appl. Math. Lett. 51 (2016) 48–54.
[19] L. PENG, Y. ZHAO, Bifurcation from interval and positive solutions of the three-point boundary value problem for fractional differential equations, Appl. Math. Comput. 257, (2015) 458–466.
[20] V. LAKSHMIKANTHAM, D. BAINOV, P. SIMEONOV, Impulsive Differential Equations and Inclusions, World Scientific, Singapore (1989).
[21] E. AIT DADS, M. BENCHOHRA, S. HAMANI, Impulsive fractional differential inclusions involving fractional derivative, Fract. Calc. Appl. Anal. 12, (2009) 15–38.
[22] T. D. KE, D. LAN, Decay integral solutions for a class of impulsive fractional differential equations in Banach spaces, Fract. Calc. Appl. Anal. 17, (2014) 96–121.
[23] S. Q. ZHANG, Existence of a solution for the fractional differential equation with nonlinear boundary conditions, Comput. Math. Appl. 61, (2011) 1202–1208.
[24] Y. ZHAO, S. R. SUN, Z. L. HAN, Q. P. LI, The existence of multiple positive solutions for boundary value problems of nonlinear fractional differential equations, Commun. Nonlinear Sci. Numer. Simul. 16, (2011) 2086–2097.
[25] K. H. ZHAO, P. GONG, Positive solutions of Riemann-Stieltjes integral boundary problems for the nonlinear coupling system involving fractional-order differential, Adv. Difference Equ. 2014, 2014:254.
[28] N. Kosmatov, A boundary value problem of fractional order at resonance, Electron. J. Differ. Equ. 135, (2010) 1–10.

[29] W. H. Jiang, The existence of solutions for boundary value problems of fractional differential equations at resonance, Nonlinear Anal. 74, (2011) 1987–1994.

[30] F. Jiao, Y. Zhou, Existence of solutions for a class of fractional boundary value problems via critical point theory, Comput. Math. Appl. 62, (2011) 1181–1199.

[31] G. Bonanno, R. Rodríguez-López, S. Tersian, Existence of solutions to boundary value problem for impulsive fractional differential equations, Fract. Calc. Appl. Anal. 17, (2014) 717–744.

[32] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, vol. 204, Elsevier Science B. V., Amsterdam, 2006.

[33] I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, vol. 198, Academic Press, San Diego, Calif, USA, 1999.

(Received September 2, 2017)

Jianwen Zhou
Department of Mathematics
Yunnan University
Kunming, Yunnan 650091
e-mail: zhoujianwen2007@126.com

Yanning Wang
School of Basic Medical Science
Kunming Medical University
Kunming, Yunnan 650500
e-mail: wangscanf2004@126.com

Yongkun Li
Department of Mathematics
Yunnan University
Kunming, Yunnan 650091
e-mail: yklie@ynu.edu.cn