FORMALITY OF DG ALGEBRAS (AFTER KALEDIN)

VALERY A. LUNTS

Abstract. We provide proper foundations and proofs for the main results of [Ka]. The results include a flat base change for formality and behavior of formality in flat families of $\mathcal{A}(\infty)$ and DG algebras.

1. Introduction

Let k be a field of characteristic zero. Given a DG algebra \mathcal{A} over k Kaledin [Ka] defines a cohomology class $K_{\mathcal{A}}$ which vanishes if and only if \mathcal{A} is formal. (This class $K_{\mathcal{A}}$ is an element of the second Hochschild cohomology group of a DG algebra $\tilde{\mathcal{A}}$ which is closely related to \mathcal{A}.) This is a beautiful result which has many important applications. One of the applications is mentioned in [Ka] (Theorem 4.3): if one has a "flat" family \mathcal{A}_X of DG algebras parametrized by a scheme X, then formality of the fiber \mathcal{A}_x is a closed condition on $x \in X$.

Unfortunately, the paper [Ka] is hard to read. There are many misprints and inaccuracies. The definition and treatment of the Hochschild cohomology of a family of DG algebras is unsatisfactory: for example, in the proof of main Theorem 4.3 it is implicitly assumed that the Hochschild cohomology behaves well with respect to specialization.

But nonetheless we found the paper [Ka] inspiring and decided to provide the necessary foundations and proofs of its main results.

Unlike [Ka] we found it more convenient to work with $\mathcal{A}(\infty)$ algebras rather than with DG algebras. Namely, for a commutative ring R we consider $\mathcal{A}(\infty)$ R-algebras which are minimal ($m_1 = 0$) and flat, i.e. each R-module $H^n(A) = A^n$ is projective. That is what we mean by a flat family of $\mathcal{A}(\infty)$ algebras over $SpecR$. We are mostly interested in the case when the R-module A is finite.

The behavior of the (R-linear) Hochschild cohomology $HH_R(A)$ with respect to base change $R \to Q$ is hard to control. For $\mathcal{A}(\infty)$ algebras A which are finitely defined (i.e. only finitely many m_i's are not zero) one may consider the Hochschild cohomology with compact supports $HH_{R,c}(A)$. It comes with a natural map $HH_{R,c}(A) \to HH_R(A)$ which is injective in cases which are important for us. The groups $HH_{R,c}$ have better behavior with respect to base change and they contain Kaledin’s cohomology classes, which are

The author was partially supported by the NSA grant H98230-07-1-0071.
obstructions to formality. Thus in essential places we work with $HH_c(A)$ and not with $HH(A)$. The good functorial behavior of $HH_c(A)$ allows us to prove a faithfully flat base change result for formality (Proposition 6.2). A similar result for commutative DG algebras over a field was proved by Sullivan [Su] (see also [HaSt]).

The paper is organized as follows. In Section 2 we recall $A(\infty)$ algebras over arbitrary commutative rings, their bar constructions, quasi-isomorphisms and Kadeishvili’s theorem. We also relate the DG formality of flat DG algebras to $A(\infty)$ formality of their minimal models. In Section 3 we recall Hochschild cohomology, introduce Hochschild cohomology with compact supports and discuss its properties. In Section 4 we define Kaledin’s cohomology class and discuss its relation to (infinitesimal) formality. In Section 5 we consider the ”deformation to the normal cone” \tilde{A} of an $A(\infty)$ algebra A and prove the Kaledin’s key result. Section 6 contains applications of this result to the behavior of formality in flat families of $A(\infty)$ (or DG) algebras. Finally in Section 7 we define Kaledin cohomology class in the general context of DG Lie algebras.

We thank Dima Kaledin for answering many questions about [Ka] and Bernhard Keller and Michael Mandell for answering general questions about $A(\infty)$ algebras. Jee Koh helped us with commutative algebra. We should mention the paper [Hi] by Vladimir Hinich which helped us understand what Kaledin was trying to do. We also thank the anonymous referee for several useful remarks and suggestions.

2. $A(\infty)$ algebras

A good introduction to $A(\infty)$ algebras is [Ke]. However there seems to be no systematic treatment of $A(\infty)$ algebras over an arbitrary commutative ring.

2.1. $A(\infty)$-algebras. Fix a commutative unital ring R. The sign \otimes means \otimes_R. We want to study $A(\infty)$ R-algebras and quasi-isomorphisms between them. Let us recall the definitions.

Let $A = \oplus_{n \in \mathbb{Z}} A^n$ be a graded R-module. A structure of an $A(\infty)$ R-algebra (or, simply, $A(\infty)$ algebra) on A is a collection $m = (m_1, m_2, \ldots)$, where $m_i : A^{\otimes i} \to A$ is a homogeneous R-linear map of degree $2 - i$. The maps $\{m_i\}$ must satisfy for each $n \geq 1$ the following identity:

$$\sum (-1)^{r+s+t} m_u(1^{\otimes r} \otimes m_s \otimes 1^{\otimes t}) = 0,$$

where the sum runs over all decompositions $n = r + s + t$ and we put $u = r + 1 + t$.

We denote the resulting $A(\infty)$-algebra by (A, m), or $(A, (m_1, m_2, \ldots))$ or simply by A.

- If $m_i = 0$ for $i \neq 2$, then A is simply a graded associative R-algebra.
- If $m_i = 0$ for $i \neq 1, 2$ then A is a DG R-algebra.
• If $m_1 = 0$ then A is called minimal. Note that in this case A is in particular a graded associative R-algebra with multiplication m_2.

• In any case A is a complex of R-modules with the differential m_1 and the cohomology $H(A)$ is a graded associative R-algebra with multiplication defined by m_2.

2.2. $A(\infty)$-morphisms. Given $A(\infty)$ algebras A, B an $A(\infty)$ morphism $f : A \to B$ is a collection $f = (f_1, f_2, \ldots)$, where $f_i : A^\otimes i \to B$ is an R-linear map of degree $1 - i$ such that for each $n \geq 1$ the following identity holds.

$$\sum (-1)^{r+s} f_u(1^\otimes r \otimes m_s \otimes 1^\otimes t) = \sum (-1)^s m_r (f_{i_1} \otimes f_{i_2} \otimes \ldots \otimes f_{i_r}) ,$$

where the first sum runs over all decompositions $n = r + s + t$, we put $u = r + 1 + t$, and the second sum runs over all $1 \leq r \leq n$ and all decompositions $n = i_1 + \ldots + i_r$; the sign on the right hand side is given by

$$s = (r-1)(i_1-1) + (r-2)(i_2-1) + \ldots + 2(i_{r-2}-1) + (i_{r-1}-1) .$$

• We have $f_1 m_1 = m_1 f_1$, i.e. f_1 is a morphism of complexes.

• We have

$$f_1 m_2 = m_2 (f_1 \otimes f_1) + m_1 f_2 + f_2 (m_1 \otimes 1 + 1 \otimes m_1) ,$$

which means that f_1 commutes with the multiplication m_2 up to a homotopy given by f_2. In particular, if A and B are minimal, then f_1 is a homomorphism of associative algebras $f_1 : (A, m_2) \to (B, m_2)$.

We call f a quasi-isomorphism if $f_1 : A \to B$ is a quasi-isomorphisms of complexes. f is called the identity morphism, denoted id, if $A = B$ and $f = (f_1 = \text{id}, 0, 0, \ldots)$.

Let C be another $A(\infty)$ algebra and $g = (g_1, g_2, \ldots) : B \to C$ be an $A(\infty)$ morphism. The composition $h = g \cdot f : A \to C$ is an $A(\infty)$-morphism which is defined by

$$h_n = \sum (-1)^s f_i (g_{i_1} \otimes \ldots \otimes g_{i_r}) ,$$

where the sum and the sign are as in the defining identity.

$A(\infty)$ algebras A and B are called quasi-isomorphic if there exists $A(\infty)$ algebras A_1, A_2, \ldots, A_n and quasi-isomorphisms

$$A \leftarrow A_1 \rightarrow \ldots \leftarrow A_n \rightarrow B .$$

An $A(\infty)$ algebra A is called formal if it is quasi-isomorphic to the $A(\infty)$ algebra $(H(A), (0, m_2, 0, \ldots))$.
2.3. Bar construction. The notions of $A(\infty)$ algebra and $A(\infty)$ morphism can be compactly and conveniently described in terms of the bar construction.

Let A be a graded R-module, $A[1]$ its shift $A[1]^n = A^{n+1}$. Let

$$\overline{T}A[1] = \bigoplus_{i \geq 1} A[1]^{\otimes i}$$

be the reduced cofree R-coalgebra on the R-module $A[1]$ with the comultiplication

$$\Delta(a_1, ..., a_n) = \sum_{i=1}^{n-1} (a_1, ..., a_i) \otimes (a_{i+1}, ..., a_n)$$

so that $\Delta(a) = 0$ and $\Delta(a_1, a_2) = a_1 \otimes a_2$. Denote by $\text{Coder}(\overline{T}A[1])$ the graded R-module of homogeneous R-linear coderivations of the coalgebra $\overline{T}A[1]$. The composition of a coderivation with the projection to $T^1A[1] = A[1]$ defines an isomorphism of graded R-modules

$$\text{Coder}(\overline{T}A[1]) \simeq \text{Hom}_R(\overline{T}A[1], A[1]).$$

Thus a coderivation of degree p is determined by a collection $(d_1, d_2, ...)$, where $d_i : A[1]^{\otimes i} \to A[1]$ is an R-linear map of degree p.

Denote by $s : A \to A[1]$ the shift operator. Given an R-linear map $m_i : A^{\otimes i} \to A$ of degree $2-i$ we can define an R-linear map $d_i : A[1]^{\otimes i} \to A[1]$ of degree 1 by commutativity of the following diagram

$$\begin{array}{ccc}
A^{\otimes i} & \xrightarrow{m_i} & A \\
\downarrow s^{\otimes i} & & \downarrow s \\
A[1]^{\otimes i} & \xrightarrow{d_i} & A[1]
\end{array}$$

Thus $d_i(sa_1 \otimes ... \otimes sa_i) = (-1)^n sm_i(a_1 \otimes ... \otimes a_i)$, where $n = \frac{i(i+1)}{2} + (i-1) \deg(a_1) + (i-2) \deg(a_2) + ... + \deg(a_{i-1})$. Then a collection of R-linear maps $m = (m_1, m_2, ...)$, $m_i : A^{\otimes i} \to A$ of degree $2-i$, defines a structure of an $A(\infty)$ R-algebra on A if and only if the corresponding collection $d = (d_1, d_2, ...)$, $d_i : A[1]^{\otimes i} \to A[1]$ of degree 1, defines an R-linear coderivation of the coalgebra $\overline{T}A[1]$ such that $d^2 = 0$. Given an $A(\infty)$ algebra (A, m) we will also denote (abusing notation) by the same letter m the corresponding coderivation of the coalgebra $\overline{T}A[1]$. The resulting DG coalgebra $(\overline{T}A[1], m)$ is called the bar construction of A and is denoted $\mathcal{B}A$.

Let B be another $A(\infty)$ algebra. In a similar manner (using appropriate sign changes) there is a bijection between $A(\infty)$ morphisms $A \to B$ and homomorphisms of degree zero of DG coalgebras $\mathcal{B}A \to \mathcal{B}B$. Again we will usually use the same notation for both.
Let \(f = (f_1, f_2, \ldots) : \mathcal{T}A[1] \to \mathcal{T}B[1] \) be a homomorphism of coalgebras. Then for each \(n \)

\[
f(\bigoplus_{i \leq n} T^i A[1]) \subset \bigoplus_{i \leq n} T^i B[1].
\]

The map \(f \) is an isomorphism if and only if \(f_1 \) is an isomorphism. On the other hand if \(f_1 = 0 \) and \(A = B \), then the map \(f \) is locally nilpotent.

Similar considerations apply to coderivations \(g = (g_1, g_2, \ldots) : \mathcal{T}A[1] \to \mathcal{T}A[1] \). Namely, let \(g \) have degree zero and \(g_1 = 0 \), then \(g \) is locally nilpotent and hence the coalgebra automorphism

\[
\exp(g) : \mathcal{T}A[1] \to \mathcal{T}A[1]
\]

is well defined (provided \(\mathbb{Q} \subset R \)).

2.4. Flat \(A(\infty) \) algebras and their minimal models.

Definition 2.1. An \(A(\infty) \) \(R \)-algebra \(A \) is called flat if each cohomology \(H^i(A) \) is a projective \(R \)-module.

Thus if \(R \) is a field then any \(A(\infty) \) algebra is flat. We consider a flat \(A(\infty) \) \(R \)-algebra as a flat family of \(A(\infty) \) algebras over \(\text{Spec}R \). Let us recall the following simple important result of Kadeishvili.

Theorem 2.2 (Kad1). Let \(A \) be a flat \(A(\infty) \) \(R \)-algebra. Choose a quasi-isomorphism of complexes of \(R \)-modules \(g : H(A) \to A \) (the differential in \(H(A) \) is zero). Then there exists a structure of a minimal \(A(\infty) \) algebra on \(H(A) \) with \(m_2 \) being induced by the \(m_2 \) of \(A \) and an \(A(\infty) \) morphism \(f = (g = f_1, f_2, \ldots) \) from \(H(A) \) to \(A \) (which is a quasi-isomorphism).

We call the \(A(\infty) \) algebra \(H(A) \) as in the above theorem a minimal model of \(A \).

Let \(A \) and \(B \) be \(A(\infty) \) \(R \)-algebras and \(f, g \) morphisms from \(A \) to \(B \). Let \(F, G \) denote the corresponding morphisms of DG coalgebras \(BA \to BB \). One defines \(f \) and \(g \) to be homotopic if \(F \) and \(G \) are homotopic, i.e. if there exists a homogeneous \(R \)-linear map \(H : BA \to BB \) of degree \(-1\) such that

\[
\Delta \cdot H = F \otimes H + H \otimes G \quad \text{and} \quad F - G = m_B \cdot H + H \cdot m_A.
\]

Lemma 2.3. In the above notation assume that \(A \) and \(B \) are minimal. Let \(f : A \to B \) and \(g : B \to A \) be morphisms such that \(g \cdot f \) and \(f \cdot g \) are homotopic to the identity (i.e. \(A \) and \(B \) are homotopy equivalent). Then the corresponding morphisms \(F : BA \to BB \) \(G : BB \to BA \) are mutually inverse isomorphisms.
Proof. Let $H : BA \to BA[-1]$ be a homotopy between morphisms $G \cdot F$ and id_{BA}. Then H is defined by a collection of R-linear maps $h_i : A[1] \otimes i \to A[1]$, $i \geq 1$, which satisfy some properties ([Le-Ha], 1.2.1.7).

Let $F = (f_1, f_2, ...)$, $G = (g_1, g_2, ...)$, $G \cdot F = (t_1, t_2, ...)$. Then

$$(G \cdot F)|_{A[1]} = t_1|_{A[1]} = g_1 \cdot f_1|_{A[1]}.$$

Also $H|_{A[1]} = h_1|_{A[1]}$. Since A is minimal the equation

$$G \cdot F - \text{id} = m \cdot H + H \cdot m$$

when restricted to $A[1]$ becomes $g_1 \cdot f_1 - \text{id} = 0 \cdot h_1 + h_1 \cdot 0$. So $t_1 = \text{id}$, i.e. $G \cdot F : BA \to BA$ is an automorphism.

Let us recall another result of Kadeishvili.

Theorem 2.4 (Kad2). a) Homotopy is an equivalence relation on the set of morphisms of $A(\infty) \ R$-algebras $A \to B$.

Denote by \mathcal{H} the category obtained by dividing the category of $A(\infty) \ R$-algebras by the homotopy relation.

b) Assume that C is an $A(\infty) \ R$-algebra such that the R-module C^n is projective for all $n \in \mathbb{Z}$. Then a quasi-isomorphism of $A(\infty) \ R$-algebras $s : A \to B$ induces an isomorphism

$$s_* : \text{Hom}_{\mathcal{H}}(C, A) \to \text{Hom}_{\mathcal{H}}(C, B).$$

Corollary 2.5. On the full subcategory of $A(\infty) \ R$-algebras which consists of algebras C such that the R-module C^n is projective for all $n \in \mathbb{Z}$ the relation of quasi-isomorphism coincides with the relation of homotopy equivalence.

Corollary 2.6. Let A and B be two minimal flat $A(\infty) \ R$-algebras. Then they are quasi-isomorphic if and only if their bar constructions BA and BB are isomorphic.

Proof. The "if" direction is obvious.

Assume that A and B are quasi-isomorphic, i.e. there exists a chain of morphisms of $A(\infty) \ R$-algebras which are quasi-isomorphisms:

$$A \xleftarrow{f} A_1 \xrightarrow{g} A_2 \leftarrow ... \to B.$$

Choose a flat minimal $A(\infty) \ R$-algebra A'_1 and a quasi-isomorphism $i : A'_1 \to A_1$. The quasi-isomorphism $f \cdot i : A'_1 \to A$ between two minimal flat $A(\infty) \ R$-algebras induces an isomorphism of their bar constructions $BA'_1 \to BA$.

Choose a flat minimal $A(\infty)$ algebra A'_1 and a quasi-isomorphism $j : A'_2 \to A_2$. It follows from Theorem 2.4 b) that the induced maps $(g \cdot i)_*: \text{Hom}_R(C, A'_1) \to \text{Hom}_R(C, A_2) \leftarrow \text{Hom}_R(C, A'_2) : j_*$

are isomorphisms if C is a minimal flat $A(\infty)$ algebra. In particular A'_1 and A'_2 are homotopy equivalent, hence $BA'_1 \simeq BA'_2$ by Lemma 2.3 Continuing this way we arrive at an isomorphism $BA \simeq BB$. □

This last corollary implies in particular that for a flat $A(\infty)$ algebra its minimal model (as in Theorem 2.2) is unique up to a quasi-isomorphism. We will identify a quasi-isomorphism $A \simeq B$ between flat minimal $A(\infty)$ algebras with the corresponding isomorphism $BA \simeq BB$.

Corollary 2.7. Let A be a flat $A(\infty)$ algebra and B be a minimal flat $A(\infty)$ algebra which is quasi-isomorphic to A. Then there exists a morphism $B \to A$ which is a quasi-isomorphism.

Proof. Let $H(A)$ be a minimal flat $A(\infty)$ algebra with a quasi-isomorphism $H(A) \to A$ as in Theorem 2.2. Then the minimal flat $A(\infty)$ algebras B and $H(A)$ are quasi-isomorphic. So by Corollary 2.6 $BB \simeq BH(A)$. Hence there also exists a quasi-isomorphism $B \simeq A$. □

2.5. **Flat DG algebras.** A DG (R-)algebra is an $A(\infty)$ algebra (A, m) such that $m_i = 0$ for $i > 2$. A morphism of DG algebras is a homomorphism of graded associative algebras which commutes with the differentials. Thus the category of DG algebras is not a full subcategory of $A(\infty)$ algebras. We say that DG algebras A and B are DG quasi-isomorphic if there exists a chain of morphisms of DG algebras

$$A \leftarrow A_1 \leftarrow \ldots \leftarrow A_n \to B$$

where all arrows are quasi-isomorphisms. It is well known that if R is a field then two DG algebras are quasi-isomorphic (as $A(\infty)$ algebras) if and only if they are DG quasi-isomorphic. For a general ring R we have a similar result for flat DG algebras (Definition 2.1).

Proposition 2.8. Let E and F be flat DG R-algebras and A and B be their minimal $A(\infty)$-models (Theorem 2.2). The following assertions are equivalent.

a) E and F are DG quasi-isomorphic.

b) E and F are quasi-isomorphic.

c) A and B are quasi-isomorphic.

d) BA and BB are isomorphic.
Proof. Clearly a) ⇒ b) and by definition b) ⇔ c). Corollary 2.6 implies that c) ⇔ d). So it remains to prove that d) ⇒ a).

So assume that $BA \simeq BB$. Choose a DG algebra \tilde{E} such that the R-module \tilde{E}^n is projective for all $n \in \mathbb{Z}$, and a DG quasi-isomorphism $\tilde{E} \to E$ (for example \tilde{E} may be a cofibrant replacement of E).

By Corollary 2.7 there exists an $A(\infty)$ morphism $A \to \tilde{E}$ which is a quasi-isomorphism. By Corollary 2.5 this is a homotopy equivalence, i.e. the induced morphism of the bar constructions $BA \to B\tilde{E}$ is a homotopy equivalence.

Consider the cobar construction Ω which is a functor from DG coalgebras to DG algebras [Le-Ha],1.2.2. It is the left adjoint to the bar construction B. The same proof as of Lemma 1.3.2.3 in [Le-Ha] shows that the adjunction morphism of DG algebras $\Omega B\tilde{E} \to \tilde{E}$ is a quasi-isomorphism.

But the DG coalgebras BA and $B\tilde{E}$ are homotopy equivalent. Hence their cobar constructions are also homotopy equivalent and in particular the DG algebras ΩBA and $\Omega B\tilde{E}$ are DG quasi-isomorphic. (The notion of homotopy between morphisms of DG algebras is defined for example in [Le-Ha],1.1.2.) Thus the DG algebras ΩBA and E are DG quasi-isomorphic.

Similarly one shows that the DG algebras ΩBB and F are DG quasi-isomorphic. But an isomorphism of DG coalgebras $BA \simeq BB$ induces an isomorphism of DG algebras $\Omega BA \simeq \Omega BB$. This proves the proposition. □

A DG algebra in called DG formal if it is DG quasi-isomorphic to a DG algebra with the zero differential.

Corollary 2.9. Let E be a flat DG R-algebra with a minimal $A(\infty)$ model A. Then E is DG formal if and only in A is formal (Subsection 2.2). So E is DG formal if and only if it is $A(\infty)$ formal.

Proof. This follows from the equivalence of a) and c) in Proposition 2.8. □

In what follows we will be interested only in flat $A(\infty)$ or DG algebras and hence will usually work with their minimal models.

3. Hochschild cohomology

We assume that A is a minimal flat $A(\infty)$ R-algebra.

3.1. Consider the graded R-module $\text{Coder}(\overline{T}A[1])$ with the self map of degree 1 given by $d \mapsto [m_A, d] = m_A \cdot d - (-1)^{\deg d} \cdot d \cdot m_A$. Since $m_A^2 = 0$ this makes $\text{Coder}(\overline{T}A[1])$ a complex
of R-modules which we denote by $C^\bullet_R(A)$. This complex is called the Hochschild complex of A. Its (shifted) cohomology

$$HH^{i+1}_R(A) := H^iC^\bullet_R(A)$$

is the Hochschild cohomology of A.

Note that quasi-isomorphic flat minimal $A(\infty)$ algebras have isomorphic bar constructions (Corollary 2.6), hence isomorphic Hochschild complexes and Hochschild cohomology.

The Hochschild cohomology $HH^\bullet_R(A)$ is a functor of R which is hard to control because of the presence of infinite products in the Hochschild complex $C^\bullet_R(A)$. It turns out that under certain finiteness assumptions on A there is a natural subcomplex $C^\bullet_{R,c}(A) \subset C^\bullet_R(A)$ whose cohomology behaves better.

Definition 3.1. An $A(\infty)$ algebra $A = (A,(m_1,m_2,...))$ is called finitely defined if $m_n = 0$ for $n >> 0$.

Although the above definition can be made for all $A(\infty)$ algebras (in particular any DG algebra would be a finitely defined $A(\infty)$ algebra) we think it only makes sense for minimal ones.

For the rest of this section we assume that all $A(\infty)$ algebras are finitely defined.

3.2. **Definition of $HH^\bullet_{R,c}(A)$**. Recall that the Hochschild complex $C^\bullet_R(A)$ of an $A(\infty)$ R-algebra consists of R-modules

$$C^n_R(A) = \prod_{n \geq 1} \text{Hom}^n_R(A[1]^{\otimes n},A[1]).$$

Consider the R-submodule

$$C^p_{R,c}(A) = \sum_{n \geq 1} \text{Hom}^n_R(A[1]^{\otimes n},A[1]).$$

Notice that $C^\bullet_{R,c}(A)$ is actually a subcomplex of $C^\bullet_R(A)$ since A is finitely defined.

Definition 3.2. We call the elements of $C^\bullet_{R,c}(A)$ the Hochschild cochains with compact supports. The corresponding cohomology R-modules

$$HH^n_{R,c}(A) := H^n(C^\bullet_{R,c}(A))$$

are called the Hochschild cohomology of A with compact supports.
3.3. Properties of $HH^\bullet_{R,e}(A)$. By definition we have the canonical map

$$\iota: HH^\bullet_{R,e}(A) \to HH^\bullet_{R}(A).$$

Lemma 3.3. Assume that $m_n = 0$ for $n \neq 2$, i.e. A is just a graded associative R-algebra. Then the map ι is injective.

Proof. Suppose that $d = (d_1, d_2, \ldots) \in C^n_R(A)$ is a coderivation such that $[m_A, d] = e = (e_1, \ldots, e_n, 0, 0, \ldots) \in C_R^n(A)$. Consider the coderivation $d_{\leq n-1} := (d_1, \ldots, d_{n-1}, 0, 0, \ldots) \in C^n_R(A)$. Then $[m_A, d_{\leq n-1}] = e$ (because $m_n = 0$ for $n \neq 2$), i.e. e is also a coboundary in the complex $C_R^n(A)$. \hfill \Box

Proposition 3.4. Assume that A is a finite R-module. Let $R \to Q$ be a homomorphism of commutative rings and put $A_Q = A \otimes_R Q$. Then

a) $C^n_{Q,e}(A_Q) = C^n_{R,e}(A) \otimes_R Q$;

b) If Q is a flat R-module, then $HH^\bullet_{Q,e}(A_Q) = HH^\bullet_{R,e}(A) \otimes_R Q$.

Proof. Clearly a) \Rightarrow b). To prove a) notice the isomorphism of Q-modules

$$\text{Hom}_Q(A_Q^\otimes n, A_Q) = \text{Hom}_R(A^\otimes n, A_Q) = \text{Hom}_R(A^\otimes n, A) \otimes_R Q$$

(since $A^\otimes n$ is a finite projective R-module). \hfill \Box

Remark 3.5. In particular, if A is a finite R-module then for each n we obtain a quasi-coherent sheaf $\mathcal{H}_n(A)$ on $\text{Spec}R$ which is the localization of the R-module $HH^n_{R,e}(A)$.

Proposition 3.6. Assume that the ring R is noetherian, A is a finite R-module, and $m_n = 0$ for $n \neq 2$ (i.e. A is just a graded associative R-algebra). Also assume that each R-module $HH^n_{R,e}(A)$ is projective. Let $R \to Q$ be a homomorphism of commutative rings and put $A_Q = A \otimes_R Q$. Then

$$HH^n_{Q,e}(A_Q) = HH^n_{R,e}(A) \otimes_R Q.$$

Proof. Since A is just a graded associative algebra, the complex $C^\bullet_{R,e}(A)$ is a direct sum of complexes

$$C^\bullet_{R,e}(A) = \bigoplus_{i \in \mathbb{Z}} C^i_{R,e}(A),$$

where $C^i_{R,e}(A) = \text{Hom}_R^{i+j}(A^\otimes j, A)$. Similarly

$$C^\bullet_{Q,e}(A_Q) = \bigoplus_{i \in \mathbb{Z}} C^i(A_Q).$$

By Proposition 3.4 $C^\bullet_{Q,e}(A_Q) = C^\bullet_{R,e}(A) \otimes_R Q$ and this isomorphism preserves the decomposition $C^\bullet = \bigoplus C^i$. So it suffices to prove that for each $i \in \mathbb{Z}$ the complex of R-modules $C^i(A)$ is homotopy equivalent to its cohomology $\oplus_n H^n(C^i(A))[-n]$ (with the trivial differential). We need a lemma.
Lemma 3.7. Let R be a commutative noetherian ring and let

$$K^\bullet := \ldots \xrightarrow{d^{n-1}} K^n \xrightarrow{d^n} K^{n+1} \ldots$$

be a bounded below complex of finite projective R-modules such that each R-module $H^n(K^\bullet)$ is also projective. Then for each n the R-module $\operatorname{Im} d^n$ is projective.

Proof. Being a projective module is a local property, so we may and will assume that R is a local noetherian ring. We also may assume that $K^n = 0$ for $n < 0$.

Recall the Auslander-Buchsbaum formula: if M is a finite R-module of finite projective dimension pd M then

$$\text{pd } M + \text{depth } M = \text{depth } R.$$

In particular $\text{pd } M \leq \text{depth } R$.

First we claim that $\text{pd } \operatorname{Im} d^n < \infty$ for any n. Indeed, consider the complex

$$0 \to K^0 \xrightarrow{d^0} K^1 \xrightarrow{d^1} \ldots \xrightarrow{d^{n-1}} K^n \to \operatorname{Im} d^n \to 0.$$

This may not be a projective resolution of $\operatorname{Im} d^n$ (since the complex K^\bullet may not be exact), but we can easily make it into one:

$$0 \to H^0(K^\bullet) \to K^0 \oplus H^1(K^\bullet) \to K^1 \oplus H^2(K^\bullet) \to \ldots \to K^{n-1} \oplus H^n(K^\bullet) \to K^n \to \operatorname{Im} d^n \to 0$$

where the differential $H^i(K^\bullet) \to K^i$ is any splitting of the projection $\ker d^i \to H^i(K^\bullet)$. Thus we have $\text{pd } \operatorname{Im} d^n \leq n$ hence in particular $\text{pd } \operatorname{Im} d^n \leq \text{depth } R$.

But we claim that in fact $\text{pd } \operatorname{Im} d^n = 0$. The proof is similar. Indeed, put $\delta = \text{depth } R$ and consider the complex

$$0 \to \operatorname{Im} d^n \to K^{n+1} \xrightarrow{d^{n+1}} \ldots \xrightarrow{d^{n+\delta}} K^{n+\delta} \xrightarrow{d^{n+\delta}} \operatorname{Im} d^{n+\delta} \to 0.$$

Again we can turn it into an exact complex

$$0 \to \operatorname{Im} d^n \oplus H^{n+1}(K^\bullet) \to K^{n+1} \oplus H^{n+2}(K^\bullet) \to \ldots \to K^{n+\delta} \to \operatorname{Im} d^{n+\delta} \to 0$$

which shows that $\text{pd}(\operatorname{Im} d^n \oplus H^{n+1}(K^\bullet)) = \text{pd } \operatorname{Im} d^n = 0$ (since $\text{pd } \operatorname{Im} d^{n+\delta} \leq \delta$). This proves the lemma.

The lemma implies that for each n we have

$$K^n \simeq \operatorname{Im} d^{n-1} \oplus H^n(K^\bullet) \oplus \operatorname{Im} d^n.$$

It follows easily that K^\bullet is homotopy equivalent to its cohomology $\bigoplus_n H^n(K^\bullet)[-n]$. Now apply this to $K^\bullet = C^*_i(A)$.

Remark 3.8. We do not know if Proposition 3.6 remains true without the assumption that $m_n = 0$ for $n \neq 2$. \hfill \Box
The following seemingly trivial example is actually an important one.

Example 3.9. Let k be a field and R be a k-algebra. Let B be a finitely defined $A(\infty)$ k-algebra such that $\dim_k B < \infty$. Put $A = B \otimes_k R$. Then for each n we have

$$HH^\bullet_{R,c}(A) = HH^\bullet_{k,c}(B) \otimes_k R$$

and hence in particular the corresponding quasi-coherent $O_{\text{Spec} R}$-module $\mathcal{H}_c^\bullet(A)$ is free. Moreover for any homomorphism of commutative k-algebras $R \to Q$ we have

$$HH^\bullet_{Q,c}(A \otimes_R Q) = HH^\bullet_{k,c}(B) \otimes_k Q = HH^\bullet_{R,c}(A) \otimes_R Q.$$

In particular, if $x \in \text{Spec} R$ is a k-point, then

$$HH^\bullet_{k,c}(A_x) = HH^\bullet_{k,c}(B).$$

3.4. **Invariance of $HH_{R,c}(A)$**. Let A and B be two flat minimal $A(\infty)$ R-algebras which are finitely defined. Suppose that A and B are quasi-isomorphic. It is natural to ask whether $HH^\bullet_{R,c}(A) \simeq HH^\bullet_{R,c}(B)$? This is so at least when there exist mutually inverse isomorphisms of the bar constructions $f : BA \to BB$, $g : BB \to BA$, such that $f_n = g_n = 0$ for $n >> 0$. In particular this is true if A and B are usual associative graded R-algebras (which are isomorphic).

4. **Kaledin’s cohomology class**

We thank the referee for suggesting that the material of this section be presented in a general context of DG Lie algebras. We do this in Section 7. (The connection being that the Hochshild complex of an $A(\infty)$-algebra is naturally a DG Lie algebra.) However, since we are interested in $A(\infty)$-algebras, we decided to also present this special case explicitly.

4.1. Let k be a field of characteristic zero and R be a commutative k-algebra. For an R module M we denote by $M[[h]]$ the $R[[h]]$-module

$$M[[h]] = \lim_{\leftarrow} M[h]/h^n = \lim_{\leftarrow} (M \otimes_R R[h]/h^n)$$

We call an $R[[h]]$-module P h-free complete if it is isomorphic to $\bar{P}[[h]]$, where \bar{P} is the R-module P/h.

Notice that $M[[h]]$ is canonically identified with the set of power series $\Sigma_{i=0}^\infty m_i h^i$, $m_i \in M$. To get the analogous identification for an arbitrary h-free complete $R[[h]]$-module one needs to choose a splitting $\bar{P} \to P$ (a map of R-modules).

There is a canonical isomorphism of $R[[h]]$-modules

$$\text{Hom}_{R[[h]]}(M[[h]] \otimes_{R[[h]]} \ldots \otimes_{R[[h]]} M[[h]], M[[h]]) = \{\Sigma_{i=0}^\infty f_i h^i | f_i \in \text{Hom}_R(M \otimes_R \ldots \otimes_R M, M)\}$$
4.2. Let B be an h-free complete $R[[h]]$-module which has a structure of a minimal $A(\infty)$ $R[[h]]$-algebra (B, m). Assume that the minimal $A(\infty)$ R-algebra $(\bar{B}, m^{(0)}) = B/h$ is flat. Choose a splitting $\bar{B} \to B$ of R-modules. Then we can write

$$m = m^{(0)} + m^{(1)}h + m^{(2)}h^2 + ...$$

for some coderivations $m^{(i)} \in C^1_R(B)$. Notice that the Hochschild complex $C^\bullet_{R[[h]]}(B)$ is isomorphic to the inverse limit of the sequence $\{C^\bullet_{R/h^n}(B/h^n)\}$ where all maps are surjective. In particular

$$HH^\bullet_{R[[h]]}(B) = \lim_{\leftarrow} HH^\bullet_{R/h^n}(B/h^n).$$

Consider the coderivation

$$\partial_h m = m^{(1)} + 2m^{(2)}h + 3m^{(3)}h^2 + ... \in C^1_{R[[h]]}(B).$$

Then

$$[m, \partial_h m] = m \cdot \partial_h m + \partial_h m \cdot m - \partial_h (m \cdot m) = 0,$$

i.e. $\partial_h m$ is a cocycle and hence defines a cohomology class $[\partial_h m] \in HH^2_R(B)$.

Lemma 4.1. Let $f : \overline{TB}[1] \to \overline{TB}[1]$ be a coalgebra automorphism which is the identity modulo h. Put $f(c) := f \cdot c \cdot f^{-1}$ for $c \in C^\bullet_{R[[h]]}(B)$. Then the cocycles $\partial_h (f(m))$ and $f(\partial_h m)$ are cohomologous (with respect to the differential $[f(m), -]$).

Proof. It suffices to show this modulo h^n for all n.

Notice that f has the following canonical decomposition

$$f = \ldots \cdot \exp(g^{(2)}h^2) \cdot \exp(g^{(1)}h)$$

for some coderivations $g^{(1)}, g^{(2)}, \ldots \in C^0_R(B)$. Namely, let $f \equiv \text{id} + f^{(1)}h(\text{mod}h^2)$, where $f^{(1)} = (f^{(1)}_1, f^{(1)}_2, ...), \text{ Let } g^{(1)} = \text{ the coderivation of degree zero defined by the same sequence, i.e. } g^{(1)} = (f^{(1)}_1, f^{(1)}_2, ...). \text{ Then the coalgebra automorphisms } f \text{ and } \exp(g^{(1)}h) \text{ are equal modulo } h^2. \text{ Now replace } f \text{ by } f \cdot \exp(g^{(1)}h)^{-1} \equiv \text{id} + f^{(2)}h^2(\text{mod}h^3). \text{ Let } g^{(2)} = \text{ the coderivation } g^{(2)} = (f^{(2)}_1, f^{(2)}_2, ...), \text{ etc.}

Fix $n \geq 1$. Then

$$f \equiv \exp(g^{(n-1)}h^{n-1}) \ldots \exp(g^{(1)}h)(\text{mod}h^n),$$

and we may and will assume that $f = \exp(g^i)$ for some coderivation $g \in C^0_R(\bar{B})$. We have

$$\partial_h (f(m)) = \partial_h f \cdot m \cdot f^{-1} + f \cdot \partial_h m \cdot f^{-1} - f \cdot m \cdot f^{-1} \cdot \partial_h f \cdot f^{-1}.$$

So

$$f \cdot \partial_h m \cdot f^{-1} - \partial_h (f(m)) = [f(m), \partial_h f \cdot f^{-1}].$$
Proposition 4.5
Proof. Recall that we identify a quasi-isomorphism of two minimal flat algebras to an isomorphism of coalgebras. Consider the coalgebra automorphism f with respect to the differential ∂_h so $\partial_h f \cdot f^{-1} \in C^0_R(h^n)(B)$ and hence $\partial_h(f(m))$ and $f(\partial_h m)$ are cohomologous modulo h^n with respect to the differential $[f(m), -]$. \hfill \Box

Corollary 4.2. The class $[\partial_h m] \in HH^2_R[h^n](B)$ is well defined, i.e. is independent of the choice of the splitting $R \to R$.

Definition 4.3. The class $[\partial_h m] \in HH^2_R[h^n](B)$ is called the Kaledin class of B and denoted K_B.

Remark 4.4. The definition of Kaledin class and the above lemma remain valid for flat minimal $A(\infty)$ $R[h]/h^{n+1}$-algebras. We consider the class K_{B/h^n+1} of the $A(\infty)$ $R[h]/h^{n+1}$-algebra B/h^{n+1} as an element in $HH^2_R[h^n](B/h^n)$.

Proposition 4.5 (Ka). Fix $n \geq 1$. Then the class $K_{B/h^n+1} \in HH^2_R[h^n/h^n](B/h^n)$ is zero if and only if there exists a quasi-isomorphism of $A(\infty)$ $R[h]/h^{n+1}$-algebras $f : B/h^n+1 \to \bar{B}[h]/h^{n+1}$ such that $f \equiv (id, 0, 0, ..., (mod h)$.

Proof. Recall that we identify a quasi-isomorphism of two minimal flat $A(\infty)$ algebras with an isomorphism of their bar constructions.

One direction is clear: if $f : B/h^n+1 \to \bar{B}[h]/h^{n+1}$ is a quasi-isomorphism which is the identity modulo h, then $K_{B/h^n+1} = 0$ (since by Lemma 4.1 and Remark 4.4 it corresponds to $K_{\bar{B}[h]/h^{n+1}} = 0$ under f).

Suppose $K_{B/h^n+1} = 0$. By induction on n we know that there exists a quasi-isomorphism $B/h^n \to \bar{B}[h]/h^n$ which is the identity modulo h. Lift this quasi-isomorphism arbitrarily to an isomorphism of coalgebras $\mathcal{T}(B/h^{n+1}[1]) \to \mathcal{T}(\bar{B}[h]/h^{n+1}[1])$. Then by Lemma 4.1 and Remark 4.4 we may and will assume that
\[m = m_{B/h^n+1} = m^{(0)} + m^{(n)}h^n \]
and hence $K_{B/h^n+1} = [nm^{(n)}h^{n-1}]$. Since $K_{B/h^n+1} = 0$ there exists a coderivation $g \in C^0_R(\bar{B})$ such that
\[[m, gh^{n-1}] = [m^{(0)}, gh^{n-1}] = nm^{(n)}h^{n-1}. \]
Consider the coalgebra automorphism $f = \exp(n^{-1}gh^n) : \mathcal{T}(\bar{B}[h]/h^{n+1}[1]) \to \mathcal{T}(\bar{B}[h]/h^{n+1}[1])$. Then $m^{(0)} \cdot f = f \cdot m$, i.e. f is an isomorphism of the bar constructions $f : B(B/h^{n+1}) \to B(\bar{B}[h]/h^{n+1})$ and hence is a quasi-isomorphism from B/h^{n+1} to $\bar{B}[h]/h^{n+1}$ (which is the identity modulo h). \hfill \Box
Corollary 4.6. In the notation of Proposition 4.5 assume that \(m_{B/h^{n+1}} = m^{(0)} + m^{(n)}h^n \). Then there exists a quasi-isomorphism of \(A(\infty) \ R[h]/h^{n+1} \)-algebras \(f : B/h^{n+1} \to \tilde{B}[h]/h^{n+1} \) such that \(f \equiv (\text{id}, 0, 0, \ldots)(\text{mod}h) \) if and only if the class \([m^{(n)}] \in HH^2_R(\tilde{B})\) is zero.

Proof. By Proposition 4.5 there exists such a quasi-isomorphism \(f \) if and only if the class \([nm^{(n)}h^{n-1}] \in HH^2_R(B/h^n)\) is zero. Clearly, this is equivalent to the class \([m^{(n)}] \in \tilde{HH}^2_R(\tilde{B})\) being zero. \(\Box\)

5. Deformation to the normal cone

5.1. Let \(k \) be a field of characteristic zero and \(R \) be a commutative \(k \)-algebra. Let \(A = (A, m) \) be a minimal flat \(A(\infty) \ R \)-algebra. Consider the \(A(\infty) \ R[h] \)-algebra \(\tilde{A} = (A[h], \tilde{m} = (m_2, m_3h, m_4h^2, \ldots)) \).

Lemma 5.1. The map \(\tilde{m} \) indeed defines a structure of an \(A(\infty) \ R[h] \)-algebra on \(A[h] \).

Proof. The defining equation as in Subsection 2.1 above are homogeneous: after the substitution of \(m_i \tilde{h}^{i-2} \) instead of \(m_i \), the equation is multiplied by \(h^{n-3} \). \(\Box\)

Denote by \(A(2) \) the \(A(\infty) \ R \)-algebra \((A, (m_2, 0, 0, \ldots)) \).

Lemma 5.2. We have the following isomorphisms of \(A(\infty) \ R \)-algebras.

a) \(\tilde{A}/h \simeq A(2) \),

b) \(\tilde{A}/(h-1) \simeq A \).

Proof. This is clear. \(\Box\)

Definition 5.3. The \(A(\infty) \ R[h] \)-algebra \(\tilde{A} \) is called the deformation of \(A \) to the normal cone.

Proposition 5.4. The \(A(\infty) \ R \)-algebras \(A \) and \(A(2) \) are quasi-isomorphic if and only if the \(A(\infty) \ R[h] \)-algebras \(\tilde{A} \) and \(A(2)[h] \) are quasi-isomorphic. That is \(A \) is formal if and only if \(\tilde{A} \) is such.

Proof. Given a quasi-isomorphism \(f : \tilde{A} \to A(2)[h] \) we may reduce it modulo \((h-1) \) to get a quasi-isomorphism between \(A \) and \(A(2) \). Vice versa, let \(f = (f_1, f_2, \ldots) : A \to A(2) \) be a quasi-isomorphism of \(A(\infty) \ R \)-algebras. Then \(\tilde{f} = (f_1, f_2h, f_3h^2, \ldots) \) is a quasi-isomorphism between \(\tilde{A} \) and \(A(2)[h] \). \(\Box\)

Remark 5.5. If \(A \) and \(A(2) \) are quasi-isomorphic, then there exists a quasi-isomorphism \(\tilde{f} : \tilde{A} \to A(2)[h] \) which is the identity modulo \(h \). Indeed, the last proof produces an \(\tilde{f} \), such that \(\tilde{f} \equiv (f_1, 0, 0, \ldots)(\text{mod}h) \), where \(f_1 \) is an algebra automorphism of \(A(2)[h] \). Thus we may take the composition of \(\tilde{f} \) with \((f_1^{-1}, 0, 0, \ldots) \).
Definition 5.6. The $A(\infty)$ R-algebra A is called n-formal if there exists a quasi-isomorphism of $A(\infty)$ $R[h]/h^{n+1}$-algebras $\gamma : \tilde{A}/h^{n+1} \to A(2)[h]/h^{n+1}$, such that $\gamma \equiv (\text{id}, 0, 0, \ldots) \pmod{h}$.

Notice that Proposition 4.5 above provides a cohomological criterion for n-formality of A:

Corollary 5.7. a) The $A(\infty)$ R-algebra A is n-formal if and only if the Kaledin class $K_{\tilde{A}/h^{n+1}} \in HH^2_R(\tilde{A}/h^n)$ is zero.

b) Assume that $m_{\tilde{A}/h^{n+1}} = m_2 + m_{n+2}h^n$. Then A is n-formal if and only if $[m_{n+2}] \in HH^2_R(A(2))$ is zero (see Corollary 4.6).

The next proposition relates n-formality to formality.

Proposition 5.8. The $A(\infty)$ R-algebra A is formal if and only if it is n-formal for all $n \geq 1$.

Proof. One direction is clear: If A and $A(2)$ are quasi-isomorphic, then by Proposition 5.4 and Remark 5.5 there exists a quasi-isomorphism of $A(\infty)$ $R[[h]]$-algebras $\tilde{A} \to A(2)[h]$ which is the identity modulo h. It remains to reduce this quasi-isomorphism modulo h^{n+1}.

Assume that A is n-formal for all $n \geq 1$. By Proposition 5.4 above it suffices to prove that the $A(\infty)$ $R[h]$-algebras \tilde{A} and $A(2)[h]$ are quasi-isomorphic.

We will prove by induction on n that there exists a sequence of maps g_2, g_3, \ldots, where $g_i \in \text{Hom}_R^0(A[1] \otimes i, A[1])$ so that for each $n \geq 2$ the following assertion is true:

E(n): Consider maps g_i as coderivations $g_i = (0, \ldots, 0, g_i, 0, \ldots)$ of degree zero of the coalgebra $\mathcal{T}\tilde{A}[1]$. Then the coalgebra automorphism

$$\gamma_n := \exp(g_nh^n) \cdot \ldots \cdot \exp(g_2h) : \mathcal{T}\tilde{A}[1] \to \mathcal{T}\tilde{A}[1]$$

when reduced modulo h^n becomes a quasi-isomorphism between \tilde{A}/h^n and $A(2)[h]/h^n$.

Then the infinite composition $\tilde{f} := \ldots \exp(g_2h^2)\exp(g_2h)$ is the required quasi-isomorphism between \tilde{A} and $A(2)[h]$.

In order to prove the existence of the g_i's it is convenient to introduce the following k^*-action on the R-module $\mathcal{T}\tilde{A}[1]$. For $\lambda \in k^*$ put

$$\lambda \star x := \lambda^i x, \quad \text{if} \quad x \in (A[1])^\otimes i, \quad \text{and} \quad \lambda \star h = \lambda h.$$

Notice that both m_2 and \tilde{m} are maps of degree -1 with respect to this action.

Now assume that we found g_2, \ldots, g_n so that E(n) holds. Then

$$\gamma_n \cdot \tilde{m} \cdot \gamma_n^{-1} \equiv m_2 + m_n'h^n \pmod{h^{n+1}}$$
for some coderivation $m'_n \in C^1_R(A)$. Notice that the map γ_n is of degree zero with respect to the k^*-action. Hence the coderivation $\gamma_n \cdot \tilde{m} \cdot \gamma_n^{-1}$ is again of degree -1. This forces the coderivation m'_n to be defined by a single map in $\text{Hom}_R^1(A[1]^\otimes n+2, A[1])$. Since A is n-formal, by Corollary 4.6 the class $[m'_n]$ is zero in $HH^2_R(A(2))$. So there exists a coderivation $g_{n+1} \in C^0_R(A)$ such that $[m_2, g_{n+1}] = m'_n$. It is clear that we can choose g_{n+1} to be defined by a single map $g_{n+1} \in \text{Hom}_R^0(A[1]^\otimes n+1, A[1])$. Then the coalgebra isomorphism

$$\gamma_{n+1} := \exp(g_{n+1}h^n) \cdot \gamma_n : TA[1] \to TA[1]$$

induces a quasi-isomorphism between \tilde{A}/h^{n+1} and $A(2)[h]/h^{n+1}$. This completes the induction step and proves the proposition. □

5.2. Notice that for each $n \geq 1$ the $A(\infty)$ algebra \tilde{A}/h^n is finitely defined. Thus the Hochshild cohomology with compact supports $HH^\bullet_R[h]/h^n,c(\tilde{A}/h^n)$ is defined. Moreover the Kaledin class $K_{\tilde{A}/h^{n+1}}$ obviously belongs to the image of $HH^\bullet_R[h]/h^n,c(\tilde{A}/h^n)$ in $HH^2_R[h]/h^n(\tilde{A}/h^n)$. Therefore it is useful to notice the following fact.

Lemma 5.9. For any $n \geq 1$ the canonical map

$$HH^\bullet_R[h]/h^n,c(\tilde{A}/h^n) \to HH^\bullet_R[h]/h^n(\tilde{A}/h^n)$$

is injective.

Proof. This is easy to see by considering the weights of the k^*-action as in the proof of Proposition 5.8. □

Remark 5.10. Thus we may and will consider the obstruction to n-formality of A (i.e. the Kaledin class $K_{\tilde{A}/h^{n+1}}$) as an element of $HH^2_R[h]/h^n,c(\tilde{A}/h^n)$. In particular in Corollaries 4.6 and 5.7 we can use the Hochschild cohomology with compact supports.

6. Applications

6.1. **Formality of $A(\infty)$ algebras.** Let k be a field of characteristic zero and R be a commutative k-algebra. Let $A = (A, m)$ be a minimal flat $A(\infty)$ R-algebra and \tilde{A} be its deformation to the normal cone. If $m = (m_2, m_3, ...)$ denote as before $A(2) := (A, (m_2, 0, 0, ...))$, i.e. $A(2)$ is the underlying associative algebra of A. We have $A(2) = \tilde{A}/h$. By definition A is formal if it is quasi-isomorphic to $A(2)$.

Remark 6.1. Let $R \to Q$ be a homomorphism of commutative k-algebras. If A is formal then clearly the $A(\infty)$ Q-algebra $A_Q = A \otimes_R Q$ is also formal.
Proposition 6.2. Assume that A is a finite R-module. Let $R \to Q$ be a homomorphism of commutative rings. Put $A_Q = A \otimes_R Q$. Assume that Q is a faithfully flat R-module. Then A is formal if and only if the $A(\infty)$ Q-algebra A_Q is formal.

Proof. By Proposition 5.8 A (resp. A_Q) is formal if and only if it is n-formal for all $n \geq 1$.

Fix $n \geq 1$. Notice that $Q[h]/h^n$ is faithfully flat over $R[h]/h^n$. By Proposition 3.4 we have $HH^2_Q[h]/h^n,c(A_Q/h^n) = HH^2_{R[h]/h^n,c}(A/h^n) \otimes_{R[h]/h^n} Q[h]/h^n$. And by faithful flatness the class $K_{A/h^n+1} \in HH^2_{R[h]/h^n,c}(A/h^n)$ is zero if and only if the class $K_{A_Q/h^n+1} = K_{A/h^n+1} \otimes 1 \in HH^2_{Q[h]/h^n,c}(A_Q/h^n)$ is zero. Hence the proposition follows from Corollary 5.7 a) and Remark 5.10.

□

Proposition 6.3. Assume that R is an integral domain with the generic point $\eta \in \text{Spec} R$. Assume that A is a finite R-module and that the R-module $HH^2_{R,c}(A(2))$ is torsion free. If the $A(\infty)$ $k(\eta)$-algebra A_η is formal then A is also formal. In particular the $A(\infty)$ $k(x)$-algebra A_x is formal for all points $x \in \text{Spec} R$.

Proof. By Proposition 5.8 it suffices to prove that A is n-formal for all $n \geq 1$. We do it by induction on n. Fix $n \geq 1$ and assume that A is $(n-1)$-formal. Then we may and will assume that $m_{A/h^n+1} = m_2 + m_{n+2}h^n$. By Corollary 5.7 b) and Remark 5.10 A is n-formal if and only if the class $[m_{n+2}] \in HH^2_{R,c}(A(2))$ is zero. This class vanishes at the generic point η (since $HH^2_{R,c}(A(2)) \otimes_R k(\eta) = HH^2_{k(\eta),c}(A_\eta(2))$ by Proposition 3.4) and hence vanishes identically, since the R-module $HH^2_{R,c}(A(2))$ is torsion free. This completes the induction step and proves the proposition.

□

Proposition 6.4. Let R be noetherian. Assume that A is a finite R-module and that for each n the R-module $HH^n_{R,c}(A(2))$ is projective. Then the subset

$$F(A) := \{ x \in \text{Spec} R \mid \text{the } A(\infty) \ k(x)-\text{algebra } A_x \text{ is formal} \}$$

is closed under specialization.

Proof. We may assume that $F(A)$ is not empty. Choose $\eta \in F(A)$ and consider its closure $\overline{\eta} =: \text{Spec} \overline{R} \subset \text{Spec} R$. Then \overline{R} is an integral domain and $A_{\overline{R}} = A \otimes_R \overline{R}$ is an (flat minimal) $A(\infty)$ \overline{R}-algebra which is a finite \overline{R}-module. By Proposition 3.6 above $HH^n_{R,c}(A(2)_{\overline{R}}) = HH^n_{R,c}(A(2)) \otimes_R \overline{R}$. This is a projective \overline{R}-module, in particular, torsion free. Hence the assumptions of the previous proposition hold for $A_{\overline{R}}$ and thus $A_{\overline{R}}$ is formal. So A_x is formal for all $x \in \text{Spec} \overline{R}$.

□

Proposition 6.5. Let R be noetherian and $I \subset R$ be an ideal such that $\cap_n I^n = 0$. Assume that A is a finite R-module and for each n the R-module $HH^n_{R,c}(A(2))$ is
projective. Assume that the $A(\infty) \ R/I^n$-algebra $A_n := A/(I)^n$ is formal for all $n \geq 1$. Then A is formal.

Proof. The proof is similar to the proof of Proposition 6.3. Namely we prove by induction on n that A is n-formal. Fix $n \geq 1$ and assume that A is $n-1$-formal. Then we may assume that $m_{A/h^n+1} = m_2 + m_{n+2}h^n$. By Corollary 5.7 b) and Remark 5.10 A is n-formal if and only if the class $[m_{n+2}] \in HH^2_{R,c}(A(2))$ is zero. By Proposition 3.6 we have

$$HH^2_{R,c}(A(2)) \otimes_R R/I^1 = HH^2_{R/I^1,c}(A(2)/I^1)$$

and by our assumption the class $[m_{n+2}] \otimes 1 \in HH^2_{R/I^1,c}(A(2)/I^1)$ is zero. Therefore the class $[m_{n+2}] = 0$, because $\cap I^1 = 0$ and the R-module $HH^2_{R,c}(A(2))$ is projective. This completes the induction step and proves the proposition. □

Proposition 6.6. Assume that R is noetherian and has the trivial radical (i.e. the intersection of maximal ideals of R is zero). Assume that A is a finite R-module. Assume that for each n the R-module $HH^0_{R,c}(A(2))$ is projective. If A_x is formal for all closed points $x \in \text{Spec}R$ then A is formal (and hence A_y is formal for all points $y \in \text{Spec}R$).

Proof. Again we use Proposition 5.8: it suffices to prove that A is n-formal for all $n \geq 1$. Fix $n \geq 1$ and assume that A is $n-1$-formal. Then we may assume that $m_{A/h^n+1} = m_2 + m_{n+2}h^n$. By Corollary 5.7 b) and Remark 5.10 A is n-formal if and only if the class $[m_{n+2}] \in HH^2_{R,c}(A(2))$ is zero. Let $J \subset R$ be a maximal ideal. By Proposition 3.6 we have

$$HH^2_{R,c}(A(2)) \otimes_R R/J = HH^2_{R/J,c}(A(2)/J)$$

and by our assumption the class $[m_{n+2}] \otimes 1 \in HH^2_{R/J,c}(A(2)/J)$ is zero. Therefore the class $[m_{n+2}] = 0$, because the radical of R is trivial and $HH^2_{R,c}(A(2))$ is a projective R-module. This completes the induction step and proves the proposition. □

Remark 6.7. Assume that there exists an associative graded k-algebra B such that the $A(2) = B \otimes_k R$ and $\dim_k B < \infty$. Then we may consider A as an R-family of $A(\infty)$-structures which extend the same associative algebra structure on B. In this case for each n the R-module $HH^0_{R,c}(A(2))$ is free and the conclusions of Proposition 6.4, 6.5, 6.6 hold without the assumption of R being noetherian (Example 3.9).

6.2. Formality of DG algebras. All the results of this section can be formulated in the language of DG algebras rather than $A(\infty)$ algebras. Namely, assume again that k is a field of characteristic zero and R be a commutative k-algebra. Let A be flat DG R-algebra, i.e. each cohomology R-module $H^n(A)$ is projective. Then by Theorem 2.2 it has a minimal $A(\infty)$ model A, which is unique up to a quasi-isomorphism (Corollary 2.6). It
comes with an $A(\infty)$ quasi-isomorphism $A \to A$. By Corollary 2.9 A is formal (as a DG algebra) if and only if A is formal (as an $A(\infty)$ algebra).

We would like to study extended DG algebras $A \otimes_R Q$, for various (commutative) algebra homomorphisms $R \to Q$. In particular we would like to study the fibers A_x of A at various points of $x \in \text{Spec}R$. To do that we should first replace the DG algebra A by a quasi-isomorphic one which is cofibrant.

Lemma 6.8. Let C be a cofibrant DG R-algebra. Then C is cofibrant as a complex of R-modules.

Proof. This follows from [Sch-Sh], Theorem 4.1(3). Alternatively, it is easy to see directly if C is semi-free ([Dr]).

So from now on we assume that the flat DG algebra A is cofibrant. The the $A(\infty)$ quasi-isomorphism $A \to A$ remains a quasi-isomorphism after any extension of scalars.

Corollary 6.9. Let A be DG R-algebra such that the total cohomology R-module $H^\bullet(A)$ is projective of finite rank. Let $R \to Q$ be a homomorphism of commutative rings. Assume that Q is a faithfully flat R-module. Then A is formal if and only if the DG Q-algebra $A \otimes_R Q$ is formal.

Proof. Let A be a minimal $A(\infty)$ R-algebra with a quasi-isomorphism of $A(\infty)$ R-algebras $f : A \to A$. Then $f \otimes \text{id} : A \otimes_R Q \to A \otimes_R Q$ is also a quasi-isomorphism. So the corollary follows from Proposition 6.2.

Corollary 6.10. Let A be DG R-algebra such that total cohomology R-module $H^\bullet(A)$ is projective of finite rank and A is cofibrant as a complex of R-modules. We consider the cohomology $H^\bullet(A)$ as an $A(\infty)$ algebra with $m_i = 0$ for $i \neq 2$.

a) Assume that R is an integral domain with the generic point $\eta \in \text{Spec}R$. Assume that the R-module $\text{HH}_{R,c}^2(H^\bullet(A))$ is torsion free. If the DG $k(\eta)$-algebra A_η is formal then the DG R-algebra A is also formal. In particular, A_x is formal for all points $x \in \text{Spec}R$.

b) Let R be noetherian. Assume that for each n the R-module $\text{HH}_{R,c}^n(H^\bullet(A))$ is projective. Then the subset

$$F(A) := \{ x \in \text{Spec}R \mid \text{the DG } k(x) \text{-algebra } A_x \text{ is formal} \}$$

is closed under specialization.

c) Let R be noetherian and $I \subset R$ be an ideal such that $\cap_n I^n = 0$. Assume that for each n the R-module $\text{HH}_{R,c}^n(H^\bullet(A))$ is projective. Assume that the DG R/I^n-algebra $A \otimes_R R/I^n = A/(I)^n$ is formal for all $n \geq 1$. Then A is formal.
d) Assume that R is noetherian and has the trivial radical (i.e. the intersection of maximal ideals of R is zero). Assume that for each n the R-module $HH^n_{R,c}(H^\bullet(A))$ is projective. If A_x is formal for all closed points $x \in \text{Spec} R$ then A is formal (and hence A_y is formal for all points $y \in \text{Spec} R$).

Proof. This follows from Propositions 6.3, 6.4, 6.5, 6.6 above. Indeed, if $A \to A$ is a minimal flat $A(\infty)$ model for A, then $H^\bullet(A) = A(2)$ and for any homomorphism $R \to Q$ of commutative algebras the DG Q-algebra $A \otimes_R Q$ is DG formal if and only if the $A(\infty)$ Q-algebra $A \otimes_R Q$ is formal. □

Remark 6.11. Let A be as in the last corollary. Assume that there exists an associative k-algebra B such that $H^\bullet(A) = B \otimes_k R$. Then we may consider A as an R-family of DG algebras with the "same" cohomology algebra. In this case for each n the R-module $HH^n_{R,c}(H^\bullet(A))$ is free and the conclusions in parts b), c), d) of the corollary hold without the assumption of R being noetherian (Remark 6.7).

7. Kaledin cohomology class for DG algebras

7.1. DG Lie algebras

Let k be a field of characteristic zero, R be a commutative k-algebra and $L = \bigoplus L^i$ be a graded R-module. Assume that there is given an R-linear map $[\cdot, \cdot] : L \otimes_R L \to L$ which is homogeneous of degree zero and satisfies the following relations
\[
[\alpha, \beta] + (-1)^{\bar{\alpha}\bar{\beta}}[\bar{\beta}, \bar{\alpha}] = 0,
\]
\[
(-1)^{\bar{x}\bar{\alpha}}[\alpha, [\beta, \gamma]] + (-1)^{\bar{\alpha}\bar{\beta}}[\bar{\beta}, [\gamma, \alpha]] + (-1)^{\bar{\alpha}\bar{\gamma}}[\bar{\gamma}, [\alpha, \beta]] = 0,
\]
where \bar{x} denotes the degree of a homogeneous element $x \in L$. Then L is called a graded Lie R-algebra.

A homogeneous R-linear map $d : L \to L$ of degree l is called a derivation if
\[
d([\beta, \gamma]) = [d\beta, \gamma] + (-1)^{\bar{\beta}\bar{\gamma}}[\bar{\gamma}, d\beta].
\]

Homogeneous R-linear derivations of L form a graded Lie algebra
\[
\text{Der}_R(L) = \text{Der}(L) = \bigoplus \text{Der}^i(L).
\]

We have a natural homomorphism of graded algebras
\[
ad : L \to \text{Der}(L), \quad ad_\alpha(\cdot) := [\alpha, \cdot].
\]

Definition 7.1. A DG Lie algebra is a pair (L, d), where L is a graded Lie algebra and $d \in \text{Der}^1(L)$ is such that $d^2 = 0$.

Notice that the cohomology of a DG Lie algebra is naturally a graded Lie algebra.
7.2. Gauge group. Let \mathfrak{g} be an graded Lie R-algebra. Consider the graded Lie $R[[h]]$-algebra

$$\mathfrak{g}[[h]] := \bigoplus_i \mathfrak{g}^i[[h]],$$

where $\mathfrak{g}^i[[h]]$ consists of power series $\alpha_0 + \alpha_1 h + \alpha_2 h^2 + \ldots$, $\alpha_n \in \mathfrak{g}^i$ with the bracket induces by $[\alpha h^n, \beta h^m] = [\alpha, \beta] h^{n+m}$. Clearly $\mathfrak{g}^i[[h]] = \lim_{\leftarrow} \mathfrak{g}^i[[h]] / h^n$ for each i. In particular, the Lie subalgebra $h \mathfrak{g}^0[[h]] \subset \mathfrak{g}[[h]]$ is the inverse limit of nilpotent Lie algebras $\mathfrak{g}^0_n := h \mathfrak{g}^0[[h]] / h^{n+1}$.

Let G_n be the group of $R[h]$-linear automorphisms of the graded Lie algebra $\mathfrak{g}[[h]] / h^{n+1}$ generated by operators \exp^{ad_α}, $\alpha \in h \mathfrak{g}^0[[h]] / h^{n+1}$ which act by the formula

$$\exp(\text{ad}_\alpha) (\beta) = \beta + [\alpha, \beta] + \frac{1}{2!} [\alpha, [\alpha, \beta]] + \ldots$$

Notice that by the Campbell-Hausdorff formula every element of G_n is equal to \exp^{ad_α}, for some $\alpha \in h \mathfrak{g}^0[[h]] / h^{n+1}$.

There are natural surjective group homomorphisms $G_{n+1} \to G_n$ and we denote

$$G = G(\mathfrak{g}) := \lim_{\leftarrow} G_n.$$

The group G is called the gauge group of \mathfrak{g}. It acts naturally by $R[[h]]$-linear automorphisms of the graded Lie algebra $\mathfrak{g}[[h]]$ by the adjoint action. This action is by definition faithful. This induces the action of G on the graded Lie algebra $\text{Der}(\mathfrak{g}[[h]])$. In particular, if $(\mathfrak{g}[[h]], d)$ is a DG Lie algebra and $g \in G$, then $(\mathfrak{g}[[h]], g(d))$ is also such.

7.3. Kaledin class. Let (\mathfrak{g}, d) be a DG Lie R-algebra. Consider the DG Lie $R[[h]]$-algebra $(\mathfrak{g}[[h]], d)$. Let $\pi = \pi_1 h + \pi_2 h^2 + \ldots \in h \mathfrak{g}^1[[h]]$ be a solution of the Maurer-Cartan equation

$$d\pi + \frac{1}{2} [\pi, \pi] = 0.$$

In other words the derivation $d_\pi := d + [\pi, -]$ satisfies $d_\pi^2 = 0$. Consider the element

$$\partial_h(d_\pi) = \partial_h(\pi) = \pi_1 + 2\pi_2 h + 3\pi_3 h^2 + \ldots \in \mathfrak{g}^1[[h]].$$

We have

$$0 = \partial_h(d_\pi^2) = \partial_h(d_\pi) \cdot d_\pi + d_\pi \cdot \partial_h(d_\pi) = [d_\pi, \partial_h(d_\pi)].$$

Thus $\partial_h(d_\pi)$ is a 1-cocycle in the DG Lie algebra $(\mathfrak{g}[[h]], d_\pi)$.

Definition 7.2. We call the corresponding cohomology class $[\partial_h(d_\pi)] \in H^1(\mathfrak{g}[[h]], d_\pi)$ the Kaledin class (of π).
Proposition 7.3. a) The Kaledin class \(\partial_h(d_\pi) \in H^1(\mathfrak{g}[[h]], d_\pi) \) is gauge invariant. That is for \(g \in G \) the classes \([g(\partial_h(d_\pi))], [\partial_h(g(d_\pi))] \in H^1(\mathfrak{g}[[h]], g(d_\pi)) \) are equal.

b) Moreover, the class \([\partial_h(\pi)] = 0 \) if and only if \(\pi \) is gauge equivalent to zero, i.e. there exists \(g \in G \) such that \(g(d_\pi) = d \).

Proof. a). Since
\[
H^\bullet(\mathfrak{g}) = \lim_{\to} H^\bullet(\mathfrak{g}[[h]]/h^n)
\]
it suffices to prove that the two classes are congruent modulo \(h^{n+1} \) for all \(n \geq 0 \). So fix \(n \geq 0 \) and \(g \in G \). Since we work modulo \(h^{n+1} \) we may and will assume that \(g \in G_n \).

Lemma 7.4. There exist \(\xi_1, \ldots, \xi_n \in \mathfrak{g}^0 \) such that
\[g = \exp(\xi_n h^n) \exp(\xi_{n-1} h^{n-1}) \cdots \exp(\xi_1 h). \]

Proof. By induction on \(n \) we assume that the statement of the lemma holds for the image of \(g \) in \(G_{n-1} \). Thus there exist \(\xi_1, \ldots, \xi_{n-1} \in \mathfrak{g}^0 \) so that
\[\bar{g} := \exp(-\xi_1 h) \cdots \exp(-\xi_{n-1} h^{n-1}) g \]
lies in the kernel of the projection \(G_n \rightarrow G_{n-1} \). Let \(\eta = \eta_1 h + \ldots + \eta_n h^n \in h^0 h^n \) be such that \(\bar{g} = \exp(\eta) \). Since the image of \(\bar{g} \) under the projection \(G_n \rightarrow G_1 \) is trivial we conclude that \(\eta_1 \) is in the center of the graded Lie algebra \(\mathfrak{g} \). Hence we may and will assume that \(\eta_1 = 0 \). Similarly, considering the trivial image of \(\bar{g} \) under the projection \(G_n \rightarrow G_2 \) we may and will assume that \(\eta_2 = 0 \), etc. So \(\bar{g} = \exp(\eta_n h^n) \) and we can take \(\xi_n = \eta_n \). This proves the lemma.

Using the lemma we may and will assume that \(g = \exp(\xi h^1) \) for some \(\xi \in \mathfrak{g}^0 \), \(i > 0 \).

By definition \(g(d_\pi) = g \cdot d_\pi \cdot g^{-1} \), hence
\[
\partial_h(g(d_\pi)) = \partial_h g \cdot d_\pi \cdot g^{-1} + g \cdot \partial_h(d_\pi) \cdot g^{-1} - g \cdot d_\pi \cdot g^{-1} \cdot \partial_h g \cdot g^{-1}.
\]
So
\[
g(\partial_h(d_\pi)) - \partial_h(g(d_\pi)) = [g(d_\pi), \partial g \cdot g^{-1}].
\]

But
\[
\partial_h g \cdot g^{-1} = \partial_h(\exp(\xi h^i)) \cdot \exp(-\xi h^i) = i \xi h^{i-1}.
\]

This proves a).

b). If \(g(d_\pi) = d \) for some \(g \in G \), then \(\partial_h(g(d_\pi)) = 0 \) and hence by part a) also \([\partial_h(\pi)] = 0 \).

Vice versa, suppose that \([\partial_h(\pi)] = 0 \). Let \(\pi = \pi_1 h + \pi_2 h^2 + \ldots \). Then in particular \(0 = [\pi_1] \in H^1(\mathfrak{g}, d) \). So there exists \(\xi_1 \in \mathfrak{g}^0 \) such that \(d(\xi_1) = \pi_1 \). Put \(g_1 := \exp(\xi_1 h) \in G \). Then
\[
g_1(d_\pi) \cong d(\text{mod} h^2).
\]
By induction we may assume that we found $\xi_1, \ldots, \xi_{n-1} \in g^0$ so that

$$g_{n-1} \ldots g_1(d_\pi) \cong d(\text{mod } h^n),$$

where $g_i = \exp(\xi_i h^i)$. Then by part a) we may assume that $\pi_1 = \ldots = \pi_{n-1} = 0$. So by our assumption we have in particular $0 = [n\pi_n h^{n-1}] \in H^1(g[[h]]/h^n, d_\pi)$. This is equivalent to saying that $0 = [n\pi_n] \in H^1(g, d)$. Let $\xi_n \in g^0$ be such that $d(\xi_n) = [\pi_n]$ (recall that $\mathbb{Q} \subset R$) and put $g_n := \exp(\xi_n)$. Then

$$g_n(d_\pi) \cong d(\text{mod } h^{n+1}).$$

This completes our induction step. Put $g := \ldots g_3 g_2 g_1 \in G$. Then

$$g(d_\pi) = d.$$

If we consider the DG Lie $R[[h]]$-algebra $(g[[h]], d_\pi)$ as a deformation of the DG Lie R-algebra (g, d), then Proposition 7.3 above asserts that this deformation is trivial if and only if the Kaledin class $[\partial_h(d_\pi)] \in H^1(g[[h]], d_\pi)$ is zero.

All the above can be repeated for DG Lie $R[[h]]/h^n$-algebras $(g[[h]]/h^n, d_\pi)$. In particular we obtain the following corollary.

Corollary 7.5. a) The Kaledin class $[\partial_h(d_\pi)] \in H^1(g[[h]]/h^{n+1}, d_\pi)$ is gauge invariant, i.e. for $g \in G_n$ the classes $[g(\partial_h(d_\pi))]$, $[\partial_h(g(d_\pi))] \in H^1(g[[h]]/h^{n+1}, g(d_\pi))$ are equal.

b) Moreover, the class $[\partial_h \pi] = 0$ if and only if π is gauge equivalent to zero, i.e. there exists $g \in G_n$ such that $g(d_\pi) = d$.

Proof. Same as that of Proposition 7.3. □

References

[Dr] V. Drinfeld, DG quotients of DG categories, J. Algebra 272 (2004), no. 2, 643-691. [ArXiv:math/0210114]

[Ha-St] S. Halperin, J. Stasheff, Obstructions to homotopy equivalences, Advances in Math. No. 32, 233-279 (1979).

[Hi] V. Hinich, Tamarkin’s proof of Kontsevich formality theorem, Forum Math. 15 (2003), no. 4, 591-614. [ArXiv:math/0003052]

[Ka] D. Kaledin, Some remarks on formality in families, Mosc. Math. J. 7 (2007), no. 4, 643-652. [ArXiv:math/0509609]

[Kad1] T. V. Kadeishvili, Algebraic structure in the homologies of an $A(\infty)$ algebra, (in Russian), Bulletin of Acad. of Sci. of Georgian SSR, 108, No. 2, (1982).

[Kad2] T. V. Kadeishvili, The functor D for the category of $A(\infty)$-algebras (in Russian), Soobshch. Acad. Nauk Gruzin. SSR, 125 (1987), 273-276.

[Ke] B. Keller, Introduction to A-infinity algebras and modules, Homology Homotopy Appl. 3 (2001), no. 1, 1-35. [ArXiv:math/9910179]
[Le-Ha] K. Lefèvre-Hasegava, Thèse de Doctorat, Université Paris 7 (2003)

[Sch-Sh] S. Schwede, B. Shipley, Algebras and modules in monoidal model categories, Proc. London Math. Soc. (3) 80 (2000) 491-511.

[Su] D. Sullivan, Infinitesimal computations in topology, *Publications de IHES* No. 47.

Department of Mathematics, Indiana University, Bloomington, IN 47405, USA

E-mail address: vlunts@indiana.edu