Establishment of the upper reference limit for thyroid peroxidase autoantibodies according to the guidelines proposed by the National Academy of Clinical Biochemistry: comparison of five different automated methods

Federica D'Aurizio1 · Paolo Metus1 · Annalisa Polizzi Anselmo1 · Danilo Villalta2 · Anna Ferrari3 · Roberto Castello4 · Graziella Giani5 · Elio Tonutti6 · Nicola Bizzaro7 · Renato Tozzoli1

Received: 2 June 2015 / Accepted: 30 July 2015 / Published online: 15 August 2015 © The Author(s) 2015

Abstract
Aim of the study The estimation of the upper reference limit (URL) for autoantibodies against thyroid peroxidase (TPOAbs) is a controversial issue, because of an uncertainty associated with the criteria used to correctly define the reference population. In addition, the URL of TPOAbs is method-dependent and often arbitrarily established in current laboratory practice. The aim of this study was to determine the reference limits of TPOAbs in a male sample according to the National Academy of Clinical Biochemistry (NACB) guidelines, and to compare them with those obtained in a female group, for five third-generation commercial-automated immunoassay (IMA) platforms.

Methods 120 healthy males and 120 healthy females with NACB-required characteristics (younger than 30 years, TSH between 0.5 and 2.0 mIU/L, normal thyroid ultrasound, absence of thyroid disease and absence of other autoimmune diseases) were studied. Sera were analyzed for TPOAbs concentration using five IMA methods applied in automated analyzers: Immulite 2000 XPi (IMM); Maglumi 2000 Plus (MAG); Kryptor Compact Plus (KRY); Phadia 250 (PHA) and Liaison XL (LIA).

Results A statistically significant difference ($p < 0.05$) between medians in male and female groups was observed for PHA (2.6 and 3.1 IU/mL, respectively) but not for the other four methods. Scatter plots of TPOAbs values revealed a wide dispersion with very different coefficients of variation between the five methods, varying from 48.6 % for KRY in females to 126.3 % for MAG in females. The URLs differed in males and females according to the method: 28.7 and 29.0 IU/mL for IMM, 24.6 and 25.4 IU/mL for MAG, 6.4 and 6.9 IU/mL for KRY, 8.3 and 10.0 IU/mL for PHA and 14.2 and 17.9 IU/mL for LIA, respectively. Such URLs were lower than those stated by the manufacturers except for LIA in females. The difference between URLs ranged from a minimum of 11.3 % (LIA in males) to a maximum of 66.8 % (PHA in males).

Conclusions Differences in URLs could result from the different coating preparations of the TPO antigen (purified native or recombinant) on solid phase, which affect the proper exposure of the immunodominant epitopes recognized by the polyclonal antibodies present in serum of patients with autoimmune thyroid disease (AITD). Based on these findings, we suggest to overcome the proposal of the NACB guidelines which recommend to involve a single group of young male subjects, and propose, instead, to utilize two distinct groups: one of males and one of females. This new proposal removes the apparent contrast of an all-male reference group for a disease (such as AITD) that affects mainly females. However, in spite of the harmonization among methods provided by the use of an
international standard preparation, the wide dispersion of quantitative results still observed in this study suggests the need for further efforts to better understand the cause of these discrepancies, focusing on TPO antigen preparations as the possible source of variability among different assays.

Keywords Autoimmune thyroid disease · Reference limits · Thyroid peroxidase autoantibodies · Automation · Immunoassay · Harmonization

Introduction

Autoantibodies against thyroid peroxidase (TPOAbs) are both diagnostic hallmarks and early indicators of autoimmune thyroid disease (AITD), playing an important predictive role in healthy subjects, in pregnant women and in high-risk patients [1–3].

In recent years, refinements in autoantigen preparation and better selection of polyclonal and monoclonal antibodies have led to a new (third) generation of automated quantitative immunoassays (IMAs) with improved sensitivity and specificity for the measurement of TPOAbs [4, 5]. Despite their recently expanded use in clinical laboratories [6–8], it is yet unclear whether these more-sensitive automated third-generation IMAs have made improvements in terms of diagnostic accuracy and harmonization compared with previous methods [9, 10]. Hence, further efforts in defining the threshold values of positivity need to be made in order to avoid misclassification of patients with AITD [9].

The estimation of the upper reference limit (URL) for TPOAbs is a controversial issue, because of an uncertainty as to the criteria for correctly defining the reference population. The currently proposed direct methods are described in the National Academy of Clinical Biochemistry (NACB) guidelines, which recommend the use of a reference group composed of 120 men with the following features: younger than 30 years, biochemically euthyroid (serum TSH between 0.5 and 2.0 mIU/L), without goiter as proven by ultrasound. All participants gave their informed consent.

Taking into account that TPOAbs reference limits are method dependent and often arbitrarily established in the current laboratory practice [9, 10, 16], the aim of this study was to determine the URL of TPOAbs in a male sample according to the NACB guidelines, and to compare it with that obtained in a female group, applying and comparing five third-generation commercial automated IMA platforms.

Methods

120 males and 120 females with NACB-required characteristics (younger than 30 years, TSH between 0.5 and 2.0 mIU/L; normal thyroid ultrasound; absence of autoimmune and non-autoimmune thyroid disease and absence of other autoimmune diseases) were enrolled in the study. They came from a large health survey called ‘Thyroid takes to the square,’ carried out in the province of Verona (Italy) from 2008 to 2013, in which 7970 subjects with no previous or current thyroid disease symptoms were screened by clinical history, thyroid function test, and thyroid ultrasound. All participants gave their informed consent.

The sera of the 120 males and 120 females were analyzed for TPOAbs concentration using five IMA methods applied in automated analyzers: Immulite 2000 XPi (IMM) (Siemens Healthcare Diagnostics, Flanders, NJ, USA); Maglumi 2000 Plus (MAG) (Shenzen New Industries Biomedical Engineering-SNIBE, Shenzen, China); Kryptor Compact Plus (KRY) (BRAHMS Thermo Scientific, Henningsdorf, Germany); Phadia 250 (PHA) (Phadia AB, Uppsala, Sweden) and Liaison XL (LIA) (DiaSorin, Saluggia, Italy).

All assays were performed according to the manufacturers’ instructions at four different laboratories in Friuli Venezia Giulia region (Italy): Pordenone (IMM and MAG), S. Vito al Tagliamento (KRY), Tolmezzo (PHA), and Udine (LIA).

The main features of the five methods are shown in Table 1.

The Immulite 2000 XPi was a continuous random-access system designed around a proprietary assay tube that
allowed for efficient washing of an integral antibody- or antigen-coated polystyrene beads as solid phase. This assay used an alkaline phosphatase enzyme label that was quantified with a sensitive chemiluminescent substrate (adamantyl-dioxetane phosphate) by creation of an unstable adamantyl-dioxetane anion. The breakdown of this unstable anion generated a prolonged glow of light [17]. The TPOAbs test was based on a sequential chemiluminescent IMA (CLIA), which used native purified TPO antigen coated on the solid phase. As stated by the manufacturer, the intra-assay imprecision was 4.9–6.3 %; the total imprecision was 6.1–8.1 %; the limit of detection (LoD) of TPOAbs assay was 5.0 IU/mL and the limit of quantitation (LoQ) was not declared.

The Maglumi 2000 Plus was a continuous random-access IMA system that used N-(aminobutyl)-N-(ethyl)-isoluminol (ABEI) as chemiluminescent substrate and magnetic particles serving both the solid phase and the separator in a liquid phase, with two different monoclonal antibodies labeled with either ABEI or fluorescein-5-isothiocyanate (adamantyl-dioxetane phosphate) by creation of an unstable adamantyl-dioxetane anion. The breakdown of this unstable anion generated a prolonged glow of light [17]. The TPOAbs test was a sandwich CLIA method that used human recombinant TPO antigen. As stated by the manufacturer, the intra-assay imprecision was 4.1–4.7 %; the between-assay imprecision was 2.5–4.8 %; the LoD and the LoQ were not declared.

The Liaison XL was a fully automated CLIA analyzer, which adopted a flash technology with paramagnetic microparticles as solid phase [15, 21]. The anti-TPO Liaison XL 2-step assay was a sandwich CLIA that used directly coated magnetic microparticles with recombinant TPO as solid phase and a conjugate based on an isoluminol derivate. As declared by the manufacturer, the intra-assay imprecision was 3.6–6.2 %; the between-assay imprecision was 4.7–6.9 %, the LoD was 0.6 IU/mL and the LoQ was 1.0 IU/mL.

Statistical analysis

All methods were standardized with the reference preparation MRC 66/387 and used international units (IU), except for KRY whose results were initially expressed in arbitrary units and subsequently corrected in IU.
To compare the data obtained by the five systems, the results were expressed as a median and the URL was established at the 99.0th %ile. The non-parametric Mann–Whitney U test was used to compare TPOAbs levels in males and females within the same method. A two-sided value of $p < 0.05$ was considered statistically significant. The difference between the manufacturer’s URL and the experimental URL was expressed as the ratio between them in percentage (Δ). The correlation studies were performed on all samples across all the five methods.

GraphPad Prism, version 4.0 (GraphPad Prism Software, San Diego, CA, USA) and MedCalc, version 13.3.1 (MedCalc Software, Ostend, Belgium) were used for statistical analysis.

Results

Value distributions were not Gaussian with a positive skew in both males and females for all the five methods. A statistically significant difference ($p < 0.05$) between medians in male and female groups was observed for PHA (2.6 and 3.1 IU/mL, respectively) but not for the other four methods.

The scatter plots of TPOAbs values revealed a wide dispersion with very different coefficient of variation (CV) between methods, varying from 48.6 % for KRY in females to 126.3 % for MAG in females (Fig. 1).

URLs differed in males and females according to the method (Table 2): 28.7 and 29.0 IU/mL for IMM, 24.6 and 25.4 IU/mL for MAG, 6.4 and 6.9 IU/mL for KRY, 8.3 and 10.0 IU/mL for PHA, and 14.2 and 17.9 IU/mL for LIA, respectively. Such URLs were lower than those stated by the manufacturers except for LIA in females. The Δ between URLs ranged from a minimum of 11.3 % (LIA in males) to a maximum of 66.8 % (PHA in males).

Correlation analysis showed that all the five methods did not compare well with each other (Table 3), suggesting discrepancies between them.

Discussion

To our knowledge, this is the first study on the definition and comparison of TPOAbs URLs between five different commercially available automated methods.

The study was designed to accurately define and harmonize TPOAbs URLs in order to avoid misclassification of patients in the process of AITD diagnosis. Thus, according to the NACB recommendations, we evaluated TPOAbs concentrations and URLs in a reference male group comparing them with a female one.

The first relevant result of this study was the demonstration of a significant difference between the TPOAbs URLs obtained with the five different automated IMA methods (both in males and females) and the results expected according to the corresponding package insert.
With the exception of the LIA method in females, URLs values obtained in the present study were lower than those predicted in the insert, with Δ varying from 11.3% (LIA in males) to 66.8% (PHA in males) (Table 2). This finding was in contrast to the conclusion of a recent study which showed that the established URLs were very similar to those recommended by seven different manufacturers [14]. The difference between that study and the present one resides in the population sample: in the study by Springer et al. TPOAbs were measured in women in the first trimester of pregnancy; in the present study, TPOAbs were determined in 120 healthy males and in 120 healthy females. The discrepancies between the experimental and the manufacturer’s URLs, as found in the present study, could be linked to any of several factors. First of all, there are racial differences in autoantibody concentrations measured in different populations over the world: in most cases, studies, that were sponsored by the test’s manufacturer and were conducted in the geographical area of the production line, may be not reproducible in other geographical settings. An additional aspect was the lack of strict criteria in the selection of subjects for the reference group. In fact, the possibility of enrolling apparently healthy individuals with subclinical AITD and high levels of TPOAbs, whose prevalence is estimated around 3.3–25.8% in the general population, raises the 99th percentile of the reference value distribution [12, 13, 15, 22, 23] and produces an increase in the proportion of subjects classified as negative for TPOAbs. On the other hand, the demonstration of a significant difference between the TPOAbs URLs obtained with the five different automated IMA methods both in males and females, confirms the data of a previous study on the same topic, using indirect methods [15].

The second relevant consideration emerging from this study was the dependence of the URLs on the method used. A decade ago, when third-generation methods were

Table 2 The main statistical parameters of thyroid peroxidase autoantibodies, in males and females, measured by the five automated immunoassay methods

Sex	No.	Mean (CI 95 %)	SD	CV	Median	p	eURL	mURL	Δ
IMM									
Males	120	8.2 (7.1–9.3)	6.0	73.6	6.4	0.8	28.7	35.0	18.0
Females	120	8.9 (7.6–10.1)	7.0	79.6	6.7	0.8	29.0	17.1	
MAG									
Males	120	5.5 (4.3–6.6)	6.5	119.8	2.7	0.8	24.6	30.0	18.0
Females	120	4.9 (3.8–6.1)	6.2	126.3	2.2	0.8	25.4	15.3	
KRY									
Males	120	2.7 (2.5–2.9)	1.4	50.6	2.6	0.6	6.4	10.5	39.0
Females	120	2.6 (2.3–2.8)	1.2	48.6	2.4	0.6	6.9	34.3	
PHA									
Males	120	2.8 (2.6–3.1)	1.4	50.9	2.6	<0.05	8.3	25.0	66.8
Females	120	3.7 (3.1–3.8)	1.8	51.8	3.1	1.0	10.0	60.0	
LIA									
Males	120	3.2 (2.6–3.9)	3.4	106.0	1.9	0.8	14.2	16.0	11.3
Females	120	3.2 (2.6–3.9)	3.9	111.3	1.7	1.7	17.9		

CV and Δ are expressed in percentage; Mean, Median, SD, eURL and mURL are expressed in IU/mL. eURL = 99.0th %; Δ = |mURL – eURL| / mURL × 100

CI confidence intervals, CV coefficient of variation, eURL experimental upper reference limit, IMM Immulite 2000 XPi, KRY Kryptor Compact Plus, LIA Liaison XL, MAG Maglumi 2000 Plus, mURL manufacturer’s upper reference limit, PHA Phadia 250, SD standard deviation

Table 3 Method comparison

Methods	n	r (95 % CI)
IMM		
MAG	240	0.0011 (−0.1269 to 0.1291)
KRY	240	−0.0235 (−0.1513 to 0.1050)
PHA	240	0.0008 (−0.1266 to 0.1282)
LIA	240	0.0707 (−0.0576 to 0.1966)
KRY		
MAG	240	−0.0845 (−0.2108 to 0.0445)
LIA	240	−0.0988 (−0.2247 to 0.0304)
PHA	240	−0.0078 (−0.1362 to 0.1208)
LIA		
MAG	240	0.2626 (0.1390 to 0.3786)
PHA	240	0.3679 (0.2521 to 0.4734)
MAG	240	0.3226 (0.2028 to 0.4333)

CI confidence intervals, IMM Immulite 2000 XPi, KRY Kryptor Compact Plus, LIA Liaison XL, MAG Maglumi 2000 Plus, PHA Phadia 250, r correlation coefficient with the exception of the LIA method in females, URLs values obtained in the present study were lower than those predicted in the insert, with Δ varying from 11.3% (LIA in males) to 66.8% (PHA in males) (Table 2). This finding was in contrast to the conclusion of a recent study which showed that the established URLs were very similar to those recommended by seven different manufacturers [14]. The difference between that study and the present one resides in the population sample: in the study by Springer et al. TPOAbs were measured in women in the first trimester of pregnancy; in the present study, TPOAbs were determined in 120 healthy males and in 120 healthy females. The discrepancies between the experimental and the manufacturer’s URLs, as found in the present study, could be linked to any of several factors. First of all, there are racial differences in autoantibody concentrations measured in different populations over the world: in most cases, studies, that were sponsored by the test’s manufacturer and were conducted in the geographical area of the production line, may be not reproducible in other geographical settings. An additional aspect was the lack of strict criteria in the selection of subjects for the reference group. In fact, the possibility of enrolling apparently healthy individuals with subclinical AITD and high levels of TPOAbs, whose prevalence is estimated around 3.3–25.8% in the general population, raises the 99th % of the reference value distribution [12, 13, 15, 22, 23] and produces an increase in the proportion of subjects classified as negative for TPOAbs. On the other hand, the demonstration of a significant difference between the TPOAbs URLs obtained with the five different automated IMA methods both in males and females, confirms the data of a previous study on the same topic, using indirect methods [15].

The second relevant consideration emerging from this study was the dependence of the URLs on the method used. A decade ago, when third-generation methods were
introduced the differences between the URL values were on the order of 4–5 times (from 20.0 to 100.0 IU/mL) \[8, 9\]. In this study, the differences of the experimental URLs were similar, but at concentration levels that are four times lower than those reported in the past, ranging from 6.4 to 28.7 IU/mL in males and from 6.9 to 29.0 IU/mL in females (Table 2).

The discrepancy of URLs between methods was associated with the dispersion of the results obtained by each method in both the male and female reference groups. Indeed, the dispersion expressed as CV % showed widely divergent and fluctuating values, from 48.6 % for KRY to 126.3 % for MAG (Table 2; Fig. 1). There are no clear explanations for these discrepancies. In fact, over the years, there has been an improvement in the harmonization among methods, due to automation of the analytical procedures and the use of the same reference preparation (MRC 66/387) \[10\]. Moreover, it does not seem that the intra-method analytical imprecision contributes to these differences, since the precision performances declared by the individual manufacturer are essentially overlapping (Table 1). In our opinion, these differences could lie in the different coating preparations of the TPO antigen (purified native or recombinant) on solid phase, which affect the proper exposure of the immunodominant epitopes recognized by the polyclonal antibodies present in serum of AITD patients (epitopic fingerprint), with the consequent lack of recognition of some of them [24–26].

Another important result to be noted was the difference between genders: medians were not statistically significant different between males and females for IMM, KRY, MAG, and LIA, while they were different for PHA.

Based on these results, we suggest to overcome the proposal of NACB guidelines [11], which recommend to involve a single group of young male subjects in favor of using two distinct groups, male and female ones. This new proposal removes the apparent incongruity of using a male reference group for a disease (such as AITD) affecting mainly females.

Moreover, in spite of the harmonization among methods, the wide dispersion of quantitative results, still observed in this study, suggests the need for further studies to better understand the cause of these discrepancies, focusing on TPO antigen preparation as the possible source of variability among different assays.

Acknowledgments The authors thank all the companies and laboratories that contributed to the study.

Compliance with ethical standards

Conflicts of interest The authors state that there are no conflicts of interest regarding the publication of this article.

Ethical approval All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent Informed consent was obtained from all individual participants included in the study.

References

1. Czarnocka B, Cocks Eschler D, Godlewksa M et al (2014) Thyroid antibodies: thyroid peroxidase and thyroglobulin antibodies. In: Shoenfeld Y, Meroni PL, Gershwin ME (eds) Autoantibodies, 3rd edn. Elsevier, Amsterdam, pp 365–373
2. Garber JR, Cobin RH, Gharib H et al (2012) Clinical practice guidelines for hypothyroidism in adults: cosponsored by the American Association of Clinical Endocrinologists and the America Thyroid Association. Endocr Pract 18:988–1028
3. Stagnaro-Green A, Abalovich M, Alexander E et al (2011) Guidelines of the American Thyroid Association for the diagnosis and management of thyroid disease during pregnancy and postpartum. Thyroid 21:1081–1125
4. Tozzoli R, Bonaguri C, Melegari A et al (2013) Current state of diagnostic technologies in the autoimmune laboratory. Clin Chem Lab Med 51:129–138
5. Bizzaro N, Tozzoli R, Villalta D (2015) Autoimmune diagnostics: the technology, the strategy and the clinical governance. Immunol Res 61:126–134
6. Gonzalez C, Garcia-Berrocal B, Talavan T et al (2005) Clinical evaluation of a microsphere bead-based flow cytometry assay for the simultaneous determination of anti-thyroid peroxidase and anti-thyroglobulin antibodies. Clin Biochem 38:966–972
7. La’ulu SL, Slev PR, Roberts SL (2007) Performance characteristics of 5 automated thyroglobulin and thyroperoxidase autoantibody assays. Clin Chim Acta 376:88–95
8. Sinclair D (2008) Analytical aspects of thyroid antibodies estimation. Autoimmunity 41:46–54
9. Tozzoli R, Bizzaro N, Tomutti E et al (2002) Immunoassay of anti-thyroid autoantibodies: high analytical variability in second generation methods. Clin Chem Lab Med 40:568–573
10. D’Aurizio F, Tozzoli R, Villalta D et al (2015) Immunoassay of thyroid peroxidase autoantibodies: diagnostic performance in automated third generation methods. Clin Chem Lab Med 53:415–421
11. Balogh Z, Carpayon P, Comte-Devolx B et al (2003) Laboratory medicine practice guidelines. Laboratory support for the diagnosis and monitoring of thyroid disease. Thyroid 13:3–126
12. Jensen EA, Petersen PH, Blaabjerg O et al (2006) Establishment of reference distributions and decision values for thyroid antibodies against thyroid peroxidase (TPOAb), thyroglobulin (TgAb) and the thyrotropin receptor (TRAb). Clin Chem Lab Med 44:991–998
13. Zophel K, Saller B, Wunderlich G et al (2003) Autoantibodies to thyroperoxidase in a large population of euthyroid subjects: implication for the definition of TPOAb reference intervals. Clin Lab 49:591–600
14. Springer D, Bartos V, Zima T (2014) Reference intervals for thyroid markers in early pregnancy determined by 7 different analytical systems. Scan J Lab Invest 74:95–101
15. Tozzoli R, Giavarina D, Villalta D et al (2008) Definition of reference limits for autoantibodies to thyroid peroxidase and thyroglobulin in a large population of outpatients using an
indirect method based on current data. Arch Pathol Lab Med 132:1924–1928
16. Tozzoli R, Villalta D, Bizzaro N et al (2001) Laboratory diagnosis of autoimmune thyroid disease. Recent Prog Med 92:609–617
17. Babson AL (2013) Immulite 2000 and Immulite XPi. In: Wild DG (ed) The Immunoassay Handbook, 4th edn. Elsevier, Amsterdam, pp 575–578
18. D’Aurizio F, Villalta D, Metus P et al (2014) Is vitamin D a player or not in the pathophysiology of autoimmune thyroid diseases? Autoimmun Rev 14:363–369
19. Taieb J, Sarnel C, Benattar C et al (2000) A new technique for measuring 17beta-estradiol using Kryptor: utilization to monitor ovulation stimulation. Ann Biol Chem (Paris) 58:71–79
20. Gore A, Evans G, Rilven M (2013) Phadia Laboratory Systems. In: Wild DG (ed) The Immunoassay Handbook, 4th edn. Elsevier, Amsterdam, pp 617–619
21. van Helden J, Weiskirchen R (2015) Experience with the first fully automated chemiluminescence immunoassay for the quantification of 1α, 25-dihydroxy-vitamin D. Clin Chem Lab Med 53:761–770
22. Kaloumenou I, Mastorakos G, Alevizaki M et al (2008) Thyroid autoimmunity in schoolchildren in an area with long-standing iodine sufficiency: correlation with gender, pubertal stage and maternal thyroid autoimmunity. Thyroid 18:747–754
23. Taubner K, Schubert G, Pulzer F et al (2014) Serum concentrations of anti-thyroid peroxidase and anti-thyroglobulin antibodies in children and adolescents without apparent thyroid disorders. Clin Biochem 47:3–7
24. Godlewska M, Gora M, Buckle AM et al (2014) A redundant role of human thyroid peroxidase propeptide for cellular, enzymatic and immunological activity. Thyroid 24:371–382
25. Liu M-M, Li Q, Zhao L-L et al (2013) Glycosylation of recombinant human thyroid peroxidase ectodomain of insect cell origin has little effect on recognition by serum thyroid peroxidase antibody. Chin Med J 126:2907–2911
26. Nielsen CH, Brix TH, Gardas A et al (2008) Epitope recognition patterns of thyroid peroxidase autoantibodies in healthy individuals and patients with Hashimoto’s thyroiditis. Clin Endocrinol (Oxf) 69:664–668