Imaging the flow of holes from a collimating contact in graphene

Sagar Bhandari¹,² Ⓡ, Mary Kreidel¹ Ⓡ, Alexander Kelser³, Gil-Ho Lee³,⁴ Ⓡ, Kenji Watanabe⁵, Takashi Taniguchi⁵, Philip Kim¹,³ Ⓡ and Robert M Westervelt¹,³,⁶ Ⓡ

¹ School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States of America
² Department of Physics and Engineering, Slippery Rock University, Slippery Rock, PA 16057, United States of America
³ Department of Physics, Harvard University, Cambridge, MA 02138, United States of America
⁴ Department of Physics, Pohang University of Science and Technology, Pohang, Republic of Korea
⁵ National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
⁶ Author to whom any correspondence should be addressed.

E-mail: westervelt@seas.harvard.edu

Received 3 May 2020, revised 7 June 2020
Accepted for publication 26 June 2020
Published 12 August 2020

Abstract

A beam of holes formed in graphene by a collimating contact is imaged using a liquid-He cooled scanning probe microscope (SPM). The mean free path of holes is greater than the device dimensions. A zigzag shaped pattern on both sides of the collimating contact absorbs holes that enter at large angles. The image charge beneath the SPM tip defects holes, and the pattern of flow is imaged by displaying the change in conductance between contacts on opposite sides, as the tip is raster scanned across the sample. Collimation is confirmed by bending hole trajectories away from the receiving contact with an applied magnetic field. The SPM images agree well with ray-tracing simulations.

Keywords: graphene, transport phenomena, scanning techniques, scanning-probe microscopy, ballistic transport

(Some figures may appear in colour only in the online journal)

1. Introduction

Graphene displays remarkable electronic properties, including ballistic electron transport, Klein tunneling of electrons through potential barriers, and the unconventional quantum Hall effect [1–8]. Monolayer graphene samples encapsulated in hexagonal boron nitride (h-BN) sheets achieve unusually high carrier mobility by minimizing electron scattering [9]. Electrons in h-BN-graphene-h-BN layered structures travel along ballistic trajectories over distances comparable to the size of the device that enable ballistic electronics based on the manipulation of electron beams [1, 10], making it possible to achieve novel Dirac fermionic optics, such as negative refraction [11] and Veselago lensing [12].

Imaging the flow of electrons, or holes, provides a direct way to understand ballistic flow in graphene. A cooled scanning probe microscope (SPM) can image the flow of electrons through a two-dimensional electron gas (2DEG) by displaying the change in conductance between two point-contacts as the tip is raster scanned above the sample [13, 14]. The tip creates an image charge in the 2DEG that deflects charge carriers and removes them from the pattern of flow. Displaying the...
conductance change vs. tip position provides an image of the carrier flow. Scanned probe imaging has proven to be a useful approach for understanding electron motion [15–18]. In previous work on graphene, we imaged the pattern of electron flow from a collimating contact [10] and the cyclotron orbits of electrons in the magnetic focusing regime [19, 20].

2. Methodology

In the present study, we use a cooled SPM to image the flow of holes in graphene from a collimating contact. Because the band structure of graphene is symmetric about the Dirac point for small densities, the hole mobility is expected to be similar to the electron mobility [21, 22]. The pattern of flow between two contacts on opposite sides of the sample is imaged by displaying the change in conductance as the SPM tip is raster scanned across the graphene. Confirmation that the collimating contact forms a hole beam, is provided by applying a perpendicular magnetic field B that bends hole trajectories away from the receiving contact. Creating complimentary electron [10] and hole beams opens new approaches to ballistic graphene devices.

A scanning electron micrograph of the collimating contact device is shown in figure 1(a). An exfoliated monolayer graphene sheet was encapsulated between two layers of mechanically cleaved h-BN to enhance the carrier mobility. Holes travel ballistically across the channel at 4.2 K, as indicated in the SPM images of flow in figures 2 and 3 below. The device sits on a heavily doped Si substrate topped by a 285 nm thick layer of SiO$_2$, which acts as a back gate. Using a dry transfer technique, the bottom h-BN, graphene, and top h-BN flakes were stacked onto the substrate. Using reactive-ion etching, the device was shaped into a Hall bar that has two wide end contacts and two collimating contacts on either side. Each collimating contact consists of a narrow contact that emits electrons or holes into the graphene and two zigzag contacts, one on either side, that absorb carriers entering at large angles. Collimation can be turned off by floating the zigzag side contacts. For electrons, the half angle of the collimated beam is 9°, measured using our cooled SPM [10]. The rectangular graphene channel has dimensions 1.6 × 5.0 μm2 and the collimating contacts on either side are separated by 1.6 μm. To make high quality contacts, chromium and gold layers were evaporated onto the freshly etched graphene edge immediately after etching [23].

The device was mounted inside our SPM and cooled to the temperature 4.2 K. For this geometry, the back-gate capacitance is $C_G = 30$ fF. The hole density is $p = C_G(V_D - V_G)/e$, where V_G is the back-gate voltage, V_D is the back-gate voltage that puts the Fermi level at the Dirac point, and e is the fundamental charge. The thermal energy $k_BT = 0.36$ meV is well below the Fermi energy $E_F = hν_F(πp)^{1/2} = 125$ meV for the hole concentration $p > 1.08 \times 10^{12}$ cm$^{-2}$ in this experiment.

The transmission T of holes between collimating contact 1 and contact 3 was measured by passing a current between contact 1 and contact 2 and measuring the voltage difference V_s between contact 3 and contact 4, which are both floating. The ballistic flow of holes from collimating contact 1 into contact 3 increases the local hole density and chemical potential until the resulting reverse current cancels the incoming flow. For this reason, the transmission T of holes from contact 1 to contact 3 is proportional to the measured transresistance $R_m = (V/I)$.

A cooled SPM is used to image the motion of holes through the graphene sample. The technique is adapted from previous imaging experiments for two-dimensional electron gases in graphene and GaAs/AlGaAs heterostructures [10, 13, 14, 16, 19, 20]. Holes are emitted from the top collimating hole contact (contact 1) and travel along ballistic trajectories to the bottom contact (contact 3), as shown in figure 1(a). The zigzag sides on contact 3 are floated to turn off collimation, so holes can enter over a wide range of angles. To image the ballistic transmission of holes from contact 1 to contact 3, the silicon SPM tip is held above the encapsulated graphene creating an image charge below. As shown in figure 1(b), the local increase in hole density beneath the tip acts as a lens that focuses and deflects ballistic hole trajectories. An image of ballistic hole flow can be obtained by displaying the change ΔR_m as the SPM tip is raster scanned above the sample, as shown in the data below.

Working in the ballistic limit, we use ray tracing to simulate hole trajectories in graphene under the influence of a magnetic field B. The image charge forms a peak in hole density Δp_{tip} in the graphene sheet directly below the SPM tip:

$$\Delta p_{tip} = -qρ/2πε[(a^2 + d^2)^{3/2}]$$

(1)

where the tip is modeled as a point charge q at height $d = 70$ nm above the graphene sheet, a is the radial distance in the sheet away from the tip position, e is the fundamental charge, and $ε$ is the dielectric constant of h-BN.

We obtain the force that the image charge exerts on a ballistic hole traveling nearby by balancing the flow away from the tip caused by the peak in the Fermi energy E_F, with the
we find the equation of motion:

\[\frac{d^2r}{dt^2} = \left(\frac{v_F^2}{2m} \right) \nabla p(r). \]

The SPM tip creates a force that pulls holes beneath to the tip. The spatial resolution is \(\sim 70 \) nm, comparable to the height of the SPM tip above the graphene sheet. Under a magnetic field, the Lorentz force \(\mathbf{F} = ev \times \mathbf{B} \) acts on a hole with positive charge in the valence band, with group velocity \(v \).

Figure 1(b) is a ray tracing illustration that shows how the image charge benefits the SPM tip changes the transmission \(T \) by bending hole trajectories that travel nearby. The image charge acts as a lens that can focus hole paths onto the receiving contact. This behavior is in sharp contrast to what happens for electrons, where the tip potential pushes the carriers away and defocuses their flow toward the receiving contact [20]. Simulated SPM images of hole flow from the collimating contact 1 to the receiving contact 3, shown in figures 2(b) and 3(b) below, are made by computing the change in transmission \(\Delta T \) between the two contacts as the SPM tip is raster scanned across the area between them. The zigzag sides of contact 3 are floated to turn off collimation, so holes can enter over a wide range of angles.

3. Results and discussion

Figure 2(a) shows an SPM image of hole flow from the top collimating contact (contact 1) of the device to the bottom contact (contact 3) at 4.2 K with no magnetic field applied. When the tip is in the center of the channel, the measured change in transresistance \(\Delta R_m \) is positive, because the flow of holes is focused into the receiving contact by the lens beneath the tip formed by the image charge. When the tip is away from the center, it bends hole trajectories away from contact 3, reducing the transmission. Simulations of the change in transmission \(\Delta T \) displayed in figure 2(b), agree well with the experimental images. The SPM image of hole flow is slightly tilted, because the tip scatters holes sideways into contact 4, and the signal voltage \(V_s \) is sensed between contacts 3 and 4.

We studied the degree of collimation by applying a perpendicular magnetic field \(B \). The applied magnetic field bends the hole trajectories along cyclotron orbits that eventually curve away from the receiving contact and result in a reduction of flow. If a collimated hole beam with a small spread angle is emitted, the received signal \(\Delta R_m \) will fall away rapidly as \(B \) is increased, but if holes enter over a wide angle, the applied magnetic field will have less effect.

Figure 3(a) shows a series of SPM images of hole flow between contacts 1 and 3 taken at hole densities ranging from \(p = 1.08 \times 10^{12} \) cm\(^{-2} \) to \(1.80 \times 10^{12} \) cm\(^{-2} \) and magnetic fields \(B = 0 \) T to 0.15 T. These images are in good agreement with the simulations shown in figure 3(b). The blue regions in the center of the images in figures 2 and 3 show that the image charge beneath the tip acts to focus holes into the receiving contact, as illustrated in figure 1(b). The imaging signal is strongest at lower hole densities, where the image charge induced by the tip is a greater fraction the original hole density.

As the magnetic field \(B \) is increased in figure 3(a), the hole paths bend away from the bottom contact, and the strength of
the imaging signal decreases until it disappears. The curvature results from the Lorentz force, and the counterclockwise bend affirms that the carriers are positively charged, i.e. they are holes. The signal eventually disappears at $B = 0.15$ T, when the Lorentz force is strong enough to bend the hole beam entirely away from contact 3. The curvature of the hole paths in figure 3(a) is greatest at lower hole densities p, in agreement with the expression for the cyclotron orbit $d_c = \frac{h(p/\pi)}{eB}$.

To summarize, images of carrier flow taken by our cooled SPM show that a beam of holes is emitted into graphene by the collimating contact shown in figure 1(a). In addition, we find that the image charge beneath the SPM tip can act as a focusing lens for holes. These results complement our previous demonstration of a collimating contact for electrons in graphene [10], where the tip potential deflects electrons and defocuses the electron beam. The SPM images are in good agreement with ray-tracing simulations for experimentally relevant carrier densities and magnetic fields. The ability to make complimentary beams of electrons and holes paves the way for novel approaches to ballistic devices based on massless Dirac fermions in graphene.

Acknowledgments

Our SPM research was supported by the DOE Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under grant DE-FG02-07ER46422. Graphene sample fabrication was supported by the ARO grant W911NF-17-1-0574. Analysis was supported in part by NSF DMR-1231319, and nanofabrication by NSF NNCI site award W911NF-17-1-0574. Analysis was supported in part by NSF grant CCF-1422297. Sample fabrication was supported by the ARO grant W911NF-16-1-0574. Graphene oscillator research was supported by the ARO grant DE-FG02-07ER46422. Our SPM research was supported by the DOE Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under grant DE-FG02-07ER46422. Graphene/2D Materials research was supported in Japan by the Elemental Strategy Initiative ECS-1541959. The growth of hexagonal boron nitride crystals was supported by JSPS KAKENHI Grant Numbers 15H05754 and 18H03814.

References

[1] Geim A and Novoselov K 2007 Nat. Mater. 6 183
[2] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[3] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[4] Zhang X, Tan Y-W, Stormer H L and Kim P 2005 Nature 438 201
[5] Bolotin K I, Ghahari F, Shulman M D, Stormer H L and Kim P 2009 Nature 462 196
[6] Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeilter U, Maan J C, Bodebinger G S, Kim P and Geim A K 2007 Science 315 1379
[7] Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P and Stormer H L 2008 Solid State Commun. 146 351
[8] Young A F and Kim P 2009 Nat. Phys. 5 222
[9] Dean C R et al 2010 Nat. Nanotechnol. 5 722
[10] Bhandari S, Lee G H, Watanabe K, Taniguchi T, Kim P and Westervelt R M 2018 2D Mater. 5 021003
[11] Chen S et al 2016 Science 353 1522
[12] Milovanovic S P, Moldovan D and Peeters F M 2015 J. Phys. D: Appl. Phys. 48 154308
[13] Topinka M A et al 2000 Science 289 5488
[14] Topinka M A, LeRoy B J, Westervelt R M, Shaw S E J, Fleischmann R, Heller E J, Maranowski K D and Gossard A C 2001 Nature 410 6825
[15] Pioda A, Kicin S, Ihn T, Sigrist M, Fuhrer A, Ensslin K, Weichselbaum A, Ulloa S E, Reinwald M and Wegscheider W 2004 Phys. Rev. Lett. 93 216801
[16] LeRoy B J, Bleszynski A C, Aidala K E, Westervelt R M, Kalben A, Heller E J, Shaw S E J, Maranowski K D and Gossard A C 2005 Phys. Rev. Lett. 94 126801
[17] Steele G A, Ashoori R C, Pfeiffer L N and West K W 2005 Phys. Rev. Lett. 95 136804
[18] Jura M P, Topinka M A, Urban L, Yazdani A, Shtrikman H, Pfeiffer L N, West K W and Goldhaber-Gordon D 2007 Nat. Phys. 3 841
[19] Bhandari S, Lee G-H, Klales A, Watanabe K, Taniguchi T, Heller E, Kim P and Westervelt R M 2016 Nano Lett. 16 1690
[20] Bhandari S and Westervelt R M 2017 Semicond. Sci. Technol. 32 024001
[21] Schwierz F et al 2010 Nat. Nanotechnol. 5 487
[22] Pop E et al 2010 Nano. Res. 3 147
[23] Lee G H, Huang K-F, Efetov D K, Wei D S, Hart S, Taniguchi T, Watanabe K, Yacoby A and Kim P 2017 Nat. Phys. 13 693

ORCID iDs

Sagar Bhandari https://orcid.org/0000-0003-1007-9034
Mary Kreidel https://orcid.org/0000-0003-2688-7917
Gil-Ho Lee https://orcid.org/0000-0002-7619-8979
Kenji Watanabe https://orcid.org/0000-0003-3701-8119
Philip Kim https://orcid.org/0000-0002-8255-0086
Robert M Westervelt https://orcid.org/0000-0001-9836-3923