Physical Activity at Growth Induces Bone Mass Benefits Into Adulthood – A Fifteen-Year Prospective Controlled Study

Björn E Rosengren,1 Jakob Rempe,2 Lars Jehpsson,1 Magnus Dencker,3 and Magnus K Karlsson1

1Clinical and Molecular Osteoporosis Research Unit, Department of Orthopedics and Clinical Sciences, Skane University Hospital Malmo, Lund University, Malmo, Sweden
2Department of Orthopedics, Helsingborg Hospital, Lund University, Helsingborg, Sweden
3Department of Physiology and Clinical Sciences, Skane University Hospital Malmo, Lund University, Malmo, Sweden

ABSTRACT

Daily school physical activity (PA) improves musculoskeletal traits. Whether or not benefits remain in adulthood is debated. We included in this study 131 children that took part in an intervention with 40 minutes of PA per school day (200 minutes per week) from age 6 to 9 years (grade one) to age 14 to 16 years (grade nine), whereas 78 children continued with national recommended school physical education of 60 minutes per week. Measurements were done with dual-energy X-ray absorptiometry (bone mineral content [BMC], bone mineral density [BMD], and bone area), and a computerized knee dynamometer (peak torque muscle strength) at study start, at the end of the intervention, and 7 years after the intervention. Group differences from study start and end of the intervention to 7 years thereafter were estimated by analyses of covariance (adjusted for sex and follow-up time). Musculoskeletal gains from study start to 7 years after termination of the intervention were higher in the intervention group (total body less head BMC +182.5 g [95% confidence interval [CI], 55.1–309.9] and BMD +0.03 g/cm² [95% CI, 0.003–0.05], femoral neck area + 0.2 cm² [95% CI, 0.1–0.4], and knee flexion peak torque muscle strength at 60 degrees per second + 9.2 Nm [95% CI, 2.9–15.5]). There was no attenuation during the 7 years that followed termination of the intervention (all group comparisons p > 0.05). Benefits in musculoskeletal gains remain 7 years after termination of a daily school-based PA program, without attenuation after termination of the program. Daily school PA may counteract low bone mass and inferior muscle strength in adulthood. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

KEY WORDS: DXA; CLINICAL TRIAL; EXERCISE; FRACTURE PREVENTION; GENERAL POPULATION STUDIES

Introduction

Thirty percent of children suffer fractures,1 and after age 50 years, the same applies to 50% of women and 22% of men,2 resulting in significant suffering and health care burden.3 However, risk factors for fracture have been identified that are addressable by intervention, such as low physical activity (PA).4–8 Because PA is accessible, easy to initiate, without adverse effects, and possible to implement on population-based level and at all ages, this may constitute an effective strategy for reducing lifelong fracture risk. Studies have also shown that increased PA is associated with benefits in bone mass, bone structure/size, and muscle strength, all traits associated with fracture risk.6–11 As 25% of the adult bone mass is acquired during 2 pubertal years12 and the greatest skeletal response to mechanical load occurs during prepubertal and early pubertal years,13 PA interventions early in life probably prove most effective at increasing bone mass in adulthood. Studies have also verified that population-based PA interventions in these years, with an intensity that allows all children to participate, are associated with musculoskeletal benefits,6–8 and low fracture incidence.7

PA school intervention studies in prepubertal and peripubertal children has uniformly shown increased total amount of PA, associated with benefits in bone mass and muscle strength.6–8,14,15 A high level of PA in childhood is also associated with high peak bone mass6–8 and low fracture incidence in adulthood.16–21 This is reasonable, as 50% of the variance in bone mass in old age is predicted by peak bone mass22 and a 10% increase in peak bone mass delays osteoporosis by 13 years.23 Others question this view, reporting that PA-induced high bone mass is attenuated if the level of activity is reduced.19,24,25 Our recent publication indicated that a school-based PA program is associated with beneficial effects that may remain into adolescence.26 However, because this study followed the participants for only a short period after...
the intervention terminated as well as being conflicted by a large drop out frequency, there is a need to repeat the follow-up with longer retirement period and higher attendance rate. Due to the conflicting results, there is a need for longitudinal, controlled intervention studies that follow individuals before initiation of a PA intervention, through the intervention, and thereafter. These studies should also focus on bone structure/size, because these traits contribute to bone strength and fracture risk independently of bone mass, and some studies indicate that exercise-induced benefits in bone mass are lost after reduction in PA, whereas benefits in bone size may be maintained. Muscle strength should also be followed, because it is closely related to PA and an independent predictor of fracture.

We hypothesized that musculoskeletal benefits related to PA in childhood remain in adulthood. As primary research question, we asked whether the musculoskeletal benefits that we found during the intervention with daily school PA remain 7 years after termination of the program, and our secondary question was whether termination of the intervention is associated with attenuation.

Subjects and Methods

Participants in the current study were collected from the Pediatric Osteoporosis Prevention (POP) study, a study for which previous publications have shown that the children with daily school PA gain a higher bone mass and muscle strength than children with regular school PA. The POP study is a population-based, prospective, controlled PA intervention study, with the primary aim of investigating whether daily school-based PA improves musculoskeletal traits. The study includes children from four government-funded, community-based, public elementary schools, with children admitted to each school based on domicile. All schools are situated in the same geographical area, with uniform socioeconomic status.

Before study start, all four schools had the same amount of PA (60 minutes per school week). The first school to join became the intervention school, where the amount of PA was increased to 200 minutes per school week (daily school classes of 40 minutes) throughout all nine compulsory school years. PA in Sweden is a compulsory subject, so all children had to participate. The intervention involved an extended time for the regular school PA curriculum, including gymnastics, team sports, running, and jumping. There were no specific extra high-impact activities included, known to be osteogenic. We had no registration as regard the proportion of different activities that were included in the curricula or proportion of impact and endurance exercise. Furthermore, we had no registration to what extent the children participated in the PA lessons, but PA classes are mandatory in Sweden, so all children had to participate. The three control schools continued with the same activities according to the national standard of 60 minutes per school week, provided in one to two classes per school week.

We invited all children that started first grade during 1998–2000 in the four schools to participate. The children were then 6 to 9 years old and 98% were of Caucasian ethnicity. A total of 217 of 237 children (123 boys and 94 girls) in the intervention and 132 of 327 (68 boys and 64 girls) in the control schools accepted the invitation. We excluded four boys and two girls in the intervention and one girl in the control schools with chronic diseases or medication that interfered with bone growth.

In the current study we re-evaluated the participants 7 ± 2 years (mean ± standard deviation (SD)) after termination of the intervention. Of the 342 children followed from baseline, 57 had moved out of the region, two had died, and one had a serious illness, rendering 282 potential participants. A total of 209 individuals (61% of the children who participated at baseline and 74% of those still living in the region) attended (Fig. 1). The follow-up evaluation included the same measurements as at baseline and the end of the intervention. A nonvalidated questionnaire evaluated lifestyle, including dairy intake, alcohol, smoking, at least one of the following medical conditions—asthma, chondroplasia, epilepsy, kidney disease, thyroid disease, diabetes, bowel disease—at least one of the following medications—cortisone, levaxin, liothyronine, insulin, antiepileptic drugs, antidepressants, contraceptives—and duration of weekly organized leisure-time PA. Bone mineral content (BMC; g) and bone mineral density (BMD; g/cm²) were measured in total body less head, arms, legs, spine, and left femoral neck, and lean and fat mass (kg) in total body by dual-energy X-ray absorptiometry (DXA). We used DPX-L® version 1.3z (Lunar Corporation, Madison, WI, USA) at baseline and at end of intervention, DXA-iDXA® version enCore 13.60 (Lunar Corporation) in 188 individuals, and DXA-Prodigy® version enCore 9.30 (Lunar Corporation) in 21 individuals at the 7-year postintervention follow-up. The DXA machines were calibrated daily by a phantom during the entire study period. There was no long-term drift. Muscle strength was measured as concentric isokinetic peak torque (PT) (Nm) and PT related to total body weight (PT/BW) (PT per total body weight × 100) for right knee flexion (iKEx) and right knee extension (iKEx) at a speed of 60 and 180 degrees per second by a computerized dynamometer (Biodex System III Pro®; Biodex Medical Systems Inc., Shirley, NY, USA). We used the highest PT value of five repeated flexion/extension movements. Research technicians performed all measurements. The coefficient of variation (%), evaluated by duplicate measurements in 13 healthy children, was 1.4% to 5.2% for BMC, 2.4% to 2.6% for BMD, 6.7% to 9.1% for PT/TeX, and 6.6% to 12.3% for PT/Ex.

Body height (cm) was measured with a Holtain Stadiometer (Holtein LTD, Pembrokeshire, UK) and body mass (kg) with an electric scale (Avery Berkel HL 120 Electric Scale; Avery Berkel, West Midlands, UK). Body mass index (BMI) was calculated as body weight divided by body height squared (kg/m²). A research nurse assessed Tanner stage at baseline, whereas self-assessment was used at follow-up.

In a first dropout analyses we used the compulsory Swedish first grade school health examinations and compared height, weight, and BMI in the children who agreed to participate at baseline with those who did not. Analyses revealed similar anthropometry; ie, no clinically relevant (or statistically significant) differences between groups. In the second dropout analysis we compared age, anthropometry, bone mass, and muscle strength in participants who attended the baseline and the 7-year postintervention examination with participants who attended baseline but not the 7-year postintervention examination. In these analyses too, we found no clinically relevant (or statistically significant) differences between groups (Supplemental Appendix 1).

We used Statistica version 12.0 (Statsoft, Inc., Tulsa, OK, USA) for statistical analyses. Descriptive data are presented as absolute numbers (n), proportions (%), means with SDs, and inferential statistics as age-adjusted mean differences with 95% confidence intervals (CIs). Study period changes were estimated during two separate periods: (i) the entire 15-year period (the 7-year postintervention values minus baseline values) and (ii) the 7-year period after termination of the intervention (7-year postintervention values minus the values at the end of the annual increase in bone area) which in turn is reduced by corticosteroids (corticosteroid use was 1.4% to 5.2% for BMC, 2.4% to 2.6% for BMD, 6.7% to 9.1% for PT/TeX, and 6.6% to 12.3% for PT/Ex).
intervention). Group differences during each of the two periods were evaluated by analysis of covariance (ANCOVA), adjusted for differences in the proportion of boys and girls and the duration of the follow-up period. Interaction terms (sex and group) were included in order to evaluate whether the intervention effects were different in boys and girls. To express differences between the two groups in SDs (Z-scores) we used the mean ± SD in the control cohort as reference. Sample sizes were at study start (1999) calculated as to be able to find a difference of 0.3 SDs between the intervention and control groups. We regarded p < 0.05 as a statistically significant difference. Written consent was obtained before study start from participants and parents/guardians of each participant. The study was approved by the Ethics Committee of Lund University (LU 453-98; 1998-09-15) and registered as a clinical trial (ClinicalTrials.gov NCT000633828).

Results

Sex-specific group characteristics at baseline

Baseline sex-specific group characteristics are presented in Table 1. All participants were in Tanner stage I at baseline and in Tanner stage V at follow-up.

Development in musculoskeletal traits during the entire 15-year study period

During the entire 15-year study period, we found greater gain in BMC (mean difference in total body less head +182.5 g [95% CI, 55.1 to 309.9]), BMD (mean difference in total body less head +0.03 g/cm² [95% CI, 0.003 to 0.05]), bone size (femoral neck area + 0.2 cm² [95% CI, 0.1 to 0.4]), and muscle strength (PT flex60 + 9.2 Nm [95% CI, 2.9 to 15.5]) in the intervention than in the control group (Table 2). This corresponds to +0.4 (95% CI, 0.1 to 0.7) SD higher gain in BMC, +0.3 (95% CI, 0.04 to 0.5) SD higher gain in BMD, +0.3 (95% CI, 0.1 to 0.5) SD higher gain in bone size, and +0.3 (95% CI, 0.1 to 0.5) SD higher gain in muscle strength (Fig. 2A). Interaction terms revealed that intervention was associated with greater effect in girls than in boys regarding BMD gain (p < 0.05 for gain in total body less head and leg), but similar development regarding bone size and muscle strength gain.

Changes in musculoskeletal traits during the 7-year period following termination of the intervention

We found no attenuation of the musculoskeletal benefits in children with daily school PA during the first 7 years after termination of intervention (all group comparisons p > 0.05) (Table 2, Fig. 2B). Interaction terms pointed to similar musculoskeletal development for boys and girls during this period (all p > 0.05).

Sex-specific group characteristics 7 years after termination of the intervention

Sex-specific group characteristics 7 years after termination of the intervention program are presented in Supplemental Appendix 2.

Discussion

In the POP cohort we have previously reported that a 9-year daily school PA intervention program is associated with higher gain in
Table 1. Anthropometry, Lifestyle Characteristics, Soft Tissue Composition, and Musculoskeletal Traits Measured With DXA and Biodex at School Start (Baseline)

Parameter	Boys (n = 108)	Girls (n = 101)	Mean difference (adjusted analysis)
Age (years)	7.6 ± 0.6	7.9 ± 0.7	n.a.
Anthropometry			
Height (cm)	128.1 ± 6.5	130.0 ± 6.8	−0.1 (−2.5, 2.3)
Weight (kg)	27.5 ± 5.4	27.7 ± 5.6	1.0 (−1.1, 3.2)
BMI (kg/m²)	16.7 ± 2.4	16.2 ± 1.9	0.7 (−0.3, 1.6)
Lifestyle, n (%)			
Exclusion of dairy products	1/72 (1%)	3/36 (8%)	n.a.
Any medical conditions	9/71 (13%)	2/36 (6%)	n.a.
Current medication	3/71 (4%)	0/36 (0%)	n.a.
Physical activity (hours/week)			
Total PA	6.2 ± 3.1	4.1 ± 3.0	2.1 (0.8, 3.4)
Soft tissue composition (kg)			
Total body fat mass	3.8 ± 3.2	3.6 ± 2.5	0.4 (−0.8, 1.7)
Total body lean mass	21.4 ± 2.9	21.9 ± 3.3	0.3 (−0.8, 1.5)
BMC (g)			
Total body less head	643.7 ± 147.1	666.1 ± 151.3	19.4 (−35.4, 74.3)
Arms	87.9 ± 19.2	88.9 ± 20.5	3.8 (−3.7, 11.48)
Legs	275.7 ± 68.1	288.6 ± 76.3	8.3 (−17.3, 34.0)
Spine	84.3 ± 20.6	85.9 ± 16.9	3.0 (−4.5, 10.5)
Hip – total hip	15.9 ± 3.3	16.2 ± 5.1	0.1 (−2.1, 2.3)
Hip – femoral neck	2.8 ± 0.6	3.0 ± 0.9	0.0 (−0.3, 0.3)
Hip – Wards triangle	1.2 ± 0.3	1.4 ± 0.9	−0.1 (−0.3, 0.2)
BMD (g/cm²)			
Total body less head	0.69 ± 0.05	0.70 ± 0.06	0.01 (−0.01, 0.03)
Arms	0.62 ± 0.04	0.61 ± 0.05	0.02 (0.00, 0.03)
Legs	0.75 ± 0.07	0.76 ± 0.08	0.01 (−0.01, 0.04)
Spine	0.68 ± 0.06	0.69 ± 0.05	0.00 (−0.03, 0.02)
Hip – femoral neck	0.77 ± 0.11	0.79 ± 0.12	0.01 (−0.04, 0.05)
Hip – Wards triangle	0.80 ± 0.13	0.84 ± 0.14	−0.02 (−0.07, 0.04)
Bone size (cm²)			
Hip – femoral neck	3.6 ± 0.4	3.7 ± 0.8	−0.0 (−0.3, 0.2)
Peak torque muscle strength (Nm)			
Knee extension (60 degrees)	41.1 ± 9.3	43.8 ± 11.6	−0.4 (−3.9, 3.1)
Knee extension (180 degrees)	33.9 ± 7.4	36.2 ± 8.9	−0.1 (−2.9, 2.7)
Knee flexion (60 degrees)	21.9 ± 6.9	24.9 ± 7.1	−1.4 (−4.0, 1.3)
Knee flexion (180 degrees)	19.6 ± 5.5	23.8 ± 6.6	−3.0 (−5.3, −0.7)
Knee extension TBW (60 degrees)	151.8 ± 24.2	160.2 ± 28.4	−3.2 (−13.3, 6.9)
Knee extension TBW (180 degrees)	125.6 ± 18.1	133.1 ± 20.5	−4.0 (−11.6, 3.5)
Knee flexion TBW (60 degrees)	80.0 ± 18.8	91.0 ± 19.9	−8.2 (−16.0, −0.3)
Knee flexion TBW (180 degrees)	72.2 ± 16.1	86.4 ± 12.3	−12.9 (−19.2, −6.6)

Data are presented as absolute numbers (n) with proportions (%) and means ± SDs. We used ANCOVA to estimate mean differences (95% CIs) adjusted for age. BMC = bone mineral content; BMD = bone mineral density; CI = confidence interval; DXA = dual-energy X-ray absorptiometry; n.a. = non-applicable; SD = standard deviation.
Table 2. Differences in Gain in Soft Tissue Composition and Musculoskeletal Traits Measured With DXA and Biodex, From Baseline to Follow-Up, and From End of Intervention to Follow-Up

Parameter	Gain from baseline (mean age 8 ± 17 years) to 7 years after the intervention terminated (mean age 23 ± 2 years) (n = 209)	Gain from end of the intervention (mean age 15 ± 1 years) to 7 years after the intervention terminated (mean age 23 ± 2 years) (n = 161)
	Intervention (n = 131) Control (n = 78) Mean difference (adjusted analysis) p (adjusted analysis)	Intervention (n = 108) Control (n = 53) Mean difference (adjusted analysis) p (adjusted analysis)
Follow-up period (years)	15.1 ± 2.0 14.2 ± 1.9 n.a. n.a.	7.4 ± 2.1 6.7 ± 2.2 n.a. n.a.
Anthropometry (kg)
Total body fat mass	16.4 (15.0, 17.7) 14.9 (13.2, 16.6) 1.4 (–0.8, 3.6) 0.20	6.7 (5.6, 7.9) 7.6 (6.0, 9.2) –0.9 (–2.8, 1.1) 0.39
Total body lean mass	29.0 (28.0, 30.1) 27.8 (26.5, 29.1) 1.2 (–0.4, 2.9) 0.15	4.8 (3.9, 5.8) 4.1 (2.8, 5.4) 0.8 (–0.9, 2.4) 0.35
BMC (g)
Total body less head	1749.1 (1672.5, 1825.7) 1586.8 (1491.3 1682.4) 182.5 (55.1, 309.9) 0.005	175.9 (1215.230.4) 186.0 (1082.263.8) –10.1 (–105.6, 85.5) 0.84
Arms	302.0 (292.6, 311.4) 297.7 (285.8, 309.6) 4.2 (–11.1, 19.7) 0.58	102.1 (93.0, 111.3) 102.6 (89.5, 115.7) –0.5 (–16.5, 15.6) 0.96
Legs	800.8 (776.4, 825.3) 759.5 (728.5, 790.4) 41.4 (1.4, 81.3) 0.04	117.2 (96.6, 137.7) 127.1 (97.7, 156.4) –9.9 (–45.9, 26.2) 0.59
Spine	133.5 (127.6, 139.4) 117.5 (109.9, 125.0) 16.0 (6.3, 25.7) 0.001	–53.2 (–62.3, –44.1) –56.7 (–69.7, –43.7) 3.5 (–12.4, 19.5) 0.66
Hip – femoral neck	3.0 (2.9, 3.2) 2.7 (2.5, 2.9) 0.3 (0.1, 0.6) 0.007	0.2 (0.1, 0.4) 0.2 (0.0, 0.4) 0.0 (–0.2, 0.3) 0.94
Hip – Wards triangle	1.8 (1.7, 1.9) 1.5 (1.4, 1.7) 0.3 (0.03, 0.5) 0.03	–0.2 (–0.3, 0.0) –0.3 (–0.5, –0.1) 0.1 (–0.2, 0.4) 0.45
BMD (g/cm²)
Total body less head	0.40 (0.38, 0.41) 0.37 (0.35, 0.39) 0.03 (0.003, 0.05) 0.02	0.05 (0.03, 0.06) 0.05 (0.03, 0.07) 0.00 (–0.03, 0.02) 0.77
Arms	0.19 (0.18, 0.20) 0.17 (0.15, 0.18) 0.02 (0.01, 0.04) 0.01	–0.04 (–0.06, –0.03) –0.05 (–0.07, –0.03) 0.01 (–0.04, 0.05) 0.48
Legs	0.56 (0.55, 0.58) 0.52 (0.50, 0.55) 0.04 (0.01, 0.07) 0.006	0.10 (0.09, 0.12) 0.10 (0.08, 0.12) 0.00 (–0.02, 0.03) 0.88
Spine	0.43 (0.41, 0.45) 0.39 (0.37, 0.42) 0.03 (0.00, 0.06) 0.02	0.08 (0.07, 0.10) 0.09 (0.07, 0.12) –0.01 (–0.04, 0.02) 0.55
Hip – femoral neck	0.35 (0.33, 0.37) 0.32 (0.29, 0.34) 0.04 (–0.00, 0.07) 0.06	0.05 (0.03, 0.07) 0.06 (0.03, 0.08) –0.01 (–0.04, 0.02) 0.60
Hip – Wards triangle	0.21 (0.19, 0.24) 0.17 (0.13, 0.20) 0.05 (0.00, 0.09) 0.03	–0.05 (–0.07, –0.03) –0.06 (–0.08, –0.03) 0.00 (–0.03, 0.04) 0.81
Bone size (cm³)
Hip – femoral neck	1.6 (1.5, 1.7) 1.4 (1.3, 1.5) 0.2 (0.1, 0.4) 0.009	0.0 (–0.1, 0.1) –0.1 (–0.2, 0.1) 0.0 (–0.1, 0.2) 0.08
Peak torque muscle strength (Nm)
Knee extension (60 degrees)	149.8 (142.7, 156.9) 141.3 (132.1, 150.6) 8.4 (–3.4, 20.3) 0.16	53.2 (45.9, 60.6) 55.4 (44.9, 65.8) –2.1 (–15.0, 10.8) 0.75
Knee extension (180 degrees)	102.4 (98.0, 106.7) 90.9 (85.2, 96.5) 11.5 (4.2, 18.8) 0.002	34.1 (29.0, 39.3) 33.2 (25.9, 40.6) 0.9 (–8.1, 9.9) 0.85
Knee flexion (60 degrees)	81.8 (78.0, 85.6) 72.6 (67.7, 77.5) 9.2 (2.9, 15.5) 0.004	26.3 (21.9, 30.6) 24.0 (17.8, 30.2) 2.3 (–5.3, 9.9) 0.55
Knee flexion (180 degrees)	55.1 (52.1, 58.0) 47.1 (43.4, 50.9) 7.9 (3.1, 12.8) 0.001	13.9 (10.6, 17.2) 14.9 (10.3, 19.6) –1.0 (–6.7, 4.8) 0.73
Table 2. Continued

Parameter	Intervention (n = 131)	Control (n = 78)	Mean difference (adjusted analysis)	p (adjusted analysis)	Intervention (n = 108)	Control (n = 53)	Mean difference (adjusted analysis)	p (adjusted analysis)
Peak torque muscle strength relative to total body weight (TBW)								
Knee extension TBW (60 degrees)	81.6 (74.1, 89.1)	84.0 (74.3, 93.7)	−2.4 (−14.9, 10.1)	0.70	11.9 (4.0, 19.8)	14.1 (2.9, 25.4)	−2.3 (−16.1, 11.6)	0.75
Knee extension TBW (180 degrees)	42.3 (37.9, 46.8)	36.1 (30.3, 41.8)	6.3 (−1.1, 13.7)	0.10	−5.3 (−15.6, 5.1)	0.8 (−13.9, 15.5)	−6.1 (−24.1, 12.0)	0.51
Knee flexion TBW (60 degrees)	48.4 (44.1, 52.7)	38.1 (32.5, 43.6)	10.3 (3.2, 17.5)	0.005	−0.9 (−6.4, 4.5)	−2.7 (−10.5, 5.1)	1.8 (−7.8, 11.4)	0.71
Knee flexion TBW (180 degrees)	19.9 (16.1, 23.6)	8.8 (3.9, 13.6)	11.1 (4.9, 17.3)	<0.001	−11.1 (−17.8, −5.8)	−5.4 (−13.9, 3.2)	−6.4 (−16.9, 4.0)	0.23

Of the individuals in this study, 48 did not participate in the last evaluation during the intervention period. Data are presented as absolute numbers (n) and means ± SDs. We used ANCOVA to estimate mean differences (95% CIs) adjusted for duration of follow-up period and sex. Statistically significant group differences are in bold.

BMC = bone mineral content; BMD = bone mineral density; CI = confidence interval; DXA = dual-energy X-ray absorptiometry; n.a. = non-applicable; SD = standard deviation.
Study strengths include the prospective, controlled, population-based study design, a period examined from childhood to adulthood, and data was available before the intervention was initiated. Study limitations include the small sample size and the high dropout frequency, with risks for selection bias and type II error. However, the dropout analyses oppose selection bias, and we compared all children together and not by sex to reduce the risk of type II error. A longer postintervention follow-up period would have been beneficial, because we do not know whether the benefits remain in a longer perspective. Because most children were of Caucasian ethnicity, living in a middle-class area, it is questionable if inferences can be transferred to other ethnic groups and/or socioeconomic settings. The lack of individual randomization is another weakness, but the schools refused this at study start due to practical problems with schedules. Further limitations include lack of objectively measured amount of PA.

We conclude that benefits in musculoskeletal gain achieved by daily school PA remain in young adulthood, 7 years after termination of the intervention program, without attenuation. Daily school PA seems to be one strategy on population-based level to counteract low bone mass and inferior muscle strength in young adulthood.

Acknowledgment

Funding was received from Avtal om Läkarutbildning och Forskning Region SKåne (ALF; 2014/42406), FoUU (2014/437611), Herman Jarnhard Foundation (2016/2017), Kock Foundation.
(2015/2017), and Skane University Hospital Foundations (2019/2020).

Authors’ roles: BER and MKK: Conceptualization; data curation; funding acquisition; investigation; methodology; supervision; validation; writing review-editing. JR: Data curation; formal analysis; investigation; methodology; writing review-editing. LJ: Conceptualization; data curation; formal analysis; investigation; methodology; validation; writing review-editing. MD: Investigation; methodology; writing review-editing.

Conflict of Interest

None of the authors have any conflict of interest.

PEER REVIEW

The peer review history for this article is available at https://publons.com/publon/10.1002/jbm4.10566.

References

1. Cooper C, Dennison EM, Leufkens HG, Bishop N, van Staa TP. Epidemiology of childhood fractures in Britain: a study using the general practice research database. J Bone Miner Res. 2004;19(12):1976-1981.
2. Jönell O, Kaniis J. Epidemiology of osteoporotic fractures. Osteoporos Int. 2005;16(Suppl 2):S3-S7.
3. Borgstrom F, Zetheraus N, Jónnell O, et al. Costs and quality of life associated with osteoporosis-related fractures in Sweden. Osteoporos Int. 2006;17(S):637-650.
4. Clark EM, Ness AR, Bishop NJ, Tobias JH. Association between bone mass and fractures in children: a prospective cohort study. J Bone Miner Res. 2006;21(9):1489-1495.
5. Karlsson MK, Vonschewelov T, Karlsson C, Coster M, Rosengren BE. Prevention of falls in the elderly: a review. Scand J Public Health. 2013;41(5):442-454.
6. Cronholm F, Lindgren E, Rosengren BE, Dencker M, Karlsson C, Karlsson MK. Daily school physical activity from before to after puberty improves bone mass and a musculoskeletal composite risk score for fracture. Sports (Basel). 2020;8(4):40.
7. Coster ME, Rosengren BE, Karlsson C, Dencker M, Karlsson MK. Effects of an 8-year childhood physical activity intervention on musculoskeletal gains and fracture risk. Bone. 2016;93:139-145.
8. Linden C, Ahlborg HG, Besjakov J, Gardsell P, Karlsson MK. A school curriculum-based exercise program increases bone mineral accrual and bone size in pubertal girls: two-year data from the Pediatric Osteoporosis Prevention (POPy) study. J Bone Miner Res. 2006;21(6):829-835.
9. Tinetti ME, Baker DI, McAway G, et al. A multifactorial intervention to reduce the risk of falling among elderly people living in the community. N Engl J Med. 1994;331(13):821-827.
10. Heinonen A, Kannus P, Sievanen H, et al. Randomised controlled trial of effect of high-impact exercise on selected risk factors for osteoporotic fractures. Lancet. 1996;348(9038):1343-1347.
11. Behringer M, Gruetzner S, McCourt M, Mester J. Effects of weight-bearing activities on bone mineral content and density in children and adolescents: a meta-analysis. J Bone Miner Res. 2014;29(2):467-478.
12. Bailey DA, McKay HA, Mirwald RL, Crocker PR, Faulkner RA. A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: the University of Saskatchewan Bone Mineral Accrual Study. J Bone Miner Res. 1999;14(10):1672-1679.
13. Kannus P, Haapasalo H, Sankelo M, et al. Effect of starting age of physical activity on bone mass in the dominant arm of tennis and squash players. Ann Intern Med. 1995;123(1):27-31.
14. Gunter K, Baxter-Jones AD, Mirwald RL, et al. Jump starting skeletal health: a 4-year longitudinal study assessing the effects of jumping on skeletal development in pre and circum pubertal children. Bone. 2008;42(4):710-718.
15. Meyer U, Roth R, Zahner L, et al. Contribution of physical education to overall physical activity. Scand J Med Sci Sports. 2013;23(5):600-606.
16. Karlsson MK, Linden C, Karlsson C, Jónnell O, Obrant K, Seeman E. Exercise during growth and bone mineral density and fractures in old age. Lancet. 2000;355(9202):469-470.
17. Tveit M, Ahlborg H, Rosengren B, Nilsson J-A, Karlsson M. Bone loss and fracture risk after high level of physical activity at growth and young adulthood. J Bone Miner Res. 2010;25(1). [Poster session presented at: Annual Meeting American Society for Bone and Mineral Research (ASBMR); 2010 Oct 15–19; Toronto, ON, Canada; Presentation Number: SU0293]. Available from: https://www.asbmr.org/education/AbstractDetail?aid=5b51b27b-837f-4154-b217-4b17b4f4c15.
18. Tveit M, Rosengren BE, Nilsson JÅ, Karlsson MK. Exercise in youth: High bone mass, large bone size, and low fracture risk in old age. Scand J Med Sci Sports. 2015 Aug;25(4):453-61. https://doi.org/10.1111/sms.12905.
19. Nordstrom A, Karlsson C, Nyquist F, Olsson T, Nordstrom P, Karlsson M. Bone loss and fracture risk after reduced physical activity. J Bone Miner Res. 2005;20(2):202-207.
20. Ravi S, Kujala UM, Tammelin TH, et al. Adolescent sport participation and age at menarche in relation to midlife bone composition, bone mineral density, fitness, and physical activity. J Clin Med. 2020;9(12):3797.
21. Erlandsson MC, Kontulainen SA, Chillibeck PD, Arnold CM, Faulkner RA, Baxter-Jones AD. Higher premenarcheal bone mass in elite gymnasts is maintained into young adulthood after long-term retirement from sport: a 14-year follow-up. J Bone Miner Res. 2012;27(1):104-110.
22. Hui SL, Slemenda CW, Johnston CC Jr. The contribution of bone loss to postmenopausal osteoporosis. Osteoporos Int. 1990;1(1):30-34.
23. Hernandez CJ, Beaupre GS, Carter DR. A theoretical analysis of the relative influences of peak BMD, age-related bone loss and menopause on the development of osteoporosis. Osteoporos Int. 2003;14(10):843-847.
24. Gustavsson A, Olsson T, Nordstrom P. Rapid loss of bone mineral density of the femoral neck after cessation of ice hockey training: a 6-year longitudinal study in males. J Bone Miner Res. 2003;18(11):1964-1969.
25. Valdimarsson O, Alborg HG, Duppe H, Nyquist F, Karlsson M. Reduced training is associated with increased loss of BMD. J Bone Miner Res. 2005;20(6):906-912.
26. Rosengren BE, Lindgren E, Jephsson L, Dencker M, Karlsson MK. Musculoskeletal benefits from a physical activity program in primary school are retained 4 years after the program is terminated. Calcif Tissue Int. 2021;109(4):405-414.
27. Duan Y, Seeman E, Turner CH. The biomechanical basis of vertebral body fragility in men and women. J Bone Miner Res. 2001;16(12):2276-2283.
28. Daly RM, Bass SL. Lifetime sport and leisure activity participation is associated with greater bone size, quality and strength in older men. Osteoporos Int. 2006;17(8):1258-1267.
29. Warden SJ, Fuchs RK, Castillo AB, Nelson IR, Turner CH. Exercise when young provides lifelong benefits to bone structure and strength. J Bone Miner Res. 2007;22(2):251-259.
30. Specker B, Binkley T, Fahrenwald N. Increased periosteal circumference remains present 12 months after an exercise intervention in preschool children. Bone. 2004;35(6):1383-1388.
31. Rosengren BE, Ribom EL, Nilsson JÅ, Mallmin H, Ljunggren O, Olhsson C, Målström D, Lorentzon M, Stefanick M, Lapidus J, Leung PC, Kwok A, Barrett-Connor E, Orwell E, Karlsson MK. Inferior physical performance test results of 10,908 men in the MrOS Study is associated with high fracture risk. Age Ageing. 2012 May;41(3):339-344. https://doi.org/10.1093/ageing/afs010.
32. Tanner JM, Whitehouse RH. Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty. Arch Dis Child. 1976;51(3):170-179.
33. Srinivasan B, Kopperdahl DL, Amin S, et al. Relationship of femoral neck areal bone mineral density to volumetric bone mineral density, bone size, and femoral strength in men and women. Osteoporos Int. 2012;23(1):155-162.
34. Szulc P. Bone density, geometry, and fracture in elderly men. *Curr Osteoporos Rep*. 2006;4(2):57-63.
35. Ruff CB, Hayes WC. Sex differences in age-related remodeling of the femur and tibia. *J Orthop Res*. 1988;6(6):886-896.
36. Lahti A, Rosengren BE, Nilsson JA, Karlsson C, Karlsson MK. Long-term effects of daily physical education throughout compulsory school on duration of physical activity in young adulthood: an 11-year prospective controlled study. *BMJ Open Sport Exerc Med*. 2018;4(1):e000360.
37. Trost SG. Objective measurement of physical activity in youth: current issues, future directions. *Exerc Sport Sci Rev*. 2001;29(1):32-36.
38. Kemmler W, Kohl M, Frohlich M, Schoene D, von Stengel S. Detraining effects after 18 months of high intensity resistance training on osteosarcopenia in older men—six-month follow-up of the randomized controlled Franconian Osteopenia and Sarcopenia Trial (FrOST). *Bone*. 2021;142:115772.