Identification of a locus for autosomal dominant high myopia on chromosome 5p13.3-p15.1 in a Chinese family

Jun-Hua Ma,1 Shu-Hong Shen,2 Guo-Wei Zhang,3 Dong-Sheng Zhao,4 Chao Xu,1 Chun-Ming Pan,1 He Jiang,1 Zhi-Quan Wang,1 Huai-Dong Song1

(The first three authors contributed equally to the work)

1Ruijin Hospital, State Key Laboratory of Medical Genomics, Molecular Medicine Center, Shanghai Institute of Endocrinology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; 2Department of Hematology/Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; 3School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China; 4Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China

Purpose: Myopia and its extreme form, high myopia, are common vision disorders worldwide, especially in Asia. Identifying genetic markers is a useful step toward understanding the genetic basis of high myopia, particularly in the Chinese population, where it is highly prevalent. This study was conducted to provide evidence of linkage for autosomal dominant high myopia to a locus on chromosome 5p13.3-p15.1 in a large Chinese family.

Methods: After clinical evaluation, genomic DNA from 29 members of this family was genotyped. A genome-wide screen was then performed using 382 markers with an average inter-marker distance of 10 cM, and two-point linkage was analyzed using the MLINK program. Mutation analysis of the candidate genes was performed using direct sequencing.

Results: Linkage to the known autosomal dominant high myopia loci was excluded. The genome-wide screening identified a maximum two-point LOD score of 3.71 at θ=0.00 with the microsatellite marker D5S502. Fine mapping and haplotype analysis defined a critical region of 11.69 cM between D5S2096 and D5S1986 on chromosome 5p13.3-p15.1. Sequence analysis of the candidate genes inside the linked region did not identify any causative mutations.

Conclusions: A genetic locus was mapped to chromosome 5p13.3-p15.1 in a large Chinese family with autosomal dominant high myopia.

Myopia, the most common eye disease worldwide, is also the leading cause of visual impairment [1]. The prevalence of myopia has been increasing in recent decades, especially in East Asian areas such as Japan, Singapore, and China [2-4]. The Chinese appear to be more susceptible to myopia than other populations. The prevalence of myopia in primary school children aged 5 to 16 years of Hong Kong is 36.71% [5]. In adult persons more than 40 years old, Chinese residing in Singapore have a prevalence of myopia as high as 38.7%, while the prevalence observed in European-derived populations in United States and Australia are 26.2% and 17% respectively [3,6,7]. High myopia, which is defined as a refractive error equal to or below −6.00 diopters (D), is also more prevalent in Chinese than Caucasian populations [3,8]. Individuals with high myopia have a greater chance of subsequently developing serious complications, including glaucoma, retinal detachment, and choroidal neovascularization, which if not treated early and appropriately, may lead to permanent visual impairment or blindness [9-11].

Genetic and environmental factors both contribute to the development of myopia. Environmental factors such as work at close range and prolonged reading are suggested to be involved in the progression of myopia [1,12,13] and a body of evidence supports the idea that heredity plays a central role in the etiology of myopia. Twin studies have reported a high degree of heritability for myopia, with monozygotic twins being more highly correlated than dizygotic twins [14,15]. In addition, the children of parents with myopia tend to have myopia more frequently than children of parents without myopia [16].

The inheritance of high myopia is equivocal. It may be inherited as an autosomal dominant, autosomal recessive, or X-linked recessive trait. Genetic mapping studies have identified at least 18 chromosomal regions suspected of harboring a myopia gene. X-linked recessive inheritance myopia has been mapped on Xq28 (MYP1) and Xq23–25 (MYP13) [17,18]. In addition, Yang et al. [19] found that the locus at 14q22.1-q24.2 (MYP18) was responsible for high myopia in a consanguineous Chinese family in an autosomal recessive pattern. Some research groups focusing on
Autosomal dominant high myopia have identified suggestive linkages on chromosome 18p11.31 (MYP2) [20], 12q21–23 (MYP3) [21], 7q36 (MYP4) [22], 17q21–22 (MYP5) [23], 4q22–q27 (MYP11) [24], 2q37.1 (MYP12) [25], 10q21.1 (MYP15) [26], and 5p15 (MYP16) [27]. Furthermore, certain loci have also been implicated in common myopia: 22q12 (MYP6) [28], 11p13 (MYP7), 3q26 (MYP8), 4q12 (MYP9), 8p23 (MYP10) [29], 1p36 (MYP14) [30], and 7p15 (MYP17) [31].

Identifying the genetic markers for myopia would be a useful step toward understanding the molecular defects that lead to the pathophysiology of myopia.

In this study, we recruited a four-generational Chinese family with autosomal dominant high myopia. Through genome-wide screening and linkage analysis, we mapped the disease to a locus on chromosome 5p13.3-p15.1.

Figure 1. Pedigree and haplotype diagram of the family. Circles and squares denote females and males, respectively; blackened symbols denote affected individuals; a diagonal line through a symbol means that the individual is deceased. Haplotypes were constructed on the basis of the minimum number of recombinations between these markers. Solid bar: the chromosome assumed to carry the inherited disease allele; open bar: normal haplotypes. Only essential members are shown; nonparticipating family members were excluded. For individuals IV:2, only one set of parental-allele information was available; therefore, the genotype information was indeterminate (denoted by question marks) for markers D5S416 and D5S385. Individual III:17 was recombinant for the telomeric marker D5S2096. Individuals III:7 and III:11 were recombinant for the centromeric marker D5S1986.
METHODS

Family and clinical evaluation: A large family with autosomal dominant high myopia was identified in Zhejiang province, China. This family contained 11 affected individuals over four generations. Participating in this study were 29 individuals (aged 11 to 80 years): 10 affected and 19

Subject	Gender	Myopia phenotype	Age at onset (years)	Age at exam (years)	Refractive Error OD	Refractive Error OS	Axial Length (OD:OS [mm])
II:1	F	A	7	80	−11.00DS	−16.00DS	29.24; 30.10
II:5	F	A	8	79	−10.50DS −0.50DC×90	−12.00DS	27.92; 27.57
III:1	M	NA	45		+1.00DS	−2.00DC×100	+1.00DS
III:2	F	A	11	43	−2.50DS	−11.50DS	22.62; 26.80
III:3	M	NA	49		+0.50DS sph	−1.50DC×100	23.04; 23.01
III:5	M	NA	55		+0.75DC×180	+0.75DC×180	24.11; 24.20
III:6	F	NA	48		+1.00DS	+1.00DS	22.82; 22.59
III:7	M	A	6	41	−24.00DS	−26.00DS	31.42; 31.18
III:8	M	NA	46		−4.50DS	−3.50DS	25.40; 25.51
III:9	F	A	11	43	+0.50DS	−15.50DS	22.92; 28.81
III:10	F	NA	37		+0.50DS	+1.00DS sph	22.61; 22.03
III:11	M	A	6	40	−16.00DS	+0.50DS	31.21; 25.60
III:12	F	NA	36		+0.50DS sph	+0.50DS sph	22.72; 22.49
III:13	M	A	5	45	−10.00DS sph	−9.00DS	29.40; 29.32
III:14	F	NA	36		+1.00DS	+1.00DS sph	23.41; 23.02
III:15	M	NA	41		+0.50DS sph	+0.50DS sph	23.42; 23.57
III:16	F	NA	39		+0.75DS sph	+0.75DS sph	23.02; 23.11
III:17	M	A	5	46	−17.00DS sph	−15.00DS sph	29.54; 31.56
III:18	M	NA	58		+1.00DS	+1.00DS	23.78; 23.81
III:19	F	NA	58		+1.00DS	+1.00DS	22.45; 22.37
IV:1	F	A	6	15	−13.00DS	−10.00DS	28.27; 27.73
IV:2	F	NA	25		−3.00DC×10	−5.00DC×165	23.30; 23.02
IV:3	F	NA	28		−5.50DS sph	−5.00DS	25.41; 25.50
IV:4	F	NA	17		−4.25DS	−5.00DS	25.55; 25.72
IV:5	F	NA	11		−1.00DC×170	−1.00DC×170	22.31; 22.49
IV:6	M	NA	16		−1.00DS sph	−1.00DS	24.41; 24.29
IV:7	M	NA	13		+0.50DS sph	+0.50DS	23.95; 23.86
IV:8	M	NA	30	+1.50DC×90	+1.75DC×90	22.67; 23.93	
IV:9	M	A	4	32	−6.50DS	−8.00DS	28.03; 27.81

In the table, “A” indicates affected; “NA” indicates not affected; “M” indicates male; “F” indicates female; “OD” indicates right eye; “OS” indicates left eye; “NP” indicates not preformed; “sph” indicates sphere; and “mm” indicates millimeters.
Exon	Primer Sequence (F,R)	Melting Temperature (°C)	Product Size (bp)
CDH6			
1	F:CAGACGGAGTCTAACAAGGTCTGAG		
 | R:GCCCTTTGGTAATGTGACCAGC | 58 | 824 |
| 2 | F:GCACTAGCTCTCTTAGGCTCCATCTTCATTCAG
 | R:GGTTGAGGTTGTTTCAACTGG | 59 | 770 |
| 3 | F:CTCCAAAACCTCTGTCGATCCAGTTC
 | R:TCTCCCTCAACTCCCCACTCC | 57 | 775 |
| 4 | F:CCAAAGTTTCGACTTCTCTCAG
 | R:GTGTTTTGATGTGAGTATGCAAAC | 57 | 369 |
| 5 | F:ATCAATCTCTCTCTGTTGTTGG
 | R:TCCTGAGTGTGATGCCATGTTG | 57 | 521 |
| 6 | F:AAGAAGAAGACAGCCACACCATTAG
 | R:GCTTTGGCCATGTGTTGGTCTC | 56 | 583 |
| 7 | F:CATTCTTTCCCGGCTGTGG
 | R:CATCTCTCTCAAGTGCAGGC | 56 | 592 |
| 8 | F:GGTGAAGGCTAAAGCTGCAAC
 | R:GAAACATTACTGCAAACACTCC | 57 | 538 |
| 9 | F:GTCTAAAGGGGAACGGCAATGG
 | R:TGGGAATCTAGCAGTTTCTTGTC | 57 | 397 |
| 10 | F:TACTGATATCTCTGTTGGTGAAGGC
 | R:GCAAAGTTGTTGAAGTTGTTG | 57 | 552 |
| 11 | F:GCCATGGTACTCAGCATGCATTCC
 | R:CTCTGACTTCTCTGTTGGTACTG | 57 | 573 |
| 12 | F:ATCATGATGGAGGAAGGCAAGT
 | R:AAAGGTGAGAACAGAGGAAAGCC | 58 | 756 |
| CDH10| | | |
| 1 | F:CTATCAGCGAAGACCTCTTCTCTCGG
 | R:CAAACATTCTCTTCCTCCCTTCCTCC | 58 | 562 |
| 2 | F:CACAACAGAAGGGTGATTCC
 | R:TGCTCTCTACACTGAAACTACAAGC | 59 | 603 |
| 3 | F:TATACCAAGCAAGCAAGCAAGAC
 | R:CAGACTATCGCTCAGATCCAGACC | 57 | 672 |
| 4 | F:TCTACGATGACAAATCGAAGGAGG
 | R:TTGCTCTCTTCCTGTTGCTGACTTG | 57 | 626 |
| 5 | F:TTTCTCCTCTCTGTTGCAGTCTCCAC
 | R:GCTATGCTGTTGGTTACCTG | 57 | 600 |
| 6 | F:TGTAGTTGCTAGGAAAAGGTGTAAC
 | R:GGATCATAGGTCCTTCTTGCTCTG | 57 | 611 |
| 7 | F:AAAGGCCCGGAGATTTCTAG
 | R:CAGGGTTTTCTCTACTCAACACC | 59 | 467 |
| 8 | F:TTGTAACGTTGGGAGCATATC
 | R:AGTATGAGAGGGTTTTGACATCC | 56 | 521 |
| 9 | F:TTGTAGTTGCTAGGAAAAGGTGTAAC
 | R:GGATCATAGGTCCTTCTTGCTCTG | 57 | 600 |
| 10 | F:GCTATGCTGTTGGTTACCTG | R:GGATCATAGGTCCTTCTTGCTCTG | 57 | 611 |
| 11 | F:GCAATCTCTCTTCTACTCAACAC
 | R:ATCTCCAGCCGGTTCTTATCTTCTATC | 56 | 587 |
| 12-1 | F:GGAACACTACACAGCAAGATG
 | R:TTTCAAGGCTCTCCTACAACATGC | 57 | 997 |
| 12-2 | F:GCAATCTCTCTTCTACTCAACAC
 | R:ATCTCCAGCCGGTTCTTATCTTCTATC | 56 | 587 |
| CDH12| | | |
| 1 | F:CAGGTGACAGGTTCTCTGATG
 | R:ATCCCAATCAAAAGGCAAGACAG | 55 | 679 |
| 2 | F:CAATAGTGATATCTAACTGAGG
 | R:TTGTGTTTTTATGCTCAACTCCTTG | 57 | 398 |
Table 2. Continued.

Exon	Primer Sequence (F,R)	Melting Temperature (°C)	Product Size (bp)
3	F: TGCTGATAGGATGTGGGC		
 | R: TCCAGTCGTTGGAAGAGTG | 56 | 403 |
| 4 | F: AGCGTTCTTGCTAACTAGTCC
 | R: GAAATTGCTGCGATCAGTCC | 55 | 367 |
| 5 | F: GGCGAGATATAATGAGGCTGTG
 | R: CCTCCTCTCACAGGGTGTGCC | 56 | 537 |
| 6 | F: TGCCCAATCTCTTTTAATGTTG
 | R: TGTGAAGGAGTCTCATTGATCTC | 57 | 421 |
| 7 | F: CGATGCTGACGATGAAGAGTCATG
 | R: GGGCTGTTGATAATGGTGGCCTC | 58 | 233 |
| 8 | F: ATATTCTCATTGTTGGCACGTC
 | R: GCTTCTTAAAGACTAAGTGGTCTGG | 57 | 511 |
| 9 | F: GGCAGATTAAATCTGAGCAGC
 | R: CACCAGTGATCGATACCCCAAC | 59 | 560 |
| 10 | F: TCACCATTTCCTGCACCTTC
 | R: CATCATGACGTTTGGAGACAG | 57 | 414 |
| 11 | F: TTTCCTTGGACGACTAGTAC
 | R: GAAAAACATTCAGAGGAGGAC | 55 | 399 |
| 12 | F: TGAGAGCAATAAATCTAGCAG
 | R: TCATCTGTGGGTATCACCTTC | 56 | 384 |
| 13 | F: CCTCTTGAAAAGTATGACCG
 | R: ACAATGCAAAGGAGAAGGGCC | 58 | 366 |
| 14 | F: CATTAGGACGATACAACAGATGTGAAG
 | R: AAAAAAGGAGAGAGACGAG | 55 | 385 |
| 15-1 | F: CATCAGAAAACCTAAGCAGC
 | R: GATACTCAGTCTGGTCTGGC | 55 | 521 |
| 15-2 | F: CTGCCCAACATACGACTTG
 | R: TAAGGCTGACGCTGTTGTCATC | 57 | 494 |
| 15-3 | F: TCAGCAAAACAGGAAGTACCTCC
 | R: ATTTCAGCCTGAGGAGCCCTC | 57 | 632 |
| PDZD2 | PDZD2 | PDZD2 | PDZD2 |
| 1-1 | F: CTCTTCTCTTCCTCCAGGTTGTA
 | R: AGGTGCAGCAGCAGGATTG | 58 | 410 |
| 1-2 | F: AGCGCTGAGAATAGACAGGC
 | R: TGCGTCTCCAGTTGAAGATGTG | 60 | 776 |
| 2 | F: AAAAGGAGAGAGGAGACGAG | 55 | 720 |
| 3 | F: CAGGTTGATTTCTCCGCTAG
 | R: CAGGTTGACCTGACAGCAGC | 59 | 615 |
| 4 | F: TTGACAGAGGTTGATTTCA
 | R: ACAATGGAAGAGAAGGGCC | 58 | 587 |
| 5 | F: TGCGGACCTGACCTCCAG
 | R: CCGGTCTCTTGTGGACTTCC | 58 | 425 |
| 6 | F: GAATTTCTGAGGCATATTGC
 | R: TTGCAAAACTGGGAGACTCCCTC | 59 | 671 |
| 7 | F: GCCCGAGATATAATGAGGCTGTG
 | R: CTATGAGGCTGCACTTCCCTC | 58 | 630 |
| 8 | F: TTTTCTGAGAGGTTGTCCTCAG
 | R: GCAGATGCTGCTGCTGCTGCC | 58 | 639 |
| 9 | F: TGCAATGGCTGTAGCTGCTAATC
 | R: CCCGCCCAAGCTACAGGCAG | 59 | 592 |
| 10 and 11 | GTGACATTCCTGGAGCTAAGCTA
 | R: AGAGGCATGCTGCTGCTGCTCC | 58 | 816 |
| 12 | F: GCGATGAGCCTTCATATACCCAAAG
 | R: GGGAGGCTAAGCTAAGTCTCAG | 58 | 529 |
| 13 | F: GCATGAGCTCGGCTGCTGCTAATC
 | R: CCAGGCTAAGATAGTTGGAGGC | 59 | 575 |

Molecular Vision 2010; 16:2043-2054 <http://www.molvis.org/molvis/v16/a220> © 2010 Molecular Vision
Exon	Primer Sequence (F,R)	Melting Temperature (°C)	Product Size (bp)
14	F: GGAGGATGTGCATAATCTCTTG	58	691
	R: CTATGTCACCTCTGCTCTGCTG	58	
15	F: CTGGGATCGATCGAGTATTAGT	59	584
	R: TAAAGCCCCAGTTGCTGATCTC	60	
16	F: GTTGTCACATTTAGCCCTTGAG	57	579
	R: AGTACGGATGGGTTTCCCTGATG	59	
17-1	F: AGCCATGTTGCTAAGGCACTT	60	583
	R: CCTGCTACTTCTGGCTACTC	58	
17-2	F: GACAGAGAAGGGGACTGATT	57	725
	R: CCAGCCCATCATCCTTTCCTCC	59	
18	F: TGGATCTGCTGGCTCTAGTCT	58	430
	R: TCTCAAAACTCTGACCTTCAAAGTG	57	
19-1	F: GCTGGTCTGCAACTCTGAGCC	60	657
	R: AGGGCTCATGAGTCTGTCATT	59	
19-2	F: ACAATACCGGAGGCTGCTG	60	820
	R: CCTGTCGAAAGACACAGGGG	59	
19-3	F: GACAGACCTCTCCCTATAGGC	60	800
	R: CATGATGGGCTCTCTACTGCG	60	
19-4	F: GCATTAAATGCGCTGCACTC	59	705
	R: GCGAGCACAAGTCTCGTAGTGC	59	
19-5	F: TGACAGGAAACACACAGCTG	58	721
	R: GTATTCACTCTTCTAATGGGCTG	56	
19-6	F: AACAGGTCTATCAGGCAGGT	59	630
	R: ATCCGGCTGCTTCACAGAAA	57	
19-7	F: TATATAGTGGAAGCCGCTGCTGG	59	779
	R: TGGGAACTTCCTGACTTACCTG	59	
20	F: ATCTCATGACTGCTCCCTTTGCC	60	520
	R: CTGAAGCTGCTAGCAGCAC	58	
21	F: AGAACCTTTAGGGGCTGTTG	57	638
	R: AAGGTGACCTCTGTGATGTC	59	
22	F: GAGGCTCAGAATTGCACACTG	59	765
	R: CCTTACCGCTCTAACAAGAGGC	57	
23	F: AGTGTGCTACCTGGCTCAAGTG	58	511
	R: GGGATAATGAGTCACGCCCACTC	57	
24-1	F: ACAGATTATGTTGAGGGGC	57	675
	R: TCACATCTTGGATCCCATACGTA	57	
24-2	F: TGTTGCACACTGCAATGAAATTAAC	56	732
	R: TGCTCTGGACTGACGACTGTC	55	
24-3	F: TAGAGGGAGCAAAAGGTCACA	59	771
	R: TCATGCAACAGGGTATGCGAA	60	
24-4	F: GTAAGGGAGCAGAAATGAGATTAC	56	722
	R: AGGCTCTACCTTTGTACTCCAGATAT	55	
24-5	F: TTAAATTAAAGACGCAAGCCCTA	56	844
	R: GTACCCTGTAGCATTAGTGAG	56	

GLOPH3

Exon	Primer Sequence (F,R)	Melting Temperature (°C)	Product Size (bp)
1	F: TAAATTAAACTCCGCCGCCGA	60	776
	R: GGGAGGGATCCAGAAAGCA	59	
2	F: TGGGGTGAACATGATATTCTTGG	59	814
	R: TATGTCCTTGCTGACCTGCA	60	
3	F: GCTACTGAGTCTAGGCAATTTTCTAT	56	637
	R: TACCACACAGGCTTAAACTGACC	58	
4-1	F: GGTCTGGCTAGGCTTAAGG	60	613
	R: GAATGTTTCACCCCGAGCA	60	
4-2	F: AAGAGAGTCGCGGCAAGCTTCTC	60	734
	R: CCCATCCCACACTGGCTCCT	58	
4-3	F: GGCCCTCAAACCTCAAAGGTA	59	679
	R: TACATGCAACATCTGCTAGACTG	58	
unaffected (Figure 1). The study conformed to the guidelines involving human research as stated in the Declaration of Helsinki. Informed consent was obtained from every subject after an explanation of the nature, procedures and possible consequences of the study. This family was chosen based on the presence of numerous male and female family members and successful multiple generations with high myopia, suggesting an autosomal dominant mode of inheritance. Individuals with a spherical refractive error equal to or lower than −6.00 D, axial length longer than 26 mm in at least one eye and a history of myopia onset before 12 years of age were considered affected. Ophthalmology examination was performed for all of the members. No participant had any known ocular disease or insult that could predispose to myopia, such as a history of retinopathy of premature or neonatal problems, or a known genetic disease or connective tissue disorder associated with myopia, such as Stickler or

Exon	Primer Sequence (F,R)	Melting Temperature (°C)	Product Size (bp)
4-4	F: GGCTTGTGACGTCAGCTCT 57	578	
	R: AAACCAAAATGACATGCTTCTGCT 58		
ZFR	F: TTAAGGAGCGCGCGAAGACG 60	664	
	R: TCTGTCGACATCGACAGGAT 59		
3	F: GACCTTTTGTGTCGCTATT 57	578	
	R: GTGATGTCACAAACTTACAGG 56		
4	F: GCCAGGTGGTCTTAATCTGCT 58	664	
	R: CAGCTTTATTTGAAGGAAAGTG 58		
5	F: GGAGAATATGTCGCGCTAAAAT 56	603	
	R: CTAAGGACCGATCTTACCTAAATGAC 57		
6	F: AAGGTTCTTCAAGGCAAGGC 58	667	
	R: CCCGCAAATTCTCTACTGCCAC 58		
7	F: CGGGCGATACAGAGAAACCATG 59	568	
	R: GACAGGCTCTCCAGTCTGCCCTCT 59		
8	F: GAGGGAAGACCTGGAGACCTGTC 59	893	
	R: AGGGCTTTTGGTGTGCAATGCT 58		
9	F: GATGAGGAGGTGGTITGGTG 59	675	
	R: TGCACACACAGTTGGCAATAC 59		
10	F: GAGGTTGTAGTGAGCTGAGTTCAA 56	486	
	R: AACCAAAACATCCTACTGACTAC 55		
11	F: TACATTGAGATTGTTTTGGGC 55	492	
	R: TTTGTTGAAACCCAGGACACT 57		
12	F: TGGGAAGAATTTTAGCTAGGGCTG 59	516	
	R: AAGCTGAGGCGAGAAGATGGCT 60		
13	F: GGTGTACATGCATGCAATGCT 59	569	
	R: TGCAAGAGCTGCTGAGAAATCATC 60		
14	F: GATGGAAGTTTTTAATGGCCACA 57	573	
	R: TTCTAACAAACTGCTCTTTATGAT 57		
15	F: AATATACTGGCTATGACAGCG 57	406	
	R: ATGCCAGCATTTGCTGCTCTTCTA 59		
16	F: GGCTCATGTGACACTGATGCTAC 58	366	
	R: GCAATATGCAAGATCATCATACCC 57		
17	F: CTGAGGCTCCATCCAGACCTG 59	333	
	R: CCCAGATTTTTTCAGAAAAG 58		
18 and 19	F: GATTAACAGACGTGACCCAGCTGT 58	666	
	R: TCTAGGGGCTTGCTCCTACAGA 56		
20-1	F: TAGGTGTCAATTTGGAGGAGG 60	774	
	R: CAAAACCTGCACTCTACCTACA 58		
20-2	F: CGAGATGGTGATTCCCTCCCTTCCC 56	570	
	R: CACAACCTTAAAGGAAACTGCTCACC 57		
20-3	F: CTTGTGTATAAGTGAAAAGGCC 57	594	
	R: GGCCGTCCTGAGACATACACAC 58		

Forward and reverse primers designed for CDH6, CDH10, CDH12, PDZD2, GLOPH3, and ZFR for mutation screening.
Marfan syndrome. The results of the ophthalmic examinations are summarized in Table 1.

Genotyping and linkage analysis: Genomic DNA was isolated from peripheral blood leukocytes by the standard proteinase K digestion and phenol-chloroform extraction. The genome-wide screen was conducted on ABI 3700 sequencer by using PRISM Linkage Mapping Set MD-10 (Applied Biosystems, Inc., Foster City, CA) that have 382 highly polymorphic fluorescent markers with an average spacing of 10 cM. The markers were amplified by polymerase chain reaction (PCR) under the following conditions: 50 ng genomic DNA, 2 pmol each primer, 0.2 μl dNTP (10 mM each), 1 μl 10× buffer, 0.6 μl MgCl₂ (25 mM) and 0.4 U HotStar Taq DNA polymerase (Qiagen, Santa Clarita, CA) in a final volume of 10 μl. Six to eight primer pairs were multiplexed in the amplification reaction. Samples were incubated in a PTC-225 DNA Engine Tetrad (MJ Research, Waltham, MA) for 15 min at 95 °C to predenaturation, followed by 35 cycles of 30 s at 94 °C, 40 s at 55 °C, 40 s at 72 °C, and a final extension at 72 °C for 10 min. Amplification products were appropriately pooled into prescribed panels, diluted, and denatured for 5 min at 95 °C, then incubated on ice for 2 min. Subsequently, the products were run in an automated DNA sequencer (ABI Prism 3700; Applied Biosystems).

Data were analyzed using GeneScan 3.7NT and Genotyper 3.7NT software (Perkin Elmer, Foster City, CA). Two-point LOD scores were calculated using the MLINK program from the Linkage software package (version 5.2). For fine mapping, additional microsatellite markers spanning the chromosome 5p region were selected from the genetic map of the Marshfield Center for Medical Genetics (Marshfield, WI). The myopia in the family was analyzed as an autosomal dominant trait with 90% penetrance and with a disease-gene allele frequency of 0.01. Recombination frequencies were assumed to be equal between males and females. Haplotype analysis was performed with Cyrillic software (version 2.0) and confirmed by inspection.

Positional candidate gene mutation screening: The identified genes located in the linkage region were proposed as candidate genes on the basis of their functional information. Mutations of these genes were screened by direct sequencing. Using the soft Primer Express 2.0 (Perkin Elmer), primers were designed to amplify each exon including exon-intron boundaries regions of the candidate genes from genomic DNA (the sequences of all primers used in this study are summarized in Table 2). Screening for mutations was initially performed in two affected and two unaffected individuals. The PCRs were performed using Taq DNA polymerase and the products were sequenced directly with a dye-terminator cycle-sequencing system by ABI Prism 3700 DNA sequencer after purified by exonuclease I (Epicenter, Madison, WI) and shrimp alkaline phosphatase (USB, Cleveland, OH). The resulting sequences were compared with the corresponding wild-type sequences using Autoassembler software (version 2.0; Perkin Elmer). When a sequence variant was detected, the exon was amplified from the genomic DNA extracted from the other individuals to determine whether the base variant was specific to the patients. The NCBI SNP database was also referenced to determine whether the sequence variant was a polymorphism.

RESULTS

A large, multigenerational, Chinese family with autosomal dominant high myopia was recruited and characterized (Figure 1). DNA was extracted from 29 blood samples of the family members (10 affected). The average age at diagnosis of myopia in the affected individuals was 6.9 years (range, 4 to 11 years). The average spherical component refractive error for the affected individuals was −11.59±5.26 D (range, −6.5 to −26 D). The mean axial lengths were 29.17±1.50 mm (range, 26.80 mm to 31.42 mm) and 23.59±0.44 mm (range, 22.03 mm to 25.72 mm) for highly myopic and non-highly myopic subjects, respectively. Individual III:7 had the highest refractive error of −24.00 D for the right eye and −26.00 D for the left eye (Table 1).

Ophthalmological examination excluded known ocular diseases associated with myopia, including keratoconus, spherophakia, ectopia lentis, retinal dystrophy, and optic atrophy. Males and females in this family were equally affected.

All known syndromic myopia loci were excluded in this family. The LOD scores at θ=0.00 were as follows: D15S117 (Marfan syndrome), −2.43; D1S218 (juvenile glaucoma), −2.5; D12S85 (Stickler syndrome type 1), −6.44; D1S206 (Stickler syndrome type 2), −10.77; and D6S276 (Stickler syndrome type 3), −4.15. Linkage to all of the known loci for non-syndromic autosomal dominant high myopia showed no statistically significant or suggestive evidence of linkage in this family (data not shown). Through subsequent genome-wide screening, a two-point LOD score of 3.02 (θ=0.00) was initially obtained with the microsatellite marker D5S419, suggesting that the causative locus for the family with high myopia was mapped to a region adjacent to D5S419 on chromosome 5. For fine mapping, an additional 13 closely flanking microsatellite markers were tested, and the linkage analysis resulted in a significant LOD score at 5p13.3-p15.1. Seven microsatellite markers displayed positive LOD scores, with D5S502 having the highest LOD score, 3.71 at θ=0.00 (Table 3).

Haplotype analysis of the affected individuals revealed recombination events that narrowed the region containing the gene, as shown in Figure 1. Through haplotype analysis, it was discovered that in addition to the ten affected individuals, two unaffected siblings (III:15 and III:19) also inherited the putative disease allele. At the time of examination, III:15 and III:19 were 41 and 58 years of age, respectively, and it was
not likely that they would develop high myopia. Interestingly, III:15 had only read for 5 years in primary school and III:19 had never attended school: both of them had spent less time reading.

The critical region was found to be between the markers D5S2096 and D5S1986. A telomeric recombinant event occurred between markers D5S2096 and D5S2074 in the affected individual III:17, which defined the distal limit of the region to marker D5S2096. Affected individual IV:9 displayed evidence of a centromeric recombinant event between markers D5S1986 and D5S1470. Another centromeric recombination event was observed between markers D5S819 and D5S1986 in two affected individuals, III:7 and III:11. These defined the proximal limit of the region to marker D5S1986. Ultimately, we mapped high myopia to a locus on chromosome 5p13.3-p15.1, covering an approximately 11.69 cM (14.14 Mb) region between D5S2096 and D5S1986.

Within the linkage region, the six genes cadherin 6, type II (CDH6), cadherin 10, type II (CDH10), cadherin 12, type II (CDH12), PDZ domain-containing protein 2 (PDZD2), Golgi phosphoprotein 3 (GOLPH3), zinc finger RNA binding protein (ZFR) were selected as candidate genes on the basis of their function: cell adhesion, intracellular signal transduction, protein trafficking, and DNA/RNA binding activities, which we thought were the functions most likely to be associated with myopia. A description of these genes was provided in Table 4. However, mutation analysis did not reveal any disease-causing mutation.

DISCUSSION

In this study, a locus for autosomal dominant high myopia in a large Chinese family was identified. Genome screening and linkage analysis located a critical region for high myopia on chromosome 5p13.3-p15.1 between D5S2096 and D5S1986, within an 11.69 cM interval. Linkage to the candidate gene regions for the Stickler syndromes, Marfan syndrome, and juvenile glaucoma was excluded, ensuring that this family did not exhibit a mild phenotypic expression of these conditions. Similarly, linkage was excluded from known autosomal myopia loci. This study has provided additional evidence for the genetic heterogeneity of autosomal dominant high myopia.
Myopia is thought to be multifactorial, caused by a variety of environmental and genetic factors as well as their interactions. Compared to the remarkable progress in identifying the genes for retinal degeneration, genes causing non-syndromic myopia (common or high) have proven difficult to identify. The likely explanation for this difficulty is that the gene-environment interplay affects even Mendelian patterns of myopia [1,12,13]. The underlying pattern of genetic and/or environmental factors in myopic subjects is highly variable and incomplete penetrance is common in high myopia, as reported in other high myopia families [26,32]. It was noted that all patients with high myopia in this family carried the putative disease haplotype; but two individuals, III:15 and III:19, both of whom inherited the putative disease allele from their mother, did not have high myopia. At the time of examination, III:15 and III:19 were 41 and 58 years of age, respectively, and it was not likely that they would develop high myopia. Interestingly, III:15 had only read for 5 years in primary school and III:19 had never entered school, so these two siblings had spent less time reading. These suggested that the variability in the phenotype might be mostly attributable to the interplay of genetic and environmental factors, leading to incomplete penetrance of the disease.

Six candidate genes CDH6, CDH10, CDH12, PDZD2, GOLPH3, and ZFR at this high myopia locus were selected on the basis of their function to screen for gene mutations by re-sequencing. The classical cadherins mediate homophilic cell–cell adhesion and are key regulators of many morphogenetic processes [33]. Loss-of-function studies demonstrate that the classical cadherins play a crucial role in vertebrate retinogenesis. They have multiple morphoregulatory functions in retinal proliferation, migration, differentiation, and layer formation, as well as axonal outgrowth, pathfinding, target recognition, and synaptogenesis [34,35]. CDH6 regulates the differentiation of retinal ganglion cells, amacrine cells, and photoreceptors in Zebrafish [36]. CDH10 and CDH12 were detected in the mouse eye during the first postnatal week when several developmental processes, such as cell migration and formation of synaptic connections, occur simultaneously [37]. PDZD2 is a ubiquitously expressed multi-PDZ-domain protein [38]. PDZ domain scaffolds have been shown by genetic, electrophysiological, and morphological studies to be
essential for controlling the structure, strength, and plasticity of synapses, which may play a role in the process of vision formation [39]. GOLPH3 is a peripheral membrane protein of the Golgi stack. It is required for trafficking from the Golgi to the plasma membrane and for the normal extended Golgi ribbon. Depletion of GOLPH3 alters the Golgi ribbon, changing its normal appearance of extending partially around the nucleus, to condensing at one end of the nucleus [40]. ZFR contains three widely spaced zinc finger domains. Zinc finger proteins with a similar pattern of zinc finger motifs are known to bind RNA, DNA, and DNA/RNA hybrids [41]. ZFR can be involved in DNA repair and chromosome organization [42]. Analyses of ZFR knockout mice indicate that ZFR is essential for at least some developmental pathways, as embryonic death occurs at 8–9 days gestation in these mice. In homozygotes, genetic ablation of ZFR causes increased embryonic cell death and/or decreased cell proliferation rates [43]. In the current study, PCR and sequencing primers were synthesized for the exons and peripheral intron regions of these candidate genes, and direct sequencing analysis was performed. However, no disease mutation was identified.

A previous study revealed an autosomal dominant high myopia locus mapped to chromosome 5p15.33-p15.2 with an interval of 17.45 cM between D5S1970 and D5S1987 in three Chinese pedigrees originating from Hong Kong (HK) [27]. In our study, the locus for high myopia of the pedigree was mapped to the critical region between D5S2096 and D5S1986 on chromosome 5p13.3-p15.1. The physical distance of the two markers yielding the peak two-point LOD score (DSS2505 in HK families and DSS502 in Zhejiang family) is approximately 19.7 Mb. The physical distance of the nearest two markers displaying a strong linkage to high myopia in these two studies (D5S1987 and D5S2074) was 9.7 Mb. However, the linkage regions with high myopia on the short arm of chromosome 5 identified in these two studies did not show any overlap (Figure 2). The fact that the two causative loci identified in these Chinese families with inherited high myopia did not overlap, but were adjacent, suggested that there may be disease gene(s) for high myopia on the short arm of chromosome 5 in the Chinese population. Although no mutation has yet been identified for the putative candidate genes, a more refined mutation screen is needed to identify the causative gene(s).

In summary, we have mapped a genetic locus for autosomal dominant high myopia in a large Chinese family. Myopia is the most common eye disease. Identification of the mutant gene(s) for myopia potentially would advance the understanding of the causes of this common eye disorder, and may thus lead to methods for preventing or slowing its progression.

ACKNOWLEDGMENTS

We are extremely grateful to all members of the family who participated in this study. This work was supported in part by grants from the High Tech Program (863) (2006AA02Z175), the National Natural Science Foundation of China (30771017, 30971595, and 30971383), the Commission for Education of Shanghai, the Zhejiang Provincial Natural Science Foundation of China (Y205322), and the Zhejiang Provincial Medical Science Foundation (2005A085).

REFERENCES

1. Feldkämper M, Schaeffel F. Interactions of genes and environment in myopia. Dev Ophthalmol 2003; 37:34-49. [PMID: 12876828]
2. Yamada M, Hiratsuka Y, Roberts CB, Pezzullo ML, Yates K, Takano S, Miyake K, Taylor HR. Prevalence of visual impairment in the adult Japanese population by cause and severity and future projections. Ophthalmoic Epidemiol 2010; 17:50-7. [PMID: 20100100]
3. Wong TY, Foster PJ, Hee J, Ng TP, Tielsch JM, Chew SJ, Johnson GJ, Seah SL. Prevalence and Risk Factors for Refractive Errors in Adult Chinese in Singapore. Invest Ophthalmol Vis Sci 2000; 41:2486-94. [PMID: 10937558]
4. He M, Huang W, Zheng Y, Huang L, Ellwein LB. Refractive error and visual impairment in school children in rural southern China. Ophthalmology 2007; 114:374-82. [PMID: 17123622]
5. Fan DS, Lam DS, Lam RF, Lau JT, Chong KS, Cheung EY, Lai RY, Chew SJ. Prevalence, incidence, and progression of myopia of school children in Hong Kong. Invest Ophthalmol Vis Sci 2004; 45:1071-5. [PMID: 15037570]
6. Wang Q, Klein BE, Klein R, Moss SE. Refractive status in the Beaver Dam Eye Study. Invest Ophthalmol Vis Sci 1994; 35:4344-7. [PMID: 8002254]
7. Wensor M, McCarty CA, Taylor HR. Prevalence and risk factors of myopia in Victoria, Australia. Arch Ophthalmol 1999; 117:658-63. [PMID: 10326965]
8. Katz J, Tielsch JM, Sommer A. Prevalence and risk factors for refractive errors in an adult inner city population. Invest Ophthalmol Vis Sci 1997; 38:334-40. [PMID: 9040465]
9. Hochman MA, Seery CM, Zarbin MA. Pathophysiology and management of subretinal hemorrhage. Surv Ophthalmol 1997; 42:195-213. [PMID: 9403637]
10. Banker AS, Freeman WR. Retinal detachment. Ophthalmol Clin North Am 2001; 14:695-704. [PMID: 11787748]
11. Saw SM, Gazzard G, Shih-Yen EC, Chau WH. Myopia and associated pathological complications. Ophthalmic Physiol Opt 2005; 25:381-91. [PMID: 16101943]
12. Saw SM. A synopsis of the prevalence rates and environmental risk factors for myopia. Clin Exp Optom 2003; 86:289-94. [PMID: 14558850]
13. Schaeffel F, Simon P, Feldkaemper M, Ohngemach S, Williams RW. Molecular biology of myopia. Clin Exp Optom 2003; 86:295-307. [PMID: 14558851]
14. Teikari JM, O’Donnell J, Kaprio J, Koskenvuo M. Impact of heredity in myopia. Hum Hered 1991; 41:151-6. [PMID: 1937488]
15. Teikari JM, Kaprio J, Koskenvuo M, O’Donnell J. Heritability of defects of far vision in young adults: a twin study. Scand J Soc Med 1992; 20:73-8. [PMID: 1496333]
16. Liang CL, Yen E, Su JY, Liu C, Chang TY, Park N, Wu MJ, Lee S, Flynn JT, Juo SH. Impact of family history of high...
myopia on level and onset of myopia. Invest Ophthalmol Vis Sci 2004; 45:3446-52. [PMID: 15452048]

17. Schwartz M, Haim M, Skarsholm D. X-linked myopia: Bornholm eye disease. Linkage to DNA markers on the distal part of Xq. Clin Genet 1990; 38:281-6. [PMID: 1980096]

18. Zhang Q, Guo X, Xiao X, Jia X, Li S, Hejtmancik JF. Novel locus for X-linked recessive high myopia maps to Xq23–q25 but outside MYP1. J Med Genet 2006; 43:e20. [PMID: 16648373]

19. Yang Z, Xiao XS, Li SQ, Zhang QJ. Clinical and linkage study on a consanguineous Chinese family with autosomal recessive high myopia. Mol Vis 2009; 15:312-8. [PMID: 19204786]

20. Young TL, Ronan SM, Drahozal WL, Wildenberg SC, Alvear AB, Getting WS, Atwood LD, Wilkin DJ, King RA. Evidence that a locus for familial high myopia maps to chromosome 18p. Am J Hum Genet 1998; 63:109-19. [PMID: 9634508]

21. Young TL, Ronan SM, Alvear AB, Wildenberg SC, Getting WS, Atwood LD, Wilkin DJ, King RA. A second locus for familial high myopia maps to chromosome 12q. Am J Hum Genet 1998; 63:1419-24. [PMID: 9792869]

22. Naiglin L, Gazagne C, Dallongeville F, Thalamas C, Idder A, Rascol O, Malecaze F, Calvas P. A genome wide scan for familial high myopia suggests a novel locus on chromosome 7q36. J Med Genet 2002; 39:118-24. [PMID: 11836361]

23. Paluru P, Ronan SM, Heon E, Devoto M, Wildenberg SC, Scavello G, Holleschau A, Makitie O, Cole WG, King RA, Young TL. New locus for autosomal dominant high myopia maps to the long arm of chromosome 17. Invest Ophthalmol Vis Sci 2003; 44:1830-6. [PMID: 12714612]

24. Zhang Q, Guo X, Xiao X, Jia X, Li S, Hejtmancik JF. A new locus for autosomal dominant high myopia maps to 4q22-q27 between D4S1578 and D4S1612. Mol Vis 2005; 11:554-60. [PMID: 16052171]

25. Paluru PC, Nallasamy S, Devoto M, Rappaport EF, Young TL. Identification of a novel locus on 2q for autosomal dominant high-grade myopia. Invest Ophthalmol Vis Sci 2005; 46:2300-7. [PMID: 15980214]

26. Nallasamy S, Paluru P, Devoto M, Wasserman NF, Zhou J, Young TL. Genetic linkage of high-grade myopia in a Hutterite population from South Dakota. Mol Vis 2007; 13:229-36. [PMID: 17327828]

27. Lam CY, Tam PO, Fan DS, Fan BJ, Wang DY, Lee CW, Pang CP, Lam DS. Genome-wide Scan Maps a Novel High Myopia Locus to 5p15. Invest Ophthalmol Vis Sci 2008; 49:3768-78. [PMID: 18421076]

28. Stambolian D, Ibay G, Reider L, Dana D, Moy C, Schliifka M, Holmes T, Ciner E, Bailey-Wilson JE. Genomewide linkage scan for myopia susceptibility loci among Ashkenazi Jewish families shows evidence of linkage on chromosome 22q12. Am J Hum Genet 2004; 75:448-59. [PMID: 15273935]

29. Hammond CJ, Andrew T, Mak YT, Spector TD. A susceptibility locus for myopia in the normal population is linked to the PAX6 gene region on chromosome 11: a genomewide scan of dizygotic twins. Am J Hum Genet 2004; 75:294-304. [PMID: 15307048]

30. Wojciechowski R, Moy C, Ciner E, Ibay G, Reider L, Bailey-Wilson JE, Stambolian D. Genomewide scan in Ashkenazi Jewish families demonstrates evidence of linkage of ocular refraction to a QTL on chromosome 1p36. Hum Genet 2006; 119:389-99. [PMID: 16501916]

31. Ciner E, Wojciechowski R, Ibay G, Bailey-Wilson JE, Stambolian D. Genomewide scan of ocular refraction in African-American families shows significant linkage to chromosome 7p15. Genet Epidemiol 2008; 32:454-63. [PMID: 18293391]

32. Farbrother JE, Kirov G, Owen MJ, Guggenheim JA. Family aggregation of high myopia: estimation of the sibling recurrence risk ratio. Invest Ophthalmol Vis Sci 2004; 45:2873-8. [PMID: 15326097]

33. Takeichi M. Morphogenetic roles of classic cadherins. Curr Opin Cell Biol 1995; 7:619-27. [PMID: 8573335]

34. Hirano S, Suzuki ST, Redies C. The cadherin superfamily in neuronal development: diversity, function and interaction with other molecules. Front Biosci 2003; 8:d306-55. [PMID: 12456358]

35. Takeichi M. The cadherin superfamily in neuronal connections and interactions. Nat Rev Neurosci 2007; 8:11-20. [PMID: 17133224]

36. Liu Q, Londraville R, Marrs JA, Wilson AL, Mimbha T, Murakami T, Kubota F, Zheng WP, Fatkins DG. Cadherin-6 Function in Zebrafish Retinal Development. Dev Neurobiol 2008; 68:1107-22. [PMID: 18506771]

37. Faulkner-Jones BE, Godinho LN, Tan SS. Multiple Cadherin mRNA Expression and Developmental Regulation of a Novel Cadherin in the Developing Mouse Eye. Exp Neurol 1999; 156:316-25. [PMID: 10328938]

38. Yeung ML, Tam TS, Tsang AC, Yao KM. Proteolytic cleavage of PDZD2 generates a secreted peptide containing two PDZ domains. EMBO Rep 2003; 4:412-8. [PMID: 12671685]

39. Kim E, Sheng M. PDZ domain proteins of synapses. Nat Rev Neurosci 2004; 5:771-81. [PMID: 15378037]

40. Dippold HC, Ng MM, Farber-Katz SE, Lee SK, Kerr ML, Peterman MC, Sim R, Wiharto PA, Galbraith KA, Madhavarapu S, Fuchs GJ, Turbello T, Farquhar MG, Zhou H, Field SJ. GOLPH3 bridges phosphatidylinositol-4-phosphate and actomyosin to stretch and shape the Golgi to promote budding. Cell 2009; 139:337-51. [PMID: 19837035]

41. Finerty PJ Jr, Bass BL. A Xenopus zinc finger protein that specifically binds dsRNA and RNA–DNA hybrids. J Mol Biol 1997; 271:195-208. [PMID: 9268652]

42. Meagher MJ, Braun RE. Requirement for the murine zinc finger protein ZFR in perigastrulation growth and survival. Mol Cell Biol 2001; 21:2880-90. [PMID: 11283266]