OPEN CLUSTERS IN THE Kepler FIELD. II. NGC 6866

KENNETH JANES1, SYDNEY A. BARNES2,4, SØREN MEIBOM3, and SADIA HOQ1
1 Astronomy Department, Boston University, Boston, MA 02215, USA
2 Leibniz-Institute for Astrophysics, Potsdam, Germany
3 Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138, USA
Received 2014 January 6; accepted 2014 March 19; published 2014 May 2

ABSTRACT

We have developed a maximum-likelihood procedure to fit theoretical isochrones to the observed cluster color–magnitude diagrams of NGC 6866, an open cluster in the Kepler spacecraft field of view. The Markov chain Monte Carlo algorithm permits exploration of the entire parameter space of a set of isochrones to find both the best solution and the statistical uncertainties. For clusters in the age range of NGC 6866 with few, if any, red giant members, a purely photometric determination of the cluster properties is not well-constrained. Nevertheless, based on our UBVRI photometry alone, we have derived the distance, reddening, age, and metallicity of the cluster and established estimates for the binary nature and membership probability of individual stars. We derive the following values for the cluster properties: $(m - M)_V = 10.98 \pm 0.24$, $E(B - V) = 0.16 \pm 0.04$ (so the distance is 1250 pc), age = 705 \pm 170 Myr, and $Z = 0.014 \pm 0.005$.

Key words: Hertzsprung–Russell and C–M diagrams – methods: data analysis – open clusters and associations: individual (NGC 6866)

Online-only material: color figure, machine-readable and VO tables

1. INTRODUCTION

The four open clusters located in NASA’s Kepler spacecraft field of view (NGC 6866, NGC 6811, NGC 6819, and NGC 6791), which range in age from less than 1 Gyr to more than 8 Gyr, are ideal targets for a variety of astrophysical investigations. The two older clusters, NGC 6819 and NGC 6791, have been thoroughly studied (see, e.g., Corsaro et al. 2012; Sandquist et al. 2013; Yang et al. 2013; for recent Kepler-related papers), but the other two are less well-known. We recently completed an analysis of NGC 6811 (Janes et al. 2013, hereafter Paper I) and we report here on NGC 6866.

Recent publications on NGC 6866 include Frolov et al. (2010), who did a proper motion and CCD photometric study of the cluster; photometric studies by Molenda-Żakowicz et al. (2009) and Joshi et al. (2012); and an investigation by Balona et al. (2013) of rotations and pulsations of stars in the cluster using Kepler data. Frolov et al. found 423 likely cluster members and estimated the age of the cluster to be 560 Myr. Joshi et al. derived $E(B - V) = 0.10$ mag, an age of 630 Myr and a distance of 1.47 kpc. From an analysis of Two Micron All Sky Survey JHK photometry, Günes et al. (2012) derived an age of 0.8 ± 0.1 Gyr, $E(B - V) = 0.19 \pm 0.06$ and $(m - M)_0 = 11.08 \pm 0.11$. Molenda-Żakowicz et al. and Joshi et al. both found several variable stars in the cluster. In a survey of a number of clusters, Frinchaboy & Majewski (2008) derived a radial velocity of 12.18 \pm 1.14 km s$^{-1}$ and proper motions $\mu_{\alpha} \cos \delta = -5.52 \pm 1.17$ mas yr$^{-1}$ and $\mu_{\delta} = -7.97 \pm 1.09$ mas yr$^{-1}$ for the cluster.

The traditional approach for deriving the properties of star clusters from broadband photometry is to “fit” theoretical stellar isochrones to the observed color–magnitude diagram (CMD). However, an isochrone is simply the locus of possible stars over a range of masses at fixed age in the CMD (see Figure 1(a)). Therefore, at a given time, in a cluster with a finite number of stars, it is unlikely that any stars will actually be found along some sections of an isochrone.

We have chosen instead to find the maximum likelihood probability that the observed cluster stars embedded in a background population of field stars (Figure 2(a)) could be drawn from a theoretical CMD, created by choosing a sample of stars from the models with a range of masses, as in Figure 1(b).

By posing the problem in this way, we can take a modern Bayesian approach to derive not only the cluster parameters, but also their uncertainties.

In Section 2, we describe the photometry. Section 3 is a discussion of the structural properties of the cluster. The Bayesian analysis is the topic of Section 4. Section 5 is a discussion of our results, and Section 6 summarizes our conclusions.

2. PHOTOMETRIC PROGRAM

We acquired CCD images of the cluster and standard stars on four nights (see Table 1), with the 1.2 m Hall and 1.8 m Perkins telescopes at the Lowell Observatory. Since we did all of our NGC 6866 observing on nights when we also observed NGC 6811, the details of the observing and photometric reductions are given in Paper I. The following is a summary of the observational program.

Conditions were photometric on all four nights, and we imaged extensive sequences of Landolt standard stars (Landolt 2009) over a wide range of airmass on each night, as noted in Table 1. We used IRAF5 bias subtraction and flat fielding functions for our initial image processing. We used the SPS program (Janes & Heasley 1993) for point-spread-function (PSF)-fitting photometry and we transformed the photometry to the UBVRI colors as described in Paper I. The calculated uncertainties in the transformation coefficients are all less than 0.01 mag. The standard deviations of the nightly B and V values from the

4 Also at the Space Science Institute, Boulder, CO 80301, USA.

5 IRAF is distributed by NOAO, operated by AURA under a cooperative agreement with the NSF.
The numbers are in Column 1, positions in arcseconds relative to the equatorial system relative to the assumed cluster center at R.A. = 20° 03′ 55.00′′, decl. = +44° 09′ 30″00′′. We assumed that star images with transformed coordinates within 0.5 arcsec of one another on different frames are the same star, except that we rejected stars if a single star image on one frame was within 0.5 arcsec of two stars on another frame. We also rejected stars with fewer than three B or V measurements or fewer than two R or I measurements, or if the calculated standard deviation of the V magnitude or B – V color index was 0.1 mag or greater.

The resulting catalog (Table 2) contains 7714 stars. Star numbers are in Column 1, positions in arcseconds relative to the center that are in Columns 2 and 3, the V magnitudes and errors and B – V, U – B, V – R and V – I color indices and their errors are in the next 10 columns, and the final columns contain the numbers of measurements in each filter (in the order U, B, V, R, and I). For the final catalog, we tied the preliminary merged star positions approximately to the UCAC4 coordinate system (Zacharias et al. 2013).

Figure 2(a) shows photometry for all of the stars in the catalog, covering a 42′ × 42′ arcminute field, and Figure 2(b) is a CMD derived from the photometry of stars within a radius of 3 arcmin from the cluster center.

3. CLUSTER STRUCTURAL PARAMETERS

Using the data in Table 2, we derived the radial stellar density distribution around the cluster center. We calculated the areas of successive rings within which there are 75 stars between magnitudes 11 and 16. From that, we found the stellar density in each ring, as shown in Figure 3. Because the cluster is relatively sparse and embedded in a rich star field, we chose a simple exponential function to model the radial stellar density profile:

\[\rho(r) = \rho_{\text{cl}} \exp \left(-r^2 / \sigma_r^2 \right) + \rho_f, \]

where, \(\rho_{\text{cl}} \) refers to the peak of the radial stellar density distribution, \(\rho_f \) is the background field stellar density, and the cluster core angular radius is \(\sigma_r \).

Assuming the stellar density profile of Equation (1), the effective angular radius is \(\sigma_r = 4.7 \) arcmin and the peak cluster density is \(\rho_{\text{cl}} = 1.65 \) stars per square arcminute on a field background of 0.63 stars per square arcminute. After subtracting the background, the integral of the exponential density function over all radii is

\[N_{\text{cl}} = \pi \rho_{\text{cl}} \sigma_r^2, \]

which gives a cluster population of 114 stars brighter than magnitude 16. This should be considered to be a lower limit to the cluster membership since there is likely to be an extended halo of stars photometrically undetectable against the background field population. Proper motions or radial velocities would be required to distinguish halo cluster stars from field stars; fortunately, the goals of this project require only that a sufficiently large sample of high probability cluster stars be identified.

4. A BAYESIAN ANALYSIS OF NGC 6866

Bayes’ theorem states that

\[P(m|D) = \frac{P(m)L(D|m)}{P(D)}, \]

where \(P(m|D) \) is the posterior probability distribution function (PDF) of the model parameters, \(m \), given the data, \(D \), \(P(m) \) is the prior PDF of the model parameters and \(L(D|m) \) is a likelihood.
function for the data, given a model. The denominator, \(P(D) \), is the integral of the numerator over all possible model parameters and is ordinarily difficult to compute. However, it is effectively a normalizing constant and the shape of the posterior PDF can be found without knowing \(P(D) \). A thorough discussion of Bayesian analysis can be found in Gregory (2005); for some astronomical applications, including deriving properties of star clusters, see Ford (2005), von Hippel et al. (2006), or De Gennaro et al. (2009). Our procedure is discussed in greater detail in Paper I. The following is a brief summary of our cluster analysis procedure.

Priors. The prior distribution, \(P(m) \), constitutes a model for the cluster. The model parameters include global properties of distance modulus, reddening, and a theoretical CMD of some age and metallicity, as well as the membership probability and binary star status of individual stars. Because the global properties (distance modulus, reddening, age, and metallicity) are chosen with equal probability within some range, their contribution to \(P(m) \) is effectively a constant and does not affect the shape of the posterior PDF. At each iteration, the model consisted of a theoretical CMD created from an isochrone of the specified age and metallicity by selecting a set of stars from the isochrone. The theoretical CMD was corrected for the particular values of reddening and distance selected at this iteration. We ran two sets of models, one using the “Yale–Yonsei” isochrones (Demarque et al. 2004) and the other using “Padova” isochrones (Bressan et al. 2012). The models were allowed to range over values of 0.000 \(\leq E(B-V) \leq 0.30; 10.0 \leq (m-M)_V \leq 11.75; 300 \) Myr \(\leq \) age \(\leq 1200 \) Myr; and 0.001 \(\leq Z \leq 0.030 \). All distance moduli calculated in this paper are observed V-band moduli, uncorrected for interstellar extinction.

Cluster membership. We computed the prior membership probability for individual stars, based on their distance relative to the cluster center using Equation (1). Therefore, the prior membership probability for star \(i \) is a purely astrometric quantity,

\[
a_i \propto \exp \left(-\frac{r_i^2}{\sigma_r^2} \right) .
\]

(4)

At each iteration of the Markov chain, we randomly selected 125 stars from the entire field with prior membership probabilities given by Equation (4). That is to say, after randomly selecting a star from the catalog, we compared its prior membership probability as derived from Equation (1) with a randomly chosen number from zero to one. If the star’s membership probability exceeds that of the random number, it is added into the sample for that iteration. In this way, each star can be tested as a possible cluster member; stars that are more often present in successful trials have a higher posterior membership probability, as discussed in the following.

Binary stars. The large fraction of binaries among open cluster stars makes it difficult to define the location of the actual single-star main sequence, particularly near the turnoff. However, the binary status of individual stars can be added as parameters in the Bayesian analysis. Each star is assigned a binary mass ratio, and the merged magnitude and colors of an equivalent binary in the theoretical CMD is calculated and compared to the observed star. For the initial iteration, the binary mass ratio for all stars was taken to be zero. At each subsequent iteration, the mass ratio is randomly perturbed from the previous value with a Gaussian probability (see the Hastings–Metropolis algorithm below).

Likelihood function. For each observed star, \(i \), we find the distance, \(z_{i,j} \) in units of the measurement errors in the five-dimensional CMD space \((V, B-V, U-B, V-R, V-I) \) to each of the theoretical stars, \(j \). The probability that \(z_{i,j} \) is as small as it is by chance is the error function of \(z_{i,j} \), \(\text{erf}(z_{i,j}) \). The probability that the observed star could be drawn from the CMD of theoretical stars is given by

\[
p_i = 1.0 - \prod_j \text{erf}(z_{i,j}).
\]

(5)

From Equations (3) and (5), the operational Bayesian model is

\[
P(m|D) = P(m)\mathcal{L}(D|m) = P(m)\prod_i p_i,
\]

(6)

which gives the probability that the observed sample of stars could be drawn from the theoretical sample.

Hastings–Metropolis algorithm. The key to efficient sampling of the PDF is to develop a jump probability function, \(\alpha(m|m_1) \), to decide the transition from model \(m \) to a new trial model \(m_t \), so that \(m_t \) depends on the current parameters but not on any previous values. The trial model, \(m_t \), consists of random
Figure 4. Marginal distributions of cluster properties for the Yale chain: Number of samples vs.: (a) reddening, \(E(B-V)\); (b) distance modulus; (c) age in Gyr; and (d) metallicity, \(Z\). In each figure, the solid curve represents a Gaussian fit to the distribution.

Table 3

Region	\(E(B-V)\)	\((m-M)_V\)	Age (Myr)	\(Z\)
Padova	0.17 ± 0.05	11.15 ± 0.36	730 ± 320	0.014 ± 0.008
Yale–Yonsei	0.14 ± 0.05	10.82 ± 0.32	680 ± 340	0.013 ± 0.007
Average	0.16 ± 0.04	10.98 ± 0.24	705 ± 170	0.014 ± 0.005

proposed jumps, \(q(m)\), from the current parameter values. The jump probability function can be written as

\[
\alpha(m_t|m) = \min \left\{ \frac{P(m_t|D) q(m|m_t)}{P(m|D) q(m_t|m)}, 1 \right\}.
\]

If the jumps have a Gaussian distribution, the proposal distributions are symmetrical and, in this case, \(q(m|m_t) = q(m_t|m)\). A trial model is accepted as the next iteration when \(\alpha\) exceeds a random number in the range of 0–1; if the trial model is not accepted, another \(m_t\) is tested. Improved solutions are always selected, but in addition, the entire parameter space is eventually sampled. We ran two chains of 105,000 trials; after throwing away the first 5000 trials in the “burn-in” period, we saved all trials satisfying the acceptance condition on the first try. See Paper I for more information.

5. DISCUSSION

The product of the above analysis is the posterior PDF, \(P(m|D)\), a sequence of the parameter values for each successful trial. From the marginal distribution of each parameter (found by integrating \(P(m|D)\) over all the other parameters), its mean and variance can be found. The marginal distributions are shown in Figure 4; although the scale of the distributions are defined only by the unknown parameter, \(P(D)\), their means represent the maximum likelihood values of the parameters, and their standard deviations represent the parameter uncertainties. These are shown in Table 3.

Figure 5. CMDs of the 125 stars in the cluster region with the largest posterior membership probabilities. Filled symbols: likely single stars; open symbols: probable binary stars; small crosses: theoretical CMD derived from the maximum-likelihood Padova isochrone.

(A color version of this figure is available in the online journal.)

Up to a constant, the prior PDF of an individual star is a single number, \(a_i\), given by Equation (4). So now the posterior PDF of star \(i\) is just the product of \(a_i\) and the individual likelihood parameter, \(p_i\), given by Equation (5). In Figure 5, we included 125 stars with the largest values of the posterior membership probability.

For intermediate-age clusters like NGC 6866 with few, if any, giant stars, there is little information in the CMD to distinguish clusters by age or metallicity. This problem is intrinsic to isochrone fitting to clusters in this age range, independent of the details of the analysis technique. Furthermore, NGC 6866 is embedded in a rich field. As a consequence, although the procedure produces well-defined posterior PDF’s, the marginal distributions are rather broad, i.e., the parameters are only moderately well constrained.

The consequences of the indeterminancy between the effects of reddening and metallicity on photometry can be seen in Figure 6, a contour plot of the marginal distribution of the
number of samples in the $E(B - V)$ versus Z plane. Solutions with low reddening values tend to be correlated with those with high metallicity values. If one or the other were constrained by independent measures, the marginal distributions of the other parameters would be considerably sharper. There are indications of similar correlations between the other indices, but they are not as strong.

6. CONCLUSIONS

We have produced a catalog of high-quality Johnson–Cousins $UBVRI$ photometry of stars in a large field around the cluster NGC 6866. Our photometry has been carefully transformed to the standard system as defined by the Landolt (2009) standard stars. Using a Bayesian analytical procedure, we derived the following values for the cluster properties: $(m - M)_V = 10.98 \pm 0.24$, $E(B - V) = 0.16 \pm 0.04$, age = 705 ± 170 Myr, and $Z = 0.014 \pm 0.005$ (see also Table 3). Assuming a canonical extinction-to-reddening ratio $R_V = A_V / E(B - V) = 3.1$, the distance to the cluster is about 1250 pc.

Our results are in rough agreement with previous work on this cluster as discussed in the introduction (see also Balona et al. 2013 and references therein). As mentioned above, the lack of independent membership information, or, alternatively the cluster metallicity or reddening, limits the accuracy of photometric measurements of its age and distance. Furthermore, most of the previous results were based, directly or indirectly, on visual comparisons of observed CMDs with theoretical isochrones of solar composition only; for that reason, the quoted errors are likely to be highly optimistic, since they do not include the metallicity uncertainty. In particular, our analysis, as shown in Figures 4 and 6, does not support a metallicity as high as solar. Solar metallicity would require a reddening of essentially zero, unlikely in this direction in the galaxy.

Finally, the errors given in Table 3 do not include any uncertainty in the theoretical models. In particular, Figure 5 suggests that there may be a small inconsistency between the theoretical models and the observed CMD.

We acknowledge the financial and technical support from Boston University and the Lowell Observatory. S.A.B is grateful for financial support from the Barnes and LoMonaco families and thanks the Flagstaff Public Library for providing a serene working environment during a crucial phase of this work. S.M. acknowledges support from NASA cooperative agreement NNX09AH18A (the Kepler Cluster Study).

Facility: Perkins (PRISM)

REFERENCES

Balona, L. A., Joshi, S., Joshi, Y. C., & Sagar, R. 2013, MNRAS, 429, 1466
Bressan, A., Marigo, P., Girardi, L., et al. 2012, MNRAS, 427, 127
Brown, T. M., Latham, D. W., Everett, M. E., & Esquerdo, G. A. 2011, AJ, 142, 112
Corsaro, E., Stello, D., Huber, D., et al. 2012, ApJ, 757, 190
De Gennaro, S., von Hippel, T., Jefferys, W. H., et al. 2009, ApJ, 696, 12
Demarque, P., Woo, J.-H., Kim, Y.-C., & Yi, S. K. 2004, ApJS, 155, 667
Ford, E. B. 2005, AJ, 129, 1706
Frinchaboy, P. M., & Majewski, S. R. 2008, AJ, 136, 118
Frolov, V. N., Ananjevskaja, Yu. K., Gorshanov, D. L., & Polyakov, E. V. 2010, AstL, 36, 338
Gregory, P. C. 2005, ApJ, 631, 1198
Guzes, O., Karataş, Y., & Bonatto, C. 2012, NewA, 17, 720
Janes, K. A., Barnes, S. A., Melbom, S., & Hoq, S. 2013, AJ, 145, 7
Janes, K. A., & Heasley, J. N. 1993, PASP, 105, 527
Joshi, Y. C., Joshi, S., Kumar, B., Mondal, S., & Balona, L. A. 2012, MNRAS, 419, 2379
Landolt, A. U. 2009, AJ, 137, 4186
Molenda-Zakowicz, J., Kopacki, G., Steślicki, M., & Narwid, A. 2009, AcA, 59, 193
Sandquist, E. L., Mathieu, R. D., Brogaard, K., et al. 2013, ApJ, 762, 58
von Hippel, T., Jefferys, W. H., Scott, J., et al. 2006, ApJ, 645, 1436
Yang, S.-C., Sarajedini, A., Deliyannis, C. P., et al. 2013, ApJ, 762, 3
Zacharias, N., Finch, C. T., Girard, T. M., et al. 2013, AJ, 145, 44