Intense structures of different momentum fluxes in turbulent channels

Kosuke Osawa1 and Javier Jiménez2

1 Department of Mechanical and Aerospace Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, Japan
2 School of Aeronautics, Universidad Politécnica de Madrid, 28040 Madrid, Spain
E-mail: osawa.k.ad@m.titech.ac.jp

Abstract. The effect of different definitions of the momentum flux on the properties of the coherent structures of the logarithmic region of wall-bounded turbulence is investigated by comparing the structures of intense tangential Reynolds stress with those of the alternative flux proposed in [Jimenez (2016) J. Fluid Mech. 809:585]. Despite the fairly different statistical properties of the two flux definitions, it is found that their intense structures show many similarities, such as the dominance of ‘wall-attached’ objects, and geometric self-similarity. However, the new structures are wider, although not taller, than the classical ones, and include both high- and low-momentum regions within the same object. It is concluded that they represent the same phenomenon as the classical group of a sweep, an ejection, and a roller, which should thus be considered as the fundamental coherent structure of the momentum flux. The present results suggest that the properties of these momentum structures are robust with respect to the definition of the fluxes.

1. Introduction
Understanding the physical mechanism of momentum transfer in wall turbulence is crucial both theoretically and in applications, because it is directly connected with the mechanical equilibrium of the flow and with the possible control of the wall friction. Traditionally, since the average of the Reynolds shear stress over wall-parallel planes is equal to the total wall-normal transfer of streamwise momentum, its local value (uv) has been interpreted as a local momentum flux, and regions of intense Reynolds stress have been identified and studied as coherent structures of the momentum transfer. They are usually referred to as ‘quadrant’ structures [1, 2, 3], and their spatial and temporal characteristics have come to be considered properties of the momentum transfer itself.

However, it has been repeatedly pointed out that it is the divergence of the Reynolds stresses, and not the stresses themselves that enter the equations of motion [4, 5], and that the definition of local fluxes is ambiguous. Recently, Jiménez [6] revisited this question, and studied in some detail a particular ‘optimal’ definition of the momentum flux, in the sense of having a minimum integrated norm for a given divergence. There is nothing in this new definition to make it better, or worse, than the classical Reynolds stress. The real interest is that these new fluxes are different from the classical ones, although equally valid, and that any property that is not shared by the two definitions may be considered ‘suspect’.
Table 1. Parameters of the channel flow databases. $L_x, L_z, 2h$ are the streamwise, spanwise and wall-normal domain size, respectively. $\Delta x, \Delta z$ are spatial resolutions, in terms of Fourier modes, and N_y is the number of wall-normal grid points. N_s is the number of snapshots used in the analyses.

Re_τ	L_x/h	L_z/h	Δx^+	Δz^+	N_y	N_s	Symbol	Ref.
934	8π	3π	11	5.7	385	20	none	[8]
2003	8π	3π	12	6.1	633	9	\circ	[9]

Somewhat disturbingly, [6] found that the instantaneous fields and many of the statistical properties of the new fluxes differ considerably from those of the Reynolds stress, raising some doubts about whether the previously mentioned studies of coherent structures and, indeed, a lot of the effort dedicated to modelling locally the Reynolds stress tensor, may only apply to a particular flux definition, and be therefore largely irrelevant.

An obvious alternative would be to abandon the use of fluxes and stresses, and to fall back on their divergence. This approach was discussed in some detail in [6], and has been attempted before, mostly from the point of view of modelling [7]. It changes the character of the analysis, because fluxes are large-scale quantities, while their divergence is associated with smaller scales.

The question is similar to whether to focus on the pressure or on the pressure gradient. The gradient appears in the equations of motion and determines the acceleration of the fluid, but the pressure is more directly related to the velocities. Think of Bernouilli’s equation.

To assess the ‘robustness’ of the older stress analyses, we repeat in this study the identification and classification of intense flux structures using the new optimal definition, and compare it with the coherent structures based on the classical Reynolds stress.

The organisation of this paper is as follows. The simulations used for the analysis, and the identification criteria for the structures, are introduced in §2. The geometry of the identified structures is discussed in §3, and their relative position with respect to high- and low-momentum regions and to other flux structures is presented in §4 and §5. Finally §6 examines the conditional velocity fields relative to the new structures, and §7 concludes.

2. Numerical experiments and structure identification

We use data from direct numerical simulations of a turbulent channel flow at two Reynolds numbers, periodic in the two wall-parallel directions and of half-height h. The streamwise, wall-normal and spanwise directions are x, y, z, respectively, and u, v, w are the corresponding fluctuating velocity components. The ensemble-averaged mean streamwise velocity is $U(y)$. Variables with a ‘$+$’ superscript are normalized in wall units, defined from the kinematic viscosity, ν, and from the friction velocity, u_τ, which is in turn defined from the shear stress at the wall as $u_\tau^2 = \nu \partial_y U|_{y=0}$. The friction Reynolds number is $Re_\tau = u_\tau h/\nu$. Overlines, $\overline{\cdot}$, denote y-dependent ensemble averages, and primes stand for root-mean-square fluctuation intensities.

The simulations use Fourier spectral discretisation in (x, z), dealiased by the 2/3 rule. The wall-normal discretisation is Chebychev spectral for the lower-Reynolds-number case [8], and compact finite differences for the higher one [9]. Time stepping is third-order semi-implicit Runge–Kutta, keeping the mass flux constant. Some numerical parameters are collected in table 1, and further details can be found in the original publications.

We focus on the structures of the classical Reynolds stress, uv, and of the corresponding optimal flux, ϕ_{12}. Details of the computation of the ϕ_{ij} tensor can be found in [6], and will not be repeated here. Basically, it satisfies

$$\partial_j \phi_{ij} = \partial_j (u_i u_j),$$ \hspace{1cm} (1)
while minimising \(\int \phi_{ij} \phi_{ij} \, d^3x\), where the integral extends over the whole channel, and indices range from 1 to 3 (or equivalently, from \(x\) to \(z\)). Repeated indices imply summation. In general, because the difference between \(\phi_{ij}\) and the classical Reynolds stresses is divergence-free, they generate the same integrated flux across any closed surface. In particular, \(\phi_{12}\) plays the same role as \(uv\), transferring streamwise fluctuating momentum along \(y\), and the instantaneous integral of the two quantities over wall-parallel planes is identical, \((\phi_{12})_{xz} = (uv)_{xz}\).

Coherent structures of these quantities are identified by the same method used in [2] for the quadrant structures of \(uv\). Namely, the intense regions of a generic quantity \(q\) are extracted by thresholding,

\[
|q| > H f(y),
\]

with respect to some \(y\)-dependent flow statistics \(f(y)\). Each set of mutually contiguous points satisfying (2) is defined as a structure. The constant \(H\) is chosen using the percolation analysis developed in [10]. The threshold used for \(uv\) is the same as in [2],

\[
|uv| > 1.75 u' v'.
\]

After some experimentation, the threshold for \(\phi_{12}\) was chosen to be

\[
|\phi_{12}| > 2.00 \phi_{12}',
\]

which is seen in figure 1 to be in the midst of the percolation transition. It was checked that the results presented below are qualitatively independent of the threshold as long as it is within the transition range \(1.4 < H < 2.4\). It was also checked that using the different thresholding quantity, \(f(y) = (\phi_{12}')^{1/2} = (\phi_{12}^2 + \phi_{12}^2)^{1/2}\), had a small effect on the properties of the structures.

It is important to recall that, although quantities such as \(u\) denote zero-mean fluctuations, neither \(\phi_{12}\) nor \(uv\) have zero mean. In what follows, the coherent structures identified for \(uv\) and \(\phi_{12}\) are denoted as \(Qs\) and \(Ops\), respectively.

3. The geometry of individual structures

Table 2 shows the number and volume fraction occupied by the objects identified by the procedure explained above, oriented in each half of the channel with respect to their closest
Table 2. Number fraction of identified objects with respect to their total number, and volume fraction with respect to the flow domain. Superscripts show the sign of the mean momentum flux within each structure.

Re_τ	N_Qs^-	N_Qs^+	V_Qs^-	V_Qs^+	N_Ops^-	N_Ops^+	V_Ops^-	V_Ops^+
934	0.60	0.40	0.080	0.001	0.64	0.36	0.073	0.006
2003	0.61	0.39	0.073	0.002	0.67	0.33	0.068	0.008

Figure 2. Joint PDF of the distance from the closest wall to the bottom (y_{min}) and top (y_{max}) of the structures. (a) Q_s, (b) O_{ps}. Contours include 40%, 90% and 98.8% of data. $Re_τ = 934$.

wall. With this notation, the average momentum flux is negative, and objects carrying a net negative momentum flux will be called co-gradient. Individual objects can carry either a net positive or negative flux, but Table 2 shows that co-gradient ones are more common, both for uv and for ϕ_{12}. They also tend to be larger than counter-gradient ones, as seen by the larger relative difference between the volume contributions of the two kinds, compared to the number frequencies. In the case of Q_s, for which the sign of the velocity fluctuations is fixed by their definition, co-gradient objects are classified as ‘sweeps’ or ‘ejections’ [1] depending on whether their streamwise velocity fluctuation is positive of negative, respectively. In the case of O_{ps}, that distinction is not clear, and the relation of O_{ps} with the two types of Q_s will be one of the questions to be discussed below.

Each object is circumscribed within a parallelepipedic box aligned to the Cartesian axes, which is used to define both its dimensions, Δ_x, Δ_y and Δ_z, and its position. Figure 2 shows the joint probability density function (PDF) of the minimum and maximum distance of the objects from the nearest wall, y_{min} and y_{max}. Lozano-Durán et al. [2] showed that the coherent structures of uv can classified into two families based on their minimum distance from the wall. The ‘attached’ structures in the left-most side of the figure 2(a) have $y_{min}^+ < 20$, but some of them are very large, growing to be as tall as the channel half-height. The ‘detached’ structures in the diagonal band of figure 2(a) never approach the wall, and their height $\Delta_y = y_{max} - y_{min}$ depends little on the wall distance. The same classification into attached and detached families applies to vorticity and velocity structures [11, 12] with minor variations in the limiting y_{min} that separates the two families. In the logarithmic layer of channels, around 60% of the Reynolds stress is carried by attached Q_s, while detached objects carry a much smaller fraction of the total stress. In fact, it was shown in [2, 13] that detached objects are random fluctuations which are
too small to couple with the mean shear, and that they are present in all shear flows. They are isotropically oriented, and do not collectively support a mean momentum flux. Attached objects are also common features of shear flows, and they can even be identified in flows without walls [13]. They are large enough to couple with the mean shear, and are responsible for most of the mean momentum flux. This coupling also means that large co-gradient objects extract energy from the mean flow, which allows them to grow even larger. In essence, ‘attached’ objects are defined by being large, rather than by being attached to the wall, but the geometry of the flow over walls is such that they cannot grow to be large enough to couple with the shear without also hitting the wall [12].

As can be seen in figure 2(b), O_{ps} also separate into attached and detached families. In the logarithmic layer, attached O_{ps} carry 30% of the mean momentum flux, which is close to the overall contribution of all the O_{ps}. Co-gradient detached O_{ps} carry approximately 7% of the flux, which is partially compensated by about –2% from the counter-gradient ones. As in the

Figure 3. (a) Joint PDF of the wall-parallel dimensions of attached structures (Δ_x, Δ_z). Contours include 50% and 99.8% of the data. The two diagonals are $\Delta_x = 1.3 \Delta_z$ and $\Delta_x = 2.5 \Delta_z$. (b) PDF of the wall-parallel aspect ratio Δ_x/Δ_z of tall attached objects ($y_{+min} > 100$). The two vertical lines mark the peak value of the PDF, obtained by parabolic fitting, $\Delta_x/\Delta_z = 1.3$ and $\Delta_x/\Delta_z = 2.5$. (c) As in (b) for the wall-normal aspect ratio Δ_x/Δ_y of tall attached objects. The vertical lines are $\Delta_x/\Delta_y = 1.8$ and $\Delta_x/\Delta_y = 2$. (d) Joint PDF of the volume and height of attached structures. Contours include 50% and 99.8% of data. The diagonal line is $Vol. \propto \Delta_y^{2.5}$. In all figures, solid and dashed lines correspond to Ops and Qs, respectively, and symbols denote the two Reynolds numbers, as in table 1.
case of Qs, attached Ops are dominant, and we mostly focus on co-gradient attached objects in the following.

Specially relevant are attached objects that are large enough to reach above the buffer layer, $\Delta_y^+ > 100$, and which are therefore largely inviscid. Most of the discussion in the previous paragraphs applies to these ‘tall’ objects. They were also the main focus of the discussion in [11, 2, 13], and we will mostly be interested in them in what follows.

It should be mentioned at this point that the smaller contribution of the Ops to the total flux, when compared to the Qs, is mainly, but not wholly, due to the choice of the identification threshold H. The total contribution of Qs to the momentum flux varies from 95% to 30% as the threshold changes across the percolation range from $H = 1$ to $H = 3$, while that of the Ops only varies from 65% to 20% as H changes from 1.4 to 2.4. Overall, ϕ_{12} is less intermittent than $u\nu$, and a given fraction of the momentum flux requires a larger volume in the former than in the latter [6].

The dimensions of attached Qs and Ops are compared in figure 3(a), which shows the joint PDF of the logarithms of the wall-parallel sizes of the attached objects, as determined from their bounding box. The PDF follows a linear trend in both cases, but with a different slope for Qs and for Ops. The PDFs of the aspect ratio Δ_x/Δ_z, shown in figure 3(b) for tall attached objects, indicate that the Ops are almost twice wider than the Qs. A similar linear relation applies to the wall-parallel and wall-normal dimensions of the objects, confirming that both Qs and Ops form self-similar families in the logarithmic layer, but figure 3(c) shows that the wall-normal aspect ratio of Qs and Ops is very similar. Ops are wider than Qs but not taller.

Figure 3(d) shows the joint PDF of the volume and height of attached Qs and Ops. For the tall objects defined above, the relation between Δ_y and the volume approximately follows a power law, similar in both structures. The exponent changes slightly with the Reynolds number, and with the range of wall-distances considered, but it is always close to 2.5, with a slight tendency to higher exponents in Ops than in Qs. If interpreted as a fractal dimension, it implies fairly full shell- or flake-like objects [2].

In all these results, it is important to note the excellent collapse of the two Reynolds numbers used in the study.

4. Relation to low- and high-momentum regions
In the rest of the paper, we will only consider tall attached objects ($\Delta_y^+ > 100$) that do not extend beyond the logarithmic layer ($\Delta_y/h < 0.2$). This is the same restriction applied to Qs in [2], and will facilitate the comparison.

The first point to consider is the relation of Qs and Ops to the high- and low-momentum regions (streaks) of the flow. In the case of Qs, it follows from their definition that sweeps ($u > 0$) reside in high-speed regions, and ejections ($u < 0$) in low-speed ones. It was found in [2] that sweeps and ejections tend to be paired side by side, with each pair straddling the border between a high- and a low-speed streak. In the case of Ops, figure 4 is a snapshot of u at $y^+ = 100$, including contours of ϕ_{12} at the reference threshold used to define structures in (4). In contrast to Qs, the figure shows that many Ops intersect both a high- and a low-momentum region. This can be quantified by the volume fraction occupied by low-momentum points within each object,

$$F = \frac{\int_{\Omega_{u<0}} dV}{\int_{\Omega_{u>0}} dV + \int_{\Omega_{u<0}} dV},$$

where Ω is the interior of the object and subscripts represent conditioning by the sign of u. Objects with $F = 0$ are completely within a high-momentum region, and those with $F = 1$ are within a low-momentum one.
Figure 4. (Colour online) The colour map is the instantaneous streamwise fluctuating velocity, and the line contours is the identification threshold for Ops at $y/h = 0.10$. Flow is from left to right. $Re_T = 934$.

Figure 5. (a) PDF of the low-momentum fraction, F, as defined in (5), for tall attached Ops in the logarithmic layer. (b) Average volume of Ops as a function of F, where the overline denotes averaging over all tall attached objects in the logarithmic layer. Symbols denote the two Reynolds numbers, as in table 1.

For the reasons mentioned above, most Qs are in one of these two limits, but the PDF in figure 5(a) shows that the distribution of the logarithmic-layer Ops is more uniform. Except for an excess of purely low-momentum Ops, their PDF is approximately uniform. Moreover, Figure 5(b) shows that ‘pure’ Ops tend to be smaller than those with mixed momentum regions, so that their contribution to the overall object volume is less than implied by their PDF. In fact, the number fraction of the pure Ops ($F < 5\%$ or $F > 95\%$) is 26\% of the total, but their contribution to the volume is only 14\%. Moreover, when all the tall attached objects are considered, including those taller than $\Delta_y/h = 0.2$, the volume fraction of the pure Ops is only 3\%. The result is that, as opposed to Qs, the Ops cannot be classified into sweeps and ejections.

The reason for the excess of low-momentum Ops is unclear, but it is known that low-momentum regions in wall-bounded flows contain more coherent vortices than high-momentum...
Figure 6. Two-dimensional pdf of the relative position of: (a) Closest Op relative to another Op. (b) Closest low-momentum Op ($F \geq 0.5$) relative to a high-momentum Op ($F < 0.5$). (c) Closest Q relative to an Op. (d) Closest sweep-ejection Q-pair relative to an Op. Bold line contours and darker filled areas contain 10\% of the data. Thinner and lighter ones contain 50\% of the data. Shaded contours are $Re_\tau = 934$ and lines are $Re_\tau = 2003$. The dashed ellipses correspond to the mean size of the reference object.

ones [14], and that ejections, which are low-u objects, are more common than sweeps above the buffer layer [2]. There are several possible explanations for this inhomogeneity, going from artefacts due to using a uniform threshold across a non-uniform flow plane, to actual physics. The most likely reason, which is supported by informal visual inspection of individual flow fields, is that low-velocity regions are associated with positive wall-normal velocities, which bring active turbulence from the high-shear region near the wall, while high-velocity ones receive relatively quiescent flow from the low-shear region in the centre of the channel.
5. Geometric relations between objects

The relationships among different objects is discussed next by means of the PDF of their relative position, which is defined for object j relative to object i as

$$
\delta^{(ij)} = \frac{x_c^{(j)} - x_c^{(i)}}{\Delta_y^{(ij)}},
$$

with components $\delta^{(ij)}_k, k = x \ldots z$. Positions are referred to the centre, $x_c^{(i)}$, of the circumscribing box of object i, and lengths are normalised with the mean wall-normal height of the two objects, $\Delta_y^{(ij)} = (\Delta_y^{(i)} + \Delta_y^{(j)})/2$. As in [2], only objects with similar size,

$$
1/2 < \Delta_y^{(j)}/\Delta_y^{(i)} < 2,
$$

are considered to be related, but we follow in this work the practice in [13] of compiling the PDFs using only the closest object to the reference one. The statistical spanwise symmetry of the flow is used to improve the convergence of the PDFs.

Figure 6(a) shows the two-dimensional PDF of the relative position of the closest Op relative to another Op. Related Ops tend to be located streamwise from one another, separated by the mean streamwise length of the reference Op, and 85% of the Ops find another Ops satisfying condition (7) at $Re_T = 2003$.

This arrangement is similar to the relative position of Qs of the same kind (e.g. sweep-sweep), but Qs of different kinds, such as a sweep and its closest ejection tend to form pairs aligned spanwise from one another. In the logarithmic layer, 80% of the Qs form such pairs, or similar composite structures [2]. We have seen that Ops cannot be classified into sweeps and ejections, but the relative position of predominantly low-momentum Ops ($F > 0.5$) with respect to high-momentum ones ($F \leq 0.5$) is shown in figure 6(b). There is also in this case a tendency to spanwise organisation, but the convergence of the PDF is poor because only 41% of the low-momentum Ops have a high-momentum one satisfying (7).

The relative position between Ops and Qs is shown in figure 6(c). Most Ops (98%) have at least a Q satisfying (7), and 50% of these Qs are closer than the mean diameter of the reference Op. Essentially Ops and Qs are collocated.

Finally, the distance from Ops to the closest sweep-ejection pair, as defined in [2], is examined in figure 6(d). In this case, the centre of the pair is defined as

$$
x_c^{(p)} = \frac{x_c^{(Q2)} + x_c^{(Q4)}}{2},
$$

and its size is defined as the mean of the wall-normal size of the two components of the pair. Most (87%) Ops have a closest Q-pair satisfying (7) and figure 6(d) shows that most Q-pairs are found within the mean length and width of the reference Op. As with individual Qs, Ops and Q-pairs overlap.

This result is consistent with section 3, which showed that attached Ops are twice wider than Qs, but not taller, and with section 4, where we found that most Ops intersect both high- and low-momentum regions. Together with the results in figure 6, the logical conclusion is that tall attached Ops correspond to the sweep-ejection pairs discussed in [2]. This will be further confirmed by the conditional fields in the next section.

6. Conditionally averaged fields

In this section, we consider the conditionally averaged flow field around Ops. As was the case with the comparable conditional fields around Q-pairs in [2, 13], this implies defining both a
Figure 7. (Colour online) (a) Cross section at $\delta_x = 0$ of the conditionally averaged field around tall attached Ops in the logarithmic region; looking in the direction of the flow. The colour background is \tilde{u}, increasing from blue to red; arrows are the velocity in the cross-plane; the heavier contour is $\tilde{\phi}_{12}^+ = -2.1$, and the lighter double one is $\tilde{u}\tilde{v}^+ = -2.1$. (b) As in (a), for the conditionally averaged field around tall attached sweep-ejection pairs in the logarithmic region. Symbols are as in (a), but the heavier double contour is $\tilde{u}\tilde{v}^+ = -1.3$, and the lighter one is $\tilde{\phi}_{12}^+ = -1.3$. $Re_\tau = 934$.

Figure 8. (Colour online) Three-dimensional plot of the conditionally averaged field around tall attached Ops in the logarithmic layer. The translucent isosurface is $\tilde{\phi}_{12}^+ = -2.1$, coloured by \tilde{u}; the yellow solid isosurface is $\tilde{u}\tilde{v}^+ = -2.1$; arrows are the conditional cross-flow velocity: grey ones at $\delta_x = 0$, and black ones at $\delta_x = 3$. Flow is from lower-left to upper-right. $Re_\tau = 934$.
common centre and a common scale for the individual objects, so that the conditional average is a scale-less function of a dimensionless vector coordinate δ. Thus, the conditional field for a set of individual fields $q^{(i)}(x)$, $i = 1 \ldots N$, is

$$\tilde{q}(\delta) = N^{-1} \sum_i q^{(i)}(\Delta_y^{(i)} \delta + x_c^{(i)}),$$

where $x_c^{(i)}$ is the centre of the box circumscribing the i-th object, so that

$$\delta = (x - x_c^{(i)})/\Delta_y^{(i)}.$$

Individual fields are centred, rescaled with the height, $\Delta_y^{(i)}$, of its object, and averaged. In computing the conditional fields around Q-pairs in [2, 13] it was found convenient to take advantage of the statistical spanwise symmetry of the flow to reorient each pair so that the sweep is always on the same orientation with respect to the flow direction. We have seen that sweeps and ejections are not relevant for Ops, but individual Ops are reoriented so that the highest u is always on the right-hand side, looking in the direction of the flow. To avoid the indeterminacy of this reorientation for Ops with $F \approx 0$ or $F \approx 1$, which we saw in figure 5 to be high in number but low in volume, only objects with $0.2 < F < 0.8$ are considered for the conditional fields.

Figure 7(a) shows a section through the $\delta_x = 0$ cross-flow plane of the conditional field around tall attached Ops in the logarithmic layer. The colour indicate \bar{u} and the arrows are the cross-flow velocity. The average position of the Op is given by the heavy contour of ϕ_{12}, which intersects both the high- and the low-u region. It has a single peak near the centre of the conditional box, whose position is approximately independent of the choice of the δ_x slice and of the contour magnitude. The position of the associated Qs is marked by the lighter contours of \bar{w}, which has two peaks corresponding to the average location of the sweep and of the ejection. The cross-flow velocities form a circular roller around the box centre, reminiscent of the conditional rollers associated with sweep-ejection pairs in [2, 13].

For completeness, figure 7(b) shows the conditionally averaged velocity field around a sweep-ejection pair, confirming the similarity of the flow around Ops and Q-pairs. It includes the mean position of the associated Op, in the form of a line contour of ϕ_{12}, and it is clear from these two figures that Ops and sweep-ejection pairs are collocated on average.

Figure 8 shows the three-dimensional counterpart to the conditional field in figure 7(a). It is clear that there is a strong sweep-ejection pair at the same location as the conditional Op. As seen from the arrows at the two cross planes, the circular motion in fig. 7(a) is part of an inclined quasi-streamwise roller, whose orientation can be evaluated by tracking the maximum of the averaged fluctuation vorticity $^1 |\tilde{\omega}|$. A least-square fit to these local maxima in $0 \leq |\delta_x| \leq 1$ results in a roller inclined at 24° to the wall, and tilted 7.9° towards the low momentum side. These angles are approximately twice larger than those of other streamwise eddies in the literature [15, 16], but comparable, for example, to the inclination of the roller of large detached pairs in [13]. They are also defined by a different procedure than those in most previous reports, including the present restriction to the logarithmic layer, and it was noted in [16] that the inclination of eddies depends on how they are defined, and on the length scales being considered.

7. Conclusions

We have presented in this paper a detailed comparison between the intense structures (Ops) of the alternative momentum flux ϕ_{12} defined in [6], and the classical quadrant structures (Qs)

1 Note that $\tilde{\omega}$ is different from the vorticity of the conditional velocity $\nabla \times \tilde{u}$, because of the variable rescaling of the spatial coordinates
based on the tangential Reynolds stress uv. Since both fluxes are equivalent in the mean, the emphasis has been on identifying similarities and differences between their intense structures, with a view to ascertaining which of their properties are associated with a particular flow definition, and which ones are more general, and therefore presumably characteristic of the momentum flux as such.

The two types of structures share many characteristics. For example, objects large enough to attach to the wall are responsible for most of the momentum transfer in both cases, and those mostly located within the logarithmic layer form self-similar families characterised by fixed aspect ratios, rather than by a fixed size.

However, the tall attached Ops are twice wider than the Qs, although not taller, and they intersect both high- and low-momentum regions, while Qs, because of their definition, tend to be associated with one or with the other. A consequence is that it is difficult to classify Ops into the equivalent of the sweeps and ejections found for Qs.

In fact, the PDFs of the relative positions of Ops with respect to other Ops, as well as with respect to Qs and to sweep-ejection pairs, strongly support the idea that most Ops are manifestations of the same phenomenon as the sweep-ejection pairs. Both are associated with an inclined conditional roller in the border between a high- and a low-speed streak.

Our results suggest that the coherent structures of the momentum flux and the associated streamwise rollers are robust with respect to the definition of the fluxes, and are truly representative of flow features in the logarithmic layer. They also suggest that sweeps and ejections should not be studied as individual objects, but as members of a composite structure containing both. It should finally be mentioned that all these results are found to be independent of the Reynolds number for the two cases considered in this work.

Acknowledgments

This work was supported by the Coturb project of the European Research Council, and performed in part during the 2017 Turbulence Summer Workshop at the UPM. The stay of Mr. Osawa at Madrid was partially funded by the Erasmus Mundus EASED programme (Grant 2012-5538/004-001) coordinated by CentraleSupélec. We are grateful to Dr. Lozano–Durán for his careful refereeing of an initial version of this manuscript.

References

[1] Wallace J M, Eckelmann H and Brodkey R S 1972 J. Fluid Mech. 54 39–48
[2] Lozano-Durán A, Flores O and Jiménez J 2012 J. Fluid Mech. 694 100–130
[3] Lozano-Durán A and Jiménez J 2014 J. Fluid Mech. 759 432–471
[4] Tsinober A 1990 Phys. Fluids A 2 484–486
[5] Hamman C W, Klewicky J C and Kirby R M 2008 J. Fluid Mech. 610 261–284
[6] Jiménez J 2016 J. Fluid Mech. 809 585–600
[7] Wu J, Zhou Y, Lu X and Fan M 1999 Phys. Fluid 11 627–635
[8] Del Alamo J C, Jiménez J, Zandonade P and Moser R D 2004 J. Fluid Mech. 500 135–144
[9] Hoyas S and Jiménez J 2006 Phys. Fluids 18 011702
[10] Moisy F and Jiménez J 2004 J. Fluid Mech. 513 111–133
[11] del Alamo J C, Jiménez J, Zandonade P and Moser R D 2006 J. Fluid Mech. 561 329–358
[12] Jiménez J 2018 J. Fluid Mech. 842 P1–100
[13] Dong S, Lozano-Durán A, Sekimoto A and Jiménez J 2017 J. Fluid Mech. 816 167–208
[14] Tanahashi M, Kang S J, Miyamoto T, Shiokawa S and Miyauchi T 2004 Int. J. Heat Fluid Flow 25 331–340
[15] Jeong J, Hussain F, Schoppa W and Kim J 1997 J. Fluid Mech. 332 185–214
[16] Sillero J A, Jiménez J and Moser R D 2014 Phys. Fluids 26 105109