First acceleration of heavy ion beams with a superconducting continuous wave HIM/GSI CW-linac

M. Basten¹, K. Aulenbacher¹,²,³, W. Barth¹,², M. Busch⁴, F. Dziuba¹,², V. Gettmann¹,², M. Heilmann³, T. Kü rzeder¹,², S. Lauber³, M. Miski-Oglu¹,², H. Podlech⁴, A. Rubin², A. Schnase², M. Schwarz⁴, S. Yaramyshev²

¹HIM Helmholtz-Institute Mainz, 55099 Mainz, Germany
²GSI Helmholtz-Centre, 64291 Darmstadt, Germany
³KPH Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
⁴IAP Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany

Abstract. In the future a new superconducting (sc) continuous wave (cw) high intensity heavy ion Linac should provide ion beams with a max. beam energy above the coulomb barrier for the Super Heavy Element (SHE) program at GSI Helmholtzzentrum für Schwerionenforschung. Key features of this new Linac are the acceleration of different ions from protons to uranium as well as a smooth energy variation from 3.5 to 7.3 MeV/u for design ions with a mass-to-charge ratio \(A/q = 6 \) and even above for lighter ions. As a first step a newly developed superconducting 15-gap Crossbar H-cavity (CH-cavity) operated at 217 MHz has been successfully tested with heavy ion beam up to the design beam energy of 1.85 MeV/u for the first time. The design energy gain of 3.5 MV within a length of less than 70 cm has been validated with heavy ion beams of up to 1.5 \(\mu \)A. The measured beam parameters showed excellent beam quality, while a dedicated beam dynamics layout provides beam energy variation between 1.2 and 2.2 MeV/u. The beam commissioning is a milestone of the R&D work of Helmholtz Institute Mainz (HIM) and GSI in collaboration with Goethe University Frankfurt (GUF) and the first step towards a sc heavy ion cw-Linac with variable beam energy. The first tests under cryogenic conditions of the next two CH-cavities have already been started at GUF in a vertical cryostat. The results of the first successful heavy ion beam acceleration with a superconducting CH-cavity will be presented.

1. Introduction

The design and construction of cw high intensity Linacs is a crucial goal of worldwide accelerator technology development [1]. Above all, compactness of a particle accelerator is a beneficial demand for the development of high intensity cw proton and ion Linacs [2]. The study and investigation of the design, operation and optimization of a cw-Linac, as well as progress in elaboration of the superconducting technology [3] is of high relevance.
For the HIM/GSI cw-Linac HELIAC (H|elmholtz L|inear A|Ccelerator) several superconducting CH cavities operated at 217 MHz with acceleration gradients up to 7.1 MV/m are used to provide beam energies above the coulomb barrier for different ions from protons to uranium. Ampel features of HELIAC are a smooth energy variation between 3.5 and 7.3 MeV/u for ions with a design mass-to-charge ratio $A/q = 6$ and even higher for lighter ions down to $A/q = 1$, while the energy spread should be kept smaller than ±3 keV/u. The compact design of CH-cavities as well as the high accelerating gradients of 7.1 MV/m lead to a overall compact Linac design with a length of less than 20 m. To provide proper beam focusing, superconducting solenoids have to be mounted between the CH cavities. The first HELIAC design is shown in Figure 1 while the general parameters are listed in Table 1 [4].

![Schematic layout of the proposed HELIAC from 2009.](image)

Figure 1. Schematic layout of the proposed HELIAC from 2009.

R&D and prototyping (demonstrator project) [5] in preparation of the proposed HELIAC is assigned to a collaboration of GSI, HIM and GUF. Up to now, the reference design for the cw-Linac dates back to [4]. Meanwhile many experiences have been gained in design, fabrication and operation of sc CH-cavities and the associated components. In this context, a revision of the Linac layout was recommended. Optimized cavity layouts [6] resulted in modified voltage distributions. Furthermore, the optimized layout with three CH-cavities and a sc rebuncher (see Fig. 2) [7-9] per cryo module has been specified with more details. It features high acceleration efficiency with longitudinal and transversal stability, as well as a straightforward energy variation. Highly charged ions with a mass-to-charge ratio of maximum 6 will be accelerated from 1.4 MeV/u up to 3.5- 7.3 MeV/u. High beam quality and beam energy variation is the core feature of the cw-Linac to be noticed especially at beam dynamics layout [10-16]. The detailed beam dynamics study and optimization of the machine settings was performed in particular to increase an acceleration gain under limitation of emittance growth by 10% for transverse phase plane and by 20% for longitudinal one [17].

Table 1. Design Parameters of the cw-Linac.
Parameter
Mass/charge
Frequency
Max. beam current
Injection energy
Output energy
Output energy spread
Length of acceleration
Sc CH-cavities
Sc solenoids
2. SC cw Demonstrator
The first step towards HELIAC was the successful test of the sc cw demonstrator which could proof the operation ability of sc CH-cavity technology under cryogenic conditions as well as the successful beam operation with a sc CH-cavity. The demonstrator comprises a 15 gap sc CH-cavity (CH0) embedded by two superconducting solenoids. All three components are mounted on a common support frame (see Fig. 3) and inserted in a horizontal cryostat [18]. The cryostat is designed for various types of solenoids and CH-cavities with different lengths and diameters. The beam focusing solenoids consist of one main Nb3Sn-coil and two compensation coils made from NbTi that shield the maximum magnetic field of 9.3 T within a longitudinal distance of 10 cm down to 30 mT. The solenoids are connected to LHe ports inside the cryostat by copper tapes allowing dry cooling. The sc CH structure CH0 is the key component and offers a variety of research and development [19]. The demonstrator setup is located in straightforward direction of the GSI-High Charge State Injector (HLI).

3. Demonstrator-Beam dynamics
The beam dynamics layout behind the HLI at 1.4 MeV/u has been simulated in advance. In a preparing beam test run, it could be confirmed, that the room temperature focusing quadrupoles (triplet and two duplets) and two rebuncher cavities are sufficient to provide for full 6D-matching to the demonstrator [20]. At the same time, the input beam is axially symmetric for further solenoid focusing due to especially chosen gradients, while bunch length (see Fig. 4) and momentum spread are matched as well.
Figure 4. Bunch shape measurement for HLI beam at 1.366 MeV/u (top) and at same energy for matched case with rebuncher R1 and R2 (down).

Instrumentation of the beam will be provided by the transport line (see Fig. 5). Moreover, beam transformers, Faraday cups, SEM-profile grids, a dedicated emittance meter, a bunch structure monitor and phase probe pickups (beam energy measurements applying time of flight) provide for proper beam characterization behind the demonstrator.

Figure 5. Layout of matching line to the Demonstrator and beam diagnostics test bench; QT/QD = quadrupole triplet/duplet, R = rebuncher, X/Y = beam steerer, G = SEM-grid, T = current transformer, P = phase probe, BSM = bunch shape monitor, EMI = emittance meter.

The beam dynamics layout of the sc cw-Linac is based on the EQUUS (EQUidistant mUltigap Structure) concept, as proposed in [21]. It features high acceleration efficiency with longitudinal and transversal stability, as well as a straightforward energy variation by varying the applied RF-voltage or the RF-phase of the amplifier. Highly charged ions with a mass-to-charge ratio of maximum 6 will be accelerated from 1.4 MeV/u up to 3.5 - 7.3 MeV/u. Energy variation while maintaining a high beam quality is the core issue with respect to beam dynamics and has been simulated using advanced software [10-11] and previously developed algorithms [12-13, 22-23]. The constant cell length inside an EQUUS designed cavity is fixed for a higher (geometrical) β compared to the injection beam energy (constant-β structure). As a consequence the constant-β structure leads to a sliding movement in longitudinal phase space. Trajectory and energy gain depend strongly on the initial phase at the first gap centre and the difference between particle energy and design energy. The corresponding transversal emittance evolution has been measured in a broad range with small emittance growth.
Beam dynamic simulations behind the HLI have been carried out with the LORASR code (see Fig. 6) [24]. The quadrupole triplet and duplets provide for an axially symmetric input beam for further solenoid focusing allowing the beam to be matched to the demonstrator in the 6d phase space.

4. Preparation of rf-cavity and supply system
The sc 15 gap CH-cavity is directly cooled with liquid helium, supported by a helium jacket made from titanium. The first performance test of the cavity was conducted without helium jacket at GUF in a vertical cryostat with low RF power after high pressure rinsing (HPR) by the vendor Research Instruments GmbH (RI). Gradients up to 7 MV/m could be achieved. After the final assembly of the helium vessel and further HPR preparation at RI, the cavity was tested in a horizontal cryostat at GSI. As depicted in Fig. 7, the cavity showed improved performance due to an additional HPR treatment. The initial design quality factor Q_0 has been exceeded by a factor of four, a maximum accelerating gradient of $E_a = 9.6$ MV/m at $Q_0 = 8.14 \times 10^8$ has been achieved [18, 25-26].
Prior beam commissioning of the cavity, the RF power couplers [27-28] were tested and conditioned with a dedicated test resonator [29]. For this the couplers were equipped with sensors to control the temperature of the ceramic windows and Langmuir probes to detect multipacting currents. First conditioning [30] has been performed up to 5 kW with pulsed power and up to 2 kW in cw-mode. Further increase of the forward cw-RF power resulted in a temperatures rise of more than 80°C at the ceramic window, potentially sufficient to damage the coupler. During beam operation, the "cold" coupler window has been anchored to the liquid nitrogen supply tube by copper ribbons. The power couplers as well as three frequency tuners, developed at IAP [31] and manufactured at GSI, have been integrated in the RF-cavity in a clean room of class ISO4. After leak testing of the accelerating string, consisting of the CH-cavity and both solenoids, the complete cold mass was integrated [32] into the cryostat outside of the clean room.

5. First beam acceleration
At June 2017, after successful RF-testing of the sc RF-cavity in 2016, set up of the matching line to the demonstrator and a short commissioning and ramp up time of some days, the CH0-cavity first time accelerated heavy ion beams (Ar$^{11+}$) with full transmission up to the design beam energy of 1.866 MeV/u ($\Delta W_{\text{kin}} = 0.5$ MeV/u) [33]. For the first beam test the CH-cavity was powered with 10 Watt of net RF power, providing an accelerating voltage of more than 1.6 MV inside a length of 69 cm. Further on the design acceleration gain of 3.5 MV has been verified and even exceeded by acceleration of beam with high rigidity (A/q = 6.7). As summarized in Table 2, argon and helium ion beams with different charge state from an Electron Cyclotron Resonance ion source (4He$^+$, 40Ar$^{11+}$, 40Ar$^{9+}$, 40Ar$^{6+}$) were accelerated at HLI with the demonstrator. For longitudinal beam matching the rebuncher settings were adapted according to the mass-to-charge ratio A/q, as well as the acceleration voltage. A maximum average beam intensity of 1.5 pA has been achieved, limited only by the beam intensity of the ion source and maximum duty factor (25%) of the HLI, while the CH-cavity was operated in cw-mode. All presented measurements were accomplished with high duty factor beam and maximum beam intensity from the HLI.
Table 2. RF-Parameters for matched case.

A/q	He_{2+}	Ar_{11+}	Ar_{9+}	Ar_{6+}
He_{2+}	2.0	3.6	4.4	6.7
U_{Reb1,eff} [kV]	8.3	15.0	18.3	27.9
U_{Reb2,eff} [kV]	22.7	40.8	49.9	75.9
E_{acc,CH} [MV/m]	1.8	3.2	3.9	5.9
U_0 [MV]	1.2	2.2	2.7	4.0

*E_{acc} = \text{transit time factor} \times \text{total accelerating voltage/}(n \times 0.5 \times \beta \lambda)$

6. Preparation of rf-cavity and supply system

A full measured 2D-scan of beam energy and beam transmission for a wide area of different accelerating fields and RF-phases has been performed. The linear increase of beam energy with ramped accelerating gradient (as shown in Fig. 8) could be observed for different RF-phase settings, while the beam transmission is kept above 90 %. In general these measurements confirm impressively the EQUUS beam dynamics concept, featuring effectively beam acceleration up to different beam energies without particle loss and significant beam quality degradation. As measured with helium beam, for lighter ions a maximum beam energy of up to 2.2 MeV/u could be reached with the demonstrator cavity. Although, following the results of dedicated beam dynamics investigations [14], such higher energy gain will result in reduced beam quality especially on the longitudinal phase plane. With Ar_{6+}-beam (A/q = 6.7), an energy gain above 0.5 MeV/u could be reached with an accelerating gradient of 6 MV/m. As an example, Fig. 9 shows a fully measured 360° phase scan for two different accelerating gradients (3.5 MV/m and 5.5 MV/m). All individual data as well as the characteristic shapes of the phase scans are in good agreement according to the accelerating gradient. For an increased gradient the maximum beam energy at an RF-phase of 210° boosts as well, while the minimum beam energy at 130° could be decreased down to 1.2 MeV/u. The bunch length detected with a bunch shape monitor (BSM) [34-35] was measured as very sensitive to RF-phase changes. A change of RF-phase by 30° only, leads to a significant change of bunch length (by more than a factor of four), while the beam transmission is not affected. For further matching to another CH-cavity, the adjustment of the beam energy setting by changing the RF-amplitude is more favourable - compared to changing the RF-phase - as no significant bunch shape change could be observed.

Figure 8. Acceleration of an Ar_{9+}-beam; maximum achieved beam energy and transmission as function of the (eff.) accelerating gradient [33].
7. Phase space measurements

The first beam quality characterization has been performed by measuring the phase space distribution for different energies [33]. The measured emittance of the argon beam, delivered by the HLI, is adequately low. The total 90% horizontal beam emittance is measured for 0.74 µm, while the vertical emittance is 0.47 µm only. All measurements have been performed without solenoidal fields, therewith any additional emittance degradation effects by different beam focusing could be avoided. The measured (normalized) beam emittance growth at full beam transmission is sufficiently low: 15 % (horizontal plane) and 10% (vertical plane). Selective measurements at other RF-amplitudes and -phases, as well as for other beam rigidities confirmed the high (transversal) beam performance in a wide range of different parameters.

Figure 9. Phase-scan of Ar⁶⁺-beam energy for 3.5 MV/m and 5.5 MV/m [33].

Figure 10. Bunch shape of Ar⁹⁺-beam fully matched after acceleration to 1.85 MeV/u [33].
Besides beam energy measurements the bunch shape for the matched case was measured with the Feschenko monitor [35] (see Fig. 10). As shown, an impressive small minimum bunch length of about 300 ps (FWHM), sufficient for further matching to and acceleration in future RF-cavities, could be detected.

8. Advanced R&D

The revised layout of HELIAC comprises the demonstrator cavity (CH0) as well as two additional CH-cavities (CH1 and CH2) for the first cryo module. Both cavities have already been constructed over the last two years and CH 1 has already been tested under cryogenic conditions. After a fast cooldown with 1.8 K/min, to avoid hydrogen related Q-disease and several days of RF conditioning, all multipacting barriers could permanently be surmounted and the RF performance of the cavity could be determined. The resulting Q_0 vs. E_a curve of the vertical test without helium vessel is shown in Fig. 11 while Table 3 summarizes the main test results [36].

Table 3. Main results of the first RF test of CH1 at 4.2 K.

Unit	Value
Q_0^{low}	1.02×10^9
Q_e^{low}	1.68×10^8
R_S	$48.4\,n\Omega$
R_{BCS}	$12.6\,n\Omega$
R_{mag}	$9.78\,n\Omega$
R_ϕ	$26.02\,n\Omega$
E_{peak}/E_a	5.5
E_a	$9\,MV/m$
U_{eff}	$3.32\,MV$
Q_0^{high}	2.43×10^8

Figure 11. RF-testing of CH1 in a vertical cryostat without helium vessel; maximum field gradient $E_a = 9\,MV/m$.
The Q-value dropped from $Q_{\text{low}} = 1.02 \cdot 10^9$ at low field levels down to $Q_{\text{high}} = 2.43 \cdot 10^8$ at a maximum gradient of $E_s = 9 \text{ MV/m}$. This corresponds to a total voltage of $U_{\text{eff}} = 3.32 \text{ MV}$ inside the cavity. The design Q-value of $3 \cdot 10^8$ is reached at an accelerating gradient of $E_s = 8.52 \text{ MV/m}$, which is 55% above the design gradient of $E_s = 5.5 \text{ MV/m}$. Field emission started at field gradients above $E_s = 5 \text{ MV/m}$; the Fowler-Nordheim plot indicated a field enhancement factor of about 80 [36].

9. Summary
An advanced cw-Linac approach, based on a standard cryomodule equipped with three CH-cavities and a sc-rebuncher, demonstrates the high capabilities due to energy variation preserving the beam quality, as shown in the first beam test. The design acceleration gain of the first sc CH-cavity was achieved with heavy ion beams even above the design mass to charge ratio at full transmission and maximum available beam intensity [37]. The beam quality was measured as excellent in a wide range of different beam energies. This new design could provide beam acceleration for light ions with a mass-to-charge ratio $A/q < 6$ even above the design beam energy, featuring the ambitious GSI-user program [38], while the GSI-UNILAC is upgraded for short pulse high current FAIR-operation. [39]. The achieved demonstrator beam commissioning confirms the capabilities of the applied EQUUS beam dynamics design and is a major milestone paving the way to the cw-Linac HELIAC. First extensive tests of CH1 under cryogenic conditions showed promising results with accelerating gradients up to $E_s = 9 \text{ MV/m}$ and low field emission rates [36] confirming the optimized cavity layout [6].

Acknowledgements
Successful beam testing could not be accomplished without strong support of highly committed people from different GSI-departments. The beam test is a milestone of the R&D work of HIM and GSI in collaboration with GUF preparing a superconducting heavy ion cw Linac.

References
[1] C. Prior, Overview of High Intensity Accelerator Projects, Proc. of HB’10, 2010, Morschach, Switzerland, pp. 6-10
[2] S.M. Polozov et al., Beam dynamics study and electrodynamics simulations for the cw RFQ, Proc. of IPAC’17, 2017, Copenhagen, Denmark, pp. 1333-1336
[3] R. Laxdal, Superconductivity and its Applications, Physica C, vol. 441, Issue: 1-2, 2006, pp. 13-20, DOI: 10.1016/j.physc.2006.03.096
[4] S. Minaev et al., Superconducting, energy variable heavy ion linac with constant β, multicell cavities of CH-type, Phys. Rev. ST Accel. Beams 12, 2009, DOI: 10.1103/PhysRevSTAB.12.120101
[5] W. Barth et al., A superconducting CW-LINAC for heavy ion acceleration at GSI, EPJ Web Conf., vol. 138, 2017, DOI: 10.1051/epjconf/201713801026
[6] M. Basten et al., First measurements of the next sc CH-cavities for the new superconducting cw heavy ion LINAC@GSI, Proc. of SRF’17, 2017, Lanzhou, China, pp. 433-436
[7] M. Gusarova et al., Design of the two-gap superconducting re-buncher, J. Phys.: Conf. Ser. 1067, 2018, DOI:10.1088/1742-6596/1067/8/082005
[8] M. Gusarova et al., Multipactor discharge in superconducting accelerating CH cavities, J. Phys.: Conf. Ser. 1067, 2018, DOI: 10.1088/1742-6596/1067/8/082007
[9] K. Taletskiy et al., Comparative study of low beta multi-gap superconducting bunchers, J. Phys.: Conf. Ser. 1067, 2018, DOI:10.1088/1742-6596/1067/8/082006
[10] R. Tiede et al., LORASR Code Development, Proc. of EPAC’06, 2006, Edinburgh, Scotland, pp. 2194-2196
[11] S. Yaramyshev et al., Nucl. Instr. Meth. Phys. Res., Sect. A, vol. 558/1, 2006, pp. 90-94. DOI: 10.1016/j.nima.2005.11.018
[12] S. Yaramyshev et al., An advanced procedure for longitudinal beam matching for sc cw heavy ion linacs, Proc. of HB'16, 2016, Malmö, Sweden, pp. 571-574
[13] S. Yaramyshev et al., Virtual charge state separator as an advanced tool coupling measurements and simulations, Phys. Rev. ST Accel. Beams 18, 2015, DOI: 10.1103/PhysRevSTAB.18.050103
[14] S. Yaramyshev et al., Advanced approach for beam matching along the multi-cavity sc cw Linac at GSI, J. Phys.: Conf. Ser. 1067, 2018, DOI:10.1088/1742-6596/1067/5/052005
[15] M. Schwarz et al., Further steps towards the superconducting CW-linac for heavy ions at GSI, Proc. of IPAC’16, 2016, Busan, South Korea, pp. 896-898
[16] S. M. Polozov et al., Beam dynamics study and elec-dynamics simulations for the cw RFQ, Proc. of IPAC’17, 2017, Copenhagen, Denmark, pp. 1333–1336
[17] M. Schwarz et al., Beam Dynamics Simulations for the New Superconducting CW Heavy Ion LINAC at GSI, J. Phys.: Conf. Ser. 1067, 2018, DOI:10.1088/1742-6596/1067/5/052006
[18] F. Dziuba et al., First Cold Tests of the Superconducting cw Demonstrator at GSI, Proc. of RuPAC’16, 2016, St. Petersburg, Russia, pp. 83–85
[19] T. Kürzeder et al., Infrastructure for Superconducting CH-Cavity Preparation at HIM, Proc. of IPAC’18, 2018, Vancouver, Canada, pp. 2796-2799
[20] M. Schwarz et al., Beam Dynamics for the sc cw heavy ion Linac at GSI, Proc. of IPAC’15, 2015, Richmond, VA, USA, pp. 3742-3744
[21] M. Miski-Oglo et al., Steps towards superconducting cw-Linac for heavy ions at GSI, Proc. of SRF’17, 2017, Lanzhou, China, pp. 112-114
[22] M. Schwarz et al., Beam Dynamics Simulations for the New Superconducting CW Heavy Ion Linac at GSI, Proc. of SRF’17, 2017, Lanzhou, China, pp. 959-961
[23] S.M. Polozov et al., Beam Dynamics Simulations and Code Comparison for a New CW RFQ Design, Proc. of HB’16, 2016, Malmö, Sweden, pp. 188-191
[24] W. Barth et al., Advanced superconducting cw heavy ion linac R&D, Proc. of IPAC’13, 2013, Shanghai, China, pp. 3770-3772
[25] F. Dziuba et al., First Performance Test on the Superconducting 217 MHz CH Cavity at 4.2 K, Proc. of LINAC’16, 2016, East Lansing, MI, USA, pp. 953-955
[26] F. Dziuba et al., RF Commissioning of the Superconducting 217 MHz CH Cavity for Heavy Ions and First Beam Operation, Proc. of LINAC’18, 2018, Beijing, China, pp.859-862
[27] M. Heilmann et al., High power RF coupler for the linac demonstrator at GSI, Proc. of IPAC’17, 2017, Copenhagen, Denmark, pp. 990–992
[28] J. List et al., High Power Coupler R&D for Superconducting CH-cavities, Proc. of LINAC’18, 2018, Beijing, China, pp. 920-923
[29] M. Busch et al., Update on the sc 325 MHz CH-cavity and power coupler processing, Proc. of LINAC’16, 2016, East Lansing, MI, USA, pp. 913–915
[30] F. Dziuba et al., Performance tests of the superconducting 217 MHz CH cavity, Proc. of SRF’17, 2017, Lanzhou, China, pp. 440-443
[31] M. Amberg et al., The fast Piezo-based frequency tuner for sc CH-cavities, Proc. of LINAC’14, 2014, Geneva, Switzerland, pp. 214-216
[32] V. Grettmann et al., Commissioning of demonstrator module for cw heavy ion Linac@GSI, Proc. of SRF’17, 2017, Lanzhou, China, pp. 283-285
[33] W. Barth et al., First heavy Ion Beam Test with a superconducting multi gap CH-cavity, Phys. Rev. ST Accel. Beams 21, 2018, DOI: 10.1103/PhysRevAccelBeams.21.020102
[34] T. Sieber et al., Bunch Shape Measurements at the GSI cw-Linac Prototype, Proc. of IPAC’18, 2018, Vancouver, Canada, pp. 2091-2094
[35] A.V. Feschenko, Technique and instrumentation for bunch shape measurements, Proc. of RuPAC’12, 2012, St. Petersburg, Russia, pp. 181-185
[36] M. Basten et al., Cryogenic Tests of the superconducting beta=0.069 CH-cavities for the HELIAC-project, Proc. of LINAC’18, 2018, Beijing, China, pp. 855-858
[37] W. Barth et al., Superconducting CH-Cavity heavy ion beam testing at GSI, J. Phys.: Conf. Ser. 1067, 2018, DOI:10.1088/1742-6596/1067/5/052007

[38] M. Block et al., Direct mass measurements above uranium bridge the gap to the island of stability, Nature, vol. 463, 2010, pp. 785–788, DOI:10.1038/nature08774

[39] W. Barth et al., High brilliance uranium beams for the GSI FAIR, Phys. Rev. ST Accel. Beams 20, 2017, DOI: 10.1103/PhysRevAccelBeams.20.050101