THE USE OF CLINOPTILOLITES AS CARRIER OF METFORMIN HYDROCHLORIDE IN DRUG DELIVERY SYSTEM: IN VITRO DRUG RELEASE STUDY

I MADE WISNU ADHI PUTRA*, I GUSTI AYU WITA KUSUMAWATI

Department of Nutrition Science, Faculty of Health, Science, and Technology, University of Dhyana Pura, Badung, Bali, Indonesia.

Email: made_wisnu84@yahoo.com

Received: 20 December 2017, Revised and Accepted: 17 July 2018

ABSTRACT

Objective: As an antidiabetic drug, metformin hydrochloride (HCl) has been well known to possess low oral bioavailability and short half-life. In this study, we prepared the drug delivery system (DDS) of metformin HCl and clinoptilolite as its carrier. The in vitro drug release profile was further investigated.

Methods: DDS was made by encapsulating metformin HCl on clinoptilolite using the wet impregnation method at various pH and initial concentration of metformin HCl. Fourier transform infrared spectrometer (FTIR), X-ray diffractometer (XRD), and N2 Sorption Analyzer were used to characterize the as-synthesized DDS. Drug release study was conducted by stirring the DDS in simulated gastric fluid and simulated intestinal fluid over 12 h.

Results: The encapsulation process was achieved optimally at pH 7.0 and initial concentration of metformin HCl of 300 mg/l (CLI-300 denoted DDS). The results of FTIR and N2 sorption analyzer confirmed the existence of metformin HCl on clinoptilolites. Meanwhile, the XRD result showed that the crystallinity of clinoptilolites remained unchanged after the encapsulation process. The cumulative drug release in the simulated gastric fluid was found to be higher than that in the simulated intestinal fluid, which indicated the potent influence of pH on the release properties of the drugs. The drug release kinetics of metformin HCl from clinoptilolite was best fitted into the Korsmeyer-Peppas model with non-Fickian transport mechanism.

Conclusion: We found that clinoptilolite was suitable for DDS application, particularly as a carrier of metformin HCl.

Keywords: Clinoptilolites, Metformin hydrochloride, Drug delivery system.

INTRODUCTION

Type 2 diabetes mellitus is a chronic disease caused by a combination of decreased insulin secretion and decreased insulin sensitivity [1]. The prevalence of this disease, particularly in Indonesia, has increased over the years [2]. Several complications may happen in patients with Type 2 diabetes mellitus, namely autonomic dysfunction, blindness, kidney failure, foot ulcer, amputation, and Charcot joints [3-5]. Metformin hydrochloride (HCl), a biguanide group, has been widely used to treat diabetes mellitus, namely autonomic dysfunction, blindness, kidney failure, foot ulcer, amputation, and Charcot joints [3-5]. Metformin hydrochloride (HCl), a biguanide group, has been widely used to treat patients with Type 2 diabetes mellitus as well as a first-line drug for patients with obesity [6,7]. Nevertheless, due to its hydrophilic nature, this drug has low oral bioavailability (50–60%). It is also administered in high dose [8,9]. Thus, improving the drug administration property would lower the dose, as metformin HCl may contribute to Vitamin B12 and folate deficiency [10], kidney disorder [7], and lactic acidosis [11].

The drug delivery system (DDS) has been used to improve the drug properties and minimize the side effects. Moreover, the use of a carrier in the DDS has played an important role to improve the efficacy and safety of drugs by controlling the rate, time, and drug release sites in the body [12]. Various organic compounds have been used as carriers of metformin HCl, such as O-carboxymethyl chitosan nanoparticles [13], bovine serum albumin nanoparticles [14], hydroxypropyl methylcellulose and ethyl cellulose [15], casein micelles [16], tamarind seed polysaccharide-alginate [17], and unilamellar niosome [18]. Recently, inorganic material has also been used as a drug carrier due to its unique and beneficial attributes, for example, porous material. Its nanosized pores (1-100 nm) allow drug molecules to be trapped within the pores through the interaction with the pore wall. Therefore, prolonged drug release can be achieved [19].

Due to its abundant availability in nature, clinoptilolites are promising materials as drug carrier of metformin HCl. Clinoptilolites are formed by the combination of silicon, aluminum, and oxygen atoms in three-dimensional structures. This material has channels and cages in the nano and subnanometer scales, often called micropores [20]. Moreover, clinoptilolites have been recognized for its safe property [21-23] and antidiabetic activity by forming bound to glucose in the blood [24]. The use of clinoptilolites as drug carrier has been reported by some researchers such as a carrier of ketoprofen [25], salicylate acid in aspirin [26], antibiotics [27], and diclofenac [28]. However, there were no reports on the use of clinoptilolites as a carrier of metformin HCl. Applying the hydrophilic nature and the negative surface charge [29], clinoptilolites are appropriate to be used as a carrier of hydrophilic metformin HCl. In this study, metformin HCl was encapsulated in clinoptilolites at various pH and initial concentration of metformin HCl. The in vitro drug release test of the DDS was performed in the simulated gastric fluid (pH 1.2) and in the simulated intestinal fluid (pH 7.4).

MATERIALS AND METHODS

Materials

The reagents used in this study were: Metformin HCl, ammonium chloride (NH4Cl), HCl, potassium chloride, potassium hydrogen phosphate, and sodium hydroxide. All of these reagents were analytical grade and purchased from Merck. Clinoptilolite-rich zeolites were from Padalarang, West Bandung Regency, West Java, Indonesia.

Activation of clinoptilolites

The clinoptilolite powder (passed 200 mesh sieve) was mixed with deionized water and stirred for 24 h at room temperature. Subsequently, the mixture was filtered and heated at 105°C for 3 h. It was then denoted as CLI. In a 500 ml of the three-necked flask, a total
The procedure was described as follows. A total of 0.1 g of CLI\(_\text{Cl}\) solution of 75, 100, 150, 300, 450, 750, and 900 mg/l was denoted as CLI\(_\text{Cl}\) solution. The mixture was stirred for 24 h at room temperature and various pH (3, 5, 7, 9, and 11). The mixture was then filtered and dried in an oven at 105°C for 6 h. The amount of encapsulated metformin HCl on clinoptilolites was determined by gravimetric analysis.

Effect of pH

To achieve the optimum pH value for drug encapsulation, 1.000 g of CLI\(_\text{Cl}\) were mixed with 100 ml of 100 mg/l metformin HCl solution. The mixture was stirred for 24 h at room temperature and various pH (3, 5, 7, 9, and 11). The mixture was then filtered and dried in an oven at 105°C for 6 h. The amount of metformin HCl encapsulated on CLI\(_\text{Cl}\) was determined by gravimetric analysis. In the same way, this process was conducted with different concentrations of metformin HCl solution of 75, 100, 150, 450, 750, and 900 mg/l. The final DDS was prepared with the highest amount of drugs encapsulated on CLI\(_\text{Cl}\). Fourier transform infrared spectrometer (FTIR), X-ray diffractometer (XRD), and N\(_2\) sorption analyzer were used to characterize the CLI\(_\text{Cl}\).

FTIR study

The existence of functional groups of the samples was observed using a FTIR spectrometer (FTIR 8201, Shimadzu). Fig. 3 shows the FTIR spectrum of clinoptilolite (CLI\(_\text{Cl}\)), activated clinoptilolite (CLI\(_\text{A}\)), and DDS of metformin HCl/clinoptilolite (CLI\(_\text{Cl}\)). In the FTIR spectra of the natural clinoptilolite (CLI\(_\text{Cl}\)), a number of peaks appear on several wavenumbers. The peak at 470.63 cm\(^{-1}\) shows the bending vibration of T\(_\text{O}\)\(_\text{Si}\) and Al) tetrahedral [36,37]. The peak at 601.79 cm\(^{-1}\) shows the stretching vibration of −OH\(_\text{T}\)\(_\text{O}\)\(_\text{Si}\)\(_\text{Al}\) (T=Si and Al) tetrahedral [36,37]. The peak at 470.63 cm\(^{-1}\) shows the asymmetric stretching vibration of T\(_\text{O}\) (double ring external linkage). Peaks at wavenumbers of 789.96 and 1056.99 cm\(^{-1}\) show the symmetric stretching and asymmetric stretching vibrations of the external tetrahedral linkage, respectively [38,39]. The stretching vibration of −OH bonds with hydrophilic molecules such as acids and phenols [34]. Thus, possible interactions between drug molecules and clinoptilolites are hydrophilic interactions (hydrogen bond, dipole-dipole, or dipole- ion). Subsequently, the amount of drug encapsulated on clinoptilolites decreases as the solution pH increase. Negatively charged sites of clinoptilolites and metformin HCl in basic solution may be the main cause of this trend.

Effect of initial concentration

The effect of initial concentration of the solution on the amount of the encapsulated drug is shown in Fig. 2. According to the figure, the amount of encapsulated metformin HCl increases as the initial solution concentration. The highest amount of the encapsulated drug (19.332±2.982 mg/g) was obtained at an initial solution concentration of 300 mg/l. However, when the initial concentration of the solution was increased to 450 mg/l, the amount of encapsulated drug was dropped dramatically to 14.304±2.441 mg/g. The decrease of the encapsulated drug amount continued to 4.289±0.723 mg/g at the initial solution concentration of 900 mg/l. This decrease is due to the active sites of clinoptilolite having been saturated with drug molecules in a high drug solution concentration, thus unable to bind the drug molecules [35].

Effect of initial concentration

The in vitro drug release study was performed using the dialysis method [30]. The procedure was described as follows. A total of 0.1 g of CLI\(_\text{Cl}\) was mixed together with 100 ml of 50 mg/l metformin HCl solution. The mixture was stirred for 24 h at room temperature. This process was conducted at optimum pH that was achieved in previous work. The mixture was then filtered and dried in an oven at 105°C for 6 h. The amount of metformin HCl encapsulated on CLI\(_\text{Cl}\) was determined by gravimetric analysis. In the same way, this process was conducted with different concentrations of metformin HCl solution of 75, 100, 150, 450, 750, and 900 mg/l. The final DDS was prepared with the highest amount of drugs encapsulated on CLI\(_\text{Cl}\). Fourier transform infrared spectrometer (FTIR), X-ray diffractometer (XRD), and N\(_2\) sorption analyzer were used to characterize the CLI\(_\text{Cl}\).

The in vitro drug release study

The drug release study was performed using the dialysis method [30]. The procedure was described as follows. A total of 0.1 g of CLI\(_\text{Cl}\) was inserted into a dialysis bag (cut-off=12 kDa) and immersed in 100 ml of buffer solution at a pH of 1.2 and 7.4. The sample was stirred at 37±0.5°C for 12 h. Every 1 h, as much as 5 ml of buffer solution was collected and replaced with the same volume of fresh buffer. The absorption of the metformin HCl in the aliquot of buffer solution was measured using a UV-Vis spectrometer (Genesys 105, Thermo Scientific) at 232 nm. The amount of drug released from the DDS was expressed as percentage cumulative drug release.

\[
\%\text{Cumulative drug release} = \frac{X_t}{X_0} \times 100\%
\]

Where \(X_t\) is the amount of metformin HCl released over a period of time (mg) and \(X_0\) is the amount of metformin HCl encapsulated on CLI\(_\text{Cl}\) (mg).

RESULTS AND DISCUSSION

Effect of pH

Encapsulation of metformin HCl on clinoptilolites was strongly affected by the pH value (Fig. 1). It appears that the highest amount of metformin HCl encapsulated in clinoptilolites (6.674±1.209 mg/g) occurs at pH 7. In acidic solution, the clinoptilolite active sites and drug molecules are protonated so that drug-clinoptilolite interaction is very weak. The existence of pH sensitive-amine groups in metformin HCl affects its state in the solution [31]. In addition, there is a competition between metformin HCl and the solvent (water) to become bonded to clinoptilolite active sites [32].

At pH 7.0, both the amine groups of metformin HCl and the clinoptilolite active sites become fully deprotonated, causing the drug-clinoptilolite interaction to be strong. Metformin HCl is a hydrophilic and highly soluble drug in water [33]. This drug was found forming hydrogen bonds with hydrophilic molecules such as acids and phenols [34]. Thus, possible interactions between drug molecules and clinoptilolites are hydrophilic interactions (hydrogen bond, dipole-dipole, or dipole-ion). Subsequently, the amount of drug encapsulated on clinoptilolites decreases as the solution pH increase. Negatively charged sites of clinoptilolites and metformin HCl in basic solution may be the main cause of this trend.

Effect of initial concentration

The effect of initial concentration of the solution on the amount of the encapsulated drug is shown in Fig. 2. According to the figure, the amount of encapsulated metformin HCl increases as the initial solution concentration. The highest amount of the encapsulated drug (19.332±2.982 mg/g) was obtained at an initial solution concentration of 300 mg/l. However, when the initial concentration of the solution was increased to 450 mg/l, the amount of encapsulated drug was dropped dramatically to 14.304±2.441 mg/g. The decrease of the encapsulated drug amount continued to 4.289±0.723 mg/g at the initial solution concentration of 900 mg/l. This decrease is due to the active sites of clinoptilolite having been saturated with drug molecules in a high drug solution concentration, thus unable to bind the drug molecules [35].
from silanol or aluminol groups (Si–O(H)–Al bridging hydroxyls) appears at 3649.32 cm⁻¹. This vibration is related to Brønsted's acidity. The bending and stretching vibrations of the -OH group of absorbed water molecules are shown at 1635.64 and 3448.72 cm⁻¹, respectively [40,41].

The FTIR spectra of activated clinoptilolites (CLI₁) show that the activation of natural clinoptilolite with NH₄Cl has an effect on peak shifting at some wavenumbers. The peak shifts occurred at 3448.72, 1064.71, and 462.92 cm⁻¹; these are related to the calcination process of clinoptilolites at 550°C. According to Farías et al [42], the heat treatment applied on clinoptilolites may affect the state and placement of aluminum in clinoptilolites.

In the FTIR spectra of the DDS (CLI₁), several shifts are observed at 3649.89, 1064.71, and 462.92 cm⁻¹ to 3633.89, 1072.42, and 462.92 cm⁻¹, respectively. These shifts do not seem too wide, indicating the interaction between clinoptilolites and drug molecules is weak. Furthermore, the absorption peaks of metformin HCl are not maintained. This indicates that the crystallinity of clinoptilolites is not impaired by activation with NH₄Cl nor with the encapsulation of the metformin HCl molecules [45].

XRD study

The crystallinity of clinoptilolites (CLI₁), activated clinoptilolites (CLI₁), and metformin HCl encapsulated clinoptilolite (CLI₁) were determined using XRD (Philips X'Pert Graphics and Identify). The result is shown in Fig. 4. The clinoptilolites diffraction pattern (CLI₁) shows strong peaks at 2θ = 11.15° (d=7.20), 17.29° (d=5.124), 22.30° (d=3.968), 28.05° (d=3.1777), and 29.90° (d=2.9859). Based on the Mineral Powder Diffraction File, JCPDS (25–1349), these peaks are characteristic of clinoptilolite mineral and indicate that clinoptilolites are the main mineral of natural zeolites [38,43,44].

In the activated clinoptilolites (CLI₁) pattern, there are no changes observed in the diffraction peaks. Likewise, in the metformin HCl encapsulated clinoptilolite (CLI₁) pattern, the diffraction peaks are maintained. This indicates that the crystallinity of clinoptilolites is not impaired by activation with NH₄Cl nor with the encapsulation of the metformin HCl molecules [45].

Brunauer-Emmett-Teller (BET) surface area measurement

The surface area of clinoptilolites (CLI₁), activated clinoptilolites (CLI₁), and metformin HCl encapsulated clinoptilolite (CLI₁) was measured using N₂ Sorption Analyzer (TriStar II 3020, Micrometitics). The calculation was based on BET method. The results of the BET surface area measurement are shown in Table 1. It can be seen that the surface area of clinoptilolites (CLI₁) is 48.0731±0.6032 m²/g. This value increases drastically to 110.2712±2.4540 m²/g after activation with NH₄Cl and calcination. It is due to the calcination process caused the increase of surface area, total pore volume, and micropore volume of clinoptilolites [46]. At high temperature (500°C), dehydroxylation was occurred in clinoptilolites which lead to the formation of one Lewis site from two Brøensted sites [42].

Encapsulation of metformin HCl in CLI₁ results in drastic reduction in the surface area. When loaded with 50 mg/l of metformin HCl, the surface area of activated clinoptilolites (CLI₁-50) decreases to 54.0341±0.9724 m²/g. Furthermore, the increase of metformin HCl concentration to 300 mg/L makes the surface area of activated clinoptilolites (CLI₁-300) decreases to 34.8993±0.3870 m²/g. The increase of the surface area indicates that the encapsulation process has proceeded well. Some researchers have also confirmed this result. Lukarska et al. [47] showed a very drastic reduction in surface area when they encapsulated fluorescein in zeolite Y. Putra and Mustika [48] also reported the same result, that the encapsulation of solasodine drastically lowered the surface area of clinoptilolites.

Drug release study

Drug release study was performed in vitro in the simulated gastric fluid (pH 1.2) and the simulated intestinal fluid (pH 7.4) for 12 h. Fig. 5 shows the release pattern of metformin HCl from CLI₁. In the lower pH (1.2), the release of metformin HCl was observed reaching 83.36% within 7 h. Furthermore, the release of metformin HCl took place slowly until it reaches 85.32% in 12 h. In the higher pH (7.4), the drug release occurred very fast until the first 2 h. This is due to the weak interaction between drug molecules and the surface of clinoptilolites. In addition, the hydrophilic properties of metformin HCl also have an effect on this stage [49]. Subsequently, drug release occurred quite slowly (71.10% of drug release in 12 h). The drug release from clinoptilolites was begun with the diffusion of the

Sample codes	BET surface area (m²/g)±SD
CLI₁	48.0731±0.6032
CLI₁-50	54.0341±0.9724
CLI₁-300	34.8993±0.3870

BET: Brunauer-Emmett-Teller; SD: Standard deviation, CLI₁: Clinoptilolites, CLI₁: Activated clinoptilolites, CLI₁-50: Activated clinoptilolite-metformin HCl 50 mg/L, CLI₁-300: Activated clinoptilolite-metformin HCl 300 mg/L

Table 1: BET surface area of the samples (n=3)
ACKNOWLEDGMENT

Authors are thankful to the Research and Community Service Institution, University of Dhyana Pura for providing financial assistance through the Hibah Unggulan Perguruan Tinggi (Higher Education Excellent Grants) 2017.

AUTHORS’ CONTRIBUTIONS

I Made Wisnu Adhi Putra, has provided research conception and method, conducted the experiment in the laboratory, and authored the manuscript. I Gusti Ayu Wita Kusumawati has conducted experiment in the laboratory and analyzed the obtained data.

CONFLICTS OF INTEREST

All authors have none to declare.

REFERENCES

1. Seino Y, Nanjo K, Tajima N, Kadowaki T, Kashiwagi A, Araki E, et al. Report of the committee on the classification and diagnostic criteria of diabetes mellitus. J Diabetes Invest 2010;1:212-28.
2. Mihardja L, Soetrisno U, Soegondo S. Prevalence and clinical profile of diabetes mellitus in productive aged Indonesians. J Diabetes Invest 2014;5:507-12.
3. Hostalek U, Gwilt G, Hildemann S. Therapeutic use of metformin in pre-diabetes and diabetes prevention. Drugs 2015;75:1071-94.
4. Deepika D, Satish SK, Lalit S. Current updates on anti-diabetic therapy. J Drug Deliv Ther 2013;3:121-6.
5. Reinert T. Type 2 diabetes mellitus in children and adolescents. World J Diabetes 2013;4:270-81.
6. Ito H, Ishida H, Takeuchi Y, Antoku S, Abe M, Mifune M, et al. Long-term effect of metformin on blood glucose control in non-obese patients with Type 2 diabetes mellitus. Nutr Metab (Lond) 2010;7:83-91.
7. Inzucchi SE, Lipska KJ, Mayo H, Bailey CJ, McGuire DK. Metformin in patients with Type 2 diabetes and kidney disease: A systematic review. J Am Med Assoc 2014;312:2668-75.
8. Graham GG, Pun J, Arora M, Day RO, Doogue MP, Duong JK, et al. Clinical pharmacokinetics of metformin. Clin Pharmacokinet 2011;50:981-98.
9. Nayak AK, Pal D, Santra K. Tamarind seed polysaccharide-gellan mucoadhesive beads for controlled release of metformin HCl. Carbohydr Polym 2014;103:154-63.
10. de Jager J, Kooy A, Lehert P, Wulfelé MG, van der Kolk J, Bets D, et al. Long-term treatment with metformin in patients with Type 2 diabetes and risk of Vitamin B-12 deficiency: Randomised placebo controlled trial. BMJ Br Med J 2010;340:c1-7.
11. Dumitrescu R, Mehedintu C, Briceag I, Purcarea VL, Hudita D. Metformin-clinical pharmacology in PCOs. J Med Life 2015;8:187-92.
12. Mosah A. Approaches to achieve an oral controlled release drug delivery system using polymers: A recent review. Int J Pharm Pharm Sci 2015;7:16-21.
13. Smiha KS, Jayakumar R, Unnikrishnan AG, Nair SV, Lakshmanan VK, O-carboxymethyl chitosan nanoparticles for metformin delivery to pancreatic cancer cells. Carbohydr Polym 2012;89:1003-7.
14. Jose P, Sundar K, Anjali CH, Ravindran A. Metformin-loaded BSA nanoparticles in cancer therapy: A new perspective for an old antidiabetic drug. Cell Biochem Biophys 2014;71:627-36.
15. Das S, Samanta A, De HS. Formulation, in-vitro release kinetics and stability interpretation of sustained release tablets of metformin hydrochloride. Int J Pharm Pharm Sci 2015;7:418-22.
16. Raj J, Uppuluri KB. Metformin loaded casein micelles for sustained delivery: Formulation, characterization and in-vitro evaluation. Biomed Pharmacol J 2013;7:83-9.
17. Nayak AK, Pal D, Santra K. Swelling and drug release behavior of metformin HCl-loaded tamarind seed polysaccharide-alginic beads.
Putra and Kusumawati
Asian J Pharm Clin Res, Vol 11, Issue 11, 2018, 285-289

Int J Biol Macromolec 2016;82:1023-7.
18. Saini N, Sodhi RK, Bajaj L, Pandey RS, Jain UK, Katare OP, et al. Intravenous administration of metformin hydrochloride loaded cationic niosomes amalgamated with thermo-sensitive gel for therapy of polycystic ovary syndrome: In vitro and in vivo studies. Colloids Surf B Biointerfaces 2016;144:161-9.
19. Hirvonen J, Laaksonen T, Peltonen L, Santos H, Lehto VP, Heikillä T, et al. Feasibility of silicon-based mesoporous materials for oral drug delivery. Agressologie 2008;59:225-31.
20. Amorim R, Viňała N, Martinho O, Reis RM, Sardo M, Rocha J. Zeolite structures loading with an anticancer compound as drug delivery systems. J Phys Chem C 2012;116:25642-50.
21. Pavelić K, Hadžija M, Bedrica L, Pavelić J, Dikić I, Katić M, et al. Natural zeolite clinoptilolite: New adjuvant in anticancer treatment. J Mol Med 2000;78:708-20.
22. Topashka-Ancheva M, Belcheva M, Metcheva R, Rojas JA, Rodriguez-De la Fuente AO, Gerasimova T, et al. Modified natural clinoptilolite detoxifies small mammal's organism loaded with lead II: Genetic, cell, and physiological effects. Biol Trace Elem Res 2012;147:206-16.
23. Farias T, de Ménorval LC, Zajac J, Rivera A. Benzalkonium chloride and sulfamethoxazole adsorption onto natural clinoptilolite: Effect of time, ionic strength, pH and temperature. J Colloid Interface Sci 2011;363:465-73.
24. Francisco M, Minar AN, Yoo B, Bell AT, Prusznitz JM. Recovery of glucose from an aqueous ionic liquid by adsorption on a zeolite-based solid. Chem Eng J 2011;172:184-90.
25. Rimoli MG, Rabaioli MR, Melisi D, Corcio A, Mondello S, Mirabella R, et al. Synthetic zeolites as a new tool for drug delivery. J Biomed Mater Res A 2008;87:156-64.
26. Jevtić S, Grujić S, Hrenović J, Rajić N. Surfactant-modified clinoptilolite as a salicylate carrier, salicylate kinetic release and its antibacterial activity. Microporous Mesoporous Mater 2012;159:30-5.
27. Angelh L, Grujič I, Anđelković A, Anđelković AM, Anđelković AM, Angelh L, Grujič I, Marušescu L, Mihaiescu DE, et al. Antibiotic potential effect of the natural and synthetic zeolites with well defined nanopores as possible ent drug applications. Farmacia 2012;60:688-95.
28. Gennaro B, Catalanotti L, Cappelletti P, Langella A. Surface modified natural clinoptilolite/poly(vinyl alcohol) nanocomposites as a drug delivery system. Cakra Kimia 2016;4:103-12.
29. Guan H, Bestland E, Zhu C, Zhu H, Albertsdottira D, Hutsona J, et al. Modifications of natural clinoptilolite/poly(vinyl alcohol) hollow calcium-phosphate glass fibers. Mater Lett 2017;191:116-8.
30. Nallaguntla L, Muzib Y, Aukunuru J, Balekari U. Novel nanoparticles for the oral delivery of low molecular weight heparin: A preliminary feasibility study. Colloids Surf B Biointerfaces 2015;30:101-9.
31. Heister E, Neves V, Lamprecht C, Silva SR, Coley HM, McFadden J. Variation in performance of surfactant loading and resulting nitrate removal from natural clinoptilolite: A study of time, ionic strength, pH and temperature. J Ind Eng Chem 2013;20:2735-44.
32. Topashka-Ancheva M, Beltcheva M, Metcheva R, Rojas JA, Rodriguez-De la Fuente AO, Gerasimova T, et al. Modified natural clinoptilolite detoxifies small mammal’s organism loaded with lead II: Genetic, cell, and physiological effects. Biol Trace Elem Res 2012;147:206-16.
33. Varangankar P, Amin P. Continuous melt granulation to develop high drug loading, dispersion stability, and therapeutic efficacy in targeted drug delivery applications. Dosis 2008;24:129-49.
34. Faviás EP, Tsanaktidis CG, Sapalidis AA, Tsantzonis GT, Papageorgiou SK, Ch MA. Clinoptilolite, a natural zeolite material: Structural characterization and performance evaluation on its dehydration properties of hydrocarbon-based fuels. Microporous Mesoporous Mater 2016;225:385-91.
35. Khatae A, Boozog S, Khorram S, Fatihan M, Hanifehpour Y, Joo SW. Conversion of natural clinoptilolite microparticles to nanorods by glow discharge plasma: A novel fe-impregnated nanocatalyst for the heterogeneous fenton process. Ind Eng Chem Res 2013;52:18225-33.
36. Martinho O, Viňała N, Castro PJ, Amorim R, Fonseca AM, Baltazar F, et al. In vitro and in vivo studies of temozolomide loading in zeolite structures as drug delivery systems for glioblastoma. RSC Adv 2015;5:28219-27.
37. Jamalzadeg Z, Haghighi M, Asgari N. Synthesis and physicochemical characterizations of nanostructured Pd/carbon-clinoptilolite-CeO2 catalyst for abatement of xylene from waste gas streams at low temperature. J Ind Eng Chem 2013;20:2735-44.
38. Król M, Mozgawa W, Morawska J, Pichór W. Spectroscopic investigation of hydrothermally synthesized zeolites from expanded perlite. Microporous Mesoporous Mater 2014;196:216-22.
39. Farias T, Ruiz-Salvador AR, Velasco L, de Ménorval LC, Rivera A. Preparation of natural zeolitic supports for potential biomedical applications. Mater Chem Phys 2009;118:322-8.
40. Nezamzadeh-Ejhieh A, Tavakoli-Ghiman S. Effect of a nano-sized natural clinoptilolite modified by the hexadecyltrimethylammonium surfactant on cephalexin drug delivery. C R Chim 2013;17:49-61.
41. Narin G, Albayrak CB, Ülki S. Preparation and characterization of antibacterial cobalt exchanged natural zeolite/poly(vinyl alcohol) hydrogels. J Sol Gel Sci Technol 2014;69:214-30.
42. Tomečková V, Reháková M, Mojžišová G, Magura J, Wadsten T, Zelenáková K. Modified natural clinoptilolite with quercetin and quercetin dihydrate and the study of their anticancer activity. Microporous Mesoporous Mater 2012;147:59-67.
43. Dziedzica A, Sulkowski B, Ruggiero-Mikolajczyk M. Catalytic and physicochemical properties of modified natural clinoptilolite. Catal Today 2015;259:50-8.
44. Lukarska M, Jankowska A, Gapiński J, Valable S, Anfray C, Ménard, B, et al. Synthesis and encapsulation of fluorescein in zeolite Y. Microporous Mesoporous Mater 2016;236:79-84.
45. Putra IM, Mustika IG. Potensi zat aktif antikanker solasolin terenkapsulasi pada zeolit klinoptilolit sebagai sistem penghantar obat (drug delivery system). Cakra Kimia 2016;4:103-12.
46. Rabiei M, Sabahi H, Rezayan AH. Gallic acid-loaded montmorillonite organo clay for chitosan carriers for ocular drug delivery. Adv Nanopart 2015;4:70-84.
47. Yousef HF, Hegazy WH, Abo-almagd HH. Preparation and characterization of micronized zeolite Na-A: Cytoxic activity of silver exchanged form. J Porous Mater 2015;22:103-34.
48. Fattah EP, Tsanaktidis CG, Sapalidis AA, Tsantzonis GT, Papageorgiou SK, Ch MA. Clinoptilolite, a natural zeolite material: Structural characterization and performance evaluation on its dehydration properties of hydrocarbon-based fuels. Microporous Mesoporous Mater 2016;225:385-91.
49. Martinho O, Viňała N, Castro PJ, Amorim R, Fonseca AM, Baltazar F, et al. In vitro and in vivo studies of temozolomide loading in zeolite structures as drug delivery systems for glioblastoma. RSC Adv 2015;5:28219-27.
50. Putra IM, Sifanggang KW, Suarya P, Simpen IN, Cipta I. In vitro controlled drug release of anti diabetic drug metformin from citric acid acidulated natural montmorillonite nanostructure as a new controlled release system. Appl Clay Sci 2016;119:236-42.
51. Putra IM, Sifanggang KW, Suarya P, Simpen IN, Cipta I. In vitro controlled drug release of anti diabetic drug metformin from citric acid acidulated natural montmorillonite. Asian J Chem 2018;30:63-5.
52. Ceci-Ginistrelli E, Pontremoli C, Pugliese D, Barbero N, Boettig N, Barolo C. Drug release kinetics from biodegradable UV-transparent hollow calcium-phosphate glass fibers. Mater Lett 2017;191:116-8.
53. Joshi GV, Patel HA, Kevadiya BD, Bajaj HC. Montmorillonite intercalated with vitamin B, as drug carrier. Appl Clay Sci 2009;45:248-53.
54. Kharwade RS, More SM, Mahajan UN. Formulation and evaluation of gastroretentive floating tablet using Hibiscus rosa-sinensis mucilage. Asian J Pharm Clin Res 2017;10:444-8.