R_b-R_c Crisis and the Higgs Boson Mass from LEP Precision Data

Jae Sik Lee and Jae Kwan Kim

Department of Physics,
Korea Advanced Institute of Science and Technology,
Taejon 305-701, Korea

ABSTRACT

We study the effects on the Higgs boson mass from LEP precision data of the new physics explaining R_b-R_c crisis. We implement a fit to LEP observables with the new physics. We obtain $M_{H_{NewPhysics}} = 85^{+467}_{-56}$ GeV. Comparing with the value of the SM fit, $M_{H_{SM}} = 38^{+96}_{-21}$ GeV, the errors are larger and the central value is higher. The new physics may allow M_H to have a value out of the range of $O(M_Z)$.

PACS numbers: 14.80.Bn, 14.80.Cp

1e-mail address: jslee@chep6.kaist.ac.kr
It is remarkable that the top-quark mass M_t measured at CDF and D0 agrees well with the value predicted by the LEP precision data [1]. The success of the the M_t prediction shifts the focus of interest to the prediction of the Higgs boson mass M_H [2]. It is shown that there is a weak preference for a light Higgs boson mass $M_H < 300$ GeV. But it is not trivial that the electroweak data have consistently favored a Higgs mass in a range of $\mathcal{O}(M_Z)$ [3].

Recently it was reported by LEP collaborations that the measured ratios of $R_b \equiv \Gamma(Z \rightarrow bb)/\Gamma(Z \rightarrow \text{hadrons})$ and $R_c \equiv \Gamma(Z \rightarrow c\bar{c})/\Gamma(Z \rightarrow \text{hadrons})$ are different from those predicted by the standard model (SM). R_b is higher than the SM prediction at 3.7 σ level and R_c is smaller than that at 2.7 σ level [1]. These discrepancies may be the first signals for new physics beyond the SM if these are confirmed by future measurements.

A number of possible scenarios of new physics are being suggested to explain these R_b and R_c discrepancies simultaneously [4,5]. The nonuniversal interactions acting on only the b-quark and c-quark are attractive candidates for new physics explaining these discrepancies since the SM predictions for other flavors should not be disrupted by the new physics [6]. But it is not possible to explain R_b, R_c with consistent α_s from low energy determinations invoking only non-standard Zbb– and Zcc–couplings.

With only nonuniversal interactions acting on the b-quark and c-quark results in $\alpha_s = 0.18$ [5]. This value is significantly conflict with the low energy determination $\alpha_s = 0.112 \pm 0.005$ [7]. If we don’t discount the measured value of R_c, therefore, new physics corrections to the Zss–couplings are also needed.

In this paper, we study the effects of the new physics which are introduced to explain R_b and R_c discrepancies on the Higgs boson mass prediction from the LEP precision data. By χ^2 fitting to the LEP observables we calculate the new physics scale of the nonuniversal interactions and obtain M_H. There are theoretical bounds on the SM Higgs boson mass which are obtained from the stability of the electroweak vacuum [8] and by requiring the SM couplings to remain perturbative up to some scale [9]. We briefly comment whether our results of fitting are compatible with those from the vacuum stability and perturbativity.

In this paper we do not construct a specific model but use the effective Lagrangian
technique. We take the $Z \rightarrow f \bar{f}$ vertex to be given phenomenologically by the expression

$$\mathcal{L} \sim Z \mu \left[\bar{f} \gamma_{\mu} (g_{V}^{eff,f} + g_{A}^{eff,f} \gamma_{5}) f \right],$$

(1)

where $g_{V}^{eff,f}$ and $g_{A}^{eff,f}$ are the effective vector and axial vector coupling constants given by

$$g_{V}^{eff,f} = 2(g_{L}^{eff,f} + g_{R}^{eff,f}),$$

$$g_{A}^{eff,f} = 2(g_{L}^{eff,f} - g_{R}^{eff,f}).$$

(2)

We introduce the nonuniversal interactions for $f = s, c, b$. For $f = c, b$, we parametrize the nonuniversal interaction effects in the $Z \rightarrow f \bar{f}$ vertex by introducing the parameters $\kappa_{L,R}^{f}$. These parameters shift the SM tree level couplings of the neutral currents $g_{L,R}^{f}$ to the effective couplings $g_{L,R}^{eff,f}$:

$$g_{L,R}^{eff,f} = g_{L,R}^{f}(1 + \kappa_{L,R}^{f}),$$

(3)

where

$$g_{L}^{f} = I_{3}^{f} - Q^{f} \sin^{2} \theta_{W}, \quad g_{R}^{f} = -Q^{f} \sin^{2} \theta_{W}.$$

(4)

I_{3}^{f} and Q^{f} are the weak isospin and electric charge respectively. Since non-standard couplings to the strange quark enter the neutral current observables only via their contributions to the total hadronic width of the Z^{0} boson, Γ_{had}, we parametrize the effects by introducing the parameter $\delta \Gamma_{s}$. It is expected that the $\delta \Gamma_{s}$ is positive and has the value which nearly cancels the deficit of Γ_{c} [7]. Since $(g_{L}^{f})^{2} \gg (g_{R}^{f})^{2}$, we fix $\kappa_{R}^{c,b} = 0$ in our analysis. So we introduced three parameters of new physics : $\kappa_{L}^{c}, \kappa_{L}^{b}$ and $\delta \Gamma_{s}$.

We use the following set of 15 variables in our fitting procedure (see Table 1) : Γ_{Z}, σ_{tot}, $R_{e} = \Gamma_{had}/\Gamma_{e}$, $R_{\mu} = \Gamma_{had}/\Gamma_{\mu}$, $R_{\tau} = \Gamma_{had}/\Gamma_{\tau}$, $A_{FB}^{0}(e)$, $A_{FB}^{0}(\mu)$, $A_{FB}^{0}(\tau)$, A_{e}, R_{b}, R_{c}, $A_{FB}^{0}(b)$, $A_{FB}^{0}(c)$ and $\sin^{2} \theta_{W}^{lep}$. From Table 1, we can see there are three observables which show deviations from the predictions of the SM : $A_{FB}^{0}(\tau)$, R_{b} and R_{c}. The inability of the effective Lagrangian approach to fully explain the deviations in the asymmetry observables is discussed in Ref. [5]. And it is out of the range of this paper to consider $A_{FB}^{0}(\tau)$ deviation as the effect of the new physics. So we regard that this deviation results from not well understood systematic effects in the experiments.
We fix $\alpha_s = 0.123$ since the strong coupling constant is no longer strongly constrained by fits with the new physics [5]. We take another value of $\alpha_s = 0.112$ from low energy determinations to investigate the effects of the procedure of fixing α_s in our fit. We observe that the effects of varying α_s are negligible.

We used ZFITTER [10] with the function minimizing program MINUIT [11] to perform the χ^2 fit for the LEP observables. Firstly, we implement the SM fit where no new physics parameters are added. And we fix $M_H = 300$ GeV to see the reliability for subsequent fits. In this case, the fitting parameters are M_t and α_s. We obtain

$$M_t = 171.5 \pm 8.4 \text{ GeV},$$
$$\alpha_s = 0.123 \pm 0.004.$$

These values are well agree with those reported by the LEP electroweak working group [1]. Note the agreement of the fitted value of M_t with the value measured at CDF and D0 : 180 ± 12 GeV (CDF + D0) [12].

Next, we implement the SM fit where no new physics parameters are added. In this case we fix $\alpha_s = 0.123$. Fixing α_s is for comparisons with the results from subsequent fits including new physics parameters. In this case, the fitting parameters are M_t and M_H. We obtain

$$M_H = 38^{+96}_{-21} \text{ GeV} \left[\log_{10}(M_H) = 1.53^{+0.60}_{-0.30} \right],$$
$$M_t = 145.3^{+16.7}_{-11.4}. $$

The lower and upper errors are obtained by projecting the $\Delta \chi^2 = 1$ ellipse in $(M_t, \log_{10}(M_H))$ plane on the vertical and horizontal axes. M_t is lower than that of previous case mainly because we don’t fix M_H at 300 GeV. These values are consistent with recent ones obtained by the authors of Ref. [3]. The results of this fit are shown in Table 1 as the SM results.

To investigate the effects of the new physics we perform the fit with the new physics parameters κ_L^b, κ_L^c and $\delta\Gamma_s$ fixing $\alpha_s = 0.123$. This is our new physics fit. We obtain

$$M_H = 86^{+467}_{-56} \text{ GeV} \left[\log_{10}(M_H) = 1.94^{+0.80}_{-0.47} \right],$$
$$M_t = 160.9^{+28.0}_{-14.0}. $$
\[
\kappa_L^b = 0.013 \pm 0.004, \\
\kappa_L^c = -0.059 \pm 0.026, \\
\delta \Gamma_s = 18.8 \pm 12.6 \text{ MeV.}
\]

As expected, \(\delta \Gamma_s \) has nearly the same value as the deficit of \(\Gamma_c \) and is positive. \(\kappa_L^c \) has negative value at 2 \(\sigma \) level. \(\kappa_L^b \) has the same central value of our previous work [6] at 3 \(\sigma \) level. \(M_t \) is more consistent with the value measured at CDF and D0 than the SM fit is. The errors of \(M_H \) are larger than those of the SM fit and the center value is higher. The upper limit at 2 \(\sigma \) level is about 2 TeV. This means that perturbative calculations are not reliable always. And the upper limit at 1 \(\sigma \) level (~ 500 GeV) diminishes the hope for finding the Higgs at the LEP2 or the LHC. In the SM framework, the electroweak data consistently favor a Higgs mass in a range of \(\mathcal{O}(M_Z) \). But, even though it is not significant because of the large error, there is a possibility that \(M_H \) has a value out of the range of \(\mathcal{O}(M_Z) \). The results of this fit are shown in Table 1 as the new physics.

To see the effects of future, more precise measurements of \(R_b \) and \(R_c \) on \(M_H \), we reduce errors of \(R_b \) and \(R_c \) by half. We do not change the central values of \(R_b \) and \(R_c \).

Fixing \(\alpha_s = 0.123 \), we obtain

\[
M_H = 85^{+278}_{-59} \text{ GeV} \left[\log_{10}(M_H) = 1.93^{+0.63}_{-0.51} \right], \\
M_t = 160.9^{+19.7}_{-11.8}, \\
\kappa_L^b = 0.013 \pm 0.002, \\
\kappa_L^c = -0.063 \pm 0.014, \\
\delta \Gamma_s = 20.9 \pm 6.7 \text{ MeV.}
\]

We observe the errors of \(\kappa_L^b, \kappa_L^c, \) and \(\delta \Gamma_s \) decrease. The errors of \(M_H \) decrease slightly and the center value does not change.

To study the effects of fixing \(\alpha_s \), we also execute a fit fixing \(\alpha_s = 0.112 \). We obtain

\[
M_H = 86^{+474}_{-55} \text{ GeV} \left[\log_{10}(M_H) = 1.94^{+0.81}_{-0.45} \right], \\
M_t = 160.9^{+27.8}_{-13.9}, \\
\kappa_L^b = 0.015 \pm 0.004,
\]

5
\[\kappa_L^c = -0.057 \pm 0.026, \]
\[\delta \Gamma_s = 22.3 \pm 12.6 \text{ MeV}. \]

Comparing with the new physics fit, we can see the effects of fixing \(\alpha_s \) are negligible.

Because we take a model-independent approach, we do not explicitly describe the parameters \(\kappa_L^b, \kappa_L^c \) and \(\delta \Gamma_s \) by specific physical quantities here. We know, however, that these parameters are related to the new physics scale \(\Lambda \). For example, we consider the t-quark condensation models where the third generation \(Q_L \) and \(t_R \) states at a minimum participate in a new strong interaction for \(\kappa_L^b \) \[13\]. Then the relevant term of the effective Lagrangian is given by

\[\mathcal{L}_{\text{eff}} \sim -\frac{1}{\Lambda^2} \bar{b} \gamma_\mu b \ell \gamma^\mu (g_V - g_A \gamma_5) t, \]

where \(g_V \) and \(g_A \) are parameters. Here one would expect that the t-quark loop will generate an effective contribution to \(Z \to \bar{b}b \) vertex \(\kappa_L^b \). Thus we have

\[\kappa_L^b = \frac{g_A}{g_L^b} \frac{N_c}{8\pi^2} \frac{M_t^2}{\Lambda^2} \ln \left(\frac{\Lambda^2}{M_t^2} \right), \]

where \(N_c = 3 \). Our fit result \(\kappa_L^b = 0.013 \) yields \(\Lambda \sim 1 \text{ TeV} \) with \(|g_A| \sim 4\pi(0.11) \) \[14\].

The results from the analyses of stability \[8\] and perturbative \[9\] bounds on the SM Higgs boson mass gives

\[\sim 50 \text{ GeV} < M_H < \sim 700 \text{ GeV} \quad \text{for } \Lambda = 1 \text{ TeV}. \]

The perturbative bound 700 GeV gets much corrections from two-loop \(\beta \) functions and one-loop matching condition on the Higgs boson mass. So this value is considered to be in a range from 500 GeV to 1 TeV. For smaller \(\Lambda \) the bounds become weaker. We can see that our new physics fit for \(M_H \) is well compatible with these bounds.

We implement a fit to LEP observables with new physics explaining \(R_b \) and \(R_c \) discrepancies. We obtain \(M_H^{\text{NewPhysics}} = 85^{+467}_{-56} \) GeV. Comparing with the value of the SM fit, \(M_H^{\text{SM}} = 38^{+96}_{-21} \) GeV, the errors are larger and the central value is higher. The new physics may allow \(M_H \) to have a value out of the range of \(\mathcal{O}(M_Z) \).

Acknowledgments

This work was supported in part by Korea Science and Engineering Foundation.
References

[1] LEP electroweak working group and the LEP collaborations, ”A combination of Preliminary LEP Electroweak Results and Constraints on the Standard Model”, prepared for summer 1995 conference talks.

[2] J. Ellis, G. L. Fogli and E. Lisi, Phys. Lett. B333 (1994) 118, P. H. Chankowski and S. Pokorski, Max-Planck Institute Report No. MPI-Ph/95-39.

[3] J. Ellis, G. L. Fogli and E. Lisi, CERN-TH/95-202, BARI-TH/211-95, hep-ph/9507424.

[4] G. Bhattacharyya, G. C. Branco and W. Hou, CERN-TH/95-326, FISIST/14-95/CFIF, NTUTH-95-11, hep-ph/9512233, C. V. Chang, D. Chang and W. Keung, NHCU-HEP-96-1, UICHEP-TH/96-6, hep-ph/9601326, G. Altarelli, N. D. Bartolomeo, F. Ferugliom, R. Gatto and M. L. Mangano, CERN-TH/96-20, UGVA-DPT 1996/01-912, hep-ph/9601324.

[5] P. Bamert, McGill/95-64, NEIP-95-014, hep-ph/9512445.

[6] J. K. Kim, Y. G. Kim, J. S. Lee and K. Y. Lee, KAIST-CHEP-95/14, hep-ph/9509319, Phys. Rev. D53 (1996) 1712.

[7] M. Shifman, TPI-MINN-95/32-T, UMN-TH-1416-95, hep-ph/9511469, and references there in.

[8] C. Ford, D. R. T. Jones and P. W. Stephenson, Nucl. Phys. B395 (1993) 17, M. Sher, Phys. Lett. B317 (1993) 159, G. Altarelli and G. Isidori, Phys. Lett. B337 (1994) 141, J. A. Casas, J. R. Espinosa and M. Quiros, Phys. Lett. B342 (1995) 171.

[9] M. Lindner, Z. Phys. C (1986) 295, B. Grzadkowski and M. Lindner, Phys. Lett. B178 (1986) 81, J. S. Lee and J. K. Kim, KAIST-CHEP-95/19, hep-ph/9602406, to be published in Phys. Rev. D.

[10] D. Bardin et al., Report No. CERN-TH.6443/92 (unpublished).
[11] F. James and M. Roos, Comput. Phys. Commun. 10 (1975) 343.

[12] F. Abe et al., CDF Collaboration, Phys. Rev. Lett. 74, (1995) 2626, S. Abachi et al., D0 Collaboration, Phys. Rev. Lett. 74, (1995) 2632.

[13] C. T. Hill and X. Zhang, Phys. Rev. D51 (1995) 3563.

[14] C. T. Hill and S. Parke, Phys. Rev. D49 (1994) 4454.
Table Captions

Table 1: Our global fit to LEP observables in the standard model framework and with nonuniversal interactions explaining R_b and R_c discrepancies.
Observables	Experiment	SM results	χ^2	New Physics	χ^2
Γ_Z(GeV)	2.4963 ± 0.0032	2.4936	0.710	2.4963	0.000
σ_{tot}(nb)	41.488 ± 0.078	41.429	0.580	41.441	0.368
R_e	20.797 ± 0.058	20.799	0.001	20.784	0.052
R_μ	20.796 ± 0.043	20.799	0.004	20.784	0.079
R_τ	20.813 ± 0.061	20.846	0.290	20.831	0.087
$A^0_{FB}(e)$	0.0157 ± 0.0028	0.0157	0.000	0.0158	0.001
$A^0_{FB}(\mu)$	0.0163 ± 0.0016	0.0157	0.134	0.0158	0.103
$A^0_{FB}(\tau)$	0.0206 ± 0.0023	0.0157	4.513	0.0158	4.381
A_τ	0.1418 ± 0.0075	0.1447	0.155	0.1451	0.191
A_e	0.139 ± 0.0089	0.1447	0.417	0.1451	0.466
R_b	0.2219 ± 0.0017	0.2168	8.868	0.2219	0.000
R_c	0.154 ± 0.0074	0.1719	5.863	0.1557	0.053
$A^0_{FB}(b)$	0.0997 ± 0.0031	0.1016	0.361	0.1020	0.535
$A^0_{FB}(c)$	0.0729 ± 0.0058	0.0725	0.006	0.0688	0.494
$\sin^2\theta_W$	0.2320 ± 0.0016	0.2318	0.014	0.2318	0.021
total		21.9		6.8	

Table 1: