Supplementary Material

Dogyoum Lee¹ Minhyeok Lee¹ Chajin Shin¹ Sangyoun Lee¹
¹Yonsei University
{nametio, hydragon516, chajin, sylee}@yonsei.ac.kr

A.1. Training

DP-NeRF is implemented on two Nvidia RTX 3090 GPUs based on the published code and dataset for Deblur-NeRF [2] using PyTorch [5]. Training images are resized to 600 × 400 across the entire dataset to train the DP-NeRF. In addition, we start to optimize proposed components, rigid blurring kernel (RBK), adaptive weight proposal (AWP), and color composition (CC), after 1200 training iterations with a pure NeRF [3] to obtain coarse scene representation.

A.2. Architectural Detail

Figures 1, 2, 3, and 4 describe the DP-NeRF architecture to describe in detail. View information l_s for each image is embedded with 64 channels in a simple embedding layer.

Rigid Blurring Kernel (RBK). As shown in Figure 1, RBK consists of one shared encoding branch E and three decoding branches with simple MLPs (W, R, and 2). Encoding branch E consists of an MLP with four fully-connected linear layers, with each layer having 64 dimensions and ReLU activation function. Decoding branches for m_s;0,...,k, r_s, and v_s also consist of an MLP with one linear layer with 32 dimensions and an output linear layer. The output channel dimensions for m_s;0,...,k, r_s, and v_s is k, 3k, and 3k, respectively, where k is a hyper-parameter that controls the number of rigid camera motions. Note that, m_s;0,...,k is normalized along the motion axis k to ensure \(\sum_{i=0}^{k} m_{s;i} = 1 \).

Adaptive Weight Proposal (AWP). First of all, we additionally describe a motivation of the complex architecture design of AWP. Intuition of AWP architecture is to fully use the spatial occupancy information of samples on the rays. When we use the similar module based on inter-motion correlation with rendered depth values on each rays, we could not get the improved results. The reason was supposed to be insufficient occupancy information of one scalar rendered depth value per ray. Hence, we design AWP to fully reflect the information to use rich correlation between the rays. Here are description of AWP architecture with detailed notations. Please refer to Figure 2, Figure 4, and Table 1 for architecture design and corresponding notations. Note that, we omit the notation for the batch dimension for clarity. Before forwarding to motion aggregation module (MAM), extracted depth feature \(\zeta_{motion}^{p} \in \mathbb{R}^{N_m \times N_s \times C_{d1}} \) from the second-to-last layer of the NeRF is embedded in \(\zeta_{motion}^{p} \in \mathbb{R}^{N_m \times N_s \times C_{d2}} \) via the simple four-layered MLP with ReLU activation, where \(N_m \) and \(N_s \) denote the dimensions of the motion axis and sample axis, respectively. \(N_m \) is the number of blurring rays, which is a summation of the number of motion \(k \) and original ray \(1 \). \(N_s \) is the total number of samples, which is a summation of the number of

Table 1. Notations for adaptive weight proposal (AWP) and corresponding values used in our experiment as default.

Notation	Value								
l_s	64	128	64	32	16	1 + k	(N_c + N_f)	64	64

Figure 1. A detailed architecture of rigid blurring kernel (RBK).

Figure 2. Detailed description about a correlation part of motion aggregation module (MAM). This picture includes process for computing correlation between \(\zeta_{motion}^{p}, \zeta_{sample}^{p}, \) and \(\hat{\eta}_{p}^{p} \).

Table 1. Notations for adaptive weight proposal (AWP) and corresponding values used in our experiment as default.
where MAM motion and sample axis. We then compute two correlations, $Corr_{int-mot}$ and $Corr_{int-sam}$, which represent the inter-motion and inter-sample correlations, respectively (Figure 2). Because $\zeta^p_{i,j}$ consists of a sample dimension and a motion dimension, we apply inter-sample and inter-motion design to investigate the inter-sample and inter-motion correlations. The each type of correlation score maps enhances the correlation of each dimension and aggregate them with modulated features via matrix multiplication. The enhanced features, ζ_{corr}^{sample} and ζ_{corr}^{motion}, are then concatenated and forwarded to the 64-channel MLP, followed by the residual connection of $\hat{\eta}_i$ to generate our final motion-aggregated feature $\tilde{\eta}_i$. Note that, the dimensions of $\hat{\eta}_i$ and $\tilde{\eta}_i$ are the same.

Tone Mapping. Before color composition for each color from the blurring rays and the composition weights $m_{s,0,\ldots,k}$ or $\tilde{m}_{s,0,\ldots,k}$, we should note that each color $\tilde{C}_{s,0,\ldots,k}^p$ is tone-mapped from the predicted scene irradiance from a NeRF similar to [2]. Gamma function g for the tone mapping function is simply set as shown in Eq. 2 in a similar manner to [2] because there is no significant difference in performances when either a gamma function or learnable MLP is employed as the tone mapping function.

$$g(c') = c'^{\frac{1}{\gamma}}$$

where c' denotes the predicted radiance from the NeRF in DP-NeRF. The types of tone-mapping function does not significantly influence the predicted radiance due to the consistent exposure of the dataset. Hence, we can rewrite the full color composition of B_s^p and \tilde{B}_s^p as shown in Eq. 3, with g omitted in the main paper due to page limitations.

$$\hat{B}_s^p = m_{s,0} \cdot g(C_{s,0}^p) + \sum_{i=1}^{k} m_{s,i} \cdot g(C_{s,i}^{p-\text{rig}})$$

$$\tilde{B}_s^p = \tilde{m}_{s,0} \cdot g(C_{s,0}^p) + \sum_{i=1}^{k} \tilde{m}_{s,i} \cdot g(C_{s,i}^{p-\text{rig}})$$
B. Evaluation Results on Real Scene

Quantitative Results. We present quantitative evaluation results for camera motion and defocus blur in the real scene dataset in Tables 2 and 3. The results show that DP-NeRF improves the quantitative performance for all of the evaluation metrics, especially on LPIPS. In addition, it is clear that PSNR and SSIM cannot fully represent the realistic perceptual quality of rendered images as argued by Nerfies [4] in their paper. Hence, the perceptual quality should be evaluated by comparing LPIPS and the rendered image quality visually.

Qualitative Results. We present the qualitative results in Figures 5 and 6. The results show that DP-NeRF(RBK) and DP-NeRF(RBK+AWP) both outperform the NeRF and baseline in terms of perceptual quality for most of the scenes. It demonstrates that our model produces more accurate 3D reconstruction quality with a realistic, clean NeRF. In addition, DP-NeRF enhances the 3D geometric and appearance consistency in several scenes. For example, due to the complex depth and similar texture of the forest region, baselines [2,3] have difficulty in predicting the correct geometry in the Heron scene (4th-row in Figure 5). However, our model predicts the region more accurately, illustrating that DP-NeRF can model complex 3D space more accurately.

C. Additional Ablation Results

C.1. RBK Analysis

Modeling Analysis. We illustrate how our RBK models camera motion and defocus blur as ray rigid transformation by presenting a visualization of the modeled kernel and rendered images from each of the transformed camera views in Figures 7 and 8. Figures 7 (a) and 8 (a) shows the transformed ray origin and direction derived from the trained DP-NeRF with paired images. Note that, each colored transformed camera origin and ray direction pairs with a rendered image with the same colored box. Each image also has the same notation as presented in the main paper (\(C_p^{0,0}\) and \(C_p^{1,...,k}\)) to assist in understanding. Figures 7 (b)-(f) and 8 (b)-(f) present rendered images from the transformed cameras, which are used to composite the blurred image \(\hat{B}_s\). Figure 7 (g) and 8 (g) present the composited blurred image from images (b)-(f) with composition weights as we mentioned in the main paper. We demonstrate that the composited blurred image \(\hat{B}_s\) is successfully generated, with a similar appearance to the reference image \(B_s\) (Figures 7 (h) and 8 (h)). Figures 7 and 8 show that DP-NeRF can model the blurred image \(B_p\) so that it is similar to reference image \(B_s\) for both type of the blur.

The visualizations of given ray \(r_p^0(= r_{s,0}^0)\) and rigidly transformed (RT) rays \(r_p^{a-rig}\) in Figures 7 (a) and 8 (a) demonstrate that the camera motion and defocus blur can be successfully modeled with the RBK imitating camera movement or focus plain decision by rigidly warping the given scene camera with the SE(3) field. It is obvious that camera motion blur can be successfully modeled using the RBK because it models the blurring process using rigid camera transformation. Figure 7 (a) presents the results of the camera shaking during image acquisition, which leads to camera motion blur.

Interestingly, for defocus blur, there is a plane where the RT rays intersect (Figure 8 (a)), and this is the predicted focus plane. Specifically, RBK imitates the defocus blurring by approximating the depth of field process locating the transformed rays on the virtual aperture. The predicted transforms of the rays naturally decide the focus plane as we described in Figure 8 (a). If the depth value of a given ray is not on focus plane, focus blur is naturally induced by the color composition of the given ray and the other RT rays, which penetrate the other surrounding parts of the scene.

In addition, Figures 7 (b)-(h) and 8 (b)-(h) show that we can render images related to the construction of the blurred image for a scene. This form of image decomposition can determine how the blurred image in a scene is generated during image acquisition with respect to change in the camera settings, such as camera motion or focus plain information. Furthermore, RBK modeling guarantees the geometric and appearance consistency of each rendered image.

C.2. Effectiveness of the RBK and AWP

We present the effectiveness of the RBK and AWP with ablation analysis using the synthetic (Table 4) and real scene (Tables 5 and 6 for camera motion and defocus blur, respectively) datasets. Qualitative comparisons are also presented in Figures 5 and 6. For real scene dataset, it seems to be marginal improvement with AWP. Actually, blurring kernel is affected by the depth in case of the out-of-plane camera motion blur and general defocus blur as mentioned in [6,7]. However, for provided camera motion blur dataset, the blur type is close to in-plane camera motion blur, which leads to the marginal improvement. In addition, shape of the blurring kernel can change depending the depth in both blur types. Instead to directly model kernel shape change, we mitigate the issue through adaptive weights between transformed rays from AWP. Our model shows the more satisfying results with geometrically clean images with RBK. In addition, we can find that our model with AWP get more detailed clean results thanks to above adaptive weights approximation.
Table 2. Quantitative results for the real scene camera motion blur. Each color shading indicates the best and second-best result, respectively.

Camera Motion	Ball	Basket	Buck	Coffee	Decoration	
Naive NeRF [3]	24.08	0.6237	.3992	23.72	.7086	3223
Deblur-NeRF [2]	27.36	.7656	.2230	27.67	.8449	.1481
DP-NeRF	27.20	.7652	.2088	27.74	.8455	.1294

Camera Motion	Girl	Parterre	Stair	Average
Naive NeRF [3]	20.07	.7075	.3196	20.50
Deblur-NeRF [2]	22.27	.7976	.1687	22.63
DP-NeRF	23.33	.8139	.1498	22.88

Figure 5. Rendered novel view synthesis results of DP-NeRF for real scene camera motion blur. Figures (a)-(e) denote Naive NeRF, Deblur-NeRF, ours(RBK), ours(RBK+AWP), and ground truth images, respectively. Red colored box in corner of images are enlarged part of same colored box region in reference images.
Table 3. Quantitative results for the real scene defocus blur. Each color shading indicates the best and second-best result, respectively.

Figure 6. Rendered novel view synthesis results of DP-NeRF for real scene defocus blur. Figures (a)-(e) denote Naive NeRF, Deblur-NeRF, ours(RBK), ours(RBK+AWP), and ground truth images, respectively. Red colored box in corner of images are enlarged part of same colored box region in reference images.
Figure 7. RBK analysis on camera motion blur for real *blurball* scene. Figure (a) denotes visualization result of original and rigid transformed camera origin and direction on given reference view, which is presented in Figure (h). Figures (b)-(f) denote rendered images from given and transformed cameras in Figure (a). Figure (g) denotes a composited blurred image from Figures (b)-(f) with composition weights to predict a reference image, Figure (h). Figures (g) and (h) are used in DP-NeRF as RGB reconstruction loss.

Figure 8. RBK analysis on defocus blur for real *defocusseal* scene. Figure (a) denotes visualization result of original and rigid transformed camera origin and direction on given reference view, which is presented in Figure (h). Figures (b)-(f) denote rendered images from camera and transformed cameras in Figure (a). Figure (g) denotes a composited blurred image from Figures (b)-(f) with composition weights to predict a reference image, Figure (h). Figure (g) and (h) are used in DP-NeRF as RGB reconstruction loss.
Table 4. Ablation study for the synthetic scene. Each color shading indicates the best and second-best result, respectively.

Camera Motion	Ball	Basket	Buck	Coffee	Decoration	
PSNR(↑)	SSIM(↑)	LPIPS(↑)	PSNR(↑)	SSIM(↑)	LPIPS(↑)	
NAve NeRF [3]	24.08	62.37	39.92	23.72	7.086	32.23
DP-NeRF(RBK)	27.15	76.41	21.12	27.35	8.367	13.47
DP-NeRF(RBK+AWP)	27.20	76.52	20.88	27.74	8.455	12.94

Camera Motion	Girl	Heron	Parterre	Puppet	Stair	Average		
PSNR(↑)	SSIM(↑)	LPIPS(↑)	PSNR(↑)	SSIM(↑)	LPIPS(↑)	PSNR(↑)	SSIM(↑)	LPIPS(↑)
NAve NeRF [3]	20.07	70.75	31.96	20.50	5.217	41.29		
DP-NeRF(RBK)	22.19	79.34	15.75	22.55	6.831	19.70		
DP-NeRF(RBK+AWP)	23.33	81.39	14.98	22.88	6.930	19.14		

Table 5. Ablation study for the real scene camera motion blur. Each color shading indicates the best and second-best result, respectively.

Defocus	Cake	Caps	Cisco	Cupcake	Coral			
PSNR(↑)	SSIM(↑)	LPIPS(↑)	PSNR(↑)	SSIM(↑)	LPIPS(↑)	PSNR(↑)	SSIM(↑)	LPIPS(↑)
NAve NeRF [3]	24.42	72.10	22.50	22.73	6.312	2801		
DP-NeRF(RBK)	25.80	77.04	12.51	23.72	7.033	14.86		
DP-NeRF(RBK+AWP)	26.16	77.81	12.67	23.95	7.122	14.30		

Defocus	Cups	Daily	Sausage	Seal	Tools	Average		
PSNR(↑)	SSIM(↑)	LPIPS(↑)	PSNR(↑)	SSIM(↑)	LPIPS(↑)	PSNR(↑)	SSIM(↑)	LPIPS(↑)
NAve NeRF [3]	25.02	75.81	23.15	22.74	6.203	2861		
DP-NeRF(RBK)	25.95	80.36	10.77	23.77	6.968	10.59		
DP-NeRF(RBK+AWP)	26.75	81.36	10.35	23.79	6.971	10.75		

Table 6. Ablation study for the real scene defocus blur. Each color shading indicates the best and second-best result, respectively.

Defocus	Cake	Caps	Cisco	Cupcake	Coral			
PSNR(↑)	SSIM(↑)	LPIPS(↑)	PSNR(↑)	SSIM(↑)	LPIPS(↑)	PSNR(↑)	SSIM(↑)	LPIPS(↑)
NAve NeRF [3]	25.02	75.81	23.15	22.74	6.203	2861		
DP-NeRF(RBK)	25.95	80.36	10.77	23.77	6.968	10.59		
DP-NeRF(RBK+AWP)	26.75	81.36	10.35	23.79	6.971	10.75		
Figure 9. Training of DP-NeRF and Deblur-NeRF on Stair scene.

Model	PSNR(↑)	SSIM(↑)	LPIPS(↓)
DP-NeRF(RBK)	24.93	.7791	.1545
DP-NeRF(RBK+AWP)	25.47	.7883	.1466
DP-NeRF(RBK+AWP+Coarse-to-Fine)	25.70	.7922	.1405

Table 7. Ablation of coarse-to-fine optimization on Buick scene.

C.3. Ablation of Coarse to Fine Optimization

We present the optimization graph for Deblur-NeRF [2] and DP-NeRF in Figure 9. Though it seems to be harder to optimize the DP-NeRF due to higher degree of freedom, DP-NeRF converges more faster than Deblur-NeRF thanks to the shared rigid motions in a single view, which works as regularization to optimize the RBK. In addition, we attach ablation results of the coarse-to-fine optimization in Table 7. It reveals that the proposed optimization scheme helps the model to take the full advantage of AWP and improves the visual quality. The time required to train 200000 iterations are around 9.5 hours for Deblur-NeRF and 19 hours for DP-NeRF on two NVIDIA RTX 3090 GPUs. Note that, we present representative scenes for Figure 9 and Table 7 due to time limitation to experiment on all scenes.

C.4. Ablation of the Number of Rigid Motions

We present the quantitative and qualitative results for the ablation analysis of the number of rigid motions in Table 8 and Figures 10 and 11. As we mentioned, LPIPS represents perceptual quality better than PSNR and SSIM do. Based on this metric, the perceptual quality of DP-NERF gradually improves as the number of rigid motions increases. In addition, DP-NeRF exhibits higher perceptual quality than Deblur-NeRF [2] in terms of LPIPS for the same number of composition rays. Furthermore, RBK+AWP produces a better performance than does the RBK alone.

C.5. Visualization of Rigid Transformed Rays

We present additional visualization of rigid transformed rays predicted by the RBK for a specific view. Figure 12 and 13 show the transformed rays according to the change of the number of rigid motions k for camera motion and defocus blur, respectively. The rays colored as orange are original center rays in all visualization, which are forwarded to RBK to generate the other rigidly warped rays in both Figure 12 and 13. They demonstrate that RBK successfully model the camera shaking and virtual aperture for camera motion and defocus blur, respectively.

C.6. Additional Error Map Visualization

As mentioned in the main paper, we present a full error map visualization without the emphasis box in Figure 14. Note that, brighter colors indicate greater error. We control the brightness and contrast in all output identically, to reveal the error between the models more prominently. Our model produces less error than the baselines for the images regardless of the blur type.

D. Supplementary Video

We attach videos outlining novel view synthesis. These videos are generated with spiral-path camera poses, which are widely used for visual comparison in NeRF-based research. Please watch theses supplementary videos or visit out project page to observe the qualitative effectiveness of DP-NERF.
# of RM	DeblurNeRF	DP-NeRF(RBK)	DP-NeRF(RBK+AWP)	DeblurNeRF	DP-NeRF(RBK)	DP-NeRF(RBK+AWP)
2	31.48	86.58	31.97	87.41	32.30	88.22
3	31.52	8.70	31.61	8.62	31.80	8.709
4	31.49	8.72	31.98	8.756	31.96	8.768
5	31.59	8.710	31.40	8.671	31.88	8.763
6	31.59	8.688	31.43	8.662	31.74	8.733
7	31.42	8.628	31.65	8.699	31.67	8.714
8	31.56	8.685	31.49	8.683	31.49	8.686

Table 8. Quantitative results for ablation study of the number of rigid motions in the main paper, which is denoted as RM in the table. Each color shading indicates best and second-best result on each scene with each model, respectively. Note that, the number of kernel points in Deblur-NeRF is set to (the number of rigid motions + 1) for fair comparison, which means the same number of composition rays to create a blurred color for a pixel.

Figure 10. Qualitative results of ablation study depending on the number of rigid motion on camera motion blur scene. \(k \) denotes the number of rigid motion. Each row denotes Deblur-NeRF, DP-NeRF(RBK) and DP-NeRF(RBK+AWP), respectively. Red colored box in corner of images are enlarged part of same colored box region in reference images.
Figure 11. Qualitative results of ablation study depending on the number of rigid motion on defocus blur scene. k denotes the number of rigid motion. Each row denotes Deblur-NeRF, DP-NeRF(RBK) and DP-NeRF(RBK+AWP), respectively. Red colored box in corner of images are enlarged part of same colored box region in reference images.
Figure 12. Visualization of warped poses using rigid motions predicted by the RBK according to the change of the number of rigid motion \(k \) on camera motion blur.

Figure 13. Visualization of warped poses using rigid motions predicted by the RBK according to the change of the number of rigid motion \(k \) on defocus blur.
Figure 14. Full error map visualization on defocus Factory and camera motion Trolley scene. In addition, we denote quantitative quality between reference and rendered images as average MSE(Mean Squared Error), denoted as green text on left bottom of each images.
References

[1] Qingyong Hu, Bo Yang, Linhai Xie, Stefano Rosa, Yulan Guo, Zhihua Wang, Niki Trigoni, and Andrew Markham. Randla-net: Efficient semantic segmentation of large-scale point clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 11108–11117, 2020.

[2] Li Ma, Xiaoyu Li, Jing Liao, Qi Zhang, Xuan Wang, Jue Wang, and Pedro V Sander. Deblur-nerf: Neural radiance fields from blurry images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 12861–12870, 2022.

[3] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I, pages 405–421, 2020.

[4] Keunhong Park, Utkarsh Sinha, Jonathan T Barron, Sofien Bouaziz, Dan B Goldman, Steven M Seitz, and Ricardo Martin-Brualla. Nerfies: Deformable neural radiance fields. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 5865–5874, 2021.

[5] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. 2017.

[6] Pratul P Srinivasan, Rahul Garg, Neal Wadhwa, Ren Ng, and Jonathan T Barron. Aperture supervision for monocular depth estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 6393–6401, 2018.

[7] Pratul P Srinivasan, Ren Ng, and Ravi Ramamoorthi. Light field blind motion deblurring. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3958–3966, 2017.

[8] Zelin Zhao and Jiaya Jia. End-to-end view synthesis via nerf attention. arXiv preprint arXiv:2207.14741, 2022.