A uniqueness and periodicity result for solutions of elliptic equations in unbounded domains

Matthias Bergner, Jens Dittrich

Abstract

We proof a uniqueness and periodicity theorem for bounded solutions of uniformly elliptic equations in certain unbounded domains.

1. Introduction

In this note we study solutions $u \in C^2(\Omega, \mathbb{R}) \cap C^0(\overline{\Omega}, \mathbb{R})$ of the Dirichlet problem

$$a^{ij}(x)\partial_{ij} u + b^i(x)\partial_i u + c(x)u = f \quad \text{in } \Omega, \quad u = g \quad \text{on } \partial\Omega. \quad (1)$$

(using the sum convention) assuming the differential equation to be elliptic, i.e. at each point $x \in \Omega$ the matrix $a_{ij}(x)$ is symmetric and positive definite. In addition, we require the sign condition $c(x) \leq 0$.

If the domain Ω is bounded, the well known classical maximum principle (see [1, Theorem 3.3]) asserts that (1) admits at most one solution. In contrast, such a result does in general not hold for unbounded domains Ω and examples are given below. First, let us make the following assumptions on the coefficients: Let $a^{ij}, b^i, c \in C^0(\overline{\Omega}, \mathbb{R})$ and satisfy

$$||a^{ij}||_{C^0(\Omega)} + ||b^i||_{C^0(\Omega)} + ||c||_{C^0(\Omega)} \leq H \quad \text{for } i, j = 1, \ldots, n \quad \text{and} \quad c(x) \leq 0 \quad \text{in } \Omega \quad (2)$$

with some constant H. Additionally, we have to require a uniform ellipticity condition

$$\frac{1}{\Lambda}||\xi||^2 \leq a^{ij}(x)\xi_i\xi_j \leq \Lambda||\xi||^2 \quad \text{for all } x \in \Omega, \xi \in \mathbb{R}^n \quad (3)$$

with constant $\Lambda < \infty$. Our first result is the following

Theorem 1: Additionally to (2) and (3), assume the following

a) The unbounded domain $\Omega \subset \mathbb{R}^n$ has bounded thickness, i.e. $\sup_{x \in \overline{\Omega}} \text{dist}(x, \partial\Omega) < +\infty$.

b) Let $u \in C^2(\Omega, \mathbb{R}) \cap C^0(\overline{\Omega}, \mathbb{R})$ be a bounded solution of (1) for the right side $f \equiv 0$ and boundary values $g \equiv 0$.

c) Let u satisfy the following uniform boundary condition: For any sequence $x_k \in \Omega$ with $\text{dist}(x_k, \partial\Omega) \to 0$ for $k \to \infty$ it follows that $u(x_k) \to 0$ as $k \to \infty$.

Then we must have $u \equiv 0$ in Ω.

1
As the proof of Theorem 1 reveals, this result remains true for weak solutions \(u \) of regularity class \(W^{2,n}_{loc}(\Omega, \mathbb{R}) \cap C^0(\overline{\Omega}, \mathbb{R}) \).

Let us now demonstrate the necessity of the assumption a), b) and c) by considering the following examples.

Example 1: For some \(k \in \mathbb{N} \) take the domain \(\Omega = \{ re^{i\varphi} \in \mathbb{C} \mid 0 < \varphi < \frac{\pi}{k} \} \) and the harmonic function \(u(x, y) := \text{Re}\{(x + iy)^k\} \) with \(u = 0 \) on \(\partial \Omega \). This very simple example already shows that certain assumption on the solution \(u \) or the domain \(\Omega \) are needed for a uniqueness theorem to hold. Note that for this example all of the assumptions a), b) and c) of Theorem 1 are not satisfied.

Example 2: As domain we take \(\Omega = \{(x, y) \in \mathbb{R}^2 \mid 0 < y < \pi\} \) and consider the unbounded, harmonic function \(u(x, y) = e^x \sin y \) with \(u = 0 \) on \(\partial \Omega \). Here, assumption a) of Theorem 1 is satisfied while assumptions b) and c) are not.

Example 3: Now consider the domain \(\Omega = \{ x \in \mathbb{R}^n : |x| > 1 \} \), \(n \geq 3 \) and the bounded, harmonic function \(u(x) = 1 - |x|^{2-n} \) with \(u = 0 \) on \(\partial \Omega \). Here, assumptions b) and c) of Theorem 1 are satisfied while assumption a) is not.

Let us make a remark on assumption c): If the domain \(\Omega \) had a compact boundary \(\partial \Omega \), then assumption c) would directly follow from \(u \in C^0(\overline{\Omega}, \mathbb{R}) \) together with \(u = 0 \) on \(\partial \Omega \). However, note that an unbounded domain cannot both have a compact boundary and at the same time satisfy assumption a). Assumption c) will hold provided that the solution \(u \) is uniformly continuous in \(\Omega \).

By suitably restricting the domain \(\Omega \), we can actually show a uniform continuity of the solution.

Theorem 2: Additionally to (2) and (3), assume the following

a) The unbounded domain \(\Omega \subset \mathbb{R}^n \) has bounded thickness, i.e. \(\sup_{x \in \Omega} \text{dist}(x, \partial \Omega) < +\infty \).

b) Let \(u_k \in C^2(\Omega, \mathbb{R}) \cap C^0(\overline{\Omega}, \mathbb{R}) \) be two solutions of (1) for some right side \(f \) and some boundary values \(g \). Assume difference \(|u_1(x) - u_2(x)| \) is uniformly bounded in \(\Omega \).

c) The domain \(\Omega \) satisfies a uniform exterior sphere condition.

Then it follows \(u_1 \equiv u_2 \) in \(\Omega \).

By uniform exterior sphere condition we mean the following: There exists some \(r > 0 \) such that for each \(x_0 \in \partial \Omega \) there exists some \(x_1 \in \mathbb{R}^n \) such that \(B_r(x_1) \cap \overline{\Omega} = \{x_0\} \).

Finally, we want to point out that uniqueness results for partial differential equations also imply symmetry properties of the solutions. To illustrate this by an example, we have the following result.

Corollary 1: Assume that (4) and (5) hold. Moreover, assume that \(\Omega \) satisfies a uniform exterior sphere condition and can be decomposed into \(\Omega = \mathbb{R} \times \Omega' \) for some bounded domain \(\Omega' \subset \mathbb{R}^{n-1} \). We require the coefficients \(a^ij, b^i, c \), the right side \(f \) and the boundary values \(g \) to be periodic w.r.t. the \(x_1 \)-variable with one and the same period length \(L > 0 \).

Then any bounded solution \(u \in C^2(\Omega, \mathbb{R}) \cap C^0(\overline{\Omega}, \mathbb{R}) \) of (7) is periodic w.r.t. the \(x_1 \)-variable.

Note that in Example 2 we found a solution not being periodic. There, all of the assumptions of Corollary 1 are satisfied except for the boundedness of the solution. Hence, also for Corollary 1 it is crucial only to consider bounded solutions.
2. The proof of Theorem 1

For the proof of Theorem 1 we first need the following lemma, which may be of independent interest. It is a generalisation of the strong maximum principle.

Lemma 1: Let \(u_k \in C^2(\Omega, \mathbb{R}) \) be a sequence of solutions of

\[
a^{ij}_k(x) \partial_{ij} u_k + b^i_k(x) \partial_i u_k + c_k(x) u_k = 0 \quad \text{in } \Omega.
\]

Let the coefficients \(a^{ij}_k, b^i_k, c_k \) satisfy (2) and (3) with constants \(\Lambda, H \) independent of \(k \) and \(c_k(x) \leq 0 \) in \(\Omega \). Assume that \(u_k \) converge uniformly in \(\Omega \) to some \(u \in C^0(\Omega, \mathbb{R}) \). For some \(x_* \in \Omega \) and \(M \in \mathbb{R} \) let

\[
u_k(x) \leq M \quad \text{in } \Omega \quad \text{and} \quad \lim_{k \to \infty} u_k(x_*) = M.
\]

Then it follows \(u \equiv M \) in \(\Omega \).

Proof:

Consider the set

\[
\Theta := \{ x \in \Omega \mid u(x) = M \}
\]

which is not empty because of \(x_* \in \Theta \). Now \(\Theta \) is closed within \(\Omega \) due to the continuity of \(u \). We now show that \(\Theta \) is also open implying \(\Theta = \Omega \) and proving the lemma. For \(x_0 \in \Theta \) choose \(r > 0 \) small enough such that \(\overline{B}_r(x_0) \subset \Omega \). Now consider the function \(v_k(x) := M - u_k(x) \) for \(x \in \Omega \) with \(v_k(x) \geq 0 \) in \(\Omega \). Because of \(c_k \leq 0 \) this \(v_k \) is a solution of the differential inequality

\[
a^{ij}_k(x) \partial_{ij} v_k + b^i_k(x) \partial_i v_k \leq 0 \quad \text{in } \Omega.
\]

We now apply the Harnack type inequality \([1\text{, Theorem 9.22}]\) on the domain \(B_{2r}(x_0) \): There exist constants \(p > 0 \) and \(C < \infty \) only depending on \(r, H, \Lambda \) and \(n \) such that

\[
\left\{ \int_{B_r(x_0)} v_k(x)^p \, dx \right\}^{1/p} \leq C \inf_{B_r(x_0)} v_k(x) \leq C v_k(x_0) = C \left(M - u_k(x_0) \right).
\]

(4)

Noting that \(u_k(x_0) \to u(x_0) \) for \(k \to \infty \) and \(u(x_0) = M \) because of \(x_0 \in \Theta \), passing to the limit in (4) then yields

\[
\left\{ \int_{B_r(x_0)} (M - u(x))^p \, dx \right\}^{1/p} = 0.
\]

Together with \(u(x) \leq M \) in \(\Omega \) this implies \(u(x) = M \) in \(B_r(x_0) \) proving that \(\Theta \) is open. \(\square \)

Remarks:

1.) The lemma remains true for weak solutions of regularity \(W^{2,n}(\Omega, \mathbb{R}) \cap C^0(\Omega, \mathbb{R}) \).

2.) The proof of this lemma is similar to the proof of the strong maximum principle for weak solutions (see \([1\text{, Theorem 8.19}]\)). In case of \(u_k(x) = u(x) \) for all \(k \) the statement of the lemma reduces to the classical strong maximum principle.

Proof of Theorem 1:

Given a solution \(u \) of (1) for \(f \equiv 0 \) and \(g \equiv 0 \), we will show \(u \equiv 0 \) in \(\Omega \) as follows: Assume to the contrary that \(u(x_0) \neq 0 \) for some \(x_0 \in \Omega \), say \(u(x_0) > 0 \). Defining \(M := \sup_{\Omega} u(x) > 0 \) we have \(M < +\infty \) by the boundedness assumption b) of Theorem 1. We can now find a sequence \(x_k \in \Omega \) such that \(u(x_k) \to M \) for \(n \to \infty \). Now, for each \(k \in \mathbb{N} \) let us define

\[
r_k := \text{dist}(x_k, \partial \Omega).
\]
We claim that there exist constants \(\varepsilon > 0 \) and \(R < \infty \) such that
\[
\varepsilon < r_k < R \quad \text{for all } k \in \mathbb{N}.
\] (5)

In fact, the right inequality follows directly from assumption a) of Theorem 1 if we define \(R = \sup_{x \in \Omega} \text{dist}(x, \partial \Omega) \). The left inequality follows from assumption c) together with \(u(x_k) \to M > 0 \). On the ball \(B := \{ x \in \mathbb{R}^n : |x| < 1 \} \), let us now consider the shifted and rescaled functions
\[
v_k : \overline{B} \to \mathbb{R} \quad , \quad v_k(x) := u(x_k + r_k x).
\]

By the definiton of \(r_k \), for each \(k \in \mathbb{N} \) we can find some \(y_k \in \partial B \) with \(x_k + r_k y_k \in \partial \Omega \) implying \(v_k(y_k) = u(x_k + r_k y_k) = 0 \). Since \(u \) is solution of (1), \(v_k \) will then be solution of
\[
a^{ij}_k(x) \partial_{ij} v_k + b^i_k(x) \partial_i v_k + c_k(x) v_k = 0 \quad \text{in } B \quad \text{for } k \in \mathbb{N}
\]
with coefficients \(a^{ij}_k(x) := r_k^{-2} a^{ij}(x_k + r_k x) \) and \(b^i_k, c_k \) defined similarly. By (5) together with the assumptions on \(a^{ij}, b^i, c \) there is a uniform \(C^0 \)-bound
\[
\sup_{k \in \mathbb{N}} \left(||a^{ij}_k||_{C^0(B)} + ||b^i_k||_{C^0(B)} + ||c_k||_{C^0(B)} \right) < +\infty \quad \text{for all } i, j = 1, \ldots, n.
\]

Using the interior Hölder estimate [1, Theorem 9.26] for weak solutions we get
\[
\sup_{k \in \mathbb{N}} ||v_k||_{C^0(B)} < +\infty \quad \text{for all } 0 < s < 1
\]
with some Hölder exponent \(\alpha = \alpha(s) \in (0, 1) \) independent of \(k \). After extracting some subsequence we obtain the uniform convergence
\[
v_k \to v \quad \text{in } C^0(B_s, \mathbb{R}) \quad \text{for } k \to \infty
\]
(6)
for each \(s < 1 \) with some limit function \(v \in C^0(B, \mathbb{R}) \) satisfying
\[
v(x) \leq M \quad \text{in } B \quad \text{and } \quad v(0) = M.
\]

By Lemma (applied to \(\Omega = B_s \)) we have \(v(x) = M \) in \(B_s \) for each \(s < 1 \) and hence \(v(x) = M \) in \(B \).

On the other hand, from \(v_k(y_k) = 0 \) together with \(v_k(0) \to M \) we conclude that, for sufficiently large \(k \), there exists some \(z_k = t_k y_k \in B \) with \(t_k \in (0, 1) \) such that \(v_k(z_k) = M/2 = u(x_k + r_k z_k) \).

We may assume that \(t_k \to t_* \in [0, 1] \) and \(z_k \to z_* \in \overline{B} \) as \(k \to \infty \). We now claim that \(t_* < 1 \). Otherwise we would have \(t_k \to 1 \) for \(k \to \infty \). However, we would then have
\[
\text{dist}(x_k + r_k z_k, \partial \Omega) \leq |x_k + r_k z_k - (x_k + r_k y_k)| = r_k |y_k|(1 - t_k) \leq R(1 - t_k) \to 0 \quad \text{for } k \to \infty
\]
contradicting assumption c) together with \(u(x_k + r_k z_k) = M/2 \), proving the claim. Using the uniform convergence (6) in the ball \(B_{t_*} \), together with \(M/2 = v_k(z_k) \) we obtain \(v(z_*) = M/2 \), contradicting \(v(x) \equiv M \) in \(B \).

\[
3. \quad \text{The proof of Theorem 2 and Corollary 1}
\]

We start with

\[
\text{Proof of Theorem 2:}
\]
Consider two bounded solutions \(u_1, u_2 \) of (1). Then the difference function \(u(x) := u_1(x) - u_2(x) \)
will be solution of (1) for the right side \(f \equiv 0 \) and boundary values \(u \equiv 0 \) on \(\partial \Omega \). By assumption b) of Theorem 1, \(u \) is bounded in \(\Omega \), hence \(|u(x)| \leq M \) for some \(M > 0 \). We want to apply Theorem 1 to \(u \), but we first have to check whether the uniform boundary condition, assumption c) of Theorem 1, is satisfied by \(u \). As described in Remark 3 of [1, Chapter 6.3] we can construct a uniform barrier at each boundary point, using the uniform exterior sphere condition.

Let \(\Theta = \{ x \in \Omega : |x - y| < R + 1 \} \). By choosing \(\sigma = \sigma(\Lambda, R, n) > 0 \) sufficiently large, we obtain

\[
a^{ij}(x)\partial_{ij}w + b^i(x)\partial_iw + c(x)w \leq 0 \quad \text{in} \quad \Theta.
\]

We now define

\[
\tau := \frac{M}{R^{-\sigma} - (R + 1)^{-\sigma}} > 0
\]

and note that \(-\tau w(x) \leq u(x) \leq \tau w(x)\) on \(\partial \Theta \). From the maximum principle we conclude that \(-\sigma w(x) \leq u(x) \leq \sigma w(x)\) in \(\Theta \). Using \(|x_0 - y| = R \) this yields

\[
|u(x)| \leq \tau|w(x)| = \tau\left(R^{-\sigma} - |x - y|^{-\sigma}\right) \\
\leq \tau\left(R^{-\sigma} - (|x - x_0| + R)^{-\sigma}\right) \quad \text{for all} \quad x \in \Omega, \quad x_0 \in \partial \Omega \quad \text{with} \quad |x - x_0| < 1.
\]

In particular, for \(|x_0 - x| = \text{dist}(x, \partial \Omega) \) we obtain

\[
|u(x)| \leq \tau\left(R^{-\sigma} - (\text{dist}(x, \partial \Omega) + R)^{-\sigma}\right) \quad \text{for all} \quad x \in \Omega \quad \text{with} \quad \text{dist}(x, \partial \Omega) < 1.
\]

As the constants \(R, \sigma \) and \(\tau \) are independent of the chosen boundary point \(x_0 \in \partial \Omega \), we see that assumption c) of Theorem 1 is satisfied by \(u \). \(\square \)

We finally give the

Proof of Corollary 1

Let \(\Omega = \mathbb{R} \times \Omega' \) for some bounded domain \(\Omega' \subset \mathbb{R}^{n-1} \). Note that such a domain \(\Omega \) satisfies the uniform thickness condition \(\sup_\Omega \text{dist}(x, \partial \Omega) \leq d \) with \(d := \text{diam}(\Omega') \). Let \(u \in C^2(\Omega, \mathbb{R}) \cap C^0(\overline{\Omega}, \mathbb{R}) \) be a bounded solution of (1). For some \(k \in \mathbb{Z} \) let us define a translation of \(u \) by

\[
\tilde{u}(x) \in C^2(\Omega, \mathbb{R}) \cap C^0(\overline{\Omega}, \mathbb{R}) \quad \text{and} \quad \tilde{u}(x_1, \ldots, x_n) := u(x_1 + kL, x_2, \ldots, x_n) \quad \text{for} \quad x \in \overline{\Omega}.
\]

Note that \(\tilde{u} \) is bounded just as \(u \) is. By the periodicity assumptions on the data \(a^{ij}, b^i, c, f \) and \(g \) this \(\tilde{u} \) will be solution of the same problem (1) as \(u \). By Theorem 2 we obtain \(\tilde{u}(x) = u(x) \) in \(\overline{\Omega} \) proving the periodicity of \(u \). \(\square \)
References

[1] D. Gilbarg, N. S. Trudinger: *Elliptic Partial Differential Equations of Second Order*. Springer, Berlin Heidelberg New York, 1983.

[2] F. Sauvigny: *Partielle Differentialgleichungen der Geometrie und der Physik, Teil 1 und 2*. Springer Berlin Heidelberg, 2004, 2005.

[3] F. Sauvigny: *Partial Differential Equations, Vol. 1 and 2*. Springer Universitext, 2006.

Matthias Bergner, Jens Dittrich
Universität Ulm
Fakultät für Mathematik und Wirtschaftswissenschaften
Institut für Analysis
Helmholtzstr. 18
D-89069 Ulm
Germany

e-mail: matthias.bergner@uni-ulm.de, jens.dittrich@uni-ulm.de