Hypoxia Pathway Proteins are Master Regulators of Erythropoiesis

Deepika Watts¹, Diana Gaete¹, Diego Rodriguez¹, David Hoogewijs², Martina Rauner³, Sundary Sormendi¹, Ben Wielockx¹,*

¹Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, 01307 Dresden, Germany; ²Section of Medicine, Department of Endocrinology, Metabolism and Cardiovascular System, University of Fribourg, 1700 Fribourg, Switzerland. ³Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, 01307 Dresden, Germany

*Correspondence to: Ben Wielockx, Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany, e-mail: Ben.Wielockx@tu-dresden.de - Phone: +49.351.458.162.60

Keywords: hypoxia, erythropoiesis, EPO, HIF, CKD
Abstract

Erythropoiesis is a complex process driving the production of red blood cells. During homeostasis, adult erythropoiesis takes place in the bone marrow and is tightly controlled by erythropoietin (EPO), a central hormone mainly produced in renal EPO-producing cells. The expression of EPO is strictly regulated by local changes in oxygen partial pressure (pO₂) as under deprived oxygen (hypoxia) the transcription factor Hypoxia Inducible Factor-2 induces EPO. However, erythropoiesis regulation extends beyond the well-established HIF-EPO axis, and involves processes modulated by other hypoxia pathway proteins (HPPs), including proteins involved in iron metabolism. The importance of a number of these factors is evident as their altered expression has been associated with various anemia-related disorders, including chronic kidney disease. Eventually, our emerging understanding of HPPs and their regulatory feedback will be instrumental in developing specific therapies for anemic patients and beyond.
Introduction

Red blood cell (RBC) production mainly takes place in the bone marrow during homeostasis. This process encompasses a number of proliferation and differentiation steps starting at the hematopoietic stem cell (HSC) and down to specialized erythroid progenitors finally turning into mature RBCs. The complex process of erythropoiesis is vastly intertwined with iron metabolism [1], and regulated by a number of cytokines including the central glycoprotein hormone, erythropoietin (EPO). The primary producers of EPO are specialized fibroblast-like peritubular cells located in the adult kidney or fetal hepatocytes. Nevertheless, more recent studies reported EPO production also in astrocytes, osteoblasts, and pericytes upon transcriptional response dependent on the hypoxia pathway [2-6]. Our initial understanding of this pathway came into light almost 30 years ago when the group of Dr. Semenza identified hypoxia inducible factor (HIF) as a transcription factor responsible for the expression of EPO [7,8]. Hence, increased EPO during diminished oxygen supply, for instance at high altitude, causes our body to make more RBCs to augment delivery of oxygen. Since then, numerous hypoxia pathway proteins (HPPs) have been identified in different cells of our body, often playing critical roles in survival, growth and differentiation upon changes in pO$_2$ [9]. Cellular oxygen sensing is therefore a fundamental biological process, necessary for adaptation of living organisms to changing physiological and pathological situations. To date a limited amount of enzymes, three HIF Prolyl Hydroxylase Domains proteins (PHD1-3) and Factor inhibiting HIF (FIH) have been identified as oxygen sensors. These oxygen-dependent enzymes act as hydroxylases and dioxygenases regulating the availability of HIFα subunits and in turn define when and how cells express genes in response to changing pO$_2$ [10-12]. Under hypoxia, when the oxygen sensors are inactive, HIFα subunits are stabilized and translocate to the nucleus and bind to HIFβ and a number of other co-factors. Subsequently the HIF-complex binds hypoxia response elements (HRE) in the promoter/enhancer of a selection of genes, generally increasing their transcription [13-15]. This review will give a more in-depth view on the role of HPPs (i.e. HIFα, PHDs, HIF-controlled genes) regulating the multistage process of
erythropoiesis, and discusses the current therapeutic approaches interfering the hypoxia pathway in the treatment of anemia and/or Chronic Kidney Disease (CKD) [16].

HIF transcription factors and their modulators

The heterodimeric HIF-complex is a key transcription factor constituted of an α and a β subunit. The latter, also referred as aryl hydrocarbon receptor nuclear translocator (ARNT), is constitutively expressed whereas HIFα (i.e. HIF1α, HIF2α (also known as endothelial PAS domain containing protein 1 - EPAS1), and HIF3α) is synthesized and constantly degraded during normoxia. Degradation of the HIFα subunits is tightly regulated by three PHDs (also known as EGL-9 homolog EGLN2, EGLN1 and EGLN3, respectively) that hydroxylate two specific proline residues (Pro402/Pro564 in HIF1α and Pro405/Pro531 in HIF2α) in the oxygen-dependent degradation domain [11,17-19]. Consequently, this hydroxylation leads to von Hippel–Lindau tumor suppressor protein (VHL) mediated ubiquitination, and proteasomal degradation of the HIFα subunits [12,19,20].

Although a recent *in vitro* study demonstrated that HIFs are the only targets of the PHDs [21], each PHD has a different affinity for a particular HIF subunit: HIF2α is mainly regulated by PHD1, PHD2 is the major regulator of HIF1α [22,23]. Noteworthy, PHD2 is the most widely expressed PHD isoform, being of crucial importance during development. Indeed, early studies in mice reported that PHD2 deficiency results in embryonic lethality between E12.5 and 14.5 due to defects in the developing placenta and heart [24,25]. Conversely, PHD1 and PHD3 deletions are not lethal, and have only limited tissue specific impact, as exhibited by their effect on cellular metabolism in skeletal muscle and altered blood pressure in the central nervous system, respectively [26,27]. Moreover, PHD2 differs from PHD1 and PHD3 in its N-terminal zinc finger, which favors recruitment of the HSP90 machinery, facilitating HIFα hydroxylation [28,29]. In turn, PHD1 and PHD3 can also be regulated by hypoxia inducible E3 ubiquitin ligases: the SIAH proteins [30]. HIFα’s availability can further be modulated at the transcriptional level through crosstalk with other signaling pathways and epigenetic regulators. For
instance, nuclear factor-κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3) have been shown to bind the HIF1α promoter and induce its transcription [31,32].

Whereas HIF1α is expressed ubiquitously, HIF2α is more restricted to specific cell types like endothelial cells, cardiomyocytes, hepatocytes, adipocytes, neurons, and interstitial cells and glomeruli of the kidney [21,33-37]. Even though both HIFs regulate many common genes, their transcriptional targets often differ, as well as their kinetics of activation and oxygen dependence. Overall, gene expression and chromatin immunoprecipitation assays showed that both HIF1α and HIF2α are responsible for regulating transcription of more than a thousand genes during adaptive response to hypoxia [38-40].

Conversely, HIFs have also been reported to indirectly suppress the expression of a number of genes by activation of transcriptional repressors or epigenetic regulators. For instance, Cavadas and colleagues recently showed that hypoxia mediated nuclear translocation of Repressor Element 1-Silencing Transcription factor (REST) is responsible for regulating 20% of hypoxia-repressed genes in hypoxia[41]. The other transcriptional repressors induced by hypoxia include DEC1, DEC2, Bach1, Zeb1 and Zeb2 reviewed by Cavadas et al [42]. Hypoxia also regulates epigenetic factors, such as DNA methylation and histone acetylation, those in turn regulate the hypoxia responsive gene expression [43]. In addition, several recent studies, including ours, have pointed towards HIF-mediated suppression by microRNAs [44-48]. Interestingly, there is a two-way communication between HIFs and microRNAs, as the latter have also been suggested to control the expression of HIFs in different cell types [49,50] (recently reviewed by Serocki and colleagues [46]).

Soon after their discovery, PHDs have been considered to play a distinctive role in regulating erythropoiesis. Somatic inactivation of PHD2 after birth causes a significant rise of serum EPO levels; an effect that can only be mimicked by simultaneous deletion of PHD1 and PHD3. Importantly, we and others discovered that this phenotype is exclusively dependent on HIF2α since its targeted deficiency but not that of HIF1α reverses this phenotype [34,51]. Briefly, severe HIF2-driven EPO production resulted in non-lethal hematocrit levels up to 85% upon PHD2 deletion in CD68-expressing cells, including renal
EPO-producing cells (REPCs) [34]. In humans, various heterozygous point mutations have been described in the PHD2 gene resulting in an increase of red blood cell mass, hemorrhages, strokes and enhanced risk of thrombosis [52-54]. The mutations P317R and P371H affect the substrate binding of PHD2, partially inhibiting the hydroxylation of HIF [55]. Interestingly, a patient with a heterozygous H374R mutation developed a recurrent paraganglioma that exhibited loss of PHD2 in both alleles in addition to the erythrocytotic phenotype [52].

Next to EPO and its receptor, several other genes involved in the process of erythropoiesis are directly or indirectly regulated by the PHD/HIF axis. These include genes implicated in iron metabolism, such as transferrin (TF), transferrin receptor-1 (TFR-1), ferroportin (FPN), hepcidin, divalent metal transporter 1 (DMT1), duodenal cytochrome b (DCYTB), and GATA-1 [56-61], granting this axis a central role during anemic processes associated to a wide range of diseases (Figure 1).

Erythropoiesis: a multistep process

On average 200×10⁹ RBCs are generated and released into circulation every day [62]. This production is adjusted on a need basis and is tightly controlled by complex networks involving HPPs, regulators of iron metabolism and erythropoietic stress [1,63-65]. Erythropoiesis is a multistep process that includes numerous proliferation and differentiation stages starting from the HSC, down to committed erythroid progenitors and different erythroblast populations in the bone marrow (BM). This eventually gives rise to reticulocytes and enucleated mature RBCs in the blood [7,62,66]. The course of this development includes strict control by a number of transcription factors and epigenetic regulators. GATA-1 is the major transcription factor regulating differentiation and survival of erythroid progenitors [67-70], including genes involved in heme and/or globin synthesis, anti-apoptosis, cell cycle regulators, and the erythropoietin receptor (EPOR) [67-69,71-74]. In turn, GATA-1 is also regulated by HIF [73,75,76]. Additionally, GATA-2 is essential for the regulation of lineage-restricted gene expression during erythroid differentiation [70,77]. Other erythropoietic regulators that have been studied in the
context of hypoxia and HPPs are interleukin-3, certain vitamins as well as transferrin (TF)-transferrin receptors (TFR) modulating iron metabolism [59-61].

Several studies in the field of erythropoiesis have also explored the role of micro-RNAs, including during the process of enucleation [78,79]. A recent study by Rivkin and colleagues reported that the hematopoietic specific mir-142 plays a critical role in maintaining the typical biconcave shape of RBCs through the control of cytoskeletal regulators and directly influencing the overall lifespan of the erythrocyte [80]. In another study, mir-142 was shown to directly target HIF1α [81]. Although more research is required to unambiguously link mir-142, HIF1α, and the shape of the RBCs, other studies are available reporting HIF’s participation in the regulation of micro-RNAs involved in different stages of erythropoiesis [82-85] (Table1).

EPO/EPOR axis: hypoxia pathway in action

EPO is the central hormone during erythropoiesis and is mainly responsible for survival, proliferation, and differentiation of committed progenitors, ultimately enhancing the oxygen-carrying capacity of blood [86]. EPO promotes survival of colony-forming unit-erythroid cells (CFU-E) and early erythroblasts. Moreover, erythroid precursors are differentially sensitive to EPO and respond differently to increasing levels. At higher levels, cells survive and differentiate, whereas at lower EPO levels less sensitive cells die due to caspase-mediated apoptotic death [71].

After birth, EPO is mainly produced by REPCs, whereas hepatocytes are the main source during embryo development [87-90]. In the BM, EPO binds to its homodimeric receptor EPOR on erythroid progenitor cells, triggering its association with Janus kinase (JAK2). In turn, JAK2 phosphorylates the cytoplasmic tail of EPOR, providing multiple docking sites for signal-transducing proteins, which subsequently lead to STAT-5 phosphorylation [91]. Additionally, it was shown that the phosphatidylinositol-3-kinase/protein kinase B (PI-3k/AKT) and mitogen-associated protein kinase/extracellular signal-related kinase (MAPK/ERK) pathways can also be activated in this way [92].
Severe hypoxia or loss of PHD2 in hepatocytes can also result in dramatic liver EPO production in adults [93-96]. However, in contrast to HIF2α-mediated EPO production, HIF stabilization in epithelial cells of the kidney results in suppression of EPO, leading to anemia. The lab of Dr. Haase showed that proximal nephron specific deletion of VHL (Pax8-rtTA-cre) results in a reduction of REPCs and renal anemia, suggesting a cellular crosstalk in the tubule-interstitial compartment in the kidney, changing the production of EPO [97].

Since HIF2α is a major player in erythropoiesis, most of the studies have focused on this subunit as a facilitator of EPO production. Interestingly, also HIF3α was recently shown to be involved in EPO regulation [98,99]. Until now, only limited studies provided insight into the complex alternative splicing of HIF3α mRNA resulting in short and long variants either inhibiting hypoxia response or possessing transactivation capacities [100,101]. In vitro knockdown or overexpression of the long HIF-3α-2 splice variant in EPO-producing cell lines resulted in downregulation or upregulation of EPO respectively, involving the canonical HRE [99,100]. However, further research is required to define whether HIF3-mediated EPO regulation also occurs in vivo.

Whereas HIF2α-dependent EPO regulation is well-established, the precise molecular mechanism responsible for tight expression control and the regions within the EPO locus responsive to HIF-mediated regulation remain the subject of continuous research efforts. It is known that oxygen-dependent regulation of the EPO gene is controlled by distinct regulatory sequences in liver and kidney and involves a region of 0.4 kb of the 5’-sequence (promoter) and a 0.7 kb region of the 3’-sequence in the liver [102,103] whereas a highly conserved regulatory element responsible for renal EPO expression has been suggested to be located between 14 and 6 kb in the 5’-region [104,105]. However, the strict tissue-specific and conditional EPO transcriptional regulation strongly suggests that additional mechanisms might be involved. Moreover, studies on single gene scale [106] and at pan-genomic level [107] showed that long-range enhancer-promoter chromatin looping occurs independently of HIF and involves the recruitment of transcriptional factors and coactivators, further suggesting that EPO regulation might be more complex.
Accordingly, Smythies et al [40] illustrated that the tissue-specific role of HIF2α is related to association with tissue-specific transcription factors. More recently, Orlando et al reported that multiple, distal and proximal HREs cooperate in oxygen-regulated EPO gene expression and that EPO regulation in renal cells may have more in common with neuronal cells than with hepatic cells, further illustrating the context-dependent complexity of EPO regulation [108].

Hypoxia-mediated EPO production at other sites

Apart from REPCs and embryonic hepatocytes also other cell types have been shown to produce EPO in response to hypoxia. As an example, hypoxia-induced EPO production in the brain and certain cell types of the central nervous system (CNS) has come into light in the past years [109,110]. Urrutia and colleagues showed that pericyte specific (NG2:cre) VHL or PHD2/PHD3 deficiency leads to polycythemia. This was reversed in mice additionally lacking HIF2α, emphasizing the essential role of HIF2α for EPO production in other cell types [5,109,111]. Rankin and colleagues showed that specific deletion of VHL in osteoprogenitors in mice (OSX:cre-VHLf/f) presented elevated EPO expression in bone, which was also accompanied by polycythemia. Also in this setting, HIF2α was the central HIF isoform [4].

It is noteworthy that the majority of EPO-producing cells, such as pericytes, astrocytes, as well as REPCs are of neurological origin [5,6,34,112]. Recent unpublished data from our lab also described EPO production in the adrenal gland chromaffin cells upon HIF2α activation; cells known to be derived from neural crest. In line with this, polycythemia is one of the initial traits recognized in pheochromocytoma (the tumor of the adrenal medulla) relate to VHL or loss-of-function mutations or HIF2 gain-of-function mutations is [113]. In addition to HIF-mediated increased EPO expression in tumors, EPOR is also significantly increased in the hypoxic region of tumors, suggesting a HIF-mediated modulation of EPOR [114,115].
EPOR and HIF axis

EPO will bind to erythroid progenitors (i.e. erythroblasts) in the BM/Spleen via the EPOR to meet the enormous daily production of RBCs. Remarkably, an *in silico* study identified almost thirty genetic variants of the EPOR, and seven variants of the EPO gene associated with erythrocytosis or increased hematocrit in humans. Mutations in EPOR have been shown to activate the receptor constitutively, resulting in enhanced production of erythroid colonies and erythrocytosis but reduced EPO synthesis [116].

In addition to its expression on erythroblasts, EPOR has even been identified on non-erythroid cells such as neural cells, endothelial cells, skeletal muscle myoblasts, macrophages, and white adipose tissue [3,117-119]. Although under normal conditions EPOR expression is very low in the nervous system, mild episodes of hypoxia can significantly increase its expression [120]. Similarly, unpublished data from our lab suggest HIF-mediated EPOR expression in the adrenal medulla.

Furthermore, Su and colleagues recently showed that hypoxia induces EPOR expression via HIF1α in lung carcinoma cells. According to this study, HIF1α interacts with the transcription factor Early Growth Response 1 (EGR1) to negatively regulate EPOR in the early phase of hypoxia, and with SP1 to promote EPOR expression in the later phase [115]. Thus, the hypoxia pathway is crucial in modulating the expression of EPO and its receptor. Both are not only directly involved in erythropoiesis, EPO is also crucial in regulation of the iron metabolism via hepcidin suppression [121] (see further).

Iron metabolism: HPP as crucial contributors

Hemoglobin is the most essential component of erythrocytes as it carries oxygen bound to heme groups throughout the body. Central in heme is iron, which makes up about 70% of all available iron. Therefore, iron transport and metabolism is of utmost importance and in turn is also regulated by a number of HRE-containing genes, directly linking it to the hypoxia pathway [122]. For instance, to maintain necessary iron levels in other cells, HIF2α plays a pivotal role promoting cellular iron uptake. Particularly, HIF2α
upregulates divalent metal transporter 1 (DMT1) and duodenal cytochrome b (DCYTB), where DMT1 is responsible for iron transport into cells, while DCYTB reduces the ferric form of iron to ferrous iron [123,124]. HIFs also regulate the expression of transferrin (TF) and transferrin receptor-1 (TFR-1), where TF catches up to two iron atoms from circulation and transports it into the cells via TFR-1 [60,61,125,126]. FPN, a critical factor that facilitates iron export from iron-storing cells (i.e. enterocytes and macrophages), is inhibited by the peptide hormone hepcidin [127]. Therefore, it is crucial that hepcidin production is strictly controlled for normal erythropoiesis to occur. To ensure this, erythroblasts produce and secrete the hormone erythroferrone (ERFE) upon EPO signaling, suppressing hepcidin production [121,126,128-130]. A more recent study by Arezes and colleagues suggests direct interaction of ERFE with BMP5, BMP6 and BMP7, leading to inhibition of BMP/SMAD signaling, and consequent hepcidin suppression [131] (Figure 2 and Table 1). More detailed insights into the regulation and action of ERFE has been recently reviewed by Coffey and Ganz [128].

Interestingly, hepcidin functionality has been linked to HIF2α activity [132]. Initial studies pointed towards a direct role of HPP during hepcidin production, where hypoxia inversely regulates hepcidin expression [133] through the element CRE [134] or direct suppression of hepcidin by HIF binding to HRE and suppressing HAMP (encoding hepcidin) transcription [135]. Vice versa, deletion of hepatic hepcidin significantly increased FPN leading to cellular iron efflux, decreased PHD activity and eventually HIF2α upregulation [136].

Further, a negative feedback loop of EPO by increased iron levels has been proposed. Iron excess induced by injection or feeding resulted in decreased renal EPO gene expression, which is mediated through reduced HIF2α levels in renal interstitial fibroblasts [137]. In addition to regulation by PHDs, translational regulation of HIF2α is inhibited by binding of iron regulatory proteins (IRPs) on iron response element (IRE) in its 5’UTR [93,138]. Taken together, these studies suggest a Fe-HIF2α-EPO-ERFE-hepcidin axis, underlining the importance of HIF2α in iron metabolism [136,139,140]. PHDs and HIFs can be potentially targeted for the treatment of iron-related disorders such as anemia, chronic kidney
disease (CKD), and polycythemia, where HIF2α is an essential target for polycythemia-related disorders [141].

Chronic kidney disease (CKD) is one of the leading causes of death and arises mainly as a result of diabetes and hypertension [142]. Although anemia can be caused by a large variety of reasons, anemia due to kidney damage is attributed to decreased production of EPO by kidneys; leading to suppression of erythropoiesis [87]. HIF stabilizers act by restoring EPO levels and reducing hepcidin, and have been used effectively to enhance hemoglobin levels in patients suffering from anemias, including CKD patients [143].

Anemia and CKD – the PHD-HIF axis and therapeutic targeting

Anemia can have different etiologies and is a common feature during the course of numerous pathologies. As such, the success of specific anemia treatments depends on the disease context. In many cases, including CKD-related anemia, treatment includes erythropoiesis-stimulating agents (ESA) [71]. However, there is not always a clear inverse correlation between the degree of anemia and EPO levels in the serum. In fact, many patients suffering from renal anemia do not respond to treatment with ESA [144]. Together, this suggests that modulating EPO levels in serum is not sufficient to treat anemia in CKD patients, and that new therapeutic approaches need to be developed. In line, a recent study showed that anemia in rats led to increased expression of HIF2α and EPO in kidney and bone marrow, whereas rats suffering from CKD failed to show these increases.

An important factor contributing to the progression of CKD is incomplete or maladaptive tissue repair following acute kidney injury (AKI). In this setting, HIF stabilization through pharmacological PHD inhibitors enhances kidney recovery in several types of AKI including AKI caused by nephrotoxicity and renal reperfusion, the most common causes of AKI. Importantly, other studies suggest
that HIF1α accumulation might be harmful during sepsis-associated AKI. This indicates that the success of HIF stabilization depends on the type of AKI, and possibly also other factors [145].

Since PHDs need 2-Oxoglutarate (2-OG) for their hydroxylase activity, most of the clinically advanced HIF stabilizers are 2-OG derivatives (reviewed by [146]). To date, several drugs that inhibit PHD activity have progressed into clinical trials. Importantly, these drugs do not target FIH, which preferentially inhibits HIF1α transcriptional activation, allowing for increased HIF2α stabilization. HIF stabilization induces a transient increase in EPO levels, achieving concentrations closer to the physiological range than those obtained with current ESA therapy. This suggests that treatment with HIF stabilizers could be more suited for certain patients (for recent reviews [147-150]. Despite the promising future HIF stabilizers hold for treatment of anemia in CKD patients, concerns have arisen regarding their chronic use because of the significant pool of genes targeted by HIFs as well as the higher risk of hyperkalemia or the development of iron deficiency [147,151,152]. Therefore, further research is of utmost importance to better understand the impact of long-term HIF stabilization and to identify drugs targeting specifically HIF1α and/or HIF2α isoforms.

HIF-EPO-FGF23 axis: PHD2/HIF inhibition

As discussed above, HIF-dependent EPO regulation is crucial for appropriate erythropoiesis in homeostatic and pathological conditions. Considering that adult erythropoiesis occurs in BM, it is noteworthy to mention another important player in this axis: Fibroblast Growth Factor-23 (FGF-23). FGF-23 is a bone-derived hormone essential for regulating vitamin D and phosphate concentrations [153]. Two forms of FGF23 have been described: a full-length biologically active protein (iFGF23) that upon cleavage results in a C-terminal inactive fragment (cFGF23) [154]. While iFGF23 interacts with FGF receptor 1 (FGFR1) to decrease blood phosphate levels in mice, cFGF23 can directly increase BM erythroid cell numbers in the same manner as treatment with recombinant human (rhEPO) [155]. Accordingly, FGF-23 constitutes the link between erythropoiesis and bone homeostasis in both
physiological, as well as in a variety of pathological conditions [156,157]. Indeed, we recently showed increased FGF-23 levels associated with ineffective erythropoiesis and impaired bone mineralization in myelodysplastic syndromes (MDS) [158]. Similarly, in CKD mouse models the expression of Fgf23 mRNA is significantly increased in bone cells, resulting in reduced bone mineralization [159]. Additionally, it has been reported that FGF-23 expression can be regulated by inflammation and iron deficiency. Induction of inflammation in mice using IL1β, LPS and/or TNF correlates with increased expression levels of FGF-23 in osteocytes, both in humans and in mice [160] but also in CKD and inflammation in other organs [161]. David et al showed that IL1β-induced inflammation resulted in an FGF-23 increase accompanied by a significant ferritin increase and decrease of iron in the serum. Interestingly, the same study demonstrated that increased skeletal FGF-23 expression during inflammation remained even after administration of the PHD inhibitor FG-4592 [162] (roxadustat – one of the PHD inhibitors currently in clinical trials for CKD treatment [163]). Conversely, another study in bone showed increased Fgf23 mRNA expression upon HIF1α stabilization [164]. Noonan et al. studied the role of the HIF/EPO/FGF-23 axis in iron metabolism in an early-stage CKD mouse model. They reported that, upon treatment with HIF-PHD inhibitor FG-4592, iFGF-23 serum levels dropped remarkably. As a result, deficiency of iron metabolism stabilized through decreased liver ferritin, Bmp6, and hepcidin mRNAs [165]. Taken together, FGF-23 constitutes an important regulator of erythropoiesis and bone homeostasis. Although there is supporting evidence linking the regulatory role of HIFs and FGF-23 expression, additional studies are required to unravel the molecular mechanisms linked to these HPPs (Figure 2).

Conclusions

Taken together, hypoxia pathway proteins play direct and indirect roles during the complex process of erythropoiesis. Therefore, the multifaceted regulation of all these proteins is essential in order to preserve the enormous demand of red blood cells needed under steady state but also stress situations.
The most crucial member of this system is EPO, primarily produced in kidney and directly regulated by the PHD2/HIF2α axis. Besides its impact on the development of red blood cells, EPO plays an essential role on iron metabolism by regulating hepcidin expression in the liver. In addition, EPO steers the production and processing of other growth factors (e.g. FGF23) essential during erythropoiesis and in that way regulating its own production. Due to the essential roles of HPPs in erythropoiesis, the development of HIF stabilizers and PHD inhibitors as therapeutic agents are under detailed investigation for the treatment of anemias of various etiologies. However, more research is necessary to better understand the wide impact of the central HPPs especially for chronic intervention of this pathway.

Acknowledgments

This work was supported by grants from the DFG (German Research Foundation) within the CRC/Transregio 205/1, Project No. 314061271 - TRR205, “The Adrenal: Central Relay in Health and Disease“ (A02) to B.W.; DFG grants WI3291/5-1 and 12-1 to B.W. and RA1923/12-1 to M.R. This work was supported by grants from the German-Israeli-Foundation to M.R., and B.W.; the DFG priority program μBONE 2084 to M.R. and B.W.; BW was further supported by the DFG Heisenberg program (WI3291/13-1).

Authors’ contributions

D.W., D.G, D.R. and B.W. wrote the manuscript. D.H. and M.R. contributed to the discussion and edited the manuscript.

Conflict of interest

The authors have declared that no conflict of interest exists.
References

1. Oburoglu, L.; Romano, M.; Taylor, N.; Kinet, S. Metabolic regulation of hematopoietic stem cell commitment and erythroid differentiation. *Current Opinion in Hematology* **2016**, *23*, 198-205, doi:10.1093/MOH.00000000000234.

2. Alnæeli, M.; Wang, L.; Piknova, B.; Rogers, H.; Li, X.; Noguchi, C.T. Erythropoietin in brain development and beyond. *Anat Res Int* **2012**, *95*, 32546, doi:10.1155/2012/953264.

3. Suresh, S.; Rajvanshi, P.K.; Noguchi, C.T. The Many Facets of Erythropoietin Physiologic and Metabolic Response. *Front Physiol* **2019**, *10*, 1534, doi:10.3389/fphys.2019.01534.

4. Rankin, E.B.; Wu, C.; Khatri, R.; Wilson, T.L.; Andersen, R.; Araldi, E.; Rankin, A.L.; Yuan, J.; Kuo, C.J.; Schipani, E., et al. The HIF signaling pathway in osteoblasts directly modulates erythropoiesis through the production of EPO. *Cell* **2012**, *149*, 63-74, doi:10.1016/j.cell.2012.01.051.

5. Urrutia, A.A.; Afzal, A.; Nelson, J.; Davidoff, O.; Gross, K.W.; Haase, V.H. Prolyl-4-hydroxylase 2 and 3 coregulate murine erythropoietin in brain pericytes. *Blood* **2016**, *128*, 2550-2560, doi:10.1182/blood-2016-05-713545.

6. Nagai, A.; Nakagawa, E.; Choi, H.B.; Hatori, K.; Kobayashi, S.; Kim, S.U. Erythropoietin and Erythropoietin Receptors in Human CNS Neurons, Astrocytes, Microglia, and Oligodendrocytes Grown in Culture. *Journal of Neuropathology & Experimental Neurology* **2001**, *60*, 386-392, doi:10.1093/jn/60.4.386.

7. Zivot, A.; Lipton, J.M.; Narla, A.; Blanc, L. Erythropoiesis: insights into pathophysiology and treatments in 2017. *Mol Med* **2018**, *24*, 11, doi:10.1186/s10020-018-0011-z.

8. Suzuki, N.; Yamamoto, M. Roles of renal erythropoietin-producing (REP) cells in the maintenance of systemic oxygen homeostasis. *Pflugers Arch* **2016**, *468*, 3-12, doi:10.1007/s00424-015-1740-2.

9. Semenza, G.L.; Wang, G.L. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. *Molecular and cellular biology* **1992**, *12*, 5447-5454, doi:10.1128/MCB.12.12.5447.

10. Lando, D.; Peet, D.J.; Gorman, J.J.; Whelan, D.A.; Whitehall, M.L.; Bruick, R.K. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. *Genes Dev* **2002**, *16*, 1466-1471.

11. Epstein, A.C.; Gleadle, J.M.; McNeill, L.A.; Hewitson, K.S.; O’Rourke, J.; Mole, D.R.; Mukherji, M.; Metzen, E.; Wilson, M.I.; Dhandha, A., et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. *Cell* **2001**, *107*, 43-54.

12. Ivan, M.; Kondo, K.; Yang, H.; Kim, S.U.; Vialiando, J.; Ohh, M.; Salic, A.; Asara, J.M.; Lane, W.S.; Kaelin, W.G. HIFalalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. *Science* **2001**, *292*, 464-468.

13. Hirano, I.; Suzuki, N.; Yamazaki, S.; Sekine, H.; Minegishi, N.; Shimizu, R.; Yamamoto, M. Renal Anemia Model Mouse Established by Transgenic Rescue with an Erythropoietin Gene Lacking Kidney-Specific Regulatory Elements. *Mol Cell Biol* **2017**, *37*, doi:10.1128/MCB.00451-16.

14. Meneses, A.M.; Wielockx, B. PHD2: from hypoxia regulation to disease progression. *Hypoxia (Auckl)* **2016**, *4*, 53-67, doi:10.2147/HP.S53576.

15. Sormendi, S.; Wielockx, B. Hypoxia Pathway Proteins As Central Mediators of Metabolism in the Tumor Cells and Their Microenvironment. *Front Immunol* **2018**, *9*, 40, doi:10.3389/fimmu.2018.00040.

16. Locatelli, F.; Fishbane, S.; Block, G.A.; Macdougal, I.C. Targeting Hypoxia-Inducible Factors for the Treatment of Anemia in Chronic Kidney Disease Patients. *Am J Nephrol* **2017**, *45*, 187-199, doi:10.1159/000455166.

17. Masson, N.; Willam, C.; Maxwell, P.H.; Pugh, C.W.; Ratcliffe, P.J. Independent function of two destruction domains in hypoxia-inducible factor-alpha chains activated by prolyl hydroxylation. *EMBO J* **2001**, *20*, 5197-5206.

18. Jaakkola, P.; Mole, D.R.; Tian, Y.M.; Wilson, M.I.; Gielbert, J.; Gaskell, S.J.; Av, K.; Hebestreit, H.F.; Mukherji, M.; Schofield, C.J., et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. *Science* **2001**, *292*, 468-472.

19. Bruick, R.K.; McKnight, S.L. A conserved family of prolyl-4-hydroxylases that modify HIF. *Science* **2001**, *294*, 1337-1340.
20. Mahon, P.C.; Hirota, K.; Semenza, G.L. FIH-1: a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity. *Genes Dev 2001*, 15, 2675-2686.

21. Cockman, M.E.; Lipll, K.; Tian, Y.M.; Pegg, H.B.; Figg, W.D.J.; Abboud, M.I.; Heilig, R.; Fischer, R.; Myllyharju, J.; Schofield, C.J., et al. Lack of activity of recombinant HIF prolyl hydroxylases (PHDs) on reported non-HIF substrates. *Elife 2019*, 8, doi:10.7554/eLife.46490.

22. Appelhoff, R.J.; Tian, Y.-M.; Raval, R.R.; Turley, H.; Harris, A.L.; Pugh, C.W.; Ratcliffe, P.J.; Gleadle, J.M. Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. *J Biol Chem 2004*, 279, 38458-38465.

23. Berra, E.; Benizzi, E.; Ginovès, A.; Volmat, V.; Roux, D.; Pouysségur, J. HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. *EMBO J 2003*, 22, 4082-4090.

24. Takeda, K.; Ho, V.C.; Takeda, H.; Duan, L.-J.J.; Nagy, A.; Fong, G.-H.H. Placental but not heart defects are associated with elevated hypoxia-inducible factor alpha levels in mice lacking prolyl hydroxylase domain protein 2. *Mol Cell Biol 2006*, 26, 8336-8346.

25. Minamishima, Y.A.; Moslehi, J.; Bardeesy, N.; Cullen, D.; Bronson, R.T.; Kaelin, W.G. Somatic inactivation of the PHD2 prolyl hydroxylase causes polycythemia and congestive heart failure. *Blood 2008*, 111, 3236-3244.

26. Aragones, J.; Schneider, M.; Van Geyte, K.; Fraisl, P.; Dresselaers, T.; Mazzone, M.; Dirkx, R.; Zacchigna, S.; Lemieux, H.; Jeoung, N.H., et al. Deficiency or inhibition of oxygen sensor Phd1 induces hypoxia tolerance by reprogramming basal metabolism. *Nat Genet 2008*, 40, 170-180, doi:10.1038/ng.2007.62.

27. Bishop, T.; Gallagher, D.; Pascual, A.; Lygate, C.A.; de Bono, J.P.; Nicholls, L.G.; Ortega-Ríos, M.; M., et al. Abnormal sympathoadrenal development and systemic hypotension in PHD3-/- mice. *Mol Cell Biol 2008*, 28, 3386-3400, doi:10.1128/MCB.02041-07.

28. Arsenault, P.R.; Song, D.; Chung, Y.J.; Khurana, T.S.; Lee, F.S. The Zinc Finger of Prolyl Hydroxylase Domain Protein 2 Is Essential for Efficient Hydroxylation of Hypoxia-Inducible Factor alpha. *Mol Cell Biol 2016*, 36, 2328-2343, doi:10.1128/MCB.00090-16.

29. Sinnema, M.; Song, D.; Guan, W.; Janssen, J.W.H.; van Wijk, R.; Navalsky, B.E.; Donker, A.E.; Cockman, M.E.; Lippl, K.; Tian, Y.; et al. Abnormal sympathoadrenal development and systemic hypotension in PHD3-/- mice. *Mol Cell Biol 2008*, 28, 3386-3400, doi:10.1128/MCB.02041-07.

30. Matsui-Hamashita, A.; Sato, Y.; Uto-Konomi, A.; Yamashita, S.; Uehori, J.; Yoshimura, A.; Yamashita, M.; Ashara, H.; Suzuki, S.; Kubo, M. E3 ubiquitin ligases SIAH1/2 regulate hypoxia-inducible factor-1 (HIF-1)-mediated Th17 cell differentiation. *International Immunology 2017*, 29, 133-143, doi:10.1093/intimm/dxx014.

31. Niu, G.; Briggs, J.; Deng, J.; Ma, Y.; Lee, H.; Kortylewski, M.; Kujawski, M.; Kay, H.; Cress, W.D.; Jove, R., et al. Signal Transducer and Activator of Transcription 3 Is Required for Hypoxia-Inducible Factor-1α RNA Expression in Both Tumor Cells and Tumor-Associated Myeloid Cells. *Molecular Cancer Research 2008*, 6, 1099, doi:10.1158/1541-7786.MCR-07-2177.

32. Bonello, S.; Zähringer, C.; BelAlia Rachida, S.; Djordjevic, T.; Hess, J.; Michiels, C.; Kietzmann, T.; Görlach, A. Reactive Oxygen Species Activate the HIF-1a Promoter Via a Functional NFкB Site. *Arteriosclerosis, Thrombosis, and Vascular Biology 2007*, 27, 755-761, doi:10.1161/01.ATV.0000258979.92828.bc.

33. Dai, Z.; Li, M.; Wharton, J.; Zhu, M.M.; Zhao, Y.Y. Prolyl-4 Hydroxylase 2 (PHD2) Deficiency in Endothelial Cells and Hematopoietic Cells Induces Obliterative Vascular Remodeling and Severe Pulmonary Arterial Hypertension in Mice and Humans Through Hypoxia-Inducible Factor-2alpha. *Circulation 2016*, 133, 2447-2458, doi:10.1161/CIRCULATIONAHA.116.021494.

34. Franke, K.; Kalacula, J.; Mamlouk, S.; Singh, R.P.; Muschter, A.; Weidemann, A.; Iyengar, V.; Jahn, S.; Wieczorek, K.; Geiger, K., et al. HIF-1alpha is a protective factor in conditional PHD2-deficient mice suffering from severe HIF-2alpha-induced excessive erythropoiesis. *Blood 2013*, 121, 1436-1445, doi:10.1182/blood-2012-08-449181.

35. Wiesener, M.S.; Jürgensen, J.S.; Rosenberger, C.; Scholze, C.; Hörstrup, J.H.; Warnecke, C.; Mandriota, S.; Bechmann, I.; Frei, U.A.; Pugh, C.W., et al. Widespread, hypoxia-inducible expression of HIF-2α in distinct cell populations of different organs. *The FASEB Journal 2003*, 17, 271-273, doi:10.1096/fj.02-0445fje.

36. Korovina, I.; Neuwirth, A.; Sprott, D.; Weber, S.; Sardar Pasha, S.P.B.; Gercken, B.; Breier, G.; El-Armouche, A.; Deussen, A.; Karl, M.O., et al. Hematopoietic hypoxia-inducible factor 2alpha deficiency
amelinorates pathological retinal neovascularization via modulation of endothelial cell apoptosis. *Faseb j 2019*, 33, 1758-1770, doi:10.1096/fj.201800430R.

37. Garcia-Martin, R.; Alexaki, V.I.; Qin, N.; Rubin de Celis, M.F.; Economopoulou, M.; Ziogas, A.; Gercken, B.; Kotlabova, K.; Phieler, J.; Ehrhart-Bornstein, M., et al. Adipocyte-Specific Hypoxia-Inducible Factor 2alpha Deficiency Exacerbates Obesity-Induced Brown Adipose Tissue Dysfunction and Metabolic Dysregulation. *Mol Cell Biol 2016*, 36, 376-393, doi:10.1128/MCB.00430-15.

38. Lee, K.E.; Simon, M.C. SnapShot: Hypoxia-Inducible Factors. *Cell 2015*, 163, 1288-1288 e1281, doi:10.1016/j.cell.2015.11.011.

39. Greenald, D.; Jeyakani, J.; Pelster, B.; Sealy, I.; Mathavan, S.; van Eeden, F.J. Genome-wide mapping of Hif-1α binding sites in zebrafish. *BMC Genomics 2015*, 16, 923, doi:10.1186/s12864-015-2169-x.

40. Smythies, J.A.; Sun, M.; Masson, N.; Salama, R.; Simpson, P.D.; Murray, E.; Neumann, V.; Cockman, M.E.; Choudhry, H.; Ratcliffe, P.J., et al. Inherent DNA-binding specificities of the HIF-1alpha and HIF-2alpha transcription factors in chromatin. *EMBO reports 2019*, 20, doi:10.15252/embr.201846401.

41. Cavadas, M.A.S.; Mesnieres, M.; Crifo, B.; Manresa, M.C.; Selfridge, A.C.; Keogh, C.E.; Fabian, Z.; Scholz, C.C.; Nolan, K.A.; Rocha, L.M.A., et al. REST is a hypoxia-responsive transcriptional repressor. *Scientific Reports 2016*, 6, 31355, doi:10.1038/srep31355.

42. Cavadas, M.; Cheong, A.; Taylor, C. The regulation of transcriptional repression in hypoxia. *Experimental Cell Research 2017*, 356, doi:10.1016/j.yexcr.2017.02.024.

43. Choudhry, H.; Harris, A.L. Advances in Hypoxia-Inducible Factor Biology. *Cell Metabolism 2018*, 27, 281-298, doi:10.1016/j.cmet.2017.10.005.

44. Watts, D.; Stein, J.; Meneses, A.; Bechmann, N.; Neuwirth, A.; Kaden, D.; Krüger, A.; Sinha, A.; Alexaki, V.I.; Perez-Rivas, L.G., et al. HIF1α is an essential regulator of steroidogenesis in the adrenal gland. *bioRxiv 2020*, 10.1101/2020.07.08.191783, 10.1101/2020.1107.1108.191783, doi:10.1101/2020.07.08.191783.

45. Ivan, M.; Huang, X. miR-210: fine-tuning the hypoxic response. *Adv Exp Med Biol 2014*, 772, 205-227, doi:10.1007/978-1-4614-5915-6_10.

46. Serocki, M.; Bartoszewska, S.; Janaszak-Jasiecka, A.; Ochocka, R.J.; Collawn, J.F.; Bartoszewski, R. miRNAs regulate the HIF switch during hypoxia: a novel therapeutic target. *Angiogenesis 2018*, 21, 183-202, doi:10.1007/s10456-018-9600-2.

47. Wang, X.; Li, J.; Wu, D.; Bu, X.; Qiao, Y. Hypoxia promotes apoptosis of neuronal cells through hypoxia-inducible factor-1α-microRNA-204-B-cell lymphoma-2 pathway. *Experimental biology and medicine (Maywood, N.J.) 2016*, 241, 177-183, doi:10.1177/1535370215600548.

48. Camps, C.; Saini, H.K.; Mole, D.R.; Choudhry, H.; Reczko, M.; Guerra-Assunçao, J.A.; Tian, Y.-M.; Buffa, F.M.; Harris, A.L.; Hatzigeorgiou, A.G., et al. Integrated analysis of microRNA and mRNA expression and association with HIF binding reveals the complexity of microRNA expression regulation under hypoxia. *Molecular cancer 2014*, 13, 28, doi:10.1186/1476-4598-13-28.

49. Poitz, D.M.; Augstein, A.; Gradelahand, C.; Ende, G.; Schmeisser, A.; Strasser, R.H. Regulation of the Hif-system by micro-RNA 17 and 20a - role during monococyte-to-macrophage differentiation. *Mol Immunol 2013*, 56, 442-451, doi:10.1016/j.molimm.2013.06.014.

50. Umezù, T.; Tadokoro, H.; Azuma, K.; Yoshizawa, S.; Ohyashiki, K.; Ohyashiki, J.H. Exosomal miR-135b shed from hypoxic multiple myeloma cells enhances angiogenesis by targeting factor-inhibiting HIF-1. *Blood 2014*, 124, 3748-3757, doi:10.1182/blood-2014-05-576116.

51. Arsenault, P.R.; Pei, F.; Lee, R.; Kerestes, H.; Percy, M.J.; Keith, B.; Simon, M.C.; Lappin, T.R.; Khurana, T.S.; Lee, F.S. A knock-in mouse model of human PHD2 gene-associated erythrocytosis establishes a haploinsufficiency mechanism. *J Biol Chem 2013*, 288, 33571-33584, doi:10.1074/jbc.M113.482364.

52. Ladréou, C.; Lencracen, R.; Leporrier, M.; Gad, S.; Hello, C.L.; Galateau-Salle, F.; Feunteun, J.; Pouysségur, J.; Richard, S.; Gardie, B. PHD2 mutation and congenital erythrocytosis with paraganglioma. *N Engl J Med 2008*, 359, 2685-2692.

53. Al-Sheikh, M.; Moradkhani, K.; Lopez, M.; Wajcman, H.; Prêhu, C. Disturbance in the HIF-1alpha pathway associated with erythrocytosis: further evidences brought by frameshift and nonsense mutations in the prolyl hydroxylase domain protein 2 (PHD2) gene. *Blood Cells Mol Dis 2008*, 40, 160-165.

54. Gardie, B.; Percy, M.J.; Hoogewijs, D.; Chowdhry, R.; Bento, C.; Arsenault, P.R.; Richard, S.; Almeida, H.; Ewing, J.; Lambert, F., et al. The role of PHD2 mutations in the pathogenesis of erythrocytosis. *Hypoxia (Auckl) 2014*, 2, 71-90, doi:10.2147/HP.S54455.
55. Franke, K.; Gassmann, M.; Wielockx, B. Erythrocytosis: the HIF pathway in control. Blood 2013, 122, 1122-1128, doi:10.1182/blood-2013-01-478065.
56. Maxwell, P.H.; Pugh, C.W.; Ratcliffe, P.J. Inducible operation of the erythropoietin 3' enhancer in multiple cell lines: evidence for a widespread oxygen-sensing mechanism. Proc Natl Acad Sci USA 1993, 90, 2423-2427.
57. Wang, G.L.; Jiang, B.H.; Rue, E.A.; Semenza, G.L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 1995, 92, 5510-5514.
58. Forsythe, J.A.; Jiang, B.H.; Iyer, N.V.; Agani, F.; Leung, S.W.; Koos, R.D.; Semenza, G.L. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Molecular and cellular biology 1996, 16, 4604-4613, doi:10.1128/mcb.16.9.4604.
59. Tacchini, L.; Bianchi, L.; Bernelli-Zazzera, A.; Cairo, G. Transferrin receptor induction by hypoxia. HIF-1-mediated transcriptional activation and cell-specific post-transcriptional regulation. J Biol Chem 1999, 274, 24142-24146, doi:10.1074/jbc.274.34.24147.
60. Lok, C.N.; Ponka, P. Identification of a hypoxia response element in the transferrin receptor gene. J Biol Chem 1999, 274, 24147-24152, doi:10.1074/jbc.274.34.24147.
61. Rolfs, A.; Kvietikova, I.; Gassmann, M.; Wenger, R.H. Oxygen-regulated transferrin expression is mediated by hypoxia-inducible factor-1. J Biol Chem 1997, 272, 20055-20062.
62. Palis, J. Primitive and definitive erythropoiesis in mammals. Frontiers in Physiology 2014, 5, doi:10.3389/fphys.2014.00003.
63. Kuhrt, D.; Wojchowski, D.M. Emerging EPO and EPO receptor regulators and signal transducers. Blood 2015, 125, 3536-3541, doi:10.1182/blood-2014-11-575357.
64. Chow, A.; Huggins, M.; Ahmed, J.; Hashimoto, D.; Lucas, D.; Kunisaki, Y.; Pinho, S.; Leboeuf, M.; Noizat, C.; van Rooijen, N., et al. Normal and pathological erythropoiesis in adults: from gene regulation to vascular endothelial growth factor gene transcription by hypoxia.
65. Franke, K.; Gassmann, M.; Wielockx, B. Erythrocytosis: the HIF pathway in control. Blood 2013, 122, 1122-1128, doi:10.1182/blood-2013-01-478065.
66. Chow, A.; Huggins, M.; Ahmed, J.; Hashimoto, D.; Lucas, D.; Kunisaki, Y.; Pinho, S.; Leboeuf, M.; Noizat, C.; van Rooijen, N., et al. Normal and pathological erythropoiesis in adults: from gene regulation to vascular endothelial growth factor gene transcription by hypoxia.
67. Franke, K.; Gassmann, M.; Wielockx, B. Erythrocytosis: the HIF pathway in control. Blood 2013, 122, 1122-1128, doi:10.1182/blood-2013-01-478065.
68. Maxwell, P.H.; Pugh, C.W.; Ratcliffe, P.J. Inducible operation of the erythropoietin 3' enhancer in multiple cell lines: evidence for a widespread oxygen-sensing mechanism. Proc Natl Acad Sci USA 1993, 90, 2423-2427.
69. Wang, G.L.; Jiang, B.H.; Rue, E.A.; Semenza, G.L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 1995, 92, 5510-5514.
70. Forsythe, J.A.; Jiang, B.H.; Iyer, N.V.; Agani, F.; Leung, S.W.; Koos, R.D.; Semenza, G.L. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Molecular and cellular biology 1996, 16, 4604-4613, doi:10.1128/mcb.16.9.4604.
71. Tacchini, L.; Bianchi, L.; Bernelli-Zazzera, A.; Cairo, G. Transferrin receptor induction by hypoxia. HIF-1-mediated transcriptional activation and cell-specific post-transcriptional regulation. J Biol Chem 1999, 274, 24142-24146, doi:10.1074/jbc.274.34.24147.
72. Lok, C.N.; Ponka, P. Identification of a hypoxia response element in the transferrin receptor gene. J Biol Chem 1999, 274, 24147-24152, doi:10.1074/jbc.274.34.24147.
73. Rolfs, A.; Kvietikova, I.; Gassmann, M.; Wenger, R.H. Oxygen-regulated transferrin expression is mediated by hypoxia-inducible factor-1. J Biol Chem 1997, 272, 20055-20062.
74. Palis, J. Primitive and definitive erythropoiesis in mammals. Frontiers in Physiology 2014, 5, doi:10.3389/fphys.2014.00003.
75. Kuhrt, D.; Wojchowski, D.M. Emerging EPO and EPO receptor regulators and signal transducers. Blood 2015, 125, 3536-3541, doi:10.1182/blood-2014-11-575357.
97. Farsijani, N.M.; Liu, Q.; Kobayashi, H.; Davidoff, O.; Sha, F.; Fandrey, J.; Ikizler, T.A.; O'Connor, P.M.; Mathia, S.; Paliege, A.; Koesters, R.; Peters, H.; Neumayer, H.H.; Bachmann, S.; Rosenberger, C. Action of hypoxia-inducible factor 1α on the expression of GATA-1 in bone marrow CD71(+) cell of high altitude polycythemia rat model. Zhonghua xue ye xue za zhi 2016, 37, 696-701, doi:10.3760/cma.j.issn.0253-2727.2016.08.013.

76. Liu, F.; Wei, W.; Ding, J.; Chen, Y.; Feng, T.T.; Ji, L.H.; Shi, J.Y. Influence of HIF-2α on the expression of GATA-1 in bone marrow CD71(+) cell of high altitude polycythemia rat model. Zhonghua xue ye xue za zhi 2016, 37, 696-701, doi:10.3760/cma.j.issn.0253-2727.2016.08.013.

77. Johnson, K.D.; Kong, G.; Gao, X.; Chang, Y.-I.; Hewitt, K.J.; Sanalkumar, R.; Prathibha, R.; Ranheim, E.A.; Dewey, C.N.; Zhang, J., et al. Cis-regulatory mechanisms governing stem and progenitor cell transitions. Science Advances 2015, 1, e1500503, doi:10.1126/sciadv.1500503.

78. Zhang, L.; Flygare, J.; Wong, P.; Lim, B.; Lodish, H.F. MiR-191 regulates mouse erythroblast enucleation by down-regulating Riolk and Mxi1. Genes Dev 2011, 25, 119-124, doi:10.1101/gad.199871.

79. Kim, M.; Tan, Y.S.; Cheng, W.C.; Kingsbury, T.J.; Heimfeld, S.; Civin, C.I. MIR144 and MIR451 regulate human erythropoiesis via RAB14. Br J Haematol 2015, 168, 583-597, doi:10.1111/bjh.13164.

80. Rivkin, N.; Chapnik, E.; Mildner, A.; Barshtein, G.; Porat, Z.; Kartvelishvily, E.; Dadosh, T.; Birger, Y.; Amir, G.; Yedgar, S., et al. Erythrocyte survival is controlled by microRNA-142. Haematologica 2017, 102, 676, doi:10.3324/haematol.2016.156109.

81. Lu, Y.; Ji, N.; Wei, W.; Sun, W.; Gong, X.; Wang, X. MiR-142 modulates human pancreatic cancer proliferation and invasion by targeting hypoxia-inducible factor 1 (HIF-1alpha) in the tumor microenvironments. Biol Open 2017, 6, 252-259, doi:10.1242/bio.021774.

82. Xie, Y.; Li, W.; Feng, J.; Wu, T.; Li, J. MicroRNA-363 and GATA-1 are regulated by HIF-1alpha in K562 cells under hypoxia. Mol Med Rep 2016, 14, 2503-2510, doi:10.3892/mmr.2016.5578.

83. Bianchi, N.; Zuccato, C.; Lampronti, I.; Borgatti, M.; Gambri, R. Expression of miR-210 during erythroid differentiation and induction of gamma-globin gene expression. BMB Rep 2009, 42, 493-499, doi:10.5483/bmbrep.2009.42.8.493.

84. Yang, Y.; Ma, W.; Wu, D.; Huang, Y.; Li, H.; Zou, J.; Zhang, Y.; Feng, M.; Luo, J. MiR-17 Partly Promotes Hematopoietic Cell Expansion through Augmenting HIF-1α in Osteoblasts. PLOS ONE 2013, 8, e70232, doi:10.1371/journal.pone.0070232.

85. Sun, L.; Fan, F.; Li, R.; Niu, B.; Zhu, L.; Yu, S.; Wang, S.; Li, C.; Wang, D. Different Erythrocyte MicroRNA Profiles in Low- and High-Altitude Individuals. Frontiers in Physiology 2018, 9, doi:10.3389/fphys.2018.01099.

86. Elliott, S.; Sinclair, A.M. The effect of erythropoietin on normal and neoplastic cells. Biologics 2012, 6, 163-189, doi:10.2147/BTT.S32281.

87. Koury, M.J.; Haase, V.H. Anaemia in kidney disease: harnessing hypoxia responses for therapy. Nat Rev Nephrol 2015, 11, 394-410, doi:10.1038/nrneph.2015.82.

88. Obara, N.; Suzuki, N.; Kim, K.; Nagasawa, T.; Imagawa, S.; Yamamoto, M. Repression via the GATA box of tissue-specific erythropoietin gene expression. Blood 2008, 111, 5223-5232.

89. Broxmeyer, H.E. Erythropoietin: multiple targets, actions, and modifying influences for biological and clinical consideration. J Exp Med 2013, 210, 205-208, doi:10.1084/jem.20122760.

90. Suzuki, N.; Obara, N.; Pan, X.; Watanabe, M.; Jishage, K.; Minegishi, N.; Yamamoto, M. Specific contribution of the erythropoietin gene 3’ enhancer to hepatic erythropoiesis after late embryonic stages. Mol Cell Biol 2011, 31, 3896-3905, doi:10.1128/MCB.05463-11.

91. Gouilleux, F.; Pallard, C.; Dusantier-Fourt, I.; Wako, H.; Haldosen, L.A.; Norstedt, G.; Levy, D.; Groner, B. Prolactin, growth hormone, erythropoietin and granulocyte-macrophage colony stimulating factor induce MGF-Sta5 DNA binding activity. EMBO J 1995, 14, 2005-2013.

92. Jelkmann, W. Erythropoietin. Front Horm Res 2016, 47, 115-127, doi:10.1159/000445174.

93. Haase, V.H. HIF-prolyl hydroxylases as therapeutic targets in erythropoiesis and iron metabolism. Hemodial Int 2017, 21 Suppl 1, S110-S124, doi:10.1111/idi.12567.

94. Minamishima, Y.A.; Kaelin, W.G. Reactivation of hepatic EPO synthesis in mice after PHD loss. Science 2010, 329, 407.

95. Wang, H.; Cui, J.; Yang, C.; Rosenblum, J.S.; Zhang, Q.; Song, Q.; Pang, Y.; Fang, F.; Sun, M.; Dmitriev, P., et al. A Transgenic Mouse Model of Pacak Zhuang Syndrome with An Epas1 Gain-of-Function Mutation. Cancers 2019, 11, 667, doi:10.3390/cancers11050667.

96. Mathia, S.; Paliege, A.; Koesters, R.; Peters, H.; Neumayer, H.H.; Bachmann, S.; Rosenberger, C. Action of hypoxia-inducible factor in liver and kidney from mice with Pax8-rTαA-based deletion of von Hippel-Lindau protein. Acta Physiol (Oxf) 2013, 207, 565-576, doi:10.1111/apha.12058.

97. Farsijani, N.M.; Liu, Q.; Kobayashi, H.; Davidoff, O.; Sha, F.; Fandrey, J.; Ikizler, T.A.; O'Connor, P.M.; Haase, V.H. Renal epithelium regulates erythropoiesis via HIF-dependent suppression of erythropoietin. The Journal of clinical investigation 2016, 126, 1425-1437, doi:10.1172/JCI74997.
98. Duan, C. Hypoxia-inducible factor 3 biology: complexities and emerging themes. Am J Physiol Cell Physiol 2016, 310, C260-269, doi:10.1152/ajpcell.00315.2015.

99. Tolonen, J.P.; Heikkila, M.; Malinen, M.; Lee, H.M.; Palvimino, J.J.; Wei, G.H.; Myllyharju, J. A long hypoxia-inducible factor 3 isoform 2 is a transcription activator that regulates erythropoietin. Cell Mol Life Sci 2019, 10.1007/s00018-019-03387-9, doi:10.1007/s00018-019-03387-9.

100. Heikkilä, M.; Pasanen, A.; Kivirikko, K.; Myllyharju, J. Roles of the human hypoxia-inducible factor (HIF)-3α variants in the hypoxia response. Cellular and molecular life sciences : CMLS 2011, 68, 3885-3901, doi:10.1007/s00018-011-0679-5.

101. Zhang, P.; Bai, Y.; Lu, L.; Li, Y.; Duan, C. An oxygen-insensitive Hif-3alpha isoform inhibits Wnt signaling by destabilizing the nuclear beta-catenin complex. Elife 2016, 5, doi:10.7554/eLife.08996.

102. Semenza, G.L.; Wang, G.L. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 1992, 12, 5447-5454.

103. Blanchard, K.L.; Acquaviva, A.M.; Galson, D.L.; Bunn, H.F. Hypoxic induction of the human erythropoietin gene: cooperation between the promoter and enhancer, each of which contains steroid receptor response elements. Mol Cell Biol 1992, 12, 5373-5385, doi:10.1128/mcb.12.12.5373.

104. Haase, V.H. Regulation of erythropoiesis by hypoxia-inducible factors. Blood Rev 2013, 27, 41-53, doi:10.1016/j.bre.2012.12.003.

105. Storti, F.; Santambrogio, S.; Crowther, L.M.; Otto, T.; Abreu-Rodriguez, I.; Kaufmann, M.; Hu, C.J.; Dame, C.; Fandrey, J.; Wenger, R.H., et al. A novel distal upstream hypoxia response element regulating oxygen-dependent erythropoietin gene expression. Haematologica 2014, 99, e45-48, doi:10.3324/haematol.2013.102707.

106. Schorg, A.; Santambrogio, S.; Platt, J.L.; Schodel, J.; Lindenmeyer, M.T.; Cohen, C.D.; Schroeder, K.; Mole, D.R.; Wenger, R.H.; Hoogewijs, D. Destruction of a distal hypoxia response element abolishes trans-activation of the PAG1 gene mediated by HIF-independent chromatin looping. Nucleic Acids Res 2015, 43, 5810-5823, doi:10.1093/nar/gkv506.

107. Platt, J.L.; Salama, R.; Smythies, J.; Choudhry, H.; Davies, J.O.; Hughes, J.R.; Ratcliffe, P.J.; Mole, D.R. Capture-C reveals preformed chromatin interactions between HIF-binding sites and distant promoters. EMBO reports 2016, 17, 1410-1421, doi:10.15252/embr.201642198.

108. Orlando, I.M.C.; Lafleur, V.N.; Storti, F.; Spielmann, P.; Crowther, L.; Santambrogio, S.; Schodel, J.; Hoogewijs, D.; Mole, D.R.; Wenger, R.H. Distal and proximal hypoxia response elements cooperate to regulate organ-specific erythropoietin gene expression. Haematologica 2019, 10.3324/haematol.2019.236406, doi:10.3324/haematol.2019.236406.

109. Ji, P. Pericytes: new EPO-producing cells in the brain. Blood 2016, 128, 2483-2485, doi:10.1182/blood-2016-10-743880.

110. Pathipati, P.; Ferriero, D.M. The Differential Effects of Erythropoietin Exposure to Oxidative Stress on Microglia and Astrocytes in vitro. Developmental Neuroscience 2017, 39, 310-322, doi:10.1159/000467391.

111. Hartmann, D.A.; Underly, R.G.; Grant, R.I.; Watson, A.N.; Lindner, V.; Shih, A.Y. Pericyte structure and distribution in the cerebral cortex revealed by high-resolution imaging of transgenic mice. Neuronophotonics 2015, 2, 041402, doi:10.1177/11764648.15.4.041402.

112. Kobayashi, H.; Liu, Q.; Binns, T.C.; Urrutia, A.A.; Davidoff, O.; Kapitsinou, P.P.; Pfaff, A.S.; Olauson, H.; Wernerson, A.; Fogo, A.B., et al. Distinct subpopulations of FOXD1 stroma-derived cells regulate renal erythropoietin. J Clin Invest 2016, 126, 1926-1938, doi:10.1172/JCI83551.

113. Pang, Y.; Gupta, G.; Jha, A.; Yue, X.; Wang, H.; Huynh, T.T.; Li, A.; Li, L.; Baker, E.; Chew, E., et al. Nonmosaic somatic HIF2A mutations associated with late onset polycythemia-paragangioma syndrome: Newly recognized subclass of polycythemia-paragangioma syndrome. Cancer 2019, 125, 1258-1266, doi:10.1002/cncr.31839.

114. Acs, G.; Acs, P.; Beckwith, S.M.; Pitts, R.L.; Clements, E.; Wong, K.; Verma, A. Erythropoietin and erythropoietin receptor expression in human cancer. Cancer Res 2001, 61, 3561-3565.

115. Su, T.; Liu, P.; Ti, X.; Wu, S.; Xue, X.; Wang, Z.; Dioum, E.; Zhang, Q. ETLota1alpalpha, EGR1 and SP1 co-regulate the erythropoietin receptor expression under hypoxia: an essential role in the growth of non-small cell lung cancer cells. Cell Commun Signal 2019, 17, 152, doi:10.1186/s12964-019-0458-8.
116. Vocanec, D.; Prijatelj, T.; Debeljak, N.; Kunej, T. Genetic variants of erythropoietin (EPO) and EPO receptor genes in familial erythrocytosis. *Int J Lab Hematol* 2019, 41, 162-167, doi:10.1111/jilh.12949.

117. Rundqvist, H.; Rullman, E.; Sundberg, C.J.; Fischer, H.; Eisteinker, K.; Stahlberg, M.; Sundblad, P.; Jansson, E.; Gustafsson, T. Activation of the erythropoietin receptor in human skeletal muscle. *European journal of endocrinology / European Federation of Endocrine Societies* 2009, 161, 427-434, doi:10.1530/EJE-09-0342.

118. Ogilvie, M.; Yu X Fau - Nicolas-Metral, V.; Nicolas-Metral V Fau - Pulido, S.M.; Pulido Sm Fau - Liu, C.; Liu C Fau - Ruegg, U.T.; Ruegg Ut Fau - Noguchi, C.T.; Noguchi, C.T. Erythropoietin stimulates proliferation and interferes with differentiation of myoblasts.

119. Liu, C.; Shen, K.; Liu, Z.; Noguchi, C.T. Regulated human erythropoietin receptor expression in mouse brain. *J Biol Chem* 1997, 272, 32395-32400, doi:10.1074/jbc.272.51.32395.

120. Ostrowski, D.; Heinrich, R. Alternative Erythropoietin Receptors in the Nervous System. *J Clin Med* 2018, 7, doi:10.3390/jcm7020024.

121. Kautz, L.; Jung, G.; Valore, E.V.; Rivella, S.; Nemeth, E.; Ganz, T. Identification of erythroferrone as an erythroid regulator of iron metabolism. *Nature genetics* 2014, 46, 678-684, doi:10.1038/ng.2996.

122. Chepelev, N.L.; Willmore, W.G. Regulation of iron pathways in response to hypoxia. *Free Radic Biol Med* 2011, 50, 645-666, doi:10.1016/j.freeradbiomed.2010.12.023.

123. Shah, Y.M.; Matsubara, T.; Ito, S.; Yim, S.; Gonzalez, F.J. Intestinal hypoxia-inducible transcription factors are essential for iron absorption following iron deficiency. *Cell Metab* 2009, 9, 152-164, doi:10.1016/j.cmet.2008.12.012.

124. Mastroiannaki, M.; Matak, P.; Delga, S.; Deschemin, J.-C.; Vaulont, S.; Peyssonnaux, C. Deletion of HIF-2α in the enterocytes decreases the severity of tissue iron loading in hepcidin knockout mice. *Blood* 2012, 119, 587-590, doi:10.1182/blood-2011-09-380337.

125. Coffey, R.; Ganz, T. Iron homeostasis: An anthropocentric perspective. *J Biol Chem* 2017, 292, 12727-12734, doi:10.1074/jbc.R117.781823.

126. Kim, A.; Nemeth, E. New insights into iron regulation and erythropoiesis. *Current Opinion in Hematology* 2015, 22, 199-205, doi:10.1097/MOH.0000000000000132.

127. Drakesmith, H.; Nemeth, E.; Ganz, T. Ironing out Ferroportin. *Cell metabolism* 2015, 22, 777-787, doi:10.1016/j.cmet.2015.09.006.

128. Coffey, R.; Ganz, T. Erythroferrone: An Erythroid Regulator of Hepcidin and Iron Metabolism. *Hemaphere* 2018, 2, e35, doi:10.1097/HES9.0000000000000035.

129. Pagani, A.; Nai, A.; Silvestri, L.; Camaschella, C. Hepcidin and Anemia: A Tight Relationship. *Front Physiol* 2019, 10, 1294, doi:10.3389/fphys.2019.01294.

130. Camaschella, C.; Nai, A.; Silvestri, L. Iron metabolism and iron disorders revisited in the hepcidin era. *Haematologica* 2020, 105, 260-272, doi:10.3324/haematol.2019.232124.

131. Arezes, J.; Foy, N.; McHugh, K.; Sawant, A.; Quinkert, D.; Terraube, V.; Brinth, A.; Tam, M.; LaVallie, E.R.; Taylor, S., et al. Erythroferrone inhibits the induction of hepcidin by BMP6. *Blood* 2018, 132, 1473-1477, doi:10.1182/blood-2018-06-857995.

132. Taylor, M.; Qu, A.; Anderson, E.R.; Matsubara, T.; Martin, A.; Gonzalez, F.J.; Shah, Y.M. Hypoxia-inducible factor-2α mediates the adaptive increase of intestinal ferroportin during iron deficiency in mice. *Gastroenterology* 2011, 140, 2044-2055, doi:10.1053/j.gastro.2011.03.007.

133. Nicolas, G.; Chauvet, C.; Viatte, L.; Danan, J.L.; Bigard, X.; Devaux, I.; Beaumont, C.; Kahn, A.; Vaulont, S. The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. *J Clin Invest* 2002, 110, 1037-1044, doi:10.1172/JCI15686.

134. Sonnweber, T.; Nachbaur, D.; Schroll, A.; Nairz, M.; Seifert, M.; Demetz, E.; Haschka, D.; Mitterstiller, A.-M.; Kleinassler, A.; Burtscher, M., et al. Hypoxia induced downregulation of hepcidin is mediated by platelet derived growth factor BB. *Gut* 2014, 63, 1951, doi:10.1136/gutjnl-2013-305317.

135. Peyssonnaux, C.; Zinkernagel, A.S.; Schuepbach, R.A.; Rankin, E.; Vaulont, S.; Haase, V.H.; Nizet, V.; Johnson, R.S. Regulation of iron homeostasis by the hypoxia-inducible transcription factors (HIFs). *The Journal of clinical investigation* 2007, 117, 1926-1932, doi:10.1172/JCI31370.

136. Schwartz, A.J.; Das, N.K.; Ramakrishnan, S.K.; Jain, C.; Jurkovic, M.T.; Wu, J.; Nemeth, E.; Lakhal-Littleton, S.; Colacino, J.A.; Shah, Y.M. Hepatic hepcidin/intestinal HIF-2alpha axis maintains iron absorption during iron deficiency and overload. *J Clin Invest* 2019, 129, 336-348, doi:10.1172/JCI122359.

137. Suzuki, N.; Matsuo-Tezuka, Y.; Sasaki, Y.; Sato, K.; Miyachi, K.; Kato, K.; Saito, S.; Shimonaka, Y.; Hirata, M.; Yamamoto, M. Iron attenuates erythropoietin production by decreasing hypoxia-inducible
transcription factor 2alpha concentrations in renal interstitial fibroblasts. *Kidney Int* 2018, 94, 900-911, doi:10.1016/j.kint.2018.06.028.

138. Wilkinson, N.; Pantopoulos, K. IRP1 regulates erythropoiesis and systemic iron homeostasis by controlling HIF2α mRNA translation. *Blood* 2013, 122, 1658-1668, doi:10.1182/blood-2013-03-492454.

139. Renassia, C.; Peyssonnaux, C. New insights into the links between hypoxia and iron homeostasis. *Curr Opin Hematol* 2019, 26, 125-130, doi:10.1097/MOH.0000000000000494.

140. Lee, F.S. At the crossroads of oxygen and iron sensing: hepcidin control of HIF-2alpha. *J Clin Invest* 2019, 129, 72-74, doi:10.1172/JCI125509.

141. Ghosh, M.C.; Zhang, D.L.; Ollivierre, H.; Eckhaus, M.A.; Rouault, T.A. Translational repression of HIF2alpha expression in mice with Chuvash polycythemia reverses polycythemia. *J Clin Invest* 2018, 128, 1317-1325, doi:10.1172/JCI97684.

142. Chen, T.K.; Knicely, D.H.; Grams, M.E. Chronic Kidney Disease Diagnosis and Management: A Review. *Jama* 2019, 322, 1294-1304, doi:10.1001/jama.2019.14745.

143. Hasegawa, S.; Tanaka, T.; Nangaku, M. Hypoxia-inducible factor stabilizers for treating anemia of chronic kidney disease. *Curr Opin Nephrol Hypertens* 2018, 27, 331-338, doi:10.1097/MNH.0000000000000431.

144. Bamgboya, O.F. Pattern of resistance to erythropoietin-stimulating agents in chronic kidney disease. *Kidney Int* 2011, 80, 464-474, doi:10.1038/ki.2011.179.

145. Shu, S.; Wang, Y.; Zheng, M.; Liu, Z.; Cai, J.; Tang, C.; Dong, Z. Hypoxia and Hypoxia-Inducible Factors in Kidney Injury and Repair. *Cells* 2019, 8, doi:10.3390/cells8030207.

146. Joharapurkar, A.A.; Pandya, V.B.; Patel, V.J.; Desai, R.C.; Jain, M.R. Prolyl Hydroxylase Inhibitors: A Breakthrough in the Therapy of Anemia Associated with Chronic Diseases. *J Med Chem* 2018, 61, 6964-6982, doi:10.1021/acs.jmedchem.7b01686.

147. Semenza, G.L. Pharmacologic Targeting of Hypoxia-Inducible Factors. *Annu Rev Pharmacol Toxicol* 2019, 59, 379-403, doi:10.1146/annurev-pharmtox-010818-021637.

148. Del Vecchio, L.; Locatelli, F. Investigational hypoxia-inducible factor prolyl hydroxylase inhibitors (HIF-PHI) for the treatment of anemia associated with chronic kidney disease. *Expert Opin Investig Drugs* 2018, 27, 613-621, doi:10.1080/13543784.2018.1493455.

149. Li, Z.L.; Tu, Y.; Liu, B.C. Treatment of Renal Anemia with Roxadustat: Advantages and Achievement. *Kidney Dis (Basel)* 2020, 6, 65-73, doi:10.1159/000504850.

150. Schodel, J.; Ratcliffe, P.J. Mechanisms of hypoxia signalling: new implications for nephrology. *Nat Rev Nephrol* 2019, 15, 641-659, doi:10.1038/s41581-019-0182-z.

151. Kaplan, J. Roxadustat and Anemia of Chronic Kidney Disease. *N Engl J Med* 2019, 381, 1070-1072, doi:10.1056/NEJMe1908978.

152. Anker, M.S.; Butler, J.; Anker, S.D. Roxadustat for Anemia in Patients with Chronic Kidney Disease. *N Engl J Med* 2020, 383, e3, doi:10.1056/NEJMoa1913712.

153. Clinkenbeard, E.L.; Cass, T.A.; Ni, P.; Hum, J.M.; Bellido, T.; Allen, M.R.; White, K.E. Conditional Deletion of Murine Fgf23: Interruption of the Normal Skeletal Responses to Phosphate Challenge and Rescue of Genetic Hypophosphatemia. *J Bone Miner Res* 2016, 31, 1247-1257, doi:10.1002/jbmr.2792.

154. Wolf, M.; White, K.E. Coupling fibroblast growth factor 23 production and cleavage: iron deficiency, rickets, and kidney disease. *Curr Opin Nephrol Hypertens* 2014, 23, 411-419, doi:10.1097/HNH.0000000000000494.

155. Daryadel, A.; Bettoni, C.; Haider, T.; Imenez Silva, P.H.; Schnitzbauer, U.; Pastor-Arroyo, E.M.; Wenger, R.H.; Gassmann, M.; Wagner, C.A. Erythropoietin stimulates fibroblast growth factor 23 (FGF23) in mice and men. *Pflugers Arch* 2018, 470, 1569-1582, doi:10.1007/s00424-018-1717-7.

156. Clinkenbeard, E.L.; Hanudel, M.R.; Stayrook, K.R.; Appaiah, H.N.; Farrow, E.G.; Cass, T.A.; Summers, L.J.; Ip, C.S.; Hum, J.M.; Thomas, J.C., et al. Erythropoietin stimulates murine and human fibroblast growth factor-23, revealing novel roles for bone and bone marrow. *Haematologica* 2017, 102, e427-e430, doi:10.3324/haematol.2017.167882.

157. Bar, L.; Stournaras, C.; Lang, F.; Foller, M. Regulation of fibroblast growth factor 23 (FGF23) in health and disease. *FEBS Lett* 2019, 593, 1879-1900, doi:10.1002/1873-3468.13494.

158. Weidner, H.; Baschant, U.; Lademann, F.; Ledesma Colunga, M.G.; Balaian, E.; Hofbauer, C.; Misof, B.M.; Roschger, P.; Blouin, S.; Richards, W.G., et al. Increased FGF-23 levels are linked to ineffective erythropoiesis and impaired bone mineralization in myelodysplastic syndromes. *JCI Insight* 2020, 5, doi:10.1172/jci.insight.137062.
159. Andrukhova, O.; Schuler, C.; Bergow, C.; Petric, A.; Erben, R.G. Augmented Fibroblast Growth Factor-23 Secretion in Bone Locally Contributes to Impaired Bone Mineralization in Chronic Kidney Disease in Mice. *Front Endocrinol (Lausanne)* 2018, 9, 311, doi:10.3389/fendo.2018.00311.

160. Ito, N.; Wijenayaka, A.R.; Prideaux, M.; Kogawa, M.; Ormsby, R.T.; Evdokiou, A.; Bonewald, L.F.; Findlay, D.M.; Atkins, G.J. Regulation of FGF23 expression in IDG-SW3 osteocytes and human bone by pro-inflammatory stimuli. *Mol Cell Endocrinol* 2015, 399, 208-218, doi:10.1016/j.mce.2014.10.007.

161. Egli-Spichtig, D.; Imenez Silva, P.H.; Glaudemans, B.; Gehring, N.; Bettoni, C.; Zhang, M.Y.H.; Pastor-Arroyo, E.M.; Schonenberger, D.; Rajski, M.; Hoogewijs, D., et al. Tumor necrosis factor stimulates fibroblast growth factor 23 levels in chronic kidney disease and non-renal inflammation. *Kidney Int* 2019, 96, 890-905, doi:10.1016/j.kint.2019.04.009.

162. David, V.; Martin, A.; Isakova, T.; Spaulding, C.; Qi, L.; Ramirez, V.; Zumbrennen-Bullough, K.B.; Sun, C.C.; Lin, H.Y.; Babitt, J.L., et al. Inflammation and functional iron deficiency regulate fibroblast growth factor 23 production. *Kidney Int* 2016, 89, 135-146, doi:10.1038/kli.2015.290.

163. Liu, J.; Zhang, A.; Hayden, J.C.; Bhagavathula, A.S.; Alshehhi, F.; Rinaldi, G.; Kontogiannis, V.; Rahmani, J. Roxadustat (FGF23) treatment for anemia in dialysis-dependent (DD) and not dialysis-dependent (NDD) chronic kidney disease patients: A systematic review and meta-analysis. *Pharmacol Res* 2020, 155, 104747, doi:10.1016/j.phrs.2020.104747.

164. Farrow, E.G.; Yu, X.; Summers, L.J.; Davis, S.I.; Fleet, J.C.; Allen, M.R.; Robling, A.G.; Stayrook, K.R.; Jideonwo, V.; Magers, M.J., et al. Iron deficiency drives an autosomal dominant hypophosphatemic rickets (ADHR) phenotype in fibroblast growth factor 23 (Fgf23) knock-in mice. *Proc Natl Acad Sci U S A* 2011, 108, E1146-1155, doi:10.1073/pnas.1110905108.

165. Noonan, M.L.; Clinkenbeard, E.L.; Ni, P.; Swallow, E.A.; Tippen, S.P.; Agoor, R.; Allen, M.R.; White, K.E. Erythropoietin and a hypoxia-inducible factor prolyl hydroxylase inhibitor (HIF-PHiD) lowers FGF23 in a model of chronic kidney disease (CKD). *Physiol Rep* 2020, 8, e14434, doi:10.14814/phy2.14434.

166. Melanie J. Percy, P.D., Paul W. Furlow, M.S., Guy S. Lucas, M.D., F.R.C.Path., Xiping Li, M.D., Ph.D., Terence R.J. Lappin, Ph.D., F.R.C.Path., Mary Frances McMullin, M.D., F.R.C.Path., and Frank S. Lee, M.D., Ph.D. A Gain-of-Function Mutation in the HIF2A Gene in Familial Erythrocytosis

167. Percy, M.J.; Furlow, P.W.; Lucas, G.S.; Li, X.; Lappin, T.R.J.; McMullin, M.F.; Lee, F.S. A gain-of-function mutation in the HIF2A gene in familial erythrocytosis. *The New England journal of medicine* 2008, 358, 162-168, doi:10.1056/NEJMoa073123.

168. Soliz, J.; Gassmann, M.; Joseph, V. Soluble erythropoietin receptor is present in the mouse brain and is required for the ventilatory acclimatization to hypoxia. *J Physiol 2007*, 583, 329-336, doi:10.1113/jphysiol.2007.133454.

169. Liu, Y.; Pop, R.; Sadegh, C.; Brugnara, C.; Haase, V.H.; Socolovsky, M. Suppression of Fas-FasL coexpression by erythropoietin mediates erythroblast expansion during the erythropoietic stress response in vivo. *Blood* 2006, 108, 123-133, doi:10.1182/blood-2005-11-4458.

170. Mastrogiannaki, M.; Matak, P.; Mathieu, J.R.R.; Delga, S.; Mayeux, P.; Vaulont, S.; Peyssonnaux, C. Hepatic hypoxia-inducible factor-2 down-regulates hepcidin expression in mice through an erythropoietin-mediated increase in erythropoiesis. *Haematologica* 2012, 97, 827-834, doi:10.3324/haematol.2011.056119.

171. Gammella, E.; Diaz, V.; Recalcati, S.; Buratti, P.; Samaja, M.; Dey, S.; Noguchi, C.T.; Gassmann, M.; Cairo, G. Erythropoietin’s inhibiting impact on hepcidin expression occurs indirectly. *Am J Physiol Regul Integr Comp Physiol* 2015, 308, R330-335, doi:10.1152/ajpregu.00410.2014.

172. van Vuren, A.J.; Gaillard, C.; Eisenga, M.F.; van Wijk, R.; van Beers, E.J. The EPO-FGF23 Signaling Pathway in Erythroid Progenitor Cells: Opening a New Area of Research. *Front Physiol* 2019, 10, 304, doi:10.3389/fphys.2019.00304.

173. Hanudel, M.; Eisenga, M.; Rappaport, M.; Chua, K.J.; Qiao, B.; Jung, C.-L.; Gabayan, V.; Gales, B.; Ramos, G.; Jong, M., et al. Effects of erythropoietin on fibroblast growth factor 23 in mice and humans. *Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association* 2018, 34, doi:10.1093/ndt/gfy189.
Table 1: Regulators of erythropoiesis

Stage of erythropoiesis/iron metabolism	Factors	Key role in erythropoiesis	Regulation by HIF/EPO	References
Early stages of development of erythroid progenitors	GATA-1	Initiates erythropoiesis. Regulates the transcription of several erythroid differentiation-related genes	HRE present in GATA-1 and GATA-1 regulation by HIF1. EPO protects GATA-1 from caspase-induced degradation	[62,70,75,82]
Pro-erythroblasts to late erythroblasts	EPO	Key cytokine essential for growth, survival and differentiation of RBC’s	HIF2 directly regulates EPO	[34,95,113,166,167]
	EPOR	Essential for erythropoiesis and action of EPO	Some evidence on regulation by hypoxia and HIFs	[115,120,168]
Late stage maturation/Apoptosis	FAS, FAS-L	Apoptosis and arrest maturation	Down regulation by Erythropoietin	[169]
Iron metabolism	Hepcidin	A crucial regulator of iron metabolism; suppresses Ferroportin	Direct and indirect suppression by hypoxia, HIF and EPO	[130,134,136,170,171]
	Ferroportin (FPN)	A critical factor that facilitates iron export from the cells	Regulated by HIF2a and hepcidin	[132]
	Erythroferrone (ERFE)	Suppresses hepcidin production	Upregulation by EPO	[121,131]
	Transferrin (TF)	Required for transporting iron	Regulation by HIF1	[61]
	Transferrin receptor (TFR1)	Plays role in erythroid differentiation/role in iron uptake	Induced by HIF1 and hypoxia	[59,60]
	FGF23	Potential role in erythropoiesis. Blockage of FGF23 results in increased erythropoiesis	Increased by erythropoietin	[155,172,173]
Figure 1: Schematic overview of the hypoxia pathway under normoxia and hypoxia. The HIF-α subunits are synthesized and subsequently degraded under normoxia (Blue). In the presence of physiological oxygen levels, PHDs mediate hydroxylation of HIFs leading to subsequent their binding to VHL. VHL facilitates the ubiquitination of hydroxylated HIFs resulting in proteosomal degradation.
However, under hypoxia (red), the hydroxylation of the alpha subunits is inhibited, stabilizing the HIF-α subunits. The stabilized alpha subunits bind to the beta subunit and translocate to the nucleus. The HIFs together with other co-factors, bind HREs promoting the transcription of genes essentially involved in erythropoiesis.
Figure 2: Hypoxia pathway proteins mediated regulation of erythropoiesis. EPO, the crucial factor involved in erythropoiesis is mainly HIF2-dependently regulated in the kidney. EPO produced in the kidney acts on erythroblasts in BM via EPOR and is essential in the development of red blood cells, especially in the late phases. In addition to its crucial role in the development of RBCs, iron metabolism is indispensable. More information can be found in the text.