Adult Cerebellar Ataxia, Axonal Neuropathy, and Sensory Impairments Caused by Biallelic SCO2 Variants

Benoit Rucheton, PharmD,* Claire Ewenczyk, MD, PhD,* Pauline Gaignard, PharmD, PhD, Jean-Madeleine de Sainte Agathe, MD, Anne-Laure Fauret, PharmD, PhD, Virginie Saillour, PhD, Sarah Leonard-Louis, MD, PhD, Valerie Touitou, MD, PhD, and Fanny Mochel, MD, PhD

Neurol Genet 2021;7:e630. doi:10.1212/NXG.0000000000000630

SCO2 encodes a 266-amino-acid metallochaperone involved in copper supply for the assembly of cytochrome c oxidase or complex IV (CIV). CIV is the terminal enzyme of the energy-transducing respiratory chain that transfers electrons from reduced cytochrome c to oxygen via 3 copper ions.1 SCO2 pathogenic variants were first identified in children with hypertrophic cardiomyopathy, often associated with developmental delay and lactic acidosis2 (Figure, A). SCO2 variants were then reported in children with Leigh syndrome3 and early-onset axonal neuropathy,4 possibly associated with cerebellar ataxia5 (Figure, A). Here, we report heterozygous missense SCO2 variants in a 48-year-old patient presenting with a complex neurologic and sensory phenotype comprising cerebellar ataxia, sensory neuronopathy, deafness, pigmentary retinopathy, and cataract.

Case Presentation

Our patient’s family history was unremarkable except for hearing loss in his father in his third decade. At age 40 years, our patient was diagnosed with left hearing loss. At age 41 years, he developed slowly progressive gait abnormalities. At age 45 years, he reported vision impairment with prominent hemeralopia, memory loss, and painful legs at night. Neurologic examination at age 45 years revealed moderate cerebellar ataxia—score of 12/40 on the Scale for the Assessment and Rating of Ataxia—, areflexia, and a positive Romberg sign. Brain MRI showed bilateral supratentorial white matter abnormalities and cortical atrophy (eFigures 1, links.lww.com/NXG/A477). Nerve conduction studies revealed a severe bilateral axonal sensitive neuropathy of the 4 limbs. Audiology showed bilateral perceptive hypoacusis.

Our patient had normal 20/20 visual acuity, but slit lamp examination demonstrated atypical bilateral lens inclusions with opacities. Fundus examination appeared grossly normal, but autofluorescence of the fundus revealed bilateral hyper-autofluorescence of the posterior pole and a patchy area of peripheral hyper fluorescence in the left eye. High-definition optical coherence tomography (OCT) disclosed bilateral hyper reflectivity of the retro-foveal region, located just below the ellipsoid line, with heterogeneity of the photoreceptor line. The electroretinogram revealed alteration of retinal electrogensis in scotopic conditions consistent with the alterations observed on OCT (Figure, B).
CK enzymes were mildly but constantly elevated (range 320–376 U/L, N = 25–195 U/L). Metabolic investigations were normal, as well as molecular analyses of ATXN 1, 2, 3, 6, 7, and 17, FXN, and NOP56. Muscle biopsy showed a few fibers with lipid overload (i.e., lipid droplets) and a few COX negative or pale fibers. Spectrophotometric determination of mitochondrial respiratory chain enzyme activities as a ratio to citrate synthase activity showed isolated decreased activities of CIV in muscle and fibroblasts (Table).

We then analyzed our patient’s leukocyte genomic DNA, after informed consent was obtained, using a next-generation sequencing panel (Roche NibelGen, Madison, WI), comprising the entire coding region and exon-intron junctions of 244 genes associated with mitochondrial diseases, and identified 2
We present an adult-onset form of CIV deficiency related to biallelic SCO2 variants manifesting with a slowly progressive cerebellar ataxia after age 40 years, an axonal sensitive polyneuropathy, and bilateral sensory deficits with deafness, pigmentary retinopathy, and cataract.

Most of the damages caused by CIV deficiency are early and fatal, as reported so far with SCO2 pathogenic variants with pediatric and rapidly progressive disorders except for 2 children with a slower neurologic course. A possible explanation for the moderate phenotype of our patient relates to his genotype as he carries 2 missense variants, only 1 of which is located in the thioredoxin domain. Instead, pediatric cases carry either 2 missense variants in the thioredoxin domain or the association of one missense variant in the thioredoxin domain with a truncating variant (Figure, A). Unlike pediatric cases, our patient displayed both hearing and vision impairments with pigmentary retinopathy. Of interest, heterozygous SCO2 variants were also identified in dominant forms of severe myopia.

Discussion

Acknowledgment
The authors thank Sandrine Filaut et Laura Legrand for their help with NGS.

Study Funding
No targeted funding reported.

Disclosure
The authors report no disclosures relevant to the manuscript. Go to Neurology.org/NG for full disclosures.

References
1. Banci L, Bertini I, Ciofi-Baffoni S, et al. A structural characterization of human SCO2. Structure. 2007;15(9):1132-1140.
2. Sacconi S, Salvati L, Sue CM, et al. Mutation screening in patients with isolated cytochrome c oxidase deficiency. Pediatr Res. 2003;53(2):224-230.
3. Szymanska-Debienka T, Karluzkinska-Wieckowska A, Pietkowska-Abramszuk D, et al. Leigh disease due to SCO2 mutations revealed at extended autopsy. J Clin Pathol. 2015;68(5):397-399.
4. Rebollo AP, Saade D, Pereira CV, et al. SCO2 mutations cause early-onset axonal Charcot-Marie-Tooth disease associated with cellular copper deficiency. Brain. 2018;141(3):662-672.
5. Barcia G, Assouline Z, Pennisi A, et al. Cytochrome c oxidase deficiency caused by biallelic SCO2 mutations in two sibs with cerebellar ataxia and progressive peripheral axonal neuropathy. Mol Genet Metab Rep. 2019;21:100528.
6. Mohle BY, Eins GM, Wong LJ, Vogel H. A novel homozygous SCO2 mutation, p.G193S, causing fatal infantile cardiocerebroretinopathy. Clin Neuropathol. 2009;28(2):143-149.
7. Tran-Viet KN, Powell C, Barathi VA, et al. Mutations in SCO2 are associated with autosomal-dominant high-grade myopia. Am J Hum Genet. 2013;92(5):820-826.
Adult Cerebellar Ataxia, Axonal Neuropathy, and Sensory Impairments Caused by Biallelic SCO2 Variants
Benoit Rucheton, Claire Ewenczyk, Pauline Gaignard, et al.

Neurol Genet 2021;7:
DOI 10.1212/NXG.00000000000000630

This information is current as of November 4, 2021
Updated Information & Services	including high resolution figures, can be found at: http://ng.neurology.org/content/7/6/e630.full.html
References	This article cites 7 articles, 1 of which you can access for free at: http://ng.neurology.org/content/7/6/e630.full.html#ref-list-1
Subspecialty Collections	This article, along with others on similar topics, appears in the following collection(s):
	All Genetics http://ng.neurology.org/cgi/collection/all_genetics
	Mitochondrial disorders http://ng.neurology.org/cgi/collection/mitochondrial_disorders
	Peripheral neuropathy http://ng.neurology.org/cgi/collection/peripheral_neuropathy
	Retina http://ng.neurology.org/cgi/collection/retina
	Spinocerebellar ataxia http://ng.neurology.org/cgi/collection/spinocerebellar_ataxia
Permissions & Licensing	Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at: http://ng.neurology.org/misc/about.xhtml#permissions
Reprints	Information about ordering reprints can be found online: http://ng.neurology.org/misc/addir.xhtml#reprintsus