Successful Management of Acquired Hemophilia A Associated with Bullous Pemphigoid: A Case Report and Review of the Literature

Quentin Binet,1 Catherine Lambert,1 Laurine Sacré,2 Stéphane Eeckhoudt,3 and Cedric Hermans1

1Hemostasis and Thrombosis Unit, Division of Hematology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
2Division of Dermatology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
3Hemostasis Laboratory, Division of Biological Chemistry, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium

Correspondence should be addressed to Quentin Binet; quentin.binet@student.uclouvain.be

Received 16 January 2017; Accepted 22 March 2017; Published 28 March 2017

Background. Acquired hemophilia A (AHA) is a rare condition, due to the spontaneous formation of neutralizing antibodies against endogenous factor VIII. About half the cases are associated with pregnancy, postpartum, autoimmune diseases, malignancies, or adverse drug reactions. Symptoms include severe and unexpected bleeding that may prove life-threatening. Case Study. We report a case of AHA associated with bullous pemphigoid (BP), a chronic, autoimmune, subepidermal, blistering skin disease. To our knowledge, this is the 25th documented case of such an association. Following treatment for less than 3 months consisting of methylprednisolone at decreasing dose levels along with four courses of rituximab (monoclonal antibody directed against the CD20 protein), AHA was completely cured and BP well-controlled. Conclusions. This report illustrates a rare association of AHA and BP, supporting the possibility of eradicating the inhibitor with a well-conducted short-term treatment.

1. Introduction

Acquired hemophilia A (AHA) is a rare condition, with an approximate incidence of 1 case per million per year. It is caused by the spontaneous formation of neutralizing antibodies, mostly immunoglobulins G (IgG), called inhibitors and directed against endogenous factor VIII (FVIII) [1]. The condition is characterized by severe and unexpected bleeding that may prove life-threatening. About half the cases are idiopathic, while the other half appears associated with pregnancy, postpartum, autoimmune diseases, malignancies, or adverse drug reactions [2]. Patients with autoimmune disorders usually exhibit higher inhibitor titers that do not recede spontaneously or following treatment with corticosteroids alone. Further immunosuppressive therapy is thus often needed [3]. We report a case of AHA associated with bullous pemphigoid (BP), a chronic, autoimmune, subepidermal, blistering skin disease. To our knowledge, only 24 documented cases of this association have been reported previously.

2. Case Presentation

A 75-year-old man presented himself to the emergency room with an erythematous, warm, swollen, and painful right knee, along with fever and night sweating of recent onset (4 days). He also complained of recurrent subconjunctival hemorrhages and epistaxis and complained of swelling of both wrists that began a month earlier.

The patient was well-known to the hospital’s dermatologists since he had presented himself 21 months earlier with tense cutaneous blisters, with a predilection for flexural areas. The diagnosis of BP was then made by compatible histology and direct immunofluorescence, which showed linear IgG and C3 deposition. Serum samples were tested at 1:10 dilution on primate esophagus substrate and splitted...
human skin by means of indirect immunofluorescence. The examination revealed circulating IgG directed against the dermoeipidermic junction and taken away by the epidermic side of the junctional dehiscence. To evaluate the disease activity, an ELISA-test was performed, detecting IgG directed against the hemidesmosomal bullous pemphigoid antigens: BP180 (370 RU/mL) and BP230 (322 RU/mL) (positive if ≥20 RU/mL).

The treatment first consisted of methylprednisolone 12 mg daily and topical corticosteroids. Azathioprine (AZA) 50 mg was added one year after diagnosis, as the lesions failed to regress with corticosteroids alone. Before starting AZA, although there was no anamnestic suspicion of an underlying neoplasm, a thoracoabdominal CT-scan was performed to exclude a paraneoplastic origin of the corticoresistant skin lesions. Because the patient developed various undesirable effects, such as biological hepatitis and secondary diabetes mellitus, the following treatment was then implemented: mycophenolate mofetil (MMF) 500 mg daily instead of AZA, decrease in corticosteroid doses, and maximization of topical treatment (diflucortolone valerate 0.3%). As a result, there was clinical improvement with disappearance of cutaneous and mucosal blisters. Hepatic enzymes rapidly normalized and ELISA tests showed near-normalization of anti-BP180 and anti-BP230 titers. Administration of systemic corticosteroids was eventually stopped, with treatment limited to MMF 250 mg daily and topical corticosteroids, without any recurrence of blisters.

Besides BP and a diabetes mellitus secondary to long-term corticotherapy, the patient’s medical history was not contributory. Since the patient is an orphan, there was no known family history. His four children were in good health.

The clinical examination was unremarkable except for an inflamed knee locked in flexed position, a painful hematoma of the right thigh, and multiple other hematomas, without any history of trauma. BP was limited to a few small blisters on hands and feet that had appeared recently.

Blood tests revealed inflammation with elevated C-reactive protein at 283 mg/L. Complete blood count was remarkable for a microcytic anemia of WHO Grade II (Hb: 8.6 g/dL) of mixed hemorrhagic and inflammatory etiology. Clotting screening tests revealed an isolated prolongation of the activated partial thromboplastin time (aPTT) at 56.9 sec (local reference range: 25.1–36.5 sec). Failure to correct aPTT by means of a mixing study was indicative of an inhibitor. We then tested and excluded lupus anticoagulant present in plasma and heparin contamination. Further investigations revealed an isolated defect in coagulation FVIII (5%). The inhibitor FVIII titer amounted to 16 Bethesda units (BU)/mL. At that point, a diagnosis of AHA was made. ELISA tests showed a major increase in anti-BP180 (489 RU/mL) and anti-BP230 (399 RU/mL) titers, contrasting with the mild cutaneous symptoms. Articular puncture of the right knee drew 40 mL of dark red blood. An arthroscopic debridement of the joint was performed at a later time point.

In order to estimate the onset of AHA, we traced back previous clotting tests and found that the aPTT measured 6 months before the onset of AHA was already slightly prolonged (38.9 sec). We therefore assume that the patient developed FVIII inhibitors at least 6 months before bleeding manifestations occurred (Figure 1).

The treatment of AHA consisted in administering methylprednisolone at 1 mg/Kg, which was progressively tapered off over 6 months, together with rituximab 375 mg/m² by intravenous route at weekly intervals for 4 consecutive weeks.

During follow-up, the patient developed oral mucosal bleeding and extensive cheek hematoma, requiring a treatment with tranexamic acid mouthwash and recombinant human coagulation factor VIIa (by-pass therapy with NovoSeven®) at a total dose of 77 mg. Response to treatment was very satisfactory, with inhibitor levels dropping below 6 BU/mL after 4 weeks of treatment and further below 2 BU/mL after 7 weeks. In parallel, plasma FVIII levels improved, without being completely corrected. In less than 12 weeks, we completely eradicated the FVIII inhibitor and restored normal FVIII levels (>100%) and normal aPTT (Figure 1). In the meantime, anti-BP180 and BP230 titers developed favorably as well (Figure 2). Immunosuppressive therapy showed benefits on both AHA and BP, with a complete remission of the conditions. Six months after presentation, the patient was still free from hemorrhagic and cutaneous symptoms.

3. Discussion

BP has been reported in association with many skin diseases including psoriasis vulgaris, vitiligo, and squamous cell carcinoma [27, 28]. However, inhibitors of FVIII are an extremely rare complication. The main hypothesis explaining the relationship between BP and AHA is the development of autoantibody cross-reactivity accounted for by a sequence...
Number	Age	Sex	Onset BP	Evolution of BP under treatment	Max. inhib. titre (BU/mL)	Treatment of AHA	Evolution of AHA under treatment
1 [4]	74	M	Concurrently with AHA	Good	110	CS, CsA, AZA, CPA, BA, IVIg, FVIII	Clinical and biological remission
2 [5]	68	M	6 months before AHA	Rapid response to topical CS	>2	CS	Clinical and biological remission without recurrence over 12 months
3 [6]	47	F	3 months before AHA	Stable remission	2.04	CS, CPA, PP	Life-threatening complications followed by stable remission
4 [7]	88	M	Few days before AHA	Improved with systemic and topical CS, doxycycline, nicotinamide	(+)	CS, BA	Died shortly after diagnosis
5 [8]	65	M	2-3 months before AHA	AHA occurred at BP relapse	2	CS	Good
6 [8]	67	F	6 months before AHA	Relapsed after self-discontinuation	76	CS, CS pulse, CPA, FFP, FVIII	Good
7 [9]	78	M	4 months before AHA	Resolved with CS	839	CS, CPA, BA	Relapse 3 months after withdrawing of CPA because of severe neutropenia

Remission obtained with CS alone for 12 months |
Number [Ref.]	Age	Sex	Onset BP	Evolution of BP under treatment	Max. inhib. titre (BU/mL)	Treatment of AHA	Evolution of AHA under treatment
8 [10]	71	F	ND	ND	(+)	CS	Died of pulmonary embolism
9 [11]	49	F	7 months before AHA	Resolved with CS, CPA	148	CS, CPA, FFP, PE	Good
10 [12]	71	M	Concurrently with AHA	Resolved with CS	219	CS, IVIg, cryoprecipitate, BA	ND; patient transferred to another hospital.
11 [13]	83	F	3 years before AHA	Controlled with topical CS but relapsed	17	CS, BA	Died of severe hemorrhage
12 [14]	84	F	2 months before AHA	ND	29	CS, CPA, BA	Good, but died of sepsis.
13 [15]	81	F	4 weeks before AHA	Slight improvement with topical CS	7	/	Good, but died of ischemic heart disease
14 [16]	68	F	Concurrently with AHA	Resolved with topical CS	1.4	BA	Good
15 [17]	38	F	Before.	ND	2.44	CS, BA	ND.
16 [18]	64	M	4 weeks before AHA	Improved with systemic and topical CS, doxycycline, nicotinamide	(+)	CS, rituximab, BA	Remission; relapse after a few months, multiple transfusions, died of myocardial infarction
17 [19]	24	M	2 years before AHA	Improved with CS	256	CS, CS pulse, CPA, PP, rituximab, BA	Improved after 2 months
18 [20]	72	M	9 months before AHA	Resolved with MTX and topical CS	200	CS, rituximab, BA	Complete remission
19 [21]	60	F	Concurrently with AHA	Resolved	(+)	CS, CPA, FFP, BA, IVIg	Complete remission
20 [22]	88	M	4 months before AHA	Not improved with CS	7	CS, rituximab, FFP	Remission of BP and AHA, but died of severe pneumonia
Number	Age	Sex	Onset BP	Evolution of BP under treatment	Max. inhib. titre (BU/mL)	Treatment of AHA	Evolution of AHA under treatment
--------	------	-----	----------------	---	---------------------------	------------------	-------------------------------
21	49	F	4 months before AHA	Minimal response to CS and IV Ig	17	CS, CPA, BA, FVIII	Complete remission
22	80	F	12 months before AHA	Resolved with CS before AH	20	CS	Biological remission, even after CS discontinuation
23	73	M	Concurrently with AHA	Good	(+)	CS, CPA, Rituximab, IV Ig	Complete remission
24	61	M	1 month before AHA	Good	32	CS, BA	Clinical and biological improvement
25	75	M	21 months before AHA	Controlled with systemic and topical CS + AZA/MMF	25	CS, Rituximab, BA	Complete remission

The cases are presented in order of publication date. ND: not described; gender: M(ale)/F(eemale); CS: corticosteroid; CsA: ciclosporin; AZA: azathioprine; CPA: cyclophosphamide; FFP: fresh frozen plasma; PE: plasma exchange; PP: plasmapheresis; BA: bypassing agents, for example, FEIBA (Factor Eight Inhibitor Bypassing Activity) or rFVII (recombinant Factor Seven); MTX: methotrexate; ∗: our case report.
normal values of BP activity before and after AHA. Dotted lines represent the limit of old age, comorbidity, and high inhibitor titers. Poor prognostic factors associated with AHA include complications and the patient’s response to immunosuppressive treatment. An isolated aPTT prolongation, especially if he is suffering from an autoimmune disease. The primary treatment of AHA consists in administering oral methylprednisolone. Only three of the 25 patients described in the literature, however, displayed a good response to corticosteroids given alone. Other immunosuppressive drugs should thus be considered, in particular weekly intravenous injections of rituximab. The two main goals are (1) to treat and prevent bleeding complications and (2) to eradicate the inhibitor [33]. Long-term follow-up proves essential, even after complete inhibitor eradication.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

[1] P. Collins, N. Macartney, R. Davies, S. Lees, J. Giddings, and R. Majer, “A population based, unselected, consecutive cohort of patients with acquired haemophilia A,” *British Journal of Haematology*, vol. 124, no. 1, pp. 86–90, 2004.

[2] P. Knoebel, P. Marco, F. Baudo et al., “Demographic and clinical data in acquired hemophilia A: results from the European Acquired Haemophilia Registry (EACH2),” *Journal of Thrombosis and Haemostasis*, vol. 10, no. 4, pp. 622–631, 2012.

[3] J. Delgado, V. Jimenez-Yuste, F. Hernandez-Navarro, and A. Villar, “Acquired haemophilia: review and meta-analysis focused on therapy and prognostic factors,” *British Journal of Haematology*, vol. 121, no. 1, pp. 21–35, 2003.

[4] E. Lighburn, J. J. Morand, B. Graffin et al., “Pemphigoid and acquired hemophilia,” *Annales de Dermatologie et de Venereologie*, vol. 128, pp. 1229–1231, 2001.

[5] A. Ly, B. Roth, A. S. Causseret et al., “Anti-laminin 5 pemphigoid and acquired haemophilia,” *British Journal of Dermatology*, vol. 146, no. 6, pp. 1104–1105, 2002.

[6] C. Maczek, S. Thoma-Uzynski, G. Schuler, and M. Hertl, “Simultaneous onset of pemphigoid and factor VIII antibody hemophilia,” *Der Hautarzt*, vol. 53, pp. 412–415, 2002.

[7] A. Vissink, A. M. van Coevorden, F. K. Spijkervet, and M. F. Jonkman, “Spontaneous blood blister formation swellings of the oral mucosa,” *Nederlands Tijdschrift voor Tandheelkunde*, vol. 110, no. 9, pp. 359–361, 2003.
[8] R. Ikegami, H. Saruban, and Y. Shimizu, “A case of acquired hemophilia associated with bullous pemphigoid,” *Skin Research*, vol. 4, no. 4, pp. 350–354, 2005.

[9] R. S. Patel, K. E. Harman, C. Nichols, R. M. Burd, and S. Pavord, “Acquired haemophilia heralded by bleeding into the oral mucosa in a patient with bullous pemphigoid, rheumatoid arthritis, and vitiligo,” *Postgraduate Medical Journal*, vol. 82, no. 963, article e3, 2006.

[10] F. Abderrazak, S. Hammami, I. Mahkhlof, J. Zili, S. Mahjoub, and M. Hassine, “Report of a case of bullous pemphigoid and acquired hemophilia,” *Feuillets de Biologie*, vol. 47, no. 273, pp. 73–75, 2006.

[11] G.-S. Zhang, W.-L. Zuo, C.-W. Dai et al., “Characterization of an acquired factor VIII inhibitor and plasmapheresis therapy in a patient with bullous pemphigoid,” *Thrombosis and Haemostasis*, vol. 96, no. 5, pp. 692–694, 2006.

[12] W. Rodprasert and R. Pornvipavee, “Acquired Hemophilia A (Factor VIII inhibitor) associated with Bullous Pemphigoid: a case report,” *Vajira Medical Journal*, vol. 51, pp. 55–59, 2007.

[13] A. Soria, E. Matichard, V. Descamps, and B. Crickx, “Bullous pemphigoid and acquired hemophilia,” *Annales de Dermatologie et Vénéréologie*, vol. 134, no. 4, pp. 353–356, 2007.

[14] S. Gupta and A. Mahipal, “A case of acquired hemophilia associated with bullous pemphigoid,” *American Journal of Hematology*, vol. 82, no. 6, p. 502, 2007.

[15] A. Ryman, T. Hubiche, J. Amiral, A. Täieb, and V. Guerin, “Acquired haemophilia A associated with transitory and severe factor V deficiency during bullous pemphigoid: first report,” *Thrombosis and Haemostasis*, vol. 101, no. 3, pp. 582–583, 2009.

[16] A. Caudron, D. Chatelain, O. Christophe, C. Lok, B. Roussel, and V. Viseux, “Favourable progression of acquired hemophilia-associated bullous pemphigoid,” *European Journal of Dermatology*, vol. 19, no. 4, pp. 383–384, 2009.

[17] D. Antic, I. Elezovic, I. Djunic, and V. Dugalic, “A case of acquired hemophilia associated with bullous pemphigoid,” *Haemophilia*, vol. 16, pp. 1–158, 2010.

[18] R. Gouverneur, G. Kirtschig, and T. J. Stoof, “Autoimmune bullous dermatoses and acquired hemophilia A,” *Nederlands Tijdschrift voor Dermatologie en Venereologie*, vol. 20, no. 8, pp. 452–453, 2010.

[19] C.-Y. Chen, Y.-H. Chen, J.-C. Ho, and C.-S. Wu, “Bullous pemphigoid associated with acquired hemophilia,” *Dermatologica Sinica*, vol. 28, no. 4, pp. 173–176, 2010.

[20] N. Kluger, R. Navarro, V. Pallure, and B. Guillot, “Bullous pemphigoid and acquired haemophilia,” *Annales de Dermatologie et de Vénéréologie*, vol. 138, no. 5, pp. 422–423, 2011.

[21] X. Qiu, G. Zhang, R. Xiao et al., “Acquired hemophilia associated with bullous pemphigoid: a case report,” *International Journal of Clinical and Experimental Pathology*, vol. 5, no. 1, pp. 102–104, 2012.

[22] X. Zhang, J. Guo, X. Guo, and J. Pan, “Successful treatment of acquired haemophilia in a patient with bullous pemphigoid with single-dosing regimen of rituximab,” *Haemophilia*, vol. 18, no. 5, pp. e393–e395, 2012.

[23] C. Nguyen, J. S. Gordon, and A. L. Chang, “A little known but potentially life-threatening association of bullous pemphigoid and acquired hemophilia: case report and review of the literature,” *Journal of Clinical & Experimental Dermatology Research*, vol. 6, no. 3, pp. 1–3, 2012.

[24] S. Makita, T. Aoki, A. Watarai et al., “Acquired hemophilia associated with autoimmune bullous diseases: a report of two cases and a review of the literature,” *Internal Medicine*, vol. 52, no. 7, pp. 807–810, 2013.

[25] M. I. AlJasser, C. Sladden, R. I. Crawford, and S. Au, “Bullous pemphigoid associated with acquired hemophilia A: a rare association of autoimmune disease,” *Journal of Cutaneous Medicine and Surgery*, vol. 18, no. 2, pp. 123–126, 2014.

[26] R. Prud'homme and C. Bedane, “Bullous pemphigoid associated with acquired hemophilia A,” *Annales de Dermatologie et de Vénéréologie*, vol. 141, p. 5414, 2014.

[27] A. Pašić, S. Ljubojević, J. Lipozenić, B. Marinović, and D. Lončarić, “Coexistence of psoriasis vulgaris, bullous pemphigoid and vitiligo: a case report,” *Journal of the European Academy of Dermatology and Venereology*, vol. 16, no. 4, pp. 426–427, 2002.

[28] M. Deguchi, T. Tsunoda, and H. Tagami, “Resolution of bullous pemphigoid and improvement of vitiligo after successful treatment of squamous cell carcinoma of the skin,” *Clinical and Experimental Dermatology*, vol. 24, no. 1, pp. 14–15, 1999.

[29] L. Tengborn, J. Astemark, J. Ingerslev, A. Mäkiperna, G. E. Tjonnfjord, and P. T. Öndundarson, Acquired Hemophilia-Guidelines, 2009, http://legeforeningen.no/Fagmed/Norsk-selskap-for-hematologi/Handlingsprogrammer/Nordic-Guidelines-for-diagnosis-and-treatment-of-acquired-haemophilia/.

[30] G. S. Eisenbarth and P. A. Gottlieb, “Autoimmune polyclonal syndromes,” *The New England Journal of Medicine*, vol. 350, no. 20, pp. 2068–2079, 2004.

[31] M. Franchini and P. M. Mannucci, “Inhibitor eradication with rituximab in haemophilia: where do we stand?,” *British Journal of Haematology*, vol. 165, no. 5, pp. 600–608, 2014.

[32] P. W. Collins, S. Hirsch, T. P. Baglin et al., “Acquired hemophilia A in the United Kingdom: a 2-year national surveillance study by the United Kingdom Haemophilia Centre Doctors’ Organisation,” *Blood*, vol. 109, no. 5, pp. 1870–1877, 2007.

[33] K. E. Webert, “Acquired hemophilia A,” *Seminars in Thrombosis and Hemostasis*, vol. 38, no. 7, pp. 735–741, 2012.