EXAMPLES OF NON-SYMMETRIC KÄHLER-EINSTEIN TORIC FANO MANIFOLDS

BENJAMIN NILL AND ANDREAS PAFFENHOLZ

Abstract. In this note we report on examples of 7- and 8-dimensional toric Fano manifolds that are not symmetric and still admit a Kähler-Einstein metric. This answers a question first posed by V.V. Batyrev and E. Selivanova. The examples were found in the classification of ≤ 8-dimensional toric Fano manifolds obtained by M. Øbro. We also discuss related open questions and conjectures.

1. Introduction

Let us first recall our setting. In the toric case, there is a correspondence between n-dimensional nonsingular Fano varieties and n-dimensional Fano polytopes, where the Fano varieties are biregular isomorphic if and only if the corresponding Fano polytopes are unimodularly equivalent. Here, given a lattice N of rank n, a Fano polytope $Q \subseteq N_\mathbb{Z} := N \otimes \mathbb{Z} \mathbb{R}$ is given as a lattice polytope containing the origin strictly in its interior such that the vertices of any facet of Q form a lattice basis of M. In this case, when we denote the dual lattice by M, the dual polytope is given as

$$P := Q^* := \{ y \in M_\mathbb{R} : \langle y, x \rangle \geq -1 \ \forall \ x \in Q \}.$$

Since Q is a Fano polytope, P is also a lattice polytope. In particular, Q and P are reflexive polytopes.

In 2003 X. Wang and X. Zhu clarified completely which nonsingular toric Fano varieties admit a Kähler–Einstein metric [20]:

Theorem 1.1 (Wang/Zhu). Let X be a nonsingular toric Fano variety with associated reflexive polytope P. Then X admits a Kähler–Einstein metric if and only if the barycenter b_P of P is zero.

Here, the barycenter of P equals the Futaki character of the holomorphic vector field of X, [11]. It is also known that the existence of a Kähler–Einstein metric implies that the automorphism group of X is reductive. The converse does not hold (for related combinatorial questions see also [13]).
Prior to the previous theorem, in 1999 V.V. Batyrev and E. Selivanova had already proved a sufficient condition. For this, let us define by $W(P)$ the group of lattice automorphisms of M that map P onto itself. Now, P is called symmetric, if the origin is the only lattice point of M fixed by all elements of $W(P)$. Note that P is symmetric if and only if Q is symmetric (e.g., Proposition 5.4.2 in [12]).

Theorem 1.2 (Batyrev/Selivanova). Let X be a nonsingular toric Fano variety with associated reflexive polytope P. If P is symmetric, then X admits a Kähler–Einstein metric.

Question 1.3 (Batyrev/Selivanova). Does the converse also hold?

This question was also posed by J. Song (remark after Proposition 4.3 of [17]), by K. Chan and N.C. Leung (Remark 4.1 of [3]), and by A. Futaki, H. Ono, and Y. Sano (introduction of version v1 of [9] and Remark 1.4 of [16]). The hope was that several technical assumptions may be omitted, if the answer would be positive. Unfortunately, this is not true in higher dimensions.

Proposition 1.4. The answer to Question 1.3 is negative, if $n \geq 7$.

This observation is explained in the next section. Related open questions and conjectures are discussed in the last section of the paper.

Acknowledgment. We thank Ivan Cheltsov for his interest and helpful comments.

2. THE EXAMPLES

M. Øbro described in [14] an efficient algorithm to classify Fano polytopes, that he used to compute complete lists of all isomorphism classes of n-dimensional Fano polytopes (and their duals) for $n \leq 8$. Now, a simple computer search in Øbro’s database found the examples we were interested in. For this, let us denote by v_Q the sum of all the vertices of a lattice polytope Q, and by b_Q the barycenter of Q.

Proposition 2.1. Let $n \leq 8$, and Q be an n-dimensional Fano polytope with dual polytope P such that $b_P = 0$. Then $v_Q = 0$, except if Q is one of the following Fano polytopes Q_1, Q_2, Q_3:

1. Q_1 is 7-dimensional and has 12 vertices:
The associated nonsingular toric Fano variety \(X_1 \) is a \(\mathbb{P}^1 \)-bundle over \((\mathbb{P}^1)^3 \times \mathbb{P}^3 \).

(2) \(Q_2 \) is the 8-dimensional Fano polytope with 14 vertices corresponding to \(X_2 := X_1 \times \mathbb{P}^1 \) (i.e., \(Q_2 \) is the bipyramid over \(Q_1 \)).

(3) \(Q_3 \) is 8-dimensional and has 16 vertices:

\[
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & -1 & -1 & 0 & 0 & 0 & 2 & 1 & -1 & 0 & -1 & 0 & -1 & 0 & -1 & 0 & -1 \\
\end{pmatrix}
\]

The associated nonsingular toric Fano variety \(X_3 \) is a \(S_3 \)-bundle over \((\mathbb{P}^1)^3 \times \mathbb{P}^3 \), where \(S_3 \) is \(\mathbb{P}^2 \) blown up in three torus-invariant points.

In particular, for each \(n \geq 7 \) we see that \((\mathbb{P}^1)^{n-7} \times X_1 \) is a nonsymmetric toric Fano \(n \)-fold admitting a Kähler–Einstein metric.

3. Related questions and results

3.1. The anticanonical degree.

There is a long-standing open conjecture by E. Ehrhart, see section E13 in [7], that can be seen as a generalization of Minkowski’s first theorem:

Conjecture 3.1 (Ehrhart). Let \(P \subseteq M_\mathbb{R} \) be an \(n \)-dimensional convex body with the origin as its only interior lattice point and barycenter \(b_P = 0 \). Then \(\text{vol}(P) \leq (n+1)^n/n! \). Moreover, equality should only be obtained for \(Q^* \), where \(Q \) is the (unique) Fano simplex corresponding to \(\mathbb{P}^n \).

We checked this conjecture for duals of Fano polytopes up to dimension eight.
In algebro-geometric terms, Conjecture 3.1 implies the following statement, for which no proof is known, too: Any n-dimensional toric Fano manifold X that admits a Kähler–Einstein metric has anticanonical degree $(-K_X)^n \leq (n+1)^n$, with equality only for \mathbb{P}^n. It was noted in [10] that Bishop’s obstruction [2] yields the following bound:

\[(3.1)\quad I(X)(-K_X)^n \leq (n+1)^n+1,\]

where $I(X)$ is the Fano index. While this inequality seems slightly weaker, note that it is sharp for \mathbb{P}^n. We don’t know of a purely combinatorial proof of this result.

Remark 3.2. For a general toric Fano n-fold X there is no polynomial bound on $\sqrt{(-K_X)^n}$, as was proven by O. Debarre in [8] on p.139. In particular, also inequality (3.1) does not hold in general, as had been suggested in some recent papers (Conjecture 6.4 in [18], Conjecture 1.8 in [6], and inequality (2.22) in [10]).

3.2. The alpha-invariant and the log canonical threshold.

In the case of an n-dimensional toric Fano manifold X there is an explicit formula [17] for the *alpha-invariant* introduced by G. Tian [Tia87]. For this, let P be the associated reflexive polytope. We denote by P_G the intersection of P with the subspace of all points that are fixed by each element in the group $G \subseteq \mathcal{W}(P)$. Let us also recall the definition of the *coefficient of asymmetry* $ca(P,0)$ of P about the origin:

$$ca(P,0) := \max_{\|y\|=1} \max(\lambda > 0 : \lambda y \in P).$$

The coefficient of asymmetry plays an important role in finding upper bounds on the volume of lattice polytopes with a fixed number of interior lattice points [15].

Theorem 3.3 (Song). Let X be an n-dimensional toric Fano manifold with associated reflexive polytope P. Let G be the subgroup of $\text{Aut}(X)$ generated by $\mathcal{W}(P)$ and $(S^1)^n$. Then $\alpha_G(X) = 1$, if X is symmetric, and $\alpha_G(X) = \frac{1}{1+ca(P_{\mathcal{W}(P)},0)}$, otherwise.

In [4] it was shown that for X smooth and G compact, the alpha-invariant $\alpha_G(X)$ coincides with the *global G-invariant log canonical threshold* $\text{lct}(X,G)$, for this notion see Definition 1.13 in [4]. I. Cheltsov and C. Shramov also calculated directly the log canonical threshold without assuming smoothness (see also Remark 1.11 in [5]):

Lemma 3.4 (Cheltsov/Shramov). Let X be an n-dimensional toric \mathbb{Q}-factorial Fano variety with the polytope P associated to $-K_X$. Let
$G \subset \mathcal{W}(P)$ be a subgroup. Then
\[
\text{lct}\left(X, G\right) = \frac{1}{1 + \max\left\{ \langle w, v \rangle \mid w \in P_G, \ v \in \mathcal{V}(Q) \right\}},
\]
where $\mathcal{V}(Q)$ are the primitive generators of the fan associated to X.

From a combinatorial point of view, it is indeed straightforward to notice that the previous two formulas in Theorem 3.3 and Lemma 3.4 agree for a reflexive polytope P dual to a Fano polytope Q. Now, for the interested reader we provide the alpha-invariants of our examples:

Proposition 3.5. Each Fano polytope Q_1, Q_2, Q_3 (see Proposition 2.1) has a 1-dimensional fixspace. Hence, this also holds for their dual reflexive polytopes. Therefore, $\alpha_G(X_i) = \frac{1}{2}$ for $i = 1, 2, 3$.

3.3. **Chern number inequalities.** In [3] a series of Miyaoka-Yau type inequalities were proposed by K. Chan and N.C. Leung for compact Kähler n-folds X with negative $c_1(X)$. In the toric case they also conjectured an analogue for positive $c_1(X)$.

Conjecture 3.6 (Chan/Leung). Let X be a Kähler-Einstein toric Fano n-fold. Then
\[
c_1^2(X)H^{n-2} \leq 3c_2(X)H^{n-2}
\]
for any nef class H.

Remark 3.7. Here is purely combinatorial consequence that was observed in [3]. Let Q be the Fano polytope corresponding to a Kähler-Einstein toric Fano n-fold X, and P the dual reflexive polytope. Let us denote the Ehrhart polynomial $k \mapsto |(kP) \cap \mathbb{Z}^n|$ of P by $\sum_{i=0}^n a_i t^i$. Then
\[
c_1^2(X)(-K_X)^{n-2} \leq 3c_2(X)(-K_X)^{n-2}
\]
if and only if
\[
a_{n-2} \leq \frac{1}{3} \text{vol}(P^{(2)}),
\]
where $P^{(2)}$ is the union of all codimension two faces of P. Using the database, we checked that Equation (3.2) holds for $n \leq 7$. This provides additional evidence in favour of Conjecture 3.6.

In their paper K. Chan and N.C. Leung proved this conjecture in some particular instances (Theorem 1.1 of [3]):

Theorem 3.8 (Chan/Leung). **Conjecture 3.6** holds, if
1. $n = 2, 3, 4$, or
(2) each facet of the associated reflexive polytope \(P \) contains a lattice point in its interior.

The proof relied on a purely combinatorial property, which the authors conjectured to hold also without additional assumptions on \(X \) (Conjecture 3.1 of [3]):

Conjecture 3.9 (Chan/Leung). If \(b_P = 0 \), then for any facet \(F \) there exists a point \(x_F \in \text{aff}(F) \) such that

\[
\langle u_G, x_F \rangle \leq \frac{1}{2}
\]

for any facet \(G \) of \(P \) adjacent to \(F \), which is defined via \(\langle u_G, G \rangle = -1 \) and \(\langle u_G, P \rangle \geq -1 \).

Here is an example that shows that this approach of proving Conjecture 3.6 unfortunately fails in general.

Proposition 3.10. Conjecture 3.9 does not hold for the 5-dimensional reflexive polytope \(P \) with \(b_P = 0 \), whose dual \(Q \) is a Fano polytope having the following vertices:

\[
\begin{pmatrix}
-1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 & 1 & 0 & 2 & -2 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & 1
\end{pmatrix}
\]

The criterion of Conjecture 3.9 does not hold for the facets of \(P \) associated to the vertices in column four and five. Note that these are precisely the facets that do not contain interior lattice points, as required by Theorem 3.8.

References

[1] V. Batyrev, E. Selivanova, *Einstein–Kähler metrics on symmetric toric Fano manifolds*, J. Reine Angew. Math. 512 (1999), 225–236.
[2] R.L. Bishop, R.J. Crittenden, *Geometry of manifolds*, Academic Press, New York, 1964.
[3] K. Chan, N.C. Leung, *Miyaoka-Yau-type inequalities for Kähler-Einstein manifolds*, Commun. Anal. Geom. 15 (2007), 359–379.
[4] I. Cheltsov, C. Shramov, *Log canonical thresholds of smooth Fano threefolds. With an appendix by Jean-Pierre Demailly*, arXiv:0806.2107, 2008.
[5] I. Cheltsov, C. Shramov, *Extremal metrics on del Pezzo threefolds*, arXiv:0810.1924, 2008.
[6] I. Cheltsov, C. Shramov, *Del Pezzo zoo*, arXiv:0904.0114, 2009.
[7] H.T. Croft, K.J. Falconer, R.K. Guy, *Unsolved problems in geometry*, Problem Books in Mathematics 2, New York, NY, Springer, 1991.
[8] O. Debarre, *Higher-dimensional algebraic geometry*, Universitext, New York, NY, Springer, 2001.
[9] A. Futaki, H. Ono, Y. Sano, *Hilbert series and obstructions to asymptotic semistability*, arXiv:0811.1315, 2008.
[10] J.P. Gauntlett, D. Martelli, J. Sparks, S.-T. Yau, *Obstructions to the Existence of Sasaki-Einstein Metrics*, Commun.Math.Phys. 273 (2007), 803–827.
[11] T. Mabuchi, *Einstein–Kähler forms, Futaki invariants and convex geometry on toric Fano varieties*, Osaka Journal of Mathematics 24 (1987), 705–737.
[12] B. Nill, *Gorenstein toric Fano varieties*, http://w210.ub.uni-tuebingen.de/dbt/volltexte/2005/1888, PhD thesis, Mathematisches Institut Tübingen, 2005.
[13] B. Nill, *Complete toric varieties with reductive automorphism group*, Mathematische Zeitschrift 252 (2006), 767–786.
[14] M. Øbro, *An algorithm for the classification of smooth Fano polytopes*, arXiv:0704.0049, 2007.
[15] O. Pikhurko, *Lattice points in lattice polytopes*, Mathematika 48 (2001), 15–24.
[16] Y. Sano, *Multiplier ideal sheaves and the Kähler-Ricci flow on toric Fano manifolds with large symmetry*, arXiv:0811.1455, 2008.
[17] J. Song, *The α-invariant on toric Fano manifolds*, Am. J. Math. 127 (2005), 1247–1259.
[18] J. Sparks, *New Results in Sasaki-Einstein Geometry*, in: Riemannian Topology and Geometric Structures on Manifolds (Progress in Mathematics), Birkhäuser, 2008.
[19] G. Tian, *On Kähler–Einstein metrics on certain Kähler manifolds with c₁(M) > 0*, Invent. Math. 89 (1987), 225–246.
[20] X. Wang, X. Zhu, *Kähler–Ricci solitons on toric manifolds with positive first Chern class*, Advances in Mathematics 188 (2004), 87–103.

Research Group Lattice Polytopes, FU Berlin, Germany

E-mail address: nill@math.fu-berlin.de

Research Group Lattice Polytopes, FU Berlin, Germany

E-mail address: paffenholz@math.fu-berlin.de