Arboreal Crop Tree Termites in the Komkom Community Oyigbo Local Government Area in Port Harcourt, Nigeria

Elechi, Merit Amarachi a, Nwosu, Onyebuchi Remigius b, N. O. Bob-Manuel, Karibi a and Ugborneh, Adaobi Patricia a*

a Department of Animal and Environmental Biology, Rivers State University, Port Harcourt, Nigeria. b Department of Biology, Ignatius Ajuru University of Education, Port Harcourt, Nigeria.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/AJOB/2022/v14i130207

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/84028

Received 23 November 2021
Accepted 25 January 2022
Published 27 January 2022

ABSTRACT

Termites cause major economic losses by destroying agricultural crop trees. This study aims to survey the arboreal crop tree termites in Komkom community of Oyigbo in the Niger Delta. The study area was divided into 10 zones and 306 trees were examined for the presence of termite nests, hollow sounds and mud tubes. Samples of termites with its nest, hollow, mud tube and tree cuttings were collected from infested trees using metal spatula, sorted and identified. Approximately 9.5% of the sampled trees had some termite presence as arboreal nests, hollowness or mud tubes. The trees most affected were *Gmelina arborea* (Gmelina), *Dacryodes edulis* (Native pear), *Persea americana* (Avocado), *Citrus sinensis* (Orange), *Chrysophyllum albium* (African star apple), *Cocos nucifera* (Coconut), and *Mangifera indica* (Mango). The termites identified were *Odontotermes oblongatus*, *Microcerotermes annandalei*, *Microtermes sp* (new), *Microcerotermes paracelebensis*, *Neotermes spp*, *Glyptotermes kachongensis* and *Microcerotermes crassus*. Eight crop trees - *Anacardium occidentale* (Cashew), *Moringa oleifera* (Moringa), *Annona muricata* (Soursop), *Theobroma cacao* (Cocoa), *Psidium guajava* (Guava), *Irvingia gabonensis* (Bush mango), *Syzygium samarangense* (Java apple), and *Elaeis guineensis* (Oil Palm) had no termite infestation in the study area. The result obtained in this study indicates the termite species that are pests of crop trees in the area.

*Corresponding author: E-mail: ugborneh.adaobi@ust.edu.ng;
1. INTRODUCTION

Termites belong to the insect Order Isoptera, made up of about 2500 species and are social insects living in colonies. Both winged and wingless individuals occur in a colony [1]. They are eurytopic and distributed throughout the temperate, tropical and subtropical regions of the world, with the highest diversity found in tropical forests [2]. Termite’s colonies have different individuals called castes in their nests [3]. They are a prime example of insects that display decentralised self-organised system, swarm intelligence and co-operation among colony members to exploit food source and environment that could not be available to any single insect acting alone [4]. A typical colony contains eggs, nymphs, workers, soldiers or reproductive individuals (alates) and the workers till long hours tending to the queen, building the nest, or gathering food [3]. Termites are essential members of the soil ecosystem and are found throughout the world [5]. They feed on decomposing organic wastes of leaves, trees, animal dung, and living or dead wood [6]. Termites cause major economic losses by destroying agricultural crops, live trees, and wooden structures in the houses [7,8]. They also feed on and often destroy various other structures or materials that people use e.g., wooden portions of buildings, furniture, books, wooden utility poles, wooden fence posts, many fabrics, and other useful materials [9]. Termites are one of the most damaging pests in the tropics and cause considerable problems in housing, agriculture and forestry [5]. Some have their nests underground, others in wood, for example, some termites hollow out trees while some build mounds and mud tubes. Species of Microtermes and Odontotermes have been found to damage different crops [10,11]. This damage may also extend to household furniture, paper products, many synthetic materials and food substances. Each year hundreds of thousands of structures such as wooden bridges, dams, decks, homes, retaining walls, roads, wooden utility poles, and underground tubes for cables and pipes require treatment against termites [12]. The number of species causing damage to building is between 70 to 80, out of which 50 species are serious pests that require management [7,13]. More than 1,000 of the 2,600 recognized species of termites are found in Africa [12]. Many of the economically important wood feeding species of termites found in the tropics, sub-tropics and temperate regions are in the genera Coptotermes, Odontotermes, Macrotermes, Microcerotermes, Microtermes, Reticulitermes, Ancistrotermes, Schedorhinotermes and Pseudacanthotermes [14,15]. Trees are sources of food and shelter to both termite and humans. Effects of termites on trees are severe including degradation of timber, reduced or complete loss of economic yield from fruit trees like mangoes, oranges etc. Termites can equally lead to loss of roots, bark, leaves and flowers of medicinal plants like Azadirachta indica (Indian lilac - Dogonyaro) and could in severe cases lead to mortality of trees. However, termites have beneficial values such as organic matter recycling, improving soil fertility and serving as food sources for other animals [12, Changlu et al., 2009]. Noting the benefits and severe economic losses associated with termites, it is therefore, necessary to do a survey of arboreal crop termite infestations in the Komkom community of Oyigbo, Rivers State, Nigeria.

2. MATERIALS AND METHODS

2.1 Study Area

The study area was the Komkom community (Fig. 1) in Oyigbo Local Government Area of Rivers State, Niger Delta, Nigeria, made up of residential areas, agricultural establishments, institutions, markets and other corporate organizations. There were an assortment of trees such as Dacryodes indica, Cocos nucifera, Pterocarpus miliarelli, Moringa oleifera, Psidium guajava, Persea americana, Citrus sinensis, Annona muricata, Elaeis guineensis, Gmelina arborea and others in the area.

2.2 Collection of Sample

Samples were collected monthly from March to July 2019. Samples of termites were collected by cutting open and collecting termites from mud tubes, nests and live trees with hollow sounds using metal spatula and placed in plastic containers.

2.3 Identification of Termite Species

Termite specimens collected from different infested trees were examined under a dissecting microscope and identified using a manual by Muzaffer [16] to a genus level based on the...
termite morphology such as head structure, segments of the thorax, shape and serrations of the mandible (Fig 2), antenna and wing venation pattern. The absence of an inventory of termites found in Nigeria and the difficulty in identification using only morphological characters limited the identification to species for some.

Fig. 1. Map of Rivers State showing sampling location

![Map of Rivers State showing sampling location](image)

Fig. 2. Head of soldier of *Microcerotermes paracelebensis*

![Head of soldier of *Microcerotermes paracelebensis*](image)
2.4 Statistical Analysis

Statistical analysis include % prevalence per tree type and for all trees and mean % abundance of caste, these tests were done using MS Excel.

3. RESULTS

3.1 Termite Species in the Study Area

Out of 306 trees that were examined, 29 had termite infestation (9.5%). The prevalence of termite-infestation of specific trees species varied from 0 to 100% (Table 1). Eight crop trees such as Anacardium occidentale (Cashew), Moringa oleifera (Moringa), Annona muricata (Soursop), Theobroma cacao (Cocoa), Psidium guajava (Guava), Irvingia gabonensis (Ogbono), Syzygium samarangense (Java apple), and Elaeis guineensis (Oil Palm tree) had neither termite nests, mud tubes nor hollow sound. All other trees had some degree of termite presence (Figs 3 and 4). All Gmelina arborea (Gmelina) examined were infested and had termite nests and mud tubes on them (Fig 4) with three termite species namely; Microcerotermes paracelebensis, Neotermes spp, Microcerotermes annandalei and Glyptotermes kachongensis. Microcerotermes annandalei was also found infesting Mangifera indica (mango) tree, Microcerotermes paracelebensis and Microtermes sp were found infesting two different trees such as Citrus sinensis (Orange) and Dacryodes edulis (Native pear “Ube”), Microcerotermes crassus was found on Chrysophyllum albidum (African star apple “Udara”) and Cocos nucifera (Coconut).

The termite species on the trees differed, Neotermes spp and Glyptotermes kachongensis were selective, they were found only on Persea americana (Avocado), Microcerotermes crassus and Odontotermes oblongatus were also selective, Microcerotermes crassus were found only on Chrysophyllum albidum (African star apple) while Odontotermes oblongatus were found only on Gmelina arborea (Gmelina) as shown on Table 2. Microcerotermes paracelebensis and Microcerotermes annandalei were found in five tree types: Citrus sinensis, Gmelina arborea, Mangifera indica, Persea americana, and Dacryodes edulis. Microtermes sp were found in 4 tree types: Citrus sinensis, Gmelina arborea, Persea americana, and Dacryodes edulis as shown in Table2.

![Fig. 3. Persea americana showing Neotermes infestation using hollow sound of the tree](image)
Table 1. Prevalence of termite infestation on examined trees and their presentations

Common name of trees	Botanical name of trees	No. Examined	No. Infected	% Infestation	Presentation	Termites found
Gmelina	*Gmelina aborea*	10	10	100	Mudtube	*Microcerotermes annandali*
					Nest	*Microtermes sp*
Coconut	*Cocos nucifera*	40	1	2.5	Mudtube	*Odontotermes oblongatus*
Orange	*Citrus sinensis*	30	3	10	Mudtube	*Microtermes sp*
Native pear “Ube”	*Dacryodes edulis*	41	4	9.8	Nest	*Microtermes sp*
African star apple “Udara”	*Chrysophyllum albidum*	14	1	7.1	Nest	*Microcerotermes paracelebensis*
Avocado	*Persea americana*	38	9	23.7	Nest	*Microcerotermes paracelebensis*
Mango	*Mangifera indica*	20	1	5	Nest	*Neotermes spp,*
Bush mango “Ogbono”	*Irvingia gabonensis*	10	0	0	Nil	*Microcerotermes paracelebensis*
Guava	*Psidium guajava*	34	0	0	Nil	Nil
Moringa	*Moringa oleifera*	19	0	0	Nil	Nil
Sour sop	*Annona muricata*	23	0	0	Nil	Nil
Almond	*Prunus dulcis*	12	0	0	Nil	Nil
Oil Palm	*Elaeis guineensis*	10	0	0	Nil	Nil
Cashew	*Anacardium occidentale*	3	0	0	Nil	Nil
Java apple	*Syzygium samarangense*	2	0	0	Nil	Nil
Total		306	29			
Fig. 4. *Gmelina arborea* (tree) with *Microcerotermes annandalei* nest

Table 2. Termite species found on infected trees in study area

Termites Family	Termite species	Trees Infected
Termitidae	*Microcerotermes annandalei*	*Gmelina aborea*
Termitidae	*Microtermes sp*	*Gmelina aborea*
Termitidae	*Odontotermes oblongatus*	*Gmelina aborea*
Termitidae	*Microtermes sp*	*Cocos nucifera*
Termitidae	*Microtermes sp*	*Citrus sinensis*
Termitidae	*Microcerotermes paracelebensis*	*Citrus sinensis*
Termitidae	*Microtermes sp*	*Dacryodes edulis*
Termitidae	*Microcerotermes paracelebensis*	*Dacryodes edulis*
Termitidae	*Microcerotermes crassus*	*Chrysophyllum albidum*
Termitidae	*Microcerotermes paracelebensis*	*Persea americana*
Kalotermitidae	*Glyptotermes kachongensis*	*Persea americana*
Termitidae	*Microcerotermes paracelebensis*	*Mangifera indica*

Table 3 shows the mean % abundance of caste, for termite spp. and tree type. Majorly, there was a random distribution of the termite species on the tree types in the sampled area, a few termite species however showed specificity. The alates of *Neotermes* spp and *Microcerotermes annandalei* were observed during the study period as well as the presence of nymphs in *Neotermes* spp, *Microcerotermes annandalei*, *Microtermes* spp, *Microcerotermes crassus*, and *M paracelebensis* (Table 3).

4. DISCUSSION

Seven species of termite belonging to six genera of two families were encountered in this study. The two families were; Termitidae and Kalotermitidae. The termite species were; *Odontotermes oblongatus*, *Microcerotermes annandalei*, *Microtermes sp*, *Microcerotermes paracelebensis*, *Neotermes* spp, *Glyptotermes kachongensis* and *Microcerotermes crassus*. This agrees with the works of Ugcombe et al. [17] who recorded five genera; *Amitermes*, *Microcerotermes*, *Globitermes*, *Nasutitermes* and *Glyptotermes* belonging to two families Termitidae and Kalotermitidae while, Ogedegbe and Eloka [18] that recorded five species namely; *Nasutitermes havilandi*, *Odontotermes secies*, *N. arboreum*, *Amitermes evenicfur* and *Microtermes* species as important pests of plants in Edo State, Nigeria. Termites could be identified based on their external morphology which include; venation pattern of wings of the winged reproductive or alates, antennae, mandibles, segments of abdomen and pronotum or thorax of different castes e.g. reproductive, nymph, workers, soldiers [19,9].
Table 3. Termite caste percentage abundance on trees in Komkom

Tree type	Termite species	Soldier	Worker	Alates	Nymph
Gmelina above	Microcerotermes annandalei	21.2	37.1	25.7	16.0
	Microtermes sp	38.1	61.9	0	0
	Odontotermes oblongatus	35.6	64.4	0	0
Cocos nucifera	Microtermes sp	21	66.1	0	12.9
Citrus sinensis	Microtermes sp	37.3	40.8	0	21.8
	Microcerotermes paracelebensis	4.2	95.8	0	0
Dacryodes edulis	Microtermes sp	22.4	70.3	0	7.3
	Microcerotermes paracelebensis	10.3	72.1	0	17.6
Chrysophyllum albidum	Microtermes crassus	2	90.4	0	7.6
Persea americana	Neotermes spp	25.0	33.0	17.7	24.4
Persea americana	Microcerotermes paracelebensis	14.3	74.3	0	11.3
Persea americana	Glyptotermes kachongensis	22.2	77.8	0	0
Mangifera indica	Microcerotermes paracelebensis	3.9	96.1	0	0

Fig. 5. Termite mean caste percentage abundance on tree in komkom

This study shows that among the seven species of termite in the study area, Microtermes paracelebensis had the highest abundance (47.2%) but Anantharaju et al. [20] who studied species abundance observed that Hypotermes obscuriceps was the most abundant species.
having 35% of the sampled population in North eastern, Puducherry, India. The mean caste percentage abundance varied among termite caste in the study area. Workers were more abundant with Microcerotermes annandali making up 98.7% and Microcerotermes paracelabensis 98.5% mean caste percentage abundance when compared to reproductives, nymphs and soldiers. This is in line with the work of Pranesh and Harini, [9] who also studied abundance of termite castes and showed that the workers were more abundant than the other individuals that make up a caste. The presence of the alates of two species (Neotermes spp and M. annandali) may depend on the swarming period while the nymphs were found in only the species that formed nests or hollowed out the trees. The nests and hollow of the trees provided nursery grounds for their development. This work shows that termites on trees are found in mud tubes or nests and this agrees with the works of Ugborneh et al. [17] and Echezona et al. [21] who observed arboreal colonies that build nest and tunnels at various heights on trees. The total infestation of 9.8% of the trees in the study area shows that anthropogenic effects may have impacted adversely on termite homes as confirmed by some locals who were interviewed, due to felling of trees for timber, urbanization and development. Ugborneh et al. [17]) while studying arboreal termites in a university in Port Harcourt Nigeria, observed total infestation of 37.71% of the trees while this study recorded 9.5%. This could be that a university community may have fewer species of ornamental trees close planted and hardly felled, while in this Komkom community there were more tree species richness and diversity, widely separated and exploited. There was a significant association of termite distribution and tree type in this study. This contrasts with that of Ugborneh et al., [17] who observed that termite species infested trees at random. More work is required here to determine termite specificity among trees. Observed mode of termite infestation on trees were; mud tubes, nests and hollow tunnels. This agrees with the works of earlier scholars such as Echezona et al. [21] and Ugborneh et al. [17] though they did not encounter hollow tunnels in their respective works.

Termite species such as Neotermes spp and Glyptotermes kachongensis inhabiting hollow tunnels in trees seemed more destructive when compared to the other termite species encountered. Reason could be due to their attack on the internal tissues of the trees. This is collaborated by the work of Harris [22,23] while working on termite infestation on trees observed that Theobroma cacao plant infested by termite species Schedrhinotermes putorius soon died afterwards even when there was no external termite infestation.

Eight trees namely; Anacardium occidentale (cashew), Moringa oleifera (Moringa), Annona muricata (soursop), Psidium guajava (guava), Irvingia gabonensis (bush mango), Syzygium samarangense (Java apple), Theobroma cacao (cocoa) and Elaeis guineensis (oil palm) had neither termite nests, mud tubes nor hollow sound in the study area. This agrees with the work of Ugborneh et al. [17] who also observed that Psidium guajava had no form of termite infestation, but contrasts with the works of Sands [6] Haris [21,22] and Malaka [24]. Sands [6,25] and Malaka reported that all the eight trees listed above except Psidium guajava had different species of termite infesting them, while Haris [22,23] reported that Theobroma cacao was infested by Schedrhinotermes putorius [26]. Though some termites may seem to lack host specificity, Odontotermes oblongatus, Neotermes spp, Glyptotermes kachongensis and Microcerotermes crassus appeared specific. Odontotermes oblongatus was observed infesting only Gmelina aborea, while Neotermes and Glyptotermes kachongensis infested only Persea americana and Microcerotermes crassus was found only on Chrysophyllum albidum. Ugborneh et al. [17] reported that Glyptotermes species appeared specific for Chrysophyllum albidum.

5. CONCLUSION AND RECOMMENDATION

The result obtained in this study indicates that termite species are pest of trees. To prevent termite entry into trees, the environment must be cleared and treated of all signs of termite infestation, trees should be properly examined to determine infestation early, and sounded often to note hollow sounds. Research into biological and other control measures of termite species is recommended to reduce economic loss associated with the infestation.

COMPETING INTERESTS

Authors have declared that no competing interests exist.
REFERENCES

1. Nutting WL. Flight and colony Foundation. Biology of Termites. Academy Publ, New York. 1969;1:233–282.

2. Eggleton P. Termites and trees: A review of recent advances in termite phylogenetics. Insects Sociaux. 2000;48:187–193.

3. Food and Agriculture Organisation (FAO). United Nation Environment Programme; 2000.

4. Osipitan AA, Oseyemi AE. Evaluation of the bio-insectical potential of some tropical plant extracts against termites in Ogun state, Nigeria. Journal of Entomology. 2012;(9):257–265.

5. Abdel G, Skai E. Termite damage to buildings, nature of attacks and preventive control methods. American Journal of Engineering and Applied Science. 2011;4(2):187-200.

6. Sands WA. Termites Pests of Tropical Food Crops. Pest Art News Summ. 1973;19:167–177.

7. Edwards R, Mill AE. Termites in Buildings, their Biology and Control. Rentokil Ltd., West Sussex, U.K. 1986;54 – 67.

8. Su NY, Scheffrahn RH. Economically important termites in the United States and their control. Sociobiology. 1990;17:77–94.

9. Pranesh MKB, Harini P. Diversity and Distribution Pattern of Termites in Relation With Human Interference: A Study At Jnanabharathi Campus, Bangalore, India. 2015;9(3&4): 671-676.

10. Lai PY, Tamashiro M, Yates JR, Su NY, Fujii JK, Ebesu RH. Living plants in Hawaii attacked by Coptotermes formosanus. Proc Hawaiian Entomological Society. 1983;24:283–286.

11. Kambhampati S, Eggleton P. Phylogenetic and taxonomy of termites: evolution, sociality and symbiosis. Ecology. 2000;2:1–23.

12. UNEP/FAO/Global IPM Facility Workshop Geneva. UNEP Chemicals. 2000;16.

13. Pearce MJ. Termites: Biology and Pest management.” CABI Publishing. New York. 1997;172. ISBN: 0851991300.

14. Abdurahman A. Termites as structural pests in Ethiopia: Termite Biology and Management. Rpt; 2004.

15. Ahmed BM, French JR. The effects of Boron-Treated Timberagainst Coptotermes species in Australia. A Ph.D. Thesis submitted to the Institute of Food and Land Resource, University of Melbourne, Australia; 2000.

16. Muzaffer A. Termites of Thailand. Bulletin of the American Museum of Natural History. 1965;131(1):109. Available: http://hdl.handle.net/2246/1672

17. Ugbomeh AP, Okorite M, Ada E, Dorcas DSB. A rapid Survey of the Arboreal Termites in a University Environment in Port Harcourt, Nigeria. Journal of Basic and Applied Zoology. 2019:80:29.

18. Ogedegbe ABO, Eloka EV. Biodiversity of termites on farmlands in Ugoniyekohionwon, Orihwiwron LGA, Edo State, Nigeria. International Journal of Pure and Applied Sciences and Technology. 2015;27(2):65–76.

19. Kambhampati S, Kjer KM, Thorne BL. Phylogenetic relationship among termite families based on DNA sequence of mitochondrial 16S Ribosomal RNA gene. Insect Molecular Biology. 1996;5:229–238.

20. Anantharaju T, Gurjeet K, Gajalakshmi S, Abbasi SA. Sampling and Identification of Termites in Northeastern Puducherry. Journal of Entomology and Zoology Studies. 2014;2(3):225-230.

21. Echezona BC, Igwe CA, Attama LA. Properties of an Arboreal Ant and Ground Termite Nests in Relation to Their Nesting sites and Location in a Tropical derived Savannah. Psyche. 2012;1-11.

22. Harris WV. Termites and forestry. Empire Forestry Review. 1971;34:160–166. Available: https://www.gardenfactoryny.com/toxicplants.pdf.

23. Harris WV. Termites: Their Recognition and Control. 2nd Edn., Longman, London. 1971;186. ISBN:0582466563

24. Malaka SLO. Economic Importance of Termites: Six Case Studies in Nigeria and Ghana. Nigerian Field. 1983;47(4):222-230.
25. United Nations Environment Programme [UNEP]. Finding Alternatives to Persistent Organic Pollutants (POPS) for Termite Management; 2000.

26. Kehinde KA, Balogun SA. Species Richness, Diversity and Relative Abundance of Termites in the University of Lagos, Nigeria. Journal of Research in Sciences. 2014;2:188-197.

© 2022 Amarachi et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle5.com/review-history/84028