Lessons learnt from the variation across 6741 family/general practices in England in the use of treatments for hypogonadism

Adrian H. Heald1,2 | Michael Stedman3 | Martin Whyte4 | Mark Livingston5,6 | Marco Albanese7 | Sud Ramachandran8,9 | Geoff Hackett10

1The School of Medicine and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
2Department of Diabetes and Endocrinology, Salford Royal Hospital, Salford, UK
3Res Consortium, Research, Andover, UK
4Clinical and Experimental Medicine, University of Surrey, Surrey, UK
5Department of Clinical Biochemistry, Black Country Pathology Services, Walsall, UK
6School of Medicine and Clinical Practice & Department of Biomedical Science and Physiology, Faculty of Science & Engineering, University of Wolverhampton, Wolverhampton, UK
7Herzzentrum Hirslanden Zentralschweiz, Luzern, Switzerland
8Department of Clinical Biochemistry, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
9Department of Clinical Biochemistry, University Hospitals of North Midlands/Institute for Science and Technology in Medicine, Keele University, Staffordshire, UK
10Aston University, Birmingham, UK

Correspondence
Adrian H. Heald, Department of Diabetes and Endocrinology, Salford Royal Hospital, Salford, UK.
Email: adrian.heald@manchester.ac.uk

\textbf{Abstract}

\textbf{Introduction:} We have previously reported rates of diagnosis of male hypogonadism in United Kingdom (UK) general practices. We aimed to identify factors associated with testosterone prescribing in UK general practice.

\textbf{Methods:} We determined for 6741 general practices in England, the level of testosterone prescribing in men and the relation between volume of testosterone prescribing and (1) demographic characteristics of the practice, (2) \% patients with specific comorbidities and (3) national GP patient survey results.

\textbf{Results:} The largest volume (by prescribing volume) agents were injectable preparations at a total cost in the 12-month period 2018/19 of £8,172,519 with gel preparations in second place: total cost £4,795,057. Transdermal patches, once the only alternative to testosterone injections or implants, were little prescribed: total cost £222,022. The analysis accounted for 0.27 of the variance in testosterone prescribing between general practices. Thus, most of this variance was not accounted for by the analysis. There was a strong univariant relation ($r = .95, P < .001$) between PDE5-I prescribing and testosterone prescribing. Other multivariant factors independently linked with more testosterone prescribing were as follows: HIGHER proportion of men with type 2 diabetes (T2DM) on target control (HbA1c ≤ 58 mmol/mol) and HIGHER overall practice rating on the National Patient Survey for good experience, while non-white ethnicity and socio-economic deprivation were associated with less testosterone prescribing. There were a number of comorbidity factors associated with less prescribing of testosterone (such as T2DM, hypertension and stroke/TIA).

\textbf{Conclusion:} Our analysis has indicated that variation between general practices in testosterone prescribing in a well developed health economy is only related to small degree ($r^2 = 0.27$) to factors that we can define. This suggests that variation in amount of testosterone prescribed is largely related to general practitioner choice/other factors not studied and may be amenable to measures to increase knowledge/awareness of male hypogonadism, with implications for men’s health.

\textbf{KEYWORDS}
comorbidity, deprivation, prescribing, primary care, testosterone
INTRODUCTION

Hypogonadism (HG) in men has been associated with loss of sexual function, increased frailty and other comorbidities including increased mortality. Hypogonadism itself is broadly referred to as testicular failure associated with androgen deficiency although such a broad definition encompasses many men and has required sub-classification based on cause and age. The precise cut points on the basis of morning testosterone levels vary across guidance documents both within and between areas of the world. Moreover, reference ranges quoted by UK laboratories are not commonly derived from fasting samples only or from samples taken in the morning (<11:00 AM) and are usually manufacturer derived (50%) or historical (18.8%).

The rate of identification and treatment of hypogonadism even in developed healthcare economies remains low as evidenced by Klinefelter syndrome which affects approximately one in every 660 men but only 25% of the expected number of men are diagnosed with this condition, and of these, only a minority are diagnosed before puberty.

Testosterone is implicated in regulating metabolic functions, maintenance of muscle and bone, and inhibition of adipogenesis. In older individuals, reduced testosterone is associated with sarcopenia and sarcopenic obesity. Men with primary frailty or primary obesity will necessarily exhibit lower testosterone levels as a normal physiological response. Several international guidelines recommend that all men with erectile dysfunction (ED), type 2 diabetes (T2DM), metabolic syndrome and obesity (BMI > 30 kg/m²) should be routinely screened for HG, with ED and HG now recognized as independent risk factors for cardiovascular disease. However, the two endocrine societies to have hitherto issued published guidance do not recommend routine screening in men with obesity, diabetes or metabolic syndrome in the absence of other risk factors or clinical features.

The rate of identification and treatment of HG in the developed healthcare economies of the United Kingdom (UK) was recently reported. Some authors have suggested that there is an ‘epidemic’ of testosterone prescribing, prompting lively debate in the literature. There are two main treatment options—injections or gels, and these are used at various dose levels (injections can also be used at different frequencies). The treatment of HG often goes in tandem with treatment of ED with phosphodiesterase type 5-inhibitors (PDE5-I) which are shown to be of benefit for reducing cardiovascular risk in T2DM.

We previously reported rates of diagnosis of male hypogonadism in United Kingdom (UK) general practices. The reasons for the possible under treatment of hypogonadism in UK general practice are multiple. In order to gain a greater understanding of this, we here describe what are the determinants of testosterone prescribing at general practice level and the changes year on year in the balance of treatments used to treat male HG, while also analysing the changes year on year in testosterone prescribing overall.

METHODS

We analysed data for general practices in England over the operational years 2011/12 to 2018/19, with a focus in detail on the final year 2018/19 (current year at the time of writing) as representative of prescribing practice.

We determined for each of 6741 general practices in England in 2018/19, the prescribing at a practice level of testosterone as described in Table 1.

Data sources

Details about the location of each practice were obtained from the Office for National Statistics (ONS). General Practice Workforce Survey provides details on the general practitioners in each practice, and the following indicators were used. The Quality Outcomes Framework (QOF) is the system that provides incentives to family doctor practices in the UK to manage a number of long-term conditions. Each practice maintains registers of patients with specific conditions the % of total population was used for the following conditions. The National Diabetes Audit provided information on the numbers and ages of people with diabetes.

Primary care prescribing data were downloaded and assembled including the British National Formulary (BNF) code, quantity, items and costs of all prescriptions. This was linked to the defined daily dose (DDD), taken from the WHO ATC which is the assumed average maintenance dose per day for a drug used for its main indication in adults and is a widely used metric. Prescribing rates were adjusted according to DDD principles. The DDD is a statistical measure of drug consumption, defined by the World Health Organization Collaborating Centre for Drug Statistics Methodology.

Testosterone

- Number of different HG treatment applied (number of different testosterone medications used within the practice by method and dose).
- Testosterone % injected (% of total testosterone DDD).
- Testosterone gel % dispensed by pumps (% of total gel DDD).

PDE5-I

- The use of oral PDE5-I was calculated annual quantity prescribed as a ratio to males age > 40 years.
- Dose Level of PDE5-I was calculated from total DDD PDE5-I/total quantity of PDE5-I tablets.

Details of these are given in Table 2.
Descriptive analysis

The actual number being treated within each practice was defined by the amount of testosterone being prescribed converted to the DDD, which is the assumed average maintenance dose per day for a drug used for its main indication in adults and is a widely used metric. WHO ATC values mg/DDD for testosterone parenterally, transdermally and orally were applied to amount contained within each BNF code times amount used.

The percentage expected hypogonadal patients for each practice were estimated from the expected prevalence by age group for Europeans by the European Male Ageing (EMAS) Study. The EMAS Study recruited 396/3369 (11.75%) of men from England.

To examine the link between the use of PDE5-Is and testosterone, the use of testosterone was calculated by dividing the total actual amount in annualized DDD by the expected number of symptomatic HG patients calculated from linking the age prevalence given by Wu et al with numbers of males by age group in each practice to give an overall % identified and treated. The % using PDE5-I was calculated by dividing the total quantity of tablets prescribed, by the number of male population age > 40 and 52 (as NHS only allows prescription of 1 PDE5I tablet/week). The practices were then broken up into deciles of both PDE5-I and testosterone use. We did not have data concerning testosterone prescription for primary vs secondary hypogonadism.

Statistics

Multivariate backward stepwise linear regression analysis weighted by the population males aged > 40 years was conducted to examine which factors independently linked with % of testosterone prescribing (dependent variable) at general practice level. The independent

Table 1 Factors included in the regression analysis

Factor	Median Value	Regression Coefficient/Model
SIZE-Male > 40	Number of males on the practice list	1969
Regression Constant	Constant from the regression calculation	−0.092
LOC-%Male > 60	% of males on the list who are > 60 in age	44.5%
LOC-North South Latitude	Latitude value for the practice postcode	52.26
LOC-East Longitude	Longitude value for the practice postcode	−1.27
LOC-Urban/Rural Pop Density/sq km	Population density for local area of practice postcode	3.157
LOC-IDAOPI Income Deprivation Older People 2015	Income Deprivation Affecting Older People score for local area of the practice postcode	17.0
LOC-GPP Survey % BME Ethnicity	Ethnicity given for responders to each practice patient survey	12.1%
PRACT-GPP Survey % Overall Good Experience	% responded ‘GOOD’ when asked about overall experience in patient survey	84.5%
PRACT-GPP Survey LTC % Confident	% who responded confident when asked about self-management of their long-term condition (LTC)	85.3%
PRACT-GPP workforce FTE Gender % male	% general practitioners who are male in the workforce data for general practices	52.5%
PRACT-GPP workforce HC Age < 40 Younger	% general practitioners whose age < 40 in the workforce data for general practices	27.3%
PRACT-GPP workforce HC Age > 55 Older	% general practitioners whose age > 55 in the workforce data for general practices	20.0%
PRACT-GPP workforce COQ Non-UK	% general practitioners whose country of qualification (COQ) is not the UK in the workforce data for general practices	16.7%
HEALTH-QOF % Reg-CHD	% of patients on practice coronary heart disease (CHD) register	3.2%
HEALTH-QOF % Reg-COPD	% of patients practice chronic obstructive pulmonary disease (COPD) register	1.9%
HEALTH-QOF % Reg-HF	% of patients on practice heart failure (HF) register	0.9%
HEALTH-QOF % Reg-HYP	% of patients who are on the practice hypertension (HYP) register	14.6%
HEALTH-QOF % Reg-OB	% of patients on practice obesity = OB register	8.0%
HEALTH-QOF % Reg-PAD	% of patients on the practice peripheral arterial disease (PAD) register	0.6%
HEALTH-QOF % Reg-STIA	% of patients on practice stroke / transient ischaemic attack (STIA) register	1.8%
DM-DMT2 All Age % > 65	% of Patient with type 2 diabetes whose Age > 65	55.5%
TABLE 2 Total testosterone prescribing 2018/19 for general practices in England. Annualized defined daily doses (DDDs) and totals for each mode of administration are shown in bold

Specific Delivery	Medicine	Name	Different Practices	Total Items	Total Quantity	Total DDD	Annualized DDD	Actual Costs
Capsule	Testosterone Undecanoate	Restandol Cap 40 mg	770	6,088	425,983	141,994	389	£113,074
Oral			770	6,088	425,983	141,994	389	£113,074
Injection	Testosterone Undecanoate	Nebido Inj 250 mg/mL	6329	124,402	132,018	7,334,333	20,094	£10,674,577
	Testosterone Enanthate	Primoteston Inj Enanthate 250 mg/mL	1520	8,622	24,794	344,361	943	£658,236
	Testosterone Esters	Sustanon Inj 250 mg	3799	47,101	90,802	1,261,139	3,455	£206,907
	Testosterone Propionate	Virormone Inj Propionate 50 mg/mL	4	10	163	906	2	£7,147
INJECTED								
Sachet	Testosterone	Testim 50 mg/5 g Tube	2313	7,073	220,035	220,035	603	£218,180
		Testogel Sachet 50 mg/g	4897	34,823	1,378,283	1,378,283	3,776	£1,327,669
Pump	Testosterone	Testavan T/Derm Gel 20 mg/g	45	79	8350	3,509	10	£2,353
		Testogel Pump 16.2 mg/g	4658	75,884	8,669,321	3,085,823	8,454	£2,845,622
		Tostran Pump 2% (10 mg/actuation)	5973	137,569	1.2E + 07	2,315,875	6,345	£5,136,855
Tube	Testosterone Propionate	Testosterone Prop_Crm 1%	3	5	250	1,250	3	£1,275
Gel								
Overall total			7142	441,656	2.3E + 07	16,087,509	44,075	£21,191,894
variables are described in Table 1. All of these are continuous except for number of testosterone preparations which is ordinal. A P-value of <0.05 was taken as the cut point to consider as significant. We had in our full original assessment 25 factors that considered wide range of possible influences. We retained only those factors that kept a P-value < 0.05. In the end, 19 factors remained significant.

Practices finally included in the analysis had the following:

a. data for all the required fields
b. ≥500 total male population

The final number of practices included at each stage varied according to the specific analysis undertaken.

2.6 | Data availability statement

All of the data that we used for the analysis are publically available. No patient-level data were utilized for the analysis.

3 | RESULTS

3.1 | Volume and cost of testosterone prescribing

The prescribing of testosterone for 6741 UK General Practices is shown in Table 2. The largest volume (by prescribing amount) agents were injectable preparations at a total cost in 2018/19 of £8,172,519, with the gel preparations in second place at a total cost of £4,795,057. Transdermal patches, once the only alternative to testosterone injections or implants, were little prescribed with the national annual cost being £222,022. There were some testosterone tablets and implants used but in low volume accounting for £36,502 of costs annually (<0.5% of total).

The overall average cost/day of testosterone replacement in its entirety was £1.23.

3.2 | Variation in prescribing

Data from 6,741 general practices were examined. There was great variation in practices in the use of testosterone injections. While the mean was 63% of testosterone doses are given by injection, there were over 10% of practices who gave 100% by injection and over 10% who gave 0% as injection. The majority of the rest of the testosterone replacement was given as testosterone gel.

3.3 | Change in testosterone prescribing year on year 2011 to 2018

The overall use of testosterone grew 45% from an average of 31,000 to 44,800 DDD/day over the years 2011 to 2018, with injectable preparations growing by 84% and transdermal preparations by 25% (Figure 1). The transdermal preparations have moved from 93% in portion, sachets and tubes to now 76% by pump. Oral testosterone capsules have fallen from 5% to 0.9%.

3.4 | How testosterone prescribing relates to possible need

In Figure 2, we have shown for all the 6741 general practices included in the survey, the relation between the actual prescribing of testosterone replacement as defined daily dose (DDD) and predicted prevalence of HG at the same general practice (Figures 2 and 3). This is plotted with each practice shown as a single point in Figure 3. The expected number of hypogonadal men in each practice is shown on the x-axis of Figure 3. The majority of practices prescribe no more than 20% of the predicted amount of testosterone that may be required on the basis of the number of men predicted to have a degree of HG. Only the practices with a lower expected prevalence of HG achieved even one third of the predicted need for testosterone.
3.5 | Relation of testosterone prescribing to PDE5-I prescribing at general practice level

The prescribing of testosterone did relate closely to PDE5-I prescribing in univariate analysis (Figure 4) with $r^2 = 0.89$. There was a much greater variation across the general practices in testosterone prescribing compared with PDE5-I prescribing when compared with the median for the general practices (Figure 4) and as described next. For testosterone supplements, the lowest decile of prescribing categories was 30% of the median vs 250% of the median for the top decile = more than 8 fold difference; vs PDE5-is, where the lowest decile was 60% of the median vs 150% of the median for the top decile = 2.5 times difference between the lowest and highest decile.

3.6 | Factors related to testosterone prescribing in multiple regression analysis

The variance accounted for by the analysis, $r^2 = 0.27$, so much of the variance was not accounted for by the analysis of nationally available metrics as detailed as these are (Figure 5).

a. Prescribing behaviour of PDE5-is influenced the levels.
b. General practice workforce (age, gender and country of qualification (COQ) of the general practitioner had little influence).

c. Poor local health reduced the level.

d. Older age of men in the practice reduced the level.

e. Some cultural factors (North/South, East/West, Urban/Rural, Ethnicity) had an influence on prescribing.

f. Practices with a higher proportion of type 2 diabetes (T2DM) patients with good glycaemic control, prescribed more testosterone.

There was a strong relation between PDE5-I prescribing and testosterone prescribing ($P < .001$) for general practices. The analysis showed that the other factors independently linked with more testosterone prescribing were as follows: HIGHER proportion of men with T2DM on target control ($P < .001$) and HIGHER overall practice rating on the National Patient Survey ($P = .008$) while non-white ethnicity (black and minority ethnicity (BAME)) ($P < .001$) and income deprivation ($P < .001$) were associated with less testosterone prescribing.
There were many comorbidity factors associated with greater prescribing of testosterone, specifically COPD and some comorbidity factors related to less prescribing of testosterone, specifically the proportion of individuals over 40 years old with T2DM in the practice ($P < .001$) and more people on the hypertension and stroke/transient ischaemic attack registers.

In relation to the characteristics of the general practice, practices with a higher proportion of younger general practitioners tended to prescribe less testosterone as did general practices in the south vs the north of England, defined by their latitude.

4 | DISCUSSION

We found a strong relation ($r = .21, P < .001$) between PDE5-i prescribing and testosterone prescribing, which suggests that willingness to prescribe these agents to some degree may to some degree go hand in hand. Other factors independently linked with more testosterone prescribing were as follows: HIGHER proportion of men with type 2 diabetes (T2DM) on target control (Hb1Ac ≤ 58 mmol/mol) and HIGHER overall practice rating on the National Patient Survey for good experience, while non-white ethnicity and socio-economic deprivation were associated with less testosterone prescribing. There were a number of comorbidity factors associated with less prescribing of testosterone, such as T2DM and stroke/TIA.

The variation between general practices in prescribing of testosterone in a well-organized developed health economy is only related to a small degree, including 19 factors all with P values < 0.05 to factors that we can define, implying that most prescribing is determined by doctor preference rather than any national guidance.

Restandol was prescribed but in low volume accounting for £113,074 of costs annually ($< 0.5\%$ of total). Given that Restandol is ineffective as a testosterone replacement unless taken with a high-fat meal, it is puzzling that it is still being prescribed in 267 practices. There is no justification for withholding testosterone treatment from older men with verified hypogonadism. However, we feel that the projections that we have made are plausible. It should be pointed out that nay projections based on the EMAS findings will always exceed the prevalence in NHS practice since there is a threshold (of unknown magnitude) which stops men with symptoms from seeking medical advice from their GP.

Although there is no justification for withholding testosterone treatment from older men with verified hypogonadism, there remain major concerns about the safety and benefit of prescribing testosterone to those older men whose low testosterone levels instead may likely reflect primary issues of frailty or comorbidity.

Discrepancies among the several available guidelines do not help to clarify the scenario. The debate on who should receive testosterone supplementation continues in the literature and elsewhere. In fact, only the practices with a lower expected prevalence of hypogonadism achieved even a third of the need for testosterone that we would predict from our modelling. Greater awareness of the importance of screening for hypogonadism and clear discussion support from the local hospital laboratories may help to address this as awareness of the risks of leaving hypogonadism untreated.

A recent paper pointed to a real risk of over diagnosis and unnecessary treatment with testosterone. It was pointed out that sub-optimal sampling conditions can lead to misinterpretation of serum biochemistry with men not having verified as having hypogonadism being starged on therapy.

Nevertheless, we feel that the differences that we report between general practices and potential determinants of the differences in testosterone prescribing at a general practice level are important findings. Unless there is a strong clinical context (eg a pubertal male with small testes) or raised LH level indicating organic testicular failure, at least 2 fasted early morning samples for serum testosterone should be taken, with addition of SHBG if necessary—in order to estimate circulating free testosterone before a diagnosis of hypogonadism is made.

4.2 | Why is there such a difference between general practices in testosterone prescribing?

Our analysis has indicated that the variation between general practices in prescribing of testosterone in a well-organized developed health economy is only related to a small degree ($r^2 = .27$) to factors that we can define (Figure 5). This suggests that the variation in the amount of testosterone prescribed at a general practice level (adjusted for the number and proportion of older men) is largely related to the general practitioner choice/preference or other factors not available to our analysis, and therefore may be amenable to measures to increase knowledge and awareness with a view to prescribing testosterone where appropriate.

4.3 | Testosterone prescribing and awareness of sexual health

There was a strong univariate correlation between testosterone and PDE5-i prescribing at a GP practice level (Figure 4). This is not surprising as current expert guidelines recommend testosterone measurement for all men presenting with ED as well as screening all men with T2DM for low testosterone. It should be pointed out that in the case of men with T2DM, there are usually multifactorial causes of their ED, including vascular disease.
Unfortunately, there is no current guidance from NICE (the National Institute for Health and Care Excellence), the major organization for change in UK practice. Over 7 years 2011 to 2018, there was increase overall in testosterone prescribing in England with an increase in the proportion of gel (increasingly gel delivered by pump) prescribed.

We found that the highest prescribing practices were prescribing 4 times as much PDE5-I and 2 times as much testosterone as the lowest prescribing practices for older men. This implies that the higher testosterone prescribing practices may have a greater awareness of male sexual health. Where appropriate testosterone supplementation and PDE5-I therapy, as we and others previously have shown are associated with significantly reduced mortality and cardiovascular morbidity in men with T2DM.17,19,28 Further work is required in this area in relation to a dedicated randomized controlled trial (RCT) of PDE5-I therapy being conducted.

4.4 Prescribing patterns

The continued prescribing of oral preparations, such as Restandol in a few GP practices, appears inappropriate as injections and gels show greater efficacy and fewer adverse events.7 The predominance of depot testosterone injection is indicative of the convenience of this mode of administration, although the market share of the gel preparations is growing year by year.

4.5 The unknowns

In multivariate analysis, good glycaemic control and good patient experience of their general practice were positively associated with testosterone prescribing while economic deprivation and high proportion non-white (BME) ethnicity were negatively associated. The relation between testosterone prescribing and comorbidities was complex as described in the Results section and shown in Figure 5. A greater number of men over 40 with T2DM in a general practice were associated strongly with less testosterone prescribing. These findings merit further exploration beyond the scope of this paper.

In fact, most of the variance in testosterone prescribing at 27% was not accounted for in our analysis—so ‘doctor factors’ are likely to be the major determinant.

This is much lower than in similar analyses where we examined through similar regressions links to the use of other therapies such as antibiotics or antidepressants where $r^2 > .5$ were found.30,31

All these factors and influences merit further investigation.

4.6 Strengths and Weaknesses

A significant strength of this paper is that we have used England national data for 2018/2019 covering all general practices. A weakness is that the data analysed are at general practice level, not individual patient level. Furthermore, our study was not configured to look for factors beyond those reported in national-level databases that may associate with the likelihood of a general practice to prescribe testosterone. We did not have access to data concerning rates of prostate cancer or polycythaemia. On the former point, the consensus is that there is no evidence that testosterone treatment in hypogonadal man actually causes prostate cancer.32 Also, we have not made any international comparisons (the topic of our next paper in this area).

We have made a number of assumptions, for example, that our modelling of EMAS data of the likelihood of an older man being hypogonadal is valid in England in 2018/19 and that lower testosterone levels found in men with obesity and diabetes reflect an organic process of hypogonadism, rather than being a physiological phenomenon. Furthermore, the volume of testosterone prescribed at any general practice can be affected by dosing frequency. Finally, we were not able here to look at specialist recommendations or hospital prescribing.

5 CONCLUSIONS

The level of awareness in the population and family doctors of the importance of screening for and treating HG has significant consequences for quality of life, longer term general health and mortality. If doctors are not prompting older males to consider these conditions and so are not detecting and treating the symptomatic patients, then it is likely that the much higher proportion of less symptomatic patients may go undetected.

The variation in testosterone prescribed at a general practice level is largely related to the general practitioner choice and therefore may be amenable to measures to increase knowledge and awareness. More consistent prescribing of testosterone in the UK and in other healthcare systems, backed by robust national/international guidance and training that is independent of ‘Pharma’, so as to improve the quality of diagnosis, can only serve to improve the health prospects of men with hypogonadism at all stages of life.

CONFLICT OF INTERESTS

No author has any conflict of interest.

ORCID

Adrian H. Heald https://orcid.org/0000-0002-9537-4050
Michael Stedman https://orcid.org/0000-0002-0491-7823
Mark Livingston https://orcid.org/0000-0001-6878-0769

REFERENCES

1. Rabijewski M, Papierska L, Kozakowski J, Zgliczyński W. The high prevalence of testosterone deficiency in population of Polish men over 65 years with erectile dysfunctions. Aging Male. 2012;15:258-262.
2. Rey RA, Grinspon RP, Gottlieb S, et al. Male hypogonadism: an extended classification based on a developmental, endocrine physiology-based approach. Andrology. 2013;1:3-16.
3. Wu FC, Tajar A, Beynon JM, et al. Identification of late-onset hypogonadism in middle-aged and elderly men. *N Engl J Med*. 2010;363:123-354.

4. Saad F, Röhrig G, von Haehling S, Traish A. Testosterone deficiency and testosterone treatment in older men. *Gerontology*. 2017;63:144-156.

5. Tsametis CP, Isidori AM. Testosterone replacement therapy: For whom, when and how? *Metabolism*. 2018;86:69-78.

6. Bhasin S, Brito JP, Cunningham GR, et al. Testosterone therapy in men with hypogonadism: an endocrine society clinical practice guideline. *J Clin Endocrinol Metab*. 2018;103:1715-1744.

7. Mulhall JP, Trost LW, Brannigan RE, et al. Evaluation and management of testosterone deficiency: AUA guideline. *J Urol*. 2018;200:423-432.

8. Livingston M, Downie P, Hackett G, Marrington R, Heald A, Ramachandran S. An audit of the measurement and reporting of male testosterone levels in UK clinical biochemistry laboratories. *Int J Clin Pract*. 2020;74:e13607.

9. Bojesen A, Gravholt CH. Klinefelter syndrome in clinical practice. *Nat Clin Pract Urol*. 2007;4:192-204.

10. American Diabetes Association. *Statistics about Diabetes [Internet]*. Arlington, VA: American Diabetes Association. Available from: http://www.diabetes.org/diabetes-basics/statistics Accessed January 1, 2020

11. Hackett G, Kirby M, Wylie K, et al. The BSSM guidelines on erectile dysfunction. *J Sex Med*. 2018;15:430-457.

12. The American Association of Clinical Endocrinologists and American College of Endocrinology (2017) Guidelines on the care of patients with Obesity. https://www.aace.com/publications/guidelines. Accessed February 17, 2019

13. Hippisley-Cox J, Coupland C, Brindle P. Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: prospective cohort study. *BMJ*. 2017;357:j2099. https://doi.org/10.1136/bmj.j2099 (Published 23 May 2017).

14. https://www.endocrine.org/clinical-practice-guidelines. Accessed December 10, 2020

15. https://www.mja.com.au/journal/2016/205/5/endocrine-society-australia-position-statement-male-hypogonadism-part-2. Accessed December 10, 2020

16. Stedman M, Livingstone M, Albanese M, Hackett G, Heald AH. Hypogonadism is not being sufficiently recognised in 99% of general practices/family doctor surgeries. *Int J Clin Pract*. 2020;74(2):e13445.

17. Hackett G, Heald AH, Sinclair A, Jones PW, Strange RC, Ramachandran S. Serum testosterone, testosterone replacement therapy and all-cause mortality in men with type 2 diabetes: retrospective consideration of the impact of PDE5 inhibitors and statins. *Int J Clin Pract*. 2016;70:244-253.

18. Anderson SG, Hutchings DC, Woodward M, et al. Phosphodiesterase type-5 inhibitor use in type 2 diabetes is associated with a reduction in all-cause mortality. *Heart*. 2016;102:1750-1756.

19. Andersson DP, Trole Lagerros Y, Grotta A, Bellocco R, Lehtihet MJ. Association between treatment for erectile dysfunciton and death or cardiovascular outcomes after myocardial infarction. *Heart*. 2017;103:1264-1270.

20. https://www.gp-patient.co.uk/. Accessed January 18, 2020

21. https://oqf.digital.nhs.uk/. Accessed January 19, 2020

22. https://digital.nhs.uk/data-and-information/clinical-audits-and-registries/national-diabetes-audit. Accessed February 13, 2020

23. GP Practice Prescribing Presentation-level Data. NHS Digital. https://digital.nhs.uk/catalogue. Accessed 13 February 2020

24. Defined Daily Dose (DDD); ATC/WHO. http://www.whocc.no/atc_ddd_index Accessed January 19, 2020

25. Ross A, Bhasin S. Hypogonadism: Its prevalence and diagnosis. *Urol Clin North Am*. 2016;43:163-176.

26. Al-Sharefi A, Wilkes S, Jayasena CN, Quinton R. How to manage low testosterone level in men: a guide for primary care. *Br J Gen Pract*. 2020;70:364-365.

27. Lunenfeld B, Mskhalaya G, Zitzmann M, et al. Recommendations on the diagnosis, treatment and monitoring of hypogonadism in men. *Aging Male*. 2015;18:5-15.

28. Hackett G, Heald AH, Sinclair A, Jones PW, Strange RC, Ramachandran S. Serum testosterone, testosterone replacement therapy and all-cause mortality in men with Type 2 Diabetes: Retrospective Consideration of the impact of PDE5 Inhibitors and Statins. *Int J Clin Pract*. 2016;70:244-253.

29. Vermeulen A, Verdonck L, Kaufman JM. A critical evaluation of simple methods for the estimation of free testosterone in serum. *J Clin Endocrinol Metab*. 1999;84:3666-3672.

30. Pedman B, Lunt M, Davies M, et al. Controlling antibiotic usage—A national analysis of General Practitioner/Family Doctor practices links overall antibiotic levels to demography, geography, comorbidity factors with local discretionary prescribing choices. *Int J Clin Pract*. 2020.e13515. https://doi.org/10.1111/ijcp.13515. Online ahead of print.

31. Heald AH, Stedman M, Davies M, et al. Influences on the use of antidepressants in primary care: All England general practice-level analysis of demographic, practice-level and prescriber factors. *Hum Psychopharmacol*. 2020.e2741. 35(5):e2741. https://doi.org/10.1002/hup.2741. Online ahead of print.

32. Kaplan AL, Hu JC, Morgentaler A, Mulhall JP, Schulman CC, Montorsi F. Testosterone Therapy in Men With Prostate Cancer. *Eur Urol*. 2016;69:894-903.

How to cite this article: Heald AH, Stedman M, Whyte M, et al. Lessons learnt from the variation across 6741 family/general practices in England in the use of treatments for hypogonadism. *Clin Endocrinol (Oxf)*. 2021;94:827–836. https://doi.org/10.1111/cen.14412