Concentration-Dependent Dual Mode of Zn Action at Serotonin 5-HT1A Receptors: In Vitro and In Vivo Studies

Grzegorz Satała¹ · Beata Duszyńska¹ · Katarzyna Stachowicz¹ · Anna Rafalo¹ · Bartłomiej Pochwat¹ · Christine Luckhart² · Paul R. Albert² · Mireille Daigle² · Kenji F. Tanaka³ · René Hen⁴ · Tomasz Lenda¹ · Gabriel Nowak¹ · Andrzej J. Bojarski¹ · Bernadeta Szewczyk¹

Received: 20 August 2015 / Accepted: 29 November 2015 / Published online: 12 December 2015

Abstract Recent data has indicated that Zn can modulate serotonergic function through the 5-HT1A receptor (5-HT1AR); however, the exact mechanisms are unknown. In the present studies, radioligand binding assays and behavioural approaches were used to characterize the pharmacological profile of Zn at 5-HT1ARs in more detail. The influence of Zn on agonist binding to 5-HT1ARs stably expressed in HEK293 cells was investigated by in vitro radioligand binding methods using the agonist [3H]-8-OH-DPAT. The in vivo effects of Zn were compared with those of 8-OH-DPAT in hypothermia, lower lip retraction (LLR), 5-HT behavioural syndrome and the forced swim (FST) tests. In the in vitro studies, biphasic effects, which involved allosteric potentiation of agonist binding at sub-micromolar Zn concentrations and inhibition at sub-millimolar Zn concentrations, were found. The in vivo studies showed that Zn did not induce LLR or elements of the 5-HT1A receptor knockout mice. In the FST, Zn potentiated the effect of 8-OH-DPAT. However, in the FST performed with the 5-HT1A autoreceptor knockout mice, the anti-immobility effect of Zn was partially blocked. Both the binding and behavioural studies suggest a concentration-dependent dual mechanism of Zn action at 5-HT1ARs, with potentiation at low dose and inhibition at high dose. Moreover, the in vivo studies indicate that Zn can modulate both presynaptic and postsynaptic 5-HT1ARs; however, Zn’s effects at presynaptic receptors seem to be more potent.

Keywords Zn · Serotonin · 5-HT1A · Autoreceptor · Depression · Binding · Behavioural studies

Abbreviations

- DOI (±)-2,5-Dimethoxy-4-iodoamphetamine
- FBP Flat body posture
- FST Forced swim test
- FT Forepaw treading
- GalR1 Galanin 1 receptor
- HEK293 Human embryonic kidney 293
- 5-HT1AR 5-HT1A receptor
- 5-HT 5-Hydroxytryptamine (serotonin)
- 5-MeO-DMT 5-Methoxy-N,N-dimethyltryptamine
- 8-OH-DPAT 8-Hydroxy-2-(di-n-propylamino)tetrinal
- LLR Lower lip retraction
- mCPP 1-(3-Chlorophenyl)piperazine
- pCPA p-Chlorophenyllalanine
- PFC Prefrontal cortex
- WAY-100135 (S)-N-tert-Butyl-3-(4-(2-methoxyphenyl)-piperazin-1-yl)-2-phenylpropanamide dihydrochloride

Bernadeta Szewczyk
szewczyk@if-pan.krakow.pl

¹ Institute of Pharmacology Polish Academy of Sciences, Smetna 12, PL 31-343 Krakow, Poland
² Ottawa Hospital Research Institute, UOttawa Brain and Mind Research Institute, 451 Smyth Road #2464, Ottawa, ON K1H-8M5, Canada
³ Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo 160-8582, Japan
⁴ Department of Psychiatry, Columbia University Medical Center and Research Foundation for Mental Hygiene, New York State Psychiatric Institute, New York, NY 10032, USA

© The Author(s) 2015. This article is published with open access at Springerlink.com
WAY-100635 N-[2[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridyl)cyclohexanecarboxamide

Introduction

Zinc (Zn) is an essential trace element that is required for proper brain function [1]. Zn modulates neuronal excitability, plays an important role in synaptic plasticity and can function as a signalling molecule [2, 3]. Recent data have indicated that disturbances in Zn homeostasis are involved in the aetiology of some neurological disorders. Several studies, including both preclinical and clinical studies, showed that Zn deficiency leads to the development of depression [4–6] and that Zn supplementation improves the effectiveness of standard antidepressant treatment [7, 8]. One of the possible mechanisms involved in Zn antidepressant activity is the modulation of the serotonergic system through 5-HT1A and 5-HT2A receptors [9, 10]. Zn was found to enhance the effect of citalopram and fluoxetine in the forced swim test (FST) in mice, and pretreatment with an inhibitor of serotonin synthesis, p-chlorophenylalanine (pCPA), blocked the antidepressant-like effect observed in the FST [10]. Moreover, the fact that rats show an increase in the swimming but not the climbing parameter in the FST following Zn administration indicates (according to the observation of Detke et al. [11]) the involvement of the serotonin pathway in the effects of Zn in the FST [10]. Additionally, it was found that the antidepressant-like effect of Zn in the FST in mice was blocked by the 5-HT1A antagonist WAY-100635, which suggested that the modulation of the serotonergic system by Zn is mediated mostly through the 5-HT1A [10].

Further evidence for the postulated direct link between Zn and 5-HT1A receptors were recently provided by Tena-Campos et al. [12] who showed the impact of Zn homeostasis on the balance between monomers/heterodimers of 5-HT1A and galanin 1 receptor (GalR1). The latter protein was indicated as being involved in major depressive disorder by modulating 5-HT1A functionality via specific heterodimerization process [12].

The direct modulatory effect of Zn at the 5-HT1A receptor was also reported by Barrondo and Salles, who described negative allosteric modulatory properties of Zn ions against antagonist ([3H]-WAY-100635) and agonist ([3H]-8-OH-DPAT) binding at 5-HT1A receptors in cortical membranes isolated from the rat brain [13]. It should be noted, however, that the changes observed for [3H]-8-OH-DPAT (i.e. a decrease of dissociation constant (Kd) and Bmax values were demonstrated through saturation experiments only and were complex and difficult to interpret. Moreover, although studies using native tissue have strong biological significance, membranes prepared from rat cerebral cortex contain other receptors that can be targeted by [3H]-8-OH-DPAT (i.e. serotonin 5-HT7 receptors and α-2 adrenergic receptors) [14, 15], which might create an additional level of complexity in the interactions of Zn at 5-HT1A receptors. As allosteric modulation is strongly probe-dependent [16], evaluation of the effects of Zn on agonist binding is of primary importance to its action observed in vivo. Thus, we performed in vitro radioligand experiments to gain further mechanistic insight into the nature of Zn interactions at 5-HT1A receptors. In the present study, HEK293 cells expressing 5-HT1A (5-HT1A) receptors were used, which provides a homogeneous system to study effects solely attributable to the 5-HT1A subtype. The influence of Zn ions on agonist binding was investigated by saturation, competition and both association and dissociation kinetic studies using [3H]-8-OH-DPAT, a 5-HT1A agonist.

Due to their localization, neuronal 5-HT1A receptors are divided into two different classes: the 5-HT1A autoreceptors located on the soma and dendrites of serotonergic neurons in the raphe nucleus and the heteroreceptors expressed postsynaptically in the prefrontal cortex (PFC), amygdala and hippocampus [17, 18]. The activation of 5-HT1AR has been shown to induce a number of behavioural responses, including lower lip retraction (LLR), flat body posture (FBP), forepaw treading (FT), and a decrease in body temperature [19–23]. The ability of compounds to induce or block these behaviours is commonly used to differentiate and characterize their activity at pre- or postsynaptic 5-HT1A receptors. Therefore, in addition to the binding assays, we assessed the ability of Zn to produce LLR, FBP and FT in rats. We also studied both the capacity of Zn to induce hypothermia and the activity of Zn in the FST in rats as well as in wild-type and 5-HT1A autoreceptor knockout mice.

Methods

Receptor Binding Studies

Drugs

[3H]-8-OH-DPAT (135.2 Ci/mmol) was purchased from PerkinElmer and (R)-(+)8-OH-DPAT, 5-HT and ZnCl2 were obtained from Sigma-Aldrich.

Expression of the Gene for the Human 5-HT1AR

The full-length human 5HTR1A complementary DNA (cDNA), which was cloned into the mammalian expression vector pcDNA3.1(+), was obtained from the Missouri S&T cDNA Resource Center (www.cdna.org). The receptor cDNA was stably transfected into human embryonic kidney cells (HEK293, ATCC) with the use of Lipofectamine 2000 (Invitrogen). A clone yielding a high expression level of 5-HT1AR was selected during preliminary experiments, including RT-PCR and Western blot analysis.
Cell Culture and Preparation of Cell Membranes

HEK293 cells with stable expression of 5-HT₁₄R were maintained at 37 °C in a humidified atmosphere with 5 % CO₂ and were grown in Dulbecco’s Modified Eagle Medium (Lonza Ltd.) containing 10 % dialysed foetal bovine serum (Lonza Ltd.) and 500 μg/ml G418 sulphate (Sigma-Aldrich). For membranes preparation, the cells were subcultured in 150 cm² flasks, grown to 90 % confluence, washed twice with phosphate buffered saline (PBS) prewarmed to 37 °C and pelleted by centrifugation (200g for 5 min) in PBS containing 0.1 mM EDTA and 1 mM dithiothreitol. Prior to membrane preparation, the pellets were stored at −80 °C.

Preparation of Membranes for Radioligand Binding Assays

Cell pellets were thawed and homogenized in 20 volumes of 50 mM Tris–HCl buffer (pH 7.7) containing 0.1 mM EDTA and 10 mM MgCl₂, using an Ultra Turrax tissue homogenizer. The pellets were then centrifuged twice at 35,000 g for 20 min at 4 °C, with incubation for 15 min at 37 °C in between centrifugations. Membranes were aliquoted in tubes. Membrane protein concentrations were determined using the Pierce™ Coomassie (Bradford) Protein Assay Kit, with bovine serum albumin (BSA) as a standard.

Radioligand Binding Assays

[³H]-8-OH-DPAT was used as a selective 5-HT₁₄R agonist. The affinity (Kᵦ) and maximal number of binding sites (Bₘₐₓ) were measured by saturation binding experiments over a radioligand concentration range of 0.1–14 nM. The affinity shift was determined by measuring the Kᵦ obtained in saturation binding assays performed in the absence and presence of six concentrations of Zn (0.01–5 mM). Competition studies were performed with 2.5 nM of [³H]-8-OH-DPAT in the presence of various concentrations of orthosteric agonist serotonin in the absence and presence of Zn at two concentrations (10 and 500 μM). Non-specific binding was estimated in the presence of 10 μM 5-HT. The incubation buffer consisted of 50 mM Tris–HCl buffer (pH 7.7), 10 mM MgCl₂, 10 mM pargyline and 0.1 % ascobic acid. Radioligand binding assays were performed by incubating 30 μg of protein of the membrane suspension in 96-well microtitre plates for 60 min at room temperature with shaking, in a total volume of 200 μl. The binding reactions were stopped by filtration through GF/C Unifilter plates using a harvester (PerkinElmer). The plate filters were dried, and 20 μl of Ultima Gold MV (PerkinElmer) was added. Radioactivity was measured using a MicroBeta TriLux counter (PerkinElmer).

Association and Dissociation Assays

Association and dissociation rate kinetic assays were performed at room temperature using the same buffer conditions described for the equilibrium binding assays and 2.5 nM [³H]-8-OH-DPAT. Non-specific binding was defined by the addition of 10 μM serotonin. The amount of radioligand bound to the receptor was measured at different time intervals during a total incubation of 60 min in the absence or presence of 10 and 500 μM ZnCl₂. For the dissociation assay, after incubating the membranes with radioligand for 60 min to achieve equilibrium, serotonin (10 μM), either alone or together with 10 or 500 μM of ZnCl₂, was added, and the specifically bound radioligand was measured after incubations of different durations (from 0 to 60 min), which were terminated by rapid filtration.

Data Analysis

All experiments were performed in triplicate, and the results were obtained from at least three independent experiments. The data are expressed as the mean±S.D. (standard deviation). The experimental data were analysed using GraphPad Prism 5.1 for Windows (GraphPad Software, San Diego California USA, www.graphpad.com). Analysis of the saturation binding data with respect to allosteric interactions was performed with the use of equation (1) [24]:

\[
pK_{\text{App}} = -\log([B] + 10^{\log K_{\alpha}}) + \log([B] + 10^{\log K_{\beta}}) - \log d
\]

where \(K_{\text{App}} \) is the apparent equilibrium dissociation constant of radioligand A ([³H]-8-OH-DPAT) observed in the presence of modulator B (ZnCl₂); \(K_A \) and \(K_B \) are the equilibrium dissociation constants of the radioligand and allosteric modulator, respectively; \(\log d \) is a constant representing the logarithm of the quotient of \(K_A \) and \(\alpha \); and \(\alpha \) defines the cooperativity factor, the magnitude by which the equilibrium dissociation constant of either ligand for its site on the receptor is modified by the concomitant presence of the other ligand. Values of \(\alpha \) less than 1 (but greater than zero) denote negative cooperativity, values greater than 1 denote positive cooperativity and values not significantly different from 1 indicate neutral cooperativity.

Bell-shaped concentration-response curves were fit to a special model [16], based on equation (2):

\[
\rho_A = \frac{[A]}{K_A} \left(1 + \frac{\alpha[B]}{K_B} \right)
\]

where \(\rho_A \) denotes the fractional receptor occupancy by the orthosteric ligand; \([A] \) and \([B] \) are the concentrations of...
Presynaptic 5-HT_{1A}R Knockout Mice

A conditional knockout approach was used to eliminate the 5-HT_{1A}R in the raphe nuclei in adult mice. To create the conditional 5-HT_{1A}R knockout mice, a TPH2-Cre-ER^{T2} mouse line was crossed with a flx-5-HT_{1A}-flx-YFP mouse line. The TPH2-Cre-ER^{T2} confers specificity such that only serotonin neurons, which express tryptophan hydroxylase 2 (TPH2), can express Cre recombinatease to knockout the 5-HT_{1A}R gene and allow for GFP expression [25]. Once the mice reached adulthood (approximately 5–6 postnatal weeks), tamoxifen (180 mg/kg) was injected i.p. every day for five consecutive days (the tamoxifen binds to the ER^{T2} domain and enables Cre to enter the nucleus where it can excise the 5-HT_{1A}R gene, allowing for YFP expression as a marker of recombination). The mice were then left undisturbed for at least 14 days to allow for recombination and the turnover of endogenous 5-HT_{1A}Rs.

Lower Lip Retraction

LLR was assessed according to the method described by Berendsen et al., [20]. The rats were individually placed in cages (30×25×25 cm) and were scored three times, 15, 30 and 45 min after the administration of Zn as follows: 0=lower incisors not visible, 0.5=partly visible and 1=completely visible. Zn was administered at doses of 2 and 5 mg Zn/kg (given as Zn hydroaspartate, Farmapol, Poland). The maximum total score was 3/rat. In addition, the effects of Zn and WAY-100635 (0.1 mg/kg; Sigma) on the LLR induced by 8-OH-DPAT (1 mg/kg; Sigma) were tested. Zn and WAY-100635 were administered 45 min before 8-OH-DPAT, and the animals were scored 15, 30 and 45 min after the 8-OH-DPAT administration.

Behavioural Syndrome

The experiments were conducted according to previously published procedure [26], with a modification to the ranked intensity scale. Briefly, the rats were individually placed in cages (30×25×25 cm) 5 min before tested compounds were injected. Forepaw treading (FT) and flat body posture (FBP) were scored using a ranked intensity scale, where 0=absent, 1=equivocal and 2=present. The Zn (2, 5, 7.5 and 11.5 mg Zn/kg, given as a Zn hydroaspartate)-induced behavioural syndrome was scored for each animal 3, 6, 9, 12 and 15 min after the Zn treatment. Each observation session lasted for 45 s. The maximum score, which was summed over 5 observation periods, was 10 for each symptom/rat. The effect of Zn on the behavioural syndrome induced by 8-OH-DPAT (5 mg/kg) was scored using the same scale. Zn was administered 60 min before 8-OH-DPAT, and the animals were scored 3, 6, 9, 12 and 15 min after the 8-OH-DPAT treatment.

Body Temperature in Mice and Rats

The effects of Zn (2, 5, 7.5 and 11.5 mg Zn/kg for rats and 2 and 5 mg/kg for mice, given as a Zn hydroaspartate), 8-OH-DPAT (5 mg/kg) and WAY-100635 (0.1 mg/kg) on rectal body temperature were recorded 30 and 60 min after their acute administration. The results were expressed as a change in body temperature with respect to the basal body temperature, which was measured at the beginning of the experiments.
Body Temperature in 5-HT₁A Autoreceptor KO Mice

A separate experiment was performed to measure the effect of Zn on rectal body temperature in wild-type and 5-HT₁A autoreceptor KO mice; however, in this experiment, only the higher dose of Zn (5 mg Zn/kg; Zn chloride, Sigma) was used.

Forced Swim Test (FST)

Rats The test was carried out according to the method described previously [10]. On day one of the experiment, the animals were individually placed in plexiglass cylinders (40 cm in height, 18 cm in diameter), containing 25 cm of water maintained at 24–25 °C for a 15-min habituation period. After the rats were removed from the water, they were again placed in their home cages. On the second day, the rats were again placed in the cylinders, and the total duration of immobility was measured for a 5-min test period. Zn (1 or 2 mg Zn/kg, given as Zn hydroaspartate) and 8-OH-DPAT (0.1 or 0.3 mg/kg) were administered alone or jointly 30 min before the test. WAY-100635 (0.1 mg/kg) was administered 15 min before the Zn treatment.

5-HT₁A Autoreceptor KO Mice The behaviour of the mice in the water was recorded using a video camera. The test was performed under red lighting. The cylinder was filled with almost 4 l of water, to a depth that exceeded the distance to which the tail could extend, so the mouse could not balance on its tail at the bottom of the cylinder. The top of the cylinder was 9 cm above the surface of the water. The mice were placed in the individual glass cylinder (22 cm diameter × 37 cm high) for a standard 6-min test; however, the total duration of immobility from the last 4 min of the test was analysed. In this test, only one dose of Zn—5 mg Zn/kg (given as a Zn chloride)—was administered 30 min before the test.

Data Analysis

One-way ANOVA followed by Dunnett’s multiple comparison test (LLR, FBP, FT and FST) or Student’s t test (FST and body temperature in wild-type and 5-HT₁A autoreceptor KO mice) was used, and p<0.05 was considered significant.

Results

Receptor Binding Studies

The binding of [³H]-8-OH-DPAT to 5-HT₁A Rs was saturable, yielding an equilibrium constant of \(K_D = 2.9 \pm 0.1 \) nM \((n=4) \) and a maximal receptor binding of \(B_{max} = 4.5 \pm 0.3 \) pM/mg prot. Saturation isotherms obtained for six increasing concentrations of Zn (10 μM–5 mM) revealed a decrease in radioligand binding (Fig. 1a). The \(K_D \) values for [³H]-8-OH-DPAT increased from 5 nM at 10 μM of Zn to 9.6 nM at 5 mM of Zn relative to the \(K_D \) obtained for [³H]-8-OH-DPAT without Zn (Table 1). At the same time, unusual changes in \(B_{max} \) values were observed. Zn at 10 μM caused an increase in specific binding (\(B_{max} = 5.8 \pm 0.7 \) pM/mg prot.), Zn at 0.5 and 1 mM recovered the control values (4.7±0.7 and 4.0±0.6 pM/mg prot., respectively), and the two highest concentrations of Zn (2.5 and 5 mM) significantly decreased \(B_{max} \) values (3.1±1.0 and 2.2±0.8 pM/mg prot., respectively).

The data derived from the saturation experiments were fit using nonlinear regression according to equation 1 (Fig. 1b), and the calculated value of the cooperativity factor (\(\alpha = 0.37 \)) indicated negative modulation between the binding of Zn and the agonist radioligand. This is generally consistent with the results described by Barrondo and Salles for rat cortical membranes, except that increased \(B_{max} \) values at lower Zn concentrations were not observed in their saturation studies [13].

Next, a Zn titration curve against a single, fixed concentration of [³H]-OH-DPAT (2.5 nM) was evaluated in competition-like experiments. As observed in Fig. 2a, a bell-shaped binding curve was obtained, with an ~25 % increase of [³H]-8-OH-DPAT specific binding at 10 μM of Zn and subsequent inhibition at >100 μM. This type of binding is characteristic of ligands exhibiting some degree of allosteric enhancement; therefore, the classic model of negative cooperativity is not a complete description of the action of Zn ions on agonist binding at 5-HT₁A Rs. Thus, it was interesting to check the influence of Zn ions on serotonin (as an endogenous orthosteric agonist) in displacement experiments in the absence and presence of 10 and 500 μM of Zn. The 5-HT tested alone completely inhibited [³H]-8-OH-DPAT binding at 5-HT₁A Rs, with a \(K_I \) of 8.7±0.6 nM; addition of 10 μM of Zn ions caused a small but significant reduction of \(K_I \) value for 5-HT (\(K_I = 5.4 \pm 0.2 \) nM, \(p < 0.05 \), F test), while at higher Zn concentrations the affinity of 5-HT remained unchanged (\(K_I = 8.1 \pm 0.6 \) nM). Figure 2b shows a representative set of inhibition curves of [³H]-8-OH-DPAT for 5-HT obtained in the absence and presence of Zn ions.

Kinetic Studies

It is well known that allosteric modulators may increase or decrease the association and/or dissociation rates of an orthosteric ligand at its binding site in a way that enhancers increase the association rate and/or decrease the dissociation rate, whereas negative allosteric modulators act in the opposite way. On the other hand, competitive orthosteric ligands can influence the association rate by increasing the time needed for the radioligand to reach equilibrium, but do not change the dissociation rate [27].

Taking into account the complex mechanism of Zn influence on agonist binding, dissociation and association (see
Fig. 3) rates were measured in kinetic assays; the values of kinetic parameters are listed in Table 2.

In the absence of Zn, the dissociation rate for [3H]-8-OH-DPAT at 5-HT1A Rs was biphasic, and it remained biphasic at high Zn concentration, but both phases were significantly reduced without affecting the proportion of each state. However, the presence of a low concentration of Zn led to the disappearance of the fast radioligand dissociation rate, and the kinetics of [3H]-8-OH-DPAT became monophasic. These results suggest that Zn modifies receptor conformation, reducing agonist radioligand dissociation, which is in line with the enhancing effects exerted by Zn in the competition-like experiments.

As detailed in Table 2, [3H]-8-OH-DPAT (2.5 nM) binds at 5-HT1A Rs with an association rate constant (kon) of 3.4±0.4×10^8 M^-1 min^-1. In the presence of 10 μM of Zn ions, a small increase in the association rate was observed, while at a higher concentration (500 μM), Zn had no effect on the kon values.

Behavioural Studies

Effects of Zn Treatment on the LLR, FBP and FT in Rats

8-OH-DPAT (1 mg/kg), the 5-HT1A agonist, induced LLR (p<0.001) in the rats. Zn, given at a dose of 2 and 5 mg/kg, and WAY-100635, a 5-HT1A antagonist, given at the dose of 0.1 mg/kg, did not evoke LLR; however, they blocked the LLR induced by 8-OH-DPAT (Zn: p<0.05 for the dose of 2 mg/kg and p<0.001 for the dose of 5 mg/kg; p<0.01 for WAY-100635, vs. 8-OH-DPAT) (see Table 3). When given at the doses of 2, 5, 7.5 and 11.5 mg/kg, Zn did not induce FBP

| Table 1 Effects of Zn^2+ on K_D and B_max values of [3H]-8-OH-DPAT obtained in saturation binding experiments in 5-HT1A receptors in HEK293 cells |
|-----------------|--------|--------|--------|--------|--------|--------|--------|
| Zn^2+ [μM] | 0 | 10 | 100 | 500 | 1000 | 2500 | 5000 |
| K_D [nM] | 2.9±0.1| 5.0±0.1| 6.0±0.4| 6.9±0.2| 8.2±0.9| 8.6±0.6| 9.6±0.6|
| B_max [pM/mg prot] | 4.5±0.3| 5.8±0.7*| 6.2±2.0| 4.7±0.7| 4.0±0.6| 3.1±1.2*| 2.5±0.8*|

*p<0.05
or FT in the rats (see Table 4); however, at the higher doses of 11.5 mg/kg ($p < 0.001$), 7.5 and 11.5 mg/kg ($p < 0.001$ and $p < 0.01$, respectively), Zn blocked the 8-OH-DPAT-induced FBP and FT.

Table 2
Association and dissociation rate constants of $[^3H]$-8-OH-DPAT obtained in the kinetic experiments in the absence and presence of Zn

Treatment	k_{on} [M$^{-1}$ min$^{-1}$]	k_{off} fast [min$^{-1}$]	k_{off} slow [min$^{-1}$]
Control	$3.4 \pm 0.4 \times 10^{3}$	2.33 ± 0.31	0.21 ± 0.02
+10 μM Zn$^{2+}$	$6.4 \pm 0.8 \times 10^{3}$	0.25 ± 0.04	0.58 ± 0.07
+500 μM Zn$^{2+}$	$3.6 \pm 0.3 \times 10^{3}$	$0.58 \pm 0.07**$	$0.06 \pm 0.02**$

* $p < 0.07$; ** $p < 0.05$

Effects of Zn Treatment on the Body Temperature of 5-HT$_{1A}$ Autoreceptor KO Mice

The effect of Zn treatment on the body temperature of the 5-HT$_{1A}$ autoreceptor KO mice was shown in Fig. 4c. There was no difference in basal body temperature between the wild-type and 5-HT$_{1A}$ autoreceptor KO mice (37.7 ± 0.23 and 37.9 ± 0.19, respectively). Zn administered at a dose of 5 mg/kg decreased the body temperature of the wild-type mice but not of the autoreceptor KO mice ($p < 0.05$ at 30 min and $p = 0.06$ at 60 min).

Effect of Zn in the FST

Rats As shown in Fig. 5a, Zn administered at a dose of 2 mg/kg but not 1 mg/kg significantly decreased the
immobility time of the rats in the FST (p<0.01 and p>0.05, respectively). 8-OH-DPAT administered at a dose of 0.3 mg/kg (p<0.05) but not 0.1 mg/kg (p>0.05) decreased the immobility time of the rats in the FST. Zn given jointly with 8-OH-DPAT at the doses that were ineffective in the FST significantly decreased the immobility time of the rats (p<0.01) compared to the VEH-treated group. As shown in Fig. 5b, Zn at a dose of 2 and 5 mg/kg significantly decreased the immobility time of the rats in the FST (p<0.05 and p<0.01, respectively). When given alone, WAY-100635, an antagonist of 5-HT1ARs (0.1 mg/kg), did not change the behaviour of the animals in this test, but it antagonized the Zn-induced decrease in the immobility time of the rats (p<0.05 vs. the Zn-treated groups).

5-HT1A Autoreceptor KO Mice Zn administered at a dose of 5 mg/kg induced a slight (30 %) decrease in the immobility time of the 5-HT1A autoreceptor KO mice compared to the VEH-treated KO mice (see Fig. 6b), while in wild-type mice (see Fig. 6a), a significant decrease in immobility time after Zn treatment was observed (p<0.05).

Discussion

Receptor Binding Studies

As an endogenous trace element, Zn has been suggested to act as an allosteric modulator of a number of G protein-coupled receptors, such as dopamine D1, D2 and D4; melanocortin MC1 and MC4; α1A and β2 adrenergic; μ, κ and δ opioid; and serotonin 5-HT1A receptors [28]. Despite the previous identification of Zn ions as allosteric inhibitors of both agonists and antagonists of 5-HT1ARs [13], the exact mechanism of Zn’s action in relation to orthosteric agonists appears complex and is not fully understood. Thus, in the present study, an extended set of in vitro radioligand binding experiments (saturation, competition-like and kinetic tests) were undertaken using [3H]-8-OH-DPAT as an agonist probe to further characterize the effects of Zn on 5-HT1ARs.

Consistent with the data presented by Barrondo and Salles for native tissue [13], the results of the current saturation experiments using stable expression of 5-HT1ARs in HEK293 cells suggest negative allosteric modulation of Zn on [3H]-8-OH-DPAT binding (α=0.37). Nevertheless, a model of negatively cooperative interactions does not account for all of the additional data obtained in the study.

At first, Zn tested alone in a competition-like assay with [3H]-8-OH-DPAT yielded a bell-shaped binding curve, with a marked increase in agonist radioligand binding at low modulator concentrations and a decrease in binding at high concentrations (Fig. 2a). This type of curve was also shown for several adenosine A1 allosteric modulators investigated in agonist radioligand binding assays [27, 29, 30]. The results of those studies have invariably been interpreted as evidence that the investigated molecules recognize the allosteric site at low concentrations but also bind to the orthosteric site at higher concentrations, combining the two mechanisms of action: allosteric enhancement and competitive inhibition [27, 29, 30].

Interestingly, in the competition experiments, an enhancement of agonist binding to 5-HT1ARs was evident in the presence of 10 μM of Zn for 5-HT only, while a concentration of 500 μM of Zn did not change the Kd values for this orthosteric agonist. Likewise, the association kinetics of [3H]-8-OH-DPAT showed small increase in association rate (k on) at a low (10 μM) concentration of Zn ions (Table 2), and the lack of statistically significant effects on k off values at a higher Zn concentration (500 μM) was observed (Table 2, Fig. 3). However, the results of the dissociation kinetic experiments

Table 4 Induction of behavioural syndrome by Zn (A) and the effect of Zn on the 8-OH-DPAT-induced behavioural syndrome (B) (A) VEH (B) 8-OH-DPAT

Treatment	Dose (mg/kg)	Mean±SEM behavioural score
	FBP	FT
VEH	0.0±0.0	0.0±0.0
Zn 2	0.2±0.2	0.3±0.2
Zn 5	0.3±0.3	0.2±0.2
Zn 7.5	0.5±0.5	0.2±0.2
Zn 11.5	0.5±0.2	0.2±0.2
8-OH-DPAT	7.83±0.7	7.5±0.6
Zn 2	7.7±0.3	7.1±0.6
Zn 5	7.5±0.8	7.5±0.5
Zn 7.5	7.0±0.3	5.0±0.6**
Zn 11.5	3.4±0.6***	0.4±0.2***

(A) In each animal, the Zn-induced behavioural syndrome was scored at 3, 6, 9, 12 and 15 min after Zn treatment. FBP, flat body posture, and FT, forepaw treading, were scored using the following scale: 0=absent, 1=equivocal, and 2=present. The maximum score, which was summed over 5 observation periods, was 10 for each symptom/rat. (B) The effect of Zn on the behavioural syndrome induced by 8-OH-DPAT was scored using the same scale. Zn was administered 60 min before 8-OH-DPAT (5 mg/kg), and the animals were scored at 3, 6, 9, 12 and 15 min after 8-OH-DPAT treatment. The data represent the mean±SEM for n=6 rats

Table 2

Treatment	Ki M (μM)	Kd (nM)
8-OH-DPAT	0.37	0.37
Zn 0.1	0.1	0.1
Zn 0.01	0.01	0.01
Zn 0.001	0.001	0.001

(A) Values were calculated using a one-way ANOVA followed by Dunnett's post hoc test.
showed that both concentrations of Zn used slowed the radioligand dissociation rates, which is a characteristic of positive allosteric modulation (Table 2, Fig. 3).

The complex pattern of presently obtained data, when the behaviour of Zn in the saturation experiments and competition and kinetic assays are compared, supports the conclusion that the previously assumed negatively cooperative model is not a complete description of Zn’s effects on agonist binding. Because Zn displayed negative cooperative interactions with [3H]-8-OH-DPAT in the saturation experiments but caused an increase in B_max values at low concentrations and directly showed properties of positive allosteric modulation in both the competition-like and kinetic experiments, a dual mode of Zn action against agonist binding at 5-HT_1A Rs should be considered.

It is worth noting that in the case mentioned above, in which adenosine A_1 ligands showed positive cooperativity in interactions with agonists, when the same modulators were tested against antagonist probes, they were characterized only by inhibitory properties [29, 30]. Similar probe dependence can be observed by comparing the data we obtained for the effects of Zn on agonist binding at 5-HT_1A Rs with earlier results describing clear negative modulation of antagonist ([3H]-WAY-100635) binding [13].

It should be mentioned that a complex mechanism of Zn action has also been detected for several other proteins. In electrophysiological studies of 5-HT_3 receptor, low concentrations of Zn (0.3–10 μM) enhanced and high concentrations of Zn (30–200 μM) depressed, the 5-HT-induced response [31]. Biphasic effects involving potentiation at sub-micromolar and
inhibition at sub-millimolar Zn concentrations have been detected for glycine receptors [32]. Similar effects were also demonstrated for β2 adrenergic receptors, in which the presence of 5 μM of Zn enhanced agonist affinity, whereas 500 μM of Zn inhibited antagonist binding [33].

Summing up, Zn released into synaptic space from neuronal vesicles (of mostly glutamatergic terminals) was found to act at various channels and membrane receptors and these modulatory effects of Zn can be positive or negative depending on its concentration. The exact amount of Zn release is controversial; however, many laboratories have indicated that Zn increases in the extracellular space may reach 1–100 μM [34–36]. Therefore, it seems that the effects observed at lower Zn concentrations should be physiologically more relevant, especially that the elevation of extracellular Zn level, over 300 μM, is reported as neurotoxic [37].

In Vivo Studies

The results of in vivo studies provide evidence that Zn is likely to have both an agonist and antagonist profile at 5-HT1A receptors that could be a consequence of dual Zn effects at 5-HT1A receptors suggested by in vitro studies.

Body Temperature

Induction of hypothermia in response to the administration of 8-OH-DPAT is one of the parameters which have been proposed as an index of 5-HT1AR autoreceptor mediated activity [23, 38]. In our study, Zn decreased the body temperature in mice and the intensity of this effect was similar to that observed for 8-OH-DPAT. Furthermore, pretreatment with WAY-100635, the 5-HT1AR antagonist, abolished the effect induced by Zn. On the other hand, our studies using 5-HT1A autoreceptor KO mice showed that lack of this receptor completely blocked the hypothermia induced by Zn, while in wild-type littermate mice, a consistent decrease in body temperature was observed. These results are consistent with those showing that hypothermic effect of 5-HT1A agonists in mice is mediated by presynaptic 5-HT1AR [38, 39] and
indicate an agonist-like profile of Zn at presynaptic 5-HT1ARs, perhaps enhancing the action of endogenous 5-HT.

In the present studies, we found that Zn can also induce hypothermia in rats; however, this effect was observed at higher doses than in mice. It is still controversial which 5-HT1ARs namely pre- or postsynaptic are responsible for the induction of decrease in the body temperature in rats. Some data [23, 40, 41] suggest that postsynaptic rather than presynaptic 5-HT1AR is implicated in this effect in rats. Despite that these data further suggest the agonist-like profile of Zn at 5-HT1AR as in mice.

Lower Lip Retraction and 5-HT Syndrome

Another behavioural approach used to characterize 5-HT1AR mediated activity is the induction of lower lip retraction (LLR). As shown by Berendsen et al. [20, 21], LLR was induced by the 8-OH-DPAT, buspirone, ipsapirone—agonists or partial agonists with a high affinity for 5-HT1A binding sites in rat brain but not by serotonergic agents such as 5-MeO-DMT, mCPP or DOI with weaker affinity for 5-HT1AR but with high affinity for 5-HT2A, R, 5-HT2B/2C or 5-HT2A/2C, respectively [20, 21]. The effect induced by 8-OH-DPAT was attenuated by 5-HT1A antagonists such as WAY-100135 or WAY-100635 (which by themselves did not produce the LLR [42]), as well as by the above-mentioned non-selective serotonergic agents of moderate 5-HT1AR affinity which can act as antagonists of 5-HT1AR. In the case of location of receptors mediating this effect, it is suggested that LLR produced by the selective 5-HT1AR agonists has been attributed to autoreceptor activation [20, 21].

In our study, Zn did not induce LLR but significantly and dose-dependently blocked the LLR induced by 8-OH-DPAT. As was mentioned above, the LLR is specific only for compounds with high efficacy at 5-HT1ARs; thus, the lack of this effect after Zn treatment with simultaneous blockade of 8-OH-DPAT action might result from the fact that Zn, like 5-MeO-DMT, mCPP or DOI, can also modulate other types of seroton receptors, especially from 5-HT2 family. It was, for instance, found that chronic Zn administration increased the density of 5-HT2A serotonin receptors in the frontal cortex [9]. Moreover, ritanserin, the 5-HT2A/2C receptor antagonist, blocked the antidepressant-like effect of Zn in the FST [10].

Another behavioural effect induced by 5-HT1AR agonists is serotonin syndrome that is believed to reflect postsynaptic 5-HT1AR activation. It is observed after higher doses of 8-OH-DPAT and is associated with the enhanced 5-HT synthesis [43]. In the behavioural syndrome tests, Zn given alone did not evoke flat body posture or forepaw trading, however, in the higher doses strongly inhibited both FBP and FT showing a postsynaptic 5-HT1AR antagonist-like profile.

Taken together, our data suggest that Zn has concentration-dependent actions in the above-mentioned behavioural responses that are mediated by 5-HT1ARs. Thus, LLR and hypothermia are produced following administration of low doses of Zn or 8-OH-DPAT and are attributed selectively to autoreceptor activation. Interestingly, Zn induced hypothermia in mice at lower doses than in rats. Higher doses of Zn were needed to reverse 8-OH-DPAT induced LLR, and only higher doses of Zn blocked 8-OH-DPAT induced FBP/FT. These results are consistent with a potentiating effect of Zn on agonist actions at 5-HT1AR at low doses and an antagonist effect at higher doses, although the absolute dose depends on the animal model and behaviour studied.

Forced Swim Test

The 5-HT1A R agonist 8-OH-DPAT and several others serotonin agonists with varying degrees of selectivity for different subtypes of 5-HTRs produce antidepressant-like behaviour in the FST. Wieland and Lucki, [44] showed that p-chlorophenylalanine (pCPA), which is known to reduce the concentration of serotonin in the brain by inhibiting its biosynthesis, did not block the antidepressant effect of 8-OH-DPAT in the FST in rats. These and other studies suggest that the antidepressant-like effects of 5-HT1AR agonists are mediated by postsynaptic 5-HT1ARs [19, 44].

Zn also induces antidepressant-like effects in the FST both in rats and mice [10, 45–48]. Our earlier studies performed in mice [10] and the present studies in rats indicated that pretreatment with WAY-100635 blocked the effect of Zn. Furthermore, when Zn was given together with 8-OH-DPAT at the doses that were ineffective in the FST, it decreased immobility time, which suggests the additive effect of both compounds in this test and the agonist-like effect of Zn in the FST. Interestingly, the results of the 5-HT1A autoreceptor KO mice in the FST demonstrated that the lack of presynaptic 5-HT1ARs only partially blocked the anti-immobility effect induced by Zn in mice; however, pCPA pretreatment completely blocked the antidepressant-like effect of Zn in mice [10]. These data suggest that presynaptic receptors may be also implicated in the Zn-induced effects in the FST. These results also showed that Zn does not work without endogenous serotonin, which can be attributed to its allosteric mechanism of 5-HT1AR regulation because allosteric modulators may act only in conjunction with physiological receptor activation. It should be noted, however, that the allosteric nature of Zn described previously [13], which suggests only the inhibition of both agonist and antagonist interactions at 5-HT1ARs, cannot explain the agonistic-like effects of Zn observed in our in vivo studies. In contrast, the current in vitro binding data, which showed characteristics of positive allosteric modulation in the presence of 10 μM of Zn and the inhibition of agonist action at
sub-millimolar Zn concentrations, are more coherent with the results observed in vivo.

Conclusions

In summary, our studies provide new data regarding the dual mechanism of Zn action at 5-HT_{1A}Rs, which may underlie its antidepressant-like effects observed in the behavioural tests. The in vitro radioligand results revealed biphasic effects, involving allosteric potentiation of agonist binding at sub-micromolar Zn concentrations and inhibition at sub-millimolar Zn concentrations. Given the therapeutic potential of Zn, the in vitro results obtained for lower Zn concentration (10 μM) are within the range of reported extracellular free Zn concentrations (1–100 μM) and thus potentiating effects may be physiologically more relevant than inhibition observed using higher Zn concentrations at which toxic effects may be expected.

In behavioural paradigms, which are commonly used to distinguish the pharmacological profile of new compounds at 5-HT_{1A}R, both agonist and antagonist-like effects of Zn at 5-HT_{1A}Rs were found, and these data are consistent with results from the in vitro radioligand studies revealing biphasic Zn effects at 5-HT_{1A}R, involving allosteric potentiation of agonist binding and inhibition. Taking into account results of in vivo studies with the use of wild-type and 5-HT_{1A} autoreceptor knockout animals, it seems that Zn can affect both pre- and postsynaptic 5-HT_{1A}Rs. It should be, however, stressed that more studies are needed to explain this complex mechanism of antidepressant-like effect of Zn via modulation of serotonin system, especially that there are many controversies in the literature concerning the participation of the pre- and postsynaptic 5-HT_{1A}Rs in the behavioural tests in rodents.

Acknowledgments This study was supported by the grants: No. 2012/05/N/NZ7/02110 (G.S.) and No. 2013/08/M/NZ7/00518 (B.S.) from the National Science Centre, Poland; grant No. 123426 from Canadian Institutes of Health Research (P.R.A) and partially by statutory funds of the Institute of Pharmacology, Polish Academy of Sciences in Krakow.

Authors’ Contribution G.S. conducted in vitro experiments and participated in the in vitro data analysis; B.D. and A.J.B. conducted the in vitro study design and participated in the interpretation and description of the in vitro experimental data; T.L. developed and maintained the HEK293 cell line expressing 5-HT_{1A}Rs; K.S., A.R. and B.P. participated in the in vitro experimental data; M.D. and C.L. participated in the in vitro data analysis; B.D. and A.J.B. conducted the in vitro study design and participated in the interpretation and description of the in vitro experimental data; K.F.T. and R.H. generated the 5-HT_{1A} autoreceptor KO mice; P.R.A. and B.S. conceived and created the final version of the manuscript.

Compliance with ethical standards

Conflict of Interest The authors declare that they have no competing interests.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Takeda A (2000) Movement of zinc and its functional significance in the brain. Brain Res Brain Res Rev 34:137–148
2. Haase H, Maret W (2005) Fluctuations of cellular, available zinc modulate insulin signaling via inhibition of protein tyrosine phosphatases. J Trace Elem Med Biol 19:37–42
3. Smart TG, Xie X, Krishke BJ (1994) Modulation of inhibitory and excitatory amino acid receptor ion channels by zinc. Prog Neurobiol 42:393–441
4. Doboszewska U, Sowa-Kucma M, Mlyniec K, Pochwat B, Holuj M, Ostachowicz B, Pile A, Nowak G, Szewczyk B (2015) Zinc deficiency in rats is associated with up-regulation of hippocampal NMDA receptor. Prog Neuropsychopharmacol Biol Psychiatry 56:254–263
5. Mlyniec K, Davies CL, Budziszewska B, Opoka W, Reyztyns W, Sowa-Kucma M, Doboszewska U, Pile A, Nowak G (2012) Time course of zinc deprivation-induced alterations of mice behavior in the forced swim test. Pharmacol Rep 64:567–575
6. Szewczyk B (2013) Zinc homeostasis and neurodegenerative disorders. Front Aging Neurosci 5:33
7. Siwek M, Dudek D, Paul IA, Sowa-Kucma M, Zieba A, Popik P, Pile A, Nowak G (2009) Zinc supplementation augments efficacy of imipramine in treatment resistant patients: a double blind, placebo-controlled study. J Affect Disord 118:187–195
8. Siwek M, Dudek D, Schlegel-Zawadzka M, Morawska A, Piekoszewski W, Opoka W, Zieba A, Pile A, Popik P, Nowak G (2010) Serum zinc level in depressed patients during zinc supplementation of imipramine treatment. J Affect Disord 126:447–452
9. Cichy A, Sowa-Kucma M, Legutko B, Pomiery-Chamiolo L, Siwek A, Piotrowska A, Szewczyk B, Poleszak E, Pile A, Nowak G (2009) Zinc-induced adaptive changes in NMDA glutamatergic and serotoninergic receptors. Pharmacol Rep 61:1184–1191
10. Szewczyk B, Poleszak E, Wiaz P, Wrobel A, Blacharska E, Cichy A, Dydala M, Siwek A, Pomiery-Chamiolo L, Piotrowska A, Branski P, Pile A, Nowak G (2009) The involvement of serotoninergic system in the antidepressant effect of zinc in the forced swim test. Prog Neuropsychopharmacol Biol Psychiatry 33:323–329
11. Detke MJ, Rickels M, Lucki I (1995) Active behaviors in the rat forced swimming test differentially produced by serotoninergic and noradrenergic antidepressants. Psychopharmacology (Berl) 121:66–72
12. Tena-Campos M, Ramon E, Lupala CS, Perez JJ, Koch KW, Garriga P (2015) Zinc is involved in depression by modulating G protein-coupled receptor heterodimerization. Mol Neurobiol.
13. Barrondo S, Salles J (2009) Allosteric modulation of 5-HT(1A) receptors by zinc: binding studies. Neuropharmacology 56:455–462
14. Heusler P, Rauly-Lestienne I, Tourrette A, Tardif S, Allaud MC, Croville G, Cussac D (2010) Actions of the prototypical 5-HT1A receptor agonist 8-OH-DPAT at human alpha2-adrenoceptors: (+)-8-
OH-DPAT, but not (−)-OH-DPAT is an alpha2B subtype preferential agonist. Eur J Pharmacol 640:8–14

15. Shen Y, Monsma FJ Jr, Metcalf MA, Jose PA, Hamblin MW, Sibley DR (1993) Molecular cloning and expression of a 5-hydroxytryptamimine7 serotonin receptor subtype. J Biol Chem 268:18200–18204

16. Christopoulos A, Kenakin T (2002) G protein-coupled receptor allosterism and complexity. Pharmacol Rev 54:323–374

17. Albert PR, Vahid-Ansari F, Luckhart C (2014) Serotonin-prefrontal cortical circuitry in anxiety and depression phenotypes: pivotal role of pre- and post-synaptic 5-HT1A receptor expression. Front Behav Neurosci 8:199

18. Santana N, Bortolozzi A, Serrats J, Mengod G, Artigas F (2004) Expression of serotonin1A and serotonin2A receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. Cereb Cortex 14:1100–1109

19. Assie MB, Bardin L, Auclair AL, Carilla-Durand E, Depoortere R, Koek W, Skeete PM, Colpaert F, Vacher B, Newman-Tancredi A (2010) F15366: high affinity post-synaptic 5-HT1A receptor agonist: in-vivo profile in behavioural models of antidepressant and serotonergic activity. Int J Neuropsychopharmacol 13:1285–1298

20. Berendsen HH, Jenck F, Broekkamp CL (1989) Selective activation of 5HT1A receptors induces lower lip retraction in the rat. Pharmacol Biochem Behav 33:821–827

21. Berendsen HH, Bourgondien FG, Broekkamp CL (1994) Role of dorsal and median raphe nuclei in lower lip retraction in rats. Eur J Pharmacol 263:315–318

22. Cryan JF, Kehlher P, Kelly JP, Leonard BE (1999) Comparative effects of serotonergic agonists with varying efficacy at the 5-HT1A receptor on core body temperature: modification by the selective 5-HT1A receptor antagonist WAY 100635. J Psychopharmacol 13:278–283

23. Millan MJ, Rivet JM, Canton H, Le Marouille-Girardon S, Gobert A (1993) Induction of hypothermia as a model of 5-hydroxytryptaminelA receptor-mediated activity in the rat: a pharmacological characterization of the actions of novel agonists and antagonists. J Pharmacol Exp Ther 264:1364–1376

24. Leach K, Sexton PM, Christopoulos A (2011) Quantification of allosteric interactions at G protein-coupled receptors using radioligand binding assays. Curr Protoc Pharmacol 52:1.22.1–1.22.41

25. Samuels BA, Anacker C, Hu A, Levinstein MR, Pickenhagen A, Tsetsenis T, Madronal N, Donaldson ZR, Drew LJ, Dranovsky A, Gross CT, Tanaka KF, Hen R (2015) 5-HT1A receptors on mature dentate gyrus granule cells are critical for the antidepressant response. Nat Neurosci 18:1606

26. Santana N, Bortolozzi A, Serrats J, Mengod G, Artigas F (2004) Expression of serotonin1A and serotonin2A receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. Cereb Cortex 14:1100–1109

27. Christopoulos A, Kenakin T (2002) G protein-coupled receptor allosterism and complexity. Pharmacol Rev 54:323–374

28. Albert PR, Vahid-Ansari F, Luckhart C (2014) Serotonin-prefrontal cortical circuitry in anxiety and depression phenotypes: pivotal role of pre- and post-synaptic 5-HT1A receptor expression. Front Behav Neurosci 8:199

29. Bruns RF, Fergus JH (1990) Allosteric enhancement of adenosine A1 receptor binding and function by 2-amino-3-benzoylthiophenes. Mol Pharmacol 38:939–949

30. Valant C, Aurelio L, Umaliya VB, White P, Scammells PJ, Sexton PM, Christopoulos A (2010) Delineating the mode of action of adenosine A1 receptor allosteric modulators. Mol Pharmacol 78:444–455

31. Gill CH, Peters JA, Lambert JJ (1995) An electrophysiological investigation of the properties of a murine recombinant 5-HT3 receptor stably expressed in HEK 293 cells. Br J Pharmacol 114:1211–1221

32. Maksay G, Biró T (2002) Dual cooperative allosteric modulation of binding to ionotropic glycine receptors. Neurropsychopharmacology 43:1087–1098

33. Swanninath G, Steenhuys, Kobița B, Lee TW (2002) Allosteric modulation of beta2-adrenergic receptor by Zn(2+). Mol Pharmacol 61:65–72

34. Maret W (2013) Zinc biochemistry: from a single zinc enzyme to a key element of life. Adv Nutr 4:82–91

35. Qian J, Noebels JL (2005) Visualization of transmitter release with zinc fluorescence detection at the mouse hippocampal mossy fibre synapse. J Physiol 566:747–758

36. Sensi SL, Paolotti P, Koh JY, Aizenman E, Bush AI, Hershinkel M (2011) The neurophysiology and pathology of brain zinc. J Neurosci 31:16076–16085

37. Plum LM, Rink L, Haase H (2010) The essential toxin: impact of zinc on human health. Int J Environ Res Public Health 7:1342–1365

38. Bill DJ, Knight M, Forster EA, Fletcher A (1991) Direct evidence for an important species difference in the mechanism of 8-OH-DPAT-induced hypothermia. Br J Pharmacol 103:1857–1864

39. Richardson-Jones JW, Craige CP, Giard BP, Stephen A, Metzger KL, Kung HF, Gardier AM, Dranovsky A, David DJ, Beck SG, Hen R, Leonardo ED (2010) 5-HT1A autoreceptor levels determine vulnerability to stress and response to antidepressants. Neuron 65:40–52

40. Bagdy G, To CT (1997) Comparison of relative potencies of i.v. and i.c.v. administered 8-OH-DPAT gives evidence of different sites of action for hypothermia, lower lip retraction and tail flicks. Eur J Pharmacol 323:53–58

41. Schenk S, Abraham B, Arosden D, Colussi-Mas J, Do J (2013) Effects of repeated exposure to MDMA on 5HT1A autoreceptor function: behavioral and neurochemical responses to 8-OH-DPAT. Psychopharmacology (Berlin) 227:355–361

42. Przegalinski E, Filip M, Budziszewska B, Chojnacka-Wojcik E (1994) Antagonism of (+)WAY 100135 to behavioral, hypothermic and corticosterone effects induced by 8-OH-DPAT. Pol J Pharmacol 46:21–27

43. Kleven M, Ybema C, Carilla E, Hamon M, Koek W (1995) Modification of behavioral effects of 8-hydroxy-2-(di-n-propylamino)tetralin following chronic ethanol consumption in the rat: evidence for the involvement of 5-HT1A receptors in ethanol dependence. Eur J Pharmacol 281:219–228

44. Wieland S, Lucki I (1990) Antidepressant-like activity of 5-HT1A agonists measured with the forced swim test. Psychopharmacology (Berlin) 101:497–504

45. Kroczka B, Zieba A, Dudek D, Pile A, Nowak G (2000) Zinc exhibits an antidepressant-like effect in the forced swimming test in mice. Pol J Pharmacol 52:403–406

46. Kroczka B, Branski P, Palucha A, Pile A, Nowak G (2001) Antidepressant-like properties of zinc in rodent forced swim test. Brain Res Bull 55:297–300

47. Szewczyk B, Poleszak E, Sowa-Kucma M, Wrobel A, Slotwinski S, Listos J, Wlaz P, Cichy A, Siwek A, Dybala M, Golembiowska K, Pile A, Nowak G (2010) The involvement of NMDA and AMPA receptors in the mechanism of antidepressant-like action of zinc in the forced swim test. Amino Acids 39:205–217

48. Nowak G (2015) Zinc, future mono/adjunctive therapy for depression: mechanisms of antidepressant action. Pharmacol Rep 67:659–662