Supporting Information

Functionalization of α-hydroxyphosphonates as a convenient route to N-tosyl-α-aminophosphonates

Tomasz Cytlak,*a,b Monika Skibińska,a Patrycja Kaczmarek,a Marcin Kaźmierczak,a,b Magdalena Rapp,a Maciej Kubickia and Henryk Koroniak¹

¹Faculty of Chemistry, Adam Mickiewicz University in Poznań, Umultowska 89b, 61-614 Poznań, Poland.
²Centre for Advanced Technologies, Adam Mickiewicz University in Poznań, Umultowska 89c, 61-614 Poznań, Poland

E-mail: cytlak@amu.edu.pl

Table of Contents

1. ¹H, ¹³C, ³¹P and 2D NMR Spectra of Compounds..S2
2. Crystallographic Data..S55
1. \[^1\text{H}, ^{13}\text{C}, ^{19}\text{F}, ^{31}\text{P}\] and 2D NMR Spectra of Compounds

\[^1\text{H}\] NMR of rac 1a

rac 1a

rac 1a
13C NMR of rac 1a

rac 7a

1H NMR of rac 7a

rac 7a

13C NMR of rac 7a
F_3C

$\begin{array}{c}
\text{N} \\
\text{H} \\
\text{OH} \\
\text{P(O)(OEt)₂}
\end{array}$

rac 7a

$^{31}\text{P}(1\text{H})$ NMR of rac 7a

F_3C

$\begin{array}{c}
\text{N} \\
\text{H} \\
\text{OH} \\
\text{P(O)(OEt)₂}
\end{array}$

rac 7b

^1H NMR of rac 7b
^{13}C NMR of \textit{rac} 7b

$^{31}\text{P}(/^2\text{H})$ NMR of \textit{rac} 7b
H NMR of rac 8b – major rotamer

\[\text{rac 8b} \]

\[\text{F}_3\text{C} \]

\[\text{Boc} \]

\[\text{N} \]

\[\text{OH} \]

\[\text{P(O)(OEt)}_2 \]

C NMR of rac 8b – major rotamer

\[\text{rac 8b} \]

\[\text{F}_3\text{C} \]

\[\text{Boc} \]

\[\text{N} \]

\[\text{OH} \]

\[\text{P(O)(OEt)}_2 \]

\[^{13}\text{C NMR of rac 8b – major rotamer} \]

S6
S

7

P

{/1

H

NMR

of

rac 8b

1

H

NMR

of

rac 8b

$\text{b} - \text{minor rotamer}$

31P(1H) NMR of rac 8b – major rotamer

rac 8b

1H NMR of rac 8b – minor rotamer

S7
13C NMR of rac 8b – minor rotamer

31P/1H NMR of rac 8b – minor rotamer
$^{31}P(^1H)$ NMR of rac 9a

1H NMR of rac 9b
31P(1H) NMR of rac 9b

13C NMR of rac 9b
1H NMR of 11a. Mixture of 11a and 11b [1.9:1, d.r.]

13C NMR of 11a. Mixture of 11a and 11b [1.9:1, d.r.]
31P/1H NMR of 11a and 11b [1.9:1, d.r.]

HSQC of 11a. Mixture of 11a and 11b [1.9:1, d.r.]
1H NMR of 12a. Mixture of 12a and 12b [2.7:1, d.r.]

13C NMR of 12a. Mixture of 12a and 12b [2.7:1, d.r.]
31P/1H NMR of 12a and 12b [2.7:1, d.r.]

HSQC of 12a. Mixture of 12a and 12b [2.7:1, d.r.]
1H NMR of 14a. Mixture of 14a and 14b [5.4:1, d.r.]

13C NMR of 14a. Mixture of 14a and 14b [5.4:1, d.r.]
31P/1H NMR of 14a and 14b [5.4:1, d.r.]

1H NMR of 15a. Mixture of 15a and 15b [1.7:1, d.r.]
13C NMR of 15a. Mixture of 15a and 15b [1.7:1, d.r.]

31P(1H) NMR of of 15a and 15b [1.7:1, d.r.]
HSQC of 15a. Mixture of 15a and 15b [1.7:1, d.r.]

1H NMR of 16a. Mixture of 16a and 16b [10.8:1, d.r.]
13C NMR of 16a. Mixture of 16a and 16b [10.8:1, d.r.]

31P/1H NMR of 16a. Mixture of 16a and 16b [10.8:1, d.r.]
31P/1H NMR of 16b

1H NMR of 18a (3:1, r.r.)
13C NMR of 18a (3:1, r.r.)

31P(1H) NMR of 18a (3:1, r.r.)
1H NMR of 18b (8.3:1, r.r.)

13C NMR of 18b (8.3:1, r.r.)
$^3\text{P}(^1\text{H})$ NMR of 18b (8.3:1, r.r.)

^1H NMR of 19a

S25
13C NMR of 19a

31P/1H NMR of 19a
^{1}H NMR of 19a and 19b [2.6:1, d.r.]

^{13}C NMR of 19a and 19b [2.6:1, d.r.]
3P(1H) NMR of 19a and 19b [2.6:1, d.r.]

HSQC of 19a and 19b [2.6:1, d.r.]
1H NMR of 21a (1.8:1, r.r.)

13C NMR of 21a (1.8:1, r.r.)
31P/1H NMR of 21a (1.8:1, r.r.)

HSQC of 21a (1.8:1, r.r.)
1H NMR of rac 22

13C NMR of rac 22
$^{31}\text{P}(^{1}\text{H})$ NMR of rac 22

^1H NMR of rac 23a
13C NMR of rac 23a

31P(1H) NMR of rac 23a
1H NMR of rac 23b

13C NMR of rac 23b
$^{31}P(1^H)$ NMR of rac 23b

1H NMR of rac 24a. Mixture of rac 24a and 24b [6:1, d.r.]
\[\text{C NMR of rac 24a. Mixture of rac 24a and 24b [6:1, d.r.]} \]

\[\text{\(^{31}P(\text{H}) \) NMR of rac 24a and rac 24b [6:1, d.r.]} \]
\[^1\text{H NMR of 26a} \]

\[^13\text{C NMR of 26a} \]
$^{31}\text{P}/^{1}\text{H}$ NMR of 26a

^{1}H NMR of 27a
13C NMR of 27a

31P(1H) NMR of 27a
1H NMR of 27b. Mixture of 27a and 27b [1:3.5, d.r.]

13C NMR of 27b. Mixture of 27a and 27b [1:3.5, d.r.]

\[\text{27b} \]
$^3\text{P}({}^1\text{H})$ NMR of 27b and 27a [3.5:1, d.r.]

^1H NMR of 28a. Mixture of 28a and 28b [10.6:1, d.r.]
13C NMR of 28a. Mixture of 28a and 28b [10.6:1, d.r.]

31P(1H) NMR of 28a and 28b [10.6:1, d.r.]
1H NMR of 30a

13C NMR of 30a
$^3\text{P}(/	ext{^1H})$ NMR of 30a

^1H NMR of 31a
13C NMR of 31a

31P/1H NMR of 31a
1H NMR of 33a (1.5:1, r.r.) and 33b (2.2:1, r.r) [4.4:1, d.r.]

13C NMR of 33a (1.5:1, r.r.) and 33b (2.2:1, r.r) [4.4:1, d.r.]
$^{31}\text{P}(^1\text{H})$ NMR of 33a (1.5:1, r.r.) and 33b (2.2:1, r.r.) [4.4:1, d.r.]

HSQC of 33a (1.5:1, r.r.) and 33b (2.2:1, r.r.) [4.4:1, d.r.]
1H NMR of rac 34a (2.5:1, r.r.) and rac 34b (4.5:1, r.r.) [3.7:1, d.r.]

13C NMR of rac 34a (2.5:1, r.r.) and rac 34b (4.5:1, r.r.) [3.7:1, d.r.]
$^{31}\text{P}/(H)$ NMR of rac 34a (2.5:1, r.r.) and rac 34b (4.5:1, r.r.) [3.7:1, d.r.]

HSQC of rac 34a (2.5:1, r.r.) and rac 34b (4.5:1, r.r.) [3.7:1, d.r.]
H NMR of rac 36a (1.4:1, r.r.)

1H NMR of rac 36a (1.4:1, r.r.)

13C NMR of rac 36a (1.4:1, r.r.)

13C NMR of rac 36a (1.4:1, r.r.)
31P/1H NMR of rac 36a (1.4:1, r.r.)

HSQC of rac 36a (1.4:1, r.r.)
H NMR of 37a (1.2:1, r.r.)

C NMR of 37a (1.2:1, r.r.)
31P/1H NMR of 37a (1.2:1, r.r.)

HSQC of 37a (1.2:1, r.r.)
H NMR of rac 38

\[\text{CbzHN} - \text{O} - \text{P(O)(OEt)\(_2\)}} \]

rac 38

\[\text{\(^{1}H \) NMR of rac 38} \]

\[\text{\(^{13}C \) NMR of rac 38} \]
2. Crystallographic Data

Figure 1. Chain of hydrogen-bonded 4-fold screw related molecules of 10a, as seen approximately along y-direction. Hydrogen bonds are shown as thin blue lines.
Figure 2. Centrosymmetric, hydrogen-bonded dimers observed in the crystal structures of a) 9a, b) 23a, c) 34a, d) 36a, e) 38. Hydrogen bonds are shown as dashed blue lines; for 23a the dimers created by both symmetry-independent molecules are shown.

Table 1. Crystal data and refinement details
Compound
Formula
Formula
Crystal
Space
a(Å)
b(Å)
c(Å)
α(°)
β(°)
γ(°)
V(A³)
Z
d(Å)
F(000)
μ(mm⁻¹)
Θ range (°)
Reflections collected
unique
with
R(F)
wR(F²)
R(F) [all]
wR(F²) [all]
Goodness
max/min

Table 2. Hydrogen bond data (Å, °) with s.u.’s in parentheses
D
8a
O10
10a
O10
23a
N10A
N10B
N3
C3
34a
N10
36a
N10

S56
N17	H17	O2vii	0.88	1.92	2.778(6)	166

Symmetry codes: \(^{i} 1-x,1-y,-z \); \(^{ii} 3/2-y,1/2+x,1/4+z \); \(^{iii} 2-x,1-y,-z \); \(^{iv} -x,2-y,1-z \); \(^{v} 1-x,1-y,2-z \); \(^{vi} 1-x,-y,-z \); \(^{vii} 1-x,1-y,1-z \).