White matter changes on magnetic resonance imaging in a patient with neurodegenerative disease

Manjula C. Caldera, Inuka Kishara Gooneratne, Ranjanie Gamage, Sujith Priyankara Perera
Institute of Neurology, National Hospital Sri Lanka, Colombo, Sri Lanka

For correspondence:
Dr. Inuka Kishara Gooneratne, 10/1, Borella Cross Road, Colombo 8, Sri Lanka. E-mail: kishig@gmail.com

Ann Indian Acad Neurol 2013;16:670-1

A 14-year-old Sri Lankan male had progressive dysarthria, dysmetria, gait ataxia, tremor, bradykinesia for 6 years with cognitive decline ensuing 1 year prior to admission. His sister was suffering from a similar illness. His parents were non-consanguineous. On examination, the patient had a Glasgow coma score of 8. He had quadrihypermic reflexes with extensor plantar response. Cerebellar assessment was difficult. Cogwheel rigidity was noted. There was no flapping tremor. Hepatosplenomegaly was elicited on abdominal examination. Kayser-Fleischer (KF) rings were confirmed by slit lamp examination.

Magnetic resonance imaging (MRI) showed increased signal intensity on T2-weighted image in basal ganglia and supratentorial with infratentorial gray and white matter [Figure 1].

Biochemical analysis is as follows: Serum ceruloplasmin level - 1 mg/dl (18-45), urinary copper excretion - 4.5 µmol/24 h, Aspartate transaminase (AST) (SGOT) - 48 U/l (10-35), Alanine transaminase (ALT) (SGPT) - 57 U/l (10-40), alkaline phosphatase - 226 U/l (100-360), serum bilirubin - 9.2 µmol/l (5-21), serum protein - 70 g/l, albumin - 39 g/l, globulin - 31 g/l, prothrombin time - 12.8 s International normalized ratio (INR 1.3), APTT - 20 s, serum ammonia - 25 µmol/l (<35 µmol/l), Na⁺ - 140 mmol/l, K⁺ - 4.5 mmol/l, serum creatinine - 62 µmol/l. Cerebrospinal fluid analysis was normal.

Commentary

Extrapyramidal features including bradykinesia and cogwheel rigidity, hepato-splenomegaly, the presence of KF rings, very low serum ceruloplasmin levels and increased urinary copper excretion seen in the above patient confirmed Wilson disease (WD). In the majority of patients with symptomatic WD neuroimaging studies are abnormal. WD has a wide spectrum of neuroimaging abnormalities.[1] The most conspicuous observations are atrophy of the brain and signal abnormalities in the basal ganglia. However, nearly all areas of gray and white matter can have T2 high signal changes.[2] The above case highlights the striking white matter changes on MRI.

The white matter changes in the above patient are diffuse. When a child presents with progressive cognitive decline over a long period of time with such MRI changes a heritable leukoencephalopathy needs to be considered. When the changes are diffuse and the patient does not have megalencephaly the differentials to be considered are: Vanishing white matter disease, Pelizaeus-Merzbacher disease and mitochondrial disorders.[3] It is unusual for WD to present with diffuse white matter changes as the changes are generally found in the posterior part of the brain. However, clinical and laboratory findings in the above patient confirmed WD and diffuse changes have been reported previously.[2] The high signal intensity of white matter on T2-weighted images in the above patient can be due to demyelination, softening, spongy formation and cavitary disintegration.[3]
MRI images in the above patient also demonstrate grey matter
T2 high signal intensity changes, which are due to edema gliosis
necrosis and cystic degeneration.\cite{1}

Although white matter changes are known to occur with long-term
disease or following penicillamine therapy there are cases of white
matter changes in the early stages of the disease as well. The
incidence of white matter changes have been reported by several
studies. Van Wassenaer-van Hall \textit{et al.} reported an incidence of 41%
in 1995.\cite{4} Two Indian studies revealed white matter changes in
10\% and 25\% of WD.\cite{5,6} There is a paucity of data from Sri Lanka.

This case highlights the importance of recognizing white matter
changes, which occur in WD especially when evaluating a
neuropsychiatric disorder.

\textbf{References}

1. Verma A, Singh NN, Misra S. Early white matter changes in Wilson
disease. J Assoc Physicians India 2004;52:578-9.
2. van Wassenaer-van Hall HN, van den Heuvel AG, Algra A,
Hoogenraad TU, Mali WP. Wilson disease: Findings at MR
imaging and CT of the brain with clinical correlation. Radiology
1996;198:531-6.
3. Costello DJ, Eichler AF, Eichler FS. Leukodystrophies:
Classification, diagnosis, and treatment. Neurologist 2009;15:
319-28.
4. van Wassenaer-van Hall HN, van den Heuvel AG, Jansen GH,
Hoogenraad TU, Mali WP. Cranial MR in Wilson disease:
Abnormal white matter in extrapyramidal and pyramidal tracts.
AJNR Am J Neuroradiol 1995;16:2021-7.
5. Sinha S, Taly AB, Ravishankar S, Prashanth LK, Venugopal KS,
Arunodaya GR, \textit{et al.} Wilson's disease: Cranial MRI observations
and clinical correlation. Neuroradiology 2006;48:613-21.
6. Jha SK, Behari M, Ahuja GK. Wilson's disease: Clinical and
radiological features. J Assoc Physicians India 1998;46:602-5.