The complete chloroplast genome sequence of *Picrasma quassioides* (D. Don) Benn. 1844 (Simaroubaceae)

Liu Qina, Geng Xiaoshana, Yipeng Guoa, Huang Huaxia, Zhang Huuye, Yulin Zhua and Rong Chenb

aGuangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin, PR China; bHutchison Whampoa Guangzhou Baiyunshan Chinese Medicine Co., Ltd, Guangzhou, PR China

ABSTRACT

Picrasma quassioides is a member of the Simaroubaceae family and is widely used as a medicinal plant. In this study, we sequenced and assembled the complete chloroplast genome of *P. quassioides*. The chloroplast genome is 160,015 bp in length, with a large single-copy region of 87,136 bp, a small single-copy region of 18,069 bp, and a pair of inverted repeat regions of 27,405 bp. It contains a total of 110 unique genes, including 77 protein-coding genes, 29 tRNA genes, and 4 rRNA genes. Phylogenetic analysis showed that *P. quassioides* clustered well with Simaroubaceae plants, *Eurycoma longifolia*, *Leitneria floridana*, and *Ailanthus latisimius*.

KEYWORDS: *Picrasma quassioides*; chloroplast genome; Simaroubaceae; phylogeny

ARTICLE HISTORY

Received 14 September 2021
Accepted 4 June 2022

CONTACT Rong Chen
chentianyigl@126.com
Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin, PR China

© 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ARTICLE INFORMATION

MITOCHONDRIAL DNA PART B

2022, VOL. 7, NO. 6, 1114–1116

https://doi.org/10.1080/23802359.2022.2087545
bootstrap support (100%). This result supports the fact that all those four species belong to the Simaroubaceae family.

Ethics approval and consent to participate

The data collection of plants was carried out with permission of related institution, and complied with national or international guidelines and legislation.

Author contributions

R.C. involved in the conception and design; Q.L., X.G., H.H., and Y.G. performed data analysis and interpretation; Q.L., H.Z., H.H, and Y.Z. drafted the manuscript; Q.L. and R.C reviewed the manuscript. All authors have read and agreed to the final approval of the version to be published. All authors have agreed to be accountable for all aspects of the work.

Disclosure statement

No potential conflict of interest was reported by the authors.

Data availability statement

The data that support the findings of this study are openly available in GenBank of NCBI at https://www.ncbi.nlm.nih.gov, under the accession number MZ902043. The associated BioProject, SRA, and BioSample numbers are PRJNA762200, SRR15839410, and SAMN21380154, respectively.

References

Alves IABS, Miranda HM, Soares LAL, Randau KP. 2014. Simaroubaceae family: botany, chemical composition and biological activities. Rev Bras Farmacogn-Braz J Pharmacogn. 24(4):481–501.

Bai M, Zhao WY, Xu W, Zhang YY, Huang XX, Song SJ. 2020. Triterpenoids from Picrasma quassioides with their cytotoxic activities. Phytochem Lett. 39:128–131.

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 30(15):2114–2120.

Castresana J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 17(4):540–552.
Jin JJ, Yu WB, Yang JB, Song Y, dePamphilis CW, Yi TS, Li DZ. 2020. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 21(1):241.

Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 32(1):268–274.

Rozewicki J, Li S, Amada KM, Standley DM, Katoh K. 2019. MAFFT-DASH: integrated protein sequence and structural alignment. Nucleic Acids Res. 47(W1):W5–W10.

Shi L, Chen H, Jiang M, Wang L, Wu X, Huang L, Liu C. 2019. CPGAVAS2, an integrated plastome sequence annotator and analyzer. Nucleic Acids Res. 47(W1):W65–W73.