SU(5) Grand Unified Model and Dark Matter

Shi-Hao Chen

Institute of Theoretical Physics, Northeast Normal University, Changchun 130024, P.R.China; shchen@nenu.edu.cn

Abstract

A dark matter model which is called w-matter or mirror dark matter is concretely constructed based on \((f\text{-SU}(5)) \times (w\text{-SU}(5))\) symmetry. There is no Higgs field and all masses originate from interactions in the present model. W-matter is dark matter relatively to f-matter and vice versa. In high-energy processes or when temperature is very high, visible matter and dark matter can transform from one into another. In such process energy seems to be non-conservational, because dark matter cannot be detected. In low-energy processes or when temperature is low, there is only gravitation interaction of dark matter for visible matter.
I. INTRODUCTION

What is the origin of mass? A possible answer is spontaneous symmetry-breaking. Higgs fields can cause spontaneous symmetry-breaking. But it is difficult to understand \((-\mu^2)\) in Higgs potentials. Hence dynamical breaking is considered\(^\text{[1]}\). It is not realized to construct a realistic grand unified model based the dynamical breaking according to the conventional theory.

There are many sorts of grand unified models. There are some difficulties such as proton decay in the simple \(SU(5)\) model. There are not the proton decay and quark confinement problems in a \(SU(5)\) model with hadrons as nontopological solitons\(^\text{[2]}\). This model is not contradictory to given experiments and astronomical observations up to now. Hence a \(SU(5)\) model is still possible.

Many astronomical observations show that there is dark matter. Many dark matter models were presented. A necessary inference of a quantum field theory without divergence is just that there must be dark matter \((w - matter)\) which and visible matter are symmetric and there is no interaction except the gravitation between both\(^\text{[3]}\). The energy density \(\rho_0\) is zero without normal ordering of operators and all loop corrections are finite in the quantum field theory. The sort of dark matter \((w - matter)\) is called mirror matter which is discussed in detail in Refs\(^\text{[4]}\).

A dark matter model which is called \(w - matter\) or mirror dark matter is concretely
constructed based on $SU_f(5) \times SU_w(5)$ symmetry in the present paper. There is no Higgs field and all masses originate from interactions in the present model. W – matter is dark matter relatively to f – matter and vice versa. In high-energy processes or when temperature is very high, visible matter and dark matter can transform from one into another. In such process energy seems to be non-conservational, because dark matter cannot be detected. In low-energy processes or when temperature is low, there is only gravitation interaction of dark matter for visible matter.

In section 2, Lagrangian of the $SU_f(5) \times SU_w(5)$ model is constructed; In section 3, symmetry spontaneously breaking is discussed; In section 4, the physical significance of the present model is given; Section 5 is the conclusion.

II. LAGRANGIAN OF THE $SU_f(5) \times SU_w(5)$ MODEL

Conjecture 1 There are two sorts of matter which are called fire–matter (f–matter) and water–matter (w–matter), respectively. Both are symmetric and have $SU_f(5) \times SU_w(5)$ symmetry. There is no other interaction except the gravitation between both and the coupling (5) of f-scalar fields and w-scalar fields.

The conjecture, in fact, is a necessary inference of a quantum field theory without divergence in which all loop-corrections are finite and the energy density ρ_0 of the vacuum state must be zero without normal ordering of operators3. It is obvious that the conjecture is consistent with a sort of dark matter model which is called w– matter3 or mirror dark matter4.

Based the conjecture, the Lagrangian density of the $SU_f(5) \times SU_w(5)$ model can be taken as

$$\mathcal{L} = \mathcal{L}_f (\chi_f, \Psi_f, G_f, \Phi_f, H_f) + \mathcal{L}_w (\chi_w, \Psi_w, G_w, \Phi_w, H_w) + \mathcal{L}_\Omega + V,$$ \hspace{1cm} (1)

$$V = V_f + V_w + V_\Omega + V_I,$$

$$V_f = \frac{1}{4} a (Tr \Phi_f^2)^2 + \frac{1}{2} b Tr (\Phi_f^4) + \frac{1}{4} \xi (H_f^+ H_f)^2 + \frac{1}{2} \zeta H_f^+ H_f Tr \Phi_f^2 - \frac{1}{2} \zeta H_f^+ \Phi_f^2 H_f,$$ \hspace{1cm} (2)

$$V_w = \frac{1}{4} a (Tr \Phi_w^2)^2 + \frac{1}{2} b Tr (\Phi_w^4) + \frac{1}{4} \xi (H_w^+ H_w)^2 + \frac{1}{2} \zeta H_w^+ H_w Tr \Phi_w^2 - \frac{1}{2} \zeta H_w^+ \Phi_w^2 H_w,$$ \hspace{1cm} (3)

$$V_\Omega = \frac{1}{4} \lambda \Omega^4, \quad \mathcal{L}_\Omega = \frac{1}{2} \partial_\mu \Omega \partial^\mu \Omega.$$ \hspace{1cm} (4)
\[V_I = -\frac{1}{15} w \Omega^2 (Tr \Phi_f^2 + Tr \Phi_w^2) - \frac{2A}{225} Tr \Phi_f^2 Tr \Phi_w^2, \]

where \(\chi \) and \(\Psi \) denote fermion fields, and \(G \) the \(SU(5) \) gauge fields. \(\Omega, \Phi \) and \(H \) are the 1, 24 and 5 representations, respectively. It should be pointed out that all the scalar fields are not Higgs fields because they are all massless before symmetry breaking.

Similarly to the conventional \(SU(5) \) model, the possible fermion states for the first generation are

\[
\Psi_{fL} = \frac{1}{\sqrt{2}} \begin{pmatrix}
0 & u_{f3}^c - u_{f2}^c - u_{f1} - d_{f1} \\
-u_{f3}^c & 0 & u_{f1}^c - u_{f2} - d_{f2} \\
u_{f2}^c - u_{f1} & 0 & -u_{f3} - d_{f3} \\
d_{f1} & d_{f2} & d_{f3} & e^+_f & 0
\end{pmatrix}
, \quad \Psi_{fR} = \begin{pmatrix}
d_{f1} \\
d_{f1} \\
\end{pmatrix}
\]

\[
\Psi_{wL} = \frac{1}{\sqrt{2}} \begin{pmatrix}
0 & u_{w3}^c - u_{w2} - u_{w1} - d_{w1} \\
-u_{w3}^c & 0 & u_{w1}^c - u_{w2} - d_{w2} \\
u_{w2}^c - u_{w1} & 0 & -u_{w3} - d_{w3} \\
d_{w1} & d_{w2} & d_{w3} & e^+_w & 0
\end{pmatrix}
, \quad \Psi_{wR} = \begin{pmatrix}
d_{w1} \\
d_{w1} \\
e^+_w \\
\end{pmatrix}
\]

The other possible model is an \(SU(5) \) grand unified model with hadrons as nontopological solitons\([2]\). The conclusions of the present paper are independent of a concrete model.

III. SYMMETRY SPONTANEOUSLY BREAKING AND TEMPERATURE EFFECTS

For simplicity, we do not consider the couplings \(\Omega \) and \(\Phi \) with \(\chi \) for a time. Ignoring the contributions of the scalar fields and the fermion fields to one loop correction and only considering the contribution of the gauge fields to one-loop correction, when \(\phi_s \ll kT \), \(k \) is the Boltzmann constant, similarly to Ref. [1], the finite-temperature effective potential
approximate to 1-loop in flat space can be obtained

\[
V = \frac{\lambda}{8} T^2 \Omega^2 + \frac{1}{4} \lambda \Omega^4 - \frac{A}{2} \varphi_f^2 \varphi_w^2 - \frac{1}{2} w \Omega^2 (\varphi_f^2 + \varphi_w^2)
+ \frac{D}{4!} \varphi_f^4 + B \varphi_f^4 \left(\ln \frac{\varphi_f^2}{\sigma^2} - \frac{1}{2} \right) + CT^2 \varphi_f^2
+ \frac{D}{4!} \varphi_w^4 + B \varphi_w^4 \left(\ln \frac{\varphi_w^2}{\sigma^2} - \frac{1}{2} \right) + CT^2 \varphi_w^2,
\]

(8)

where

\[
\Phi_s = \text{Diagonal} \left(1, 1, 1, -\frac{3}{2}, -\frac{3}{2} \right) \varphi_s,
\]

(9)

\[
B \equiv \frac{5625}{1024 \pi^2} g^4, \quad \frac{(225a + 105b)}{16} \equiv \frac{D}{4!} + \frac{11}{3} B, \quad C \equiv \frac{75}{16} (kg)^2,
\]

\(\sigma\) is regarded as a constant, and the terms independent of \(\Omega\) and \(\Phi\) are neglected.

According to the mirror dark matter model, the temperature of mirror matter is strikingly lower than that of visible matter. But this is not necessary when a cosmological model is considered. We will discuss the problem in another paper. The temperature \(T_f\) of \(f\)–matter may be different from \(T_w\) of \(w\)–matter in the present model as well, but for simplicity we take \(T_f = T_w\).

The conditions by which \(V\) takes its extreme values are

\[
\left[\lambda \overline{\Omega}^2 - w (\overline{\varphi_f^2} + \overline{\varphi_w^2}) + \frac{\lambda}{4} T^2 \right] \overline{\Omega} = 0,
\]

(10a)

\[-w \overline{\Omega}^2 - A \overline{\varphi_w^2} + \frac{D}{6} \overline{\varphi_f^2} + 4B \overline{\varphi_f^2} \ln \frac{\overline{\varphi_f^2}}{\sigma^2} + 2CT^2 = 0,
\]

(10b)

\[-w \overline{\Omega}^2 - A \overline{\varphi_f^2} + \frac{D}{6} \overline{\varphi_w^2} + 4B \overline{\varphi_w^2} \ln \frac{\overline{\varphi_w^2}}{\sigma^2} + 2CT^2 = 0.
\]

(10c)

When \(T \sim 0\),

\[
\overline{\varphi_f^2} = \overline{\varphi_w^2} \equiv \sigma_0^2 = \sigma^2 \exp M, \quad M \equiv \frac{1}{4B} \left(A + \frac{2w^2}{\lambda} - \frac{D}{6} \right),
\]

\[
\overline{\Omega_0^2} = \nu_0^2 = \frac{2w}{\lambda} \sigma^2 \exp M,
\]

(11a)

\[
V = V_{\text{min}} = -B \sigma^4 \exp 2M.
\]

(11b)

\(\sigma^2 (T)\) and \(\nu^2 (T)\) will decrease and \(V_{\text{min}}\) will increase as temperature rises. There must be the critical temperature \(T_{cr}\) so that when \(T > T_{cr}\), the least value of \(V\) is \(V (\overline{\varphi_f} = \overline{\varphi_w} = \overline{\Omega} = 0) = 0\). \(T_{cr}\) is rough estimated to be

\[
T_{cr} = \frac{8B}{w + 8C} \sigma^2 \exp \left(M - \frac{1}{2} \right).
\]

(12)
Ω is not absolutely necessary for the symmetry breaking of the present model, but it is necessary for some a cosmological model[5].

After spontaneous symmetry-breaking, the reserved symmetry is

$$[SU_f(3) \times SU_f(2) \times U_f(1)] \times [SU_w(3) \times SU_w(2) \times U_w(1)].$$

The breaking is a sort of dynamical breaking. In other words, the interactions of the scalar fields with the gauge fields make the massless scalar fields become ‘Higgs fields’, and finally cause the spontaneous symmetry-breaking. As a consequence, the f – $particles$ (w – $particles$) can get their masses determined by the reserved symmetry $SU(3) \times SU(2) \times U(1)$ as the conventional $SU(5)$ GUT theory in which there are Higgs fields.

IV. THE PHYSICAL SIGNIFICANCE OF THE PRESENT MODEL

1. The model implies that all masses originate from interactions.

2. W – $matter$ is dark matter for f – $matter$ in low energy process, vice versa. This is because the masses of the scalar particles to be very large in low temperature so that the transformation of the f – and the w – $scalar$ particles from one into another and their effects may be ignored and there is no interaction except the coupling (5) and the gravitation between f – $matter$ and w – $matter$. This sort of dark matter is called mirror dark matter in Refs.[4].

3. In high-energy processes or when temperature is very high, visible matter and dark matter can transform from one into another. In such process energy seems to be non-conservational, because dark matter cannot be detected. The following reaction originating from (1) and (5) is an example in which visible matter transforms into dark matter.

$$p + \overline{p} \longrightarrow \varphi_A \longrightarrow \varphi_B + \varphi_{wC} + \varphi_{wD}. \quad (13)$$

In the reaction φ_{wC} and φ_{wD} and the w – $particles$ coming from the decay of φ_{wC} and φ_{wD} cannot be detected.

V. CONCLUSION

A dark matter model which is called w – $matter$ or mirror dark matter is concretely constructed based on $SU_f(5) \times SU_w(5)$ symmetry. There is no Higgs field and all masses
originate from interactions in the present model. $W – \text{matter}$ is dark matter relatively to $f – \text{matter}$ and vice versa. In high-energy processes or when temperature is very high, visible matter and dark matter can transform from one into another. In such process energy seems to be non-conservational, because dark matter cannot be detected. In low-energy processes or when temperature is low, there is only gravitation interaction of dark matter for visible matter.

Acknowledgement

I am very grateful to professor Zhao Zhan-yue and professor Wu Zhao-yan for their helpful discussions and best support.

[1] S. Coleman and E. Weinberg, Phys. Rev. D 6, (1972) 1888; R. H. Brandenberger, Rev. of Mod. Phys. 57, (1985) 1.

[2] S-H. Chen, High Energy Phys. and Nuc. Phys., 18, (1994) 317, 18, (1994) 409.

[3] S-H. Chen, 2002a, ‘Quantum Field Theory Without Divergence A’, hep-th/0203220; S-H, Chen, 2002b ‘Significance of Negative Energy State in Quantum Field Theory A’ [hep-th/0203230]; S-H, Chen, 2005a, ‘Quantum Field Theory :New Research’, O. Kovras Editor, Nova Science Publishers, Inc. p103-170; S-H, Chen, 2001, ‘A Possible Candidate for Dark Matter’, hep-th/0103234; S-H, Chen, 2005b, ‘Progress in Dark Matter Research’ Editor: J. Val Blain, pp.65-72. Nova Science Publishers, Inc.

[4] Z. Berezhiani, D Comelli and F. L. Villante, Phys. Lett. B, 503, (2001) 362; A Y. Ignatiev and R. R. Volkas, Phys. Rev. D 68, (2003). 023518; P. Ciarcelluti, astro-ph/0409630 astro-ph/0409633

[5] S-H, Chen, 2006, ‘A Possible Universal Model without Singularity and its Explanation for Evolution of the Universe’, hep-th/0611283; 2009, ‘Discussion of a Possible Universal Model without Singularity’, arXiv. 0908.1495.