Preparation of CeO$_2$/Flake-like CdS Composites as High-performance Photoanodes for Photoelectrochemical Cathodic Protection

WEI Ke-Nian1,2, LIU Zhan2, ZUO Shi-Xiang2, YAN Xiang-Yu2, WU Feng-Qin2, LI Xia-Zhang2, YAO Chao1,2, LIU Xiao-Heng1

(1. Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China; 2. Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China)

Abstract: CeO$_2$/CdS nanocomposites with the function of storing electrons and physical barrier were fabricated for photocathodic protection through a stepwise synthetic route. The obtained samples were characterized by XRD, TEM, UV-Vis and PL. The photoelectrochemical properties of CeO$_2$/CdS with different mass ratios were investigated under white light irradiation. The maximum photocurrent density of CeO$_2$/CdS (mass ratio 0.2 : 1.0) is 700 μA·cm$^{-2}$ and the potential of the 304 stainless steel coated with CeO$_2$/CdS (mass ratio 0.2 : 1.0) shifts to −650 mV (vs. SCE), which is significantly lower than the corrosion potential (−200 mV vs. SCE). The above results indicate that the CeO$_2$/CdS composites exhibit remarkable photo cathodic properties which are attributed to the heterostructure of CeO$_2$ nanoparticles and CdS nanosheets, and the structure facilitates the separation of photo-induced electron and hole. Furthermore, the CeO$_2$/CdS composites can also provide cathodic protection for 12 h in the dark.

Key words: CeO$_2$/CdS composite; heterostructure; physical barrier; photoelectrochemical cathodic protection

Steels have been widely used in marine engineering such as ship hulls, boilers and subsea equipment. However, steel corrosion has been getting more and more attention. Photoelectrochemical (PEC) cathodic protection is considered as an eco-friendly method for metals anticorrosion. The n-type semiconductor photoanode provides the photo-generated electrons for metals to achieve cathodic protection. At present, the semiconductors used for photode cathode protection are mainly TiO$_2$, SrTiO$_3$ and ZnO\cite{1}. However, the semiconductors with a wide band gap (E_g) only respond to the ultraviolet light which accounts for ~5% of sunlight, however, visible light that accounts for ~50% of sunlight cannot be fully utilized\cite{2}. In addition, these semiconductors have a high probability of recombination of photo-generated electrons and holes, resulting in the low utilization of photo-generated electrons. Moreover, the metals cannot be cathodically protected in dark condition. Therefore, it is necessary to develop a photocathode composite with low cost, visible light response, high electron utilization and electron storage.

CdS with a direct band gap of 2.42 eV is a kind of important semiconductor which is currently considered as a significant material for scientific and technological applications\cite{3-4}. At present, CdS is widely used in photocatalytic reduction of CO$_2$, photocatalytic hydrogen production and photocatalytic degradation\cite{5-7}. Unfortunately, the ultrafast recombination of photo-generated charge carriers and the strong self-oxidation of CdS significantly restrict the practical applications in the photoelectrochemical field. The combination of CdS with another semiconductor is an efficient approach to improve the photocatalytic activity and stability\cite{8}. Feng, et al\cite{9}. reported that the formation of the CdS/Br$_2$MoO$_6$ heterojunction contributed to the separation of photoinduced charge carriers. However, CdS has not been reported for photocathodic protection. Here, the combination of CeO$_2$ and CdS is examined for photoelectrochemical cathodic protection due to the suitable band gap (3.2 eV) of CeO$_2$. CeO$_2$ has been recently used as a photoactive material in solar cells and hydrogen evolution\cite{10}. In addition, as reported, CeO$_2$ is used as an electron storage in photocathode protection because of the following conditions: (1) redox activity; (2) more posi-
tive redox potential than the conduction band (CB) potential of the employed semiconductor; (3) more negative redox potential than the self-corrosion potential of the metal; (4) stability during repeated redox cycles\(^2\,11\).

Herein, CeO\(_2\)/CdS nanocomposites were prepared by a stepwise synthetic method to achieve a high photocathodic protection efficiency. CeO\(_2\) nanoparticles were distributed on the surface of CdS sheets. The photocathodic protection properties of CeO\(_2\)/CdS including Tafel plots, the photo-induced current density, electrochemical impedance spectroscopy (EIS) and the photo-generated potential were investigated.

1 Experimental

1.1 Preparation of CdS nanosheets

Sulfur powder (0.374 g) and CdCl\(_2\)·2.5H\(_2\)O (0.526 g) were dissolved in 70 mL diethylenetriamine (DETA) and stirred for 1 h. The mixed liquid was transferred to a Teflon liner and kept at a constant temperature of 80 °C for 24 h. Then, it was cooled to room temperature, centrifuged and washed with deionized water and ethanol. The product was dried at 60 °C for 12 h to obtain CdS nanosheets.

1.2 Preparation of CeO\(_2\)/CdS composites

Firstly, Ce(NO\(_3\))\(_3\)·6H\(_2\)O (0.76 g) was dissolved in 30 mL mixed solution consisted of water and ethylene glycol (mass ratio: 1/1), and stirred for 10 min. CdS (1.0 g) was added and stirred at 60 °C. 25wt% ammonia solution (4.8 mL) was added in the mixture until the color of the mixed solution changed from dark green to yellow. Finally, the above mixture solution was centrifuged and washed with deionized water and ethanol. The product was dried at 60 °C for 12 h to obtain CdS nanosheets.

1.3 Characterization

The morphology was determined by JEOL-2100 transmission electron microscopy (TEM). X-ray diffraction (XRD) was recorded on a D/MAX 2500/PC powder diffractometer (Rigaku) applying Cu K\(\alpha\) radiation source from 5° to 80° (2\(\theta\)) at a scanning rate of 3°/min. The UV-Vis diffuse reflectance spectra (DRS) were recorded on a UV-Vis spectrometer (Thermo Nicolet Evolution 500) equipped with an integrating sphere. The Photoluminescence (PL) spectra were carried on a fluorescence photometer (LS45) with the excitation wavelength of 300 nm.

1.4 Photoelectrochemical measurements

All electrochemical measurements were tested in a three-electrode experimental system at room temperature using CHI660D electrochemical workstation (Chenhua Instrument Co. Ltd, Shanghai, China). The experimental setup for photoelectrochemical protection measurements was shown in Fig. 1.

The electrolyte was 3.5wt% NaCl aqueous solution. The prepared film photoanode served as the working electrode. Pt foil and a saturated calomel electrode (SCE) were used as the counter electrode and the reference electrode, respectively. The light source was a 300 W Xenon lamp in front of a quartz window incorporated into a conventional electrolytic cell. The working electrode was prepared as follows: the as-prepared samples were well dispersed in distilled water with proper content. The dispersion was uniformly dipped using a pipette gun (50 μL) on the surface of circle 304SS electrode. Simultaneously, Nafion solution was also coated on them until the dried composite film formed.

2 Results and discussion

Fig. 2 shows XRD patterns of CeO\(_2\)/CdS, pure CdS and CeO\(_2\). The diffraction peaks at 2\(\theta\)=26.5°, 28.2°, 43.7°, 47.8° and 51.8° are attributed to the (002), (101), (110), (103) and (112) planes of pure CdS (JCPDS 41-1049) respectively\(^6\,12\,13\) (Fig. 2(a)). The peaks at 2\(\theta\)=28.5°, 33.1°, 47.5° and 56.3° correspond to the (111), (200), (220) and (311) planes of pure CeO\(_2\) (JCPDS 43-1002), respectively\(^12\,14\) (Fig. 2(e)). In Fig. 2(b–e), the peaks of CeO\(_2\)/CdS composites correspond to both CeO\(_2\) and CdS with varying intensities, confirming the successful loading of CeO\(_2\) nanoparticles on CdS nanosheets.

Fig. 3 shows TEM images of different samples. CdS exhibits a sheet-like structure with a size of about 300 nm (Fig. 3(a)). A nanoparticle with a size of 3–5 nm
can be observed (Fig. 3(b)). CeO$_2$ NPs are uniformly dispersed on CdS NSs with intimate interfacial contact which is beneficial to the efficient transfer of photogenerated charge (Fig. 3(c, d)). The HRTEM image confirms the formation of crystalline CeO$_2$ and CdS (Fig. 3(e)). The lattice spacing of 0.33 and 0.31 nm are assigned to (002) plane of CdS (JCPDS 41-1049) and (111) plane of CeO$_2$ (JCPDS 43-1002), respectively.

The light absorption of the samples are investigated by UV-Vis DRS (Fig. 4). Pure CeO$_2$ can absorb the visible light shorter than 460 nm while pure CdS can absorb the visible light shorter than 540 nm$^{[6,12]}$. Compared with CdS and CeO$_2$, CeO$_2$/CdS composites exhibit an obvious red-shift in absorption edge while the absorption intensity in the range of 350–540 nm increases. This phenomenon is attributed to the formation of heterojunction between CdS and CeO$_2$ which reduces the recombination of electron-hole and enhances light absorption. Fig. 4(c) shows that CeO$_2$/CdS (0.2 : 1) has the highest absorption intensity (Fig. 4(c)).

Fig. 5 shows PL spectra of CdS, CeO$_2$/CdS with the different contents of CeO$_2$ (0.1wt%, 0.2wt%, and 0.3wt%). The lower the intensity, the lower the recombination rate$^{[15]}$. CdS presents the highest peak intensity, revealing the highest recombination rate. PL intensity of CdS is higher than that of CeO$_2$/CdS, implying the charge carrier recombination. CeO$_2$ nanoparticles are loaded on CdS nanosheets, which can efficiently separate the photogenerated charge carriers and inhibit the recombination of photogenerated charge carriers, leading to enhance photoelectrochemical cathodic protection. In particular, CeO$_2$/CdS (0.2 : 1.0) shows the lowest peak intensity, resulting in high photocatalytic activity.

Fig. 6 displays potentiodynamic polarization curves of 304SS coated with different materials in 3.5% NaCl under on–off response of white light irradiation. The corrosion potential of the uncoated 304SS is –192 mV (vs. SCE) corresponding to current density of about 1.15×10$^{-5}$ mA·cm$^{-2}$. After coating, the corrosion potential of the coated 304SS in the dark becomes more positive, and the current density decreases by one order of magnitude, which can be ascribed to the barrier effect of the sheet-like CdS$^{[16]}$. The 304SS coated with the
Fig. 6 (a–g) Polarization curves for uncoated 304SS, 304SS coated with CeO₂/CdS (0.1 : 1.0), CeO₂/CdS (0.2 : 1.0) and CeO₂/CdS (0.3 : 1.0) in the white-light illumination and in the dark; (h) polarization curves for CeO₂/CdS (0.2 : 1.0) nanoparticles in the dark

CeO₂/CdS (0.3 : 1.0) shows the highest potential (~129 mV) and the lowest current density (1.58×10⁻⁶ mA·cm⁻²), which is related to the denser structure of CeO₂ nanoparticle and CdS nanosheets. Compared with bare 304SS, the corrosion potentials of 304SS coated with different composites are more negative and the current densities are higher under illumination, indicating that the composites generate photo-electrons and transfer to 304SS substrate[17]. Therefore, the 304SS substrate is under cathodic protection. The corrosion potential of the 304SS with CeO₂/CdS (0.2 : 1.0) coating is more negative (~–640 mV) and the photocurrent density is higher (~700 μA/cm²) than that of CeO₂/CdS (0.2 : 1.0) nanoparticles, suggesting that flake-like CdS possesses excellent physical barrier.

The transient photo-current responses of the coatings were observed upon on/off cycles of intermittent visible light illumination in Fig. 7. All the samples exhibit fast reproducible photoresponse under visible light illumination. Obviously, the current density rises sharply when the light is turned on. The current density rapidly decays to almost zero when the light is turned off. The photocurrent density of the composites is higher than that of pure CdS, which is attributed to the formation of heterojunction between CeO₂ and CdS. Under light illumination, the electrons in the CB of CdS can be more easily transferred to more positive CB of CeO₂, which leads to the higher photocurrent of the composites[18]. The photocurrent density of CeO₂/CdS (0.2 : 1.0) is the highest (~700 μA/cm²) which is consistent with the potentiodynamic polarization curves in Fig. 5. Moreover, no noticeable photocurrent degradation is detected after several on/off cycles of light illumination, indicating that the prepared films possess good photostability.

In order to evaluate the photoelectron separation, transport efficiency and corrosion resistance of the composites, EIS was tested (Fig. 8). In this model, C₁ and R₁ at high frequencies represent the capacitance and resistance of the coating while C₀, R₀ and Rₛ at low frequencies represent the double-layer capacitance, charge transfer resistance and electrolyte resistance, respectively[18]. Table 1 shows the fitting results of EIS spectra with

| Table 1 Fitting results of the Nyquist plots using the equivalent circuits of Fig. 8 |
|----------------|-------------------|----------------|-------------------|----------------|
| Electrode | Rₛ /Ω | Q₁ | n | R₀ /Ω | Q₀ | n | Rₛ /Ω |
| CeO₂/CdS(0.3 : 1.0)⁵ | 5.548 | 3.32×10⁻⁵ | 0.914 | 1.35×10⁶ | 5.11×10⁻⁵ | 1.000 | 3.73×10⁵ |
| CeO₂/CdS(0.2 : 1.0)⁵ | 4.889 | 2.85×10⁻⁵ | 0.917 | 3.35×10⁵ | 5.02×10⁻⁵ | 1.000 | 2.30×10⁵ |
| CeO₂/CdS(0.1 : 1.0)⁵ | 4.615 | 1.97×10⁻⁵ | 0.945 | 1.34×10⁵ | 5.62×10⁻⁵ | 0.907 | 2.15×10⁵ |
| CdS⁴ | 4.041 | 2.22×10⁻⁴ | 0.987 | 1.30×10⁵ | 2.46×10⁻⁴ | 0.949 | 2.40×10⁵ |
| uncoated 304SS | 4.431 | 5.99×10⁻⁵ | 1.000 | 4.50×10⁴ | 6.27×10⁻⁵ | 0.903 | 2.70×10⁵ |
| CdS⁴ | 1.968 | 1.79×10⁻⁴ | 1.000 | 8.10×10⁴ | 1.42×10⁻⁴ | 0.843 | 2.19×10⁴ |
| CeO₂/CdS(0.1 : 1.0)⁵ | 3.928 | 1.10×10⁻³ | 0.766 | 1.43×10⁴ | 5.56×10⁻⁵ | 0.884 | 1.58×10⁴ |
| CeO₂/CdS(0.2 : 1.0)⁵ | 13.39 | 9.21×10⁻⁶ | 0.859 | 2.36×10³ | 1.07×10⁻⁶ | 0.914 | 1.15×10³ |
| CeO₂/CdS(0.3 : 1.0)⁵ | 4.021 | 3.47×10⁻³ | 0.533 | 3.14×10⁴ | 8.46×10⁻³ | 0.903 | 4.35×10³ |

a-In dark condition; b-Under light illumination
different coated electrodes in 0.5 mol/L H₂SO₄ solution with and without visible light irradiation.

In Fig. 8(a), CeO₂/CdS presents an excellent corrosion resistance in the dark because the resistance of CeO₂/CdS coating is much larger than that of bare 304SS electrode\(^{[16]}\). From the fitting results in Table 1, the \(R_f \) value of CdS nanosheets \((1.30 \times 10^5 \, \Omega)\) is one order of magnitude higher than that of bare 304SS electrodes \((4.50 \times 10^4 \, \Omega)\). The sheet material shields the penetration of corrosion factors such as water, oxygen and ions, and the overlapping flakes that are parallel to each other can prolong the path of corrosion factor penetration, thus improving the corrosion resistance of the 304SS. With the increasing content of CeO₂, the \(R_f \) of the composite coatings becomes larger. The \(R_f \) of CeO₂/CdS \((0.3 : 1.0)\) coating \((1.35 \times 10^6 \, \Omega)\) is one order of magnitude higher than that of CdS nanosheet \((1.30 \times 10^5 \, \Omega)\), which is the result of the dense structure of CeO₂ nanoparticles and overlapping CdS nanosheets.

The arc diameter of the 304SS electrode with composite coatings is significantly smaller than that of the bare 304SS electrode under light irradiation (Fig. 8(a)). The charge transfer resistance \((R_{ct}) \) decreases significantly (Table 1), which is consistent with the trend of the Tafel polarization curve. These photoelectrons can reach 304SS and lead to the negative shift of the corrosion potential. In this process, the heterojunction between CeO₂ and CdS promotes the separation and transport of electrons and holes\(^{[19]}\). The charge-transfer resistance \((1.15 \times 10^3 \, \Omega)\) of CeO₂/CdS \((0.2 : 1.0)\) is the smallest in the composites, which is two orders of magnitude lower than that of bare 304SS electrode \((2.70 \times 10^5 \, \Omega)\). Therefore, CeO₂/CdS \((0.2 : 1.0)\) composite under light irradiation has the highest charge separation and transfer efficiency.

Fig. 8 (a) Nyquist plots of pure 304SS, 304SS coupled with CdS and CeO₂/CdS\((0.1 : 1)\), CeO₂/CdS\((0.2 : 1)\) and CeO₂/CdS \((0.3 : 1)\) in the dark and white-light illumination; (b) Schematics of the equivalent circuit obtained by EIS result fitting

Fig. 9 shows the open circuit potential (OCP) curves for 304SS in 3.5wt% NaCl solution under the visible light irradiation. The uncoated 304SS electrode potential is \(-189 \, \text{mV} \) (Fig. 9(a)). In the dark, 304SS electrode with CdS nanosheet coating and CeO₂/CdS \((0.2 : 1.0)\) coating are \(-160 \, \text{mV} \) (SCE) and \(-130 \, \text{mV} \) (SCE), respectively, which are consistent with the results of Fig. 6. The sheet-like structure of CdS plays a good barrier, indicating that the composites can be used as a protective layer on the substrate\(^{[17,19]}\).

When the light is turned on, the potential of the 304SS electrode drops sharply and stays at a more negative potential due to the generation of photo-generated electrons. The potential of the 304SS electrode rises when the light is turned off\(^{[19-20]}\). Consistent with the results of Fig. 6 and Fig. 7, potential of the 304SS with CeO₂/CdS \((0.2 : 1.0)\) coating electrode \((-632 \, \text{mV} \) (SCE)) is more negative than that of CdS coating \((-510 \, \text{mV} \) (SCE)), due to the formation of a heterojunction between CdS and CeO₂. The potential of 304 SS electrode with CdS coating rapidly rises back to the initial potential value while the potential 304 SS electrode with CeO₂/CdS \((0.2 : 1.0)\) coating slowly rises and remains at a lower potential when the light is turned off, which can be attributed to the storage electron function of ceria\(^{[19-20]}\). The coupled semiconductor CeO₂ is capable of storing the excess electrons which can be released during the dark. The cathodic protection can still continue before illumination is restored. Fig. 9(b) shows that CeO₂/CdS \((0.2 : 1.0)\) composites can provide electrons for 304SS in the dark for up to 12 h.

Fig. 9 OCP variations of 304SS electrodes coupled with the as-obtained samples
Based on the above results and discussion, the possible photocathodic protection mechanism of CeO$_2$/CdS composite for 304SS is proposed in Fig. 10. Photogenerated electrons on the CB of CdS can easily be transferred to 304SS under light irradiation, because the conductive potential of CdS is more negative than the self-corrosion potential of 304SS$^{[21]}$. Some photogenerated electrons of CdS is conducted to CeO$_2$ attributed to the conductive potential of CdS which is more negative than the redox potential of CeO$_2$ $^{[11,21]}$. CeO$_2$ achieves the storage and release of electrons through the following redox reactions:

$$\text{CeO}_2 + xe^- + xM^+ \rightarrow M_x\text{CeO}_2$$ \hspace{1cm} (1)

where $M=\text{H}$ and $x=1^{[11,21]}$. When the light is turned off, the electrons stored in CeO$_2$ are released and transferred to the 304SS to maintain the cathodic protection effect. Therefore, 304SS can be protected even in the dark. In summary, CeO$_2$/CdS composite can provide an enduring protection for 304SS.

3 Conclusion

CeO$_2$/CdS composites were fabricated by a stepwise synthetic approach. Under the light illumination, CeO$_2$/CdS exhibits an enhanced photo-induced current density and a more negative photo-potential shift as compared with pure CeO$_2$ and pure CdS due to the formation of a heterojunction between them, which reduces the recombination of electron-hole pairs and improves the efficiency of photo-electric conversion. Furthermore, CeO$_2$/CdS can continue to provide cathodic protection in the dark because CeO$_2$ has the function of storing electrons. At last, flake-like CdS can slow down the penetration of corrosion factors and act as a physical barrier. A variety of mechanism work synergistically to make CeO$_2$/CdS nanocomposites have a more effective photo cathodic protection on 304SS.

References:

[1] XU H M, LIU W, CAO L X, et al. Preparation of porous TiO$_2$/ZnO composite film and its photocathodic protection properties for 304 stainless steel. Appl. Surf. Sci., 2014, 301(10): 508–514.

[2] BU Y, AO J P. A review on photoelectrochemical cathodic protection semiconductor thin films for metals. Green Energy & Environ., 2017, 2(4): 331–362.

[3] LI Q, LI X, WAGEH S, et al. CdS/graphene nanocomposite photocatalysts. Advanced Energy Materials, 2015, 5(14): 1–28.

[4] FU X L, WU Z P, LEI M, et al. A facile route to silver–cadmium sulfide core-shell nanoparticles and their nonlinear optical properties. Mater. Lett., 2013, 104(3): 76–79.

[5] IJAZ S, EHSAN M F, ASHIQ M N, et al. Preparation of CdS@CeO$_2$ core/shell composite for photocatalytic reduction of CO$_2$ under visible-light irradiation. Appl. Surf. Sci., 2016, 390: 550–559.

[6] MA S, XIE J, WEN J Q, et al. Constructing 2D layered hybrid CdS nanosheets/MoS$_2$ heterojunctions for enhanced visible-light photocatalytic H$_2$ generation. Appl. Surf. Sci., 2017, 391: 580–591.

[7] YAO L L, GU J J, WANG W Q, et al. Ce$^{4+}$ as a facile and versatile surface modification reagent for templated synthesis in electrical applications. Nanoscale, 2019, 11: 2138–2142.

[8] YU J G, JIN J, CHENG B, et al. A noble metal-free reduced graphene oxide-CdS nanorod composite for the enhanced visible-light photocatalytic reduction of CO$_2$ to solar fuel. J. Mater. Chem. A, 2014, 2(10): 3407–3416.

[9] FENG Y, YAN X, LIU C B, et al. Hydrothermal synthesis of Cd$_2$Si$_2$MoO$_6$ heterojunction photocatalysts with excellent visible-light-driven photocatalytic performance. Appl. Surf. Sci., 2015, 353: 87–94.

[10] CHAUDHARY Y S, PANIGRAHI S, NAYAK S, et al. Facile synthesis of ultra-small monodisperse ceria nanocrystals at room temperature and their catalytic activity under visible light. J. Mater. Chem., 2010, 20(12): 2381–2385.

[11] SUBASRI R, DESHPANDE S, SEAL S, et al. Evaluation of the performance of TiO$_2$-CeO$_2$ bilayer coatings as photoanodes for corrosion protection of copper. Electrochem. Solid State Lett., 2006, 9(1): B1–B4.

[12] ZHANG P, LIU Y, TIAN B Z, et al. Synthesis of core-shell structured CdS@CeO$_2$ and CdS@TiO$_2$ composites and comparison of their photocatalytic activities for the selective oxidation of benzyl alcohol to benzaldehyde. Catalyst. Today, 2017, 281: 181–188.

[13] FANG J, XU L, ZHANG Z Y, et al. Au@TiO$_2$-CdS ternary nanocomposites for efficient visible-light-driven hydrogen generation. ACS Appl. Mater. Inter., 2013, 5(16): 8088–8092.

[14] PAL P, SINGHA R K, SAHA A, et al. Defect-induced efficient partial oxidation of methane over nonstoichiometric Ni/CoO$_{1.98}$ nanocrystals. J. Phys. Chem. C, 2015, 119(24): 13610–13618.

[15] ZHAO H X, CUI S, YANG L, et al. Synthesis of hierarchically meso-macroporous TiO$_2$-CdS heterojunction photocatalysts with excellent visible-light photocatalytic activity. J. Colloid Interf. Sci., 2018, 512: 47–54.

[16] GUO X Q, LIU W, CAO L X, et al. Graphene incorporated nanocrystalline TiO$_2$ films for the photocathodic protection of 304 stainless steel. Appl. Surf. Sci., 2013, 283(11): 498–504.

[17] ZHANG T T, LIU Y, LIANG J, et al. Enhancement of photoelectrochemical and photocathodic protection properties of TiO$_2$ nanotube arrays by simple surface UV treatment. Appl. Surf. Sci., 2017, 394: 440–445.

[18] HU J, GUAN Z C, LIANG Y, et al. Bi$_2$S$_3$ modified single crystaline rutile TiO$_2$ nanorod array films for photocatalytic chemical cathodic protection. Corros. Sci., 2017, 125: 59–67.

[19] REN J F, QIAN B, LI J, et al. Highly efficient polypropylene sensitized TiO$_2$ nanotube films for photocathodic protection of Q235 carbon steel. Corros. Sci., 2016, 111: 596–601.

[20] HU J, LIU Q, ZHANG H, et al. Facile ultrasonic deposition of SnO$_2$ nanoparticles on TiO$_2$ nanotube films for enhanced photo-electrochemical performances. J. Mater. Chem. A, 2015, 3(45): 22605–22613.

[21] TATSUMA T, SAITO S, OHKO Y, et al. TiO$_2$-WO$_3$ photoelectrochemical anticorrosion system with an energy storage ability. Chem. Mater., 2001, 13(9): 2838–2842.
高性能 CeO$_2$/片状 CdS 复合光电极材料的制备及在光阴极保护中应用

魏科年1,2, 刘展2, 左士祥2, 严向玉2, 吴凤芹2, 李霞章2, 姚超1,2, 刘孝恒1

(1. 南京理工大学 软化学与功能材料教育部重点实验室, 南京 210094; 2. 常州大学 石油化工学院, 江苏省先进催化与绿色制造协同创新中心, 常州 213164)

摘 要: 通过逐步合成法制备了具有储存电子和物理阻隔功能的 CeO$_2$/CdS 纳米复合材料, 并用于光电阴极保护。通过 XRD, TEM, UV-Vis 和 PL 等手段对制备的纳米复合材料进行表征。在模拟白光照射下研究不同质量比的 CeO$_2$/CdS 复合材料的光电化学性质。在黑暗条件下, 涂有 CeO$_2$/CdS(质量比 0.2 : 1.0)的 304 不锈钢涂层的电位比 CeO$_2$/CdS(质量比 0.2 : 1.0)粒子涂层更正。在白光照射下, CeO$_2$/CdS(质量比 0.2 : 1.0)复合材料的最大光电流密度为 700 μA·cm$^{-2}$, 涂有 CeO$_2$/CdS(质量比 0.2 : 1.0)的 304 不锈钢涂层的电位为-650 mV(vs. SCE), 明显低于 304 不锈钢腐蚀电位(-200 mV vs. SCE), 表明片状 CdS 具有物理阻隔性能及 CeO$_2$/CdS 复合材料具有显著的光电化学性能。这主要是由于 CeO$_2$ 纳米颗粒和 CdS 纳米片之间形成了异质结, 促进了光致电子和空穴的有效分离, 从而提高了光电转换效率。此外, 由于 CeO$_2$ 具有储存电子的功能, 在黑暗条件下可以继续释放电子, 能够提供 12 h 的阴极保护性能。

关键词: CeO$_2$/CdS 复合材料; 异质结构; 物理阻隔; 光电化学阴极保护

中图分类号: TB332 文献标识码: A