Anomalies in Radioactive Decay Rates:
A Bibliography of Measurements and Theory

M. H. McDuffie¹, P. Graham², J. L. Eppele³, J. T. Gruenwald², D. Javorsek II⁴, D. E. Krause⁵,¹, E. Fischbach¹,²,†

¹ Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907 USA
² Snare, Inc., West Lafayette, IN 47906, USA
³ School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907 USA
⁴ U.S. Air Force, Arlington, VA 22203
⁵ Department of Physics, Wabash College, Crawfordsville, IN, 47933 USA

7 December 2020

Abstract. Knowledge of the decay rates (or half-lives) of radioisotopes is critical in many fields, including medicine, archeology, and nuclear physics, to name just a few. Central to the many uses of radioisotopes is the belief that decay rates are fundamental constants of nature, just as the masses of the radioisotopes themselves are. Recently, the belief that decay rates are fundamental constants has been called into question following the observation of various reported anomalies in decay rates, such as apparent periodic variations. The purpose of this bibliography is to collect in one place the relevant literature on both sides of this issue in the expectation that doing so will deepen our understanding of the available data.

1. Introduction

In recent years numerous experiments have presented evidence questioning whether decay rates of radioactive nuclei, or equivalently their half-lives, are fundamental constants of nature, as is generally believed. As examples, data from an experiment extending between 1982–1986 at Brookhaven National Laboratory (BNL) by Alburger et al. [1] on the half-life of 32Si exhibited clear annual periodicities, which the authors could not account for in terms of temperature variations or other conventional environmental influences [2]. Similarly, data taken between 1983 and 1998 at the Physikalisch-Technische Bundesanstalt (PTB) in Germany [3] exhibited annual variations similar to those observed at BNL. Some have argued that such fluctuations are due to experimental influences and improper uncertainty calculations [1].

A possible interpretation of these data is that they may be attributable to the annually varying flux of solar neutrinos, or from a contribution of axionic dark matter,

†Corresponding author (ephraim@purdue.edu)
which were perturbing nuclear decay rates. Support for this conjecture comes from a report by Davis [5] of an increase in the number of solar neutrinos detected in his Homestake solar neutrino experiment associated with a solar storm on 4 June 1991. The subsequent observation of a precipitous drop in the decay rate of 54Mn associated with a significant solar storm on 13 December 2006 [6], further supports the suggestion that at least some nuclear decay rates could be influenced by changes in the local flux of neutrinos, or other particles such as axionic dark matter coupling to baryons.

Notwithstanding the implications of the preceding discussion, it has also become clear that not all nuclei exhibit fluctuations in response to the same perturbations. This follows, for example, from the discussion in Ref. [7] of data acquired during the GW170817 neutron star inspiral: of the three isotopes studied in the experiment described there, 44Ti and 60Co exhibited an effect similar to that observed in Ref. [8] for 32Si and 36Cl, but 137Cs did not. Since at present there is no theory to account for how some nuclear decay rates could be influenced by a flux of neutrinos or perhaps other solar influences, it is not surprising that some nuclei may be more responsive to an external influence than others.

A recent paper provides additional support for a theory in which the observed periodic variations in radioactive decays could arise from dark matter coupling to baryonic number [9]. This reference explores the similarity between signals seen in neutrino detectors and gravitational antennas during SN1987A, and a similar signal during the GW178017 neutron star inspiral in an experiment monitoring the half-life of 32Si. It is demonstrated that the similarity of these signals is attributed to the influence of a gravity wave on a component of dark matter that couples to baryons. Since this component could directly influence the decay rates of unstable nuclei, this picture provides a natural mechanism to account for gravitationally-induced variations in radioactive decays.

Although there is at present no theory to explain how different nuclei might respond differently to changes in the local flux of neutrinos, axions, or other particles in the interstellar medium, one possible mechanism relies on the known sensitivity of nuclear decay rates to the available phase space for their daughter particles.

One approach that is being explored is to assume that a component of the ambient stellar medium influences some nuclear decay rates by modifying the phase space available for their daughter particles. This “medium” approach has two attractive features: First, it could explain the surprising observation [10] that the annual fluctuations $\Delta \Gamma_i/\Gamma_i$ in many decay rates Γ_i are approximately the same, even though the magnitudes of the Γ_i vary over 9 orders of magnitude. Secondly, the neutrino kinematics in the medium picture allow for the effective observed neutrino mass $(m^2_\nu)_{\text{eff}}$ to be negative, in agreement with observation, even though the intrinsic neutrino mass (m^2_ν) is positive [10].

In summary, there is at present a growing literature from well-done experiments suggesting that some nuclear decay rates may exhibit fluctuations arising from external influences. There is also an extensive literature from equally well-done experiments
where such fluctuations were sought but not found. Since at present, there is no quantitative theory to account for the observed fluctuations, it is difficult to draw any firm conclusions about the origins of the observed fluctuations. It is clear that much remains to be learned about potential external influences on radioactive decay rates, from both experimental and theoretical standpoints.

As a means to organize the literature we have noted for each reference whether they have reported variations (V) or no variations (NV) from the expected exponential decay law. We have separately considered α-decays, β-decays, electron capture-decays and γ-decays, where appropriate. The present situation is further complicated by disagreements in the published values of the half-lives of various radionuclides, some of which we present in an appendix to the main review. Although these disagreements can be reconciled using various algorithms, the question remains as to whether they could arise from the same mechanisms which constitute the body of this review. Given the possible connection of this literature to the central focus of the present review, we have also included a selection of appropriate references, which are denoted by “D”.

In the bibliography, we have organized the literature alphabetically to allow for easy access to specific papers. Additionally, in Table 1 we have cross-referenced the experiments in a manner that allows the interested reader to focus on common features of specific experiments, such as which isotopes were studied and which detectors were employed.

By organizing the literature in this way, we hope to aid researchers in resolving the many issues that remain in this field. Any attempt to explain the anomalies by experimental or environmental effects will need to reproduce the observations in a convincing way. Similarly, any theory requiring beyond the Standard Model physics to explain the anomalies needs to be consistent with all other observations and be testable in other types of experiments.

Finally, we recognize that despite our many efforts to compile a useful reference which is as complete as possible, we may have inadvertently omitted some references which should have been included. Since we plan to update this bibliography as needed, we invite suggestions for additional references to be included in future editions. These suggestions should be sent to the corresponding author.

Acknowledgments

This article is based upon work sponsored by the Defense Advanced Research Projects Agency (DARPA). Any opinions, findings, conclusions or recommendations expressed are those of the authors and do not necessarily reflect the views of DARPA, the U.S. Air Force, the U.S. Department of Defense, or the U.S. Government. We wish to thank Bianca Caminada, Emily Kincaid, Claire Landgraf, Connor Mohs, Connor Petway, and Ethan Zweig for their help in compiling this bibliography.
References

[1] Alburger D. E., Harbottle G., Norton E. F., “Half-life of ^{32}Si,” *Earth and Planetary Science Letters*, 1986, **78**, Iss. 2-3, 168-176.

[2] Javorsek D., Sturrock P. A., Lasenby R. N., Lasenby A. N., Buncher J. B., Fischbach E., Gruenwald J. T., Hoft A. W., Horan T. J., Jenkins, J. H., et al., “Power spectrum analyses of nuclear decay rates,” *Astroparticle Physics*, 2010, **34**, Iss. 3, 173-178.

[3] Siegert H., Schrader H., Schötzig U., “Half-life measurements of Europium radionuclides and the long-term stability of detectors,” *Applied Radiation and Isotopes*, 1998, **49**, Iss. 9-11, 1397-1401.

[4] Pommé S., Stroh H., Paepen J., Van Ammel R., Marouli M., Altitzoglou T., Hult M., Kossert K., Nähle O., Schrader H., et al. “Evidence against solar influence on nuclear decay constants,” *Physics Letters B*, 2016, **761**, 281-286.

[5] Davis Jr., R. “A Review of Measurements of the Solar Neutrino Flux and their Variation,” *Nucl. Phys. B (Proc. Suppl.)*, 1996, **48**, 284–298.

[6] Jenkins, J. H., Fischbach E., “Perturbation of nuclear decay rates during the solar flare of 2006 December 13,” *Astroparticle Physics*, 2009, **31**, Iss. 6, 407-411.

[7] Fischbach E., Krause D. E., Pattermann M., Comment on “Testing claims of the GW170817 binary star inspiral affecting β-decay rates,” arXiv:2003.00092 [nucl-ex].

[8] Fischbach E., Barnes V. E., Cinko N., Heim J., Kaplan H. B., Krause D. E., Leeman J. R., Mathews S. A., Muetherthes M. J., et al., “Indications of an unexpected signal associated with the GW170817 binary neutron star inspiral,” *Astroparticle Physics*, 2018, **103**, 1-6.

[9] Agafonova, N. Yu., Malgin, A.S., Fischbach, E. “Relationship between detector signals recorded during events SN1987A and GW170817”, submitted to *Astroparticle Physics*.

[10] Muetherthes M. J., Krause D.E., Longman A., Barnes V.E, Fischbach E. “Is there a signal for Lorentz non-invariance in existing radioactive decay data?” In *Proceedings of the Seventh meeting on CPT and Lorentz symmetry*, (Edited by V. A. Kostelecký), World Scientific, Singapore, 2017, pp. 197–200.
Anomalies in Radioactive Decay Rates: A Bibliography of Measurements and Theory 5

Table 1: Partial list of time varying and time-independent decay experiments. Institution abbreviations are as listed: GSL: Gran Sasso Laboratory; GSIL: Geological Survey of Israel Laboratory; OPC: Optical Physics Company; MSU: Moscow State University; BNLI: Brookhaven National Laboratory; PTB: Physikalisch-Technische Bundesanstalt; LMSU: The Lomonosov Moscow State University; Baylor: Baylor College of Medicine; U.S.A.F. Academy: U.S. Air Force Academy; KIT: Karlsruhe Institute of Technology; Karpov Institute: Karpov Institute of Physical Chemistry; CRIM: Central Research Institute of Machine, IRES: Institute for Industrial, Radiophysical and Environmental Safety

Isotope	Decay	Detector Type	Detected	Observations	Institution	Reference	
H	β−	Liquid Scintillator	β−	1yr, 12.1yr, 18d, 42d, 12.31yr	Novi Sad, Purdue, USAFA	[12], [63], [28]	
H	β+	Ion Chamber	γ	No effect	PTB	[29]	
Na	β−	Solid State	γ	No effect	Berkeley	[52]	
Na	β+	HPGe	γ	No effect	Novi Sad, Berkeley	[15], [63]	
Si	β−	Scintillation	γ	GW inspiral, 1yr	Purdue, BNL	[19], [11]	
Si	β−	Ge(Li)	γ	1yr	CRIM	[24]	
Si/Sr/Cr	β−	Proportional	γ	No effect	Wadsworth Center	[16], [25]	
Cl	β−	Ion Chamber	γ	27d, 1yr	PTB	[12], [44]	
Cl	β−	Proportional	γ	1yr, 11.71yr, 2.11yr	Purdue, BNL	[65], [85], [63]	
Cl	β−	Scintillation	γ	GW inspiral	Purdue	[22]	
Cl	β−	Scintillation	γ	No effect	PTB	[70]	
Cl	β−	Geiger Muller	β−	1yr	Purdue	[65], [25], [58]	
Cl	β−	Geiger Muller	β−	1yr	Purdue	[65], [25], [58]	
K	β−, EC	Scintillator	γ	No effect	TBD	[19], [20], [25]	
Ti	β−	EC	γ	No effect	Zurich, Amsterdam	[20]	
Ti	β−	EC	HPGe	γ	No effect	Berkeley	[20]
Mn	β−	EC	Scintillation	γ	Solar flare	Purdue	[20]
Mn	β−	EC	Scintillation	γ	1yr	Purdue, Baylor	[65], [85]
Mn	β+	EC	Scintillation	γ	1yr	Purdue	[20]
Fe	β−	EC	Scintillation	γ	No effect	PTB	[20]
Co	β+	Na(Tl)	γ	No effect	Zurich, Amsterdam	[20], [41]	
Co	β+	Na(Tl)	γ	1d, 27d, 1yr	CRIM	[23], [24]	
Co	β+	Scintillation	γ	1d, 12.11yr, 10d, 20d, 27d	CRIM	[23], [24]	
Co	β+	HPGe	γ	1yr	IMS	[20]	
Co	β+	Ge(Li)	γ	No effect	BNL	[23]	
Co	β+	Geiger Muller	β−	1yr	LMSU, Purdue, USAFA	[103], [104], [28]	
Re	β−	Geiger Muller	β−	1yr, 11.71yr, 10yr	LMSU, Purdue, USAFA	[103], [104], [54], [84]	
Zn	β−	Ion Chamber	γ	No effect	PTB	[20]	
Ga	β−	Ion Chamber	γ	No effect	PTB	[20]	
Rh	β−	Ion Chamber	γ	No effect	PTB	[20]	
Ru	β−	Ion Chamber	γ	No effect	PTB	[20]	
Kr	β−	Ion Chamber	γ	No effect	PTB	[20]	
Sr	β−	Geiger Muller	β−	1yr, 11.71yr, 10yr	LMSU, Purdue, USAFA	[103], [104], [54], [84]	
Sr	β−	Scintillation	γ	10yr	PTB	[20]	
Sr	β−	Ion Chamber	γ	No effect	PTB	[20]	
Tc	β−	Ion Chamber	γ	No effect	PTB	[20]	
Mo	β−	Ion Chamber	γ	No effect	PTB	[20]	
Ru	β−	Ion Chamber	γ	No effect	PTB	[20]	
Ag	β−	Ion Chamber	γ	No effect	PTB	[20]	
Ag	β−	Ion Chamber	γ	No effect	PTB	[20]	
Ag	β−	HPGe	γ	No effect	Berkeley	[20]	
Cd	β−	Ion Chamber	γ	No effect	PTB	[20]	
In	β−	Ion Chamber	γ	No effect	PTB	[20]	
Sn	β−	HPGe	γ	No effect	Berkeley	[20]	
Tl	β−	Ion Chamber	γ	No effect	PTB	[20]	
Th	β−	Ion Chamber	γ	No effect	PTB	[20]	
Pa	β−	Ion Chamber	γ	No effect	PTB	[20]	
Rn	β−	Ion Chamber	γ	No effect	PTB	[20]	
Ba	β−	Ion Chamber	γ	No effect	PTB	[20]	
Ba	β−	HPGe	γ	No effect	Berkeley	[20]	
Cs	β−	Scintillation	γ	1d, 12.11yr	CRIM, Purdue, OSU	[20], [63], [76]	
Cs	β−	Na(Tl)	γ	No effect	Zurich	[20]	
Cs	β−	Geiger Muller	β−	No effect	PTB	[20]	
Cs	β−	Geiger Muller	β−	Solar Eclipse	Greenland	[20]	
Cs	β−	HPGe	γ	No effect	TBD, IMS	[21], [16]	
Cs	β−	Ion Chamber	γ	27d	PTB	[20]	
Cs	β−	Ion Chamber	γ	No effect	PTB	[20]	
Cs	β−	Ion Chamber	γ	No effect	PTB	[20]	
Ec	β−	Solid State (Ge)	γ	1yr	Purdue, PTB, USAFA	[20], [63], [131], [76]	
Ec	β−	HPGe	γ	1yr	IMS	[20]	

Continued on next page
Isotope	Decay	Detector Type	Detected	Observations	Institution	Reference
152Eu	EC, β−	Ion Chamber	γ	1yr	PTB, USAFA	[68], [76]
152Eu	β−	Ion Chamber	γ	No effect	PTB	[126], [130]
153Eu	β−	Ion Chamber	γ	1yr	Purdue	[68], [88]
154Eu	β−	Ion Chamber	γ	No effect	PTB	[127], [128], [130]
157Eu	β−	Ion Chamber	γ	No effect	PTB	[127]
190Re	β−	Ion Chamber	γ	No effect	PTB	[127]
198Au	β−	HPGe	γ	Neutrino flux	MSU, Purdue	[74], [92], [135]
204Ti	β−	Geiger Muller	γ	No effect	PTB	[127]
222Rn	α, β−	Scintillation	γ	1yr, 11.71yr, 2.11yr, 1d	GSIL, PTB	[122], [143], [84]
222Rn	α, β−	NaI Crystal	γ	1d, 27d, 1yr	GSIL	[122], [143]
224Ra	α, β−	Ion Chamber	γ	No effect	PTB	[127]
226Ra	α, β−	Ion Chamber	γ	No effect	Purdue, BNL,	[63], [65], [88], [127], [128], [133]
229Th	α	NaI Crystal	γ	1d	GSIL	[128]
233U	β−	SpaceCraft	α	Seasonal	Wabash, Purdue	[73]
235U	β−	Solid State	α	1d, 1yr, 13.51yr	MSU, Purdue	[75], [85], [88]
239Pu	β−	Geiger Muller	γ	No effect	LMSU	[80]
Key to Paper Categories

General Categories	Qualifiers
V	E Experimental
NV	P Phenomenological
A	T Theoretical
B	L Laboratory
EC	R Review
G	S Solar Influence
D	

Bibliography

The following is a list of references which directly discuss the implication of time-dependent variations (V) in radioactive decay rate data as well as arguments against such variations (NV).

1. Alburger D. E., Harbottle G., Norton E. F., “Half-life of 32Si,” *Earth and Planetary Science Letters*, 1986, 78, Iss. 2-3, 168-176. **Topics: B,D,E,V**

2. Alburger D. E., Wesselborg C., “Precision measurement of the half-life of 56Co,” *International Symposium on Capture Gamma-ray Spectroscopy and Related Topics*, 1990. **Topics: B,D,E,NV**

3. Aldrich L. T., Nier A. O., “Argon 40 in Potassium Minerals,” *Physical Review*, 1948, 74, No. 8, 876-877. **Topics: B,E,V**

4. Alexeev E. N., Gangapshev A. M., Gavrilyuk Y. M., Gezhaev A. M., Kazalov V. V., Kuzminov V. V., Panasenko S. I., Petrenko O. D., Ratkevich S. S., “Annula variations of the 214Po, 213Po and 212Po half-life values,” arXiv:2010.08283 [nucl-ex], 2020. **Topics: A,E,P,V**

5. Alexeev E. N., Gavrilyuk Y. M., Gangapshev A. M., Gezhaev A. M., Kazalov V. V., Kuzminov V. V., Panasenko S. I., Ratkevich S. S., “Search for Variations of 213Po Half-Life,” *Physics of Particles and Nuclei*, 2018, 49, No. 4, 557-562. **Topics: A,E,V**

6. Alexeyev E. N., Alekseenko V. V., Gavriljuk J. M., Gangapshev A. M., Gezhaev A. M., Kazalov V. V., Kuzminov V. V., Panasenko S. I., Ratkevich S. S., Yakimenko S. P., “Experimental test of the time stability of the half-life of alpha-decay 214Po nuclei,” *Astroparticle Physics*, 2013, 46, 23-28. **Topics: A,E,V**

7. Alexeyev E. N., Gavrilyuk Y. M., Gangapshev A. M., Kazalov V. V., Kuzminov V. V., Panasenko S. I., Ratkevich S. S., “Results of a Search for Daily and Annual Variations of the 214Po Half-Life at the Two Year Observation Period,” *Physics of Particles and Nuclei*, 2016, 47, No. 6, 986-994. **Topics: A,E,V**
8. Alexeyev E. N., Gavriljuk Y. M., Gangapshev A. M., Kazalov V. V., Kuzminov V. V., Panasenko S. I., Ratkevich S. S., “Sources of the Systematic Errors in Measurements of 214Po Decay Half-Life Time Variations at the Baksan Deep Underground Experiments,” *Physics of Particles and Nuclei*, 2015, **46**, 157-165.

Topics: A,E,P,V

9. Angevaare J. R., Barrow P., Baudis L., Breur P. A., Brown A., Colijn A. P., Cox G., Gienal M., Gjaltema F., Helmling-Cornell A., et al., “A precision experiment to investigate long-lived radioactive decays,” *Journal of Instrumentation*, 2018, **13**.

Topics: A,B,E,EC,G,NV

10. Bahcall J. N., Press W. H., “Solar-cycle modulation of event rates in the chlorine solar neutrino experiment,” *Astrophysical Journal*, 1991, **370**, 730-742.

Topics: E,S,V

11. Bahcall J. N., Field G. B., Press W. H., “Is solar neutrino capture rate correlated with sunspot number?,” *Astrophysical Journal*, 1987, **320**, L69-L73.

Topics: E,S,V

12. Bahcall J. N., Serenelli A. M., Basu S., “New Solar Opacities, Abundances, Helioseismology, and Neutrino Fluxes,” *Astrophysical Journal Letters*, 2005, **621**, No. 1, L85-L88.

Topics: E,S,V

13. Barnes V. E., Bernstein D. J., Bryan C. D., Cinco N., Deichert G. G., Gruenwald J. T., Heim J. M., Kaplan H. B., LaZur R., Neff D., et al. “Search for Perturbations of Nuclear Decay Rates Induced by Reactor Electron Antineutrinos,” arXiv:1606.09325 [nucl-ex], 2016.

Topics: B,E,EC,P,S,V

14. Barnes V. E., Bernstein D. J., Bryan C. D., Cinco N., Deichert G. G., Gruenwald J. T., Heim J. M., Kaplan H. B., LaZur R., Neff D., et al. “Upper limits on perturbations of nuclear decay rates induced by reactor electron antineutrinos,” *Applied Radiation and Isotopes*, 2019, **149**, 182-199.

Topics: B,E,T,S,V

15. Barnett S. M., Huttner B., Loudon R., Matloob R., “Decay of excited atoms in absorbing dielectrics,” *Journal of Physics B: Atomic, Molecular and Optical Physics*, 1996, **29**, No. 16.

Topics: T,V

16. Bashindzhagyan G., Barnes V., Fischbach E., Hovsepyan G., Korotkova N., Merkin M., Sinev N., Voronin A., “Solar Influence on Decay Rate (SIDR) Experiment,” *The 34th International Cosmic Ray Conference*, 2015, **236**.

Topics: B,E,T,V

17. Bashindzhagyan G., Barnes V., Fischbach E., Hovsepyan G., Korotkova N., Poghosyan L., Sinev N., “SIDR experiment status and first results,” *The 35th International Cosmic Ray Conference*, 2017, **301**.

Topics: B,E,T,V

18. Baurov Y. A., “The Anisotropic Phenomenon in the β-Decay of Radioactive Elements and in Other Processes in Nature,” *Bulletin of the Russian Academy of Sciences: Physics*, 2012, **76**, No. 10, 1076-1080.

Topics: B,E,V

19. Baurov Y. A., Albanese L., Meneguzzo F., Menshikov V. A., “Protecting the planet from the asteroid hazard,” *International Journal of Pure and Applied Physics*, 2013,
20. Baurov Y. A., Konradov A. A., Kushniruk V. F., Kuznetsov E. A., Sobolev Y. G.,
Ryabov Y. V., Senkevich A. P., Zadorozny S. V., “Experimental investigations of
changes in β-decay rate of 60Co and 137Cs,” Modern Physics Letters A, 2001, 16
No. 32, 2089-2101. Topics: E,P,S,V

21. Baurov Y. A., Nikitin V. A., Dunin V. B., Demchuk N. A., Baurov A. Y., Tihomirov
V. V., Sergeev S. V., Baurov A. Y. Jr., “Results of experimental investigations of
60Co β-decay rate variation,” arXiv:1304.6885 [nucl-ex], 2013. Topics: B,E,V

22. Baurov Y. A., Malov I. F., “Variations of decay rates of radio-active elements
and their connections with global anisotropy of physical space,” arXiv:1001.5383
[physics.gen-ph], 2010. Topics: A,B,E,S,V

23. Baurov Y. A., Sobolev Y. G., Ryabov Y. V., Kushniruk V. F., “Experimental
Investigations of Changes in the Rate of Beta Decay of Radioactive Elements,”
Physics of Atomic Nuclei, 2007, 70, 1825-1835. Topics: B,E,V

24. Baurov Y. A., Sobolev Y. G., Kushniruk V. F., Kuznetsov E. A., Konradov A.
A., “Experimental investigation of changes in β-decay count rate of radioactive
elements,” arXiv:hep-ex/9907008, 1999. Topics: B,E,V

25. Bellotti E., Broggini C., Di Carlo G., Laubenstein M., Menegazzo R., “Precise
measurement of 222Rn half-life: A probe to monitor the stability of radioactivity,”
Physics Letters B, 2015, 743, 526-530. Topics: A,B,E,NV,P

26. Bellotti E., Broggini C., Di Carlo G., Laubenstein M., Menegazzo R., “Search
for correlations between solar flares and decay rate of radioactive nuclei,” Physics
Letters B, 2013, 710, Iss. 1-3, 116-119. Topics: A,B,E,EC,NV,P,S

27. Bellotti E., Broggini C., Di Carlo G., Laubenstein M., Menegazzo R., “Search for
time dependence of the 137Cs decay constant,” Physics Letters B, 2012, 710, Iss.
1, 114-117. Topics: B,E,NV

28. Bellotti E., Broggini C., Di Carlo G., Laubenstein M., Menegazzo R., “Search for
time modulations in the decay rate of 40K and 226Ra at the underground Gran Sasso
Laboratory,” Physics Letters B, 2018, 780, 61-65. Topics: A,E,NV,P,S

29. Bellotti E., Broggini C., Di Carlo G., Laubenstein M., Menegazzo R., “Search for
the time dependence of radioactivity,” Acta Polytechnica, 2013, 53, 524-527.
Topics: B,E,NV,P

30. Bellotti E., Broggini C., Di Carlo G., Laubenstein M., Menegazzo R., Pietroni M.,
“Search for time modulations in the decay rate of 40K and 232Th,” Astroparticle
Physics, 2015, 61, 82-87. Topics: A,B,E,NV,P

31. Bergeson S. D., Peatross J., Ware M. J., “Precision long-term measurements of
beta-decay-rate ratios in a controlled environment,” Physics Letters B, 2017, 767,
171-176. Topics: B,E,NV

32. Bikit K., Nikolov J., Bikit I., Mrda D., Todorovic N., Forkapic S., Slivka J., Veskovic
M., “Reinvestigation of the irregularities in the 3H decay,” Astroparticle Physics,
Anomalies in Radioactive Decay Rates: A Bibliography of Measurements and Theory

2013, 47, 38-44. Topics: B,E,V

33. Boyarkin O. M., Boyarkina G. G., “Influence of solar flares on behavior of solar neutrino flux,” *Astroparticle Physics*, 2016, 85, 39-42. Topics: B,S,T,V

34. Breur P. A., Nobelen J. C. P. Y, Baudis L., Brown A., Colijn A. P., Dressler R., Lang R. F., Massafferri A., Perci R., Pumar C., et al., “Testing claims of the GW170817 binary neutron star inspiral affecting β-decay rates,” *Astroparticle Physics*, 2020, 119, 102431. Topics: B,NV,P

35. Buncher J. B., “Phenomenology of Time-Varying Nuclear Decay Parameters,” Ph.D. Thesis, Purdue University, 2010, unpublished. Topics: P,S,V

36. Cooper P. S., “Searching for modifications to the exponential radioactive decay law with the Cassini spacecraft,” *Astroparticle Physics*, 2009, 31, Iss. 4, 267-269. Topics: A,NV,T

37. de Meijer R. J., Blaauw M., Smit F. D., “No evidence for antineutrinos significantly influencing exponential β⁺ decay,” *Applied Radiation and Isotopes*, 2011, 69, Iss. 2, 320-326. Topics: A,NV,S,T

38. Ellis K. J., “The effective half-life of a broad beam 238Pu/Be total body neutron irradiator,” *Physics in Medicine & Biology*, 1990, 35, No. 8, 1079-1088. Topics: E,V

39. Elmaghraby E. K., “Configuration Mixing in Particle Decay and Reaction,” *Progress in Physics*, 2017, 13, Iss. 3, 150-155. Topics: P,S,T,V

40. Emery G. T., “Perturbation of Nuclear Decay Rates,” *Annual Review of Nuclear Science*, 1972, 22, 165-202. Topics: B,T,V

41. Falkenberg E. D., “Radioactive Decay Caused by Neutrinos?,” *Apeiron*, 2001, 8, No. 2, 32-45. Topics: B,E,EC,P,S,V

42. Fischbach E., Barnes V. E., Cinko N., Heim J., Kaplan H. B., Krause D. E., Leeman J. R., Mathews S. A., Mueterthies M. J., et al., “Indications of an unexpected signal associated with the GW170817 binary neutron star inspiral,” *Astroparticle Physics*, 2018, 103, 1-6. Topics: B,E,P,S,V

43. Fischbach E., Buncher J. B., Gruenwald J. T., Jenkins J. H., Krause D. E., Mattes J. J., Newport J. R., “Time-Dependent Nuclear Decay Parameters: New Evidence for New Forces?,” *Space Science Reviews*, 2009, 145, 285-335. Topics: A,B,P,S,T,V

44. Fischbach E., Krause D. E., Pattermann M., “Comment on ”Testing claims of the GW170817 binary neutron star inspiral affecting β-decay rates,” arXiv:2003.00092v1 [nucl-ex], 2020. Topics: P,S,V

45. Fischbach E., Chen K. J., Gold R. E., Goldsten J. O., Lawrence D. J., McNutt Jr. R. J., Rhodes E. A., Jenkins J. H., Longuski J., “Solar influence on nuclear decay rates: constraints from the MESSENGER mission,” *Astrophysics and Space Science*, 2012, 337, 39-45. Topics: A,B,P,S,T,V

46. Fischbach E., Jenkins J. H., Gruenwald J. T., Sturrock P. A., Javorsek II D., “Evidence for Solar Influences on Nuclear Decay Rates,” In *Proceedings of the fifth...*
Anomalies in Radioactive Decay Rates: A Bibliography of Measurements and Theory

47. Fischbach E., Jenkins J. H., Sturrock P. A., “Evidence for Time-varying Nuclear Decay Rates: Experimental Results and their Implications for New Physics,” In Proceedings of the XLVIIth Rencontres de Moriond, LaThuile, Italy, (Edited by Etienne Augé, Jacques Dumarchez, Jean Trân Thanh Ván). [arXiv:1106.1470 [nucl-ex]], 2011. Topics: A,B,P,S,T,V

48. Goddard B., Hitt G. W., Solodov A. A., Bridi D., Isakovic A. F., El-Khazali R., Abulail A., “Experimental setup and commissioning baseline study in search of time-variations in beta-decay half-lives,” Nuclear Instruments and Methods in Physics Research A, 2016, 812, 60-67. Topics: E,NV

49. Goddard B., Golovko V. V., Iacob V. E., Hardy J. C., “The half-life of ^{198}Au: High-precision measurement shows no temperature dependence,” European Physical Journal A, 2007, 34, 271-274. Topics: E,NV

50. Greenland P. T., “Seeking non-exponential decay,” Nature, 1988, 335, 298. Topics: T,NV

51. Hahn H. P., Born H. J., Kim J. I., “Survey on the Rate Perturbation of Nuclear Decay” Radiochimica Acta, 1976, 23, 23-37. Topics: NV,R

52. Hardy J. C, Goodwin J. R., Golovko V. V., Iacob V. E., “Tests of nuclear half-lives as a function of the host medium and temperature: Refutation or recent claims” Applied Radiation and Isotopes, 2010, 68, 1550-1554. Topics: B,E,NV,P,S

53. Hardy J. C, Goodwin J. R., Iacob V. E., “Do radioactive half-lives vary with the Earth-to-Sun distance?” Applied Radiation and Isotopes, 2012, 70, Iss. 9, 1931-1933. Topics: B,NV,P,S

54. Heim J. M., “The Determination of the Half-life of Si-32 and Time Varying Nuclear Decay,” Ph.D. Thesis, Purdue University, 2015, unpublished. Topics: B,S,V

55. Jaubert F., Tartés I., Cassette P., “Quality control of liquid scintillation counters,” Applied Radiation and Isotopes, 2006, 64, Iss. 10, 1163-1170. Topics:

56. Javorsek II D., Brewer M. C., Buncher J. B., Fischbach E., Gruenwald J. T., Heim J., Hoft A. W., Horan T. J., Kerford J. L., Kohler M., et al., “Study of nuclear decays during a solar eclipse: Thule Greenland 2008,” Astrophysics and Space Science, 2012, 342, 9-13. Topics: P,S,T,V

57. Javorsek D., Kerford J. L., Stewart C. A., Buncher J. B., Fischbach E., Gruenwald J. T., Heim J., Hoft A. W., Horan T. J., Jenkins J. H., et al., “Preliminary Results from Nuclear Decay Experiments Performed During the Solar Eclipse of August 1, 2008,” AIP Conference Proceedings, 2010, 1265, Iss. 1, 178-179. Topics: A,B,P,S,V

58. Javorsek II D., Sturrock P. A., Buncher J. B., Fischbach E., Gruenwald J. T., Hoft A. W., Horan T. J., Jenkins, J. H., et al., “Investigation of Periodic Nuclear Decay
Anomalies in Radioactive Decay Rates: A Bibliography of Measurements and Theory

Data with Spectral Analysis Techniques,” *AIP Conference Proceedings*, 2009, 1182, Iss 292. **Topics:**

59. Javorsek II D., Sturrock P. A., Lasenby R. N., Lasenby A. N., Buncher J. B., Fischbach E., Gruenwald J. T., Hoft A. W., Horan T. J., Jenkins, J. H., et al., “Power spectrum analyses of nuclear decay rates,” *Astroparticle Physics*, 2010, 34, Iss. 3, 173-178. **Topics: A,B,P,V**

60. Javorsek II D., Sturrock P. A., Lasenby R. N., Lasenby A. N., Buncher J. B., Fischbach E., Gruenwald J. T., Jenkins, J. H., Lee R. H., Mattes J. J., et al., “Periodicities in Nuclear Decay Data: Systematic Effects or New Physics?,” *AIP Conference Proceedings*, 2010, 1265, Iss. 1, 144-147. **Topics: A,B,P,S,V**

61. Jenkins, J. H., Fischbach E., “Perturbation of nuclear decay rates during the solar flare of 2006 December 13,” *Astroparticle Physics*, 2009, 31, Iss. 6, 407-411. **Topics: B,E,P,S,V**

62. Jenkins, J. H., Fischbach E., Buncher J. B., Gruenwald J. T., Krause D. E., Mattes J. J., “Evidence of correlations between nuclear decay rates and Earth-Sun distance,” *Astroparticle Physics*, 2009, 32, No. 1, 42-46. **Topics: A,B,P,V**

63. Jenkins, J. H., Fischbach E., Javorsek II D., Lee R. H., Sturrock P. A., “Concerning the time dependence of the decay rate of 137Cs,” *Applied Radiation and Isotopes*, 2013, 74, 50-55. **Topics: A,B,P,V**

64. Jenkins, J. H., Fischbach E., Sturrock P. A., Mundy D. W., “Analysis of Experiments Exhibiting Time-Varying Nuclear Decay Rates: Systematic Effects or New Physics?,” arXiv:1106.1678 [nucl-ex], 2011. **Topics: A,B,P,S,V**

65. Jenkins, J. H., Herminghuysen K. R., Blue T. E., Fischbach E., Javorsek II D., Kauffman A. C., Mundy D. W., Sturrock P. A., Talnagi J. W., “Additional experimental evidence for a solar influence on nuclear decay rates,” *Astroparticle Physics*, 2012, 37, 81-88. **Topics: B,P,S,V**

66. Jenkins J. H., Mundy D. W., Fischbach E., “Analysis of environmental influences in nuclear half-life measurements exhibiting time-dependent decay rates,” *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment*, 2010, 620, Iss. 2-3, 332-342. **Topics: A,B,P,V**

67. Jerome S., Bobin C., Cassette P., Dersch R., Galea R., Liu H., Honig A., Keightley J., Kossert K., Liang J., et al., “Half-life determination and comparison of activity standards of 231Pa,” *Applied Radiation and Isotopes*, 2020, 155, 108837. **Topics: NV,P**

68. Kay M. J., “New Methodologies for measuring and monitoring nuclear decay parameters for time dependent behavior,” Ph.D. Thesis, Purdue University, 2018, unpublished. **Topics: B,E,P,S,V**

69. Khavroshkin O. B., Tsyplakov V. V., “Five Years after Discovery Abnormal Neutrino Radioactive-Isotope (ANRI) Absorption,” *Open Access Library Journal*,
2018, 5, e4869. **Topics:** B,E,P,S,V

70. Knezevic J., Mrdja D., Bikit-Schroeder K., Hansman J., Bikit I., Slivka J., “Search for variances of 22Na decay constant,” *Applied Radiation and Isotopes*, 2020, **163**, 109178. **Topics:** B,NV,P

71. Kossert K., “TDCR measurements to determine the half-life of 55Fe,” *Applied Radiation and Isotopes*, 2020, **155**, 108931. **Topics:** E,EC,NV

72. Kossert K., Nähole O. J., “Disproof of solar influence on the decay rates of 90Sr/90Y,” *Astroparticle Physics*, 2015, **69**, 18-23. **Topics:** B,E,NV,P,S

73. Kossert K., Nähole O. J., “Long-term measurements of 36Cl to investigate potential solar influence on the decay rate,” *Astroparticle Physics*, 2014, **55**, 33-36. **Topics:** B,NV,P,S

74. Krause D. E., Rogers B. A., Fischbach E., Buncher J. B., Ging A., Jenkins J. H., Longuski J. M., Strange N., Sturrock P. A., “Searches for solar-influenced radioactive decay anomalies using spacecraft RTGs,” *Astroparticle Physics*, 2012, **36**, Iss. 1, 51-56. **Topics:** P,A,S,V

75. Lee R. H., Fischbach E., Gruenwald J. T., Javorsek II D., Sturrock P. A., “Spectral Content in 3H and 14C Decays: A review of Five Experiments,” *Quarterly Physics Review*, 2017, **3**, Iss. 2. **Topics:** P,R,V

76. Lee R. H., Javorsek II D., Morris D., “Stability of the IMS Radionuclide Detector Network and Lessons Learnt for Exotic Physics Searches,” *Comprehensive Nuclear-Test-Ban Treaty: Science and Technology Conference*, 2013. **Topics:** P,R,V

77. Lindstrom R. M., “Believable statement of uncertainty and believable science,” *Journal of Radioanalytical and Nuclear Chemistry*, 2017, **311**, 1019-1022. **Topics:** B,P,S,T,V

78. Lindstrom R. M., Fischbach E., Buncher J. B., Greene G. L., Jenkins J. H., Krause D. E., Mattes J. J., Yue A., “Study of the dependence of 198Au half-life on source geometry,” *Nuclear Instruments and Methods in Physics Research Section A*, 2010, **622**, Iss. 1, 93-96. **Topics:** B,P,S,T,V

79. Lindstrom R. M., Fischbach E., Buncher J. B., Jenkins J. H., Yue A., “Absence of a self-induced decay effect in 198Au,” *Nuclear Instruments and Methods in Physics Research Section A*, 2011, **659**, Iss. 1, 269-271. **Topics:** B,P,S,V

80. Lobashev V. M., Aseev V. N., Belesev A. I., Berlev A. I., Geraskin E. V., Golubev A. A., Kazachenko O. V., Kuznetsov Y. E., Ostroumov R. P., Rivkis L. A., et al., “Direct search for mass of neutrino and anomaly in the tritium beta-spectrum,” *Physics Letters B*, 1999, **460**, Iss. 1-2, 227-235. **Topics:** B,E,V

81. Lobashev V. M., Aseev V. N., Belesev A. I., Berlev A. I., Geraskin E. V., Golubev A. A., Kazachenko O. V., Kuznetsov Y. E., Ostroumov R. P., Rivkis L. A., et al., “Direct Search for Neutrino Mass and Anomaly in the Tritium Beta-Spectrum: Status of ”Troitsk Neutrino Mass” Experiment,” *Nuclear Physics B*, 2001, **91**, 280-286. **Topics:**
Anomalies in Radioactive Decay Rates: A Bibliography of Measurements and Theory

82. Mattes J. J., “Detecting Relic Neutrinos Through Coherent Processes,” Ph.D. Thesis, Purdue University, 2013, unpublished. **Topics: S,V**

83. Mayburov S., “Nuclear Decay Parameter Oscillations as Possible Signal of Quantum-Mechanical Nonlinearity,” *International Journal of Theoretical Physics*, 2019. **Topics: A,B,T,V**

84. McKnight Q., Bergeson S. D., Peatross J., Ware M. J., “2.7 years of beta-decay-rate ratio measurements in a controlled environment,” *Applied Radiation and Isotopes*, 2018, **142**, 113-119. **Topics: NV,T**

85. Meier M. M. M., Wieler R., “No evidence for a decrease of nuclear decay rates with increasing heliocentric distance based on radiochronology of meteorites,” *Astroparticle Physics*, 2014, **55**, 63-75. **Topics: A,B,NV,P**

86. Milián-Sánchez V., Scholkmann F., Fernández de Córdoba P., Mocholí-Salcedo A., Mocholí F., Iglesias-Martínez M. E., Castro-Palacio J. C., Kolombet V. A., Panchelyuga V. A., Verdú G., “Fluctuations in measured radioactive decay rates inside a modified Faraday cage: Correlations with space weather,” *Scientific Reports*, 2020, **10**, 8525. **Topics: E,V**

87. Mohsinally T., Fancher S., Czerny C., Fischbach E., Gruenwald T., Heim J., Jenkins J. H., Nistor J., O’Keefe D., “Evidence for correlations between fluctuations in 54Mn decay rates and solar storms,” *Astroparticle Physics*, 2016, **75**, 29-37. **Topics: B,EC,S,T,V**

88. Mohsinally T., “An investigation into the phenomenological relation between solar activity and nuclear beta-decay rates,” Ph.D. Thesis, Purdue University, 2015, unpublished. **Topics: B,P,S,V**

89. Mueterthies M. J., Krause D.E., Longman A., Barnes V.E, Fischbach E., “Is there a signal for Lorentz non-invariance in existing radioactive decay data?” In *Proceedings of the Seventh meeting on CPT and Lorentz symmetry*, (Edited by V. A. Kostelecký), World Scientific, Singapore, 2017, 197-200. arXiv:1607.03541 [nep-ph], 2016. **Topics: P,S,V**

90. Nähle O., Kossert K., “Comment on ‘Comparative study of beta-decay data for eight nuclides measured at the Physikalisch-Technische Bundesanstalt,’” *Astroparticle Physics*, 2015, **66**, 8-10. **Topics: B,NV,P**

91. Nistor J., “Direct and Indirect Searches for Anomalous Beta Decay,” Ph.D. Thesis, Purdue University, 2015, unpublished. **Topics: B,S,V**

92. Nistor J., Heim J., Fischbach E., Jenkins J. H., Sturrock P. A., “Phenomenology of Rate–Related Nonlinear Effects in Nuclear Spectroscopy,” arXiv:1407.4144 [nucl-ex], 2014. **Topics: P,S,V**

93. Nistor J., Fischbach E., Gruenwald J. T., Javorsek D., Jenkins J. H., Lee R. H., “Time-Varying nuclear decay parameters and Dark Matter,” In *Proceedings on the Sixth Meeting on CPT and Lorentz Symmetry*, (Edited by V. A. Kostelecký), World Scientific, 2014, 208-211. arXiv:1307.7620 [hep-ph] **Topics: P,S,V**
94. Norman E. B., Browne E., Shugart H. A., Joshi T. H., Firestone R. B., “Evidence against correlations between nuclear decay rates and Earth–Sun distance,” *Astroparticle Physics*, 2009, 31, Iss. 2, 135-137. **Topics: A,B,NV,P**

95. Norman E. B., Gazes S. B., Crane S. G., Bennett D. A., “Tests of the Exponential Decay Law at Short and Long Times,” *Physical Review*, 1988, 60, Iss. 22, 2246-2249. **Topics: NV,P,T**

96. Norman E. B., Sur B., Lesko K. T., Larimer R. M., DePaolo D. J., Owens T. L., “An improved test of the exponential decay law,” *Physics Letters B*, 1995, 357, Iss. 4, 521-525. **Topics: NV,P,T**

97. O’Keefe D., Morreale B. L., Lee R. H., Buncher J. B., Jenkins J. H., Fischbach E., Gruenwald T., Javorsek D., Sturrock P. A., “Spectral content of $^{22}\text{Na}/^{44}\text{Ti}$ decay data: Implications for a solar influence,” *Astrophysics and Space Science*, 2013, 344, 297-303. **Topics: P,S,V**

98. Papaloizou J., Pringle J. E., “Non-radial oscillations of rotating stars and their relevance to the short-period oscillations of cataclysmic variables,” *Monthly Notices of the Royal Astronomical Society*, 1978, 182, Iss. 3, 423-442. **Topics: T,V**

99. Parkhomov A. G., “Bursts of Count Rate of Beta-Radioactive Sources during Long-Term Measurements,” *International Journal of Pure and Applied Physics*, 2005, 1, No. 2, 119-128. **Topics: B,E,P,S,V**

100. Parkhomov A. G., “Deviations from Beta Radioactivity Exponential Drop,” *Journal of Modern Physics*, 2011, 2, No. 11, 1310-1317. **Topics: A,B,P,V**

101. Parkhomov A. G., “Effect of radioactivity decrease. Is there a link with solar flares?,” arXiv:1006.2295 [physics.gen-ph], 2010. **Topics: B,P,S,V**

102. Parkhomov A. G., “Influence of Relic Neutrinos on Beta Radioactivity,” arXiv:1010.1591 [physics.gen-ph], 2010. **Topics: B,P,S,V**

103. Parkhomov A. G., “Periods Detected During Analysis of Radioactivity Measurements Data,” arXiv:1012.4174 [physics.gen-ph], 2010. **Topics: B,P,V**

104. Parkhomov A. G., “Researches of alpha and beta radioactivity at long-term observations,” arXiv:1004.1761 [physics.gen-ph], 2010. **Topics: A,B,P,V**

105. Picolo J. L., “Absolute measurement of radon 222 activity,” *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment*, 1996, 369, Iss. 2-3, 452-457. **Topics: B,P,V**

106. Pommé S., “Comparing significance criteria for cyclic modulations in time series,” *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment*, 2020, 968, 163933. **Topics: NV,T**

107. Pommé S., “Methods for primary standardization of activity,” *Metrologia*, 2007, 44, No. 4, 17-26. **Topics: A,B,NV,P,T**
108. Pommé S., “Problems with the Uncertainty Budget of Half-life Measurements,” *Applied Modeling and Computations in Nuclear Science*, 2006, **945**, Ch 20, 282-292. **Topics: NV,P**

109. Pommé S., “Solar influence on radon decay rates: irradiance or neutrinos?,” *European Physical Journal C*, 2019, **79**, No. 73. **Topics: A,B,G,NV,P,S,T**

110. Pommé S., “The uncertainty of the half-life,” *Metrologia*, 2015, **52**, 51 - 65. **Topics: NV,P,R,T**

111. Pommé S., Camps J., Van Ammel R., Paepen J., “Protocol for uncertainty assessment of half-lives,” *Journal of Radioanalytical and Nuclear Chemistry*, 2008, **276**, Iss. 2, 335-339. **Topics: NV,P,T**

112. Pommé S., De Hauwere T., “Derivation of an uncertainty propagation factor for half-life determinations,” *Applied Radiation and Isotopes*, 2020, **158**. **Topics: NV,T**

113. Pommé S., De Hauwere T., “On the significance of modulations in time series,” *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment*, 2020, **956**, 163377. **Topics: NV,T**

114. Pommé S., Kossert K., Nähle O., “On the Claim of Modulations in 36Cl Beta Decay and Their Association with Solar Rotation,” *Solar Physics*, 2017, **292**, No. 162. **Topics: NV,P,S**

115. Pommé S., Lutter G., Marouli M., Kossert K., Nähle O., “A reply to the rebuttal by Sturrock et al.,” *Astroparticle Physics*, 2019, **107**, 22-25. **Topics: B,NV,P**

116. Pommé S., Lutter G., Marouli M., Kossert K., Nähle O., “On the claim of modulations in radon decay and their association with solar rotation,” *Astroparticle Physics*, 2018, **97**, 38-45. **Topics: B,NV,P,S**

117. Pommé S., Marouli M., Suliman G., Dikmen H., Van Ammel R., Jobbágy V., Dirican A., Stroh H., Paepen J., Bruchertseifer F., et al., “Measurement of the 225Ac half-life,” *Applied Radiation and Isotopes*, 2012, **70**, Iss. 11, 2608-2614. **Topics: T,NV**

118. Pommé S., Stroh H., Altzitzoglou T., Paepen J., Van Ammel R., Kossert K., Nähle O., Keightley J. D., Ferreira K. M., Verheyen L., et al. “Is decay constant?,” *Applied Radiation and Isotopes*, 2018, **134**, 6-12. **Topics: A,B,EC,NV,P**

119. Pommé S., Stroh H., Paepen J., Van Ammel R., Marouli M., Altzitzoglou T., Hult M., Kossert K., Nähle O., Schrader H., et al. “Evidence against solar influence on nuclear decay constants,” *Physics Letters B*, 2016, **761**, 281-286. **Topics: A,B,NV,P,R,S**

120. Pommé S., Stroh H., Paepen J., Van Ammel R., Marouli M., Altzitzoglou T., Hult M., Kossert K., Nähle O., Schrader H., et al. “On decay constants and orbital distance to the Sun- part I: alpha decay,” *Metrologia*, 2017, **54**, No. 1, 1-18. **Topics: A,NV,P**
121. Pommé S., Stroh H., Paepen J., Van Ammel R., Marouli M., Altitzoglou T., Hult M., Kossert K., Nähle O., Schrader H., et al. “On decay constants and orbital distance to the Sun—part II: beta minus decay,” *Metrologia*, 2017, **54**, No. 1, 19-35. **Topics:** B,NV,P

122. Pommé S., Stroh H., Van Ammel R., “The 55Fe half-life measured with a pressurised proportional counter,” *Applied Radiation and Isotopes*, 2019, **148**, 27-34. **Topics:** E,EC,NV

123. Pommé S., Stroh H., Van Ammel R., “On decay constants and orbital distance to the Sun—part III: beta plus and electron capture decay,” *Metrologia*, 2017, **54**, No. 1, 36-50. **Topics:** B,EC,NV,P

124. Pons D. J., Pons A. D., Pons A. J., “Hidden Variable Theory Supports Variability in Decay Rates of Nuclides,” *Applied Physics Research* 2015, **7**, No. 7. **Topics:** P,V

125. Sanders A. J., “Implications for 14C Dating of the Jenkins-Fischbach Effect and Possible Fluctuation of the Solar Fusion Rate,” *arXiv:0808.3986* [astro-ph], 2011. **Topics:** P,S,V

126. Schrader H., “Half-life measurements of long-lived radionuclides—New data analysis and systematic effects,” *Applied Radiation and Isotopes*, 2010, **68**, Iss. 7-8, 1583-1590. **Topics:** NV,P

127. Schrader H., “Half-life measurements with ionization chambers—A study of systematic effects and results,” *Applied Radiation and Isotopes*, 2004, **60**, Iss. 2-4, 317-323. **Topics:** E,NV

128. Schrader H., “Ionization chambers,” *Metrologia*, 2007, **44**, No. 4, 53-66. **Topics:** E,NV

129. Schrader H., “Measurement of small currents using a modified Townsend method with fast, programmable A/D and D/A converters,” *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment*, 1992, **312**, Iss. 1-2, 34-38. **Topics:** E,NV

130. Schrader H., “Seasonal variations of decay rate measurement data and their interpretation,” *Applied Radiation and Isotopes*, 2016, **114**, 202-213. **Topics:** E,NV

131. Siegert H., Schrader H., Schötzig U., “Half-life measurements of Europium radionuclides and the long-term stability of detectors,” *Applied Radiation and Isotopes*, 1998, **49**, Iss. 9-11, 1397-1401. **Topics:** P,B,EC,V

132. Singleton D., Inan N., Chiao R. Y., “Neutrino induced decoherence and variation in nuclear decay rates,” *Physics Letters A*, 2015, **379**, Iss. 12-13, 941-946. **Topics:** T,V

133. Semkow T. M., Haines D. K., Beach S. E., Kilpatrick B. J., Khan A. J., O’Brien K., “Oscillations in radioactive exponential decay,” *Physics Letters B*, 2009, **675**, Iss. 5, 415-419. **Topics:** B,E,NV
134. Shirai T., “Time variation of the solar neutrino fluxes from Super-Kamiokande data,” *Solar Physics*, 2004, **222**, 199-201. **Topics: P,V,S**

135. Shnoll S. E., Kolombet V. A., Pozharskii E. V., Zenchenko T. A., Zvereva I. M., Konradov A., “Realization of discrete states during fluctuations in macroscopic processes,” *Uspekhi Fizicheskikh Nauk and Russian Academy of Science*, 1998, **41**, No. 10, 1025-1035. **Topics: E,V**

136. Stancil D. D., Yegen S. B., Dickey D. A., Gould C. R., “Search for possible solar influences in Ra-226 decays,” *Results in Physics*, 2017, **7**, 385-406. **Topics: P,S,V**

137. Steinitz G., Flore N., Piatibratova O., “Indications for solar influence on radon and thoron in the atmosphere, Arad, Romania,” *Proceedings of the Royal Society A*, 2018, **474**. **Topics: S,T,V**

138. Steinitz G., Kotlarsky P., Piatibratova O., “Observations of the relationship between directionality and decay rate of radon in a confined experiment,” *European Physical Journal Special Topics*, 2015, **224**, 731-740. **Topics: E,P,S,V**

139. Steinitz G., Martin-Luis M. C., Piatibratova O., “Indications for solar influence on radon signal in the subsurface of Tenerife (Canary Islands, Spain),” *European Physical Journal Special Topics*, 2015, **224**, 687-695. **Topics: P,S,V**

140. Steinitz G., Piatibratova O., Gazit-Yaari N., “Influence of a component of solar irradiance on radon signals at 1 km depth, Gran Sasso, Italy,” *Royal Society Publishing A*, 2013, **469**. **Topics: A,E,P,S,V**

141. Steinitz G., Piatibratova O., Malik U., “Observations on the spatio-temporal patterns of radon along the western fault of the Dead Sea Transform, NW Dead Sea,” *European Physical Journal Special Topics*, 2015, **224**, 629-639. **Topics: A,E,P,S,V**

142. Steinitz G., Piatibratova O., Kotlarsky P., “Possible effect of solar tides on radon signals,” *Journal of Environmental Radioactivity*, 2011, **102**, Iss. 8, 749-765. **Topics: A,B,E,P,V**

143. Steinitz G., Sturrock P., Fischbach E., Piatibratova O., “Indications for non-terrestrial influences on radon signals from a multi-year enhanced confined experiment,” *Earth and Space Science Open Access*, 2018. **Topics: P,S,V**

144. Sturrock P. A., Bertello L., “Power spectrum analysis of Mount Wilson solar diameter measurements: Evidence for solar internal r-mode oscillations,” *Astrophysical Journal*, 2010, **725**, 492-495. **Topics: S,T,V**

145. Sturrock P. A., Bertello L., Fischbach E., Javorsek II D., Jenkins J. H., Kosovichev A., Parkhomov A. G., “An analysis of apparent r-mode oscillations in solar activity, the solar diameter, the solar neutrino flux, and nuclear decay rates, with implications concerning the Sun’s internal structure and rotation, and neutrino processes,” *Astroparticle Physics*, 2013, **42**, 62-69. **Topics: P,S,V**

146. Sturrock P. A., Buncher J. B., Fischbach E., Gruenwald J. T., Javorsek II D., Jenkins J. H., Lee R. H., Matter J. J., Newport J. R., “Power spectrum analysis
Anomalies in Radioactive Decay Rates: A Bibliography of Measurements and Theory

19. Sturrock P. A., Buncher J. B., Fischbach E., Gruenwald J. T., Javorsek II D., Jenkins J. H., Lee R. H., Matter J. J., Newport J. R., “Power Spectrum Analysis of Physikalisch-Technische Bundesanstalt Decay-Rate Data: Evidence for Solar Rotational Modulation,” Solar Physics, 2010, 267, 251-265. Topics: P,S,V

147. Sturrock P. A., Buncher J. B., Fischbach E., Javorsek II D., Jenkins J. H., Mattes J. J., “Concerning the phases of the annual variations of nuclear decay rates,” Astrophysical Journal, 2011, 737, No. 2. Topics: B,P,V

148. Sturrock P. A., Fischbach E., “Comparative Analysis of Brookhaven National Laboratory Nuclear Decay Data and Super-Kamiokande Neutrino Data: Indication of a Solar Connection,” arXiv:1511.08770 [hep-ph], 2015. Topics: P,S,V

149. Sturrock P. A., Fischbach E., Jenkins J., “Analysis of beta-decay rates for Ag108, Ba133, Eu152, Eu154, Kr85, Ra226, and Sr90, measured at the Physikalisch-Technische Bundesanstalt from 1990-1996,” Astrophysical Journal, 2014, 794, No. 1, 149-155. Topics: B,P,V

150. Sturrock P. A., Fischbach E., Jenkins J., “Further Evidence Suggestive of a Solar Influence on Nuclear Decay Rates,” arXiv:1301.3754 [hep-ph], 2013. Topics: B,P,V

151. Sturrock P. A., Fischbach E., Javorsek II D., Jenkins J., Lee R., “The Case for a Solar Influence on Certain Nuclear Decay Rates,” arXiv:1510.05996 [nucl-ex], 2015. Topics: B,P,S,V

152. Sturrock P. A., Fischbach E., Jenkins J., “Comparison of beta-decay rates for Ag108, Ba133, Eu152, Eu154, Kr85, Ra226, and Sr90, measured at the Physikalisch-Technische Bundesanstalt from 1990-1996,” Astrophysical Journal, 2014, 794, No. 1, 149-155. Topics: B,P,V

153. Sturrock P. A., Fischbach E., Jenkins J., “Concerning the variability of beta-decay measurements,” arXiv:1510.05996 [nucl-ex], 2015. Topics: B,P,S,V

154. Sturrock P. A., Fischbach E., Parkhomov A., Scargle J. D., Steinitz G., “Concerning the variability of beta-decay measurements,” arXiv:1510.05996 [nucl-ex], 2015. Topics: B,P,S,V

155. Sturrock P. A., Fischbach E., Piatibratova O., Scargle J. D., Steinitz G., “Concerning the variability of beta-decay measurements,” arXiv:1510.05996 [nucl-ex], 2015. Topics: B,P,S,V

156. Sturrock P. A., Fischbach E., Piatibratova O., Steinitz G., Scholkmann F., “An Oscillation Evident in Both Solar Neutrino Data and Radon Decay Data,” arXiv:1907.11749 [hep-ph], 2019. Topics: B,P,S,V

157. Sturrock P. A., Fischbach E., Scargle J. D., “Comparative Analyses of Brookhaven National Laboratory Nuclear Decay Measurements and Super-Kamiokande Solar Neutrino Measurements: Neutrinos and Neutrino-Induced Beta-Decays as Probes of the Deep Solar Interior,” Solar Physics, 2016, 291, 3467-3484. Topics: B,P,S,V
158. Sturrock P. A., Parkhomov A. G., Fischbach E., Jenkins J. H., “Power spectrum analysis of LMSU (Lomonosov Moscow State University) nuclear decay-rate data: Further indication of r-mode oscillations in an inner solar tachocline,” Astroparticle Physics, 2012, 35, Iss. 11, 755-758. Topics: B,P,S,V

159. Sturrock P. A., Scargle J. D., Walther G., Wheatland M. S., “Rotational Signature and Possible r-Mode Signature in the GALLEX Solar Neutrino Data,” Astrophysical Journal Letters, 1999, 523, No. 2, 177-180. Topics: P,S,V

160. Sturrock P. A., Steinitz G., Fischbach E., “Analysis of gamma radiation from a radon source. II: Indications of influences of both solar and cosmic neutrinos on beta decays,” Astroparticle Physics, 2018, 100, 1-12. Topics: B,P,S,V

161. Sturrock P. A., Steinitz G., Fischbach E., “Analysis of Radon-Chain Decay Measurements: Evidence of Solar Influences and Inferences Concerning Solar Internal Structure and the Role of Neutrinos,” arXiv:1705.03010 [astro-ph.SR], 2017. Topics: A,B,T,P,S,V

162. Sturrock P. A., Steinitz G., Fischbach E., “Concerning the variability of nuclear decay rates: Rebuttal of an article by Pommé et al.,” Astroparticle Physics, 2018, 98, 9-12. Topics: B,E,V

163. Sturrock P. A., Steinitz G., Fischbach E., Javorsek II D., Jenkins J. H., “Analysis of gamma radiation from a radon source: Indications of a solar influence,” Astroparticle Physics, 2012, 36, Iss. 1, 18-25. Topics: G,P,S,V

164. Sturrock P. A., Steinitz G., Fischbach E., Parkhomov A., Scargle J. D., “Analysis of beta-decay data acquired at the Physikalisch-Technische Bundesanstalt: Evidence of a solar influence,” Astroparticle Physics, 2016, 84, 8-14. Topics: B,P,S,V

165. Sturrock P. A., Walther G., Wheatland M. S., “Search for Periodicities in the Homestake Solar Neutrino Data,” Astrophysical Journal, 1997, 491, No. 1, 409-413. Topics: P,S,T,V

166. van Rooy M. W., “An investigation of a possible effect of reactor antineutrinos on the decay rate of 22Na,” Ph.D. Thesis, Stellenbosch University, 2015, unpublished. Topics: B,S,V

167. Vasiliev B. V., “The Beta-Decay Induced by Neutrino Flux,” Journal of Modern Physics, 2020, 11, 608-615. Topics: B,E,T,V,S

168. Vasiliev B. V., “Effect of Reactor Neutrinos on Beta-Decay,” Journal of Modern Physics, 2020, 11, No. 1, 91-96. Topics: B,S,T,V

169. Veprev D. P., Muromtsev V. I., “Evidence of solar influence on the tritium decay rate,” Astroparticle Physics, 2012, 36, Iss. 1, 26-30. Topics: B,E,S,V

170. Walg J., Zigel Y., Rodnianski A., Orion I., “Solar Flare Detection Method using 222Rn Radioactive Source,” arXiv:2002.02787 [astro-ph.SR], 2020. Topics: A,E,S,V

171. Walg J., Zigel Y., Rodnianski A., Orion I., “Evidence of Neutrino Flux effect on Alpha Emission Radioactive Half-Life,” ATINER Conference Presentation Series,
172. Zaqarashvili T. V., Carbonell M., Oliver R., Ballester J. L., “Magnetic Rossby waves in the solar Tachocline and Rieger-type Periodicities,” *Astrophysical Journal*, 2010, 709, No. 2, 749-758. **Topics: P,T,V**

Related Topics

The following is a list of references which do not directly discuss the implication of time-dependent variations in radioactive decay rate data or arguments against such variations, but rather provide supporting analysis for the references above.

1. Abdurashitov J. N., Gavrin V. N., Girin S. V., Gorbachev V. V., Ibragimova T. V., Kalikhov A. V., Khairnasov N. G., Knodel T. V., Mirmov I. N., Shikhin A. A., SAGE Collaboration, et al., “Measurement of the solar neutrino capture rate with gallium metal,” *Physical Review C*, 1999, 60, Iss. 5, 055801. arXiv:1902.10131 [nucl-ex] **Topics: E,P,S**

2. Aharmim B., Ahmed N., Anthony A. E., Barros N., Beier E. W., Bellerive A., Beltran B., Bergevin M., Biller S. D., Boudjemline K., et al., “Searches for high-frequency variations in the 8B Solar Neutrino Flux at the Sudbury Neutrino Observatory,” *Astrophysical Journal*, 2010, 710, No. 1, 540-548. **Topics: E,L,S**

3. Ahmad I., Bonino G., Castagnoli C., Fischer S. M., Kutschera W., Paul M., “Three-Laboratory Measurement of the 44Ti Half-life,” *Physical Review Letters*, 1998, 80, Iss. 12. **Topics: D,E,L**

4. Al-Bataina B., Janecke J., “Half-Lives of Long-Lived Alpha Emitters,” *Radiochimica Acta*, 1987, 42, Iss. 4, 159-164. **Topics: A,E,P**

5. Aldrich L. T., Wetherill G. W., Tilton G. R., Davis G. L., “Half-Life of Rb8,” *Physical Review*. 1956, 103, Iss. 4, 1045-1047. **Topics: B,E**

6. Altmann M., Balata M., Belli P., Bellotti E., Bernabei R., Burkert E., Cattadori C., Cerichelli G., Chiarini M., Cribier M., GNO Collaboration, et al., “Complete results for five years of GNO solar neutrino observations,” *Physics Letters B*, 2005, 616, Iss. 3-4, 174-190. **Topics: L,E,P,S**

7. Altmann M., Balata M., Belli P., Bellotti E., Bernabei R., Burkert E., Cattadori C., Cerichelli G., Chiarini M., Cribier M., GNO Collaboration, et al., “GNO solar neutrino observations: results for GNO I,” *Physics Letters B*, 2000, 490, Iss. 1-2, 16-26. **Topics: L,E,P,S**

8. Anderson J. L., Spangler G. W., “Serial statistics. Is radioactive decay random,” *Journal of Physical Chemistry*, 1973, 77, No. 26, 3114-3121. **Topics: B,P,T**

9. Andreotti E., Arnaboldi C., Avignone III F. T., Balata M., Bandac I., Barucci M., Beeman J. W., Bellini F., Brofferio C., Bryant A., et al., 130Te neutrinoless double-beta decay with CUORICINO,” *Astroparticle Physics*, 2011, 34 822-831. **Topics: B,L,E**
10. Anselmann P., Fockenbrock R., Hampel W., Heusser G., Kiko J., Kirsten T., Laubenstein M., Pernicka E., Pezzi S., Rönn U., GALLEX Collaboration, et al., “First results from the 51Cr neutrino source experiment with the GALLEX detector,” *Physics Letters B*, 1995, **342**, Iss. 1-4, 440-450. **Topics: L,E,P,S**

11. Anselmann P., Hampel W., Heusser G., Kiko J., Kirsten T., Laubenstein M., Pernicka E., Pezzi S., Rönn U., Sann M., GALLEX Collaboration, et al., “GALLEX results from the first 30 solar neutrino runs,” *Physics Letters B*, 1994, **327**, Iss. 3-4, 377-385. **Topics: L,E,S**

12. Anselmann P., Hampel W., Heusser G., Kiko J., Kirsten T., Laubenstein M., Pernicka E., Pezzi S., Plaga R., Rönn U., GALLEX Collaboration, et al., “GALLEX solar neutrino observations. The results from GALLEX I and early results from GALLEX II,” *Physics Letters B*, 1993, **314**, Iss. 3-4, 445-458. **Topics: L,E,S**

13. Anselmann P., Hampel W., Heusser G., Kiko J., Kirsten T., Laubenstein M., Pernicka E., Pezzi S., Rönn U., Sann M., GALLEX Collaboration, et al., “GALLEX solar neutrino observations: complete results for GALLEX II,” *Physics Letters B*, 1995, **357**, Iss. 1-2, 237-247. **Topics: L,E,S**

14. Anselmann P., Hampel W., Heusser G., Kiko J., Kirsten T., Pernicka E., Plaga R., Rönn U., Sann M., Schlosser C., GALLEX Collaboration, et al., “Implications of the GALLEX determination of the solar neutrino flux,” *Physics Letters B*, 1992, **285**, Iss. 4, 390-397. **Topics: L,E,S**

15. Ashenfelter J., Balantekin B., Baldenegro C. X., Band H. R., Barclay G., Bass C. D., Berish D., Bowden N. S., Bryan C. D., Cherwink J. J., GALLEX Collaboration, et al., “Background radiation measurements at high power research reactors,” *Nuclear Instruments and Methods in Physics Research A: Accelerators, Spectrometers, Detectors and Associated Equipment*, 2016, **806**, 401-419. **Topics: L,E**

16. Audi G., Bersillon O., Blachot J., Wapstra A. H., “The NUBASE evaluation of nuclear and decay properties,” *Nuclear Physics A*, 1997, **624**, 1-122. **Topics: E,P**

17. Audouze J., Fowler W. A., Schramm D. N., “176Lu and s-Process Nucleosynthesis,” *Nature Physical Science*, 1972, **238**, 8-11. **Topics: E,P**

18. Bahcall J. N., “Solar flares and neutrino detectors,” *Physical Review*, 1988, **61**, Iss. 23, 2650-2652. **Topics: P,S**

19. Bahcall J. N., Pinsonneault M. H., Basu S., “Solar Models: Current Epoch and Time Dependences, Neutrinos, and Helioseismological Properties,” *Astrophysical Journal*, 2001, **555**, No. 2, 990-1012. **Topics: P,S**

20. Barabash A. S., “Average and recommended half-life values for two-neutrino double beta decay,” *Nuclear Physics A*, 2015, **935**, 52-64. **Topics: B,P,R,S**

21. Baranyai A., Hirn A., Deme S., Csöke A., Apáthy I., Fehér I., 212Bi-212Po alpha source for the calibration and functional testing of silicon detectors: Preparation...
Anomalies in Radioactive Decay Rates: A Bibliography of Measurements and Theory

22. Beard G. B., Kelly W. H., “The use of a samarium loaded liquid scintillator for the determination of the half-life of Sm147,” *Nuclear Physics*, 1958, 8, 207-209. **Topics: A,E**

23. Beard G. B., Wiedenbeck M. L., “Natural Radioactivity of Sm147,” *Physical Review*, 1954, 95, Iss. 5, 1245-1246. **Topics: A,E**

24. Beckinsale R. D., Gale N. H., “A reappraisal of the decay constants and branching ratio of 40K,” *Earth and Planetary Science Letters*, 1969, 6, Iss. 4, 289-294. **Topics: B,P**

25. Becquerel H., “On the rays emitted by phosphorescence,” *Compt. Rend. Hebd. Séances Acad. Sci.*, 1896, 122, 420-421. **Topics: E**

26. Begemann F., Ludwig K. R., Lugmair G. W., Min K., Nyquist L. E., Patchett P. J., Renne P. R., Shih C. Y., Villa I. M., Walker R. J., “Call for an improved set of decay constants for geochronological use,” *Geochimica et Cosmochimica Acta*, 2001, 65, Iss. 1, 111-121. **Topics: D,P**

27. Bell R. E., Sosniak J., “Genetic Measurement of the Half life of Bi207,” *Canadian Journal of Physics*, 1959, 37, No. 1. **Topics: D,EC**

28. Belli P., Bernabei R., Cappella F., Cerulli R., Danevich F. A., Dubovik A. M., d’Angelo S., Galashov E. N., Grinyov B. V., Incicchitti A., et al., “Radioactive contamination of ZnWO$_4$ crystal scintillators,” *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment*, 2011, 626-627, 31-38. **Topics: A,B,E,P**

29. Bellini G., Benziger J., Bick D., Bonetti S., Buizza Avanzini M., Caccianiga B., Cadonati L., Calaprice F., Carraro C., Borexino Collaboration, et al., “Absence of a day–night asymmetry in the 7Be solar neutrino rate in Borexino,” *Physics Letters B*, 2012, 707, Iss. 1, 22-26. **Topics: A,E,P,S**

30. Bellini G., Benziger J., Bonetti S., Buizza Avanzini M., Caccianiga B., Cadonati L., Calaprice F., Carraro C., Borexino Collaboration, et al., “Measurement of the solar 8B neutrino rate with a liquid scintillator target and 3MeV energy threshold in the Borexino detector,” *Physics Review D*, 2010, 82, 033006. arXiv:0808.2868 [astro-ph] **Topics: E,P,S**

31. Bieber J. W., Seckel D., Stanek T., Steigman G., “Variation of the solar neutrino flux with the Sun’s activity,” *Nature*, 1990, 348, No. 6300, 407-411. **Topics: P,S**

32. Bizzeti P. G., Bizzeti-Sona A. M., “Integral- and differential-decay-curve methods for recoil distance measurements of nuclear lifetimes,” *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment*, 2014, 736, 179-183. **Topics: P**

33. Brancaccio F., Dias M. S., Koskinas M. F., Moreira D. S., de Toledo F., “Data analysis software package for radionuclide standardization with a digital coincidence
34. Brinkman G. A., Aten Jr. A. H. W., Veenboer J. T., “Natural radioactivity of K-40, Rb-87, and Lu-176,” *Physica*, 1965, 31, Iss 8, 1305-1319. **Topics: B,E,P**

35. Budick B., Chen J., Lin H., “Half-Life of Molecular Tritium and the Axial-Vector Interaction in Tritium β Decay,” *Physical Review Letters*, 1991, 67, Iss. 19, 2630. **Topics: B,D,P**

36. Byun J., Hwang H., Yun J., “A low background gamma-ray spectrometer with a large well HPGe detector,” *Applied Radiation and Isotopes*, 2020, 156, 1080932. **Topics: B,T**

37. Caldwell D. O., Sturrock P. A., “Evidence for solar neutrino flux variability and its implications,” *Astroparticle Physics*, 2005, 23, Iss. 6, 543-556. **Topics: P,S**

38. Casanovas R., Morant J. J., Salvadó M., “Temperature peak-shift correction methods for NaI(Tl) and LaBr₃(Ce) gamma-ray spectrum stabilisation,” *Radiation Measurements*, 2012, 47, Iss. 8, 588-595. **Topics: E,P**

39. Chen Y., Kashy E., Bazin D., Benenson W., Morrissey D. J., Orr N. A., Sherrill B. M., Winger J. A., Young B., Yurkon J., “Half-life of ³²Si,” *Physical Review C*, 1993, 47, Iss. 4. **Topics: B,E**

40. Cheng C., Wei Z., Hei D., Jia W., Li J., Cai P., Gao Y., Shan Q., Ling Y., “MCNP benchmark of a ²⁵²Cf source-based PGNA system for bulk sample analysis,” *Applied Radiation and Isotopes*, 2020, 158, 109045. **Topics: A,E,T**

41. Collins S. M., Shearman R., Ivanov P., Regan P. H., “The impact of high-energy tailing in high-purity germanium gamma-ray spectrometry on the activity determination of ²²⁴Ra using the 241.0 keV emission,” *Applied Radiation and Isotopes*, 2020, 157, 109021. **Topics: A,E,P**

42. da Silva M. A. L., Poledna R., Iwahara A., da Silva C. J., Delgado J. U., Lopes R. T., “Standardization and decay data determinations of ¹²⁵I, ⁵¹Mn and ²⁰³Hg,” *Applied Radiation and Isotopes*, 2006, 64, Iss. 10, 1440-1445. **Topics: D,E**

43. Das C. R., Pulido J., Picariello M., “Light sterile neutrinos, spin flavor precession, and the solar neutrino experiments,” *Physical Review D*, 2009, 79, Iss. 7, 073010. **Topics: E,P,S**

44. Davis Jr. R., “A review of measurements of the solar neutrino flux and their variation,” *Nuclear Physics B- Proceedings Supplements*, 1996, 48, Iss. 1-3, 284-298. **Topics: R,S**

45. De Bièvre P., Verbruggen A., “A new measurement of the half-life of ²⁴¹Pu using isotope mass spectrometry,” *Metrologia* 1999, 36, No.1, 25-31. **Topics: B,D,E,P**

46. De Ruyter A. W., Aten Jr A. H. W., Van Dulmen A., Krol-Koning C., Zuidema E., “Specific gamma emission of natural potassium and lanthanum,” *Physica*, 1966, 32, Iss. 5, 991-994. **Topics: B,E,P**

47. Delache P., Gavryusev V., Gavryuseva E., Laclare F., Régulo C., Roca Cortés T., “Time correlation between solar structural parameters - p-mode frequencies, radius,
Anomalies in Radioactive Decay Rates: A Bibliography of Measurements and Theory

48. Dryák P., Šolc J., “Measurement of the branching ratio related to the internal pair production of Y-90,” Applied Radiation and Isotopes, 2020, 156, 108942. Topics: B,E,P

49. Elmore D., Anantaraman N., Fulbright H. W., Gove H. E., Hans H. S., Nishiiizumi K., Murrell M. T., Honda M., “Half-Life of 32Si from Tandem-Accelerator Mass Spectrometry,” Physical Review Letters, 1980, 45, Iss. 8. Topics: B,D

50. Frekers D., Ejiri H., Akimune H., Adachi T., Bilgier B., Brown B. A., Cleveland B. T., Fujita H., Fujiware M., Ganioglu E., et al., “The 71Ga(3He,t) reaction and the low-energy neutrino response,” Physics Letters B, 2011, 706, Iss. 2-3, 134-138. Topics: B,E,P,S

51. García-Torano E., Crespo T., Marouli M., Jobbágy V., Pommé S., Ivanov P., “Alpha-particle emission probabilities of 231Pa derived from first semiconductor spectrometric measurements,” Applied Radiation and Isotopes, 2019, 154, 108863. Topics: A,E

52. Görres J., Meibner J., Schatz H., Stech E., Tischhauser P., Wiescher M., Bazin D., Harkewicz R., Hellström M., Sherrill B., et al., “Half-Life of 44Ti as a Probe for Supernova Models,” Physical Review Letters, 1998, 80, Iss. 12, 2554. Topics: D

53. Hampel W., Handt J., Heusser G., Kiko J., Kirsten T., Laubenstein M., Pernicka E., Rau W., Wojcik M., Zakharov Y., GALLEX Collaboration, et al., “GALLEX solar neutrino observations: results for GALLEX IV,” Physics Letters B, 1999, 447, Iss. 1-2, 127-133. Topics: E,S

54. Hampel W., Heusser G., Kiko J., Kirsten T., Laubenstein M., Pernicka E., Rau W., Rönn U., Schlosser C., Wojcik M., GALLEX Collaboration, et al., “Final results of the 51Cr neutrino source experiments in GALLEX,” Physics Letters B, 1998, 420, Iss. 1-2, 114-126. Topics: E,S

55. Hampel W., Heusser G., Kiko J., Kirsten T., Laubenstein M., Pernicka E., Rau W., Rönn U., Schlosser C., Wojcik M., GALLEX Collaboration, et al., “GALLEX solar neutrino observations: Results for GALLEX III,” Physics Letters B, 1996, 388, Iss. 2, 384-396. Topics: E,S

56. Haubold H. J., Gerth E., “On the Fourier spectrum analysis of the solar neutrino capture rate,” Solar Physics, 1990, 127, 347-356. Topics: E,P,S,T

57. Haubold H. J., Gerth E., “Time variations of the solar neutrino flux,” Astrophysics and Space Science, 1985, 112, 397-405. Topics: P,S,T

58. Horvat V., Hardy J. C., “Time-interval analysis of beta decay,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 713, 19-26. Topics: B,P

59. Jaffey A. H., “Statistical considerations in half-life measurement, I,” Nuclear Instruments and Methods, 1970, 81, Iss. 1, 155-163. Topics: P,T
60. Kaether F., Hampel W., Heusser G., Kiko J., Kirsten T., “Reanalysis of the Gallex solar neutrino flux and source experiments,” *Physics Letters B*, 2010, **685**, Iss. 1, 47-54. **Topics:** P,S

61. Kelly W. H., Beard G. B., Peters R. A., “The beta decay of ^{40}K,” *Nuclear Physics*, 1959, **11**, 492-498. **Topics:** B,E

62. Kirsten T. A., “Results from solar-neutrino experiments,” *II Nuovo Cimento C*, 1996, **19**, No. 6, 821-833. **Topics:** E,P,S

63. Kirsten T. A., GNO Collaboration, “Progress in GNO,” *Nuclear Physics B - Proceedings Supplements*, 2003, **118**, 33-38. **Topics:** E,EC,L,P,S

64. Kossert K., Nähle O. J., Carles A. G., “Beta shape-factor function and activity determination ^{241}Pu,” *Applied Radiation and Isotopes*, 2011, **69**, Iss. 1-4, 205-210. **Topics:** B,P,S,T

65. Lean J. L., Bruecknew G. E., “Intermediate-term solar periodicities - 100-500 days,” *Astrophysical Journal*, 1989, **337**, 568-578. **Topics:** E,P,S

66. Li Y. F., Xing Z. Z., “Possible capture of KeV sterile neutrino dark matter on radioactive β-decaying nuclei,” *Physics Letters B*, 2011, **695**, Iss. 1-4, 205-210. **Topics:** B,P,S,T

67. Liu H., Zhou Q., Fan F., Liang J., Zhang M., “Activity determination of ^{231}Pa by means of liquid scintillation counting,” *Applied Radiation and Isotopes*, 2020, **155**, 108944. **Topics:** A,B,E,P

68. Lomb N. R., “Least-squares frequency analysis of unequally spaced data,” *Astrophysics and Space Science*, 1976, **39**, 447-462. **Topics:** P,T

69. Luca A., “^{226}Th nuclear decay data evaluation,” *Applied Radiation and Isotopes*, 2020, **155**, 108941. **Topics:** A,E,P

70. MacMahon D., Pearce A., Harris P., “Convergence of techniques for the evaluation of discrepant data,” *Applied Radiation and Isotopes*, 2004, **60**, Iss. 2-4, 275-281. **Topics:** D,P

71. Marouli M., Lutter G., Pommé S., Van Ammel R., Hult M., Pierre S., Dryák P., Carconi P., Fazio A., Bruchertseifer F., et al., “Measurement of absolute γ-ray emission probabilities in the decay of ^{227}Ac in equilibrium with its progeny,” *Applied Radiation and Isotopes*, 2019, **144**, 34-46. **Topics:** A,E,P

72. Marouli M., Suliman G., Pommé S., Van Ammel R., Jobbágy V., Stroh H., Dikmen H., Paepen J., Dirican A., Bruchertseifer F., et al., “Decay data measurements on ^{213}Bi using recoil atoms,” *Applied Radiation and Isotopes*, 2013, **74**, 123-127. **Topics:** A,B,E,P

73. Marouli M., Pommé S., “Automated optical distance measurements for counting at a defined solid angle,” *Applied Radiation and Isotopes*, 2019, **153**, 108821. **Topics:** A,E,P

74. Massetti S., Stroini M., “Spacetime Modulation of Solar Neutrino Flux: 1970-1992,” *Astrophysical Journal*, 1996, **472**, No. 2, 827-831. **Topics:** P,S
75. McNutt Jr. R. L., “Correlated Variations in the Solar Neutrino Flux and the Solar Wind and the Relation to the Solar Neutrino Problem,” *Science*, 1995, **270**, Iss. 5242, 1635-1639. **Topics: P,S**

76. Aker M., Altenmüller K., Arenz M., Babutzka M., Barrett J., Bauer S., Beck M., Beglarian A., Behrens J., Bergmann T., KATRIN collaboration, “Improved Upper Limit on Neutrino Mass from a Direct Kinematic Method by KATRIN,” *Physical Review Letters*, 2019, **123**, 221802. **Topics: B,E,P,S**

77. Mitra M., Senjanović G., Vissani F., “Neutrinoless double beta decay and heavy sterile neutrinos,” *Nuclear Physics B*, 2012, **856**, Iss. 1, 26-73. **Topics: B,S,T**

78. Napoli E., Cessna J. T., Fitzgerald R., Pibida L., Collé R., Laureano-Pérez L., Zimmerman B. E., Bergeron D. E., “Primary standardization of 224Ra activity by liquid scintillation counting,” *Applied Radiation and Isotopes*, 2020, **155**, 108933. **Topics: A,B,E,P**

79. Oakley D. S., Snodgrass, H. B., Ulrich, R. K., Vandekop, T. L., “On the correlation of solar surface magnetic flux with solar neutrino capture rate,” *Astrophysical Journal*, 1994, **437**, L63-L66. **Topics: E,P,S**

80. Pandola L., “Search for time modulations in the Gallex/GNO solar neutrino data,” *Astroparticle Physics*, 2004, **22**, Iss. 2, 219-226. **Topics: E,P,S**

81. Pibida L., Zimmerman B. E., King L., Fitzgerald R., Bergeron D. E., Napoli E., Cessna J. T., “Determination of the internal pair production branching ratio of 90Y,” *Applied Radiation and Isotopes*, 2020, **156**, 108943. **Topics: B,E**

82. Picoreti R., Guzzo M. M., de Holanda P. C., Peres O. L. G., “Neutrino decay and solar neutrino seasonal effect,” *Physics Letters B*, 2016, **761**, 70-73. **Topics: P,S,T**

83. Pierre S., Cassette P., Loidl M., Branger T., Lacour D., Le Garrères I., Morelli S., “On the variation of the 210Po half-life at low temperature,” *Applied Radiation and Isotopes*, 2010, **68**, Iss. 7-8, 1467-1470. **Topics: E**

84. Pommé S., “Cascades of pile-up and dead time,” *Applied Radiation and Isotopes*, 2008, **66**, Iss. 6-7, 941-947. **Topics: P,T**

85. Pommé S., “Dead Time, Pile-Up, and Counting Statistics,” *Applied Modeling and Computations in Nuclear Science*, 2006, **945**, Ch. 16, 218-233. **Topics: P,T**

86. Pommé S., “The uncertainty of counting at a defined solid angle,” *Metrologia*, 2015, **52**, No. 3, S73-S85. **Topics: P,T**

87. Pommé S., “When the model doesn’t cover reality: examples from radionuclide metrology,” *Metrologia*, 2016, **53**, S55-S64. **Topics: P,T**

88. Pommé S., Denecke B., Alzetta J. P., “Influence of pileup rejection on nuclear counting, viewed from the time-domain perspective,” *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment*, 1999, **426**, Iss. 2-3, 564-582. **Topics: E,T**

89. Pommé S., Fitzgerald R., Keightley J., “Uncertainty of nuclear counting,” *Metrologia*, 2015, **52**, No. 3, S3-S17. **Topics: P,T**
90. Pommé S., Keightley J. “Count Rate Estimation of a Poisson Process: Unbiased Fit versus Central Moment Analysis of Time Interval Spectra,” *Applied Modeling and Computations in Nuclear Science*, 2006, 945, Ch. 23, 316-334. **Topics: P**

91. Pommé S., Keightley J. “Determination of a reference value and its uncertainty through a power-moderated mean,” *Metrologia*, 2015, 52, No. 3, S200-S212. **Topics: P**

92. Pommé S., Paepen J., Marouli M., “Conversion electron spectroscopy of the 59.54 keV transition in 241Am alpha decay,” *Applied Radiation and Isotopes*, 2019, 153, 108848. **Topics: A,P**

93. Quarati F. G. A., Khodyuk I. V., van Eijk C. W. E., Quarati P., Dorenbos P., “Study of 138La radioactive decays using LaBr$_3$ scintillators,” *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment*, 2012, 683, 46-52. **Topics: B,E,EC**

94. Ranucci G., “Likelihood scan of the Super-Kamiokande I time series data,” *Physical Review D*, 2006, 73, Iss. 1, 103003. **Topics: P,T,S**

95. Ranucci G., Rovere M., “Periodogram and likelihood periodicity search in the SNO solar neutrino data,” *Physical Review D*, 2007, 75, Iss. 1, 013010. **Topics: P,T,S**

96. Ratel G., “The Système International de Référence and its application in key comparisons,” *Metrologia*, 2007, 44, S7-S16. **Topics: P**

97. Rieger E., Share G. H. Forrest D. J. Kanback G., Reppin C., Chupp E. L., “A 154-day periodicity in the occurrence of hard solar flares?,” *Nature*, 1984, 312, 623-625. **Topics: E,S**

98. Rothe C., Hintschich S. I., Monkman A. P., “Violation of the Exponential-Decay Law at Long Times,” *Physical Review*, 2006, 96, 163601. **Topics: P,T**

99. Rutherford, E., “Radioactive Substances and their Radiations,” *Cambridge University Press*, 1913, 505-507 **Topics: E**

100. Rutherford, E., Chadwick J., Ellis C. D., “Radiations from Radioactive Substances,” *Cambridge University Press*, 1951. **Topics: E**

101. Rutherford, E., Soddy F., “LX. Radioactive Change,” *The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science*, 1903, 5, Iss. 29, 576-591. **Topics: E**

102. Ryazhskaya O. G., Volkova L. V., Zatsepin G. T., “Neutrinos from solar flares at the earth,” *Nuclear Physics B- Proceedings Supplements*, 2002, 110, 358-360. **Topics: S**

103. Saio H., “R-mode oscillations in uniformly rotating stars,” *Astrophysical Journal*, 1982, 256, 717-735. **Topics: T**

104. Sakurai K., “Quasi-biennial variation of the solar neutrino flux and solar activity,” *Nature*, 1979, 278, 146-148. **Topics: P,S**
105. Scargle J. D., “Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data,” *Astrophysical Journal*, 1982, 263, 835-853. **Topics: P**

106. Schön R., Winkler G., Kutschera W., “A critical review of experimental data for the half-lives of the uranium isotopes 238U and 235U,” *Applied Radiation and Isotopes*, 2004, 60, Iss. 2-4, 263-273. **Topics: D,P**

107. Schou J., Howe R., Basu S., Christensen-Dalsgaard J., Corbard T., Hill F., Komm R., Larsen R. M., Rabello-Soares M. C., Thompson M. J., “A comparison of solar p-mode parameters from the Michelson doppler imager and the global oscillation network group: Splitting coefficients and rotation inversions,” *Astrophysical Journal*, 2002, 567, 1234-1249. **Topics: E,P**

108. Schulc M., Košt’ál M., Šimon J., Novák E., Mareček M., Kubín R., “Validation of IRDFF-II library by means of 252Cf spectral averaged cross sections,” *Applied Radiation and Isotopes*, 2020, 155, 108937. **Topics: E,A**

109. Silverman M. P., “Theory of nuclear half-life determination by statistical sampling,” *European Physics Letters*, 2013, 105, No. 2, 22001. **Topics: T,P,B,EC**

110. Sima O., De Vismes Ott A., Dias M. S., Dryak P., Ferreux L., Gurau D., Hurtado S., Jodlowski P., Karfopoulos K., Koskinas M. F., et al., “Consistency test of coincidence-summing calculation methods for extended sources,” *Applied Radiation and Isotopes*, 2020, 155, 108921. **Topics: T,P,B,EC**

111. Smy M. B., Super-Kamiokande Collaboration “Terrestrial Matter Effects from Solar Neutrino Interactions in Super-Kamiokande,” *Nuclear and Particle Physics Proceedings*, 2015, 265-266, 135-138. **Topics: E,S**

112. Sturrock P. A., Analysis of Super-Kamiokande 5 Day Measurements of the Solar Neutrino Flux,” *Astrophysical Journal*, 2004, 605, No. 1, 568-572. **Topics: P,T,S**

113. Sturrock P. A., Evidence for r-Mode Oscillations in Super-Kamiokande Solar Neutrino Data,” *Solar Physics*, 2008, 252, 221-233. **Topics: P,T,S**

114. Sturrock P. A., ”Solar Neutrino Variability and Its Implications for Solar Physics and Neutrino Physics,” *Astrophysical Journal Letters*, 2008, 688, No. 1, L53-L56. **Topics: P,T,S**

115. Sturrock P. A., ”Time-Frequency Analysis of GALLEX and GNO Solar Neutrino Data,” *Solar Physics*, 2008, 252, 1-18. **Topics: P,T,S**

116. Sturrock P. A., Scargle J. D., ”Power-Spectrum Analysis of Super-Kamiokande Solar Neutrino Data, Taking into Account Asymmetry in the Error Estimates,” *Solar Physics*, 2006, 237, 1-11. **Topics: P,S**

117. Sturrock P. A., Walther G., Wheatland M. S., “Apparent Latitudinal Modulation of the Solar Neutrino Flux,” *Astrophysical Journal*, 1998, 507, 978-983. **Topics: P,T,S**

118. Tilley D. R., Madansky L., “Search for Positron Emission in K40,” *Physical Review*, 1959, 116, 413. **Topics: E,B**
119. Unterweger M. P., “Half-life measurements at the National Institute of Standards and Technology,” Applied Radiation and Isotopes, 2002, 56, Iss. 1-2, 125-130. Topics: D,E

120. Unterweger M. P., Fitzgerald R., “Update of NIST half-life results corrected for ionization chamber source-holder instability,” Applied Radiation and Isotopes, 2014, 87, 92-94. Topics: E,P

121. van Heerden M. R., Cole K., van der Meulen N. P., Franzidis J. P., Buffler A., “Extending the life of SnO$_2^{68}\text{Ge}/^{68}\text{Ga}$ generators used in the radiolabelling of ion exchange resins,” Applied Radiation and Isotopes, 2020, 158, 109044. Topics: E,EC

122. Walz K. F., “Half-life measurements at the PTB,” The International Journal of Applied Radiation and Isotopes, 1983, 34, Iss. 8, 1191-1199. Topics: E,P

123. Ware M. J., Bergeson S. D., Ellsworth J. E., Groesbeck M., Hansen J. E., Pace D., Peatross J., “Instrument for precision long-term β-decay rate measurements” Review of Scientific Instruments, 2015, 86, 073505. Topics: E,S

124. Wietfeld F. E., Greene G. L., “Colloquium: The neutron lifetime,” Reviews of Modern Physics, 2011, 83, Iss. 4, 1173-1192. Topics: B,D,R

125. Wink R., Anselmann P., Dörflinger D., Hampel W., Heusser G., Kirsten T., Mögel P., Pernicka E., Plaga R., Schlosser C., “The miniaturized proportional counter HD-2(Fe)/(Si) for the GALLEX solar neutrino experiment,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1993, 329, Iss. 3, 541-550. Topics: E,S

126. Woods M. J., Collins S. M., “Half-life data—a critical review of TECDOC-619 update,” Applied Radiation and Isotopes, 2004, 60, Iss. 2-4, 257-262. Topics: P

127. Yoo J., Ashie Y., Fukuda S., Fukuda Y., Ishihara K., Itow Y., Koshio Y., Minamino A., Miura M., Moriyama S.,Super Kamiokande Collaboration, et al., “Search for periodic modulations of the solar neutrino flux in Super-Kamiokande-I,” Physical Review D, 2003, 68, 092002. Topics: E,P,S

128. Zyla P. A., Particle Data Group, et al., “Neutrino Properties,” Progress of Theoretical and Experimental Physics, 2020, 2020, 083C01. Topics: E,P,S,T