Correlation between Dental and Skeletal Maturity in Korean Children

Seong Jin Kim, Je Seon Song, Ik-Hwan Kim, Seong-Oh Kim, Hyung-Jun Choi

Department of Pediatric Dentistry, College of Dentistry, Yonsei University

Abstract

The aim of this study was to investigate the relationships between the stages of calcification of various teeth and skeletal maturity stages among Korean subjects. The samples were derived from hand-wrist, panoramic radiographs, and lateral cephalograms of 743 subjects (359 males and 384 females) with ages ranging from 6 to 14 years. Calcification of seven permanent mandibular teeth on the left side were rated according to the system of Demirjian. To evaluate the stage of skeletal maturation, hand-wrist radiographs were analyzed by skeletal maturity indicators (SMI) system of Fishman and lateral cephalograms by cervical vertebral maturation (CVM) method of Baccetti. Statistically significant relationships were found between dental calcification and skeletal maturity stages according to Spearman rank-order correlation coefficients ($r = 0.40-0.84$, $p < 0.001$). The second molar showed the highest correlation and central incisor showed the lowest correlation for female and male subjects. For both sexes, canine stage G and second molar stage F were related to SMI 6 and CS 3. Because of the high correlation coefficients, this study suggests that tooth calcification stages from panoramic radiographs might be clinically useful as a maturity indicator of the pubertal growth period in Korean patients.

Key words : Tooth calcification stage, Skeletal maturation, Pubertal growth period, Panoramic radiograph, Hand-wrist radiograph, Lateral cephalogram

Ⅰ. 서 론

성장 중인 부정교합 환자의 교정치료에서는, 환자의 성장 단계를 고려한 치료 계획을 수립하는 것이 적절한 개입 시기의 선택을 통한 치료 기간의 단축과 양호한 치료 결과의 유도에 중요한 역할을 한다. 개인의 성장 단계는 연대연령과는 다소 차이가 있으며 동일한 연대 연령의 환자들조차 성장 단계에서 개인별 차이가 크다. 따라서 연대 연령은 성장 단계 평가의 지표로는 적합하지 않으며 신체적, 성적, 골격적 성숙도 등 생리적 연령을 평가하여 반영하는 것이 보다 정확하다[1-3].

치과 영역에서는 주로 측방두부규격 방사선사진과 수완부 방사선사진을 활용하여, 이를 통해 관찰할 수 있는 경추골과 수완부골의 골 성숙도를 평가 지표로 활용하고 있다. 이 중 수완부는 골 성숙도 평가로 가장 보편적으로 이용되는 부위로, 출생 시부터 성장 완료 시까지 화골 현상이 지속되며 수완부를 구성하는 각 골의 화골 현상이 시기적으로 또는 형태적으로 다른 양상으로 진행되어 여러 단계로 분류하여 평가 가능하다는 특징이 있다[4,5]. 또한 수완부 방사선사진은 촬영 과정 및 판독이 용이하고 재현성이 우수하여 골 성숙도 평가에 유용하게 사용되고 있다[6]. 수완부골 성숙 단계를 평가하는 방법들은 여러 논문에서

Corresponding author : Hyung-Jun Choi
Department of Pediatric Dentistry, College of Dentistry, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
Tel: +82-2-2228-3175 / Fax: +82-2-392-7420 / E-mail: CHOIHJ88@yuhs.ac
Received January 15, 2021 / Revised March 10, 2021 / Accepted March 10, 2021
※This study was supported by the research fund from Korean Academy of Pediatric Dentistry (2-2019-0065).
제시되어 왔다. Tanner 등(7,8)은 수완부의 33개의 골 중 20개의 골을 선정하여 각각의 골 성숙도를 점수화한 후, 점수의 합산을 통해 골 성숙 지수를 산출하는 Tanner-Whitehouse(TW) 방법을 제시하였으며, Hägg와 Taranger(9)은 수완부 골 중 모지척측종 자골, 중지의 중절골과 말절골, 요골에 대한 골 성숙도를 분석하여 성장 단계를 평가하는 방법을 제시하였다. Fishman(10)은 모지, 중지 및 요골에서 6개의 부위를 선정하여 각 골단의 골 화 정도와 골융합 여부 등을 평가하여 11단계로 분류한 skeletal maturity indicators(SMI) 방법을 제시하였다.

경추골 성숙도는 측방두부규격 방사선사진에서 경추의 형태를 평가하는 방법으로, 이전 문헌에서 수완부 골 성숙도와의 높은 상관관계가 있음이 알려져 있으며 추가적인 방사선 노출을 줄일 수 있는 장점이 있어 널리 사용된다(11,12). Hassel과 Farman(13)은 수완골과 경추골 성숙 단계를 비교하여 높은 상관관계가 있음을 보고하였으며 경추골 형태에 따라 골 성숙 단계를 6단계로 분류한 cervical vertebrae maturation index(CVMI)를 제시하였다. 이 후 Baccetti 등(14)은 기존의 평가 단계를 개선한 cervical vertebral maturation(CVM) 방법을 제안하였다.

성장 중인 아동에서 치아의 성숙도를 평가하는 방법으로는 크게 치아의 창출 정도를 평가하는 방법과 치아의 식화와 정도를 평가하는 방법이 있다. 이 중 치아의 창출 정도를 평가하는 방법은 상방 유치의 초기 탈락이나 유치 등 국소적인 요인에 영향을 받을 가능성이 높으며, 치아가 창출되는 연령대가 한정되어 있어 평가 가능한 연령이 제한되는 한계점이 있다(15-17). 따라서 주변 환경에 따른 영향을 비교적 적게 받는 치아의 식화와 정도를 치아 성숙도의 지표로 활용하며, 그 중 치아와 치아간의 발육 비율에 따라 10단계로 분류한 Nolla(18)의 방법과 치관 및 치근 발육의 형태에 따라 8단계로 분류한 Demirjian 등(15)이 제시한 방법이 대표적이다.

골격적 성숙도와 치아 식화와 단계 간의 상관관계를 밝히고자 하는 연구는 이전부터 수차례 이루어져 왔다. Lauterstein(19)와 Sierra(20) 등은 골격적 성숙도와 치아 식화와 단계 간에 높은 상관관계가 있다고 본 반면, Demirjian 등(21), Green(22), Koshy와 Tandon(23)은 낮은 상관관계가 있다고 보고하여 이 주제는 여전히 논란의 여지가 있다. 만약 골격적 성숙도와 치아 식화와 단계 간에 높은 상관관계가 있다면 추가적인 방사선 노출 없이 파노라마 방사선사진만으로 교정 치료의 개입 시기를 결정할 수 있을 것이다.

골격적 성숙도와 치아 식화와 단계 간의 상관관계는 인증에 따라서도 달라질 수 있다는 주장이 여러 문헌에서 보고되고 있다(24,25). 한국에서도 유사한 연구가 진행된 바 있으나, 대상자 수가 적고 특정 대학병원에 내원한 환자들을 대상으로 진행하여 특정 지역에 대상자수가 한정되어 분포한다는 한계점이 있다(26,27). 이 연구에서는 전국 10개 치과대학병원에 내원한 환자들을 대상으로 하여 한국 소아의 표준 자료를 수집하고자 하였다. 따라서 이 연구의 목적은 한국 소아의 골격적 성숙도와 치아 식화 단계 간의 상관관계에 대해 분석해 보고, 특정 치아의 식화와 단계로 성장 단계를 예측할 수 있을지를 알아보는 것이다.

Ⅱ. 연구 재료 및 방법

이 연구는 연세대학교 치과대학병원 임상 연구 윤리 위원회(Institutional Review Board, IRB)의 승인을 받아 시행되었다(IRB No: 2-2019-0065).

1. 연구 대상

이 연구는 2010년 1월부터 2019년 12월까지 전국 10개 치과대학병원(강릉원주대학교, 경북대학교, 경희대학교, 단국대학교, 부산대학교, 서울대학교, 연세대학교, 원광대학교, 전북대학교, 조선대학교)에 내원한 성장기 어린이로 교정 진단을 위해 동일한 날짜에 수완부 방사선사진, 측방두부규격 방사선사진, 파노라마 방사선사진을 활용한 6-14세 남아 414명, 여아 409명의 자료를 수집하였으며, 그 중 선정 기준에 부합하지 않거나 수완부 성숙도가 Fishman(10)이 제시한 SMI 1단계 미치지 못하는 대상자를 제외하여 남아 359명, 여아 384명의 어린이 743명을 대상으로 하였다(Table 1). 선정 기준으로는 전신적으로 건강하여 호르몬이나 성장 발육에 문제가 없는 한국 어린이, 제3대 구치를 제외한 하악 좌측 영구치 치배가 모두 존재하는 어린이, 하악 좌측 유치 중 치수치료를 받은 치아가 없는 어린이, 이전에 교정치료를 진행한 경험이 없는 어린이로 설정하였다.

2. 연구 방법

1) 수완부골 성숙도 평가

수완부 방사선사진 상에서 Fishman(10)이 제시한 SMI 11단계를 기준으로 평가하였다(Table 2).

2) 경추골 성숙도 평가

측방두부규격 방사선사진 상의 제 2, 3, 4번 경추골의 형태에 따라 6단계로 분류한 Baccetti 등(14)의 CVM 평가 방법을 이용하였다(Table 3).
치아 성숙도 평가

파노라마 방사선사진 상에서 환자의 하악 좌측 제3대구치를 제외한 7개 영구치의 석회화 단계를 형태에 따라 stage A - H의 8단계로 분류한 Demirjian 등[15]의 평가 방법을 이용하였다 (Table 4).

| Table 1. Number of subjects used in this study from each university |
|-----------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
Gender	GW	KP	KH	DK	PS	S	YS	WK	JB	CS	Total
Male	37	26	39	39	28	39	39	37	37	38	359
Female	40	28	43	37	34	43	42	39	41	37	384
Total	77	54	82	76	62	82	81	76	78	75	743

GW = Gangneung-Wonju National University, KP = Kyungpook National University, KH = Kyung Hee University, DK = Dankook University, PS = Pusan National University, S = Seoul National University, YS = Yonsei University, WK = Wonkwang University, JB = Jeonbuk National University, CS = Chosun university

Table 2. Skeletal maturation indicators by Fishman
Stage

1
2
3
4
5
6
7
8
9
10
11

Table 3. Stages of cervical vertebral maturation by Baccetti et al.
Stage

CS 1
CS 2
CS 3
CS 4
CS 5
CS 6

3) 치아 성숙도 평가
파노라마 방사선사진 상에서 환자의 하악 좌측 제3대구치를 제외한 7개 영구치의 석회화 단계를 형태에 따라 stage A - H의 8단계로 분류한 Demirjian 등[15]의 평가 방법을 이용하였다 (Table 4).
3. 통계 분석
통계분석에는 윈도우용 SPSS Statistics 25.0 (IBM, USA)을 사용하였다. 수완부골 및 경추골 성숙 단계별 평균연령과 표준편차를 구하였으며, 독립표본 t-검정(Student’s t-test)를 이용하여 남녀 간 평균연령 차의 유의성을 분석하였다. 수완부골 및 경추골 성숙도와 치아 연령간의 상관관계 및 각 치아 석회화 단계 간의 상관관계를 알아보기 위하여 Spearman의 순위상관계수(The Spearman rank order correlation coefficient)를 산출하였다. 수완부골 및 경추골 성숙 단계에 따라 각 치아의 석회화 단계의 분포도를 조사하였다. 조사자 간 신뢰도 및 조사자 내 신뢰도 평가를 위하여 Cohen’s kappa coefficient 값을 구하였고 조사자 간 신뢰도는 모두 0.8 이상, 조사자 내 신뢰도는 0.9 이상으로 나타났다.

III. 연구 성적
1. 골 성숙도 단계별 연대연령의 분포
Table 5, 6은 골 성숙도 단계에 따른 남녀 연대연령의 인원과 평균 연대연령을 나타낸 것이다. 수완부골 성숙도 단계에 따른 남녀 연대연령의 분포에서 SMI 4, 8, 9를 제외한 모든 단계에서 여아가 남아에 비해 이른 골격적 성숙도를 보였다(Table 5, p < 0.001). 각 단계별 남녀간의 차이는 평균 0.92세였다. 경추골 성숙도 단계에 따른 남녀별 연대연령의 분포 또한 모든 단계에서 여아가 남아에 비해 이른 골격적 성숙도를 보였으며, 모든 단계에서 통계적 유의성이 존재하였다(Table 6, p < 0.001). 각 단계별 남녀간의 차이는 평균 1.03세였다.

2. 골 성숙도와 치아 연령 간의 상관관계
수완부골 및 경추골 성숙도와 치아 연령 간의 상관관계는 남녀 모두에서 높은 수치를 보였다(Table 7, p < 0.001). 수완부골 성숙도와 경추골 성숙도 간에도 남녀 0.882, 여아 0.843의 높은 상관계수가 나타났다(Table 8, p < 0.001).

3. 골 성숙도와 치아 석회화 단계 간의 상관관계
남녀별 수완부골 및 경추골 성숙도와 치아 석회화 단계 간의 상관관계는 Table 9, 10에 기술하였다. 남녀 모두 골 성숙도와 하악 견치, 제1소구치, 제2소구치, 제2대구치의 석회화 단계 간의 상관관계가 하악 중절치, 측절치, 제1대구치에 비해 높은 상관관계를 나타내었으며, 7개의 영구치 중에서는 하악 제2대구치에서 가장 높은 상관관계를 나타내었다.

4. 수완부골 성숙도에 따른 각 치아 석회화 단계의 분포
하악 최측 영구치 중 골 성숙도와의 상관계수가 높은 견치, 제1소구치, 제2소구치, 제2대구치에 대해 수완부골 성숙도에 따른 치아 석회화 단계의 분포의 남녀 결과를 Table 11, 12에 나타내었다. 견치는 남녀 모두에서 SMI 1에서는 stage E가 가장 많.
Table 5. Distribution of chronological ages grouped by skeletal maturation indicators of hand-wrist radiograph

SMI	Male n	Chronological age Mean ± SD (yrs)	Female n	Chronological age Mean ± SD (yrs)	Mean Difference (yrs)	p value
1	80	8.36 ± 0.90	41	7.07 ± 0.76	1.29	< 0.001
2	36	9.97 ± 1.03	41	8.43 ± 1.01	1.54	< 0.001
3	31	10.2 ± 0.86	69	9.20 ± 1.02	0.97	< 0.001
4	50	10.5 ± 0.81	14	9.79 ± 0.82	0.72	0.005
5	17	11.4 ± 0.72	17	10.3 ± 0.85	0.93	< 0.001
6	34	12.6 ± 0.89	19	11.2 ± 0.59	1.15	< 0.001
7	71	13.1 ± 0.81	72	11.7 ± 1.04	0.58	< 0.001
8	19	13.9 ± 0.56	28	12.5 ± 0.82	0.50	0.026
9	11	14.0 ± 0.64	16	13.4 ± 0.93	0.39	0.035
10	10	14.7 ± 0.14	55	13.6 ± 0.82	1.13	< 0.001
11	0	-	12	14.5 ± 0.24	-	

*p values from Student’s t-test
SMI = skeletal maturation indicators by Fishman, SD = standard deviation

Table 6. Distribution of chronological ages grouped by cervical stage of lateral cephalogram

CS	Male n	Chronological age Mean ± SD (yrs)	Female n	Chronological age Mean ± SD (yrs)	Mean Difference (yrs)	p value
1	57	8.56 ± 1.04	26	7.49 ± 1.04	1.08	< 0.001
2	72	9.34 ± 1.31	61	8.34 ± 1.38	1.00	
3	96	10.8 ± 1.01	74	9.22 ± 1.38	1.61	
4	54	12.5 ± 0.76	111	11.5 ± 1.53	0.94	
5	53	13.5 ± 0.58	63	12.5 ± 1.25	0.56	
6	27	14.6 ± 0.20	49	13.6 ± 0.86	1.00	

*p values from Student’s t-test
CS = cervical stage by Baccetti, SD = standard deviation

Table 7. Correlation between dental age with skeletal maturation indicators and cervical stage

Dental age	Male Correlation	p value	Female Correlation	p value
SMI	0.869	< 0.001	0.873	< 0.001
CS	0.841	< 0.001	0.796	< 0.001

*p values from Spearman correlation test
SMI = skeletal maturation indicators by Fishman, CS = cervical stage by Baccetti

Table 8. Correlation between skeletal maturation indicators with cervical stage

CS	Male Correlation	p value	Female Correlation	p value
SMI	0.882	< 0.001	0.843	< 0.001

*p values from Spearman correlation test
SMI = skeletal maturation indicators by Fishman, CS = cervical stage by Baccetti

이 분포하였으며, SMI 5 - 7에서는 stage G, SMI 8 이상에서는 stage H가 대부분 분포하였다. 제1소구치의 경우 남녀 모두에서 SMI 1, 2에서는 stage E, SMI 5에서는 stage G가 가장 많이 분포하였고 SMI 8 이상에서는 대부분 stage H인 것으로 나타났다. 제2소구치는 남녀 모두에서 SMI 4 이전에는 대부분 stage E인 것으로 나타났으며, 여아에서는 SMI 5, 6에서는 stage F, SMI 8, 9에서는 stage G, SMI 10, 11에서는 stage H가 가장 많이 분포하였다. 남아의 경우 SMI 8 이상일 경우 제2소구치는 대부분 stage H에 분포하였다. 제2대구치는 남녀 모두에서 SMI 4 이전일 경우에는 stage E에 분포 비율이 가장 높았고, SMI 5, 6에서 는 stage F가 가장 많이 분포하였다. SMI 7 이상에서는 대부분 stage G인 것으로 나타났다.
Table 9. Correlation coefficients between skeletal maturation indicators and dental calcification stages in male subjects

Correlation Coefficient	Central incisor	Lateral incisor	Canine	First premolar	Second premolar	First molar	Second molar	p value
SMI	0.438	0.599	0.815	0.824	0.797	0.647	0.837	< 0.001
CVMS	0.404	0.576	0.798	0.823	0.792	0.611	0.828	

p values from Spearman correlation test

Table 10. Correlation coefficients between skeletal maturation indicators and dental calcification stages in female subjects

Correlation Coefficient	Central incisor	Lateral incisor	Canine	First premolar	Second premolar	First molar	Second molar	p value
SMI	0.501	0.629	0.839	0.840	0.829	0.613	0.842	< 0.001
CVMS	0.458	0.573	0.750	0.768	0.766	0.575	0.780	

p values from Spearman correlation test

Table 11. Male distribution of Demirjian index by skeletal maturation indicators

Demirjian Index, n(%)	Canine	First premolar									
	D	E	F	G	H	D	E	F	G	H	
SMI	n	D	E	F	G	H	D	E	F	G	H
1	80	4(5.0)	55(68.8)	18(22.5)	3(3.8)	-	2(2.5)	67(83.8)	8(10.0)	3(3.8)	-
2	36	1(2.8)	16(44.4)	13(36.1)	5(13.9)	1(2.8)	-	19(52.8)	10(27.8)	6(16.7)	1(2.8)
3	31	-	1(3.2)	20(64.5)	9(29.0)	1(3.2)	-	8(25.8)	14(45.2)	9(29.0)	-
4	50	-	9(18.0)	31(62.0)	10(20.0)	-	-	13(26.0)	23(46.0)	14(28.0)	-
5	17	-	1(5.9)	5(29.4)	9(52.9)	2(11.8)	-	-	3(17.6)	13(76.5)	1(5.9)
6	34	-	1(2.9)	3(8.8)	24(70.6)	6(17.6)	-	-	4(11.8)	21(61.8)	9(26.5)
7	71	-	-	-	42(59.2)	29(40.8)	-	-	3(4.2)	33(46.5)	35(49.3)
8	19	-	-	-	8(42.1)	11(57.9)	-	-	-	5(26.3)	14(73.7)
9	11	-	-	-	3(27.3)	8(72.7)	-	-	1(9.1)	2(18.2)	8(72.7)
10	10	-	-	-	2(20.0)	8(80.0)	-	-	-	2(20.0)	8(80.0)
11	0	-	-	-	-	-	-	-	-	-	-

SMI = skeletal maturation indicators by Fishman

Table 11. (Continued) Male distribution of Demirjian index by skeletal maturation indicators

Demirjian Index, n(%)	Second premolar	Second molar									
	D	E	F	G	H	C	D	E	F	G	H
SMI	3(3.8)	19(23.8)	50(62.5)	5(6.3)	3(3.8)	-	5(6.3)	39(48.8)	30(37.5)	6(7.5)	-
	-	1(2.8)	19(52.8)	13(36.1)	2(5.6)	1(2.8)	-	5(13.9)	18(50.0)	12(33.3)	1(2.8)
	-	17(54.8)	10(32.3)	4(12.9)	-	-	17(54.8)	13(41.9)	1(3.2)	-	
	-	1(2.0)	25(50.0)	18(36.0)	6(12.0)	-	-	3(6.0)	30(60.0)	17(34.0)	-
	-	1(5.9)	8(47.1)	7(41.2)	1(5.9)	-	-	-	12(70.6)	4(23.5)	1(5.9)
	-	-	14(41.2)	15(44.1)	5(14.7)	-	-	-	19(55.9)	13(38.2)	2(5.9)
	-	1(1.4)	11(15.5)	26(36.6)	33(46.5)	-	-	-	23(32.4)	38(53.5)	10(14.1)
	-	-	-	8(42.1)	11(57.9)	-	-	-	13(68.4)	6(31.6)	
	-	-	1(9.1)	2(18.2)	8(72.7)	-	-	-	8(72.7)	3(27.3)	
	-	-	-	4(40.0)	6(60.0)	-	-	-	7(70.0)	3(30.0)	-

SMI = skeletal maturation indicators by Fishman
Table 12.Female distribution of Demirjian index by skeletal maturation indicators

SMI	n	D	E	F	G	H	D	E	F	G	H
1	41	10(24.4)	24(58.5)	7(17.1)	-	-	8(19.5)	32(78.0)	1(2.4)	-	-
2	41	1(2.4)	19(46.3)	17(41.5)	4(9.8)	-	3(7.3)	27(65.9)	10(24.4)	1(2.4)	-
3	69	1(1.4)	17(24.6)	26(37.7)	22(31.9)	3(4.3)	1(1.4)	41(59.4)	15(21.7)	9(13.0)	3(4.3)
4	14	-	1(7.1)	6(42.9)	6(42.9)	1(7.1)	-	6(42.9)	5(35.7)	3(21.4)	-
5	17	-	-	2(11.8)	14(82.4)	1(5.9)	-	3(17.6)	4(23.5)	10(58.8)	-
6	19	-	-	3(15.8)	12(63.2)	4(21.1)	-	-	9(47.4)	6(31.6)	4(21.1)
7	72	-	1(1.4)	6(8.3)	45(62.5)	20(27.8)	-	3(4.2)	19(26.4)	39(54.2)	11(15.3)
8	28	-	-	-	13(46.4)	15(53.6)	-	-	2(7.1)	14(50.0)	12(42.9)
9	16	-	-	-	2(12.5)	14(87.5)	-	-	-	4(25.0)	12(75.0)
10	55	-	-	-	6(10.9)	49(89.1)	-	-	1(1.8)	7(12.7)	47(85.5)
11	12	-	-	-	-	12(100.0)	-	-	-	-	12(100.0)

SMI = skeletal maturation indicators by Fishman

Table 12. (Continued) Female distribution of Demirjian index by skeletal maturation indicators

C	D	E	F	G	H	B	C	D	E	F	G	H
2(4.9)	17(41.5)	22(53.7)	-	-	-	2(4.9)	13(31.7)	20(48.8)	6(14.6)	-	-	
2(4.9)	5(12.2)	29(70.7)	5(12.2)	-	-	-	7(17.1)	9(22.0)	19(46.3)	6(14.6)	-	-
-	7(10.1)	38(55.1)	19(27.5)	5(7.2)	-	-	-	16(23.2)	31(44.9)	19(27.5)	3(4.3)	-
-	-	8(57.1)	3(21.4)	3(21.4)	-	-	-	1(7.1)	8(57.1)	4(28.6)	17(7.1)	-
-	-	4(23.5)	9(52.9)	4(23.5)	-	-	-	1(5.9)	3(17.6)	12(70.6)	1(5.9)	-
-	-	1(5.3)	10(52.6)	8(42.1)	-	-	-	3(15.8)	14(73.7)	2(10.5)	-	-
-	-	9(12.5)	33(45.8)	25(34.7)	5(6.9)	-	-	2(2.8)	8(11.1)	31(43.1)	31(43.1)	-
-	-	2(7.1)	6(21.4)	14(50.0)	6(21.4)	-	-	-	8(28.6)	18(64.3)	2(7.1)	-
-	-	-	3(18.8)	8(50.0)	5(31.3)	-	-	-	3(18.8)	12(75.0)	1(6.3)	-
-	-	-	3(5.5)	17(30.9)	35(63.6)	-	-	-	6(10.9)	31(56.4)	18(32.7)	-
-	-	-	-	1(8.3)	11(91.7)	-	-	-	6(50.0)	6(50.0)	-	-

SMI = skeletal maturation indicators by Fishman

5. 경추골 성숙도에 따른 각 치아 석회화 단계의 분포

경추골 성숙도에 따른 하악 건치, 제1소구치, 제2소구치, 제2
대구치의 치아 석회화 단계 분포의 남녀 결과를 Table 13, 14에
나타내었다. 남아에서 CS 1인 경우 하악 건치는 stage E에 가장
많이 분포하였으며, 남녀 모두 CS 3, 4에서는 stage G, CS 5 이상
에서의 stage H의 비율이 가장 높게 나타났다. 제1소구치 또한
남녀 모두 CS 2 이상 단계에서는 stage E에 대부분 분포하였고,
CS 5 이상에서는 stage H에 가장 많이 분포하였다. CS 3에서는
여아에서 stage F, 남아에서 stage G의 분포 비율이 가장 높았다.
제2소구치의 경우 제1소구치와 유사하게 CS 2 이하에서는 남녀
모두 stage E를 나타내었으며 CS 5 이상에서는 stage H의 분포
비율이 가장 높았다. 제2대구치는 남녀 모두 CS 3일 때 stage F,
CS 5에서 stage G에 가장 많이 분포하였고, 남아에서 CS 1일 때
stage E의 분포 비율이 가장 높았다.
Table 13. Male distribution of Demirjian index by cervical stage

CS	n	D	E	F	G	H	D	E	F	G	H
1	57	2	39	24	2	-	-	50	4	1	-
2	72	2	30	32	7	1	3	27	11	1	-
3	96	1	13	25	50	7	-	-	50	11	1
4	54		1	2	46	5	-	-	7	3	-
5	53				23	30	7	-	-	15	38
6	27					4	23				

CS = cervical stage by Baccetti

Table 13. (Continued) Male distribution of Demirjian index by cervical stage

CS	n	D	E	F	G	H	D	E	F	G	H
1	57	2	39	24	2	-	-	50	4	1	-
2	72	2	30	32	7	1	3	27	11	1	-
3	96	1	13	25	50	7	-	-	50	11	1
4	54		1	2	46	5	-	-	7	3	-
5	53				23	30	7	-	-	15	38
6	27					4	23				

CS = cervical stage by Baccetti

Table 14. Female distribution of Demirjian index by cervical stage

CS	n	D	E	F	G	H	D	E	F	G	H
1	26	5	12	34	14	-	-	28	5	11	-
2	61	7	21	40	14	1	-	33	14	11	-
3	74	-	13	54	17	-	-	35	13	11	-
4	111				54	60	-	30	54	11	-
5	63	1	4	29	18	-	-	29	4	18	-
6	49	-				8	21	-			

CS = cervical stage by Baccetti

Table 14. (Continued) Female distribution of Demirjian index by cervical stage

CS	n	D	E	F	G	H	D	E	F	G	H
1	26	5	12	34	14	-	-	28	5	11	-
2	61	7	21	40	14	1	-	33	14	11	-
3	74	-	13	54	17	-	-	35	13	11	-
4	111				54	60	-	30	54	11	-
5	63	1	4	29	18	-	-	29	4	18	-
6	49	-				8	21	-			

CS = cervical stage by Baccetti
IV. 총괄 및 고찰

성장기 아동의 치료 계획을 수립하기 위해서는 성장단계에 따른 치료계획을 수립하는 것이 필요하다[28,29]. 성장은 개인에 따라 큰 편차가 있으므로 연대연령보다는 신체 성숙도나 골 성숙도와 같은 생리적 연령의 평가가 더 중요하며, 치과 영역에서는 수완부 및 경추골을 이용한 골 성숙도가 성장 단계와 연관성이 높은 것으로 증명된 바 이를 이용하여 임상적으로 많이 활용하고 있다[14,30].

그러나 골 성숙도 평가를 위해 수완부 방사선 사진 혹은 촉발 두부規格 방사선 사진을 활용하는 것은 주기적인 연대연령의 평가에 비해 추가적인 방사선 노출을 요구하게 되므로 주기적인 촬영에는 한계가 있다[14,30]. 이에 비해 파노라마 방사선 사진이 이와 비교하여 치아 우식증 등의 치과 영역에서는 수완부 및 경추골을 이용한 골 성숙도가 성장 단계와 연관성이 높은 것으로 증명된 바[14,30], 이를 임상적으로 활용하고 있다.

이 연구에서는 수완부 골 성숙도 평가 방법으로 Fishman[10]이 제시한 SMI 분류법을 이용하였다. 평가 단계 중 주요한 몇 단계들의 임상적 의미를 살펴보면, SMI 6은 성장기 성장 가속기 시점 전 단계이며 SMI 4는 최대 성장 시점보다 약 1년 전 단계이며, SMI 6은 최대 성장 시점 단계로, 이후 SMI 10, 11은 성장이 거의 완료된 시점에 나타나는 단계이다.

경추골 성숙도의 평가는 Baccetti 등[14]이 제시한 2, 3, 4번 경추의 변화에 따른 CVM 평가 방법을 이용하였다. 이 분류법에 따르면 CS 1은 성장 가속화 이전 단계, CS 2는 성장 가속화 시작 단계로 최대 성장 시기 1년 전 단계이며, 하악골의 최대 성장 시점은 CS 3, 4 사이에 나타난다. 마지막으로 CS 6은 최대 성장 시점이 최소 2년 이상 지나 성장이 완료된 단계이다.

다만 성장이 최대 성장 시점에서의 골 성숙도가 인종에 따라 다르게 나타날 수 있다[10,31,32]. 1980년 Hägg와 Taranger[9]는 SMI 6에서, 1982년 Fishman[10]은 SMI 6, 여자는 SMI 5에서 사춘기 최대 성장이 나타난다고 하였고, 2008년 Alkhal 등[31]은 한국 남녀 연대연령을 대상으로 한 연구에서 SMI 2 - 3에서 사춘기 최대 성장이 나타났다고 하였다. 한국인을 대상으로 한 연구에는 1989년 Kim과 Lee[33]의 연구 결과로 남자는 SMI 5 - 7, 여자는 SMI 6 - 7에서 최대 성장이 나타나며, 2019년 Lee와 Mah[34]는 남자는 SMI 4 - 5, 여자는 SMI 3 - 4가 주기적 최대 성장 시점에 해당한다고 하였다. 한국인의 경우 2017년 한국 소아청소년 성장 도표[35]에서 제보한 자료 중 최대 성장이 진행되는 시점은 남자는 11.91 - 12.83세, 여자는 9.41 - 10.83세이며, 해당 결과를 이 연구의 SMI와 CVM 단계별 연대연령의 평균과 비교하였을 때 SMI 5 - 6과 CS 3 - 4가 가장 높은 일치도를 보였다. 따라서 이 연구에서는 사춘기 최대 성장 시점을 기존 문헌과 동일하게 SMI 6, CS 3으로 설정하였다.

치아 성숙도의 평가는 Demirjian 등[15]이 제시한 치아 석회화 단계 평가 기준을 이용하였으며, 이 방법은 치아의 높이에 대한 치근 길이의 상대적인 비율과 형태를 기준으로 평가하기 때문에 상이 평가되더라도 평가의 신뢰도와 영향을 미치지 않는 점이 있어 널리 사용된다[36]. 이 연구에서는 파노라마 방사선 사진에서 하악 측면 후위로 제3단구치를 제외한 7개 영구치를 대상으로 하며, 성장 치아의 경우 파노라마 방사선 사진에서 여러 해부학적 구조물의 중점으로 인해 정확한 평가가 어려워 제외하였고, 제3단구치는 발육의 범위가 심하여 치아 성숙도 단계를 평가하였다. 상악 치아의 경우 파노라마 방사선 사진에서는 여러 해부학적 구조물의 중점으로 인해 정확한 평가가 어려워 제외하였고, 제3단구치는 발육의 범위가 심하여 치아 성숙도 단계를 평가하였다.

이 연구에서는 통일한 골 성숙도에서 여러 연대연령이 남아에 비해 일관적으로 어리게 나타났으며, 수완부골은 평균 0.92세, 경추골은 평균 1.03세의 차이를 나타내었다. 이 연구가 남아에 비해 골 성숙이 더 빠르게 진행된다는 것을 의미하며, 기존의 연구들과 동일한 결과를 확인되었다[10,26,37,38], 이 연구들과는 동일한 골 성숙 단계에서 남아가 여아보다 빠른 치아 석회화 단계를 나타낸다는 보고였는데[39,40], 이 연구에서는 SMI 8 이상에서 남아의 제1소구치와 제2소구치가 여아에 비해 치근단의 완성이 더 일찍 진행된 것 외에는 특이한 경향성이 보이지 않았다.

수완부골 성숙도, 경추골 성숙도와 치아 연령과의 상관관계를 분석하였을 때 남녀 모두 높은 상관성을 나타내었다. 또한 수완부골 성숙도와 경추골 성숙도 간의 상관관계 분석에서도 남녀 모두 0.8 이상의 높은 상관성을 나타내었으며 이전 연구들과 유사한 결과를 보였다[26,41,42]. 이는 한 연구의 성과 경추골 성숙도에 또한 수완부골 성숙도처럼 개인의 성장을 평가하는 데 유용하게 활용될 수 있을음을 의미한다.

치아 석회화 단계와 골 성숙도 사이의 상관관계를 검정한 결과, 남녀 모두에서 하악 견치, 제1소구치, 제2소구치, 제2대구치가 수완부골 및 경추골 성숙도와 0.7 이상의 높은 상관관계를 보였다. 하악 중절치, 측절치 및 제1대구치는 0.4 - 0.6 사이의 비교적 높은 상관관계를 보였는데, 이는 비교적 이른 시기에 치배가 발육하여 성장이 완료되기 때문으로 판단된다. Akoglu[43]에 따르면, Spearman 상관계수가 0.7 이상일 때 두 변수 사이에 강한 양적 상관관계가 있다고 평가할 수 있다. 따라서 이로써 세부적인 분석에서의 강한 양적 상관관계를 나타낸 하악 견치, 제1소구치, 제2소구치, 제2대구치에 대하여 추가 분석을 진행하였다.

수완부골 성숙도 및 경추골 성숙도와 치아 석회화 단계 사이의 상관관계를 비교하였을 때 남녀 모두 강한 양적 상관관계가 있는 것으로 나타났다. 골 성숙도와 가장 높은 상관관계를 보인다.
치아는 남녀 모두 제2대구치였으며, 이는 이전의 여러 연구 결과와 일치했다[26,39,44,45]. 이는 하악 제2대구치가 견치나 소구치에 비해 더 오랫동안 발육하여 석화가 더 늦은 시기에 완료되기 때문으로 사료된다[40,46].

치아의 석화 단계를 통해 사춘기 최대 성장 시점을 예측하고자 하는 연구는 다양한 인구를 대상으로 하여 이전부터 많은 연구가 진행되어 왔다. 면적을 대상으로 연구를 진행한 Uysal 등[39]과 Başaran 등[47]은 사춘기 최대 성장 시점에서는 하악 견치와 제1소구치가 stage H로 석화가 완료된다고 하였다. 제1소구치는 stage H에 대해 약간 늦게 나타나고 보고하였으며, 폐루인을 대상으로 한 Lecca-Morales와 Carruitero[45]의 연구에서도 동일하게 stage G로 나타났다. 시일정정체에 비해는 상충적이며, 이는 하악 제2대구치가 소구치에 비해 더 오랫동안 발육하며 석화가 더 늦게 완료되기 때문이다[40,46].

치아의 석화 단계를 통한 사춘기 최대 성장 시점을 예측하고자 하는 연구는 사춘기 최대 성장 시점에 해당하는 SMI 6에서 제2대구치는 stage G가 나타날 확률이 가장 높다고 하였다. Kaur 등[40]은 인도인을 대상으로 제2대구치의 성숙도와 CVMI 단계 간의 연관성을 분석한 결과 사춘기 최대 성장 시점인 CVMI 3에 해당하는 stage F가 나타날 확률이 가장 높다고 보고하였다. 한국인을 대상으로 진행한 Krailassiri 등[37]은 SMI 6에서 하악 견치와 제1소구치는 stage H, 제2대구치는 stage G로 나타나는 것으로 보고하였다. 페루인을 대상으로한 Lecca-Morales와 Carruitero[45]의 연구에서도 동일하게 SMI 6에서 제2대구치는 stage G가 나타날 확률이 가장 높다고 하였다.

치아의 성숙도를 이용한 성장 단계의 평가는 두 가지 단계가 존재한다. 첫 번째로는 적용 가능한 연령대가 한정되는점, 두 번째로는 영구치 결손이 있는 환자들의 경우 이 연구의 결과를 적용하기 어렵다는 점이다. 이 연구에서는 영구치 결손이 없는 어린이를 대상으로 하여 결과를 도출하였는데, 여러 연구들에 따르면 동일한 연령에서 영구치 결손이 있는 환자들은 결손이 없는 환자에 비해 전체적인 치아 발육의 시기가 늦은 것으로 알려져 있으며, 치아 발육 시기가 늦어지는 정도는 각 연령마다 0.3년에서 2년까지로 다양하게 나타났다[50-52]. 따라서 영구치 결손이 있는 환자들의 경우 이 연구의 결과를 적용하기에는 예측이 낮아 한계점이 있을 것으로 보인다.

이 연구의 한계점으로는 대상자 선정 시의 편향 오류를 고려해야할 수 있다. 동일한 날짜에 수완부 방사선사진, 측방두부 규격 방사선사진, 파노라마 방사선사진을 활용한 어린이는 대부분이 교정 치료를 주소로 내원하였기에 이로 인한 대상자 선정의 오류가 발생할 수 있다. 또한 의무기록 상 전산적으로 건강하게 호르몬이나 성장 발육에 문제가 없는 어린이들을 선정하였음에도, 진단되지 않은 성조숙증 등 호르몬 문제를 가지고 있는 경우보다 대상 성장이 다소 늦은 어린이들을 완전히 배제하기는 어려워 이에 따른 편향이 발생할 수 있다. 대상자 선정 과정에서 키와 체중도 함께 고려하여 체질량지수 상 정상 범주에서 벗어나
난 어린이들을 제외하였다면 이러한 한계점을 더 줄일 수 있었을 것으로 사료된다.

또한 이 연구는 횡단적 연구로 진행되어 대상자의 실제 성장기를 확인하기 어렵다는 한계점이 존재한다. 통일한 연구 대상자를 장기간 추적 관찰한 신장, 골 성숙도, 치아 석회화 단계 등의 횡단적 연구 자료가 있다면 보다 정확한 상관관계를 입증할 수 있을 것으로 사료된다.

V. 결 론

이 연구는 한국 소아의 골 성숙도와 치아 석회화 단계 간의 상관관계를 알아보기 위하여 시행되었으며, 만 6 - 14세의 남아 359명, 여아 384명의 수완부 방사선사진, 측방두부규격 방사선 사진, 그리고 파노라마 방사선사진을 평가하여 분석하였다.

그 결과 남녀 모두 치아 석회화 단계와 골 성숙도 사이에 높은 상관관계가 있는 것으로 확인되었으며, 남녀 모두 하악 좌측 7개의 영구치 중 제2대구치가 골 성숙도와 가장 높은 상관관계가 있는 것으로 확인되었다(\(p < 0.001\)). 따라서 파노라마 방사선사진의 치아 석회화 단계 평가 방법은 성장기 아동의 성장 단계를 평가할 수 있는 보조 수단으로 활용될 수 있다.

Authors’ Information

Seong Jin Kim https://orcid.org/0000-0001-5026-1557
Je Seon Song https://orcid.org/0000-0001-8620-5629
Ik-Hwan Kim https://orcid.org/0000-0003-4444-532X
Seong-Oh Kim https://orcid.org/0000-0002-8620-1377
Hyung-Jun Choi https://orcid.org/0000-0002-3315-6912

References

1. Burstone CJ : Process of maturation and growth prediction. Am J Orthod Dentofac Orthop, 49:907-919, 1963.
2. Bishara SE, Jamison JE, Peterson LC, DeKock WH : Longitudinal changes in standing height and mandibular parameters between the ages of 8 and 17 years. Am J Orthod, 80:115-135, 1981.
3. Fishman LS : Chronological versus skeletal age, an evaluation of craniofacial growth. Angle Orthod, 49:181-189, 1979.
4. Greulich WW, Pyle SI : Radiographic atlas of skeletal development of the hand and wrist. Stanford University Press, 1959.
5. Chapman SM : Ossification of the adductor sesamoid and the adolescent growth spurt. University of Sydney, 1971.
6. Grave K, Brown T : Skeletal ossification and the adolescent growth spurt. Am J Orthod, 69:611-619, 1976.
7. Tanner JM, Whitehouse R, Goldstein NH, et al. : Assessment of skeletal maturity and prediction of adult height (TW3 method), 3rd ed. Saunders, London, 2001.
8. Tanner JM, Whitehouse R, Goldstein NH, et al. : Assessment of skeletal maturity and prediction of adult height (TW2 method), 2nd ed. Academic Press, London, 1975.
9. Hägg U, Taranger J : Maturation indicators and the pubertal growth spurt. Am J Orthod, 82:299-309, 1982.
10. Fishman LS : Radiographic evaluation of skeletal maturation: a clinically oriented method based on hand-wrist films. Angle Orthod, 52:88-112, 1982.
11. Flores-Mir C, Burgess CA, Major PW, et al. : Correlation of skeletal maturation stages determined by cervical vertebrae and hand-wrist evaluations. Angle Orthod, 76:1-5, 2006.
12. Stiehl J, Müller B, Dibbets J : The development of the cervical vertebrae as an indicator of skeletal maturity: comparison with the classic method of hand-wrist radiograph. J Orofac Orthop, 70:327-335, 2009.
13. Hassel B, Farman AG : Skeletal maturation evaluation using cervical vertebrae. Am J Orthod Dentofac Orthop, 107:58-66, 1995.
14. Baccetti T, Franchi L, McNamara Jr JA : The cervical vertebral maturation (CVM) method for the assessment of optimal treatment timing in dentofacial orthopedics. Semin Orthod, 119-129, 2005.
15. Demirjian A, Goldstein H, Tanner JM : A new system of dental age assessment. Hum Biol, 45:211-227, 1973.
16. Ogodescu AE, Ogodescu A, Bratu E, et al. : Dental Maturity-a biologic indicator of chronological age: Digital radiographic study to assess dental age in Romanian children. Int J Biol Biomed Eng, 1:32-40, 2011.
17. Manjunatha B, Soni NK : Estimation of age from development and eruption of teeth. J Forensic Dent Sci, 6:73-76, 2014.
18. Nolla C : The development of the human dentition. ASDC J Dent Child, 27:254-266, 1960.
19. Lauterstein AM : A cross-sectional study in dental development and skeletal age. J Am Dent Assoc, 62:161-167, 1961.
20. Sierra AM : Assessment of Dental and Skeletal Maturity. A New Approach. Angle Orthod, 57:194-208, 1987.
21. Demirjian A, Buschang PH, Tanguay R, Patterson DK: Interrelationships among measures of somatic, skeletal, dental, and sexual maturity. *Am J Orthod*, 88:433-438, 1985.

22. Green LJ: The interrelationships among height, weight and chronological, dental and skeletal ages. *Angle Orthod.*, 31:189-193, 1961.

23. Koshy S, Tandon S: Dental age assessment: the applicability of Demirjian’s method in south Indian children. *Forensic Sci Int*, 94:73-85, 1998.

24. Harris E, McKee J: Tooth mineralization standards for blacks and whites from the middle southern United States. *J Forensic Sci*, 35:859-872, 1990.

25. Mappes MS, Harris EF, Behrents RG: An example of regional variation in the tempos of tooth mineralization and hand-wrist ossification. *Am J Orthod Dentofac Orthop*, 101:145-151, 1992.

26. Kang DG, Kang DG, Kim TW, et al.: Relationship between dental calcification stages and skeletal maturity indicators in Korean individual. *J Korean Acad Pediatr Dent*, 35:243-258, 2008.

27. Cho SM, Hwang CJ: Skeletal Age Assessment of SMI and MP3 Stages to Predict the Pubertal Growth Spurt. *J Korean Acad Pediatr Dent*, 46:233-238, 2019.

28. Kim JH, Yun S, Yang SW, et al.: The 2017 Korean National Growth Charts for children and adolescents: development, improvement, and prospects. *Korean J Pediatr*, 61:135, 2018.

29. Olze A, Bilang D, Schmeling A, et al.: Validation of common classification systems for assessing the mineralization of third molars. *Int J Legal Med*, 119:22-26, 2005.

30. Krailassiri S, Anuwongnukroh N, Dechkunakom S: Relationships between dental calcification stages and skeletal maturity indicators in Thai individuals. *Angle Orthod.*, 72:155-166, 2002.

31. Alkhal HA, Wong RWK, Rabie ABM: Correlation between determination of skeletal maturation using cervical vertebrae and dental calcification stages. *Intern J Forensic Sci*, 4:1-9, 2009.

32. Akoglu H: User’s guide to correlation coefficients. *Turk J Emerg Med*, 18:91-93, 2018.

33. Mohammed RB, Kalyan VS, Varma DM, et al.: The reliability of Fishman method of skeletal maturation for age estimation in children of South Indian population. *J Nat Sci Biol Med*, 5:297-302, 2014.

34. Kim HI, Lee DJ: A longitudinal study on the pubertal growth peak and maturity stages of the hand-wrist in malocclusion. *Korean J Orthod.*, 19:123-133, 1989.
Orthop, 131:447.e13-20, 2007.
48. Chertkow S : Tooth mineralization as an indicator of the pubertal growth spurt. Am J Orthod, 77:79-91, 1980.
49. Chaillet N, Nyström M, Demirjian A : Comparison of dental maturity in children of different ethnic origins: international maturity curves for clinicians. J Forensic Sci, 50:1164-1174, 2005.
50. Lebbe A, de Llano-Pérula MC, Willems G, et al. : Dental development in patients with agenesis. Int J Legal Med, 131: 537-546, 2017.
51. Badrov J, Lauc T, Nakas E, Galic I : Dental age and tooth development in orthodontic patients with agenesis of permanent teeth. Biomed Res Int, 2017:8683970, 2017.
52. Uslenghi S, Liversidge HM, Wong F : A radiographic study of tooth development in hypodontia. Arch Oral Biol, 51: 129-133, 2006.
국문초록

한국 어린이의 골 성숙도와 치아 석회화 단계 간의 상관관계

김성진·송제선·김익환·김성오·최형준
연세대학교 치과대학 소아치과학교실

이 연구의 목적은 한국 아동의 골 성숙 단계와 여러 치아들의 석회화 단계 간의 상관관계를 알아보고자 하는 것이다. 만 6 - 14세의 남아 359명, 여아 384명의 수완부 방사선사진, 측방두부규격 방사선사진, 파노라마 방사선사진을 분석하여 평가하였다. 하악 쪽의
7개 영구치의 치아 석회화 단계는 Demirjian이 제시한 방법에 의해 평가되었다. 골 성숙도 단계를 평가하기 위하여 수완부 방사선
사진은 Fishman이 제시한 skeletal maturity indicators(SMI)에 따라 평가되었고, 측방두부규격 방사선사진은 Baccetti가 제시한 cervical
vertebral maturation(CVM) 방법에 따라 평가되었다. Spearman의 순위상관계수를 시행한 결과 치아 석회화 단계와 골 성숙도 간에 유
의미하게 높은 상관관계가 나타났다($r = 0.40-0.84, p < 0.001$). 7개의 영구치 중에서 하악 제2대구치가 골 성숙도와 가장 높은 상관관계를 보인 반면 중절치가 가장 낮은 상관관계를 나타내었다. 남녀 모두에서 하악 견치의 stage G와 하악 제2대구치의 stage F가 SMI 6
단계와 CS 3단계에서 나타날 확률이 가장 높았다. 이 연구의 결과에 따르면 치아 성숙도와 골 성숙도 사이에 높은 상관관계가 있으므
로, 파노라마 방사선사진에서의 치아 성숙도 평가는 성장기 아동의 골 성숙도를 평가하는 보조적 수단으로 활용될 수 있다.