Pooling of Upper Respiratory Specimens Using a SARS-CoV-2 Real Time RT-PCR Assay Authorized for Emergency Use in Low Prevalence Populations for High-Throughput Testing

Gwynngelle A. Borillo¹, Ron M. Kagan¹, Russell E. Baumann¹, Boris M. Fainstein², Lamela Umaru¹, Hai-Rong Li³, Harvey W. Kaufman¹, Nigel J. Clarke³ and Elizabeth M. Marlowe¹

¹Quest Diagnostics Infectious Disease, San Juan Capistrano, CA USA
²Quest Diagnostics Information Ventures, New York, NY USA
³Quest Diagnostics Nichols Institute, San Juan Capistrano, CA USA
⁴Quest Diagnostics Information Ventures, Needham, MA USA

Author Contributions
GAB: data curation, formal analysis, investigation, resources, validation, writing - review & editing
RMK: conceptualization, data duration, formal analysis, investigation, methodology, project administration, resources, software, validation, visualization, writing – original draft, review & editing
REB: data curation, formal analysis, resources, writing – review & editing
BMF: data curation, software, writing – review & editing
LU: investigation, resources, validation, writing – review & editing
H-RL: investigation, resources, validation, writing – review & editing
HWK: conceptualization, data curation, writing – review & editing
NJK: conceptualization, formal analysis, funding acquisition, methodology, supervision, writing – review & editing
EMM: conceptualization, data curation, formal analysis, investigation, methodology, project administration, resources, supervision, validation, visualization, writing – original draft, review & editing

Summary: Specimen pooling can increase SARS-CoV-2 testing throughput and conserve testing supplies. We have demonstrated the viability of pooled testing using a dual-target RT-PCR system for a pool size of four specimens and validated pooled testing for FDA emergency use authorization.

Corresponding Author: Elizabeth M. Marlowe, PhD, D(ABMM), SM(ASCP)
Scientific Director, Head R&D West, Infectious Disease
Quest Diagnostic Infectious Disease
33608 Ortega Highway
San Juan Capistrano, CA 92675-2042
e-mail: Elizabeth.m.marlowe@questdiagnostics.com
phone: 949-728-1817
fax: 949-728-7180

Alternate Corresponding Author: Ron M. Kagan, PhD
Senior Director of Bioinformatics, Molecular Infectious Disease
Quest Diagnostics, Infectious Disease
33608 Ortega Hwy
San Juan Capistrano, CA 92675
949-728-1882 (phone)
949-728-7180 (fax)
Ron.M.Kagan@questdiagnostics.com

© The Author(s) 2020. Published by Oxford University Press on behalf of Infectious Diseases Society of America.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
ABSTRACT

Background: Nucleic acid amplification testing is a critical tool for addressing the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic. Specimen pooling can increase throughput and conserve testing resources but requires validation to ensure that reduced sensitivity does not increase the false-negative rate. We evaluated the performance of a real time reverse transcription PCR (RT-PCR) test authorized by the U.S. Food and Drug Administration (FDA) for emergency use for pooled testing of upper respiratory specimens.

Methods: Positive specimens were selected from three prevalence groups, 1-3%, >3-6%, and >6-10%. Positive percent agreement (PPA) was assessed by pooling single-positive specimens with three negative specimens; performance was assessed using Passing-Bablok regression. Additionally, we assessed the distributions of RT-PCR cycle threshold (Ct) values for 3,091 positive specimens.

Results: PPA was 100% for the 101 pooled specimens. There was a linear relationship between Ct values for pooled and single-tested specimens (r: 0.96-0.99, slope \approx 1). The mean pooled Ct shifts at 40 cycles were 2.38 and 1.90 respectively for the N1 and N3 targets. The median Cts for 3,091 positive specimens were 25.9 (N1) and 24.7 (N3). The percent of positive specimens with Cts between 40 and the shifted Ct was 1.42% (N1) and 0.0% (N3).

Conclusions: Pooled and individual testing of specimens positive for SARS-CoV-2 demonstrated 100% agreement and demonstrate the viability of pooled specimens for SARS-COV-2 testing using a dual-target RT-PCR system. Pooled specimen testing can help increase testing capacity for SARS-CoV-2, with a low risk of false-negative results.

KEYWORDS: SARS-CoV-2, RT-PCR, pooled testing, positive percent agreement
BACKGROUND

The ongoing SARS-CoV-2 pandemic has resulted in an unprecedented worldwide demand for laboratory testing. As of 19 July 2020, more than 3.7 million people in the U.S. and over 14 million worldwide have been diagnosed with COVID-19 (https://coronavirus.jhu.edu/map.html). Timely access to SARS-CoV-2 nucleic acid testing is a critical tool for patient management, controlling the spread of the epidemic and informing public health efforts, highlighting the key role of the clinical laboratory in the healthcare system. The average number of daily tests for SARS-CoV-2 performed in the U.S. has reached more than 700,000 (https://covidtracking.com/data/us-daily), however this increased demand for testing has put pressure on the laboratory supply chain, resulting in shortages of testing materials and instrumentation, leading to delays in obtaining test results.

Pooled diagnostic testing offers a means to reduce utilization of testing supplies and reagents while increasing laboratory testing throughput. In a simple Dorfman (1, 2) pooled testing scheme, a number of individually collected specimens are combined in a single well or tube and tested together. If the pooled test result is negative, results for all individual specimens may be immediately reported as negative. If a pool is positive, then each specimen in the pool must be tested individually before the patient results can be reported. The optimal number of specimens that can be included in a pool to maximize efficiency is determined by the prevalence of positive specimens (1, 3, 4) in the population being tested and is further constrained by the sensitivity of the test to reliably detect a positive signal in a diluted negative specimen pool. It is critical therefore, to validate pooling strategies for diagnostics tests to ensure that the false negative rate remains below an acceptable threshold.

Pooling specimens to increase testing efficiency and conserve testing resources has been used for human immunodeficiency virus (HIV) and hepatitis B and C viruses screening (5, 6). Pooling has also been evaluated for the detection of influenza virus and bacterial pathogens from nasopharyngeal or throat swab specimens (7, 8) and for SARS-CoV-2 testing using pool sizes of between 4 and 64 specimens (3, 4, 9-11). Here we describe the performance of pooled testing of
upper respiratory specimens for a U.S. FDA emergency use authorized (EUA) real-time reverse transcription PCR (RT-PCR) test performed in low prevalence populations for high throughput testing. This study was performed as part of an FDA EUA application to authorize the use of pooled testing for detecting SARS-CoV-2 RNA.

MATERIALS AND METHODS

Clinical specimens. Deidentified specimens collected between May 2020 and early July 2020 that had been previously tested using the Quest Diagnostics SARS-CoV-2 RNA, Qualitative Real-Time RT-PCR EUA were recovered from frozen (-10°C to -30°C) storage. Specimen types included upper respiratory specimens (nasopharyngeal, mid-turbinate, nasal swabs) collected in viral transport media (UTM, UTM-RT), PBS, or normal saline. Swabs were limited to those with a synthetic tip such as Dacron®, Flocked, or Nylon and an aluminum or plastic shaft as specified in the FDA EUA instructions for use (https://www.fda.gov/media/136231/download). Sequentially tested single-positive and single-negative specimens were selected.

Pooled testing. A pool size of four specimens was selected based on the estimated prevalence of SARS-CoV-2 positive specimens submitted for testing (7-11%) and the corresponding recommended pool size for maximal pooling efficiency found in the FDA guidance document, Policy for Coronavirus Disease-2019 Tests During the Public Health Emergency (Revised) (https://www.fda.gov/regulatory-information/search-fda-guidance-documents/policy-coronavirus-disease-2019-tests-during-public-health-emergency-revised). In the Quest Diagnostics SARS-CoV-2 RNA, Qualitative Real-Time RT-PCR EUA (comparator) method (https://www.fda.gov/media/136231/download), 200 μL of patient specimen is combined with 250 μL of lysis buffer in the first step of the nucleic acid isolation procedure. In the pooling method, 50 μL from each of four patient specimens are combined with 250 μL of lysis buffer in the first step of the nucleic acid isolation procedure. The remaining steps in the nucleic acid isolation and real-time RT-PCR procedures are unchanged. Briefly, the assay utilizes a one-step reverse transcription and PCR amplification with SARS-CoV-2 specific primers and real-
time detection with SARS-CoV-2 specific probes for the N1 and N3 targets of the virus nucleocapsid gene. Following fifty cycles of RT-PCR, a specimen is deemed positive for SARS-CoV-2 RNA when the Ct values for both targets are less than 40 cycles. A specimen is deemed negative when the Ct values for both targets are ≥40 cycles and the internal amplification control is valid. If the Ct value for a single detector is less than 40 cycles while the Ct for the second detector is ≥40 cycles, the test result is deemed inconclusive and the specimen would be retested. Pooled specimens with negative results and valid internal control results are individually defined as negative. Pooled specimens with positive or inconclusive results or invalid internal control results are repeated as individual specimens to determine the final result for each.

Study design. The Quest Diagnostics Informatics database was utilized to geographically stratify specimens according to SARS-CoV-2 testing positivity rate into three groups: group 1: positivity rate of 1-3%; group 2: positivity rate of 3-6% and group 3: positivity rate of 6-10%. Each prevalence group included specimen remnants selected from at least two separate geographic locations. Sensitivity studies were performed using single-positive pools by combining one positive sample with three negative samples and evaluated in all three prevalence groups. All single-positive specimens were repeated at the same time as the single-positive pools to ensure that there was no degradation of the archived specimens. The linearity and the shift in the Ct values between pooled and singlicate results was assessed using Passing-Bablok regression (12, 13). The shifted upper range for the Ct values for the N1 and N3 targets was defined as (40 - y intercept)/slope. Specificity studies were performed in all three prevalence groups by combining four negative samples per pool.

The informatics database was further used to select 3,091 deidentified positive test results from the three defined prevalence groups selected from U.S. counties for *in silico* analyses. The percent of positive test results in the range between the upper limit of a positive result for the singlicate assay (40 cycles) and the upper limit minus the Ct shift seen in the pools (for example, 37.0 for the N1 detector in prevalence group 1) was then calculated to predict the potential number of high Ct value false negatives in a pooled testing design.
Statistical Analysis. Statistical analysis was performed using Analyze-it for Microsoft Excel, version 5.65.3.

Human Subjects. This study utilized deindentified specimen remnants and retrospectively collected deindentified data from previously tested specimens. No human subjects were utilized in this study and thus patient consent was not applicable.

RESULTS

Sensitivity of pooled testing. Three groups of single-positive pooled specimens were prepared using sequentially tested single-positive and single-negative specimen remnants from three prevalence populations as described in Materials and Methods. Of the single-positive samples, 30 were included from group 1, 36 were included from group 2, and 35 were included from group 3 (Supplementary Materials, Table S1). Overall, 44.6% of the positive specimens were from women and 52.5% were from men, and the median patient age was 38 years (Supplementary Materials, Table S1). We obtained 100% percent positive agreement (PPA) between the pooled and the singlicate tests (Table 1). There were two inconclusive pools (Ct values of only one of the two detectors <40) in prevalence group 3, which were positive for SARS-CoV-2 based on singlicate retesting.

We performed Passing-Bablok regression for the N1 and N3 detector Ct values in each of the three groups to assess the linearity between the pooled and singlicate Ct values and to determine the shift in Ct as a measure of the reduction in sensitivity resulting from the dilution of positive samples in a negative pool (Figure 1a-f). The average regression correlation coefficients for the N1 and N3 targets in the three groups were 0.97 ± 0.007 (SD) and 0.97 ± 0.016 (SD), respectively, indicating good linearity. The average slopes were 1.02 ± 0.033 (SD) for the N1 target and 0.993 ± 0.030 (SD) for the N3 target indicative of minimal proportional bias (Table 2). The average reduction in sensitivity for the pooled tests as measured by the shift in Ct values was 1.71 ± 0.64 (SD) for N1 and 2.17 ± 0.52 (SD) for N3 (Table 2). These shifts are close to the shift of 2 Cts which would be the expected estimate for a 1:4 dilution of a positive specimen.
Specificity of pooled testing. Pools were prepared from negative specimens using sequentially tested single-negative specimen remnants from three prevalence populations as described in Materials and Methods (Supplementary Materials Table S3). The negative percent agreement (NPA) for pooled sample testing was 99% for group 1 (102/103) with one inconclusive pool and 100% for groups 2 and 3 (Supplementary Materials Table S4). The overall NPA across all three groups was 99.6%. A single pool yielded an inconclusive result in group 1, with an N1 Ct value of 39.89, just below the positive Ct cutoff of 40. The initial Ct values of the four specimens comprising this pool were verified to be undetectable (>50 cycles), further single-sample retesting was not performed.

Distribution of Ct values in positive samples. Three groups of single-positive specimens were selected from three prevalence populations. Each prevalence group included positive specimens selected from multiple geographic locations (Supplementary Materials Table S5): 820 positives were included from group 1; 1,113 from group 2, and 1,158 from group 3. Patient sex and age distributions are shown in Supplementary Materials Table S6. The median group 3 Ct values for N1 were slightly lower than for groups 1 and 2 by 1.2 and 1.5 Cts respectively (Figure 2a; p=0.0303) and the median group 3 Ct values for N3 were 1.2 and 1.6 Cts lower than those for groups 1 and 2 (Figure 2b; p=0.0271). The upper 95th percentiles for the Ct value distributions were 36.4, 36.1 and 36.5 for the three groups for the N1 target and 35.0, 34.8 and 34.6 for the N3 target.

In silico sensitivity analysis. In order to estimate the fraction of positive specimens that could potentially yield false-negative results in pooled testing we subtracted the Ct value shifts estimated in the Passing-Bablok regression analyses (Figure 1 and Table 2) from 40, the upper Ct limit defining a single-positive result. We then tabulated the number of positive results in prevalence groups 1,2 and 3 that fall in the shifted range. We found that 1.5% (46/3,091) positive specimens had N1 Ct values in the range of 40 - shift_{N1} but no specimens had N3 Ct values in the range of 40 - shift_{N3} (Table 3). Thus, we would predict that in pooled specimen testing 0.61% of pools would yield inconclusive results to be resolved by single-licate testing, while no pools would yield false negative results due to the shift in Ct values.
We next sought to determine the potential number of all SARS-CoV-2 single positive results between late March and mid-July 2020 tested at Quest Diagnostics Infectious Disease (San Juan Capistrano, CA) that could have yielded a false negative result in pooled testing. We found only a single positive test result (N1 Ct = 38.3, N3 Ct = 39.3) out of 44,217 positives that would have been reported as negative had pool testing been used, while 613/44,217 (1.4%) positives would have yielded an inconclusive result, necessitating singlicate testing. This finding represents a false-negative rate of 0.002%.

DISCUSSION

We have demonstrated that upper respiratory specimens collected in viral transport media (UTM, UTM-RT), PBS, or saline from low prevalence populations can be tested in pools of four specimens, with comparable results to single-specimen testing. Agreement between pooled and singlicate SARS-CoV-2 positive tests was demonstrated at 100% for 101 positive samples spanning a range of Ct values. Regression analysis showed a strong linear relationship between the Cts for pooled and single positive specimens, with a slope near 1.0, indicating a lack of proportional bias resulting from pooled testing. The decrease in Ct values stemming from pooled testing was near the theoretical estimate ($\log_2(n)$ where $n =$ pool size) of two Cts for a pool size of four and did not result in any false-negative results. Pooled testing of four previously tested negative specimens demonstrated excellent specificity. Only a single pool out of 247 yielding a positive result for the N1 target near the upper Ct limit of the assay, while the result for the N3 target was negative. Testing of the 247 negative pools would have equated to the reporting of 988 negative results that would not have required individual testing.

Further analysis of over 3,000 positive specimens demonstrated that, in a dual target RT-PCR system, no positive specimens would have been miscalled due to the use of pooled testing. This finding was also confirmed in a larger data set of more than 44,000 positive results in which only a single specimen had both N1 and N3 Ct values in the shifted Ct range, corresponding to a false-negative rate of 0.002%. We found that the N3 RT-PCR target provides better sensitivity than the N1
target, with Ct values of 1.1-1.4 units lower on average at the 95th percentile of the Ct value distributions. While less than 1.5% of the specimens had an N1 Ct value in the shifted Ct range, none of the Ct values for the N3 target were in the shifted Ct range. Interestingly, specimens from the highest (6-10%) prevalence group in this population had a slightly lower median Ct for both the N1 and N3 targets than for the two lower prevalence groups. Although this difference was statistically significant, the difference was small and the Ct distributions largely overlapped between the three groups. It is therefore difficult to ascribe any biological or clinical significance to these differences which may be related to geography or other factors, rather than to prevalence.

Several recent studies have evaluated specimen pooling strategies for SARS-CoV-2 RT-PCR testing. Yelin et al (10) evaluated pools of 16 to 64 specimens and found an average increase of 1.24 Cts for each two-fold dilution. As the Ct values for the positive samples used in the study averaged 24-25, the false negative rate was low, but estimated to be 10% at the highest fold pooling. Ben-Ami et al (3) evaluated 184 SARS-CoV-2 specimens tested by RT-PCR in singlicate and in pools of eight specimens and found no loss in diagnostic accuracy. They then applied eight sample pools to screen over 26,000 specimens from asymptomatic health care workers for SARS-CoV-2 and identified 31 positives (0.12%). In this low prevalence population, a large gain in testing efficiency was achieved. Abdalhamid et al (4) utilized a pool size of five to assess 60 randomly selected specimens drawn from a population with an estimated prevalence of 5%. They identified two positive pools that were subsequently tested individually, resulting in a savings of 38 extractions and RT PCR reactions compared to single sample testing.

However, as the prevalence of SARS-CoV-2 increases in the tested population, the efficiency of pooled testing will decrease. The current positivity rate for SARS-CoV-2 specimens submitted for laboratory testing as of July 2020 is much higher than that for low prevalence screening or asymptomatic populations and the national testing positivity rate is estimated at 7-8% as of early July 2020 (https://covidtracking.com/). At prevalences between 1% and 3%, an eight-specimen pool will yield greater testing efficiencies than a four-specimen pool: for example, at a 3% prevalence a
four-specimen pool would require 36 tests per 100 specimens whereas an eight-specimen pool would require only 34 tests (https://bilder.shinyapps.io/PooledTesting/) (4). In contrast, at 8% prevalence, the eight-specimen pool would require 61 tests per 100 specimens compared to only 53 tests per 100 specimens for the four-specimen pool. At a 10% prevalence at least 40% fewer tests would be run with a four-specimen pool strategy compared to single specimen testing (https://bilder.shinyapps.io/PooledTesting/) (4). The balance between pool size and sensitivity is also a key consideration for pooling strategies. For a pool size of four the dilution factor would be 1:4, compared to 1:8 for a pool size of eight. The stated limit of detection (LOD) in the instructions for use (IFU) for the Quest Diagnostics RT-PCR test is viral copies 136 copies/mL. Using a 1:4 pooling dilution the LOD would then be 544 copies/mL, whereas a 1:8 pooling dilution increases the LOD to 1,088 cp/mL. Given these considerations a four-specimen pool is appropriate to maximize testing efficiency while minimizing the loss of sensitivity and in accordance with the recommendations in the FDA guidance document Policy for Coronavirus Disease-2019 Tests During the Public Health Emergency (Revised) (https://www.fda.gov/regulatory-information/search-fda-guidance-documents/policy-coronavirus-disease-2019-tests-during-public-health-emergency-revised).

Our study had several limitations. First, this study utilized previously tested samples that had been stored frozen and then thawed for retesting in the study. In a previous study in our laboratory (10), we demonstrated that SARS-CoV-2 specimens in a variety of transport media remain stable while stored under refrigerated or frozen conditions. However, in the current study, specimens were stored frozen for longer periods than previously assessed. The greatest impact would have been to increase Ct values for high-Ct positive specimens. Nevertheless, we had no false-negative results in this study. As pooled testing is intended for use on freshly obtained specimens under the same conditions used for single-specimen testing, retesting of frozen specimens is unlikely to affect pooled testing.

Second, not all transport media or specimen types were evaluated in this pooling study. For example, specimens collected in COPAN Eswab™ were excluded from the pooling studies. Internal
stability studies with specimens spiked in COPAN Eswab™ have demonstrated reduced stability (loss of > 3 Cts) following increased freeze-thaw cycles (≥ 2 times; data not shown). Given that this study utilized archived specimens, the optimal conditions for such media may not have been utilized. A variety of collection media, including ESwab™, are approved for CoV testing using commercially available assays. Pooling of specimens in the study was not limited to the use of like media for a pool of four specimens, however the media pooled was limited to UTM, PBS and saline. Since PBS and saline are commonly used as a diluent the impact of the pooling of the different transport media was likely minimum. Further work is needed with prospective specimens before additional media types can be included in a pooling protocol.

Third, no clinical information was available for the patient specimens that were utilized in this study. Thus we were not able to correlate the SARS-CoV-2 test result with clinical diagnoses of COVID 19, stage of disease or presence of symptoms. However given the results we have presented here for pooled testing as well as our retrospective analysis of patient Ct values, pooling of four samples is unlikely to have a significant impact on clinical management. Patients undergoing testing soon after exposure, asymptomatic patients being screened for COVID 19 and positive patients who never go on to develop symptoms may have lower SARS-CoV-2 viral loads that could theoretically impact the clinical accuracy of pooling. In a follow up retrospective analysis (manuscript in preparation) we found that although SARS-CoV-2 positive patients in some of these categories do have higher Ct values, only a very small fraction (<0.15%) of these Cts would fall above the shifted Ct value for the more sensitive N3 RT-PCR target.

Finally, it is important to stress that the implementation of pooled testing in a high-throughput laboratory adds additional operational challenges and complexity to the testing process. It requires the validation of automated liquid handling processes to pool the specimens for testing as well as robust support from one’s information technology department to enable laboratory information system (LIS) reporting of pooled results to the LIS. These considerations need to be addressed prior to implementing a pooled testing approach in the laboratory.
In summary, we have demonstrated that pooled testing of four upper respiratory specimens from populations with a prevalence ≤ 10% with a sensitive dual-target RT-PCR test for SARS-CoV-2 is highly correlated to single specimen testing and does not generate false negative test results. This pooling strategy can improve testing capacity while reducing reagent and supply utilization and therefore afford better access and a more rapid turnaround time for patients in need of testing and help to combat the SAR-CoV-2 pandemic.
ACKNOWLEDGMENTS

Financial support. This work was supported by Quest Diagnostics Incorporated (Secaucus, NJ USA).

Potential conflicts of Interest. All authors of this manuscript are employees of Quest Diagnostics Incorporated (Secaucus, NJ USA), a diagnostics laboratory that provides SARS-CoV-2 testing.
References

1. Dorfman R. 1943. The Detection of Defective Members of Large Populations. The Annals of Mathematical Statistics 14:436-440.

2. Bilder CR, Tebbs JM. 2012. Pooled-testing procedures for screening high volume clinical specimens in heterogeneous populations. Stat Med 31:3261-8.

3. Ben-Ami R, Klochendler A, Seidel M, Sido T, Gurel-Gurevich O, Yassour M, Meshorer E, Benedek G, Fogel I, Oiknine-Djian E, Gertler A, Rotstein Z, Lavi B, Dor Y, Wolf DG, Salton M, Drier Y. 2020. Large-scale implementation of pooled RNA extraction and RT-PCR for SARS-CoV-2 detection. Clin Microbiol Infect doi:10.1016/j.cmi.2020.06.009.

4. Abdalhamid B, Bilder CR, McCutchen EL, Hinrichs SH, Koepsell SA, Iwen PC. 2020. Assessment of Specimen Pooling to Conserve SARS CoV-2 Testing Resources. Am J Clin Pathol 153:715-718.

5. Emmanuel JC, Bassett MT, Smith HJ, Jacobs JA. 1988. Pooling of sera for human immunodeficiency virus (HIV) testing: an economical method for use in developing countries. J Clin Pathol 41:582-5.

6. Mine H, Emura H, Miyamoto M, Tomono T, Minegishi K, Murokawa H, Yamanaka R, Yoshikawa A, Nishioka K. 2003. High throughput screening of 16 million serologically negative blood donors for hepatitis B virus, hepatitis C virus and human immunodeficiency virus type-1 by nucleic acid amplification testing with specific and sensitive multiplex reagent in Japan. J Virol Methods 112:145-51.

7. Edouard S, Prudent E, Gautret P, Memish ZA, Raoult D. 2015. Cost-effective pooling of DNA from nasopharyngeal swab samples for large-scale detection of bacteria by real-time PCR. J Clin Microbiol 53:1002-4.
8. Van TT, Miller J, Warshauer DM, Reisdorf E, Jernigan D, Humes R, Shult PA. 2012. Pooling nasopharyngeal/throat swab specimens to increase testing capacity for influenza viruses by PCR. J Clin Microbiol 50:891-6.

9. Lohse S, Pfuhl T, Berkó-Göttel B, Rissland J, Geißler T, Gärtner B, Becker SL, Schneitler S, Smola S. 2020. Pooling of samples for testing for SARS-CoV-2 in asymptomatic people. Lancet Infect Dis doi:10.1016/s1473-3099(20)30362-5.

10. Yelin I, Aharony N, Shaer Tamar E, Argoetti A, Messer E, Berenbaum D, Shafran E, Kuzli A, Gandali N, Shked O, Hashimshony T, Mandel-Gutfreund Y, Halberthal M, Geffen Y, Szwarcwort-Cohen M, Kishony R. 2020. Evaluation of COVID-19 RT-qPCR test in multi-sample pools. Clin Infect Dis doi:10.1093/cid/ciaa531.

11. Gupta E, Padhi A, Khodare A, Agarwal R, Ramachandran K, Mehta V, Kilkid M, Dubey S, Kumar G, Sarin SK. 2020. Pooled RNA sample reverse transcriptase real time PCR assay for SARS CoV-2 infection: A reliable, faster and economical method. PLoS One 15:e0236859.

12. Passing H, Bablok. 1983. A new biometrical procedure for testing the equality of measurements from two different analytical methods. Application of linear regression procedures for method comparison studies in clinical chemistry, Part I. J Clin Chem Clin Biochem 21:709-20.

13. Passing H, Bablok W. 1984. Comparison of several regression procedures for method comparison studies and determination of sample sizes. Application of linear regression procedures for method comparison studies in Clinical Chemistry, Part II. J Clin Chem Clin Biochem 22:431-45.
TABLES

Table 1: Sensitivity of pooled SARS-CoV-2 RT-PCR Testing

Prevalence Group	N	Negative Pools	Inconclusive Pools	Positive Pools	Invalid Pools	PPA^4
1	30	0	0	30	0	100%
2	36	0	0	36	0	100%
3	35	0	2	33	0	100%

^1 Specimens were drawn from three geographic prevalence groups as described in Materials and Methods. For pooled testing, one positive sample with three negative samples.

^2 An inconclusive result occurs when one of the Ct values for the N1 and N3 targets is positive (<40 Cts) and the other is negative (≥40 Cts). Inconclusive pools are resolved through singlicate retesting.

^3 An invalid result occurs when the internal positive control does not yield an acceptable Ct value. Invalid pools are then tested in singlicate.

^4 PPA: Positive percent agreement
Table 2: Passing-Bablok regression analyses

Prevalence Group	N1 Target	N3 Target				
	Ct shift	slope	correlation coefficient	Ct shift	slope	correlation coefficient
1	3.05	1.05	0.970	2.53	1.02	0.962
2	1.74	0.980	0.963	1.27	0.960	0.961
3	2.35	1.03	0.976	1.89	1.00	0.989

Mean (SD) 2.38 ± 0.65 1.01 ± 0.03 0.970 ± 0.007 1.90 ± 0.63 0.993 ± 0.03 0.971 ± 0.016

1 Ct values from positive specimens tested in pools and in singlicate were analyzed by Passing-Bablok regression analysis as shown in Figure 1a-f.

2 The Ct shift at 40 cycles was defined as 40 - (40 - intercept)/slope.
Table 3: Percent of single-positive specimens with Ct values within the shifted range

Prevalence Group	N	Shifted Range (N1)	Shifted Totals (N1)	% Shifted (N1)	Shifted Range (N3)	Shifted Totals (N3)	% Shifted (N3)
1	820	37.0 - 40	22	2.7	[1.8 - 4.0]	0	0.0
2	1,113	38.3 - 40	7	0.63	[0.3 - 1.3]	0	0.0
3	1,158	37.6 - 40	17	1.5	[0.9 - 2.3]	0	0.0
All Groups	3,091	46		1.5	[1.1 - 2.0]	0	0.0
Combined							

1 The shift in N1 and N3 Ct values for pooled testing was calculated from the Passing-Bablok regression analysis of pooled and single positive specimens. \(\text{Shift} = \frac{(40 - \text{intercept})}{\text{slope}} \). The number of single-positive specimens with Ct values in the range of 40 - shift\(_{N1}\) and 40 - shift\(_{N3}\) was then tabulated.

2 Specimens were drawn from three geographic prevalence groups as described in Materials and Methods.

3 Shown as value [95% CI]
FIGURE LEGENDS

Figure 1: Passing-Bablok regression analysis of N1 and N3 Ct values for pooled and single-tested positive specimens. A: group 1, N1 target. B: group 1, N3 target. C: group 2, N1 target. D: group 2, N3 target. E: group 3, N1 target. F: group 3, N3 target.

Figure 2: Distribution of N1 and N3 Ct values for 3,091 positive specimens in groups 1, 2 and 3. A: N1 target. B: N3 target. Median Ct differences between groups were assessed using the Kruskal-Wallis test. N1: p=0.0303. N3: p=0.0271.
Figure 1
