Genome-wide discovery and characterization of long noncoding RNAs in African oil palm (*Elaeis guineensis* Jacq.)

Wei Xia¹, Yajing Dou¹, Rui Liu², Shufang Gong², Dongyi Huang¹, Haikuo Fan², Yong Xiao²

¹College of Tropical Crops, Hainan University, Haikou, China
²Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China

Corresponding Authors: Haikuo Fan, Yong Xiao
Email address: venheco@163.com, xiaoyong1980@catas.cn

Long noncoding RNAs (lncRNAs) are an important class of genes and play important roles in a range of biological processes. However, few reports have described the identification of lncRNAs in oil palm. In this study, we applied strand specific RNA-seq with rRNA removal to identify 1,363 lncRNAs from the equally mixed tissues of oil palm spear leaf and six different developmental stages of mesocarp (8-24 weeks). Based on strand specific RNA-seq data and 18 released oil palm transcriptomes, we systematically characterized the expression patterns of lncRNA loci and their target genes. A total of 875 uniq target genes for natural antisense lncRNAs (NAT-lncRNA, 712), long intergenic noncoding RNAs (lincRNAs, 92), intronic-lncRNAs (33), and sense-lncRNAs (52) were predicted. A majority of lncRNA loci (77.8% - 89.6%) had low expression in 18 transcriptomes, while only 89 lncRNA loci had medium to high expression in at least one transcriptome. Coexpression analysis between lncRNAs and their target genes indicated that 6% of lncRNAs had expression patterns positively correlated with those of target genes. Based on single nucleotide polymorphism (SNP) markers derived from our previous research, 6,882 SNPs were detected for lncRNAs and 28 SNPs belonging to 21 lncRNAs were associated with the variation of fatty acid contents. Moreover, seven lncRNAs showed expression patterns positively correlated expression pattern with those of genes in *de novo* fatty acid synthesis pathways. Our study identified a collection of lncRNAs for oil palm and provided clues for further research into lncRNAs that may regulate mesocarp development and lipid metabolism.
Genome-wide discovery and characterization of long noncoding RNAs in African oil palm (*Elaeis guineensis* Jacq.)

Wei Xia*, Yajing Dou*, Rui Liu², Shufang Gong², Dongyi Huang¹, Haikuo Fan¹², Yong Xiao¹²

¹ Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, P. R. China

² National Engineering Research Center of Coconut/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, 571339, P. R. China

³ Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions

*Equal contributor

& Corresponding author

Coconuts Research Institute, CATAS, Wenchang, Hainan 571339, P. R. China

Email address: venheco@163.com

Email address: xiaoyong1980@catas.cn
Abstract

Long noncoding RNAs (lncRNAs) are an important class of genes and play important roles in a range of biological processes. However, few reports have described the identification of lncRNAs in oil palm. In this study, we applied strand specific RNA-seq with rRNA removal to identify 1,363 lncRNAs from the equally mixed tissues of oil palm spear leaf and six different developmental stages of mesocarp (8-24 weeks). Based on strand specific RNA-seq data and 18 oil palm transcriptomes, we systematically characterized the expression patterns of lncRNA loci and their target genes. A total of 875 unique target genes for natural antisense lncRNAs (NAT-lncRNA, 712), long intergenic noncoding RNAs (lincRNAs, 92), intronic-lncRNAs (33), and sense-lncRNAs (52) were predicted. A majority of lncRNA loci (77.8% - 89.6%) had low expression in 18 transcriptomes, while only 89 lncRNA loci had medium to high expression in at least one transcriptome. Coexpression analysis between lncRNAs and their target genes indicated that 6% of lncRNAs had expression patterns positively correlated with those of target genes. Based on single nucleotide polymorphism (SNP) markers derived from our previous research, 6,882 SNPs were detected for lncRNAs and 28 SNPs belonging to 21 lncRNAs were associated with the variation of fatty acid contents. Moreover, seven lncRNAs showed expression patterns positively correlated expression pattern with those of genes in de novo fatty acid synthesis pathways. Our study identified a collection of lncRNAs for oil palm and provided clues for further research into lncRNAs that may regulate mesocarp development and lipid metabolism.

Keywords

lncRNAs, target gene, mesocarp, coexpression, fatty acid
Introduction

Noncoding RNAs (ncRNAs) constitute a critical part of the eukaryotic transcriptome and play a vital role in gene regulation. Long noncoding RNAs (lncRNAs), an important class of noncoding RNAs, are non-protein coding RNAs longer than 200 bp and function as key regulators of diverse mechanisms in a range of biological processes (Geisler & Coller 2013; Rinn & Chang 2012; Wang et al. 2011). Researchers have focused on the identification and characterization of lncRNAs responsible for biological process regulation over the past several decades. LncRNAs were classified into several groups based on their genomic location, including long intergenic noncoding RNAs (lincRNAs), intronic lncRNAs, natural antisense lncRNAs (NAT-lncRNAs) and sense lncRNAs (Kung et al. 2013; Rinn & Chang 2012). Researchers have obtained numerous lncRNAs in plants, including NAT-lncRNAs in Arabidopsis (Zhao et al. 2018), lincRNAs in black cottonwood (Shuai et al. 2014), soybean and wheat (Golicz et al. 2017; Zhang et al. 2014), and lncRNAs associated with stress responses in cotton, grapevine, and Chinese cabbage (Jain et al. 2017; Wang et al. 2019a; Wang et al. 2019b; Wang et al. 2015; Xu et al. 2017; Yao et al. 2019). Oil palm (Elaeis guineensis) is an important oil crop in tropical and subtropical areas and its complete genome was released in 2013 (Singh et al. 2013). However, no reports on genome-wide lncRNA identification in oil palm are available.

LncRNA loci serve as important regulatory mediators in gene expression and regulate the expression of target genes with cis-acting or trans-acting mechanisms (Kung et al. 2013; Liu et al. 2015b). LncRNAs can interact with multiple protein partners, serve as molecular scaffolds that help assemble and target the chromatin-modifying complex, and interact with miRNA as target mimics (Chu et al. 2011; Liu et al. 2012; Rinn & Chang 2012; Vance & Ponting 2014). For lncRNAs with cis-functions, their regulated genes are located close to the lncRNA loci (Herzog et al. 2014; Kim & Shiekhattar 2016; Li et al. 2016). NAT-lncRNA loci may regulate their sense genes and influence their expression via diverse transcriptional or post-transcriptional mechanisms (Zhao et al. 2018). NAT-lncRNA loci may compete for RNA polymerase II and regulatory transcription factors with their sense genes and cause transcriptional interference (Faghihi & Wahlestedt 2009; Wight & Werner 2013). All these results provided information about screening for lncRNA targets in silico. Adjacent genes of lncRNA loci, target lncRNAs of
miRNA and complementary sequences between lncRNAs and target genes were used as criteria to select candidate target genes of lncRNAs (Jiang et al. 2015; Li et al. 2015; Wu et al. 2013; Zhao et al. 2018).

With the advance of next-generation sequencing (NGS) technology, RNA-seq has become the technical platform of choice to identify lncRNAs. Using bioinformatics tools, lncRNA transcripts can be directly assembled from RNA-seq reads. Recent advances in DNA sequencing and transcriptome analysis have provided gigabases of data and genome-wide analysis of lncRNAs has been conducted in many species (Jain et al. 2017; Ma et al. 2018; Wang et al. 2019a; Wang et al. 2019b; Xu et al. 2017; Yao et al. 2019). Approximately 40,000 putative lncRNAs were identified in *Arabidopsis* by EST, tiling array analyses and RNA-seq data sets (Jin et al. 2013; Liu et al. 2015a; Wang et al. 2014). Oil palm is one of the most important oil crops in the world. Many QTL mapping for oil yield, fatty acid composition and vegetative traits in oil palm were reported (Jeennor & Volkaert 2014; Montoya et al. 2013; Singh et al. 2009), A good reference of oil palm genome, transcriptome profile and lncRNA profile will assist in identifying the causality for phenotypic variations. In this study, we applied strand-specific RNA-seq (ssRNA-seq) technology to identify lncRNA transcripts from an equally pooled RNA sample of oil palm spear leaf and mesocarps of six developmental stages. We also predicted target genes of lncRNAs and analysed the expression patterns of lncRNAs and their target genes based on 18 oil palm transcriptomes downloaded from the National Center for Biotechnology Information (NCBI) website. LncRNAs expression patterns in different tissues and different developmental stages of mesocarp that stores oil were characterized. We also applied association mapping to identify lncRNA loci related to the variation in fatty acid content. Our study provides a resource for studying lncRNAs in oil palm, including NAT-lncRNAs and their target genes, as well as lncRNAs related to fatty acid content.

Materials and Methods

Plant materials

One African oil palm plant (hybrid of dura and pisifera) sourced from Malaysia, and grown in the oil palm germplasm resources garden at Wenchang, Hainan, China were used for all experiments. The mesocarp for oil palm fruit at six developmental stages (8-week-old, 12-week-old, 16-week-old, 18-week-old, 20-week-old and 24-week-old) was collected.
old), kernel, female flower, and spear leaves were collected from a ten-year-old oil palm individual (accession: CRI-
005). The mesocarp at six developing stages and spear leaves were used for the following ssRNA-seq. Roots were
collected from one-year-old oil palm seedlings that derived from the ten-year-old oil palm seeds, which were easier
to sample and not lignified as the ten-year-old oil palm plant. Each sample collection was done with three biological
replicates. All samples collected were immediately frozen in liquid nitrogen and stored -80 °C until needed for RNA
extraction. All samples (mesocarp, kernel, female flower, spear leaves, and root) were used for the following
quantitative reverse transcription PCR (RT-qPCR) and RT-PCR.

A set of 18 oil palm transcriptomes downloaded from NCBI were also used in this study for gene expression
pattern analysis (Table S1). All these transcriptomes were derived from Illumina platform (paired-end, Illumina
HiSeq 2000) and included leaf (DRR053156), male flower (DRR053157), leaf from oil palm seedlings
(ERR1735779), female inflorescences at 6 leaf stage (SRR5189966), female inflorescences at 15 leaf stage
(SRR5189969), root from 3-month-old juvenile tree (SRR7812013, SRR7812014), and mesocarp at different
developmental stages, which included ERR1413765 (100 days after pollination (DAP)), ERR1413766 (140 DAP),
ERR1413767 (120 DAP), ERR1413768 (160 DAP), ERR3385821 (five months after pollination), ERR3385822
(five months after pollination), ERR3385823 (four months after pollination), ERR3385824 (five months after
pollination), ERR3385825 (four months after pollination), ERR3385826 (five months after pollination),
ERR3385828 (five months after pollination).

RNA extraction, RNA-seq library construction and strand-specific RNA sequencing

Total RNA for oil palm mesocarps (six developing stages described above, with three biological replicates for
each stage) and spear leaves used for ssRNA-seq were extracted by a modified CTAB method (Xiao et al. 2012).
RNA degradation and contamination was detected by 1.5% agarose gel electrophoresis. Total RNA concentration
and purity was determined using a Nanodrop ND-2000 spectrophotometer (Nanodrop Technologies, USA). RNA
integrity was verified using RNA Nano 6000 Kit for Agilent Bioanalyzer 2100. RNA samples without degradation
and contamination were used for rRNA removal. The RNA samples were equally pooled and a total amount of 1.5
ug RNA was treated with Ribo-Zero rRNA Removal Kit (epicentre, USA), and then fragmented by fragmentation
buffer. First-strand complementary DNA was synthesized using random hexamers and reverse transcriptase.
Second-strand cDNA was prepared using RNase H, DNA polymerase I and dNTPs. Remaining overhangs were converted into blunt ends via exonuclease/polymerase activities and 3’ ends of DNA fragments were treated with adenylation. After that, NEBNext adaptors were ligated to the ends of the prepared double-stranded cDNA and the library fragments were purified by AMPure XP beads. The fragment size ranged from 150-200bp were selected and PCR amplified, and then sequenced with an Illumina Hiseq 2000 platform by Biomarker Technology Co., Ltd (Beijing, China). The clean reads from the above lncRNA-seq data were deposited in the European Bioinformatics Institute (EMBL-EBI) at the European Nucleotide Archive (accession number: ERR3412516, https://www.ebi.ac.uk/ena/data/view/ERR3412516).

RNA transcript assembly and novel transcriptional unit identification

We used the FastQC software (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) to check the sequence quality of raw reads. Base quality value (Q) was estimated by the following formula: \(Q = -10 \times \log_{10} P \) (\(P \) represents the error probability during Illumina sequencing). Raw reads were pretreated to remove adaptor sequences and low quality sequences via the Trimmomatic software (Bolger et al. 2014). The parameters for Trimmomatic were set as: 1) remove adapters (ILLUMINACLIP:TruSeq3-PE.fa:2:30:10); 2) remove leading low quality (LEADING:3), 3) remove trailing low quality (TRAILING:3); 4) scan the read with a 4-base wide sliding window, cutting when the average quality per base drops below 15 (SLIDINGWINDOW:4:15); 5) drop reads below the 36 bases long (MINLEN:36). Clean reads were obtained by removing reads containing adapter, reads containing poly-N and low quality reads from raw data. After raw reads filtering, Q30 value of clean reads was above 95.88% and all reliable reads were mapped to the oil palm reference genome (Version EG5, https://www.ncbi.nlm.nih.gov/genome/2669) using hisat2 (version 2.1.0) with default parameters (Kim et al. 2015) and *de novo* assembled using the StringTie software (version 2.0) with default parameters (Pertea et al. 2015). The protein-coding transcripts identified in this study were annotated based on the oil palm gene prediction in NCBI (Gene models based on file downloaded from the NCBI website, ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/442/705/GCF_000442705.1_EG5/GCF_000442705.1_EG5
_genomic.gff.gz). After removing all annotated protein-coding genes, transcripts that had more than 200 bp in length, more than one exon and FPKM ≥ 0.1 were selected for further identification of lncRNAs.

lncRNAs identification, classification and characterization

We removed transcripts that were likely to be assembly artifacts according to class code annotated by the gffcompare program and retained transcripts annotated by “u”, “i”, “o” and “x”, which represent novel intergenic, intronic, sense-overlapped and cis-antisense transcripts, respectively (Trapnell et al. 2012). The transcripts of candidate lncRNAs must not contain open reading frame encoding more than 50 amino acids and must not encode any transposable elements. Coding Potential Calculator (CPC) (Kong et al. 2007), Coding-Non-Coding Index (CNCI) (Sun et al. 2013), Coding Potential Assessment Tool (CPAT) (Wang et al. 2013) analysis and PfamScan (Pfam 32 database) were applied to analyze transcripts. The assembled transcripts that did not pass the protein-coding-score test (score < 0) of CPC and CNCI analysis were as noncoding sequences. CPAT analyzed the open reading frame length/coverage, Fickett score, and hexamer usage bias of the transcripts and determined the noncoding sequences with default parameter. Based on PfamScan analysis, we eliminated transcript with potential protein-coding ability (E-value cutoff ≤ 0.001). The predicted long noncoding transcripts shared from the four analyses were considered as candidate oil palm lncRNAs. We filtered out transposable elements for the transcripts through PfamScan analysis and comparing with Dfam database (Hubley et al. 2015) through BLAST analysis (E-value cutoff $< 1e-5$).

The different types of lncRNAs include lincRNA, intronic lncRNA, anti-sense lncRNA, sense lncRNA were selected using cuffcompare (Trapnell et al. 2012). The protein-coding genes were derived from protein-coding transcripts in this study, as well as oil palm predicted gene models downloaded from NCBI (Version: EG5). We used StringTie to calculate Fragments Per Million Fragments (FPKM) values of lncRNAs and other protein-coding genes. For gene with different isoforms, total FPKM values of all isoforms were used to represent the gene’s FPKM value.
Prediction of lncRNA target genes

LncRNAs participated in regulatory pathways through two ways - in cis and in trans. Target genes for lncRNAs acting in cis were predicted by protein-coding genes overlapped within 2kb flanking sequences of lncRNAs or overlapped with lncRNAs. The genomic positions of lncRNAs and protein-coding genes were compared to identify cis-acting target genes for lncRNA. We used the LncTar software to predict target genes in trans of lncRNA loci based on mRNA sequence complementary and RNA duplex energy prediction (Li et al. 2014).

LncRNA expression profiles in different oil palm tissues and co-expression analysis

A set of 18 oil palm RNA libraries were downloaded from the NCBI website (https://www.ncbi.nlm.nih.gov/) and used to calculate the fragments per kilobase of transcript per million fragments mapped (FPKM) for lncRNAs and their corresponding target genes (Table S1). Bowtie2 (Langmead & Salzberg 2012) were used to map the reads to oil palm genomes and FPKM values were calculated by cufflinks (Trapnell et al. 2012).

Based on the reference of Zhao et al. (2018), Pearson Correlation Coefficients (p.c.c.) were calculated between the expression levels of adjacent protein-coding genes and between the expression levels of lncRNAs and their closest protein-coding genes. LncRNA/protein-coding gene pairs with low abundance (FPKM_{max} < 1) were excluded from our analysis. LncRNA/protein-coding gene pairs with Pearson correlation coefficients greater than 0.468 were presented in the heat map (n=16, P ≤ 0.05). The 18 transcriptome datasets described above were used for analysis of p.c.c. between lncRNAs and genes that belong to the pathways of plastid fatty acid synthesis from pyruvate and triacylglycerol (TAG) synthesis from the reference Xiao et al. (2019).

Validation of the expression of lncRNAs and their target genes by RT-PCR and RT-qPCR

The total RNAs for oil palm root, stem, spear leaf, female flower, kernel, and mesocarp tissues at six developing stages (8-week-old, 12-week-old, 16-week-old, 18-week-old, 20-week-old and 24-week-old) were extracted by a modified CTAB method as the above. The complementary DNA for each sample were synthesized using All-in-One First-Strand Synthesis MasterMix kit (NOVA, Jiangshu, China) with random hexamers, which was
used for RT-PCR and RT-qPCR assays to validate the expression of lncRNAs and their target genes. We used Primer 5.0 to design the primers for these genes and listed the primer information in Table S2.

The RT-qPCR mixture contained 1 μl diluted cDNA, 5 μl of 2×FastStart Universal SYBR Green Master (NOVA, Jiangshu, China), and 0.5 μl of each gene-specific primer (10 μM) in a final volume of 10 μl. All PCR reactions were performed using ABI 7900HT machine under following conditions: 2 min at 95 °C, and 40 cycles of 5 s at 95 °C and 30 s at 60 °C in 384-well clear optical reaction plates (Applied Biosystems, USA). The procedure ended by a melt-curve ramping from 60 to 95 °C for 20 minutes to check the PCR specificity. All RT-qPCR reactions were carried out in biological and technical triplicate. A non-template control was also included in each run for each gene. The final Ct values were the means of nine values (biological triplicate, each in technical triplicate).

Single nucleotide polymorphisms (SNPs) detection for lncRNAs and identification of lncRNAs related to variation in fatty acid composition by association mapping

Based on 1,261,501 reliable SNPs markers (minor allele frequency > 0.05 and more than 80% oil palm individuals had sequences information for each SNP marker) derived from SLAF sequencing in a diversity panel of 200 oil palm individuals in our previous research (Xia et al. 2019b), SNPs within lncRNA regions were screened by a Perl script. The contents of lauric acid (12:0), myristic acid (C14:0), palmitic acid (16:0), tripalmitelaidin acid (16:1), Hexadecadienoic acid (16:2), stearic acid (18:0), oleic acid (18:1), linoleic acid (18:2), and oil for 160 individual out of 200 oil palm used in this study were the same set of data from our previous research (Xia et al. 2019a). Fatty acid composition was examined and measured using gas chromatography (Agilent DB-23, 30 m×250). The nine values (three biological replicates × three technical replicates) obtained per oil palm individual were averaged for subsequent association mapping. The average values along with standard deviations of different fatty acids and oil contents for the 160 oil palm individuals were listed in Table S3. Since five subgroups for the 200 oil palm individuals were estimated based on cross-validation errors, mixed linear models (MLM) were used. Fixed effects were computed using a Q (population) value matrix, and random effects were computed using a K (kinship) matrix. The Q+K value matrix was added to the MLM model. The Q matrix was obtained using STRUCTURE software (version 2.3.4) (Pritchard et al. 2000), and the K matrix (genetic relationships among the 200 oil palm
individuals) was obtained using SPAGeDi software (version 1.5) (Hardy & Vekemans 2002). Association analysis was performed using Tassel 5.0 (Bradbury et al. 2007). P-values for associations between SNP markers and fatty acid content were computed according to Yu et al (2006).

Results

Identification and characterization of oil palm lncRNAs

A total of 166,288,038 raw reads were generated from an equally pooled RNA sample of oil palm spear leaf, 8-week-old, 12-week-old, 16-week-old, 18-week-old, 20-week-old and 24-week-old mesocarp tissues, and 165,257,052 clean reads (24.69 Gbp) were obtained after adaptor trimming and sequence quality filtering. Approximately 86.98% clean reads were mapped to the oil palm reference genome, and 96,009 transcripts were assembled. To identify lncRNAs, we filtered out the assembled transcripts shorter than 200 bp and transcripts with protein-coding potential via protein-coding-score test (CPC, CNCl, CPAT) and Pfam protein domain analysis, which identified transcripts with potential protein-coding ability (cutoff E-value ≤ 0.001). Finally, 1,663 transcripts were tested as having no protein-coding potential and were considered candidate lncRNAs. These transcripts were mapped to 1,363 lncRNA loci and 289 lncRNA loci had more than one transcript (Table S4).

The 1,363 lncRNA loci were distributed across all 16 chromosomes (930) and unlinked scaffolds (433) of the oil palm genome (Table 1). Chr1 (129), Chr2 (96) and Chr3 (95) had the largest number of lncRNA loci, while Chr10 (31), Chr13 (32) and Chr15 (30) had the least number of lncRNA loci. Based on the present annotation version of the oil palm genome, the 1,363 lncRNA loci were classified into four classes. LncRNA loci located in intergenic regions (lincRNAs, 703) are the top number of lncRNA classes, followed by lncRNA loci located on the antisense of protein coding genes (NAT-lncRNAs, 581), lncRNA loci overlapping with pseudogene regions (sense-lncRNAs, 47) and lncRNA loci belonging to genic intronic regions (intronic, 32). Based on the genomic locations for NAT-lncRNA loci and their corresponding sense genes, we further classified them into six types (Figure 1). NAT-lncRNA loci for type I, II, III, IV overlapped in their genic regions with genes on their opposite strands, while type V and type VI had promoter regions and 3’ UTR regions overlapped with sense strand genes, respectively.

Expression profiles for identified oil palm lncRNAs

Manuscript to be reviewed
Based on the strand-specific RNA-seq data in this study, the expression levels for lncRNAs and protein-coding genes were compared. A large proportion for lncRNAs (68%) and mRNAs (62%) showed low expression levels (FPKM value < 1), while the proportions of lncRNAs (29%) and mRNAs (31%) that had medium expression levels (FPKM: 1 ~ 15) were close (Figure 2). For genes with high expression levels (FPKM > 15), mRNA (7%) had higher gene ratio than lncRNAs (1.6%). Only 23 lncRNA loci had high expression levels (FPKM >15, Table S4).

To investigate the expression pattern of the identified lncRNAs in different tissues, we estimated the expression levels of each lncRNA by calculating FPKM in different tissues using the RNA-seq data from 18 samples for six tissues, including mesocarp (11), female flower (1), female inflorescences (1), male flower (1), leaf (2), and root (2) (Table S1). We excluded intronic-lncRNAs and NAT-lncRNAs whose transcripts overlapped with protein-coding genes and used FPKM values for 916 lncRNAs for analysis, which are listed in Table S5. Among these transcriptomes, 77.8% (ERR3385824, mesocarp) - 89.6% (ERR1413765, mesocarp) of lncRNAs had low expression levels (FPKM values 0 ~ 1) (Figure 3), 340 lncRNAs were expressed (FPKM values ≥ 1), and only 89 lncRNA loci had high expression levels (FPKM values ≥ 15) in at least one tissue (Table S5). Among 89 lncRNA loci, 40% (36 loci) had high expression only in one transcriptome followed by 16% (14 loci) in two transcriptomes. There were ten lncRNA loci with high expression levels in more than ten transcriptomes (Table S5 and Figure 4).

The number of lncRNA loci with high expression levels ranged from 12 (ERR3385826, mesocarp) to 36 (SRR5189966, female inflorescences) (Table S5). Comparing 23 loci identified in ssRNA-seq in this study, ten highly expressed lncRNAs (MSTRG.7397, MSTRG.10373, MSTRG.26953, MSTRG.32440, MSTRG.48470, MSTRG.51478, MSTRG.52125, MSTRG.52244, MSTRG.53207, and MSTRG.53370) were shared. Seven of the ten lncRNA loci were highly expressed in more than five transcriptomes (Figure 4).

RT-PCR validation was conducted for 71 lncRNAs among mesocarp, kernel, leaf, female flower and root tissues, and 22 lncRNAs produced positive results (Table S2a, Figure 5 and Figure S1). Based on the FPKM values from the strand-specific sequence in this study, 47 out of 71 lncRNAs had relatively low expression (FPKM values ≤ 10), and RT-PCR showed that 9 out of 47 loci produced positive bands in the tested samples (Table S2a, Figure 5 and Figure S1). In addition, RT-PCR showed that 10 out of 24 of the tested lncRNAs (FPKM values > 10) had positive bands. Among these RT-PCR validated loci, MSTRG.4577 (FPKM = 41.9), MSTRG.32440 (FPKM =
MSTRG.48560 (FPKM = 72.8) and MSTRG.52384 (FPKM = 1.2) were expressed in all five tissues, while
MSTRG.952 (FPKM = 2465.9), MSTRG.7370 (FPKM = 0.83), MSTRG.10334 (FPKM = 3.13), MSTRG.36586
(FPKM = 1.04) and MSTRG.48470 (FPKM = 49.23) were expressed only in the mesocarp. The remaining 13
lncRNAs were expressed in two to four tissues.

Target gene identification and coexpression analysis
A total of 875 unique target genes were identified, including natural antisense lncRNAs (NAT-lncRNAs, 712),
long intergenic noncoding RNAs (lincRNAs, 92), intronic-lncRNAs (33), and sense-lncRNAs (52) (Table S6). The
flanking genes within a 2-kb distance and/or antisense overlapping genes (865) were identified as candidate targets
in cis for lncRNAs, while 11 predicted target genes were predicted to be in trans. One gene LOC105051313, was
also identified as a target gene, both in cis (MSTRG.23935) and in trans (MSTRG.23116). For NAT-lncRNAs, a
total of 712 target genes were found, including target genes overlapping with NAT-lncRNAs on the opposite strand
(657), located on the same strand of NAT-lncRNA within the 2-kb region (48), and mRNA sequences
complementary to NAT-lncRNA via LncTar analysis (7) (Table S6). Of these target genes, 72% (514) of target
genes had genic regions overlapping with NAT-lncRNAs (class I, II, III, IV), and 144 target genes were located
within the 2-kb flanking distance of NAT-lncRNAs, including 44 genes overlapping upstream promoter regions with
NAT-lncRNAs (class V) and 100 genes overlapping for on the 3’ downstream (class VI). For target genes
overlapping with NAT-lncRNA (class I, II, III, IV), comparison of transcripts between NAT-lncRNAs and their
target genes indicated that 263 pairs were overlapped and 287 pairs did not overlap (Table S6). The lincRNAs (703)
were the top number type of identified lncRNAs, and we identified 87 target genes for 82 lincRNAs located within
2-kb regions (Table S6). Among these target genes, eight genes belong to lipid metabolism pathways by comparison
with the genes in the pathways identified in our previous research (Table S6) (Xiao et al. 2019).

To explore the function of lncRNAs in the regulation of their target genes, we calculated the Pearson
correlation coefficients (p.c.c.) between lncRNAs and their target genes. We identified 585 pairs of lncRNA loci and
target genes that did not overlap in their transcripts (Table S7). Among these lncRNA/target pairs, 505 lncRNAs had
one target gene and 66 lncRNAs had more than one target gene. For these lncRNAs in Table S7, a majority of 312
IncRNAs (250) had low expression (0 < FPKM < 1) and 84 IncRNAs had no detectable expression (FPKM = 0) in the 18 transcriptomes, while 47 target genes had low expression and 16 target genes with no detectable expression. Since the existence of low expression levels or no expression among the 585 IncRNAs/target pair, 380 pairs of IncRNA loci and target genes were filtered out. The p.c.c. for the remaining 205 pairs of IncRNAs/target genes were examined and 10% (21) of the gene pairs showed positively correlated expression patterns (p.c.c. score ≥ 0.468, P value < 0.05) are shown in Table S7. Only one gene pair - MSTRG.10328/Loc105041936 had negative correlation relationship (p.c.c. score = -0.61, P value < 0.05). For the 22 gene pairs, four IncRNAs (MSTRG.12377, MSTRG.18648, MSTRG.47162, and MSTRG.26385) and one target gene (Loc105043335) had one transcriptome with FPKMax ≥ 1, while the other gene in the pairs had FPKMax ≥ 1 in more than one transcriptomes (Table S7).

After RT-PCR analysis for expressed IncRNAs and target genes in the oil palm mesocarp, four NAT-IncRNAs and five target genes proceeded for further RT-qPCR analysis. Positively correlated expression pattern for MSTRG.9572 / Loc105041276, MSTRG.13617 / Loc105044074 / Loc105044117, MSTRG.24786 / Loc105051990, MSTRG.48560 / Loc109505170 (p.c.c. score > 0.9) were detected based on the RT-qPCR results (Figure 6).

Genetic variation in IncRNA loci and association with the variation of fatty acid composition

In a previous study, we developed 1,261,501 SNP markers for 200 oil palm individuals (Xia et al. 2019b) and determined the contents of lauric acid (12:0), myristic acid (C14:0), palmitic acid (16:0), tripalmitelaidin acid (16:1), hexadecadienoic acid (16:2), stearic acid (18:0), oleic acid (18:1), linoleic acid (18:2), and oil for 160 out of 200 individuals (Xia et al. 2019a). Based on this set of data, 6,882 SNP markers were identified for the IncRNA regions. A mixed linear model was used to analyse the association relationship between these SNP markers and the variation in fatty acid compositions, and 28 SNP markers were significantly associated with the trait variation (cut-off of 1e-3).

One SNP marker (MSTRG.10380) had p value lower than 5.01e-08 (−log10 p = 7.3) when based on p value threshold in Xia et al. (2019a). These SNPs were located in 21 IncRNAs and associated with oil content (13) and relative contents of palmitic acid (6), linoleic acid (6), and stearic acid (3). The observed heterozygosity of the 28 SNP markers among 200 oil palm individuals varied from 0.1147 to 0.4968 with an average of 0.3414 (Table 2). A majority of these SNPs (25) occurred in the intron regions, while SNPs in MSTRG.2168, MSTRG.7396 and MSTRG.15295 occurred in the exon regions.
To further analyze the correlation relationship between the 21 lncRNA loci and genes belonging to de novo fatty acid synthesis and triacylglycerol (TAG) biosynthesis, 18 transcriptomes from mesocarp (11), female flower (1), female inflorescences (1), male flower (1), leaf (2), and root (2) were used for calculating p.c.c. between these genes. Seven lncRNAs had positively correlated expression patterns with 35 genes belonging to de novo synthesis of fatty acids (27) and TAG synthesis (8) (Table S8). For the seven lncRNAs, MSTRG.15295 and MSTRG.30615 had FPKM_{max} \geq 1 in ten and eleven transcriptomes, respectively, while MSTRG.2123 and MSTRG.13525 had FPKM_{max} \geq 1 in two transcriptomes and the other three lncRNAs had FPKM_{max} \geq 1 in one transcriptome (Table S8). Moreover, a major of correlated lipid-related genes (29) had FPKM_{max} \geq 1 in more than nine transcriptomes. Twenty-seven genes in the de novo fatty acid synthesis pathway, including EgPDH (5 genes), EgACC (7), EgACP4 (3), EgKAR (1), EgKASI (2), EgKASI3 (1), EgER (1), EgFatA (1), EgFatB1 (1), EgFatB3 (1), EgSAD-2 (1), EgHAD (2), and EgWRI1-1 (1), were found to be positively correlated with seven lncRNAs. Among these genes, MSTRG.15295 positively correlated with the top number genes (17) with 15 genes in the de novo synthesis fatty acid pathway followed by MSTRG.2123 (11), MSTRG.17117 (9), and MSTRG.16345 (5). The remaining three lncRNAs were positively correlated with one to three genes positively. MSTRG.15295 had a positive correlation with stearoyl-ACP desaturase (EgSAD) and a transcription factor - WRINKLED 1 (WRI 1).

Discussion

LncRNAs play important roles in mediating biological process regulation. In this study, we applied ssRNA-seq to identify lncRNAs in oil palm from mixed tissues of leaves and six different developmental stages of mesocarp. Based on ssRNA-seq data in this study and 18 transcriptomes from other studies, we found that the majority lncRNA loci had low expression. Coexpression analysis between lncRNAs and predicted target genes in cis indicated that 21 lncRNA loci had positive correlations with target genes, while only one lncRNA locus displayed a negative correlation. Based on the data of SNPs and fatty acid content data from our previous research, 28 SNPs belonging to 21 lncRNAs were associated with fatty acid composition. Our study identified a collection of lncRNAs for oil palm and provided clues for further investigations into lncRNAs that may regulate mesocarp development and lipid metabolism.
Data mining for lncRNAs was feasible since a large amount of transcription data was available. In model plants, such as *Arabidopsis*, maize and rice, a large quantity of lncRNA loci were identified (Li et al. 2014; Zhang et al. 2014; Zhao et al. 2018), some lncRNAs were validated and play critical roles in flowering controls, grain yield, stress response and other biological processes (Jain et al. 2017; Jiang et al. 2019; Kindgren et al. 2018; Ma et al. 2018; Wang et al. 2018). LincRNAs are the most abundant lncRNA types (Table 1), while the majority of lncRNAs had a relatively lower expression than did protein-coding genes (Figure 2 and Figure 3). These are common phenomena for lncRNAs in many species (Wang et al. 2015; Yao et al. 2019). We used mixed samples to conduct ssRNA-seq, which could cover more lncRNA transcripts. The downloaded 18 transcriptomes showed similar low expression levels for most lncRNAs, while lncRNAs highly expressed in more samples tended to be detected in different transcriptomes. The RT-PCR results fit the transcriptome data, 22 out 71 selected lncRNAs were expressed in the tested tissues and four lncRNAs were expressed specifically in the mesocarp.

LncRNAs regulate target genes by serving as target mimics of miRNAs and regulators of transcription and chromatin modification (De Lucia & Dean 2011; Jiang et al. 2019; Magistri et al. 2012; Wang et al. 2018; Wu et al. 2013; Zhao et al. 2018). Research in *Arabidopsis* on NAT-lncRNAs demonstrated that NAT-lncRNAs often positively correlate with their cognate sense genes (Zhao et al. 2018). Coexpression analysis in this study also suggested that lncRNAs may cotranscribed with adjacent target genes and 6% of lncRNA/target pairs showed a positive correlation in expression (Table S7). The positive correlation results for four lncRNAs and their target genes were also validated by RT-qPCR (Figure 6). However, since a majority of lncRNA loci had low expression levels, our results suggested that a small proportion of target genes may be cotranscribed with lncRNAs in cis.

Oil palm has 90% oil in its mesocarp, the highest level observed in the plant kingdom. Bourgis et al (2011) used RNA-seq to examine transcriptional changes during oil palm mesocarp development, and found that synthesis of fatty acids and supply of pyruvate in the plastid were the major factors controlling oil storage in the oil palm mesocarp (Bourgis et al. 2011). Researchers have used QTL mapping and association mapping to identify key loci related to the content or composition of fatty acids in oil palm composition (Jeennor & Volkaert 2014; Montoya et al. 2013; Singh et al. 2009). In our study, we used association mapping and found 21 lncRNAs related to the variation of fatty acid composition and oil content of oil palm mesocarp (Table 2). The coexpression analysis between the 21
IncRNAs and genes belonging to fatty acid synthesis and TAG synthesis pathways showed that nine IncRNAs had a similar expression patterns as genes in the two lipid metabolism pathways. MSTRG.15295 had similar expression pattern with the majority of correlated genes, including a key transcription factor - WRI1. The WRI1 gene is considered to play an important role in oil accumulation (Bourgis et al. 2011; Cernac & Benning 2004; Dussert et al. 2013; Focks & Benning 1998; Troncoso-Ponce et al. 2011). Our results provide candidate IncRNA loci related to the development and oil storage of oil palm mesocarp.

Conclusions

This study provided an important collection of IncRNAs in oil palm and a set of 581 NAT-IncRNAs and 712 targets were predicted. Based on 18 oil palm transcriptomes, we found that 77.8% - 89.6% IncRNA loci had low expression, while only 89 IncRNA loci had medium to high expression in at least one transcriptome. Coexpression analysis between IncRNAs and their target genes indicated that 10% of IncRNAs had positively correlated expression patterns with target genes. Based on SNP markers derived from our previous research, 28 SNPs belonging to 21 IncRNAs were associated with the variation of fatty acid contents. Moreover, twelve IncRNAs showed positively correlated expression patterns with genes in de novo fatty acid synthesis pathways. Our study identified a collection of IncRNAs for oil palm and provided clues for further research investigating IncRNAs that may regulate mesocarp development and lipid metabolism.

Reference

Bolger A, Lohse M, and Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114-2120.

Bourgis F, Kilaru A, Cao X, Ngando-Ebongue G-F, Drira N, Ohlrogge JB, and Arondel V. 2011. Comparative transcriptome and metabolite analysis of oil palm and date palm mesocarp that differ dramatically in carbon partitioning. Proc Natl Acad Sci USA 108:12527-12532. 10.1073/pnas.1106502108

Bradbury PJ, Zhang Z, Kroon D, Casstevens TM, Ramdoss Y, and Buckler ES. 2007. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633-2635.
Cernac A, and Benning C. 2004. *WRINKLED1* encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in *Arabidopsis*. *Plant J* 40:575-585. TPJ2235 [pii]

10.1111/j.1365-313X.2004.02235.x

Chu C, Qu K, Zhong F, Artandi SE, and Chang HY. 2011. Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. *Molecular cell* 44:667-678.

De Lucia F, and Dean C. 2011. Long non-coding RNAs and chromatin regulation. *Current Opinion in Plant Biology* 14:168-173.

Dussert S, Guerin C, Andersson M, Joët T, Tranbarger TJ, Pizot M, Sarah G, Omore A, Durand-Gasselin T, and Morcillo F. 2013. Comparative transcriptome analysis of three oil palm fruit and seed tissues that differ in oil content and fatty acid composition. *Plant Physiol* 162:1337-1358.

Faghihi MA, and Wahlestedt CR. 2009. Regulatory roles of natural antisense transcripts. *Nature Reviews Molecular Cell Biology* 10:637-643.

Focks N, and Benning C. 1998. wrinkled1: A novel, low-seed-oil mutant of *Arabidopsis* with a deficiency in the seed-specific regulation of carbohydrate metabolism. *Plant Physiol* 118:91-101.

Geisler S, and Coller J. 2013. RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts. *Nature Reviews Molecular Cell Biology* 14:699-712.

Golicz AA, Singh M, and Bhalla PL. 2017. The long intergenic non-coding RNA (lincRNA) landscape of the soybean genome. *Plant Physiol* 176:2133-2147.

Hardy OJ, and Vekemans X. 2002. spagedi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. *Molecular Ecology Notes* 2:618-620. 10.1046/j.1471-8286.2002.00305.x

Herzog VA, Lempradl A, Trupke J, Okulski H, Altmutter C, Ruge F, Boidol B, Kubicek S, Schmauss G, and Aumayr K. 2014. A strand-specific switch in noncoding transcription switches the function of a Polycomb/Trithorax response element. *Nature genetics* 46:973-981.

Hubley R, Finn RD, Clements J, Eddy SR, Jones TA, Bao W, Smit AFA, and Wheeler TJ. 2015. The Dfam database of repetitive DNA families. *Nucleic Acids Research* 44:D81-D89. 10.1093/nar/gkv1272
Jain P, Sharma V, Dubey H, Singh P, Kapoor R, Kumari M, Singh J, Pawar DV, Bisht DS, and Solanke AU. 2017. Identification of long non-coding RNA in rice lines resistant to rice blast pathogen *Maganaporthe oryzae*. *Bioinformation* 13:249-255.

Jeennor S, and Volkaert H. 2014. Mapping of quantitative trait loci (QTLs) for oil yield using SSRs and gene-based markers in African oil palm (*Elaeis guineensis* Jacq.). *Tree Genetics & Genomes* 10:1-14.

Jiang N, Cui J, Shi Y, Yang G, Zhou X, Hou X, Meng J, and Luan Y. 2019. Tomato *lncRNA23468* functions as a competing endogenous RNA to modulate *NBS-LRR* genes by decoying *miR482b* in the tomato-*Phytophthora infestans* interaction. *Horticulture Research* 6:28. 10.1038/s41438-018-0096-0

Jiang Q, Ma R, Wang J, Wu X, Jin S, Peng J, Tan R, Zhang T, Li Y, and Wang Y. 2015. LncRNA2Function: a comprehensive resource for functional investigation of human IncRNAs based on RNA-seq data. *BMC Genomics* 16:1-11.

Jin J, Liu J, Wang H, Wong L, and Chua N. 2013. PLncDB: plant long non-coding RNA database. *Bioinformatics* 29:1068-1071.

Kim D, Langmead B, and Salzberg SL. 2015. HISAT: a fast spliced aligner with low memory requirements. *Nature Methods* 12:357-360.

Kim TK, and Shiekhattar R. 2016. Diverse regulatory interactions of long noncoding RNAs. *Current Opinion in Genetics & Development* 36:73-82.

Kindgren P, Ard R, Ivanov M, and Marquardt S. 2018. Transcriptional read-through of the long non-coding RNA SVALKA governs plant cold acclimation. *Nature Communications* 9:4561. 10.1038/s41467-018-07010-6

Kong L, Zhang Y, Ye Z-Q, Liu X-Q, Zhao S-Q, Wei L, and Gao G. 2007. CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. *Nucleic Acids Research* 35:W345-W349. 10.1093/nar/gkm391

Kung JT, Colognori D, and Lee JT. 2013. Long noncoding RNAs: past, present, and future. *Genetics* 193:651-669.

Langmead B, and Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. *Nature Methods* 9:357-359.

Li J, Ma W, Zeng P, Wang J, Geng B, Yang J, and Cui Q. 2015. LncTar: a tool for predicting the RNA targets of long noncoding RNAs. *Briefings in Bioinformatics* 16:806-812.
Li L, Eichten S, Shimizu R, Petsch K, Yeh C-T, Wu W, Chettoor A, Givan S, Cole R, Fowler J, Evans MM, Scanlon M, Yu J, Schnable P, Timmermans MC, Springer N, and Muehlbauer G. 2014. Genome-wide discovery and characterization of maize long non-coding RNAs. *Genome Biology* 15:R40.

Li R, Zhu H, and Luo Y. 2016. Understanding the functions of long non-coding RNAs through their higher-order structures. *International Journal of Molecular Sciences* 17:702.

Liu J, Jung C, Xu J, Wang H, Deng S, Bernad L, Arenashuerero C, and Chua N. 2012. Genome-wide analysis uncovers regulation of long intergenic noncoding RNAs in *Arabidopsis*. *The Plant Cell* 24:4333-4345.

Liu J, Wang H, and Chua N. 2015a. Long noncoding RNA transcriptome of plants. *Plant biotechnology journal* 13:319-328.

Liu X, Hao L, Li D, Zhu L, and Hu S. 2015b. Long non-coding RNAs and their biological roles in plants. *Genomics, Proteomics & Bioinformatics* 13:137-147.

Ma K, Shi W, Xu M, Liu J, and Zhang F. 2018. Genome-wide identification and characterization of long non-coding RNA in wheat roots in response to Ca2+ channel blocker. *Frontiers in Plant Science* 9.

Magistri M, Faghihi MA, Laurent GS, and Wahlestedt CR. 2012. Regulation of chromatin structure by long noncoding RNAs: focus on natural antisense transcripts. *Trends in Genetics* 28:389-396.

Montoya C, Lopes R, Flori A, Cros D, Cuellar T, Summo M, Espeout S, Rivallan R, Risterucci A, and Bittencourt D. 2013. Quantitative trait loci (QTLs) analysis of palm oil fatty acid composition in an interspecific pseudo-backcross from *Elaeis oleifera* (H.B.K.) Cortés and oil palm (*Elaeis guineensis* Jacq). *Tree Genetics & Genomes* 9:1207-1225.

Pertea M, Pertea G, Antonescu C, Chang TC, Mendell JT, and Salzberg SL. 2015. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. *Nature biotechnology* 33:290-295.

Pritchard JK, Stephens M, and Donnelly P. 2000. Inference of population structure using multilocus genotype data. *Genetics* 155:945-959.

Rinn JL, and Chang HY. 2012. Genome regulation by long noncoding RNAs. *Annual Review of Biochemistry* 81:145-166.
Shuai P, Liang D, Tang S, Zhang Z, Ye C, Su Y, Xia X, and Yin W. 2014. Genome-wide identification and functional prediction of novel and drought-responsive lincRNAs in *Populus trichocarpa*. *Journal of Experimental Botany* 65:4975-4983.

Singh R, Ongabdullah M, Low ETL, Manaf MAA, Rosli R, Nookiah R, Ooi LCL, Ooi SE, Chan KL, and Halim MAA. 2013. Oil palm genome sequence reveals divergence of interfertile species in old and new worlds. *Nature* 500:335-339.

Singh R, Tan SG, Panandam JM, Rahman RA, Ooi LCL, Low EL, Sharma M, Jansen J, and Cheah S. 2009. Mapping quantitative trait loci (QTLs) for fatty acid composition in an interspecific cross of oil palm. *BMC Plant Biology* 9:114-114.

Sun L, Luo H, Bu D, Zhao G, Yu K, Zhang C, Liu Y, Chen R, and Zhao Y. 2013. Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. *Nucleic Acids Research* 41.

Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, and Pachter L. 2012. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. *Nature Protocols* 7:562. 10.1038/nprot.2012.016

Troncoso-Ponce MA, Kilaru A, Cao X, Durrett TP, Fan J, Jensen JK, Thrower NA, Pauly M, Wilkerson C, and Ohlrogge JB. 2011. Comparative deep transcriptional profiling of four developing oilseeds. *Plant J* 68:1014-1027. 10.1111/j.1365-313X.2011.04751.x

Vance KW, and Ponting CP. 2014. Transcriptional regulatory functions of nuclear long noncoding RNAs. *Trends in Genetics* 30:348-355.

Wang A, Hu J, Gao C, Chen G, Wang B, Lin C, Song L, Ding Y, and Zhou G. 2019a. Genome-wide analysis of long non-coding RNAs unveils the regulatory roles in the heat tolerance of Chinese cabbage (Brassica rapa ssp.chinensis). *Scientific Reports* 9:5002. 10.1038/s41598-019-41428-2

Wang H, Chung PJ, Liu J, Jang I, Kean MJ, Xu J, and Chua N. 2014. Genome-wide identification of long noncoding natural antisense transcripts and their responses to light in *Arabidopsis*. *Genome Research* 24:444-453.

Wang L, Park HJ, Dasari S, Wang S, Kocher J, and Li W. 2013. CPAT: coding-potential assessment tool using an alignment-free logistic regression model. *Nucleic Acids Research* 41.
Wang P, Dai L, Ai J, Wang Y, and Ren F. 2019b. Identification and functional prediction of cold-related long non-coding RNA (lncRNA) in grapevine. *Scientific Reports* 9:6638. 10.1038/s41598-019-43269-5

Wang T, Liu M, Zhao M, Chen R, and Zhang W. 2015. Identification and characterization of long non-coding RNAs involved in osmotic and salt stress in *Medicago truncatula* using genome-wide high-throughput sequencing. *BMC Plant Biology* 15:131-131.

Wang X, Song X, Glass CK, and Rosenfeld MG. 2011. The long arm of long noncoding RNAs: roles as sensors regulating gene transcriptional programs. *Cold Spring Harbor Perspectives in Biology* 3.

Wang Y, Luo X, Sun F, Hu J, Zha X, Su W, and Yang J. 2018. Overexpressing lncRNA LAIR increases grain yield and regulates neighbouring gene cluster expression in rice. *Nature Communications* 9:3516. 10.1038/s41467-018-05829-7

Wight M, and Werner A. 2013. The functions of natural antisense transcripts. *Essays in Biochemistry* 54:91-101.

Wu H, Wang Z, Wang M, and Wang X. 2013. Widespread long noncoding RNAs as endogenous target mimics for microRNAs in plants. *Plant Physiol* 161:1875-1884.

Xia W, Luo T, Dou Y, Zhang W, Mason AS, Huang D, Huang X, Tang W, Wang J, Zhang C, and Xiao Y. 2019a. Identification and validation of candidate genes involved in fatty acid content in oil palm by genome-wide association analysis. *Frontiers in Plant Science* 10. 10.3389/fpls.2019.01263

Xia W, Luo T, Zhang W, Mason AS, Huang D, Huang X, Tang W, Dou Y, Zhang C, and Xiao Y. 2019b. Development of high-density SNP markers and their application in evaluating genetic diversity and population structure in *Elaeis guineensis*. *Frontiers in Plant Science* 10. 10.3389/fpls.2019.00130

Xiao Y, Xia W, Mason AS, Cao Z, Fan H, Zhang B, Zhang J, Ma Z, Peng M, and Huang D. 2019. Genetic control of fatty acid composition in coconut (*Cocos nucifera*), African oil palm (*Elaeis guineensis*), and date palm (*Phoenix dactylifera*). *Planta* 249:333-350. 10.1007/s00425-018-3003-x

Xu Q, Song Z, Zhu C, Tao C, Kang L, Liu W, He F, Yan J, and Sang T. 2017. Systematic comparison of lncRNAs with protein coding mRNAs in population expression and their response to environmental change. *BMC Plant Biology* 17:42.
Yao Z, Chen Q, Chen D, Zhan L, Zeng K, Gu A, Zhou J, Zhang Y, Zhu Y, Gao W, Wang L, Zhang Y, and Qu Y. 2019. The susceptibility of sea-island cotton recombinant inbred lines to *Fusarium oxysporum f. sp. vasinfectum* infection is characterized by altered expression of long noncoding RNAs. *Scientific Reports* 9:2894. 10.1038/s41598-019-39051-2

Yu J, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley J, McMullen MD, Gaut BS, Nielsen DM, and Holland JB. 2006. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. *Nature genetics* 38:203-208.

Zhang Y, Liao J, Li Z, Yu Y, Zhang J, Li Q, Qu L, Shu W, and Chen Y. 2014. Genome-wide screening and functional analysis identify a large number of long noncoding RNAs involved in the sexual reproduction of rice. *Genome Biology* 15:512-512.

Zhao X, Li J, Lian B, Gu H, Li Y, and Qi Y. 2018. Global identification of *Arabidopsis* IncRNAs reveals the regulation of *MAF4* by a natural antisense RNA. *Nature Communications* 9:5056. 10.1038/s41467-018-07500-7
Figure 1

Figure 1 Classification of NAT-IncRNAs
Overlapping NAT-lncRNA\textit{(n=468)}

\begin{itemize}
\item[I] Protein coding gene
\item[II] NAT-lncRNA
\item[III]
\item[IV]
\item[V]
\item[VI]
\end{itemize}

Non-overlapping NAT-lncRNA\textit{(n=113)}

\begin{itemize}
\item[V]
\item[VI]
\end{itemize}
Figure 2

Figure 2 FPKM values comparison between IncRNA and mRNA.

A) Box-plots for log_{10} transformed FPKM values; B) IncRNA/mRNA percentages for low expression level (0-1), median expression level (1-15) and high expression levels genes (15-100 and >100).
Figure 3

Figure 3 FPKM values distribution of lncRNA loci in 18 oil palm transcriptomes.

lncRNA percentages for low expression level (0-1), median expression level (1-15) and high expression levels genes (15-100 and >100).
Figure 4

Figure 4 Heatmap for lncRNAs in 18 oil palm transcriptomes.

FPKM values for each lncRNA was used for K-means clustering and displayed according to the appearance number of high expression level (FPKM ≥15) in 18 transcriptome. LncRNA loci with arrows were highly expressed in both the ssRNA-seq result in this study and in the 18 transcriptomes.
Figure 5 RT-PCR validation of 11 oil palm IncRNAs in six developing stages of mesocarp, leaf, root, flower and kernel of oil palm.
Figure 6

Figure 6 RT-qPCR validation of four oil palm lncRNAs and their target genes in six developing stages of mesocarp, leaf, root, flower and kernel of oil palm.

Pairs of oil palm lncRNA and their target genes included A) MSTRG.9572/LOC105041276; B) MSTRG.13617/ LOC105044117 and MSTRG.13617/ LOC105044074; C) MSTRG.48560/ LOC105051990; and D) MSTRG.24786/ LOC109505170.
Table 1 Genomic distribution of four IncRNA types across the African oil palm genome.

Genomic distribution of four IncRNA types across the African oil palm genome.
Table 1 Genomic distribution of four lncRNA types across the African oil palm genome.

Chromosome	LincRNA	NAT-lncRNA	Intronic-lncRNA	Sense-lncRNA	Total
Chr1	61	59	4	5	129
Chr2	44	47	2	3	96
Chr3	46	46	1	2	95
Chr4	38	41	1	4	84
Chr5	26	45	1	3	75
Chr6	24	31	1	2	58
Chr7	21	23	0	4	48
Chr8	22	30	1	1	54
Chr9	13	33	0	2	48
Chr10	11	19	0	1	31
Chr11	19	15	0	1	35
Chr12	13	28	1	2	44
Chr13	19	13	0	0	32
Chr14	24	13	0	1	38
Chr15	11	16	2	1	30
Chr16	12	20	1	0	33
others	299	102	17	15	433
Total	703	581	32	47	1363
Table 2 (on next page)

Table 2 SNP markers located within IncRNA regions and significantly associated with the composition of fatty acid in oil palm mesocarp

SNP markers located within IncRNA regions and significantly associated with the composition of fatty acid in oil palm mesocarp
Table 2 SNP markers located within lncRNA regions and significantly associated with the composition of fatty acid in oil palm mesocarp

lncRNA	SNP position	Related traits	P-Value	Nucleotide types	Ave_Het			
MSTRG.2123	Chr1	26348240 Intron	palmic acid content (C16:0)	0.000794231	K G T	0.2301		
MSTRG.2168	Chr1	27359487 Intron	Stearic Acid content (C18:0)	0.000671054	M C A	0.318		
MSTRG.2168	Chr1	27366210 Exon	Stearic Acid content (C18:0)	0.000667117	R G A	0.2188		
MSTRG.4816	Chr2	10805479 Exon	total oil content	0.000916663	A G R	0.4067		
MSTRG.7396	Chr1	56802941 Intron	palmic acid content (C16:0)	0.00038596	G R A	0.1968		
MSTRG.7396	Chr1	56803122 Intron	palmic acid content (C16:0)	0.000874185	T Y C	0.208		
MSTRG.7396	Chr2	56767445 Exon	total oil content	0.000732102	G R A	0.1425		
MSTRG.7397	Chr2	56767445 Intron	total oil content	0.000732102	A R G	0.2518		
MSTRG.10380	Chr3	37185131 Intron	linoleic acid content (C18:2)	1.49E-09	A G R	0.375		
MSTRG.11378	Chr4	4103682 Intron	total oil content	0.000223078	T W A	0.1605		
MSTRG.11378	Chr4	4103761 Intron	total oil content	0.000413467	T Y C	0.1565		
MSTRG.13525	Chr4	50679685 Intron	total oil content	0.000982483	G A R	0.4258		
MSTRG.15295	Chr5	25374494 Exon	linoleic acid content (C18:2)	0.000862608	A R G	0.4562		
MSTRG.15330	Chr5	27273554 Exon	total oil content	0.000838241	C T Y	0.3712		
MSTRG.16341	Chr5	46800615 Intron	palmic acid content (C16:0)	0.000916155	Y C T	0.495		
MSTRG.16341	Chr5	46773860 Intron	linoleic acid content (C18:2)	0.000914323	G A R	0.375		
MSTRG.16342	Chr5	46773860 Intron	linoleic acid content (C18:2)	0.000914323	G A R	0.3871		
MSTRG.16344	Chr5	46800615 Intron	palmic acid content (C16:0)	0.000916155	Y C T	0.495		
MSTRG.16345	Chr5	46800615 Intron	palmic acid content (C16:0)	0.000916155	G R	0.3432		
MSTRG.17117	Chr6	5087561 Intron	total oil content	0.000433608	T Y C	0.4061		
MSTRG.17118	Chr6	5087561 Intron	total oil content	0.000433608	G R A	0.4283		
MSTRG.17644	Chr6	21539684 Intron	total oil content	0.000343467	C T Y	0.4793		
MSTRG.17644	Chr6	21539697 Intron	total oil content	0.000776114	T C Y	0.4851		
MSTRG.28271	Chr11	28838549 Intron	total oil content	0.000973214	A G R	0.4968		
MSTRG.28993	Chr12	15680141 Intron	linoleic acid content (C18:2)	0.000661354	Y T C	0.475		
MSTRG.28993	Chr12	15680161 Intron	linoleic acid content (C18:2)	0.000820421	R G A	0.4729		
MSTRG.29406	Chr12	21510854 Intron	Stearic Acid content (C18:0)	0.000778935	G R A	0.1147		
MSTRG.30615	Chr13	13106882	Intron	total oil content	0.000815972	G	R	0.1888
-------------	-------	----------	--------	------------------	----------------	---	---	-------

2