A Generalized Grover/Zeta Correspondence

Takashi KOMATSU
Math. Research Institute Calc for Industry,
Minami, Hiroshima, 732-0816, JAPAN
e-mail: ta.komatsu@sunmath-calc.co.jp

Norio KONNO
Department of Applied Mathematics, Faculty of Engineering,
Yokohama National University
Hodogaya, Yokohama 240-8501, JAPAN
e-mail: konno-norio-bt@ynu.ac.jp

Iwao SATO
Oyama National College of Technology,
Oyama, Tochigi 323-0806, JAPAN
e-mail: isato@oyama-ct.ac.jp

Shunya TAMURA
Graduate School of Science and Engineering,
Yokohama National University,
Hodogaya, Yokohama, 240-8501, JAPAN
e-mail: tamura-shunya-kj@ynu.jp

January 12, 2022
2000 Mathematical Subject Classification: 60F05, 05C50, 15A15, 05C25.
Key words: zeta function, quantum walk, Grover walk, regular graph, integer lattice

The contact author for correspondence:
Iwao Sato
Oyama National College of Technology, Oyama, Tochigi 323-0806, JAPAN
E-mail: isato@oyama-ct.ac.jp
Abstract

We introduce a generalized Grover matrix of a graph and present an explicit formula for its characteristic polynomial. As a corollary, we give the spectra for the generalized Grover matrix of a regular graph. Next, we define a zeta function and a generalized zeta function of a graph G with respect to its generalized Grover matrix as an analog of the Ihara zeta function and present explicit formulas for their zeta functions for a vertex-transitive graph. As applications, we express the limit on the generalized zeta functions of a family of finite vertex-transitive regular graphs by an integral. Furthermore, we give the limit on the generalized zeta functions of a family of finite tori as an integral expression.

1 Introduction

Starting from p-adic Selberg zeta functions, Ihara [5] introduced the Ihara zeta functions of graphs. Bass [2] generalized Ihara’s result on the Ihara zeta function of a regular graph to an irregular graph and showed that its reciprocal is a polynomial.

The Ihara zeta function of a finite graph was extended to an infinite graph. Clair [4] computed the Ihara zeta function for the infinite grid by using elliptic integrals and theta functions. Chinta, Jorgenson and Karlsson [3] gave a generalized version of the determinant formula for the Ihara zeta function associated to finite or infinite regular graphs.

There are exciting developments between quantum walk on a graph [1, 6, 7, 11, 16, 19] and the Ihara zeta function of a graph. Ren et al. [17] gave a relationship between the discrete-time quantum walk and the Ihara zeta function of a graph. Konno and Sato [13] obtained a formula of the characteristic polynomial of the Grover matrix by using the determinant expression for the second weighted zeta function of a graph. Komatsu, Konno and Sato [8] treated the generalized Ihara zeta function of \mathbb{Z} as a limit of the Ihara zeta function of the cycle graph C_n with n vertices.

In Grover/Zeta Correspondence [9], Komatsu, Konno and Sato defined a zeta function and a generalized zeta function of a graph G with respect to its Grover matrix, and presented the limits on the generalized zeta functions and the generalized Ihara zeta functions of a family of finite regular graphs as an integral expression by using the Konno-Sato theorem [13]. This result contained the result on the generalized Ihara zeta function in Chinta et al. [3]. Furthermore, they obtained the limit on the generalized Ihara zeta functions of a family of finite torus as an integral expression, and this result contained the result on the Ihara zeta function of the two-dimensional integer lattice \mathbb{Z}^2 in Clair [4].

In Walk/Zeta Correspondence [10], Komatsu, Konno and Sato defined a walk-type zeta function without use of the determinant expressions of the zeta function of a graph G, and presented various properties of walk-type zeta functions of random walk (RW), correlated random walk (CRW) quantum walk (QW) and open quantum walk (OQW) on G. Also, their limit formulas by using integral expressions were presented. Konno and Tamura [14] computed the walk-type zeta functions for the three- and four-state quantum walk, correlated random walk, the multi-state random walk on the one-dimensional torus, and the four-state quantum walk, correlated random walk on the two-dimensional torus. Furthermore, they gave an extension of the Konno-Sato theorem.

In this paper, we define a generalized Grover matrix of a graph and treat a walk-type zeta function of a vertex-transitive graph with respect to its generalized Grover matrix.

In Section 2, we review the Ihara zeta function of a finite graph and the generalized Ihara zeta function of a finite or infinite vertex-transitive graph. In Section 3, we state about the time evolution matrix, i.e., the Grover matrix of the Grover walk on a graph. In Section 4, we introduce a generalized Grover matrix of a graph and present an explicit formula for its characteristic polynomial. As a corollary, we give the spectra for the generalized Grover matrix of a regular graph. In Section 5, we define a zeta function and a generalized
zeta function of a graph G with respect to its generalized Grover matrix as an analog of the Ihara zeta function and present explicit formulas for their zeta functions of a vertex-transitive graph. In Section 6, we express the limit on the generalized zeta functions of a family of finite vertex-transitive regular graphs by an integral. In Section 7, we give the limit on the generalized functions of a family of finite tori as an integral expression.

2 The Ihara zeta function of a graph

All graphs in this paper are assumed to be simple. Let $G = (V(G), E(G))$ be a connected graph (without multiple edges and loops) with the set $V(G)$ of vertices and the set $E(G)$ of unoriented edges uv joining two vertices u and v. Furthermore, let $n = |V(G)|$ and $m = |E(G)|$ be the number of vertices and edges of G, respectively. For $uv \in E(G)$, an arc (u, v) is the oriented edge (or the arc) from u to v. Let D_G the symmetric digraph corresponding to G. Set $D(G) = \{(u, v), (v, u) \mid uv \in E(G)\}$. For $e = (u, v) \in D(G)$, set $u = o(e)$ and $v = t(e)$. Furthermore, let $e^{-1} = (v, u)$ be the inverse of $e = (u, v)$. For $v \in V(G)$, the degree $\deg_G v = \deg v = d_v$ of v is the number of vertices adjacent to v in G.

A path P of length n in G is a sequence $P = (e_1, \ldots, e_n)$ of arcs such that $e_i \in D(G)$, $t(e_i) = o(e_{i+1})(1 \leq i \leq n - 1)$. If $e_i = (v_{i-1}, v_i)$ for $i = 1, \ldots, n$, then we write $P = (v_0, v_1, \ldots, v_n)$. Set $|P| = n$, $o(P) = o(e_1)$ and $t(P) = t(e_n)$. Also, P is called an $(o(P), t(P))$-path. We say that a path $P = (e_1, \ldots, e_n)$ has a backtracking if $e_{i+1}^{-1} = e_i$ for some $i(1 \leq i \leq n - 1)$. A (v, w)-path is called a v-cycle (or v-closed path) if $v = w$. The inverse cycle of a cycle $C = (e_1, \ldots, e_n)$ is the cycle $C^{-1} = (e_n^{-1}, \ldots, e_1^{-1})$.

We introduce an equivalence relation between cycles. Two cycles $C_1 = (e_1, \ldots, e_m)$ and $C_2 = (f_1, \ldots, f_m)$ are called equivalent if $f_j = e_{j+k}$ for all j. The inverse cycle of C is in general not equivalent to C. Let $[C]$ be the equivalence class which contains a cycle C. Let B^r be the cycle obtained by going r times around a cycle B. Such a cycle is called a multiple of B. A cycle C is reduced if both C and C^2 have no backtracking. Furthermore, a cycle C is prime if it is not a multiple of a strictly smaller cycle. Note that each equivalence class of prime, reduced cycles of a graph G corresponds to a unique conjugacy class of the fundamental group $\pi_1(G, v)$ of G at a vertex v of G.

The Ihara zeta function of a graph G is a function of a complex variable u with $|u|$ sufficiently small, defined by

$$Z(G, u) = Z_G(u) = \prod_{[C]} (1 - u^{|C|})^{-1},$$

where $|C|$ runs over all equivalence classes of prime, reduced cycles of G.

Let G be a connected graph with n vertices v_1, \ldots, v_n. The adjacency matrix $A = A(G) = (a_{ij})$ is the square matrix such that $a_{ij} = 1$ if v_i and v_j are adjacent, and $a_{ij} = 0$ otherwise. If $\deg_G v = k$ (constant) for each $v \in V(G)$, then G is called k-regular.

Theorem 1 (Ihara; Bass) Let G be a connected graph. Then the reciprocal of the Ihara zeta function of G is given by

$$Z(G, u)^{-1} = (1 - u^2)^{-r-1} \det(I - uA(G) + u^2(D - I)),$$

where r is the Betti number of G, and $D = (d_{ij})$ is the diagonal matrix with $d_{ii} = \deg v_i$ and $d_{ij} = 0, i \neq j$. $(V(G) = \{v_1, \ldots, v_n\})$.

Let $G = (V(G), E(G))$ be a connected graph and $x_0 \in V(G)$ a fixed vertex. Then the generalized Ihara zeta function $\zeta_G(u)$ of G is defined by

$$\zeta_G(u) = \exp \left(\sum_{m=1}^{\infty} \frac{N_m^0}{m} u^m \right),$$

where N^0_m is the number of closed paths $P = (e_1, \ldots, e_m)$ of length m in G at x_0.
where \(N^0_m \) is the number of reduced \(x_0 \)-cycles of length \(m \) in \(G \). A graph \(G \) is called \textit{vertex-transitive} if there exists an automorphism \(\phi \) of the automorphism group \(\text{Aut}(G) \) of \(G \) such that \(\phi(u) = v \) for each \(u, v \in V(G) \). Note that, for a finite vertex-transitive graph, the classical Ihara zeta function is just the above Ihara zeta function raised to the power equaling the number of vertices:

\[
\zeta_G(u) = Z(G, u)^{1/n}.
\]

Furthermore, the \textit{Laplacian} of \(G \) is given by

\[
\Delta = \Delta(G) = D - A(G).
\]

A formula for the generalized Ihara zeta function of a vertex-transitive graph is given as follows:

\textbf{Theorem 2 (Chinta, Jorgenson and Karlsson)} Let \(G \) be a vertex-transitive \((q + 1)\)-regular graph with spectral measure \(\mu_\Delta \) for the Laplacian \(\Delta \). Then

\[
\zeta_G(u)^{-1} = (1 - u^2)^{(q-1)/2} \exp \left(\int \log(1 - ((q + 1 - \lambda)u + qu^2))d\mu_\Delta(\lambda) \right).
\]

Note, if \(G \) is a vertex-transitive graph with \(n \) vertices, then

\section{The Grover matrix of a graph}

We define the Grover matrix which is the time evolution matrix of the Grover walk on a graph.

Let \(G \) be a connected graph with \(n \) vertices and \(m \) edges. Then the \textit{Grover matrix} \(U = U(G) = (U_{ef})_{e,f \in D(G)} \) of \(G \) is defined by

\[
U_{ef} = \begin{cases}
2/d_{t(f)} = 2/d_{o(e)} & \text{if } t(f) = o(e) \text{ and } f \neq e^{-1}, \\
2/d_{t(f)} - 1 & \text{if } f = e^{-1}, \\
0 & \text{otherwise}.
\end{cases}
\]

The discrete-time quantum walk with the matrix \(U \) as a time evolution matrix is called the \textit{Grover walk} on \(G \). Furthermore, we introduce the \textit{positive support} \(F^+ = (F^+_{ij}) \) of a real square matrix \(F = (F_{ij}) \) as follows:

\[
F^+_{ij} = \begin{cases}
1 & \text{if } F_{ij} > 0, \\
0 & \text{otherwise}.
\end{cases}
\]

In Konno and Sato \cite{13}, they presented the following result. The \(n \times n \) matrix \(P = P(G) = (P_{uv})_{u,v \in V(G)} \) is given as follows:

\[
P_{uv} = \begin{cases}
1/(\deg_G u) & \text{if } (u,v) \in D(G), \\
0 & \text{otherwise}.
\end{cases}
\]

Note that the matrix \(P(G) \) is the transition probability matrix of the simple random walk on \(G \).

\textbf{Theorem 3 (Konno and Sato)} Let \(G \) be a connected graph with \(n \) vertices \(v_1, \ldots, v_n \) and \(m \) edges. Then

\[
det(I_{2m} - uU) = (1 - u^2)^{m-n} \det((1 + u^2)I_n - 2uP(G))
\]

\[
= \frac{(1 - u^2)^{m-n}}{\prod_{i=1}^{n} \deg v_i} \det((1 + u^2)D - 2uA(G)).
\]
This theorem is called the Konno-Sato theorem (see \cite{12, 14}, for example).

Konno and Tamura \cite{14} extended the Grover matrix. Let G be a connected graph with m edges, and $a \in [0, 1]$. Then the extension $U_a = U_a(G) = (U_{ef})_{e,f \in D(G)}$ of the Grover matrix of G is defined as follows:

$$U_{ef}^{(a)} = \begin{cases} (2/d_{e}(f) - 1)a + 1 & \text{if } t(f) = o(e) \text{ and } f \neq e^{-1}, \\ (2/d_{e}(f) - 1)a & \text{if } f = e^{-1}, \\ 0 & \text{otherwise}. \end{cases}$$

If $a = 1$, then $U_1 = U$ is the Grover matrix of G. In the case of $a = 0$, $U_0 = U^+$ is the positive support of the Grover matrix of G. Thus, the matrix U_a is an extension of the Grover matrix U of G.

Konno and Tamura \cite{14} presented the following result for the extension U_a of the Grover matrix of a regular graph.

Theorem 4 (Konno and Tamura) Let G be a connected $(q + 1)$-regular graph with n vertices and m edges. Then

$$\det(I_{2m} - uU_a) = (1 - u^2)^{m-n} \det((1 + (q + (1 - q)a)u^2)I_n - (1 + (1 - q)u)P(G)).$$

4 A generalized Grover matrix of a graph

We introduce a generalized Grover matrix of a graph.

Let G be a connected graph with m edges, $a \in [0, 1]$ and $b \in \mathbb{R}$. Then a generalized Grover matrix $\hat{U} = \hat{U}(G) = (\hat{U}_{ef})_{e,f \in D(G)}$ of G is defined as follows:

$$\hat{U}_{ef} = \begin{cases} (2/d_{e}(f) - 1)a + b & \text{if } t(f) = o(e) \text{ and } f \neq e^{-1}, \\ (2/d_{e}(f) - 1)a & \text{if } f = e^{-1}, \\ 0 & \text{otherwise}. \end{cases}$$

If $a = b = 1$, then $\hat{U} = U$ is the Grover matrix of G. In the case of $a = 0$ and $b = 1$, $\hat{U} = U^+$ is the positive support of the Grover matrix of G. Thus, the generalized Grover matrix \hat{U} is a generalization of the Grover matrix U and the positive support of the Grover matrix U^+ of G.

We present a generalization of the Konno-Sato theorem as follows.

Theorem 5 (A generalization of the Konno-Sato theorem) Let G be a connected graph with n vertices v_1, \ldots, v_n and m edges, $a \in [0, 1]$ and $b \in \mathbb{R}$. Then

$$\det(I_{2m} - u\hat{U}) = \frac{(1 - b^2u^2)^{m-n}}{\prod_{i=1}^{n} \deg v_i} \det(D((1 + b(2a - b)u^2)I_n + b(b - a)u^2D) - uA_d),$$

where $A_d = (A_{uv}^{(d)})_{u,v \in V(G)}$ is given as follows:

$$A_{uv}^{(d)} = \begin{cases} (2 - \deg u)a + b \deg u & \text{if } (u, v) \in D(G), \\ 0 & \text{otherwise}. \end{cases}$$

Proof. At first, let

$$w(u, v) = \left(\frac{2}{\deg u} - 1\right)a + b \text{ if } (u, v) \in D(G),$$

and two $n \times n$ matrices $W = (w_{uv})_{u,v \in V(G)}$ and $D_w = (d_{uv}^{(w)})_{u,v \in V(G)}$ be defined as follows:

$$w_{uv} = \begin{cases} w(u, v) & \text{if } (u, v) \in D(G), \\ 0 & \text{otherwise,} \end{cases} \quad d_{uv}^{(w)} = \begin{cases} \sum_{o(e)=u} w(e) & \text{if } u = v, \\ 0 & \text{otherwise.} \end{cases}$$

$$\frac{1}{\deg u} = \frac{1}{\deg v}$$
Furthermore, we define two $2m \times 2m$ matrices $B_w = B_w(G) = (B_{ef})_{e,f \in D(G)}$ and $J_0 = (J_{ef})_{e,f \in D(G)}$ as follows:

$$B_{ef} = \begin{cases} w(f) & \text{if } t(e) = o(f), \\ 0 & \text{otherwise}, \end{cases} \quad J_{ef} = \begin{cases} 1 & \text{if } f = e^{-1}, \\ 0 & \text{otherwise}. \end{cases}$$

Then we have

$$\tilde{U} = B_w - bJ_0.$$

Next, we introduce $2m \times n$ matrices $K = (K_{ev})_{e \in D(G); v \in V(G)}$ and $L = (L_{ev})_{e \in D(G); v \in V(G)}$ as follows:

$$K_{ev} = \begin{cases} 1 & \text{if } t(e) = v, \\ 0 & \text{otherwise}, \end{cases} \quad L_{ev} = \begin{cases} w(e) & \text{if } o(e) = v, \\ 0 & \text{otherwise}. \end{cases}$$

Furthermore, a $2m \times n$ matrix $M = (M_{ev})_{e \in D(G); v \in V(G)}$ be given as follows:

$$M_{ev} = \begin{cases} 1 & \text{if } o(e) = v, \\ 0 & \text{otherwise}. \end{cases}$$

Then we have

$$M = J_0 K, \quad K = J_0 M.$$

Furthermore, we have

$$K^t L = B_w, \quad L^t K = W, \quad L^t M = D_w, \quad M^t M = L^t L = D.$$

Now, we have

$$\det(I_{2m} - u \tilde{U}) = \det(I_{2m} - u \tilde{U})$$

$$= \det(I_{2m} - u (B_w - bJ_0))$$

$$= \det(I_{2m} - u (K^t L - bJ_0))$$

$$= \det(I_{2m} + buJ_0 - uK^t L)$$

$$= \det(I_{2m} - uK^t L(I_{2m} + buJ_0)^{-1}) \det(I_{2m} + buJ_0).$$

If A and B are an $m \times n$ and $n \times m$ matrices, respectively, then we have

$$\det(I_m - AB) = \det(I_n - BA).$$

Thus, we have

$$\det(I_{2m} - u \tilde{U}) = \det(I_n - u L(I_{2m} + buJ_0)^{-1}K) \det(I_{2m} + buJ_0).$$

But, we have

$$\det(I_{2m} + buJ_0) = \det \begin{bmatrix} I_m & buI_m \\ buI_m & I_m \end{bmatrix} \cdot \det \begin{bmatrix} I_m & -buI_m \\ 0_m & I_m \end{bmatrix}$$

$$= \det \begin{bmatrix} I_m & 0_m \\ buI_m & I_m - b^2u^2I_m \end{bmatrix}$$

$$= (1 - b^2u^2)^m.$$
Furthermore,

\[
(I_{2m} + buJ_0)^{-1} = \begin{bmatrix} I_m & buI_m \\ buI_m & I_m \end{bmatrix}^{-1} \\
\approx \begin{bmatrix} 1 & bu & \ldots & 0 \\ bu & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots \\ 0 & \cdots & 1 & bu \end{bmatrix}^{-1} \\
= \frac{1}{1 - b^2u^2} \begin{bmatrix} 1 & -bu & \ldots & 0 \\ -bu & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & -bu \\ 0 & \cdots & -bu & 1 \end{bmatrix} \\
= \frac{1}{1 - b^2u^2}(I_{2m} - buJ_0).
\]

Therefore, it follows that

\[
\det(I_{2m} - u\tilde{U}) = (1 - b^2u^2)^m \det\left(I_n - \frac{u}{1 - b^2u^2} tL(I_{2m} - buJ_0)K \right) \\
= (1 - b^2u^2)^{m-n} \det((1 - b^2u^2)I_n - u^tL^tK + bu^tL^tJ_0K) \\
= (1 - b^2u^2)^{m-n} \det((1 - b^2u^2)I_n - uW + bu^tLM) \\
= (1 - b^2u^2)^{m-n} \det((1 - b^2u^2)I_n - uW + bu^tD_w) \\
= (1 - b^2u^2)^{m-n} \det(I_n - uW + bu^t(D_w - bI_n)).
\]

The entries of two matrices \(W\) and \(D_w\) are given as follows:

\[
(W)_{uv} = \left(\frac{2}{\deg u} - 1\right) a + b = \frac{1}{\deg u} ((2 - \deg u)a + b \deg u) \text{ if } (u,v) \in D(G)
\]

and

\[
(D)_{uv} = \left\{\left(\frac{2}{\deg u} - 1\right) a + b\right\} \deg u = (b - a) \deg u + 2a.
\]

Thus, we have \(W = D^{-1}A_d\) and \(D_w = (b - a)D + 2aI_n\).

Therefore, it follows that

\[
\det(I_{2m} - u\tilde{U}) = (1 - b^2u^2)^{m-n} \det(I_n - uD^{-1}A_d + bu^2((b - a)D + (2a - b)I_n)) \\
= (1 - b^2u^2)^{m-n} \det(D^{-1}) \det(D - uA_d + bu^2((b - a)D^2 + (2a - b)D)) \\
= \prod_{i=1}^{m-n} \det(D((1 + b(2a - b))u^2)I_n + b(b - a)u^2D) - uA_d).
\]

\[\square\]

For a \((q + 1)\)-regular graph, we obtain the following result.

Corollary 1 Let \(G\) be a connected \((q + 1)\)-regular graph with \(n\) vertices \(v_1, \ldots, v_n\) and \(m\) edges, \(a \in [0, 1]\) and \(b \in \mathbb{R}\). Then

\[
\det(I_{2m} - u\tilde{U}) = (1 - b^2u^2)^{m-n} \det\{(1 + b((1 - q)a + bq)u^2)I_n - u((1 - q)a + b(q + 1))P(G))\).
\]

8
Thus, Corollary 3

Let a edges, $\Delta = \{(1 - q)a + b(q + 1)\}$.

By Corollary 1, we obtain the following result.

$$
\det(I_{2m} - u\tilde{U})
= (1 - b^2u^2)^{m-n} \det((q + 1)(1 + b(2a - b)u^2) + (q + 1)(b - a)bu^2)I_n - u((1 - q)a + b(q + 1))A)
= (1 - b^2u^2)^{m-n} \det((1 + b((1 - q)a + bq)u^2)I_n - u((1 - q)a + b(q + 1)))P(G)).
$$

□

If G is a $(q + 1)$-regular graph with n vertices, then we have

$$
P = \frac{1}{q + 1}A = \frac{1}{q + 1}(D - \Delta) = I_n - \frac{1}{q + 1} \Delta.
$$

By Corollary 1, we obtain the following result.

Corollary 2 Let G be a connected $(q + 1)$-regular graph with n vertices v_1, \ldots, v_n and m edges, $a \in [0, 1]$ and $b \in \mathbb{R}$. Then

$$
\det(I_{2m} - u\tilde{U})
= (1 - b^2u^2)^{m-n} \det((1 - u((1 - q)a + b(q + 1))) + b((1 - q)a + bq)u^2)I_n
+ u\left(b - \frac{q - 1}{q + 1}a\right)\Delta).

\textbf{Proof.} By Corollary 1, we have

$$
\det(I_{2m} - u\tilde{U})
= (1 - b^2u^2)^{m-n} \det((1 + b((1 - q)a + bq)u^2)I_n
- u((1 - q)a + b(q + 1))(I_n - \frac{1}{q + 1} \Delta))
= (1 - b^2u^2)^{m-n} \det((1 - u((1 - q)a + b(q + 1))) + b((1 - q)a + bq)u^2)I_n
+ u\left(b - \frac{q - 1}{q + 1}a\right)\Delta).

□

Substituting $u = 1/\lambda$ to Corollaries 1 and 2, we obtain the following result.

Corollary 3 Let G be a connected $(q + 1)$-regular graph with n vertices v_1, \ldots, v_n and m edges, $a \in [0, 1]$ and $b \in \mathbb{R}$. Then

$$
\det(\lambda I_{2m} - \tilde{U})
= (\lambda - b^2)^{m-n} \det((\lambda^2 + b((1 - q)a + bq))I_n - \lambda((1 - q)a + b(q + 1)))P(G))
= (\lambda - b^2)^{m-n} \det((\lambda^2 - \lambda((1 - q)a + b(q + 1))) + b((1 - q)a + bq))I_n
+ \lambda\left(b - \frac{q - 1}{q + 1}a\right)\Delta).
$$
By Corollary 3, the following result holds. Let $\text{Spec}(F)$ be the set of eigenvalues of a square matrix F.

Corollary 4 Let G be a connected $(q + 1)$-regular graph with n vertices v_1, \ldots, v_n and m edges, $a \in [0, 1]$ and $b \in \mathbb{R}$. Set $\eta = (1 - q)a + b(q + 1)$ and $\sigma = b((1 - q)a + bq)$. Then the spectra of the generalized Grover matrix \tilde{U} are given as follows:

1. $2n$ eigenvalues:
 \[
 \lambda = \frac{\mu \eta \pm \sqrt{\mu^2 \eta^2 - 4\sigma}}{2}, \quad \mu \in \text{Spec}(P);
 \]

2. $2(m - n)$ eigenvalues: $\pm b$ with multiplicities $m - n$.

Proof. By Corollary 3, we have
\[
\det(\lambda I_{2m} - \tilde{U}) = (\lambda - b^2)^{m-n} \prod_{\mu \in \text{Spec}(P)} (\lambda^2 + \sigma - \mu \eta \lambda).
\]
Solving $\lambda^2 - \mu \eta \lambda + \sigma = 0$, we obtain
\[
\lambda = \frac{\mu \eta \pm \sqrt{\mu^2 \eta^2 - 4\sigma}}{2}.
\]
The result follows. \square

5 A generalized Grover/Zeta Correspondence

Now, we propose a new zeta function of a graph. Let G be a connected graph with m edges, $a \in [0, 1]$ and $b \in \mathbb{R}$. Then we define the (a, b)-zeta function $Z_{a,b}(G, u)$ of G is defined as follows:

\[
Z_{a,b}(G, u)^{-1} = Z_{a,b}(u)^{-1} = \det(I_{2m} - u\tilde{U}).
\]

By Corollaries 1 and 2, we obtain the following result.

Proposition 1 Let G be a connected $(q + 1)$-regular graph with n vertices and m edges, $a \in [0, 1]$ and $b \in \mathbb{R}$. Set $\eta = (1 - q)a + b(q + 1)$ and $\sigma = b((1 - q)a + bq)$. Then
\[
Z_{a,b}(G, u)^{-1} = (1 - b^2 u^2)^{m-n} \det\left((1 + \sigma u^2)I_n - \eta u P(G)\right)
\]
\[
= (1 - b^2 u^2)^{m-n} \det\left((1 - \eta u + \sigma u^2)I_n + \frac{\eta u}{q+1} \Delta\right).
\]

By Theorem 3, we obtain the exponential expression for $Z_{a,b}(u)$. We give a weight functions $w : D(G) \times D(G) \rightarrow \mathbb{C}$ as follows:

\[
w(f, e) = \begin{cases}
\frac{2}{\deg(t(f)) - 1}a + b & \text{if } t(f) = o(e) \text{ and } f \neq e^{-1}, \\
\frac{2}{\deg(t(f)) - 1}a & \text{if } f = e^{-1}, \\
0 & \text{otherwise}.
\end{cases}
\]

For a cycle $C = (e_1, e_2, \ldots, e_r)$, let
\[
w(C) = w(e_1, e_2) \cdots w(e_{r-1}, e_r)w(e_r, e_1).
\]

Theorem 6 Let G be a connected graph with m edges, $a \in [0, 1]$ and $b \in \mathbb{R}$. Then
\[
Z_{a,b}(u) = \exp\left(\sum_{r=1}^{\infty} \frac{N_r}{r} u^r\right),
\]
where N_r is defined by
\[
N_r = \sum \{w(C) \mid C : a \text{ cycle of length } r \text{ in } G\}.
\]
Proof. By the definition of $Z_{a,b}(u)$, we have

$$\log Z_{a,b}(u) = \log \{ \det(I_{2m} - u\tilde{U})^{-1} \} = - \text{Tr}[\log(I_{2m} - u\tilde{U})] = \sum_{r=1}^{\infty} \frac{1}{r} \text{Tr}[\tilde{U}^r]u^r.$$

Since

$$w(f, e) = (\tilde{U})_{ef}, \ e, f \in D(G),$$

we have

$$\text{Tr}[\tilde{U}^r] = \sum_{\{C \mid C: a \text{ cycle of length } r \text{ in } G\}} N_r.$$

Hence,

$$\log Z_{a,b}(u) = \sum_{r=1}^{\infty} \frac{N_r}{r} u^r.$$

Thus,

$$Z_{a,b}(u) = \exp \left(\sum_{r=1}^{\infty} \frac{N_r}{r} u^r \right).$$

\[\square\]

Next, we define a generalized zeta function with respect to the generalized Grover matrix of a graph. Let $G = (V(G), E(G))$ be a connected graph, $x_0 \in V(G)$ a fixed vertex, $a \in [0, 1]$ and $b \in \mathbb{R}$. Then the generalized (a, b)-zeta function $\zeta_{a,b}(G, u)$ of G is defined by

$$\zeta_{a,b}(G, u) = \exp \left(\sum_{r=1}^{\infty} \frac{N^0_r}{r} u^r \right),$$

where

$$N^0_r = \sum_{\{C \mid C: an \ x_0 - \text{cycle of length } r \text{ in } G\}}.$$

Note, if G is a vertex-transitive graph with n vertices, then

$$\zeta_{a,b}(u) = Z_{a,b}(G, u)^{1/n}. \quad (1)$$

If $a = b = 1$, then $\zeta_{1,1}(G, u) = \zeta(G, u)$ is the generalized zeta function of G (see [9]). In the case of $a = 0$ and $b = 1$, $\zeta_{0,1}(G, u) = \zeta(G, u)$ is the generalized Ihara zeta function of G. Thus, the generalized (a, b)-zeta function $\zeta_{a,b}(G, u)$ is a generalization of the generalized zeta function and the generalized Ihara zeta function of G.

Now, we present an explicit formula for the generalized (a, b)-zeta function for a vertex-transitive graph.

Let G be a vertex-transitive $(q + 1)$-regular graph with n vertices and m edges. Then, since $m = (q + 1)n/2$, we have

$$\frac{m - n}{n} = \frac{q - 1}{2}.$$

By Proposition 1, we obtain the following result.

Theorem 7 (Generalized Grover/Zeta Correspondence) Let G be a connected vertex-transitive $(q + 1)$-regular graph with n vertices and m edges, $a \in [0, 1]$ and $b \in \mathbb{R}$. Set $\eta = (1 - q)a + b(q + 1)$ and $\sigma = b((1 - q)a + bq)$. Then

$$\zeta_{a,b}(G, u)^{-1} = (1 - b^2u^2)^{(q - 1)/2} \exp \left[\frac{1}{n \sum_{\lambda \in \text{Spec}(\Delta)} \log \{(1 + \sigma u^2) - \eta u\lambda\}} \right], \quad (2)$$

$$\zeta_{a,b}(G, u)^{-1} = (1 - b^2u^2)^{(q - 1)/2} \exp \left[\frac{1}{n \sum_{\lambda \in \text{Spec}(\Delta)} \log \left\{ (1 - \eta u + \sigma u^2) + \frac{\eta u}{q + 1} \lambda \right\}} \right]. \quad (3)$$
Theorem 8

Let $\{G_n\}_{n=1}^{\infty}$ be a series of finite vertex-transitive $(q+1)$-regular graphs such that

$$\lim_{n \to \infty} |V(G_n)| = \infty.$$

Then we have

$$\frac{|E(G_n)| - |V(G_n)|}{|V(G_n)|} = \frac{(q-1)|V(G_n)|}{2|V(G_n)|} = \frac{q-1}{2}.$$

Set

$$\nu_n = |V(G_n)|, \ m_n = |E(G_n)|.$$

Then the following result holds.

Theorem 8 Let $\{G_n\}_{n=1}^{\infty}$ be a series of finite vertex-transitive $(q+1)$-regular graphs such that

$$\lim_{n \to \infty} |V(G_n)| = \infty.$$

Furthermore let $a \in [0, 1], \ b \in \mathbb{R}, \ \eta = (1-q)a + b(q+1)$ and $\sigma = b((1-q)a + bq)$. Then

1. $\lim_{n \to \infty} \zeta_{a,b}(G_n, u)^{-1} = (1 - u^2)^{(q-1)/2} \exp \left[\int \log \left((1 + \sigma u^2) - \eta u \right) d\mu_P(\lambda) \right]$;

2. $\lim_{n \to \infty} \zeta_{a,b}(G_n, u)^{-1} = (1 - u^2)^{(q-1)/2} \exp \left[\int \log \left((1 - \eta u + \sigma u^2) + \frac{\eta u}{q+1} \right) d\mu_\Delta(\lambda) \right],$

where $d\mu_P(\lambda)$ and $d\mu_\Delta(\lambda)$ are the spectral measures for the transition operator P and the Laplacian Δ.

Proof. By Theorem 7, we have

$$\lim_{n \to \infty} \zeta_{a,b}(G_n, u)^{-1} = (1 - u^2)^{(q-1)/2} \exp \left[\int \log \left((1 + \sigma u^2) - \eta u \right) d\mu(\lambda) \right].$$

Similarly, the second formula follows. \square

If $a = b = 1$, then we obtain the Grover/Zeta Correspondence (see [9]).
Corollary 5 (Grover/Zeta Correspondence) Let \(\{G_n\}_{n=1}^{\infty} \) be a series of finite vertex-transitive \((q+1)\)-regular graphs such that

\[
\lim_{n \to \infty} |V(G_n)| = \infty.
\]

Then

1. \(\lim_{n \to \infty} \zeta_{G_n}(u)^{-1} = (1 - u^2)^{(q-1)/2} \exp \left[\int \log \left((1 + u^2) - 2u\lambda \right) d\mu_\Delta(\lambda) \right] \);

2. \(\lim_{n \to \infty} \zeta_{G_n}(u)^{-1} = (1 - u^2)^{(q-1)/2} \exp \left[\int \log \left((1 - 2u + u^2) + \frac{2u}{q+1}\lambda \right) d\mu_\Delta(\lambda) \right] \),

where \(d\mu_\Delta(\lambda) \) and \(d\mu_\Delta(\lambda) \) are the spectral measures for the transition operator \(P \) and the Laplacian \(\Delta \).

In the case of \(a = 0 \) and \(b = 1 \), we obtain the Grover(Positive Support)/Ihara Zeta Correspondence (see [9]).

Theorem 9 (Grover(Positive Support)/Ihara Zeta Correspondence) Let \(\{G_n\}_{n=1}^{\infty} \) be a series of finite vertex-transitive \((q+1)\)-regular graphs such that

\[
\lim_{n \to \infty} |V(G_n)| = \infty.
\]

Then

1. \(\lim_{n \to \infty} \zeta_{G_n}(u)^{-1} = (1 - u^2)^{(q-1)/2} \exp \left[\int \log \left((1 + qu^2) - (q + 1)u\lambda \right) d\mu_\Delta(\lambda) \right] \);

2. \(\lim_{n \to \infty} \zeta_{G_n}(u)^{-1} = (1 - u^2)^{(q-1)/2} \exp \left[\int \log \left((1 + qu^2) - (q + 1 - \lambda)u \right) d\mu_\Delta(\lambda) \right] \),

where \(d\mu_\Delta(\lambda) \) and \(d\mu_\Delta(\lambda) \) are the spectral measures for the transition operator \(P \) and the Laplacian \(\Delta \).

The second formula is Theorem 1.3 in Chinta et al. [3].

7 Torus cases

We consider the generalized \((a, b)\)-zeta function of the \(d\)-dimensional integer lattice \(\mathbb{Z}^d \) \((d \geq 2)\).

Let \(T_N^d \) \((d \geq 2)\) be the \(d\)-dimensional torus (graph) with \(N^d \) vertices. Its vertices are located in coordinates \(i_1, i_2, \ldots, i_d \) of a \(d\)-dimensional Euclidian space \(\mathbb{R}^d \), where \(i_j \in \{0, 1, \ldots, N - 1\} \) for any \(j \) from 0 to \(d - 1 \). A vertex \(v \) is adjacent to a vertex \(w \) if and only if they have \(d - 1 \) coordinates that are the same, and for the remaining coordinate \(k \), we have \(|i_k^v - i_k^w| = 1 \), where \(i_k^v \) and \(i_k^w \) are the \(k \)-th coordinate of \(v \) and \(w \), respectively. Then we have

\[
|E(T_N^d)| = dN^d,
\]

and \(T_N^d \) is a vertex-transitive \(2d\)-regular graph.

By Corollary 1, we obtain the following result.

\[
Z_{a,b}(T_N^d, u)^{-1} = \det(\mathbf{I}_{2dN^d} - u \mathbf{U}(T_N^d)) = (1 - u^2)^{(d-1)N^d} \det((1 + \sigma u^2)\mathbf{I}_{N^d} - \eta u \mathbf{P}^{(s)}(T_N^d)). \tag{4}
\]

Here, it is known that \(\text{Spec} (\mathbf{P}^{(s)}(T_N^d)) \) is given as follows (see [15]):

\[
\text{Spec} (\mathbf{P}^{(s)}(T_N^d)) = \left\{ \frac{1}{d} \sum_{j=1}^{d} \cos \left(\frac{2\pi k_j}{N} \right) \mid k_1, \ldots, k_d \in \{0, 1, \ldots, N - 1\} \right\}.
\]
Corollary 6 (Grover/Zeta Correspondence (Tₙ case)) Let $Tₙ^d$ be the d-dimensional torus with N^d vertices. Then
\[
\lim_{n \to \infty} \zeta(Tₙ^d, u)^{-1} = (1 - u^2)^{d-1} \exp \left[\frac{1}{N^d} \sum_{j=1, k_j=0}^d \sum_{j=1}^{N-1} \log \left\{ (1 + \sigma u^2) - \frac{\eta u}{d} \sum_{j=1}^{d} \cos \left(\frac{2\pi k_j}{N} \right) \right\} \right].
\]

Therefore, we obtain the following theorem.

Theorem 10 (Generalized Grover/Zeta Correspondence ($Tₙ^d$ case)) Let $Tₙ^d$ be the d-dimensional torus with N^d vertices. Furthermore, let $a \in [0, 1]$, $b \in \mathbb{R}$, $\eta = 2(1 - d) a + 2db$ and $\sigma = b(2a - b) + 2db - a$. Then
\[
\lim_{n \to \infty} \zeta(Tₙ^d, u)^{-1} = (1 - u^2)^{d-1} \exp \left[\int_{0}^{2\pi} \cdots \int_{0}^{2\pi} \log \left\{ (1 + \sigma u^2) - \frac{\eta u}{d} \sum_{j=1}^{d} \cos \theta_j \right\} \frac{d\theta_1}{2\pi} \cdots \frac{d\theta_d}{2\pi} \right],
\]
where $\int_{0}^{2\pi} \cdots \int_{0}^{2\pi}$ is the d-th multiple integral and $\frac{d\theta_1}{2\pi} \cdots \frac{d\theta_d}{2\pi}$ is the uniform measure on $[0, 2\pi)^d$.

If $a = b = 1$, then we obtain the Grover/Zeta Correspondence ($Tₙ^d$ case) (see [9]).

Corollary 7 (Grover(Positive Support)/Ihara Zeta Correspondence ($Tₙ^d$ case)) Let $Tₙ^d$ be the d-dimensional torus with N^d vertices. Then
\[
\lim_{n \to \infty} \zeta(Tₙ^d, u)^{-1} = (1 - u^2)^{d-1} \exp \left[\int_{0}^{2\pi} \cdots \int_{0}^{2\pi} \log \left\{ (1 + \sigma u^2) - 2u \sum_{j=1}^{d} \cos \theta_j \right\} \frac{d\theta_1}{2\pi} \cdots \frac{d\theta_d}{2\pi} \right],
\]
where $\int_{0}^{2\pi} \cdots \int_{0}^{2\pi}$ is the d-th multiple integral and $\frac{d\theta_1}{2\pi} \cdots \frac{d\theta_d}{2\pi}$ is the uniform measure on $[0, 2\pi)^d$.

In the case of $a = 0$ and $b = 1$, we obtain the Grover(Positive Support)/Ihara Zeta Correspondence ($Tₙ^d$ case) (see [9]).

Corollary 8 (Grover(Positive Support)/Ihara Zeta Correspondence ($Tₙ^d$ case)) Let $Tₙ^d$ be the d-dimensional torus with N^d vertices. Then
\[
\lim_{n \to \infty} \zeta(Tₙ^d, u)^{-1} = (1 - u^2)^{d-1} \exp \left[\int_{0}^{2\pi} \cdots \int_{0}^{2\pi} \log \left\{ (1 + (2d - 1)u^2) - 2u \sum_{j=1}^{d} \cos \theta_j \right\} \frac{d\theta_1}{2\pi} \cdots \frac{d\theta_d}{2\pi} \right],
\]
where $\int_{0}^{2\pi} \cdots \int_{0}^{2\pi}$ is the d-th multiple integral and $\frac{d\theta_1}{2\pi} \cdots \frac{d\theta_d}{2\pi}$ is the uniform measure on $[0, 2\pi)^d$.

Specially, in the case of $d = 2$, we obtain the following result.

Corollary 8 Let $Tⁿ^2$ be the 2-dimensional torus with N^2 vertices. Then
\[
\lim_{n \to \infty} \zeta(Tⁿ^2, u)^{-1} = (1 - u^2) \exp \left[\int_{0}^{2\pi} \int_{0}^{2\pi} \log \left\{ (1 + 3u^2) - 2u \sum_{j=1}^{2} \cos \theta_j \right\} \frac{d\theta_1}{2\pi} \frac{d\theta_2}{2\pi} \right].
\]

This result corresponds to Equation (10) in Clair [4].

Finally, we should remark $d = 1$ case studied in Komatsu, Konno and Sato [8]. In this case, we easily check $U = U^+$. So we can apply both of our results (Corollaries 6 and 7) and get the same result given by Komatsu, Konno and Sato [8].
References

[1] Ambainis A. Quantum walks and their algorithmic applications. Int. J. Quantum Inf. 2003;1:507–518.

[2] Bass H. The Ihara-Selberg zeta function of a tree lattice. Internat. J. Math. 1992;3:717-797.

[3] Chinta G, Jorgenson J, Karlsson A. Heat kernels on regular graphs and generalized Ihara Zeta function formulas. Monatsh. Math. 2013;178:171-190.

[4] Clair B. The Ihara Zeta function of the infinite grid. Electron. J. Combin. 2014;21:Paper 2.16.

[5] Ihara Y. On discrete subgroups of the two by two projective linear group over p-adic fields. J. Math. Soc. Jpn. 1966;18:219-235.

[6] Kempe J. Quantum random walks - an introductory overview. Contemporary Physics 2003;44:307-327.

[7] Kendon Y. Decoherence in quantum walks - a review. Math. Struct. in Comp. Sci. 2007;17:1169-1220.

[8] Komatsu T, Konno N, Sato I. A note on the Grover walk and the generalized Ihara zeta function of the one-dimensional integer lattice. Yokohama Math. J. (in press).

[9] Komatsu T, Konno N, Sato I. Grover/Zeta Correspondence based on the Konno-Sato theorem. Quantum Inf. Process. 2021;20:268.

[10] Komatsu T, Konno N, Sato I. Walk/Zeta Correspondence. 2021 [arXiv:2104.10287]

[11] Konno N. Quantum Walks. Heidelberg: Springer-Verlag; 2008. p. 309-452. (Lecture Notes in Mathematics; vol. 1954).

[12] Konno N, Ide Y. New Developments of Quantum Walks. Tokyo: Baifukan; 2019. Japanese.

[13] Konno N, Sato I. On the relation between quantum walks and zeta functions. Quantum Inf. Process. 2012;11:341-349.

[14] Konno N, Tamura S. Walk/Zeta Correspondence for quantum and correlated random walks. Yokohama Math. J. (in press).

[15] Morita H. Ruelle zeta functions for finite digraphs. Linear Algebra and its Applications 2020;603:329-358.

[16] Portugal R. Quantum Walks and Search Algorithms (2nd edition). New York (NY): Springer; 2018.

[17] Ren P, Aleksic T, Emms D, Wilson R. C, Hancock E. R. Quantum walks, Ihara zeta functions and cospectrality in regular graphs. Quantum Inf. Process. 2011;10:405-417.

[18] Spitzer F. Principles of Random Walk (2nd edition). New York (NY): Springer; 1976.

[19] Venegas-Andraca S. E. Quantum walks: a comprehensive review. Quantum Inf. Process. 2012;11:1015-1106.