Te-Comonoform Modules

1Innaam, M. A. Hadi, 2Alaa A. Elewi

1University of Baghdad, College of Education for pure Science (Ibn-Al-haithum), Dept. of Mathematics
2University of Baghdad, College of Science, Dept. of Mathematics

Emails: Innaam1976@yahoo.com, alaa.abbas.math@gmail.com

Abstract. In this paper, the concept of te-comonoform modules is introduced, where an R-module U is called te-comonoform if for each paper submodule V of U and for each f ≠ 0, f ∈ Hom(U,\frac{V}{W}), f(U) ≤_{es} U/V. Many properties related with this concept are given. Moreover many connections between this concept and certain modules are presented.

Keywords. monoform module, Small monoform module, essential submodules, te-essential submodules.

1.Introduction

Throughout this paper R be a ring with unity and U is a ring a right R-module. A nonzero module U is called monoform if for each nonzero submodule V of U and each nonzero homomorphism f ∈ Hom(V, U), f is monomorphism (i.e. kerf = 0). [1] [2] In 2014, Hadi and Mashaaon [2] introduced the concept of small monoform as a generalization of monomorphic module, where an R-module U is called small monoform if for each nonzero submodule V of U and for each 0 ≠ f ∈ Hom(V, U), kerf is small V, where a proper submodule V of U is called small and denoted by (V ≪ U), if V + W = U, W ≤ M, then W = U [4, p 4]. As a deal notion of small monoform. Muna Abbas in [5] introduce the concept co-small monoform, where an R-module U is called co-small monoform if for each V < U and for each nonzero f ∈ Hom(U, \frac{U}{W}), f(U) is essential in U/V(f(U) ≤_{es} U/V). Recall that a submodule V of U is called t-essential in U (briefly V ≤_{tes} U if whenever V ∩ W ≤ Z(U), W ⊆ U, then W ⊆ Z(U) where Z(U) the second singles submodule of U (or Z₂-torsion) submodule and defined by \frac{Z(U)}{Z(U)} = \frac{Z(U)}{Z(U)} [7], where Z(U) is the sigules submodule of U.

Note that every essential submodules of U is t-essential, but not conversely. However they are concid in the class of nonsingular modules.

The module U is called Z₂-torsion if Z₂(U) = U [6]. As every essential submodule is t-essential. This motivates us to introduce (i.e section two) the concept te-comonoform module, where an R-module U is called te-comonoform if for each V < U and for each nonzero ∈ Hom(U, \frac{U}{V}), f(U) ≤_{es} U.

Hence every co-small module, but not conversely (see 2.6 (1), 5) and they are equivalent in the class of non-singular modules (see 2.6 (3)). Each class of singular or Z₂-torsion or modules whose all non zero submodules are t-essential or uniform, modules
contained in the class of te-comonoform, (see 2.6 (4), 2.6(8), 2.6 (9)). Moreover the direct sum of te-comonoform module may be not te-comonoform, (see 2.6.7). However under certain conditions hold, see theorem 2.17. Many other properties are introduced in S.2.

Section three is devoted for connections between te-comonoform and some classes of modules such as epiform modules, antihopfiam modules, quasi-Dedekined modules, co-quasi-dedekind module and t-semisimple modules.

2. t-essential-comonoform (te-comonoform)

In this section the concept of t-essential comonoform is introduced and many basic properties related with this concept are given.

First, some known properties which are useful for our work are listed.

Lemma 2.1 [7]:

The following are equivalent for a submodule \(V \) of an \(R \)-module \(U \):

\[
\frac{V \leq \text{tes} U}{Z_2(U)} \leq \frac{Z_2(U)}{Z_2(U)} \leq \frac{\text{ess} U}{Z_2(U)} \leq \frac{U}{Z_2(U)}
\]

\(\frac{U}{V} \) is \(Z_2 \)-torsion.

Note 2.2: Let \(U \) be an \(R \)-module, \(A \leq \text{tes} U \) if \(Z_2(U) \subseteq A \), then \(A \leq \text{ess} U \).

Proof: Since \(A \leq \text{tes} U \), then by lemma 2.1, \(A + Z_2(U) \leq \text{ess} U \). As \(Z_2(U) \subseteq A \), then \(A \leq \text{ess} U \).

Lemma 2.3: Let \(U \) be a singular (or \(Z_2 \)-torsion). Then every submodule of \(U \) is t-essential.

Proof: Let \(A \leq U \). Since \(U \) is singular (or \(Z_2 \)-torsion), the \(Z_2(U) = U \) and hence \(A + Z_2(U) = U \leq \text{ess} U \). Thus by lemma 2.1, \(A \leq \text{tes} U \).

Lemma 2.4[6]: Let \(U \) be an \(R \)-module, \(V \leq U \). Then

\[
Z_2\left(Z_2(U)\right) = Z_2(U) \quad Z_2(V) = Z_2(U) \cap V.
\]

Def 2.5: Let \(U \) be an \(R \)-module. \(U \) is called t-essential comonoform (brifly, te-comonoform) if foe every nonzero homomorphism and every proper submodule \(V \) of \(U \), \(f: \frac{U}{V} \rightarrow \frac{U}{V} \), then \(f(U) \leq \text{tes} \frac{U}{V} \).

Remarks and Examples 2.6

1- It is clear that every co-small monoform module is te-comonoform, but the converse is not true in general, see (part (5)).
2- Every simple module is te-comonoform.
3- Let \(U \) be a nonsingular \(R \)-module. Then \(U \) is co-small monoform if and only if \(U \) is te-comonoform.
4- Every singular (or \(Z_2 \)-torsion) module is te-comonoform.

Proof: let \(U \) be a singular (or \(Z_2 \)-torsion)

Let \(V < U \). Then \(\frac{U}{V} \) is singular (or \(Z_2 \)-torsion).
Hence for any \(U \rightarrow \frac{u}{v}, f \neq 0 f(U) \leq_{\text{tes}} \frac{u}{v} \) by lemma 2.3.

5- The Z-module \(Z_6 \) is singular, hence by part (4), it is te-comonofrom. However, for \(h: Z_6 \rightarrow \frac{Z_6}{(0)} = Z_6 \) such that \(h(x) = 2x, \forall x \in Z_6 \), \(h(Z_6) = \langle \frac{Z}{Z_6} \rangle \) \(\approx_{\text{ess}} \frac{Z_6}{(0)} = Z_6 \). Hence \(Z_6 \) as Z-module is not co-small-monoform.

6- Let \(U \) be a te-comonoform \(R \)-module. The for \(\text{End}(U), f \neq 0, f(U) \leq U \).

Proof: let \(f \in \text{End}, f \neq 0 \). Hence \(h: U \rightarrow \frac{u}{v} \). Since \(U \) is te-comonoform, \(f(U) \leq_{\text{tes}} \frac{u}{v} \), that is \(f(U) \leq_{\text{tes}} U \).

7- As application of part (7): let \(U = Z_2 \oplus Z_2 \) as \(Z_2 \)-module. Let \(f: U \rightarrow V \) defined by \(f(\bar{x}, \bar{y}) = (\bar{x}, \bar{y}), \forall (\bar{x}, \bar{y}) \in Z_2 \oplus Z_2 \). It is clear that \(f(U) = Z_2 \oplus (\bar{0}) \). But \((Z_2 \oplus (\bar{0})) \oplus Z_2(U) = (Z_2 \oplus (\bar{0})) \oplus (\bar{0}) = Z_2 \oplus (\bar{0}) \) which is not essential in \(Z_2 \oplus Z_2 \). Hence \(Z_2 \oplus (\bar{0}) \approx_{\text{tes}} U \) by lemma 2.1. Thus \(f(U) \leq_{\text{tes}} U \) and so by (7), \(U \) is not te-comono.

Also notice that \(U \) is semisimple module need not be te-comono.

8- Let \(U \) be an \(R \)-module such that for \((0) \neq V \subseteq U, V \leq_{\text{tes}} U \). Then \(U \) is te-comonoform.

Proof: let \(V < U \). If \(V \neq (0), \) then \(V \leq_{\text{tes}} U \) and so by lemma (2.1), \(\frac{u}{v} \) is \(Z_2 \)-torsion. Now for every nonzero, \(f: U \rightarrow \frac{u}{v} \). Then by lemma (2.3), \(f(U) \leq_{\text{tes}} \frac{u}{v} \). If \(V = (0), \) then for any \(0 \neq f: U \rightarrow \frac{u}{v} \) as \(\frac{u}{v} \) isomorphism theorem, \((0) \neq f(U) \leq_{\text{tes}} \frac{u}{v} \). Hence by hypothesis \(f(U) \leq_{\text{tes}} U = \frac{u}{v} \).

9- Let \(U \) be a uniform \(R \)-module. Then \(U \) is te-comonoform.

Proof: let \(V < U \). If \(V \neq 0, V \leq_{\text{tes}} U \), hence \(V \leq_{\text{tes}} U \). Thus by a similar proof of (8), and \(0 \neq f: U \rightarrow \frac{u}{v} \). \(f(U) \leq_{\text{tes}} \frac{u}{v} \). If \(V = (0), \) then for each \(0 \neq f: U \rightarrow \frac{u}{v} \) we have \(f(U) \leq_{\text{tes}} \frac{u}{v} \).

Proposition 2.7: Let \(V < U \) and \(U \) be a te-comonoform module. Then \(\frac{u}{v} \) is a te-comonoform module.

Proof: Assume \(\frac{W}{V} < \frac{u}{v} \) and \(0 \neq f: \frac{u}{v} \rightarrow \frac{u}{w} \) since \(\frac{v}{w} = \frac{u}{w} \) by 3rd isomorphism theorem, so there exists an isomorphism \(f: \frac{u}{v} \rightarrow \frac{u}{w} \). Consider \(U \rightarrow \frac{u}{v} \rightarrow \frac{u}{w} \). Then \(g/f: U \rightarrow \frac{u}{v} \) and \((g/f)(U) = (g/f)\frac{u}{v} \neq 0 \). Since \(U \) is te-comonoform \((g/f)(U) \leq_{\text{tes}} \frac{u}{w} \). Hence \((g/f)(\frac{u}{v}) \leq_{\text{tes}} \frac{u}{w} \) i.e. \(g(f(\frac{u}{w})) \leq_{\text{tes}} \frac{u}{w} \). It follows that \(g^{-1}[g(f(\frac{u}{v}))] \leq_{\text{tes}} g^{-1}(\frac{u}{v}) = \frac{u}{v} = \frac{u}{w} \) and so \(f(\frac{u}{v}) \leq_{\text{tes}} \frac{u}{w} \). Therefore \(\frac{u}{v} \) is te-comonoform.

Note (2.8): let \(A \) be a proper nonzero submodule of an \(R \)-module s.t. \(\frac{V}{A} \) is te-comonoform. Then it is not neccessary that \(U \) is te-comonoform, for example consider \(Z_6 \) as \(Z_6 \)-module. Let
\(A = \langle \mathfrak{3} \rangle\), then \(Z_6/\langle \mathfrak{3} \rangle \cong Z_3\) as \(Z_6\)-module. Hence \(Z_6/\langle \mathfrak{3} \rangle\) is simple, so it is comonoform, but \(Z_6\) as \(Z_6\)-module is te-comonoform.

Corollary 2.9: the epimorphic image of te-comonoform is te-comonoform.

Corollary 2.10: A direct summand of te-comonoform module is te-comonoform.

Recall that a submodule of an \(R\)-module \(U\) is called t-closed (briefly \(A \leq_{tc} U\)) if \(A\) has no proper t-essential \([\]\), equivalently \(A \leq_{tc} U\) if \(\frac{U}{A}\) is nonsingular. However Goodearl in [7], called a submodule \(A\) of \(U\), \(Y\)-closed if \(\frac{U}{A}\) is nonsingular. Thus t-closed and \(Y\)-closed coincide.

Proposition 2.11: let \(U\) be a te-comonoform \(R\)-module and \(A \leq_{tc} U\). Then \(\frac{U}{A}\) is co-small monoform.

Proof: Since \(U\) is te-comonoform, then by proposition 2.7, \(\frac{U}{A}\) is te-comonoform. But \(A \leq_{tc} U\), so \(\frac{U}{A}\) is nonsingular. Then \(\frac{U}{A}\) is co-small- monoform by (Rem&Ex 2.6(3)).

Remark 2.12: The direct sum of te-comonoform modules need not te-comonoform, see (Rem. &Ex. 2.6 (7)).

Now we shall give conditions, which make the direct sum of te-comonoform is te-comonoform, but first, we need the following lemmas.

Lemma 2.13 [8] let \(U_1\) and \(U_2\) be \(R\)-modules and \(\text{ann}U_1 + \text{ann}U_2 = R\). Then \(\text{Hom}(U_1, U_2) = 0, \text{Hom}(U_2, U_1) = 0\).

Lemma 2.14: let \(U_1\) and \(U_2\) be \(R\)-module, let \(V_1 < U_1, V_2 < U_2\). If \(\text{ann}U_1 + \text{ann}U_2 = R\), then \(\text{ann}U_1 + \text{ann}\frac{U_1}{V_2} = R\) and \(\text{ann}U_2 + \text{ann}\frac{U_2}{V_1} = R\).

Proof: Since \(\text{ann}U_2 \subseteq [V_2, U_2]\) = \(\frac{U_2}{V_2}\), hence \(R = \text{ann}U_1 + \text{ann}U_2 \subseteq \text{ann}U_1\frac{U_2}{V_2}\). Thus \(\text{ann}U_1 + \text{ann}\frac{U_2}{V_2} = R\). Similarly, \(\text{ann}U_2 + \text{ann}\frac{U_1}{V_1} = R\).

Lemma 2.15: let \(U_1\) and \(U_2\) be \(R\)-module, let \(V_1 < U_1, V_2 < U_2\). If and only if \(\text{ann}U_1 + \text{ann}U_2 = R\). Then \(\text{Hom}(U_1, \frac{U_2}{V_2}) = 0, \text{Hom}(U_2, \frac{U_1}{V_1}) = 0\).

Proof: It follows by lemma’s, 2.14, 2.15.

Lemma 2.16: Let \(U_1\) and \(U_2\) be \(R\)-module and let \(V_1 < U_1\) and \(V_2 < U_2\), \(\text{ann}U_1 + \text{ann}U_2 = R\). Then \(\text{Hom}(U_1 \oplus U_2, \frac{U_1}{V_1} \oplus \frac{U_2}{V_2}) = \text{Hom}(U_1 + \frac{U_1}{V_1}) \oplus \text{Hom}(U_2 + \frac{U_2}{V_2})\).

Proof: \(\text{Hom}(U_1 \oplus U_2, \frac{U_1}{V_1} \oplus \frac{U_2}{V_2}) = \text{Hom}(U_1, \frac{U_1}{V_1}) \oplus \text{Hom}(U_1, \frac{U_2}{V_2}) \oplus \text{Hom}(U_2, \frac{U_1}{V_1}) \oplus \text{Hom}(U_2, \frac{U_2}{V_2})\) then by lemma 2.15, \(\text{Hom}(U_1 + \frac{U_2}{V_2}) = 0, \text{Hom}(U_2 + \frac{U_1}{V_1}) = 0\). Thus the result follows thus for each \(V_1 < U_1\) \& \(V_2 < U_2\) where \(U_1\) and are \(R\)-modules with \(\text{ann}U_1 + \text{ann}U_2 = R\) and for each \(f \in \text{Hom}(U_1 \oplus U_2, \frac{U_1}{V_1} \oplus \frac{U_2}{V_2})\) \(f = f_1 + f_2\) some \(f_i \in \text{Hom}(U_i \oplus U_i, \frac{U_i}{V_i} \oplus \frac{U_i}{V_i})\), \(i=1,2\). We shall assume that: if \(f \neq 0\), then there exists \(f_1 \neq 0\) and \(f_2 \neq 0\) such that \(f = f_1 + f_2\) and this condition is denoted by (*) are te-comonoform, the \(U = U_1 \oplus U_2\) is te-comonoform provided that condition (*)
Proof: let \(V < U = U_1 \oplus U_2 \). Since \(\text{ann} U_1 + \text{ann} U_2 = R \), then \(V = V_1 \oplus V_2 \) for some \(V_1 \leq U_1, V_2 \leq U_2 \).

Case 1: if \(V_1 < U_1 \) and \(V_2 \leq U_2 \). let \(f \neq 0 \), and \(f \in \text{Hom}(U_1 \oplus U_2, \frac{U_1 \oplus U_2}{V_1 \oplus V_2}) \cong \text{Hom}(U_1 \oplus U_2, \frac{U_1}{V_1} \oplus \frac{U_2}{V_2}) \). Hence by lemma 2.16

\[
\text{Hom}(U_1 \oplus U_2, \frac{U_1}{V_1} \oplus \frac{U_2}{V_2}) \cong \text{Hom}(U_1 + \frac{U_1}{V_1}) \oplus \text{Hom}(U_2 + \frac{U_2}{V_2})
\]

So by condition (*), \(f = f_1 + f_2 \), where \(0 \neq f_1 \in \text{Hom}(U_1 \oplus U_2, \frac{U_1}{V_1} \oplus \frac{U_1}{V_1范式}), \ 0 \neq f_2 \in \text{Hom}(U_2 \oplus U_2, \frac{U_2}{V_2} \oplus \frac{U_2}{V_2}) \). But \(U_1 \) and \(U_2 \) are te-comonoform, so that \(f_1(U_1) \leq \text{tes} \frac{U_1}{V_1} \), \(f_2(U_2) \leq \text{tes} \frac{U_2}{V_2} \). It follows that \(f(U_1 \oplus U_2) = f_1(U_1) \oplus f_2(U_2) \leq \text{tes} \frac{U_1}{V_1} \oplus \frac{U_2}{V_2} \), since \(\frac{U_1}{V_1} \oplus \frac{U_2}{V_2} \simeq \frac{U_1 \oplus U_2}{V_1 \oplus V_2} \).

Case 2: \(V_1 < U_1 \) and \(V_2 = U_2 \) let \(0 \neq f : U_1 \oplus U_2 \to \frac{U_1 \oplus U_2}{V_1 \oplus V_2} \simeq \frac{U_1}{V_1} \).

Now consider the following \(U_1 \xrightarrow{i} U_1 \oplus U_2 \xrightarrow{f} \frac{U_1}{V_1} \) where \(i \) is the induction mapping. Hence \(f \circ i : U_1 \to \frac{U_1}{V_1} \) and so \(f_1(U_1) \leq \text{tes} \frac{U_1}{V_1} \). But \(f_1(U_1) \subseteq f(U_1 \oplus U_1) \) which implies that \(f(U_1 \oplus U_1) \leq \text{tes} \frac{U_1}{V_1} \).

Case 3: \(V_1 = U_1, V_2 < U_2 \). The proof is similar to case (2) therefore \(U = U_1 \oplus U_2 \) is te-comonoform.

Note 2.18 Consider \(Z_{15} \) as \(Z_{15} \)-module \(Z_{15} = (3) \oplus (5) \cong Z_5 \oplus Z_3 \), \(\text{ann} Z_{15} \). \(Z_5 \cong Z_3 \), \(\text{ann} Z_{15} \cong Z_5 \). Thus \(\text{ann} Z_{15} \) is a \(Z_{15} \)-module defined by \(f(z, z) = (0, 0) \), \(f \neq 0 \), \(\text{Hom}(Z_{15}, Z_5) = 0 \). Hence there is no \(f_1 \neq 0 \), so for any \(f_2 \in (Z_3, \frac{Z_3}{Z_3}) \), \(f \neq f_1 \oplus f_2 \).

3. Te-comonoform Modules and Other Related Concepts

In this section, some connections between te-comonoform modules and other classes of modules are introduced.

Recall that on \(R \)-modules \(U \) is called epimorphic if for each paper submodule \(V \) of \(U \) and for every nonzero, \(f \in \text{Hom}(U, \frac{U}{V}) \), \(f \) is an epimorphism.

Remark 3.1:
It is clear that every epimorphic module is co-small-monoform. However te-comonoform need not epimorphic, for example \(Z \) as \(Z \)-module is te-comonoform but it is not epimorphic.

Proposition 3.2: Let \(R \) be a semisimple ring and \(U \) be a te-comonoform \(R \)-module. Then \(U \) is epimorphic.
Proof: Let $V < U$ and let $0 \neq f: U \to \frac{u}{v}$ then $f(U) \leq_{tes} \frac{u}{v}$, since U is te-comonoform. But R is semisimple implies every R-module is nonsingular so that $\frac{u}{v}$ is nonsingular and hence $f(U) \leq_{tes} \frac{u}{v}$. On the other hand, R is semisimple implies $\frac{u}{v}$ is semisimple, so $f(U) = \frac{u}{v}$. Thus U is epiform.

Corollary 3.3: Let U be a module over semisimple ring. Then the following statements are equivalent:

1. U is co-smal monoform,
2. U is te-comonoform,
3. U is epiform.

Recall that an R-module U is called co-equi-retractable. If for each $V < U$, there exists $f: \frac{u}{v} \to U$ such that f is monomorphism, [10]. Note that some author called it mono-coretractable module.

Theorem 3.4: Let U be a co-equi-retractable R-module. Then M is te-comonoform if and only if for each $f \in \text{End}(U)$, $f \neq 0$, $f(U) \leq U$.

Proof: \Rightarrow it follows by Rem&Ex 2.6(6).

\Leftarrow let $V < U$ and $g: U \to \frac{u}{v}, g \neq 0$.

As U is co-equi-retractable, $\exists h: \frac{u}{v} \to U$ s.t. h is monomorphism. Hence $h \circ g \in \text{End}(U)$ and $h \circ g \neq 0$. By hypothesis $(h \circ g)(U) \leq_{tes} U$, that is $h(g(U)) \leq_{tes} U$ and so that $h^{-1}[h(g(U))] \leq_{tes} h^{-1}(U)$. But we can show that $h^{-1}[h(g(U))] \leq_{tes} g(U)$ as follows: let $x \in h^{-1}[h(g(U))]$, so that $h(x) \in h(g(u))$, and hence $h(x) = h(g(u_1))$ for some $u_1 \in U$. Therefore $x = g(u_1)$, since h is one-to-one. Thus $g(U) \leq_{tes} \frac{u}{v}$ and U is te-comonform.

Recall that an R-module U is called antihafian if $U = \frac{u}{v}$ for $V < U$ [11], [12].

It is clear that every antihafian implies co-equi-retractable module.

Corollary 3.5: Let U be an antihafain R-module. U is te-comonoform if and only if for each $0 \neq f \in \text{End}(U)$, $f(U) \leq_{tes} U$. Recall that an R-module U is called quasi-Dedkind if for each $0 \neq f \in \text{End}(U)$ f is monomorphism [13].

Lemma 3.6: Let U be a quasi-dedkind R-module. Then for each $f \neq 0$, $f \in \text{End}(U)$, $f(U) \leq_{tes} U$.

Proof: let $0 \neq f \in \text{End}(U)$. Since U is quasi-dedkind, f is monomorphism. As $U \leq_{tes} U$ and f is monomorphism, $f(U) \leq_{tes} U$.

Corollary 3.7: Let U be a quasi-dedkind and co-equi-retractable. Then U is te-comonoform.

Proof: it follows by lemma 3.6 and theorem 3.4.

Recall that an R-module is called regular (or simply regular) if every submodule is pure, [14].

A submodule V of U is pure if for each called A of R, $A^2 \cap V = A^2 V$, [15].
Theorem 3.8: Let U be a regular R-module. Then U is te-comonoform if and only if U is co-small monoform.

Proof: Since u_1 is regular, $R/\text{ann}(x)$ is a regular ring [14, th. 1.10], where $\text{ann}(x) = \{r \in R : xr = 0 \}$. It follows that $Z(U) = 0$ because if $x \in Z(U)$, then $\text{ann}(x) \leq_{ess} R$ and so $R/\text{ann}(x)$ is singular; that $Z \left(\frac{R}{\text{ann}(x)} \right) = R(\text{ann}(x))$. But $R/\text{ann}(x)$ is regular implies $Z \left(\frac{R}{\text{ann}(x)} \right) = 0$. Thus $\frac{R}{\text{ann}(x)} = 0$ and so $R = \text{ann}(x)$ which implies $x = 0$ and so $Z(U) = 0$, i.e. U is nonsingular. Thus the result follows by Rem&Ex. 2.6(3).

Recall that: An R-module U is called coquasi-dedkind if $\text{Hom}(U, V) = 0, \forall V < U$. Equivalently U coquasi dedkind if for each $f \in \text{End}(U)$, $f \neq 0$, then f is onto.

It is clear that every coquasi-dedkind module is indecomposable.

An R-module U is called t-semisimple, if for each $U \leq U$, there is a direct summand with K is t-essential in V [16].

Proposition 3.9: Let U be a coquasi-dedkind and t-semisimple module. Then U is te-comonoform.

Proof: Since U is couasi-dedkind, U is indecomposable. But U is t-semisimple so that $U = Z_2(U) \oplus \hat{U}$ for some semisimple nonsingular \hat{U}. [16]. But U is indecomposable, so either $Z_2(U) = 0$ or $\hat{U} = 0$. If $Z_2(U) = 0$, then $U = \hat{U}$, then $U = \hat{U}$ and so U is semisimple.

Again U is indecomposable, so U is simple and hence U is te-comonoform. If $\hat{U} = 0$, then $U = Z_2(U)$; i.e. U is Z_2-torsion thus U is te-comonoform by Rem&Ex. 2.6 (4).

Corollary 3.10 Let R be a t-semisimple R-module. Then every coquasi-dedkind R-module is te-comonoform.

Proof: Since R is t-semisimple, then every R-module is t-semisimple [prop 1.1.53.7]. Hence the result follows by proposition 3.9.

4. References

[1] Sahical M. Y, Coquasi-Dedekind Modules, (2003) Ph. D thesis, University of Baghdad.
[2] J. M. Zelmanowitze, Representations of Rings with Faithful Monoform Modules, J. London Math, Soci. (2)29, (1984), 237-248.
[3] I. M. Hadi, H. K. Marhoon, Smallmonoform modules, Ibn-AL-Haitham, J of pure and applied Sci. 27(2014), 229-240.
[4] Kasch, Modules and Rings, (1982), Acad, Press.
[5] Muna A.A, Co-small monoform . Italiar Journal of pure and applied mathematics, 2019, No. 42(230-241).
[6] Asgari, Sh, Haghany A., Density Cohopfion Modules, Journal of Algebra and its application, 9(2010), 989-1000.
[7] Codearl K. R, Ring Theory, Non Singular Ring and Modules, (1976), Dekker, Inc. New York and Basel.
[8] Frahan D. S, A Study of Modules Related with t-Semisimple Modules, (2018), Ph.D Thesis, University of Baghdad-Iraq.
[9] B. A. AL-Hashim, M. A. Ahmed, Some results on epiform modules, J. AL-Anbar for pure Sci, 4(2010)54-56.
[10] G. Oman, A. Salminen, Modules which are isomorphic to their factor Modules in, Algebra, 41(2013), 1300-1315.
[11] Y-Hirano, I. Mogami, On Restricted antihapfian Modules, Math. J. Okayama, Univ., 28(1986), 119-131.
[12] Asagari, Sh. Haghany, A. t-extending Modules and t-Bear Modules, Comm, Algebra, 39(2011), 1605-1623.
[13] Sahirah M. Y., F-Regular Modules, (1993), Ms.C Thesis, University of Baghdad-Iraq.
[14] Mijbess A. S, Quasi-dedekind Modules, Ph. D. University of Baghdad, 1997.
[15] Anderson, Fiw. Fuller. K.R., Rings and Categories of Modules, 2nd end. Graduats Texts in Math, (1974) Berlin-Heidelberg, New York: Springs-Verlag.
[16] Asgari, Sh. Haghany, Al-Tolonei Y, T-Semisimple Module and T-Semisimple Ring, Comm Algebra, 4(5), (2013), 1882-1902.
[17] A. Ghorbani, Co-Epi-Retracted Modules and co-pri-Rings, comm, Algebra 38, No. 10 (2010), 3589-3596.