Measles and Rubella Seroprevalence in Mother–Infant Pairs in Rural Nepal and the United States: Pre- and Post-Elimination Populations

Alastair F. Murray,1 Janet A. Englund,2 James M. Tielusch,3 Joanne Katz,4 Laxman Shrestha,5 Subarna K. Khatri,6 Kristen Carlin,7 Steven C. Leclerq,4 Mark C. Steinhoff,8 and Helen Y. Chu9*

1George Washington University School of Medicine & Health Sciences, Washington, District of Columbia; 2Department of Pediatrics, Seattle Children’s Hospital, University of Washington, Seattle, Washington; 3Department of Global Health, Milken Institute School of Public Health, George Washington University, Washington, District of Columbia; 4Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; 5Department of Pediatrics and Child Health, Nepal Institute of Medicine, Kathmandu, Nepal; 6Nepal Nutrition Intervention Project—Sarlahi (NNIPS), Kathmandu, Nepal; 7Children’s Core for Biomedical Statistics, Seattle Children’s Research Institute, Seattle, Washington; 8Global Health Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio; 9Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington

Abstract. We sought to compare seroprevalence of protective measles and rubella-specific antibody in mother–infant pairs across two populations: a pre-disease elimination Nepal population with recently introduced rubella vaccine and post-disease elimination U.S. population. Qualitative measles and rubella immunoglobulin G was assessed in maternal serum and cord blood from 258 pairs in Nepal, 2012–2013 and 49 pairs in Seattle, WA, 2014–2015. High rates of protective antibody were observed in both populations. Two hundred and forty-four (95%) pregnant women in Nepal had protective measles antibody versus 44 (92%) in Seattle (P = 0.42). Ninety-six percent of infants in Nepal (N = 246) and Seattle (N = 43) had protective measles antibody (P = 0.75). Ninety-four percentage of pregnant women in Nepal (N = 242) and Seattle (N = 45) had protective rubella antibody (P = 0.23). Two hundred and thirty-eight (93%) infants in Nepal had protective rubella antibody versus 44 (98%) in Seattle (P = 0.12). Continued surveillance will be necessary to ensure protective immunity, inform progress toward disease elimination in Nepal and avoid reemergence in the United States.

Measles and rubella are highly infectious vaccine-preventable viral diseases. Measles (rubeola), characterized by maculopapular eruptions, pneumonia, and diarrhea, is a leading cause of early childhood mortality worldwide.1 Rubella infection during pregnancy may lead to congenital rubella syndrome (CRS), characterized by sensorineural deafness and ophthalmic and cardiac abnormalities.

Maternally derived passive immunity against measles and rubella protects neonates from infection during the first months of life, when morbidity and mortality from these diseases is highest. Age at vaccine administration differs worldwide, balancing higher disease risk in younger infants with greater long-term protection and decreased vaccine failure when administered in older infants.2,3 These vaccines are contraindicated during pregnancy because of theoretical concern for fetal infection, although reports of measles–mumps–rubella (MMR) vaccine given inadvertently during pregnancy have not demonstrated safety signals.4 Following introduction of the MMR vaccine in the United States in 1971, reported cases of measles, mumps, rubella, and CRS decreased by 99%.5 There has been a rebound in U.S. measles cases with outbreaks in California (2014) and Minnesota (2017) and in 2014, a record annual number of annual cases (N = 667) in the post-elimination period.6–8

The World Health Organization (WHO) Global Vaccine Action Plan calls for 95% childhood coverage for two doses of measles and rubella vaccination in 47 priority countries with high disease burden by 2020.9 Monovalent measles vaccine became routine in Nepal, a priority country, in 1989. Routine combination of measles–rubella vaccination in Nepal children (9 months to 15 years) began in 2012–2013.10 A 2016 WHO survey of measles and rubella vaccine coverage in infants aged 12–23 months showed 83% coverage in Nepal and 92% U.S. coverage.11

Our study sought to compare seroprevalence of protective measles and rubella antibody in mother–infant pairs across two distinct populations: a population in Nepal, with established measles vaccination and recently introduced rubella vaccination, and in Seattle, WA, a post-measles and rubella elimination population with long established vaccination.

Although vaccine coverage data are readily available, there are limited data on population seroprevalence of measles and rubella antibodies, especially in low-resource settings. In a 2008 study of 2,224 Nepal women of childbearing age (15–39 years), 90.8% of women were rubella IgG seropositive from natural infection.12 Nepali women born before 1997 would not have received routine rubella vaccine coverage, and any immunity is from the history of natural infection. By comparison, estimated U.S. maternal rubella immunity during our study period is 93.7% using the corresponding age group from 1999 to 2004 National Health and Nutrition Examination Survey data.13 Measles seroprevalence data are unavailable for either population. We hypothesized high rates of measles and rubella immunity in the Seattle population and lower rates of measles immunity in Nepal based on WHO survey data and barriers to care in the low-resource setting and high rates of natural rubella immunity in mothers and infants in Nepal consistent with the previous pre-vaccine study.12

Maternal venous and infant cord blood samples were collected from mother–infant pairs at delivery in Seattle and Nepal. In Nepal, samples were collected from July 2011 to March 2014 as part of a randomized clinical trial of maternal influenza immunization. Verbal informed consent was obtained from women in Nepal using language approved by Institutional Review Boards of Cincinnati Children’s Hospital, Johns Hopkins Bloomberg School of Public Health, and Nepal Health Research Council with deferral from Seattle Children’s Hospital. The maternal influenza trial was registered at
Clinical and sociodemographic characteristics of mother–infant pairs in two populations of pregnant women in Seattle, WA and Sarlahi, Nepal

	Seattle (N = 49; n (%))	Nepal (N = 258; n (%))	P value
Male gender of infant	15 (35.7)	134 (51.9)	0.05*
Maternal age			
< 30	11 (26.2)	225 (87.2)	< 0.0001
30–35	24 (57.1)	26 (10.1)	
> 35	7 (16.7)	7 (2.7)	
Other children in the household (< 15 years)	0 (0.0)	55 (21.9)	0.0001*
1–3	17 (40.5)	167 (66.5)	
4+	0 (0.0)	29 (11.6)	
Previous miscarriage	17 (40.5)	10 (7.0)	< 0.0001
Preterm birth (< 37 weeks)	0 (0.0)	29 (9.3)	0.0329*
Tobacco smoking during pregnancy	0 (0.0)	9 (3.4)	0.5213*
Low birthweight (< 2,500 g)	0 (0.0)	44 (17.1)	0.0026*

* Chi-square test. Missing values: maternal age = 7, other children in household = 7, miscarriage = 12, gestational age = 7, maternal smoking = 6, birthweight = 10.

TABLE 2
Measles and rubella IgG immune status of mothers and infants in two populations (Seattle, WA, and Sarlahi, Nepal)

	Mothers	Infants	
	Seattle (N = 49; n (%))	Seattle (N = 45; n (%))	P value
Measles IgG positive N (%)	244 (94.6)	246 (96.1)	0.42
Rubella IgG positive N (%)	242 (93.8)	238 (93.0)	0.23

* Missing values: maternal measles = 1, maternal rubella = 1, infant measles = 6, infant rubella = 6. Equivocal values: Seattle: maternal measles = 3, maternal rubella = 0, infant measles = 2, infant rubella = 2. Equivocal values: Sarlahi: maternal measles = 3, maternal rubella = 0, infant measles = 0, infant rubella = 1.

* Chi-square test. All pregnancies resulted in live birth. Differences in denominator due to failure to collect sample or inadequate residual amount for testing.
All serodiscordant infants were delivered full-term with normal birthweight.

The transfer of measles and rubella IgG between mother–infant pairs in these significantly different populations has not been compared in the literature in the context of recent immunization campaigns. Despite differences in vaccine practices, high levels of measles and rubella IgG immunity were observed in both populations. Maternal rubella immunity in Nepal in this cohort results from natural infection, contrasting with vaccine-induced rubella immunity in Seattle women.

Placental transfer of measles and rubella IgG immunity is critical to protection of infants before vaccination. Most of the maternal antibody is transferred to the fetus by active transport during the third trimester of pregnancy. Higher titers are often observed in infants at birth than in mothers. Substantial antibody decay before 4 months of age has been well documented, signaling greater risk of infection to infants before they receive vaccine.

Preterm birth, maternal inflammation, and autoimmune disease have been identified as possible causes of failure of protective transplacental antibody transfer from the mother to the infant. We observed failure of protective antibody transfer of rubella IgG in three full-term Nepali infants. However, the sample size was insufficient to address the effect of gestational age on serostatus in this population. Further quantitative analysis of total maternal IgG could investigate the effect of inflammation and autoimmune disease on measles and rubella antibody transfer.

In addition to sample size, study limitations include missing values as noted (Tables 1 and 2), lack of documented subject vaccine history, and the qualitative nature of the assay. Borderline titers (< 1% of all samples) fell within the equivocal range. It is possible that low positive titers within the reported coefficient of variance were interpreted as negative; however, no serodiscordant pairs fell within this low positive range, most likely demonstrating true serodiscordance.

Serosurveillance studies in tandem with accurate vaccination estimates are vital to monitoring vaccine efficacy and identifying postvaccination trends to ensure adequate vaccine coverage. Inadequate vaccination in either population poses a threat to the high rates of immunity. Infants could become vulnerable to viral infection before the vaccine can be administered. Supplemental vaccination of other groups could be required to protect this high-risk group from disease. As measles and rubella vaccination continues, surveillance must be maintained to ensure high levels of disease-specific antibody, inform progress toward disease elimination in Nepal, and avoid reemergence in the United States.

Received October 26, 2017. Accepted for publication May 22, 2018.
Published online September 17, 2018.

Note: Supplemental appendix appears at www.ajtmh.org.

Acknowledgments: We thank all the participants in the trial and the NNIPS staff in Kathmandu and Sarlahi, Nepal. We would also like to acknowledge the Northwest Hospital Midwives for their assistance.

Financial support: This work was supported by National Institutes of Health grants K23-AI103105 (HYC), IDSA Medical Scholars Program (AFM), Health Services Scholarship at George Washington University School of Medicine & Health Sciences (AFM), and Bill & Melinda Gates Foundation Grant 50274 (all authors). J. M. T., J. K., M. C. S., and H. Y. C. have received grants from the Bill & Melinda Gates Foundation. J. A. E. has received institutional grants from GlaxoSmithKline, Gilead, Pfizer, Novavax, Chimerix, MidImmune, and Alios. M. C. S. has received funding from Pfizer. H. Y. C. has received grants from PATH and the Thrasher Foundation, and research funding from Sanofi, GlaxoSmithKline, and Novavax.

Disclosure: This work was presented as a poster at the Infectious Disease Society of America Annual Meeting in San Diego, CA, October 2017.

Authors’ addresses: Alastair F. Murray, George Washington University School of Medicine & Health Sciences, Washington, DC, E-mail: afmurray@gwu.edu. Janet A. Englund, Department of Pediatrics, Seattle Children’s Hospital, University of Washington, Seattle, WA, E-mail: janet.englund@seattlechildrens.org. James M. Tielsch, Milken Institute School of Public Health, George Washington University, Washington, DC, E-mail: jtielsch@email.gwu.edu. Joanne Katz and Steven C. Leclercq, Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, E-mails: jkatz1@jhu.edu and sleclercq@mos.com.np. Laxman...
Shrestha, Department of Pediatrics and Child Health, Nepal Institute of Medicine, Kathmandu, Nepal, E-mail: laxmanshree12@gmail.com. Subarna K. Khatry, Nepal Nutrition Intervention Project—Sarlahi (NNIPS), Sarlahi, Nepal, E-mail: skhatry@wlink.com.np. Kristen Carlin, Mark C. Steinhoff, Global Health Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, E-mail: m.steinhoff@gmail.com. Helen Y. Chu, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, E-mail: helenchu@uw.edu.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided that the original author and source are credited.

REFERENCES

1. Wendorf KA, Winter K, Zipprich J, Schechter R, Hacker JK, Preas C, Cherry JD, Glaser C, Hariman K, 2017. Subacute sclerosing panencephalitis: the devastating measles complication that might be more common than previously estimated. Clin Infect Dis 65: 226–232.

2. World Health Organization, 2017. Measles vaccines: WHO position paper—April 2017. Wkly Epidemiol Rec 92: 205–227.

3. World Health Organization, 2011. Rubella vaccines: WHO position paper—July 2011. Wkly Epidemiol Rec 86: 301–316.

4. Keller-Stanislawski B, Englund JA, Kang G, Mangtani P, Neuzil K, Nohynek H, Pless R, Warton M, Lambach P, Zuber P, 2014. Safety of immunization during pregnancy: a review of the evidence, Global Advisory Committee on Vaccine Safety. Vaccine 32: 7057–7064.

5. Zipprich J, Winter K, Hacker J, Xia D, Watt J, Hariman K; Centers for Disease Control and Prevention (CDC), 2015. Measles outbreak—California, December 2014–February 2015. MMWR Morb Mortal Wkly Rep 64: 153–154.

6. Hall V et al., 2017. Measles outbreak—Minnesota April–May 2017. MMWR Morb Mortal Wkly Rep 66: 713–717.

7. Centers for Disease Control and Prevention, 2017. Notifiable diseases and mortality tables. MMWR Morb Mortal Wkly Rep 66: ND-664–ND-683. Available at: https://www.cdc.gov/mmwr/volumes/66/wr/mm6634md.htm?s_cid=mm6634md_w. Accessed October 23, 2017.

8. Centers for Disease Control and Prevention, 2012. Global Measles and Rubella Strategic Plan, 2012–2020. Geneva, Switzerland: WHO. Available at: http://apps.who.int/iris/bitstream/10665/44855/1/9789241503398_eng.pdf. Accessed October 23, 2017.

9. World Health Organization, 2012. Global Measles and Rubella Strategic Plan, 2012–2020. Geneva, Switzerland: WHO. Available at: http://apps.who.int/iris/bitstream/10665/44855/1/9789241503398_eng.pdf. Accessed October 23, 2017.

10. Khanal S et al., 2016. Progress toward measles elimination—Nepal, 2007–2014. MMWR Morb Mortal Wkly Rep 65: 206–210.

11. World Health Organization, 2018. Immunization, Vaccines and Biologicals. Vaccine Preventable Diseases Vaccines Monitoring System 2016 Global Summary—Country List for WHO-UNICEF Review of National Immunization Coverage, Available at: http://apps.who.int/immunization_monitoring/globalsummary/wucoveragecountrystat.html. Accessed May 3, 2018.

12. Upreti SR et al., 2011. Developing rubella vaccination policy in Nepal—results from rubella surveillance and seroprevalence and congenital rubella syndrome studies. J Infect Dis 204 (Suppl 1): S433–S438.

13. Hyde TB, Kruszon-Moran D, McQuillan GM, Cossen C, Forghani B, Reef SE, 2006. Rubella immunity levels in the United States population: has the threshold of viral elimination been reached? Clin Infect Dis 43 (Suppl 3): S146–S150.

14. Steinhoff MC et al., 2017. Year-round influenza immunisation during pregnancy in Nepal: a phase 4, randomised, placebo-controlled trial. Lancet Infect Dis 17: 981–989.

15. Hartter HK, Oyedele OI, Dietz K, Kreis S, Hoffman JP, Muller CP, 2000. Placental transfer and decay of maternally acquired antimeasles antibodies in Nigerian children. Pediatr Infect Dis J 19: 635–641.

16. Boulton ML, Wang X, Wagner AL, Zhang Y, Carlson B, Gillespie B, Ding Y, 2017. Measles antibodies in mother-infant dyads in Tianjin, China. J Infect Dis 216: 1122–1129.

17. Waijenborg S, Hahne SJ, Mollena LM, Smits GP, Berbers GA, van der Klis FR, de Melker HE, Wallinga J, 2013. Waning of maternal antimeasles antibodies in Nigerian children. Pediatr Infect Dis J 19: 635–641.

18. van den Berg JP, Westerbeek EA, van der Klis FR, Berbers GA, van Elburg RM, 2011. Rubella immunity levels in the United States population: has the threshold of viral elimination been reached? Clin Infect Dis 43 (Suppl 3): S146–S150.

19. Hyde TB, Kruszon-Moran D, McQuillan GM, Cossen C, Forghani B, Reef SE, 2006. Rubella immunity levels in the United States population: has the threshold of viral elimination been reached? Clin Infect Dis 43 (Suppl 3): S146–S150.

20. World Health Organization, 2018. Immunization, Vaccines and Biologicals. Vaccine Preventable Diseases Vaccines Monitoring System 2016 Global Summary—Country List for WHO-UNICEF Review of National Immunization Coverage, Available at: http://apps.who.int/immunization_monitoring/globalsummary/wucoveragecountrystat.html. Accessed May 3, 2018.

21. Upreti SR et al., 2011. Developing rubella vaccination policy in Nepal—results from rubella surveillance and seroprevalence and congenital rubella syndrome studies. J Infect Dis 204 (Suppl 1): S433–S438.

22. Hyde TB, Kruszon-Moran D, McQuillan GM, Cossen C, Forghani B, Reef SE, 2006. Rubella immunity levels in the United States population: has the threshold of viral elimination been reached? Clin Infect Dis 43 (Suppl 3): S146–S150.

23. Upreti SR et al., 2011. Developing rubella vaccination policy in Nepal—results from rubella surveillance and seroprevalence and congenital rubella syndrome studies. J Infect Dis 204 (Suppl 1): S433–S438.

24. World Health Organization, 2018. Immunization, Vaccines and Biologicals. Vaccine Preventable Diseases Vaccines Monitoring System 2016 Global Summary—Country List for WHO-UNICEF Review of National Immunization Coverage, Available at: http://apps.who.int/immunization_monitoring/globalsummary/wucoveragecountrystat.html. Accessed May 3, 2018.

25. Upreti SR et al., 2011. Developing rubella vaccination policy in Nepal—results from rubella surveillance and seroprevalence and congenital rubella syndrome studies. J Infect Dis 204 (Suppl 1): S433–S438.