AdS and stabilized extra dimensions in multidimensional gravitational models with nonlinear scalar curvature terms R^{-1} and R^4

Uwe Günthera*, Alexander Zhukbc†, Valdir B. Bezerrac‡, and Carlos Romeroc§

a Gravitationsprojekt, Mathematische Physik I, Institut für Mathematik, Universität Potsdam, Am Neuen Palais 10, PF 601553, D-14415 Potsdam, Germany
b Department of Physics, University of Odessa, 2 Dvoryanskaya St., Odessa 65100, Ukraine
c Departamento de Física, Universidade Federal de Paraíba C. Postal 5008, João Pessoa, PB, 58059-970, Brazil

09 June 2005

Abstract

We study multidimensional gravitational models with scalar curvature nonlinearities of the type R^{-1} and R^4. It is assumed that the corresponding higher dimensional spacetime manifolds undergo a spontaneous compactification to manifolds with warped product structure. Special attention is paid to the stability of the extra-dimensional factor spaces. It is shown that for certain parameter regions the systems allow for a freezing stabilization of these spaces. In particular, we find for the R^{-1}-model that configurations with stabilized extra dimensions do not provide a late-time acceleration (they are AdS), whereas the solution branch which allows for accelerated expansion (the dS branch) is incompatible with stabilized factor spaces. In the case of the R^4-model, we obtain that the stability region in parameter space depends on the total dimension $D = \text{dim}(M)$ of the higher dimensional spacetime M. For $D > 8$ the stability region consists of a single (absolutely stable) sector which is shielded from a conformal singularity (and an antigravity sector beyond it) by a potential barrier of infinite height and width. This sector is smoothly connected with the stability region of a curvature-linear model. For $D < 8$ an additional (metastable) sector exists which is separated from the conformal singularity by a potential barrier of finite height and width so that systems in this sector are prone to collapse into the conformal singularity. This second sector is not smoothly connected with the first (absolutely stable) one. Several limiting cases and the possibility for inflation are discussed for the R^4-model.

PACS numbers: 04.50.+h, 11.25.Mj, 98.80.Jk

1 Introduction

Distance measurements of type Ia supernovas (SNe,Ia) [1] as well as cosmic microwave background (CMB) anisotropy measurements [2] performed during the last years give strong evidence for the existence of dark energy — a smooth energy density with negative pressure which causes an accelerated expansion of the Universe at present time. This late time acceleration stage should have started approximately 5 billion years ago and represents a second acceleration epoch after inflation which lasted for 10^{-35} seconds immediately after Big Bang and ended 13.7 billion years ago.

The challenge to theoretical cosmology consists in finding a natural explanation of inflation and late time acceleration (dark energy) within the framework of string theory/M-theory or loop quantum gravity. Scenarios

* e-mail: u.guenther@fz-rossendorf.de, present address: Research Center Rossendorf, P.O. Box 510119, D-01314 Dresden, Germany
† e-mail: zhuk@paco.net
‡ e-mail: valdir@fisica.ufpb.br
§ e-mail: cromero@fisica.ufpb.br
which address one or both of these issues are, e.g., string (pre-bigbang) cosmology [3], a large number of brane world scenarios (brane inflation [4], the ekpyrotic [5] and born-again Universe [6] scenario, late-time acceleration via S-branes [7]), as well as the string theory/M-theory scenarios with flux compactifications [8, 9, 10, 11, 12] and the recent setups of loop quantum cosmology [13].

A different starting point for explaining the late time acceleration was taken in Refs. [14, 15], where it was shown that purely gravitational modifications of the (curvature linear) Einstein-Hilbert action by including curvature nonlinear terms of the type R^{-1}, R^n could induce a positive effective cosmological constant, and with it an accelerated expansion. The corresponding phenomenological studies were performed in four spacetime dimensions by transforming the curvature-nonlinear theory into an equivalent curvature-linear theory with the nonlinearity degrees of freedom carried by an additional dynamical scalar field. (The used technique had been developed in earlier work since the 1980s [16, 17, 18, 19].) A natural question which arises with regard to this phenomenological approach is of whether it can naturally follow as low-energy limit from some M-theory setup or — looking from down-side up — of whether it has a physically viable phenomenological extension to higher dimensions.

In the present paper we take the latter (phenomenological) point of view and study higher dimensional extensions of purely gravitational non-Einsteinian models with scalar curvature nonlinearities of the types R^{-1} and R^n. Special emphasis will be laid on finding parameter regions (regions in moduli space) which ensure the existence of at least one minimum of the effective potential for the volume moduli of the internal spaces and which by this way allow for their stabilization. The latter fact is of special importance because the extra-dimensional space components should be static or nearly static at least from the time of primordial nucleosynthesis (otherwise the fundamental physical constants would vary, see e.g., [20, 21], and observational bounds on the variation of the fine-structure constant could be violated [23]). During the last few years, problems of volume moduli stabilization have been studied, e.g., for models with large extra dimensions (Arkani-Hamed–Dimopoulos–Dvali (ADD) setups [24]) [25], as well as (more recently) for M-theory scenarios with flux compactifications [9, 10, 11, 12, 27, 28] and for brane-gas systems [29].

Here we will mainly follow our earlier work on this subject [23, 30, 31, 32, 33, 34], where the stabilization of extra dimensions was studied for $(D_0 + D')$-dimensional bulk spacetimes with a product topology. The corresponding product manifolds are constructed from Einstein spaces M_i with scale (warp) factors which depend only on the coordinates of the external D_0-dimensional spacetime M_0 (the ansatz resembles a zero mode approximation in Kaluza-Klein formalism). As a consequence, the excitations of the scale factors (conformal excitations/excitations of the volume moduli) have the form of massive scalar fields (gravitational excitons/radions) living in the external spacetime. Stabilized volume moduli will correspond to positive eigenvalues of the mass matrix of these scalar fields, unstable configurations to tachyonic excitations.

The present work can be understood as a direct continuation of our earlier investigation on volume moduli stabilization in \bar{R}^2-models of purely geometrical type [33] as well as with magnetic (solitonic, Freund-Rubin-type) form fields living in the extra dimensions (flux field compactifications) [34]. Its key results can be summarized as follows:

- A straightforward extension of a four-dimensional purely geometrical \bar{R}^{-1}-model to higher dimensions with subsequent dimensional reduction cannot simultaneously provide a late time acceleration and a stabilization of the extra dimensions. A late time acceleration is only possible for a solution branch which has a positive definite maximum of the effective potential, i.e. a positive definite effective cosmological constant, and not a negative definite minimum as it would be required for a stabilization of the internal factor space components. This means that other, more sophisticated, extension scenarios would be needed to reach both goals simultaneously.

- In contrast to the \bar{R}^2-models of Refs. [33, 34], the \bar{R}^4-model shows a rich substructure of the stability region in parameter (moduli) space which crucially depends on the total dimension $D = D_0 + D'$ of the bulk spacetime. There exists one stability sector which is present for all dimensions $D \geq D_0 + 2$ and which smoothly tends to the stability sector of an \bar{R}-linear model when the \bar{R}-nonlinearity is switched off. This sector is shielded from the (probably unphysical) antigravity sector of the theory by a potential barrier of infinite height and width, and hence, it will be absolutely stable with regard to transitions of the system into the antigravity sector. Apart from this sector of absolute stability, there exists a second sector for total dimensions $D < 8$ which is separated from a conformal singularity and an antigravity sector beyond it by a potential barrier of finite height and width. Systems in this sector will only be metastable and prone to collapse into the conformal singularity and the antigravity sector. The metastable sector is separated from the stability sector of the \bar{R}-linear model by an essential singularity in \bar{R} and the effective potential U_{eff} (when \bar{R} and U_{eff} are considered as functions over a parameter subspace).
The equation of motion for the theory (1) reads (see, e.g., Refs. [16, 17, 18])

\[\bar{R} = R[\bar{g}] \]

from a non-Einsteinian purely gravitational model with general scalar curvature nonlinearity of the type \(f(\bar{R}) \) to an equivalent curvature-linear model with additional nonlinearity carrying scalar field. Afterwards, we derive in Sec. 3 criteria which ensure the existence of at least one minimum for the effective potential of the internal space scale factors (volume moduli). These criteria are then used in sections 4 and 5 to obtain the regions in parameter (moduli) space which allow for a freezing stabilization of the scale factors in models with scalar curvature nonlinearities of type \(\bar{R}^{-1} \) and \(\bar{R}^2 \). The main results are summarized in the concluding Sec. 6.

2 General setup

We consider a \(D = (4 + D') \)-dimensional nonlinear pure gravitational theory with action functional

\[S = \frac{1}{2\kappa^2_D} \int_M d^D x \sqrt{\bar{g}} |f(\bar{R})|, \]

(1)

where \(f(\bar{R}) \) is an arbitrary smooth function with mass dimension \(O(m^2) \) \((m \text{ has the unit of mass})\) of a scalar curvature \(\bar{R} = R[\bar{g}] \) constructed from the \(D \)-dimensional metric \(\bar{g}_{ab} \) \((a, b = 1, \ldots, D)\). \(D' \) is the number of extra dimensions and \(\kappa^2_D \) denotes the \(D \)-dimensional gravitational constant which is connected with the fundamental mass scale \(M_{\ast(4+D')} \) and the surface area \(S_{D-1} = 2\pi^{(D-1)/2}/\Gamma[(D - 1)/2] \) of a unit sphere in \(D - 1 \) dimensions by the relation [35, 36, 37]

\[\kappa^2_D = 2S_{D-1}/M_{\ast(4+D')}^2. \]

(2)

The equation of motion for the theory (1) reads (see, e.g., Refs. [16, 17, 18])

\[f'\bar{R}_{ab} - \frac{1}{2} f\bar{g}_{ab} - \nabla_a \nabla_b f' + \bar{g}_{ab} \Box f' = 0 \]

(3)

and has as trace

\[(D - 1)\Box f' = \frac{D}{2} f - f'\bar{R}. \]

(4)

We use the notations \(\nabla_a \) and \(\Box \) for the covariant derivative and the Laplacian with respect to the metric \(\bar{g}_{ab} \), as well as the abbreviations \(f' = df/d\bar{R}, \bar{R}_{ab} = R_{ab}[\bar{g}] \).

Before we endow the metric of the pure gravity theory (1) with explicit structure, we recall that this \(\bar{R} \)-nonlinear theory is equivalent to a theory which is linear in another scalar curvature but which contains an additional self-interacting scalar field. According to standard techniques [16, 17, 18], the corresponding \(R \)-linear theory has the action functional:

\[S = \frac{1}{2\kappa^2_D} \int_M d^D x \sqrt{|g|} \left[R[g] - g^{ab}\phi_a\phi_b - 2U(\phi) \right], \]

(5)

where

\[f'(\bar{R}) = \frac{df}{d\bar{R}} := e^{A\phi} > 0, \quad A := \sqrt{\frac{D - 2}{D - 1}}, \]

(6)

and where the self-interaction potential \(U(\phi) \) of the scalar field \(\phi \) is given by

\[U(\phi) = \frac{1}{2} \left(f'(\bar{R}) \right)^{-D/(D-2)} \left[\bar{R} f' - f \right], \]

(7)

\[= \frac{1}{2} e^{-B\phi} \left[\bar{R}(\phi)e^{A\phi} - f(\bar{R}(\phi)) \right], \quad B := \frac{D}{\sqrt{(D-2)(D-1)}}. \]

(8)

The metrics \(g_{ab}, \bar{g}_{ab} \) and the scalar curvatures \(R, \bar{R} \) of the two theories (1) and (5) are conformally connected by the relations

\[g_{ab} = \Omega^2 \bar{g}_{ab} = \left[f'(\bar{R}) \right]^{2/(D-2)} \bar{g}_{ab}. \]

(9)
and

\[R = (f')^{2/(2-D)} \left\{ \tilde{R} + \frac{D-1}{D-2} (f')^{-2} g^{ab} \partial_a f' \partial_b f' - 2 \frac{D-1}{D-2} (f')^{-1} \bar{f} \right\} \]

(10)

via the scalar field \(\phi = \ln[f'(\tilde{R})]/A \). This scalar field \(\phi \) carries the nonlinearity degrees of freedom in \(\tilde{R} \) of the original theory, and for brevity we call it the nonlinearity field.

As next, we assume that the D-dimensional bulk space-time \(M \) undergoes a spontaneous compactification to a warped product manifold

\[M = M_0 \times M_1 \times \ldots \times M_n \]

(11)

with metric

\[\bar{g} = \bar{g}_{ab}(X) dX^a \otimes dX^b = \bar{g}^{(0)} + \sum_{i=1}^{n} e^{2\beta_i(x)} g^{(i)} . \]

(12)

The coordinates on the \((D_0 = d_0 + 1)\)--dimensional manifold \(M_0 \) (usually interpreted as our observable \((D_0 = 4)\)--dimensional Universe) are denoted by \(x \) and the corresponding metric by

\[\bar{g}^{(0)} = \bar{g}_{\mu\nu}^{(0)}(x) dx^\mu \otimes dx^\nu . \]

(13)

For simplicity, we choose the internal factor manifolds \(M_i \) as \(d_i \)--dimensional Einstein spaces with metrics \(g^{(i)} = g_{\alpha\beta}^{(i)}(x_i) dx_i^{\alpha} \otimes dx_i^{\beta} \), so that the relations

\[R_{m,n} \left[g^{(i)} \right] = \lambda^i g_{m,n}^{(i)} , \quad m_i, n_i = 1, \ldots, d_i \]

(14)

and

\[R \left[g^{(i)} \right] = \lambda^i d_i = R_i \]

(15)

hold. The specific metric ansatz (12) leads to a scalar curvature \(\tilde{R} \) which depends only on the coordinates \(x \) of the external space: \(\tilde{R}[\bar{g}] = \tilde{R}(x) \). Correspondingly, also the nonlinearity field \(\phi \) depends on \(x \) only: \(\phi = \phi(x) \).

Passing from the \(\tilde{R} \)--nonlinear theory (1) to the equivalent \(R \)--linear theory (5) the metric (12) undergoes the conformal transformation \(\bar{g} \mapsto g \) [see relation (9)]

\[g = \Omega^2 \bar{g} = (e^{A\phi})^{2/(D-2)} \bar{g} := g^{(0)} + \sum_{i=1}^{n} e^{2\beta_i(x)} g^{(i)} \]

(16)

with

\[g_{\mu\nu}^{(0)} := (e^{A\phi})^{2/(D-2)} \bar{g}_{\mu\nu}^{(0)} , \quad \beta^i := \beta^i + \frac{A}{D-2} \phi . \]

(17)

3 Freezing stabilization

The main subject of our subsequent considerations will be the stabilization of the internal space components. A strong argument in favor of stabilized or almost stabilized internal space scale factors \(\beta^i(x) \), at the present evolution stage of the Universe, is given by the intimate relation between variations of these scale factors and those of the fine-structure constant \(\alpha \) [23]. The strong restrictions on \(\alpha \)--variations in the currently observable part of the Universe [39] imply a correspondingly strong restriction on these scale factor variations [23]. For this reason, we will concentrate below on the derivation of criteria which will ensure a freezing stabilization of the scale factors. Extending earlier discussions of models with \(\tilde{R}^2 \) scalar curvature nonlinearities [33, 34] we will investigate here models of the nonlinearity types \(\tilde{R}^{\mu\nu} \) and \(\tilde{R}^4 \).

In Ref. [32] it was shown that for models with a warped product structure (12) of the bulk spacetime \(M \) and a minimally coupled scalar field living on this spacetime, the stabilization of the internal space components requires a simultaneous freezing of the scalar field. Here we expect a similar situation with simultaneous freezing stabilization of the scale factors \(\beta^i(x) \) and the nonlinearity field \(\phi(x) \). According to (17), this will also imply a stabilization of the scale factors \(\beta^i(x) \) of the original nonlinear model.

In general, the model will allow for several stable scale factor configurations (minima in the landscape over the space of volume moduli). We choose one of them, denote the corresponding scale factors as \(\beta^i_0 \), and work further on with the deviations

\[\tilde{\beta}^i(x) = \beta^i(x) - \beta^i_0 . \]

(18)

3For a discussion of possible decompactification scenarios we refer to the recent work [38].

4Although the toy model ansatz (1) is highly oversimplified and far from a realistic model, we can roughly think of the chosen minimum, e.g., as that one which we expect to correspond to the current evolution stage of our observable Universe.
as the dynamical fields. After dimensional reduction of the action functional (5) we pass from the intermediate Brans-Dicke frame to the Einstein frame via a conformal transformation

\[g^{(0)}_{\mu\nu} = \hat{\Omega}^2 \hat{g}^{(0)}_{\mu\nu} = \left(\prod_{i=1}^{n} e^{d_i \beta^i} \right)^{-2/(D_0 - 2)} \hat{g}^{(0)}_{\mu\nu} \]

with respect to the scale factor deviations \(\hat{\beta}^i(x) \) [33, 34, 36]. As result we arrive at the following action

\[S = \frac{1}{2\kappa^2_{D_0}} \int d^{D_0} x \sqrt{|g^{(0)}|} \left\{ \hat{R} \left[\hat{g}^{(0)} \right] - \hat{G}_{ij} \hat{g}^{(0)\mu\nu} \hat{\partial}_\mu \hat{\beta}^i \hat{\partial}_\nu \hat{\beta}^j - \hat{g}^{(0)\mu\nu} \partial_\mu \phi \partial_\nu \phi - 2U_{eff} \right\} , \]

which contains the scale factor offsets \(\beta^0 \) through the total internal space volume

\[V_{D'} \equiv V_I \times v_0 \equiv \prod_{i=1}^{n} \int_{M_i} d^i \beta^i_0 \times \prod_{i=1}^{n} e^{d_i \beta^i_0} \]

in the definition of the effective gravitational constant \(\kappa^2_{D_0} \) of the dimensionally reduced theory

\[\kappa^2_{(D_0=4)} = \kappa^2_{D}/V_{D'} = 8\pi/M_4^2 \quad \Longrightarrow \quad M_4^2 = \frac{4\pi}{S_{D-1}} V_{D'} M^{2+D'}_{(4+D')} . \]

Obviously, at the present evolution stage of the Universe, the internal space components should have a total volume which would yield a four-dimensional mass scale of order of the Planck mass \(M_4 = M_{Pl} \). The tensor components of the midisuperspace metric (target space metric on \(R^2 \)) \(\tilde{G}_{ij} \) \((i,j = 1, \ldots, n)\), its inverse metric \(\tilde{G}^{ij} \) and the effective potential are given as \([40, 41] \)

\[\tilde{G}_{ij} = d_i \delta_{ij} + \frac{1}{D_0 - 2} d_i d_j, \quad \tilde{G}^{ij} = \frac{\delta^{ij}}{d_i} + \frac{1}{2 - D} . \]

The effective potential has the explicit form

\[U_{eff}(\hat{\beta}, \phi) = \left(\prod_{i=1}^{n} e^{d_i \beta^i} \right)^{-\frac{2}{D_0 - 2}} \left[-\frac{1}{2} \sum_{i=1}^{n} \hat{R}_i e^{-2\beta^i} + U(\phi) \right] , \]

where we abbreviated

\[\hat{R}_i := R_i \exp(-2\beta^i_0) . \]

For completeness, we note that the original metric \(\hat{g}_{ab} \) of the \(\hat{R} \)-nonlinear model and the final Einstein frame metric \(\hat{g}_{\mu\nu} \) of the dimensionally reduced model are connected by the relation

\[\hat{g}_{ab} = (f')^{-\frac{2}{D_0 - 2}} \left[\left(\prod_{i=1}^{n} e^{d_i \beta^i} \right)^{-\frac{2}{D_0 - 2}} \hat{g}^{(0)}_{\mu\nu} + \sum_{i=1}^{n} e^{2\beta^i} \hat{g}^{(0)\mu\nu} \right] \]

which up to the nonlinearity induced conformal factor \((f')^{-2/(D-2)}\) takes (for scale factors depending only on the time coordinate) a similar form like in the recently analyzed cosmological \(S \)-brane models of Refs. \([7, 42]\).

A freezing stabilization of the internal spaces will be achieved if the effective potential has at least one minimum with respect to the fields \(\hat{\beta}^i(x) \). Assuming, without loss of generality, that one of the minima is located at \(\beta^i = \beta^i_0 \Rightarrow \hat{\beta}^i = 0 \), we get the extremum condition:

\[\frac{\partial U_{eff}}{\partial \beta^i} \bigg|_{\beta^i=0} = 0 \quad \Rightarrow \quad \hat{R}_i = \frac{d_i}{D_0 - 2} \left(-\sum_{j=1}^{n} \hat{R}_j + 2U(\phi) \right) . \]

\(^5\text{For simplicity, we work here with stabilized scale factors } \beta^i_0 \text{ which we assume as homogeneous and constant. In general, one can split the scale factors } \beta^i(x), \text{ e.g., into a coherent scale factor background } \beta^i_0(x) \text{ and non-coherent scale factor fluctuations } \hat{\beta}^i(x) = \beta^i(x) - \beta^i_0(x) \text{ over this background [31].} \)

\(^6\text{An alternative stabilization mechanism can consist, e.g., in the recently proposed dynamical stabilization in the vicinity of enhanced symmetry points [43]. In our present discussion we will not analyze such scenarios.} \)
From its structure (a constant on the l.h.s. and a dynamical function of $\phi(x)$ on the r.h.s) it follows that a stabilization of the internal space scale factors can only occur when the nonlinearity field $\phi(x)$ is stabilized as well. In our freezing scenario this will require a minimum with respect to ϕ:

$$\frac{\partial U(\phi)}{\partial \phi} \bigg|_{\phi_0} = 0 \iff \frac{\partial U_{eff}}{\partial \phi} \bigg|_{\phi_0} = 0. \quad (28)$$

We arrived at a stabilization problem, some of whose general aspects have been analyzed already in Refs. [30, 32, 33, 34]. For brevity we only summarize the corresponding essentials as they will be needed for more detailed discussions in the next sections.

1. Eq. (27) implies that the scalar curvatures \hat{R}_i and with them the compactification scales $e^{\beta_0^i}$ [see relation (25)] of the internal space components are finely tuned

$$\frac{\hat{R}_i}{d_i} = \frac{\hat{R}_j}{d_j}, \quad i, j = 1, \ldots, n. \quad (29)$$

2. The masses of the normal mode excitations of the internal space scale factors (gravitational excitons/radions) and of the nonlinearity field ϕ near the minimum position are given as [32]:

$$m_1^2 = \ldots = m_n^2 = -\frac{4}{D-2} U(\phi_0) = -2 \frac{\hat{R}_i}{d_i} > 0, \quad (30)$$

$$m_\phi^2 := \frac{d^2 U(\phi)}{d\phi^2} \bigg|_{\phi_0} > 0. \quad (31)$$

3. The value of the effective potential at the minimum plays the role of an effective 4D cosmological constant of the external (our) spacetime M_0:

$$\Lambda_{eff} := U_{eff} \bigg|_{\hat{\beta}^i = 0, \phi = \phi_0} = \frac{D_0 - 2}{D - 2} U(\phi_0) = \frac{D_0 - 2 \hat{R}_i}{2 d_i}. \quad (32)$$

4. Relation (32) implies

$$\operatorname{sign} \Lambda_{eff} = \operatorname{sign} U(\phi_0) = \operatorname{sign} R_i. \quad (33)$$

Together with condition (30) this shows that in a pure geometrical model stable configurations can only exist for internal spaces with negative curvature $R_i < 0$ ($i = 1, \ldots, n$). Additionally, the effective cosmological constant Λ_{eff} as well as the minimum of the potential $U(\phi)$ should be negative too:

$$\Lambda_{eff} < 0, \quad U(\phi_0) < 0. \quad (34)$$

5. Eqs. (21), (22), (25) and (29) - (32) yield the following scaling behavior of the minimum related model parameters under a change of one of the offset scale factors $\beta_0^i \rightarrow \beta_0^i(\lambda) := \ln(\lambda) \beta_0^i$ as it will be induced, e.g., by a change of the minimum value $U(\phi_0(1)) \rightarrow U(\phi_0(2))$:

$$e^{\beta_0^{i(2)}} = \lambda e^{\beta_0^{i(1)}}, \quad \Rightarrow \quad e^{\beta_0^{k(2)}} = \lambda e^{\beta_0^{k(1)}}, \quad \forall k, \quad (35)$$

$$\frac{m_{k(1)}^2}{m_{k(2)}^2} = \frac{\hat{R}_{k(1)}}{\hat{R}_{k(2)}} = \frac{\Lambda_{eff(1)}}{\Lambda_{eff(2)}} = \frac{U(\phi_0(1))}{U(\phi_0(2))} = \lambda^2, \quad (36)$$

$$\frac{\kappa^2(D_0=4), (1)}{\kappa^2(D_0=4), (2)} = \frac{V_{D'}(2)}{V_{D'}(1)} = \lambda^{D'}, \quad (37)$$

7 Negative constant curvature spaces M_i are compact if they have a quotient structure: $M_i = H^{d_i}/\Gamma_i$, where H^{d_i} and Γ_i are hyperbolic spaces and their discrete isometry group, respectively.
where the last inequality can be reshaped into the suitable form
\[f(\bar{R}) \approx c_1(\bar{R} - \bar{R}_0) + f(\bar{R}_0) \equiv c_1 \bar{R} + c_2, \] (38)
where \(c_1 := f'(\bar{R}_0) = \exp(\lambda \phi_0), \) \(\bar{R}_0 \equiv \bar{R}(\phi_0), \) and \(-c_2/(2c_1)\) plays the role of a cosmological constant. In the case of homogeneous and isotropic spacetime manifolds, linear purely geometrical theories with constant \(\Lambda \)-term necessarily imply an anti-deSitter/deSitter geometry so that the manifolds are Einstein spaces. Substitution of \(f(\bar{R}) \rightarrow c_1 \bar{R} + c_2 \) into Eq. (3) proves this fact directly
\[\bar{R}_{ab} \rightarrow -\frac{1}{D-2} \frac{c_2}{c_1} \bar{g}_{ab} \implies \bar{R} \rightarrow -\frac{D-2}{D-2} \frac{c_2}{c_1}. \] (39)

Plugging the potential \(U(\phi) \) from Eq. (8) into the minimum conditions (28), (31) yields with the help of \(\partial_\phi \bar{R} = Af'/f'' \) the conditions
\[
\begin{align*}
\frac{dU}{d\phi}_{\phi_0} & = \frac{A}{2(D-2)} (f')^{-D/(D-2)} h \bigg|_{\phi_0} = 0, \\
h : & = Df - 2\bar{R}f', \implies h(\phi_0) = 0, \\
\frac{d^2U}{d\phi^2}_{\phi_0} & = \frac{1}{2} A e^{(A-B)\phi_0} \left[\partial_\phi \bar{R} + (A-B)\bar{R} \right]_{\phi_0} \\
& = \frac{1}{2(D-1)} (f')^{-2(D-2)} \frac{1}{f''} \partial_\phi h \bigg|_{\phi_0} > 0,
\end{align*}
\] (40)
where the last inequality can be reshaped into the suitable form
\[f''\partial_\phi h \big|_{\phi_0} = f'' \left[(D-2)f' - 2\bar{R}f'' \right]_{\phi_0} > 0. \] (42)

Furthermore, we find from Eq. (40)
\[U(\phi_0) = \frac{D-2}{2D} (f')^{-\frac{2}{D-2}} \bar{R}(\phi_0) \] (43)
so that (34) leads to the additional restriction
\[\bar{R}(\phi_0) < 0 \] (44)
at the extremum. Via the relation (10) the stabilization point curvatures of the \(\bar{R} \)-nonlinear and the \(R \)-linear models are connected as
\[R_0 \approx (f')^{2/2-(D)} \bar{R}_0. \] (45)
Thus, as the extra dimensional scale factors approach their stability position the bulk spacetime curvature asymptotically (dynamically) tends to a negative constant value (see Eq. (44)). Because the effective cosmological constant is also negative \((\Lambda_{eff} < 0) \), the homogeneous and isotropic external \((D_0 = 4) \)-dimensional spacetime is asymptotically AdS\(_{D_0}\). Together with the compact hyperbolic internal spaces \(M_i = H^{d_i}/\Gamma_i \) this results in a spontaneous compactification scenario
\[\text{AdS}_D \rightarrow \text{AdS}_{D_0} \times H^{d_1}/\Gamma_1 \times \ldots \times H^{d_n}/\Gamma_n. \] (46)

In the next sections we will analyze the conditions (29) - (41), (44) on their compatibility with particular scalar curvature nonlinearities \(f(\bar{R}) \).

4 The \(R^{-1} \)-model

Recently it has been shown in Refs. [14] that cosmological models with a nonlinear scalar curvature term of the type \(R^{-1} \) can provide a possible explanation of the observed late-time acceleration of our Universe within a pure gravity setup. The equivalent linearized model contains an effective potential with a positive branch which can simulate a transient inflation-like behavior in the sense of an effective dark energy. The
corresponding considerations have been performed mainly in four dimensions. Here we extend these analyses to higher dimensional models — assuming that the scalar curvature nonlinearity is of the same form in all dimensions. We start from a nonlinear coupling of the type:

\[f(\tilde{R}) = \tilde{R} - \mu / \tilde{R}, \quad \mu > 0. \]

(47)

In front of the \(\tilde{R}^{-1} \)-term, the minus sign is chosen, because otherwise the potential \(U(\phi) \) will have no extremum.

With the help of definition (6), we express the scalar curvature \(\tilde{R} \) in terms of the nonlinearity field \(\phi \) and obtain two real-valued solution branches

\[\tilde{R}_\pm = \pm \sqrt{\mu} \left(e^{A\phi} - 1 \right)^{-1/2}, \quad \implies \phi > 0 \]

(48)

of the quadratic equation \(f'(\tilde{R}) = e^{A\phi} \). The corresponding potentials

\[U_\pm(\phi) = \pm \sqrt{\mu} e^{-B\phi} \sqrt{e^{A\phi} - 1} \]

(49)

have extrema for curvatures [see Eq. (40)]

\[\tilde{R}_{0,\pm} = \pm \sqrt{\mu} \sqrt{\frac{D + 2}{D - 2}} \]

\[e^{A\phi_0} = \frac{2B}{2B - A} = \frac{2D}{D + 2} > 1 \quad \text{for} \quad D \geq 3 \]

(50)

and take for these curvatures the values

\[U_\pm(\phi_0) = \pm \sqrt{\mu} \sqrt{\frac{D - 2}{D + 2}} e^{-B\phi_0} = \pm \sqrt{\mu} \sqrt{\frac{D - 2}{D + 2}} \left(\frac{2D}{D + 2} \right)^{-D/(D-2)}. \]

(51)

The stability defining second derivatives [Eq. (41)] at the extrema (50),

\[\partial_\phi^2 U_\pm|_{\phi_0} = \pm \sqrt{\mu} \frac{D}{D - 1} \sqrt{\frac{D + 2}{D - 2}} e^{B\phi_0} \]

\[= \pm \sqrt{\mu} \frac{D}{D - 1} \sqrt{\frac{D + 2}{D - 2}} \left(\frac{2D}{D + 2} \right)^{-D/(D-2)}, \]

(52)

show that only the negative curvature branch \(\tilde{R}_- \) yields a minimum with stable internal space components. The positive branch has a maximum with \(U_+(\phi_0) > 0 \). According to (33) it can provide an effective dark energy contribution with \(\Lambda_{eff} > 0 \), but due to its tachyonic behavior with \(\partial_\phi^2 U(\phi_0) < 0 \) it cannot give stably frozen internal dimensions. This means that the simplest extension of the four-dimensional purely geometrical \(\tilde{R}^{-1} \) setup of Refs. [14] to higher dimensions is incompatible with a freezing stabilization of the extra dimensions. A possible circumvention of this behavior could consist in the existence of different nonlinearity types \(f_i(\tilde{R}_i) \) in different factor spaces \(M_i \) so that their dynamics can decouple one from the other. This could allow for a freezing of the scale factors of the internal spaces even in the case of a late-time acceleration with \(\Lambda_{eff} > 0 \). Another circumvention could consist in a mechanism which prevents the dynamics of the internal spaces from causing strong variations of the fine-structure constant \(\alpha \). The question of whether one of these schemes could work within a physically realistic setup remains to be clarified.

Finally we note that in the minimum of the effective potential \(U_{eff}(\phi, \beta) \), which is provided by the negative curvature branch \(\tilde{R}_i(\phi) \), one finds excitation masses for the gravitexitons/radions and the nonlinearity field (see Eqs. (30), (51) and (52)) of order

\[m_1 = \ldots = m_n \sim m_\phi \sim \mu^{1/4}. \]

(53)

For the four-dimensional effective cosmological constant \(\Lambda_{eff} \) defined in (32) one obtains in accordance with Eq. (51) \(\Lambda_{eff} \sim -\sqrt{\mu} \).

5 The \(R^4 \)-model

In this section we analyze a model with curvature-quartic correction term of the type

\[f(\tilde{R}) = \tilde{R} + \gamma \tilde{R}^4 - 2\Lambda_D. \]

(54)

This setup contains no quadratic curvature terms and can be understood as a very rough approximative analogue of specific curvature corrected models of M-theory (see e.g. [19, 45, 46]). The investigation will be performed

\footnote{A discussion of pro and contra of a higher dimensional origin of \(\tilde{R}^{-1} \) terms can be found in Ref. [15].}

\footnote{The role of curvature-quartic corrections in M-theory inflation scenarios was recently discussed in Ref. [44].}
for an arbitrary number of dimensions, D.

We start by deriving the explicit form of the potential $U(φ)$. For this purpose we substitute $f(\tilde{R})$ from (54) into relation (6),

$$f' = e^{Aφ} = 1 + 4γ\tilde{R}^3,$$

and resolve the latter equation for \tilde{R}:

$$\tilde{R} = (4γ)^{-1/3}(e^{Aφ} - 1)^{1/3}, \quad -∞ < φ < ∞.$$

The potential $U(φ)$ is then found from Eq. (8) as

$$U(φ) = \frac{1}{2}e^{-Bφ} \left[\frac{3}{4}(4γ)^{-1/3}(e^{Aφ} - 1)^{4/3} + 2Λ_D \right].$$

From its form with $U[φ; Λ_D > 0, γ > 0] ≥ 0$ ∀φ (58), we immediately conclude that the minimum condition $U(φ_0) < 0$ cannot be satisfied in the sector $(Λ_D > 0, γ > 0)$. In the remaining sectors, the potential will have a minimum if the extremum condition (40) and the minimum-ensuring inequality (42) will be fulfilled simultaneously. In the present case, these conditions read

$$h[Λ_D, γ, \tilde{R}] := γ(D - 8)\tilde{R}^4 + (D - 2)\tilde{R} - 2DΛ_D|_{φ_0} = 0$$

and

$$f''\partial_φ h = 12γ\tilde{R}^2[(D - 2) + 4(D - 8)γ\tilde{R}^3]|_{φ_0} > 0,$$

respectively. From their structure it follows that the dimension $D = 8$ will constitute an exceptional class of models [due to cancellation of the highest order terms in (59), (60)]. We will analyze this class of models in subsection 5.2 below.

5.1 Dimensions $D ≠ 8$

Eq. (59), $h[Λ_D, γ, \tilde{R}] = 0$, is an algebraic equation in the variables $(Λ_D, γ, \tilde{R})$ which defines a two-dimensional algebraic variety $V ⊂ M$ in the three-dimensional parameter space $M = R^3 \ni (Λ_D, γ, \tilde{R})$. On this variety inequality (60) together with the restrictions (44) and (6)

$$\tilde{R} < 0, \quad f' = 1 + 4γ\tilde{R}^3 > 0$$

selects the parameter subset $Υ ⊂ V$ of stably compactified internal space configurations. Choosing $Λ_D$ and $γ$ as independent parameters, our main task will consist in obtaining the projection $Θ(Λ_D, γ)$:= πΥ of the stability region $Υ ⊂ V ⊂ M$ onto the $(Λ_D, γ)$–plane. (By π we denote the projection itself.) Most of the information will be derived by finding restrictions on $(Λ_D, γ)$ from the conditions which ensure the reality of \tilde{R} as solution of the algebraic equation (59).

In order to obtain the solutions \tilde{R} of equation (59) explicitly, we follow standard techniques (see, e.g., [47] and A) and consider first the associated cubic equation

$$u^3 + \frac{8DΛ_D}{γ(D - 8)}u - \left[\frac{D - 2}{γ(D - 8)} \right]^2 = 0$$

and its discriminant Q:

$$Q = r^2 + q^3, \quad q := \frac{8DΛ_D}{3γ(D - 8)}, \quad r := \frac{1}{2} \left[\frac{D - 2}{γ(D - 8)} \right]^2.$$

Depending on the sign of Q, the cubic equation (62) has one real solution for $Q > 0$ or three real solutions for $Q ≤ 0$, where in the case $Q = 0$ at least two of these solutions coincide. Denoting (one of) the real solution(s) by u_1, the four roots of the quartic equation (59) can then be obtained according to (138), (139) as solutions of the two quadratic equations

$$\tilde{R}^2 ± \sqrt{u_1} \tilde{R} + \frac{1}{2} \left(u_1 ± ε\sqrt{u_1^2 + 3q} \right) = 0,$$
with
\[\epsilon = -\text{sign} \left(\frac{D - 2}{\gamma(D - 8)} \right). \] (65)

Physically sensible solutions will correspond to real roots of these equations.

Following this general scheme of analysis, we start from the discriminant \(Q \) which we rewrite for later convenience as
\[Q = \frac{D^3(D - 8)}{(D - 2)^4}. \] (66)

In B it is shown that the minimum ensuring inequality (60) implies
\[z(\Lambda D, \gamma) > -1 \] (67)
so that \(Q \) is necessarily positive definite, \(Q > 0 \), and, hence, Eq. (62) has only one real-valued root \(u_1 \leq 0 \),
\[u_1 = \frac{r + Q^{1/2}}{2^{1/3}} \left[r + Q^{1/2} \right]^{1/3} \]
\[u_1 = r^{1/3} v_1(z) > 0, \] (68)
where
\[v_1(z) = \left[1 + (1 + z)^{1/2} \right]^{1/3} \left[1 - (1 + z)^{1/2} \right]^{1/3}. \] (69)

It is now an easy task to explicitly analyze the pair of quadratic equations (64). They will only have real-valued roots, if at least one of the corresponding discriminants \(\Delta_\pm \) will be non-negative
\[\Delta_\pm = -u_1 \mp 2\epsilon \sqrt{u_1^2 + 3q} \geq 0. \] (70)
(The subscripts \(\pm \) in \(\Delta_\pm \) correspond to the signs in Eq. (64).) Because of \(u_1 > 0 \) this holds only for
\[\Delta_- = -u_1 + 2\epsilon \sqrt{u_1^2 + 3q} \geq 0 \] (71)
and under the additional reality-ensuring requirement
\[u_1^2 + 3q \geq 0. \] (72)

Using the definitions (66), (69) of \(z \) and \(v_1(z) \), the inequalities \(\Delta_- \geq 0 \) and (72) can be reshaped into the form
\[H_1(z) := v_1^6(z) + 64z \geq 0 \] (73)
\[H_2(z) := v_1^6(z) + 27z \geq 0, \] (74)
respectively.

From the graphics of the functions \(H_{1,2}(z) \) depicted in Fig. 1, we read off that both inequalities (73), (74) are satisfied for \(z > -1 \) and no additional restrictions are set by them on the allowed region of the parameter \(z \).

Hence, we arrive at the result that the real-valued roots of the quartic equation (59) follow from the equations (64) by identifying in them \(\pm = -\epsilon \). The corresponding quadratic equation reads
\[\bar{R}^2 - \epsilon \sqrt{u_1} \bar{R} + \frac{1}{2} \left(u_1 - \sqrt{u_1^2 + 3q} \right) = 0 \] (75)

and has solutions (we distinguish them again by subscripts \(\pm \))
\[\bar{R}_{\epsilon,\pm} = \frac{1}{2} \left(\epsilon \sqrt{u_1} \pm \sqrt{2\sqrt{u_1^2 + 3q} - u_1} \right) = r^{1/6} T_{\epsilon,\pm}(z), \] (76)
where
\[T_{\epsilon, \pm}(z) := \frac{1}{2} \left(\epsilon \sqrt{v_1} \pm \sqrt{2v_1^2 + 3z^{1/3} - v_1} \right). \] (77)

These roots are defined over the complete parameter region \(z(\Lambda_D, \gamma) > -1 \) so that further restrictions on \((\Lambda_D, \gamma) \) can only follow from the additional requirements (61).

The first of these requirements, \(\bar{R} < 0 \), should be fulfilled for a successful freezing stabilization of the extra-dimensional factor spaces. From the structure of (76), (77) we read off that \(\bar{R}_{+, +} \) contradicts this bound, whereas for the remaining solutions it partially narrows the allowed parameter region as follows
\[\bar{R}_{+, -} : \quad 0 < z, \]
\[\bar{R}_{-, +} : \quad -1 < z < 0, \]
\[\bar{R}_{-, -} : \quad -1 < z. \] (78)

The second inequality, \(f' = 1 + 4\gamma \bar{R}^3 > 0 \), of (61) is analyzed in C and maps into the following parameter restrictions
\[D < 8 : \quad z < -w(D) = |w(D)|, \] (79)
\[D > 8 : \quad -w(D) < z. \] (80)

So far, we have performed our analysis mainly in terms of the function \(z(\Lambda_D, \gamma) \) and, hence, in terms of projections of the bounds (60) and \(f' > 0 \) on the \((\Lambda_D, \gamma) \)–plane. For completeness, we have to test whether all of the projected segments of \(\mathcal{V} \) over the allowed region of the \((\Lambda_D, \gamma) \)–plane fulfill the additional bound \(\bar{R} < 0 \), i.e. we should re-analyze (60) and \(f' > 0 \) in terms of \(\bar{R} \). We start with (60). A simple case analysis gives
\[\gamma > 0 : \]
\[D > 8, \quad \epsilon = - : \quad \bar{R}^3 > -\left| \frac{1}{4\gamma} \frac{D - 2}{D - 8} \right|, \] (81)
\[D < 8, \quad \epsilon = + : \quad \bar{R}^3 < \left| \frac{1}{4\gamma} \frac{D - 2}{D - 8} \right|, \] (82)
\[\gamma < 0 : \]
\[D > 8, \quad \epsilon = + : \quad \bar{R}^3 > \left| \frac{1}{4\gamma} \frac{D - 2}{D - 8} \right| > 0, \] (83)
\[D < 8, \quad \epsilon = - : \quad \bar{R}^3 < -\left| \frac{1}{4\gamma} \frac{D - 2}{D - 8} \right|. \] (84)

The restrictions (78) are only necessary conditions for the existence of solutions \(\bar{R} < 0 \) of the quartic equation, and provide only partial information about (60) and \(f' > 0 \).
and shows that configurations with $D > 8, \gamma < 0$ violate the bound $\bar{R} < 0$, whereas (82) is weaker than $\bar{R} < 0$. The remaining two inequalities (81), (84) can be reshaped with the help of (77) and

$$\left| \frac{1}{4\gamma D - 8} \right| = 2^{-3/2}r^{1/2}$$

(from Eq. (63)) as

$$T_{-,\pm} > -2^{-1/2} , \quad T_{-,\mp} < -2^{-1/2} ,$$

respectively. From the graphics of the functions $T_{-,\pm}(z)$ shown in Fig. 2 we read off that $T_{-,+}(z) > -2^{-1/2}$,

$T_{-,\mp}(z) < -2^{-1/2}$ for $z > -1$. Hence, inequality (81) is fulfilled only by $\bar{R}_{-,+}$, whereas (84) selects $\bar{R}_{-,\mp}$. A comparison of the inequalities (81) - (84) with the condition $f' = 1 + 4\gamma \bar{R}^3 > 0$ and its implications

$$\gamma > 0 : -(4\gamma)^{-1} < \bar{R}^3 , \quad \gamma < 0 : \bar{R}^3 < |4\gamma|^{-1}$$

shows that the latter relations (87) are compatible with them and add no additional restrictions.

Combining the information about the inequalities (81) - (84) with (58) and the relations (78), (79), (80) we arrive at the following parameter regions for configurations with a possible freezing stabilization of extra-dimensional (internal) factor spaces:

$$D > 8 : \quad \gamma > 0 : \quad \bar{R}_{-,+} , \quad -w(D) < z < 0 ,$$

$$\gamma < 0 : \quad \text{no stability} ,$$

$$D < 8 : \quad \gamma > 0 : \quad \bar{R}_{+,\mp} , \quad 0 < z < |w(D)| ,$$

$$\gamma < 0 : \quad \bar{R}_{-,\mp} , \quad -1 < z < |w(D)| .$$

This result is schematically shown in Figs. 3, 4. (The regions of formal extension to configurations with $f' < 0$ are included in the graphics for reasons of completeness. They are briefly discussed in subsection 5.3, below.)

5.2 The exceptional dimension $D = 8$

In this particular case, the \bar{R}-nonlinear terms in the minimum-ensuring conditions (59), (60) cancel and the bounds on the solution can be read off immediately:

$$\bar{R} = \frac{8}{3}\Lambda_D < 0 , \quad \gamma > 0 .$$

\footnote{For completeness we note that in the setup of the previous subsection 5.1 the formal limit $D \to 8$ (for D assumed as non-discrete and real-valued) would correspond to the exceptional (singular) case $z \to 0, Q \to +\infty$.}
Figure 3: Projection $\Theta(\Lambda_D, \gamma)$ of the stability region $\Upsilon \subset \mathcal{V} \subset \mathcal{M}$ of a subcritical model with $D < 8$ on the (Λ_D, γ)-plane (shaded areas with $f' > 0$). The two lines $z(\Lambda_D, \gamma) = -w(D)$, given in Eq. (152), correspond to the conformal singularity $f' = 0$ where $\bar{R} \to -(4\gamma)^{-1/3}$ maps into $R \to -\infty$. They separate parameter regions with $U(\phi \to -\infty) \to +\infty$ (dark grey) from regions with $U(\phi \to -\infty) \to -\infty$ (light grey). For $f' > 0$ the corresponding regions ensure the existence of an absolutely stable minimum (dark grey) and a metastable minimum (light grey, see the discussion in subsection 5.3 below). The $(f' < 0)$-regions have been included into the graphics for completeness.

[$\bar{R} < 0$ follows from relation (43) and condition (44).] The restriction $f' = 1 + 4\gamma\bar{R}^3 > 0$ sets the same additional bound on the allowed parameter region

$$-1 < 4\gamma \left(\frac{8}{3} \Lambda_D\right)^3 < 0$$

as (80) in the case of $D > 8$.

5.3 Stable and metastable configurations

In the previous two subsections 5.1 and 5.2, it has been shown that models in $D \geq 8$ dimensions possess a stability region $\Theta(\Lambda_D, \gamma) = \pi \Upsilon$, which is located in the upper (Λ_D, γ)-half-plane. For models in $D < 8$ dimensions this region is larger and extends additionally into the lower (Λ_D, γ)-plane (see the relations (88) - (91) and Figs. 3, 4). Now we will analyze the system over these stability regions in more detail.

We start with the asymptotic behavior of the potential $U(\phi)$ in the limits $\phi \to \pm \infty$. In the high curvature limit $\phi \to +\infty$ with dominant nonlinearity of the type $f' = e^{A\phi} = 1 + 4\gamma\bar{R}^3 \gg 1$ we find from (57)

$$U(\phi \to +\infty) \approx \frac{3}{8} (4\gamma)^{-1/3} e^{(-B+4A/3)\phi}$$

and the sign of the coefficient in the exponent

$$\frac{4}{3} A - B = \frac{A D - 8}{3 D - 2}$$

leads for fixed γ to a qualitatively different behavior for dimensions $D > 8$ and $D < 8$:

$$U(\phi \to +\infty) \to \frac{3}{8} (4\gamma)^{-1/3} \times \begin{cases} \infty & \text{for } D > 8 , \\ 1 & \text{for } D = 8 , \\ 0 & \text{for } D < 8 . \end{cases}$$

\[12\]Here and in the subsequent considerations the high curvature limits are understood as formal limits (in the mathematical sense) within the framework of our simplified toy model. It is clear that in a model with scalar curvature nonlinearity of the type $f(R) = R + \sum_{k=2}^{N} a_k R^k$ gravitational self-interaction effects will dominate when $\sum_{k=2}^{N} a_k R^{k-1} \gtrless 1$. (For discussions of related subjects we refer to [48].) This means that a self-consistent treatment of the model would require techniques from (loop) quantum gravity or the high-energy sector of M-theory — what is out of the scope of the present paper.
Figure 4: Projection \(\Theta(\Lambda_D, \gamma) \) of the stability region \(\Upsilon \subset V \subset M \) of a model with \(D \geq 8 \) on the \((\Lambda_D, \gamma)\)-plane (shaded areas with \(f' > 0 \)). The line \(z(\Lambda_D, \gamma) = -w(D) \), given in Eq. (152), corresponds to the conformal singularity \(f' = 0 \) where \(\tilde{R} \rightarrow -\left(4\gamma\right)^{-1/3} \) maps into \(\tilde{R} \rightarrow -\infty \). It separates the parameter region with \(U(\phi \rightarrow -\infty) \rightarrow +\infty \) (dark grey) from the region with \(U(\phi \rightarrow -\infty) \rightarrow -\infty \) (light grey). For \(f' > 0 \) the corresponding region ensures the existence of an absolutely stable minimum (dark grey). The \((f' < 0)\)-region is depicted for completeness. The lower half-plane \(\gamma < 0 \) corresponds to unstable configurations.

The existence of a critical dimension (in our case \(D = 8 \)) is a rather general feature of gravitational theories with polynomial scalar curvature terms (see, e.g., Refs. [17, 49]). It can be easily demonstrated for a model with curvature nonlinearity of the type

\[
f(\tilde{R}) = \sum_{k=0}^{N} a_k \tilde{R}^k
\]

for which the ansatz

\[
e^{A\phi} = f' = \sum_{k=0}^{N} k a_k \tilde{R}^{k-1}
\]

leads, similar like (7), to a potential

\[
U(\phi) = \frac{1}{2} (f')^{-D/(D-2)} \sum_{k=0}^{N} (k-1) a_k \tilde{R}^k.
\]

In the limit \(\phi \rightarrow +\infty \) the curvature will behave like \(\tilde{R} \approx ce^{h \phi} \) where \(h \) and \(c \) can be defined from the dominant term in (98):

\[
e^{A\phi} \approx Na_N \tilde{R}^{N-1} \approx Na_N c^{N-1} e^{(N-1)h \phi}.
\]

Here the requirement \(f' > 0 \) allows for the following sign combinations of the coefficients \(a_N \) and the curvature asymptotics \(\tilde{R}(\phi \rightarrow \infty) \):

\[
N = 2l : \quad \text{sign}[a_N] = \text{sign}[\tilde{R}(\phi \rightarrow \infty)]
\]

\[
N = 2l + 1 : \quad a_N > 0, \quad \text{sign}[\tilde{R}(\phi \rightarrow \infty)] = \pm 1.
\]

The other combinations, \(N = 2l : \quad \text{sign}[a_N] = -\text{sign}[\tilde{R}(\phi \rightarrow \infty)] \), \(N = 2l+1 : \ a_N < 0, \quad \text{sign}[\tilde{R}(\phi \rightarrow \infty)] = \pm 1 \), would necessarily correspond to the \(f' < 0 \) sector, so that the complete consideration should be performed in terms of the extended conformal transformation technique of Ref. [18]. Such a consideration is out of the scope of the present paper and we restrict our attention to the cases (101). The coefficients \(h \) and \(c \) are then easily derived as \(h = A/(N-1) \) and \(c = \text{sign}(a_N)|Na_N|^{-\frac{1}{N-1}} \). Plugging this into (99) one obtains

\[
U(\phi \rightarrow +\infty) \approx \text{sign}(a_N) \frac{(N-1)}{2N} |Na_N|^{-\frac{1}{N-1}} e^{-\frac{D}{2N} A\phi} e^{\frac{N}{N-1} A\phi}
\]
and that the exponent
\[
\frac{D - 2N}{(D - 2)(N - 1)} A
\]
changes its sign at the critical dimension \(D = 2N \):
\[
U(\phi \to +\infty) \to \text{sign} (a_N) \frac{(N - 1)}{2N} |Na_N|^{-1} \times \left\{ \begin{array}{ll}
\infty & \text{for } D > 2N, \\
1 & \text{for } D = 2N, \\
0 & \text{for } D < 2N.
\end{array} \right.
\]
This critical dimension \(D = 2N \) is independent of the concrete coefficient \(a_N \) and is only defined by the degree \(\text{deg} \bar{R}(f) \) of the scalar curvature polynomial \(f \). From the asymptotics (104) we read off that in the high curvature limit \(\phi \to +\infty \), within our oversimplified classical framework, the potential \(U(\phi) \) of the considered toy-model shows asymptotical freedom for subcritical dimensions \(D < 2N \), a stable behavior for \(a_N > 0, D > 2N \) and a catastrophic instability for \(a_N < 0, D > 2N \). We note that this general behavior suggests a way how to cure a pathological (catastrophic) behavior of polynomial \(\bar{R}^{N} \)--nonlinear theories in a fixed dimension \(D > 2N \): By including higher order corrections up to order \(N_2 > D/2 \) the theory gets shifted into the non-pathological sector with asymptotical freedom. More generally, one is even led to conjecture that the partially pathological behavior of models in supercritical dimensions could be an artifact of a polynomial truncation of an (presently unknown) underlying non-polynomial \(f(\bar{R}) \) structure at high curvatures — which probably will find its resolution in a strong coupling regime of \(M \)--theory or in loop quantum gravity.

![Figure 5: Typical form of a potential \(U(\phi) \) with parameters \((\Lambda_D, \gamma)\) from a subcritical \((D < 8)\) region of absolute stability \(U(\phi \to -\infty) \to +\infty, U(\phi \to +\infty) \to +0 \) in the physical sector \(f' > 0 \). Specifically, it is set \(D = 6, \Lambda_D = -1/4 \) for several values of \(\gamma \) (in Planck units).](image-url)

As next step we consider the opposite limit \(\phi \to -\infty \) which corresponds to \(f' \to 0 \). From (7) we see that the potential \(U(\phi) \) of a model with general polynomial \(\bar{R} \)--nonlinearity (97) behaves in this limit like
\[
U(\phi \to -\infty) \approx -\frac{1}{2} e^{-\frac{\bar{R}}{2^\gamma} A\phi f(\bar{R}_{c1})},
\]
where \(\bar{R}_{c1} \) is one of the real roots of the polynomial \(f'(\bar{R}) = 0 \) given in (98). In other words, the potential \(U(\phi) \) diverges like
\[
U(\phi \to -\infty) \to -\text{sign} [f(\bar{R}_{c1})] \times \infty
\]
for any dimension \(D \) and any value \(f(\bar{R}_{c1}) \neq 0 \). This means that, for energetic reasons, the system will be repelled from configurations with \(f' \approx 0 \) by an infinitely high barrier \(U(\phi \to -\infty) \to +\infty \) in the case \(f(\bar{R}_{c1}) < 0 \), and it will be catastrophically attracted (experience a collapse) to \(f' \approx 0 \) in the case \(f(\bar{R}_{c1}) > 0, U(\phi \to -\infty) \to -\infty \).

Let us make this general consideration explicit for the \(\bar{R}^4 \)--model (54). The polynomial \(f' = 1 + 4\gamma \bar{R}^4 \) has the single real-valued root \(\bar{R}_{c2} = -(4\gamma)^{-1/3} \), which was used in (149) - (80) to map the inequality \(f' > 0 \) into
Figure 6: Typical form of a potential $U(\phi)$ of a subcritical ($D < 8$) metastable system with $U(\phi \to -\infty) \to -\infty$, $U(\phi \to +\infty) \to -0$ in the physical sector $f' > 0$. It is set $D = 6$, $\Lambda_D = 1/4$ for several values of γ (in Planck units).

the (Λ_D, γ)-plane [result: the bounds $-w(D > 8) < z$, $z < -w(D < 8)$]. Plugging this root into f we get

$$f(\bar{R}_{c2}) = -\left[\frac{3}{4}(4\gamma)^{-1/3} + 2\Lambda_D\right].$$

(107)

From the condition $f(\bar{R}_{c2}) < 0$ for the existence of a repelling potential barrier with $U(\phi \to -\infty) \to +\infty$ limit one finds the following inequalities (regardless of the existence of a minimum)

$$\gamma > 0 : \quad \frac{8}{3}(4\gamma)^{1/3}\Lambda_D > -1,$$
$$\gamma < 0 : \quad \frac{8}{3}(4\gamma)^{1/3}\Lambda_D < -1.$$

(108)

(Below we will show that the case $\gamma > 0$ holds for the $(f' > 0)$-sector, whereas $\gamma < 0$ will correspond to $f' < 0$.)

Multiplication with $w(D)$ leads to the equivalent conditions

$$D > 8 : \quad \gamma > 0 : \quad -w(D) < z,$$
$$\gamma < 0 : \quad z < -w(D),$$

(109)

$$D < 8 : \quad \gamma > 0 : \quad z < -w(D) = |w(D)|,$$
$$\gamma < 0 : \quad |w(D)| = -w(D) < z.$$

(110)

We see that the asymptotical behavior of the potential $U(\phi \to -\infty)$ is defined by similar parameter regions in z like those which control the existence of a minimum under the condition $f' > 0$. In both cases the bound is connected with the critical value $f' = 0$ which corresponds to $z_c = -w(D)$. This is not a surprise because the two simultaneous conditions $f'(\bar{R}_{c2}) = 0$, $f(\bar{R}_{c2}) = 0$, which define the critical value z_c in the inequalities $f(\bar{R}_{c2}) < 0$, $f(\bar{R}_{c2}) > 0$, fulfill the extremum condition $\partial_\phi U(\phi) = 0$, i.e. $h = Df - 2f'R = 0$ in (40) and hence the quartic equation (59).

Analogously to inequalities (108) - (112) we get from the condition $f(\bar{R}_{c2}) > 0$ for a catastrophically attracting potential, $U(\phi \to -\infty) \to -\infty$, that such an asymptotics holds over the sectors

$$D > 8 : \quad \gamma > 0 : \quad z < -w(D),$$
$$\gamma < 0 : \quad -w(D) < z,$$

(113)

$$D < 8 : \quad \gamma > 0 : \quad |w(D)| = -w(D) < z,$$
$$\gamma < 0 : \quad z < -w(D) = |w(D)|.$$

(114)

(115)

(116)

\(^{13}\)Obviously, it holds trivially $h = Df - 2f'R = 0$ for $\bar{R} = \bar{R}_{c2}$.

16
These sectors are complementary to those in (109) - (112). Here, we observe that \(\gamma < 0 \) for \(f' > 0 \) and \(\gamma > 0 \) for \(f' < 0 \). This is confirmed by a comparison of inequalities (109) - (116) with (79), (80) and the inequalities in 18. Obviously, the regions \(z < -w(D) \) for \(D > 8 \) and \(z > -w(D) = |w(D)| \) for \(D < 8 \) correspond to a formal extension of the potential \(U(\phi) \) into the \((f' < 0)\)-sector. For completeness, these regions have been included into Figs. 3, 4. The typical \(U(\phi \to -\infty) \to \pm \infty \) behavior of the potential is illustrated in Figs. 5,6.

From Fig. 6 we see that the minimum is separated by a barrier of finite height and width from the singularity at \(\phi \to -\infty \). Hence, we find that the \(R^2 \)-models in the \((f' > 0)\)-sector are absolutely stable for \(\gamma > 0 \) and metastable with tendency to collapse into the singularity \(f' \approx 0 \) for \(\gamma < 0 \). We further see from the conformal relation (10) between the scalar curvature \(\tilde{R} \) of the nonlinear model and the curvature \(R \) of the equivalent linear model that \(f' = 0 \), and hence \(z = |w(D)| \), corresponds to a conformal singularity: The finite curvature value \(\tilde{R}_2 = -(4\gamma)^{-1/3} \) of the nonlinear model is related to a curvature singularity \(R \sim (f')^{-2/(D-2)} \tilde{R}_2 \) in the associated linear model.

A detailed study of various limiting cases is given in D. The corresponding main results can be summarized as follows.

- The limit \((\Lambda_D \to -0, \gamma > 0)\) in the stable sector corresponds to a flat-space limit \(\tilde{R} \to -0 \) which via (55) is associated with a freezing of the nonlinearity field \(\phi \): \(f' \to 1 \) at \(\phi_0 \to 0 \). In the metastable sector nothing special happens in the limit \((\Lambda_D \to 0, \gamma < 0)\).

- For \(\Lambda_D \neq 0 \) the limit \(\gamma \to +0 \) corresponds to a freezing of the nonlinearity field \(\phi \) at \(\phi_0 = 0 \) and a smooth transition to a linear gravity model of Einstein-Hilbert type. In contrast, the limit \(\gamma \to -0 \) of the metastable \((D < 8)\)-system results in an infinitely deep minimum \(\tilde{U}(\phi_0, \gamma \to 0) \to -\infty \) at \(\phi_0 = (1/A) \ln |3D/(D-8)| \) and a curvature singularity \(\tilde{R}_{-+} (\gamma \to -0, D < 8) \approx -|(D-2)/(\gamma(D-8))|^{1/3} \).

- The limit \(z \to -1 \) (in the metastable sector) corresponds to coalescing minimum and maximum of the potential \(\tilde{U}(\phi) \) (with resulting inflection point at \(z = -1 \)). For \(z \leq -1 \) the potential \(\tilde{U}(\phi) \) has no minimum at all and the system is completely unstable.

5.4 Inflation in the \((\gamma > 0)\)-sector

For simplicity we restrict our attention to most simple models with only one internal factor space \(M_1 \). The requirement for non-vanishing negative curvature of this space (in order to ensure a late-time stabilization of the corresponding dimensions) holds only for total dimensions \(D \geq 6 \) (in the case of \(D_0 = 4 \)). In terms of the normalized scale factor (radion) of this internal space \(M_1 \)

\[
\varphi \equiv -\sqrt{\frac{d_1(D-2)}{D_0-2}} \beta^1 \tag{117}
\]

the effective potential (24) reads

\[
U_{\text{eff}} = e^{2s \varphi} \left[U(\phi) + \frac{1}{2} \tilde{R} e^{s \varphi} \right], \quad s := \sqrt{\frac{d_1}{(D_0-2)(D-2)}},
\]

\[
s_1 = \frac{D_0-2}{d_1} s. \tag{118}
\]

In Figs. 7, 8 its generic form is illustrated by a model with \((d_1 = 2)\) extra dimensions and parameters \(\gamma = 1/2, \Lambda_D = -1/4 \). A general feature of an effective potential (118) with a minimum and a barrier asymptotic \(U(\phi \to -\infty) \to +\infty \) is the necessary absence of a local maximum or a saddle point. This is easily seen from the extremum conditions

\[
\partial_\phi U_{\text{eff}} \big|_{\text{extr}} = 2s e^{2s \varphi} \left[U(\phi) + \frac{D_0-2-d_1}{2d_1} \tilde{R} e^{s \varphi} \right] \big|_{\text{extr}} = 0, \tag{119}
\]

\[
\partial_\phi U_{\text{eff}} \big|_{\text{extr}} = e^{2s \varphi} \partial_\phi U(\phi) \big|_{\text{extr}} = 0. \tag{120}
\]

and their implications. Condition (120) yields again the quartic equation (59). For \(D > 8, \gamma > 0 \) this equation has only a single solution \(R_{-+} \) in the \((f' > 0)\)-sector so that the minimum is the only extremum. In the case

\[\text{From Fig. 2 and relation (88) one sees that the condition } f' > 0 \text{ cuts the } T_{-+}(z) \text{-branch at } z_{c2} = -w(D) \text{ (where } -1 < z_{c2} < 0) \text{ and allows only for the piece } -w(D) < z < 0 \text{ where } T_{-+}(z) > T_{-+}(z_{c2}) \text{ holds. The remaining segment } -1 < z < -w(D) \text{ with } T_{-+}(z) < T_{-+}(z_{c2}) \text{ and also the whole second solution } T_{-+}(z) \text{ are completely located in the } (f' < 0)\)-sector.\]
$D < 8$, $\gamma > 0$ beside the negative curvature solution $\bar{R}_{+, -}$ of the minimum there exists a positive maximum $\bar{R}_{+, +} > 0$ (see Eq. (76)) so that at the corresponding extremum with regard to ϕ it holds $U(\phi_{\text{max}}) > 0$ in accordance with Eq. (43). Hence, the condition (119) cannot be fulfilled due to $U(\phi_{\text{max}}) > 0$, $\dot{R}_1 < 0$, $D_0 = 4$, $d_1 \geq 2 \implies \partial_\phi U_{\text{eff}} > 0$ and there will be no other extremum of the effective potential $U_{\text{eff}}(\phi, \varphi)$ apart from the already studied minimum at $(\phi = \phi_0, \varphi = 0)$.

This means that in the considered oversimplified model inflation of purely topological type [50] as, e.g., recently demonstrated for SUGRA inspired setups (racetrack inflation starting at a saddle point of the effective potential) in Ref. [51] is ruled out. In general, the too steep slopes of the exponential terms of the effective potential will spoil inflation, i.e. a slow-roll behavior seems not realistic. We will demonstrate this with a region in the (ϕ, φ)-plane where one still might hope to obtain a sufficiently gentle slope to induce the needed long-lasting accelerated expansion of the external space as well as an attraction to the global minimum (in order to ensure a late-time stabilization of the scalar fields). (See Figs. 7, 8.) Such a region could be expected close to the maximum of the potential $U(\phi)$ where in rough approximation holds

$$U_{\text{eff}} \approx e^{2s\varphi}U(\phi).$$

The action functional (20) shows that the two scalar fields $\varphi_1 := \phi, \varphi_2 := \varphi$ live in a flat ($\sigma -$model) target space. Hence, the estimate of the slow roll parameters can be performed within a simplified version of the multi-field inflation scheme of Refs. [8, 11, 52]. Assuming in rough approximation that the external space has already flattened, the inflation parameters ϵ, η read

$$\begin{align*}
\epsilon & = -\frac{\dot{H}}{H^2} \approx \frac{1}{2} \frac{|\partial U_{\text{eff}}|^2}{U_{\text{eff}}^2}, \\
\eta & = -\sum_{i=1}^2 \frac{\ddot{\varphi}_i \dot{\varphi}_i}{H |\varphi_i|^2} \approx -\epsilon + \frac{\sum_{i,j=1}^2 (\partial_i^2 U_{\text{eff}})(\partial_i U_{\text{eff}})(\partial_j U_{\text{eff}})}{U_{\text{eff}}^2 |\partial U_{\text{eff}}|^2}.
\end{align*}$$

Here, $H = \dot{a}/a$ is as usual the Hubble parameter of the external space. Additionally, the following abbreviations have been introduced

$$|\partial U_{\text{eff}}|^2 = \sum_{i=1}^2 (\partial_i U_{\text{eff}})^2, \quad |\varphi|^2 = \sum_{i=1}^2 \varphi_i^2.$$

Inflation is possible for $\epsilon < 1$ and a sufficiently small slow-roll parameter $|\eta| \ll 1$. In the vicinity of the maximum in $\phi -$direction it holds $\partial_\phi U|_{\text{max}} \approx 0$ so that ϵ, η are essentially defined by the slope in $\varphi -$direction. Explicitly one obtains in this region

$$\epsilon \approx 2s^2, \quad \eta \approx 2s(1 - s).$$
For a four-dimensional external space $D_0 = 4$ this yields from (118)
\[s^2 = \frac{d_1}{2(d_1 + 2)} < \frac{1}{2} \tag{126} \]
and the rough estimates
\[
\begin{align*}
 d_1 = 2 : & \quad \epsilon \approx 0.5, \quad \eta \approx 0.5, \\
 d_1 = 3 : & \quad \epsilon \approx 0.6, \quad \eta \approx 0.49, \\
 d_1 = 6 : & \quad \epsilon \approx 0.75, \quad \eta \approx 0.47.
\end{align*} \tag{127}
\]

Because $|\eta| \ll 1$ is not satisfied, the considered toy model would produce an accelerated expansion ($\epsilon < 1$) which would be much too short for successful inflation. Whether a domain wall with possibility for topological type inflation could form between regions to the left and to the right (in ϕ–direction) of the crest at the maximum of $U(\phi)$, remains an open question. Corresponding indications have been given in Ref. [19], but seem to require an additional detailed analysis — and probably an embedding of the toy model into a more general setup with richer structure.

6 Conclusion

In the present paper we continued our investigation [33, 34] on multidimensional gravitational models with a non-Einsteinian form of the action. The corresponding action functional was assumed as a smooth function $f(\bar{R})$ of the scalar curvature \bar{R} of a D–dimensional spacetime manifold with warped product structure. The main subject of our considerations was the stabilization problem for the extra dimensions. As technique we used a reduction of the nonlinear gravitational model to a linear one with an additional self-interacting scalar field (nonlinearity scalar field ϕ). The factorized geometry allowed for a dimensional reduction of the considered model and a transition to the Einstein frame. As result, we obtained an effective four–dimensional model with nonlinearity scalar field and additional minimally coupled scalar fields which describe conformal excitations of the scale factors of the internal space (its zero-mode excitations).

In terms of these scalar fields we performed a detailed stability analysis for models with scalar curvature nonlinearities of the type $f(\bar{R}) = \bar{R} - \mu/\bar{R}$, $\mu > 0$ and $f(\bar{R}) = \bar{R} + \gamma \bar{R}^4 - 2\Lambda_D$, where Λ_D plays the role of a D–dimensional bare (bulk) cosmological constant. As stability condition we assumed the existence of a minimum of the effective potential of the dimensionally reduced theory so that a late-time attractor of the system could be expected with freezing stabilization of the extra-dimensional scale factors and the nonlinearity field. It was shown in Refs. [33, 34], that for purely geometrical setups this is only possible for negative scalar curvatures, ($\bar{R} < 0$), independently of the concrete form of the function $f(\bar{R})$.

Four-dimensional purely gravitational models with R^{-1} curvature contributions have been proposed recently as possible explanation of the observed late-time acceleration (dark energy) of the Universe [14]. In section 4 of the present paper, we showed that higher dimensional models with the same R^{-1} scalar curvature nonlinearity reproduce (after dimensional reduction) the two solution branches of the four-dimensional models. But due to their oversimplified structure these models cannot simultaneously provide a late-time acceleration of the external four-dimensional spacetime and a stabilization of the internal space. A late-time acceleration is only possible for one of the solution branches — for that which yields a positive maximum of the potential $U(\phi)$ of the nonlinearity field. A stabilization of the internal spaces requires a negative minimum of $U(\phi)$ as it can be induced by the other solution branch. The question of whether this incompatibility could be resolved by different scalar curvature nonlinearities over the factor spaces (for each factor space M_i it might hold its own curvature nonlinearity $f_i(R_i)$) is still open and deserves a separate analysis. We left this issue to future investigations.

The considered R^4—setup was assumed as highly simplified toy model analogue of the loop corrected gravity sector of M—theory [46]. The stability analysis of the higher dimensional model was reduced to a set of algebraic compatibility tests for the extremum condition (in the present case a quartic equation in the scalar curvature R) and inequalities which ensure the existence of a minimum of the effective potential (non-tachyonic mass terms of the corresponding field excitations). For simplicity, we restricted the investigation to parameter regions $f' = 1 + 4\gamma R^3 > 0$ which are smoothly connected with the curvature-linear model at $f' = 1$ without passing a conformal singularity. In Brans-Dicke (Jordan) frame the latter requirement ensures an effective gravitational constant which is positive definite and smoothly connected with that of a given BD frame model with a fixed (frozen) gravitational constant.

With the help of a projection technique in the (Λ_D, R)—space \mathcal{M} we identified regions which ensure the existence of a minimum of the effective potential, and hence fulfill a necessary condition for a successful freezing stabilization of the extra dimensions. The results can be summarized as follows. For systems with total spacetime dimensions $D \geq 6$ (in the case of a $(D_0 = 4)$—dimensional external spacetime) there exists a stable sector $\Theta_1(\Lambda_D, R) = \{\Lambda_D < 0 \cap \gamma > 0 \cap |z(\Lambda_D, R)| < \sqrt{|w(D)|}\}$ on the (Λ_D, R)—plane which in the limit $\gamma \to +0$ tends smoothly to the R—linear sector. The corresponding transition is connected with a freezing of the nonlinearity field at the minimum of its potential $U(\phi)$, i.e. a diverging excitation mass, $m^2_\phi \to +\infty$, due to a diverging Hessian of the potential $U(\phi)$. Models within $\Theta_1(\Lambda_D, R)$ are separated from the conformal singularity at $f' = 0$ (and the antigravity sector $f'' < 0$ beyond it) by a potential barrier of infinite height and width and are, hence, absolutely stable with regard to transitions into the ($f' < 0$)—sector. Additionally, it was shown that the limit $\Lambda_D \to 0$ in the $\Theta_1(\Lambda_D, R)$—sector, is connected with a decompactification of the internal space components M_i, $i = 1, \ldots, n$ and a flattening $R \to 0$ of the bulk spacetime M.

Apart from $\Theta_1(\Lambda_D, R)$ there exists a second stability sector $\Theta_2(\Lambda_D, R) = \{\gamma < 0 \cap -1 < z(\Lambda_D, R) < -w(D)\}$ for dimensions $D < 8$. The potential $U(\phi)$ for such configurations is unbounded from below in the limit $f'(\phi \to -\infty) \to +0$ and has a minimum which is separated from the conformal singularity at $f' = 0$ (and the antigravity sector $f' < 0$ beyond it) by a potential wall of finite height and width. Configurations in this minimum would be metastable and prone to collapse into $f' = 0$. The $\Theta_2(\Lambda_D, R)$—sector is disconnected from $\Theta_1(\Lambda_D, R)$ by an essential singularity of R and $U(\phi_0)$ in the limit $\gamma \to 0$. In this limit the nonlinearity field ϕ freezes at $\phi_0(\gamma \to 0) \to (1/A) \ln(3D/[D-8])$ with $m^2_\phi \to +\infty$, but simultaneously the scalar curvature diverges $R \to -\infty$ and the potential deepens unboundedly $U(\phi_0) \to -\infty$. This behavior is a strong indication for inconsistencies of $\Theta_2(\Lambda_D, R)$—configurations within the framework of the given limited setup. The question of whether the $\Theta_2(\Lambda_D, R)$—sector of the considered oversimplified toy-model will find a physically sensible interpretation within a still unknown extended curvature-nonlinear theory of gravity, a special UV limit of non-perturbative M-theory or within loop quantum gravity remains an open issue.

A further issue which was out of the scope of the present paper was the analysis of dynamical transitions between configurations which correspond to different solution branches $R(\phi)$ of Eq. (6), $f'(R) = e^{A\phi}$. For the R^{-1}—model of section 4, e.g., there exist two such branches $R(\phi)$ which form a double cover over given values of the parameter μ and the nonlinearity field ϕ. At early evolution stages of the Universe, transitions between these two branches cannot be ruled out a priori and should be taken into account for a comprehensive description of the dynamics of the Universe.

Finally, we note that the external spacetime in the considered pure geometrical models is necessarily AdS and the corresponding negative effective cosmological constant, $\Lambda_{eff} < 0$, forbids a late-time acceleration. The situation can be cured by including additional matter fields. Examples are flux field stabilization scenarios [34] which provide certain moduli space sectors with positive effective cosmological constant and external spacetimes.
of dS type.

We thank Sugumi Kanno and Jiro Soda for useful discussions. U.G. acknowledges support from DFG grant KON/1806/2004/GU/522. A.Z. thanks the Physics Department of Universidade Federal de Paraíba (João Pessoa, Brazil) for their kind hospitality and CNPq for financial support. V.B.B. and C.R. acknowledge partial financial support from CNPq and CNPq/FAPESQ-Pronex.

A The quartic equation and its associated quadratic equation sets

In this appendix we briefly re-derive the quadratic equation sets associated to the quartic equation (59). Following the Ferrari formalism as it is briefly described, e.g., in [47] we lay explicit emphasis on the sign rules which are crucial for a correct derivation of the final solution set of the quartic equation.

The crux of the Ferrari formalism applied to a quartic equation of type (59),

$$x^4 + a_1x + a_0 = 0,$$ \hspace{1cm} (128)

consists in factoring it by transforming it into a difference of two quadratic terms

$$A^2 - B^2 = (A + B)(A - B) = 0$$ \hspace{1cm} (129)

so that solutions can be obtained from

$$A \pm B = 0. \hspace{1cm} (130)$$

Adding and subtracting a term $x^2u + (u/2)^2$ in (128), with u an auxiliary function, one rewrites (128) as

$$\left(x^2 + \frac{u}{2}\right)^2 - u\left(x^2 + \frac{a_1}{u} + \frac{1}{4}u^2 - \frac{a_0}{u}\right) = 0$$ \hspace{1cm} (131)

and requires the second term to be quadratic

$$\left(x^2 + \frac{u}{2}\right)^2 - u\left(x + \epsilon\sqrt{\frac{1}{4}u^2 - \frac{a_0}{u}}\right)^2 = 0. \hspace{1cm} (132)$$

Here, ϵ is a sign factor $\epsilon = \pm 1$ and we assume for definiteness

$$\sqrt{\frac{1}{4}u^2 - \frac{a_0}{u}} > 0 \quad \text{for} \quad \frac{1}{4}u^2 - \frac{a_0}{u} > 0. \hspace{1cm} (133)$$

The compatibility of Eqs. (131) and (132) is ensured by the condition

$$-\frac{a_1}{u} = 2\epsilon\sqrt{\frac{1}{4}u^2 - \frac{a_0}{u}} \hspace{1cm} (134)$$

which on its turn is equivalent to the cubic equation

$$u^3 - 4a_0u - a_1^2 = 0. \hspace{1cm} (135)$$

We specify as in (59), (63)

$$a_0 := -\frac{2D\Lambda_D}{\gamma(D-8)}, \quad a_1 := \frac{D - 2}{\gamma(D-8)}, \quad -4a_0 = 3q, \quad a_1^2 = 2r \hspace{1cm} (136)$$

and assume that u is a real-valued solution of Eq. (135). The analysis of section 5.1 shows that for stable configurations of the R^4-model it holds additionally $u > 0$. Using this condition as simplifying input information, we can rewrite the quartic equation (128), (132) as

$$\left(x^2 + \frac{u}{2}\right)^2 - \left(ux + \frac{\epsilon}{2}\sqrt{u^2 + 3q}\right)^2 = 0. \hspace{1cm} (137)$$

These sign rules are not displayed explicitly in [47].
It factorizes according to (129), (130) into a set of quadratic equations
\[x^2 \pm \sqrt{ux} + \frac{1}{2} \left(u \pm \epsilon \sqrt{u^2 + 3q} \right) = 0. \tag{138} \]
The sign factor \(\epsilon \) follows from (133), (134), (136) and \(u > 0 \) as
\[\epsilon = -\text{sign} (a_1) = -\text{sign} \left(\frac{D - 2}{\gamma (D - 8)} \right). \tag{139} \]

B Sign analysis of the discriminant \(Q \)

The sign of \(Q \) can be obtained by mapping the minimum-ensuring inequality (60) into an equivalent inequality for \(z \). For this purpose we consider the critical surface \(\Xi_{c1} \subset \mathcal{M} \) in the parameter space, where for \(\gamma \neq 0 \) the inequality (60) is replaced by an equality,
\[\Xi_{c1} = \{ (\Lambda_D, \gamma, \bar{R}) \in \mathcal{M} | \xi_{c1}[\Lambda_D, \gamma, \bar{R}] := (D - 2) + 4(D - 8)\gamma \bar{R}^3 = 0 \}. \tag{140} \]
The intersection of this surface \(\Xi_{c1} \) with the algebraic variety \(\mathcal{V} : h[\Lambda_D, \gamma, \bar{R}] = 0 \) of the extremum condition will define a critical value \(z_{c1} \). This value can be found explicitly by resolving (140) for \(\bar{R} \), what gives
\[\bar{R}_{c1} := R \big|_{z_{c1}} = - \left(\frac{D - 2}{4(D - 8)\gamma} \right)^{1/3}, \tag{141} \]
and plugging \(\bar{R}_{c1} \) into the quartic equation (59). As result one obtains
\[z_{c1}(\Lambda_D, \gamma) = 4\gamma(8\Lambda_D/3)^3 w(D) = -1. \tag{142} \]
Now, small perturbations off the critical surface \(\Xi_{c1} \), but along the variety \(\mathcal{V} \), can be used to map the inequality (60) into its counterpart for \(z \). Setting
\[\Lambda_D = \Lambda_{D,c1} + \delta \Lambda_D, \quad \bar{R} = \bar{R}_{c1} + \delta \bar{R}, \quad z = z_{c1} + \delta z \tag{143} \]
and keeping \(\gamma \) fixed, we get from the inequality (60)
\[72(D - 8)\gamma^2 \bar{R}_{c1}^2 \delta \bar{R} > 0 \tag{144} \]
whereas the quartic equation (59) and the definition (66) of \(z \) yield
\[\delta \Lambda_D = 3\gamma \frac{D - 8}{D} \bar{R}_{c1}^2 (\delta \bar{R})^2, \quad \delta z = 12\gamma w(D)(8/3)\Lambda_{D,c1}^2 \delta \Lambda_D \tag{145} \]
and hence
\[\delta z = \frac{2^{11} D^2 (D - 8)^2}{3} \left(\frac{\gamma \bar{R}_{c1} \Lambda_{D,c1}}{D - 2} \right)^2 (\delta \bar{R})^2 \geq 0. \tag{146} \]
We observe that, although inequality (144) implies
\[D > 8 : \delta \bar{R} > 0, \quad D < 8 : \delta \bar{R} < 0, \tag{147} \]
independently of the signs of \(\gamma \) and \(\bar{R}_{c1} \), the variety \(\mathcal{V} \) is for \(\gamma \neq 0, D \neq 8 \) and (because of \(\delta z > 0 \)) located over the region
\[z(\Lambda_D, \gamma) > z_{c1}(\Lambda_D, \gamma) = -1 \tag{148} \]
of the \((\Lambda_D, \gamma) \)-plane. This means that by any perturbation (motion) on the variety \(\mathcal{V} \) we cannot pass across the critical value \(z_{c1}(\Lambda_D, \gamma) = -1 \). Hence, \(z_{c1}(\Lambda_D, \gamma) = -1 \) must be a boundary segment of the projection \(\pi \mathcal{V} \) of \(\mathcal{V} \) onto the \((\Lambda_D, \gamma) \)-plane: \(z_{c1} \subset \partial (\pi \mathcal{V}) \). The latter fact is confirmed by the observation that the critical surface \(\Xi_{c1} \subset \mathcal{M} \) coincides with the singular surface
\[\partial_R h[\Lambda_D, \gamma, \bar{R}] = (D - 2) + 4(D - 8)\gamma \bar{R}^3 = 0 \]
of the projection \(\pi \) of \(\mathcal{V} \) onto the \((\Lambda_D, \gamma) \)-plane.

\[^{17}\text{Singularities of smooth projections are extensively discussed, e.g., in Refs. [53].} \]
C Mapping $f' > 0$ into parameter space

The inequality $f' = 1 + 4\gamma R^3 > 0$ can be analyzed with the same technique as the minimum-ensuring inequality (60) (see relations (140) - (148)): we obtain the intersection of the critical surface

$$\mathcal{\Xi}_{c2} = \{(\Lambda_D, \gamma, \bar{R}) \in \mathcal{M} | \quad \mathcal{\Xi}_{c2}[\Lambda_D, \gamma, \bar{R}] = 1 + 4\gamma \bar{R}^3 = 0\}$$

(149)

with the algebraic variety \mathcal{V}, i.e. $\mathcal{\Xi}_{c2} \cap \mathcal{V}$, and study the behavior of small parameter perturbations off $\mathcal{\Xi}_{c2}$ and along the variety \mathcal{V}.

Explicitly this means that we resolve (149) for \bar{R} to obtain

$$\bar{R}_{c2} = -(4\gamma)^{-1/3}$$

(150)

and plug this \bar{R}_{c2} into the quartic equation (59). From the intermediate result

$$4\gamma (8\Lambda_D / 3)^3 = -1$$

(151)

we find by multiplication with $w(D)$ that the intersection $\mathcal{\Xi}_{c2} \cap \mathcal{V}$ corresponds to the critical value

$$z_{c2}(\Lambda_D, \gamma) = -w(D).$$

(152)

Substituting, furthermore, the perturbation ansatz

$$\Lambda_D = \Lambda_{D,c2} + \delta \Lambda_D, \quad \bar{R} = \bar{R}_{c2} + \delta \bar{R}, \quad z = z_{c2} + \delta z, \quad f' = \delta f',$$

(153)

(it holds $f'_{c2} = 0$) into the defining relation (66) for z, the quartic equation (59), and the equality $f' = 1 + 4\gamma \bar{R}^3$, we get for fixed γ

$$\delta z = 12\gamma w(D)(8/3)^3 \Lambda_{D,c2}^2 \delta \Lambda_D, \quad \delta \Lambda_D = \frac{3}{D} \delta \bar{R},$$

$$\delta f' = 12\gamma \bar{R}_{c2}^2 \delta \bar{R},$$

(154)

respectively, and by combination of these results also

$$\delta \Lambda_D = \frac{1}{4R^2D\gamma} \delta f', \quad \delta z = \frac{3}{D} \left(\frac{8}{3}\right)^3 \left(\Lambda_{D,c2} \bar{R}_{c2}\right)^2 w(D) \delta f'.$$

(155)

From the definition (66) of $w(D)$ and its implication

$$w(D < 8) < 0, \quad 0 < w(D > 8) < 1$$

(156)

we find for $\delta f' > 0$, $f' > 0$

$$D < 8: \quad z_{c2}(\Lambda_D, \gamma) = |w(D)| > 0, \quad z < -w(D) = |w(D)|,$$

$$D > 8: \quad z_{c2}(\Lambda_D, \gamma) = -w(D) < 0, \quad -w(D) < z.$$
D Parameter limits

In subsection 5.3 it has been found that for the \((f' > 0)\)-sector the boundary segments \(z(\Lambda_D, \gamma) = -w(D) \subset \partial\Theta_{(\Lambda_D, \gamma)}\) of the projection \(\Theta_{(\Lambda_D, \gamma)} := \pi Y\) of the stability region \(\mathcal{T} \subset V \subset \mathcal{M}\) onto the \((\Lambda_D, \gamma)\)-plane correspond to the limit \(\phi \to -\infty\). Here, we clarify the behavior of the system in the vicinity of the other boundary segments \(\partial\Theta_{(\Lambda_D, \gamma)} \supset \{\Lambda_D = 0 \cup \gamma = 0\}\) for \(D > 8\) (see Fig. 4) and \(\partial\Theta_{(\Lambda_D, \gamma)} \supset \{\Lambda_D = 0 \cup \gamma = 0 \cup z = -1\}\) for \(D < 8\) (see Fig. 3).

\(\Lambda_D \to 0, \gamma \neq 0\): In this limit we obtain from Eqs. (63), (66), (68)

\[
q \to 0, \quad z \to 0, \quad Q \to r^2 \neq 0, \quad v_1 \to 2^{1/3} \tag{159}
\]

and hence from Eqs. (76), (77), (92)

\[
\begin{align*}
\gamma > 0 &: \quad \bar{R}(\Lambda_D \to -0) \to -0 \iff \begin{cases} \bar{R}_{-+} \to -0 & \text{for } D > 8, \\ \bar{R}_- \to -0 & \text{for } D = 8, \\ \bar{R}_{+-} \to -0 & \text{for } D < 8, \end{cases} \\
\gamma < 0 &: \quad \bar{R}_{--}(\Lambda_D \to 0) \to -(2r)^{1/0} \quad \text{for } D < 8. \tag{161}
\end{align*}
\]

Obviously, the system behaves differently in the upper and lower \((\Lambda_D, \gamma)\)-plane. In the case of \(\gamma < 0\), the system behaves regularly for \(\Lambda_D \to 0\) and the half-line \((\Lambda_D = 0, \gamma < 0)\) is not distinguished from its vicinity. In contrast to this, the limit \((\Lambda_D \to -0, \gamma > 0)\) corresponds to a flat-space limit \(\bar{R} \to -0\) which via (55) is associated with a freezing of the nonlinearity field \(\phi\): \(f' \to 1\) at \(\phi_0 \to 0\). From Eq. (41) follows

\[
\frac{\partial^2 U}{\partial \phi^2}_{\phi_0} \approx \frac{D - 2}{24(D - 1)} \frac{1}{\gamma R^2} \to +\infty \tag{162}
\]

so that for the mass of the nonlinearity field holds \(m_\phi^2 \to +\infty\). We note that the nonlinearity field in an \(R^2\)-model has a finite mass \(m_\phi\) in the limit \(\Lambda_D \to -0\) (see, e.g., [33, 34]). The different behavior of the models is caused by the different powers of the term \((e^{4\phi} - 1)\) in \(U(\phi)\): for an \(R^2\)-model this power equals 2, whereas for an \(R^4\)-model it equals \(4/3\). Hence, in the latter case the second derivative \(d^2 U(\phi)/d\phi^2\) diverges in the limit \(\phi(0) \to 0\).

We arrived at the interesting fact that in the considered toy model the extremum condition in form of the quartic equation (59) relates the scalar curvature \(\bar{R}\) at the minimum and the bare cosmological constant \(\Lambda_D\) in the case of \(\gamma > 0\) so strongly that for stabilized internal spaces the limit \(\Lambda_D \to 0\) corresponds to the flat-space limit \(\bar{R} \to -0\). As it should be, the flat-space limit of the total scalar curvature \(\bar{R} \to -0\) implies via (43), i.e. \(U(\phi_0) \to -0\), and (32), \(\bar{R}_i = 2d_i U(\phi_0)/(D - 2)\), also a decompactification of the internal space components \(\bar{R}_i = e^{-2\beta_0} R_i \to -0\), \(\beta_0^2 \to +\infty\) (the \(R_i\) are held fixed).

\(\gamma \to 0, \Lambda_D \neq 0\): The definitions (63) and (66) show that for fixed \(\Lambda_D \neq 0\) the limit \(\gamma \to 0\) implies

\[
r_i, q, Q \to +\infty, \quad z \to 0. \tag{163}
\]

With the help of an expansion in terms of small \(z \approx 0\) the rescaled curvatures (77) are easily obtained from (69) as

\[
T_{+, -}(z \to 0) \approx -3 \times 2^{-5/2} z^{1/3} \\
T_{-, +}(z \to 0) \approx 3 \times 2^{-5/2} z^{1/3} \\
T_{-, -}(z \to 0) \approx -2^{1/6} - 2^{-5/2} z^{1/3} \tag{164}
\]

so that the curvatures \(\bar{R}_{e, \pm}\) themselves can be estimated via \(\bar{R}_{e, \pm} = r^{1/6} T_{e, \pm}\) as

\[
\begin{align*}
\bar{R}_{-+}(\gamma \to +0; D > 8) &\approx \frac{2D\Lambda_D}{D - 2}, \\
\bar{R}_{+-}(\gamma \to +0; D < 8) \quad \approx \quad \bar{R}_{--}(\gamma \to -0; D < 8) \quad \approx \quad -\left|\frac{D - 2}{\gamma(D - 8)}\right|^{1/3} \to -\infty. \tag{165, 166}
\end{align*}
\]

\(19\)The general limiting behavior \(R(\gamma \to 0)\) without identification of the concrete solution branch \(e_{\pm}\) can be easily obtained from the quartic equation (59). Assuming \(R(\gamma \to 0) < \infty\) and taking the limit \(\gamma \to 0\) in Eq. (59) gives \(\bar{R} = 2D\Lambda_D/(D - 2)\), whereas division of (59) by \(R\) for a behavior \(|R(\gamma \to 0)| \to \infty\) yields \(R = -\left(\frac{D - 2}{D - 8}\right)^{1/3}\).
In the exceptional \((D = 8)\) case the scalar curvature in the minimum does not depend on \(\gamma\) and is given by Eq. (92)

\[
\bar{R} = \frac{8}{3} \Lambda D = \frac{2D \Lambda D}{D - 2}. \tag{167}
\]

Again, the system behaves qualitatively different in the upper and the lower \((\Lambda D, \gamma)\)-plane. Because of the finite asymptotics (165) and Eq. (167), in the upper half-plane it holds (for \(D < 8\) and \(D \geq 8\))

\[
f'(\gamma \to +0) \to 1, \quad \phi_0 \to 0 \tag{168}
\]

\[
\partial^2_{\phi} U(\gamma \to +0)|_{\phi_0} \approx \frac{(D - 2)^3}{96(D - 1)D^2} \frac{1}{\gamma \Lambda D^2} \to +\infty \tag{169}
\]

\[
U(\phi_0; \gamma \to +0) \to \Lambda D \tag{170}
\]

and the nonlinearity field \(\phi\) undergoes a freezing stabilization at \(\phi_0 = 0\) with diverging mass \(m_\phi \to +\infty\) but finite scalar curvature (165) and finite minimum position \(U(\phi_0)\). Hence, under the freezing stabilization of the nonlinearity field for \(\gamma \to +0\) the system turns smoothly into a system with linear scalar curvature term \(\bar{R}\), i.e. into a system with Einstein-Hilbert action in \(\bar{R}\). This is a generic feature of models with nonlinear scalar curvature terms and was earlier described for \(R^2\)-models in [33, 34]. Figure 5 gives a rough illustration of the corresponding deformation of the potential \(U(\phi)\) under variation of \(\gamma\) and for a fixed value of \(\Lambda D\).

The behavior of the system is completely different in the lower-half-plane limit \(\gamma \to -0\). Here we have to distinguish the dimensions \(D = 8\) and \(D < 8\). For \(D = 8\) Eqs. (169), (170) extend to the lower half-plane \(\gamma \to -0\), i.e. the system is completely unstable in this limit \(\partial^2_{\phi} U|_{\phi_0}(\gamma \to -0) \to -\infty\). Obviously, \(\partial^2_{\phi} U|_{\phi_0} \sim \frac{1}{\gamma}\) in (169) encounters a pole singularity with respect to \(\gamma\). This is different for \(\bar{R}_{-+}, D < 8\). Here, one finds from (55), (166)

\[
e^{A \phi_0} = f'(\gamma \to -0) \to \frac{3D}{|D - 8|} \tag{171}
\]

and from (41), (43)

\[
\partial^2_{\phi} U(\gamma \to -0)|_{\phi_0} \approx \frac{1}{\gamma^{1/3}} \frac{(D - 2)^{1/3}(D - 8)^{2/3}}{8(D - 1)} \left| \frac{3D}{D - 8} \right|^{\frac{3D}{D - 8}} \to +\infty \tag{172}
\]

\[
U(\phi_0; \gamma \to -0) \approx \frac{1}{\gamma^{1/3}} \frac{(D - 2)^{4/3}}{2D(D - 8)} \left| \frac{3D}{D - 8} \right|^{\frac{3D}{2D - 8}} \to -\infty. \tag{173}
\]

From these equations and their rough illustration in Fig. 6 we read off that in the limit \(\gamma \to -0\) the minimum of the potential \(U(\phi)\) lowers infinitely, \(U(\phi_0; \gamma \to -0) \to -\infty\), and becomes fixed at the finite value \(\phi_0 = \frac{1}{\gamma} \ln \left| \frac{3D}{D - 8} \right|\). The corresponding scalar curvature diverges as \(\bar{R}_{-+}(\gamma \to -0) \to -\infty\) and is separated from the conformal singularity \(f'(\phi \to -\infty) \to 0\) by a barrier whose top is defined by the associated maximum branch \(\bar{R}_{-+}\) and tends to the value

\[
\bar{R}_{-+}(\gamma \to -0) \to \frac{2D \Lambda D}{D - 2}, \quad U|_{\text{max}}(\gamma \to -0) \to \Lambda D \tag{174}
\]

(see also Fig. 6). This means that the metastable sector in the lower \((\Lambda D, \gamma)\)-plane is separated from absolutely stable systems in the upper half-plane and their limiting linear \((\gamma \to +0)\)-models by an infinite gap. Considering the behavior of the system over the \((\Lambda D, \gamma)\)-plane we have to conclude that it possess an essential singularity in the limit \(\gamma \to -0\), i.e. the scalar curvature \(\bar{R}\) encounters an infinite jump between \(\gamma \to +0\) \((\bar{R} \to 2D \Lambda D/(D - 2))\) and \(\gamma \to -0\) \((\bar{R} \to -\infty)\) whereas \(\partial^2_{\phi} U|_{\phi_0}\) has for \(\gamma > 0\) a pole-like singularity \(\sim \gamma^{-1}\) and for \(\gamma < 0\) it behaves like a branching point singularity \(\sim \gamma^{-1/3}\). This is a strong indication that the description of a physical system in terms of the considered oversimplified toy model breaks down in the limit \(\gamma \to -0\). The search for possibly existing physically realistic metastable systems with \(\gamma < 0\) is out of the scope of the present work and we leave a corresponding investigation to future research.

\(z \to -1\) : Relations (88) - (91) show that this limit can only be reached by metastable configurations \(\gamma < 0, D < 8, \bar{R}_{-+}\). According to (66) it corresponds to a vanishing discriminant \(Q = 0\) of the cubic equation (62) so that this equation has two coinciding solutions \(u_{1,2} = 2r^{1/3}\) (it holds \(v_{1,2}(z = -1) = 2\)). From Eqs. (76),
we observe that this leads to a coalescence of the minimum branch \bar{R}_{--} and the associated maximum branch \bar{R}_{-+} in an inflection point at $z = -1$

$$\bar{R}_{--}(z = -1) = -\frac{1}{2} \sqrt{u_1(z = -1)} = -\frac{r^{1/6}}{\sqrt{2}} = -2^{-2/3} \left(\frac{D-2}{\gamma (D-8)} \right)^{1/3}. \quad (175)$$

The situation is also obvious from Fig. 2. Configurations with $z \leq -1$ have no extremum at all and are necessarily unstable.

References

[1] S. Perlmutter, M.S. Turner and M.J. White, Phys. Rev. Lett. 83, (1999), 670 - 673, astro-ph/9901052.
[2] Boomerang Collaboration, A.H. Jaffe et al, Phys. Rev. Lett. 86, (2001), 3475 - 3479, astro-ph/0007333.
[3] M. Gasperini and G. Veneziano, Astropart. Phys. 1, (1993), 317 - 339, hep-th/9211021; Phys. Rept. 373, (2003), 1 - 212, hep-th/0207130.
[4] G.R. Dvali and S.H.H. Tye, Phys. Lett. B450, (1999), 72 - 82, hep-ph/9812483; S.H.S. Alexander, Phys. Rev. D65, (2002), 023507, hep-th/0105032; C.P. Burgess et al, JHEP 0107, (2001), 047, hep-th/0105204; M. Gomez-Reino and I. Zavala, JHEP 0209, (2002), 020, hep-th/0207278.
[5] J. Khoury, B.A. Ovrut, P.J. Steinhardt, and N. Turok, Phys. Rev. D64, (2001), 123522, hep-th/0103239; P.J. Steinhardt and N. Turok, Phys. Rev. D65, (2002), 126003, hep-th/0111098; J. Khoury, P.J. Steinhardt and N. Turok, Phys. Rev. Lett. 92, (2004), 031302, hep-th/0307132.
[6] S. Kanno, M. Sasaki and J. Soda, Prog. Theor. Phys. 109, (2003), 357 - 369, hep-th/0210250.
[7] P.K. Townsend and M.N.R. Wohlfarth, Phys. Rev. Lett. 91, (2003), 061302, hep-th/0303097; N. Ohta, Phys. Rev. Lett. 91, (2003), 061303, hep-th/0303238; Prog. Theor. Phys. 110, (2003), 269 - 283, hep-th/0304172; S. Roy, Phys. Lett. B567, (2003), 322 - 329, hep-th/0304084; M. Gutperle, R. Kallosh and A. Linde, JCAP 0307, (2003), 001, hep-th/0304225; C.-M. Chen, P.-M. Ho, I.P. Neupane, N. Ohta, and J.E. Wang, JHEP 0310, (2003), 058, hep-th/0306291.
[8] R. Kallosh, A. Linde, S. Prokushkin, and M. Shmakova, Phys. Rev. D66, (2002), 123503, hep-th/0208156.
[9] S. Kachru, R. Kallosh, A. Linde, and S.P. Trivedi, Phys. Rev. D68, (2003), 046005, hep-th/0312140.
[10] S. Kachru et al, JCAP 0310, (2003), 013, hep-th/0308055; J.P. Hsu, R. Kallosh and S. Prokushkin, JCAP 0312, (2003), 009, hep-th/0311077; J.P. Hsu and R. Kallosh, JHEP 0404, (2004), 042, hep-th/0402047.
[11] R. Kallosh and S. Prokushkin, SuperCosmology, hep-th/0403060; C.P. Burgess, J.M. Cline, H. Stoica and F. Quevedo, JHEP 0409, (2004), 033, hep-th/0403119.
[12] I. Navarro and J. Santiago, JCAP 0409, (2004), 005, hep-th/0405173; T. Biswas and P. Jaikumar, JHEP 0408, (2004), 053, hep-th/0407063.
[13] M. Bojowald, Phys. Rev. Lett. 89, (2002), 261301, gr-qc/0206054; M. Bojowald and K. Vandersloot, Phys. Rev. D67, (2003), 124023, gr-qc/0303072; S. Tsujikawa, P. Singh and R. Maartens, Class. Quant. Grav. 21, (2004), 5767 - 5775, astro-ph/0311015; M. Bojowald, J.E. Lidsey, D.J. Mulryne, P. Singh, and R. Tavakol, Phys. Rev. D70, (2004), 043530, gr-qc/0403106; M. Bojowald, R. Maartens and P. Singh, Phys. Rev. D70, (2004), 083517, hep-th/0407115.
[14] S. Capozziello, S. Carloni and A. Troisi, Quintessence without scalar field, astro-ph/0303041; S.M. Carrol, V. Duvvuri, M. Trodden and M.S. Turner, Phys. Rev. D70, (2004), 043528, astro-ph/0306438; D.N. Vollick, Phys. Rev. D68, (2003), 063510, astro-ph/0306630; R. Dick, Gen. Rel. Grav. 36, (2004), 217, gr-qc/0307052; A.D. Dolgov and M. Kawasaki, Phys. Lett. B573, (2003), 1, astro-ph/0307285; S. Nojiri and S.D. Odintsov, Phys. Rev. D68, (2003), 123512, hep-th/0307288; Gen. Rel. Grav. 36, (2004), 1765 - 1780, hep-th/0308176; T. Chiba, Phys. Lett. B575, (2003), 1, astro-ph/0307338; X. Meng and P. Wang, Class. Quant. Grav. 20, (2003), 4949 - 4962, astro-ph/0307354.
[15] S. Nojiri and S.D. Odintsov, Phys. Lett. B576, (2003), 5 - 11, hep-th/0307071.
[16] R. Kerner, Gen. Rel. Grav. 14, (1982), 453 - 469; J.D. Barrow and A.C. Ottewill, J. Phys. A 16, (1983), 2757 - 2776; J.P. Durnisseau, R. Kerner and P. Eysseric, Gen. Rel. Grav. 15, (1983), 797 - 807; B. Whitt, Phys. Lett. B145, (1984), 176 - 178; K. Maeda, J.A. Stein–Schabes and T. Futamase, Phys. Rev. D39, (1989), 2848 - 2853; G. Magnano and L.M. Sokolowski, Phys. Rev. D50, (1994), 5039 - 5059, gr-qc/9312008; D. Wands, Class. Quant. Grav. 11, (1994), 269-279, gr-qc/9307034.

[17] J.D. Barrow and S. Cotsakis, Phys. Lett. B214, (1988), 515 - 518.

[18] K. Maeda, Phys. Rev. D39, (1989), 3159 - 3162.

[19] J. Ellis, N. Kaloper, K.A. Olive and J. Yokoyama, Phys. Rev. D59, (1999), 103503, hep-ph/9807482.

[20] U. Günther and A. Zhuk, Class. Quant. Grav. 18, (2001), 1441 - 1460, hep-ph/0006283.

[21] J.M. Cline and J. Vinet, Phys. Rev. D68, (2003), 025015, hep-ph/0211284.

[22] P. Forgacs and Z. Horvath, Gen. Rel. Grav. 10, (1979), 931 - 940; ibid. 11, (1979), 205.

[23] U. Günther, A. Starobinsky and A. Zhuk, Phys. Rev. D69, (2004), 044003, hep-ph/0306191.

[24] N. Arkani-Hamed, S. Dimopoulos, G.R. Dvali, Phys. Lett. B429, (1998), 263 - 272, hep-ph/9803315; I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, G.R. Dvali, Phys. Lett. B436, (1998), 257 - 263, hep-ph/9804398.

[25] N. Arkani-Hamed, S. Dimopoulos and J. March-Russell, Phys. Rev. D63, (2001), 064020, hep-th/9809124; T. Banks, M. Dine and A.E. Nelson, JHEP 9906, (1999), 014, hep-th/9903019; N. Arkani-Hamed, S. Dimopoulos, N. Kaloper and J. March-Russell, Nucl. Phys. B567, (2000), 189 - 228, hep-ph/9903224; S.M. Carroll, J. Geddes, M.B. Hoffman and R.M. Wald, Phys. Rev. D66 (2002) 024036, hep-th/0110149; J. Geddes, Phys. Rev. D65, (2002), 104015, gr-qc/0112026; D.A. Demir and M. Shifman, Phys. Rev. D65, (2002), 104002, hep-ph/0112090; S. Nasri, P.J. Silva, G.D. Starkman and M. Trodden, Phys. Rev. D66, (2002), 045029, hep-th/0201063; L. Perivolaropoulos and C. Sourdis, Phys. Rev. D66, (2002), 084018, hep-ph/0204155; L. Perivolaropoulos, Phys. Rev. D67, (2003), 123516, hep-ph/0301237.

[26] I. Antoniadis and C. Bachas, Phys. Lett. B450, (1999), 83 - 91, hep-th/9812093; I. Antoniadis, K. Benakli, A. Laugier, and T. Maillard, Nucl. Phys. B662, (2003), 40 - 62, hep-ph/0211409.

[27] S.B. Giddings, S. Kachru and J. Polchinski, Phys. Rev. D66, (2002), 106006, hep-th/0105097.

[28] S. Kachru, M.B. Schülz and S. Trivedi, JHEP 0310, (2003), 007, hep-th/0201028.

[29] A. Kaya, JCAP 0408, (2004), 014, hep-th/0405099.

[30] U. Günther and A. Zhuk, Phys. Rev. D56, (1997), 6391 - 6402, gr-qc/9706050.

[31] U. Günther and A. Zhuk, Class. Quant. Grav. 15, (1998), 2025 - 2035, gr-qc/9804018.

[32] U. Günther and A. Zhuk, Phys. Rev. D61, (2000), 124001, hep-ph/0002009.

[33] U. Günther, P. Moniz and A. Zhuk, Phys. Rev. D66, (2002), 044014, hep-th/0205148.

[34] U. Günther, P. Moniz and A. Zhuk, Phys. Rev. D68, (2003), 044010, hep-th/0303023.

[35] N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Rev. D59, (1999), 086004, hep-ph/9807344.

[36] U. Günther and A. Zhuk, Remarks on dimensional reduction of multidimensional cosmological models, Proceedings of the 10th Marcel Grossmann Meeting on General Relativity, to appear, gr-qc/0401003.

[37] U. Günther and A. Zhuk, S −brane scenarios: Late-time acceleration and variations of the fine structure constant, in preparation.

[38] S.B. Giddings and R.C. Myers, Phys. Rev. D70, (2004), 046005, hep-th/0404220.

[39] S. Hannestad, Phys. Rev. D60, (1999), 023515, astro-ph/9810102; M. Kaplinghat, R.J. Scherrer, and M.S. Turner, Phys. Rev. D60, (1999), 023516, astro-ph/9810133; J.K. Webb et al, Phys. Rev. Lett. 87, (2001), 091301, astro-ph/0012539; R. Srianand, H. Chand, P. Petitjean, and B. Aracil, Phys. Rev. Lett. 92, (2004), 121302, astro-ph/0402177.
[40] V.D. Ivashchuk, V.N. Melnikov and A.I. Zhuk, Nuovo Cimento B104, (1989), 575 - 582.
[41] M. Rainer and A. Zhuk, Phys. Rev. D54, (1996), 6186 - 6192, gr-qc/9608020.
[42] V.D. Ivashchuk, V.N. Melnikov and A.B. Selivanov, JHEP 0309, (2003), 059, hep-th/0308113.
[43] L. Kofman, A. Linde, X. Liu, A. Maloney, L. McAllister, E. Silverstein, JHEP 0405, (2004), 030, hep-th/0403001.
[44] K. Maeda and N. Ohta, Phys. Lett. B597, (2004), 400 - 407, hep-th/0405205.
[45] A.A. Tseytlin, Nucl. Phys. B584, (2000), 233 - 250, hep-th/0005072; K. Becker and M. Becker, JHEP 0107, (2001), 038, hep-th/0107044; S. Frolov and A.A. Tseytlin, Nucl. Phys. B632, (2002), 69 - 100, hep-th/0111128.
[46] P.S. Howe, R^4 terms in supergravity and M-theory, hep-th/0408177.
[47] M. Abramowitz and A. Stegun, Handbook of Mathematical Functions, (Dover, New York, USA, 1972).
[48] G.R. Dvali, G. Gabadadze, M. Kolanoivic, and F. Nitti, Phys. Rev. D65, (2002), 024031, hep-th/0106058; C.P. Burgess, Living Rev. Rel. 7, (2004), 5, gr-qc/0311082.
[49] B.C. Paul, S. Mukherjee and R.K. Tavakol, Phys. Rev. D65, (2002), 064020, hep-th/0201009.
[50] A. Linde, Phys. Lett. B327, (1994), 208; A. Vilenkin, Phys. Rev. Lett. 72, (1994), 3137.
[51] J.J. Blanco-Pillado et al, JHEP 0411, (2004), 063, hep-th/0406230.
[52] T.T. Nakamura and E.D. Stewart, Phys. Lett. B 381 (1996) 413, astro-ph/9604103; J.-O. Gong and E.D. Stewart, Phys. Lett. B 538 (2002) 213, astro-ph/0202098; S. Groot Nibbelink and B.J.W. van Tent, Density perturbations arising from multiple field slow-roll inflation, hep-ph/0011325.
[53] V.I. Arnold (ed.), Dynamical systems V: Bifurcation theory and catastrophe theory, (Springer, Berlin, 1994).
[54] A. Linde, Pisma Zh. Eksp. Teor. Fiz. 30, (1979), 479 - 482, [JETP Lett. 30, (1979), 447 - 449]; Phys. Lett. 93B, (1980), 394 - 396.
[55] A. Starobinsky, Sov. Astron. Lett. 7, (1981), 36 - 38.
[56] R. Kallosh and A. Linde, Phys. Rev. D52, (1995), 7137 - 7145, hep-th/9507022; K. Behrndt and R. Kallosh, Phys. Rev. D53, (1996), R589 - R592, hep-th/9509102; M. Cvetic and D. Youm, Phys. Lett. B359, (1995), 87 - 92, hep-th/9507160; I. Gaida, Class. Quant. Grav. 15, (1998), 2261 - 2269, hep-th/9803215; I. Gaida, H.R. Hollmann and J.M. Stewart, Class. Quant. Grav. 16, (1999), 2231 - 2246, hep-th/9811032.
[57] R. Gregory, V. Rubakov and S. Sibiryakov, Phys. Lett. B489, (2000), 203 - 206, hep-th/0003045; C. Csaki, J. Erlich, T.J. Hollowood, and J. Terning, Phys. Rev. D63, (2001), 065019, hep-th/0003076.
[58] C.V. Johnson, A.W. Peet, and J. Polchinski, Phys. Rev. D61, (2000), 086001, hep-th/9911161; L. Järv and C.V. Johnson, Phys. Rev. D62, (2000), 126010, hep-th/0002244; C.V. Johnson, R.C. Myers, A.W. Peet, and S.F. Ross, Phys. Rev. D64, (2001), 106001, hep-th/0105077; L.M. Dyson, L. Järv, and C.V. Johnson, JHEP 0205, (2002), 019, hep-th/0112132; D. Astefanesei and R. Myers, JHEP 0202, (2002), 043, hep-th/0112133.