In yeast, the two main \(F_0 \) proton-translocating subunits of the ATP synthase (subunits 6/\(\alpha \) and 9/\(\gamma \)) are encoded by mitochondrial DNA (mtDNA). Unfortunately, mutations that inactivate the \(F_0 \) typically result in loss of mtDNA under the form of \(\rho^-/\rho^0 \) cells. Thus, we have designed a novel genetic strategy to circumvent this problem. It exploits previous findings that a null mutation in the nuclear \(ATP16 \) gene encoding ATP synthase subunit \(\delta \) results in massive and lethal \(F_0 \)-mediated protons leaks across the inner mitochondrial membrane. Mutations that inactivate the \(F_0 \) can thus, in these conditions, be selected positively as cell viability rescuing events. A first set of seven mutants was analyzed and all showed, as expected, very severe \(F_0 \) deficiencies. Two mutants carried nuclear mutations in known genes (\(AEP1, AEP2 \)) required for subunit \(c \) expression. The five other mutations were located in mtDNA. Of these, three affect synthesis or stability of subunit \(a \) transcripts and the two last consisted in a single amino acid replacement in subunit \(c \). One of the subunit \(c \) mutations is particularly interesting. It consists in an alanine to valine change at position 60 of subunit \(c \) adjacent to the essential glutamate of subunit \(c \) (at position 59) that interacts with the essential arginine 186 of subunit \(a \). The properties of this mutant suggest that the contact zone between subunit \(a \) and the ten subunits \(c \)-ring structure only involves critical transient interactions confined to the region where protons are exchanged between the subunit \(a \) and the \(c \)-ring.

The energy needs of living organisms are essentially met through the action of an \(F_1 F_0 \)-type ATP synthase, a complex found in the plasma membrane of bacteria, in the inner membrane of mitochondria, and in the thylakoid membrane of chloroplasts. The ATP synthase catalyzes the synthesis of ATP from ADP and orthophosphate using a chemiosmotic energy, most commonly that of a proton gradient, across its host membrane (1–3). The \(F_0 \)-ATP synthase consists of two distinct domains, a globular extramembrane catalytic unit called \(F_1 \), and a membrane-embedded proton-translocating domain known as \(F_0 \). The current model for the ATP synthase energy coupling is the binding change mechanism, according to which affinity changes for substrates and products at the catalytic sites are coupled to proton transport through the rotation of a subcomplex of the enzyme (1).

In mitochondria, the \(F_1 \) is an assembly of five different subunits, with an \(\alpha_3 \beta_3 \gamma \delta \epsilon \) stoichiometry, that contains three catalytic sites located in the \(\beta \)-subunits (4–6). The synthesis of ATP by the \(\beta \) subunits depends upon rotation of the \(F_1 \) subcomplex (called the central stalk) formed by subunits \(\gamma, \delta, \) and \(\epsilon \). Evidence for this rotation has been obtained by optical microscopy (7). The main components involved in proton translocation are a ring of \(c \) subunits (ten in yeast where this subunit is also referred to as \(Atp9p \), (8)) and a single subunit \(a \) (also referred to as \(Atp6p \) in yeast) (9, 10). Direct contacts between the \(c \)-ring and subunits \(\gamma \) and \(\delta \) enable the \(c \)-ring and the central stalk to rotate together as a fixed ensemble (8, 11). The \(F_1 \) is also physically connected to \(F_0 \) via its external surface by the so-called peripheral stalk that acts as a stator to counter the tendency of the \(\alpha_3 \beta_3 \) subcomplex to follow the rotation of the subunit \(\gamma \) during catalysis. In yeast mitochondria, the peripheral stalk consists of single copies of subunits OSCP (Oligomycin Sensitivity Conferring Protein), 4, d, h, f, 8, and i (2, 12, 13). In mitochondria, the ATP synthase exists as a dimer (14), a structure mediated by subunits \(e \) and \(g \) that is important for cristae formation (15, 16). The mitochondrial ATP synthase also contains peptides (If1p, Stf1p, and Stf2p in yeast) that have been implicated in the regulation of the enzyme by modulating its hydrolytic activity (17). In most eukaryotes, the mitochondrial ATP synthase has a dual genetic origin, nuclear and mitochondrial. In \(Saccharomyces cerevisiae \), the mitochondrial genome encodes three subunits of the \(F_0 \) (subunits \(a, c, \) and 8). Studies in yeast have revealed that the assembly pathway of the ATP synthase is particularly complex with a number of protein factors having specific actions in the expression of the mitochondrial DNA (mtDNA)\(^4\)-encoded subunits and in the establishment of proper subunit interactions (reviewed in Refs. 2, 13, 18).

As a genetically tractable eukaryote with a good fermenting capacity, yeast is a good system to study the ATP synthase. Both nuclear and mitochondrial genes can be manipulated in this organism (19), making it possible to introduce virtually any change in ATP synthase structure and in proteins involved in the assembly of this enzyme. However, defects in ATP synthase often result, in yeast, in loss of mtDNA under the form of \(\rho^-/\rho^0 \) cells (20). Only mutants deficient in \(\alpha-F_1 \) and \(\beta-F_1 \) proteins do not produce \(\rho^-/\rho^0 \) cells because of the inability of these mutants to survive the loss of the respiratory proteins encoded

\(^4\)The abbreviation used is: mtDNA, mitochondrial DNA.
by the mitochondrial genome (21). The most prominent impact on mtDNA stability, with 100% ρ^- cells, has been observed in mutants lacking the γ_F and δ_F proteins (22, 23). Using a regulatable subunit δ gene ($ATP16$), we have shown that a lack in this subunit results in the formation of partial F_1F_0 assemblies freely transporting protons across the mitochondrial inner membrane (24). Beyond a 50% deficit in subunit δ, the cells are unable to maintain any electrical potential ($\Delta\psi$) across the mitochondrial inner membrane (25). As a consequence, the cells need then to inactivate the F_0 to survive, which explains the 100% conversion into ρ^- cells of strains lacking the subunit δ. Mutations in the F_0 have usually also a strong impact on the mtDNA, but the reason for this is still unknown. There is no reported case of mutations of the F_0 that largely uncouple the mitochondrion like mutations in the central stalk. A recent study has revealed that in bacteria specific subunit a mutations may generate massive protons leaks through the F_0 (26). In yeast, such mutations would render maintenance of a complete (ρ^+) mtDNA not compatible with cell viability, like in strains deficient in subunit δ, which may explain the failure to isolate such mutants.

We describe in this study a novel genetic strategy for the study of yeast F_0. The screen is designed for the isolation of mutations that inactivate the F_0, like point mutations in the proton channel subunits or lesions in proteins needed to assemble the F_0. The mutations are selected for their ability to rescue the viability of cells lacking the subunit δ. The screen is thus positive and targeted on the F_0. To avoid rescue of δ-deficient cells by the ρ^- mutation, which is much more frequent than specific mutations of the F_0 ($\sim 10^{-2}$ versus $<10^{-5}$), we used a host strain in which a non-respiratory genetic marker, $ARG8$ (27), has been integrated into an intergenic region of the mitochondrial genome (25). This is a mitochondrial version of the nuclear gene $ARG8$ that encodes a mitochondrial protein involved in arginine biosynthesis (27). Consequently, without external arginine and in a $\Delta arg8$ nuclear background, ρ^- cells can no longer grow and only F_0 inactive mutants with a complete (ρ^+) mtDNA are selected as arginine protrophs.

We report the analysis of a first series of seven mutants isolated with this system.

Experimental Procedures

Yeast Strains and Media—The *S. cerevisiae* strains used and their genotypes are listed in Table 1. The following rich media were used for the growth of yeast: 1% (w/v) yeast extract, 1% (w/v) peptone, 40 mg/l adenine, supplemented with 2% (w/v) glucose, 2% (w/v) galactose, or 2% (w/v) glycerol, respectively. The glycerol medium was buffered at pH 6.2 with 50 mM potassium phosphate. We also used minimal medium W0 (0.17% (w/v) yeast nitrogen base without amino acids and ammonium sulfate, 0.5% (w/v) ammonium sulfate, 2% (w/v) glucose) and complete synthetic medium CSM medium (0.17% (w/v) yeast nitrogen base without amino acids and ammonium sulfate, 0.5% (w/v) ammonium sulfate, 2% (w/v) glucose) and complete synthetic medium CSM medium (0.17% (w/v) yeast nitrogen base without amino acids and ammonium sulfate, 0.5% (w/v) ammonium sulfate, 2% (w/v) glucose) and complete synthetic medium CSM medium (0.17% (w/v) yeast nitrogen base without amino acids and ammonium sulfate, 0.5% (w/v) ammonium sulfate, 2% (w/v) glucose) and complete synthetic medium CSM medium (0.17% (w/v) yeast nitrogen base without amino acids and ammonium sulfate, 0.5% (w/v) ammonium sulfate, 2% (w/v) glucose) and complete synthetic medium CSM medium (0.17% (w/v) yeast nitrogen base without amino acids and ammonium sulfate, 0.5% (w/v) ammonium sulfate, 2% (w/v) glucose) and complete synthetic medium CSM medium.

Strain	Nuclear genotype	mtDNA	Source
BY4741	Mata his3Δ1 leu2Δ0 met15Δ0 ura3Δ0	ρ^+	Euroscarb
KLJ4A-4a/60	Mata his1 trp2	ρ^+	Gil collection
DFS160a	Mata ade2-101 ura3-52 leu2Δ arg8Δ URA3 kar1-1	ρ^+	This study
MR6/b-3	Mata his3-115 ade2-1 ura3-1 leu2-3,112 trp1-1 CAN1 arg8Δ HIS3	ρ^+	This study
SDC17-4c	Mata met6 lys2 his3 ura3 arg8Δ his6Δ atp9Δ URA3	ρ^+	This study
SDC17-31b	Mata met6 lys2 his3 ura3 arg8Δ his6Δ atp16Δ URA3	ρ^+	This study
FG3	Mata ade2-101 ura3-52 leu2Δ arg8Δ URA3 kar1-1	ρ^+	This study
FG4	Mata his3-115 ade2-1 ura3-1 leu2-3,112 trp1-1 CAN1 arg8Δ HIS3	ρ^+	This study
SDC25/1	Mata met6 lys2 his3 ura3 arg8Δ his6Δ atp16Δ URA3 + pATP4-HIS3 ΔFO, mutant	ρ^+	This study
SDC25/5	Mata met6 lys2 his3 ura3 arg8Δ his6Δ atp16Δ URA3 + pATP4-HIS3 ΔFO, mutant	ρ^+	This study
FG18	Mata met6 lys2 his3 ura3 arg8Δ his6Δ atp16Δ URA3 + pATP4-HIS3 ΔFO, mutant	ρ^+	This study
FG19	Mata met6 lys2 his3 ura3 arg8Δ his6Δ atp16Δ URA3 + pATP4-HIS3 ΔFO, mutant	ρ^+	This study
FG20	Mata met6 lys2 his3 ura3 arg8Δ his6Δ atp16Δ URA3 + pATP4-HIS3 ΔFO, mutant	ρ^+	This study
FG21	Mata met6 lys2 his3 ura3 arg8Δ his6Δ atp16Δ URA3 + pATP4-HIS3 ΔFO, mutant	ρ^+	This study
FG22	Mata met6 lys2 his3 ura3 arg8Δ his6Δ atp16Δ URA3 + pATP4-HIS3 ΔFO, mutant	ρ^+	This study
FG24	Mata met6 lys2 his3 ura3 arg8Δ his6Δ atp16Δ URA3 + pATP4-HIS3 + pATP16-HIS3	ρ^+	This study
FG25/2	Mata met6 lys2 his3 ura3 arg8Δ his6Δ atp16Δ URA3 + pATP4-HIS3	ρ^+	This study
FG12	Mata ade2-101 ura3-52 leu2Δ arg8Δ URA3 kar1-1	ρ^+	This study
FG13	Mata his3-115 ade2-1 ura3-1 leu2-3,112 trp1-1 CAN1 arg8Δ HIS3	ρ^+	This study
SDC25/4	Mata met6 lys2 his3 ura3 arg8Δ his6Δ atp16Δ URA3 + pATP4-HIS3	ρ^+	This study
SDC25/6	Mata met6 lys2 his3 ura3 arg8Δ his6Δ atp16Δ URA3 + pATP4-HIS3	ρ^+	This study
SDC25/14	Mata met6 lys2 his3 ura3 arg8Δ his6Δ atp16Δ URA3 + pATP4-HIS3	ρ^+	This study
FG1	Mata ade2-101 ura3-52 leu2Δ arg8Δ URA3 kar1-1	ρ^+	This study
FG2	Mata his3-115 ade2-1 ura3-1 leu2-3,112 trp1-1 CAN1 arg8Δ HIS3	ρ^+	This study
SDC25/26	Mata met6 lys2 his3 ura3 arg8Δ his6Δ atp16Δ URA3 + pATP4-HIS3	ρ^+	This study
SDC30/2a	Mata ade2-101 ura3-52 leu2Δ arg8Δ URA3 kar1-1	ρ^+	This study
FG8	Mata ade2-101 ura3-52 leu2Δ Arg8Δ URA3 kar1-1	ρ^+	This study
FG9	Mata ade2-101 ura3-52 leu2Δ Arg8Δ URA3 kar1-1	ρ^+	This study
were selected on WO supplemented with methionine and ura-
cil, and named, respectively, FG18 and FG23. The plasmid
pSDC13 containing ATP16 under its native promoter (24) was
then introduced in FG18 and FG23 to give FG22 and FG24,
respectively (Table 1).

Construction of the Synthetic \(\rho^- \) Strain FG8 and FG9—The
wild-type ATP8 locus, from nucleotide position \(-271 \) up-
stream from the ATP8 initiator codon to nucleotide position
+153 downstream from the ATP8 stop codon, was amplified by
PCR using mtDNA from strain SDC17–31b as a template and
primers ATP8.3 (5'–CGGGATCCGGCTCCGCAAAGCCGG-
ATTATAATG-3') for the sense strand and ATP8.120 (5'–ATAT-
AAATAATATAGTCCGTAAGGA-3') for the antisense strand.
The PCR product was blunt-end ligated into the EcoRV site of
pMOS-Blue (pMOS Blue Blunt Ended Cloning Kit from GE
Healthcare) to give plasmid pMOS-ATP8. The insert was
removed from pMOS-ATP8 by digestion with BamHI-XbaI and
ligated into the vector pJM2; this vector contains COX2 as
a genetic marker for mitochondrial transformation (19) creat-
ing plasmid pJM2-ATP8. This plasmid was introduced by
biolistic transformation into DFS160a mitochondria with the
nuclear selectable LEU2 plasmid pFL46 by microprojectile
bombardment using a biolistic PDS-1000/He particle delivery
system (Bio-Rad) as described previously (19). Mitochondrial
transformants were identified among the Leu+ nuclear trans-
formants by their ability to produce respiring clones when
mated with the non-respiring NB40–3C strain bearing a dele-
tion in the mitochondrial COX2 gene (19). One such mitochon-
drial transformant was isolated and named FG8.

The wild-type ATP9 locus, from nucleotide position \(-228 \) up-
stream from the ATP9 initiator codon to nucleotide position
+98 downstream from the ATP9 stop codon, was amplified by
PCR using mtDNA from strain SDC17–31b (25) as a template
and primers ATP9.1 (5'–CGGGATCCGGCTCCGCAAAGCCGG-
ATTATAATGAG-3') for the sense strand and ATP9.153 (5'–ATAT-
AAATAATATAGTCCGTAAGGA-3') for the antisense strand.
The PCR product was blunt-end ligated into the EcoRV site of
pMOS-Blue (pMOS Blue Blunt Ended Cloning Kit from GE
Healthcare) to give plasmid pMOS-ATP9. The insert was
removed from pMOS-ATP9 by digestion with BamHI-XbaI and
ligated into the vector pJM2; this vector contains COX2 as
a genetic marker for mitochondrial transformation (19) creat-
ing plasmid pJM2-ATP9. This plasmid was introduced into mitochondria by biolistic transformation as
described above. One mitochondrial transformant was isolated
and named FG9.

In Vivo Labeling of Mitochondrial Translation Products—
These experiments were performed as previously described
(29). Briefly, strains were grown to early exponential phase (107
cells/ml) in 10 ml of galactose-rich media. The cells were har-
vested by centrifugation and washed twice with a low sulfate
medium (W0-AS, W0 without ammonium sulfate (30)). Cells
were resuspended in 10 ml of W0-AS containing 1% galactose,
supplemented with the corresponding auxotrophic markers
but without methionine and cysteine and incubated for 2 h.
These cultures were centrifuged, and the cells were resus-
pended in 0.5 ml of W0-AS containing 1% galactose and 1 mM
of a freshly prepared solution of cycloheximide and incubated
at 20 °C for 5 min; then 50 µCi of \(^{[35}S\)methionine–\(^{[35}S\)cysteine
(1000 Ci/mmol, Perkin Elmer) was added. The reaction
was terminated after 20 min by the addition of 75 µl of 1.85 M
NaOH, 1 M \(\beta \)-mercaptoethanol, and 0.01 M phenylmethylsulfo-
nyl fluoride. An equal volume of 50% trichloroacetic acid was
added, and the mixture was centrifuged in a microcentrifuge for
5 min at 14,000 rpm. The pellet consisting of precipitated pro-
teins was washed once with water and resuspended in 50 µl of
sample buffer (2% SDS, 10% glycerol, 2.5% \(\beta \)-mercaptoethanol,
0.06 M Tris-HCl, pH 6.8, and 0.002% bromphenol blue). The
proteins were then separated on a 16.5% polyacrylamide gel
(31).

Miscellaneous Procedures—Isolated mitochondria were pre-
pared by the enzymatic method (32). Protein amounts were
determined by the procedure of Lowry (33) in the presence of
5% SDS. SDS-PAGE was as described by Laemmli and Schagger
(31, 34). BN-PAGE experiments were carried out as described
previously (35). Western blot analyses were performed as
described (36). Polyclonal antibodies raised against yeast ATP
synthase were used at a dilution of 1:50,000 for subunits \(\beta \); 1:
10,000 for subunit Atp6p and 1:5,000 for subunit Atp9p.
Monoclonal antibodies against yeast porin (from Molecular
Probes) were used at a dilution of 1:5000. Nitrocellulose mem-
branes were incubated with peroxidase-labeled antibodies at a
1:10,000 dilution and revealed with the ECL reagent (GE
Healthcare).

RESULTS

Procedure for Random Isolation of Mutants with an Inactive
F\(_O\)—Retention of functional mtDNA in \(\Delta \delta \) cells is not viable
due to massive FO-mediated proton leaks across the inner mito-
chondrial membrane (25). As a result, 100% of \(\Delta \delta \) cells are
found as \(\rho^- \rho^0 \) petites (22). Specific mutations of the F\(_O\) (F\(_O\)\(\delta\))
can thus not be selected for directly from \(\Delta \delta \) cells. We therefore
designed a strategy based on the use of a null mutation of Atp4p
(\(\Delta \text{atp4} \)), a subunit of the peripheral stalk of the ATP synthase.
A lack of Atp4p prevents the incorporation of Atp6p into the F\(_O\)
(37). In these conditions, the absence of subunit \(\delta \) can no longer
uncouple the mitochondrial membrane and subunit \(\delta \)-deficient
cells with a complete mtDNA are viable (25). Transformation of
\(\Delta \delta + \Delta \text{atp4} \) cells with a plasmid-borne wild-type ATP4p
genef will restore the assembly of a functional F\(_O\) and the reconsti-
tuted \(\Delta \delta \) cells will die. However, if the \(\Delta \delta + \Delta \text{atp4} \) cells
acquired a mutation that alone inactivates the FO prior to their
transformation with ATP4p, the reconstituted \(\Delta \delta \) cells are
expected to be viable. To eliminate the \(\rho^- \rho^0 \) mutation from the
screen, we used cells with modified mtDNA in which \(\text{ARG8}^{\text{m}} \), a
non-respiratory genetic marker (27), has been integrated into
an intergenic region (25). This is a mitochondrial version of the
nuclear gene \(\text{ARG8} \) encoding a mitochondrial protein involved
in arginine biosynthesis (27). As \(\rho^- \rho^0 \) cells always lack at least
one of the mitochondrial genes encoding components of the
glycine protein synthesis system (tRNAs, rRNAs, and Var1p),
they are unable to express \(\text{ARG8}^{\text{m}} \) and hence unable to grow in
the absence of external arginine (in a nuclear \(\Delta \text{arg8} \) context).
Only those \(\text{FO}^- \) mutants that contain a complete mitochondrial
genome (\(\rho^- \)), can therefore be selected for directly by their
ability to grow in the absence of arginine.

In practice, the \(\text{FO}^- \rho^- \) mutants were selected as follows (Fig.
1A). Freshly grown \(\Delta \delta + \Delta \text{atp4} \) cells (strain SDC17–31b (25))
were transformed with a HIS3 plasmid containing ATP4 under control of its native promoter. The transformed cells were plated on a medium lacking both histidine and arginine (CSM-RH), i.e. conditions selective for both the plasmid (histidine synthesis) and the \(\text{ATP}^{+} \) state (arginine synthesis). As to estimate the total number of transformed cells (\(\text{ATP}^{+} \) and \(\text{ATP}^{-} \) petites) that were plated on CSM-RH, an aliquot of transformed cells was plated on a medium lacking only histidine (CSM-H). On this medium, those transformed cells that were petites, i.e. by far the most frequent (70%), are able to grow. Out of \(10^8 \) transformed cells plated on CSM-RH, about 30 viable clones were obtained, indicating that, excluding the \(\text{ATP}^{-} / \text{ATP}^{+} \) petites, mutations rescuing cells lacking subunit \(\delta \) are rare (\(10^{-6} \) to \(10^{-7} \)).

Genetic Origin, Nuclear, or Mitochondrial, of the \(\text{F}_{\text{O}}^{-} \) Mutants— Plasmid-borne genes are more exposed to mutation or rearrangement than chromosomal genes. We therefore primarily tested whether the \(\text{F}_{\text{O}}^{-} \) isolates resulted from the inactivation of the plasmid-borne ATP4 gene. \(\text{F}_{\text{O}}^{-} \) isolates were crossed with a \(\text{ATP}^{+} \) strain containing a wild-type mitochondrial genome (SDC17–4c, see Fig. 1B): when the \(\text{F}_{\text{O}}^{-} \) mutation is located in the plasmid-borne ATP4 gene, the progeny will be entirely deficient for respiratory growth whereas other mutations, either nuclear or mitochondrial, will result in respiratory competent progeny. Out of 28 \(\text{F}_{\text{O}}^{-} \) isolates, only 7 produced respiratory competent cells when crossed with SDC17–4c. Note that the absence of complementation by SDC17–4c may alternatively

![Procedure for the isolation and mapping of yeast mutants with an inactive \(\text{F}_{\text{O}} \) (\(\text{F}_{\text{O}}^{-} \)). Panel A describes the procedure for the isolation of \(\text{F}_{\text{O}}^{-} \) mutants using a host strain where the nuclear ARG8 gene has been replaced by a mitochondrial version of that gene (ARG8m) integrated into an intergenic region of the mitochondrial genome (mtDNA); see text for details. Panel B describes the procedure for mapping the mutations in nuclear or mitochondrial DNA, see text for details. Gly\(^{-/+}\) refers to yeast cells able/unable to grow on glycerol; \(\text{WT} \), wild-type; \(\text{p}^{-/0} \) refers to large (>50%) deletions (\(\text{p}^{-} \)) or complete loss (\(\text{p}^{0} \)) of the mtDNA; \(\text{p}^{-} \), complete mtDNA; \(\text{ATP}_{n} \) is a known nuclear gene required for ATP synthase expression.
be the consequence of an \(F_{O} \) mutation being nuclear dominant affecting a gene other than ATP4. However, although this type of rescuing event could theoretically occur, it must be very rare as the screen is designed to isolate loss-of-function mutations, which are expected to be mostly recessive if located in nuclear DNA. We therefore decided not to analyze further the \(F_{O} \) isolates that were not rescued by the \(\Delta atp4 \) strain.

The seven \(F_{O} \) isolates that proved to be competent for ATP4 expression (ATP4\(^{+} \)) were further analyzed by crossing with a wild-type strain lacking mtDNA (KL14–4a/60). This cross should restore respiratory competence in any nuclear recessive \(F_{O} \) mutant but fail to rescue any mutation in the mtDNA. This genetic test indicated that two of the seven \(F_{O} \) ATP4\(^{+} \) isolates (SDC25/1 and SDC25/5) were nuclear recessive mutants and that the five others (SDC25/2, SDC25/4, SDC25/6, SDC25/14, and SDC25/26) were mitochondrial mutants.

Nuclear \(F_{O} \) Mutants—To determine whether SDC25/1 and SDC25/5 carried mutations in a nuclear gene already known to be necessary for the expression of a functional \(F_{O} \), we tested these mutants for rescue in crosses with defined nuclear ATP synthase mutants. The tester strains were deficient in a gene encoding either a structural subunit (ATP4, ATP5, ATP7, ATP14, ATP18, ATP17) or an accessory factor (ATP10, ATP23, AEP1, AEP2, AEP3, ATP22, ATP25, NCA3) of the \(F_{O} \). We also tested mutants lacking \(\alpha \)-F1 (ATP1) or \(\beta \)-F1 (ATP2) or assembly factors of these subunits (ATP11, ATP12, FMC1), since \(\alpha \)-F1 and/or \(\beta \)-F1 deficient mutants exhibit a secondary defect in \(F_{O} \) with notably a failure to accumulate subunit \(a \) (38–40). When a \(F_{O} \) isolate carries a mutation in one of these tester genes, the corresponding homozygous diploid strain will be unable to grow on glycerol, whereas all the other crosses will produce respiratory competent progenies. The only testers that failed to complement SDC25/1 and SDC25/5 were those deficient in AEP1 or AEP2, respectively (Fig. 2A). As expected these mutants were not complemented also by crossing with a \(\Delta atp16 \) strain since they lack the ATP16 gene encoding subunit \(\delta \). AEP1 and AEP2 encode mitochondrial proteins required for the synthesis of subunit \(c \) (41–46). Upon reintroduction of AEP1 into SDC25/1 and of AEP2 into SDC25/5, complementation was restored in crosses with \(\Delta \)aep1 and \(\Delta \)aep2 testers (not shown), confirming that AEP1 and AEP2 were actually inactivated in SDC25/1 and SDC25/5 respectively. DNA sequencing revealed a single nucleotide deletion in AEP1, -A at position 547 of the coding sequence, which leads to a truncated protein of 201 residues (the wild-type Aep1p protein being 518 residues long). The AEP2 gene in SDC25/5 carries a single nucleotide substitution (A781T) introducing a premature stop codon, which results in a truncated protein of 260 residues (the wild-type Aep2p protein being 580 residues long). Consistent with these genetic data, pulse labeling of mitochondrial translation products revealed that SDC25/1 and SDC25/5 failed to synthesize subunit \(c \), while all the other mitochondrially encoded proteins were properly synthesized (not shown).

Mitochondrial \(F_{O} \) Mutants—The five \(F_{O} \) mutations that were localized to mtDNA were expected to be located in one of the three mitochondrial ATP synthase genes encoding subunit \(a \) (ATP6 gene), subunit \(c \) (ATP9 gene), and subunit \(\delta \) (ATP8 gene). We therefore tried to map these mutations by crossing them with three synthetic \(\rho^{-} \) strains each carrying only one of these genes in their mitochondria (\(\rho^{-} \)ATP9/strain FG9, \(\rho^{-} \)ATP6/strain SDC30/2a, and \(\rho^{-} \)ATP8/strain FG8). The rationale for these crosses is as follows (see Figs. 1B and 2B): when the \(F_{O} \) mutation is, for example, in the ATP9 gene, it can be corrected by mtDNA recombination in crosses with FG9 but not in crosses with FG8 or SDC30/2a. The presence/absence of

![FIGURE 2. Test crosses for the mapping of the \(F_{O} \) mutants. Panel A, the nuclear \(F_{O} \) mutants SDC25/1 and SDC25/5 were crossed with a series of yeast strains each carrying a null mutation in one of known nuclear genes (indicated on the left) required for ATP synthase expression. The various strains were crossed drop on drop on rich glucose medium (YPGA) for 2 days at 28 °C, and then replica plated on glycerol medium (N3). The N3 plate was incubated at 28 or 36 °C, as indicated, for 4 days and photographed. As controls the non-mated strains were spotted on the YPGA plate. Panel B, the mitochondrial \(F_{O} \) mutants SDC25/2, SDC25/4, SDC25/6, SDC25/14 and SDC25/26 were crossed with synthetic \(\rho^{-} \) testers carrying only the ATP6 (\(\rho^{-} \)ATP6, strain SDC30/2a), the ATP8 (\(\rho^{-} \)ATP8, strain FG8) or the ATP9 (\(\rho^{-} \)ATP9, strain FG9) gene in their mitochondria. The various strains were crossed drop on drop on YPGA for 2 days at 28 °C, with as controls the non-mated strains. A N3 replicate of the YPGA plate was incubated for 4 days at 28 °C and then photographed.](image-url)
Yeast F_0 Inactive Mutants

FIGURE 3. Topological location and evolutionary conservation of the Ala-60 and Met-67 residues of yeast subunit c. Panel A, three-dimensional structure of yeast subunit c monomer according to (48); the view is perpendicular to the membrane plane. The positions of the c-E59, c-A60, and c-M67 residues are indicated by arrowheads. H_1 and H_2 helices of subunit c are colored in bright and dark gray, respectively. The gray bars mark the membrane borders. IMS, intermembrane space. Panel B, alignments of subunits c from various species around helix H_2: S. cerevisiae (NP_009319.1), Candida glabrata (NP_818784.1), Schizosaccharomyces pombe (NP_039507.1), Neurospora crassa (0808299A), Arabidopsis thaliana (NP_651852.1), Nicotiana tabacum (NC_006581.1), Mus musculus (NP_778180.1), Xenopus laevis (NP_001080083.1), Drosophila melanogaster (NP_651852.1), and Homo sapiens (NP_001002031.1). The Ala-60 and Met-67 residues of yeast subunit c are replaced by Val and Lys in mutants SDC25/2 and SDC25/14, respectively.

Wild-type mtDNA recombinants can be determined by testing for the presence/absence of glycerol-positive (Gly') clones in the cross progeny (Fig. 2B). On this basis, two of the five F_0^i mutations of mitochondrial origin (SDC25/2 and SDC25/14) were mapped to the ATP9 locus (see below for a detailed description of these mutants). Two others (SDC25/4 and SDC25/6) mapped to the ATP6 locus and consisted in small deletions within the 3'-UTR of ATP6 leading to a strong decrease in the synthesis of subunits a and b (supplemental Fig. S1). The last mutant (SDC25/26) was not rescued in any of the three crosses (Fig. 2B), and this mutant later proved to be lacking both the ATP8 and ATP6 genes due to a deletion in the transcription unit containing these two genes (supplemental Fig. S1). The Subunit c Mutants SDC25/2 and SDC25/14—The ATP9 genes in SDC25/2 and SDC25/14 were sequenced: both carried a single nucleotide substitution leading to an amino acid substitution in subunit c. The A60V substitution in subunit c is moderately conserved (Fig. 3), whereas the M67K substitution in subunit c is rather well conserved (Fig. 3). The two mutated residues are located in the second transmembrane helix of subunit c (Fig. 3, A and B) and both are rather well evolutionarily conserved (Fig. 3B). These subunit c mutations had a moderate if any impact on subunit c synthesis (Fig. 4A). We tested their consequences on the ATP synthase after transferring the mtDNA from SDC25/2 and SDC25/14 into the wild-type nuclear genetic background of the MR6 strain (the original isolates lack the ATP6 gene). The resulting cytoductants were named FG13 and FG2, respectively. The mtDNA of the SDC17–31b strain, from which SDC25/2 and SDC25/14 were isolated, was similarly cytoducted into MR6 to provide a wild-type control (FG4) for FG2 and FG13. In view of previous findings showing that mutations of the ATP synthase often destabilize the mitochondrial genome in yeast (20), we first determined the influence of the two subunit c mutations on mtDNA stability by scoring the percentage of rho'/rho cells in glucose cultures of the different strains. The FG2 and FG13 cultures contained 60% and 20% of rho'/rho cells, respectively, versus less than 5% for the corresponding wild-type control (FG4). The steady-state accumulation of subunit c in these strains was then assessed by Western blotting of mitochondrial protein extracts treated with chloroform (conditions that completely dissociate the c-ring; Fig. 4B). In FG13, subunit c accumulation was 70% of wild-type levels and in FG2 it was only 40%. The decrease in subunit c content can be in part attributed to the increased propensities of FG13 and FG2 to produce rho'/rho cells (20 and 60%, respectively, see above). When the mitochondrial protein extracts were not treated with chloroform, a substantial proportion of subunit c both in FG13 and in the wild-type was detected as assembled oligomers, whereas in FG2 only trace amounts of the c-ring were detected (Fig. 4B). This indicated that the M67K mutation in subunit c severely compromised the assembly/stability of the c-ring while the A60V mutation had no significant impact on the ability of subunit c to form stable oligomers.

Although the subunit a was synthesized at normal rates (Fig. 4A), it fails to accumulate both in FG2 and in FG13 (Fig. 4B). This suggests that both subunit c mutations prevent the incorporation of subunit a into the ATP synthase such that unassembled subunit a is subsequently eliminated from the cells. Consistent with this, BN-PAGE analyses of mitochondrial extracts revealed the absence in FG2 and FG13 of fully assembled F_1F_0 complexes (Fig. 4C). Western blotting of the BN-PAGE gels revealed the presence in FG13 of a subunit c-immunoreactive complex that had the size of the c-ring (Fig. 4C). This further confirmed that the c-A60V mutation does not prevent the assembly of the c-ring but may impair the interaction of the c-ring with subunit a.

DISCUSSION

We report a genetic screen designed to randomly isolate mutations that impair the F_0 component of the ATP synthase. A first set of seven mutants was analyzed and all proved as intended to be severely deficient in the F_0. Two
mutants fail to synthesize subunit c due to alterations in AEP1 or AEP2, two nuclear genes encoding mitochondrial proteins required for expression of subunit c (41–46). The five other mutations are in the mtDNA. Of these, three impair the synthesis of both subunits a and 8 due to restricted deletions within the transcriptional unit encoding these two proteins; the last two involve single point mutations leading to an amino acid substitution in subunit c. Ala-60 by Val and Met-67 by Lys.

The c-M67K mutation severely compromises the assembly/stability of the c-ring. Unlike the c-M67K mutation, it has no visible impact on the assembly/stability of the c-ring. However, it has dramatic consequences on subunit a that despite a normal synthesis is no longer detectable at steady state. It can be inferred that the c-A60V mutation disrupts the interaction of the c-ring with subunit a, such that unassembled subunit a is subsequently eliminated from the cells. The mutated c-A60 residue is located beside the c-E59 residue that is essential for the proton translocating activity of the FO (Fig. 3B). This glutamate interacts with an arginine residue of subunit a (a-R186), which is hypothesized to lower the pK of the glutamate thereby enabling it to release a proton (47). According to a recently solved structure of the yeast c-ring (48), the c-A60 residue is at the external surface of the c-ring and its substitution by valine is predicted not to create significant clashes with neighboring residues of subunit c, which is consistent with the ability of the mutated subunit c to form stable oligomers.

We hypothesize that the c-A60V mutation disrupts the interaction between a-R186 and c-E59 and that the loss of this interaction is responsible for the defect in subunit a. Indeed, the c-A60 and c-E59 residues of two adjacent subunits c are in close contact with each other; hence, the c-M67K mutation cannot influence the interaction between subunits a and c.

The second subunit c mutation, c-A60V, is particularly interesting. Unlike the c-M67K mutation, it has no visible impact on the assembly/stability of the c-ring. However, it has dramatic consequences on subunit a that despite a normal synthesis is no longer detectable at steady state. It can be inferred that the c-A60V mutation must impair the interaction of the c-ring with subunit a, which is hypoth-

FIGURE 4. Influence of the c-A60V and c-M67K mutations on mitochondrial protein synthesis and ATP synthase assembly. Panel A, pulse labeling of mtDNA-encoded proteins. Freshly cell-labeled mutants SDC25/14 (c-M67K) and SDC25/2 (c-A60V), and corresponding parental strain SDC17–31b, were incubated for 20 min in the presence of a mixture of [35S]methionine + [15S]cysteine and cycloheximide to inhibit cytosolic protein synthesis. Total cellular protein extracts were prepared from the radiolabeled cells and run in SDS-PAGE gels containing either 12% acrylamide-4M urea (for a good separation of Cox3p and subunit a) or 17% acrylamide (for good resolution of Atp8 and subunit c). Each lane was loaded with 30000 disintegrations/min, which in this experiment corresponded to about the same numbers of cells for each analyzed strain. The gel was dried and analyzed with a PhosphorImager. The mitochondrial protein extracts were prepared from the radiolabeled cells and run in SDS-PAGE gels containing either 12% acrylamide-4M urea (for a good separation of Cox3p and subunit a) or 17% acrylamide (for good resolution of Atp8 and subunit c). Each lane was loaded with 30000 disintegrations/min, which in this experiment corresponded to about the same numbers of cells for each analyzed strain. The gel was dried and analyzed with a PhosphorImager. The mitochondrial complexes were separated by BN-PAGE and probed in-gel for ATPase activity (Panel C). V1 and V2 correspond to monomeric and dimeric ATP synthase, respectively.
Proximity (Fig. 5). It is thus possible that the c-A60V mutation is responsible for a steric hindrance preventing entrance of a-R186 into the proton binding site. Alternatively, the mutation may destabilize the c-E59 residue. Indeed, there is strong evidence that its stabilization requires a water molecule in the yeast ATP synthase (48), like in the H+ ATP synthase of Bacillus pseudofirmus OF4 (49). Subunit c residues surrounding the glutamate are involved in the binding of the water molecule (49). Thus, if, as believed (48), a water molecule is present also in the H+ binding site of the yeast c-ring, its correct positioning or even its access to this site might be compromised by the c-A60V mutation. As a consequence the c-E59 residue may not reach the position that allows it to properly interact with a-R186.

It might be that the ionic interaction between c-E59 and a-R186 is a key determinant to maintain subunit a associated with the c-ring, even though this interaction is constantly disrupted and reformed during rotation of the c-ring. If permanently interrupted, subunit a may become loosely attached to the complex thereby increasing its susceptibility to proteolytic degradation. Another possibility is that subunit a cannot fold properly if a-R186 cannot interact with c-E59. This is an interesting hypothesis according to which the folding of subunit a would be confined in front of the c-ring, possibly as a means to minimize non-productive interactions of subunit a during its assembly.

The strong impact of the c-A60V mutation on subunit a is somewhat surprising. Indeed, much more radical mutations at the interface between the c-ring and subunit a, like the a-L183R mutation located one helix turn from a-R186 (50), were found to have no effect on the assembly/stability of the ATP synthase. Although the a-L183R mutation severely compromises the functioning of the ATP synthase proton channel, the assembly/stability of subunit a is unaffected (50). Altogether these findings suggest that the contact zone between subunit a and the c-ring only involves critical transient interactions confined to the region of the Fo where protons are exchanged between the two subunits.

The results show that our genetic screen is perfectly appropriate for the selection of mutations specifically affecting the Fo component of the ATP synthase. Both nuclear and mitochondrial mutants were obtained, and the seven analyzed isolates were all different and each showed a very severe Fo deficiency. We have now started a more extensive hunt for Fo inactive mutants, with two main goals: (i) the identification of amino acids of subunits a and c that are critical for a proper operation of the proton channel of the ATP synthase; (ii) a better comprehension of the assembly of Fo. Regarding the second goal, although several factors involved in the assembly of the Fo are already known (18), it is likely that others remain to be discovered. This is evident when one considers the extraordinary complexity of the assembly pathway of complex IV with at least 30 different assembly factors (51) whereas only a dozen of proteins are known to be implicated in the biogenesis of the ATP synthase, an enzyme whose structure is certainly not less sophisticated than that of complex IV (2, 18). The strong instability of mtDNA in mutants with a defective Fo (with up to

FIGURE 5. The loss of the interaction between the essential c-E59 and a-R186 residues is hypothesized to be responsible for the degradation of subunit a in the yeast c-A60V mutant. The figure on the left shows a ribbon diagram built with PyMOL of two adjacent c subunits (c1 in blue and c2 in yellow) around the proton binding site in wild-type yeast ATP synthase, according to the recently solved structure of the yeast c-ring/F1 subcomplex (48). The two transmembrane segments of subunit c are labeled H1 and H2. The proton translocating activity of the ATP synthase depends on the interaction of the glutamate residue 59 of subunit c (E59) with the arginine residue 186 of subunit a (a-R186). The latter residue belongs to the fourth transmembrane segment of subunit a (a-H4), represented in green color. It is believed (48) that proper interaction of c-E59 and a-R186 depends on a water molecule (represented by a red sphere), like in the H+ and Na+ ATP synthases of B. pseudofirmus OF4 (49) and I. tartaricus (54), respectively. In one of the Fo inactive mutants isolated in this study, the alanine 60 of yeast subunit c is replaced by valine (right panel). The valine substituting c-A60 is shown in two rotameric conformations (solid and dashed line). The c-A60V mutation does not compromise the ability of subunit c to form stable oligomers but leads to elimination from the cells of the subunit a, presumably because of disruption of the interaction between c-E59 and a-R186 (see text for details). The question mark indicates that the water molecule is perhaps prevented to enter the proton binding site.
90–95% p^-/p^0 cells, see (52) for an example) may have hampered the identification of factors required for F_O expression. Our genetic screen allows one to circumvent that problem because p^-/p^0 cells are strictly eliminated.

Our screen may also be exploited to better define the cis-elements that control expression of the mitochondrial ATPase genes. In this respect, recent work from Tzagoloff’s laboratory has revealed a complex interplay between assembly and expression of these genes aiming to balance the production of different assembly intermediates, possibly to avoid F_O-mediated protein leakage across the inner mitochondrial membrane (39, 53). Our screen may lead to the isolation of mutants defective in these mechanisms, like those showing a diminished synthesis of subunits a and 8 (SDC25/4 and SDC25/6) due to restricted deletions in the 3’-UTR of the transcripts encoding these proteins.

Acknowledgments—We thank J. Velours for the generous gift of antibodies against yeast subunit a, and M.-F. Giraud and A. Dautant for helpful discussions.

REFERENCES

1. Boyer, P. D. (1997) Annu. Rev. Biochem. 66, 717–749
2. Ackerman, S. H., and Tzagoloff, A. (2005) Prog. Nucleic Acids Res. Mol. Biol. 80, 95–133
3. Senior, A. E., Nadanaciva, S., and Weber, J. (2002) Proc. Natl. Acad. Sci. U.S.A. 95, 11065–11070
4. Devenish, R. J., Prescott, M., and Rodgers, A. J. (2008) FEBS Lett. 583, 149–159
5. Laemmli, U. K. (1970) Nature 227, 680–685
6. Paul, M. F. (1992) Disruption and Mutagenese of the F_O Subunit a, and M.-F. Giraud and A. Dautant for helpful discussions.

Yeast F_O Inactive Mutants

21. Lefebvre-Legendre, L., Balguerie, A., Duvezin-Caubet, S., Giraud, M. F., Slonimski, P. P., and Di Rago, J. P. (2003) Mol. Microbiol. 47, 1329–1339
22. Giraud, M. F., and Velours, J. (1997) Eur. J. Biochem. 245, 813–818
23. Lai-Zhang, J., Xiao, Y., and Mueller, D. M. (1999) EMBO J. 18, 58–64
24. Duvezin-Caubet, S., Caron, M., Giraud, M. F., Velours, J., and di Rago, J. P. (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 13235–13240
25. Duvezin-Caubet, S., Rak, M., Lefebvre-Legendre, L., Tetaud, E., Bonnefoy, N., and di Rago, J. P. (2006) J. Biol. Chem. 281, 16305–16313
26. Mitome, N., Ono, S., Sato, H., Suzuki, T., Sone, N., and Yoshida, M. (2010) Biochem. J. 430, 171–177
27. Velours, J., and Arselin, G. (2000) FEBS Lett. 581, 617–626
28. Ellis, T. P., Helfenbein, K. G., Tzagoloff, A., and Dieckmann, C. L. (1996) Proc. Natl. Acad. Sci. U.S.A. 93, 5253–5257
29. Voth, W. P., Jiang, Y. W., and Stillman, D. J. (2003) Yeast 20, 985–993
30. Zeng, X., Neupert, W., and Tzagoloff, A. (2007) Mol. Biol. Cell 18, 617–626
31. Stock, D., Gibbons, C., Arechaga, I., Leslie, A. G., and Walker, J. E. (2000) EMBO J. 19, 20284–20290
32. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951) J. Biol. Chem. 193, 265–275
33. Schägger, H., and von Jagow, G. (1987) Anal. Biochem. 166, 368–379
34. Schägger, H., and von Jagow, G. (1991) Anal. Biochem. 199, 223–231
35. Arselin, G., Vaillier, J., Graves, P. V., and Velours, J. (1996) J. Biol. Chem. 271, 20284–20290
36. Paul, M. F. (1992) FEBS Lett. 583, 105–108
37. Finnegan, P. M., Payne, M. J., Keramidaris, E., and Lukins, H. B. (1991) Cell 66, 383–390
38. Devenish, R. J., Prescott, M., and Rodgers, A. J. (2008) Int. Rev. Cell Mol. Biol. 267, 1–58
39. Arnould, I., Pfieffer, K., Neupert, W., Stuart, R. A., and Schägger, H. (1998) EMBO J. 17, 7170–7178
40. Allen, R. D. (1995) Protoplasma 189, 1–8
41. Prakash, S., and Pedersen, P. L. (2002) Arch. Biochem. Biophys. 405, 38–43
42. Raz, M., Zeng, X., Bréthes, D., and di Rago, J. P. (2002) EMBO J. 21, 221–230
43. Hong, S., and Pedersen, P. L. (2002) Arch. Biochem. Biophys. 405, 38–43
44. Ratcliffe, P. J., Smith, J. S., and Tzagoloff, A. (2009) Biochim. Biophys. Acta 1793, 108–116
45. Bonnefoy, N., and Fox, T. D. (2001) Methods Cell Biol. 65, 381–396
46. Contamine, V., and Picard, M. (2000) Microbiol. Mol. Biol. Rev. 64, 281–315
47. Fillingame, R. H., and Dmitriev, O. Y. (2002) Biochim. Biophys. Acta 1565, 232–245
48. Tsunoda, S. P., Aggelis, R., Yoshida, M., and Capaldi, R. A. (2001) Proc. Natl. Acad. Sci. U.S.A. 98, 898–902
49. Velours, J., and Arselin, G. (2000) J. Bioenerg. Biomembr. 32, 383–390
50. Devenish, R. J., Prescott, M., and Rodgers, A. J. (2008) Int. Rev. Cell Mol. Biol. 267, 1–58
51. Arnould, I., Pfieffer, K., Neupert, W., Stuart, R. A., and Schägger, H. (1998) EMBO J. 17, 7170–7178
52. Allen, R. D. (1995) Protoplasma 189, 1–8
53. Prakash, S., and Pedersen, P. L. (2002) Arch. Biochem. Biophys. 405, 38–43
54. Ratcliffe, P. J., Smith, J. S., and Tzagoloff, A. (2009) Biochim. Biophys. Acta 1793, 108–116
55. Bonnefoy, N., and Fox, T. D. (2001) Methods Cell Biol. 65, 381–396
56. Contamine, V., and Picard, M. (2000) Microbiol. Mol. Biol. Rev. 64, 281–315
57. Fillingame, R. H., and Dmitriev, O. Y. (2002) Biochim. Biophys. Acta 1565, 232–245
58. Tsunoda, S. P., Aggelis, R., Yoshida, M., and Capaldi, R. A. (2001) Proc. Natl. Acad. Sci. U.S.A. 98, 898–902
59. Velours, J., and Arselin, G. (2000) J. Bioenerg. Biomembr. 32, 383–390
60. Devenish, R. J., Prescott, M., and Rodgers, A. J. (2008) Int. Rev. Cell Mol. Biol. 267, 1–58
61. Arnould, I., Pfieffer, K., Neupert, W., Stuart, R. A., and Schägger, H. (1998) EMBO J. 17, 7170–7178
62. Allen, R. D. (1995) Protoplasma 189, 1–8
63. Prakash, S., and Pedersen, P. L. (2002) Arch. Biochem. Biophys. 405, 38–43
64. Ratcliffe, P. J., Smith, J. S., and Tzagoloff, A. (2009) Biochim. Biophys. Acta 1793, 108–116
65. Bonnefoy, N., and Fox, T. D. (2001) Methods Cell Biol. 65, 381–396
66. Contamine, V., and Picard, M. (2000) Microbiol. Mol. Biol. Rev. 64, 281–315
