Solidification microstructure and phase transition of La-Nd-Fe alloys

D Su, K C Yang, M H Rong, X Cheng, Q Wei, Q R Yao, J Wang, G H Rao and H Y Zhou

School of Materials Science and Engineering & Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, People’s Republic of China

* Authors to whom any correspondence should be addressed.

E-mail: rongmh124@guet.edu.cn and wangjiang158@163.com

Keywords: La-Nd-Fe, solidification microstructure, phase transition, thermal analysis

Abstract
The solidification microstructure and phase transition of ten La-Nd-Fe alloys were studied experimentally by scanning electron microscopy (SEM) with energy dispersive x-ray spectroscopy (EDS) and differential thermal analysis (DTA). Phase compositions and phase transition temperatures of La-Nd-Fe alloys were measured and the formed phases were identified. The solidification behavior of La-Nd-Fe alloys was analyzed based on the experimental results of both solidification microstructure and phase transitions with the reported Nd-Fe, La-Fe and La-Nd sub-binary phase diagrams. The results indicated that the solidification processes of all La-Nd-Fe alloys begin with the precipitation of primary phase fcc(γ-Fe) and then follow by the formation of bcc(α-Fe) and/or Fe17Nd2 phases through different peritectic reactions. The solidification microstructure of three Fe65La29Nd6, Fe65La25Nd10 and Fe65La23Nd13 alloys presents three-phase microstructure with bcc(α-Fe), Fe17Nd3 and fcc(La,Nd) phases, while that of three Fe65La39Nd14, Fe65La9Nd36 and Fe65La15.5Nd19.5 alloys shows three-phase microstructure with bcc(α-Fe), Fe17Nd2 and dhcp(La,Nd) phases. The two-phase microstructure with Fe17Nd2 and dhcp(La,Nd) phases was formed in the solidification microstructure of four Fe65La12Nd23, Fe65La6.5Nd28.5, Fe65La4Nd31 and Fe65La1.5Nd33.5 alloys. Moreover, no stable ternary intermetallic compound was found in the present experiments. The solidification microstructure and phase transition of La-Nd-Fe alloys would provide a basis for the design of La-Nd-Fe-B magnetic alloys.

1. Introduction
Nd-Fe-B permanent magnets have excellent magnetic performances and have been widely used in the wind-power, electric vehicles and other fields [1–8]. The superiority of these magnets arises from the large saturation magnetization and high anisotropy field of Nd2Fe14B main phase [9–12]. During the solidification process, the primary phase fcc(γ-Fe) (transformed to bcc(α-Fe) phase at low temperature) precipitates from Nd-Fe-B-based alloy melts at high temperature, and then Nd2Fe14B main phase is formed by the peritectic reaction, L + γ-Fe → Nd2Fe14B [13, 14]. As the results, Nd-Fe-B-based alloys contain normally Nd2Fe14B main phase and α-Fe minor phase. In order to improve greatly the volume fraction of Nd2Fe14B main phase in the magnets, it is crucial to reduce the amounts of the deteriorated α-Fe minor phase during the solidification process. Strip-Casting (SC) technology as one of rapid solidification technologies has been used widely in the production of Nd2Fe14B-based permanent magnets [14–19]. The high cooling rates in the solidification process would restrain the precipitation of the primary phase γ-Fe from under-cooled melts, which is the most effective method to control the formation of α-Fe phase in the Nd-Fe-B-based magnets. Therefore, the microstructure evolution of Nd-Fe-B-based alloys during the solidification process is significant effect on their magnetic properties [11, 18, 19].

On the other hand, Nd-Fe-B permanent magnets were needed to the low-abundant and expensive heavy rare-earth metals Dy and Tb to achieve higher coercivity and better thermal stability [20, 21]. It has limited the development of Nd-Fe-B magnets. In contrast, the high-abundant and cheap light rare-earth metals La, Ce and
Y are overstocked. To balance the use of rare-earth metals, the application of the high-abundant rare-earth metals La, Ce and Y in Nd-Fe-B magnets to replace the part of heavy rare-earth metals is an effective and promising way to develop novel Nd-Fe-B permanent magnets [22–28]. Recently, it has been reported that Nd-Fe-B magnets with La would exhibit a good magnetic performance [23, 25, 28]. For example, (Nd0.4La0.6)15Fe77.5B7.5 melt-spun ribbon prepared with the wheel speed of 26 m s$^{-1}$ shows better magnetic properties (H_{ci} = 7.27 kOe, M_r = 90.94 emu g$^{-1}$, $(BH)_{max}$ = 12.10 MGOe) [28]. In order to better understand the effect of La on phase formation, microstructure, phase transition and magnetic properties of Nd-Fe-B-based permanent magnet, the solidification behavior of La-Nd-Fe-B alloys is fundamental. Therefore, as a key ternary system in La-Nd-Fe-B alloys, the solidification microstructure and phase transition of La-Nd-Fe alloys were studied experimentally in this work.

| Table 1. Phase compositions and identified phases of La-Nd-Fe alloys. |
|-----------------------------|--------|--------|--------|-----------------------------|
| Nominal composition of alloys (at.%) | Condition | EDS measurement (at.%) | Phase identification |
| Fe$_{65}$La$_{29}$Nd$_6$ | as-cast | Fe 99.37 La 0.04 Nd 0.79 | fcc(γ-Fe) |
| | annealed | Fe 88.23 La 0.31 Nd 0.41 | fcc(La,Nd) |
| Fe$_{65}$La$_{32}$Nd$_{10}$ | as-cast | Fe 99.20 La 0.43 Nd 0.37 | fcc(γ-Fe) |
| | annealed | Fe 88.25 La 1.86 Nd 9.89 | Fe$_2$Nd$_2$ |
| Fe$_{65}$La$_{22}$Nd$_{13}$ | as-cast | Fe 99.14 La 0.40 Nd 0.46 | fcc(γ-Fe) |
| | annealed | Fe 88.59 La 1.50 Nd 9.91 | Fe$_2$Nd$_2$ |
| Fe$_{65}$La$_{19}$Nd$_{16}$ | as-cast | Fe 98.07 La 1.32 Nd 0.61 | fcc(γ-Fe) |
| | annealed | Fe 90.47 La 1.32 Nd 8.21 | Fe$_2$Nd$_2$ |
| Fe$_{65}$La$_{14}$Nd$_{26}$ | as-cast | Fe 89.28 La 0.12 Nd 0.60 | fcc(γ-Fe) |
| | annealed | Fe 88.98 La 0.59 Nd 10.43 | Fe$_2$Nd$_2$ |
| Fe$_{65}$La$_{15.5}$Nd$_{19.5}$ | as-cast | Fe 98.75 La 0.31 Nd 0.94 | fcc(γ-Fe) |
| | annealed | Fe 88.61 La 0.94 Nd 10.45 | Fe$_2$Nd$_2$ |
| Fe$_{65}$La$_{12}$Nd$_{23}$ | as-cast | Fe 89.17 La 0.47 Nd 10.36 | fcc(γ-Fe) |
| | annealed | Fe 89.17 La 0.47 Nd 10.36 | Fe$_2$Nd$_2$ |
| Fe$_{65}$La$_{6.5}$Nd$_{28.5}$ | as-cast | Fe 89.11 La 0.40 Nd 10.49 | fcc(γ-Fe) |
| | annealed | Fe 89.11 La 0.40 Nd 10.49 | Fe$_2$Nd$_2$ |
| Fe$_{65}$La$_{4}$Nd$_{31}$ | as-cast | Fe 88.64 La 0.34 Nd 11.02 | fcc(γ-Fe) |
| | annealed | Fe 88.64 La 0.34 Nd 11.02 | Fe$_2$Nd$_2$ |
| Fe$_{65}$La$_{1.5}$Nd$_{33.5}$ | as-cast | Fe 88.91 La 0.03 Nd 11.06 | fcc(γ-Fe) |
| | annealed | Fe 88.91 La 0.03 Nd 11.06 | Fe$_2$Nd$_2$ |

2. Experimental procedure

2.1. Sample preparation
La-Nd-Fe alloy samples were prepared from the pure metals of La (purity, 99.9%), Nd (purity, 99.9%) and Fe (purity, 99.9%). The alloys samples were melted four times by non-consumable tungsten electrode under an argon atmosphere protection to ensure homogeneity of the composition. The weight loss during the arc-melting was less than 1% and thus their compositions were considered to approach their nominal ones. In order to achieve composition homogeneity and prevent the samples oxidation, La-Nd-Fe alloy samples were sealed in evacuated quartz tubes under vacuum ($<10^{-3}$Pa) to be annealed at 873 K for 1440 h in a high-precision diffusion furnace, and then quickly quench into ice water to maintain microstructure at certain temperature.
Table 2. Phase transition and solidification process of La-Nd-Fe alloys.

Nominal composition of alloys (at.%)	Thermal signals	Phase transition	Solidification process
Fe₆₅La₉Nd₂₆	1298.1/1292.1	L + fcc(γ-Fe) → Fe₁₇Nd₂	L → L + fcc(γ-Fe) → L + Fe₁₇Nd₂ + fcc(α-Fe) + Fe₁₇Nd₂ + fcc(La,Nd)
Fe₆₅La₁₂Nd₁₃	1329.5/1325.4	L + fcc(γ-Fe) → Fe₁₇Nd₂	L → L + fcc(γ-Fe) → L + Fe₁₇Nd₂ + fcc(La,Nd)
Fe₆₅La₁₅Nd_{19.5}	1423.4/1377.1	L + fcc(γ-Fe) → Fe₁₇Nd₂	L → L + fcc(γ-Fe) → L + Fe₁₇Nd₂ + fcc(La,Nd)
Fe₆₅La₁₈Nd₁₆	1027.9/1034.1	L + fcc(γ-Fe) → Fe₁₇Nd₂	L → L + fcc(γ-Fe) → L + Fe₁₇Nd₂ + fcc(La,Nd)
Fe₆₅La₂₂Nd₁₃	1395.7/1390.7	L + fcc(γ-Fe) → Fe₁₇Nd₂	L → L + fcc(γ-Fe) → L + Fe₁₇Nd₂ + fcc(La,Nd)
Fe₆₅La₂₅Nd₁₀	1210.9/1158.6	L + fcc(γ-Fe) → Fe₁₇Nd₂	L → L + fcc(γ-Fe) → L + Fe₁₇Nd₂ + fcc(La,Nd)
Fe₆₅La₂₉Nd₆	1214.0/1162.3	L + fcc(γ-Fe) → Fe₁₇Nd₂	L → L + fcc(γ-Fe) → L + Fe₁₇Nd₂ + fcc(La,Nd)
Fe₆₅La_{6.5}Nd_{28.5}	1446.2/1378.8	L + fcc(γ-Fe) → Fe₁₇Nd₂	L → L + fcc(γ-Fe) → L + Fe₁₇Nd₂ + fcc(La,Nd)
Fe₆₅La_{1.5}Nd_{33.5}	1470.8/1379.8	L + fcc(γ-Fe) → Fe₁₇Nd₂	L → L + fcc(γ-Fe) → L + Fe₁₇Nd₂ + fcc(La,Nd)
Fe₆₅La₄Nd₃₁	1467.0/1401.7	L + fcc(γ-Fe) → Fe₁₇Nd₂	L → L + fcc(γ-Fe) → L + Fe₁₇Nd₂ + fcc(La,Nd)
Fe₆₅La₃Nd_{26.5}	985.2/995.5	L + fcc(γ-Fe) → Fe₁₇Nd₂	L → L + fcc(γ-Fe) → L + Fe₁₇Nd₂ + fcc(La,Nd)
Fe₆₅La₆Nd_{18.5}	995.8/995.5	L + fcc(γ-Fe) → Fe₁₇Nd₂	L → L + fcc(γ-Fe) → L + Fe₁₇Nd₂ + fcc(La,Nd)
Fe₆₅La₁Nd_{35.5}	995.8/995.5	L + fcc(γ-Fe) → Fe₁₇Nd₂	L → L + fcc(γ-Fe) → L + Fe₁₇Nd₂ + fcc(La,Nd)

Thermal signals
- **Heating/K**: 1214.0, 1047.2, 1210.9, 1061.1, 1252.8, 1041.4, 1298.1, 1027.9, 1423.4, 1329.5, 1021.4, 1370.7, 1004.7, 1446.2, 985.2, 1467.0, 995.8, 1470.8, 995.5
- **Cooling/K**: 1162.3, 1051.2, 1158.6, 1054.2, 1169.9, 1034.1, 1292.1, 1377.1, 996.3, 1325.4, 1023.1, 1307.6, 1035.5, 1378.8, 995.5, 1401.7, 971.1, —

Phase transition
- Fe₁₇Nd₂ (bcc, α-Fe)
- Fe₁₇Nd₂ (fcc, γ-Fe)
- Fe₁₇Nd₂ (dhcp, La,Nd)

Solidification process
- L + fcc(γ-Fe) → Fe₁₇Nd₂ + fcc(La,Nd)
- L + fcc(γ-Fe) → Fe₁₇Nd₂ + fcc(La,Nd) + fcc(La,Nd)
2.2. Microstructure characterization
For solidification microstructure examination, considering the easy oxidization of rare-earth metals, La-Nd-Fe alloy samples were prepared under the condition of ethyl alcohol absolute. The alloy samples were prepared with the standard metallographic procedure. The alloy samples were first ground using silicon carbide paper and then polished with diamond with approximately 0.05 μm particle sizes. The alloy samples were ultrasonically cleaned in ethyl alcohol absolute for 300 s after each step of grinding and polishing. The microstructure of the alloy samples was examined using scanning electron microscopy (SEM) using back scattered electron (BSE) mode and the phase compositions of alloy samples were measured using energy-dispersive x-ray spectra (EDS).

2.3. Thermal analysis
To determine the temperatures of phase transitions in La-Nd-Fe alloy samples, thermal analysis measurements were carried out using Al2O3 crucibles under a flow of pure N2 atmosphere. The instrument calibration was carried out using calibration metals In, Sn, Bi, Zn, Al, Ag, Au and Ni as standard samples to reduce the random and systematic errors. The high-purity Al2O3 crucibles were employed in the thermal analysis experiments. The alloy samples about 15–20 mg were measured by heating up to 1673 K and cooling down to 373 K at both heating and cooling rates of 20 K min⁻¹. The accuracy of the present measurements is evaluated to be within ±1 K in the measured temperature range.

3. Results and discussion
The microstructure characterization and thermal analysis measurements of La-Nd-Fe alloy samples were carried out in this work. The phase compositions of La-Nd-Fe alloy samples measured by EDS were summarized in table 1. Based on the thermal analysis curves of the alloy samples, the onset temperature of the peak was determined as the reactions, while the last peak temperature was selected to be the liquidus temperature. Table 2

Figure 1. Back-scattered electron (BSE) micrograph of (a) as-cast and (b) annealed Fe₆₅La₂₉Nd₆ alloy.
shows phase transition temperatures and solidification sequences of La-Nd-Fe alloy samples according to thermal analysis results and the solidification microstructure analysis based on the reported Nd-Fe, La-Fe and La-Nd sub-binary phase diagrams [29–31].

3.1. Solidification microstructure

Figure 1 is the BSE micrograph of as-cast and annealed Fe65La29Nd6 alloy. As shown in figure 1(a), the gray dark phase is the primary phase fcc(γ-Fe) (Fe99.37-La0.04-Nd0.79), which would transform to bcc(α-Fe) phase at low temperature, while the white phase is fcc(La,Nd) (Fe1.71-La83.08-Nd15.21) phase according to the EDS results in table 1. The reported Fe-Nd binary phase diagram [29] shows that Fe17Nd2 phase is formed by the peritectic reaction, L + fcc(γ-Fe) → Fe17Nd2 at 1490.2 K, while the La-Nd binary phase diagram shows fcc(La,Nd) phase in the rich-La part and dhcp(La,Nd) phase in the rich-Nd part [30]. Figure 1(b) is the BSE micrograph of the alloy annealed at 873 K for 1440 h. The gray black phase with the composition of Fe99.32-La0.31-Nd0.37 is fcc(γ-Fe) phase, while the grey phase around fcc(γ-Fe) phase is Fe17Nd2 (Fe88.23-La2.36-Nd9.41) phase with the solubility of La. The bright phase is fcc(La,Nd) (Fe1.93-La82.75-Nd15.32) phase from the EDS results. The lamellar two-phase microstructure with fcc(La,Nd) and Fe17Nd2 phases was exhibited near the primary phase fcc(γ-Fe), which indicates Fe17Nd2 phase formed by the peritectic reaction, L + fcc(γ-Fe) → Fe17Nd2. The white gray phase along Fe17Nd2 phase is fcc(La,Nd) phase from the EDS results (Fe1.93-La82.75-Nd15.32). The lamellar two-phase microstructure with fcc(La,Nd) and Fe17Nd2 phases was
observed clearly, which was formed through the reaction, $L \rightarrow \text{fcc}(\text{La,Nd}) + \text{Fe}_{17}\text{Nd}_2$. The microstructure of as-cast $\text{Fe}_{65}\text{La}_{22}\text{Nd}_{13}$ alloy in figure 2(b) contains fcc(γ-Fe), $\text{Fe}_{17}\text{Nd}_2$, fcc(La,Nd) three phases, and shows the two-phase microstructure with fcc(La,Nd) and $\text{Fe}_{17}\text{Nd}_2$ phases, which is similar to the microstructure of as-cast $\text{Fe}_{65}\text{La}_{25}\text{Nd}_{10}$ alloy.

Figure 3 displays the BSE micrograph of as-cast $\text{Fe}_{65}\text{La}_{19}\text{Nd}_{16}$ and $\text{Fe}_{65}\text{La}_{9}\text{Nd}_{26}$ alloys. In figure 3(a), the rare-earth phase in $\text{Fe}_{65}\text{La}_{19}\text{Nd}_{16}$ alloy is dhcp(La,Nd) phase rather than fcc(La,Nd) phase. It was explained that there is a phase transition from fcc(La,Nd) phase to dhcp(La,Nd) phase with the increase of Nd content according to the La-Nd binary phase diagram $[30]$. According to the EDS results in table 1, three different phases, e.g. bcc(α-Fe), $\text{Fe}_{17}\text{Nd}_2$ and dhcp(La,Nd), were identified in the BSE image as shown in figure 3(a). Figure 3(b) is the BSE micrograph of as-cast $\text{Fe}_{65}\text{La}_{19}\text{Nd}_{16}$ alloy. As can be seen, the solidification microstructure of as-cast $\text{Fe}_{65}\text{La}_{19}\text{Nd}_{16}$ alloy is similar with that of $\text{Fe}_{65}\text{La}_{19}\text{Nd}_{16}$ alloy, which consists of fcc(γ-Fe), $\text{Fe}_{17}\text{Nd}_2$, dhcp(La,Nd) phases and the two-phase microstructure with $\text{Fe}_{17}\text{Nd}_2$ and dhcp(La,Nd) phases.

Figure 4 presents the BSE micrograph of as-cast and annealed $\text{Fe}_{65}\text{La}_{15.5}\text{Nd}_{19.5}$ alloy. Based on the EDS results in table 1, three phases, e.g. fcc(γ-Fe), $\text{Fe}_{17}\text{Nd}_2$ and dhcp(La,Nd) phases were identified in the microstructure as shown in figure 4(a), and the two-phase microstructure with $\text{Fe}_{17}\text{Nd}_2$ and dhcp(La,Nd) phases is displayed. However, the microstructure of annealed alloy in figure 4(b) shows three different phases. The dark gray with lamellar structure is $\text{Fe}_{17}\text{Nd}_2$ phase, while the gray phase and light gray phase are Nd-rich dhcp(La,Nd) (Fe1.54-La13.08-Nd85.38) phase and La-rich dhcp(La,Nd) (Fe0.28-La60.86-Nd38.86) phase, respectively. Compared with the microstructure of as-cast alloy, fcc(γ-Fe) phase disappears because fcc(γ-Fe) phase transforms to form $\text{Fe}_{17}\text{Nd}_2$ phase through the peritectic reaction. Therefore, $\text{Fe}_{65}\text{La}_{15.5}\text{Nd}_{19.5}$ alloy undergoes the phase transition, $L \rightarrow \text{Fe}_{17}\text{Nd}_2 + $ dhcp(La,Nd) and three-phase field fcc(γ-Fe) + $\text{Fe}_{17}\text{Nd}_2 + $ dhcp(La,Nd) during the solidification process. On the basis of the reported results $[6, 32]$, the La–Nd–Fe ternary system shows a three-phase eutectic transition and equilibrium three-phase region for the four-phase U-type reaction, $L + $ fcc(γ-Fe) $\rightarrow \text{Fe}_{17}\text{Nd}_2 + $ dhcp(La,Nd).
Figure 5 shows the solidification microstructure of four as-cast Fe65La12Nd23, Fe65La6.5Nd28.5, Fe65La4Nd31 and Fe65La1.5Nd33.5 alloys. Compared with the solidification microstructure of as-cast Fe65La19Nd16 alloy, the microstructure of these four as-cast alloys indicates that the formation of dhcp (La, Nd) phase, although the phase transition from fcc (La, Nd) phase to dhcp (La, Nd) phase was not occurred according to the La-Nd binary phase diagram [30]. The microstructure of these four alloys displays similar solidification characteristics. On basis of the EDS results in table 1, these four alloys consist of angular strip structure and the continuous Fe17Nd2 phase. The two-phase microstructure with dhcp (La, Nd) and Fe17Nd2 phases was found, which indicated that the phase transition, L \rightarrow dhcp (La, Nd) + Fe17Nd2, occurred during the solidification process.

3.2. Phase transition

Figure 6 is the thermal analysis curves of as-cast Fe65La22Nd10, Fe65La25Nd10 and Fe65La22Nd13 alloys. From the heating curve in figure 6(a), two exothermic peaks were observed clearly. Based on the microstructure analysis as shown in figure 1 and the Nd-Fe binary phase diagram [29], the high temperature peak at 1214.0 K is corresponding to the formation of Fe17Nd2 phase through the reaction, L + fcc (γ-Fe) \rightarrow Fe17Nd2, while the low temperature peak at 1047.2 K is corresponding to the formation of fcc (La, Nd) phase through the reaction, L \rightarrow Fe17Nd2 + fcc (La, Nd). As shown in the thermal analysis curves of Fe65La22Nd10 alloy in figure 6(b), the first peak at 1061.1 K is corresponding to the phase transition, L \rightarrow fcc (La, Nd) + Fe17Nd2, while another peak at 1210.9 K is the transition temperature of formation of Fe17Nd2 phase during the solidification process in combination with the solidification microstructure analysis in figure 2(a). The solidification microstructure of Fe65La23Nd10 alloy is composed of fcc (La, Nd), Fe17Nd2 and bcc (α-Fe) (transformed from fcc (γ-Fe) phase) phases. As a result, the solidification process of Fe65La23Nd10 alloy can be described as: L \rightarrow L + fcc (γ-Fe) \rightarrow L + Fe17Nd2 \rightarrow bcc (α-Fe) + fcc (La, Nd) + Fe17Nd2. In figure 6(c), the thermal analysis curves of Fe65La22Nd13 alloy shows that the two peaks (1252.8 K and at 1041.4 K) are consistent with the formation of Fe17Nd2 phase and two-phase fcc (La, Nd) + Fe17Nd2, based on the microstructure.
characterization in figure 2(b) and the Nd-Fe binary phase diagram. Therefore, the solidification path of Fe65La12Nd3 alloy is the same as that of Fe65La22Nd3 alloy.

Figure 7 presents the thermal analysis curves of as-cast Fe65La19Nd16, Fe65La9Nd26, and Fe65La4Nd31 alloys. As can be seen in figure 7(a), the thermal analysis curves of Fe65La19Nd16 alloy shows that the high temperature peak at 1298.1 K is corresponding to the reaction, $L \rightarrow Fe_{17}Nd_2$, while the low temperature peak at 1027.9 K belongs to the reaction, $L \rightarrow Fe_{17}Nd_2 + dhcp$(La,Nd) based on the similar analysis mentioned above. However, the transition temperature of fcc(La,Nd) phase to dhcp(La,Nd) phase was not measured in this work due to small thermal effect of solid phase transformation. It was noted that the high-temperature phase fcc(γ-Fe) transforms into bcc(α-Fe) phase at low temperature. It means that the thermal analysis results are in good consistent with the solidification microstructure in figure 3(a). It was concluded that the solidification behavior of Fe65La19Nd16 alloy can be expressed as $L \rightarrow L + fcc$(γ-Fe) $\rightarrow L + Fe_{17}Nd_2 \rightarrow L + fcc$(La,Nd) $\rightarrow bcc$(α-Fe) + dhcp(La,Nd) + $Fe_{17}Nd_2$.

Based on the thermal analysis curves in figure 7(b), the solidification behavior of Fe65La9Nd36 alloy is similar with that of Fe65La19Nd16 alloy. The peritectic reaction, $L + fcc$(γ-Fe) $\rightarrow Fe_{17}Nd_2$ occurs at 1423.4 K, while the formation of $Fe_{17}Nd_2 + dhcp$(La,Nd) phase occurs at 1000.7 K. In figure 7(c), the thermal analysis curves of Fe65La15.3Nd19.5 alloy show that the first peak at 1021.4 K is corresponding to the reaction, $L \rightarrow Fe_{17}Nd_2 + dhcp$(La,Nd), while the another peak at 1329.5 K is the temperature of the reaction, $L + fcc$(γ-Fe) $\rightarrow Fe_{17}Nd_2$. The results are consistent with the solidification microstructure as given in figure 4. Similar to the results of Fe65La15.3Nd16 alloy, fcc(γ-Fe) phase transforms to bcc(α-Fe) phase in final solidification microstructure. Therefore, the solidification process of Fe65La15.3Nd19.5 alloy can be shown as $L \rightarrow L + fcc$(γ-Fe) $\rightarrow L + Fe_{17}Nd_2 \rightarrow L + fcc$(La,Nd) $\rightarrow Fe_{17}Nd_2$ $\rightarrow bcc$(α-Fe) + dhcp(La,Nd) + $Fe_{17}Nd_2$.

The phase transition temperatures of Fe65La12Nd3, Fe65La15.3Nd19.5, Fe65La9Nd31 and Fe65La15.3Nd33.5 alloys were determined from the thermal analysis curves as shown in figure 8. The peritectic reaction, $L + fcc$(γ-Fe) $\rightarrow Fe_{17}Nd_2$, occurred at high temperature. Compared with the experimental results of six alloys discussed above, fcc(γ-Fe) phase was not observed in the solidification microstructure, while the proportion of Fe17Nd2 phase increases due to the transformation of fcc(γ-Fe) phase to form $Fe_{17}Nd_2$ phase during the solidification process. The solidification behavior of these four alloys can be expressed as $L \rightarrow L + fcc$(γ-Fe) $\rightarrow L + Fe_{17}Nd_2 \rightarrow Fe_{17}Nd_2 + dhcp$(La,Nd).
4. Conclusions

In this work, the solidification process of La-Nd-Fe alloys was analyzed based on the experimental investigation of solidification microstructure and phase transitions with the reported Nd-Fe, La-Fe and La-Nd sub-binary phase diagrams. The results shows that the solidification processes of three Fe$_{65}$La$_{29}$Nd$_{6}$, Fe$_{65}$La$_{25}$Nd$_{10}$ and Fe$_{65}$La$_{22}$Nd$_{13}$ alloys were described as L \rightarrow L + fcc(γ-Fe) \rightarrow L + Fe$_{17}$Nd$_{2}$ \rightarrow bcc(α-Fe) + Fe$_{17}$Nd$_{2}$ + fcc(La,Nd), whereas

Figure 6. Thermal analysis curves of as-cast (a) Fe$_{65}$La$_{29}$Nd$_{6}$, (b) Fe$_{65}$La$_{25}$Nd$_{10}$ and (c) Fe$_{65}$La$_{22}$Nd$_{13}$ alloys.
The solidification behaviors of three Fe$_{65}$La$_{19}$Nd$_{16}$, Fe$_{65}$La$_{15.5}$Nd$_{19.5}$ and Fe$_{65}$La$_{9}$Nd$_{26}$ alloys were expressed as $L \rightarrow L + fcc(\gamma$-$Fe) \rightarrow L + Fe_{17}Nd_2 \rightarrow L + Fe_{17}Nd_2 + fcc(La,Nd) \rightarrow bcc(\alpha$-$Fe) + Fe_{17}Nd_2 + dhcp(La,Nd). The solidification sequences of four Fe$_{65}$La$_{12}$Nd$_{23}$, Fe$_{65}$La$_{6.5}$Nd$_{28.5}$, Fe$_{65}$La$_{3}$Nd$_{33.5}$ and Fe$_{65}$La$_{1.5}$Nd$_{33.5}$ alloys were followed as $L \rightarrow L + fcc(\gamma$-$Fe) \rightarrow L + Fe_{17}Nd_2 \rightarrow Fe_{17}Nd_2 + dhcp(La,Nd). Additionally, no stable ternary compound was found in the present experiments. The experimental results of both solidification microstructure and phase transition in La-Nd-Fe alloys would be useful for the design of La-Nd-Fe-B magnetic alloys.

Figure 7. Thermal analysis curves of as-cast (a) Fe$_{65}$La$_{19}$Nd$_{16}$, (b) Fe$_{65}$La$_{15.5}$Nd$_{19.5}$ and (c) Fe$_{65}$La$_{13.5}$Nd$_{19.5}$ alloys.
Figure 8. Thermal analysis curves of as-cast alloys with different compositions. (a) Fe₆₅La₁₂Nd₂₃ alloy, (b) Fe₆₅La₆.₅Nd₂₈.₅ alloy, (c) Fe₆₅La₄Nd₃₁ alloy, (d) Fe₆₅La₁.₅Nd₃₃.₅ alloy.
Acknowledgments

This work was supported financially by the National Key Research and Development Program of China (2016YFB0700901), the National Natural Science Foundation of China (51761008) and GUET Excellent Graduate Thesis Program (18YJPYS31).

ORCID iDs

J Wang https://orcid.org/0000-0003-3664-1857

References

[1] Poudyal N and Liu J P 2012 Advances in nanostructured permanent magnets research J. Phys. D: Appl. Phys. 46 433001
[2] Lai B, Li Y F, Wang H J, Li A H, Zhu M G, Li W and Zhuang Y 2014 Model of temperature field for the preparation process of melt-spun NdFeB powders J. Rare Earths 32 514
[3] Liu D, Zhao T Y, Li R, Zhang M, Shang R X, Xiong F, Zhang J, Sun J R and Shen B G 2017 Micromagnetic simulation of influence of gain boundary on certain substituted Nd-Fe-B magnets AIP Adv. 7 056201
[4] Wang R Q, Liu Y, Li J, Chu L H, Yang X J and Qiu Y C 2017 Effect of crushing methods on morphology and magnetic properties of anisotropic NdFeB powders J. Rare Earths 35 800
[5] Soderznik M, Sephri-Amin H, Sasaki T T, Ohkubo T, Takada Y, Sato T, Kaneko Y, Kato A, Schreiff T and Hono K 2017 Magnetization reversal of exchange-coupled and exchange-decoupled Nd-Fe-B magnets observed by magneto-optical Kerr effect microscopy Acta Mater. 135 68
[6] Chen T L, Wang J, Guo C P, Li C R, Du Z M, Rao G H and Zhou H Y 2019 Thermodynamic description of Nd-Fe-B ternary system Calphad 66 10627
[7] Fu G, Wang J, Rong M H, Rao G H and Zhou H Y 2016 Phase equilibria of the Nd-Fe-B ternary system J. Phase Equilib. Diffus. 37 308
[8] Liu D, Zhao T Y, Li R, Zhang M, Shang R X, Xiong F, Zhang J, Sun J R and Shen B G 2017 Micromagnetic simulation of influence of gain boundary on certain substituted Nd-Fe-B magnets AIP Adv. 7 056201
[9] Diez-Jimenez E, Perez-Diaz J L, Ferdeghini C, Canepa F, Bernini C, Cristache C, Sanchez-Garcia-Casarrubios J, Valiente-Blanco I, Ruiz-Navas E M and Martinez-Rojas J A 2018 Magnetic and morphological characterization of NdFeB powders of different quality grades at low temperature 5–300 K J. Magn. Magn. Mater. 451 549
[10] Giraud D, Li H S and Moreau J M 1984 Magnetic properties and crystal structure of Nd5Fe12B Sol. St. Comm. 50 497
[11] Ozawa S, Saito T, Yu J and Motegi T 2001 Solidification behavior in undercooled Nd-Fe-B alloys J. Alloy. Compd. 322 276
[12] Jin J Y, Wang Z, Bai G H, Peng B X, Liu Y S and Yan M 2018 Microstructure and magnetic properties of core–shell Nd-La-Fe-B sintered magnets J. Alloy. Compd. 749 580
[13] Volkmann T, Gao J, Strohmeiner J and Herlach D M 2004 Direct crystallization of the peritectic NdFeB by undercooling of the melt Mater. Sci. Eng. 375 1153
[14] Yamamoto K, Matsuiwa M and Sugimoto S 2017 Microstructure formation in strip-cast RE-Fe-B alloys for magnets Metal. Mater. Trans. A 48 3482
[15] Buschow K H J 1991 New developments in hard magnetic materials Rep. Prog. Phys. 54 1123
[16] Sagawa M, Hirozawa S and Tokuara K 1987 Dependence of coercivity on anisotropy field in the Nd5Fe12B-type sintered magnets J. Appl. Phys. 8 3559
[17] Yan C J, Guo S, Chen R J, Lee D and Yan A R 2014 Phase constitution and microstructure of Ce-Fe-B strip-casting alloy Chin. Phys. B 23 107501
[18] Xu J, Yan S H, Yu D B, Li Z G, Li S P and Li H W 2006 Influence of solidification rate on microstructures of cast strips and corresponding sintered NdFeB magnets J. Rare Earths 24 306
[19] Li C D, Zhu X X and Shi L K 2006 Microstructural characterization of novel Ni- containing Nd-Fe-B strips by strip casting J. Rare Earths 24 85
[20] Li W F, Sephri-Amin H, Ohkubo T, Hase N and Hono K 2011 Distribution of Dy in high-coercivity NdFeB magnets Acta Mater. 59 3061
[21] Zhang T B, Zhou X Q, Yu D D, Fu Y Q, Li G J, Gui W B and Wang Q 2017 Ultrahigh coercivity and core–shell microstructure achieved in oriented Nd-Fe-B thin films diffusion-processed with Dy- based alloys Appl. Phys. A 123 111
[22] Fu G, Wang J, Rong M H, Rao G H and Zhou H Y 2016 Microstructure and magnetic properties of RE2.28Fe13.58B1.14 alloys Mater. Sci. Forum 848 709
[23] Li Z, Liu W Q, Zhang Z P, Wu D, Li Y Q and Yue M 2019 Optimizing the magnetic properties of Ce-containing Nd-Fe-B sintered magnets with La substitution Mater. Res. Express 6 1
[24] Chen Z A, Luo J, Sai Y L and Guo Z M 2010 Effect of yttrium substitution on magnetic properties and microstructure of Nd-Y-Fe-B nanocomposite magnets J. Rare Earths 28 77
[25] Qiao Z Q, Pan S K, Xiong J L, Cheng I C, Yao Q R and Lin P H 2017 Magnetic and microwave absorption properties of La-Nd-Fe alloys J. Magn. Magn. Mater. 423 197
[26] Rong M H, Fu G, Yao Q R, Wang J, Rao G H, Zhou H Y and Jin Z P 2020 Phase structure, microstructure and magnetic properties of (NdCe)13.4Fe15.3B2.7 alloys J. Supercond. Nov. Magn. 33 2737
[27] Rong M H, Ma J, Yao Q R, Wang J, Rao G H, Zhou H Y and Jin Z P 2020 Effect of Ce on phase formation and magnetic properties of (NdPr)2.25Fe13.4Bi1.14 melt-spun ribbons Mater. Res. Express 7 076410
[28] Wang L, Wang J, Rong M H, Rao G H and Zhou H Y 2018 Effect of wheel speed on phase formation and magnetic properties of (Nd0.4La0.6)Fe13.4Bi1.14 melt-spin ribbon J. Rare Earths 36 1179
[29] Chen T L, Wang J, Rong M H, Rao G H and Zhou H Y 2016 Experimental investigation and thermodynamic assessment of the Fe-Pr and Fe-Nd binary system Calphad 55 270–80
[30] Yang K C, Wang J, Yao Q R, Lu Z, Rong M H, Zhou H Y, Rao G H and Phase G H 2019 diagram of permanent magnet alloys: binary rare earth alloy systems J. Rare Earth. 37 1040
[31] Rong M H, Su D and Wang J 2020 Experimental Investigations and thermodynamic Assessments of the Fe-La and Fe-Ce Binary systems (unpublished work)
[32] Chen T L, Guo C P, Li C R and Du Z M 2019 Experimental investigation and thermodynamic description of the Fe-Nd-Pr system Thermochim. Acta 680 178357