IS THE SYMMETRIC GROUP SPERNER?

LARRY H. HARPER AND GENE B. KIM

Abstract. An antichain A in a poset \mathcal{P} is a subset of \mathcal{P} in which no two elements are comparable. Sperner showed that the maximal antichain in the Boolean lattice, $\mathcal{B}_n = \{0 < 1\}^n$, is the largest rank (of size $\binom{n}{\lfloor n/2 \rfloor}$). This type of problem has been since generalized, and a graded poset \mathcal{P} is said to be Sperner if the largest rank of \mathcal{P} is its maximal antichain. In this paper, we will show that the symmetric group \mathcal{S}_n, partially ordered by refinement (or by absolute order equivalently), is Sperner.

1. Introduction

A partial order, \leq, on S, is a reflexive, antisymmetric, and transitive binary relation, and a poset, $\mathcal{P} = (P, \leq)$, consists of a set, P, and a partial order \leq on P. A chain is a poset in which every pair of elements is comparable.

The height of \mathcal{P}, $h(\mathcal{P})$, is the maximum height of a chain in \mathcal{P}. The Jordan-Dedekind chain condition for \mathcal{P} is that all maximal chains in an interval $[x, y] = \{z \in \mathcal{P} : x \leq z \leq y\}$ have the same height. If \mathcal{P} is connected and satisfies this condition, we can define a rank function: select any $x_0 \in \mathcal{P}$ and define $r(x_0) = 0$. For any $x \neq x_0$, $r(x)$ is uniquely determined by $x \leq y \Rightarrow r(y) = r(x) + 1$. A graded poset is a poset equipped with a rank function. We can define the levels $N_i = \{x \in \mathcal{P} | r(x) = i\}$.

An antichain, A, in \mathcal{P} is a subset in which no two elements lie on a chain. Given a weighted poset, $\mathcal{P} = (P, \leq, \omega)$, the width of \mathcal{P}, w, is the maximum weight of an antichain in \mathcal{P}. If \mathcal{P} is not explicitly weighted, the weight is implicitly the counting measure.

Given \mathcal{P}, Sperner’s problem is to find the width of \mathcal{P}. In [12], Sperner shows that the width of the (unweighted) Boolean lattice, $\mathcal{B}_n = \{0 < 1\}^n$, is $\binom{n}{\lfloor n/2 \rfloor}$, the largest binomial coefficient. For $0 \leq k \leq h(\mathcal{P})$, we can also define a k-antichain, A_k, in \mathcal{P} to be a subset in which no $k+1$ elements lie on a chain. In [6], Erdős extended Sperner’s problem to finding the k-width, $w_k(\mathcal{P}) = \max \{w(A_k)\}$ and showed that

$$w_k(\mathcal{B}_n) = \sum_{j=1}^{k} \left(\binom{n}{(n + j - 1)/2}\right),$$

the sum of the k largest binomial coefficients. In [13], Stanley used techniques from algebraic geometry to show that Weyl groups, under Bruhat order, are Sperner. Engel wrote a book [5] which presents Sperner theory from a unified point of view, bringing combinatorial techniques together with methods from programming, linear algebra, probability theory, and enumerative combinatorics.

Date: December 21, 2018.

2010 Mathematics Subject Classification. Primary 05D05, 05E99.

Key words and phrases. Sperner, symmetric group, refinement, absolute order, flow morphism.
In \cite{11}, Rota conjectured that Π_n, the poset of partitions of $\{1, 2, \ldots, n\}$, ordered by refinement, is Sperner. The conjecture was disproved by Canfield in \cite{2} by using Graham-Harper reduction (\cite{8}) and probability theory. Canfield and Harper, in \cite{4}, went further, showing that the ratio of the size of the largest antichain to the size of the largest rank goes to infinity. Canfield, in \cite{3}, completed the resolution of Rota’s question, showing the ratio of the size of the largest antichain in Π_n and the largest Stirling number of the second kind (the rank sizes in Π_n) is $\Omega \left(n^{\alpha} (\ln n)^{1-n^{-\frac{1}{2}}}\right)$, where $\alpha = \frac{2-\ln 2}{4} \approx \frac{1}{3.5}$. So, the ratio does go to infinity, but very slowly. In 1999, this result was designated one of ten outstanding results in order theory by the editor-in-chief of the journal Order.

One of the natural questions that arises from Rota’s conjecture is: what happens if we look at S_n, ordered by refinement? Given $\pi \in S_n$, we say that σ is a refinement of π if we can take one of the cycles of π and slice it into two. More formally, if $\pi = \pi_1 \pi_2 \cdots \pi_k$ is the cycle decomposition of π, for any two elements i and j on a cycle π_m, $\pi \cdot (i j)$ is a refinement of π. In this paper, we will take a category theoretical approach to show that S_n, ordered by refinement, is Sperner.

It is also worth mentioning another partial order, called absolute order, on S_n. The absolute length of $\pi \in S_n$ is defined by

$$l_T(\pi) = n - \text{the number of cycles in } \pi.$$

Then, the absolute order on S_n is defined by

$$\pi \leq_T \sigma \iff l_T(\sigma) = l_T(\pi) + l_T(\pi^{-1}\sigma).$$

Armstrong, in \cite{1}, showed that the absolute order is the reverse of refinement, and so, the main result of this paper implies that S_n, ordered by absolute order, is Sperner.

2. Flow morphisms

In this section, we establish the groundwork to introduce the category $FLOW$. The objects of $FLOW$ are networks in the sense of Ford-Fulkerson \cite{7}, and its morphisms preserve the Ford-Fulkerson flows (both underflows and overflows) on those networks.

A network N consists of an acyclic directed graph $G = (V, E)$ and a capacity function $\nu : V \to \mathbb{R}^+$. For an edge $e \in E$, let $\partial_-(e)$ and $\partial_+(e)$ denote the head and tail of e, respectively. V is partitioned into three sets, R, S, and T:

\[
S = \{ s \in V : \exists e \in E, \partial_-(e) = s \}, \text{ called sources,}
\]

\[
T = \{ t \in V : \exists e \in E, \partial_+(e) = t \}, \text{ called sinks, and}
\]

\[
R = V - S - T, \text{ called intermediate vertices.}
\]

An underflow on N is a function $f : E \to \mathbb{R}^+$ such that

- for all $s \in S$, $\sum_{\partial_-(e)=s} f(e) \leq \nu(s)$,
- for all $t \in T$, $\sum_{\partial_+(e)=t} f(e) \leq \nu(t)$, and
- for all $r \in R$, $\sum_{\partial_-(e)=r} f(e) = \sum_{\partial_+(e)=r} f(e) \leq \nu(r)$.

An overflow on N is defined in the same way except that the inequalities are reversed. The quantity $\text{net}(f) = \sum_{s \in S} \sum_{\partial_-(e)=s} f(e)$ is the net S-T flow of f, and the MaxFlow of N is defined as $\text{MaxFlow}(N) = \max_f \text{net}(f)$ over all underflows, f, on N. Similarly, MinFlow of N is defined as $\text{MinFlow}(N) = \min_f \text{net}(f)$ over

all overflows, \(f \), on \(N \). By Ford-Fulkerson theory \([7]\), \(\text{MaxFlow}(N) = \text{MinCut}(N) \), where a \textit{cut} is a set of vertices intersecting any path from a source to a sink. Also, \(\text{MinFlow}(N) = \text{MaxAntichain}(N) \).

A \textit{bipartite network} is \(V = S \cup T \) with all edges \(e \in E \) directed from \(S \) to \(T \). A \textit{flow} \(f \) on a bipartite network \(V = S \cup T \) is said to be a \textit{normalized flow} if

\[
\sum_{xy \in E} f(xy) = \frac{\omega(x)}{\omega(S)} \quad \text{for all } x \in S, \text{ and}
\]

\[
\sum_{xy \in E} f(xy) = \frac{\omega(y)}{\omega(T)} \quad \text{for all } y \in T.
\]

If \(N \) is the Hasse diagram of a weighted and graded poset and every pair of consecutive ranks, \([N_k, N_{k+1}]\), accepts a normalized flow, then \(N \) is said to have the \textit{normalized flow property (NFP)}.

For \(G \) a bipartite graph with vertex sets \(A \) and \(B \), \(G \) is said to satisfy Hall’s matching condition if for all \(X \subseteq A \),

\[
|X| \leq |D(X)|
\]

holds, where \(D(X) \) is the set of vertices in \(B \) connected to vertices in \(X \). Sperner showed in his original problem that he only had to consider consecutive ranks at a time and if they satisfy Hall’s condition, then the poset under consideration is Sperner.

When trying to prove Rota’s conjecture, Graham and Harper came up with a strengthening of Hall’s matching condition. A bipartite graph \(G \) is said to satisfy \textit{normalized matching condition (NMC)} if for all \(X \subseteq A \),

\[
\frac{|X|}{|A|} \leq \frac{|D(X)|}{|B|}.
\]

The normalized matching condition is dual of the normalized flow property \([7]\). Harper has done extensive work in studying posets with NFP, and in \([9]\), he describes maps between these structures, called \textit{flow morphisms}. Let \(M \) and \(N \) be networks. Then, \(\varphi : M \to N \) is a \textit{flow morphism} if

1. \(\varphi : G_M \to G_N \) is a graph epimorphism,
2. \(\varphi^{-1}(S_N) = S_M \) and \(\varphi^{-1}(T_N) = T_M \),
3. \(\varphi \) is capacity preserving, i.e. for all \(v \in N \), \(\omega_M(\varphi^{-1}(v)) = \omega_N(v) \), and
4. the preimage of every edge \(e \in N \) has a normalized flow.

This leads us to the category \(\text{FLOW} \), whose objects are acyclic vertex-weighted networks and morphisms are precisely these flow morphisms. An important property of flow morphisms is that they preserve net \(S-T \) flow, and so, \(\text{MaxFlow} \) and \(\text{MinFlow} \) problems on \(M \) and \(N \) are equivalent. In other words, if \(M \) and \(N \) are both in \(\text{FLOW} \) and a flow morphism \(\varphi \) exists between them, then the preimage of a maximum weight antichain of \(N \) under \(\varphi \) is a maximum weight antichain of \(M \) (see \([4]\) for a fuller discussion).

3. \(S_n \) is indeed Sperner

In this section, we will prove that \(S_n \) has normalized flow property which implies that \(S_n \) is indeed Sperner.

Theorem 3.1. \(S_n \) \textit{has normalized flow property}.
Proof. We proceed by induction on n. The base case is trivial. As for the inductive step, let us assume that S_n has normalized flow property.

The rank-weights of S_n, $|S_{n,k}| = s_{n,k}$, the Stirling numbers of the first kind, satisfy the recurrence relation

$$s_{n+1,k} = ns_{n,k} + s_{n,k-1}.$$

Before continuing with the proof, we give an example of using this recurrence relation to view S_4 as four copies of S_3:

![Figure 1. Viewing S_4 as four copies of S_3](image)

The copies of S_3 are arranged in a way that the first (blue) copy of S_3 has the six permutations π with $\pi(1) = 4$, the second copy has π with $\pi(2) = 4$, the third copy has π with $\pi(3) = 4$, and the fourth raised copy has π with $\pi(4) = 4$. The red edges connect permutations from the raised copy to permutations of other copies, and the gray, dashed edges connect permutations from the lower copies to other lower copies.

A direct combinatorial proof of the recurrence follows from the observation that for $\pi \in S_{n+1,k}$, there are two possibilities:

1. In the case that $\pi(n+1) = n+1$, we can remove $n+1$ from π and have $\pi' \in S_{n,k-1}$. Conversely, adding a 1-cycle with $n+1$ to $\pi' \in S_{n,k-1}$ will give $\pi \in S_{n+1,k}$.
2. In the case that $\pi(n+1) = i$, where $1 \leq i \leq n$, we can remove $n+1$ from the cycle containing $\pi(n+1) = i$ and define $\pi'(\pi^{-1}(n+1)) = i$, which will
give \(n \) copies, \(S^{(i)}_{n,k} \) for \(1 \leq i \leq n \). Conversely, the operation of defining \(\pi \in S_{n+1,k} \) from \(\pi' \in S_{n,k} \) can be done similarly.

There is exactly one map \(\pi \mapsto \pi' \) between the copy labeled \(i \) and \(n+1 \), by construction, and the figure below is provided to help the reader visualize.

![Figure 2](image-url)

Figure 2. Viewing \(S_{n+1} \) in light of the recurrence relation

By the inductive hypothesis and the regularity between the \(n \) blue copies of \(S_n \), we can collapse the \(n \) copies as in the figure below, where the collapsed copy is in bold.

![Figure 3](image-url)

Figure 3. “Collapsing” the \(n \) copies of \(S_n \)

We claim that this new network satisfies the normalized matching condition. To show this, we consider the two consecutive ranks \(k \) and \(k+1 \), which are shown with the corresponding vertex-weights:
The only non-trivial equivalence class to show the normalized matching condition for is the class with the lower, right vertex. In other words, we need to show that

\[
\frac{s_{n,k}}{s_{n-1,k} + ns_{n,k}} \leq \frac{s_{n,k}}{s_{n,k} + ns_{n,k+1}}.
\]

This is equivalent to \(s_{n,k} - s_{n,k+1} \leq s_{2,n,k}^2\), which is true due to the 2-positivity of \(s_{n,k}\)'s, which was proved in [10]. Hence, NMC is satisfied, which in turn implies that \(S_n\) satisfies NMC, and so, has normalized flow property. \(\square\)

Remark. The lattice in Figure 3 is

\[S_n \times \mathbb{1}\]

which has NFP by the Product theorem [9]. Our proof actually shows that

\[
\mathbb{1} \times \mathbb{2} \times \mathbb{3} \times \cdots \times \mathbb{1} \mathbb{2} \cdots \mathbb{n-1} \subseteq S_n.
\]

Since the former has NFP by the Product theorem, the latter has NFP also.

Now that we have shown that \(S_n\) has normalized flow property, we want to find a network we can map \(S_n\) to, via a flow morphism, which is Sperner. In fact, we can collapse the network in Figure 3 further, just by keeping the same rank:

![Diagram of collapsing the network](image)

Figure 5. “Collapsing” the \(n\) copies of \(S_n\)
Since the resulting network is a totally ordered set, the largest antichain is going to be the rank/vertex, say v, with the largest vertex weight. The composition of the collapsings is a flow morphism, and so, the preimage of v in S_n will be the largest antichain. By construction, the preimage of each vertex in the totally ordered network is a rank in S_n, and so, the largest antichain in S_n is the largest rank. Thus, S_n is indeed Sperner.

References

1. D. Armstrong, *Generalized noncrossing partitions and combinatorics of Coxeter groups*, Mem. Amer. Math. Soc., 202 (2006), no. 949.
2. E. R. Canfield, *On a problem of Rota*, Advances in Mathematics, 29 (1978), 1–10.
3. E. R. Canfield, *The size of the largest antichain in the partition lattice*, J. Combinatorial Theory, Series A, 83 (1998), 188–201.
4. E. R. Canfield and L. H. Harper, *Large antichains in the partition lattice*, Random Structures Algorithms, 6 (1995), 89–104.
5. K. Engel, *Sperner theory*, Cambridge Univ. Press, Cambridge, UK, 1997.
6. P. Erdős, *On a lemma of Littlewood and Offord*, Bull. Amer. Math. Soc., 51 (1945), 898–902.
7. L. R. Ford and D. R. Fulkerson, *Flows in networks*, Princeton Univ. Press, Princeton, NJ, 1962.
8. R. Graham and L. H. Harper, *Some results in matching in bipartite graphs*, SIAM J. Appl. Math., 17 (1969), no. 6, 1017–1022.
9. L. H. Harper, *The global theory of flows in networks*, Advance in Applied Math, 1 (1980), 158–181.
10. L. H. Harper, *Stirling behavior is asymptotically normal*, Annals of Mathematical Statistics 38 (1966), 410–414.
11. G. C. Rota, *Research problem: A generalization of Sperner’s problem*, J. Combinatorial Theory, 2 (1967), 104.
12. E. Sperner, *Ein Satz ber Untermengen einer endlichen Menge*, Mathematische Zeitschrift, 27 (1928), no.1, 544-548.
13. R. Stanley, *Weyl groups, the hard Lefschetz theorem, and the Sperner property*, SIAM J. Algebraic and Discrete Methods, 1 (1980), 168–184.

Department of Mathematics, University of California, Riverside, Riverside, CA 92521
E-mail address: harper@math.ucr.edu

Department of Mathematics, University of Southern California, Los Angeles, CA 90089
E-mail address: genebkim@usc.edu