REVIEW

Recent advances in understanding the epidemiology of healthcare-associated infections [version 1; referees: 2 approved]

Pranavi Sreeramoju
University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA

Abstract
Since the 2014 publication of updates to the Society for Healthcare Epidemiology of America (SHEA) compendium of strategies to reduce healthcare-associated infections, there have been several advances in understanding the epidemiology of these diseases. This review article captures many of the key advances but does not include all of them.

Keywords
healthcare-associated infections, infection prevention, updates in literature

Open Peer Review
Referee Status: ✓ ✓

version 1
Invited Referees
1
2

Published: 25 Jan 2019

Discuss this article
Comments (0)
Introduction
Nosocomial infections, more accurately referred to as healthcare-associated infections (HAIs), have gained increased attention from healthcare professionals as well as from patients and policy makers in recent decades. The transition in nomenclature away from the terms “nosocomial” or “hospital-onset” and toward “healthcare-associated” reflects increased identification of infections in healthcare settings outside hospitals, such as ambulatory surgical centers, dialysis centers, and nursing homes.

This article is a review of key advances in the epidemiology of HAI prevention since the publication of the updated Society for Healthcare Epidemiology of America (SHEA) compendium of strategies to reduce HAI12. In order to confine the scope, this article does not address HAIs associated with devices like external ventricular drains and left ventricular assist devices or recent hospital outbreaks such as Mycobacterium chimaera related to heater-cooler devices, Candida auris, and Legionella.

Catheter-associated urinary tract infection
In a national collaborative program implemented in more than 10% of US hospitals to prevent catheter-associated urinary tract infection7, infection rates in non-intensive care units fell from 2.28 to 1.54 infections per 1,000 catheter-days and catheter use decreased from 20.1% to 18.8%. This program used both technical interventions such as decreasing catheter use and cultural interventions using comprehensive unit-based safety program tools. In a multi-component initiative in 404 nursing homes, technical and socio-adaptive interventions were successful in reducing catheter-associated urinary tract infections by 54% and reducing urine culture orders by 15%8.

Surgical site infection
The Centers for Disease Control and Prevention (CDC) updated surgical site infection (SSI) prevention guidelines in 20179. The key recommendations of the guidelines are the following. The revised antimicrobial prophylaxis recommendations, which had stewardship and risk versus benefit in mind, are more stringent. They clearly state that prophylaxis is indicated only for specific surgical procedures and that a bactericidal concentration of the antimicrobial agent(s) is important in the serum and tissues at the time of incision, including for cesarean section procedures. In previous years, antimicrobial prophylaxis for cesarean section was administered immediately after the umbilical cord was cut. An alcohol-based agent is the most effective agent for skin preparation in the operating room. The new guidelines recommend discontinuing antimicrobial prophylaxis after skin closure in the operating room for clean and clean-contaminated procedures, even in the presence of a drain. This new recommendation is different from the 24-hour window per previous guidelines. The guidelines also recommend against the application of topical antimicrobial agents to the surgical incision.

A chlorhexidine bath before surgery is a popular intervention. However, in a systematic review and meta-analysis of 243 primary studies9, among which 8 were considered methodologically appropriate on the basis of the Jadad scale, chlorhexidine preoperative bathing was not associated with decreased risk of SSI. In this meta-analysis, a significant reduction in the infection rates was not found in a comparison study between patients subjected to preoperative bathing with 4% chlorhexidine versus placebo solution (relative risk 0.91, 95% confidence interval [CI] 0.76–1.09). The same absence of benefit was observed when chlorhexidine bathing was compared with soap (relative risk 1.06, 95% CI 0.68–1.66).

The importance of the different components of surgical attire in prevention of SSI is a subject of ongoing debate. In a thought-provoking article, Bartek et al.10 firmly state that “there is no evidence regarding SSI risk related to operating room attire except for sterile gowns and the use of gloves” while humorously adding that “naked personnel shed fewer bacteria.” The importance of surgical technique was emphasized in a randomized, assessor-blinded trial on restrictive versus liberal fluid use during major abdominal surgery11. The rate of SSI was 16.5% versus 13.6% (p < 0.0001) in the group with the use of 3.7 versus 6.1 L for intra-abdominal washout during surgery.

Clostridium difficile infection
There have been several advances in the epidemiology of Clostridium difficile infection (CDI). Asymptomatic CDI is gaining a lot of attention. In a segmented time series analysis by Xiao et al.12, isolating asymptomatic carriers in addition to isolating infected patients decreased the prevalence of isolation days for C. difficile from the pre-intervention period when surveillance for asymptomatic carriers was not performed. More data on the usefulness of probiotics have emerged. In an individual patient data meta-analysis with 6,851 participants from 18 placebo-controlled randomized clinical trials13, probiotics reduced the odds of CDI by 0.35 (95% CI 0.23–0.55). Multi-species probiotics were more protective than single-species probiotics. During a period of piperacillin-tazobactam shortage, the incidence of hospital-onset CDI increased contrary to expectations because of a shift in usage to other high-risk antibiotics like carbapenems and higher-generation cephalosporins14. In a study on the incidence of CDI during an initiative to accelerate and improve care for patients with sepsis, the incidence of CDI increased and this was controlled when a dedicated antimicrobial stewardship program was implemented15. The hospital environment is a source of transmission of C. difficile. A secondary analysis of the results of the Benefits of Enhanced Terminal Room Disinfection study showed that the addition of ultraviolet light disinfection significantly reduced the risk of acquisition of C. difficile by 11%16.

Contact isolation
The SHEA published expert guidance on the duration of contact isolation for methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus, and extended-spectrum beta-lactamase-producing Enterobacteriaceae17, recommending a shorter duration of contact isolation for most organisms except carbapenem-resistant Enterobacteriaceae. Several studies have shown a lack of increase in the incidence of multidrug-resistant organisms with shortening the duration of contact isolation18,19. These studies as well as a systematic analysis by Marra et al.20 found that secular trends and the impact of
horizontal measures outweighed the effect of contact precautions. Lin et al. found that state-mandated active surveillance for MRSA did not reduce the prevalence of MRSA colonization.

Reprocessing of endoscopes
No breaches in adherence to manufacturer guidelines for high-level disinfection of scopes were identified in an outbreak investigation of carbapenem-resistant Klebsiella pneumoniae with blaOxa-232 gene associated with endoscopic retrograde cholangiopancreatography (ERCP) in 17 patients. Reprocessing was less effective if the scope elevator mechanism was in a horizontal position as opposed to a vertical position during the high-level disinfection cycle in an automated endoscope reprocessor. In yet another study, intraluminal fluid was detected in 22 out of 45 endoscopes tested after the completion of high-level disinfection. Retained fluid with high adenosine triphosphate levels was found in 22% of endoscopes, and microbial growth was detected in 71% of endoscopes. In a study, remote video auditing with feedback using a 40-point checklist for getting ERCP reprocessing right was effective in ensuring that all steps were followed correctly. The challenge for generalizing the findings of this study would be a practical one, as the process of following a long checklist takes precious time and effort of personnel. We need more efficient ways of ensuring that high-level disinfection and sterilization yield expected levels of disinfection or sterilization.

Antimicrobial resistance and stewardship
In a study that elucidated the epidemiology of carbapenem-non-susceptible Acinetobacter baumannii from a multi-city point prevalence survey within emerging infections program (EIP) sites, nearly half of the Acinetobacter strains isolated from persons with HAI reported to the CDC National Healthcare Safety Network in 2014 were carbapenem-non-susceptible. The study estimated that the incidence in the population surveyed was 1.2 per 100,000 patients during 2012 to 2015. Healthcare exposure within the previous year was in 98% of cases, and an indwelling device, most often a urinary catheter, was present in 84% of cases; 17.9% of the patients died. The association between antimicrobial stewardship as a patient care improvement process, and improvement in patient outcomes as measured by hospital-onset multidrug-resistant bloodstream infections and Candida bloodstream infections, was shown in a study by Molina et al.

Preventing infection risk to healthcare personnel
In a study to assess the effectiveness of personal protective equipment (PPE) as a barrier to pathogen transmission, Kwon et al. used fluorescence and MS2 bacteriophage to evaluate self-contamination while donning and doffing PPE. Overall, 27% of healthcare personnel (HCP) made at least one protocol deviation while donning and 100% while doffing PPE for Ebola virus disease (EVD). While using PPE for contact precautions, 50% and 67% of personnel, respectively, made protocol deviations while donning and doffing PPE. The study also identified protocol deviations by doffing assistants and trained observers.

In a multi-center study to evaluate the epidemiology of tuberculosis (TB) exposure in hospitals, 59.4% of patients were inadequately masked at the time of entry or inadequately isolated during hospital admission. These patients were more likely to be transplant recipients, have acid-fast bacilli on sputum stain, and have a chest radiograph with typical findings for TB and were less likely to have extrapulmonary TB. Although the concern for exposure to TB in healthcare settings is real, it does depend on the prevalence of TB disease seen in the healthcare facility. In a large medical center in the Midwest where 50 patients with TB disease received care in a 14-year period, only 0.3% of the 40,142 HCP who received a tuberculin skin test converted over 16.4 years, and no one developed TB disease. This study underscores the recommendation of the 2005 CDC guidelines for TB control to determine the frequency of TB screening among personnel on the basis of incidence of TB in facilities.

Healthcare personnel vaccination
In an outbreak investigation and control of mumps, a third dose of measles, mumps, and rubella (MMR) vaccine was effective in preventing mumps infection. The attack rate was 6.7 per 1,000 in those who got a third dose versus 14.5 per 1,000 in those who received two doses (p <0.001). Although several institutions have already implemented mandatory influenza vaccination for HCP, effectiveness in reducing HCP absenteeism was published only in 2018. In a study conducted at outpatient settings in 3 university and 4 Veterans Affairs medical centers with 2,304 outpatient HCP at mandatory vaccination sites and 1,759 outpatient HCP at non-mandatory vaccination sites, vaccinated HCP had fewer sick days than non-vaccinated HCP (odds ratio 0.81, 95% CI 0.69–0.95).

Ebola transmission
Asymptomatic Ebola virus infection contributed very little to transmission on the basis of testing with an oral fluid antitypo- protein IgG assay with a specificity of 100% and a sensitivity of 95.9%. Of household contacts not diagnosed with EVD, 47.6% (229 out of 481) had high-level exposure (direct contact with a corpse, body fluids, or a case with diarrhea, vomiting, or bleeding). Among the household contacts, 11 out of 92 (12.0%, 95% CI 6.1–20.4) tested positive when contact occurred at the time the household member had EVD symptoms. By comparison, 10 out of 388 (2.6%, 95% CI 1.2–4.7) household contacts tested positive when contact occurred at the time the household member did not have symptoms. In another study, a HCP who was in flight when symptoms of EVD began did not transmit to 238 passengers on a flight from Sierra Leone to Glasgow with two stops. This is a little reassuring because of the high volume of modern-day air travel.

Leadership in healthcare epidemiology
None of the healthcare epidemiology work is possible without leadership and competencies. Three articles from the SHEA address the necessary infrastructures, skills, and competencies that are helpful for someone to be an effective leader in healthcare epidemiology. There is increased appreciation for synergies between infection prevention and antimicrobial stewardship. The Veterans Affairs system is building an implementation science infrastructure for infection prevention, and that is a step in the right direction. As we continue to push forward in the field, it is important to remember that we do not know all of the
answers and that some answers may be unknowable. I will close this review with a reference to the challenges in managing patients who presented with suspected or confirmed Ebola virus infection at the National Institutes of Health; I think the approach applies to several other aspects of HAI prevention and control. “We answered questions saying, ‘We don’t know’, when we didn’t know the answer, but we promised to try to find the answer, if it existed. Alternatively, we noted mechanisms used to mitigate risks associated with our inability to answer a question with precision. The clinical leadership consistently offered a calm presence to staff who had anxieties. Institutions cannot ignore these anxieties, as they can become paralyzing”. Good leadership is necessary to reduce the burden of HAI’s through implementation of known prevention approaches and to advance science and epidemiology in order to further understand these infections.

Grant information

The author(s) declared that no grants were involved in supporting this work.

References

1. Yokoe DS, Anderson DJ, Berenholtz SM, et al.: Introduction to “A Compendium of Strategies To Prevent Healthcare-Associated Infections in Acute Care Hospitals: 2014 updates”, Infect Control Hosp Epidemiol. 2014; 35(5): 455–9. Published Abstract | Publisher Full Text | Free Full Text
2. Septimus E, Yokoe DS, Weinstein RA, et al.: Maintaining the momentum of change: the role of the 2014 updates to the compendium in preventing healthcare-associated infections. Infect Control Hosp Epidemiol. 2014; 35 Suppl 2: S6–9. Published Abstract | Publisher Full Text
3. Saint S, Greene MT, Kein SL, et al.: A Program to Prevent Catheter-Associated Urinary Tract Infection in Acute Care. N Engl J Med. 2016; 374(22): 2111–9. Published Abstract | Publisher Full Text | F1000 Recommendation
4. Mody L, Greene MT, Muddings J, et al.: A National Implementation Project to Prevent Catheter-Associated Urinary Tract Infection in Nursing Home Residents. JAMA Intern Med. 2017; 177(8): 1154–62. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
5. Berrios-Torres SI, Umscheid CA, Bratzler DW, et al.: Centers for Disease Control and Prevention Guideline for the Prevention of Surgical Site Infection, 2017. JAMA Surg. 2017; 152(8): 784–91. Published Abstract | Publisher Full Text
6. Franco LM, Cota GF, Pinto TS, et al.: Preoperative bathing of the surgical site with chlorhexidine for infection prevention: Systematic review with meta-analysis. Am J Infect Control. 2017; 46(4): 343–9. Published Abstract | Publisher Full Text | F1000 Recommendation
7. Bartek M, Verdai D, Delinger EP: Naked Surgeons? The Debate About What to Wear in the Operating Room. Clin Infect Dis. 2017; 65(9): 1589–92. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
8. Myles PS, Bellomo R, Corcoran T, et al.: Restrictive versus Liberal Fluid Therapy for Major Abdominal Surgery. N Engl J Med. 2016; 375(24): 2263–74. Published Abstract | Publisher Full Text | F1000 Recommendation
9. Xiao Y, Paquet-Bolduc B, Garenc C, et al.: Impact of Isolating Clostridium difficile Carriers on the Burden of Isolation Precautions: A Time Series Analysis. Clin Infect Dis. 2018; 66(9): 1277–82. Published Abstract | Publisher Full Text | F1000 Recommendation
10. Shen NT, Maw A, Tmanova LL, et al.: Timely Use of Probiotics in Hospitalized Adults Prevents Clostridium difficile Infection: A Systematic Review With Meta-Regression Analysis. Gastroenterology. 2017; 152(8): 1869–1900.e9. Published Abstract | Publisher Full Text | F1000 Recommendation
11. Gross AE, Johannes RS, Gupta V, et al.: The Effect of a Pipercillin/Tazobactam Shortage on Antimicrobial Prescribing and Clostridium difficile Risk in 88 US Medical Centers. Clin Infect Dis. 2017; 65(4): 613–8. Published Abstract | Publisher Full Text | F1000 Recommendation
12. Hensch R, Poen A, Saunders-Hao P, et al.: Impact of an electronic sepsis initiative on antibiotic use and health care facility-onset Clostridium difficile infection rates. Am J Infect Control. 2017; 45(10): 1091–100. Published Abstract | Publisher Full Text | F1000 Recommendation
13. Andersen DJ, Moehring RW, Weber DJ, et al.: Effectiveness of targeted enhanced terminal room disinfection on hospital-wide acquisition and infection with multidrug-resistant organisms and Clostridium difficile: a secondary analysis of a multicenter cluster randomised controlled trial with crossover design (BEST Disinfection). Lancet Infect Dis. 2018; 18(8): 845–53. Published Abstract | Publisher Full Text | F1000 Recommendation
14. Banach DB, Bearmen G, Barrden M, et al.: Duration of Contact Precautions for Acute-Care Settings. Infect Control Hosp Epidemiol. 2018; 39(2): 127–44. Published Abstract | Publisher Full Text | F1000 Recommendation
15. Bearman G, Abbas S, Masoor N, et al.: Impact of Discontinuing Contact Precautions for Methicillin-Resistant Staphylococcus aureus and Vancomycin-Resistant Enterococcus: An Interrupted Time Series Analysis. Infect Control Hosp Epidemiol. 2018; 39(6): 676–82. Published Abstract | Publisher Full Text | F1000 Recommendation
16. Renaudin L, Llorens M, Goetz C, et al.: Impact of Discontinuing Contact Precautions for MRSA and ESBL in an Intensive Care Unit: A Prospective Noninferiority Before and After Study. Infect Control Hosp Epidemiol. 2017; 38(11): 1342–50. Published Abstract | Publisher Full Text | F1000 Recommendation
17. Marra AR, Edmond MB, Schweizer ML, et al.: Discontinuing contact precautions for multidrug-resistant organisms: A systematic literature review and meta-analysis. Am J Infect Control. 2018; 46(3): 333–40. Published Abstract | Publisher Full Text | F1000 Recommendation
18. Lin MY, Hayden MK, Lyles RD, et al.: Regional Epidemiology of Methicillin-Resistant Staphylococcus aureus Among Adult Intensive Care Unit Patients Following State-Mandated Active Surveillance. Clin Infect Dis. 2018; 66(10): 1535–9. Published Abstract | Publisher Full Text | F1000 Recommendation
19. Humphries RM, Yang S, Kim S, et al.: Duodenoscope-Related Outbreak of a Carbapenem-Resistant Klebsiella pneumoniae Identified Using Advanced Molecular Diagnostics. Clin Infect Dis. 2017; 65(7): 1159–66. Published Abstract | Publisher Full Text | F1000 Recommendation
20. Alfa MJ, Singh H, Duersken DR, et al.: Improper positioning of the elevator lever of duodenoscopes may lead to sequestered bacteria that survive disinfection by automated endoscope reprocessors. Am J Infect Control. 2018; 46(1): 73–5. Published Abstract | Publisher Full Text | F1000 Recommendation
21. Ostfold CL, Heymann OL, Quick MR, et al.: Residual moisture and waterborne pathogens inside flexible endoscopes: Evidence from a multisite study of endoscope drying effectiveness. Am J Infect Control. 2018; 46(6): 689–96. Published Abstract | Publisher Full Text | F1000 Recommendation
22. Armellino D, Chiou K, Wallace M, et al.: Implementation of remote video auditing with feedback and compliance for manual-cleaning protocols of endoscopic retrograde cholangiopancreatography endoscopes. Am J Infect Control. 2018; 46(6): 594–601. Published Abstract | Publisher Full Text | F1000 Recommendation
23. Builens SN, Yi SH, Walters MS, et al.: Carbapenem-Nonsusceptible Acinetobacter baumannii, 8 US Metropolitan Areas, 2012-2015. Emerg Infect Dis. 2018; 24(4): 727–34. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
24. Molina J, Pehalva G, Gil-Navarro MV, et al.: Long-Term Impact of an Educational Antimicrobial Stewardship Program on Hospital-Acquired Candidemia and Multidrug-Resistant Bloodstream Infections: A Quasi-Experimental Study of Interrupted Time-Series Analysis. Clin Infect Dis. 2017; 65(12): 1952–9. Published Abstract | Publisher Full Text | F1000 Recommendation
25. Karon JH, Burnham CD, Reske KA, et al.: Assessment of Healthcare Worker Protocol Deviations and Self-Contamination During Personal Protective Equipment Donning and Doffing. Infect Control Hosp Epidemiol. 2017; 38(9): 1077–83. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
26. Cadena J, Castro-Pena NA, Javen H, et al.: Tuberculosis Patients Who Are A Potential Source for Unprotected Exposure in Health Care Systems: A...
27. Dobler CC, Farah WH, Alawwas M, et al.: Tuberculin Skin Test Conversions and Occupational Exposure Risk in US Healthcare Workers. Clin Infect Dis. 2018; 66(5): 706–11. PubMed Abstract | Publisher Full Text | F1000 Recommendation

28. Jensen PA, Lambert LA, Iademarco MF, et al.: Guidelines for preventing the transmission of Mycobacterium tuberculosis in health-care settings, 2005. MMWR Recomm Rep. 2005; 54(RR-17): 1–141. PubMed Abstract

29. Cardemil CV, Dahl RM, James L, et al.: Effectiveness of a Third Dose of MMR Vaccine for Mumps Outbreak Control. N Engl J Med. 2017; 377(10): 947–56. PubMed Abstract | Publisher Full Text | F1000 Recommendation

30. Shah M, Quinlisk P, Weigel A, et al.: Mumps Outbreak in a Highly Vaccinated University-Affiliated Setting Before and After a Measles-Mumps-Rubella Vaccination Campaign-Iowa, July 2015-May 2016. Clin Infect Dis. 2018; 66(1): 81–8. PubMed Abstract | Publisher Full Text | F1000 Recommendation

31. Frederick J, Brown AC, Cummings DA, et al.: Protecting Healthcare Personnel in Outpatient Settings: The Influence of Mandatory Versus Nonmandatory Influenza Vaccination Policies on Workplace Absenteeism During Multiple Respiratory Virus Seasons. Infect Control Hosp Epidemiol. 2018; 39(4): 452–61. PubMed Abstract | Publisher Full Text | F1000 Recommendation

32. Glynn JR, Bower H, Johnson S, et al.: Asymptomatic infection and unrecognised Ebola virus disease in Ebola-affected households in Sierra Leone: a cross-sectional study using a new non-invasive assay for antibodies to Ebola virus. Lancet Infect Dis. 2017; 17(6): 645–53. PubMed Abstract | Publisher Full Text | F1000 Recommendation

33. Crook P, Smith-Palmer A, Maguire H, et al.: Lack of Secondary Transmission of Ebola Virus from Healthcare Worker to 238 Contacts, United Kingdom, December 2014. Emerg Infect Dis. 2017; 23(12): 2081–4. PubMed Abstract | Publisher Full Text | F1000 Recommendation

34. Bryant KA, Harris AD, Gould CV, et al.: Necessary Infrastructure of Infection Prevention and Healthcare Epidemiology Programs: A Review. Infect Control Hosp Epidemiol. 2016; 37(4): 371–80. PubMed Abstract | Publisher Full Text

35. Kaye KS, Anderson DJ, Cook E, et al.: Guidance for infection prevention and healthcare epidemiology programs: healthcare epidemiologist skills and competencies. Infect Control Hosp Epidemiol. 2015; 36(4): 369–80. PubMed Abstract | Publisher Full Text

36. Cosgrove SE, Hermsen ED, Rybak MJ, et al.: Guidance for the knowledge and skills required for antimicrobial stewardship leaders. Infect Control Hosp Epidemiol. 2014; 35(12): 1444–51. PubMed Abstract | Publisher Full Text | F1000 Recommendation

37. Manning ML, Septimus EJ, Ashley ESD, et al.: Antimicrobial Stewardship and Infection Prevention-Leveraging the Synergy: A Position Paper Update. Infect Control Hosp Epidemiol. 2018; 39(4): 467–72. PubMed Abstract | Publisher Full Text | F1000 Recommendation

38. Keating JA, Obasi C, McKinley L, et al.: Building Implementation Science for Veterans Affairs Healthcare Associated Infection Prevention: VA Healthcare-Associated Infection Prevention Network (VHIN). Infect Control Hosp Epidemiol. 2018; 39(6): 793–7. PubMed Abstract | Publisher Full Text

39. Palmore TN, Barrett K, Michelin A, et al.: Challenges in managing patients who have suspected or confirmed Ebola virus infection at the National Institutes of Health. Infect Control Hosp Epidemiol. 2015; 36(6): 623–6. PubMed Abstract | Publisher Full Text | Free Full Text
Open Peer Review

Current Referee Status: ✓ ✓

Editorial Note on the Review Process

F1000 Faculty Reviews are commissioned from members of the prestigious F1000 Faculty and are edited as a service to readers. In order to make these reviews as comprehensive and accessible as possible, the referees provide input before publication and only the final, revised version is published. The referees who approved the final version are listed with their names and affiliations but without their reports on earlier versions (any comments will already have been addressed in the published version).

The referees who approved this article are:

Version 1

1. Philip Russo School of Nursing and Midwifery, Faculty of Health Centre for Quality and Patient Safety Research - Alfred Health Partnership, Deakin University, 221 Burwood Highway, Burwood, VIC 3125, Australia
 Competing Interests: No competing interests were disclosed.
2. Tara N. Palmore NIH Clinical Center, National Institutes of Health, Bethesda, MD, USA
 Competing Interests: No competing interests were disclosed.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com