Multiple-isotope pellet cycles captured by turbulent transport modelling in the JET tokamak

M. Marin1,*, J. Citrin1, L. Garzotti2○, M. Valovic2○, C. Bourdelle3, Y. Camenen4, F.J. Casson2○, A. Ho1, F. Koech1, M. Maslov2 and JET Contributors

1 DIFFER—Dutch Institute for Fundamental Energy Research, Eindhoven, Netherlands
2 CCFE, Culham Science Centre, Abingdon, OX14 3DB, United Kingdom of Great Britain and Northern Ireland
3 CEA, IRFM, F-13128 Saint-Paul-lez-Durance, France
4 CNRS, Aix-Marseille University, PIUM UMRT7345, 13397 Marseille Cedex 20, France

E-mail: M.Marin@differ.nl

Received 8 September 2020, revised 4 January 2021
Accepted for publication 8 January 2021
Published 22 February 2021

Abstract
For the first time the pellet cycle of a multiple-isotope plasma is successfully reproduced with reduced turbulent transport modelling, within an integrated simulation framework. Future nuclear fusion reactors are likely to be fuelled by cryogenic pellet injection, due to higher penetration and faster response times. Accurate pellet cycle modelling is crucial to assess fuelling efficiency and burn control. In recent Joint European Torus tokamak experiments, deuterium pellets with reactor-relevant deposition characteristics were injected into a pure hydrogen plasma. Measurements of the isotope ratio profile inferred a deuterium penetration time comparable to the energy confinement time. The modelling successfully reproduces the plasma thermodynamic profiles and the fast deuterium penetration timescale. The predictions of the reduced turbulence model QuaLiKiz in the presence of a negative density gradient following pellet deposition are compared with GENE linear and nonlinear higher fidelity modelling. The results are encouraging with regard to reactor fuelling capability and burn control.

Keywords: pellet, turbulence, integrated modelling, mixed isotopes, QuaLiKiz

(Some figures may appear in colour only in the online journal)

1. Introduction
In present tokamaks, particle fuelling is mainly provided by neutral gas puffing from the plasma periphery and from neutral beam injection (NBI). Gas fuelling may be rendered ineffective in future reactors due to increased neutral opacity, while the particle source from the NBI will be relatively small.

A viable alternative as a primary fuelling technique is the injection of cryogenic pellets [1], with higher penetration and faster response times. Pellet mass, injection speed and frequency can be jointly adjusted to optimize the particle source and provide fuelling in the plasma core, where the pellet is ablated. In ITER, for example, pellets of mass between 2 and 5.5×10^{21} atoms with frequency between 1.5 and 3.5 Hz respectively should be sufficient to maintain the density required for a $Q = 10$ baseline ELMy H-mode scenario at 15 MA.

Active research on pellet fuelling focuses on its compatibility with integrated plasma scenario constraints, including control of magnetohydrodynamic (MHD) modes such as ...
as edge localised modes (ELMs), plasma exhaust, core turbulent transport, and desired isotope composition. Previous integrated tokamak plasma simulation (integrated modelling) including pellets focussed on various aspects of the pellet cycle: improved confinement regimes [2–4], edge and fuelling requirements [5], the impact of fuelling on divertor heat-loads [8].

Helium diffusion coefficients on the order of the effective heat conductivity was instead counteracted by a larger cycle: improved confinement regimes [2–4], edge and fuelling including pellets focussed on various aspects of the pellet bulent transport, and desired isotope composition. Previous experiments observed a fast mixing of T-trace in the large helical device [19].

Previous multiple-isotope experiments at Jet allowed a detailed investigation of ion particle transport [20], suggesting fast isotope mixing. Those experimental observations were successfully reproduced in stationary-state, multiple-isotope integrated modelling [21], applying the quasilinear gyrokinetic transport model QuaLiKiz [22, 23], strengthening QuaLiKiz validation in multiple-isotope regimes.

The fast mixing will be most prevalent during transient states, such as during pellet injections, due to the significant modifications of the local density gradients created by the short ablation time of the pellets. Modifying the pellet isotope ratio compared to the background isotope ratio rapidly changes the core isotope mix without affecting the time averaged electron profile. An experiment was performed at JET precisely with the aim of using pure deuterium pellets to control the core isotope ratio, starting from a pure hydrogen plasma [24], and is investigated next.

Relevant parameters of the discharge under investigation are shown in table 1. In this experiment the size of the pellets, scaled to the plasma volume, lead to shallow deposition and transient inverted density profile, similarly to what is expected in ITER. ~10% of the pellet was ablated in the pedestal region, between 0.95 < ρ < 1.0, where the ad hoc pedestal model is used. Most of it was instead ablated inside the pedestal top, where the transport is predicted by QuaLiKiz, with ~88% between 0.6 < ρ < 0.95. ρ here indicates the normalised toroidal flux coordinate ρtor = (#νmin,LCFS)/Φgeo.

The experiment managed to reach the desired core isotope composition, measured by Balmer-alpha charge exchange spectroscopy and D–D neutron rate. A rapid increase in the neutron rate following the initial pellet injection was observed. The delay between the start of the pellet ablation and the local peak in the neutron rate was ~100 ms, which is comparable with the energy confinement time, ~120 ms for this experiment. This timescale is much faster than the particle confinement time, which is ~600 ms, and indicated fast isotope mixing. In this interpretative analysis, the isotope particle transport coefficients were determined by interpretative modelling, using the semi-empirical Bohm/gyroBohm turbulent transport model and matching the transient response of the thermal D–D neutron rates [9].

The key observation was that D0/χeff ~ 1 was inferred at the beginning of the pellet train, where D0 is the diffusion coefficient for deuterium and χeff is the effective heat conductivity. Since D0/χeff ≪ 1 is expected in the experiment, this finding implies a large D0/Dø, indeed consistent with the fast isotope mixing.

This paper demonstrates, for the first time, that multiple pellet cycles and the associated fast deuterium penetration can be

Parameters	Value
Tp (MA)	1.4
B (T)	1.7
Zeff	1.4
PNBH (MW)	8.4
PICRH (MW)	3
ΦH2,pel(1013 at s⁻¹)	6.7
fpel(Hz)	11.4
Φpel(1013 at s⁻¹)	8.2
βN	1.1%
captured by turbulent transport models within an integrated modelling framework, in an ITER-relevant pellet deposition regime.

2. Integrated modelling

The modelling is performed within the JINTRAC [25] framework, using JETTO as the 1.5D core transport solver. NCLASS [26] is used as the neoclassical transport model and QuaLiKiz as the turbulent transport model. The initial electron density and ion and electron temperature profiles are obtained through Gaussian process regression (GPR) [27] on the experimental data, averaged for 200 ms immediately before the first pellet. PENCIL [28] and PION [29] are used for NBI and ion cyclotron resonance heating (ICRH) heating respectively, FRANTIC [30] for the neutral source and HIP2 [31] for the pellet ablation. The impurities are modelled with SANCO [32] and the magnetic equilibrium is evolved self-consistently using ESCO [33]. HIP2 [31] is used as the pellet deposition model.

EFIT++ is used to obtain the last-closed-flux-surface boundary conditions for ESCO. The initial current profile is obtained by relaxing an initial EFIT [34] reconstruction until the safety factor \(q = 1 \) surface approaches the observed sawtooth inversion radius. This current profile evolution is carried out using ESCO for the magnetic equilibrium and NCLASS for the resistivity, while keeping density and temperature profiles fixed in time.

Beryllium and nickel, consistently observed in JET discharges with ICRH [35,36], are chosen as impurities to match both dilution and \(Z_{\text{eff}} \). Given that the radiated power in the core is below 20% of the heating power, the tungsten content is inferred to be low. In order to reduce computational expense it is not included the simulation, as done in previous works [37, 38].

Since QuaLiKiz is restricted to electrostatic turbulence, an ad hoc model is employed to simulate the level of electromagnetic (EM) stabilization, as done previously [38]. The ITG passed to QuaLiKiz is multiplied by the local value of \(\frac{W_{\text{thermal}}}{W_{\text{thermal}} + W_{\text{fast}}} \), based on the expected correlation between fast ion content and EM-stabilization of ITG turbulence in NBI and ICRH heated plasmas. Here \(W_{\text{thermal}} \) and \(W_{\text{fast}} \) are the contributions to the total energy content from the thermal and the fast particles respectively. Dedicated linear runs with the gyrokinetic code GENE [39] suggested a significant impact of EM-stabilisation on the linear growth rates at inner radii, justifying the inclusion of this effect.

Electron temperature gradient (ETG) driven modes are included in the simulation. The ETG transport levels are tuned to a single-scale GENE nonlinear run and a simple multi-scale rule is used. The ETG heat flux is multiplied by

\[
\tilde{f}_{\text{multi-scale}} = \frac{1}{1 + \exp \left[-\frac{1}{5} \left(\frac{\gamma_{\text{ETG-max}}}{\gamma_{\text{ITG-max}}} - \sqrt{\frac{m_1(1)}{m_e}} \right) \right]},
\]

with \(\gamma_{\text{ETG-max}} \) and \(\gamma_{\text{ITG-max}} \) being the maximum growth rates for ETG and ITG respectively, while \(m_e \) and \(m_1(1) \) are the electron mass and the mass of the first ion in QuaLiKiz. This ensures that non-negligible ETG fluxes arise only when the ETG growth rates are at least a mass ratio larger than their ITG counterparts, a rule-of-thumb derived from nonlinear multiscale simulations [40].

The radial zone incorporating QuaLiKiz-predicted turbulent transport is \(0.2 < r < 0.95 \) For \(r < 0.2 \) modest heat and particle ad hoc transport is artificially added. This term takes into account the average transport originating from intermittent (1,1) MHD activity. The pedestal region, \(0.95 < r < 1 \), is out of the scope of the QuaLiKiz model, due to the nature of the pedestal turbulence and its suppression, as well as intermittent MHD activity (ELMs).

The perturbation caused by the pellet modifies the profiles in the pedestal region in a non-trivial way. The pedestal is therefore evolved using a ‘continuous ELM model’. The idea here is simply to match the temperature and density evolution at the top of the pedestal and provide appropriate core boundary conditions. The transport in the edge transport barrier (ETB) is treated by the continuous ELM model described in [8], which mimics the limiting effect of the ELMs on the pressure gradient in the ETB by introducing additional transport averaged over time and clamps the normalized pressure gradient in the ETB, \(\alpha_e \), at a prescribed critical value, \(\alpha_e \), fitted to the experimental value. The parameters in this model are adjusted to match the interferometer measurement of the line of sight looking at the pedestal, indicated with ‘4’ in figure 1(b), with a synthetic diagnostic within JINTRAC. The result is seen in figure 1(a). This decision resulted in a \(n_e \) at the top of the pedestal on the lower end of the errorbar with respect to the GPR fit, as shown in figure 2, which suffers from lower precision in that region due to the presence of ELMs. These parameters are kept constant during the simulation.

Outward particle convection is added as \(v = v_0 \times \exp \left\{ \left((1 - t_{\text{pellet}})/\tau + (r/a - 1)/\Delta \right) \right\} \) where \(v_0 \), \(\tau \) and \(\Delta \) are parameters fitted to match the final total density. The need for this term, which mimics the extra ELMs density pump out in the presence of pellets, was recognized in previous works [41]. \(\tau \) ensures that this term is only non negligible for a short period after the pellets injection, around 15 ms in this case, while \(\Delta \) limits the effect to the radial zone close to the pedestal. Therefore, this term mostly overlaps with the continuous ELM model, with little effect on the QuaLiKiz predictions. The evolution of the density is still largely controlled by the evolution of the pedestal top, with this term ending up only slightly modifying the final density peaking.

Finally, it is worth noting that the pedestal stability to peeling—ballooning modes is modified by the pellets. The continuous ELM model keeps the pressure constant and since the density evolution at the top of the pedestal is ultimately the result of a fit, there is a difference in the temperature. The experimental electron temperature rises slightly slower in the experiment than in the simulation, but this difference never exceeds ~50 eV, so it is not expected to have a large impact on the profiles.

The pellet cycle modelling initial condition correspond to the stationary state JINTRAC–QuaLiKiz solution of the
Figure 1. (a) Four different experimental interferometer lines (solid blue lines) for shot #91393, compared with a synthetic diagnostic in JINTRAC (solid orange lines). The pellets are injected at $t = 10.187, 10.278, 10.390, 10.572$. (b) Sketch showing the position of the lines of sight of the interferometer at JET.

Figure 2. The shaded area represents the GPR confidence interval, with the experimental data averaged between $9.5 \text{s} < t < 10.15 \text{s}$. The solid line is the JINTRAC–QualiKiz prediction for density and temperature profiles before the first pellet ($t = 10.18 \text{s}$), after ~ 2 particle confinement times of relaxation. The boundary conditions at the last close flux surface (LCFS) are: $n_e = 6.7 \times 10^{19} (\text{m}^{-3})$, $T_e = T_i = 100 (\text{eV})$. The dotted lines show the profiles just after the first pellet injection ($t = 10.19 \text{s}$).

3. Comparison with the experiment

The good agreement shown in figure 2 is reached in the electron temperature T_e and the ion temperature T_i. The experimental configuration, after relaxing for ~ 2 particle confinement times, just before the beginning of the pellet train. This is shown in figure 2.
peaking of the electron density \(n_e \) is slightly overestimated. This general agreement provides confidence that the turbulent regime is correctly captured. The slight trend for improved predicted core confinement for this hydrogen plasma, compared to the measured profiles, may be a result of QuaLiKiz gyroBohm scaling. The nonlinear saturation rule was fit to deuterium plasma gyrokinetic simulations, while observations and nonlinear gyrokinetic simulations show an inverse isotope confinement scaling, with worse confinement for hydrogen \[42\].

Four pellets are modelled, from \(t = 10.0 \) s to \(t = 10.7 \) s. The model proved robust in responding to the significant changes in the profiles introduced by the pellets. All the measured interferometer lines of sight are compared with a synthetic diagnostic, resulting in general good agreement as shown in figure 1(a). The gradients for two radial points before and after the first pellet are listed in table 2 and shown in the dotted lines of figure 2. A direct comparison between the experimental and modelled neutron rate, which is a direct marker of inner-core deuterium content, is carried out.

The \(\frac{D_e}{n_e} \) ratio is heavily dependent on the edge transport conditions, which are not predicted in the simulations. The edge transport model free parameters are adjusted to match the final neutron rate to the experimental value. These parameters are the constant recycling coefficient for deuterium in FRANTIC and the minimum deuterium transport coefficient in the ETB model. Both have a very similar effect on deuterium concentration and are here used as knobs, so the precise values should not be expected to hold physical significance. The deuterium content at the LCFS is increased linearly starting from the first pellet, reaching the experimentally measured 20% by the end of the simulation. The experimental and modelled neutron rate are found to be in good agreement, as can be seen in figure 3. The \(\frac{D_e}{n_e} \) evolution after the first pellet is shown in figures 4 and 5. As expected, the ratio quickly relaxes to a rather flat profile.

In the experiment the deuterium is injected at cryogenic temperature and following pellet ablation and ionization, is then heated by collisions with the hydrogen. Immediately after the pellet injection, the plasma is therefore a mix of hot hydrogen and cold deuterium. In the model hydrogen and deuterium are instead supposed to instantly thermalize to the average temperature between the two isotopes. The neutron rate is strongly dependent on the deuterium temperature, so a delay between the pellet injection and the rise in the neutron rate is to be expected in the experiment, but not in the model.

Table 2. Density and temperature gradients before \((t = 10.185 \) s) and after \((t = 10.189 \) s) the first pellet. \(1/L_{a} \) is defined as \(- \frac{\rho}{r} \), with \(r \) being the minor radius and \(\rho \) a generic quantity. The two radial positions were chosen to isolate the large positive and negative density gradients induced promptly after a pellet deposition.

Gradient	\(R/L_{a} \)	\(R/L_{T_{e}} \)	\(R/L_{n_{e}} \)	\(R/L_{T_{i}} \)	\(R/L_{n_{i}} \)	
\(\rho = 0.68 \)	7.4	7.7	2.8	14.4	18.1	-11.4
\(\rho = 0.85 \)	11.1	12.2	5.6	9.5	8.8	14.4

Figure 3. Measured neutron rate (blue solid line) vs the simulated neutron rate (red dashed line). The fast timescale of D penetration is captured by the modelling.

Figure 4. The red solid line is the \(n_{D}/n_{e} \) ratio at \(\rho = 0.15 \) for JET shot #91393 as predicted by JINTRAC–QuaLiKiz with nominal pedestal coefficients. The magenta dotted line has increased deuterium recycling coefficient in FRANTIC and the green dotted line has reduced scale factors in the continuous ELM model. The fast penetration of D is resilient to the precise tuning of the edge models.

Figure 5. Evolution of the \(\frac{D_e}{n_e} \) profile after the first pellet injection. The profile is plotted every 15 ms, with lighter shades of blue corresponding to increasing time.

Proper modelling of this effect would require the currently non available option of having different temperatures for different ions in JINTRAC. Exact calculations are therefore left for future work. Utilizing simple energy considerations, it is still possible to infer the order of magnitude of the expected
Figure 6. Particle fluxes as a function of time and ρ as predicted by QuaLiKiz, expressed as number of particles (m$^{-2}$ s$^{-1}$). (a) Shows the electron particle flux, (b) the hydrogen particle flux and (c) the deuterium particle flux. Neglecting a small contribution from the impurities, the sum of the three plots gives zero. Warmer colours represent more outwards directed fluxes. A small amount of values are larger (or smaller) than the selected limits for the colorbar. Those value are saturated with the warmest (coldest) possible colour.

The particle fluxes as predicted by QuaLiKiz are presented in figure 6. Outside $\rho = 0.8$, where TEM is the dominant instability, all the fluxes are outwards and the electron flux is the sum of the hydrogen and deuterium fluxes. The two ion particle fluxes are roughly proportional to their relative concentrations. For $\rho < 0.8$, where ITG is destabilized, the deuterium flux is the largest and is directed inwards. Ambipolarity is maintained by a smaller inward electron particle flux and an outwards hydrogen flux. Note that the expectation is not $\Gamma_D/\Gamma_e \sim 10$ at all times and across the entire profile. Pinch and diffusion vary in a non trivial way during the pellet cycle and can sometimes partially balance each other. For example, just after the pellet and between $0.6 < \rho < 0.8$, where the electron density gradient is very large, D_e can be approximately a factor two larger. Still, $D_i, V_i > D_e, V_e$ holds everywhere and $D_i, V_i \gg D_e, V_e$ almost everywhere. As is clear from figure 6, the ion particle fluxes are significantly larger and the mixing is indeed observed. The key point is that the pellet perturbation initiates a transient transport event, where the large ion transport coefficients in the ITG regime enables the short isotope mixing timescale.

In future reactors the collisionality will be lower and the heating will be dominated by electron heating from fusion-generated alpha particles. The turbulence regime is predicted to be mixed ITG–TEM [44]. It is therefore important to model such a regime to assess the extrapolability of the fast isotope mixing effect to reactor-relevant plasmas. Some insight was gained here by repeating the same integrated modelling simulations while artificially reducing the collisionality input into QuaLiKiz towards reactor-relevant values. The detailed results are not shown for brevity. The turbulent regime is modified to a mixed ITG–TEM regime and the density peaking increases. However, ITG is still destabilized by the pellet at low wavenumbers and significantly contributes to the ion heat and particle transport. The timescale for the deuterium penetration is almost unchanged, confirming that it only depends on ITG being sufficiently destabilized and not on it being the sole dominant instability. The same qualitative result is obtained by changing the size and frequency of the pellets, with little or no impact on the isotope mixing timescale.
4. Gyrokinetic analysis

4.1. Linear gyrokinetic analysis

The temporal behaviour of the instabilities, as predicted by QuaLiKiz, with ITG destabilized over a broad spectrum just after the pellet, is illustrated in figure 7. Note that the pellet is injected at $t = 10.187 \, \text{s}$ in this case, immediately after the pellet injection, the cooling caused by the adiabatic ablation of the pellets results in a locally steeper R/L_T gradient for $\rho < 0.8$. This balances the stabilizing impact of negative R/L_n which occurs for ITG modes with kinetic electrons. This is key since the fast mixing of the deuterium depends on the ITG drive. To verify this important observation, eigenvalue solutions from QuaLiKiz is compared with linear calculations using the higher fidelity code GENE at $\rho = 0.7$. The growth rate comparison is shown in figure 8 for time slices just before and 10 ms after the pellet. The input parameters are taken directly from the integrated modelling simulation and are reported in table 3. For simplicity, impurities and rotation are not included in this gyrokinetic comparison. The GENE settings are chosen to match the QuaLiKiz assumptions as close as possible. β is set to zero in GENE and the $s-\alpha$ geometry model is used. The ad hoc EM stabilization in QuaLiKiz is simply a modification of the input ITG, so running both codes with the same R/L_T is equivalent to not including EM effects in QuaLiKiz. There is a difference in how collisions are treated, since GENE employs a linearized Landau–Boltzmann operator, and QuaLiKiz a Krook-like operator for trapped electrons.

The growth rates increase by a factor of 3 immediately after the first pellet, as visible in figure 7. The increase is instead more moderate in figure 8, comparing the two QuaLiKiz simulations. This difference is due to the smoothing applied when extracting the values from the JINTRAC simulation, since the output is generated every $\sim 5 \, \text{ms}$. The sudden change in the gradients caused by the pellet moves the system far from the threshold, resulting in large growth rates. This causes large fluxes, which quickly flatten the most extreme gradients. The process lasts for $\sim 5 \, \text{ms}$. The relatively slower evolution that follows, with the density profile going from hollow to peaked, shows a more moderate increase in the growth rates and fluxes closer to the stationary state values. The parameters chosen for the GENE simulation are representative of this phase.

In the pre-pellet phase, ITG modes dominate for $k_\theta \rho_s < 0.6$. QuaLiKiz predicts lower growth rates than GENE, but with a very similar spectral shape. An increase of the ITG by 20% is sufficient for QuaLiKiz to retrieve the GENE growth rates. TEM is found to be unstable by GENE and stable by QuaLiKiz for $k_\theta \rho_s > 0.6$. This is most likely due to the collisional operator in QuaLiKiz, which tends to over-stabilize TEM and is currently being upgraded. Furthermore, TEM is responsible for only a small fraction of the total transport in this case, and the presence of TEM does not affect the central result of the fast isotope mixing, since in a mixed ITG–TEM regime both ion and electron particle transport are expected to be fast [21]. In the post-pellet phase, ITG again dominates in the transport driving region $k_\theta \rho_s < 0.6$. QuaLiKiz and GENE growth rates agree very well at nominal input parameters in this region. TEM is the dominant mode in GENE for $k_\theta \rho_s > 0.6$. The key result is that indeed ITG is destabilized in GENE in presence of a positive density gradient in the post-pellet phase, validating the QuaLiKiz predictions.
Table 3. Simulation parameters used in the linear and nonlinear analysis, corresponding to the integrated modelling parameters 10 ms after the first pellet. \(x \) is defined as \(x = r/a \), where \(r \) is minor radius of the flux surface, and \(a \) is the minor radius of the last-closed-flux-surface. \(q \) is the safety factor and \(s \) the magnetic shear. Electron and ion temperatures are given in eV.

\(\rho \)	\(x \)	\(q \)	\(s \)	\(n_e \)	\(T_e \) (eV)	\(T_i \) (eV)	\(R/L_{Te} \)	\(R/L_{T_i} \)	\(R/L_{Te} \)	\(R/L_{T_i} \)	\(R/L_{Te} \)	\(R/L_{T_i} \)
0.7	0.75	2.32	1.49	\(4.21 \times 10^{19} \)	738	814	14.9	12.9	-7.96	0.93	-18.0	

Table 4. Details on the grid used for the nonlinear GENE simulation. \(n_x, n_y, n_z, n_v \) and \(n_w \) represent the number of grid points respectively for the radial, bi-normal, parallel, \(v_{||} \) and magnetic moment dimensions. \(k_{\text{y},\text{min}} \) is the minimum value \(k_y \) mode in the simulation, normalized to the inverse gyroradius. \(L_x, L_v \) and \(L_w \) are the extension of the simulation box in the radial, \(v_{||} \) and magnetic moment directions, normalized to the inverse gyroradius, thermal velocity and \(T_s/B \) respectively.

\(n_x \)	\(n_y \)	\(n_z \)	\(n_v \)	\(n_w \)	\(k_{\text{y},\text{min}} \)	\(L_x \)	\(L_v \)	\(L_w \)
128	32	32	64	15	0.05	100.0	3.0	9.0

Figure 9. Heat and particles nonlinear fluxes as predicted by GENE. The main ions are shown on the left-hand side, while the traces are on the right-hand side. From top to bottom, in order, the electron, hydrogen and deuterium species. The particle fluxes are normalized to \(\Gamma_{\text{GB}} = \frac{c}{\rho_r} \rho_r (\rho_r^*)^2 \). \(c_{\text{ref}} = \sqrt{T_e/m_p} \) is the reference velocity, \(n_e \) the electron density and \(\rho_r^* = (c_{\text{ref}}/\Omega_{\text{ref}})/R \) the normalized gyro-radius. \(\Omega_{\text{ref}} = (q_e B)/m_p c \) is the gyro-frequency, with \(q_e \) the electron charge, \(m_p \) the proton mass, \(c \) the speed of light and \(R \) the major radius. The heat fluxes are normalized to \(Q_{\text{GB}} = c_{\text{ref}} p_e (\rho_r^*)^2 \), with \(p_e \) the reference pressure. The times are normalized to \(R/c_{\text{ref}} \).

4.2. Nonlinear gyrokinetic analysis

Further validation of the QuaLiKiz predictions is explored through full nonlinear GENE simulations. Since the primary interest is on the particle transport, ion-scale simulations are deemed to be sufficient. For simplicity, the same assumptions as in the linear calculations are made: \(s-\alpha \) geometry, \(\beta = 0 \), no impurities and no rotation. The nominal input parameters for
the nonlinear simulation are the same as set in the linear simulation. Grid resolution details are found in table 4. Extensive numerical convergence tests were carried out for \(n_e, n_H, n_D, n_c \), and \(n_w \) inputs, confirming that the grid chosen is indeed sufficient to resolve the physics under consideration. The evolution of the heat and particle fluxes for the various species is shown in figure 9.

The transport coefficients \(D_s, V_s \) are calculated by adding extra electron, deuterium and hydrogen trace species. The density of each trace is set to 1\%, while the density gradient is set to zero. \(D_s, V_s \) are then calculated using

\[
V_s = \Gamma_{\text{trace}}/n_{\text{trace}}. \tag{2}
\]

\[
D_s = (\Gamma_{\text{main}} - n_{\text{main}} V_s) L_{n,1}/n_{\text{main}}. \tag{3}
\]

\(\Gamma_{\text{main}} \) is the particle flux for e\(^+\), H and D, while \(\Gamma_{\text{trace}} \) is the particle flux for the respective trace. The same notation holds for \(n, R_0 \) is the major radius and \(R/L_n \), the normalized logarithmic density gradient. The saturated fluxes are obtained by averaging from \(t = 40 \) to the end of the simulation. Fluxes and transport coefficients are summarized in table 5.

Agreement between the GENE nonlinear simulation and power balance from the integrated modelling run, is achieved by increasing \(R/L_T \) by 20\%. This corresponds to \(\sim 30\% \) lower heat fluxes than in QuaLiKiz, since in integrated modelling the QuaLiKiz run also included the stabilizing effect of rotation and impurities. This agreement in heat fluxes and heat flux ratios between QuaLiKiz, nonlinear-GENE, and experimental power balance, in this positive density gradient regime, is not trivial and can be considered a highly encouraging validation in itself. Consistently with the linear results, frequency analysis in the nonlinear run (and not shown for brevity) shows that the turbulence is predominantly ITG with subdominant TEM.

With respect to the particle transport, some quantitative differences are observed between nonlinear-GENE and QuaLiKiz, although the result of fast deuterium penetration is still obtained in the nonlinear simulation. In comparison to QuaLiKiz, the electron flux is significantly more inward. This is due to an increased electron particle diffusion term in GENE compared to QuaLiKiz. This may arise due to the increased TEM drive in GENE, which is expected to increase electron particle transport coefficients [18]. The increased electron inflow is compensated by a reduced hydrogen outflow in GENE compared to QuaLiKiz. However, crucially, the deuterium inflow is still large in the GENE simulation, even larger than in QuaLiKiz. This maintains the key result of fast deuterium penetration in the post-pellet phase. Furthermore, the GENE and QuaLiKiz ion diffusion coefficients are very comparable.

Considering the convective coefficients, a large difference is found for the ions, with \(V_I(\text{GENE}) \ll V_I(\text{QuaLiKiz}) \), while the inward pinch for the electrons is slightly larger in GENE. This disagreement is not completely unexpected since differences in particle transport were previously observed between quasilinear and nonlinear simulations in this positive density gradient regime [45]. Further investigation on the origin of the discrepancy will be object of future work.

5. Conclusions

The JINTRAC integrated modelling framework with the turbulent transport model QuaLiKiz as the turbulent transport model and HIP2 as the pellet deposition model successfully reproduced observations over multiple pellet cycles in JET mixed-isotope experiments. Good agreement on the density profile evolution and on the neutron rate timescales was achieved. The compensation between \(R/L_n \) stabilization and \(R/L_T \) destabilization was shown to lead to maintained ITG drive and allow prompt deuterium penetration on energy confinement timescales following each pellet injection throughout the pellet train. The key QuaLiKiz prediction of ITG instability in post-pellet negative \(R/L_n \) regimes was verified by linear and nonlinear GENE simulations. The same core modelling approach presented in this paper can be used to predict the timescale for the fuel penetration in ITER and future reactors, with optimistic preliminary results with regard to fuelling capability and burn control.

Acknowledgments

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014–2018 and 2019–2020 under Grant Agreement No. 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.
References

[1] Doyle E.J. et al 2007 Progress in the ITER physics basis chapter 2: plasma confinement and transport Nucl. Fusion 47 S18

[2] Frigione D. et al 2007 Pellet injection and high density ITB formation in JET advanced tokamak plasmas Nucl. Fusion 47 74–84

[3] Garzotti L. et al 2006 Simulations of JET pellet fuelled ITB plasmas Nucl. Fusion 46 73–81

[4] Romanelli M., Bourdelle C. and Dorland W. 2004 Effects of high density peaking and high collisionality on the stabilization of the electrostatic turbulence in the Frascati Tokamak Upgrade Phys. Plasmas 11 3845–53

[5] Polevoi A.R. et al 2018 Integrated simulations of H-mode operation in ITER including core fuelling, divertor detachment and ELM control Nucl. Fusion 58 056020

[6] Wiesen S., Köchl F., Belo P., Kotov V., Loarte A., Parail V., Corrigan G., Garzotti L. and Harting D. 2017 Control of particle and power exhaust in pellet fuelled ITER DT scenarios employing integrated models Nucl. Fusion 57 076020

[7] Garzotti L. et al 2019 Integrated core-SOL modelling of fuelling, density control and divertor heat loads for the flat-top phase of the ITER H-mode D-T plasma scenarios Nucl. Fusion 59 026006

[8] Parail V. et al 2009 Integrated modelling of ITER reference scenarios Nucl. Fusion 49 075030

[9] Valovic M. et al 2018 Density control by pellets in plasmas with ELM mitigation by RMPs in the ASDEX Upgrade Tokamak Plasma Phys. Control. Fusion 60 085013

[10] Valovic M. et al 2020 Compatibility of pellet fuelling with ELM suppression by RMPs in the ASDEX Upgrade Tokamak Nucl. Fusion 60 054006

[11] Lang P.T. et al 2012 High-density H-mode operation by pellet injection and ELM mitigation with the new active in-vessel saddle coils in ASDEX Upgrade Nucl. Fusion 52 032017

[12] Garzotti L. et al 2003 Particle transport and density profile analysis of different JET plasmas Nucl. Fusion 43 1829–36

[13] Garzotti L., Figueredo J., Roach C.M., Valovic M., Dickinson D., Naylor G., Romanielli M., Scannell R. and Szepesi G. 2014 Microstability analysis of pellet fuelled discharges in the MAST Plasma Phys. Control. Fusion 56 035004

[14] Valovic M. et al 2008 Particle confinement of pellet fuelled tokamak plasma Nucl. 48 075004

[15] Tegeder D. et al 2017 Gyrokinetic simulations of particle transport in pellet fuelled JET discharges Plasma Phys. Control. Fusion 59 105005

[16] Ethimomion P.C. et al 1995 Tritium particle transport experiments on TFTR during D-T operation Phys. Rev. Lett. 75 85

[17] Angioni C., Peeters A.G., Pereverzev G.V., Bottino A., Candy J., Dux R., Fable E., Hein T. and Waltz R.E. 2009 Gyrokinetic simulations of impurity, He ash and α particle transport and consequences on ITER transport modelling Nucl. Fusion 49 055013

[18] Bourdelle C., Camenen Y., Citrin J., Marin M., Casson F.J., Koechfl and Maslov M. 2018 Fast H isotope and impurity mixing in ion-temperature-gradient turbulence Nucl. Fusion 58 076028

[19] Ida K. et al 2020 Transition between isotope-mixing and non-mixing states in hydrogen–deuterium mixture plasmas Phys. Rev. Lett. 124 025002

[20] Maslov M. et al 2018 Observation of enhanced ion particle transport in mixed H/D isotope plasmas on JET Nucl. Fusion 58 076022

[21] Marin M., Citrin J., Bourdelle C., Camenen Y., Casson F.J., Ho A., Koechfl and Maslov M. 2020 First-principles-based multiple-isotope particle transport modelling at JET Nucl. Fusion 60 046007

[22] Bourdelle C., Citrin J., Baiaocchi B., Casati A., Cottier P., Garbet X. and Imbeaux F. 2016 Core turbulent transport in tokamak plasmas: bridging theory and experiment with QuaLiKiz Plasma Phys. Control. Fusion 58 014036

[23] Citrin J. et al 2017 Tractable flux-driven temperature, density, and rotation profile evolution with the quasilinear gyrokinetic transport model QuaLiKiz Plasma Phys. Control. Fusion 59 124005

[24] Valovic M. et al 2019 Control of the hydrogen: deuterium isotope mixture using pellets in JET Nucl. Fusion 59 106047

[25] Romanelli M. et al 2014 JINTRAC: a system of codes for integrated simulation of tokamak scenarios Plasma Fusion Res. 9 540302

[26] Heubner W.A., Shaing K.C., Hirshman S.P. and Zarnstorff M.C. 1997 Bootstrap current and neoclassical transport in tokamaks of arbitrary collisionality and aspect ratio Phys. Plasmas 4 3230

[27] Ho A., Citrin J., Aurinenna F., Bourdelle C., Casson F.J., Kim H.-T., Manas P., Szepesi G. and Weisen H. 2019 Application of Gaussian process regression to plasma turbulent transport model validation via integrated modelling Nucl. Fusion 59 056007

[28] Challis C.D., Cordey J.G., Hamnén H., Stoberfeld P.M., Christiansen J.P., Lazzaro E., Muir D.G., Stork D. and Thompson E. 1989 Non-inductively driven currents in JET Nucl. Fusion 29 563–70

[29] Eriksson L.-G., Hellsten T. and Willen U. 1993 Comparison of time dependent simulations with experiments in ion cyclotron heated plasmas Nucl. Fusion 33 1037–48

[30] Tamor S. 1981 ANTIC: a code for calculation of neutral transport in cylindrical plasmas J. Comput. Phys. 40 104119

[31] Köchl F. et al 2013 Modelling of pellet particle a blation and deposition: the hydrogen pellet injection code HI 2 Preprint EFDA—JET—PR(12)57 p 82

[32] Alper B. et al 1994 Impurity transport of high performance discharges in JET 21st EPS Conf. on Conf. Directed Fusion and Plasma Physics (Montpellier, France, June 27–July 1, 1994) pp 3–7 (https://insp.iaea.org/collection/NCLCollectionStore/_Public/28/0328/28032669.pdf)

[33] Cenacchi G. and Taroni A. 1988 JETTO: a free-boundary plasma transport code Rapporto ENEA RT/TIB/88/5(1988)

[34] Lao L.L., St. John H., Stambaugh R.D., Kellman A.G. and Pfeffer W. 1985 Reconstruction of current profile parameters and plasma shapes in tokamaks Nucl. Fusion 25 1611

[35] Czarnecka A., Zastrow K.-D., Rzadkiewicz J., Coffey I.H., Lawson K.D. and O’Mullane M.G. 2011 Determination of metal impurity density, "De" and dilution on JET by VUV emission spectroscopy Plasma Phys. Control. Fusion 53 035009

[36] Sertioli M., Carvalho P.J., Giroud C. and Menmuir S. 2019 Measuring the plasma composition in tokamaks with metallic plasma-facing components J. Plasma Phys. 85 22–7

[37] Breton S. et al 2018 First principle integrated modeling of multi-channel transport including tungsten in JET Nucl. Fusion 58 096003

[38] Casson F.J. 2020 Predictive multi-channel flux-driven modelling to optimise ICHR tungsten control and fusion performance in JET Nucl. Fusion 60 066029
[39] Jenko F., Dorland W., Kotschenreuther M. and Rogers B.N. 2000 Electron temperature gradient driven turbulence Phys. Plasmas 7 1904

[40] Howard N.T., Holland C., White A.E., Greenwald M., Candy J. and Creely A.J. 2016 Multi-scale gyrokinetic simulations: comparison with experiment and implications for predicting turbulence and transport Phys. Plasmas 23 056109

[41] Koechl F. et al. Optimising the ITER 15MA DT baseline scenario by exploiting self-consistent-consistent free-boundary core-edge-sol workflow IMAS Preprint: IAEA Fusion Energy Conf. (Gandhinagar, India, 22–27 October, 2018) pp 7–25 (https://www.iaea.org/events/fec-2018)

[42] Maggi C.F. et al. 2018 Isotope effects on L–H threshold and confinement in tokamak plasmas Plasma Phys. Control. Fusion 60 014045

[43] Angioni C., Lang P.T. and Manas P. 2017 Density gradient driven microinstabilities and turbulence in ASDEX Upgrade pellet fuelled plasmas Nucl. Fusion 57 116053

[44] Fable E. et al. 2019 The role of the source versus the collisionality in predicting a reactor density profile as observed on ASDEX Upgrade discharges Nucl. Fusion 59 076042

[45] Baiocchi B., Bourdelle C., Angioni C., Imbeaux F., Loarte A. and Maslov M. 2015 Transport analysis and modelling of the evolution of hollow density profiles plasmas in JET and implication for ITER Nucl. Fusion 55 123001