Neisseria gonorrhoeae survives within and modulates apoptosis and inflammatory cytokine production of human macrophages

Alice Château and H. Steven Seifert*
Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.

Summary

The human-adapted organism Neisseria gonorrhoeae is the causative agent of gonorrhoea, a sexually transmitted infection. It readily colonizes the genital, rectal and nasopharyngeal mucosa during infection. While it is well established that N. gonorrhoeae recruits and modulates the functions of polymorphonuclear leukocytes during infection, how N. gonorrhoeae interacts with macrophages present in infected tissue is not fully defined. We studied the interactions of N. gonorrhoeae with two human monocytic cell lines, THP-1 and U937, and primary monocytes, all differentiated into macrophages. Most engulfed bacteria were killed in the phagolysosome, but a subset of bacteria was able to survive and replicate inside the macrophages suggesting that those cells may be an unexplored cellular reservoir for N. gonorrhoeae during infection. N. gonorrhoeae was able to modulate macrophage apoptosis: N. gonorrhoeae induced apoptosis in THP-1 cells whereas it inhibited induced apoptosis in U937 cells and primary human macrophages. Furthermore, N. gonorrhoeae induced expression of inflammatory cytokines in macrophages, suggesting a role for macrophages in recruiting polymorphonuclear leukocytes to the site of infection. These results indicate macrophages may serve as a significant replicative niche for N. gonorrhoeae and play an important role in gonorrheal pathogenesis.

Introduction

The Gram-negative bacterium Neisseria gonorrhoeae is the causative agent of gonorrhoea, a sexually transmitted infection that affects more than 100 million people annually (WHO, 2012). This exclusive human pathogen primarily infects the urogenital tract often giving rise to local inflammation. Dissemination from the local site of infection can also occur and lead to pelvic inflammatory disease, dermatitis, endocarditis and arthritis (reviewed in Hook and Holmes, 1985). As an exclusive human pathogen with no known alternative reservoir, N. gonorrhoeae has evolved strategies to promote growth and persistence in the host by modulating the host innate and adaptive immune systems. Symptomatic N. gonorrhoeae infection triggers an inflammatory response driven by large numbers of polymorphonuclear leukocytes (PMNs), and the role of PMNs in N. gonorrhoeae pathogenesis has been extensively investigated. These studies suggest that some N. gonorrhoeae survive and replicate within PMNs, notably by modulating their ability to phagocytose and release antimicrobial components (reviewed by Johnson and Criss, 2011; Criss and Seifert, 2012).

The genitourinary mucosae also contains significant populations of macrophages, supporting the idea that N. gonorrhoeae encounter these cells during infection (Givan et al., 1997). Moreover, acute gonorrhoea is characterized by an intense inflammatory exudate that contains macrophages, exfoliated epithelial cells and numerous PMNs (Hook, 1999). Therefore, it is likely that macrophages have an important role in the pathogenesis of N. gonorrhoeae infections. There is little consensus concerning the survival of N. gonorrhoeae inside macrophages. Ota et al. (1975) suggested that N. gonorrhoeae may be capable of intracellular survival within murine macrophages, whereas Cooper and Floyd (1982) showed that N. gonorrhoeae phagocytosed by mouse macrophages were completely killed after 30 min of incubation. A more recent study shows that after macrophage internalization, the number of N. gonorrhoeae rapidly decreases at early time points, but importantly, a portion of bacteria was able to survive intracellularly over a more prolonged period (Leuzzi et al., 2005). This study was consistent with another report that suggested that some
intracellular N. gonorrhoeae can survive inside macrophages (Zughaier et al., 2014).

One common strategy used by microbial pathogens to establish infection in human hosts is the modulation of apoptosis. Apoptotic cells are characterized by distinct morphological and chemical changes that result from signalling cascades initiated through two distinct pathways, the extrinsic and intrinsic pathways (for a review, Elmore, 2007). Engagement of death receptors on the cell surface leads to activation of the extrinsic apoptotic pathway, whereas the intrinsic pathway is activated by intracellular events that cause mitochondrial release of cytochrome c into the cytoplasm. Both pathways result in caspase cleavage and DNA fragmentation. The effect of N. gonorrhoeae infection on apoptosis of different host cells has been studied extensively, but there are conflicting reports. N. gonorrhoeae has been shown to induce apoptosis in epithelial cells (Muller et al., 1999; Muller et al., 2000; Kepp et al., 2007; Kepp et al., 2009), but other studies have shown N. gonorrhoeae to have no effect on apoptosis in the same cell type (Massari et al., 2003). N. gonorrhoeae can inhibit apoptosis induced by staurosporine (STS) in epithelial cells and HL-60 cells (Binnicker et al., 2003; Howie et al., 2008; Follows et al., 2009; Chen and Seifert, 2011). N. gonorrhoeae also inhibits spontaneous apoptosis in primary human PMNs and HL-60 cells (Simons et al., 2006; Chen and Seifert, 2011). The reasons for the divergence in the observed experimental results are unknown but may be due to the use of different N. gonorrhoeae strains, host cell lines or infection conditions (Massari et al., 2003). The mechanisms by which N. gonorrhoeae induces and/or inhibits apoptosis have been explored mainly in epithelial cells and PMNs, but nothing is known about the mechanisms used within macrophages, and whether N. gonorrhoeae utilizes similar mechanisms of apoptosis regulation remains to be determined.

In this study, we used the two most common differentiated cell lines, U937 and THP-1 cells, as models to study the interaction of N. gonorrhoeae with human macrophages. We demonstrate that N. gonorrhoeae is able to survive in association with these macrophage cell lines and that a subset of intracellular bacteria can survive intracellularly. We also show that during infection, N. gonorrhoeae modulates apoptosis in macrophages with the outcome differing in the two cell lines used: N. gonorrhoeae induced apoptosis in THP-1 cells but protected against STS-induced and TNF-α-induced apoptosis in U937 cells. The phenotypes observed in U937 cells were replicated in primary human macrophages. N. gonorrhoeae also induced the secretion of many cytokines from infected macrophages suggesting that N. gonorrhoeae interactions with macrophages could be an instrumental step in the induction of the inflammatory response characteristic of symptomatic gonorrhoea. All of these interactions between N. gonorrhoeae and macrophages strongly support the hypothesis that macrophages are an important innate cell type involved in the pathogenesis of gonorrhoea.

Results

Neisseria gonorrhoeae survives in presence of U937 and THP-1 macrophages

The survival of N. gonorrhoeae in association with differentiated THP-1 and U937 cells was examined using Colony Forming Units (CFUs). N. gonorrhoeae grew better when associated with the macrophage cell lines than in RPMI medium alone, a medium in which the bacteria can replicate (Fig. 1A). While N. gonorrhoeae viable counts tended to decrease slightly over time in Phosphate-buffered saline Glucose (PBSG) medium alone because this medium does not support growth, bacteria incubated in the presence of U937 and THP-1 cells in PBSG medium for 7 h grew an average of 139-fold and 40-fold, respectively (Fig. 1A).

To establish whether the U937 and THP-1 cells bind and phagocytose N. gonorrhoeae, association of bacteria with challenged cells was monitored by differential immunofluorescence of intracellular and extracellular bacteria (Fig. 1B). After 1.5, 3.5 and 21.5 h of infection, there were both extracellular and intracellular bacteria associated with the cells. Phagocytosis occurred rapidly as intracellular bacteria could be observed as early as 30 min after infection, and when phagocytosis is blocked by pretreatment of the cells with cytochalasin D, no intracellular bacteria were detected (data not shown).

Furthermore, an increase of macrophage internalized bacteria was observed over the duration of the experiment in both RPMI and PBSG media (Fig. 1B). Based on the rapid entrance of the bacteria into the macrophages, we conclude that macrophages can phagocytose N. gonorrhoeae without opsonization. We cannot from these analyses determine whether some bacteria can enter using an alternative mechanism from phagocytosis.

To examine bacterial survival within macrophage cell lines, U937 and THP-1 cells were challenged with N. gonorrhoeae at a multiplicity of infection (MOI) of 23 in RPMI medium for 1.5 h, and extracellular bacteria were killed by gentamicin treatment. After removal of gentamicin and incubation in fresh media, the number of viable bacteria remaining in association with macrophages was determined at various times (Fig. 1C; data not shown for THP-1). One percent (±0.2) of the total inoculum was internalized in U937 macrophages after 3 h of infection. The number of bacteria associated with both cell types decreased initially; however, 3 h after the removal of gentamicin, the number of CFUs increased, suggesting that the bacteria were able to replicate in association with
the cells. When gentamicin was maintained in the culture medium for the entire duration of the experiment, no viable \textit{N. gonorrhoeae} were detected after 6 h. Two possible explanations for these results are that the macrophages are becoming compromised by the infection to allow gentamicin access to intracellular bacteria or that \textit{N. gonorrhoeae} are escaping from the macrophages and were killed extracellularly by the antibiotic.

It was possible that \textit{N. gonorrhoeae} was being killed by the antibiotic because of disruption of the host cell membrane. To test this hypothesis, cytoplasmic lactate dehydrogenase (LDH) release that occurs upon cell lysis was measured (Fig. 1D). The percentage of LDH release was near zero indicating that \textit{N. gonorrhoeae} does not cause extensive lysis of U937 or THP-1 cells. The absence of cell lysis was also confirmed with propidium iodide exclusion staining of challenged U937 cells, which showed that less than 1% of challenged cells had disrupted cell membranes (data not shown). These results suggest that \textit{N. gonorrhoeae} does not induce overt membrane damage during the times studied. Therefore, we reason that the bacteria must be exiting the macrophage cells without lysis. Moreover, treatment of the macrophage cell with the actin polymerization inhibitor cytochalasin D did not inhibit \textit{N. gonorrhoeae} growth indicating that actin polymerization had no role in bacterial exit from macrophages (data not shown). These results suggest that \textit{N. gonorrhoeae} is phagocytosed by U937

© 2015 John Wiley & Sons Ltd, \textit{Cellular Microbiology} 18, 546–560
and THP-1 differentiated cells and *N. gonorrhoeae* is able to survive within and potentially escape from these phagocytes.

Neisseria gonorrhoeae can survive and replicate inside macrophages

Although *N. gonorrhoeae* was unable to expand in PBSG medium alone, it was able to grow in presence of macrophages in PBSG, expand greater in RPMI (Fig. 1A) and increase intracellularly (Fig. 1B). While these results could reflect bacterial replication within the macrophages, it was possible that continual uptake of bacteria from the medium could contribute to the increased internalized bacteria. We therefore examined the number of intracellular bacteria per macrophage over time by fluorescence microscopy, treating the macrophages with cytochalasin D after infection to block additional phagocytosis. The percentage of macrophages containing more than 10 bacteria increased over time whereas the percentage of macrophages with one to five bacteria decreased (Fig. 2A), indicating that the internalized bacteria were able to survive and replicate inside macrophages.

To better understand the time course of events involved in intracellular survival and replication of *N. gonorrhoeae*, we analysed the bacterium-containing phagosomes. We first evaluated *N. gonorrhoeae* colocalization with fluorescent microscopy using the acidotropic dye LysoTracker at different time points. After 2h of infection, 58.5 ± 3.4% of the bacteria colocalized with acidic organelles (Fig. 2B), demonstrating that bacterial phagosomes fuse with lysosomes at early stages of infection. However, after 3h of infection, coincident with the increase in the number of bacteria inside the macrophage (Fig. 2A), most of the bacteria did not colocalize with the acidotropic dye. Furthermore, the decrease of LysoTracker red colocalization with *N. gonorrhoeae* during the time course of infection suggests that bacteria do not survive within this acidic compartment. In the presence of the acidification inhibitor bafilomycin A1, the survival of *N. gonorrhoeae* in macrophages increased compared with no inhibitor (Fig. 2C). Interestingly, *N. gonorrhoeae* that colocalized with acidotropic dye also colocalized with the late endosome marker LAMP-1, and the bacteria that were not colocalized with LysoTracker were also not associated with LAMP-1 (Fig. 2D). The *Neisseria* IgA1 protease has been described to cleave LAMP-1 and promote survival of bacteria within epithelial cells (Lin et al., 1997). There was no difference in the survival of an *igA1* mutant and the parental strain in U937 cells (data not shown). Finally, transmission electron microscopy of U937 cells challenged with *N. gonorrhoeae* showed a subset of the internalized bacteria had no obvious surrounding membrane suggesting they can escape either from the phagolysosome or from the vacuole after entering the cell by an active process initiated by the bacterium (Fig. 3A). In contrast, phagolysosome encased *N. gonorrhoeae* were readily observed in bafilomycin A1-treated cells (Fig. 3A). Furthermore, the number of macrophage exhibiting bacteria with no surrounding membrane increased over the time of infection in absence of bafilomycin A1 (Fig. 3B), and the bacteria localized in the cytoplasm retain electron density in contrast to the bacteria localized in vacuole, suggesting that the cytoplasmically localized bacteria retain viability. These results support the hypothesis that a subset of internalized bacteria is able to escape from a phagosome or endosome into the cytoplasm and/or avoid lysosome fusion to prevent killing, and it is this population that can replicate within the macrophages.

Neisseria gonorrhoeae differentially influences apoptosis in THP-1 and U937 cells

Because *N. gonorrhoeae* can survive and replicate within macrophages, we wondered whether *N. gonorrhoeae* could modulate caspase-dependent apoptosis in macrophages, as has been reported for PMNs (Simons et al., 2006, Chen and Seifert, 2011). Differentiated U937 and THP-1 cells were challenged with *N. gonorrhoeae* for 3h, and the cells were treated for 3h with either STS to induce apoptosis or dimethyl sulfoxide (DMSO) as a control. Cell lysates were harvested, and caspase-3 activity was assessed using the fluorogenic caspase-3 substrate Ac-DEVD-AMC (Fig. 4). Infection of U937 cells with *N. gonorrhoeae* did not induce significant caspase-3 activity compared with the uninfected control; however, infection of THP-1 cells showed an increase of caspase-3 activity (Fig. 4A and B). Treatment of both cells with STS increased caspase-3 activity over that of control DMSO-treated cells. Preincubation of U937 cells with *N. gonorrhoeae* at an MOI of 100 significantly decreased STS-induced caspase-3 activity, an effect comparable with that of the general caspase-3 inhibitor z-VAD-fmk (Fig. 4A). In contrast, preincubation of THP-1 cells with *N. gonorrhoeae* did not significantly modify caspase-3 activity levels (Fig. 4B). Studying DNA fragmentation, the last stage of apoptosis, confirmed the absence of apoptosis induction by *N. gonorrhoeae* in U937 cells and the partial induction of apoptosis in THP-1 cells (35%) (Fig. 4C). The effect of *N. gonorrhoeae* on STS-induced caspase-3 activation of U937 cells was dose-dependent, as the inhibition of caspase-3 activity became more pronounced with increasing MOIs (Fig. 4A). These differential results are reminiscent of the contrasting results about the effect of *N. gonorrhoeae* on apoptosis obtained by different groups using epithelial cell lines and could provide a way to examine the mechanistic basis for
these differential responses by comparing the modulation of signal transduction pathways by *N. gonorrhoeae*.

To test whether *N. gonorrhoeae* internalization is necessary to modulate apoptosis, U937 and THP-1 differentiated cells were pretreated with cytochalasin D to inhibit phagocytosis, then challenged with bacteria, and caspase-3 activity was measured. Cytochalasin D treatment did not alter the effect of *N. gonorrhoeae* on STS-induced caspase-3 activation in U937 cells or on the induction of caspase-3 activity in THP-1 cells (Fig. 4D). Furthermore, apoptosis regulation did not require viable *N. gonorrhoeae*, as heat-killed or paraformaldehyde killed *N. gonorrhoeae* are still able to fully modulate apoptosis (Fig. 4). These results show that active *N. gonorrhoeae* processes are not required for apoptosis modulation.

© 2015 John Wiley & Sons Ltd, *Cellular Microbiology* 18, 546–560
Neisseria gonorrhoeae inhibits both the intrinsic and extrinsic apoptosis pathways in U937 cells and induces the extrinsic apoptosis pathway in THP-1 cells

While we established divergent apoptosis responses to *N. gonorrhoeae* in U937 and THP-1 macrophages, the identity of the upstream signalling pathways influenced by *N. gonorrhoeae* remain to be fully defined. In order to define which apoptotic signalling pathways are affected by *N. gonorrhoeae* infection, the loss of mitochondrial membrane potential (MMP) was studied as a marker of the intrinsic apoptotic pathway. STS induced the loss of MMP in over 90% of both U937 and THP-1 cells (Fig. 5). In U937 cells differentiated into macrophages, *N. gonorrhoeae* inhibited the loss of MMP induced by STS (around 50%), indicating that *N. gonorrhoeae* is able to inhibit intrinsic apoptosis pathway induced by STS. In THP-1 cells differentiated into macrophages, *N. gonorrhoeae* inhibited the loss of MMP induced by STS (around 50%), indicating that *N. gonorrhoeae* is able to inhibit intrinsic apoptosis pathway induced by STS. In THP-1 cells challenged by *N. gonorrhoeae* suggesting that *N. gonorrhoeae* does not induce apoptosis via the intrinsic pathway in this cell line. To test whether *N. gonorrhoeae* modulates the extrinsic apoptosis pathway in THP-1 differentiated cells, Bid cleavage was assayed by western blot analysis. *N. gonorrhoeae* induced Bid cleavage in THP-1 cells (Fig. 6), indicating that *N. gonorrhoeae* induces the extrinsic apoptosis pathway in this cell line. *N. gonorrhoeae* did not induce Bid cleavage in U937 cells, consistent with our prior results. In contrast, *N. gonorrhoeae* inhibited Bid cleavage induced by TNF-α + cyclohexymide (CHX) treatment (Fig. 6). Finally, caspase-8 cleavage, another step of the extrinsic apoptosis pathway, when induced by TNF-α + CHX in U937 cells, was also inhibited by *N. gonorrhoeae* infection (data not shown). Taken together, the results of these assays clearly demonstrate that *N. gonorrhoeae* inhibits both the intrinsic and extrinsic apoptotic pathways in U937 cells but only induces extrinsic apoptosis in THP-1 cells.

Neisseria gonorrhoeae inhibits apoptosis in human primary macrophages

The contradictory apoptosis response in two macrophage cell lines suggested that these standard human monocytic cell lines express distinct phenotypes. In order to determine which macrophage cell line phenotype might be most relevant in vivo, apoptosis modulation was examined in macrophages derived from primary human monocytes (MDM). Similarly to the cell lines, *N. gonorrhoeae* was internalized without opsonization by MDM (Fig. 7A), and the percentage of *N. gonorrhoeae* present within the MDM 2.5 h after infection was 1.85% (± 0.25). *N. gonorrhoeae* survived in the presence of MDM, but when gentamicin was present for the entire duration of the assay, no viable *N. gonorrhoeae* were detected after 6 h of infection (Fig. 7B). Furthermore, no LDH release was observed during MDM infection by *N. gonorrhoeae* (Fig. 7C).
These results were all consistent with those obtained from the macrophage cell lines. Infection of MDM with *N. gonorrhoeae* alone did not induce significant caspase-3 activity over uninfected controls using cells from six distinct donors (Fig. 7D). While treatment of MDM with STS increased caspase-3 activity over that of control treated...
cells, preinfection of MDM with *N. gonorrhoeae* significantly decreased STS-induced caspase-3 activity (Fig. 7D). Furthermore, loss of MMP and Bid cleavage are not induced in MDM challenged by *N. gonorrhoeae*, whereas infection with *N. gonorrhoeae* protected against loss of MMP induced by STS (data not shown). Therefore, the effect of *N. gonorrhoeae* on apoptosis of MDM is more similar to the effect in U937 cells than THP-1 cells.

Macrophages can be polarized to M1 or M2 phenotypes in response to environmental signals, including bacterial infection. It was possible that the macrophage-like cell lines were more closely replicating one of the polarized phenotypes. To determine whether polarized primary macrophages have a similar apoptotic phenotype than non-differentiated primary macrophages, MDM were treated with TNF-α plus INF-γ or IL-4 to polarize them to subtype M1 phenotype (Fig. 6).

Fig. 6. *Neisseria gonorrhoeae* induces Bid cleavage in THP-1 cells and inhibits Bid cleavage induced by TNF-α in U937 cells. Differentiated U937 and THP-1 cells were challenged or not with FA1090 and then treated with DMSO or TNF-α + CHX. Lysates were harvested and subjected to Western blotting using a Bid antibody. The 22 and 15 kDa products correspond to the full length and cleaved Bid respectively. β-Tubulin was used as a loading control. Data are representative of two independent experiments.

Fig. 7. *Neisseria gonorrhoeae* is able to survive and replicate in association with primary human macrophages (MDM) and inhibits STS-induced caspase-3 activity. A. *N. gonorrhoeae* associated with MDM are both intracellular and extracellular. MDM were challenged at an MOI of two for 1.5 h, after which the cells were fixed and intracellular and extracellular bacteria were differentiated: extracellular bacteria appear red and yellow and intracellular bacteria appear green. Data are representative of three experiments with MDM from three different donors.

B. MDM were challenged for 1.5 h with FA1090 at an MOI of 11. After washing, challenged cells were incubated in fresh medium with gentamicin 200 μg ml⁻¹ for the entire duration of the experiment (with gentamicin, black circles) or 1 h before new washing and incubation with fresh medium without gentamicin (open circles). Viable CFU per millilitre were enumerated at various times post-infection, and the data are represented as the means ± standard deviation (SD) for three independent replicates and are representative of two independent experiments with two different donors. Values that are significantly different (*P* < 0.05) as determined by the two-tailed, unpaired Student *t*-tests are indicated with an asterisk.

C. *N. gonorrhoeae* does not induce LDH release in MDM. MDM were challenged with FA1090 at a MOI of 15; host cell lysis was assessed by measuring release of cytosolic LDH into the supernatant at different times post-infection. Data shown are means ± SD calculated from three replicates and are representative of two independent experiments with two different donors. Values that are significantly different (*P* < 0.05) as determined by the two-tailed, unpaired Student *t*-tests are indicated with an asterisk.

D. *N. gonorrhoeae* inhibits STS-induced caspase-3 activity in MDM. MDM were challenged with FA1090 at a MOI of 38 and then treated with STS or DMSO. Caspase-3 activity was measured using the fluorogenic substrate Ac-DEVD-AMC, and data are presented as the caspase-3 activation relative to that for uninfected DMSO-treated controls. Data shown are means ± SD calculated from three replicates and are representative of six independent experiments with six different donors.

E. *N. gonorrhoeae* inhibits STS-induced caspase-3 activity in MDM polarized in M2a but not in M1 subtype. MDM and MDM polarized in M1 or M2a subtype were challenged with FA1090 at a MOI of 74 and then treated with STS or DMSO, and caspase-3 activity was measured. Data shown are means ± SD calculated from three replicates and are representative of three independent experiments with three different donors. Values that are significantly different (*P* < 0.05) from the value for the uninfected sample as determined by the two-tailed, unpaired Student *t*-tests are indicated with an asterisk.
or M2a phenotypes, respectively, and caspase 3-activity was measured. *N. gonorrhoeae* did not induce apoptosis in either M1 or M2a MDM (Fig. 7E). *N. gonorrhoeae* inhibited caspase-3 cleavage induced by STS with M2a macrophages, but not with M1 macrophages (Fig. 7E). Therefore, with respect to the regulation of apoptosis during infection, U937 cells, MDM and M1 macrophages were the most similar and THP-1 cells are not a good model.

Neisseria gonorrhoeae induces cytokine production in MDM, U937 and THP-1 cells

Upon recognition of invading microorganisms, macrophages secrete inflammatory mediators including cytokines and chemokines to activate immune defenses that are designed to limit or clear infection. However, as host-adapted organisms, it is unclear whether immune responses are effective in limiting infection. To determine whether infected macrophages could be a significant source of cytokines and chemokines during gonococcal infection, primary macrophages and differentiated THP-1 and U937 cells were challenged with *N. gonorrhoeae* at an MOI of 35. The cell-free supernatants were collected 10 h post-infection, and the induction of various inflammatory cytokines in the supernatants was assessed by Enzyme-Linked Immunosorbent Assay (ELISA) (Fig. 8). Uninfected U937 cells showed higher levels of many of the measured cytokines than THP-1 cells or MDM. None of the cells produced significant amounts of IL2, IL-4, IL-17A and INF-γ in response to *N. gonorrhoeae* infection. However, *N. gonorrhoeae* infection induced MDM, THP-1 and U937 cells to secrete IL-1α, IL-1β, IL-10, GM-CSF and high levels of IL-6, IL-8 and TNF-α. The primary macrophages and THP-1 were induced to secrete higher levels of cytokines/chemokines than U937 cells. *N. gonorrhoeae* infection resulted in the induction of pro-inflammatory cytokines IL1-β, IL-6 and TNF-α from all of the macrophages, and the anti-inflammatory cytokine IL-10 was also induced, but only in large amounts from MDM. IL-12 was only detected from challenged primary MDM. In summary, upon *N. gonorrhoeae* infection, human macrophages are able to up-regulate production of the immunoregulatory cytokines IL-1, IL-6, IL-8, IL-10 and TNF-α. These data indicate that when macrophages interact with *N. gonorrhoeae* during colonization, the induced cytokines may stimulate both inflammation and immune suppression.

Discussion

Neisseria gonorrhoeae recruits a large number of PMNs during symptomatic infection of both men and women, and a proportion of intracellular gonococci survives and multiplies within these cells (Simons *et al.*, 2005). What is less well understood is the results of interaction of *N. gonorrhoeae* with resident or recruited macrophages and whether macrophages could help recruit the large numbers of PMNs to the genital track. The presence of macrophages in genitourinary mucosae and in gonococcal exudates suggests that macrophages could have an important role in gonococcal pathogenesis (Givan *et al.*, 1997; Hook, 1999). Using two standard monocytic cell lines, differentiated into macrophages, and primary human macrophages, we confirmed that *N. gonorrhoeae* are phagocytosed without opsonization and are able to survive and grow in association with macrophages. It was previously described that *N. gonorrhoeae* survives exposure to macrophages but whether survival occurred intracellularly or extracellularly was not established in those studies (Leuzzi *et al.*, 2005; Zughaier *et al.*, 2014). We conclusively show that although many bacteria are killed by macrophages after phagocytosis, a subset of the internalized bacteria is able to survive and replicate.

Macrophages eliminate engulfed microorganisms by delivering them into the lysosomal system. Bacteria not adapted for an intracellular life cycle are effectively digested within the phagolysosome, an acidic environment that contains various activated hydrolytic enzymes, whereas some bacteria are able to survive by escaping into the cytoplasm to avoid lysosomal digestion, or other bacteria inhabit vesicles that do not fuse with lysosomes. Because the subset of *N. gonorrhoeae* that survives with macrophages does not colocalize with the acidic compartment or LAMP-1, it is possible that *N. gonorrhoeae*...
arrests phagosome maturation to survive inside macrophages. This is consistent with the idea that the Neisserial porin (PorB) inhibits phagosome maturation in human macrophages (Mosleh et al., 1998). This alteration in cellular trafficking may also be related to the ability of *N. gonorrhoeae* containing phagosomes to delay fusion with primary granules inside PMNs (Johnson and Criss, 2013). The *Neisseria* IgA1 protease cleaves LAMP-1 and promotes survival of bacteria within epithelial cells (Lin et al., 1997) but does not seem to play a role in the survival of *N. gonorrhoeae* macrophages as we did not observe any difference of survival between an *igA1* mutant and the parental strain in U937 cells. Electron microscopy images indicated the presence of *N. gonorrhoeae* in the cytoplasm as there was no observable membrane surrounding viable *N. gonorrhoeae* cells in U937 macrophages (Fig. 3A). To gain entrance to the cytoplasm, the bacteria could escape from the vacuole, as has been observed in other pathogens (for a review, Smith and May, 2013), or could use a separate mechanism to enter as they do in epithelial cells (for a review, Sadarangani et al., 2011). In the last hypothesis where *N. gonorrhoeae* could actively invade the macrophage, actin polymerization will be required, as cytochalasin D addition in the medium before challenging the cells do not allow detection of intracellular bacteria. Free *N. gonorrhoeae* in the cytoplasm was already observed in urethral epithelial cell (Apicella et al., 1996). While the mechanisms used by the subset of *N. gonorrhoeae* to avoid macrophage killing, potentially escape the phagolysosome and survive inside macrophages will need further investigation, it was already suggested that *N. gonorrhoeae* can subvert the iron-limiting immune defenses to facilitate iron acquisition and intracellular survival (Zughaier et al., 2014).

Many studies have shown both pro-apoptotic and anti-apoptotic effects of both *N. gonorrhoeae* and *Neisseria meningitidis* on epithelial cells (Muller et al., 1999; Muller et al., 2000; Binninger et al., 2003; Kepp et al., 2007; Howie et al., 2008; Follows et al., 2009; Kepp et al., 2009; Chen and Seifert, 2011) and lymphocytes (Massari et al., 2003; Dehmane et al., 2009). Moreover, *N. meningitidis* has been reported to prevent macrophage apoptosis in U937 macrophages and MDM (Tunbridge et al., 2006) but also has been reported to induce apoptosis in RAW 264.7 cells and THP-1 macrophages (Siplinader et al., 2012). Our results suggest that these contradictory results could all be correct and show that the effect on apoptosis is not strain-specific or species-specific but is most likely due to differences between host cells. While many of the previous studies in different laboratories used the same cell lines, it is well established that immortalized cells can change during propagation and that the characteristics or identity of the cell lines reported are not always correct (Hughes et al., 2007). We found that apoptosis modulation by *N. gonorrhoeae* in U937 and THP-1 cells does not require live bacteria nor internalization, suggesting that gonococcal surface components are sufficient for apoptosis modulation. The induction of the extrinsic apoptosis pathway in THP-1 but not in U937 macrophages by live and killed *N. gonorrhoeae* suggests there are surface receptor differences between the two cell lines.

During gonococcal infection, TNF-α induction has been observed during experimental human challenge, in vaginal secretions from infected mice and after challenge of human fallopian tube explants (Ramsey et al., 1995; Maisey et al., 2003; Packiam et al., 2010). Moreover *N. gonorrhoeae* has been reported to induce TNF-α secretion from epithelial cells and THP-1 monocytes in vitro (Christodoulides et al., 2000; Zughaier et al., 2014), and we confirmed TNF-α secretion from all three types of macrophages infected by *N. gonorrhoeae* (Fig. 8). While TNF-α secretion can result in accelerated macrophage apoptosis (for a review, Parameswaran and Patial, 2010), we report that *N. gonorrhoeae* is able to inhibit apoptosis induced by TNF-α in U937 macrophages. The fact that *N. gonorrhoeae* is able to inhibit caspase-8 and Bid cleavage induced by TNF-α and loss of MMP induced by STS in U937 macrophages suggests that *N. gonorrhoeae* acts by blocking an early event in both apoptosis pathways. These mechanisms are supported by the fact that Bcl-2 family proteins have been described to play roles in the anti-apoptotic and pro-apoptotic phenotypes observed during gonococcal infection in epithelial cells (Binninger et al., 2003; Binnicker et al., 2004; Kepp et al., 2007; Howie et al., 2008; Follows et al., 2009; Kepp et al., 2009).

The opposite effects of *N. gonorrhoeae* on apoptosis in U937 and THP-1 macrophages led us to examine these processes in MDM. The difference between U937 and THP-1 cells in our assays may be due to the different origin and maturation stage of cells. In fact, U937 cells are of tissue origin (histocytic lymphoma), thus at a more mature stage, whereas THP-1 cells are of blood leukemic origin, at a less mature stage (Ralph et al., 1976; Tsuchiya et al., 1980). *N. gonorrhoeae* was able to inhibit STS-induced apoptosis in MDM, like in U937 macrophages. Therefore, the U937 cell line is a more relevant model to study the modulation of apoptosis by *N. gonorrhoeae*. Because *N. gonorrhoeae* inhibits STS-induced apoptosis in M2a polarized macrophages, similarly to undifferentiated MDM and U937 cells, and *N. gonorrhoeae* induces the secretion of high levels of IL-10, but low levels of IL-12 (Fig. 8), we postulate that M2 macrophages may be the more relevant phenotype within the genital tract. Escobar et al. (2013) had previously suggested that cytokines induced by *N. gonorrhoeae* from RAW 264.7 mouse macrophages correspond to an M2 profile and had recently published that *N. gonorrhoeae* can polarize
human macrophages to an M2 profile (Ortiz et al., 2015). The phenotype of macrophages in the genital tract of patients will have to be investigated to determine whether there is polarization during natural gonococcal infection.

Secretion of IL-6 and TNF-α by MDM and U937 macrophages in response to N. gonorrhoeae or purified N. gonorrhoeae Lipopolysaccharide was already described (Ellis et al., 2001; Makepeace et al., 2001), and in this study, we showed MDM and two human macrophage cell lines respond robustly to the presence of N. gonorrhoeae by secreting different cytokines (Fig. 8). The induction of pro-inflammatory cytokines, especially IL-8, by macrophages, in addition to epithelial cells, could contribute to the recruitment of PMNs during gonococcal infection. The secretion of TNF-α and GM-CSF can also contribute to prolong the life of PMNs. The secretion of the regulatory cytokine IL-10 can have a potent T-cell suppressive function (Escobar et al., 2013), and it has been previously shown that N. gonorrhoeae suppresses T-cell function (Boulton and Gray-Owen, 2002; Lee et al., 2008; Zhu et al., 2012) and may induce a localized immune suppression (Liu et al., 2014). IL-6 and TNF-α may also trigger the influx of lymphocytes. This finding suggests that macrophages are at least in part responsible for the increased level of TNF-α and IL-6 observed in the urine of men and vaginal secretion of women infected with N. gonorrhoeae (Ramsey et al., 1995; Hedges et al., 1998). Interestingly, IL-1β was also secreted by macrophages in response to N. gonorrhoeae infection, suggesting that the inflammasome would be activated. Inflammasome activation by N. gonorrhoeae was already described in monocytes (Zhou et al., 2014). Gonococcal stimulation of macrophages could have a profound influence on the continued expression of a pro-inflammatory, often damaging, response during natural infection.

Our results suggest that macrophages could be an unexplored cellular reservoir for N. gonorrhoeae during infection. In fact, macrophages may serve as a significant replicative niche for a subset of N. gonorrhoeae bacteria that is able to resist phagocytic killing, and the inhibition of apoptosis in MDM may play an important role in facilitating N. gonorrhoeae replication and contribute to gonorrhoea pathogenesis. Determining the mechanisms used by N. gonorrhoeae to differentially manipulate macrophage apoptosis and the other relevant host cells will be important to understanding the pathogenesis of this disease.

Experimental procedures

Bacterial strains and culture conditions

Neisseria gonorrhoeae isolate FA1090, piliated and Opa positive, was used in this study and was cultured on gonococcal medium base agar (Difco) plus Kellogg’s supplements (Kellogg et al., 1963). The strain was typically grown at 37 °C and 5% CO₂ for approximately 15 h. Prior to cell infections, bacteria were suspended in gonococcal liquid medium containing Kellogg’s supplements and 0.042% Na₂HCO₃ at an OD₅₅₀ of 0.16 and grown at 37 °C to mid-logarithmic phase. A target number of CFUs was used for each experiment, but due to the variability of N. gonorrhoeae growth, for each experiment, the measured CFU is reported. For some experiments, FA1090 strain harbouring a plasmid encoding a green fluorescent protein, pCmGFP, was used (Srikhanta et al., 2009). For experiments with killed bacteria, N. gonorrhoeae was heat-killed at 65 °C or treated with 4% paraformaldehyde for 30 min.

Cell culture and differentiation

The human monocytic cell lines U937 and THP-1 were obtained from ATCC and maintained at 2.5 × 10⁵ in RPMI 1640 medium supplemented with 10% Fetal Bovine Serum (FBS) at 37 °C and 5% CO₂. U937 and THP-1 cells at 1.10⁶ cells per milliliter were differentiated to macrophages using 80 nM of phorbol 1-myristate 13-acetate (PMA, Sigma-Aldrich) for 2 days in 24-well (1 ml per well) or 48-well (0.5 ml per well) tissue culture plates, and when necessary on coverslips for microscopy.

Human peripheral blood mononuclear cells were isolated by Ficoll Paque (GE healthcare) density centrifugation from human buffy coats provided by the National Red Cross (PA). Monocytes were negatively isolated from freshly isolated peripheral blood mononuclear cells using Dynabeads untouched human monocytes (Life technologies). Cells at 1.1 × 10⁶ per milliliter were plated in RPMI, after 1 h non-adherent cells were removed, and adherent cells were cultured in RPMI with 20% heat-inactivated FBS (Atlanta) and 10 ng ml⁻¹ M-CSF (Peprotech) during 7 days to allow differentiation of monocytes into MDM; medium was exchanged at 3 days intervals. For macrophage polarization experiments, these MDM were then stimulated for 24 h with either 2 ng ml⁻¹ TNF-α and 20 ng ml⁻¹ IFN-γ or 20 ng ml⁻¹ IL-4 to obtain M1 or M2a phenotypes respectively (Peprotech). Flow cytometry for surfaces markers CD80 and CD163 was performed to confirm macrophage polarization to M1 or M2a phenotypes, respectively.

Bacterial survival assays

Host cells (5 × 10⁵ cells per well in 48-well plates) were challenged with FA1090 in RPMI 10% FBS or PBSG (Chen and Seifert, 2011) medium and incubated at 37 °C in the presence of 5% CO₂ after centrifugation for 4 min at 1500 r.p.m. At different times after infection (as indicated in each figure legend), the number of bacteria in the supernatant and cells lysed by 1% saponin was determined by serial dilution and plating. In some assays, 1.5 h after infection, non-adherent bacteria were removed by washing three times with Phosphate-Buffered Saline (PBS), and cells were incubated at 37 °C in 5% CO₂ in fresh medium containing gentamicin 200 μg ml⁻¹ (time 0). After 1 h, gentamicin was maintained or cells were washed three times with PBS and incubated in fresh medium without gentamicin. To study the influence of acidification on bacterial survival, baflomycin A₁...
0.5 μM (Sigma) was added in the macrophage well 1 h before infection and maintained during each experiment.

Immunofluorescence microscopy

Host cells (1 × 10^6 cells per well in 24-well plates, on coverslips) were challenged with FA1090 at 37 °C in the presence of 5% CO₂. At different times after infection (as indicated in each figure legend), the cells were washed in PBS and fixed with 4% paraformaldehyde in PBS. In some experiments, 1 hour after infection, cells were washed in PBS and fresh medium with 10 μg ml⁻¹ of cytochalasin D (Sigma) was added. When necessary, 100 nM of LysoTracker red (Life Technologies) was added in the medium 15 min before fixation. After fixation, extracellular bacteria were detected with a polyclonal anti-

N. gonorrhoeae antibody (Biodesign) and stained with an Alexa Fluor 647 or 350-conjugated goat anti-rabbit secondary antibody (Jackson and Molecular Probes). Cells were permeabilized with 0.2% saponin, and intracellular bacteria were detected by incubation with the same anti-N. gonorrhoeae antibody and stained with a fluorescein isothiocyanate-conjugated goat anti-rabbit antibody, except when GFP-expressing bacteria were used. LAMP-1 was detected after permeabilization of the cells with 0.2% saponin using a rabbit-LAMP-1 antibody (ab24170, Abcam) and Alexa Fluor 350-conjugated goat anti-rabbit secondary antibody. The coverslips were mounted on slides with ProLong gold antifade reagent with or without DAPI staining (Life technologies), and the cells were visualized with a Nikon Eclipse 90i microscope. The number of intracellular bacteria and the percentage of bacteria that colocalized with LysoTracker were calculated by examination of at least 100 macrophages.

Lactate dehydrogenase release assay

Primary human macrophages, U937 and THP-1 differentiated cells (2 × 10^5 cells per well in 96-well plates) were challenged with FA1090 and centrifuged at 1500 r.p.m. for 4 min to synchronize the infection. At different times after infection, supernatants of the infected macrophages were collected and assayed for LDH activity using the CytoTox 96 kit (Promega) according to the manufacturer’s instructions. The percent cell death was calculated as 100 × (experimental release – spontaneous release)/(total release – spontaneous release), where spontaneous release is the amount of LDH activity in supernatants of cells incubated in medium alone and total release is the activity from macrophages lysed with 1% Triton X-100. A control with medium alone (without cells) was also performed.

DNA fragmentation assay

U937 and THP-1 differentiated cells (1 × 10^6 cells per well in 24-well plates) were challenged with FA1090 at an MOI of 22 to 107, and the plates were centrifuged at 1500 r.p.m. for 4 min. After 13 h of infection, the cells were harvested by trypsinization, washed with PBS, incubated in ice-cold 70% ethanol for 10 min at 4 °C, washed twice more with PBS and stained with 0.1 ml PBS containing 50 μg ml⁻¹ of propidium iodide (Sigma) and 0.5 mg ml⁻¹ RNase A at room temperature for 30 min in the dark. Genomic DNA content was then assessed by flow cytometry (BD LSRII, BD Biosciences).

Caspase-3 assay

Differentiated U937 cells, THP-1 cells or primary human macrophages were challenged with FA1090 at various MOIs, and the plates were centrifuged at 1500 r.p.m. for 4 min. After 3 h of infection, the cells were treated with DMSO or 1 μM of STS (Sigma) in DMSO, and in some cases with 20 μM of z-VAD-fmk (BD Pharmingen), a general caspase inhibitor, for a further 3 h for U937 and THP-1 cells and 6 h for MDM. When cytochalasin D was used, 5 μg ml⁻¹ of cytochalasin D was added to cells 1 h before infection, and cells were lysed with 70 μl of cell lysis buffer (BD Pharmingen). The cells lysates were stored at −80 °C before being used for caspase-3 assays. Caspase-3 activity was measured by incubating 25 μl of cell lysate with 5 μl of reconstituted caspase-3 substrate at 1 mg ml⁻¹ (Ac-DEVD-AMC, BD Pharmingen) and with 200 μl of 4-(2-hydroxyethyl)-1-piperazinethanesulfonic acid (HEPES) buffer [20 mM HEPES (pH 7.5), 10% glycerol and 2 mM dithiotreitol] for 1 h at 37 °C. 7-Amino-4-methylcoumarin fluorescence was then measured using an excitation wavelength of 380 nm and an emission wavelength of 440 nm using a plate reader (SpectraMax M5, Molecular Devices). Fluorescence levels were normalized to total cellular protein level measured by bicinchoninic acid protein assay (Pierce).

Mitochondrial membrane potential assay

Differentiated U937 and THP-1 cells (1 × 10^6 cells per well in 24-well plates) were challenged with FA1090 at MOIs from 22 to 107, and plates were centrifuged at 1500 r.p.m. for 4 min. After 3 h of infection, the cells were treated with DMSO or 1 μM of STS (Sigma) for an additional 13 h. Cells were then harvested by trypsin treatment, washed with fresh medium, stained with 200 μM of Mito PT using Mitochondrial Membrane Potential Assessment kit (ImmunoChemistry Technologies) for 15 min at 37 °C and 5% CO₂ and washed one time before staining was assessed by flow cytometry (BD LSRII, BD Biosciences).

Bid western blotting

Differentiated U937 and THP-1 cells were challenged with FA1090 at an MOI of ~100, and plates were centrifuged at 1500 r.p.m. for 4 min. After 3–4 h of infection, the cells were treated with DMSO or TNF-α 10 ng ml⁻¹ and cycloheximide 200 ng ml⁻¹ for an additional 3 h. Cells were washed with PBS and lysed with Radio-Immunoprecipitation Assay (RIPA) buffer for 30 min at 4 °C under rotation. Lysates were centrifuged at 12 000 r.p.m. for 10 min at 4 °C. The supernatants were transferred to fresh tubes and stored at −80 °C. Separated on 15% Sodium Dodecyl Sulfate (SDS)-polyacrylamide gel were 7 to 23 μg of cellular extracts in SDS sample buffer containing β-mercaptoethanol, and proteins were transferred to a polyvinylidene fluoride membrane in 10 mM N-cyclohexo-3-amino-propanesulfonic acid buffer with 10% methanol at pH 11 for 1 h. After saturation in Tris-buffered saline containing 0.1% Tween 20 and 5% dry milk, membranes were...
incubated overnight with anti-Bid antibody (1:1000, Cell Signalling) or anti-a-tubulin antibody (1:1000, 9 F3, Cell Signalling). The membranes were then washed and incubated with secondary goat anti-rabbit antibody conjugated to horseradish peroxidase (1:1000, Jackson ImmunoResearch) for 1 h. After washing, blots were developed with ECL Plus Western Blotting detection reagent (Amersham, GE Healthcare) and visualized using a ChemiDoc XXRS molecular imager (Bio-Rad).

ELISA for cytokine production

Differentiated U937, THP-1 cells and primary human macrophages were either left uninfected or infected with FA1090 strain at an MOI of 35, the plates were centrifuged at 1500 r.p.m. for 4 min, and infection were carried out at 37 °C with 5% CO2. After 10 h of infection, the supernatant were harvested and centrifuged, and the resulting supernatants were stored at −80 °C before being used. The culture supernatants examined for 12 cytokines using the Multi-Analyte ELISA® kit for detection of human inflammatory cytokines (Qiagen). IL1β, IL2, IL4, IL10, IL12, IL17, INF-γ and GM-CSF were read undiluted: IL1B and IL6 using a 1:10 dilution and IL8 molecular imager (Bio-Rad).

Thin-section transmission electron microscopy

U937 cells (7 × 10⁵ cells per well on coverslip) were challenged with FA1090 at a MOI of 18. In some wells, bafilomycin A1 0.5 μM (Sigma) was added 1 h before infection and maintained during the experiment. Non-adherent bacteria were removed by washing three times with PBS 1.5 h after infection, and cells were incubated at 37 °C in 5% CO2 in fresh medium containing 200 μg ml⁻¹ of gentamicin for 1 h before new washing and incubation with fresh medium without gentamicin. At 1.5, 3 and 6 h after infection, the cells were washed and fixed at 4 °C in 0.1 M sodium cacodylate buffer (pH 7.3) containing 2% paraformaldehyde and 2.5% glutaraldehyde. Samples were treated with 2% osmium tetroxide in 0.1 M sodium cacodylate buffer, rinsed with distilled water, dehydrated in ascending grades of ethanol, embedded in resin mixture of Embed 812 kit and cured in a 60 °C oven. Sample blocks were thin-sectioned on a Leica Ultracut UC6 ultramicrotome with 70 nm sections collected on 200 mesh Cu grids and then were stained with 3% uranyl acetate and Reynolds lead citrate. Images were captured on a FEI Tecnai Spirit G2 120-kV transmission electron microscope. The localization of bacteria inside the macrophage was calculated by examination of at least 70 macrophages.

Acknowledgements

Flow cytometry was performed at the Northwestern University Interdepartmental ImmunoBiology Flow Cytometry Core Facility. Thin sections for transmission electron microscopy samples were processed by the Center for Advanced Microscopy at Northwestern University Feinberg School of Medicine. We thank Kyle Obergfell for critical reading and editing of the manuscript. This work was supported by NIH grants R01 AI044239, R56 AI114821 and R37 AI033493.

References

Apicella, M.A., Ketterer, M., Lee, F.K., Zhou, D., Rice, P.A., and Blake, M.S. (1996) The pathogenesis of gonococcal urethritis in men: confocal and immunoelectron microscopic analysis of urethral exudates from men infected with Neisseria gonorrhoeae. J Infect Dis 173: 636–646.

Binnicker, M.J., Williams, R.D., and Apicella, M.A. (2003) Infection of human urethral epithelium with Neisseria gonorrhoeae elicits an upregulation of host anti-apoptotic factors and protects cells from staurosporine-induced apoptosis. Cell Microbiol 5: 549–560.

Binnicker, M.J., Williams, R.D., and Apicella, M.A. (2004) Gonococcal porin IB activates NF-kappaB in human urethral epithelium and increases the expression of host anti-apoptotic factors. Infect Immun 72: 6408–6417.

Boulton, I.C., and Gray-Owen, S.D. (2002) Neisseria meningitidis-mediated inhibition of apoptotic signalling in polymorphonuclear leucocytes. Infect Immun 79: 4447–4458.

Chen, A., and Seifert, H.S. (2011) Neisseria gonorrhoeae-elicited apoptosis by CD4+ T lymphocytes. Nat Immunol 3: 229–236.

Cooper, M.D., and Floyd, S.A. (1982) In vitro kinetics of phagocytosis and intracellular killing of gonococci by peritoneal macrophages from mice deficient in complement component 5. Infect Immun 36: 363–370.

Criss, A.K., and Seifert, H.S. (2012) A bacterial siren song: intimate interactions between Neisseria and neutrophils. Nat Rev Microbiol 10: 178–190.

Deghmeh, A.E., Veckerle, C., Giorgini, D., Hong, E., Ruckly, C., and Tahara, M.K. (2009) Differential modulation of TNF-alpha-induced apoptosis by Neisseria meningitidis. PLoS Pathog 5: e1000405.

Ellis, C.D., Lindner, B., Anjum Khan, C.M., Zahringer, U., and Demarco de Hormaeche, R. (2001) The Neisseria gonorrhoeae lpxLII gene has a significant effect on the induction of acute inflammation. Mol Microbiol 39: 181–192.

Escobar, A., Candia, E., Reyes-Cerpa, S., Villegas-Valdes, B., Neira, T., Lopez, M., et al. (2013) Neisseria gonorrhoeae induces a tolerogenic phenotype in macrophages to modulate host immunity. Mediators Inflamm 2013: 127017.

Follas, S.A., Murilidharan, J., Massari, P., Wetzler, L.M., and Genco, C.A. (2009) Neisseria gonorrhoeae infection protects human endocervical epithelial cells from apoptosis via expression of host antiapoptotic proteins. Infect Immun 77: 3602–3610.

Givan, A.L., White, H.D., Stern, J.E., Colby, E., Gosselin, E.J., Guyre, P.M., and Wira, C.R. (1997) Flow cytometric analysis of leukocytes in the human female reproductive tract: comparison of fallopian tube, uterus, cervix, and vagina. Am J Reprod Immunol 38: 350–359.
Hedges, S.R., Sibley, D.A., Mayo, M.S., Hook, E.W., 3rd, and Russell, M.W. (1998) Cytokine and antibody responses in women infected with Neisseria gonorrhoeae: effects of concomitant infections. J Infect Dis 178: 742–751.

Hook, E.W. (1999) Sexually Transmitted Diseases, 3rd edn. New York, NY: McGraw-Hill Book Company.

Hook, E.W., 3rd, and Holmes, K.K. (1985) Gonococcal infections. Ann Intern Med 102: 229–243.

Howie, H.L., Shiflett, S.L., and So, M. (2008) Extracellular signal-regulated kinase activation by Neisseria gonorrhoeae downregulates epithelial cell proapoptotic proteins Bad and Bim. Infect Immun 76: 2715–2721.

Hughes, P., Marshall, D., Reid, Y., Parkes, H., and Gelber, C. (2007) The costs of using unauthenticated, over-passaged cell lines: how much more data do we need? Biotechniques 43(575): 577–578 581–572 passim.

Johnson, M.B., and Criss, A.K. (2011) Resistance of Neisseria gonorrhoeae to neutrophils. Frontiers in Microbiol 2: 77.

Johnson, M.B., and Criss, A.K. (2013) Neisseria gonorrhoeae phagosomes delay fusion with primary granules to enhance bacterial survival inside human neutrophils. Cell Microbiol 15: 1323–1340.

Kellogg, D.S., Jr., Peacock, W.L., Jr., Deacon, W.E., Brown, K., Gottschalk, K., Churin, Y., Rajalingam, K., Ralilj, K., Altenbacher, G., Hagner, M., Sun, W., Schedin-Weiss, S., and Sjolinder, H. (2012) Meningococcal Opa proteins and CEACAMs: pathways of immune engagement for pathogenic Neisseria meningitidis infection. In Frontiers in Microbiol 35: 1274–243.

Kepp, O., Gottschalk, K., Churin, Y., Rajalingam, K., Brinkmann, V., Machuy, N., et al. (2009) Bim and Bmf synergize to induce apoptosis in Neisseria gonorrhoeae infection. PLoS Pathog 5: e1000348.

Kepp, O., Rajalingam, K., Kimmig, S., and Rudel, T. (2007) Bak and Bax are non-redundant during infection- and DNA damage-induced apoptosis. EMBO J 26: 825–834.

Lee, H.S., Ostrowski, M.A., and Gray-Owen, S.D. (2008) CEACAM1 dynamics during Neisseria gonorrhoeae suppression of CD4+ T lymphocyte activation. J Immunol 180: 6827–6835.

Leuzzi, R., Serino, L., Scarselli, M., Savino, S., Fontana, M.R., Monaci, E., et al. (2005) Ng-MIP, a surface-exposed lipoprotein of Neisseria gonorrhoeae, has a peptidyl-prolyl cis-trans isomerase (PPlase) activity and is involved in persistence in macrophages. Mol Microbiol 58: 669–681.

Lin, L., Ayala, P., Larson, J., Mulks, M., Fukuda, M., Carlsson, S.R., et al. (1997) The Neisseria type 2 IgA1 protease cleaves LAMP1 and promotes survival of bacteria within epithelial cells. Mol Microbiol 24: 1083–1094.

Liu, Y., Liu, W., and Russell, M.W. (2014) Suppression of host adaptive immune responses by Neisseria gonorrhoeae: role of interleukin 10 and type 1 regulatory T cells. Mucosal Immunol 7: 165–176.

Maisey, K., Nardocci, G., Iamar, M., Cardenas, H., Rios, M., Croxatto, H.B., et al. (2003) Expression of proinflammatory cytokines and receptors by human fallopian tubes in organ culture following challenge with Neisseria gonorrhoeae. Infect Immun 71: 527–532.

Makepeace, B.L., Watt, P.J., Heckels, J.E., and Christodoulides, M. (2001) Interactions of Neisseria gonorrhoeae with mature human macrophage opacity proteins influence production of proinflammatory cytokines. Infect Immun 69: 1909–1913.

Massari, P., King, C.A., Ho, A.Y., and Wetzler, L.M. (2003) Neisserial PorB is translocated to the mitochondria of HeLa cells infected with Neisseria meningitidis and protects cells from apoptosis. Cell Microbiol 5: 99–109.

Mosleh, I.M., Huber, L.A., Steinlein, P., Pasquali, C., Gunther, D., and Meyer, T.F. (1998) Neisseria gonorrhoeae porin modulates phagosome maturation. J Biol Chem 273: 35332–35338.

Muller, A., Gunther, D., Brinkmann, V., Hurwitz, R., Meyer, T.F., and Rudel, T. (2000) Targeting of the pro-apoptotic VDAC-like porin (PorB) of Neisseria gonorrhoeae to mitochondria of infected cells. EMBO J 19: 5332–5343.

Muller, A., Gunther, D., Dux, F., Naumann, M., Meyer, T.F., and Rudel, T. (1999) Neisserial porin (PorB) causes rapid calcium influx in target cells and induces apoptosis by the activation of cysteine proteases. EMBO J 18: 339–352.

Ortiz, M.C., Lefimil, C., Rodas, P.I., Vernal, R., Lopez, M., Acuna-Castillo, C., et al. (2015) Neisseria gonorrhoeae modulates immunity by polarizing human macrophages to a M2 profile. PLoS One 10: e0130713.

Ota, F., Morita, J., Yoshida, N., Ashton, F., and Diena, B. (1975) Studies on gonococcal infection. I. Electron microscopic studies on phagocytosis of Neisseria gonorrhoeae by macrophages. Jpn J Microbiol 19: 149–155.

Packiam, M., Veit, S.J., Anderson, D.J., Ingallis, R.R., and Jerse, A.E. (2010) Mouse strain-dependent differences in susceptibility to Neisseria gonorrhoeae infection and induction of innate immune responses. Infect Immun 78: 433–440.

Parameswaran, N., and Patial, S. (2010) Tumor necrosis factor-alpha signaling in macrophages. Crit Rev Eukaryot Gene Expr 20: 87–103.

Ralph, P., Moore, M.A., and Nilsson, K. (1976) Lysozyme synthesis by established human and murine histiocytic lymphoma cell lines. J Exp Med 143: 1528–1533.

Ramsey, K.H., Schneider, H., Cross, A.S., Boslego, J.W., Hoover, D.L., Staley, T.L., et al. (1995) Inflammatory cytokines produced in response to experimental human gonorrhea. J Infect Dis 172: 186–191.

Sadarangani, M., Pollard, A.J., and Gray-Owen, S.D. (2011) Opa proteins and CEACAMs: pathways of immune engagement for pathogenic Neisseria. FEMS Microbiol Rev 35: 498–514.

Simons, M.P., Nauseef, W.M., and Apicella, M.A. (2005) Interactions of Neisseria gonorrhoeae with adherent polymorphonuclear leukocytes. Infect Immun 73: 1971–1977.

Simons, M.P., Nauseef, W.M., Griffith, T.S., and Apicella, M.A. (2006) Neisseria gonorrhoeae delays the onset of apoptosis in polymorphonuclear leukocytes. Cell Microbiol 8: 1780–1790.

Sjolinder, M., Altenbacher, G., Hagner, M., Sun, W., Schedin-Weiss, S., and Sjolinder, H. (2012) Meningococcal outer membrane protein NhA triggers apoptosis in macrophages. PLoS One 7: e29586.

Smith, L.M., and May, R.C. (2013) Mechanisms of microbial escape from phagocyte killing. Biochem Soc Trans 41: 475–490.

Srikhanta, Y.N., Dowideit, S.J., Edwards, J.L., Falsetta, M.L., Wu, H.J., Harrison, O.B., et al. (2009) Phasevarions mediate random switching of gene expression in pathogenic Neisseria. PLoS Pathog 5: e1000400.
Tsuchiya, S., Yamabe, M., Yamaguchi, Y., Kobayashi, Y., Konno, T., and Tada, K. (1980) Establishment and characterization of a human acute monocytic leukemia cell line (THP-1). *Int J of cancer J Int du cancer* **26**: 171–176.

Tunbridge, A.J., Stevanin, T.M., Lee, M., Marriott, H.M., Moir, J.W., Read, R.C., and Dockrell, D.H. (2006) Inhibition of macrophage apoptosis by *Neisseria meningitidis* requires nitric oxide detoxification mechanisms. *Infect Immun* **74**: 729–733.

WHO (2012). Global incidence and prevalence of selected curable sexually transmitted infections, 2008.

Zhou, X., Gao, X., Broglie, P.M., Kebaier, C., Anderson, J.E., Thom, N., *et al.* (2014) Hexa-acylated lipid A is required for host inflammatory response to *Neisseria gonorrhoeae* in experimental gonorrhea. *Infect Immun* **82**: 184–192.

Zhu, W., Ventevogel, M.S., Knilans, K.J., Anderson, J.E., Oldach, L.M., McKinnon, K.P., *et al.* (2012) *Neisseria gonorrhoeae* suppresses dendritic cell-induced, antigen-dependent CD4 T cell proliferation. *PLoS One* **7**: e41260.

Zughaier, S.M., Kandler, J.L., and Shafer, W.M. (2014) *Neisseria gonorrhoeae* modulates iron-limiting innate immune defenses in macrophages. *PLoS One* **9**: e87688.