NUMBER OF BOUNDED DISTANCE EQUIVALENCE CLASSES IN HULLS OF REPETITIVE DELONE SETS

DIRK FRETTLÖH
Technische Fakultät, Bielefeld University
Postfach 100131
33501 Bielefeld, Germany

ALEXEY GARBER*
School of Mathematical & Statistical Sciences, The University of Texas Rio Grande Valley
1 West University Blvd.
Brownsville, TX 78520, USA

LORENZO SADUN
Department of Mathematics, University of Texas
2515 Speedway, PMA 8.100
Austin, TX 78712, USA

(Communicated by Alejandro Maass)

ABSTRACT. Two Delone sets are bounded distance equivalent to each other if there is a bijection between them such that the distance of corresponding points is uniformly bounded. Bounded distance equivalence is an equivalence relation. We show that the hull of a repetitive Delone set with finite local complexity has either one equivalence class or uncountably many.

1. Introduction. Delone sets are central objects of study in the theory of aperiodic order and give rise to dynamical systems and topological objects with interesting properties [3]. A Delone set Λ ⊂ Rd is a set that is both uniformly discrete (that is, there is r > 0 such that each open ball of radius r contains at most one point of Λ) and relatively dense (that is, there is R > 0 such that each closed ball of radius R contains at least one point of Λ). A point lattice is the Z-span ⟨v1, . . . , vd⟩Z of d linear independent vectors in Rd. Each point lattice is a Delone set. A Delone set Λ in Rd is d-periodic if the set

\[P_Λ = \{ t ∈ Rd | t + Λ = Λ \} \]

of its period vectors is a point lattice. Of course for every point lattice Λ we have Λ = P_Λ, hence each point lattice is d-periodic. A Delone Λ set is nonperiodic if P_Λ = {0}.

2020 Mathematics Subject Classification. Primary: 37B51, 52C23.
Key words and phrases. Delone set, finite local complexity, topological hull, bounded distance equivalence, aperiodic order, aperiodic tilings.
A.G. is partially supported by the Alexander von Humboldt Foundation.
* Corresponding author: Alexey Garber.
Two Delone sets Λ, Λ' in \mathbb{R}^d are called \textit{bounded distance equivalent} ($\Lambda \overset{\text{bd}}{\sim} \Lambda'$) or \textit{bde}, if there is a bijection $\phi: \Lambda \to \Lambda'$ such that $|x - \phi(x)|$ is uniformly bounded. It is easy to see that $\overset{\text{bd}}{\sim}$ is an equivalence relation for Delone sets.

In the 1990s, several authors studied the question of whether a given Delone set in \mathbb{R}^d is bounded distance equivalent to a point lattice [6, 7, 17]. In [7], it was shown that any two point lattices in \mathbb{R}^d with the same density are bde. It is a simple consequence that any two d-periodic Delone sets in \mathbb{R}^d with the same density are bde. This leads to considering aperiodic Delone sets, for instance the vertices of a Penrose tiling. There are two well studied classes of aperiodic Delone sets: cut-and-project sets and Delone sets arising from substitution tilings. For details and a precise definition of an aperiodic Delone set, see [3]. Recently, the question of whether an aperiodic Delone set is bde to a point lattice has gained some interest.

For the bde-equivalence of cut-and-project sets to a point lattice see [8, 10, 14, 15, 16]. All canonical cut-and-project sets (but not all cut-and-project sets) are bde to some lattice. The family of canonical cut-and-project sets includes the sets of vertices of the Penrose tiling, the Fibonacci tiling, and many others. Additionally, in [13] the family of all windows that generate one-dimensional cut-and-project sets that are bde to lattices is characterized.

The bde-equivalence of Delone sets from substitution tilings to a point lattice was studied in [1, 10, 11, 17, 24, 25]. In this setting, the property of being bde to a lattice is primarily governed by the second largest eigenvalue (in magnitude) of the associated substitution matrix. For example, in one-dimension the set of vertices of any tiling generated by a Pisot substitution is bde to a lattice.

Since the bde-equivalence of Delone sets to a point lattice is well understood, the focus now turns to the question of when two Delone sets are bde to each other.

This is where hulls of nonperiodic Delone sets come into play. The \textit{hull} X_Λ of a Delone set Λ is the closure of the orbit of Λ under translations in the topology defined by the “big box” metric (aka the Gromov-Hausdorff topology). Specifically, the distance between two (r,R)-Delone sets Λ and Λ' is the infimum over all $\varepsilon \in (0,1)$ such that there exist $x, x' \in \mathbb{R}^d$, each of length $\varepsilon/2$ or less, such that $\Lambda - x$ and $\Lambda' - x'$ agree exactly on $B_1(\varepsilon)$. If no such ε exists, then $d(\Lambda, \Lambda') = 1$.

The hull may be studied as a topological object [2, 18, 22], or as a dynamical system $(X_\Lambda, \mathbb{R}^d)$ [3], where \mathbb{R}^d stands for the action of translations by $x \in \mathbb{R}^d$.

This raises the question: “How many bde classes does X_Λ contain?” A partial answer was given in [26]: If Λ comes from a substitution tiling meeting some technical conditions, then X_Λ consists of uncountably many bde classes. Here we provide a generalization that covers all Delone sets that are repetitive and have finite local complexity (see definitions below). This category includes the vast majority of the substitution tilings and cut-and-project sets that have been studied to date.

Two geometric properties of the Delone set Λ are closely associated with dynamical properties of $(X_\Lambda, \mathbb{R}^d)$. A \textit{patch} in a Delone set Λ is a set $\Lambda \cap K$ for some compact $K \subset \mathbb{R}^d$. A Delone set Λ has \textit{finite local complexity} (FLC) if for any compact set $K \subset \mathbb{R}^d$ there are only finitely many different patches $(\Lambda - x) \cap K (x \in \mathbb{R}^d)$, up to translation. A Delone set Λ is called \textit{repetitive} if for each compact set $K \subset \mathbb{R}^d$ such

1Some authors work with a different topology, called the “local rubber” or “Chabauty-Fell” topology. When the Delone set has finite local complexity, defined below, then the two topologies agree.
that \(K \cap \Lambda \) is non-empty, the set
\[
\{ x \in \mathbb{R}^d \mid (\Lambda - x) \cap K = \Lambda \cap K \}
\]
is a Delone set. The uniform density radius \(R \) of this Delone set is the *repetitivity radius* of the patch \(\Lambda \cap K \). The following fact is the essence of the work of several authors, see \([3, 22]\) for details.

Fact 1. Let \(\Lambda \subset \mathbb{R}^d \) be a Delone set. Then \(\mathcal{X}_\Lambda \) is compact if and only if \(\Lambda \) has FLC. If \(\Lambda \) has FLC, then the dynamical system \((\mathcal{X}_\Lambda, \mathbb{R}^d)\) is minimal (that is, each orbit is dense) if and only if \(\Lambda \) is repetitive.

Now we can state our main result.

Theorem 1.1. Let \(\Lambda \) be a repetitive Delone set in \(\mathbb{R}^d \) having FLC and such that the density of \(\Lambda \) exists. Let \(\mathcal{X}_\Lambda \) be the hull of \(\Lambda \). Then \(\mathcal{X}_\Lambda \) either consists of a single bde class or \(\mathcal{X}_\Lambda \) contains uncountably many bde classes.

In fact, we show that the number of bde classes is either 1 or \(2^{\aleph_0} \), where \(\aleph_0 \) is the cardinality of \(\mathbb{Z} \). It is clear that the number of bde classes can’t be larger than \(2^{\aleph_0} \) \([12, 23]\), insofar as there are only \(2^{\aleph_0} \) elements of \(\mathcal{X}_\Lambda \), up to translation.

During the completion of this paper, Smilansky and Solomon released a preprint \([23]\) in which a stronger version of this result is proven using the language of dynamical systems. Their theorem, which was developed completely independently from ours, does not require FLC and considers the orbit closure of \(\Lambda \) in the local rubber topology. They replace our assumption of repetitivity with one of minimality. They also do not require that the density of \(\Lambda \) exists. The cost of that generality is complexity, in that their proof is longer and considerably more technical than ours.

An interesting consequence of both results is the following: In \([10]\) it was shown that a certain one-dimensional collection of Delone sets, namely the set of cut-and-project sets using half of the window of the famous Fibonacci tiling \([3]\), has at least two different bde classes. Theorem 1.1 then implies:

Corollary 1. The hull \(\mathcal{X}_{HF} \) of the ‘Half-Fibonacci’ cut-and-project tiling contains uncountably many bde classes.

2. **Auxiliary results.** Let us fix some more notation. In the sequel, let \(\#M \) denote the cardinality of a (typically finite) set \(M \). We denote the Euclidean norm of \(x \in \mathbb{R}^d \) by \(\|x\| \). The closed ball of radius \(r \) about \(x \) is denoted by \(B_r(x) \). The \(d \)-dimensional Lebesgue measure of a set \(A \subset \mathbb{R}^d \) is denoted by \(\mu(A) \) and all sets in the paper are compact and measurable unless noted otherwise. Let \(A^{+\varepsilon} \) denote the \(\varepsilon \)-tube of the boundary of \(A \). That is,
\[
A^{+\varepsilon} = \{ x \in \mathbb{R}^d \mid d_2(x, \partial A) \leq \varepsilon \},
\]
where \(\partial A \) is the topological boundary of \(A \) and \(d_2 \) is the standard Euclidean distance in \(\mathbb{R}^d \). Hence \(\mu(A^{+1}) \) is the Lebesgue measure of the set of all points whose distance to the boundary of \(A \) is one or less.

Any \(d \)-periodic Delone set has a well defined density, in the sense of “average number of points per unit volume”. The same holds for cut-and-project sets and for Delone sets from primitive substitutions. In general, the definition of the density of a Delone set can be tricky. It is easy to construct Delone sets having no well defined density (for instance \(-\mathbb{N} \cup 2\mathbb{N} \) in \(\mathbb{R} \)). There are even repetitive Delone sets without density, see \([20\), Thm. 5.1], or \([9]\) for a simpler example.
In order to define the density of an arbitrary Delone sets we need van Hove sequences. A van Hove sequence is a sequence \((A_i)\) of compact subsets of \(\mathbb{R}^d\) such that for all \(\varepsilon > 0\)
\[
\lim_{i \to \infty} \frac{\mu(A_i + \varepsilon)}{\mu(A_i)} = 0.
\] (1)
A Delone \(\Lambda\) set has density \(\text{dens}(\Lambda)\) if for all van Hove sequences \((A_i)\) the limits
\[
\lim_{i \to \infty} \frac{\#(A_i \cap \Lambda)}{\mu(A_i)}
\]
exist and are identical. In that case \(\text{dens}(\Lambda)\) is the value of these limits. An important tool in this context is the following result by Laczkovich. In the context of this paper it translates as follows.

Theorem 2.1 ([19]). Let \(\Lambda\) be a Delone set in \(\mathbb{R}^d\) with density \(\text{dens}(\Lambda)\). \(\Lambda\) is bde to some lattice in \(\mathbb{R}^d\) if and only if there is \(c > 0\) such that, for all bounded measurable sets \(E \subset \mathbb{R}^d\),
\[
\left| \#(\Lambda \cap E) - \text{dens}(\Lambda)\mu(E) \right| \leq c\mu(E^1)
\]
The proof of this result relies on the infinite version of the Hall Marriage Theorem [21]. The same arguments can be used not only to compare a Delone set \(\Lambda\) with \(\alpha\mathbb{Z}^d\), but to compare two arbitrary Delone sets \(\Lambda, \Lambda'\) as well.

Theorem 2.2 ([11]). Let \(\Lambda, \Lambda'\) be two Delone sets in \(\mathbb{R}^d\). Suppose there is a van Hove sequence \((A_i)\) such that
\[
\lim_{i \to \infty} \frac{\#(\Lambda \cap A_i) - \#(\Lambda' \cap A_i)}{\mu(A_i^1)} = \infty,
\] (2)
then \(\Lambda \not\sim \Lambda'\).

In [11], the result above was formulated using sets \(A_i\) that are unions of lattice cubes of appropriate size. Since we deal with Delone sets we can “approximate” any van Hove sequence \((A_i)\) by an appropriate union of lattice cubes that are small enough that each cube contains either one or zero points of \(\Lambda\). For more details see [12] or [11].

Example 2.3. As a test case for what follows we consider the set \(L = \mathbb{Z} \cup \{1/2 + 2^n \mid n \in \mathbb{N}_0\}\) and compare \(L\) to the integers \(\mathbb{Z}\). Both have density 1, but \(\mathbb{Z} \not\sim L\). This can be seen by using Theorem 2.1 above, and observing for each \(i > 0\) there are intervals \(Q_i := [0, 2^i + 1]\) such that
\[
\#(Q_i \cap \Lambda) - \#(Q_i \cap \mathbb{Z}) > i.
\]
Note that \(L\) contains “rich” regions (i.e. regions where the number of points is larger than the expected number of points according to the density), but no “poor” regions.

3. **Proof of Theorem 1.1.** Note the difference between a patch \(E \cap \Lambda\), which is a finite collection of points, and its support \(E\). Also note that we have two different ways to move patches around: either by translating both its support and \(\Lambda\) to get \((E \cap \Lambda) - x = (E - x) \cap (\Lambda - x)\), or by translating just the support to get \((E - x) \cap \Lambda\). Both ways yield patches occurring in some \(\Lambda' \in \mathcal{X}_\Lambda\) and we will use both.

The strategy of the proof of Theorem 1.1 is as follows. If \(\Lambda\) is bde to some lattice, then we use the same arguments as in [10, Thm. 3.2], which we sketch here.
for self-consistency. In this case Λ satisfies the Laczkovich criterion (Theorem 2.1) for some uniform constant c. If Λ' is any element of the hull \mathcal{X}_Λ, then for every suitable E, the patch $\Lambda' \cap E$ can be treated as the limit of patches of Λ defined by some translations of E. This implies the inequality
\[
|\#(\Lambda' \cap E) - \text{dens}(\Lambda')\mu(E)| \leq c\mu(E^{1})
\]
for the same uniform constant c. We now apply Theorem 2.1 for the set Λ' to get that $\Lambda' \sim \alpha \mathbb{Z}^d$ for $\alpha = \frac{1}{\sqrt{\text{dens}\Lambda}}$. All sets in \mathcal{X}_Λ are bde to the same scaling of the integer lattice, so they form a single bde class.

If Λ is not bde to a lattice, then there exist large regions that are “deviant” (meaning either very rich or very poor in points of Λ compared to the expected number of points according to the density of Λ) and translates of those regions that are either “normal” (neither rich nor poor) or have a discrepancy of the opposite sign of the original region; we will refer to the latter sets as “normal” anyway. We will recursively define larger and larger regions P_i around the origin and find elements of \mathcal{X}_Λ for which the regions P_i are either deviant or normal. In fact, for each infinite word in $\{D, N\}^\mathbb{N}$ we will construct an element of \mathcal{X}_Λ where the form of each P_i corresponds to the i-th letter in the word. Any two such elements of \mathcal{X}_Λ with words u, u' that differ in infinitely many letters are not bde to each other by Theorem 2.2. Since there are uncountably many sequences in $\{D, N\}^\mathbb{N}$, and since each tail-equivalence class is countable, there are uncountably many elements of \mathcal{X}_Λ, no two of which are bde.

More formally, for $c > 0$, we call a bounded measurable set E c-deviant if
\[
|\#(E \cap \Lambda) - q\mu(E)| > c\mu(E^{1})
\]
Otherwise we call E c-normal.

We pick a sequence $(c_i)_i$, and construct c_i-deviant patches D'_i and “normal” patches N'_i around the origin recursively. Let ρ be the density of Λ and suppose that D'_{i-1} and N'_{i-1} have already been constructed. Since Λ is not bde to a lattice, there exist a region D'_{i} such that the ratio
\[
\frac{|\#(\Lambda \cap D'_i) - \rho\mu(D'_i)|}{\mu(D'_i^{2})}
\]
is arbitrarily large. In other words, for which D'_i is c_i-deviant for any prescribed constant c_i of our choice. As shown below, there is also a “normal” translate N'_i of D'_i for which the discrepancy $\#(N'_i \cap \Lambda) - q\mu(N'_i)$ has the opposite sign as the discrepancy of D'_i. Without loss of generality, we can choose D'_i so large that there are copies of D'_{i-1} and N'_{i-1} near the center of D'_i, and likewise near the center of N'_i. Note that the construction so far only involves looking for regions in the fixed Delone set Λ.

Next we construct Delone sets in \mathcal{X}_Λ corresponding to each infinite word in $\{D, N\}^\mathbb{N}$. Let u be such a word. Place a copy of D'_1 or N'_1, centered at the origin, according to whether the first letter of u is D or N. Call this copy D_1 or N_1, and let $P_0 = D_1, N_1$. Since both D'_2 and N'_2 contain copies of both D'_1 and N'_1 near their centers, we can extend P_1 to a copy D_2 or N_2 of D'_2 or N'_2, according to whether the second letter of u is D or N, and we can call this copy P_2. Repeat for each index $i \in \mathbb{N}$. Note that each P_i is a patch $N''_i - x_i$ or $D''_i - x_i$ in $\Lambda - x$. The union
of the P_i’s is a Delone set $\Lambda_u \in \mathbb{X}_\Lambda$. Specifically,

$$\Lambda_u = \bigcup_i P_i = \lim_{i \to \infty} (\Lambda - x_i).$$

The tricky point is that, if $u \neq u'$, then the i-th patch P_i of Λ_u is not perfectly aligned with the P_i of $\Lambda_{u'}$, so we cannot directly compare the two P_i’s in Theorem 2.2. Instead, we must compare patches defined by small translates (within Λ_u) of supports of deviant patches D_i in Λ_{u_i} to normal patches N_i in $\Lambda_{u'}$, or vice-versa. The remainder of the proof is a series of estimates to show that suitable D_i’s and N_i’s exists, such that these small translates are still sufficiently deviant to apply Theorem 2.2.

The following result is standard, but for completeness we provide a sketch of the proof.

Lemma 3.1. Let Λ be a Delone set in \mathbb{R}^d with density ρ and let E be a bounded measurable set. Then there exist vectors $x_1, x_2 \in \mathbb{R}^d$ such that

$$\#((E + x_1) \cap \Lambda) \leq \rho \mu(E) \quad \text{and} \quad \#((E + x_2) \cap \Lambda) \geq \rho \mu(E).$$

Sketch of proof: If we average $\#((E + x) \cap \Lambda)$ over all values of $x \in \mathbb{R}^d$ we must get $\rho \mu(E)$. This means that for every $\epsilon > 0$ there must be a point x for which $\#((E + x) \cap \Lambda) \leq \rho \mu(E) + \epsilon$. However, $\#((E + x) \cap \Lambda)$ is always an integer, and so for small enough ϵ it cannot be strictly between $\rho \mu(E)$ and $\rho \mu(E) + \epsilon$. Thus there must be an x_1 satisfying the first inequality. The second is similar. \hfill \Box

The following result is then immediate and allows us to construct normal patches N_i from deviant patches D_i.

Lemma 3.2. Let $\Lambda \subset \mathbb{R}^d$ be a Delone set with density ρ such that Λ is not bde to any lattice in \mathbb{R}^d. Let E be a compact subset of \mathbb{R}^d such that $\#(\Lambda \cap E) - \rho \mu(E) \geq 0$ (resp. ≤ 0). Then there is a translation $E - x$ of E such that $\#(\Lambda \cap (E - x)) - \rho \mu(E) \leq 0$ (resp. ≥ 0).

We also need the following elementary identity:

Lemma 3.3. Let $r, \ell > 0$, then $(E^{+\ell})^{+r} \subseteq E^{+(\ell+r)}$.

Proof. Let $z \in (E^{+\ell})^{+r}$. By definition there are $y \in \partial E$ and y' such that $\|z - y'\| \leq r$ and $\|y' - y\| \leq \ell$, hence

$$\|z - y\| \leq \|z - y'\| + \|y' - y\| \leq \ell + r,$$

hence $z \in E^{+(\ell+r)}$. \hfill \Box

We also need some result on estimates on the minimal and the maximal number of points of a Delone set Λ within a region E. In the sequel we always assume that E is a bounded measurable set.

Lemma 3.4. There exist constants η, η' such that for any Delone set Λ with parameters $r > 0$ and $R > 0$ and any bounded region $E \subset \mathbb{R}^d$,

$$\#(E \cap \Lambda) \geq \frac{\eta}{R^d} (\mu(E) - \mu(E^{+R})) \quad \text{and} \quad \#(E \cap \Lambda) \leq \frac{\eta'}{r^d} (\mu(E) + \mu(E^{+R}))$$

Here, η and η' depend only on r, R, and the dimension d.

Proof. Consider a periodic packing of \mathbb{R}^d by balls of radius R. (For instance, we could tile \mathbb{R}^d by cubes of side length $2R$ and place one ball in each cube.) Averaging over translates of this packing, the number of balls with center in $E - E^+R$ is the packing density (which is a constant η that depends on dimension divided by R^d) times the volume of $E - E^+R$. Therefore there exists a specific packing where the number of such balls is at least $\frac{\mu}{\eta} \mu(E - E^+R)$, which in turn is at least $\frac{\mu}{\eta} (\mu(E) - \mu(E^{+R}))$. Each of these disjoint balls is contained completely in E, and by the Delone property each contains at least one point of Λ. This establishes the first inequality.

The second inequality is similar, except that we use a covering by balls of radius r (e.g. by starting with a tiling of \mathbb{R}^d by cubes of side length $2r/\sqrt{d}$ and using circumscribed balls) instead of a packing by balls of radius R. Each point in $E \cap \Lambda$ must lie in a ball whose center is either in E or in E^+r. However, each such ball can contain at most one point in Λ and the number of such balls is bounded by $\frac{\mu}{\eta} (\mu(E \cup E^+) \leq \frac{\mu}{\eta} (\mu(E) + \mu(E^+) r))$. \hfill \Box

Lemma 3.5. For all $\ell \geq 1$, $\mu(E^{+\ell}) \leq \ell^d \mu(E^{+1})$.

Proof. First we prove $\mu((\frac{1}{\ell}E)^+1) \leq \mu(E^{+1})$. Let $\epsilon > 0$. Let $x_1, \ldots, x_n \in \partial(\frac{1}{\ell}E)$ be points such that the set of ϵ-balls centered at x_i covers $\partial(\frac{1}{\ell}E)$.

The balls of radii $1 + \epsilon$ centered at x_i’s cover $(\frac{1}{\ell}E)^+1$; let X be the union of these balls. Similarly, the balls of radii $1 + \epsilon$ centered at ℓx_i’s are contained in $E^{+(1+\epsilon)}$; let Y be the union of these balls. Using a variant of the Kneser-Poulsen conjecture\(^2\) for continuous contractions, see [4, 5], we get that $\mu(X) \leq \mu(Y)$ and therefore

$$\mu((\frac{1}{\ell}E)^+1) \leq \mu(X) \leq \mu(Y) \leq \mu(E^{+(1+\epsilon)}).$$

Taking the limit as ϵ goes to 0, $\mu((\frac{1}{\ell}E)^+1) \leq \mu(E^{+1})$.

Now we can prove the lemma. Scaling $E^{+\ell}$ down by ℓ^{-1} yields $(\frac{1}{\ell}E)^+1$. Hence

$$\mu(E^{+\ell}) = \ell^d \mu((\frac{1}{\ell}E)^+1) \leq \ell^d \mu(E^{+1}).$$

\hfill \Box

The next lemma ensures that, given a patch of $E \cap \Lambda$, every patch of Λ with translated support $E - x$ has “approximately” the same number of points, the difference in the number of points being governed by $\mu(E^{+1})$ and the length of the shift.

Lemma 3.6. Let Λ be a Delone set with parameters $r > 0$ and $R > 0$. Let $\ell \geq r$. Then there is $q > 0$ such that, for every $x \in \mathbb{R}^d$ with $\|x\| \leq \ell$ and for every region E,

$$|\#((E + x) \cap \Lambda) - \#(E \cap \Lambda)| \leq q \ell^d \mu(E^{+1}).$$

Here the constant q depends on the Delone set Λ and the dimension d.

Proof. Let $\ell \geq r$ and $\|x\| \leq \ell$.

$$|\#((E + x) \cap \Lambda) - \#(E \cap \Lambda)|$$

$$\leq \#((((E + x) \setminus E) \cup (E \setminus (E + x))) \cap \Lambda)$$

$$\leq \#((E + x) \setminus E) \cap \Lambda) + \#((E \setminus (E + x)) \cap \Lambda)$$

\(^2\)Despite retaining its original name, this “conjecture” is actually a proven theorem.
we get the following inequality for some positive constants \(\alpha\) (there is the trivial bound

\[
\#((E+x)^t \cap \Lambda) \leq \#(E^+ t \cap \Lambda)
\]

(Lem. 3.4)

\[
\frac{\eta'}{\ell^{d}} \left(\mu((E+x)^t) + \mu(((E+x)^t)^+)\right) + \frac{\eta'}{\ell^{d}} \left(\mu(E^+) + \mu((E^+)^t)\right)
\]

(Lem. 3.3)

\[
\leq 2 \frac{\eta'}{\ell^{d}} \left(\mu(E^t) + \mu(E^{+(t^+)}\right)) \leq 2 \frac{\eta'}{\ell^{d}} \left(\mu(E^+) + \mu(E^{+(t^+)}))
\]

(Lem. 3.5)

\[
\leq 2 \frac{\eta'}{\ell^{d}} (\ell^d + (\ell + \ell)^d) \mu(E^+) \leq 2 \frac{\eta'}{\ell^{d}} (1 + 2\ell^d) \mu(E^+).
\]

With \(q = 2 \frac{\eta'}{\ell^{d}} (1 + 2\ell^d) \) and \(\eta'\) the constant from Lemma 3.4 the claim follows. \(\square\)

The next lemma is the key to proving Theorem 1.1 and particularly to the construction of “deviant” patches of \(\Lambda\).

Lemma 3.7. Let \(\Lambda \subset \mathbb{R}^d\) be a repetitive Delone set of FLC with \(\text{dens}(\Lambda) = \varrho\) such that \(\Lambda\) is not bde to any lattice in \(\mathbb{R}^d\). Let \(c > 0\) and \(\ell > 0\) be given. Then there exists a bounded measurable set \(E\) such that for all \(x \in \mathbb{R}^d\) with \(\|x\| \leq \ell\) holds:

\[
\#((E - x) \cap \Lambda) - \varrho \mu(E) > c \mu(E^+)\]

Proof. Let \(q\) be as in Lemma 3.6. By Theorem 2.1 there is \(E\) such that

\[
\#(E \cap \Lambda) - q \mu(E) > (c + q \ell^d) \mu(E^+). \tag{3}
\]

By Lemma 3.6 we have that \(\#(E \cap \Lambda) - \#((E - x) \cap \Lambda) \leq q \ell^d \mu(E^+)\). Replacing \(\#(E \cap \Lambda)\) by \(\#((E - x) \cap \Lambda)\) in (3) changes the left hand side by less than \(q \ell^d \mu(E^+)\). This yields the claim. \(\square\)

Lemma 3.8. Let \(\Lambda\) be a Delone set in \(\mathbb{R}^d\) with \(\text{dens}(\Lambda) = \varrho\). Let \((E_i)_i\) be a sequence of bounded measurable subsets of \(\mathbb{R}^d\) that violate the condition in Theorem 2.1. That is, let the sequence \((c_i)_i\) be such that \(\lim_{i \to \infty} c_i = \infty\), and for each \(i\)

\[
\#(E_i \cap \Lambda) - \varrho \mu(E_i) > c_i \mu(E^+)\tag{4}
\]

Then \((E_i)_i\) is a van Hove sequence.

Proof. Inequality (4) is equivalent to

\[
\frac{1}{c_i} \left|\frac{\#(E_i \cap \Lambda)}{\mu(E_i)} - \varrho\right| > \frac{\mu(E^+_i)}{\mu(E_i)}\tag{5}
\]

Using Lemma 3.4 we get

\[
\frac{\eta}{\ell^{d}} - \frac{\mu(E_i^+ R)}{\mu(E_i)} \leq \frac{\#(E_i \cap \Lambda)}{\mu(E_i)} - \frac{\eta'}{\ell^{d}} + \frac{\mu(E_i^+) + \mu(E_i^+)^t}{\mu(E_i)}.
\]

From Lemma 3.5 we get upper bounds for \(\mu(E_i^+ R)\) and \(\mu(E_i^+ R)\) in terms of \(\mu(E_i^+ 1)\) (there is the trivial bound \(\mu(E_i^+ 1)\) if \(r \leq 1\) or \(R \leq 1\)). Combining these estimates we get the following inequality for some positive constants \(\alpha\) and \(\beta\)

\[
\left|\frac{\#(E_i \cap \Lambda)}{\mu(E_i)} - \varrho\right| \leq \alpha + \beta \frac{\mu(E_i^+ 1)}{\mu(E_i)}\tag{6}
\]

Once we plug this in inequality (5), we get

\[
\frac{1}{c_i} \left(\alpha + \beta \frac{\mu(E_i^+ 1)}{\mu(E_i)}\right) > \frac{\mu(E_i^+ 1)}{\mu(E_i)}\,.
\]
Considering the limits of both sides yields \(\lim_{i \to \infty} \frac{\mu(E_{i+1})}{\mu(E_i)} = 0 \). In order to show \(\lim_{i \to \infty} \frac{\mu(E_{i+1})}{\mu(E_i)} = 0 \) for all \(\varepsilon > 0 \), we consider two cases. If \(\varepsilon \leq 1 \), then

\[
\lim_{i \to \infty} \frac{\mu(E_{i+1})}{\mu(E_i)} \leq \lim_{i \to \infty} \frac{\mu(E_{i+1})}{\mu(E_i)} = 0.
\]

If \(\varepsilon > 1 \), then we use the estimate from Lemma 3.5 to get

\[
\lim_{i \to \infty} \frac{\mu(E_{i+1})}{\mu(E_i)} \leq \lim_{i \to \infty} \frac{\varepsilon^d \mu(E_{i+1})}{\mu(E_i)} = 0.
\]

\(\square \)

Frequently a van Hove sequence \((E_i)_i\) is defined by requiring another property in addition to (1): namely, that the \(E_i \) exhaust the entire space. For instance, the sequence \((B_i(x_i))_i\), with \(x_i = (i, 0, \ldots, 0)^T \), fulfills (1), but the (closure of the) union of the balls is only the half-space \(\mathbb{R}^d \times \mathbb{R}^{d-1} \).

The next result ensures that we do not need the exhaustion requirement in our context as we will use only the existence of large balls within the sets of van Hove sequence from Lemma 3.8.

Proposition 3.9. Let \((E_i)_i\) be a van Hove sequence. Then for each \(R > 0 \) there are \(i \geq 0, t \in \mathbb{R}^d \) such that \(E_i \) contains a ball \(B_R(t) \).

Proof. Assume the contrary; that is, suppose there is \(R > 0 \) such that for all \(t \in \mathbb{R}^d, i \geq 0 \) holds: \(B_R(t) \not\subseteq E_i \). This implies that for all \(i \geq 0 \), if \(t \in E_i \) then the distance between \(t \) and \(\partial E_i \) is not greater than \(R \). Consequently, for all \(i \) we have \(E_i \setminus (E_i)^+ = \emptyset \). Since \(E_i \not\subseteq \emptyset \) this implies that for all \(i \geq 0 \) holds \(\mu(E_i) < \mu((E_i)^+) \), contradicting the van Hove property (1).

\(\square \)

Now we can state the proof of our main result.

Proof of Theorem 1.1. Let \(\Lambda \) be a Delone set in \(\mathbb{R}^d \) with \(\text{dens}(\Lambda) = \varrho \) such that \(\Lambda \) is not bde to any lattice in \(\mathbb{R}^d \). We choose an infinite word \(u = u_1 u_2 \cdots \) over the alphabet \(\{D, N\} \), and \((c_i)_i\) such that \(\lim_{i \to \infty} c_i = \infty \).

Recall that for \(c > 0 \), we call a bounded measurable set \(E \) \(c \)-deviant if

\[
\#(E \cap \Lambda) - \varrho \mu(E) > c \mu(E + 1).
\]

Otherwise we call \(E \) \(c \)-normal.

Let \(\ell_1 \) be arbitrary. By Theorem 2.1 there is a compact set \(D_1' \) that is \(c_1 \)-deviant. By Lemma 3.2 there is set \(N'_1 := D_1' - y_1 \) such that the discrepancy \(\#(N'_1 \cap \Lambda) - \varrho \mu(N'_1) \) of \(N'_1 \) is zero or has the opposite sign as the discrepancy of \(D_1' \). \((N'_1 \cap \Lambda) \) may or may not be \(c \)-normal for any prescribed \(c \), but in all cases the discrepancy of \(N'_1 \) differs greatly from that of \(D_1' \), which is what we actually need.) Pick a point \(x_1 \in D'_1 \). If the first letter \(u_1 \) of \(u \) is \(D \) then let \(P_1 := (D'_1 \cap \Lambda) - x_1 = (D'_1 - x_1) \cap (\Lambda - x_1) \), which is a patch in \(\Lambda - x_1 \). Otherwise let \(P_1 := (N'_1 \cap \Lambda) + y_1 - x_1 = (N'_1 + y_1 - x_1) \cap (\Lambda + y_1 - x_1) \), which is a patch in \(\Lambda + y_1 - x_1 \). The shape of support of \(P_1 \) is the same in both cases, but the underlying patch of the Delone set is different.

Choose \(\ell_2 \) such that \(\ell_2 > 2 \max\{R_{\text{rep}}(D'_1 \cap \Lambda), R_{\text{rep}}(N'_1 \cap \Lambda)\} \), where \(R_{\text{rep}}(P) \) denotes the repetitivity radius of the patch \(P \) (compare Section 1). By Lemma 3.7 there is \(D_2' \) such that \(D_2' - x \) is \(c_2 \)-deviant for all \(x \) with \(\|x\| \leq \ell_2 \). By Lemma
there is \(y \) such that \(N'_2 = D'_2 - y \) has the opposite discrepancy as \(D'_2 \) (or this discrepancy is 0). Let \(B_s(t_1) \) be the largest ball contained in \(D'_2 \).

By repetitivity, both \(D'_2 \cap \Lambda \) and \(N'_2 \cap \Lambda \) contain translates of both \(D'_1 \cap \Lambda \) and \(N'_1 \cap \Lambda \) within distance \(\ell/2 \) of the center \(t_1 \) of \(B_s(t_1) \), say with the points \(x_1 \in D'_1 \) and \(y_1 \in N'_1 \) corresponding to \(x_{D2} \) and \(x_{N2} \) in \(D'_2 \). If \(u_1 = D \) we take \(x_2 = x_{D2} \) and if \(u_1 = N \) we take \(x_2 = x_{N2} \). Either way, define \(D_2 = D'_2 - x_2 \), viewed as a pattern in \(\Lambda - x_2 \). That is, \(D_2 \) is a translate (of both support and Delone set) of \(D'_2 \) with a copy of \(P_1 \) close to the center. We similarly create \(N_2 \) as a translate of \(N'_2 \) that likewise extends \(P_1 \). Finally, we pick \(P_2 \) to be either \(D_2 \) or \(N_2 \), depending on whether \(u_2 \) is \(D \) or \(N \).

The supports of the two possible choices of \(P_2 \) are not identical, since the relative positions of copies of \(P_1 \) in \(D'_2 \) and \(N'_2 \) are not the same. However, their supports differ by translation by less than \(\ell_2 \). A translate of \(D_2 \) that has the same support as \(N_2 \) still has a discrepancy greater in magnitude than \(c_2 \mu(D_2^{i+1}) \), while the discrepancy of \(N_2 \) has a discrepancy of the opposite sign.

Now iterate: let \(\ell_{i+1} \) be such that \(\ell_{i+1} > 2 \max\{r_{\text{rep}}(D'_i \cap \Lambda), r_{\text{rep}}(N'_i \cap \Lambda)\} \) and continue as above, finding regions \(D'_{i+1} \) and \(N'_{i+1} \) in \(\Lambda \) such that \(D'_{i+1} \) and all its translations by at most \(\ell_{i+1} \) are \(c_{i+1} \)-deviant, \(N'_{i+1} \) has a discrepancy of the opposite sign as \(D'_{i+1} \), and such that both \(D'_{i+1} \) and \(N'_{i+1} \) contain copies of \(D'_i \) and \(N'_i \) within a distance \(\ell_{i+1}/2 \) of the center of a large sphere (as in Proposition 3.9). We then define translates \(D_{i+1} \) and \(N_{i+1} \) of \(D'_{i+1} \) and \(N'_{i+1} \), viewed as regions in translates of \(\Lambda \), such that these patterns extend \(P_i \). Finally we pick \(P_{i+1} \) to be \(D_{i+1} \) or \(N_{i+1} \) depending on the \((i+1)\)st letter of \(u \).

For any word \(u \in \{D,N\}^N \), this procedure gives a nested sequence of patches \(\{P_i\}_i \) (i.e. \(P_i \subset P_{i+1} \)). By Lemma 3.8 the supports of the patches \(P_i \) are a van Hove sequence. By Proposition 3.9 these van Hove sequences contain arbitrary large balls. Since we have chosen the balls \(B_s(t_i) \) in each step to be the largest possible, their diameters \(s \) tend to infinity. By the closedness of \(\mathcal{X}_\Lambda \) under translations we can assume without loss of generality that these balls are centered at \(0 \). The union of the patches \(P_i \) is then a Delone set \(\Lambda_u \in \mathcal{X}_\Lambda \). If \(u, u' \in \{D,N\}^N \) differ in infinitely many letters, then we look at the points of disagreement and compare \(N_i \) in one Delone set to a translate by less than \(\ell_i \) of \(D_i \) in the other. Applying Theorem 2.2, we see that \(\Lambda_u \overset{\text{bde}}{\not\sim} \Lambda_{u'} \) because the translate by at most \(\ell_i \) of \(D_i \) is still \(c_i \)-deviant.

There are \(2^{8^0} \) elements of \(\{D,N\}^N \) and only countably many elements of each bde class, so there are \(2^{8^0} \) distinct bde classes among the \(\{\Lambda_u\} \) and there are at least \(2^{8^0} \) bde classes in \(\mathcal{X}_\Lambda \).

However, Delone sets that differ only by a translation are bde and \(\mathcal{X}_\Lambda \) consists of only \(2^{8^0} \) translational orbits, so \(\mathcal{X}_\Lambda \) can have at most \(2^{8^0} \) bde classes. Thus the cardinality of the bde classes in \(\mathcal{X}_\Lambda \) is exactly \(2^{8^0} \).

\[\square \]

Remark 1. In order to maintain a strict separation between our results and those of Smilansky and Solomon [23], we stated and proved Theorem 1.1 in the form in which we originally developed it, including the assumption that an overall density exists. However, it is extremely easy to drop that assumption. If there is no overall density, then there is an upper density \(\rho_+ \) and a lower density \(\rho_- \). Instead of looking for regions that are rich or poor relative to “the” overall density, we can look instead for regions that are rich or poor relative to an arbitrary intermediate density \(\rho \in (\rho_-, \rho_+) \). For instance, we can look for Euclidean balls of large radius
whose densities are greater than $(\rho_+ + \rho)/2$ or are less than $(\rho_- + \rho)/2$. The rest of the proof that there exist uncountably many bde classes proceeds exactly as before.

Acknowledgments. It is a pleasure to thank Philipp Gohlke and Yasushi Nagai for providing the proof of Proposition 3.9 (actually, two proofs).

The authors are also extremely thankful to Yaar Solomon and Alan Haynes for useful comments.

REFERENCES

[1] J. Aliste-Prieto, D. Coronel and J. M. Gambaudo, Linearly repetitive Delone sets are rectifiable, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 275–290.

[2] J. E. Anderson and I. F. Putnam, Topological invariants for substitution tilings and their associated C*-algebras, Ergodic Theory Dynam. Systems, 18 (1998), 599–637.

[3] M. Baake and U. Grimm, Aperiodic Order, Cambridge Univ. Press, Cambridge, 2013.

[4] K. Bezdek, From the Kneser–Poulsen conjecture to ball–polyhedra, European J. Combin., 29 (2008), 1820–1830.

[5] B. Csikós, A Schläfi–type formula for polytopes with curved faces and its application to the Kneser–Poulsen conjecture, Monatsh. Math, 147 (2006), 273–292.

[6] W. A. Deuber, M. Simonovits and V. T. Sós, A note on paradoxical metric spaces, Stud. Sci. Math. Hungar., 30 (1995), 17–23.

[7] M. Duneau and C. Oguey, Bounded interpolation between lattices, J. Phys. A: Math. Gen., 24 (1991), 461–475.

[8] M. Duneau and C. Oguey, Displacive transformations and quasicrystalline symmetries, J. Phys. France, 51 (1990), 5–19.

[9] N. P. Frank and L. Sadun, Fusion: A general framework for hierarchical tilings of R^d, Geom. Dedicata, 171 (2014), 149–186.

[10] D. Frettloh and A. Garber, Pisot substitution sequences, one dimensional cut–and–project sets and bounded remainder sets with fractal boundary, Indag. Math., 29 (2018), 1114–1130.

[11] D. Frettloh, Y. Smilansky and Y. Solomon, Bounded displacement non-equivalence in substitution tilings, J. Combin. Theory Ser. A, 177 (2021), 105326.

[12] A. I. Garber, On equivalence classes of separable nets (in Russian), Modeling and Analysis of Information Systems, 16 (2009), 109–118.

[13] S. Grepstad and N. Lev, Sets of bounded discrepancy for multi–dimensional irrational rotation, Geom. Funct. Anal., 25 (2015), 87–133.

[14] A. Haynes, Equivalence classes of codimension one cut–and–project nets, Ergodic Theory Dyn. Syst., 36 (2016), 816–831.

[15] A. Haynes and H. Koivusalo, Constructing bounded remainder sets and cut–and–project sets which are bounded distance to lattices, Israel J. Math., 212 (2016), 189–201.

[16] A. Haynes, M. Kelly and H. Koivusalo, Constructing bounded remainder sets and cut–and–project sets which are bounded distance to lattices II, Indag. Math., 28 (2017), 138–144.

[17] C. Holton and L. Zamboni, Geometric realization of substitutions, Bull. Soc. Math. France, 126 (1998), 149–179.

[18] J. Kellendonk and I. F. T. Putnam, C*-algebras, and K-theory, Directions in Mathematical Quasicrystals, CRM Monogr. Ser., 13, Amer. Math. Soc., Providence, RI, 2000, 177–200.

[19] M. Laczkovich, Uniformly spread discrete sets in R^d, J. London Math. Soc., 46 (1992), 59–57.

[20] J. C. Lagarias and P. A. B. Pleasant, Repetitive Delone sets and quasicrystals, Ergodic Theory Dynam. Systems, 23 (2003), 831–867.

[21] R. Rado, Factorization of even graphs, Quart. J. Math. Oxford, 20 (1949), 95–104.

[22] L. Sadun, Topology of Tiling Spaces, University Lecture Series, 46, American Mathematical Society, Providence, RI, 2008.

[23] Y. Smilansky and Y. Solomon, A dichotomy for bounded displacement and Chabauty-Fell convergence of discrete sets, arXiv:2011.00106, to appear In Erg. Th. and Dyn. Syst.

[24] Y. Solomon, Substitution tilings and separated nets with similarities to the integer lattice, Israel J. Math., 181 (2011), 445–460.

[25] Y. Solomon, A simple condition for bounded displacement, J. Math. Anal. Appl., 414 (2014), 134–148.
[26] Y. Solomon, Continuously many bounded displacement non-equivalences in substitution tiling spaces, *J. Math. Anal. Appl.*, 492 (2020), 124426.

Received February 2021; revised September 2021; early access November 2021.

E-mail address: dirk.frettloeh@math.uni-bielefeld.de
E-mail address: alexey.garber@utrgv.edu
E-mail address: sadun@math.utexas.edu