Notes on an interacting holographic dark energy model in a closed universe

H Mohseni Sadjadi and N Vadood

Department of Physics, University of Tehran, PO Box 14395-547, Tehran 14399-55961, Iran
E-mail: mohseni@phymail.ut.ac.ir, mohsenisad@ut.ac.ir and narges_vadood@phymail.ut.ac.ir

Received 17 June 2008
Accepted 6 August 2008
Published 29 August 2008

Online at stacks.iop.org/JCAP/2008/i=08/a=036
doi:10.1088/1475-7516/2008/08/036

Abstract. We consider an interacting holographic dark energy model in Friedmann–Robertson–Walker spacetime with positive spatial curvature and investigate the behavior of the geometric parameter and dark energy density in an accelerated expanding epoch. We also derive some conditions needed to cross the phantom dividing line in this model.

Keywords: dark energy theory, inflation, gravity, physics of the early universe
1. Introduction

To describe the present acceleration of the universe [1] different models have been proposed. If we adopt the Einstein theory of gravity, this acceleration is only possible when approximately 70% of the universe is filled with a component with negative pressure dubbed as dark energy. A straightforward candidate for dark energy is the vacuum energy which suffers from conceptual problems such as fine-tuning and coincidence problems [2]. The amount of the dark energy density assessed in this model differs by 120 orders of magnitude from the observational value. Some present data seem to favor a dark energy component with an equation of state (EoS) parameter, \(w_d \), evolving from a value greater than \(-1\) in the past to \(w_d < -1 \) in the present epoch [3]. This dynamical behavior cannot be explained by the cosmological constant which possesses a constant EoS parameter: \(w_d = -1 \). Observations also show that the dark energy and dark matter densities are of the same order at the present epoch (known as the coincidence problem). This would not be true if there were no interactions between these components. Indeed, in dark energy models, as the universe expands, the ratio of matter to dark energy density is expected to decrease rapidly (proportional to the scale factor). To solve these problems, one can adopt an evolving dark energy with suitable interaction with (dark) matter [4].

One of the models proposed to describe the present accelerated expansion of the universe, and the dynamical behavior of the EoS parameter, is the holographic dark energy model [5,6]. This model is based upon the fact that the formation of a black hole requires a relation between the ultraviolet and infrared cutoffs of the system which leads us to assume that the total dark energy contained in a system must not exceed the mass of a black hole of the same size [7]. In this way the dark energy density may be related to the dynamical infrared cutoff of the system [5]. Note that, besides the late-time acceleration, the holographic dark energy model also may be used to study the inflationary and post-inflationary epochs of the universe [8].

In this paper we consider an interacting holographic dark energy model [9] in a Friedmann–Robertson–Walker spacetime with positive spatial curvature. We do not restrict ourselves to only the small-curvature limit and discuss time evolution of dark energy and dark matter densities. We investigate the behavior of the geometric parameter in an accelerated expanding epoch. We allow the dark energy to exchange energy with...
(dark) matter and discuss conditions needed to cross the phantom dividing line, by considering the second law of thermodynamics. We show that at the transition time there may be an upper limit for dark energy density, which depends upon the interaction parameters as well as the geometric parameter which may be regarded as a geometrical correction (due to their departure from flatness) to our previous flat case results in [10]. Our results may also alleviate the coincidence problem.

Throughout this paper we use $\hbar = c = G = k_B = 1$ units.

2. Holographic dark energy

2.1. Properties and evolution

We consider a Friedmann–Robertson–Walker (FRW) spacetime described by the metric

$$ds^2 = -dt^2 + a^2(t) \left(\frac{dr^2}{1 - kr^2} + r^2 (d\theta^2 + \sin^2 \theta d\phi^2) \right),$$

in the comoving coordinates. $a(t)$ is the scale factor and k determines the spatial curvature of the spacetime. The universe is assumed to be filled with perfect fluid(s) at large scale. The Hubble parameter, H, is related to energy density, ρ, via the Friedmann equation

$$H^2 = \frac{8\pi}{3} \rho - \frac{k}{a^2},$$

(2)

We have also the evolution equation

$$\dot{H} = -4\pi (P + \rho) + \frac{k}{a^2},$$

(3)

where P is the pressure. When the total density is equal to the critical density defined by $\rho_c = 3H^2/8\pi$, the universe is spatially flat, i.e. $k = 0$. We assume that the universe is dominated by pressureless dark matter (denoted by the subscript m) and dark energy component (denoted by the subscript d). In this paper we restrict ourselves to positively curved space with three-dimensional spatial spherical geometry and take $k = 1$. The relative densities defined by $\Omega_m = \rho_m/\rho_c$ and $\Omega_d = \rho_d/\rho_c$ satisfy

$$\Omega_m + \Omega_d - \Omega_k = 1,$$

(4)

where the geometric parameter, Ω_k, is defined as $\Omega_k = 1/(aH)^2$. The equation of state parameter of the dark energy, w_d, given by $P_d = w_d \rho_d$, satisfies

$$w_d = \frac{w(1 + \Omega_k)}{\Omega_d},$$

(5)

where w is the EoS parameter of the universe. The time evolution of Ω_k is obtained as

$$\dot{\Omega}_k = -2H \Omega_k \left(1 + \frac{\dot{H}}{H^2} \right).$$

(6)

We consider a model of dark energy and dark matter interacting via the source term $(\lambda_m \rho_m + \lambda_d \rho_d)H$. So there is energy exchange between the dark matter and dark energy.
components. While these components are not conserved
\[\dot{\rho}_d + 3H\rho_d(1 + w_d) = -(\lambda_m\rho_m + \lambda_d\rho_d)H, \]
\[\dot{\rho}_m + 3H\rho_m = (\lambda_m\rho_m + \lambda_d\rho_d)H, \]
the total density satisfies the continuity equation
\[\dot{\rho} + 3H\rho(1 + w) = 0. \]
To study how the ratio of Ω_m to Ω_d changes with time, one can use
\[\dot{r} = H(1 + r)((\lambda_m + 3w)r + \lambda_d), \]
where
\[r = \frac{\rho_m}{\rho_d} = \frac{\Omega_m}{\Omega_d}. \]
In the absence of interaction ($\lambda_m = \lambda_d = 0$), r is a decreasing (increasing) function of time, when $w < 0 (> 0)$. But in the presence of interaction r may be increasing even in an accelerating phase.

The time derivative of the ratio $\mathcal{P} := \Omega_k/\Omega_d = (3/8\pi)(1/a^2\rho_d)$ has the same sign as $(1 + 3w_d + \lambda_d + \lambda_m)r$. To verify this claim one can use (7). When the components are non-interacting and in a (non-)accelerating phase, $w_d > (<) -\frac{1}{3}$, we have $\mathcal{P} > (<) 0$. In the presence of an interaction this claim is not generally true and the behavior of \mathcal{P} depends upon the interactions and conditions considered in the model.

We take the dark energy component as a holographic dark energy determined through
\[\rho_d = \frac{3c^2}{8\pi L^2}, \]
where c is a numerical constant and L is an infrared cutoff which may be chosen as follows. Assume a light signal which is emitted from r at t will arrive at the origin at $t = \infty$: as the light signal propagates along the geodesic $ds^2 = 0$, we have
\[\int_t^\infty \frac{dt}{a(t)} = \int_0^r \frac{dr}{\sqrt{1 - r^2}} = \sin^{-1} r. \]
We choose L as the radius of the event horizon measured on the sphere of the horizon (see the second reference in [5]), hence $L = a(t)r$. Defining $R_h = a(t)\int_t^\infty dt/a(t)$, we obtain $L = R_h\sin y$, where $y = R_h/a(t)$. In the flat case, $k = 0$ and L reduces to $L = R_h = a(t)\int_t^\infty dt/a(t)$. One can assign an entropy to the universe characterized by the cutoff L as
\[S = \pi L^2. \]
The time derivative of L can be shown to be
\[\dot{L} = HL - \cos y. \]
Hence the second law of thermodynamics, $\dot{S} \geq 0$, is valid whenever
\[0 < \frac{\Omega_d^{1/2}}{c} \cos y \leq 1, \]
or in terms of Ω_k

$$\Omega_d \leq c^2(1 + \Omega_k).$$ \hfill (15)

Note that $\ddot{L} = -L/a^2 + (HL)^\prime$. For $\dot{\Omega}_d > 0$, we have $(HL)^\prime < 0$, which leads to $\ddot{L} < 0$. But if one requires that the entropy attributed to the cutoff L is increasing, he finds $\dot{L} > 0$, then either $\lim_{t \to \infty} \dot{L} = 0$ or \dot{L} becomes positive after a finite time, i.e. $\Omega_d > 0$ will no longer be valid.

The equation of state parameter of the compact universe is

$$w = -1 - \frac{2}{3} \frac{(\dot{H}/H^2) - \Omega_k}{1 + \Omega_k},$$ \hfill (16)

which leads to $1 + \dot{H}/H^2 = -\frac{1}{2}(1 + \Omega_k)(1 + 3w)$. Therefore like the flat case, we have $\dot{a} > 0$ when $w < -\frac{1}{3}$. If $\Omega_k \neq 0$, we obtain $w = -\frac{1}{3} + \dot{\Omega}_k/(3H\Omega_k(1 + \Omega_k))$. Thus the sign of $\dot{\Omega}_k$ determines whether the universe is in an accelerated phase ($w < -\frac{1}{3}$) or not. The super-accelerated universe $\dot{H} > 0$ corresponds to $w < -\frac{1}{3}(1 + 2/(1 + \Omega_k))$.

Taking the time derivative of both sides of $HL = c\Omega_d^{1/2}$ (which may be derived from (10)) leads to $\dot{H}L + H^2L + (c/2)\Omega_d^{-3/2}\dot{\Omega}_d = H\cos y$. Therefore from (16) we obtain

$$w = \frac{1}{3} - \frac{2\cos y}{3c(1 + \Omega_k)}\Omega_d^{1/2} + \frac{1}{3H(1 + \Omega_k)}\frac{\dot{\Omega}_d}{\Omega_d}.$$ \hfill (17)

For $w < -\frac{1}{3}$, from the above equation we deduce $\dot{\Omega}_d \leq (2/c)H\Omega_d^{3/2}\cos y$, which by considering the second law of thermodynamics results in $\dot{\Omega}_d \leq 2H\Omega_d$, implying $\Omega_d \leq 2H(1 + \Omega_k)$. It can be shown that

$$\dot{r} = \frac{\Omega_k}{\Omega_d} - \frac{1 + \Omega_k}{\Omega_d^2}. \hfill (18)$$

Comparing this result with (9) yields

$$w = \frac{\dot{\Omega}_k\Omega_d}{3H\Omega_m(1 + \Omega_k)} - \frac{\dot{\Omega}_d}{3H\Omega_m} - \frac{1}{3} \left(\lambda_m + \frac{\lambda_d\Omega_d}{\Omega_m} \right).$$ \hfill (19)

Using (17) and (19) and

$$\Omega_k = H\Omega_k(1 + 3w)(1 + \Omega_k),$$ \hfill (20)

w and $\dot{\Omega}_d$ may be obtained as

$$w = -\frac{2\cos y}{3c(1 + \Omega_k)}\Omega_d^{3/2} + \frac{\lambda_m - \lambda_d - 1}{3(1 + \Omega_k)}\Omega_d - \frac{\lambda_m}{3},$$

$$\frac{\dot{\Omega}_d}{\dot{H}} = -\frac{1 + \lambda_d - \lambda_m\Omega_d^2}{1 + \Omega_k} + \frac{2}{c} \left(1 - \frac{\Omega_d}{1 + \Omega_k} \right)\Omega_d^{3/2} + (1 - \lambda_m)\Omega_d + \Omega_d\Omega_k(1 + 3w).$$ \hfill (21)
Note that study of this model is more complicated with respect to the flat case where the right-hand side of the above equation (besides λ_m, λ_d and c) depends only on Ω_d [10]:

$$w = -\frac{2\Omega_d^{3/2}}{3c} + \frac{\lambda_m - \lambda_d - 1}{3} \Omega_d - \frac{\lambda_m}{3},$$

$$\frac{\dot{\Omega}_d}{H} = \Omega_d \left(\frac{2}{c} \Omega_d^{1/2} + 3w + 1 \right).$$

By (21) and (14), we obtain $(3w + \lambda_m)(r + 1) + 3 + \lambda_d - \lambda_m \geq 0$ or

$$\frac{\dot{r}}{H(1 + r)} \geq -3(1 + w).$$

Hence, if $w < -1$ then $\dot{r} > 0$, indicating that the ratio of dark matter to dark energy increases. For $w < -\frac{1}{3}$, we obtain $\dot{r} \geq -2H(1 + r)$. The evolution of the ratio of Ω_k to Ω_d, represented by P, can be given by

$$\dot{P} = \frac{3H}{8\pi} \frac{(1 + 3w_d + \lambda_d)\rho_d + \lambda_m\rho_m}{a^2\rho_d^2}$$

$$= (1 + 3w_d + \lambda_d + \lambda_m)\dot{P}$$

$$= -\frac{2}{c} H\dot{P} \Omega_d^{1/2} \cos y.$$ (24)

Hence, if the second law of thermodynamics in the form (14) is valid then \dot{P} must be a decreasing function of time.

2.2. $w = -1$ crossing

In order that the effective EoS parameter crosses $w = -1$, we must have $w_d < -1 - r$, which requires $\Omega_m < -(1 + w_d)\Omega_d$ or $\Omega_k < -1 - w_d\Omega_d$. If the transition is assumed to be from quintessence to the phantom phase, then \dot{w} must be negative at $w = -1$. From (21) we have

$$\dot{w} = \frac{\dot{\Omega}_d}{1 + \Omega_k} \left(-\frac{1}{c} \Omega_d^{1/2} \cos y - \frac{c}{3} \Omega_d^{-1/2} - \frac{1}{3} (1 + \lambda_d - \lambda_m) \right)$$

$$+ \frac{\dot{\Omega}_k}{(1 + \Omega_k)^2} \left(\frac{2}{3c} \Omega_d^{1/2} \cos y + \frac{1}{3} (1 + \lambda_d - \lambda_m)\Omega_d + \frac{c}{3 \cos y} (1 + \Omega_k)\Omega_k\Omega_d^{1/2} \right).$$

Using (20), (25) becomes

$$\dot{w} = -\frac{H\Omega_d}{1 + \Omega_k} \left[X^2 + \left(\frac{\lambda_d - \lambda_m + 1}{3} + \frac{\alpha}{6}(\Omega_k + 3) \right) X + \frac{\alpha}{6}(\lambda_d - \lambda_m + 1) + \frac{\Omega_k}{3} \right],$$

where $X = (1/c)\Omega_d^{1/2} \cos y$ and $\alpha = 1 + 3w$. At $w = -1$, (26) reduces to

$$\dot{w} = -\frac{H\Omega_d}{1 + \Omega_k} \left[(X - 1) \left(X + \frac{1}{3}(\lambda_d - \lambda_m + 1 - \Omega_k) \right) \right].$$

(27)
The second law of thermodynamics implies that \(X \leq 1 \). For \(X = 1 \), we obtain \(\dot{w} = 0 \) at \(w = -1 \). But
\[
\dot{X} = H[X^2 + \frac{1}{2}(1 + \Omega_k)(1 + 3w)X + \Omega_k],
\]
and therefore, if \(X = 1 \) at \(w = -1 \), then we also must have \(\dot{X} = 0 \). In the same way, using (26) one can show that \(d^nX/dt^n = 0 \), which results in \(d^nw/dt^n = 0 \) at \(w = -1 \). Hence \(X = 1 \) at \(w = -1 \) implies that \(\dot{X} \), and higher derivatives of \(X \) must also be zero at that point (denoted as the point of infinite flatness). By considering that \(X \) is an analytic function, we conclude that infinite flatness may only occur at \(t \to \infty \). Hence if the transition from quintessence to the phantom phase is allowed we must have
\[
\Omega_1 \geq \frac{1}{2} d \cos y \leq c \left(-\lambda_d + \lambda_m - 1 + \Omega_k \right),
\]
\(0 < \Omega_1 \leq c \).

Note that the validity of the above inequalities necessitates \(\lambda_d - \lambda_m + 1 < \Omega_k \). In the flat case (29) becomes
\[
\Omega_d^{1/2} \leq \frac{c}{3}(\lambda_m - \lambda_d - 1),
\]
\(0 < \Omega_d^{1/2} < c \).

Hence in this situation, \(\lambda_d - \lambda_m + 1 \) may be only negative.

In terms of \(\Omega_d \), (29) may be written as
\[
\Omega_d < c^2 \left(\Omega_k + \min \left\{ 1, \left(\frac{\lambda_m - \lambda_d - 1 + \Omega_k}{3} \right)^2 \right\} \right),
\]
which imposes an upper bound on \(\Omega_d \) at transition time. At \(w = -1 \), we also have
\[
\Omega_d^{3/2} \cos y + \frac{c}{2}(\lambda_d - \lambda_m + 1)\Omega_d + \frac{c}{2}(\lambda_m - 3)(1 + \Omega_k) = 0.
\]

In order that the transition occurs it is necessary that (32) has at least one real root. By considering (31) and (32), we arrive at
\[
\frac{3 - \lambda_m}{\Omega_d} < \frac{1}{1 + \Omega_k} \left((\lambda_d - \lambda_m + 1) + 2 \min \left\{ 1, \frac{\lambda_m - \lambda_d - 1 + \Omega_k}{3} \right\} \right).
\]

This inequality can be written as
\[
(1 + r)(3 - \lambda_m) < \gamma,
\]
or
\[
r < \frac{\gamma}{(3 - \lambda_m)} - 1, \quad \text{if } \lambda_m < 3,
\]
\[
r > \frac{\gamma}{(3 - \lambda_m)} - 1, \quad \text{if } \lambda_m > 3,
\]
where we have defined \(\gamma = (\lambda_d - \lambda_m + 1) + 2 \min\{1, (\lambda_m - \lambda_d - 1 + \Omega_k)/3\} \). For example, if the parameters of the interaction (i.e. \(\lambda_m \) and \(\lambda_d \)) satisfy \(\lambda_m > 3 \), \(0 < \lambda_m - \lambda_d - 1 + \Omega_k < 3 \) and \((3r_0 + 2)\lambda_m + \lambda_d - 9r_0 + 2\Omega_k > 8 \), where \(r_0 \) and \(\Omega_k \) are the values of \(r \) and \(\Omega_k \) at transition time, then (35) is satisfied. As another example, in a model...
characterized by $\lambda_m > 3$, $3 < \lambda_m - \lambda_d + \Omega_{k0} - 1$ and $(\lambda_m - 3)r_0 + \lambda_d > 0$, the required condition (35), for crossing the $w = -1$ line, is satisfied. For example, for a closed universe with $\{\Omega_{k0} = 0.02, r_0 = \frac{3}{7}\}$, all models whose interaction parameters satisfy $\{\lambda_m > 3.7\lambda_d + 3\lambda_m > 9, \lambda_m - \lambda_d > 3.98\}$ fulfill the condition (35).

Note that, for $\lambda_m < 3$, (35) implies $\gamma > 3 - \lambda_m$. For negative γ’s, the second inequality in (35) may be utilized to alleviate the coincidence problem. Indeed it may pose a positive lower bound on r in the transition epoch.

3. Conclusion

In the present paper we have studied the holographic dark energy model in a closed FRW universe. We have considered an interaction between (dark) matter and dark energy (see (7)). By considering the second law of thermodynamics, corresponding to the entropy assigned to the horizon of the universe (see (12)), some relations for relative densities of dark energy (Ω_d) and dark matter (Ω_m), and the geometric parameter (Ω_k), have been obtained. We have found that in a super-accelerated universe (phantom phase), $r = \Omega_m/\Omega_d$ is an increasing function (see (23)), but for an accelerated universe (quintessence phase), depending on the interaction involved in the theory, r may be a decreasing or an increasing function of comoving time (see (9)). We have also shown that Ω_k/Ω_d is decreasing, provided that the second law of thermodynamics is satisfied (see (24)). Using the expression obtained for the equation of state parameter in (21), we have obtained some necessary conditions required for the transition from quintessence to the phantom phase (see (29)). These conditions pose some bounds on the dark energy density at the transition time which can alleviate the coincidence problem (see (35)). Note that these bounds depend on the geometric parameter, Ω_k, as well as on the interaction parameters.

Acknowledgment

HMS would like to thank the University of Tehran for supporting him under the grant provided by its Research Council.

References

[1] Perlmutter S et al, 1998 Nature 391 51 [SPIRES]
 Riess A G et al (Supernova Search Team Collaboration), 1998 Astron. J. 116 1009 [SPIRES]
 Perlmutter S et al (Supernova Cosmology Project Collaboration), 1999 Astrophys. J. 517 565 [SPIRES]
[2] Weinberg S, 1989 Rev. Mod. Phys. 61 1 [SPIRES]
 Zlatev I, Wang L-M and Steinhardt P J, 1999 Phys. Rev. Lett. 82 896 [SPIRES]
 Sahni V and Starobinsky A A, 2000 Int. J. Mod. Phys. D 9 373 [SPIRES]
 Carroll S M, 2001 Living Rev. Rel. 4 1
 Padmanabhan T, 2003 Phys. Rep. 380 235 [SPIRES]
[3] Sahni V and Shtanov Y, 2003 J. Cosmol. Astropart. Phys. JCAP11(2003)014 [SPIRES]
 Alam U, Sahni V, Saini T D and Starobinsky A A, 2004 Mon. Not. R. Astron. Soc. 354 275
 Onemli Y K and Woodard R P, 2004 Phys. Rev. D 70 107301 [SPIRES]
 Feng B, Wang X L and Zhang X M, 2005 Phys. Lett. B 607 35 [SPIRES]
 Huterer D and Cooray A, 2005 Phys. Rev. D 71 023506 [SPIRES]
 Nesserisa S and Perivolaropoulos L, 2005 Phys. Rev. D 72 123519 [SPIRES]
 Nojiri S and Odintsov S D, 2005 Phys. Rev. D 72 023503 [SPIRES]
 Li M, Feng B and Zhang X, 2005 J. Cosmol. Astropart. Phys. JCAP12(2005)002 [SPIRES]
 Zhang X and Wu F, 2005 Phys. Rev. D 72 043524 [SPIRES]
Notes on an interacting holographic dark energy model in a closed universe

Guo Z, Piao Y, Zhang X and Zhang Y, 2006 Phys. Rev. D 74 127304 [SPIRES]
Gubserina B, Horvat R and Nikolic H, 2006 Phys. Lett. B 636 80 [SPIRES]
Mohseni Sadjadi H and Alimohammadi M, 2006 Phys. Rev. D 74 043506 [SPIRES]
Chang Z, Wu F and Zhang X, 2006 Phys. Lett. B 633 14 [SPIRES]
Cognoa G, Elizalde E, Nojiri Sh, Odintsov S D and Zerbini S, 2006 Preprint hep-th/0611198v3
Alimohammadi M and Mohseni Sadjadi H, 2007 Phys. Lett. B 648 113 [SPIRES]
Bouhmadi-Lopez M and Lazkoz R, 2007 Preprint 0706.3896v1 [astro-ph]
Sanyal A K, 2007 Preprint 0710.3486v2 [astro-ph]

[4] Amendola L, 2000 Phys. Rev. D 62 043511 [SPIRES]
Zimdahl W, Pavon D and Chimento L P, 2001 Phys. Lett. B 521 133 [SPIRES]
Farrar G and Peebles P J E, 2004 Astrophys. J. 604 1 [SPIRES]
Mota D F and van de Bruck C, 2004 Astron. Astrophys. 421 71 [SPIRES]
Cai R-G and Wang A, 2005 J. Cosmol. Astropart. Phys. JCAP03(2005)002 [SPIRES]
Manera M and Mota D F, 2006 Mon. Not. R. Astron. Soc. 371 1373
Hu B and Ling Y, 2006 Phys. Rev. D 73 123510 [SPIRES]
Mohseni Sadjadi H and Alimohammadi M, 2006 Phys. Rev. D 74 103007 [SPIRES]
Li H, Guo Z and Zhang Y, 2006 Int. J. Mod. Phys. D 15 869 [SPIRES]
Copeland E J, Sami M and Tsujikawa S, 2006 Int. J. Mod. Phys. D 15 1753 [SPIRES]
Alimohammadi M and Mohseni Sadjadi H, 2006 Phys. Rev. D 73 083527 [SPIRES]
Barrow J D and Clifton T, 2006 Phys. Rev. D 73 103520 [SPIRES]
Clifton T and Barrow J D, 2007 Phys. Rev. D 75 043515 [SPIRES]
Wu Q, Gong Y, Wang A and Alcaniz J S, 2007 Preprint 0705.1006v3 [astro-ph]
Wei H and Zhang S N, 2008 Preprint 0803.3292v3 [astro-ph]

He J and Wang B, 2008 Preprint 0801.4233v2 [astro-ph]
Valiviita J, Marjorotto E and Maartens R, 2008 Preprint 0804.0232v2 [astro-ph]
Boehmer C G, Caldera-Cabral G, Lazkoz R and Maartens R, 2008 Preprint 0801.1556v2 [gr-qc]
Kim K H, Lee H W and Myung Y S, 2006 Phys. Lett. B 632 605 [SPIRES]
Quartin M, Calvao M O, Jorns S E, Reis R R R and Waga I, 2008 Preprint 0802.0546v2 [astro-ph]
Pinto-Neto N and Fraga B M O, 2007 Preprint 0711.3602v1 [gr-qc]
Egan C A and Lineweaver C H, 2007 Preprint 0712.3099v1 [astro-ph]
Karwan K, 2008 J. Cosmol. Astropart. Phys. JCAP05(2008)011 [SPIRES]

[5] Li M, 2004 Phys. Lett. B 603 1 [SPIRES]
Huang Q and Li M, 2004 J. Cosmol. Astropart. Phys. JCAP08(2004)013 [SPIRES]

[6] Hsu S D H, 2004 Phys. Lett. B 594 13 [SPIRES]
Horvat H, 2004 Phys. Rev. D 70 087301 [SPIRES]
Huang Q and Gong Y, 2004 J. Cosmol. Astropart. Phys. JCAP08(2004)006 [SPIRES]
Ito M, 2005 Europhys. Lett. 71 712 [SPIRES]
Gong Y, Wang B and Zhang Y, 2005 Phys. Rev. D 72 043510 [SPIRES]
Elizalde E, Nojiri Sh, Odintsov S D and Wang P, 2005 Phys. Rev. D 71 103504 [SPIRES]
Nojiri Sh and Odintsov S D, 2006 Gen. Rel. Grav. 38 1285 [SPIRES]
Beltran Almeida J P and Pereira J G, 2006 Phys. Lett. B 636 75 [SPIRES]
Gubserina B, Horvat R and Nikolic H, 2007 J. Cosmol. Astropart. Phys. JCAP01(2007)012 [SPIRES]
Guo Z, Ohta N and Tsujikawa S, 2007 Phys. Rev. D 76 023508 [SPIRES]
Zhang X, 2006 Phys. Rev. D 74 103505 [SPIRES]
Wei H and Zhang S N, 2007 Phys. Rev. D 76 063003 [SPIRES]
Zhao W, 2007 Phys. Lett. B 655 97 [SPIRES]
Saridakis E N, 2007 Preprint 0712.2672v2 [astro-ph]
Gao C, Chen X and Shen Y, 2007 Preprint 0712.1394v3 [astro-ph]
Feng C, 2008 Preprint 0806.0673v1 [hep-th]
Lee J, Kim H and Lee J, 2008 Phys. Lett. B 661 67 [SPIRES]
Myung Y S, 2007 Preprint 0706.3757v2 [gr-qc]
Xu L and Lu J, 2008 Preprint 0804.2925v1 [astro-ph]
Zhang J, Zhang X and Lin H, 2008 Phys. Lett. B 659 26 [SPIRES]
Lepe S, Pena F and Saaavedra J, 2008 Preprint 0806.0981v1 [gr-qc]
Li M, Lin C and Wang Y, 2008 J. Cosmol. Astropart. Phys. JCAP05(2008)023 [SPIRES]
Medved A J M, 2008 Preprint 0802.1753v2 [hep-th]
Myung Y S and Saeo M G, 2008 Preprint 0803.2913v1 [gr-qc]
Kim H, Lee J-W and Lee J, 2008 Preprint 0804.2579v2 [gr-qc]

[7] Cohen A, Kaplan D and Nelson A, 1999 Phys. Rev. Lett. 82 4971 [SPIRES]
Notes on an interacting holographic dark energy model in a closed universe

[8] Chen B, Li M and Wang Y, 2007 Nucl. Phys. B 774 256 [SPIRES]
[9] Wang B, Gong Y and Abdalla E, 2005 Phys. Lett. B 624 141 [SPIRES]
 Wang B, Lin C and Abdalla E, 2006 Phys. Lett. B 637 357 [SPIRES]
 Wang B, Zang J, Lin C, Abdalla E and Micheletti S, 2006 Preprint astro-ph/0607126v3
[10] Mohseni Sadjadi H and Honardoost M, 2007 Phys. Lett. B 647 231 [SPIRES]
 Mohseni Sadjadi H, 2007 J. Cosmol. Astropart. Phys. JCAP02(2007)026 [SPIRES]