Measurement of the relative B_c^\pm/B^\pm production cross section with the ATLAS detector at $\sqrt{s} = 8$ TeV

The ATLAS Collaboration

The total cross section and differential cross sections for the production of B_c^\pm mesons, times their branching fraction to $J/\psi\pi^\pm$, are measured relative to those for the production of B^\pm mesons, times their branching fraction to $J/\psi K^\pm$. The data used for this study correspond to an integrated luminosity of 20.3 fb$^{-1}$ of pp collisions recorded by the ATLAS detector at the Large Hadron Collider in 2012 at a center-of-mass energy of $\sqrt{s} = 8$ TeV. The measurement is performed differentially in bins of transverse momentum p_T for $13 \text{ GeV} < p_T(B_c^\pm) < 22 \text{ GeV}$ and $p_T(B_c^\pm) > 22 \text{ GeV}$ and in bins of rapidity y for $|y| < 0.75$ and $0.75 < |y| < 2.3$. The relative cross section times branching fraction for the full range $p_T > 13 \text{ GeV}$ and $|y| < 2.3$ is $(0.34 \pm 0.04_{\text{stat}}^{+0.06}_{-0.02} \text{ sys} \pm 0.01_{\text{lifetime}})\%$. The differential measurements suggest that the production cross section of the B_c^\pm decreases faster with p_T than the production cross section of the B^\pm, while no significant dependence on rapidity is observed.
1 Introduction

The \(B_c^\pm \) meson is a bound state of the two heaviest distinct quarks able to form a stable state, \(c \) and \(\bar{c} \) for \(B_c^+ \) or \(\bar{c} \) and \(b \) for \(B_c^- \). Measurements of its production can provide unique insight into heavy-quark hadronization: unlike lighter \(B \)-states, production of a \(B_c^{\pm} \) meson requires collinear production of two distinct heavy quarks.

A measurement of the production cross section times branching fraction for \(B_c^{\pm} \rightarrow J/\psi \pi^{\pm} \), relative to that for \(B^{\pm} \rightarrow J/\psi K^{\pm} \), at \(\sqrt{s} = 8 \text{ TeV} \) of \(pp \) collisions and differential in transverse momentum \(p_T \) and in rapidity\(^1\) \(y \), has not yet been reported for the fiducial region considered in this article and defined below, although measurements of the individual cross sections have been published. At \(\sqrt{s} = 7 \text{ TeV} \), the LHCb Collaboration reported \([1]\) a relative cross section times branching fraction of \((0.68 \pm 0.10_{\text{stat}} \pm 0.03_{\text{syst}} \pm 0.05_{\text{lifetime}})\% \) for \(p_T(B_c^{\pm}) > 4 \text{ GeV} \) in the pseudorapidity\(^2\) range \(2.5 < \eta < 4.5 \). LHCb reported \([2]\) for the same differential relative \(B_c^{\pm} \) cross-section at \(\sqrt{s} = 8 \text{ TeV} \) a measurement of \((0.683 \pm 0.018_{\text{stat}} \pm 0.009_{\text{syst}})\% \) in the rapidity range \(2.0 < y < 4.5 \) for the interval \(0 < p_T(B_c^{\pm}) < 20 \text{ GeV} \). The measurement \([2]\) by the LHCb Collaboration at \(\sqrt{s} = 8 \text{ TeV} \) has a very slight overlap with the fiducial region (defined below) of this one. In the fiducial region \(13 < p_T(B) < 20 \text{ GeV} \) and \(2.0 < y(B) < 2.3 \), where the two experiments are both sensitive, the LHCb data show no trend in the ratio as a function of \(p_T \). However, the LHCb dataset is dominated by \(B_c \) candidates with \(p_T \) lower than those in this ATLAS analysis. The CMS Collaboration measured the same quantity in the rapidity range \(|y| < 1.6 \) for \(p_T(B_c^{\pm}) > 15 \text{ GeV} \) to be \((0.48 \pm 0.05_{\text{stat}} \pm 0.03_{\text{syst}} \pm 0.05_{\text{lifetime}})\% \) \([3]\) at \(\sqrt{s} = 7 \text{ TeV} \). The values reported here by ATLAS are smaller than those obtained by the other experiments at different energies and with different fiducial volumes, and evidence of dependence of this relative production cross section on transverse momentum is shown here for the first time.

Theoretical predictions for the hadronic \(B_c^{\pm} \) production cross section have been reported by several authors \([4–10]\) and this study is motivated by the range of predicted values. Theoretical calculations predict that the total production cross section \(\sigma_{B_c} \) is in the range of 1 nb to 31.5 nb at \(\sqrt{s} = 1.8 \text{ TeV} \) and 44 nb to 190 nb at \(\sqrt{s} = 14 \text{ TeV} \), but no published calculation for the relative cross section at \(\sqrt{s} = 8 \text{ TeV} \) is available at this time. These calculations depend on the square of the decay constant \(f_{B_c} \) \([4, 11, 12]\), which in the non-relativistic approach is proportional to the absolute value of the wave function at the origin.

In this measurement of the cross section times branching fraction for \(B_c^{\pm} \rightarrow J/\psi \pi^{\pm} \) relative to that for \(B^{\pm} \rightarrow J/\psi K^{\pm} \), the \(J/\psi \) mesons are reconstructed from their decays into \(\mu^+\mu^- \). The relative cross-section measurement is differential in two bins of the transverse momentum \(p_T \) of the \(B_c^{\pm} \), 13 GeV < \(p_T(B_c^{\pm}) \) < 22 GeV and \(p_T(B_c^{\pm}) > 22 \text{ GeV} \), for rapidity \(|y| < 2.3 \), and in two bins of rapidity \(y \) of the \(B_c^{\pm} \), \(|y| < 0.75 \) and 0.75 < \(|y| < 2.3 \), for \(p_T(B_c^{\pm}) > 13 \text{ GeV} \).

The relative cross section is also measured for the inclusive dataset with \(p_T > 13 \text{ GeV} \) and \(|y| < 2.3 \). The fiducial volume is defined by the requirements on \(p_T(B_c^{\pm}) \) and \(y(B_c^{\pm}) \). The bins are selected to equalize yields of the \(B_c^{\pm} \). The same bin sizes are used for the \(B_c^{\pm} \) and the \(B^{\pm} \). The data were recorded in 2012 by the ATLAS \([13]\) experiment at a center-of-mass energy of \(\sqrt{s} = 8 \text{ TeV} \).

The article is organized as follows. After this introduction, Section 2 provides an overview of the ATLAS detector including the trigger system and the objects used. Section 3 describes the simulation, reconstruction,

\(^1\) The rapidity \(y \) is defined as \((1/2) \times \ln((E + p_z)/(E − p_z)) \), where \(E \) is the energy of a particle and \(p_z \) is its component of momentum along the beam axis.

\(^2\) The pseudorapidity \(\eta \) is defined as \(−\ln[\tan(\theta/2)] \), where \(\theta \) is the angle between the particle momentum and the positive direction of the beam axis.
and event selection. Section 4 shows the relative cross-section calculation. Section 5 presents the fits to the mass distributions. Section 6 describes the calculation of the efficiency and acceptance ratios. Section 7 reports the systematic uncertainties. Section 8 presents the results of the measurements. Conclusions are drawn in Section 9.

2 The ATLAS detector, trigger, and basic track selections

ATLAS is a general-purpose particle detector [13] consisting of several subsystems including the inner detector (ID), the electromagnetic and hadronic calorimeters, and the muon spectrometer (MS). Muons pass through the calorimeters and reach the MS if their momentum is above approximately 3 GeV. The ID features a three-component tracking system, consisting of two silicon-based detectors, the pixel detector and the microstrip semiconductor tracker (SCT), and the transition radiation tracker (TRT).

ID tracks are reconstructed if their transverse momentum is greater than 400 MeV and if the magnitude of their pseudorapidity, $|\eta|$, is less than 2.5. Muon candidates are either formed from a stand-alone MS track that is matched to an ID track (so-called combined muons) or from an ID track extrapolated to the MS and matched to track segments in the MS (so-called tagged muons) [14]. The ID and MS subsystems are of particular importance to this study. Only the data taken when both of these subsystems were properly operational and when LHC beams were stable are used, corresponding to an integrated luminosity of 20.3 fb^{-1}. Although both the ID and the MS provide momentum measurements, in the p_T range relevant to this analysis, the MS momentum resolution is worse than that of the ID due to energy loss in the calorimeters. Therefore, the MS is used only to identify muons, and the p_T measurement is taken from the ID. The muon candidates are required to have the number of pixel hits plus the number of crossed dead pixel sensors greater than zero, the number of SCT hits plus the number of crossed dead SCT sensors greater than four, and the number of pixel holes plus the number of SCT holes on the track less than three.

ID tracks from charged hadrons are required to have at least two pixel hits and at least six hits in the SCT (eight hits in total). If a track crosses a dead sensor, it is not counted as a hit in the corresponding subdetector; the number of pixel+SCT holes is required to be less than three. For tracks with $0.1 < |\eta| < 1.9$ it is required that $n > 5$ and $n_{\text{out}}^{\text{TRT}} < 0.9n$, where $n = n_{\text{TRT}} + n_{\text{out}}^{\text{TRT}}$, and $n_{\text{TRT}} (n_{\text{out}}^{\text{TRT}})$ stands for the number of TRT hits (outliers [14]) on the track.

The trigger system [15] for data collected up to and including 2012 comprises three levels: the hardware-based first-level (L1) trigger and the high-level triggers (HLT), consisting of the second-level trigger and the event filter. The L1 trigger uses resistive plate chambers and thin gap chambers to trigger on muons in the pseudorapidity ranges of $|\eta| < 1.05$ and $1.05 < |\eta| < 2.5$, respectively. One or more regions-of-interest (RoI), identified by the L1 muon trigger, seed the HLT muon reconstruction algorithms, where the tracks from both the ID and the MS are combined. For this analysis the HLT selection of the J/ψ requires two oppositely charged muons, originating at a common vertex, with the invariant mass of the muon pair lying between 2.5 GeV and 4.3 GeV. The individual muon p_T thresholds are both 4 GeV. The pseudorapidity range of the muon selection is $|\eta| < 2.5$.

3 In this context, a hole is counted when a hit is expected in an active sensor located on the track trajectory between the first and the last hit associated with this track, but no such hit is found. If the corresponding sensor is known to be inactive and therefore not expected to provide a hit, no hole is counted.
3 Simulation, reconstruction, and event selection

Samples for the signal ($B_{c}^{+} \rightarrow J/\psi \pi^{+}$ and $B^{+} \rightarrow J/\psi K^{+}$) were generated with the PYTHIA Monte Carlo (MC) generator [16, 17]. For the generation of the B_{c}^{+} meson a dedicated PYTHIA extension was used, based on theoretical input [5, 9]. The parameters of the MC simulation are described in Section 6. The response of the ATLAS detector was simulated with the ATLFAST2 procedure [18] using the GEANT4 package [19], and the events are reconstructed with the same software as is used to process the data from the detector. The effect of multiple proton–proton collisions per beam crossing, also known as pileup, is included.

The J/ψ candidates are reconstructed from pairs of oppositely charged muon candidates. To allow the most accurate corrections for trigger efficiencies, each reconstructed muon candidate is required to match a trigger-identified muon candidate within a cone of size $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.01$. The efficiency of matching the reconstructed muon candidates to the trigger muon candidates is comparable for the two B-meson species according to MC simulation. The muon pair is fitted to a common vertex with the requirement that at least one of the muons is a combined muon. The procedure is described in Ref. [20]. The following requirements are applied to choose a J/ψ candidate:

- The p_T of each of the two muon candidates must be above 4 GeV.
- The vertex fit quality $\chi^2/(N_{d.o.f.} = 1)$ must be below 15. This soft requirement is chosen to remove highly unlikely muon combinations.
- The invariant mass $m(\mu^{+}\mu^{-})$ calculated from the re-fitted track parameters must lie in a mass window that depends on the pseudorapidity of the muons. The η ranges are determined from the resolution of the muon detectors. Three mass windows are defined for the J/ψ around the world average value of 3096.916 MeV [21], as follows. If the $|\eta|$ of both muons is less than (greater than) 1.05, the mass window is ± 120 MeV (± 270 MeV). If the $|\eta|$ of one muon is less than 1.05 and the $|\eta|$ of the other muon is between 1.05 and 2.5, the mass window is ± 180 MeV.

The muon mass is assigned to each track in the J/ψ reconstruction. The re-fitted track parameters are derived from the vertex fit. The B candidates (where B represents B_{c}^{+} or B^{+}) are reconstructed by fitting the tracks of the two muons from the J/ψ candidate, together with a charged-hadron track, to a common vertex. For the B^{+} candidates the kaon mass is assigned to the hadron track while for the B_{c}^{+} candidates the pion mass is assigned to the hadron track. The mass of the J/ψ meson is constrained in the fit to its world average value.

The primary pp interaction vertex is found by extrapolating the flight direction of the reconstructed B candidate to the z-axis and then selecting the closest vertex in the z direction [22]. The selected vertex is re-fitted with the three signal tracks (two muonic and one hadronic) removed.

A significant part of the combinatorial background consists of J/ψ mesons that combine with light hadrons that are not associated with the decay. This background can be reduced by applying a minimum value for the significance of the impact parameter of the hadron track relative to the primary vertex in the transverse plane, $d_{xy}^0/\sigma(d_{xy}^0)$, where d_{xy}^0 is the projection of the impact parameter onto the transverse plane and $\sigma(d_{xy}^0)$ is the uncertainty of d_{xy}^0.

4 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z-axis along the beam line. The x-axis points from the IP to the center of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the z-axis and r the distance from the IP in the transverse plane.
Another significant source of background which is especially important for the B_c^\pm is the partially reconstructed semileptonic decays of the B_c^\pm such as $B_c^\pm \rightarrow J/\psi \mu^\pm \nu_\mu$. This background is reduced by removing combinations in which one of the hadronic candidates is identified as a muon by the MS.

Reconstructed B candidates are required to satisfy the following selection criteria:

- The $\chi^2/(N_{\text{d.o.f.}} = 4)$ of the fit of the B vertex must be below 1.8.
- The rapidity $|y(B)|$ must be less than 2.3.
- The p_T of the hadron candidate must be above 2.0 GeV.
- To suppress combinatorial background due to prompt J/ψ candidates, the impact parameter significance $d_0/\sigma(d_0)$ of the hadron candidate must exceed 1.2. MC studies demonstrated that this criterion is more efficient for the B_c^\pm candidate selection than a requirement on the lifetime.

In events with multiple B candidates, the candidate with the best χ^2 from the vertex fits is used. The fraction of multiple-candidate events is negligible for this analysis, as observed in data and confirmed by MC studies. This analysis uses all the ground-state B candidates including those produced directly and those produced from the cascade decay of excited states.

4 Relative cross-section calculation

The relative cross section times branching fraction is given by:

$$\frac{\sigma(B_c^\pm) \cdot \mathcal{B}(B_c^\pm \rightarrow J/\psi \pi^\pm) \cdot \mathcal{B}(J/\psi \rightarrow \mu^+\mu^-)}{\sigma(B^\pm) \cdot \mathcal{B}(B^\pm \rightarrow J/\psi K^\pm) \cdot \mathcal{B}(J/\psi \rightarrow \mu^+\mu^-)} = \frac{N_{\text{reco}}(B_c^\pm)}{N_{\text{reco}}(B^\pm)} \cdot \frac{\epsilon(B^\pm)}{\epsilon(B_c^\pm)}. \quad (1)$$

The notation $N_{\text{reco}}(X)$ refers to the number of reconstructed collision data events, where X is either B_c^\pm or B^\pm. The $\epsilon(B^\pm)$ and $\epsilon(B_c^\pm)$ are the efficiencies of B^\pm and B_c^\pm reconstruction that correct the numbers $N_{\text{reco}}(B_c^\pm)$ and $N_{\text{reco}}(B^\pm)$ for detector effects, selection criteria, differences between interactions of K^\pm and π^\pm with the detector material, as well as efficiencies associated with the trigger.

5 Fit to the mass distributions

Extended unbinned maximum-likelihood fits to the mass distributions of the B_c^\pm and the B^\pm are performed to extract $N_{\text{reco}}(B_c^\pm)$ and $N_{\text{reco}}(B^\pm)$ from the data in each bin in p_T and $|y|$. This involves calculating the parameters that maximize the likelihood function, defined as

$$\mathcal{L} = \frac{e^{-N_{\text{sig}} - N_{\text{bkg}}}}{N!} \prod_{i=1}^{N} \left[N_{\text{sig}} \mathcal{F}_{\text{signal}}(m_{j/\psi X_h}, \delta m_{j/\psi X_h}) + N_{\text{bkg}} \mathcal{F}_{\text{bkg}}(m_{j/\psi X_h}) \right]$$

where N is the total number of $J/\psi X_h$ candidates, X_h represents the corresponding hadron, N_{sig} is the total number of signal events, and N_{bkg} is the total number of background events. The contribution from

\(^5\)“Prompt” here refer to states that are produced directly by short-lived QCD sources, i.e. those not produced in the beauty hadron decays.
the signal $\mathcal{F}_{\text{signal}}$ is modeled by a Gaussian probability density function with event-by-event errors. It is given for the B_c^+ by

$$
\mathcal{F}_{\text{signal}}(m^i_{J/\psi\pi^+}, \delta m^i_{J/\psi\pi^+}) \propto \exp \left(-\frac{(m^i_{J/\psi\pi^+} - m_{B_c^+})^2}{2 (s_1 \delta m^i_{J/\psi\pi^+})^2} \right)
$$

and for the B^+ by

$$
\mathcal{F}_{\text{signal}}(m^i_{J/\psi K^+}, \delta m^i_{J/\psi K^+}) \propto \exp \left(-\frac{(m^i_{J/\psi K^+} - m_{B^+})^2}{2 (s_2 \delta m^i_{J/\psi K^+})^2} \right)
$$

where m_{B^+} and $m_{B_c^+}$ are the masses of the B^+ and B_c^+, respectively. The variables m_{B^+} and $m_{B_c^+}$ are taken as free parameters in the fit. The widths $s_1 \delta m^i_{J/\psi\pi^+}$ and $s_2 \delta m^i_{J/\psi K^+}$ are the products of the corresponding scale factors s_1 and s_2 and the event-by-event mass resolution. The event-by-event mass uncertainty is calculated from the tracking covariance matrices by error propagation. The scale factors are free parameters of the fit which account for imperfection in estimates of the mass errors. Ideally the value of s_1, s_2 is one. The mass resolution σ_m is obtained from the fits and appears in the relevant tables below. It is defined as the half-width of the region of the J/ψ mass distribution for which the integral of the sum of $\mathcal{F}_{\text{signal}}(m_{J/\psi\pi^+}, \delta(m_{J/\psi\pi^+}))$ over all candidates contains 68.27% of N_{sig}.

The background to B_c^+ production is modeled with an exponential function plus a constant term,

$$
\mathcal{F}_{\text{bkg}} \propto \exp(a \cdot m^i_{J/\psi\pi^+}) + b.
$$

In the B^+ mass region, partially reconstructed b-hadron decays populate the lower part of the B^+ mass spectrum. Their contributions are estimated with a complementary error function

$$
\mathcal{F}_{\text{bkg}}^{(1)}(m^i_{J/\psi K^+}) \propto 1 - \text{erf} \left(\frac{m^i_{J/\psi K^+} - m_0}{s_0} \right) = 1 - \frac{2}{\sqrt{\pi}} \int_0^A e^{-t^2} \, dt,
$$

where $A = \frac{m^i_{J/\psi K^+} - m_0}{s_0}$, and m_0 and s_0 determine the position and the slope of the error function, respectively.

The Cabibbo-suppressed decay $B^+ \to J/\psi\pi^+$ populates the high part of the B^+ mass spectrum. It is modeled by a Gaussian function

$$
\mathcal{F}_{\text{bkg}}^{(2)}(m^i_{J/\psi K^+}) \propto \exp \left(-\frac{(m^i_{J/\psi K^+} - m_{B^+,\pi^+})^2}{2 (s_3 \delta m^i_{J/\psi K^+})^2} \right),
$$

where s_3 is the corresponding scale factor. The variable m_{B^+,π^+} is the median of the mass distribution in the data for $B^+ \to J/\psi\pi^+$ events when the kaon mass instead of the pion mass is assumed for the charged-hadron track.

The remaining background is mostly due to production of J/ψ mesons from decays of b-hadrons other than the B^+, which are combined with a random hadron track. They are described with an exponential function

$$
\mathcal{F}_{\text{bkg}}^{(3)}(m^i_{J/\psi K^+}) \propto \exp \left(d \cdot m^i_{J/\psi K^+} \right),
$$

where d is a constant.
The models for the background contributions are combined with different fractions, which are fitted to the data. The relative fractions are left free in the fit, as \((a \times F_{bkg}^{(1)} + b \times F_{bkg}^{(2)} + (1 - (a + b)) \times F_{bkg}^{(3)}) \), where \(a \) and \(b \) are free parameters of the fit.

Figure 1: The projection of the fit of the invariant mass distribution for the \(B^\pm \) meson. “Signal” stands for the signal component of the fit, “Comb. bkg” stands for the combinatorial background component of the fit, and “Total fit” stands for the fit to the sum of the signal and all background components. The fit for the low transverse momentum bin \((13 \text{ GeV} < p_T(B^\pm) < 22 \text{ GeV})\) is shown at the top, and that for the high transverse momentum bin \((p_T(B^\pm) > 22 \text{ GeV})\) is shown at the bottom. The rapidity requirement is \(|y(B^\pm)| < 2.3 \). The fits are used to extract \(N_{reco}(B^+) + N_{reco}(B^-) \) and its uncertainty in each bin. The inset below each plot shows the bin-by-bin difference between the data point and the value obtained from the fit function divided by the quadrature sum of the statistical uncertainty and the systematic uncertainties obtained from varying the fit model.

The projections of the results of the invariant-mass fits of the \(B^\pm \) and the \(B^{\mp} \) for the various \(p_T \) and \(y \) bins considered in this measurement are given in Figures 1–6. The inset below each plot shows the bin-by-bin difference between the data point and the value obtained from the fit function divided by the quadrature sum of the statistical uncertainty and the systematic uncertainties obtained from varying the fit model.
difference between each data point and the value obtained from the fit function divided by the quadrature sum of the statistical uncertainty and the systematic uncertainties obtained from varying the fit model and discussed in Section 7. Tables 1 and 2 show a summary of the main parameters of the fits.

Figure 2: The projection of the fit of the invariant mass distribution for the B^+ meson. “Signal” stands for the signal component of the fit, “Comb. bkg” stands for the combinatorial background component of the fit, and “Total fit” stands for the fit to the sum of the signal and all background components. The fit for the inner rapidity bin ($|y(B^+)| < 0.75$) is shown at the top, and that for the outer rapidity bin ($0.75 < |y(B^+)| < 2.3$) is shown at the bottom. The p_T requirement is $p_T(B^+) > 13$ GeV. The fits are used to extract N_{rec} (B^+) and its uncertainty for each bin. The inset below each plot shows the bin-by-bin difference between the data point and the value obtained from the fit function divided by the quadrature sum of the statistical uncertainty and the systematic uncertainties obtained from varying the fit model.
Figure 3: The projection of the fit of the invariant mass distribution for the B^+ meson using the complete dataset ($p_T(B^+) > 13$ GeV, $|y(B^+)| < 2.3$). “Signal” stands for the signal component of the fit, “Comb. bkg” stands for the combinatorial background component of the fit, and “Total fit” stands for the fit to the sum of the signal and all background components. The fit is used to extract $N_{\text{rec}}(B^+) + N_{\text{rec}}(B^-)$ and its uncertainty in each bin. The inset below each plot shows the bin-by-bin difference between the data point and the value obtained from the fit function divided by the quadrature sum of the statistical uncertainty and the systematic uncertainties obtained from varying the fit model.
Figure 4: The projection of the fit of the invariant mass distribution for the B_c^- meson. “Signal” stands for the signal component of the fit, “Background” stands for the combinatorial background component of the fit, and “Total fit” stands for the fit to the sum of the signal and background components. The fit for the low transverse momentum bin (13 GeV < $p_T(B_c^-) < 22$ GeV) is shown at the top, and that for the high transverse momentum bin ($p_T(B_c^-) > 22$ GeV) at the bottom. The rapidity requirement is $|y(B^-_c)| < 2.3$. The fits are used to extract $N_{\text{reco}}(B^-_c) + N_{\text{reco}}(B^-_c)$ and its uncertainty in each bin. The inset below each plot shows the bin-by-bin difference between the data point and the value obtained from the fit function divided by the quadrature sum of the statistical uncertainty and the systematic uncertainties obtained from varying the fit model.
Figure 5: The projection of the fit of the invariant mass distribution for the $B_{c}^{±}$ meson. “Signal” stands for the signal component of the fit, “Background” stands for the combinatorial background component of the fit, and “Total fit” stands for the fit to the sum of the signal and background components. The fit for the inner rapidity bin ($|y(B_{c}^{±})| < 0.75$) is shown at the top, and that for the outer rapidity bin ($0.75 < |y(B_{c}^{±})| < 2.3$) at the bottom. The p_{T} requirement is $p_{T}(B_{c}^{±}) > 13$ GeV. The fits are used to extract $N_{\text{reco}}(B_{c}^{±}) + N_{\text{reco}}(B_{c}^{±})$ and its uncertainty in each bin. The inset below each plot shows the bin-by-bin difference between the data point and the value obtained from the fit function divided by the quadrature sum of the statistical uncertainty and the systematic uncertainties obtained from varying the fit model.
Figure 6: The projection of the fit of the invariant mass distribution for the B_c^* meson using the complete dataset ($p_T(B^*) > 13$ GeV, $|y(B^*)| < 2.3$). “Signal” stands for the signal component of the fit, “Background” stands for the combinatorial background component of the fit, and “Total fit” stands for the fit to the sum of the signal and background components. The fit is used to extract $N^{\text{reco}}(B_c^*) + N^{\text{reco}}(B_c^{-})$ and its uncertainty in each bin. The inset below each plot shows the bin-by-bin difference between the data point and the value obtained from the fit function divided by the quadrature sum of the statistical uncertainty and the systematic uncertainties obtained from varying the fit model.

Table 1: Summary of the main parameters of the B^+ fits. The uncertainties quoted are statistical.

Analysis bin	Fitted mass of the B^+ [MeV]	Number of the B^+ candidates	σ_m of the B^+ [MeV]		
$p_T(B) > 13$ GeV, $	y(B)	< 2.3$	5278.6 ± 0.1	$(398.3 ± 0.8) \times 10^3$	37.5 ± 0.1
$13 < p_T(B) < 22$ GeV, $	y(B)	< 2.3$	5278.5 ± 0.1	$(207.6 ± 0.6) \times 10^3$	37.5 ± 0.1
$p_T(B) > 22$ GeV, $	y(B)	< 2.3$	5278.8 ± 0.1	$(190.9 ± 0.6) \times 10^3$	38.1 ± 0.1
$p_T(B) > 13$ GeV, $	y(B)	< 0.75$	5278.4 ± 0.1	$(147.9 ± 0.5) \times 10^3$	26.6 ± 0.1
$p_T(B) > 13$ GeV, 0.75 < $	y(B)	< 2.3$	5279.1 ± 0.1	$(248.8 ± 0.6) \times 10^3$	45.9 ± 0.1

Table 2: Summary of the main parameters of the B_c^+ fits. The uncertainties quoted are statistical.

Analysis bin	Fitted mass of the B_c^+ [MeV]	Number of the B_c^+ candidates	σ_m of the B_c^+ [MeV]		
$p_T(B) > 13$ GeV, $	y(B)	< 2.3$	6281.0 ± 4.5	798^{+92}_{-84}	52.4 ± 5.6
$13 < p_T(B) < 22$ GeV, $	y(B)	< 2.3$	6283.7 ± 6.9	417^{+68}_{-63}	59.5 ± 9.2
$p_T(B) > 22$ GeV, $	y(B)	< 2.3$	6278.4 ± 5.7	363^{+59}_{-56}	45.7 ± 6.7
$p_T(B) > 13$ GeV, $	y(B)	< 0.75$	6275.1 ± 1.7	319^{+57}_{-52}	31.5 ± 5.7
$p_T(B) > 13$ GeV, 0.75 < $	y(B)	< 2.3$	6275.2 ± 9.0	454^{+71}_{-66}	67.1 ± 10.4
6 Determination of the B_c/B^\pm efficiency and acceptance ratio

In order to correct the MC distributions to match the observed data, a sPlot-based MC reweighting technique [23] is exploited. This procedure is applied separately to the B_c^\pm and B^\pm candidates. The following MC variables are reweighted: p_T of the B candidate, y of the B candidate, χ^2 of the secondary vertex, and the transverse impact parameter significance $d_{xy}^0/\sigma(d_{xy}^0)$.

The reconstruction efficiencies are determined using the MC samples for the B_c^\pm and B^\pm signals. The efficiencies are averaged over each bin in p_T and each bin in $|y|$. They are calculated from the ratio of the number of reconstructed MC events $N_{\text{reco}}^\text{MC}$ to the number of generated MC events N_{gen}^MC in the associated bins in the fiducial region. Bin-to-bin migration is included and found to be less than 0.1%, and the associated systematic uncertainties are significantly smaller than uncertainties from other sources.

The efficiencies can be factorized into the product of the efficiency of the J/ψ trigger e_{trigger}, the efficiency of the muon spectrometer e_{MS}, the efficiency of the inner detector e_{ID}, the efficiency of fitting the muon and hadron tracks to a common decay vertex e_{vertex}, and the efficiency of the selection criteria $e_{\text{selection}}$ [24]:

$$
e = e_{\text{trigger}} \cdot e_{\text{MS}}(\mu^+) \cdot e_{\text{MS}}(\mu^-) \cdot \left(e_{\text{ID}}(\mu^+) \right)^2 \cdot e_{\text{ID}}(X_h) \cdot e_{\text{vertex}}(B) \cdot e_{\text{selection}}(B),$$

where $e(X_h)$ is the K^\pm efficiency in the B^\pm channel and π^\pm efficiency in the B_c^\pm channel, while B stands for the B^\pm and B_c^\pm candidates. Muon trigger efficiencies are calculated using the method outlined in Ref. [25], which can be briefly summarized as follows. The single-muon trigger efficiency is determined from a tag-and-probe study of the J/ψ and Y dimuon decays in Ref. [26]. The efficiency map is calculated as a function of $p_T(\mu)$ and $q \times \eta(\mu)$, where $q = \pm 1$ is the electric charge of the μ^\pm, expressed in units of e.

Besides the product of two single-muon terms, the trigger efficiency includes components that account for reductions in efficiency due to closely spaced muons firing only a single RoI, for vertex quality and opposite-sign charge requirements.

For the calculation of $e_{\text{MS}}(\mu^+)$, the muon reconstruction maps [27] are used. These maps are based on a sample of about two million $J/\psi \to \mu^+\mu^-$ events collected with unbiased triggers (single muonic and "muon + track"). The efficiency is measured in bins of p_T and η using the same tag-and-probe method. Combined muons are used as the tag muons and the ID tracks with the standard quality requirements are used as probes. The efficiency $e_{\text{ID}}(\mu^\pm)$ of the muon track reconstruction with the ID is conservatively taken to be $(99 \pm 1)\%$ [28, 29].

The vertexing efficiency e_{vertex} is estimated with data and MC simulation for the B^\pm and the B_c^\pm. The efficiency ratio $e_{\text{vertex}}(B^\pm)/e_{\text{vertex}}(B_c^\pm)$ is found to be $1.01 \pm 0.01_{\text{stat}}$.

The MC samples ($B_c^\pm \to J/\psi\pi^\pm$ and $B^\pm \to J/\psi K^\mp$) were generated with requirements on hadron p_T of $p_T > 500$ MeV and $|\eta| < 2.5$. The requirements on muons were $p_T > 2.5$ GeV and $|\eta| < 2.7$. These are called the minimal selection criteria (MSC). To determine corrections to the efficiencies due to MSC, a dedicated MC sample was produced for each channel with no selection on pion, kaon, and muon momenta and with a requirement that their absolute rapidity be less than 10. The MC samples are corrected to take into account the MSC, and these correction factors are propagated to the analysis results. The following values are computed: $f_{\text{cor}}(B_c^\pm) = N(B_c^\pm)_{\text{MSC}}/N(B_c^\pm)_{\text{no MSC}}$, and $f_{\text{cor}}(B^\pm) = N(B^\pm)_{\text{MSC}}/N(B^\pm)_{\text{no MSC}}$, where $N(B)_{\text{no MSC}}$ and $N(B)_{\text{MSC}}$ stand for the numbers of B decays before and after applying the MSC, respectively, in the p_T and $|y|$ bins used in the analysis. These correction factors range from 8% to 22% depending on the p_T and $|y|$ of the B candidates. The value of the ratio $f_{\text{cor}}(B_c^\pm)/f_{\text{cor}}(B^\pm)$ is propagated
as a correction factor to the relative B_c^\pm/B^\pm cross section. The corrections obtained, along with their uncertainties, are summarized in Table 3. Each entry in the rightmost column in Table 3 is then multiplied by the corresponding value of the ratio of efficiencies $\epsilon(B^\pm)/\epsilon(B_c^\pm)$. The systematic uncertainty on the MSC procedure is estimated as the difference between the raw MC prediction and the one reweighted using the sPlot-based technique. The uncertainties in these corrections and each of the uncertainties contributing to the final efficiency ratios are added in quadrature.

Table 3: Summary of corrections due to the minimal selection criteria in the MC simulation. The first uncertainty is statistical, the second one is systematic.

Analysis bin	Correction to the B_c^\pm	Correction to the B^\pm	Ratio of the corrections		
$p_T(B) > 13$ GeV, $	y(B)	< 2.3$	0.0969 ± 0.0004 ± 0.0024	0.0929 ± 0.0004 ± 0.0022	0.959 ± 0.006 ± 0.024
13 < $p_T(B)$ < 22 GeV, $	y(B)	< 2.3$	0.0829 ± 0.0004 ± 0.0031	0.0826 ± 0.0004 ± 0.0029	0.996 ± 0.007 ± 0.039
$p_T(B) > 22$ GeV, $	y(B)	< 2.3$	0.2164 ± 0.0014 ± 0.0018	0.2213 ± 0.0013 ± 0.0017	1.023 ± 0.009 ± 0.009
$p_T(B) > 13$ GeV, $	y(B)	< 0.75$	0.0984 ± 0.0007 ± 0.0033	0.0996 ± 0.0007 ± 0.0035	1.012 ± 0.010 ± 0.035
$p_T(B) > 13$ GeV, 0.75 < $	y(B)	< 2.3$	0.0952 ± 0.0005 ± 0.0014	0.0859 ± 0.0005 ± 0.0016	0.902 ± 0.007 ± 0.014

The efficiency of the analysis selection criteria, $\epsilon^{\text{selection}}$, derived from MC simulation, is incorporated into the final efficiency ratios given below. The efficiency ratios $\epsilon(B^\pm)/\epsilon(B_c^\pm)$, excluding the MSC corrections, are found to be $2.19 ± 0.05$ for 13 GeV $< p_T < 22$ GeV, $1.22 ± 0.03$ for $p_T > 22$ GeV, $1.75 ± 0.03$ for $p_T > 13$ GeV, $1.74 ± 0.05$ for $|y| < 0.75$, and $1.76 ± 0.04$ for $0.75 < |y| < 2.3$ (see Section 7). Here and below, when the range of a single variable is specified, it is implicitly understood that the full range is selected for the other variable, namely $p_T > 13$ GeV and $|y| < 2.3$. The reason for the efficiency ratios being larger than one is primarily that the B^\pm has a longer lifetime than the B_c^\pm. Due to the shorter B_c^\pm lifetime, the combination of the d_ψ^\pm/d_χ and p_T(hadron) selections criteria affects the B_c^\pm more than the B^\pm, this fact explains the factor two difference in the relative analysis efficiency between the p_T bins.

7 Systematic uncertainties

A summary of all sources of uncertainty that contribute to the analysis efficiency values is given in Table 4. These are absolute values, not percentages. The absolute values for the efficiency ratios are presented in Section 6. They propagate directly to the final results via Eq. (1). The uncertainty in the ratio of efficiencies of detecting a kaon versus a pion is shown in Table 4 in the row titled “Tracking uncertainty”. Tables 5, 6, and 7 contain the systematic uncertainties related to the number of signal events.

The systematic uncertainties of the efficiency ratios are primarily given by the systematic uncertainties of $\epsilon^{\text{ID}}(X_h)$. They are dominated by the material description in the simulation of the detector [30]. The material density affects the K^\pm and π^\pm detection in different ways.

The uncertainty in the efficiencies is due to the size of the MC sample and systematic uncertainties in the event counting. The precision of the efficiencies due to the size of the MC sample is calculated according to Bernoulli statistics. The uncertainty in the probability of generated events to fall into a specific bin in p_T or $|y|$ and the uncertainty in the probability of reconstructing these events are added in quadrature.

The sPlot-based MC reweighting procedure produces an additional systematic uncertainty that is estimated by varying the reweighted distributions while preserving agreement with the data at the 1σ level. The
maximum deviation for the analysis efficiency is taken as the systematic uncertainty of the analysis efficiency derived from the sPlot-based MC reweighting procedure. The uncertainties in the efficiency ratios are found to be 0.03 for $13 \text{ GeV} < p_T < 22 \text{ GeV}$, 0.03 for $p_T > 22 \text{ GeV}$, 0.04 for $p_T > 13 \text{ GeV}$, 0.05 for $|y| < 0.75$, and 0.06 for $0.75 < |y| < 2.3$.

The systematic uncertainties of the fitting procedure (which influence the number of signal events) involve the choice of signal model and the choice of background model. They are estimated by fitting the invariant mass distributions of the B^\pm_s and B^\pm using alternative models for the signal and background shapes and varying the mass range of the fit. The sources of uncertainty are treated as uncorrelated. The maximum deviations from the nominal values when performing alternative fits for each of the sources are added in quadrature to form the systematic uncertainty of the fitted number of events.

The influence of the choice of signal model on the B^\pm_s signal yield is estimated by replacing the Gaussian function by a Crystal Ball function [31, 32]

$$f^\text{Crystal Ball}_{\text{signal}} (m_{J/\psi K^\pm}) \propto \begin{cases} \exp \left(-\frac{(m_{J/\psi K^\pm} - m_{B^\pm_s})^2}{2 \sigma_{CB}^2} \right), & \text{for } m_{J/\psi K^\pm} > m_{B^\pm_s} - \alpha \sigma_{CB} \\ \frac{(m_{B^\pm_s} - m_{J/\psi K^\pm}) \exp(-\alpha^2/2)}{\sqrt{\pi} \alpha \sigma_{CB} (\pi/\alpha - \alpha)}, & \text{for } m_{J/\psi K^\pm} < m_{B^\pm_s} - \alpha \sigma_{CB} \end{cases},$$

convolved with a Gaussian function. All the parameters in the convolution are free and their values are obtained from the fit itself. The resulting uncertainty in $N_{\text{reco}} (B^\pm_s) + N_{\text{reco}} (B^-_s)$ is 2.4% for $13 \text{ GeV} < p_T (B^\pm_s) < 22 \text{ GeV}$, 1.1% for $p_T (B^\pm_s) > 22 \text{ GeV}$, 2.5% for $|y| < 0.75$, 2.8% for 0.75 $|y| < 2.3$, and 2.4% for the combined bin $p_T (B^\pm_s) > 13 \text{ GeV}$. This comes solely from changing the signal model; the effect of changing the background model is described next.

The uncertainty due to the choice of background model is estimated as the maximum deviation from the nominal signal yield $N_{\text{reco}} (B^\pm_s)$ when the default model is replaced by fourth-order Chebychev polynomials of the second kind. The result is 1.7% for $13 \text{ GeV} < p_T (B^\pm_s) < 22 \text{ GeV}$, 1.2% for $p_T (B^\pm_s) > 22 \text{ GeV}$, 2.8% for $|y| < 0.75$, 1.3% for 0.75 $|y| < 2.3$, and 2.9% for the inclusive bin $p_T (B^\pm_s) > 13 \text{ GeV}$.

To estimate the effect of neglecting the contributions of the Cabibbo-suppressed (CS) decays $B^\pm_s \rightarrow J/\psi K^\pm$, the nominal fit model is adapted to include a CS contribution and the difference with respect to the nominal result is taken as a systematic uncertainty. In addition, to estimate the effect of neglecting both the CS contribution and the partially reconstructed B^\pm_s decays (PRD), MC pseudo-experiments have been used. They are generated starting from the default yield results of the fits and adding CS and PRD components. The CS component is estimated based on its branching fraction and efficiency ratio to be 8.6% of the signal yield [21], while a conservative estimation of the PRD component is obtained from a fit to the data.
The generated samples are then fit both with the default configuration (no CS and no PRD) and with a fit including the CS and PRD components and the differences on the signal yields are recorded.

The uncertainty in the number of reconstructed B^\pm events due to the choice of signal model, estimated in the same way as for the B^\pm, is found to be 0.1\% for $13 \text{ GeV} < p_T(B^+) < 22 \text{ GeV}$, 0.2\% for $p_T(B^+) > 22 \text{ GeV}$, 0.1\% for $|y| < 0.75$, 0.2\% for $0.75 < |y| < 2.3$, and 0.1\% for the combined bin $p_T(B^+) > 13 \text{ GeV}$. The total systematic uncertainty of the B^\pm fit is calculated by adding the uncertainties associated with the mass range, the signal model, and the background model in quadrature.

To determine the systematic uncertainty due to the choice of background model for the B^\pm fit, the exponential function in Eq. (2) is replaced by fourth-order Chebychev polynomials of the second kind. The result is 0.2\% for $13 \text{ GeV} < p_T(B^+) < 22 \text{ GeV}$, 0.2\% for $p_T(B^+) > 22 \text{ GeV}$, 0.2\% for $|y| < 0.75$, 0.2\% for $0.75 < |y| < 2.3$, and 0.1\% for the inclusive bin $p_T(B^+) > 13 \text{ GeV}$. All these contributions are summarized in Tables 5, 6, and 7 in the row labeled “Background model of the fit.”

The CS contribution to the B^\pm fit is estimated by considering two extreme scenarios: no contribution and one that is twice the nominal fraction obtained from the fit. The difference between these scenarios is taken as the uncertainty in the number of candidates. As a cross-check, the functional form of the $B^\pm \rightarrow J/\psi \pi^\pm$ component is varied to the sum of a Gaussian and an asymmetric Johnson function [33, 34] and the resulting effects are found to be covered by the quoted systematic uncertainty.

Dimuon trigger efficiencies are calculated for both decay modes, and relative trigger efficiencies for both channels considered are identical within the systematic uncertainty. The residual minor uncertainty is propagated to the final combined uncertainty of the result.

The current world average uncertainty in the B^\pm lifetime of 0.507 ps is 0.009 ps [21], which corresponds to about 2\%, while the uncertainty in the B^\pm lifetime is four times smaller. To analytically estimate the upper limit on the uncertainty due to the lifetime, the d_{xy} significance is studied and treated as 100\% correlated with the lifetime. Using the limiting value for the selection criterion, which is $d_{xy}^0 / \sigma(d_{xy}^0) = 1.2$, the uncertainty is obtained by multiplying 1.2 by 2\% to yield 0.024. Applying ± 0.024 to the d_{xy}^0 significance, the resulting change in the number of B^\pm signal events is taken as the uncertainty due to the lifetime. The absolute values of this uncertainty are shown in Tables 5–7. As a cross-check, the B^\pm MC exclusive signal sample is reweighted in order to reflect the $\pm 2\%$ lifetime uncertainty mentioned above. The analysis efficiencies are recalculated and the maximum deviations are found to have smaller impact than those from the main method, so the largest deviations obtained from the main method are used as an estimator of the uncertainty.

The central values of the integrated luminosity for the two B-meson datasets are exactly the same, so the integrated luminosity cancels out completely in the ratio and the luminosity uncertainty does not contribute to the uncertainty of this measurement. Removing combinations in which one of the hadronic candidates is identified as a muon contributes an uncertainty that is very small compared with the total systematic uncertainty and is consequently neglected.

A summary of all sources of systematic uncertainties that contribute to the number of signal events is given in Tables 5–7. The different components of the systematic uncertainty are added in quadrature. The components of uncertainties correlated between the B^\pm and the B^\mp are subtracted for the relative production cross section times branching fractions presented in Section 8.
Table 5: Summary of all systematic uncertainties for the number of signal events in the two p_T bins.

Source of uncertainty	B^+ value	B^- value		
	$13 \text{ GeV} < p_T < 22 \text{ GeV}$	$p_T > 22 \text{ GeV}$	$13 \text{ GeV} < p_T < 22 \text{ GeV}$	$p_T > 22 \text{ GeV}$
Signal model of the fit	2.4%	1.1%	0.1%	0.2%
CS and PRD components	+19.3%	-2.4%	+19.9%	-2.4%
Background model of the fit	1.7%	1.2%	0.2%	0.2%
Trigger and reconstruction effects	0.9%	0.8%	1.2%	1.2%
B-meson lifetime uncertainty	1.1%	0.9%	< 0.1%	< 0.1%

Table 6: Summary of all systematic uncertainties for the number of signal events in the two $|y|$ bins.

Source of uncertainty	B^+ value	B^- value										
	$	y	< 0.75$	$0.75 <	y	< 2.3$	$	y	< 0.75$	$0.75 <	y	< 2.3$
Signal model of the fit	2.5%	2.8%	0.1%	0.2%								
CS and PRD components	+11.2%	-2.4%	+23.2%	-2.4%								
Background model of the fit	2.8%	1.3%	0.2%	0.2%								
Trigger and reconstruction effects	1.1%	1.0%	1.2%	1.1%								
B-meson lifetime uncertainty	1.0%	0.9%	< 0.1%	< 0.1%								

Table 7: Summary of all systematic uncertainties for the number of signal events in the combined bin ($p_T > 13 \text{ GeV}$, $|y| < 2.3$).

Source of uncertainty	B^+ value	B^- value	
Signal model of the fit	2.4%	0.1%	
CS and PRD components	+17.4%	-2.4%	0.5%
Background model of the fit	2.9%	0.1%	
Trigger effects and reconstruction effects	0.9%	0.9%	
B-meson lifetime uncertainty	0.7%	< 0.1%	

8 Results

The yields $N^\text{reco}(B^{\pm})$ and $N^\text{reco}(B^{\mp})$, and their statistical uncertainties are extracted from the maximum-likelihood fits of the respective invariant mass distributions. The differential relative production cross sections times branching fractions are calculated according to Eq. (1) for all bins in p_T and $|y|$.

17
The differential relative production cross section for the inclusive selection containing all events in the range \(p_T > 13 \text{ GeV} \) and \(|y| < 2.3 \) is

\[
\frac{\sigma(B^\pm) \cdot \mathcal{B}(B_c^+ \rightarrow J/\psi\pi^\pm)}{\sigma(B^\pm) \cdot \mathcal{B}(B^\pm \rightarrow J/\psi K^\pm)} = (0.34 \pm 0.04 \text{ stat } +0.06_{-0.02} \text{ syst } \pm 0.01 \text{ lifetime})\%,
\]

- for \(13 \text{ GeV} < p_T < 22 \text{ GeV} \), \(|y| < 2.3 \) is \((0.44 \pm 0.07 \text{ stat } +0.09_{-0.04} \text{ syst } \pm 0.01 \text{ lifetime})\% \),
- for \(p_T > 22 \text{ GeV} \), \(|y| < 2.3 \) is \((0.24 \pm 0.04 \text{ stat } +0.05_{-0.01} \text{ syst } \pm 0.01 \text{ lifetime})\% \),
- for \(p_T > 13 \text{ GeV} \), \(|y| < 0.75 \) is \((0.38 \pm 0.06 \text{ stat } +0.05_{-0.04} \text{ syst } \pm 0.01 \text{ lifetime})\% \),
- and for \(p_T > 13 \text{ GeV} \), \(0.75 < |y| < 2.3 \) is \((0.29 \pm 0.05 \text{ stat } +0.07_{-0.02} \text{ syst } \pm 0.01 \text{ lifetime})\% \).

Figure 7 summarizes the results of the measurement for the \(p_T(B) \) and \(|y(B)| \) bins as well as for the inclusive bin.

![Figure 7: Summary of the cross-section measurement presented in this article. The left figure shows the production cross section for the \(B^\pm \) relative to the \(B^\pm \) (times the corresponding branching fractions) for two bins in \(p_T \) (black data points) and for the inclusive bin (horizontal band). The right figure shows the measurement binned in rapidity (black data points). On each point the horizontal bar indicates the bin width. The vertical inner error bars on the data points indicate the statistical uncertainty. The outer error bars indicate the size of the quadrature sum of uncertainties from all sources: statistical, systematic, and lifetime. The double hatched error band indicates statistical uncertainty, while the single hatched bands indicate the quadrature sum of uncertainties from all sources.](image)

The differential measurement suggests a dependence on the transverse momentum: the production cross section of the \(B^\pm \) decreases faster with \(p_T \) than the production cross section of the \(B^\pm \). No significant dependence on rapidity is observed.
9 Conclusion

The production cross section of the B_c^\pm meson relative to the production cross section of the B^\pm meson is measured using $B_c^\pm \to J/\psi \pi^\pm$ and $B^\pm \to J/\psi K^\pm$ decays reconstructed by the ATLAS detector analyzing pp collisions at $\sqrt{s} = 8$ TeV delivered by the LHC in 2012. The data used for this study correspond to an integrated luminosity of 20.3 fb$^{-1}$. The relative cross section times branching fraction for the full range $p_T > 13$ GeV and $|y| < 2.3$ is $(0.34 \pm 0.04_{\text{stat}}^{+0.06}_{-0.02 \text{ sys}} \pm 0.01_{\text{lifetime}})\%$. The ratio of the B_c to B^\pm cross sections is measured in two intervals of transverse momentum and rapidity of the B-meson candidates. The differential measurement suggests a dependence on the transverse momentum: the production cross section of the B_c^\pm meson decreases faster with p_T than the production cross section of the B^\pm meson. No significant dependence on rapidity is observed.
Acknowledgments

This paper is dedicated to the memory of Konstantin Toms who has been the main force behind this analysis and did not live to see it published.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; ANID, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF and MPG, Germany; GSRT, Greece; RGC and Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; JINR; MES of Russia and NRC KI, Russian Federation; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, CANARIE, Compute Canada, CRC and IVADO, Canada; Beijing Municipal Science & Technology Commission, China; COST, ERC, ERDF, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex, Investissements d’Avenir Idex and ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; La Caixa Banking Foundation, CERCA Programme Generalitat de Catalunya and PROMETEO and GenT Programmes Generalitat Valenciana, Spain; Göran Gustafssons Stiftelse, Sweden; The Royal Society and Leverhulme Trust, United Kingdom.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [35].

References

[1] LHCb Collaboration, Measurements of B^+_c Production and Mass with the $B^+_c \to J/\psi \pi^+$ Decay, Phys. Rev. Lett. 109 (2012) 232001, arXiv: 1209.5634 [hep-ex].

[2] LHCb Collaboration, Measurement of B^+_c Production in Proton-Proton Collisions at $\sqrt{s} = 8$ TeV, Phys. Rev. Lett. 114 (2015) 132001, arXiv: 1411.2943 [hep-ex].

[3] CMS Collaboration, Measurement of the ratio of the production cross sections times branching fractions of $B^+_c \to J/\psi \pi^+$ and $B^+_c \to J/\psi K^+$ and $\mathcal{B}(B^+_c \to J/\psi \pi^+\pi^+\pi^-)/\mathcal{B}(B^+_c \to J/\psi \pi^+)$ at $\sqrt{s} = 7$ TeV, JHEP 01 (2015) 063, arXiv: 1410.5729 [hep-ex].

[4] M. Masetti and F. Sartogo, Perturbative predictions for B_c meson production in hadronic collisions, Phys. Lett. B 357 (1995) 659, arXiv: hep-ph/9503491 [hep-ph].
A. Berezhnoy, A. Likhoded, and M. Shelyagin, *Hadronic production of B_c mesons*, Phys. Atom. Nucl. 58 (1995) 672, arXiv: hep-ph/9408284 [hep-ph].

C. Chang, Y. Chen, G. Han, and H. Jiang, *On hadronic production of the B_c meson*, Phys. Rev. D 48 (1993) 4086, arXiv: hep-ph/9408242 [hep-ph].

I. P. Gouz, V. V. Kiselev, A. K. Likhoded, V. I. Romanovsky and O. P. Yushchenko, *Prospects for the B_c studies at LHCb*, Phys. Atom. Nucl. 67 (2002) 1559, arXiv: hep-ph/0111432v1 [hep-ph].

S. Slabospitsky, *B_c-meson production in hadron-hadron collisions*, Phys. Atom. Nucl. 58 (1995) 988, arXiv: hep-ph/9404346 [hep-ph].

A. Berezhnoy, A. Likhoded, and O. Yushchenko, *Some Features of the Hadronic $B_c^{(*)}$-meson Production at Large p_T*, Phys. Atom. Nucl. 59 (1996) 709, arXiv: hep-ph/9504302v2 [hep-ph].

C. Chang, Y. Chen, and R. Oakes, *Comparative study of the hadronic production of B_c mesons*, Phys. Rev. D 54 (1996) 4344, arXiv: hep-ph/9602411v1 [hep-ph].

C. McNeile, C. T. H. Davies, E. Follana, K. Hornbostel, and G. P. Lepage, *Heavy meson masses and decay constants from relativistic heavy quarks in full lattice QCD*, Phys. Rev. D 86 (2012) 074503, arXiv: 1207.0994 [hep-lat].

B. Colquhoun et al., *B-meson decay constants: a more complete picture from full lattice QCD*, Phys. Rev. D 91 (2015) 114509, arXiv: 1503.05762v2 [hep-lat].

ALATAS Collaboration, *The ATLAS Experiment at the CERN Large Hadron Collider*, JINST 3 (2008) S08003.

ALATAS Collaboration, *Muon reconstruction efficiency and momentum resolution of the ATLAS experiment in proton-proton collisions at $\sqrt{s} = 7$ TeV in 2010*, Eur. Phys. J. C 74 (2014) 3034, arXiv: 1404.4562 [hep-ex].

ALATAS Collaboration, *Performance of the ATLAS Trigger System in 2010*, Eur. Phys. J. C 72 (2012) 1849, arXiv: 1110.1530 [hep-ex].

T. Sjöstrand, S. Mrenna, and P. Skands, *PYTHIA 6.4 physics and manual*, JHEP 05 (2006) 026, arXiv: hep-ph/0603175 [hep-ph].

T. Sjöstrand, S. Mrenna, and P. Skands, *A brief introduction to PYTHIA 8.1*, Comput. Phys. Commun. 178 (2008) 852, arXiv: 0710.3820 [hep-ph].

ALATAS Collaboration, *The ATLAS Simulation Infrastructure*, Eur. Phys. J. C 70 (2010) 823, arXiv: 1005.4568 [physics.ins-det].

S. Agostinelli et al., *Geant4—a simulation toolkit*, Nucl. Instrum. Meth. A 506 (2003) 250.

ALATAS Collaboration, *VKalVrt – package for vertex reconstruction in ATLAS*, ATLAS Note, ATL-PHYS-2003-031 (2003), url: http://inspirehep.net/record/1195847.

M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98 (2018) 030001.

ALATAS Collaboration, *Reconstruction of primary vertices at the ATLAS experiment in Run 1 proton–proton collisions at the LHC*, Eur. Phys. J. C 77 (2017) 332, arXiv: 1611.10235 [hep-ex].

M. Pivk and F. R. Le Diberder, *sPlot: a statistical tool to unfold data distributions*, Nucl. Instrum. Meth. A 555 (2005) 356, arXiv: physics/0402083 [physics].
[24] ATLAS Collaboration, *Measurement of the differential cross-section of B^* meson production in pp collisions at $\sqrt{s} = 7$ TeV at ATLAS*, JHEP 10 (2013) 042, arXiv: 1307.0126 [hep-ex].

[25] ATLAS Collaboration, *Measurement of the differential cross-sections of prompt and non-prompt production of J/ψ and $\psi(2S)$ in pp collisions at $\sqrt{s} = 7$ and 8 TeV with the ATLAS detector*, Eur. Phys. J. C 76 (2016) 5, 283, arXiv: 1512.03657 [hep-ex].

[26] ATLAS Collaboration, *Observation and measurements of the production of prompt and non-prompt J/ψ mesons in association with a Z boson in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector*, Eur. Phys. J. C 75 (2015) 229, arXiv: 1412.6428 [hep-ex].

[27] ATLAS Collaboration, *Measurement of the muon reconstruction performance of the ATLAS detector using 2011 and 2012 LHC proton-proton collision data*, Eur. Phys. J. C 74 (2014) 3130, arXiv: 1407.3935 [hep-ex].

[28] ATLAS Collaboration, *Measurement of the production cross-section of $\psi(2S) \rightarrow J/\psi(\rightarrow \mu^+\mu^-)\pi^+\pi^-$ in pp collisions at $\sqrt{s} = 7$ TeV at ATLAS*, JHEP 09 (2014) 079, arXiv: 1407.5532 [hep-ex].

[29] ATLAS Collaboration, *Measurement of Upsilon production in 7 TeV pp collisions at ATLAS*, Phys. Rev. D 87 (2013) 052004, arXiv: 1211.7255 [hep-ex].

[30] ATLAS Collaboration, *Charged-particle multiplicities in pp interactions measured with the ATLAS detector at LHC*, New J. Phys. 13 (2011) 053033, arXiv: 1012.5104 [hep-ex].

[31] J. Gaiser, Ph.D. Thesis, SLAC-255 (1982), Stanford, url: https://www.slac.stanford.edu/cgi-wrap/getdoc/slac-r-255.pdf.

[32] R. Lee, Ph.D. Thesis, SLAC-282 (1985), Stanford, url: http://www.slac.stanford.edu/pubs/slacreports/reports06/slac-r-282.pdf.

[33] N. L. Johnson, *Systems of frequency curves generated by methods of translation*, Biometrika 36 (1949) 149, JSTOR 2332539.

[34] M. C. Jones and A. Pewsey, *Sinh-arcsinh distributions*, Biometrika 96 (2009) 761, OU 22510.

[35] ATLAS Collaboration, *ATLAS Computing Acknowledgements*, ATL-SOFT-PUB-2020-001, url: https://cds.cern.ch/record/2717821.
3 Department of Physics, University of Alberta, Edmonton AB; Canada.
4 \(^{(a)} \) Department of Physics, Ankara University, Ankara; \(^{(b)} \) Istanbul Aydin University, Application and Research Center for Advanced Studies, Istanbul; \(^{(c)} \) Division of Physics, TOBB University of Economics and Technology, Ankara; Turkey.
5 LAPP, Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS/IN2P3, Annecy; France.
6 High Energy Physics Division, Argonne National Laboratory, Argonne IL; United States of America.
7 Department of Physics, University of Arizona, Tucson AZ; United States of America.
8 Department of Physics, University of Texas at Arlington, Arlington TX; United States of America.
9 Physics Department, National and Kapodistrian University of Athens, Athens; Greece.
10 Physics Department, National Technical University of Athens, Zografou; Greece.
11 Department of Physics, University of Texas at Austin, Austin TX; United States of America.
12 \(^{(a)} \) Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul; \(^{(b)} \) Istanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul; \(^{(c)} \) Department of Physics, Bogazici University, Istanbul; \(^{(d)} \) Department of Physics Engineering, Gaziantep University, Gaziantep; Turkey.
13 Institute of Physics, Azerbaijan Academy of Sciences, Baku; Azerbaijan.
14 Institut de Física d’Altes Energies (IFAE), Barcelona Institute of Science and Technology, Barcelona; Spain.
15 \(^{(a)} \) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; \(^{(b)} \) Physics Department, Tsinghua University, Beijing; \(^{(c)} \) Department of Physics, Nanjing University, Nanjing; \(^{(d)} \) University of Chinese Academy of Science (UCAS), Beijing; China.
16 Institute of Physics, University of Belgrade, Belgrade; Serbia.
17 Department for Physics and Technology, University of Bergen, Bergen; Norway.
18 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA; United States of America.
19 Institut für Physik, Humboldt Universität zu Berlin, Berlin; Germany.
20 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern; Switzerland.
21 School of Physics and Astronomy, University of Birmingham, Birmingham; United Kingdom.
22 \(^{(a)} \) Facultad de Ciencias y Centro de Investigaciones, Universidad Antonio Nariño, Bogotá; \(^{(b)} \) Departamento de Física, Universidad Nacional de Colombia, Bogotá, Colombia; Colombia.
23 \(^{(a)} \) INFN Bologna and Universita' di Bologna, Dipartimento di Fisica; \(^{(b)} \) INFN Sezione di Bologna; Italy.
24 Physikalisches Institut, Universität Bonn, Bonn; Germany.
25 Department of Physics, Boston University, Boston MA; United States of America.
26 Department of Physics, Brandeis University, Waltham MA; United States of America.
27 \(^{(a)} \) Transilvania University of Brasov, Brasov; \(^{(b)} \) Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest; \(^{(c)} \) Department of Physics, Alexandru Ioan Cuza University of Iasi, Iasi; \(^{(d)} \) National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj-Napoca; \(^{(e)} \) University Politehnica Bucharest, Bucharest; \(^{(f)} \) West University in Timisoara, Timisoara; Romania.
28 \(^{(a)} \) Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava; \(^{(b)} \) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice; Slovak Republic.
29 Physics Department, Brookhaven National Laboratory, Upton NY; United States of America.
30 Departamento de Física, Universidad de Buenos Aires, Buenos Aires; Argentina.
31 California State University, CA; United States of America.
32 Cavendish Laboratory, University of Cambridge, Cambridge; United Kingdom.
33 \(^{(a)} \) Department of Physics, University of Cape Town, Cape Town; \(^{(b)} \) iThemba Labs, Western
Cape;\(^{(c)}\) Department of Mechanical Engineering Science, University of Johannesburg, Johannesburg;\(^{(d)}\) University of South Africa, Department of Physics, Pretoria;\(^{(e)}\) School of Physics, University of the Witwatersrand, Johannesburg; South Africa.

\(^{34}\) Department of Physics, Carleton University, Ottawa ON; Canada.

\(^{35}\) (a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Énergies - Université Hassan II, Casablanca;\(^{(b)}\) Faculté des Sciences, Université Ibn-Tofail, Kénitra;\(^{(c)}\) Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech;\(^{(d)}\) Moroccan Foundation for Advanced Science Innovation and Research (MAScIR), Rabat;\(^{(e)}\) LPMR, Faculté des Sciences, Université Mohamed Premier, Oujda;\(^{(f)}\) Faculté des sciences, Université Mohammed V, Rabat; Morocco.

\(^{36}\) CERN, Geneva; Switzerland.

\(^{37}\) Enrico Fermi Institute, University of Chicago, Chicago IL; United States of America.

\(^{38}\) LPC, Université Clermont Auvergne, CNRS/IN2P3, Clermont-Ferrand; France.

\(^{39}\) Nevis Laboratory, Columbia University, Irvington NY; United States of America.

\(^{40}\) Niels Bohr Institute, University of Copenhagen, Copenhagen; Denmark.

\(^{41}\) (a) Dipartimento di Fisica, Università della Calabria, Rende;\(^{(b)}\) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati; Italy.

\(^{42}\) Physics Department, Southern Methodist University, Dallas TX; United States of America.

\(^{43}\) Physics Department, University of Texas at Dallas, Richardson TX; United States of America.

\(^{44}\) National Centre for Scientific Research "Demokritos", Agia Paraskevi; Greece.

\(^{45}\) (a) Department of Physics, Stockholm University;\(^{(b)}\) Oskar Klein Centre, Stockholm; Sweden.

\(^{46}\) Deutsches Elektronen-Synchrotron DESY, Hamburg and Zeuthen; Germany.

\(^{47}\) Lehrstuhl für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund; Germany.

\(^{48}\) Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden; Germany.

\(^{49}\) Department of Physics, Duke University, Durham NC; United States of America.

\(^{50}\) SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh; United Kingdom.

\(^{51}\) INFN e Laboratori Nazionali di Frascati, Frascati; Italy.

\(^{52}\) Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg; Germany.

\(^{53}\) II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen; Germany.

\(^{54}\) Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève; Switzerland.

\(^{55}\) (a) Dipartimento di Fisica, Università di Genova, Genova;\(^{(b)}\) INFN Sezione di Genova; Italy.

\(^{56}\) II. Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen; Germany.

\(^{57}\) SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow; United Kingdom.

\(^{58}\) LPSC, Université Grenoble Alpes, CNRS/IN2P3, Grenoble INP, Grenoble; France.

\(^{59}\) Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA; United States of America.

\(^{60}\) (a) Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei;\(^{(b)}\) Institute of Frontier and Interdisciplinary Science and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Qingdao;\(^{(c)}\) School of Physics and Astronomy, Shanghai Jiao Tong University, Key Laboratory for Particle Astrophysics and Cosmology (MOE), SKLPPC, Shanghai;\(^{(d)}\) Tsung-Dao Lee Institute, Shanghai; China.

\(^{61}\) (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg;\(^{(b)}\) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; Germany.

\(^{62}\) Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima; Japan.

\(^{63}\) (a) Department of Physics, Chinese University of Hong Kong, Shatin, N.T., Hong Kong;\(^{(b)}\) Department of Physics, University of Hong Kong, Hong Kong;\(^{(c)}\) Department of Physics and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; China.

\(^{64}\) Department of Physics, National Tsing Hua University, Hsinchu; Taiwan.
IJCLab, Université Paris-Saclay, CNRS/IN2P3, 91405, Orsay; France.

Department of Physics, Indiana University, Bloomington IN; United States of America.

INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine; ICTP, Trieste; Dipartimento Politecnico di Ingegneria e Architettura, Università di Udine, Udine; Italy.

INFN Sezione di Lecce; Dipartimento di Matematica e Fisica, Università del Salento, Lecce; Italy.

INFN Sezione di Milano; Dipartimento di Fisica, Università di Milano, Milano; Italy.

INFN Sezione di Napoli; Dipartimento di Fisica, Università di Napoli, Napoli; Italy.

INFN Sezione di Pavia; Dipartimento di Fisica, Università di Pavia, Pavia; Italy.

INFN Sezione di Pisa; Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa; Italy.

INFN Sezione di Roma; Dipartimento di Fisica, Sapienza Università di Roma, Roma; Italy.

INFN Sezione di Roma Tor Vergata; Dipartimento di Fisica, Università di Roma Tor Vergata, Roma; Italy.

INFN Sezione di Roma Tre; Dipartimento di Matematica e Fisica, Università Roma Tre, Roma; Italy.

INFN-TIFPA; Università degli Studi di Trento, Trento; Italy.

Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck; Austria.

University of Iowa, Iowa City IA; United States of America.

Department of Physics and Astronomy, Iowa State University, Ames IA; United States of America.

Joint Institute for Nuclear Research, Dubna; Russia.

Departamento de Engenharia Elétrica, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora; Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; Instituto de Física, Universidade de São Paulo, São Paulo; Brazil.

KEK, High Energy Accelerator Research Organization, Tsukuba; Japan.

Graduate School of Science, Kobe University, Kobe; Japan.

AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow; Poland.

Institute of Nuclear Physics Polish Academy of Sciences, Krakow; Poland.

Faculty of Science, Kyoto University, Kyoto; Japan.

Kyoto University of Education, Kyoto; Japan.

Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka; Japan.

Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata; Argentina.

Physics Department, Lancaster University, Lancaster; United Kingdom.

Oliver Lodge Laboratory, University of Liverpool, Liverpool; United Kingdom.

Department of Experimental Particle Physics, Jožef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana; Slovenia.

School of Physics and Astronomy, Queen Mary University of London, London; United Kingdom.

Department of Physics, Royal Holloway University of London, Egham; United Kingdom.

Department of Physics and Astronomy, University College London, London; United Kingdom.

Louisiana Tech University, Ruston LA; United States of America.

Fysiska institutionen, Lunds universitet, Lund; Sweden.

Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne; France.

Departamento de Física Teórica C-15 and CIAFF, Universidad Autónoma de Madrid, Madrid; Spain.

Institut für Physik, Universitäts Mainz, Mainz; Germany.

School of Physics and Astronomy, University of Manchester, Manchester; United Kingdom.

CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille; France.
140*(a) Laboratório de Instrumentação e Física Experimental de Partículas - LIP, Lisboa; *(b) Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa; *(c) Departamento de Física, Universidade de Coimbra, Coimbra; *(d) Centro de Física Nuclear da Universidade de Lisboa, Lisboa; *(e) Departamento de Física, Universidade do Minho, Braga; *(f) Departamento de Física Teórica y del Cosmos, Universidad de Granada, Granada (Spain); *(g) Dep Física and CEFITEC of Faculdade de Ciências e Tecnologie, Universidade Nova de Lisboa, Caparica; *(h) Instituto Superior Técnico, Universidade de Lisboa, Lisboa; Portugal.

141 Institute of Physics of the Czech Academy of Sciences, Prague; Czech Republic.
142 Czech Technical University in Prague, Prague; Czech Republic.
143 Charles University, Faculty of Mathematics and Physics, Prague; Czech Republic.
144 Particle Physics Department, Rutherford Appleton Laboratory, Didcot; United Kingdom.
145 IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette; France.
146 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA; United States of America.
147 *(a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; *(b) Universidad Andres Bello, Department of Physics, Santiago; *(c) Instituto de Alta Investigación, Universidad de Tarapacá; *(d) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso; Chile.
148 Universidade Federal de São João del Rei (UFSJ), São João del Rei; Brazil.
149 Department of Physics, University of Washington, Seattle WA; United States of America.
150 Department of Physics and Astronomy, University of Sheffield, Sheffield; United Kingdom.
151 Department of Physics, Shinshu University, Nagano; Japan.
152 Department Physik, Universität Siegen, Siegen; Germany.
153 Department of Physics, Simon Fraser University, Burnaby BC; Canada.
154 SLAC National Accelerator Laboratory, Stanford CA; United States of America.
155 Physics Department, Royal Institute of Technology, Stockholm; Sweden.
156 Departments of Physics and Astronomy, Stony Brook University, Stony Brook NY; United States of America.
157 Department of Physics and Astronomy, University of Sussex, Brighton; United Kingdom.
158 School of Physics, University of Sydney, Sydney; Australia.
159 Institute of Physics, Academia Sinica, Taipei; Taiwan.
160 *(a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; *(b) High Energy Physics Institute, Tbilisi State University, Tbilisi; Georgia.
161 Department of Physics, Technion, Israel Institute of Technology, Haifa; Israel.
162 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv; Israel.
163 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki; Greece.
164 International Center for Elementary Particle Physics and Department of Physics, University of Tokyo, Tokyo; Japan.
165 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo; Japan.
166 Department of Physics, Tokyo Institute of Technology, Tokyo; Japan.
167 Tomsk State University, Tomsk; Russia.
168 Department of Physics, University of Toronto, Toronto ON; Canada.
169 *(a) TRIUMF, Vancouver BC; *(b) Department of Physics and Astronomy, York University, Toronto ON; Canada.
170 Division of Physics and Tonomaga Center for the History of the Universe, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba; Japan.
171 Department of Physics and Astronomy, Tufts University, Medford MA; United States of America.
172 Department of Physics and Astronomy, University of California Irvine, Irvine CA; United States of America.
America.

173 Department of Physics and Astronomy, University of Uppsala, Uppsala; Sweden.
174 Department of Physics, University of Illinois, Urbana IL; United States of America.
175 Instituto de Física Corpuscular (IFIC), Centro Mixto Universidad de Valencia - CSIC, Valencia; Spain.
176 Department of Physics, University of British Columbia, Vancouver BC; Canada.
177 Department of Physics and Astronomy, University of Victoria, Victoria BC; Canada.
178 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität Würzburg, Würzburg; Germany.
179 Department of Physics, University of Warwick, Coventry; United Kingdom.
180 Waseda University, Tokyo; Japan.
181 Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot; Israel.
182 Department of Physics, University of Wisconsin, Madison WI; United States of America.
183 Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal; Germany.
184 Department of Physics, Yale University, New Haven CT; United States of America.
185 Yerevan Physics Institute, Yerevan; Armenia.
 a Also at Borough of Manhattan Community College, City University of New York, New York NY; United States of America.
 b Also at Centre for High Performance Computing, CSIR Campus, Rosebank, Cape Town; South Africa.
 c Also at CERN, Geneva; Switzerland.
 d Also at CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille; France.
 e Also at Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève; Switzerland.
 f Also at Departament de Física de la Universitat Autònoma de Barcelona, Barcelona; Spain.
 g Also at Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, Lisboa; Portugal.
 h Also at Department of Applied Physics and Astronomy, University of Sharjah, Sharjah; United Arab Emirates.
 i Also at Department of Financial and Management Engineering, University of the Aegean, Chios; Greece.
 j Also at Department of Physics and Astronomy, University of Louisville, Louisville, KY; United States of America.
 k Also at Department of Physics and Astronomy, University of Sheffield, Sheffield; United Kingdom.
 l Also at Department of Physics, Ben Gurion University of the Negev, Beer Sheva; Israel.
 m Also at Department of Physics, California State University, East Bay; United States of America.
 n Also at Department of Physics, California State University, Fresno; United States of America.
 o Also at Department of Physics, California State University, Sacramento; United States of America.
 p Also at Department of Physics, King’s College London, London; United Kingdom.
 q Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg; Russia.
 r Also at Department of Physics, Stanford University, Stanford CA; United States of America.
 s Also at Department of Physics, University of Fribourg, Fribourg; Switzerland.
 t Also at Department of Physics, University of Michigan, Ann Arbor MI; United States of America.
 u Also at Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow; Russia.
 v Also at Giresun University, Faculty of Engineering, Giresun; Turkey.
 w Also at Graduate School of Science, Osaka University, Osaka; Japan.
 x Also at Hellenic Open University, Patras; Greece.
 y Also at Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest; Romania.
 z Also at IJCLab, Université Paris-Saclay, CNRS/IN2P3, 91405, Orsay; France.
 aa Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona; Spain.
 ab Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg; Germany.
Also at Institute for Mathematics, Astrophysics and Particle Physics, Radboud University/Nikhef, Nijmegen; Netherlands.

Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia; Bulgaria.

Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest; Hungary.

Also at Institute of Particle Physics (IPP); Canada.

Also at Institute of Physics, Academia Sinica, Taipei; Taiwan.

Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku; Azerbaijan.

Also at Institute of Theoretical Physics, Ilia State University, Tbilisi; Georgia.

Also at Instituto de Fisica Teorica, IFT-UAM/CSIC, Madrid; Spain.

Also at Istanbul University, Dept. of Physics, Istanbul; Turkey.

Also at Joint Institute for Nuclear Research, Dubna; Russia.

Also at Louisiana Tech University, Ruston LA; United States of America.

Also at LPNHE, Sorbonne Université, Université de Paris, CNRS/IN2P3, Paris; France.

Also at Manhattan College, New York NY; United States of America.

Also at Moscow Institute of Physics and Technology State University, Dolgoprudny; Russia.

Also at National Research Nuclear University MEPhI, Moscow; Russia.

Also at Physics Department, An-Najah National University, Nablus; Palestine.

Also at Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg; Germany.

Also at School of Physics, Sun Yat-sen University, Guangzhou; China.

Also at The City College of New York, New York NY; United States of America.

Also at The Collaborative Innovation Center of Quantum Matter (CICQM), Beijing; China.

Also at TRIUMF, Vancouver BC; Canada.

Also at Universita di Napoli Parthenope, Napoli; Italy.

* Deceased