Research Article

Dark Web Data Classification Using Neural Network

Anand Singh Rajawat 1, Pradeep Bedi 2, S. B. Goyal 3, Sandeep Kautish 4, Zhang Xihua 5, Hanan Aljuaid 6 and Ali Wagdy Mohamed 7,8

1School of Computer Science & Engineering, Sandip University, Nashik, Maharashtra, India
2Galgotias University, Greater Noida, Uttar Pradesh, India
3City University, Petaling Jaya, Malaysia
4LBEF Campus, Kathmandu, Nepal
5Baicheng Normal University, Baicheng, China
6Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
7Operations Research Department, Faculty of Graduate Studies for Statistical Research, Cairo University, Giza 12613, Egypt
8Department of Mathematics and Actuarial Science, School of Science and Engineering, The American University in Cairo, New Cairo, Egypt

Correspondence should be addressed to Sandeep Kautish; dr.skautish@gmail.com

Received 18 November 2021; Revised 6 January 2022; Accepted 21 February 2022; Published 28 March 2022

Academic Editor: Ahmed Mostafa Khalil

Copyright © 2022 Anand Singh Rajawat et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

There are several issues associated with Dark Web Structural Patterns mining (including many redundant and irrelevant information), which increases the numerous types of cybercrime like illegal trade, forums, terrorist activity, and illegal online shopping. Understanding online criminal behavior is challenging because the data is available in a vast amount. To require an approach for learning the criminal behavior to check the recent request for improving the labeled data as a user profiling. Dark Web Structural Patterns mining in the case of multidimensional data sets gives uncertain results. Uncertain classification results cause a problem of not being able to predict user behavior. Since data of multidimensional nature has feature mixes, it has an adverse influence on classification. The data associated with Dark Web inundation has restricted us from giving the appropriate solution according to the need. In the research design, a Fusion NN (Neural network)-S3VM for Criminal Network activity prediction model is proposed based on the neural network; NN- S3VM can improve the prediction.

1. Introduction

Dark Web structural mining is measured as an essential portion of data analysis associated with cybersecurity. The primary purpose of structural data analysis is to extract relevant results to provide data consistency concerning the most prominent properties. This problem was initially proposed in the background of market basket analysis with instruction to discover frequent cybercrime activity collections that are accepted [1]. Subsequently, its prescribed classification, at initial, an extraordinary number of algorithms, has been designated [2]. Further, most of these algorithms are constructed on naive Bayes algorithm or Apriori-like methods creating a gradient of candidate items, sets, or patterns molded by several fusions of single items [3]. After the number of these solitary items to be collective, the pattern mining problem became a problematic assignment, and other effective approaches are compulsory. After that, the quantity of item sets in which a cylindrical container is produced is identical $2^n – 1$, so it develops enormously multifaceted through the increasing amount of singletons. The novel approaches are designed to explore dark web patterns created on antimonotone things as a pruning approach. It regulates that a sub-Dark Web Structural pattern of a recurrent Dark Web Structural pattern is similarly frequent, and either superpattern of an intermittent pattern...
determination is certainly not frequent. This pruning approach permits the search space to be complete after a pattern is noticeable as infrequent; then no novel pattern requirements are produced. The enormous volumes of data in numerous request fields have initiated a reduction in current approaches' performance. Traditional Dark Web Structural pattern mining algorithms are not appropriate for classifying data accurately, giving two significant problems to be resolved:

(i) Computational complexity
(ii) Main memory necessities

Big data is the appearance of its gage, diversity, and velocity. Dark web Data streams remain typically incredible in velocity and real-time. Consequently, profligate and incessant active time processing is required to illustrate dark web big data's real significance. In the field of illegal trade, forums, terrorist activity, online shopping, websites have a massive quantity of data that has been compiled together in the existing criminal systems. The presence and request of the online news have complete traffic data additional to similar big data. As a consequence, time and investment costs are reduced. The existing SVM and neural network algorithm based prediction model has the benefits of high accuracy and extraordinary simplification, resolves the problems of minor illustrations and high dimensional illustrations, and successfully forecasts classified cybercriminal activity according to requirement [4]. Prediction model is innovative to classify the results online and progress its accuracy. The neural network model can correspondingly be used to predict movement flow. It mostly accepts matrix assessment to improve the neural network algorithm. Its accuracy is improved than customary neural network representations. Our proposed approach is based on the concept of the Semisupervised Algorithm and Constructive Semisupervised Classification (CSSL) Algorithm. The paper is organized in the following format. Section 2 represents the related work; Section 3 shows the challenges: dark web structural patterns data classification; Section 4 presents dark web structural patterns mining data; Section 5 describes SVM web structure for data classification; Section 6: presents optimization in support vector machines; Section 7 presents proposed methodology; Section 8 provides discussion; Section 9 summarizes conclusion and future work.

2. Related Work

The performance of [5] the model for deep reinforcement learning (DRL) shows an appreciable result when compared with conventional supervised techniques of ML (Machine learning) like GBM (gradient boosting machine technique) for criminal network analysis (CNA). The techniques used here contain CCND (Corrupted Criminal Network Dataset) to reconstruct models for link prediction training by using the features of DRL Techniques (deep reinforcement learning). The techniques given by [6] presented the approach of analyzing dark web data managing processes using discrete principles and practices designed for respective stages. [2] presented the approach of identifying core site links using the examination of hyperlinks SNA (Social Network Analysis). The density value of 0.132 is achieved and shows a significant section of core links and sites. The Olivier Chapelle et al., 2008 Research focuses on S3VM (Semisupervised Support Vector Machines) to further study the literature review and available techniques to enhance the S3VM algorithm. The comparative study and literary analysis are done by [7] to present deep learning models' performance in solving the complex network issues used to predict network values with acceptable result parameters. The image-based network transformation of the Matrix (adjacency) approach is given by [8] using DGM (Deep Generative Modeling techniques) for understanding the hierarchical parameters and features. The reviewed literature is discussed by [9] the systematic construction of identified issues chosen network values of datasets to analyze link prediction features. The machine learning ensemble approach was given [10] for identifying the interfacing issues using NN and DT (decision-Trees) algorithms. The Bayes algorithms and maxim entropy techniques were implemented [11]. For analyzing the data required for training purposes, the cost-based semisupervised approach (CS4VM) [12] approximates SVM supervised values of cost used in link prediction modeling for the network [13]. Based on the findings of recent studies, it appears to be an effective method of discovering whether or not the program has been pirated in any significant way. Reference [14] presents the Haar wavelet collocation method (HWCM) for solving linear and nonlinear Schrödinger equations numerically. Through the use of linearization, the nonlinear term in the model equation is made linear [15]. For PDEs related to the framework of the so-called inverse problem, a Haar wavelet collocation method (HWCM) is developed [16]. Methods for solving linear PDEs with an unknown source of heat and an identifiable solution are described in this paper in two separate versions. Two different multiresolution approaches based on Haar wavelets are shown here for numerically solving the Schrödinger equations in two dimensions. The linear and nonlinear model equations are put into consideration [17]. In order to address the inverse problem of ambiguous source control parameters, a hybrid Haar wavelet collocation method (HWCM) has been proposed. These problems are difficult to answer numerically because they have nonlinear components and uncertain control parameter sources. Nonlinear hyperbolic Schroedinger equations (NHSEs) can be quantitatively solved using a Haar wavelet collocation technique (HWCM). There are two ways to estimate the time derivative in the governing equations: by utilizing finite Haar series or by employing space-derivatives. An investigation into educational institutions’ understanding of piracy is the goal of this study. Piracy and awareness of pirated software can be determined through this investigation, which can ultimately benefit academics.

3. Challenges: Dark Web Structural Patterns Data Classification

(i) Instinctive learning and dynamic behavior
(ii) Runtime active environments for feature selection
Predictable dark web structural patterns mining algorithms for crime activity information extraction and classification using neural network algorithm (just like a backpropagation neural network) are not appropriate for colossal data platforms (dynamic change and uncertain) based on the Mapper Reduce model [18]. Furthermore, when the data measure is enormous (typically happening the size of gigabytes), this algorithm works very slow and cannot generate output completely. This research examines machine learning and a deep learning algorithm based on web usage mining, fusion level deep learning-based on a backpropagation neural network using binary classification. It proposes a Fusion deep learning model based on map reduction applied on usage data sets to modify the performance in terms of accuracy over huge-scale web usage data. This model is called NN-S^3VM (neural network and semisupervised support vector machine) [19].

To apply the fusion of two algorithms, SVM and semisupervised, the two algorithms’ association is done through collaborative learning. We can devise a novel tritraining or cotraining algorithm by expanding different expectations. The vast number of the numerous techniques and algorithms of dark web structure data classification useful to developing the criminal data classifiers are currently identified. Such techniques and algorithms are planned, for example, to develop the linear SVM, SVMG-RBF, BPNN, S^3VM, the decision trees, the significant rules of classification, deep learning, and more. The classical SVM model is problematic to evaluate huge major useful problems. Parallel SVM can improve the execution speed significantly. The high classification value was proposed for dark web activity in specific, the SVM algorithm (Support Vector Machine Algorithm), and the SVMG-RBF show BPNN, S^3VM.

Though, presently no data classifier can completely specify or resolve local minima problems. Existing tools cannot solve classification with high-quality dark web structure data since tools have limitations for a particular dark web structure data. Consequently, the decision on the fusion of the SVM and SSL (Semisupervised learning) for classification of the elegant mix dataset (illegal trade, forums, terrorist activity, online shopping dark web Criminal Network) was accepted [20]. Collaborative filtering techniques are frequently used to resolve such problems based on dark web user-to-user correspondence or rely on matrix factorization methods to construct hidden factor vectors for every user. To propose a novel model of NN-S^3VM, a semisupervised support vector machine based on a map-reducing model for data classification using the fusion-based deep learning model with a backpropagation neural network is proposed.

The existing fusion dark data classification includes much redundant and irrelevant information. The feature dimension reduction and information extraction can be worked on to eradicate inappropriate and redundant information successfully. To enhance the machine learning algorithm’s efficiency, expand the accuracy of multidimensional dark web structure data classifications and predicting outcomes and increase learning capability.

4. Dark Web Structural Patterns Mining Data

The pattern matching techniques for dark web is related to textual data in for of logs (records). However, the data can be classified on different techniques for data mining.

4.1. Dark Web Click Stream Data. Using our approach can determine cybercriminal interest and their accomplishments in different problems like illegal trade, forums, terrorist activity, inspecting, and more. It produces analyzers of the patterns and intelligently visualizes the customers’ analogous type of products.

4.2. News and Sentiment Analysis. Dark web News and Dark web Sentiment data is unlabeled dark web that characterizes opinions, emotions, and attitudes defined in sources such as blogs, social media posts, online newspapers, online product reviews, and consumer support communications. Dissimilar companies and organizations use social media analysis to appreciate how the public feels about some issue at a specific moment in time and similarly track down how those sentiments modify over time.

4.3. Dark Web Trending Volume. Now voluminous dark data is converted to the number of jobs, and jobs can be quickly processed using the proposed framework. Trending Volume is a big concern currently. Day by day, it has been accumulative at a considerably higher rate in the establishments and social media sites, and more.

4.4. Dark Web Predictive Analytics. This analytics is the Dark web big point in our research. It provides predictive scores to the organizations to support in creating smart decisions and dark website behavior to proliferate customer responses in business, adaptations, and consultations.

4.5. Dark Web Text Analytics. This analytics is the process for originating the high, prominent information from the raw data, such as unstructured data and forecasting and predicting the analysis.

4.6. Dark Web Social Media Mining. Through HADOOP, mine Facebook and other social media discussions for people’s sentiment data and use it to produce targeted real-time decisions.

5. SVM Web Structure for Data Classification

Primarily, SVMs were established with the investigation abilities and volume control of machine learning and to resolve overfitting complications in high-dimensional feature spaces preowned formalization. SVMs can make decisions by reducing classification errors, subsequently
minimalizing so-called operational risks. SVMs can reduce
the misclassification problem with the help of maximum
probability techniques (MPT). Support vector machine can
directly specify the distribution of training sets. Presently,
SVMs are associated with the nonparametric supervised
classification technique. It has been accepted as the domain
of machine learning and pattern recognition. The best
technique for dark web structure data classification is a
support vector machine used for hyperplane optimization
[21]. The main concept is to divide it into several classes.
SVM uses Maximum Margin Classifier (MMC) for resolving
the particle problem. Vapnik introduced a Support Vector
Machine (SVM). To apply the classification, the training
dark web structure data set is represented as follows:
\[DS = \{ X_1, \ldots, X_p \} \]
(1)
where \(x_i \) is specific vector labels will be represented as
follows:
\[\{ X'_1, \ldots, X'_q \} \]
(2)
SVM classifies the dark web structure data into two
classes: training class and testing class. The number of hy-
perplanes can be associated with the two classes. SVM
classifier chooses the hyperplane to compute the minimum
distance between the cluster. Distance is computed through
margin. One side hyperplane can be represented as \(a - 1 \)
labeled. Another side hyperplane can be represented as \(a + 1 \).
It represents that support vector training information
traveling between neighbor and SVM.

Classification: \(yi \) is a Functional margin and represents
the number of an instance \((x_i, x'_i)\). It describes the hyper plan
in the opposite direction to a hyper-plane \((w, b)\), written as
follows:
\[yi = x_i(\langle w, x_i \rangle + b) \]
(3)
To show the positive margin as a \(yi > 0 \) and recom-
mandation margin of \((x_i, x'_i)\). The data point is separated and
labeled among the hyperplanes. Between hyperplanes that
distinct the labeled points, a unique point provide a more
margin between the data point. Using the support vector
machine, discover the highest margin between the hyper-
planes. However, the functional margin has been computed
to represent \(w \) and \(b \). Therefore, it is represented as a
geometric margin \(yg \). The full margin is utilized to create the
rules-based margin.

6. Optimization in Support Vector Machines

SVM has a problem with optimization. Several algorithms
work to solve the optimization problem.

6.1. Semisupervised Algorithm for Web Usage Mining. SSL
algorithm is a machine learning algorithm that is used for
the dark web structure data classification. Raw dark web
structure data set or mixed data set can be categorized as a
labeled data set and unlabeled data set. Several machine
learning algorithms work for the classification of unlabeled
data set. The SSL algorithm is very powerful for information
extraction in the unlabeled dataset.

It is easy to classify the low amount of data using SSL, but
current scenario data are generated in huge or significant
quantities and dynamically; thus, an efficient algorithm for
training and uncertain dark web structure dataset is required.

Training and testing are performed using a semisupervised
support vector, which simplifies the instance
according to the given training set. The fusion-based
technique is used for performing the training with transitive
learning. It is a simple way to classify the unlabeled sample.
To discover the knowledge in the unlabeled data, the margin
is checked between labeled data. Our proposed model is used
for analysis and finding out the improvement in SVM.

6.2. Microclustering Algorithm (MCA) for Large Dark Web
Structure Data. In the order of ranking microclustering
computation, it has the following peculiarities. It concep-
tualizes a microidentically compact grouping tree, pro-
claimed to be a CF (Clustering Feature) tree. The
information set going through the validation process indi-
cates the inactive measure of resources by regular small
measuring and innovatively accessing multidimensional
information points in identically compact groups.

After the same, the specific checking of the numbers no
longer allows backing out. Common inaccuracies might be
likely to take place, believing in the sequence of numbers
entered. The CF tree takes possession of the studied nu-
merical data’s prominent delivery patterns and advises re-
quired information for SVM to gently accept it. It manages
noise or outliers skillfully as a copy of the clustering [22].
SVM coordinates a line or a hyperplane among binary sets of
data for classification. The data are taken data \(X \) that comes
under a different aspect of the hyperplane.
\((X^T W b) > 0 \), arc labeled as +1 and which lessens on
the extra side.
\((X^T W b) < 0 \), arc labeled as −1.

6.3. Recursive Map Reduce Model for SVM. Gaussian kernel
(Kernel function) and its numerous selections of the pa-
rameters should be examined to discover the preeminent
SVM. Applying and processing massive dark web structure
data set for training and testing (Algorithm 1).

The flowchart of the algorithm that has been proposed is
depicted in Figure 1.

6.4. Constructive Semisupervised Classification (CSSL)
Algorithm. This section discusses details required to im-
plement constructive semisupervised learning (CSSL) based
on the classification [23] of system spending perception of
geometrical growth. To explain the algorithm for classifi-
cation, the semisupervised learning [24] Algorithm is es-
sentially constructed over multilevel geometrical. The know
neurons can be extracted when it is represented by hyper-
spheres presentation, so they are given a learning task [9]
Applying reducer

Web Structure

Input: Dark

performer
techniques.

techniques.

Use of
Differentiated
parameters.

Cross-validation
for discovering
the parameters.

Figure 1: Flowchart of the proposed algorithm.

ALGORITHM 1: Map-reduce model for SVM program procedure.

| Step 1: input the dark web structure data convert data to the format of mapper function applying SVM package |
| Step 2: Behavior of the dark web structure data sample perform the training on the data |
| Step 3: deliberate the RBF kernel |
| Step 4: Usage cross-validation to discovery the parameter p and R |
| Step 5: Usage the distinguished parameter p and g to train the entire training set |
| Step 6: Applying the reducer perform the resting task |

using hyperspheres performed by the geometrical growth. CSSL Algorithm has a particular advantage over previous learning algorithm for Backpropagation Neural Network (BPNN) [25]:

(a) Design and Implementation of CSSL algorithm that keeps the simplification ability and compares existing learning algorithms.

(b) CSSL algorithm does not need previous vertex training, which creates its additional simplicity.

(c) CSSL algorithm required a short time for learning. It gets it regularly to permit a vertex to a conceived neuron or by managing to which specific area it belongs to or not making use of the loaded sum of the single specific arrangement of a vertex.

Dark Web Structural Patterns mined using neural network-S3VM for Criminal Network are research domain of computer technology information whose development is done by the improvements in data assessment research, tracking, and escalation in the cybercrime activity. The dark web criminal market needs activity tracking approaches that might help extract appreciated information from massive data stores.

7. Proposed Methodology

Our proposed technique is to improve the performance of SVM [26] and boost the SVM speed and Radial Basis Function (RBF) kernel function using the machine learning technique [27]. Machine learning is the perception of classification, learning, and analysis [28]. In this concept, labeled and unlabeled classes of data together can be evaluated. Labeled dark web data can be created using unlabeled dark web structure data, and unlabeled web structure data is taken from web usage data. Several dissimilar [29] types of approaches are available for labeled data processing, but there is an insufficient quantity of unstructured data exploration methods and their accurate analysis. The presented work is keen on discovering a resourceful and accurate framework by which the unlabeled (mixed data set) data and their classification can be analyzed uniquely. To find such a procedure, various techniques are evaluated to determine the best technique with maximum capability.

The experimental results of our proposed neural network-S3VM model are obtained by evaluating using SVM. Our proposed model for the classifier, the performance of the existing classification technique is improved. The proposed technique is based on the deep learning model’s [30] fusion, binary neural network classifier, and expanding the backpropagation neural network (BPNN). In a significant step, labeled data is used with binary classification. The probability of every dataset in the classification class is positioned. Afterward, the computed probability is converted into weights. These weights are disseminated in both definite classes and neural network training. Throughout the classification, testing data is again studied for a similar progression, and weights are readjusted for essential labels of the dataset. The output of this testing is used to predict the performance of the scheme [31]. We present a simplified algorithm through neural network-S3VM. The outputs of our algorithm have been tested through experimental analysis.

Our data classification technique is an improvement over the previous distributed or parallel works in two ways. One new training neural network-S3VM algorithm and deep learning backpropagation neural network classification to obtain classifier function. Secondly, applying more feature engineering methods increases the overall accuracy of the system. Applying our approach reduces the web application problem for classifying and improves big data accuracy; Big data is quite common nowadays. The results of this research are essential for the training of datasets for neural network-S3VM [32] algorithm-based classification problems.

S3VM for information recommendation according to the user interest, applying the hybrid technique to use minimum classified the data web structure data in a raw data set, applying training and testing to generate the large training sample and less testing sample. Using our proposed model, conversion of large unlabeled instances into labeled instances depends [33] on the fusion level.

The most significant task for fusion-based future selection algorithms can improve accuracy and proficiency. We have illustrated simulation on real-time data set, generated effective results, and improved the efficiency of the map-reduced model.
7.1. Neural Network Approach. The study of this network will aid us in gaining insight into the fundamental reasons behind the complex Deep Learning models [34] that we are currently investigating. The Multilayer Perceptron is an example of a type of neural network that is widely used in simple regression scenarios and is a type of neural network. When it comes to pattern analysis, MLPs are not particularly well suited, especially for sequential and multidimensional data, according to the literature. A multilayer perceptron must have a “large” number of parameters in order to successfully handle multidimensional [35] data as a result of these considerations. The fact that they can cope with both sequential and random input is one of the reasons why RNNs are so commonly utilized. As a result of its patterns, the network [36] is able to identify dependencies on earlier data, which is extremely important when making predictions. When it comes to extracting resource maps from data sources such as images and videos, CNNs are particularly adept. These maps may subsequently be used for classification and segmentation [37], among other things. The term convolutional neural network (CNN) refers to a neural network that receives sequential input data and is constructed using a convolutional neural network (CNN) in the form of Conv1D/1D. Using a combination of MLPs, CNNs, and RNNs in most Deep Learning models, it is possible to maximize the effectiveness of each of the three types of deep learning models. It is not possible for LP, CNN, and RNN to complete all of their objectives. A substantial percentage of its overall effectiveness can be attributed to the fact that it was able to identify its purpose [38] and choose the most appropriate parameters, such as the Loss function, the Optimizer, and the Regularizer, early on. Furthermore, we have access to information that has been obtained outside of the training environment. The Regularizer is used to ensure that the trained model generalizes to fresh data, which is essential in machine learning.

7.2. Evaluation of Our Proposed Framework. We improve upon existing SVM algorithms by including new features. To improve the quality of working of SVM algorithms, To develop a semisupervised algorithm, the semisupervised algorithm can help us determine the navigation ratio from essential in machine learning.

7.2.1. Preprocessing of Dark Web Structural Patterns Information. Preprocessing performs several tasks. The first task is applying the mixed data set for cleaning the data; the second task performs the session identification according to user usage data perspective.

7.2.2. Discovery of Dark Web Pattern. Data produced by preprocessing phase finds the required pattern, then applies the number of data mining algorithms based on machine learning sequential pattern technique, semisupervised learning algorithm [45], classification, K-means clustering, and to discover valuable information.

7.2.3. Dark Web Pattern Analysis. This is the most impudent task in data mining. Patterns are analyzed for dark web customer behavior prediction [46]. Many algorithms and tools have been developed to analyze the pattern, such as deep learning algorithms [47] and supervised algorithms.

The data preprocessing stage of the process is depicted in Figure 2 of this document. We selected the dark web criminal Network dataset (Scraping data). The data set has information about the dark web node, edge, the link between the paired node. We examine this behavior, and we calculate the speedup metric defined in the equation below. The speedup can be amounted to how the accumulative number of nodes benefit the performance. Figure 2 illustrates that the presentation of 10 nodes is saturated after the data size is around 2000 MB, while the speedup of 30 and 40 nodes designates excellent realizable performance and parallelism. The solitary abnormality originates in the speedup of 50 nodes; subsequently, it is lower than those of 30 and 40 nodes. This might be owing to the permutation of bandwidth shared amongst nodes in notable change. Response time = \(R \), Sequential = SQ, parallel = \(p \), Speed up = \(S \)

\[
\text{Speed up} (S) = \frac{R(SQ)}{R(P)} \tag{4}
\]

Speedup is illustrated in Figure 3 as a measure of the performance of the proposed model.
An additional metric that needs to be measured is efficiency. The efficiency designates in what way the scheme achieves after adding additional nodes. It is distinct as the number of nodes separates the speed up. It is effective as soon as the number of nodes is amplified. Perceptibly, the efficiency diminishes when the quantity of nodes is improved [48] for complete dark web dataset sizes; then, it proliferates once the dataset size is improved.

The throughput is the quantity of comprehensive managed data per unit of time. In this research, the quantity is the size of the handled data separated by the response time as defined below. Throughput = \(T \), \(R = \) response time, data processing size (DPS)

\[
T = \frac{\text{DPS}}{R} \tag{5}
\]

Figure 2 illustrates the throughput in MB per second when the amount of nodes is improved. They illustrate comparable leanings through the consequences of the speedup. The throughput is improved with the number of node growths and the data size intensifications in the additional difference of estimation. Figure 4 shows a representation of the average throughput.

We proposed a model for investigating and classification of dark web structure usage data into the standard. The typical dark web structure usage data designate consistent behavior of dark web structure usage originating in maximum establishments, and they are calculated for more than 90%. Since the volumes of usage data reserved in storage are frequently massive, filtering them at the primary period of usage data supervision would save enormous storage.

We classify usage data, and we calculate the threshold rates of different file groups and file categories; subsequently, they have distinct features. The usage data would designate possible uncharacteristic behavior of dark web structure usage. We similarly quantify the performance of the usage data classification using a HADOOP system, subsequently relating its parallel contrivance, which would benefit the performance of usage data processing a lot. The investigational consequences have exposed a respectable development of performance enhancement. Receiver operating characteristic (ROC) is the graphical representation for a
binary classifier system. Table 1 contains a comprehensive description of the software used by the modules.

Table 1: Software description of the modules.

Module	Software
Data preprocessing	Hadoop
Scraping tool	Dark search, TorBot, Fresh Onions, onioff, TorCrawl
SVM, TSVM	Scikit-learn

7.3. **Parameters of Evaluation Used to Measure Performance.** To assess the efficacy of the various algorithms, we used True Positive Rate (TPR), False Positive Rate (FPR), Precision, and Consistency. The following definitions are TPR, FPR, Accuracy, and Consistency.

\[
\text{Accuracy} = \frac{TN + TP}{TP + TN + FN + FP},
\]

\[
\text{Precision} = \frac{TP}{TP + FP},
\]

\[
\text{Recall} = \frac{TP}{TP + FN},
\]

\[
\text{F1 Score} = \frac{2 \times \text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}.
\]

Detailed results of the simulation are presented in Table 2.

Table 2: Simulation results.

Experiment	Precision %	Recall %	F1 score %	Percentage of dark web link prediction
SVM, TSVN	72.02	13.02	20.34	32.31
SVM, TSVN	75.23	13.91	20.23	39.02
SVM, TSVN	76.33	15.23	25.43	45.32
SVM, TSVN	79.43	23.03	35.21	61.02

Table 3 shows the accuracy and effectiveness of the models (SVM, TSVN, NN-S3VM).

Table 3: Performance of models (SVM, TSVN, NN-S3VM).

Database	SVM	TSVN	NN- S3VM
CIRA-CIC-DoHBwr-2020	0.61	0.72	0.65
CSE-CIC-IDS2018 on AWS	0.63	0.82	0.64
Intrusion detection evaluation dataset (CIC-IDS2017)	0.64	0.92	0.64
Intrusion detection evaluation dataset (ISCXIDS2012)	0.71	0.91	0.76
DDoS evaluation dataset (CIC-DDoS2019)	0.74	0.92	0.78
Investigation of the android malware (CIC-InvesAndMal2019)	0.73	0.93	0.79
Android botnet dataset	0.71	0.94	0.81

In Figures 5(a) and 5(b), PR curve and ROC curve describe the working of the proposed modified support vector machine algorithm [25, 26]. The two graphs were ranges between 0.0 and 1.0 on the y-axis and x-axis. The first graph is plotted between precision and Recall (PR curve) and the other graph is plotted between true positive rate and false positive rate.

8. Discussion

Using dark web patterns, antimonotone patterns can be pruned. The frequency of determining an intermittent Dark Web Structural Pattern and the superpattern of a recurring Dark Web Structural Pattern. This type of pruning allows the search space to be completed after a pattern is identified as unusual. Massive volumes of data in numerous request fields have slowed current approaches. Traditional Dark Web structural pattern mining approaches have two fundamental flaws. Requirements for main memory and computational Big data’s magnitude, diversity, and speed make it so. Shadows Data streams remain extraordinarily rapid and real-time. Thus, excessive and continuous active time processing is necessary to demonstrate the actual value of dark web big data. Existing criminal systems collect a great quantity of data on illegal trade, forums, terrorism, Internet purchases, etc. The online presence and demand for news have complete traffic figures. As a result, time and money are saved. The SVM and neural network algorithm based prediction model is recommended because of its high accuracy, incredible simplification, and capacity to handle tiny and high dimensional pictures. Our technique for forecasting outcomes is cutting-
The same neural network model can forecast movement flow. The widely acknowledged matrix assessment helps improve the neural network algorithm.

9. Conclusion and Future Work

Dark Web Structural Patterns mining using neural network-S3VM for Criminal Network has a significant role in different circumstances. It has been used in different domains, and it is an increasing range of knowledge. Though the types of data are assorted, these data sets are contingent on the application’s nature. With different situations of data, the method of classification varies. We classify information from the dark Web Structural Patterns dataset varieties. It is easy to gain the parsed data to additional levels where it is not distinct over time. We Select the Data set with multiple dark web domains. In the research design, a Fusion NN (Neural network)-S3VM for Criminal Network activity prediction model is proposed based on neural network, NN- S3VM can improve the prediction. We can try to implement a real-time scenario for criminal activity tracking using an artificial neural network in the future.

Data Availability

The data that support the findings of this study are available upon request from the corresponding author.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this article.

Acknowledgments

This paper was supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2022R54), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

References

[1] W. Jr, A. Karode, and E. Fulp, “In-the-Dark Network Traffic Classification Using Support Vector Machines,” in Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence, AAAI 2008, pp. 1745–1750, Chicago, IL, USA, July 2008.
[2] B. Monk, J. Mitchell, R. Frank, G. Davies, and U. Tor, “An examination of the network structure,” Security and Communication Networks, vol. 2018, Article ID 4231326, 12 pages, 2018.
[3] D. L. D. Schmadel, “Catalogue of minor planet names and discovery circumstances,” in Dictionary of Minor Planet Names, Springer, Berlin, Heidelberg, 2012.
[4] J. Cervantes, F. Garcia-Lamont, L. Rodriguez-Mazahua, and A. Lopez, “A comprehensive survey on support vector
machine classification: applications, challenges and trends,” *Neurocomputing*, vol. 408, pp. 189–215, 2020.

[5] M. Lim, A. Abdullah, and N. Hajihi, “Performance optimization of criminal network hidden link prediction model with deep reinforcement learning,” *Journal of King Saud University - Computer and Information Sciences*, vol. 33, 2019.

[6] E. Jardine, “Online content moderation and the Dark Web: policy responses to radicalizing hate speech and malicious content on the Darknet,” *First Monday*, vol. 24, 2019.

[7] S. J. Devi and B. Singh, “Link prediction model based on the topological feature learning for complex networks,” *Arabian Journal for Science and Engineering*, vol. 45, no. 12, Article ID 10051, 2020.

[8] G. Wang, “Comparative study on different neural networks for network security situation prediction,” *Security and Privacy*, vol. 4, no. 1, p. e138, 2021.

[9] S. Abdul, I. N. Mamooona Qadir, M. A. Islam, and M. Aaleem, “A comprehensive survey of link prediction techniques for social networks,” *EAI Endorsed Transactions on Industrial Networks and Intelligent Systems*, vol. 7, no. 23, p. e3, 2020.

[10] H. Wang, Q. Xu, and L. Zhou, “Deep web search interface identification: a semi-supervised ensemble approach,” *Information*, vol. 5, no. 4, pp. 634–651, 2014.

[11] W. Fang and Z. M. Cui, “Semi-supervised classification with Co-training for deep web,” *Key Engineering Materials*, vol. 439–440, pp. 183–188, 2010.

[12] Y. Feng, L. James, K. Zhi, and H. Zhou, “Cost-sensitive semi-supervised support vector machine,” in *Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)*, Atlanta, Georgia, USA, July, 2010.

[13] S. Nazir, S. Shahzad, R. Wirza et al., “Birthmark based identification of software piracy using haar wavelet,” *Mathematics and Computers in Simulation*, vol. 166, pp. 144–154, 2019.

[14] M. Ahsan, I. Ahmad, M. Ahmad, and I. Hussain, “A numerical Haar wavelet-finite difference hybrid method for linear and non-linear Schrödinger equation,” *Mathematics and Computers in Simulation*, Elsevier, vol. 165, no. C, pp. 13–25, 2019.

[15] S. ul Islam, M. Ahsan, and I. Hussain, “A multi-resolution collocation procedure for time-dependent inverse heat problems,” *International Journal of Thermal Sciences*, vol. 128, pp. 160–174, 2018.

[16] M. Ahsan, Siraj-ul-Islam, and I. Hussain, “Haar wavelets multi-resolution collocation analysis of unsteady inverse heat problems,” *Inverse Problems in Science and Engineering*, vol. 27, no. 11, pp. 1498–1520, 2019.

[17] S. Nazir, A. Hussain, S. Shahzad et al., “Determination of awareness of piracy level on educational institutions: a questionnaire based study,” *EAI Endorsed Trans. Energy Web*, vol. 5, p. e7, 2018.

[18] R. Ferraz, C. de Groc, and J. Couto, “Mining product features from the web: a self-supervised approach,” in *Web Information Systems and Technologies. WEBIST 2012. Lecture Notes in Business Information Processing*, J. Cordeiro and K. H. KrempeIs, Eds., vol. 140, Berlin, Heidelberg, Springer, 2013.

[19] S. Sarkar, M. Almukaynizi, S. Jana, and P. Shakarian, “Mining User Interaction Patterns in the Darkweb to Predict enterprise Cyber incidents arXiv,” 2010, https://arxiv.org/abs/1909.11592v2.

[20] S. Dua and X. Du, *Data Mining and Machine Learning in Cybersecurity*, CRC Press, Boca Raton, Florida, 2016.

[21] J. Zhou, Y. Qiu, S. Zhu et al., “Optimization of support vector machine through the use of metaheuristic algorithms in forecasting TBM advance rate,” *Engineering Applications of Artificial Intelligence*, vol. 97, Article ID 104015, 2021.

[22] S. Kannmani and S. V. M. Satyanarayana, “Extremal states of qubit-qutrit system with maximally mixed marginals,” *Physics Letters A*, vol. 385, Article ID 126978, 2021.

[23] A. Singh Rajawat, U. Dwivedi, D. Ch, J. Akhilesh, and R. Upadhyay, “Efficient web data classification techniques using a semi-supervised learning algorithm,” in *Proceedings of the 5th ACM COMPUTE Conference: Intelligent & scalable system technologies*, p. 20, Pune India, January, 2012.

[24] A. S. Rajawat, P. Upadhyay, and A. Upadhyay, “Novel deep learning model for uncertainty prediction in mobile computing,” *Advances in Intelligent Systems and Computing*, vol. 1, pp. 652–664, 2020.

[25] A. Singh Rajawat and S. Jain, “Fusion deep learning based on back propagation neural network for personalization,” in *Proceedings of the 2nd International Conference on Data, Engineering and Applications (IDEA)*, pp. 1–7, Bhopal, India, February, 2020.

[26] C. Olivier and S. S. Vikas Sindhwani, “Keerthi optimization techniques for semi-supervised support vector machines, optimization techniques for semi-supervised support vector machines,” *Journal of Machine Learning Research*, vol. 9, pp. 203–233, 2008.

[27] K. Barbanpurkar, A. S. Rajawat, P. Bedi, and O. Mohammed, “Detection of sleep apnea & cancer mutual symptoms using deep learning techniques,” in *Proceedings of the 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)*, pp. 821–828, Palladam, India, October, 2020.

[28] B. T. Pham, D. Tien Bui, I. Prakash, and M. B. Dholakia, “Hybrid integration of Multilayer Perceptron Neural Networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS,” *Catena*, vol. 149, pp. 52–63, 2017.

[29] A. S. Rajawat, O. Mohammed, and P. Bedi, “FDLM: fusion deep learning model for classifying obstructive sleep apnea and type 2 diabetes,” in *Proceedings of the 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)*, pp. 835–839, Palladam, India, October, 2020.

[30] X.-W. Wang, Y. Chen, and Y.-Y. Liu, “Link prediction through deep generative model,” *iScience*, vol. 23, no. 10, p. 101626, 2020.

[31] H. Chen, “Women’s forums on the dark web,” in *Dark Web. Integrated Series in Information Systems*, vol. 30, New York, NY, USA, Springer, 2012.

[32] A. S. Rajawat and A. R. Upadhyay, “Web personalization model using modified S3VM algorithm for developing recommendation process,” in *Proceedings of the 2nd International Conference on Data, Engineering and Applications (IDEA)*, pp. 1–6, Bhopal, India, February, 2020.

[33] R. Baeza-Yates and P. Boldi, “Web structure mining,” in *Advanced Techniques in Web Intelligence - I, J. D. Velásquez and L. C. Jain, Eds.*, vol. 311, Berlin, Germany, Springer, 2010.

[34] A. Rettinger, U. Lösch, V. Tresp, C. d’Amato, and N. Fanizzi, “Mining the semantic web,” *Data Mining and Knowledge Discovery*, vol. 24, no. 3, pp. 613–662, 2012.

[35] M. Adnan, M. Nahi, K. Khanmehr, R. Tahboub, M. Ridley, and J. Rokne, “Promoting where, when and what? An analysis of web logs by integrating data mining and social network..."
techniques to guide ecommerce business promotions,” Social Network Analysis and Mining, vol. 1, no. 3, pp. 173–185, 2011.

[36] H. Jindal, N. Sardana, and R. Mehta, “Analysis and visualization of user navigations on web,” in Data Visualization and Knowledge Engineering. Lecture Notes on Data Engineering and Communications Technologies, J. Hemanth, M. Bhatia, and O. Geman, Eds., vol. 32, Berlin, Germany, Springer, 2020.

[37] N. Hoschke, C. J. Lewis, D. C. Price, D. A. Scott, V. Gerasimov, and P. Wang, “A self-organizing sensing system for structural health monitoring of aerospace vehicles,” in Advances in Applied Self-Organizing Systems. Advanced Information and Knowledge Processing, M. Prokopenko, Ed., Springer, London, UK, 2008.

[38] G. C. Garriga, R. Khardon, and L. De Raedt, “Mining closed patterns in relational, graph and network data,” Annals of Mathematics and Artificial Intelligence, vol. 69, no. 4, pp. 315–342, 2013.

[39] Y. Okubo, M. Haraguchi, and T. Nakajima, “Finding rare patterns with weak correlation constraint: progress in indicative and chance patterns,” in Advances in Chance Discovery. Studies in Computational Intelligence, Y. Ohsawa and A. Abe, Eds., vol. 423, Berlin, Germany, Springer, 2013.

[40] Datasets, "Research | Canadian institute for cybersecurity | UNB," 2006, https://www.unb.ca/cic/datasets/index.html.

[41] J. Goh, S. Adepu, M. Tan, and Z. S. Lee, “Anomaly detection in cyber physical systems using recurrent neural networks,” in Proceedings of the 2017 IEEE 18th International Symposium on High Assurance Systems Engineering (HASE), pp. 140–145, IEEE, Singapore, 2017, January.

[42] W. Feng, Z. Ma, R. Zhuang, and H. Che, “The framework of learnable kernel function and its application to dictionary learning of SPD data,” Pattern Analysis and Applications, vol. 24, pp. 1–17, 2021.

[43] R. K. Vigneswaran, R. Vinayakumar, K. P. Soman, and P. Poornachandran, “Evaluating shallow and deep neural networks for network intrusion detection systems in cyber security,” in Proceedings of the 2018 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT), pp. 1–6, IEEE, Bengaluru, India, 2018, July.

[44] A. M. Kosek, “Contextual anomaly detection for cyber-physical security in smart grids based on an artificial neural network model,” in Proceedings of the 2016 Joint Workshop on Cyber-Physical Security and Resilience in Smart Grids (CPSR-SG), pp. 1–6, IEEE, Vienna, Austria, 2016, April.

[45] M. Yildirim, “Artificial intelligence-based solutions for cyber security problems,” in Artificial Intelligence Paradigms for Smart Cyber-Physical Systems, pp. 68–86, IGI Global, Hershey, PA, USA, 2021.

[46] M. J. Segovia-Vargas, “Money laundering and terrorism financing detection using neural networks and an abnormality indicator,” Expert Systems with Applications, vol. 169, Article ID 114470, 2021.

[47] P. Haldar and A. Singh, “Machine intelligence versus terrorism,” in Artificial Intelligence and Global Society: Impact and Practices, V. K. Jain and D. Kumar, Eds., pp. 147–159, Chapman and Hall/CRC, Boca Raton, FL, USA, 1st edition, 2021.

[48] M. T. Jafar, M. Al-Fawa’reh, Z. Al Hraksheh, and S. Tayseer Jafar, “Analysis and investigation of malicious DNS queries using CIRA-CIC-DoHBrw-2020 dataset,” Manchester Journal of Artificial Intelligence and Applied Sciences, vol. 26, 2021.