Contributions to a NEUROPHYSIOLOGY of MEANING

Contributions to a neurophysiology of meaning: The interpretation of written messages could be an automatic stimulus-reaction mechanism before becoming conscious processing of information.

Roberto Maffei, Livia Selene Convertini, Sabrina Quatraro, Stefania Ressa, Annalisa Velasco

1 A.L.B.E.R.T. (ARPA-Firenze Landmarks on human Behaviour Experimental Research Team), Florence – Italy.

* E-mail: roberto@robertomaffei.it; albert@arpafirenze.it

Abstract

Background. Interpretation is the process through which humans attribute meanings to every input they grasp from their natural or social environment. Formulation and exchange of meanings through natural language are basic aspects of human behaviour and important neuroscience subjects; from long ago, they are the object of dedicated scientific research. Two main theoretical positions (cognitivism and embodied cognition) are at present confronting each other; however, available data is not conclusive and scientific knowledge of the interpretation process is still unsatisfactory. Our work proposes some contributions aimed to improve it.
Methodology. Our field research involved a random sample of 102 adults. We presented them a real world-like case of written communication using unabridged message texts. We collected data (written accounts by participants about their interpretations) in controlled conditions through a specially designed questionnaire (closed and opened answers). Finally, we carried out qualitative and quantitative analyses through some fundamental statistics.

Principal Findings. While readers are expected to concentrate on the text’s content, they rather report focusing on the most varied and unpredictable components: certain physical features of the message (e.g. the message’s period lengths) as well as meta-information like the position of a statement or even the lack of some content. Just about 12% of the participants' indications point directly at the text's content. Our data converge on the hypothesis that the components of a message work at first like physical stimuli, causing readers' automatic (body level) reactions independent of the conscious attribution of meaning. So, interpretation would be a (learned) stimulus-reaction mechanism, before switching to information processing, and the basis of meaning could be perceptual/analogical, before propositional/digital. We carried out a first check of our hypothesis: the employed case contained the emerging of a conflict and two versions (“H” and “S”, same content, different forms) of a reply to be sent at a crucial point. We collected the participants’ (independent) interpretations of the two versions; then, we asked them to choose which one could solve the conflict; finally, we assessed the coherence between interpretations and choice on a 4-level scale. The analysis of the coherence levels' distribution returned that, with regards to our expectations, incoherence
Contributions to a NEUROPHYSIOLOGY of MEANING

45 levels are over-represented; such imbalance is totally ascribable to “H” choosers. “H”
46 and “S” choosers show significant differences (p << 0.01) in the distributions of
47 coherence levels, what is inconsistent with the traditional hypothesis of a linear
48 information processing resulting in the final choice. In the end, with respect to the
49 currently opposing theories, we found out that our hypothesis has either important
50 convergences or at least one critical divergence, joined with the capacity to encompass
51 they both.

52
Contributions to a NEUROPHYSIOLOGY of MEANING

53 Introduction

Human-environment interactions have something special, with regards to the other animals’ interactions: human behaviour is not restricted to appropriate reactions; it encompasses also conscious knowledge, achieved through the attribution of meanings (semantic aspect) to the incoming signals and stimuli, which turns into the related building of concepts. The other animals can perform sophisticated reactions to the environmental inputs; however, they do not “understand” them. At the most, possibly, they can socially exchange some elementary learnings through imitation (about this, a classic study in Mainardi, 1988 and some recent example of research in Baciadonna, McElligott & Briefer, 2013; Carter et al., 2014; Suchak et al., 2014).

Interpretation, namely the operation through which the meaning is attributed, is a still widely unknown process. A specific difficulty is represented by natural language, i.e. the main instrument through which human species (the only one endowed with such capability in Nature) formulates and exchanges meanings and consciously understands things. Natural language and its use have been studied almost since the dawn of humankind, with researches ranging from the ancient rhetoric (for example, Geymonat, 1970; Barthes, 1970; Perelman, 1977) to the most recent approaches integrating linguistics with biology and neurosciences (for example Zuberbühler, 2005; Locke, 2009; Stekelenburg & Vroomen, 2012). Nevertheless, none of the hypotheses proposed up until the present times can be considered capable to exhaustively solve the problem of interpretation (some general reflections on this subject's complexity in Deacon, 2012).

Even though natural language has been traditionally approached under its profile of...
Contributions to a NEUROPHYSIOLOGY of MEANING

75 symbol-based system, the way it works cannot be reduced to a simple coding-decoding 76 procedure. By one hand, a one-to-one correspondence among written signs (or spoken 77 sounds) and words does exist; by the other hand, no such correspondence can be found 78 between any word/expression and the meaning attributed to it. This led a famous Italian 79 linguist to label natural language as structurally “equivocal” (De Mauro, 2003). 80 Messages are (or, at least, they appear) made up just of words; however, understanding a 81 message always goes far beyond the message’s words. The available data does not give 82 definite answers to the researchers’ questions; in fact, interpreting the interpretation 83 process is a challenge that modern science has not yet won. Our field research brings 84 some contributions to such endeavour.

85 Research lines and ideas: a synthetic overview. The available scientific literature 86 is so wide to make it impossible, inside the boundaries of our work, an exhaustive 87 analysis. However, a rapid survey is sufficient to reveal some trends, the first of which is 88 the accelerating extension of these studies from the pure humanistic disciplines to science 89 field; recently, even a “hard” natural science like physics has generated a 90 “psychophysics” branch, specifically oriented to deepen the knowledge problem through 91 the instruments of that discipline. Another trend, thanks to the extraordinary development 92 of technology and informatics, is the enhancement of the studies that explore

1 De Mauro, 2003 states that natural language is “equivocal” in etymological sense: from Latin aeque vocare (to name [different things] in the same way). That means: a same word can be used to refer to different things and different words can be used to indicate the same thing.

2 Material regarding the attempts to explain human communication and the questions of meaning and interpretation is really countless. Specific works will be indicated within the manuscript. Taking linguistics apart, we make reference to Pettigiani & Sica, 2003 for a review (in Italian) of psychological main approaches; Krauss & Fussell, 1996 for a wide survey from the perspective of social psychology.
Contributions to a NEUROPHYSIOLOGY of MEANING

93 interpretation inside the neural processes of the brain cortex; the neuron-level research
94 and the wide use of advanced imaging techniques (like fMRI) witness for this. All this
95 considered, we can roughly outline a picture with two main scientific research lines:

- **Mind-centred approaches** – Understanding/interpretation is totally based on
96 abstract (conceptual) knowledge. Information feeds are provided through the
97 body (perception) but the “mind” processes stimuli and incoming signals at
98 symbolic level, transforming them in propositional representations in the brain
99 cortex and understanding them in terms of concepts. The answer to the inputs
100 (reaction) is based on such comprehension and is shaped as a command to
101 some effectors (typically the motor system). Knowledge is the result of a sort
102 of computation; the mind is separated from the body and rules it. The role of
103 the motor system is totally passive.

- **Body-centred approaches** – Understanding/interpretation is attained through
105 a motor reaction of the body that can, at maximum, co-exist with conceptual
106 knowledge. When an external stimulus/signal is perceived, it is firstly “under-
107 stood” through a motor reaction which is automatic, involuntary and based on
108 “mental maps” that are motorial, not (or not only) propositional. Understanding
109 is a sort of motor experience that goes along with conscious (rational) in-

3 We will not enter the disputed question of mind, its existence, its nature and its relationships with
the body in general and the brain in particular. For a first level of delving further into the subject: by
one hand, the early survey of Sperry, 1952; by the other hand, the more recent works of Marcus,
2004; Rose, 2005; Zeki, 2010. In the context of this introduction, the “mind” is simply intended as a
factor which, by following some theoretical positions, totally controls body through “superior
functions” with respect to biological processes.
Contributions to a NEUROPHYSIOLOGY of MEANING

formation processing; the body is not detachable from the mind and can drive
it. The role of the motor system is active and decisive for understanding.

The first group theories' main features are synthesized in some recent works like,
for example, Zipoli Caiani, 2013 (Chapters 1 and 2); Ferrari & Rizzolatti, 2014 (specially
Pag. 2); Gallese, 2014 (specially Pag. 2, with the concept of ontological reductionism);
Pulvermüller et al., 2014 (specially Introduction and Fig. 1). In addition to this, a
browsing of the literature unveils a wide series of theories that, even if they differ in
many details, consider the mind (see Footnote 3) through the metaphor of the computer,
or even of simpler mechanisms. The range goes from the merely mechanical (and naïve)
thories of psychoneural isomorphism (Sperry, 1952, pp. 293-294) and those inspired by
the first electronic computers (Newell, Shaw & Simon, 1958), to the various I.P.
(information processing) models (Massaro & Cowan, 1993) and current cognitive
science positions (Negri et al., 2007; Mahon & Caramazza, 2008; Mahon & Caramazza,
2009). The shared concept is that information is essentially processed in a linear and
unidirectional sequence, based upon a functional (besides the anatomical) separation
among sensory, associative and motor areas of the brain cortex (for a general
presentation and discussion see also Rizzolatti & Sinigaglia, 2006, Chapter 1, specially
pages 20-22; for a synthesis of the cognitivism paradigm see Gallese, 2000, page 27).
The motor system is conceived as a merely operative instrument, totally dependent on the
output from associative areas. For precision’s sake, we must add that our description is a
simplification: there are theories and ongoing research lines that can be included in this
first group while they, nonetheless, take motor processes into a special account. For
Contributions to a NEUROPHYSIOLOGY of MEANING

The second group of theories (the body-centred ones) can be traced back, at least, to XIXth Century, up to the works of Lotze, 1852 (cited in Rizzolatti & Sinigaglia, 2006) and James, 1890, which present reflections on the relationships between perception and action. Other philosophers followed\(^4\), up until a new series of neurophysiological studies appeared, in the second part of XXth Century\(^5\). Such researches gathered evidence that the sequential processing theory and the supposed totally passive role of motor system are untenable. In addition, a leap ahead has probably been accomplished with the discovery of mirror neurons (di Pellegrino et al., 1992) and the following studies on them (for example Gallese, 2000; Rizzolatti & Craighero, 2004; Iacoboni et al., 2005; Rizzolatti & Sinigaglia, 2006). According to this theory, understanding would be firstly attained through a motor reaction of the body, “immediately and automatically”\(^6\). Cognition would be “embodied”.

\(^4\) Some special mentions about the philosophers: Mach, 1897, in particular pages 1-8 (on the relationship between scientific knowledge and perceptual experience of physic world), pages 15-17 (a famous example on subjectivity of perspective) and pages 93-95 (sense organs as active elements of perception, fine-tuned through experience, rather than as passive receptors); Poincaré, 1902 [2003], especially Chapter 4 (on the relations between geometrical space and “representative”, i.e. perceptual, space); Poincaré, 1908 [1997], Part I, specially pages 52-63 (phenomenology of a mathematical discovery and the role of sensitivity and aesthetic feeling); Merleau-Ponty, 1965, particularly Part II (with special regards to introduction chapter, on the impossibility to have a knowledge of the environment that is independent of the body experience).

\(^5\) Some special mentions about the neurophysiological studies: Sperry, 1952, especially pages 299-300 about the relationships between perceptions and ideas; Jeannerod et al., 1995; Liberman & Wahlen, 2000; Fowler, Galantucci & Saltzman, 2003.

\(^6\) We are intentionally employing the words “immediately and automatically”: they are typically used in describing the mirror-systems’ working.
Embodiment of cognition, and its consequences on knowledge and interpretation process, are the object of a heated scientific dispute; some parts of our work will touch such question; then, it is worth referring to an example, in order to clarify out the different positions. In a review that critically examines the mirror neuron-based approach to cognition (Hickok, 2009) the author proposes an example, aimed to dispute the embodied cognition hypothesis (direct reference to Rizzolatti, 2001). He invites to imagine someone pouring a liquid from a bottle into a glass. Then, he continues arguing that, by following that hypothesis, an observer can “embodily” understand such action since, thanks to his mirror neurons, he undergoes a motor reaction “as if” himself was actually pouring (by the way, such reaction does not turn into any actual movement, it remains virtual). This said, the author replies that pouring “could be understood as pouring, filling, emptying, tipping, rotating, inverting, spilling (if the liquid missed its mark) or defying/ignoring/rebelling (if the pourer was instructed not to pour)…” (see Hickok, 2009, page 1240, italic by the author).

The contrast between these two positions has not yet been solved even though, with respect to its beginning, the debate has grown up far further. In particular, the hypotheses based on the mirror neurons discovery have been refined, for example through the concepts of Mirroring mechanisms (MM) and Embodied simulation (ES) (Gallese, 2005, 2006, 2007, 2008, 2009a; Gallese et al., 2009; Gallese & Sinigaglia, 2011a; Ferri, Gallese & Costantini, 2011; Marino et al., 2011; Gallese & Sinigaglia, 2012; Ferrari & Rizzolatti, 2014; Gallese, 2014). About this ongoing dispute, a summary and a state-of-the-art outline can be found in Zipoli Caiani, 2013; apart from this, one of
Contributions to a NEUROPHYSIOLOGY of MEANING

170 the most interesting documents is a forum (Gallese et al., 2011) inside which the most
171 delicate and controversial questions are widely debated. The main ones, with regards to
172 the subject of our work, are the following four: goal-dependency of mirror reactions,
173 with references provided by upholders (Umiltà et al., 2008; Cattaneo et al., 2009; Rochat
174 et al., 2010) and detractors (Range, Viranyi & Huber, 2007; Hickok, 2009; Hickok &
175 Hauser, 2010; Muller & Cant, 2010); the nature of motor representations in the brain
176 cortex and the hypothesis that action understanding obtained through mirror neurons
177 would be a form of knowledge qualitatively different from the propositional and abstract
178 ones (widely discussed in Gallese et al., 2011); the interpretation of the human ability to
179 understand actions that cannot be performed, like the barking of a dog (Rizzolatti &
180 Sinigaglia, 2006; Hickok, 2009; Rizzolatti & Sinigaglia, 2010); the interpretation of
181 neuropsychological evidence about the relationship among motor impairments and action
182 recognition underperformances (with works that uphold one position, for example Moro
183 et al., 2008; Pazzaglia et al., 2008, or the other, for example Negri et al., 2007; Hickok,
184 2009).
185 In the end, it is worth dedicating a special mention to the sector of psychophysics,
186 in which researchers investigate cognition and semiosis through probabilistic models
187 (Chater, Tenenbaum & Yuille, 2006; Ingram et al., 2008; Tenenbaum et al., 2011), in
188 particular applying the Bayesian inference to reproduce mental processes and describe it
189 through algorithms (Griffiths, Kemp & Tenenbaum, 2008; Bobrowsky, Meir & Eldar,
190 2009; Perfors et al., 2011; Fox & Stafford, 2012). Such concepts are currently in use also
Contributions to a NEUROPHYSIOLOGY of MEANING

in the Artificial Intelligence (AI) studies. Inside psychophysics, a specific sector concentrates on what follows interpretation, that is confrontation among different “apprehensions” (conscious perceptions); the result of such confrontation is a “judgement”, that is decision and conceptualization (Arecchi, 2010a; 2010b; 2010c; 2011a). New concepts are introduced to investigate semiosis: semantic and non-semantic complexity (Arecchi, 2008), deterministic chaos (Guastello, 2002; Arecchi, 2011b), inverse Bayesian inference (Arecchi, 2010d), creativity as NON-bayesian process (Arecchi, 2010e), quantum dynamics (Arecchi & Kurths, 2009; Nathan et al., 2012) and the reference to Gödel’s incompleteness theorem as a limit to the possibility of understanding cognition “from inside” (since that, while studying cognition, we become a system that investigates itself).

At the end of our overview, we got the impression that the two research lines not only present evident differences, but also have something in common. Indeed, they both refer to the brain cortex like to the venue of “representations”; these are intended as models, schemes, codifications, in certain cases “maps” having a crucial role in the process of understanding. For the mind-centred theories, such representations are of a propositional kind and result from the symbolic processing of sensorial inputs (all in all,

7 The origins of Artificial Intelligence (AI) studies can be traced back to the Thirties and the works of Turing on a possible “intelligent machine”. About the origins see Leavitt, 2007, chapters 6 and 7, and Turing, 1950 (the original work of Alan Turing). About the “Turing test” (testing the ability of distinguishing humans from computers through written messages exchanges) see a journalist’s account in Christian, 2012. Some materials about recent research threads, closer to our article’s topics (like machine learning and natural language or image interpretation), can be found in Mitchell, 1997; Menchetti et al., 2005; Mitchell, 2009; Khosravi & Bina, 2010; Verbeke et al., 2012.

8 See Goldstein, 2006 for a popular-scientific coverage about Gödel and his theorem; Leavitt, 2007, chapters 2 and 3, for a particularly clear synthesis of the theorem and of its genesis (in connection with the Entscheidungsproblem, i.e. the “decision problem”).
they are the conceptual knowledge); for the body-centred theories, they are motorial and provide immediate, automatic answers to the inputs (such answers possibly preceding a conscious processing of the incoming stimuli). The representations' biological (neuronal) foundations are not yet well understood; there are different opinions even on their deep nature (states or processes). However, representations seem to be universally accounted as a necessary condition for cognitive processes.

Method

One main reason why all this matter has not yet been cleared is that there are still structural obstacles of technical and ethical nature. Another difficulty is the complexity of natural language (its “equivocal” nature, see De Mauro, 2003 and Footnote 1), usually overcome through a laboratory approach, i.e. studying interpretation isolated from the interpreting organism and employing simple stimuli (single words, simple and very short phrases; for instance Bedny & Caramazza, 2011); such approach entails limitations (underlined, for example, in Pulvermüller et al., 2014, specifically Pag. 80, Chapter 7) that might undermine the research conclusions. The methodological aspect is crucial, and

About the technical difficulties of data collecting: experimental techniques used on macaque monkeys (electrodes direct insertion inside single neurons) return very accurate measuring, but on small brain cortex surfaces. About the ethic difficulties: these techniques are almost impossible to be used on humans, and only indirect techniques as fMRI (functional Magnetic Resonance Imaging), MEG (Magnetoencephalography), PET (Positron Emission Tomography) or TMS (Transcranial Magnetic Stimulation) are systematically employed. They cover wider brain cortex surfaces but with inferior accuracy; moreover, they present difficulties with regards to instrument positioning and image interpreting. For a survey of these difficulties see Rizzolatti & Sinigaglia, 2006, chapters 2, 6, 7, and Rizzolatti & Vozza, 2008, passim. A recent thread of research is investigating the connections among single neurons activity and the total effects detectable through indirect techniques (see Iacoboni, 2008, chapter 7). In addition to all this, data interpretation and comparing are intrinsically difficult, given the differences in macaque and human brain cortex and the associated problem to check reliable correspondences.
we delved a little further into it. Some of the mirror neurons discoverers and theorists
have expressly tackled the question and highlighted that one strong point of the
neurophysiological research that led to such discovery is the researchers’ preference for a
naturalistic-like approach: they let observed macaque monkeys freely interact with
available objects, rather than stimulate them with selected artificial stimuli only
(Rizzolatti & Sinigaglia, 2006, p. 3). About the reductionism question, and the distinction
between methodological and ontological reductionism, see Gallese, 2000, p. 26, and
Gallese, 2009b; Gallese, 2010. Opposite to these stances, Pascolo & Budai, 2013, which
disputes the monkeys’ actual freedom in the experiments and the same existence of
mirror neurons in humans.

From our point of view, we had in our background two works about interactions
inside online collaborative groups (Maffei, 2006; Maffei, Cavari & Ranieri, 2007) which
let us appreciate the potential of scientific observation on real-world communication
cases. Thus, for our research, we tried a naturalistic approach, designing observations in
conditions the closest as possible to the natural ones. On these bases, we designed field
research on a random 102 adult sample, challenging them with a real world-like written
communication case, using complete and unabridged message texts and collecting the
participants' interpretations through a specially designed questionnaire. Further details
about method in the Supporting Information, Section 0; a full documentation of the
survey process, containing research guide-lines, case description and research protocol,
as well as the questionnaire, in the Supporting Information (SI) Sections 1, 2, 3, 4 and
Section 5 with Tables S1, S2. In addition: a description of the sample and of the sub-
Contributions to a NEUROPHYSIOLOGY of MEANING

246 samples drawn from it for control purposes in SI Section 6 with Tables S3-S5; some
247 quantitative aspects of collected data in SI Section 7; quality check of the collected data,
248 their compliance with the research necessities and their suitability in SI Sections 8 and 9
249 with Tables S6, S7 and Fig. S1-S3.

It is worth specifying that the study of meaning and interpretation at behavioural
251 as well as neuronal level implies the use of indirect techniques: the meaning is not
252 something that can be directly measured and interpretation is a process that occurs inside
253 the brain and/or the body in ways that cannot be directly observed; for this, just indirect
254 approaches are available. Our research represents no exception; our indirect approach has
255 been based on the participants' accounts for their own interpretations immediately after
256 they had read the submitted messages. Naturally, such conscious accounts cannot be
257 considered an exact report of the actual interpretation process, given the possibility that
258 they are unconsciously biased. Indeed, by one hand, we have employed these data to
259 investigate correlated but different aspects; by the other hand, we have checked them
260 with other data and analyses in order to verify their real contribute to the research's goals.

Our work is not a clinical trial and no experimentations on the participants took
262 place. Our sample was not recruited in hospitals or any other institution; we gathered it
263 through the conductors’ personal relationship network (details on sampling and survey
264 modalities in SI Section 3, particularly points 10.-13.). In addition, no personal data was
265 collected or anyhow involved in the survey. Through our questionnaire, we just
266 collected, in a strictly anonymous way (details here below and in SI Section 3), the
267 participants’ opinions about an exchange of written messages, in order to investigate the
Contributions to a NEUROPHYSIOLOGY of MEANING

process of message interpretation. The submitted case was a fiction closely resembling some real cases the authors had dealt with in their professional activities; its contents were totally neutral with regards to the participants’ lives and environments and did not touch any sensitive subject. For these reasons, our research did not involve any critical issue related to ethics; we anyway requested, and obtained, the approval of the Ethics Committee for Scientific Research of the Association ARPA-Firenze. The Committee held a dedicated session to our research (in 2012, april 2d) and its approval was given through a formal decision documented by the session's official report, signed by all the Committee's members and filed in the Association's archives.

About the informed consent of participants, it was necessary not only for ethical, but also for technical reasons: since the answers to the questionnaire’s questions were handwritten by participants (directly on the submitted forms), the research should have been impossible without a conscious, voluntary participation to the survey. Participants (all of them were adult) received written information about the research through the title-page of the questionnaire (SI Section 4), being invited by the conductors to carefully read it. After such reading, their consent was requested and obtained verbally. The reasons why we did not collect written consent lie on the sampling and data collection procedure, designed to fully guarantee the participants’ anonymity (see also the research protocol in SI, Section 3). By one hand, the technical features of data collection and the personal relations among participants and conductors prevented any possibility of unwilling contribution. By the other hand, a written consent would have implied a general database, whose creation and management would have increased the risks of an accidental
Contributions to a NEUROPHYSIOLOGY of MEANING

information diffusion. Instead, our procedures made it impossible for everyone, all along
the research work (and the same is at present and will be in the future), either to trace
back participants by starting from the filled questionnaires or to recreate the participants’
database. Along with its approval of the research guide-lines, the Ethics Committee for
Scientific Research of the Association ARPA-Firenze approved also this informed
consent procedure.

We set two objectives for our research: (1) To understand the process of
interpretation (i.e. how messages in natural language are turned into meanings by
receivers) as it works in real conditions and design a structural model in order to
adequately represent it; (2) To produce a first check of the formulated hypothesis.
Consequently, we have divided our research into two parts: the first one is referred to
Messages #1, #2 and #3 of the case and to Questions #1 and #2 of the questionnaire; it is
mainly (even though not only) qualitative, investigates the process of taking into account
a message and turns into a hypothesis (a model of the interpretation process). The second
part is referred to Messages #4/H, #4/S and #5 of the case and to Questions #3, #4 and
Final of the questionnaire; it is quantitative, focused on a decision to be taken about a
reply to send, and represents a first check about our hypothesis. SI Section 4 for the
messages' and the questions' texts.

The first part of the research: observing and hypothesizing

The first level of our analysis regarded our research's first part and yielded
something expected and something unexpected. We remind that each questionnaire's
Contributions to a NEUROPHYSIOLOGY of MEANING

question sent two inputs to the respondents: at first, they were requested to freely interpret some aspects of the submitted messages; then, they were requested to account for their own interpretations through indicating the “concrete elements” on which these were founded. Data related to the first input provided, through a qualitative analysis, the main expected outcome: the scatter of the participants' interpretations. Data from the second input provided, through a quali-quantitative analysis, the main unexpected outcome: the possibility of an intermediate, unpredicted step following text decoding and preceding text content processing.

Answers to the questions' first input: qualitative analysis. These answers have fully confirmed the expected wide scatter of the respondents’ interpretations. About interpretation scatter, we have quoted an example (taken from Hickok, 2009) in our Introduction. In addition, some descriptions, referred to special cases and entailing divergence of interpretations, can be found in Bara & Tirassa, 1999; Selavi, 2003; Campos, 2007. Inside our research, the answers to Question #2 provide us a specific example. Firstly, we asked participants if, through comparing Message #3 to Message #1, they found the attitude of XX (the sender) toward YY (the receiver) being changed (SI Section 4 for the messages' and questions' texts). Then, to the 61 who answered “YES” (60% of the sample), we asked to specify how they would define the new XX’s attitude. They provided 83 specifications: 64 stated XX’s position as strengthened, 12 as weakened and 7 unchanged (although these seven, too, had answered “YES” to the first

10 Specifically: Bara & Tirassa, 1999, pp. 4-6 (communicative meanings as joined constructions); Selavi, 2003, pp. 93-98 (the “cumulex” play); Campos, 2007, pp. 390-394 (analysis of a real communication event).
Contributions to a NEUROPHYSIOLOGY of MEANING

part of Question #2). In addition, we can find completely opposing statements in these specifications and we can see that scattering covers very different aspects of the XX-YY interaction (behaviours, emotions and so on, Table 1).

Such a phenomenon can be observed for all the messages and for any part of them, even if accurately selected: it is impossible to find parts of a message that are interpreted in the same way by all the participants. The observed interpretation scatter can be represented through a “megaphone-shape” picture (Fig. 1): receivers take into account the same information but their final interpretations diverge11. We named this phenomenon “classic interpretation scatter” and tried to delve further into it. We made a first attempt using a semantic approach: we considered the respondents’ answer texts like semantic sets to be investigated through pre-defined categories of meaning. After several tries, we abandoned such approach realizing that, whatever category set we used, too many exceptions, not-decidable cases and ambivalences we found (what confirms the “equivocal nature” of human language, see Footnote 1).

Answers to the questions’ second input: quali-quantitative analysis. These answers contain the “concrete elements” respondents have indicated as the basis of their interpretations. We found the following categories of concrete elements:

- Summaries of the message texts and syntheses of their information content, presented through respondent’s own words.

11 In the exact same way of the example drawn from Hickok, 2009 and presented in Introduction: in that case a physical action is described as interpretable in very different ways (by different observers as well as by only one who is observing from different points of view). However, there is no question about the action per se. In our case, the reading of the same message by different people evokes very different interpretations; however, the message information content cannot be under question (being the message typed and having a unique editing).
Contributions to a NEUROPHYSIOLOGY of MEANING

- Quotations between double quotes, referred to selected words, full phrases (or parts of them) or periods. Such kind of indications have been provided also through pointing the beginning and the ending word of the quoted strings (“from… to…”). The string length could cover up to a whole paragraph of the message (from a keyboard “Enter” to the following).

- Incidental strings, meaningless per se. Such strings were extracted from original full phrases and quoted isolated from the rest.

- Complement/accessory parts of the text: punctuation marks12, personal or professional titles used in the opening, the salutes used in the closing etc.

- Items unrelated to the text semantics or to the message content; a tight selection is presented in Table 2. The list is indefinite, given that each item generally appears at low frequency while the range of possible items is extremely widespread. Items of this kind are actually unpredictable; even the lack of some content can be focused and reported as a source of meaning (Table 2, final row).

- References to some overall effects produced by the message on the respondent (see SI Section 8.a, final part, for details). In fact, in this kind of answers respondents state they cannot indicate any “concrete element”; the meaning they have attributed derives from a “general impression” received from the message, from the message's “general tone”.

12 In one of the two pilot-sessions of the survey, one message contained an exclamation mark; it was specifically identified, and noted as a meaningful component per se, by one of the participants. For this reason, it was removed in order to limit influencing respondents. In fact, other respondents successively picked up, from questionnaires now bereft of that exclamation mark, quotation marks (used in certain passages of the submitted messages) as a meaningful component per se.
Contributions to a NEUROPHYSIOLOGY of MEANING

In such analysis we have tackled the answers like something *physical*, rather than semantic, and have treated their texts independently of their content and meaning. Doing so, we have seen that the meaning can spring from parts of the message bereft of any intrinsic content, from aspects external to the text and even from the lack of content itself. In short: whichever the message, the source of its meaning can lie anywhere; this was unexpected. In truth, the idea that the interpretation of a message is a question far overtaking its pure words is widely investigated with regards to spoken communications; this is reasonable if we consider the possible added signals, like non-verbal language and context stimuli, in such situation (see, for example, Horchak et al., 2014, specially the concept of “situated cognition”, and Gibson, Bergen & Piantadosi, 2013). It has been quite surprising to discover it in written communications, that are totally bereft of such added signals; there was something else, in this matter, and it did not seem a simple question of added information. Indeed, our impression that the meaning attributed to a message can lie “anywhere” should be taken into a literal account: it seems impossible to previously write up a “complete” list of the features that could become sources of meaning, given that any new reader can introduce new subjective criteria and detect new sources, totally unpredictable for the other readers. The question now is: how does all this work? How can we describe, and model, the process of interpretation, subjected to such uncertainty?

In order to answer these questions, we named “components” the items indicated in the answers to the questions’ second input and went back to the questionnaires in order to tally the components present in our survey. We have tallied a total of 1,319
393 components clearly indicated by participants and we have displayed in Table 3 their
394 absolute and relative amounts. Indications that clearly focus on the information content
395 constitute only a small minority (around 12%, see Table 3, “%” row, “Cont.” column)
396 while references to different text components reach, on the whole, about 65% (Table 3,
397 “%” row, sum of the first five column totals). The indications referred to some overall
398 effects of the message represent about 15% of the total. About the meaningless
399 components (void of content per se, mere “form” components), their relative amount can
400 be estimated in at least 35% (holding together symbols, incidental passages, other
401 components and grammatical notations).

In order to verify our statement, we firstly carried out some distribution analyses
about the components. Such analyses return a picture without any significant imbalance:
404 by one hand, the distribution of the provided indications results uniform with respect to
405 the different questionnaire's questions (Fig. 2) and almost regularly shaped with respect
406 to the types of the components (Fig. 3). By the other hand, the sample distributions with
407 respect to the amount of the component types employed (Fig. 4) and with respect to the
408 total indications provided by each respondent (Fig. 5) result in “bell curve” shapes.

Secondly, we have further checked our quantitative analysis; we considered that
410 references to full sentences or periods (20.9% in the total) could be another way used by
411 participants for indicating contained information. However, even in such case the sum of
412 the two components would occupy just one third (exactly, 33.1%) of the total indicated
413 components. Still unsatisfied, we carefully re-examined the filled questionnaires about
414 the information content component. We found (Table 4) that one half of the sample (51
Contributions to a NEUROPHYSIOLOGY of MEANING

people) expresses, among the others, at least 1 reference to such component (no
recordable similar hint by the other half). However, only 7 respondents provide a
balanced or prevalent amount of indications (50%, or more, of the personal total) about
information content. Among them, only one reaches 100%. In fact, references to the
information content are a definite minority in participants’ indications.

In synthesis: our observations do not match the concept of interpretation like a
sequential taking into account of the message’s content along with its conscious
processing. Rather, the emerging picture is the following:

- The interpretation process looks to be starting like a selective and subjective
 picking up of (or focusing on) the most different components, rather than be-
 ing a systematic, conscious scanning of the text’s content. Such behaviour is
 widely scattered: in the whole research, with regards to each specific message,
 it is impossible to find two identical combinations of focused on components.

- Readers seem to interpret a message indifferently picking up meaningful and
 meaningless components and subjectively combining them. While reading and
 text decoding go ahead sequentially, readers go on freely (randomly, from an
 external observer’s point of view) isolating “chunks” of the text (as well as
 other components and even external context aspects) and selecting them as the
 foundation of the message’s meaning.

- While the final meaning attributed to the message is justified through the se-
 lected components, no reason (at all, in any cases) is provided for that selec-
Contributions to a NEUROPHYSIOLOGY of MEANING

In the respondents’ accounts, the focused components suddenly appear; they are presented just as “given”, and without any doubt. At this point, we named “disassembling” the observed selective focusing and took two measures. At first, we hypothesized a new image for the interpretation process, inverted with respect to the “megaphone-shape” (Fig. 1) one. Our argument was that, if scatter manifests itself in the beginning (scattering of focus), a “funnel-shape” picture (Fig. 6) could be more suitable: people that select one same component are expected to interpret it in very similar ways. Secondly, we picked up from our data an example of disassembling and decided to carry out an in-depth analysis of it.

A disassembling example in detail and a perceptual hypothesis. Question #1 requests evaluations with regards to sender-receiver positions and to the relationship between them, on the basis of Messages #1 and #2 (SI Section 4 for the messages’ texts). We found that 53 people (52% of the sample) had quoted an expression the sender (XX, see SI Sections 2, 4) used in Message #1: she premised her request of a technician inspection with the words “we would be pleased if at least once…”.

This simple expression, apparently trivial (also short, 8 words in a 67 word message, and in no way highlighted in comparison to the rest of the text), has collected 68 quotations (15 people expressed two, see Footnote 14). Then, respondents have given such specific passage at least 22 divergent interpretations, summarized in Table 5.

The unique doubt expressed in the whole research is the following: 1 participant (out of 102) declares uncertainties in his final choice writing that the final effect could be obtained with both the messages under choice. It must be noted that, with regards to the other questions, also this special participant's answers are totally doubt-free, like the rest of the participants' ones.

The 53 people have expressed their interpretations answering Question #1-a (23), #1-b (15) or both the questions (15). See SI Section 4 for the questions’ full texts.
Contributions to a NEUROPHYSIOLOGY of MEANING

This means that focusing on the same component does not imply convergent interpretations. As much as to say that the interpretation scatter manifests at both levels: the disassembling (scattering of focusing on components) and the following attribution of meaning (each sub-group, focused on a same component, provides scattered conscious interpretations). This means also that the “funnel-shape” picture, too, must be revised: what we observed could be better expressed through an “hourglass-shape” picture (Fig. 7). In fact, disassembling and classic interpretation scatter would co-exist and manifest themselves in sequence. We notice that the expression we are considering appears to be a minor element in Message #1 text, something incidentally expressed; it is composed using common words and bears no inherent information content (once the passage gets isolated from the rest of the message, it is impossible to attribute it a definite meaning).

In short: it is a mere form component. So, how could respondents select such incidental passage? And what did they, exactly, grasp in it? What is more, given that the following interpretations are scattered, what did respondents, exactly, interpret, having started from an identical, spontaneous selection?

Now, the message we have used in our research was always the same, invariable with regards to written form as well as to information content. Thus, if the interpretations of the readers are so scattered, this cannot depend on the message itself, it must depend on the readers: they evidently give an active contribution in attributing meanings, they are not passive symbol decoders. Nothing new, so far: our observations confirm old ideas, for example the ones that the constructivist hypothesis proposed many years ago (Watzlawick, 1984). The question is: how can this happen? By one hand, respondents
Contributions to a NEUROPHYSIOLOGY of MEANING

477 explain through the outcomes of “disassembling” the conscious attribution of meaning
478 that follows; by the other hand, no accounts report about the source of disassembling.
479 The selective focusing manifests “immediately and automatically”, apparently preceding
480 and feeding the conscious processing that follows, and that is all.
481 At this point we felt we had elements enough to draw a conclusion and propose a
482 hypothesis. The first part of the observed process (“disassembling”) does not resemble
483 any information processing, symbol treatment or sign decoding; it rather looks like a
484 perceptual scheme. We mean that, if we hypothesize that the components are focused
485 because they firstly act like “physical” stimuli, triggering automatic reactions off
486 (“body” level) in the receivers, then the observed phenomena will become
487 comprehensible. The main points of our hypothesis are the following:

488 ▪ Considering interpretation as a process, decoding of written signs must be its
489 first step, for turning them into words. Decoding is the “technical” aspect of
490 reading, not directly linked to meanings and just feeding the following steps.
491 ▪ Along with the sequential decoding, words and the other message components
492 would immediately act like stimuli, triggering a receiver’s automatic reaction
493 off (“body” level). This would be the second step, i.e. disassembling. Its res-
494 ults would be different from a person to another given that the capacity of a
495 component to act like a stimulus depends on the subjective reactivity of each
496 receiver.
497 ▪ Then, the conscious processing of the collected inputs would start. Being the
498 steps set in a cascade, the “input” on which this third step would be carried out...
Contributions to a NEUROPHYSIOLOGY of MEANING

should (mainly, at least) consist of the automatic reaction’s outcomes, not of the source message’s content.

Our hypothesis is that the interpretation process structure can be represented with a three-step (three sub-processes) model like the one in Fig. 8. It gives account of how respondents focused on the incidental passage and what they grasped from it: they automatically reacted to a stimulus (presumably through some unconscious connections with previous experiences that had involved something similar) and such stimulus oriented the following conscious process. One more question remains: exactly, how can we precisely identify what a reader picks up when he/she selectively focuses on meaningless/contentless components? We think we can label it as the fact that one of these components is present in the message; it can be considered some meta-information to which readers can automatically react even though it is not embedded inside the message words (Table 6). This clarifies which aspect of the incidental passage (“we would be pleased if at least once…”) has triggered the participants’ reaction off: the fact that XX had (redundantly) placed it in a certain point of the message15.

In synthesis: interpretation process would firstly consist in a re-experiencing of past situations through an analogical resounding at body-level, thanks to a stimulus-reaction mechanism triggered off through perception. Such reaction would feed forward (presumably through proprioception) the following attribution of conscious meaning to the subjective experience (rather than to the source message).

15 It is particularly interesting to note that the expression “the fact that…” is spontaneously used by several respondents in their answers. For example, in the collected questionnaires we can find expression like the following: “the fact that the arguments are presented through a dotted list”; “the fact that XX is referring to public money”.

The second part of the research: checking the hypothesis

Our research’s second part represents a first check about our hypothesis. We started submitting to participants two alternative versions (Messages #4/H and #4/S) of a possible reply to Message #3. Then we asked them to, firstly, interpret (independently) the two versions (Questions #3 and #4) in terms of their effects on XX; secondly, to choose between them (Final question) the one suitable, in their opinion, to origin the final XX’s answer (Message #5, that seals the positive ending of the case; see SI Section 4 for messages’ and questions’ full texts; Section 5 and Tables S1, S2 for details about the reasons of the alternative). Our rationale was the following: the participant's choice could come as a result of the text information's conscious processing (cognitivism stance) or as an automatic reaction independent of every conscious processing (embodied cognition stance). In the first case (our “Hypothesis 0”), the final choices should be outcomes of the interpretations given to the messages; thus, they should result somehow correlated with them. In the second case, no correlation, or a different kind of correlation, should be found (our “Hypothesis 1”). The problem emerged of measuring such correlation.

The coherence between interpretation and choice. Firstly, we displayed (Table 7) the choices indicated by the sample members (SI Section 6 and Tables S3-S5 for the sub-samples description) and found out a strong imbalance between “S” and “H” indications. Secondly, we compared the interpretations of Message #4/H with those of Message #4/S (SI Section 4 for messages’ full texts). Source data (opened answers) was purely qualitative. However, answers were easily classifiable into two main categories:
Contributions to a NEUROPHYSIOLOGY of MEANING

predictions for the message inducing a solution of the case (easing or solving the emerging conflict between the interlocutors); predictions for the message inducing a surge, or escalation, in the conflict. We created the dummy variable “Expected effects” and assigned it two values: “+” in the first condition; “-“ in the second one. Then, we labelled each questionnaire with two new symbols: one referred to Message #4/H (H+ or H-) and one to Message #4/S (S+ or S-). The combination of the two symbols indicates the combined predictions each participant expressed about the effects: H+/S+ (both the messages solving the conflict), H+/S- (Message #4/H easing the conflict while Message #4/S escalating it), H-/S+ (the opposite), H-/S- (both escalating). Finally, we arranged the symbols into a dichotomous table (Table 8). There is a clear convergence on combined prediction “H-/S+”; the Chi-squared test highlights, at this first stage, that some correlations between “H” and “S” interpretations could exist ($p = 0.001988$, total sample; $p = 0.015600$, sub-sample “AGE”; $p = 0.003861$, sub-sample “EMPLOYMENT”). Given that the messages’ presentation sequence was counterbalanced (see SI, Section 3, Point 9), it is unlikely that the respondent's first interpretation can drive the second; probably, some other factor drives both of them.

Then, we cross-checked the combined predictions with the final choices (Table 9). The most frequent combined prediction (H-/S+) appears to be strongly associated to “S” choice; indeed, the significance tests (Chi-squared) show that some further relations do exist between combined predictions and choice ($p = 0.000017$, total sample; $p = 0.001174$, sub-sample “AGE”; $p = 0.000383$, sub-sample “EMPLOYMENT”). Such results led us facing the core-question related to our hypothesis: given the existence of
some correlations between choice and combined predictions, which is its direction? We mean: do the interpretations (the predictions) drive the choice (cognitivism stance) or, oppositely, does the choice precede and somehow drive, or overcome, the interpretations (embodied cognition stance)? To delve further into such subject, we created a “coherence indicator” starting from the following premises (SI Section 4 for messages’ full texts):

- The final Message #5 clearly indicates XX's satisfaction; therefore, the conflict has come to its end.
- Now, let us figure a respondent whose answers to Questions #3 and #4, for example, return a combined prediction H+/S- (Message #4/H solving the conflict, Message #4/S escalating it). Then we expect that this respondent indicates Message #4/H in his final choice (answer to Final question). Such combination (H+/S- & “H” choice) would represent the maximum coherence level.
- If another respondent provides the same combined prediction but indicates Message #4/S in his final choice (combination H+/S- & “S” choice), this would represent the minimum coherence level.
- Given the natural variability always recorded in human samples, we expected to find also intermediate coherence levels, based on the other possible combinations (H+/S+ and H-/S-). These could be also due to the predictable scattering of interpretations about the final Message #5: someone could interpret it as something different from the sign of the conflict’s ending (what happened in a fistful of cases).
We defined four coherence levels, increasing from L (low) to LM (low-medium), MG (medium-great) and G (great); the scale is fully presented in Table 10. In this way, it has been possible to study the final choice with respect to the coherence levels (Table 11). The percent distribution histogram of the whole sample (Figure 9, data from Table 11) shows that the distribution is the expected one except for the frequency of the low coherence bin, over-represented. Actually, we expected L frequency to be null or very close to null; anyway, it should show the lowest frequency of all. On the contrary, we found L values higher than the LM ones and representing 11% of the sample.

At this point, we refined our analysis through separately analysing distributions of “H” and “S” choosers; for the reliability of comparison, we excluded data referred to the respondents having just primary education levels (only 4 out of 102 in our sample). Data is displayed in Table 12, 13, 14, which show a surprising asymmetry whose significance is confirmed by Chi-squared tests (always p<0.01). Graphic representations render even better such asymmetry: the total sample histograms (Fig. 10, percent distributions from Table 12) show that the percent frequency of “S” choosers (white bins) increases regularly from L category to G, reminding (as expected) of certain power, or exponential, curves. At the opposite, the percent frequency of “H” choosers (grey bins) is arranged in an irregular, almost bimodal shape. We checked these distribution shapes by using many different sub-samples (selection displayed in Fig. 11-16), included the already mentioned “Age” (Fig. 15, data from Table 13) and “Employment” (Fig. 16, data from Table 14) sub-samples. We always obtained the same significant imbalance.
Contributions to a NEUROPHYSIOLOGY of MEANING

Now, Chi-squared tests and graphic representations clearly indicate the existence of a correlation between the participants' choice and the coherence level; but what about its strength and its direction? In order to investigate the strength, we calculated the odds ratio. Our success item was the L level, our failure items all the other levels of coherence.

Using data from Table 12, we can find $ODDS_1 = 0.346$ ("H" choosers, 1 success every about 2 failures) and $ODDS_2 = 0.028$ ("S" choosers, 1 success every about 36 failures). The final result is $ODDS \text{ RATIO} = 18.9$ which highlights a strong correlation between the "H" choice and the L coherence level. As much as to say that, if you choose message #4/H, it is much more likely (with respect to message #4/S choosers) that your choice is inconsistent with your interpretations of the two messages. About the direction of such correlation (the interpretations precede and drive the choice or the choice is independent of interpretations), we think the first position is not tenable; indeed, it could be confirmed just in case of general consistence between interpretations and choice.

All this contrasts our “hypothesis 0”: the participants' choice does not seem to come as a result of the text information's conscious processing. Then, the choice should be independent of the previous interpretations, what upholds our “hypothesis 1”. After this first conclusion, we set up a second indicator (“block preference” indicator) to further check our hypothesis. For text length reasons, we present details about the indicator, its employment and relative analysis in SI, Section 10 with Tables S8-S11. No contradiction has been found with the previous results.

Discussion
Contributions to a NEUROPHYSIOLOGY of MEANING

We will start our discussion summarizing our main findings. Then, we will situate our work in the current scenario of scientific research; finally, we will discuss some possible consequences of our results and indicate the possible directions in which this study could be developed.

Summary of the research’s main findings. The following points synthesize our interpretation of the interpretation process, upheld by our work’s experimental outcomes (specified in italic).

- In all circumstances, the interpretation of natural language is a complex, global experience not reducible to the interpretation of isolated spoken or written words. Reference to our qualitative analysis of the participants’ answers to the first input of the questionnaire's first part questions (specifically: description of the message non-word and meta-information components, that prevail over verbal components and firstly orient the reader's interpretation).

- After decoding, a random, selective focusing on the most various and unpredictable components of the message (“disassembling”) starts, preceding the conscious processing of the information content. Reference to our qualitative analysis of the participants’ answers to the first input of the questionnaire's first part questions (specifically: observations about the sudden appearance, extreme subjectivity and unexplained origin of the widely divergent and unpredictable selected components).
“Disassembling” looks like a stimulus-reaction mechanism, rather than an information treating process. Reference to our quali-quantitative statistical analysis of a disassembling example (the case “we would pleased if at least once...”) drawn from the participants’ answers to the second input of the questionnaire’s first part questions.

Each message component would at first work like a physical stimulus, rather than an information carrier; in other words, it would trigger an automatic reaction off (body level) before the conscious processing of information content starts. Our hypothesis, consistent with the data we collected, suitable to give account for our observations and compatible with the current research scenario.

Since “disassembling” feeds forward the following step (conscious processing), it orients the attribution of meaning: conscious interpretation would be carried out on the body's reaction, rather than on the source information. Reference to our quantitative statistical analysis of the participants' answers to the questionnaire's second part questions (coherence indicator, coherence level distributions and related significance checks; block preference indicator and related analysis).

After disassembling, the receiver’s contact with the original message would be lost\(^\text{16}\). Consequence of the “in a cascade” setting of our model’s three steps

\(^{16}\) Our data led us to conclude that such contact can be recovered (like a sort of “fourth step” after the basic three of our model) only later and just in peculiar conditions; however, this is another story and, in this article, we will not delve further into it. In our research, one example of this can be the
Contributions to a NEUROPHYSIOLOGY of MEANING

The final outcome of the whole 3-step process is the meaning consciously attributed to the incoming message and expressed by the receiver through natural language.

Situating our work in the current research scenario. Scientific research of present times is, naturally, swayed by the confrontation between cognitive and embodied hypotheses. The “cognitive field” frequently engages the noun-verbs dissociation problem, studying it through researches on cortically damaged, selectively impaired patients; such studies are mainly aimed to define the nature of the concepts’ representations in the brain cortex (lexical or semantic, lexico-semantic dissociation issue), and to cortically map it (for example Crepaldi et al., 2006; Arévalo et al., 2007; Moseley & Pulvermüller, 2014; Gallese, 2014). Conversely, the “embodied cognition field” mainly go searching for the connections between language and its motor correlates, one well-known of which is the ACE (Action-sentence Compatibility Effect), often checked through measuring and comparing the reaction times collected during language-and-action combined match-advantage experiments (see for example Vitevitch intervention of XX’s colleague in the case. Even though the used case is a fiction, it is very close to observed real cases, in which the process can be described as follows: an expert, after text decoding (first step), detects an issue through becoming alarmed (automatic reaction, second step). Then, his/her feelings come to conscience and lead him/her to consciously attribute that text a negative assessment (third step). At this point, he/she starts the in-depth analysis of the case (our presumed “fourth step”) through recovering the source message and studying it from a different point of view and through a different approach. The final result is the expert's solution of the case.
Contributions to a NEUROPHYSIOLOGY of MEANING

et al. 2013; Horchak et al., 2014). Such studies are frequently carried out through
neuroimaging works (for example Tettamanti et al., 2005; Aziz-Zadeh et al., 2006; Speer
et al., 2008; Aziz-Zadeh & Damasio, 2008).

We have already reminded, in the Method section, the methodological aspect we
consider common to the two research lines: they both use, during the experiments, words
and short phrases isolated from every context (see, for example, Bedny et al., 2008;
Bedny et al., 2012, especially the Method sections; and, for some critical reflections
about the question, the already cited Pulvermüller et al, 2014, specifically Pag. 80,
Chapter 7). Such methodological aspect elicits a further consideration: there is a cross-
concept widely and implicitly shared by cognitivism and embodied theories, namely the
idea that the meaning is something embedded inside words. These would work somehow
like “carriers” of meaning and interpretation would consist in the “extraction” of
meaning from words (actually, the verb “to extract” is overtly used in scientific
publications, for instance Mahon & Caramazza, 2011).

The divergence between the two approaches can be synthesized as follows (for
further reference see, for example, Bedny et al., 2008; Rizzolatti & Fabbri-Destro, 2008;
Goldman & de Vignemont, 2009; Gallese, 2011; Gallese & Sinigaglia, 2011b; Bedny et
al., 2012): cognitivism upholds the sequential processing idea, i.e. cognition being
conceptual and resulting from a sequence of perception / symbolic processing of the
incoming information / (motor) reaction. Oppositely, the embodiment theories uphold the
concept of direct connections among cortical sensorial and motor areas (“sensorimotor
Contributions to a NEUROPHYSIOLOGY of MEANING

708 grounding” of cognition, Guan et al., 2013). In this sense, cognition would be
709 embodied17. Now, how could our work be positioned in such picture? In a third position,
710 we would say. In fact, both theories are based on the implicit idea that human
711 communication is a continuous, homogeneous process. On the contrary, we hypothesize
712 discontinuity, with the interpretation process made-up of three discrete, in-a-cascade
713 steps which can result compatible with both ideas.

714 Actually, in our opinion, the embodied concept's features are clearly akin to our
715 second step (“disassembling”, see Fig. 8): an immediate and automatic reaction that
716 precedes conscious processing of information. This last (our third step, Fig. 8) is clearly
717 akin to the cognitivist hypothesis, that refers to a conscious processing of the inputs with
718 subsequent conceptual output. We must add that such overlapping is just one aspect of
719 the question; our proposal entails at least one important difference with respect to the two
720 theories: the discrete, in-a-cascade structure of our process implies a feeding chain, with
721 the first step (decoding) that feeds the second (disassembling) which, in turn, feeds the
722 final one. This results, after “disassembling”, in the loss of the contact with the source
723 message and in the conscious processing performed on the body-reaction signals
724 (presumably received through proprioception). The real object of our (first level, see
725 Footnote 16) knowledge would not directly be the outer world; rather, it would be our
726 instinctive reactions to it (the outer inputs combined with our inner world). This is a

17 Such embodiment, inside the same embodied cognition field, can be conceived in different ways: it can stand alone, per se resolving the problem of knowledge (“sensorimotor processing underlies and constitutes cognition”, Guan et al., 2013), or can be a “motor representation” that accompanies conscious knowledge processes (the two kinds of knowledge proposed by Gallese, for example in Gallese et al., 2011; see also Gallese, 2014).
relevant point, and we have selectively examined some of the available literature for a first check of it.

Conscious thinking following (rather than preceding) “body” reaction can be traced back up to the hypotheses of Nineteenth Century philosopher and psychologist William James. In one of his examples (the “James’s bear”, see James, 1890, Chapter XXV), James explains his theory of emotions suggesting that, for example (our synthesis), we do not run away from a bear because we see it, we know it is very dangerous, so we are scared of it and, consequently, we consciously decide to run away (as common sense would sustain). Conversely, we feel like we are afraid because (consciously and successively) we discover our body having started a desperate run. In other words: what we call “emotion” is usually intended as a body reaction consequent to the rational processing of consciously perceived environmental stimuli; James suggests that the body reaction follows perception immediately and what we call “emotion” is the consciousness of the new body state (a form of self-consciousness). We are aware that James's theory (exactly: James-Lange theory) has been criticized and opposed through several alternative theories (for example Cannon, 1927; Schachter & Singer, 1962); nevertheless, we do refer to it because recent scientific research and reviews seem to suggest some re-consideration of the matter (for example, Friedman, 2010). We will not deepen the question here; however, we feel that James-Lange's intuitions could deserve another chance.

In Twentieth Century, we can find the Gregory Bateson’s approach to human communication as a system and to the question of the receiver’s active role; he uses a
strictly formal presentation (see Bateson, 1972, in particular Chapter 4.8 on the logical categories of communication, founded on Russel and Whitehead’s theory of logical types). In addition, we remind of a group of theories and models (which repeatedly refer to Bateson’s studies) that tackle the question mainly from a pragmatic slant: the so called “pragmatic models” (Berne, 1961; Watzlawick, Beavin Bavelas & Jackson, 1967; Bandler & Grinder, 1975). Conceived inside a psychoanalytic context, they all put perception and stimuli at the centre of their attention and reverse the relationship between action and thought using action (rather than thought) to induce training and therapeutic effects. We find no important contradictions among our hypotheses and such models; rather, we find complementarity: they show how physical stimuli can act like messages; our results tell that words (even if only written) can act like physical stimuli. In addition, we can propose an explication of an unsolved point related to them: the biological foundations of the “aspect of relation” in human communication (Watzlawick, Beavin Bavelas & Jackson, 1967). On the basis of our results, this aspect could be exactly the body-level automatic reaction which precedes the conscious information processing.

About the relevance of unconscious processes in human behaviour, some fundamental clarification is provided by Custers & Aarts, 2010 through a review of

18 By one hand, it is worth mentioning a special work coming from NLP founders (Grinder & Bandler, 1979): it appears different from the work that founded this theory (Bandler & Grinder, 1975) and that has successively been developed by NLP specialists (for example Dilts, 1998). As a matter of fact, that work gives a central role to perception and to physical stimuli (not mediated by language) as a possible communication and therapeutic instrument (see, in particular, the concept of “sensorial anchors” in Grinder & Bandler, 1979). By the other hand, we should remind a Watzlawick’s work on the modern evolution of psychotherapy (Watzlawick, 1987) that represents a severe critic to the classic approach and reverses the relation between action and thought (an Italian translation is retrievable in Nardone & Watzlawick, 1990, Chapter 1). In the same Nardone & Watzlawick, 1990, see also chapter 2 on perception as one main source of psychopathology.
Contributions to a NEUROPHYSIOLOGY of MEANING

766 experimental works that re-examines the disputed question of the passage from
767 perception to action. The authors compare the traditional positions of Sensory-motor
768 Principle (SMP, for example Massaro & Cowan, 1993; and, for a presentation and
769 discussion about the sequential processing of stimuli conceived as the foundation of
770 human/environment interactions see also Rizzolatti & Sinigaglia, 2006, chapters 1, 2)
771 and Ideomotor Principle (IMP, Stöcker & Hoffmann, 2004; Pezzulo et al., 2006; Melcher
772 et al., 2008; and, for a synthesis, Jacoboni, 2008, Chapter 2, pp. 56-57 of Italian edition).
773 In so doing, they show how certain stimuli (images, solid objects or even written words),
774 intentionally added to an experimental setting, can alter the sample behaviours, even if
775 such stimuli are not consciously detected: “under certain conditions, actions are initiated
776 even though we are unconscious of the goals to attain… [and] goal pursuit can… operate
777 unconsciously” (Custers & Aarts, 2010). They also sustain that arguments frequently
778 presented as rational motivations for action are, actually, ex-post justifications of
779 unconsciously performed behaviours.

780 The role of physical stimuli in swaying communication through natural language
781 is confirmed by a series of recent works (for example Zhong, Bohns & Gino, 2010; Tsay,
782 2013; and, for a popular-scientific coverage, Lobel, 2014). Further, quite unpredictable
783 factors that can sway message interpretation can be the specific national languages used
784 (for example Marian & Kaushanskaya, 2005; Costa et al., 2014) or the metaphors used to
785 express concepts (Thibodeau & Boroditsky, 2011; Thibodeau & Boroditsky, 2013). Our
786 data is consistent with all this in that it confirms precedence of perception-reaction with
787 regards to conscious processing.
In the end of this rapid survey, we think it is worth re-examining the example presented in our Introduction in order to check our proposal in a concrete case. About the capacity of an observer to understand the action of pouring performed by someone, the author highlights that the “embodied cognition” hypothesis cannot explain the fact that the observer can interpret such action “as pouring, filling, emptying, tipping, rotating, inverting, spilling (if the liquid missed its mark) or defying/ignoring/rebelling (if the pourer was instructed not to pour)…” (see Hickok, 2009, page 1240, italic by the author). The author also anticipates the counter-argument of a supposed mirror neuron theorist, i.e. that mirror neurons codify the goals, or intentions, of the actor: “But a goal, say to fill a glass with water, can be accomplished with any number of individual actions or sequence of actions: pouring from a pitcher, turning a spigot, dipping a glass in a lake, setting the glass in the rain…” (ibidem).

In our opinion, embodied cognition hypothesis looks at the act of pouring in its purely motor nature; conversely, understanding it, for example, as “pouring” or “filling”, requires the interpretation of a situation which is not limited to the act for itself. In order to attribute the “pouring” meaning, one must focus on the liquid flow direction (inside to outside, from the bottle); for the “filling” meaning, one must focus on the glass receiving the liquid; for the “emptying” meaning, one must focus on the bottle content's amount. An operation must be preceding the attribution of a conscious meaning: the previous, unconscious selection of a specific point of view, which is something closely resembling our “disassembling” step.
Some possible consequences. One main consequence of our results, once they will be confirmed, would concern the nature of words. We are used to consider words almost exclusively in their symbolic nature; however, our research shows that they could have a double nature: they could work like symbols as well as physical stimuli. In a specific circumstance, which of the two natures will be active depends on the subjective “disassembling” performed by the receiver, rather than on the sender’s intentions. This implies that which nature is in action will become observable only at the moment of the receiver’s interaction with the message. This is very similar to what happens in certain physics phenomena, for example the double nature of light (waves/particles) or the uncertainty about some features of many atomic particles: the ambivalence is solved just in the process of measuring the phenomena (Zeilinger, 2010, for a discussion about the case of photons, and von Baeyer, 2013 for a recent point of view about such ambivalence). All this entails what follows:

There is a structural uncertainty in the human communication process: when a sender prepares a message (message production sub-process), he/she has the intention to produce some effects on the receiver (his/her communication has a goal, this is the pragmatic aspect); however, the actual effects the message will produce will depend on another sub-process (interpretation) that is under control by the receiver, not by the sender. Uncertainty is linked to the irreducible subjectivity of the receiver’s “disassembling”.

Another way to express such concept is considering the sender-receiver couple as a complex system, and the meaning like an emergent phenomenon which characterizes it (about this specific matter see, for example, Guastello, 2002).
Such subjectivity is not just a question of statistical scatter, with regards to presumed pre-definable message components; the question is that it is impossible to foresee what components, exactly, will trigger the receiver’s automatic reaction off (receiver’s reactivity is an absolutely individual feature).

What is more, the selective focusing, by the receiver, on specific message components, seems to be a creative act, rather than a simple recognition of something contained inside the message. So, it would be impossible to previously detect and list, in a laboratory condition, “all” the components of a message. In fact, whatever the message, the concept of an inherent message’s measurable information content fades. Human communication seems to be a process having a different nature from computer communication.

In the end, communication and knowledge processes would be firstly analogical, rather than digital. Meaning would be established starting from the body automatic reaction in the “disassembling step”, analogically triggered through individual reaction schemes probably based on similar, previous personal experiences. The final meaning, expressed through natural language, would be the result of the following step, i.e. conscious taking into account of the outcomes of such analogical process. This final meaning would not be directly based on the source message; rather, it will be based on the body reaction. Indeed, all this could lead us to approach natural language like a system of acquired reflexes and such feature could heavily affect the possibility to reproduce human interpretation process on digital computers, regardless of their
Contributions to a NEUROPHYSIOLOGY of MEANING

processing power and data storage capacity. The two systems could result not only
different, rather incompatible. We are not the first to propose such observation (for
example Arecchi, 2008; Arecchi, 2010b; Arecchi, 2010c on the non-algorithmic nature
of knowledge and intelligence). In the end, all this could lead to an operative definition
of “meaning” (expressing the meaning of “meaning”), beyond the possible abstract ones:
The meaning attributed to a message is the receiver’s synthetic conscious report on the
final state of his/her organism after experiencing the interaction with the message.

Other possible consequences of our results are the following:

- The distinction between content and form of a message would lose its sense,
given that the apparently most insignificant (from the sender’s point of view)
variation of the form can completely change the message’s meaning (from the
receiver’s point of view). Given a message, we simply could not distinguish
what is “content” and what is “form”, before the receiver interacts with it.
- Human beings do not interpret data or single signals/stimuli; rather they
interpret situations. Again, the human approach to a message, as well as to the
surrounding environment (natural or social), would work analogically, through
the organism's resounding to a recognizable situation, rather than digitally,
through a rational scanning of the available incoming information.

Opened questions. We have provided some data upholding our hypothesis and
our discussion; at the same time, we are conscious that our results and our conclusions
need to be confirmed. Among the undoubtedly several points to be checked, we highlight
two main questions. The first one is linked to the matter of analogical vs. digital nature of
Contributions to a NEUROPHYSIOLOGY of MEANING

874 the processes that contribute to meaning and knowledge building. Following our hypothesis, both the natures would be playing a role, each in a specific step of the interpretation process: “disassembling” has an analogical nature while the conscious processing has a digital one. The main question is the timing of these two steps: if conscious processing precedes, then some current models would be confirmed; if disassembling precedes, then our hypothesis would be confirmed. The problem is just to find a way in order to definitely answer such question, what does not seem easy.

881 The second point to be checked regards the reasons of the observed radical difference between the “H” choosers and “S” choosers group behaviours in terms of interpretation/choice coherence; about this, we think there are two possible hypotheses: (1) The two subsamples follow different paths in interpreting natural language messages (“S” choosers would base their choices on rational information processing, which would precede action, while “H” choosers would react instinctively and choose before analysing the available information); (2) The two subsamples actually follow the same path (automatic reaction preceding conscious information processing, in our opinion) and the difference they show is linked to the differences in their automatic reaction schemes (“S” choosers’ reaction would privilege the attention to the relational aspects while “H” choosers’ reaction would privilege the content aspects). We consider relevant such matter and we will not engage ourselves in extemporaneous considerations about it; rather, we have already begun to think to a dedicated specific research.

894

895 Conclusion
Human behaviour (communication through natural language and “understanding” included) must be rooted into biology. We consider established and thoroughly share this idea; for this, our results have to pass the crucial test: valid compliance with the evolution theory. Specifically, we must ask ourselves if a conscious organism that reacts before rationally thinking (what our work seems to confirm) could be a valid outcome of the evolution process.

At present times, human beings live inside sophisticated societies; however, their biology is the result of natural selection and represents the best fitting in a natural hostile environment. Biologically, we are “still the ones of the stone and of the sling” even though, from a cultural slant, we can account for ourselves in different ways.

Rational thinking is, undoubtedly, much slower in comparison to intuitive reactions; at the same time, in a natural environment, fast reaction capacities are a critical surviving factor. Thus, reaction preceding reflection appears to be consistent with the evolution theory. Human communication and culture could have begun by employing the new feature of language through such general rule: at first, perception would not start complex (and slow) information treatment; rather, the entire organism automatically would change its state and, “resounding” similar situations, would be primed for immediate action. Then, rational thinking would follow. Another possible example of the “exaptation” process (Gould & Vrba, 1982).

20 From the poem Uomo del mio tempo (Man of my age), of Italian poet (1959 Nobel Prize) Salvatore Quasimodo, 1947: Sei ancora quello della pietra e della fionda, / uomo del mio tempo... [You are still the one of the stone and of the sling, / Man of my Age...]. A complete text of the poem (original language) is available at http://www.incontroallapoesia.it/poesie%20salvatore_quasimodo.htm (accessed 1 Sept 2014).
Summing up all the data, literature and considerations we have presented, two things remain to be said. The first is that, now, we have at least a hypothesis to describe how human beings understand or do not understand one another and their environment: it depends on the way they firstly react (biological level) to the inputs and then can manage (cultural level) their own reactions. The second is that, if there is any possibility to represent human semantic approach to the surrounding environment through a computational device, then its model should be the whole human being, not the sole brain cortex. As a consequence, what really can prevent present times computers from imitating human thought is not insufficient data processing power or data storage capacity; rather, it is the lack of a special peripheral unit: a human body.

Acknowledgements

We thank Laura Baglietto, Andrea Baldini, Marco Calabrò, Leonardo Cavari, Hasna El-Hachimi, Alessandro Farini, Alessandra Gasperini, Maddalena Morandi, Claudia Santovito, Arabella Tanyel-Kung for their comments. A special thanks to Fortunato Tito Arecchi for his suggestions; to Andrea Fiaschi and Christina Tsirmpa for their text revision; to Letizia Scrobogna for her contribution to data revision; to Irene Maffèi for her final text survey and impact assessment.
References

Arecchi FT, Kurths J. 2009. Nonlinear dynamics in cognitive and neural systems: Introduction to focus issue. Chaos 19, 015101 (2009).

Arecchi FT. 2008. Coerenza, Complessità, Creatività. Roma: Di Renzo.

Arecchi FT. 2010a. Coherence, cognitive acts and creativity (The physics of mental acts). In: Agazzi E, Di Bernardo G, ed. Relations between Natural Sciences and Human Sciences. Actes de l'Academie Internationale de Philosophie des Sciences, Rovereto-Italie, 15-20 Sept. 2008. Genova: Tilgher, 307-329.

Arecchi FT. 2010b. Coherence, complexity and creativity: from lasers to cognitive processes. Giornale di Fisica - Quaderni di Storia della Fisica 16 (2010):157-183.

Arecchi FT. 2010c. Coherence, complexity and creativity: the dynamics of decision making. In: Faggini M, Vinci CP, ed. Decision theory and choices: a complexity approach. Milan: Springer-Verlag Italia, 3-21.

Arecchi FT. 2010d. Dynamics of consciousness: complexity and creativity. The Journal of Psychophysiology (2010) 24 (2): 141-148.

Arecchi FT. 2010e. The physics of mental acts: coherence and creativity. Journal of Physics: Conference Series 174, 012010 (2009).
953 Arecchi FT. 2011a. Phenomenology of Consciousness: from Apprehension to Judgment.
954 Nonlinear Dynamics, Psychology and Life Sciences 15: 359-375.

955 Arecchi FT. 2011b. Chaos and Complexity. In: Jencks C ed. The Post-Modern Reader.
956 Chichester: John Wiley & Sons, 279-283.

957 Arévalo A, Perani D, Cappa SF, Butler A, Bates E, Dronkers N. 2007. Action and object processing in aphasia: From nouns and verbs to the effect of manipulability. Brain and Language 100 (2007) 79–94. DOI: 10.1016/j.bandl.2006.06.012.

960 Aziz-Zadeh L, Damasio A. 2008. Embodied semantics for actions: Findings from functional brain imaging. Journal of Physiology – Paris. DOI: 10.1016/j.jphysparis.2008.03.012.

963 Aziz-Zadeh L, Wilson SM, Rizzolatti G, Iacoboni M. 2006. Congruent embodied representations for visually presented actions and linguistic phrases describing actions. Current Biology 16 (September): 1818-1823. DOI: 10.1016/j.cub.2006.07.060.

966 Baciadonna L, McElligott AG, Briefer EF. 2013. Goats favour personal over social information in an experimental foraging task. PeerJ 1:e172. DOI: 10.7717/peerj.172.

968 Bandler R, Grinder J. 1981. La struttura della magia. Roma: Astrolabio-Ubaldini. [Or. ed.: Bandler R, Grinder J. 1975. The structure of magic. Palo Alto: Science & Behaviour Books.]
971 Bara BG, Tirassa M. 1999. A mentalist framework for linguistic and extralinguistic communication. In: Bagnara S, ed. *Proceedings of the 3rd European Conference on Cognitive Science (ECCS '99)*. Roma: Istituto di Psicologia del CNR.

974 Barthes R. 2000. *La retorica antica*. Milano: Bompiani. [Or. ed.: Barthes R. 1970. *L'ancienne rhétorique*. *Communications* 16: 172-223. DOI: 10.3406/comm.1970.1236.]

976 Bateson G. 1976. *Verso un'ecologia della mente*. Milano: Adelphi. [Orig. ed.: Bateson G. 1987 (1972). *Steps to an Ecology of Mind: Collected Essays in Anthropology*, *Psychiatry, Evolution, and Epistemology*. Northvale: Aronson.]

979 Bedny M, Caramazza A, Grossman E, Pascual-Leone A, Saxe R. 2008. Concepts are more than percepts: The case of action verbs. *The Journal of Neuroscience*, October 29, 2008, 28(44):11347-11353. DOI: 10.1523/JNEUROSCI.3039-08.2008.

982 Bedny M, Caramazza A, Pascual-Leone A, Saxe R. 2012. Typical Neural Representations of Action Verbs Develop without Vision. *Cerebral Cortex* February 2012, 22: 286-293. DOI: 10.1093/cercor/bhr081.

985 Bedny M, Caramazza A. 2011. Perception, action, and word meanings in the human brain: the case from action verbs. *Annals of the New York Academy of Sciences* 1224: 81-987 95. DOI: 10.1111/j.1749-6632.2011.06013.x.

988 Berne E. 1971. *Analisi transazionale e psicoterapia*. Roma: Astrolabio-Ubaldini. [Or. ed.: Berne E. 1961. *Transactional analysis*. New York: Grove.]
Contributions to a NEUROPHYSIOLOGY of MEANING

990 Bobrowski O, Meir R, Eldar YC. 2009. Bayesian filtering in spiking neural networks: noise, adaptation, and multisensory integration. *Neural Computation* 2009 May, 21(5): 1277-320.

993 Campos MN. 2007. Ecology of meanings: A critical constructivist communication model. *Communication Theory* 17: 386-410. DOI: 10.1111/j.1468-2885.2007.00304.x.

995 Cannon WB. 1927. The James-Lange theory of emotions: a critical examination and an alternative theory. *The American Journal of Psychology* Vol 39, 1927, 106-124. DOI: 10.2307/1415404.

998 Carter AJ, Marshall HH, Heinsohn R, Cowlishaw G. 2014. Personality predicts the propensity for social learning in a wild primate. *PeerJ* 2:e283. DOI: 10.7717/peerj.283.

1000 Cattaneo L, Caruana F, Jezzini A, Rizzolatti G. 2009. Representation of goal and movements without overt motor behavior in the human motor cortex: A transcranial magnetic stimulation study. *Journal of Neuroscience* 29: 11134–11138.

1003 Chater N, Tenenbaum JB, Yuille A. 2006. Probabilistic models of cognition: Conceptual foundations. *TRENDS in Cognitive Sciences* Vol.10, No.7, July 2006.

1005 Christian B. 2012. *Essere umani: che cosa ci dice di noi il test di Turing*. [Or. ed.:]

1006 Christian B. 2011. *The most human human: What talking with computers teaches us about what it means to be alive*. New York-London: Doubleday – Random House.]
Contributions to a NEUROPHYSIOLOGY of MEANING

1008 Costa A, Foucart A, Hayakawa S, Aparici M, Apesteguia J, Heafner J, Keysar B. 2014. Your Morals Depend on Language. *PLoS ONE* 9(4): e94842. DOI:

1010 10.1371/journal.pone.0094842.

1011 Crepaldi D, Aggujaro S, Arduino LS, Zonca G, Ghirardi G, Inzaghi MG, Colombo M, Chierchia G, Luzzatti C. 2006. Noun-verb dissociation in aphasia: the role of imageability and functional locus of the lesion. *Neuropsychologia* 2006; 44 (1): 73-89. PMID: 15922372.

1015 Custers R, Aarts H. 2010. The unconscious will. *Science* 329: 47-50. DOI:

1016 10.1126/science.1188595.

1017 De Mauro T. 2003 (1980). *Guida all’uso delle parole*. Roma: Editori Riuniti.

1018 Deacon T W. 2012. *Natura incompleta: Come la mente è emersa dalla materia*. Torino: Codice Edizioni. [Or. ed.: Deacon T W. 2012. *Incomplete nature: How mind emerged from matter*. New York: W. W. Norton & Company.]

1021 di Pellegrino G, Fadiga L, Fogassi L, Gallese V, Rizzolatti G. 1992. Understanding motor events: A neurophysiological study. *Experimental brain research* 91: 176-180. DOI:

1023 10.1007/BF00230027.

1024 Dilts R. 2003. *Creare modelli con la PNL*. Roma: Astrolabio – Ubaldini. [Or. ed.: Dilts R. 1998. *Modeling with NLP*. Capitola: Meta Publications.]
1026 Ferrari F, Rizzolatti G. 2014. Mirror neurons research: the past and the future. Phil.

1027 Trans. R. Soc. B **369**, 20130169 (published 28 April 2014). DOI: 10.1098/rstb.2013.0169.

1028 Ferri F, Riggio L, Gallese V, Costantini M. 2011. Objects and their nouns in peripersonal space. *Neuropsychologia* **49** (2011): 3519–3524.

1030 Fowler CA, Galantucci B, Saltzman E. 2003. Motor theories of perception. In: Arbib MA, ed. *The handbook of brain theory and neural networks*. Cambridge: The MIT Press, 2nd edition, 705-707.

1033 Fox C, Stafford T. 2012. Maximum utility unitary coherent perception vs. the Bayesian brain. *Proceedings of the Annual Meeting of the Cognitive Science Society*, Sapporo 1-4 August 2012. *Available*: http://mindmodeling.org/cogsci2012/papers/0070/paper0070.pdf (accessed 1 Sept 2014).

1037 Friedman BH. 2010. Feelings and the body: the Jamesian perspective on autonomic specificity of emotion. *Biological Psychology*, Jul;84(3):383-93. DOI: 10.1016/j.biopsycho.2009.10.006. Epub 2009 Oct 29.

1040 Gallese V, Gernsbacher MA, Heyes C, Hickok G, Iacoboni M. 2011. Mirror Neurons Forum. *Perspectives on Psychological Science* 2011 6: 369. DOI: 10.1177/1745691611413392.
Contributions to a NEUROPHYSIOLOGY of MEANING

1043 Gallese V, Rochat M, Cossu G, Sinigaglia C. 2009. Motor cognition and its role in the phylogeny and ontogeny of intentional understanding. Developmental Psychology 45: 103–113.

1046 Gallese V, Sinigaglia C. 2011a. How the body in action shapes the self. Journal of Consciousness Studies 18: No. 7–8, 117–43.

1048 Gallese V, Sinigaglia C. 2011b. What is so special about embodied simulation? Trends in cognitive neuroscience 2011 Nov, 15(11): 512-9.

1050 Gallese V, Sinigaglia C. 2012. Response to de Bruin and Gallagher: Embodied simulation as reuse is a productive explanation of a basic form of mind-reading. Trends in Cognitive Sciences February 2012, Vol. 16, No 2: 99-100. DOI: 10.1016/j.tics.2011.12.002.

1054 Gallese V. 2000. The inner sense of action. Journal of Consciousness studies 7, 10: 23-40.

1056 Gallese V. 2005. Embodied simulation: From neurons to phenomenal experience. Phenomenology and the Cognitive Sciences 4: 23–48.

1058 Gallese V. 2006. Intentional attunement: A neurophysiological perspective on social cognition and its disruption in autism. Brain Research 1079: 15–24.
Contributions to a NEUROPHYSIOLOGY of MEANING

1060 Gallese V. 2007. Before and below ‘‘theory of mind’’: Embodied simulation and the neural correlates of social cognition. *Philosophical Transactions of the Royal Society B: Biological Sciences* 362: 659–669.

1063 Gallese V. 2008 Mirror neurons and the social nature of language: The neural exploitation hypothesis. *Social Neuroscience* 3: 317–333.

1065 Gallese V. 2009a. Motor abstraction: A neuroscientific account of how action goals and intentions are mapped and understood. *Psychological Research* 73: 486–498.

1067 Gallese V. 2009b. Neuroscienze controverse: il caso dei neuroni specchio. Interview by Marco Mozzoni. *Brainfactor* 29/5/2009. Available: http://www.brainfactor.it/index.php?option=com_content&view=article&id=171 (accessed 1 Sept 2014).

1070 Gallese V. 2010. The Mirror Neuron Mechanism and Literary Studies. Interview by Hannah Chapelle Wojciehowski. *University of California eScholarship* 2010. Available: http://escholarship.org/uc/item/56f8v9by (accessed 1 Sept 2014).

1073 Gallese V. 2011. Embodied Simulation Theory: Imagination and Narrative. *Neuropsychoanalysis* 2011, 13 (2).

1075 Gallese V. 2014. Bodily selves in relation: embodied simulation as second-person perspective on intersubjectivity. *Phil. Trans. R. Soc. B* 369, 20130177 (published 28 April 2014). DOI: 10.1098/rstb.2013.0177.
Contributions to a NEUROPHYSIOLOGY of MEANING

1078 Geymonat L. 1970. *Storia del pensiero filosofico e scientifico*. Milano: Garzanti, Vol. 1, 1079 Sez. I.

1080 Gibson E, Bergen L, Piantadosi ST. 2013. Rational integration of noisy evidence and 1081 prior semantic expectations in sentence interpretations. *Proceedings of the National 1082 Academy of Sciences* May 14, 2013, Vol. 110, n. 20: 8051-8056.

1083 Goldman A, de Vignemont F. 2009. Is social cognition embodied? *Trend in cognitive 1084 sciences* April 2009, 13(4): 154-9.

1085 Goldstein R. 2006. *Incompletezza: La dimostrazione e il paradosso di Kurt Gödel*. 1086 Torino: Codice Edizioni. [Or. ed.: Goldstein R. 2005. *Incompleteness: The proof and 1087 paradox of Kurt Gödel*. New York-London: Norton.]

1088 Gould SJ, Vrba ES. 1982. Exaptation: A missing term in the science of form. 1089 *Paleobiology* 8 (1): 4-15.

1090 Griffiths TL, Kemp C, Tenenbaum JB. 2008. Bayesian models of cognition. In: Ron Sun, 1091 ed. *Cambridge Handbook of Computational Cognitive Modelling*. Cambridge: 1092 Cambridge University Press.

1093 Grinder J, Bandler R. 1980. *La metamorfosi terapeutica: Principi di Programmazione 1094 Neurolinguistica*. Roma: Astrolabio-Ubaldini. [Or. ed.: Grinder J, Bandler R. 1979. 1095 *Frogs into princes: Neuro Linguistic Programming*. Moab: Real People Press.]
Contributions to a NEUROPHYSIOLOGY of MEANING

1096 Guan CQ, Meng W, Yao R, Glenberg AM. 2013. The Motor System Contributes to Comprehension of Abstract Language. PLoS ONE 8(9): e75183. DOI: 10.1371/journal.pone.0075183.

1099 Guastello SJ. 2013 (2002). Managing emergent phenomena: nonlinear dynamics in work organizations. Abingdon (UK): Taylor & Francis, Psychology Press.

1101 Hickok G, Hauser M. 2010. (Mis)understanding mirror neurons. Current Biology 20: R593–R594.

1103 Hickok G. 2009. Eight problems for the mirror neurons theory of action understanding in monkeys and humans. Journal of Cognitive Neuroscience 21:7: 1229-1243. DOI: 10.1162/jocn.2009.21189.

1106 Hommel B, Müsseler J, Aschersleben G, Prinz W. 2001. The theory of event coding (TEC): A framework for perception and action planning. Behavioural and brain sciences 24: 849-937.

1109 Horchak OV, Giger JC, Cabral M, Pochwatto G. 2014. From demonstration to theory in embodied language comprehension: a review. Cognitive Systems Research Volumes 29-30, September 2014: 66-85. DOI: 10.1016/j.cogsys.2013.09.002.

1112 Iacoboni M, Molnar-Szakacs I, Gallese V, Buccino G, Mazziotta JC, Rizzolatti G. 2005. Grasping the intentions of others with one’s own mirror neuron system. PLoS Biology 3(3): e79.
Contributions to a NEUROPHYSIOLOGY of MEANING

1115 Iacoboni M. 2008. *I neuroni specchio: Come capiamo ciò che fanno gli altri.* Torino: Bollati Boringhieri. [Or. ed.: Iacoboni M. 2008. *Mirroring People: The New Science of How We Connect with Others.* New York: Farrar, Straus & Giroux.]

1118 Ingram JN, Körding KP, Howard IS, Woolpert DM. 2008. The statistics of natural hand movements. *Experimental Brain Research* 188: 223–236. DOI 10.1007/s00221-008-1355-3.

1121 James W. 1890. *The principles of psychology.* New York: Holt.

1122 Jeannerod M, Arbib MA, Rizzolatti G, Sakata H. 1995. Grasping objects: Cortical mechanisms of visuomotor transformation. *Trends in Neuroscience* 18: 314-320.

1124 Khosravi H, Bina B. 2010. A survey on statistical relational learning. *Lecture Notes in Computer Science*, Volume 6085/2010: 256-268. DOI: 10.1007/978-3-642-13059-5_25.

1126 Krauss RM, Fussell SR. 1996. Social psychological models of interpersonal communication. In: Higgins ET, Kruglanski A, ed. *Social Psychology: A handbook of basic principles.* New York: Guilford, 655-701.

1129 Leavitt D. 2007. *L’uomo che sapeva troppo: Alan Turing e l’invenzione del computer.* Torino: Codice Edizioni. [Or. ed.: Leavitt D. 2006. *The man who knew too much: Alan Turing and the invention of the computer.* New York-London: Norton.]

1132 Liberman AM, Whalen DH. 2000. On the relation of speech to language. *Trends in Cognitive Neuroscience* 4: 187-196.
1134 Lobel T. 2014. *Sensation: the new science of physical intelligence*. New York: Simon & Schuster/Atria Books.

1136 Locke JL. 2009. Evolutionary developmental linguistics: Naturalization of the faculty of language. *Language Sciences* 31 (2009) 33-59. DOI: 10.1016/j.langsci.2007.09.008.

1138 Lotze RH. 1852. *Medizinische psychologie oder physiologie der seele*. Leipzig: Weidmannsche Buchandlung.

1140 Mach E. 1897. *Contributions to the analysis of the sensations*. Chicago: Open Court.

1141 Maffei R, Cavari L, Ranieri M. 2007. L’autre face du changement: Constants et structures dans la collaboration en ligne. *Proceedings of the Colloques TICE - Méditerranée 2007*. ISDM 29. Available: http://isdm.univ-tln.fr/PDF/isdm29/MAFFEI.pdf (accessed 1 Sept 2014).

1145 Maffei R. 2006. Questioni di stile: L’influenza dello stile di conduzione sui gruppi collaborativi online. *Proceedings of the Colloques TICE - Méditerranée 2006*. ISDM 25. Available: http://isdm.univ-tln.fr/PDF/isdm25/Maffei_TICE2006.pdf (accessed 1 Sept 2014).

1149 Mahon B Z, Caramazza A. 2011. What drives the organization of object knowledge in the brain? *Trends in Cognitive Sciences*, Volume 15, Issue 3, 97-103, 14. DOI: 10.1016/j.tics.2011.01.004.
Contributions to a NEUROPHYSIOLOGY of MEANING

1152 Mahon BZ, Caramazza A. 2008. A critical look at the Embodied Cognition Hypothesis and a new proposal for grounding conceptual content. *Journal of Physiology - Paris* 102: 59-70. DOI:10.1016/j.jphysparis.2008.03.004.

1155 Mahon BZ, Caramazza A. 2009. Concepts and categories: A cognitive neuropsychological perspective. *Annual Review of Psychology* 60: 27-51. DOI:10.1146/annurev.psych.60.110707.163532.

1158 Mainardi D. 1988. *L’animale culturale*. Milano: Rizzoli, 3rd edition.

1159 Marcus G. 2004. *La nascita della mente: Come un piccolo numero di geni crea la complessità del pensiero umano*. Torino: Codice Edizioni. [Or. ed.: Marcus G. 2004. *The birth of the mind: How a tiny number of genes creates the complexities of human thought*. New York: Basic Books.]

1163 Marian V, Kaushanskaya M. 2005. Autobiographical memory and language in bicultural bilinguals. In: Cohen J, McAlister KT, Rolstad K, MacSwan J, eds. *Proceedings of the 4th International Symposium on Bilingualism*. Somerville (MA): Cascadilla Press.

1166 Marino BFM, Gough P, Gallese V, Riggio L, Buccino G. 2011. How the motor system handles nouns: A behavioural study. *Psychological Research* (published online). DOI 10.1007/s00426-011-0371-2.

1169 Massaro DW, Cowan N. 1993. Information Processing Models: Microscopes of the mind. *Annual Review of Psychology* 44: 383-425.
1171 Melcher T, Weidema M, Eenshuistra RM, Hommel B, Gruber O. 2008. The neural substrate of the ideomotor principle: An event-related fMRI analysis. *NeuroImage* 39: 1274-1288. DOI: 10.1016/j.neuroimage.2007.09.049.

1174 Menchetti S, Costa F, Frasconi P, Pontil M. 2005. Wide coverage natural language processing using kernel methods and neural networks for structured data. *Science Direct, Pattern Recognition Letters* 26 (2005): 1896-1906. Available: http://www.researchgate.net/publication/222681214_Wide_coverage_natural_language_processing_using_kernel_methods_and_neural_networks_for_structured_data (accessed 1 Sept 2014).

1180 Merleau-Ponty M. 1965. *La fenomenologia della percezione*. Milano: Il Saggiatore.

1181 [English ed.: Merleau-Ponty M. 1962. *Phenomenology of perception*. London-New York: Routledge.]

1183 Mitchell TM. 1997. *Machine learning*. New York: McGraw Hill.

1184 Mitchell TM. 2009. Brains, meaning and corpus statistics. *Google Tech Talks* March 27, 2009. Available: http://www.youtube.com/watch?v=QbTf2nE3Lbw (accessed 1 Sept 2014).

1187 Moro V, Urgesi C, Pernigo S, Lanteri P, Pazzaglia M, Aglioti SM. 2008. The neural basis of body form and body action agnosia. *Neuron* 60: 235–246.
Contributions to a NEUROPHYSIOLOGY of MEANING

1189 Moseley RL, Pulvermüller F. 2014. Nouns, verbs, objects, actions, and abstractions: Local fMRI activity indexes semantics, not lexical categories. *Brain and language* 132 (2014): 28-42. DOI: 10.1016/j.bandl.2014.03.001.

1192 Muller CA, Cant MA. 2010. Imitation and traditions in wild banded mongooses. *Current Biology* 20: 1171–1175.

1194 Nardone G, Watzlawick P. 1990. *L’arte del cambiamento*. Milano: Ponte alle Grazie.

1195 Nathan DE, Guastello SJ, Prost RW, Jeutter DC. 2012. Understanding Neuromotor Strategy During Functional Upper Extremity Tasks Using Symbolic Dynamics. *Nonlinear Dynamics, Psychology, and Life Sciences* Vol. 16, Iss. 1 (January, 2012): 37-1198 59.

1199 Negri GAL, Rumiati RI, Zadini A, Ukmar M, Mahon BZ, Caramazza A. 2007. What is the role of motor simulation in action and object recognition? Evidence from apraxia. *Cognitive Neuropsychology* 24(8): 795-816. DOI: 10.1080/02643290701707412.

1202 Newell A, Shaw JC, Simon HA. 1958. Elements of a theory of human problem solving. *Psychological Review* 65: 151-166. DOI 10.1037/h0048495.

1204 Pascolo PB, Budai R. 2013. Just how consistent is the mirror neuron system paradigm? *Progress in Neuroscience* 2013; 1 (1-4): 29-43. DOI: 10.14588/PiN.2013.Pascolo.29

1206 Pazzaglia M, Smania N, Corato E, Aglioti SM. 2008. Neural underpinnings of gesture discrimination in patients with limb apraxia. *Journal of Neuroscience* 28: 3030–3041.
Contributions to a NEUROPHYSIOLOGY of MEANING

1208 Perelman C. 1981. *Il dominio retorico: Retorica e argomentazione*. Torino: Einaudi. [Or. 1209 ed.: Perelman C. 1977. *L’empire rhétorique : Rhétorique et argumentation*. Paris: Vrin.]

1210 Perfors A, Tenenbaum JB, Griffiths TL, Xu F. 2011. A tutorial introduction to Bayesian 1211 models of cognitive development. *Cognition* Volume 120, Issue 3, September 2011: 302– 1212 321. DOI : 10.1016/j.cognition.2010.11.015.

1213 Pettigiani MG, Sica S. 2003. *La comunicazione interumana*. Milano: F. Angeli.

1214 Pezzulo G, Baldassarre G, Butz MV, Castelfranchi C, Hoffmann J. 2006. An analysis of 1215 the Ideomotor principle and TOTE. In: Butz MV, Sigaud O, Pezzulo G, Baldassarre G, 1216 ed. *Anticipatory Behavior in Adaptive Learning Systems: Advances in Anticipatory 1217 Processing*. Berlin: Springer, 73-93.

1218 Poincaré JH. 2003 (1902). *La scienza e l’ipotesi*. Milano: Bompiani. [English ed.: 1219 Poincaré JH.1905. *Science and Hypothesis*. London-Newcastle O. T.: Walter Scott 1220 Publishing.]

1221 Poincaré JH.1997 (1908). *Scienza e metodo*. Torino: Einaudi. [English ed.: Poincaré JH. 1222 1914. *Science and method*. London-Edinburgh-Dublin-New York: Nelson.]

1223 Prinz W. 1997. Perception and action planning. *European Journal of Cognitive 1224 Psychology* 9 (2): 129-154.
Contributions to a NEUROPHYSIOLOGY of MEANING

1225 Pulvermüller F, Moseley RL, Egorova N, Shebani Z, Boulenger V. 2014. Motor cognition-motor semantics: Action-perception theory of cognition and communication. Neuropsychologia 55 (2014) 71-84. DOI: 10.1016/j.neuropsychologia.2013.12.002.

1228 Quasimodo S. 1947. Giorno dopo giorno. Milano: Mondadori.

1229 Range F, Viranyi Z, Huber L. 2007. Selective imitation in domestic dogs. Current Biology 17: 868–872.

1230 Rizzolatti G, Craighero L. 2004. The mirror-neuron system. Annual review of Neuroscience 27: 169-192. DOI: 10.1146/annurev.neuro.27.070203.144230.

1233 Rizzolatti G, Fabbri-Destro M. 2008. The mirror system and its role in social cognition. Current Opinion in Neurobiology 18: 1-6. DOI: 10.1016/j.conb.2008.08.001.

1235 Rizzolatti G, Fogassi L, Gallese V. 2001. Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Reviews Neuroscience 2: 661-670. DOI: 10.1038/35090060.

1238 Rizzolatti G, Sinigaglia C. 2006. So quel che fai: Il cervello che agisce e i neuroni specchio. Milano: Cortina.

1240 Rizzolatti G, Sinigaglia C. 2010. The functional role of the parieto-frontal mirror circuit: Interpretations and misinterpretations. Nature Reviews Neuroscience 11: 264–274.

1242 Rizzolatti G, Vozza L. 2008. Nella mente degli altri. Milano: Zanichelli.
Contributions to a NEUROPHYSIOLOGY of MEANING

1243 Rochat MJ, Caruana F, Jezzini A, Escola L, Intskirveli I, Grammont F, Gallese V, Rizzolatti G, Umiltà MA. 2010. Responses of mirror neurons in area F5 to hand and tool grasping observation. *Experimental Brain Research* 204: 605–616.

1246 Rose S. 2005. *Il cervello del XXI Secolo: Spiegare, curare e manipolare la mente.* Torino: Codice Edizioni. [Or. ed.: Rose S. 2005. *The 21st Century brain: Explaining, mending and manipulating the mind.* London: Jonathan Cape-Random House.]

1249 Sauser EL, Billard AG. 2006. Parallel and distributed neural models of the ideomotor principle: An investigation of imitative cortical pathways. *Neural networks* 19: 285-298. DOI: 10.1016/j.neunet.2006.02.003.

1252 Schachter S, Singer JE. 1962. Cognitive, social and physiological determinants of emotional state. *Psychological Review* Vol.69, No.5, September 1962.

1254 Sclavi M. 2003. *Arte di ascoltare e mondi possibili.* Milano: Bruno Mondadori.

1255 Speer NK, Reynolds JR, Swallow KM, Zacks JM. 2008. Reading stories activates neural representations of visual and motor experiences. *Psychological Science* 20/8: 989-1257 999. DOI: 10.1111/j.1467-9280.2009.02397.x.

1258 Sperry RW. 1952. Neurology and the mind–brain problem. *American Scientist* 40: 290-1259 312.
1260 Stekelenburg JJ, Vroomen J. 2012. Electrophysiological evidence for a multisensory speech-specific mode of perception. *Neuropsychologia* 50 (2012) 1425-1431. DOI: 10.1016/j.neuropsychologia.2012.02.027.

1263 Stöcker C, Hoffmann J. 2004. The ideomotor principle and motor sequence acquisition: Tone effects facilitate movements chunking. *Psychological research* 68: 126-137. DOI: 10.1007/s00426-003-0150-9.

1266 Suchak M, Eppley TM, Campbell MW, de Waal FBM. 2014. Ape duos and trios: spontaneous cooperation with free partner choice in chimpanzees. *PeerJ* 2:e417. DOI: 10.7717/peerj.417.

1269 Tenenbaum JB, Kemp C, Griffiths TL, Goodman ND. 2011. How to Grow a Mind: Statistics, Structure, and Abstraction. *Science* 331 : 1279. DOI: 10.1126/science.1192788.

1271 Tettamanti M, Buccino G, Saccuman MC, Gallese V, Danna M, Scifo P, Fazio F, Rizzolatti G, Cappa SF, Perani D. 2005. Listening to action-related sentences activates fronto-parietal motor circuits. *Journal of Cognitive Neuroscience* 17(2): 273-281.

1274 Thibodeau PH, Boroditsky, L. 2011. Metaphors we think with: the role of metaphor in reasoning. *PLoS ONE* 6(2): e16782. DOI:10.1371/journal.pone.0016782.

1276 Thibodeau PH, Boroditsky, L. 2013. Natural language metaphors influence reasoning. *PLoS ONE* 8(1): e52961. DOI:10.1371/journal.pone.0052961.
Contributions to a NEUROPHYSIOLOGY of MEANING

1278 Tsay CJ. 2013. Sight over sound in the judgement of music performance. *Proceedings of the National Academy of Sciences* 2013 110 (36) 14580-14585. DOI: 10.1073/pnas.1221454110.

1281 Turing A. 1950. Computing machinery and intelligence. *Mind* 59: 433-460. DOI: 10.1093/mind/LIX.236.433. Available: http://www.csee.umbc.edu/courses/471/papers/turing.pdf (accessed 1 Sept 2014).

1284 Umiltà MA, Escola L, Intskirveli I, Grammont F, Rochat M, Caruana F, Jezzini A, Gallese V, Rizzolatti G. 2008. When pliers become fingers in the monkey motor system. *Proceedings of the National Academy of Sciences* USA 105: 2209–2213.

1287 Verbeke M, Van Asch V, Morante R, Frasconi P, Daelemans W, De Raedt L. 2012. A statistical relational learning approach to identifying evidence based medicine categories. *Proceedings of the 2012 Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL 2012)*, Jeju, Korea July 12–14, 2012. Available: https://lirias.kuleuven.be/bitstream/123456789/350664/1/VerbekeEtAl_EMNLP2012.pdf (accessed 1 Sept 2014).

1294 Vitevitch MS, Sereno J, Jongman A, Goldstein R. 2013. Speaker Sex Influences Processing of Grammatical Gender. *PLoS ONE* 8(11): e79701. DOI: 10.1371/journal.pone.0079701.
Contributions to a NEUROPHYSIOLOGY of MEANING

1297 von Baeyer HC. 2013. Can Quantum Bayesianism Fix the Paradoxes of Quantum Mechanics? *Scientific American*, June 2013.

1299 Watzlawick P, a cura di. 1988. *La realtà inventata - Contributi al costruttivismo*. Milano: Feltrinelli. [Or. ed.: Watzlawick P, ed. 1984. *The invented reality*. New York: Norton.]

1301 Watzlawick P, Beavin Bavelas J, Jackson DD. 1971. *Pragmatica della comunicazione umana*. Roma: Astrolabio-Ubaldini. [Or. ed.: Watzlawick P, Beavin Bavelas J, Jackson DD. 1967. *Pragmatics of human communication*. New York: Norton.]

1304 Watzlawick P. 1987. If you desire to see, learn how to act. In: Zeig JK, ed. *The evolution of psychotherapy*. New York: Brunner/Mazel, 91-100.

1306 Zeilinger A. 2012. *La danza dei fotoni – Da Einstein al teletrasporto quantistico*. Torino, Codice. [Or. ed.: Zeilinger A. 2010. *Dance of the Photons – From Einstein to quantum teleportation*. New York: Farrar Straus & Giroux.]

1309 Zeki S. 2010. *Splendori e miserie del cervello: L’amore, la creatività e la ricerca della felicità*. Torino: Codice Edizioni. [Or. ed.: Zeki S. 2009. *Splendours and miseries of the brain: Love, creativity and the quest for human happiness*. Chichester: Wiley-Blackwell.]

1312 Zhong CB, Bohns VK, Gino F. 2010. Good lamps are the best police: darkness increases dishonesty and self-interested behaviour. *Psychological Science* Published online 29 January 2010. DOI: 10.1177/0956797609360754.
1315 Zipoli Caiani S. 2013. Cognizione incorporata. *APhEx – Portale italiano di filosofia* analitica (*Periodico online – ISSN 2036-9972*) 8, 2013. Available:
http://www.aphex.it/public/file/Content20140103_APhEx8.2013Cognizioneincorporata-
Zipoli.pdf (accessed 1 Sept 2014).

1319 Zuberbühler K. 2005. The phylogenetic roots of language: evidence from Primate communication and cognition. *Current directions in psychological science* 2005, 14:126. DOI: 10.1111/j.0963-7214.2005.00357.x.
If the interpretation of a message should be linked only to the processing of its information content, then we would expect a uniform interpretation, given that the source information is absolutely identical for all the participants. On the contrary, a wide scatter is always observed and its process can be represented with a “megaphone-shape” model: information would be homogeneously processed but differently interpreted.
Contributions to a NEUROPHYSIOLOGY of MEANING

Figure 2: Percent distribution of total indications with respect to questions/sub-questions.

With respect to questions, the respondents’ total indications about the focused components present a flat-like percent distribution (differences in a range around 5%, from 12% to 17% about, source data from Table 3, “%” column). The range reduces to around 3.6% (from 12.8% to 16.4% about) if we group together the three sub-questions of Question #1 and consider their mean (the reason is that the answers to Questions #1-b and #1-c are often given in short, indicating reference to the already provided answer to Question #1-a). The indications are distributed without any significant imbalance among the different questions of the questionnaire. The approach through subjective selective focusing does not definitely advantage any question or item.
Contributions to a NEUROPHYSIOLOGY of MEANING

Figure 3: Percent distribution of total indications with respect to types of components.

[Legend: Symb. = Punctuation marks; Titl. = Title/salutes (opening and closing expressions); Phras. = Complete phrases/periods; Whole = References to the message as a whole; Inform. = Information content; Gramm. = Grammar notations (verb tense etc.)]

The respondents’ indications have been grouped in bins by type. The presented percent distribution (source data from Table 3, “%” row) has been built through the ranking of the first six types (from “Symbols” to “Whole”) by increasing size of the text “chunks” considered. The remaining three types (Information content, Other components and Grammar notations) have been added ranking them by decreasing values. The highest frequencies correspond to middle-sized “chunks” of the messages.
Figure 4: Sample distribution with respect to the amount of component types indicated by participants.

Respondents have been grouped in bins by the amount of types they indicated. The histogram shows the sample’s distribution; it presents the highest frequencies on the 3-4-5 types-per-participant bins and has an almost “bell curve” shape. The main statistical indexes of the distribution are the following:

Mean = 4.3; SD = 1.6; Skewness = 0.25; Kurtosis = 0.49.
Figure 5: Sample distribution with respect to the total indications provided by participants.

Respondents have been grouped in bins by the amount of total provided indications. The histogram shows the sample’s distribution; it presents the highest frequencies on the second, third and fourth bins and has an almost “bell curve” shape (even if it is clearly shifted towards the left side). The main statistical indexes of the distribution are the following:

Mean = 12.9; SD = 6.2; Skewness = 1.93; Kurtosis = 7.18.
If the always observed “classic” interpretation scatter should be based on the scattering detected in “disassembling” operation, we could expect that the focusing on one same component would be followed by a convergent interpretation of it, as shown in this figure. This kind of process would prove itself as the opposite of the “megaphone-shape” model shown in Fig. 1.
Figure 7: The “hourglass-shape” model.

This figure is a possible representation of the observed process of message interpretation.

Two kinds of scatter co-exist, manifesting themselves in sequence: the first one regards dispersion during the focusing on the components (“disassembling” operation) and the second one regards the interpretation of the focused components (“classic” interpretation scatter).
Figure 8: Scheme of the process of written message interpretation (how messages are understood).

[Legend: S = Sender; R = Receiver; 1-2-3 = Progressive steps of the process]

This figure presents our hypothesis to answer the question: “How is a written message understood by the receiver?” Message production (performed by the sender) is not deepened. The process of interpretation is made up by three sub-processes, in a cascade.

The automatic reaction on perceptual basis (step #2) is followed by the conscious information processing (step #3). The step #1 is decoding, given that the words must be recognized, at first, in order to be interpreted.
Figure 9: Sample distribution with respect to coherence levels / Undifferentiated Total Sample

[Legend / Coherence indicator:
L = Low; LM = Low-Medium; MG = Medium-Great; G = Great level of coherence]

This histogram shows the distribution of ALL respondents according to the coherence (expressed through the coherence indicator) between, by one hand, their interpretations of Messages #4/H and #4/S; by the other hand, their final choice. Data is shown for the undifferentiated total sample. The L level results over-represented with respect to what expected.
Figure 10: Sample percent distribution with respect to coherence levels / Comparing “H”/”S” choosers - Total Sample

[Legend / Coherence indicator:
L = Low; LM = Low-Medium; MG = Medium-Great; G = Great level of coherence]

This histogram shows the percent distribution of ALL respondents according to the coherence (expressed through the coherence indicator) between, by one hand, their interpretations of Messages #4/H and #4/S; by the other hand, their final choice. Data is shown separately for “H” and “S” choosers. Distributions result significantly different (Chi-squared test: $p=0.000095$).
Figure 11: Sample percent distribution with respect to coherence levels / Comparing “H”/”S” choosers - Subsample MEN

[Legend / Coherence indicator:
L = Low; LM = Low-Medium; MG = Medium-Great; G = Great level of coherence]

This histogram shows the percent distributions of MALE respondents according to the coherence (expressed through the coherence indicator) between, by one hand, their interpretations of Messages #4/H and #4/S; by the other hand, their final choice. Data is shown separately for “H” and “S” choosers. Chi-squared test unsuitable for the presence of a zero value.
Figure 12: Sample percent distribution with respect to coherence levels / Comparing “H”/”S” choosers - Subsample WOMEN

[Legend / Coherence indicator:
L = Low; LM = Low-Medium; MG = Medium-Great; G = Great level of coherence]

This histogram shows the percent distributions of FEMALE respondents according to the coherence (expressed through the coherence indicator) between, by one hand, their interpretations of Messages #4/H and #4/S; by the other hand, their final choice. Data is shown separately for “H” and “S” choosers. Chi-squared test unsuitable for the presence of a zero value.
Figure 13: Sample percent distribution with respect to coherence levels / Comparing “H”/”S” choosers - Subsample High School

[Legend / Coherence indicator:
L = Low; LM = Low-Medium; MG = Medium-Great; G = Great level of coherence]

This histogram shows the percent distributions of HIGH-SCHOOL degree granted respondents according to the coherence (expressed through the coherence indicator) between, by one hand, their interpretations of Messages #4/H and #4/S; by the other hand, their final choice. Data is shown separately for “H” and “S” choosers. Chi-squared test unsuitable for the presence of a zero value.
Figure 14: Sample percent distribution with respect to coherence levels / Comparing “H”/”S” choosers - Subsample Graduates

[Legend / Coherence indicator:
L = Low; LM = Low-Medium; MG = Medium-Great; G = Great level of coherence]

This histogram shows the percent distribution of GRADUATED respondents according to the coherence (expressed through the coherence indicator) between, by one hand, their interpretations of Messages #4/H and #4/S; by the other hand, their final choice. Data is shown separately for “H” and “S” choosers. Distributions result significantly different (Chi-squared test: $p=0.000649$).
Figure 15: Sample percent distribution with respect to coherence levels / Comparing “H”/“S” choosers - Subsample “AGE”

[Legend / Coherence indicator:

L = Low; LM = Low-Medium; MG = Medium-Great; G = Great level of coherence]

This histogram shows the percent distribution of respondents belonging to subsample “AGE” (30 years, and over, old persons) according to the coherence (expressed through the coherence indicator) between, by one hand, their interpretations of Messages #4/H and #4/S; by the other hand, their final choice. Data is shown separately for “H” and “S” choosers. Distributions result significantly different (Chi-squared test: $p=0.001174$).
Figure 16: Sample percent distribution with respect to coherence levels / Comparing “H”/“S” choosers - Subsample “EMPLOYMENT”

Legend / Coherence indicator:
- L = Low
- LM = Low-Medium
- MG = Medium-Great
- G = Great level of coherence

This histogram shows the percent distribution of respondents belonging to sub-sample “EMPLOYMENT” (workers only, students and unemployed excluded) according to the coherence (expressed through the coherence indicator) between, by one hand, their interpretations of Messages #4/H and #4/S; by the other hand, their final choice. Data is shown separately for “H” and “S” choosers. Distributions result significantly different (Chi-squared test: $p=0.001560$).
Tables

Category	Sub-category	Examples of participants’ interpretations
Behaviours	---	XX requests for an intervention
[7 answers]		She reports flaws
		She is just sending a duty communication
Emotions	XX is:	Angry, Disturbed, Worried, Aggressive, Discouraged
[16 answers]		Brave, Impatient, Afraid
Relations XX-YY	XX expresses:	Assertiveness, Aggressiveness, Superiority, Subordination
[41 answers]		XX takes a position: Tough, Technical, Neutral
	XX:	Demands a solution
		Recalls YY to his duty
		Thwarts YY’s plans
Message form	Msg #3 is more:	Concrete, Correct, Detailed
[19 answers]		Direct, Effective

Table 1: An example of interpretation scatter from our research.

Sixty-one individuals (60% of the sample), after having compared XX’s Messages #1 and #3, answered “YES” to Question #2 and provided 83 specifications for the changes they had detected in XX’s position toward YY. The table classifies the specifications into 4 main categories and provides some examples for each one of them.
Contributions to a NEUROPHYSIOLOGY of MEANING

Components	Examples
The POSITION of a statement	*XX explains her absence* *at the beginning* of Msg #3 to forestall possible criticism.*
	YY scoffs at XX, expressing a little courtesy *just at the end* of Msg #4/H.*
The LENGTH of a text	*Msg #4/H being long / Msg #5 being short* have an underlying meaning.
Dotted lists	*The use of it* in Msg #4/H has a meaning.
Type of lexicon	*The use of technical words / expressions* imply precision, but also suggest the intention to keep one's distance.*
	Thanking and reassuring expressions have détente effects.
The relational or social roles of characters	*Some interpreted Msg #4/H as an attack to XX being a woman.*
The professional roles of characters	*XX not being an Account, she would not cheat.*
Grammatical observations	*The verbs' tense is noted* as having an underlying meaning.
LACK of content	*YY does NOT wonder* why XX requests a control.*
	YY announces a solution NOT clarifying what it will be.

Table 2: A selection of messages’ “other components” that readers may focus on.

The table displays a tight selection of the messages’ “other components” focused by respondents. These components are independent of the information content and, in most cases, of the message text. They are extremely various, indeed unpredictable, and return the impression that the receivers’ preferences could be totally rule less.
The table displays a descriptive statistical analysis of what the respondents look at inside the messages. The information content is focused by 12.1% of respondents only (“Cont.” column, “%” row). Even if we suppose that reference to complete phrases/periods could actually mean reference to their content, the sum of “Cont.” and “Phras.” column % totals would amount just to 33% of respondents, again a clear minority.
Table 4: Sample distribution with regards to the indicated components referred to information content.

Answering to the second part of the questionnaire’s questions (requesting to indicate the “concrete elements” on which the interpretation was based), just the exact half of the sample indicated, at least once, information content components. In this table, the sample is distributed in bins defined through the percentage that the components referred to information content represent on the personal total of the provided indications. Just for 7 people out of 102 the indications pointing at information content balance the others or prevail (50% or more); just 1 people among them indicates information content components only.
Category	Examples of participants’ interpretations
“… we’d be pleased…”	Aggressiveness; Office duty expression; Informality; Irony
[32 quotations]	Just a request; Sarcasm; Highlighting XX’s subordinate role
	Expression of alternative visions
“… if at least once…”	Conflict; Doubt on YY’s reliability; Expression of courtesy
[17 quotations]	Taunting; Request for attention; Request for information
	A reminder; Stimulus to organization top management
“… we’d be pleased… … if at least once…”	Expression of XX’s fear, because she doesn’t feel safe
[19 quotations]	Insignificant (just a normal office communication)
	Complaint/claim
	Reprimand/reproach, by XX to YY
	XX’s clarification request
	Information exchange

Table 5: Interpretation scatter referred to one component (the incidental passage of Message #1).

The table displays the result of classifying the interpretations given by a subset of 53 individuals (52% of the sample) to one component of Message #1. These respondents, even though focusing on that same component (the incidental passage “… we would be pleased if at least once…”), have nonetheless dispersed their interpretations. This means that not even the “funnel-shape” model (Fig. 6) could result acceptable.
Table 6: Examples of possible stimulus-factors.

Factors	Examples
Form of address	Using or not titles indicates formality level
Use of idiomatic expressions	Sign of familiarity, informality
Regards / greetings form	Length and presence/absence of thanks are taken into account and interpreted as sign of attention, carelessness, respect, defiance...
Reply quickness	Courtesy / promptness sign
Use of technical terms	Sign of intention to keep a distant role
Amount / level of details provided	Sign of major / minor accuracy or interest
Quantifying information	Sign of quibbling, coldness
Referring to rules / laws	Taken as sign of escalation in formality

The table displays examples, drawn from the filled questionnaires, of one category of possible stimulus-factors inside the messages. The capability of these factors to work as stimuli is not linked to the information they might contain, but to “the fact that” they are present within the message, in a certain form and/or at a certain point.
Table 7: Statistical distribution of the answers to the Final question (H/S choice).

The table displays (for the total sample and the two control sub-samples) the frequencies of the answers to the Final question (the choice between Message “H” and Message “S” as the solution of the case). A strong imbalance is shown, as indications of Message #4/S overwhelm the Message #4/H ones in all cases.
Table 8: Distribution of predictions about Message #4/H and Message #4/S effects.

Predictions about Message #4/H and Message #4/S effects are independently expressed, by each member of the sample, through answering to Questions #3 and #4. Answers are classified through the dummy variable “Expected effects” (possible values “+”, if respondents point out that the message will solve the XX-YY contrast, or “-”, in the opposite case). The table shows that all the possible combinations of predictions (for the total sample and the two control sub-samples) are present. Distribution is clearly imbalanced (definite preference on “H-/S+” combination). Significance is checked through Chi-squared test: $p=0.001988$, total sample; $p=0.015600$, sub-sample “AGE”; $p=0.003861$, sub-sample “EMPLOYMENT”.

	Total sample	Sub-sample "AGE"	Sub-sample "EMPLOYMENT"															
	S+	S-	TOTALS	S+	S-	TOTALS	S+	S-	TOTALS									
H+	18	22.5%	12	57.1%	30	29.7%	8	17.8%	7	50.0%	15	25.4%	9	18.8%	9	56.3%	18	28.1%
H-	62	77.5%	9	42.9%	71	70.3%	37	82.2%	7	50.0%	44	74.6%	39	81.3%	7	43.8%	46	71.9%
Totals	80	100.0%	21	100.0%	101	100.0%	45	100.0%	14	100.0%	59	100.0%	48	100.0%	16	100.0%	64	100.0%
Gen. Total	101		59								64							
Table 9: Cross-table of combined predictions and final choices between Message #4H and Message #4S.

In this table the combined predictions of Message #4/H and Message #4/S effects (see Table 8) are crossed with the final choices of the respondents (all the variables are independent). Data shows the association (for the total sample and the two control sub-samples) between the most frequent combination “H-/S+” and “S” as final choice. In addition, some correlations between the two choices is underlined by Chi-squared test: $p=0.000017$ (total sample); $p=0.001174$ (sub-sample “AGE”); $p=0.000383$ (sub-sample “EMPLOYMENT”).
Contributions to a NEUROPHYSIOLOGY of MEANING

L (low coherence)	LM (low-medium c.)	MG (med.-great c.)	G (great coherence)
“H” choice	“S” choice	“H” choice	“S” choice
H- / S+	H+ / S+	H- / S-	H+ / S-
H- / S-	H+ / S+	H- / S-	H- / S+

Table 10: Plot of the coherence level scale.

The table shows the scale of the coherence levels expressed through the coherence indicator; four levels of coherence are defined and ranked. The indicator rates the degree of coherence among the predictions one respondent expressed about the “H” and “S” versions effects (answers to Questions #3 and #4) and the final choice he/she made (“H” or “S”, answer to the Final question). All the questions were independent. The predictions are represented through the dummy variable “Expected effects” and labelled “+” if they indicate that the message will ease or solve the contrast between XX and YY, “-“ in the opposite case.
Contributions to a NEUROPHYSIOLOGY of MEANING

Coherence level	Total sample	Sub-sample “AGE”	Sub-sample “Employm.”	
	Values	%	Values	%
L	11	11.0	7	12.1
LM	8	8.0	6	10.3
MG	18	18.0	8	13.8
G	63	63.0	37	63.8
Total	100	100.0	58	100.0

Table 11: Sample distribution with respect to coherence levels.

[Legend: L = Low; LM = Low-medium, MG = Medium-great, G = Great level of coherence between predictions and choice; H/S = Versions of Message #4; +/- = type of predicted effect (resolution or escalation of the conflict) of the messages on XX.]

The table displays, for the total sample and the two subsamples “Age” and “Employment”, the distribution of participants with respect to the different levels of coherence (see Table 10). The L level results over-represented with respect to what expected.
Contributions to a NEUROPHYSIOLOGY of MEANING

Table 12: Sample distribution with respect to coherence levels and expressed choice (total sample).

Coherence level	“H” Choosers	“S” Choosers	Total				
	Values	%	Values	%	Values	%	
L (H-/S+)	9	34.6	L (H+/S-)	2	2.7	11	11.0
LM (H-/S-)	2	7.7	LM (H-/S-)	6	8.1	8	8.0
MG (H+/S+)	5	19.2	MG (H+/S+)	13	17.6	18	18.0
G (H+/S-)	10	38.5	G (H-/S+)	53	71.6	63	63.0
Total	26	100.0	Total	74	100.0	100	100.0

Table: Legend: L = Low; LM = Low-medium, MG = Medium-great, G = Great level of coherence between predictions and choice; H/S = Versions of Message #4; +/- = type of predicted effect (resolution or escalation of the conflict) of the messages on XX.

The table displays (for the total sample, and separately for the H and S choosers) the distribution of participants with respect to the different levels of coherence. Data highlights some correlations between the two variables coherence and choice: Chi-squared test returns high significance ($p<0.01$).
Contributions to a NEUROPHYSIOLOGY of MEANING

“H” Choosers	“S” Choosers	Total					
Coherence level	**Values**	**%**	**Values**	**%**	**Values**	**%**	
L (H-/S+)	6	35.3	L (H+/S-)	1	2.4	7	12.1
LM (H-/S-)	1	5.9	LM (H-/S-)	5	12.2	6	10.3
MG (H+/S+)	4	23.5	MG (H+/S+)	4	9.8	8	13.8
G (H+/S-)	6	35.3	G (H-/S+)	31	75.6	37	63.8
Total	17	100.0	**Total**	41	100.0	**58**	100.0

Table 13: Sample distribution with respect to coherence levels and expressed choice (Sub-sample “Age”).

The table displays (for the sub-sample “Age”, >29yy-old people only, and separately for the H and S choosers) the distribution of participants with respect to the different levels of coherence. Data highlights some correlations between the two variables coherence and choice: Chi-squared test returns high significance ($p<0.01$).
Table 14: Sample distribution with respect to coherence levels and expressed choice (Sub-sample “Employment”).

[Legend: L = Low; LM = Low-medium, MG = Medium-great, G = Great level of coherence between predictions and choice; H/S = Versions of Message #4; +/- = type of predicted effect (resolution or escalation of the conflict) of the messages on XX.]

The table displays (for the sub-sample “Employment”, people with a regular employment only, and separately for the H and S choosers) the distribution of participants with respect to the different levels of coherence. Data highlights some correlations between the two variables coherence and choice: Chi-squared test returns high significance ($p<0.01$).