Sharp Steklov upper bound for revolution submanifolds

Bruno Colbois and Sheela Verma

September 16, 2020

Abstract

In this note, we find sharp upper bound for the Steklov spectrum on revolution manifolds of the Euclidean space with one boundary component.

Classification AMS 2000: 35P15, 58C40
Keywords: Steklov problem, Euclidean space, hypersurfaces of revolution, sharp upper bound

1 Introduction

The Steklov eigenvalues of a smooth, compact, connected Riemannian manifold (M, g) of dimension $n \geq 2$ with boundary Σ are the real numbers σ for which there exists a nonzero harmonic function $f : M \to \mathbb{R}$ which satisfies $\partial_\nu f = \sigma f$ on the boundary Σ. Here and in what follows, ∂_ν is the outward-pointing normal derivative on Σ. The Steklov eigenvalues form a discrete sequence $0 = \sigma_0 < \sigma_1 \leq \sigma_2 \leq \cdots \to \infty$, where each eigenvalue is repeated according to its multiplicity.

Recently, relationships between the geometry of boundary Σ and the spectrum are very much investigated. In [4], the authors show that fixing only the geometry of the boundary and letting the arbitrary Riemannian metric inside M is not sufficient to control the Steklov eigenvalues: they can be as large or as small as one wishes. On the other side, it was shown in [5, 8] that fixing g in a neighborhood of Σ has a much stronger influence on the spectrum.

In [3], the authors consider n-dimensional revolution manifolds M of the Euclidean space \mathbb{R}^{n+1} with one boundary component $S^{n-1} \subset \mathbb{R}^n \times \{0\}$. They show the sharp lower bound

$$\sigma_k(M) \geq \sigma_k(\mathbb{B}^n), \quad \text{for each } k \in \mathbb{N} \cup \{0\},$$

where \mathbb{B}^n denotes the revolution manifold given by the n dimensional Euclidean ball. For $n \geq 3$, in case of equality for one of the eigenvalues σ_k, $k \geq 1$, M has to be isometric to \mathbb{B}^n. They also find an upper bound for σ_k which is not sharp. Note that, for $n = 2$, all revolution manifolds with boundary S^1 are all isospectral (see [3], Proposition 1.10).

The goal of this work is to investigate sharp upper bounds for revolution manifold M of the Euclidean space \mathbb{R}^{n+1} with one boundary component $S^{n-1} \subset \mathbb{R}^n \times \{0\}$. We denote by

$$0 = \sigma_{(0)}(M) < \sigma_{(1)}(M) < \sigma_{(2)}(M) < \ldots$$

the distinct (counted without multiplicity) eigenvalues of the revolution manifold M. Now we state our main result.
Theorem 1. Let $M \subset \mathbb{R}^{n+1}$ be a n-dimensional revolution manifold with one boundary component isometric to the round sphere S^{n-1}. Then for $n \geq 3$, we have for each $k \geq 1$,

$$\sigma_k(M) < k + n - 2.$$

Moreover, these bounds are sharp. For each $\epsilon > 0$ and each $k \geq 1$, there exists a revolution manifold M, such that $\sigma_k(M_\epsilon) > k + n - 2 - \epsilon$.

However, the inequality is strict: for each k, there does not exist M such that $\sigma_k(M) = k + n - 2$.

Note that such bounds exist for abstract revolution metrics on the ball \mathbb{B}^n if we add bounds on the curvature of (M, g) (see [6], [7]). Basically in [6], the author considers Steklov problem on a ball with rotationally invariant metric under the assumption that radial curvature is bounded below (or bounded above) by some real number and proves a two sided bound for the Steklov eigenvalues. For warped product manifold with only one boundary component, the author in [7] has given a lower bound (upper bound) for Steklov eigenvalues under the hypothesis that the manifold has nonnegative (nonpositive) Ricci curvature and strictly convex boundary.

Theorem 1 will be a consequence of the study of the mixed Steklov Dirichlet and Steklov Neumann spectrum on an annulus and Proposition 6 telling that given a revolution hypersurface M_1 with one boundary component, it is always possible to construct another revolution hypersurface M_2 with larger Steklov eigenvalue.

The rest of the paper is organized as follows. In Section 2 we present the Steklov and mixed Steklov problem. In Section 3 we consider the specific situation of revolution hypersurfaces of the Euclidean space with one boundary component. Finally, in Section 4 we give the proof of Theorem 1.

2 Some general facts about Steklov and mixed problems

Let (M, g) be a compact Riemannian manifold with boundary Σ. The Steklov eigenvalues of (M, g) can be characterized by the following variational formula

$$\sigma_j(M) = \min_{E \in \mathcal{H}_j} \max_{0 \neq f \in E} R_M(f), \quad j \geq 0,$$

where \mathcal{H}_j is the set of all $(j+1)$-dimensional subspaces in the Sobolev space $H^1(M)$ and

$$R_M(f) = \frac{\int_M |\nabla f|^2 dV_M}{\int_{\Sigma} |f|^2 dV_{\Sigma}}$$

is the Rayleigh quotient.

In order to obtain bound for $\sigma_j(M)$, we will compare the Steklov spectrum with the spectra of mixed Steklov-Dirichlet or Steklov-Neumann problems on domains $A \subset M$ such that $\Sigma \subset A$. Let $\partial_{\text{int}} A$ denote the intersection of the boundary of A with the interior of M. Also, we suppose that it is smooth.

The mixed Steklov-Neumann problem on A is the eigenvalue problem

$$\Delta f = 0 \text{ in } A, \quad \partial_{\nu} f = \sigma f \text{ on } \Sigma, \quad \partial_{\nu} f = 0 \text{ on } \partial_{\text{int}} A,$$

where ν denotes the outward-pointing normal to ∂A. The eigenvalues of this mixed problem form a discrete sequence

$$0 = \sigma_0^N(A) \leq \sigma_1^N(A) \leq \sigma_2^N(A) \leq \cdots \nearrow \infty,$$
and for each \(j \geq 0 \), the \(j \)th eigenvalue is given by

\[
\sigma_j^N(A) = \min_{E \in \mathcal{H}_j(A)} \max_{\nu \neq f \in E} \frac{\int_A |\nabla f|^2 \, dV_A}{\int_\Sigma |f|^2 \, dV_\Sigma},
\]

where \(\mathcal{H}_j(A) \) is the set of all \((j + 1)\)-dimensional subspaces in the Sobolev space \(H^1(A) \).

The mixed Steklov-Dirichlet problem on \(A \) is the eigenvalue problem

\[
\Delta f = 0 \text{ in } A,
\]

\[
\partial_\nu f = \sigma f \text{ on } \Sigma, \quad f = 0 \text{ on } \partial_{\text{int}}A.
\]

The eigenvalues of this mixed problem form a discrete sequence

\[
0 < \sigma_0^D(A) \leq \sigma_1^D(A) \leq \cdots \leq \infty,
\]

and the \(j \)th eigenvalue is given by

\[
\sigma_j^D(A) = \min_{E \in \mathcal{H}_{j,0}(A)} \max_{\nu \neq f \in E} \frac{\int_A |\nabla f|^2 \, dV_A}{\int_\Sigma |f|^2 \, dV_\Sigma},
\]

where \(\mathcal{H}_{j,0}(M) \) is the set of all \((j + 1)\)-dimensional subspaces in the Sobolev space \(H^1_0(A) = \{ u \in H^1(A) : u = 0 \text{ on } \partial_{\text{int}}A \} \).

For each \(j \in \mathbb{N} \), comparisons between the variational formulae give the following bracketing:

\[
\sigma_j^N(A) \leq \sigma_j(M) \leq \sigma_j^D(A). \tag{2}
\]

Note in particular that for \(j = 0 \), we have

\[
0 = \sigma_0^N(A) = \sigma_0(M) < \sigma_0^D(A).
\]

3 Revolution hypersurfaces of the Euclidean space

A compact revolution manifold \(M^n \) with one boundary component is a revolution metric on the \(n \)-dimensional ball. It can be seen as the warped product \([0, L] \times S^{n-1}\) with the Riemannian metric

\[
g(r, p) = dr^2 + h^2(p)g_0(p),
\]

where \((r, p) \in [0, L] \times S^{n-1}\), \(g_0\) is the canonical metric on the sphere of radius one and \(h \in C^\infty([0, L])\) satisfies \(h > 0\) on \([0, L], h'(L) = 1\) and \(h^2(L) = 0\) for all integers \(l \geq 0\). If we suppose that the boundary is the round sphere of radius one, we also have \(h(0) = 1\). Moreover, the fact that \(M\) is an \(n\)-dimensional revolution submanifold of the Euclidean space implies

\[
1 - r \leq h(r) \leq 1 + r.
\]

For more details, see [3].
3.1 Steklov spectrum and the eigenfunctions of Revolution hypersurface

The Steklov spectrum and the eigenfunctions of a revolution manifold with one connected component are very well explained in Proposition 8 of [7]. Before proceeding further, we would like to mention that by Laplace-Beltrami operator, we mean \(\Delta = -\text{div} \text{ grad} \), which is positive, whereas in [7], the author considers \(\Delta = \text{div} \text{ grad} \). This explains the difference of the signs in the following.

Proposition 2. Each eigenfunction \(f \) of the Steklov problem on Revolution hypersurface \(M \) can be written as \(f(r, p) = u(r)v(p) \), where \(v \) is a spherical harmonic of the sphere \(S^{n-1} \) of degree \(k \geq 0 \), i.e.,

\[
\Delta v = \lambda_k v \text{ on } S^{n-1},
\]

where \(\lambda_{(k)} = k(n-2-k) \) and \(u \) is a solution of the equation

\[
\frac{1}{h^{n-1}} \frac{d}{dr} \left(h^{n-1} \frac{d}{dr} u \right) - \frac{1}{h^2} \lambda_{(k)} u = 0
\]

on \((0, L)\) and under the condition \(u(L) = 0 \). The Steklov eigenvalue \(\sigma_{(k)} \) has the multiplicity same as \(\lambda_{(k)} \), \(k \)th eigenvalue (counted without multiplicity) of the round sphere \(S^{n-1} \).

For a proof and more details, see [7].

Roughly speaking, this comes from the fact that

\[
\Delta(u(r)v(p)) = -u''(r)v(p) - \frac{(n-1)h'}{h}u'(r)v(p) + \frac{u(r)}{h^2} \Delta_{S^{n-1}} v(p).
\]

If \(v \) is the \(k \)th eigenfunction of the sphere \(S^{n-1} \) (counted without multiplicity), we obtain

\[
\Delta(u(r)v(p)) = -\frac{1}{h^{n-1}} \frac{d}{dr} \left(h^{n-1} \frac{d}{dr} u \right)v(p) + \frac{u(r)}{h^2} \lambda_k v(p),
\]

and, because \(f \) is harmonic, we have

\[
-\frac{1}{h^{n-1}} \frac{d}{dr} \left(h^{n-1} \frac{d}{dr} u \right) + \lambda_k \frac{u(r)}{h^2} = 0.
\]

The condition \(u(L) = 0 \) comes from the fact that \(f \) has to be smooth at the point where \(r = L \).

3.2 The mixed Steklov-Dirichlet eigenvalues on annular domains

Proposition 3. Let \(B_1 \) and \(B_L \) be the balls in \(\mathbb{R}^n \), \(n \geq 3 \), centered at the origin of radius one and \(L \), respectively. Consider the following eigenvalue problem on \(\Omega_0 = B_L \setminus B_1 \)

\[
\begin{align*}
\Delta f &= 0 & \text{in } B_L \setminus B_1, \\
\frac{\partial f}{\partial \nu} &= \sigma^D f & \text{on } \partial B_L,
\end{align*}
\]

(3)

Then for \(0 \leq k < \infty \),

\[
\sigma_{(k)}^D(\Omega_0) = \frac{k}{L^{2k+n-2} - 1} + \frac{(k + n - 2) L^{2k+n-2}}{L^{2k+n-2} - 1}.
\]
The eigenfunctions of \(f_k(r, p) = u(r)v(p) \), where \(v \) is an eigenfunction for the \(k^{th} \) eigenvalue on the sphere \(S^{n-1} \) and \(u \) is a real valued function defined on the interval \([1, L]\). For \(f_k(r, p) \) to be an eigenfunction, corresponding to the \(k^{th} \) eigenvalue (counting without multiplicity) of the mixed Steklov Dirichlet problem on \(\Omega_0 \), \(u \) should satisfy the following

\[
\begin{align*}
\Delta f &= 0 \quad \text{in } \Omega_0, \\
\frac{\partial f}{\partial n} &= 0 \quad \text{on } \partial \Omega_0, \\
\sigma^N f &= -\sigma^D f \quad \text{on } \partial \Omega_0.
\end{align*}
\]

Then for \(0 \leq k < \infty \),

\[
\sigma^N_{(k)}(\Omega_0) = k \left(L_k^{(n+2k-2)} \right) / \left(L_k^{(n+2k-2)} + (n + k - 2) \right).
\]

Proof. Note that the eigenfunctions \(f_k(r, p) \) of \([\nabla] \) can be expressed as \(f_k(r, p) = u(r)v(p) \), where \(v \) is an eigenfunction for the \(k^{th} \) eigenvalue on the sphere \(S^{n-1} \) and \(u \) is a real valued function defined on \([1, L]\). If the function \(u \) corresponds to the \(k^{th} \) eigenvalue (counting without multiplicity) of the mixed Steklov-Neumann problem on \(\Omega_0 \), then

\[
\begin{align*}
\Delta f &= 0 \quad \text{in } \Omega_0, \\
u(1) &= 0, u'(1) = -\sigma^D f(1).
\end{align*}
\]

These conditions give

\[
\begin{align*}
akL_k^{k-1} - b(n + k - 2)L_k^{(n+k-1)} &= 0, \\
ka + (-k + 2 - n)b &= -\sigma^D f(a + b).
\end{align*}
\]

By eliminating \(a \) and \(b \), we obtain

\[
-(k + \sigma^N_{(k)})(n + k - 2)L_k^{(n+k-1)} + kL_k^{k-1}(n + k - 2 - \sigma^N_{(k)}) = 0
\]
and
\[\sigma_{(k)}^N(kL^{k-1} + (n + k - 2)L^{-(k+n-1)}) = k(n + k - 2)(L^{k-1} - L^{-(k+n-1)}). \]

Multiplying by \(L^{(n+k-1)} \) to get
\[\sigma_{(k)}^N(kL^{n+2k-2} + (n + k - 2)) = k(n + k - 2)(L^{(n+2k-2)} - 1), \]

and
\[\sigma_{(k)}^N = \frac{(n + k - 2)(L^{(n+2k-2)} - 1)}{kL^{(n+2k-2)} + (n + k - 2)}. \]

\[\square \]

4 Proof of the main theorem

4.1 Comparison of revolution hypersurfaces

Recall that for an \(n \)-dimensional revolution submanifold \(M \) of the Euclidean space \(\mathbb{R}^{n+1} \) with one boundary component \(S^{n-1} \subset \mathbb{R}^n \times \{0\} \) the induced Riemannian metric may be written as
\[g(r,p) = dr^2 + h^2(r)go(p), \]
where \(go \) is the canonical metric of \(S^{n-1} \), \(r \in [0,L] \) and \(h(0) = 1, h(L) = 0, h(r) > 0 \) if \(0 < r < L \), \(h'(L) = 0 \) and \(1 - r \leq h(r) \leq 1 + r \).

Proposition 5. Let \(M = [0, L] \times S^{n-1} \) be a Riemannian manifold with metric \(g_i = dr^2 + h_i^2(r)g_{S^{n-1}}, \)
\(i = 1,2. \) Moreover suppose that \(h_1(0) = h_2(0) = 1 \) and \(h_1(r) \leq h_2(r) \). Consider the mixed Steklov-Neumann problem on \(M \) (Steklov at \(r = 0 \) and Neumann at \(r = L \)). Then the Rayleigh quotient of a function \(f(r,p) \) defined on \(M \) is given by
\[R_{g_i}(f) = \frac{\int_0^L \int_{S^{n-1}} \left(\frac{\partial f}{\partial r} \right)^2 + \frac{1}{h_i(r)} \| \nabla f \|^2 \right) h_i^n(r)dr \ dv_{g_{S^{n-1}}}}{\int_{S^{n-1} \times \{0\}} f^2(0,p) \ dv_{g_{S^{n-1}}}}, \]
where \(\nabla \) is the exterior derivative in the direction of \(S^{n-1} \). The condition \(h_1(r) \leq h_2(r) \) gives that \(R_{g_1}(f) \leq R_{g_2}(f) \). Hence, we have \(\sigma_{(k)}^N(M, g_1) \leq \sigma_{(k)}^N(M, g_2) \) for all \(k \in \mathbb{N} \cup \{0\} \).

Proposition 6. For any hypersurface of revolution \((M_1, g_1) \subset \mathbb{R}^{n+1}, \) with boundary \(S^{n-1} \times \{0\} \), there exists a hypersurface of revolution \((M_2, g_2) \subset \mathbb{R}^{n+1} \) with the same boundary such that, for all \(k \geq 1, \sigma_{(k)}(M_2) > \sigma_{(k)}(M_1) \).

Proof. Note that \(M_1 \) will be of the form \([0, L_1] \times S^{n-1} \) with metric \(g_1 = dr^2 + h_1^2(r)g_{S^{n-1}}, \) where \(h_1 \) satisfies \(h_1(0) = 1, |h_1(r)| \leq 1 \) and \(h_1(L_1) = 0 \). The condition \(|h_1'(r)| \leq 1 \) gives \(1 - r \leq h_1(r) \leq 1 + r \).

Consider a hypersurface of revolution \(M_2 = [0, L_2] \times S^{n-1} \) with metric \(g_2 = dr^2 + h_2^2(r)g_{S^{n-1}}, \) where \(L_2 = 2L_1 + 2 \) and
\[h_2(r) = \begin{cases} 1 + r, & \text{if } r \leq L_1, \\ L_2 - r, & \text{if } L_1 + 1 \leq r \leq L_2. \end{cases} \]
For $L_1 \leq r \leq L_1 + 1$, we just ask h to join smoothly $h(L_1)$ and $h(L_1 + 1)$. Note that $h_1(r) \leq h_2(r)$ for $r \leq L_1$.

Now consider the mixed Steklov-Neumann problem on $\tilde{M} \equiv [0, L_1 - \epsilon] \times S^{n-1}$ with two metrics g_1 and g_2. Then from Proposition 5 we get $\sigma_k^N(M, g_1) < \sigma_k^N(M, g_2)$ for all $k \geq 1$. The strict inequality follows from Proposition 5 applied to eigenfunctions of (\tilde{M}, g_1) and from the fact that there exist points in \tilde{M} such that $h_2(r) > h_1(r)$ at those points.

Recall that because of the bracketing

$$\sigma_k(M_2, g_2) \geq \sigma_k^N(\tilde{M}, g_2), \quad k \in \mathbb{N} \cup \{0\}.$$

Using the method of Anné (see [2], Theorem 2, and [1] for a less general but easiest version of the result), we have that as $\epsilon \to 0$, $\sigma_k^N(M, g_1) \to \sigma_k(M_1, g_1)$. As a consequence, we get $\sigma_k(M_2, g_2) > \sigma_k(M_1, g_1)$. Note that the multiplicity of $\sigma_k(M_2, g_2)$ and $\sigma_k(M_1, g_1)$ is same for all $k \in \mathbb{N} \cup \{0\}$, this proves the result. \hfill \Box

Next we prove Theorem 1 by using Proposition 5.

Proof. Note that M will be of the form $[0, L] \times S^{n-1}$ with metric $g = dr^2 + h^2(r)g_{S^{n-1}}$, where h satisfies $h(0) = 1$, $|h'(r)| \leq 1$ and $h(L) = 0$.

Proposition 5 already shows that it is always possible to increase strictly the spectrum of M. Moreover, Proposition 5 gives the existence of a sequence of hypersurfaces of revolution $M_i = [0, L_i] \times S^{n-1}$, $1 \leq i < \infty$, with boundary $S^{n-1} \times \{0\}$ and metric $g_i = dr^2 + h_i^2(r)g_{S^{n-1}}$ (h_i and L_i are constructed as in Proposition 5) such that

$$\sigma_{(k)}(M) < \sigma_{(k)}(M_1) < \sigma_{(k)}(M_2) < \cdots .$$

Also, for $i \geq 2$,

$$\sigma^N_{(k)}(A_i) \leq \sigma_{(k)}(M_i) \leq \sigma^D_{(k)}(A_i),$$

where A_i is a neighborhood of the boundary of M_i, which is annular domain with inner radius one and outer radius $1 + L_{i-1}$.

Moreover, we have $L_i \to \infty$ as $i \to \infty$. Note that for $k > 0$,

$$\lim_{i \to \infty} \sigma^D_{(k)}(A_i) = \lim_{i \to \infty} \sigma^N_{(k)}(A_i) = k + n - 2.$$

This shows $\lim_{i \to \infty} \sigma_{(k)}(M_i) = k + n - 2$. Combining this with the fact that $\sigma_{(k)}(M_i)$ is an increasing sequence proves the theorem. \hfill \Box

References

[1] Colette Anné. Perturbation du spectre $X - TUB^s(Y)$ (conditions de Neumann). In *Séminaire de Théorie Spectrale et Géométrie, No. 4, Année 1985–1986*, pages 17–23. Univ. Grenoble I, Saint-Martin-d’Hères, 1986.

[2] Colette Anné. Spectre du laplacien et écrasement d’anse. *Ann. Sci. École Norm. Sup. (4)*, 20(2):271–280, 1987.

[3] B. Colbois, A. Girouard, and K. Gittins. Steklov eigenvalues of submanifolds with prescribed boundary in Euclidean space. *J. Geom. Anal.*, 29(2):1811–1834, 2019.

[4] Bruno Colbois, Ahmad El Soufi, and Alexandre Girouard. Compact manifolds with fixed boundary and large Steklov eigenvalues. *Proc. Amer. Math. Soc.*, 147(9):3813–3827, 2019.
[5] Bruno Colbois, Alexandre Girouard, and Asma Hassan prezad. The Steklov and Laplacian spectra of Riemannian manifolds with boundary. *J. Funct. Anal.*, 278(6):108409, 2020.

[6] Sheela Verma. Bounds for the Steklov eigenvalues. *Arch. Math. (Basel)*, 111(6):657–668, 2018.

[7] Changwei Xiong. On the spectra of three Steklov eigenvalue problems on warped product manifolds. *arXiv:1902.00656*.

[8] Changwei Xiong. Comparison of Steklov eigenvalues on a domain and Laplacian eigenvalues on its boundary in Riemannian manifolds. *J. Funct. Anal.*, 275(12):3245–3258, 2018.

Bruno Colbois
Université de Neuchâtel, Institut de Mathématiques
Rue Emile-Argand 11
CH-2000, Neuchâtel, Suisse
bruno.colbois@unine.ch

Sheela Verma
Tata Institute of Fundamental Research
Centre For Applicable Mathematics
Bangalore, India
sheela.verma23@gmail.com