Multifactor optimization of MICP base on BP model

Xiande Zhuo¹, Ling Fan²*, Di Hu³, Huangda Zhu⁴

¹ Department of Safety Science and Engineering, Central South University, Changsha, Hunan, 410083, China
² Department of Urban Underground Space Engineering, Central South University, Changsha, Hunan, 410083, China
³ Department of Urban Underground Space Engineering, Central South University, Changsha, Hunan, 410083, China
⁴ Department of Geotechnical Engineering, Central South University, Changsha, Hunan, 410083, China

*Corresponding author’s e-mail: pqr97linger@csu.edu.cn

Abstract. Microbial-induced calcite precipitation (MICP) can be used to cement soil and produce new biomaterials. The formation of this material is affected by many factors, such as physical, chemical, biological factors, many studies focused on the effect of a single factor on the strength ignoring the synergy between factors. Back-propagation neural network (BPNN) can be used as a multi-factor nonlinear prediction model and an analysis method. 140 MICP grout tests in the literature were summarized to 15 factors affecting UCS and act as BPNN input data. At last, five key factors were elected based on weight analysis of well-trained BPNN. On this basis, a simple strength model composed of those factors is established, which can well predict the strength of MICP grouting soil with practical convenience. Key factors and strength prediction models help popularize MICP for engineering applications and optimize grouting experiments.

1. Introduction

Microbe-induced calcium carbonate precipitation (MICP) is an environmental-friendly biomaterial. It can be used to cement sand, suppress dust, improve soil strength, and repair cracks[1, 2]. The uniaxial compressive strength (UCS) of these biomaterials are affected by physical, chemical, biological, and environmental factors such as curing temperature and time, injection interval of cementing solution, calcium ion concentration, bacteria concentration, bacterial reinjection, and sand size[3, 4]. Many studies focus on the influence of a single factor on strength, ignoring the synergistic effect of each factor, resulting in the lack of a general strength formula that can be used in different environments[5]. A strength model for predicting the MICP and the key factors for controlling it are required for the application of this material.

To establish a strength prediction model with a universal application function, it is necessary to consider a strong nonlinear model framework, which can take into account the synergistic effects of many factors. BPNN (Back Propagation) was proposed by Rumelhart et al., 1986. Its multi-layer neuron structure and transfer function give BPNN powerful nonlinear learning ability[6, 7]. Based on the robustness, it can meet the need of prediction accuracy when the relationship between input factors and output factors is unknown.
Related experimental data in literature were summarized and used as the database of the BPNN model. The influence of factors on MICP strength can be obtained from weight analysis. Last, the predicted results are explained from the perspective of the mechanism. The results can be helpful for the accurate prediction of MICP applying in the complicated environment and the development of grouting experiments.

2. Method

A BPNN model is composed of input layer, hidden layer, and output layer, which is pictured in Figure 1. The number of hidden layer neurons (L) is determined according to the formula (1-3). The output value Y is calculated through the formula (4-6).

$$L_1 = N - 1$$ \hspace{2cm} (1)

$$L_2 = (M + N)^{1/2} + a$$ \hspace{2cm} (2)

$$L_3 = \log_2 N$$ \hspace{2cm} (3)

$$Y = \sum_{j=1}^{L} (\mu_j Q_j - \theta'_j)$$ \hspace{2cm} (4)

$$Q_j = 1/(1 + \exp(-z_j))$$ \hspace{2cm} (5)

$$z_j = \sum_{i=1}^{N} (\omega_{ij}X_i - \theta_j)$$ \hspace{2cm} (6)

Where $\mu_j (j = 1, L)$ is the connection weight between Y and Q_j, ω_{ij} is connection weight between X_i and Q_j, θ'_j and θ_j is output and hidden neuron bias respectively. The weight and threshold of BPNN are adjusted by negative feedback.

Figure 2 shows that R-squared decreases with the increase of the number of hidden layer and hidden layer neurons. So, a single hidden layer with 5 neurons is set. The learning rate, the number of iterations, allowable error, and exponential decay factor are set to be 0.05, 300, 0.000001, and 0.95 respectively.

Based on connected weight, the sensitivity (A_i) of input neuron is analyzed by the "weight product" theory\cite{8} and is presented by \[A_i = AVG(abs(\sum_j w_{ij} u_{ij})). \]

140 groups of MICP grouted soil experiments data are collected from the literature\cite{9-25}. To accurately predict UCS, quantifiable data of the factors in the above experiments were collected and normalized as input values of the BPNN model. They are the 15 factors listed in Table 1.
Table 1. Influencing factors of MICP grouted soil

Name (Abbr.)	Unit	Name (Abbr.)	Unit
bacteria concentration (OD600) (Bc)	/	cementing solution volume per gram of sand sample (Csv)	ml/g
urease activity (Ua)	U/mL	ratio of cementation solution to bacterial solution (Rcb)	/
d50 particle size (D50)	mm	injection rate per gram of soil sample (Irate)	ml/min/g
coefficient of nonuniformity (Cu)	/	total injection number (Tnum)	/
coefficient of curvature (Cc)	/	injection times of bacterial solution (Ibt)	/
cementing solution concentration (Csc)	ml/L	injection times of cementing solution (Ict)	/
interval injection time (Iit)	h	weight content of CaCO$_3$ (Ccc)	%
bacterial solution volume per gram of soil sample (Bsv)	ml/g		

3. Results and Discussion

Figure 3 plots predicted UCS, target UCS and the fitting line, which exhibits good predictability with R-squared 0.85. Figure 4 lists the sensitivities of the factors based on the BPNN prediction model in descending order, with cumulative sensitivities on the right axis. As can be seen from Figure 6, Bc has a maximum of 3.67 and Cu has a minimum of 0.93. According to the sensitivity, four sensitivity degrees and corresponding factor groups are suggested in Figure 4.

Groups 1, 1-2, and 1-3 contain 3, 5, and 10 factors respectively. For validating the results of sensitivity analysis, factors 3, 5, and 10 are successively taken as input data of BPNN. The predicted UCS and target UCS are drawn in Figure 5, and their r-squared and data analysis results are shown in Figure 6 and Table 2. Certainly, predictive performance improves with the amount of input data. Among those combinations, 5 factors have good performance with fewer factors.

Figure 3. R-squared of between predicted UCS and target one
Figure 4. sensitivities and cumulative sensitivities of 15 factors

Table 2. R-squared of MICP grouted based on factors sensitivity classification

Factors source	Number of factors	Mean R-squared	Variance
Group I–IV	15	0.85	0.0177
Group I–III	10	0.88	0.0033
Group I–II	5	0.86	0.0168
Group I	3	0.74	0.0371

predicted UCS $y=0.736x+0.30221$

predicted UCS $y=0.918x+0.13493$
Based on the above sensitivity, \(B_c \), Itare, Tnum, Ccc, Ibt are expected to be the simple and effective factors for the application of the MICP technique in geotechnical engineering. A simple UCS model of MICP grouted soil is suggested with an R-squared of 0.71 and is written as

\[
\text{UCS} = 0.65 \times B_c - 6.9 \times \text{Irate} - 0.02 \times Tnum + 0.01 \times Ccc - 0.065 \times Ibt
\]

(7)

The simple UCS model has an acceptable prediction accuracy, though it is slightly poor than the original BPNN nonlinear models. However, it has a relatively simple structure, which can be easily applied in practical engineering applications.
Figure 7. Prediction results of different UCS prediction models ((a)(b) Empirical formula; (c) six-factor simple strength model; (d) BP neural network prediction model)

Empirical models\cite{26, 27} in references show poor prediction ability because the formulas are summarized from the limited number of experiments and their generalization ability is not as good as polynomial and BPNN prediction models. The self-learning and feedback mechanism of BPNN makes it have the best prediction performance in the data set containing complex nonlinear relations. Meanwhile, the complexity of the model makes it difficult to be used in the field of engineering practice. The simple model based on BPNN has higher UCS prediction accuracy than the model with a single factor. This simplifies the complex nonlinear relationship with a slight reduction of USC prediction accuracy, while significantly better than single factors linear models. Therefore, the simple model based on the sensitivity analysis of BPNN has good predictability and convenience.

The calcium carbonate acts as a bridge between the sands, improving the internal friction angle and cohesion of the material. Its formation and distribution are the core of cementation strength formation. Therefore, the factors highly correlated with the formation and distribution of calcium carbonate should be paid attention to. Among the influencing factors of groups 1-2, Bc increased the number of bacteria involved in the reaction, Irate could improve the injection depth and injection volume per unit time, and the distribution uniformity of calcium carbonate increased with Tnum. Therefore, Bc, Irate, Tnum, and Ccc affect the content of calcium carbonate from two aspects of reactant quantity and reaction time.

The research results are only based on the collected 140 series of experimental data of MICP cemented soil, the statistical particle size ranging from 0.06–1.91mm, and the influence of the 15 factors on UCS is preliminarily revealed. However, the influence of PH, soil density, and other factors were not
studied. A more comprehensive understanding of the influencing factors on UCS of MICP cemented soil needs to be executed.

4. Conclusions
140 sets of MICP cemented soil test data were collected and analyzed by a BPNN model. Then, a simple UCS prediction model was established based on sensitivity. The conclusions are as follows:
(1) The R-squared of the BPNN prediction model is 0.85, with the prediction ability of this model being significantly better than a polynomial model and empirical formula.
(2) By sensitivity analysis, the 15 factors are divided into four groups. The optimized 5 factors on MICP cemented soil UCS are suggested to be Bc, Irate, Tnum, Ccc, and Ibt.
(3) The linear model based on these five factors has better predictability and convenience. The BPNN prediction model and a new simple prediction model can be further applied to the MICP experiment grouting ratio design and help to establish the corresponding mix ratio theory.

Acknowledgments
This project is supported by the Natural Science Foundation of China (No. 51508579, 51674287).

References
[1] Stabnikov, V., Naeimi, M., Ivanov, V. (2011) Formation of water-impermeable crust on sand surface using biocement. J. Sci. Cement and Concrete Research., 41(11): 1143-1149.
[2] Bang Sang, C., Min Soo, H., Bang Sookie, S. (2011) Application of microbiologically induced soil stabilization technique for dust suppression. J. Sci. International Journal of Geo-Engineering., 3(2): 27-37.
[3] Amarakoon, G., Kawasaki, S. (2018) Utilization of Microbially Induced Calcite Precipitation for Sand Solidification Using Pararhodobacter sp. J. Sci. Materials Transactions., 59: 77-81.
[4] Tang, C., Yin L., Jiang N. (2020) Factors affecting the performance of microbial-induced carbonate precipitation (MICP) treated soil: a review. J. Sci. Environmental Earth Sciences., 79(5): 1-23.
[5] Wold, S., Esbensen K., Geladi P. (1987) Principal component analysis. J. Sci. Chemometrics and intelligent laboratory systems., 2(1-3): 37-52.
[6] McClelland, J., Rumelhart D. (1986) Parallel distributed processing. MIT press Cambridge, Massachusetts.
[7] Abid, F. (2021) A Survey of Machine Learning Algorithms Based Forest Fires Prediction and Detection Systems. J. Sci. Fire Technology., 57(2): 559-590.
[8] Tchaban, T., Taylor, M., Griffin, J. (1998) Establishing impacts of the inputs in a feedforward neural network. J. Neural Computing & Applications., 7(4): 309-317.
[9] Hoang, T., Alleman J., Cetin B. (2020) Engineering properties of biocementation coarse-and fine-grained sand catalyzed by bacterial cells and bacterial enzyme. J. Journal of Materials in Civil Engineering., 32(4): 04020030.
[10] Cheng, L., Cord-Ruwisch, R., Shahin Mohamed, A. (2013) Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation. J. Canadian Geotechnical Journal., 50(1): 81-90.
[11] Shanahan, C., Montoya, B. (2014) Strengthening Coastal Sand Dunes using Microbial Induced Calcite Precipitation In: Geo-Congress. Panama. pp. 1683-1692.
[12] CHEN, Z. (2019) Experimental study on mechanical characteristics of silt with different cementation degree of microbial solidified silt. D. Nanjing Forestry University.
[13] Fan, C. (2019) Experimental Study on Sand Soil Reinfor Cement by Microorganism Combined with Carbon based Materials Induced Calcium Carbonate Precipitation. D. North China University of Water Resources and Electric Power.
[14] JING, T., JIANG, H., LI, Z. (2019) Experimental Study on Solidification of Yellow River Sediment Through Microbial Induced Carbonate Precipitation. J. YELLOW RIVER., 41(11): 11-16.
[15] GGNN, A., Kawasaki, S. (2017) Factors Affecting Sand Solidification Using MICP with Pararhodobacter sp. J. Materials Transactions., 59:72-81.
[16] Pan, X., Chu, J., Yang, Y. (2020) A new biogrouting method for fine to coarse sand. J. Acta Geotechnica., 15(1): 1-16.
[17] Ding, J. (2019) Study on Engineering Characteristics and Thermal Conductivity of Solidified Sand by Microbially Induced Calcium Carbonate Precipitation. D. Jiangsu University of Science and Technology.
[18] Xu, H., Lian, J., Yan, Y. (2020) Experimental Study of MICP Solidified Sand Under the Coupling of Multiple Test Factors. J. Journal of Tianjin University (Science and Technology)., 53(05): 517-526.
[19] Cheng Liang, Shahin MA, Cord-Ruwisch R. (2014) Bio-cementation of sandy soil using microbially induced carbonate precipitation for marine environments. J. Geotechnique, 64(12): 1010-3.
[20] Liang, S., Zeng, W., Gong, X., Chen, J., Zhong, Z. (2020) Effect of particle size on mechanical properties of microorganism solidified sand. J. Yangtze River, 51(02): 179-183.
[21] Gomez, M., DeJong, J. (2017) Engineering properties of bio-cementation improved sandy soils. In: Grouting, Honolulu. pp. 23-33.
[22] Zhu, C. (2019) Experimental study on the anti-liquefaction dynamic characteristics of MICP cemented sand. D. Shenyang Jianzhu University.
[23] van Paassen Leon, A., Ghose, R., van der, L. (2010) Quantifying biomediated ground improvement by ureolysis: large-scale biogroat experiment. J. Journal of geotechnical and geoenvironmental engineering., 136(12): 1721-1728.
[24] Lian, J., Xu, H., He, X. (2019) Biogrouting of hydraulic fill fine sands for reclamation projects. J. Marine Georesources & Geotechnology., 37(2): 212-222.
[25] Zhang, S. (2019) Experimental Investigation of Microbial Solidification of Aeolian Sand. D. Northwest A&F University.
[26] Yasuhara, H., Neupane, D., Hayashi, K. (2012) Experiments and predictions of physical properties of sand cemented by enzymatically-induced carbonate precipitation. J. Soils and Foundations., 52(3): 539-549.
[27] Choi, S., Chang, I., Lee, M. (2020) Review on geotechnical engineering properties of sands treated by microbially induced calcium carbonate precipitation (MICP) and biopolymers. J. Construction and Building Materials, 246: 118415.