Empirical investigation of small-scale aluminium wool packed solar air heater made with waste material

Atık malzemelerden yapılan küçük ölçekli alüminyum yün dolgulu güneş destekli hava ısıtıcısının deneySEL incelemesi

Authors (Yazarlar): Adnan SÖZEN¹, Ataollah KHANLARI², Azim Doğuş TUNCER³, Ceylin ŞİRİN⁴, Faraz AFSHARI⁵, Aşin GÜNGÖR⁶

ORCID¹: 0000-0002-8273-2674
ORCID²: 0000-0001-9691-9799
ORCID³: 0000-0002-8098-6417
ORCID⁴: 0000-0002-4273-9693
ORCID⁵: 0000-0001-9192-5604
ORCID⁶: 0000-0002-4245-7741

To cite to this article (Bu makaleye şu şekilde atıfta bulunabilirsiniz): Sözen A., Khanlari A., Tuncer A. D., Şirin C., Afshari F. ve Güngör A., “Empirical investigation of small-scale aluminium wool packed solar air heater made with waste material”, Journal of Polytechnic, *(*): *, (*).

To link to this article (Erişim linki): http://dergipark.org.tr/politeknik/archive

DOI: 10.2339/politeknik.710448
Empirical Investigation of Small-scale Aluminium Wool Packed Solar Air Heater Made With Waste Material

Highlights

- Performance analysis of small-scale solar air heaters fabricated with waste metal.
- Analysis of the effect of aluminium wool integration on the thermal performance.
- Average thermal efficiency was obtained in the range of 42.69-56.98%.

Graphical Abstract

In this study, two solar air heaters made with scrap metal elbows were designed, fabricated and empirically analyzed. Also, impact of aluminium wool packing on the thermal performance was investigated.

Aim

Manufacturing and testing of sustainable solar air heating system with recycled materials.

Design & Methodology

Two tubular small-scale solar air heating systems were designed and manufactured. One of them was packed with aluminum wool. Both heaters were tested in three different air mass flow rates.

Originality

Unusual materials such as scrap metal elbows and aluminum wool were used in the solar air heater manufacturing process for sustainable thermal energy production and waste management.

Findings

The thermal efficiency values for hollow heater and modified heater were obtained in the range of 33.63-42.90% and 42.69-56.98%, respectively.

Conclusion

Designed and tested system shows that waste materials can be used in sustainable thermal energy systems effectively.

Declaration of Ethical Standards

The authors of this article declare that the materials and methods used in this study do not require ethical committee permission and/or legal-special permission.
Empirical Investigation of Small-Scale Aluminium Wool Packed Solar Air Heater Made with Waste Material

(Research Article / Araştırma Makalesi)

Adnan SÖZEN¹, Ataollah KHANLARI², Azim Doğuş TUNCER³*, Faraz AFSHARI⁴, Afsin GÜNGÖR⁵

¹Energy Systems Engineering, Gazi University, Ankara, Turkey
²Mechanical Engineering, University of Turkish Aeronautical Association, Ankara, Turkey
³Energy Systems Engineering, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
⁴Natural and Applied Science Institute, Gazi University, Ankara, Turkey
⁵Mechanical Engineering, Erzurum Technical University, Turkey

(Geliş/Received : 27.03.2020; Kabul/Accepted : 30.04.2020)

ABSTRACT

Waste production is an important problem for the developing world and globalization. The waste materials can be reused through recycling process and its environmental effects can be minimized. Utilizing renewable energy sources at the maximum level is also an important issue for a sustainable development in future as well as waste management. In this study, small-scale solar air heating systems were produced from waste materials to analyze the usability of waste material in renewable energy systems. Scrap metal elbows were used in the production of heaters. The first solar heater is hollow (SH) and the second one was modified by filling it with aluminum wool (SHAW). Both heaters were tested simultaneously at different flow rates (0.014, 0.010 and 0.006 kg/s). According to the experimental results, the thermal efficiency values for SH and SHAW were found in the range of 33.63–42.90% and 42.69–56.98%, respectively. In addition, it was observed that a low cost modification such as using aluminum wool can significantly increase thermal performance of the solar heating system.

Keywords: Solar air heater, solar energy, scrap metal elbow, aluminium wool, recycling.

Atık Malzemelerden Yapılan Küçük Ölçekli Alüminyum Yün Dolgulu Güneş Destekli Hava İstıcisinin Deneysel İncelemesi

ÖZ

Atık üretimi gelişen dünyanın önemli bir sorundur. Atıklar geri dönüştüm yoluya tekrar kullanılabilecek ve çevresel etkileri en aza indirgenebilir enerji kaynaklarından maksimum düzeyde faydalanılması da atık yönetimi gibi sürdürülebilir bir konudur. Bu çalışmada atık malzemelerden üretilmiş küçük ölçekli güneş destekli hava ısıtma sistemleri, bu malzemelerin yenilenebilir enerji sistemlerinde kullanılabilirliğini analiz etmek için üretilmiştir. İstıcılar rehberlik, hava dirençlerini ve bu olusturulan hava ısıtıcı sistemlerinin termal verim değerleri sırasıyla 33.63–42.90% ve 42.69–56.98% olduğunu bulmuştur. Bulgulara göre alüminyum yün gibi düşük maliyetli bir modifikasyonun güneş destekli ısıtma sisteminin termal performansını önemli ölçüde artırdığı görülmüştür.

Anahtar Kelimeler: Güneş destekli hava ısıtıcı, güneş enerjisi, hurda metal dirsek, alüminyum yün, geri dönüştüm.

1. INTRODUCTION

Due to the growing world population and global promotion, using scrap materials can be considered as one of the primary problems for a sustainable environment. Industrialization, quickly urbanization and consuming habits that change day by day are the important factors which have negative impacts on the environment [1]. This huge volume of increasing wastematerials and consequently their environmental impacts has been reached risky and dangerous levels. The volume of solid waste changes according to the general socio-economic conditions and structure of the...
countries and territories. However, depending on the social and cultural features in different cities within the borders of a country, consumption habits of the nation differ [2].

Waste management and sustainable development are mostly encountered in the field of waste management research, which evaluate environmental and also sustainable development subjects from various perspectives. Limited natural resources in the global levels make it necessary to discover suitable solutions and sustainable development [3,4].

In the field of recycling waste materials, metal wastes are considered to be recycled in various processes and they could be used in different applications after recycling. There are a number of studies provided in literature, which studied reusing and recycling electronic wastes [5-7] and reutilizing metal wastes [8-10]. Giving priority for using clean energy sources is an important issue in environmental sustainability and development. Solar energy as a renewable and sustainable energy source has a remarkable potential to be used in different fields to provide required energy [11,12].

Heat energy produced from solar energy is wildly utilized in many countries around the world. Solar thermal systems are basically classified to solar water and solar air heaters depending on used heat transfer fluid. Solar heaters are often employed to use in space heating, drying applications and air conditioning systems [13-15]. Experimental and numerical study of indirect solar dryer which was modified using iron mesh [16] and performance analysis of a manufactured greenhouse dryer [17] are other outstanding studies on solar energy utilization provided in the literature.

On outstanding method for increasing thermal performance of solar heaters is utilizing packing materials with high thermal conductivity. In a study done by Chouksey and Sharma (2016) wire screen was utilized to enhance the efficiency of solar heater [18]. In another study, Singh et al. (2015) packed bed heat storage system was investigated. They used rock pebbles for energy storage and compared it with phase change materials [19]. Dhiman et al. (2012) analyzed the effect of using wire matrix in different heaters. They compared the performance of the heaters and stated that the modified heater with counter flow was the highest performance [20]. Prasad et al. (2009) utilized wire mesh with the aim of improving the efficiency of solar heater. They investigated the effect of porosity value on the heat transfer and obtained the efficiency in the range of 77-90% [21]. Investigating packed bed solar heaters packed with various materials showed the effectiveness of this technique. Aluminum wool can be a good candidate to be used in solar heaters because it is light and has high thermal conductivity.

In this study, two small-scale solar-powered air heaters were produced from waste materials. One of them is hollow and the other one is filled with aluminum wool. The main purpose of this study is to demonstrate the production of sustainable thermal energy from waste or scrap materials and also to increase its thermal performance with a low cost modification. General structure of the present work is shown in Fig. 1.

![Fig. 1. A view of aluminum wool used in the solar heating systems](image)
wooden platform was produced to install heaters in desired position. The angle of inclination of the produced platform is 32°.

Experimental studies were carried out in Burdur/Turkey in October. Experiments were started at 09:00 and continued for 8 hours. Experiments were carried out at three different air flow rates (0.014, 0.010 and 0.006 kg/s). All measurements were performed at 15 minutes intervals. A view of experimental setup is shown in Fig. 3. Air temperature measurement was made by utilizing 5 K-type thermocouples (accuracy: ±0.5 °C). Temperature measurement points can be seen in Fig. 3 (orange circles). Moreover, two dataloggers were used in logging measured temperature data (accuracy: ±0.3 °C). Solar radiation and velocity were measured by utilizing a solarimeter (accuracy: ±10 W/m²) and an anemometer (accuracy: 2%), respectively.

THEORETICAL CALCULATIONS

Mass conservation of air can be defined by using the following expression:

\[\sum \dot{m}_{\text{in}} = \sum \dot{m}_{\text{out}} \]

(1)

here, \(\dot{m} \) is mass flow rate in the solar air heating system (kg/s) and can be obtained by:

\[\dot{m} = \rho VA \]

(2)

Specific heat capacity of air and air density can be calculated by using Eq. (3) and Eq. (4), respectively [22].

\[c_p = 999.2 - 0.1434 \times T + 1.101 \times 10^{-\beta} T^2 - 6.7581 \times 10^{-\beta} T^3 \]

(3)

\[\rho = 353.44/T \]

(4)

where T is temperature (K), \(\rho \) is density of air (kg/m³) and \(A \) is area (m²). Reynolds number can be calculated by using Eq. (5) [23]:

\[Re = (\rho VD_b)/\mu \]

(5)

here, \(V \) is air velocity (m/s), \(D_b \) is hydraulic diameter (m) and \(\mu \) is dynamic viscosity of air (Pa.s).

Nusselt number can be found by utilizing the following expression:

\[Nu = (hD_b)/k \]

(6)

where \(k \) is thermal conductivity (W/mK) and \(h \) is heat transfer coefficient (W/m²K).

Useful heat energy gained by solar heater can be found as:

\[Q_{us} = \dot{m}c_p(T_{\text{out}} - T_{\text{in}}) \]

(7)

Thermal efficiency of the solar heater can be found as [24]:

\[\eta = \frac{Q_{us}}{I_{sh}} \]

(8)

where \(A_{sh} \) is surface area of the solar heater (m²) and \(I \) is solar radiation (W/m²).

Coefficient of performance can be calculated by utilizing Eq. (9) [17]:

\[COP = Q_{us}/W_t \]

(9)

here, \(W_t \) is total electrical power. In this study, low energy consuming fans were utilized and this value can be taken as power of fan.

Total experimental uncertainty can be expressed by using Eq. (10):

\[W_R = \left[\left(\frac{\partial R}{\partial x_1} w_1 \right)^2 + \left(\frac{\partial R}{\partial x_2} w_2 \right)^2 + \cdots + \left(\frac{\partial R}{\partial x_n} w_n \right)^2 \right]^{1/2} \]

(10)

Here, \(w_1, w_2, w_n \) are the uncertainties in the independent variables.

Total uncertainty for mass flow rate can be found as:

\[W_m = \left[\left(\frac{\partial m}{\partial w} w_1 \right)^2 + \left(\frac{\partial m}{\partial w} w_2 \right)^2 + \left(\frac{\partial m}{\partial w} w_3 \right)^2 \right]^{1/2} \]

(11)

Total uncertainty for thermal efficiency can be calculated by using Eq. (12):

\[W_\eta = \left[\left(\frac{\partial \eta}{\partial m} w_m \right)^2 + \left(\frac{\partial \eta}{\partial \rho} w_\rho \right)^2 \right]^{1/2} \]

(12)
4. RESULTS AND DISCUSSION

Change of ambient air temperature over time is shown in Fig. 4. Accordingly, average ambient air temperatures for Exp. 1, Exp. 2 and Exp. 3 are 26, 26.62 and 26.34 °C, respectively. Change of solar radiation with time is given in Fig. 5. Accordingly, the average values for Exp. 1, Exp. 2 and Exp. 3 are 804, 818 and 788 W/m², respectively. The highest instantaneous solar radiation value for this study is 948 W/m² in Exp. 2, which was observed at 13:00.

Figure 7 shows the change in thermal efficiency values over the test time. Accordingly, the average efficiency of SH obtained as 42.90%, 39.42% and 33.63%, in the experiments carried out at 0.014, 0.010 and 0.006 kg/s flow rates, respectively. In addition, the calculated maximum thermal efficiency values obtained as 50.08%, 44.75% and 39.98%, respectively. Average efficiency values achieved as 56.98%, 51.20% and 42.69% for SHAW, respectively. Moreover, the maximum instantaneous efficiency values calculated for SHAW obtained as 62.61%, 55.09% and 48.25%.

In a study by Kabeel et al. (2016), the efficiency of the heater using phase change materials was found in the range of 14.4-50% [29]. A heater with corrugated and porous surface was analyzed by Badescu et al. (2019). According to the obtained results, the thermal efficiency value varies in the range of 52.5-66.2% [30]. In the study by Abuşka and Şevik (2017), a heater with v-
grooves was designed and tested with absorber surfaces with different materials. According to the results, the average thermal efficiency was obtained in the range of 43-60% [31]. The heaters examined in this study are produced from waste materials and has low cost. It was also operated with fans with 40 W power consumption. Although the heaters examined in this study are small-scale and have appropriate thermal efficiency values when compared with the complex heaters in the literature. At the same time, a significant improvement was achieved in thermal efficiency values with a simple modification by using aluminum wool.

Table 1. Uncertainty values

Parameter	Unit	Uncertainty
Air velocity	m/s	±0.27
COP		±0.13
Solar radiation	W/m²	±0.50
Temperature	°C	±0.56
Thermal efficiency	%	±0.89

Time dependent change of COP values is shown in Fig. 8. For SH, average COP values for Exp. 1, Exp. 2 and Exp. 3, are 1.41, 1.39 and 1.21, respectively. These values for SHAW are 1.86, 1.79 and 1.53 respectively. Large differences were observed in the thermal efficiency due to the variation in the air mass flow rate. However, the data calculated for COP are close to each other. The reason for this is that the decrease in mass flow is performed by fan operation control. Fan power should be reduced in order to reduce the mass flow rate. This issue directly affects the COP value of the system. The heaters examined in this study are in small scales; therefore, COP values are somewhat lower than current studies in the literature. However, it is compatible with many studies in the literature in terms of thermal efficiency. Uncertainty values are given in Table 1. It can be said that they are in applicable range [16, 24, 32].

Table 2. Some studies which investigated packed bed solar heaters

Reference	Application	η
Buchberg and Edwards [33]	honeycomb	43-62%
Ramani et al. [34]	double-pass, wire mesh	58.4-78.2%
Ho et al. [35]	double-pass, wire mesh	42-62%
Ming et al. [36]	offset strip fin	40-45%
Thakur et al. [37]	packed bed with low porosity	54-77%
Gupta et al. [38]	transverse rib surface	47-65%
Akhtar and Mullick [39]	single glazing	47-68%
Varshney and Saini [40]	wire mesh	57-78%
El-Sebai et al. [41]	double-pass, limestone and gravel	48-69%
Sopian et al. [42]	double-pass, iron scrap	60-70%
This study	single-pass, made with waste material	33.63-42.90%
	single-pass, made with waste material, aluminum wool packed	42.69-56.98%

5. CONCLUSION

Effective utilization of renewable energy sources and waste management are two key points for a sustainable development in future. In this study, two solar air heaters produced from waste materials were experimented. According to the results, it has been observed that the use of aluminum wool can significantly increase thermal performance of solar heater. The average thermal efficiency values of the unmodified heater were calculated in the range of 33.63-42.90%, and the thermal efficiency of the aluminum wool integrated heater was calculated in the range of 42.69-56.98%.

The surface area of the produced collectors was quite small. In future studies, thermal performance can be remarkably increased by increasing the surface area and also increasing the air residence time. In addition to aluminum wool, different fin and baffles can also be integrated into these heaters. Improved versions of heaters examined in this study can be a considerable alternative for economical air heating systems. In addition, it is considered to be a short term solution for sustainable heated air production for less developed countries and regions.

Besides, since waste materials were used in these heaters, it can be stated that waste materials can
contribute positively to our developing world regarding environmental sense. It can be concluded that these systems produced from waste materials can be used in different processes such as space heating and drying.

DECLARATION OF ETHICAL STANDARDS
The authors of this article declare that the materials and methods used in this study do not require ethical committee permission and/or legal-special permission.

REFERENCES
[1] Singh, A., “Solid waste management through the applications of mathematical models”, Resources, Conservation and Recycling, 151: 104503, (2019).
[2] Fidelis, R., Maroco-Ferreira, A., Antunes, L.C. and Komatsu, A.K., “Socio-productive inclusion of scavengers in municipal solid waste management in Brazil: Practices, paradigms and future prospects”, Resources, Conservation and Recycling, 154: 104594, (2020).
[3] Zhou, Z., Chi, Y., Dong, J., Tang, Y. and Ni, M., “Model development of sustainability assessment from a life cycle perspective: A case study on waste management systems in China”, Journal of Cleaner Production, 210: 1005-1014, (2019).
[4] Fuldauer, L.I., Ives, M.C., Adshea, D., Thacker, S. and Hall, J.W., “Participatory planning of the future of waste management in small island developing states to deliver on the Sustainable Development Goals”, Journal of Cleaner Production, 223:147-162, (2019).
[5] Gunaratne, N., de Alwis, A. and Alahakoon, A., “Challenges facing sustainable urban mining in the e-waste recycling industry in Sri Lanka”, Journal of Cleaner Production, 251:119641, (2020).
[6] Tansel, B., “From electronic consumer products to e-wastes: Global outlook, waste quantities, recycling considerations”, Resources, Conservation and Recycling, 155:104662, (2020).
[7] Shaikh, S., Thomas, K. and Zuhair, S., “An exploratory study of e-waste creation and disposal: Upstream considerations”, Resources, Conservation and Recycling, 155:104694, (2020).
[8] Yu, D., Lian, J., Song, J., Li, X., Zhang, H., Zhang, H., Liu, Y., Shen, W. and Wanh, J., “Characterizing the environmental impact of metals in construction and demolition waste”, Environmental Science and Pollution Research, 25:13823-13832, (2018).
[9] Galvão, A.P., Ayuso, J., Jimenez, J.R. and Agrela, F., “Comparison of batch leaching tests and influence of pH on the release of metals from construction and demolition wastes”, Waste Management, 32:88-95, (2012).
[10] Hadavand, B. and Imaninasab, R., “Assessing the influence of construction and demolition waste materials on workability and mechanical properties of concrete using statistical analysis”, Innovative Infrastructure Solutions, 4:29, (2019).
[11] Lamnatou, C., Cristofari, C., Chemisana, D. and Canaletti, J.L., “Payback times and multiple midpoint/endpoint impact categories about Building-Integrated Solar Thermal (BIST) collectors”, Science of The Total Environment, 658:1039-1055, (2019).
[12] Hosseini, S.S., Ramiar, A. and Ranjbar, A.A., “Numerical investigation of natural convection solar air heater with different fins shape”, Renewable Energy, 117:488-500, (2018).
[13] Afshari, F., Khanlari, A., Sözen, A., Şirin, C., Tuncer, A.D. and Güngör, A., “CFD analysis on fin and baffle configurations in solar air collector”, Energy And Environmental Studies For The Near Future, Akademisyen Publishing, Ankara, Turkey, 79-87, (2019).
[14] Kaya, M., Gürel, A.E., Ağbolut, Ü., Ceylan, I., Çekik, S., Ergün, A. and Acar, B., “Performance analysis of using CuO-Methanol nanofluid in hybrid system with concentrated air collector and vacuum-air heat pipe”, Energy Conversion and Management, 179:111936, (2019).
[15] Gürel, A.E., “Exergetic assessment of a concentrated photovoltaic thermal (CPTV) system”, International Journal of Energy, 21:132-135, (2016).
[16] Güler, H.A., Sözen, A., Tuncer, A.D., Afshari, F., Khanlari, A., Şirin, C. and Gungor, A., “Experimental and CFD survey of indirect solar dryer modified with low-cost iron mesh”, Solar Energy, 197:371-384, (2020).
[17] Khanlari, A., Sözen, A., Şirin, C., Tuncer, A.D. and Gungor, A., “Performance enhancement of a greenhouse dryer: Analysis of a cost-effective alternative solar air heater”, Journal of Cleaner Production, 251:119672, (2020).
[18] Chhouksey, V.K. and Sharma, S.P., “Investigations on thermal performance characteristics of wire screen packed bed solar air heater”, Solar Energy, 132:591-605, (2016).
[19] Singh, P.L., Deshpande, S.D. and Jena, P.C., “Thermal performance of packed bed heat storage system for solar air heaters”, Energy for Sustainable Development, 29:112-117, (2015).
[20] Dhiman, P., Thakur, N.S. and Chauhan, S.R., “Thermal and thermohydraulic performance of counter and parallel flow packed bed solar air heaters”, Renewable Energy, 46:259-268, (2012).
[21] Prasad, S.B., Saini, J.S. and Singh, K.M., “Investigation of heat transfer and friction characteristics of packed bed solar air heater using wire mesh as packing material”, Solar Energy, 83:773-783, (2009).
[22] Tiwari, G.N., “Solar Energy: Fundamentals, Design Modeling and Applications”, CRC Press and Narosa Publishing House, New York and New Delhi, (2002).
[23] Khanlari, A., Güler, H.O., Tuncer, A.D., Şirin, C., Bilge Y.C., Yilmaz, Y. and Gungör, A., “Experimental and numerical study of the effect of integrating plus-shaped perforated baffles to solar air collector in drying application”, Renewable Energy, 145:1677-1692, (2020).
[24] Khanlari, A., Sözen, A., Afshari, F., Şirin, C., Tuncer, A.D., and Gungor, A., “Drying municipal sewage sludge with v-groove triple-pass and quadruple-pass solar air heaters along with testing of a solar absorber drying chamber”, Science of The Total Environment, 709:136198, (2020).
[25] Singh, S. Singh, A. and Chander, S., “Thermal performance of a fully developed serpentine wavy channel solar air heater”, Journal of Energy Storage, 25:100896, (2019).

[26] Perwez, A. and Kumar, R., “Thermal performance investigation of the flat and spherical dimple absorber plate solar air heaters”, Solar Energy, 193:309-323. (2019)

[27] Özdemir, M.B., Yatarkalkmaz, M.M. and Dağlı, G., “Experimental Analysis of the Flat Plate Collectors Having Different Types of Absorber Surface”, Journal of Polystyrene, 20:441-449. 2017

[28] Razak, A.A., Majid, Z.A.A., Basrawi, F., Sharol, A.F., Ruslan, M.H., and Sopian, K., “A performance and techno-economic study of different geometrical designs of compact single-pass cross-matrix solar air collector with square-tube absorbers”, Solar Energy, 178:314-330. (2019)

[29] Kabeel A.E., Khalil, A., Shalaby, S.M. and Zayed, M.E., “Investigation of the thermal performances of flat, finned, and v-corrugated plate solar air heaters”, Journal of Solar Energy Engineering, 138:1-7. (2016)

[30] Badescu, V., Soriga, I. and Ciocanea, A., “Solar air collector performance in transient operation under radiative regimes with different levels of stability”, Solar Energy, 177:200-212. (2019)

[31] Abuşka, M. and Şevik, S., “Energy, exergy, economic and environmental (4E) analyses of flat-plate and V-groove solar air collectors based on aluminum and copper”, Solar Energy, 158:259-277. (2017)

[32] Ceylan, İ. and Gürel, A.E., “Solar-assisted fluidized bed dryer integrated with a heat pump for mint leaves”, Applied Thermal Engineering, 106:899-905. (2016).

[33] Buchberg, H. and Edwards, D.K., “Design considerations for solar collectors with cylindrical honeycomb”, Solar Energy 76:193-206, (1976).

[34] Ramani, B.M., Gupta, A. and Krishna, R., “Performance of a double pass solar air collector”, Solar Energy 84:1929-1937, (2010).

[35] Chii-Doong, H., Chun-Sheng L., Tu-Chuan C. and Chun-Chieh, C., “Performance improvement of wire mesh packed double pass solar air heaters with external recycle", Renewable Energy, 57:479-489, (2013).

[36] Ming, Y., Xudong, Y., Xing, L., Zhifeng, W. and Pengsu, W., “Design and optimization of a solar air heater with offset strip-fin absorber plate”, Applied Energy 135:1349-1362, (2015).

[37] Shukur, N.S., Shih, J.S. and Solanki, S.C., “Heat transfer and friction factor correlations for packed-bed solar air heater for a flow porosity system”, Solar Energy 74:319-329, (2005).

[38] Gupta, D., Solanki, S.C. and Saini, J.S., “Thermohydraulic performance of solar air heaters with roughened absorber plates”, Solar Energy 61:33-42, (1997).

[39] Akhtar, N. and Mullick, S.C., “Approximate method for computation of glass cover temperature and top heat-loss coefficient of solar collectors with single glazing”, Solar Energy 5:349-354, (1999).

[40] Varshney, L. and Saini, J.S., “Heat transfer and friction factor correlations for rectangular solar air heater duct packed with wire mesh screen matrices”, Solar Energy 62:255-262, (1998).

[41] El-Sebaii, A.A., Aboul-Enein, S., Ramadan, M.R.I. and El-Bialy, E., “Year round performance of double pass solar air heater with packed bed”, Energy Conversion and Management 48:990-1003, (2007).

[42] Sopian, K., Supranto, W.R.W., Daud, M.Y. and Yatim, O.B., “Thermal performance of the double-pass solar collector with and without porous media”, Renewable Energy 18:557-564, (1999).