Dyson hierarchical long-ranged quantum spin-glass via real-space renormalization

Cécile Monthus

Institut de Physique Théorique, Université Paris Saclay, CNRS, CEA, 91191 Gif-sur-Yvette, France
E-mail: cecile.monthus@cea.fr

Received 22 June 2015
Accepted for publication 11 September 2015
Published 21 October 2015

Online at stacks.iop.org/JSTAT/2015/P10024
doi:10.1088/1742-5468/2015/10/P10024

Abstract. We consider the Dyson hierarchical version of the quantum spin-glass with random Gaussian couplings characterized by the power-law decaying variance $J^2(r) \propto r^{-2\sigma}$ and a uniform transverse field h. The ground state is studied via real-space renormalization to characterize the spin-glass-paramagnetic zero temperature quantum phase transition as a function of the control parameter h. In the spin-glass phase $h < h_c$, the typical renormalized coupling grows with the length scale L as the power-law $J^\text{typ}(h) \propto \Upsilon(h)L^\theta$ with the classical droplet exponent $\theta = 1 - \sigma$, where the stiffness modulus vanishes at criticality $\Upsilon(h) \propto (h_c - h)^\mu$, whereas the typical renormalized transverse field decays exponentially $h^\text{typ}(h) \propto e^{-\xi h}$ in terms of the diverging correlation length $\xi \propto (h_c - h)^{-\nu}$. At the critical point $h = h_c$, the typical renormalized coupling $J^\text{typ}(h_c)$ and the typical renormalized transverse field $h^\text{typ}(h_c)$ display the same power-law behavior L^{-z} with a finite dynamical exponent z. The RG rules are applied numerically to chains containing $L = 2^{12} = 4096$ spins in order to measure these critical exponents for various values of σ in the region $1/2 < \sigma < 1$.

Keywords: disordered systems (theory), quantum phase transitions (theory), renormalisation group, spin glasses (theory)
1. Introduction

In the field of classical spin-glasses, the long-ranged case of Gaussian couplings where the variance decays as a power-law of the distance \(r \)

\[
J^2(r) = \frac{1}{r^{2\sigma}}
\]

(1)

has been much studied recently [1–22] for various reasons: from the experimental point of view, the RKKY (Ruderman-Kittel-Kasuya-Yosida) interaction in real spin-glasses actually decays as a power-law of the distance; from the numerical point of view, the long-ranged interaction can be studied in one dimension as a function of \(\sigma \) for much larger sizes than in the case of short-ranged interaction as a function of the dimension \(d \); from the theoretical point of view, the long-ranged case is also easier to analyze via scaling arguments. In particular, within the droplet scaling theory [23, 24], the droplet exponent \(\theta \) governing the scaling of the renormalized random coupling \(J_L \) with the length \(L \)

\[
J_L \propto L^{\theta}
\]

(2)
is expected to be given by the exact simple formula \[2, 24\]

\[\theta_{\text{LR}}(d, \sigma) = d - \sigma\] \hspace{1cm} (3)

in the region where it is bigger than its short-ranged value \(\theta_{\text{LR}}(d, \sigma) > \theta_{\text{SR}}(d)\), whereas the short-ranged droplet exponent \(\theta_{\text{SR}}(d)\) is known only numerically as a function of \(d\) apart from the simple case \(\theta_{\text{SR}}(d = 1) = -1\). Since the spin-glass phase is stable at low temperature when the droplet exponent is positive \(\theta > 0\), and since the ground state energy is extensive for \(2\sigma > d\) (equation (1)), one obtains that the interesting region where the spin-glass phase exists up to a finite temperature \(T_c\)

\[\frac{d}{2} < \sigma < d\] \hspace{1cm} (4)

exists already in dimension \(d = 1\).

Besides the thermal transition of the classical spin-glass, it is also interesting to consider the effect of quantum fluctuations introduced by a uniform transverse field \(h\) at zero temperature \[25\]

\[H = -\sum_i h\sigma_i^z - \sum_{\langle i,j \rangle} J_{i,j}\sigma_i^z\sigma_j^z\] \hspace{1cm} (5)

where \(J_{i,j}\) are the random couplings with the variance given by equation (1). For \(h = 0\), one recovers the classical case with the droplet exponent of equation (3), so that the region of interest is the same as in equation (4). For large \(h\), the ground state will be paramagnetic, so that one expects a quantum phase transition at zero temperature at some critical transverse field \(h_c\). For the case of short-ranged couplings, the quantum spin-glass transition is governed by an infinite disorder fixed point obtained via strong disorder renormalization, either exactly in dimension \(d = 1\) \[26\] or numerically in dimensions \(d = 2, 3, 4\) \[27–37\] (note that this infinite disorder fixed point can also be reproduced via real-space block renormalization \[38, 39\]). As a consequence, the relation with the power-law mean-field theory based on the properties of the infinite ranged model \[40, 41\] and supposed to apply in \(d > 8\) \[42\] has remained unclear. However, for the case of long-ranged couplings, the activated scaling of the renormalized couplings found at the infinite disorder fixed point is not possible anymore, since the decay cannot be less than the initial power-law decay (equation (1)). As a consequence, the dynamical exponent \(z\) is finite, and one may expect more conventional power-law critical properties. The case of the long-ranged \textit{random ferromagnetic} quantum Ising chain has been studied recently both via strong disorder renormalization \[43–45\] and via block renormalization \[46\]. The aim of the present paper is to study the properties of the long-ranged quantum spin-glass chain via the block real-space renormalization used previously for the ferromagnetic case \[46\].

The paper is organized as follows. In section 2, we describe the real-space renormalization rules for the Dyson hierarchical version of the quantum long-ranged spin-glass model, and solve them deep in the spin-glass phase and deep in the paramagnetic phase. In section 3, the renormalization group (RG) rules are applied numerically in the critical region to measure the critical behaviors. Our conclusions are summarized in section 4.
2. Real-space renormalization approach

2.1. Dyson hierarchical quantum long-ranged spin-glass model

Since the studies concerning the Dyson hierarchical classical ferromagnetic Ising model [47–56], many long-ranged disordered models have been analyzed via their Dyson hierarchical analogs including, for instance, random fields Ising models [57–59] and Anderson localization models [60–67]. Here we start from the Dyson hierarchical classical spin-glass model [68–74] and we simply add transverse fields to introduce quantum fluctuations. More precisely, the Dyson hierarchical quantum spin-glass model for \(N = 2^n \) spins is defined as a sum over the generations \(k = 0, 1, \ldots, n - 1 \)

\[
H^{(k=0)}_{(1,2^n)} = \sum_{i=1}^{2^n} h_i \sigma_i^z - \sum_{i=1}^{2^n-1} J^{(0)}_{2i-1,2i} \sigma_i^x \sigma_{2i}^x
\]

The Hamiltonian of generation \(k = 0 \) contains the transverse fields \(h_i \) and the lowest order couplings \(J^{(0)}_{2i-1,2i} \)

\[
H^{(k=1)}_{(1,2^n)} = -\sum_{i=1}^{2^{k-2}} \left[J^{(1)}_{4i-3,4i-1} \sigma_i^x \sigma_{4i-1}^x + J^{(1)}_{4i-3,4i} \sigma_i^x \sigma_{4i}^x + J^{(1)}_{4i-2,4i-1} \sigma_i^x \sigma_{4i-1}^x \right]
\]

and so on up to the last generation \(k = n - 1 \) that couples all pairs of spins between the two halves of the system

\[
H^{(n-1)}_{(1,2^n)} = -\sum_{i=1}^{2^{n-1}} \sum_{j=1}^{2^{n-1}+1} J^{(n-1)}_{i,j} \sigma_i^x \sigma_j^x
\]

At generation \(k \), associated to the length scale \(L_k = 2^k \), the couplings \(J^{(k)}_{i,j} \) read

\[
J^{(k)}_{i,j} = \Delta_k \epsilon_{ij}
\]

where \(\epsilon_{ij} \) are independent random variables of zero mean drawn with the Gaussian distribution

\[
G(\epsilon) = \frac{1}{\sqrt{4\pi}} e^{-\frac{\epsilon^2}{4}}
\]

The characteristic scale \(\Delta_k \) is chosen to decay exponentially with the number \(k \) of generations, in order to mimic the power-law decay of equation (1) with respect to the length scale \(L_k = 2^k \).
\[\Delta_k = 2^{-kr} = \frac{1}{L_k^r} \]

(12)

Then one expects that many scaling properties will be the same. In particular, in the absence of the transverse fields, the classical ground state is characterized by the same droplet exponent of equation (3) for \(d = 1 \) (see more details in [19, 20])

\[\theta(\sigma) = 1 - \sigma \]

(13)

Here we will consider the case where all the transverse fields \(h_i \) in equation (7) are all equal initially

\[h_i = h \]

(14)

so that this value \(h \) represents the control parameter of the spin-glass-paramagnetic transition. Upon renormalization however, the renormalized transverse field will become random variables as we now describe.

2.2. Renormalization procedure

We use the same renormalization procedure as in our previous work concerning the ferromagnetic case [46]. The only technical difference in the derivation of the RG rules is that we have to take into account the random amplitude and the random sign of the couplings. But of course the physical properties obtained from the RG flows will be completely different as expected for a spin-glass model.

The elementary renormalization step concerns the box two-spin Hamiltonian of generation \(k = 0 \) of equation (7)

\[H_{(2i-1,2i)} = -h_{2i-1}\sigma^z_{2i-1} - h_{2i}\sigma^z_{2i} - J_{2i-1,2i}^{(0)} \sigma^x_{2i-1}\sigma^x_{2i} \]

(15)

Within the symmetric sector

\[H_{(2i-1,2i)}|++> = -(h_{2i-1} + h_{2i})|++> - J_{2i-1,2i}^{(0)}|--> \]

\[H_{(2i-1,2i)}|--> = -J_{2i-1,2i}^{(0)}|++> + (h_{2i-1} + h_{2i})|--> \]

(16)

we project out the highest eigenvalue \(\lambda_{2i}^{++} = +\sqrt{(J_{2i-1,2i}^{(0)})^2 + (h_{2i-1} + h_{2i})^2} \) to keep only the lowest eigenvalue

\[\lambda_{2i}^{--} = -\sqrt{(J_{2i-1,2i}^{(0)})^2 + (h_{2i-1} + h_{2i})^2} \]

(17)

corresponding to the eigenvector

\[|\lambda_{2i}^{--} > = \cos \theta_{2i}^{S} |++> + \sin \theta_{2i}^{S} |--> \]

(18)

in terms of the angle \(\theta_S \) satisfying
Dyson hierarchical long-ranged quantum spin-glass via real-space renormalization

\begin{align*}
\cos(\theta_{2i}^S) &= \sqrt{\frac{1 + \frac{h_{2i-1} + h_{2i}}{\sqrt{(J_{2i-1,2i}^{(0)})^2 + (h_{2i-1} + h_{2i})^2}}}{2}} \\
\sin(\theta_{2i}^S) &= \text{sgn}(J_{2i-1,2i}^{(0)}) \sqrt{\frac{1 - \frac{h_{2i-1} + h_{2i}}{\sqrt{(J_{2i-1,2i}^{(0)})^2 + (h_{2i-1} + h_{2i})^2}}}{2}}
\end{align*} \tag{19}

Similarly within the antisymmetric sector

\begin{align*}
\cos(\theta_{2i}^A) &= \sqrt{\frac{1 + \frac{h_{2i-1} - h_{2i}}{\sqrt{(J_{2i-1,2i}^{(0)})^2 + (h_{2i-1} - h_{2i})^2}}}{2}} \\
\sin(\theta_{2i}^A) &= \text{sgn}(J_{2i-1,2i}^{(0)}) \sqrt{\frac{1 - \frac{h_{2i-1} - h_{2i}}{\sqrt{(J_{2i-1,2i}^{(0)})^2 + (h_{2i-1} - h_{2i})^2}}}{2}}
\end{align*} \tag{23}

In summary, for each two-spin Hamiltonian \(H_{2i-1,2i} \) of equation (15), we keep only the two lowest states and label them as the two states of some renormalized spin \(\sigma_R(2i) \)

\begin{align*}
|\sigma_{R(2i)}^z = + > &\equiv |\lambda_{2i}^S > \\\n|\sigma_{R(2i)}^z = - > &\equiv |\lambda_{2i}^A >
\end{align*} \tag{24}

It is convenient to introduce the corresponding spin operators

\begin{align*}
\sigma_{R(2i)}^z &\equiv |\sigma_{R(2i)}^z = + > < |\sigma_{R(2i)}^z = + > |\sigma_{R(2i)}^z = - > < |\sigma_{R(2i)}^z = - > |\sigma_{R(2i)}^z = + > \equiv |\lambda_{2i}^S > \\
|\sigma_{R(2i)}^z &\equiv |\sigma_{R(2i)}^z = - > < |\sigma_{R(2i)}^z = - > |\sigma_{R(2i)}^z = + > < |\sigma_{R(2i)}^z = + > |\sigma_{R(2i)}^z = - > \equiv |\lambda_{2i}^A >
\end{align*} \tag{25}

and the projector

\begin{align*}
P_{2i} &\equiv |\sigma_{R(2i)}^z = + > < |\sigma_{R(2i)}^z = + > |\sigma_{R(2i)}^z = - > < |\sigma_{R(2i)}^z = - > |\sigma_{R(2i)}^z = + > \equiv |\lambda_{2i}^S > \\
|\sigma_{R(2i)}^z &\equiv |\sigma_{R(2i)}^z = - > < |\sigma_{R(2i)}^z = - > |\sigma_{R(2i)}^z = + > < |\sigma_{R(2i)}^z = + > |\sigma_{R(2i)}^z = - > \equiv |\lambda_{2i}^A >
\end{align*} \tag{26}
2.3. Renormalization rule for the transverse fields $h_{R(2i)}$

The projection of the Hamiltonian of equation (15) reads

$$P_{2i}^c H_{(2i-1,2j)} P_{2i}^c = \lambda_{2i}^S |\lambda_{2i}^S| + \lambda_{2i}^A |\lambda_{2i}^A|,$$

$$= \left(\frac{\lambda_{2i}^S + \lambda_{2i}^A}{2} \right) P_{2i}^c + \left(\frac{\lambda_{2i}^A}{2} \right) \sigma_{R(2i)}$$

so that the renormalized transverse field defined as the coefficient of $(-\sigma_{R(2i)})$ is given by

$$h_{R(2i)} = \left(\frac{\lambda_{2i}^A}{2} \right) = \frac{2h_{2i-1} h_{2i}}{\sqrt{(J_{21,2i}^{(0)})^2 + (h_{2i-1} + h_{2i})^2 + J_{21,2i}^{(0)}(h_{2i-1} - h_{2i})^2}}$$

2.4. Renormalization rules for the couplings $J_{R(2i),R(2j)}$

The projection of the σ^x operators

$$P_{2i}^c \sigma_{2i-1}^x P_{2i}^c = c_{2i-1} \sigma_{R(2i)}$$

$$P_{2i}^c \sigma_{2i}^x P_{2i}^c = c_{2i} \sigma_{R(2i)}$$

involves the two coefficients

$$c_{2i-1} = \text{sgn}(J_{21,2i}^{(0)}) \sqrt{\frac{1 + \frac{(J_{21,2i}^{(0)})^2 - h_{2i-1} + h_{2i}^2}{\sqrt{(J_{21,2i}^{(0)})^2 + (h_{2i-1} + h_{2i})^2 + J_{21,2i}^{(0)}(h_{2i-1} - h_{2i})^2}}}{2}$$

$$c_{2i} = \sqrt{\frac{1 + \frac{(J_{21,2i}^{(0)})^2 + h_{2i-1}^2 - h_{2i}^2}{\sqrt{(J_{21,2i}^{(0)})^2 + (h_{2i-1} + h_{2i})^2 + J_{21,2i}^{(0)}(h_{2i-1} - h_{2i})^2}}}{2}}$$

The renormalized coupling between $\sigma_{R(2i)}$ and $\sigma_{R(2j)}$ is then given by the following linear combination of the four initial couplings of generation k associated to the positions $(2i-1, 2i)$ and $(2j-1, 2j)$

$$J_{R(2i),R(2j)} = J_{21,2i}^{(k)} c_{2i} c_{2j} + J_{21,2j}^{(k)} c_{2i-1} c_{2j} + J_{2i,2j-1}^{(k)} c_{2i} c_{2j-1} + J_{2i-1,2j}^{(k)} c_{2i-1} c_{2j-1}$$

2.5. Iteration of the elementary renormalization step

In summary, the elementary renormalization step described above maps the initial model containing $L = 2^n$ spins $(\sigma_1, ..., \sigma_2^n)$ with their transverse fields h_i and their couplings $J_{i,j}^{(k)}$ into a renormalized model containing $L/2 = 2^{n-1}$ spins $(\sigma_{R(2)}, ..., \sigma_{R(2^n)})$ with their renormalized transverse fields $h_{R(2)}$ given by equation (28) and their renormalized couplings $J_{R(2), R(2)}$ given by equation (31). The iteration is now straightforward: the next renormalization step will produce a renormalized model containing $L/4 = 2^{n-2}$ spins $(\sigma_{R(4)}, ..., \sigma_{R(2^n)})$ with their renormalized transverse fields $h_{R(4)}$ and their renormalized
couplings $J_{R(4j),R(4j)}$, etc. The renormalization procedure ends after n RG steps where the whole sample containing $L = 2^n$ initial spins has been renormalized into a single renormalized spin $\sigma_{R(2^n)}$.

2.6. RG flows deep in the spin-glass phase

Deep in the spin-glass phase, the transverse fields h_i are negligible with respect to the couplings $J_{i,j}$. As a consequence, the coefficients of equation (30) reduce to

$$c_{2i-1} \simeq \text{sgn}(J_{2i-1,2i}^{(0)})$$
$$c_{2i} \simeq 1$$

and the RG rule for the renormalized coupling of equation (31) becomes

$$J_{R(2i),R(2j)} = J_{2i,2j} + J_{2i-1,2j}\text{sgn}(J_{2i-1,2i}^{(0)}) + J_{2i,2j-1}\text{sgn}(J_{2i-1,2i}^{(0)})$$
$$+ J_{2i-1,2j-1}\text{sgn}(J_{2i-1,2i}^{(0)})\text{sgn}(J_{2j-1,2j}^{(0)})$$

This rule coincides with the RG rule for the classical spin-glass at zero temperature studied in detail in [19, 20], and in particular, the variance evolves according to

$$\langle J_{R(2i),R(2j)}^2 \rangle \simeq 4J_{2i,2j}^2$$

In terms of the length $L = 2^n$ obtained after n RG steps, the variance grows as

$$\langle J_{R(2i),R(2j)}^2 \rangle \simeq 4^n L^{-2\sigma} = L^{2-2\sigma} \equiv L^{2g}$$

with the droplet exponent of equation (13)

$$\theta = 1 - \sigma$$

in agreement with the exact simple formula of equation (3) predicted via scaling arguments [2, 24] and numerically measured via the Monte Carlo method [3].

The RG rule of equation (28) for the transverse field simplifies into

$$h_{R(2i)} \simeq \frac{h_{2i-1}h_{2i}}{|J_{2i-1,2i}^{(0)}|}$$

and is thus analogous to the usual strong disorder RG rule concerning a strong-bond-decimation [26]. The iteration of this rule in log-variables

$$\ln h_{R(2i)} \simeq \ln h_{2i-1} + \ln h_{2i} - \ln |J_{2i-1,2i}^{(0)}|$$

yields that the disorder average decays linearly in the length $L = 2^n$ obtained after n RG steps

$$\overline{\ln h_L} \simeq -(cst) L$$

whereas the variance grows as in the central limit theorem

$$\langle \ln h_L \rangle^2 - \langle \overline{\ln h_L} \rangle^2 \propto L^2$$
2.7. RG flows deep in the paramagnetic phase

Deep in the paramagnetic phase, the couplings J_{ij} are negligible with respect to the transverse fields h_i. As a consequence, the renormalized transverse fields of equation (28) all remain equal to their common initial value h (equation (28))

$$h_{R(2i)} \approx h$$

whereas the coefficients of equation (30) simplify into

$$c_{2i-1} \approx \text{sgn}(J_{2i-1,2i}^{(0)}) \frac{1}{\sqrt{2}}$$

$$c_{2i} \approx \frac{1}{\sqrt{2}}$$

so that the RG rule for the renormalized coupling of equation (31) becomes

$$J_{R(2i),R(2j)} = \frac{1}{2}(J_{2i,2j} + J_{2i-1,2j}\text{sgn}(J_{2i-1,2i}^{(0)}) + J_{2i,2j-1}\text{sgn}(J_{2j-1,2j}^{(0)}) + J_{2i-1,2j-1}\text{sgn}(J_{2i-1,2i}^{(0)})\text{sgn}(J_{2j-1,2j}^{(0)}) - J_{2i,2j-1}\text{sgn}(J_{2j-1,2j}^{(0)})\text{sgn}(J_{2i-1,2i}^{(0)})]$$

In particular, the variance remains stable

$$\langle J_{R(2i),R(2j)}^2 \rangle \approx \langle J_{2i,2j}^2 \rangle$$

i.e. the renormalized couplings keep the same decay as that of the original couplings

$$\langle J_{R}^2 \rangle \approx L^{-2\sigma}$$

3. Numerical study of the critical properties

3.1. Numerical details

We have applied numerically the renormalization rules to $n_s = 13.10^3$ disordered samples containing $N = 2^{12} = 4096$ spins, corresponding to 12 generations. For each renormalization step corresponding to the lengths $L = 2^n$ with $n = 1, 2, \ldots, 12$ we have analyzed the statistical properties of the renormalized transverse fields h_L and of the renormalized couplings J_L. In particular, we have measured the RG flows of the corresponding typical values

$$\ln h_L^{\text{typ}} \equiv \ln h_L$$

$$\ln J_L^{\text{typ}} \equiv \ln |J_L|$$

as a function of the length L for various values of the initial transverse field h that represents the control parameter of the spin-glass-paramagnetic transition.
3.2. Location of the critical point and measure of the dynamical exponent z

The critical point h_c corresponds to the unstable fixed point where the transverse fields and the couplings remain in competition at all scales (see figure 1). When this happens, both typical values of equation (46) decay as a power-law with the dynamical exponent z

$$
\ln h_{L \text{typ}}(h_c) \propto -z \ln L
$$

$$
\ln J_{L \text{typ}}(h_c) \propto -z \ln L
$$

(47)

For the four values $\sigma = 0.55$, $\sigma = 5/8 = 0.625$, $\sigma = 0.75$ and $\sigma = 0.9$ that we have studied, our numerical data for the critical point h_c and for the dynamical exponent are given in table 1.

Table 1. Numerical estimates of the critical point h_c, of the dynamical exponent z, of the stiffness modulus exponent μ, of the correlation length exponent ν, of ω and of the gap exponent g for four values of the parameter σ.

σ	Critical point h_c	Dynamical exponent z	Stiffness modulus exponent μ	Correlation length exponent ν	ω	Gap exponent g
0.55	2.04	0.31	1.9	2.5	0.6	0.77
0.625	1.78	0.36	1.72	2.34	0.62	0.84
0.75	1.46	0.46	1.52	2.14	0.62	0.98
0.9	1.19	0.58	1.3	1.9	0.6	1.1

3.3. Finite-size scaling of the renormalized typical coupling

We now consider the finite-size scaling form of the typical renormalized coupling
\[J_{L}^{\text{typ}} \simeq L^{-\frac{1}{\nu}} \Phi \left[(h - h_c) L^{\frac{1}{\nu}} \right] \] (48)

\[J_{L}^{\text{typ}} \big|_{h < h_c} \propto \Upsilon(h) L^{1-\sigma} \] (49)

In the spin-glass phase \(h < h_c \), the typical value of the renormalized coupling grows as a power-law of exponent \(\theta = 1 - \sigma \) (equation (36))

\[\Upsilon(h) \propto (h_c - h)^\mu \] (50)

The matching between equations (47) and (49) via the finite-size scaling form of equation (48) yields the relation between critical exponents

\[\frac{\mu}{\nu} = 1 - \sigma + z \] (51)

Our numerical data in the spin-glass phase (see figure 2) follow the power-laws of 49 and 50 with the exponent \(\mu \) given in table 1. The corresponding numerical values for the correlation length exponent \(\nu = \mu/(1 - \sigma + z) \) (equation (51)) are also given in table 1. We find that these values yield very satisfactory finite-size scaling with equation (48) of our numerical data (see for instance figure 3 for the case \(\sigma = 0.75 \)).

In the paramagnetic phase \(h > h_c \), the typical renormalized coupling keeps the initial power-law behavior (equation (45))

\[J_{L}^{\text{typ}} \big|_{h > h_c} \propto \frac{A(h)}{L^\omega} \] (52)

where the amplitude diverges at criticality

\[A(h) \propto (h_c - h)^-\omega \] (53)

The matching between equations (47) and (52) via the finite-size scaling form of equation (48) yields the relation

\[\frac{\omega}{\nu} + z = \sigma \] (54)

The previous estimates lead to the values \(\omega = \nu(\sigma - z) \) (see table 1).

3.4. Finite-size scaling of the renormalized transverse field

The typical renormalized transverse field is expected to follow the following finite-size scaling form analog to equation (48)

\[h_{L}^{\text{typ}} \simeq L^{-\frac{1}{\nu}} \Phi \left[(h - h_c) L^{\frac{1}{\nu}} \right] \] (55)

The corresponding finite-size scaling of our numerical data is shown in figure 3(b) for the case \(\sigma = 0.75 \).
In the spin-glass phase \(h < h_c \), the leading exponential decay of the typical transverse field (equation (39)) allows us to define some correlation length \(\xi(h) \)

\[
\ln h_{L}^{\text{typ}}|_{h<h_c} = \lim_{L \to +\infty} \frac{L}{\xi(h)}
\] (56)

Figure 2. Critical behavior of the stiffness modulus (equation (50)) for \(\sigma = 0.75 \): (a) RG flow in log–log scale of the renormalized coupling for various values of the initial transverse field \(h \) in the spin-glass phase \(h < h_c \) [namely \(h = 0.5 \) (circle); \(h = 0.6 \) (square); \(h = 0.7 \) (diamond); \(h = 0.8 \) (triangle up); \(h = 0.9 \) (triangle left); \(h = 1.0 \) (triangle down); \(h = 1.1 \) (triangle right); \(h = 1.15 \) (plus); \(h = 1.2 \) (star); \(h = 1.25 \) (cross)]; the asymptotic growth as \(\ln J_{L}^{\text{typ}} = (1 - \sigma) \ln L + \ln \Upsilon(h) \) (equation (49)) allows us to extract the stiffness modulus \(\Upsilon(h) \) as a function of the control parameter \(h \). (b) \(\ln \Upsilon(h) \) as a function of \(\ln(h_c - h) \) yields the slope \(\mu \simeq 1.52 \).

Figure 3. Finite-size scaling for \(\sigma = 0.75 \) with the dynamical exponent \(z = 0.46 \) and the correlation length exponent \(\nu = 2.14 \) shown here for the four bigger sizes \(L = 4096 \) (circles), \(L = 2048 \) (squares), \(L = 1024 \) (diamonds) and \(L = 512 \) (triangles): (a) Test of equation (48): \(Y_a = \ln J_{L}^{\text{typ}} + z \ln L \) as a function of \(X = (h - h_c) L^{\frac{z}{\nu}} \). (b) Test of equation (55): \(Y_b = \ln h_{L}^{\text{typ}} + z \ln L \) as a function of \(X = (h - h_c) L^{\frac{z}{\nu}} \).
The divergence near criticality involves the correlation exponent ν of equation (55)

$$\xi(h) \propto \frac{(h_c - h)^{-\nu}}{h \to h_c}$$ \hspace{1cm} (57)

In the paramagnetic phase $h > h_c$, the typical renormalized transverse field converges towards a finite asymptotic value

$$h_L^{\text{typ}}|_{h > h_c} \propto \frac{h^{\text{typ}}(h)}{L \to +\infty}$$ \hspace{1cm} (58)

that vanishes as a power-law

$$h^{\text{typ}}(h) \propto (h - h_c)^g$$ \hspace{1cm} (59)

The matching between equations (55) and (58) yields the standard relation for the gap critical exponent

$$g = z\nu$$ \hspace{1cm} (60)

The previous estimates lead to the values given in table 1.

3.5. Link with the standard critical exponents (α, β, γ, η)

Up to now, we have described the critical exponents involved in the RG flows of the transverse fields and of the couplings. It seems useful to describe now the link with the standard critical exponents ($\alpha, \beta, \eta, \gamma$) of the general theory of critical phenomena [75, 76]:

(i) the exponent α governing the singular part of the ground state energy

$$e_{\text{GS}} \propto |h - h_c|^{2-\alpha}$$ \hspace{1cm} (61)

can be obtained via the quantum hyperscaling relation involving the spatial dimensionality $d = 1$ and the dynamical exponent z [75]

$$2 - \alpha = \nu(d + z) = \nu(1 + z)$$ \hspace{1cm} (62)

Our numerical data lead to the negative values given in table 2 for the exponent α.

(ii) the exponent β governing the vanishing of the Edwards–Anderson order parameter

$$q_{EA} \equiv \langle \sigma_i^2 \rangle^2 \propto |h - h_c|^{\beta}$$ \hspace{1cm} (63)

yields the following finite-size scaling decay at criticality

$$q_{EA}(L) \propto L^{-\beta/\nu}$$ \hspace{1cm} (64)

The relation with the scaling of the renormalized coupling
yields the relation
\[\frac{\beta}{\nu} = 1 - \sigma + z \]

(66)

The comparison with equation (51) shows that \(\beta \) actually coincides with the exponent \(\mu \) of the stiffness modulus
\[\beta = \mu \]

(67)

(iii) the correlation exponent \(\eta \) governing the power-law decay of the equal-time spatial correlation function at criticality [75, 76]
\[C(r) \equiv \langle \sigma_i^2 \sigma_{i+r}^2 \rangle \propto r^{-(d+z-2+\eta)} \]

(68)

is related by finite-size scaling to the square of the order parameter \(q_{\text{EA}}^2(L) \propto L^{-2z} \)
leading to
\[d + z - 2 + \eta = 2\beta\nu = 2(1 - \sigma + z) \]

(69)

so that here with \(d = 1 \), one obtains
\[\eta = 3 - 2\sigma + z \]

(70)

(iv) the experimentally measurable non-linear susceptibility \(\chi_{\text{nl}} \) scales as
\[\chi_{\text{nl}} \propto L^{\frac{\eta}{\nu}} \]

(71)

with [76, 77]
\[\frac{\gamma_{\text{nl}}}{\nu} = 2 - \eta + 2z = (2\sigma - 1) + z \]

(72)

whereas the overlap susceptibility involves the exponent [76]
\[\gamma_{\text{overlap}} = 2 - \eta + z = 2\sigma - 1 \]

(73)

and the spin-glass susceptibility involves [76, 77]

\[\gamma_{SG} = 2 - \eta = 2\sigma - 1 - z \]

(74)

We refer to [76, 77] for more details on these various susceptibilities involving different numbers of integration in the time direction.

(v) the time-autocorrelation decays at criticality as the power-law

\[\langle \sigma_i^z(0)\sigma_i^z(t) \rangle \propto t^{-\rho} \]

(75)

with the finite-size-scaling value

\[\rho = \frac{\beta}{\nu z} = 1 + \frac{1 - \sigma}{z} \]

(76)

The numerical results of the RG flows given in table 1 thus translate into the values given in table 2 for the standard exponents of phase transitions just described.

4. Conclusion

In this paper, we have studied via real-space renormalization the ground state of the Dyson hierarchical version of the quantum long-ranged spin-glass with the power-law decaying variance \(\bar{J}_r(r) \propto r^{-2\sigma} \). In particular, we have focused on the spin-glass-paramagnetic zero temperature quantum phase transition driven by the initial uniform transverse field \(h \). In the spin-glass phase \(h < h_c \), the typical renormalized coupling grows with the length scale \(L \) as the power-law \(J^{\text{typ}}(h) \propto \Upsilon(h)L^\theta \) with the classical droplet exponent \(\theta = 1 - \sigma \) whereas the typical renormalized transverse field decays exponentially \(h_L^{\text{typ}}(h) \propto e^{-\frac{L}{\Upsilon}} \). At the critical point \(h = h_c \), the typical renormalized coupling \(J^{\text{typ}}(h_c) \) and the typical renormalized transverse field \(h_L^{\text{typ}}(h_c) \) display the same power-law behavior \(L^{-z} \) with a finite dynamical exponent \(z \). The RG rules have been applied numerically to chains containing \(L = 2^{12} = 4096 \) spins in order to measure the critical exponents for various values of \(\sigma \) in the interesting region \(1/2 < \sigma < 1 \).

We hope that the present work will motivate other studies on the quantum spin-glass-paramagnetic transition at zero temperature in the presence of long-ranged couplings. In particular it would be very interesting to compare with values of critical exponents obtained via Monte Carlo simulations or other numerical methods.
Dyson hierarchical long-ranged quantum spin-glass via real-space renormalization

References

[1] Kotliar G, Anderson P W and Stein D L 1983 Phys. Rev. B 27 602
[2] Bray A J, Moore M A and Young A P 1986 Phys. Rev. Lett. 56 2641
[3] Katzgraber H G and Young A P 2003 Phys. Rev. B 67 134410
[4] Katzgraber H G and Young A P 2003 Phys. Rev. B 68 224408
[5] Katzgraber H G, Korner M, Liers F and Hartmann A K 2005 Prog. Theor. Phys. Suppl. 157 59
[6] Katzgraber H G, Korner M, Liers F, Junger M and Hartmann A K 2005 Phys. Rev. B 72 094421
[7] Katzgraber H G 2008 J. Phys.: Conf. Ser. 95 012004
[8] Katzgraber H G and Young A P 2005 Phys. Rev. B 72 184416
[9] Young A P 2008 J. Phys. A: Math. Theor. 41 324016
[10] Katzgraber H G, Larson D and Young A P 2009 Phys. Rev. Lett. 102 177205
[11] Moore M A 2010 Phys. Rev. B 82 014417
[12] Katzgraber H G, Hartmann A K and and Young A P 2010 Phys. Procedia 6 35
[13] Katzgraber H G and Hartmann A K 2009 Phys. Rev. Lett. 102 037207
 Katzgraber H G, Jorg T, Krzakala F and Hartmann A K 2012 Phys. Rev. B 86 184405
[14] Mori T 2011 Phys. Rev. E 84 031128
[15] Wittmann M and Young A P 2012 Phys. Rev. E 85 041104
[16] Monthus C and Garel T 2013 Phys. Rev. B 88 134204
[17] Monthus C and Garel T 2014 Phys. Rev. B 89 011408
[18] Monthus C and Garel T 2014 J. Stat. Mech. P03020
[19] Monthus C 2014 J. Stat. Mech. P06015
[20] Monthus C 2014 J. Stat. Mech. P08009
[21] Wittmann M and Young A P arxiv:1504.07709
[22] Billoire A 2015 J. Stat. Mech. P07027
[23] Bray A J and Moore M A 1984 J. Phys. C 17 L463
 Bray A J and Moore M A 1987 Scaling theory of the ordered phase of spin glasses Heidelberg Colloquium on Glassy Dynamics (Lecture Notes in Physics vol 275) ed J L van Hemmen and I Morgenstern (Berlin: Springer)
[24] Fisher D S and Huse D A 1988 Phys. Rev. B 38 386
 Fisher D S and Huse D A 1988 Phys. Rev. B 38 373
[25] Dutta A 2002 Phys. Rev. B 65 224427
[26] Fisher D S 1992 Phys. Rev. Lett. 69 534
 Fisher D S 1995 Phys. Rev. B 51 6411
[27] Fisher D S 1999 Physica A 263 222
[28] Motrunich O, Mau S-C, Huse D A and Fisher D S 2000 Phys. Rev. B 61 1160
[29] Lin Y-C, Kawashima N, Igloi F and Rieger H 2000 Prog. Theor. Phys. 138 147
[30] Karevski D, Lin Y C, Rieger H, Kawashima N and Igloi F 2001 Eur. Phys. J. B 20 267
[31] Lin Y-C, Igloi F and Rieger H 2007 Phys. Rev. Lett. 99 147202
[32] Yu R, Saleur H and Haas S 2008 Phys. Rev. B 77 140402
[33] Kovacs I A and Igloi F 2009 Phys. Rev. B 80 214416
[34] Kovacs I A and Igloi F 2010 Phys. Rev. B 82 054437
[35] Kovacs I A and Igloi F 2011 Phys. Rev. B 83 174207
[36] Kovacs I A and Igloi F 2012 Europhys. Lett. 97 67009
[37] Kovacs I A and Igloi F 2011 J. Phys.: Condens. Matter 23 404204
[38] Miyazaki R, Nishimori H and Ortiz G 2011 Phys. Rev. E 83 051103
 Miyazaki R and Nishimori H 2013 Phys. Rev. E 87 032154
[39] Monthus C 2015 J. Stat. Mech. P01023
[40] Bray A J and Moore M A 1980 J. Phys. C: Solid State Phys. 13 L655
[41] Miller J and Huse D A 1993 Phys. Rev. Lett. 70 3147
[42] Read N, Sachdev S and Ye J 1995 Phys. Rev. B 52 384
[43] Juhasz R, Kovacs I A and Igloi F 2014 Europhys. Lett. 107 47008
[44] Juhasz R 2014 J. Stat. Mech. P09027
[45] Juhasz R, Kovacs I A and Igloi F 2015 Phys. Rev. E 91 032815
[46] Monthus C 2015 J. Stat. Mech. P05026
[47] Dyson F J 1969 Commun. Math. Phys. 12 91
 Dyson F J 1971 Commun. Math. Phys. 21 269
[48] Bleher P M and Sinai Y G 1973 Commun. Math. Phys. 33 23

doi:10.1088/1742-5468/2015/10/P10024
Dyson hierarchical long-ranged quantum spin-glass via real-space renormalization

Bleher P M and Sinai Y G 1975 *Commun. Math. Phys.* **45** 247

Sinai Y G 1983 *Theor. Math. Phys.* **57** 1014

Bleher P M and Major P 1987 *Ann. Probab.* **15** 431

Bleher P M arxiv:1010.5855

[49] Gallavotti G and Knops H 1975 *Nuovo Cimento* **5** 341

[50] Collet P and Eckmann J P 1978 *A Renormalization Group Analysis of the Hierarchical Model in Statistical Mechanics (Lecture Notes in Physics)* (Berlin: Springer)

[51] Jona-Lasinio G 2001 *Phys. Rep.* **352** 439

[52] Baker G A 1972 *Phys. Rev.* B **5** 2622

Baker G A and Golner G R 1973 *Phys. Rev. Lett.* **31** 22

Baker G A and Golner G R 1977 *Phys. Rev.* B **16** 2081

Baker G A, Fisher M E and Moussa P 1979 *Phys. Rev. Lett.* **42** 615

[53] McGuire J B 1973 *Commun. Math. Phys.* **32** 215

[54] Guttmann A J, Kim D and Thompson C J 1977 *J. Phys. A: Math. Gen.* **10** L125

Kim D and Thompson C J 1978 *J. Phys. A: Math. Gen.* **11** 375

Kim D and Thompson C J 1978 *J. Phys. A: Math. Gen.* **11** 385

Kim D 1980 *J. Phys. A: Math. Gen.* **13** 3049

[55] McGuire J B 1973 *Commun. Math. Phys.* **32** 215

[56] Molchanov S 1996 Hierarchical random matrices and operators, application to the Anderson model

Multidimensional Statistical Analysis and Theory of Random Matrices ed A K Gupta and V L Girko (Utrecht: VSP)

[62] Kritchevski E 2007 *Proc. Am. Math. Soc.* **135** 1431

Kritchevski E 2008 *Ann. Henri Poincaré* **9** 685

Kritchevski E 2007 Hierarchical Anderson model

Probability and Mathematical Physics: a Volume in Honor of Stanislav Molchanov ed D A Dawson et al (Providence, RI: American Mathematical Society)

[69] Castellana M, Decelle A, Franz S, Mézard M and Parisi G 2010 *Phys. Rev. Lett.* **104** 127206

[70] Castellana M and Parisi G 2010 *Phys. Rev. E* **82** 040105

Castellana M and Parisi G 2011 *Phys. Rev. E* **83** 041134

[71] Castellana M 2011 *Europhys. Lett.* **95** 47014

[72] Angelini M C, Parisi G and Ricci-Tersenghi F 2013 *Phys. Rev. B* **87** 134201

[73] Castellana M, Barra A and Guerra F 2014 *J. Stat. Phys.* **155** 211

[74] Castellana M and Barbieri C 2015 *Phys. Rev. B* **91** 024202

[75] Thill M J and Huse D A 1995 *Physica A* **214** 321

[76] Rieger H and Young A P 1994 *Phys. Rev. Lett.* **72** 4141

Rieger H and Young A P 1996 *Coherent Approach to Fluctuations* ed M Susuki and N Nawashima (Singapore: World Scientific)

[77] Guo M, Bhatt R N and Huse D A 1994 *Phys. Rev. Lett.* **72** 4137

doi:10.1088/1742-5468/2015/10/P10024 17