HIGH-RESOLUTION SPECTRA OF BRIGHT CENTRAL STARS OF BIPOLAR PLANETARY NEBULAE AND THE QUESTION OF MAGNETIC SHAPING

TING-HUI LEE AND LETIZIA STANGHELLINI
National Optical Astronomy Observatory, Tucson, AZ, USA; thlee@noao.edu,lstanghellini@noao.edu

AND

LILIA FERRARIO AND DAYAL WICKRAMASINGHE
Department of Mathematics, Australian National University, Canberra, ACT, Australia;
lilia@maths.anu.edu.au, dayal@maths.anu.edu.au

Received 2006 September 25; accepted 2006 November 8

ABSTRACT

We present ESO New Technology Telescope high-resolution echelle spectroscopy of the central stars (CSs) of eight southern bipolar planetary nebulae (PNe) selected for their asymmetry. Our aim was to determine or place limits on the magnetic fields of the CSs of these nebulae, and hence to explore the role played by magnetic fields in nebular morphology and PN shaping. If magnetic fields do play a role, we expect these CSs to have fields in the range \(10^2 - 10^7\) G from magnetic flux conservation on the reasonable assumption that they must evolve into the high-field magnetic white dwarfs. We were able to place an upper limit of \(\approx 20,000\) G on the magnetic fields of the central stars of He 2-64 and MyCn 18. The spectrum of He 2-64 also shows a P Cygni profile in He \(\lambda \lambda 5876\) and \(\lambda 6678\), corresponding to an expanding photosphere with velocity \(\sim 100\) km s\(^{-1}\). The detection of helium absorption lines in the spectrum of He 2-36 confirms the existence of a hot stellar component. We did not reach the necessary line detection for magnetic field analysis in the remaining objects. Overall, our results indicate that if magnetic fields are responsible for shaping bipolar planetary nebulae, these are not required to be greater than a few tens of kilogauss.

Key words: line: profiles — planetary nebulae: general — stars: AGB and post-AGB — stars: magnetic fields — techniques: spectroscopic — white dwarfs

1. INTRODUCTION

Planetary nebulae (PNe) and their central stars (CSs) are the transition phase between asymptotic giant branch (AGB) stars and white dwarfs (WDs) for main-sequence masses between 1 and 8 \(M_\odot\). PNe are found in a wide range of morphologies, but the majority of shapes can be classified into three types: round, elliptical, and bipolar (or multipolar) PNe (Schwarz et al. 1993; Manchado et al. 1996). Bipolar and multipolar PNe are characterized by a waist and show one or more sets of lobes. Several mechanisms have been proposed for shaping the bipolar structures, including common envelope evolution (e.g., Bodenheimer & Taam 1984), magnetic fields associated with the central stars (e.g., Pascoli 1992), and stellar rotation (e.g., Ignace et al. 1996).

Magnetic fields have been an attractive hypothesis for shaping PNe into bipolar morphology for single stars. From a theoretical point of view, a toroidal magnetic field embedded in a spherically expanding fast wind is able to reproduce the majority of the PN morphologies (García-Sepúlveda et al. 1999). As explored by García-Sepúlveda et al. (2005) if the magnetic field is strong enough to drive the AGB winds, magnetic pressure alone can also drive the winds into high speeds as observed in protoplanetary nebulae (Bujarrabal et al. 2001). Other models involving the magnetocentrifugal processes have also been applied to PNe and shown that such processes can efficiently power and collimate the outflows (Blackman et al. 2001).

Interestingly, magnetic fields have been detected in the progenitors and the progeny of PNe, namely, around proto–planetary nebulae (pPNe) and in WDs. The observations of magnetic fields in pPNe are mostly from SiO, OH, and H2O maser emissions (e.g., Miranda et al. 2001; Bains et al. 2004). Recently, Vlemmings et al. (2006) have found direct evidence that a magnetic field is collimating the jet from the AGB star W43A. They measured the polarization of water-vapor masers that trace the precessing jet emanating from the star and concluded that the magnetic field and jet characteristics of W43A support the idea that the shaping mechanism of PNe is magnetically collimated jets from evolved stars.

Concerning the progeny of PNe, it has been known that a fraction of WDs have detectable magnetic fields. Since the discovery of the first isolated magnetic WD (Grw +70 8247 was first noted to have unidentifiable spectral features by R. Minkowski [Adams & Seahes 1938], although its peculiar spectrum was not recognized to be caused by a strong magnetic field until much later by Angel et al. [1985] and Greenstein et al. [1985]), the number of detected magnetic white dwarfs (MWDs) has grown steadily (Wickramasinghe & Ferrario 2000 and references therein). Recent studies show that at least 10% of WDs have magnetic fields at the level of \(\sim 2\) MG and larger, and this fraction increases if low-field objects are included (Liebert et al. 2003). Since PNe and their CSs are the evolutionary link between pPNe and WDs, at least a fraction of them should also contain magnetic fields. However, such observational evidence has been scarce. Very recently, some hints of the existence of magnetic fields in PNe have been given by means of spectropolarimetry (Jordan et al. 2005). Jordan et al. (2005) found possible signature of magnetic fields in two CSs among the four CSs of PNe they observed.

Isolated MWDs with fields \(\gtrsim 10^6\) G show a mean mass of \(\sim 0.93\ M_\odot\), compared to the main peak of the mass distribution of \(\sim 0.57\ M_\odot\) for the nonmagnetic WDs (Wickramasinghe & Ferrario 2000 and references therein). This is interesting, since...
statistical studies of PNe have shown that bipolar PNe may have more massive progenitors. Observations from a large sample of Galactic PNe have shown that bipolar PNe are closer to the Galactic plane and have more massive CSs than round and elliptical PNe. Furthermore, bipolar PNe are carbon-poor and nitrogen-rich, consistent with a massive post-AGB stellar population (Stanghellini et al. 1993, 2002; Manchado 2004). The opposite is true for round and elliptical PNe. Recent studies of PNe in the Large Magellanic Cloud (Stanghellini et al. 2000) have also provided more evidence that aspheric (bipolar, quadrupolar, and maybe point-symmetric) PNe belong to a different population than round and elliptical PNe: they are evolved from higher mass progenitors than round PNe.

The high mass distribution of isolated MWDs, together with more massive progenitors of bipolar PNe, seems to indicate that isolated MWDs could be the evolutionary product of magnetic CSs. If this hypothesis is correct, then under the condition of magnetic CS magnetic fields in the range of \(10^6 \) G, we should expect fields associated with the CSs. Our spectral resolution allows us to look for Zeeman splitting of stellar lines caused by magnetic fields.

For this study, we have obtained high-resolution echelle spectroscopy of central stars of southern bipolar nebulae. Our goal is to look for Zeeman splitting of stellar lines caused by magnetic fields associated with the CSs. Our spectral resolution allows us to observe fields \(\geq 10^9 \) G.

The observations and data reduction are described in §§ 2 and 3, respectively. The stellar spectra are presented in § 4. Discussion of the Zeeman split limits and detections are in § 5, and conclusions are in § 6.

2. OBSERVATIONS

Our target list includes stars at the top of the white dwarf cooling sequence. The PNe hosting the targeted CSs have been previously observed in the major nebular narrowband filters (Balick 1987; Schwarz et al. 1992; Manchado et al. 1996), and their morphological types have been classified uniformly following the Manchado et al. (1996) scheme. We selected bipolar PNe and other asymmetric PNe whose central stars are bright and well separated from the nebulae. We used these criteria so that the targets are easier to place on the slit and have a higher signal-to-noise ratio (S/N), and the stellar spectra have less nebular contribution. We have also checked the list of symbiotic stars in Corradi (2003) to exclude any symbiotic nebulae in our target list. Our sample comprises eight CSs, which are the only stars bright enough to be searched for magnetic fields in the southern sky with a 4 m class telescope. The properties of the targets are listed in Table 1, with columns (1) and (2) giving the common name and the PN G name based on their Galactic coordinates (Acker et al. 1992), columns (3) and (4) giving their published \(B \) and \(V \) CS magnitudes when available, column (5) listing the references for the magnitudes, columns (6) giving their Zanstra temperatures \(T_Z \) derived from \(He \ i \) in the literature (with the exception of the energy-balance temperature for He 2-64), and column (7) listing the temperature references.

The observations were done with the ESO Multi-Mode Instrument (EMMI) on the 3.58 m New Technology Telescope (NTT) on 2003 February 4 and 5. We have observed our targets with both echelle spectroscopy and wide-field imaging. Both nights had photometric sky conditions and subarcsecond seeing. The filters used in wide-field imaging are listed in Table 2, and the observing logs are listed in Table 3. We obtained \(UBVR \) images and echelle spectral of eight PNe.

EMMI has a blue arm and a red arm. The blue arm has one Tektronic CCD camera giving an image size of 1024 \(\times \) 1024 pixels. It was operated in the BIMG mode to obtain \(U \) - and \(B \)-band images. The pixel size is 24 \(\mu \)m, which corresponds to 0.37\" in the sky. The red arm of EMMI has two MIT/LL CCD chips arranged in a mosaic. The two-chip mosaic is read in four output mode via four separate amplifiers, giving slightly different values for the bias level, gain, and readout noise. Each output has image size of 1048 \(\times \) 4096 pixels, giving a full image size of 4096 \(\times \) 4096.

Object	PN G	\(B \)	\(V \)	Magnitude Ref.	\(T_Z \) (He ii)	\(T_Z \) Ref.
HDW 5	PN G218.9–10.7	16.55	16.29	2	1	4
He 2-25	PN G275.2–03.7	17.08	16.96	1	<61	4
He 2-36	PN G279.6–03.1	11.96	11.37	1	4	
NGC 2818	PN G261.9+08.5	19.58	3	215	4.4	
He 2-64	PN G291.7+03.7	48.3	5	10.7	16.55	
He 2-123	PN G323.9+02.4	17.55	16.84	1	<60	4
He 2-186	PN G336.3–05.6	18.34	16.62	1	95.5	4
MyCn 18	PN G307.5–04.9	14.5	2	51.6	4	

* Energy-balance temperature.

TABLE 1

Filter Number	Type	Central Wavelength (nm)	Bandwidth (nm)	Pixel Size (arcsec)
602	U Bessel	354.208	54.176	0.37
603	B Bessel	422.305	94.0709	0.37
606	V Bessel	542.605	104.471	0.33
608	R Bessel	640.962	154.175	0.33
TABLE 3
Observing Logs

OBJECT	OBSERVATION DATE	Echelle (s)	U 602 (s)	B 603 (s)	V 606 (s)	R 608 (s)
HDW 5	2003 Feb 4	4 × 1800	20 × 2	20 × 2	20	20
He 2-25	2003 Feb 4	4 × 1800	20	20	20	20
He 2-56	2003 Feb 4	2 × 900	20	15	5	5
NGC 2818	2003 Feb 5	2 × 1800	20	20	20	20
He 2-64	2003 Feb 5	4 × 1800	20	20	20	20
He 2-123	2003 Feb 5	1 × 1200 + 3 × 1800	20	20	20	20
He 2-186	2003 Feb 5	2 × 1800	20	20	20	20
MyCn 18	2003 Feb 4	4 × 900	20	20	20 + 5	20 + 5

Fig. 1.—*R*-band image of HDW 5 (*top left*), He 2-25 (*top right*), He 2-56 (*bottom left*), and NGC 2818 (*bottom right*). The images are 80″ × 80″, with north up and east to the left. The central star of HDW 5 is indicated with an arrow. The mark in the lower right corner of HDW 5 indicates the size of 8 pixels.
Fig. 2.—R-band image of He 2-64 (top left), He 2-123 (top right), He 2-186 (bottom left), and MyCn 18 (bottom right). The images are $40'' \times 40''$, with north up and east to the left. The mark in the lower right corner of He 2-64 indicates the size of 8 pixels.

TABLE 4
Table: Nebular Line Intensities

Object	F_{λ} (ergs cm$^{-2}$ s$^{-1}$ Å$^{-1}$)	4686 Å (He II)	4958 Å ([O III])	5007 Å ([O III])	6563 Å (Hα)	6584 Å ([N II])	c
He 2-25	1.90E–13a	0.04	145a	579a	2381a	17a	2.63
He 2-26	1.24E–14a	196a	385a	1502a	545a	20a	0.80
NGC 2818	5.34E–15a	75a	390a	1249a	549a	584a	0.81
He 2-64	2.63E–14	Stellar abs.	17a	91a	548	264a	0.81
He 2-123	1.05E–13	...	73a	239a	1495	852a	2.06
He 2-186	1.97E–13a	47	549	1852a	841a	516a	1.34
MyCn 18	1.83E–12	Stellar em.	113	290	590	282b	0.90

a Integrated over the area.

b Wide wings.
with a gap of 47 pixels in the x-direction in between two chips. The red arm was operated in the RILD mode to obtain V- and R-band images and in the REMD mode to obtain echelle spectra. The 2 × 2 binning mode was used in order to avoid oversampling problems, resulting a full image size of 2048 × 2048, which has a pixel size of 15 μm corresponding to 0.33" in the sky.

The echelle spectra were observed with the grating No. 14 and the cross-dispersing grism No. 5, corresponding to a wavelength range of 4120–6730 Å, with a gap between 5010 and 5060 Å. The dispersion in the 2 × 2 binning mode is 0.04 Å pixel−1. The grating No. 14 gives a spectral resolution of R = 60,000, corresponding to ~0.1 Å in this wavelength range.

The calibration data were taken each night in order to correct several effects of the CCD electronics. The overscan region in the blue CCD was used to measure the electronic pedestal level of the CCD chip. The red CCD is very stable, and an overscan region was not required. We acquired several bias frames to derive the column-to-column variations of the bias structures. A set of 5–10 bias frames were taken for each CCD at the beginning, the end, and during each observation night with the same CCD parameters. The dark current was negligible during the observations; thus, no dark frames were taken. Finally, dome flats were obtained for each observing configuration. In addition, standard-star

Fig. 3.—Comparison of our nebular line intensities (I_λ, where $I_\lambda(100)$) to others from the literature. The solid line shows the 1:1 relation. The bottom plot is an enlarged detail version of the top plot. The references in the label of the top plot are: SK89, Shaw & Kaler (1989); AMOST92, Acker et al. (1992); WB69, Webster (1969); AJKS89, Acker et al. (1989); and DUF84, Dufour (1984).

λ (Å)	ID	λ_{obs} (Å)	Flux (ergs cm$^{-2}$ s$^{-1}$ Å$^{-1}$)	W' (Å)
5757.1		-6.6E-16	0.7	
5780.1		0.3		
5810.2	C iv	5810.7	8.3E-16	1.3
5899.6	C iv		1.1E-15	1.7
4539.7	He ii	4534.8	7.5E-16	0.4
5432.6	N iii	5411.0	1.4E-15	0.7
5456.2	C iv	5468.4	9.3E-15	1.1
5468.7	He ii	5779.7	1.5E-15	0.2
5810.2	C iv	5811.1	4.2E-15	0.6

Fig. 4.—Absorption feature in HDW 5. The measured central wavelength is at 5758 Å.
observations and thorium-argon arc spectra were taken for flux and wavelength calibrations.

3. CALIBRATION

The imaging data were calibrated following the standard techniques using IRAF software (Massey 1997). The bias frames and flats were combined by averaging them. The images were then bias subtracted, trimmed, and flat-field corrected. We show the R-band images of the targets in Figures 1 and 2.

The echelle spectra were calibrated following the steps outlined in Willmarth & Barnes (1994). The target spectra, standard-star spectra, flat fields, and wavelength-calibration files were first bias subtracted using an average bias frame, then trimmed to remove useless parts, as well as blue orders that are impossible to trace. The average flats are normalized using the task `apflatten`. The task finds and traces the orders and normalizes the flat by fitting the intensity along the order. The target spectra, standard-star spectra, and wavelength-calibration files were then divided by the normalized flat to correct for flat fielding.

The task `doeclslit`, within the `imred.echelle` package, was used for spectral extraction. The extracting orders were first defined and traced with the standard-star HR 5501 spectra. The extracting aperture size is 8 pixels, which roughly corresponds to the width of the profile of the order at 5% of its maximum around $\lambda = 5500$ Å. We have also used an extracting aperture size of 4 pixels to extract the spectra in order to minimize the nebular

Fig. 5.— Spectrum of He 2-64. (a) He II absorption at 4686 Å; (b) Hβ at 4861 stellar absorption and nebular emission line; (c) very broad emission feature at 5281 Å in He 2-64; (d) He II absorption at 5411 Å; (e) absorption feature at 5759 Å in He 2-64.
contamination while studying the stellar spectra. However, since the S/N gets much lower as we decrease the extraction aperture, we only present the spectra of 8 pixel extraction and perform line measurements, unless otherwise noted. The thorium-argon arc spectra were extracted for wavelength calibration. After the wavelength of the entire spectral range has been defined, the observed fluxes of the standard star were compared against tabulated values. For each order a set of bandpasses was defined. The tabulated data were interpolated to the bandpasses specified. The ratio of the observed flux over the bandpass to the tabulated value over the same bandpass is fitted by a smooth curve to relate system sensitivity to wavelength for each order. This allows us to derive calibration curves that are then applied to produce the final flux-calibrated spectra. The procedure also corrects for atmospheric extinction.

The nebular emission-line ratios were used to compare to the values in the literature as a test of our calibration. We used the task splot to measure the flux of each nebular emission line. When applicable, we fitted a Gaussian profile to the line to measure the flux. When the line structure is more complex (e.g., with two peaks), we summed up the area to get the total flux of the line. In both cases the continuum is fitted and subtracted by splot. In Table 4 we list the major nebular emission-line intensities normalized to $F(\text{H} \beta) = 100$ for each object in columns (3)–(7). Column (8) gives the extinction constant c (the logarithmic extinction at $\text{H} \beta$) derived from the Hα-to-Hβ ratio. The central star of HDW 5 lies outside of the nebula; thus, the nebula was not included in the observation. A comparison of our line intensities (vs. $\text{H} \beta$) and those from the literature is illustrated in Figure 3, which shows that our results generally agree well with previous observations.

4. RESULTS AND ANALYSIS

Overall, the spectra of seven objects (i.e., all except HDW 5) show many nebular features. He 2-25, NGC 2818, and He 2-186 also show high expansion velocities in the hydrogen emission lines. In this paper we focus our attention to the stellar spectra, while nebular analysis will be presented in a future paper. We found no evidence of stellar emission or absorption in three objects: He 2-25, He 2-186, and NGC 2818. HDW 5 has one stellar absorption line detected, and He 2-123 has two stellar C iv emission lines detected. Only in He 2-36, He 2-64, and MyCn 18 did we detect several stellar lines. We perform a Gaussian fit of all stellar lines and measure its flux and equivalent width. Table 5 lists all the lines that have been identified and measured. Here we describe each object and its spectrum in detail.

4.1. HDW 5

HDW 5 has a unique sickle-shaped nebula (Fig. 1, top left). It was discovered by Hartl & Weinberger (1987) during a search for new PNe during the Palomar Observatory Sky Survey. Assuming a sphere with only the nebula visible in the north, Hartl & Weinberger proposed the blue star in the middle as the CS candidate (indicated with an arrow in Fig. 1). Ali & Pfleiderer (1999) studied this nebula using its Hα and [N ii] narrowband images and low-dispersion optical spectra and concluded that this nebula is in very low excitation class, and its low He abundance is consistent with type II PNe as defined by Peimbert & Torres- Peimbert (1983). Because of its peculiar shape, there is also some speculation that HDW 5 is not a PN, pending further analysis (D. J. Frew 2006, private communication). Méndez (1991) tentatively classified the central star candidate as hgO(H), a high-gravity star with very broad Balmer absorptions. The spectrum that we obtained shows no hydrogen lines. Only one unidentified absorption line is found, at 5758 Å, as shown in Figure 4. Thus, we are not able to assign a spectral class for this CS candidate.

4.2. He 2-25

The nebula has a pair of bipolar lobes with a stellar core (Fig. 1, top right). It was discovered by Henize (1967) during an Hα survey. Corradi (1995) noted that the spectral characteristics of this nebula are common to a subclass of bipolar PNe, which includes the well-studied M2-9 and have properties such as (1) highly collimated nebulae, (2) unusually high core densities, (3) Hα profiles with extended wings and self-absorption features, and (4) rich Fe ii and [Fe ii] emission in generally low-ionization spectra. Those characteristics closely resemble those of interacting binary systems such as symbiotic stars. However, Corradi (1995) found no direct evidence of a binary system as the central source of He 2-25. We did not detect stellar emission or absorption lines for this object.

4.3. He 2-36

The image of He 2-36 displays a bright central source and an equatorial band (Fig. 1, bottom left). A pair of arcs extend from the edges of the equatorial band toward the north and south, making it an S-shaped nebula. The observed spectrum shows strong hydrogen absorption lines and many metal lines (e.g., iron and titanium), characteristic of an A-type star. The CS has been previously classified as type A2 III (e.g., Méndez 1978). It has been shown that the central star is a binary system consisting of a type A2 III star with a hot companion, the hot companion being the source of ionizing flux, as detected in the UV spectrum acquired...
4.4. NGC 2818

This nebula is a member of an open cluster with the same name (Tifft et al. 1972). This provides an accurate distance of the nebula, where the observation was pointed.

4.5. He 2-64

The image of He 2-64 (Fig. 2, top left) shows a bright central source with a pair of lobes. It is classified as a bipolar PN (e.g., Corradi & Schwarz 1995). The spectrum of the central star shows a few stellar absorption lines, including He ii λ4686 and He ii λ5411 (Fig. 5). We classify this star as O(He), according to the scheme outlined by Méndez (1991).

The spectrum of He 2-64 shows P Cygni profiles of the He i lines, most clearly shown at 5876 and 6678 Å (Fig. 6). The properties of these lines are listed in Table 6. The velocity deduced from the P Cygni profiles is of the order 100 km s\(^{-1}\). This finding indicates that the star has an extensive expanding atmosphere. The P Cygni profiles are more clearly seen in the 4 pixel extraction, suggesting that they are partly masked by the nebular emission. In the optical regime, P Cygni profiles are more often seen in the He ii lines (e.g., Méndez et al. 1988, 1990). For example, Phillips et al. (2005) reported P Cygni profiles in the He ii λ4859 line of A78, with a terminal velocity ~4×10\(^3\) km s\(^{-1}\).

Table 6

λ (Å)	ID	λ\(_{\text{obs}}\) (Å)	Flux (ergs cm\(^{-2}\) s\(^{-1}\) Å\(^{-1}\))	W (Å)
4471...	He i	4471.8	-4.0E-16	0.3
5876...	He i	5876.4	-5.3E-16	-0.3
6678...	He i	6678.4	-5.0E-16	0.5
6680.7	1.1E-15	1.1		

with \textit{IUE} (Feibelman & Kondo 2001). The optical spectrum of He 2-36 is discussed in more detail in § 5.

4.6. He 2-123

He 2-123 (Fig. 2, top right) shows an equatorial waist with a pair of bipolar lobes extending to the east and the west. This PN was discovered in Henize’s (1967) H\(_\alpha\) survey. Corradi & Schwarz (1993b) first noticed that its lobes have a point-symmetrical brightness distribution. We have detected two weak emission lines from the central star, C iv λ5801 and λ5811 (Fig. 7). At the position of He ii λ4686, there seems to be some stellar emission, but it is too faint to be measured. If this He ii emission is real, the spectral type of the central star would be Of(C) or Of-WR(C). The faint C iv emission lines also fit into the category of the weak emission-line CSs of PNe as defined by Tylenda et al. (1993).

4.7. He 2-186

This nebula (Fig. 2, bottom left) has several bright arcs of emission in the inner region, with a pair of low-ionization knots about 5” from the core (see Fig. 4 of Corradi et al. 2000). He 2-186 is a small, poorly studied PN. The H\(_\alpha\) emission was first studied by Henize (1967). The narrowband images presented by Schwarz et al. (1992) first revealed the existence of the point-symmetric knots. Corradi et al. (2000) performed a detailed morphological and kinematic study of this nebula and discussed the possibility that these high-velocity knots were the result of precessing outflows from the central star. Corradi et al. (2000) also speculated the existence of a binary system as the central star. However, no direct evidence of it was found. The spectrum of the central star shows no stellar emission or absorption lines.

4.8. MyCn 18

MyCn 18, the Engraved Hourglass Nebula (Fig. 2, bottom right), was originally observed by Mayall & Cannon (1940). This PN shows an extreme bipolar morphology, with a narrow pinched waist and an open-ended hourglass structure. Because of its striking shape, the nebula has been studied in a wide range of wavelengths, and the nature of its central star has been discussed by various authors (Bryce et al. 2004 and references therein). Corradi & Schwarz (1993a) compared this object to the symbiotic bipolar nebulae He 2-104 and BI Crucis, based on their morphological similarity, but noted no direct evidence that MyCn 18 has a central symbiotic system. Bryce et al. (1997) and O’Connor et al. (2000) discussed several possible mechanisms that can produce the bipolar, knotty outflow seen in MyCn 18 and favored a novalike ejection from a central binary system.

The spectrum of the central star shows four emission lines: N\(_\text{ii}\) λ4634, C iv λ4658, He ii λ4686, and C iv λ5811. It also shows

![Fig. 7.— Spectrum of He 2-123. Stellar emission line of C iv at (a) 5801 Å and (b) 5811 Å.](image-url)
one very faint absorption line (He ii 4541) and one absorption line, unidentified, at 5780 Å. All these features are shown in Figure 8. Méndez (1991) classified its spectral type as Of(H).

He ii 4686 is a narrow emission line (FWHM < 4 Å) with Hγ in absorption. We found that the He ii 4686 line has a FWHM of 3.7 Å. However, we did not find any Balmer absorption lines for the central star. Therefore, we classify the spectra as Of(C).

5. SEARCH FOR ZEEMAN-SPLIT STELLAR LINES

If a Zeeman split of magnetic origin is detected in the spectrum, the field strength could be inferred with

$$\Delta \lambda = 4.67 \times 10^{-13} g_{\text{eff}} \eta_0^2 B,$$

where $\Delta \lambda$ is the split separation, λ_0 is the wavelength of the spectral line, g_{eff} is the effective Landé factor, and B is the magnetic field strength in gauss (Leone et al. 2003). Equation (2) can also be used to estimate upper limits to the magnetic field.

Among the eight CSs observed, only the spectra of He 2-36, He 2-64, and MyCn 18 have a high enough S/N to determine whether their stellar lines might be Zeeman-split. We closely examined the stellar spectra of these three objects to look for signs of splitting due to the presence of a magnetic field. A possible split was identified visually if a stellar line shows more than one peak in emission or more than one dip in absorption. If the feature shows two apparent components, and (e.g., for emission) the intensity drop between the components is greater than 5 times the

Fig. 8.— Spectrum of MyCn 18. (a) N iii emission at 4634 Å; (b) C iv emission at 4658 Å; (c) He ii emission at 4686 Å; (d) C iv emission at 5811 Å; (e) He ii absorption at 4541 Å; (f) faint absorption line at 5780 Å.
With an optimal spectral resolution of 0.1 Å in our spectrum by using the models by Kurucz (1992, with the latest modifications from his Web site)\(^3\) with \(T_{\text{eff}} = 8500\) K and \(\log g = 2\). There is no need to invoke a hot component to justify these lines. On the other hand, when comparing He 2-36 with the spectrum of HD 210111, we were also able to identify two absorption lines at 4686 and 5876 Å, where no metal lines typical of an A2 III star are expected. We believe these two lines correspond to \(\lambda 4686\) and \(\lambda 5876\). We show these two absorption lines in Figures 9 and 10. The profile of \(\lambda 4780\) (see Fig. 12) looks split in the middle, we focused our attention on it in order to determine its nature. First, we checked against the possibility of nebular emission contamination. We extracted the spectrum using a narrower aperture size of 4 pixels\(^5\) in order to exclude most of the nebular emission. In Figure 11 we show the 8 and 4 pixel extractions of our spectrum around the Balmer lines. We see from the figure that the 8 pixel extraction reveals the broad stellar absorption and the narrow nebular emission, while the spectrum of the 4 pixel extraction shows only the broad stellar absorption. For the nebular emission, \(H\delta, H\gamma,\) and \(H\beta\) (Fig. 11, top three left panels) are blueshifted.

\(\dagger\) The latest modifications from his Web site.
\(\ddagger\) Available at http://www.pa.uky.edu/~peter/atomic/.
\(\S\) Our regular extractions were of 8 pixels.

1σ noise level of the spectrum, we concluded that the feature is real and performed further analysis on the feature.

No evidence of Zeeman splitting was found in the spectra of He 2-64 and MyCn 18. We could place an upper limit to the field strength has to be \(\sim 5000\) G. However, because the central stars’ faint continuum has low S/N in our data (\(\sim 10 – 20\) for He 2-64 and MyCn 18), we believe that we are unable to detect a split feature with a separation of less than 0.4 Å. This translates to a field strength of \(\sim 20,000\) G. Therefore, no magnetic field stronger than 20,000 G was found in the central stars of He 2-64 and MyCn 18.

The spectrum of He 2-36 is more difficult to interpret. We know that this star has two components, the cool companion being an A2 III star, and the hot companion detected to date only in the ultraviolet spectra. The prominent features of our He 2-36 spectrum are those metal lines expected in a A2 III stellar spectrum, such as those of HD 210111 (an A2 III-IV star observed with the Very Large Telescope, from the UVES Paranal Observatory Project, ESO director’s discretionary time program ID 266.D-5655; Bagnulo et al. 2003). We have successfully fitted the Balmer lines in our spectrum by using the models by Kurucz (1992, with the latest modifications from his Web site)\(^3\) with \(T_{\text{eff}} = 8500\) K and \(\log g = 2\). There is no need to invoke a hot component to justify these lines. On the other hand, when comparing He 2-36 with the spectrum of HD 210111, we were also able to identify two absorption lines at 4686 and 5876 Å, where no metal lines typical of an A2 III star are expected. We believe these two lines correspond to \(\lambda 4686\) and \(\lambda 5876\). We show these two absorption lines in Figures 9 and 10. The profile of \(\lambda 4780\) is especially compelling. The nebular emission line shows an asymmetric profile in the 8 pixel extraction, indicating the existence of the absorption. In the 4 pixel extraction, the absorption is shown along with some residual nebular emission. The nebular emission is blueshifted, behaving the same way as the Balmer lines from the nebula in front of the star (Fig. 11; see discussion below). We conclude that the features at 4686 and 5876 Å are helium lines from the hot star and that we have confirmed the presence of the hot companion of He 2-36 in the optical spectrum with the present observations.

\(^3\) See http://kurucz.harvard.edu/.

\(^4\) Available at http://www.pa.uky.edu/~peter/atomic/.

\(^5\) Our regular extractions were of 8 pixels.
compared to the central wavelengths of the stellar absorption, indicating that the emission is mostly from the foreground nebula. At Hα, where the S/N is the highest, the nebular emission line shows a split with a blueshifted and a redshifted component (Fig. 11, bottom left), indicating that the observed emission originates both from the nebula in front of and behind the central star. The nebular emission line of O_III^5007 shows the same structure. By comparing the spectra extracted with the two apertures, it is evident that the narrow aperture extraction has excluded most of, if not all, the nebular emission. We compared the 4780 Å feature as it appears with the two aperture extractions, and found that the split feature appears in both spectra. Therefore, we conclude that this feature must be of stellar origin. It is worth noting that to produce the spectra section of Figure 11 (and all other 4 pixel extractions) we did not perform any nebular subtraction, but simply selected the data within the pixels closer to the star.

Second, we need to establish whether the cool or the hot companion is responsible for the split feature at 4780 Å. If absorbed by the cool component, this feature should be interpreted as Ti_II^4779.99. In this case, however, this would be the only split line among the several Ti_II absorption observed. If, on the other hand, this transition originates in the hot stellar photosphere, it could be identified as O_IV^4779.10. But even this possibility is puzzling, since in the present spectrum we could not detect the other components corresponding to the 2s2p^2(P0)3p−2s2p^2(P0)3d transition of O_IV. If the feature was indeed O_IV, and the observed...
splitting was produced by the magnetic field, we could use equation (2) to estimate the field strength. This O iv transition has \(g_{\text{eff}} = 4/3 \); thus, the observed 0.7 Å split could imply a field strength of the order of \(\sim 25,000 \) G if we assume that the line splits into a doublet in the weak-field regime. If we use the sequence of spectra of hot subdwarfs published by O'Toole et al. (2005) our deduced relative strengths of He ii \(\lambda 4686 \) and He i \(\lambda 5876 \) would appear to indicate a star with \(\log g \sim 4.5-5.0 \) and \(T_{\text{eff}} \sim 50,000-70,000 \) K. Such a star would evolve into an MWD with a surface dipole field strength of \(\sim 8 \times 10^{7}-2.5 \times 10^{8} \) G if we adopt \(\log g \sim 8.5 \) as being typical of MWDs. This field is comfortably within the range observed for the field distribution of isolated MWDs.

In Table 7 we list the measurements from the 4780 Å feature in He 2-36. We measured the line as a whole to obtain the central wavelength and fitted the split feature with two line profiles in order to get the wavelength displacements, both in the 8 pixel and the 4 pixel extractions. The displacements of the wavelengths from the central wavelength are the same for shortward and longward directions, with differences within the errors (\(\sim 0.2 \) Å). Their fluxes are equal in the 4 pixel measurement, but not in the 8 pixel measurement. This may be because there is a slight nebular contamination, but the split feature is not severely affected by it. The hot-component interpretation of the 4780 Å feature needs verification in order to recover the other components of the transition multiplet. Nonetheless, the fact that the feature is split into two components of equal strength and displaced by the same amount from the zero-field position would be in agreement with a Zeeman split feature in the low-field regime.

We realize that our proposal that we are seeing absorption lines from the hot star in He 2-36 superposed on the A star spectrum is not without difficulty, since such absorption features would require a comparable contribution by the two stars in the optical. In fact, if we assume that these two stars are associated and therefore at the same distance and we allow for differences in temperatures and gravities, we would only expect approximately a 2% contribution to the optical spectrum by the hot star. A possible resolution to this dilemma is that the A star is not physically linked to the nebula and the hot component that we have found is indeed the central ionizing star of the PN.

Whether or not we have measured a magnetic field in He 2-36 hinges on the identification of the split absorption feature at 4780 Å that we have tentatively attributed to O iv from the hot star. This remains to be confirmed through the detection of other components of the multiplet with their associated Zeeman splitting. Higher resolution data should also reveal Zeeman splitting in the helium lines.

6. CONCLUSIONS

We have investigated the shaping mechanism of bipolar PNe and the progenitors of MWDs using high-resolution echelle spectroscopy of central stars of eight southern bipolar PNe. We looked for Zeeman splitting of the stellar lines caused by possible magnetic fields associated with the CSs. Among the eight objects we did not detect any stellar emission or absorption lines for He 2-25, NGC 2818, and He 2-186. HDW 5 has one absorption line and He 2-123 has two faint C iv emission lines detected. The spectra of He 2-36, He 2-64, and MyCn 18 have much higher S/N, and various stellar lines in their spectra were detected. For those with stellar features, we have assigned a spectral class mainly following Méndez’s (1991) classification. An expanding atmosphere has also been found for the central star of He 2-64 with a velocity of \(\sim 100 \) km s\(^{-1}\) as derived from the P Cygni profiles of the He i lines.

We have placed upper limits of \(\sim 20,000 \) G for the CSs of He 2-64 and MyCn 18. We could not perform our search for Zeeman splitting in HDW 5, He 2-25, NGC 2818, He 2-123, and He 2-186 due to limited S/N in their spectra, and thus no upper limits to the magnetic fields associated with the nuclei of those PNe could be placed. The low detection rate of stellar features in the central stars indicates that even though we have chosen the brightest objects possible, the S/N from the observations with a 4 m telescope is still too low for our science goals. In order to collect a proper sample for our analysis, it is essential to obtain high-sensitivity observations of the CS spectra with larger aperture telescopes.

We found He i and He ii absorption lines in the spectrum of the CS of He 2-36, revealing the hot component of the possibly binary CS. The split feature at 4780 Å in He 2-36 is intriguing. If the feature is from the hot companion of the system and the split is really caused by Zeeman splitting, this would be the first direct detection in the flux spectrum of a magnetic field in a CS of a PN. Further observations with larger aperture telescopes and conducted
at different epochs will be crucial to rule out the possibility that the split is caused by binarity. In addition, we plan to obtain spectropolarimetry to confirm the presence of a magnetic field in the central star of He 2-36. This is a complicated yet very exciting stellar system and requires more observations to further understand it.

Our limits to the magnetic field in the sample stars indicate that, if required to produce the bipolar shape, magnetic fields do not need to be stronger than a few tens of kilogauss, in broad agreement with the Garcia-Segura models. Our results are supplementary to those of Jordan et al. (2005), in which possible fields of a few kilogauss were reported from spectropolarimetric studies of the CSs of four asymmetric PNe.

Many thanks to Olivier Hainaut, Emanuela Pompei, Ivo Saviane, and Jeremy Walsh for their help with the observation and data reduction, and to Jason Aufdenberg, Mike Barlow, Guillermo Garcia-Segura, and Bill Sherry for scientific discussion.

REFERENCES

Acker, A., Jasniewicz, G., Koppen, J., & Stenholm, B. 1989, A&AS, 80, 201
Acker, A., Marcout, J., Olszewin, F., Stenholm, B., & Tylenda, R. 1992, Strasbourg-ESO Catalogue of Galactic Planetary Nebulae (Garching: ESO)
Adams, W. S., & Seaches, F. H. 1938, Mt. Wilson Obs. Ann. Rep., 10, 1
Ali, A., & Pfeiderer, J. 1999, A&A, 351, 1036
Angel, J. R. P., Liebert, J., & Stockman, H. S. 1985, ApJ, 292, 260
Bagnulo, S., et al. 2003, Messenger, 114, 10
Bains, I., Richards, A. M. S., Gledhill, T. M., & Yates, J. A. 2004, MNRAS, 354, 529
Balick, B. 1987, AJ, 94, 671
Banerjee, D. P. K., Anandarao, B. G., Jain, S. K., & Mallik, D. C. V. 1990, A&A, 240, 137
Blackman, E. G., Frank, A., & Welch, C. 2001, ApJ, 546, 288
Bodenheimer, P., & Taam, R. E. 1984, ApJ, 280, 771
Bryce, M., Bains, I., Lopez, J. A., & Redman, M. P. 2004, in ASP Conf. Ser. 313, Asymmetrical Planetary Nebulae III: Winds, Structure, and the Thunderbird, ed. M. Meixner et al. (San Francisco: ASP), 104
Bryce, M., Lopez, J. A., Holloway, J. A., & Meaburn, J. 1997, ApJ, 487, L161
Buttarrab, V., Castro-Carrizo, A., Alcolea, J., & Sánchez Contreras, C. 2001, A&A, 377, 868
Corradi, R. L. M. 1995, MNRAS, 276, 521
———. 2003, in ASP Conf. Ser. 303, Symbiotic Stars Probing Stellar Evolution, ed. R. L. M. Corradi, R. Mikolajewska, & T. J. Mahoney (San Francisco: ASP), 393
Corradi, R. L. M., Gonzalves, D. R., Villaver, E., Mampaso, A., Perinotto, M., Schwarz, H. E., & Zanin, C. 2000, ApJ, 535, 823
Corradi, R. L. M., & Schwarz, H. E. 1993a, A&A, 268, 714
———. 1993b, A&A, 278, 247
———. 1995, A&A, 293, 871
Dufour, R. J. 1984, ApJ, 287, 341
Feibelman, W. A., & Kondo, Y. 2001, ApJS, 136, 735
Gather, R., & Pottasch, S. R. 1988, A&A, 197, 266
Garcia-Segura, G., Langer, N., Rózyczka, M., & Franco, J. 1999, ApJ, 517, 767
García-Segura, G., López, J. A., & Franco, J. 2005, ApJ, 618, 919
Greenstein, J. L., Henry, R. J. W., & O’Connell, R. F. 1985, ApJ, 289, L25
Hartl, H., & Weinberger, R. 1987, A&AS, 69, 519
Henize, K. G. 1967, ApJS, 14, 125
Igancio, R., Cassinelli, J. P., & Bjorkman, J. E. 1996, ApJ, 459, 671
Jordan, S., Werner, K., & O’Toole, S. J. 2005, A&A, 432, 273
Kurucz, R. L. 1992, in IAU Symp. 149, The Stellar Populations of Galaxies, ed. B. Barbuy & A. Renzini (Dordrecht: Kluwer), 225
Leone, F., Vace, W. D., & Stift, M. 2003, A&A, 409, 1055
Liebert, J., Bergeron, P., & Holberg, J. B. 2003, AJ, 125, 348
Machado, A. 2004, in ASP Conf. Ser. 313, Asymmetrical Planetary Nebulae III: Winds, Structure, and the Thunderbird, ed. M. Meixner et al. (San Francisco: ASP), 3
Machado, A., Guerrero, M. A., Stanghellini, L., & Serra-Ricart, M. 1996, The IAC Morphological Catalog of Northern Galactic Planetary Nebulae (La Laguna: Inst. Astrol. Canarias)
Massey, P. 1997, A User’s Guide to CCD Reductions with IRAF (Tucson: NOAO)
Mayall, M. W., & Cannon, A. J. 1940, Harvard Coll. Obs. Bull., 913, 7
Méndez, R. H. 1978, MNRAS, 185, 647
———. 1991, in IAU Symp. 145, Evolution of Stars: The Photospheric Abundance Connection, ed. G. Michaud & A. V. Tutukov (Dordrecht: Kluwer), 375
Méndez, R. H., Herrero, A., & Manchado, A. 1990, A&A, 229, 152
Méndez, R. H., Kudritzki, R. P., Herrero, A., Husfeld, D., & Groth, H. G. 1988, A&A, 190, 113
Miranda, L. F., Gómez, Y., Anglada, G., & Torres, M. J. 2001, Nature, 414, 284
O’Connor, J. A., Redman, M. P., Holloway, A. J., Bryce, M., López, J. A., & Meaburn, J. 2000, ApJ, 531, 316
O’Toole, S. J., Jordan, S., Friedrich, S., & Heber, U. 2005, A&A, 437, 227
Pascoli, G. 1992, PASP, 104, 350
Peimbert, M., & Torres-Peimbert, S. 1983, in IAU Symp. 103, Planetary Nebulae, ed. D. R. Flower (Dordrecht: Reidel), 233
Phillips, J. P. 2003, MNRAS, 344, 501
Phillips, J. P., & Cuesta, L. 1998a, A&AS, 133, 381
Phillips, J. P., Cuesta, L., & Kemp, S. N. 2005, MNRAS, 357, 548
Preite-Martínez, A., Acker, A., Köppen, J., & Stenholm, B. 1989, A&AS, 81, 309
Schwarz, H. E., Corradi, R. L. M., & Melnick, J. 1992, A&AS, 96, 23
Schwarz, H. E., Corradi, R. L. M., & Stanghellini, L. 1993, in IAU Symp. 155, Planetary Nebulae, ed. R. Weinberger & A. Acker (Dordrecht: Kluwer), 214
Shaw, R. A., & Kaler, J. B. 1989, ApJS, 69, 495
Stanghellini, L., Corradi, R. L. M., & Schwarz, H. E. 1993a, A&A, 279, 521
Stanghellini, L., Shaw, R. A., Balick, B., & Blades, J. C. 2000, ApJ, 534, L167
Stanghellini, L., Villaver, E., Machado, A., & Guerrero, M. A. 2002, ApJ, 576, 285
Tifft, W. G., Conolly, L. P., & Webb, D. F. 1972, MNRAS, 158, 47
Tylenda, R., Acker, A., & Stenholm, B. 1993, A&AS, 102, 595
Tylenda, R., Acker, A., Stenholm, B., Glezis, F., & Raychev, B. 1991, A&AS, 89, 77
Vlemmings, W. H. T., Diamond, P. J., & Inami, H. 2006, Nature, 440, 58
Webster, B. L. 1969, MNRAS, 143, 79
Wickramasinghe, D. T., & Ferrario, L. 2000, PASP, 112, 873
Willmarth, D., & Barnes, J. 1994, A User’s Guide to Reducing Echelle Spectra with IRAF (Tucson: NOAO)
