Cadherin Expression in the Nigerian and United Kingdom Breast Cancer Cases: A Comparison of Clinicopathological and Prognostic Characteristics

Agboola AO1, Ebili HO1, Iyawe VO1, Banjo AAF1, Salami BS2, Rakha EA2, Nolan C2, Ellis IO1 and Green AR1

1Department of Morbid Anatomy and Histopathology, Olabisi Onabanjo University, Sagamu, Nigeria
2Department of Surgery, Obafemi Awolowo University, Ile-Ife, Nigeria
3Division of Cancer and Stem Cells, Nottingham University Hospitals Nottingham, United Kingdom

Abstract

Background: The expression of the cadherins have been shown to have both clinicopathological and prognostic significance in breast cancer from different ethnic populations. However, the clinicopathological and prognostic significance of the cadherins expression in Nigerian breast cancer (BC) have hitherto not been determined. The aim of this study was therefore to describe the expression patterns of E- and P-cadherin in Nigerian and United Kingdom (UK) BC cases and to compare the clinicopathological and prognostic significance of the cadherins between the two cohorts.

Methods: Tissue microarray of about 286 formalin-fixed paraffin-embedded Nigerian and 301 UK BC samples with well-characterized clinicopathological indices were subjected to immunohistochemical staining for E- and P-cadherins and other biomarkers. These biomarkers were correlated with the patients’ clinicopathological and prognostic data using the appropriate statistical tests on SPSS. A p value of < 0.05 was taken as statistically significant.

Results: A lower rate of E-cadherin expression was found in the Nigerian cohort (29.2%) compared to their UK counterparts (54.8%). However, the rate of P-cadherin expression was similar in both Nigerian (53.4%) and UK (52.9%) series. While E-cadherin expression showed no pathobiological significance in the Nigerian cases, it was associated with favourable clinicopathological features in the UK cohort. P-cadherin on the other hand was associated with adverse clinicopathological features, including the triple-negative and basal-like BC subtype in both BC populations. However, we found no prognostic significance for either E-cadherin or P-cadherin in both BC cohorts.

Conclusion: While P-cadherin expression is high in both the Nigerian and UK BC cohorts and might therefore function as a biomarker for the basal-like BC, E-cadherin expression was associated with favourable clinicopathological indices in UK, but not in the Nigerian, cohorts.

Keywords: Nigerian and United Kingdom breast cancer; E-cadherin; P-cadherin; Clinicopathological

Abbreviations: BC: Breast Cancer; EMT: Epithelial Mesenchymal Transition; NOS: Not Otherwise Specified; BCSS: Breast Cancer-Specific Survival; DFI: Disease-Free Interval; CK: Cytokeratin; EGFR: Epidermal Growth Factor Receptor; ER: Estrogen Receptor; PR: Progesterone Receptor; BRCA1: Breast Cancer Antigen 1; HER2: Human Epidermal Growth Receptor 2

Introduction

Tumour cell invasion and metastases are facilitated by the epithelial mesenchymal transition (EMT) which is in turn associated with changes in expression of the different isoforms of cadherin cell adhesion molecules [1-3]. These isoforms include E-cadherin, N-cadherin, P-cadherin, amongst others, have specific normal tissue expressions [1-3]. For example, E-cadherin is expressed in epithelial tissues where it mediates cell-cell adhesions, limits cell motility and establishes apico-basal polarity [1]. N-cadherin is expressed in mesenchymal tissues where it mediates focal adhesion of mesenchymal cells with the extracellular matrix components and cell motility [1,2]. P-cadherin is expressed by myoepithelial cells in which it maintains the myoepithelial cell undifferentiated state which is necessary for orderly differentiation of glandular structures [1,3].

In malignant epithelial tumours such as breast cancer, the EMT is characterized by down-regulation of E-cadherin expression and up-regulation of N-cadherin, or aberrant co-expression of P- and E-cadherins [1-3]. The expression patterns of the cadherins have been shown to have both clinicopathological and prognostic significance in breast cancer from different ethnic populations [1-9]. Specifically, E-cadherin loss in primary breast cancer is associated with high grade tumour and positive lymph node status and confers shorter survival characteristics on patients [4-8]. Such poor prognostic indices have also been observed in breast cancers with high expression of N- and P-cadherins [1-3,9]. However, the implications of the aberrant expression of the cadherins in the Nigerian breast cancer population have yet to be investigated.

The aim of this study is to determine the clinicopathological and prognostic significance of the cadherin switch in Nigerian women with breast cancer compared to their United Kingdom counterparts. We investigated the expression of E-cadherin and P-cadherin using Tissue Microarray and Immunohistochemistry and compared the clinicopathological features and survival characteristics of E- and P-cadherin expression between the Nigerian and the United Kingdom cases.

Materials and Methods

The Reporting Recommendations for Tumour Markers Prognostic Studies criteria were followed in this study [10]. Ethical approval was obtained both from the Medical Advisory Committee of the Olabisi Onabanjo University Teaching Hospital and by the Nottingham Research Ethics Committee 2.

*Corresponding author: Dr. Ayodeji O.J. Agboola, Department of Morbid Anatomy & Histopathology, Olabisi Onabanjo University, P.M.B 2001, Sagamu, Ogun State, Nigeria, E-mail: Johndeji2001@yahoo.co.uk

Received June 09, 2016; Accepted June 19, 2016; Published June 25, 2016

Citation: Agboola AO, Ebili HO, Iyawe VO, Banjo AAF, Salami BS, et al., (2016) Cadherin Expression in the Nigerian and United Kingdom Breast Cancer Cases: A Comparison of Clinicopathological and Prognostic Characteristics. Surgery Curr Res 6: 271. doi:10.4172/2161-1076.1000271

Copyright: © 2016 Agboola AO, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Patients

The Nigerian and United Kingdom cohorts used in this study comprised those that were described in previous studies [11-14].

Tissue microarray construction

Tissue microarray was constructed from formalin-fixed, paraffin-embedded breast cancer samples as previously described [11-14].

Immunohistochemical methods

Immunohistochemical staining of the tissue microarray slides followed previously described methods [11,12]. The immunohistochemical expression of the EMT biomarkers E- and P-cadherin was sought in the Nigerian breast cancer cases. The basal phenotype markers, Ki-67, p53 and BRCA1 were included to study their association with the cadherins. Positive and negative controls for each marker were included in the experiments. A proportion of UK grade-matched cases were used to compare the cadherin expression in the Nigerian series.

The E-cadherin was scored following the semi-quantitative Histochemical score (H-score) method which was described by McCarty et al. [15], where the intensity of staining and percentages of the stained cells were taken into consideration, with a minimum of zero and maximum of 300 scores. In addition, the scoring of the BRCA1, p53, Ki-67, other components of basal phenotype was as done in the previous studies [11-14].

Statistical analyses

Statistical Analyses was performed using SPSS version 16. The association between the cadherin markers expression and categorical clinicopathological variables was examined using the chi-square test. Analysis of survival characteristics of the cadherin biomarkers was analysed using Kaplan-Meier and Log-rank tests. Multivariate analysis was performed using Cox Regression Analysis. A two-sided P-value of <0.05 was considered to be statistically significant.

Results

Staining characteristics of E- and P-cadherin

The expressions of E- and P-cadherins were mainly detectable in the cytoplasm with some membranous staining of the invasive tumour cells (Figure 1). Based on the histogram distributions of scores, an H-score of ≥100 was taken as positive staining for E-cadherin, while a score of ≥ 10 was considered positive for P-cadherin expression. Using these cut off points 66/226 (29.2%) and 165/301 (54.8%) of the Nigerian and UK breast cancer cases respectively showed positive expression of E-cadherin, while 142/266 (53.4%) and 138/261 (52.9%) of the Nigerian and UK breast cancer cases respectively showed positive expression of P-cadherin expression. Using these cut off points 66/226 (29.2%; p < 0.001). However, there was no significant difference in P-cadherin expression between the two cohorts.

Furthermore, while there was no significant association between the clinicopathological features and E-cadherin in the Nigerian cohorts, P-cadherin expression was significantly associated with menopausal status (p = 0.04) and tumour tubular differentiation (p = 0.02) (Tables 1 and 2).

In the UK series, the tumours that expressed E-cadherin were more of lobular histological type (p < 0.001), were smaller than 2cm in diameter (p < 0.003), had reduced tendency for vascular invasion (p < 0.02) and better differentiated tubules compared to those with reduced or loss of E-cadherin expression (p < 0.001). However, there was no significant correlation between the age of the women, menopausal status, lymph node involvement, vascular invasion, tumour size and E-cadherin expression (Table 1). P-cadherin-expressing tumours were more likely invasive ductal carcinoma NOS (p = 0.02), had poorer tubule formation (p < 0.001) and marked nuclear pleomorphism (p = 0.006) than tumours with reduced or no P-cadherin expression (Table 2).

E- and P-cadherin expression did not individually show any associations with breast cancer-specific survival (BCSS) or disease-free interval (DFI) in both the Nigerian and British cohorts (Figure 2).

Relationship between E- and P-cadherin and other biomarker expression

E-cadherin expression in the Nigerian breast cancer cohort did not show any associations with the tested biomarkers, including CK5/6, CK 14, EGFR, ER, PR, PIK3CA, p53, MUC1, BRCA1 and Ki-67 (Table 3). Furthermore, E-cadherin expression showed no association with P-cadherin (p = 0.23). P-cadherin expression was associated with BRCA1 loss (p = 0.005), CK5/6 expression (p = 0.007), EGFR expression (0.02), ER loss (0.004), PR loss (p = 0.004), basal-like phenotype (p = 0.025), PIK3CA expression (p = 0.02), p53 over-expression (p = 0.01) and MUC1 expression (p = 0.02) (Table 4).

In the UK series, E-cadherin expression had a direct association with ER (p = 0.02) and HER2 (p = 0.03) expression and the Luminal A molecular subtype (p < 0.001) of breast cancer and an inverse association with the triple-negative subtype (p = 0.002) (Table 3). P-cadherin expression show significant direct associations with CK 5/6 (p < 0.001), CK 14 (p = 0.008) and EGFR (p < 0.001) expression as well as basal-like (p < 0.001) and triple-negative (p < 0.001) breast cancer subtypes; and an inverse association with ER and PR expression. Like in the Nigerian series, P- and E-cadherin expression showed no association (p = 0.58) (Table 4).

E-cadherin and P-cadherin subsets revealed no new clinicopathological or biomarker expression information

We hypothesized that stratifying the breast cancer cases into cadherin expression subsets (Ecad-low, Ecad-high, Pcad-low and
cases in advance stage is only 40%. In contrast, the proportion of the UK breast cancer cases in this study are in the advance stage as adjudged by lymph node involvement. Perhaps is a reflection of the fact that over 90% of the Nigerian breast cancer cases in comparison to UK cases. While the 54.8% E-cadherin expression rate in the UK cases falls within the 46-75.3% rate that has been found in other studies, the 29.2% rate found in the Nigerian cohort is significantly lower [4-8,16]. This may explain why the results from this study reflect relatively favorable outcomes compared to those from other studies. This indicates that while the expression of E-cadherin is lower in Nigerian breast cancer cases, it may still have clinical relevance. Furthermore, the finding that the E-cadherin expression rate in the UK cases falls within the range of other studies highlights the variability in the expression of this protein across different populations.

Table 1: Clinicopathological features of E-cadherin expression in Nigerian and UK BC cases.

Variables	E-cadherin expression	X2 value	p_value	Variables	E-cadherin expression	X2 value	p_value
Age (years) ≤ 50	Negative 106 (66.7)	43 (65.2)	0.048	Positive 53 (33.3)	23 (34.8)	0.82	
> 50	Negative 111 (69.8)	48 (30.2)	0.817	Positive 42 (36.4)	24 (63.6)	0.36	
Menopausal status	Pre 12 (7.5)	147 (92.5)	0.564	Positive 7 (10.6)	59 (89.4)	0.45	
Post	Negative 12 (2.5)	147 (92.5)	0.001	Positive 5 (7.6)	61 (92.4)	0.99	
Vascular Invasion	Negative 126 (79.2)	49 (74.2)	0.675	Positive 33 (20.8)	17 (25.8)	0.41	
Tumour Type	Typical medullary 0 (0.0)	6 (1.5)	13.182	Typical medullary 0 (0.0)	6 (1.5)	0.10	
Atypical medullary	Negative 0 (0.0)	2 (3.0)	0.00	Atypical medullary 0 (0.0)	2 (3.0)	0.00	
Tubular	Negative 134 (84.3)	1 (1.5)	0.00	Tubular 59 (90.9)	13 (6.5)	0.10	
Lobular	Negative 5 (3.1)	1 (0.6)	13.182	Lobular 1 (0.6)	0 (0.0)	0.00	
Ductal NST	Negative 2 (1.3)	0 (0.0)	0.00	Ductal NST 0 (0.0)	0 (0.0)	0.00	
Mucinous	Negative 12 (7.5)	0 (0.0)	0.00	Mucinous 2 (3.0)	0 (0.0)	0.00	
Tubulolobular	Negative 12 (7.5)	0 (0.0)	0.00	Tubulolobular 2 (3.0)	0 (0.0)	0.00	
Lobular mixed	Positive 101 (63.5)	41 (62.1)	1.069	Positive 37 (23.3)	13 (19.7)	0.58	
Tubular mixed	High 21 (13.2)	12 (18.2)	0.649	High 58 (36.5)	22 (33.3)	0.72	
Mitotic figure	Low 101 (63.5)	41 (62.1)	0.649	Low 37 (23.3)	13 (19.7)	0.72	
Nuclear pleomorphism	Moderate 58 (36.5)	22 (33.3)	0.649	Moderate 58 (36.5)	22 (33.3)	0.72	
Small regular uniform cells	Negative 100 (62.9)	44 (66.7)	0.509	Negative 100 (62.9)	44 (66.7)	0.77	
Moderate increase in size and variability	1 (0.6)	0 (0.0)	0.509	1 (0.6)	0 (0.0)	0.77	
Marked variability	8 (5.0)	4 (6.1)	0.509	8 (5.0)	4 (6.1)	0.77	
Tubule Formation	> 75% < 10% 150 (94.3)	62 (93.9)	0.509	> 75% < 10% 150 (94.3)	62 (93.9)	0.77	

Discussion

To the best of our knowledge this is the first study that has investigated the clinicopathological significance of the cadherin expression in Nigerian breast cancer cases in comparison to UK cases. While the 54.8% E-cadherin expression rate in the UK cases falls within the 46-75.3% rate that has been found in other studies, the 29.2% rate found in the Nigerian cohort is significantly lower [4-8,16]. This perhaps is a reflection of the fact that over 90% of the Nigerian breast cancer cases in this study are in the advance stage as adjudged by lymph node metastases. E-cadherin loss has previously been associated with advance stage breast cancer [8]. In contrast, the proportion of the UK cases in advance stage is only 40%.

P-cadherin, on the other hand, is expressed in 20-71% of invasive breast cancer, within which the 52.9% and 53.4% rates we found for our cohorts fall [1,3,9]. We also found no association between the expressions of E- and P-cadherin, an indication that their expressions do not have mutually exclusivity in breast cancer progression and that the cadherin switch includes intermediate states with complex expression patterns of the cadherins [1,3,9].

E-cadherin loss in breast cancer has been associated with adverse clinicopathological characteristics in breast cancer from several populations studied [4-6]. We found this to be the case in our UK cohort of breast cancer in which E-cadherin loss was associated with larger tumours, increased tendency for vascular invasion and poor tubular differentiation. However, E-cadherin expression was not associated with any clinicopathological feature in the Nigerian breast cancer cases, although the number of breast cancer cases with lymph node involvement, higher nuclear pleomorphism, larger size and poor tubular differentiation were higher in the E-cadherin-negative than the E-cadherin-positive groups. Similar to our finding, Brzozowska et al. and Younis et al. in their studies found no association between E-cadherin loss and clinicopathological indices [7,8]. It is worthy
Figure 2: A and B. E-cadherin expression in relation to BCS and DFI in Nigeria series C and D. P-cadherin expression in relation to BCS and DFI in Nigeria series E and F. E-cadherin expression in relation to BCS and DFI in the UK series G and H. P-cadherin expression in relation to BCS and DFI in in UK series.
of note that the cohorts used in the aforementioned studies, like our Nigerian cohort, had disproportionate amounts of E-cadherin-positive cases – 75.3% and 72% respectively – and small sample sizes; and these could have precluded meaningful statistical analyses and obscured the actual significance of E-cadherin loss in these BC populations.

P-cadherin expression, on the other hand, was found to be associated with high tumour grades in both the Nigerian and UK breast cancer cohorts; and with and postmenopausal status in the Nigeria cohort and invasive ductal carcinoma NOS in the UK cohort. P-cadherin expression has similarly been reported by other studies to be associated with features of high tumour grades in both the Nigerian and UK breast cancer cases. On the other hand, it may be reflective of the disproportionate representation of E-cadherin-positive tumor in the cohorts used in the aforementioned studies, like our Brzozowska et al. and Younis et al. studies [5,7,8]. This lack of pathobiological concordance findings in other studies, but contrasts with the absence of any associations in the Nigerian series, as well as the Brzozowska et al. studies [5,7,8].

Variables	Nigerian BC cohort	UK BC cohort				
	P-cadherin expression	X² value	p_value	P-cadherin expression	X² value	p_value
Age (years) ≤ 50	Negative 65 (63.7) 37 (36.3)	0.05	0.80	Negative 30 (24.6) 92 (75.4)	6.26	0.01
	Positive 79 (65.3) 42 (34.7)					
Age (years) > 50	Negative 79 (65.3) 42 (34.7)	0.05	0.80	Positive 54 (38.1) 84 (60.9)		
	Positive 79 (65.3) 42 (34.7)					
Menopausal Pre	Negative 63 (61.8) 39 (38.2)	4.09	0.04	Negative 42 (34.4) 80 (65.6)	1.29	0.25
	Positive 90 (74.4) 31 (25.6)					
Post	Negative 63 (61.8) 39 (38.2)	4.09	0.04	Positive 42 (34.4) 80 (65.6)	1.29	0.25
	Positive 90 (74.4) 31 (25.6)					
Sizes (cm) ≤ 2	Negative 12 (11.8) 90 (88.2)	2.53	0.11	Negative 64 (52.0) 59 (48.0)	1.90	0.16
	Positive 7 (5.8) 114 (94.2)					
Sizes (cm) > 2	Negative 12 (11.8) 90 (88.2)	2.53	0.11	Negative 64 (52.0) 59 (48.0)	1.90	0.16
	Positive 7 (5.8) 114 (94.2)					
Lymph node involvement	Negative 12 (11.8) 90 (88.2)	1.21	0.27	Negative 72 (58.5) 51 (41.5)	0.02	0.88
	Positive 9 (7.4) 112 (92.6)					
Vascular Invasion	Negative 73 (71.6) 29 (28.4)	0.37	0.54	Negative 58 (47.5) 64 (52.5)	0.79	0.37
	Positive 91 (75.2) 30 (24.8)					
Tumour Type	Atypical medullary 1 (1.0) 1 (0.8)	8.01	0.033	Atypical medullary 1 (0.8) 2 (1.5)	21.95	0.02
	Tubular 1 (1.0) 1 (0.8)	8.01	0.033	Tubular 1 (0.8) 2 (1.5)		
	Lobular 2 (2.0) 1 (0.8)	8.01	0.033	Lobular 1 (0.8) 2 (1.5)		
	Ductal NST 88 (66.3) 109 (80.1)	8.01	0.033	Ductal NST 1 (0.8) 2 (1.5)		
	Muscinous 3 (2.9) 0 (0.0)	8.01	0.033	Muscinous 0 (0.0) 1 (0.7)		
	Tubulolobular 1 (1.0) 0 (0.0)	8.01	0.033	Tubulolobular 0 (0.0) 1 (0.7)		
	Lobular mixed 6 (5.9) 6 (5.0)	8.01	0.033	Lobular mixed 0 (0.0) 1 (0.7)		
	Tubular mixed 0 (0.0) 0 (0.0)	8.01	0.033	Tubular mixed 0 (0.0) 1 (0.7)		
	Mixed NST 0 (0.0) 0 (0.0)	8.01	0.033	Mixed NST 0 (0.0) 1 (0.7)		
	Others 0 (0.0) 0 (0.0)	8.01	0.033	Others 0 (0.0) 1 (0.7)		
Mitotic Figure	Low 66 (64.7) 24 (23.5) 12 (11.8)	1.91	0.38	Low 4 (3.3) 45 (37.2) 72 (59.5)	2.787	0.248
	Moderate 75 (62.0) 24 (19.6) 22 (18.2)					
	High 75 (62.0) 24 (19.6) 22 (18.2)					
Nuclear pleomorphism	Small regular uniform cells 0 (0.0) 0 (0.0)	0.81	0.36	Small regular uniform cells 2 (1.7) 0 (0.0)	10.128	0.006
	Moderate increase in size and variability 37 (36.3) 37 (30.6)	0.81	0.36	Moderate increase in size and variability 66 (54.6) 52 (38.0)		
	Marked variability 65 (63.7) 84 (68.4)	0.81	0.36	Marked variability 53 (43.8) 85 (62.0)		
Tubule Formation	> 75% 0 (0.0) 1 (1.0) 101 (99.0)	0.14	0.02	> 75% 56 (46.3) 37 (30.6) 28 (23.1)	16.822	< 0.001
	10-75% 2 (2.5) 9 (7.4) 108 (90.1)					
	< 10% 37 (30.6) 37 (30.6) 28 (23.1)					

Table 2: Clinicopathological features of P-cadherin expression in Nigerian and UK BC cases.

Luminal A and the triple-negative molecular subtype of breast cancer in the UK breast cancer series. The association between breast cancer subtypes biomarkers and E-cadherin expression in the UK cohort is in concordance findings in other studies, but contrasts with the absence of any associations in the Nigerian series, as well as the Brzozowska et al. and Younis et al. studies [5,7,8]. This lack of pathobiological significance of E-cadherin expression in the Nigerian series may represent another difference in tumour biology between Nigerian and UK breast cancer cases. On the other hand, it may be reflective of the disproportionate representation of E-cadherin-positive tumor in the Nigerian cohort (only 29%) used in this study. Further studies in which E-cadherin-positive and –negative are about equally represented in the sample cohort are probably needed to clarify the significance of E-cadherin expression in the Nigerian breast cancer cases.

P-cadherin expression has been associated with the features of basal-like subtype of breast cancer, including ER loss, PR loss, EGFR expression and CK 5/6 and CK14 expression, p53 over-expression...
and BRCA1 loss [1,3]. Furthermore, it has been demonstrated that P-cadherin expression is a more sensitive marker for the basal-like breast cancer subtype than CK 5/6 and EGFR [3]. In line with the strong association between P-cadherin and basal-like breast cancer subtype this study demonstrated an association between the basal-like breast cancer and ER and PR loss, CK 5/6, CK14, p53 and EGFR expression in both the Nigerian and UK breast cancer cohorts. Furthermore, we demonstrated that P-cadherin was associated with BRCA1 loss in the Nigerian, but not in the UK, breast cancer cohort. This is probably due to the significantly higher rate of BRCA 1-deficient basal-like cancer in the Nigerian cohort relative to the UK cases [11,17].

In contrast to many other studies, we did not find any prognostic significance for both E-cadherin and P-cadherin expression either in the Nigerian or the UK cases [1,3,5-7,9]. Furthermore, we did not find any association between prognostic marker Ki-67 and either P-cadherin or E-cadherin in both breast cancer populations [12].

The high rate of P-cadherin expression in both breast cancer populations may have therapeutic significance. Albergaria et al. showed that P-cadherin silencing in breast cancer cells inoculated in mice inhibited the growth of cancer in vivo [3]. Furthermore, a novel and highly selective human monoclonal antibody (PF-03732010) has been developed against P-cadherin and has demonstrated remarkable anti-

Classification	Basal	HER-2	Lum A	Lum B	Uncl
Basal	32 (20.1)	20 (12.6)	29 (17.6)	5 (3.1)	14 (8.8)
HER-2	116 (81.7)	28 (18.3)	45 (73.8)	16 (28.2)	1.63 0.20
Lum A	20 (14.5)	118 (85.5)	14 (24.6)	43 (75.4)	2.84 0.09
Lum B	11 (19.2)	54 (80.8)	18 (33.3)	34 (66.7)	0.004 0.94
Uncl	60 (48.4)	64 (51.6)	22 (47.8)	24 (52.2)	0.004 0.94

Table 3: Correlation E-cadherin and other biomarker expression in Nigerian and UK BC cases.
In conclusion, we have shown for the first time that while P-cadherin is associated with the basal-like breast cancer in both Nigerian and UK breast cancer cases, E-cadherin expression was associated with the luminal A and HER2 breast cancer subtypes in the UK cases but showed no pathobiological significance in the Nigerian cohorts.

Acknowledgement

The authors wish to acknowledge the efforts of the technical staff of the Histopathology Department, Olabisi Onabanjo University Teaching Hospital, Sagamu, Nigeria, and the University of Nottingham City Hospital towards the completion of this study.

References

1. Ribeiro AS, Paredes J (2015) P-cadherin linking breast cancer stem cells and invasion: a promising marker to identify an “Intermediate/Metastable” EMT state. Front Oncol 4: 371.

2. Derycke LDM, Bracke ME (2004) N-cadherin in the spotlight of cell-cell adhesion, differentiation, embryogenesis, invasion and signalling. Int J Dev Biol 48: 463-476.

3. Albergaria A, Ribeiro AS, Veira AF, Souse B, Nobre AR, et al. (2011) P-cadherin role in normal breast development and cancer. Int J Dev Biol 55: 811-822.

4. Suciu C, Climean AM, Mureşan AM, Izvernariu D, Raica M (2008) E-cadherin expression in invasive breast cancer. Romanian Journal of Morphology and Embryology 49: 517-523.

5. Kashiwagi S, Yashiro M, Takashima T, Nomura S, Noda S, et al. (2012) Significance of E-cadherin expression in triple-negative breast cancer. Br J Cancer 103: 249-255.

6. Berx G, Roy FV (2001) The E-cadherin/catenin complex: an important gatekeeper in breast cancer tumorigenesis and malignant progression. Breast Cancer Res 3: 289-293.

7. Brzozowska A, Sadowski T, Dumka D, Mazurkiewicz T, Mazurkiewicz M (2012) Evaluation of prognostic parameters of E-cadherin status in breast cancer treatment. Ann Agric Environ Med. 19: 541-546.

8. Younis K, El Sukka H, Haque I (2007) The Prognostic Value of E-cadherin Expression in Breast Cancer. Int J Health Sci 1: 43-51.

9. Paredes J, Correia AL, Ribeiro AS, Albergaria A, Milanezi F, et al. (2007) P-cadherin expression in breast cancer: a review. Breast Cancer Res 9: R65.

10. McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, et al. (2005) Reporting recommendations for tumor marker prognostic studies. J Clin Oncol 23: 9067-9072.

Table 4: Correlation P-cadherin and other biomarker expression in Nigerian and UK BC cases.

Variables	P-cadherin expression	X² value	p_value	Variables	P-cadherin expression	X² value	p_value
BNCA1	Negative	53 (70.7)	22 (29.3)	91 (87.5)	13 (12.5)	7.85	0.005
	Positive	29 (56.9)	12 (23.5)	13 (26.6)	17 (34.0)	0.55	0.46
CK5/6	Negative	58 (71.5)	24 (28.5)	103 (81.1)	24 (18.9)	0.45	0.50
	Positive	29 (56.9)	12 (23.5)	13 (26.6)	17 (34.0)	0.55	0.46
CK14	Negative	36 (51.4)	19 (28.6)	56 (75.4)	20 (25.0)	5.42	0.02
	Positive	34 (51.4)	27 (38.6)	59 (76.9)	27 (23.1)	7.11	0.03
ER	Negative	57 (63.3)	24 (28.6)	81 (93.9)	18 (6.1)	8.20	0.004
	Positive	33 (36.7)	15 (17.4)	21 (24.1)	7 (25.9)	0.55	0.46
EGFR	Negative	58 (76.3)	18 (23.7)	60 (94.0)	41 (86.0)	5.5	0.02
	Positive	18 (23.7)	7 (8.6)	17 (24.1)	5 (12.4)	0.47	0.49
HER-2	Negative	71 (83.5)	14 (16.5)	82 (79.6)	21 (20.4)	0.47	0.49
	Positive	29 (36.7)	12 (15.2)	55 (74.8)	19 (25.2)	1.66	0.19
Kl-67	Negative	19 (22.4)	66 (77.6)	17 (15.2)	95 (84.8)	112 (91.8)	0.08
	Positive	6 (7.6)	80 (92.4)	33 (39.4)	60 (60.6)	9 (8.0)	0.02
Mucin1	Negative	44 (57.1)	33 (42.9)	57 (65.5)	20 (34.5)	0.13	0.23
	Positive	17 (22.9)	63 (77.1)	30 (48.5)	73 (52.5)	39 (57.7)	0.04
PGR	Negative	53 (66.3)	27 (33.7)	83 (87.0)	15 (13.0)	8.31	0.004
	Positive	29 (36.7)	12 (15.2)	55 (74.8)	19 (25.2)	112 (91.8)	0.08
p53	Negative	29 (43.3)	38 (56.7)	24 (27.4)	73 (72.6)	0.12	0.71
	Positive	108 (73.5)	35 (26.5)	83 (69.1)	32 (31.0)	29.75	< 0.001
Triple	No	45 (56.3)	35 (43.7)	41 (44.6)	51 (55.4)	2.34	0.13
Negative	Yes	118 (96.7)	4 (3.3)	101 (73.2)	37 (26.8)	18.04	< 0.001

Surgery Curr Res
ISSN: 2161-1076 SCR, an open access journal
Volume 6 • Issue 4 • 1000271
11. Agboola AO, Musa AA, Wanangwa N, Abdel-Fatah T, Nolan CC, et al. (2012) Molecular characteristics and prognostic features of breast cancer in Nigerian compared with UK women. Breast Cancer Res Treat 135: 555-569.

12. Agboola AOJ, Banjo AAF, Anunobi CC, Salami B, Agboola MD, Musa AA, et al. (2013) Cell Proliferation (Ki-67) Expression Is Associated with Poorer Prognosis in Nigerian Compared to British Breast Cancer Women. ISRN Oncol

13. Agboola AOJ, Banjo AAF, Anunobi CC, Ayoade BA, Deji-Agboola MA, et al. (2013) Clinical and molecular significance of poly (ADP-ribose) polymerase-1 (PARP-1) in breast cancer of African women and its potential as a targeted therapy. Journal of Cancer Research and Treatment 1: 24-30.

14. Agboola AO, Banjo AA, Anunobi CC, Ayoade BA, Deji-Agboola AM, et al (2014) Molecular profiling of breast cancer in Nigerian women identifies an altered p53 pathway as a major mechanism underlying its poor prognosis compared with British counterpart. Malays J Pathol 36: 3-17.

15. McCarty KS Jr, Miller LS, Cox EB, Konrath J, McCarty KS Sr (1985) Estrogen analyses: correlation of biochemical and immunohistochemical methods using monoclonal antireceptor antibodies. Arch Pathol Lab Med 109: 716–721.

16. Kowalski PJ, Rubin MA and Kleer CG (2003) E-cadherin expression in primary carcinomas of the breast and its distant metastases. Breast Cancer Res 5: R217-R222

17. Ebili HO, Oluwasola AO, Olopade OI (2014) Molecular subtypes and prognosis of breast cancer. In: Jatoi I, Holloway TL (eds) Personalized Management of Breast Cancer. Future Medicine 1: 21-33.

18. Schroeder JA, Adriance MC, Thompson MC, Camenisch TD, Gendler SJ (2003) MUC1 alters [beta]-catenin-dependent tumor formation and promotes cellular invasion. Oncogene 22: 1324-1332.

19. Zhang CC, Yan Z, Zhang Q, Kuszpit K, Zasadny K, et al (2010) PF-03732010: a fully human monoclonal antibody against P-cadherin with antitumor and antimetastatic activity. Clin Cancer Res 16: 5177-5188.