Survival of Burgess Shale-type animals in a Middle Ordovician deep-water setting

Thomas W. Hearing1,2*, David A. Legg3, Joseph P. Botting4,5, Lucy A. Muir4, Patrick McDermott6, Stephanie Faulkner7, Adam C. Taylor8 & Martin D. Brasier1,3,†

1 Department of Earth Sciences, Oxford University, South Parks Road, Oxford OX1 3PR, UK
2 Department of Geology, University of Leicester, University Road, Leicester LE1 7RH, UK
3 Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW, UK
4 Department of Palaeontology, National Museum of Wales, Cathays Park, Cardiff CF10 3NP, UK
5 Nanjing Institute of Geology and Palaeontology, 39 East Beijing Road, Nanjing 210008, China
6 Flat 8, Avonbank (Road off Pentre Road), St Clears, Carmarthen SA33 4AA, UK
7 Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PR, UK
8 School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
† deceased
*Correspondence: twh8@le.ac.uk

Abstract: Exceptional preservation of non-biomineralized arthropods, sponges and vermiform taxa occurs in the Darriwilian (Middle Ordovician) Llanfallteg Formation of South Wales, UK. The assemblage contains elements typical of Ordovician communities juxtaposed with those more commonly associated with Cambrian Konservat-Lagerstätten. This assemblage is preserved in rocks of a deep-marine succession dominated by fine-grained siliciclastic and volcaniclastic density-current deposits. Non-biomineralized taxa of Cambrian aspect are preserved as pyritized carbonaceous compressions on the spectrum of Burgess Shale-type preservation. Trilobites with phosphatized digestive structures have also been recovered. The assemblage of the Llanfallteg Formation Konservat-Lagerstätte demonstrates that some Burgess Shale-type faunal elements survived into the Middle Ordovician within cool, deep-water refugia in the Welsh Basin, offshore from communities dominated by typical Ordovician taxa.

Supplementary material: Assemblage composition data and sedimentological images can be found at https://doi.org/10.6084/m9.figshare.c.2182218.

Received 28 October 2015; revised 27 December 2015; accepted 05 January 2016

The Great Ordovician Biodiversification Event (GOBE) was a global increase in the ecological complexity and diversity of skeletal fossils at the generic, familial and ordinal levels during the Ordovician Period (Sepkoski 1981, 1995; Harper 2006; Servais et al. 2010; Harper et al. 2015). Groups typical of the later Palaeozoic (e.g. rhynchonelliform brachiopods, bryozoans, crinoids, corals) flourished, whereas typical Cambrian groups seemingly declined (e.g. Sepkoski & Sheehan 1983; Harper et al. 2015). Although many groups began to diversify during the Floian (Servais et al. 2010), the spatial and temporal patterns of the GOBE differed markedly for different organisms; for example, phytoplankton diversification appears to have begun during the late Cambrian (Servais et al. 2016), but corals did not diversify until the Late Ordovician (Webby et al. 2004a). Most groups show several peaks of diversification at different times; for example, during the early Floian, Darriwilian and late Katian for brachiopods, but during the early Sandbian, early Katian and late Katian for trilobites (Harper et al. 2015). Diversification patterns for some groups, such as brachiopods (Zhan & Harper 2006) and chitinozoans (Achab & Paris 2007), were different on different palaeocontinents. The potential drivers for these changes have been widely debated (Webby et al. 2004b) and were probably complex (Botting & Muir 2008).

Biomineralizing taxa form only a minority of ancient and Recent marine communities (e.g. Schopf 1978; Conway Morris 1986). However, the paucity of non-biomineralized fossils from Ordovician rocks has led to understanding of the GOBE being derived almost exclusively from these biomineralized and other easily preserved taxa, such as trilobites, brachiopods and fossil plankton (Servais et al. 2010). Ideally, these data must be combined with information derived from Konservat-Lagerstätten: deposits with exceptionally preserved fossils, which usually include non-biomineralized organisms and anatomical details that are not preserved under normal taphonomic conditions. As taphonomic windows revealing the rarely preserved non-biomineralizing majority of faunas, these deposits are critical to understanding the evolution of ecosystems.

Only a few Ordovician Konservat-Lagerstätten are currently known, and only two from the Middle Ordovician, both of which are unusual, shallow-water assemblages (Botting 2005; Liu et al. 2006). Ordovician Konservat-Lagerstätten in general represent a diverse range of communities, from shallow-water arthropod-dominated assemblages (e.g. Young et al. 2007) to diverse open-marine assemblages (Van Roy et al. 2010; Botting et al. 2015) and to a deep-water sponge- and hydroid-dominated community resembling certain modern abyssal faunas (Botting et al. 2011). The rarity of these deposits and their disparate community types currently makes it difficult to build a coherent picture of the diversification of non-biomineralized organisms during the GOBE.

A new exceptionally preserved fauna has been recovered from the Darriwilian (Middle Ordovician) Llanfallteg Formation, predominantly at Cat’s Hole Quarry, near Clarbeston Road, Pembrokeshire (Fig. 1a). From this site, Whittington (1993) described a single specimen of a trilobite, Placoparia (Placoparia) cambriensis, with
preserved antennae and axial tendinous nodes, and Legg & Hearing (2015) recently described a new xenopod arthropod, *Etainia howellsorum*. Herein we report further exceptionally preserved material collected by Cedric Conolly over 30 years, plus material collected by the authors from a large excavation in August 2013.

Geological setting

The Llanfallteg Formation crops out within several fault-bounded blocks across northern Pembrokeshire, near the village of Clarbeston Road. Exposures are limited to disused quarries and some small road cuttings. The beds were folded during the Caledonian orogeny and dip steeply at 80–90° south with a local strike of c. 63° (Fig. 1b). The sites are located south of the ENE–WSW-trending Penfford Fault.

British Ordovician regional stratigraphy has been defined principally by trilobite and graptolite biostratigraphy (e.g. Fortey & Owens 1987; Zalasiewicz et al. 2009). The local stratigraphy is integrated with the international scheme by both biostratigraphic correlation and a wealth of radiometric dates (e.g. Fortey et al. 2000; Brenchley et al. 2006). The Llanfallteg Formation mudstones contain the graptolites *Didymograptus ex gr. artus* and *Glossograptus armatus*; these fossils constrain the principal fossiliferous locality to the *D. artus* Biozone (Zalasiewicz et al. 2009). This places the Llanfallteg Formation in the earliest Llanvirn Stage of British regional stratigraphy (Fortey & Owens 1987).

![Fig. 1. Location and sedimentology of the Llanfallteg assemblage site. (a) Location map. (b) High-resolution geological map of the area surrounding the Llanfallteg assemblage site, with Ordnance Survey grid references. (c) Sedimentary log through Cat’s Hole Quarry (CHQ), the main exposure investigated in this study.](image-url)
globally correlated to the international Middle Ordovician Darriwilian Stage (Fortey et al. 2000).

The Llanfallteg Formation contains siliciclastic and volcaniclastic sediments interbedded with welded lapilli-tuffs. The siliciclastic units comprise massive lenticular or discontinuously laminated blue-grey clay-rich siltstones interleaved with moderately sorted millimetre-scale laminae of light grey fine sand and silt. The coarser laminae display unidirectional flow structures and can include clusters of graptolites, conodont elements and arthropod fragments. The clay-rich silty sediment locally includes small phosphatic nodules, generally in isolation, with one nodule-rich band 3.5 m below the base of the main tuff (Fig. 1c). The mixed sandy and silty laminae display unidirectional flow structures and can include clusters of graptolites, conodont elements and arthropod fragments. The clay-rich silty sediment locally includes small phosphatic nodules, generally in isolation, with one nodule-rich band 3.5 m below the base of the main tuff (Fig. 1c).

The volcaniclastic laminae are commonly wrinkled and often include soft-sediment deformation and water-escape structures. The dominance of amorphous silica and small quartz grains supports an interpretation of rapid deposition as ash-fall laminae from nearby volcanic eruptions.

Local quarries contain exposures of well-indurated, finely crystalline, acidic volcaniclastic units up to 25 m thick (Fig. 1). These units have a groundmass of amorphous silica with fiamme structures alongside accretionary lapilli and subhedral feldspar phenocrysts. The tuffs fine upwards from an erosive base with centimetre-scale subrounded to angular mudstone clasts. These welded lapilli-tuffs were energetically emplaced when hot (e.g. Boulter 1987), consistent with deposition from subaqueous pyroclastic flows after subaerial eruptions (e.g. Carey & Schneider 2011, and references therein).

The Llanfallteg assemblage

Approximately 450 body fossils were examined in this study. The assemblage includes skeletal and non-biomineralized taxa characteristic of both Cambrian and Ordovician communities. Ordovician elements, particularly graptolites and trilobites, form the majority of the preserved assemblage; ‘Cambrian-type’ organisms are rarer. The trilobites recovered are all taxa typical of Middle Ordovician moderate-depth to deep-water environments (Fortey & Owens 1987; Whittington 1993). They include taxa characteristic of an atheloptic assemblage, which are either blind or have very reduced eyes, such as Placoparia, Ormavus, Selenopelsici and several trinucleids, nileids and raphiophorids (Fortey & Owens 1987). Non-atheloptic trilobite taxa have also been found, but are less abundant.
One of the most striking specimens is a xenopod arthropod, *Etainia howellsorum* (Fig. 2a and b), with preserved appendages, including soft lamellar exopod setae, which is regarded as a member of an otherwise exclusively Cambrian clade (*Legg & Hearing 2015*). Other non-biomineralized arthropod specimens include some resembling the marrellomorph *Furca* (Fig. 2c), which is also known from other Ordovician sites (*Van Roy et al. 2010; Rak et al. 2013*).

Ceratiocaridid and trilobite carapaces dominate the remaining arthropod fauna. Ceratiocaridids are common elements in some Ordovician and Silurian marine deposits (e.g. *Braddy et al. 2004*) and at this site are represented by mostly fragmentary remains. The majority of trilobites from this deposit are benthic, with either no or greatly reduced eyes, typical of an atheloptic assemblage (*Fortey & Owens 1987*). Trilobite preservation here is three-dimensional and can be remarkable (*Whittington 1993*). Newly recovered nileid (*Barrandia*) and dalmanitid (*Ormathops*) specimens preserve traces of antennae, and numerous specimens, including of *Placoparia*, *Ormathops* and *Selenopeltis*, have phosphatized digestive structures (Fig. 2d). Only two pelagic trilobite specimens were recorded: a cyclopygid compound eye and *Corrugagnostus* sp. (but see *Fatka et al. 2009*).

Vermiform fossils of the Llanfallteg assemblage include soft-bodied annulated forms, one with apparent cephalic appendages (Fig. 2e), and weakly biomineralized palaescolceids (Fig. 2f). There is also a putative lobopodian (Fig. 2g) with a possible digestive structure.

The sponge fauna is of unusually low diversity compared with other Ordovician faunas from Wales (*Botting et al. 2015; Muir & Botting 2015*). An undescribed reticulosan with a perforated body wall is the only common species; a single specimen of the Burgess Shale protonaxonid genus *Pirania* was also recovered (Fig. 2h).

The remaining faunal elements are skeletonized taxa typical of Ordovician communities, without evidence for soft tissue preservation. Echinoderms are represented by a single specimen each of a mitrate (B. Lefebvre, pers. comm. 2015), an asterozoan (Fig. 2i), an edioasteroid and an isolated pematozoan columnal. The brachiopods are almost entirely lingulates, including a finely ribbed species resembling the common Ordovician genus *Monobolina* and a few other lingulid specimens. Bivalve molluscs, gastropods and nautiloids are present but rare. Most skeletonized taxa show damage consistent with moderate transport (e.g. separated or broken brachiopod valves, truncated asterozoan arms). Both graptoloid and dendroid graptolites are present. Graptoloids are the most abundant group (one-third of specimens) within the assemblage. Trace fossils are scarce, limited to infaunal burrowing of restricted morphology.

Exceptional preservation

Soft-tissue preservation in the Llanfallteg Formation Konservat-Lagerstätte is characterized by two principal modes: pyritized carbonaceous compressions of non-biomineralized taxa and phosphatization of arthropod digestive structures. Digestive tract preservation in *Selenopeltis* (Fig. 2d) shows the serial paired digestive caeca described by *Fatka et al. 2013*. The non-biomineralized taxa are preserved as pyritized carbonaceous compressions (Fig. 2b), possibly with some aluminosilicate replacement. Anatomical detail including appendages, gills and oral apparatus is preserved in *E. howellsorum* (*Legg & Hearing 2015*) and in some other specimens. Scanning electron microscopy reveals clusters of 1–5 \(\mu \text{m} \) diameter pyrite framboids in the flattened fossils. Although much of the pyrite has been oxidized, energy-dispersive X-ray spectroscopy demonstrates that both iron and carbon are concentrated in the fossils.

The taphonomic pathways at play in the Llanfallteg Formation Konservat-Lagerstätte are to be the subject of further work, but initial comparison can be made with Burgess Shale-type preservation in the eponymous Canadian deposit and the Chengjiang Konservat-Lagerstätte, which form a spectrum of Burgess Shale-type preservation (*sensu Cai et al. 2012*, fig. 6). However, it should be noted that the carbonate cement seal considered by some an essential component of Burgess Shale-type preservation (*Gaines et al. 2012*) has not been observed.

Discussion

Both sedimentological and palaeontological evidence support the deep-water, subphotic character of this assemblage. The fine-grained sediments, including distal turbidites, lack any evidence of wave or storm influence. The dominance of atheloptic forms among the trilobites implies subphotic, deep-water conditions, supporting previous work in the area (*Fortey & Owens 1987*). The dimmutive, low-diversity ichnofauna is also characteristic of a mud-dominated deep-water setting (*McIvoy 2004*). Many skeletal elements of the Llanfallteg assemblage, such as bivalve, brachiopod and echinoderm remains, are disarticulated or otherwise physically damaged, and are commonly incorporated within the density current deposits. This is consistent with transport of an exogenous fauna from the shallow-water habitats generally occupied by these taxa elsewhere in the Welsh Basin at this time (*Cope 1999; Botting & Muir 2008*; *Botting et al. 2013*).

The recovered biota is, therefore, not a single community, but a mixed assemblage combining elements from different ecosystems. In addition to transporting exogenous elements from shallower-water ecosystems, distal density currents also entrained organisms of an indigenous deep-water community, some of which were exceptionally well preserved. Swift burial can enhance preservation by suppressing sediment column chemoclines and raising the redox boundary, retarding the degradation of organic matter (e.g. *Gaines et al. 2012; Garson et al. 2012*). Rapid entombment could therefore have played a major role in the exceptional preservation here.

Even allowing for the mixing of communities within the Llanfallteg assemblage, the fauna demonstrates that taxa of Middle Ordovician aspect (e.g. the trilobites *Placoparia*, *Barrandia* and *Ormathops*) lived in the same area as taxa more typical of Cambrian Konservat-Lagerstätten (e.g. marrellomorph and xenopod arthropods, and piraniid sponges). The juxtaposition of these taxa is unusual, but invites four clear comparisons: the Early Ordovician Feozouata (*Van Roy et al. 2010*) and Afon Gam biotas (*Botting et al. 2015*), the Middle Ordovician Wmineshiek Lagerstätte (*Liu et al. 2006*) and the Upper Ordovician Beecher’s Trilobite Bed (*Briggs et al. 1991*).

The Feozouata Biota contains taxa typical of both Cambrian and Ordovician communities, alongside early examples of more modern groups (*Botting 2007; Van Roy et al. 2010, 2015*), which the Llanfallteg assemblage notably lacks. However, it remains unclear whether all these elements were derived from a single community or represent separate assemblages. The Feozouata sediments were deposited in much shallower water than the Llanfallteg Formation but nearer the Ordovician South Pole (e.g. *Martin et al. 2016*); hence, both the Llanfallteg and Feozouata assemblages could have been adapted to cool water, at depth and nearshore, respectively. The Tremadocian Afon Gam Biota of North Wales has been recovered from a series of mass-flow units deposited at around storm wave base. The Afon Gam community is similar to the Llanfallteg assemblage in the presence of Cambrian-type
arthropods, sponges and other taxa (Botting et al. 2015). In contrast, the Afon Gam Biota contains abundant algae and sponges, whereas arthropods (including trilobites) are relatively much scarcer; it also lacks the unexpectedly derived taxa observed in the Fezouata Biota (Botting et al. 2015).

The Llanfallteg assemblage contrasts with other exceptionally preserved faunas from Middle and Upper Ordovician strata in Wales, which represent shallower-water environments and are generally dominated by sponges. These contain some Burgess Shale sponge genera but lack non-poriferan Cambrian-type taxa (Botting et al. 2011; Botting & Muir 2012; Muir & Botting 2015).

The Winneshiek Lagerstätte from the Darrilwiian St Peter Formation, IA, USA (Liu et al. 2006), is the only Middle Ordovician Konservat-Lagerstätte known outside Wales. Fossils of the Winneshiek Lagerstätte include articulated conodont assemblages, articulated jawless fish head-shields, eurypterids and phylloarciads, but lack common Ordovician marine fossils such as trilobites and graptolites (Liu et al. 2006). As well as differences in fauna, the Llanfallteg and Winneshiek Konservat-Lagerstätten differ in depositional environment and modes of preservation. The St Peter Formation sandstones and shales were deposited in a shallow-water environment to the Llanfallteg Formation Konservat-Lagerstätte.

Of the Ordovician Konservat-Lagerstätten, the Katian (Upper Ordovician) Beecher’s Trilobite Bed and its equivalents from the Lorraine Group, NY, USA, have the most comparable depositional environment to the Llanfallteg Formation Konservat-Lagerstätte. Exceptional preservation in the Lorraine Group is restricted to a few thin horizons, traceable over c. 100 m, each preserving a mass mortality event caused by sediment influx as a fine-grained turbidite (Cisne 1973; Farrell et al. 2009). Both are therefore settings of deep-water fine-grained turbidite deposition, but the Llanfallteg Formation sedimentary packages are lenticular and difficult to trace over more than a few metres. The exceptional Lorraine Group faunas are dominated by the Late Ordovician atheloptic trilobite genus Triarthrus (Farrell et al. 2009) and non-biomineralized taxa are rare. The styles of preservation are also different between the Lorraine Group and Llanfallteg Formation Konservat-Lagerstätten, with Beecher’s Trilobite Bed involving more complete pyritization of biomineralized and non-biomineralized tissues, with all the organic matter metabolized by sulphate-reducing bacteria (Briggs et al. 1991). In contrast, there has only been partial pyritization of the exceptionally preserved fauna from the Llanfallteg Formation Konservat-Lagerstätte, as some organic matter has been retained (Fig. 2b). Despite these differences, Beecher’s Trilobite Bed and its equivalents record a similar, trilobite-dominated deep-water assemblage with other rarer elements, but have not yielded any surviving Burgess Shale-type taxa.

Conclusions

The Llanfallteg Formation Konservat-Lagerstätte contains a range of exceptionally preserved taxa with both Cambrian and Ordovician faunal elements. The indigenous fauna of the Llanfallteg assemblage represents a largely Cambrian-type assemblage living in deep water and contains some taxa typical of the Burgess Shale. Some of the Ordovician-type taxa show evidence of downslope transport from shallower environments.

The Llanfallteg assemblage supports a growing body of evidence that Burgess Shale-type taxa persisted into post-Cambrian communities, but became increasingly restricted to deep- and/or cold-water settings (Conway Morris 1989; Van Roy et al. 2010). These faunas were contemporaneous with animal communities evolving in shallow-water environments during the GOBE. The length of time that Cambrian-type taxa survived in deep-water refugia is not yet known: exceptional preservation in deep, aphotic habitats is rare, and their subsequent history may have been much longer than currently suspected.

Acknowledgements and Funding

The site was discovered and much of the material collected by C. Conolly. We thank him and B. Conolly for hospitality and assistance in the field. We are grateful to R. Griffiths and Pembrokeshire County Council, the tenant and owner, respectively, of the site. We would like to thank T. Servais and D. Harper for their constructive reviews of this paper. This work formed part of T.W.H.’s master’s thesis and was aided by funding to him from the Department of Earth Science, University of Oxford.

Scientific editing by Quentin Crowley

References

Achab, A. & Paris, F. 2007. The Ordovician chitinozoan biodiversification and its leading factors. Palaeogeography, Palaeoclimatology, Palaeoecology, 245, 5–19.

Botting, J.P. 2005. Exceptionally well-preserved Middle Ordovician sponges from the Llandegley Rocks Lagerstätte, Wales. Palaeontology, 48, 577–617.

Botting, J.P. 2007. ‘Cambrian’ demosponges in the Ordovician of Morocco: insights into the early evolutionary history of sponges. Geobios, 40, 737–748.

Botting, J.P. & Muir, L.A. 2008. Unravelling causal components of the Ordovician radiation: the Buitl inlier (Central Wales) as a case study. Lethaea, 41, 111–125.

Botting, J.P. & Muir, L.A. 2012. Fauna and ecology of the Holothurian Bed, Llandrindod, Wales, UK (Darrilwiian, Middle Ordovician), and the oldest articulated holothurian. Palaeontologia Electronica, 15, 9A, http://palaeo-electronica.org/content/2012-issue-1-articles/191-welsh-holothurian.bed.

Botting, J.P., Muir, L.A., Sutton, M. & Barrie, T. 2011. Welsh gold: a new exceptionally preserved pyritized Ordovician biota. Geology, 39, 879–882.

Botting, J.P., Muir, L.A. & Lefebvre, B. 2013. Echinoderm diversity and environmental distribution in the Ordovician of the Buitl inlier, Wales. Palaeontology, 56, 293–304.

Botting, J.P., Muir, L.A., Jordan, N. & Upton, C. 2015. An Ordovician variation on Burgess Shale-type biotas. Scientific Reports, 5, Article 9947, http://dx.doi.org/10.1038/srep09947.

Boultier, C.A. 1987b. Subaqueous deposition of acrernotrophic lapilli: significance for palaeoenvironmental interpretations in Archaean greenstone belts. Precambrian Research, 34, 231–246.

Braddy, S.J., Tollerton, V.P., Racheboeuf, P.R. & Schallreuter, R. 2004. Eurypterids, phyllocarids, and ostracodes. In: Webbey, B.D., Paris, F., Droux, M.L. & Percival, I.G. (eds) The Great Ordovician Biodiversification Event, Columbia University Press, New York, 255–265.

Brenchley, P.J., Rushston, A.W.A., Howells, M. & Cave, R. 2006. Cambrian and Ordovician: the early Palaeozoic tectonostratigraphic evolution of the Welsh Basin. Monland and Monian Terranes of Eastern Avalonia. In: Brenchley, P.J. & Rawson, P.F. (eds) The Geology of England and Wales. Geological Society, London, 25–74.

Briggs, D.E.G., Bottrell, S.H. & Raiswell, R. 1991. Pyritization of soft-bodied fossils: Beecher’s Trilobite Bed, Upper Ordovician, New York state. Geology, 19, 1221–1224.

Cai, Y., Schiffbauer, J.D., Hua, H. & Xiao, S. 2012. Preservational modes in the Llandegley Rocks Lagerstätte: Pyritization, aluminosilicification, and carbonaceous compression. Palaeogeography, Palaeoclimatology, Palaeoecology, 326, 109–117.

Carey, S.N. & Schneider, J. 2011. Volcaniclastic processes and deposits in the deep-sea. Developments in Sedimentology, 63, 457–516.

Cise, J.L. 1973. Beecher’s Trilobite Bed revisited: ecology of an Ordovician deep water fauna. Postilla, 161, 1–25.

Conway Morris, S. 1986. The community structure of the Middle Cambrian phyllopod bed (Burgess Shale). Palaeontology, 29, 423–467.

Conway Morris, S. 1989. The persistence of Burgess Shale-type faunas: implications for the evolution of deeper-water faunas. Transactions of the Royal Society of Edinburgh, Earth Sciences, 80, 271–283.

Cope, J.C.W. 1999. Middle Ordovician bivalves from Mid-Wales and the Welsh Borderland. Palaeontology, 43, 467–499.

Farrell, U.C., Martin, M.J., Hagadom, J.W., Whiteley, T. & Briggs, D.E.G. 2009. Beyond Beecher’s Trilobite Bed: widespread pyritization of soft tissues in the Late Ordovician Taconic foreland basin. Geology, 37, 907–910.

Fatka, O., Vokac, V., Monevec, J., Sinagl, M. & Vallet, M. 2009. Agnostids entombed in hyolith conchs. Memoirs of the Association of Australasian Palaeontologists, 37, 481–489.

Fatka, O., Leroisy, Aubrili, R., Budil, P. & Rak, S. 2013. Fossilised guts in trilobites from the Upper Ordovician Letná formation (Prague Basin, Czech Republic). Bulletin of Geosciences, 88, 95–104.
Fortey, R.A. & Owens, R.M. 1987. The Arengi series in South Wales: stratigraphy and palaeontology. *Bulletin of the British Museum of Natural History (Geology)*, 41, 69–307.

Fortey, R.A., Harper, D.A.T., Ingham, J.K., Owen, A.W., Parker, M.A., Rushton, A.W.A. & Woodcock, N.H. (eds) 2000. *A Revised Correlation of Ordovician Rocks in the British Isles*. Geological Society, London, Special Reports, 24.

Gaines, R.G., Hammarlund, E.U., et al. 2012. Mechanism for Burgess Shale-type preservation. *Proceedings of the National Academy of Sciences of the USA*, 109, 5180–5184.

Garson, D.E., Gaines, R.R., Droser, M.L., Liddell, W.D. & Sappenfield, A. 2012. Dynamic palaeoredox and exceptional preservation in the Cambrian Spence Shale of Utah. *Lethaia*, 45, 164–177.

Harper, D.A.T. 2006. The Ordovician Biodiversification Event: setting an agenda for marine life. *Palaeogeography, Palaeoclimatology, Palaeoecology*, 232, 148–166.

Harper, D.A.T., Zhan, R-B. & Jin, J. 2015. The Great Ordovician Biodiversification Event: reviewing two decades of research on diversity’s big bang illustrated by mainly brachiopod data. *Palaeoworld*, 24, 75–85.

Legg, D.A. & Hearing, T.W. 2015. A late surviving xenopod (Arthropoda) from the Ordovician of Wales. *Geological Magazine*, 152, 942–948.

Liu, H., McKay, R.M., Young, J.N., Witzke, B.J., McVey, K.J. & Liu, X. 2006. A new Lagerstätte from the Middle Ordovician St. Peter formation in Northeast Iowa, USA. *Geology*, 34, 969–972.

Martin, E.L.O., Pittet, G. et al. 2016. The Lower Ordovician Fezouata Konservat-Lagerstätte from Morocco: age, environment and evolutionary perspectives. *Gondwana Research*, in press, http://dx.doi.org/10.1016/j.gr.2015.03.009.

McIlroy, D. 2004. Some ichnological concepts, methodologies, applications and frontiers. In: McIlroy, D. (ed.) *The Application of Ichnology to Palaeoenvironmental and Stratigraphic Analysis*. Geological Society, London, Special Publications, 228, 3–27, http://dx.doi.org/10.1144/GSL.SP.2004.228.01.02.

Muir, L.A. & Botting, J.P. 2015. An outline of the distribution and diversity of Porifera in the Ordovician Bithul Inlier (Wales, UK). *Palaeoworld*, 24, 176–190.

Rak, Š., Ortega-Hernández, J. & Legg, D.A. 2013. A revision of the Late Ordovician marrellomorph arthropod *Furca bohemiaca* from Czech Republic. *Acta Palaeontologica Polonica*, 58, 615–628.

Schopf, T.J.M. 1978. Fossilization potential of an intertidal fauna: Friday Harbor, Washington. *Paleobiology*, 4, 261–270.

Sepkoski, J.J. 1981. A factor analytic description of the Phanerozoic marine fossil record. *Paleobiology*, 7, 36–53.

Sepkoski, J.J. 1995. The Ordovician radiations: diversification and extinction shown by global genus-level taxonomic data. In: Cooper, J.D., Droser, M.J. & Finney, S.C. (eds) *Ordovician Odyssey: Short Papers for the Seventh International Symposium on the Ordovician System*. Pacific Section Society for Sedimentary Geology (SEPM), Fullerton, CA, 393–396.

Sepkoski, J.J. & Sheehan, P.M. 1983. Diversification, faunal change and community replacement during the Ordovician radiations. In: Tevesz, M.J.S. & McCall, P.L. (eds) *Biologic Interactions in Recent and Fossil Benthic Communities*. Plenum, New York, 673–717.

Servais, T., Owen, A.W., Harper, D.A.T., Kröger, B. & Munnecke, A. 2010. The Great Ordovician Biodiversification Event (GOBE): the palaeoecological dimension. *Palaeogeography, Palaeoclimatology, Palaeoecology*, 294, 99–119.

Servais, T., Perrier, V., et al. 2016. The onset of the ‘Ordovician Plankton Revolution’ in the late Cambrian. *Palaeogeography, Palaeoclimatology, Palaeoecology*, in press, http://dx.doi.org/10.1016/j.palaeo.2015.11.003.

Van Roy, P., Orr, P.J., et al. 2010. Ordovician faunas of Burgess Shale type. *Nature*, 465, 215–218.

Van Roy, P., Briggs, D.E.G. & Gaines, R.R. 2015. The Fezouata fossils of Morocco: an extraordinary record of marine life in the Early Ordovician. *Journal of the Geological Society, London*, 172, 541–549, http://dx.doi.org/10.1144/jgs2015-017.

Webby, B.D., Elias, R.J., Young, G.A., Neuman, B.E. & Kaajo, D. 2004a. Corals. In: Webby, B.D., Paris, F., Droser, M.L. & Percival, I.G. (eds) *The Great Ordovician Biodiversification Event*. Columbia University Press, New York, 255–265.

Webby, B.D., Paris, F., Droser, M.L. & Percival, I.G. (eds) 2004b. *The Great Ordovician Biodiversification Event*. Columbia University Press, New York.

Whittington, H.B. 1993. Anatomy of the Ordovician trilobite *Placoparia*. *Nature*, 365, 848–850.

Zhan, R.B. & Harper, D.A.T. 2006. Biotic diachronity during the Ordovician Radiation: Evidence from South China. *Lethaia*, 39, 221–226. http://dx.doi.org/10.1080/00241160600799770