In order to survive, bacteria continually sense, and respond to, environmental fluctuations. Stringent control represents a key bacterial stress response to nutrient starvation\(^1,2\) that leads to rapid and comprehensive reprogramming of metabolic and transcriptional patterns\(^3\). In general, transcription of genes for growth and proliferation is downregulated, while those important for survival and virulence are upregulated\(^4\). Amino acid starvation is sensed by depletion of the aminoacylated tRNA pools\(^5\), and this results in accumulation of ribosomes stalled with non-aminoacylated (uncharged) tRNA in the ribosomal A site\(^6,7\). RelA is recruited to stalled ribosomes and activated to synthesize a hyperphosphorylated guanosine analogue, (p)ppGpp\(^8\), which acts as a pleiotropic secondary messenger. However, structural information about how RelA recognizes stalled ribosomes and discriminates against aminoacylated tRNAs is missing. Here we present the cryo-electron microscopy structure of RelA bound to the bacterial ribosome stalled with uncharged tRNA. The structure reveals that RelA utilizes a distinct binding site compared to the translational factors, with a multi-domain architecture that wraps around a highly distorted A-site tRNA. The TGS (ThrRS, GTPase and SpoT) domain of RelA binds the CCA tail to orient the free 3′ hydroxyl group of the terminal adenosine towards a β-strand, such that an aminoacylated tRNA at this position would be sterically precluded. The structure supports a model in which association of RelA with the ribosome suppresses auto-inhibition to activate synthesis of (p)ppGpp and initiate the stringent response. Since stringent control is responsible for the survival of pathogenic bacteria under stress conditions, and contributes to chronic infections and antibiotic tolerance, RelA represents a good target for the development of novel antibacterial therapeutics.

Stringent control is a pleiotropic response to the failure of amino acid availability to keep up with the demands of protein synthesis\(^1\). It is mediated by a hyperphosphorylated nucleotide ((p)ppGpp)\(^9,10\). In \textit{E. coli}, the synthesis of (p)ppGpp is catalysed by RelA\(^2\), a multi-domain ATP:GTP(GDP) pyrophosphate transferase, and a prototypic member of the RelA/SpoT homologue (RSH) family\(^11\). The majority of multi-domain RSH proteins are stimulated to generate (p)ppGpp in a ribosome-dependent manner when an uncharged and cognate tRNA, which acts as a marker for nutrient deficiency, is located in the ribosomal A site\(^7,8\). Discrimination against aminoacylated tRNA prevents undesired activation of stringent control during the normal translation cycle.

Using cryo-electron microscopy we have solved the structure of the \textit{E. coli} ribosome, programmed so that uncharged tRNA(Phe) occupies the A site, in complex with RelA at an overall resolution of 3.0 Å (Fig. 1, Extended Data Figs 1 and 2, and Extended Data Table 1). We did not

Figure 1 | Structure of RelA bound to the ribosome. a, Overall view of RelA in complex with a ribosome stalled with an uncharged tRNA in the A site. Displayed are the 50S and 30S ribosomal subunits; E-, P- and A-site tRNAs; mRNA, and RelA coloured by domain. b, Structure of the ribosome-bound form of RelA oriented from N to C termini with the domain organization below showing the boundaries of the hydrolase (HYD), synthetase (SYN), TGS, zinc-finger (ZFD) and RNA recognition motif (RRM) domains. Unmodelled flexible elements that connect RelA domains are indicated with dashed lines.

\(^1\)MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
\(^\dagger\)Present address: Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA.
\(^\ast\)These authors contributed equally to this work.
observe any class in which RelA was bound to the ribosome in the absence of A-site tRNA. Both RelA and the A-site tRNA remain flexible when bound to the ribosome, primarily due to binding intrinsically flexible rRNA elements (notably the L7/L12 stalk base and the A-site finger). Although there are only minor differences in conformations (Extended Data Fig. 1b), the heterogeneity was sufficient to result in RelA having less well-resolved density than the ribosome. To distinguish conformational states and improve the local map quality we used a recent modification of the 3D classification process12, in which ribosome projections were subtracted from each experimental particle, leaving signal only for RelA before classification focused on each domain (Methods and Extended Data Fig. 1). This improved the density for the RelA domains (Extended Data Figs 2 and 3) allowing models to be built (Extended Data Table 2).

The structure reveals that RelA forms a highly extended conformation on the ribosome to cradle the uncharged tRNA in a distorted conformation in the A site (Fig. 1). RelA has an N-terminal region formed by hydrolase (HYD), synthetase (SYN), and TGS domains that are located at the acceptor end of the A-site tRNA, and a C-terminal region formed by a zinc-finger domain and an RNA recognition motif (RRM) that run parallel to the anticodon arm of the tRNA. These five domains are connected by flexible and helical elements in a serpentine configuration that wind between the ribosome and the A-site tRNA (Fig. 1 and Extended Data Fig. 4). In this conformation, RelA inhibits accommodation of the acceptor arm of the uncharged tRNA into the peptidyl transferase centre.

As has been previously noted13, the overall conformation of the A-site tRNA in the presence of RelA resembles the A/T state adopted by pre-accommodated aminoacyl-tRNA in complex with EF-Tu14 (Fig. 2a). However, our high-resolution map reveals that the interactions between the tRNA and the ribosomal large subunit are very different, with the tRNA contacting both the RNA component of the L7/L12 stalk base (helices 42–44) and the sarcin-ricin loop (SRL; helix 95) (Fig. 2b). A stacking interaction between nucleotides C56 of the tRNA elbow and A1067 of the L7/L12 stalk base is reminiscent of how the L1 stalk (helices 76–78) recognizes E-site tRNA15. The antibiotic thiostrepton is coordinated with an outward movement of the L7/L12 stalk base (helices 42–44) and the sarcin-ricin loop (SRL; helix 95) (Fig. 2b). A stacking interaction between nucleotides C56 of the tRNA elbow and A1067 of the L7/L12 stalk base is reminiscent of how the L1 stalk (helices 76–78) recognizes E-site tRNA15. The antibiotic thiostrepton is coordinated with an outward movement of the L7/L12 stalk base (helices 42–44) and the sarcin-ricin loop (SRL; helix 95) (Fig. 2b). A stacking interaction between nucleotides C56 of the tRNA elbow and A1067 of the L7/L12 stalk base is reminiscent of how the L1 stalk (helices 76–78) recognizes E-site tRNA15. The antibiotic thiostrepton is coordinated with an outward movement of the L7/L12 stalk base (helices 42–44) and the sarcin-ricin loop (SRL; helix 95) (Fig. 2b).

Once EF-Tu has dissociated from the ribosome, it is not known whether the A-site tRNA conformation could still fluctuate or the higher affinity of aminoacylated (compared to uncharged) tRNA for the A site in the peptidyl transferase centre14,15 would stabilize the pre-accommodated aminoacyl-tRNA in complex with EF-Tu (light grey). RelA prevents accommodation of tRNA into the canonical A-site position (brown). P-site tRNA (green) and mRNA (dark grey) are shown for reference. Conformational differences between RelA-bound A-site tRNA (purple) and A/T-tRNA (light grey) result from an outward position of the L7/L12 stalk base and movement of the tRNA to contact the SRL (both light blue). c. The TGS domain (teal) binds the acceptor end of the A-site tRNA (purple) through a positively-charged helix that interacts with the phosphate backbone (expanded view). d. When viewed from the back as indicated in c, the 3′ CCA (nucleotides 74–76) of the A-site tRNA wraps around the surface of the TGS domain. e. The conformation of the CCA is maintained by interactions with invariant residues of the TGS domain. f. The free 3′ OH of the terminal adenine is positioned to face the 3′-5′ strand of the TGS domain to sterically preclude the binding of aminoacylated tRNAs.

Figure 2 | Molecular basis for the recognition of uncharged A-site tRNA. a. Comparison of A-site tRNAs. In the presence of RelA, A-site tRNA (purple) structurally resembles the A/T state adopted by pre-accommodated aminoacyl-tRNA in complex with EF-Tu (light grey). RelA prevents accommodation of tRNA into the canonical A-site position (brown). P-site tRNA (green) and mRNA (dark grey) are shown for reference. b. Conformational differences between RelA-bound A-site tRNA (purple) and A/T-tRNA (light grey) result from an outward position of the L7/L12 stalk base and movement of the tRNA to contact the SRL (both light blue). c. The TGS domain (teal) binds the acceptor end of the A-site tRNA (purple) through a positively-charged helix that interacts with the phosphate backbone (expanded view). d. When viewed from the back as indicated in c, the 3′ CCA (nucleotides 74–76) of the A-site tRNA wraps around the surface of the TGS domain. e. The conformation of the CCA is maintained by interactions with invariant residues of the TGS domain. f. The free 3′ OH of the terminal adenine is positioned to face the 3′-5′ strand of the TGS domain to sterically preclude the binding of aminoacylated tRNAs.
are extremely flexible, and occupy multiple positions between the SRL and the spur of the small subunit (185 rRNA helix 6). Using our focused classification approach we isolated a few well-populated states that were sufficiently resolved to orient a model based on a crystal structure of a homologue (Extended Data Fig. 1a). Although the synthetase domain can, in some classes, contact the tip of the spur (nucleotides 84–88), the general absence of interactions with the ribosome, suggests that RelA activation is indirect. Rather, as the isolated catalytic domain of RelA is constitutively active in a ribosome-independent manner, our structure supports a model where association with the ribosome and uncharged A-site tRNA suppresses regulatory auto-inhibition that results from RelA homodimers or oligomers, as previously suggested. This contrasts with activation of the translational GTPases in which the SRL has a direct role in inducing catalysis. Our structure should provide a framework for the design of experiments to differentiate among the various proposed mechanisms for RelA.

In conclusion, our structural data reveal how RelA specifically recognizes ribosomes stalled under conditions of amino acid starvation to activate synthesis of (p)ppGpp and initiate the stringent response. By using the ribosome as a signalling platform, RelA provides an immediate link between the status of translation and global adaptation to the environment. As the distribution of the RSH family is strictly limited to bacteria, and stringent control contributes to the virulence, persistence, and antibiotic tolerance of bacterial infections, the structure can provide a framework for the development of therapeutics that can selectively inactivate stringent control and re-sensitize resilient bacteria to antibiotics.

Online Content Methods, along with any additional Extended Data display items and Source Data, are available in the online version of the paper; references unique to these sections appear only in the online paper.

Received 9 December 2015; accepted 18 March 2016.

Published online 9 May 2016.

1. Sands, M. K. & Roberts, R. B. The effects of a tryptophan-histidine deficiency in a mutant of Escherichia coli. J. Bacteriol. 63, 505–511 (1952).
2. Stent, G. S. & Brenner, S. A genetic locus for the regulation of ribonucleic acid synthesis. Proc. Natl Acad. Sci. USA 47, 2005–2014 (1961).
3. Hauryliuk, V., Atkinson, G. C., Murakami, K. S., Tenson, T. & Gerdes, K. Recent functional insights into the role of (p)ppGpp in bacterial physiology. Nat. Rev. Microbiol. 13, 296–309 (2015).
4. Magnusson, L. U., Farewell, A. & Nyström, T. ppGpp: a global regulator in Escherichia coli. Trends Microbiol. 13, 236–242 (2005).
5. Fangman, W. L. & Neidhardt, F. C. Protein and ribonucleic acid synthesis in a mutant of Escherichia coli with an altered aminoacyl-ribonucleic acid synthetase. J. Biol. Chem. 239, 1844–1847 (1964).
6. Haseltine, W. A. & Block, R. Synthesis of guanosine tetra- and pentaphosphate requires the presence of a codon-specific, uncharged transfer ribonucleic acid in the acceptor site of ribosomes. Proc. Natl Acad. Sci. USA 70, 1564–1568 (1973).
7. Pedersen, F. S., Lund, E. & Kjeldgaard, N. O. Codon specific, tRNA dependent in vitro synthesis of ppGpp and pppGpp. Nat. New Biol. 243, 13–15 (1973).
8. Haseltine, W. A., Block, R., Gilbert, W. & Weber, K. MSI and MSII made on a ribosome in idling step of protein synthesis. Nature 238, 381–384 (1972).
9. Cashel, M. & Gallant, J. Two compounds implicated in the function of the RC gene of Escherichia coli. Nature 221, 838–841 (1969).
10. Cashel, M. & Kalbacher, B. The control of ribonucleic acid synthesis in Escherichia coli. V. Characterization of a nucleotide associated with the stringent response. J. Biol. Chem. 245, 2309–2318 (1970).
11. Atkinson, G. C., Tenson, T. & Hauryliuk, V. The RelA/SpoT homolog (RSH) superfamily: distribution and functional evolution of ppGpp synthetases and hydrolyases across the tree of life. PLoS One 6, e23479 (2011).
12. Bai, X.-C., Rajendra, E., Yang, G., Shi, Y. & Scheres, H. S. Sampling the conformational space of the catalytic subunit of human --septate. eLife 4, e11182 (2015).
13. Agirrezabala, X. et al. The ribosome triggers the stringent response by RelA via a highly distorted tRNA. EMBO Rep. 14, 811–816 (2013).
14. Schmeing, T. M. et al. The crystal structure of the ribosome bound to EF-Tu and aminoacyl-tRNA. Science 326, 688–694 (2009).
15. Selmer, M. Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313, 1935–1942 (2006).
16. Lill, R., Robertson, J. M. & Wintermeyer, W. Affinities of tRNA binding sites of ribosomes from Escherichia coli. Biochemistry 25, 3245–3255 (1986).
17. Schilling-Bartetzko, S., Franceschi, F., Sternbach, H. & Nierhaus, K. H. Apparent association constants of tRNAs for the ribosomal A, P and E sites. J. Biol. Chem. 267, 4693–4702 (1992).

Figure 3 | Interactions between RelA and the ribosome. a, Overview (left) and details (right) of the interaction between the zinc-finger domain (ZFD) (orange) and RRM (blue) of RelA and the ribosomal ASF (light blue) that spans the inter-subunit interface between the P-site (green) and A-site (purple) tRNAs. RelA acts as an additional inter-subunit bridge by binding uL16 (cyan) in the large subunit and uS19 (yellow) in the small subunit. PTC, peptidyl transferase centre. b, The α-helix of the ZFD binds in the major groove of the ASF, with the zinc-binding site interacting with the phosphate backbone. c, By binding to uS19, the ZFD occupies the position adopted by the ASF in the rotated ribosome (grey).

(Fig. 3a and Extended Data Fig. 7). Although the C terminus was known to be involved in binding to the ribosome, the nature of the interaction is unexpected and was not previously noted in the low-resolution reconstruction. To our knowledge, this represents a novel binding site on the ribosome for an extrinsic factor.

RelA interacts with the tip of the ASF through an unpredicted, and unusual, CCHC-type zinc-finger domain. This domain has a ββαββ topology (Extended Data Fig. 6), with a single zinc ion co-ordinated at the N terminus of the α-helix (Fig. 3b). The zinc-binding residues, Cys612 and His634, directly contribute to binding the ASF by interacting with the phosphate backbone of nucleotide U884 and help to orient the α-helix in the major groove of the ASF. The ASF usually forms a dynamic bridge (B1a) with either uS13 or uS19 depending on the ratcheted state of the ribosome. RelA stabilizes the bridge with uS13 by binding to the same interface of uS19 as occupied by the ASF in the rotated ribosome, which results in a better-defined ASF than in any previous ribosome structure (Fig. 3c).

The C-terminal domain is sandwiched between the upper part of the ASF and the A-site tRNA, and contacts the large subunit protein, uL16 (Fig. 3a). Although this domain had been predicted as an ACT fold, the interaction between the face of its four-stranded antiparallel β-sheet and the ASF is more reminiscent of an RNA recognition motif (RRM), which shares the same topology (Extended Data Fig. 8). Furthermore, conjoint RRM/zinc-finger domains are common in eukaryotes.
18. Sprinzl, M. & Richter, D. Free 3′-OH group of the terminal adenosine of the tRNA molecule is essential for the synthesis in vitro of guanosine tetraphosphate and pentaphosphate in a ribosomal system from Escherichia coli. Eur. J. Biochem. 71, 171–176 (1976).

19. Friesen, J. D., Flil, N. P., Parker, J. M. & Haseltine, W. A. A new relaxed mutant of Escherichia coli with an altered 50S ribosomal subunit. Proc. Natl Acad. Sci. USA 71, 3465–3469 (1974).

20. Wendrich, T. M., Blaha, G., Wilson, D. N., Marahiel, M. A. & Nierhaus, K. H. Dissection of the mechanism for the stringent factor RelA. Mol. Cell 10, 779–788 (2002).

21. Gropp, M., Strausz, Y., Gross, M. & Glaser, G. Regulation of Escherichia coli RelA requires oligomerization of the C-terminal domain. J. Bacteriol. 183, 570–579 (2001).

22. Schreiber, G. et al. Overexpression of the relA gene in Escherichia coli. J. Biol. Chem. 266, 3760–3767 (1991).

23. Vallee, M. et al. Locking and unlocking of ribosomal motions. Cell 114, 123–134 (2003).

24. Maris, C., Dominguez, C. & Allain, F. H. T. The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. FEBS J. 272, 2118–2131 (2005).

25. Hogg, T., Mechold, U., Malke, H., Cashel, M. & Hilgenfeld, R. Conformational antagonism between opposing active sites in a bifunctional RelA/SpoT homolog modulates (p)ppGpp metabolism during the stringent response. Cell 117, 57–68 (2004).

26. Yang, X. & Ishiguro, E. E. Dimerization of the RelA protein of Escherichia coli. Biochem. Cell Biol. 79, 729–736 (2001).

27. English, B. P. et al. Single-molecule investigations of the stringent response machinery in living bacterial cells. Proc. Natl Acad. Sci. USA 108, E365–E373 (2011).

28. Voorhees, R. M. & Ramakrishnan, V. Structural basis of the translational elongation cycle. Annu. Rev. Biochem. 82, 203–236 (2013).

29. Li, W. et al. Effects of amino acid starvation on RelA diffusive behavior in live Escherichia coli. Mol. Microbiol. 95, 571–589 (2016).

30. Nguyen, D. et al. Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science 334, 982–986 (2011).

Acknowledgements We thank A. Kelley for providing tRNAs, A. Xu and J. Murray for their contributions to the early stages of this project, C. G. Savva for help with data collection, J. Grimmett and T. Darling for computing support, and X. Bai, G. Murshudov, S. H. W. Scheres, and S. Tan for discussions. This work was supported by grants to V.R. from the UK Medical Research Council (MC_U105184332), the Wellcome Trust (WT096570), the Agouron Institute, and the Louis-Jeantet Foundation.

Author Contributions A.B., I.S.F., and V.R. designed the study. Y.G. purified ribosomes. I.S.F. prepared samples, optimized conditions and collected data. A.B. processed data and interpreted the cryo-electron microscopy reconstructions. A.B., I.S.F., and V.R. wrote the manuscript. All authors discussed and commented on the final manuscript.

Author Information The maps have been deposited with the EMDB under accession codes 8107–8115. Coordinates have been deposited with the Protein Data Bank under the accession code 5IQR. Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests. Readers are welcome to comment on the online version of the paper. Correspondence and requests for materials should be addressed to V.R. (ramak@mrc-lmb.cam.ac.uk).
METHODS

No statistical methods were used to predetermine sample size. The experiments were not randomized and the investigators were not blinded to allocation during experiments and outcome assessment.

RelA purification. The full-length E. coli RelA protein containing an in-frame N-terminal octahistidine tag and the recognition signal for tobacco etch virus (TEV) protease was recombinantly expressed in E. coli BL21 cells, as previously described14. In a modification to the reported procedure, the protein was expressed for 3 h at 25 °C after induction. Cells were collected by centrifugation at 4 °C and lysed by sonication in ice-cold lysis buffer (50 mM Tris pH 7.5, 1 M KCl, 1 mM MgCl₂, 15 mM imidazole, 2 mM DTT) containing 1 μM protease inhibitor cocktail (Roche). After centrifugation, the supernatant of the lysate was applied to a 5 ml HisTrap HP column (GE Healthcare) equilibrated in lysis buffer. After copious washing, a linear gradient of lysis buffer supplemented with 450 mM imidazole was used to elute the histidine-tagged RelA protein. RelA was dialysed against 2 l of buffer A (20 mM Tris pH 7.5, 0.6 M KCl, 10 mM Mg(OAc)₂, 6 mM β-mercaptoethanol), 1 M HEPEs pH 7.5, 50 mM KCl, 10 mM NH₄Cl, 10 mM Mg(OAc)₂, 6 mM β-mercaptoethanol), before a further pelleting step at 200,000 × g for 18 h. After washing with buffer B, the pellets were resuspended to a final concentration of ~6.8 μM in buffer G. Aliquots of 20 μl were flash-cooled in liquid nitrogen and stored at ~80 °C.

Aminoacylated fMet-tRNAMet and uncharged tRNAphe were produced as previously reported15. A modified version of Z4C mRNA15 was chemically synthesized (GE Dharmacon) to include six codons for Phe (UUC) after the initiator fMet (UAA). To stabilize the codon–anticodon interaction of the A-site tRNA, 1 μM paromomycin was added. After a further 5 min incubation, the sample was cooled to 4 °C and used immediately to prepare grids for electron microscopy.

Electron microscopy. Aliquots of 3 μl of the RelA complex were incubated for 20 s on glow-discharged holey carbon grids (Quantifoil R2/2), on which a custom-made amorphous carbon film had previously been deposited. The grids were blotted for 5 s in 100% humidity at 4 °C before being flash-cooled in liquid ethane using a Vitrobot MKII (FEI).

Grids were transferred to a Polara G2 microscope (FEI) operated at 300 kV. Images were recorded with the EPU automated data acquisition software on a Falcon III direct electron detector (FEI) at a calibrated magnification of 104,478 × (yielding a pixel size of 1.34 Å). Images were collected with a total dose of 35 e⁻/Å² and a defocus range of −1.8 to −3.0 μm. A bespoke system was used to intercept the videos from the detector at a speed of 30 frames for the 1.1–e₀3666 particles.

Image processing. All micrographs that showed signs of astigmatism, substantial drift, or poor ice were discarded. The frames of the remaining micrographs were aligned using whole-image motion correction15 to reduce beam-induced blurring. Parameters of the contrast transfer function for each motion-corrected micrograph were obtained using Gctf16. The interactive semi-automatic swarm tool in the e2boxer.py program of EMAN217 was used to select particles from the images.

We used reference-free two-dimensional class averaging in RELION14 to discard non-ribosomal particles and particles of isolated subunits. After two-dimensional classification, Euler angles for each particle were assigned using three-dimensional refinement in RELION14 using a 60 Å low-pass-filtered reconstruction of EMDB-237315 as an initial reference.

This resulted in a consensus reconstruction in which density for tRNAs and RelA were apparent, but at lower occupancy than the ribosome. To enrich for particles containing RelA, we employed focused classification with signal subtraction. This yielded a class in which the A site was fully occupied. The movements of particles within this class were corrected in RELION and the contributions of each frame weighted using a resolution-dependent radiation damage model17 to generate ‘polished particles’. Polished particles from different data sets were commingled and further classified and refined to yield a final data set of 164,353 particles with a nominal resolution of 3.0 Å (Extended Data Table 1). Owing to non-ribosomal conformational heterogeneity, subsequent rounds of FCwSS were used to isolate different states of RelA. Prior to visualization, all density maps were corrected for the modulation transfer function (MTF), and then sharpened by applying a B-factor that was estimated using automated procedures18. Local resolution was quantified with ResMap37 (Extended Data Fig. 2).

Model building. The reconstruction was initially interpreted by docking the high-resolution crystal structure of the Escherichia coli 70S ribosome (PDB accession code 4YBB15) into the map using Chimera38. Models for tRNA, rRNA and mRNA were taken from the Thermus thermophilus 70S in complex with EF-Tu (PDB accession code 5AFI40). Initial models for the tRNAs and mRNA were taken from the Streptococcus equisimilis RSH15 (PDB accession code 1V7F). A model for the TGS domain was derived from the crystal structure of the TGS domain from Clostridium leptum RSH (PDB accession code 3HVZ). The ZFD and connecting elements were built de novo (Extended Data Table 2). The fit of all models to the map was optimized using real space refinement in Coot44.

Model refinement and validation. Reciprocal space refinement was carried out in REFMAC v5.8 optimized for EM maps using external restraints generated by ProSMART and LIBQ44. Fourier shell correlation (FSC)_avg was monitored during refinement and the final model was validated using MolProbity45 (Extended Data Table 1). Cross-validation against over-fitting was performed as previously described15,46. Figures were generated using PyMOL39, Chimera44, or Coot/Raster3D40,41.
43. Zhang, Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9, 40 (2008).
44. Brown, A. et al. Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions. Acta Crystallogr. D 71, 136–153 (2015).
45. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2009).
46. Amunts, A. et al. Structure of the yeast mitochondrial large ribosomal subunit. Science 343, 1485–1489 (2014).
47. DeLano, W. L. The PyMOL molecular graphics system. (2002).
48. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).
49. Merritt, E. A. & Bacon, D. J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997).
50. Stivala, A., Wybrow, M., Wirth, A., Whisstock, J. C. & Stuckey, P. J. Automatic generation of protein structure cartoons with Pro-origami. Bioinformatics 27, 3315–3316 (2011).
51. Baker, N. A., Sept, D., Joseph, S. & Holst, M. J. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl Acad. Sci. USA 98, 10037–10041 (2001).
Extended Data Figure 1 | In silico 3D classification scheme. a, All particles were subjected to 2D classification, from which non-ribosomal particles were discarded, before 3D refinement. To isolate particles containing A-site tRNA and RelA, 3D classification focused on occupancy of the ribosomal A site was performed. Refinement of these 183,615 particles resulted in a reconstruction with a nominal resolution of 2.9 Å. A second round of 3D classification isolated 164,353 well-aligned particles. Conformational heterogeneity of the ribosome was resolved by 3D classification without alignment, which identified two dominant classes in which the body of the small subunit occupies different positions (indicated with an arrow). Class 1 was used as the reference for model building, refinement, and interpretation. To resolve additional conformational heterogeneity of RelA, focused classification with signal subtraction (FCwSS) was performed on each domain, with the hydrolase (HYD) and synthetase (SYN) domains treated as a single unit. For the RRM, zinc-finger and TGS domains a single class was isolated in which the density was better resolved than in the reference class. The overall resolution of the reconstructions are reported according to the Fourier shell correlation (FSC) = 0.143 criterion. Multiple conformations of the HYD and SYN domains were identified, with the four best-resolved classes shown. Together these account for 42% of the particles. b, The two main classes for the TGS domain provide an example of the small conformational differences that were isolated using FCwSS.
Extended Data Figure 2 | Quality of maps and models.

a, FSC curve for the EM map.
b, The unfiltered and unsharpened density map, in both surface and slice view, coloured by local resolution.
c, Fit of models to maps. FSC curves calculated between the refined model and the final map (black), with the self- and cross-validated correlations in blue and magenta, respectively. Information beyond 3.0 Å was not used during refinement and preserved for validation.
d, e, Examples of high-resolution features of the map.

d, Density for selected rRNA modifications and paromomycin.
e, Density for the codon–anticodon interaction in the A site.
f, Unfiltered and unsharpened map of RelA bound to the bacterial ribosome, showing the ribosome-binding RelA domains coloured by local resolution according to the FCSS maps (see Extended Data Fig. 1). The regions amplified in panels f and g are highlighted.
g, h, The RelA ZFD and RRM coloured by local resolution.
h, The TGS domain coloured by local resolution.
Extended Data Figure 3 | Examples of RelA density. a, Density for the interaction between the 3′ CCA of the A/T-tRNA and the TGS domain. b, A modelled tRNA_A_{Ala} demonstrates that even the smallest aminoacyl groups would clash with RelA. The sphere size of the atoms of the aminoacyl group corresponds to their van der Waals radii. c, C74 stacks with His432 and C75 can potentially interact with Arg438 of the TGS domain. d, Density for helix α4 of the TGS domain. e, Density for TGS α3. f, Density for the interaction between the ZFD and uS19, showing distinctive density for two consecutive histidine residues. g, Example of side chain density used for the de novo building of the ZFD.
Extended Data Figure 4 | RelA domains are connected by flexible linkers. Two related views showing the density that connects the RelA HYD, SYN and TGS domains with the ZFD/RRM. The linker runs between the A/T-tRNA and the ribosome, but remains flexible as suggested by the weak and broken density. The figure shows the unfiltered, unsharpened density map for the ribosomal small subunit (SSU) of class 4 (Extended Data Fig. 1) with the large subunit removed for clarity.
Extended Data Figure 5 | The conformation of uncharged A-site tRNA in the presence of RelA is distinct from aminoacylated A/T-tRNA in the presence of EF-Tu. a, The ASLs of A-site tRNA (purple) and A/T-tRNA (grey) superpose until base-pair 27:43. At this point, the A-site tRNA is distorted so that the tRNA elbow regions are separated by a 6° rotation. b, A second 11° rotation occurs at base-pair 7:66 of the acceptor stem so that the A-site tRNA in the presence of RelA is closer to the ribosomal SRL.
Extended Data Figure 6 | RelA topology diagram. Secondary structure elements for RelA residues 404–740 are numbered separately for each domain. Unbuilt sections are shown as dashed lines. Topologies were extracted using Pro-origami50.
Extended Data Figure 7 | RelA binds RNA through electropositive surfaces. a, The ZFD and RRM of RelA act together to recognize the ASF of the LSU rRNA. b, As in a, but with the ZFD and RRM shown in surface representation coloured by electrostatic potential. c, The RelA TGS domain binds the acceptor arm of the A/T-tRNA. d, As in c, but with the TGS domain in surface representation coloured by electrostatic potential. Electrostatic potentials were calculated using APBS, where k is Boltzmann’s constant, T is the temperature of the calculation (310 K) and e is the charge of an electron.
Extended Data Figure 8 | RelA contains an RNA recognition motif (RRM). a, The RRM from RelA binds the ASF (nucleotides 894–899 shown) through the face of the β-sheet. b, RRMs recognize a wide variety of RNA molecules, but share a common fold and a similar protein–RNA interface, for example in the interaction between PRP24 and U6 small nuclear RNA (PDB accession code 4N0T).
Extended Data Table 1 | Refinement and model statistics

Data Collection	
Particles	98,498
Pixel size (Å)	1.34
Defocus mean (µm)	2.0
Defocus range (µm)	0.5 - 3.9
Voltage (kV)	300
Electron dose (e- Å⁻²)	35

Model composition

Non-hydrogen atoms	151,800
Protein residues	6,229
RNA bases	4,782
Ligands (Zn²⁺/Mg²⁺/H₂O/PAR)	3/312/2/1

Refinement

Resolution (Å)	3.0
Map sharpening B-factor (Å²)	-40
Average B factor (Å²)	106.0
FSC_{average}	0.82

Rms deviations

Bond lengths (Å)	0.005
Bond angles (°)	1.1

Validation (proteins)

Molprobity score	2.5 (95th)
Clashscore, all atoms	6.5 (100th)
Good rotamers (%)	94.2

Ramachandran plot

Favored (%)	91.3
Outliers (%)	1.3

Validation (RNA)

Correct sugar puckers (%)	99.0
Good backbone conformations (%)	78.4

The RelA HYD/SYN domain (residues 15–353) was modelled as a rigid-body fitted homology model and excluded from refinement.
Extended Data Table 2 | Modelled residues

Residues	Domain	Model details
15-353	HYD/SYN	Rigid body fitted homology model based on PDB accession code 1VJ7.
404-501	TGS	Model based on PDB accession code 3HVZ adjusted to fit the density.
539-549	Linker	Modeled as a poly(alanine) helix.
553-571	Linker	Modeled as a poly(alanine) helix.
594-663	ZFD	Built *de novo*.
664-740	RRM	Model based on PDB accession code 3IBW adjusted to fit the density.