The cytochrome P450s (CYPs) are members of a superfamily of oxidative enzymes, which represent the major system for the oxidative metabolism of therapeutic substances. Sequencing of the human genome has revealed 58 different human CYP genes, which encode various CYP isoenzymes. The most important enzyme for most dermatological drugs is CYP3A.

Inducers are drugs that increase the levels of CYP3A, leading to increased metabolism and decrease of effectiveness of other drugs; Rifampin is one example of drugs used in dermatology that are inducers.

Inhibitors block CYP3A and lead to decreased metabolism and increased effectiveness; examples of systemic dermatological medication include antifungals (Itraconazole, Ketoconazole) and antibiotics (Erythromycin, Clarithromycin).

The substrate drugs are primarily metabolized by CYP3A and are the most influenced; examples: immunosuppressive agents (Cyclosporine, Tacrolimus), macrolides (Erythromycin, Clarithromycin); some drugs are both inhibitors and substrates [1].

The cardiovascular toxicity of the medication used in current practice is important to be considered by any prescribing physician. Mladěnka et al. identified in their 2017 review of the cardiovascular toxicity of drugs and related agents several types of cardiovascular insults: disturbances in cardiac rhythm, functional and
structural heart impairment, arterial and venous thrombo-embolism, effects on blood pressure [2].

In the last decades more and more systemic agents are being used alone, or combined with topical therapy.

Some of the most frequently used classes of systemic drugs that are in the daily armamentarium of dermatologists, together with information on the mechanism of action, cardiovascular effects and interactions with cardiovascular drugs are shown in Annex (Table 22.1).

Dapsone

Dapsone is an aniline derivative; it combines both antimicrobial/antiprotozoal properties and anti-inflammatory effects resembling those of non-steroidal anti-inflammatory drugs. As an antimicrobial agent, dapsone is bacteriostatic in action [17]. Dapsone is a competitive antagonist of Para-AminoBenzoic Acid (PABA) interfering with normal synthesis of folic acid by bacteria.

Dapsone is effective in dermatoses with abnormal neutrophil accumulation, through many potential mechanisms. Dapsone interferes with neutrophil chemotactic migration and β2 integrin (CD11b/CD18)—mediated adherence of human neutrophils in vitro. Dapsone interferes with the activation or function of the G-protein that initiates the signal transduction cascade common to chemotactic stimuli. This inhibition suppresses neutrophil recruitment and local production of toxic respiratory and secretory products of neutrophils [18].

The well-established indications are leprosy and dermatitis herpetiformis. It is also indicated for linear IgA dermatosis, bullous lupus, erythema elevatum et diutinum as well as other autoimmune bullous dermatoses, vasculitis, neutrophilic dermatoses (Sweet syndrome, pyoderma gangrenosum, Behçet syndrome) and other dermatoses [133].

Cardiovascular side effects: hypersensitivity myocarditis has been associated with Dapsone at therapeutic doses [19] [20]. Dapsone-induced DRESS, with fever, maculo-papular eruptions that progresses to exfoliative dermatitis, cervical lymphadenopathy, transaminitis, and cardiac involvement has been described in just a few cases [20]. The cardiac involvement in DRESS syndrome is represented by hypersensitivity myocarditis that can occur in two forms: hypersensitivity myocarditis (also known as acute eosinophilic myocarditis) and acute necrotizing eosinophilic myocarditis. Hypersensitivity myocarditis is usually self-limited, with a good prognosis once the offending agent is discontinued and the hypersensitivity reaction is suppressed by immunotherapy. ECG evaluation often shows nonspecific ST segment or T-wave abnormalities, conduction delay, or sinus tachycardia. Acute necrotizing eosinophilic myocarditis is a much more severe form of hypersensitivity myocarditis that presents with chest pain, ST segment elevation, elevated cardiac enzymes, and normal coronary arteries. The prognosis is poor and the mortality rate associated with this type of myocarditis is greater than 50% [21].
Antimalarial Agents

Chloroquine (CQ) and hydroxy-chloroquine (HCQ) have immunomodulatory, anti-inflammatory, and antiproliferative properties; they alleviate UV-induced inflammation, inhibit thrombocyte aggregation, enhance glucose tolerance, and cause increased porphyrin excretion [40]. They act by inhibition of antigen processing and presentation, inhibition of cytokine release, inhibition of stimulation of toll-like receptors that participate in immune response. Antimalarials decrease the activity of natural killer cells, inhibit the activity of cytotoxic T lymphocytes, regulate apoptosis; they competitively inhibit anti-DNA antibodies and decrease prostaglandin and leukotriene levels and they block superoxide radicals [40].

Antimalarials are effective for the treatment of the specific skin lesions of cutaneous lupus erythematosus whether acute, subacute, or chronic. Off-label indications include photosensitivity dermatoses (porphyria cutanea tarda, polymorphous light eruption, solar urticaria, dermatomyositis), granulomatous dermatoses (sarcoidosis, granuloma annulare), lymphocytic infiltrates, panniculitis and other dermatoses [41].

Cardiovascular side effects: At normal dosages, CQ/HCQ have no negative effects on the heart. There are case reports, however, on conduction disorders, cardiomyopathy, and even death [40].

At the time of writing, several potential treatments for treating Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2 were under investigation. Some candidate drugs may cause PR prolongation (e.g. lopinavir/ritonavir) and/or QT prolongation (chloroquine, hydroxychloroquine, azithromycin, lopinavir/ritonavir, and others). The expectedly short treatment duration for COVID-19 (5−10 days) mitigates the drugs’ cardiac risks to an extent [134].

Antimalarials induced cardiomyopathy is a rare, probably under-recognized, complication of prolonged treatment with antimalarials. It presents as hypertrophic, restrictive cardiomyopathy with or without conduction abnormalities [42].

Retinoids

Retinoids are small-molecule hormones that exert their effects on target cells by binding and activating nuclear retinoid receptors [43–45]. For several decades, systemic retinoids have been used to treat psoriasis and disorders of keratinization [135]. FDA approved systemic retinoid use in three dermatoses: Acitretin is indicated for psoriasis, Isotretinoin for acne vulgaris and Bexarotene for selected cases of mycosis fungoides. Other indications for dermatologic disorders include: follicular disorders (acne-related conditions, hidradenitis suppurativa, dissecting cellulitis of the scalp), disorders of keratinization (Darier’s disease, pityriasis rubra pilaris, ichthyosis, keratodermas), rosacea, chemoprevention of malignancies (syndromes with increased risk of cutaneous malignancy, xeroderma pigmentosum, Kaposi’s sarcoma) and other inflammatory dermatoses [43].

Cardiovascular side effects: There are limited reports on the adverse cardiac effects of isotretinoin in literature. According to case reports, systemic isotretinoin
therapy can cause cardiac side effects, like atrial tachycardia, congenital heart disease, cardiac remodeling and sinus tachycardia [46, 47]. Premature ventricular contractions were also reported to be associated with isotretinoin use [47, 48].

Regarding isotretinoin it is stipulated that a major mechanism of teratogenesis is a deleterious effect on cephalic neural-crest cell activity that results in craniofacial, cardiac, thymic malformations. The cardiac malformations included conotruncal heart defects and aortic-arch abnormalities [136].

The most common laboratory abnormality observed in patients taking systemic retinoids is elevation in serum lipids. Patients with obesity, diabetes or excessive alcohol intake are at increased risk. Triglycerides levels are affected to a greater degree than cholesterol levels. The magnitude of this effect, in terms of both percentage of patients affected and severity of elevation, is much greater with bexarotene than with other systemic retinoids [43].

Corticosteroids

Glucocorticoids are primary stress hormones that regulate a variety of physiological processes and are essential for life. Systemic glucocorticoids are one of the most important dermatological medication due to their anti-inflammatory, immunosuppressive and antiproliferative role.

The actions of glucocorticoids are predominantly mediated through the classic glucocorticoid receptor.

Oral administration of steroids is particularly useful in acute hypersensitivity diseases, connective tissue diseases, immunological blistering diseases, and the commoner dermatoses when they are very severe and widespread [49].

Dermatological indications include: severe dermatitis, erythrodermas, bullous dermatoses, vasculitis (cutaneous and systemic), collagen vascular diseases, neutrophilic dermatoses and others (sarcoidosis, panniculitis, urticaria) [50].

Cardiovascular side effects: the cardiovascular effects of systemic corticosteroids are vasoconstriction, sodium retention and increases renin levels. These factors will lead to hypertension; the fluid retention can determine or exacerbate heart failure [51].

Another major adverse effect of glucocorticoids on the cardiovascular system is dyslipidemia. Glucocorticoids may predispose treated patients to coronary artery disease if high doses and prolonged courses are used. Accordingly, they should be employed carefully in patients with other risk factors for cardiovascular disease [52].

Atrial fibrillation and cardiac sudden death have been reported as risks of pulse iv corticosteroids. To date there has been no study prospectively monitoring for cardiac effects in dermatologic patients. White et al. recommend that monitoring of dermatologic patients during pulse iv corticosteroids should be titrated according to the individual patient’s active and past medical problems, concomitant drug therapy, and any previous reactions to pulse iv corticosteroids. Continuous cardiac monitoring is clearly indicated for patients with cardiac or renal disease who receive systemic corticosteroids [53].
Immunosuppressive Agents

Azathioprine is an immunosuppressive agent that acts as an antagonist of purine metabolism, resulting in the inhibition of DNA, RNA, and protein synthesis. It is an approved agent for the prevention of organ transplant rejection and severe rheumatoid arthritis. In dermatology it is indicated for autoimmune bullous disorders, lupus erythematosus, dermatomyositis and polymyositis and other inflammatory skin diseases such as eczema, psoriasis and vasculitis [54].

Interactions with cardiovascular drugs The use of angiotensin-converting enzyme inhibitors to control hypertension in patients on azathioprine has been reported to induce anemia and severe leukopenia; azathioprine may inhibit the anticoagulant effect of warfarin [54–56].

Cyclophosphamide is a precursor of an alkylating nitrogen mustard antineoplastic and immunosuppressive agent that is metabolized primarily in the liver to aldophosphamide that will be converted to active metabolites.

Its specific mechanism used in treating autoimmune diseases is not well understood, but has been postulated to include apoptosis, decreased immunoglobulin G production due to B-cell suppression and decreased production of adhesion molecules and cytokines [57]. Dermatologic indications: mycosis fungoides, systemic vasculitis, bullous dermatoses, neutrophilic dermatoses, autoimmune connective tissue disease, neoplasms.

Cardiovascular side effects: Cardiotoxicity is an uncommon complication in high-dose chemotherapy regimens. The cardiovascular side effects can present as a syndrome of congestive heart failure, myocarditis or both, and can be fatal [57].

The precise mechanism of cyclophosphamide cardiotoxicity is not known, but it is thought that it may cause endothelial injury with outpouring of toxic metabolites that result in damage to the cardiomyocytes [58].

Clinical manifestations of cardiotoxicity range from asymptomatic pericardial effusions to heart failure and myopericarditis. The risk of cardiotoxicity appears to be dose related and occurs within 1 to 10 days after the administration of the first dose of cyclophosphamide [59, 60].

Cyclosporine is a potent immunomodulatory agent that blocks the transcription of cytokine genes in activated T cells; in particular, cyclosporine inhibits the transcription of interleukin 2. Although cyclosporine's major actions are on T cells, there is some evidence that it produces direct effects on other cell types [137, 138]. While indicated only for the treatment of moderate to severe psoriasis, cyclosporine has also been used as an off-label drug for the treatment of various inflammatory skin conditions, including atopic dermatitis, blistering disorders, connective tissue diseases, neutrophilic dermatosis, neoplastic disorders, alopecia and granulomatous dermatoses [62, 139, 140, 141].

Cardiovascular side effects: Hypertension is the most important cardiovascular side effect. The risk of developing hypertension increases with the dose and duration of therapy. Potential mechanisms for cyclosporine-induced hypertension are: activation of neurohormonal vasoconstrictors, alterations in vascular reactivity, renal tubular reabsorption of sodium in association with volume expansion, alterations in regulation of intracellular calcium ions, excess production of vasoconstrictors (prostaglandins, thromboxane, endothelin), decreased production of vasodilatory prostaglandins, stimulation of the renin-angiotensin system [61].
Methotrexate competitively and reversibly binds to dihydrofolate reductase preventing the conversion of dihydrofolate to tetrahydrofolate. Methotrexate is indicated in proliferative dermatoses, immuno-bullous dermatoses, autoimmune connective tissue diseases, vasculitis and neutrophilic dermatoses [67].

Cardiovascular side effect: Methotrexate may have a cardio-protective effect for patients with early onset rheumatoid arthritis [142], as well as for patients with psoriasis. Meta-analysis data from studies that involved patients with psoriasis showed that patients treated with methotrexate had fewer cardiovascular incidents compared to patients not treated with methotrexate [63, 64].

There is some in vitro and in vivo proof that methotrexate might have a combination of anti-inflammatory, blood pressure lowering, and vasculoprotective effects. Some mechanisms were proposed for the potential antiatherosclerotic, blood pressure lowering, and vasculoprotective effects of methotrexate, particularly cytokine modulation, adenosine accumulation, and activation of 5′ adenosine monophosphate-activated protein kinase [65]. However, Ridker et al. concluded in a recent publication that among patients with stable atherosclerosis, low-dose methotrexate (at a target dose of 15 to 20 mg weekly) did not reduce levels of interleukin-1β, interleukin-6, or C-reactive protein and did not result in fewer cardiovascular events than placebo [66].

Interactions with cardiovascular drugs: Methotrexate may decrease serum levels of inotropic cardiac drugs and of digoxin [67].

Mycophenolate mofetil (MMF) is a lymphocyte selective immunosuppressive agent that inhibits de novo purine synthesis via its active metabolite, mycophenolic acid. Mycophenolic acid depletes guanosine nucleotides by noncompetitively, selectively, and reversibly inhibiting inosine monophosphate dehydrogenase. Off-label dermatological indications of MMF include inflammatory skin conditions, psoriasis, autoimmune blistering disorders, connective tissue disorders and neutrophilic dermatosis (e.g. refractory pyoderma gangrenosum) [143, 144].

Cardiovascular side effects: MMF is very well tolerated. The most common side effects are gastrointestinal but there are reports about MMF improving hypertension [68, 69].

Antiandrogens

Spironolactone is an aldosterone antagonist with weak antiandrogen effect; by blocking the androgen receptor spironolactone inhibits the effects of androgens in the body. Off label dermatological indications are: hirsutism, acne, androgenetic alopecia and hidradenitis suppurativa. The main cardiovascular side effect is venous thrombosis [70].

Cyproterone acetate is available in European countries and is used off label for hirsutism. Cyproterone acetate, as one of the components of the combined oral contraceptive (COC) use has been associated with venous thrombosis (VT) (i.e., deep venous thrombosis and pulmonary embolism). Risk of venous thrombosis for combined oral contraceptives with 30-35 μg ethinylestradiol and gestodene, desogestrel, cyproterone acetate and drospirenone were similar [70].

A case of cerebral vascular accident associated with cyproterone acetate–ethinyl estradiol has been reported [71], as well as cases of increased plasma apolipoprotein A-I and HDL-phospholipid levels in women with polycystic ovary syndrome treated with cyproterone acetate [72].
Biologic Therapeutics

Biologic therapeutics are used in several chronic dermatoses (e.g. psoriasis, atopic dermatitis) and other skin conditions (e.g. hydradenitis suppurativa). Various cardiovascular adverse events have been associated with biological therapies. Heart failure is one of the most important adverse reactions reported in the medical literature. Arrhythmias were also reported in patients receiving infliximab. Data regarding the effect of biological therapies on the vascular system is contradictory. Some authors considered that TNF blockers etanercept and adalimumab might have a favorable effect on the lipid profile and reduce the rate of cardiovascular events while others consider that long-time treatment with infliximab could be pro-therogenic [145].

Psoriasis, Crohn’s colitis, rheumatoid arthritis, and a variety of spondyloarthropathies benefit from using the biological agents [78, 79].

Monoclonal antibodies (e.g. Adalimumab, Avelumab, Brodalumab, Dupilumab, Ixekizumab, Nivolumab) are molecules that alter the normal cellular immune response, pathways of cell signaling, activation and cytokine production [78–80].

Anti-TNFα agents (e.g. Infliximab, Adalimumab) reduce inflammation and can stop inflammatory disease progression.

Cardiovascular side effects: Although TNF has been shown to have negative inotropic effects on the myocardium and may further contribute to left ventricular dysfunction and cardiomyopathy, the anti TNFα agents etanercept and infliximab did not show anticipated protective cardiovascular effect in clinical trials. While no benefit was seen, several patients did experience adverse cardiac outcomes and worsening of congestive cardiac failure with TNFα blockers are reported to occur [78–81, 54].

Rituximab is an anti-CD20 monoclonal antibody with considerable potential in dermatology due to an increase in off-label indications [146].

Cardiovascular side effects: Fatal infusion reactions include myocardial infarction, ventricular fibrillation, and cardiogenic shock [83]. In patients with a history of cardiorespiratory disease can cause exacerbations of angina, arrhythmias and heart failure [84].

Cardiovascular toxicity in the form of cardiac dysrhythmias has been reported in 8% of patients treated with rituximab. These include monomorphic ventricular tachycardia, supraventricular tachycardia, trigeminy and irregular pulse, and an isolated case of a fatal infusion secondary to myocardial infarction [84].

Ustekinumab is a human monoclonal antibody that binds to the p40 subunit common to both interleukin (IL)-12 and IL-23 [147].

Cardiovascular side effects: the totality of the available clinical data suggests neither a detrimental nor a beneficial effect of ustekinumab on serious CV events [86]. Other reports accrue exacerbation or new onset of congestive heart failure [87].

Omalizumab is a recombinant humanized monoclonal antibody targeting the high-affinity Fc receptor of IgE, registered for the treatment of chronic spontaneous urticaria and severe allergic asthma [148]; off label it has been used in atopic dermatitis [149].

Cardiovascular side effects: Omalizumab has been linked to higher incidence rate of cardiovascular or cerebrovascular events such as transient ischemic attack, myocardial infarction, pulmonary hypertension, pulmonary embolism or venous thrombosis and unstable angina [89].
Dupilumab is an interleukin 4 (IL-4) receptor α-antagonist that inhibits IL-4 and IL-13 signaling through blockade of the shared IL-4α subunit used in atopic dermatitis [150].

Cardiovascular side effects: Cardiovascular thromboembolic events (cardiovascular deaths, non-fatal myocardial infarctions and non-fatal strokes) were reported in clinical trials as associated with a small percentage of patients receiving dupilumab [92].

Chronic inflammatory diseases are characterized by an increased cardiovascular risk. IL-17A has a defined role in both aspects [151].

Secukinumab is a fully human anti-IL-17A monoclonal antibody, ixekizumab is a humanized IgG4 monoclonal antibody that neutralizes IL-17 and brodalumab is a human, anti-IL17RA monoclonal antibody which blocks the activity of IL17RA, 17A/F and 17E.

Several pre-clinical data indicate that IL-17 inhibitors may be effective in multiple mucocutaneous disorders beyond psoriasis. The possible targets for IL-17 inhibitors include oral lichen planus, alopecia areata, pyoderma gangrenosum, palmo-plantar pustulosis, systemic lupus erythematosus, systemic sclerosis, mixed connective tissue disease, pemphigus vulgaris, pemphigoid, dermatitis herpetiformis, atopic dermatitis and chronic periodontitis [96].

Cardiovascular side effects: It is too early to conclude if IL-17 targeting will show protective CV effects in patients with chronic inflammatory diseases with Ixekizumab having a neutral impact on cardiovascular-related parameters in patients with psoriasis [95].

Still, from the clinical trials come reports of cardiac death due to cardiac arrest and cardiomyopathy linked to brodalumab [96].

Fusion Antibody Proteins

Fusion antibody proteins (e.g. Etanercept, Alefacept, Abatacept, Onercept), also known as chimeric proteins, are proteins which are created by the fusion of the receptor domain of a human protein with the constant region of human IgG.

Cardiovascular side effects: etanercept can cause congestive heart failure [98] as well as silent ischaemic heart disease and diastolic dysfunction.

Less data exists on the association of anakinra, abatacept with cardiovascular adverse effects [80].

Recombinant Human Cytokines and Growth Factors

Recombinant Human Cytokines and Growth Factors can be grouped as follows:

(a) Interferons: Interferon α (IFNα), Interferon γ (IFNγ)

Interferon therapy for HCV infection is cardiac safe in patients who have structurally normal heart. Female patients have a propensity of adverse events like severe diastolic dysfunction and mild pericardial effusion [105].

(b) Granulocyte macrophage colony stimulating factor (GM-CSF)
GM-CSF may have multiple direct and indirect beneficial cardiovascular effects including neovascularization of ischemic myocardium and reducing the extent of myocardial damage after infarction [106].

(c) Platelet derived growth factor (PDGF)

PDGFs drive pathological mesenchymal responses in vascular disorders such as atherosclerosis, restenosis, pulmonary hypertension and cardiac fibrosis [107].

Intravenous Immunoglobulin

Immunoglobulin infusion adverse reactions include arrhythmia occurring during or after (supraventricular tachycardia and bradycardia), stroke, myocardial infarction, and pulmonary embolism [112].

Immune Checkpoint Inhibitors: Anti PD-1

The development of immune checkpoint inhibitors has revolutionized the treatment of melanoma. However, immunotherapy is not without side effects. Cardiotoxicity is an under-recognized and potentially life-threatening complication of targeted immune checkpoint therapy [152].

(a) Ipilimumab. The first case of cardiotoxicity induced by ipilimumab was reported in 2013, which presented as myocardial fibrosis within a retrospective study among 752 ipilimumab-treated patients for melanoma [117]. Other cardiac reported side effects induced by ipilimumab: cardiac arrest [118], myocarditis, myocardial fibrosis [117] congestive heart failure [119], left ventricular dysfunction, reduction in ejection fraction, paroxysmal atrial fibrillation, ischemia [120], pericarditis, pericardial effusion [121] and biventricular failure [122].

The overall incidence of cardiac adverse events in the published literature was rare, occurring in approximately 1% of treated cases. However, the cardiovascular-specific mortality rate was 42% in patients who developed cardiotoxicity while on the drug [118, 153].

(b) Nivolumab and Ipilimumab. Myocarditis occurred with greater severity in patients who received combination therapy of ipilimumab and nivolumab [153]. They can determine as well immune-induced myocarditis and cardiomyopathy [119] or lymphocytic myocarditis [125].

(c) Pembrolizumab. In the published pembrolizumab monotherapy cohorts, the rates of adverse cardiac events were higher, occurring in approximately 1.2% of treated patients.

The published articles revealed during the treatment with pembrolizumab autoimmune cardiomyopathy (grade 3 CTCAE) and myocarditis [128], ventricular arrhythmia, left ventricular systolic dysfunction, myocarditis with cardiomyopathy, cardiac atrial flutter, hypertension, sinus tachycardia, stable angina pectoris [129], congestive cardiac failure [127], myocardial infarction [130, 131].

Annex
Class	Drug	Mechanism of action	Cardiovascular contraindications/side effects	Interactions with cardiovascular drugs
Antiviral Agents				
	Acyclovir	Blocks viral DNA polymerase [3,4]	N/A	Antiviral agents may increase the serum levels and potential toxicity of inotropic agents (digoxin) [4]
	Valacyclovir	Prodrug of acyclovir; converted in first pass through the gastrointestinal tract and liver to acyclovir [4]		
	Famciclovir	The oral prodrug of penciclovir [3,4]		
	Brivudine	Blocks viral DNA synthesis by interacting with deoxythymidine kinase and DNA polymerase [5,6]		
Antibacterial Agents				
β-lactam antibacterial agents	Penicillins	The β-lactam antibacterial agents bind to penicillin-binding-proteins in the bacterial cell membrane and	Vasospasm seen with parenteral or intramuscular formulations	Penicillins may elevate serum levels or potentiate the therapeutic effects of anticoagulants and may prolong prothrombin times [15]
Class	Example Drugs	Mechanism of Action	Cardiovascular Side Effects	
---------------------	--	--	---	
Cephalosporins		bacterial cell wall peptidoglycan synthesis.	Cefotetan and cefoperazone (containing N-methylthiotetrazole ring) may determine hypoprothrombinemia [16]	
Macrolides	Erythromycin, Azithromycin, Clarithromycin	Bind reversibly to the bacterial ribosome, inhibiting RNA-dependent protein synthesis; they also possess anti-inflammatory effect [7]	Cardiac conduction abnormalities; in utero exposure to erythromycin was linked by some authors to cardiovascular malformation [11], while others dispute this association [12] Erythromycin inhibits CYP leading to decreased metabolic clearance of digoxin and warfarin Erythromycin and clarithromycin may alter the metabolism of drugs known to influence cardiac conduction ex terfenadine and their combination is contraindicated [7]	
Fluoroquinolones	Ciprofloxacin, Gatifloxacin, Gemifloxacin, Lomefloxacin, Moxifloxacin, Norfloxacin, Ofloxacin	Interfere with bacterial DNA replication by inhibition of DNA gyrase and topoisomerase IV [8] Gatifloxacin and moxifloxacin are associated with QTc interval prolongation [8] Gatifloxacin, moxifloxacin, and levofloxacin had a higher risk of serious arrhythmias [13] Fluoroquinolones increase serum levels for antiarrhythmic agents (ex. mexiletine); in combination with warfarin may increase the risk of hemorrhage [8] Gatifloxacin and moxifloxacin increase the risk of QT interval prolongation in combination with antiarrhythmic agents (ex amiodarone, bepridil, disopyra mide, dofetilide, ibutilide, procainamide, quinidine) and beta blockers (especially sotalol) [8]		
Tetracyclines	Tetracycline, Doxycycline, Minocycline	Are bacteriostatic and inhibit bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome. Tetracyclines also have anti-inflammatory and anti-collagenolytic effects [9]	Protective effect on the murine myocardium [14] Tetracyclines may increase the serum levels of oral anticoagulants [9]	

(continued)
Rifamycins	Rifampin	Rifamycins inhibit RNA synthesis by inhibiting DNA-dependent RNA polymerase [10]	Rifamycins decrease the drug level of cardiovascular drugs as: digoxin, mexiletine, propafenone, quinidine, warfarin (risk of thrombosis), carvedilol, all calcium channel blockers [10]
	Rifabutin		

Dapsone

| | Competitive antagonist of PABA interfering with normal synthesis of folic acid by bacteria; antineutrophil action [17, 18] | Contraindications: severe cardiovascular disease Side effects: may determine hypersensitivity myocarditis [19,20] Dapsone-induced DRESS [20,21] | |

Antifungal Agents

	Oral antifungals interfere with the enzymes involved in producing ergosterol, a key component of fungal cell walls [22]		
Griseofulvin	Is incorporated into keratin; it interferes with microtubule formation [23]	Impairs action of coumarin antiarrhythmic drugs and calcium channel blockers [22]	

Allylamines

| | Inhibits sterol biosynthesis by blocking squalene peroxidase causing accumulation of squalene and cell death [24, 25] | Impairs action of coumarin; enhances the effect of antiarrhythmic drugs and beta blockers [22] | |
| Terbinafine | | | |

Azoles

| | Ketoconazol | Ketokonazol use has been limited due to serious liver damage and harmful interactions [28, 29] | |

Ketoconazol |
| **Triazoles** | Itraconazole, fluconazole: | Itraconazol, fluconazol: QT interval prolongation torsades de pointes risk of sudden death [30] Itraconazol: cardiac contractility reduction, dilated cardiomyopathy in animal models [31]; hypertension premature ventricular contractions, ventricular fibrillation, heart failure [32, 33] | As inhibitors of CYP450 enzymes, triazoles can impair metabolism of coadministered drugs, increasing the risk of toxicity [26] Itraconazole and fluconazole can enhance coumarin effect and the risk of hemorrhagic complications Enhance the effect of antiarrhythmic drugs and calcium channel blockers. Coadministration of azole drugs with cisapride, pimozide, quinidine, dofetilide, or levacetylmethadol is contraindicated. These combinations may cause severe cardiac events including ventricular tachycardia, torsades de pointes, cardiac arrest and/or sudden death [22] |
| — | Triazoles impair synthesis of ergosterol by inhibiting C14-sterol demethylase [26, 27] | |

| **Antihistamins** | Block the action of histamine by competing for receptor sites [34] | |

| **Sedating H1** | Diphenhydramine Clemastine Tripelennamine Hydroxyzine Chlorpheneramine Promethazine Cyproheptadine | Dose-related sinus tachycardia, reflex tachycardia supraventricular arrhythmias, dose related prolongation of the QT interval, ventricular arrhythmias [35] | H1 antihistamins may enhance CYP 2D6 substrates as antiarrhythmic agents and beta blockers [36] |
| Ethanolamine Ethylenediamine Piperazine Alkylamine Phenothiazine Piperidine | |

| **Non Sedating H1** | Azelastine Cetirizine Levocetirizine Ebastine Fexofenadine Loratadine Desloratadine | Poorly lipophilic; do not cross the blood-brain barrier; highly selective action; little or no anticholinergic activity [36] | Terfenadine: life threatening cardiac arrhythmias (no longer available) [36] Fexofenadine- no effect on QTc interval [37] Loratadine: no clinical effect upon the potassium |
| — | — | |

(continued)
Table 22.1 (continued)
Mizolastine
Doxepin
Other antiallergic agents
Mast cell stabilizer
Antimalarials
Antimalarials stabilize membranes; downregulate expression of MHC molecules; interact with the complement system, inhibit prostaglandin synthesis [40, 41]
Retinoids
Modulate the differentiation and keratinization of keratinocytes, alter fibroblast activity and modulate T-cell response [43-45]
Corticosteroids
Prednisone
Prednisolone
Methylprednisolone
Triamcinolone
Dexamethasone
Heart failure
Coronary artery disease
[49-52]
For pulse iv:
Cardiac dysrhythmias
Risk of sudden death [53]
Hypokalemia may lead to digitalis toxicity
Enhances/impairs warfarin
With other QT „prolongers“ (antiarrhythmic agents, macrolides, fluoroquinolones) may increase the risk of QT prolongation and torsades de pointes [49, 52]
Immunosuppressive agents
and B cells [54]
Azathioprine may decrease the anticoagulant effect of warfarin [56]
Congestive heart failure, myocarditis [57-59]
Reduces absorption of digoxin
Increases the anticoagulant effect of warfarin; may decrease the Gl absorption of digoxin [60]
Amiodarone increases cyclosporine levels
Diltiazem and verapamil increase cyclosporine levels
Cyclosporine increases the levels of digitalis [62]
(Antiatherosclerotic, lowers blood pressure,
vasculoprotective effect) [63-65]. Did not reduce levels of interleukin-1, interleukin-6, or C-reactive protein and did not result in fewer cardiovascular events than placebo[66]
May decrease serum levels of inotropic cardiac drugs and of digoxin [67]
Antiandrogens

Cyproterone acetate
Colchicine
Biologic therapeutics
Monoclonal antibodies
· Anti-CD20: Rituximab
· Anti-IgE: Omalizumab
· Anti IL-4: Dupilumab
· Anti IL 17-A: Secukinumab/Ixekizumab

(continued)
Table 22.1 (continued)

Fusion antibody proteins	Brodalumab was linked to cardiac arrest and cardiomyopathy [96]
Etanercept, Alefacept, Abatacept,	Etanercept: TNF inhibitor
Alefacept inhibits the activation of CD4+ and CD8+ T cells	
Abatacept prevents antigen-presenting cells from delivering the co-stimulatory signal.	
Silent ischemic diastolic dysfunction [98]	
Absence of a pharmacokinetic interaction between Etanercept and Warfarin [94] or Digoxin [99].	
Alefacept may decrease the blood levels and effects of amiodarone, amlodipine, atorvastatin, felodipine, flecainide, lovastatin, nicardipine, nifedipine, procainamide, quinidine, warfarin [100].	
Concurrent therapy with Abatacept and TNF antagonists is not recommended (increased risk of serious infections) [101].	
Salicylates may be used during treatment with abatacept [102].	
Recombinant human cytokines and growth factors	
a) Interferons	
Interferon α (IFNα)	
Interferon γ (IFNγ)	Interferon alpha binds to interferon receptors which, upon dimerization, activate two Jak (Janus kinase) and Tyk2).
Acts by stimulating stem cells to produce granulocytes, monocytes and macrophages [103]	
b) Granulocyte macrophage colony stimulating factor (GM-CSF)	
c) Platelet derived growth factor (PDGF)	
Intravenous immunoglobulin	

PDGF is a dimeric glycoprotein which regulates and promotes granulation tissue formation, re-epithelialisation and wound angiogenesis [104].	
Atherosclerosis, restenosis, pulmonary hypertension and cardiac fibrosis [107].	
Arrhythmia (supraventricular tachycardia and bradycardia) occurring during or after immunoglobulin infusion Stroke, myocardial infarction, pulmonary embolism [112].	
Ig IV with other drugs and intravenous solutions have not been evaluated. It is recommended to be administered separately from other drugs or medications which the patient may be receiving [113].	

Immune checkpoint inhibitors (anti-PD1)
Ipilimumab (cytotoxic T-lymphocyte antigen-4=CTLA -4)
The CTLA -4 is a cell surface molecule that regulates the adaptative immune response. The binding between CTLA -4 and B7 molecules on the antigen presenting cells, interrupts the stimulatory signal which in order blunts T-cell proliferation response [114]. Produce an exacerbated autoimmune [115].
Myocarditis, myocardial fibrosis [117] Cardiac arrest [118] Congestive heart failure [119] Left ventricular dysfunction, reduction in ejection fraction, paroxysmal atrial fibrillation, ischemia [120] Pericarditis, pericardial effusion [121] Biventricular failure [122].
Clinical pharmacology studies were not performed to evaluate the metabolism and the metabolic pathways of ipilimumab in humans, or to determine the potential for any drug-drug interactions of ipilimumab with other molecules. Ipilimumab is not metabolized by cytochrome P450 enzymes (CYPs) or other drug metabolizing enzymes [123].

(continued)
Table 22.1 (continued)

Drug	Mechanism	Side Effects	Additional Information
Nivolumab (CTLA-4 + PD-1 Inhibitor)	Block the activity of CTLA-4, thereby sustaining a potent T-cell response against tumor cells [116].	Myocarditis [125] Immune-induced myocarditis and cardiomyopathy [119] Lymphocytic myocarditis [125]	No formal pharmacokinetic drug-drug interaction studies have been conducted with Nivolumab [126]
Pembrolizumab (PD-1 Inhibitor)	Nivolumab blocks the immune checkpoint PD-1. This mechanism is related to the reduction of the inhibitory signaling and to restore the patient's natural tumor-specific T-cell immune response [124]	Autoimmune cardiomyopathy (grade 3 CTCAE) and myocarditis [128] Ventricular arrhythmia, left ventricular systolic dysfunction, myocarditis with cardiomyopathy, cardiac atrial flutter, hypertension, sinus tachycardia, stable angina pectoris [129] Congestive cardiac failure [127] Myocardial infarction [130, 131]	No non-clinical or clinical dedicated pharmacodynamic drug-drug interactions studies with Pembrolizumab have been conducted [132].
References

1. Burgdorf W, Paus R, Sterry W. Thieme clinical companions: dermatology. 1st ed. New York: Thieme; 2006. p. 636.
2. Mladěnka P, Applová L, Patočka J, Costa VM, Remiao F, Pourová J, et al. Comprehensive review of cardiovascular toxicity of drugs and related agents. Med Res Rev. 2018 Jul;38(4):1332–403.
3. O’Brien JJ, Campoli-Richards DM. Acyclovir. Drugs. 1989 Mar 1;37(3):233–309.
4. Chang C, Madkan V, Sra K, Carrasco D, Tyring S. Systemic antiviral agents. In: Wolverton SE, editor. Comprehensive dermatologic drug therapy. 2nd ed. Edinburgh: Elsevier Health Sciences; 2007. p. 101–24.
5. Rabasseda X. Brivudine: a herpes virostatic with rapid antiviral activity and once-daily dosing. Drugs Today. 2003 May 1;39(5):359.
6. Salvaggio MR, Gnann JW Jr. Drugs for herpesvirus infections. Infect Dis Ther. 2017 Jan;1:1309–17.
7. Ashourian N, Cohen P. Systemic antibacterial agents. In: Wolverton SE, editor. Comprehensive dermatologic drug therapy. 2nd ed. Edinburgh: Elsevier Health Sciences; 2007. p. 48–52.
8. Ashourian N, Cohen P. Systemic antibacterial agents. In: Wolverton SE, editor. Comprehensive dermatologic drug therapy. 2nd ed. Edinburgh: Elsevier Health Sciences; 2007. p. 51–5.
9. Ashourian N, Cohen P. Systemic antibacterial agents. In: Wolverton SE, editor. Comprehensive dermatologic drug therapy. 2nd ed. Edinburgh: Elsevier Health Sciences; 2007. p. 54–60.
10. Ashourian N, Cohen P. Systemic antibacterial agents. In: Wolverton SE, editor. Comprehensive dermatologic drug therapy. 2nd ed. Edinburgh: Elsevier Health Sciences; 2007. p. 58–62.
11. Källén BA, Olausson PO, Danielsson BR. Is erythromycin therapy teratogenic in humans? Reprod Toxicol. 2005 Jul 1;20(2):209–14.
12. Romøren M, Lindbæk M, Nordeng H. Pregnancy outcome after gestational exposure to erythromycin—a population-based register study from Norway. Br J Clin Pharmacol. 2012 Dec;74(6):1053–62.
13. Liu X, Ma J, Huang L, Zhu W, Yuan P, Wan R, Hong K. Fluoroquinolones increase the risk of serious arrhythmias: a systematic review and meta-analysis. Medicine. 2017 Nov;96:44.
14. Kagawa N, Senbonmatsu TA, Satoh K, Ichihara K, Yamagata N, Hatano O, Saito T, Nguyen VQ, Waterman MR, Price EJ, Atkinson JB. Tetracycline protects myocardium against ischemic injury. Front Biosci. 2005 Jan 1;10:608–19.
15. Ashourian N, Cohen P. Systemic antibacterial agents. In: Wolverton SE, editor. Comprehensive dermatologic drug therapy. 2nd ed. Edinburgh: Elsevier Health Sciences; 2007. p. 39–43.
16. Ashourian N, Cohen P. Systemic antibacterial agents. In: Wolverton SE, editor. Comprehensive dermatologic drug therapy. 2nd ed. Edinburgh: Elsevier Health Sciences; 2007. p. 43–6.
17. Wozel G, Blasum C. Dapsone in dermatology and beyond. Arch Dermatol Res. 2014 Mar;306(2):103–24.
18. Zhu YI, Stiller MJ. Dapsone and sulfones in dermatology: overview and update. J Am Acad Dermatol. 2001 Sep;45(3):420–34.
19. Kang KS, Kim HI, Kim OH, Cha KC, Kim H, Lee HK, et al. Clinical outcomes of adverse cardiovascular events in patients with acute dapsone poisoning. Clin Exp Emerg Med. 2016;3(1):41–5.
20. Li WH, Liu H-N, Lee D-D. Myocarditis in dapsone-induced drug reaction with eosinophilia and systemic symptoms - a case report and review of the literature. Dermatol Sin. 2011 June;29(2):63–6.
21. Bourgeois GP, Cafardi JA, Groysman V, Hughey LC. A review of DRESS-associated myocarditis. J Am Acad Dermatol. 2012 Jun 1;66(6):e229–36.
22. Gupta A. Systemic antifungal agents. In: Wolverton SE, editor. Comprehensive dermatologic drug therapy. 2nd ed. Edinburgh: Elsevier Health Sciences; 2007. p. 75–99.
23. Odds FC, Brown AJ, Gow NA. Antifungal agents: mechanisms of action. Trends Microbiol. 2003 Jun 1;11(6):272–9.
24. Food and Drug Administration FDA; 2012. Lamisil (Terbinafine Hydrochloride) tablets, 250 mg. [Reviewed: 2012; cited 2020 Mar 7; cited 2020 Mar 7]; [about 22 p]. Highlights of prescribing information [Internet]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/020539s021lbl.pdf

25. Food and Drug Administration FDA; 2013. Lamisil (Terbinafine Hydrochloride) Oral Granules, 125 mg and 187.5 mg: [Reviewed: 2013 June; cited 2020 Mar 7]; [about 7 p]. Highlights Of Prescribing Information [Internet]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2013/022071s009lbl.pdf

26. Nett JE, Andes DR. Antifungal agents: spectrum of activity, pharmacology, and clinical indications. Infect Dis Clin N Am. 2016 Mar 1;30(1):51–83.

27. Andes D, Pascual A, Marchetti O. Antifungal therapeutic drug monitoring: established and emerging indications. Antimicrob Agents Chemother. 2009 Jan 1;53(1):24–34.

28. Food and Drug Administration FDA (US); 2016. Nizoral (ketoconazole): [about 5 p.]. Drug Safety Communication [Internet] Available from: https://www.fda.gov/Drugs/DrugSafety/ucm500597.html

29. Suspension of marketing authorisations for oral ketoconazole. Benefit of oral ketoconazole does not outweigh risk of liver injury in fungal infections [Internet], European Medicines Agency’s Committee on Medicinal Products for Human Use (CHMP); 2013. Ketoconazole: [Revised: 25 July 2013; Reviewed: 11 October 2013; cited 2020 Mar 7]; [about 6p]. Available from: https://www.ema.europa.eu/en/documents/referral/ketoconazole-article-31-referral-suspension-marketing-authorisations-oral-ketoconazole_en.pdf

30. Nix DE. Cardiotoxicity induced by antifungal drugs. Curr Fungal Infect Rep. 2014 Jun 1;8(2):129–38.

31. Cleary JD, Stover KR, Farley J, Daley W, Kyle PB, Hosler J. Cardiac toxicity ofazole anti-fungals. J Pharm Pharmacol. 2013 May 31;65(03):362.

32. Paul V, Rawal H. Cardiotoxicity with itraconazole. BMJ Case Rep. 2017 Apr 10, 2017; https://doi.org/10.1136/bcr-2017-219376.

33. Page RL, O’Bryant CL, Cheng D, Dow TJ, Ky B, Stein CM, et al. Drugs that may cause or exacerbate heart failure: a scientific statement from the American Heart Association. Circulation. 2016 Aug 9;134(6):e32–69.

34. Olszynska-Wiśniewska A, Olasiński J, Grajek S. Cardiovascular safety of antihistamines. Adv Dermatol Allergol. 2014 Jun;31(3):182.

35. Simons FE, Simons KJ. Histamine and H1-antihistamines: celebrating a century of progress. J Allergy Clin Immunol. 2011 Dec 1;128(6):1139–50.

36. Greaves M. Antihistamins. In: Wolverton SE, editor. Comprehensive dermatologic drug therapy. 2nd ed. Edinburgh: Elsevier Health Sciences; 2007. p. 391–404.

37. Allegra [Internet]. 2005. Food and Drug Administration FDA; Allegra (Fexofenadine Hydrochloride) Tablets: [Reviewed: 2005 September; cited 2020 Mar 7]; [about 13 p]. Available from https://www.accessdata.fda.gov/drugsatfda_docs/label/2005/020872s015lbl.pdf fexofenadine

38. Dávila I, Sastre J, Bartra J, Del Cuvillo A, Jáuregui I, Montoro J, et al. Comparative pharmacology of the H1 antihistamines. J Investig Allergol Clin Immunol. 2006;16(1):13–23.

39. Lee CS, Koo J. Psychotropic Agents. In: Wolverton SE, editor. Comprehensive dermatologic drug therapy. 2nd ed. Edinburgh: Elsevier Health Sciences; 2007. p. 437–58.

40. Rodriguez-Caruncho C, Marsol IB. Antimalarials in dermatology: mechanism of action, indications, and side effects. Actas Dermosifiliogr. 2014 Apr 1;105(3):243–52.

41. Callen JP, Rosenbach M, Camisa C. Antimalarial agents. In: Wolverton SE, Wu JJ, editors. Comprehensive dermatologic drug therapy. 4nd ed. Amsterdam: Elsevier; 2021. p. 234–44.

42. Tselios K, Deeb M, Gladman DD, Harvey P, Urowitz MB. Antimalarial-induced cardiomyopathy: a systematic review of the literature. Lupus. 2018 Apr;27(4):591–9.

43. Patton TJ, Zirwas MJ, Wolverton SE. Systemic Retinoids. In: Wolverton SE, editor. Comprehensive dermatologic drug therapy. 2nd ed. Edinburgh: Elsevier Health Sciences; 2007. p. 275–300.
44. Zouboulis CC. Retinoids–which dermatological indications will benefit in the near future? Skin Pharmacol Physiol. 2001;14(5):303–15.
45. Aryal A, Upreti S. A brief review on systemic retinoids. Int J Pharm Sci Res. 2017 Sep 1;8(9):3630–9.
46. Soriano EA, Azevedo PS, Miot HA, Minicucci MF, Pansani MC, Matsubara LS, et al. Cardiac remodeling induced by 13-cis retinoic acid treatment in acne patients. Int J Cardiol. 2013 Feb 10;163(1):68–71.
47. Güler E, Babur Güler G, Yavuz C, Kizilirmak F. An unknown side effect of isotretinoin pericardial effusion with atrial tachycardia. Anatol J Cardiol. 2015;15:168–9.
48. Alan S, Ünal B, Yildirim A. Premature ventricular contractions associated with isotretinoin use. Bras Dermatol. 2016 Dec;91(6):820–1.
49. Barnetson RS, White AD. The use of corticosteroids in dermatological practice. Med J Aust. 1992 Mar;156(6):288–91.
50. Williams LC, Nesbitt LT Jr. Update on systemic glucocorticosteroids in dermatology. Dermatol Clin. 2001 Jan 1; 19(1):63–77.
51. Gollnick H. Systemic therapy. In: WHC B, Braun-Falco O, editors. . 3rd ed. Berlin: Springer; 2009. p. 1573–93.
52. Sholter DE, Armstrong PW. Adverse effects of corticosteroids on the cardiovascular system. Can J Cardiol. 2000 Apr;16(4):505–11.
53. White KP, Driscoll MS, Rothe MJ, Grant-Kels JM. Severe adverse cardiovascular effects of pulse steroid therapy: is continuous cardiac monitoring necessary? J Am Acad Dermatol. 1994 May 1;30(5):768–73.
54. Badalamenti SA, Kerdel FA. Azathioprine. In: Wolverton SE, editor. Comprehensive dermatologic drug therapy. 2nd ed. Edinburgh: Elsevier Health Sciences; 2007. p. 183–95.
55. Gossmann J, Kachel HG, Schoeppe WI, Scheuermann EH. Anemia in renal transplant recipients caused by concomitant therapy with azathioprine and angiotensin-converting enzyme inhibitors. Transplantation. 1993 Sep;56(3):585–9.
56. Product Information [Internet]. May 2011. Imuran (Azathioprine) 50-mg Scored Tablets [about 9 p]. Available from https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/016324s034s035lbl.pdf
57. Kim J, Chan JJ. Cyclophosphamide in dermatology. Australas J Dermatol. 2017 Feb;58(1):5–17.
58. Anber ZNH, Saleh BOM, Al-Rawi SI. The cardiotoxicity effect of different chemotherapeutic regimens in Iraqi patients with breast cancer: a follow up study. Heliyon. 2019;5(8):e02194.
59. Yeh ET, Bickford CL. Cardiovascular complications of cancer therapy: incidence, pathogenesis, diagnosis, and management. J Am Coll Cardiol. 2009 Jun 23;53(24):2231–47.
60. Perlis C, Pan TD, McDonald CJ. Cytotoxic agents. In: Wolverton SE, editor. Comprehensive dermatologic drug therapy. 2nd ed. Edinburgh: Elsevier Health Sciences; 2007. p. 198–205.
61. Miller LW. Cardiovascular toxicities of immunosuppressive agents. Am J Transplant. 2002;2(9):807–18.
62. Lee CS, Koo J. Cyclosporine. In: Wolverton SE, editor. Comprehensive dermatologic drug therapy. 2nd ed. Edinburgh: Elsevier Health Sciences; 2007. p. 219–37.
63. Liu BA, Schwartz R. Potential cardio-protective effects of psoriasis medications. Acta Dermatovener Cr. 2018 Oct 22;26(3):249.
64. Mangoni AA, Zinellu A, Sotgia S, Carru C, Erre GL. Methotrexate and cardiovascular protection: current evidence and future directions. Clin Med Insights Ther. 2017 Nov 9;9:1–12.
65. Mangoni AA, Tommasi S, Zinellu A, Sotgia S, Carru C, Piga M, et al. Repurposing existing drugs for cardiovascular risk management: a focus on methotrexate. Drugs Context. 2018 Nov;14:7.
66. Ridker PM, Everett PM, Pradhan A, MacFadyen JG, Solomon DH, Zaharris E, et al. Low-dose methotrexate for the prevention of atherosclerotic events. N Engl J Med. 2019;380:752–62.
67. Callen J, Klup-Shorten C, Wolverton SE. Methotrexate. In: Wolverton SE, editor. Comprehensive dermatologic drug therapy. 2nd ed. Edinburgh: Elsevier Health Sciences; 2007. p. 163–81.
68. Taylor EB, Ryan MJ. Immunosuppression with mycophenolate mofetil attenuates hypertension in an experimental model of autoimmune disease. J Am Heart Assoc. 2017 Feb 27;6(3):1–11.

69. Herrera J, Ferrebuz A, MacGregor EG, Rodriguez-Iturbe B. Mycophenolate mofetil treatment improves hypertension in patients with psoriasis and rheumatoid arthritis. J Am Soc Nephrol. 2006 Dec 1;17(12 suppl 3):S218–25.

70. De Bastos M, Stegeman BH, Rosendaal FR, Van Hylckama VA, Helmerhorst FM, Stijnen T, et al. Combined oral contraceptives: venous thrombosis. Cochrane Database Syst Rev. 2014 Mar 3;3:1–50.

71. Kromm J, Jeerakathil T. Cyproterone acetate-ethinyl estradiol use in a 23-year-old woman with stroke. CMAJ. 2014 Jun 10;186(9):690–3.

72. Luque-Ramirez M, Alvarez-Blasco, F, Botella-Carretero JL, Martinez-Bermejo E, Escobar-Morreal HF. Comparison of ethinyl-estradiol plus cyproterone acetate versus metformin effects on classic metabolic cardiovascular risk factors in women with the polycystic ovary syndrome. J Clin. Endocrinol. Metabolism 2007 Jul; 92(7):2453-2461.

73. Sawaya M. Antiandrogens and Androgen Inhibitors. In: Wolverton SE, editor. Comprehensive dermatologic drug therapy. 2nd ed. Edinburgh: Elsevier Health Sciences; 2007. p. 417–35.

74. Product Monograph Mylan-Cyproterone [Internet]. Mylan Pharmaceuticals Ulc. Cyproterone Acetate Tablets 50 mg Antiandrogen: [Reviewed: 2010 Sep 9; cited 2020 Mar 7]; [9 p]. Available from: https://pdf.hres.ca/dpd_pm/00011374.PDF

75. Hemkens LG, Ewald H, Gloy VL, Arpagaus A, Olu KK, Nidorf M, et al. Cardiovascular effects and safety of long-term colchicine treatment: cochrane review and meta-analysis. Heart. 2016 Apr 15;102(8):590–6.

76. Campbell KB, Cicci TA, Vora AK, Burgess LD. Beyond Gout: Colchicine Use in the Cardiovascular Patient. Hosp Pharm. 2015 Nov 19;50:859–67.

77. Cush JJ. Unusual toxicities with TNF inhibition: heart failure and drug-induced lupus. Clin Exp Rheumatol. 2004;22(Suppl. 35):S141–7.

78. Khanna D, Mcmahon M, Furst DL. Anti-tumor necrosis factor alpha therapy and heart failure: what have we learned and where do we go from here? Arthritis Rheum. 2004;50:1040–50.

79. Lis K, Kuzawińska O, Bałkowiec-Iskra E. Tumor necrosis factor inhibitors – state of knowledge. Arch Med Sci. 2014 Dec 22;10(6):1175–85.

80. Foran JM, Rohaitner AZ, Cunningham D, Popescu RA, Solal-Celigny P, Ghielmini M, et al. European Phase II study of rituximab (chimeric anti-CD20 monoclonal antibody) for patients with newly diagnosed mantle cell lymphoma and previously treated mantle cell lymphoma, immunocytoma, and small B lymphocytic lymphoma. J Clin Oncol. 2000;18:317–24.

81. Reich K, Langley RG, Lebwohl M, Szapary P, Guzzo C, Yeilding N, et al. Cardiovascular safety of ustekinumab in patients with moderate to severe psoriasis: Results of integrated analyses of data from phase II and III clinical studies. Brit J Dermatol. 2011 Apr;164(4):862–72.

82. Menter A, Strober BE, Kaplan DH, Kivelevitch D, Prater EF, Stoff B, Armstrong AW, et al. Joint AAD-NPF guidelines of care for the management and treatment of psoriasis with biologics. J Am Acad Dermatol. 2019 Apr 1;80(4):1029–72.
88. Lee MP, Desai RJ, Jin Y, Brill G, Ogdie A, Kim SC. Association of Ustekinumab vs TNF inhibitor therapy with risk of atrial fibrillation and cardiovascular events in patients with psoriasis or psoriatic arthritis. JAMA Dermatol. 2019 Jun;155(6):700–7.

89. Iribarren C, Rahmaoui A, Long AA, Szefler SJ, Bradley MS, Carrigan G, et al. Cardiovascular and cerebrovascular events among patients receiving omalizumab: results from EXCELS, a prospective cohort study in moderate to severe asthma. J Allergy Clin Immunol. 2017 May;139(5):1489–1495.e5.

90. Summary of product characteristics [Internet]. European Medicines Agency. Xolair 75 mg powder and solvent for solution for injection; [Reviewed: 2016; cited 2020 Mar 7] [8 p]. Available from: https://www.ema.europa.eu/en/documents/product-information/xolair-epar-product-information_en.pdf

91. Ciccone CD. Davis’s drug guide for rehabilitation professionals. 1st ed. Philadelphia: F.A. Davis Company; 2013. 790 p.

92. Food and Drug Administration FDA. 2017. DUPIXENT (dupilumab) injection, for subcutaneous use; [Reviewed: 2018 Oct; reviewed: 2019 Feb 14] [about 25 p]. Highlights of Prescribing Information [Internet] Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/761055s007lbl.pdf

93. Summary of opinion (initial authorisation). Assement report [Internet]. London: European Medicines Agency; 2017. Dupixent (Dupilumab); [Revised: 2017 July 20; cited 2020 Mar 7]; [about 26 p]. Available from: https://www.ema.europa.eu/en/documents/assessment-report/dupixent-epar-public-assessment-report_en.pdf

94. Zhou H, Patat A, Parks V, Buckwalter M, Metzger D, Korth-Bradley J. Absence of a pharmacokinetic interaction between etanercept and Warfarin. J Clin Pharmacol. 2004 May;44(5):543–50.

95. Eggeberg A, Wu JJ, Korman N, Solomon JA, Goldblum O, Zhao F, et al. Ixekizumab treatment shows a neutral impact on cardiovascular parameters in patients with moderate-to-severe plaque psoriasis: Results from UNCOVER-1, UNCOVER-2, and UNCOVER-3. J Am Acad Dermatol. 2018 Jul;79(1):104–109.e8.

96. Wasilewska A, Winiarska M, Olszewska M, Rudnicka L. Interleukin-17 inhibitors. A new era in treatment of psoriasis and other skin diseases. Adv Dermatol Allergol. 2016 Aug;33(4):247.

97. Cada DJ, Baker DE, Panther SG, PharmD KI. Secukinumab. Hosp Pharm. 2015 Sep;50(8):714–27.

98. Coondoo A. Biologics in dermatologic therapy—An update. Indian J Dermatol. 2009 Jul;54(3):211.

99. Zhou H, Parks V, Patat A, Le Coz F, Simcoe D, Korth-Bradle J. Absence of a clinically relevant interaction between etanercept and digoxin. J Clin Pharmacol. 2004 Nov;44(11):1244–51.

100. Alefacept Drug Interactions [Internet]. Drugs.com [Revised: 2019 Jun 21; cited 2020 Mar 7]; [about 7 p]. Available from: https://www.drugs.com/cons/alefacept-intramuscular.html

101. Food and Drug Administration FDA. 2005. Orencia (Abatacept) for injection for intravenous use injection, for subcutaneous use; [Revised: 2013 Dec; cited 2020 Mar 7]; [about 16 p]. Highlights Of Prescribing Information [Internet]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2013/125118s171lbl.pdf

102. Reynolds J, Shojania K, Marra CA. Abatacept: a novel treatment for moderate-to-severe rheumatoid arthritis. Pharmacotherapy. 2007 Dec;27(12):1693–701.

103. Conti L, Gessani S. GM-CSF in the generation of dendritic cells from human blood monocyte precursors: recent advances. Immunobiology. 2008;213(9-10):859–70.

104. Pinkas H, Fisch B, Rozansky G, Felz C, Kessler-Icekson G, Krissi H, et al. Platelet-derived growth factors (PDGF-A and -B) and their receptors in human fetal and adult ovaries. Mol Hum Reprod. 2008;14:199–206.

105. Faisal AWK, Nisar S, Ali SA, Ahmad F. Effects of interferon therapy on heart. J Ayub Med Coll Abbottabad. 2016;28(2):276–80.

106. Kovacic JC, Muller DW, Graham RM. Actions and therapeutic potential of G-CSF and GM-CSF in cardiovascular disease. J Mol Cell Cardiol. 2007 Jan;42(1):19–33.
107. Andrae J, Gallini R, Betsholtz C. Role of platelet-derived growth factors in physiology and medicine. Genes Dev. 2008 May 15;22(10):1276–312.
108. Wong SF, Jakowatz JG, Taheri R. Potential drug-drug interaction between interferon alfa-2b and gemfibrozil in a patient with malignant melanoma. Clin Ther. 2005 Dec;27(12):1942–8.
109. Interferon alfa-2b Drug Interactions [Internet]. Drugs.com: Cerner Multum [Revised: 2018 May 30; cited 2020 Mar 7]; [about 4 p]. Available from: https://www.drugs.com/mtm/interferon-alfa-2b.html
110. Karalliedde LD, Clarke SFJ, Collignon U, Karalliedde J. Adverse drug interactions: a handbook for prescribers. 1st ed. London: Hodder Education; 2010. p. 101.
111. Kazatchkine MD, Kaveri SV. Immunomodulation of autoimmune and inflammatory diseases with intravenous immune globulin. N Engl J Med. 2001 Sep 6;345(10):747–55.
112. Guo Y, Tian X, Wang X, Xiao Z. Adverse Effects of Immunoglobulin Therapy. Front Immunol. 2018;9:1299.
113. Food and Drug Administration FDA; 1994. Gammagard S/D, Immune Globulin Intravenous (Human) IgA less than or equal to 2.2 μg/mL in a 5% Solution. [Revised: 2014; cited 2020 Mar 7] [about 15 p]. Highlights of prescribing information [Internet]. Available from https://www.fda.gov/media/78185/download
114. Trinh VA, Hagen B. Ipilimumab for advanced melanoma: a pharmacologic perspective. J Oncol Pharm Pract. 2013 Sep;19(3):195–201.
115. Thumar JR, Kluger HM. Ipilimumab: a promising immunotherapy for oncology. Oncology (Williston Park). 2010 Dec;24(14):1280–8.
116. Adis R&D Profile. Ipilimumab. Drugs RD. 2010 Jul;10(2):97–110. https://doi.org/10.2165/11584510-000000000-00000.
117. Voskens CJ, Goldinger SM, Loquai C, Robert C, Kaehler KC, Berking C, et al. The price of tumor control: an analysis of rare side effects of anti-CTLA-4 therapy in metastatic melanoma from the ipilimumab network. PLoS One. 2013 Jan 14;8(1):e53745.
118. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015 Jul 2;373(1):23–34.
119. Heinzerling L, Ott PA, Hodi FS, Husain AN, Tajmir-Riahi A, Tawbi H, et al. Cardiotoxicity associated with CTLA4 and PD1 blocking immunotherapy. J Immunother Cancer. 2016 Dec 16;4(1):50.
120. Roth ME, Muluneh B, Jensen BC, Madamanchi C, Lee CB. Left ventricular dysfunction after treatment with ipilimumab for metastatic melanoma. Am J Ther. 2016 Nov 1;23(6):e1925–8.
121. Yun S, Vincelette ND, Mansour I, Hariri D, Motamed S. Late onset ipilimumab-induced pericarditis and pericardial effusion: a rare but life threatening complication. Case Rep Oncol Med. 2016; https://doi.org/10.1155/2016/794842. Available from http://downloads.hindawi.com/journals/crionm/2016/794842.pdf
122. Samara Y, Yu CL, Dasanu CA. Acute autoimmune myocarditis and hepatitis due to ipilimumab monotherapy for malignant melanoma. J Oncol Pharm Pract. 2019 Jun;25(4):966–8.
123. Assessment Report For Yervoy (ipilimumab). London: European Medicines Agency 2011. Yervoy (ipilimumab) [about 71 p]. Available from https://www.ema.europa.eu/en/documents/assessment-report/yervoy-epar-public-assessment-report_en.pdf
124. Brahmer JR, Hammers H, Lipson EJ. Nivolumab: targeting PD-1 to bolster antitumor immunity. Future Oncol. 2015 Mar 23;11(9):1307–26.
125. Koelzer VH, Rothschild SI, Zihler D, Wicki A, Willi B, Willi N, et al. Systemic inflammation in a melanoma patient treated with immune checkpoint inhibitors - an autopsy study. J Immunother Cancer. 2016 Dec;4(1):13.
126. Food and Drug Administration FDA; 2014. OPDIVO (nivolumab) injection, for intravenous use: [Revised: 2018 Apr; cited 2020 Mar 7]; [about 47 p]. Highlights of Prescribing Information [Internet]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/125554s058lbl.pdf
127. Seiwert TY, Burtness B, Mehra R, Weiss J, Berger R, Eder JP, et al. Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial. Lancet Oncol. 2016 Jul 1;17(7):956–65.

128. Tajmir-Riahi A, Bergmann T, Schmid M, Agaimy A, Schuler G, Heinzerling L. Life-threatening autoimmune cardiomyopathy reproducibly induced in a patient by checkpoint inhibitor therapy. J Immunother. 2018 Jan 1;41(1):35–8.

129. Zimmer L, Goldinger SM, Hofmann L, Loquai C, Ugurel S, Thomas I, et al. Neurological, respiratory, musculoskeletal, cardiac and ocular side-effects of anti-PD-1 therapy. Eur J Cancer. 2016 Jun 1;60:210–25.

130. Langer CJ, Gadgeel SM, Borghaei H, Papadimitrakopoulou VA, Patnaik A, Powell SF, et al. Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: a randomised, phase 2 cohort of the open-label KEYNOTE-021 study. Lancet Oncol. 2016 Nov 1;17(11):1497–508.

131. Herbst RS, Baas P, Kim DW, Felip E, Perez-Gracia JL, Han JY, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet. 2016 Apr 9;387(10027):1540–50.

132. Assessment report Keytruda, International non-proprietary name: pembrolizumab [Internet]. European Medicines Agency; 2015. [Revised: 2015 May 21; cited 2020 Mar 7]; [about 21 p]. Available from https://www.ema.europa.eu/en/documents/assessment-report/keytruda-epar-public-assessment-report_en.pdf

133. Hall RP III, Mickel C. Dapsone. In: Wolverton SE, editor. Comprehensive dermatologic drug therapy. 2nd ed. Edinburgh: Elsevier Health Sciences; 2007. p. 239–57.

134. Sacher F, Fauchier L, Boveda S, de Chillou C, Defaye P, Deharo JC, Gandjbakhch E, Probst V, Cohen A, Leclercq C. Use of drugs with potential cardiac effect in the setting of SARS-CoV-2 infection. Arch Cardiovasc Dis. 2020; https://doi.org/10.1016/j.acvd.2020.04.003.

135. Van De Kerkhof PC. Update on retinoid therapy of psoriasis in: an update on the use of retinoids in dermatology. Dermatol Ther. 2006 Sep;19(5):252–63.

136. Lammer EJ, Chen DT, Hoar RM, Agnish ND, Benke PJ, Braun JT, Curry CJ, Fernhoff PM, Grix AW Jr, Lott IT, Richard JM. Retinoic acid embryopathy. N Engl J Med. 1985 Oct 3;313(14):837–41.

137. Matsuda S, Koyasu S. Mechanisms of action of cyclosporine. Int Immunopharmacol. 2000 May 1;47(2-3):119–25.

138. Russell G, Graveley R, Seid J, Al-Humidan AK, Skjodt H. Mechanisms of action of cyclosporine and effects on connective tissues. Semin Arthritis Rheum. 1992 Jun 1;21(6):16–22.

139. Dehesa L, Abuchar A, Nuno-Gonzalez A, Vitiello M, Kendel FA. The use of cyclosporine in dermatology. J Drugs Dermatol. 2012 Aug;11(8):979–87.

140. Amor KT, Ryan C, Menter A. The use of cyclosporine in dermatology: part I. J Am Acad Dermatol. 2010 Dec 1;63(6):925–46.

141. Ryan C, Amor KT, Menter A. The use of cyclosporine in dermatology: part II. J Am Acad Dermatol. 2010 Dec 1;63(6):949–72.

142. Widdifield J, Abrahamowicz M, Paterson JM, Huang A, Thorne JC, Pope JE, et al. Associations between methotrexate use and the risk of cardiovascular events in patients with elderly-onset rheumatoid arthritis. J Rheumatol. 2019 May 1;46(5):467–74.

143. Perlis C, Pan TD, McDonald CJ. Cytotoxic Agents. In: Wolverton SE, editor. Comprehensive dermatologic drug therapy. 2nd ed. Edinburgh: Elsevier Health Sciences; 2007. p. 208–12.

144. Szekanecz Z, Kerekes G, Soltész P. Vascular effects of biologic agents in RA and spondyloarthropathies. Nat Rev Rheumatol. 2009 Dec;5(12):677.

145. Gleichorn K, Wilson J, Wilkerson M. Rituximab: uses in dermatology. Skin Therapy Lett. 2016 Sep 1;21:5–7.

146. Croxall JD. Ustekinumab. Drugs. 2011 Sep 1;71(13):1733–53.
148. Holm JG, Agner T, Sand C, Thomsen SF. Omalizumab for atopic dermatitis: case series and a systematic review of the literature. Int J Dermatol. 2017 Jan;56(1):18–26.
149. Graves JE, Nunley K, Heffernan MP. Off-label uses of biologics in dermatology: rituximab, omalizumab, infliximab, etanercept, adalimumab, efalizumab, and alefacept (part 2 of 2). J Am Acad Dermatol. 2007 Jan 1;56(1):e55–79.
150. Gooderham MJ, Hong HC, Eshtiaghi P, Papp KA. Dupilumab: A review of its use in the treatment of atopic dermatitis. J Am Acad Dermatol. 2018 Mar 1;78(3):S28–36.
151. Robert M, Miossec P. Effects of Interleukin 17 on the cardiovascular system. Autoimmun Rev. 2017 Sep;16(9):984–91.
152. Tabata MM, Choi S, Hirotsu K, Kwong B, Soleymani T. Cardiotoxicity associated with immune checkpoint inhibitors in cutaneous. J Am Acad Dermatol. 2019 Aug 19;81(2) https://doi.org/10.1016/j.jaad.2019.08.033.
153. Johnson DB, Balko JM, Compton ML, Chalkias S, Gorham J, Xu Y, et al. Fulminant myocarditis with combination immune checkpoint blockade. N Engl J Med. 2016 Nov 3;375(18):1749–55.