polyurethane-covered gel-filled mammary prosthesis.

Plast Reconstr Surg 86:512-518 (1981).

14. Cohnen BC, Cohnen TB, Heame VA. Augmentation mammaplasty—a further review of 20 years using the polyurethane covered prosthesis. J Long-Term Eff Med Implants 1:269-279 (1992).

15. Green A, Willert WC, Colditz GA, Stamper MJ, Bain G, Hyrkynens CH, Speizer FE. Use of permanent hair dye and the risk of breast cancer. J Nat Cancer Inst 79:253-257 (1987).

16. Grodstein F, Hankens C, Colditz GA, Hunter DJ, Stamper MJ. A prospective study of permanent hair dye use and hematopoietic cancer. J Nat Cancer Inst 96:1466-1470 (1994).

17. Koenig KL, Pasternack BS, Shone RE, Strax P. Hair dye use and breast cancer: a case-control study among screening participants. Am J Epidemiol 133:985-995 (1991).

18. Hagmar L, Weihlender H, Mikoczy Z. Cancer incidence and mortality in the Swedish polyurethane foam manufacturing industry. Br J Ind Med 50:537-543 (1993).

19. Schnorr TM, Steenland K, Egeland GM, Boeniger M, Eglin D. Mortality of workers exposed to toluene disocyanate in the polyurethane foam industry. Occup Environ Med 53:703-707 (1996).

20. Sorahan T, Pope D. Mortality and cancer morbidity of production workers in the United Kingdom flexible polyurethane foam industry. Br J Ind Med 50:528-530 (1993).

Response

In his comments on our paper, Kulig states that "the estimated dose of polyurethane was too high." The polyurethane foam mass (4.87 g) used in this study corresponds to the mass of foam covering two implants of 500 g each. The 2.7 g referred by Kulig corresponds to the mass of foam covering two implants of 250 g each.

Another criticism was that "polyurethane oligomers were incorrectly assumed to be 2,4-toluenediamine (2,4-TDA)." We did not assume that all the degradation products were oligomers. We also did not use an implant study to calibrate the model. The text and data in Figure 2 of our paper was clearly identified as an intravenous (iv) bolus of 0.52 mg/kg of 2,4-TDA. Obviously, this would result in serum concentrations above the detection limits, so that the model could be calibrated. We never claimed that the data in our Figure 2 was from an implant or that the implant degradation product, 2,4-TDA, could be detected in serum. This iv bolus data of pure 2,4-TDA was used initially to calibrate the PBPK model. Subsequently, the PBPK model was used to simulate routes of administration in the rat and in human (0.021 g) and human (4,872 g) implants in our Table 2. Table 3 in our paper shows a list of metabolism and excretion parameters, and not plasma or urinary levels of 2,4-TDA as indicated in Kulig's comments. In Figure 3, we plotted 2,4-TDA serum concentrations of the simulated low-dose rat iv bolus, feeding, and implant cases, and not, urinary 14C-2,4-TDA as Kulig claimed in his comments. The 14C data were used only to validate the excretion of 2,4-TDA in rats.

Environmental Noise Exposure

The article "Loud—but Not Yet Clear" in the May issue of Environmental Health Perspectives (1) discusses the subject of effects of noise on health. This is the second article in a short time that refers to this subject (2), which we think is commendable. Environmental noise exposure is an environmental factor that seriously affects health and well-being. This is also demonstrated by the table presented in your article. This table originated in the 1994 "Noise and Health" report of the Health Council of the Netherlands (3), as was duly mentioned in the report of the Leicester Institute for Environment and Health (4) to which your article refers.

We would like to bring a related matter to the attention of your readers. For an efficient policy to reduce noise-induced health effects outside the workplace, simple exposure metrics are urgently required. This led the Netherlands Minister of the Environment to request the Health Council to recommend such metrics to be used in national and in European noise abatement policies. In October 1997, the Health Council published its report, titled "Assessing Noise Exposure for Public Health Purpose," (5) which was compiled by an international committee with European and North-American membership.

This report recommended a method of aggregating noise exposure levels from different sources with different qualities, taking into account the exposure time of the day. The resulting two metrics are thought to have unambiguous relationships with noise annoyance and with waking during the night. The proposed metrics, the environmental exposure level (EEL) and environmental nighttime exposure level (ENE), are the adjusted day—night—night equivalent sound level (L_{eq}^{day}) and the adjusted night-time equivalent sound level (L_{eq}^{23-07h}), respectively. As already indicated, the adjustments pertain to the source of the noise (mainly road traffic, rail traffic, air traffic, industrial sources), the nature of the noise (tonal, impulsive, industrial components) and the exposure time of the day (day: 700—1900 h; evening: 1900—2300 h; night: 2300—700 h), as these factors are known to modify the relationship between the equivalent sound level and the extent of noise-induced annoyance and sleep disturbance. Most adjustment factors were based on an evaluation by the committee of a comprehensive analysis of original data of
35,000 respondents in more than 350 socioacoustic surveys that have been compiled by TNO Prevention and Health (6).

The two Health Council reports (3,5) and the Leicester report (4) present data and tools for policy makers to reduce noise exposure in effective and efficient ways. If such policies are carried out, this will improve the health and well-being of the affected populations.

Willy Passchier-Vermeer
TNO Prevention and Health
Leiden, The Netherlands

Wim Passchier
Health Council of the Netherlands
Rijswijk, The Netherlands

REFERENCES AND NOTES

1. Forum: Loud—but Not Yet Clear. Environ Health Perspect 106:A222–A223 (1998).
2. Holzman D. Focus: Plane pollution. Environ Health Perspect 105:1300–1305 (1997).
3. Health Council of the Netherlands: Committee on Noise and Health. Noise and Health (Geluid en gezondheid). nr 1994/15E. The Hague: Health Council of the Netherlands, 1994.
4. IEH. The Non-auditory Effects of Noise. Leicester, UK: Institute for Environment and Health, 1997.
5. Health Council of the Netherlands: Committee on a Uniform Noises Metric. Assessing Noise Exposure for Public Health Purposes (Gongewingslawau beoordelen). nr 1997/23E. The Hague: Health Council of the Netherlands, 1997.
6. Mielckma HME, Vos H. Exposure–response relationships for transportation noise. J Acoust Soc Am (in press).

Two errors of omission were made in the September 1998 Focus article, “Natural Born Killers.” 1) On p. A434, middle of the first column, the quote by John Kough should read: “Food allergies don’t lend themselves to classical models of toxicity testing,” he says. “There is no animal model that can be used to address them.” 2) On p. A434, middle of second column, the text should read: “These plants may contain varying levels of glycoalkaloids, which can be toxic if eaten in sufficient quantities. Plant breeders now recognize that these substances could pose a problem for some consumers, and routinely screen for levels of glycoalkaloids when working with these particular varieties.” EHP regrets the error.

Notification to Our Readers
An Environmental Health Perspectives reader noted that nearly identical abstracts were used in a 1998 EHP article (Calabrese EJ, Baldwin LA. Hormesis as a biological hypothesis. Environ Health Perspect 106(suppl 1):357–362 [1998]) and a 1997 article in the International Journal of Toxicology (Calabrese EJ, Baldwin LA. The dose determines the stimulation (and poison): development of a chemical hormesis database. Int J Toxicol 16:545–559 [1997]).

On inspection, the papers were found to be very similar, including several tables and figures. No attribution was given in the EHP paper to the previously published International Journal of Toxicology article.

EHP policy is to publish only original research, reviews, or commentaries. As required by copyright laws, the republication of text, tables, or figures from previously published work must be acknowledged.

Attention Educators
For as little as $3.09* per year/per user, your students can have full Internet access to the Environmental Health Information Service (EHIS)!

The EHIS offers online, searchable access to:
- Environmental Health Perspectives
- Environmental Health Perspectives Supplements
- National Toxicology Program Technical and Toxicology Reports
- Report on Carcinogens
- Chemical Health and Safety Database
- Historical Control Database

For more information on ordering see http://ehis.niehs.nih.gov or call 1-800-315-3010.

*Price is based on Multiple User Internet Access-Education Accounts including full Internet access for 250 users and print copies of EHP, EHP Supplements, and NTP Reports.