Abstract. Let K denote a compact invariant set for a strongly monotone semiflow in an ordered Banach space E, satisfying standard smoothness and compactness assumptions. Suppose the semiflow restricted to K is chain transitive. The main result is that either K is unordered, or else K is contained in totally ordered, compact arc of stationary points; and the latter cannot occur if the semiflow is real analytic and dissipative. As an application, entropy is 0 when $E = \mathbb{R}^3$. Analogous results are proved for maps. The main tools are results of Mierczyński and Tereščák.

AMS subject classification: 37C65

1 Introduction

Throughout this paper E denotes an ordered Banach space whose order cone $E^+ = \{x \in E : x \geq 0\}$ has nonempty interior $\text{Int} E^+$. Our main results are Theorem 1.3 concerning smooth strongly monotone maps, and its analogue for semiflows, Theorem 1.6.

Notation and terminology. We write $x \geq y$ if $x - y \in E^+$ and $x > y$ if $x \geq y$ and $x \neq y$, or equivalently, $x - y \in E^+ \setminus \{0\}$. If $x - y \in \text{Int} E^+$ we write $x \gg 0$.

A subset $Y \subset X$ is unordered if none of its points satisfy $x < y$. We call x and y comparable in case $x \leq y$ or $y \leq x$.

If A and B are sets, notation such as $A > B$ means $a > b$ for all $a \in A, b \in B$. We abuse notation slightly by writing $A > b$ if A is a set, b is a point, and $A > \{b\}$.

For any subsets or points A, B

$$A_+ = \{x \in E : x \geq A\}, \quad A_- = \{x \in E : x \leq A\}$$

$$[A, B] = \{x \in E : A \leq x \leq B\}$$

$$[[A, B]] = \{x \in E : A \ll x \ll B\}$$

For sets A, B

$$A^+ = \bigcup_{x \in A} x_+, \quad A^- = \bigcup_{x \in A} x_-$$
\[[A, B] = A^\bullet \cap B^\bullet = \bigcup_{a \in A, b \in B} [a, b] \]

If \(A \subseteq B^\bullet \), then \(B \) majorizes \(A \), while if \(A \supseteq B^\bullet \) then \(B \) minorizes \(A \).

\(S : X \to X \) always denotes a continuous map defined in an open set \(X \subset E \).

The orbit \(\gamma(x) \) of \(x \in X \) is the set \(\{ S^n x : n \in \mathbb{N} \} \) where \(\mathbb{N} = \{0, 1, \ldots \} \) is the set of natural numbers. The orbit closure of \(x \) is \(\overline{\gamma(x)} = \text{clos} \gamma(x) \). The omega limit set of \(x \) is \(\omega(x) = \bigcap_{k \geq 0} \overline{\gamma(S^k x)} \).

A point \(p \) is \(m \)-periodic if \(S^m p = p \). If also \(\omega(z) = \gamma(p) \) for some \(z > p \) then \(p \) and \(\gamma(p) \) are upper attracting. A lower attracting periodic point is defined dually (by reversing order relations).

The following hypotheses is always in force:

Hypothesis 1.1

(i) \(X \subset E \) is an open set that is order convex: if \(p, q \in X \) then \(X \) contains the closed order interval \([p, q]\).

(ii) \(S : X \to X \) is \(C^1 \) (continuously Frechet differentiable).

(iii) \(S \) is order compact: the image of each closed order interval \([p, q]\), \(p, q \in X \), has compact closure in \(X \).

(iv) For each \(x \in X \) the derivative of \(S \) at \(x \) is a strongly positive linear operator \(DS(x) : E \to E \), i.e., \(DS(x)u \gg 0 \) if \(u > 0 \). This implies \(S \) is strongly monotone: \(Sx \gg Sy \) if \(x > y \).

(v) \(S \) is completely continuous: the image of any bounded set has compact closure in \(X \). Moreover, each derivative \(DS(x) \) is completely continuous.

(vi) Every orbit closure is a compact subset of \(X \).

Such maps arise in ordinary, partial and functional differential equations; see e.g. Dancer & Hess [8], Hess & Poláčik [12], Hirsch [19, 20], Poláčik & Tereščák [30, 31], Smith [33], Smith & Thieme [34], Takáč [35, 36].

Our results are based on the following fundamental property of this class of maps (which does not require order compactness):

Theorem 1.2 (Tereščák [37]) There exists a natural number \(m \geq 1 \) and an open dense set of points \(x \) such that \(\omega(x) \) is an \(m \)-periodic orbit.

Similar results under stronger hypotheses have been obtained by Takáč [35], Poláčik & Tereščák [30], Hess & Poláčik [12].

The smallest number \(m \) satisfying Theorem 1.2 is called the generic asymptotic period.
Attractor-free sets, p-arcs and the main theorem for maps. Let $T : Y \to Y$ be a continuous map. A subset $A \subset Y$ is an attractor if A is invariant ($T(A) = A$) and contained in an open set $W \subset Y$ such that

$$\lim_{n \to \infty} \text{dist} (T^n w, A) = 0 \quad \text{uniformly in } w \in W.$$

If also $A \neq Y$ then A is a proper attractor. T is dissipative if there is an attractor that contains all omega limit points.

Now let $Y \subset X$ be a compact invariant set for S. If the map $S|Y$ does not have a proper attractor, Y is attractor-free. By a theorem of Conley [6] this is equivalent to $S|Y$ being chain transitive (see Section 2). Every omega limit set is attractor-free and unordered. Attractor-free sets for semiflows occur as limit sets of several kinds of dynamic and stochastic processes (Benaïm and Hirsch [2, 3, 4], Mischaikow et al. [28], Thieme [38, 39]).

A smooth arc $J \subset E$ is the homeomorphic image of the closed unit interval under an injective C^1 map $h : [0, 1] \to E$ whose derivative is nonzero everywhere. We call such a J a p-arc for S if $S(J) = J$ and $h'(t) \gg 0$ for all $t \in [0, 1]$. This makes J totally ordered.\footnote{The concept of p-arc is due to Mierczyński [27], who also allowed degenerate p-arcs, i.e., fixed points. Here we allow only nondegenerate p-arcs.} The endpoints $h(0), h(1)$ are fixed points. The set of endpoints is denoted by ∂J.

A p-arc is stationary if it consists of fixed points. It is easy to see that if J is a stationary p-arc for S^m, then each point of J is m-periodic, there is a divisor $d \geq 1$ of m such that the arcs $J, S(J), \ldots, S^{d-1}(J)$ are disjoint and permuted cyclically by S, and if $0 \leq i < j \leq d - 1$ then no point of $S^i J$ is related to any point of $S^j J$.

We can now state our main results for maps. The following two theorems refer to a map $S : X \to X$ satisfying Hypotheses [11] with generic asymptotic period $m \geq 1$.

Theorem 1.3 Let $K \subset X$ be an attractor-free set. Then either

(a) K is unordered; or else

(b) $K = \bigcup_{0 \leq i < m} S^i(J)$ where J is a stationary p-arc for S^m.

Moreover K is unordered provided S is real analytic and dissipative.

The following result complements shows that except for upper attracting m-periodic orbits, unordered attractor-free sets are rather unstable:

Theorem 1.4 Let K be an unordered attractor-free set. Then either K is an upper attracting m-periodic orbit, or else there exists a lower attracting m-periodic point q such that $\gamma(q)$ majorizes K and K minorizes $\gamma(q)$, and $\omega(y) = \gamma(q)$ if $x < y < u$ for some $x \in K, u \in \gamma(q)$. The dual result also holds.

Thus if K is not an upper attracting m-periodic orbit, it lies in the upper boundary of the basin of attraction of $\gamma(q)$.
The main theorem for semiflows. Let $S = \{S_t : X \to X\}_{0 \leq t < \infty}$ be a semiflow in X, i.e., $S_t x$ is continuous in (t, x), $S_t \circ S_r = S_{t+r}$, and S_0 is the identity map of X. A point p is an equilibrium if $S_t p = p$ for all $t \geq 0$. We always assume:

Hypothesis 1.5

Each map $S_t : X \to X$, $t > 0$ satisfies Hypothesis 1.1.

Let $Y \subset X$ be invariant under S, i.e., $S_t(Y) = Y$ for all t. An attractor for the restricted semiflow $S|Y = \{S_t|Y : Y \to Y\}$ is a nonempty compact invariant $A \subset Y$ having a neighborhood $V \subset Y$ such that $\lim_{t \to \infty} \text{dist}(S_t y, A) = 0$ uniformly in $v \in V$. The definitions for semiflows of proper attractor, attractor-free, and dissipative are similar to those for maps.

A smooth arc $J \subset X$ is a p-arc for S if it is a p-arc for every map S_t. If in addition every point of J is an equilibrium, then J is a stationary p-arc for S.

The analogue of Theorem 1.3 for semiflows is:

Theorem 1.6 Assume the semiflow S satisfies Hypothesis 1.1 and let $K \subset X$ be an attractor-free set. Then either K is unordered, or K is a stationary p-arc for S. If S is dissipative and real analytic, then K is unordered.

This result has been applied to stochastic approximation and game theory in Benaïm & Hirsch [4].

Theorem 1.4 takes the following form for semiflows:

Theorem 1.7 Assume the semiflow S satisfies Hypothesis 1.5, and let $K \subset X$ be an unordered attractor-free set that is not an upper attracting equilibrium. Then there is a lower attracting equilibrium $q \gg K$ such that $S_t y \to q$ if $x < y < q$ for some $x \in K$.

Application to invariant measures. Before beginning the proof of the main theorems, we use them to investigate invariant measures.

An invariant measure μ for S is a Borel probability measure on X with compact support such that $\mu(U) = \mu(S^{-1}U)$ for every μ-measurable set U. The support $\text{Supp}(\mu)$ of μ is the complement in X of the union of all open sets U such that $\mu(U) = 0$. Notice that $\text{Supp}(\mu)$ is an invariant set. If μ is invariant for every map in a semiflow S, then μ is called an invariant measure for S. An invariant measure is ergodic if every measurable invariant set has measure zero or one.

Chain recurrence is defined in Section 2 below.

Proposition 1.8 Let K be the support of an invariant measure μ. Then every point of K is chain recurrent for $S|K$. If μ is ergodic, K is attractor-free.

Proof: We rely on the fact that $\mu(Q) = 0$ for every nonempty, relatively open set $Q \subset \text{Supp}(\mu)$. Let $R \subset K$ denotes closure of the set of recurrent points in K. If $K \setminus R \neq \emptyset$ then $\mu(K \setminus R) > 0$. But then $K \setminus R$ carries an invariant measure, and thus contains a recurrent point by Poincaré’s recurrence theorem (Nemytskii &
The topological entropy of a dynamical system is a much studied numerical invariant. While the definition is too complicated to give here (see e.g. Katok & Hasselblatt [26]), it can be noted that positive entropy is often used as a criterion for chaos. Conversely, zero entropy suggests nonchaotic behavior. Rigorously, zero entropy implies that the system does not contain a subsystem dynamically equivalent to a Smale horseshoe.

Under Hypotheses 1.1 or 1.5 we have the following result:

Theorem 1.9 Assume \(E = \mathbb{R}^3 \) and \(S \) is a flow (respectively, \(E = \mathbb{R}^2 \) and \(S \) is a diffeomorphism). Then \(S \) (respectively, \(S \)) has topological entropy 0.

Proof: The topological entropy is the supremum of the measure theoretic entropies of ergodic invariant measures (Goodwyn [11]). Therefore it suffices to prove that every ergodic invariant measure \(\mu \) for \(S \) (or \(S \)) has measure theoretic entropy 0.

Consider a flow \(S \) in \(X \subset \mathbb{R}^3 \). Then \(K \) is attractor-free by Proposition 1.8 and Theorem 1.3 applies. It is easy to see that ergodicity precludes conclusion (b) of Theorem 1.3 so \(K \) is unordered. Therefore \(K \) lies in an invariant surface (Hirsch [18], Takáč [35]). Since every surface flow has entropy 0 (Young [41]), the proof for flows is complete.

The proof for a diffeomorphism \(S \) in \(X \subset \mathbb{R}^2 \) is similar: Theorem 1.6 implies \(K \) is unordered, \(K \) lies in an invariant 1-manifold, and every homeomorphism of a 1-manifold has entropy 0 (Adler et al. [1]).

2 Preliminaries

Chain equivalence. Let \(T : Y \to Y \) be a continuous map in a metric space. Let \(u, v \in Y \). We say \(u \) \(\epsilon \)-chains to \(v \), written \(u \sim_{\epsilon} v \), if there exist a number \(m \in \mathbb{N}_+ \) (the set of positive natural numbers) and a finite sequence in \(Y \) of the form

\[
 u = y_0, \ldots, y_m = v
\]

such that

\[
 ||Ty_{i-1} - y_i|| < \epsilon, \quad i = 1, \ldots, m
\]

The \(m + 1 \)-tuple \((y_1, \ldots, y_m)\) is an \(\epsilon \)-chain. If \(u \sim_{\epsilon} v \) for every \(\epsilon > 0 \) then \(u \) chains to \(v \), denoted by \(u \leadsto v \). If \(u \leadsto v \) and \(v \leadsto u \) then \(u \) and \(v \) are chain equivalent,
written \(u \approx v \). If \(u \sim v \) then \(u \) is chain recurrent. Define
\[
\Omega(u, T) = \{ v : u \sim v \}
\]
This set is closed and forward invariant; when \(u \) is chain recurrent, it is invariant.

The binary relation of chain equivalence is symmetric and transitive, and reflexive on the set \(CR(T) \) of chain recurrent points of \(T \). This closed invariant set contains the nonwandering set, all homoclinic and heteroclinic cycles, and all supports of invariant measures.

If every point is chain recurrent, then \(T \) is a chain recurrent map. If \(Y = CR(T) \) then we say \(Y \) is chain transitive. When \(Y \) is compact, this is equivalent to \(Y \) being attractor-free by a theorem of Conley [6] for semiflows and its analogue for maps.

Now consider a semiflow \(T = \{ T_t \}_{0 \leq t < \infty} \) in \(Y \). For \(R > 0 \) and \(\epsilon > 0 \) we say \(u \) \((R, \epsilon)\)-chains to \(v \), written \(u \sim_{R, \epsilon} v \), if there exists a natural number \(m \geq 1 \), real numbers \(t_1, \ldots, t_r \geq R \), and a finite sequence in \(Y \) of the form \(v = y_0, \ldots, y_n = u \) such that
\[
|| T_{t_i} y_{i-1} - y_i || < \epsilon \quad i = 1, \ldots, m
\]
If \(u \sim_{R, \epsilon} v \) for every \(R > 0, \epsilon > 0 \) then \(u \) chains to \(v \), denoted by \(u \sim v \). If \(u \sim u \) then \(u \) is chain recurrent for \(T \).

The definitions of chain recurrence, chain equivalence and chain transitivity for semiflows are analogous to those for maps. When \(Y \) is compact, chain transitivity is equivalent to attractor-free.

Monotone convergence and p-arcs. We return to the map \(S : X \to X \) satisfying Hypothesis 1.1.

A point \(x \) is convergent if \(\omega(x) \) is a singleton (necessarily a fixed point).

Suppose \(\omega(x) = p \). We say \(\gamma(x) \) eventually decreases to \(p \) and write \(\gamma(x) \searrow p \) provided there exists \(n \geq 0 \) such that \(S^n x > S^{n+1} x \), in which case
\[
S^k x \gg S^{k+1} x \gg p \text{ for all } k \geq n.
\]
If \(S^n x < S^{n+1} x \) for some \(n \geq 0 \), we say \(\gamma(x) \) eventually increases to \(p \) and write \(\gamma(x) \nearrow p \). When \(\gamma(x) \searrow p \) or \(\gamma(x) \nearrow p \), we say \(\gamma(x) \) is eventually monotone and converges eventually monotonically.

Theorem 2.1 (Mierczyński) Let \(p \) be a fixed point. The set of points whose orbits converge to \(p \), but not monotonically, is unordered.

Proof: Follows from Proposition 2.1 of [27].

For any \(x \in X \) let \(\rho(x) \) denote the spectral radius of the linear operator \(L_x = DS(x) : E \to E \). The Krein-Rutman theorem (Deimling [9]) implies \(\rho(x) \) is a simple eigenvalue of \(L_x \), whose one-dimensional eigenspace, called the principal eigendirection \(E_1(x) \), is spanned by a vector \(\gg 0 \). There is a direct sum decomposition \(E = E_1(x) \oplus E_2(x) \) invariant under \(L_x \) such that \(L_x | E_2(x) \) has spectral radius \(\rho_2(x) < \rho(x) \). Moreover \(E_2(x) \cap E^+ = \{0\} \).

It is easy to see that if \(x \) belongs to a stationary p-arc then \(\rho(x) = 1 \).
Theorem 2.2 (Mierczyński)

(a) Assume p, q are fixed points with $p < q$ and the set of fixed points in $[p, q]$ is compact. Then there is a p-arc whose endpoints are p and q.

(b) If x is a fixed point in a p-arc J then the tangent space $T_x J$ is the principal eigendirection $E_1(x)$.

Proof: Part (a) is proved in Theorem 3.16 of [27]. Part (b) is Lemma 3.6 of [27].

Let J be a stationary p-arc. There is a continuous family of bounded, C^1 hypersurfaces $\{L(x)\}_{x \in J}$ with the following properties (see Proposition 3.8 of [27]):

Lemma 2.3 (Mierczyński)

(a) $L(x)$ is tangent to $E_2(x)$ at x

(b) $L(x)$ is forward invariant

(c) $\lim_{n \to \infty} S^ny = x$ uniformly for $y \in L(x)$

(d) Set $B(J) = \bigcup_{x \in J} L(x)$. Then the interior of $B(J)$ is a neighborhood of $J \setminus \partial J$, and J is a global attractor for $S | B(J)$.

I call $B(J)$ a contracting collar for J.

Denote the two endpoints of J by $e_0 \ll e_1$. Set

$$Q(J) = \lfloor L(e_0), L(e_1) \rfloor$$

Proposition 2.4 (Mierczyński) $B(J)$ is a neighborhood of J in $Q(J)$.

Proof: This is Proposition 3.8(vi) of [27].

Define forward invariant sets

$$V^{-}(J) = \{ x \in X : \gamma(x) \cap (\text{Int} J_-) \neq \emptyset \},$$

$$V^{+}(J) = \{ x \in x : \gamma(x) \cap \text{Int} (J_+) \neq \emptyset \},$$

$$V(J) = X \setminus (V^{-}(J) \cup V^{+}(J))$$

Then $V^{-}(J)$ and $V^{+}(J)$ are open and $V(J)$ is closed in X.

Proposition 2.5 $B(J)$ is a neighborhood of J in $V(J)$.

Proof: By Proposition 2.4 it suffices to prove that $V(J) \cap Q(J)$ is a neighborhood of J in $Q(J)$. Let $\{x_n\}$ be a sequence in $Q(J)$ converging to a point $z \in J$. We can choose n_* sufficiently large that $x_k \gg e_0$ for all $k \geq n_*$, because $z \gg e_0$. For such k we have $\gamma(x_k) \gg e_0$ by strong monotonicity, whence $x_k \notin V^{-}(J)$. Similarly for $V^{+}(J)$.
Proposition 2.6 \(J \) is an attractor for \(S|V(J) \).

Proof: By Lemma 2.5 it is enough to prove that \(\lim_{n \to \infty} S^n x = 0 \) uniformly for \(x \in B(J) \). This follows from 2.3(c). \(\blacksquare \)

Lemma 2.7 Let \(J \) be a stationary \(p \)-arc. Suppose \(x \in X \) and \(\omega(x) \cap J \neq \emptyset \). Then either \(\omega(x) \ll J \) or \(\omega(x) \) is a singleton in \(J \).

Proof: Suppose there exists \(p \in \omega(x) \cap J \). Then \(\omega(x) \cap B(J) \subset L(p) \), for otherwise \(\omega(x) \) would contain two points of \(J \), contradicting \(\omega(x) \) being unordered. Therefore \(p \in \partial J \), for otherwise \(\omega(x) \cap J \) would be a proper attractor in \(\omega(x) \) by Propositions 2.4 and 2.6. Thus \(\omega(x) \cap J = \{ p \} \) where \(p \) is an endpoint of \(J \); we need consider only the case \(p = \inf J \). Then \(\omega(x) \cap L(p) = \{ p \} \) because \(x \ll y \) then means \((x, y) \in \text{Int} R \).

Consequences of chaining. In the remainder of this section \(T : X \to X \) denotes any strongly monotone continuous map. (Here \(X \) could be any metric space endowed with a closed partial order relation \(R \subset X \times X \). The notation \(x \ll y \) then means \((x, y) \in \text{Int} R \).

Let \(v, u \in X \) denote chain recurrent points such that \(v > u \).

Proposition 2.8 Suppose there exists \(z \in X \) such that

\[v > Tz > z \geq u \]

and

\[\text{dist} \left(T(z_+), X \setminus \text{Int}(z_+) \right) = \epsilon > 0 \]

Then \(v \not
\ll u \). In fact, if \(0 < \delta < \epsilon \) and \(v = x_0, x_1, \ldots, x_n \) is a \(\delta \)-chain, then \(x_n \gg u \).

Proof: \(Tv \in \text{Int} T(z_+) \), because \(Tz \gg T^2(z) \gg Tz \) by strong monotonicity. This implies \(x_1 \gg z \), i.e., \(x_1 \in \text{Int}(z_+) \), because:

\[\text{dist} \left(x_1, X \setminus \text{Int}(z_+) \right) \geq -d(x_1, Tv) + \text{dist} \left(Tv, X \setminus \text{Int}(z_+) \right) \]
\[\geq -\delta + \text{dist} \left(T(u)_+, X \setminus \text{Int}(z_+) \right) \]
\[= -\delta + \epsilon > 0 \]

Thus \(x_n \gg z \geq u \), and the same calculation shows by induction on \(n \) that all \(x_n \gg u \). \(\blacksquare \)

Corollary 2.9 If \(v, u \) are chain equivalent and \(v \geq y \geq u \), then \(y \) does not converge eventually monotonically.
Proposition 2.10 Suppose x, y belong to an attractor-free compact invariant set $M \subset X$ and $x < y$. Then x is convergent if and only if y is convergent.

Proof: Assume y, but not x, is convergent; set $\omega(y) = \{q\}$. Then $\omega(x) \leq q$, and in fact $\omega(x) < q$ because $\omega(x)$ is unordered and not a singleton. The set $N = \omega(x) \cap M$ is compact, forward invariant, nonempty because $q \in N$, and a proper nonempty subset of M because $\omega(x) \not\subset N$. Strong monotonicity shows that $S(N) \subset \text{Int}_M N$, implying that N contains an attractor for $S|M$; contradiction. ■

3 Proof of Theorem 1.3 for the case $m = 1$

In this section we assume Hypothesis 1.1 with $m = 1$.

Lemma 3.1 Let $e \in \text{Int} E^+$. Then

$$\text{dist} (e + E^+, E \setminus \text{Int} E^+) > 0.$$

Proof: Let $x \in E^+$ be arbitrary and choose $y \in E \setminus \text{Int} E^+$ so that that

$$\text{dist} (e + x, E \setminus \text{Int} E^+) = \|e + x - y\| = \text{dist} (e, y - x)$$

Now $y - x \not\in \text{Int} E^+$ because $x \in E^+$ and $x + (y - x) = y \not\in \text{Int} E^+$. Therefore, setting

$$\alpha = \text{dist} (e, E \setminus \text{Int} E^+) > 0$$

we have

$$\text{dist} (e + x, E \setminus \text{Int} E^+) \geq \alpha$$

for all $x \in E^+$.

Now suppose a, b are chain equivalent and $a < b$.

Proposition 3.2 Suppose $a \leq y \leq b$ and $S^n y$ is comparable to $S^{n+1} y$ for some $n \geq 0$. Then $S^n y = S^{n+1} y$. Thus no orbit entering in $[a, b]$ is eventually monotone.

Proof: Arguing by contradiction, we suppose $S^n y < S^{n+1} y$. Setting $S^n y = z, u = S^{n+1} a, v = S^{n+1} b$, we have

$$u \leq z \ll S z \leq v.$$

From Lemma 3.1 with $e = S x - x$ we see that

$$\text{dist} (T(z_+), X \setminus \text{Int} z_+) > 0$$

Proposition 2.8 gives the contradiction that u, v are not chain equivalent. ■

Lemma 3.3 Let $a < x < y < b$ with $\omega(x) = \{p\}, \omega(y) = \{q\}$. Then

$$\omega(a) \ll p \ll q \ll \omega(b),$$

there is a unique p-arc J with endpoints p and q, and any such p-arc is stationary.
Proof: By monotonicity,
\[\omega(a) \leq p \leq q \leq b \]

Assume \(\omega(a) \not\ll p \); then \(\omega(a) = \{p\} \) or \(\omega(a) < p \). But the latter entails \(\omega(a) \ll p \) by strong monotonicity and invariance of \(\omega(a) \), so necessarily \(\omega(a) = \{p\} \). Now Theorem 2.1 implies that either \(\gamma(a) \) or \(\gamma(x) \) converges monotonically, contradicting Proposition 3.2. This proves \(\omega(a) \ll p \), and similar arguments prove \(p \ll q \ll \omega(b) \).

Theorem 2.2 yields a p-arc joining \(p \) to \(q \). By Lemma 2.9 no orbit in \(J \) can converge monotonically. As \(J \) is totally ordered and invariant, it follows that \(J \) is stationary. Uniqueness of \(J \) follows easily from strong monotonicity.

Lemma 3.4 Let \(a \leq u < v \leq b \). Then there is a stationary p-arc \(J \) such that \(\omega(u) \ll J \ll \omega(v) \).

Proof: Choose convergent points \(x, y \) such that \(Su \ll x \ll y \ll Sv \) (by strong monotonicity, Theorem 1.2 and the assumption \(m = 1 \)). Set \(\omega(x) = \{p\}, \omega(y) = \{q\} \) and apply Lemma 3.3.

Lemma 3.5 Every point of \([a, b]\) is convergent. If \(a \leq x < y \leq b \) then \(\omega(x) \ll \omega(y) \).

Proof: Suppose for example that \(a \leq x < b \) and \(x \) is not convergent, so that \(\omega(x) \) is a compact unordered invariant set containing more than one point. By Lemma 3.4 and the compactness assumption (Hypothesis 1.1(v)) there is a minimal fixed point \(p \) satisfying
\[\omega(x) \ll p \leq \omega(b) \]

Pick any \(u \in \omega(x), v \in \omega(b) \). Then \(u \ll p \leq v \) and \(u \) is chain equivalent to \(v \). From Lemma 3.4 we find a fixed point \(q, u \ll q \ll p \). As this contradicts minimality of \(p \), it follows that \(x \) is convergent. The last sentence is a consequence of Lemma 3.4.

In the rest of this section we assume the attractor-free set \(K \) of Theorem 1.3 is not unordered. Therefore by Lemma 3.5 we can select \(p \ll q \in K \) with the following properties:

- \(p \) and \(q \) are respectively maximal and minimal fixed points in \(K \)
- Every point of \([p, q]\) is convergent
- If \(u < v \) in \([p, q]\) then the trajectories of \(u \) and \(v \) converge to distinct fixed points.

Lemma 3.6 \(p \) is a minimal point of \(K \) and \(q \) is a maximal point of \(K \).
Proof: Suppose there exists \(u \in K, u < p \). Then Lemma 3.4 yields a stationary p-arc \(J \) such that
\[
\omega(u) \ll J \ll \omega(p) = \{p\}
\]
But \(\omega(u) \) is a singleton, contradicting minimality of \(p \).

Lemma 3.7 The set of fixed points in \([p, q]\) is a stationary p-arc \(G \) with endpoints \(p, q \).

Proof: By Lemma 3.4 there is a stationary p-arc \(G \) joining \(p \) to \(q \). Choose \(x \in [p, q] \setminus G \); we show \(Sx \neq x \). There is a minimal \(y \in G \) such that \(y > x \); then \(y \nottp x \). Since \(y = Sy \gg Sx \), it follows that \(Sx \neq x \).

Let \(B(G) \subset X \) be a contracting collar for \(G \) (see Theorem 2.2). I claim \(B(G) \cap K \) is a neighborhood of \(G \cap K \) in \(K \). If not, there is a sequence \(\{x_n\} \) in \(K \setminus B(G) \) converging to an endpoint \(p \in G \), by Lemma 2.5. We assume \(p = \inf G \).

There exists \(y \in L(p) \) and \(k \) such that \(x_k < y \). Now \(\omega(y) = p \) by Lemma 2.3(c). Therefore \(\omega(x_k) \ll p \) by Theorem 2.1. But this contradicts Lemma 3.6.

It now follows from Lemma 2.6 that \(G \cap K \) is an attractor for \(S|K \). Since \(K \) is attractor-free, we have proved \(K = G \cap K \). Since \(K \) is an attractor-free set of stationary points, it is connected. Thus \(K \) is a stationary p-arc, showing that either (a) or (b) of Theorem 1.3 holds when \(m = 1 \).

Now assume \(S \) is real analytic and dissipative. We show there cannot be a stationary p-arc \(J \). If there is, by Zorn’s lemma there exists a set \(L \subset X \) that is a connected, totally ordered set of stationary points containing \(J \), and which is setwise maximal in these properties. Then \(L \) is compact because \(S \) is dissipative, whence \(L \) is an arc (Wilder [40]). But there can be no totally ordered compact arc of fixed points when \(S \) is real analytic (Jiang & Yu [24], Lemma 3.3 and Theorem 2). Therefore Theorem 1.3(a) holds.

4 Proof of Theorem 1.3 for the case \(m > 1 \)

Assume \(m > 1 \). Pick an arbitrary \(a \in K \) and set \(L(a) = \Omega(a, S^m|K) \). This compact subset of \(K \) is attractor-free for \(S^m \), and it can be shown that
\[
S^i L(a) = L(S^i a) = L(S^{i+m}a)
\]
Because \(S|K \) is chain transitive, \(K = \cup_{0 \leq i < m} S^i L(a) \). Moreover if \(S^i L(a) \) and \(S^j L(a) \) intersect, they coincide.

With \(a \) chosen once and for all, set \(K_i = S^i L(a), 0 \leq i \leq m - 1 \). Then \(K_i = S^i K_0 \), and \(K = \cup_{0 \leq i < m} K_i \).

Suppose there exist \(x \in K_j, y \in K_k \) with \(x < y, j \neq k \); we will reach a contradiction. Relabel the \(K_i \) so that \(j = 0 \); then \(1 \leq k \leq m - 1 \), and \(y = S^k u, u \in K_0 \). Therefore the set
\[
M = \{x \in K_0 : \exists u \in K_0, k \in \{1, \ldots, m - 1\} \text{ with } x < S^ny\}\
\]
is nonempty. M is invariant under S^m and relatively open in K_0 by strong monotonicity. On the other hand, one can also prove M compact. Therefore M is an attractor for $S^m|K_0$, which implies $M = K_0$.

Compactness and strong monotonicity now imply there exists a smallest $k, 1 \leq k < m$ such that $S^k K_0 \gg K_0$. Therefore M is an attractor for $S^k|K_0$, which implies $M = K_0$.

Thus $k \leq m - k$, and an induction leads to the absurdity that $1 \leq b \leq k - l m$ for all $l \in \mathbb{N}_+$. Therefore M is empty, proving that no points of different K_i are comparable.

Since we proved Theorem 1.3 for S^m, it follows that each K_i is either a totally ordered arc of fixed points for S^m, or else it is unordered. In both cases the conclusion of Theorem 1.3 for S follows.

Remark 4.1 The proof of Theorem 1.3 contains the following result for chain transitive sets that are not necessarily internally chain transitive:

Let S satisfy Hypothesis 1.1 with generic asymptotic period $m \geq 1$. Let $L \subset E$ be a compact chain transitive set. Given $a < b$ in L, there is a stationary p-arc J for S^m such that if $a \leq x \leq b$ then $\omega(x) = \gamma(p)$ for some $p \in J$.

I suspect, but cannot prove, that Theorem 1.3 is not true under the weaker hypothesis that K is merely chain transitive.

5 Proof of Theorem 1.4

(Adapted from Benaim and Hirsch [4].) We assume K is not an upper attracting m-periodic orbit. Consider the case $m = 1$. We first prove that if $x \in K^\bullet \setminus K$, then there is a fixed point p such that

$$\omega(x) \geq \{p\} \gg K.$$

Replacing x by Sx, we assume $x \gg y \in K$. By Theorem 1.2 we choose $z \in [[[y,x]]]$ such that $\omega(z)$ is a singleton $\{p\}$. Then

$$\omega(x) \geq p \geq \omega(y).$$

I claim $p \notin K$. For if $p \in K$ then $\omega(y) = \{p\}$ because K is unordered, and therefore $\gamma(z) \searrow p$ by Theorem 2.1. Let $n \geq 0$ be such that $S^n z \gg p$. Thus p is an upper attracting fixed point. Set

$$N = \{w \in K : w \leq S^n z\}$$

Strong monotonicity implies that $\omega(w) = \{p\}$ for all $w \in N$, and also that S maps the compact set N into its relative interior in K. This implies N contains an attractor for $S|K$. Therefore $N = K$, yielding the contradiction that that $K = \{p\}$. Thus $p \notin K$.

The set $C = \{ u \in K : u < p \}$ is a nonempty, forward invariant compact set. Strong monotonicity implies S maps C into its relative interior in K, which is $\text{Int}_K C = \{ u \in K : u \ll p \}$. Since K is attractor-free, $C = K$. Therefore $\omega(x) \geq p \gg K$.

The compactness assumption Hypothesis 1.1(v) implies there is a minimal fixed point $q \gg K$. Suppose $x \in [K, p_1] \setminus K$. We saw above that $\gamma(x)$ converges to a fixed point $\gg K$. Since $\gamma(x) \leq q$ by monotonicity, $\omega(x) = \{q\}$. Taking x sufficiently close to K proves q lower attracting.

Suppose $m > 1$. Then K has the partition $K = K_1 \cup \cdots \cup K_d$ where $d|m$, each K_i is attractor-free for S^m and S cyclically permutes the K_i. Since the generic asymptotic period for S^m is 1, the case already proved yields a fixed point q for S^m satisfying 1.4 for S^m. It is easy to see this q satisfies Theorem 1.4.

6 Proofs of theorems on semiflows

The proof of Theorem 1.6 is almost the same as that of Theorem 1.3. In place of Tereščák’s theorem 1.2 one uses the following result:

Theorem 6.1 (Smith-Thieme [34]) There is a dense open set of points whose trajectories converge to equilibria.

There are also close analogues of Theorems 2.1 and 2.2. The real analytic case is based on a result in Jiang [25] that rules out setwise maximal totally ordered stationary p-arcs; see also Chow & Hale [5], p. 321. These results are put together just as in the proof of Theorem 1.3. The details are left to the reader.

Proof of Theorem 1.7. The proof is similar to the proof in Section 4 of the case $m = 1$ Theorem 1.4. One shows using Theorem 6.1 that if $x > y \in K$, there is an equilibrium q_1 such that $\omega(x) \geq q_1 \gg K$.

In this way one shows there exist a smallest equilibrium $q \gg K$ and this q satisfies the theorem.

Acknowledgments. Correspondence with M. Benaïm and J. Mierczyński has been very helpful in the preparation of this article. This research was partially supported by grants from the National Science Foundation and the North Atlantic Treaty Organization.

References

[1] R. Adler, A. Konheim & M. McAndrew, Topological entropy, *Trans. Amer. Math. Soc.*, 114, (1965) 309–313.
[2] M. Benaïm & M.W. Hirsch, Dynamics of Morse–Smale Urn Processes, *Ergodic Theory and Dynamical Systems*, 15, (1995) 1005–1030.

[3] M. Benaïm & M.W. Hirsch, Asymptotic pseudotrajectories and chain-recurrence flows, with applications, *Journal of Dynamics and Differential Equations*, 8, (1996) 141–176.

[4] M. Benaïm & M.W. Hirsch, Stochastic approximation algorithms with constant step size whose average is cooperative. Submitted.

[5] S.N. Chow & J.K. Hale, Methods of bifurcation theory, Springer-Verlag, New York 1982.

[6] C.C. Conley, Isolated Invariant Sets and the Morse Index. Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society, Regional conference series in mathematics, No. 38, Providence, 1978.

[7] E. Dancer & P. Hess, *On stable solutions of quasilinear periodic-parabolic problems*, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 14 (1987), 123–141.

[8] E. Dancer & P. Hess, *Stability of fixed points for order-preserving discrete-time dynamical systems*, J. reine angewandte Math. 419 (1991), 125-139.

[9] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, New York, 1980.

[10] L. Goodwyn, Topological entropy bounds measure theoretic entropy, *Proc. Amer. Math. Soc.*, 23, (1969) 679–688.

[11] P. Hess & P. Poláčik, Boundedness of prime periods of stable cycles and convergence to fixed points in discrete monotone dynamical systems, *SIAM J. Math. Anal.*, 5, (1993). 1312–1330.

[12] M.W. Hirsch, Systems of differential equations which are competitive or cooperative, I: limit sets, *SIAM J. Math. Anal.* 13, (1982) 167–179.

[13] M.W. Hirsch, Differential equations and convergence almost everywhere in strongly monotone semiflows, *Contemp. Math.*, 17, (1983) 267–285.

[14] M.W. Hirsch, The dynamical systems approach to differential equations. *Bull. Amer. Math. Soc.*, 11, (1984) 1–64.

[15] M.W. Hirsch, Attractors for discrete–time monotone dynamical systems in strongly ordered spaces. In Geometry and Topology: Lecture Notes in Mathematics 1167, 141–153. J. Alexander and J. Harer, editors. Springer-Verlag, New York, 1985.

[16] M.W. Hirsch, Systems of differential equations which are competitive or cooperative, II: convergence almost everywhere, *SIAM J. Math. Anal.*, 16, (1985) 423–439.

[17] M.W. Hirsch, Systems of differential equations which are competitive or cooperative, III: competing species, *Nonlinearity* 1, (1988) 51–71.

[18] M.W. Hirsch, Stability and convergence in strongly monotone dynamical systems, *J. reine angew. Math.*, 383, (1988), 1–58.

[19] M.W. Hirsch, *Positive equilibria and convergence in subhomogeneous monotone dynamics*. Comparison methods and stability theory: Proceedings of conference at Fields Institute, June 3-6, (1993), Xinzhi Liu & David Siegel eds., 169-187. Marcel Dekker (1994).

[20] M.W. Hirsch, Fixed points of monotone maps, *J. Differential Equations* 123, (1995), 171–179.

[21] M.W. Hirsch & M. Hurley, Connected components of attractors and other stable sets, *Equationes Math.*, 53 (1997), 308–323.
[23] M.W. Hirsch & C.C. Pugh, Cohomology of chain recurrent sets, *Ergodic Theory and Dynamical Systems*, **8**, (1988) 73–80.

[24] J.-F. Jiang & S.-X. Yu, Stable cycles for attractors of strongly monotone discrete-time dynamical systems, *J. Math. Anal. Appl.*, **202**, (1996) 349–362.

[25] J.-F. Jiang, Attractors for strongly monotone flows, *J. Math. Anal. Appl.*, **162**, (1991) 210–222.

[26] A. Katok & B. Hasselblatt, Introduction to the modern theory of dynamical systems, Cambridge University Press, Cambridge (1995).

[27] J. Mierczyński, P-arcs in strongly monotone discrete-time dynamical systems, *Differential Integral Equations* **7**, (1994) 1473–1494.

[28] K. Mischaikow, H. Smith & H. Thieme Asymptotically autonomous semiflows: chain recurrence and Lyapunov functions, *Trans. Amer. Math. Soc.*, **347**, (1995) 1669–1685.

[29] V. Nemytskii & V. Stepanov, Qualitative Theory of Differential Equations, Princeton University Press, Princeton, N.J., (1960).

[30] P. Poláčik & I. Tereščák, Convergence to cycles as a typical asymptotic behavior in smooth strongly monotone discrete-time dynamical systems. *Arch. Rational Mech. Anal.*, **116**, (1991) 336–360.

[31] P. Poláčik & I. Tereščák, Exponential separation and invariant bundles for maps in ordered banach space with applications to parabolic equations, *J. Dynamics and Differential Equations*, **5**, (1993) 279–303.

[32] S. Smale, On the differential equations of species in competition, *J. Math. Biology*, **3**, (1976) 5–7.

[33] H.L. Smith, Monotone dynamical systems. Math. Surveys and Monographs Vol. 41, Amer. Math. Soc., Providence, R.I., 1995.

[34] H.L. Smith & H. Thieme, Convergence for strongly order preserving semiflows, *SIAM J. Math. Anal.*, **22**, (1991) 1081–1101.

[35] P. Takáč, Convergence to equilibrium on invariant d-hypersurface for strongly increasing discrete–time semigroups. *J. Mathematical Analysis and Applications*, **148**, (1990) 223–244.

[36] P. Takáč, Domains of attraction of generic ω-limit sets for strongly monotone discrete-time semigroups, *J. Reine Angew. Math.*, **432**, (1992) 101–173.

[37] I. Tereščák, Dynamics of C^1 smooth strongly monotone discrete-time dynamical system. Preprint, Comenius University, Bratislava 1994.

[38] H. Thieme, Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations, *J. Math. Biol.*, **30**, (1992) 755–763.

[39] H. Thieme, Asymptotically autonomous differential equations in the plane, *Rocky Mountain J. Math.*, **24**, (1994) 351–380.

[40] R. Wilder, Topology of Manifolds, Amer. Math. Soc., Providence, R.I., 1949.

[41] L.S. Young, Entropy of continuous flows on compact 2–manifolds, *Topology*, **16**, (1977) 469–471.