On the sharp constant in “magnetic” 1D embedding theorem

A.I. Nazarov*, A.P. Scheglova†

1 Introduction

We consider the problem of finding the sharp (exact) constant in the “magnetic” embedding theorem

\[\min_u \frac{\|u' + iAu\|_{L^2}}{\|u\|_{L^q}} =: \mu_q(A), \]

where \(A \in L_1(0, 2\pi) \), and minimum is taken over all \(2\pi \)-periodic absolutely continuous functions.

It is easy to see that \(\mu_q(A) \) is attained and does not change if we change \(A \mapsto A + k \), \(k \in \mathbb{Z} \). Moreover, the substitution \(u(x) \mapsto u(x) \exp \left(i \int_0^x (A(t) - \alpha) \, dt \right), \quad \alpha = \frac{1}{2\pi} \int_0^{2\pi} A(t) \, dt \)

shows that we can assume without loss of generality \(A \equiv \alpha \) and \(|\alpha| \leq \frac{1}{2}\).

Trivially the value \(\mu_q(0) \equiv 0 \) is attained by any constant function. Further, if \(q \leq 2 \) then due to the evident estimate \(\|u\|_{L^q} \leq (2\pi)^{\frac{1}{q} - \frac{1}{2}} \|u\|_{L^2} \) the constant function also is a minimizer of \(\mu_q(\alpha) \), and \(\mu_q(\alpha) = (2\pi)^{\frac{1}{2} - \frac{1}{q}} \cdot |\alpha| \). Thus, the constant function is a natural candidate to the minimizers of \(\mu_q(\alpha) \). In this paper we show that in fact for \(\alpha \neq 0 \) it is minimizer only for sufficiently small \(q > 2 \), namely, for \((q + 2)\alpha^2 \leq 1 \). In particular, for \(\alpha = \pm \frac{1}{2} \) and \(q > 2 \) the minimizer is always non-constant.

Remark 1. For \(q = \infty \) the sharp constant in (1) was found in [2], see also [3].

In what follows we assume \(2 < q < \infty \). It is convenient to normalize \(u \) by \(\|u\|_{L^q}^q = 2\pi \), and we arrive at the problem

\[\mu_q(\alpha)^2 = (2\pi)^{-\frac{2}{q}} \min_u \int_0^{2\pi} |u'|^2 + i\alpha |u|^2 \, dx, \quad \int_0^{2\pi} |u|^q \, dx = 2\pi. \]
To study the problem \(\text{(2)} \) we use the phase plane method. In a similar way in \([4, 5]\) the problem
\[
\min_u \int_{-T}^{T} (u'^2 + u^2) \, dx, \quad \int_{-T}^{T} |u|^q \, dx = 1.
\]
was studied, and the sharp condition of symmetry breaking in this problem was found. See also \([1, \text{Lemma 5}]\).

2 The constant and non-constant minimizers of \(\text{(2)} \)

Denote \(r = |u| \) and \(\varphi = \text{arg}(u) + \alpha x \). Then \(\text{(2)} \) can be rewritten as follows:
\[
J(r, \varphi) = \int_0^{2\pi} |r' + ir\varphi'|^2 \, dx = \int_0^{2\pi} (r'^2 + r^2\varphi'^2) \, dx \rightarrow \min, \quad \int_0^{2\pi} r^q \, dx = 2\pi. \quad (3)
\]
Here \(r \) and \(\varphi' \) are \(2\pi \)-periodic functions, and
\[
\int_0^{2\pi} \varphi' \, dx = 2\pi \alpha. \quad (4)
\]

The Euler equation with respect to \(\varphi \) reads:
\[
0 \equiv \frac{1}{2} D_{\varphi} J(r, \varphi)(\psi) = r^2 \varphi' \psi \bigg|_0^{2\pi} - \int_0^{2\pi} (r^2 \varphi')' \psi \, dx.
\]
The first term vanishes due to \(2\pi \)-periodicity, and we obtain
\[
r^2 \varphi' = a = \text{const}. \quad (5)
\]

The Euler–Lagrange equation with respect to \(r \) reads:
\[
r' h \bigg|_0^{2\pi} + \int_0^{2\pi} (r \varphi'^2 - \lambda r'^{-1} - r^q) h \, dx \equiv 0, \quad (\text{6})
\]
and we obtain
\[
-r'' + r \varphi'^2 = \lambda r'^{-1}.
\]
Taking into account \(\text{(5)} \) we arrive at
\[
-r'' + \frac{a^2}{r^3} = \lambda r'^{-1}. \quad (6)
\]
It is easy to see that the function \(r \equiv 1 \) is a solution of \(\text{(6)} \). Moreover, in this case relations \(\text{(5)} \) and \(\text{(4)} \) give \(a = \alpha \), and thus \(\lambda = \alpha^2 \).

Theorem 2.1. Let \((q + 2)\alpha^2 > 1\). Then the function \(r \equiv 1 \) cannot provide minimal value in the problem \(\text{(3)} \), and thus we have \(\mu_q(\alpha) < (2\pi)^{\frac{1}{2} - \frac{1}{q}} \cdot |\alpha| \).
Proof. Taking into account (5) we conclude that the second order necessary condition of minimum is positivity of the quadratic form

\[\int_{0}^{2\pi} \left(h'^2 - \frac{3a^2h^2}{r^4} - \lambda(q-1)r^{q-2}h^2 \right) dx \]

on the space of 2π-periodic function with zero mean value. Substituting $r \equiv 1$, $a = \alpha$, and $\lambda = \alpha^2$ we obtain

\[\int_{0}^{2\pi} \left(h'^2 - \alpha^2(q+2)h^2 \right) dx \geq 0. \]

For $(q+2)\alpha^2 > 1$ this inequality fails for $h = \sin(x)$.

Theorem 2.2. Let $(q+2)\alpha^2 \leq 1$. Then the function $r \equiv 1$ provides minimal value in the problem (4), and thus we have $\mu_q(\alpha) = (2\pi)^{\frac{1}{2}} \cdot |\alpha|$.

Proof. Integrating ODE (6) we obtain

\[\frac{r'^2}{2} = -\frac{a^2}{2r^2} - \frac{\lambda}{q}r^q + c. \] (7)

On the other hand, we can multiply (6) by r and integrate over $[0, 2\pi]$. This gives in view of the normalization condition

\[\int_{0}^{2\pi} \left(r'^2 + \frac{a^2}{r^2} \right) dx = \lambda \int_{0}^{2\pi} r^q dx = 2\pi \lambda, \]

and (7) implies $c = \frac{1}{2} + \frac{1}{q}$.

If r is not a constant then the right-hand side of (7) has two zeros corresponding to minimal and maximal values of r at the period. Denote these values by r_1 and r_2 respectively. By the normalization condition we have

\[r_1 < 1 < r_2. \] (8)

Thus, any non-constant periodic positive solution of ODE (6) corresponds to the motion along an oval given by equation (7) in the phase plane (r, r'). Since this oval is symmetric w.r.t. r' axis, without loss of generality we can assume that $r(0) = r(2\pi) = r_1$ and $r(\pi) = r_2$.

Consider a half of the oval corresponding to $r' > 0$. Then we have from (7)

\[r' = \sqrt{2c - \frac{a^2}{r^2} - \frac{2\lambda}{q}r^q} = \frac{\sqrt{\lambda(1 + \frac{2}{q})r^2 - a^2 - \frac{2\lambda}{q}r^{q+2}}}{r}. \]

By (4) and (5) we obtain

\[2\pi \alpha = a \int_{0}^{2\pi} \frac{dx}{r^2} = 2a \int_{0}^{\pi} \frac{dx}{r^2} = \int_{r_1}^{r_2} \frac{2dr}{\sqrt{\frac{a^2}{r^2} \left[\left(1 + \frac{2}{q} \right) r^2 - \frac{2\lambda}{q}r^{q+2} \right] - 1}}. \] (9)
By (8) we have $\frac{1}{a^2} > 1$. Changing the variable $t = \frac{1}{a^2} \left(1 + \frac{2}{q}\right) r^2$ we rewrite (9) as follows:

$$M_q(\gamma) := \int_{t_1}^{t_2} \frac{dt}{t\sqrt{t - \gamma t^{q+1}} - 1} = 2\pi\alpha. \quad (10)$$

Here t_1, t_2 are the roots of the equation $t - \gamma t^{q+1} - 1 = 0$, and

$$0 < \gamma < \gamma_{\text{max}} = \frac{2}{q + 2} \left(1 + \frac{2}{q}\right)^{-\frac{2}{q}}.$$

The statement of Theorem follows from Lemma which will be proved in Section 3.

Lemma 2.1. For all $\gamma \in (0; \gamma_{\text{max}})$ we have

$$M'_q(\gamma) < 0. \quad (11)$$

Moreover,

$$\lim_{\gamma \uparrow \gamma_{\text{max}}} M_q(\gamma) = \frac{2\pi}{\sqrt{q + 2}}. \quad (12)$$

Namely, it follows from (11) and (12) that if $(q + 2)\alpha^2 \leq 1$ then $M_q(\gamma) > 2\pi\alpha$ for all $\gamma \in (0; \gamma_{\text{max}})$. Therefore, the equation (10) has no solutions, and the constant function is a unique stationary point of the problem (3). This completes the proof.

Remark 2. If $(q + 2)\alpha^2 > 1$ then the equation (10) has a unique solution. Evidently, the motion along corresponding oval in the phase plane just provides the minimum in (3).

3 Proof of Lemma 2.1

We introduce the notation

$$f(t) = t - \gamma t^{\frac{q+1}{2}} - 1. \quad (13)$$

Then

$$f'(t) = 1 - \frac{\gamma(q + 2)}{2} t^{\frac{q}{2}}; \quad f''(t) = -\frac{\gamma q(q + 2)}{4} t^{\frac{q-1}{2}}; \quad f'''(t) = -\frac{\gamma q(q + 2)(q - 2)}{8} t^{\frac{q-2}{2}}. \quad (14)$$

It is easy to see that $f'(t_1) > 0$ and $f'(t_2) < 0$. Denote by t_0 a unique root of f'.

To prove (12) we observe that by the Rolle Theorem for any $t \in (t_1, t_2)$ there exists $\overline{t}(t) \in (t_1, t_2)$ such that

$$f(t) = -\frac{f''(\overline{t})}{2} (t_2 - t)(t - t_1).$$

Hence

$$M_q(\gamma) = \sqrt{-2 \overline{t}} \int_{t_1}^{t_2} \frac{dt}{t\sqrt{(t_2 - t)(t - t_1)}} = \pi \sqrt{-2 \overline{t}} \int_{t_1}^{t_2} \frac{dt}{t\sqrt{(t_2 - t)(t - t_1)}} = \frac{\pi}{\overline{t}} \sqrt{-2 \overline{t} \overline{t}} \int_{t_1}^{t_2} \frac{dt}{f''(t)} \frac{1}{t\sqrt{(t_2 - t)(t - t_1)}}$$

where \overline{t} and \tilde{t} are some points in (t_1, t_2).

4
Notice that $t_1 \uparrow \frac{q+2}{q}$ and $t_2 \downarrow \frac{q+2}{q}$ as $\gamma \uparrow \gamma_{\text{max}}$. Therefore, \hat{t} and \tilde{t} also tend to $\frac{q+2}{q}$, and

$$\lim_{\gamma \uparrow \gamma_{\text{max}}} M_q(\gamma) = \frac{2\pi}{\sqrt{q+2}}$$

and (12) follows.

To prove (11) we proceed similarly to [4, Sec. 2] and [5].

Lemma 3.1. For $\gamma \in (0, \gamma_{\text{max}})$ the following identity holds:

$$M'_{q}(\gamma) = \int_{t_1}^{t_2} \frac{\sqrt{f'}}{\Psi} \cdot H_{\beta} \, dt,$$

where

$$\Psi = f'^2 - 2ff'', \quad H_{\beta} = \beta(3f'^2f'' + 2ff'f''' - 6ff''') - \frac{q(q-2)t^2 - 2}{2}.$$

and β is an arbitrary number.

Proof. We have

$$M^{(c)}_q(\gamma) := \int_{t_1+\epsilon}^{t_2} \frac{dt}{t\sqrt{f}} \to M_q(\gamma),$$

and convergence is uniform in any compact subset of the interval $(0, \gamma_{\text{max}})$.

Furthermore,

$$\frac{dM^{(c)}_q}{d\gamma} = \frac{d t_2}{d\gamma} \cdot \frac{1}{t\sqrt{f}} \bigg|_{t_2-\epsilon}^{t_2} - \frac{d t_1}{d\gamma} \cdot \frac{1}{t\sqrt{f}} \bigg|_{t_1+\epsilon}^{t_1} + \frac{1}{2} \int_{t_1+\epsilon}^{t_2-\epsilon} \frac{t^2}{\sqrt{f}} \, dt.$$

However, $f(t_1) = f(t_2) = 0$ implies

$$\partial f |_{t_k}^{t_1} + f' |_{t_k}^{t_1} \cdot \frac{dt_k}{d\gamma} = 0, \quad k = 1, 2.$$

Therefore,

$$\frac{dt_k}{d\gamma} = \frac{t_k^{\frac{q+2}{q} + 1}}{f'} \bigg|_{t_1}^{t_k} = \frac{t_k^{\frac{q+2}{q} + 1} f' - q t_k^{\frac{q+2}{q} f} + 2\beta f^2 f''}{f'^2 - 2ff''} \bigg|_{t_1}^{t_k}, \quad k = 1, 2,$$

and thus

$$\frac{dM^{(c)}_q}{d\gamma} = \frac{1}{t\sqrt{f}} \bigg|_{t_1+\epsilon}^{t_2-\epsilon} \frac{t^2 (t f' - q f) + 2\beta f^2 f''}{\Psi} + O(\epsilon^{\frac{1}{q}}) + \frac{1}{2} \int_{t_1+\epsilon}^{t_2-\epsilon} \frac{t^2}{f^{\frac{2}{q}}} \, dt.$$

Note that $\Psi(t_1) = f'^2(t_1) > 0$, and

$$\Psi' = -2f \cdot f''' > 0 \quad \text{in} \quad (t_1, t_2).$$
Hence $\Psi > 0$ in $[t_1, t_2]$, and we can write
\[
\frac{dM_\gamma^{(c)}}{d\gamma} = \int_{t_1+\epsilon}^{t_2-\epsilon} \left[\frac{d}{dt} \left(\frac{1}{t\sqrt{f}} \cdot \frac{t^2\left(f' - qf\right) + 2\beta f^2 f''}{\Psi} \right) + \frac{t^2}{2f^2} \right] dt + O(\varepsilon^2).
\]

The expression in square brackets is equal to $\frac{\sqrt{f}f'}{\Psi^2} \cdot H_\beta$. Therefore $dM_\gamma^{(c)}/d\gamma$ converges to the right-hand side of (15) as $\varepsilon \to 0$. Moreover, convergence is uniform in any compact subset of the interval $(0, \gamma_{\max})$. This completes the proof.

Using the relations (13)–(14) we calculate
\[
H_\beta(t) = qt^{\frac{q}{2} - 2} \left(\frac{\beta q(q + 2)}{16} h(t) - \frac{q - 2}{2} \right),
\]
where
\[
h(t) = 4(q - 2) - 4(q + 1)t - 4\gamma(q + 1)(q - 2)t^{\frac{q}{2} + 1} + 4\gamma(q + 2)(q + 1)t^{\frac{q}{2}} + \gamma^2(q + 2)(q - 2)t^{q + 1}.
\]

Direct calculation shows that
\[
h''(t) = -\gamma q(q + 1)(q - 2)(q + 2)t^{\frac{q}{2} - 2} f(t).
\]
Thus, $h''(t) < 0$ for $t \in (t_1, t_2)$. Therefore, h' decreases on $[t_1, t_2]$.

Next, the relation (13) implies $\gamma t_1^{\frac{q}{2}} = \frac{t_1 - 1}{t_1}$. Therefore,
\[
h'(t_1) = -(q + 1) \left(4 + 2\gamma(q - 2)(q + 2)t_1^{\frac{q}{2}} - 2\gamma q(q + 2)t_1^{\frac{q}{2} - 1} - \gamma^2(q + 2)(q - 2)t_1^2 \right)
= -(q + 1) \left[4 + (q + 2) \left(2(q - 2) \frac{t_1 - 1}{t_1} - 2q \frac{t_1 - 1}{t_1^2} - (q - 2) \left(\frac{t_1 - 1}{t_1} \right)^2 \right) \right]
= -\frac{q + 1}{t_1^2} \left(qt_1 - (q + 2) \right)^2 < 0.
\]
Thus, $h'(t) < 0$ on $[t_1, t_2]$. It follows that for $\beta < 0$ the function H_β increases on $[t_1, t_2]$.

Now we choose
\[
\beta = -\frac{q(q - 2)t_0^{\frac{q}{2} - 2}}{12 f(t_0) f''(t_0)} < 0
\]
(we recall that $f'(t_0) = 0$). Then $H_\beta(t_0) = 0$. By monotonicity we have $H_\beta < 0$ on $[t_1; t_0)$ and $H_\beta > 0$ on $(t_0; t_2]$. Therefore, $\frac{\sqrt{f}f'}{\Psi^2} \cdot H_\beta \leq 0$ on $[t_1, t_2]$, and (15) implies (11). ■

Acknowledgements

We are grateful to Prof. Ari Laptev for the statement of the problem and useful discussion. A.N. thanks the Mittag-Leffler Institute for the hospitality during the visit in January 2017.

Authors’ work was supported by RFBR grant 17-01-00678a.
References

[1] J. Dolbeault, M.J. Esteban, A. Laptev, *Spectral estimates on the sphere*, Analysis & PDE, 7 (2014), N2, 435-460.

[2] G.V. Galunov, V.L. Oleinik, *Exact inequalities for norms of intermediate derivatives of quasiperiodic functions*, Math. zametki, 56:6 (1994), 127-130 (Russian); English transl.: Math. Notes, 56:6 (1994), 1300-1303.

[3] A. Ilyin, A. Laptev, M. Loss, S. Zelik, *One-dimensional interpolation inequalities, Carlson-Landau inequalities, and magnetic Schrödinger operators*, Int. Math. Res. Not. (2016), N4, 1190-1222.

[4] A.I. Nazarov, *On exact constant in a one-dimensional embedding theorem*, Probl. Mat. Anal., 19 (1999), 149-163 (Russian); English transl.: J. Math. Sci., 101 (2000), N2, 2975-2986.

[5] A.I. Nazarov, *On sharp constants in one-dimensional embedding theorems of arbitrary order*, Problems of contemporary approximation theory, St.Petersburg Univ. Publishers, 2004, 146-158 (Russian); English transl. available at http://arxiv.org/abs/1308.2259.