In critically ill patients receiving mechanical ventilation, expiratory muscles are recruited with high respiratory loading and/or low inspiratory muscle capacity, or with pulmonary hyperinflation. Critical illness is associated with time-dependent changes in expiratory muscle mass, and coordination of activation between inspiratory muscles and expiratory muscles in ventilated patients may be disturbed. Herein, we present a previously unrecognized patient-ventilator dyssynchrony characterized by ventilator triggering by expiratory muscle relaxation.

Case Report
A patient (50 years of age; BMI, 43 kg/m²) with no relevant medical history was intubated endotracheally because of COVID-19 respiratory failure. During pressure support ventilation, expiratory muscle contractions were recognized by visual observation and abdominal palpation. To evaluate respiratory muscle mechanics, we inserted a double-balloon nasogastric catheter (Sidam) and an electrical activity of the diaphragm (EAdi) catheter (Getinge) and performed analyses while varying the pressure support level (range, 16-2 cm H₂O) within a 30-min period.

A remarkable patient-ventilator interaction was observed, which we termed expiratory muscle relaxation-induced ventilator triggering (ERIT) (Fig 1). EAdi onset occurred after ventilator triggering, indicating that the ventilator was not triggered by the diaphragm. The esophageal pressure (Pes) drop just before ventilator triggering may indicate triggering with...
Figure 1 – A-C, Demonstration of expiratory muscle relaxation-induced ventilator triggering (ERIT). Flow, Paw, Pes,total (ie, uncorrected Pes signal), Pes,insp (ie, Pes,total – Pga), Pga, and EAdi waveforms recorded during pressure support ventilation with 6 cm H2O (A), 10 cm H2O (B), and 2 cm H2O (C) of support above a positive end-expiratory pressure of 16 cm H2O. PaO2 to FIO2 ratio was 132 mm Hg, and the patient was receiving continuous sedation (Richmond Agitation Sedation Scale score of −4, with propofol 6.6 mg/kg predicted body weight/h and fentanyl 0.66 μg/kg predicted body weight/h).
extradiaphragmatic inspiratory muscles. However, a concomitant decrease in gastric pressure (Pga) was observed after the Pga rise during the preceding expiration. Thus, ventilator triggering resulted from expiratory muscle relaxation.

To quantify the timing of respiratory muscle activity in relationship to ventilator triggering (Vent,trigg), we calculated the phase angle (PA), a parameter that also has been used for characterizing reverse triggering, for instance.\(^1\) PA between the Pga drop and Vent,trigg was defined as:

\[
\text{PA}_{\text{Pga drop} - \text{Vent,trigg}} = \left(\frac{\text{onset time Pga drop} - \text{inspiratory flow onset}}{\text{Ttot}} \right) \times 360^\circ
\]

where Ttot is the ventilator cycle duration. To qualify as ERIT, \(\text{PA}_{\text{Pga drop} - \text{Vent,trigg}}\) should be < 0\(^\circ\), and PA between EAdi onset and triggering (\(\text{PA}_{\text{EAdi onset} - \text{Vent,trigg}}\) should be > 0\(^\circ\). We also quantified inspiratory effort with EAdi peak and Pes. The Pes,total decrease is determined by the Pga drop from expiratory muscle relaxation plus the patient’s true inspiratory effort (Pes,insp); therefore, Pes,insp can be computed as Pes,total = Pga (Fig 1A).

For a 10-breaths period (Fig 1A), median \(\text{PA}_{\text{Pga drop} - \text{Vent,trigg}}\) was \(-38.7^\circ\) (interquartile range [IQR], \(-45.5^\circ\) to \(-29.7^\circ\)), median \(\text{PA}_{\text{EAdi onset} - \text{Vent,trigg}}\) was 15.4\(^\circ\) (IQR, 12.8\(^\circ\)-18.6\(^\circ\)), median Pga drop was 8.0 cm H\(_2\)O (IQR, 7.6-8.3 cm H\(_2\)O), and median total Pes decrease was 11.0 cm H\(_2\)O (IQR, 10.8-11.5 cm H\(_2\)O); only 3.8 cm H\(_2\)O (IQR, 3.4-4.2 cm H\(_2\)O) reflected the Pes,insp. Median EAdi peak was 3.7 \(\mu\)V (IQR, 3.3-4.1 \(\mu\)V).

ERIT was present at all applied pressure support levels. Notably, in some ERIT breaths, inspiratory muscle activity was negligible (Fig 1B) (total Pes decrease is approximately equal to the Pga drop from expiratory muscle relaxation, with almost absent EAdi).

Occasionally, a pattern of double breaths was observed (Fig 1C): the first ventilator triggering resulted from partial expiratory muscle relaxation not followed by inspiratory effort. Then, complete expiratory muscle relaxation resulted in ventilator triggering followed by inspiratory effort. Double breaths seemed to occur in a specific pattern; ratios of 2:1 (Fig 1C) and 3:1 were observed in the patient.

The patient was reassessed 5 days later. Inspiratory effort was perfectly synchronous with the ventilator (Fig 2), and no expiratory muscle recruitment was observed. The fact that diaphragm neuromechanical efficiency was similar to that 5 days earlier indicated that diaphragm function remained stable.

Discussion

To our knowledge, this is the first description of ventilator triggering by expiratory muscle relaxation (ERIT). This dysynchrony is characterized by: (1) an increase in Pga during expiration, resulting from expiratory muscle recruitment; (2) a drop in Pga (and hence, Pes) at the time of ventilator triggering; and (3) EAdi onset occurring after ventilator triggering. Visual observation, palpation, and ultrasound could screen for expiratory muscle recruitment,\(^3,6\) but in-depth waveform analyses are needed to identify ERIT. This stresses the importance of monitoring the complex interplay between the inspiratory and expiratory muscles during mechanical ventilation. Because the decrease in both Pes and Pga coincided, manometry...
alone cannot identify ERIT, and EAdi should be recorded simultaneously. Moreover, both Pga and Pes are required to distinguish between triggering resulting from extradiaphragmatic inspiratory muscles and expiratory muscles. Although expiratory muscles frequently are recruited in the critically ill,\(^1\)\(^-\)\(^3\) affect intrinsic positive end-expiratory pressure measurement, and may even contribute to weaning failure,\(^7\) the complexity of recognizing ERIT could explain why this type of dyssynchrony has not been described before. Clinical and physiologic consequences of ERIT remain uncertain; however, not recognizing expiratory muscle recruitment may affect inspiratory effort calculation (ie, overestimate) using Pes. Future studies should focus on the incidence of ERIT, potential solutions to resolve this dysynchrony, and the clinical impact in patients receiving mechanical ventilation.

Acknowledgments

Financial/nonfinancial disclosures: None declared.

Other contributions: CHEST worked with the authors to ensure that the Journal policies on patient consent to report information were met.

References

1. Doorduin J, Roesthuis LH, Jansen D, van der Hoeven JG, van Hees HW, Heunks LMA. Respiratory muscle effort during...
expiration in successful and failed weaning from mechanical ventilation. *Anesthesiology*. 2018;129(3):490-301.

2. Laghi F, Shaikh H, Littleton SW, Morales D, Jubran A, Tobin MJ. Inhibition of central activation of the diaphragm: a mechanism of weaning failure. *J Appl Physiol*. 2020;129(2):366-376.

3. Shi Z-H, Jonkman A, de Vries H, et al. Expiratory muscle dysfunction in critically ill patients: towards improved understanding. *Intensive Care Med*. 2019;45(8):1061-1071.

4. Shi Z, de Vries HJ, de Grooth H-J, et al. Changes in respiratory muscle thickness during mechanical ventilation: focus on expiratory muscles. *Anesthesiology*. 2021;134(5):748-759.

5. Akoumianaki E, Lyazidi A, Rey N, et al. Mechanical ventilation-induced reverse-triggered breaths. *Chest*. 2013;143(4):927-938.

6. Tuinman PR, Jonkman AH, Dres M, et al. Respiratory muscle ultrasonography: methodology, basic and advanced principles and clinical applications in ICU and ED patients—a narrative review. *Intensive Care Med*. 2020;46(4):594-605.

7. Parthasarathy S, Jubran A, Laghi F, Tobin MJ. Sternomastoid, rib cage, and expiratory muscle activity during weaning failure. *J Appl Physiol*. 2007;103:140-147.