Estrogen Replacement Therapy (ERT) in High-Risk Cancer Patients

KAREN A. HUTCHINSON-WILLIAMS, M.D., AND JACQUELINE N. GUTMANN, M.D.

Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology, Yale University School of Medicine, New Haven, Connecticut

Received July 5, 1991

Menopausal estrogens are now being prescribed not only for symptom relief, but also to prevent the long-term sequelae of estrogen deficiency, namely osteoporosis and atherosclerotic disease. The well-established association between endometrial cancer and estrogen replacement therapy (ERT) has become less of a clinical concern due to the recognition of the protective effect of progestogens in this setting. A small literature has emerged suggesting that extending ERT to the woman with a history of endometrial carcinoma imposes no increased risk of recurrence and may improve survival. Candidates for ERT should be women with a better prognostic profile with reference to their cancer.

The relationship between ERT and breast cancer remains a topic of intense debate and investigation. Overall, the current literature finds no significant increase in risk among healthy women without a family history of breast cancer. There are no guidelines with reference to the woman with a history of breast cancer and the use of ERT. The most prudent approach with this population is to consider alternative treatments until more is known.

BACKGROUND

It has been over 15 years since the first retrospective, case-control studies were published which causally linked estrogen replacement therapy (ERT) with the development of endometrial cancer [1-3]. The ensuing publicity led to a significant decline in the use of such preparations. Fortunately, over the last decade, prodigious research into the menopause has elucidated much about the biology of the female climacteric and its clinical consequences. As the human life span lengthens, the full effect of ovarian hormonal decline is only beginning to be appreciated.

The available literature is replete with data supporting the use of menopausal estrogens. Relief of the menopausal syndrome (i.e., vasomotor instability, genitourinary atrophy, and so on) is a well-established benefit of ERT [4]. Moreover, the best anti-resorptive protocol for the treatment of post-menopausal osteoporosis is ERT [5-10]. The beneficial effect of such treatment is often unappreciated unless one considers the following: (1) 25 percent of women over 60 years of age have radiographic evidence of vertebral crush fractures; (2) women who suffer hip fractures have a mortality rate 20 times that expected for age; (3) during the 1980s the cost for proximal femur fractures in the U.S. exceeded $3 billion annually [11].

Abbreviations: CHD: coronary heart disease ERT: estrogen replacement therapy SHBG: sex hormone binding globulin

Copyright © 1991 by The Yale Journal of Biology and Medicine, Inc.
All rights of reproduction in any form reserved.
Of even more staggering clinical significance is the burgeoning literature suggesting that ERT may be protective against coronary heart disease (CHD) [12–29]. Among these studies with considerable variability in design, population, definition of estrogen use, and end-point, the vast majority (greater than 80 percent) demonstrated a reduction in the risk of CHD among estrogen users of 30 to 50 percent or greater. Indeed, this beneficial effect is biologically plausible, inasmuch as estrogens have a marked anti-atherogenic effect on lipids and lipoproteins and do not adversely affect other risk factors for CHD, i.e., obesity, blood pressure, clotting factors.

The complex clinical picture which emerges in the older post-menopausal women combines menopausal changes with age-related disease processes. Is longevity—as well as quality of life—enhanced by ERT? Several investigators have looked at estrogen use and overall mortality [22,24,25,26,28,30,31,32]. Consistently estrogen use was associated with a substantial reduction in mortality, which generally reflected reduced deaths from acute and chronic sequelae of occlusive atherosclerotic vascular diseases. In a recent report by Henderson et al., 8,881 post-menopausal residents of a retirement community in southern California were followed for 7½ years: not only was estrogen use associated with protection from atherosclerotic disease, but mortality from cancer was also reduced, although not to a statistically significant degree [32].

Recognition of the benefits just outlined has resulted in a 43 percent increase in estrogen prescriptions dispensed in the United States, from 14 million in 1980 to 20 million in 1986. As women become more aggressive consumers of medical care, the interest in menopausal estrogens has increased dramatically. The lay press has consistently “followed” the medical literature regarding ERT and further intensified public debate. “Absolute contraindications” for the use of estrogens, a list which was historically of mammoth proportion, now include: (1) pregnancy; (2) history of estrogen-sensitive neoplasia; (3) active hepatic disease; (4) active thromboembolic disease; (5) undiagnosed genital bleeding. This review will focus on our current knowledge regarding the risks associated with ERT in a high-risk population—women with a history of endometrial or breast carcinoma. Many of these women are suffering from severe vasomotor symptoms and the sequelae of genitourinary atrophy. Moreover, among those with a good prognosis for survival, the long-term consequences of estrogen deprivation are as significant as those among women without a cancer history.

ENDOMETRIAL CANCER

Estrogens as Trophic Hormones

As early as 1923, Allen and Doisy characterized estrogens as primary trophic sex hormones [33]. There is currently abundant biochemical and morphological information available which clarifies the relationship between sex steroids and the endometrium.

Estrogen diffuses across cell membranes and is bound in the cytoplasm to a specific receptor protein [34,35]. As discussed by Peterson et al., estrogenic activity at the cellular level is dependent upon the relative affinity of the hormone for estrogen-receptor protein [36]. Estradiol appears to be the most potent stimulator of cell biosynthesis, although stimulatory effects are noted with estrone. The most impor-
TABLE 1
Risk Estimates from Case-Control Studies of Estrogen Replacement Therapy and Endometrial Cancer

Study	Relative Risks*		
	Ever Users	Long-Term Users	
Smith	1975	4.5	—
Ziel	1975	7.6	13.9
Mack	1976	5.6	8.8
Gray	1977	3.1	11.6
McDonald	1977	2.0	7.9
Wigle	1978	2.2	5.2
Horwitz	1978	12.0	—
Hoogerland	1978	2.2	6.7
Antunes	1979	6.0	15.0
Weiss	1979	7.5	8.2
Hulka	1980	—	4.2
Shapiro	1980	3.9	6.0
Jelovsek	1980	2.4	4.8
Spengler	1981	3.2	8.6
Stavraky	1981	4.2	14.4
Kelsey	1982	—	8.2
LaVecchia	1982	2.7	—
Henderson	1983	1.4	3.1

*Risk relative to never-users
Reproduced with permission from [36]

Tant direct clinical consequence of estrogen stimulation of cell biosynthesis/ proliferation is the potential for endometrial hyperplasia.

The risk of developing endometrial hyperplasia increases with increasing dosages of estrogen. Moreover, hyperplasia can progress to adenomatous hyperplasia and then atypical adenomatous hyperplasia. The latter has been reported to be a pre-malignant lesion [37,38]. Nearly 50 percent of 115 women with hyperplasia studied by Wentz developed adenocarcinoma during a two- to eight-year follow-up [39]. Of the 75 women with adenomatous hyperplasia, 76.7 percent developed adenocarcinoma. Of 22 women who had atypical adenomatous hyperplasia, 81.8 percent developed cancer.

Menopausal Estrogens and Endometrial Carcinoma

Endometrial cancer rates did not change significantly in the U.S. from the 1930s until about 1970 [40]. Several epidemiologic studies have demonstrated, however, that as the sale of non-contraceptive estrogens increased in the early 1970s, so did the incidence of endometrial carcinoma [41–45]. Moreover, in three of these reports the converse was also reported: as sales declined, fewer cases of endometrial cancer were identified [41,44,45].

Needless to say, these observed trends do not verify a causal relationship. Case-control studies abound on this topic, however, and the results have supported similar conclusions (Table 1). The majority were conducted in the U.S. and employed unopposed conjugated estrogens as the estrogen treatment schedule. Estrogen use (compared to non-use) was associated with a twofold to fifteenfold increased
risk of developing endometrial cancer. Higher risk was observed with higher dosages and longer duration of treatment [1–3,46–61].

The value of case-control studies in measuring the association between exposure and disease has been questioned due to the inherent biases found in these designs [36]. Fortunately, Hulka et al. [53] and Shapiro et al. [54] selected cases and controls in a fashion designed to limit selection bias. They found that selection bias does not entirely account for the observed association between estrogen use and endometrial cancer. Moreover, these authors also controlled for confounding (i.e., factors associated with both estrogen administration and endometrial cancer are distributed equally between cases and controls) variables. In addition, most of the studies listed in Table 1 included large enough sample sizes to make it unlikely that the increased relative-risk estimates are secondary to chance.

Several cohort studies have evaluated the effect of non-contraceptive estrogen use on the risk of developing endometrial cancer [12,37,44,61]. Although most of these studies include a relatively small number of women with endometrial cancer, they generally concur with the findings of the case-control studies.

What emerges from the cohort studies is the effect of progestogens in modulating the growth-promoting effect of estrogen on the endometrium. For example, Gambrell et al. found that estrogen-progestogen users had an incidence of endometrial cancer of 56 per 100,000 women-years, much lower than the incidence of 359 per 100,000 women-years among estrogen users alone and even less than that observed in women not receiving any ERT (248 per 100,000 women-years) [37]. The biologic plausibility of these clinical observations is substantiated by extensive work showing that progestogens reduce the number of available estrogen receptors and promote the conversion of estradiol to the weaker steroid, estrone, through induction of 17-beta estradiol dehydrogenase [62,63]. The addition of progestogens to the treatment schedules of post-menopausal women on estrogen lowers the nuclear estradiol-to-estrone ratio relative to that observed in women treated with unopposed estrogen [64]. Moreover, Nordqvist has shown that endometrial cells exposed to progesterone in vitro have reduced synthesis of DNA and RNA [65]. Finally, Whitehead and colleagues have shown that in vivo stimulation of post-menopausal endometrium by estrogens cannot only be modified by progestogen treatment but that the progestogen effect is dependent upon dose and duration [63].

These observations form the framework upon which current clinical practice is based regarding the use of progestogens with menopausal ERT. This topic has recently been extensively reviewed by Whitehead et al. [66].

Substantial evidence suggests that women with adenocarcinoma of the endometrium associated with estrogen use have a considerably better long-term prognosis compared to non-users with this malignancy. The data which support this observation come from separate areas of investigation. To begin with, numerous published reports indicate that endometrial cancer in a setting of estrogen use is generally of low stage, low grade, and demonstrates less myometrial invasion [3,47,51,53,59,67]. In addition, several investigators have demonstrated that women with endometrial cancer who have used menopausal estrogens prior to their diagnosis have a survival advantage from all causes of death [67–70]. As noted by Schwartzbaum et al. in their recent investigation, the survival advantage of estrogen use is not solely due to selection bias (i.e., women selected to use estrogen are healthier and would have lived longer regardless of estrogen consumption) [70]. In this report, as well as one by
Collins et al., the risk of death from all causes was two to three times greater for women who did not use estrogen (Fig. 1) [69,70]. In contrast, Robboy and Bradley [71] and Smith et al. [72] found that when histologic grade was added to the model, the survival advantage for estrogen users was nullified. As addressed by Schwartzbaum et al., however, the studies by Robboy and Bradley and Smith dealt with a small number of deaths, and therefore these reports may not have the statistical power to detect survival advantage among estrogen users after histological grade was controlled. Moreover, an argument for not adjusting for this variable is that estrogen is responsible for the development of a less aggressive cancer. If early stage and lower grade are the results of a biologic process leading to a more curable disease, then stage and grade are intervening variables and should not be controlled [70]. Schwartzbaum et al. also point out that estrogen use might cause a women to be examined earlier and therefore have her neoplasia diagnosed at a more treatable point [70]. This possibility would make stage and grade confounding variables to be controlled for in the design model. These authors exercise extreme caution in their study and control for stage and grade. Regardless, they found a survival advantage for estrogen users which becomes more pronounced as estrogen use is extended beyond 3.5 years.

Estrogen Replacement Therapy (ERT) and Endometrial Cancer Recurrence

Compared to the voluminous literature just summarized, the available "data" on the use of ERT in women with previous endometrial carcinoma stands in sharp contrast (Table 2). The therapeutic dictum that estrogen is contraindicated in this population is not based on any investigative work regarding the biological effects of ERT on endometrial carcinoma. Indeed, the initial clinical data suggest that there is no increase in recurrence or mortality. Treatment of this patient population exemplifies the complexities often faced in clinical practice regarding risk:benefit ratio considerations.

Table 2 summarizes published reports to date which have attempted to investigate the relationship between ERT and endometrial cancer recurrence. These observa-
Table 2
Effect of Estrogen Replacement Therapy on Endometrial Cancer Recurrence

Investigator	Subjects (n)	Stage IA	Stage IB	Stage II	Grade I	Grade II	Grade III	Myometrial Invasion	Interval to Treatment Post-Surgery (months)	Duration Follow-Up on ERT (months)	Recurrence
Baker [73]	31	—	—	—	—	—	—	—	0-120	—	0
Bryant [74]	20	19	1	13	7	0	—	—	18-24	42-168	0
Creasman et al. [75]	47	30	17	0	29	13	5	—	0-81	25-150	0
Lee et al. [76]	44	24	20	0	33	11	0	—	1- > 60	24-84	1
tional studies lend credence to the consideration of ERT in an individualized setting [73–76].

Creasman et al. studied 221 patients with stage I adenocarcinoma of the endometrium at the Duke University Medical Center [75]. Forty-seven women were placed on ERT in a non-randomized fashion. The entire group was followed for at least two years after cancer therapy or until death. Seventy-two percent of the ERT users were prescribed vaginal conjugated estrogens (0.625 or 1.25 mg every day for one month and then three times per week thereafter). The patients in this group received at least three months of estrogen and up to 84 months, with a median of 26 months. ERT was initiated 0 to 81 months after definitive cancer therapy (median interval, 18 months).

There was no statistically significant difference in the distribution of prognostic factors between the two groups: i.e., stage, grade, depth of invasion, nodal metastasis, peritoneal cytology, hormone receptor status. The authors note, however, that the “trends for several factors were toward more favorable disease status in the estrogen subgroup” [75].

There were 26 recurrences among the 174 (14.9 percent) non-users of estrogen whereas there was only one (2.1 percent) recurrence in the user population. Sixteen of the 27 recurrences among the non-estrogen users died from their disease. Ten patients in this group died of “intercurrent disease”: no further elaboration is provided by the authors. The single patient from the estrogen-treated group who succumbed from her disease recurred at 22 months. Her exposure to estrogen was brief (three months), approximately 18 months before her recurrence.

The authors of this report were clearly cognizant of the inherent weakness of their retrospective analysis compared to a prospective, randomized trial. Selection bias may well have influenced their findings; i.e., the length of time from primary treatment of the cancer to the initiation of ERT (median, 18 months) may have eliminated some women who would develop a recurrence. Given these methodological flaws, the authors employed statistical analysis to adjust for differences in the two groups based on prognostic factors associated with disease course and survival.

In summary, although this report deals with stage I disease only and may reflect results primarily in a population treated with estrogen after a specific disease-free interval from cancer therapy, their results have far-reaching implications. The significance, if any, of the predominant type of estrogen vehicle (vaginal cream) employed is unknown.

Recently, Lee et al. followed 144 patients with stage I disease over an 11-year period at Madigan Army Medical Center and Brook Army Medical Center [76]. Only patients considered at low risk for recurrence based on tumor grade (grades 1 or 2), myometrial invasion (less than one-half myometrial invasion), and metastatic disease (absent) were offered treatment. Forty-four selected patients were placed on oral estrogen therapy and followed for a minimum of two years. Twenty-five of these patients began ERT “within the first postoperative year”: no further details are available in terms of the time from surgery to initiation of estrogen. Fifteen were prescribed “a progestin” at some time during the observation; scheduling details (i.e., sequential versus continuous use) were not provided.

Among the estrogen users, there were no recurrences. This finding contrasts with the eight recurrences (8 percent) which occurred among the 99 non-estrogen users. What is quite noteworthy, however, is that the vast majority of the recurrences in this
group (seven out of eight) was found in a subgroup of 37 women with high-risk factors. Indeed, no significant difference was found between estrogen users and low-risk non-users. Eight deaths occurred from other diseases among the non-users: five of those were from myocardial infarction.

In summary, this report is in agreement with the previously discussed study of Creasman et al. [75]. Women with a low-risk profile for recurrence of endometrial carcinoma appear not to incur any increased risk from the addition of menopausal estrogens. This study takes note of the predominant non-malignant cause of death among non-users—myocardial infarction. Despite the very small number of patients in this subgroup, the clinical implications are overwhelmingly apparent. Twenty-five patients in the ERT group were treated less than one year after definitive cancer treatment. Again, this number is too small to make broad conclusions, but the suggestion that low-risk women may be early candidates for estrogen is inherent. In addition, these investigators studied women on oral therapy, which reflects the more general clinical practice.

Two other purely observational reports have also been published [73,74]. Baker followed 31 women with “an excellent prognosis for cure” who chose ERT due to menopausal symptoms and concerns about osteoporosis risks [73]. Ten of these women with “more advanced” disease, status post-surgery and radiation therapy, waited an average of 4½ years before commencing ERT. The remainder (21) began estrogen within 1.8 years of surgical treatment. The majority (23 out of 31) were prescribed oral estrogen. There have not been any recurrences among the estrogen users.

Between 1975 and 1988, Bryant followed 20 women who were treated with oral estrogen after definitive surgery for endometrial carcinoma [74]. Conjugated equine estrogen, 0.625 mg, every day was begun 18 to 24 months post-operatively. One to 11 years after initiating ERT, cancer recurrence has not occurred. Of note is the fact that, within this small population, seven women had grade II lesions and four women had invasion involving greater than one-third of the myometrium.

Conclusion

The evidence is quite clear that the benefits of estrogen use in terms of the prevention of osteoporosis and cardiovascular disease far outweigh the risk of endometrial carcinoma. The question raised by the previously discussed reports is whether ERT is contraindicated in the woman who has been treated for endometrial cancer. Clearly, the definitive study has not been done, i.e., a larger, randomized prospective design. The clinical data to date, however, appear to argue strongly against a pervasive clinical practice of eliminating these patients from treatment consideration.

Therapy needs to be individualized, based on the patient’s needs, her history as well as her course on ERT. The best candidate appears to be a woman with a profile suggestive of a better prognosis with reference to her cancer. Whether or not the risk for recurrence is reduced by waiting to initiate ERT for 12 to 24 months after definitive therapy is unclear—but such scheduling should further clarify a treatment candidate’s risk profile. The role of the progestogens in this setting cannot be clarified from the current literature. There is no data that these agents would reduce the risk for recurrent disease, and their effect on lipids and lipoproteins must be
considered seriously so as not to reduce the cardioprotective benefit afforded by ERT.

BREAST CANCER

Endocrine Considerations in Breast Growth and Development

The endocrine requirements for breast development and function are complex with varied interactions among active and passive hormones [77]. Breast growth at puberty is primarily dependent upon estrogen. The initial response in most young girls to increasing levels of estrogen is an increase in size and pigmentation of the areola and the formation of a subareolar mass of breast tissue. Estrogen is bound in the breast in a manner similar to that in the uterus and vagina [78]. Prolactin is required for the optimal development of estrogen receptors. In subprimate mammals, estrogen replacement stimulates ductal growth, whereas progesterone is necessary for adequate alveolar growth; however, full differentiation of the gland requires insulin, cortisol, thyroxin, prolactin, and growth hormone [78]. Mammary changes occur routinely in response to the estrogen-progesterone sequence of the normal ovarian cycle.

The estrogen-induced impetus to mammary epithelial stem cell division requires the presence of insulin. Final differentiation of the alveolar epithelial cell into a mature milk cell is accomplished in the presence of prolactin, but only after prior exposure to cortisol and insulin. Minimal quantities of thyroid hormone are necessary to complete this development. As noted above, numerous hormones are required for appropriate breast growth, but mild deficiencies in any of these can be compensated for by excess prolactin.

Endocrine Considerations in Breast Cancer

Although the pathogenesis of breast cancer remains enigmatic, there is considerable evidence that endocrine factors play a critical role. The main indications for a hormonal contribution to the etiology of breast cancer in humans comes from epidemiologic studies showing a protective effect of early first pregnancy and early castration, and the negative effect of early menarche, late menopause, and nulliparity. It has also been postulated that normal estrogen stimulation and luteal inadequacy, characterized by diminished progesterone secretion, could explain the main epidemiologic features of the etiology of breast cancer [79]. Unfortunately, a causal relationship between hormones and breast cancer risk has been sought—but not found [80,81]. Many of the epidemiologic findings did not persist in cross-culture or single-culture studies, and population bias has been a persistent problem. Luteal phase inadequacy has not been found in young women at high genetic risk for breast cancer or in pre-menopausal women with breast cancer [82–84].

With advances in technology, numerous investigators have specifically attempted to understand and quantify the role of estrogen further. The only significant report on plasma estrogen levels in post-menopausal breast cancer was by England et al. [85]. Twenty-five breast cancer patients and 25 controls were studied, and it was found that estrogen levels were 30 percent higher in the former population. There have been at least five case-control studies investigating urinary estrogens in post-menopausal women with breast cancer [86–90]. These studies support the findings of increasing levels of estrogen in this patient population.
Recent work by Siiteri et al. [91] and Moore et al. [92] emphasize the theoretical importance of bioavailable estrogen fractions in the pathogenesis of breast cancer. Siiteri et al. investigated a small group of breast cancer cases and controls matched for age, weight, height, and menstrual status [91]. In both groups, they found that the known association between obesity, reduced sex hormone binding globulin (SHBG), and increased free estradiol (E$_2$) held. More important, they found that some "normal weight" breast cancer patients with normal SHBG levels had an elevated percentage of free E$_2$. These results, based on a small number of patients, suggest that, in the breast cancer population, serum-free E$_2$ may be elevated by factors unrelated to SHBG concentration.

Moore et al., looking at 38 post-menopausal women with breast cancer and 38 controls of similar age and weight, compared total and non-protein bound E$_2$ levels [92]. Breast cancer cases had significant higher levels of E$_2$ and non-protein bound E$_2$ than controls as well as significantly less SHBG. Indeed, the level of non-protein bound E$_2$ among the cases was nearly four times that of controls. Unfortunately, the interpretation of these results is difficult due to the fact that cases and controls were drawn from different populations.

The clinician attempting to treat post-menopausal women with estrogen is left with a contradictory literature regarding breast cancer pathogenesis, with only a modest potential for practical applications. The most useful information available involves the effect of exogenous as well as endogenous estrogens on breast cancer risk/recurrence. The following discussion summarizes current data which can be utilized in the context of management strategy.

Pregnancy and Breast Cancer

During pregnancy, the diagnosis of breast cancer becomes difficult due to the physiologic enlargement which tends to obscure the presence of new breast masses. Moreover, patients and physicians often incorrectly identify a new mass in the breast as a normal consequence of pregnancy, thereby delaying timely medical intervention. Mammography becomes almost useless due to the changes in breast parenchyma. All of these factors contribute to the observation that pregnant patients tend to present with more advanced disease than non-pregnant patients with breast cancer [93,94]. Yet despite these seemingly deleterious factors, it was recognized over 50 years ago that pregnant patients without histologic axillary node involvement have a favorable prognosis and were responsive to conventional therapy [95]. More recent work comparing pregnant patients with breast cancer to non-pregnant breast cancer patients of similar age and stage has found that the additional factor of pregnancy did not adversely affect prognosis [96–98]. The independent variable of youth—a factor associated with more aggressive disease—now appears to explain the unfavorable prognosis in many pregnant breast cancer patients [98].

Enough women have now become pregnant after treatment for breast cancer to allow for a limited literature regarding recurrence of disease. Several authors have noted that breast cancer patients who subsequently became pregnant have done better than comparable non-pregnant patients [96,99,100]. Unfortunately, a selection bias was probably introduced in these investigations, as women with a poor prognosis were generally counseled against subsequent pregnancy. In addition, women with recurrent cancer were unlikely to become pregnant. Misleading conclusions have also stemmed from the fact that women surviving long enough to become
pregnant were compared against women who succumbed to breast cancer early after diagnosis. Fortunately, this methodological flaw has been eliminated by using careful case matching. Indeed, Cooper and Butterfield compared women with a history of breast cancer who became pregnant to similar breast cancer patients who did not become pregnant and found a significant prolongation in survival in the former group [101].

Recommendations regarding pregnancy and breast cancer should be guided by the knowledge that recurrence is always possible. Wyle and DiSaia cautiously suggest that pregnancy may offer a benefit similar to additive hormonal therapy (i.e., tamoxifen) in women with receptor-positive tumors [77]. Considerably more investigative work, employing careful case matching, is required before management strategies can be generalized.

Oral Contraceptives and Breast Cancer

Oral contraceptives have been used widely since the early 1960s. A substantial body of literature currently exists on the relationship between oral contraceptive use and the risk of breast cancer. Numerous studies have failed to identify any increase in the incidence of breast cancer in this population [102-104]. Indeed, after an extensive review of the subject, the Food and Drug Administration has concluded that there is no increased risk of breast cancer in users of oral contraceptives [105].

In the context of considering estrogen use in high-risk populations, it becomes important to consider the record of oral contraceptive use in such groups of women. As discussed by Henderson et al., breast tissue mitotic rate, which increases during the luteal phase, is a significant determinant of a woman's breast cancer risk [106]. Theoretically, therefore, combination oral contraceptives, which stimulate the luteal phase of the cycle, may under certain circumstances increase the risk of breast cancer.

The "circumstances" of greatest significance would be those in which the woman's average breast tissue mitotic activity on combination oral contraceptives exceeds her "normal" activity. Specifically, late adolescence and the perimenopause have come under scrutiny because both periods are hallmarked by anovulatory cycles—just the right setting in which to identify an increased risk from the combination type of pill.

Five studies have specifically reported on the use of combination oral contraceptives in the perimenopausal population [107-111]. Although the range of reported relative risks was wide, all of these studies found some evidence of an elevated risk of breast cancer with such use. In the majority of these reports, the excess risk was seen in women age 46-60 [107-110]. In only one report was the excess risk observed in women over 50 [111]. Unfortunately, none of these studies dealt with the possible risk-modifying effect of specific oral contraceptive formulations. In fact, the significance of different formulations of combination oral contraceptives on breast tissue mitotic activity is not known. On a theoretical basis only, it can be presumed that those preparations with higher dosages of both estrogen and progestogen will have the greatest effect.

The other key period of consideration is late adolescence. Pike et al. recently found that long-term oral contraceptive use during this time carried with it a substantial increase in breast cancer risk [112]. Even more recent data, however, suggested that the greatest risk is imparted with oral contraceptive use before first full-term pregnancy [113].
Menopausal Estrogens and Breast Cancer

Although the risk of endometrial cancer associated with ERT is well established, the relationship between menopausal estrogen use and breast cancer is far less clear. Numerous studies have attempted to evaluate this issue and, overall, have failed to demonstrate any significant increase in breast cancer with ERT [114–140]. Unfortunately, the vast majority of these reports have dealt with small numbers of women, thereby limiting their statistical power to detect a difference between users and non-users of menopausal estrogen preparations.

Two recent studies have attempted to overcome this methodological issue and clarify conflicting epidemiologic observations by combining data from several reports using meta-analysis [141,142]. The latter is a systematic, quantitative means of combining data across studies to increase statistical power and to generalize results [143].

Dupont and Page, in their review, subdivided the literature based on type of endogenous estrogen prescribed, duration of use, and dosage [141]. They found a limited amount of data comparing types of menopausal estrogen. There is some suggestion, however, that estradiol products may be associated with an increased risk of breast cancer [125,131,144]. This risk was noted with estradiol valerate [144] and injectable estradiol [125] and therefore has little clinical applicability for most U.S. practitioners.

Dupont and Page found that several authors noted a modest, but persistent and statistically significant, trend of increasing risk with increasing duration of treatment [122,132,144]. Other authors, however, have failed to demonstrate any evidence of a positive duration-risk relationship [119,120,129,131–133,135,136,138], or they have found that breast cancer risk fluctuates inconsistently with increasing duration of treatment [125,140]. Key and Pike [145], noting that several negative studies employed hospital control groups, suggested that these reports may be affected by unknown biases. Two large, well-controlled studies have used population-based control groups, however, and failed to find an increased risk of breast cancer with increasing duration of estrogen use [135,136]. In the meta-analysis of Steinburg et al., breast cancer relative risk was increased to an estimated 1.3 (CI, 1.2–1.6) after 15 years of estrogen use [142]. These reviewers did not find an increased risk with five years or less of ERT. No report to date has been able to separate clearly the critical issue of latency of effect of menopausal estrogen use from the effect of duration of use. Thus, the current literature does not permit a definite conclusion to be made regarding the presence or absence of a positive duration-risk relationship. The contradictory results may be due, in part, to differences in dosages and types of treatment found among the studies.

In terms of the relationship between daily dosages of estrogen and breast cancer risk, the only worthwhile literature available concerns conjugated equine estrogen preparations [115,120–122,129,131,134,136,144]. Dupont and Page found that the combined relative risk for women who took 0.625 mg per day or less was 1.08 (CI, 0.96–1.2) [141]. Indeed, the results of all the relevant studies were mutually consistent [115,120–122,129,131,134,136,144]. The combined relative risk for women using 1.25 mg per day was also low. The individual relative risks from the latter studies differed significantly from each other, however, indicating that factors other than high-dose conjugated equine estrogen may affect cancer risk in some of these reports.
[141]. Although none of the estimated relative risks exceeded 2.0, the current literature does not permit confident conclusions regarding this treatment dose.

There are several other important issues which are worthy of note when considering menopausal estrogen use and breast cancer. In all instances discussed, however, the reader should remember that any conclusions based on the current literature reflect a myriad of patients, estrogen preparations, and treatment schedules.

Several studies have looked at breast cancer risks associated with ERT among women with histologic evidence of benign breast disease [121,134,136,138,139]. Four of these five studies found relative risks which did not differ significantly from 1.0 [134,136,138,139]. The study by Ross et al. [121] found an increased risk—but was based on only 14 women with breast cancer who had taken conjugated equine estrogens and also had a history of benign breast disease. Dupont and Page found that the combined relative risk of breast cancer from these studies was 1.16 (CI, 0.89–1.5). Moreover, the relative risks of the individual studies, overall, did not differ significantly from each other. Therefore, this meta-analysis provided considerable evidence that the elevation in breast cancer risk among women with benign breast disease is not greater than 50 percent. As concluded by Dupont and Page, a history of benign breast disease does not constitute grounds for denying women ERT [141].

Steinburg et al. found in their meta-analysis that the effect of ERT on breast cancer risk was enhanced among women with a family history of breast cancer (RR risk, 3.4; CI, 2.0–6.0) [129,132,134,147]. This finding is a critical point which requires further clarification, although, based on the current literature, these candidates for ERT should be considered high-risk for long-term therapy (greater than 15 years).

Colditz et al. recently reported on data collected from the Nurses' Health Study [150]. Female registered nurses were followed prospectively for ten years, thereby greatly reducing the potential for bias. Past use of estrogens, regardless of duration, was not associated with an increased risk of breast cancer; however, risk was elevated among current users (RR, 1.36; CI, 1.1–1.7). Of interest is the observation that current users of ERT who did not consume alcohol did not have an increased risk of breast cancer (RR, 0.99; CI, 0.62–1.60). Whether or not this finding is due to chance or a true interaction remains to be clarified. There is no strong evidence, to date, that estrogen users should be counselled against alcohol consumption.

It has been suggested that progestogen use with ERT will reduce the risk of breast cancer [127]. As eloquently discussed by Ernster and Cummings [148], there is no substantial evidence to support this treatment approach. Based on only ten patients, Bergkvist et al. suggested that progestogen use may increase cancer risk [144]. On a practical level, it is useful to remember that breast cell division is predominantly in the latter part of the menstrual cycle, when progesterone levels are high [149]. Therefore, not only is there no theoretical reason to believe that progestogens should decrease breast cancer risk, but the potential for negatively affecting lipids and lipoproteins and reducing the cardioprotection afforded by estrogen should take precedence.

Based on the current and admittedly inconsistent literature, it appears unlikely that ERT significantly increases breast cancer risk in the majority of healthy women. Issues such as dosage and duration of treatment need to be considered cautiously. Minimal dosages to relieve symptoms and prevent long-term sequelae should be utilized. Duration of treatment must be weighed against the more prevalent conse-
quences of estrogen deficiency such as hip fracture and, most important, CHD. Treatment strategies for women with a family history of breast cancer should be individualized. There is no evidence that short-term therapy for symptom relief poses a significant risk to this latter population.

ERT and Breast Cancer Recurrence

When faced with the dilemma of considering menopausal estrogen use for women with a history of breast cancer, there is no data upon which to base clinical strategy. On a purely theoretical basis, the available literature on breast cancer recurrence after pregnancy may offer some evidence that menopausal estrogens pose no risk to women whose cancer has a positive prognostic profile. Here the argument could be made that typical estrogen schedules "mimic" the early follicular phase milieu, with reference to estrogen levels, and should be considered "safer" than the endocrine environment of pregnancy. The clinical decision to act upon such theory must be individualized.

There exists a very modest literature suggesting that survival after the diagnosis of breast cancer is improved in the setting of prior non-contraceptive estrogen use [151–153]. Bergkvist et al. found that relative survival rate was significantly higher in patients who had received ERT. The most favorable course occurred in women, 50 years old or more, who were recent users, and corresponded to a 40 percent reduction in excess mortality [151]. Although these authors entertain the notion that their findings might be explained by direct biologic effects of estrogen on tumor characteristics, the effect of a number of confounding variables (i.e., selection bias: healthier women are given ERT) is undoubtedly significant in this setting. Indeed, this type of report does little to assist the clinician in decision making.

Conclusion

The complexities surrounding breast disease and menopausal estrogen use need to be separated, once and for all, from clinical experience with the endometrium and ERT. The established management strategy with reference to preventing the emergence of endometrial carcinoma in the setting of ERT—the judicious use of progestogens—has no corollary when considering breast cancer risk in the menopausal population. The literature on the latter topic, however, suggests that the risk:benefit ratio for most healthy women favors estrogen use. There are no guidelines for the woman with a history of breast cancer. If there is a candidate for ERT in this population, she is clearly the woman whose cancer has a better prognostic profile, i.e., negative axillary nodes, positive estrogen receptor status, at least five years' survival after definitive cancer therapy. Clinicians should be prepared to deal with alternative treatment modalities to help with symptom relief and alleviate other known risks for osteoporosis and CHD.

SUMMARY

Treatment strategies for the woman with a history of endometrial or breast cancer experiencing menopausal symptoms, or interested in preventing the long-term consequences of estrogen deficiency, remain a controversial area in health care. There are no established guidelines. One plausible cornerstone of management is choosing the "right" candidate for treatment—the woman with a profile suggestive of a better prognosis with reference to her cancer.
While the definitive, methodologically sound study has not been conducted involving either endometrial cancer or breast cancer patients, there does exist a modest literature regarding the former. These reports suggest that ERT does not increase the risk for endometrial cancer recurrence; however, critical controversies such as when to start after cancer treatment, what estrogen vehicle to use, and the role of progestins remain to be clarified.

There are no reports in the English literature on the use of ERT and breast cancer recurrence. Inferential support for the use of post-menopausal estrogens comes from generally poorly designed studies showing that breast cancer recurrence does not increase after pregnancy. It has been argued that the estrogen exposure with post-menopausal preparations should be far less “worrisome” than that found in the pregnant state. There is no clinical applicability to this postulate, and management needs to be individualized. It is imperative that women with a history of breast cancer be fully appraised of alternative treatment modalities.

REFERENCES

1. Smith DC, Prentice R, Thompson D, Hermann WL: Association of exogenous estrogens and endometrial cancer. N Engl J Med 293:1164–1167, 1975
2. Ziel H, Finkle W: Increased risk of endometrial carcinoma among users of conjugated estrogens. N Engl J Med 293:1167–1170, 1975
3. Mack T, Pike M, Henderson BE, Pfeffer RI, Gerkins VR, Arthur M, Brown SE: Estrogens and endometrial cancer in a retirement community. N Engl J Med 294:1262–1267, 1976
4. Council on Scientific Affairs: Estrogen replacement in the menopause. JAMA 249:359–361, 1983
5. Lindsey R, Hart DM, Forrest C, Baird C: Prevention of spinal osteoporosis in oophorectomized women. Lancet ii:1151–1153, 1980
6. Ettinger B, Genant HK, Cann CE: Longterm estrogen replacement prevents bone loss and fractures. Ann Int Med 102:319–324, 1985
7. Hutchinson TA, Poalansky SM, Feinstein AR: Postmenopausal estrogens protect against fractures of the hip and distal radius: A case-control study. Lancet ii:705–709, 1979
8. Paganini-Hill A, Roth RK, Gerkins VR, Henderson BE, Arthur M, Mack TM: Menopausal estrogen therapy and hip fractures. Ann Int Med 95:28–31, 1981
9. Weiss NS, Ure CL, Ballard JH, Williams AR, Daling JR: Decreased risk of fractures of the hip and lower forearm with postmenopausal use of estrogen. N Engl J Med 303:1195–1198, 1980
10. Kiel DP, Felson DT, Anderson JJ, Wilson PW, Maskowitz MA: Hip fracture and the use of estrogens in the postmenopausal women. The Framingham Study. N Engl J Med 317:1169–1174, 1987
11. Lobo RA: Prevention of postmenopausal osteoporosis. In: Menopause: Physiology and Pharmacology. Edited by DR Mishell. Chicago, Yearbook Medical Publishers, Inc, 1987, pp 165–186
12. Nachtigall LE, Nachtigall RH, Nachtigall RD, Beckman EM: Estrogen replacement therapy. II. A prospective study in the relationship to carcinoma and cardiovascular and metabolic problems. Obstet Gynecol 54:74–79, 1979
13. Talbott E, Kuller LH, Detre K: Biologic and psychosocial risk factors of sudden death from coronary heart disease in white women. Am J Cardiol 39:858–864, 1977
14. Ross RK, Paganini-Hill A, Mack TM, Arthur M, Henderson B: Menopausal estrogen therapy and protection from death from ischemic heart disease. Lancet i:858–860, 1981
15. Adam S, Williams V, Vessey MP: Cardiovascular disease and hormone replacement treatment: A pilot case-control study. Br Med J 282:1277–1282, 1981
16. Pfeffer RI, Whipple GH, Kurosaki TT, Chapman JM: Coronary risk and estrogen use in postmenopausal women. Am J Epidemiol 107:479–480, 1988
17. Rosenberg L, Armstrong B, Jick J: Myocardial infarction and estrogen therapy in postmenopausal women. N Engl J Med 294:1256–1259, 1976
18. Rosenberg L, Stone D, Shapiro S, Kaufman D, Stulley PD, Mietlinen OS: Noncontraceptive estrogens and myocardial infarction. JAMA 244:339–342, 1980
19. Jick J, Dinan B, Rothman KJ: Noncontraceptive estrogens and nonfatal myocardial infarction. JAMA 239:1407–1408, 1978
20. Lafferty FW, Helmuth DO: Postmenopausal estrogen replacement. The prevention of osteoporosis and systemic effects. Maturitas 7:147–159, 1985
21. MacMahon B: Cardiovascular disease and noncontraceptive oestrogen therapy. In Coronary Heart Disease in Young Women. Edited by MF Oliver. New York, Churchill Livingstone, 1978, pp 197–207
22. Stamper MJ, Willett WC, Colditz GA, Rosner B, Speizer FE, Hennekens CH: A prospective study of postmenopausal estrogen therapy and coronary heart disease. N Engl J Med 313:1044–1049, 1985
23. Hammond CB, Jelovsek FR, Lee KL, Creasman WJ, Parker RT: Effects of long-term estrogen replacement therapy. I. Metabolic effects. Am J Obstet Gynecol 133:525–536, 1979
24. Bush TL, Barrett-Connor E, Cowan LD, Criqui MH, Wallace RB, Suchindran CM, Pyrolier HA, Rifkind BM: Cardiovascular mortality and non-contraceptive estrogen use in women: Results from the Lipid Research Clinics Program Follow-up Study. Circulation 75:1102–1109, 1987
25. Burch JC, Byrd BF Jr, Vaughn WK: The effects of long-term estrogen on hysterectomized women. Am J Obstet Gynecol 118:778–782, 1974
26. Petitti DB, Perlman JA, Sidney A: Postmenopausal estrogen use and heart disease. N Engl J Med 315:131–132, 1986
27. Henderson BE, Ross RK, Paganini-Hill A, Mack JM: Estrogen use and cardiovascular disease. Am J Obstet Gynecol 154:1181–1186, 1986
28. Wilson PWF, Garrison RJ, Castelli WP: Postmenopausal estrogen use, cigarette smoking, and cardiovascular morbidity in women over 50. N Engl J Med 313:1138–1043, 1985
29. Henderson BE, Paganini-Hill A, Ross RK: Estrogen replacement therapy and protection from acute myocardial infarction. Am J Obstet Gynecol 159:312–317, 1988
30. Hunt K, Vessey M, McPherson K, Coleman M: Longterm surveillance of mortality in cancer incidence in women receiving hormonal replacement therapy. Br J Obstet Gynaecol 94:620–635, 1987
31. Criqui MH, Swarez L, Barrett-Connor E, McPhilips J, Wingard DL, Garbard C: Postmenopausal estrogen use and mortality. Am J Epidemiol 128:606–614, 1988
32. Henderson BE, Paganini-Hill A, Roth RK: Decreased mortality in users of estrogen replacement therapy. Arch Int Med 151:75–78, 1991
33. Allen GR, Doisy EA: An ovarian hormone, a preliminary report on its localization, extraction, partial purification and action in test animals. JAMA 81:819–821, 1923
34. O’Malley DW: Mechanisms of action of steroid hormones. N Engl J Med 284:370–377, 1971
35. Siliteri TK: Steroid hormones and endometrial cancer. Cancer Res 38:43–60, 1978
36. Peterson HB, Lee NC, Rubin GL: Genital neoplasia. In Menopause: Physiology and Pharmacology. Edited by DR Mishell. Chicago, Yearbook Medical Publishers, Inc, 1987, pp 275–298
37. Gambrell RD, Massey FW, Castaneda TA: Use of the progestogen challenge test to reduce the risk of endometrial cancer. Obstet Gyneco 55:732–738, 1980
38. Gubser SG: The individual risk for endometrial cancer. Am J Obstet Gynecol 126:535–541, 1976
39. Wentz WB: Progestin therapy in endometrial hyperplasia. Gynecol Oncol 2:362–367, 1974
40. Cramer DW, Cutler SJ, Christine B: Trends in the incidence of endometrial cancer in the United States. Gynecol Oncol 2:130–143, 1974
41. Austin DF, Roe KM: The decreasing incidence of endometrial cancer: Public health implications. Am J Public Health 72:65–68, 1982
42. Weiss NS, Szekeley DR, Austin DF: Increasing incidence of endometrial cancer in the United States. N Engl J Med 294:1259–1262, 1976
43. Greenwald P, Caputo TA, Wolfgang PE: Endometrial cancer after menopausal use of estrogens. Obstet Gynecol 50:239–243, 1977
44. Jenkins RN, Hunter JR, et al: Replacement estrogens and endometrial cancer. N Engl J Med 300:218–222, 1979
45. Marrett LD, Meigs JW, Flannery JT: Trends in the incidence of cancer of the corpus uteri in Connecticut, 1964–1979, in relation to consumption of exogenous estrogens. Am J Epidemiol 116:57–67, 1982
46. Gray LA Jr, Christopherson WM, Hoover R: Estrogens and endometrial cancer. Obstet Gynecol 49:35–89, 1977
47. McDonald TW, Annegers JF, O’Fallon WM, Dockerty MB, Malksigh GD, Kurland LT: Exogenous estrogens and endometrial carcinoma: Case-control and incidence study. Am J Obstet Gynecol 127:572–580, 1977
48. Wigle DT, Grace M, Smith ESO: Estrogen and cancer of the uterine corpus in Alberta. Can Med Assoc J 118:1276–1278, 1978
49. Horwitz R, Feinstein AR: Alternative analytic methods for case-control studies of estrogens and endometrial cancer. N Engl J Med 299:1089–1094, 1978
50. Hoogerland DL, Buchler DA, Crowley JJ, Carr WF: Estrogen use—risk of endometrial carcinoma. Gynecol Oncol 6:451–458, 1978
51. Antunes CMF, Stolley PD, Rosenshein NB, Davies JL, Tonesgin JA, Brown C, Burnett L, Rutledge A, Pokemper M, Garcia R: Estrogen and endometrial cancer and estrogen use. Report of a large case control study. N Engl J Med 300:9–13, 1979
52. Weiss NS, Szkeley DR, English DR, Schweid AI: Endometrial cancer in relation to patterns of menopausal estrogen use. JAMA 242:261–264, 1979
53. Hulka BS, Kaufman DG, Fowler WC Jr: Predominance of early endometrial cancers after long-term estrogen use. JAMA 244:2419–2422, 1980
54. Shapiro S, Kaufman WE, Slone D, Rosenberg L, Mietinen OS, Stolley PD, Rosenshein NB, Watering WG: Recent and past use of conjugated estrogens in relation to adenocarcinoma of the endometrium. N Engl J Med 303:485–489, 1980
55. Jelovsek FR, Hammond CB, Woodard BH, Draffin R, Leek I, Creasman WT, Parker RT, Leavitt J Jr, Knapp RC: Risk of exogenous estrogen therapy and endometrial cancer. Am J Obstet Gynecol 137:85–91, 1980
56. Splenger RF, Clarke EA, Woolever CA, Newman AM, Osborn RW: Exogenous estrogens and endometrial cancer: A case-control study and assessment of potential biases. Am J Epidemiol 114:497–506, 1981
57. Stavraky KM, Collins JA, Donner A, Wells GA: A comparison of estrogen use by women with endometrial cancer, gynecologic disorders, and other illnesses. Am J Obstet Gynecol 141:547–555, 1981
58. Kelsey JL, LiVolsi VA, Holford TR, Fischer DB, Mostow ED, Schwartz PE, O’Connor T, White C: A case-control study of cancer of the endometrium. Am J Epidemiol 116:333–342, 1982
59. LaVecchia C, Granceschi S, Gallus G, DeCarli A, Colombo E, Mangioni C, Tognini G: Oestrogens and obesity as risk factors for endometrial cancer in Italy. Int J Epidemiol 11:120–126, 1982
60. Henderson BE, Casagrande JT, Pike MC, Mack T, Rosano I, Duke A: The epidemiology of endometrial cancer in young women. Br J Cancer 47:749–756, 1983
61. Hammond CB, Jelovsek FR, Leek L, Creasman WT, Parker RT: Effects of longterm estrogen replacement therapy: II Neoplasia. Am J Obstet Gynecol 133:537–547, 1979
62. Tseng L, Gurpide E: Induction of endometrial estradiol dehydrogenase by progestin. Endocrinology 97:825–833, 1975
63. Whitehead MI, Townsend BF, Pryse-Davies J, Ryder TA, King RJB: Effects of estrogen and progestins on the biochemistry and morphology of the postmenopausal endometrium. N Engl J Med 305:1599–1604, 1981
64. King RJB, Dyer G, Collins WP, Whitehead MI: Intracellular estradiol, estrone, and estrogen receptor levels in endometria from postmenopausal women receiving estrogen and progestins. J Steroid Biochem 13:337–382, 1980
65. Nordqvist S: The synthesis of DNA and RNA in normal human endometrium in short term incubation in vitro and its response to estradiol and progesterone. J Endocrinol 48:17–28, 1970
66. Whitehead MI, Hillard TC, Crook D: The role and use of progestogens. Obstet Gynecol 75:595–596, 1990
67. Chu J, Schweid AI, Weiss NS: Survival among women with endometrial cancer: A comparison of estrogen users and non-users. Am J Obstet Gynecol 143:569–573, 1982
68. Underwood PB, Miller MC, Kreutner A, Jouyer CA, Lutz MH: Endometrial carcinoma: The effect of estrogens. Gynecol Oncol 8:60–73, 1979
69. Collins J, Donner A, Allen LH, Adams O: Estrogen use and survival in endometrial cancer. Lancet ii:961–964, 1980
70. Schwartzbaum JA, Hulka BF, Fowler WC, Kaufman DG, Hoberman D: The influence of exogenous estrogen use on survival after diagnosis of endometrial cancer. Am J Epidemiol 126:851–860, 1987
71. Robboy SJ, Bradley R: Changing trends and prognostic features in endometrial cancer associated with exogenous estrogen therapy. Obstet Gynecol 54:269–277, 1979
72. Smith DC, Prentice RL, Bauernister DE: Endometrial carcinoma: Histopathology, survival and exogenous estrogens. Gynecol Obstet Invest 12:169–179, 1981
73. Baker DP: Estrogen replacement therapy in patients with previous endometrial carcinoma. Comprehensive Therapy 16:28–35, 1990
74. Bryant GW: Administration of estrogen to patients with a previous diagnosis of endometrial adenocarcinoma (Letter). South Med J 83:725–726, 1990
75. Creasman WT, Henderson D, Hinshaw W, Clarke-Pearson DL: Estrogen replacement therapy in the patient treated for endometrial cancer. Obstet Gynecol 76:326–330, 1986
76. Lee RB, Burk TW, Park RC: Estrogen replacement therapy following treatment for stage I endometrial carcinoma. Gynecol Oncol 36:189–191, 1990
77. Wyle AG, DiSaia PJ: Hormones and breast cancer. Am J Surg 157:438–441, 1989
78. Speroff L, Grath RH, Kase NG: The breast. In Clinical Gynecologic Endocrinology and Infertility. Baltimore, MD, Williams & Wilkins, 1983, pp 243–269
79. Sherman BM, Korenman SG: Inadequate corpus luteum function. A pathophysiological interpretation of human breast cancer epidemiology. Cancer 33:1306–1311, 1974
80. Kirschner MA: The role of hormones and etiology of human breast cancer. Cancer 39:2716–2726, 1977
81. Vorher H, Messer RH: Breast cancer: Potentially predisposing and protecting factors. Am J Obstet Gynecol 130:335–358, 1978
82. Henderson BE, Gerkins V, Rosano I, Casagrande J, Pike MC: Elevated serum levels of estrogen and prolactin in daughters of patients with breast cancer. N Engl J Med 293:790–796, 1975
83. McFadyen IJ, Forrest APM, Prescott RJ, Golder MP, Groom GV, Fahmy DR: Circulating hormone concentrations in women with breast cancer. Lancet i:1100–1102, 1976
84. Sherman BM, Wallace RB, Jochimsen PR: Hormonal regulation of the menstrual cycle in women with breast cancer. Effect of adjuvant chemotherapy. Clin Endo 10:287–296, 1979
85. England PC, Skinner LJ, Cottrell KM, Sellweed RA: Serum estradiol-17 beta in women with benign and malignant breast disease. Br J Cancer 30:571–576, 1974
86. Arguelles AE, Hoffman C, Poggi UL, et al: Endocrine profiles and breast cancer. Lancet i:165–168, 1973
87. Brown JB: Urinary oestrogen excretion in the study of mammary cancer. In Endocrine Aspects of Breast Cancer, Edited by AR Curie. Edinburgh, UK, E and S Livingstone, 1958
88. Gronroos M, Aho AJ: Estrogen metabolism in postmenopausal women with primary and recurrent breast cancer. Eur J Cancer 4:523–527, 1968
89. Marmorston J, Crowley LG, Myers SM, Stern E, Hopkins CE: Urinary excretion of estradiol and estriol by patients with breast cancer and benign breast disease. Am J Obstet Gynecol 92:460–467, 1965
90. Persholm BH, Risholm L: Oophorectomy and cortisone treatment as a method of eliminating estrogen production in patients with breast disease. Am J Obstet Gynecol 44:15–19, 1964
91. Siiteri PK, Hammond GL, Nisker JA: Increased availability of serum estrogens in breast cancer: A new hypothesis. In Banbury Report 8, Hormones in Breast Cancer. Edited by MC Pike, PK Siiteri, CW Welch. Cold Spring Harbor, NY, Cold Spring Harbor Laboratory, 1981, pp 87–101
92. Moore JW, Clark CMG, Bulbrook RD, et al: Serum concentrations of total and nonprotein bound estradiol in patients with breast cancer and in normal controls. Int J Cancer 29:17, 1982
93. Holleb AI, Farrow JH: The relation of carcinoma of the breast and pregnancy in 283 patients. Surg Gynecol Obstet 115:65–71, 1962
94. Ribeiro GG, Palmer MK: Breast carcinoma associated with pregnancy: A clinician's dilemma. Br Med J 2:1524–1527, 1977
95. Harrington SW: Carcinoma of the breast: Results of surgical treatment when the carcinoma occurred in the course of pregnancy or lactation and when pregnancy occurred subsequent to operation. Ann Surg 106:690–700, 1937
96. Donegan WL: Breast cancer and pregnancy. Obstet Gynecol 50:244–252, 1977
97. King RM, Welch JS, Martin JK Jr, Coulam CB: Carcinoma of the breast associated with pregnancy. Surg Gynecol Obstet 160:228–232, 1985
98. Nugent P, O'Connell TX: Breast cancer and pregnancy. Arch Surg 120:1221–1224, 1985
99. White TT, White WC: Breast cancer and pregnancy: Report of 49 cases followed five years. Ann Surg 144:384–393, 1956
100. Rissanen PM: Pregnancy following treatment of mammary cancer. Acta Radiol(Ther) 8:415–422, 1969
101. Cooper DR, Butterfield J: Pregnancy subsequent to mastectomy for cancer of the breast. Ann Surg 171:429–433, 1970
102. Kelsey JL, Holford TR, White C, Mayer ES, Kilty SE, Acheson RM: Oral contraceptives and breast disease. Am J Epidemiol 107:236–244, 1978
103. Trapido EJ: A prospective cohort study of oral contraceptives and breast cancer. JNCI 67:1011–1015, 1981
104. The Centers for Disease Control Cancer and Steroid Hormone Study: Long-term oral contraceptive use and the risk of breast cancer. JAMA 249:1591–1595, 1983
105. Oral contraceptives and cancer. FDA Drug Bulletin 14 (April): 2–3, 1984
106. Henderson BE, Ross RK, Pike MC: Breast neoplasia. In Menopause: Physiology and Pharmacology. Edited by DR Mishell, Chicago, Yearbook Medical Publishers, Inc, 1987, pp 261–274
107. Kelsey JL, Hildreth NG: Breast and Gynecologic Cancer Epidemiology. Boca Raton, FL, CRC Press, Inc, 1983, p 30
108. Vessey MP, Doll R, Jones K, et al: An epidemiological study of oral contraceptives and breast cancer. Br Med J 1:1752, 1979
109. Jick H, Walker AM, Watkins RN, D’Ewart DC, Hunter JR, Danford A, Malsen S, Dinan BJ, Rothman KJ: Oral contraceptives and breast cancer. Am J Epidemiol 112:577, 1980
110. Royal College of General Practitioners: Breast cancer and oral contraceptives: Findings in Royal College of General Practitioners study. Br Med J 1:2089, 1981
111. Brinton LA, Hoover R, Szklo M. Fraumeni JF: Oral contraceptives and breast cancer. Int J Epidemiol 11:316, 1982
112. Pike MC, Henderson BE, Krailo MD, et al: Breast cancer in young women and use of oral contraceptives: Possible modifying effect of formulation and age at use. Lancet ii:926–929, 1983
113. McPherson K, Neil A, Vessey MP, Doll R: Oral contraceptives and breast cancer (letter), Lancet ii:1414, 1983
114. Mack TM, Henderson BE, Gerkins VR, Arthur M, Baptista J, Pike MC: Reserpine and breast cancer in a retirement community. N Engl J Med 292:1366–1371, 1975
115. Hoover R, Gray LA Sr, Cole P, MacMahon B: Menopausal estrogens and breast cancer. N Engl J Med 295:401–405, 1976
116. Casagrande J, Gerkins V, Henderson BE, Mack T, Pike MC: Brief communication: Exogenous estrogens and breast cancer in women with natural menopause. JNCI 56:839–841, 1976
117. Byrd BF Jr, Burch JC, Vaughn WK: The impact of long term estrogen support after hysterectomy. Ann Surg 185:574–579, 1977
118. Wynder EL, MacCornack FA, Stellman SD: The epidemiology of breast cancer in 785 United States Caucasian women. Cancer 41:2341–2354, 1978
119. Ravnhai B, Seigel DG, Lindtner J: An epidemiological study of breast cancer and benign breast neoplasias in relation to the oral contraceptive and estrogen use. Eur J Cancer Clin Oncol 15:395–405, 1979
120. Jick H, Walker AM, Watkins RN, D’Ewart DC, Hunter JR, Danford A, Madson S, Dinan BJ, Rothman KJ: Replacement estrogens and breast cancer. Am J Epidemiol 112:586–594, 1980
121. Ross RK, Paganini-Hill A, Gerkins VR, Mack TM, Pfeffer R, Arthur M, Henderson BE: A case-control study of menopausal estrogen therapy and breast cancer. JAMA 243:1635–1639, 1980
122. Hoover R, Glass A, Finkle WD, Azevedo D, Milne K: Conjugated estrogens and breast cancer risk in women. JNCI 67:815–820, 1981
123. Kelsey JL, Fischer DB, Holford TR, et al: Exogenous estrogens and other factors in the epidemiology of breast cancer. JNCI 67:327–333, 1981
124. Thomas DB, Persing JP, Hutchinson WB: Exogenous estrogens and other risk factors for breast cancer in women with benign breast disease. JNCI 69:1017–1025, 1982
125. Hulka BS, Chambliss LE, Deubner DC, Wilkinson WE: Breast cancer and estrogen replacement therapy. Am J Obstet Gynecol 143:638–644, 1982
126. Vakil DV, Morgan RW, Halliday M: Exogenous estrogens and development of breast and endometrial cancer. Cancer Detect Prev 6:415–424, 1983
127. Gambrell RD Jr, Maier RC, Sanders BI: Decreased incidence of breast cancer in postmenopausal estrogen-progestogen users. Obstet Gynecol 62:435–443, 1983
128. Sherman B, Wallace R, Bean J: Estrogen use and breast cancer interaction with body mass. Cancer 51:1527–1531, 1983
129. Kaufman DW, Miller DB, Rosenberg L, Helmrich SP, Stolley P, Schottenfeld D, Shapiro S: Noncontraceptive estrogen use and the risk of breast cancer. JAMA 252:63–67, 1984
130. Horwitz RI, Stewart KR: Effect of clinical features on the association of estrogens and breast cancer. Am J Med 76:192–198, 1984
131. Hiatt RA, Bawol R, Friedman GD, Hoover R: Exogenous estrogen and breast cancer after bilateral oophorectomy. Cancer 54:139–144, 1984
132. Nomura AMY, Kolonel LN, Hirohata T, Lee J: The association of replacement estrogens with breast cancer. Int J Cancer 37:49–53, 1986
133. McDonald JA, Weiss NS, Daling JR, Francis AM, Polissar L: Menopausal estrogen use and the risk of breast cancer. Breast Cancer Res Treat 7:193–199, 1986
134. Brinton LA, Hoover R, Fraumeni JF Jr: Menopausal oestrogens and breast cancer risk: An expanded case-control study. Br J Cancer 54:825–832, 1986
135. Buring JE, Hennekens CH, Lipnick RJ, Willett W, Stomper MJ, Resner B, Peto R, Speizer FB: A prospective cohort study of postmenopausal hormone use and risk of breast cancer in US women. Am J Epidemiol 125:939–947, 1987
136. Wingo PA, Layde PM, Lee NC, Rubin G, Ory HW: The risk of breast cancer in postmenopausal women who have used estrogen replacement therapy. JAMA 257:209–215, 1987
137. Hunt K, Vessey M, McPherson K, Coleman M: Long-term surveillance of mortality and cancer incidence in women receiving hormone replacement therapy. Br J Obstet Gynaecol 94:620–635, 1987
138. Rohan TE, McMichael AJ: Non-contraceptive exogenous oestrogen therapy and breast cancer. Med J Aust 148:217–221, 1988
139. Dupont WD, Page DL, Rogers LW, Park FF: Influence of exogenous estrogens, proliferative breast disease, and other variables on breast cancer risks. Cancer 63:948–957, 1989
140. Mills PK, Beeson WL, Phillips RL, Fraser GE: Prospective study of exogenous hormone use and breast cancer in Seventh-Day Adventists. Cancer 64:591–597, 1989
141. Dupont WD, Page DL: Menopausal estrogen replacement and breast cancer. Arch Int Med 151:67–72, 1991
142. Steinburg KK, Thacker SB, Smith SJ, Stroup BF, Zack MM, Flanders WD, Berkelman RL: A meta-analysis of the effect of estrogen replacement therapy on the risk of breast cancer. JAMA 265:1985–1989, 1991
143. Thacker SB: Meta-analysis: A quantitative approach to research integration. JAMA 259:1685–1689, 1988
144. Bergkvist L, Adami HO, Persson I, Hoover R, Schairer C: The risk of breast cancer after estrogen and estrogen-progestin replacement. N Engl J Med 321:293–297, 1989
145. Key TJ, Pike MC: The role of oestrogens and progestagens in the epidemiology and prevention of breast cancer. Eur J Cancer Clin Oncol 24:29–43, 1988
146. Wallach S, Henneman PH: Prolonged estrogen therapy in postmenopausal women. JAMA 171:1637–1642, 1959
147. LaVecchia C, DeCarli A, Parazzini F, Gentile A, Berati C, Franceschi S: Non-contraceptive oestrogens and the risk of breast cancer in women. Br J Cancer 38:853–858, 1986
148. Ernster VL, Cummings SR: Progesterone and breast cancer. Obstet Gynecol 68:715–717, 1986
149. Anderson TJ, Ferguson DJP, Raab GM: Cell turnover in the 'resting' human breast: Influence of parity, contraceptive pill, age and laterality. Br J Cancer 46:376–382, 1982
150. Colditz GA, Stomper MJ, Willet WC, Hennekens CH, Rosner B, Spitzer FE: Prospective study of estrogen replacement therapy and risk of breast cancer in postmenopausal women. JAMA 264:2648–2653, 1990
151. Bergkvist L, Adami HO, Persson I, Bergstrom R, Krusemo UB: Prognosis after breast cancer diagnosis in women exposed to estrogen and estrogen-progestogen replacement therapy. Am J Epidemiol 130:221–228, 1989
152. Hunt K, Vessey M, McPherson K: Long-term surveillance of mortality and cancer incidence in women receiving hormone replacement therapy. Br J Obstet Gynaecol 94:620–635, 1987
153. Gambrell RD: Proposal to decrease the risk and improve the prognosis of breast cancer. Am J Obstet Gynecol 150:119–130, 1984