Abstract

This research work focuses on the application of IoT (Internet of Things) in the field of waste recycling. We propose an energy efficient and low cost prototype system for a recycling bin. In an attempt to ease sorting during waste disposal, the system identifies the type of waste material which is being discarded and automatically opens the corresponding bin. Being battery operated and providing real-time service imply that downtime due to power shortage must be kept at a minimum. Our approach focuses on a novel wake-up technique applied to an Arduino microcontroller which controls the opening and closing of the bin lids. Our technique reduces power consumption of the microcontroller by allowing it to be in deep sleep mode when not in use. This is achieved by concatenating a wake-up bit at the beginning of a request to wake up the sleeping microcontroller. It then, executes the request and goes back to sleep. Our experiments demonstrate an increase in battery life of more than 3 hours when compared to the standard full power mode usage. Also, we introduce QR (Quick Response) code to identify the type of waste products, which is less costly and more environmental friendly than RFID (Radio Frequency Identification) tag based solutions.
References

1. Catania, V. and Ventura, D. 2014 "An approach for monitoring and smart planning of urban solid waste management using smart-m3 platform" IEEE 15th Conference of Open Innovations Association FRUCT, pp. 24-31, 2014.

2. Lundin, A. C. and Ozkil A. G. 2017 "Smart cities: A case study in waste monitoring and management", Proceedings of the 50th Hawaii International Conference on System Sciences, pp. 1392-1401.

3. Thomas V. M., 2009 "A universal code for environmental management of products," Resources, Conservation and Recycling, vol. 53, no. 7, pp. 400–408, May 2009.

4. Yann G. and Paul C. 2013 "A Smart Waste Management with Self-Describing objects", Leister, Wolfgang and Jeung, Hoyo and Koskelainen, Petri. The Second International Conference on Smart Devices, Systems and Technologies (SMART'13).

5. Sai, V. and Mickle, M. H. (2014) "Exploring energy efficient architectures in passive wireless nodes for IoT applications", IEEE Circuits and Systems Magazine, 14(2), pp. 48–54.

6. Pawar M. S., Manore J. A. and Kuber M. M., 2011 "Life Time Prediction of Battery Operated Node for Energy Efficient WSN Applications", IJCST Vol. 2, Issue 4, Oct - Dec. 2011.

7. Umbdenstock E., Schafer F., Kleinsteinüber F. and Meyer H., 2013, "Wake-Up-Receiver in energy efficient Wireless Sensor Networks for security applications" Agence National de la Recherche (ANR) Workshop Interdisciplinaire sur la Sécurité Globale, WISG2013 Université de Technologie de Troyes JAN 2013

8. Folianto F., Low Y. S., and Yeow W.L., 2015 "Smartbin: Smart waste management system," IEEE, Tenth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), APR. 2015.

9. Skocir, P., Zrncic, S., Katusic, D., Kusek, M. and Jezic, G., 2015 "Energy consumption model for devices in machine-to-machine system", 2015 IEEE 13th International Conference on Telecommunications (ConTEL).

10. Kaur N., Sood S. K., 2015, "An Energy-Efficient Architecture for the Internet of Things", IEEE Systems Journal, no. 99, pp. 1-10, Oct. 2015.

11. Abedin S. F., Alam M. G. R., Haw R., and Hong C. S., 2015, "A system model for energy efficient green-iot network", International Conference on Information Networking (ICOIN), JAN. 2015.

12. Thakker, S. and Narayananamoorthi, R. (2015) ‘Smart and wireless waste management’ International conference on Innovations in Information, Embedded and Communication Systems ICIECS, IEEE, pp. 1–4.

13. Atmel, ATME 8-BIT MICROCONTROLLER WITH 4/8/16/32KBYTEWS IN-SYSTEM PROGRAMMABLE FLASH, “Power Management and Sleep Modes” p.62 [Online]http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-42735-8-bit-AVR-Microcontroller-ATmega328-328P_Datasheet.pdf Accessed: 2017.

14. Joshi J., Reddy P., Agarwal R., Bagga A., Bhargva A., 2016 "Cloud computing based smart garbage monitoring system", 3rd International conference on Electronic Design, ICED, Thailand, IEEE, pp. 70-75.

15. Sharmin S., Al-Amin S. T., 2016 "A Cloud-based dynamic waste management system for smart cities" 7th Annual Symposium on Computing for Development, ACM, pp. 20.

16. Hannan M.A., Abdulla Al Mamun Md., Hussain A., Basri H., Begum., R.A., 2015, "A review on technologies and their usage in solid waste monitoring and management systems:"
Issues and challenges", Waste Management Journal, Volume 43, pp. 509-523.

17. Hong, I., Park, S., Lee, B., Lee, J., Jeong, D. and Corporation, H.P. (2014) ‘IoT-Based smart garbage system for efficient food waste management’, The Scientific World Journal, 2014.

18. Binder C. R., Quirici R., Domnitcheva S. and Stäubli B., 2008, "Smart Labels for Waste and Resource Management" Journal of Industrial Ecology, 12: 207–228

19. Kwangho J. and Sabinne L., 2015 "A systematic review of RFID applications and diffusion: key areas and public policy issues", Journal of Open Innovation: Technology, Market, and Complexity (2015) 1:9

Index Terms

Computer Science

Automated Systems

Keywords

Internet of Things (IoT), Energy Efficient System, Smart Systems, Waste Recycling, Deep Sleep Mode, Microcontroller, Sensor Networks