D-brane dynamics in a plane wave background

J. Kluson*

Dipartimento di Fisica,
Universita di Roma & I.N.F.N. Sezione di “Tor Vergata”
Via della Ricerca Scientifica 1, 00133 Roma ITALY
E-mail: Josef.Kluson@roma2.infn.it

Rashmi R. Nayak, and Kamal L. Panigrahi

Dipartimento di Fisica (DIFI),
Universita di Genova & I.N.F.N. Sezione di Genova
Via Dodecaneso 33, 16146 Genova, ITALY
Email: rashmi.nayak@ge.infn.it, kamal.panigrahi@ge.infn.it

ABSTRACT: By using the Dirac-Born-Infeld action we study the dynamics of Dp-brane propagating in the NS5-near horizon plane wave background. We study systematically D-brane embedding in this pp-wave background, and analyze the equations of motion for various auxiliary fields. We further discuss the motion of the probe Dq-brane in the presence of source Dp-branes in this plane wave background.

KEYWORDS: D-branes

*On leave from Masaryk University, Brno, Czech Republic
1. Introduction

Study of string theory in time dependent background is a challenging topic which is believed to be able to answer questions in early universe cosmology. One of the most studied subject in this direction is the decaying phenomena of the unstable D-brane in the presence of a tachyonic mode. The condensation of this tachyon leads to a more stable brane configuration or a complete annihilation (in case of brane-anti-brane pair). In the conformal field theory language, it corresponds to studying the boundary conformal field theory of the D-brane by a marginal deformation. The recent proposal of Sen marks the spatially homogeneous decay of the unstable D-brane by a deformation of the open string worldsheet by an exact marginal rolling tachyon background[1, 2, 3]. This process can also be realized by the localization of S-brane in a time like direction. In the study of the time dependent solutions in string theory, the recent observations reveal that the Dirac-Born-Infeld action captures, surprisingly well many aspects of the decay of unstable D-branes[4] -[7]. More recently a geometric tachyon has been prosed in [8] that is the decay of the Dp-brane into the throat of a stack of NS5-branes. It has been observed that not only the decay process resembles with that of the rolling tachyon of the open string
models, but also one could learn even more far reaching consequences by studying in
general the time dependent dynamics of the D-branes in curved backgrounds. Hence
one attempts naturally to make more progress in the understanding of the physics
of D-branes in curved backgrounds.

In the recent past string theory in plane-wave background \cite{9} has also been a
topic of intense discussion. String theory in this background has been shown to be
exactly solvable in light-cone gauge and it provides a perfect laboratory for testing the
celebrated AdS/CFT duality beyond the supergravity regime. String theory in pp-
wave background that arises as the Penrose limit of certain near horizon geometries
is known to provide a holographic description of certain sectors of dual field theory
\cite{10}. Study of D-branes in this background is interesting and has been investigated by
using various techniques in the past, see for example: \cite{11, 12, 13, 14, 15, 16, 17, 18, 19}.
One of the interesting pp-background is obtained in the Penrose limit of the near
horizon region of a stack of NS5-brane (the linear dilaton background) \cite{20}. It is one
of the simplest pp-wave backgrounds with constant NS-NS flux and was shown to
resemble very closely to the flat space. D-brane solutions in this background has been
studied in \cite{21}. While the perturbative spectrum seems to be close enough to the
flat space, the inclusion of non-perturbative objects like D-branes changes drastically
the situation. For example, the spacetime supersymmetry seems to be lost in the
presence of D-branes in the pp-wave background of linear dilaton geometry.

The rest of the paper is organized as follows. In section-2 we give a very brief
review of the near horizon geometry of the NS5-branes and the description of Dp-
brane in its pp-wave background. In section-3 we describe the DBI action of the
Dp-brane in general background, and the nature of the equations of motion. Then we
study various embeddings of the D-branes in pp-wave background. In particular, we
discuss two types of branes, namely the ‘longitudinal’ branes (both \((u, v)\) directions
along the brane worldvolume) and the ‘transversal’ branes (with one of the lightcone
direction \((u)\) along the brane). We suppose that the worldvolume fields depend on \(u\)
only and derive solutions for them. We further generalize the situation by turning on
appropriate gauge fields on the worldvolume of the branes. In section-4, we study the
relative motion of the Dq-brane in the pp-wave background in the presence of other
Dp-brane source. We argue that how the embedding of branes changes the relative
motion of various D-branes. We propose a particular kind of embedding where the
brane motion resembles with that of the flat space-time. In section-5 we present our
conclusions.

2. General discussion of Dp-branes in the near horizon limit
of NS5-branes and their pp wave limit

Non-gravitational theory such as the Little string theory (LST) is an interesting
examples of non local theory. This theory arises on the world volume of the NS5-brane when one takes the decoupling limit: $g_s \to 0$ with fixed α'. To learn about the high energy spectrum of this theory, which is not yet fully understood, one generally advocates in terms of the dual field theory language, namely, in terms of the string propagation in linear dilaton background. To probe the high energy regime, the Penrose limit of the spacetime has been very useful and intuitive. Let’s recall some basic facts about the linear dilaton background and its associated Penrose limit.

The string frame metric, 3-form H and dilaton of the NS5-brane background are given by,

$$
\begin{align*}
\text{ds}^2 &= -dt^2 + dy_5^2 + H(r)(dr^2 + r^2(d\theta^2 + \cos^2 \theta d\psi^2 + \sin^2 \theta d\phi^2)) \\
H &= N\epsilon_3, \quad e^{2\phi} = g_s^2 H(r) \quad H(r) = 1 + \frac{Nl_s^2}{r^2},
\end{align*}
$$

where ϵ_3 is the volume form on the transverse S_3, N is the NS5-brane charge and $H(r)$ is the harmonic function in the transverse directions of the NS5-branes. The near-horizon geometry corresponds to the the limit $r \to 0$ which removes the 1 in $H(r)$ and, on rescaling the time ($t = \sqrt{Nl_s t}$), leads to the linear dilaton background,

$$
\begin{align*}
\text{ds}^2 &= Nl_s^2(-dt^2 + \frac{dr^2}{r^2} + \cos^2 \theta d\psi^2 + d\theta^2 + \sin^2 \theta d\phi^2) + dy_5^2.
\end{align*}
$$

The Penrose limit is then taken with respect to the null geodesic along the equator ($\theta = 0$) of the transverse S^3 resulting in the following expressions for the metric and NS-NS 3-form [20],

$$
\begin{align*}
\text{ds}^2 &= 2dudv - \mu^2(z_1^2 + z_2^2)(du)^2 + \sum_{a=1}^8 dz^a dz^a, \\
B_{12} &= 2\mu u. \tag{2.1}
\end{align*}
$$

To construct Dp-brane in this particular background, one could in principle follow various methods. The one that was adopted in [21] was to write an ansatz for a particular Dp-brane solution in the NS5-brane near horizon pp-wave background and then to solve the type IIB field equations of motion along with the Bianchi identities. The supersymmetry variations revealed the absence of any Killing spinors, and hence the solutions are non-supersymmetric. But a careful analysis of the worldsheet study revealed that the D-branes in NS5-near horizon pp-wave background preserves as much supersymmetry as the flat space. The contradiction was resolved by showing that all Fourier modes of the allowed supersymmetry parameters depend on worldsheet coordinate σ, while a local description in terms of the space-time variable is blind to the extension of the string.

Recently in the study of open string tachyon condensation, the Dirac-Born-Infeld action for D-branes have been very useful in understanding the intriguing aspects of underlying physics. Hence one wonders whether approaching the problem from this
view point help us in understanding the Dp-branes more in pp-wave background. We would like to stress that the aim of this paper is not to look for supersymmetric solutions in this plane wave background, rather to study the properties of already known D-brane solutions from an effective field theory point of view. We consider various brane embedding in this pp-wave background and study their dynamics.

Before going to the next section, where we discuss the DBI action for a probe brane in NS5-pp wave background, we would like make a brief review of the Penrose limit on the probe. The effect of the Penrose limit on the dynamics of probe branes have been investigated in [22]. It was observed that the Penrose limit is essentially taking the large tension limit of the probe brane. Below we give an outline following [22] the analysis of the worldvolume dynamics of the Dp-brane in Penrose limit. Let us consider Dp-brane in general background

$$I_p[g, B, C] = -\tau_p \left[\int d^{p+1}\sigma e^{-\Phi} \sqrt{-\det(g_{\mu\nu} + \mathcal{F}_{\mu\nu})} + \int e^\varphi \wedge C \right], \quad (2.2)$$

where

$$\tau_p = \frac{1}{(2\pi\alpha')^{\frac{p+1}{2}} k_p}, \quad (2.3)$$

where k_p is a constant that depends on string coupling constant $g_s = e^{-\Phi(\infty)}$. We also have

$$\mathcal{F}_{\mu\nu} = \alpha' F_{\mu\nu} + B_{\mu\nu}, \quad F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu + B_{\mu\nu} = B_{MN}\partial_\mu X^M \partial_\nu X^N, \quad C = \sum \chi_k \sum C(\chi_k) \quad (2.4)$$

Now we set $\alpha' = \Omega^2 \alpha'$. The D$p$-brane action is given by

$$I_p \left[\Omega^{-2} g, \Omega^{-2} B, \Omega^{-k} C \right] = \frac{1}{k_p (2\pi\alpha')^{\frac{p+1}{2}}} \left(\int d^{p+1}\sigma e^{\Phi} \sqrt{\Omega^{-2}(g + B) + \alpha' F} \right. \left. + \sum_k e^{\Omega^{-2} B + \alpha' F} \wedge \Omega^{-k} C_k \right) \quad (2.5)$$

Next step is to adopt the coordinates for the Penrose limit and take $\Omega << 1$, the Dp-brane action is expanded in the following way:

$$I_p \left[\Omega^{-2} g, \Omega^{-2} B, \Omega^{-k} C \right] = I_p \left[\bar{g}, \bar{B}, \bar{C} \right] + O(\Omega), \quad (2.6)$$

where the bar valued quantities are the fields in the Penrose limit. Hence one sees that the the Dp-branes in the large tension limit propagates in the Penrose limit of the associated spacetime.

3. Dp-brane probe in NS5- near horizon pp-wave background

Now we come to the main objective of the present paper, namely we start to study the dynamics of probe Dp-brane in the NS5-near horizon plane wave background.
Recall that the action for a D_p-brane in generic background has the form

$$S_p = -\tau_p \int d^{p+1}\sigma e^{-\Phi}\sqrt{-\det \mathbf{A}} \, \mathbf{A}_{\mu\nu} = \gamma_{\mu\nu} + F_{\mu\nu} \, ,$$

(3.1)

where τ_p is the Dp-brane tension, $\Phi(X)$ is dilaton, and $\gamma_{\mu\nu}, \mu, \nu = 0, \ldots, p$ is embedding of the metric to the worldvolume of Dp-brane

$$\gamma_{\mu\nu} = g_{MN}\partial_{\mu}X^M\partial_{\nu}X^N \, , \, M, N = 0, \ldots, 9$$

(3.2)

In (3.1) the form $F_{\mu\nu}$ is defined as

$$F_{\mu\nu} = b_{MN}\partial_{\mu}X^M\partial_{\nu}X^N + \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} \, .$$

(3.3)

The equation of motion for X^K can be easily determined from (3.1) and take the form

$$\partial_K[e^{-\Phi}\sqrt{-\det \mathbf{A}} + \frac{1}{2}e^{-\Phi} \left(\partial_K g_{MN}\partial_{\mu}X^M\partial_{\nu}X^N + \partial_K b_{MN}\partial_{\mu}X^M\partial_{\nu}X^N \right) \times \left((A^{-1})_{\mu\nu} \right) \sqrt{-\det \mathbf{A}} - \partial_{\mu} \left[e^{-\Phi} g_{KM}\partial_{\nu}X^M \left(A^{-1}
ight)_{\nu\mu} \sqrt{-\det \mathbf{A}} \right] - \left[-\partial_{\mu} \left[e^{-\Phi} b_{KM}\partial_{\nu}X^M \left(A^{-1}
ight)_{\nu\mu} \sqrt{-\det \mathbf{A}} \right] \right] = 0 \, ,$$

(3.4)

where, the symmetric and anti-symmetric part, respectively, of the matrix $(A^{-1})^{\mu\nu}$ is given by:

$$(A^{-1})^\nu_\mu_S = \frac{1}{2} \left((A^{-1})^{\nu\mu} \right) \left((A^{-1})^{\mu\nu} \right) \, , \, (A^{-1})^\nu_\mu_A = \frac{1}{2} \left((A^{-1})^{\nu\mu} - (A^{-1})^{\mu\nu} \right) \, .$$

(3.5)

Finally, we should also determine the equation of motion for the gauge field A_{μ}:

$$\partial_{\nu} \left[e^{-\Phi} \left(A^{-1} \right)^{\nu\mu}_A \sqrt{-\det \mathbf{A}} \right] = 0 \, .$$

(3.6)

Now we are going to study the time dependent dynamics of the probe D_p-brane in the plane wave background of the linear dilaton geometry that, as discussed in the previous section, takes the form

$$ds^2 = 2dudv - \mu^2(z_1^2 + z_2^2)du^2 + \sum_{i=1}^{2} dz_i^2 + dx^2 + dy_5^2 \, .$$

(3.7)

together with nonzero NS-NS two form field

$$B_{12} = 2\mu u$$

(3.8)

Recall that u is the time coordinate. We will now solve the equations of motion for D_p-brane embedded in this background. It is clear that their properties will strongly
depend on the embedding of these Dp-brane in the pp-wave background. Since we are interested in the time dependent case, we fix the worldvolume time coordinate σ^0 to be equal to target space coordinate u. From the structure of the background metric it is natural to consider two cases. The first case corresponds to Dp-brane that wraps the v direction as well and we denote this Dp-brane as $(u, v, p - 1)$ that means that it is also extended in $p - 1$ spatial dimensions including some dimensions from y^p. Since the metric obtained above corresponds to the massless geodesic moving at constant r it is natural to presume that the probe Dp-brane is located at some fixed x. We also presume that z^i coordinates are transverse to the worldvolume of Dp-brane. The second case corresponds to the probe Dp-branes that are not extended in v direction, but the u direction is along the worldvolume of the brane.

3.1 $(u, v, p - 1)$-branes

In this case we propose the following gauge fixing:

$$u = \sigma^0 \equiv t, v = \sigma^p, \sigma^a = y^a, a = 1, \ldots, p - 1.$$

(3.9)

Consequently the matrix A of eqn. (3.1) is given by:

$$A = \begin{pmatrix} -\mu^2 Z_i Z^i + \partial_0 Z_i \partial_0 Z^i + (\partial_0 X)^2 + \partial_0 Y^r \partial_0 Y_r & 0 & 1 \\ 0 & \delta_{ab} & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

(3.10)

with $r, s = p, \ldots, 5$ and $i = 1, 2$. Now looking at the form of the metric and dilaton in the pp wave limit we see that they are functions of z^i only and consequently the equations of motion for X and Y^r take the forms

$$-\partial_0 \left[e^{-\Phi} g_{XX} \partial_0 X \left(A^{-1} \right)_{00}^0 \sqrt{-\det A} \right] = 0,$$

(3.11)

Since $(A^{-1})_{00}^0 = 0$ we see that the equation of motion are obeyed for any X. The same also holds for Y^r since

$$\partial_0 \left[e^{-\Phi} g_{rr} \partial_0 Y^r \left(A^{-1} \right)_{00}^0 \sqrt{-\det A} \right] = 0.$$

(3.12)

We should also solve the equation of motion for U, V and Y^p. Since once again the metric does not depend on these variables we get

$$\partial_0 \left[\sqrt{-\det A} \right] = 0$$

(3.13)

that is again obeyed trivially. On the other hand the equations of motion for V and Z^i are obeyed automatically because of the vanishing $(A^{-1})_{00}^0$.

In summary, we see that for Dp-brane of the type $(u, v, p - 1)$ the equations of motion do not restrict possible form of these Dp-branes. Similar observations were made in [14] for Dp-branes in maximally supersymmetric pp-wave background.
Before we proceed to the more general ansatz we consider the possibility to have world volume modes that depend on v only. Consequently the matrix A takes the form

$$A = \begin{pmatrix} -\mu^2 Z_i Z^i & 0 & 1 \\ 0 & \delta_{ab} & 0 \\ 1 & 0 & g_{IJ} \partial_p X^I \partial_p X^J \end{pmatrix} \tag{3.14}$$

Then we get that the determinant is equal to

$$\det A = -\mu^2 Z_i Z^i (g_{IJ} \partial_p X^I \partial_p X^J) - 1 \tag{3.15}$$

where we have used the gauge fixing $v = \sigma_p$.

As usual, the equations of motion for X and Y^r take the form

$$\partial_v \left[g_{xy} \partial_v X \left(A^{-1} \right)_{xy} \sqrt{-\det A} \right] = 0 \,,
\partial_v \left[g_{rs} \partial_v Y^s \left(A^{-1} \right)_{vw} \sqrt{-\det A} \right] = 0 \,,$$

(3.16)

that can be solved with the ansatz $\partial_v X = \partial_v Y^s = 0$. On the other hand the equation of motion for Z^i is equal to

$$\frac{\mu^2 Z_i (\partial_v Z^i \partial_v Z_j)}{\sqrt{-\det A}} - \partial_v \left[\frac{\partial_v Z^i (\mu^2 Z^j Z_j)}{\sqrt{-\det A}} \right] = 0 \tag{3.17}$$

Let us propose the ansatz for Z^1 and Z^2 in the following form

$$Z^1 = R \cos(kv) \, , Z^2 = R \sin(kv) \tag{3.18}$$

that implies

$$\det A = -1 - \mu^2 k^2 R^4 \tag{3.19}$$

and the equation above takes the form

$$\frac{\mu^2 Z_i k^2 R^2}{\sqrt{-\det A}} - \partial^2 Z \frac{\mu^2 R^2}{\sqrt{-\det A}} = 0 \tag{3.20}$$

that implies that $k = 0$ and consequently $Z^1 = R \, , Z^2 = 0$. On the other hand let us presume that $Z^2 = 0$ (this solves the equation of motion for Z^2 but for $Z^1 = f(v)$.

Then $\det A$ is not a constant and we should check that the equations of motion for U and V are also obeyed. The equation of motion for U takes the form

$$\partial_v \left[(\mu^2 Z_1^2 - \mu^2 Z_1^2) \frac{1}{\sqrt{-\det A}} \right] = 0 \tag{3.21}$$
and hence it is again obeyed. On the other hand the equation of motion for V takes the form

$$
\partial_v \left[\frac{1}{\sqrt{-\det A}} \right] = 0
$$

(3.22)

that implies

$$
\sqrt{-\det A} = K,
$$

(3.23)

where K is a constant. Now from this equation we get the differential equation for Z^1 in the form

$$
Z_1 dZ_1 = \frac{\sqrt{K^2 - 1}}{\mu} dv
$$

(3.24)

that has the solution

$$
\frac{Z_1^2}{2} + C = \frac{\sqrt{K^2 - 1}}{\mu^2} v
$$

(3.25)

with some constant C. On the other hand the equation of motion for Z^1 in case of constant $\det A$ takes the form

$$
\mu^2 Z_1 (\partial_v Z_1)^2 - \mu^2 \partial_v^2 Z_1 (\partial_v Z_1)^2 - 2\mu^2 (\partial_v Z_1)^2 \partial_v^2 Z_1 = 0
$$

(3.26)

If we insert the ansatz given above we get

$$
\frac{\mu^2(K^2 - 1)}{Z} - 3\frac{\mu^2(K^2 - 1)^2}{Z^5} = 0
$$

(3.27)

and we see that the equation of motion is obeyed for $K = 1$ that also implies $\partial_v Z = 0$.

3.2 More general ansatz

In this section we generalize the solution given above to the case when some modes depend on u,v as well. Firstly we eliminate some world volume fields where the metric explicitly does not depend on them. More precisely, the equation of motion for X takes the form

$$
\partial_{\mu} \left[e^{-\Phi} g_{xx} \partial_{\nu} X \left(A^{-1} \right)^{\nu\mu} \sqrt{-\det A} \right] = 0
$$

(3.28)

that can be solved with $\partial_{\mu} X = 0$. At the same time we will solve the equation of motion for Y^r with the same ansatz. In summary, X and Y^r will be considered as constant. In order to simplify calculation further we will restrict in this paper to the study of the D1 and D3-probe in given background and we will study them separately.
3.3 \((u, v)\)-D1 brane

We will consider D1-brane that is extended in \(u, v\) directions. In this case the non-zero components of the matrix \(A\) takes the form

\[
A_{uu} = -\mu^2 Z_i Z_i + (\partial_u Z_i)^2, \quad A_{uv} = (\partial_v Z_i)^2, \\
A_{uv} = 1 + \partial_u Z_i \partial_v Z_i + \partial_u A_v + 2\mu u (\partial_u Z_i \partial_v Z_i - \partial_u Z_i \partial_v Z_i), \\
A_{vu} = 1 + \partial_v Z_i \partial_u Z_i - \partial_u A_v + 2\mu u (\partial_v Z_i \partial_u Z_i - \partial_v Z_i \partial_u Z_i)
\]

where we presume that all free fields on the world volume of D1-brane are constant.

We start to solve the equation of motion for \(U\) and \(V\). The equation of motion for \(U\) takes the form

\[
\partial_u \left[(\mu^2 Z_i Z_i (A^{-1})_{uu}) - 2 (A^{-1})_{vu} \right] \sqrt{-\det A} = 0.
\]

Similarly the equation of motion for \(V\) takes the form

\[
\partial_u \left[(A^{-1})_{uu} \sqrt{-\det A} \right] + \partial_v \left[(A^{-1})_{uv} \sqrt{-\det A} \right] = 0.
\]

then we get following equation of motion for \(Z_1\)

\[
-\mu^2 Z_1 (A^{-1})_{uu} \sqrt{-\det A} - \partial_u \left[\partial_v Z_1 (A^{-1})_{vu} \right] \sqrt{-\det A} = 0
\]

and clearly the same for \(Z_2\). Let us now propose the ansatz for \(Z_1\) and \(Z_2\) as follows

\[
Z_1 = R \cos(k(u + v)), \quad Z_2 = R \sin(k(u + v))
\]

Looking at the form of the equation given above we see that in case of nonzero \(A_v\), they take very complicated form thanks to the explicit time dependence of \(b_{12}\). For that reason we restrict to the case when \(\partial_u A_v = 0\). Then we get that \((A^{-1})_A = 0\). Explicitly

\[
A = \begin{pmatrix}
-\mu^2 R^2 + k^2 R^2 & 1 + k^2 R^2 \\
1 + k^2 R^2 & k^2 R^2
\end{pmatrix}
\]

and hence

\[
\det A = -1 - R^2 k^2 (2 + \mu^2 R^2)
\]

Since now \((A^{-1})_A, \det A, Z_i Z_i\) are constant it is easy to see that the equations of motion (3.30) and (3.31) are trivially satisfied. On the other hand the equation of motion for \(Z_i\) takes the form (using the fact that \(\partial_u Z_1 = -k R \sin(k(u + v)))

\[
\frac{Z_1}{\sqrt{-\det A}} (\mu^2 k^2 R^2 - 4k^2 + \mu^2 R^2 k^2) = 0
\]
This however implies that $k = 0$ and we get $Z^1 = R = \text{const}$ and $Z^2 = 0$.

As the next possibility we will consider the following ansatz for the Z^1 and Z^2

$$Z^1 = R \cos(k(u - v)), Z^2 = R \sin(k(u - v))$$

(3.37)

that implies following form of the matrix A

$$A = \begin{pmatrix}
-\mu^2 R^2 + R^2 k^2 & 1 - k^2 R^2 \\
1 - k^2 R^2 & k^2 R^2
\end{pmatrix}$$

(3.38)

and hence

$$\det A = -1 - k^2 R^2 (\mu^2 R^2 - 2).$$

(3.39)

Again, the nontrivial equation of motion corresponds to Z^1, Z^2 and takes the form (using the fact that $\partial_u Z^1 = -kR \sin(k(u - v)), \partial_v Z^1 = kR \sin(k(u - v))$)

$$\frac{2Zk^2}{\sqrt{-\det A}} k^2 (1 - \mu^2 R^2) = 0.$$ (3.40)

Now we see that the above equation has two solutions. One with $k = 0$, and other with arbitrary k but with $R = \mu^{-1}$.

3.4 $(u, v, 2)$-D3 brane

We now consider D3-brane where additional spatial components span y subspace. More precisely, we define the embedding of this D3-brane as

$$U = \sigma^0 = u, V = \sigma^3 = v, y^1 = \sigma^1, y^2 = \sigma^2.$$ (3.41)

Then the embedding coordinates are $X, Y^r, r = 3, 4, 5$ and $Z^i, i = 1, 2$. We also switch on the gauge field $A_{2,3}$ where, following results given in previous subsection, we take $A_v = 0$. Using $SO(2)$ symmetry in the subspace spanned by y^1, y^2 we will switch on the component A_1 only and we will presume that this field depends on u only. Again the equations of motion for X, Y^r will be solved with the ansatz X, Y^r are constant. As in the previous subsection we take the ansatz for Z^i modes as

$$Z^1 = R \cos(k(u + v)), Z^2 = R \sin(k(u + v))$$

(3.42)

We again get

$$A = \begin{pmatrix}
-\mu^2 R^2 + k^2 R^2 & \partial_u A_1 & 0 & 1 + k^2 R^2 \\
\partial_u A_1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 + k^2 R^2 & 0 & 0 & k^2 R^2
\end{pmatrix}$$

(3.43)

Then the determinant takes the form

$$\det A = -\mu^2 k^2 R^4 - 1 - 2k^2 R^2 \left(\partial_u A_1\right)^2 k^2 R^2,$$

(3.44)
Firstly we start to solve the equation of motion for A_μ. These equations take the form

$$
\partial_\mu \left[(A^{-1})^{\nu\mu}_A \sqrt{- \det A} \right] = 0
$$

We see that all equations of motion are solved with where A is constant. This implies that

$$
\partial_\alpha A_1 \equiv n = \text{const}.
$$

Generally, n could take any real value however it is well known that it is proportional to the number of fundamental strings.

Now we have that the matrix A and its inverse is constant. This implies that we could proceed as in the previous section. However we should check that the term containing the target space b_{12} in the equations of motion vanishes. In fact, this term is

$$
\partial_\mu \left[b_{12} \partial_\nu \left((A^{-1})^{\nu\mu}_A \sqrt{- \det A} \right) \right]
$$

that for Z that depends on u,v gives

$$
\begin{align*}
\partial_u \left[b_{12} \partial_u \left((A^{-1})^{uu}_A \sqrt{- \det A} \right) + \partial_v \left((A^{-1})^{uv}_A \sqrt{- \det A} \right) \right] + \\
\partial_v \left[b_{12} \partial_v \left((A^{-1})^{uv}_A \sqrt{- \det A} \right) + \partial_v \left((A^{-1})^{vu}_A \sqrt{- \det A} \right) \right] = 0
\end{align*}
$$

(3.48)

using the fact that $(A^{-1})^{uu}_A = (A^{-1})^{uv}_A = (A^{-1})^{vu}_A = 0$. Then we can really proceed as in the previous subsection and the equation of motion for Z_1 gives

$$
\frac{Z_1}{\sqrt{- \det A}} \left(-2 + n^2 + \mu^2 R^2 \right) k^2 = 0.
$$

(3.49)

so that we once again obtain the condition $k = 0$.

3.5 (u, \emptyset, p) brane

Now let us discuss the case, when the D_p-branes don’t wrap the v-direction. We call them (u, \emptyset, p) branes. In this case, the static gauge has the form

$$
U = \sigma^0 \equiv u, \sigma^a = y^a, a = 1, \ldots, p
$$

and hence the embedding coordinates are

$$
V, X, Z^i, Y^r, r = p + 1, \ldots, 5.
$$

(3.51)

In this subsection we will consider more general case when $p = 1$ and $p = 3$. Then the non-zero components of the matrix A are

$$
A_{uu} = -\mu^2 Z_i Z^i + 2 \partial_u V + (\partial_u X)^2 + (\partial_u Y^r)^2 + (\partial_u Y^i), A_{ab} = \delta_{ab}.
$$

(3.52)
Consequently we get
\[
\det \mathbf{A} = -\mu^2 Z_i Z_i + 2 \partial_u V + (\partial_u X)^2 + (\partial_u Z^i)^2 + (\partial_u Y^i)^2 \quad (3.53)
\]
Again we start to solve the equation of motion. For \(U = \sigma^0 \) we get
\[
\partial_u \left[\frac{(-\mu^2 Z_i Z_i + \partial_u V)}{\sqrt{\mu^2 Z_i Z_i - 2 \partial_u V - (\partial_u X)^2 - \partial_u Z^i \partial_u Z_i - \partial_u Y^i \partial_u Y_i}} \right] = 0 . \quad (3.54)
\]
The equations of motion for \(Y^a = \sigma^a \) imply
\[
\partial_u \left[g_{ab} \left(\mathbf{A}^{-1} \right)^{bu} \sqrt{-\det \mathbf{A}} \right] = 0 \quad (3.55)
\]
using the fact that all modes depend on \(t \) only. The equation of motion for \(X \) imply
\[
\partial_u \left[\frac{\partial_u X}{\sqrt{\mu^2 Z_i Z_i - 2 \partial_u V - (\partial_u X)^2 - \partial_u Z^i \partial_u Z_i - \partial_u Y^i \partial_u Y_i}} \right] = 0 \quad (3.56)
\]
which in turn specify the conserved momentum \(P_x \):
\[
\partial_u X \sqrt{\mu^2 Z_i Z_i - 2 \partial_u V - (\partial_u X)^2 - \partial_u Z^i \partial_u Z_i - \partial_u Y^i \partial_u Y_i} = P_x . \quad (3.57)
\]
In the same way we obtain conserved momenta \(P_r \)
\[
\partial_u Y^r \sqrt{\mu^2 Z_i Z_i - 2 \partial_u V - (\partial_u X)^2 - \partial_u Z^i \partial_u Z_i - \partial_u Y^i \partial_u Y_i} = P_r \quad (3.58)
\]
Finally, the equation of motion for \(V \) is equal to
\[
\partial_u \left[\frac{1}{\sqrt{-\det \mathbf{A}}} \right] = 0 . \quad (3.59)
\]
In other words we get that \(\det \mathbf{A} = \text{const} \). This also implies \(\partial_u V = \text{const} \) and hence the equation (3.54) again implies \(Z^i Z_i = \text{const} \). Finally, the equation of motion for \(Z_i \) is equal to
\[
\partial_u^2 Z^i + \mu^2 Z^2_i = 0 \quad (3.60)
\]
that has again the solution
\[
Z^1 = R_0 \sin \mu u \ , \ Z^2 = R_0 \cos \mu u \ . \quad (3.61)
\]
In summary, we obtain following dependence of the worldvolume fields
\[
X = V_x u + X_0 \ , \ V = V_v u + V_0 \ , \ Y^r = V_r u + Y^r_0 \ . \quad (3.62)
\]
together with the time dependence of \(Z^i \) given in (3.61).
4. D-brane motion

In this section, we would like to analyze the motion of probe Dq-brane in the presence of another (or a stack of) Dp-brane in this particular pp-wave background. We assume that the dimension of the background brane is always greater than that of the probe. This is a good approximation when the mass of the higher dimensional brane is bigger than the mass of the lower dimensional brane. To perform the analysis we start by writing down the classical solution of a Dp-brane in pp-wave background, and try to probe a Dq-brane. The metric, dilaton and the NS-NS 3-form flux of such a configuration is given by [21]

$$ ds^2 = H_p^{-\frac{4}{p}}(x^a) \left[2dudv - \mu^2 \sum_{i=1}^2 z_i^2 du^2 + \sum_{a=1}^{p-1} (dx^a)^2 \right] + H_p^{\frac{1}{p}}(x^a) \left[\sum_{i=1}^2 (dz^i)^2 + \sum_{a=p+3}^8 (dx^a)^2 \right], $$

$$ B_{12} = 2\mu u, \quad A^{(p+1)} = \pm \left(\frac{1}{H(x^a)} - 1 \right) du \wedge dv \wedge dx^1 \wedge dx^2 \wedge \ldots \wedge dx^{p-1} $$

$$ e^{2\phi} = H_p(x^a)^{\frac{3-p}{p}}, \quad H_p = 1 + Ng_s \left(\frac{l_s}{r} \right)^{7-p} \equiv 1 + \frac{\lambda_p}{r^{7-p}}. \quad (4.1) $$

where

$$ r^2 = \sum_{i=1}^2 z_i z_i \sum_{a=p+3}^8 x_a x_a \quad (4.2) $$

The harmonic function written in the last line for $p = 7$, is given by

$$ H_7 = 1 - Ng_s \log(r/l). \quad (4.3) $$

We will study the motion of the probe Dq-brane, where $q < p, p - q = 2k; k = 0, 1, 2$ in this background. For simplicity we consider the case when all the gauge fields are set to zero. In general the action for such a Dq-brane probe is given by

$$ S = -\tau_q \int d^{q+1}\sigma e^{-\Phi} \sqrt{-\det A} + S_{WZ} \quad (4.4) $$

where

$$ A_{\mu\nu} = g_{\mu\nu} + F_{\mu\nu}, \gamma_{\mu\nu} = g_{MN}\partial_\mu X^M \partial_\nu X^N, M, N = 0, \ldots, 9, F_{\mu\nu} = b_{MN}\partial_\mu X^M \partial_\nu X^N. \quad (4.5) $$

We propose the static gauge in the form

$$ \sigma^0 = u, \sigma^q = v, \sigma^i = x^i, i = 1, \ldots, q - 1 \quad (4.6) $$

and try to see whether they solve the appropriate equations of motion. Generally we presume that the world volume fields depend on u, v only. Then the non-zero
components of the matrix A are
\[
A_{00} = -H_p^{-1/2} \left(\mu^2 z_i z^i + \partial_0 Y^r \partial_0 Y_r \right) + H_1^{1/2} \left(\partial_0 Z_i \partial_0 Z^i + \partial_0 X^a \partial_0 X_a \right),
\]
\[
A_{0q} = H^{-1/2} + H^{-1/2} \partial_0 Y^r \partial_q Y_r + H^{1/2} \left(\partial_q Z_i \partial_0 Z_i + \partial_0 X^a \partial_q X_a \right) + \mu U \left(\partial_0 Z^1 \partial_q Z^2 - \partial_0 Z^2 \partial_q Z^1 \right),
\]
\[
A_{q0} = H^{-1/2} + H^{-1/2} \partial_q Y^r \partial_0 Y_r + H^{1/2} \left(\partial_q Z_i \partial_0 Z_i + \partial_0 X^a \partial_q X_a \right) - \mu U \left(\partial_0 Z^1 \partial_q Z^2 - \partial_0 Z^2 \partial_q Z^1 \right),
\]
\[
A_{ij} = g_{ij} = H^{-1/2} \delta_{ij},
\]
\[
A_{qq} = H^{-1/2} \partial_q Y^r \partial_q Y_r + H^{1/2} \left(\partial_q Z_i \partial_q Z_i + \partial_q X^a \partial_q X_a \right),
\]
(4.7)

where $r, s = q, \ldots, p - 1$. Since the metric does not depend on Y^r then the equations of motion for them take the form
\[
\partial_\mu \left[e^{-\Phi} g_{rs} \partial_\nu Y^r \left(A^{-1} \right)^{\nu\mu} \sqrt{-\det A} \right] = 0
\]
(4.8)

that can be solved with $Y^r = \text{const}$. The problem seems rather complicated thanks to the dependence of the metric on x, z. Since we are interested in the properties of Dq-brane as a probe it is natural to restrict to the dependence of all modes on σ^0 only. In this case the non-zero components of the matrix A are
\[
A_{00} = -H_p^{1/2} \left(\mu^2 z_i z^i + \partial_0 Y^r \partial_0 Y_r \right) + H_1^{1/2} \left(\partial_0 Z_i \partial_0 Z^i + \partial_0 X^a \partial_0 X_a \right),
\]
\[
A_{0q} = H^{-1/2} = A_{q0}, A_{ij} = H^{-1/2} \delta_{ij}, A_{qq} = 0
\]
(4.9)

this however implies that $\det A = -H_p^{q - 1}$. Let us start to solve the equation of motion for U that is give by
\[
\partial_0 \left[H_p^{\mu - q - 4} \right] = 0.
\]
(4.10)

This result is trivially satisfied for $p - q = 4$ while for $p - q = 2$ this is obeyed for $\partial_0 X^a = \partial_0 Z^i = 0$.

As the next step we consider the equation of motion for V that for our ansatz takes the form
\[
\partial_0 \left[e^{-\Phi} g_{UV} \left(A^{-1} \right)^{00} \sqrt{-\det A} \right] = 0
\]
(4.11)

that are satisfied since $(A^{-1})^{00} = 0$. Finally, the equation of motion for X^a take the form
\[
\partial_{X^a} e^{-\Phi} \sqrt{-\det A} + \frac{1}{2} \partial_{X^a} g_{MN} \partial_\mu X^M \partial_\nu X^N \left(A^{-1} \right)^{\nu\mu} \sqrt{-\det A} = \lambda_p (p - 7) \frac{X^a}{R^{p - q - 8}} H_p^{\mu - q - 8} (p + q - 2) = 0
\]
(4.12)
using the fact that $(A^{-1})^{00} = 0$ and also

$$
\partial_{X^a} g_{MN} \partial_{\mu} X^M \partial_{\nu} X^N \left(A^{-1} \right)^{\nu\mu} = \frac{1}{2H^{3/2}} \frac{\delta H_p}{\delta X^a} (q+1) \frac{H_p^{q+3}}{\sqrt{-\det A}},
$$

$$
\partial_{X^a} e^{-\Phi} = \frac{p-3}{4} H_p^{q+2} \frac{\delta H_p}{\delta X^a},
$$

(4.13)

It is clear that the same equation of motion holds for Z^i as well thanks to the fact that the variation $\frac{\delta g_{UV}}{\delta Z^i}$ is proportional to $(A^{-1})^{00}$ in the equation of motion and this vanishes. Let us then concentrate on the equation above and discuss its properties for various values of p and q and for limits $X^a \to 0$ or $X^a \to \infty$. Generally, for $X^a \to 0$ that (for $Z^i = 0, X^b = 0, b \neq a$) we have

$$
\lim_{X^a \to 0} \frac{X^a}{R^9-p} H_p^{\frac{p-q+q}{4}} \sim \lim_{X^a \to 0} (X^a)^{\frac{1}{4}(p-q)(p-3) - q(p-7)}
$$

(4.14)

On the other hand the limit $X^a \to \infty$ gives

$$
\lim_{X^a \to \infty} \frac{X^a}{R^9-p} H_p^{\frac{p-q+q}{4}} \sim \lim_{X^a \to \infty} \frac{1}{(X^a)^{q-p}}
$$

(4.15)

that goes to zero for all $p < 7$. Let’s discuss the situations case by case.

- $p = 6$
 In this case $q = 2, 4$ since by presumption Dq-brane wraps u, v directions and, hence has to be at least two dimensional. For $q = 2, 4$ we get that (4.14) blows up so that the point $X^a = 0$ cannot be solution of the equation of motion. Then the only possibility is to consider the configuration where all $X^a \to \infty$. In other words Dq-brane cannot form a bound state with D6-brane. This result can be compared with the analysis performed in [23] where it was also shown that in the near horizon region of D6-brane the potential diverges.

- $p = 5$
 Now $q = 3, 1$. Then the exponent on X^a is equal to $\frac{-3+q}{2}$ and hence we again get the the expression (4.14) diverges for $q = 1$ while it is constant for $q = 3$. In any case D3-brane or D1-brane cannot approach D5-brane in this particular configuration.

- $p = 4$
 Now in the limit $X^a \to 0$, we have $(X^a)^{\frac{-4+3q}{4}}$, which vanishes for $q = 2$. Hence D2-brane can approach to D4-brane.

- $p = 3$
 In the limit $X^a \to 0$, one has $(X^a)^q$, which for $q = 1$ goes to zero and hence the D1-brane can approach the D3-brane.
As the final example we will study the probe Dp-brane in the background of Dp-brane in the NS5-brane pp wave. In this case we should take the WZ term into account that takes the form

\[S_{WZ} = -\tau_p \int A^{(p+1)} = -q_p \tau_1 \int d^{p+1}\sigma \left(\frac{1}{H_p} - 1 \right), \tag{4.16} \]

where \(q_p \) takes values \(\pm 1 \) according to the case whether Dp-brane probe corresponds to Dp-brane or anti Dp-brane. The presence of this WZ term only changes the equations of motion for \(X^a \) and \(Z^i \) and we get

\[\lambda_p (p - 7) \frac{X^a}{R^{9-p} H_p^2} (2p - 2) - \lambda_p (p - 7) \frac{q_p X^a}{R^{9-p} H_p^2} = \lambda_p (p - 7) \frac{X^a}{R^{9-p} H_p^2} (2p - 2 - q_p) = 0 \tag{4.17} \]

Then for \(X^a \rightarrow 0 \) the upper expression is proportional to \((X^a)^{6-p} \) that goes to zero for \(p < 6 \) and hence the only solution of the equation of motion corresponds to \(X^a = Z^i = 0 \).

4.1 Alternative embedding

In this section we mention a possibility of an alternative embedding of the probe Dq-brane and examine the motion of the probe brane described in the previous section. Once again, we start with the action (4.12). However, we propose the static gauge in the following form

\[
U = \sigma^0 + \sigma^q, \quad V = \sigma^0 - \sigma^q, \quad \sigma^i = X^i, \quad i = 1, \ldots, q - 1
\tag{4.18}
\]

and try to see whether they solve the appropriate equations of motion. We will also presume that the world volume fields depend on \(\sigma^0 \) only. Then the matrix \(A \) takes the form

\[
A_{00} = -H_p^{-1/2} \left(\mu^2 Z_i Z^i + 2 + \partial_0 Y^r \partial_0 Y_r \right) + H_p^{1/2} \left((\partial_0 Z)^2 + (\partial_0 X^a)^2 \right),
A_{0q} = A_{q0} = -H_p^{-1/2} \mu^2 Z_i Z^i, \quad A_{ij} = H_p^{-1/2} \delta_{ij},
A_{qq} = -H_p^{-1/2} \mu^2 Z_i Z^i - 2H_p^{-1/2},
\tag{4.19}
\]

so that the determinant is equal to

\[
\det A = -H_p^{-(q+1)/2} \left[4 + (\mu^2 Z_i Z^i + 2)((\partial_0 Y)^2 + H_p (\partial_0 X^a)^2 + H_p (\partial_0 Z)^2) \right], \tag{4.20}
\]

We again start with the equation of motion for \(U \) that now takes the form

\[
-4\partial_0 \left[\frac{H_p^{(p-q-4)/4}(\mu^2 Z_i Z^i + 2)}{\sqrt{4 + (\mu^2 Z_i Z^i + 2)((\partial_0 Y)^2 + H_p (\partial_0 X^a)^2 + H_p (\partial_0 Z)^2)}} \right] = 0 \tag{4.21}
\]
This equation has the form of the energy conservation equation and in fact it can be interpreted as a conservation of the world volume energy [24]. We will use this equation later. The equation of motion for V takes the form

$$\partial_0 \left[\frac{H_p^{(p-q-4)/4}}{\sqrt{4 + (\mu^2 Z_i Z^i + 2)((\partial_0 Y^r)^2 + H_p (\partial_0 X^a)^2 + H_p (\partial_0 Z^i)^2)}} \right] = 0$$

(4.22)

Now comparing the above two equations we get the condition

$$\partial_0 [\mu^2 Z_i Z^i + 2] = 0.$$

(4.23)

To find the solution of the above differential equation, let us consider the equation of motion for Z^i. In this case the situation is more complicated since we have dilaton and metric component Z^i dependent. However since the variation of g_{uu} with respect to Z^i contains a linear term Z^i we will solve the equation of motion for Z^i in terms of $Z^i = 0$ that is clearly solution of the equation of motion.

Let us now consider the equation of motion for Y^r that takes the form

$$\partial_0 \left[e^{-\theta} g_{rs} \partial_0 Y^r \left(A^{-1} \right)^{00} \sqrt{-\det A} \right] = 0$$

(4.24)

The solution of this equation of motion is given by constant expression under the right bracket that corresponds to the constant momenta conjugate to Y^r. If we could in principle express $\partial_0 Y^r$ with this momenta and insert it to square root we will consider the simpler case when $P_r = 0$ in order to not to complicate the expressions further.

Now we come to the analysis of the dynamics of the modes X^a. Using the manifest $SO(9-p)$ invariance of the space \mathbb{R}^{9-p} transverse to the background Dp-brane we can restrict to study of the dynamics in the two dimensional plane, say x^7, x^8 where we introduce coordinates

$$X^7 = R \cos \theta, X^8 = R \sin \theta.$$

(4.25)

Now we could again in principle solve the equation of motion for R, θ directly, however we rather use the equation of motion for U that has the form of the equation of the conservation of the energy. In other word, this equation implies

$$\frac{H_p^{(p-q-4)/4}}{\sqrt{4 + 2(H_p (\dot{R}^2 + \dot{R}^2 \theta^2))}} = \frac{E}{\tau_q},$$

(4.26)

where $\dot{\ldots} = \partial_0 (\ldots)$. Again, since the action does not depend explicitly on θ it turns out that the momentum conjugate to P_θ is a constant. For simplicity we restrict to the case of $P_\theta = 0$. Now the equation above implies

$$\frac{\dot{R}^2}{2} + H_p^{-1} - \frac{\tau_q^2}{4E^2} H_p^{p-q-4/2} = 0$$

(4.27)
that corresponds to the motion of the particle with zero energy in the potential of the form

\[V(R, E) = H_p^{-1} - \frac{\tau_q^2}{4E^2} H_p^{\frac{p-q-4}{2}-1}. \] (4.28)

Now let us try to solve the above equation. However, we can see that solving the equation above in full generality is very hard. What we can do of course is to take the following two simple possibilities. \(q = p - 2 \Rightarrow p - q = 2 \) or \(q = p - 4 \Rightarrow p - q = 4 \) (the BPS case). In the second case the differential equation above takes very simple form

\[dRR^{(p-7)/2} = \pm \left(\sqrt{\frac{\tau_q^2}{2E^2}} - 2\sqrt{\lambda_p} \right) d\sigma^0, \] (4.29)

where we have taken the near horizon approximation where \(\frac{\lambda_p}{R^{p-7}} \gg 1 \). Now the equation (4.29) can be easily solved with the following (for \(p \neq 5 \))

\[R^{\frac{p-5}{2}} = \frac{p - 5}{2} \left(\sqrt{\lambda_p} \sqrt{\frac{\tau_q^2}{2E^2}} - 2 \right) \sigma^0 + C_0 \] (4.30)

From this result we see that for \(p = 6 \), the D2-brane cannot reach the worldvolume of D6-brane in the same way as in flat space time. For \(p = 5 \), however, the equation above has the solution

\[R = R_0 \exp \left(- \left(\sqrt{\lambda_p} \sqrt{\frac{\tau_q^2}{2E^2}} - 2 \right) \sigma^0 \right), \] (4.31)

where we have chosen the \(-\) sign in the exponential function to find solution that describes D1-brane that approaches D5-brane. Finally, we cannot consider \(p < 5 \) in this case since we then have \(q < 1 \) however we have presumed that Dq-brane is two dimensional at least.

Let us now consider the first case when \(p - q = 2 \). Then the equation (4.27) implies following bound on \(R \)

\[R^{7-p} > \frac{\lambda_p}{\frac{\tau_q^2}{4E^2} - 1}. \] (4.32)

In other words the D(p-2)-brane that approaches Dp-brane from \(r = \infty \) can reach the minimal distance \(R^{7-p}_{\text{min}} = \frac{\lambda_p}{\frac{\tau_q^2}{4E^2} - 1} \). In other words Dq-brane that moves only radially cannot reach the world volume of Dp-brane.

5. Conclusion

In this paper we have discussed the dynamics of the Dp-branes in the NS5-near horizon pp-wave background. We consider various embedding of the D-branes in this
background to understand the relevant physics out of it. We consider the longitudinal and the transversal branes and study their dynamics. We observe that for the branes which wrap both u, v directions, the equations of motion derived from the DBI action does not restrict the possible form of the D-branes. We further analyze the properties of the solutions by turning on additional worldvolume gauge fields. Finally we study the motion of probe D_q-brane in the presence of source D_p-branes in this plane wave background. By assuming that the background branes are heavier than the probe, we solve the equations of motion derived from the DBI action of such probe. Once again we have begin with the assumption that the worldvolume fields depend on both u and v. We explain that how the gauge fixing plays a crucial role in the study of the brane motion. By taking various examples, we have also shown the interesting trajectory of the probe branes falling into source branes in the pp-wave background of the linear dilaton geometry. In a particular gauge fixing, we solve the time dependent equation of motion of the radial component, when the probe and the background branes are very close to each other. We find out in particular exponential solution of the radial mode, when the D1-brane approach the D5-branes in the pp-wave background. For $p − q = 2$, we find that there is a minimum distance beyond which the D_q-brane, which moves only radially, can't fall into the D_p-branes. One could possibly study some properties of the branes by using other worldsheet techniques.

Acknowledgement:

KLP would like to thank C. Becchi and C. Imbimbo for encouragement. The work of JK was supported in part by the Czech Ministry of Education under Contract No. MSM 0021622409, by INFN, by the MIUR-COFIN contract 2003-023852, by the EU contracts MRTN-CT-2004-503369 and MRTN-CT-2004-512194, by the INTAS contract 03-516346 and by the NATO grant PST.CLG.978785. The work of RRN was supported by INFN. The work KLP was supported partially by PRIN 2004 - “Studi perturbativi e non perturbativi in teorie quantistiche dei campi per le interazioni fondamentali”.

References

[1] A. Sen, “Rolling tachyon,” JHEP 0204, 048 (2002) [arXiv:hep-th/0203211].

[2] A. Sen, “Tachyon matter,” JHEP 0207, 065 (2002) [arXiv:hep-th/0203265].

[3] A. Sen, “Field theory of tachyon matter,” Mod. Phys. Lett. A 17, 1797 (2002) [arXiv:hep-th/0204143].

[4] A. Sen, “Supersymmetric world-volume action for non-BPS D-branes,” JHEP 9910, 008 (1999) [arXiv:hep-th/9909062].

[5] M. R. Garousi, “Tachyon couplings on non-BPS D-branes and Dirac-Born-Infeld action,” Nucl. Phys. B 584, 284 (2000) [arXiv:hep-th/0003122].
[6] E. A. Bergshoeff, M. de Roo, T. C. de Wit, E. Eyras and S. Panda, “T-duality and actions for non-BPS D-branes,” JHEP 0005, 009 (2000) [arXiv:hep-th/0003221].

[7] J. Kluson, “Proposal for non-BPS D-brane action,” Phys. Rev. D 62, 126003 (2000) [arXiv:hep-th/0004106].

[8] D. Kutasov, “D-brane dynamics near NS5-branes,” arXiv:hep-th/0405058.

[9] M. Blau, J. Figueroa-O’Farrill, C. Hull and G. Papadopoulos, “A new maximally supersymmetric background of IIB superstring theory,” JHEP 0201, 047 (2002) [arXiv:hep-th/0110242].

[10] D. Berenstein, J. M. Maldacena and H. Nastase, “Strings in flat space and pp waves from $N = 4$ super Yang Mills,” JHEP 0204, 013 (2002) [arXiv:hep-th/0202021].

[11] M. Billo and I. Pesando, “Boundary states for GS superstrings in an Hpp wave background,” Phys. Lett. B 536, 121 (2002) [arXiv:hep-th/0203028].

[12] A. Dabholkar and S. Parvizi, “Dp branes in pp-wave background,” Nucl. Phys. B 641, 223 (2002) [arXiv:hep-th/0203231].

[13] A. Kumar, R. R. Nayak and S. Siwach, “D-brane solutions in pp-wave background,” Phys. Lett. B 541, 183 (2002) [arXiv:hep-th/0204025].

[14] K. Skenderis and M. Taylor, “Branes in AdS and pp-wave spacetimes,” JHEP 0206 (2002) 025 [arXiv:hep-th/0204054].

[15] P. Bain, P. Meessen and M. Zamaklar, “Supergravity solutions for D-branes in Hpp-wave backgrounds,” Class. Quant. Grav. 20 (2003) 913 [arXiv:hep-th/0205106].

[16] P. Bain, K. Peeters and M. Zamaklar, “D-branes in a plane wave from covariant open strings,” Phys. Rev. D 67, 066001 (2003) [arXiv:hep-th/0208038].

[17] A. Biswas, A. Kumar and K. L. Panigrahi, “$p - p'$ branes in pp-wave background,” Phys. Rev. D 66, 126002 (2002) [arXiv:hep-th/0208042].

[18] R. R. Nayak, “D-branes at angle in pp-wave background,” Phys. Rev. D 67, 086006 (2003) [arXiv:hep-th/0210230].

[19] G. Sarkissian and M. Zamaklar, JHEP 0403, 005 (2004) [arXiv:hep-th/0308174].

[20] V. E. Hubeny, M. Rangamani and E. P. Verlinde, “Penrose limits and non-local theories,” JHEP 0210 (2002) 020 [arXiv:hep-th/0205258].

[21] S. F. Hassan, R. R. Nayak and K. L. Panigrahi, “D-branes in the NS5 near-horizon pp-wave background,” [arXiv:hep-th/0312224].

[22] M. Blau, J. Figueroa-O’Farrill and G. Papadopoulos, “Penrose limits, supergravity and brane dynamics,” Class. Quant. Grav. 19, 4753 (2002) [arXiv:hep-th/0202111].
[23] C. P. Burgess, N. E. Grandi, F. Quevedo and R. Rabadan, “D-brane chemistry,” JHEP 0401, 067 (2004) [arXiv:hep-th/0310010].

[24] M. Aganagic, C. Popescu and J. H. Schwarz, “Gauge-invariant and gauge-fixed D-brane actions,” Nucl. Phys. B 495, 99 (1997) [arXiv:hep-th/9612080].