NEOGENE ‘HORN SHARKS’
HETERODONTUS (CHONDRICHTHYES: ELASMOBANCHII) FROM THE
SOUTHEASTERN PACIFIC AND THEIR PALEOENVIRONMENTAL
SIGNIFICANCE

DIEGO PARTARRIEU1,2
JAIME A. VILLAFÁÑA3
LUISA PINTO1
F. AMARO MOURGUES2
PABLO A. OYANADEL-URBINA4
MARCELO M. RIVADENEIRA4,5,6
JORGE D. CARRILLO-BRICEÑO7

1Departamento de Geología, Universidad de Chile, Plaza Ercilla 803, 8370450 Santiago, Chile.
2Terra Ignota Heritage and Geosciences Consulting, Domingo Toro Herrera 1451, 7750144 Santiago, Chile.
3Department of Paleontology, University of Vienna, Geozentrum, Althanstrasse 14, 1090 Vienna, Austria.
4Laboratorio de Paleobiología, Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Av. Bernardo Ossandón B77, 1781681 Coquimbo, Chile.
5Department of Biology, Universidad de La Serena, Av. Raúl Bitrán 1305, 1720256 La Serena, Chile.
6Paleontological Institute and Museum, University of Zurich, Karl-Schmid-Strasse 4, 8006 Zurich, Switzerland.

Submitted: May 9th, 2018 - Accepted: October 18th, 2018 - Published online: October 21st, 2018

To cite this article: Diego Partarrieu, Jaime A. Villafañá, Luisa Pinto, F. Amaro Mourgués, Pablo A. Oyanadel-Urbina, Marcelo M. Rivadeneira, and Jorge D. Carrillo-Briceño (2018). Neogene ‘horn sharks’ Heterodontus (Chondrichthyes: Elasmobanchii) from the Southeastern Pacific and their paleoenvironmental significance. Ameghiniana 55: 651–667.

To link to this article: http://dx.doi.org/10.5710/AMGH.19.10.2018.3202

Also appearing in this issue:

TURTLE DIVERSITY
Analysis reveal K–Pg mass extinction reducing turtle diversity in half in South America.

NEOGENE SHARKS
New materials from the Pliocene of Chile and the dissappearance of horn sharks from the SE Pacific at the Plio–Pleistocene faunal turnover.

MAMMAL TRACES
Bilateral asymmetry in the Middle Jurassic Ameghinichthus is compatible with babies riding on the back, as they do in some extant mammals.
NEOGENE ‘HORN SHARKS’ HETERODONTUS (CHONDРИЧТЫЕ: ELASMОBRANCHII) FROM THE SOUTHEASTERN PACIFIC AND THEIR PALEOENVIRONMENTAL SIGNIFICANCE

DIEGO PARTARRIEU¹,², JAIME A. VILLAFUÑA³, LUISA PINTO¹, F. AMARO MOURGUES², PABLO A. OYANADEL-URBINA⁴, MARCELO M. RIVADENEIRA⁴,⁵,⁶, AND JÓRG E D. CARRILLO-BRICEÑO⁷

¹Departamento de Geología, Universidad de Chile, Plaza Ercilla 803, 8370450 Santiago, Chile. departarrieu@gmail.com
²Terra Ignota Heritage and Geosciences Consulting, Domingo Toro Herrera 1451, 7750144 Santiago, Chile.
³Department of Paleontology, University of Vienna, Geozentrum, Althanstrasse 14, 1090 Vienna, Austria.
⁴Laboratorio de Paleobiología, Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Av. Bernardo Ossandón 877, 1781681 Coquimbo, Chile.
⁵Departamento de Biología Marina, Universidad Católica del Norte, Larrondo 1281, 1781421 Coquimbo, Chile.
⁶Paleontological Institute and Museum, University of Zurich, Karl-Schmid-Strasse 4, 8006 Zürich, Switzerland.
⁷Departamento de Geología, Universidad de Chile, Plaza Ercilla 803, 8370450 Santiago, Chile.

Abstract. Horn sharks (Elasmobranchii: Heterodontus Blainville) correspond to a genus of chondrichthyan fishes, mostly distributed in warm-temperate to tropical regions of the Pacific and Indian Oceans. The fossil record shows that, in contrast to its current distribution, horn sharks were widely distributed both in the eastern Pacific and western Atlantic during the Neogene, being subsequently extirpated from some of these areas. In this contribution, we describe new Heterodontus teeth from three Pliocene localities in the Coquimbo Region, in north-central Chile, and make an extensive revision of the fossil record of the genus in the Americas, in order to specify the timing of their extirpation in the southeastern Pacific and discuss the possible causes of this event. The new specimens described herein belong to a species with a Heterodontus francisci type dentition. Our analysis suggest that the removal of horn sharks occurred in the context of a general faunal turnover in the transition from Pliocene to Pleistocene, and that it was probably controlled by an interplay between the oceanographic, tectono-eustatic and ecological changes occurred in the region at that time.

Key words. Miocene. Pliocene. Pleistocene. America. Chile. Fossil. Elasmobranchs. Extirpation.

Resumen. ‘TIBURONES CORNUDOS’ HETERODONTUS (CHONDРИЧТЫЕ: ELASMОBRANCHII) NEÓGENOS DEL PACÍFICO SURORIENTAL Y SU SIGNIFICADO PALEOBIOAMBIENTAL. Los tiburones cornudos (Elasmobranchii: Heterodontus Blainville) conforman un género de peces condriticos, principalmente distribuidos en regiones templado-cálidas a tropicales de los océanos Pacífico e Índico. El registro fósil muestra que, en contraposición a su distribución actual, durante el Neógeno los tiburones cornudos se distribuyeron ampliamente tanto en el Pacífico oriental como en el Atlántico occidental, siendo posteriormente extirpados de algunas de estas áreas. En este trabajo, describimos nuevos dientes Heterodontus de tres localidades del Plioceno en la Región de Coquimbo, en el centro-norte de Chile, y realizamos una extensa revisión del registro fósil del género en las Américas, para precisar el momento en que se produjo su extirpación en el Pacífico surooriental y discutir las posibles causas de este acontecimiento. Los nuevos materiales aquí descritos pertenecen a una especie con dentición del tipo Heterodontus francisci. Nuestros análisis sugieren que la extinción de los tiburones cornudos se produjo en el contexto de una renovación general de la fauna en la transición del Plioceno al Pleistoceno, y que fue probablemente controlada por una interacción entre los cambios oceanográficos, tectono-eustáticos y ecológicos ocurridos en la región durante aquellos tiempos.

Palabras clave. Mioceno. Plioceno. Pleistoceno. América. Chile. Fósil. Elasmobranquios. Extirpación.

Heterodontus Blainville, 1816 is a genus of elasmobranch fishes represented by nine living species that mainly inhabit warm-temperate to tropical regions of the Pacific and Indian oceans (Compagno et al., 2005; Nelson, 2006). Three of these species occur in the eastern Pacific, namely: Heterodon-tus francisci (Girard, 1854), Heterodontus mexicanus Taylor and Castro-Aguirre, 1972 and Heterodontus quoyi (Frémonville, 1840), with a distribution restricted to tropical and subtropical latitudes (Fig. 1), from the coasts of California to those of Ecuador and Peru (Compagno et al., 2005; Kaschner et al., 2016; Froese and Pauly, 2018; OBIS, 2018).

The fossil record suggests that horn sharks originated in the Jurassic and had a wide global distribution during the Mesozoic and Paleogene, being present in Europe, Central
Figure 1. Distribution of *Heterodontus* in the Americas, from Neogene to Recent. Fossil records have been compiled from specialized literature (references in Table 1), while current occurrence records have been taken from the UNESCO’s Ocean Biogeographic Information System database (OBIS, 2018). Note the existence of a large extirpation area, with no horn sharks occurrences at Recent times.
and Western Asia, northern Africa, South America, North America and Australia (Christiansen and Bonde, 2002; Fitzgerald, 2004; Kennedy et al., 2008; Cappetta, 2012). In the Americas, their fossil record ranges from the Cretaceous to the Pleistocene (e.g., Cappetta, 2012; Carrillo-Briceno et al., 2018: tables S3–S4). Their current distribution, however, is very limited (Fig. 1). The Neogene fossil record of the Americas, for instance, indicates a wider distribution that included also the Western Atlantic coast, as far as Argentina (e.g., Ameghino, 1906; Cione, 1978; Case, 1980; Laurito, 1999; Cione et al., 2000, 2005, 2011; Aguilera, 2010; Carrillo-Briceno et al., 2015, 2016, 2018). Likewise, for the eastern Pacific coast, the fossil record suggests that Heterodontus reached latitudes far south as 34°S during the Neogene, thus inhabiting waters off the coast of north and central Chile (e.g., Walsh, 2001; Suárez et al., 2003, 2006; Carrillo-Briceno et al., 2013; Suárez, 2015), where today it is absent. This region is nowadays affected by the upwelling of cold waters, brought from the sub-Antarctic region by the Humboldt Current (Marchant et al., 2007; Montecino and Lange, 2009), which creates an environment that contrasts with the ecological preferences of horn sharks. Their ancient presence at mid-latitudes agrees well with the warmer water conditions suggested for this region during Miocene and Pliocene times (e.g., Ibaraki, 1997; Tsuchi, 2002; Dekens et al., 2007; Nielsen and Glodny, 2009; Le Roux, 2012). Therefore, the subsequent extirpation of Heterodontus from mid-latitudes in the southeastern Pacific is probably the consequence of deep paleoenvironmental changes and seems to be related to the oceanographic, tectonic and ecological changes that took place in that region during Plio–Pleistocene times. The reasons that explain the decline of horn sharks in the southeastern Pacific are possibly different from those for which they were extirpated from the western Atlantic, since these events occurred at different times and in dissimilar oceanographic and tectonic settings. In any case, to identify the controls that may have caused the extirpation of Heterodontus, it will be necessary to pinpoint the timing of its decline and disappearance in the fossil record.

In this contribution, we report and describe an abundant occurrence of horn shark’s fossil teeth collected from new localities in the Coquimbo Region (north-central Chile). We also analyze the Heterodontus fossil record in the Americas, reviewing the geographic and chronostratigraphic distribution of the source localities in order to discuss the paleobiogeographic evolution of the genus and the time and mode in which the extirpation of Heterodontus may have occurred.

MATERIALS AND METHODS

The specimens herein described were collected through sediment sampling at three fossiliferous sites—called ‘Lomas del Sauce’ (LdS), ‘Los Clarines’ (LCIV), and ‘Quebrada Camarones’ (QCT)—and subsequent sieving using meshes with 6, 3, and 2 mm openings. This allowed generating three rich collections of anterior and lateral teeth (89 from LdS, 46 from LCIV and 17 from QCT), most of which are complete and well-preserved. The specimens are housed at the Sala de Colecciones Biológicas of the Universidad Católica del Norte, Chile (SCBUCN).

Measurements and tooth terminology used in the text are illustrated in Figure 2. Taxonomic determination of the material were achieved by following the illustrated descriptions provided by Taylor (1972), Reif (1976), Herman et al.,

![Figure 2. Tooth measurements and terminology used in this work.](https://example.com/figure2.png)

1, anterior tooth, labial view; 2, anterior tooth, profile view; 3, lateral tooth, occlusal view; 4, lateral tooth, lingual view.
(1993) and Cappetta (2012), as well as through comparative analyses with fossil and recent specimens from the following collections: Muséum National d’Histoire Naturelle (MNHN collection, Paris); Paläontologisches Institut und Museum at the Universität Zürich (PIMUZ collection, Zurich); Naturhistorisches Museum Basel (BNHM collection, Basel); Centro de Investigaciones Antropológicas, Arqueológicas y Paleontológicas de la Universidad Nacional Experimental Francisco de Miranda (CIAAP–UNEFM collection, Coro) and René Kindlimann private collection with public access (RK collection, Uster).

Finally, an extensive data collection was made from the literature, in order to determine the chronostratigraphic and geographic distribution of the fossil records of *Heterodontus* in the Americas. Additionally, we collected information about current distributions and environmental preferences of horn sharks and other chondrichthians from global information systems (Kaschner et al., 2016; Froese and Pauly, 2018; OBIS, 2018). Sea surface temperatures (SST) in areas of occurrence of these taxa have been obtained by registering the mapping parameters provided by Kaschner et al. (2016) for each species; in particular, the information associated with the cells used for creating environmental envelope (see SST datasets in the Supplementary Online Material, 1–2). When available, improved versions of the distribution maps were used instead of the default computer-generated maps. The environmental data are derived from the United States National Centers for Environmental Prediction (NCEP) SST Climatology observations and from the Institut Pierre–Simon Laplace (IPSL) Climate model Special Report on Emissions Scenarios (SRES) A2 simulations, as explained in Kesner–Reyes et al. (2016). All this information served as input for analysis and discussion.

GEOLOGICAL SETTING

The collected material comes from three sites of the Neogene marine sediments of the Coquimbo Formation, in north–central Chile, and it is the first record of *Heterodontus* for this geological unit (Fig. 3). Both LdS and LCIV sites are placed in the city of Coquimbo, in front of La Herradura bay; while QCT site is located in the Tongoy bay area (Fig. 4).
Coquimbo

In the Coquimbo area (Fig. 4), the marine sediments include sandstones, siltstones, limestones, coquinas, and conglomerates. The whole set has been assigned to the Pliocene and Pleistocene on the basis of its fossil mollusk fauna (Herm, 1969; Emparan and Pineda, 2000). Different levels of marine terraces have been carved into these sediments. Both LdS (29° 59’ 42” S; 71° 20’ 02” W) and LCIV (29° 59’ 51” S; 71° 19’ 08” W) sites were excavated on the ‘Serena II’ terrace *sensu* Paskoff (1970), at about 60 m and 80 m above sea level, respectively (Fig. 5). This terrace is mostly composed by a succession of siltstones, sandstones and coquincaceous layers of Pliocene age (Herm, 1969; Paskoff, 1970; Emparan and Pineda, 2000). Locally, some facies of sandstones and coquincaceous conglomerates of Pleistocene age appear, whose fauna and taphonomic and sedimentological characteristics are remarkably different. They are regression sediments that are distributed in some high areas of the terrace, resting on the Pliocene series in erosional disconformity (Herm, 1969; Paskoff, 1970). Based on their litho- and biofacies, LdS can be entirely assigned to the Pliocene series, whereas in LCIV both Pliocene and Pleistocene series crop out (Fig. 5). At LdS, the Pliocene age is supported by the association of the gastropod *Chorus grandis*, the bivalve *Anadara chilensis* and the aquatic sloth *Thalassocnus carolomartini* in their fossiliferous

Figure 5. Stratigraphy of LdS and LCIV sites, in the Coquimbo Bay area.
layers (De Los Arcos et al., 2017). At LCIV, the association of the gastropods *Hermesipina mirabilis*, *Hermesipina philippi*, *Chorus doliaris*, and *Chorus covacevichi* suggest a Pliocene age for the basal unit (De Vries, 1997; De Vries and Vermeij, 1997; Guzmán et al., 2000; Nielsen, 2013). The upper member of LCIV is a succession of sand, limestones and coquina layers that overlie the Pliocene sediments with an erosional disconformity. Their mollusk fossil content includes the bivalves *Argopecten purpuratus*, *Cyclocardia compressa*, *Mesodesma donacium*, and *Mulinia edulis*, as well as the gastropods *Incatesella cingulata* and *Concholepas concholepas*. This favors a Pleistocene age for the upper member, since all these species are forms which appeared or acquired massive development in the region during that epoch (Herm, 1969; DeVries, 1995; Guzmán et al., 2000; Tsuchi, 2002).

Quebrada Camarones, Tongoy

In the Tongoy area (Fig. 4), the marine sediments appear as a succession of muds, sands, coquinas and gravel infilling an extensive paleobay surrounded by topographic highs to the west and to the east (Le Roux et al., 2006). The stratigraphic interval encompassed by the whole set is broad: while the basal layers date back to the early Miocene, the younger strata were deposited during the Pleistocene (Paskoff, 1970; Martínez-Pardo, 1979; Martínez-Pardo and Caro, 1980; Le Roux et al., 2006). As in Coquimbo, they form marine terraces that have been affected by fluvial erosion, thus resulting in different ravines where the stratigraphy is exposed. One of them is Quebrada Camarones, next to the town of Tongoy. QCT site (30° 19’ 14” S; 71° 26’ 32” W; Fig. 4) is located on the north bank, where a 20 m-thick sedimentary succession crops out on a slope (Fig. 6). The strata where *Heterodontus* materials come from, overlies coquinaeous layers that contain the gastropods *Concholepas kiieneri* and *Concholepas nodosa*, and underlies calcareous coquinaeous beds with the gastropods *Chorus grandis*, *Chorus giganteus*, and *C. doliaris*. Both assemblages support a Pliocene age for the source beds (De Vries, 1995, 1997; Nielsen, 2013).

SYSTEMATIC PALeONTOLOGY

Class CHONDRICTHYES Huxley, 1880

Subclass ELASMOBRANCHII Bonaparte, 1838

Order HETERODONTIFORMES Berg, 1937

Family HETERODONTIDAE Gray, 1851

Genus Heterodontus Blainville, 1816

Type species. *Squalus philippi* Schneider, 1801; original designation in Bloch and Schneider (1801). Recent.

?Heterodontus francisci (Girard, 1854)

Locality and age. Coquimbo (LdS, LCIV) and Tongoy (QCT), Pliocene.

Referred material. 22 anterior teeth (SCBUCN–6656 to SCBUCN–6661, and SCBUCN–6700 to SCBUCN–6703) and 130 lateral teeth (SCBUCN–6649 to SCBUCN–6655, SCBUCN–6687 to SCBUCN–6699, and SCBUCN–6704 to SCBUCN–6738).

Anterior teeth (Fig. 7.1–3). Anterior teeth are rather small,
and usually higher than wide. They range from 2.4 to 3.6 mm in height, and from 1.9 to 3.6 mm in width. Their crown is tricuspid, with a triangular and erect main cusp and two lateral cusplets, which are joined to the base of the main cusp and converge slightly towards it. The height of the main cusp is significantly greater than that of the lateral cusplets. The crown expands over the root both labially and lingually, forming a wide apron (Fig. 2). On the lingual face the apron rests over the root, reaching the root edge. On the labial face, it extends beyond the root with a rectilinear basal outline. In profile view, the lingual face of the crown is strongly convex, whereas the labial face shows a more rectilinear outline.

Figure 7. Heterodontus fossil teeth found in the Coquimbo Bay area, in basal and lingual view. 1, SCBUCN-6658; 2–3, SCBUCN-6660; 4, SCBUCN-6650; 5, SCBUCN-6655. This series partially shows the continuous morphological transition that exists from anterior to lateral teeth in Heterodontus. Their functional positions, within a Heterodontus jaw, are illustrated by means of the scheme on the left side. Scale bar = 1 mm.
The root is low and narrower than the crown. It is ‘V’-shaped in basal view, showing two well-developed branches, which join towards the lingual side (Fig. 7). It also differentiates a lingual protuberance, which is partially covered by the apron of the crown. In many specimens this protuberance is pierced by a foramen, in the middle of the lingual root face. This medio-lingual foramen seems to be connected by a duct with a central foramen, which is located in the middle of the basal face.

Lateral teeth (Fig. 7.4–5). The lateral teeth are larger than the anterior ones and, in contrast to the latter, they are wider than high. They range from 1.4 to 4 mm in height, and from 3.6 to 11.6 mm in width. They are molariform-like teeth, which show a mesio-distally elongated and labio-lingually compressed shape. The crown extends beyond the root at all points in occlusal view, and it is slightly curved, showing an oval to sigmoidal shape. In lingual and profile view, it is cambered to nearly triangular, because of the presence of a keel-like longitudinal crest on its occlusal face (Figs. 2, 7).

The crown is strongly textured by folding of the enamoid. The longitudinal crest, mesio-distally oriented, runs through the whole occlusal face in a roughly medial position, following the outline of the lingual edge of the crown. From this crest arise numerous short ridges, which intertwine and extend towards both the lingual and labial edges of the crown, thus defining an ornamentation of enamoid ridges and alveoli. Towards its lingual edge, the crown also bears a medio-lingual articular facet (Figs. 2, 7), which is elongated in the mesio-distal direction.

The root is low and narrower than the crown and has a flat to slightly concave basal face. It bears a lingual protuberance pierced by a foramen, which appears to be connected with other two foramina, which are sometimes observed in the labial face of the root.

Heterodonty. Morphological transition between anterior and lateral teeth is continuous, and can be clearly appreciated in both basal and lingual views. This progressive change is partially illustrated in Figure 7.

In lingual view, while the symphyseal tooth is symmetrical, in more distal anterior teeth the main cusp of the crown is bent distally (Fig. 7.1–3). In the latter, there is also a difference in the size of the lateral cusplets, being smaller the distal one, towards which the main cusp bends. For the first lateral tooth, both the main cusp and the mesial lateral cusplet have significantly reduced their heights, while the distal lateral cusplet is barely noticeable. So, at this point, the tooth is no longer tricuspid but it rather has a keel-like shape (Fig. 7.4). For lateral teeth in more distal positions, the keel acquires their characteristic triangular to cambered outline (Fig. 7.5).

In basal view, while the root of symphyseal teeth is symmetrical, with two wings of equal size arranged in ‘V’ form (Fig. 7.1), in the more distal anterior teeth the distal wing becomes smaller relative to the mesial wing (Fig. 7.2–3). For the first lateral teeth, the distal wing has become much reduced, and the rest of the base has broadened into a more rectangular form (Fig. 7.4). This trend continues in more distal lateral teeth, where the outline of the root gets to resemble that of the crown (Fig. 7.5).

DISCUSSION

Taphonomic comments on Heterodontus teeth

In contrast to all the teeth found in Pliocene outcrops from Tongoy and Coquimbo, many of the teeth found in the Pleistocene of LCIV exhibit intense abrasion, suggesting that they have undergone a significant reworking. Since the Pleistocene layers rest over fossiliferous Pliocene strata in erosional disconformity, these teeth could well have been remobilized from them. The addition of reworked Pliocene material within the Pleistocene layers can also be verified by: (1) the presence of fragments of the Pliocene coquina lithofacies, and (2) the inclusion of internal molds of mollusks, filled by the reddish brown silt which characterize the Pliocene lithofacies, rather than by the light brown to reddish gray sandy matrix of the Pleistocene units (compare in Figure 5). The intense dissolution observed in the calcareous mollusks from the Pliocene contrasts with the good preservation of the Pleistocene shells, indicating significant differences on the taphonomic processes that affected both fossil assemblages. Iron and manganese oxide mineralization, one of the most widespread features in Pliocene sediments and bioclasts, is also observed in the *Heterodontus* teeth found in Pleistocene layers. Altogether, these observations suggest an ex-situ condition for teeth found in Pleistocene sediments, so one should be cautious when making biostratigraphic and paleoecological interpretations of them.
Taxonomic inferences

Taylor (1972), Reif (1976) and Herman et al. (1993) have studied the dentition of current horn sharks, noticing some variances among species. According to Reif (1976) there are two types of dentition in the living species of *Heterodontus*: a) the ‘francisci-type’ of dentition, in which the molariform-like teeth are slender and have a strong longitudinal crest, as in *H. francisci* (e.g., Reif, 1976: fig. 2; Herman et al., 1993: pl. 23–30) or *H. quoyi* (e.g., Reif, 1976: fig. 4; Herman et al., 1993: pl. 31–38); and b) the ‘portusjacksoni-type’ of dentition, with very broad molariform-like teeth that no longer looks like a keel, as in the case of *Heterodontus portusjacksoni* (Meyer, 1793) (e.g., Reif, 1976: fig. 5; Herman et al., 1993: pl. 3–22). These two types are equivalent to the ‘carinate molar’ and the ‘rounded molar’ ones previously proposed by Taylor (1972). Although useful for morphological distinctions, it has not been proven that dentition types of Taylor (1972) and Reif (1976) have a systematic significance, so that the groups derived from these distinctions may not represent monophyletic clades within the genus.

In the case of the lateral teeth from Coquimbo and Tongoy, most of them are slender (Fig. 8) and show a well-developed longitudinal crest, as in teeth of the *francisci*-type. They usually show a rather blunt keel. Some authors (e.g., Reif, 1976) have proposed the strength of the keel as an additional criterion that would help to distinguish among different species with *francisci*-type dentition. This criterion, however, cannot be evaluated straightforwardly on isolated teeth, since the shape and prominence of the keel can vary widely depending on the ontogenetic stage of the individual and the functional position of the tooth in the jaw (e.g., Herman et al., 1993: pl. 23–38).

Regarding the anterior teeth, they are usually tricuspid in adults; except for *Heterodontus zebra* (Gray, 1831), whose anterior teeth can have 5 cusps; and *H. portusjacksoni*, whose anterior teeth can be both unicusp and tricuspid (Taylor, 1972; Reif, 1976; Herman et al., 1993). The anterior teeth described herein are all tricuspid. The lateral cusplets are poorly developed in some specimens, a feature that is observed in *H. francisci* and differentiates it from *H. quoyi* (Hermann et al., 1993), but not from other species such as *H. mexicanus* or even *H. japonicus* (e.g., Reif, 1976: fig. 25).

In summary, all the traits observed in both lateral and anterior teeth agree well with those observed in *Heterodontus francisci*, so their attribution to this species is possible. However, we have used an open nomenclature (e.g., Matthews, 1973; Bengtson, 1988; Sigovini et al., 2016), since it is not possible to discard the presence of some other species with francisci-type dentition among these specimens. According to Reif (1976), there are five species showing such a dentition: the three ‘American’ species (*H. francisci*, *H. quoyi*, and *H. mexicanus*), currently distributed along the eastern Pacific; and two other species, *Heterodontus galileus* (Günther, 1870) and *Heterodontus ramalheira* (Smith, 1949), currently confined to the southwestern Pacific and the Indian Ocean, respectively (Compagno et al., 2005). In addition to the current species, there are two Neogene extinct species that have been described in the Americas: *Heterodontus janefirdae* Case, 1980, from the early Miocene of North Carolina, USA, and *Heterodontus uscariensis* Laurito, 1999, from the late Miocene–Pliocene of Costa Rica. Future works dedicated to an exhaustive taxonomic review of the *Heterodontus* fossil.

![Figure 8. Relationship between breadth and length of lateral teeth from Coquimbo and Tongoy (regression equation, breadth= 0.34* length + 0.13, r²= 0.76). These measurements exclude fragmented teeth. Grow behavior of main crushing teeth of the Portusjacksoni-type (breadth= 0.51*length + 0.13, r²= 0.96) and the Francisci-type (breadth= 0.30*length + 0.10, r²= 0.89) is also shown, as reported by Reif (1976). Lines show the fit of linear regression. Coquimbo and Tongoy teeth show a better correlation with *H. francisci* than with *H. portusjacksoni*; however, an analysis of co-variance revealed that still exist significant differences with both of them (intercepts, P < 0.0001 in both cases).](image-url)
specimens reported for the Neogene basins of Western Atlantic (Fig. 1), could support the taxonomic validity of both species, or by the contrary, a relationship with the extant species on the Pacific side.

Late Cenozoic paleobiogeography of Heterodontus in eastern Pacific

The fossil record of *Heterodontus* in the Americas shows that horn sharks were widespread in the eastern Pacific and western Atlantic during the Neogene (Fig. 1; Tab. 1). This Neogene distribution, in both the eastern Pacific and western Atlantic, contrasts markedly with the current distribution of the genus in the Americas, now restricted to the Pacific coast from California to Ecuador and Peru (Compagno et al., 2005; Kaschner et al., 2016; Froese and Pauly, 2018; OBIS, 2018). In the southeastern Pacific region, one of the most striking differences between fossil and current records is observed: there is a large region of more than 2,500 km of coastline (between 10°S and 34°S) where no horn sharks have been observed at Recent times (Compagno et al., 2005; Lamilla and Bustamante, 2005; Kaschner et al., 2016; Froese and Pauly, 2018; OBIS, 2018); nevertheless, there have been several paleontological finds of *Heterodontus* in Neogene sediments of the same area (Fig. 1; Tab. 1). So far, the genus has already been reported from the early Miocene of Navidad (Suárez and Encinas, 2002; Suárez et al., 2006), the middle to late Miocene of Mejillones (Suárez et al., 2003) and Caldera (Walsh, 2001; Suárez et al., 2004; Gutstein et al., 2008; Villafañ, 2015), the late Miocene to early Pliocene of Pisco (Muizon and DeVries, 1985; Kindlimann, 1990), the Pliocene of Tongoy and Coquimbo (this work), and the late Pliocene of Horcón (Carrillo-Briceño et al., 2013). These records suggest that horn sharks inhabited the region during most of the Neogene and that, at some stage after; they have been extirpated from that area (Fig. 1).

For the Pliocene, teeth of *Heterodontus* have been found in California (Kanakoff, 1956; Fitch, 1966, 1968; Long, 1993b) and Ecuador (pers. obs. JDCB; ongoing research). In all the extirpation area, there have not been records of the genus from Pliocene strata so far. So it seems like the last occurrence of *Heterodontus* in this region is around the Pliocene/Pleistocene boundary. In any event, research on Pleistocene fossil fishes from the southeastern Pacific is still scarce, so that the absence of horn sharks teeth in the Pleistocene could well be a sampling effect, produced by a reduced sample size in the fossil record. Systematic sampling through complete sections, at different Pliocene and Pleistocene locations along the Chilean and Peruvian coast, could contribute to addressing the information gaps still existing in the fish fossil record, thereby improving our understanding of the *Heterodontus* extirpation pattern.

Environmental controls on Heterodontus extirpation

The extirpation of horn sharks from the southeastern Pacific occurred in the context of a general faunal turnover that has been widely recognized in the transition from Pliocene to Pleistocene in the region (e.g., Philippi, 1887; Möricke, 1896; Herm, 1969; Rivadeneira and Marquet, 2007; Kiel and Nielsen, 2010; Valenzuela-Toro et al., 2013; Villa-ñana and Rivadeneira, 2014; Rivadeneira and Nielsen, 2017). Oceanographic, tectono-eustatic and ecological factors have been mentioned as mutually non-exclusive drivers of this turnover:

Oceanographic changes. Temperature of sea water is known to affect physiological processes in ectothermic organisms, which may influence their movement and distribution patterns (e.g., Fry and Hart, 1948; Brett, 1971; Di Santo and Bennett, 2011; Johansen and Jones, 2011; Luongo and Lowe, 2018). In the case of horn sharks living in temperate regions, temperature seems to be a major limiting factor: in northeastern Pacific, *Heterodontus francisci* occurs off central California only in warmer-than-usual years, being otherwise restricted to the southern coast of California; while in southwestern Pacific, *H. portusjacksoni* is known to conduct long migrations of up to 800 km from the southeastern coast of Australia to Tasmania in summer, and back to the north in winter (Compagno, 2001).

In the study region, along most of the extirpation area, prevailing conditions are marked by the presence of cool Subantarctic water masses, brought by the effect of the Humboldt Current; one of the most prominent eastern boundary currents in the world’s oceans. There, dominant equatorward alongshore wind stress induces the upwelling of the cold waters nearshore (Marchant et al., 2007). These conditions contrast with the environmental preferences of horn sharks, which mainly occur in warm–temperate to tropical shallow waters on continental shelves (Compagno...
TABLE 1 – Heterodontus fossil record in the Americas and age of source beds.

ID	Region	Country	Locality	Age	Formation	Reference(s)
1	Pacific E	United States	California	late Miocene	Santa Margarita Sandstone	Domning (1978)
2	Pacific E	United States	Kern County, California	early Miocene	Jewett Sand Fm.	Mitchell and Tedford (1973)
3	Pacific E	United States	California	middle Miocene	Temblor Fm.	Mitchell (1965)
4	Pacific E	United States	LACMIP 59, Playa del Rey, California	Pleistocene	[unspecified]	Fitch (1966)
5	Pacific E	United States	San Pedro, California	Pleistocene	Timms Point Silt	Fitch (1968)
6	Pacific E	United States	Costa Mesa, California	late Pleistocene	Palos Verdes Sand Fm.	Long (1993b)
7	Pacific E	United States	Capistrano Beach Palisades, California	Pleistocene	San Pedro sand stratum	Kanakoff (1956)
8	Pacific E	Mexico	Baja California	middle Miocene	Playa Rosarito Fm./ San Ignacio Fm.	González-Rodríguez et al. (2013)
9	Pacific E	Mexico	Isla Cedros, Baja California	late Miocene	Almejas Fm.	Barnes (2008); González-Rodríguez et al. (2013)
10	Pacific E	Mexico	Loma del Tirabuzón, Baja California Sur	Pliocene	Tirabuzon Fm.	Applegate (1978); González-Rodríguez et al. (2013)
11	Pacific E	Peru	El Jahuay, Sacaco	late Miocene	Pisco Fm.	Muizon and DeVries (1985)
12	Pacific E	Peru	Sacaco	late Miocene to early Pliocene	Pisco Fm.	Kindlimann (1990)
13	Pacific E	Chile	Caleta Herradura de Mejillones	middle to late Miocene	La Portada Fm.	Sudírez et al. (2003)
14	Pacific E	Chile	Cerro Ballena Norte, Caldera	late Miocene	Bahía Inglesa Fm.	Villafañ (2015)
15	Pacific E	Chile	Las Arenas, Caldera	middle to late Miocene	Bahía Inglesa Fm.	Sudírez et al. (2004)
16	Pacific E	Chile	Mina Fosforita, Caldera	late Miocene	Bahía Inglesa Fm.	Walsh (2001); Gustein et al. (2008)
17	Pacific E	Chile	Lomas del Sauce, Coquimbo	Pliocene	Coquimbo Fm.	This work
18	Pacific E	Chile	Los Clarines, Coquimbo	Pliocene	Coquimbo Fm.	This work
19	Pacific E	Chile	Quebrada Camarones, Tongoy	Pliocene	Coquimbo Fm.	This work
20	Pacific E	Chile	Horcón-Maitencillo cliffs	late Pliocene	Horcón Fm.	Carrillo-Briceno et al. (2013)
21	Pacific E	Chile	La Boca, Navidad	early Miocene	Navidad Fm.	Suárez and Encinas (2002); Suárez et al. (2006)
22	Atlantic W	Argentina	Paraná river valley, Entre Rios province	middle to late Miocene	Paraná Fm.	Cione (1978); Cione et al. (2000, 2005, 2011); Arratia and Cione (1996)
23	Atlantic W	Argentina	Arroyo Ensenada valley, Entre Rios province	late Miocene	Paraná Fm.	Cione et al. (2005, 2011, 2012); Arratia and Cione (1996)
24	Atlantic W	Argentina	Trelew, Chubut province	late Oligocene to early Miocene	Gaiman Fm.	Cione (1978, 1986, 1988); Cione and Pandolfi (1984); Arratia and Cione (1996); Cione et al. (2011)
25	Atlantic W	Venezuela	Cerro Barrigón	late Miocene to early Pliocene	Cubagua Fm.	Águilera and Rodríguez de Aguilera (2001); Águilera (2010)
26	Atlantic W	Venezuela	Casa Cantaure, Paraguaná peninsula	early Miocene	Cantaure Fm.	Carrillo-Briceno et al. (2016)
27	Atlantic W	Panama	Piña, Colón province	late Miocene	Chagres Fm.	Carrillo-Briceno et al. (2015)
28	Atlantic W	Costa Rica	Alto Guayacán, Limón province	late Miocene to early Pliocene	Usca Fm.	Laurita (1999)
29	Atlantic W	United States	Craven County, North Carolina	early Miocene	Trent Fm.	Case (1980)
et al., 2005; Nelson, 2006). As seen in Figure 9, mean SST for each *Heterodontus* species varies from 19.2°C to 26.3°C. Most of the records of horn sharks worldwide have occurred in regions with SST between 17.9°C and 23.9°C, while for the eastern Pacific species only, they are concentrated between 19°C and 24.2°C (Kaschner et al., 2016; Froese and Pauly, 2018).

Although progressive cooling of the Humboldt Current System seems to have already begun by the end of Miocene (Covacevich and Frassinetti, 1990; Tsuchi, 2002; DeVries and Frassinetti, 2003; Le Roux, 2012), SST reconstructions show that conditions remained significantly warmer than today until about 3 Ma (Dekens et al., 2007; Dowsett and Robinson, 2009; Dowsett et al., 2013), collapsing afterwards towards colder temperatures. Warmer water conditions during Miocene and early Pliocene are also supported by the ecological preferences of microfossils (Ibaraki, 1990; Krebs et al., 1992; Padilla and Elgueta, 1992; Marchant et al., 2000; Tsuchi, 2002) and mollusk fauna (Herm, 1969; Covacevich and Frassinetti, 1980, 1983, 1986, 1990; Muizon and DeVries, 1985; DeVries and Frassinetti, 2003; Groves and Nielsen, 2003) found in sediments from Chile and Peru.

The subsequent collapse of sea water temperature occurred at times of major global climatic and oceanographic changes (Zachos et al., 2001; Ravelo et al., 2004; Wara et al., 2005; Lawrence et al., 2006), being coeval with a major expansion of upwelling cells in the region (Ibaraki, 1997) and with the onset of modern oceanic conditions during late Pliocene (Le Roux, 2012). This cooling is thought to have exercised a control on the decrease in the diversity of mollusks (Herm, 1969; Covacevich and Frassinetti, 1990; DeVries, 2001; Rivadeneira and Marquet, 2007) and vertebrates (Cione et al., 2007; Villafañ a and Rivadeneira, 2014, 2018; Amson et al., 2015) in the region.

Tectonic activity and sea-level changes. Many regions of the central Andes have experienced significant tectonic activity since late Pliocene (González et al., 2003; Le Roux et al., 2005, 2006, 2016; Clift and Hartley, 2007). In north-central Chile, facies changes observed in marine sediments reflects that the coastal area began to rise rapidly from 2.6 Ma, leading to the emergence of the platform during the Pleistocene (Le Roux et al., 2005, 2006, 2016). This emergence, probably intensified by the coeval global sea level drop linked to the growth of polar ice caps (De Boer et al., 2010), may have affected marine ecosystems by reducing living space on the platform, as proposed by Cione et al. (2007) for the extirpation of *Carcharias taurus*. Coastal uplift also imposed a physiographic uniformity (straight shorelines, small rivers, small embayments), which may have affected marine communities by destroying wave-sheltered environments and reducing habitat diversity (DeVries, 2001; Villafañ a and Rivadeneira, 2014).

Ecological feedbacks. The effects that ocean cooling and reduction of habitats had on the faunal diversity may have triggered ecological feedbacks, that affected the ability of horn sharks to successfully adapt to these changes. DeVries (2001) mentioned a mass extinction event that, between 3 and 2 Ma ago, removed invertebrate taxa with warm-water affinities, as well as fauna from quiet-water, mixed substrate environments. Gastropods and bivalves, prey for larger vertebrates, experienced extremely elevated extinction rates at the species level (Rivadeneira and Marquet 2007; Kiel and Nielsen 2010), suggesting that trophic cascades may have also triggered vertebrate extinction during the faunal turnover (Villafañ a and Rivadeneira, 2014). Then the loss of

Figure 9. Sea surface temperatures (SST) in areas of occurrence of *Heterodontus*, according to the records of Kaschner et al. (2016) in Aquamaps (datasets in Supplementary Online Material 2). For each taxa within the genus, the temperature range is shown for all the records (thin bars), for the records located between the 10th and 90th percentiles (medium bars), and for those located between the 20th and 80th percentiles (thick bars). Mean temperature for each species is also shown (vertical white line inside the thick bars). For *Heterodontus omanensis*, with no SST data available, a dashed line is used.

All species	W-Pacific & Indian species	Western Pacific and Chilean species	E-Pacific species	Eastern Pacific Ocean/Chile
H. francisci	H. mexicanus	H. quoyi	H. galeatus	H. ramalheira
H. portujectsoni	H. japonicus	H. zebra	H. omanensis	

![Figure 9](image-url)
potential prey for sharks might have produced additional environmental stress for *Heterodontus*.

Therefore, all these controls (*i.e.*, oceanographic, through sea-water cooling; tectono-eustatic, through the reduction of habitats; and ecological, through the removal of prey) could have affected the distribution patterns of horn sharks in that time. In a recent analysis, Villafañ a and Rivadeneira (2018) showed that both physiological tolerances (*e.g.*, salinity and thermal range) and life-history traits (*e.g.*, body size) were first-order modulators in the response of chondrichthys to different environmental changes in the region. Regarding their body size, regional extirpation was more pronounced in small-sized forms (*such as Heterodontus*), being these forms more prone to experience strong range contractions related to different environmental changes. On the other hand, thermal tolerance may have represented an ecophysiological limit for horn sharks, since they cannot regulate their body temperature as do other species of the family Lamnidae, such as *Carcharodon carcharias*, *Isurus oxyrinchus*, and *Lamna nasus*. The expansion of the southern latitudinal range of these three genera (*Carcharodon*, *Isurus*, and *Lamna*) during the Neogene to the Recent, versus the contraction experimented concurrently by *Heterodontus*, brings support to this idea (Villafañ a and Rivadeneira, 2018: tab. 3). However, it has also been found that *Heterodontus* can physiologically perform well in cooler conditions, being able to venture into deeper (and cooler) habitats for short periods of time (Luongo and Lowe, 2018). It appears thus that *Heterodontus* is able to live on those environments, either making incursions into higher latitudes or into cooler waters brought to low latitudes by the effect of currents. This capacity of horn sharks to perform in cooler waters would explain the fact that, despite their preference for tropical to subtropical environments, some of them have been found in areas with SST even lower than 17 °C (Fig. 9). Then it seems that cooling by itself would not account for the extirpation of *Heterodontus*, so favoring the idea that tectono-eustatic and ecological drivers must have played an important role as well. Additionally, changes on other oceanographic variables, such as environmental oxygenation or salinity, could have also affect the paleobiogeographic distribution of the genus. To evaluate this, further information on how these ecological variables evolved from Pliocene to Pleistocene in the region is needed.

CONCLUSIONS

The fossil record of *Heterodontus* in Chile and Peru (between 10°S and 34°S) suggests that horn sharks inhabited the southeastern Pacific during most of the Neogene, and that they were extirpated from the region around the Pliocene/Pleistocene boundary. Oceanographic changes, such as sea water cooling; reduction of habitats, by tectonic activity and sea-level changes; and ecological feedbacks, such as trophic cascades; might have played a key role in this fate. Assessing the relative influence of these and other environmental factors in the extirpation of horn sharks from the region will require new data and research. Futures studies should be aimed at: (i) completing the fossil record by systematic sampling in Pliocene and Pleistocene marine sediments of Chile and Peru, (ii) refining the chronostatigraphy of the source localities, and (iii) unveiling additional imprints of climatic and tectonic changes within the Pliocene and Pleistocene marine sediments of the Chilean coast.

ACKNOWLEDGMENTS

These studies have been funded by CONICYT (Comisió n Nacional de Investigación Científica y Tecnológica de Chile) through the CONICYT-PCHA/Doctorado Nacional/2015–21151267 Grant, and by the contributions from the research projects FONDECYT 1140841 and FONDECYT 1130006. The authors would like to thank to the following collection managers, researchers and professionals, and to the institutions they represent, for their generous and significant collaboration in the access to the specimens, the use of infrastructure and discussion: Zora Gabsi, Patrice Pruost, Jhonathan Pfli ger, and Amandine Allard (MNHN, Paris); Christian Klug, Marcelo Sánchez-Vilagra, and the group of Evolutionary Morphology and Functional Morphology of the forelimb of the marine sloth *Thalassocnus* (Mammalia, Tardigrada). *Journal of Mammalian Evolution* 22: 169–242.

REFERENCES

Aguilera, O.A. 2010. *Peces fósiles del Caribe de Venezuela*. Gorham Printing, Washington, 258 p.

Aguilera, O.A., and Rodrigues de Aguilera, D. 2001. An exceptional coastal upwelling fish assemblage in the Caribbean Neogene. *Journal of Paleontology* 75: 732–742.

Ameghino, F. 1906. Les formations sédimentaires du Crétacé supérieur et du Tertiaire de Patagonie avec un parallèle entre leurs faunes mammalogiques et celles de l’Ancien Continent. *Anales del Museo Nacional de Buenos Aires* 3: 1–568.

Amson, E., Argot, C., McDonald, H.G., and Muizon, C.de. 2015. Osteology and functional morphology of the forelimb of the marine sloth *Thalassocnus* (Mammalia, Tardigrada). *Journal of Mammalian Evolution* 22: 169–242.
Applegate, S.P. 1978. Phyletic studies; part 1; Tiger sharks. Revista mexicana de ciencias geológicas 2: 55–64.
Arratia, G., and Cione, A. 1996. The record of fossil fishes of southern South America. Münchner Geowissenschaftliche Abhandlungen 30: 9–72.
Barnes, L.G. 2008. Miocene and Pliocene Albireonidae (Ceteacea, Odontoceti), rare and unusual fossil dolphins from the Eastern North Pacific Ocean. Natural History of Los Angeles County Science Series 41: 99–152.
Bengtson, P. 1988. Open nomenclature. Palaeontology 31: 223–227.
Berg, L.S. 1937. A classification of fish-like vertebrates. Bulletin de l'Académie des Sciences de l'URSS s: 1277–1280.
Blainville, H.D. 1816. Prodrom e d'une nouvelle distribution systématique du règne animal. Bulletin de la Société Philomathique de Paris 8: 105–112.
Bloch, M.E., and Schneider, J.G. 1801. M.E. Blochii Systema Ichthyologicum eticonibus ex illustratum. Post obitum auctoris opus inchoatum auctor impre ssum et Bibliopolio Sand eriano commissum, B e rolini, 584 p., pls. 1–110.
Bonaparte, C.L. 1838. Selachorum tabula analytica. Nuovi Annali delle Scienze Naturali 2: 195–214.
Brett, J.R. 1971. Energetic responses of salmon to temperature. A study of some thermal relations in the physiology and freshwa ter ecology of sockeye salmon (Oncorhynchus nerka). American Zoologist 11: 99–113.
Cappetta, H. 2012. Chondrichthyes II. Mesozoic and Cenozoic Elasmobranchii: teeth. Handbook of Palaeoichthyology 3E. Verlag Dr. Friedrich Pfeil, München, 512 p.
Carrillo-Bricenío, J.D., González-Barba, G., Landaeta, M.F., and Niel sen, S.N. 2013. Con diciones fitogeográficas en el periodo Mioceno de la formación de la Horcón, Región de Valparaíso, Chile central. Revista Chilena de Historia Natural 86: 191–206.
Carrillo-Bricenío, J.D., De Gracia, C., Pimiento, C., Aguilera, O.A., Kindlimann, R., Santamaria, P., and Jaramillo, C. 2015. A new late Miocene chondrichthyan assemblage from the Chagres Formation, Panama. Journal of South American Earth Sciences 60: 56–70.
Carrillo-Bricenío, J.D., Aguilera, O.A., De Gracia, C., Aguirre-Fernández, G., Kindlimann, R., and Sánchez-Villagra, M.R. 2016. An early Neogene elasmobranch fauna from the southern Caribbean (western Venezuela). Palaeoentologia Electronica 19: 1–32.
Carrillo-Bricénio, J.D., Carrillo, J.D., Aguilera, O.A., and Sánchez-Villagra, M.R. 2018. Shark and ray diversity in the Tropical America (Neotropics) – an examination of environmental and historical factors affecting diversity. PeerJ 6: e5313.
Case, G.R. 1980. A selachian fauna from the Trent Formation, lower Miocene (Aquitanian) of eastern North Carolina. Palaeontographica Abteilung A: Palaeozoologie-Stratigraphie 171: 75–103.
Christiansen, P., and Bonde, N. 2002. A new species of gigantic mosasaur from the Late Cretaceous of Israel. Journal of Vertebrate Paleontology 22: 629–644.
Cione, A.L. 1978. Aportes paleobiológicos al conocimiento de la evolución de las paleotemperaturas en el área austral de América del Sur durante el Cenozoico. Ameghiniana 15: 183–208.
Cione, A.L., and Pandolfi, A. 1984. A fin spine of Heterodontus from the «Patanogiano» of Trelew, Chubut, Argentina. Tertiary Research 6: 59–63.
Cione, A.L. 1986. A new Megascyliorhinus (Chondrichthyes, Galeomorphii) from the middle Tertiary of Patagonia. Journal of Vertebrate Paleontology 6: 105–112.
Cione, A.L. 1988. [Los peces de las formaciones marinas del Cenozoico de Patagonia. Tesis doctoral, Facultad de Ciencias Naturales y Museo, Universidad Nacional de la Plata, La Plata, 536 p. Unpublished.]
Cione, A.L., Azpelicueta, M.M., Bond, M., Carlini, A.A., Casciotta, J.R., Cozzuol, M.A., Fuente, M., Gasparini, Z., Goin, F.J., Noriega, J., Scillato-Yane, G.J., Solibelzon, L., Tonni, E.P., Verzi, D., and Vucetich, M.G. 2000. Miocene vertebrates from Entre Ríos province, eastern Argentina. INSU Gebade Serie Correlación Geológica 14: 191–237.
Cione, A.L., Casciotta, J.R., Azpelicueta, M., Barla, M.J., and Cozzuol, M.A. 2005. Peces marinos y continentales del Mioceno del área mesopotámica argentina. Edad y relaciones biogeográficas. INSU Gebade, Miscelánea 14: 49–64.
Cione, A.L., Mennucci, J.A., Santalucita, F., and Acosta Hospital, C. 2007. Local extinction of sharks of genus Carcharod para (Mammalia, Carnivora) in the eastern Pacific Ocean. Anandean Geology 34: 139–146.
Cione A.L., Cozzuol, M.A., Dozo, M.T., and Acosta Hospital, C. 2011. Marine vertebrate assemblages in the southwestern Atlantic during the Miocene. Biological Journal of the Linnean Society 103: 423–440.
Cione, A.L., Cabrera, D.A., and Barla, M.J. 2012. Oldest record of the great white shark (Lamnidae, Carcharodon; Miocene) in the Southern Atlantic. Geobios 45: 167–172.
Clift, P.D., and Hartley, A.J. 2007. Slow rates of subduction erosion and coastal underplating along the Andean margin of Chile and Peru. Geology 35: 503–506.
Compagnon, L.J.V. 2001. Sharks of the world. An annotated and illustrated catalogue of shark species known to date. Volume 2. Bullhead, mackerel and carpet sharks (Heterodontiformes, Lamniformes and Orectolobiformes). FAO Species Catalogue for Fisheries Purposes 2: 1–266.
Compagnon, L.J.V., Dando, M., and Fowler, S. 2005. Sharks of the world. Princeton University Press, Princeton and Oxford, 368 p.
Covacevich, V., and Frasnineti, D. 1980. El género Ficus en el Mioceno de Chile central con descripción de F. gayana sp. nov. Boletín del Museo Nacional de Historia Natural de Chile 37: 281–294.
Covacevich, V., and Frasnineti, D. 1983. Diconoicus, nuevo subgénero de Ficus (Mollusca; Gastropoda) en la Formación Navidad, Mioceno, Chile central. Andean Geology 19–20: 105–110.
Covacevich, V., and Frasnineti, D. 1986. El género Cancellaria en el Mioceno de Chile, con descripción de cuatro especies nuevas (Gastropoda: Cancellariidae). Andean Geology 28–29: 33–67.
Covacevich, V., and Frasnineti, D. 1990. La fauna de Lo Abarca: hito biocronoestratigráfico y paleoclimático en el Terciario Superior marino de Chile Central. 2° Simposio sobre el Terciario de Chile (Concepción), Actas 1: 51–71.
De Boer, B., Van de Wal, R.S.W., Bintanja, R., Lourens, L.J., and Tuener, E. 2010. Cenozoic global ice-volume and temperature simulations with 1-D ice-sheet models forced by benthic δ18O records. Annals of Glaciology 51: 23–33.
De los Arcos, S., Partarrieu, D., Carrillo-Bricenio, J.D., and Amson, E. 2017. The southernmost occurrence of the aquatic sloth Thalassocnus (Mammalia, Tardigrada) from two new Pliocene localities in Chile. Ameghiniana 56: 365–369.
Dekens, P.S., Ravelo, A.C., and McCarthy, M.D. 2007. Warm upwelling regions in the Pliocene warm period. Paleoceanography 22: PA3211. doi:10.1029/2006PA001394.
DeVries, T.J. 1995. Concholepas Lamarck, 1801 (Neogastropoda: Muricidae): a Neogene genus native to South America. The Veliger 38: 284–297.
DeVries, T.J. 1997. A review of the genus Chorus Gray, 1847 (Gastropoda: Muricidae) from western South America. *Tulane Studies in Geology and Paleontology* 30: 125–145.

DeVries, T.J. 2001. Contrasting patterns of Pliocene and Pleistocene extinctions of marine mollusks in western North and South America. *97th Annual meeting of the Geological Society of America* (Boston), Abstracts with Programs 33: 35.

DeVries, T.J., and Frassinetti, D. 2003. Range extensions and biogeographic implications of Chilean Neogene mollusks found in Peru. *Boletin del Museo Nacional de Historia Natural de Chile* 52: 119–135.

DeVries, T.J., and Vermij, G.J. 1997. *Dowsett, H.J., Foley, K.M., Stoll, D.K., Chandler, M.A., Sohl, L.E., González-Rodríguez, K.A., Espinosa-Arrubarrena, L., and González-Barba, G.* 2013. An overview of the Mexican fossil fish record. In: G. Arratia, H.P. Schultz, and M.V.H. Wilson (Eds.), *Mesozoic Fishes 5 – Global Diversity and Evolution*. Friedrich Pfeil, Münich, p. 9–34.

Gray, J.E. 1831. Description of three new species of fish, including two undescribed genera, discovered by John Reeves, Esq., in China. *Zoological Miscellany* 6: 4–5.

Gray, J.E. 1851. List of the species of fish in the collection of the British Museum. *Part I. Chondropterygii*. British Museum (Natural History), London, 160 p.

Groves, L.T., and Nielsen, S.N. 2003. A new late Miocene Zonaria (Gastropoda: Cypreidae) from central Chile. *The Veliger* 46: 351–354.

Günther, A. 1870. *Catalogue of the fishes in the British Museum*. 8: Catalogue of the Physostomi containing the families Gymnotidae, Scombriidae, Muraenidae, Pegasidae and of the Lophobranchii, Plectognathii, Dipnoi, Ganoidei, Chondropterygii, Cyclostomata, Leptocardi in the collection of the British Museum*. British Museum (Natural History), London, 549 p.

Gutstein, C.S., Yury-Yáñez, R.E., Soto-Acuña, S., Suárez, M.E., and Rubilar-Rogers, D. 2008. Fauna de vertebrados y aspectos taxonómicos del “boneded” (Mioceno tardío) de la Formación Bahía Inglesa. 7er *Simposio de Paleontología en Chile* (Santiago), *Libro de Actas*: 102–108.

Guzmán, N., Marquardt, C., Ortiel, L., and Frassinetti, D. 2000. La malacofauna neógena y cuaternaria del área de Caldera (27º– 28ºS): especies y rangos bioestratigráficos. 9º *Congreso Geológico Chileno* (Puerto Varas), *Actas*: 476–481.

Herm, D. 1969. Marinos Plozán y Pleistozán Nord-und Mittel- Chile unter besonderer Berücksichtigung der Entwicklung der Mollusken-Faunen. *Zitteliana* 2: 1–159.

Herman, J., Hovestadt-Euler, M., and Hovestadt, D.C. 1993. Contributions to the study of the comparative morphology of teeth and other relevant ichthyodorulites in living superspecific taxa of chondrichthyans fishes. Addendum to Part A, No. 1b: Hexanchiformes - Family: Chlamidodaelachiaei; No. 5; Order: Heterodontiformes - Family: Heterodontidae; No. 6; Order: Lamniformes - Families: Cetorhinidae, Megachasmaideae; Addendum 1 to No. 3; Order: Squilliformes; Addendum 1 to No. 4; Order Orectolobiformes; General Glossary; Summary Part A. *Bulletin de l’Institut Royal des Sciences Naturelles de Belgique, Biologie*: 63: 185–256.

Huxley, T.H. 1880. On the application of the laws of evolution to the arrangement of the Vertebrata, and more particularly of the Mammalia. *Proceedings of the Zoological Society of London* 43: 649–662.

Ibaraki, M. 1990. Planktonic foraminiferal biostratigraphy of the Neogene of Caleta Herradura de Mejillones, northern Chile. In: R. Tsuchi (Ed.), *Reports of ANDean Studies. Special volume 3*. Shizuoka University, Shizuoka, p. 9–16.

Ibaraki, M. 1997. Closing of the Central American Seaway and Neogene coastal upwelling along the Pacific coast of South America. *Tectonophysic* 281: 99–104.

Johansen, J., and Jones, G. 2011. Increasing ocean temperature reduces the metabolic performance and swimming ability of coral reef damselfishes. *Global Change Biology* 17: 2971–2979.

Kanakoff, G.P. 1956. Fish records from the Pleistocene of southern California. *Bulletin of the Southern California Academy of Sciences* 55: 47–49.

Kaschner, K., Kesner-Reyes, K., Garilao, C., Rius-Barile, J., Rees, T., and Froese, R. 2016. *AquaMaps: Predicted range maps for aquatic species*. World Wide Web electronic publication: www.aquamaps.org. version (08/2016).

Kennedy, W.J., King, C., and Ward, D.J. 2008. The upper Albian and lower Cenomanian succession at Kolbay, eastern Mangyshlak
Martínez-Pardo, R. 1979. Hallazgo de foraminíferos miocénicos cerca de Puerto Atle, Bahía de Tongoy, Provincia de Coquimbo, Chile. Andean Geology 8: 65–78.

Martínez-Pardo, R., and Caro, R. 1980. Microfósiles silicós de las diatomitas de Tongoy, Provincia de Coquimbo, Chile: su significado biocronogeográfico, biocronoecológico, paleoecológico y paleogeográfico. Andean Geology 10: 33–53.

Matthews, S.C. 1973. Notes on open nomenclature and on synonymy lists. Paleontology 16: 713–719.

Meyer, F.A.A. 1793. Systematisch-summariiche Uebersicht der neuesten zoologischen Entdeckungen in Neuholland und Afrika. Nebst zwei andern zoologischen Abhandlungen. Dytischen Buchhandlung, Leipzig, 178 p.

Mitchell, E.D. 1965. History of research at Sharktooth Hill, Kern County, California. Kern County Historical Society, Bakersfield, 45 p.

Mitchell, E., and Tedford, R.H. 1973. The Enaliacrinia: a new group of extinct aquatic Carnivora and a consideration of the origin of the Otaridae. Bulletin of the American Museum of Natural History 151: 201–284.

Montecino, V., and Lange, C.B. 2009. The Humboldt Current System: Ecosystem components and processes, fisheries, and sediment studies. Progress in Oceanography 83: 65–79.

Mör incarcerated. 1896. Versteinerungen der Tertiärformationen von Chile. Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, Beilage Band 10: 548–612.

Muizon, C. de, and DeVries, T.J. 1985. Geology and paleontology of late Cenozoic marine deposits in the Sacaco area (Peru). Geologische Rundschau 74: 547–563.

Nelson, J.S. 2006. Fishes of the World. John Wiley & Sons, Hoboken, 601 p.

Nielsen, S.N. 2013. A new Pliocene mollusk fauna from Mejillones, northern Chile. Paläontologische Zeitschrift 87: 33–66.

Nielsen, S.N., and Gladny, J. 2009. Early Miocene subtropical water temperatures in the southeast Pacific. Palaeogeography, Palaeoclimatology, Palaeoecology 280: 480–488.

OBIS, 2018. Distribution records of Heterodontus francisci (Girard, 1854), Heterodontus mexicanus Taylor and Castro-Aguirre, 1972 and Heterodontus quoyi (Frémouville, 1840) [Datasets]. Ocean Biogeographic Information System. Intergovernmental Oceanographic Commission of UNESCO. World Wide Web: www.obis.org. (Accessed: 10–16-2018).

Padilla, H., and Elguea, S. 1992. Neogene marine deposits of Caleta Patillos, northern Chile: their relationship with Neogene sediments of the peninsula of Mejillones. Andean Geology 19: 83–89.

Paskoff, R. 1970. Recherches Geomorphologiques dans le Chili Semi-arde. Biscaye Freres, Bordeaux, 420 p.

Philippi, R.A. 1887. Los fósiles terciarios y cuartarios de Chile. Brockhaus, Leipzig, 256 p.

Ravelo, A.C., Andreasen, D.H., Lyle, M., Lyle, A.O., and Wara, M.W. 2004. Regional climate shifts caused by gradual global cooling in the Pliocene epoch. Nature 429: 263–267.

Reif, W.E. 1976. Morphogenesis, pattern formation and function of the dentition of Heterodontus (Selachi). Zoologicae Borealis 83: 1–47.

Rivadeana, M.M., and Marquet, P.A. 2007. Selective extinction of late Neogene bivalves on the temperate Pacific coast of South America. Paleobiology 33: 455–468.

Rivadeana, M.M., and Nielsen, S.N. 2017. Diversification dynamics, species sorting, and changes in the functional diversity of marine benthic gastropods during the Pliocene–Quaternary at temperate western South America. PLoS ONE 12: e0187140. https://doi.org/10.1371/journal.pone.0187140
Sigovini, M., Keppel, E., and Tagliapietra, D. 2016. Open Nomenclature in the biodiversity era. *Methods in Ecology and Evolution* 7: 1217–1225.

Smith, J.L.B. 1949. Interesting fishes of three genera new to South Africa. *Annals and Magazine of Natural History* 2: 367–374.

Staig, F., Hernández, S., López, P., Villafañe, J.A., Varas, C., Soto, L.P., and Carrillo-Briceno, J.D. 2015. Late Neogene elasmobranch fauna from the Coquimbo Formation, Chile. *Revista Brasileira de Paleontologia* 18: 261–272.

Suárez, M.E. 2015. Tiburones, rayas y quimeras (Chondrichthyes) fósiles de Chile. *Publicación Ocasion del Museo Nacional de Historia Natural de Chile* 63: 17–33.

Suárez, M.E., and Encinas, A. 2002. Vertebrados marinos del miembro inferior de la Formación Navidad (Mioceno temprano), Chile central. 1er Congreso Latinoamericano de Paleontología de Vertebrados (Santiago), Resúmenes: 49.

Suárez, M.E., and Marquardt, C. 2003. Revisión preliminar de las faunas de peces elasmobranquios del Mesozoico y Cenozoico de Chile: su valor como indicadores cronoe-stratigráficos. 10° Congreso Geológico Chileno (Concepción), Actas: ST3.

Suárez, M.E., Marquardt, C., Lavenu, A., Marinovic, N., and Wilke, H.G. 2003. Vertebrados marinos neógenos de la Formación La Portada, II Región, Chile. 10° Congreso Geológico Chileno (Concepción), Actas: ST3.

Suárez, M.E., Lamilla, J., and Marquardt, C. 2004. Peces Chimaeriformes (Chondrichthyes, Holocéfalii) del Neógeno de la Formación Bahía Inglesa (Región de Atacama, Chile). *Andean Geology* 31: 105–117.

Suárez, M.E., Encinas, A., and Ward, D. 2006. An early Miocene elasmobranch fauna from the Navidad Formation, central Chile, South America. *Cainozoic Research* 4: 3–18.

Taylor, L. 1972. *A revision of the shark family Heterodontidae*. PhD Thesis, University of California, San Diego, 176 p. Unpublished.

Taylor, L.R., and Castro-Aguirre, J.L. 1972. *Heterodontus mexicanus*, a new horn shark from the Golfo de California. *Anales de la Escuela Nacional de Ciencias Biológicas* 19: 123–143.

Tsuchi, R. 2002. Neogene evolution of surface marine climate in the Pacific and notes on related events. *Revista Mexicana de Ciencias Geológicas* 19: 260–270.

Valenzuela-Toro, A.M., Gutstein, C.S., Varas-Malca, R.M., Suárez, M.E., and Pyenson, N.D. 2013. Pinnipeds turnover in the South Pacific Ocean: new evidence from the Ple–Pleistocene of the Atacama Desert, Chile. *Journal of Vertebrate Paleontology* 33: 216–223.

Villafañe, J.A. 2015. [Estructura biogeográfica de condictios de la costa Pacífica Temperada de Sudamérica: Dinámicas desde el Neógeno al Presente. Tesis de magíster, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, 53 p. Unpublished.].

Villafañe, J.A., and Rivadeneira, M.M. 2014. Rise and fall in diversity of Neogene marine vertebrates on the temperate Pacific coast of South America. *Paleobiology* 40: 659–674.

Villafañe, J.A., and Rivadeneira, M.M. 2018. The modulating role of traits on the biogeographic dynamics of chondrichthians from the Neogene to the present. *Paleobiology* 44: 251–262.

Walsh, A.A. 2001. *The Bahía Inglesa Formation bonebed: genesis and palaeontology of a Neogene konzentrat lagerstätte from north-central Chile*. PhD Thesis, School of Earth and Environmental Sciences, University of Portsmouth, Portsmouth, 440 p. Unpublished.

Wara, M.W., Ravelo, A.C., and Delaney, M.L. 2005. Permanent El Niño-like conditions during the Pliocene warm period. *Science* 309: 758–761.

Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. *Science* 292: 686–693.

doi: 10.5710/AMGH.19.10.2018.3202

Submitted: May 9th, 2018
Accepted: October 18th, 2018
Published online: October 21st, 2018