From **Corynebacterium glutamicum** to **Mycobacterium tuberculosis**—towards transfers of gene regulatory networks and integrated data analyses with MycoRegNet

Justina Krawczyk\(^1,2\), Thomas A. Kohl\(^2\), Alexander Goesmann\(^1,2\), Jörn Kalinowski\(^2\) and Jan Baumbach\(^3\)*

\(^1\)Computational Genomics, \(^2\)Center for Biotechnology, Bielefeld University, Bielefeld, Germany and \(^3\)International Computer Science Institute, Berkeley, CA, USA

Received April 13, 2009; Revised May 12, 2009; Accepted May 13, 2009

ABSTRACT

Year by year, approximately two million people die from tuberculosis, a disease caused by the bacterium *Mycobacterium tuberculosis*. There is a tremendous need for new anti-tuberculosis therapies (antituberculotica) and drugs to cope with the spread of tuberculosis. Despite many efforts to obtain a better understanding of *M. tuberculosis*’s pathogenicity and its survival strategy in humans, many questions are still unresolved. Among other cellular processes in bacteria, pathogenicity is controlled by transcriptional regulation. Thus, various studies on *M. tuberculosis* concentrate on the analysis of transcriptional regulation in order to gain new insights on pathogenicity and other essential processes ensuring mycobacterial survival. We designed a bioinformatics pipeline for the reliable transfer of gene regulations between taxonomically closely related organisms that incorporates (i) a prediction of orthologous genes and (ii) the prediction of transcription factor binding sites. In total, 460 regulatory interactions were identified for *M. tuberculosis* using our comparative approach. Based on that, we designed a publicly available platform that aims to data integration, analysis, visualization and finally the reconstruction of mycobacterial transcriptional gene regulatory networks: MycoRegNet. It is a comprehensive database system and analysis platform that offers several methods for data exploration and the generation of novel hypotheses. MycoRegNet is publicly available at http://mycoregnet.cebitec.uni-bielefeld.de.

INTRODUCTION

Year by year, approximately two million people die worldwide from tuberculosis (1) and one-third of the world’s total population suffer from this communicable disease (http://www.who.int) caused by the bacterium *Mycobacterium tuberculosis*. Tuberculosis is the leading cause of death to people living with HIV and claims on average 200,000 lives every year, most of them in Africa. Persons infected with tuberculosis will not directly develop the characteristic full-blown clinical picture, but in most cases the latent form, which can progress to an active condition after years. About 10–15 people can be infected by a person with active tuberculosis a year, if she or he is left untreated (http://www.who.int). Although there is effective treatment to cure patients with tuberculosis, and new strategies have been developed to stop its further dissemination, its containment is still a serious problem (2). The number of multi-resistant strains not responding to standard drug treatments is increasing constantly worldwide (3,4). Consequently, there is a tremendous need for new anti-tuberculosis therapies (antituberculotica) and drugs to cope with the spread of tuberculosis. Despite many efforts to obtain a better understanding of the pathogenicity of *M. tuberculosis* and its survival strategy in humans, many questions are still unresolved. The molecular mechanisms responsible for resisting the human immune system and their activation are not perceived sufficiently so far; most notably, its ability to remain within the human host for years in a clinically latent state (5). Among other cellular processes in bacteria, pathogenicity is controlled by transcriptional regulation. Thus, various studies on *M. tuberculosis* concentrate in the analysis of transcriptional regulation in order to gain new insights on pathogenicity and other essential processes.
ensuring mycobacterial survival. The identification and characterization of transcriptional regulation on a genome-wide level will enable a better understanding of drug metabolism in *M. tuberculosis* and facilitate the development of new antibiotics, which are urgently needed. At present, studies focus mainly on the analysis of single regulons, or distinct subunits of the complex transcriptional regulatory network of *M. tuberculosis* [see e.g. (3,5,6)]. Bioinformatics platforms for data storage and public access of transcriptional regulation exist for *M. tuberculosis*, similar to other organisms such as *Escherichia coli* [RegulonDB (7)] or *Corynebacterium glutamicum* [CoryneRegNet (8)]. MtRegList (9) and MTBreg (http://www.doe-mbi.ucla.edu/services/mtbreg) offer information relevant to regulatory interactions in *M. tuberculosis* H37Rv (MT) accumulated from literature or attained from computational predictions. While MtRegList contains predicted and characterized regulatory DNA motifs cross-referenced with transcription factors (TFs), MTBreg combines a collection of conditionally regulated proteins together with information about selected TFs. However, both systems are designed as data repositories and only provide nonsatisfying bioinformatics support necessary for transcriptional gene regulatory network visualization, analysis, and reconstruction. Recently, the TB database has become available. This integrated online platform for tuberculosis research combines the annotated genome and expression data with a suite of bioinformatic tools for data analysis (10). The scope of TB database is placed on investigating and providing expression data, while little support is given for the reconstruction of regulatory networks based on these findings. Hence, there is currently no online platform or database system available, which aims to an appropriate data handling and analysis of transcriptional regulation in *M. tuberculosis* on a genome-wide level.

Here, we introduce MycoRegNet, an online accessible, user-friendly platform dedicated to the biomedical researcher, who is interested in the regulation of gene expression in the human pathogen *M. tuberculosis*. MycoRegNet is online available at http://mycoregnet.ccbitec.uni-bielefeld.de.

The first idea of our approach is based on the assumption that orthologous TFs tend to regulate the expression of orthologous target genes for taxonomically closely related species (11-13). *Corynebacterium glutamicum* and *M. tuberculosis* are taxonomically classified into the suborder Corynebacterineae of the Actinobacteria phylum and are thus taxonomically closely related (14). Hence, the industrially important amino acid producer *C. glutamicum* has been successfully applied as model organism, e.g. for investigating cell envelope synthesis of *M. tuberculosis* (15-17). We therefore started with the well-examined regulatory network of *C. glutamicum* ATCC 13032 (CG) (18), which is stored in the corynebacterial reference database CoryneRegNet (8). Our comparative genomics approach aims for a reliable transfer of known regulatory interactions from CG to MT. Instead of relying exclusively on the detection of orthologous genes, we consider further evidence by means of an integrated TF binding site (TFBS) prediction. The resulting data were subsequently stored in an online platform designed for the visualization and analysis of the deduced transcriptional regulatory network, which enables the execution of bioinformatics tools for further hypotheses generation: MycoRegNet. The remainder of this article is structured as follows: we first describe the workflow used for the transfer of *C. glutamicum* data to *M. tuberculosis* in detail. The design of MycoRegNet is briefly introduced afterwards. It aims to overcome typical data integration problems and to supply online visualization and hypotheses generation tools. In the last section, we illustrate and discuss these functionalities. We finally conclude that MycoRegNet is an appropriate reference database and platform for gene regulatory network analysis of *M. tuberculosis*.

MATERIALS AND METHODS

The network reconstruction pipeline mainly consists of the detection of (i) conserved genes between CG and MT and (ii) binding sites upstream the conserved genes in MT. Based on the corresponding results, a list of putative gene regulatory interactions in MT is generated and imported into the MycoRegNet database back-end (see Figure 1 for a graphical overview of the workflow).

Detection of orthologous genes

Generally, the detection of orthologous genes is not straightforward, since analysis can be perturbed by factors like paralogs or sequence divergences in the genomes of interest. To reduce such effects, we searched for orthologous genes by performing bidirectional BLASTP (19) searches on the corresponding protein sequences. Therefore, we scanned the CG genome for sequence similarities with the MT genome and vice versa, performing BLASTP with an *E*-value cut-off of 10^{-4} in both directions. As a result, we obtained amino acid sequence pairs, so-called bidirectional best hits (BBHs), representing the reciprocal best alignments of respective protein sequences. Thus, identified BBHs were considered to be putative orthologous proteins in CG and MT, which in turn indicates the respective genes to be regulated in both bacteria by orthologous TFs.

Transfer of regulatory interactions

Based on the previously identified BBHs, regulatory interactions characterized in CG were transferred to MT. We utilized the comprehensive data on transcriptional regulation in CG collected in the corynebacterial reference database CoryneRegNet (8), which contains 806 regulatory interactions of 72 TFs and 544 regulated target genes on CG (status: January 2009). For each regulatory interaction taken from CG, both the gene encoding the TF and the target gene were compared to the list of predicted orthologs in the MT genome. Only if both, the TF as well as its target gene, were identified as BBH, the regulatory interaction was transferred from CG to the orthologous counterparts in MT and was considered as a candidate transcriptional regulation in MT. Furthermore, we assume the regulatory role of the TF (activation or
Further evidence through conserved TFBSs

In the last step of our regulatory network prediction pipeline, we add further evidence to the orthology-based approach introduced above by combining the preliminary results with the prediction of TFBSs. Therefore, all known binding sites of characterized TFs of CG with potential orthologs in MT were utilized to create appropriate motif profiles. TF binding motifs were modeled as so called position weight matrices (PWMs), the most widely used model for that purpose. However, we applied only PWMs of corynebacterial TFs deduced from more than 20 binding sites, i.e. of the TFs GlxR, RamB, AmtR, DtxR and LexA. To detect instances of the respective motifs in MT, we employed the TFBS matching tool PoSSuMsearch (20) and scanned 580-bp long, noncoding DNA sequences upstream all genes and operons, which have been detected as potential orthologs to target genes of the respective TF. The upstream sequences ranged from +20 bp relative to the transcription start. In our initial approach, we performed a restrictive search by setting the P-value threshold to 10^{-2}. Due to the low number of detected binding sites in the first PoSSuMsearch runs, we decided to decrease the P-value threshold since the set P-value might be chosen too restrictive for our TFBS predictions. To determine a new P-value, we considered P-values of binding site matches of the PWM for GlxR upstream 26 target genes as marking value, where the binding of the GlxR ortholog Rv3676 in MT was experimentally verified (21–24). For P-value definition, we chose the binding site that match upstream one of these genes with the worst P-value. Thus, we finally set the P-value to $<10^{-2}$ and defined for each target gene/operon in MT the TFBS match with the lowest P-value as prediction for the respective binding site.

Taken together, the outcome of the above introduced workflow is a list of transcriptional regulations for MT where (i) the TF is conserved, and (ii) the target gene is conserved between CG and MT as well, and additionally (iii) a binding site is predicted, if the target gene/operon is controlled by one of the five TFs where a TFBS search was performed for. Hence, the resulting predictions present most likely regulatory interactions in MT due to the taxonomically close relation between CG and MT. This is the data we aim to integrate into the MycoRegNet platform together with validated knowledge we have from (5,25–34).

Data integration with the MycoRegNet platform

Based on our experiences with CoryneRegNet, we designed MycoRegNet in a very similar way: as an ontology-based data warehouse for mycobacterial TFs and regulatory networks. We set it up as a sister project of CoryneRegNet to store, analyze and visualize the regulatory interactions in *M. tuberculosis* that are derived from the above introduced prediction pipeline. MycoRegNet is composed of two main parts: (i) A web front-end running on an Apache HTTP web server that manages user-database interactions as well as the execution of further online bioinformatics computations. (ii) The back-end consists of data preprocessing tools and a MySQL database that stores all data corresponding to the deduced and ontologically restructured mycobacterial gene regulatory interactions. This process comprises the integration of transcriptional regulations, the complete genome sequence of MT along with the genome annotation as stored in the GenBank database (NCBI) (35), operon predictions available from the Virtual Institute of Microbial Stress and Survival (VIMSS) (36), precalculated PWMs and other preprocessed data necessary for subsequent online TFBS detections, and stimulons derived from literature (25–31). The import and conversion software is implemented in Java, while the web pages generated at front-end level are developed in PHP. An embedded Java applet realizes the visualization of gene regulatory networks from the included data. A SOAP-based web Service (37) client/server system implemented by means of NuSOAP enables a bidirectional interconnection with GenDB (38) and EMMA (39). The server is open access and provides
well-structured data access via the SOAP interface to any other bioinformatics client. GenDB is an open source system for the annotation of prokaryotic genomes, while EMMA is a web-based application for the storage and analysis of transcriptomics data from microarrays. By means of the clients for GenDB and EMMA, data integrated in MycoRegNet is supplemented with up-to-date information on the genome annotation of MT (GenDB) and gene expression data preanalyzed with EMMA. To give one example, the Web Service client for GenDB facilitates the mapping of all genes controlled by a certain regulator to KEGG pathways (40) in order to provide an overview on the general nature of a TF of interest. Furthermore, the automatic annotation pipeline of GenDB can be used to regularly update gene function assignments.

RESULTS AND DISCUSSION

Here, we first summarize the database content. Subsequently, we present and discuss the benefits of MycoRegNet from the end-user perspective. We first describe the web interface with special attention to the TFBS prediction feature and the network visualization and analysis capability. We briefly describe the Web Service access afterwards and finally demonstrate the platforms’ visualization functionality by means of an application example.

The database content

By using the above described transfer pipeline for regulatory interactions, we identified 1012 of 3991 proteins from MT as putative orthologs to proteins from CG. Based on the respective set of genes coding for the orthologous proteins, we detected 226 of 806 regulatory interactions from CG as likely conserved in MT (Table 1). Our initial findings reveal 24 partial conserved regulons affecting processes of the carbohydrate metabolism, cellular program, macroelement and metal homeostasis, SOS and stress response, specific biosynthesis as well as processes governed by sigma factors. By setting the P-value threshold to 102, we could put further evidence to 129 target genes 40 by predicting binding sites upstream the respective target genes/operons regulated by the TF orthologs of GlxR, RamB, AmtR, DtxR and LexA in MT (Table 2). All in all, we obtained a set of regulatory interactions which is based on good evidence. The database content comprises 618 regulatory interactions for 515 target genes regulated by 26 TFs. Several gene expression experiments are also directly stored within MycoRegNet’s database back-end (data not shown). We also integrated genome annotation data of M. tuberculosis CDC1551 for future investigations concerning transcriptional regulation in another ecotype of M. tuberculosis.

The user interface

As for other online databases, MycoRegNet’s web interface provides the three major capabilities: browsing the database content, searching by specifying filter criteria and basic visualization possibilities. Furthermore, the

TF	Target genes
Carbohydrate metabolism	
Rv0465c Carbohydrate metabolism	
Rv0211 (pckA), Rv0247c (-), Rv0363c (fba), Rv0408 (pia)	
Rv0409 (ackA), Rv0465c (-), Rv0467 (iel), Rv0896 (gltA2)	
Rv0904c (accD3), Rv0951 (sucC), Rv0952 (sucD), Rv1475c (aco)	
Rv1837c (glcB), Rv1862 (adhA), Rv2193 (ctaE), Rv2241 (aceE)	
Rv2332 (meC), Rv2967c (pea), Rv3318 (sdbA)	
Cell division and septation	
Rv1009 (rrpB)	
Specific biosynthesis pathways	
Rv0884c (serC), Rv1010 (kgS), Rv1011 (ispE), Rv1379 (pyrR)	
Rv1380 (pyrB), Rv1381 (pyrC)	
Rv0792c Carbohydrate metabolism	
Rv0753c (mmrA)	
Rv1719 Carbohydrate metabolism	
Rv0554 (bpoC), Rv1074c (fadA3), Rv1719 (-), Rv2503c (scoB), Rv2504c (scoA)	
Rv3676 Carbohydrate metabolism	
Rv0211 (pckA), Rv0247c (-), Rv0400c (fadE7), Rv0465c (-)	
Rv0467 (iel), Rv0896 (gltA2), Rv0904c (accD3), Rv0951 (sucC)	
Rv0952 (sucD), Rv1008c (fumC), Rv1130 (-), Rv11611 (narG)	
Rv1162 (narH), Rv1163 (narJ), Rv1436 (gap), Rv1437 (pgk)	
Rv1438 (gp), Rv1475c (aco), Rv1837c (glcB), Rv1854c (sdb)	
Rv1862 (adhA), Rv1872c (lldD2), Rv2029c (pgkB), Rv2193 (ctaE)	
Rv2194 (qcrC), Rv2195 (qcrA), Rv2196 (qcrB), Rv2200c (ctaC)	
Rv2524c (fis), Rv2967c (pea), Rv3010c (pgkA), Rv3043c (ctaD)	
Rv3279c (birA), Rv3280 (accD5), Rv3318 (sdbA), Rv3348c (-), Rv3676 (-)	
Cell division and septation	
Rv1009 (rrpB), Rv2145c (wag31), Rv2201 (asnB)	
Macromolecular and metal homeostasis	
Rv0829 (pskT), Rv0928 (pskS), Rv0929 (pskC2), Rv0930 (pskA1), Rv2220 (ghlA1)	
Rv2832c (ugpC), Rv2833c (ugpB), Rv2834c (ugpE), Rv2835c (ugpA), Rv2918c (ghlD)	
Rv2919c (ghlB), Rv2920c (amtI), Rv3859c (ghlB)	
SOS and stress response	
Rv0867c (pskA), Rv3048c (wrdF2), Rv3217c (-), Rv3219 (whlB1), Rv3681c (whlB4)	
Specific biosynthesis pathways	
Rv0884c (serC), Rv1010 (kgS), Rv1011 (ispE), Rv1092c (coaA)	
Rv3001c (ivcD), Rv3002c (ivcN), Rv3003c (ivcB1)	

Cellular Program

RelA Sigma factor module
Rv1221 (sigE), Rv2710 (sigB), Rv3221A (-), Rv3911 (sigM) | |
SOS and stress response
Rv2720 (lexA) | |

Macromolecular and metal homeostasis
Rv0485 Macromolecular and metal homeostasis
Rv0132c (fgd2) | |
PhoP Macromolecular and metal homeostasis
Rv0545c (pskA), Rv0757 (phoP), Rv0758 (phoR), Rv0820 (phoT) | |
Rv0928 (pskS3), Rv0929 (pskC2), Rv0930 (pskA1), Rv1095 (phoH2) | |
Table 1. Continued

TF	Target genes
HspR	SOS and stress response
	Rv0350 (dnaK), Rv0351 (grpE), Rv0352 (dnaJ), Rv0353 (hspR)
HrcA	SOS and stress response
	Rv0384 (clpB), Rv0440 (groEL), Rv2745c
LexA	Cell division and septation
	Rv2748c (ftsK)
	SOS and stress response
	Rv1235 (lbqF), Rv1638 (avrA), Rv1696 (recN), Rv2592 (rsd)
	Rv2593c (rsdA), Rv2594c (rsdC), Rv2720 (lexA), Rv2736c (recX)
	Rv2737c (recA), Rv3370c (dhaE2), Rv3395c, Rv3585 (radA)
Rv2745c	SOS and stress response
	Rv0782 (prrB), Rv2460c (clpP2), Rv2461c (clpP1), Rv2725c (hixJ)
	Rv3596c (clpC1), Rv3715c (recR), Rv3716c
WhiB1	SOS and stress response
	Rv3913 (txb2), Rv3914 (txcC)
MtrA	SOS and stress response
	(continued)

Table 1. Continued

TF	Target genes
CspA	Carbohydrate metabolism
	Rv1837c (gtpB)
Specific biosynthesis pathways	
PyrR	Specific biosynthesis pathways
	Rv1379 (pyrR), Rv1380 (pyrB), Rv1381 (pyrC), Rv2883c (pyrH)
ArgR	Specific biosynthesis pathways
	Rv1383 (carA), Rv1384 (carB), Rv1652 (argR), Rv1653 (argJ)
	Rv1654 (argB), Rv1655 (argD), Rv1656 (argF), Rv1657 (argR)
	Rv4988

Putative gene regulations of CG in MT, predicted in silico by using the introduced MycoRegNet pipeline.

Front-end offers the execution of computational features. At the main page (Figure 2), one has the option to search or to browse the database content. The user may browse the data repository by clicking on an ecotype name of interest and is provided with an overview on the selected organism. Alternatively, using one of the provided options within the search form, the database can be searched for specific gene/protein identifiers, gene/protein names, regulator types or functional modules. The search results are presented in tabular form, listing all relevant information for subsequent investigation. Furthermore, the following built-in features can be accessed from the main page, directly: TFBScan [for TFBS predictions; see below] and COMA (to check for contradictions within microarray gene expression studies, given the regulatory network stored in the database; refer to (8) for more details]. Detailed information on the results can be obtained via respective links at the result page. By selecting a particular gene, the corresponding gene details page is invoked. It presents a detailed overview of all available data attached to the gene of interest. Besides general information about the gene/protein (position in the genome, nucleotide sequence, etc.), it comprises a graphical representation of the genomic context, regulated target genes (if encoding a TF) including the TFBSs, etc., and stimuli that initiate a differential gene expression level. The integrated Web Service client for GenDB maintains the representation of up-to-date gene annotation data. General information (description, comments, an assigned function, etc.) is listed as well as the EC numbers for enzymes, and links to COG (41) and GO (42). Additionally, all target genes of a TF of interest, are linked to KEGG pathways and a list of regulated pathways is displayed.

TFBS prediction. With the integrated PoSSuMsearch software, MycoRegNet provides a statistically sound tool for the prediction of TFBSs based on PWMs, which have been precalculated during data import. To our knowledge, PoSSuMsearch is the only TFBSs profiling tool that offers exact P-value calculations and at the same time provides reasonable response times on
Table 2. Detected binding sites upstream transferred target genes of CG in MT

TF	Gene ID	Gene name	Operon	Binding motif
Rv0465c	0221a	pkcA		ATAACTAGCGAG
	0249c	–		AGTAGGGCCGAT
	0363c a	fba		CGTACTCTTCAA
	0407	pta	Rv0407-Rv0408-Rv0409	CTAGTCGTGTCGTA
	0465c	–		CGTACTCTTCGGA
	0467a	serC		GAAAGGTTTGGGA
	0884c a	glnA2		TGAAGCATGATC
	0904e a	accD3		ATGGGCTGCAAG
	0951	sucC		AGTGCTAAGGGT
	1009	rpfB	Rv1009-Rv1010-Rv1011	TCACTATTACAAA
	1379	pyrR	Rv1379-Rv1380-Rv1381-Rv1382-Rv1383-Rv1384-Rv1385	AGTGCTAGCCTGC
	1475c	acn	Rv1475c-Rv1474c	AGTGCTAGCCTGC
	1837e a	gluB		TACAGGATAGCGC
	1862 a	adhA		TGTGCTGACGTA
	2193	ctaE	Rv2193-Rv2194-Rv2195-Rv2196	ACTCACACACAGTC
	2241	aceE	Rv2241-Rv2242	GAAAGGTTTGGGA
	2332a	meC		GAAAGGTTTGGGA
	2967c a	pca		GAAAGGTTTGGGA
	3316	sdhA	Rv3316-Rv3317-Rv3318-Rv3319	GAAAGGTTTGGGA
	3841 a	bfrB		GAAAGGTTTGGGA
IdeR	0249c	–		TTAGATGAGCGCACCCACG
	0827e a	–		TTAGATGAGCGCACCCACG
	0844e a	narL		TTAGATGAGCGCACCCACG
	1285	cysD	Rv1285-Rv1286	TTAGATGAGCGCACCCACG
	2391	nirA	Rv2391-Rv2392-Rv2393	TTAGATGAGCGCACCCACG
	2895e a	viaB		TTAGATGAGCGCACCCACG
	3044a	fecB		TTAGATGAGCGCACCCACG
	3316	sdhA	Rv3316-Rv3317-Rv3318-Rv3319	TTAGATGAGCGCACCCACG
	3841 a	bfrB		TTAGATGAGCGCACCCACG
LexA	1235	lpuY	Rv1235-Rv1236-Rv1237-Rv1238	TTAGATGAGCGCACCCACG
	1638 a	uvrA		TTAGATGAGCGCACCCACG
	1696 a	recN		TTAGATGAGCGCACCCACG
	2594c a	rncD	Rv2594c-Rv2593c-Rv2592c	TTAGATGAGCGCACCCACG
	2720a	lexA		TTAGATGAGCGCACCCACG
	2737c a	recA	Rv2737c-Rv2736c	TTAGATGAGCGCACCCACG
	2748c a	fisK		TTAGATGAGCGCACCCACG
	3370e a	dnaE2		TTAGATGAGCGCACCCACG
	3395c	–	Rv3395c-Rv3394c	TTAGATGAGCGCACCCACG
Rv3160c	1584	ureA	Rv1584-Rv1584-Rv1585-Rv1585-Rv1585-Rv1585-Rv1585-Rv1585	TTAGATGAGCGCACCCACG
	2220a	glaA1		TTAGATGAGCGCACCCACG
	2920c a	amn	Rv2920c-Rv2919c-Rv2918c	TTAGATGAGCGCACCCACG
	3666c a	dppA	Rv3666c-Rv3666c-Rv3666c-Rv3666c-Rv3666c-Rv3666c-Rv3666c-Rv3666c	TTAGATGAGCGCACCCACG
	3859c a	gltB	Rv3859c-Rv3859c	TTAGATGAGCGCACCCACG
Rv3676	0221a	pkcA		TTAGATGAGCGCACCCACG
	0249e a	–	Rv0249c-Rv0248c-Rv0247c	TTAGATGAGCGCACCCACG
	0400e a	fadE7		TTAGATGAGCGCACCCACG
	0465c	–	Rv0465c-Rv0464c	TTAGATGAGCGCACCCACG
	0467a	ivl		TTAGATGAGCGCACCCACG
	0820a	phoT		TTAGATGAGCGCACCCACG
	0867c a	rpfA		TTAGATGAGCGCACCCACG
	0884e a	serC		TTAGATGAGCGCACCCACG
	0896a	glnA2		TTAGATGAGCGCACCCACG
	0904e a	accD3		TTAGATGAGCGCACCCACG
	0928	patS3	Rv0928-Rv0929-Rv0930	TTAGATGAGCGCACCCACG
	0951 a	sucC	Rv0951-Rv0952	TTAGATGAGCGCACCCACG
	1009	rpfB	Rv1009-Rv1010-Rv1011	TTAGATGAGCGCACCCACG
	1092c	coaA		TTAGATGAGCGCACCCACG
	1099c a	fumC	Rv1099c-Rv1098c-Rv1097c	TTAGATGAGCGCACCCACG
	1130 a	narG	Rv1130-Rv1131	TTAGATGAGCGCACCCACG
	1161	narG	Rv1161-Rv1162-Rv1163-Rv1164-Rv1165-Rv1166	TTAGATGAGCGCACCCACG
	1436	gap	Rv1436-Rv1437-Rv1438	TTAGATGAGCGCACCCACG
	1475c a	acn	Rv1475c-Rv1474c	TTAGATGAGCGCACCCACG
	1837e a	gluB		TTAGATGAGCGCACCCACG

(continued)
Table 2. Continued

TF	Gene ID	Gene name	Operon	Binding motif
Rv1854ca	ndh	–		TGGGTCGGATGACACAGAGAC
Rv1862ca	adhA	–		CTGGCGGCGGCCACAGAGAC
Rv1872ca	aldD2	–	RV2029c-RV2028c-RV2027c-RV2026c	CAGTTCAAGGCCAAGCAG
Rv2029c	pfkB	–		CGTGACTGGCGTGCCAGAGAC
Rv2145c	wag3l	–		AGTGGGATGGTCTACCAGAGAC
Rv2193c	ctaE	RV2193c-RV2194c-RV2195c-RV2196c	CTGGATGAGGGGCCACAG	
Rv2200c	ctaC	RV2200c-RV2199c		CTGGATGAGGGGCCACAG
Rv2201c	asnB	–		CTGGATGAGGGGCCACAG
Rv2220a	glnA1	–		CTGGATGAGGGGCCACAG
Rv2524ca	fas	–		CTGGATGAGGGGCCACAG
Rv2835c	aggA	RV2835c-RV2834c-RV2833c-RV2832c	CTGGATGAGGGGCCACAG	
Rv2920c	am	RV2920c-RV2919c-RV2918c	CTGGATGAGGGGCCACAG	
Rv2967ca	pca	–		CTGGATGAGGGGCCACAG
Rv3003ca	ilvB1	RV3003c-RV3002c-RV3001c	CTGGATGAGGGGCCACAG	
Rv3010ca	pfkA	–		CTGGATGAGGGGCCACAG
Rv3043c	ctaD	RV3043c-RV3042c		CTGGATGAGGGGCCACAG
Rv3048ca	mdF2	–		CTGGATGAGGGGCCACAG
Rv3217c	wbiB1	RV3279c-RV3278c		CTGGATGAGGGGCCACAG
Rv3279a	birA	RV3280-RV3281-RV3282		CTGGATGAGGGGCCACAG
Rv3316c	strA	RV3316c-RV3315c-RV3314c-RV3313c	CTGGATGAGGGGCCACAG	
Rv3349c	aatA	RV3349c-RV3348c		CTGGATGAGGGGCCACAG
Rv3367c	–	–		CTGGATGAGGGGCCACAG
Rv3681c	whiB4	RV3681c-RV3680c		CTGGATGAGGGGCCACAG
Rv3859c	gtlB	RV3859c-RV3858c		CTGGATGAGGGGCCACAG

Detected binding sites of GlxR (ortholog in MT: Rv3676/Cbp), RamB (ortholog in MT: Rv0465c), AmR (ortholog in MT: Rv3160c), DtxR (ortholog in MT: IdeR/Rv3173c) and LexA (ortholog in MT: Rv2720/LexA) orthologs of CG in MT.

Genome-wide runs. There are three ways to access this feature through the MycoRegNet web site: (1) The TFBScan button at the main page offers the possibility to upload user-defined sequences in FASTA format. (2) At any gene details page the user can predict TFBSs in the upstream sequence of the selected gene. (3) If the gene of interest encodes a TF, the PWM learned from the known TFBSs of the TF may be used to scan for further TFBSs in the upstream sequences of all other mycobacterial genes. The predicted results may further be visualized as graphs. The interface is easy to use: one just has to choose a background model (nucleotide distribution) and a P-value threshold. For further details regarding the prediction of prokaryotic TFBSs by utilizing PoSSuMsearch, the reader is referred to (20,43).

Gene regulatory network visualization. As mentioned earlier, MycoRegNet also provides a network visualization toolkit: GraphVis. It is a Java applet, which graphically reconstructs regulatory networks as graphs based on selected genes and a user-defined graph depth cutoff. It traverses all regulatory interactions from the starting point until the graph depth cutoff has been reached. Finally, a Java applet window appears showing the regulatory network as graph, where nodes represent genes and edges regulatory interactions. GraphVis allows the user to zoom into the graph, apply different layout styles, remove selected elements or retrieve detailed information on selected genes. Furthermore, it is possible to extend the graph dynamically with more genes/regulations from the database and to display the operon grouping of presented genes. Visualized networks may also be graphically compared between two species or between a predicted and an evidenced network by utilizing special comparative graph layout algorithms. In addition, GraphVis features the projection of gene expression data onto the genes of a visualized network. The user can choose to apply gene expression data from the stimulon repository of MycoRegNet or from own tab-delimited text or MS-Excel files, which can be uploaded to GraphVis directly. It is also possible to use expression data extracted from EMMA by means of the integrated Web Service interconnection. According to the differential expression level of the genes, the concerned nodes are resized within the graph. Thus, the user can achieve a comprehensive overview of the transcriptional response of M. tuberculosis to a certain stimulus.

Well-structured data access by using Web Services

Although no real standard in bioinformatics, a growing number of platforms offer SOAP-based Web Service access to their data repositories [refer to some EBI resources (44) or to the BRENDA database (45), just to name two of them]. Many databases still provide flat files for exchange with other data processing systems. Thus, the developers of novel tools and platforms have to perform updates in regular time intervals and to adjust the downloaded data for their special purpose. On that account, gene regulatory data stored in MycoRegNet can also be accessed via the integrated Web Service
server. The data can be integrated directly into corresponding projects without further time-consuming data processing. Detailed information on how to use the MycoRegNet Web Services is available from the main page via the Web Service button.

Application example—the regulatory network of the GlxR ortholog Rv3676 (CrpMT) in MT

Both GlxR (Cg0350) of C. glutamicum and CRPMT (Rv3676) of M. tuberculosis belong to the Crp-Fnr family of TFs (46) and have been characterized as cAMP sensing homologs of E. coli Crp (23,47,48). Crp-cAMP-dependent gene regulation is commonly involved in carbon catabolite repression and forms one of the possible connections between carbon metabolism and virulence (49,50).

In mycobacteria, cAMP signalling is the subject of intensive research, as it may be related to virulence of these strains (51,52). It is noteworthy that M. tuberculosis contains 16 putative adenylate cyclases, as well as 10 putative cyclic nucleotide binding proteins (53,54), hinting at a crucial and diverse role for cAMP signalling in mycobacteria.
Figure 4. Reconstructed network of the GlxR ortholog Crp$_{MT}$. The network reconstruction of the Crp$_{MT}$ regulon is based on the 121 transcription units presented in Table 3. It was generated by the integrated network reconstruction tool GraphVis of MycoRegNet. Transcription units relying on binding site predictions/experimental verifications that were reported previously in (22–24,60) and correspond with our findings are colored according to the appropriate publication. Arrows and gene IDs (node labels) coloured in red indicate a repressive regulation of Crp$_{MT}$, green arrows correspond to an activating regulation.

Figure 3. Sequence logo of the predicted Crp$_{MT}$ binding sites (A) in comparison to the sequence logo of GlxR (B). The sequence logo models the binding site motif of Crp$_{MT}$. It was deduced from the predicted binding sites in Table 3. The height of each letter within an individual stack represents the nucleotide’s frequency relative to the particular motif position; thus, the degree of a nucleotide’s conservation is indicated by the stack according to the respective position.
GlxR of C. glutamicum has been in the focus of interest in the last years (48,55–59), and available data indicates GlxR as global regulator with about 150 target genes in functional diverse network modules, such as carbohydrate metabolism, aerobic and anaerobic respiration, fatty acid metabolism, aromatic compound degradation, glutamate uptake and nitrogen assimilation, the cellular stress response and resuscitation.

Previous studies suggested a similar vital role for Crp_{MT} in M. tuberculosis. Published data implicate Crp_{MT} in virulence, hypoxia and nutrient starvation (21,23,24,60). Deletion of Crp_{MT} altered the expression of 16 genes, and caused an impaired growth phenotype in bone marrow-derived macrophages as well as in tuberculosis mouse models (24). Several suggestions for a putative Crp_{MT} regulon have been made, although these studies relied solely on the detection of putative binding sites (23,24,60).

As part of our pipeline, the known regulatory interactions of GlxR collected in CoryneRegNet have been used to reconstruct the regulon of the orthologous TF Crp_{MT}. Due to the apparent vital role of these regulators in their respective organisms, and the available data on putative target genes and characterized binding sites, we chose them as application case for our analysis. Employing our pipeline, regulatory interactions with 64 target genes could be transferred from C. glutamicum GlxR to M. tuberculosis Crp_{MT}. Furthermore, we considered 26 genes with experimental evidence of regulation by Crp_{MT} as potential target genes (21–24).

Based on experimentally verified binding sites of Crp_{MT} (21–23) together with binding sites predicted by the TFBS search of our pipeline, we complemented the suggested regulon with the prediction of Crp_{MT} binding sites in the upstream regions of putative target genes.

In contrast to the TFBS searched within our pipeline, we created an adopted and optimized PWM for Crp_{MT} from experimentally verified and predicted binding sites, and applied it for TFBS search. To detect the novel binding sites, we set the P-value threshold to 10⁻⁵ and performed a restrictive search on sequences upstream genes operons concerning the whole genome of MT. Again, we used PoSSuMsearch for binding site prediction scanning 580-bp long upstream sequence, ranging from + 20 bp relative to the transcription start site. Using Weblogo (61), we generated a sequence logo from the detected binding sites of Crp_{MT} and from the appropriate binding sites of GlxR that were used for PWM creation (see Methods section). The resulting sequence logos are shown in Figure 3.

In total, we identified 207 putative target genes of Crp_{MT}, organized in 121 transcription units (see Table 3 and Figure 4). Of this set, 17 genes belong to the mycobacterial core regulon (62) and 41 were reported as essential for M. tuberculosis (63,64). Furthermore, at least 17 genes were able to reconstruct the regulon of the orthologous TF Crp_{MT}

Gene ID	Gene	Motif position^a	Motif sequence	Operon
Carbohydrate metabolism	GlcB	–589	TGTGGTGGCACCACACAA	
GlcB	acn	–432	TGTGACTGCGGACATA	
GlcB	fadE	–566	TGTGATGGTTGTCACC	
GlcB	fadD1	–656	TGTGACCCGAGGCGAGGACAGA	
GlcB	fadD2	–650	TGTGACCCGAGGCGAGGACAGA	
GlcB	pckA	–656	TGTGACCCGAGGCGAGGACAGA	
Fatty acid metabolism	CLS	–566	TGTGACCCGAGGCGAGGACAGA	
CLS	pckA	–656	TGTGACCCGAGGCGAGGACAGA	
CLS	pckA	–656	TGTGACCCGAGGCGAGGACAGA	
CLS	pckA	–656	TGTGACCCGAGGCGAGGACAGA	

(continued)
Table 3. Continued

Gene ID	Gene	Motif position	Motif sequence	Operon
Rv2936c	fadD26	−498	TGGTAA TCTCGTC TCA	Rv2930c–Rv2931c–Rv2932c–Rv2933c–Rv2934c–Rv2935c–Rv2936c–Rv2937c–Rv2938c–Rv2939c
Rv3279c	birA	−38	TAT TCG TGG CCC AGC	Rv3279c^a–Rv3278c^e
Rv3280c	accD5	−331	CGGGAC GTTGC AACAC	Rv3280c^a–Rv3281c^f–Rv3282c
Rv3549c	gltB	−67	GGT GAT CGG CATTGCA	Rv3549c–Rv3548c ^e

Nitrogen assimilation

Gene ID	Gene	Motif position	Motif sequence	Operon
Rv1538c	ansA	−187	TGT GAG CAC ACC AAC CA	–
Rv2220^a–^f	glnA1	−1	TGT GAC GGG AAA AGC	–
Rv2920c	ant	−2	AG GTG GAC AA T ATCCCC	Rv2920c^c–Rv2919c^a–Rv2918c^e
Rv3859c	glnT	−398	TGC TTC GGG ATT TCA	Rv3859c^a–Rv3858c^f

PGRS

Gene ID	Gene	Motif position	Motif sequence	Operon
Rv0453c	PPE11	−269	GGT GAC CAA AAC ACT CA	Rv1161^a–Rv1162^a–Rv1163^a–Rv1164^a–Rv1165^a–Rv1166^b
Rv1386c	PE15	−133	TGT GAC CAA AAC ACT CA	Rv1386^c–Rv1387^c–Rv1388c^e
Rv2408c	PE24	−213	GGT GAT CGG CGT CAC	–
Rv2591c	P_PGRS44	−38	CTT GAC ATG GTT CAC	–
Rv3136c	PPE51	−16	AAG GAG CTC GAC A	–
Rv3650c	PE33	−83	TGT GAT GC A CTG TCA	–

Respiration

Gene ID	Gene	Motif position	Motif sequence	Operon
Rv1161c	narG	−512	TGC GTG TAC G GC AAC	Rv1161^a–Rv1162^a–Rv1163^a–Rv1164^a–Rv1165^a–Rv1166^b
Rv1623^e–^f	cydA	−181	CGT GTG GTG ATC GC A	–
Rv1854^e–^f	ndh	−109	TGT GGT GCT GAT GAC A	–
Rv2193c	ctaE	−517	GGT GAT AGG TTCC	Rv2192^f–Rv2194^f–Rv2195^f–Rv2196^f
Rv2200c	ctaC	−23	TGT GAT CAG A GGC G	Rv2200^a–Rv2199c
Rv3043c	ctaD	−227	AG GTG TAC GC A TCC	Rv3045c^a–Rv3042c^g

Other cellular processes

Gene ID	Gene	Motif position	Motif sequence	Operon
Rv0019^a–^f	fhaB	−69	CGT GA C TT GTG TCA	Rv0079–Rv0080
Rv0079c	–	−110	CGT GAC CAC ACC ACA	–
Rv0103c	etpB	−159	TGT GAC GGC GCC GTA	–
Rv0104c	–	−1	TGT GAC GCC GTT CA	–
Rv0145c	–	−59	AGT GAT GTG GCC A	Rv0145–Rv0146
Rv0188^a–^g	–	−356	AGA GAA ACA GCG CA	–
Rv0194c	–	−517	TGT CAC TGA TAC GC	–
Rv0232c	–	−55	CGT GAT GCA GGC ACA	Rv0232–Rv0233
Rv0250c	–	−37	TGT GAT CTA GAC ACC	–
Rv0360c	–	−2	CGT GAC ACC AGG CCA	–
Rv0457c	–	−43	TGA TATA CAG TCA	–
Rv0470c	–	−212	TGG GTG GGA AAT ACA	–
Rv0483c	lprQ	−116	TGT GTT TGG ATC A	–
Rv0793c	–	−375	TGT GAT GTC GAC G	–
Rv0828^a–^e	phoT	−588	GGT GAT GTG GCC AGC	–
Rv0867^c–^f	rpfA	−443	TGT GAC ATT ACC CA	–
Rv0884^c–^g	serC	−91	TGT GAC GTT TGC TCA	–
Rv0885c	–	−133	TGT GAA CAA GTC A	Rv0885–Rv0886
Rv0904^e–^f	accD3	−2	CGT GAT GTG TAC AGC	–
Rv0928c	psiS3	−6	ACT GAT TTA GAA ACC TA	Rv0928^g–Rv0935^g–Rv0936^g

Other cellular processes

Gene ID	Gene	Motif position	Motif sequence	Operon
Rv0993c	galU	−18	TGT GAC AGC ATG TCA	Rv0993^c–Rv0994^g–Rv0995^e
Rv0950c	–	−153	TGT GAC TCA AACTCA	–
Rv0992c	–	−109	TGT GAC ATG TCTCA	–
Rv1009c	rpfB	−271	TGG TGG CTG CAT CAC	–
Rv1057c	–	−248	TGGT GAC TTA GTA A	–
Rv1092c^e–^g	coaA	−242	TGC ACC AGT AGT TCA	–
Rv1111c^e–^g	–	−411	TGT GAC ATG TAC GC	–
Rv1189c	–	−69	TGT GAC TT GAG TCA	Rv1158c^e–Rv1157c^e
Rv1159	pinE	−77	TGT GAC TCA AGT GAC	–
Rv1203c	–	−79	TGT GAC TCA TGA TCA	–
Rv1291c	–	−323	TGT GAT CGG CCC ACC	–
Rv1314c	–	−294	TGT GAC TCC GGG CCC	–
Rv1324c	–	−104	TGT GAT CTT GTC TCA	–
Rv1482c	–	−23	TGT GAC TCA GAC ACA	–
Rv1566c	–	−235	TGT GAC ATG A ATC	–
Rv1568	bioA	−553	TGT GAT TT CAG TCA	Rv1568–Rv1569–Rv1570–Rv1571
Rv1592c^e–^f	–	−215	TGT GAT AGC CCC ACC	–
Rv1757c	–	−351	TGT GAC GGG CCC ACC	–
Rv1779c	–	−389	TGT GAA CA AACC ACA	–

(continued)
Table 3. Continued

Gene ID	Gene	Motif position	Motif sequence	Operon
Rv1780	–	–147	TGTGGTGTGTTCACA	–
Rv1890c	–	–7	TGTGGTGGCCACACA	–
Rv1891c,d	–	–63	TGTGGGCCAGGACACA	–
Rv2145c,e,f	wag31	–463	CGTGACGTGGGCACACA	–
Rv2172c	–	–2	TGTGACCTCAACACG	–
Rv2180c	–	–304	TGTGGTGAACACACAC	–
Rv2201c,d	aspB	–336	GCTGTGAGAGACACAG	–
Rv2258c	–	–459	GGTGAGTCGACACACG	–
Rv2362c	revO	–224	TGTGGGCTGTCACAC	–
Rv2377c	whiH	–268	TGTGGTACCTCACCT	–
Rv2406c	–	–34	TGTGACAGACTCAC	–
Rv2407c	–	–242	GGTGAGTCGTCACAC	–
Rv2428c	aphC	–93	GGTGGTATATACAC	–
Rv2450c	rpfE	–509	TGTGGGCACGTCACAC	–
Rv2450c	rpfE	–422	GGTGATTCGTCACAC	–
Rv2455c	–	–237	AGTGACCAATCACC	–
Rv2650c	–	–305	GGTGAGGAGGTCACAC	–
Rv2699c	–	–116	GGTGATGATAATCAC	–
Rv2700c,d	–	–138	GGTGAGTTACATCAC	–
Rv2712c	–	–296	GGTGAGGTAGGACAC	–
Rv2833c	uppA	–513	GGTGAGTCGCGACAC	–
Other cellular processes				
Rv2374c	dipZ	–351	TGTGGCGGAGTTCAC	–
Rv3003c	ilvB1	–335	TGTGGTGCGCACACAC	–
Rv3048c,e,f	ndf2	–2	GGTGACTGGAACACG	–
Rv3053c	–	–347	GGTGATCGGCACACG	–
Rv3217c,e	–	–278	TGTGGTGCGGTACAC	–
Rv3219c,e	whiB1	–176	AGTGAGATAGCCACAC	–
Rv3613c,e	–	–458	GGTGACGAAATCCAC	–
Rv3617c	ehpA	–315	TGTGACCGGTACAC	–
Rv3645c	–	–179	GGTGACGCAATCAC	–
Rv3681c,e	whiB4	–106	TGAATACAGGTAAC	–
Rv3729c	–	–190	GGTGACGCAATCAC	–
Rv3843c	–	–505	GGTGAGTAAATCAC	–
Rv3856c	–	–547	TGTGGGCTGTCACAC	–
Rv3857c	–	–341	TGTGGGCTGTCACAC	–
Consensus			TGTGANNNNNNNTCAC	

Crp_{MT} binding sites detected by the TFBS search of the introduced pipeline and by the additional TFBS search with adopted and optimized PWMs. Bold letters indicate conserved pentamers of the motif. Codes:
- a Transferred target gene from CG.
- b Experimentally verified binding site by EMSA/ChIP/RT-PCR (21–23).
- c Gene showed altered expression in microarray studies of ΔRv3676 versus WT (24).
- d Motif position relative to the translation start site.
- e Core gene.
- f Essential gene.
- g Gene involved in virulence processes.

Genes of the suggested regulon are connected to antibiotic resistance and virulence of <i>M. tuberculosis</i> (65–69). Based on annotation information for <i>M. tuberculosis</i> (69), knowledge about orthologous <i>C. glutamicum</i> genes and operon structures, we attributed individual target genes to distinct functional modules.

Similar to present knowledge on GlxR, results implicate Crp_{MT} in the regulation of several functional modules such as carbohydrate metabolism (40 target genes), fatty acid metabolism (33 target genes), respiration (16 target genes) and nitrogen assimilation (7 target genes). Therefore, the position of the GlxR homolog Crp_{MT} as global regulator in the transcriptional regulatory network seems to be conserved in <i>M. tuberculosis</i>. It is interesting to note that the suggested regulon comprises genes involved in essential functional modules, e.g. the citrate cycle, as well as genes involved in the synthesis of the cellular envelope which plays an important role in the virulence of <i>M. tuberculosis</i>. Together with the supposed regulation of further virulence–associated genes this might explain why a functional Crp_{MT} is required for virulence in model systems (24).

CONCLUSIONS

With MycoRegNet, we have set up a system that allows researchers of the tuberculosis community to perform comprehensive analysis and visualizations of the gene regulatory network of MT. With its TFBS prediction it further provides easy access to a method that helps to generate new hypotheses in silico. As the sister project to CoryneRegNet, the MycoRegNet database content was generated through our comparative genomics pipeline, which provided us with reliable transfers of gene
regulatory interactions from the reference organism \textit{C. glutamicum} to \textit{M. tuberculosis}. With MycoRegNet, the corresponding data are publicly available and can be accessed easily through the web interface, or in a well-structured manner by using the MycoRegNet Web Service to maintain the reconstruction, visualization, and validation of mycobacterial regulatory networks at different hierarchical levels. Taken together, MycoRegNet is a reference resource for the tuberculosis community to gain a better understanding of the complex coherences of transcriptional gene control. It has the potential to assist researchers at the development of new vaccines and drugs to treat and prevent tuberculosis. Although MycoRegNet has been initially designed for MT, it may also serve for other mycobacterial strains in future, such as the already integrated \textit{M. tuberculosis} CDC1551.

FUNDING

GenoMik-Plus initiative of the German Federal Ministry of Education and Research (grant 0313805A); ERA-NET PathoGenoMics SPATELIS project (to J.K.); German Academic Exchange Service (to J.B. for his work at PathoGenoMics SPATELIS project (to J.K.); German Federal Ministry of Education and Research (grant 0313805A); ERA-NET GenoMik-Plus initiative of the German Federal Ministry of Education and Research, grant 0313805A.

Conflict of interest statement. None declared.

REFERENCES

1. Frieden, T.R., Sterling, T.R., Munsiff, S.S., Watt, C.J. and Dye, C. (2003) \textit{Tuberculosis}. \textit{Lancet}, 362, 887–899.
2. Raviglione, M.C. and Smith, I.M. (2007) XDR tuberculosis–implications for global public health. \textit{N. Engl. J. Med.}, 356, 656–659.
3. Wilson, M., DeRisi, J., Kristensen, H.H., Imboden, P., Rane, S., Brown, P.O. and Schoolnik, G.K. (1999) Exploring drug-induced alterations in gene expression in \textit{Mycobacterium tuberculosis} by microarray hybridization. \textit{Proc. Natl Acad. Sci. USA}, 96, 12833–12838.
4. Singh, J.A., Upshur, R. and Padayachti, N. (2007) \textit{XDR-TB} in South Africa: no time for delay or complacency. \textit{PloS Med.}, 4, e50.
5. Park, H.-D., Guinn, K.M., Harrell, M.L., Liao, R., Voskuil, M.I., Tompa, M., Schoolnik, G.K. and Sherman, D.R. (2003) Rv3133c: dosR is a transcription factor that mediates the hypoxic response of \textit{Mycobacterium tuberculosis}. \textit{Mol. Microbiol.}, 48, 833–843.
6. Stewart, G.R., Snevin, V.A., Walzl, G., Russell, J., Tormay, P., O’Gara, P., Goyal, M., Betts, J., Brown, I.N. and Young, D.B. (2001) Overexpression of the heat-shock proteins reduces survival of \textit{Mycobacterium tuberculosis} in the chronic phase of infection. \textit{Nat. Med.}, 7, 732–737.
7. Gama-Castro, S., Jimnez-Jacinto, Y., Peralta-Gil, M., Santos-Zavaleta, A., Pealoza-Spina, M.I., Contreras-Moreira, B., Segura-Salazar, J., Muiz-Rascado, L., Martinez-Flores, I., Salgado, H. et al. (2008) RegulonDB (version 6.0): gene regulation model of \textit{Escherichia coli} K-12 beyond transcription, active (experimental) annotated promoters and Textpresso navigation. \textit{Nucleic Acids Res.}, 36, D120–D124.
8. Baumbach, J. (2007) \textit{CycoreRegNet 4.0} – a reference database for Corynebacterial gene regulatory networks. \textit{BMC Bioinformatics}, 8, 429.
9. Jacques, P.-E., Gervais, A.L., Cantin, M., Lucier, J.-F., Dallaire, G., Droin, G., Gaudreau, L., Goulet, J. and Brezinski, R. (2005) MibRegList, a database dedicated to the analysis of transcriptional regulation in \textit{Mycobacterium tuberculosis}. \textit{Bioinformatics}, 21, 2562–2565.
10. Reddy, T.B.K., Riley, R., Wymore, F., Montgomery, P., DeCaprio, D., Engels, R., Gellesch, M., Hubble, J., Jen, D., Jin, H. et al. (2009) Tb database: an integrated platform for tuberculosis research. \textit{Nucleic Acids Res.}, 37, D499–D508.
11. Babu, M.M. and Teichmann, S.A. (2003) Evolution of transcription factors and the gene regulatory network in \textit{Escherichia coli}. \textit{Nucleic Acids Res.}, 31, 1234–1244.
12. Babu, M.M., Lascombe, N.M., Aravind, L., Gerstein, M. and Teichmann, S.A. (2004) Structure and evolution of transcriptional regulatory networks. \textit{Curr. Opin. Struct. Biol.}, 14, 283–291.
13. Babu, M.M., Teichmann, S.A. and Aravind, L. (2006) Evolutionary dynamics of prokaryotic transcriptional regulatory networks. \textit{J. Mol. Biol.}, 358, 643–665.
14. Stuckebrandt, E., Fuchs, P.A. and Ward-Rainey, N.L. (1997) Proposal for a new hierarchical classification system, \textit{Actinobacteria} class nov. \textit{Int. J. Sys. Bacteriol.}, 47, 479–491.
15. Eggeling, L., Besra, G.S. and Alderwick, L. (2008) Structure and synthesis of the cell wall. In Burkovski, A. (ed.), \textit{Corynebacteria Genomics and Molecular Biology}, Caister Academic Press, pp. 267–294.
16. Seidel, M., Alderwick, L.J., Sahm, H., Besra, G.S. and Eggeling, L. (2007) Topology and mutational analysis of the single Emb arabinofuranosyltransferase of \textit{Corynebacterium glutamicum} as a model of Emb proteins of \textit{Mycobacterium tuberculosis}. \textit{Glycobiology}, 17, 210–219.
17. Portevin, D., Sousa-D’Auria, C.D., Housin, C., Grimaldi, C., Chami, M., Daff, M. and Guillot, C. (2004) A polyketide synthase catalyzes the last condensation step of mycolic acid biosynthesis in mycobacteria and related organisms. \textit{Proc. Natl Acad. Sci. USA}, 101, 314–319.
18. Brinkrolf, K., Brune, I. and Tauch, A. (2007) The transcriptional regulatory network of the amino acid producer \textit{Corynebacterium glutamicum}. \textit{J. Biotechnol.}, 129, 191–211.
19. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. \textit{Nucleic Acids Res.}, 25, 3389–3402.
20. Beckstette, M., Homann, R., Giegerich, R. and Kurtz, S. (2006) Fast index based algorithms and software for matching position specific scoring matrices. \textit{BMC Bioinformatics}, 7, 389.
21. Agarwal, N., Raghunand, T.R. and Bishai, W.R. (2006) Regulation of the expression of whiB1 in \textit{Mycobacterium tuberculosis}: role of cAMP receptor protein. \textit{Microbiology}, 152 (Pt 9), 2749–2756.
22. Bai, G., Gazdik, M.A., Schaak, D.D. and McDonough, K.A. (2007) \textit{The Mycobacterium bovis} BCG cyclic AMP receptor-like protein is a functional DNA binding protein in vitro and in vivo, but its activity differs from that of its \textit{M. tuberculosis} ortholog, \textit{Rv3676}. \textit{Infect. Immun.}, 75, 5509–5517.
23. Bai, G., McCue, L.A. and McDonough, K.A. (2005) Characterization of Mycobacterium tuberculosis \textit{Rv3676} (CRPM), a cyclic AMP receptor protein-like DNA binding protein. \textit{J. Bacteriol.}, 187, 7795–7804.
24. Rickman, L., Scott, C., Hunt, D.M., Hutchinson, T., Menendez, M.C., Whalan, R., Hinds, J., Colston, M.J., Green, J. and Buxton, R.S. (2005) A member of the cAMP receptor protein family of transcription regulators in \textit{Mycobacterium tuberculosis} is required for virulence in mice and controls transcription of the rpfA gene coding for a resuscitation promoting factor. \textit{Mol. Microbiol.}, 56, 1274–1286.
25. Sun, R., Converse, P.J., Ko, C., Tyagi, S., Morrison, N.E. and Bishai, W.R. (2004) \textit{Mycobacterium tuberculosis} ECF sigma factor SigC is required for lethality in mice and for the conditional expression of a defined gene set. \textit{Mol. Microbiol.}, 52, 25–38.
26. Manganelli, R., Voskuil, M.I., Schoolnik, G.K. and Smith, I. (2001) \textit{The Mycobacterium tuberculosis} ECF sigma factor SigE: role in global gene expression and survival in macrophages. \textit{Mol. Microbiol.}, 41, 423–437.
27. Manganelli, R., Voskuil, M.I., Schoolnik, G.K., Dubnau, E., Gomez, M. and Smith, I. (2002) Role of the extracytoplasmic-function sigma factor CAGH in \textit{Mycobacterium tuberculosis} global gene expression. \textit{Mol. Microbiol.}, 45, 365–374.
28. Davis,E.O., Dullaghan,E.M. and Rand,D.L. (2002) Definition of the mycobacterial SOS box and use to identify LexA-regulated genes in Mycobacterium tuberculosis. J. Bacteriol., 184, 3287–3295.
29. Stewart,G.R., Wernisch,L., Stabler,R., Mangan,J.A., Hinds,J., Laing,K.G., Young,D.B. and Butcher,P.D. (2002) Dissection of the heat-shock response in Mycobacterium tuberculosis. J. Microbiol., 148 (Pt 10), 3129–3138.
30. Parish,T., Smith,D.A., Roberts,G., Betts,J.C., Lukey,P.T., Robb,L.C., McAdam,R.A. and Duncan,K. (2002) Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol. Microbiol., 43, 717–729.
31. Ashburner,M., Ball,C.A., Blake,J.A., Botstein,D., Butler,H., Carter,S.E., Cherry,J.M., Davis,A.P., Dolinski,K., Dwight,S.S., Eppig,J.T., Feil,R., Gage,D.A., Harris,M.A., Harris,32., Hill,D.P., Issel-Tarver,E., Kasarskis,A., Lewis,S.S., Matese,J.C., Richardson,J.M., Ringwald,M., Rubin,G.M. and Sherlock,G. (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet., 25, 25–29.
33. Kanehisa,M., Goto,S., Hattori,M., Akimoto-Kanohita,K.F., Itoh,M., Kawashima,S., Katayama,T., Araki,M. and Hirakawa,M. (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res., 34, D354–D357.
34. Tatusov,R.L., Fedorova,N.D., Jackson,J.D., Jacobs,A.R., Kiryutin,B., Koonin,E.V., Krylov,D.M., Mazumder,R., Mekhodiev,S.L., Nikolyska,A.N. et al. (2003) The COG database: an updated version includes eukaryotes. BMC Bioinformatics, 4, 41.
35. Askarber, M., Ball,C.A., Blake,J.A., Botstein,D., Butler,H., Cherry,J.M., Davis,A.P., Dolinski,K., Dwight,S.S., Eppig,J.T., Feil,R., Gage,D.A., Harris,M.A., Harris,32., Hill,D.P., Issel-Tarver,E., Kasarskis,A., Lewis,S.S., Matese,J.C., Richardson,J.M., Ringwald,M., Rubin,G.M. and Sherlock,G. (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet., 25, 25–29.
36. Baumber, M., Ball,C.A., Blake,J.A., Botstein,D., Butler,H., Cherry,J.M., Davis,A.P., Dolinski,K., Dwight,S.S., Eppig,J.T., Feil,R., Gage,D.A., Harris,M.A., Harris,32., Hill,D.P., Issel-Tarver,E., Kasarskis,A., Lewis,S.S., Matese,J.C., Richardson,J.M., Ringwald,M., Rubin,G.M. and Sherlock,G. (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet., 25, 25–29.
37. Körner,H., Sofia,H.J. and Zumstegl,W.G. (2003) Phylogeny of the bacterial superfamily of Cfr-Fnr transcription regulators: exploiting the metabolic spectrum by controlling alternative gene programs. FEMS Microbiol. Rev., 27, 559–592.
38. Krohn,T., Tundup,S. and Hasnain,S.E. (2007) Novel biochemical properties of a CRP/FNR family transcription factor from Mycobacterium tuberculosis. Int. J. Med. Microbiol., 297, 451–457.
39. Kohl,T.A., Baumbach,J., Jungwirth,B., Pfler,A. and Tauch,A. (2008) The GtxR regulon of the amino acid producer Corynebacterium glutamicum: in silico and in vitro detection of DNA binding sites of a global transcription regulator. J. Biotechnol., 135, 340–350.
40. Letek,M., Valbuena,N., Ramos,A., Ordez,E., Gil,J.A. and Mateos,L.M. (2006) Characterization and use of catabolite-repressed promoters from gluconate genes in Corynebacterium glutamicum. J. Bacteriol., 188, 409–423.
41. Shenoy,A.R. and Viswaswariah,S.S. (2006) Mycobacterial adenylyl cyclases: biochemical diversity and structural plasticity. FEMS Lett., 580, 3344–3352.
42. McCue,L.A., McDonough,K.A. and Lawrence,C.E. (2000) Functional classification of cNMP-binding proteins and nucleotide cyclases with implications for novel regulatory pathways in Mycobacterium tuberculosis. Genom. Res., 10, 204–219.
43. Kohl,T.A., Baumbach,J., Jungwirth,B., Pfler,A. and Tauch,A. (2008) The GtxR regulon of the amino acid producer Corynebacterium glutamicum: in silico and in vitro detection of DNA binding sites of a global transcription regulator. J. Biotechnol., 135, 340–350.
44. Han,S.O., Inui,M. and Yukawa,H. (2008) Effect of carbon source availability and growth phase on expression of Corynebacterium glutamicum genes involved in the tricarboxylic acid cycle and glyoxylate bypass. Microbiology, 154 (Pt 10), 3073–3083.
45. Han,S.O., Inui,M. and Yukawa,H. (2007) Expression of Corynebacterium glutamicum glycolytic genes varies with carbon source and growth phase. Microbiology, 153 (Pt 7), 2190–2202.
46. Körner,H., Sofia,H.J. and Zumstegl,W.G. (2003) Phylogeny of the bacterial superfamily of Cfr-Fnr transcription regulators: exploiting the metabolic spectrum by controlling alternative gene programs. FEMS Microbiol. Rev., 27, 559–592.
survival in macrophages. Proc. Natl Acad. Sci. USA, 102, 8327–8332.

66. Tullius, M.V., Harth, G. and Horwitz, M.A. (2003) Glutamine synthetase GlnA1 is essential for growth of Mycobacterium tuberculosis in human THP-1 macrophages and guinea pigs. Infect. Immun., 71, 3927–3936.

67. McAdam, R.A., Quan, S., Smith, D.A., Bardarov, S., Betts, J.C., Cook, F.C., Hooker, E.U., Lewis, A.P., Woollard, P., Everett, M.J. et al. (2002) Characterization of a Mycobacterium tuberculosis H37Rv transposon library reveals insertions in 351 ORFs and mutants with altered virulence. Microbiology, 148 (Pt 10), 2975–2986.

68. McKinney, J.D., Höner zu Bentrup, K., Muñoz-Elias, E.J., Miczak, A., Chen, B., Chan, W.T., Swenson, D., Sacchettini, J.C., Jacobs, W.R. and Russell, D.G. (2000) Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature, 406, 735–738.

69. Cole, S.T. (1999) Learning from the genome sequence of Mycobacterium tuberculosis H37Rv. FEBS Lett., 452, 7–10.