A degenerate Cahn-Hilliard model as constrained Wasserstein gradient flow

Daniel Matthes1,*, Clement Cancès2, and Flore Nabet3

1 Technische Universität München, Zentrum Mathematik
2 INRIA, Lille
3 ENP, Paris

Existence of solutions to a non-local Cahn-Hilliard model with degenerate mobility is considered. The PDE is written as a gradient flow with respect to the L^2-Wasserstein metric for two components that are coupled by an incompressibility constraint. Approximating solutions are constructed by means of an implicit discretization in time and variational methods.

© 2019 The Authors Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH Verlag GmbH & Co. KGaA Weinheim

1 The PDE system and its formal derivation

Degenerate Cahn-Hilliard system. We consider a mixture of two liquid phases of respective volume fractions $\rho(x), \eta(x) \in [0,1]$ on a spatial domain $\Omega \subset \mathbb{R}^n$, with $n \in \{1,2,3\}$. The dynamics is given by [1]

$$\partial_t \rho = \text{div}(\rho \nabla \phi), \quad \partial_t \eta = \text{div}(\eta \nabla \psi), \quad \phi - \psi = \Delta f(\rho) - \chi \rho, \quad \rho + \eta = 1, \quad (1)$$

where $f : [0,1] \to \mathbb{R}$ is either $f(r) = r$ or $f(r) = 2 \arcsin(\sqrt{r})$, and $\phi, \psi : \Omega \to \mathbb{R}$ are time-dependent auxiliary potentials. Below, we show how (1) is derived from variational principles. And we indicate the proof for existence of weak solutions.

Energy functional. Let $X := \{ \tilde{\rho} = (\rho, \eta) : \Omega \to [0,1]^2 \mid \int_\Omega \rho \, dx = m_1, \int_\Omega \eta \, dx = m_2 \},$ where $m_1, m_2 > 0$ are fixed, with $m_1 + m_2 = |\Omega|$. Define the energy functional $E : X \to \mathbb{R}_{\geq 0} \cup \{+\infty\}$ by

$$E(\tilde{\rho}) = \int_\Omega \left(|\nabla f(\rho)|^2 + |\nabla f(\eta)|^2 \right) \, dx + \frac{\chi}{2} \int_\Omega \rho \eta \, dx. \quad (2)$$

The two choices $f(r) = r$ and $f(r) = 2 \arcsin(\sqrt{r})$ correspond to, respectively,

$$|\nabla f(\rho)|^2 = |\nabla \rho|^2 \quad \text{and} \quad |\nabla f(\eta)|^2 = \frac{|\nabla \rho|^2}{\rho(1 - \rho)} \quad (3)$$

The first choice leads to the most classical Cahn-Hilliard model; for the second choice, E is the famous Flory-Huggins-deGennes energy [2]. Notice that in both cases, the integral involving the squared gradients is convex in $\tilde{\rho}$, whereas the integral involving $\rho \eta$ is not. To incorporate the volume constraint, let the functional $E : X \to \mathbb{R}_{\geq 0} \cup \{+\infty\}$ be defined such that $E(\tilde{\rho}) = E(\bar{\rho})$ if $\rho + \eta = 1$ a.e. in Ω, and $E(\tilde{\rho}) = +\infty$ otherwise.

Wasserstein metric. The Wasserstein metric W on probability densities on Ω can be defined in two ways, referred to as primal and dual formulation of the optimal transport problem:

$$W(\rho_0, \rho_1)^2 = \inf \left\{ \int_\Omega |v|^2 \rho_1 \, dx \mid (\text{id} + v) \# \rho_1 = \rho_0 \right\} \quad (4)$$

$$= \sup \left\{ \int_\Omega (\phi \rho_0 + \phi \rho_1) \, dx \mid \phi(x) + \phi(y) \leq \frac{1}{2} |x - y|^2 \right\}. \quad (5)$$

We shall need both formulations in the sequel. In the primal problem, one minimizes the kinetic energy over all velocity fields $v : \Omega \to \mathbb{R}^n$ which are such that if all “mass particles” of ρ_1 are moved along v, then the resulting density is ρ_0. In the dual problem, one optimizes over all Kantorovich potentials $\phi, \tilde{\phi} : \Omega \to \mathbb{R}$ that can be understood as optimal prices for transshipment. The optimizers are attained in both problems, and are related in the sense that $\nu_{\text{opt}} = \nabla \phi_{\text{opt}}$.

The natural extension of W to two-component densities $\tilde{\rho} \in X$ is given by

$$W(\tilde{\rho}_0, \tilde{\rho}_1)^2 = W(\rho_0, \rho_1)^2 + W(\eta_0, \eta_1)^2.$$

W is again a metric, and inherits the associated primal and dual formulations.

* Corresponding author: e-mail matthes@ma.tum.de, phone +49 89 289 18300, fax +49 89 289 18309

This is an open access article under the terms of the Creative Commons Attribution License 4.0, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Gradient flow equation. There is an infinitesimal “metric tensor” g associated to W, whose shape can be derived by combining the primal and dual formulations: if $\bar{p} = (p, q)$ is a tangent vector at \bar{p}, then

$$g[\bar{p}]^2 = \int_\Omega (|\nabla \phi|^2 p + |\nabla \psi|^2 q) \, dx,$$

where ϕ, ψ satisfy $p = \text{div}(\rho \nabla \phi)$, $q = \text{div}(\eta \nabla \psi)$.

Formally, a curve $\bar{p}(\cdot) : [0, \infty) \to X$ is a solution to the gradient flow of \mathcal{E} w.r.t. W if $\dot{\bar{p}}_t[\partial_t \bar{p}_t, \bar{p}_t] = -D \mathcal{E}(\bar{p}_t)[\bar{p}_t]$ holds for any tangent vector $\dot{\bar{p}}$ at \bar{p}_t. The differential on the right side is undefined unless $\dot{\bar{p}}$ preserves the volume constraint, that is $q = -p$. In that case, we have for the solutions $(\partial_t \bar{p}_t, \psi_t)$ to $\text{div}(\rho_t \nabla \phi_t) = \partial_t \rho_t = -\partial_t \eta_t = -\text{div}(\eta_t \nabla \psi)$ the relation

$$\int (\phi_t - \psi_t) p \, dx = \int |\Delta f(p_t) - \chi p_t| p \, dx.$$

This produces the coupled system (1).

2 Existence of solutions

Our main result [3] is:

Theorem 2.1 Given $\bar{p}_0 \in X$ with $\mathcal{E}(\bar{p}_0) < \infty$, then there exists at least one weak solution $(\bar{p}_t)_{t \geq 0}$ to (1).

First, we construct a time-discrete (time step $\tau > 0$) approximation $(\bar{p}^\tau_n)_n$ of \bar{p}_t via:

$$\bar{p}^\tau_n \in \arg \min_{\bar{p} \in X} \mathcal{E}_\tau(\bar{p}; \bar{p}^{n-1}) \quad \text{where} \quad \mathcal{E}_\tau(\bar{p}; \bar{p}') := \frac{1}{2\tau} W(\bar{p}, \bar{p}')^2 + \mathcal{E}(\bar{p}).$$

Summing the inequalities $\mathcal{E}_\tau(\bar{p}^\tau_n; \bar{p}^{n-1}) \leq \mathcal{E}_\tau(\bar{p}^{n-1}; \bar{p}^{n-2})$, one obtains:

Lemma 2.2 The minimizers \bar{p}^τ_n are well-defined for each n, and

$$\mathcal{E}(\bar{p}_n^\tau) \leq \mathcal{E}(\bar{p}_n^{n-1}) \leq \sum_{k=1}^N \left(\frac{W(\bar{p}_n^\tau, \bar{p}^{n-1})}{\tau} \right)^2 \leq C N \tau.$$

The first estimate above provides compactness in space, the second compactness in time. By an Arzelà-Ascoli argument, it follows that any reasonable interpolation of $(\bar{p}^\tau_n)_n$ in time converges as $\tau \to 0$ (at least along a subsequence) to a Hölder continuous limit curve $\bar{p}_* : [0, \infty) \to X$. It remains to show that \bar{p}_* (with appropriate ϕ and ψ) is a weak solution to (1).

Time-discrete versions of the continuity equations for ρ and η in (1) are a consequence of the primal formulation (4) of the optimal transport problem: with $v^\rho_n = \nabla \phi^\rho_n$ and $w^\psi_n = \nabla \psi^\rho_n$ being the optimal vector fields for the passage from \bar{p}^{n-1}_τ to \bar{p}^τ_n, we conclude from $(\text{id} + v^\rho_n) \# \rho^\tau_n = \rho^{n-1}_\tau$ that

$$\int_\Omega \frac{\rho^\tau_n - \rho^{n-1}_\tau}{\tau} \theta \, dx = \int_\Omega \nabla \theta \cdot \nabla v^\rho_n \rho^\tau_n \, dx + O(\tau) \quad \text{for each } \theta \in C^\infty_c(\Omega),$$

and likewise for η^τ_n. To derive the Euler-Lagrange equation involving $\phi - \psi$ in (1), we use the dual formulation (5) of optimal transport, and compare

$$\mathcal{E}_\tau(\bar{p}^\tau_n; \bar{p}^{n-1}) = \frac{1}{2\tau} \left[\int (\phi^\rho_n \rho^\tau_n + \phi^\rho_n \rho^{n-1}_\tau) \, dx + \int (\psi^\rho_n \eta^\tau_n + \psi^\rho_n \eta^{n-1}_\tau) \, dx \right] + \mathcal{E}(\bar{p}^\tau_n)$$

from above with $\mathcal{E}_\tau(\bar{p}; \bar{p}^{n-1})$ for some variation \bar{p}' of \bar{p}^τ_n, and from below with the same expression as above, in which ϕ^ρ_n, ψ^ρ_n are replaced by the respective potentials ϕ', ψ' for \bar{p}'. This provides a rigorous justification of the formal calculation leading to (6) above. Finally, to pass to the limit in the discrete system, we justify the following a priori estimate for the time-discrete approximation:

$$-\frac{d}{dt} \int_\Omega (\rho \log \rho + \eta \log \eta) \, dx \geq c \int_\Omega (|\Delta f(\rho)|^2 + |\Delta f(\eta)|^2) \, dx.$$

References

[1] F. Otto and W. E, J. Chem. Phys. 107, 10177 (1997).
[2] P. G. de Gennes, J. Chem. Phys. 72, 4756–4763 (1980).
[3] C. Cancès, D. Matthes, and F. Nabet, Arch. Rational. Mech. Anal., online first (2019).