ON WEIGHTED NORM INEQUALITIES FOR THE CARLESON OPERATOR

ANDREI K. LERNER

Abstract. We obtain $L^p(w)$ bounds for the Carleson operator \mathcal{C} in terms of the A_q constants $[w]_{A_q}$ for $1 \leq q \leq p$. In particular, we show that, exactly as for the Hilbert transform, $\|\mathcal{C}\|_{L^p(w)}$ is bounded linearly by $[w]_{A_q}$ for $1 \leq q < p$. Our approach works in the general context of maximally modulated Calderón-Zygmund operators.

1. Introduction

For $f \in L^p(\mathbb{R})$, $1 < p < \infty$, define the Carleson operator \mathcal{C} by
\[
\mathcal{C}(f)(x) = \sup_{\xi \in \mathbb{R}} |H(M^{\xi}f)(x)|,
\]
where H is the Hilbert transform, and $M^{\xi}f(x) = e^{2\pi i \xi x} f(x)$.

A famous Carleson-Hunt theorem on a.e. convergence of Fourier series in one of its equivalent statements says that \mathcal{C} is bounded on L^p for any $1 < p < \infty$. The crucial step was done by Carleson [5] who established that \mathcal{C} maps L^2 into weak-L^2. After that Hunt [15] extended this result to any $1 < p < \infty$. Alternative proofs of this theorem were obtained by Fefferman [10] and by Lacey-Thiele [22]. We refer also to [2], [13, Ch. 11] and [30, Ch. 7].

By a weight we mean a non-negative locally integrable function. The weighted boundedness of \mathcal{C} also is well known. Hunt-Young [15] showed that \mathcal{C} is bounded on $L^p(w)$, $1 < p < \infty$, if w satisfies the A_p condition (see also [13, p. 475]). In [14], Grafakos-Martell-Soria extended this result to a more general class of maximally modulated singular integrals. A different approach (as well as a kind of strengthening) to the Hunt-Young result was recently obtained by Do-Lacey [8].

In the past decade a lot of attention was devoted to sharp $L^p(w)$ estimates in terms of the A_p constants $[w]_{A_p}$. Recall that these constants

2010 Mathematics Subject Classification. 42B20, 42B25.

Key words and phrases. Carleson operator, modulated singular integrals, sharp weighted bounds.

This research was supported by the Israel Science Foundation (grant No. 953/13).
are defined as follows:

\[[w]_{A_p} = \sup_{Q} \left(\frac{1}{|Q|} \int_{Q} w \, dx \right) \left(\frac{1}{|Q|} \int_{Q} w^{-\frac{1}{p-1}} \, dx \right)^{p-1}, \quad 1 < p < \infty, \]

and

\[[w]_{A_1} = \sup_{Q} \left(\frac{1}{|Q|} \int_{Q} w \, dx \right) (\inf_{Q} w)^{-1}, \]

where the supremum is taken over all cubes \(Q \subset \mathbb{R}^n \). Sharp bounds for \(L^p(w) \) operator norms in terms of \([w]_{A_p}\) have been recently found for many central operators in Harmonic Analysis (see, e.g., [4, 7, 17, 24, 25, 32]). A relatively simple approach to such bounds based on local mean oscillation estimates was developed in [7, 18, 23, 24, 25].

In this paper we apply the “local mean oscillation estimate” approach to the Carleson operator \(C \). In particular, we obtain sharp linear bounds for \(\|C\|_{L^p(w)} \) in terms of \([w]_{A_q}\) for any \(1 \leq q < p < \infty \).

Our main results can be described in the framework of maximally modulated singular integrals studied by Grafakos-Martell-Soria [14].

We give several main definitions. A Calderón-Zygmund operator on \(\mathbb{R}^n \) is an \(L^2 \) bounded integral operator represented as

\[Tf(x) = \int_{\mathbb{R}^n} K(x, y) f(y) \, dy, \quad x \notin \text{supp} \, f, \]

with kernel \(K \) satisfying the following growth and smoothness conditions:

(i) \(|K(x, y)| \leq \frac{c}{|x-y|^n} \) for all \(x \neq y \);

(ii) \(|K(x, y) - K(x', y)| + |K(y, x) - K(y, x')| \leq c \frac{|x-x'|^\delta}{|x-y|^{n+\delta}} \) for some \(0 < \delta \leq 1 \) when \(|x-x'| < |x-y|/2 \).

Let \(F = \{ \phi_\alpha \}_{\alpha \in A} \) be a family of real-valued measurable functions indexed by some set \(A \), and let \(T \) be a Calderón-Zygmund operator. Then the maximally modulated Calderón-Zygmund operator \(T^F \) is defined by

\[T^F f(x) = \sup_{\alpha \in A} |T(M^{\phi_\alpha} f)(x)|, \]

where \(M^{\phi_\alpha} f(x) = e^{2\pi i \phi_\alpha(x)} f(x) \).

As it was shown in [14], the weighted theory of such operators can be developed under a single \textit{a priori} assumption on \(T^F \). We state this assumption as follows. Let \(\Phi \) be a Young function, that is, \(\Phi : [0, \infty) \to [0, \infty), \Phi \) is continuous, convex, increasing, \(\Phi(0) = 0 \) and \(\Phi(t) \to \infty \) as \(t \to \infty \). Define the mean Luxemburg norm of \(f \) on a cube \(Q \subset \mathbb{R}^n \) by

\[\|f\|_{\Phi, Q} = \inf \left\{ \lambda > 0 : \frac{1}{|Q|} \int_{Q} \Phi \left(\frac{|f(x)|}{\lambda} \right) \, dx \leq 1 \right\}. \]
Our basic assumption on T^F is the following: for any cube $Q \subset \mathbb{R}^n$,

$$\|T^F(f\chi_Q)\|_{L^{1,\infty}(Q)} \lesssim |Q|\|f\|_{\Phi,Q}. \quad (1.1)$$

If $\phi_\alpha(x) = 0$, then $T^F = T$ is the usual Calderón-Zygmund operator, and in this case (1.1) holds with $\Phi(t) = t$, which corresponds to the weak type $(1, 1)$ of T. Suppose that $n = 1$, $\phi_\alpha(x) = \alpha x$ and $A = \mathbb{R}$. Then $T^F = C$ is the Carleson operator, and the currently best known result is that (1.1) holds with $\Phi(t) = t \log(e + t) \log \log(e^{e^t} + t)$, see [14, Th. 5.1]. This represents an elaborated version of Antonov’s theorem [1] on a.e. convergence of Fourier series for $f \in L \log L \log \log \log L$ (see also [33]). For other examples concerning (1.1) we refer to [14].

Assuming (1.1), it is easy to show that T^F is controlled (either via a good-λ inequality or by a sharp function estimate) by the Orlicz maximal function M_Φ defined by

$$M_\Phi f(x) = \sup_{Q \ni x} \|f\|_{\Phi,Q}.$$

Since we are interested in $L^p(w)$ estimates for T^F with $w \in A_p$, it is assumed implicitly (by the Rubio de Francia extrapolation theorem) that M_Φ (and so T^F) is bounded on the unweighted L^p for any $p > 1$. It was shown by Pérez [31] that M_Φ is bounded on L^p if and only if Φ satisfies the B_p condition: $\int_1^\infty \Phi(t)t^{-p-1}dt < \infty$. Therefore, throughout the paper, we assume that for any $r > 1$,

$$t \leq \Phi(t) \leq c_r t^r \quad (t \geq 0).$$

This condition includes all main cases of interest. Also we introduce the following notation for the B_p constant of Φ:

$$C_\Phi(p) = \left(\int_1^\infty \frac{\Phi(t) dt}{t} \right)^{1/p}. $$

Before stating our main results about T^F, we summarize below sharp weighted bounds for standard Calderón-Zygmund operators.

Theorem A. Let T be a Calderón-Zygmund operator on \mathbb{R}^n.

(i) For any $1 \leq q < p < \infty$,

$$\|T\|_{L^p(w)} \leq c(n, T, q, p)[w]_{A_q},$$

and in the case $q = 1$, $c(n, T, 1, p) = c(n, T)pp'$;

(ii) for any $1 < p < \infty$,

$$\|T\|_{L^p(w)} \leq c(n, T, p)[w]_{A_p}^{\max \left(1, \frac{1}{p-1}\right)}.$$
Part (i) for $q = 1$ was obtained by Lerner-Ombrosi-Perez [27, 28], and later Duoandikoetxea [9] showed that the result for $q = 1$ can be self-improved by extrapolation to any $1 < q < p$. The sharp dependence of $c(n, T, 1, p)$ on p is important for a weighted weak L^1 bound of T in terms of $[w]_{A_1}$ [28]. Part (ii) (known as the A_2 conjecture) is a more difficult result. First it was proved by Petermichl [32] for the Hilbert transform, and recently Hytönen [17] obtained (ii) for general Calderón-Zygmund operators. A proof of Theorem A based on local mean oscillation estimates was found in [25, 26]. Observe that for $p \geq 2$, (i) follows from (ii) but for $1 < p < 2$, (i) and (ii) are independent results.

Denote by $S_0(\mathbb{R}^n)$ the class of measurable functions on \mathbb{R}^n such that
\[
\mu_f(\lambda) = \left| \{ x \in \mathbb{R}^n : |f(x)| > \lambda \} \right| < \infty
\]
for all $\lambda > 0$. Our main results are the following.

Theorem 1.1. Let $T^\mathcal{F}$ be a maximally modulated Calderón-Zygmund operator satisfying (1.1).

(i) For any $1 \leq q < p < \infty$,
\[
\|T^\mathcal{F}f\|_{L^p(w)} \leq c(n, T, q, p)[w]_{A_q} \|f\|_{L^p(w)},
\]
and in the case $q = 1$, $c(n, T, 1, p) = c(n, T)pC_\Phi\left(\frac{p+1}{2}\right)$.

(ii) Assume that $\Phi(t) \simeq t \int_1^t \frac{\Psi(u)}{u^2} du$ for $t \geq c_0$, where Ψ is a Young function. Then for any $1 < p < \infty$,
\[
\|T^\mathcal{F}f\|_{L^p(w)} \leq c(n, T, p)[w]_{A_p}^{\max\left(1, \frac{1}{p-1}\right) + \frac{1}{p} + \frac{1}{p'}} C_{\Psi_{p-\varepsilon}}(p) \|f\|_{L^p(w)},
\]
where $\varepsilon \simeq [w]_{A_p}^{-1/p'}$.

Both estimates in (i) and (ii) are understood in the sense that they hold for any $f \in L^p(w)$ for which $T^\mathcal{F}f \in S_0$.

Several remarks about Theorem 1.1 are in order.

Remark 1.2. The last sentence in Theorem 1.1 can be removed if it is additionally known that $T^\mathcal{F}f \in S_0$ for some dense subset in $L^p(w)$, for instance, for Schwartz functions. In particular, this obviously holds if $T^\mathcal{F}$ is of weak type (r_0, r_0) for some $r_0 > 1$. Hence, there is no need in the last sentence in Theorem 1.1 for the Carleson operator.

Remark 1.3. It is easy to see that if $\Phi(t) = t$, then $C_\Phi\left(\frac{p+1}{2}\right) \simeq p'$, and hence part (i) of Theorem 1.1 contains part (i) of Theorem A as a particular case. On the other hand, part (ii) of Theorem 1.1 does not
contain Theorem A, since the assumption $\Phi(t) \simeq t \int_1^t \frac{\Psi(u)}{u^2} du$ implies
$t \log(e + t) \lesssim \Phi(t)$.

Remark 1.4. Consider the case corresponding to the Carleson operator, namely, assume that $\Phi(t) = t \log(e + t) \log \log \log(e^{e^e} + t)$. Simple computations show that in this case,

$$C_\Phi \left(\frac{p + 1}{2} \right) \simeq \frac{p^2}{(p-1)^2} \log \log \left(e^e + \frac{1}{p-1} \right).$$

Concerning part (ii), it is easy to see that $\Psi(t) \simeq t \log \log \log(e^{e^e} + t)$ and $C_{\Psi^{p-\varepsilon}}(p) \simeq \frac{1}{\varepsilon^{1/p}} \log \log(e^e + 1/\varepsilon)$. Therefore, if $\varepsilon \simeq [w]_{A_p}$, then

$$C_{\Psi^{p-\varepsilon}}(p) \simeq [w]_{A_p}^{1-p} \log \log(e^e + [w]_{A_p}).$$

Thus, we obtain the following corollary from Theorem 1.1.

Corollary 1.5. Let \mathcal{C} be the Carleson operator.

(i) For any $1 \leq q < p < \infty$,

$$\| \mathcal{C} \|_{L^p(w)} \leq c(q,p) [w]_{A_q},$$

and in the case $q = 1$, $c(1,p) \simeq \frac{p^3}{(p-1)^2} \log \log \left(e^e + \frac{1}{p-1} \right)$;

(ii) for any $1 < p < \infty$,

$$\| \mathcal{C} \|_{L^p(w)} \leq c(p) [w]_{A_p}^{\max \left(p', \frac{2}{p-1} \right)} \log \log(e^e + [w]_{A_p}).$$

We make several additional remarks.

Remark 1.6. Since the linear $[w]_{A_q}, 1 \leq q < p$, bound is sharp for the Hilbert transform, it is obviously sharp also for \mathcal{C}. Further, observe that, as soon as we know, even in the unweighted case $C(1,p)$ from (i) is the currently best known bound for $\| \mathcal{C} \|_{L^p}$ when $p \to 1$. We could not find in the literature this bound written explicitly but it is apparently well known. In particular, it can be easily deduced from a good-λ inequality related \mathcal{C} and M_Φ with $\Phi(t) = t \log(e + t) \log \log \log(e^{e^e} + t)$ obtained in [14].

Concerning the bound for $\| \mathcal{C} \|_{L^p(w)}$ in terms of $[w]_{A_p}$ in (ii), most probably it is not sharp. We discuss this point in Section 4 below.

Remark 1.7. The key ingredient in the proof of the linear $[w]_{A_1}$, bound for usual Calderón-Zygmund operators T in [27, 28] is a Coifman type estimate relating the adjoint operator T^* and the Hardy-Littlewood maximal operator M. It was crucial that T^* is essentially the same
operator as T. However, this is not the case with the Carleson operator C. Indeed, taking an arbitrary measurable function $\xi(\cdot)$, we can consider the standard linearization of C given by

$$C_{\xi(\cdot)}(f)(x) = H(\mathcal{M}_{\xi}f)(x).$$

It is difficult to expect that its adjoint $C_{\xi(\cdot)}^*$ can be related (uniformly in $\xi(\cdot)$) with M (or even with a bigger maximal operator) either via good-λ or by a sharp function estimate. Indeed, such a relation would imply that $\|C_{\xi(\cdot)}^*\|_{L^p} \lesssim p$ as $p \to \infty$ (since $\|f\|_{L^p} \lesssim p\|f^\#\|_{L^p}$ as $p \to \infty$, where $f^\#$ is the sharp function), which in turn means that $\|C\|_{L^p} \lesssim \frac{1}{p-1}$ as $p \to 1$. But due to the previous remark, the currently known behavior of $\|C\|_{L^p}$ is far from $\frac{1}{p-1}$ for p is close to 1 (in fact, it is reasonable to conjecture that the best possible bound for $\|C\|_{L^p}$ when p is close to 1 is $\frac{1}{p-1}$, see a relevant discussion in Section 4).

In order to prove the linear $[w]_{A_1}$ bound for C, we use a modified approach based partially on ideas from [23] and [27].

The paper is organized as follows. In Section 2, we obtain a local mean oscillation estimate of T^F, and the corresponding bound by dyadic sparse operators. Using this result, we prove Theorem 1.1 in Section 3. In Section 4, we discuss a connection between the $L \log L$ conjecture about a.e. convergence of Fourier series and sharp $L^p(w)$ bounds for C in terms of $[w]_{A_p}$.

Throughout the paper, we use the notation $A \lesssim B$ to indicate that there is a constant c, independent of the important parameters, such that $A \leq cB$. We write $A \simeq B$ when $A \lesssim B$ and $B \lesssim A$.

Acknowledgement. I am very grateful to Loukas Grafakos for his useful comments on the Carleson operator.

2. An estimate of T^F by dyadic sparse operators

2.1. A local mean oscillation estimate. By a general dyadic grid \mathcal{D} we mean a collection of cubes with the following properties: (i) for any $Q \in \mathcal{D}$ its sidelength ℓ_Q is of the form 2^k, $k \in \mathbb{Z}$; (ii) $Q \cap R \in \{Q, R, \emptyset\}$ for any $Q, R \in \mathcal{D}$; (iii) the cubes of a fixed sidelength 2^k form a partition of \mathbb{R}^n.

Denote the standard dyadic grid $\{2^{-k}([0,1]^n + j), k \in \mathbb{Z}, j \in \mathbb{Z}^n\}$ by \mathcal{D}. Given a cube Q_0, denote by $\mathcal{D}(Q_0)$ the set of all dyadic cubes with respect to Q_0, that is, the cubes from $\mathcal{D}(Q_0)$ are formed by repeated subdivision of Q_0 and each of its descendants into 2^n congruent subcubes.
We say that a family of cubes S is sparse if for any cube $Q \in S$ there is a measurable subset $E(Q) \subset Q$ such that $|Q| \leq 2|E(Q)|$, and the sets $\{ E(Q) \}_{Q \in S}$ are pairwise disjoint.

Given a measurable function f on \mathbb{R}^n and a cube Q, the local mean oscillation of f on Q is defined by

$$\omega_\lambda(f; Q) = \inf_{c \in \mathbb{R}} ((f - c) \chi_Q)^*(\lambda |Q|) \quad (0 < \lambda < 1),$$

where f^* denotes the non-increasing rearrangement of f.

By a median value of f over Q we mean a possibly nonunique, real number $m_f(Q)$ such that

$$\max \left(\{x \in Q : f(x) > m_f(Q)\}, \{x \in Q : f(x) < m_f(Q)\}\right) \leq |Q|/2.$$

The following result was proved in [23]; in its current refined version given below it can be found in [18].

Theorem 2.1. Let f be a measurable function on \mathbb{R}^n and let Q_0 be a fixed cube. Then there exists a (possibly empty) sparse family S of cubes from $D(Q_0)$ such that for a.e. $x \in Q_0$,

$$|f(x) - m_f(Q_0)| \leq 2 \sum_{Q \in S} \omega_{\frac{1}{2^n}}(f; Q) \chi_Q(x).$$

2.2. **An application to T^F.** We now apply Theorem 2.1 to T^F. Given a cube Q, we denote $\bar{Q} = 2\sqrt{n}Q$.

Lemma 2.2. Suppose T^F satisfies (1.1). Then for any cube $Q \subset \mathbb{R}^n$,

$$\omega_\lambda(T^F f; Q) \lesssim \|f\|_{\Phi, Q} + \sum_{m=0}^{\infty} \frac{1}{2^{mb}} \left(\frac{1}{|2^m Q|} \int_{2^m Q} |f(y)| dy \right).$$

Proof. This result is a minor modification of [23, Prop. 2.3], and it is essentially contained in [14, Prop. 4.1]. We outline briefly main details.

Observe that (1.1) can be written in an equivalent form:

$$(T^F(f\chi_Q)\chi_Q)^*(t) \lesssim \frac{1}{t} |Q| \|f\|_{\Phi, Q},$$

which implies

$$(T^F(f\chi_Q)\chi_Q)^*(\lambda |Q|) \lesssim \|f\|_{\Phi, Q}. $$

Set \(f_1 = f\chi_Q \) and \(f_2 = f - f_1 \). Let \(x \in Q \) and let \(x_0 \) be the center of \(Q \). Then
\[
|T_F(f)(x) - T_F(f_2)(x_0)| = \left| \sup_{\alpha \in A} |T(M^{\phi_\alpha}f)(x)| - \sup_{\alpha \in A} |T(M^{\phi_\alpha}f_2)(x_0)| \right| \\
\leq \sup_{\alpha \in A} |T(M^{\phi_\alpha}f)(x) - T(M^{\phi_\alpha}f_2)(x_0)| \\
\leq T_F(f_1)(x) + \sup_{\alpha \in A} \|T(M^{\phi_\alpha} f_2)(\cdot) - T(M^{\phi_\alpha} f_2)(x_0)\|_{L^\infty(Q)}.
\]

Exactly as in [25, Prop. 2.3], by the kernel assumption,
\[
\sup_{\alpha \in A} \|T(M^{\phi_\alpha} f_2)(\cdot) - T(M^{\phi_\alpha} f_2)(x_0)\|_{L^\infty(Q)} \\
\leq \int_{\mathbb{R}^n \setminus \overline{Q}} |f(y)||K(\cdot, y) - K(x_0, y)||_{L^\infty(Q)}dy \\
\lesssim \sum_{m=0}^{\infty} \frac{1}{2^{m\delta}} \left(\frac{1}{|2^m Q|} \int_{2^m Q} |f(y)|dy \right).
\]

For the local part, by (2.2),
\[
(T_F(f_1)\chi_Q)^*(\lambda|Q|) \lesssim \|f\|_{\Phi,\overline{Q}}.
\]

Combining this estimate with the two previous ones, and taking \(c = T_F(f_2)(x_0) \) in the definition of \(\omega_\lambda(T_F f; Q) \) proves (2.1). \(\square \)

Given a sparse family \(S \), define the operators \(A_{\Phi,S} \) and \(T_{S,m} \) respectively by
\[
A_{\Phi,S}f(x) = \sum_{Q \in S} \|f\|_{\Phi,\overline{Q}} \chi_Q(x)
\]
and
\[
T_{S,m}f(x) = \sum_{Q \in S} |f|_{2^m Q} \chi_Q(x)
\]
(we use a standard notation \(f_Q = \frac{1}{|Q|} \int_Q f \)).

Lemma 2.3. Suppose \(T_F \) satisfies (1.1). Let \(1 < p < \infty \) and let \(w \) be an arbitrary weight. Then
\[
\|T_F f\|_{L^p(w)} \lesssim \sup_{\mathcal{D},S} \|A_{\Phi,S}f\|_{L^p(w)}
\]
for any \(f \) for which \(T_F f \in S_0 \), where the supremum is taken over all dyadic grids \(\mathcal{D} \) and all sparse families \(S \subset \mathcal{D} \).
Proof. Let \(Q_0 \in \mathcal{D} \). Combining Theorem 2.1 with Lemma 2.2, we obtain that there exists a sparse family \(S \subset \mathcal{D} \) such that for a.e. \(x \in Q_0 \),

\[
|T^F f(x) - m_{T^F f}(Q_0)| \lesssim A_{\Phi, S} f(x) + \sum_{m=0}^{\infty} \frac{1}{2^m \delta} T_{S,m} f(x).
\]

If \(T^F f \in S_0 \), then \(m_{T^F f}(Q) \to 0 \) as \(|Q| \to \infty \). Hence, letting \(Q_0 \) to anyone of \(2^n \) quadrants and using (2.4) along with Fatou’s lemma, we get

\[
\|T^F f\|_{L^p(w)} \lesssim \sup_{S \subset \mathcal{D}} \|A_{\Phi, S} f\|_{L^p(w)} + \sum_{m=0}^{\infty} \frac{1}{2^m \delta} \sup_{S \subset \mathcal{D}} \|T_{S,m} f\|_{L^p(w)}.
\]

It was shown in \([25]\) that

\[
\sup_{S \subset \mathcal{D}} \|T_{S,m} f\|_{L^p(w)} \lesssim m \sup_{g \in S} \|T_{S,0} f\|_{L^p(w)}.
\]

Since \(t \leq \Phi(t) \), we have \(|f|_Q \lesssim \|f\|_{\Phi, \bar{Q}} \), and hence

\[
\|T_{S,0} f\|_{L^p(w)} \lesssim \|A_{\Phi, S} f\|_{L^p(w)}.
\]

Combining this with the two previous estimates completes the proof. \(\square \)

Remark 2.4. Observe that the implicit constant in (2.3) depends only on \(T^F \) and \(n \). In fact, (2.3) holds with an arbitrary Banach function space \(X \) instead of \(L^p(w) \) exactly as for standard Calderón-Zygmund operators (see \([25]\)).

3. Proof of Theorem 1.1

3.1. Proof of Theorem 1.1, part (i). We start with some preliminaries. Given a Young function \(\Phi \), the complementary Young function \(\bar{\Phi} \) is defined by

\[
\bar{\Phi}(t) = \sup_{s > 0} \{st - \Phi(s)\}.
\]

A well known result about the equivalence of Orlicz and Luxemburg norms (see, e.g., \([3\), Th. 8.14]) says that

\[
\|f\|_{\Phi, Q} \leq \sup_{g : \|g\|_{\Phi, Q} \leq 1} \left| \frac{1}{|Q|} \int_Q fg dx \right| \leq 2\|f\|_{\Phi, Q}.
\]

For \(r > 0 \) let \(M_r f(x) = M(|f|^r)(x)^{1/r} \), where \(M \) is the Hardy-Littlewood maximal operator. We summarize below several results from \([27]\) (notice that part (ii) is contained in the proof of \([27\), Lemma 3.3]).
Proposition 3.1. The following estimates hold:

(i) if \(w \in A_1 \) and \(r_w = 1 + \frac{1}{2^n + [w]_{A_1}} \), then
\[
M_{r_w}w(x) \leq 2[w]_{A_1}w(x);
\]

(ii) for any \(p > 1 \) and \(1 < r < 2 \),
\[
\|Mf\|_{L^p((M_{r_w})^{-\frac{1}{r-1}})} \leq c(n)p\left(\frac{1}{r-1}\right)^{1-1/pr}\|f\|_{L^p((M_{r_w})^{-\frac{1}{r-1}})}.
\]

Also we use the following generalization of the classical Fefferman-Stein inequality [11] obtained by Pérez [31]: if \(p > 1 \) and \(\Phi \in B_p \), then
\[
\|M\Phi f\|_{L^p(w)} \leq c(n)[w]_{A_1}C_{\Phi}(p)\|f\|_{L^p(Mw)}.
\]

Proof of Theorem 1.1, part (i). By extrapolation ([9, Cor. 4.3.]), it suffices to consider only the case \(q = 1 \). Hence, our aim is to show that for any \(1 < p < \infty \),
\[
\|T^Ff\|_{L^p(w)} \leq c(n,T)pC_{\Phi}\left(\frac{p+1}{2}\right)[w]_{A_1}\|f\|_{L^p(w)}.
\]

By Lemma 2.3 (see also Remark 2.4), this would follow from
\[
\sup_{Q \in S} \|A_{\Phi,S}f\|_{L^p(w)} \leq c(n)pC_{\Phi}\left(\frac{p+1}{2}\right)[w]_{A_1}\|f\|_{L^p(w)}.
\]

Fix a dyadic grid \(\mathcal{D} \) and a sparse family \(S \subset \mathcal{D} \). Using \([3.1]\), we linearize the operator \(A_{\Phi,S} \). One can assume that \(f \geq 0 \). For any \(Q \in S \) there exists \(g(Q) \) supported in \(\bar{Q} \) such that \(\|g(Q)\|_{\Phi,\bar{Q}} \leq 1 \) and
\[
\|f\|_{\Phi,\bar{Q}} \leq (fg(Q))_Q.
\]

Define now a linear operator
\[
L(h)(x) = \sum_{Q \in \mathcal{S}} (hg(Q))_Q \chi_Q(x).
\]

Then in order to prove (3.3), it suffices to show that
\[
\|L(h)\|_{L^p(w)} \leq c(n)pC_{\Phi}\left(\frac{p+1}{2}\right)[w]_{A_1}\|h\|_{L^p(w)},
\]
uniformly in \(g(Q) \).

Exactly as it was done in [27], we have that (3.4) will follow from
\[
\|L(h)\|_{L^p(w)} \leq c(n)pC_{\Phi}\left(\frac{p+1}{2}\right)\left(\frac{1}{r-1}\right)^{1-1/pr}\|h\|_{L^p(M_{r_w}w)},
\]
where $1 < r < 2$. Indeed, taking here $r = r_w = 1 + \frac{1}{2^{n+1}|w|A_1}$, by (i) of Proposition 3.1,
\[
\left(\frac{1}{r_w - 1}\right)^{1 - 1/p_w} \|h\|_{L^p(M_r,w)} \leq c(n)|w|_{A_1} \|h\|_{L^p(w)},
\]
which yields (3.4).

Let L^* denote the formal adjoint of L. By duality, (3.5) is equivalent to
\[
\|L^*(h)\|_{L^p(M_r,w)^{-1/p}} \leq c(n)pC\Phi\left(\frac{p + 1}{2}\right)\left(\frac{1}{r - 1}\right)^{1-1/p} \|h\|_{L^p(w)^{-1/p}},
\]
which, by (ii) of Proposition 3.1, is an immediate corollary of

\[
(3.6) \quad \|L^*(h)\|_{L^p((M_r,w)^{-1/p})} \leq c(n)C\Phi\left(\frac{p + 1}{2}\right)\|Mh\|_{L^p((M_r,w)^{-1/p})};
\]

We now prove (3.6). By duality, pick $\eta \geq 0$ such that $\|\eta\|_{L^p(M_r,w)} = 1$ and
\[
\|L^*(h)\|_{L^p((M_r,w)^{-1/p})} = \int_{\mathbb{R}^n} L^*(h)\eta dx = \int_{\mathbb{R}^n} hL(\eta) dx.
\]
Applying (3.1) again, we get
\[
\int_{\mathbb{R}^n} hL(\eta) dx = \sum_{Q \in S} (\eta g(Q)) \int_{Q} h \leq 2 \sum_{Q \in S} \|\eta\|_{\Phi,Q} \int_{Q} h
\]
\[
\leq 2(2\sqrt{n})^n \sum_{Q \in S} \|\eta\|_{\Phi,Q}(h_Q)|Q|
\leq 4(2\sqrt{n})^n \sum_{Q \in S} \|(Mh)^{\frac{1}{p+1}}\eta\|_{L^p(Q)}(h_Q)^{\frac{p}{p+1}}|E(Q)|
\leq 4(2\sqrt{n})^n \sum_{Q \in S} \int_{E(Q)} M\Phi((Mh)^{\frac{1}{p+1}}\eta)(Mh)^{\frac{p}{p+1}} dx
\leq 4(2\sqrt{n})^n \int_{\mathbb{R}^n} M\Phi((Mh)^{\frac{1}{p+1}}\eta)(Mh)^{\frac{p}{p+1}} dx.
\]
Next, by Hölder’s inequality with the exponents $s = \frac{p+1}{2}$ and $s' = \frac{p+1}{p-1}$,
\[
\int_{\mathbb{R}^n} M\Phi((Mh)^{\frac{1}{p+1}}\eta)(Mh)^{\frac{p}{p+1}} dx = \int_{\mathbb{R}^n} M\Phi((Mh)^{\frac{1}{p+1}}\eta)(M,w)^{\frac{1}{p+1}}(Mh)^{\frac{p}{p+1}}(M,w)^{-\frac{1}{p+1}} dx
\leq \|M\Phi((Mh)^{\frac{1}{p+1}}\eta)\|_{L^p((M,w)^{1/2})} \|Mh\|^{\frac{p}{p+1}}_{L^p((M,w)^{-1/p})}.
\]
Further, we apply \((3.2)\) along with Coifman’s inequality [6] saying that
\[
M(Mr^w)^{1/2} \leq c(n)(Mr^w)^{1/2}.
\]
We obtain
\[
\|M_{\Phi}((Mh)^{\frac{1}{p+1}}\eta)\|_{L^{\frac{p+1}{2}}(M(Mr^w)^{1/2})} \\
\leq c(n)C_{\Phi}\left(\frac{p+1}{2}\right)\|\eta\|_{L^{\frac{p+1}{2}}(M(Mr^w)^{1/2})}.
\]

Using again Hölder’s inequality with \(s = 2p'\) and \(s' = \frac{2p}{p+1}\) gives
\[
\|(Mh)^{\frac{1}{p+1}}\eta\|_{L^{\frac{p+1}{p}}(M(Mr^w)^{1/2})} = \left(\int_{\mathbb{R}^n} (Mh)^{\frac{1}{p+1}}(Mr^w)^{\frac{1}{2p}}(\eta^{p+1}(Mr^w)^{\frac{p+1}{2p}}) dx\right)^{\frac{2}{p+1}}.
\]

Combining this estimate with the three previous ones yields \((3.6)\), and therefore the theorem is proved.

Remark 3.2. Inequality \((3.6)\) looks exactly as a Coifman type estimate relating \(L^*\) and \(M\). However, we do not know whether there is a good-\(\lambda\) inequality related \(L^*\) and \(M\) by the reasons described in Remark 1.7.

3.2. A Buckley type result for \(M_{\Phi}\).

In order to prove the second part of Theorem 1.1, we need an extension of Buckley’s bound [4]:

\[
(3.7) \quad \|M\|_{L^p(w)} \leq c(p, n)[w]_{A_p}^{\frac{1}{p-1}} (1 < p < \infty)
\]
to Orlicz maximal functions \(M_{\Phi}\) with general \(\Phi\). In the recent work [29], the case \(\Phi(t) = t \log^\lambda(e + t), \lambda \geq 0\), was considered:

\[
\|M_{L(\log L)\lambda}\|_{L^p(w)} \leq c(p, n)[w]_{A_p}^{\frac{1}{p-1}} (1 < p < \infty).
\]

Observe that the proof in [29] essentially contains an estimate for general \(\Phi\) as stated below in Theorem 3.3. For the sake of completeness we give a somewhat different proof avoiding certain details in [29] (such as extrapolation). As we will see below, our proof is a direct generalization of Buckley’s proof of \((3.7)\).

Theorem 3.3. For all \(p > 1\) and any \(w \in A_p\),

\[
\|M_{\Phi}\|_{L^p(w)} \leq c(p, n)[w]_{A_p}^{\frac{1}{p-1}} C_{\Phi^\varnothing}(p),
\]

where \(\varnothing \simeq [w]_{A_p}^{1-p'}\).
Proof. Given a cube Q, define the weighted mean Luxemburg norm

$$\|f\|_{\Phi^w, Q}^w = \inf \left\{ \alpha > 0 : \frac{1}{w(Q)} \int_Q \Phi \left(\frac{|f(x)|}{\alpha} \right) w \, dx \leq 1 \right\},$$

and consider the weighted centered Orlicz maximal function $M_{\Phi^w, f}^c$ defined by

$$M_{\Phi^w, f}^c(x) = \sup_{Q \ni x} \|f\|_{\Phi^w, Q}^w,$$

where the supremum is taken over all cubes Q centered at x (similarly we denote by $M_{\Phi}^c f$ the unweighted centered maximal function). Then we have the following version of (3.2): for any weight w and all $p > 1$,

$$(3.8) \quad \|M_{\Phi^w, f}^c\|_{L^p(w)} \leq c(n)C_{\Phi}(p) \|f\|_{L^p(w)}.$$

The proof follows exactly the same lines as the proof of the unweighted version in [31] (only one should apply the Besicovitch covering theorem to get a weak type bound) and hence we omit details.

For any $\alpha > 0$, by Hölder’s inequality,

$$\frac{1}{|Q|} \int_Q \Phi(|f|/\alpha) dx \leq [w]_{A_p}^{1/p} \left(\frac{1}{w(Q)} \int_Q \Phi(|f|/\alpha) w dx \right)^{1/p},$$

which implies

$$\|f\|_{\Phi, Q} \leq \|f\|_{[w], A_p, \Phi^w, Q}^w.$$

From this and from the standard estimate $M_{\Phi} f(x) \leq M_{\Phi^w, f}^c(x)$ we obtain

$$M_{\Phi} f(x) \leq M_{[w], A_p, (\Phi^w, f)}^c(x).$$

Now we use the fact that if $\varepsilon \simeq [w]_{A_p}^{1-p'}$, then $w \in A_{p-\varepsilon}$ and $[w]_{A_{p-\varepsilon}} \lesssim [w]_{A_p}$ (see [4]). Combining this with the previous estimate yields

$$M_{\Phi} f(x) \leq M_{c(n, p)[w], A_p, \Phi^{p-\varepsilon}, w}^c f(x).$$

Therefore, by (3.8),

$$\|M_{\Phi} f\|_{L^p(w)} \leq \|M_{c(n, p)[w], A_p, \Phi^{p-\varepsilon}, w}^c f\|_{L^p(w)} \leq c(n)C_c(n, p)[w]_{A_p} C_{\Phi^{p-\varepsilon}}(p) \|f\|_{L^p(w)} = c(n)C_c(n, p) \frac{1}{p} [w]_{A_p}^{\frac{1}{p}} C_{\Phi^{p-\varepsilon}}(p) \|f\|_{L^p(w)},$$

which completes the proof. \qed
3.3. Proof of Theorem 1.1, part (ii). We will need a generalization of the classical equivalence [34]

$$\frac{1}{|Q|} \int_Q M(f \chi_Q) dx \simeq \|f\|_{L^{\log L, Q}}$$

to general Young functions. This can be stated as follows.

Given a Young function Ψ, define

$$\Psi^*(t) = \begin{cases}
 t, & 0 \leq t \leq 1 \\
 t + t \int_1^t \frac{\Psi(u)}{u^2} du, & t > 1.
\end{cases}$$

Then (see [35, Theorems 10.5,10.6])

$$\frac{1}{|Q|} \int_Q M_{\Psi}(f \chi_Q) dx \simeq \|f\|_{\Psi^*, Q}.$$

Proof of Theorem 1.1, part (ii). This is just a combination of several previously established bounds. As in the proof of the first part of Theorem 1.1, by Lemma 2.3, it is enough to get a uniform estimate of $\|A_{\Phi,S}f\|_{L^p(w)}$.

By the assumption $\Phi(t) \simeq t \int_1^t \frac{\Psi(u)}{u^2} du$ for $t \geq c_0$ we have that $\Phi \simeq \Psi^*$, where Ψ^* is defined by (3.9). Hence, using (3.10), we obtain

$$A_{\Phi,S}f(x) = \sum_{Q \in S} \|f\|_{\Phi,W} \chi_Q(x) \simeq \sum_{Q \in S} \left(\frac{1}{|Q|} \int_Q M_{\Psi}(f \chi_Q) dx \right) \chi_Q(x) \leq \mathcal{T}(M_{\Psi}f)(x),$$

where the operator \mathcal{T} is defined by

$$\mathcal{T}f(x) = \sum_{Q \in S} \left(\frac{1}{|Q|} \int_Q f dx \right) \chi_Q(x).$$

Therefore, using that $\|\mathcal{T}\|_{L^p(w)} \lesssim [w]_{A_p}^{\max(1,1/p-1)}$ (see [7]) and applying Theorem 3.3, we obtain

$$\|A_{\Phi,S}\|_{L^p(w)} \lesssim \|\mathcal{T}\|_{L^p(w)} \|M_{\Psi}\|_{L^p(w)} \lesssim [w]_{A_p}^{\max(1,1/p-1)} [w]_{A_p}^{1/2} C_{\Psi^{-\varepsilon}}(p),$$

where $\varepsilon \simeq [w]_{A_p}^{1-p'}$, and this completes the proof. \hfill \square

4. Remarks and complements

4.1. More about A_p bounds for $\|C\|_{L^p(w)}$. Let α_p be the best possible exponent in

$$\|C\|_{L^p(w)} \lesssim [w]_{A_p}^{\alpha_p},$$
As we have seen, our proof of Corollary 1.5 part (ii), is based essentially on (1.1) with
\[\Phi(t) = t \log(e + t) \log \log \log(e^{e^t} + t), \]
which is intimately related to Antonov’s theorem [1] on a.e. convergence of Fourier series for functions in \(L \log L \log \log L \). A question whether the class \(L \log L \log \log L \) can be improved is still open. The main conjecture about this says that Fourier series converge a.e. for functions in \(L \log L \). A natural reformulation of this conjecture is that (1.1) for \(C \) holds with \(\Phi(t) = t \log(e + t) \). Let us check what can be done assuming that this result is true.

First, it is easy to see that following our approach we would obtain that for all \(p > 1 \),
\[\|C\|_{L^p(w)} \leq c \frac{p^3}{(p - 1)^2} [w]_{A_1}, \]
and
\[\|C\|_{L^p(w)} \leq c(p)[w]_{A_p}^{\max\left(\frac{r'}{p}, \frac{2}{p-1}\right)}. \]

In particular, the “\(L \log L \) conjecture” implies \(\|C\|_{L^p} \lesssim \frac{p^3}{(p-1)^2} \) and \(\alpha_p \leq \max\left(p', \frac{2}{p-1}\right) \). It is natural to conjecture further that the un-weighted bound for \(\|C\|_{L^p} \) is best possible, that is, \(\|C\|_{L^p} \simeq \frac{p^3}{(p-1)^2} \). Then one can easily get a lower bound for \(\alpha_p \) that coincides with the upper bound for \(1 < p \leq 2 \).

Indeed, a well known argument given by Fefferman-Pipher [12] (see also [29] for an extension of this argument) says that if \(T \) satisfies \(\|T\|_{L^{p_0}(w)} \lesssim N([w]_{A_1}) \) for some \(p_0 \), then \(\|T\|_{L^r} \lesssim N(c r) \) as \(r \to \infty \). Hence, on one hand, since \(\|C\|_{L^r} \simeq r \) as \(r \to \infty \), we obtain that \(\alpha_p \geq 1 \) for all \(p > 1 \). On the other hand, let \(C_{\xi(\cdot)} \) be a linearization of \(C \) as in Remark 1.7. Then, by duality and by (4.1),
\[\|C_{\xi(\cdot)}^*\|_{L^{p_0}(w)} = \|C_{\xi(\cdot)}\|_{L^{p_0}(w^{-p_0})} \lesssim [w^{-p_0}]_{A_{p'}}^{\alpha_p} = [w]_{A_{p'}}^{\alpha_p}, \]
and hence \(\|C_{\xi(\cdot)}^*\|_{L^r} \lesssim r^{\alpha_p(p_0-1)} \) as \(r \to \infty \), which implies
\[\|C\|_{L^r} \lesssim \frac{1}{(r-1)^{\alpha_p(p-1)}} \]
as \(r \to 1 \). Conjecturing that \(\|C\|_{L^r} \simeq \frac{1}{(r-1)^{\alpha_p(p-1)}} \) as \(r \to 1 \), we obtain \(\alpha_p \geq \frac{2}{p-1} \). Therefore, \(\alpha_p \geq \max(1, \frac{2}{p-1}) \).

Concluding, we see that if the “\(L \log L \) conjecture” holds and if the best possible behavior of \(\|C\|_{L^p} \) is \(\frac{1}{(p-1)^{\alpha_p(p-1)}} \) when \(p \) is close to 1, then for
all $p > 1$,

$$\max\left(1, \frac{2}{p-1}\right) \leq \alpha_p \leq \max\left(p', \frac{2}{p-1}\right).$$

In particular, $\alpha_p = \frac{2}{p-1}$ for $1 < p \leq 2$.

It seems that a natural obstacle in our approach is that the “local mean oscillation estimate” essentially relies on the end-point information of a given operator, while a sharp end-point information of the Carleson operator is currently unknown. It is natural to ask whether there is an approach to sharp $L^p(w)$ estimates avoiding the information about end-point bounds. Observe that this is unknown even for Calderón-Zygmund operators.

4.2. On mixed A_p-A_∞ bounds. Following recent works, where the A_p bounds were improved by mixed A_p-A_∞ bounds (see, e.g., [19] [20] [21]), we can give similar results for T^Φ.

Given a weight w, define its A_∞ constant by

$$[w]_{A_\infty} = \sup_Q \frac{1}{w(Q)} \int_Q M(w\chi_Q)dx.$$

It was shown in [20] that part (i) of Proposition 3.1 holds with the $[w]_{A_1}$ constant replaced by $[w]_{A_\infty}$. Changing only this point in the proof of Theorem 1.1, part (i), we get that for any $w \in A_1$ and for all $p > 1$,

$$\|T^\Phi f\|_{L^p(w)} \leq c(n,T)pC\Phi\left(\frac{p+1}{2}\right)\left[w\right]_{A_1}^{\frac{1}{p}}\left[w\right]_{A_\infty}^{\frac{1}{p'}}\|f\|_{L^p(w)}.$$

For Calderón-Zygmund operators this inequality was obtained in [20].

Further, it was shown in [21] that if $w \in A_p$ and $\varepsilon \simeq [\sigma]_{A_\infty}$, where, as usual, $\sigma = w^{1/p}$, then $w \in A_p-\varepsilon$ and $[w]_{A_p-\varepsilon} \lesssim [w]_{A_p}$. It is easy to see from this result that the condition $\varepsilon \simeq [w]_{A_p}^{1-p'}$ in Theorem 1.1 can be replaced by $\varepsilon \simeq [\sigma]_{A_\infty}$.

Then, in the case of the Carleson operator, by Remark 1.4

$$C_{\Psi_{p-\varepsilon}}(p) \simeq \frac{1}{\varepsilon^{1/p}} \log \log (e^\varepsilon + 1/\varepsilon) \simeq [\sigma]_{A_\infty}^{\frac{1}{p}} \log \log (e^\varepsilon + [\sigma]_{A_\infty}),$$

and hence

$$\|M_\Psi\|_{L^p(w)} \lesssim ([w]_{A_p}[\sigma]_{A_\infty})^{\frac{1}{p}} \log \log (e^\varepsilon + [\sigma]_{A_\infty}).$$

Also, observe that the operator T defined in the proof of Theorem 1.1 satisfies (see [19])

$$\|T\|_{L^p(w)} \lesssim [w]_{A_p}^{\frac{1}{p}} ([w]_{A_\infty}^{\frac{1}{p'}} + [\sigma]_{A_\infty}^{\frac{1}{p'}}).$$
Therefore, combining this with the bound for M_{Ψ}, we obtain
\[
\|C\|_{L^p(w)} \lesssim [w]_{A_p}^{\frac{1}{p}} ([w]_{A_{\infty}}^{\frac{1}{p}} + [\sigma]_{A_{\infty}}^{\frac{1}{p}}) [\sigma]_{A_{\infty}}^{\frac{1}{p}} \log \log (e^\nu + [\sigma]_{A_{\infty}}). \]

REFERENCES

[1] N.Y. Antonov, Convergence of Fourier series, East J. Approx., 2 (1996), 187-196.
[2] J. Arias de Reyna, Pointwise convergence of Fourier series, Lecture Notes in Mathematics, vol. 1785, Springer-Verlag, Berlin, 2002.
[3] C. Bennett and R. Sharpley, Interpolation of operators, Academic Press, New York, 1988.
[4] S.M. Buckley, Estimates for operator norms on weighted spaces and reverse Jensen inequalities, Trans. Amer. Math. Soc., 340 (1993), no. 1, 253–272.
[5] L. Carleson, On convergence and growth of partial sums of Fourier series, Acta Math., 116 (1966), 135-157.
[6] R.R. Coifman and R. Rochberg, Another characterization of BMO, Proc. Amer. Math. Soc., 79 (1980), 249-254.
[7] D. Cruz-Uribe, J.M. Martell and C. Pérez, Sharp weighted estimates for classical operators, Adv. Math., 229 (2012), no. 1, 408–441.
[8] Y. Do and M. Lacey, Weighted bounds for variational Fourier series, Studia Math. 211 (2012), no. 2, 153-190.
[9] J. Duoandikoetxea, Extrapolation of weights revisited: new proofs and sharp bounds, J. Funct. Anal. 260 (2011), no. 6, 1886-1901.
[10] C. Fefferman, Pointwise convergence of Fourier series, Ann. of Math., 98 (1973), 551-571.
[11] C. Fefferman and E.M. Stein, Some maximal inequalities, Amer. J. Math., 93 (1971), 107–115.
[12] R. Fefferman and J. Pipher, Multiparameter operators and sharp weighted inequalities, Amer. J. Math. 119 (1997), no. 2, 337–369.
[13] L. Grafakos, Modern Fourier Analysis. Second edition. Graduate Texts in Mathematics, 250. Springer, New York, 2009.
[14] L. Grafakos, J.M. Martell and F. Soria, Weighted norm inequalities for maximally modulated singular integral operators, Math. Ann. 331 (2005), no. 2, 359-394.
[15] R.A. Hunt, On the convergence of Fourier series, Orthogonal Expansions and Their Continuous Analogues (Proc. Conf., Edwardsville, Ill., 1967), Southern Illinois Univ. Press, Carbondale, Ill., 1968, 235-255.
[16] R.A. Hunt and W.S. Young, A weighted norm inequality for Fourier series, Bull. Amer. Math. Soc., 80 (1974), 274-277.
[17] T. Hytönen, The sharp weighted bound for general Calderón-Zygmund operators, Ann. of Math. 175 (2012), no. 3, 1473-1506.
[18] T. Hytönen, The A_2 theorem: remarks and complements, preprint. Available at http://arxiv.org/abs/1212.3840
[19] T. Hytönen and M. Lacey, The $A_p - A_\infty$ inequality for general Calderón-Zygmund operators, to appear in Indiana Univ. Math. J. Available at http://arxiv.org/abs/1106.4797
[20] T. Hytönen and C. Pérez, Sharp weighted bounds involving A_∞, Anal. PDE 6 (2013), no. 4, 777-818.
[21] T. Hytönen, C. Pérez and E. Rela, *Sharp reverse Hölder property for \(A_\infty\) weights on spaces of homogeneous type*, J. Funct. Anal. **263** (2012), no. 12, 3883-3899.

[22] M. Lacey and C. Thiele, *A proof of boundedness of the Carleson operator*, Math. Res. Lett. **7** (2000), 361-370.

[23] A.K. Lerner, *A pointwise estimate for local sharp maximal function with applications to singular integrals*, Bull. London Math. Soc., **42** (2010), no. 5, 843-856.

[24] A.K. Lerner, *Sharp weighted norm inequalities for Littlewood-Paley operators and singular integrals*, Adv. Math., **226** (2011), 3912–3926.

[25] A.K. Lerner, *A simple proof of the \(A_2\) conjecture*, Int. Math. Res. Not., 2013 (14): 3159–3170.

[26] A.K. Lerner, *On an estimate of Calderon-Zygmund operators by dyadic positive operators*, accepted to J. Anal. Math. Available at http://arxiv.org/abs/1202.1860

[27] A.K. Lerner, S. Ombrosi and C. Pérez, *Sharp \(A_1\) bounds for Calderón-Zygmund operators and the relationship with a problem of Muckenhoupt and Wheeden*, Int. Math. Res. Not., Volume 2008: article ID rnm161, 11 pages.

[28] A.K. Lerner, S. Ombrosi and C. Pérez, *\(A_1\) bounds for Calderon-Zygmund operators related to a problem of Muckenhoupt and Wheeden*, Math. Res. Lett. **16** (2009), no. 1, 149-156.

[29] T. Luque, C. Pérez and E. Rela, *Optimal exponents in weighted estimates without examples*, preprint. Available at http://arxiv.org/abs/1307.5642

[30] C. Muscalu and W. Schlag, Classical and multilinear harmonic analysis. Vol. II. Cambridge Studies in Advanced Mathematics, 138. Cambridge University Press, Cambridge, 2013.

[31] C. Pérez, *On sufficient conditions for the boundedness of the Hardy-Littlewood maximal operator between weighted \(L^p\)-spaces with different weights*, Proc. London Math. Soc., **71** (1995), no. 1, 135–157.

[32] S. Petermichl, *The sharp bound for the Hilbert transform on weighted Lebesgue spaces in terms of the classical \(A_p\) characteristic*, Amer. J. Math. **129** (2007), no. 5, 1355-1375.

[33] P. Sjölin and F. Soria, *Remarks on a theorem by N.Yu. Antonov*, Studia Math., **158** (2003), no. 1, 79-97.

[34] E.M. Stein, *Note on the class \(L \log L\)*, Studia Math. **32** (1969), 305–310.

[35] J.M. Wilson, *Weighted Littlewood-Paley theory and exponential-square integrability*, Lecture Notes in Math., 1924, Springer-Verlag 2008.

Department of Mathematics, Bar-Ilan University, 5290002 Ramat Gan, Israel.

E-mail address: aklerner@netvision.net.il