Falling monsoon depression frequency: A Gray-Sikka conditions perspective

A. G. Prajeesh¹, K. Ashok¹ & D. V. Bhaskar Rao²

¹Indian Institute of Tropical Meteorology, Pune, India, ²Jackson State University, USA.

In this study, we show that the annual monsoon depression (MD) frequency making landfall on the east coast of India shows a statistically significant decreasing trend for the period 1979–2010. Importantly, about 80% of this fall is confined to the south of 20°N. To understand the plausible reason(s) for the weakening frequency of MDs in the southern Bay of Bengal in recent decades, we examine some of the seasonal average in-situ atmospheric parameters important for tropical cyclogenesis; we use various observational data from the IMD, and three atmospheric climate reanalysis datasets to account for possible quality constraints in them. Our findings suggest that the observed weakening of MD frequency south of 20°N in the Bay of Bengal since 1950s is likely due to a declining trend in the mid-tropospheric relative humidity over the Indian region. Our numerical sensitivity experiments support this finding.

Monsoon depressions (MDs) in the Bay of Bengal (BoB) are the most important synoptic scale transient disturbance associated with the Indian summer monsoon (June through September; henceforth JJAS), and contribute about 10% of the seasonal rainfall. A good number of MDs forming in BoB originate as low-pressure disturbances that come from the western Pacific Ocean and the South China Sea. The horizontal scale of a typical MD is around 1500 km, and they vertically extend up to a height of 8 km. After the formation, they generally move westward with a typical zonal speed of about 5 km/day, and have a life cycle of about 3 to 5 days. These systems generally have two or three closed isobars with 2 hPa intervals. Heavy rainfall formation even 300 mm/day is the most distinguishable phenomenon associated with these disturbances. Horizonatal wind speeds of 7.5 (20) m/s at the surface (850 hPa) are noted, and the strongest winds, cloudiness and precipitation are found to be the maximum in the southwest sector of the storm. The relative vorticity has a maximum value of the order of 5×10^{-5} s$^{-1}$ (12 $\times 10^{-5}$ s$^{-1}$) at the surface (800 hPa) and. These disturbances have a cold core in the lower troposphere which is maintained by the evaporation of the falling rain and the adiabatic ascent; a weak warm core structure sits over this cold core, maintained by latent heat release.

Studies such as Sikka, Mooley & Shukla, Jadhav, Krishnamurthy & Ajayamohan etc. have reported that there exists a marked relationship between central Indian monsoon rainfall and low pressure systems (LPS) in their totality, i.e., covering the Low Pressure Areas and MDs. However, some of these studies suggest that there is no significant relationship between the annual frequency/longevity of the MDs with seasonal monsoon rainfall. Notwithstanding this, rainfall from MDs is a significant contributor to seasonal rainfall in some part of the east coast of India, and importantly, can cause severe floods associated with extreme rainfall. Therefore, any changes in MD frequency, intensity, and tracks have relevance for the floods and hydrology of various rivers/river basins. Understanding any such long term changes is therefore important for hydrological planning and management in these parts.

Recent studies report a negative trend in the frequency of MD since 1950s in spite of increasing SST over BoB. Rajeevan et al., Kumar & Dash and Jadhav & Munot show that the decreasing frequency in the number of MD is significantly coincident with increasing number of Low Pressure Areas during the same season. Importantly, recent studies do not find any such decreasing trend in the cyclonic activity in west north Pacific. From these, it can be concluded that some background atmospheric and oceanic in situ conditions in the BoB are possibly limiting the intensification of low pressure areas into MDs.

According to Gray, the essential environmental parameters for tropical cyclogenesis are:

1. Large values of low-level relative vorticity (at \sim950 hPa),
2. sufficient values of Coriolis parameter;
decadal changes in the MD frequency: a Gray-Sikka condition perspective. A time series of seasonal frequency of the MDs, and for the period of 1891 to 2010 clearly shows (Figure 1a) a decreasing trend in the frequency after 1950s, which is significant at 99% confidence level from a Mann-Kendall test. In addition, a significant decreasing trend in the MT RH is seen over the whole Indian region from 1950 to 2010 (Figure 1a) nor its the correlation between with the frequency of the MD significant.

A time series of the NCEP/NCAR reanalyzed MT RH over the BoB and adjoining land region for the period of 1950–2010 (Figure 1a) shows a significant decreasing trend; the reduction of 15% is significant at 99% confidence level from a Mann–Kendall test. In addition, a correlation between the de-trended MT RH and MD frequency indicates that their association strengthened since mid-1990s, and significant above 95% confidence level from a two-tailed Student’s t-test (Figure 1b); the correlation between the corresponding raw time series is much higher, as can be expected owing to the similar trend in both the time series. Further, as the RH from any reanalysis dataset is a derived parameter, we confirm the results by carrying out above analysis by replacing the RH with MT specific humidity.

According to Gray21, a minimum threshold of 40% the MT RH is necessary for tropical cyclogenesis. Low MT humidity would lead to the entrainment of relatively dry environment air into the parcel and a reduction in up-draft parcel buoyancy. Thus, the decrease in the MT RH over the BoB region could be a plausible reason for the decrease in the MD frequency since 1950s, and more likely from the late 1970s.

However, Paltridge et al.27 and Dessler28 caution about the reliability of the slow variability in the MT humidity from the NCEP/NCAR reanalysis data. Indeed, the quality of the parameters from other reanalysis datasets may also not be entirely reliable owing to various reasons such as the sparsity of observed data and sensor changes, particularly a “shock” due the inclusion of satellite data since late 1980s in reanalysis. Therefore, to confirm our finding from the NCEP/NCAR reanalysis dataset, we present in Figures 2.a–c, the spatial distribution of the trends in the MT RH over Indian region from NCEP/NCAR reanalysis (1950–2010), ERA-40 (1958–2002), and Modern Era Retrospective-Analysis for Research and Applications (MERRA, 1979-present), respectively. In Figure 2a, a decreasing trend in the NCEP/NCAR MT RH is seen over the whole Indian land mass, Arabian Sea and BoB. In ERA-40, we see (Figure 2b) such
This finding collates well with the finding that the MT RH has weakened in the recent decades particularly south of 20°N.

Experiments with axi-symmetric tropical cyclone model. We now present results from the three numerical experiments we carried out to ascertain the role of the MT RH in the BoB in weakening the MDs. The first experiment, hereafter referred to as the control (CTRL) run, is to simulate a MD with the mean monsoon month conditions of Calcutta, on the BoB, we further perform two sensitivity experiments by reducing the MT RH by 5% and 10%, respectively. The experiments are referred to as EXP-5% and EXP-10%, respectively. The RH profiles used for the experiments are shown in Figure 4a.

The time variation of the simulated Central Surface Pressure (CSP) from all the experiments is presented in the Figure 4b. After 40 hours (h) CSP starts dropping in all the three cases, but with a slower rate for EXP-10% compared to the CTRL experiment and EXP-5%. Up to 80 h both the CTRL run and EXP-5% show similar rate of CSP fall, but later the EXP-5% demonstrates a relatively slower rate of decrease in CSP and stabilizes at 150 h. At the mature (at 200 h) stage, when the CSP reaches a more or less steady minimum value, the difference in the simulated CSP between CTRL and EXP-5% (EXP-10%) runs is 4 (7) hPa.

The time-radius cross sections of convective rainfall for these experiments are presented in Figure 5. In all the three cases, convective rain starts to occur just after 40 h. In the CTRL run, rainfall of 20 cm/day and above is noticed in the mature stage, which is in good agreement with the observed rainfall for a typical MD. After around 140 h, a significant amount of convective rainfall occurs towards the center of the system. On the other hand, while the convective rain starts in EXP-5% and EXP-10% at the same time as in CTRL run, the intensity in these cases, however, is much weaker. Also, only just about 5 – 10 cm/day rain occurs towards the center of the system in case of EXP-5% and negligible amount of rain occurs towards the center in the case of EXP-10%.

The radial distributions of the simulated Cloud Base Mass Flux (CBMF) are shown in the Figure 6. It can be seen that the convective clouds started developing at 40 hours in all the cases. This corresponds to the initial time of developing stage of the system, as can be conjectured from the time variation of CSP from the Figure 4b. The maximum simulated CMBF at this stage is typically around 100–200 g/m²/s, and located around 160 km radius. Higher amounts can be seen in CTRL run compared to the other two cases. The tropospheric heating due to the latent heat release associated with the convection enhances the pressure gradient, which in turn enhances the moisture convergence towards the center of the system. The tropospheric heating which is proportional to the mass flux, determines the growth of the system. Hence in CTRL run, the larger tropospheric heating due to larger CMBF produces more moisture convergence towards the center and eventually causing a wide spread precipitation towards the center. At the mature stage, the maximum CMBF values in the CTRL run are seen towards the center of the system. In contrast, very little CMBF amount is simulated in the EXP-5% and almost nil in the EXP-10%.

Tangential winds reaching a maximum of 15 m/s can be seen in case CTRL run. Whereas in EXP-5% and in EXP-10% maximum tangential wind speed is around 6–9 m/s, much below the typically observed MD wind speed of 15–20 m/s (Figure S3).

The results are in agreement with theory; from theories of growth mechanism of tropical cyclogenesis, it is clear that convective heating is the most important mechanism for the growth of MD. High MT humidity values are essential for maintaining the updraft parcel buoyancy in case of entrainment. Low MT humidity can lead to upper level cooling, due to the re-evaporation of cumulus induced condensation by which it suppresses the growth of the disturbances. In summary, weakened MT RH results in weakened CMBF during the developing stage, which further weakens through the mature
stage. All this will eventually not allow the initial incipient disturbances to grow beyond a low pressure system.

Discussion

We find that, notwithstanding an increasing trend of SST in the BoB since 1950s, the MD frequency in the Bay of Bengal has continuously fallen. The fall in the frequency is statistically significant since late 1970s. The percentage decrease in the frequency of depression is seen to be more to the south of 20°N, with a 59% fall as compared to the 28% of decadal weakening of the MD frequency north of 20°N. Our results suggest that a concurrent weakening trend in the MT RH over the Bay of Bengal south of 20°N is a major factor in reducing the MD frequency. Further, results from our sensitivity tests carried out using an axi-symmetric model strongly support the hypothesis that a weakened MT humidity results in inhibition of the amplification of the initial tropical cyclonic perturbations.

Our results may be subject to the limitations associated with the reanalysis data quality, particularly that of the MT RH; however, qualitatively similar result from all the three reanalysis datasets alleviates this concern substantially.

Interestingly, it has been documented that large-scale summer monsoon circulation in recent decades has weakened. To explore the relevance, we carried out an analysis of decadal changes in low level moisture convergence over the Indian region and surrounding ocean. The result (Figure not shown) also indicates a general weakening of moisture convergence over the region. This indicates that the falling frequency of the MDs may be due to weakening Indian summer monsoon circulation. A question that naturally arises is whether the observed global warming in the last 3–4 decades has any role to play in the reduction of MDs in the Bay of Bengal. In this context, it is relevant to note that, as per a recent Special Report of the Intergovernmental Panel on Climate Change, it is not yet clear whether extreme events are expected to increase due to global warming. In addition, studies such as Matsuura et al. indicate that interdecadal changes in tropical synoptic disturbance activity may be also due to natural decadal variability such as the in situ long-term variations in atmosphere–ocean coupling phenomena. Further, there is no general agreement among studies based on the dynamical models whether monsoons will strengthen or weaken due to global warming. For example, Krishnan et al. and Rajendran

Figure 3 | Tracks of the monsoon depressions from IMD cyclone e-atlas having genesis, 1.a) south of 20°N for the period 1950–1979, 1.b) south of 20°N for the period 1980–2009, 2.a) north of 20°N for the period 1950–1979, and 2.b) north of 20°N for the period 1980–2009. The figures, and the relevant statistics, have been generated using the online Cyclone eAtlas of the India Meteorological Department <http://www.rmcchennaiatlas.tn.nic.in>.
et al., using some high resolution model projections of AR4 vintage, suggest an association between the global warming and monsoon weakening. On the other hand, several AR4 model projections (e.g. Kripalani et al.) indicate a possibility that monsoon rainfall may increase with increased global warming. More recently, Jourdain et al. document that projections from about 11 models of CMIP5 vintage, which are able to simulate the Indian summer Monsoon features and teleconnections realistically, indicate that the monsoon rainfall may intensify due to global warming. Further, in addition to the in situ conditions in the Bay of Bengal, remote, decadal changes, such as that in land surface temperature over Tibetan plateau may also affect the intensity of Indian summer Monsoon, there by leading to changes in the in-situ Gray-Sikka conditions. Such issues are beyond the scope current study, and needs further research, including an analysis of multi-model climate change projections.

Methods

Data. We use the MD tracks and frequency data from the “Cyclone eAtlas – IMD” published by the India Meteorological Department for the 1950–2010 period. For the same period, we also use the Hadley Centre Sea Ice and Sea Surface Temperature data set (HadISST), and wind and the relative-humidity data mainly from the NCEP/NCAR Reanalysis data set. In addition, we use the ERA-40 datasets for the 1958–2002 period, and MERRA (Modern Era-Retrospective Analysis For Research And Applications) for the period 1979–2010 for verification.

A spatial map of frequency of formation of depressions during JJAS season for the period 1950–2010 (figure S1.a) indicates that most MDs in the BoB occur in the region bound by 80°E–90°E and 15°N–25°N. Therefore, we average the various physical parameters over this region to obtain the corresponding representative Indices for further analysis. The individual seasonal anomalies of various parameters have been obtained by subtracting the long term seasonal climatology from the respective individual seasonal value of the parameter that year.

Model. We performed sensitivity experiments using a nineteen-level axi-symmetric model which uses a simplified variant of the Arakawa-Schubert convective parameterization scheme, after Grell. The model and its variants have been...
Figure 5 | Time-radius cross section of convective rain fall (in cm/day). The top panel shows CTRL run, middle one shows EXP-5% and bottom one shows EXP-10%.

Figure 6 | Time-radius section of cloud base mass flux (g/m²/s). The top panel shows CTRL run, middle one shows EXP-5% and bottom one shows EXP-10%.
extensively used to study the evolution of the tropical cyclogenesis in various tropical oceans, including BoB\cite{krishnamurthy94, jadhav81}.

The air pressure is assumed to be a function of height only. Planetary boundary layer has been parameterized in the model using the Deardorff\cite{deardorff78} boundary layer scheme. Vertical velocity \(w \) is taken as zero at \(z = 0 \) and \(z = z_{\text{mix}} \), i.e., at the bottom and top of the model atmosphere (\(z_{\text{mix}} = 19 \) km).

Radius of the outer perimeter of the computational domain is taken as 2500 km in this model. The domain of such a large size is used to reduce the influence of the lateral boundary on the storm structure at the center. The model atmosphere has been divided into 18 vertical layers between 0–19 km, with the 19 levels designated at 0, 1, 2, 3, ..., 19 km heights. The horizontal computational domain is divided into 21 concentric telescopic rings, with a horizontal resolution of 20 km within the 100 km, beyond which the resolution becomes coarse as one moves away.

The initial perturbation is imposed via potential temperature and is given by

\[
\theta' (r, z) = 0.24 \sin \left(\frac{\pi}{r_0} r + 1 \right) \sin \left(\frac{\pi}{z_{\text{max}}} z \right).
\]

For \(r < r_0 = 300 \) km, \(z_{\text{mix}} = 19 \) km.

Further details of the model can be obtained from Rao & Ashok\cite{rao06}. The mean vertical distribution of temperature and RH of the month June for Calcutta have been adopted as the initial conditions. However, the model sensitivity to the MT-RH was more or less similar even after we used a few available sounding profiles from the south-eastern stations such as Machilipatnam, Bhubaneswar and Visakhapatnam, which are affected by the MDs. All the experiments were conducted with a constant SST of 301 K. The integration was carried out for 240 hours in all the cases.

1. Sikka, D. R. Some aspects of the life history, structure and movement of monsoon depressions. Pure and Applied Geophysics, 115, 1501–1529 (1977).
2. Rajevan, M., De, U. S. & Prasad, R. K. Decadal variation of sea surface temperatures, cloudiness and monsoon depressions in the north Indian ocean. Current Science, 79, 283–285 (2000).
3. Iyer, V. Typhoons of the Pacific Oceans and South China Sea. Indian Meteorological Department Scientific Notes (1931).
4. Kotwaniam, P. & Rao, S. Formation and structure of Indian summer monsoon depressions. Australian Meteorological Magazine, 41, 2–75 (1963).
5. Krishnamurti, T. N., Molinari, J., Pan, H. & Wong, V. Downstream amplification of tropical cyclone number, duration, and intensity in a warming environment. Journal of Earth System Science, 121, 516–520 (2010) and its importance in causing floods.
6. Webster, P. J., Holland, G. J., Curry, J. A. & Chang, H. R. Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309, 1844–1846 (2005).
7. Gray, W. M. Tropical cyclone genesis. (Department of Atmospheric Science, Colorado State University, 1975).
8. Stano, G. & Krishnamurthi, T. Hydrometeor structure of a composite monsoon depression using the TRMM radar. Tellus A (2002).
9. Sikka, D. Some aspects of the large scale fluctuations of summer monsoon rainfall over India in relation to fluctuations in the planetary and regional scale circulation parameters. Proceedings of the Indian Academy of Sciences-Earth and Planetary Sciences, 89, 179–195 (1980).
10. Moyler, D. A. & Shukla, J. Main features of the westward-moving low pressure systems for the Indian region during the summer monsoon season and their relation to the monsoon rainfall. Indian Meteorological Magazine, 40, 137–152 (1989).
11. Jayab, S. Summer monsoon low pressure systems over the Indian region and their relationship with the sub-divisinal rainfall. Indian Meteorological Magazine, 53, 177–186 (2002).
12. Krishnamurthy, V. & Jayamohan, R. S. Composite Structure of Monsoon Low Pressure Systems and Its Relation to Indian Rainfall. Journal of Climate, 23, 4285–4305 (2010).
13. Mohapatra, M. & Mohanty, U. C. Some characteristics of low pressure systems and summer monsoon rainfall over Orissa. Current Science, 87, 1245–1255 (1999).
14. Rao, G. Occurrence of heavy rainfall around the confluence line in monsoon disturbances and its importance in causing floods. Proceedings of the Indian Academy of Sciences-Earth and Planetary Sciences, 89, 87–94 (2000).
15. Patwardhan, S. K. & Bhalme, H. N. A study of cyclonic disturbances over the Indian ocean and the adjacent land. National journal of climatology, 21, 527–534 (2001).
16. Mandke, S. & Bhide, U. V. A study of decreasing storm frequency over Bay of Bengal. The Journal of Indian Geophysical Union, 75, 53–58 (2003).
17. Jayad, S. K. & Munot, A. A. Warming SST of Bay of Bengal and decrease in tropical cyclone activity from an observational perspective. Journal of Climate, 17, 4590–4602 (2004).
18. Webster, P. J., Holland, G. J., Curry, J. A. & Chang, H. R. Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309, 1844–1846 (2005).
19. Gray, W. M. Tropical cyclone genesis. (Department of Atmospheric Science, Colorado State University, 1975).
53. Deardorff, J. W. Parameterization of the Planetary Boundary layer for Use in General Circulation Models 1. *Monthly Weather Review* **100**, 93–106 (1972).
54. Ashok, K., Soman, M. K. & Satyan, V. Simulation of Monsoon Disturbances in a GCM. *Pure Appl. Geophys.* **157**, 1509–1539 (2000).

Acknowledgements
We thank Prof. G.S. Bhat and Prof. R.N. Keshava Murthy for their insightful comments. We acknowledge Indian Meteorology Department, Chennai for the permission to use Cyclone eAtlas in this study. We thank the Director, IITM for his support.

Author contributions
A.G.P. did the analysis and wrote the manuscript with significant inputs from K.A. K.A. conceived the idea and co-wrote the manuscript. D.V.B.R. provided and helped in setting up the axi-symmetric model. All authors discussed the results.

Additional information
Supplementary information accompanies this paper at http://www.nature.com/scientificreports

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Prajeesh, A.G., Ashok, K. & Rao, D.V.B. Falling monsoon depression frequency: A Gray-Sikka conditions perspective. *Sci. Rep.* **3**, 2989; DOI:10.1038/srep02989 (2013).

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported license. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0