1. Introduction

Throughout recent decades, transportation planning has been established as a key topic in the literature and practices of social production, especially in urban contexts. Especially in urban contexts, due to industrial strategies, urbanization, city design and unforeseen accidents, weather conditions, traffic congestion, logisticians and citizens face many challenges related to delivery delays [1]. The traffic environment is dynamically changing, which increases the complexity of the problem, the most obvious one being time-varying travel time. Travel velocity is significantly reduced during peak hours. Therefore, to achieve socio-economic and environmental sustainability in city transportation, a major intervention on time-varying congestion is needed.

Problems related to the distribution of goods between the warehouse and the final customer are generally considered as the vehicle routing problem (VRP). The vehicle routing problem was first raised by Dantzig and Ramser [2]. Clarke and Wright [3] added more practical restrictions for the problems, in which the delivery of goods to each customer should have occurred in the bound. Such a problem model is called the Vehicle Routing Problem with Time Windows (VRPTW). The actual distribution process is much more complex, such as travel speeds on the road varying substantially during peak and off-peak hours in the urban areas. Consequently, Malandraki and Daskin [4] first took the existence of diversified conditions of traffic at different times of the day. They discussed the Time-Dependent Vehicle Routing Problem (TDVRP) where the travel time was based on “a step function distribution”. Unfortunately, this model does not satisfy the First-In-First-Out
(FIFO) property which ensures that if a vehicle leaves a node \(i \) for a node \(j \) at a given time, any other vehicle leaving a node \(i \) for a node \(j \) at an earlier time will arrive earlier at node \(j \). Without the “FIFO” property, that is, a vehicle can depart later than another vehicle and arrive earlier at its destination, even if the same path is followed by the two vehicles. This situation is contrary to reality, but it happens in the assumptions of the model, for example, if one vehicle waits just a little before departing to catch a faster travel time associated with the next interval.

Previous studies tend to use different travel link times of node \(i \) and node \(j \) to guarantee the FIFO property. Ichoua et al. [5] presented a model based on time-dependent travel speeds that they proved to be better at modeling time-dependency, and the FIFO assumption is not necessarily satisfied either. The idea of time-varying speed is adopted in our problem as well. At the same time, the time-varying continuous speed model is closer to the actual distribution situation, the speed of vehicles changes smoothly, rather than a step-change at a certain moment [6,7].

Apart from the Time-Dependent VRPs, another variant of the VRPs is named the Heterogeneous Fleet Vehicle Routing Problem (HFVRP), where a heterogeneous fleet of vehicles is used for the distribution activities; see Baldacci et al. [8]. The HFVRP with a limited number of vehicles proposed by Taillard [9] involves optimizing the vehicle routes with the available fixed fleet. The idea is not only to consider the routing of the vehicles, but also the fleet composition. Relating to the type of costs (fixed and variable) to be minimized, two different objective functions have been considered.

In the case of just-in-time (JIT) production and urban logistics distribution, time-varying speed, time windows, and heterogeneous fleet settings naturally occur and are therefore more in line with the actual distribution situation. Logistics need to find a balance between costs and quality of service. This route construction problem has been encountered by the authors in several contexts: e.g., cold chain logistics [10], fresh logistics [11], milk run [12], automated guided vehicle (AGV) systems [13], freight distribution [14], JIT production [15], B2C e-commerce [16], inter-vehicle communication [17], vaccine distribution [18], and so on. Nonetheless, there are few cases involving optimization of vehicle type selection and route distribution under the minimizing of total cost based on a continuous time-varying speed model which are closer to the actual distribution situation.

Solving VRP is computationally expensive as it is categorized as NP-Hard; see Lenstra and Kan [19]. Metaheuristics approaches are necessary to solve this problem within considerable computational time. Compared to the classical heuristic, metaheuristics carry out a more thorough search of the solution space. Thus, they are notably capable of consistently producing high-quality solutions, despite the greater computational time than early heuristics; see Cordeau et al. [20]. They have been successfully applied for different combinatorial optimization problems. However, in the scientific literature, almost all existing memetic algorithms for solving different VRP variants follow the framework of genetic algorithms (GA) [21–23] or the Particle Swarm Optimization algorithm (PSO) [24,25] and very rarely, the framework of Simplified Swarm Optimization algorithms.

As one metaheuristic methodology, the Simplified Swarm Optimization (SSO) is often used to address both discrete and continuous optimization problems (Yeh [26]; Yeh [27]; Yeh and Chuang [28]). SSO has some attractive advantages such as its ability to deal with non-linear models, chaotic and noisy data, and many constraints.

The rest of this paper is organized as follows. In Section 2, the literature review is presented, and the problem statement is described in Section 3. Simplified Swarm Optimization is presented in Section 4. Details of the computational result and analysis about the problem are presented in Section 5. Section 6 draws conclusions and possible future research.

2. Literature Review

Vehicle Routing Problems (VRP) are essential elements of distribution systems for delivering goods and services. The effective management of these vehicles could improve
customers’ experience of delivery and minimize the total routing costs. Due to the wide application of logistics distribution scenarios, there is more and more research on VRPs, so there are a lot of different objective types and limit types of VRPs.

Hence, we have briefly reviewed two different types of VRPs: (1) those that model Time-Dependent travel time VRP with a speed model, (2) and the Heterogeneous Fleet VRP is introduced. Time Dependent VRP (TDVRP) with Time-Varying Speeds and Heterogeneous Fixed Fleet VRP (HFFVRP) in Sections 2.1 and 2.2, respectively.

2. Literature Review

Vehicle Routing Problems (VRP) are essential elements of logistics distribution systems for freight distribution to minimize total carbon emission and operating cost. Adriano, Montez, Novaes, and Wangham [12] also proposed a dynamic model to simulate the milk-run tours with time windows, using the auxiliary vehicle to deal with traffic jams. Liu et al. [33] proposed TDVRPTW to minimize the sum of the fixed costs of the vehicle used, as well as the costs of drivers, fuel consumption, and carbon emissions. Pan et al. [34] studied

2.1. Time Dependent Vehicle Routing Problem with Time-Varying Speeds

As the Time Dependent VRP (TDVRP) was proposed, since its assumption was more in line with the realistic world, the TDVRP has attracted the attention of many researchers. However, literature on the speed model remains scarce. The pioneering work has been done by Malandraki and Daskin [4] and Malandraki and Dial [29]. In these papers, mixed-integer linear programs (MILP) and several heuristics to solve the problem are proposed. However, these models may potentially violate the First-In-First-Out (FIFO) property, which implies that for every arc, a later departure time results in a later (or equal) arrival time.

As opposed to Malandraki and Daskin [4], Ichoua, Gendreau, and Potvin [5] proposed an alternative approach model; a stepwise speed function was proposed, resulting in a piecewise linear travel time function, like the one illustrated in Figure 1a, where the day is divided into several time periods and a speed is associated with each period. For a given arc, a stepwise speed function can easily be translated into a corresponding piecewise linear travel time function, as shown in Figure 1b.

This new travel time model satisfies the FIFO principle since a vehicle can only arrive later at the destination if it departs later. The time-dependent speed model is commonly adopted in later publications on VRP variants with time-dependent travel times.

Çimen and Soysal [30] addressed a TDVRP with stochastic vehicle speeds and environmental concerns and formulated the problem as a Markovian Decision Process. Soysal and Çimen [31] also proposed a GTDVRP that accounts for transportation emissions, and the problem has been formulated and solved using the Dynamic Programming approach. Sun et al. [32] introduced a time-dependent capacitated profitable tour problem with the object to maximize the profit and developed a tailored labeling algorithm to find the optimal tour. Wang, Assogba, Fan, Xu, Liu, and Wang [14] presented a bi-objective model which focused on freight distribution to minimize total carbon emission and operating cost.

Figure 1. (a) Travel time function on a link; (b) travel speed function at a node.
the duration-minimizing time-dependent vehicle routing problem with time windows (DM-TDVRPTW), where time-dependent travel times represent different levels of road congestion throughout the day. Pan et al. [35] also proposed a multi-trip time-dependent vehicle routing problem with time windows (MT-TDVRPTW) and formulated the time-dependent ready time function and duration function for any segment of consecutive nodes as piecewise linear functions. Gmira et al. [36] proposed a time-dependent vehicle routing problem with time windows in which travel speeds are associated with road segments in the road network.

Few papers use the time-varying speed of continuous function. Xiao and Konak [37] defined GVRSP which considers heterogeneous vehicles and time-varying traffic congestion where the speed of smooth period is variable. Huang et al. [38] proposed the time-varying speed of the linear continuous function model, but without detailed specification, and their research only studied two types of vehicles with a fixed cost. Xu, Elomri, Pokharel, and Mutlu [21] extended the period-based speed pattern to be a time-varying speed pattern. The approximate corresponding function denoting the relationship between the departure time t and the vehicle speed $v(t)$ can be characterized by the trigonometric function. Fan, Zhang, Tian, Lv, and Fan [23] continued the assumption in which speed is a trigonometric function of the departure time and applied it in time-dependent multi-depot GVRP. We should still express the time-varying speed as a linear continuous function, without loss of generality, and amplify the speed transformation time to illustrate the time-varying speed of continuous function.

2.2. Heterogeneous Fixed Fleet Vehicle Routing Problem

In practice, many vehicle routing problems are addressed by a non-homogeneous vehicle fleet where vehicles of different capacities are used. Heterogeneous fleets VRPs (HFVRPs) are consider a limited or an unlimited fleet of capacitated vehicles, with a problem consisting of determining the fleet composition and vehicle routes [39].

There are two major HVVRPs: the Heterogeneous Fixed Fleet Vehicle Routing Problem (HFFVRP) and the Fleet Size and Mix Vehicle Routing Problem (FSMVRP). HFFVRP was proposed by [9] in which the fleet is predetermined. FSMVRP considers an infinite availability of vehicles of different type, proposed by [40]. In HFFVRP, the number of vehicles is a constraint but in the presence of a large number of vehicles, not all of them may be used. In FSMVRP, part of the decision is to determine the composition of the fleet. FSMVRP can be treated as a particular HFFVRP [9].

Since HFFVRP models can better simulate the actual distribution situation and achieve a better balance of economic and environmental sustainability simultaneously (Micheli and Mantella [41]), HFFVRP has been extensively studied. Afshar-Najafi and Afshar-Najafi [42] introduced a time-dependent multi-depot vehicle routing problem to minimize total cost and formulated the problem as mixed-integer programming. Vincent et al. [43] developed a Heterogeneous Fleet Pollution Routing Problem (HFFRP) to minimize the total costs of fuel which contain vehicle variable cost and greenhouse gas emissions. Wang et al. [44] proposed a heterogeneous fleet to provide services for a very large transport network, which also determined the number of vehicles of different types that facilitated on each service link, to better reflect real applications. The proposed methodology is applied to a real-world network, which shows the necessity of considering a heterogeneous fleet. De and Giri [45] studied a closed-loop supply chain with a heterogeneous fleet to minimize carbon emissions. Soman and Patil [46] introduced a heterogeneous fleet vehicle routing problem with release and due dates in the presence of consolidation of customer orders and limited warehousing capacity. Cao, Liao, and Huang [22] addressed a vehicle routing problem considering an electric heterogeneous fleet for a two-echelon recycling network, recycling stations, and recycling centers: with the goal of minimizing the total cost, a recycling heterogeneous fleet electric vehicle routing model with time windows.

The case we proposed is associated with the Heterogeneous Fixed Fleet Vehicle Routing Problem, since the size of the fleet is known for each type of the vehicle, but
in our case, we determine the composition of the fleet and the route of each vehicle to serve all customers as in the FSMVRP. Recent literature review and model comparison can be seen in Table 1.

Paper	Speed	HF	TW	Test Problem	Veh Type	TP	Objective	Solution Method		
Çimen and Soysal [30]	√	-	-	-	-	Pollution-Routing Problem Instance Library	homo	4	carbon	Approximate Dynamic Programming (ADP) based heuristic algorithm
Soysal and Çimen [31]	√	-	-	-	-	Pollution-Routing Problem Instance Library	homo	4	carbon	Simulation Based Restricted Dynamic Programming (RDP) algorithm
Sun, Veelenturf, Dobia and Van Woensel [32]	√	-	-	-	√	Instances proposed by Ropke et al. [47]	homo	5	max profit	Tailored labeling algorithm
Wang, Assogba, Fan, Xu, Liu and Wang [14]	√	-	-	-	√	Pollution-Routing Problem Instance Library	homo	5	carbon and cost	Clarke and Wright Saving, Sweep algorithm, and multi-objective PSO
Adriano, Montez, Novaes and Wangham [12]	-	-	-	-	√	Self-generated	homo	not TD	cost	Dynamic milk-run vehicle routing solution
Liu, Kou et al. [33]	√	-	-	-	√	Solomon dataset	homo	3	cost	Ant colony algorithm
Pan, Zhang et al. [34]	√	-	-	-	√	Solomon dataset	homo	5	time	Tabu search
Pan, Zhang et al. [35]	√	-	-	-	√	Solomon dataset	homo	5	dis	Tabu search
Gmira, Gendreau et al. [36]	√	-	-	-	√	NEWLET coming from [48]	homo	5	dis	Tabu search
Afshar-Nadjafi and Afshar-Nadjafi [42]	√	-	-	√	√	Self-generated	4	3	cost	Simulated annealing
Vincent, Redi et al. [43]	-	-	-	√	-	Pollution-Routing Problem Instance Library	3	not TD	cost	Simulated annealing
Wang, Qi et al. [44]	-	-	-	√	-	Instances proposed by [49]	10	not TD	cost	Linear solution provided by the column-and-cut generation with local search
Soman and Patil [46]	-	-	-	√	-	Instances proposed by [50]	2	not TD	cost	Scatter search
Table 1. Cont.

Paper	Speed D	Speed C	Speed F	Speed V	Test Problem Veh	Tp	Objective	Solution Method
De and Giri [45]	-	-	-	√	-	3	not TD	carbon and cost
					Self-generated			Mixed integer linear programming
Cao, Liao et al. [22]	-	-	√	√	-	3	not TD	cost
					Self-generated			Genetic algorithm
Huang, Jiang et al. [38]	-	√	-	√	-	3	5	cost
					Self-generated			Simplified swarm optimization
Xu, Elomri et al. [21]	-	√	-	√	Instances proposed	12	4	fuel
					by [51]			Genetic algorithm
Fan, Zhang et al. [25]	-	√	√	√	MDVRP by [52], MDVRPTW by [53]	3	4	cost
					MDVRPTW by [53]			Genetic algorithm
Our study	-	√	√	√	Pollution-Routing Problem Instance Library	3	5	cost
					Library			Simplified swarm optimization

Note 1. Speed stands for time dependency speed mode, D for Discrete function, C for Continuous function; 2. HF stands for heterogeneous fleet, homo for homogeneous, F for fix cost, V for variable cost; 3. TW stands for time window, Tp for time period.

3. Problem Statement

3.1. Time Dependent Vehicle Routing Problem with Time-Varying Speeds of Continuous Function

The classic Time Dependent Vehicle Routing Problem with Time-Varying Speeds can be described as follow. Let \(G = (V, A) \) be a graph, where \(V = \{v_0, v_1, v_2, \ldots, v_N\} \), where \(\{v_1, v_2, \ldots, v_N\} \) is the nodes set standing for customers needing to be served in a time window \(tw_i = [b_i, e_i] \), and \(v_0 \) is the depot. Each customer is characterized by a demand \(D_i \) and service time \(s_i \), which is the time to complete the delivery. \(A = \{(v_i, v_j) : v_i, v_j \in V\} \) is the arcs set (subscript means sequence), link node \(i \), and node \(j \) with its distance \(d_{ij} \). The time horizon is divided into \(b \) time intervals \(T = \{T_1, T_2, \ldots, T_b\} \). The travel speed for an arc remains constant within each time zone \(T_b \) but changes at the end of the time zones and without loss of generality, and the time zones are set to be the same for all the arcs. The travel time on a given arc \((v_i, v_j)\) is then derived based on its distance \(d_{i,j} \) and its speed profile.

Even though many works in TDVRP have been carried out with time-varying speeds, the investigation carried out by the Texas A&M Transportation Institute Jha and Eisele [7] mentioned that the traveling speed increases or decreases smoothly, rather than treating it as a stepwise function. The drawbacks of this model are very obvious and, as shown in the Figure 2, will lead to breakpoints; although it can be said that the change in speed takes much less time than delivery at a constant speed. Hence, we present a time-varying speed model of a continuous function, as shown in the Figure 3a.

Proposition 1. If the speed profile for an arc \((v_i, v_j)\) is a stepwise linear continuous function, as show in Figure 3a, then the time-dependent travel distance function can be obtained by integrating the speed function, and the derived travel distance function is a continuous function, as depicted in Figure 3b.

Proposition 2. Since travel distance corresponds to travel time one-to-one, then the time-dependent travel time function is the inverse function of travel distance. Using this one-to-one correspondence relationship, when the departure time and travel distance are known, the travel time can be calculated.
3.2. Heterogeneous Fixed Fleet Vehicle Routing Problem

Heterogeneous fleets VRPs (HVRPs) are considered a limited or unlimited fleet of capacitated vehicles, with problems, which consist of determining the fleet composition and vehicle routes (Koç, Bektas, Jabali, and Laporte [39]). Let M_m be the set of vehicles with m types, each type vehicle max available number be veh_m, and subscript m be the type of vehicle (which will be used in the following text). The maximum load capacity of m type vehicle is cap_m, the time-varying speed function of m type vehicle is $\text{fun} - \text{speed}_m(t_{\text{dep},ij})$, where $t_{\text{dep},ij}$ is the departure time from node i to node j, the time-varying travel time function is $\text{fun} - \text{time}_m(t_{\text{dep},ij}, d_{ij})$, and d_{ij} is the distance linking node i and node j, as mentioned before. Every type of car has a fixed cost f_{cm}, which is referred to as the cost of buying or renting, and a variable cost vc_m, used to express the cost per kilometer per kilogram of the weight of goods.

Assumptions
1. The depot has a demand equal to zero
2. Each customer location is serviced from only one vehicle
3. Each customer’s delivery must arrive within the time window
4. The number of each type of vehicle in routing cannot exceed each type of vehicle; the maximum available number is veh_m
5. Each vehicle shall not exceed its maximum load capacity cap_m
6. The total delivery time of each vehicle shall not exceed 9 h
Notations used in problem statement are defined as follows. Detail model sets, indices, and parameters are shown in Table 2.

Table 2. Sets, indices, and parameters.

Sets and Indices	Description
V	nodes set, v_0 is the depot, $\{v_1, v_2, \ldots, v_N\}$ are customers
i, j	subscript of the customer node, $i, j = 1, 2, \ldots N$
A	$A = \{(v_i, v_j) : v_i, v_j \in V\}$ is the arcs set linking node i and node j
M_m	the set of vehicles with m types
m	vehicle types, $m = 1, 2, \ldots, M_K$

Parameters	Description
D_i	demand of i customer
tw_i	$tw_i = [b_i, e_i]$ time window of i customer
s_i	service time of i customer
T	$T = \{T_1, T_2, \ldots, T_b\}$ time period
$t_{arr,i}$	the arrive time of node i
$t_{dep,ij}$	the departure time from node i to node j
$t_{tra,ij}$	the travel time from node i to node j
d_{ij}	the distance linking node i and node j
$\text{fun} - \text{speed}_m(t_{dep,ij})$	time-varying speed function of m type vehicle
$\text{fun} - \text{time}_m(t_{dep,i}, d_{ij})$	time-varying travel time function of m type vehicle
veh_m	each type of vehicle, maximum available number
cap_m	maximum load capacity of m type vehicle
f_{c_m}	fixed cost of m type vehicle
vc_m	variable cost of m type vehicle
$Dm_{ij,m}$	amount carried using type m vehicle from i to j

Decision variable	Description
$X_{ij,m}$	one if a type m vehicle travels from node i to j; otherwise, zero

3.3. Fitness Function and Mathematical Model

The traditional logistics model is concerned with minimizing total cost in a network. This is where the concept of Vehicle Routing Problem (VRP) is best applied. We follow this concept and add the fixed cost f_{c_m} of each type of vehicle into the total cost to minimize the total number of vehicles. We also include the variable cost vc_m of delivery of each type of vehicle to optimize the vehicle scheduling. Other constraints appear in the target calculation in the form of penalty functions to enforce the constraints of the limit. The objective of minimizing the total cost is as follows:

\[
\text{Minimize} \quad \sum_{m=1}^{M} \sum_{i=0}^{N} \sum_{j=0}^{N} X_{ij,m} f_{c_m} + \sum_{m=1}^{M} \sum_{i=0}^{N} \sum_{j=0}^{N} d_{ij} Dm_{ij,m} \text{vc}_m
\]

Subject to Routing

\[
\sum_{i=1}^{N} X_{i0,m} = 1 \quad \forall \ m \in M_m
\]
The objective function (1) is total cost including fixed cost and variable cost. Constraint (2) defines that each vehicle should back to the Depot that subscript stands for 0. Constraint (3) ensures that each node can only be visited once in a route. Constraint (4) states that if a vehicle arrives at a node, it must leave it, and by this way, the route continuity is ensured. Constraints (10) and (11) state the restrictions for the amount of demand and capacities. Constraint (7) defines the maximum number of available vehicles veh_m. Constraints (8) and (9) are the time window restrictions. Constraint (11) ensures that each vehicle cannot delivery over 9 h.

4. Simplified Swarm Optimization

As a generalization of VRP, the TDVRP and HFFVRP are also NP-hard and require intentional investigation for problem modeling and algorithmic design.

4.1. Simplified Swarm Optimization

SSO is one of the simplest machine-learning methods (Wang et al. [54–56] Yeh, et al. [57]) in terms of its update mechanism. It was first proposed by Yeh [27], and has been tested to be a very useful and efficient algorithm for optimization problems, including network reliability (Yeh [58] Yeh, et al. [59]), deep learning training (Yeh [60] Yeh, Lin, Liang and Lai [57]), disassembly sequencing problems (Yeh [61] Yeh [62]), energy problems (Lin et al. [63]), and so on. Owing to its simplicity and efficiency, SSO is used here to find the best values in vehicle routing of the proposed HFVRP with Time-Varying Continuous Speed Function.

The basic idea of SSO is that each variable, such as the jth variable in the ith solution $x_{i,j}$, needs to be updated based on the following stepwise function (Yeh [55,62]):

$$
x_{i,j} = \begin{cases}
g_j & \text{if } \rho_{0,1} \in [0, C_g) \\
p_{ij} & \text{if } \rho_{0,1} \in [C_g, C_p) \\
x_{i,j} & \text{if } \rho_{0,1} \in [C_p, C_w) \\
x & \text{if } \rho_{0,1} \in [C_w, 1)
\end{cases}
$$
where the value \(\rho_{[0,1]} \in [0,1] \) is generated randomly, the parameters \(C_g, C_p - C_g, C_w - C_p \), \(1 - C_g \) are all in \([0,1]\) and are the probabilities of the current variable that are copied and pasted from the best of all solutions, the best \(i \)-th solution, the current solution, and a random generated feasible value, respectively.

There are different variants of the traditional SSO that are customized to different problems from the no free lunch theorem; for example, the four items in Equation (11) are also reduced to three items to increase the efficiency; parameters \(C_g, C_p, \) and \(C_w \) are all self-adapted; special values or equations are implemented to replace \(g_j, p_{ij}, x_{ij} \), and \(x_i \); or only a certain number of variables is selected to be updated, etc. However, the SSO update mechanism is always based on the stepwise function.

4.2. Example for Code and Decode

To explain how the model works, a small instance from Vincent, Redi, Jewpanya, Lathifah, Maghfiroh, and Masruroh [43] was used for testing with 1 depot, 5 customers, and 3 types of vehicles. Table 1 shows the part of parameters for each vehicle from Vincent, Redi, Jewpanya, Lathifah, Maghfiroh, and Masruroh [43], since our research focus on the total cost which included fixed cost and variable cost, instead of the pollution cost in Vincent, Redi, Jewpanya, Lathifah, Maghfiroh, and Masruroh [43] study, some of the parameter settings have been omitted which can be known in detail in the Vincent, Redi, Jewpanya, Lathifah, Maghfiroh, and Masruroh [43] paper. Tables 3 and 4 present the corresponding values for the distance matrix (in meters), demand, time window, and service time.

Table 3. Vehicle specification.

Notation	Description	Typical Values of a Type of m Vehicle
cap_m	Maximum load capacity of \(m \)-type vehicle	1000 2000 3650
vc_m	Variable cost of \(m \)-type vehicle (£/m)	0.0001 0.00015 0.0002

Note: \(vc_m \) in the Vincent, Redi, et al. study did not consider the load of delivery

Table 4. Parameters for the small problem size.

D	\(V_1 \)	\(V_2 \)	\(V_3 \)	\(V_4 \)	\(V_5 \)	Demand	\(b_i \)	\(e_i \)	\(s_i \)
D	0 41,150 25,680 23,000 32,450 22,500 0 0 22,400 0								
\(V_1 \)	40,660 0 51,980 40,000 23,000 32,000 900 752 21,289 200								
\(V_2 \)	25,010 51,780 0 30,000 32,000 23,000 727 270 24,050 200								
\(V_3 \)	20,000 30,000 300,000 0 23,000 25,000 800 250 22,500 1500								
\(V_4 \)	32,500 23,000 32,000 23,000 0 30,000 580 700 28,000 200								
\(V_5 \)	22,500 32,000 23,000 25,000 30,000 0 600 300 27,000 300								

The route result given by the Vincent, Redi, et al. study is shown as follow

Route is 0-5-4-3-0, total distance is 95,500, vehicle type is type 2; Route II is 0-1-0, total distance is 81,810, vehicle type is type 1; Route III is 0-2-0, total distance is 50,690, vehicle type is type 1. Total distance of Route I, Route II, and Route III is 228,000, and total variable cost is 27.575.

If code, this route result using SSO, first, should give each vehicle type the maximum available number \(veh_m \). Assume that each type of vehicle can complete the distribution task separately; since the total demand of customers is 3607, which requires \(veh_1 = 4, veh_2 = 2, veh_3 = 1 \). According to the HFFVRP problem mentioned above, now, we need to decide the routing problem of 7 cars for 3 types of vehicles. And the representation using SSO is shown in Table 5.
Table 5. Representation using SSO.

	V₁	V₂	V₃	V₄	V₅
1.2	2.1	5.3	5.2	5.1	

The integer part of each number stands for the vehicle that will service, the same integer parts represent the same vehicle for serving the customers, and the order depends on value. For example, V₅, V₄, V₃ have the same integer parts, which means they are all delivered by vehicle 5 belong to type 2. The route is dependent on the value, since 5.1 < 5.2 < 5.3, so the route of vehicle 5 is 0-5-4-3-0.

After an iterative update of SSO, the final solution is shown in the Table 6.

Table 6. Cumulative result of small problem size; assume the velocity is 25 m/s.

From to	Distance	Travel time	Arrive T	TW	Service Time	Departure T
0-2	25,680	10,272	10,272	[270, 24,050]	2000	12,272
2-5	23,000	920	13,192	[300, 27,000]	300	13,492
5-1	32,000	1280	14,772	[752, 21,289]	200	14,972
1-4	23,000	920	15,892	[700, 28,000]	200	16,092
4-3	23,000	920	17,012	[752, 21,289]	1500	18,512
3-0	20,000	800	19,312	[0, 22,400]	0	/

The route is 0-2-5-1-4-3-0, service is by vehicle type 3, and the total distance is 146,680, which is much smaller than Vincent and Redi’s result. More importantly, the variable cost of Vincent and Redi’s model does not reflect the distribution cost caused by the load of the delivered goods, which is inconsistent with the actual distribution process.

In practice, logistics companies will buy or rent vehicles with large volume ratings because the average variable cost per kilogram and per meter is lower due to the scale effect. For example, the average demand is 721.4, the average distance is 24,446.7 (take the best solution as an example), the variable cost will be a thousand, so we present a new parameters setting, as shown in Table 7, which will be used in the subsequent test indices, and new optimum route results as Table 8.

Table 7. New parameters setting.

Notation	Description	Typical Values of a Type of m Vehicle		
capₘ	Maximum load capacity of m type vehicle	Vehicle Type 1	Vehicle Type 2	Vehicle Type 3
		1000	2000	3650
vcmₘ	Variable cost of m type vehicle (£/kg·m)	0.00002	0.000015	0.00001
fcmₘ	Fixed cost of m type vehicle	50	100	180

New optimum route is shown as follow:
Route I 0-5-0, delivery by vehicle type 1; Route II 0-2-0, delivery by vehicle type 2; Route III 0-4-0, delivery by vehicle type; Route IV 0-3-1-0, delivery by vehicle type 3.

4.3. SSO Algorithm Pseudo Code

In order to increase the speed of searching for the best solution, the part of inheriting the solution from the previous generation is cancelled, and the update mechanism is changed to
\[
x_{i,j} = \begin{cases}
g_j & \text{if } \rho_{[0,1]} \in [0, C_g) \\
p_{i,j} & \text{if } \rho_{[0,1]} \in [C_g, C_p) \\
x & \text{otherwise}
\end{cases}
\]

(13)

Table 8. After new parameters setting-new optimum route.

From to	Distance	Total Dis	Variable Cost	Demand	Total VC
0–5	22,500	-	0.00002	600	270
5–0	22,500	-	1	1	0.45
0–2	25,680	-	0.000015	727	280.0404
2–0	25,010	-	1	1	0.3752
0–4	32,450	-	0.000015	580	282.315
4–0	32,500	-	1	1	0.4875
0–3	23,000	-	0.00001	700	284
3–1	50,000	53,000	0.00001	900	477
1–0	40,660	-	1	1	0.4066

Total cost = total VC + fix cost for vehicle = 1924.6995

STEP 0. Initialize parameters; let \(t = 1 \), randomly initial solution \(S^1 \).

Each variable for \(S^1 \) is \(s_{nm}^t \in [1, mk] \), there are in total \(mk \) vehicles, subscript \(n \) stands for \(n \) customer nodes, subscript \(m \) stands for m particle size, \(d_i \) stands for customer \(i \) needs, \([b_i, e_i] \) stands for customer \(i \) time window.

STEP 1. Let \(m = 1 \), first row of solution matrix.

STEP 1.1 Let \(v = \text{vehicle order} = 1 \)

STEP 1.2 Find \(\text{veh}_v = S_{tnm}^1 \in [v, v+1) \)

STEP 1.3.1 Rank \(\text{veh}_v \) get \(X_{ij}^1 \), then read the distance \(d_{ij} \) link node \(i \) and node \(j \), add the \(\text{veh}_v \) vehicle fix cost;

STEP 1.3.2 Calculate \(t_{arr,ij} \) for each node, and departure time \(t_{dep,ij} = t_{arr,ij} + s_i \) check whether the arrival time is in the time window.

STEP 1.3.3 Calculate variable cost for each node,

STEP 1.3.4 Check total weight not over \(\text{cap}_m \)

STEP 1.4 Calculate \(\text{object}_v \) for vehicle \(\text{veh}_v \),

\[
\text{object}_v = \text{fix cos t} + \text{variable cos t}
\]

STEP 1.5

if \(\text{veh}_v < mk \)

\(\text{veh}_v = \text{veh}_v + 1 \), go back to STEP 1.2

Otherwise

Calculate \(\text{object}_m^t = \sum \text{object}_v \)

If \(\text{Pbest}_{m}^t > \text{object}_m^t \)

\(\text{Pbest}_{m}^t = \text{object}_m^t, \text{PbestS}_{m}^t = S_{m}^t \) Otherwise

\(\text{Pbest}_{m}^t = \text{Pbest}_{m}^t, \text{PbestS}_{m}^t = \text{PbestS}_{m}^t \) STEP 2.

If \(m < \text{popsize} \)

\(m = m + 1 \), go back to STEP 1.1

Otherwise

If \(\text{Gbest}^t > \text{min} (\text{Pbest}_{m}^t) \)

\(\text{Gbest}^t = \text{min} (\text{Pbest}_{m}^t), \text{GbestS}^t = \text{min} (\text{PbestS}_{m}^t) \) Otherwise

\(\text{Gbest}^t = \text{Gbest}^t, \text{GbestS}^t = \text{GbestS}^t \) STEP 3.

if \(t < \text{iteration} \) and CPU time is not met, randomly \(\rho \in [\text{node}, \text{popsize}] \) and \(x \)

switch \((\rho_{nm}) \)

Case 1 \(\rho_{nm} \in [0, C_w = c_w) \)

\(s_{nm}^{t+1} = \text{GbestS}^t, \text{Pbest}_{nm}^t \in [C_w, C_p = C_w + c_p) \)

Case 2 \(\rho_{nm} \in [C_p, 1] \)

\(s_{nm}^{t+1} = \text{Pbest}_{nm}^t \)

Case 3 \(\rho_{nm} \in [C_p, 1] \)

\(s_{nm}^{t+1} = x = t + 1 \)

otherwise

Go back to STEP 1

otherwise

Halt
5. Computational Experiments

In this section, the experimental results are reported. First, the details for the results of the case study are presented. Next, the current solution obtained by the GA and PSO is used to compare with the results obtained by both the mathematical model and the algorithm. The benchmark instance is based on the Pollution Routing Problem dataset. The datasets are taken from http://www.apollo.management.soton.ac.uk/prplib.htm, accessed on 1 June 2021 (operating environment: Intel(R) Core(TM) i-74770K CPU@3.50 GHz 3.50 GHz, memory 16.0 GB).

Vehicle setting as mentioned before, \(v_{cm} \); unit change to (£/kg·km) as shown in Table 7. Vehicle type 1 belongs to “slow vehicle, travel speed type 1”; vehicle type 2, 3 belong to “quick vehicle, travel speed type 2”; the time-varying continuous travel speed function and time-varying travel time function are as in Figures 4–6.

![Figure 4. Time-varying continuous travel speed function for 2 types of vehicles.](image1)

![Figure 5. Time-varying travel time function for “slow vehicle”.](image2)
SSO is compared with GA and PSO, which have been widely used. The updating methods of GA and PSO can be referred to the papers of other authors: [21,22,24].

Parameter setting of GA algorithm, the crossover rate and mutation rate are 0.6 and 0.4
Parameter setting of PSO algorithm, \(w = 0.5, C_1 = C_2 = 2 \)
Parameter setting of SSO algorithm, \(C_g = 0.5, C_p = C_w = 0.75, \)
More detailed information can be found in Appendix A.

Figure 6. Time-varying travel time function for ‘quick vehicle’.

Take UK10_01, for example, to illustrate the calculation; the units are adjusted to kilometers and hours. After the adjustment, the service time can be ignored and is not considered in this study. The parameters after adjusted as show in the Table 9. The result comparison is shown is Table 10.

Table 9. Parameters for the UK10_01.

D	V_1	V_2	V_3	V_4	V_5	V_6	V_7	V_8	V_9	V_10	Dem	b_i	e_i
D													
V_1	41	0	52	33	100	42	76	64	24	72	26	66	0
V_2	25	52	0	62	74	13	69	53	43	73	77	814	0.60
V_3	54	33	62	0	77	52	43	32	49	40	30	620	0.29
V_4	95	100	74	77	0	81	56	46	112	62	106	311	1.42
V_5	16	43	13	52	81	0	78	61	34	82	68	167	0.65
V_6	89	76	69	43	55	78	0	17	92	7	69	513	1.02
V_7	73	63	52	32	46	61	17	0	76	21	61	568	1.22
V_8	26	24	44	50	112	34	91	76	0	89	49	763	0.97
V_9	88	72	73	39	61	82	7	21	88	0	64	558	1.04
V_10	65	26	77	29	106	67	69	61	49	64	0	636	1.47

SSO is compared with GA and PSO, which have been widely used. The updating methods of GA and PSO can be referred to the papers of other authors: [21,22,24].
Table 10. Result comparison.

	GA	PSO	SSO
	Average Runtime	Average Runtime	Average Runtime
1	4744.389 28.758	5085.359 20.51	4734.099 18.478
2	4822.404 29.674	4959.387 20.772	4572.63 19.234
3	5155.445 29.27	5335.604 20.818	4856.664 18.736
4	4618.963 30.378	4959.715 20.876	4758.297 18.936
5	3786.287 29.118	4073.978 19.468	3866.133 19.302
6	4466.445 29.3425	4498.934 19.816	4354.82 19.004
7	5735.288 29.826	5681.62 19.658	5673.156 18.868
8	4277.396 29.43	4349.053 19.214	3955.826 19.06
9	5411.929 28.9	5540.31 19.706	5383.005 19.288
10	average 4679.797 29.48145	4845.599 20.0576	4589.337 18.9374

From the result, bold is a better solution, shows that the SSO outperforms the original GA and PSO with respect to the average cost (run 5 times independently to take the average value) and runtime. In terms of runtime, SSO and PSO are close, slightly better than PSO. The objective value of the GA is also good, but it takes longer to run, due to the update mechanism of the GA.

6. Conclusions

In urban areas, traffic conditions show a discrepancy throughout the day and the travel time between two locations depends on the time of the day. Even though there are many discussions about the time-dependent model, few adopted the time-varying speed model which can better reflect different road time conditions and naturally satisfy the FIFO property. Thus, we present a novel model using the Time-Varying Continuous Speed Function to explain the time-varying traffic condition effect on delivery.

Moreover, in real conditions, a logistics company can choose a different vehicle to deliver the goods to minimize the total cost including fixed cost and variable cost. In our research, we proposed three types of vehicles with different capacities and costs. By comparing with [43], it is proved that our model can better reflect the actual distribution process and optimize vehicle selection and vehicle routing in the process of minimizing the total cost.

Owing to the complexity of the problem, we use SSO to address the proposed problem and use a Pollution Routing Problem dataset to validate it and compare the result with GA and PSO, which have been widely used in solving VRP problems. The results obtained from the analysis show that the SSO outperforms the original GA and PSO with respect to the total cost and runtime. We acknowledge some limitations in the current study, but these limitations also provide opportunities for further research: for example, applying the SSO to solve larger-scale problems. For the problem of the wide interval time window, path planning is not obviously constrained by the time window, and service time has little impact on distribution planning. Therefore, the problem of a narrow time window can be considered in the future.

Author Contributions: Conceptualization, W.-C.Y. and S.-Y.T.; methodology, W.-C.Y.; software, S.-Y.T.; validation, W.-C.Y. and S.-Y.T.; formal analysis, S.-Y.T.; investigation, S.-Y.T.; resources, S.-Y.T.; data curation, S.-Y.T.; writing—original draft preparation, S.-Y.T.; writing—review and editing, S.-Y.T.; visualization, S.-Y.T.; supervision, S.-Y.T.; project administration, W.-C.Y.; funding acquisition, W.-C.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: We wish to thank the anonymous editor and the referees for their constructive comments and recommendations, which significantly improved this paper.
Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Uk10_02.

	D	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	Dem	b₁	e₁
D	0	83	80	32	86	79	57	57	44	86	61	0	0	9
V1	82	0	25	88	135	9	87	47	97	96	29	403	1.45	7.16
V2	80	24	0	90	113	31	98	28	80	111	37	411	0.73	6.12
V3	32	88	90	0	117	82	48	75	74	77	64	596	0.75	6.29
V4	86	135	112	116	0	139	91	44	169	125	125	582	0.24	6.1
V5	78	9	32	82	139	0	79	49	98	87	23	212	0.26	5.73
V6	58	87	98	48	140	79	0	95	98	39	65	330	0.96	6.28
V7	57	47	28	75	91	49	94	0	55	113	38	687	0.45	5.91
V8	43	97	78	73	44	98	97	55	0	126	111	411	0.26	6.55
V9	87	96	111	77	169	86	39	113	127	0	78	330	0.88	6.19
V10	59	30	38	62	124	22	63	39	83	76	0	697	0.84	6.51

Table A2. Uk10_03.

	D	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	Dem	b₁	e₁
D	0	93	53	48	34	63	80	99	51	16	97	0	0	9
V1	93	0	46	55	106	106	139	9	140	109	124	187	0.96	6.47
V2	53	46	0	33	73	92	114	47	98	67	84	406	0.33	6.12
V3	48	54	33	0	53	62	86	59	96	63	77	672	1.16	6.62
V4	34	106	73	53	0	38	50	110	67	40	41	465	1.01	6.42
V5	63	106	92	61	38	0	34	114	103	76	77	628	1.16	6.94
V6	80	139	113	86	50	34	0	143	113	87	86	735	1.1	6.55
V7	99	9	47	59	110	114	143	0	144	113	129	207	1.23	6.7
V8	51	140	98	96	67	103	113	145	0	35	29	824	0.3	5.9
V9	16	108	67	63	40	76	87	113	35	0	18	348	0.97	6.19
V10	31	124	83	77	42	77	87	130	29	19	0	672	0.23	5.79

Table A3. Uk10_04.

	D	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	Dem	b₁	e₁
D	0	48	51	34	95	59	32	71	14	97	59	0	0	9
V1	48	0	91	14	120	71	16	95	38	119	101	691	1.49	6.92
V2	51	91	0	78	137	51	77	113	64	150	24	692	0.67	6.48
V3	34	14	78	0	106	65	3	81	25	106	88	190	0.85	6.04
V4	95	119	138	106	0	150	103	25	84	30	136	613	0.65	6.28
V5	58	71	51	152	0	66	127	66	152	72	528	0.28	5.62	
V6	32	16	77	3	104	66	0	78	22	103	87	375	1.3	6.56
V7	71	94	113	81	25	124	78	0	59	35	111	718	1.15	6.59
V8	14	38	64	25	84	66	22	59	0	85	73	203	1.34	6.46
V9	97	118	149	105	30	151	102	35	85	0	151	414	0.86	6.35
V10	59	100	25	88	136	73	86	111	73	150	0	168	0.95	6.31
Table A4. Uk10_05.

D	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	Dem	b₁	e₁	
D	0	50	24	34	49	86	24	28	52	73	0	0	9	
V1	51	0	36	19	33	115	39	32	45	115	124	169	0.56	5.91
V2	24	36	0	22	31	83	6	20	48	84	92	508	0.92	6.22
V3	35	19	22	0	30	102	27	13	33	99	112	702	1.09	6.55
V4	49	33	31	30	0	105	36	61	111	116	406	0.66	6.17	
V5	86	117	84	103	106	0	80	101	128	59	12	269	0.39	5.63
V6	25	40	6	27	36	79	0	25	52	80	88	279	1.02	6.62
V7	28	32	20	13	35	100	25	0	31	96	109	508	0.92	6.22
V8	51	45	48	33	60	128	52	31	0	123	137	215	0.19	5.62
V9	73	114	84	99	112	58	80	96	123	0	66	589	0.71	6.19
V10	94	126	93	112	117	13	89	109	137	66	0	541	1.32	6.97

Table A5. Uk10_06.

D	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	Dem	b₁	e₁	
D	0	76	53	84	35	76	63	31	80	63	74	0	0	9
V1	77	0	95	26	55	141	22	50	92	78	148	575	0.37	6.12
V2	53	94	0	113	42	111	91	76	128	32	97	675	1.13	6.57
V3	84	26	113	0	73	142	22	53	72	101	153	194	1.33	6.92
V4	35	55	43	73	0	108	52	41	97	35	99	438	0.63	6.05
V5	76	141	111	143	108	0	122	92	94	131	39	147	1.09	6.26
V6	63	25	91	26	51	123	0	33	73	79	130	651	0.82	6.51
V7	31	50	76	53	41	91	33	0	58	75	97	712	1	6.77
V8	80	92	127	72	97	94	70	58	0	130	110	533	0.93	6.46
V9	64	77	32	104	34	131	79	155	164	105	137	81	0.58	6.16
V10	74	149	97	154	99	40	132	97	111	118	0	125	0.41	5.95

Table A6. Uk10_07.

D	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	Dem	b₁	e₁	
D	0	94	29	65	71	87	99	100	42	73	18	0	0	9
V1	94	0	76	150	150	10	9	44	69	46	82	697	1.09	6.54
V2	29	76	0	74	98	69	81	92	49	69	34	816	0.2	5.89
V3	65	149	73	0	94	144	155	164	105	137	81	110	0.58	6.16
V4	71	150	98	93	0	142	159	135	82	112	72	413	0.6	6.15
V5	87	10	69	144	142	0	18	43	61	38	75	343	0.6	6.12
V6	100	9	81	155	159	19	0	44	78	56	91	146	1.14	6.48
V7	100	44	92	163	135	43	44	0	61	28	83	335	0.51	6.02
V8	41	69	49	104	82	61	78	61	0	35	24	366	0.81	6.57
V9	73	46	69	137	112	38	55	28	35	0	57	146	0.83	6.07
V10	18	83	34	81	72	75	90	84	24	57	0	668	0.84	6.73
Table A7. Uk10_08.

D	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	Dem	b₁	ε₁	
D	0	54	97	71	88	68	48	79	73	38	0	0	9	
V1	54	0	139	109	98	94	39	97	75	54	629	0.52	6.01	
V2	96	139	0	134	43	58	138	163	92	133	114	0.62	5.69	
V3	71	110	135	0	109	87	135	76	39	143	55	475	1.39	7.15
V4	88	139	43	109	0	42	76	132	137	109	118	0.72	6.35	
V5	48	98	51	88	41	0	51	94	73	38	0	96	0.5	
V6	69	94	58	136	77	52	0	109	146	36	106	679	0.38	6.15
V7	48	39	139	75	132	94	108	0	63	102	21	512	1.38	6.82
V8	79	97	164	39	137	146	63	0	150	45	31	682	0.34	5.9
V9	73	75	92	143	109	75	36	102	149	0	105	392	1.43	6.39

Table A8. Uk10_09.

D	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	Dem	b₁	ε₁	
D	0	91	45	36	97	89	72	63	74	95	75	0	9	
V1	91	0	111	87	145	36	121	117	32	49	144	486	1.32	6.78
V2	45	111	0	24	41	91	38	19	104	94	31	682	0.59	6.2
V3	35	87	24	0	63	70	39	32	86	75	61	533	1.46	7.1
V4	97	145	41	63	0	113	26	49	147	111	10	556	1.37	6.78
V5	89	36	90	69	112	0	89	85	58	15	111	257	0.56	6.01
V6	73	122	37	39	26	89	0	24	123	93	23	227	0.75	6.15
V7	63	117	19	33	49	85	24	0	117	88	47	128	1.08	6.61
V8	74	32	104	86	147	58	123	117	0	72	146	365	0.27	5.56
V9	95	49	94	75	111	14	92	88	72	0	115	126	1.49	7.08
V10	75	144	31	61	10	112	23	47	145	115	0	404	0.92	6.16

Table A9. Uk10_10.

D	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	Dem	b₁	ε₁	
D	0	57	65	38	100	82	59	93	38	86	59	0	9	
V1	57	0	9	80	122	107	54	39	45	126	101	431	1.23	6.95
V2	66	9	0	88	130	115	57	33	54	135	110	236	1.38	6.86
V3	37	79	88	0	84	62	75	116	54	49	22	426	0.27	5.73
V4	100	122	130	84	0	22	79	141	77	61	89	550	1.16	6.76
V5	82	107	115	62	23	0	70	129	64	42	66	687	0.72	6.14
V6	59	54	57	75	79	70	0	60	22	100	96	578	0.19	6.06
V7	94	39	33	117	138	127	60	0	70	155	138	403	1.48	6.86
V8	38	45	53	54	77	63	22	70	0	83	74	409	0.43	5.71
V9	86	127	136	49	62	42	100	159	83	0	41	597	1.43	7.15
V10	59	101	109	21	89	67	95	138	74	41	0	441	1.07	6.73
Table A10. Detail result of GA.

Dataset	Object	Runtime
UK10_1	4579.4	28.02
	4578.21	29.21
	4857.73	26.86
	4650.55	30.03
	5056.05	29.67
UK10_2	4990.56	29.78
	4423.51	30.36
	4918.93	28.97
	4930.82	30.55
UK10_3	5283.63	29.06
	5322.12	27.72
	5178.21	31.24
	4676.6	30.5
UK10_4	4438.18	31.17
	4925.14	29.44
	4927.1	29.71
	4536.81	30.38
	4576.97	30.16

Dataset	Object	Runtime
UK10_5	3800.175	28.66
	3626.59	30.17
	3636.26	29.52
	3952.07	29.86
UK10_6	4277.8	31.49
	4618.61	29.93
	4426.16	29.12
	4233.62	28.89
UK10_7	3665.45	28.96
	3859.02	30.25
	3979.49	29.8
	3666.08	29.37
UK10_8	5821.58	30.58
	5944.33	29.17
	5556.98	29.87
	5550.52	29.34
	5803.02	30.17

Table A11. Detail result of PSO.

Dataset	Object	Runtime
UK10_1	5299.55	20.34
	4991.55	20.92
	5005.5	19.68
	5130.77	20.55
	4999.41	21.06
UK10_2	5045.55	21.65
	5014.19	20.92
	4849.96	19.68
	4748.23	20.55
	5049.05	21.06
UK10_3	5412.62	22.27
	5416.27	19.76
	5451.84	21.66
	5221.17	20.46
	5176.11	19.94
UK10_4	5492.08	21.52
	4788.57	20.12
	4947.73	22.02
	5062.86	19.97
	5057.32	20.75

Dataset	Object	Runtime
UK10_5	3942.56	18.93
	4660.10	19.12
	3983.10	20.31
	3864.29	19.56
	3919.82	19.42
UK10_6	4537.51	18.97
	4452.69	19.77
	4477.27	20.05
	4464.92	19.94
	4562.27	20.35
UK10_7	3978.84	20.33
	3863.26	18.67
	4011.7	20.1
	4107.45	19.85
	4051.87	19.74
UK10_8	5564.86	19.76
	5762.02	20.3
	5663.74	19.45
	5657.11	19.23
	5760.36	19.55
Table A12. Detail result of SSO.

Dataset	Object	Runtime	Dataset	Object	Runtime	Dataset	Object	Runtime
UK10_1	4729.38	19.05	UK10_5	3862.26	19.82	UK10_9	3998.045	19.12
	4664.14	17.68		3851.745	20.58		3998.045	19.36
	4664.14	19.25		3877.2	18.21		3998.045	19.07
	4664.14	18.73		3862.26	19.67		3998.045	18.33
	4664.14	19.25		3877.2	18.21		3998.045	19.07
	4664.14	18.73		3786.95	19.42		3998.045	18.33
UK10_2	4423.505	18.53	UK10_6	4357.945	18.97	UK10_10	5393.96	20.34
	4554.775	20.1						
	4319.66	20.1		5316.535	18.78			
	4753.095	19.58		4316.145	19.03		5320.675	19.23
	4423.505	18.79		4444.69	18.42		5554.535	19.36
	4708.27	19.17		4290.77	18.5		5329.32	18.73
UK10_3	4876.6	18.11	UK10_7	3727.06	18.67		3727.06	18.39
	4876.6	19.51		3727.06	18.39			
	4768.49	18.76		3777.7	19.02		3727.06	18.37
	4885.03	18.01		3727.06	18.37			
UK10_4	4639.595	18.11	UK10_8	5655.395	19.02		5624.36	17.88
	4858.115	19.51		5624.36	17.88			
	4854.055	18.76		5724.765	19.27		5750.38	19.41
	4676.96	20.29		5610.88	18.76			
	4762.76	18.01		5750.38	19.41			

References

1. Cattaruzza, D.; Absi, N.; Feillet, D.; González-Feliu, J. Vehicle routing problems for city logistics. EURO J. Transp. Logist. 2017, 6, 51–79. [CrossRef]
2. Dantzig, G.; Ramser, J. The Truck Dispatching Problem. Manag. Sci. 1959, 80–91. [CrossRef]
3. Clarke, G.; Wright, J.W. Scheduling of vehicles from a central depot to a number of delivery points. Oper. Res. 1964, 12, 568–581. [CrossRef]
4. Malandraki, C.; Daskin, M.S. Time dependent vehicle routing problems: Formulations, properties and heuristic algorithms. Transp. Sci. 1992, 26, 185–200. [CrossRef]
5. Ichoua, S.; Gendreau, M.; Potvin, J.-Y. Vehicle dispatching with time-dependent travel times. Eur. J. Oper. Res. 2003, 144, 379–396. [CrossRef]
6. Margiotta, R.; Eisele, B.; Short, J. Freight Performance Measure Approaches for Bottlenecks, Arterials, and Linking Volumes to Congestion Report. 2015. Available online: https://rosap.nltl.bts.gov/view/dot/41268 (accessed on 1 June 2021).
7. Jha, K.; Eisele, B. Freight Multimodal Performance Measures. 2015. Available online: https://static.tti.tamu.edu/tti.tamu.edu/documents/TTI-2015-19.pdf (accessed on 1 June 2021).
8. Baldacci, R.; Battarra, M.; Vigo, D. Routing a heterogenous fleet of vehicles. In The Vehicle Routing Problem: Latest Advances and New Challenges; Springer: Berlin/Heidelberg, Germany, 2008; pp. 3–27.
9. Taillard, É.D. A heuristic column generation method for the heterogeneous fleet VRP. RAIRO Oper. Res. Rech. Opér. 1999, 33, 1–14. [CrossRef]
10. Wang, Z.; Wen, P. Optimization of a low-carbon two-echelon heterogeneous-fleet vehicle routing for cold chain logistics under mixed time window. Sustainability 2020, 12, 1967. [CrossRef]
11. Anh, P.T.; Cuong, C.T.; Phuc, P.N.K. The vehicle routing problem with time windows: A case study of fresh food distribution center. In Proceedings of the 2019 11th International Conference on Knowledge and Systems Engineering (KSE), Da Nang, Vietnam, 24–26 October 2019; pp. 1–5.
12. Adriano, D.D.; Montez, C.; Novaes, A.G.; Wangham, M. DMRVR: Dynamic milk-run vehicle routing solution using fog-based vehicular ad hoc networks. Electronics 2020, 9, 2010. [CrossRef]
13. Yuan, Z.; Yang, Z.; Lv, L.; Shi, Y. A Bi-Level Path Planning Algorithm for Multi-AGV Routing Problem. Electronics 2020, 9, 1351. [CrossRef]
14. Wang, Y.; Assogba, K.; Fan, J.; Xu, M.; Liu, Y.; Wang, H. Multi-depot green vehicle routing problem with shared transportation resource: Integration of time-dependent speed and piecewise penalty cost. J. Clean. Prod. 2019, 232, 12–29. [CrossRef]
15. Emde, S.; Schneider, M. Just-in-time vehicle routing for in-house part feeding to assembly lines. Transp. Sci. 2018, 52, 657–672. [CrossRef]
16. Liu, L.; Li, K.; Liu, Z. A capacitated vehicle routing problem with order available time in e-commerce industry. *Eng. Optim.* 2017, 49, 449–465. [CrossRef]

17. Nakazawa, T.; Tang, S.; Obana, S. CCN-based inter-vehicle communication for efficient collection of road and traffic information. *Electronics* 2020, 9, 112. [CrossRef]

18. Sujaree, K.; Samattappong, N. A Hybrid Chemical Based Metaheuristic Approach for a Vaccine Cold Chain Network. *Oper. Supply Chain Manag. Int. J.* 2021, 14, 351–359. [CrossRef]

19. Lenstra, J.K.; Kan, A.R. Complexity of vehicle routing and scheduling problems. *Networks* 1981, 11, 221–227. [CrossRef]

20. Cordeau, J.-F.; Gendreau, M.; Laporte, G.; Potvin, J.-Y.; Semet, F. A guide to vehicle routing heuristics. *J. Oper. Res. Soc.* 2002, 53, 512–522. [CrossRef]

21. Xu, Z.; Elomri, A.; Pokharel, S.; Mutlu, F. A model for capacitated green vehicle routing problem with the time-varying vehicle speed and soft time windows. *Comput. Ind. Eng.* 2019, 137, 106011. [CrossRef]

22. Cao, S.; Liao, W.; Huang, Y. Heterogeneous fleet recyclables collection routing optimization in a two-echelon collaborative reverse logistics network from circular economic and environmental perspective. *Sci. Total Environ.* 2021, 758, 144062. [CrossRef]

23. Fan, H.; Zhang, Y.; Tian, P.; Lv, Y.; Fan, H. Time-dependent multi-depot green vehicle routing problem with time windows considering temporal-spatial distance. *Comput. Oper. Res.* 2021, 129, 105211. [CrossRef]

24. Alininghah, M.; Ghazanfari, M.; Norouzi, N.; Nouralizadeh, H. A novel model for the time dependent competitive vehicle routing problem: Modified random topology particle swarm optimization. *Netw. Spat. Econ.* 2017, 17, 1185–1211. [CrossRef]

25. Iswari, T.; Ashish, A.M.S. Comparing genetic algorithm and particle swarm optimization for solving capacitated vehicle routing problem. *IOP Conf. Ser. Mater. Sci. Eng.* 2018, 337, 012004. [CrossRef]

26. Yeh, W.-C. A hybrid heuristic algorithm for the multistage supply chain network problem. *Int. J. Adv. Manuf. Technol.* 2005, 26, 675–685. [CrossRef]

27. Yeh, W.-C. A two-stage discrete particle swarm optimization for the problem of multiple multi-level redundancy allocation in series systems. *Expert Syst. Appl.* 2009, 36, 9192–9200. [CrossRef]

28. Yeh, W.-C.; Chuang, M.-C. Using multi-objective genetic algorithm for partner selection in green supply chain problems. *Expert Syst. Appl.* 2011, 38, 4244–4253. [CrossRef]

29. Malandraki, C.; Dial, R.B. A restricted dynamic programming heuristic algorithm for the time dependent traveling salesman problem. *Eur. J. Oper. Res.* 1996, 90, 45–55. [CrossRef]

30. Çimen, M.; Soysal, M. Time-dependent green vehicle routing problem with stochastic vehicle speeds: An approximate dynamic programming algorithm. *Transp. Res. Part D Transp. Environ.* 2017, 54, 82–98. [CrossRef]

31. Soysal, M.; Çimen, M. A simulation based restricted dynamic programming approach for the green time dependent vehicle routing problem. *Comput. Oper. Res.* 2017, 88, 297–305. [CrossRef]

32. Sun, P.; Veelenturf, L.P.; Dabia, S.; Van Woensel, T. The time-dependent capacitated profitable tour problem with time windows and precedence constraints. *Eur. J. Oper. Res.* 2018, 264, 1058–1073. [CrossRef]

33. Liu, C.; Kou, G.; Zhou, X.; Peng, Y.; Sheng, H.; Alsaaadi, F.E. Time-dependent vehicle routing problem with time windows of city logistics with a congestion avoidance approach. *Knowl. Based Syst.* 2020, 188, 104813. [CrossRef]

34. Pan, B.; Zhang, Z.; Lim, A. A hybrid algorithm for time-dependent vehicle routing problem with time windows. *Comput. Oper. Res.* 2021, 128, 105193. [CrossRef]

35. Pan, B.; Zhang, Z.; Lim, A. Multi-trip time-dependent vehicle routing problem with time windows. *Eur. J. Oper. Res.* 2021, 291, 218–231. [CrossRef]

36. Gmira, M.; Gendreau, M.; Lodi, A.; Potvin, J.-Y. Tabu search for the time-dependent vehicle routing problem with time windows on a road network. *Eur. J. Oper. Res.* 2021, 288, 129–140. [CrossRef]

37. Xiao, Y.; Konak, A. The heterogeneous green vehicle routing and scheduling problem with time-varying traffic congestion. *Transp. Res. Part E Logist. Transp. Environ.* 2016, 88, 146–166. [CrossRef]

38. Huang, C.-L.; Jiang, Y.-Z.; Tan, S.-Y.; Yeh, W.-C.; Chung, V.Y.Y.; Lai, C.-M. Simplified swarm optimization for the time dependent competitive vehicle routing problem with heterogeneous fleet. In *Proceedings of the 2018 IEEE Congress on Evolutionary Computation* (CEC), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–8. [CrossRef]

39. Koç, Ç.; Bektaş, T.; Jabali, O.; Laporte, G. Thirty years of heterogeneous vehicle routing. *Eur. J. Oper. Res.* 2016, 249, 1–21. [CrossRef]

40. Golden, B.; Assad, A.; Levy, L.; Gheysens, F. The fleet size and mix vehicle routing problem. *Comput. Oper. Res.* 1984, 11, 49–66. [CrossRef]

41. Micheli, G.J.; Mantella, F. Modelling an environmentally-extended inventory routing problem with demand uncertainty and a heterogeneous fleet under carbon control policies. *Int. J. Prod. Econ.* 2018, 204, 316–327. [CrossRef]

42. Afshar-Nadjaﬁ, B.; Afshar-Nadjaﬁ, A. A constructive heuristic for time-dependent multi-depot vehicle routing problem with time-windows and heterogeneous fleet. *J. King Saud Univ. Eng. Sci.* 2017, 29, 29–34. [CrossRef]

43. Vincent, F.Y.; Redi, A.P.; Jiwpanya, P.; Latifah, A.; Maghfirol, M.F.; Masruroh, N.A. A simulated annealing heuristic for the heterogeneous fleet pollution routing problem. In *Environmental Sustainability in Asian Logistics and Supply Chains*; Springer: Berlin/Heidelberg, Germany, 2019; pp. 171–204.

44. Wang, Z.; Qi, M.; Cheng, C.; Zhang, C. A hybrid algorithm for large-scale service network design considering a heterogeneous fleet. *Eur. J. Oper. Res.* 2019, 276, 483–494. [CrossRef]
45. De, M.; Giri, B. Modelling a closed-loop supply chain with a heterogeneous fleet under carbon emission reduction policy. *Transp. Res. Part E Logist. Transp. Rev.* **2020**, *133*, 101813. [CrossRef]

46. Soman, J.T.; Patil, R.J. A scatter search method for heterogeneous fleet vehicle routing problem with release dates under lateness dependent tardiness costs. *Expert Syst. Appl.* **2020**, *150*, 113302. [CrossRef]

47. Ropke, S.; Cordeau, J.F. Branch and cut for the pickup and delivery problem with time windows. *Transp. Sci.* **2009**, *43*, 267–286. [CrossRef]

48. Ben Ticha, H.; Absi, N.; Feillet, D.; Quilliot, A. Vehicle routing problems with road-network information: State of the art. *Networks* **2018**, *72*, 393–406. [CrossRef]

49. Crainic, T.G.; Frangioni, A.; Gendron, B. Bundle-based relaxation methods for multicommodity capacitated fixed charge network design. *Discret. Appl. Math.* **2001**, *112*, 73–99. [CrossRef]

50. Shelbourne, B.C.; Battarra, M.; Potts, C.N. The vehicle routing problem with release and due dates. *INFORMS J. Comput.* **2017**, *29*, 705–723. [CrossRef]

51. Xu, Z.; Ming, X.; Zheng, M.; Li, M.; He, L.; Song, W. Cross-trained workers scheduling for field service using improved NSGA-II. *Int. J. Prod. Res.* **2015**, *53*, 1255–1272. [CrossRef]

52. Vidal, T.; Crainic, T.G.; Gendreau, M.; Lahrichi, N.; Rei, W. A hybrid genetic algorithm for multidepot and periodic vehicle routing problems. *Oper. Res.* **2012**, *60*, 611–624. [CrossRef]

53. Zhong, S.-Q.; Du, G.; He, G.-G. Study on open vehicle routing problem with time windows limits and its genetic algorithm. *Jisuanji Gongcheng Yu Yingyong Comput. Eng. Appl.* **2006**, *42*, 201–204.

54. Wang, M.; Yeh, W.-C.; Chu, T.-C.; Zhang, X.; Huang, C.-L.; Yang, J. Solving multi-objective fuzzy optimization in wireless smart sensor networks under uncertainty using a hybrid of IFR and SSO algorithm. *Energies* **2018**, *11*, 2385. [CrossRef]

55. Yeh, W.-C.; Lai, C.-M.; Peng, Y.-F. Multi-objective optimal operation of renewable energy hybrid CCHP system using SSO. *J. Phys. Conf. Ser.* **2019**, *1411*, 012016. [CrossRef]

56. Lai, C.-M.; Chiu, C.-C.; Liu, W.-C.; Yeh, W.-C. A novel nondominated sorting simplified swarm optimization for multi-stage capacitated facility location problems with multiple quantitative and qualitative objectives. *Appl. Soft Comput.* **2019**, *84*, 105684. [CrossRef]

57. Yeh, W.-C.; Lin, Y.-P.; Liang, Y.-C.; Lai, C.-M. Convolution Neural Network Hyperparameter Optimization Using Simplified Swarm Optimization. *arXiv* 2021, arXiv:2103.03995.

58. Yeh, W.-C. A novel boundary swarm optimization method for reliability redundancy allocation problems. *Reliab. Eng. Syst. Saf.* **2019**, *192*, 106060. [CrossRef]

59. Yeh, W.-C.; Su, Y.-Z.; Gao, X.-Z.; Hu, C.-F.; Wang, J.; Huang, C.-L. Simplified swarm optimization for bi-objective active reliability redundancy allocation problems. *Appl. Soft Comput.* **2021**, *106*, 107321. [CrossRef]

60. Yeh, W.-C. New parameter-free simplified swarm optimization for artificial neural network training and its application in the prediction of time series. *IEEE Trans. Neural Netw. Learn. Syst.* **2013**, *24*, 661–665. [PubMed]

61. Yeh, W.-C. Optimization of the disassembly sequencing problem on the basis of self-adaptive simplified swarm optimization. *IEEE Trans. Syst. Man Cybern. Part A Syst. Hum.* **2011**, *41*, 250–261. [CrossRef]

62. Yeh, W.-C. Simplified swarm optimization in disassembly sequencing problems with learning effects. *Comput. Oper. Res.* **2012**, *39*, 2168–2177. [CrossRef]

63. Lin, P.; Cheng, S.; Yeh, W.; Chen, Z.; Wu, L. Parameters extraction of solar cell models using a modified simplified swarm optimization algorithm. *Sol. Energy* **2017**, *144*, 594–603. [CrossRef]