MicroRNA-7 Control of β-Cell Replication
Juan Domínguez-Bendala, Dagmar Klein, and Ricardo L. Pastori

The study of the insulin-producing pancreatic β-cells transcends the realm of basic biology because of their importance for the maintenance of glucose homeostasis. As their autoimmune-mediated destruction or the impairment of their function cause diabetes, the pursuit of strategies for β-cell replenishment and/or replication is a major objective of regenerative medicine. Owing to their slow turnover in humans, the pancreatic β-cells have been traditionally considered postmitotic (1). However, new evidence supports the notion that β-cells can dynamically adapt their mass and number. This is supported, for instance, by the observation of a perinatal burst of β-cell proliferation (2) or the fact that residual β-cells are found in type 1 diabetic patients decades after diagnosis (3). Although most factors behind this adaptation are pathological (e.g., obesity or hyperglycemia), others are physiological (e.g., pregnancy) (4). Animal models offer us a plethora of examples of hyperglycemia), others are physiological (e.g., pregnancy) (4).

The mechanistic target of rapamycin (mTOR) is a highly conserved serine/threonine protein kinase that controls cell proliferation and cell survival in response to a variety of cellular signals such as levels of energy, growth factors, nutrients, hypoxia, and stress (10). The mTOR signaling pathway has a critical role in metabolic diseases such as diabetes and cancer development (10). mTOR exists in two complexes, mTORC1 and mTORC2, both sharing the catalytic component but with different biological activities regulated by distinct scaffold proteins. Both complexes are sensitive to rapamycin, although mTORC2 is only affected by prolonged exposure (10). Several studies show that β-cell number, size, and/or physiology are affected by signaling from both mTOR pathways, which was also confirmed in a mouse pregnancy model with rapamycin (11). Constitutive activation of mTORC1 in mouse β-cells increased their number and size and correlated with decreased blood glucose levels and hyperinsulinemia. Conversely, deficiency in RPS6KB1 (S6K1), an mTORC1-dependent downstream kinase promoting protein synthesis, or the inhibition of mouse mTORC2 by deletion of the scaffold protein Rictor, produced the opposite effects (10).

The mTOR pathway positively controls cell cycle progression and cell proliferation by regulating S6K1 and the eukaryotic translation initiation factor 4E binding protein (eIF4E). Phosphorylation of 4E-BP1 by mTOR disrupts binding to eIF4E, activating cap-dependent translation. Both S6K1 and eIF4E-4E-BP1/eIF4E pathways mediate mTOR-dependent G1 phase transition (12).

Wang et al. (5) show that in vitro inhibition of miR-7a (the major murine isoform corresponding to human miR-7) in islets upregulates expression of mTORC1 components S6K1 and eIF4E, as well as the mTORC2-specific scaffold protein Mapkap1 (mSn1) and two downstream ERK threonine/serine protein kinases (MNK1/2), which phosphorylate eIF4E (13). This effect was detected only at the protein level, suggesting translational repression. In vitro targeting of reporter genes supported the specificity of this effect. Upregulation of S6K1, Mapkap1, and MNK1/2 was paralleled by an increase in phosphorylation of their respective substrate targets S6, Akt, and eIF4E. The increase in S6 and Akt phosphorylation, as well as elevated eIF4E protein levels, indicate a bona fide stimulation of the mTOR pathway activity. The biological significance of the MNK1/2-mediated increased phosphorylation of eIF4E, and its effect on translation is not completely understood (13). The activation of mTOR resulted in β-cell proliferation, confirmed by colocalization of insulin expression with replication markers. The effect was abrogated by the mTOR inhibitor rapamycin, substantiating the mTOR involvement and ruling out the possibility of other miR-7 targets controlling cell proliferation.

The miRNA-mediated regulation of mTOR and the subsequent effect on cell proliferation has been studied mostly in the context of cancer. Several “tumor suppressor” miRNAs are known to target mTOR or its components, thus controlling cell cycle progression and proliferation (14–17). The role of miR-7 at inhibiting hepatocarcinoma by targeting the phosphoinositide 3-kinase catalytic subunit delta (PI3KCD), as well as mTOR and S6K1, has been recently proposed (18). Interestingly, Wang et al. (5) did not observe miR-7-mediated changes of mTOR expression at either the RNA level or the protein level. Collectively, these results indicate that miR-7 impedes β-cell replication via downregulation of the mTOR signaling pathway. This is the first study showing miRNA control of β-cell replication. From a basic biological perspective—and as discussed by the authors of the article—it is intriguing that miR-7–dependent mTOR activation may have conflicting functions in embryonic development and in mature cells. This is an observation that certainly warrants additional research.

Given the unique therapeutic value of β-cells, it is important to understand the role of miRNAs in islet biology.
and also identify their translational potential (Fig. 1). We might foresee approaches involving the direct delivery of anti-miR-7 to β-cells either in vivo to induce their regeneration or ex vivo to expand them in culture. The proliferation of human β-cells induced by this straightforward strategy was increased by more than 30-fold, which is comparable (~40-fold) to what was reported in islets transduced with recombinant adenoviruses expressing the cell cycle proteins Cdk-6 and cyclin D1 (19). Given the transient nature of mTOR activation using this method, the risk of cancer induction is negligible. An additional advantage is the absence of a negative effect on the insulin secretory machinery and the lack of apoptosis, which was previously reported during β-cell replication (20). Further studies on physiology and the life span of newly formed β-cells will determine if this strategy could be applicable in a clinical setting.

ACKNOWLEDGMENTS
No potential conflicts of interest relevant to this article were reported.

REFERENCES
1. Messier B, Leblond CP. Cell proliferation and migration as revealed by radioautography after injection of thymidine-H3 into male rats and mice. Am J Anat 1960;106:247–285
2. Meier JJ, Butler AE, Saisho Y, et al. Beta-cell replication is the primary mechanism subserving the postnatal expansion of beta-cell mass in humans. Diabetes 2008;57:1584–1594
3. Meier JJ, Lin JC, Butler AE, Galasso R, Martínez DS, Butler PC. Direct evidence of attempted beta cell regeneration in an 80-year-old patient with recent-onset type 1 diabetes. Diabetologia 2006;49:1838–1844
4. Domínguez-Bendala J, Inverardi L, Ricordi C. Regeneration of pancreatic beta-cell mass for the treatment of diabetes. Expert Opin Biol Ther 2012;12:731–741
5. Wang T, Liu J, Liu C, Naji A, Stoffers DA. MicroRNA-7 regulates the mTOR pathway and proliferation in adult pancreatic β-cells. Diabetes 2013;62:887–895
6. Ambros V. microRNAs: tiny regulators with great potential. Cell 2002;107:295–305
7. Bravo-Egana V, Rosero S, Molano RD, et al. Quantitative differential expression analysis reveals miR-7 as major islet microRNA. Biochem Biophys Res Commun 2008;368:922–926
8. Correa-Medina M, Bravo-Egana V, Rosero S, et al. MicroRNA miR-7 is preferentially expressed in endocrine cells of the developing and adult human pancreas. Gene Expr Patterns 2009;9:193–199
9. Joglekar MV, Joglekar VM, Hardikar AA. Expression of islet-specific microRNAs during human pancreatic development. Gene Expr Patterns 2009;9:109–113
10. Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell 2012;149:274–295
11. Zahr E, Molano RD, Pileggi A, et al. Rapamycin impairs in vivo proliferation of islet beta-cells. Transplantation 2007;84:1576–1583
12. Fingar DC, Richardson CJ, Teo AR, Cheatham L, Tsou C, Blenis J. mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E. Mol Cell Biol 2004;24:200–216
13. Hou J, Lam F, Proud C, Wang S. Targeting Mnks for cancer therapy. Oncotarget 2012;3:118–131
14. Fornari F, Milazzo M, Chieco P, et al. MiR-199a-3p regulates mTOR and c-Met to influence the doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res 2010;70:5184–5193
15. Iwaya T, Yokobori T, Nishida N, et al. Downregulation of miR-144 is associated with colorectal cancer progression via activation of mTOR signaling pathway. Carcinogenesis 2012;33:2291–2297
16. Li D, Liu X, Lin L, et al. MicroRNA-99a inhibits hepatocellular carcinoma growth and correlates with prognosis of patients with hepatocellular carcinoma. J Biol Chem 2011;286:36677–36685
17. Usugui A, Kozaki K, Tsuruta T, et al. The tumor suppressive microRNA miR-218 targets the mTOR component Rictor and inhibits AKT phosphorylation in oral cancer. Cancer Res 2011;71:5765–5773
18. Fang Y, Xue JL, Shen Q, Chen J, Tian L. MicroRNA-7 inhibits tumor growth and metastasis by targeting the phosphoinositide 3-kinase/Akt pathway in hepatocellular carcinoma. Hepatology 2012;55:1852–1862
19. Fiaschi-Taesch N, Bigatel TA, Sicari B, et al. Survey of the human pancreatic beta-cell G1/S proteome reveals a potential therapeutic role for cdk-6 and cyclin D1 in enhancing human beta-cell replication and function in vivo. Diabetes 2009;58:882–893
20. Kassem SA, Ariel I, Thornton PS, Scheinberg I, Glaser B. Beta-cell proliferation and apoptosis in the developing normal human pancreas and in hyperinsulinism of infancy. Diabetes 2000;49:1325–1333