Impacts of Residual SYNTAX Score on The Clinical Outcomes Following Percutaneous Coronary Intervention in Chronic Coronary Syndrome Patients

Wira Kimahesa Anggoro¹*, Mohammad Saifur Rohman², Heny Martini², Pawik Supriadi²
Cholid Tri Tjahjono², Yoga Waranugraha²

¹Department of Cardiology and Vascular Medicine, Awal Bros Hospital, Tangerang, Indonesia.
²Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Brawijaya – dr. Saiful Anwar General Hospital, Malang, Indonesia.

ARTICLE INFO

Keywords:
Percutaneous Coronary Intervention; Chronic Coronary Syndrome; Residual Syntax Score.

ABSTRACT

Background: The residual SYNTAX score (RSS) can be used to measure the residual stenosis severity and complexity. The prognostic role of RSS in CCS patients is still unknown. We purposed to investigate the impact of RSS on the clinical outcomes following PCI in CCS patients.

Methods: A prospective cohort study was performed. Based on the residual SYNTAX score, patients were divided into three groups: RSS 0, RSS 0 to 9.5, and RSS >9.5. The primary outcome was patient-oriented composite endpoint (POCE), including repeat revascularization, myocardial infarction, and all-cause mortality.

Results: After 1-year follow-up period, patients in RSS >9.5 group revealed the greater POCE (4.3% vs. 6.4% vs. 23.9%; p = 0.016) than others. The repeat revascularization rate also was greater in the RSS >9.5 group (0.0% vs. 6.4% vs. 19.6%; p = 0.012). However, the hospitalization due to angina rates in all groups was not significantly different (4.3% vs. 4.2% vs. 4.3%; p = 1.000). The multivariate analysis revealed that RSS >9.5 was the strong predictor for repeat revascularization during 1 year follow-up (Odds ratio [OR] = 9.605; 95% confidence interval [CI] = 1.207 - 76.458; p = 0.033).

Conclusion: The greater RSS was associated with the higher 1-year POCE and repeat revascularization rate in CCS patients. The high RSS was also the strong predictor for 1-year repeat revascularization for CCS patients.

1. Introduction

Coronary artery disease (CAD) is a chronic disease due to atherosclerotic plaque generation in the epicardial coronary arteries.¹,² Globally, CAD has been recognized as the number one cause of death.²,³ Every year, at least 470,000 Indonesian people are estimated to die due to stroke or CAD.⁴ The dynamic nature of CAD manifests as the various clinical presentation. Acute coronary syndromes (ACS) and chronic coronary syndromes (CCS) are the clinical manifestations of CAD.¹ The CCS is a new terminology that replaces “stable CAD.” It is a progressive atherosclerotic plaque accumulation process accompanied by functional changes in the epicardial coronary artery.¹ Myocardial revascularization through coronary bypass graft (CABG) or percutaneous coronary intervention (PCI) are the cornerstones of the CCS treatment strategy.¹,⁵ Complete revascularization has to be achieved during conducting PCI or CABG. However, in a particular circumstance, complete revascularization cannot be achieved by PCI because of several reasons.⁶

The severity and complexity of coronary artery lesions can be assessed using the SYNTAX score.⁷ The residual SYNTAX score (RSS) can be used to measure the residual stenosis severity and complexity by calculating the SYNTAX score from post-PCI angiography.⁸ The ACUITY trial revealed that in non-ST elevation myocardial infarction (NSTEMI), the RSS >8 could independently predict 1-year ischemic events and mortality.⁹ A study from Altekin et al. demonstrated that in ST-elevation myocardial infarction (STEMI), the higher RSS was associated with the greater ischemic cardiac events.¹⁰ The prognostic role of RSS in CCS patients is still unknown. In this prospective study, we purposed to investigate the impact of RSS on the clinical outcomes following PCI in CCS patients.

2. Methods

2.1 Study design and participants

We conducted a prospective cohort study in dr. Saiful Anwar General Hospital Malang, East Java, Indonesia in 2016. This cohort study conformed with the declaration of Helsinki principles and was recognized by the local research ethics board. Before collecting data,
patients or their family members had signed the informed consent.

In this study, we included: (1) all CCSs patient who underwent PCI, (2) aged >40 years; (3) previous history of myocardial infarction (MI) or positive exercise stress test result; (4) treated with optimal medical treatment based on guideline; and (5) good adherence to the medication. The exclusion criteria were: (1) lost to follow-up; (2) incomplete data; (3) disability to conduct physical activities; (4) myocardial infarction within two weeks following PCI procedure; and (5) psychiatric disorders. All essential data regarding clinical, angiographic, and procedural characteristics data were collected from the direct interview and medical record. Our study flowchart was displayed in figure 1

2.2 Residual SYNTAX score assessment

The RSS was determined from coronary angiogram reading by using the online calculator. Residual SYNTAX is estimated based on these following parameters: (1) the dominant vessel; (2) number of coronary lesions; (3) segment involved; (4) aorto-ostial lesion; (5) bifurcation; (6) trifurcation; (7) total occlusion; (8) lesion length; (9) tortuosity; (10) thrombus; (11); calcification and (12) diffuse disease.7,12 Two investigators conducted the RSS assessment. The suggestion from the third investigator resolved the discrepancy in the RSS assessment between the two investigators. Based on the residual SYNTAX score, patients were divided into three groups: RSS 0, RSS 0 to 9.5, and RSS >9.5.

2.3 Clinical outcomes

The primary outcome in this study was patient-oriented composite endpoint (POCE). The definition of POCE was the composite of repeat revascularization, myocardial infarction, and all-cause mortality.13 vs. 21.3% vs. 63.0%; p <0.001) from the angiographic characteristics. The baseline SYNTAX score (8.00 [7.00 - 12.00] vs. 16.00 [10.00 - 20.50] vs. 25.50 [19.13 - 32.13]; p <0.001) and residual CTO proportion (0.0% vs. 12.8% vs. 43.5%; p <0.001) were greater in RSS >9.5 group. However, SYNTAX score reduction was greater in RSS 0 to 9.5 group (8.00 [7.00 - 12.00] vs. 11.00 [7.00 - 18.00] vs. 6.50 [2.00 - 12.00]; p <0.001) (Table 1).

2.4 Statistical analysis

The IBM Statistical Package for Social Science (SPSS version 25.0) was used in processing data. The number and percentage were used to show the categorical data. Mean and standard deviation (SD) were used to describe continuous data with normal distribution. On the other hand, median and interquartile range (IQR: the 25th percentile [0.25 quantile] and the 75th percentile [0.75 quantile]) were used to show continuous data with the abnormal distribution. We used the Shapiro-Wilk test and the Kolmogorov-Smirnov test to evaluate continuous data normality. The analysis of variance (ANOVA) or Kruskal Wallis tests were used to compare continuous data with or without normal distribution, respectively. The Chi-squared test and Kolmogorov-Smirnov test were used to compare categorical data. The p-value was less than 0.05 was considered statistically significant.

3. Results

3.1 Baseline characteristics

At the beginning of the study, we registered and assessed RSS in 145 CCS patients. We excluded 29 patients because of loss to follow-up (n = 14) and incomplete data (n =15). A total of 116 patients were included in the data analysis (RSS 0 [n = 23]; RSS 0 to 9.5 [n = 47], and RSS >9.5 [n = 46]). Overall, the baseline characteristics among the three groups were not significantly different. Patients in RSS >9.5 group revealed a greater proportion of three-vessel disease (8.7% vs. 59.6% vs. 76.1%; p <0.001), left main disease (0.0% vs. 0.0% vs. 13%; p = 0.003), and chronic total occlusion (CTO) (17.4% vs. 12.00%; p <0.001) vs. 63.0%; p <0.001) from the angiographic characteristics. The baseline SYNTAX score (8.00 [7.00 - 12.00] vs. 16.00 [10.00 - 20.50] vs. 25.50 [19.13 - 32.13]; p <0.001) and residual CTO proportion (0.0% vs. 12.8% vs. 43.5%; p <0.001) were greater in RSS >9.5 group. However, SYNTAX score reduction was greater in RSS 0 to 9.5 group (8.00 [7.00 - 12.00] vs. 11.00 [7.00 - 18.00] vs. 6.50 [2.00 - 12.00]; p <0.001) (Table 1).

3.2 Clinical outcomes

All patients for whom the loss of follow-up was not included in the data analysis. After 1-year follow-up period, patients in RSS >9.5
This prospective cohort study represented the real-world data in Indonesian population with no loss of follow-up. We evaluated the severity of incomplete revascularization using RSS and its effect on the clinical outcomes in CCS patients. Several essential findings were obtained from this prospective cohort study. First, the greater RSS was associated with the higher 1-year POCE and repeat revascularization obtained from this prospective cohort study. First, the greater RSS was associated with the higher 1-year POCE and repeat revascularization.

4. Discussion

This prospective cohort study represented the real-world group revealed the greater POCE (4.3% vs. 6.4% vs. 23.9%; p = 0.016) than others. The repeat revascularization rate also was greater in the RSS >9.5 group (0.0% vs. 6.4% vs. 19.6%; p = 0.012). However, the hospitalization due to angina rates in all groups was not significantly different (4.3% vs. 4.2% vs. 4.3%; p = 1.000). Only one patient in RSS >9.5 group passed away during the follow-up period. The summary of the outcomes is presented in Table 2. The multivariate analysis revealed that RSS >9.5 was the strong predictor for repeat revascularization during 1 year follow-up (Odds ratio [OR] = 9.605; 95% confidence interval [CI] = 1.207 - 76.458; p = 0.033).

Table 1. Baseline characteristics

Variables	Residual SYNTAX Score 0 (n = 23)	0 to 9.5 (n = 47)	>9.5 (n = 46)	P-value
Clinical characteristics				
Age, years	59.00 ± 8.26	59.68 ± 8.65	59.78 ± 8.08	0.930
Male	16 (69.6)	37 (78.7)	40 (87.0)	0.221
Body weight, kg	66.13 ± 9.06	68.72 ± 11.25	67.76 ± 9.73	0.611
Diabetes mellitus	5 (21.7)	18 (38.3)	14 (30.4)	0.363
Hypertension	18 (78.3)	31 (66.0)	24 (52.2)	0.091
Dyslipidemia	13 (56.5)	23 (48.9)	25 (54.3)	0.798
Active smoker	3 (13.0)	13 (27.7)	18 (39.1)	0.077
Myocardial infarction	5 (21.7)	6 (12.8)	12 (26.1)	0.264
PCI	5 (21.7)	19 (40.4)	18 (39.1)	0.270
Family history of CAD	4 (17.4)	8 (17.0)	10 (21.7)	0.826
Stroke	1 (4.3)	5 (10.6)	7 (15.2)	0.397
Serum creatinine, mg/dl	1.02 (0.83 - 1.31)	1.03 (0.92 - 1.26)	1.05 (0.92 - 1.18)	0.938
Creatinine clearance, ml/min	61.15 (43.77 - 91.08)	67.81 (46.18 - 87.70)	70.08 (60.94 - 85.67)	0.515
RWMA	9 (39.1)	16 (34.0)	23 (50.0)	0.475
Ejection fraction, %	52.75 ± 14.44	53.94 ± 13.37	47.51 ± 17.62	0.326
Aspirin	23 (100.0)	47 (100.0)	45 (97.8)	0.856
Clopidogrel	23 (100.0)	47 (100.0)	44 (95.7)	0.449
β-blocker	15 (65.2)	29 (61.7)	29 (63.0)	0.960
ACEi	6 (26.1)	13 (27.7)	22 (47.8)	0.074
ARB	11 (47.8)	17 (36.2)	17 (37.0)	0.609
Statin	22 (95.7)	46 (97.9)	45 (97.8)	0.838
Calcium channel blocker	2 (8.7)	13 (27.7)	5 (10.9)	0.052
Nitrate	18 (78.3)	40 (85.1)	40 (87.0)	0.635

Angiographic characteristics

Number of diseased vessels	0 (n = 23)	0 to 9.5 (n = 47)	>9.5 (n = 46)	P-value
1 vessel disease	17 (73.9)	7 (14.9)	1 (2.2)	<0.001
2 vessels disease	4 (1.4)	12 (25.5)	10 (21.7)	0.003
3 vessels disease	2 (8.7)	28 (59.6)	35 (76.1)	0.003
Left main disease	0 (0.0)	0 (0.0)	6 (13.0)	0.003
CTO	4 (17.4)	10 (21.3)	29 (63.0)	<0.001
Baseline SYNTAX score	8.00 (7.00 - 12.00)	16.00 (10.00 - 20.50)	25.50 (19.13 - 32.13)	<0.001
Reference vessel diameter	2.83 ± 0.39	2.87 ± 0.45	2.81 ± 0.53	0.805

Procedural characteristics

LAD alone revascularization	16 (69.6)	22 (46.8)	23 (50.0)	0.182
RCA alone revascularization	3 (13.0)	7 (14.9)	9 (19.8)	0.740
Ostial lesion revascularization	2 (8.7)	4 (8.3)	8 (17.4)	0.283
In-stent restenosis treatment	1 (4.3)	1 (2.1)	0 (0.0)	0.906
Number of implanted stents	1.30 ± 0.47	1.59 ± 0.95	1.37 ± 0.80	0.480
Type of stent (total = 156)	0.00 (0.00 - 0.00)	6 (12.8)	20 (43.5)	<0.001

ACEi = angiotensin-converting enzyme inhibitor; ARB = angiotensin receptor blocker; BMS = bare metal stent; CAD = coronary artery disease; CTO = chronic total occlusion; DES = drug-eluting stent; LAD = left anterior descending; PCI = percutaneous coronary intervention; RCA = right coronary artery; RWMA = regional wall motion abnormality.

Atherosclerosis formation is the key pathogenesis in CAD. It is slowly progressing for several decades. The atherosclerosis risk factors including, male sex, genetics, dyslipidemia, obesity, hypertension, diabetes mellitus, or sedentary lifestyle induce a low-grade inflammation. That low-grade inflammation has the critical role in the atherosclerosis process acceleration. In CCS, this slowly progressive...
recognized to be beneficial because it can significantly improve myocardial infarction and cardiovascular death. However, around 59% of patients have incomplete revascularization following PCI procedure.21 In the EXCELLENT registry, the high SYNTAX was a strong predictor for major adverse cardiovascular events (MACE) or mortality.22,23 The residual SYNTAX score can be calculated from post-PCI angiology to assess the complexity and severity of the residual stenotic lesion.2 It is important to stratify the patients and prepare the next revascularization strategy.

SYNTAX score has been developed to determine coronary artery lesions’ complexity or severity. The higher SYNTAX score represents a more complex and more severe coronary artery lesion. It is also correlated with bad prognosis in CAD patients receiving PCI. However, until now, the CAG is still the gold standard tool in evaluating coronary artery stenosis severity.15 In determining the vessel wall and atherosclerotic plaque morphology, other imaging modalities including, optical coherence tomography (OCT) and intravascular ultrasound (IVUS), are required.16,17 In certain conditions, myocardial ischemia occurs because the stenotic blood vessels fail to compensate the raised myocardial oxygen demand.18,19 The compensatory vasodilation is not helpful if the coronary artery lumen stenosis is greater than 80% of lumen diameter. Endothelial dysfunction, microvessel disease, or vascular spasm may increase the ischemia.20 Complete revascularization with PCI is recognized to be beneficial because it can significantly improve myocardial infarction and cardiovascular death.21 However, around 59% of patients have incomplete revascularization following PCI procedure.22

The SYNTAX score was found to be an effective tool to stratify patients at high risk of adverse outcomes following PCI.23 The SYNTAX score is a clinical and angiographic score that is calculated to assess the complexity and severity of the residual stenotic lesion.2 It is important to stratify the patients and prepare the next revascularization strategy.

Our results support the findings of the prior studies. In the EXCELLENT registry, the higher RSS (RSS >7) was associated with increased 1-year POCE and repeat revascularization. Moreover, in that study, the high RSS was recognized as the significant predictor for 1-year POCE. A study from Yan et al. revealed that incomplete revascularization (RSS >8) increased the risk of MACE, MI, cardiac mortality, all-cause mortality, repeat revascularization, and stroke. Both studies included all ACS and CCS patients. However, our current study only included CCS patients. In the ACS setting, two previous studies revealed that RSS had an excellent performance in predicting the poor prognosis. The ACUITY trial revealed that in NSTEMI, the RSS >8 could independently predict 1-year ischemic events and mortality. Altekin et al. demonstrated that the higher RSS (RSS >7) was associated with the greater ischemic cardiac events in STEMI patients. This study demonstrated that higher RSS was not associated with higher rehospitalization because of angina. This finding was not reported in the prior studies. In theory, complete revascularization (RSS 0) can provide better clinical outcomes regarding angina or rehospitalization because of angina. However, our finding failed to prove it. It could be caused by several reasons: (1) small number of study participants; (2) not long enough follow-up period; and (3) the optimal use of antianginal drugs.

Some important lessons can be drawn from our current research. First, our research provided the data about the benefit of complete revascularization (RSS 0) in reducing 1-year POCE and repeat revascularization in CCS patients who underwent PCI. Second, incomplete revascularization with high RSS was the strong predictor for 1-year repeat revascularization. However, our current research had some limitations. First, this study was a single-center study. Second, our present study included small number of patients compared to the previous studies. Third, even though we conducted multivariate analysis to overcome significant confounders, we cannot manage the other confounders that may bring the significant impact on the study results. Fourth, we did not compare the prognostic value of RSS with the novel SYNTAX-II score, which includes clinical and angiographic parameters. Because of those several drawbacks, a randomized controlled trial (RCT) with better design, larger study population, and longer follow-up is required.

5. Conclusion

Our study demonstrated that the greater RSS was associated with the higher 1-year POCE and repeat revascularization rate in CCS patients. The high RSS was the strong predictor for 1-year repeat revascularization for CCS patients. The RSS can be used to guide the level of revascularization determination and the next revascularization strategy.
We thank to Brawijaya Cardiovascular Research Center.

References

1. Knuuti J, Wijns W, Saraste A, et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J. 2020;41(3):407-477. doi:10.1093/eurheartj/ehz425

2. Ford Tj, Corcoran D, Berry C. Stable coronary syndromes: pathophysiology, diagnostic advances and therapeutic need. Heart. 2018;104(4):284-292. doi:10.1136/heartjnl-2017-311446

3. Virani SS, Alonso A, Benjamin EJ, et al. Heart Disease and Stroke Statistics—2020 Update: A Report from the American Heart Association. Circulation. 2020;141(9):e139-e596. doi:11161/CIR.0000000000000757

4. Hussain MA, Al Mamun A, Peters SA, Woodward M, Huxley BR. The Burden of Cardiovascular Disease attributable to Major Modifiable Risk Factors in Indonesia. J Epidemiol. 2016;26(10):515-521. doi:10.2188/jea.JE20150178

5. Fihn SD, Gardin JM, Abrams J, et al. 2012 ACCF/AHA/ACP/ASCT/PCNA/SGAC/STG Guideline for the Diagnosis and Management of Patients With Stable Ischemic Heart Disease. J Am Coll Cardiol. 2012;60(24):e44-e164. doi:10.1016/j.jacc.2012.03.002

6. Serruys P, Onuma Y, Garg S, et al. Assessment of the SYNTAX score in the Syntax study. EuroIntervention. 2009;5(1):50-56. doi:10.4244/EIJ51A9

7. Sianos G, Morel M-A, Kappetein AP, et al. The SYNTAX Score: an angiographic tool grading the complexity of coronary artery disease. EuroIntervention. 2005;1(2):219-227.

8. Franzzone A, Taniwaki M, Rigamonti F, et al. Angiographic complexity of coronary artery disease according to SYNTAX score and clinical outcomes after revascularisation with newer-generation drug-eluting stents: a study of the BOSCIENCE trial. EuroIntervention. 2016;12(5):e595-e604. doi:10.4244/EIJV12SA99

9. Kobayashi Y, Lanborg J, Jong A, et al. Prognostic Value of the Residual SYNTAX Score After Functionally Complete Revascularization in ACS. J Am Coll Cardiol. 2018;72(12):1521-1529. doi:10.1016/j.jacc.2018.06.069

10. Généreux P, Palmerini T, Caixeta A, et al. Quantiﬁcation and Impact of Untreated Coronary Artery Disease After Percutaneous Coronary Intervention. J Am Coll Cardiol. 2012;59(24):2165-2174. doi:10.1016/j.jacc.2012.03.010

11. Altekin RE, Kılıç AY, Onac M, Cicekciobasi O. Prognostic Value of the Residual SYNTAX Score on Clinical Outcomes After Percutaneous Coronary Intervention: In-Hospital and Follow-Up Clinical Outcomes in ST Elevation Myocardial Infarction Patients Undergoing Percutaneous Coronary Interventions. Chin R ed. Cardiol Res Pract. 2020;2020:1-14. doi:10.1155/2020/9245431

12. Généreux P, Columbia University Medical Centre and The Cardiovascular Research Foundation, 111 East 59th St, 11th Floor, New York, NY 10022, US. E: pg2295@columbia.edu; Hôpital du Sacré-Cœur de Montréal, Université de Montréal, Montréal, Palmerini T, et al. A Guide to Calculating SYNTAX Score: Interim Cardiol Rev. 2012;7(1):21-23. doi:10.15420/irc.2012.7.1.21

13. Park KW, Kang J, Kang S-H, et al. The impact of residual coronary lesions on clinical outcomes after percutaneous coronary intervention: Residual SYNTAX score after percutaneous coronary intervention in patients from the Efficacy of Xience/Promus versus Cypher in reducing Late Loss after stENTing (EXCELLENT) registry. Am J Cardiol. 2014;167(3):384-392.e5. doi:10.1016/j.amjcard.2013.09.015

14. Ambrose JA, Singh M. Pathophysiology of coronary artery disease leading to acute coronary syndromes. F1000Prime Rep. 2015;7(8):1-5. doi:10.12703/P7-08

15. Knuutte P. Computed Tomography to Replace Invasive Coronary Angiography?: Close, but Not Close Enough. Circ Cardiovas Imaging. 2019;12(2):e008710. doi:10.1161/CIRCIMAG.119.008710

16. Bonello L, De Labriolle A, Lemesle G, et al. Intravascular ultrasound-guided percutaneous coronary interventions in contemporary practice. Arch Cardiovasc Dis. 2009;102(2):143-151. doi:10.1016/j.acvd.2008.11.002

17. Prati F, Regar E, Mintz GS, et al. Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis. Eur Heart J. 2010;31(4):401-415. doi:10.1093/eurheartj/ehp433

18. Spaan JAE, Piek JJ, Hoffman JIE, Siebes M. Physiological Basis of Clinically Used Coronary Hemodynamic Indices. Circulation. 2006;113(3):446-455. doi:10.1161/CIRCULATIONA-HA.105.587196

19. Simoons ML, Windedecker S. Chronic stable coronary artery disease: drugs vs. revascularization. Eur Heart J. 2010;31(5):530-541. doi:10.1093/eurheartj/ehp605

20. Ahmad Y, Howard JP, Arnold A, et al. Complete Revascularization by Percutaneous Coronary Intervention for Patients With ST-Segment–Elevation Myocardial Infarction and Multivessel Coronary Artery Disease: An Updated Meta-Analysis of Randomized Trials. J Am Heart Assoc. 2020;9(12):e015263. doi:10.1161/JAHA.119.015263

21. Dauerman HL. Reasonable Incomplete Revascularization. Circulation. 2011;123(21):2337-2340. doi:10.1161/CIRCULATIONA-HA.111.033126

22. Capodanno D, Capranzano P, Giacchi G, Calvi V, Tamburino C. Novel oral antiocoagulants versus warfarin in non-valvular atrial fibrillation: A meta-analysis of 50,578 patients. Int J Cardiol. 2013;167(4):1237-1241. doi:10.1016/j.ijcard.2012.03.148

23. Safarian H, Alidoosti M, Shafiee A, Salarifar M, Poorhosseini H, NematiPour E. The SYNTAX score can predict major adverse cardiac events following percutaneous coronary intervention. Heart Views. 2014;15(4):99. doi:10.4103/1995-705X.151081

24. Yan L, Li P, Wang Y, et al. Impact of the residual SYNTAX score on clinical outcomes after percutaneous coronary intervention for patients with chronic renal insufficiency. Catheter Cardiovasc Interv. 2020;95(S1):606-615. doi:10.1002/ccd.28652

25. Takahashi K, Serruys PW, Fuster V, et al. Redevlopment and validation of the SYNTAX score II to individualise decision making between percutaneous and surgical revascularisation in patients with complex coronary artery disease: secondary analysis of the multicentre randomised controlled SYNTAXES trial with external cohort methodology.