Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company’s public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Viral proteases as targets for chemotherapeutic intervention

Christopher U.T. Hellen and Eckard Wimmer

State University of New York, Stony Brook, USA

Many viruses encode proteinases that are essential for infectivity, and are consequently attractive chemotherapeutic targets. The biochemistry and structure of the human immunodeficiency virus proteinase have been characterized extensively, and potent peptide-mimetic inhibitors have been developed. Techniques and strategies used to improve the efficiency of these compounds are likely to be applicable to other viral proteinases.

Introduction

Many human and animal viruses encode proteinases that play important roles at different stages in the infection cycle, including separation of functionally different domains from a precursor polyprotein (enabling cleavage products to be transported to different cellular compartments) and regulation of a variety of events in viral replication, such as uncoating, activation of replicative enzymes and morphogenesis [1]. These proteinases are essential for virus infectivity, and have therefore come to be seen as attractive targets for chemotherapeutic intervention, particularly because they have unusual cleavage specificities that differ from those of host proteases.

Proteinases are encoded by all retroviruses, including HIV and human T-cell leukemia virus and have been identified in a growing number of DNA and positive-sense RNA viruses. These include adenoviruses and herpesviruses [2,3] as well as picornaviruses, flaviviruses (such as Dengue and yellow fever viruses), pestiviruses and the related hepatitis C virus. A number of these viruses cause diseases of medical or veterinary importance that are not amenable to conventional preventive or prophylactic measures, and proteinase inhibition therefore represents a valid alternative therapeutic approach. Many viral proteinases have only been identified recently, and characterization is consequently in its early stages. To illustrate potential strategies in the analysis of viral proteinases, and in the design and development of inhibitors we shall therefore focus on the picornavirus and retrovirus proteinases, as they have elicited the greatest academic and industrial interest, and as a result, have been characterized in detail.

Development of HIV proteinase inhibitors

HIV-1 has the genetic organization 5'-gag-pol-env-3' that is typical of retroviruses. The gag and pol genes encode inner structural, and replicative proteins respectively, and are translated as polyproteins that are cleaved at eight sites by the proteinase (PR) (Fig. 1 and Table 1). These polyproteins are transported to the plasma membrane and cleavage occurs after budding of immature particles, resulting in morphological changes associated with virion maturation. The substrate specificity of HIV-1 PR is puzzling in that PR catalyzes specific cleavage at a small number of polyprotein sites that show no apparent sequence conservation. Analysis of viral and non-viral substrates suggests that no subsite has absolute specificity, and that a combination of moderate interactions may be sufficient to confer catalytic specificity [4]. Heterogeneity in the composition of viral polyprotein cleavage sites probably plays a role in determining the rate, and consequently the order, of cleavage at different sites.

A proteinase-deficient HIV mutant produced non-infectious immature virions containing unprocessed polyprotein [5], an observation that is crucial to the consideration of PR as a therapeutic target. HIV-1 PR is a C_2 symmetric homodimeric aspartyl proteinase that consists of two identical 99-amino-acid subunits. Their termini interdigitate at the dimer interface, but otherwise the topology of HIV-1 PR is similar to that of pepsin-like aspartyl proteinases [6].

Techniques for the large scale purification of recombinant HIV-1 PR, and for the routine assay of its proteolytic activity are fundamental prerequisites for the development of inhibitors, and various methods have been reported [7]. The successful design of substrate-based inhibitors of other aspartyl proteinases, such as...
pepsin and renin, suggested the strategy of designing analogous peptide-mimetic inhibitors of HIV-1 PR by incorporating non-hydrolyzable 'transition-state' mimics into substrate analogues [7••,8••,9••]. This approach is based on a key step in aspartyl proteinase catalysis: generation of a tetrahedral diol by hydration of a trigonal amide (Fig. 2a). The high (millimolar) K_m values of peptide substrates indicate that potent (i.e. nanomolar) PR inhibitors must incorporate structural features that significantly increase their binding affinity. Peptide-based inhibitors have several disadvantages, including vulnerability to degradative enzymes, rapid clearance, and poor oral absorption. These problems are commonly addressed by minimizing size and peptide-like character of promising lead compounds.

The first reported PR inhibitor was pepstatin [10], a diagnostic inhibitor of aspartyl proteinases. This weak inhibitor contains two statine residues that embody transition state analogue I (Fig. 2b). To identify more potent inhibitors, Dreyer et al. [11] compared the effectiveness as PR inhibitors of five different classes of dipeptide isosteres inserted into a consensus heptapeptide template. Heptapeptides (P_4-P_3' or P_3-P_4') are the shortest substrates that are cleaved efficiently by PR. Statine-based (I), reduced amide (II) and phosphinate (III) transition state analogues exhibited modest potency, but placement of Phe-Gly hydroxyethylene dipeptide isosteres (IV) into the consensus template yielded compounds that inhibited HIV PR at nanomolar concentrations in vitro and prevented polypeptide processing, virion maturation and viral spread at 25–100 μM in cell culture. Truncation and extensive structure–activity analysis at the P_3, P_1' and P_4' positions led to the identification of highly potent (sub-nanomolar) PR inhibitors based on dihydroxyethylene (V) [12•] and hydroxyethylene (IV) [13•] isostere transition state analogues. Potency was enhanced by incorporating residues that stabilize the extended inhibitor structure, presumably due to optimized hydrogen-bonding in the substrate binding cleft. For example, the P_2' and P_3' residues (Leu–Phe) can effectively be replaced by various substituted aminobenzocycloalkanes [14•]. The P_1' position can accept side-chains unrelated to natural amino acids, allowing modifications to be made that enhance solubility and thus cell penetration [15•,16•]. Such substitutions may reduce binding affinity (K_i) but the enhanced solubility may nevertheless result in a net increase in antiviral activity.

The ability to cleave the amino terminus to proline distinguishes HIV PR from non-viral aspartyl proteinases. Hydroxyethylamine (VI) structures that readily accommodate the prolyl imino acid have been incorporated into a number of potent inhibitors [17,18••,19,20••]. Modification of a protected tripeptide incorporating this structure by substituting the imino residue decahydroisoquinoline at the P_1' position yielded highly potent inhibitors of PR in vitro and in cell culture, such as the compound Ro 31-8959 [19,21•]. This inhibitor was expected to have considerable selectivity, and indeed it inhibited human aspartyl proteinases such as gastrin, renin and pepsin by less than 50% at a concentration of 10 μM. Typical IC$_{50}$ values for Ro 31-8959 (5–30 nM) are 1000-fold below its cytotoxic concentration in uninfected host cells. Recent reports indicate that a 600 mg oral dose every 8 hours is sufficient to maintain the mean human plasma concentration at about 70 nM. The potency of Ro 31-8959 is strongly dependent on tight binding by the P_2 and particularly the P_3 substituents, whereas binding of a second class of hydroxyethylamine inhibitors (which contain a noncyclic, secondary amine in place of the decahydroisoquinoline residue) [22•] is less dependent on these

PR site	P_4	P_3	P_2	P_1	P_1'	P_2'	P_3'	P_4'
1	Ser	Gln	Asn	Tyr	Pro	Ile	Val	Gln
2	Ala	Arg	Val	Leu	Ala	Glu	Ala	Met
3	Ala	Thr	Ile	Met	Met	Gln	Arg	Gly
4	Pro	Gly	Asn	Phe	Leu	Gln	Ser	Arg
5	Ser	Phe	Asn	Phe	Pro	Gln	Ile	Thr
6	Thr	Leu	Asn	Phe	Pro	Ile	Ser	Pro
7	Ala	Glu	Thr	Phe	Tyr	Val	Gly	Asp
8	Arg	Lys	Ile	Leu	Phe	Leu	Asp	Gly
Interactions, and this second class binds more tightly in the P_1'-P_2' region.

Peptide substrates are inherently asymmetric and the PR dimer must therefore lose its perfect C_2 symmetry during catalysis. Symmetry is permissible for inhibitors, however, and might even improve binding affinity and selectivity over endogenous aspartyl proteinases. These considerations have led to the design of a series of diaminoalcohol- and diaminodiol-based inhibitors with C_2 (VII) or pseudo-C_2 symmetry [23,24–26]. These inhibitors are potent even at subnanomolar concentrations and highly selective in vitro, but most have suffered from poor solubility, leading to modest potency in cell culture. Strategies to circumvent this deficiency and thus enhance activity in cell culture have included modification of terminal residues and their linkage groups to increase solubility.

The X-ray crystallographic structures of over 100 HIV PR-inhibitor complexes have been analyzed to assist in the design of improved inhibitors. Complexes of PR with five different classes of inhibitors (I, II, IV, VI and VII) have been reported [16,20,24,25,27,28]. Inhibitor binding induces a slight 'hinge' closure of the interface between subunits, and extensive movement of both flaps, tightening the active-site cavity and shielding P_3'-P_3'' residues of the bound inhibitor from solvent contact. Despite the diversity of inhibitor structures, they all adopt generally similar extended conformations and make very similar contacts with the proteinase, binding of the hydroxyethylamine (VI) inhibitor Ro 31-8959 being a notable exception [20].

These interactions include extensive Van der Waal's contacts with residues that define the hydrophobic S_2'-S_2'' binding pockets, and a hydrogen bonding system that sandwiches the inhibitor strand between the catalytic cleft and the flaps. The hydroxyl groups of type V, VI and VII inhibitors form hydrogen bonds with both catalytic aspartates. Significantly, all complexes contain a tetrahedrally coordinated active-site water molecule, which bridges two flap residues and two inhibitor carbonyl groups, prompting suggestions that an improved inhibitor would contain a functional replacement for the water [24,27]. The similarities in the extended conformation of all inhibitors, as well as in the induced conformational changes that they cause in the enzyme, indicate that it is possible to model and improve peptidic inhibitors on the basis of these known structures. An alternative approach to discover novel templates for the design of non-peptide inhibitors is to search three-dimensional structure databases for molecules with a shape that is complementary to the active-site cleft. To date, this approach has led to identification of the antipsychotic agent haloperidol as a weak PR inhibitor [29].

Proteolysis in picornavirus protein expression

The *Picornaviridae* are a family of small icosahedral viruses that includes the etiological agents of several important human and animal diseases. It consists of
five genera, including rhinovirus (the common cold virus) and enterovirus (e.g. poliovirus and hepatitis A virus).

Picornaviruses have a positive-sense monopartite RNA genome that encodes a single large polyprotein. It is processed by three different proteolytic activities which can each be regarded as serving a distinct function (Fig. 3 and Table 2) [30]. The initial event in this cascade is cleavage by 2APpro at its own amino terminus, separating the P1 structural protein precursor from the nascent polyprotein. Secondly, functional proteins are released from the P1 and P2-P3 (non-structural) protein precursors by 3CPpro or its precursors. Finally, maturation cleavage of the VP0 capsid protein occurs on encapsidation of viral RNA to yield infectious virus particles. In addition to their role in viral replication, the 2A and 3C proteinases of poliovirus (and by implication, of other picornaviruses) are responsible for aspects of the dramatic inhibition of host cell RNA and protein synthesis that occurs on infection. The 2A proteinase is involved in degradation of the eukaryotic initiation factor elf-4Fp, which is correlated with shut-off of cap-dependent translation [31], and 3CPpro inactivates transcription factor IIIC, inhibiting polymerase III transcription [32].

Sequence alignment and inhibitor studies suggested that both 2A and 3C proteinases are related structurally to trypsin-like serine proteinases, with the notable difference of their having a nucleophilic Cys residue within the catalytic triad. These proposals are supported by recent mutagenesis studies [33-36]. All picornavirus 3C proteinases are closely related, but there is no similarity between the enterovirus 2A proteinases and their counterparts in other genera. Aphthoviruses encode a third (L) papain-like thiol proteinase [37].

Cleavage-site recognition by polio 3CPpro is unusually stringent, occurring exclusively at Gln-Gly dipeptides at all eight sites within the polyprotein (Fig. 3). Sites in other picornaviruses are slightly more heterogeneous. Poliovirus 2APpro cleaves Tyr-Gly dipeptides at the P1-2A junction and within the three-dimensional polymerase, but although all corresponding sites in other picornaviruses have a Gly residue at the P1' position, various residues occur at the P1 position. Aliphatic residues occur at the P4 positions of most 2APpro and 3CPpro sites. Mutagenesis and peptide cleavage experiments indicate that cleavage site recognition depends on a minimum substrate length (six residues for 3CPpro) and the presence of specific residues at positions that differ according to both the virus and the proteinase [38,39,40,41-43]. There are additional conformational determinants of recognition of cleavage sites within polyproteins, so the large (millimolar) \(K_m \) values of peptide substrates may reflect their greater conformational freedom. Potential peptidemimetic in-

Table 2. Cleavage sites of poliovirus 2A and 3C proteinases.
3C site
VP0/VP3
VP3/VP1
2A/2B
2B/2C
2C/3A
3A/3B
3B/3C
3C/3D
2A site
VP1/2A
3C/3D'
hbitors are likely to exhibit similar flexibility, and must therefore be conformationally constrained and incorporate structural features that increase their binding affinity. The lack of absolute specificity at most sites, and the requirement for peptide substrates to extend to the P4 position indicates that the substrate binding clefts of 3CP° and probably 2AP° arc capable of extensive hydrogen bond interactions with such inhibitors. However, only a few inhibitors of 3CP° have been reported [44,45].

Conclusions

Proteases are encoded by several DNA viruses and numerous RNA viruses in addition to the picornaviruses and retroviruses discussed above. Although they are all potential targets for chemotherapeutic intervention, significant progress in inhibitor development has only been reported for HIV-1 PR. In the few years since its identification, the structure of PR and numerous inhibitor complexes have been determined, and highly potent peptidomimetic inhibitors have been developed. Knowledge of the strategies used in enhancing the potency and specificity of PR inhibitors, and in overcoming the inherent limitations of peptide-based inhibitors is likely to prove invaluable in the development of peptidomimetic inhibitors of other viral proteases.

References and recommended reading

Papers of particular interest, published within the annual period of review, have been highlighted as:
** of special interest
** of outstanding interest

1. Hellen Cut, Kräusslich H-G, Wimmer E: Proteolytic Processing of Polypeptides in the Replication of RNA Viruses. Biochemistry 1989, 28:9881–9890.

2. Welch AR, Woods AS, McNally LM, Cotter RJ, Gibson W: A Herpesvirus Maturational Proteinase, Assembled from Its Gene, Putative Active Site Domain, and Cleavage Site. Proc Natl Acad Sci USA 1991, 88:16792–16796.

3. Liu F, Reisman B: Differentiation of Multiple Domains in the Herpes Simplex Virus 1 Proteinase Encoded by the Uy26 Gene. Proc Natl Acad Sci USA 1992, 88:2076–2080.

4. Poobalan RA, Tomasselli AG, Heinrichs RL, Kedey F: A Cumulative Specificity Model for Proteases from Human Immunodeficiency Virus Types 1 and 2. Inferred from Statistical Analysis of an Extended Substrate Base. J Biol Chem 1991, 266:14554–14561.

5. Kohl NE, Emnini EA, Schleif WA, Davis LJ, Heimbach JC, Dixon RA, SchoNick EM, Sigal IS: Active Human Immunodeficiency Virus Protease is Required for Viral Infectivity. Proc Natl Acad Sci USA 1988, 85:4686–4690.

6. Rao JKM, Erickson JW, Wlodawer A: Structural and Evolutionary Relationships Between Retroviral and Eucaryotic Aspartic Proteinases. Biochemistry 1991, 30:4665–4671.

This paper contains a lucid introduction to the structure of retroviral proteases and presents a clear comparison between them and the eukaryotic aspartic proteinases.

7. Tomasselli AG, Howe WJ, Sawyer TK, Wlodawer A, Heinrichs RL: The Complexities of AIDS: An Assessment of the HIV Protease as a Therapeutic Target. Chem Today 1991, 9:6–27.

An account of the recent progress in substrate-based inhibitor design is complemented by a concise summary of the structure of HIV PR and a clear exposition of its application to structure-based inhibitor design.

8. Norbeck DW, Kempt DJ: HIV Protease Inhibitors. Ann Rep Med Chem 1991, 26:141–150.

A summary of recent progress in the development of substrate-based HIV PR inhibitors.

9. Ruff JR: HIV Protease: a Novel Chemotherapeutic Target for AIDS. J Med Chem 1991, 34:2305–2314.

A timely review of the biochemistry of HIV PR and of strategies for the development of substrate-based chemotherapeutic inhibitors.

10. Kralusslich H-G, Schneider H, Zbyarth G, Carter CA, Wimmer E: Processing of In Vitro-synthesized Gag Precursor Proteins of Human Immunodeficiency Virus (HIV) Type 1 by HIV Proteinase Generated in Escherichia coli. J Virol 1988, 62:4393–4397.

11. Dreyer GB, Mutch B, Tomaszek TA, Carah TJ, Chandler AC, Hyland L, Fakhouri SA, Magaard VW, Moore ML, Stricker JE, et al: Inhibition of Human Immunodeficiency Virus 1 Protease In Vitro: Rational Design of Substrate Analogue Inhibitors. Proc Natl Acad Sci USA 1989, 86:9752–9756.

12. Thaisrivongs S, Tomasselli AG, Moon JB, Hui J, McQuade TJ, Turner SR, Stroobach JW, Howe WJ, Tarpley WG, Heinrichs RL: Inhibitors of the Protease from Human Immunodeficiency Virus: Design and Modeling of a Compound Containing a Dihydroxyethylene Isostere Insert with High Binding Affinity and Effective Antiviral Activity. J Med Chem 1991, 34:2344–2356.

Selective modification of pseudopeptide renin inhibitor at both termini to yield a potent HIV PR inhibitor.

13. Vaccia JP, Guare JP, de Soles SJ, Sanders WM, Giuliana EA, Young SD, Darre PL, Zugay J, Sigal IS, Schleif WA, et al: L-687,908, a Potent Hydroxyethylene-containing HIV Protease Inhibitor. J Med Chem 1991, 34:1225–1228.

The first of series of disclosures [L13]–[L16] from a group at Merck illustrating strategies to selectively modify termini and side-chain residues to increase potency, reduce size and peptidic character, and to increase solubility (and hence antiviral activity) of hydroxyethylene isostere-based inhibitors. This paper describes the effect of modification of the P1'<P2' and P2'<P3' residues.

14. Lyle TA, Wisconsin CM, Guare JP, Thompson WJ, Anderson PS, Darre PL, Zugay JA, Emnini EA, Schleif WA, Quintero JC, et al: Benzocycloalkyl Amines as Novel C-termini for HIV-1 Protease Inhibitors. J Med Chem 1991, 34:1228–1230.

Incorporation of L-amino-2-hydroxyindan as a P2' surrogate allows truncation of hydroxyethylene-containing inhibitors to span only P2–P3' residues.

15. Young SD, Payne IS, Thompson WJ, Gaffin N, Lyle TA, Britcher SF, Graham SL, Schultz TH, Diama AA, Darre PL, et al: HIV Protease Inhibitors Based on Hydroxyethylene Dipeptide Isosteres: an Investigation into...
648 Pharmaceutical applications

the Role of the P'_ Side Chain on Structure-activity. J Med Chem 1992, 35:1702–1709.

Systematic modification of the P'_ residue of the lead inhibitors described in [19,14] established that side chains unrelated to natural amino acids are tolerated at this position, permitting substitutions that increase solubility and cell penetration.

16. Thompson WJ, Fitzgerald PMD, Holloway MK, Emin EA, Darke PL, McKeever BM, Schiefe WA, Quintero JC, Zugay JA, Tucker TJ, et al: Synthesis and Antiviral Activity of a Series of HIV-1 Protease Inhibitors with Functionality Tethered to the P_ or P' Substituents: X-ray Crystal Structure Assisted Design. J Med Chem 1992, 35:1685–1701.

Computer-assisted molecular modelling was used to design derivatives of the lead inhibitor L-685,434 with increased cell penetration and antiviral potency. An X-ray crystal structure of the inhibited enzyme confirms the modelling predictions.

17. Rich DH, Green J, Toth MV, Marshall GR, Kent SBH: Hydroxyethylamine Analogues of the p17/p24 Substrate Cleavage Site are Tight-binding Inhibitors of the HIV Protease. J Med Chem 1990, 33:1285–1288.

18. Rich DH, Sun C-Q, Prasad JVNN, Pathisseri A, Toth MV, Marshall GR, Clare M, Mueller RA, Houssman K: Effect of Hydroxyl Group Configuration in Hydroxyethylamine Dipeptide Isosteres on HIV Protease Inhibition. Evidence for Multiple Binding Modes. J Med Chem 1991, 34:1222–1225.

In a series of hydroxyethylamine isosteres inhibitors, the preferred diastereomeric configuration of an essential hydroxyl group depended on both the length and nature of the peptide framework. This hydroxyl group is hydrogen bonded to the two catalytic Asp residues, mimicking a reaction pathway intermediate.

19. Roberts NA, Martin JA, Kincshington D, Broadhurst AV, Craig JC, Duncan IB, Galpin SA, Handa BK, Kay J, Krohn A, et al: Rational Design of Peptide-based HIV Protease Inhibitors. Science 1990, 248:358–361.

20. Krohn A, Redshaw S, Ritchie JC, Graves BJ, Hatada MA: Novel Binding Mode of Highly Potent HIV-protease Inhibitors Incorporating the (R)-Hydroxyethylamine Isostere. J Med Chem 1991, 34:3540–3542.

Binding of the hydroxyethylamine inhibitor Ro 31-8959 described in [19] to HIV PR at the S'_ and S_2' subsites follows an unusual pattern, precluding extension beyond the S_2' subsite.

21. Craig JC, Grief C, Mills J, Hockley D, Duncan IB, Roberts NA: Effects of a Specific Inhibitor of HIV Protease (RO 31-8959) on Virus Maturation in a Chronically Infected Promonocytic Cell Line (U1). Antivir Chem Chemother 1991, 2:181–186.

Antiviral activity of the potent HIV inhibitor Ro 31-8959 is sufficient to inhibit acute and chronic infections. The low toxicity of this compound renders it a highly promising antiviral agent in AIDS chemotherapy.

22. Tucker TJ, Lumm JR WC, Payne LS, Wai JM, De Solis S, Guelart EA, Darke PL, Heimbach JC, Zugay JA, Schiefe WA, et al: A Series of Potent HIV-1 Protease Inhibitors Containing a Hydroxyethyl Secondary Amine Transition State Isostere: Synthesis, Enzyme Inhibition, and Antiviral Activity. J Med Chem 1992, 35:2525–2533.

A novel subclass of potent hydroxyethylamine inhibitors containing a secondary amine isostere in place of the cyclic amine of Ro 31-8959 show differences in structure–activity relationships and in binding mode.

23. Kempf DJ, Norbeck DW, Coadovoo L, Wang XC, Paul DA, Knigge MF, Vasavandana S, Craig-Kennard A, Sadavar A, Rosenbrook W, et al: Structure-based C_ Symmetric Inhibitors of HIV Protease. J Med Chem 1990, 33:2687–2689.

24. Erickson J, Neilhart DJ, Vandue J, Kempf DJ, Wang XC, Norbeck DW, Plattner JJ, Rittenhouse JW, Turbon M, Widburg N, et al: Design, Activity and 2.8Å Structure of a C_ Symmetric Inhibitor Complexed to HIV-1 Protease. Science 1991, 249:527–533.

Design of C_ symmetric inhibitors exploiting the perfect symmetry of HIV PR revealed by X-ray crystallography.

25. Bone R, Vacca JP, Anderson PS, Holloway MK: X-ray Crystal Structure of the HIV Protease Complex with L-700,417, an Inhibitor with Pseudo-C_ Symmetry. J Am Chem Soc 1991, 113:9382–9384.

An illustration of the application of X-ray crystallography to rational drug design, which in this instance revealed optimized hydrogen bonding and several water-mediated PR-inhibitor interactions.

26. Kempf DJ, Marsh KC, Paul DA, Knigge MF, Norbeck DW, Kohlbrenner WE, Coadovoo L, Vasavandana S, Bryant P, Wang XC, et al: Antiviral and Pharmacokinetic Properties of C_ Symmetric Inhibitors of the Human Immunodeficiency Virus Type 1 Protease. Antimicrob Agents Chemother 1991, 35:2209–2214.

This paper illustrates the difficulties in reconciling the competing demands on PR inhibitors for tight hydrophobic interactions with PR subsites, and aqueous solubility required for bioavailability and in vitro efficacy.

27. Swain AL, Miller MM, Green J, Rich DH, Schneider J, Kent SBH, Wlodawer A: X-ray Crystallographic Structure of a Complex Between a Synthetic Protease of Human Immunodeficiency Virus 1 and a Substrate-based Hydroxyethylamine Inhibitor. Proc Natl Acad Sci USA 1990, 87:8805–8809.

28. Jaksolinski M, Tommaselli AG, Sawyer TK, Staples DG, Heinrickson RL, Schneider J, Kent SBH, Wlodawer A: Structure at 2.5Å Resolution of Chemically Synthesized Human Immunodeficiency Virus Type 1 Protease Complexed with a Hydroxyethylene-based Inhibitor. Biochemistry 1991, 30:1500–1509.

The hydroxyl group of a potent substrate-based inhibitor occupies the position of a water molecule in native PR, which in a new model of the enzymatic mechanism, is proposed to act as the nucleophile in a concerted attack with an acyclic proton on the scissile bond.

29. DeSylarlis RL, Selber GL, Kuntz ID, Putthi PS, Alvarex JC, Ortiz de Montellano PR, Decamp DL, Bahr LM, Craik CS: Structure-based Design of Nonpeptide Inhibitors Specific for the Human Immunodeficiency Virus 1 Protease. Proc Natl Acad Sci USA 1990, 87:6044–6048.

30. Hellen CLT, Wimmer E: Maturation of Poliovirus Capsid ProtEins Virology 1992, 187:391–397.

A concise review of the role of distinct proteolytic activities in the release of capsid proteins from the poliovirus polyprotein and their subsequent assembly into virions.

31. Krausslich HG, Nicklin MH, Toyota H, Etchisons D, Wimmer E: Poliovirus Protease 2A Induces Cleavage of Eukaryotic Initiation Factor 4F Polypeptide p220. J Virol 1989, 61:2711–2718.

32. Clark ME, Hammerle T, Wimmer E, Dasgupta A: Poliovirus Proteinase 3C Converts an Active Form of Transcription Factor IIIC to an Inactive form: A Mechanism for Inhibition of Host Cell Polymerase III Transcription by Poliovirus. EMBO J 1991, 10:2941–2947.

The severe inhibition of RNA polymerase III-mediated transcription in polio-infected cells is a result of inactivation of transcription factor IIIC by the proteolytic activity of 3CP.

33. Hammerle T, Hellen CLT, Wimmer E: Site-directed Mutagenesis of the Putative Catalytic Triad of Poliovirus 3C Proteinase. J Biol Chem 1991, 266:5412–5416.

Site-directed mutagenesis experiments suggest that the catalytic triad of polio 3Cpro (His40, Glu71, Cys149) structurally resembles trypsin-like serine proteinases but differs significantly in its constituent residues.

34. Kean KM, Teterina NL, Marc D, Girard M: Analysis of Putative Active Site Residues of the Poliovirus 3C Protease. Virology 1991, 191:609–619.
Experiments designed to evaluate two conflicting structural models of polio 3CP\(^{\text{pro}}\) suggest that Glu71 is a constituent residue of the catalytic triad whereas Asp85 is involved in polyprotein substrate recognition.

35. HELLEN CUT, FÄCKE M, KRAUSSLICH H G, LEE C K, WIMMER E: Characterization of Poliovirus 2A Proteinase by Mutational Analysis: Residues Required for Autocatalytic Activity are Essential for Induction of Cleavage of Eukaryotic Initiation Factor p220. *J Virol* 1991, **65**:4226–4231.

Polio 2APrO containing a Cys109Ser substitution within the putative His20, Asp38, Cys109 catalytic triad retains significant autocatalytic activity.

36. MALCOLM BA, CHIN SM, JEWELL DA, STRATTON-THOMAS JR, THUDIUM KB, RALSTON R, ROSENBERG S: Expression and Characterization of Recombinant Hepatitis A Virus 3C Proteinase. *Biochemistry* 1992, **31**:3358–3363.

A colorimetric assay was used to characterize cleavage by purified hepatitis A virus 3CP\(^{\text{pro}}\).

37. GORBALEVYA AE, KOONIN EV, LAI MM-C: Putative Papain-related Thiol Proteases of Positive-strand RNA Viruses. Identification of Rubi- and Aphthovirus Proteases and Delineation of a Novel Conserved Domain Associated with Proteases of Rubi, \(\alpha\) and Coronaviruses. *FEBS Lett* 1991, **288**:201–205.

Computer-assisted analysis was used to identify the first viral proteases that are distantly related to papain-like thiol proteases.

38. CORDINGLEY MG, CALLAHAN FL, SARZANA VV, GARSIK YM, COLONNO RJ: Substrate Requirements of Human Rhinovirus 3C Proteinase for Peptide Cleavage *In Vitro*. *J Biol Chem* 1990, **265**:9062–9065.

This paper suggests that the P4 residue is a less important determinant of substrate recognition by 3CP\(^{\text{pro}}\) than by its precursor 3CDPro.

39. BLAIR WS, SEMLER BL: Role for the P4 Amino Acid Residue in Substrate Utilization by the Poliovirus 3CD Proteinase. *J Virol* 1991, **65**:6111–6123.

A novel non-peptide (naphthoquinone) inhibitor of rhinovirus 3C protease.

40. PETTITTHORY JR, MASARZ FR, KIRSCH JF, SANTI DV, MALCOLM BA: A Rapid Method for Determination of Endoprotease Substrate Specificity: Specificity of the 3C Protease from Hepatitis A Virus. *Proc Natl Acad Sci USA* 1991, **88**:11510–11514.

A novel and rapid technique was used to demonstrate that hepatitis A virus 3CP\(^{\text{pro}}\) has a strong preference for small residues (Ala, Ser, Gly) at the P1\(^{-}\) position, but has little specificity at P2\(^{-}\).

41. WEDDEY JR, DUNN BM: Development of Synthetic Peptide Substrates for the Poliovirus 3C Proteinase. *Arch Biochem Biophys* 1991, **286**:402–408.

A high performance liquid chromatography assay reveals that polio 3CP\(^{\text{pro}}\) has a strong preference for a proline P2\(^{-}\) residue, and a continuous fluorescence assay is reported.

42. HELLEN CUT, LEE C-K, WIMMER E: Determinants of Substrate Recognition by Poliovirus 2A Proteinase. *J Virol* 1992, **66**:3358–3366.

P2 and P1\(^{-}\) positions are strict determinants of substrate recognition by polio 2APrO, but P2\(^{-}\), P1\(^{-}\) and P3 positions are broadly tolerant of substitution. Substrate requirements for cleavage in *trans* are more stringent than for cleavage in *cis*.

43. JEWELL DA, SWIETNICKI W, DUNN BM, MALCOM BA: Hepatitis A Virus 3C Proteinase Substrate Specificity. *Biochemistry* 1992, **31**:7862–7869.

Hepatitis A virus 3CP\(^{\text{pro}}\) has strong preferences for residues at P4 and P1\(^{-}\) positions, and differs in specificity from enteroviral 3C proteases.

44. SINGH SB, CORDINGLEY MG, BALL RG, SMITH JL, DOMBROWSKI AW, GOETZ MA: Structure and Stereochemistry of Thysananone: a Novel Human Rhinovirus 3C Protease Inhibitor from Thyanophora penticilloides. *Tetrahedron Lett* 1991, **32**:5279–5282.

A novel non-peptide (naphthoquinone) inhibitor of rhinovirus 3C protease.

45. SKILES JW, MCNEIL D: Spiro Indoline Beta-lactams, Inhibitors of Poliovirus and Rhinovirus 3C-proteinases. *Tetrahedron Lett* 1990, **31**:7277–7280.

CUT Hellen and E Wimmer, Department of Microbiology, State University of New York at Stony Brook, Stony Brook, NY 11794-8621, USA.