The structural basis of proton driven zinc transport by ZntB

Gati, Cornelius; Stetsenko, Artem; Slotboom, Dirk; Scheres, Sjors; Guskov, Albert

Published in:
Nature Communications

DOI:
10.1038/s41467-017-01483-7

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2017

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Gati, C., Stetsenko, A., Slotboom, D., Scheres, S., & Guskov, A. (2017). The structural basis of proton driven zinc transport by ZntB. Nature Communications, 8, Article 1313. https://doi.org/10.1038/s41467-017-01483-7

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
The structural basis of proton driven zinc transport by ZntB

Cornelius Gati, Artem Stetsenko, Dirk J. Slotboom, Sjors H.W. Scheres & Albert Guskov

Zinc is an essential microelement to sustain all forms of life. However, excess of zinc is toxic, therefore dedicated import, export and storage proteins for tight regulation of the zinc concentration have evolved. In Enterobacteriaceae, several membrane transporters are involved in zinc homeostasis and linked to virulence. ZntB has been proposed to play a role in the export of zinc, but the transport mechanism of ZntB is poorly understood and based only on experimental characterization of its distant homologue CorA magnesium channel. Here, we report the cryo-electron microscopy structure of full-length ZntB from *Escherichia coli* together with the results of isothermal titration calorimetry, and radio-ligand uptake and fluorescent transport assays on ZntB reconstituted into liposomes. Our results show that ZntB mediates Zn$^{2+}$ uptake, stimulated by a pH gradient across the membrane, using a transport mechanism that does not resemble the one proposed for homologous CorA channels.
 Zinc is one of the few 'essential-but-also-toxic' divalent cations required for the cell and is an important 'token coin' in host-pathogen interactions\(^1\); whenever host organisms try to sequester all available zinc at the host-pathogen interface to reduce the virulence of invading bacteria\(^2\), the latter employ highly specific uptake systems to scavenge zinc\(^3\). Conversely, if the zinc concentration is elevated in hosts to suppress pathogens\(^3\), the latter regulate their intracellular zinc concentration by scaling up the export of zinc\(^3\). Due to this ambidexterity, the tight regulation of zinc homeostasis is crucial. Different bacteria cope with this task in a variety of ways—for example, by storage of zinc with metallothioneins as in cyano-bacteria\(^3\), by assembly of redundant importers as in \textit{Capriavidus metallidurans}\(^3\) or via a controlled shunt of zinc export—import as in \textit{Escherichia coli}, where zinc–iron permeases (ZIPs) family transporter ZnuABC\(^4,9\) and the ATP-binding cassette (ABC) transporter ZnuABC\(^4,9\) are recruited for import, and P-type ATPase ZntA\(^10\) and cation-diffusion facilitator YiiP\(^11\) for export of zinc (Supplementary Fig. 1). In addition, the zinc transporter ZntB, which belongs to the CorA metal ion transporter (MIT) family is widespread in \textit{Enterobacteriaceae}\(^12,13\). There is controversy over the question whether ZntB is an exporter\(^12\) or importer\(^6\). Furthermore, mechanistic insight is lacking because crystal structures are available of only cytoplasmic parts of ZntB\(^14,15\), and scarce transport activity measurements have been performed only in whole cells. We have obtained the structure of full-length ZntB from \textit{E. coli} and performed isothermal titration calorimetry (ITC), radiolabelled zinc uptake and fluorescent transport experiments with ZntB reconstituted into liposomes. This study shows that ZntB mediates Zn\(^{2+}\) transport, which is stimulated by a pH gradient across the membrane. The comparison of the full-length structure of ZntB with previously resolved structures of ZntB soluble domains in different conditions (in the presence and absence of Zn\(^{2+}\)) and structures of homologous CorA proteins, is indicative that ZntB and CorA proteins utilize different transport mechanisms.

Results

Structure of ZntB. The \textit{apo} structure of ZntB was obtained by single-particle cryo-electron microscopy (cryo-EM) using \textit{n}-dodecyl-\(\beta\)-\(D\)-maltopyranoside (DDM)-solubilized and purified \textit{E. coli} ZntB (EcZntB) (pre-treated with ethylenediaminetetraacetic acid (EDTA)) and resolved at an overall resolution of 4.2 Å (Supplementary Figs. 2 and 3, Table 1). The structure of ZntB revealed a pentameric arrangement (Fig. 1a, b), similar to that reported for other members of the CorA family\(^13,16,17\) (Supplementary Fig. 4) even though CorA and ZntB share very little sequence identity (below 20%) (Supplementary Fig. 5). Each protomer of ZntB consists of a large N-terminal cytoplasmic domain folded into an \(\alpha\beta\alpha\)-motif. A long \(\alpha\)-helix protrudes from the cytoplasmic domain into the membrane (TM1) and is joined to a second transmembrane helix (TM2) (Fig. 1a) via the only periplasmic loop, which bears the signature motif GxN of the CorA MIT family\(^13\) (Fig. 1b, c). In the resolved structure of EcZntB, the cytoplasmic domain is very similar to the isoleted domain of ZntB from \textit{Vibrio parahaemolyticus} (Vp)\(^14\) (rmsd ~2.5 Å), but significantly different from the homologous domain of \textit{Salmonella typhimurium} (St) ZntB\(^13\) (rmsd ~12 Å). Taking into account very high sequence conservation between EcZntB and StZntB of 92.6% (Supplementary Fig. 5), the structural difference is intriguing. This difference could be attributed to the two structures representing two different states in the transport cycle (discussed below). Analysis of the substrate translocation pore revealed a wider profile in ZntB than in the magnesium channels \(\text{TmCorA}\) and \(\text{MjCorA}\) (Supplementary Fig. 6). All three proteins have short extracellular loops between TM1 and TM2, where the family signature motif GxN that forms the selectivity filter (Fig. 1b, c) is located. Whereas in CorA proteins the signature motif has the sequence GMN, ZntBs show a Met to Val substitution, potentially having consequences for the substrate recognition, as in ZntB, the radius of the filter is ~4.5 vs 3.5–4.0 Å in CorAs (Fig. 1d).

Substrate selectivity of ZntB. One of the puzzling features of the CorA family is substrate selectivity. The geometry of the selectivity filter is thought to define the correct distances between (partially) hydrated cation and amino acid side chains of the filter, and hence recognition\(^18,19\). Intriguingly, although the hydrated radii of known transported substrates for the CorA family are very similar (2.10 Å, 2.09 Å, 2.10 Å, 2.07 Å for Zn\(^{2+}\), Cd\(^{2+}\), Co\(^{2+}\) and Co\(^{2+}\), respectively) and all these cations have a similar octahedral arrangement of six water molecules in their first hydration shell in aqueous solution; different subfamilies have distinct substrate specificities. It has been proposed that this selectivity might be based on the rigidity of ion solvation shells and rates of water exchange\(^18\).

To characterize the specificity, we performed ITC experiments and fluorescent transport assays. ITC experiments revealed binding of Zn\(^{2+}\), Cd\(^{2+}\), Ni\(^{2+}\) and Co\(^{2+}\) to ZntB, with \(K_d\) values of 11.5, 22.6, 87.7 and 175.4 μM, respectively, in 1:1 stoichiometry.
No binding of Mn$^{2+}$, Mg$^{2+}$ and Cu$^{2+}$ was detected. The ability of ZntB proteins to select Zn$^{2+}$ over Mg$^{2+}$, and conversely the ability of CorA proteins to select Mg$^{2+}$ over Zn$^{2+}$, may be explained by different sizes of the pore—the substitution of a single amino acid in the signature motif (see above) might be enough. However, Co$^{2+}$ and Ni$^{2+}$ appear to be substrates of both ZntB and CorA24,25, thus the precise determinants of selectivity are still elusive. We additionally tested the transport of the cations

![Fig. 2](https://example.com/fig2.png)

Fig. 2 ITC profiles of substrate binding to ZntB of (a) Zn$^{2+}$ (b) Cd$^{2+}$ (c) Ni$^{2+}$ (d) Co$^{2+}$
by ZntB reconstituted into the liposomes, and found that the ions that bind to the protein in ITC assay are also transported (see below).

Zinc transport by ZntB is stimulated by pH gradient. To characterize the mode of transport, we performed the 65Zn$^{2+}$ uptake assays with purified ZntB reconstituted into liposomes. Transport was measured using either equal pH on the inside and outside of the liposomes, or using pH gradients. Zn$^{2+}$ was taken up by the liposomes containing ZntB, and uptake was enhanced by a pH gradient with the lumen of the liposomes more basic than the outside. In contrast, uptake was suppressed in the presence of a reverse pH gradient. These experiments suggest that zinc transport is driven by the pH gradient. Consistently, addition of the proton ionophore FCCP at a time point when the uptake had reached a plateau led to efflux of the accumulated 65Zn$^{2+}$ in case of a pH gradient that was basic inside (Fig. 3a), and addition of FCCP to liposomes with the opposite pH gradient stimulated additional uptake. FCCP did not affect the Zn$^{2+}$ accumulation in the absence of a pH gradient (Supplementary Fig. 7). These experiments show that Zn$^{2+}$ transport is stimulated

![Fig. 3](image-url)
by the soluble domains, it has been proposed that CorA superfamily proteins might use a transport mechanism that involves a partial loss of the fivefold symmetry in the open state. A recently reported cryo-EM structure of TmCorA in Mg\(^{2+}\)-free conditions, obtained upon EDTA treatment, revealed an unprecedented asymmetry of the pentamer. It was concluded that CorA proteins might use a transport mechanism that involves a partial loss of the fivefold symmetry in the open state to create a pore wide enough for the transport of partially hydrated magnesium. Our work on ZntB shows that the mechanism cannot be extrapolated to other members of the family, because even after an extensive treatment with EDTA ZntB maintained its symmetrical pentameric state. There are several possible explanations for the differences between CorA and ZntB. First, the structural differences are genuine, and related to mechanistic differences between CorA and ZntB. Second, ZntB can also form a collapsed state, but under different conditions than CorA (perhaps in the membrane). Third, the observed asymmetry-collapsed structure of CorA is an artefact, possibly induced by the Mg\(^{2+}\)-free conditions that were used to obtain the structure. Such conditions are probably never encountered by the protein under physiological conditions, as the intracellular concentration of free Mg\(^{2+}\) is estimated to be around 0.5–1mM. Also, other intracellular divalent and monovalent cations were shown to bind to TmCorA. Therefore, it is possible that the observed symmetry-collapsed structure is not part of the mechanism of channel opening. In contrast to stringent removal of Mg\(^{2+}\) from CorA channels, the depletion of Zn\(^{2+}\) from ZntB is likely to be physiologically relevant because intracellular concentrations of free Zn\(^{2+}\) are extremely low (i.e., in the pM–fM range). Therefore the symmetrical structure of ZntB may better represent the apo state than the asymmetrical structure of CorA.

To understand the mechanism of transport used by ZntB, the structures of the different states are essential. A comparison of our full-length structure with the structure of the soluble domain of StZntB provides a first indication of the movements that may occur within the symmetrical scaffold to provide a pathway for the transported zinc. Whereas our structure was obtained in the absence of Zn\(^{2+}\), StZntB was crystallized in the presence of Zn\(^{2+}\). Calculation of the surface potentials revealed dramatic differences between full-length EcZntB and soluble StZntB (Fig. 5). Whereas our structure was obtained in the absence of Zn\(^{2+}\), StZntB was crystallized in the presence of Zn\(^{2+}\). Calculation of the surface potentials revealed dramatic differences between full-length EcZntB and soluble StZntB (Fig. 5). The cytoplasmic domain of full length EcZntB has a strong positive electrostatic surface potential (resembling VpZntB (Fig. 5c)), whereas the potential in the isolated domain of StZntB is negative. Threading of the EcZntB sequence in the StZntB produced a similar result of more negative surface potential (Fig. 5d) and the reverse threading (StZntB sequence in EcZntB model) produced a positive surface potential (Fig. 5e). Furthermore, the shape of the internal pore between two forms is different (Fig. 5) possibly resembling two conformational states. The charge inversion of the pore surface (Fig. 5f) between the two symmetrical states might be caused by helical rotation of TM1, which bears a patch of highly conserved basic and acidic residues on the adjacent faces of the helix.

It has been debated whether ZntB is primarily used for import or export. Whole-cell assays have indicated that ZntB is a Zn\(^{2+}\) and Cd\(^{2+}\) exporter. This conclusion was based on experiments using a knockout strain, from which it was assumed that all zinc transporters had been deleted. However, recent studies revealed that additional transporters, such as PitA, HoxN, ActP and the STM0353 gene product (homologous to CadA), might contribute significantly to zinc transport. Nevertheless, these results showed that ZntB at least affected the transport of Zn\(^{2+}\) and Cd\(^{2+}\). Interestingly, the analysis of regulation of ZntB expression in C. metallidurans revealed that it was downregulated in the presence of high concentrations of Zn\(^{2+}\), Cd\(^{2+}\) and Cu\(^{2+}\), which suggests that it is an importer, rather than an exporter. Additionally, the expression of homologous ZntB from Agrobacterium tumefaciens was not induced by treatments with Zn\(^{2+}\) in a range from 100 to 750 \(\mu\)M. Our experiments show that ZntB most likely mediates Zn\(^{2+}\)/H\(^{+}\) co-transport, and thus indicate that ZntB is an importer for zinc. This indeed confirms that the same fold within CorA superfamily can be used either as a channel (CorA) or a transporter (ZntB).

In conclusion, we have resolved the full-length structure of a ZntB transporter, a member of the CorA MIT family. We have performed ligand binding and ligand-transport assays that unambiguously show that ZntB is involved in zinc transport. By combining all available data from us and other groups, we conclude that ZntB is a zinc importer that is driven by a proton gradient. Its transport mechanism appears distinct from that of CorA Mg\(^{2+}\) channels. Unlike CorA, ZntB does not collapse into a highly asymmetrical state upon depletion of divalent cations. The elucidation of different conformational states of ZntB will be essential to describe its transport mechanism in greater detail.

Methods

Protein expression and membrane vesicle preparation. Expression of ZntB was performed in a 51 Bask containing 3 l of LB medium (10 g l\(^{-1}\) Bacto trypton, 5 g l\(^{-1}\) Bacto yeast extract, 10 g l\(^{-1}\) NaCl), supplemented with 50 \(\mu\)g ml\(^{-1}\) kanamycin and 34 \(\mu\)g ml\(^{-1}\) chloramphenicol. The E. coli BL-21(DE3) cells with pNIC_BSA4_ZntB plasmid were grown in LB containing 30 \(\mu\)g ml\(^{-1}\) kanamycin. The cultures were grown to an OD\(_{600}\) of 0.8 in the presence of either 1 mM IPTG or 50 \(\mu\)g ml\(^{-1}\) kanamycin to induce expression of ZntB and to inhibit the activity of plasmid-encoded l-arabinose-inducible lac repressor, respectively. After IPTG induction, ZntB was purified by a combination of affinity chromatography and ion-exchange chromatography. After purification, ZntB was dialysed against 50 mM Tris–HCl (pH 8.0), 150 mM NaCl and 5 mM MgCl\(_2\) (buffer M) and concentrated to 10 mg ml\(^{-1}\). The final dialysis buffer contained 300 mM NaCl, 5 mM MgCl\(_2\) and 50 mM Tris–HCl (pH 8.0) (buffer N).
(pNIC28-Bsa4 was a gift from Opher Gileadi (Addgene plasmid #26103)37) were grown at 37 °C, 200 r.p.m. to an OD_{600} of 0.8, with an induction by addition of 0.1 mM IPTG. After 3 h of expression, the cells were collected by centrifugation (15 min, 7446×g, 4 °C), washed in buffer A (50 mM Tris/HCl, pH 8.0) and resuspended in buffer B (50 mM Tris/HCl, pH 8.0, 150 mM NaCl, 10 mM imidazole, 10% glycerol). Straight away, membrane vesicles were prepared or alternatively the resuspended cells were flash-frozen in liquid nitrogen and stored at −80 °C.

MgSO_{4} of 1 mM and 50–100 μg ml⁻¹ DNAse were added to the cells before membrane vesicle preparation. Next, the cells were disrupted and lysed by high-pressure (Constant Cell Disruption System Ltd., UK, two passages at 25 kpsi, 5 °C) cell debris was removed by low-speed centrifugation (30 min, 12,074×g, 4 °C), and membrane vesicles were collected by ultracentrifugation (120 min, 193,727×g, 4 °C). After that, the collected membrane vesicles were resuspended in buffer C (50 mM Tris/HCl, pH 8.0, 150 mM NaCl, 15% glycerol) to a final volume of 5 ml per 1 liter of cell culture. Subsequently, aliquoted membrane vesicles were flash-frozen in liquid nitrogen and stored at −80 °C. Bradford Protein Assay (Bio-Rad) was used to determine the total protein concentration in the prepared membrane vesicles.

Protein purification. Prepared membrane vesicles were rapidly thawed and immediately solubilized in buffer D (50 mM Tris/HCl, pH 8.0, 150 mM NaCl, 10 mM imidazole, 10% glycerol, 1% (w/v) n-dodecyl-β-D-maltopyranoside (DDM, Anatrace)) at 4 °C for 1 h, while gently rocking. To remove unsolubilized material the centrifugation step (30 min, 442,907×g, 4 °C) following the centrifugation step (30 min, 442,907×g, 4 °C) was performed as follows (please see ref. 38 for details): polar lipids of E. coli and egg phosphatidylcholine (in 3:1 (w/v) ratio) were dissolved in chloroform, then dried in a rotary evaporator and subsequently resuspended in buffer containing 50 mM KPi, pH 7.5 to the concentration of 20 mg ml⁻¹. After three freeze-thaw cycles, large unilamellar vesicles (LUVs) were obtained and stored in liquid nitrogen. To prepare proteoliposomes, LUVs were extruded through a 400-nm-diameter polycarbonate filter (Avestin, 11 passages). Obtained liposomes were diluted to 4 mg ml⁻¹ in buffer H (50 mM HEPES, pH 7.5) or buffer I (50 mM HEPES, pH 6.5) and subsequently destabilized by incubation). Afterwards, proteoliposomes were collected by centrifugation (25 min, 285,775×g, 4 °C) and resuspended in buffer H or buffer I to a lipid concentration of 10 mg ml⁻¹. Finally, after the freeze-thaw cycles, obtained proteoliposomes were stored in liquid nitrogen until subsequent experiments.

Reconstitution into proteoliposomes. Reconstitution in proteoliposomes was performed as follows (please see ref. 38 for details): polar lipids of E. coli and egg phosphatidylcholine (in 3:1 (w/v) ratio) were dissolved in chloroform, then dried in a rotary evaporator and subsequently resuspended in buffer containing 50 mM KPi, pH 7.5 to the concentration of 20 mg ml⁻¹. After three freeze-thaw cycles, large unilamellar vesicles (LUVs) were obtained and stored in liquid nitrogen. To prepare proteoliposomes, LUVs were extruded through a 400-nm-diameter polycarbonate filter (Avestin, 11 passages). Obtained liposomes were diluted to 4 mg ml⁻¹ in buffer H (50 mM HEPES, pH 7.5) or buffer I (50 mM HEPES, pH 6.5) and subsequently destabilized by incubation). After incubation, proteoliposomes were collected by centrifugation (25 min, 285,775×g, 4 °C) and resuspended in buffer H or buffer I to a lipid concentration of 10 mg ml⁻¹. Finally, after three freeze-thaw cycles, obtained proteoliposomes were stored in liquid nitrogen until subsequent experiments.

Radiolabelled Zn²⁺ transport assay. To use in the transport assay, proteoliposomes with desired pH were thawed and extruded through a 400-nm pore size polycarbonate filter (Avestin, nine passages). Subsequently, two active units of Proteus Plus (Promega) were added to the protein sample and incubated overnight. The proteoliposomes were diluted 10 times to a final volume of 2 ml in the same buffer. Following centrifugation step (25 min, 285,775×g, 4 °C), the proteoliposomes were resuspended in buffer H or I to a final concentration of 0.3 μg ml⁻¹ ZntB. For each time point in the transport assays, a reaction volume of 200 μl of buffer with desired pH with 22 μM of ⁶⁵ZnCl₂ added, was incubated at 30 °C while being stirred. Transport was initiated by adding 1 μg of ZntB, previously reconstituted in proteoliposomes. Stop buffer of 2 ml (ice-cold outside buffer)
Fluorescent transport assays. Zinc transport was measured with the Zn$^{2+}$-sensitive fluorophore FluoZin-1 (ThermoFisher, USA). To avoid bleaching of the fluorophore, the sample was shielded from the direct light as much as possible. FluoZin-1 (stock concentration 3 mM in H$_2$O) was added to a final concentration of 5 μM to the proteoliposomes with desired pH. FluoZin-1 encapsulation was performed by three freeze-thaw cycles and subsequent extrusion through 0.4-μm polycarbonate filters. Extravascular dye was removed from ~500 μl of liposome suspension by size exclusion chromatography on a 2 ml Sephadex G-75 column equilibrated with buffer H or I. Proteoliposomes were collected by ultracentrifugation (25 min, 285,775×g, 4 °C), and the supernatant was removed. Proteoliposomes were resuspended with 10 μl buffer H or I per 2.5 μg of proteoliposomes (protein to lipid ratio 1:250). Transport assays with or without proton gradient were initiated by the addition of 10 μM HCl solution of zinc acetate to the desired final concentration. For each measurement, 0.3 μg of proteoliposomes (protein to lipid ratio 1:250) was diluted in 1 ml of desired buffer. A fluorescence time course was measured in a 1 ml cuvette with a stirrer using an excitation wavelength of 490 nm and an emission wavelength of 525 nm. Experiments with empty liposomes were performed in parallel as controls. Initial transport rates (ΔF/s$^{-1}$) were calculated by performing a linear regression on the transport data between 1 and 10 s after addition of zinc acetate. The resulting data was fitted to a Michaelis–Menten equation. All measurements were at least triplicated.

For H$^{+}$ transport assays, the luminal buffer of the proteoliposomes was exchanged for buffer J (5 mM HEPES pH 6.7) by resuspension of the liposomes in this buffer followed by three freeze-thaw cycles and extrusion through 0.4-μm polycarbonate filters. Proteoliposomes were collected by ultracentrifugation (25 min, 285,775×g, 4 °C), and the supernatant was removed. Proteoliposomes were resuspended with 10 μl buffer J per 2.5 μg of proteoliposomes (protein to lipid ratio 1:250). For each measurement, 0.3 μg of proteoliposomes was diluted in 1 ml of buffer K (5 mM HEPES, pH 6.7, 150 nM ACMA). A fluorescence time course was measured in a 1 ml cuvette with a stirrer using an excitation wavelength of 419 nm and an emission wavelength of 483 nm; zinc was added after 3 min of equilibration time. Experiments with empty liposomes were performed in parallel as controls. All measurements were triplicated.

Isothermal titration calorimetry. ITC200 instrument (MicroCal) was used to perform all ITC experiments. The thermally equilibrated ITC cell was filled with 280 μl of ZntB in buffer G (10–15 μM) and studied substrates (in the same buffer) were titrated into the cell. Temperature was fixed at 25 °C. Analysis of data was performed using the origin-based software provided by MicroCal.

Single particle cryo-electron microscopy. The purified ZntB sample was adjusted to a final concentration of ~10 mg ml$^{-1}$. Aliquots of 3 μl were applied to a freshly glow-discharged holey carbon grids (Quantifoil Au R1.2/1.3, 300 mesh), excess liquid was blotted for 4–5 s using a FEI Vitrobot Mark IV and the sample was plunge frozen in liquid ethane at a temperature of approximately 100 K. TEM grids were transferred into a Titan Krios 300 keV microscope (FEI, Netherlands), equipped with a K2 direct electron detector. Zero-loss images were recorded semi-automatically, using the UCSF Image4d script. The G2-quantum energy filter was adjusted to a slit width of 20 eV. Images were collected at a nominal magnification of ~x8,100 (yielding a pixel size of 1.43 Å) and a defocus range of ~1.5 to ~3.0 μm. A total of 2655 movie images were collected with 24 frames dose-fractionated over 14 s, in super-resolution counting mode.

Beam-induced motion in the raw movie frames was corrected for using whole-frame motion correction with MOTIONCORR 1.0, followed by contrast transfer function (CTF) estimation using gctf. All subsequent data processing steps were performed using the RELION 2.0 software suite. References for template-based particle picking were obtained from two-dimensional (2D) classes obtained from manually picked particles from a subset of micrographs. The initial run of template-based algorithm picked 1 million particles from all 2655 images. To reduce the number of false-positive particle picks from the initial template-based particle picking, several rounds of 2D classification were applied to the full extracted data set, resulting in a subset of 333,490 particle projections. The resulting particles were submitted to three-dimensional auto-refinement, particle-based motion correction and damage-based weighting of individual frames. An additional round of 2D classification was performed on these ‘polished’ particles to further discard false-positive or low-quality particles. The obtained map was used for manual model building in Coot using the previously published CorA structure (pdb id: 410u) as a reference model. Refinement was performed in Phenix with the final validation check in Molprobity. The ‘Zn$^{2+}$-bound’ model of EcZntB and Zn$^{2+}$-free model of StZntB were obtained by threading EcZntB sequence into StZntB model with the Phyre2 server. Electrostatic potentials were calculated with APBS after the initial preparation of files at PDB2PQR server. Images were prepared with the open source version of PyMol (https://sourceforge.net/projects/pymol/).

Received: 30 January 2017 Accepted: 18 September 2017 Published online: 03 November 2017

References
1. Tapdevie, D. A., Wang, J. & Giedroc, D. P. Bacterial strategies to maintain zinc metallostat in the host-pathogen interface. J. Biol. Chem. 291, 20858–20868. (2016).
2. Kehl-Fie, T. E. & Skaar, E. P. Nutritional immunity beyond iron: a role for manganese and zinc. Curr. Opin. Chem. Biol. 14, 218–224 (2010).
3. Blindauer, C. A. Advances in the molecular understanding of biological zinc transport. Chem. Commun. 51, 4544–4563 (2015).
4. Ong, C.-L. Y., Gillen, C. M., Barnett, T. C., Walker, M. J. & McEwan, A. G. An antimicrobial role for zinc in innate immune defense against group A Streptococcus. J. Infect. Dis. 209, 1500–1508 (2014).
5. Blindauer, C. A. et al. A metallothionein containing a zinc finger within a four-metal cluster protects a bacterium from zinc toxicity. Proc. Natl Acad. Sci. USA 98, 9593–9598 (2001).
6. Herzberg, M., Bauer, L., Kirsten, A. & Nies, D. H. Interplay between seven secondary metal uptake systems is required for full metal resistance of Cuprivirudius metalldurans. Metallomics 8, 313–326 (2016).
7. Karlinsey, J. E., Maguire, M. E., Becker, L. A., Crouch, M.-L. V. & Fang, F. C. The phage shock protein PspA facilitates divalent metal transport and is required for virulence of Salmonella enterica sv. Typhimurium. Mol. Microbiol. 78, 669–685 (2010).
8. Amendola, S. et al. High-affinity Zn$^{2+}$ uptake system ZnuABC is required for bacterial zinc homeostasis in intracellular environments and contributes to the virulence of Salmonella enterica. Infect. Immun. 75, 5867–5876 (2007).
9. Perry, R. D., Bobrov, A. G. & Fetherston, J. D. The role of transition metal ATPases. Nat. Rev. Microbiol. 7, 956–975 (2009).
10. Wang, K. et al. Structure and mechanism of Zn$^{2+}$–transporting P-type ATPases. Nature 514, 518–522 (2014).
11. Lu, M. & Fu, D. Structure of the zinc transporter YiiP. Science 317, 1746–1748 (2007).
12. Worlock, A. J. & Smith, R. L. ZntB is a novel Zn$^{2+}$ transporter in Salmonella enterica serovar Typhimurium. J. Bacteriol. 184, 4369–4373 (2002).
13. Payandeh, J., Pfoh, R. & Pai, E. F. The structure and regulation of magnesium ATPases. Metallomics 7, 9598 (2005).
14. Herzberg, M., Bauer, L., Kirsten, A. & Nies, D. H. Interplay between seven secondary metal uptake systems is required for full metal resistance of Cuprivirudius metalldurans. Metallomics 8, 313–326 (2016).

Table 1 Data collection and refinement statistics

Data collection	titanium Krios with K2-detector
Voltage	300 kV
Pixel size (Å)	1.43
Micrographs collected (#)	2655
Refinement	33,490
Resolution (Å; at FSC = 0.143)	4.2
CC (model to map fit)	0.81 (0.83)
RMS deviations	0.007
Bonds (%)	1.152
Angles (%)	0.065
Chirality (%)	0.008
Planarity (%)	0.0
Validation	12
Favoured rotamers (%)	98.77
Ramachandran favoured (%)	91.69
Ramachandran allowed (%)	8.31
Ramachandran outliers (%)	0

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01483-7 ARTICLE
39. Li, X., Zheng, S., Agard, D. A. & Cheng, Y. Asynchronous data acquisition and artifact correction enable near-atomic-resolution single-particle cryo-EM. Nat. Methods 10, 584–590 (2013).

40. Zhang, K. Gcf: Real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

41. Scheres, S. H. W. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

42. Scheres, S. H. Beam-induced motion correction for sub-megadalon cryo-EM particles. Elife 3, e03665 (2014).

43. Émsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta. Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

44. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

45. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta. Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

46. Kelley, L. A., Mezulis, S., Yates, C. M., Wasi, M. N. & Sternberg, M. J. E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858 (2015).

47. Baker, N. A., Sept, D., Joseph, S., Holst, M. J. & McCammon, J. A. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl Acad. Sci. USA 98, 10037–10041 (2001).

48. Dolinsky, T. J. et al. PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res. 35, W522–W525 (2007).

Acknowledgements

We are grateful to M. Guskova for help with figures preparation. This research was supported by HFSP fellowship (LTF000087/2015-L) to C.G. and NWO Vidi grant 732.014.002 to A.G.

Author contributions

A.G. conceived the project. Expression, purification, ITC, radioactive zinc uptakes and transport assays were performed by A.S. Cryo-EM was carried out by C.G. and S.H.W.S. Model building and refinement was done by A.G. A.S., C.G., D.J.S., S.H.W.S. and A.G. analysed the data. A.G. and D.J.S. wrote the manuscript with input from all other authors.

Additional information

Supplementary Information accompanies this paper at doi:10.1038/s41467-017-01483-7.

Competing interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.