The Impact of Community Masking on COVID-19: A Cluster-Randomized Trial in Bangladesh

Jason Abaluck
Laura H. Kwong
Ashley Styczynski
Ashraful Haque
Md. Alamgir Kabir

See next page for additional authors

Follow this and additional works at: https://elischolar.library.yale.edu/egcenter-discussion-paper-series

Part of the Growth and Development Commons

Recommended Citation
Abaluck, Jason; Kwong, Laura H.; Styczynski, Ashley; Haque, Ashraful; Kabir, Md. Alamgir; Bates-Jeffries, Ellen; Crawford, Emily; Benjamin-Chung, Jade; Benhachmi, Salim; Raihan, Shabib; Rahman, Shadman; Zaman, Neeti; Winch, Peter J.; Hossain, Md. Maqsud; Reza, Hasan Mahmud; Luby, Stephen P.; Mobarak, Ahmed Mushfiq; All Jaber, Abdulla; Gulshan Momen, Shawkee; Laz Bani, Faika; Rahman, Aura; and Saiha Huq, Tahrima, "The Impact of Community Masking on COVID-19: A Cluster-Randomized Trial in Bangladesh" (2021). Discussion Papers. 1086.
https://elischolar.library.yale.edu/egcenter-discussion-paper-series/1086

This Discussion Paper is brought to you for free and open access by the Economic Growth Center at EliScholar – A Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in Discussion Papers by an authorized administrator of EliScholar – A Digital Platform for Scholarly Publishing at Yale. For more information, please contact elischolar@yale.edu.
The Impact of Community Masking on COVID-19: A Cluster-Randomized Trial in Bangladesh

Jason Abaluck†‡,1, Laura H Kwong‡,2,3, Ashley Styczynski†,4
Ashraful Haque5, Md. Alamgir Kabir5, Ellen Bates-Jeffries6
Emily Crawford1, Jade Benjamin-Chung7, Shabib Raihan5
Shadman Rahman5, Salim Benhachmi8, Neeti Zaman5
Peter J. Winch9, Maqsud Hossain10, Hasan Mahmud Reza11,
Abdullah All Jaber10, Shawkee Gulshan Momen10,
Faika Laz Bani10, Aura Rahman10, Tahrima Saiha Huq10,
Stephen P. Luby§,2,4, Ahmed Mushfiq Mobarak§,1,12 *

August 31, 2021

Summary: A randomized-trial of community-level mask promotion in rural Bangladesh during COVID-19 shows that the intervention tripled mask usage and reduced symptomatic SARS-CoV-2 infections, demonstrating that promoting community mask-wearing can improve public health.

*‡ Address correspondence to jason.abaluck@yale.edu and ahmed.mobarak@yale.edu. † denotes co-first author, § denotes co-last author. Author affiliations: 1. Yale School of Management, Yale University, New Haven, CT, USA; 2. Woods Institute for the Environment, Stanford University, Stanford, CA, USA; 3. Division of Environmental Health Sciences, University of California Berkeley, Berkeley, CA, USA; 4. Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA; 5. Innovations for Poverty Action Bangladesh, Dhaka, Bangladesh; 6. Innovations for Poverty Action, Evanston, IL, USA; 7. Department of Epidemiology and Public Health, Stanford University, Stanford, CA, USA; 8. Yale Research Initiative on Innovation and Scale, Yale University, New Haven, CT, USA; 9. Social and Behavioral Interventions Program, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; 10. NGRI, North South University, Dhaka, Bangladesh; 11. Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh; 12. Deakin University, Melbourne, Australia.
Abstract

Background: Mask usage remains low across many parts of the world during the COVID-19 pandemic, and strategies to increase mask-wearing remain untested. Our objectives were to identify strategies that can persistently increase mask-wearing and assess the impact of increasing mask-wearing on symptomatic SARS-CoV-2 infections.

Methods: We conducted a cluster-randomized trial of community-level mask promotion in rural Bangladesh from November 2020 to April 2021 (N=600 villages, N=342,126 adults). We cross-randomized mask promotion strategies at the village and household level, including cloth vs. surgical masks. All intervention arms received free masks, information on the importance of masking, role modeling by community leaders, and in-person reminders for 8 weeks. The control group did not receive any interventions. Neither participants nor field staff were blinded to intervention assignment. Outcomes included symptomatic SARS-CoV-2 seroprevalence (primary) and prevalence of proper mask-wearing, physical distancing, and symptoms consistent with COVID-19 (secondary). Mask-wearing and physical distancing were assessed through direct observation at least weekly at mosques, markets, the main entrance roads to villages, and tea stalls. At 5 and 9 weeks follow-up, we surveyed all reachable participants about COVID-related symptoms. Blood samples collected at 10-12 weeks of follow-up for symptomatic individuals were analyzed for SARS-CoV-2 IgG antibodies.

Results: There were 178,288 individuals in the intervention group and 163,838 individuals in the control group. The intervention increased proper mask-wearing from 13.3% in control villages (N=806,547 observations) to 42.3% in treatment villages (N=797,715 observations) (adjusted percentage point difference = 0.29 [0.27, 0.31]). This tripling of mask usage was sustained during the intervention period and two weeks after. Physical distancing increased from 24.1% in control villages to 29.2% in treatment villages (adjusted percentage point difference = 0.05 [0.04, 0.06]). After 5 months, the impact of the intervention faded, but mask-wearing remained 10 percentage points higher in the intervention group.

The proportion of individuals with COVID-like symptoms was 7.62% (N=13,273) in the intervention arm and 8.62% (N=13,893) in the control arm. Blood samples were collected from N=10,952 consenting, symptomatic individuals. Adjusting for baseline covariates, the
intervention reduced symptomatic seroprevalence by 9.3% (adjusted prevalence ratio (aPR) = 0.91 [0.82, 1.00]; control prevalence 0.76%; treatment prevalence 0.68%). In villages randomized to surgical masks (n = 200), the relative reduction was 11.2% overall (aPR = 0.89 [0.78, 1.00]) and 34.7% among individuals 60+ (aPR = 0.65 [0.46, 0.85]). No adverse events were reported.

Conclusions: Our intervention demonstrates a scalable and effective method to promote mask adoption and reduce symptomatic SARS-CoV-2 infections.

Trial registration: ClinicalTrials.gov Identifier: NCT04630054

Funding: GiveWell.org
1 Introduction

As of July 2021, the COVID-19 pandemic has taken the lives of more than 4.2 million people. Inspired by the growing body of scientific evidence that face masks can slow the spread of the disease and save lives [1, 2, 3, 4, 5, 6, 7, 8], we conducted a cluster-randomized controlled trial covering 342,126 adults in 600 villages in rural Bangladesh with the dual goals of (a) identifying strategies to encourage community-wide mask-wearing, and (b) tracking changes in symptomatic SARS-CoV-2 infections as a result of our intervention. While vaccines may constrain the spread of SARS-CoV-2 in the long-term, it is unlikely that a substantial fraction of the population in low- and middle-income countries will have access to vaccines before the end of 2021 [9]. Uncovering scalable and effective means of combating COVID-19 is thus of first-order policy importance.

Over 40% of the world’s population live in countries that mandated mask-wearing in public areas during the COVID-19 pandemic, and another 40% live in countries where universal mask norms prevailed absent a legal mandate [10]. However, increasing mask-wearing, either through mask promotion or mandates, has proven difficult, especially in low- and middle-income countries and in remote, rural areas. In Bangladesh, a quarter of those observed in public areas in June 2020 wore masks, and only a fifth wore masks properly (covering both the nose and mouth), despite a nationwide mask mandate in effect at the time. This raises questions about how to increase mask-wearing in community settings: is it sufficient to increase access to masks, or does this need to be supplemented by providing information about the benefits of mask-wearing, role modeling mask-wearing, informal social sanctions, or mask mandates with legal enforcement?

We conducted a randomized controlled trial to identify the most effective mask promotion strategies for low-resource, rural settings and determine whether mask distribution and promotion is an effective tool to combat COVID-19. The World Health Organization declined to recommend mask adoption until June 2020, citing the lack of evidence from community-based randomized-controlled trials, as well as concerns that mask-wearing would create a false sense of security [11]. Critics argued that those who wore masks would engage in compensating behaviors, such as failing to physically distance from others, resulting in a net increase in transmission [12]. We designed
our trial to directly test this hypothesis by measuring physical distancing, as well as to evaluate the bottom-line impact on COVID-19.

Since a substantial share of coronavirus transmission stems from asymptomatic or pre-symptomatic individuals [13], we designed our trial to encourage *universal* mask-wearing at the community level, rather than mask-wearing among only those with symptoms.

After an iterative research process with multiple rounds of piloting, we settled on a core intervention package that combined household mask distribution with communication about the value of mask-wearing, mask promotion and reminders at mosques, markets, and other public places, and role-modeling by public officials and community leaders. We also tested several other strategies using additional experimental arms in sub-samples, such as text message reminders, asking people to make a verbal commitment, creating opportunities for social signaling, and providing village-level incentives to increase mask-wearing. The selection of strategies to test was informed by both our pilot results and research in public health, psychology [14, 15, 16], economics [17, 18, 19], marketing [20, 21, 22], and other social sciences [23] on product promotion and dissemination strategies. We tested many different strategies because it was difficult to predict in advance which ones would lead to persistent increases in mask-wearing. Prediction studies we conducted with policymakers and public health experts at the World Health Organization, India’s National Council of Applied Economic Research, and the World Bank suggest that even these experts with influence over policy design could not easily predict our trial results.

We powered our intervention around the primary outcome of symptomatic seroprevalence. During our intervention, we collected survey data on the prevalence of WHO-defined COVID-19 symptoms from all available study participants, and then collected blood samples at endline from those who reported symptoms anytime during the 8-week study duration. Our trial is therefore designed to track the fraction of individuals who are *both* symptomatic and seropositive. We chose this as our primary outcome for two reasons: first, the goal of public health policy is ultimately to prevent symptomatic infections (even if preventing asymptomatic infections is instrumentally important in achieving that goal). Second, because symptomatic individuals are far more likely
to be seropositive, powering for this outcome required conducting an order of magnitude fewer costly blood tests. As a secondary outcome, we also report the effects of our intervention on WHO-defined symptoms for probable COVID-19.

2 Background and Context

Bangladesh is a densely populated country with 165 million inhabitants. A serosurvey conducted in March-April 2021 found 68% of residents in Dhaka and Chattogram had antibodies against SARS-CoV-2; this revealed there were two orders of magnitude more infections than reported cases [24, 25, 26]. This is in line with estimates from India, where seroprevalence studies reveal similarly low case detection rates [27], and up to an order of magnitude more deaths than reported [28]. The number of daily reported cases in Bangladesh surged fifteen-fold between February and July 2021 to reach 15,000 per day, but even these numbers are also likely to be underestimates.\(^1\) Reducing spread of SARS-CoV-2 in this setting is thus of vital importance.

Between April and June 2020, our team and others conducted several surveys in Bangladesh to quantify mask-wearing behavior. The evolution of mask use over time in Bangladesh is discussed in greater detail in [29]. In Bangladesh, the government strongly recommended mask use from early April 2020. In a telephone survey of respondents at the end of April 2020, over 80% self-reported wearing a mask and 97% self-reported owning a mask. The Bangladeshi government formally mandated mask use in late May 2020 and threatened to fine those who did not comply, although enforcement was weak to non-existent, especially in rural areas. Anecdotally, mask-wearing was substantially lower than indicated by our self-reported surveys. To investigate, we conducted surveillance studies throughout public areas in Bangladesh in two waves. The first wave of surveillance took place between May 21-25, 2020 in 1,441 places in 52 districts. About 51% out of more than 152,000 individuals we observed were wearing a mask. The second wave of surveillance was conducted between June 19-22, 2020 in the same 1,441 locations, and we found

\(^1\)http://dashboard.dghs.gov.bd/webportal/pages/covid19.php
that mask-wearing dropped to 26%, with 20% wearing masks that covered their mouth and nose. An August 2020 phone survey in rural Kenya finds that while 88% of respondents claim to wear masks in public, direct observation revealed that only 10% actually did [30]. These observations suggest that mask promotion interventions could be useful in rural areas of low- and middle-income countries (LMIC), home to several billion people at risk for COVID-19.

3 Interventions and Data Collection

3.1 Sampling frame and timeline

To develop the sample frame, Innovations for Poverty Action (IPA) Bangladesh selected 1,000 rural and peri-urban unions out of 4,500 unions in Bangladesh. We excluded Dhaka district, because of high initial seroprevalence, and three hill districts, because of the logistical difficulties in accessing the region. We also dropped remote coastal districts where population density is low. The final sampling frame of 1000 unions were located in 40 different districts (zillas) (out of 64) and 144 sub-districts (upazilas) (out of 485).

We used a pairwise randomization to select 300 intervention and 300 control unions within the same sub-districts. This randomization procedure, described in detail in Appendix B, was designed to pair unions that were similar in terms of (limited) COVID-19 case data, population size, and population density. Each union consists of roughly 80,000 people, or around 80 villages. In each union, we selected a single village to minimize spillovers. To do so, we identified the largest market and the village within which the market is located and demarcated this territory as the intervention unit (during this scoping process, surveyors were blinded to whether the union was an intervention or control union). Within each village, adults from every household were eligible to participate in the study. Some unions are very small so to avoid spillover effects, we did not select multiple villages from the same union and we ensured that selected villages were at least 2 km away from each other. Treatment and control unions were scattered throughout the country, as shown visually in Figure A1.
The clustered village-level randomization was important for three reasons. First, unlike technologies with primarily private benefits, mask adoption is likely to yield especially large benefits at the community-level. Second, mask adoption by some may influence mask adoption by others because mask-wearing is immediately visible to other members of the community [31]. Third, this design allows us to properly assess the full impact of masks on infections, including preventing transmission of the virus to others. Individual-level randomization would identify only whether masks protect wearers.

Our intervention was designed to last 8 weeks in each village. The intervention started in different villages at different times, rolling out over a 6-week period in 7 waves. There were between 14 and 59 village-pairs grouped in each wave based on geographic proximity and paired control and treatment villages were always included in the same wave. The first wave was rolled out on 17-18 November 2020 and the last wave was rolled out on 5-6 January 2021.

IPA staff travelled to many villages that had low mask uptake in the first five weeks of the study and found that in these villages local leaders were not very engaged in supporting mask promotion. Hence, we retrained mask promotion staff part-way through the intervention to work more closely with local leaders and set specific milestones for that partnership.\(^2\)

The intervention protocol, pre-specified analysis plan, and CONSORT checklist are available at https://osf.io/vzdh6/.

3.2 Outcomes

Our primary outcome was symptomatic seroprevalence for SARS-CoV-2. Our secondary outcomes were prevalence of proper mask-wearing, physical distancing, and symptoms consistent with COVID-19. For COVID-19 symptoms, we used the symptoms that correspond to the WHO case definition of probable COVID-19 given epidemiological risk factors: (a) fever and cough; (b) three or more of the following symptoms (fever, cough, general weakness/fatigue, headache,

\(^2\)The need for continued monitoring and retraining is a core part of our scalable intervention protocol, available here (in the online version of this article).
myalgia, sore throat, coryza, dyspnea, anorexia/nausea/vomiting, diarrhea, altered mental status); or (c) loss of taste or smell. Seropositivity was defined by having detectable IgG antibodies against SARS-CoV-2.

3.3 Intervention Materials and Activities

Our entire intervention was designed to be easily adopted by other NGOs or government agencies and required minimal monitoring. We have made the materials public in multiple languages to ease widespread adoption and replication by other implementers (http://tinyurl.com/maskprotocol).

In focus groups conducted prior to the study, participants said they preferred cloth over surgical masks because they perceived surgical masks to be single-use only and cloth masks to be more durable. Focus group participants also provided feedback on different cloth masks designs and sizes. Both types of masks were manufactured in Bangladesh. The cloth mask had an exterior layer of 100% non-woven polypropylene (70 grams/square meter [gsm]), two interior layers of 60% cotton / 40% polyester interlocking knit (190 gsm), an elastic loop that goes around the head above and below the ears, and a nose bridge. The surgical mask had three layers of 100% non-woven polypropylene (the exterior and interiors were spunbond and the middle layer was meltblown), elastic ear loops, and a nose bridge. The filtration efficiency was 37% (standard deviation [SD] = 6%) for the cloth masks, and 95% (SD = 1%) for the surgical masks (manuscript forthcoming).\(^3\)

The filtration efficiency of the surgical masks after washing them 10 times with bar soap and water was 76% (manuscript forthcoming). Surgical masks were outfitted with a sticker that had a logo of a mask with an outline of the Bangladeshi flag and a phrase in Bengali that noted the mask could be washed and reused. The project cloth masks were produced by Bangladeshi garment factories within 6 weeks after ordering. The relatively large scale of our bulk order allowed us to negotiate

\(^3\)The filtration efficiency test was conducted using a Fluke 985 particle counter that has a volumetric sampling rate of 2.83 liters per minute. The measurement was taken of particles 0.3–0.5 µm in diameter flowing through the material with a face velocity of 8.5 cm/s. In our internal testing, we found that cloth masks with an external layer made of Pellon 931 polyester fusible interface ironed onto interlocking knit with a middle layer of interlocking knit could achieve a 60% filtration efficiency. Upon discussions with the manufacturers, we learned that those materials could not be procured. Using materials that were available, the highest filtration efficiency possible was 37%.
mask prices of $0.50 per cloth mask and $0.13 per surgical mask ($0.06 of which was the cost of a sticker reminding people they could wash and reuse the surgical mask). While surgical masks can break down into microplastics that can enter the environment if disposed of improperly, analysis of waste generated in Bangladesh’s first lockdown finds that the mass of surgical mask waste was one-third that of polyethylene bags, which also break down into macro- and micro-plastics [32, 33, 34].

To emphasize the importance of mask-wearing, we prepared a brief video of notable public figures discussing why, how, and when to wear a mask. The video was shown to each household during the mask distribution visit and featured the Honorable Prime Minister of Bangladesh Sheikh Hasina, the head of the Imam Training Academy, and the national cricket star Shakib Al Hasan. During the distribution visit, households also received a brochure based on WHO materials depicting proper mask-wearing.

We implemented a basic set of interventions in all treatment villages, and cross-randomize additional intervention elements in randomly chosen subsets of treatment villages to investigate whether those have any additional impact on mask-wearing. The basic intervention package consists of five main elements:

1. One-time mask distribution and promotion at households.

2. Mask distribution in markets on 3-6 days per week.

3. Mask distribution at mosques on three Fridays during the first four weeks of the intervention.

4. Mask promotion in public spaces and markets where non-mask wearers were encouraged to wear masks (weekly or biweekly).

5. Role-modeling and advocacy by local leaders, including imams discussing the importance of mask-wearing at Friday prayers using a scripted speech provided by the research team.

Participants, mask promoters, and mask surveillance staff were not blinded as intervention materials were clearly visible. The pre-specified analyses and sample exclusions were made by
analysts blinded to the treatment assignment.4

3.4 Cross-randomization of behavior change communication and incentives

Village-level Cross-randomizations Within the intervention arm, we cross-randomized villages to four village-level and four household-level treatments to test the impact of a range of social and behavior change communication strategies on mask-wearing. All intervention villages were assigned to either the treatment or the control group of each of these four randomizations. These village-level randomizations were:

1. Randomization of treated villages to either cloth or surgical masks. The material used to make surgical masks has a higher filtration efficiency than the types of cloth typically used to make cloth masks, but cloth masks can be sewn without specialized equipment and can have less leakage because they fit the face more closely. However, surgical masks are substantially less expensive.

2. Randomization of treated villages to no incentive, non-monetary incentive, or monetary incentive of 190 USD given to the village leader for a project benefitting the public. We announced that the monetary reward or the certificate would be awarded if village-level mask-wearing among adults exceeded 75\% 8-weeks after the intervention started.

3. Randomization of treated villages to public commitment (providing households signage and asking them to place signage on doors that declares they are a mask-wearing household), or not. The signage was meant to encourage formation of social norms through public signalling.

4. Randomization of treated villages to 0\% or 100\% of households receiving twice-weekly text message reminders about the importance of mask-wearing.

4In all villages, we also randomized the color of the masks distributed to households. This can be considered a part of our core intervention, since it is part of how household distribution was implemented.
Household-level Cross-randomizations We had three household-level cross-randomizations. In any single village, only one of these household randomizations was operative. As our data collection protocols relied on passive observation at the village-level, we could not record the mask-wearing behavior of individual households. To infer the effect of the household-level treatments we therefore varied the color of the masks distributed to the household based on its cross-randomization status and had surveillance staff record the mask color of observed individuals. In surgical mask villages, a household received blue or green and promoters distributed and equal number of blue and green masks in public settings. In cloth mask villages, households received violet or red masks and promoters distributed blue masks in public settings. To avoid conflating the effect of the household-specific treatment with the effect of the mask color, we randomized which color corresponded to which treatment status across villages (this way a specific color was not fully coincident with a specific treatment). The household-level randomizations, described in further detail in Appendix C and visualized in A2, were:

1. Households were randomized to receive messages emphasizing either altruism or self-protection.

2. Households were randomized to receive twice-weekly text reminders or not. As mentioned above, the text message saturation was randomly varied to 0%, 50%, or 100% of all villagers receiving texts, and in the 50% villages, the specific households that received the texts was also random.

3. Households were randomized to making a verbal commitment to be a mask-wearing household (all adults in the household promise to wear a mask when they are outside and around other people) or not. This experiment was conducted in a third set of villages where there was no public signage commitment.

Conceptual Basis for Tested Social and Behavior Change Communication We selected intervention elements that had a reasonable chance of persuading rural Bangladeshis to wear masks by consulting literature in public health, development and behavioral economics, and marketing to
identify some of the most promising strategies. An extensive literature identifies price and access as key deterrents to the adoption of welfare-improving products, and especially of technologies that produce positive health externalities, such as face-masks [35, 17]. Household distribution of free face-masks therefore formed the core part of our strategy. Inspired by large literature in marketing and economics on the role of opinion leaders in new product diffusion, we additionally emphasized a partnership with community leaders in mask distribution [21, 36].

The additional village- and household-level treatment we experimented with were also motivated by insights from marketing, public health, development, and behavioral economics. For example, masks are a visible good where social norms are expected to be important, so we consulted the literature documenting peer effects in product adoption [37, 38, 39, 40]. We experimented with incentives because it is unclear whether extrinsic rewards crowd out intrinsic motivation [41, 42, 43]. We test whether soft commitment devices encourage targets to follow through with actual behaviour change [44, 45], whether public displays can promote social norms [23], whether an altruistic framing inspires people more or less than self-interest [46], whether social image concerns and signaling can lead to higher compliance [47, 18], and whether regular reminders are a useful tool to ensure adoption [19].

3.5 Surveillance Strategies

Mask-wearing was assessed through direct observation in public locations including mosques, markets, the main entrance roads to villages, and tea stalls. Surveillance staff noted whether adults were wearing any mask or face covering, whether the mask was one distributed by our project (and if so, the color), and whether the mask was worn over both the mouth and nose. The mask distribution and promotion was conducted by the Bangladeshi NGO GreenVoice, a grassroots organization with a network of volunteers across the country. Household surveys and surveillance were performed independently by Innovations for Poverty Action (IPA). To minimize the likelihood that village residents would perceive that their mask-wearing behavior was being observed, surveillance staff were separate from mask promoters and wore no identifying apparel while passively
observing mask-wearing and physical distancing practices in the communities. The Bangladesh Directorate General of Health Services under the Ministry of Health, North-South University in Dhaka, and Aspire to Innovate (a2i), an information and data-focused organization within the Bangladesh government, partnered in the study design and discussions and reviewed protocols.

Mask-wearing and physical distancing were measured through direct observation. Surveillance staff were distinct from intervention implementation staff and conducted surveillance in paired intervention and control villages. They recorded the mask-wearing behavior of all of the adults they were able to observe during surveillance periods; observations were not limited to adults from enrolled households. We defined proper mask-wearing as wearing either a project mask or an alternative face-covering over the mouth and nose. Surveillance staff observed a single individual and recorded that person as practicing physical distancing if s/he was at least one arm’s length away from all other people. This is consistent with the WHO guideline that defines physical distancing as one meter of separation. Surveillance was conducted using a standard protocol that instructed staff to spend one hour at each of the following high-traffic locations in the village: market, restaurant entrances, main road, tea stalls, and mosque, changing the location and timing to record the mask-wearing and physical distancing practices of as many individuals as possible. While SARS-CoV-2 transmission is more likely in indoor locations with limited ventilation than outside, rural Bangladeshi villages have few non-residential spaces where people gather, so observations were conducted outside except at the mosque, where surveillance was conducted inside.

The same staff member conducted surveillance at paired intervention and control villages at baseline and then once per week on weeks 1, 2, 4, 6, 8, and 10 after the intervention. The 10-week observation was conducted two weeks after all intervention activities had ceased. We also collected longer-term data on mask-wearing behavior 20-27 weeks after the launch of interventions. Each

5 After 5 weeks of surveillance in wave 1, it was clarified that surveillance staff should only record mask-wearing behavior of people who appear to be 18 years or older. Prior to this, some surveyors included children (especially older children) in their counts. Since the same staff member conducted surveillance in paired intervention and control villages, this change affected the treatment and control groups equally.

6 https://www.who.int/westernpacific/emergencies/covid-19/information/physical-distancing. Accessed January, 30 2021. Note that compliance with WHO guidelines does not require zero physical distancing; for example, members of the same household need not remain physically distant (and presumably would not change their distancing behavior as a result of our intervention).
village was observed on two alternating days of the week. Across all villages, observations took place on all seven days of the week, with observation in 150 villages occurring on Friday to oversample days when mosques were most crowded. Observations generally took place from 9 am to 7 pm. In 10 unions we conducted audits to assess the validity of surveillance data by pairing one monitoring officer with surveillance staff; in all cases the difference in their results was <10%, our pre-determined threshold.

3.6 Symptomatic SARS-CoV-2 Testing

Symptom reporting The owner of the household’s primary phone completed surveys by phone or in-person at weeks 5 and 9 after the start of the intervention. They were asked to report symptoms experienced by any household member that occurred in the previous week and over the previous month. COVID-like symptoms were defined by whether they were consistent with the WHO COVID-19 case definition for suspected or probable cases with an epidemiological link [48].

Blood sample collection We collected capillary blood samples from participants who reported COVID-like symptoms during the study period. For the purposes of blood collection, endline was defined as 10-12 weeks from the start of the intervention. Blood samples were obtained by puncture with a 20-Gauge safety lancet to the third or fourth digit. 500 microliters of blood were collected into Microtainer® capillary blood collection serum separator tubes (BD, Franklin Lakes, NJ). Blood samples were transported on ice and stored at -20°C until testing.

SARS-CoV-2 testing Blood samples were tested for the presence of IgG antibodies against SARS-CoV-2 using the SCoV-2 Detect™ IgG ELISA kit (InBios, Seattle, Washington). This assay detects IgG antibodies against the spike protein subunit (S1) of SARS-CoV-2. The assays were performed according to the manufacturer’s instructions. Briefly, serum samples were diluted 1:100 with sample dilution buffer. 50 microliters of diluted specimens were added to the SCoV-2 antigen-coated microtiter strip plates. After one hour of incubation at 37°C, the plate was washed...
six times with wash buffer, and conjugate solution was added to each well. The plate was incubated for another 30 minutes at 37°C and washed six times with wash buffer. 75 microliters of liquid TMB substrate were added to all wells followed by 20 minutes of incubation in the dark at room temperature before the reaction was stopped. The absorbance was read on a microplate reader at 450nm (GloMax® Microplate Reader, Promega Corporation, Madison, WI). After calibration according to positive, negative, and cut-off controls, the immunological status ratio (ISR) was calculated as the ratio of optical density divided by the cut-off value. Samples were considered positive if the ISR value was determined to be at least 1.1. Samples with an ISR value 0.9 or below were considered negative. Samples with equivocal ISR values were retested in duplicate, and resulting ISR values were averaged. Individuals were coded as symptomatic seropositive if they reported symptoms consistent with the WHO COVID-19 case definition, their blood was collected, and the antibody test was positive.

3.7 Piloting Interventions

IPA implemented two pilots: Pilot 1 from July 22-31 and Pilot 2 from August 13-26, 2020. The objective of the pilots was to mimic some of the major aspects of the main experiment to identify implementation challenges. Each pilot was conducted in 10 unions that were not part of the main study area. We used the difference between the pilots to better understand which elements of our full intervention were essential. We also conducted focus group discussions and in-depth interviews with village residents, community leaders, religious leaders, and political leaders to elicit opinions on how to maximize the effectiveness of the intervention.

4 Results

Our analysis followed our preregistered analysis plan (https://osf.io/vzdh6/) except where indicated. Our primary outcome is symptomatic seroprevalence for SARS-CoV-2. We also analyzed the impact of our intervention on mask-wearing, physical distancing, and COVID-like symptoms.
No adverse events were reported during the study period.

4.1 Sample Selection

Table A1 summarizes sample selection for our analysis. We began with 342,126 individuals at baseline. We were able to collect follow-up symptom data (whether symptomatic or not) from 335,382 (98%). Of these, 27,166 (7.9%) reported COVID-like symptoms during the 8-weeks intervention in their village. We attempted to collect blood samples from all symptomatic individuals. Of these, 10,952 (40.3%) consented to have blood collected, including 40.8% in the treatment group and 39.9% in the control group (the difference in consent rates is not statistically significant, $p = 0.24$). We show in Table A2 that consent rates are about 40% across all demographic groups in both treatment and control villages.

As such, the sample for which we have symptom data is much larger than the sample for whom we have serology data. We tested 9,977 (91.1%) of the collected blood samples to determine seroprevalence for SARS-CoV-2 IgG antibodies. Untested blood either lacked sufficient quantity for our test or could not be matched to individuals from our sample because of a barcode scanning error. In our primary outcome analysis, we drop individuals for whom we are missing symptom data or who did not consent to blood spot collection. For the analyses where symptomatic status is the outcome, we report results using both this smaller sample, as well as the larger sample of all individuals for whom we collected symptom data.

4.2 Balance

While our stratification procedure should have achieved balance with respect to variables observed at the time of randomization, given the many possible opportunities for errors in implementation, we nonetheless confirm that our control and treatment villages resemble each other at baseline with respect to key variables of interest. This assessment was not preregistered. For each characteristic, we report the results of a t-test comparing the two groups. This t-test parallels our main specifications.
In Table A3 we present balance test results for our mask-wearing specification. In our main specification, this is a regression of mask-wearing on a constant, an intervention indicator, and indicators for each control-intervention pair with analytic weights proportional to the number of adults recorded in the baseline household survey as well as heteroskedasticity robust standard errors. For the balance tests, we replace the dependent variable with several variables measured at baseline, including the number of households, baseline mask-wearing (assessed via observation), and baseline COVID-like symptoms. Of the four variables we tested, only one was significantly different between the control and intervention groups at the 10% level and the F-test failed to reject balance.

In Table 1, we report results from analogous balance tests based on the specification used for our primary biological outcome. We replace the dependent variable (symptomatic seroprevalence) with baseline covariates of interest to assess balance. We also report a bottom-line F-test which again fails to reject balance. In Appendix E, we discuss a few small imbalances we uncovered with respect to other attributes, such as household size. These are extremely small in magnitude (e.g. households are 0.02 members larger in the treatment group) but unlikely to have arisen because of chance. In the Appendix, we discuss likely mechanisms (such as households being more likely to report teenagers as over 18 in order to receive masks) and we report further robustness checks, such as dropping individuals under 30.

4.3 Primary Analyses

Mask-Wearing The first column in the top panel of Table 2 reports coefficients from a regression of mask-wearing on a constant, an intervention indicator (based on the assigned groups), baseline mask-wearing, the baseline symptom rate, and indicators for each control-intervention pair. More details of our statistical methods and standard error construction are available in Appendix D. Mask-wearing was 13.3% in control villages and 42.3% in treatment villages. Our regression adjusted estimate is an increase of 28.8 percentage points (95% CI: 0.27, 0.31). If we omit all covariates (except fixed effects for the strata within which we randomized), our point-estimate is
Table 1: Balance Tests (Individual-Level)

	Baseline Symptomatic Seroprevalence	Baseline WHO-Defined COVID-19 Symptoms	Baseline Mask-Wearing Rate
Summary Statistics			
Intervention Rate	0.00002	0.0247	0.1186
Control Rate	0.00003	0.0234	0.1200
Balance Tests			
Intervention Coefficient	-0.00000 (0.00001)	0.0009 (0.0011)	0.0010 (0.0039)
N individuals	307,106	307,106	307,106
N villages	572	572	572
F			0.80
$Joint-Test Prob > F$			0.8492

Standard errors are in parentheses.

*** Significant at the 1 percent level. ** Significant at the 5 percent level. * Significant at the 10 percent level.

The baseline symptomatic seroprevalence is defined using 20 percent random sample of all the baseline blood draws. All individuals without a baseline blood sample have a symptomatic seroprevalence value of 0.

We classify a WHO-defined COVID-19 symptoms as any of the following
(a) fever and cough;
(b) three or more of the following symptoms (fever, cough, general weakness/fatigue, headache, myalgia, sore throat, coryza, dyspnea, anorexia/nausea/vomiting, diarrhea, altered mental status);
(c) loss of taste or smell.

The baseline rate of mask-wearing was measured through observation over a 1-week period, defined as the rate of those observed who wear a mask or face covering that covers the nose and mouth.

The sample excludes 4 villages because of lack of government cooperation to perform the intervention. The analysis excludes 11 villages and their village-pairs in the full sample because we did not observe them in the baseline period prior to the intervention, and 1 village and its pair for lack of observational data throughout the intervention period. The analysis includes all people surveyed in the baseline household visits, excluding individuals that we did not collect midline or endline symptoms for, symptomatic individuals that we did not collect blood from, and individuals that we drew blood from but did not test their blood.
identical (Table A4). Considering only surveillance conducted when no mask distribution was taking place, mask-wearing increased 27.9 percentage points, from 13.4% in control villages to 41.3% in intervention villages (regression adjusted estimate: 0.28, 95% CI: 0.26, 0.30). We also run our analysis separately in mosques, markets, and other locations such as tea stalls, the entrance of restaurants, and the main road in the village. The increase in mask-wearing was largest in mosques (37.0 percentage points), while in all other locations it was 25-29 percentage points.

Physical Distancing Contrary to concerns that mask-wearing would promote risk compensation, we did not find evidence that our intervention decreases distancing behavior. In the second panel of Table A4, we report identical specifications to the first panel, but with physical distancing as the dependent variable. In control villages 24.1% of observed individuals practiced physical distancing compared to 29.2% in intervention villages, an increase of 5.1% (a regression adjusted estimate of 0.05 [95% CI: 0.04,0.06]) Evidently, protective behaviors like mask-wearing and physical-distancing are complements rather than substitutes: endorsing mask-wearing and informing people about its importance encouraged rural Bangladeshis to take the pandemic more seriously and engage in another form of self-protection. The increases in physical distancing were similar in cloth and surgical mask villages.

While we find increases in physical distancing of 5.1 percentage points pooling across all locations, there was substantial heterogeneity across locations. In markets, individuals become substantially more likely to physically distance (7.4 percentage points). There was no physical distancing practiced in any mosque, in either treatment or control villages, probably as a result of the strong religious norm of standing shoulder-to-shoulder when praying.

It is possible that physical distancing increases because our intervention results in fewer total people being present in public spaces. If socializing increased in the intervention group, but only among risk-conscious people, then we might see physical distancing increase despite people engaging in overall riskier behavior. To assess this, we consider as an alternative outcome the total number of people observed at public locations. While surveillance staff were not able to count
Table 2: Mask-Wearing and Physical Distancing, Controlling for Baseline Variables

	Full	No Active Promotion	Mosques	Markets	Other Locations	Surgical Mask Villages	Cloth Mask Villages
Proper Mask-Wearing							
Intervention Coefficient	0.288***	0.279***	0.370***	0.287***	0.251***	0.301***	0.256***
	(0.012)	(0.011)	(0.016)	(0.012)	(0.012)	(0.015)	(0.019)
Physical Distancing							
Intervention Coefficient	0.051***	0.056***	0.000	0.074***	0.068***	0.054***	0.044***
	(0.005)	(0.005)	(0.000)	(0.007)	(0.006)	(0.006)	(0.011)
N villages	572	572	570	570	568	380	192

Standard errors are in parentheses.

*** Significant at the 1 percent level. ** Significant at the 5 percent level. * Significant at the 10 percent level.

All regressions also include an indicator for each control-intervention pair. The regressions include controls for baseline rates of physical distancing and baseline symptom rates.

Baseline symptom rate is defined as the rate of surveyed individuals in a village who report symptoms coinciding with the WHO definition of a probable COVID-19 case. This is defined as any of the following:

(a) fever and cough;
(b) any three of the following (fever, cough, general weakness/fatigue, headache, muscle aches, sore throat, coryza [nasal congestion or runny nose], dyspnoea [shortness of breath or difficulty breathing], anorexia [loss of appetite]/nausea/vomiting, diarrhea, altered mental status;
(c) anosmia [loss of smell] and ageusia [loss of taste].

We assume that (1) all reported symptoms were acute onset, (2) all people live or work in an area with high risk of transmission of virus and (3) all people have been a contact of a probable or confirmed case of COVID-19 or are linked to a COVID-19 cluster.

“Other Locations” include tea stalls, at the entrance of the restaurant as patrons enter, and the main road to enter the village.

“Surgical Villages” refer to all treatment villages which received surgical masks as part of the intervention, and their control pairs. “Cloth Villages” refer to all treatment villages which received cloth masks as part of the intervention, and their control pairs. These samples include surveillance from all available locations, equivalent to the to the column labeled “Full”, but run separately for each subgroup.

The sample excludes 4 villages because of lack of government cooperation to perform the intervention. The analysis excludes a remaining 12 villages and their village-pairs in the full sample, 13 villages and their pairs in the mosque and market sub-samples, and 14 villages and their pairs in the other location sub-sample because we did not observe them in the baseline period prior to the intervention. Of the 572 villages included in the “Full” sample, 380 of them are treatment villages and their control pairs which received surgical masks as part of the intervention, and the remaining 192 are treatment villages and their control pairs which received cloth masks.
everyone in busy public areas, the total number of people they were able to observe gives some indication of the crowd size. We find no difference in the number of people observed in public areas between the treatment and control groups (Table A5).

Symptomatic Seroprevalence Among the 335,382 participants who completed symptom surveys, 27,166 (8.1%) reported experiencing COVID-like illnesses during the study period. More participants in the control villages reported incident COVID-like illnesses (n=13,893, 8.6%) compared with participants in the intervention villages (n=13,273, 7.6%). Over one-third (40.3%) of symptomatic participants agreed to blood collection. Omitting symptomatic participants who did not consent to blood collection, symptomatic seroprevalence was 0.76% in control villages and 0.68% in the intervention villages. Because these numbers omit non-consenters, it is likely that the true rates of symptomatic seroprevalence are substantially higher (perhaps by 2.5 times, if non-consenters have similar seroprevalence to consenters).

In Figure 1 (and Tables A6 and A7), we report results from a regression of symptomatic seroprevalence on a treatment indicator, clustering at the village level and controlling for fixed effects for each pair of control-treatment villages. In the tables, we report results with and without additional controls for baseline symptoms and mask-wearing rates. In Table A6, we report results from our pre-specified linear model and in Table A7 we report results from a generalized linear model with a Poisson family and log-link function. In the text, we discuss the latter results (which are in units of relative risk); the linear model implies results of an almost identical magnitude.

The results in all specifications are the same: we estimate a roughly 10% decline in symptomatic seroprevalence in the treatment group (adjusted prevalence ratio (aPR) = 0.91 [0.82, 1.00]) for a 29 percentage point increase in mask wearing over 8 weeks.7 In the second panel of Figure 1, we split our results by mask type (surgical vs. cloth). We find clear evidence that surgical masks lead to a relative reduction in symptomatic seroprevalence of 11.2% (aPR = 0.89 [0.78,1.00]; con-

7To check robustness to the type of clustering, in panels A3a and A3b of Figure A3, we show the histogram of effect sizes arising from “randomization inference” if we randomly reassign treatment within each pair of villages and then estimate our primary specification. When doing so, we find that our estimated effect size is smaller than 8.1% of the simulated estimates with controls and 8.4% of the simulated estimates without controls (these are the corresponding p-values of the randomization inference t-test).
control prevalence = 0.80%; treatment prevalence = 0.71%). For cloth masks, we find an imprecise zero, although the confidence interval includes the point estimate for surgical masks (aPR = 0.95 [0.79, 1.11]; control prevalence 0.67%; treatment prevalence 0.62%).

Not all symptomatic seroprevalence is necessarily a result of infections occurring during our intervention; individuals may have pre-existing infections and then become symptomatic (perhaps caused by an infection other than SARS-CoV-2). In Appendix F, we show that if either: a) masks have the same proportional impact on COVID and non-COVID symptoms or b) all symptomatic seropositivity is caused by infections during our intervention, then the percentage decline in symptomatic seroprevalence will exactly equal the decline in symptomatic seroconversions. More generally, the relationship between the two quantities depends on whether masks have a greater impact on COVID or non-COVID symptoms, as well as the proportion of symptomatic seropositivity that is a result of infections pre-existing at baseline.

Figure 1: Intervention Effect on Symptomatic Seroprevalence

(a) Intervention Effect on Symptomatic Seroprevalence

| Comparison Villages (n=146,783 people) | 0.76% |
| Intervention Villages (n=160,323 people) | 0.69% 9.3% relative reduction; p = 0.043 |

(b) Intervention Effect on Symptomatic Seroprevalence by Mask Type

Comparison Villages (n=146,783 people)	0.76%
Cloth Mask Villages (n=54,122 people)	0.74% 5.0% relative reduction; p = 0.540
Surgical Mask Villages (n=106,201 people)	0.67% 11.2% relative reduction; p = 0.043
WHO COVID-19 Symptoms In Figure 2 and Tables A9 and A8, we report results from the same specifications with WHO-defined COVID-19 symptomatic status as the outcome.

We find clear evidence that the intervention reduced symptoms: we estimate a reduction of 11.9% (adjusted prevalence ratio 0.88 [0.83,0.93]; control group prevalence = 8.59%; treatment group prevalence = 7.60%). Additionally, when we look separately by cloth and surgical masks, we find that the intervention led to a reduction in COVID-like symptoms under either mask type ($p = 0.000$ for surgical, $p = 0.048$ for cloth), but the effect size in surgical mask villages was 30-80% larger depending on the specification. In Table A10, we run the same specifications using the smaller sample used in our symptomatic seroprevalence regression (i.e. those who consented to give blood). In this sample we continue to find an effect overall and an effect for surgical masks, but see no effect for cloth masks.

![Figure 2: Intervention Effect on WHO-Defined COVID-19 Symptoms](image)

4.4 Mechanisms for Increasing Mask-Wearing

Our intervention combined multiple distinct elements: we provided people with free masks; we provided information about why mask-wearing is important; we had mask promoters reinforce the importance of mask-wearing by stopping individuals in public places who were not wearing...
masks, reminding them about the importance of mask-wearing, and giving them a mask if they did not have one; we partnered with local leaders to encourage mask-wearing at mosques and markets; and in some villages we provided a variety of reminders and commitment devices as well as incentives for village leaders. In Appendix G, we attempt to disentangle the role played by these different elements in encouraging mask use.

We find no evidence that any of our village-level or household-level treatments, other than mask color, impacted mask-wearing. For mask-color, we see marginally significant differences, small in magnitude. Green and blue masks were distributed in equal numbers in surgical mask villages, but blue masks were observed for 17.3% of observations in those villages while green masks were observed for 15.6% (adjusted percentage point difference = 0.03, [-0.00,0.06]); likewise, purple and red masks were distributed in equal numbers in cloth masks villages, but purple masks were observed for 6.0% of observations and red masks for 6.8% (adjusted percentage point difference = -0.02, [-0.04,-0.00]).

Text message reminders, incentives for village-leaders, or explicit commitment signals explain little of the observed increase in mask-wearing. Compared to self-protection messaging alone, altruistic messaging had no greater impact on mask-wearing, and twice-weekly text messages and a verbal commitment had no significant effects. We saw no significant difference in mask-wearing in the village-level randomization of surgical vs. cloth masks.

We do find non-experimental evidence that in-person mask promotion and reinforcement is a crucial part of our intervention. Our first pilot contained all elements of our intervention except in-person reinforcement. Our second pilot (one week later) and the full intervention (several months later) added in-person reinforcement. Under the assumption that treatment effects would otherwise be constant over time, we find that mask promotion accounts for 19.2 percentage points of our effect (regression adjusted estimate 0.19 [-0.33,-0.05]), or 65% of the total effect size. In Table A11, we show that this difference is statistically significant whether or not we include baseline controls. This was not a pre-specified analysis.

8The proportion of colored masks observed is calculated over all observed individuals.
4.5 Persistence of Effects over Time

In Table A12, we report estimates of our primary specification separately by week of surveillance. Week 10 is especially interesting, as it was two weeks after intervention activities ceased. This analysis was not preregistered.

We find no evidence that the impact of the intervention attenuates over the 10 weeks. In the 414 villages for which we have 10 weeks of surveillance, the point estimates are slightly smaller in week 10 (a 23.3 percentage point increase) than week 1 (30.4 percentage points), although this difference is not statistically significant. This is consistent with social norms around mask-wearing taking hold, where adoption by some in the community has a demonstration effect that encourages subsequent adoption by others. If mask-wearing was driven by a “novelty factor” associated with our mask promotion campaign, we would have instead expected some attenuation over the course of the 8 weeks of intervention. The point estimates of the impact of intervention by week for the panel of 414 villages for which we have data in all weeks are plotted in Figure A4.

We additionally conducted a follow-up surveillance 5 months after the start of the intervention (20-27 weeks, depending on the wave). Mask-wearing had declined to 14.1% in the control group and 22.4% in the intervention group (a regression adjusted difference of 0.10 [0.08,0.13]).

4.6 Subgroup Analyses

We also considered how the impact of our intervention differed between subgroups.

Mask-Wearing by Age and Gender In Table A13, we analyze the impact of our intervention on mask-wearing and physical distancing separately by gender, as well as by whether baseline mask-wearing was above or below the median. Gender was recorded in 65% of observations; age was not recorded and thus we do not conduct an age-stratified assessment. In the gender results, we drop surveillance observations for mosques because in Bangladesh it is rare for women to attend mosque (hence the lower average increases reported in this table). We found that the intervention increased mask-wearing by 27.1 percentage points for men ([0.25,0.30]) and 22.5
percentage points for women ([0.20,0.25]). Although we do not have the variation to test this, the
gendered difference in effect size may be because our mask promoters were predominantly men.
We intentionally hired predominantly men because most of the interactions that our staff would
have in pubic places would be men. Men constituted 88.2% of all observed adults.

We also found a larger increase in mask-wearing in villages with below-median baseline mask-
wearing (where mask-wearing increased from 8.7% to 42.2% at endline) than those with above-
median baseline mask-wearing (where the increase was from 17.5% to 42.4%).

Symptomatic Seroprevalence by Age In Figure 3 (and in Tables A14, A15, and A16), we report
results from our primary specification separately by age for villages with surgical masks. Table
A14 reports our preregistered specification, a linear model run separately for each decade of age,
pooling cloth and surgical villages. Table A15 synthesizes these results, collapsing by categories
of <40, 40-50, 50-60 and 60+, and Table A16 reports the same results as a relative risk reduction,
separately for cloth and surgical masks. We find that the impact of the intervention on symptomatic
seroprevalence is concentrated among individuals over age 50, especially in villages randomized to
surgical masks, which appear to more effectively prevent COVID-19. In surgical mask villages, we
observe a 23.0% decline in symptomatic seroprevalence among individuals aged 50-60 (adjusted
prevalence ratio of 0.77 [0.59,0.95]) and a 34.7% decline among individuals aged 60+ ($p = 0.001$
(adjusted prevalence ratio of 0.65 [0.46, 0.85]).

WHO COVID-19 Symptoms by Age In Tables A17 and A18 (the latter our preregistered speci-
fication), we perform the same analysis using the larger sample of individuals who reported symp-
tom information. In this sample, we continue to find larger effects at older ages, although the
differences are not as stark as for the symptomatic seroprevalence outcome. In Table A19, we
show that the age gradient is steeper for surgical masks.

Additional Preregistered Specifications In Appendix H, we discuss additional preregistered
specifications not reported in the text, either because they were severely underpowered given the
Figure 3: Effect on Symptomatic Seroprevalence by Age Groups, Surgical Masks Only

(a) Above 60 Years Old

(b) 50-60 Years Old

(c) 40-50 Years Old

(d) Younger than 40 Years Old

available data or because data on required variables was unavailable.

4.7 Intervention Cost and Benefit Estimates

In Appendix I, we assess the costs of implementing our intervention relative to the health benefits, specifically focusing on our ongoing efforts to implement the intervention at scale in Bangladesh. We consider a range of possible estimates for excess deaths from COVID-19 from May 1, 2021 - September 1, 2021, and we assume that our age-specific impacts on symptomatic seroprevalence will lead to proportional to reductions in mortality. We estimate that a scaled version of our intervention being implemented in Bangladesh will cost about $1.50 per person, and between $10K and $52K per life saved, depending which estimate we use for excess deaths.

4.8 Polling and Policy-Maker Priors

To assess how our findings compared to the priors of relevant policy makers, we polled participants during presentations to the World Health Organization, the World Bank, and the National Council
of Applied Economic Research in Delhi, India. In total, more than 100 audience members with expertise and specific interest in public health and mask-wearing were surveyed and asked to make predictions about the impact of our various interventions on mask-wearing and physical distancing, just before we showed them our empirical results (at the time, our biological outcomes were unavailable).

There are three main takeaways from this polling exercise: first, only a tiny fraction of policymakers correctly predicted the impact of our core intervention on mask-wearing and physical distancing. Second, policy maker predictions varied widely, both for effects of the intervention on mask-wearing and physical distancing. Third, policy-makers systematically underestimated the overall impact of our intervention and especially the impact of in-person reinforcement on mask-wearing.

When asked if they thought the intervention would increase mask-wearing by 5, 10, 20, 30, or 40 percentage points, only 21% of respondents correctly predicted that the intervention increased mask-wearing by 30 percentage points (about what we would expect if they guessed randomly). The expected value of the predicted increase in mask-wearing was 22 percentage points whether we described the intervention with or without mask promotion included. The difference in mask-wearing observed in our two pilot studies suggests that in-person reinforcement increased mask-wearing by 18 percentage points. In other words, policy-makers makers believed that in-person reinforcement would have no additional impact, despite our piloting suggesting it is the single most important element of our intervention. With regard to behavioral adjustments, 64% of respondents predicted that physical distancing would either decrease or remain unchanged as a result of the mask-promotion interventions, when in fact, it increased.

Policy-makers consistently believed that our cross-randomizations would increase mask-wearing, when in fact, we find that none of them had a significant effect (often with fairly precise zeros). 68% of respondents believed that text messages would help (they didn’t), 62% of respondents believed that incentives for village-leaders would help (they didn’t), and 77% of respondents believed that verbal commitments or commitments made using signs on one’s door would increase
mask-wearing (they didn’t). More details from our polling exercise are provided in Appendix J.

5 Discussion

We present results from a cluster-randomized controlled trial of a scalable intervention designed to increase mask-wearing and reduce cases of COVID-19. Our estimates suggest that mask-wearing increased by 28.8 percentage points, corresponding to an estimated 51,347 additional adults wearing masks in intervention villages, and this effect was persistent even after active mask promotion was discontinued. The intervention led to a 9.3% reduction in symptomatic SARS-CoV-2 seroprevalence (which corresponds to a 103 fewer symptomatic seropositives) and an 11.9% reduction in the prevalence of COVID-like symptoms, corresponding to 1,587 fewer people reporting these symptoms. The effects were substantially larger (and more precisely estimated) in communities where we distributed surgical masks, consistent with their greater filtration efficiency measured in the laboratory (manuscript forthcoming). In villages randomized to receive surgical masks, the relative reduction in symptomatic seroprevalence was 11% overall, 23% among individuals aged 50-60, and 35% among those over 60.

We found clear evidence that surgical masks are effective in reducing symptomatic seroprevalence of SARS-CoV-2; while cloth masks clearly reduce symptoms, we cannot reject that they have zero or only a small impact on symptomatic SARS-CoV-2 infections (perhaps reducing symptoms of other respiratory diseases). Additionally, we found evidence that surgical masks were no less likely to be adopted than cloth masks (perhaps slightly more likely). Thus, surgical masks have higher filtration efficiency, are cheaper, are consistently worn, and are better supported by our evidence as tools to reduce COVID-19.

Our results should not be taken to imply that masks can prevent only 10% of COVID-19 cases, let alone 10% of COVID-19 mortality. Our intervention induced 29 more people out of every 100 to wear masks, with 42% of people wearing masks in total. The total impact with near-

9If we assume that non-consenting symptomatic individuals were seropositive at the same rate as consenting symptomatic individuals, the total estimated symptomatic seropositives prevented would be 258.
universal masking—perhaps achievable with alternative strategies or stricter enforcement—may be several times larger than our 10% estimate. Additionally, the intervention reduced symptomatic seroprevalence more when surgical masks were used, and even more for the highest-risk individuals in our sample (23% for ages 50-60 and 35% for ages 60+). These numbers likely give a better sense of the impact of our intervention on severe morbidity and mortality, since most of the disease burden is borne by the elderly. Where achievable, universal mask adoption is likely to have still larger impacts.

We identified a combination of core intervention elements that were effective in increasing mask-wearing in rural Bangladesh: mask distribution and role-modeling, combined with mask promotion, leads to large and sustained increases in mask use. Results from our pilots suggest that combining mask distribution, role-modeling, and active mask promotion – rather than mask distribution and role-modeling alone – seems critical to achieving the full effect. Our trial results also highlight many factors that appear inessential: we find no evidence that public commitments, village-level incentives, text messages, altruistic messaging, or verbal commitments change mask-wearing behavior. The null results on our cross-randomizations do not necessarily imply that these approaches are not worth trying in other contexts, but they teach us that large increases in mask-wearing are possible without these elements.

Our intervention design is immediately relevant for Bangladesh’s plans for larger-scale distribution of masks across all rural areas. The Bangladesh Directorate-General of health has assigned the study team and the NGO BRAC the responsibility to scale up the strategies that were proven most effective in this trial to reach 81 million people [49]. At the time of writing, we are implementing this program in the 37 districts prioritized by the government based on SARS-CoV-2 test positivity rates. Our results are also relevant for mask dissemination and promotion campaigns planned in other countries and settings which face similar challenges in ensuring mask usage as a result of limited reach and enforcement capacity. The mask promotion model described in this paper was subsequently adopted by governments and other implementers in Pakistan [50], India [51], and Nepal [52]. The intervention package would be feasible to implement in a similar fashion.
in other world regions as well. Beyond face masks, the conceptual underpinning of our strategies
could be applied to encourage the adoption of other health behaviors and technologies, in particu-
lar those easily observable by others outside the household, such as purchase and consumption of
food, alcohol, and tobacco products in stores, restaurants, or other public spaces [53], hand wash-
ing and infection control in healthcare facilities [54, 55, 56], hygiene interventions in childcare and
school settings [57, 58], improved sanitation [31, 59], or vaccination drives [60].

Policymakers and public health experts at the World Health Organization and the World Bank
were polled prior to presentations of the study results regarding mask-wearing. The majority of poll
respondents anticipated that text messages, verbal commitments, and incentives would increase
mask-wearing, when in reality, we estimated fairly precise null effects, and poll respondents be-
lieved that in-person mask promotion would have no additional effect, whereas the evidence from
our pilots suggests it is essential.

While critics of mask mandates suggest that individuals who wear masks are more likely to
engage in high risk behaviors, we found no evidence of risk compensation as a result of increased
mask-wearing. In fact, we found that our intervention increased the likelihood of physical distanc-
ing, presumably because individuals participating in the intervention took the threat of COVID-19
more seriously. These findings should be interpreted with caution, as these behavioral responses
may be especially context-dependent.

The intervention may have influenced rates of COVID-19 by increasing mask use and/or phys-
ical distancing and/or other risk prevention behaviors. Three factors suggest that the direct impact
of masks is the most likely explanation for our documented health impacts. First, while we find
similar impacts of cloth and surgical masks on physical distancing, we find consistently larger im-
pacts of surgical masks on symptomatic seroprevalence, consistent with the evidence that surgical
masks have better filtration efficiency [61]. Second, we see no change in physical distancing in the
highest risk environment in our study, typically crowded indoor mosques. The physical distancing
impacts we do measure were confined to outdoor environments. Third, our study complements
a large body of laboratory and quasi-experimental evidence that masks have a direct effect on
SARS-CoV-2 transmission [1].

Our study has several limitations. The distinct appearance of project-associated masks and elevated mask-wearing in intervention villages made it impossible to blind surveillance staff to study arm assignment (although the staff were not informed of the exact purpose of the study). Even though surveillance staff were plain-clothed and were instructed to remain discreet, community members could have recognized that they were being observed and changed their behavior. Additionally, survey respondents could have changed their likelihood of reporting symptoms in places where mask-wearing was more widespread. We might expect this to bias us towards higher symptomatic rates in treatment areas. While we confirm that blood consent rates are not significantly different in the treatment and control group and are comparable across all demographic groups, we cannot rule out that the composition of consenters differed between the treatment and control groups. The slightly higher point estimate for consent in the treatment group again biases us away from finding an effect, since it raises symptomatic seroprevalence in the treatment group. Although control villages were at least 2 km from intervention villages, adults from control villages may have come to intervention villages to receive masks, reducing the apparent impact of the intervention. While we did not directly assess harms in this study, there could be costs resulting from discomfort with increased mask-wearing, adverse health effects such as dermatitis or headaches, or impaired communication.

Because the study was powered to detect differences in symptomatic seroprevalence, we cannot distinguish whether masks work by making symptoms less severe (through a reduced viral load at transmission) or by reducing new infections. We selected the WHO case definition of COVID-19 for its sensitivity, though its limited specificity may imply that the impact of masks on symptoms comes partly from non-SARS-CoV-2 respiratory infections. If masks reduce COVID-19 by reducing symptoms (for a given number of infections), they could help ease the morbidity and mortality resulting from a given number of SARS-CoV-2 infections. If masks reduce infections, they may reduce the total number of infections over the long-term by buying more time to increase the fraction of the population vaccinated. At the time of the study, the predominant circulating
SARS-CoV-2 strain was B.1.1.7 (alpha)[62]. The impacts of the delta variant on the number of infections prevented by a given mask-wearer are uncertain; the population-wide consequences of infections prevented by a given mask-wearer may be larger given a higher reproduction number.

We estimate that a scaled version of our intervention being implemented in Bangladesh will cost between $10K and $52K per life saved, depending on what fraction of excess deaths are attributable to COVID-19. This is considerably lower than the value of a statistical life in Bangladesh ($205,000, [63]) and under severe outbreaks, is comparable to the most cost-efficient humanitarian programs at scale (e.g. distributing insecticide nets to prevent malaria costs $9,200 per life saved [64]). This estimate includes only mortality impacts but not morbidity, and greater cost-efficiency is possible if our intervention can be streamlined to further isolate the essential components. The vast majority of our costs were the personnel costs for mask-promoters: if we consider only the costs of mask production, these numbers would be 20x lower. Thus, the overall cost to save a life in countries where mask-mandates can be enforced at minimal cost with existing infrastructure may be substantially lower than our estimates above.

In summary, we found that mask distribution, role modeling, and promotion in a LMIC setting increased mask-wearing and physical distancing, leading to lower illness, particularly in older adults. We find stronger support for the use of surgical masks than cloth masks to prevent COVID-19. Whether people with respiratory symptoms should generally wear masks to prevent respiratory virus transmission—including for viruses other than SARS-CoV-2—is an important area for future research. Our findings suggest that such a policy may benefit public health.
References

[1] J. Howard, et al., Proceedings of the National Academy of Sciences **118**, e2014564118 (2021).

[2] N. H. Leung, et al., Nature Medicine **26**, 676 (2020).

[3] C. R. MacIntyre, A. A. Chughtai, The bmj **350**, h694 (2015).

[4] H. Bundgaard, et al., Annals of Internal Medicine **174**, 335 (2021).

[5] C. T. Leffler, et al., American Journal of Tropical Medicine and Hygiene **103**, 2400 (2020).

[6] W. Lyu, G. L. Wehby, Health Affairs **39**, 1419 (2020).

[7] V. Chernozhukov, H. Kasaha, P. Schrimpf, Journal of Econometrics **220**, 23 (2021).

[8] J. Abaluck, et al., SSRN (2020).

[9] A. Mullard, Nature (2020).

[10] Masks4All, What countries require masks in public or recommend masks?, https://masks4all.co/what-countries-require-masks-in-public/ (2020). Accessed on 4 Jan 2021.

[11] T. A. Ghebreyesus, WHO Director-General’s opening remarks at the media briefing on COVID-19 - 5 June 2020 (2020). Publisher: WHO.

[12] L. M. Brosseau, M. Sietsema, CIDRAP: Center for Infectious. Available at: https://publichealth.uic.edu/news-stories/commentarymasks-for-all-for-covid-19-not-based-on-sound-data (2020).

[13] M. A. Johansson, et al., JAMA Network Open **4**, e2035057 (2021).

[14] D. Kahneman, D. T. Miller, Psychological review **93**, 136 (1986).
[15] J. Jordan, E. Yoeli, D. Rand, *PsyArXiv* (2020).

[16] R. B. Cialdini, N. J. Goldstein, *Annu. Rev. Psychol.* **55**, 591 (2004).

[17] Abdul Latif Jameel Poverty Action Lab (J-PAL), The price is wrong: Charging small fees dramatically reduces access to important products for the poor (2011).

[18] A. Karing, *University of California, Berkeley* **2** (2018).

[19] D. Karlan, M. McConnell, S. Mullainathan, J. Zinman, *Management Science* **62**, 3393 (2016).

[20] N. J. Goldstein, R. B. Cialdini, V. Griskevicius, *Journal of consumer Research* **35**, 472 (2008).

[21] G. Miller, A. M. Mobarak, *Marketing Science* **34** (2014).

[22] P. Manchanda, Y. Xie, N. Youn, *Marketing Science* **27**, 961 (2008).

[23] C. Bicchieri, *Norms in the wild: How to diagnose, measure, and change social norms* (Oxford University Press, 2016).

[24] T. R. Bhuiyan, *et al.*, *medRxiv* (2021).

[25] Higher covid-19 seropositivity observed among residents in Dhaka and Chattogram (2021). Publisher: icddr,b. Accessed on 16 Aug 2021.

[26] Coronavirus COVID-19 dashboard, 2020 (2021). Accessed on 16 Aug 2021.

[27] M. V. Murhekar, *et al.*, *International Journal of Infectious Diseases* **108**, 145–155 (2021).

[28] A. Anand, J. Sandefur, A. Subramanian, *CGD Working Paper* **589** (2021).

[29] J. Abaluck, A. M. Mobarak, Getting all Bangladeshis to wear masks (2020). Publisher: WhiteBoard Magazine.

[30] A. Jakubowski, *et al.*, *MedRxiv* (2021).

[31] R. Guiteras, J. Levinsohn, A. M. Mobarak, *Science* **348**, 903 (2015).
[32] O. O. Fadare, E. D. Okoffo, *The Science of the total environment* **737**, 140279 (2020).

[33] Environment and Social Development Organization (EDSO) (Bangladesh), Covid-19 pandemic pushes single use plastic waste outbreak: No management, no protection: High health and environmental risk unveil (2020).

[34] I. M. Steensgaard, *et al.*, *Environmental Pollution* **224**, 289 (2017).

[35] M. Kremer, E. Miguel, *Quarterly Journal of Economics* **122**, 1007 (2007).

[36] P. S. Van Eck, W. Jager, P. S. Leeflang, *Journal of Product Innovation Management* **28**, 187 (2011).

[37] E. Oster, R. Thornton, *Journal of the European Economic Association* **10**, 1263 (2012).

[38] H. Allcott, *Journal of public Economics* **95**, 1082 (2011).

[39] R. Guiteras, J. Levinsohn, A. M. Mobarak (2019).

[40] L. Beaman, A. BenYishay, J. Magruder, A. M. Mobarak, *American Economic Review* **111**, 1918 (2021).

[41] N. Ashraf, O. Bandiera, K. Jack, *Journal of Public Economics* **120**, 1 (2014).

[42] R. Chetty, E. Saez, L. Sandor, *Journal of Economic Perspectives* **28**, 169 (2014).

[43] D. Ariely, A. Bracha, S. Meier, *American Economic Review* **99**, 544 (2009).

[44] G. Bryan, D. Karlan, S. Nelson, *Annual Review of Economics* **2**, 671 (2010).

[45] J. Luoto, D. Levine, J. Albert, S. Luby, *Journal of Development Economics* **110**, 13 (2014).

[46] N. Ashraf, O. Bandiera, E. Davenport, S. S. Lee, *American Economic Review* **110**, 1355 (2020).

[47] L. Bursztyn, R. Jensen, *Annual Review of Economics* **9**, 131 (2017).
[48] World Health Organization, Who covid-19 case definition. Accessed on 15 October 2020.

[49] K. K. Tithila, Brac’s efforts to mask up bangladesh could be game-changer (2021). Publisher: Dhaka Tribune, Bangladesh.

[50] S. Riaz, Punjab authorities kick off ’norm’ campaign to increase mask-wearing (2021). Publisher: Arab News, Pakistan.

[51] S. Bhattacharjee, Covid-19 crisis: India draws lessons from bangladesh’s mask study (2021). Publisher: The Business Standard, India.

[52] Republica, Nepal mask campaign launches with the slogan ’let’s wear masks, let’s save each other’s lives’ (2021). Publisher: Nagarik Network, Nepal.

[53] G. J. Hollands, et al., Cochrane Database of Systematic Reviews (2019).

[54] S. Naikoba, A. Hayward, Journal of hospital infection 47, 173 (2001).

[55] C. Houghton, et al., Cochrane Database of Systematic Reviews (2020).

[56] H. Seo, et al., Journal of Hospital Infection 102, 394 (2019).

[57] D. Biswas, et al., The American journal of tropical medicine and hygiene 101, 1446 (2019).

[58] S. L. McGuinness, et al., Tropical Medicine & International Health 23, 816 (2018).

[59] S. R. Patil, et al., PLOS Medicine 11, e1001709 (2014).

[60] J. S. Solís Arce, S. S. Warren, N. F. Meriggi, et al., Nature Medicine 27 (2021).

[61] L. H. Kwong, et al., ACS nano 15, 5904 (2021).

[62] J. Hadfield, et al., Bioinformatics 34, 4121 (2018).

[63] W. K. Viscusi, C. J. Masterman, Journal of Benefit-Cost Analysis 8, 226 (2017).

[64] GiveWell, 2021 GiveWell cost-effectiveness analysis — version 1. Accessed on 4 Jan 2021.
[65] COVID-19 Projections - Bangladesh (2021).

[66] Morbidity and Mortality Weekly Update (COVID-19) (2021).
6 Conflict of Interest

The funder had no role in the study design, interpretation of results, or decision to publish.

7 Research Ethics Approvals

Our study protocols were reviewed and approved by the Yale University Institutional Review Board (Protocol ID: 2000028482), and by the Bangladesh Medical Research Council National Research Ethics Committee (IRB registration number: 330 26 08 2020). We also received separate administrative approval from the Bangladesh Ministry of Health and Family Welfare. Study protocols and plans were also discussed with public health experts at the International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b) and a2i, an innovation agency within the Bangladesh government (https://a2i.gov.bd/), prior to implementation. We provide ethical justification for our decisions in our online ethics appendix.

8 Funding

This research was financially supported by a grant from GiveWell.org to Innovations for Poverty Action.

9 Acknowledgements

Thanks to Dr. Sabrina Flora, additional director general of the Directorate General of Health Services in Bangladesh, James Snowden and Karen Levy for ongoing support and encouragement. Thanks to WHO Chief Scientist Soumya Swaminathan for her encouragement to conduct this trial. Thanks to Anir Chowdhury, policy advisor to the Bangladesh government, and Dr. Shams El Arifeen of icddr,b for establishing connections with the Bangladesh Directorate General of Health Services in the Ministry of Health and Family Welfare. Thanks to Asif Saleh, Executive Director
of BRAC, Dr. Morseda Chowdhury, Tanjila Mazumder Drishti, Imran Ahmed Chowdhury, and hundreds of BRAC staff for help with implementation, especially in the scale-up phase of this project in Bangladesh. Similarly, Reema Nanavaty, Sahil Hebbar, and other staff of SEWA India, and Captain Usman and his team at the Lahore Commissioners office, the Nepal Rapid Action Taskforce (RAT), Senator Carmen Sanguinetti, Mario Sanchez and Florencia Lopez Boo (IADB) played crucial roles in replication and scale-ups in India, Pakistan, Nepal and Uruguay.

Thanks also to Judy Chevalier, Bhavani Prathap Kasina and Stacey Daves-Ohlin for their advice and assistance, Tom Schmidt for help in shipping, Peter Hull for econometrics consulting, Arnab Bhattacharya of the Tata Institute of Fundamental Research and Shailabh Kumar of Stanford University for conducting filtration efficiency testing of the study masks and evaluation of the impact of washing on surgical mask performance, Yasser Choudhury from Katex for assistance with the surgical masks, Anisur Rahman from Standard Group for assistance with the cloth masks, GreenVoice, and many employees at IPA Bangladesh for assistance throughout this project.

Most importantly, our continued engagement in and scaling up of mask promotion would not be possible without the tireless efforts of the Mask-NORM team, including Neela Saldanha, Heidi McAnnally-Linz, Maha Rehman, Gautam Patel, Jose Pinilla, Janani Rajashekar, Preeti Adhikary, Sharon Barnhardt, Mehrab Ali, Urvashi Wattal, Islamul Haque, Ana Tamayo, Laura Burke, Jeffrey Mosenkis, and many other staff of Yale University and of Innovations for Poverty Action.
A List of Supplementary Materials

Appendix Figures and Tables

Fig. A1. Map of 600 Treatment and Control Unions
Fig. A2. Schematic of Cross-Randomizations
Fig. A3. Randomization Inference on Symptomatic Seroprevalence and Symptoms
Fig. A4. Persistence of Mask-Wearing
Table A1. Endline Blood Sample Collection
Table A2. Endline Blood Collection Consent Rates by Demographic Characteristics
Table A3. Balance Tests (Village-Level)
Table A4. Mask-Wearing and Physical Distancing, without Controlling for Baseline Variables
Table A5. Number of People Observed
Table A6. Symptomatic Seroprevalence
Table A7. Symptomatic Seroprevalence, Expressed in Prevalence Ratios
Table A8. WHO-Defined COVID-19 Symptoms, Expressed in Prevalence Ratios
Table A9. WHO-defined COVID-19 Symptoms
Table A10. WHO-defined COVID-19 Symptoms (Robustness Check)
Table A11. Pilot Analyses of Mask-Wearing
Table A12. Persistence of Mask-Wearing
Table A13. Subgroup Analyses of Mask-Wearing
Table A14. Symptomatic-Seroprevalence by 10-Year Age Groups
Table A15. Symptomatic Seroprevalence by Age Groups
Table A16. Symptomatic Seroprevalence by Age Groups, Expressed in Prevalence Ratios
Table A17. WHO-Defined COVID-19 Symptoms by Age Groups
Table A18. WHO-Defined COVID-19 Symptoms by 10-Year Age Groups
Table A19. WHO-Defined COVID-19 Symptoms by Age Groups, Expressed in Prevalence Ratios
Appendices

A. List of Supplementary Materials
B. Pairwise Randomization Procedure
C. Cross-Randomization Procedure
D. Statistical Analyses
E. Additional Balance Tests
F. Impact of Masks on Symptoms, Seropositivity, and Seroconversions
G. Mechanisms
H. Additional Preregistered Specifications
I. Intervention Cost and Benefit Estimates
J. Polling Policy Makers

Tables and Figures Referenced in Appendices

Fig. S1. Village-Level Cross Randomizations
Fig. S2. Household-Level Cross Randomizations
Table S1. Additional Balance Tests (Individual-Level)
Table S2. Additional Balance Tests (Individual-Level, After Sample Selection)
Table S3. Symptomatic Seroprevalence (With Controls and Additional Sample Selection)
Table S4. Village-Level Cross Randomizations
Table S5. Household-Level Cross-Randomizations
Table S6. IV Regressions
Table S7. Calculation of Number Needed to Treat and Cost per Life Saved
Table S8. What do you think was the increase in mask-wearing as a result of household mask distribution and mask promotion in the community?
Table S9. What do you think was the additional effect of mask promoters reminding people to wear masks?
Table S10. Do you think text message reminders to wear masks further increased mask-wearing?
Table S11. How do you think mask distribution and promotion affected physical distancing?
Table S12. Do you think incentive payments to village leaders further increased mask-wearing?
Table S13. Do you think verbal commitments and signage to wearing masks further increased mask-wearing?
The figure shows the location of the 600 treatment and control unions in the study.
Figure A2: Schematic of Cross-Randomizations

Notes: Each box represents one village and each color represents a village-level or household-level randomization. Different tones of the same hue represent different possible realizations for each randomization. The “Colors” box in the upper right exemplifies the color of masks used to denote households that received the default or intervention condition of the household-level randomization.
	Treatment Villages	Control Villages	Total
Number of People Identified in Baseline Household Visits	178,288	163,838	342,126
Number of People Reached for Symptom Collection on in the Midline and Endline Visits	174,171	161,211	335,382
Number of People with WHO-defined COVID-19 Symptoms	13,273	13,893	27,166
Number of Symptomatic Endline Blood Samples Collected	5,414	5,538	10,952
Number of Symptomatic Endline Blood Samples Tested	5,006	4,971	9,977

All counts provided are at the individual level.
WHO-defined COVID-19 symptoms is defined as any of the following:
(a) fever and cough;
(b) any three of the following (fever, cough, general weakness/fatigue, headache, muscle aches, sore throat, coryza [nasal congestion or runny nose], dyspnoea [shortness of breath or difficulty breathing], anorexia [loss of appetite]/nausea/vomiting, diarrhoea, altered mental status;
(c) anosmia [loss of smell] and ageusia [loss of taste].
Table A2: Endline Blood Collection Consent Rates by Demographic Characteristics

	Treatment	Control	Total
Total	40.8%	39.9%	40.3%

By Sex

	Treatment	Control	Total
Female	41.0%	39.7%	40.4%
Male	40.5%	40.0%	40.3%

By Age Group

Age Group	Treatment	Control	Total
≤ 40 Y.O.	41.0%	39.2%	40.1%
Between 40-50 Y.O.	40.7%	40.5%	40.6%
Between 50-60 Y.O.	41.8%	40.8%	41.3%
≥ 60 Y.O.	39.4%	40.0%	39.7%

Consent rates are defined as the ratio of the number of individuals we successfully drew blood from to the number of eligible symptomatic individuals.
Table A3: Balance Tests (Village-Level)

	Baseline Symptomatic Seroprevalence Rate	WHO-Defined COVID-19 Symptoms	Baseline Mask-Wearing Rate
Summary Statistics			
Intervention Rate	0.00002	0.027	0.123
Control Rate	0.00003	0.025	0.125
Balance Tests			
Intervention Coefficient	-0.00000	0.001	0.001
	(0.00002)	(0.002)	(0.005)
N villages	572	572	572
F	0.12		
Joint-Test Prob $> F$	0.9471		

Standard errors are in parentheses.

*** Significant at the 1 percent level. ** Significant at the 5 percent level. * Significant at the 10 percent level.

The baseline symptomatic seroprevalence is defined using 20 percent random sample of all the baseline blood draws. All individuals without a baseline blood sample have a symptomatic seroprevalence value of 0. We classify a WHO-Defined COVID-19 symptoms as any of the following:
(a) fever and cough;
(b) three or more of the following symptoms (fever, cough, general weakness/fatigue, headache, myalgia, sore throat, coryza, dyspnea, anorexia/nausea/vomiting, diarrhea, altered mental status);
(c) loss of taste or smell.

The baseline rate of mask-wearing was measured through observation over a 1 week period, defined as the rate of those observed who wear a mask or face covering that covers the nose and mouth. The sample excludes 4 villages because of lack of government cooperation to perform the intervention. The analysis excludes 11 villages and their village-pairs in the full sample because we did not observe them in the baseline period prior to the intervention, and 1 village and its pair for lack of observational data throughout the intervention period.
Table A4: Mask-Wearing and Physical Distancing, without Controlling for Baseline Variables

	Full	No Active Promotion	Mosques	Markets	Other Locations	Surgical Mask Villages	Cloth Mask Villages
Proper Mask-Wearing							
Intervention Coefficient	0.288*** (0.012)	0.279*** (0.012)	0.371*** (0.016)	0.288*** (0.012)	0.252*** (0.012)	0.302*** (0.014)	0.258*** (0.020)
Average Mask-Wearing Rate in Paired Control Villages§	0.133	0.134	0.123	0.120	0.146	0.129	0.143

Social Distancing							
Intervention Coefficient	0.050*** (0.005)	0.056*** (0.005)	0.000	0.073*** (0.007)	0.067*** (0.007)	0.053*** (0.006)	0.044*** (0.011)
Average Distancing Rate in Paired Control Villages§	0.241	0.253	0.000	0.291	0.311	0.229	0.268

| N villages | 572 | 572 | 570 | 570 | 568 | 380 | 192 |

Standard errors are in parentheses.

*** Significant at the 1 percent level. ** Significant at the 5 percent level. * Significant at the 10 percent level.

All regressions also include an indicator for each control-intervention pair.

§We report the mean rate of proper mask-wearing among the control villages after the baseline observation. This is not equivalent to the coefficient on the constant due to the inclusion of the pair indicators as controls.

"Other Locations" include tea stalls, at the entrance of the restaurant as patrons enter, and the main road to enter the village.

“Surgical Villages” refer to all treatment villages which received surgical masks as part of the intervention, and their control pairs. “Cloth Villages” refer to all treatment villages which received cloth masks as part of the intervention, and their control pairs. These samples include surveillance from all available locations, equivalent to the to the column labeled “Full”, but run separately for each subgroup.

The sample excludes 4 villages because of lack of government cooperation to perform the intervention. The analysis excludes a remaining 12 villages and their village-pairs in the full sample, 13 villages and their pairs in the mosque and market sub-samples, and 14 villages and their pairs in the other location sub-sample because we did not observe them in the baseline period prior to the intervention. Of the 572 villages included in the “Full” sample, 380 of them are treatment villages and their control pairs which received surgical masks as part of the intervention, and the remaining 192 are treatment villages and their control pairs which received cloth masks.
Table A5: Number of People Observed

	Full No Active Promotion	Mosques	Markets	Other Locations	Surgical Mask Villages	Cloth Mask Villages	
No Baseline Control							
Intervention Coefficient	-31	-53	35	-20	-46**	-9	-75
	(51)	(45)	(24)	(17)	(23)	(63)	(85)
Avg. Number People Observed in Paired Control Villages§	2820	2682	580	882	1358	2914	2635
With Baseline Control							
Intervention Coefficient	-43	-64	23	-18	-53**	-37	-45
	(45)	(40)	(20)	(15)	(21)	(58)	(76)
N villages	572	572	570	570	568	380	192

Standard errors are in parentheses.

*** Significant at the 1 percent level. ** Significant at the 5 percent level. * Significant at the 10 percent level.

All regressions also include an indicator for each control-intervention pair. The regressions “with baseline control” include controls for the number of people observed in the baseline visit.

§We report the average number of people observed among the control villages after the baseline observation. This is not equivalent to the coefficient on the constant due to the inclusion of the pair indicators as controls.

"Other Locations" include tea stalls, at the entrance of the restaurant as patrons enter, and the main road to enter the village.

“Surgical Villages” refer to all treatment villages which received surgical masks as part of the intervention, and their control pairs. “Cloth Villages” refer to all treatment villages which received cloth masks as part of the intervention, and their control pairs. These samples include surveillance from all available locations, equivalent to the to the column labeled “Full”, but run separately for each subgroup.

The sample excludes 4 villages because of lack of government cooperation to perform the intervention. The analysis excludes a remaining 12 villages and their village-pairs in the full sample, 13 villages and their pairs in the mosque and market sub-samples, and 14 villages and their pairs in the other location sub-sample because we did not observe them in the baseline period prior to the intervention. Of the 572 villages included in the “Full” sample, 380 of them are treatment villages and their control pairs which received surgical masks as part of the intervention, and the remaining 192 are treatment villages and their control pairs which received cloth masks.
Table A6: Symptomatic Seroprevalence

	Intervention Effect	Intervention Effect by Mask Type
No Baseline Controls		
Intervention Coefficient	-0.0007** (0.0003)	-0.0008* (0.0004)
Intervention Coefficient		
for Surgical Mask Villages	-0.0004 (0.0005)	
Intervention Coefficient		
for Cloth Mask Villages	-0.0002 (0.0005)	
Average Symptomatic Seroprevalence Rate in Paired Control Villages§	0.0076	0.0076

With Baseline Controls		
Intervention Coefficient	-0.0007** (0.0003)	-0.0009** (0.0004)
Intervention Coefficient		
for Surgical Mask Villages	-0.0002 (0.0005)	
Intervention Coefficient		
for Cloth Mask Villages	-0.0002 (0.0005)	

N individuals 307,106 307,106
N villages 572 572

Standard errors are in parentheses.

*** Significant at the 1 percent level. ** Significant at the 5 percent level. * Significant at the 10 percent level.

All regressions also include an indicator for each control-intervention pair. The regressions “with baseline controls” include controls for baseline rates of social distancing and baseline symptom rates.

Baseline Symptom Rate is defined as the rate of surveyed individuals in a village who report symptoms coinciding with the WHO definition of a probable COVID-19 case. This is defined as any of the following:

(a) fever and cough;
(b) any three of the following (fever, cough, general weakness/fatigue, headache, muscle aches, sore throat, coryza [nasal congestion or runny nose], dyspnoea [shortness of breath or difficulty breathing], anorexia [loss of appetite]/nausea/vomiting, diarrhoea, altered mental status;
(c) anosmia [loss of smell] and ageusia [loss of taste].

§We report the mean symptomatic seroprevalence at endline. This is not equivalent to the coefficient on the constant due to the inclusion of the pair indicators as controls.

The sample excludes 4 villages because of lack of government cooperation to perform the intervention. The analysis excludes 11 villages and their village-pairs in the full sample because we did not observe them in the baseline period prior to the intervention, and 1 village and its pair for lack of observational data throughout the intervention period. The analysis includes all people surveyed in the baseline household visits, excluding individuals that we did not collect midline or endline symptoms for, symptomatic individuals that we did not collect blood from, and individuals that we drew blood from but did not test their blood.
Table A7: Symptomatic Seroprevalence, Expressed in Prevalence Ratios

Intervention Effect	Intervention Effect by Mask Type
No Baseline Controls	
Intervention Prevalence Ratio	0.906** [0.814, 0.997]
Intervention Prevalence Ratio for Surgical Mask Villages	0.894* [0.782, 1.006]
Intervention Prevalence Ratio for Cloth Mask Villages	0.933 [0.776, 1.089]
Average Symptomatic-Seroprevalence Rate in Paired Control Villages	0.0076 0.0076

With Baseline Controls

Intervention Prevalence Ratio	0.907** [0.817, 0.997]
Intervention Prevalence Ratio for Surgical Mask Villages	0.888** [0.780, 0.997]
Intervention Prevalence Ratio for Cloth Mask Villages	0.950 [0.791, 1.109]

N individuals 288,612 288,612
N villages 536 536

Confidence Intervals are in brackets.

*** Significant at the 1 percent level. ** Significant at the 5 percent level. * Significant at the 10 percent level.

All regressions also include an indicator for each control-intervention pair. The regressions “with baseline controls” include controls for baseline rates of social distancing and baseline symptom rates.

Baseline Symptom Rate is defined as the rate of surveyed individuals in a village who report symptoms coinciding with the WHO definition of a probable COVID-19 case. This is defined as any of the following:

(a) fever and cough;
(b) any three of the following (fever, cough, general weakness/fatigue, headache, muscle aches, sore throat, coryza [nasal congestion or runny nose], dyspnoea [shortness of breath or difficulty breathing], anorexia [loss of appetite/nausea/vomiting], diarrhoea, altered mental status;
(c) anosmia [loss of smell] and ageusia [loss of taste].

§We report the mean symptomatic seroprevalence at endline. This is not equivalent to the coefficient on the constant due to the inclusion of the pair indicators as controls.

The sample excludes 4 villages because of lack of government cooperation to perform the intervention. The analysis excludes 11 villages and their village-pairs in the full sample because we did not observe them in the baseline period prior to the intervention, and 1 village and its pair for lack of observational data throughout the intervention period. The analysis includes all people surveyed in the baseline household visits, excluding individuals that we did not collect midline or endline symptoms for, symptomatic individuals that we did not collect blood from, and individuals that we drew blood from but did not test their blood.

The regressions exclude 18,494 individuals in 36 villages because there are 0 people who are symptomatic-seropositive in their village pairs.
Table A8: WHO-Defined COVID-19 Symptoms, Expressed in Prevalence Ratios

Intervention Effect	Intervention Effect by Mask Type
No Baseline Controls	
Intervention Prevalence Ratio	0.881***
[0.831,0.931]	
For Surgical Mask Villages	0.871***
[0.807,0.936]	
For Cloth Mask Villages	0.901**
[0.816,0.986]	
Average Symptomatic-Seroprevalence Rate in Paired Control Villages§	0.0859
0.0859	
With Baseline Controls	
Intervention Prevalence Ratio	0.881***
[0.830,0.933]	
For Surgical Mask Villages	0.864***
[0.801,0.926]	
For Cloth Mask Villages	0.915**
[0.831,0.999]	
N individuals	323,596
323,596	
N villages	572
572	

Confidence Intervals are in brackets.

*** Significant at the 1 percent level. ** Significant at the 5 percent level. * Significant at the 10 percent level.

All regressions also include an indicator for each control-intervention pair. The regressions "with baseline controls" include controls for baseline rates of social distancing and baseline symptom rates.

Baseline Symptom Rate is defined as the rate of surveyed individuals in a village who report symptoms coinciding with the WHO definition of a probable COVID-19 case. This is defined as any of the following:

(a) fever and cough;
(b) any three of the following (fever, cough, general weakness/fatigue, headache, muscle aches, sore throat, coryza [nasal congestion or runny nose], dyspnoea [shortness of breath or difficulty breathing], anorexia [loss of appetite]/nausea/vomiting, diarrhoea, altered mental status;
(c) anosmia [loss of smell] and ageusia [loss of taste].

§We report the mean rate of symptomatic status at endline. This is not equivalent to the coefficient on the constant due to the inclusion of the pair indicators as controls.

The sample excludes 4 villages because of lack of government cooperation to perform the intervention. The analysis excludes 11 villages and their village-pairs in the full sample because we did not observe them in the baseline period prior to the intervention, and 1 village and its pair for lack of observational data throughout the intervention period. The analysis in the first column includes all people surveyed in the baseline household visits, excluding individuals that we did not collect midline or endline symptoms for, symptomatic individuals that we did not collect blood from, and individuals that we drew blood from but did not test their blood.

The analysis includes all people surveyed in the baseline household visits, excluding individuals that we did not collect midline or endline symptoms for.
Figure A3: Randomization Inference on Symptomatic Seroprevalence and Symptoms

(a) Symptomatic Seroprevalence
(b) Symptomatic Seroprevalence, Without Baseline Controls
(c) Symptoms
(d) Symptoms, Without Baseline Controls

The histograms are generated by plotting the frequency the coefficient on the intervention under 1,000 imputations of randomly assigning the treatment/control status within each village-pair. The regressions used to generate the intervention coefficient in panel (a) and (b) are equivalent to those in Table A6, top and bottom panel, respectively. The regressions used in panel (c) and (d) are equivalent to those in Table A9, top and bottom panel, respectively.

The one-sided p-values for each panel is as follows:
(a) 0.081
(b) 0.084
(c) 0.002
(d) 0.001
Intervention Type	Intervention Effect	Intervention Effect by Mask Type
	No Baseline Controls	
Intervention Coefficient	-0.0096***	-0.0105***
	(0.0022)	(0.0028)
for Surgical Mask Villages		
Intervention Coefficient	-0.0079**	-0.0063*
for Cloth Mask Villages		(0.0035)
Average Symptomatic Rate	0.0859	0.0859
in Paired Control Villages§		
	With Baseline Controls	
Intervention Coefficient	-0.0095***	-0.0112***
	(0.0021)	(0.0028)
for Surgical Mask Villages		
Intervention Coefficient	-0.0063*	
for Cloth Mask Villages		(0.0035)
N individuals	323,596	323,596
N villages	572	572

Standard errors are in parentheses.

*** Significant at the 1 percent level. ** Significant at the 5 percent level. * Significant at the 10 percent level.
All regressions also include an indicator for each control-intervention pair. The regressions “with baseline controls” include controls for baseline rates of social distancing and baseline symptom rates.
Baseline Symptom Rate is defined as the rate of surveyed individuals in a village who report symptoms coinciding with the WHO definition of a probable COVID-19 case. This is defined as any of the following:
(a) fever and cough;
(b) any three of the following (fever, cough, general weakness/fatigue, headache, muscle aches, sore throat, coryza [nasal congestion or runny nose], dyspnoea [shortness of breath or difficulty breathing], anorexia [loss of appetite]/nausea/vomiting, diarrhoea, altered mental status;
(c) anosmia [loss of smell] and ageusia [loss of taste].
§We report the mean rate of WHO-defined COVID-19 symptomatic status at endline. This is not equivalent to the coefficient on the constant due to the inclusion of the pair indicators as controls.
The sample excludes 4 villages because of lack of government cooperation to perform the intervention. The analysis excludes 11 villages and their village-pairs in the full sample because we did not observe them in the baseline period prior to the intervention, and 1 village and its pair for lack of observational data throughout the intervention period.
The analysis includes all people surveyed in the baseline household visits, excluding individuals that we did not collect midline or endline symptoms for.
Table A10: WHO-defined COVID-19 Symptoms (Robustness Check)

Intervention Effect	Intervention Effect by Mask Type	
	No Baseline Controls	
	Intervention Coefficient	Intervention Coefficient
	-0.0031***	-0.0047***
	(0.0011)	(0.0015)
	Intervention Coefficient	Intervention Coefficient
	for Surgical Mask Villages	for Cloth Mask Villages
	Intervention Coefficient	0.0001
	for Cloth Mask Villages	(0.0017)
	Average Symptomatic Rate	0.0330
	in Paired Control Villages§	0.0330
	With Baseline Controls	
	Intervention Coefficient	Intervention Coefficient
	-0.0030***	-0.0050***
	(0.0011)	(0.0015)
	Intervention Coefficient	Intervention Coefficient
	for Surgical Mask Villages	for Cloth Mask Villages
	Intervention Coefficient	0.0009
	for Cloth Mask Villages	(0.0017)
	N individuals	307,106
	572	307,106

Standard errors are in parentheses.

*** Significant at the 1 percent level. ** Significant at the 5 percent level. * Significant at the 10 percent level.
All regressions also include an indicator for each control-intervention pair. The regressions "with baseline controls" include controls for baseline rates of social distancing and baseline symptom rates.
Baseline Symptom Rate is defined as the rate of surveyed individuals in a village who report symptoms coinciding with the WHO definition of a probable COVID-19 case. This is defined as any of the following:
(a) fever and cough;
(b) any three of the following (fever, cough, general weakness/fatigue, headache, muscle aches, sore throat, coryza [nasal congestion or runny nose], dyspnoea [shortness of breath or difficulty breathing], anorexia [loss of appetite]/nausea/vomiting, diarrhoea, altered mental status;
(c) anosmia [loss of smell] and ageusia [loss of taste].
§We report the mean rate of WHO-defined COVID symptomatic status at endline. This is not equivalent to the coefficient on the constant due to the inclusion of the pair indicators as controls.
The sample excludes 4 villages because of lack of government cooperation to perform the intervention. The analysis excludes 11 villages and their village-pairs in the full sample because we did not observe them in the baseline period prior to the intervention, and 1 village and its pair for lack of observational data throughout the intervention period.
The analysis includes all people surveyed in the baseline household visits, excluding individuals that we did not collect midline or endline symptoms for, symptomatic individuals that we did not collect blood from, and individuals that we drew blood from but did not test their blood.

57
Table A11: Pilot Analyses of Mask Wearing

	Main Intervention	Pilot 1	Pilot 2	Pilot 1	Pilot 2
No Baseline Controls					
Intervention Coefficient	0.288***	0.109	0.284	(0.012)	[-0.161, 0.320]
					[0.081, 0.408]
Difference from Main Intervention	-0.189***	(0.073)	0.022		
Average Control Mask Wearing Rate§	0.1339	0.129	0.095		
With Baseline Controls					
Intervention Effect	0.288***	0.096	0.341	(0.012)	[-0.126, 0.315]
					[0.135, 0.509]
Difference from Main Intervention	-0.181**	(0.092)	-0.005		
N villages	572	10	10	592	592

Standard errors are in parentheses. Confidence intervals are in brackets, computed using wild bootstrap.

*** Significant at the 1 percent level. ** Significant at the 5 percent level. * Significant at the 10 percent level.
The regressions "with baseline controls" include controls for baseline rates of mask-wearing.
The first column reports the results of our main intervention; equivalent to the results in Table ??, using full surveillance data.
§We report the mean rate of mask-wearing among the control villages after the baseline observation. This is not equivalent to the coefficient on the constant due to the inclusion of the pair indicators as controls.
Table A12: Persistence of Mask-Wearing

Week from Baseline Observation	1	2	4	6	8	10	Followup
Consistent Panel							
Intervention Coefficient	0.304***	0.284***	0.290***	0.286***	0.261***	0.233***	0.102***
(0.016)	(0.016)	(0.016)	(0.016)	(0.016)	(0.017)	(0.011)	
N villages	414	414	414	414	414	414	414
All Villages							
Intervention Coefficient	0.300***	0.285***	0.291***	0.298***	0.261***	0.230***	0.094***
(0.014)	(0.014)	(0.014)	(0.015)	(0.014)	(0.015)	(0.010)	
N villages	542	558	548	550	528	508	548

Standard errors are in parentheses.

*** Significant at the 1 percent level, ** Significant at the 5 percent level, * Significant at the 10 percent level.

All regressions include an indicator for each control-intervention pair, baseline rates of mask-wearing and baseline symptom rates.

Baseline Symptom Rate is defined as the rate of surveyed individuals in a village who report symptoms coinciding with the WHO definition of a probable COVID-19 case. This is defined as any of the following:

(a) fever and cough;
(b) any three of the following (fever, cough, general weakness/fatigue, headache, muscle aches, sore throat, coryza [nasal congestion or runny nose], dyspnoea [shortness of breath or difficulty breathing], anorexia [loss of appetite]/nausea/vomiting, diarrhoea, altered mental status;
(c) anosmia [loss of smell] and ageusia [loss of taste].

We assume that (1) all reported symptoms were acute onset, (2) all people live or work in an area with high risk of transmission of virus and (3) all people have been a contact of a probable or confirmed case of COVID-19 or are linked to a COVID-19 cluster.

“Followup” surveillance occurred between June 4th and June 8th 2021, which is anywhere from 20 to 27 weeks after baseline for each village.

This analysis estimates separate intervention effects 1, 2, 4, 6, 8, 10 weeks, and 20-27 weeks after baseline observation. The top panel runs the regressions only among a consistent panel of 414 villages that have all 10 weeks and the subsequent followup observation. The results of the analysis are displayed graphically in Figure A4.

The bottom panel is run among all villages which have surveillance data for that period of observation, as well as the baseline period.

The 10th week of observation and the followup observation occur after all active promotion of mask-wearing has ceased.
Figure A4: Persistence of Mask-Wearing

The figure corresponds to the regressions presented in Table A12, top panel. We present the effect of the intervention separately across weeks 1, 2, 4, 6, 8, 10, and 20-27 weeks after the baseline observation with 95% confidence intervals. The 20-27 week observation was collected during our “Followup” surveillance between June 4th and June 8th 2021, which is anywhere from 20 to 27 weeks after baseline for each village. The analysis is run across a panel of 414 villages with observation through the entirety of the study. The 10th week of observation and the followup observation occur after all active promotion of mask-wearing has ceased.
Table A13: Subgroup Analyses of Mask-Wearing

	Female Only	Male Only	Above Median	Below Median
	Intervention Coefficient	**Average Control Mask-Wearing Rate**§		
No Baseline Controls	0.225***	0.271***	0.247***	0.350***
	(0.013)	(0.013)	(0.018)	(0.022)
	0.312	0.116	0.175	0.087
With Baseline Controls	0.225***	0.271***	0.247***	0.354***
	(0.013)	(0.013)	(0.019)	(0.022)
N villages	566	566	200	202

Standard errors are in parentheses.

*** Significant at the 1 percent level. ** Significant at the 5 percent level. * Significant at the 10 percent level.

All regressions also include an indicator for each control-intervention pair. The baseline control regressions include controls for baseline rates of mask-wearing and baseline symptom rates. For the gender subgroup analyses, the baseline symptom rate and baseline mask-wearing rate was defined across all individuals, not just those among females and males, respectively.

Baseline Symptom Rate is defined as the rate of surveyed individuals in a village who report symptoms coinciding with the WHO definition of a probable COVID-19 case. This is defined as any of the following:

- (a) fever and cough;
- (b) any three of the following (fever, cough, general weakness/fatigue, headache, muscle aches, sore throat, coryza [nasal congestion or runny nose], dyspnoea [shortness of breath or difficulty breathing], anorexia [loss of appetite]/nausea/vomiting, diarrhoea, altered mental status;
- (c) anosmia [loss of smell] and ageusia [loss of taste].

We assume that (1) all reported symptoms were acute onset, (2) all people live or work in an area with high risk of transmission of virus and (3) all people have been a contact of a probable or confirmed case of COVID-19 or are linked to a COVID-19 cluster.

The sex-specific subgroup is run on all locations except mosques because no females were observed at mosques. The sex-specific samples excludes 6 villages because of lack of data. The above-median and below-median samples includes 85 singleton observations which were dropped.
Table A14: Symptomatic Seroprevalence by 10-Year Age Groups

	All 18-30 Y.O.	30-40 Y.O.	40-50 Y.O.	50-60 Y.O.	60-70 Y.O.	≥ 70 Y.O.	
No Baseline Controls							
Intervention Coefficient	-0.0007**	-0.0004	0.0007	-0.0008	-0.0022***	-0.0019*	-0.0016
	(0.0003)	(0.0003)	(0.0005)	(0.0007)	(0.0008)	(0.0010)	(0.0012)
Avg. Symptomatic Seroprevalence in Paired Control Vill.	0.0076	0.0045	0.0069	0.0095	0.0108	0.0104	0.0101

With Baseline Controls							
Intervention Coefficient	-0.0007**	-0.0004	0.0007	-0.0009	-0.0021***	-0.0019*	-0.0016
	(0.0003)	(0.0003)	(0.0005)	(0.0007)	(0.0008)	(0.0010)	(0.0012)

| N Individuals | 307,106 | 101,939 | 70,285 | 52,161 | 39,307 | 27,792 | 15,622 |
| N Villages | 572 | 572 | 572 | 572 | 572 | 572 | 572 |

Standard errors are in parentheses.

*** Significant at the 1 percent level. ** Significant at the 5 percent level. * Significant at the 10 percent level.

All regressions also include an indicator for each control-intervention pair. The regressions “with baseline controls” include controls for baseline rates of mask-wearing and baseline symptom rates.

Baseline Symptom Rate is defined as the rate of surveyed individuals in a village who report symptoms coinciding with the WHO definition of a probable COVID-19 case. This is defined as any of the following:
(a) fever and cough;
(b) any three of the following (fever, cough, general weakness/fatigue, headache, muscle aches, sore throat, coryza [nasal congestion or runny nose], dyspnoea [shortness of breath or difficulty breathing], anorexia [loss of appetite]/nausea/vomiting, diarrhoea, altered mental status;
(c) anosmia [loss of smell] and ageusia [loss of taste].

§ We report the mean symptomatic-seroprevalence at endline. This is not equivalent to the coefficient on the constant due to the inclusion of the pair indicators as controls.

The sample excludes 4 villages because of lack of government cooperation to perform the intervention. The analysis excludes 11 villages and their village-pairs in the full sample because we did not observe them in the baseline period prior to the intervention, and 1 village and its pair for lack of observational data throughout the intervention period. The analysis includes all people surveyed in the baseline household visits, excluding individuals that we did not collect midline or endline symptoms for, symptomatic individuals that we did not collect blood from, and individuals that we drew blood from but did not test their blood.
Table A15: Symptomatic Seroprevalence by Age Groups

	All	≤ 40 Y.O.	Between 40-50 Y.O.	Between 50-60 Y.O.	≥ 60 Y.O.
	No Baseline Controls				
Intervention Coefficient	-0.0008*	-0.0001	0.0000	-0.0024***	-0.0032***
	(0.0004)	(0.0004)	(0.0009)	(0.0009)	(0.0010)
Average Symptomatic	0.0076	0.0055	0.0095	0.0108	0.0103
Seroprevalence in Paired					
Control Villages§					
	With Baseline Controls				
Intervention Coefficient	-0.0009**	-0.0003	-0.0001	-0.0025***	-0.0034***
	(0.0004)	(0.0004)	(0.0008)	(0.0009)	(0.0010)
N Individuals	307,106	172,224	52,161	39,307	43,414
N Villages	572	572	572	572	572

Standard errors are in parentheses.

*** Significant at the 1 percent level. ** Significant at the 5 percent level. * Significant at the 10 percent level.
All regressions also include an indicator for each control-intervention pair. The regressions “with baseline controls” include controls for baseline rates of mask-wearing and baseline symptom rates.
Baseline Symptom Rate is defined as the rate of surveyed individuals in a village who report symptoms coinciding with the WHO definition of a probable COVID-19 case. This is defined as any of the following:
(a) fever and cough;
b) any three of the following (fever, cough, general weakness/fatigue, headache, muscle aches, sore throat, coryza [nasal congestion or runny nose], dyspnoea [shortness of breath or difficulty breathing], anorexia [loss of appetite]/nausea/vomiting, diarrhoea, altered mental status;
c) anosmia [loss of smell] and ageusia [loss of taste].
§We report the mean symptomatic seroprevalence at endline. This is not equivalent to the coefficient on the constant due to the inclusion of the pair indicators as controls.
The sample excludes 4 villages because of lack of government cooperation to perform the intervention. The analysis excludes 11 villages and their village-pairs in the full sample because we did not observe them in the baseline period prior to the intervention, and 1 village and its pair for lack of observational data throughout the intervention period.
The analysis includes all people surveyed in the baseline household visits, excluding individuals that we did not collect midline or endline symptoms for, symptomatic individuals that we did not collect blood from, and individuals that we drew blood from but did not test their blood.
Table A16: Symptomatic Seroprevalence by Age Groups, Expressed in Prevalence Ratios

Age Groups	All	≤ 40 Y.O.	Between 40-50 Y.O.	Between 50-60 Y.O.	≥ 60 Y.O.
No Baseline Controls					
Intervention Prevalence Ratio for Surgical Mask Villages	0.894*	0.977	1.003	0.768***	0.669***
	[0.782,1.006]	[0.839,1.116]	[0.825,1.182]	[0.595,0.941]	[0.472,0.865]
Average Symptomatic Seroprevalence in Paired Control Villages§	0.0076	0.0055	0.0095	0.0108	0.0103
With Baseline Controls					
Intervention Prevalence Ratio for Surgical Mask Villages	0.888***	0.966	1.002	0.770**	0.653***
	[0.780,0.997]	[0.833,1.099]	[0.813,1.191]	[0.593,0.948]	[0.458,0.849]
N Individuals	288,612	147,954	36,002	24,282	28,103
N Villages	536	482	382	348	360

Standard errors are in parentheses.

*** Significant at the 1 percent level. ** Significant at the 5 percent level. * Significant at the 10 percent level.

All regressions also include an indicator for each control-intervention pair. The regressions “with baseline controls” include controls for baseline rates of mask-wearing and baseline symptom rates.

Baseline Symptom Rate is defined as the rate of surveyed individuals in a village who report symptoms coinciding with the WHO definition of a probable COVID-19 case. This is defined as any of the following:
(a) fever and cough;
(b) any three of the following (fever, cough, general weakness/fatigue, headache, muscle aches, sore throat, coryza [nasal congestion or runny nose], dyspnoea [shortness of breath or difficulty breathing], anorexia [loss of appetite]/nausea/vomiting, diarrhoea, altered mental status;
(c) anosmia [loss of smell] and ageusia [loss of taste].

§We report the mean symptomatic seroprevalence at endline. This is not equivalent to the coefficient on the constant due to the inclusion of the pair indicators as controls.

The sample excludes 4 villages because of lack of government cooperation to perform the intervention. The analysis excludes 11 villages and their village-pairs in the full sample because we did not observe them in the baseline period prior to the intervention, and 1 village and its pair for lack of observational data throughout the intervention period. The analysis includes all people surveyed in the baseline household visits, excluding individuals that we did not collect midline or endline symptoms for, symptomatic individuals that we did not collect blood from, and individuals that we drew blood from but did not test their blood.
Table A17: WHO-Defined COVID-19 Symptoms by Age Groups

	All	≤ 40 Y.O.	Between 40-50 Y.O.	Between 50-60 Y.O.	≥ 60 Y.O.
No Baseline Controls					
Intervention Coefficient for Surgical Mask Villages	-0.0105***	-0.0088***	-0.0093***	-0.0123***	-0.0167***
	(0.0028)	(0.0028)	(0.0035)	(0.0038)	(0.0042)
Intervention Coefficient for Cloth Mask Villages	-0.0079**	-0.0061**	-0.0020	-0.0164***	-0.0116**
	(0.0035)	(0.0027)	(0.0051)	(0.0059)	(0.0059)
Average Symptomatic-Seroprevalence in Paired Control Villages§	0.0859	0.0716	0.0981	0.1057	0.1082
With Baseline Controls					
Intervention Coefficient for Surgical Mask Villages	-0.0112***	-0.0096***	-0.0099***	-0.0129***	-0.0175***
	(0.0028)	(0.0028)	(0.0035)	(0.0038)	(0.0042)
Intervention Coefficient for Cloth Mask Villages	-0.0063*	-0.0048*	-0.0001	-0.0142**	-0.0092
	(0.0035)	(0.0028)	(0.0050)	(0.0058)	(0.0059)
N Individuals	323,596	179,882	55,465	41,873	46,376
N Villages	572	572	572	572	572

Standard errors are in parentheses.

*** Significant at the 1 percent level. ** Significant at the 5 percent level. * Significant at the 10 percent level.

All regressions also include an indicator for each control-intervention pair. The regressions “with baseline controls” include controls for baseline rates of mask-wearing and baseline symptom rates.

Baseline Symptom Rate is defined as the rate of surveyed individuals in a village who report symptoms coinciding with the WHO definition of a probable COVID-19 case. This is defined as any of the following:

(a) fever and cough;

(b) any three of the following (fever, cough, general weakness/fatigue, headache, muscle aches, sore throat, coryza [nasal congestion or runny nose], dyspnoea [shortness of breath or difficulty breathing], anorexia [loss of appetite]/nausea/vomiting, diarrhoea, altered mental status;

(c) anosmia [loss of smell] and ageusia [loss of taste].

§We report the mean rate of symptomatic status at endline. This is not equivalent to the coefficient on the constant due to the inclusion of the pair indicators as controls.

The sample excludes 4 villages because of lack of government cooperation to perform the intervention. The analysis excludes 11 villages and their village-pairs in the full sample because we did not observe them in the baseline period prior to the intervention, and 1 village and its pair for lack of observational data throughout the intervention period.

The analysis includes all people surveyed in the baseline household visits, excluding individuals that we did not collect midline or endline symptoms for.
Table A18: WHO-Defined COVID-19 Symptoms by 10-Year Age Groups

No Baseline Controls	All	18-30 Y.O.	30-40 Y.O.	40-50 Y.O.	50-60 Y.O.	60-70 Y.O.	≥ 70 Y.O.
Intervention Coefficient	-0.0096***	-0.0081***	-0.0072***	-0.0068**	-0.0137***	-0.0121***	-0.0189***
	(0.0022)	(0.0020)	(0.0027)	(0.0029)	(0.0032)	(0.0037)	(0.0045)
Avg Symptomatic Rate in Paired Control Vill.	0.0859	0.0605	0.0872	0.0981	0.1057	0.1080	0.1085

With Baseline Controls	All	18-30 Y.O.	30-40 Y.O.	40-50 Y.O.	50-60 Y.O.	60-70 Y.O.	≥ 70 Y.O.
Intervention Coefficient	-0.0095***	-0.0082***	-0.0072***	-0.0066**	-0.0133***	-0.0119***	-0.0185***
	(0.0021)	(0.0020)	(0.0026)	(0.0028)	(0.0032)	(0.0036)	(0.0045)

N Individuals | 323,596 | 105,778 | 74,104 | 55,465 | 41,873 | 29,721 | 16,655 |
N Villages | 572 | 572 | 572 | 572 | 572 | 572 | 572 |

Standard errors are in parentheses.

*** Significant at the 1 percent level. ** Significant at the 5 percent level. * Significant at the 10 percent level.

All regressions also include an indicator for each control-intervention pair. The regressions “with baseline controls” include controls for baseline rates of mask-wearing and baseline symptom rates.

Baseline Symptom Rate is defined as the rate of surveyed individuals in a village who report symptoms coinciding with the WHO definition of a probable COVID-19 case. This is defined as any of the following:

(a) fever and cough;
(b) any three of the following (fever, cough, general weakness/fatigue, headache, muscle aches, sore throat, coryza [nasal congestion or runny nose], dyspnoea [shortness of breath or difficulty breathing], anorexia [loss of appetite]/nausea/vomiting, diarrhoea, altered mental status;
(c) anosmia [loss of smell] and ageusia [loss of taste].

We report the mean rate of symptomatic status at endline. This is not equivalent to the coefficient on the constant due to the inclusion of the pair indicators as controls.

The sample excludes 4 villages because of lack of government cooperation to perform the intervention. The analysis excludes 11 villages and their village-pairs in the full sample because we did not observe them in the baseline period prior to the intervention, and 1 village and its pair for lack of observational data throughout the intervention period. The analysis includes all people surveyed in the baseline household visits, excluding individuals that we did not collect midline or endline symptoms for.
Table A19: WHO-Defined COVID-19 Symptoms by Age Groups, Expressed in Prevalence Ratios

	All	≤ 40 Y.O.	Between 40-50 Y.O.	Between 50-60 Y.O.	≥ 60 Y.O.
No Baseline Controls					
Intervention Coefficient for Surgical Mask Villages	0.871***	0.871***	0.901***	0.877***	0.834***
	[0.807,0.936]	[0.794,0.948]	[0.829,0.972]	[0.803,0.951]	[0.755,0.912]
Intervention Coefficient for Cloth Mask Villages	0.901**	0.907**	0.979	0.828***	0.884**
	[0.816,0.986]	[0.828,0.987]	[0.873,1.084]	[0.709,0.947]	[0.770,0.998]
Average Symptomatic-Seroprevalence in Paired Control Villages§	0.0859	0.0716	0.0981	0.1057	0.1082

With Baseline Controls					
Intervention Coefficient for Surgical Mask Villages	0.864***	0.861***	0.896***	0.868***	0.828***
	[0.801,0.926]	[0.786,0.936]	[0.826,0.965]	[0.795,0.940]	[0.753,0.904]
Intervention Coefficient for Cloth Mask Villages	0.915**	0.916**	0.996	0.849**	0.903*
	[0.831,0.999]	[0.836,0.996]	[0.893,1.099]	[0.732,0.966]	[0.790, 1.016]

| N Individuals | 323,596 | 179,882 | 55,465 | 41,759 | 46,245 |
| N Villages | 572 | 572 | 572 | 570 | 570 |

Confidence Intervals are in brackets.

*** Significant at the 1 percent level. ** Significant at the 5 percent level. * Significant at the 10 percent level.

All regressions also include an indicator for each control-intervention pair. The regressions “with baseline controls” include controls for baseline rates of mask-wearing and baseline symptom rates.

Baseline Symptom Rate is defined as the rate of surveyed individuals in a village who report symptoms coinciding with the WHO definition of a probable COVID-19 case. This is defined as any of the following:

(a) fever and cough;
(b) any three of the following (fever, cough, general weakness/fatigue, headache, muscle aches, sore throat, coryza [nasal congestion or runny nose], dyspnoea [shortness of breath or difficulty breathing], anorexia [loss of appetite]/nausea/vomiting, diarrhoea, altered mental status;
(c) anosmia [loss of smell] and ageusia [loss of taste].

§We report the mean rate of symptomatic status at endline. This is not equivalent to the coefficient on the constant due to the inclusion of the pair indicators as controls.

The sample excludes 4 villages because of lack of government cooperation to perform the intervention. The analysis excludes 11 villages and their village-pairs in the full sample because we did not observe them in the baseline period prior to the intervention, and 1 village and its pair for lack of observational data throughout the intervention period.

The analysis includes all people surveyed in the baseline household visits, excluding individuals that we did not collect midline or endline symptoms for.
B Pairwise Randomization Procedure

Villages were assigned to strata as follows:

1. We began with 1,000 villages in 1,000 separate unions to ensure sufficient geographic distance to prevent spillovers (Bangladesh is divided into 4,562 unions).

2. We collected these unions into “Units”, defined as the intersection of upazila x (above/below) median population x case trajectory, where above/below median population was a 0-1 indicator for whether the union had above-median population for that upazila and case trajectory takes the values -1, 0, 1 depending on whether the cases per 1,000 are decreasing, flat or increasing. We assessed cases per person using data provided to us from the Bangladeshi government for the periods June 27th-July 10th and July 11th-July 24th, 2020.

3. If a unit contained an odd number of unions, we randomly dropped one union.

4. We then sort unions by “cases per person” based on the July 11th-July 24th data, and create pairs of unions. We randomly kept 300 such pairs.

5. We randomly assigned one union in each pair to be the intervention union.

6. We then tested for balance with respect to cases, cases per population, and density.

7. Finally, we repeated this entire procedure 50 times, selecting the seed that minimized the maximum of the absolute value of the t-stat of the balance tests with respect to case trajectory and cases per person.

C Cross-Randomization Procedure

Villages were assigned to village-level cross-randomizations as follows:

1. We began with the 300 union-pairs (600 villages total) identified in the pairwise randomization procedure, and limited to only the villages in the intervention group.
2. Using a random number generator, we ordered the villages, and assigned the first 1/3 of the intervention villages to be distributed cloth masks and 2/3 to be distributed surgical masks.

3. Within the mask-type randomization, we randomly reordered the unions, then assigned the first 1/2 of villages to hang signage on their door as a visual commitment to mask-wearing, and 1/2 of villages to not have signage on their door.

4. Within the previous two randomizations, we randomly assigned 1/4 of villages to receive no incentive, 1/4 to receive a monetary award, and 1/2 to receive a certificate incentive. If there was an odd-number of villages within this randomization, then we broke the difference by rounding the number of villages in the randomization to the nearest whole number.

5. In villages without signage, we randomly ordered the villages and assigned the first 2/3 to receive texts encouraging mask-wearing, and the remaining 1/3 receive no such messages. If the number of villages was not divisible by thirds, then we broke the difference by rounding the number of villages to the nearest whole number.

Unions were assigned to household-level cross-randomizations using the following procedure. Note that each village may have only one household-level randomization.

1. In villages with the signage randomization, we assigned 2/3 of villages to receive messages emphasizing the self-protection benefits of masks, and the remaining 1/3 to receive altruistic messages about the benefits of mask-wearing in addition to the self-protection messages. If the number of villages was not divisible by thirds, we broke the difference by rounding to the nearest whole number.

2. In villages with the signage randomization and no household-level altruism randomization (and by definition, no village-level text message randomization), we assigned 1/4 of villages to receive no household-level text-message randomization, 1/2 of villages to have 50% of their households receive text-message reminders, and the remaining 1/4 of villages to have 100% of their households receive texts.
3. In villages without the signage randomization, we assigned 2/3 of villages to receive messages emphasizing the self-protection benefits of masks, and the remaining 1/3 to receive messages emphasizing the altruistic reasons to wear masks in addition to the self-protection messages.

4. In the villages without the signage randomization and no household-level altruism randomization, we asked households to make a verbal commitment to be a mask-wearing household.

D Statistical Analysis

This section describes details of our statistical analyses.

Mask-Wearing We created a data set with an observation for each village j. We defined proper mask use as anyone wearing either a project mask or an alternative face-covering that covered their mouth and nose. We considered two definitions of the proportion of observed individuals wearing masks (p_j). In our primary specification, we defined p_j using all observed adults. In a secondary specification, we considered adults observed only in locations where we there was not simultaneous mask distribution. The purpose of this second specification was to investigate separately whether the intervention increased mask-wearing in places where we did not have promoters on site.

Our goal was to estimate the impact of the intervention on the probability of mask-wearing, defined as $\psi_1 = E_x[E(p_j|T_j = 1, x_j) - E(p_j|T_j = 0, x_j)]$ where T_j is an indicator for whether a village was treated and x_j is a vector of the village-level covariates, including the prevalence of baseline mask-wearing in each village (constructed analogously to p_j), baseline respiratory symptom rates, and indicators for each pair of villages from our pairwise stratification method.

We estimated this equation at the village-level with an ordinary least squares regression, using analytic weights proportional to the number of observed individuals (the denominator of p_j) and heteroskedastic-robust standard errors. In this specification, the dependent variable is p_j, the independent variable of interest was T_j, and controls were included for the x_j covariates.
Physical Distancing Using analogous methods, we estimated the impact of the intervention on the probability that wearing a mask influenced physical distancing (being within one arm’s length of any other person at the time of observation).

D.1 Estimating Effects of Village-level Cross-randomizations

We analyze all four village level cross-randomizations jointly via a linear regression:

\[E(p_j|T_j,x_j,D_k) = \beta T_j + \sum_k D_k \delta_k + x_j \gamma \]

where \(D_k = 1 \) if the village has been assigned to the intervention group of the village-level cross-randomization denoted by letter \(k \), and 0 otherwise. This specification is otherwise identical to our estimating equation for the impact of intervention on mask-wearing, with the addition of the \(D_k \) terms.

D.2 Estimating Effects of Household-level Cross-randomizations

To evaluate the effect of household-level cross-randomizations, we constructed a regression with an observation for each village where we ask whether masks of the color representing the treatment were more commonplace than masks of the color representing the control. In each village, we computed \(\Delta_j \), the difference in the fraction of individuals wearing treatment mask colors vs. control mask colors. We alternated across villages which color corresponds to intervention, so we can control directly for whether specific colors are more popular (denote these by \(d_{jc} \); \(d_{jc} = 1 \) if treated masks in village \(j \) are color \(c \)). We index the various household randomizations by \(m \). Our estimate for each household randomization will be \(\alpha_{0m} \), given by:

\[E(\Delta_j|d_{jc}) = \alpha_{0m} + \sum_c \alpha_c d_{jc} + \text{surgical}_j \]
\(\alpha_{0m} \) tells us how much more likely individuals are to wear masks of the treated color than masks of the control color. \(\text{surgical}_j \) is, as its name implies, a dummy for whether surgical masks were distributed in village \(j \). We estimate this equation at the village-level by ordinary least squares, using analytic weights proportional to the number of observed individuals (the denominator of \(\Delta_j \)) and heteroskedasticity-robust standard errors.

E Additional Balance Tests

In the text, we show that we have balance at baseline with respect to our main outcome variables. We also ran balance tests with respect to several other covariates and detected a few balance failures. While small in magnitude, we investigate these further in order to understand whether the severity of the underlying problem.

Table S1 highlights these balance failures. Specifically, we find imbalances with respect to household count, age and household size. On average, treatment villages have 16 more households, beneficiaries in the treatment group are younger by 0.16 years, and treatment households have 0.02 more members. While small in magnitude, these imbalances are unlikely to have arisen by chance given the size of our sample. Table S1 also reports balance with respect to household size assessed in our initial scoping visit (before masks were distributed). In this case, we find that treatment and control villages were exactly the same size.

We believe the imbalances with respect to age and household size likely arose households in the treatment group were more likely to report teenagers as being over 18 in order to receive additional masks. We believe the imbalance with respect to the number of households likely occurred for a similar reason, with implementers in the treatment group including more “borderline” households as part of the village in order to distribute masks to those households.

To check for these mechanisms, we drop from the sample individuals under 30 and villages with over 350 households – the latter only very coarsely targets “extra” households that lie on the border of villages. After imposing these restrictions, we find in Table S2 that the imbalances
Table S1: Additional Balance Tests (Individual-Level)

	Household Count (via Scoping)	Household Count	Proportion Female	Age	Average Household Size
Summary Statistics					
Intervention Rate	245	237	0.5127	38.70	2.7565
Control Rate	241	220	0.5113	38.91	2.7302

Balance Tests					
Intervention Coefficient	3	16***	0.0019*	-0.1577**, 0.0239***	
	(3)	(3)	(0.0011)	(0.0708) (0.0089)	
N individuals	307,106	307,106	307,106	307,106	307,106
N villages	572	572	572	572	572
F	106.49				
$Joint-Test Prob > F$	0.0000				

Standard errors are in parentheses.

*** Significant at the 1 percent level. ** Significant at the 5 percent level. * Significant at the 10 percent level.

“Household count (via scoping)” was assessed in a scoping visit prior to the intervention.

“Household count” was assessed in the baseline household visits of the intervention.

The sample excludes 4 villages because of lack of government cooperation to perform the intervention. The analysis excludes 11 villages and their village-pairs in the full sample because we did not observe them in the baseline period prior to the intervention, and 1 village and its pair for lack of observational data throughout the intervention period.

with respect to age and household size disappear entirely (this also occurs with the age restriction alone), and the imbalance with respect to household count shrinks by 25% but remains significant.

We have collected exact GPS coordinates for each household, and in future drafts, we will check whether the household count imbalance disappears if we remove households most distant from the village center. In Table S3, we repeat our primary specification in this restricted sample with better balance and find that our results are qualitatively unchanged.
Table S2: Additional Balance Tests (Individual-Level, After Sample Selection)

Intervention Coefficient	Household Count (via Scoping)	Household Count	Proportion Female	Age	Average Household Size
	-0	12***	0.0036***	0.0305	0.0069
	(2)	(3)	(0.0014)	(0.0661)	(0.0052)

| N individuals | 175,646 | 175,646 | 175,646 | 175,646 | 175,646 |
| N villages | 552 | 552 | 552 | 552 | 552 |

| F | 81.71 |
| Joint-Test Prob > F | 0.000 |

Standard errors are in parentheses.

*** Significant at the 1 percent level. ** Significant at the 5 percent level. * Significant at the 10 percent level.

“Household count (via scoping)” was assessed in a scoping visit prior to the intervention.

“Household count” was assessed in the baseline household visits of the intervention.

The sample excludes 4 villages because of lack of government cooperation to perform the intervention. The analysis excludes 11 villages and their village-pairs in the full sample because we did not observe them in the baseline period prior to the intervention, and 1 village and its pair for lack of observational data throughout the intervention period.

The sample excludes an additional 122,048 individuals up to the age of 30, and 20 villages that have more than 350 households.
Table S3: Symptomatic Seroprevalence (With Controls and Additional Sample Selection)

Intervention Effect	Intervention Effect by Mask Type
Controlling for Number of Households and Sex	
Intervention Coefficient	-0.0006*
(0.0003)	-0.0008*
for Surgical Mask Villages	(0.0004)
Intervention Coefficient	-0.0001
for Cloth Mask Villages	(0.0005)
Average Symptomatic Seroprevalence Rate in Paired Control Villages§	0.0076
N individuals	307,106
N villages	572

| **After Additional Sample Selection** |
Intervention Coefficient	-0.0010**
(0.0005)	-0.0014**
for Surgical Mask Villages	(0.0006)
Intervention Coefficient	-0.0001
for Cloth Mask Villages	(0.0008)
Average Symptomatic-Seroprevalence Rate in Paired Control Villages§	0.0095
N individuals	175,646
N villages	552

Standard errors are in parentheses.

*** Significant at the 1 percent level. ** Significant at the 5 percent level. * Significant at the 10 percent level.
The regression in the top panel includes controls for each control-intervention pair.
The regression in the bottom panel controls for baseline rates of mask wearing, baseline symptom rates, number of households in a village, and sex.
Baseline Symptom Rate is defined as the rate of surveyed individuals in a village who report symptoms coinciding with the WHO definition of a probable COVID-19 case. This is defined as any of the following:
(a) fever and cough;
(b) any three of the following (fever, cough, general weakness/fatigue, headache, muscle aches, sore throat, coryza [nasal congestion or runny nose], dyspnoea [shortness of breath or difficulty breathing], anorexia [loss of appetite]/nausea/vomiting, diarrhoea, altered mental status;
(c) anosmia [loss of smell] and ageusia [loss of taste].
§We report the mean symptomatic-seroprevalence rate at endline. This is not equivalent to the coefficient on the constant due to the inclusion of the pair indicators as controls.
The sample excludes 4 villages because of lack of government cooperation to perform the intervention. The analysis excludes 11 villages and their village-pairs in the full sample because we did not observe them in the baseline period prior to the intervention, and 1 village and its pair for lack of observational data throughout the intervention period.
The analysis includes all people surveyed in the baseline household visits; excluding individuals that we did not collect midline or endline symptoms for, symptomatic individuals that we did not collect blood from, and individuals that we drew blood from but did not test their blood.
The bottom panel runs sample excludes an additional 122,048 individuals up to the age of 30, and 20 villages that have more than 350 households.
F Impact of Masks on Symptoms, Seroprevalence, and Seroconversions

Our primary outcome measures symptomatic seroprevalence: this is the fraction of individuals who are symptomatic during our intervention period and seropositive at endline. Some of these individuals may have antibodies from infections occurring prior to our intervention. If so, the impact of our intervention on symptomatic seroprevalence may understate the impact on symptomatic seroconversions occurring during our intervention (i.e. the fraction of symptomatic infections prevented by masks). In this section, we discuss the relationship between these two quantities.

Let \(SC \), the symptomatic seroconversion rate, denote the probability that an individual is SARS-CoV-2 antibody-positive during our intervention and symptomatic. Then the symptomatic seroprevalence is \(SS = SC + P_{\text{prior}} \), where \(P_{\text{prior}} \) denotes the probability that an individual was infected prior to our intervention and is symptomatic during our intervention for some non-COVID reason.

The change in seroconversions between the treatment and control group is given by \(\Delta SC = SC(1) - SC(0) \) where the notation \(SC(T_i) \) denotes the potential outcome of seroconversions as a function of treatment status. Our goal is to estimate \(\Delta SC/SC(0) \), the percentage change in seroconversions as a result of our intervention.

We observe \(\Delta SS = \Delta SC + \Delta P_{\text{prior}} \). Additionally, we observe \(SS(0) = SC(0) + P_{\text{prior}}(0) \). Suppose that masks prevent a fraction \(\alpha \) of non-COVID symptoms. Then, \(P_{\text{prior}}(1) = (1 - \alpha)P_{\text{prior}}(0) \) and \(\Delta P_{\text{prior}} = -\alpha P_{\text{prior}}(0) \). Then we have:

\[
\frac{\Delta SS}{SS(0)} = \frac{\Delta SC - \alpha P_{\text{prior}}(0)}{SC(0) + P_{\text{prior}}(0)}
\]

Rearranging (and substituting \(SC(0) = SS(0) - P_{\text{prior}}(0) \)), we obtain:

\[
\frac{\Delta SC}{SC(0)} = \frac{\Delta SS}{SS(0)} + \frac{P_{\text{prior}}(0)(\alpha + \frac{\Delta SS}{SS(0)})}{SS(0) - P_{\text{prior}}(0)}
\]

Note that if we assume that symptomatic seroconversions fall by exactly the same fraction as
other symptomatic conditions, then we also have $SC(1) = (1 - \alpha)SC(0)$, and solving equation 4 gives $\frac{\Delta S_{SS}}{S_{SS}(0)} = -\alpha = \frac{\Delta SC}{SC(0)}$. In other words, the percentage change in seroconversions equals the percentage change in seroprevalence provided either that $P_{prior} = 0$ or if the intervention works only by alleviating symptoms (and does so equally for COVID-19 and non-COVID diseases).

More generally, if the intervention both alleviates symptoms and reduces infections, then the relative impact on symptomatic seroconversions and symptomatic seroprevalence will depend on whether masks are more effective at preventing COVID-19 or other respiratory diseases (with a larger proportional reduction in symptomatic seroconversions in the former case). The magnitude of the difference between symptomatic seroconversions and symptomatic seropositives will depend on the fraction of symptomatic seroconversions which are pre-existing at baseline.

G Mechanisms

Our intervention combines multiple distinct elements: we provide people with free masks; we provide information about why mask-wearing is important; we conduct mask promotion in the form of monitors encouraging people to wear masks and stopping non-mask-wearing individuals on roads and public places to remind them about the importance of masks; we partner with local public officials to encourage mask-wearing at mosques and markets; and in some villages, we provide a variety of reminders and commitment devices as well as incentives for village leaders. In this section, we attempt to decompose which elements were most critical to increase mask use. We first report results from several cross-randomizations, and then we report non-randomized evidence based on changes over time as our intervention details changed between the rounds of piloting, launch of the full project, and thereafter.

G.1 Village-level Cross-randomizations

Results from the same regression specification as our primary analysis, adding indicators for each village-level cross-randomization are reported in Figure S1 and Table S4. None of the village-level
cross-randomizations had any statistically significant impact on mask-wearing behavior, beyond our basic intervention package. These null effects are fairly precise (with standard errors ranging from 2.6-3.5 percentage points). Text message reminders, incentives for village-leaders, or explicit commitment signals explain little of the mask increase we document.
The figures correspond to the regressions in S4, upper panel, among the full surveillance data. Villages were assigned to the treatment or control arms of one of the following four village-level randomizations:

Texts: 0% or 100% of households in a village receive text reminders on the importance of mask-wearing;

Incentives: Villages either received no incentive, a certificate, or a monetary reward for meeting a mask-wearing threshold;

Public Signage: All or none of the households in a village are asked to publicly declare they are a mask-wearing household;

Mask Type: Villages receive either a cloth or surgical mask.

For a more detailed description of the village-level cross randomizations, see Section 3.4.
G.2 Household-level Cross-randomizations

We analyzed the effects of household-specific randomized treatments (e.g., verbal commitments or not) by regressing the probability of wearing a mask color corresponding to the treatment on indicators for each household-level randomization, as well as controls for color and surgical masks (recall that the mask-color corresponding to treatment varied across villages).

Results of the household-level cross-randomizations are reported in Figure S2 and Table S5. The coefficients indicate the impact of each cross-randomization relative to the core intervention (identified since some villages had no household randomization other than mask color). Once again, we saw no significant effects of any of the household-level cross-randomizations: compared to self-protection messaging alone, altruistic messaging had no greater impact on mask-wearing, and twice-weekly text messages and a verbal commitment had no significant effects.

We did see an impact of mask color on mask adoption. In villages where surgical masks were distributed, blue surgical masks were 2.7 percentage points more likely than green surgical masks to be observed. In villages where cloth masks were distributed, purple masks were 2.2 percentage points less likely than red masks to be observed.
Coefficient	Full	No Active Promotion	Mosques	Markets	Other Locations
No Baseline Controls					
Mask Type (Surgical)	0.027	0.027	0.063*	0.017	0.019
	(0.025)	(0.025)	(0.035)	(0.026)	(0.025)
Commitment w/ Signage	−0.010	−0.007	−0.018	−0.008	−0.008
	(0.026)	(0.026)	(0.034)	(0.027)	(0.026)
Incentive Type					
Monetary	−0.023	−0.026	0.011	−0.035	−0.028
	(0.034)	(0.034)	(0.045)	(0.034)	(0.035)
Certificate	0.001	−0.002	0.019	0.003	−0.010
	(0.031)	(0.031)	(0.039)	(0.031)	(0.032)
100% Text	−0.027	−0.023	−0.042	−0.024	−0.017
	(0.026)	(0.025)	(0.033)	(0.026)	(0.026)
With Baseline Controls					
Mask Type (Surgical)	0.029	0.029	0.063*	0.018	0.021
	(0.025)	(0.025)	(0.034)	(0.026)	(0.025)
Commitment w/ Signage	−0.007	−0.003	−0.021	−0.004	−0.005
	(0.026)	(0.025)	(0.033)	(0.026)	(0.026)
Incentive Type					
Monetary	−0.021	−0.024	0.013	−0.031	−0.027
	(0.033)	(0.033)	(0.043)	(0.033)	(0.035)
Certificate	0.006	0.003	0.026	0.008	−0.006
	(0.031)	(0.030)	(0.039)	(0.030)	(0.031)
100% Text	−0.026	−0.022	−0.037	−0.024	−0.017
	(0.025)	(0.025)	(0.033)	(0.026)	(0.026)
N villages	286	286	285	285	284

Standard errors are in parentheses.

*** Significant at the 1 percent level. ** Significant at the 5 percent level. * Significant at the 10 percent level.

The baseline control regressions include controls for baseline rates of mask-wearing and baseline symptom rates.

Baseline Symptom Rate is defined as the rate of surveyed individuals in a village who report symptoms coinciding with the WHO definition of a probable COVID-19 case. This is defined as any of the following:

(a) fever and cough;
(b) any three of the following (fever, cough, general weakness/fatigue, headache, muscle aches, sore throat, coryza [nasal congestion or runny nose], dyspnoea [shortness of breath or difficulty breathing], anorexia [loss of appetite]/nausea/vomiting, diarrhoea, altered mental status;
(c) anosmia [loss of smell] and ageusia [loss of taste].

We assume that (1) all reported symptoms were acute onset, (2) all people live or work in an area with high risk of transmission of virus and (3) all people have been a contact of a probable or confirmed case of COVID-19 or are linked to a COVID-19 cluster.

"Other Locations” include the Tea Stall, at the entrance of the restaurant as patrons enter, and the main road to enter the village.

The sample excludes 4 villages because of lack of government cooperation to perform the intervention. The analysis excludes a remaining 12 villages and their village-pairs in the full sample, 13 villages and their pairs in the mosque and market sub-samples, and 14 villages and their pairs in the other location sub-sample because we did not observe them in the baseline period prior to the intervention.
Figure S2: Household-Level Cross Randomizations

The figure corresponds to the regression presented in Table S5. Villages were assigned to the treatment or control arms of one of the following four village-level randomizations:

Texts: 0%, 50% of 100% of households in a village receive text reminders on the importance of mask-wearing;

Messaging: Households receive messaging emphasizing the altruistic or self-protective benefits of mask-wearing;

Verbal Commitment: Households were asked to verbally commit to mask-wearing;

Mask Colors: Surgical masks distributed to households were blue or green. Cloth masks distributed to households were purple or red.

For a more detailed description of the household-level cross-randomizations, see Section 3.4.
G.3 Mask Promotion

As noted above, we ran two pilots prior to launching the full project. Both pilots were conducted in Naogaon and Joypurhat districts, but in different unions. While the unions were not selected at random, there was no systematic difference in the selection process between the two pilots. In both cases, unions were selected based on convenience and proximity to existing Greenvoice personnel.

Both pilots included elements 1, 2, 3, and 5 enumerated in Section 3.3: masks were distributed at households, markets, and mosques, and there was role-modeling and advocacy by local leaders, including Imams. The second pilot added to these elements explicit mask promotion: mask promoters patrolled public areas a few times a week and asked those not wearing masks to put on a mask. The full intervention also included mask promotion.

The comparison between the two pilots is thus instructive about the impact of active mask promotion. This comparison is shown in Table A11. The difference is striking. The first pilot increased mask-use by 10.9 percentage points (insignificantly different from zero). The second pilot, which included mask promotion, increased mask-use by 28.4 percentage points, comparable to the 29.0 percentage points we see several months later in our full intervention. The presence of mask promotion appears to be crucial for the success of our intervention.
Table S5: Household-Level Cross-Randomizations

Coefficient	Full
Household-Level Text Randomization	
50% of Households in Village	−0.032
	(0.031)
100% of Households in Village	−0.028
	(0.026)
Altruistic Messages	−0.030
	(0.026)
Verbal Commitment	−0.024
	(0.025)
Mask Color	
Blue vs Green	0.027*
	(0.016)
Purple vs Red	−0.022**
	(0.011)
N villages	286

Standard errors are in parentheses.

*** Significant at the 1 percent level. ** Significant at the 5 percent level. * Significant at the 10 percent level.

The regression includes a control for the mask type to separate the effect of mask colors.

Surgical masks distributed to households were blue or green. Cloth masks distributed to households were purple or red.

The sample excludes 4 villages because of lack of government cooperation to perform the intervention. The analysis excludes 11 villages because we did not observe them in the baseline period prior to the intervention, and 1 village for lack of observational data throughout the intervention period.
H Additional Preregistered Specifications

In this section, we discuss additional preregistered specifications not reported in the text. For reference, our pre-analysis plan is available at: https://osf.io/vzd6/.

Our pre-registration document suggests that we can compute the impact of our intervention on seroconversions by comparing our effect size to the difference between endline and baseline seropositives among individuals symptomatic during our intervention. As the analysis in Appendix F makes clear, this is not quite correct. If \(P_{\text{prior}} \), the fraction of symptomatic seropositives due to infections prior to baseline, is zero, then the estimated impact on symptomatic seropositives equals the impact on symptomatic seroconversions and no further adjustment is needed. More generally, the impact on symptomatic seropositives incorporates both seroconversions, as well as reductions in symptomatic seroconversions due to non-COVID respiratory diseases. We cannot determine the impact on seroconversions without knowing both \(P_{\text{prior}}(0) \) and the relative impact of masks on COVID-19 and non-COVID respiratory diseases. If the latter two quantities are equal in proportion, the impact on symptomatic seropositives again equals the impact on symptomatic seroconversions with no further adjustment needed.

Given that we find no evidence of an impact of any of the cross-randomizations, we did not estimate the specification flexibly interacting them.

We did not proceed with the “individual intervention” described in the pre-registration document because initial results suggested that we were able to entice only a small number of market vendors to wear masks.

In Table S6, we report our pre-specified instrumental variable regressions. If we assume that the entire impact of our intervention is via proper mask-wearing, then we estimate that going from zero percent to one hundred percent of villagers wearing masks would reduce symptomatic seroprevalence by -0.0024, a 32% reduction. Essentially, this specification scales our “intent-to-treat” estimates by a factor of 3.33, the reciprocal of the first stage.
We have not yet run regressions with seroconversions as the outcome because we are still completing testing of our baseline samples. We will report these regressions when we finish that testing.

We did not collect the intended pharmacy data to use as an auxiliary outcome, and hospitalization and mortality data was not available. We also do not yet have data on distance to nearby city or estimated average village-wealth.
Table S6: IV Regressions

	Symptomatic Seroprevalence	WHO-Defined COVID-19 Symptoms
No Baseline Controls		
Proper Mask-Wearing Coefficient	-0.0024**	-0.0336***
	(0.0012)	(0.0076)
With Baseline Controls		
Proper Mask-Wearing Coefficient	-0.0024**	-0.0334***
	(0.0012)	(0.0075)

| | 307,106 | 323,596 |
| N Individuals | 572 | 572 |

Standard errors are in parentheses.

*** Significant at the 1 percent level. ** Significant at the 5 percent level. * Significant at the 10 percent level.

All regressions also include an indicator for each control-intervention pair. The regressions “with baseline controls” include controls for baseline rates of mask-wearing and baseline symptom rates.

Baseline Symptom Rate is defined as the rate of surveyed individuals in a village who report symptoms coinciding with the WHO definition of a probable COVID-19 case. This is defined as any of the following:
(a) fever and cough;
(b) any three of the following (fever, cough, general weakness/fatigue, headache, muscle aches, sore throat, coryza [nasal congestion or runny nose], dyspnoea [shortness of breath or difficulty breathing], anorexia [loss of appetite]/nausea/vomiting, diarrhoea, altered mental status;
(c) anosmia [loss of smell] and ageusia [loss of taste].

§We report the mean rate of symptomatic status at endline. This is not equivalent to the coefficient on the constant due to the inclusion of the pair indicators as controls.

The sample excludes 4 villages because of lack of government cooperation to perform the intervention. The analysis excludes 11 villages and their village-pairs in the full sample because we did not observe them in the baseline period prior to the intervention, and 1 village and its pair for lack of observational data throughout the intervention period. The analysis includes all people surveyed in the baseline household visits, excluding individuals that we did not collect midline or endline symptoms for.

Proper Mask-Wearing is defined as the village-level rate of individuals observed properly wearing mask during the intervention period. The instrument is the treatment status of the village.
I Intervention Cost and Benefit Estimates

The average person-day of staff time in our intervention cost $20 of wages plus $0.50 of communication costs. All management salaries, benefits, support, internal monitoring, and equipment costs $71,696. We exclude these from the below calculation as they will vary from setting to setting. As reported in the main text, we estimate that we induced 51,660 people to regularly wear masks, or 173 people per intervention village.

Costs per village The main fixed costs of the intervention (as opposed to costs that vary over days):

- Masks for initial household distribution (3 masks per household), ($0.13 per surgical mask and $0.50 per cloth masks), 68,775 cloth masks, and 136,770 surgical masks
- Staffing for initial household distribution (4 person-days per village)
- 1 person-day of training per village
- PPE for staff: $70 per village
- Media costs: $100 per village
- Other transportation and materials costs: $30 per village

This amounts to fixed costs of: $302.50 per village for non-mask materials, $347.35 worth of cloth masks per village, and $89.35 of surgical masks per village. We estimate that we induced 598 x 29% = 173 people per village to wear masks, which amounts to fixed costs of $3.75 per adult induced to wear a mask in cloth mask villages, and $2.26 per adult in surgical mask villages.

Costs per village-day of intervention The main costs paid per day of the intervention:

- 1,089,947 masks distributed through promotion over an average of 29 days per village. Of these, there were 301,868 cloth masks distributed (105 cloth masks per day per village) and 788,079 surgical masks distributed (160 surgical masks per day per village).
• 14 person-days per week per village in week 1, 8 person-days per week per village in week 2, 6 person-days per village in weeks 3, 4 and 5, and 4 person-days per week per village thereafter.

Over the first four weeks of our intervention, this amounts to mask supply costs of $52.57 per village-day for cloth masks and $17.75 per village-day for surgical masks. The promotion costs were $24 per village-day. Dividing by the number of people induced to wear masks per village (173), we obtain costs of $0.44 per person-day in cloth mask villages and $0.24 per person-day in surgical mask villages. Using these figures, we calculated that after subtracting surveillance costs, our intervention cost $17.00 for each person induced to regularly wear a cloth mask and $9.49 for each person to regularly wear a surgical mask.

Cost-effectiveness To determine the impact of the intervention using surgical masks in reducing mortality from COVID-19 in Bangladesh, we used estimates of current and projected deaths from COVID-19, including excess deaths that occurred over the same time period (May 1, 2021-September 1, 2021)[65]. The lower bound includes only COVID-19 reported deaths. The mid-range estimates include 50% of excess deaths as being directly attributable to COVID-19. The upper bound includes all excess deaths that occurred over the same time period as being directly attributable to COVID-19. We projected the impact of the intervention using surgical masks on deaths over four months following one month of intervention. We calculated the absolute risk reduction as the difference in death rate over the intervening period with and without the surgical mask intervention. We applied a 35% reduction of deaths among those 60 and older and a 23% reduction of deaths among those aged 50-60 based on the study findings and age-adjusted COVID-19 mortality rates for Bangladesh [66]. We assumed no change in deaths for those under age 50. We determined the number needed to treat by taking the inverse of the absolute risk reduction.

As shown in Table S7, for one month of the intervention, the number needed to treat to prevent one death ranges from 6,682 to 35,001. Our estimates above suggest that the total cost of our intervention per person induced to wear a mask for a month was: $3.75 + $0.44 x 30 = $17.00
in cloth mask villages and $2.26 + $0.24 \times 30 = $9.49 in surgical mask villages. By multiplying the number needed to treat times the cost per person induced to wear a mask, we estimate that after four months, the intervention as we conducted it (with cloth and surgical masks) cost between $63,408 and $332,161 per life saved, depending on mortality estimates. Notably, we do not assume continued mask-wearing beyond one month. Rather, infections prevented during the one month of the intervention propagate into infections prevented in future months. Furthermore, this does not account for reductions of morbidity associated with hospitalization or other complications of COVID-19.

Table S7: Calculation of Number Needed to Treat and Cost per Life Saved

	COVID-19-related Deaths (May 1 - Sept 1, 2021)*	Estimated Deaths with Intervention†	ARR	NNT	Cost per Life Saved - Intervention (USD)	Cost per Life Saved - at Scale (USD)
Lower bound	17,984	13,233	2.86E-05	35,001	$332,161	$52,502
Mid-range	56,097	41,276	8.91E-05	11,221	$106,487	$16,831
Upper bound	94,209	69,319	1.50E-04	6,682	$63,408	$10,022

ARR = Absolute Risk Reduction; NNT = Number Needed to Treat
*https://covid19.healthdata.org/bangladesh
†Applying 35% reduction to deaths in the 60+ age group and 23% reduction to deaths in the 50-59 age group

Many cost elements can be brought down further through "at-scale implementation". This is because some of our information campaigns and promotion activities had to be individualized for the purposes of conducting a trial with a control group, whereas at scale the government could use mass media and social media based dissemination strategies more cost-effectively. Additionally, surgical masks are about 8 times cheaper than cloth masks, and factory production costs can be brought down at scale. We calculate based on our current at scale activities that conducting the intervention for one month for the entire country of Bangladesh would cost $1.50 USD/person. Following out the effects for four months after one month of intervention, this translates to sub-
substantially lower costs per life saved: $10,022-$52,502 (Table S7).

For context, [63] estimate that the value of a statistical life is $205,000 in Bangladesh, implying that our intervention at scale is 4-20 times more cost-effective than what the typical Bangladeshi would be willing to pay to reduce mortality risk, and therefore a "very good buy" for policymakers. This cost-effectiveness analysis was not pre-specified.
J Polling Policy Makers

Table S8: What do you think was the increase in mask-wearing as a result of household mask distribution and mask promotion in the community?

	WHO	NCAER	World Bank	Frequency	Percent
No change	0	1	3	4	3%
Increased by 5 percentage points	5	10	8	23	20%
Increased by 10 percentage points	4	12	8	24	21%
Increased by 20 percentage points	4	19	9	32	28%
Increased by 30 percentage points	4	7	11	22	19%
Increased by 40 percentage points	2	6	3	11	9%
Total	19	55	42	116	100%

These are polls taken in response to the prompt: “We provided free masks to all households and promoted mask-wearing in mosques and markets with community leaders and imams. What do you think happened to mask-wearing relative to the 13% proper mask usage rate in the control villages without any interventions?”

The results were collected from audience participants during live presentations to the World Health Organization (WHO), the National Council of Applied Economic Research (NCAER) in Delhi, and the World Bank.
Table S9: What do you think was the additional effect of mask promoters reminding people to wear masks?

	WHO	NCAER	World Bank	Frequency	Percent
No change	0	1	4	5	4%
Increased by 5 percentage points	2	4	5	11	9%
Increased by 10 percentage points	6	20	5	31	26%
Increased by 20 percentage points	2	10	14	26	22%
Increased by 30 percentage points	4	10	11	25	21%
Increased by 40 percentage points	5	10	7	22	18%
Total	19	55	46	120	100%

These are polls taken in response to the prompt: “In addition to the mask distribution and promotion activities described previously, we had mask promoters periodically monitor passers-by and remind them to wear masks. What do you think happened to mask-wearing relative to the 13% proper mask usage rate in the control villages without any interventions?”

The results were collected from audience participants during live presentations to the World Health Organization (WHO), the National Council of Applied Economic Research (NCAER) in Delhi, and the World Bank.

Table S10: Do you think text message reminders to wear masks further increased mask-wearing?

	WHO	NCAER	World Bank	Frequency	Percent
Yes	0	33	32	65	68%
No	0	19	11	30	32%
Total	0	52	43	95	100%

These are polls taken in response to the prompt: “We sent text reminders to wear masks. Do you think this increased mask-wearing further?”

The results were collected from audience participants during live presentations to the World Health Organization (WHO), the National Council of Applied Economic Research (NCAER) in Delhi, and the World Bank.
Table S11: How do you think mask distribution and promotion affected physical distancing?

	WHO	NCAER	World Bank	Frequency	Percent
Physical distancing decreased	5	0	8	13	22%
Physical distancing was unchanged	9	0	16	25	42%
Physical distancing increased	5	0	17	22	37%
Total	19	0	41	60	100%

These are polls taken in response to the prompt: “How did mask distribution and promotion affect individuals’ physical distancing?”
The results were collected from audience participants during live presentations to the World Health Organization (WHO), the National Council of Applied Economic Research (NCAER) in Delhi, and the World Bank.

Table S12: Do you think incentive payments to village leaders further increased mask-wearing?

	WHO	NCAER	World Bank	Frequency	Percent
Yes	0	32	0	32	62%
No	0	20	0	20	38%
Total	0	52	0	52	100%

These are polls taken in response to the prompt: “We promised the village and leaders an incentive payment if we saw increases in mask-wearing. Do you think this increased mask-wearing further?”
The results were collected from audience participants during live presentations to the World Health Organization (WHO), the National Council of Applied Economic Research (NCAER) in Delhi, and the World Bank.

Table S13: Do you think verbal commitments and signage to wearing masks further increased mask-wearing?

	WHO	NCAER	World Bank	Frequency	Percent
Yes	0	40	0	40	77%
No	0	12	0	12	23%
Total	0	52	0	52	100%

These are polls taken in response to the prompt: “We had households verbally committing to wear masks and putting up signs to display to others that they were a mask-wearing household. Do you think this increased mask-wearing further?”
The results were collected from audience participants during live presentations to the World Health Organization (WHO), the National Council of Applied Economic Research (NCAER) in Delhi, and the World Bank.