Representability of Hom implies flatness

Nitin Nitsure

Abstract

Let \(X \) be a projective scheme over a noetherian base scheme \(S \), and let \(\mathcal{F} \) be a coherent sheaf on \(X \). For any coherent sheaf \(\mathcal{E} \) on \(X \), consider the set-valued contravariant functor \(\mathcal{H}om(\mathcal{E}, \mathcal{F}) \) on \(S \)-schemes, defined by \(\mathcal{H}om(\mathcal{E}, \mathcal{F})(T) = \text{Hom}(\mathcal{E}_T, \mathcal{F}_T) \) where \(\mathcal{E}_T \) and \(\mathcal{F}_T \) are the pull-backs of \(\mathcal{E} \) and \(\mathcal{F} \) to \(X_T = X \times_S T \). A basic result of Grothendieck ([EGA] III 7.7.8, 7.7.9) says that if \(\mathcal{F} \) is flat over \(S \) then \(\mathcal{H}om(\mathcal{E}, \mathcal{F}) \) is representable for all \(\mathcal{E} \).

We prove the converse of the above, in fact, we show that if \(L \) is a relatively ample line bundle on \(X \) over \(S \) such that the functor \(\mathcal{H}om(L^{-n}, \mathcal{F}) \) is representable for infinitely many positive integers \(n \), then \(\mathcal{F} \) is flat over \(S \). As a corollary, taking \(X = S \), it follows that if \(\mathcal{F} \) is a coherent sheaf on \(S \) then the functor \(T \mapsto H^0(T, \mathcal{F}_T) \) on the category of \(S \)-schemes is representable if and only if \(\mathcal{F} \) is locally free on \(S \). This answers a question posed by Angelo Vistoli.

The techniques we use involve the proof of flattening stratification, together with the methods used in proving the author’s earlier result (see [N1]) that the automorphism group functor of a coherent sheaf on \(S \) is representable if and only if the sheaf is locally free.

Let \(S \) be a noetherian scheme, and let \(X \) be a projective scheme over \(S \). If \(\mathcal{E} \) and \(\mathcal{F} \) are coherent sheaves on \(X \), consider the contravariant functor \(\mathcal{H}om(\mathcal{E}, \mathcal{F}) \) from the category of schemes over \(S \) to the category of sets which is defined by putting

\[
\mathcal{H}om(\mathcal{E}, \mathcal{F})(T) = \text{Hom}(\mathcal{E}_T, \mathcal{F}_T)
\]

for any \(S \)-scheme \(T \to S \), where \(X_T = X \times_S T \), and \(\mathcal{E}_T \) and \(\mathcal{F}_T \) denote the pull-backs of \(\mathcal{E} \) and \(\mathcal{F} \) under the projection \(X_T \to X \). This functor is clearly a sheaf in the fpqc topology on \(\text{Sch}/S \). It was proved by Grothendieck that if \(\mathcal{F} \) is flat over \(S \) then the above functor is representable (see [EGA] III 7.7.8, 7.7.9).

Our main theorem is as follows, which is a converse to the above.

Theorem 1 Let \(S \) be a noetherian scheme, \(X \) a projective scheme over \(S \), and \(L \) a relatively very ample line bundle on \(X \) over \(S \). Let \(\mathcal{F} \) be a coherent sheaf on \(X \). Then the following three statements are equivalent:

1. The sheaf \(\mathcal{F} \) is flat over \(S \).
(2) For any coherent sheaf \(\mathcal{E} \) on \(X \), the set-valued contravariant functor \(\text{Hom}(\mathcal{E}, \mathcal{F}) \) on \(S \)-schemes, defined by \(\text{Hom}(\mathcal{E}, \mathcal{F})(T) = \text{Hom}_X(\mathcal{E}_T, \mathcal{F}_T) \), is representable.

(3) There exist infinitely many positive integers \(r \) such that the set-valued contravariant functor \(\mathcal{G}^{(r)} \) on \(S \)-schemes, defined by \(\mathcal{G}^{(r)}(T) = H^0(X_T, \mathcal{F}_T \otimes L^{\otimes r}) \), is representable.

In particular, taking \(X = S \) and \(L = \mathcal{O}_X \), we get the following corollary.

Corollary 2 Let \(S \) be a noetherian scheme, and \(\mathcal{F} \) a coherent sheaf on \(S \). Consider the contravariant functor \(F \) from \(S \)-schemes to sets, which is defined by putting \(F(T) = H^0(T, f^*\mathcal{F}) \) for any \(S \)-scheme \(f : T \to S \). This functor (which is a sheaf in the fpqc topology) is representable if and only if \(F \) is locally free as an \(\mathcal{O}_S \)-module.

Note that the affine line \(\mathbb{A}^1_S \) over a base \(S \) admits a ring-scheme structure over \(S \) in the obvious way. A **linear scheme** over a scheme \(S \) will mean a module-scheme \(V \to S \) under the ring-scheme \(\mathbb{A}^1_S \). This means \(V \) is a commutative group-scheme over \(S \) together with a ‘scalar-multiplication’ morphism \(\mu : \mathbb{A}^1_S \times_S V \to V \) over \(S \), such that the module axioms (in diagrammatic terms) are satisfied.

A **linear functor** \(F \) on \(S \)-schemes will mean a contravariant functor from \(S \)-schemes to sets together with the structure of an \(H^0(T, \mathcal{O}_T) \)-module on \(F(T) \) for each \(S \)-scheme \(T \), which is well-behaved under any morphism \(f : U \to T \) of \(S \)-schemes in the following sense: \(F(f) : F(T) \to F(U) \) is a homomorphism of the underlying additive groups, and \(F(f)(a \cdot v) = f^*(a) \cdot (F(f)v) \) for any \(a \in H^0(T, \mathcal{O}_T) \) and \(v \in F(T) \). In particular note that the kernel of \(F(f) \) will be an \(H^0(T, \mathcal{O}_T) \)-submodule of \(F(T) \).

The functor of points of a linear scheme is naturally a linear functor. Conversely, it follows by the Yoneda lemma that if a linear functor \(F \) on \(S \)-schemes is representable, then the representing scheme \(V \) is naturally a linear scheme over \(S \).

For example, the linear functor \(T \mapsto H^0(T, \mathcal{O}_T)^n \) (where \(n \geq 0 \)) is represented by the affine space \(\mathbb{A}^n_S \) over \(\text{Spec } \mathbb{Z} \), with its usual linear-scheme structure. More generally, for any coherent sheaf \(\mathcal{Q} \) on \(S \), the scheme \(\text{Spec } \text{Sym}(\mathcal{Q}) \) is naturally a linear-scheme over \(S \), where \(\text{Sym}(\mathcal{Q}) \) denotes the symmetric algebra of \(\mathcal{Q} \) over \(\mathcal{O}_S \). It represents the linear functor \(F(T) = \text{Hom}(\mathcal{Q}_T, \mathcal{O}_T) \) where \(\mathcal{Q}_T \) denotes the pull-back of \(\mathcal{Q} \) under \(T \to S \).

With this terminology, the functor \(\mathcal{G}^{(r)}(T) = H^0(X_T, \mathcal{F}_T \otimes L^{\otimes r}) \) of Theorem 1(3) is a linear functor. Therefore, if a representing scheme \(\mathcal{G}^{(r)} \) exists, it will naturally be a linear scheme. Note that each \(\mathcal{G}^{(r)} \) is obviously a sheaf in the fpqc topology.

The proof of Theorem 1 is by a combination of the result of Grothendieck on the existence of a flattening stratification ([TDTE -IV]) together with the techniques which were employed in [N1] to prove the following result.

Theorem 3 (Representability of the functor \(GL_E \)) Let \(S \) be a noetherian scheme, and \(E \) a coherent \(\mathcal{O}_S \)-module. Let \(GL_E \) denote the contravariant functor on \(S \)-schemes which associates to any \(S \)-scheme \(f : T \to S \) the group of all \(\mathcal{O}_T \)-linear
automorphisms of the pull-back $E_T = f^* E$ (this functor is a sheaf in the fpqc topology). Then GL_E is representable by a group scheme over S if and only if E is locally free.

We re-state Grothendieck’s result (see [TDTE IV]) on the existence of a flattening stratification in the following form, which emphasises the role of the direct images $\pi_*(\mathcal{F}(r))$. For an exposition of flattening stratification, see Mumford [M] or [N2].

Theorem 4 (Grothendieck) Let S be a noetherian scheme, and let \mathcal{F} be a coherent sheaf on \mathbf{P}^n_S where $n \geq 0$. There exists an integer m, and a collection of locally closed subschemes $S_f \subset S$ indexed by polynomials $f \in \mathbb{Q}[\lambda]$, with the following properties.

(i) The underlying set of S_f consists of all $s \in S$ such that the Hilbert polynomial of \mathcal{F}_s is f, where \mathcal{F}_s denotes the pull-back of \mathcal{F} to the schematic fibre \mathbf{P}^n_s over s of the projection $\pi : \mathbf{P}^n_S \to S$. All but finitely many S_f are empty (only finitely many Hilbert polynomials occur). In particular, the S_f are mutually disjoint, and their set-theoretic union is S.

(ii) For each $r \geq m$, the higher direct images $R^j \pi_*(\mathcal{F}(r))$ are zero for $j \geq 1$ and the subschemes S_f give the flattening stratification for the direct image $\pi_*(\mathcal{F}(r))$, that is, the morphism $i : \coprod_f S_f \to S$ induced by the locally closed embeddings $S_f \hookrightarrow S$ has the universal property that for any morphism $g : T \to S$, the sheaf $g^* \pi_*(\mathcal{F}(r))$ is locally free on T if and only if g factors via $i : \coprod_f S_f \to S$.

(iii) The subschemes S_f give the flattening stratification for \mathcal{F}, that is, for any morphism $g : T \to S$, the sheaf $\mathcal{F}_T = (1 \times g)^* \mathcal{F}$ on \mathbf{P}^n_T is flat over T if and only if g factors via $i : \coprod_f S_f \to S$. In particular, \mathcal{F} is flat over S if and only if each S_f is an open subscheme of S.

(iv) Let $\mathbb{Q}[\lambda]$ be totally ordered by putting $f_1 < f_2$ if $f_1(p) < f_2(p)$ for all $p \gg 0$. Then the closure of S_f in S is set-theoretically contained in $\bigcup_{g \geq f} S_g$. Moreover, whenever S_f and S_g are non-empty, we have $f < g$ if and only if $f(p) < g(p)$ for all $p \geq m$.

The following elementary lemma of Grothendieck on base-change does not need any flatness hypothesis. The price paid is that the integer r_0 may depend on ϕ. (See [N2] for a cohomological proof.)

Lemma 5 Let $\phi : T \to S$ be a morphism of noetherian schemes, let \mathcal{F} a coherent sheaf on \mathbf{P}^n_S, and let \mathcal{F}_T denote its pull-back under the induced morphism $\mathbf{P}^n_T \to \mathbf{P}^n_S$. Let $\pi_S : \mathbf{P}^n_S \to S$ and $\pi_T : \mathbf{P}^n_T \to T$ denote the projections. Then there exists an integer r_0 such that the base-change homomorphism $\phi^* \pi_{S*} \mathcal{F}(r) \to \pi_{T*} \mathcal{F}_T(r)$ is an isomorphism for all $r \geq r_0$.

Proof of Theorem 1 The implication (1) \Rightarrow (2) follows by [EGA] III 7.7.8, 7.7.9, while the implication (2) \Rightarrow (3) follows by taking $\mathcal{E} = L^{\otimes -r}$. Therefore it now remains to show the implication (3) \Rightarrow (1). This we do in a number of steps.
Step 1: Reduction to $S = \text{Spec } R$ with R local, $X = P^n_S$ and $L = \mathcal{O}_{P^n_S}(1)$

Suppose that \mathcal{F} is not flat over S, but the linear functor $\mathcal{G}^{(r)}$ on S-schemes, defined by $\mathcal{G}^{(r)}(T) = H^0(X_T, \mathcal{F}_T \otimes L^{\otimes r})$, is representable by a linear scheme $G^{(r)}$ over S for arbitrarily large integers r. As \mathcal{F} is not flat, by definition there exists some $x \in X$ such that the stalk \mathcal{F}_x is not a flat module over the local ring $\mathcal{O}_{S, \pi(x)}$ where $\pi : X \to S$ is the projection. Let $U = \text{Spec } \mathcal{O}_{S, \pi(x)}$, let \mathcal{F}_U be the pull-back of \mathcal{F} to $X_U = X \times_S U$ and let $G^{(r)}_U$ denote the pull-back of $G^{(r)}$ to U. Then \mathcal{F}_U is not flat over U but for any integer m, there exists an integer $r \geq m$ such that the functor $\mathcal{G}^{(r)}_U$ on U-schemes, defined by $\mathcal{G}^{(r)}_U(T) = H^0(X_T, \mathcal{F}_T \otimes L^{\otimes r})$, is representable by the U-scheme $G^{(r)}_U$.

Therefore, by replacing S by U, we can assume that S is of the form $\text{Spec } R$ where R is a noetherian local ring. Let $i : X \hookrightarrow P^n_S$ be the embedding given by L. Then replacing \mathcal{F} by $i_* \mathcal{F}$, we can further assume that $X = P^n_S$ and $L = \mathcal{O}_{P^n_S}(1)$.

Step 2: Flattening stratification of $\text{Spec } R$ There exists an integer m as asserted by Theorem 11 such that for any $r \geq m$, the flattening stratification of S for the sheaf $\pi_* \mathcal{F}(r)$ on S is the same as the flattening stratification of S for the sheaf \mathcal{F} on P^n_S. Let $r \geq m$ be any integer. As \mathcal{F} is not flat over $S = \text{Spec } R$, the sheaf $\pi_* \mathcal{F}(r)$ is not flat. Let $M_r = H^0(S, \pi_* \mathcal{F}(r))$, which is a finite R-module. Let $m \subset R$ be the maximal ideal, and let $k = R/m$ the residue field. Let $s \in S = \text{Spec } R$ be the closed point, and let $d = \dim_k(M_r/mM_r)$. Then there exists a right-exact sequence of R-modules of the form

$$R^d \xrightarrow{\psi} R^d \to M_r \to 0$$

Let $I \subset R$ be the ideal formed by the matrix entries of the $(d \times d)$-matrix ψ. Then I defines a closed subscheme $S' \subset S$ which is the flattening stratification of S for M_r. As M_r is not flat by assumption, I is a non-zero proper ideal in R.

It follows from Theorem 11 that I is independent of r as long as $r \geq m$.

Step 3: Reduction to artin local case with principal I with $mI = 0$ Let $I = (a_1, \ldots, a_t)$ where a_1, \ldots, a_t is a minimal set of generators of I. Let $J \subset R$ be the ideal defined by

$$J = (a_2, \ldots, a_t) + mI$$

Then note that $J \subset I \subset m$, and the quotient $R' = R/J$ is an artin local R-algebra with maximal ideal $m' = m/J$, and $I' = I/J$ is a non-zero principal ideal which satisfies $m'I' = 0$. For the base-change under $f : \text{Spec } R' \to \text{Spec } R$, the flattening stratification $f^* \pi_* \mathcal{F}(r)$ is defined by the ideal I' for $r \geq m$. Let \mathcal{F}' denote the pull-back of \mathcal{F} to $P^n_{R'}$, and let $\pi'_F : P^n_{R'} \to \text{Spec } R'$ the projection. As f is a morphism of noetherian schemes, by Lemma 11 there exists some integer m' such that the base-change homomorphism $f^* \pi_* \mathcal{F}(r) \to \pi'_F \mathcal{F}(r)$ is an isomorphism whenever $r \geq m'$. Choosing some $m' \geq m$ with this property, and replacing R by R', \mathcal{F} by \mathcal{F}' and m by m', we can assume that R is artin local, and I is a non-zero principal ideal with $mI = 0$, which defines the flattening stratification for $\pi_* \mathcal{F}(r)$ for all $r \geq m$.

4
Step 4: Decomposition of $\pi_*F(r)$ via lemma of Srinivas

Lemma (Srinivas) Let R be an artin local ring with maximal ideal m, and let E be any finite R module whose flattening stratification is defined by an ideal I which is a non-zero proper principal ideal with $mI = 0$. Then there exist integers $i \geq 0$ and $j > 0$ such that E is isomorphic to the direct sum $R^i \oplus (R/I)^j$.

Proof See Lemma 4 in [N1].

We apply the above lemma to the R-module $M_r = H^0(S, \pi_*F(r))$, which has flattening stratification defined by the principal ideal I with $mI = 0$, to conclude that (up to isomorphism) M_r has the form

$$M_r = R^{i(r)} \oplus (R/I)^{j(r)}$$

for non-negative integers $i(r)$ and $j(r)$ with $j(r) > 0$.

Note that $i(r) + j(r) = \Phi(r)$ where Φ is the Hilbert polynomial of F.

Step 5: Structure of the hypothetical representing scheme $G^{(r)}$ Let $\phi : \text{Spec}(R/I) \rightarrow \text{Spec} R$ denote the inclusion and F' denote the pull-back of F under $P^n_{R/I} \hookrightarrow P^n_R$. The sheaf F' is flat over R/I, and the functor $G^{(r)}_{R/I}$, which is the restriction of $G^{(r)}$, is represented by the linear scheme $\mathbb{A}^d_{R/I} = \text{Spec}(R/I)[y_1, \ldots, y_d]$ over R/I, where $d = \Phi(r)$ where Φ is the Hilbert polynomial of F. Hence, the pull-back of the hypothetical representing scheme $G^{(r)}$ to R/I is the linear scheme $\mathbb{A}^d_{R/I}$. We now use the following fact (see Lemma 6 and Lemma 7 of [N1] for a proof).

Lemma Let R be a ring and I a nilpotent ideal ($I^n = 0$ for some $n \geq 1$). Let X be a scheme over $\text{Spec} R$, such that the closed subscheme $Y = X \otimes_R (R/I)$ is isomorphic over R/I to $\text{Spec} B$ where B is a finite-type R/I-algebra. Let $b_1, \ldots, b_d \in B$ be a set of algebra generators for B over R/I. Then X is isomorphic over R with $\text{Spec} A$ where A is a finite-type R-algebra. Moreover, there exists a set of R-algebra generators a_1, \ldots, a_d for A, such that each a_i restricts modulo I to $b_i \in B$ over R/I. Let $R[x_1, \ldots, x_d]$ be a polynomial ring in d variables over R, and consider the surjective R-algebra homomorphism $R[x_1, \ldots, x_d] \rightarrow A$ defined by sending each x_i to a_i, and let J be its kernel. Then $J \subset IR[x_1, \ldots, x_d]$.

It follows from the above lemma that $G^{(r)}$ is affine of finite type over R, and its co-ordinate ring A as an R algebra is of the form

$$A = R[a_1, \ldots, a_d] = R[x_1, \ldots, x_d]/J$$

where a_i is the residue of x_i, and a_1, \ldots, a_d restrict over R/I to the linear coordinates y_1, \ldots, y_d on the linear scheme $\mathbb{A}^d_{R/I}$, and J is an ideal with $J \subset I \cdot R[x_1, \ldots, x_d]$.

Being an additive group-scheme, $G^{(r)}$ has its zero section $\sigma : \text{Spec} R \rightarrow G^{(r)}$, and this corresponds to an R-algebra homomorphism $\sigma^* : A \rightarrow R$. Modulo I, the section σ restricts to the zero section of $\mathbb{A}^d_{R/I}$ over $\text{Spec}(R/I)$, therefore $\sigma^*(a_i) \in I$ for all $i = 1, \ldots, d$. Let $x'_i = x_i - \sigma^*(a_i) \in R[x_1, \ldots, x_d]$ and $a'_i = a_i - \sigma^*(a_i) \in A$ be its residue modulo J. Then $R[x_1, \ldots, x_d] = R[x'_1, \ldots, x'_d]$, the elements a'_1, \ldots, a'_d
generate A as an R-algebra, and moreover the a'_i restrict over R/I to the linear coordinates y_i on the linear scheme $A^d_{R/I}$. Therefore, by replacing the x_i by the x'_i and the a_i by the a'_i, we can assume that for each i, we have

$$\sigma^*(a_i) = 0$$

Next, consider any element $f(x_1,\ldots,x_d) \in J$. Then $f(a_1,\ldots,a_d) = 0$ in A, so $\sigma^* f(a_1,\ldots,a_d) = 0 \in R$, which shows that the constant coefficient of f is zero, as $\sigma^*(a_i) = 0$. As we already know that $J \subset I \cdot R[x_1,\ldots,x_d]$, the vanishing of the constant term of any element of J now establishes that

$$J \subset I \cdot (x_1,\ldots,x_d)$$

From the above, using $I^2 = 0$, it follows that for any $(b_1,\ldots,b_d) \in I^d$, we have a well-defined R-algebra homomorphism

$$\Psi_{(b_1,\ldots,b_d)} : A \rightarrow R : a_i \mapsto b_i$$

We now express the linear-scheme structure of $G^{(r)}$ in terms of the ring A, using the fact that each a_i restricts to y_i modulo I, and $G^{(r)}_{R/I}$ is the standard linear-scheme $A^d_{R/I}$ with linear co-ordinates y_i. Note that the vector addition morphism $A^d_{R/I} \times_{R/I} A^d_{R/I} \rightarrow A^d_{R/I}$ corresponds to the R/I-algebra homomorphism

$$(R/I)[y_1,\ldots,y_d] \rightarrow (R/I)[y_1,\ldots,y_d] \otimes_{R/I} (R/I)[y_1,\ldots,y_d] : y_i \mapsto y_i \otimes 1 + 1 \otimes y_i$$

while the scalar-multiplication morphism $A^1_{R/I} \times_{R/I} A^d_{R/I} \rightarrow A^d_{R/I}$ corresponds to the R/I-algebra homomorphism

$$(R/I)[y_1,\ldots,y_d] \rightarrow (R/I)[t,y_1,\ldots,y_d] = (R/I)[t] \otimes_{R/I} (R/I)[y_1,\ldots,y_d] : y_i \mapsto ty_i$$

It follows that the addition morphism $\alpha : G^{(r)} \times_R G^{(r)} \rightarrow G^{(r)}$ corresponds to an algebra homomorphism $\alpha^* : A \rightarrow A \otimes_R A$ which has the form

$$a_i \mapsto a_i \otimes 1 + 1 \otimes a_i + u_i \text{ where } u_i \in I(A \otimes_R A).$$

Let the element u_i in the above equation for $\alpha^*(a_i)$ be written as a polynomial expression

$$u_i = f_i(a_1 \otimes 1,\ldots,a_d \otimes 1,1 \otimes a_1,\ldots,1 \otimes a_d)$$

with coefficients in I. The additive identity 0 of $G^{(r)}(R)$ corresponds to $\sigma^* : A \rightarrow R$ with $\sigma^*(a_i) = 0$, and we have $0+0 = 0$ in $G^{(r)}(R)$. This implies that $f_i(0,\ldots,0) = 0$, and so the constant term of f_i is zero. From this, using $I^2 = 0$, we get the important consequence that

$$f_i(w_1,\ldots,w_{2d}) = 0 \text{ for all } w_1,\ldots,w_{2d} \in I$$

The scalar-multiplication morphism $\mu : A^1_{R} \times_R G^{(r)} \rightarrow G^{(r)}$ prolongs the standard scalar multiplication on $A^d_{R/I}$, and so μ corresponds to an algebra homomorphism $\mu^* : A \rightarrow A[t] = R[t] \otimes_R A$ which has the form

$$a_i \mapsto ta_i + v_i \text{ where } v_i \in IA[t].$$
Let \(v_i \) be expressed as a polynomial \(v_i = g_i(t, a_1, \ldots, a_d) \) with coefficients in \(I \). As multiplication by the scalar 0 is the zero morphism on \(G^{(r)} \), it follows by specialising under \(t \mapsto 0 \) that \(g_i(0, a_1, \ldots, a_d) = 0 \). This means \(v_i = g_i(t, a_1, \ldots, a_d) \) can be expanded as a finite sum

\[
v_i = \sum_{j \geq 1} t^j h_{i,j}(a_1, \ldots, a_d)
\]

where the \(h_{i,j}(a_1, \ldots, a_d) \) are polynomial expressions with coefficients in \(I \). As the zero vector times any scalar is zero, it follows by specialising under \(\sigma^* \) that \(g_i(t, 0, \ldots, 0) = 0 \). It follows that the constant term of each \(h_{i,j} \) is zero. From this, and the fact that \(I^2 = 0 \), we get the important consequence that

\[
g_i(t, b_1, \ldots, b_d) = 0 \quad \text{for all } b_1, \ldots, b_d \in I
\]

Step 6: The kernel of the map \(G^{(r)}(R) \to G^{(r)}(R/I) \)

Lemma Let \(\Psi_{(b_1, \ldots, b_d)} : A \to R \) be the \(R \)-algebra homomorphism defined in terms of the generators by \(\Psi_{(b_1, \ldots, b_d)}(a_k) = b_k \). Let \(\Psi : I^d \to \text{Hom}_{R-alg}(A, R) \) be the set-map defined by \((b_1, \ldots, b_d) \mapsto (\Psi_{(b_1, \ldots, b_d)} : A \to R) \). Then \(\Psi \) is a homomorphism of \(R \)-modules, where the \(R \)-module structure on \(\text{Hom}_{R-alg}(A, R) \) is defined by its identification with the \(R \)-module \(G^{(r)}(R) \).

The map \(\Psi \) is injective, and its image is the \(R \)-submodule \(\ker G^{(r)}(\phi) \subset G^{(r)}(R) \), where \(\phi : \text{Spec}(R/I) \to \text{Spec} R \) is the inclusion.

Proof For any \((b_1, \ldots, b_d)\) and \((c_1, \ldots, c_d)\) in \(I^d \), we have

\[
(\Psi_{(b_1, \ldots, b_d)} + \Psi_{(c_1, \ldots, c_d)})(a_i) = (\Psi_{(b_1, \ldots, b_d)} \otimes \Psi_{(c_1, \ldots, c_d)})(\alpha^*(a_i)) = b_i + c_i + f_i(b_1, \ldots, b_d, c_1, \ldots, c_d) \quad \text{by substituting for } \alpha^*(a_i)
\]

This shows the equality \(\Psi_{(b_1, \ldots, b_d)} + \Psi_{(c_1, \ldots, c_d)} = \Psi_{(b_1, \ldots, b_d) + (c_1, \ldots, c_d)} \), which means the map \(\Psi : I^d \to G^{(r)}(R) \) is additive.

For any \(\lambda \in R \), let \(f_\lambda : R[t] \to R \) be the \(R \)-algebra homomorphism defined by \(f_\lambda(t) = \lambda \). Then for any \((b_1, \ldots, b_d)\) in \(I^d \) we have

\[
(\lambda \cdot \Psi_{(b_1, \ldots, b_d)})(a_i) = (f_\lambda \otimes \Psi_{(b_1, \ldots, b_d)})(\mu^*(a_i)) = (f_\lambda \otimes \Psi_{(b_1, \ldots, b_d)})(ta_i + g_i(t, a_1, \ldots, a_d)) = \lambda b_i + g_i(\lambda, b_1, \ldots, b_d) = \lambda b_i \quad \text{as } b_i \in I
\]

This shows the equality \(\lambda \cdot \Psi_{(b_1, \ldots, b_d)} = \Psi_{\lambda \cdot (b_1, \ldots, b_d)} \), hence the map \(\Psi : I^d \to G^{(r)}(R) \) preserves scalar multiplication. This completes the proof that \(\Psi : I^d \to G^{(r)}(R) \) is a homomorphism of \(R \)-modules.
The map Ψ is clearly injective. The map $G^{(r)}(\phi) : G^{(r)}(R) \to G^{(r)}(R/I)$ is in algebraic terms the map $\text{Hom}_{R-\text{alg}}(A, R) \to \text{Hom}_{R-\text{alg}}(A, R/I)$ induced by the quotient $R \to R/I$. An element $g \in \text{Hom}_{R-\text{alg}}(A, R/I)$ represents the zero element of $G^{(r)}(R/I)$ exactly when $g(a_i) = 0 \in R/I$ for the generators a_i of A. Therefore $f \in \text{Hom}_{R-\text{alg}}(A, R)$ is in the kernel of $G^{(r)}(\phi)$ precisely when $f(a_i) \in I$ for the generators a_i. Putting $b_i = f(a_i)$, we see that such an f is the same as $\Psi(b_1, ..., b_d)$.

This completes the proof of the Lemma that $\ker G^{(r)}(\phi) = I^d$.

In particular, as $mI = 0$, it follows from the above Lemma that $\ker G^{(r)}(\phi)$ is annihilated by m, so it is a vector space over R/m, and its dimension as a vector space over R/m is $d = \Phi(r)$, as by assumption I is a non-zero principal ideal.

The above determination of the dimension over R/m of the kernel of $G^{(r)}(\phi)$ will contradict a more direct functorial description, which is as follows.

Step 7: Functorial description of kernel of $G^{(r)}(R) \to G^{(r)}(R/I)$ As $\mathcal{F}_{R/I}(r)$ is flat over R/I, and as for $r \geq m$ all higher direct images of $\mathcal{F}(r)$ vanish, $G^{(r)}(R/I)$ is isomorphic to the R/I-module $(R/I)^d$ where $d = \Phi(r)$. By Lemma 5 there exists $m'' \geq m$ such that for $r \geq m''$ the inclusion $\phi : \text{Spec}(R/I) \hookrightarrow \text{Spec} R$ induces an isomorphism $\phi^* \pi_* \mathcal{F}(r) \to \pi'_* \mathcal{F}'(r)$ where $\pi' : P^n_{R/I} \to \text{Spec}(R/I)$ is the projection and \mathcal{F}' is the pull-back of \mathcal{F} under $P^n_{R/I} \hookrightarrow P^n_R$. Note that $G^{(r)}(R) = R^{i(r)} \oplus (R/I)^{j(r)}$, and so for $r \geq m''$ we get an induced decomposition

$$G^{(r)}(R/I) = (R/I)^{i(r)} \oplus (R/I)^{j(r)}$$

such that the map $G^{(r)}(\phi) : G^{(r)}(R) \to G^{(r)}(R/I)$ is the map

$$(q, 1) : R^{i(r)} \oplus (R/I)^{j(r)} \to (R/I)^{i(r)} \oplus (R/I)^{j(r)}$$

where q is the quotient map modulo I. It follows that the kernel of $G^{(r)}(\phi)$ is the R-module $I^{i(r)} \oplus 0 \subset R^{i(r)} \oplus (R/I)^{j(r)} = G^{(r)}(R)$. This is a vector space over R/m of dimension $i(r) < i(r) + j(r) = \Phi(r)$.

We thus obtain two different values for the dimension of the same vector space $\ker G^{(r)}(\phi) = \ker G^{(r)}(\phi)$, which shows that our assumption that $G^{(r)}$ is representable for arbitrarily large values of r is false. This completes the proof of the Theorem.

Acknowledgement This note was inspired by a question posed by Angelo Vistoli to the participants of the workshop ‘Advanced Basic Algebraic Geometry’ held at the Abdus Salam ICTP, Trieste, in July 2003. The Corollary answers that question. I thank the ICTP for hospitality while this work was in progress.
References

[EGA] Grothendieck, A. : Éléments de Géométrie Algébriques (written with the collaboration of Dieudonné). Publ. Math. IHES, 4, 8, 11, 17, 20, 24, 28, 32 (1960-67).

[TDTE IV] Grothendieck, A. : Techniques de construction et théorèmes d’existence en géométrie algébriques IV : les schémas de Hilbert. Séminaire Bourbaki 221, 1960/61.

[M] Mumford : Lectures on Curves on an Algebraic Surface. Princeton University Press, 1966.

[N1] Nitsure, N. : Representability of GL_E. Proc. Indian Acad. Sci. Math. Sci. 112 (2002). [http://arXiv.org/abs/math/0204047]

[N2] Nitsure, N. : Construction of Hilbert and Quot Schemes. Lectures at the ICTP Summer School on Advanced Basic Algebraic Geometry, July 2003. (Follow the web-link http://www.ictp.trieste/ for an electronic version).

School of Mathematics,
Tata Institute of Fundamental Research,
Homi Bhabha Road,
Mumbai 400 005,
India.

e-mail: nitsure@math.tifr.res.in

05 August 2003