Relativistic treatment of Verlinde’s emergent force in Tsallis’ statistics

L. Calderon1,4, M. T. Martin3,4, A. Plastino2,4,5,6, M. C. Rocca2,3,4,5, V. Vampa1

1Departamento de Ciencias Básicas, Facultad de Ingeniería,
2Departamento de Física, Universidad Nacional de La Plata,
3Departamento de Matemática, Universidad Nacional de La Plata,
4Consejo Nacional de Investigaciones Científicas y Tecnológicas, Argentina,
5IFLP-CCT-CONICET-C. C. 727, 1900 La Plata, Argentina,
6SThAR - EPFL, Lausanne, Switzerland

March 21, 2019

Abstract

Following Chakrabarti, Chandrasekhar, and Naina [Physica A 389 (2010) 1571], we attempt a classical relativistic treatment of Verlinde’s emergent entropic force conjecture by appealing to a relativistic Hamiltonian in the context of Tsalli’s statistics. The ensuing partition function becomes the classical one for small velocities. We show that Tsallis’ relativistic (classical) free particle distribution at temperature T can generate Newton’s gravitational force’s r^{-2} distance’s dependence. If we want to repeat the concomitant argument by appealing to Renyi’s distribution, the attempt fails and one needs to modify the conjecture. Keywords: Tsallis’ and Renyi’s relativistic distributions, classical partition function, entropic force.

PACS: 05.20.-y, 05.70.Ce, 05.90.+m
Contents

1 Introduction 3
2 Tsallis’ relativistic partition function for the free particle 4
3 Tsallis’ relativistic mean energy of the free particle 7
4 Specific heat in the linear constraints Tsallis’ scenario 9
5 The relativistic, Tsallis entropic force 10
6 The relativistic, Renyi’s entropic force 11
7 Conclusions 11
1 Introduction

In 2011, Verlinde [1] put forward a conjecture that connects gravity to an entropic force. Gravity would then arise out of information regarding the positions of material bodies (‘it from bit’). This idea links a thermal gravity-treatment to ’t Hooft’s holographic principle. As a consequence, gravitation ought to be regarded as an emergent phenomenon. Verlinde’s conjecture attained considerable reception (just as an example, see [2]). For a superb overview on the statistical mechanics of gravitation, we recommend Padmanabhan’s work [3], and references therein.

Verlinde’s initiative originated works on cosmology, the dark energy hypothesis, cosmological acceleration, cosmological inflation, and loop quantum gravity. The literature is immense [4]. A relevant contribution to information theory is that of Guseo [5], who proved that the local entropy function, related to a logistic distribution, is a catenary and vice versa. Such invariance may be explained, at a deeper level, through the Verlindes conjecture on the origin of gravity, as an effect of the entropic force. Guseo puts forward a new interpretation of the local entropy in a system, as quantifying a hypothetical attraction force that the system would exert [5].

The present effort does not deal with any of these issues. What we will do is to show that a simple classical reasoning centered on Tsallis’ relativistic probability distributions proves Varlinde’s conjecture. For Renyis’s relativistic instance, one needs to modify the conjecture to achieve a similar result.

Our point of departure is Ref. [6], in which their authors studied a canonical ensemble of N particles for a classical relativistic ideal gas, and found its specific heat in the Tsallis-Mendes-Plastino (TMP) scenario [7]. We will not use here the TMP scenario. Inspired by [6], we appeal as well to our previous effort [8] for non-relativistic results and deal with Tsallis’ statistics with linear constraints as a priori information [7]. In addition to finding, for the first time ever, relativistic Verlinde-results in a Tsallis’context, we will, for the sake of completeness, register some advances regarding the relativistic Tsallis scenario with linear constraints for the ideal gas.
2 Tsallis’ relativistic partition function for the free particle

The celebrated and well-known Tsallis entropy is a generalization of Shannon’s one, that depends on a free real parameter \(q \) [7].

The \(q < 1 \) instance

We consider first the case \(q < 1 \). This case is not relevant to our Verlinde’s endeavor [8], but is a logical addition to the results of [6].

Tsallis’ relativistic \(q \)-partition function for \(N \)-free particles of mass \(m \) reads [6]

\[
Z = \frac{V}{N! h^{3N}} \int \left[1 + (1 - q)\beta(\sqrt{m^2 c^4 + p^2 c^2} - mc^2) \right] \frac{1}{\beta} \, p^2 \, dp. \tag{2.1}
\]

Using spherical coordinates and integrating over the angles the precedent integral we have

\[
Z = \frac{4\pi V}{N! h^{3N}} \int_0^\infty \left[1 + (1 - q)\beta(\sqrt{m^2 c^4 + p^2 c^2} - mc^2) \right] \frac{1}{\beta} \, p^2 \, dp. \tag{2.2}
\]

With the change of variables \(y^2 = p^2 + m^2 c^2 \) one now has

\[
Z = \frac{4\pi V}{N! h^{3N}} \int_{mc}^{\infty} y \sqrt{y^2 - m^2 c^2} \frac{1}{\beta} \left[1 + (1 - q)\beta(\sqrt{m^2 c^4 + y^2 c^2} - mc) \right] \frac{1}{\beta} \, dy. \tag{2.3}
\]

Let \(x \) be given by \(y = mcx \). We have then

\[
Z = \frac{4\pi V m^3 c^3}{N! h^{3N}} \int_1^{\infty} x \sqrt{x^2 - 1} \left[1 + (1 - q)\beta mc^2(x - 1) \right] \frac{1}{\beta} \, dx. \tag{2.4}
\]

With \(s \) defined as \(x = s + 1 \) we obtain:

\[
Z = \frac{4\pi V m^3 c^3}{N! h^{3N}} \int_0^{\infty} \left(s^\frac{3}{2} + s^\frac{1}{2} \right) (s + 2)^\frac{1}{2} \left[1 + (1 - q)\beta mc^2 s \right] \frac{1}{\beta} \, ds, \tag{2.5}
\]
or

\[Z = \frac{4\pi V m^3 e^3}{N! h^3 N} \left[(1 - q) \beta mc^2 \right] \frac{1}{\sqrt{7}} \int_0^\infty \frac{1}{s^{3/2} (s + 2)^{3/2}} \left[s + \frac{1}{(1 - q) \beta mc^2} \right] \frac{1}{\sqrt{7}} \, ds + \]

\[\frac{4\pi V m^3 e^3}{N! h^3 N} \left[(1 - q) \beta mc^2 \right] \frac{1}{\sqrt{7}} \int_0^\infty \frac{1}{s^{3/2} (s + 2)^{3/2}} \left[s + \frac{1}{(1 - q) \beta mc^2} \right] \frac{1}{\sqrt{7}} \, ds. \quad (2.6) \]

Appealing to reference [9] we have now a result in terms of Hyper-geometric functions \(F \) and Beta functions \(B \), namely,

\[Z = \frac{4\pi V m^3 e^3}{N! h^3 N} \left[(1 - q) \beta mc^2 \right] \frac{1}{\sqrt{7}} \left[\frac{B \left(\frac{5}{2}, \frac{1}{1 - q} - 3 \right)}{\beta mc^2 (1 - q)} \right. \]

\[F \left(-\frac{1}{2}, \frac{5}{2}, \frac{1}{1 - q} - \frac{1}{2}; 1 - \frac{1}{2 \beta mc^2 (1 - q)} \right) + \]

\[B \left(\frac{3}{2}, \frac{1}{1 - q} - 2 \right) F \left(-\frac{1}{2}, \frac{3}{2}, \frac{1}{1 - q} - \frac{1}{2}; 1 - \frac{1}{2 \beta mc^2 (1 - q)} \right) \]. \quad (2.7) \]

For \(\beta mc^2 >> 1, mc^2 >> k_B T \), we are in the non-relativistic case and have

\[Z = \frac{2\pi V}{N! h^3 N} \left[\frac{2m}{\beta (1 - q)} \right] \Gamma \left(\frac{3}{2} \right) \Gamma \left(\frac{1}{1 - q} - \frac{3}{2} \right) \frac{1}{\Gamma \left(\frac{1}{1 - q} \right)}. \quad (2.8) \]

The case \(q > 1 \)

Let us now consider gravitationally relevant [8] case \(q > 1 \). We have for the partition function

\[Z = \frac{4\pi V m^3 e^3}{N! h^3 N} \int_0^\infty \left(s^3 + s^1 \right) (s + 2)^{3/2} \left[1 - (q - 1) \beta mc^2 s \right] \frac{1}{s^{1/2}} \, ds. \quad (2.9) \]

Integrating on the angles we have again

\[Z = \frac{4\pi V m^3 e^3}{N! h^3 N} \int_0^\infty \left(s^3 + s^1 \right) (s + 2)^{3/2} \left[1 - (q - 1) \beta mc^2 s \right] \frac{1}{s^{1/2}} \, ds, \]

\[(2.10) \]
or

\[Z = \frac{4\pi V m^3 c^3}{N!h^{3N}} [(q-1)\beta mc^2]^{\frac{1}{q-1}} \int_0^1 s^{\frac{3}{2}} (s + 2)^{\frac{1}{2}} \left[\frac{1}{(q-1)\beta mc^2} - s \right]^{\frac{1}{q-1}} ds + \]

\[\frac{4\pi V m^3 c^3}{N!h^{3N}} [(q-1)\beta mc^2]^{\frac{1}{q-1}} \int_0^1 s^{\frac{1}{2}} (s + 2)^{\frac{1}{2}} \left[\frac{1}{(q-1)\beta mc^2} - s \right]^{\frac{1}{q-1}} ds. \]

(2.11)

By recourse to [9] we now obtain

\[Z = \frac{2\pi V}{N!h^{3N}} \left[\frac{2m}{\beta m(q-1)} \right]^{\frac{3}{2}} \left[B\left(\frac{5}{2}, \frac{1}{q-1} + 1\right) \right. \times \]

\[F\left(-\frac{1}{2}, \frac{5}{2}, \frac{7}{2} + \frac{1}{q-1}; -\frac{1}{2\beta mc^2(q-1)}\right) + \]

\[B\left(\frac{3}{2}, \frac{1}{q-1} + 1\right) F\left(-\frac{1}{2}, \frac{3}{2}, \frac{5}{2} + \frac{1}{q-1}; -\frac{1}{2\beta mc^2(q-1)}\right) \].

(2.12)

For \(\beta mc^2 >> 1 \), the classic case, the partition function reads

\[Z = \frac{2\pi V}{N!h^{3N}} \left[\frac{2m}{\beta (q-1)} \right]^{\frac{3}{2}} \Gamma\left(\frac{3}{2}\right) \Gamma\left(\frac{1}{q-1} + 1\right) \frac{\Gamma\left(\frac{1}{q-1} + 1\right)}{\Gamma\left(\frac{1}{1-q} + \frac{5}{2}\right)}, \]

(2.13)

which is the usual non relativistic Tsalli’s partition function for \(q > 1 \) already obtained in [8]. Figure 1 displays the graph of the function \(H(T) \) given by

\[Z = \frac{2\pi V}{N!h^{3N}} \left[\frac{2m}{\beta (q-1)} \right]^{\frac{3}{2}} H(T), \]

(2.14)

for \(q = \frac{4}{3} \), the specific \(q \)-value needed for gravitational considerations [8]. It tells us that \(Z \) is always positive, as it should be.
3 Tsallis’ relativistic mean energy of the free particle

Case $q < 1$

Let us now calculate the average energy corresponding, firstly in the case $q < 1$. For it we have

$$Z < U > = \frac{V}{N!h^3N} \int [\sqrt{m^2c^4 + p^2c^2} - mc^2] \times$$

$$\left[1 + (1 - q) \beta (\sqrt{m^2c^4 + p^2c^2} - mc^2) \right]^{\frac{1}{q-1}} d^4p,$$

or

$$Z < U > = \frac{V}{N!h^3N} \int [\sqrt{m^2c^4 + p^2c^2}] \times$$

$$\left[1 + (1 - q) \beta (\sqrt{m^2c^4 + p^2c^2} - mc^2) \right]^{\frac{1}{q-1}} d^4p - mc^2Z. \quad (3.16)$$

With changes in the variables similar to those made for the partition function, we obtain here

$$Z < U > = \frac{4\pi V m^4C^5}{N!h^3N} \int_0^\infty x^{\frac{3}{2}} (x + 1)(\sqrt{x + 2} \times$$

$$\left[1 + (1 - q) \beta mc^2 x \right]^{\frac{1}{q-1}} dx. \quad (3.17)$$

This last equation can be rewritten as

$$Z < U > = \frac{4\pi V m^4C^5}{N!h^3N} \beta mc^2(1 - q) \int_0^\infty x^{\frac{3}{2}} (x + 1)(\sqrt{x + 2} \times$$

$$\left[x + \frac{1}{(1 - q)\beta mc^2} \right]^{\frac{1}{q-1}} dx. \quad (3.18)$$

Returning again to reference [9], we obtain for $< U >$

$$< U > = \sqrt{2} \frac{4\pi V m^4c^5}{N!h^3NZ} \left[\frac{1}{\beta mc^2(1 - q)} \right]^{\frac{3}{2} + \frac{1}{q-1}} \int \frac{B \left(\frac{7}{2}, \frac{1}{1-q} - 4 \right)}{\beta mc^2(1 - q)} \times$$
\[F \left(-\frac{1}{2}, \frac{7}{2}, 1 - q, -\frac{1}{2}, 1 - \frac{1}{2\beta mc^2(1 - q)} \right) + \\
B \left(\frac{5}{2}, \frac{1}{1 - q} - 3 \right) F \left(-\frac{1}{2}, \frac{5}{2}, 1 - q, -\frac{1}{2}, 1 - \frac{1}{2\beta mc^2(1 - q)} \right) \right]. \] (3.19)

From this last equation we obtain the mean energy expression for the non-relativistic case
\[\langle U \rangle = \frac{3}{\beta[2 - 5(1 - q)]}. \] (3.20)

Case q larger than one

When \(q > 1 \) we have
\[Z \langle U \rangle = \frac{4\pi V m^4 c^5}{N!h^3} \int_0^\infty x^{\frac{1}{2}}(x + 1)(\sqrt{x + 2} \times \\
\left[1 - (q - 1)\beta mc^2 x \right]^{\frac{1}{q - 1}} dx - mc^2 Z. \] (3.21)

Making a similar reasoning as for the case \(q < 1 \) we obtain
\[\langle U \rangle = \sqrt{2} \frac{4\pi V m^4 c^5}{N!h^3 Z} \left[\frac{1}{\beta mc^2(q - 1)} \right]^{\frac{1}{q - 1}} \left[\frac{B \left(\frac{5}{2}, \frac{1}{q - 1} + 1 \right)}{\beta mc^2(q - 1)} \right] \times \\
F \left(-\frac{1}{2}, \frac{7}{2}, 1 - q, -\frac{1}{2}, 1 + \frac{9}{2}, 2\beta mc^2(q - 1) \right) + \\
B \left(\frac{5}{2}, \frac{1}{q - 1} + 1 \right) F \left(-\frac{1}{2}, \frac{5}{2}, 1 - q, -\frac{1}{2}, 1 + \frac{7}{2}, 2\beta mc^2(q - 1) \right) \right]. \] (3.22)

For \(\beta mc^2 >> 1 \) (the non-relativistic case) we obtain the result of [8], i.e.,
\[\langle U \rangle = \frac{3}{\beta[2 + 5(q - 1)]}. \] (3.23)
4 Specific heat in the linear constraints Tsal- lis’ scenario

Let us now calculate the specific heat for the case \(q = \frac{4}{3} \), relevant for Verlinde-endeavors [8]. This was not done in [6]. We should first note, with respect to Hyper-geometric functions, that

\[
\frac{d}{dz} F(\alpha, \beta, \gamma; z) = -\alpha \beta F(\alpha + 1, \beta + 1, \gamma + 1; z). \tag{4.24}
\]

We now use the notation

\[
F_1 = F\left(-\frac{1}{2}, \frac{7}{2}, \frac{9}{2}; \frac{3k_B T}{2mc^2}\right), \quad F_2 = F\left(-\frac{1}{2}, \frac{5}{2}, \frac{7}{2}; \frac{3k_B T}{2mc^2}\right), \quad F_3 = F\left(-\frac{1}{2}, \frac{3}{2}, \frac{5}{2}; \frac{3k_B T}{2mc^2}\right), \tag{4.25}
\]

\[
F_4 = F\left(-\frac{1}{2}, \frac{1}{2}, \frac{9}{2}; \frac{3k_B T}{2mc^2}\right), \quad F_5 = F\left(-\frac{1}{2}, \frac{1}{2}, \frac{7}{2}; \frac{3k_B T}{2mc^2}\right), \quad F_6 = F\left(-\frac{1}{2}, \frac{1}{2}, \frac{5}{2}; \frac{3k_B T}{2mc^2}\right). \tag{4.26}
\]

Thus, we can write

\[
< \mathcal{U} > = 3k_B T \frac{3k_B T}{mc^2} B\left(\frac{7}{2}, 4\right) F_1 + B\left(\frac{5}{2}, 4\right) F_2 + B\left(\frac{3}{2}, 4\right) F_3, \tag{4.31}
\]

and, for the specific heat we have then

\[
C = \frac{\partial < \mathcal{U} >}{\partial T} = \frac{9k_B^2 T}{mc^2} B\left(\frac{7}{2}, 4\right) F_1 - \frac{21k_B T}{8mc^2} B\left(\frac{7}{2}, 4\right) F_4 - \frac{5}{8} B\left(\frac{5}{2}, 4\right) F_5 + \frac{3k_B T}{mc^2} B\left(\frac{5}{2}, 4\right) F_2 + B\left(\frac{3}{2}, 4\right) F_3 - \frac{3k_B T}{mc^2} B\left(\frac{5}{2}, 4\right) F_2 - \frac{15k_B T}{8mc^2} B\left(\frac{5}{2}, 4\right) F_5 - \frac{3}{8} B\left(\frac{3}{2}, 4\right) F_6. \tag{4.32}
\]

This expression is plotted in Figure 2. We see that the specific heat is always positive, as it happens in the non-relativistic case [8].
5 The relativistic, Tsallis entropic force

We arrive now at our main present goal. We specialize things now to $q = \frac{4}{3}$. Why do we select this special value $q = \frac{4}{3}$? There is a solid reason. This is because

$$S = \ln_q Z + Z^{1-q} \beta <U>.$$

Since the entropic force is to be defined as proportional to the gradient of S, there is a unique q-value for which the dependence on r of the entropic force is $\sim r^{-2}$ when $\nu = 3$. Thus we obtain, for $q = 4/3$,

$$S = 3 - (3 - \beta <U>) Z^{-\frac{1}{3}}.$$

(5.1)

From (2.12) we can write

$$<Z> = a r^3,$$

(5.2)

from which it is obtained that

$$S = 3 - \frac{3 - \beta <U>}{a^\frac{3}{2} r}.$$

(5.3)

Following Verlinde [1] we define the entropic force as

$$\vec{F}_e = -\frac{\lambda}{\beta} \vec{\nabla}S,$$

(5.4)

where $\vec{\nabla}$ indicates the four-gradient in Minkowskian space.

$$\vec{F}_e = -\frac{\lambda}{\beta} \frac{3 - \beta <U>}{a^\frac{3}{2} r^2} \vec{e}_r,$$

where \vec{e}_r is the radial unit vector. We see that F_e acquires an appearance quite similar to that of Newton’s gravitational one, as conjectured by Verlinde in [1]. In Figures 3 and 4 the function $L = 3 - \beta <U>$ is plotted. We see that L is always positive. This entails that the relativistic entropic force is purely gravitational.
6 The relativistic, Renyi’s entropic force

In Renyi’s approach to our problem [8] the entropy is

$$S = \ln Z + \ln[1 + (1 - \alpha)\beta < U >]_+^{\frac{1}{\alpha}}. \quad (6.1)$$

For $\alpha = \frac{4}{3}$, the expression for the entropy is

$$S = \ln Z + \ln \left[1 - \beta \frac{< U >}{3}\right]_+^{-3}. \quad (6.2)$$

The second term on the right hand of (6.2) is independent of r. Additionally, from (5.2) we obtain

$$\ln Z = 3 \ln r + \ln a. \quad (6.3)$$

Here we need to derive the entropy with respect to the area, thus changing Verlindes conjecture. As in the non-relativistic case [8], we have then

$$\vec{F}_e = -\frac{\lambda}{\beta} \frac{\partial S}{\partial A} \vec{e}_r = -\frac{\lambda}{\beta} \frac{3}{8\pi r^2} \vec{e}_r. \quad (6.4)$$

This is again a gravitational expression for the entropic force.

7 Conclusions

We obtained here the relativistic partition function Z of Tsalli’s theory with linear constraints, that adequately reduces itself to its non-relativistic counterpart for small velocities.

We do the same for the mean value of the energy $<U>$ for the relativistic Hamiltonian of the ideal gas.

We obtain the associated specific heat that turns out to be positive, as befits an ideal gas.

From Z and $<U>$ we obtained the relativistic entropy S

We have presented two very simple relativistic classical realizations of Verlinde’s conjecture. The Tsallis treatment, for $q = 4/3$, seems to be neater, as the entropic force is directly associated to the gradient of Tsallis’ entropy S_q, which acts as a ”potential”, as Verlinde prescribes. This is not so in the Renyi instance, in which one has to modify Verlinde’s F_e definition and derive S with respect to the area.
Strictly speaking, Verlinde’s conjecture can be unambiguously proved for the Tsallis entropy with $q = 4/3$. The Renyi demonstration correspond to a modified version of Verlinde’s conjecture.
Of course, ours is a very preliminary, if significant, effort. A much more elaborate treatment would be desirable.
References

[1] E. Verlinde, arXiv:1001.0785 [hep-th]; JHEP 04 (2011) 29.

[2] D. Overbye, A Scientist Takes On Gravity, The New York Times, 12 July 2010; M. Calmthout, New Scientist 205 (2010) 6.

[3] T. Padmanabhan, arXiv 0812.2610v2.

[4] J. Makela, arXiv:1001.3808v3; J. Lee, arXiv:1005.1347; V. V. Kiselev, S. A. Timofeev, Mod. Phys. Lett. A 25 (2010) 2223; T. Aaltonen et al; Mod. Phys. Lett. A 25 (2010) 2825.

[5] R. Guseo, Physica A 464 (2016) 1.

[6] R. Chakrabarti, R. Chandrashekar, S.S. Naina Mohammed, Physica A 389 (2010) 1571.

[7] C. Tsallis, Introduction to Nonextensive Statistical Mechanics (Springer, Berlin, 2009); M. Gell-Mann and C. Tsallis, Eds. Nonextensive Entropy: Interdisciplinary applications (Oxford University Press, Oxford, 2004); See http://tsallis.cat.cbpf.br/biblio.htm for a regularly updated bibliography on the subject; A. R. Plastino, A. Plastino, Phys. Lett. A 174 (1993) 384.

[8] A. Plastino, M. C. Rocca, Physica A 505 (2018) 190.

[9] I. S. Gradshteyn and I. M. Ryzhik: “Table of Integrals, Series and Products”. Academic Press, Inc (1980).
Figure 1: H function
Figure 2: Specific heat
Figure 3: $L(T) = 3 - \beta <\mathcal{U}>$
Figure 4: Centered $L(T) = 3 - \beta <U>$