Cancer immunotherapy is a promising therapeutic avenue; however, in practice its efficacy is hampered by an immunosuppressive tumor microenvironment that consists of suppressive cell types like myeloid-derived suppressor cells (MDSCs). Eradication or reprogramming of MDSCs could therefore enhance clinical responses to immunotherapy. Here, we review clinically available drugs that target MDSCs, often through inhibition of STAT signaling, which is essential for MDSC accumulation and suppressive functions. Interestingly, several drugs used for non-cancerous indications and natural compounds similarly inhibit MDSCs by STAT inhibition, but have fewer side effects than anticancer drugs. Therefore, they show great potential for combination strategies with immunotherapy.

Keywords: Immunotherapy, MDSCs, STAT signaling, Tumor microenvironment

The immunosuppressive tumor microenvironment

In the past decade, cancer research has focused on the development of novel strategies, such as targeted therapies and immunotherapy, many of which have been approved for clinical use. These novel modalities are based on targeting specific pathways exploited by cancers using small molecule inhibitors or on empowering the immune system to eradicate cancer cells. Targeting immune checkpoints like cytotoxic T lymphocyte-associated protein 4 and programmed cell death protein 1 shows impressive results. Other promising immunotherapies include adoptive cell transfer with tumor-infiltrating lymphocytes, vaccination with tumor-associated antigens and dendritic cell (DC)-based vaccines. Although these therapies show survival benefits and have lower incidences of lethal drug resistance than traditional chemotherapy, still not every cancer patient benefits from them. One of the challenges that remains is generated by the tumors themselves, as they can evade immune responses by modulating the immune system in their local microenvironment. This tumor-engineered local environment has been termed the immunosuppressive tumor microenvironment (TME), as it very effectively suppresses antitumor immune responses. Myeloid-derived suppressor cells (MDSCs) are key players in the TME and studies showing the importance of MDSCs in pathological conditions have accumulated in the past years. Many of these studies report an increased frequency of MDSCs in the blood of patients suffering from different types of cancer. In addition, the presence of MDSCs in the TME is correlated with decreased efficacy of immunotherapies, including adoptive cell therapy, DC vaccination and ipilimumab treatment, making MDSCs an important target for enhancing the efficacy of these therapies. This is substantiated by experiments in mice where eradication of MDSCs increased the efficacy of anticancer vaccines, adoptive cell therapy and anti-vascular endothelial growth factor (VEGF) antibody therapy.

Here, we discuss the role of MDSCs in the immunosuppressive TME and detail the role of Signal Transducers and Activators of Transcription (STAT) proteins in MDSC accumulation and suppressive mechanisms. We elaborate on the potential of several clinically available drugs and natural compounds to inhibit MDSCs as an unintended effect, often mediated by STAT inhibition. Ultimately, we present some interesting strategies for combination regimens of these drugs and natural compounds with immunotherapy. The insights we discuss in this review relieve immunosuppression by targeting MDSCs.
and likely result in enhancement of antitumor immune responses by immunotherapy.

Myeloid-derived suppressor cells

In healthy individuals, myeloid progenitor cells and immature myeloid cells arise in the bone marrow and mature into granulocytes, macrophages or DCs. However, during cancer progression, tumor-derived factors, like granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulate myelopoiesis, but disturb maturation. This leads to the appearance of a heterogeneous population of immature myeloid cells in the blood that have the morphology of granulocytes or monocytes, but lack some of the markers expressed by these cells. Based on their ability to efficiently inhibit T cell function, these cells are referred to as MDSCs. In mice, MDSCs can be identified by the expression of Gr-1 and CD11b and can be subdivided into granulocytic or monocytic MDSCs (G-MDSCs or M-MDSCs) based on the expression of Ly6G or Ly6C, respectively. In humans, adequate characterization is challenging due to the lack of specific markers. As a consequence, MDSCs have been defined by different marker combinations in different studies. Generally, MDSCs can be defined as CD33⁺CD11b⁺HLA-DR⁻/low cells that can be further subdivided into G-MDSCs or M-MDSCs by the co-expression of either CD15 or CD14, respectively. The importance for clinical outcome of the frequency of either MDSC subtype differs across cancer types. For example, high numbers of M-MDSCs, but not G-MDSCs, are associated with negative response of non-small-cell lung cancer patients to platinum-based chemotherapy and the combination treatment of platinum with bevacizumab. Furthermore, elevated frequencies of M-MDSCs are also associated with decreased survival of melanoma patients, regardless of previous therapy.

MDSC suppressive mechanisms inhibit T cell development and function

After activation, MDSCs can inhibit both innate and adaptive arms of the immune system. They affect the innate immune system mostly indirect by secretion of immune inhibitory cytokines like IL-10 and transforming growth factor (TGF)-β, driving macrophages to a suppressive M2 phenotype, and negatively affecting natural killer cell maturation, respectively. The effect of MDSCs on adaptive immunity is more direct, involving the suppression of T cells, using several mechanisms. First, MDSCs inhibit T cell function and proliferation by depleting the essential amino acids L-arginine and L-cysteine from the TME. L-arginine is a substrate for arginase-I and inducible nitric oxide synthase (iNOS), which are both highly expressed by MDSCs. Depletion of L-arginine leads to loss of the T cell receptor (TCR) chain, resulting in decreased growth and differentiation. Similarly, MDSCs can deplete L-cysteine from the TME, resulting in decreased proliferation and activation of T cells. Second, MDSCs produce reactive oxygen (ROS) and nitrogen species, like hydrogen peroxide (H₂O₂) and peroxynitrite (ONOO⁻) (Fig. 1C). NO production also leads to nitration and nitrosylation of components of the TCR signaling complex and H₂O₂ causes loss of the TCRβ chain, both thus decreasing T cell activation. ONOO⁻ release also leads to nitrosylation of chemokines like CCL2, resulting in decreased recruitment of tumor-infiltrating T cells and high infiltration of immunosuppressive myeloid cells, including tumor-associated macrophages and MDSCs. Lastly, MDSCs can induce the development of regulatory T cells (Tregs), and expand the existing Treg population, both of these mechanisms requiring direct cell–cell contact (Fig. 1D). The secretion of several factors by MDSCs, including, TGF-β and IL-10 might be involved in this process, although the mechanism is still unclear. Finally, L-arginine depletion by MDSCs also contributes to Treg expansion.

STAT protein signaling is important in regulation of MDSCs

MDSC expansion and suppressive mechanisms are mainly regulated by the STAT signaling pathway. This protein family consists of seven proteins that regulate many vital cellular functions, such as proliferation and cell survival. They are activated through binding of cytokines or growth factors to their receptors, leading to activation of Janus kinase (JAK) tyrosine kinases, which phosphorylate STAT proteins. The phosphorylated STATs then translocate to the nucleus and regulate the expression of STAT target genes. Many tumors exploit STAT signaling through the secretion of tumor-derived factors (Fig. 2). This hijacking of STAT signaling plays an important role during cancer initiation and progression and in maintaining an immunosuppressive TME, for instance by inducing accumulation of MDSCs or stimulation of their suppressive capacity. Tumor-derived factors, like G-CSF, GM-CSF and VEGF, induce STAT3 signaling, resulting in increased expression of proliferation-inducing and anti-apoptotic proteins, including c-Myc, Bcl-XL, cyclin D1 and survivin. These proteins promote proliferation of immature myeloid cells, while preventing apoptosis and differentiation into mature cells, resulting in increased MDSC frequencies. Additionally, STAT3 directly regulates MDSC suppressive mechanisms by inducing NOX2 expression, and arginase production. STAT3 also induces the gene expression and protein level of the pro-inflammatory protein S100A9 in myeloid progenitors. Overexpression of S100A9 prevents differentiation into mature myeloid cell types by directly facilitating ROS production, resulting in expansion of MDSCs. Furthermore, S100A9 binds to CD33 on MDSCs and induces production of IL-10, TGF-β, arginase and ROS. The presence of constitutively active STAT1 correlates with increased frequency of MDSCs in tumors of breast cancer patients and induces proliferation and suppressive capacity by regulating iNOS and arginase-I activity. A third STAT protein, STAT5 induces MDSC expansion by reducing differentiation into mature myeloid cells through inhibition of interferon regulatory factor (IRF)-8. STAT6 induces MDSC proliferation and survival and enhances arginase-I activity in MDSCs.

The immunosuppressive capacity of MDSCs and their negative correlation with disease stage, treatment response and survival clearly suggest their importance in cancer progression and suboptimal outcomes of cancer immunotherapy. Eradication or reprogramming of MDSCs is a logical strategy to re-engineer
the TME and improve immunotherapy efficacy. The important role of STATs in accumulation and function of MDSCs, make the STAT proteins interesting targets to achieve this goal.

MDSCs as a target for enhancing immunotherapy efficacy

Drugs are known to have off-target effects, which are the main source of unwanted drug-related side effects. However, increasing evidence shows that chemotherapeutics and other drugs also have unintended effects that are beneficial, such as stimulation of immune responses by reduction of inhibitory molecules on DCs and inhibitory effects on MDSCs. Several chemotherapeutics, drugs that are currently not used in cancer treatment and natural compounds have unintended effects on MDSCs (Table 1). Generally, these effects can result in inhibition of expansion and recruitment of MDSCs, inhibition of suppressive functions, or induction of MDSC differentiation into mature myeloid cells (Fig. 3). Several of these drugs modulate STAT signaling pathways, further emphasizing the potential of this pathway as a MDSC-inhibitory target.

Inhibition of MDSC expansion and recruitment

Targeted cancer therapies, like vemurafenib, affect MDSC expansion. Vemurafenib is a small molecule serine-threonine
kinase inhibitor that is specific for V600 mutated, constitutively active, B-RAF and is used to treat melanoma patients. In a recent clinical trial, decreased M-MDSCs and G-MDSCs frequencies were observed in patients that achieved a clinical response. In addition, vemurafenib inhibited the production of cytokines, like IL-6, by melanoma cells, thereby inhibiting M-MDSC development.43,44 Other kinase inhibitors also showed the potential to inhibit MDSC expansion, although this was mainly shown in preclinical models. Tyrosine kinase inhibitors axitinib, sorafenib and sunitinib inhibited tumor growth by inhibiting several growth factor receptors, including VEGF and platelet-derived growth factor receptor.45 Axitinib treatment of mice significantly decreased the number of MDSCs in the spleen and tumor, by downregulating STAT3 expression.46 Furthermore, the combination of axitinib with DC vaccination enhanced elimination of MDSCs compared to axitinib or vaccination alone.47 Sorafenib similarly decreased MDSC frequency and their analogous mechanisms of action suggest that, like axitinib, sorafenib targets STAT3.48 Sunitinib is used to treat metastatic renal cell carcinoma (RCC) patients, in whom it decreased the frequency of both G-MDSCs and M-MDSCs in peripheral blood, and partially restored IFNγ production by T cells.49,50 However, intratumoral MDSCs are often less affected and can develop resistance to sunitinib. This was observed in RCC patients, where the majority of patients treated with sunitinib prior to primary tumor resection showed high intratumoral MDSC frequencies compared to non-treated primary tumors.50 GM-CSF-induced STAT5 signaling is crucial in the development of sunitinib resistance, as MDSCs cultured in the presence of GM-CSF, developed sunitinib resistance via increased STAT5 signaling.51 Additionally, sunitinib enhanced stromal cell-derived factor-1-dependent induction of MDSC frequency in mice bearing human RCC xenografts. Taken together, the overall effect of sunitinib on MDSCs remains unclear.52

Other drugs that, similar to axitinib, sorafenib and sunitinib, inhibit VEGF can also induce MDSC eradication. The anti-VEGF antibody bevacizumab, reduced the frequency of immature myeloid cells in colorectal cancer patients.53 Besides targeted cancer therapies, MDSC expansion can also be inhibited by drugs that are currently not used in cancer therapy. In a preclinical model, a significant reduction in early MDSC accumulation in the blood was obtained with the peroxisome proliferator-
activated receptor (PPAR-γ) activator rosiglitazone, which is used in diabetes treatment. Similarly, the histamine blocker cimetidine blocked the expansion of MDSCs in tumor-bearing mice by induction of apoptosis and by inhibition of NO and arginase production.

Inhibition of MDSC-suppressive activity

Investigating changes in MDSC-suppressive capacity in clinical settings is challenging and studies addressing this issue are limited. The most notable study reports that ipilimumab decreased the expression of arginase in melanoma patients, indicative for loss of MDSC suppressive capacity. Furthermore, treatment with ipilimumab for more than 3 weeks decreased the frequencies of G-MDSCs and M-MDSCs. Phosphodiesterase-5 (PDE-5) inhibitors, like sildenafil, are generally used in erectile dysfunction and pulmonary hypertension and inhibit IL-4Rα signaling, which regulates suppressive pathways in MDSCs via STAT6. Indeed, administration of sildenafil downregulated the activity of iNOS and arginase-I in MDSCs through downregulation of IL-4Rα expression.

Drug name	Cancer type	Effect on MDSCs	References
Decitabine	Colon carcinoma	Stimulation of differentiation into mature APCs	68
All-trans-retinoic acid (ATRA)	Colon carcinoma, metastatic renal cell carcinoma, small cell lung carcinoma	Stimulation of differentiation into mature APCs, reduction of ROS production	69-72
Paclitaxel	Mammary tumor, melanoma	Stimulation of differentiation into DCs, reduction of MDSC levels and inhibition of suppressive capacity	73-75
Docetaxel	Mammary tumor	Promotion of MDSC differentiation into M1-macrophages	76
Kinase inhibitors			
Vemurafenib	Melanoma	Reduction of MDSC levels and inhibition of M-MDSC development	43,44
Axitinib	Metastatic renal cell carcinoma, melanoma	Reduction of MDSC levels through STAT3 inhibition	46,47
Sorafenib	Hepatocellular carcinoma	Reduction of MDSC levels	48
Sunitinib	Metastatic renal cell carcinoma	Reduction of MDSC levels	49
Monoclonal antibodies			
Bevacizumab	Colorectal cancer	Reduction of immature myeloid cell levels	53
Ipilimumab	Melanoma	Inhibition of ARG-1 expression and reduction of M-MDSC and G-MDSC numbers	56,57
Drugs for other indication			
PPAR-γ activators			
Rosiglitazone	Pancreatic carcinoma	Reduction of early MDSC accumulation	54
Histamine blockers			
Cimetidine	Lung carcinoma	Reduction of MDSC expansion by induction of apoptosis and inhibition of NOS and ARG-I expression	55
Phosphodiesterase-5 inhibitors			
Sildenafil	Colon carcinoma, melanoma, head and neck squamous cell carcinoma, multiple myeloma	Inhibition of iNOS and ARG-I activity by downregulation of IL-4Rα	59,60
Tadalafil	Head and neck squamous cell carcinoma, multiple myeloma	Reduction of MDSC levels, reduction of arginase and iNOS production	61-63
Diuretics			
Amiloride	Colorectal carcinoma	Inhibition MDSC suppressive capacity via reduced exosome secretion	66
Natural compounds			
Icariin	Mammary carcinoma	Inhibition of NO and ROS production via STAT3 inhibition and induction of maturation into macrophages and DCs	67
Cucurbitacin I, cucurbitacin B	MethA sarcoma, lung cancer	Stimulation of differentiation into DCs through inhibition of JAK2/STAT3	77,78
Curcumin	Gastric cancer, colon carcinoma	Stimulation of differentiation into M1 macrophages through inhibition of JAK2/STAT3	80
1α,25-hydroxyvitamin D3	Lung carcinoma, head and neck squamous cell carcinoma	Stimulation of immature myeloid cells differentiation into DCs	81,82

*aMurine cancer model
*bhuman cancer

table 1. overview of drugs that target MDSCs.
inhibitory molecules, like programmed death-ligand (PD-L)1, by MDSCs. Indirect inhibition of PGE2 release through inhibition of NO release by PDE-5 inhibitors could also contribute to the inhibitory effects of these drugs on MDSCs. These findings clearly illustrate the potential of PDE-5 inhibition as a way to inhibit MDSCs via STAT signaling regulation. Another interesting drug is amiloride, which is a diuretic drug used to treat high blood pressure. Amiloride inhibited MDSCs suppressive capacity by inhibiting the secretion of CSF-containing exosomes by the tumor and consequently inhibiting IL-6/STAT3 signaling. Patients with colorectal cancer receiving amiloride treatment indeed had decreased STAT3 activation and reduced MDSC suppressive capacity.

In addition to drugs, natural compounds can also have unintended effects on MDSC suppressive capacity. The natural compound icariin, the active ingredient of a herb used in Chinese medicine, inhibited ROS and NO production by MDSCs, through inhibition of STAT3 and AKT phosphorylation. Furthermore, it reduced MDSC frequency and promoted differentiation into macrophages and DCs.

In summary, the checkpoint inhibitor ipilimumab and several drugs that are currently not used as direct anticancer agents, like PDE-5 inhibitors, can inhibit MDSC suppressive mechanisms. Similar to the PDE-5 inhibitors, amiloride and icariin induce their effect by regulating STAT signaling pathways. The known mechanism of action and the fact that these drugs induce mild side effects compared to anticancer drugs make them the most promising candidates to use in combination strategies with immunotherapy.

Induction of MDSC differentiation into mature cells

Chemotherapeutic drugs, like the DNA methyltransferase inhibitor decitabine, can inhibit MDSCs by inducing their differentiation into mature antigen-presenting cells (APCs). Furthermore,
the metabolite of vitamin A, all-trans retinoic acid (ATRA), which is also used in the treatment of cancer, promoted the differentiation of MDSCs into mature myeloid cells in both tumor-bearing mice and metastatic RCC patients. A clinical trial in patients with small cell lung cancer showed that combining ATRA with DC vaccination significantly reduced MDSC frequencies and enhanced IFNγ production by CD8+ cells compared to vaccination alone. Additionally, by acting through ERK-dependent induction of glutathione, ATRA also reduced ROS production by MDSCs. Paclitaxel, a chemotherapeutic of the taxane group, induced differentiation of MDSCs into DCs, via a Toll-like receptor 4-dependent mechanism. Treatment of tumor-bearing mice with paclitaxel inhibited the number of tumor-infiltrating MDSCs and abrogated their T cell suppressive capacity. Another taxane family member, docetaxel, decreased the frequency of MDSCs by promoting differentiation into M1-like macrophages.

Several natural compounds induce MDSC differentiation by direct inhibition of STAT signaling. In vitro, cucurbitacin I and B enhanced differentiation of spleen-derived immature myeloid cells into mature DCs by inhibition of the JAK2/STAT3 pathway. This coincided with a decrease of immature myeloid cells in spleens of treated tumor-bearing mice and in patients with advanced lung cancer. However, tumor MDSCs were not sensitive to cucurbitacin I. Tumors have the ability to inhibit STAT3 activity in MDSCs by creating a state of hypoxia. These MDSCs then become functionally independent of STAT3, which diminishes the inhibitory effect of cucurbitacin. Interestingly, STAT3 expression in these tumor MDSCs could be restored by treatment with the CD45PTP-inhibitor sialidase, which blocked hypoxia-induced STAT3 downregulation. Combination treatment consisting of cucurbitacin I together with sialidase significantly decreased the frequencies of tumor MDSCs compared to cucurbitacin I alone. Similarly, curcumin induced differentiation of MDSCs into M1-type macrophages through interaction with JAK2/STAT3. Although an involvement of STAT signaling has not been reported, 25,25-hydroxyvitamin D3 induced differentiation of CD34+ immature cells into mature DCs in both tumor-bearing mice and HNSCC patients. Treatment of HNSCC patients with vitamin D3 before tumor resection resulted in higher levels of intratumoral CD8+ T cells and prolonged recurrence-free survival, which could be due to its effect on MDSCs. Taken together, both chemotherapeutics and natural compounds are capable of inducing MDSC differentiation into mature cells, thereby preventing immune suppressive activity. However, due to possible severe side effects of chemotherapeutics like ATRA, and the known involvement of STAT3 in the mechanisms of action of cucurbitacin or curcumin, these compounds would be most promising to synergize with immunotherapy.

Discussion and future perspectives

Inhibition of the immunosuppressive TME and the presence of MDSCs in the TME is correlated with increased efficacy of immunotherapy. Targeting MDSCs by using clinically available drugs and natural compounds could improve antitumor immune responses induced by immunotherapy. The importance of STAT signaling pathways in the expansion and suppressive capacity provides a promising target to inhibit MDSCs. We discussed a number of drugs that can, as an unintended effect, inhibit the expansion of MDSCs, inhibit their suppressive functions, or promote their differentiation into mature APCs, often mediated by inhibition of STAT signaling pathways. Targeted cancer therapies, like tyrosine kinase inhibitors, and several chemotherapeutics reduce MDSC expansion or induce their differentiation into non-suppressive mature myeloid cells, but also have the potential for severe side effects. Patients treated with immunotherapy can already experience severe side effects, which might be exacerbated when combined with these drugs. We therefore propose to combine immunotherapy with drugs that have similar effects on MDSC expansion and function, but induce less severe side effects compared to conventional chemotherapy and some targeted therapies used in cancer treatment. We have highlighted several drugs and natural compounds used for diverse indications, which modulate MDSC function and differentiation. On a molecular level, most of these drugs exert their effect on MDSCs by interfering with the STAT signaling pathway. For instance, sildenafil and amiloride inhibit the suppressive mechanisms of MDSCs by interfering with STAT6 and STAT3 signaling, respectively. Natural compounds, like icariin, cucurbitacin and curcumin, inhibit the suppressive capacity of MDSCs or induce their maturation, by inhibiting STAT3. There is still a group of MDSC-inhibiting drugs, including rosiglitazone and cimetidine, for which the mechanism of action is unknown. However, the importance of STAT signaling in MDSC inhibition indicates that this pathway could be a potential mechanism for their effect. Furthermore, two specific JAK-inhibitors, tofacitinib and ruxolitinib, were FDA approved for the treatment of several auto-inflammatory diseases, including rheumatoid arthritis. Their specific targeting of JAK/STAT signaling makes them interesting candidates to target STAT signaling in MDSCs and to be used in combination with immunotherapy in anticancer regimes. However, the only study available on these drugs is in the context of rheumatoid arthritis and in that setting tofacitinib surprisingly resulted in the expansion of MDSCs. On the other hand, in a melanoma mouse model, specific JAK inhibition with the experimental compound AZD1480 reduced MDSC frequencies, but it also enhanced their suppressive capacity. These results could indicate that blocking of JAK signaling might not result in inhibition of STAT signaling and show that the effect of JAK signaling on MDSC expansion and suppressive capacity is still unclear and requires more research.

We propose that the drugs sildenafil and amiloride together with the natural compounds icariin, cucurbitacin I, cucurbitacin B and curcumin would be the prime candidates to test in combination with immunotherapy, as they were shown in experimental settings to inhibit the suppressive mechanisms of MDSCs or induce their maturation by targeting STAT6 or STAT3, with only mild side effects compared to chemotherapy and targeted cancer therapies. Clinical trials combining these possible candidate drugs with immunotherapy will have to prove their potential in the clinic.

Disclosure of potential conflicts of interest

No potential conflicts of interest were disclosed.
References

1. Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, Daud A, Carlino MS, McNeil C, Lotem M et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med 2015; 372:2521-32; PMID:25891173; http://dx.doi.org/10.1056/NEJMoa1503093
2. Rotte A, Bhandaru M, Zhou Y, McElwee KJ. Immunotherapy of melanoma: present options and future promises. Cancer Metastasis Rev 2015; 34:115-28; PMID:25589384; http://dx.doi.org/10.1007/s10555-014-9542-0
3. Becker JC, Andersen MH, Schrama D, Thor Straten P. Immune-suppressive properties of the tumor microenvironment. Cancer Immunol Immunother 2013; 62:1137-48; PMID:23666510; http://dx.doi.org/10.1007/s00262-013-1434-6
4. Walter S, Weinschenk T, Stenzl A, Brugger W, Dietrich PY, Mendrzyk R et al. Multipotent immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat Med 2012; 18:1254-61; PMID:22842478; http://dx.doi.org/10.1038/nm.2883
5. Arihara F, Mizukoshi E, Kitahara M, Takata Y, Arai K, Yamashita T, Nakamoto Y, Kaneko S. Increase in CD14+HLA-DR–/low myeloid-derived suppressor cells in hepatocellular carcinoma patients and its impact on prognosis. Cancer Immunol Immunother 2013; 62:1421-30; PMID:23764929; http://dx.doi.org/10.1007/s00262-013-1447-1
6. Laborde RR, Lin Y, Gustafson MP, Bulur PA, Dietz AB. Cancer vaccine in the world of immune suppressive monocytes (CD14(+)HLA-DR(lo/neg) Cells): the gateway to improved responses. Front Immunol 2014; 5:147; PMID:24772111; http://dx.doi.org/10.3389/fimmu.2014.00147
7. Kodumudi KN, Weber A, Sarnaik AA, Pilon-Thomas S. Blockade of myeloid-derived suppressor cells after induction of lymphopenia improves adoptive T cell therapy in a murine model of melanoma. J Immunol 2012; 189:5147-54; PMID:23100512; http://dx.doi.org/10.4049/jimmunol.1200274
8. Meyer C, Cagnon L, Costa-Nunes CM, Baumgaertner P, Montandon N, Leyvraz L, Michielin O, Romano E, Speiser DE. Frequencies of circulating MDSC correlate with clinical outcome of melanoma patients: a mechanism of tumor evasion. Cancer Res 2005; 65:3044-8; PMID:16039280; http://dx.doi.org/10.1158/0008-5472.CAN-05-2587
9. Srivastava MK, Zhu L, Harris-White M, Kar UK, Huang M, Johnson DL, Schneck J, Gabrilovich DI. Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med 2002; 8:687-75; PMID:11998047; http://dx.doi.org/10.1093/nature00742
10. Morales JK, Kmieciak M, Graham L, Feldmesser M, Bear HD, Manjili MH. Adaptive transfer of HER2/neu-specific T cells expanded with alternating gamma chain cytokines mediate tumor regression when combined with the depletion of myeloid-suppressed suppressor cells. Cancer Immunol Immunother 2009; 58:941-53; PMID:18979908; http://dx.doi.org/10.1007/s00262-008-0069-z
11. Shojaei F, Wu X, Malik AK, Zhong C, Baldwin ME, Schanz S, Fuh G, Gerber HP, Ferrara N. Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nat Biotechnol 2007; 25:911-20; PMID:17664940; http://dx.doi.org/10.1038/nb1323
12. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V. Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 2012; 12:253-68; PMID:22437938; http://dx.doi.org/10.1038/nri3175
13. Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 2009; 9:162-74; PMID:19197294; http://dx.doi.org/10.1038/nri2506
14. Youn J, Nagaraj S, Collazo M, Gabrilovich DL. Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol 2008; 181:5791-802; PMID:18832739; http://dx.doi.org/10.4049/jimmunol.181.8.5791
15. Solito S, Marigo I, Pinton L, Damuzzo V, Mandrazzotto S, Bronte V. Myeloid-derived suppressor cell heterogeneity in human cancers. Ann N Y Acad Sci 2014; 1319:47-65; PMID:24965257; http://dx.doi.org/10.1111/nyas.12469
16. Dumitruc CA, Moses K, Trelaklis S, Lang S, Brandau S. Neutrophils and granulocytic myeloid-derived suppressor cells: immunophenotyping, cell biology and clinical relevance in human oncology. Cancer Immunol Immunother 2012; 61:1155-67; PMID:22692756; http://dx.doi.org/10.1007/s00262-012-1294-5
17. Vetsika EK, Koinis F, Gioulbasani M, Aggouraki D, Koutoulaki A, Skalidaki E, Mayrvidous D, Georgoulas V, Kotsakis A. A circulating subpopulation of monocyctic myeloid-derived suppressor cells as an independent prognostic/predictive factor in untreated non-small lung cancer patients. J Immunol Res 2014; 2014:659294; PMID:25436215; http://dx.doi.org/10.1155/2014/659294
18. Martens A, Zelba H, Garbe C, Pawelec G, Weide B. Myelocytic myeloid-derived suppressor cells in advanced melanoma patients: Indirect impact on prognosis through inhibition of tumor-specific T-cell responses? Oncoimmunology 2014; 3:e27845; PMID:24800171
19. Sinha P, Clements VK, Bunt SK, Albelda SM, Ostrand-Rosenberg S. Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. J Immunol 2007; 179:977-83; PMID:17617589; http://dx.doi.org/10.4049/jimmunol.179.2.977
20. Marcoe JP, Lim JR, Schaubert KL, Fodil-Cornu N, Matta M, McCubbery AL, Farr AR, Vidal SM, Laour Y. TGF-β is responsible for NK cell immaturity during ontogeny and increased susceptibility to infection during mouse infancy. Nat Immunol 2012; 13:843-50; PMID:22863752; http://dx.doi.org/10.1038/ni.2388
21. Zea AH, Rodriguez PC, Atkins MB, Hernandez C, Signoretto S, Zabala C, McDermott D, Quincono D, Youmans A, O’Neill A et al. Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res 2005; 65:3044-8; PMID:1583831
22. Srivastava MK, Sinha P, Clements VK, Rodriguez P, Ostrand-Rosenberg S. Myeloid-derived suppressor cells inhibit T-cell activation by depleting cysteine and cysteine. Cancer Res 2010; 70:6877-83; PMID:21028652; http://dx.doi.org/10.1158/0008-5472.CAN-09-2957
23. Mazzoni A, Bronte V, Visintin A, Spitzer JH, Apolloni E, Serafini P, Zanovello P, Segal DM. Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. J Immunol 2002; 168:689-95; PMID:11777962; http://dx.doi.org/10.4049/jimmunol.168.2.689
24. Schmelius JL, Finn OJ. Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of T-cell function in advanced cancer patients. Cancer Res 2001; 61:4756-60; PMID:11406548
25. Nagaraj S, Gupta K, Pisarev V, Kinarsky L, Sherman S, Kang L, Herber DL, Schneck J, Gabrilovich DI. Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med 2007; 13:828-35; PMID:17630349; http://dx.doi.org/10.1038/nm1609
26. Moloron B, Ugel S, Del Pozzo F, Soldani C, Zillo S, Avella D, De Palma A, Mauri P, Monegal A, Rescigno M et al. Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells. J Exp Med 2011; 208:1949-62; PMID:21930770; http://dx.doi.org/10.1084/jem.20101956
27. Hoecht B, Ormandy LA, Hallmaier M, Lechner F, Kruger C, Manns MP, Greeten TF, Korangy F. A new population of myeloid-derived...
suppressor cells in hepatocellular carcinoma patients induces CD4(-)CD25(+)-Foxp3(+) T cells. Gastroenterology 2008; 135:234-43; PMID:18485901; http://dx.doi.org/10.1053/j.gastro.2008.03.020

28. Serafini P, Mgebraff S, Noonan K, Borello I. Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Res 2008; 68:5349-49; PMID:18593947; http://dx.doi.org/10.1158/0008-5472.CAN-07-6624

29. Huang B, Pan PY, Li Q, Sato AI, Levy DE, Bromberg J, Divino CM, Chen SH. Gr-1(+)-CD115(+)-immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res 2006; 66:1123-31; PMID:16424049; http://dx.doi.org/10.1158/0008-5472.CAN-05-1299

30. O’Shea JJ, Schwartz DM, Villarino AV, Gadina M, McNees IB, Laurence A. The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu Rev Med 2015; 66:311-28; PMID:25587654; http://dx.doi.org/10.1146/annurev-med-051113-024537

31. Condamine T, Gabrilovich DJ. Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends Immunol 2011; 32:19-25; PMID:21067974; http://dx.doi.org/10.1016/j.ti.2010.10.002

32. Corzo CA, Cotter MJ, Cheng P, Cheng F, Kusmartsev S, Sotomayor E, Padhya T, McCaffrey TV, McCaffrey JC, Gabrilovich DJ. Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J Immunol 2009; 182:5903-71; PMID:19380816; http://dx.doi.org/10.4049/jimmunol.0900092

33. Vasquez-Dunddel D, Pan F, Zeng Q, Gorbounov M, Albesiano E, Fu J, Bloser RL, Tam AJ, Bruno T, Zhang H et al. STAT3 regulates arginase-I in myeloid-derived suppressor cells from cancer patients. J Clin Invest 2013; 123:1580-9; PMID:23454751; http://dx.doi.org/10.1172/JCI60083

34. Cheng P, Corzo CA, Luetteke N, Yu B, Nagaraj S, Bui MM, Ortiz M, Nacken W, Sorg C, Vogl T et al. Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells is cancer regulated by S100A9 protein. J Exp Med 2008; 205:2235-49; PMID:18809714; http://dx.doi.org/10.1084/jem.20080132

35. Chen X, Eksioglu EA, Zhou J, Zhang L, Djeu J, Fortenbery N, Epling-Burnette P, Van Bijnens S, Dolstra H, Cannon J et al. Induction of myelodysplasia by myeloid-derived suppressor cells. J Clin Invest 2013; 123:4595-61; PMID:24216507; http://dx.doi.org/10.1172/JCI67580

36. Hix LM, Karavitis J, Khan MW, Shi YH, Khazaie K, Zhang H. Tumor STAT1 transcription factor activity enhances breast tumor growth and immune suppression mediated by myeloid-derived suppressor cells. J Biol Chem 2013; 288:11676-88; PMID:23484682; http://dx.doi.org/10.1074/jbc.M112.441402

37. Movahedi K, Guilliams M, Van den Bossche J, Van den Bergh R, Gysemans C, Beschin A, De Baetselier P, Van Ginderachter JA. Identification of discrete tumor-induced myeloid-suppressor cell subpopulations with distinct T cell-suppressive activity. Blood 2008; 111:4233-44; PMID:18272812; http://dx.doi.org/10.1182/blood.2007-07-99226

38. Waight JD, Netherby C, Hensen ML, Miller A, Hu Q, Liu S, Bogner PN, Farren MR, Lee KP, Liu K et al. Myeloid-derived suppressor cell development is regulated by a STAT/IRF-8 axis. J Clin Invest 2013; 123:4464-78; PMID:23901328; http://dx.doi.org/10.1172/JCI68189

39. Munera V, Popovic PJ, Bryk J, Pribis J, Caba D, Matta BM, Zenati M, Waight JD, Netherby C, Hensen ML, Miller A, Hu Q, Liu S, Bogner PN, Rayman PA, Wood L, Garcia J et al. Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin Cancer Res 2009; 15:2148-57; PMID:19276286; http://dx.doi.org/10.1158/1078-0432.CCR-08-1332

40. Pico de Coana Y, Poschke I, Gentilcore G, Mao Y, Nystrom M, Hansson C, Yin Y, Holtzman M, Johnson J et al. Immune monitoring of immature myeloid derived suppressor cells. Mol Immunol 2013; 1:158-62; PMID:24777678; http://dx.doi.org/10.1016/j.molimm.2012.10.035

41. Bunt SK, Mohr AM, Bailey JM, Grandgenett PM, Hollingsworth MA. Rosiglitazone and Gemcitabine in combination reduces immune suppression and modulates T cells population in pancreatic cancer. Cancer Immunol Immunother 2013; 62:225-36; PMID:22864396; http://dx.doi.org/10.1007/s00262-012-1324-3

42. Pico de Coana Y, Poschke I, Gentilcore G, Mao Y, Nystrom M, Hansson C, Yin Y, Holtzman M, Johnson J et al. Immune monitoring of the circulation and the tumor microenvironment in patients with regionally advanced melanoma receiving neoadjuvant ipilimumab.
70. Kusmartsev S, Su Z, Heiser A, Dannull J, Eruslanov E, Kubler H, Yan-

69. Lee JM, Seo JH, Kim YJ, Kim YS, Ko HJ, Kang CY. The restoration of

67. Zhou J, Wu J, Chen X, Fortenbery N, Eksioglu E, Kodumudi KN, Pk

65. Obermajer N, Muthuswamy R, Lesnock J, Edwards RP, Kalinski P.

62. Califano JA, Khan Z, Noonan KA, Rudraraju L, Zhang Z, Wang H,

61. Weed DT, Vella JL, Reis IM, De la Fuente AC, Gomez C, Sargi Z, Naz-

58. Ugel S, Delpozzo F, Desantis G, Papalini F, Simonato F, Sonda N, Zilio

55. Schmitz-Valckenberg S, Dedhar S, W戲nke L, Stroehla BC, Schiltz R.

53. Li ZY, Zhou X, Wang X, Zhang F, Shun L. Tumor necrosis factor-α

52. Risso J, Van den Eynde BJ, Scherer PE, Thery C, Graeber TG et al.

51. Gunther A, Erasmi O, Malmstrom VC, Poynard T, Zocca S, Bartsch K

50. Fuchs J,宣mmer M, Martina M, Sasieni P, Telenti A. Efficacy and

49. Bronte V, Kevy SV, Lawrence T, Amar A, Chiorazzi N, Tedder TF et al.

48. Bellocq C, Grumwald D, Dugas M, Boulanger C, Patrie J, Gervais S et al.

47. Kridel RA, Johnson CE, Raptopoulos V, Reddy G, Silverman ME.

46. Cruz S, Zhang J, Yigit N, Bollag G, Jaffee E, Zhang J et al. Intratumoral

45. Bhatia SK, Krieger ML, Goldberg SL, Mandelblatt JS, Disdier MA, Armitage

44. Biffo N, Anderson SA, Ho J, Yu H, Fidler IJ, Kung AL et al. Tumor immu-

43. Bhatia SK, Ho J, Krieger ML, Denekamp J, Disdier MA, Kung AL et al.

42. Biswas SK, Latchman AS, Griffin CA, Togawa S, Newell DR, Vasconcelos

41. Bronte V, Serafini P, Roversi A, Serafini F, Lui P, Gabrilovich DI.

40. Bronte V, Serafini P, Roversi A, Serafini F, Lui P, Gabrilovich DI.

39. Bronte V, Serafini P, Roversi A, Serafini F, Lui P, Gabrilovich DI.

38. Bronte V, Serafini P, Roversi A, Serafini F, Lui P, Gabrilovich DI.

37. Bronte V, Serafini P, Roversi A, Serafini F, Lui P, Gabrilovich DI.

36. Bronte V, Serafini P, Roversi A, Serafini F, Lui P, Gabrilovich DI.

35. Bronte V, Serafini P, Roversi A, Serafini F, Lui P, Gabrilovich DI.

34. Bronte V, Serafini P, Roversi A, Serafini F, Lui P, Gabrilovich DI.

33. Bronte V, Serafini P, Roversi A, Serafini F, Lui P, Gabrilovich DI.

32. Bronte V, Serafini P, Roversi A, Serafini F, Lui P, Gabrilovich DI.

31. Bronte V, Serafini P, Roversi A, Serafini F, Lui P, Gabrilovich DI.

30. Bronte V, Serafini P, Roversi A, Serafini F, Lui P, Gabrilovich DI.

29. Bronte V, Serafini P, Roversi A, Serafini F, Lui P, Gabrilovich DI.

28. Bronte V, Serafini P, Roversi A, Serafini F, Lui P, Gabrilovich DI.

27. Bronte V, Serafini P, Roversi A, Serafini F, Lui P, Gabrilovich DI.

26. Bronte V, Serafini P, Roversi A, Serafini F, Lui P, Gabrilovich DI.

25. Bronte V, Serafini P, Roversi A, Serafini F, Lui P, Gabrilovich DI.

24. Bronte V, Serafini P, Roversi A, Serafini F, Lui P, Gabrilovich DI.

23. Bronte V, Serafini P, Roversi A, Serafini F, Lui P, Gabrilovich DI.

22. Bronte V, Serafini P, Roversi A, Serafini F, Lui P, Gabrilovich DI.

21. Bronte V, Serafini P, Roversi A, Serafini F, Lui P, Gabrilovich DI.

20. Bronte V, Serafini P, Roversi A, Serafini F, Lui P, Gabrilovich DI.

19. Bronte V, Serafini P, Roversi A, Serafini F, Lui P, Gabrilovich DI.

18. Bronte V, Serafini P, Roversi A, Serafini F, Lui P, Gabrilovich DI.

17. Bronte V, Serafini P, Roversi A, Serafini F, Lui P, Gabrilovich DI.

16. Bronte V, Serafini P, Roversi A, Serafini F, Lui P, Gabrilovich DI.

15. Bronte V, Serafini P, Roversi A, Serafini F, Lui P, Gabrilovich DI.

14. Bronte V, Serafini P, Roversi A, Serafini F, Lui P, Gabrilovich DI.

13. Bronte V, Serafini P, Roversi A, Serafini F, Lui P, Gabrilovich DI.

12. Bronte V, Serafini P, Roversi A, Serafini F, Lui P, Gabrilovich DI.

11. Bronte V, Serafini P, Roversi A, Serafini F, Lui P, Gabrilovich DI.

10. Bronte V, Serafini P, Roversi A, Serafini F, Lui P, Gabrilovich DI.

9. Bronte V, Serafini P, Roversi A, Serafini F, Lui P, Gabrilovich DI.

8. Bronte V, Serafini P, Roversi A, Serafini F, Lui P, Gabrilovich DI.

7. Bronte V, Serafini P, Roversi A, Serafini F, Lui P, Gabrilovich DI.

6. Bronte V, Serafini P, Roversi A, Serafini F, Lui P, Gabrilovich DI.

5. Bronte V, Serafini P, Roversi A, Serafini F, Lui P, Gabrilovich DI.

4. Bronte V, Serafini P, Roversi A, Serafini F, Lui P, Gabrilovich DI.

3. Bronte V, Serafini P, Roversi A, Serafini F, Lui P, Gabrilovich DI.

2. Bronte V, Serafini P, Roversi A, Serafini F, Lui P, Gabrilovich DI.

1. Bronte V, Serafini P, Roversi A, Serafini F, Lui P, Gabrilovich DI.
85. Miltenburg NC, Boogerd W. Chemotherapy-induced neuropathy: A comprehensive survey. Cancer Treat Rev 2014; 40:872-82; PMID:24830939; http://dx.doi.org/10.1016/j.ctrv.2014.04.004
86. Gelao L, Criscitiello C, Esposito A, Goldhirsch A, Curigliano G. Immune checkpoint blockade in cancer treatment: a double-edged sword cross-targeting the host as an "innocent bystander". Toxins (Basel) 2014; 6:914-33; PMID:24594636; http://dx.doi.org/10.3390/toxins6030914
87. Nishimura K, Saegusa J, Matsuki F, Akashi K, Kageyama G, Morinobu A. Tofacitinib facilitates the expansion of myeloid-derived suppressor cells and ameliorates arthritis in SKG mice. Arthritis Rheumatol 2015; 67:893-902; PMID:25545152; http://dx.doi.org/10.1002/art.39007
88. Maenhout SK, Du Four S, Corthals J, Neyns B, Thielemans K, Aerts JL. AZD1480 delays tumor growth in a melanoma model while enhancing the suppressive activity of myeloid-derived suppressor cells. Oncotarget 2014; 5:6801-15; PMID:25149535