Anti-Müllerian hormone and letrozole levels in boys with constitutional delay of growth and puberty treated with letrozole or testosterone

E. Kohva1, T. Varimo1, H. Huopio2, S. Tenhola3, R. Voutilainen2, J. Toppari4, P.J. Miettinen1, K. Vaaralahti1, J. Viinamäki5, J.T. Backman5, M. Hero1, and T. Raivio1,6,*

1Children’s Hospital, Pediatric Research Center, Helsinki University Hospital, Helsinki, Finland 2Department of Pediatrics, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland 3Department of Pediatrics, Kymenlaakso Central Hospital, Kotka, Finland 4Department of Pediatrics, Turku University Hospital and Institute of Biomedicine, Research Centre for Integrated Physiology and Pharmacology, University of Turku, Turku, Finland 5Department of Clinical Pharmacology, and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland 6Translational Stem Cell Biology and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland

*Correspondence address. University of Helsinki, Faculty of Medicine, Medicum/Physiology, P.O. Box 63 (Haartmaninkatu 28 B), FI-00014 University of Helsinki, Helsinki, Finland. Email: taneli.raivio@helsinki.fi

Submitted on July 9, 2019; resubmitted on September 15, 2019; editorial decision on September 29, 2019

STUDY QUESTION: Does treatment of constitutional delay of growth and puberty (CDGP) in boys with aromatase inhibitor letrozole (Lz) or conventional low-dose testosterone (T) have differing effects on developing seminiferous epithelium?

SUMMARY ANSWER: Anti-Müllerian hormone (AMH) declined similarly in both treatment groups, and the two Sertoli cell-derived markers (AMH and inhibin B (iB)) exhibited differing responses to changes in gonadotrophin milieu.

WHAT IS KNOWN ALREADY: Boys with CDGP may benefit from puberty-inducing medication. Peroral Lz activates gonadotrophin secretion, whereas intramuscular low-dose T may transiently suppress gonadotrophins and iB.

STUDY DESIGN, SIZE, DURATION: Sera of 28 boys with CDGP who participated in a randomised, controlled, open-label trial at four paediatric centres in Finland between August 2013 and January 2017 were analysed. The patients were randomly assigned to receive either Lz (2.5 mg/day) (n = 15) or T (1 mg/kg/month) (n = 13) for 6 months.

PARTICIPANTS/MATERIALS, SETTING, METHODS: The 28 patients were at least 14 years of age, showed first signs of puberty, wanted medical attention for CDGP and were evaluated at 0, 3, 6 and 12 months of visits. AMH levels were measured with an electrochemiluminescence immunoassay and Lz levels with liquid chromatography coupled with tandem mass spectrometry.

MAIN RESULTS AND THE ROLE OF CHANCE: AMH levels decreased in both treatment groups during the 12-month follow-up (P < 0.0001). Between 0 and 3 months, the changes in gonadotrophin levels (increase in the Lz group, decrease in the T group) correlated strongly with the changes in levels of iB (FSH vs iB, r = 0.55, P = 0.002; LH vs iB, r = 0.72, P < 0.0001), but not with the changes in AMH (P = NS). At 12 months, AMH levels did not differ between the groups (P = NS). Serum Lz levels (range, 124–1262 nmol/L) were largely explained by the Lz dose per weight (at 3 months r = 0.62, P = 0.01; at 6 months r = 0.52, P = 0.05). Lz levels did not associate with changes in indices of hypothalamic-pituitary-gonadal axis activity or Sertoli cell markers (in all, P = NS).

LIMITATIONS, REASONS FOR CAUTION: The original trial was not blinded for practical reasons and included a limited number of participants.

WIDER IMPLICATIONS OF THE FINDINGS: In early puberty, treatment-induced gonadotrophin stimulus was unable to counteract the androgen-mediated decrease in AMH, while changes in iB levels were associated with changes in gonadotrophin levels. AMH decreased similarly in both groups during the treatment, reassuring safety of developing seminiferous epithelium in both treatment approaches. Since a fixed dose of Lz induced variable serum Lz levels with a desired puberty-promoting effect in all boys, more research is needed to aim at a minimal efficient dose per weight.
The desired treatment effects (i.e. HPG axis activation) with a smaller dose as well. To elucidate this question, we report the circulating Lz levels in CDGP patients (Varimo et al., 2019) and correlate them to clinical and biochemical markers of puberty with special attention to the serum AMH and iB levels.

Materials and Methods

Thirty boys with CDGP were recruited to a randomised controlled trial, which compared 6-month aromatase inhibitor Lz treatment (2.5 mg/day, Letrozol Accord 2.5 mg; Accord Healthcare B.V., Utrecht, Netherlands) to low-dose intramuscular T treatment (1 mg/kg/month, Sustanon 250; Aspen Nordic, Ballerup, Denmark) (Varimo et al., 2019). The study protocol is illustrated in Supplementary Figure S1 and the distributions of hormonal and clinical markers of puberty during the study period in Supplementary Table S1. In brief, the boys were carefully examined, and those with other causes than CDGP for delayed puberty were excluded. The inclusion criteria were testicular volume between 2.5 and 4 ml and serum T < 5 nmol/L or serum T ≥ 1 nmol/L, if the mean testicular volume was < 2.5 ml, or Tanner genital stage 2 and serum T < 3 nmol/L (Varimo et al., 2019). At the start of the trial, the boys were above 14 years of age (mean 14.7 years 95% CI 14.4 to 14.9 years) and had a mean testicular volume of 3.1 ml (95% CI 2.8–3.5 ml) and a mean serum T concentration of 2.1 nmol/L (95% CI 1.6–2.5 nmol/L). During the study period, all boys progressed in puberty. At the study visits at 0, 3, 6 and 12 months, morning blood samples were drawn and sera stored at −80°C in 15 boys treated with Lz and 13 boys treated with T.

Two participants in the T group were excluded: one because of a protocol deviation, and the other due to missing samples. Data were thus available for 15 boys treated with Lz and 13 boys treated with T.

The levels of gonadotrophins, T, estradiol and iB were determined with routine laboratory techniques (immuno)electrochemiluminesometric, liquid chromatography/mass spectrometric and enzyme-linked immunosorbent assays), as described before (Varimo et al., 2019). GnRH-stimulation test was performed by injecting GnRH analogue (3.5 μg/kg, Relefact® LH-RH 0.1 mg; Aventis Pharma, Frankfurt, Germany) intravenously as a single bolus, and serum gonadotrophin concentrations were measured for up to 90 min.

Lz concentrations were determined at 3 and 6 months of the study by using a Shimadzu Nexera Liquid Chromatography System (Shimadzu Corporation, Kyoto, Japan) coupled to an API 3000 tandem mass
In order to evaluate the connection between Sertoli cell–secreted peptides with gonadotrophins, we calculated Pearson correlations between changes (0–3 months) in AMH and iB levels and changes (0–3 months) in FSH and LH levels. To further evaluate the change in AMH, we constructed a linear regression model explaining change in AMH (0–3 months) with the corresponding changes in T and FSH levels.

At 3 and 6 months, correlations between serum Lz concentrations and Lz doses by weight (mg/kg) were assessed with Pearson correlation. Correlations between Lz concentrations at 3 and 6 months and changes in clinical and hormonal markers of puberty between baseline and 3 or 6 months (serum T, estradiol, iB, LH, FSH and AMH concentrations; T/estradiol ratio and testis volume) were assessed with Spearman rank correlation. The correlation of number of patient-reported side effects and Lz concentrations at 3 and 6 months was calculated with Spearman rank correlation test. All P values were two-sided, and P values <0.05 were selected to indicate statistical significance.

Results

We investigated circulating AMH levels in boys with CDGP who had been treated either with traditional low-dose T or peroral aromatase inhibitor Lz. Correlations between serum AMH levels and clinical and hormonal markers of puberty at the start of the study are shown in Table I. In particular, AMH levels correlated negatively with FSH and GnRH-stimulated FSH and LH levels and positively with iB levels (Table I). We next investigated longitudinal changes in AMH levels between the treatment groups during the 12-month study period. Overall, the decrease in AMH level over time was significant (P < 0.0001). There were no clear differences in AMH levels between the study groups during the period of 6 months of medical intervention and 6 months of follow-up (P = NS) (Fig. 1). Between baseline and 12 months, AMH declined from 42.2 μg/L (95% CI 26.1–58.1) to 15.1 μg/L (95% CI 8.9–21.2) (P = 0.003) in the Lz group and from 35.8 μg/L (95% CI 20.9–50.8) to 13.8 μg/L (95% CI 7.5–20.2) in the T group (P = 0.002). The change was similar in both treatment groups (P = NS).

When the analyses were restricted to the first 6 months (i.e. during treatment), the change in AMH differed in the two treatment groups (P = 0.05): serum AMH decreased from 42.2 μg/L (95% CI 26.1–58.2) to 24.9 μg/L (95% CI 13.0–36.7) (P = 0.001) in the Lz group and from 35.8 μg/L (95% CI 20.9–50.8) to 29.2 μg/L (95% CI 14.6–43.4) (P = 0.051) in the T group. Individual AMH levels of the boys in the two treatment groups are shown in Fig. 2. When the baseline AMH levels were used to adjust the decrease in AMH from baseline to 6 months, the difference was, however, no longer statistically significant (P = NS).

Since it was evident that AMH exhibited a parallel change in both treatment groups (Fig. 1), and that low-dose T suppressed gonadotrophins and iB at 3 months of the study (Varimo et al., 2019), we were keen to investigate the relationships between gonadotrophins and the serum Sertoli cell markers. The results of a regression model between baseline AMH and T and FSH levels are shown in Table I. In particular, AMH levels correlated negatively with FSH and GnRH-stimulated FSH and LH levels and positively with iB levels (Table I). We next investigated longitudinal changes in AMH levels between the treatment groups during the 12-month study period. Overall, the decrease in AMH level over time was significant (P < 0.0001). There were no clear differences in AMH levels between the study groups during the period of 6 months of medical intervention and 6 months of follow-up (P = NS) (Fig. 1). Between baseline and 12 months, AMH declined from 42.2 μg/L (95% CI 26.1–58.1) to 15.1 μg/L (95% CI 8.9–21.2) (P = 0.003) in the Lz group and from 35.8 μg/L (95% CI 20.9–50.8) to 13.8 μg/L (95% CI 7.5–20.2) in the T group (P = 0.002). The change was similar in both treatment groups (P = NS).

When the analyses were restricted to the first 6 months (i.e. during treatment), the change in AMH differed in the two treatment groups (P = 0.05): serum AMH decreased from 42.2 μg/L (95% CI 26.1–58.2) to 24.9 μg/L (95% CI 13.0–36.7) (P = 0.001) in the Lz group and from 35.8 μg/L (95% CI 20.9–50.8) to 29.2 μg/L (95% CI 14.6–43.4) (P = 0.051) in the T group. Individual AMH levels of the boys in the two treatment groups are shown in Fig. 2. When the baseline AMH levels were used to adjust the decrease in AMH from baseline to 6 months, the difference was, however, no longer statistically significant (P = NS).

Since it was evident that AMH exhibited a parallel change in both treatment groups (Fig. 1), and that low-dose T suppressed gonadotrophins and iB at 3 months of the study (Varimo et al., 2019), we were keen to investigate the relationships between gonadotrophins and the serum Sertoli cell markers. The results of a regression model between baseline AMH and T and FSH levels are shown in Table I. In particular, AMH levels correlated negatively with FSH and GnRH-stimulated FSH and LH levels and positively with iB levels (Table I). We next investigated longitudinal changes in AMH levels between the treatment groups during the 12-month study period. Overall, the decrease in AMH level over time was significant (P < 0.0001). There were no clear differences in AMH levels between the study groups during the period of 6 months of medical intervention and 6 months of follow-up (P = NS) (Fig. 1). Between baseline and 12 months, AMH declined from 42.2 μg/L (95% CI 26.1–58.1) to 15.1 μg/L (95% CI 8.9–21.2) (P = 0.003) in the Lz group and from 35.8 μg/L (95% CI 20.9–50.8) to 13.8 μg/L (95% CI 7.5–20.2) in the T group (P = 0.002). The change was similar in both treatment groups (P = NS).

When the analyses were restricted to the first 6 months (i.e. during treatment), the change in AMH differed in the two treatment groups (P = 0.05): serum AMH decreased from 42.2 μg/L (95% CI 26.1–58.2) to 24.9 μg/L (95% CI 13.0–36.7) (P = 0.001) in the Lz group and from 35.8 μg/L (95% CI 20.9–50.8) to 29.2 μg/L (95% CI 14.6–43.4) (P = 0.051) in the T group. Individual AMH levels of the boys in the two treatment groups are shown in Fig. 2. When the baseline AMH levels were used to adjust the decrease in AMH from baseline to 6 months, the difference was, however, no longer statistically significant (P = NS).

Since it was evident that AMH exhibited a parallel change in both treatment groups (Fig. 1), and that low-dose T suppressed gonadotrophins and iB at 3 months of the study (Varimo et al., 2019), we were keen to investigate the relationships between gonadotrophins and the serum Sertoli cell markers. The results of a regression model between baseline AMH and T and FSH levels are shown in Table I. In particular, AMH levels correlated negatively with FSH and GnRH-stimulated FSH and LH levels and positively with iB levels (Table I). We next investigated longitudinal changes in AMH levels between the treatment groups during the 12-month study period. Overall, the decrease in AMH level over time was significant (P < 0.0001). There were no clear differences in AMH levels between the study groups during the period of 6 months of medical intervention and 6 months of follow-up (P = NS) (Fig. 1). Between baseline and 12 months, AMH declined from 42.2 μg/L (95% CI 26.1–58.1) to 15.1 μg/L (95% CI 8.9–21.2) (P = 0.003) in the Lz group and from 35.8 μg/L (95% CI 20.9–50.8) to 13.8 μg/L (95% CI 7.5–20.2) in the T group (P = 0.002). The change was similar in both treatment groups (P = NS).

When the analyses were restricted to the first 6 months (i.e. during treatment), the change in AMH differed in the two treatment groups (P = 0.05): serum AMH decreased from 42.2 μg/L (95% CI 26.1–58.2) to 24.9 μg/L (95% CI 13.0–36.7) (P = 0.001) in the Lz group and from 35.8 μg/L (95% CI 20.9–50.8) to 29.2 μg/L (95% CI 14.6–43.4) (P = 0.051) in the T group. Individual AMH levels of the boys in the two treatment groups are shown in Fig. 2. When the baseline AMH levels were used to adjust the decrease in AMH from baseline to 6 months, the difference was, however, no longer statistically significant (P = NS).

Table I: Correlations between baseline serum AMH level and baseline clinical and hormonal markers of puberty.

AMH (μg/L)	Testosterone (nmol/L)	Estradiol (pmol/L)	Inhibin B (ng/L)	LH (IU/L)	FSH (IU/L)	LH * (IU/L)	FSH * (IU/L)	Testicular volume (ml)
Spearman correlation	−0.36	−0.35	0.39	−0.24	−0.49	−0.39	−0.53	−0.26
P value	0.06	0.07	0.04	0.23	0.009	0.04	0.005	0.18

AMH, anti-Müllerian hormone
*Maximal stimulated value in GnRH test
Lz-levels, largely explained by Lz dose per weight (mg/kg), were not associated to HPG-axis activity or patient-reported side effects.

Medications that are used to manipulate puberty should be well-investigated and safe without long-term adverse effects. This has not always been the case. For example, high-dose estrogen treatment, used to prevent tall stature in girls, was found to be associated with increased risk of infertility (Venn et al., 2004; Hendriks et al., 2012; Benyi et al., 2014) and high-dose T for the same indication in boys warrants careful consideration due to short-term side effects and subtle long-term increase in FSH levels, decrease in endogenous T levels and testis volume compared to untreated men (Hannema and Sävendahl, 2016; Albuquerque et al., 2017).

Puberty, the second postnatal activation period of the HPG axis, is associated in boys with Sertoli cell proliferation, which is essential for future fertility (Johnson et al., 1984; Cortes et al., 1987; Orth et al., 1988). Since men with a history of delayed puberty exhibit decreased sperm counts (Jensen et al., 2016), we deduced that it would be important to investigate circulating markers of seminiferous epithelium function in boys with delayed puberty during treatment with conventional low-dose T or a potent third-generation aromatase inhibitor Lz.

During the course of treatment, serum AMH level decreased in both groups, suggesting that both exogenous low-dose T and an increase in endogenous T levels are sufficient to down-regulate AMH secretion in early puberty. As AMH expression is considered to reflect maturation status of Sertoli cells (Sansone et al., 2019), our finding argues against unduly rapid maturation of Sertoli cell population in Lz-treated boys exposed to elevated gonadotrophin levels. Considering that Sertoli cell maturation is intimately related to their replicative capacity, our finding indirectly argues against untoward effect of Lz on future sperm producing capacity. Definitive data to support this view are scarce, as only one report exists on post-treatment sperm counts after aromatase inhibitor treatment during adolescence. In that study, limited number of growth hormone (GH)–deficient adolescents previously treated with anastrozole, another third-generation aromatase inhibitor, had similar sperm parameters as other GH-deficient and GH-sufficient adolescent controls (Mauras et al., 2005).

Despite the previously shown difference in gonadotrophin concentrations in the Lz- and T-treated groups (Varimo et al., 2019), we detected no evident difference between the groups in the AMH decline. These findings are in agreement with earlier reports showing a strong suppressing effect of T on AMH (Young et al., 1999; Young et al., 2003; Young et al., 2005). It is important to note that, in boys (Kohva et al., 2018) and men (Young et al., 2005) with gonadotrophin deficiency, recombinant FSH increases AMH, whereas in healthy boys, this effect appears to be overcome by the pubertal increase in intratesticular T levels (Rey, 1998; Grinspon et al., 2013). Indeed, the expression of androgen receptors in Sertoli cells increases significantly at the age of 4 to 8 years (Chemes et al., 2008), and the pubertal decrease in AMH has been shown to be an early, androgen-dependent event (Hero et al., 2012). Interestingly, the current study and our previous work (Hero et al., 2012) both suggest that the pubertal decline in AMH occurs already as a consequence of low androgen levels, and that even very high intratesticular T levels achieved by Lz do not significantly accelerate this process. We have previously shown that, in boys with idiopathic short stature treated with Lz (Hero et al., 2005), AMH decline in early puberty did not differ from placebo group suggesting that Lz-induced

Discussion

In this study, we showed that (i) AMH decreased similarly in both treatment groups, although Lz induced gonadotrophin secretion while low-dose T suppressed it; (ii) treatment-induced changes in circulating gonadotrophin levels were not associated with the changes in serum AMH, while they correlated with changes in iB; and that (iii) varying
Figure 2 Individual AMH levels in CDGP boys during 6-month treatment. Boys treated with testosterone [T] in blue (n = 13) and letrozole [Lz] in red (n = 15).

Figure 3 Correlation between gonadotrophins and Sertoli cell–secreted peptides. Correlations between changes in FSH and LH and changes in AMH (in blue) and inhibin B (in red) from baseline to 3-month-measurements in 28 boys with CDGP treated either with testosterone or letrozole.

strong gonadotrophin stimulus was unable to counteract the androgen-mediated decrease in AMH (Hero et al., 2012), and our current data on CDGP boys support this.

At the same time, the relationship between the treatment-induced changes in gonadotrophin and iB levels appeared quite the opposite as we were able to detect a positive correlation between them. Indeed, these results support the idea proposed by Grinspon et al. that serum iB level has two components in it: the gonadotrophin-dependent and the Sertoli cell mass-related components (Grinspon et al., 2013). Furthermore, a dual model has been proposed, in which immature Sertoli cells express both alpha- and beta-B inhibin subunits, whereas during puberty, the expression of beta-B-subunit is shifted from Sertoli cell to pachytene spermatocytes, early spermatid stages and to lesser extend Leydig cells (Andersson et al., 1998). This dependency of circulating iB on germ cells may explain why low-mid range iB levels associate with sperm counts and help to identify impaired spermatogenesis in men (Jørgensen et al., 2010). In contrast, AMH level does not appear as a useful hormonal marker of spermatogenesis (Aksglæde et al., 2018).
Given the reported lowered sperm counts in men with a history of delayed puberty (Jensen et al., 2016), it is tempting to hypothesise that Lz-induced activation of the HPG axis in early puberty will improve Sertoli cell proliferation and future spermatogenesis. Future studies are required to test this hypothesis.

To the best of our knowledge, this is the first study to report serum Lz concentrations in paediatric patients. The main determinant of circulating Lz levels was expectedly Lz dose per weight. Since the response to Lz treatment was heterogeneous, we could not identify an optimal HPG axis–inducing level of serum Lz. It is important to note that the current work was not powered to detect associations between Lz levels and HPG axis activity. On the other hand, it seems rational to aim at a minimal efficient dose per weight without losing the desired puberty-promoting effect. It is apparent that the current Lz dose was sufficient in all treated boys to induce the desired effect. Overall, the serum levels of Lz obtained with daily 2.5-mg dosing were similar to those observed in postmenopausal women (ranges 124–1262 nmol/L and 88–1227 nmol/L, when 1 ng/ml equals 3.51 nmol/L, respectively) (Desta et al., 2011). In postmenopausal women treated for breast cancer with a standard Lz dose of 2.5 mg per day, the variation in plasma concentrations of Lz is largely explained by BMI, age and CYP2A6 genotype, and the therapeutic range of Lz is considered wide. Serum Lz level or CYP2A6 genotype have not been associated with arthralgia, a commonly reported adverse effect of Lz (Desta et al., 2011; Tani et al., 2011; Borrie et al., 2018), and in the current study, Lz was well-tolerated and high Lz levels were not associated with the patient-reported side effects.

In conclusion, we investigated serum AMH levels in boys with CDGP who had been treated with low-dose T or peroral aromatase inhibitor Lz. Reassuringly, AMH decreased similarly in both groups during the treatment. The treatment-induced changes in AMH levels were gonadotrophin-independent, while the change in iB correlated with the change in gonadotrophins. Circulating Lz levels were highly variable and the levels were not associated with the HPG axis activity in CDGP boys in early puberty. Thus, future studies are required to investigate if a Lz dose lower than 2.5 mg/day is sufficient for the stimulation of the HPG-axis in boys with CDGP.

Supplementary data

Supplementary data are available at *Human Reproduction* online.

Acknowledgements

Annika Tarkkanen, MSs, is thanked for the skillful assistance.

Authors’ roles

T.V., P.J.M., M.H. and T.R. designed the study concept. T.V., H.H., S.T., R.V., J.T., P.J.M., S.T., R.V., J.T., K.V., J.V. and J.T.B. acquired the data. E.K. and T.V. analysed the data and interpreted it together with P.J.M., J.T.B., M.H. and T.R. All authors contributed in drafting and revising the article and approved the final version to be published.

Funding

The Academy of Finland, The Foundation for Pediatric Research, The Emil Aaltonen Foundation, Sigrid Juselius Foundation, Helsinki University Hospital Research Funds.

Conflict of interest

The authors have nothing to disclose.

References

Aksela L, Olesen IA, Carlsen E, Petersen JH, Juul A, Jørgensen N. Serum concentration of anti-Müllerian hormone is not associated with semen quality. *Andrology* 2018;6:286–292.
European Journal of Endocrinology: Articles

Albuquerque EVA, Scalcon RC, Jorge AAL. MANAGEMENT OF ENDOCRINE DISEASE: diagnostic and therapeutic approach of tall stature. Eur J Endocrinol 2017;176:R339–R353.

Andersson AM, Müller J, Skakkebaek NE. Different roles of prepubertal and postpubertal germ cells and Sertoli cells in the regulation of serum inhibin B levels. J Clin Endocrinol Metab 1998;83:4451–4458.

Beney E, Klier H, Linder M, Ritzén M, Carlstedt-Duke J, Tuvelo T, Westphal O, Sävendahl L. Risks of malignant and non-malignant tumours in tall women treated with high-dose oestrogen during adolescence. Horne Res Paediatr 2014;82:89–96.

Borrie AE, Rose RV, Choi Y-H, Perera FE, Read N, Sexton T, Lock M, Vandenberg TA, Hahn K, Dinniwell R et al. Letrozole concentration is associated with CYP2A6 variation but not with arthralgia in patients with breast cancer. Breast Cancer Res Treat 2018;172:371–379.

Chernes HE, Rey RA, Nistal M, Regadera J, Musse M, González-Peramato P, Serrano A. Physiological androgen insensitivity of the fetal, neonatal, and early infantile testis is explained by the ontology of the androgen receptor expression in Sertoli cells. J Clin Endocrinol Metab 2008;93:4408–4412.

Cortes D, Müller J, Skakkebaek NE. Proliferation of Sertoli cells during development of the human testis assessed by stereological methods. Int J Androl 1987;10:589–596.

Crowne EC, Wallace WH, Moore C, Mitchell R, Robertson WH, Holly JM, Shalet SM. Effect of low dose oxandrolone and testosterone treatment on the pituitary-testicular and GH axes in boys with constitutional delay of growth and puberty. Clin Endocrinol (Oxf) 1997;46:209–216.

Desta Z, Kreutz Y, Nguyen AT, Li L, Skaar T, Kamdem LK, Henry NL, Hayes DF, Storniolo AM, Stearns V et al. Plasma letrozole concentrations in postmenopausal women with breast cancer are associated with CYP2A6 genetic variants, body mass index, and age. Clin Pharmacol Ther 2011;90:693–700.

Grinspoon RP, Andreone L, Bedecarrás P, Ropelato MG, Rey RA, Campo SM, Bergadà I. Male central precocious puberty: serum profile of anti-Müllerian hormone and inhibin B before, during, and after treatment with GnRH analogue. Int J Androl 2013;26:823064.

Grinspon RP, Urrutia M, Rey RA. Male central hypogonadism in paediatrics—the relevance of follicle-stimulating hormone and Sertoli cell markers. Eur Endocrinol 2018;14:67–71.

Hannema SE, Sävendahl L. The evaluation and management of tall stature. Horm Res Paediatr 2016;85:347–352.

Hendriks AEJ, Drop SLS, Laven JSE, Boot AM. Fertility of tall girls treated with high-dose estrogen, a dose-response relationship. J Clin Endocrinol Metab 2012;97:3107–3114.

Hero M, Norjärvaara E, Dunkel L. Inhibition of estrogen biosynthesis with a potent aromatase inhibitor increases predicted adult height in boys with idiopathic short stature: a randomized controlled trial. J Clin Endocrinol Metab 2005;90:6396–6402.

Högbom M, Tommiska J, Vaaralahti K, Laitinen E-M, Sipiä I, Puhakka L, Dunkel L, Raivo T. Circulating antimüllerian hormone levels in boys decline during early puberty and correlate with inhibin B. Fertil Steril 2012;97:1242–1247.

Jensen TK, Finne KF, Skakkebaek NE, Andersson A-M, Olesen IA, Joensen UN, Bang AK, Nordkap L, Priskorn L, Krause M et al. Self-reported onset of puberty and subsequent semen quality and reproductive hormones in healthy young men. Hum Reprod 2016;31:1886–1894.

Johnson L, Zane RS, Petty CS, Neaves WB. Quantification of the human Sertoli cell population: its distribution, relation to germ cell numbers, and age-related decline. Biol Reprod 1984;31:785–795.

Jørgensen N, Liu F, Andersson A-M, Vierula M, Irvine DS, Auger J, Brazil CK, Drobnis EZ, Jensen TK, Jouannet P et al. Serum inhibin-B in fertile men is strongly correlated with low but not high sperm counts: a coordinated study of 1,797 European and US men. Fertil Steril 2010;94:2128–2134.

Kohve E, Huopio H, Hero M, Miettinen Pj, Vaarakall K, Sidoroff V, Toppuri J, Raivo T. Recombinant human FSH treatment outcomes in five boys with severe congenital hypogonadotropic hypogonadism. J Endocrinol Soc 2018;2:1345–1356.

Leschek EW, Flor AC, Bryant JC, Jones JV, Barnes KM, Cutler GB. Effect of antiandrogen, aromatase inhibitor, and gonadotropin-releasing hormone analog on adult height in familial male precocious puberty. J Pediatr 2017;120:229–235.

Lukas-Croisier C, Lasala C, Nicaud J, Bedecarrás P, Kumar TR, Dutertre M, Matzuk MM, Picard J-Y, Josso N, Rey R. Follicle-stimulating hormone increases testicular anti-Müllerian hormone (AMH) production through Sertoli cell proliferation and a nonclassical cyclic adenosine 5‘-monophosphate-mediated activation of the AMH gene. Mol Endocrinol 2003;17:550–561.

Mauras N, Bell J, Snow BG, Winslow KL. Sperm analysis in growth hormone-deficient adolescents previously treated with an aromatase inhibitor: comparison with normal controls. Fertil Steril 2005;84:239–242.

Mauras N, Gonzalez de Pijem L, Hsiang HY, Desrosiers P, Rapaport R, Schwartz ID, Klein KO, Singh RJ, Miyamoto A, Bishop K. Anti-astrozone increases predicted adult height of short adolescent males treated with growth hormone: a randomized, placebo-controlled, multicenter trial for one to three years. J Clin Endocrinol Metab 2006;93:823–831.

Mauras N, Ross JL, Gagliardi P, Yu YM, Hossain J, Permywey J, Damaso L, Merinbaum D, Singh RJ, Gaete X et al. Randomized trial of aromatase inhibitors, growth hormone, or combination in pubertal boys with idiopathic, short stature. J Clin Endocrinol Metab 2016;101:4984–4993.

Orth JM, Gunsalus GL, Lamperti AA. Evidence from Sertoli cell-depleted rats indicates that spermatid number in adults depends on numbers of Sertoli cells produced during perinatal development. Endocrinology 1988;122:787–794.

Palmer MT, Dunkel L. Clinical practice. Delayed puberty. N Engl J Med 2012;366:443–453.

Rey R. Endocrine, paracrine and cellular regulation of postnatal anti-müllerian hormone secretion by Sertoli cells. Trends Endocrinol Metab 1998;9:271–276.

Rosenfeld RG, Northcraft GB, Hintz RL. A prospective, randomized study of testosterone treatment of constitutional delay of growth and development in male adolescents. Pediatrics 1998;92:681–687.

Sansone A, Kliesch S, Isidori AM, Schlatt S. AMH and INSL3 in testicular and extragonadal pathophysiology: what do we know? Andrology 2019;7:131–138.
disorders of testis function in adulthood. Reproduction 2003;125: 769–784.

Soliman AT, Khadir MM, Asfour M. Testosterone treatment in ado-lescent boys with constitutional delay of growth and development. *Metab Clin Exp* 1995;44:1013–1015.

Tanii H, Shitara Y, Horie T. Population pharmacokinetic analysis of letrozole in Japanese postmenopausal women. *Eur J Clin Pharmacol* 2011;67:1017–1025.

Varimo T, Huopio H, Kariola L, Tenhola S, Voutilainen R, Toppari J, Toiviainen-Salo S, Hämäläinen E, Pulkkinen M-A, Lääperi M et al. Letrozole versus testosterone for promotion of endogenous puberty in boys with constitutional delay of growth and puberty: a randomised controlled phase 3 trial. *Lancet Child Adolesc Health* 2019;3:109–120.

Venn A, Bruinsma F, Werther G, Pyett P, Baird D, Jones P, Rayner J, Lumley J. Oestrogen treatment to reduce the adult height of tall girls: long-term effects on fertility. *Lancet* 2004;364:1513–1518.

Wickman S, Sipilä I, Ankarberg-Lindgren C, Norjavaara E, Dunkel L. A specific aromatase inhibitor and potential increase in adult height in boys with delayed puberty: a randomised controlled trial. *Lancet* 2001;357:1743–1748.

Wit JM, Hero M, Nunez SB. Aromatase inhibitors in pediatrics. *Nat Rev Endocrinol* 2011;8:135–147.

Young J, Chanson P, Salenave S, Noël M, Brailly S, O’Flaherty M, Schaison G, Rey R. Testicular anti-mullerian hormone secretion is stimulated by recombinant human FSH in patients with congenital hypogonadotropic hypogonadism. *J Clin Endocrinol Metab* 2005;90: 724–728.

Young J, Rey R, Couzinie B, Chanson P, Joss N, Schaison G. Anti-mullerian hormone in patients with hypogonadotropic hypogonadism. *J Clin Endocrinol Metab* 1999;84:2696–2699.

Young J, Rey R, Schaison G, Chanson P. Hypogonadotropic hypogo-nadism as a model of post-natal testicular anti-Müllerian hormone secretion in humans. *Mol Cell Endocrinol* 2003;21:51–54.