Genetic evolution of in situ follicular neoplasia to aggressive B-cell lymphoma of germinal center subtype

Antonio Vogelsberg,1 Julia Steinhilber,1 Barbara Mankel,1 Birgit Federmann,1 Janine Schmidt,1 Ivonne A. Montes-Mojarrio,1 Katrin Hüttl,2 Maria Rodríguez-Pinilla,3 Praveen Baskaran,4 Sven Nahnsen,4 Miguel A. Piris,3 German Ott,2 Leticia Quintanilla-Martínez,1 Irina Bonzheim,1# and Falko Fend1#

1Institute of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany; 2Department of Clinical Pathology, Robert-Bosch-Krankenhaus, and Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany; 3Department of Pathology, Fundación Jiménez Díaz, Madrid, Spain and 4Quantitative Biology Center, University of Tübingen, Tübingen, Germany

#IB and FF contributed equally as co-senior authors.

©2021 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2020.254854

Received: April 8, 2020.
Accepted: August 12, 2020.
Pre-published: August 27, 2020.

Correspondence: FALKO FEND - falko.fend@med.uni-tuebingen.de
IRINA BONZHEIM - irina.bonzheim@med.uni-tuebingen.de
Supplementary methods

Diagnosis of in situ follicular neoplasia (ISFN)

The diagnosis of ISFN was based on the criteria published in the update of the 4th Edition of the WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Specifically, a diagnosis of ISFN was made when (1) the lymph node architecture was completely preserved, with normally sized follicles, and routine hematoxylin and eosin (H&E) stains gave no evidence of FL involvement, (2) all germinal centers involved by ISFN, as evidenced by strongly BCL2+ and CD10+ centrocytes, had a clearly preserved and well-delineated mantle zone, and (3) BCL2 and CD10 stains failed to show any indication of extrafollicular spread of ISFN cells.

Microdissection and DNA isolation

Laser microdissection of ISFN samples was performed from 10 to 20 serial H&E sections with the first and every sixth slide stained for BCL2 to localize the ISFN lesions. After microdissection of between 13 and 65 germinal centers per slide, the tissue was pooled and digested with proteinase K (Merck, Darmstadt, Germany) and DNA extracted applying standard phenol/chloroform purification procedures. If macrodissection of paraffin sections was performed, DNA was extracted using the Maxwell 16 MDx Instrument (Promega, Mannheim, Germany) according to the manufacturer’s instructions.

Immunohistochemistry and fluorescence in situ hybridization (FISH)

Immunohistochemistry was performed on an automated immunostainer (Ventana Medical Systems, Tucson, AZ, USA). All ISFN samples were stained for BCL2, CD20, MIB1 (DAKO,
Hamburg, Germany) and CD10 (Novocastra, Wetzlar, Germany). High-grade B-cell lymphoma (HGBL), diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL) samples were additionally stained for CD3 (DCS, Hamburg, Germany), BCL6 (Zytomed, Berlin, Germany), MUM1 (DAKO), MYC (Roche, Penzberg, Germany) and P53 (Novacastra). All aggressive B-cell lymphomas (BCLs) were sub-classified according to the Hans algorithm. Images were taken with the Axioskop 2 Plus microscope (Zeiss, Oberkochen, Germany) and the Jenoptik ProgRes C10 Plus camera and software (Jenoptik, Jena, Germany). Objectives used were Plan-Neofluar x1.25/0.035, x2.5/0.075, x10/0.30, x20/0.50 and x40/0.75 (Zeiss). FISH analysis was performed using Vysis LSI BCL2, LSI BCL6 and LSI MYC Dual Color Break Apart Rearrangement Probes (Abbott Molecular, Wiesbaden, Germany) for the detection of BCL2, MYC and BCL6 translocations, respectively. Case 5 was also analyzed with the Vysis LSI IGH/BCL2 Dual Color Dual Fusion Translocation Probe (Abbott Molecular) and the ZytoLight SPEC IGH Dual Color Break Apart Probe (ZytoVision, Bremershaven, Germany). For ISFN lesions, FISH for BCL6 and MYC was performed only if the respective rearrangement had been detected in the paired aggressive BCL. Samples that carried a TP53 mutation were analyzed with the Vysis LSI TP53 SpectrumOrange/CEP 17 SpectrumGreen Probe (Abbott Molecular) to investigate a loss of the second TP53 allele.

PCR and Sanger sequencing of the t(14;18) breakpoint region

Forward primers used were 5’ TTAGAGAGTTGGCTTTACGTGGCCTG 3’ for the major breakpoint region (MBR)\(^4\), 5’ TCGTTTCTCAGTAAGTGAGAGTGC 3’ for the intermediate cluster region (ICR)\(^5\) and 5’ CGTGCTGGTACCACCTCCTG 3’ for the minor cluster region (MCR)\(^6\) as well as eight additional primers that cover a region of about 1 kilobase downstream of the MCR primer. The joining region consensus primer 5’ CTTACCTGAGGAGACGGTGACC 3’ was used as the reverse primer.\(^7\) PCR was performed with 100 ng of purified DNA in a final volume of 25 µl using 0.4 mM dNTPs, 1.5 mM MgCl\(_2\), 0.4 µM of each primer and 1.25 U Taq polymerase (AmpliTaq Gold DNA Polymerase; Applied Biosystems, Foster City, CA, USA). Cycling involved an initial denaturation at 95°C for 5 min followed by 45 cycles of denaturation (95°C for 45 s), annealing (60 s at 57°C for
MBR and MCR, 60 s at 56°C for the ICR) and elongation (72°C for 60 s), with a final elongation at 72°C for 10 min. To increase the detection rate, we additionally used the IdentiClone BCL2/JH Translocation Assay, which was performed according to the manufacturer’s instructions (Invivoscribe, San Diego, CA, USA). PCR products were purified using Agencourt AMPure XP magnetic beads (Beckman Coulter, Brea, CA, USA) and mixed with 1 µl of the respective primer (10 μM) and 2 µl of the GenomeLab DTCS-Quick Start Kit (Beckman Coulter) to a final volume of 10 µl for the sequencing reaction according to the manufacturer’s protocol. Sequencing reactions were purified (CleanSEQ; Beckman Coulter), analyzed in a GenomeLab GeXP Genetic Analysis System (Beckman Coulter) and evaluated by the GenomeLab GeXP software 11.0 (Beckman Coulter) to investigate the t(14;18) breakpoint sequence.

For the ISFN samples of cases 3 and 9, primers specific to the breakpoint of the corresponding aggressive BCL were designed using the Primer3web software 4.1.0 (http://primer3.ut.ee/), with primers binding to the respective BCL2 and t(14;18) de novo sequences.8 Forward BCL2 primers used were 5’ AACACAGACCCACCCAGAG 3’ (Case 3) and 5’ GCTTTCTCATGGCTGTCCTT 3’ (Case 9). Reverse de novo sequence primers used were 5’ ATACCGTACGTCCGAAAGCA 3’ (Case 3) and 5’ GGGACCACATCGAGAAGC 3’ (Case 9). PCR was performed with 100 ng of genomic DNA and modified annealing temperatures (54°C and 53°C). A successful amplification in the respective ISFN lesion was seen as evidence of the same t(14;18) breakpoint. Primer specificity was ensured using clonally unrelated t(14;18)+ samples as negative controls. Additionally, all PCR products were sequenced as stated above.

Clonality analysis

PCRs for the detection of immunoglobulin gene rearrangements were performed in duplicate with two different concentrations of genomic DNA using 1 U AmpliTaq Gold DNA polymerase (Applied Biosystems) and BIOMED-2 FR2, FR3, JH, and Vk, Jk, IntronRSS and Kde primers.7 Modified amplification conditions were carried out with an initial denaturation step of 95°C (7 min), 40 cycles (95°C for 30 s, 60°C for 45 s, 72°C for 45 s) and a final step of 72°C
for 4 min. The JH, JK1-4, JK5 and Kde primers were modified with D4 fluorescent dyes (Sigma-Aldrich, St. Louis, MO, USA). For cases 6 and 10, clone-specific primers were designed based on the respective DLBCL framework region and complementarity-determining region 3 using the Primer3web software 4.1.0 (http://primer3.ut.ee/). Forward primers used were 5’ GAATATGCTGCGTCGGTGAA 3’ (Case 6) and 5’ ATGGAGTTGAGGAGGCTGAC 3’ (Case 10). Reverse primers used were 5’ TGTGGCTACGGACCTCTCTA 3’ (Case 6) and 5’ GCCCCAGACGTCCATAACAT 3’ (Case 10). Reverse primers were modified with D4 fluorescent dyes (Sigma-Aldrich) and PCR was performed with 100 ng of genomic DNA and modified annealing temperatures (54°C and 53°C). For GeneScan analysis 1 µl of the PCR products were mixed with sample loading solution containing 30 µl DNA Size Standard 400 (Beckman Coulter). The products were separated by capillary electrophoresis on the GenomeLab GeXP Genetic Analysis System and analyzed by the GenomeLab GeXP software 11.0 (Beckman Coulter).

Immunoglobulin sequence analysis

Next generation sequencing (NGS) of the immunoglobulin genes was performed with the LymphoTrack Dx IGH FR1, FR2 and FR3 Assay – PGM (Invivoscribe) according to the manufacturer’s instructions. Libraries were purified and quantified applying Agencourt AMPure XP (Beckman Coulter) magnetic beads and the Ion Library Quantitation Kit (Thermo Fisher Scientific, Waltham, MA, USA) on the LightCycler 480 real-time PCR system (Roche Molecular Systems, Pleasanton, CA, USA). Generated libraries were run on the Ion Torrent Personal Genome Machine (PGM; Thermo Fisher Scientific). NGS data were analyzed with the LymphoTrack Dx Software – PGM (Invivoscribe) and interpreted according to the manufacturer’s protocol, which allows the detection of clonal immunoglobulin rearrangements with variable and joining gene usage and sequence information. Clonal sequences were submitted to IMGT/V-QUEST (http://www.imgt.org/ IMGT_vquest/vquest) and IgBlast (https://www.ncbi.nlm.nih.gov/igblast/) for analysis. N-glycosylation motifs were identified by the consensus sequence Asn-X-Ser/Thr, where X can be any amino acid except proline. To investigate intraclonal heterogeneity, the ten most prevalent clone-
specific sequences (i.e. subclones) of each sample were identified through the alignment of their sequence with that of the respective dominant rearrangement. Clear-cut sequencing artifacts, i.e. insertions/deletions (InDels) in homopolymer regions, InDels at the beginning of a sequence and changes of the first nucleotide were manually corrected to the sequence of the major clone. To calculate the share of each subclone, the sequence count was divided by the total number of clone-specific reads.

Phylogenetic tree construction

Phylogenetic trees for cases 1, 2, 4, 7, and 9 were built using the ten most prevalent subclones of the respective samples and the corresponding unmutated VDJ germline sequence, which was determined with IMGT/V-QUEST (http://www.imgt.org/IMGT_vquest/vquest) and IgBlast (https://www.ncbi.nlm.nih.gov/igblast/). Multiple sequence alignments were generated using MAFFT (Version 7.4) with localpair alignment mode and max iteration of 1000. jModelTest (Version 2.1) was used to find the best-fit substitution model for each multiple sequence alignment based on Bayesian information criteria strategy. In summary, JC69 (Case 2), K80 + I (Case 4), and K80 (Cases 1, 7, and 9) were determined as most suitable. The construction of phylogenetic trees was done using the maximum likelihood method implemented in RAxML (Version 8.2). The corresponding plots were generated in R (Version 3.4) (http://www.R-project.org/) using the “ape” and “phytools” packages.

Library preparation and sequencing

Amplicon library preparation and semiconductor sequencing were performed according to the manufacturer’s instructions (Thermo Fisher Scientific). For each reaction, 10 ng of DNA were mixed with AmpliSeq HiFi Mix (Thermo Fisher Scientific) and the respective primer pool to amplify the target regions. Subsequently, primer end sequences were partially digested using FuPa reagent (Thermo Fisher Scientific), followed by the ligation of barcoded sequencing adapters (Ion Xpress Barcode Adapters; Thermo Fisher Scientific). The final libraries were purified and quantified as described in “Immunoglobulin sequence analysis”.
Libraries were diluted to 100 pM each and pooled. In the next step, DNA fragments were attached to Ion Sphere Particles (ISPs) and clonally amplified using the Ion PGM Hi-Q OT2 Kit (Thermo Fisher Scientific) and the Ion OneTouch Instrument (Thermo Fisher Scientific). The amount of template-positive ISPs was determined with the Qubit 3.0 Fluorometer (Life Technologies, Darmstadt, Germany) and the Ion Sphere Quality Control Kit (Thermo Fisher Scientific). Afterwards, the Ion OneTouch ES (Thermo Fisher Scientific) was used to enrich template-positive ISPs. In a last step, sequencing primers were attached to the DNA fragments bound to the ISPs, which were subsequently loaded on a semiconductor chip (Ion 318 Chip Kit; Thermo Fisher Scientific). Finally, sequencing was performed using the Ion PGM Hi-Q Sequencing Kit and the Ion Torrent PGM platform (Thermo Fisher Scientific).

Targeted NGS data analysis

Detection of variants in comparison to the human reference sequence (hg19) was performed using the Torrent Suite (Version 5.6.0) and the Ion Torrent Variant Caller (5.8.0.19) (Thermo Fisher Scientific). Detection thresholds were set at an allele frequency of 5%. Variants were annotated and filtered against the dbSNP and COSMIC databases using the Annotate variants single sample workflow of the Ion Reporter Software (Version 5.6) (Thermo Fisher Scientific). The Integrative Genomics Viewer (Version 2.3.94) (Broad Institute, Cambridge, MA, USA) software was used to inspect each detected variant to exclude possible artifacts. Variants considered to be artifacts were those only detected in one sequencing direction and InDels at sites of homopolymer regions. Caution was also exercised when variants occurred in regions with low coverage, especially concerning CG>TA transitions and/or alterations with VAFs <10%. All sequences that harbored an alteration in at least one sample of a case were specifically reviewed in paired samples, even when not called by the Ion Reporter Software. If the mutation could not be detected in a paired sample, but the coverage was low (<100 reads), the location was reevaluated with bidirectional single amplicon sequencing to avoid a false negative result. Prediction of the deleteriousness of variants was done using the Combined Annotation Dependent Depletion (CADD) predictor (http://cadd.gs.washington.edu/home). For the construction of clonal evolution patterns,
synonymous and 5’ untranslated region (5’UTR) mutations of BCL2 were taken into account as additional markers (Supplementary Table S5). Sequencing data are deposited in the European Nucleotide Archive (Accession number PRJEB34446).

Variant validation and single amplicon sequencing

To further exclude sequencing artifacts, the majority of variants were validated (see Supplementary Table S4). If TP53 was mutated in an aggressive BCL, single amplicon sequencing was used to investigate if the mutation could be detected in paired ISFN and FL samples. Single amplicons were prepared following the Ion Amplicon Library Preparation Fusion Method protocol (Thermo Fisher Scientific). Primers were designed using the primer3 software 4.1.0 (http://primer3.ut.ee). The primers were composed of either the A adapter or the trP1 adapter, the barcode sequence and barcode adapter sequence, and the target primer sequence (Supplementary Table S2). Each gene region was amplified using two primer pairs (A Forward and trP1 Reverse or A Reverse and trP1 Forward) to enable bidirectional sequencing. Library preparation was done according to the manufacture’s protocol (Thermo Fisher Scientific).

References

1. Swerdlow SH, Campo E, Harris NL, et al. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Revised 4th ed. Lyon: IARC Press, 2017.
2. Schmidt J, Salaverria I, Haake A, et al. Increasing genomic and epigenomic complexity in the clonal evolution from in situ to manifest t(14;18)-positive follicular lymphoma. Leukemia. 2014;28(5):1103-1112.
3. Hans CP, Weisenburger DD, Greiner TC, et al. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood. 2004;103(1):275-282.
4. Stetler-Stevenson M, Raffeld M, Cohen P, Cossman J. Detection of occult follicular lymphoma by specific DNA amplification. Blood. 1988;72(5):1822-1825.
5. Albinger-Hegyi A, Hochreutener B, Abdou MT, et al. High frequency of t(14;18)-translocation breakpoints outside of major breakpoint and minor cluster regions in follicular lymphomas: improved polymerase chain reaction protocols for their detection. Am J Pathol. 2002;160(3):823-832.
6. Gribben JG, Freedman A, Woo SD, et al. All advanced stage non-Hodgkin's lymphomas with a polymerase chain reaction amplifiable breakpoint of bcl-2 have residual cells containing the bcl-2 rearrangement at evaluation and after treatment. Blood. 1991;78(12):3275-3280.

7. van Dongen JJ, Langerak AW, Bruggemann M, et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia. 2003;17(12):2257-2317.

8. Untergasser A, Cutcutache I, Koressaar T, et al. Primer3--new capabilities and interfaces. Nucleic Acids Res. 2012;40(15):e115.

9. Brochet X, Lefranc MP, Giudicelli V. IMGT/V-QUEST: the highly customized and integrated system for IG and TR standardized V-J and V-D-J sequence analysis. Nucleic Acids Res. 2008;36(Web Server issue):W503-508.

10. Ye J, Ma N, Madden TL, Ostell JM. IgBLAST: an immunoglobulin variable domain sequence analysis tool. Nucleic Acids Res. 2013;41(Web Server issue):W34-40.

11. Berg DT, Grinnell BW. Pro to Gly (P219G) in a silent glycosylation site results in complete glycosylation in tissue plasminogen activator. Protein Sci. 1993;2(1):126-127.

12. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772-780.

13. Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nature methods. 2012;9(8):772.

14. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312-1313.

15. R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

16. Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2019;35(3):526-528.

17. Revell LJ. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol. 2012;3(2):217-223.

18. Robinson JT, Thorvaldsdottir H, Winckler W, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29(1):24-26.

19. Mardis ER. Next-generation sequencing platforms. Annu Rev Anal Chem (Palo Alto Calif). 2013;6:287-303.

20. Wong SQ, Li J, Tan AY, et al. Sequence artefacts in a prospective series of formalin-fixed tumours tested for mutations in hotspot regions by massively parallel sequencing. BMC Med Genomics. 2014;7:23.
Supplementary tables

Supplementary Table S1. Genes analyzed with AmpliSeq Custom Panels.

Gene	Position (GRCh37/hg19)	Exon(s)	Amplicons
BCL2	chr18: 60,795,858 - 60,985,965	CDS	9
BCL6	chr3: 187,440,246 - 187,451,481	CDS	27
BTG1	chr12: 92,537,856 - 92,539,311	CDS	7
BTG2	chr1: 203,274,735 - 203,276,566	CDS	6
CARD11	chr7: 2,946,272 - 2,998,140	CDS	54
CD79B	chr17: 62,006,586 - 62,009,621	CDS	11
CREBBP	chr16: 3,777,719 - 3,929,917	CDS	96
EP300	chr22: 41,489,009 - 41,574,960	CDS	63
EZH2	chr7: 148,508,712 - 148,508,817	CDS	16
FOXO1	chr13: 41,133,660 - 41,240,349	CDS	10
GNA13	chr17: 63,010,375 - 63,052,711	CDS	8
HIST1H1B	chr6: 27,834,627 - 27,835,307	CDS	6
HIST1H1C	chr6: 26,056,015 - 26,056,656	CDS	6
HIST1H1D	chr6: 26,234,496 - 26,235,161	CDS	6
HIST1H1E	chr6: 26,156,619 - 26,157,278	CDS	5
IL7R	chr22: 23,230,234 - 23,237,874	CDS	8
KMT2D	chr12: 49,415,563 - 49,449,107	CDS	120
IRF4	chr6: 393,153 - 407,598	CDS	18
MEF2B	chr19: 19,256,503 - 19,261,544	CDS	11
MYD88	chr3: 38,181,350 - 38,182,777	CDS	2-5
PIM1	chr6: 37,138,079 - 37,141,867	CDS	16
PRDM1	chr6: 106,534,429 - 106,555,361	CDS	29
TBL1XR1	chr3: 176,743,286 - 176,782,765	CDS	32
TNFAIP3	chr3: 138,192,365 - 138,202,456	CDS	29
TNFRSF14	chr1: 2,488,104 - 2,494,712	CDS	11

CDS, coding sequence.

Supplementary Table S2. Primer sequences for targeted resequencing including the sequences of the A or trP1 adapter and the barcodes.

Primer	Sequence 5’-3’
GNA13 Ex4 326 BC50 AF	CCAATCATCTCCGCGTGTCCTCGACTCACGGCGCAATGCGGATCCCACCTGCTTAAGAGACG
GNA13 Ex4 326 BP1F	CCAATCATGGCCAGTCTCGGATCCCACCTGCTTAAGAGACG
GNA13 Ex4 326 AR1F	CCAATCATCCGCGTGTCCTCGACTCACGGCGCAATGCGGATCCCACCTGCTTAAGAGACG
GNA13 Ex4 326 AR1R	CCAATCATGGCCAGTCTCGGATCCCACCTGCTTAAGAGACG
TP53 Ex8 273 BC51 AF	CCAATCATCTCCGCGTGTCCTCGACTCACGGCGCAATGCGGATCCCACCTGCTTAAGAGACG
TP53 Ex8 273 AR1F	CCAATCATGGCCAGTCTCGGATCCCACCTGCTTAAGAGACG
TP53 Ex8 273 AR1R	CCAATCATCTCCGCGTGTCCTCGACTCACGGCGCAATGCGGATCCCACCTGCTTAAGAGACG
CREBBP Ex7 551 BC52 AF	CCAATCATCTCCGCGTGTCCTCGACTCACGGCGCAATGCGGATCCCACCTGCTTAAGAGACG
CREBBP Ex7 551 AR1F	CCAATCATCTCCGCGTGTCCTCGACTCACGGCGCAATGCGGATCCCACCTGCTTAAGAGACG
CREBBP Ex7 551 AR1R	CCAATCATCTCCGCGTGTCCTCGACTCACGGCGCAATGCGGATCCCACCTGCTTAAGAGACG
CREBBP Ex30 1680 BC60 AF	CCAATCATCTCCGCGTGTCCTCGACTCACGGCGCAATGCGGATCCCACCTGCTTAAGAGACG
CREBBP Ex30 1680 AR1F	CCAATCATCTCCGCGTGTCCTCGACTCACGGCGCAATGCGGATCCCACCTGCTTAAGAGACG
CREBBP Ex30 1680 AR1R	CCAATCATCTCCGCGTGTCCTCGACTCACGGCGCAATGCGGATCCCACCTGCTTAAGAGACG
KMT2D Ex31 2823 BC61 AF	CCAATCATCTCCGCGTGTCCTCGACTCACGGCGCAATGCGGATCCCACCTGCTTAAGAGACG
Supplementary Table S3. Immunohistochemical findings of FL and aggressive BCL samples.

Case	Diagnosis	CD10	BCL6	MUM1	BCL2	MIB-1 (%)	CD20	P53*	MYC* (%)
De novo aggressive B-cell lymphoma									
1	HGBL-TH	+	+	-	+	70	+	+	40 (w)
2	DLBCL	+	+	-	+	40	+	-	
3	DLBCL	+	+	-	+	70	+	+	
4	DLBCL	+	+	-	+	70	+	-	30 (h)
5	DLBCL	+	+	-	+	40	+	-	5 (s)
6	DLBCL	+	+	-	+	30	+	-	
Transformed FL									
7	FL	+	+	-	+	10	+	-	
	DLBCL	+	+	+	+	90	+	-	30 (s)
8	HGBL-DH	+	+	-	+	80	+	-	60 (s)
9	FL	+	+	-	+	5	+	-	
	HGBL-DH	+	+	-	+	70	+	-	40 (h)
10	FL	+	+	-	+	N/A	+	-	
	DLBCL	+	+	-	+	50	+	-	15 (s)

DH, Double-hit; N/A, Not available; TH, Triple-hit. *Only samples with a strong staining of ≥ 20% of neoplastic cells were considered positive. #Percentages represent the share of positive lymphoma cells with strong (s), heterogeneous (h) or weak (w) staining. °Complete loss in the neoplastic cells.
Supplementary Table S4. Overview of non-synonymous and splice site mutations.

Case	Diagnosis	Gene	Transcript	Predicted protein change	cDNA change	VAF (%)	Coverage	Validation	CADD Score'
1	ISFN	BCL2	NM_00633	p.D31N	c.91G>A	15	3210	Confirmed	20.0
	HGBL-TH	BCL2	NM_00633	p.T166S	c.166A>T	42	2427	ND	10.65
	BCL2	NM_00633	p.L369S	c.369delinsTC	ND	45	2426	ND	21.6
	TP53	NM_000546	p.R273C	c.817C>T	52	8697	Confirmed	25.3	
	GNA13	NM_006572	p.L320R	c.977T>G	8	2322	Confirmed	32	
2	ISFN	BCL2	NM_00633	p.Q33R	8	3266	Confirmed	15.30	
	BCL2	NM_00633	p.G101A	c.302G>C	7	7474	Confirmed	25.1	
	CREBBP	NM_004380	p.S1680del	c.5039_5041del	28	588	Confirmed	22.7	
	DLBCL	BCL2	NM_00633	p.R65G	20	2283	Confirmed	21.2	
	BCL2	NM_00633	p.G33R	c.164A>G	21	3097	Confirmed	15.30	
	BCL2	NM_00633	p.A113G	c.338C>G	22	6631	Confirmed	13.61	
	CREBBP	NM_004380	p.S1680del	c.5039_5041del	67	565	Confirmed	22.7	
	TP53	NM_000546	p.T150fs	c.447_450del	52	9399	ND	28.7	
	CARD11	NM_032415	p.Q249P	c.746A>C	46	7624	Confirmed	27.1	
3	ISFN	CREBBP	NM_004380	p.Y1503D	c.4507T>G	16	1673	Confirmed	29.4
	BCL2	NM_00633	p.Y1503D	c.4507T>G	15	1171	ND	26.3	
	BCL2	NM_00633	p.I545fs	c.16365_1637del	51	32774	ND	32	
	CREBBP	NM_004380	p.Y1503D	c.4507T>G	26	8807	ND	36	
	TP53	NM_000546	p.H179N	c.4767del	45	1983	ND	26.3	
	BCL2	NM_00633	p.W214C	c.642G>T	60	14102	ND	32	
	KMT2D	NM_003482	p.I455fs	c.16365_1637del	47	4421	ND	36	
	CREBBP	NM_004380	p.Y1503D	c.4507T>G	21	1385	Confirmed	29.4	
	BCL2	NM_00633	p.Y1503D	c.4507T>G	42	1187	ND	26.3	
	CREBBP	NM_004380	p.N1589fs	c.4767del	84	3049	ND	28.2	
	TP53	NM_000546	p.H179N	c.535C>A	83	3576	ND	28.2	
4	ISFN	BCL2	NM_00633	p.A76D	c.227C>A	44	1015	Confirmed	13.25
	TNFRSF14	NM_003820	p.W12*	c.35G>A	25	7259	Confirmed	35	
	HIST1H1D	NM_005320	p.N77K	c.231C>G	31	6107	Confirmed	24.8	
	EP300	NM_001429	p.L415P	c.1244T>C	24	841	Confirmed	24.8	
	BCL2	NM_00633	p.P95S	c.175C>T	24	5580	ND	13.71	
	KMT2D	NM_003482	p.A76D	c.227C>A	23	5649	Confirmed	13.25	
	HIST1H1D	NM_005320	p.N77K	c.231C>G	13	8530	Confirmed	24.8	
	EP300	NM_001429	p.L415P	c.1244T>C	19	1200	Confirmed	24.8	
	BCL2	NM_00633	p.P95S	c.175C>T	24	5580	ND	13.71	
	KMT2D	NM_003482	p.A76D	c.227C>A	23	5649	Confirmed	13.25	
	TNFRSF14	NM_003820	p.W12*	c.35G>A	14	182	Confirmed	35	
	HIST1H1D	NM_005320	p.N77K	c.231C>G	13	8530	Confirmed	24.8	
	EP300	NM_001429	p.L415P	c.1244T>C	19	1200	Confirmed	24.8	
5	ISFN	BCL2	NM_00633	p.P53A	c.157C>G	28	2009	10.80	
	BCL2	NM_00633	p.R129C	c.385C>T	13	7370	Confirmed	24.3	
	BCL2	NM_00633	p.F153S	c.457T>C	8	8140	Confirmed	32	
	KMT2D	NM_003482	p.Q4473*	c.13417C>T	24	702	Confirmed	43	
	CREBBP	NM_004380	p.V1371D	c.4112T>A	30	956	ND	29.4	
	IGLL5	NM_001250296	p.C35	c.8G>C	25	1331	ND	0.018	
---	---	---	---	---	---				
5	DLBCL								
	BCL2	NM_000633	p.P598S	c.175C>T	51	2893	ND	13.71	
	BCL2	NM_000633	p.A282T	c.244G>A	50	3013	ND	12.65	
	BCL2	NM_000633	p.D102G	c.307G>T	40	8806	ND	26.2	
	KMT2D	NM_003482	p.Q4473*	c.13417C>T	30	4234	Confirmed	43	
	EZH2	NM_004456	p.Y646F	c.1927A>T &	27	10985	ND	25.3	
	IGLL5	NM_001256296	p.G132S	c.396G>T	54	1168	ND	0.18	
	GNA13	NM_006572	p.Q476R	c.1421T>C	16	6861	Confirmed	29.4	
	GNA13	NM_006572	p.D155A	c.464A>C	35	9386	ND	27.7	
	GNA13	NM_006572	p.T203A	c.609G>T	38	118	Confirmed	23.8	
	HIST1H1D	NM_005320	p.T93S	c.278G>C	45	21464	ND	23.3	
	MEF2B	NM_001145785	p.R38M	c.115G>T	36	13251	ND	26.1	
	CD79B	NM_000626	p.Y196H	c.589A>C	38	5105	Confirmed	24.8	

6	ISFN							
	BCL2	NM_000633	p.G5V	c.14G>T	14	3104	Confirmed	25.5
	BCL2	NM_000633	p.A24V	c.125C>T	15	8584	Confirmed	15.15
	BCL2	NM_000633	p.S97R	c.261C>A	26	1338	Confirmed	21.2
	KMT2D	NM_003482	p.S469*	c.1403C>A	13	9012	Confirmed	35
	KMT2D	NM_003482	p.S477P	c.1429T>C	13	13514	Confirmed	14.21
	CREBBP	NM_004380	p.Y1503D	c.4507T>G	8	6861	Confirmed	29.4
	IGLL5	NM_001256296	p.I91S	c.273C>T	16	694	ND	10.87
	IGLL5	NM_001256296	p.A30V	c.90C>T	26	702	ND	5.331
	GNA13	NM_006572	p.L54*	c.159_161delinsCTA	15	15333	Confirmed	35
	GNA13	NM_006572	p.D222N	c.664G>A	17	695	Confirmed	32
	MEF2B	NM_001145785	p.E77A	c.230A>C	14	1248	Confirmed	27.9
	TBL1X1R1	NM_0024656	p.L198*	c.592_609delinsT	34	16045	ND	35
	PIM1	NM_002648	p.M11	c.35G>A	13	2241	Confirmed	24.1

7	ISFN							
	BCL2	NM_000633	p.D26V	c.765G>G	12	1902	Confirmed	13.04
	BCL2	NM_000633	p.R90S	c.268C>T	23	1911	Confirmed	23.9
	BCL2	NM_000633	p.F153L	c.457T>C	12	1481	ND	32
	BCL2	NM_000633	p.V162D	c.487G>A	10	5631	ND	26.5
	EZH2	NM_004456	p.Y646C	c.1937A>G	27	2218	ND	25.7
	CREBBP	NM_004380	p.Y1482S	c.4445A>C	15	6079	Confirmed	28.4
	MEF2B	NM_001145785	p.D83V	c.248A>T	22	1813	ND	26.5
	TBL1X1R1	NM_0024656	p.L198*	c.592_609delinsT	23	10682	ND	35

8	ISFN							
	EZH2	NM_004456	p.Y1492C	c.4496T>C	32	715	Confirmed	32
	CREBBP	NM_004380	p.L1499P	c.4496T>C	32	715	Confirmed	32
	CARD11	NM_003245	p.S50P	c.150G>A	23	9399	Confirmed	23.9

9	HGBL-DH							
	BCL2	NM_000633	p.D100A	c.300G>A	37	4171	Confirmed	25.0
	BCL2	NM_000633	p.N11D	c.331G>A	32	4766	Confirmed	23.1
	EZH2	NM_004456	p.Y646N	c.1937T>A	56	21249	Confirmed	24.5
	CREBBP	NM_004380	p.L1499P	c.4496T>C	32	715	Confirmed	32
	TBL1X1R1	NM_0024656	p.S171C	c.512G>C	68	5035	ND	24.2
	ISFN	BCL2	NM_000633	p.L86F	c.256C>T	15	110	Confirmed	19.85
	FL	BCL2	NM_000633	p.L86F	c.256C>T	25	301	Confirmed	19.85
		BCL2	NM_000633	p.E135D	c.405G>C	8	801	Confirmed	18.34
	HGBL-DH	BCL2	NM_000633	p.L86F	c.256C>T	55	2690	Confirmed	19.85
		EZH2	NM_004456	p.Y646F	c.1937A>T	23	4420	Confirmed	25.3
		HIST1H1B	NM_005322	p.S107C	c.320C>G	32	1371	Confirmed	32
	ISFN	EZH2	NM_004456	p.Y646F	c.1937A>T	9	357	Confirmed	25.3
	FL	EZH2	NM_004456	p.Y646F	c.1937A>T	52	409	Confirmed	25.3
		KMT2D	NM_003482	p.S831*	c.2492C>A	13	505	Confirmed	22.2
	DLBCL	EZH2	NM_004456	p.Y646F	c.1937A>T	40	1559	Confirmed	25.3
		KMT2D	NM_003482	p.S831*	c.2492C>A	21	1131	Confirmed	22.2

Bold letters indicate that mutations are shared between ISFN and FL and/or aggressive BCL. ND, Not done. Mutations with a CADD algorithm score >15 were considered deleterious. *Bidirectional single amplicon sequencing.
Supplementary Table S5. Overview of synonymous and 5'UTR mutations of **BCL2**.

Case	Diagnosis	Protein level	cDNA change	VAF (%)	Coverage
De novo aggressive B-cell lymphoma					
1 ISFN	HGBL-TH	5'UTR	c.1-18G>A	42	7049
		5'UTR	c.1-1G>A	42	7057
		Synonymous	c.207C>T	44	2475
		Synonymous	c.381G>A	30	27929
2 ISFN	DLBCL	5'UTR	c.1-2G>C	12	1516
		5'UTR	c.1-17C>G	20	2472
		5'UTR	c.1-2G>C	20	2478
3 ISFN	DLBCL	Synonymous	c.67C>T	15	6895
		5'UTR	c.1-17C>G	55	2601
		Synonymous	c.67C>T	55	3771
		Synonymous	c.588T>C	58	8330
4 ISFN	DLBCL	5'UTR	c.1-49G>C	9	1085
		5'UTR	c.1-1G>A	15	8031
5 ISFN	DLBCL	Synonymous	c.186C>T	51	2892
		Synonymous	c.261C>T	52	3191
6 ISFN	DLBCL	5'UTR	c.1-1G>C	21	3096
		Synonymous	c.67C>T	21	9335
		Synonymous	c.291C>G	16	26582
		Synonymous	c.355C>T	12	26894
		Synonymous	c.438G>A	17	12968
		Synonymous	c.456G>A	9	15227
		5'UTR	c.1-17C>T	26	5333
Transformed FL					
7 ISFN	DLBCL	5'UTR	c.1-17C>A	11	1391
		Synonymous	c.24G>A	12	1398
		Synonymous	c.67C>T	11	1981
		5'UTR	c.1-17C>A	22	1609
		Synonymous	c.24G>A	23	1630
		Synonymous	c.67C>T	24	2201
8 ISFN	DLBCL	5'UTR	c.1-17C>A	50	2574
		Synonymous	c.67C>T	56	3402
		Synonymous	c.354G>A	25	8459
		Synonymous	c.408G>A	55	7506
		Synonymous	c.447C>G	64	7523
9 ISFN	HGBL-DH	5'UTR	c.1-49G>C	29	4229
		5'UTR	c.1-17C>G	14	4215
		Synonymous	c.426G>A	43	8014
10 ISFN	HGBL-DH	Synonymous	c.66G>A	10	389
		Synonymous	c.258C>T	16	109
		Synonymous	c.357G>A	9	1637
	FL	Synonymous	c.66G>A	23	618
		Synonymous	c.258C>T	23	295
		Synonymous	c.357G>A	13	1832
	5'UTR	Synonymous	c.66G>A	46	5918
		Synonymous	c.93T>C	48	5722
		Synonymous	c.258C>T	56	2682

All mutations refer to the NM_000633 transcript of the **BCL2** gene. Bold letters indicate that mutations are shared between ISFN and FL and/or aggressive BCL. 5'UTR, 5' untranslated region.
Supplementary figures

Supplementary Figure S1. Branched evolution illustrated by phylogenetic trees. The trees were constructed using the ten most prevalent subclones of every sample and rooted to the corresponding VDJ germline sequence. Aggressive BCL is represented in blue, FL in green and ISFN in red. The bar graphs show the share of each subclonal sequence out of the total number of clone-specific reads of the respective sample.
Supplementary Figure S2. Patterns of clonal evolution based on the distribution of private and shared mutations. The respective evolutionary pattern is indicated in parentheses. All variants are depicted at protein level. Mutations highlighted in red were gained during the evolution. Synonymous and 5'UTR variants of BCL2 are not shown, but were also taken into account for the construction. The existence of “Progenitor clones” was assumed based on the distribution of mutations.