The intensity and frequency with which recent drought events are occurring has made management of food and water a challenge. The situation in Indian subcontinent is no different. The presented study takes inspiration from such problems to propose a remote sensing based multivariate advance drought response index (ADRI). The proposed multivariate index takes into consideration long term conditions of precipitation, normalized difference vegetation index (NDVI), brightness temperature and soil moisture in a linear way for 8-day drought assessment over drought affected Marathwada region, Maharashtra, India. A value of 33 corresponding to ADRI was found to be normal condition over two decades which corresponds to normal vegetation condition index (VCI) value of 51.1 and 54.2. The last 7 years shows a consistent pattern in the change of regional ADRI values which suggests the years in which agricultural assistance is needed over the region. Drought over the region is found to be shift from central to eastern and northern regions in the last 5 years. Temporal analysis for the duration suggests up to 5 percent of the area of Marathwada has been facing severe drought conditions over the last decade while up to 70 percent of the area is experience below normal conditions with varying intensities of water stress. The districts of Latur, Parbhani, Hingoli and Nanded which are downstream river Godavari have been affected the most due to large percentage of land being under agriculture.

1. INTRODUCTION

The intensity of drought is not going to holster its guns against any life form in near future. This is evident when we see the wrath over the years. Very little has been collectively achieved when we stand in front of such a natural crisis. Efforts are constantly made to understand the reasons and factors that cause such a catastrophe year after year and decade after decade. The notion that variations in precipitation drive the drought process has thus found substance in almost all the drought studies. This process differs from region to region as the onset and offset is not clearly understood (Fernandez et al., 2016). Extended drought spells have been studied throughout the globe (Xu et al. 2020, Mann et al. 2015, Um et al., 2018). Drought as an event is pretty hard to understand as the implications are spread throughout different domains. Drought studies are often studied as aspects of environment, hydrology, meteorology and socio economic constraints (Wilhite, 2000; Mishra and Singh, 2010, Du et al., 2013, Heim, 2002).

Researchers have tried to study the factors that trigger the drought and the widely documented ones include Z Index (Palmer, 1965), soil moisture index (Palmer, 1968), synthesized drought index (Du et al., 2013), surface water supply index (Shafer and Dezman, 1982), multivariate drought index (Rajsekhar et al., 2015), vegetation health index (Kogan, 1995), Hybrid drought index (Karamouz et al., 2009), vegetation drought response index (Brown et al., 2008), vegetation drought index (Sun et al., 2013), Drought severity index (Mu et al., 2013) and Synthesized drought index (Du et al., 2013). These indices mostly use precipitation and derivatives as the major factor to determine drought and are studied on monthly basis. Precipitation based studies drought studies show that the uncertain patterns of extreme weather conditions are driven by environmental changes. In the last 2 decades India has witnessed frequent drought spells (De et al 2005; Mishra and Lui 2014, Pathak and Dodamani 2020). However lack of precipitation wasn’t only the driving factor. Surface soil moisture has also seen similar variations driving the onset of agricultural drought. Reservoirs have seen less water accumulation causing imbalance in water supply and demand aiding socioeconomic inequality. Groundwater levels have also decreased assisting hydrological drought scenarios.
Temperature images were acquired to develop ADRI. Data for 17 years at a frequency of 46 reading per year helps in cautiously judging the spread of drought over the region. Assessment and monitoring of drought through such a linear multivariate method provides a reliable assessment window. This method helps in determining regions which suffer from unusual water scarcity leading to crop failure and economic losses as compared to the normal conditions observed.

2. STUDY AREA

The western state of Maharashtra, India was the study area chosen to demonstrate the capabilities of ADRI. Maharashtra is the third largest state by area, second most populous state and has the largest economy in India. The Marathwada region (64,590 sq. km) which comprises of 8 districts is a semi-arid and is badly affected by frequent droughts. Farmer suicide of which 17% is due to pure crop failure is recorded between 2009 and 2016 for a total number of 23000 suicides (Source: National Crime Records Bureau, Ministry of Home Affairs http://ncrb.gov.in/).

3. MATERIALS AND METHOD

Data – The model uses satellite images as base data obtained for the parameters mentioned below along with the sensor details. Band 1 and 2 of surface reflectance obtained from MODIS (MOD09A1) was used to calculate NDVI and VCI for the years 2002 to 2017. The sensor has a temporal resolution of 8 days and spatial resolution of 500 meters. Band 12 (QA) was used to find cloud pixels in bands 1 and 2. Images with more than 25% of cloud pixels were not used to calculate NDVI using geo image processing. Pymodis, gdal, and numpy libraries of python were used for the processing as seen in equation (1).

\[
NDVI = \frac{R_{band 1} - R_{band 2}}{R_{band 1} + R_{band 2}}
\] (1)

\[
VCI = \frac{NDVI_{max} - NDVI_{min} + 100\%}{NDVI_{max} - NDVI_{min} + NDVI_{max} - NDVI_{min} + 100\%}
\] (2)

Band 1 and 5 of MODIS land surface temperature product (MOD11A2) was used to calculate brightness temperature for the years 2002 to 2017. The temporal resolution of the satellite is 8 days and spatial resolution of 1000m. Rasterio and gdal libraries of python were used to replace no data pixels using one year composite data from previous year. The bands with filled data were resampled to 500m spatial resolution before calculating brightness temperature as seen in equation (3).

\[
BT = band 5 - band 2
\] (3)

\[
TCI = \frac{BT_{max} - BT_{min}}{BT_{max} - BT_{min} + 100\%}
\] (4)

The daily product of 3B42 from Tropical Rainfall Measuring Mission (TRMM) (2011) at spatial resolution of 0.25 X 0.25 degrees was used for precipitation estimation. The coarser resolution was processed to achieve 500m resolution by using pygwr library in python. The daily data was converted in to 8-day composites to maintain temporal consistency. Cartosat DEM at 30m resolution and above created NDVI at 500m resolution was used to down-sample the precipitation data. Numpy and gdal libraries were used to transform precipitation at 500m. Equation (5) below is used to perform downscaling.

\[
TRMM = \beta_0(u) + \beta_1(u)DEM_{0.25} + \beta_2(u)NDVI_{0.25} + \varepsilon(u)
\] (5)

\[
PCI = \frac{TRMM_{max} - TRMM_{min}}{TRMM_{max} - TRMM_{min} + 100\%}
\] (6)
Soil moisture data was acquired from ASMR-E and ASMR2 sensors. The data captured in the descending mode i.e. night time data was used as it is consistent compared to ascending mode. The data in netCDF format has a daily temporal resolution and 0.25 X 0.25 degrees spatial resolution. This daily data was converted into 8-day composite and interpolated using inverse distance weighted (IDW) to fill missing values. Brightness temperature and NDVI at 500m resolution were used as input in the geographically weighted regression (GWR) model using pygwr library in python. Downscaling of the image was done as seen in equation (7) whereas equation (8) was used to calculate soil condition index.

\[
\text{Soil}_{\text{DS}} = \text{intercept} + (\text{NDVI parameter} \times \text{NDVI}) + (\text{LST parameter} \times \text{LST}) + \text{residual} \tag{7}
\]

\[
\text{SCI} = \frac{\text{AMSR}_{\text{max}} - \text{AMSR}_{\text{min}}} {\text{AMSR}_{\text{max}} - \text{AMSR}_{\text{min}}} \times 100 \tag{8}
\]

The condition indices VCI, TCI, PCI and SCI are unit-less standardized values which fall in the range 0 and 100. The proposed ADRI is as given equation (9). ADRI like other condition indices have a standardized range of 0 and 100 and is linear in nature.

\[
\text{ADRI}_{\text{IPK}} = \left[L \times \text{VCI} \times \left\{ \frac{1} {\frac{1} {L} (\text{VCI} + \text{TCI} + \text{PCI} + \text{SCI})} \times (\text{TCI} + \text{PCI} + \text{SCI}) \right\} \right] \tag{9}
\]

Where VCI, TCI, PCI and SCI are values of pixel i for composite j in year k, L is the normalization factor and c is constant to avoid a null denominator. The results discussed in this paper are calculated using \(L = 0.25 \) and \(c = 0.01 \). The unit less ADRI ranges from 0 to 100. Values close to 0 depict drought like conditions while values near 100 are healthy conditions.

4. RESULTS

Figure 3 shows the yearly mean ADRI over Marathwada for the years 2014 to 2020. Table 1 presents the annual mean ADRI over each district for the years (2004 to 2020). The values in italics correspond to the images in figure 3. The highs for these years for ADRI for the mentioned years oscillated between 50 and 58. The lows for the same were between 0 and 8.

The mean ADRI over Marathwada for 17 year duration was found to be around 33 (+/- 5%). The distribution of drought over the region of Marathwada is seen to be uneven. From figure 3 the shift in spatial distribution is evident. For the year 2014, Nanded, Parbhani and Hingoli districts were heavily affected followed by Latur, Osmanabad and Bid districts. Jalna and Aurangabad were the least affected districts in the year 2014.

The shift of pattern for 2015 clearly shows that the drought pattern has moved in the central and eastern regions of Marathwada in which Latur, Parbhani, Nanded and Bid were highly affected and needed support and relief from local governing bodies. 2016 saw the intensity reducing in the areas that were drought affected in 2015. This distribution of intensity in subsequent years has been seen to shift to the north and east of Marathwada region. The district of Aurangabad which was not affected significantly by drought in 2014 has seen increase in the intensity of drought in the last three years.

The movement of Godavari River through the districts of Aurangabad, Bid, Parbhani and Nanded has created a fertile belt which helps in maintaining healthy soil and vegetation conditions in the vicinity. As the major river in southern India, the benefit the river provides to the livelihood of the farmers.

In order to verify the obvious facts, the correlation of annual ADRI and SCI along with that of ADRI and VCI were studied to find the consistency of the performance of ADRI. Table 2 and 3 below shows district wise annual mean of VCI and SCI over each district respectively.

In order to verify the obvious facts, the correlation of annual ADRI and SCI along with that of ADRI and VCI were studied to find the consistency of the performance of ADRI. Table 2 and 3 below shows district wise annual mean of VCI and SCI over each district respectively.
Districts of Parbhani, Latur and Nanded saw significant drop in annual average VCI for the years 2015 and 2016. The conditions improved in subsequent years. However new spots of low VCI starts to emerge in the districts of Beed and Latur in 2019 and 2020 showing the shift in pattern. The same pattern is observed to be true in case of annual average SCI values. The districts of Nanded, Parbhani, Hingoli and Latur follow similar trends for the duration 2011 to 2014. This trend is different as seen over the districts of Aurangabad, Jalna, Beed and Osmanabad for the same time duration. This can be seen in figure 6. However, soil moisture data acquired from ASMR-E and ASMR2 saw a lack of data from early October 2011 to July 2012 due to unavailability of satellite. This lack of data forces ADRI to calculate the index without soil moisture data causing an abnormal trend in yearly observations. This shows how soil moisture affects drought conditions in the Marathwada region. Depletion of soil moisture often leads to agricultural drought (Zampieri et al., 2009).

Table 1: Annual mean ADRI over every district of Marathwada from 2004 to 2020

Year	Aurangabad	Jalna	Beed	Latur	Parbhani	Nanded	Osmanabad	Hingoli
2004	29.24124	25.68328	27.87744	27.84656	23.19855	28.51644	24.32709	20.81437
2005	31.36114	28.56848	33.80396	33.34241	26.19729	31.25504	38.59073	19.99159
2006	37.46791	39.44515	40.38691	40.6001	38.91479	33.85669	45.77959	34.73823
2007	40.14311	35.57152	35.74702	30.84222	31.49611	25.49793	38.9573	31.93011
2008	31.37161	27.75473	31.85063	28.76359	30.65558	22.91344	36.01073	30.84517
2009	33.58207	30.63699	35.90114	28.09662	31.89229	22.29442	37.41826	26.89919
2010	47.21653	42.72104	47.13559	31.99244	36.33091	29.25029	43.6394	31.47592
2011	45.98525	44.03666	44.74545	39.56148	42.11983	39.68531	43.53785	39.80683
2012	28.07285	27.66634	30.71517	37.73576	39.61535	38.50194	31.66225	40.61259
2013	30.07454	28.35556	30.65483	37.11517	36.23706	37.5355	28.8075	37.35792
2014	40.49128	39.93966	37.69257	37.99266	36.68791	35.44186	37.55889	37.73115
2015	33.8081	32.75883	27.92174	22.10157	24.79882	29.9383	28.3666	33.67393
2016	29.49176	28.97658	27.92174	22.10157	24.79882	29.9383	28.3666	33.67393
2017	37.19047	39.1498	38.57121	34.97257	37.23781	31.19241	38.16466	33.76713
2018	28.17057	31.1293	31.16237	32.34905	32.82608	27.0452	37.94546	26.43682
2019	28.04232	28.05999	26.22814	26.14765	29.93849	26.52967	30.34239	27.89514
2020	34.41262	44.25020	42.68313	37.69367	42.54552	40.61235	42.04862	40.53

Mean yearly ADRI Value over district
Mean 35.1149535
std 6.2099362

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1173-2022 | © Author(s) 2022. CC BY 4.0 License.
This lack of data forces ADRI to calculate the index without soil moisture data causing an abnormal trend in yearly observations. This shows how soil moisture affects drought conditions in the Marathwada region.
Figure 6: ADRI movement over Districts over Marathwada from 2004 to 2020

The correlation of yearly ADRI-VCI and ADRI-SCI values for 17 years is as seen in table 4. The districts of Latur, Hingoli, Nanded and Parbhani have relatively low values as compared to other districts (ADRI_VCI value). This clear indication supports the fact that the aforementioned districts have high percentage of land under agriculture. On the other hand districts of Latur, Parbhani and Osmanabad have low correlation values as compared to other districts (ADRI_SCI values). The overall correlation over Marathwada is strong for ADRI-VCI at 0.97 and that of ADRI-SCI at 0.79.

Table 4: Correlation of ADRI with VCI and SCI for 17 years

Year	Aurangabad	Jalna	Beed	Latur	Parbhani	Nanded	Osmanabad	Hingoli
2004	0.987368	0.9745106	0.981337	0.94177994	0.95683675	0.92488228	0.982746774	0.95954404
2005	0.986359358	0.88605365	0.80137491	0.77408063	0.77972359	0.81955832	0.729945954	0.79901635

5. DISCUSSION

The districts of Latur, Parbhani, Nanded and Hingoli have over 75% of the land under agriculture. This results in rise in water demand for agricultural use. Tables 3 and 4 show a consistent pattern over the region. Better conditions are seen every third year as far as vegetation conditions and soil conditions are considered. Districts of Latur and Parbhani have been suffering from severe drought as compared to other districts. From the images it is also clear that Osmanabad is affected by soil moisture losses but even then it manages to better the vegetation condition of the last two decades.

Table 5: Annual ADRI and SPI correlation for years with complete data

Year	ADRI-SPI correlation
2013	-0.011852
2014	0.03318275
2015	0.4462035
2016	0.15440775

The temporal analysis also shows that the drought severity is shifting down to the eastern region of Marathwada. The distribution of precipitation over the years show that the concentration of rainfall in the districts of Nanded, Hingoli, Latur and Parbhani experience majority of the rainfall in the August and September months which makes agriculture difficult as far as natural resources are concerned. The results further confirm that the onset of hydrological and agricultural droughts is triggered by meteorological drought. This information is also visible through the correlation of ADRI (agriculture focused drought index) and SPI (meteorological drought index) as seen in table 5. Whereas table 6 above shows the percentage difference of district-wise ADRI values when compared to the 17 year mean value.
6. CONCLUSION

Decadal studies often help us in finding patterns of extreme weather events helping us update the knowledge of global scenarios on a frequent basis to make necessary adjustments and show human resilience in tough conditions. The development of ADRI as a means to study and assess the local drought condition of Marathwada has yielded significant results specially in identifying the propagation of drought. The drought patterns as seen through the images above shows a consistent pattern where 2 year events of unfavorable agricultural conditions is padded by events of less intensity. This helps to establish that the region of Marathwada is affected by varying drought intensities for nearly two decades.

REFERENCES

Martínez-Fernández, J., González-Zamora, A., Sánchez, N., Gumuzzio, A., & Herrero-Jiménez, C. M. (2016). Satellite soil moisture for agricultural drought monitoring: Assessment of the SMOS derived Soil Water Deficit Index. Remote Sensing of Environment, 177, 277-286.

Um, M. J., Kim, Y., & Park, D. (2018). Evaluation and modification of the drought severity index (DSI) in East Asia. Remote sensing of environment, 209, 66-76.

Mann, M.E., Gleick, P.H., 2015. Climate change and California drought in the 21st century. Proc. Natl. Acad. Sci. 112, 3858–3859. https://doi.org/10.1073/pnas.150367112 Mann, M.E., Gleick, P.H., 2015. Climate change and California drought in the 21st century. Proc. Natl. Acad. Sci. 112, 3858–3859. https://doi.org/10.1073/pnas.150367112

The objective of developing a reliable, consistent and extensive drought monitor index for assessment of drought has been achieved to a certain degree. Images obtained from the index will help provide timely update of drought propagation.

ACKNOWLEDGEMENT

The authors of the paper would like to thank Department of Science and Technology, National Geospatial Programme (erstwhile NRDMS), Government of India for funding the project requirements.

Xu, L., Abbaszadeh, P., Moradkhani, H., Chen, N., & Zhang, X. (2020). Continental drought monitoring using satellite soil moisture, data assimilation and an integrated drought index. Remote Sensing of Environment, 250, 112028.

Zampieri, M., D'andrea, F., Vautard, R., Ciais, P., de Noblet-Ducoudré, N., &Yiou, P. (2009). Hot European summers and the role of soil moisture in the propagation of Mediterranean drought. Journal of Climate, 22(18), 4747-4758.

Zargar, A., Sadiq, R., Naser, B., & Khan, F. I. (2011). A review of drought indices. Environmental Reviews, 19(NA), 333-349.

Willhite, D. A. (2000). Drought as a natural hazard: concepts and definitions.

Misra, A. K., & Singh, V. P. (2010). A review of drought concepts. Journal of hydrology, 391(1-2), 202-216.

Du, L., Tian, Q., Yu, T., Meng, Q., Jancso, T., Udvardy, P., & Huang, Y. (2013). A comprehensive drought monitoring project requirements.

Table 6: Percentage of drought as compared to 17 year means of respective districts

Year	Aurangabad	Jalna	Beed	Parbhani	Latur	Nanded	Osmanabad	Hingoli
2004	164.8574302	184.265117	182.959464	193.160124	194.236388	202.318305	180.424588	191.738498
2005	159.3289877	149.592538	153.275197	149.167455	150.506641	150.030283	150.134163	155.390943
2006	145.2749751	145.946159	158.966818	160.024728	160.589058	154.613862	162.737127	167.022525
2007	135.8088859	132.529365	154.214633	132.380702	130.099778	111.483742	154.931575	120.859771
2008	199.2483913	196.270853	197.79042	182.647364	179.63939	191.116099	186.187006	181.677938
2009	198.415892	197.813807	191.702446	209.269937	217.377084	215.609825	188.249521	228.701768
2010	84.3373489	119.951189	107.609867	174.962594	172.193974	212.496952	111.761000	227.039643
method integrating MODIS and TRMM data. International Journal of Applied Earth Observation and Geoinformation, 23, 245-253.

Heim Jr, R. R. (2002). A review of twentieth-century drought indices used in the United States. Bulletin of the American Meteorological Society, 83(8), 1149-1166.

Pathak, A. A., & Dodamani, B. M. (2020). Trend analysis of rainfall, rainy days and drought: a case study of Ghataprabha River Basin, India. Modeling Earth Systems and Environment, 6(3), 1357-1372.

Mishra, A., & Liu, S. C. (2014). Changes in precipitation pattern and risk of drought over India in the context of global warming. Journal of Geophysical Research: Atmospheres, 119(13), 7833-7841.

De, U. S., R. K. Dube, and G. S. Prakasa Rao (2005), Extreme weather events over India in the last 100 years, J. Indian Geophys. Union, 9(3), 173–187

Kogan, F. N. (1995). Application of vegetation index and brightness temperature for drought detection. Advances in space research, 15(11), 91-100.

Sun, H., Zhao, X., Chen, Y., Gong, A., & Yang, J. (2013). A new agricultural drought monitoring index combining MODIS NDWI and day–night land surface temperatures: A case study in China. International Journal of Remote Sensing, 34(24), 8986-9001.

Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1974). Monitoring vegetation systems in the Great Plains with ERTS. NASA special publication, 351(1974), 309.

Gao, B. C. (1996). NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote sensing of environment, 58(3), 257-266.

Huete, A., Justice, C., & Van Leeuwen, W. (1999). MODIS vegetation index (MOD13). Algorithm theoretical basis document, 3(213), 295-309.

Hayes, M., Svoboda, M., Wall, N., & Widhalm, M. (2011). The Lincoln declaration on drought indices: universal meteorological drought index recommended. Bulletin of the American Meteorological Society, 92(4), 485-488.

Weghorst, K. M. (1996). The Reclamation Drought Index: guidelines and practical applications. Bureau of Reclamation, Denver, CO, 6.

Keyantash, J. A., & Dracup, J. A. (2004). An aggregate drought index: Assessing drought severity based on fluctuations in the hydrologic cycle and surface water storage. Water Resources Research, 40(9).

Brown, J. F., Wardlow, B. D., Tadesse, T., Hayes, M. J., & Reed, B. C. (2008). The Vegetation Drought Response Index (VegDRI): A new integrated approach for monitoring drought stress in vegetation. GIScience & Remote Sensing, 45(1), 16-46.

Liu, W. T., & Kogan, F. N. (1996). Monitoring regional drought using the vegetation condition index. International Journal of Remote Sensing, 17(14), 2761-2782.

Pani, P., Alahacoon, N., Amarnath, G., Bharani, G., Mondal, S., & Jeganathan, C. (2016, October). Comparison of SPI and IDSI applicability for agriculture drought monitoring in Sri Lanka. In Proceedings of the 37th Asian Conference on Remote Sensing, Colombo, Sri Lanka (pp. 17-21).

Van Loon, A. F. (2015). Hydrological drought explained. Wiley Interdisciplinary Reviews: Water, 2(4), 359-392.

Palmer, W. C. (1965). Meteorological drought (Vol. 30). US Department of Commerce, Weather Bureau.

Shafer, B. A., & Dezman, L. E. (1982, January). Development of surface water supply index (SWSI) to assess the severity of drought condition in snowpack runoff areas. PROCEEDING OF THE WESTERN SNOW CONFERENCE.

Karamouz, M., Rasouli, K., & Nazif, S. (2009). Development of a hybrid index for drought prediction: case study. Journal of Hydrologic Engineering, 14(6), 617-627.

Palmer, W. C. (1968). Keeping track of crop moisture conditions, nationwide: the new crop moisture index.

Rajsekhar, D., Singh, V. P., & Mishra, A. K. (2015). Multivariate drought index: An information theory based approach for integrated drought assessment. Journal of Hydrology, 526, 164-182.

Mu, Q., Zhao, M., Kimball, J. S., McDowell, N. G., & Running, S. W. (2013). A remotely sensed global terrestrial drought severity index. Bulletin of the American Meteorological Society, 94(1), 83-98.

Du, L., Tian, Q., Yu, T., Meng, Q., Jancso, T., Udvardy, P., & Huang, Y. (2013). A comprehensive drought monitoring method integrating MODIS and TRMM data. International Journal of Applied Earth Observation and Geoinformation, 23, 245-253.

Tropical Rainfall Measuring Mission (TRMM) (2011), TRMM (TMPA) Rainfall Estimate L3 3 hour 0.25 degree x 0.25 degree V7, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC), Accessed: [Data Access Date], 10.5067/TRMM/TMPA/3H/7