Asymptotic Results for the Two-parameter Poisson-Dirichlet Distribution

Shui Feng∗
Department of Mathematics and Statistics
McMaster University
Hamilton, Ontario
Canada L8S 4K1
shuifeng@mcmaster.ca

Fuqing Gao†
School of Mathematics and Statistics
Wuhan University
Wuhan 430072, China
fqgao@whu.edu.cn

Abstract

The two-parameter Poisson-Dirichlet distribution is the law of a sequence of decreasing non-negative random variables with total sum one. It can be constructed from stable and Gamma subordinators with the two-parameters, \(\alpha \) and \(\theta \), corresponding to the stable component and Gamma component respectively. The moderate deviation principles are established for the two-parameter Poisson-Dirichlet distribution and the corresponding homozygosity when \(\theta \) approaches infinity, and the large deviation principle is established for the two-parameter Poisson-Dirichlet distribution when both \(\alpha \) and \(\theta \) approach zero.

Key words: Poisson-Dirichlet distribution, two-parameter Poisson-Dirichlet distribution, GEM representation, homozygosity, large deviations, moderate deviations.

AMS 1991 subject classifications: Primary: 60F10; Secondary: 92D10.

1 Introduction

For \(\alpha \) in \((0,1)\) and \(\theta > -\alpha \), let \(U_k, k = 1, 2, \cdots \), be a sequence of independent random variables such that \(U_k \) has \(\text{Beta}(1 - \alpha, \theta + k\alpha) \) distribution. Set

\[
X_{1}^{\alpha,\theta} = U_1, \quad X_{n}^{\alpha,\theta} = (1 - U_1) \cdots (1 - U_{n-1})U_n, \quad n \geq 2.
\]

∗Research supported by the Natural Science and Engineering Research Council of Canada
†Research supported by the NSF of China(No.10571139).
Then with probability one
\[\sum_{k=1}^{\infty} X_k^{\alpha,\theta} = 1, \]
and the law of \((X_1^{\alpha,\theta}, X_2^{\alpha,\theta}, \cdots)\) is called the two-parameter GEM distribution.

Let \(P(\alpha, \theta) = (P_1(\alpha, \theta), P_2(\alpha, \theta), \cdots)\) denote the descending order statistic of \((X_1^{\alpha,\theta}, X_2^{\alpha,\theta}, \cdots)\). The law of \(P(\alpha, \theta)\) is called the two-parameter Poisson-Dirichlet distribution and is denoted by \(\Pi_{\alpha,\theta}\). The well-known one-parameter Poisson-Dirichlet distribution corresponds to \(\alpha = 0\).

For each integer \(m \geq 2\), taking a random sample of size \(m\) from a population with the two-parameter Poisson-Dirichlet distribution. Given the population proportion \(p = (p_1, p_2, \ldots)\), the probability that all samples are of the same type is given by
\[H_m(p) = \sum_{i=1}^{\infty} p_i^m, \]
which is referred to as the homozygosity of order \(m\).

The main properties of the two-parameter Poisson-Dirichlet distribution are studied in Pitman and Yor [17] including relations to subordinators, Markov chains, Brownian motion and Brownian bridges. The detailed calculations of moments and parameter estimations were carried out in Carlton [2]. In [6] and the references therein one can find connections between two-parameter Poisson-Dirichlet distribution and models in physics including mean-field spin glasses, random map models, fragmentation, and returns of a random walk to origin. The two-parameter Poisson-Dirichlet distribution has also been used in macroeconomics and finance ([1]).

Many properties of the one-parameter Poisson-Dirichlet distribution have generalizations in the two-parameter setting including but not limited to the sampling formula (cf. [8], [16]), the Markov-Krein identity (cf. [2], [18]), and subordinator representation (cf. [13], [17]). Recently, a large deviation principle (henceforth, LDP)is established in [9] for the two-parameter Poisson-Dirichlet distribution when \(\theta\) goes to infinity. This is a generalization to the LDP result for the one-parameter Poisson-Dirichlet distribution in [3]. Our first result here establishes the corresponding moderate deviation principle (henceforth, MDP). This can be viewed as a generalization of the MDP result in [11] to the two-parameter setting. The MDP for the homozygosity is also established generalizing corresponding result in [11]. In order to apply the Campbell’s theorem, we turn to a representation of the two-parameter Poisson-Dirichlet distribution obtained in [16].

When \(\alpha = 0\), the one-parameter Poisson-Dirichlet distribution converges to \(\delta_{(1,0,\ldots)}\) as \(\theta\) goes to zero. The corresponding LDP is established in [10] where a structure called “energy ladder” is revealed. Our second main result generalizes this result to the two-parameter Poisson-Dirichlet distribution when both \(\alpha\) and \(\theta\) go to zero. It turns out that the large deviation speed will depend on \(\alpha\) if it converges to zero at a slower speed than that of \(\theta\).

The current paper is organized as follows. Distributional results are derived in Section 2 using the change of measure formula and the subordinator representation. Section 3 is dedicated to
establishing the MDP for $\Pi_{\alpha, \theta}$ when θ goes to infinity. The large θ MDP for the homozygosity is established in Section 4. In Section 5 we prove the LDP for $\Pi_{\alpha, \theta}$ when both α and θ go to zero.

2 Marginal Distributions

In this section, we derive the marginal distributions of the two-parameter Poisson-Dirichlet distribution. The basic tools are the change of measure formula and the subordinator representation. For general concepts and theorems on MDP and LDP, we will refer to [5].

From now on, the parameter θ will be assumed to be positive and α is in $(0, 1)$. Let $\{\rho_s, s \geq 0\}$ be a subordinator, an increasing process with stationary independent increment, with no drift component. The Laplace transform of ρ_s is then given by

$$E(\exp(-\lambda \rho_s)) = \exp\left\{s \int_0^{\infty} (e^{-\lambda x} - 1) \Lambda(dx)\right\}, \lambda \geq 0,$$

(2.1)

where Λ is the Lévy measure on $(0, +\infty)$ describing the distribution of the jump sizes. Let $V_1(\rho_s) \geq V_2(\rho_s) \geq \cdots$ denote the jump sizes of $\{\rho_s, s \geq 0\}$ over $[0, s)$ in decreasing order.

If

$$\Lambda(dx) = c_\alpha x^{-(1+\alpha)} dx.$$

for some $c_\alpha > 0$, then the subordinator is called a stable subordinator with index α and is denoted by $\{\tau_s, s \geq 0\}$. Without loss of generality, we choose $c_\alpha = \frac{\alpha}{\Gamma(1-\alpha)}$ in this paper.

The next result is from [17].

Proposition 2.1 (Pitman and Yor). Let $\{\sigma_s : s \geq 0\}$ and $\{\gamma_s : s \geq 0\}$ be two independent subordinators with respective Lévy measures $\alpha C x^{-(\alpha+1)} e^{-x} dx$ and $x^{-1} e^{-x} dx$ for some $C > 0$. Let

$$\zeta(\alpha, \theta) = \frac{\gamma/\alpha}{\theta \Gamma(1-\alpha)}.$$

Then $T = T(\alpha, \theta) = \sigma_{\zeta(\alpha, \theta)}$, and

$$\left(\frac{V_1(T)}{T}, \frac{V_2(T)}{T}, \cdots\right)$$

are independent with respective laws the Gamma($\theta, 1$) distribution and the two-parameter Poisson-Dirichlet distribution $\Pi_{\alpha, \theta}$.

Let $E_{\alpha, \theta}$ denote the expectation with respect to $\Pi_{\alpha, \theta}$. For $n \geq 1$, set

$$C_{\alpha, \theta} = \frac{\Gamma(\theta + 1)}{\Gamma(\frac{\theta}{\alpha} + 1)}, \quad (2.2)$$

$$C_{\alpha, \theta, n} = \frac{\Gamma(\theta + 1) \Gamma(\frac{\theta}{\alpha} + n) \alpha^{n-1}}{\Gamma(\theta + na) \Gamma(\frac{\theta}{\alpha} + 1) \Gamma(1-\alpha)^n}. \quad (2.3)$$

The following change of measure formula is obtained in [15].
Proposition 2.2 (Perman, Pitman and Yor). For any bounded measurable function \(f \) on \(\mathbb{R}^\infty_+ \),

\[
E_{\alpha,\theta}(f(P_1, P_2, \ldots)) = C_{\alpha,\theta}E\left(\tau_1^{-\theta} f \left(\frac{V_1(\tau_1)}{\tau_1}, \frac{V_2(\tau_1)}{\tau_1}, \ldots\right)\right),
\]

where the law of

\[
\left(\frac{V_1(\tau_1)}{\tau_1}, \frac{V_2(\tau_1)}{\tau_1}, \ldots\right)
\]

is \(\Pi_{\alpha,0} \).

Now we are ready to derive the following distributional results.

Theorem 2.3 For each \(\beta > 0 \), define

\[
g_{\alpha,\beta}(x) = P(P_1(\alpha, \beta) \leq x).\tag{2.5}
\]

Then for any \(n \geq 1 \), the joint density function of \((P_1(\alpha, \theta), \ldots, P_n(\alpha, \theta)) \) is given by

\[
h_{\alpha,\theta,n}(p_1, \ldots, p_n) = C_{\alpha,\theta,n} \frac{(1 - \sum_{i=1}^n p_i)^{\beta + n\alpha - 1}}{(\prod_{i=1}^n p_i)^{1+\alpha}} g_{\alpha,\theta+n\alpha} \left(\frac{p_n}{1 - \sum_{i=1}^n p_i}\right). \tag{2.6}
\]

Proof By Proposition 2.2 and Perman’s formula (cf. [14]), for any non-negative product measurable function \(f \) and any any \(n > 1 \), the joint density function of \(\left(\tau_1, \frac{V_1(\tau_1)}{\tau_1}, \ldots, \frac{V_n(\tau_1)}{\tau_1}\right) \) is given by

\[
\phi_n(t, p_1, \ldots, p_n) = (c_n)^{n-1} \hat{p}_n^{-1} (p_1 \cdot \cdot \cdot p_{n-1})^{-(1+\alpha)} t^{-(\theta+\alpha)\tau_1} \phi_1(t \hat{p}_n, p_n/\hat{p}_n), \tag{2.7}
\]

where

\[
\hat{p}_n = 1 - p_1 - \cdots - p_{n-1}, \tag{2.8}
\]

and \(\phi_1(t, u) \) satisfies

\[
\phi_1(t, u) = c_n t^{-\alpha} u^{-(1+\alpha)} \int_0^{u \wedge 1} \phi_1(t(1-u), v)dv. \tag{2.9}
\]

Integrating out the \(t \) coordinate, it follows from (2.9) that

\[
h_{\alpha,\theta,n}(p_1, \ldots, p_n) = C_{\alpha,\theta}(c_n)^{n-1} \hat{p}_n^{-1} (p_1 \cdot \cdot \cdot p_{n-1})^{-(1+\alpha)} \int_0^\infty t^{-(\theta+(n-1)\alpha)} \phi_1(t \hat{p}_n, p_n/\hat{p}_n) dt
\]

\[
= C_{\alpha,\theta}(c_n)^{n-1} \hat{p}_n^{-\theta+(n-1)\alpha-2} (p_1 \cdot \cdot \cdot p_{n-1})^{-(1+\alpha)} \int_0^\infty s^{-(\theta+(n-1)\alpha)} \phi_1(s, p_n/\hat{p}_n) ds
\]

\[
= C_{\alpha,\theta}(c_n)^n \frac{\hat{p}_n^{\theta+n\alpha-1}}{(p_1 \cdot \cdot \cdot p_{n-1}p_n)^{1+\alpha}} \int_0^{\hat{p}_n} dx \int_0^\infty s^{-\theta+n\alpha} \phi_1(s(1-p_n/\hat{p}_n), x) ds
\]

\[
= C_{\alpha,\theta}(c_n)^n \frac{(\hat{p}_n+1)^{\theta+n\alpha-1}}{(p_1 \cdot \cdot \cdot p_{n-1}p_n)^{1+\alpha}} \int_0^{\hat{p}_n+1} dx \int_0^{\hat{p}_n+1} u^{-\theta+n\alpha} \phi_1(u, x)du
\]

\[
= C_{\alpha,\theta+n\alpha} \frac{(\hat{p}_n+1)^{\theta+n\alpha-1}}{(p_1 \cdot \cdot \cdot p_{n-1}p_n)^{1+\alpha}} g_{\alpha,\theta+n\alpha} \left(\frac{p_n}{1 - \sum_{i=1}^n p_i}\right),
\]
which leads to (2.6).

\[\square \]

Remark. This result appears in Handa [12] where a different proof is used.

Theorem 2.4 For any \(s > 0 \),

\[
\nu_{\alpha, \theta, 1}(s) = P(V_1(T) \leq s) = \left(1 + c_\alpha s^{-\alpha} \int_1^\infty z^{-(1+\alpha)} e^{-sz} dz \right)^{-\theta/\alpha}.
\]

Proof For each \(s > 0 \), it follows from Proposition 2.1 and the property of the Poisson random measure that

\[
\nu_{\alpha, \theta, 1}(s) = E(P(V_1(T) \leq s|\zeta(\alpha, \theta)))
= E \left(\exp \left\{ -\alpha C \zeta(\alpha, \theta) \int_s^\infty x^{-(\alpha+1)} e^{-x} dx \right\} \right)
= E \left(\exp \left\{ -c_\alpha \gamma/\alpha s^{-\alpha} \int_1^\infty z^{-(\alpha+1)} e^{-sz} dz \right\} \right)
\]

which leads to (2.11).

\[\square \]

3 Moderate Deviations for the two-parameter Poisson-Dirichlet Distribution

By theorem 6.1 in [12], when \(\theta \) goes to infinity \(P(\alpha, \theta) = (P_1(\alpha, \theta), P_2(\alpha, \theta), \ldots) \) approaches a non-trivial random sequence when scaled by a factor of \(\theta \) and shifted by

\[
\beta(\alpha, \theta) = \log \theta - (\alpha + 1) \log \log \theta - \log \Gamma(1 - \alpha).
\]

In [9], the LDP has been established associated with the limit

\[
\lim_{\theta \to \infty} P(\alpha, \theta) = (0, 0, \ldots).
\]

Replacing the scaling factor by \(a(\theta) \) satisfying

\[
\lim_{\theta \to \infty} \frac{a(\theta)}{\theta} = 0, \quad \lim_{\theta \to \infty} a(\theta) = \infty,
\]

we still have

5
\[
\lim_{\theta \to \infty} a(\theta) \left(P(\alpha, \theta) - \frac{\beta(\alpha, \theta)}{\theta}(1,1,\ldots) \right) \to (0,0,\ldots). \tag{3.2}
\]

The LDP associated with (3.2) is called the MDP for \(P(\alpha, \theta) = (P_1(\alpha, \theta), P_2(\alpha, \theta) \cdots) \). This MDP will be established in this section through a series of lemmas.

The first lemma establishes the MDP for \(V_1(T)/\theta \).

Lemma 3.1 The MDP holds for \(V_1(T)/\theta \) with speed \(a(\theta) \) and rate function

\[
J_1(x) = \begin{cases}
x, & x \geq 0 \\
\infty, & \text{otherwise.}
\end{cases}
\]

Proof For any fixed \(x \), we have

\[
P \left\{ a(\theta) \left(\frac{V_1(T) - \beta(\alpha, \theta)}{\theta} \right) \leq x \right\} = P \left(V_1(T) < \frac{\theta}{a(\theta)} x + \beta(\alpha, \theta) \right). \tag{3.3}
\]

Assume that

\[
\lim_{\theta \to \infty} \left[\frac{\theta}{a(\theta)} x + \beta(\alpha, \theta) \right] = +\infty.
\]

Then it follows from (2.11) that

\[
P \left(V_1(T) < \frac{\theta}{a(\theta)} x + \beta(\alpha, \theta) \right) \sim \left(1 + \frac{c_\alpha}{\frac{\theta}{a(\theta)} x + \beta(\alpha, \theta)}^{\alpha+1} e^{-\frac{\theta}{a(\theta)} x + \beta(\alpha, \theta)} \right)^{-\theta/\alpha}.
\]

Therefore

\[
\limsup_{\theta \to \infty} \frac{a(\theta)}{\theta} \log P \left(a(\theta) \left(\frac{V_1(T) - \beta(\alpha, \theta)}{\theta} \right) \leq x \right) = \lim_{\theta \to \infty} \frac{a(\theta)}{\theta} \log \left(1 + \frac{c_\alpha (\log \theta)^{\alpha+1} \Gamma(1-\alpha)}{\theta (\frac{\theta}{a(\theta)} x + \beta(\alpha, \theta))^{\alpha+1}} e^{-\frac{\theta}{a(\theta)} x + \beta(\alpha, \theta)} \right)^{-\theta/\alpha} \tag{3.4}
\]

\[
= \begin{cases}
0, & x \geq 0 \\
-\infty, & x < 0
\end{cases}.
\]

If there exists a subsequence \(\theta' \) such that the \(\lim_{\theta' \to \infty} \left(\frac{\theta'}{a(\theta')} x + \beta(\alpha, \theta') \right) \) exists in \([-\infty, +\infty)\), then \(x \) must be strictly negative. Since, by Theorem 2.4, \(V_1(T) \) converges to infinity as \(\theta \) converges to infinity, it follows that

\[
\limsup_{\theta' \to \infty} \frac{a(\theta')}{\theta'} \log P \left(a(\theta') \left(\frac{V_1(T) - \beta(\alpha, \theta')}{\theta'} \right) \leq x \right) = -\infty. \tag{3.5}
\]
Putting (3.4) and (3.5) together, one gets
\[
\lim_{\theta \to \infty} \frac{a(\theta)}{\theta} \log P \left(a(\theta) \left(\frac{V_1(T) - \beta(\alpha, \theta)}{\theta} \right) \leq x \right) = 0, \quad x \geq 0,
\]
(3.6)
and
\[
\limsup_{\theta \to \infty} \frac{a(\theta)}{\theta} \log P \left(a(\theta) \left(\frac{V_1(T) - \beta(\alpha, \theta)}{\theta} \right) \leq x \right) = -\infty, \quad x < 0.
\]
(3.7)

For \(x \geq 0\), it follows from (3.3) and (2.11) that
\[
\limsup_{\theta \to \infty} \frac{a(\theta)}{\theta} \log P \left(a(\theta) \left(\frac{V_1(T) - \beta(\alpha, \theta)}{\theta} \right) \in (x - \delta, x + \delta) \right) = -x.
\]
(3.8)

A combination of (3.6) and (3.7) implies that the laws of \(a(\theta) \left(\frac{V_1(T) - \beta(\alpha, \theta)}{\theta} \right)\) is exponentially tight.

Similarly, we can get that for \(x > 0\) and \(\delta > 0\) with \(x - \delta > 0\),
\[
\lim_{\theta \to \infty} \frac{a(\theta)}{\theta} \log P \left(a(\theta) \left(\frac{V_1(T) - \beta(\alpha, \theta)}{\theta} \right) \in (x - \delta, x + \delta) \right) = -x + \delta.
\]
(3.9)

The equality (3.6) combined with (3.7) implies that
\[
\limsup_{\theta \to \infty} \frac{a(\theta)}{\theta} \log P \left(a(\theta) \left(\frac{V_1(T) - \beta(\alpha, \theta)}{\theta} \right) \in (-\delta, \delta) \right) = 0.
\]
(3.10)

The lemma now follows from (3.9), (3.10), and the exponential tightness.
Set
\[\gamma(\theta) = \frac{a(\theta)\beta(\alpha, \theta)}{\theta}, \]
and, without loss of generality, we can assume that
\[\lim_{\theta \to \infty} \gamma(\theta) = c \in [0, +\infty]. \]

It is clear that
\[\frac{a(\theta)}{\gamma^2(\theta)} = \frac{\theta^2}{a(\theta)\beta^2(\alpha, \theta)} \to \infty, \quad \theta \to \infty. \]

(3.11)

If \(c < \infty \), it follows from Corollary 3.1 in [11] that for any \(L > 0 \)
\[\limsup_{\theta \to \infty} \frac{a(\theta)}{\theta} \log P \left\{ \gamma(\theta)\frac{T}{\theta} - 1 \geq L \right\} = -\infty. \]

(3.12)

For \(c = \infty \), and any \(1 > \delta > 0 \)
\[\left\{ \gamma(\theta)\frac{T}{\theta} - 1 \geq L \right\} \subset \left\{ \gamma(\theta)\frac{T}{\theta} - 1 \geq L(1 - \delta) \right\} \bigcup \left\{ \frac{T}{\theta} - 1 \geq \delta \right\}. \]

(3.13)

Since \(\gamma(\theta) \leq \beta(\alpha, \theta) \) for large \(\theta \) and \(\lim_{\theta \to \infty} \frac{\beta(\alpha, \theta)}{\sqrt{\theta}} = 0 \), it follows from the MDP (Theorem 3.2 in [11]) for \(T/\theta \), and (3.11) that
\[\limsup_{\theta \to \infty} \frac{a(\theta)}{\theta} \log P \left\{ \gamma(\theta)\frac{T}{\theta} - 1 \geq (1 - \delta)L \right\} = -\infty, \]

(3.14)

which combined with Corollary 3.1 in [11] and (3.13) shows that (3.12) still holds in this case. Therefore \(a(\theta) (P_1(\alpha, \theta) - \frac{\beta(\alpha, \theta)}{\theta}) \) and \(\frac{T}{\theta} a(\theta) (\frac{V_1(T)}{\theta} - \frac{\beta(\alpha, \theta)}{\theta}) \) are exponentially equivalent.

Since \(\frac{T}{\theta} a(\theta) (\frac{V_1(T)}{\theta} - \frac{\beta(\alpha, \theta)}{\theta}) \) is exponentially equivalent to \(a(\theta) (\frac{V_1(T)}{\theta} - \frac{\beta(\alpha, \theta)}{\theta}) \) by Lemma 2.1 and Corollary 3.1 in [11], it follows that \(a(\theta) (P_1(\alpha, \theta) - \frac{\beta(\alpha, \theta)}{\theta}) \) and \(a(\theta) (\frac{V_1(T)}{\theta} - \frac{\beta(\alpha, \theta)}{\theta}) \) are exponentially equivalent. Thus we have the following result.

Lemma 3.2 The MDP holds for \(P_1(\alpha, \theta) \) with speed \(\frac{a(\theta)}{\theta} \) and rate function
\[J_1(x) = \begin{cases}
 x, & x \geq 0 \\
 \infty, & \text{otherwise.}
\end{cases} \]

For each \(n \geq 2 \), we have
Lemma 3.3 The family \(\left\{ P\left(a(\theta)\left(P_1(\alpha, \theta) - \frac{\beta(\alpha, \theta)}{\theta} \right) \cdots, P_n(\alpha, \theta) - \frac{\beta(\alpha, \theta)}{\theta} \right) \in \cdot \right) : \theta > 0 \right\} \) satisfies a LDP on \(\mathbb{R}^n \) with speed \(\frac{a(\theta)}{\theta} \) and rate function

\[
I_n(x_1, \ldots, x_n) = \begin{cases}
\sum_{i=1}^{n} x_i, & \text{if } 0 \leq x_n \leq \cdots \leq x_1, \\
+\infty, & \text{otherwise.}
\end{cases}
\]

(3.15)

Proof It follows from (3.3) that for \(x_1 \geq x_2 \cdots \geq x_n \) and \(\frac{\theta}{a(\theta)}x_n + \beta(\alpha, \theta) > 0 \), the density function \(g_{\alpha, \theta, n}(x_1, \ldots, x_n) \) of \(a(\theta)\left(P_1(\alpha, \theta) - \frac{\beta(\alpha, \theta)}{\theta} \cdots, P_n(\alpha, \theta) - \frac{\beta(\alpha, \theta)}{\theta} \right) \) is

\[
g_{\alpha, \theta, n}(x_1, \ldots, x_n) = \left(\frac{1}{a(\theta)} \right)^n C_{n, \alpha, \theta} \left(\prod_{i=1}^{n} \left(\frac{\theta}{\theta - \left(\frac{\theta}{a(\theta)} \sum_{i=1}^{n} x_i + n(\alpha, \theta) \right)} \right)^{\alpha + 1} \right) \times \left(1 - \left(\frac{\theta}{a(\theta)} \sum_{i=1}^{n} x_i + n(\alpha, \theta) \right) / \theta \right)^{\theta + n\alpha - 1} g_{\alpha, \theta + n\alpha} \left(\frac{\theta}{\theta - \left(\frac{\theta}{a(\theta)} \sum_{i=1}^{n} x_i + n(\alpha, \theta) \right)} \right).
\]

(3.16)

By Theorem 2.4 and direct calculation, for \(x_n > 0 \)

\[
\frac{a(\theta)}{\theta} \log g_{\alpha, \theta + n\alpha} \left(\frac{\theta}{\theta - \left(\frac{\theta}{a(\theta)} \sum_{i=1}^{n} x_i + n(\alpha, \theta) \right)} \right) \to 0.
\]

For \(x_n < 0 \), set

\[
\psi(n, x, \theta, \alpha) = a(\theta) \left(\frac{\theta}{\theta - \left(\frac{\theta}{a(\theta)} \sum_{i=1}^{n} x_i + n(\alpha, \theta) \right)} - \frac{\beta(\alpha, \theta + n\alpha)}{\theta + n\alpha} \right).
\]

Then

\[
g_{\alpha, \theta + n\alpha} \left(\frac{\theta}{\theta - \left(\frac{\theta}{a(\theta)} \sum_{i=1}^{n} x_i + n(\alpha, \theta) \right)} \right) \to P \left(a(\theta) \left(P_1(\alpha, \theta + n\alpha) - \frac{\beta(\alpha, \theta + n\alpha)}{\theta + n\alpha} \right) < \psi(n, x, \theta, \alpha) \right)
\]

and

\[
\lim_{\theta \to -\infty} \psi(n, x, \theta, \alpha) = x_n < 0
\]

which implies that

\[
\lim_{\theta \to -\infty} \frac{a(\theta)}{\theta} \log g_{\alpha, \theta + n\alpha} \left(\frac{\theta}{\theta - \left(\frac{\theta}{a(\theta)} \sum_{i=1}^{n} x_i + n(\alpha, \theta) \right)} \right) = -\infty.
\]
are obtained by approximating the boundary with open subsets away from the boundary.

Noting that $\bigcup a_i \geq 1$ and $\beta_i = 1$ for any i, and for any x, $x_n > 0$, \n
\[
\lim_{\delta \to 0} \limsup_{\theta \to \infty} \frac{a(\theta)}{\theta} \log P \left(a(\theta) \left(P_1(\alpha, \theta) - \frac{\beta(\alpha, \theta)}{\theta} \right) + \cdots + P_n(\alpha, \theta) - \frac{\beta(\alpha, \theta)}{\theta} \right) \in B((x_1, \ldots, x_n), \delta) \\
= \lim_{\delta \to 0} \liminf_{\theta \to \infty} \frac{a(\theta)}{\theta} \log P \left(a(\theta) \left(P_1(\alpha, \theta) - \frac{\beta(\alpha, \theta)}{\theta} \right) + \cdots + P_n(\alpha, \theta) - \frac{\beta(\alpha, \theta)}{\theta} \right) \in B((x_1, \ldots, x_n), \delta) \\
= - \sum_{i=1}^{n} x_i.
\]

and for any $x_n < 0$,

\[
\lim_{\delta \to 0} \limsup_{\theta \to \infty} \frac{a(\theta)}{\theta} \log P \left(a(\theta) \left(P_1(\alpha, \theta) - \frac{\beta(\alpha, \theta)}{\theta} \right) + \cdots + P_n(\alpha, \theta) - \frac{\beta(\alpha, \theta)}{\theta} \right) \in B((x_1, \ldots, x_n), \delta) \\
= \lim_{\delta \to 0} \liminf_{\theta \to \infty} \frac{a(\theta)}{\theta} \log P \left(a(\theta) \left(P_1(\alpha, \theta) - \frac{\beta(\alpha, \theta)}{\theta} \right) + \cdots + P_n(\alpha, \theta) - \frac{\beta(\alpha, \theta)}{\theta} \right) \in B((x_1, \ldots, x_n), \delta) \\
= - \infty,
\]

If $x_{r-1} > 0, x_r = 0$ for some $1 \leq r \leq n$, then the upper estimate is obtained from that of $a(\theta) \left(P_1(\alpha, \theta) - \frac{\beta(\alpha, \theta)}{\theta} \right) + \cdots + P_{r-1}(\alpha, \theta) - \frac{\beta(\alpha, \theta)}{\theta} + P_r(\alpha, \theta) + \frac{\beta(\alpha, \theta)}{\theta}$. The lower estimates when $x_r = 0$ for some $1 \leq r \leq n$ are obtained by approximating the boundary with open subsets away from the boundary.

Noting that $\bigcup^{n}_{i=1} \{ a(\theta) \left(P_1(\alpha, \theta) - \frac{\beta(\alpha, \theta)}{\theta} \right) > L \} = \{ a(\theta) \left(P_1(\alpha, \theta) - \frac{\beta(\alpha, \theta)}{\theta} \right) > L \}$, it follows that

\[
\lim_{L \to \infty} \limsup_{\theta \to \infty} \frac{a(\theta)}{\theta} \log P \left(\bigcup_{i=1}^{n} \left\{ a(\theta) \left(P_i(\alpha, \theta) - \frac{\beta(\alpha, \theta)}{\theta} \right) > L \right\} \right) = -\infty. \quad (3.19)
\]

On the other hand,

\[
\limsup_{\theta \to \infty} \frac{a(\theta)}{\theta} \log P \left(\bigcup_{i=1}^{n} \left\{ a(\theta) \left(P_i(\alpha, \theta) - \frac{\beta(\alpha, \theta)}{\theta} \right) < -L \right\} \right) \leq \limsup_{\theta \to \infty} \frac{a(\theta)}{\theta} \log P \left\{ a(\theta) \left(P_i(\alpha, \theta) - \frac{\beta(\alpha, \theta)}{\theta} \right) \leq -L \right\} = -\infty. \quad (3.20)
\]
These lead to the exponential tightness and the lemma.

Now we are ready to establish the MDP for \((P_1(\alpha, \theta), P_2(\alpha, \theta), \ldots)\).

Theorem 3.4 For each \(n \geq 1\), the family \(\{P\left(a(\theta)\left(P_1(\theta) - \frac{\beta(\theta)}{\theta}, \ldots, P_n(\theta) - \frac{\beta(\theta)}{\theta}, \ldots\right) \in \cdot : \theta > 0\} \) satisfies a LDP on \(\mathbb{R}^\infty\) with speed \(a(\theta)/\theta\) and rate function

\[
I(x_1, x_2, \ldots) = \begin{cases}
\sum_{i=1}^{\infty} x_i, & x_1 \geq \cdots \geq 0 \\
\infty, & \text{otherwise.} \end{cases}
\]

Proof Identify \(\mathbb{R}^\infty\) with the projective limit of \(\mathbb{R}^n, n = 1, \ldots\). Then the theorem follows from Theorem 3.3 in [4] and Lemma 3.3.

\[\square\]

4 Moderate Deviations for the Homozygosity

For each \(m \geq 2\), it was shown in [12] that the scaled homozygosity

\[
\sqrt{\theta}\left[\frac{\theta^{m-1}\Gamma(1-\alpha)}{\Gamma(m-\alpha)}H_m(P(\alpha, \theta)) - 1\right] \Rightarrow Z_{\alpha,m}
\]

where \(Z_{\alpha,m}\) is a normal random variable with mean zero and variance

\[
\sigma_{\alpha,m}^2 = \frac{\Gamma(2m-\alpha)\Gamma(1-\alpha)}{\Gamma(m-\alpha)^2} + \alpha - m^2.
\]

It is thus natural to consider the MDP for \(\frac{\theta^{m-1}}{\Gamma(m)}H_m(P(\alpha, \theta))\) or equivalently the LDP for the family \(\{a(\theta)\left[\frac{\theta^{m-1}\Gamma(1-\alpha)}{\Gamma(m-\alpha)}H_m(P(\alpha, \theta)) - 1\right] : \theta > 0\} \) for a scale \(a(\theta)\) satisfying

\[
\lim_{\theta \to \infty} a(\theta) = \infty, \quad \lim_{\theta \to \infty} \frac{a(\theta)}{\sqrt{\theta}} = 0, \quad (4.1)
\]

which is different from (3.1).

The MDP in the case of \(\alpha = 0\) has been established in [11] where that the following additional restriction on \(a(\theta)\) is used: for some \(0 < \epsilon < 1/(2m-1)\),

\[
\liminf_{\theta \to \infty} \frac{a^{1-\epsilon}(\theta)}{\theta^{(m-1)/(2m-1)}} > 0. \quad (4.2)
\]
This condition is also needed for the two-parameter model. As shown in [11], the conditions (4.1) and (4.2) guarantee that there exist \(\tau > 0 \) positive integer \(l \geq 3 \vee (2m-1)e \), and \(r(\theta) \) that grows faster than a positive power of \(\theta \) such that

\[
\lim_{\theta \to \infty} \frac{a(\theta)}{\theta^\tau} = +\infty
\]

and

\[
\lim_{\theta \to \infty} \frac{r(\theta)^{m-1}}{a((l-2)/l)(\theta)} = 0, \quad \lim_{\theta \to \infty} \frac{a^2(\theta)r(\theta)}{\theta} = 0.
\]

For any \(n \geq 1 \), set

\[
G^{(n)}_{\alpha,\theta,r} = \sum_{i=1}^{\infty} V^n_i(T) I\{V_i(T) \leq r(\theta)\},
\]

and

\[
G^{(n)}_{\alpha,\theta} = \sum_{i=1}^{\infty} V^n_i(T),
\]

and

\[
G_{\alpha,\theta,r} = \left(G^{(1)}_{\alpha,\theta,r} - E(G^{(1)}_{\alpha,\theta,r}), G^{(m)}_{\alpha,\theta,r} - E(G^{(m)}_{\alpha,\theta,r}) \right).
\]

For any \(s, t \) in \(\mathbb{R} \), define

\[
\Lambda(s, t) = \frac{1}{2} \left(s^2 + \frac{2\Gamma(m-\alpha)\Gamma(m+1)}{\Gamma(m)\Gamma(1-\alpha)} st + \left(\frac{\Gamma(2m-\alpha)}{\Gamma(1-\alpha)} + \alpha \left(\frac{\Gamma(m-\alpha)}{\Gamma(1-\alpha)} \right)^2 \right) t^2 \right).
\]

It follows by direct calculation that the Fenchel-Legendre transform of \(\Lambda(s, t) \) is given by

\[
\Lambda^*(x, y) = \sup_{s, t} \{sx + ty - \Lambda(s, t)\}
\]

\[
= \frac{\Gamma(1-\alpha)}{2(\Gamma(1-\alpha)\Gamma(2m-\alpha) + (\alpha - m^2)\Gamma^2(m-\alpha))}
\]

\[
\times \left((\Gamma(2m-\alpha) + \alpha \frac{\Gamma^2(m-\alpha)}{\Gamma(1-\alpha)}) x^2 - 2m\Gamma(m-\alpha)xy + \Gamma(1-\alpha)y^2 \right),
\]

for \(x, y \) in \(\mathbb{R} \).

Lemma 4.1 The family \(\{\frac{a(\theta)}{\theta} G_{\alpha,\theta,r} : \theta > 0\} \) satisfies a LDP on space \(\mathbb{R}^2 \) with speed \(\frac{a^2(\theta)}{\theta} \) and rate function \(\Lambda^*(\cdot, \cdot) \).

Proof For any \(s, t \in \mathbb{R} \), let

\[
g(x) = sx + tx^m
\]

and

\[
\varphi_{\tau}(x) = \frac{g(x)I_{\{x \leq r(\theta)\}}}{a(\theta)}.
\]
It follows by direct calculation that

\[
\int_{0}^{r(\theta)} (e^{\varphi_r(x)} - 1)x^{-(1+\alpha)}e^{-x}dx = \int_{0}^{r(\theta)} \frac{g(x)}{a(\theta)} x^{-(1+\alpha)}e^{-x}dx + \frac{1}{2} \int_{0}^{r(\theta)} \frac{g^2(x)}{a^2(\theta)} x^{-(1+\alpha)}e^{-x}dx + \sum_{k=3}^{l} \frac{1}{k!a^k(\theta)} \int_{0}^{r(\theta)} |sx + tx^m|^k x^{-(1+\alpha)}e^{-x}dx
\]

\[
+ O \left(\sum_{k=l+1}^{\infty} \frac{1}{k!a^k(\theta)} (|s| + |t| \gamma(\theta)^{m-1})^k \Gamma(k-\alpha) \right)
\]

\[
= \int_{0}^{r(\theta)} \frac{g(x)}{a(\theta)} x^{-(1+\alpha)}e^{-x}dx + \frac{1}{2} \int_{0}^{r(\theta)} \frac{g^2(x)}{a^2(\theta)} x^{-(1+\alpha)}e^{-x}dx + o \left(\frac{1}{a^2(\theta)} \right),
\]

which implies that for \(\theta \) large enough,

\[
| \int_{0}^{r(\theta)} (e^{\varphi_r(x)} - 1)x^{-(1+\alpha)}e^{-x}dx | < c^{-1}_\alpha.
\]

By the Campbell’s theorem we get that

\[
E \left(\exp \left\{ \frac{1}{a(\theta)} (sG^{(1)}_{\alpha,\theta,r} + tG^{(m)}_{\alpha,\theta,r}) \right\} \right)
\] = \[E \left(\exp \left\{ \sum_{i=1}^{\infty} \varphi_r(V_i(T)) \right\} \right)
\] = \[E \left(E \left(\exp \left\{ \sum_{i=1}^{\infty} \varphi_r(V_i(T)) \right\} | \zeta(\alpha, \theta) \right) \right)
\] = \[E \left(\exp \left\{ c_\alpha \gamma \left(\frac{\theta}{\alpha} \right) \int_{0}^{r(\theta)} (e^{\varphi_r(x)} - 1)x^{-(1+\alpha)}e^{-x}dx \right\} \right)
\] = \[\exp \left\{ - \frac{\theta}{\alpha} \log \left(1 - c_\alpha \int_{0}^{r(\theta)} (e^{\varphi_r(x)} - 1)x^{-(1+\alpha)}e^{-x}dx \right) \right\}.
\]

Putting (4.4) and (4.5) together, we get that

\[
E \left(\exp \left\{ \frac{1}{a(\theta)} (s(G^{(1)}_{\alpha,\theta,r} - E(G^{(1)}_{\alpha,\theta,r})) + t(G^{(m)}_{\alpha,\theta,r} - E(G^{(m)}_{\alpha,\theta,r})) \right\} \right)
\] = \[\exp \left\{ \frac{\theta c_\alpha}{2\alpha^2(\theta)} \left(c_\alpha \left(\int_{0}^{\infty} g(x)x^{-(1+\alpha)}e^{-x}dx \right)^2 + \int_{0}^{\infty} g^2(x)x^{-(1+\alpha)}e^{-x}dx + o \left(\frac{1}{a^2(\theta)} \right) \right) \right\}
\] = \[\exp \left(\frac{\theta}{a^2(\theta)} (\Lambda(s, t) + o(\frac{1}{a^2(\theta)})) \right),
\]

13
which leads to
\[
\lim_{\theta \to \infty} \frac{a^2(\theta)}{\theta} \log E \left(\exp \left\{ \frac{1}{a(\theta)} \left[s(G_{\alpha,\theta,r}^{(1)} - E(G_{\alpha,\theta,r}^{(1)})) + t(G_{\alpha,\theta,r}^{(m)} - E(G_{\alpha,\theta,r}^{(m)})) \right] \right\} \right) = \Lambda(s, t). \quad (4.6)
\]

The lemma now follows from (4.3) and the Gärtner-Ellis theorem.

Lemma 4.2 Set
\[
G_{\alpha,\theta} = \left(T - \theta, G_{\alpha,\theta}^{(m)} - E(G_{\alpha,\theta}^{(m)}) \right).
\]
Then the family \(\{\frac{a(\theta)}{\theta} G_{\alpha,\theta} : \theta > 0\} \) satisfies a LDP with speed \(\frac{a^2(\theta)}{\theta} \) and the rate function \(\Lambda^*(x, y) \).

Proof By definition for any \(n \geq 1 \) and any \(\delta > 0 \),
\[
\limsup_{\theta \to \infty} \frac{a^2(\theta)}{\theta} \log P \left(\left| G_{\alpha,\theta,r}^{(m)} - G_{\alpha,\theta}^{(m)} \right| \geq \delta \frac{\theta}{a(\theta)} \right) \\
\leq \limsup_{\theta \to \infty} \frac{a^2(\theta)}{\theta} \log P (V_1(T) \geq r(\theta)) \\
= \limsup_{\theta \to \infty} \frac{a^2(\theta)}{\theta} \log \left(1 - \left(1 + \frac{c_\alpha}{r^{\alpha}(\theta)} \int_1^\infty z^{-(1+\alpha)} e^{-r(\theta)z} dz \right)^{-\theta/\alpha} \right) \\
\leq \limsup_{\theta \to \infty} \frac{a^2(\theta)}{\theta} \log \left(1 - \left(1 + \frac{c_\alpha}{r^{(1+\alpha)}(\theta)e^{r(\theta)}} \right)^{-\theta/\alpha} \right) \\
= \limsup_{\theta \to \infty} \frac{a^2(\theta)}{\theta} \log \left(\frac{\theta}{\alpha} \log \left(1 + \frac{c_\alpha}{r^{(1+\alpha)}(\theta)e^{r(\theta)}} \right) \right) \\
\leq - \limsup_{\theta \to \infty} \frac{a^2(\theta) r(\theta)}{\theta} \left(1 - \frac{\log \theta}{r(\theta)} \right) \\
= - \infty,
\]
which implies that \(\frac{a(\theta)}{\theta} G_{\alpha,\theta,r} \) and \(\frac{a(\theta)}{\theta} G_{\alpha,\theta} \) are exponentially equivalent. Therefore \(\left(\frac{a(\theta)}{\theta} G_{\alpha,\theta}, \frac{a^2(\theta)}{\theta}, \Lambda^* \right) \) satisfies LDP.

Now we are ready to prove the main result of this section.

Theorem 4.3 The family \(a(\theta) \left(\frac{\rho_{\alpha}^{-1}\Gamma(1-\alpha)}{\Gamma(m-\alpha)} H_m(P(\alpha, \theta)) - 1 \right) \) satisfies a LDP with speed \(\frac{a^2(\theta)}{\theta} \) and rate function \(\frac{\sigma_{\alpha,m}^2}{2a^2_{\alpha,m}} \).
Proof By direct calculation,
\[
a(\theta) \left(\frac{\theta^{m-1}\Gamma(1-\alpha)}{\Gamma(m-\alpha)} H_m(P(\alpha, \theta)) - 1 \right)
= a(\theta) \left(\frac{\theta^{m-1}G^{(m)}_{\alpha,\theta}}{T^m\Gamma(m-\alpha)/\Gamma(1-\alpha)} - 1 \right)
= a(\theta) \left(\left(\frac{\theta}{T} \right)^m - 1 \right) + \left(\frac{\theta}{T} \right)^m a(\theta) \frac{(G^{(m)}_{\alpha,\theta} - E(G^{(m)}_{\alpha,\theta}))}{\theta\Gamma(m-\alpha)/\Gamma(1-\alpha)}
= \frac{a(\theta)}{\theta} (\theta - T) \sum_{k=1}^{m} \left(\frac{\theta}{T} \right)^k + \left(\frac{\theta}{T} \right)^m a(\theta) \frac{(G^{(m)}_{\alpha,\theta} - E(G^{(m)}_{\alpha,\theta}))}{\theta\Gamma(m-\alpha)/\Gamma(1-\alpha)}.
\]

Noting that for any \(i \geq 1 \) and for any \(\delta > 0 \),
\[
\lim_{\theta \to \infty} \frac{a^2(\theta)}{\theta} \log P \left(\left(\frac{\theta}{T} \right)^i - 1 \geq \delta \right) = -\infty.
\]
It then follows that
\[
a(\theta) \left(\frac{\theta^{m-1}\Gamma(1-\alpha)}{\Gamma(m-\alpha)} H_m(P(\alpha, \theta)) - 1 \right)
\]
and
\[
\frac{a(\theta)(\theta - T)}{\theta} \sum_{k=1}^{m} \left(\frac{\theta}{T} \right)^k + \left(\frac{\theta}{T} \right)^m a(\theta) \frac{(G^{(m)}_{\alpha,\theta} - E(G^{(m)}_{\alpha,\theta}))}{\theta\Gamma(m-\alpha)/\Gamma(1-\alpha)}
\]
are exponentially equivalent, and so they have the same LDP.

The fact that
\[
\inf_{y \in \Gamma(1-\alpha)/m \cdot x = z} \Lambda^*(x, y) = \frac{z}{2\sigma_{\alpha,m}^2},
\]
combined with Lemma 4.2 and the contraction principle implies the theorem.

5 LDP for Small Parameters

Let
\[
\nabla = \left\{ p = (p_1, p_2, \ldots) : p_1 \geq p_2 \geq \cdots \geq 0, \sum_{i=1}^{\infty} p_i \leq 1 \right\}
\]
be equipped with the subspace topology of \([0,1]^{\infty}\), and \(M_1(\nabla) \) be the space of all probability measures on \(\nabla \) equipped with the weak topology. Then \(\Pi_{\alpha,\theta} \) belongs to \(M_1(\nabla) \).

For any \(\delta > 0 \), it follows from the GEM representation (1.1) that
\[
P \left(X_{1,\theta}^\alpha > 1 - \delta \right) \leq P \left(P_1(\alpha, \theta) > 1 - \delta \right).
\]
By direct calculation, we have
\[
\lim_{\alpha + \theta \to 0} P \left(X_1^{\alpha, \theta} > 1 - \delta \right) = 1.
\]
Therefore, \(\Pi_{\alpha, \theta} \) converges in \(M_1(\nabla) \) to \(\delta(1,0,\ldots) \) as \(\alpha + \theta \) converges to zero. In this section, we establish the LDP associated with this limit. This is a two-parameter generalization to the result in [10].

For any \(n \geq 1 \), set
\[
\nabla_n = \left\{ (p_1, \ldots, p_n, 0, 0, \ldots) \in \nabla : \sum_{i=1}^{n} p_i = 1 \right\},
\]
\[
\nabla_\infty = \bigcup_{i=1}^{\infty} \nabla_i,
\]
and
\[
a(\alpha, \theta) = \alpha \lor |\theta|, \quad b(\alpha, \theta) = (- \log(a(\alpha, \theta)))^{-1}.
\]

Then we have

Lemma 5.1 The family of laws of \(\{ P_1(\alpha, \theta) : \alpha + \theta > 0, 0 < \alpha < 1 \} \) satisfies a LDP on \([0, 1]\) as \(a(\alpha, \theta) \) goes to zero with speed \(b(\alpha, \theta) \) and rate function
\[
S_1(p) = \begin{cases}
0, & p = 1 \\
k, & p \in \left[\frac{1}{k+1}, \frac{1}{k} \right), k = 1, 2, \ldots \\
\infty, & p = 0.
\end{cases} \tag{5.1}
\]

Proof Let \(\{ X_i^{\alpha, \theta} : i = 1, 2, \ldots \} \) be defined in (1.1). For any \(n \geq 1 \), set
\[
\tilde{P}_1^n(\alpha, \theta) = \max\{ X_i^{\alpha, \theta} : 1 \leq i \leq n \}.
\]
Then it follows from direct calculation that for any \(\delta > 0 \)
\[
P\{ P_1(\alpha, \theta) - \tilde{P}_1^n(\alpha, \theta) > \delta \} \leq P\{ (1 - U_1) \cdots (1 - U_n) \geq \delta \} \leq \delta^{-1} \prod_{i=1}^{n} \frac{\theta + i\alpha}{\theta + i\alpha + 1 - \alpha},
\]
which leads to
\[
\limsup_{a(\alpha, \theta) \to 0} b(\alpha, \theta) \log P\{ P_1(\alpha, \theta) - \tilde{P}_1^n(\alpha, \theta) > \delta \} \leq -n.
\]
Thus the families \(\{ \hat{P}_1^n(\alpha, \theta) : 0 < \alpha < 1, \theta + \alpha > 0 \} \) are exponential good approximations to the family \(\{ P_1(\alpha, \theta) : 0 < \alpha < 1, \theta + \alpha > 0 \} \). By the contraction principle, the family \(\{ \hat{P}_1^n(\alpha, \theta) : 0 < \alpha < 1, \theta + \alpha > 0 \} \) satisfies a LDP on \([0,1]\) as \(a(\alpha, \theta) \) goes to zero with speed \(b(\alpha, \theta) \) and rate function

\[
I_n(p) = \begin{cases}
0, & p = 1 \\
\kappa, & p \in \left[\frac{1}{k+1}, \frac{1}{k}\right), k = 1, 2, \ldots, n - 1 \\
\ell, & \text{else.}
\end{cases}
\]

The lemma now follows from the fact that

\[
S_1(p) = \sup_{\delta > 0} \liminf_{\ell \to \infty} \inf_{|q-p| < \delta} I_n(q).
\]

\[\square\]

Theorem 5.1 The family \(\{ \Pi_{\alpha, \theta} : \alpha + \theta > 0, 0 < \alpha < 1 \} \) satisfies a LDP on \(\nabla \) as \(a(\alpha, \theta) \) goes to zero with speed \(b(\alpha, \theta) \) and rate function

\[
S(p) = \begin{cases}
n - 1, & p \in \nabla_n, p_n > 0, n \geq 1 \\
\infty, & p \notin \nabla_\infty.
\end{cases}
\]

\[\text{(5.2)}\]

Proof It suffices to establish the LDP for finite dimensional marginal distributions since the infinite dimensional LDP can be derived from the finite dimensional LDP through approximation. For any \(n \geq 2 \), \((P_1(\alpha, \theta), P_2(\alpha, \theta), \ldots, P_n(\alpha, \theta)) \) and \((P_1(0, \alpha + \theta), P_2(0, \alpha + \theta), \ldots, P_n(0, \alpha + \theta)) \) have respective joint density functions

\[
h_{\alpha, \theta, n}(p_1, \ldots, p_n) = C_{\alpha, \theta, n} \left(1 - \sum_{i=1}^{n} p_i \right)^{\theta + n\alpha - 1} P_1(\alpha, n\alpha + \theta) \leq \frac{p_n}{1 - \sum_{i=1}^{n} p_i},
\]

and

\[
g_{\alpha + \theta, n} = (\alpha + \theta)^n \left(1 - \sum_{i=1}^{n} p_i \right)^{\theta + n\alpha - 1} P_1(0, \alpha + \theta) \leq \frac{p_n}{1 - \sum_{i=1}^{n} p_i}.
\]

Since \(\lim_{a(\alpha, \theta) \to 0} b(\alpha, \theta) \log(\alpha + \theta) = -1 \) and \(\lim_{a(\alpha, \theta) \to 0} b(\alpha, \theta) C_{\alpha, \theta, n} = -n \), it follows from Lemma 2.4 in [10] and Lemma 5.1 that the family of laws of \((P_1(\alpha, \theta), P_2(\alpha, \theta), \ldots, P_n(\alpha, \theta)) \) satisfies a LDP as \(a(\alpha, \theta) \) goes to zero with speed \(b(\alpha, \theta) \) and rate function

\[
S_n(p_1, \ldots, p_n) = \begin{cases}
0, & (p_1, p_2, \ldots, p_n) = (1, 0, \ldots, 0) \\
\ell - 1, & 2 \leq \ell \leq n, \sum_{k=1}^{l} p_k = 1, p_l > 0 \\
\ell + S_1 \left(\frac{p_n}{\sum_{i=1}^{n} p_i} \right) \wedge 1, & \sum_{k=1}^{n} p_k < 1, p_n > 0 \\
\infty, & \text{else.}
\end{cases}
\]

\[\square\]
Acknowledgement

Fuqing Gao would like to thank the Department of Mathematics and Statistics at McMaster University for their hospitality during his visit.

References

[1] Aoki, M. (2006). Thermodynamic limit of macroeconomic or financial models: one- and two-parameter Poisson-Dirichlet models. Preprint.

[2] Carlton, M. A. (1999). Applications of the two-parameter Poisson-Dirichlet distribution. Unpublished Ph.D. thesis, Dept. of Statistics, University of California, Los Angeles.

[3] Dawson, D. and Feng, S. (2006). Asymptotic behavior of Poisson-Dirichlet distribution for large mutation rate. Ann. Appl. Probab., 16, 562-582.

[4] Dawson, D. and Gärtnner, J. (1987). Large deviations from the McKean-Vlasov limit for weakly interacting diffusions Stochastics, 20, 247-308.

[5] Dembo, A. and Zeitouni, O. (1998). Large deviations techniques and applications. Second edition. Applications of Mathematics, 38. Springer-Verlag, New York.

[6] Derrida, B. (1997). From random walks to spin glasses. Physica D, 107, 186-198.

[7] Diaconis, P. W. and Kemperman, J. H. B. (1996). Some new tools for Dirichlet priors. Bayesian statistics, 5(Alicante, 1994), pp. 97-106, Oxford Univ. Press, New York.

[8] Ewens, W. J. (1972). The sampling theory of selectively neutral alleles. Theor. Pop. Biol., 3, 87–112.

[9] Feng, S. (2007). Large deviations for Dirichlet processes and Poisson-Dirichlet distribution with two parameters. Electro. J. Probab., 12, 787-807.

[10] Feng, S. (2009). Poisson-Dirichlet distribution with small mutation rate. Stoch. Proc. Appl., 116, 2082-2094.

[11] Feng, S. and Gao, F. Q. (2008). Moderate deviations for Poisson-Dirichlet distribution. Ann. Appl. Probab., 18, 1794-1824.

[12] Handa, K. (2007). The two-parameter Poisson-Dirichlet point process. arXiv: math/0705.3496v2.

[13] Kingman, J. F. C. (1975). Random discrete distributions. J. Roy. Stat. Soc. Ser. B, 37, 1-22.
[14] Perman, M. (1993). Order statistics for jumps of normalised subordinators. *Stoch. Proc. Appl.*, **46**, 267-281.

[15] Perman, M., Pitman, J. and Yor, M. (1992). Size-biased sampling of Poisson point processes and excursions. *Prob. Th. Rel. Fields*, **92**, 21-39.

[16] Pitman, J. (1992). The two-parameter generalization of Ewen’s random partition structure. Technical Report 345, Dept. Statistics, University of California, Berkeley.

[17] Pitman, J. and Yor, M. (1997). The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator. *Ann. Probab.*, **25**, 855-900.

[18] Tsilevich, N. V. (1997). Distribution of mean values for some random measures. *Zap. Nauchn. Sem., POMI* **240**, 268-279; translation in *J. Math. Sci. (New York)* **96** (1999), no. 5, 3616-3623.