Concept Mapping as an Instrument for Evaluating an Instruction Unit on Holography

Concept Maps als Evaluierungsinstrumente einer Unterrichtseinheit zur Holographie

Martin Erik Horn, Helmut F. Mikelskis
University of Potsdam, Physics Education Research Group, Am Neuen Palais 10, 14469 Potsdam, Germany
E-Mail: marhorn@rz.uni-potsdam.de – mikelskis@rz.uni-potsdam.de

Abstract
Due to its amazing three-dimensional effects, holography is a very motivating, yet very demanding subject for physics classes at the upper level in school. For this reason an instruction unit on holography that supplement holographic experiments with computer-supported work sessions and a simulation program was developed. The effects of the lessons on holography were determined by a pre-post-test design. In addition to videotaping the lessons, knowledge and motivational tests as well as student interviews, students were asked to prepare concept maps, which were used to track processes of model construction. The way this knowledge was applied largely depends on the students’ understanding of models. In particular it was shown that the participating students’ demonstrated capacity for distinguishing between the different models of light is of great importance. Only students with a developed capacity for distinguishing between models are able to reason in an problem-oriented manner. They recognize the limits of models and are not only able to specifically designate changes from models and levels of models, but also to apply these in a physically correct manner.

Kurzfassung
Aufgrund ihrer verblüffenden Dreidimensionalität stellt die Holographie ein sehr motivierendes, jedoch auch anspruchsvolles Unterrichtsthema für Oberstufenkurse Physik dar. Deshalb wurde an der Universität Potsdam eine Unterrichtsreihe zur Holographie entwickelt, die Experimente zur Holographie durch computergestützte Arbeitsphasen und ein Simulationsprogramm ergänzt. Im Rahmen der Evaluation dieser Reihe wurden die Wirkungen des Unterrichts zur Holographie mit Hilfe eines Pre-Post-Testdesigns ermittelt. Neben der Videographie des Unterrichts, einem Wissens- und Motivationstest und Schülerinterviews wurde die Anfertigung von Concept Maps durch die Schülerinnen und Schüler genutzt, um Modellbildungsprozesse zu verfolgen. Der Abgleich der Daten zeigte, dass ein höchst signifikanter Zuwachs des Wissens zur Holographie erfolgte. Der Umgang mit diesem Wissen ist jedoch in starkem Maße abhängig vom Modellverständnis, das die Schüler aufweisen. Insbesondere konnte gezeigt werden, dass der von den Probanden gezeigten Trennschärfe zwischen den Modellen des Lichts (Strahlenmodell, Wellenmodell, klassisches und quantenoptisches Teilchenmodell sowie Zeigermodell) eine entscheidende Bedeutung zukommt. Ist keine Trennschärfe vorhanden, so springen die Schüler zur Erklärung holographischer Prozesse beliebig und physikalisch inkonsistent zwischen den Modellen hin und her. Ihr Wissen ist rein reproduzierend. Dagegen gelingt es Schülern mit ausgeprägter Trennschärfe, bewusst und problemorientiert zu argumentieren, die Modellgrenzen zu erkennen und Wechsel von Modellen und Modellebenen nicht nur ausdrücklich zu benennen, sondern diese physikalisch sinnrichtig anzuwenden und zu begründen.
1. Introduction

Due to its amazing three-dimensional effects, holography is a very motivating, yet very demanding subject for physics classes at the upper level at school. For this reason an instruction unit on holography that supplement holographic experiments with computer-supported work sessions and a simulation program was developed at the University of Potsdam. In addition to the program phenOpt [1], a simulation program on holography [3] is implemented. This unit, which consisted of 12 hours, was tested in grade 13. Besides analyzing the overall effects, the evaluation tracked the model construction processes of students and examined them with the following scientific questions:

- What is the impact of models used by the students on the comprehension of the basic subject matter of holography, and what degree of distinction exists between alternative model conceptions?

The research was based on the hypothesis that students, who have a developed capacity for distinguishing between alternative model conceptions, use models confidently and appropriately in a holographic context, while students without this capacity for distinguishing between models are not able to explain holography consistently.

2. Methods

The effects of the lessons on holography were determined by a pre-post-test design. In addition to videotaping the lessons, knowledge and motivational tests as well as student interviews, students were asked to prepare concept maps, which were used to track processes of model construction.

The concept maps to be worked on by the students consisted of ten concepts, which had been extrapolated from a feasibility study with university students. The participating students were asked to mark the proposition arrows directly after entering them. Modal maps of the pre-test, the post-test as well as the long-term test were generated according to [4] from the concept map data of all students, which were then analyzed based on their contents.
and the structural parameters of the student maps were compared. In total 54 students participated in this study.

3. Results

In the pre-test, students demonstrated only rudimentary knowledge of holography; yet, the concepts of holograms and inference patterns were linked by logically correct propositions. The expressed knowledge was however reproduced from the students’ stored knowledge. The participating groups were not familiar with the formation of interference patterns or the physical role of reference and object waves. The propositions drawn from the expression ‘laser’ confirm that the process of illumination is described with a leaning towards photography. Optical conceptions of rays are linked to this, which is also reflected in the naïve-photographic misconception of numerous students concerning the functions of lenses. Reconstruction is similarly misunderstood.

As the final test shows, the structural development of the modal maps is evidently triggered by the lessons.

The isolated partial networks of the pre-test were joined to form an entire network at the final test, which not only had noticeably more propositions, but also a considerably higher number of correct propositions, bezüglich Inhalt wie auch Ausprägung ihrer Strukturparameter verglichen wurden. Insgesamt nahmen 54 Schüler an dieser Studie teil.

3. Ergebnisse

Im Vortest zeigten die Schüler nur rudimentäre Kenntnisse der Holographie. Zwar wurden die Begriffe Hologramm und Interferenzmuster durch sinnrichtige Propositionen verbunden. Das dadurch ausgedrückte Wissen wurde jedoch lediglich dem Vorratswissen der Schüler reproduzierend entnommen. Kenntnisse über das Zustandekommen des Interferenzmusters und die physikalische Rolle von Referenz- und Objektwelle waren in den Lerngruppen nicht vorhanden. Die vom Laserlicht ausgehenden Propositionen belegen, dass der Beleuchtungsvorgang in Anlehnung an die Photographie beschrieben wird. Damit werden strahlenoptische Vorstellungen verbunden, was sich auch in der naiv-photographischen Fehlvorstellung zahlreicher Schüler bezüglich der Linsenfunktion widerspiegelt. Ebenso unverstanden ist der Rekonstruktionsvorgang.

Deutlich ist die durch den Unterricht bewirkte strukturelle Weiterentwicklung der Modalmaps zu verfolgen, wie der Nachtest belegt.

Figure 1: Modal map of the pre-test.

Die isolierten Teilnetze des Vortests wurden zu einem Gesamtnetz verknüpft, welches nicht nur deutlich mehr Propositionen, sondern auch einen erheblich höheren Anteil an korrekten Propositionen enthält.
positions. As far as content is concerned, the optical processes of waves that lead to interference patterns were described correctly and the function of the beam splitter and especially the reference wave were described in a physically appropriate manner. The hexagonal structure of the modal map perfectly represents the foundations of holography. However, the participating groups still do show signs of misconceptions as far as reconstruction is concerned. Similarly, the functions of lenses are only understood by a fraction of the participating students, since this topic is still partially described in the technologically problematic context of photography.

The reconciliation of data with the other instruments of examination [2] indicates that there was not only a highly significant increase in knowledge, but also that this knowledge was consolidated. The implementation of this knowledge largely depends on whether the students understand the models. This consolidation is also reflected by the data of the structural parameters (see figure 3).

During student interviews it became evident that cognitive conflicts exist between the models, since many participating students used the terminology of the wave model within the context of the ray model. Most of the students correctly pinpointed the experimental features. However, only those students, who had developed a distinct capacity for distinguishing between the models were able to...

Figure 2: Modal map of the final test.

Abbildung 2: Modalmap des Nachtests.

The Abgleich der Daten mit den anderen Untersuchungsinstrumenten belegt, dass nicht nur ein höchster signifikanter Zuwachs des Wissens zur Holographie erfolgte, sondern auch eine Festigung des Wissens eintrat. Der Umgang mit diesem Wissen ist jedoch in starkem Maße abhängig vom Modellverständnis, das die Schüler aufweisen. Diese Konsolidierung des Wissens spiegelt sich ebenfalls in den Daten der Strukturparameter (siehe Abbildung 3) wider.

In den Schülerinterviews offenbarten sich zahlreiche Modellkonflikte, da zahlreiche Probanden die Terminologie des Wellenmodells im Kontext des Strahlenmodells nutzten. Experimentelle Gegebenheiten wurden von den meisten Schülern in den Interviews korrekt aufgezeigt. Jedoch konnten bei geforderten Transferleistungen nur diejenigen Schüler sinnrecht mit der Aufgabenstellung umgehen, die eine...

M. Horn, H. Mikelskis (Noordwijkerhout 2003):

CONCEPT MAPPING AS AN INSTRUMENT FOR EVALUATING AN INSTRUCTION UNIT ON HOLOGRAPHY
properly deal with the required task of transfer. These students were able to conduct their arguments in a conscious and problem-oriented manner, to recognize the limits of the models and not only to distinctly designate change in models and in levels of models, but also to apply and substantiate them in a physically logical manner.

Students without this capacity for distinguishing randomly jumped between different model conceptions and were able to impart consistent patterns of explanation less frequently than students who had a more distinct capacity. This was also reflected in the number of correctly marked propositions in their concept maps.

4. Conclusions and implications
The hypotheses was ultimately confirmed. The capacity demonstrated by the students for distinguishing between the models of light (e.g. ray model, wave model, classic and quantum-optical particle model as well as the phasor model) is of great importance.

Therefore, more attention should be paid to the development of a meta-conceptual awareness in physics classes, so that the explanations of diverse models and model levels will be examined and discussed. As the detailed studies of our research group show, it is of advantage that these model discussions and reflections are deliberated already in the beginner’s lessons of physics and that the students have the opportunity to scrutinize the limits of models already as they are introduced.

4. Schlussfolgerungen und Konsequenzen
Die Hypothese konnte bestätigt werden. Der von den Probanden gezeigten Trennschärfe zwischen den Modellen des Lichts (Strahlenmodell, Wellenmodell, klassisches und quantenoptisches Teilchenmodell sowie Zeigermodell) kommt eine entscheidende Bedeutung zu.

Es sollte deshalb im Physikunterricht weit stärker auf die Ausbildung eines metakonzeptuellen Bewusstseins geachtet werden, so dass Erklärungsmuster verschiedener Modelle problematisiert und unterschiedliche Modellebenen angesprochen werden. Wie weitergehende Untersuchungen unserer Arbeitsgruppe zeigen, ist es von Vorteil, wenn diese Modelldiskussionen und Modellreflexionen bereits im Anfängerunterricht Physik thematisiert werden und Schüler Modellgrenzen bereits mit Einführung von Modellen hinterfragen.

Figure 3: The development of the numbers of propositions.

Abbildung 3: Zeitliche Entwicklung der Anzahl an Propositionen.
5. Bibliography

[1] M. Horn, H. Mikelskis, S. Seifert: Learning Physics aided by Computer Simulations: "Optics Phenomena", published in: M. Komorek et al.: Research in Science Education: Past, Present, Future. ESERA Proceedings, Vol. II, Kiel/Germany 1999, p. 504 – 506.

[2] H. Mikelskis, M. Horn: Learning Interference Optics – Modelbuilding Processes in Holography, published in: D. Psillos et al.: Science Education Research in the Knowledge Based Society. ESERA Proceedings, Vol. II, Thessaloniki/Greece 2001, p. 554 – 556.

[3] M. Horn, H. Mikelskis: Konzeption und Evaluation einer Unterrichtsreihe zur Holographie, published in: Renate Brechel (Ed.): Zur Didaktik der Physik und Chemie, Vol. 21, Alsbach/Bergstraße 2001, p. 324 – 326.

[4] Jochen Peuckert, Helmut Fischler: Concept Maps als Diagnose- und Auswertungsinstrument in einer Studie zur Stabilität und Ausprägung von Schülervorstellungen, published in: H. Niedderer, H. Fischler (Eds.): Studien zum Physiklernen, Vol. I, Concept Mapping in fachdidaktischen Forschungsprojekten der Physik und Chemie, Berlin 2000, p. 91 – 116.

5. Literaturangaben

[1] M. Horn, H. Mikelskis, S. Seifert: Learning Physics aided by Computer Simulations: "Optics Phenomena", veröffentlicht in: M. Komorek et al.: Research in Science Education: Past, Present, Future. ESERA Proceedings, Vol. II, Kiel 1999, p. 504 – 506.

[2] H. Mikelskis, M. Horn: Learning Interference Optics – Modelbuilding Processes in Holography, veröffentlicht in: D. Psillos et al.: Science Education Research in the Knowledge Based Society. ESERA Proceedings, Vol. II, Thessaloniki/Griechenland 2001, p. 554 – 556.

[3] M. Horn, H. Mikelskis: Konzeption und Evaluation einer Unterrichtsreihe zur Holographie, veröffentlicht in: Renate Brechel (Hrsg.): Zur Didaktik der Physik und Chemie, Vol. 21, Alsbach/Bergstraße 2001, p. 324 – 326.

[4] Jochen Peuckert, Helmut Fischler: Concept Maps als Diagnose- und Auswertungsinstrument in einer Studie zur Stabilität und Ausprägung von Schülervorstellungen, veröffentlicht in: H. Niedderer, H. Fischler (Hrsg.): Studien zum Physiklernen, Vol. I, Concept Mapping in fachdidaktischen Forschungsprojekten der Physik und Chemie, Berlin 2000, p. 91 – 116.