Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Capture the contagion network of bitcoin – Evidence from pre and mid COVID-19

Xiaochun Guoa,b,c, Fengbin Lud,e, Yunjie Weid,e,*

a Sino-Danish Center, University of Chinese Academy of Science, Beijing 100190, China
b School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190, China
c Department of Management, Politics and Philosophy, Copenhagen Business School, Frederiksberg 2000, Denmark
d Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
e Center for Forecasting Science, Chinese Academy of Sciences, Beijing 100190, China

\section*{ARTICLE INFO}

\textbf{Gel classification:}
G15
G01

\textbf{Keywords:}
Bitcoin
COVID-19
Contagion
DAG
Financial market risk

\section*{ABSTRACT}

COVID-19 is the first global scale crisis since the inception of Bitcoin. We compare the contagion phenomenon of Bitcoin and other financial markets or assets pre and during the COVID-19 shock in both contemporaneous and non-contemporaneous manner. This paper uses the directed acyclic graph (DAG), spillover index, and network topology to provide strong evidence on the directional contagion outcomes of Bitcoin and other assets. The empirical results show that the contagion effect between Bitcoin and developed markets is strengthened during the COVID-19 crisis. Particularly, European market has a dominant role. Excluding Bitcoin’s own shocks, United State and European markets are the main contagion sources to Bitcoin. European market also works as an intermediary to deliver infectious from United State and market fear. The findings show that gold always has contagion effect with Bitcoin, while gold, US dollar and bond market are the contagion receivers of Bitcoin under the shock of COVID-19. The empirical results further proved the safe haven, hedge and diversifier potential of Bitcoin in economic stable time, but also shows that the sustainability of these properties is undermined during the market turmoil.

\section*{1. Introduction}

Coronavirus was first identified in late 2019 and outbroke globally in early 2020. COVID-19 has swept into many countries and has been announced as global pandemic by World Health Organization (WHO) on March 11, 2020. With the new confirmed cases rose rapidly every day, many governments started to set limits for public gathering, slow down the economic activities, and restrict international travel. The global tally for confirmed cases of COVID-19 rose to over 30 million by mid-September 2020. Financial markets also experienced extreme highs and lows that the crude oil price fell rapidly, US stock market fused four times in ten days, and Bitcoin lost half of its value in two days and back to over $10,000.

With the rapid development of economic globalization, financial shocks may transmit across countries and markets, and the global crisis will increase the risk of financial contagion or change the contagion network among different markets. COVID-19 is the first global scale crisis since the emergence of Bitcoin. It is important to investigate the change of relationships between Bitcoin and other financial assets.
financial assets in both economic stable time and economic crisis time. COVID-19 is an unique opportunity to reexam the financial market dynamics (Goodell, 2020). Contagion phenomenon is a key aspect to understand the interaction of different assets and markets in crisis time. It reflects the information transmission mechanisms and implies changes in fundamental linkages between markets (Yarovaya et al., 2020, 2016). One manifestation for contagion is that the shock arrives at one market, where negative returns of this market directly affect the returns in other markets (Acharya and Pedersen, 2005; Guo et al., 2011).

Before the COVID-19 crisis, numbers of papers have explored the diversifier, hedge, and safe haven properties of Bitcoin from various perspectives (Bouri et al., 2017c; Dyhrberg, 2016; Kliber et al., 2019; Selmi et al., 2018; Shahzad et al., 2020, 2019; Smales, 2019; Urga and Zhang, 2019). Research shows that there are weak linkages between Bitcoin and major financial markets, foreign exchange markets and macroeconomy (Bouri et al., 2017c, 2017b; Dyhrberg, 2016; Panagiotidis et al., 2019). The hedge capability towards commodity market and Asia Pacific market is obvious (Bouri et al., 2017c, 2017b; Dyhrberg, 2016). The evidences of contagion analysis and causality analysis also indicate that Bitcoin is relatively independent from major financial markets (Corbet et al., 2018; Handika et al., 2019; Ji et al., 2018). Bitcoin is categorized as somewhere between gold and US dollar (Dyhrberg, 2016). However, Bitcoin is very sensitive to political risks and regulation (Aysan et al., 2019; Wang et al., 2020), which have strong spillover effects on Bitcoin price internationally (Borri and Shakhnov, 2019). Particularly, the policy uncertainty of China largely affects the trade volume and return of Bitcoin (Borri and Shakhnov, 2019; Cheng and Yen, 2020). In general, cryptocurrency is efficient in reflecting the regulation concerns about anti-money laundry, exchange and issuance, and news about state-backed digital currency (Shanaev et al., 2020).

Compare to economic stable period, financial markets usually exhibit different properties during crisis time (Frank and Hesse, 2009). Different patterns on the linkages of global markets have been found under the influence of coronavirus pandemic, where substantial volatility, uncommon correlation and isolation occurs (Zhang et al., 2020). Total confirmed cases for COVID-19 has significant negative effect on stock market (Al-Awadi et al., 2020). Even just companies related to the word “corona” experience abnormal negative return on stock price (Corbet et al., 2020a). Gold is a safe haven for stock markets before the big crash of US stock markets by mid- March 2020. However, the property as a safe haven does not hold all the time (Selmi et al., 2018). Both financial and non-financial firms experienced higher conditional correlations between their stocks during the COVID-19 period (Akhtaruzzaman et al., 2020). As for Bitcoin, the properties of Bitcoin are changing very fast and dynamically. The new empirical data suggests that the level of COVID-19 causes a rise in Bitcoin price (Goodell and Goutte, 2021a), and Bitcoin and Ethereum can be short-term safe haven for stocks, however, they are also exposed to high volatilities (Dwita Mariana et al., 2021). Bouri et al. (2017a) has early quantile regression to show that Bitcoin reacts positively to uncertainty at higher quantiles, especially for short investment horizon. For crude oil market, Bitcoin can only work as a diversifier rather than a safe haven under the pandemic (Dutta et al., 2020). According to the research of Conlon et al. (2020) and Conlon and McGee (2020), Bitcoin is proved to have no safe haven properties against many indices in the world at the beginning of COVID-19 pandemic and it is even likely to increase portfolio risk in the market turmoil. The research of Goodell and Goutte’s (2021b) also has the similar result with one exception that Tether acts differently in COVID-19 period and could be a safe-haven during market turmoil. The existing findings have not yet given a concluding remark on whether Bitcoin and other cryptocurrencies can work as a safe haven, diversifier, or a hedge.

In order to acquire better understandings of Bitcoin’s properties under different economic situations, our paper compares the contagion effect between Bitcoin and other assets before and during COVID-19. In addition, existing research about financial contagion for COVID-19 period mostly explore the correlation and co-movement between different assets (eg. Akhtaruzzaman et al., 2020; Corbet et al., 2020b; Goodell and Goutte, 2021a, 2021b), but lack knowledge about how the risks and information has been spread between markets. In addition, cryptocurrency is a growing dynamic market subject to changes as time variant and event appeared, especially under the shock of COVID-19. The markets evolve and start to exhibit certain new features. It is important to take consideration of the emerging event as a factor to review the cryptocurrency market behavior, so that we can test the sustainability of its safe haven, hedge and diversifier potentials when uncertainty occurs. In this paper we use methodology that can offer directional flow of contagion path between Bitcoin and other markets to answer the question. We analyze the dynamic evolution of the contagion among Bitcoin and other financial markets by Diebold and Yilmaz’s (2012) model. Then, the DAG method is employed to investigate the contemporaneous causality of two periods. Finally, we visualize the net contagion networks of all assets in pre-crisis and mid-crisis time.

Our findings contribute to the existing research in the following ways. First, COVID-19 has influenced the global economy and financial market from various perspectives. Our research is an early attempt to take into consideration of the current pandemic situation by comparing pre-crisis and mid-crisis evidence, which provides existing research with up-to-date knowledge of risk contagion in terms of both traditional financial market and cryptocurrency market. We analysis and visualize the relationship of Bitcoin and other financial markets and assets from contemporaneous and non-contemporaneous perspectives. A clear comparison for the dynamic relationships between Bitcoin and other markets before and during COVID-19 crisis can help researchers to understand the changing role of cryptocurrency in both economic stable and crisis time. Further, the findings offer new understandings to the sustainability of cryptocurrency as an alternative asset class. The empirical results indicate that COVID-19 has changed the risk and information transmission mechanism between cryptocurrency market and other major financial markets. Specifically, the contagion effect between Bitcoin and developed markets is strengthened but not the Chinese market during the COVID-19 crisis. Bitcoin is isolated from other financial markets before COVID-19 period and cannot be a safe haven during COVID-19. Gold is always the risk receiver for Bitcoin. Therefore, Bitcoin shares some similarities with gold in market properties during economic stable time, but the safe haven, hedge and diversifier property is weakened during the crisis. The sustainability of Bitcoin properties is subjected to changes in crisis. Third, this study also contributes to the growing empirical literatures for contagion analysis in terms of methodology. To the best of our knowledge, it is the first paper to visualize the contagion path of Bitcoin with other financial markets in terms of contemporaneous and time variant manner. We employ cross-discipline research methods, including directed acyclic graph (DAG) from computer science,
risk spillover framework proposed by Diebold and Yilmaz (2012), and network typology to analyze and depict the contagion effect based on different time manner. Finally, broadening understandings of the risk features and transmission mechanism of cryptocurrency helps decision makers to better manage cryptocurrency as a new investment class, maintain financial stability, and take the best use of it as a governing tool.

The rest of this paper is organized as follows: Section 2 presents the methodology of this paper, including the DAG approach, contagion measurements and network topology; Section 3 describes the data; the findings of empirical study are discussed in Section 4; Section 5 concludes the paper.

2. Methodology

2.1. The DAG approach

The DAG approach is introduced by Spirtes et al. (2000), which combines computer science and artificial intelligence theory. The DAG is a data-driven method, which is used to determine the contemporaneous causal relationship of a set of variables by using unconditional correlation coefficient and partial correlation coefficient. The residual variance covariance matrix or residual correlation coefficient matrix of different variables can be obtained from the result of generalized vector autoregression (VAR). The results use a graph structure to show the dependency and directivity relationships of selected variables.

There are four different relationships between variables: 1) No edge (X Y); 2) Undirected edge (X → Y), which means the direction of causal relationship is unknown; 3) Directed edge (X ← Y), which means X cause Y contemporaneously; and 4) Bidirectional edge (X → Y) indicates a bidirectional causality relationship. Two steps are involved in determining the final result. First, remove the edges. If the unconditional correlation between two variables is not significantly different from zero at a preset significance level, the edge between two variables will be removed. Then, check the remaining variables, whether their first-order partial correlation is significantly different from zero. If it is significantly different from zero, the connection is removed. For N variables, the process will repeat until it checks up to order N-2 conditional correlation. Second, decide the direction of the edges. The conditional variable(s) on the removed edges is defined as a separate set of the pairwise variables whose edge has been removed. The edge that has been removed by unconditional correlation has an empty separate set. Other remaining edges can be directed by the separate set (Bessler and Yang, 2003). For example, three variables X, Y, Z, when X is adjacent to Y, Y is adjacent to Z, and X is not adjacent to Z, that is X−Y−Z. If it is known that Y does not belong to the separate set of X and Z, then the contemporaneous causal relationship among three variables is X→Y→Z. If X→Y and Z is known, Y is adjacent to Z, X is adjacent to Z, and the directed edge between Y and Z does not point to Y, then Y can be inferred to have contemporaneous causal relationship with Z, depicting as Y→Z.

Fisher’s z statistic is employed to test whether conditional correlations are significantly different from zero, formulated as follows:

\[z[p(i, j|k), n] = \frac{1}{2} \sqrt{(n - |k| - 3)} \times \ln \left(\frac{1 + \rho(i, j|k)}{1 - \rho(i, j|k)} \right) \]

(1)

where \(n \) is the number of observations used to estimate the correlations, \(\rho(i, j|k) \) is the population correlation between variables \(i \) and \(j \) conditional on series \(k \). \(|k| \) is the number of series in \(k \). If \(i, j \) and \(k \) are normally distributed and \(r(i, j|k) \) is the sample conditional correlation of \(i, j \) given \(k \), then \(z[p(i, j|k), n] - z[r(i, j|k), n] \) is a normal distribution (Bessler and Yang, 2003). In this paper, we use PC algorithm in Tetrad VI software package proposed by Glymour et al. (2015) to conduct the DAG process.

2.2. Contagion measurements

In this paper, contagion effect is measured by the framework proposed by Diebold and Yilmaz (2012). Based on this method, we use dynamic and conditional spillover to investigate the evolution of Bitcoin contagion effect, as well as the two-period unconditional spillover index to compare the contagion between Bitcoin and other financial markets. This method generates directional results under a generalized VAR framework, which solve the order dependency issue of Cholesky factorization in variance decompositions (Diebold and Yilmaz, 2012, 2009).

The moving average process for VAR(p) is represented by

\[y_t = \sum_{i=0}^{\infty} A_i e_{t-i}, \]

(2)

where \(A_i \) is \(N \times N \) coefficient matrix in recursive pattern.

The model calculates the H-step-ahead forecast error variance decompositions by \(\theta_{ij}^H(H) \), for \(H = 1, 2, 3... \), there is

\[\theta_{ij}^H(H) = \frac{\sigma_{ij}^2 \sum_{t=0}^{H-1} (e_{t} A_h \sum_{i} e_i)^2}{\sum_{t=0}^{H-1} (e_{t} A_h \sum_{i} A_i e_i)} \]

(3)

where \(\theta_{ij}^H(H) \) represents the risk spillover of asset \(j \) to asset \(i \). \(\Sigma \) is the variance matrix for the error vector \(e \), \(\sigma_{ij} \) is the standard deviation of the error term of asset \(j \), \(e_i \) and \(e_i \) are \(N \times 1 \) selection vector with one as the \(i \) th element and zeros otherwise. The shocks to each variable are not orthogonalized, so the sum of the element contribution in each row are not necessarily equal to one. To facilitate
comparison, the normalized variance decomposition matrix is given
\[
\overline{\varphi}_{i,j}(H) = \frac{\varphi_{i,j}(H)}{\sum_{j=1}^{N} \varphi_{i,j}(H)}
\]

(4)

where, \(\sum_{j=1}^{N} \varphi_{i,j}(H) = N\) and \(\sum_{j=1}^{N} \overline{\varphi}_{i,j}(H) = 1\).

Directional spillover from market \(i\) to market \(j\) is denote by
\[
S_i^d(H) = \frac{\sum_{j=1,j\neq i}^{N} \varphi_{i,j}(H)}{\sum_{j=1}^{N} \varphi_{i,j}(H)} \times 100 = \frac{\sum_{j=1,j\neq i}^{N} \overline{\varphi}_{i,j}(H)}{N} \times 100
\]

The spillover to market \(i\) from market \(j\) is denote by
\[
S_i^a(H) = \frac{\sum_{j=1,j\neq i}^{N} \varphi_{i,j}(H)}{\sum_{j=1}^{N} \varphi_{i,j}(H)} \times 100 = \frac{\sum_{j=1,j\neq i}^{N} \overline{\varphi}_{i,j}(H)}{N} \times 100
\]

Then the net spillover is equal to
\[
S_i^m(H) = S_i^a(H) - S_i^d(H)
\]

(7)

This paper visualizes the contagion path using net pairwise spillover. The net pairwise spillover describe the net contagion contribution of two markets or two assets, which is helpful to identify the role of Bitcoin in relation with other financial markets and assets in a directional way.

The net pairwise spillover is
\[
S_i^m(H) = \left(\frac{\sum_{j=1,j\neq i}^{N} \varphi_{i,j}(H)}{\sum_{j=1}^{N} \varphi_{i,j}(H)} - \frac{\sum_{j=1,j\neq i}^{N} \overline{\varphi}_{i,j}(H)}{\sum_{j=1}^{N} \overline{\varphi}_{i,j}(H)} \right) \times 100 = \left(\frac{\varphi_{i,j}(H)}{N} - \frac{\overline{\varphi}_{i,j}(H)}{N} \right) \times 100
\]

(8)

2.3. Network topology

Network theory has been widely used in researches of financial contagion and market connectedness (Diebold et al., 2014; Gai and Kapadia, 2010; Georg, 2013; Martín-Andújar et al., 2010). Based on the spillover measurements of Diebold and Yilmaz (2012), this paper further combines the network topology to visualize and describe the contagion networks of Bitcoin and other financial markets.

In financial contagion network analysis, each financial institution represents a node and the interconnection between different institutions use links to define. These links are directed and weighted, reflecting the exposure of each institutions (Gai and Kapadia, 2010). Four common measurements are utilized to describe the contagion networks of Bitcoin and other financial markets.

First, the degree of node, which is the number of links to other nodes, \(d_i = \sum_{j=1}^{N} a_{ij} = \sum_{j=1}^{N} a_{ji}\). In-degree measures the number of links that point into the node, \(d_{in}(i) = \sum_{j=1}^{N} a_{ji}\). Out-degree is the number of links that point out from the node, \(d_{out}(i) = \sum_{j=1}^{N} a_{ij}\). Second, betweenness centrality is used to measure the control of a node that has over the spread of risk and information through the network (Freeman, 1978, 1977). It is calculated as the fraction of the shortest path between nodes pairs that pass through the node of interest, \(BC_i = \sum_{i \neq j \neq k} \frac{a_{ik}}{a_{ij} a_{jk}}\). Finally, average path length and average diameter is employed to describe the overall contagion network changes before and during COVID-19 period. The average path length of a network is defined as the average length of shortest paths for all pairs of nodes \(i,j\). Average diameter is the average of maximum distance between any two nodes. Diameter is calculated as \(s_{max} = \max_{ij}s_{ij}\).

3. Data

We choose eight other variables excluding Bitcoin in this paper, which are United State (US) market, European market, Chinese market, US dollar, Gold, Commodity Market, Bond market and market fear. The three regional markets take up important positions in world economy, and they are also the major outbreak sites at the beginning of COVID-19. More specifically, MSCI USA index is used to measure United State market, since it not only covers S&P500 stocks, but also includes some mid-cap stocks (MSCI, 2020b). MSCI EUROPE index, which includes large and mid-cap stocks across 15 developed countries in Europe, is used to represent European market (MSCI, 2020a). Chinese market is denoted by Shanghai composite index. US dollar, gold, commodity, and bond are also representative markets and assets in world economy. US Dollar, gold and commodity market are measured by the US dollar index, Comex gold future price and GSCI commodity index respectively. Bond market is explained by Vanguard Total Bond Market Index Fund Admiral Shares, which contains a wide spectrum of public, investment-grade, taxable, fixed income securities in the United States. Market fear of investors is measured by VIX, which is the implied volatility of S&P500 options. In the following figures and tables, “btc”, “usd”, “eur”, “cn”, “usd”, “gold”, “gsci”, “vix”, “bond” is used to represent Bitcoin, US market, European market, Chinese market, US dollar, gold, commodity market, VIX and bond market respectively. All data are collected from investing.com (http://
We utilize the daily data for this empirical study, and the full sample period is from January 1, 2019 to May 31, 2020. The time period is chosen for two main reasons. First, Bitcoin price of 2019 has certain representativeness. Price of Bitcoin tends to be increasingly normalized compared to previous hype before 2020. The future market characteristics of Bitcoin will be closer to normalized market after 2018 instead of its inception stage and bubble stage. Second, it has high comparability. In two chosen periods, markets have good continuity with little other changing factors except for COVID-19 crisis.

In order to explore the change of the co-movements and linkages of Bitcoin with other financial markets and assets in different economic situation, the full sample period is divided into two sub-periods, namely pre-COVID-19 and mid-COVID-19. Since WHO received the first coronavirus case report on December 31, 2019, the outbreak time selected is right after this important event. Therefore, data of pre-COVID-19 crisis covers the whole year of 2019, and data of mid-COVID-19 ranges from January 1, 2020 to May 31, 2020. This paper uses rate of change for VIX data, and log return for the rest of markets in further analysis. We delete the missing data due to holiday difference.

The tendency and the descriptive statistics of all variables in terms of rate of change for VIX and log return for the rest of variables over different periods are reported in Fig. 1 and Table 1, respectively. There are great changes for the chosen variables in two different time periods. All assets exhibit higher volatility and negative change for average return during COVID-19 crisis. Market confidence (VIX) is relatively stable before COVID-19 crisis, but it starts to change more rapidly since February 2020. For Bitcoin, before COVID-19 crisis, it has the highest average return compared to other assets and exhibits a positive skewness, which means an inclination for positive return. However, during COVID-19 period, all indicators of Bitcoin show significant differences. Average return and skewness change from positive to negative, indicating a higher possibility for negative return and extreme negative return. Kurtosis rises almost seven times more, suggesting a heavy fat tail feature. In general, more uncertainties and extreme values characterize most markets for COVID-19 time. We also conduct augmented Dicky-Fuller test to ensure all the series are stationary in VAR model. The results show that all series pass the stationary test.

4. Empirical result and discussion

4.1. Average contagion level for full sample period

Before laying emphasis on the comparison results of two sub-sample periods, we try to depict the continuous evolution of the contagion among financial markets. This dynamic analysis can offer us a general picture of the average contagion level over the past
months as well as a clear time point of the changes. We use 100 days rolling window and 10 days forecast horizon in the analysis to smooth the result and reflect the fast response in price for highly liquid market (Longstaff, 2010). Other parameters with shorter rolling windows offer a less smooth pattern, but the result still has the same trend and features. And results with other forecast horizons also show similar patterns. In general, reasonable changes to the parameters do not impact the outcome and conclusion of this research.

These results are derived from contagion measurements described in Section 2.2 under full sample VAR model. Based on Schwarz

Table 1
Descriptive Statistics for (Log) Return, nine asset classes.

	Panel A: Full Sample		Panel B: Before COVID-19		Panel C: Mid- COVID-19										
	Mean	Std. Dev.	Skew	Kurtosis	ADF test	Mean	Std. Dev.	Skew	Kurtosis	ADF test	Mean	Std. Dev.	Skew	Kurtosis	ADF test
btc	0.000734	0.0228	-2.4222	25.3154	-12.5438***	0.001146	0.0194	0.3752	3.5314	-10.4869***	-0.000190	0.0302	-4.0432	27.3174	-6.7184***
usa	0.000225	0.0079	-1.2466	14.6720	-12.7266***	0.000485	0.0035	-0.7509	3.5704	-11.0132***	-0.0000502	0.0140	-0.6402	3.3022	-6.5603***
eu	0.000021	0.0066	-2.4006	20.8674	-10.6803***	0.000354	0.0034	-0.7547	4.3309	-10.5388***	-0.000913	0.0114	-1.4450	6.2627	-5.2764***
cn	0.000177	0.0056	-0.9406	6.7075	-12.8041***	0.000370	0.0050	-0.1492	6.4731	-10.9991***	-0.000262	0.0032	0.1631	2.4758	-10.7638***
gold	0.000322	0.0047	0.3859	6.7175	-12.4102***	0.000301	0.0018	0.5733	3.8681	-10.3223***	-0.000342	0.0085	-1.5667	11.5916	-12.4732***
usd	0.000031	0.0018	0.5733	3.8681	-10.3223***	-0.000492	0.0382	1.1712	3.4825	-12.5169***	-0.001327	0.0332	0.8095	2.2561	-11.0187***
vix	0.000127	0.0013	-0.9110	7.3322	-11.9748***	-0.000492	0.0382	1.1712	3.4825	-12.5169***	-0.001327	0.0332	0.8095	2.2561	-11.0187***
bond	0.000127	0.0013	-0.9110	7.3322	-11.9748***	-0.000492	0.0382	1.1712	3.4825	-12.5169***	-0.001327	0.0332	0.8095	2.2561	-11.0187***

Note: Lag selection in ADF test is based on Akaike Information Criteria (AIC). *** denotes 1% level of significance.

Fig. 2. Average Contagion Level, nine asset classes.
Note: The straight red line and blue dash line mark the date January 1, 2020 and March 11, 2020 respectively, representing the outbreak and pandemic time point for COVID-19. The same marks are also exhibited in the following figures.
Criterion (SC) and Hannan Quinn (HQ) criteria, lag of 1 is suggested for VAR model.

Fig. 2 illustrates the average return contagion behavior of all variables for full sample period. The contagion is measured by spillover effect of one asset to another in terms of percentage. Before COVID-19 outbreak, the contagion level mostly fluctuates between forty to fifty percent. At the beginning of coronavirus outbreak, the markets were not affected by its impact, and even exhibited a declining trend of overall contagion. The reason for it is that the outbreak of COVID-19 was still regional at that time, and people did not expect the rapid spread of the virus and the severity of its influences. It is clear that the overall contagion started to have significant increase as COVID-19 were getting out of control in more countries in late February 2020. Then it spiked since March 9, 2020 (Fig. 2). From March 9, 2020 to the end of March, the contagion level for all markets stayed at very high level. Multiple factors intertwined together during that period. On March 11, 2020, WHO announced world pandemic of COVID-19. US market fused four time in ten days reacting to coronavirus panic and series of international instabilities, such as crude oil price fluctuation on March 9 and March 12, 2020. Meanwhile, we can also clearly see that as the markets got used to the worsen condition, the next round fuse and crude oil crash exerted less impacts on the average contagion level between different assets. At the end of the data period, contagion effect shows a decline, as government started to take actions to react to the uncertainties that coronavirus brought to the economy and society, and Europe and East Asia began to gradually go back to normal life. Nevertheless, due to the COVID-19 pandemic and the negative economic consequences, the general level of market contagion will still stay high in the foreseeable future.

As for Bitcoin, Fig. 3 and 4 shows the average contagion effect of Bitcoin to and from other markets over the full sample period. Both from and to Bitcoin spillover ranges from 1% to 4% before COVID-19, which is a very low level of contagion compared to the other assets. Since the world pandemic of COVID-19, Bitcoin spillover roars from less than 1% to more than 9% (Fig. 3 and 4). This radical change is consistent with overall market response when facing COVID-19 crisis. However, the reactions to series of event from Bitcoin to other assets are slower than the opposite direction. When the crisis come, Bitcoin receives dramatically increasing spillover from other financial markets first, and then follows the contagion level growth from Bitcoin to other markets. This can be partly explained by the previous finding that the extreme Bitcoin price crash has greater influences on the return co-movement between world indices (Hu
It also indicates that Bitcoin market has little impact on other assets before this crisis.

Fig. 5 describes the net pairwise contagion from other assets to Bitcoin, where positive percentage on the Y-axis represents that the asset transmits risks to Bitcoin, and negative percentage represents the asset receives net contagion from Bitcoin. Comparably, commodity market receives the most spillover from Bitcoin and US market transmits risks to Bitcoin before COVID-19, but both effects remain small percentage in general. Other markets have very low level of contagion to and from Bitcoin. During COVID-19 crisis, contagion level from European market to Bitcoin increases substantially. While US market exerted strong effect from January to March 2020 and started to receive spillover from Bitcoin later. Gold and bond began to absorb the risks from Bitcoin market during the pandemic. Bitcoin changes from the spillover receiver of VIX to a reactor of VIX, which can resonate the previous research that Bitcoin shows safe haven or hedge functions before COVID-19, but the safe haven property diminished during COVID-19 period (Conlon and McGee, 2020). As for Chinese market and commodity market, there was a peak period around mid-March, however, the contagion level was gradually getting back to the previous level.

In general, contagion from other assets to Bitcoin did not rise significantly until the announcement of pandemic, which shows certain risks resistance of Bitcoin in the early time of COVID-19. The significant changes in contagion level of Bitcoin and other assets crowded in March 2020. At that time, many countries declared the suspension of economic and social activities under the pressure of coronavirus; geopolitical conflict regarding to oil dispute between Saudi Arabia and Russia exerted additional impacts on the global markets; and US stock markets, as the global benchmark, fused four times in ten days. Complex international factors overlapped and intertwined in this unstable period, causing Bitcoin lost half of its value in two days, which further cause over $700 million liquidation of both long and short of selling Bitcoin in Bitmex. By the end of May 2020, the contagion level of Bitcoin still stood high, where the down trend for contagion from and to other markets was not obvious. Therefore, it is reasonable to expect that Bitcoin will be more related to other financial markets than before in the near future.

4.2. Comparison analysis for bitcoin contagion

4.2.1. Contemporaneous contagion

To construct the DAG contemporaneous causality relationship of Bitcoin and other financial markets and assets, we first select the optimal lag for VAR model for two periods respectively. Based on SC and HQ criteria, lag of k = 1 is suggested to both VAR models. We use innovation correlation matrix produced by VAR model to generate the DAG in the next step. Spirtes et al. (2000) suggest that the significance level should increase when sample size is small or not big enough. For example, they suggest that 0.2 significance level for samples under 100 and 0.1 significance level for 200–300 samples. Higher significance level avoids small sample to deliver underfit result, which includes too few edges (Bessler and Yang, 2003; Scheines et al., 1994, p. 105). Awokuse and Bessler (2003) also find that up to 30 % significance level can offer a clear structural result in small sample condition. After comparing the results of different significance level of two sample periods, this research adopts 0.1 significance level for data before COVID-19 crisis (236 observations)
Table 2
Residual Correlation Matrix.

	btc	usa	eu	cn	gold	usd	gsci	vix	bond
Panel A: Innovation Correlation Matrix Before COVID-19									
btc	1	0.1054	0.1927	0.0413	0.1036	0.0459	0.1140	0.0479	
usa	0.7689	1	0.2880	0.3286	0.0839	0.3268	0.3651	0.4753	
eu	0.3059	0.3059	1	0.3402	0.1241	0.2952	0.6510	0.3645	
cn	0.0247	0.0247	0.1609	1	0.0282	0.1609	0.1675	0.0545	
gold	0.1927	0.1927	0.01927	1	0.2880	0.0459	0.1140	0.0479	
usd	0.2100	0.2100	0.1241	0.2952	1	0.3268	0.3268	0.3645	
gsci	0.3059	0.3059	0.1241	0.2952	0.1609	1	0.6510	0.3645	
vix	0.1036	0.1036	0.0839	0.0839	0.0459	0.3268	1	0.4753	
bond									1
Panel B: Innovation Correlation Matrix During COVID-19									
btc	1	0.5647	0.6313	0.2322	0.3394	0.3208	0.1091		
usa	0.8510	0.8510	1	0.3676	0.2508	0.5678	0.5678		
eu	0.3842	0.3842	1	0.3156	0.3056	0.5453	0.5453		
cn	0.2559	0.2559	1	0.2559	0.2559	0.3679	0.3679		
gold	0.1422	0.1422	0.1422	1	0.1736	0.2746	0.2746		
usd	0.2202	0.2202	0.2202	1	0.2202	0.0388	0.0388		
gsci	0.3156	0.3156	0.3156	1	0.3156	0.1612	0.1612		
vix	0.1736	0.1736	0.1736	1	0.1736	0.0028	0.0028		
bond									

(a) Contemporaneous causal structure graph before COVID-19
(b) Contemporaneous causal structure graph during COVID-19

Fig. 6. The Contemporaneous Causal Structure Graph.

and 0.2 significance level for data during COVID-19 crisis (90 observations) in DAG analysis.

Table 2 reports the lower triangle entries for the innovation correlation matrix in two time periods. Starting from the matrices, we use PC algorithm in TETRAD VI program to conduct the DAG analysis. The process begins with a complete undirected graph with nine markets link to each other. Then, edges that are not statistically correlated are eliminated. Links are directed based on the method described in Section 2.1. The final results are illustrated in Fig. 6.

Fig. 6(a) shows that Bitcoin is not affected by the other markets contemporaneously before COVID-19 crisis. It is relative independent from the contagion chains. This result resonates with research findings that Bitcoin has weak relationships with financial markets and assets (Corbet et al., 2018; Ji et al., 2018). The graph also demonstrates that innovations in Bitcoin will cause the innovations in gold in a contemporaneous manner. The main reason of this phenomenon is that investors started to consider Bitcoin as an alternative for gold in certain cases (Bouri et al., 2017b; Kliber et al., 2019; Shahzad et al., 2019) but gold is still the last safe haven (Coudert and Raymond, 2011; Selmi et al., 2018).

During market turmoil of coronavirus, Bitcoin became more connected with other markets and assets. Fig. 6(b) shows that information from Bitcoin transmits to gold market instantaneously. This contemporaneous contagion is consistent with the result shown in pre-COVID-19 period. Meanwhile, European markets start to have contemporaneous causality relationships with Bitcoin, but the impact direction is not clear. US market, VIX, and European market exhibit undirected contemporaneous causality relationship. In this way, Bitcoin is connected to the contagion network of US market and react to the fear level of VIX during COVID-19 crisis. The safe
haven property of Bitcoin has been weakened in the time of the shock. We can reasonably infer that large proportion of investors from those markets get in and out from the equity markets and Bitcoin market at the same time during COVID-19 period.

4.2.2. Non-contemporaneous contagion

Our analysis focus on the Bitcoin contagion of different time periods. We assume that the COVID-19 is the event dramatically change the interrelationships between Bitcoin and other markets. To address the change, we conduct directional non-contemporaneous contagion analysis to strengthen and validate the comparison. Tables 3 and 4 are the estimated contribution of the forecast error variance of Bitcoin coming from/to innovations to/from other markets. The shocks to each variable are not orthogonalized, so the sum of the element contribution in each row is not necessarily equal to one. Table 3 and Table 4 show the contagions before and during COVID-19 period respectively, which imply that for all markets, it is obvious that the contagions become more active during COVID-19 period. Before COVID-19, most markets have the biggest share of impact from themselves with few other

Table 3
Contagion Before COVID-19.

	BTC	USA	EU	CN	GOLD	USD	GSCI	VIX	BOND	FROM
BTC	91.19	1.06	1.07	0.34	3.47	1.07	0.32	1.20	0.29	0.98
USA	0.40	35.18	20.49	1.56	3.88	1.57	3.74	24.56	8.62	7.20
EU	0.48	23.54	39.8	4.15	5.07	0.97	3.63	17.06	5.31	6.69
CN	0.75	6.94	9.06	72.37	0.53	0.98	1.97	5.98	1.40	3.07
GOLD	2.51	4.64	6.96	0.20	55.44	10.65	1.35	2.78	15.48	4.95
USD	0.88	0.80	1.24	0.08	14.72	78.61	0.29	0.67	2.71	2.38
VIX	0.52	28.79	16.6	1.09	2.17	0.79	3.95	39.68	6.41	6.70
BOND	0.31	11.15	6.75	0.63	14.90	3.56	5.80	7.17	49.72	5.59
TO	0.95	9.33	7.54	1.15	5.14	2.31	2.34	7.31	5.33	41.38

Table 4
Contagion During COVID-19.

	BTC	USA	EU	CN	GOLD	USD	GSCI	VIX	BOND	FROM
BTC	44.48	14.38	18.3	2.35	5.14	1.09	4.75	8.92	0.58	6.17
USA	15.05	29.19	22.46	5.00	1.64	0.46	8.46	16.43	1.32	7.87
EU	13.21	22.96	31.73	5.20	3.19	1.66	9.84	12.04	0.17	7.59
CN	3.47	8.62	9.32	60.69	4.09	1.42	9.55	2.64	0.20	4.37
GOLD	13.16	5.71	7.48	5.44	44.51	2.86	5.41	7.25	8.19	6.17
USD	6.96	10.31	10.39	3.43	3.33	37.06	8.79	4.31	15.43	6.99
GSCI	5.33	14.98	14.13	6.20	3.46	0.56	45.33	9.74	0.27	6.07
VIX	10.64	23.97	15.59	2.35	0.16	1.27	7.53	37.37	1.12	6.96
BOND	7.12	10.37	9.26	8.64	3.08	6.57	10.06	5.14	39.74	6.70
TO	8.33	12.37	11.88	4.29	2.68	1.76	7.15	7.39	3.03	58.88

(a) Net Contagion Network Before COVID-19 (b) Net Contagion Network During COVID-19

Fig. 7. Net Contagion Paths.

haven property of Bitcoin has been weakened in the time of the shock. We can reasonably infer that large proportion of investors from those markets get in and out from the equity markets and Bitcoin market at the same time during COVID-19 period.

4.2.2. Non-contemporaneous contagion

Our analysis focus on the Bitcoin contagion of different time periods. We assume that the COVID-19 is the event dramatically change the interrelationships between Bitcoin and other markets. To address the change, we conduct directional non-contemporaneous contagion analysis to strengthen and validate the comparison. Tables 3 and 4 are the estimated contribution of the forecast error variance of Bitcoin coming from/to innovations to/from other markets. The shocks to each variable are not orthogonalized, so the sum of the element contribution in each row is not necessarily equal to one. Table 3 and Table 4 show the contagions before and during COVID-19 period respectively, which imply that for all markets, it is obvious that the contagions become more active during COVID-19 period. Before COVID-19, most markets have the biggest share of impact from themselves with few other
markets receiving spillover effect over 5%. When COVID-19 shock hits the market, all markets receive higher proportion of contagion from other assets, the average contagion level rise from 41.38% to 58.88%.

Further, we visualize the directional transmission path of Bitcoin and other markets in both time periods. Based on Tables 3 and 4, we construct the net contagion matrices and generate contagion networks in Fig. 7. The gross contagion is bidirectional as the two tables show, while net transmission is unidirectional, which can better depict the dominant position of each asset for information and risk transmission and contagion.

Fig. 7 describes the net contagion paths between different assets. The number of assets that exert or receive net effect on the node is demonstrated by out-degree and in-degree. And size of the node is the out-degree of each variable, which indicates the influence of an asset in the network. The bigger the node is, the more markets receive spillover from the node. The thickness and color of the edge is denoted by the amount of net contagion from node asset to other assets. The more net spillovers transmit out from the asset, the thicker and darker the color of the link. There are 9 nodes and 36 edges in both networks, representing the pairwise net spillover among markets.

Table 5 displays the full networks characteristics. For the networks, the average path length and average diameter has dropped from 1.61 and 5 to 1.07 and 2 respectively compared to pre-crisis time. The smaller the number of the two measurements, the faster and easier of the transmission process. During the COVID-19 period, one market crash will soon spread to the whole network, even for markets that were previously not closely relate to each other. Before the crisis, US dollar has the highest betweenness in the network, which is 12.5. It means that contagions usually went through US dollar to other assets. It has an intermediary role in this process. However, during the COVID-19 time, there is no market exhibits high betweenness, which suggests that risks and information transmission channels were equally distributed for all markets. This indicates a shorter responding time for infections, as markets do not require intermediaries to react to the uncertainties of one market in the contagion process. During the phase of crisis, US market and European market are the two biggest net contagion transmitters, which can be regarded as two of the sources causing the market contagion in COVID-19 crisis. While US dollar, gold and bond become the net receivers in the network, proving their passive positions in reacting to the negative information.

For Bitcoin, before COVID-19 crisis, it receives net contagion from five other markets, and transmits positive effects to three markets (Table 6). Gold has slightly positive spillover to Bitcoin and also receives the contagion from Bitcoin, thus the net effect is not obvious. While commodity market receives Bitcoin spillover but has no influence on it. In general, the contagion between each market and Bitcoin is minor, that the major influencer is itself. Impacted by COVID-19, there is a higher level of contagion from and to Bitcoin as well as the other markets. In net term, Bitcoin delivers positive effects to seven markets (Table 6). Gold, US dollar and bond are impacted by Bitcoin to a great extend, which works as “the last resort” for Bitcoin market. While Bitcoin is affected by one major market, which is European market. It has a dominant role for the net contagion to Bitcoin. However, we must exercise certain degree of caution when interpreting the result between European market and Bitcoin. First, European market also receives large proportion of spillover from US market. Second, European and US market has very high correlations historically. Third, US market has strong contagion effect to advanced markets (Dungey and Gajurel, 2014; Jayech, 2016). Forth, US market and VIX also have relatively larger spillover effects in aggregate level shown in Table 4. The origin of the contagion may come from the upper stream markets that transmit to European market. Therefore, it is reasonable to infer that European market partly works as an intermediary for US market to Bitcoin. In addition, the effect of VIX to Bitcoin indicates that a fast-increasing fear level and a dropping market confidence can drive huge price fluctuation of Bitcoin market. It is corroborated with previous study of Kurka’s (2019), that there are periods of substantial shock transmission between Bitcoin and traditional assets under the shock. This also reflects the empirical study of Conlon et al.’s (2020) that Bitcoin is not a safe haven in coronavirus time. These findings help to complement the undirected edges of the three markets generated from the DAG approach.

Combining Fig. 5 and the results in this section, we find that Bitcoin is shown to become the risk spiller of gold, where gold receives

1 We only mention the most meaningful node in terms of betweenness. The full betweenness results for all nodes are shown in the Table A1 in Appendix A.
long lasting spillover effects from Bitcoin in the crisis. The effect between Bitcoin and gold is also strengthened during the crisis. This finding echoes the contemporaneous causality relationship shown in previous section and the research of González et al.’s (2021). The reason could be that people still consider gold as the most preferable safe haven during crisis time (Coudert and Raymond, 2011; Selmi et al., 2018) compared to Bitcoin. Apart from that, there is a significant net contagion effect change between Bitcoin and US dollar and bond in COVID-19 period (Table 4 and Fig. 7). Bitcoin becomes the net transmitter for these assets. The reason is that Bitcoin has higher liquidity compare to bond and US dollar, while more liquid assets usually reflect faster speed in price discovery (Longstaff, 2010). Besides, US dollar and bond are also considered to have safe haven properties in some cases (Das et al., 2020; Flavin et al., 2014; Schuknecht et al., 2009).

We expect a strong contagion effect between Bitcoin and Chinese market followed by the empirical results of Corbet et al. (2020b) and Al-Awadhi et al. (2020). Apart from that, China is also one of the major outbreak regions for coronavirus and its activities usually have some influences over Bitcoin (Borri and Shakhnov, 2019; Cheng and Yen, 2020). However, the results do not support our hypothesis. The reasons could be that the outbreak of COVID-19 in China was early in time before the main worldwide pandemic, and the strict control over disease in China hold back the declining confidence of Chinese market. The later stage reaction of Bitcoin was mainly caused by the developed market crash and investors outside of China (Al-Awadhi et al., 2020).

5. Conclusion

The research findings offer economic and policy implications. Due to short history and new technology nature of Bitcoin, the understandings for the capacity and feature of Bitcoin are still nascent. Taking Bitcoin into investment portfolio during economic stable time is a good choice to diversify risks and increase average return. Under the global shock, Bitcoin exhibits higher contagion effect, especially the risks and information transmission originated from developed market. Compared to other financial assets, the extreme performance and slow recovery speed from financial contagion of Bitcoin give an alert to investors that it is highly sensitive and fragile to shocks and mostly depend on general economic environment. The sustainability of Bitcoin as a safe haven, hedge or diversifier is weakened during the market turmoil. Investors need to use it with caution to prevent extreme negative effect for their portfolio. Based on our findings, we suggest that gold, US dollar and bond could be the alternative choices for Bitcoin investment during the shock. Regulators should consider asking financial institutions to offer proper risk warning and risk assessment when individual investors try to involve in Bitcoin trading activities.

As for COVID-19 crisis, the cause of this market turmoil is different from the cause of previous financial crisis, where financial institutions were the originate reason to generate systematic risks. This time, the primary reason for the active contagion phenomenon is the outbreak of pandemic. The effective control over disease is the solution for the recovery of economy and financial market. Government should dedicate to take actions and issue policies that can help to reduce the spread of coronavirus and maintain a good level of medical services. Of course, managing other financial policies and supplemented tools to stabilize employment and stimulate business are also necessary, but they are not the main drivers to solve this crisis from the root.

Authors’ contributions

Xiaochun Guo conceived of the presented idea, contributing to the methodology, software, initial formal analysis and original writing of this paper. Fengbin Lu were responsible for the investigation, validation and review of the paper. Yunjie Wei further modified the manuscript, provided subsequent analysis, created the visualization of this paper and finalized the paper. The empirical discussions were the mutual work of all authors.
Table A1

Betweenness centrality.	Pre-COVID-19	Mid-COVID-19
btc	0.5	1
usa	5.0	1
eu	0	1
cn	10.5	0
gold	12.5	0
usd	0	0
gsci	2.3	0
vix	5.3	0
bond	1.5	0

Declaration of Competing Interest

The authors report no declarations of interest.

Acknowledgement

This research work was supported by the National Natural Science Foundation of China under Grants No. 71801213, No. 71988101 and No. 72042019.

Appendix A

References

Acharya, V.V., Pedersen, L.H., 2005. Asset pricing with liquidity risk. J. Financ. Econ. 77, 375–410.

Akhtaruzzaman, M., Boubaker, S., Sensoy, A., 2020. Financial during COVID-19 contagion crisis. SSRN Electron. J., 101604 https://doi.org/10.2139/ssrn.3584898.

Awokuse, T.O., Bessler, D.A., 2003. Vector autoregressions, policy analysis, and directed acyclic graphic: an application to the US economy. J. Appl. Econ. 6, 1–24.

Aysan, A.F., Demir, E., Gozgor, G., Lau, C.K.M., 2019. Effects of the geopolitical risks on Bitcoin returns and volatility. Res. Int. Bus. Financ. 47, 511–518.

Bessler, D.A., Yang, J., 2003. The structure of interdependence in international stock markets. J. Int. Money Financ. 22, 261–287.

Bouri, E., Jalkh, N., Molnár, P., Roubaud, D., 2017b. Bitcoin for energy commodities before and after the December 2013 crash: diversifier, hedge or safe haven? Appl. Econ. 49, 5063–5073.

Bouri, E., Molnár, P., Azzi, G., Roubaud, D., Hagfors, L.I., 2017c. On the hedge and safe haven properties of Bitcoin: is it really more than a diversifier? Financ. Res. Lett. 20, 192–198.

Cheng, H.P., Yen, K.C., 2020. The relationship between the economic policy uncertainty and the cryptocurrency market. Financ. Res. Lett. 35, 101308 https://doi.org/10.1016/j.frl.2019.101308.

Conlon, T., Corbet, S., 2018. Exploring the dynamic relationships between cryptocurrencies and other financial assets. Econ. Lett. 165, 28–34. https://doi.org/10.1016/j.econlet.2018.01.004.

Conlon, T., McGee, R., 2020. Are cryptocurrencies a safe haven for equity markets? An international perspective from the COVID-19 pandemic. Res. Int. Bus. Financ., 101248.

Corbet, S., Meegan, A., Larkin, C., Lucey, B., Yarovaya, L., 2018. Exploring the dynamic relationships between cryptocurrencies and other financial assets. Econ. Lett. 165, 28–34. https://doi.org/10.1016/j.econlet.2018.01.004.

Corbet, S., Hou, Y., Hu, Y., Lucey, B., Osley, L., 2020a. Aye Corona! The contagion effects of being named Corona during the COVID-19 pandemic. Financ. Res. Lett., 101591.

Corbet, S., Larkin, C., Lucey, B., 2020b. The contagion effects of the covid-19 pandemic: evidence from gold and cryptocurrencies. Financ. Res. Lett., 101554 https://doi.org/10.1016/j.frl.2020.101554.

Das, D., Le Roux, C.L., Jana, R.K., Dutta, A., 2020. Does Bitcoin hedge crude oil implied volatility and structural shocks? A comparison with gold, commodity and the US Dollar. Financ. Res. Lett. 36, 101335 https://doi.org/10.1016/j.frl.2019.101335.

Diebold, F.X., Yilmaz, K., 2009. Measuring financial asset return and volatility spillovers, with application to global equity markets. Econ. J. 119, 158–181. https://doi.org/10.1111/j.1468-0297.2008.02208.x.

Diebold, F.X., Yilmaz, K., 2012. Better to give than to receive: predictive directional measurement of volatility spillovers. Int. J. Forecast. 28, 57–66.

Diebold, F.X., Yilmaz, K., Lynch, M., Gregory, P., 2014. On the network topology of variance decompositions: measuring the connectedness of financial firms. J. Econom. 182, 119–134. https://doi.org/10.1016/j.jeconom.2014.04.012.

Dungey, M., Gajurel, D., 2014. Equity market contagion during the global financial crisis: evidence from the world’s eight largest economies. Econ. Syst. 38, 161–177.

Dutta, A., Das, D., Jana, R.K., Vo, X.V., 2020. COVID-19 and oil market crash: revisiting the safe haven property of gold and Bitcoin. Resour. Policy 69, 101816. https://doi.org/10.1016/j.resourpol.2020.101816.

Dwita Mariana, C., Elaputra, I.A., Husodo, Z.A., 2021. Are Bitcoin and Ethereum safe-havens for stocks during the COVID-19 pandemic? Financ. Res. Lett. 38, 101798 https://doi.org/10.1016/j.frl.2020.101798.

Dyhrberg, A.H., 2016. Bitcoin, gold and the dollar—a GARCH volatility analysis. Financ. Res. Lett. 16, 85–92.
Selmi, R., Mensi, W., Hammoudeh, S., Bouoiyour, J., 2018. Is Bitcoin a hedge, a safe haven or a diversifier for oil price movements? A comparison with gold. Energy

Zhang, D., Hu, M., Ji, Q., 2020. Financial markets under the global pandemic of COVID-19. Financ. Res. Lett., 101528 https://doi.org/10.1016/j.frl.2020.101528.

Schuknecht, L., Von Hagen, J., Wolswijk, G., 2009. Government risk premiums in the bond market: EMU and Canada. Eur. J. Polit. Econ. 25, 371

X. Guo et al.

Smales, L.A., 2019. Bitcoin as a safe haven: is it even worth considering? Financ. Res. Lett. 30, 385–393.

Shanaev, S., Sharma, S., Ghimire, B., Shuraeva, A., 2020. Taming the blockchain beast? Regulatory implications for the cryptocurrency Market. Res. Int. Bus. Financ. 51, 101080.

Smale, L.A., 2019. Bitcoin as a safe haven: is it even worth considering? Financ. Res. Lett. 30, 385–393.

Spirites, P., Glymour, C.N., Scheines, R., Heckerman, D., 2000. Causation, Prediction, and Search. MIT press.

Scheines, R., Spirtes, P., Glymour, C., Meek, C., 1994. Tetrad II: User’s Manual. URL http://www.phil.cmu.edu/tetrad/. (Accessed 7.2.20).

Shanaev, S., Sharma, S., Ghimire, B., Shuraeva, A., 2020. Taming the blockchain beast? Regulatory implications for the cryptocurrency Market. Res. Int. Bus. Financ. 51, 101080.

Scheines, R., Spirtes, P., Glymour, C., Meek, C., 1994. Tetrad II: User’s Manual. URL http://www.phil.cmu.edu/tetrad/. (Accessed 7.2.20).

Shanaev, S., Sharma, S., Ghimire, B., Shuraeva, A., 2020. Taming the blockchain beast? Regulatory implications for the cryptocurrency Market. Res. Int. Bus. Financ. 51, 101080.

Smale, L.A., 2019. Bitcoin as a safe haven: is it even worth considering? Financ. Res. Lett. 30, 385–393.

Spirites, P., Glymour, C.N., Scheines, R., Heckerman, D., 2000. Causation, Prediction, and Search. MIT press.

Scheines, R., Spirtes, P., Glymour, C., Meek, C., 1994. Tetrad II: User’s Manual. URL http://www.phil.cmu.edu/tetrad/. (Accessed 7.2.20).

Shanaev, S., Sharma, S., Ghimire, B., Shuraeva, A., 2020. Taming the blockchain beast? Regulatory implications for the cryptocurrency Market. Res. Int. Bus. Financ. 51, 101080.

Smale, L.A., 2019. Bitcoin as a safe haven: is it even worth considering? Financ. Res. Lett. 30, 385–393.

Spirites, P., Glymour, C.N., Scheines, R., Heckerman, D., 2000. Causation, Prediction, and Search. MIT press.

Scheines, R., Spirtes, P., Glymour, C., Meek, C., 1994. Tetrad II: User’s Manual. URL http://www.phil.cmu.edu/tetrad/. (Accessed 7.2.20).

Shanaev, S., Sharma, S., Ghimire, B., Shuraeva, A., 2020. Taming the blockchain beast? Regulatory implications for the cryptocurrency Market. Res. Int. Bus. Financ. 51, 101080.

Smale, L.A., 2019. Bitcoin as a safe haven: is it even worth considering? Financ. Res. Lett. 30, 385–393.

Spirites, P., Glymour, C.N., Scheines, R., Heckerman, D., 2000. Causation, Prediction, and Search. MIT press.

Scheines, R., Spirtes, P., Glymour, C., Meek, C., 1994. Tetrad II: User’s Manual. URL http://www.phil.cmu.edu/tetrad/. (Accessed 7.2.20).

Shanaev, S., Sharma, S., Ghimire, B., Shuraeva, A., 2020. Taming the blockchain beast? Regulatory implications for the cryptocurrency Market. Res. Int. Bus. Financ. 51, 101080.

Smale, L.A., 2019. Bitcoin as a safe haven: is it even worth considering? Financ. Res. Lett. 30, 385–393.

Spirites, P., Glymour, C.N., Scheines, R., Heckerman, D., 2000. Causation, Prediction, and Search. MIT press.

Scheines, R., Spirtes, P., Glymour, C., Meek, C., 1994. Tetrad II: User’s Manual. URL http://www.phil.cmu.edu/tetrad/. (Accessed 7.2.20).

Shanaev, S., Sharma, S., Ghimire, B., Shuraeva, A., 2020. Taming the blockchain beast? Regulatory implications for the cryptocurrency Market. Res. Int. Bus. Financ. 51, 101080.

Smale, L.A., 2019. Bitcoin as a safe haven: is it even worth considering? Financ. Res. Lett. 30, 385–393.

Spirites, P., Glymour, C.N., Scheines, R., Heckerman, D., 2000. Causation, Prediction, and Search. MIT press.

Scheines, R., Spirtes, P., Glymour, C., Meek, C., 1994. Tetrad II: User’s Manual. URL http://www.phil.cmu.edu/tetrad/. (Accessed 7.2.20).

Shanaev, S., Sharma, S., Ghimire, B., Shuraeva, A., 2020. Taming the blockchain beast? Regulatory implications for the cryptocurrency Market. Res. Int. Bus. Financ. 51, 101080.

Smale, L.A., 2019. Bitcoin as a safe haven: is it even worth considering? Financ. Res. Lett. 30, 385–393.

Spirites, P., Glymour, C.N., Scheines, R., Heckerman, D., 2000. Causation, Prediction, and Search. MIT press.

Scheines, R., Spirtes, P., Glymour, C., Meek, C., 1994. Tetrad II: User’s Manual. URL http://www.phil.cmu.edu/tetrad/. (Accessed 7.2.20).

Shanaev, S., Sharma, S., Ghimire, B., Shuraeva, A., 2020. Taming the blockchain beast? Regulatory implications for the cryptocurrency Market. Res. Int. Bus. Financ. 51, 101080.