Evidence of a SARS-CoV-2 double Spike mutation D614G/S939F potentially affecting immune response of infected subjects

Sara Donzelli, Francesca Spinella, Enea Gino di Domenico, Martina Pontone, Ilaria Cavallo, Giulia Orlandi, Stefania Iannazzo, Giulio Maria Ricciuto, ISG Virology Covid Team, Raoul Pellini, Paola Muti, Sabrina Strano, Gennaro Ciliberto, Fabrizio Ensoli, Stefano Zapperi, Caterina A.M. La Porta, Giovanni Blandino, Aldo Morrone, Fulvia Pimpinelli.

Abstract

Objectives: Despite extensive efforts to monitor the diffusion of COVID-19, the actual wave of infection is worldwide characterized by the presence of emerging SARS-CoV-2 variants. The present study aims to describe the presence of yet undiscovered SARS-CoV-2 variants in Italy.

Methods: Next Generation Sequencing was performed on 16 respiratory samples from occasionally employed within the Bangladeshi community present in Ostia and Fiumicino towns. Computational strategy was used to identify all potential epitopes for reference and mutated Spike proteins. A simulation of proteasome activity and the identification of possible cleavage sites along the protein guided to a combined score involving binding affinity, peptide stability and T-cell propensity.

Results: Retrospective sequencing analysis revealed a double Spike D614G/S939F mutation in COVID-19 positive subjects present in Ostia while D614G mutation was evidenced in those based in Fiumicino.

Conclusion: Collectively, our findings mirror further the importance of deep sequencing of SARS-CoV-2 genome as a unique approach to monitor the appearance of specific mutations as for those herein reported for Spike protein. This might have implications on both the type of immune response triggered by the viral infection and the severity of the related illness.

© 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Betacoronaviruses are responsible of the last three major pathogenic zoonotic diseases occurred in the past two decades [1]. Indeed, severe acute respiratory syndrome (SARS-CoV) emerged in 2002 and exhibited 10% mortality of infected people [2]. Middle East respiratory syndrome coronavirus (MERS-CoV) appeared in 2012 with 35% mortality [3]. To date, SARS-CoV-2 records worldwide characterized by the presence of emerging SARS-CoV-2 variants. The present study aims to describe the presence of yet undiscovered SARS-CoV-2 variants in Italy.
Table 1. Consensus sequences of study samples: differences vs. Wuhan-Hu-1 sequence

Region	nt	rf	1B_	2B_	3B_	4B_	5B_	6B_	7B_	8B_	3A_	5A_	7A_	8A_	9A_	AA changes
BAN	25	T	T	T	T	T	T	T	T	T	T	T	T	T	C	
UTR	1163	A	T	T	T	T	T	T	T	T	T	T	T	T	T300F	
3037	C	T	T	T	T	T	T	T	T	T	T	T	T	A	Syn	
7798A	G	A	T	T	T	T	T	T	T	T	T	T	T	A9	Syn	
11083	G	T	T	T	T	T	T	T	T	T	T	T	T	T9	L360GF	
11719	G	T	T	T	T	T	T	T	T	T	T	T	T	T9	Q3818H	
14408	C	T	T	T	T	T	T	T	T	T	T	T	T	T9	P314L	
15738	C	T	T	T	T	T	T	T	T	T	T	T	T	T9	Syn	
16718	G	A	A	A	A	A	A	A	A	A	A	A	A	A9	R1084K	
Orf1ab	17999	C	T	T	T	T	T	T	T	T	T	T	T	T9	T1511l	
S	23403	A	G	G	G	G	G	G	G	G	G	G	G	G9	D614G	
24378	C	T	T	T	T	T	T	T	T	T	T	T	T	T9	S939F	
28881	G	A	A	A	A	A	A	A	A	A	A	A	A	A9	R203K	
28882	G	A	A	A	A	A	A	A	A	A	A	A	A	A9	Syn	
N	28883	G	C	C	C	C	C	C	C	C	C	C	C	C9	G204R	
ORF14	29840	T	G												G9	G50R
29848	T	A													Syn	G50E
29841	G	T														Syn
29830	G															Syn

nt, nucleotide; AA, amino acid; Syn, synonymous substitution; UTR, untranslated region; Orf, open reading fra; S, Spike protein.

Fig. 1. Genetic Variability and phylogenetic analysis of Whole-Genome Consensus Sequences. A. For the mutations analysis, sequences of viral genomes and the reference sequence (GenBank ID NC_045512.2) were aligned with Clustal Omega [31,32] and analyzed with MEGA X [33]. Nucleotide positions are referred to Wuhan-Hu-1 (reference genome MN908947). B. For phylogenetic analysis, we inferred the maximum-likelihood tree using the edge-linked partition model in IQ-TREE (http://www.iqtree.org) [34,35].
Amino acid mutated	Genome position	Gene name	Virus number with variation	Annotation Type	Mutation Type	Base change/Virus number	Evidence Level	Variance Time	Variance Area	Impact/Ensemble Variation - Calculated variant consequences
5939	34378	S	1316	missense variant; coding_sequence_variant	SNP	O=M:2; O=G:5; C=D:6; C=T:561; D:A:18; C:I:30	IV	1.23E-06	2.34E-04	MODERATE; MODIFIER
D614	23403	5	454687	missense variant; coding_sequence_variant	SNP	A=M:12; A=G:12; A=T:52; A:R:93; A:C:34	I	8.34E-02	2.23E-02	MODERATE; MODIFIER

B

![Time Frequency for 5939F](image)

![Area Frequency for 5939F](image)

C

![Time Frequency for 614G](image)

![Area Frequency for 614G](image)
wide over than 80 millions of infected people with around 2 mil-
ions deaths. Since SARS-CoV-2 pandemic is still active, the related
numbers grow daily. Coronavirus entry into host cells is pivotal for
viral infectivity and pathogenesis. It also represents of major deter-
nant for immune surveillance and a key target for therapeutic
intervention. SARS-CoV-2 enters host cells of high and low respira-
tory tracts binding ACE2, a cell surface receptor for viral attach-
ment [4]. Subsequently TMPRSS2 internalization proteases primes
S protein [4]. SARS-CoV S1 contains a Receptor-binding domain
(RBD) that specifically binds to hACE2 receptor. RBD status con-
stantly oscillates between standing-up conformation for receptor
binding to lying-down position for immune evasion [5]. The crystal
structure of the complex between SARS-CoV-2 RBD and h-ACE2
receptor has been recently solved [6]. It revealed subtle differences
between previously identified SARS-Co-V RBD and SARS-CoV-2
RBD to recognize hACE2. This leads to the increased binding affin-
ity of SARS-CoV-2 to the receptor and determines its severe effects
of the infected cell types. Moreover, compared with other SARS-
related coronaviruses (SARSr-CoVs), SARS-CoV-2 possesses a
unique furin cleavage site (FCS) in its spike protein that is highly
functional and that increases the efficiency of virus infection into
cells [7].

Herein we identified by retrospective next-generation sequenc-
ing analysis a SARS-CoV-2 double Spike mutation D614G/S939F in
16 respiratory samples from occasionally employers within the
Bangladeshi community present in Ostia. SARS-CoV-2 Spike
D614G mutation was evidenced in the members of the Bangladeshi
community living in the close town Fiumicino who were fre-
quently in contact with those members found positive for Spike
D614G/S939F double mutation in Ostia. We also found that unlike
D614G, S939F mutation affects immune response through the
slight but significant modulation of T-cell propensity and the selec-
tive enrichment of potential binding epitopes for some HLA alleles.

2. Results

2.1. Identification of a SARS-CoV-2 double Spike mutation D614G/
S939F

RA, a 44-year old male from Bangladesh was admitted at the
Emergency Unit of Grassi Hospital in Ostia-ASL Rome 3 on
7.16.2020 with the following clinical parameters and symptoms:
normal ECG, oxygen saturation values of 97%, fever and left flank
pain. The patient referred, exhibited evident signs of pneumonia
and tested positive for SARS-CoV-2 infection. Since RA lived in
Ostia in the same house with 8 members of the Bangladeshi com-
Table 1. Consensus sequences are described in the table in Fig. 1A, and
differences with the Wuhan-Hu reference genome (GenBank:
MN908947) are highlighted. We obtained 13 complete genomes
(Fig. 1A). Consensus genomes had a median of 8 substitutions rel-
ate to the Wuhan-Hu/1-2019 reference sequence (range 7–10).
For phylogenetic analysis, we inferred the maximum-likelihood
tree using the edge-linked partition model in IQ-TREE and we iden-
tified 2 unique evolutionary lineages in our cohort (lineages
was built on the basis of the similarity of the fasta, therefore of the
nucleotide sequences, see Methods; Fig. 1B). Most sequenced gen-
ones resemble the lineage B.20 (see methods). We evaluated
whether any of the analyzed employees was part of an epidemi-
ologically linked cluster based on illness onset date, positive test
status, and work location. We found a correlation between geo-
graphic location and mutation set. All employees in the same clus-
ters also had identical or nearly identical consensus genomes,
which reflects the low genetic diversity of SARS-CoV-2 at this stage
of the pandemic. It is highly unlikely that there are direct transmis-
sion pairs in our dataset, but we cannot conclusively rule out coin-
cident transmission linkage. However, the high similarity between
one case belong to the group of Bangladesh (bang 2B) to the group
of Fiumicino, suggests that 2B acted as a bridge between the two
clusters. All consensus sequences have been submitted to GISAID
and GeneBank.

2.2. Worldwide geographically distribution of double Spike mutation
D614G/S939F

To further analyze the features of the identified SARS-CoV-2
double mutation, we investigated more in detail each single vari-
ant S939F and D614G. By interrogating 2019nCoVR browser we
obtained information for both variants, including number of
sequences actually deposited, and population frequency. A predic-
tion of the effects that each allele of the variant might have on each
transcript was also evidenced (Fig. 2A). In particular, S939F variant,
due to nucleotide change C to T in position 24378 of Spike gene,
resulted to be about three hundred times less frequent than

Fig. 2. A. S939F and D614G mutations genomic locations and characteristics by 2019nCoVR. The evidence level was graded into I-III according to the number of mutations
in high-quality sequences and the density distribution of mutations (population frequency of class I is greater than 0.05, which indicates it is more credible; class II variant sites
fall in high-density areas; population frequency of class III is less than 0.05, indicating its low reliability). The Variance Time calculates the population frequency of each
mutation site over time, evaluates the variance dispersion of the site by calculating the variance of population frequency at each time point. The Variance Area, calculates the
population frequency of each mutation site, evaluates the variance dispersion of the site by calculating the variance of population frequency in each region. The Ensemble
Variation - Calculated variant consequences is a prediction of the effects that each allele of the variant may have on each transcript. E-C. Time (upper panel) and Area (lower
panel) frequencies of S939F (B) and D614G (C) mutations by 2019nCoVR are indicated. Isolates number is indicated in blue, variation frequency is indicated in black. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
D614G variant, due to nucleotide change A to G in position 23403 (3853 versus 1218522 counts), determining an evidence level of IV for S939F versus I for D614G. Furthermore, we investigated dynamic patterns of SARS-CoV-2 genomic variants S939F and D614G independently, across different sampling locations over time. As shown in Fig. 2B-C, S939F variant frequency slightly increased over time, reaching 0.0032 at the beginning of June 2021, while D614G variant frequency dramatically increased from 0 at the end of February 2020 to 0.98 at the beginning of June 2021, indicating that this mutated genotype might have higher transmis-
Fig. 4. A-C. S939F mutation distribution (indicated in yellow) in Europe at the indicated time intervals by GSAID. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
sibility. To figure out where S939F and D614G variants were globally located over time, we interrogated COVID-19 CoV Genetics browser. As shown in Fig. 3A-B both variants resulted to be detected in all continents. Indeed, both are still present in Europe (Fig. 3A-B). Subsequently we assessed S939F variant distribution in Europe. Similar to the analysis performed by Korber and collaborators for the global distribution of D614G variant, we interrogated GISAID to assess S939F variant distribution in Europe [8]. We found that S939F variant was detected in Sweden and Denmark when we evidenced S939F-D614G double mutation in our patient samples, (Fig. 4A). Before (from March to June), it was present in Sweden and Austria (Fig. 4B), while to date it it has been detected only in Switzerland and North Macedonia (Fig. 4C).

Altogether our findings represent the first evidence of a SARS-CoV-2 variant carrying double Spike D614G/S939F in Italy.

2.3. Unlike D614G, S939F affects T-cell propensity

The Spike D614G/S939F double mutation is poorly studied and consequently its impact on host infection and patient clinical implications are scarcely known. Here we aim to estimate the effects of the D614G/S939F mutations on the immune response. To this end we adapted to the present experimental aim a computational strategy previously introduced to study the SARS-CoV-2 virus and other similar coronaviruses [9,10]. In particular, we considered all the potential epitopes associated with the reference and mutated SARS-CoV-2 spike protein. As reported in La Porta & Zapperi 2020 and La Porta & Zapperi 2021, the first step of the process involved a simulation of proteasome activity and the identification of possible cleavage sites along the protein [9,11,12]. This resulted in a set of 1549 peptides of length 8–11 for the reference spike protein and 1541 total peptides for both mutations in the protein. We then analyzed the peptides searching for likely epitopes using NetTepi which produced a combined score involving binding affinity, peptide stability and T-cell propensity for 13 supported HLA call I [11]. These three measurements all contribute to the potential that a peptide is a T-cell epitope: binding affinity measures the likelihood that a peptide binds with an HLA, peptide stability measures the ability for the HLA to retain the peptide and T-cell propensity measures whether a peptide is likely to be recognized by a T-cell [11]. The combined score is calculated as a weighted sum of binding affinity, stability and T-cell propensity prediction scores [11]. A high score indicates that the peptide is likely to become a T-cell epitope. From the ranked list of potential epitopes, we selected and counted the highly ranking peptides associated to each HLA allele, as described in the method section. Fig. 5 reports that mutations change the number of potential epitopes for some HLA alleles. In particular, the number of highly ranked peptides is increased by the mutations for HLA-A03:01, HLA-A11:01 and HLA-A26:01, it is decreased for HLA-A02:01, HLA-B39:01 and HLA-B40:01, and it remains unchanged for the other HLA alleles.

The two point mutations D614G and S939F only affected a limited number of peptides, and due to their distance along the sequence no peptide can have more than one mutation. We thus consider the effect of each mutation separately. As shown in Fig. 6A, we can identify a small number of peptides that are either present exclusively in the reference protein (16 for D614G and 20 for S939F) or in the mutated protein (16 for D614G and 12 for S939F) (Table S2). We therefore studied the relevance of these peptides for the immune response. Fig. 6B shows that the T-cell propensity did not change significantly for peptides under the D614G mutation, while the S939F displays a small but significant effect. In particular, the higher T-cell propensity indicates that the mutated spike is more easily recognized by T-cells. In Fig. 6C, we show the combined scores of reference and mutated peptides for the different HLA alleles with some differences observed in an allele dependent manner. In this figure, a decrease in combined score means that the peptide is less likely to be a T-cell epitope.

Notice that the number of alleles available for NetTepi is rather limited. We report in Table S3 the distribution of HLA-A and HLA-B alleles found in a Bangladeshi population extracted from the allele-frequencies.net website. We can see that NetTepi HLA-A alleles represent 62% of the population and HLA-B only 50%. To obtain a larger coverage of the alleles present in the population we
expanded the analysis by considering MHCflurry 2.0 that is able to predict the binding affinity of arbitrary peptides to any HLA molecule using an artificial neural network [13]. We used this tool to compare the binding affinity of the small group of reference and mutated peptides discussed above for 26 HLA class I alleles providing a broad coverage of the human population (see Fig. S1 for a Venn diagram reporting the alleles considered and for a comparison between the predictions of NetTepi and MHCFlurry). In particular, these 26 alleles represent 93% of the Bangladeshi population for HLA-A alleles and 72% for HLA-B alleles. The results reported in Fig. 7 A-B show that mutations change the binding landscape only in some cases. For example in the case of the S939F, we could identify some alleles where some new strongly binding peptides emerged in the mutated protein (e.g. HLA-A26:01 or HLA-A32:01), while for the D614G mutation the presence of isolated strongly binding peptides was not affected by the mutation (see HLA-A02:01, HLA-A02:03 and HLA-A02:06).

In aggregate, our findings indicate that Spike mutations may potentially alter CD8 T cell immune response to SARS-CoV-2 thereby affecting the rate of infection and clinical impact.

3. Discussion

The widespread diffusion of SARS-CoV-2 depends, at least in part, from its high rate of genome mutation that leads to the appearance of viral variants with different rate of infection and severity of the Covid 19 disease. As for cancer, whose deep deciphering of DNA mutational landscape has been pivotal for the identification of specific driver mutations and for the design of precision medicine therapeutic approaches, the sequencing of the viral genome by using NGS technologies is of pivotal importance.

In the present manuscript, retrospective NGS of SARS-CoV-2 viral genomes revealed a double Spike mutation D614G/S939F in the members of Bangladeshi community located in Ostia as occasional employees. This is the first evidence of the presence of this SARS-CoV-2 double Spike mutation in Italy. Its presence in Europe was previously found in Denmark, Sweden and Croatia. These findings further emphasize the critical need, which is still unmet, to perform massive next generation sequencing of SARS-CoV-2 viral genome to monitor the appearance of novel viral variants and to predict their rate of infection and severity of the related illness in the infected people.

Pre-clinical evidence showed that D614G/S939F double Spike mutation was among those mutations that exhibited higher rate of infection [14]. Multiple studies suggest that T cells are important in the immune response against SARS-CoV-2, and may mediate long-term protection against the virus [15–19]. Interestingly, we provide novel evidence that the described double Spike mutation affects immune response. To this end, we use computational methods based on artificial neural networks such as NetTepi [11] and MHCFlurry [13]. Indeed, a combined score involving binding affinity, peptide stability and T-cell propensity for 13 supported HLA class I alleles was generated (11). This led to the evaluation of T cell propensity that resulted slight but significantly modulated upon

![Fig. 6. Difference in T-cell propensity and T-cell epitope combined score between reference and mutated peptides. A. After proteasome cleavage simulation, we obtain 1513 peptides that are common between the reference and the mutated virus. A small number of peptides are only present either in the reference virus or in the mutated virus. B. The distribution of T-cell propensities estimated by NetTepi is not affected by the D614G mutation (p = 0.99 according to the Kolmogorov-Smirnov test) while a significant change is observed for the S939F mutation (p = 0.01 according to the Kolmogorov-Smirnov test). The boxplot reports median and quartiles of the data. C. The mutations affect the T-cell epitope combined score of the peptides estimated by NetTepi in a HLA-dependent manner.](image_url)
Fig. 7. Effect of mutations on binding affinities for a broad range of HLA alleles. We report the binding affinities for the peptides only present in the reference and in the mutated spike protein obtained using MHCflurry 2.0. Individual peptides binding affinities are reported as dots. The boxplot reports median and quartiles of the same data. A. D614G mutation. B. S939F mutation.
SARS-CoV-2 diffusion and vaccine efficacy. The combined evaluation of their impact on the immune response which leads to the identification of emerging viral variants and rapid tools of prediction of immune response upon SARS-CoV-2 is emphasized [20]. To date a major question in the SARS-CoV-2 arena is the efficacy of the currently used vaccines against specific viral variants. The generation of tools, as those applied for the identification of a combined score have potential utility as they might also predict viral immune escape of specific SARS-CoV-2 variants. We should also notice that HLA-binding algorithms are widely used in the literature but the results provide only a first indication that particularly in the case of SARS-CoV-2 should eventually be validated experimentally [20]. To date a major question in the SARS-CoV-2 arena relies on the efficacy of the existing vaccines to neutralize emerging viral variants. This emphasizes the need of generating flexible and rapid tools of prediction of immune response upon SARS-CoV-2 infection to instruct not only vaccines but also other antiviral therapeutic approaches.

Collectively, the massive NGS sequencing of viral genomes which leads to the identification of emerging viral variants and the combined evaluation of their impact on the immune response of the infected subject will have a paramount role in fighting both SARS-CoV-2 diffusion and vaccine efficacy.

4. Methods

4.1. Viral RNA extraction by San Gallicano Institute

RNAs extraction from nasopharyngeal and oropharyngeal swab was performed in two ways. First (to perform routinely Real-Time PCR) by using Bosphore EX-Tract Dry Swab RNA Solution (AnatoliaGeneWork) according to manufacturer’s instructions. Briefly, a dry throat swab from the patient was added to the EX-Tract RNA Solution and vortexed for 60 s. A proportion of this solution was then heated at 95°C for 8 min. Once cooled this was added directly to the PCR mastermix. Second (to perform NGS), by using the QIASymphony Virus/Pathogen Kit (QIAGEN), with a final elution of 60ul.

4.2. SARS-CoV-2 detection by San Gallicano Institute

For the detection of SARS-CoV-2 in RNAs extracted from nasopharyngeal and oropharyngeal swab we used Bosphore Novel Coronavirus (2019-nCoV) Detection Kit v2 (AnatoliaGeneWork). This kit is a Real-Time PCR-based in vitro diagnostic medical device that allows to detect two regions of the virus in two separate reactions: E gene is used for screening purpose, where 2019-nCoV and also the closely related coronaviruses are detected, and the orf1ab target region is used to discriminate 2019-nCoV specifically. This kit includes also an internal control in order to check RNA extraction, PCR inhibition and application errors.

4.3. SARS-CoV-2 detection by genoma laboratory (qualitative analysis)

For the detection of presence/absence of COVID-19, 10 ul of RNA was tested using Allplex™ 2019-nCoV Assay (Seegene) according to manufacturer’s instructions.

The real-time RT-PCR was performed on the CFX96™ (BioRad, California, USA) platform, and subsequently interpreted by Seegene’s Viewer software.

4.4. SARS CoV-2 NGS sequencing

Around 5–10 ng of each viral RNA sample was reverse transcribed using SuperScript™ VILO™ cDNA Synthesis Kit (Thermo Fisher Scientific) following the instructions of the Ion Torrent™ Ion AmpliSeq™ Library Kit Plus protocol (Thermo Fisher Scientific). cDNAs have been used for the virus amplification throughout the “Ion AmpliSeq SARS-CoV-2 Research Panel” by AmpliSeq™ Technology (Thermo Fisher Scientific). Depending on the number of copies of virus in the extracted samples from 20 to 27 PCR cycles have been performed to get amplicons spanning the virus genome. After the first step of PCR amplification library preparation has been conducted following the Ion Torrent™ Ion AmpliSeq Library Kit Plus protocol (Thermo Fisher Scientific). SARS-CoV-2 Ampliseq libraries have been sequenced by using the Ion Chef™ and the Ion Genestudio™ SS Plus Systems (Thermo Fisher Scientific). Several Ion-supported plug-ins installed in Torrent Suite Software (Thermo Fisher Scientific) have been used for bioinformatic analysis to provide data on coverage sequencing (Table S1), variant calling and annotation, and genome assembly: CoverageAnalysis; VariantCaller, Covid19AnnotateSNPeff, IRMA and AssemblerTrinity [21–24].

We calculated the mean depth of coverage from the 13 BAM files, at single nucleotide resolution using bed tools. Mapped Reads: number of reads mapped to viral genome; Filtered Reads: percentage of reads failing mapping step; Target Reads: percentage of reads mapped to viral genome; Mean Depth: mean number of time a region has been sequenced; Uniformity: percentage of reads with at least 0.2x of average coverage.

All consensus sequences have been submitted to GISAID with the following accession IDs: EPI_ISL_1181628, EPI_ISL_1257897, EPI_ISL_1224910, EPI_ISL_1257867, EPI_ISL_1257870, EPI_ISL_1257871, EPI_ISL_1257872, EPI_ISL_1257873, EPI_ISL_1257894, EPI_ISL_1257895, EPI_ISL_1257896.

4.5. Bioinformatic characterization of S939F and D614G variants

Information about S939F and D614G variants counts and frequency were obtained by 2019nCoVR browser [25–27].

Distribution of S939F and D614G variants in the world over time was provided by COVID-19 CoV Genetics browser [28].

Distribution of S939F variant in Europe at the indicated time points was verified by interrogating GISAID database [29].

4.6. Peptide selection by proteasome cleavage.

In the following analysis, we only consider peptides that are likely to be produced by proteasome degradation using NetChop 3.1 [12] a neural network based algorithm that scans proteins for probable cleavage sites of the human proteasome. We perform the scan for the spike protein of the reference virus SARS-CoV-2 and of the mutated virus which includes the two mutations D614G and S939F.

4.7. Identification of T cell epitopes

Potential T cell epitopes are identified using NetTepi 1.0 through the server [30]. The method combines estimates for peptide-HLA binding affinity, peptide-HLA stability and T cell propensity [11]. Peptides are then ranked against a set of 200,000 natural peptides to obtain a global rank score. Here we scan all the peptides selected by proteasome simulation with lengths 8–11 from the spike protein of the reference virus SARS-CoV-2 and of the mutated virus, including the two mutations D614G and S939F.
We select highly ranked peptides as those with rank score lower than 2% which are considered “strong binders” (<0.5%) and “weak binders” (<2%). We perform the calculations for all the class I MHC alleles supported by NetTepi, using the default values for the relative weight on stability prediction and the relative weight on T cell propensity prediction.

4.8. Prevalence of HLA alleles

The prevalence of HLA alleles in the Bangladesh population has been identified using Allele frequency net database (AFND) [30].

4.9. Estimate of binding affinities

Binding affinities are estimated using MHC flurry 2.0 [13]. We only estimate the binding affinities for peptides selected by proteasome using NetChop 3.1 and that differ between the reference and the mutated (D614G and S939F) SARS-CoV-2 virus.

CRediT authorship contribution statement

Sara Donzelli: Investigation, Writing – review & editing. Francesca Spinella: Investigation. Enea Gino di Domenico: Investigation. Martina Pontone: Investigation. Ilaria Cavallo: Investigation. Giulia Orlandi: Investigation. Stefano Lamanzo: Investigation. Giulio Maria Ricciuto: Investigation. ISG Virology Covid Team: Investigation. Raoul Pellini: Investigation. Paola Muti: Writing – review & editing. Sabrina Strano: Writing – review & editing. Gennaro Ciliberto: Supervision. Fabrizio Ensoli: Writing – review & editing. Stefano Zapperi: Investigation, Writing – review & editing. Caterina A.M. La Porta: Investigation, Writing – review & editing. Giovanni Blandino: Conceptualization, Writing – review & editing. Supervision, Project administration. Aldo Morone: Supervision. Fulvia Pimpinelli: Conceptualization, Writing – review & editing. Supervision, Project administration.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Acknowledgments

We gratefully acknowledge all the Authors from the Originating laboratories responsible for obtaining the specimens and the Submitting laboratories where genetic sequence data were generated and shared via the GISAID Initiative, on which this research is based.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.csbj.2022.01.021.

References

[1] Ye Z-W, Yuan S, Yuan K-S, Fung S-Y, Chan C-P, Jin D-Y. Zoonotic origins of human coronaviruses. Int J Biol Sci 2020;16(10):1686–97.
[2] Peiris JSM, Guan Y, Yuen KY. Severe acute respiratory syndrome. Nat Med 2004;10(512):588–97.
[3] Alsalam S, Arabi YM. Infection with Middle East respiratory syndrome coronavirus. Can J Respir Ther. 2015;51(4):102.
[4] Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020;181(2):271–280.e8.
[5] Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun 2020;11(1). https://doi.org/10.1038/s41467-020-15582-9.
[6] Sabrith S, Guo W, Pan R, J Z, Yavas G, Azevedo M, et al. Elucidating interactions between SARS-CoV-2 trimeric spike protein and ACE2 using homology modeling and molecular dynamics simulations. Front Chem 2020;8. https://doi.org/10.3389/fchem.2020.02632.
[7] Chan YZ, Zan SH. The emergence of the spike furin cleavage site in SARS-CoV-2. Mol Biol Evol 2021;msab127.
[8] Korber B, Fischer WM, Coanakaran S, Yoon H, Theiler J, Abfalterer W, et al. Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell 2020;182(4):812–827.e19.
[9] La Porta CAM, Zapperi S. Estimating the binding of SARS-CoV-2 peptides to HLA Class I in human subpopulations using artificial neural networks. Cell Syst. 2020;11(4):412–417.e2.
[10] La Porta CAM, Zapperi S. SARS-CoV-2 variants—Immune profile of SARS-CoV-2 variants of concern Frontiers in Digital Health. 2021;in press.
[11] Tolle T, Nielsen M, NetTepi: an integrated method for the prediction of T cell epitopes. Immunogenetics. 2014;66(7-8):449-56.
[12] Nielsen M, Lundegaard C, Lund O, Keşmir C. The role of the proteasome in generating cytototoxic T-cell epitopes: insights obtained from improved predictions of proteasomal cleavage. Immunogenetics 2005;57(1-2):31–41.
[13] O’Donnell Tj, Rubinstein A, Laserson U. MHCflurry 2.0: improved Pan-allele prediction of MHC Class I-presented peptides by incorporating antigen processing. Cell Syst. 2020;11(1):42–48.e7.
[14] Li Q, Wu J, Nie J, Zhang L, Hao H, Liu S, et al. The impact of mutations in SARS-CoV-2 Spike on viral infectivity and antigenicity. Cell 2020;182(5):1284–1294. e9.
[15] Braun J, Loyal L, Frentsch M, Wendisch D, Georg P, Kurth F, et al. SARS-CoV-2-reactive T cells in healthy donors and patients with COVID-19. Nature 2020;587(7833):270–4. https://doi.org/10.1038/s41586-020-2599-9.
[16] Grifoni A, Weiskopf D, Ramirez SI, Mateus J, Dan JM, Moderbacher CR, et al. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell 2020;181(7):1489–1501.e15. https://doi.org/10.1016/j.cell.2020.05.015.
[17] Le Bert N, Tan AT, Kunasegaran K, Tham CYL, Hafezi M, Chia A, et al. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature 2020;584(7821):457–62. https://doi.org/10.1038/s41586-020-2550-2.
[18] Peng Y, Mentzer AJ, Liu G, Yao X, Yin Z, Dong D, et al. Broad and strong memory CD4+ and CD8+ T cells induced by SARS-CoV-2 in a UK convalescent following COVID-19. Nat Immune 2020;21(23):1336–45. https://doi.org/10.1038/s41590-020-0782-6.
[19] Sekine T, Perez-Potti A, Rivera-Ballesteros O, Stralin K, Gorin J-B, Olsson A, et al. The role of the proteasome in the SARS-CoV-2 infection of the COVID-19 virus. Cell 2020;181(7):1502–1507.e19.
[20] Sohail MS, Ahmed SF, Quadeer AA, McKay MR. In silico T cell epitope identification for SARS-CoV-2: Progress and perspectives. Adv Drug Deliv Rev 2021.
[21] Shepard SS, Meno S, Bahl J, Wilson MM, Barnes J, Neuhaus E. Viral deep sequencing needs an adaptive approach: IRMA, the iterative refinement meta-assembly, BMC Genomics 2016;17:708. https://doi.org/10.1186/s12864-016-3030-6.
[22] Haas BJ, Papanicolaou A, Yassour M, Grabherr MG, Blood PD, Bowden J, et al. de novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 2013;8:494–512.
[23] Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 2013;31:377–86.
[24] Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnPEff. SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 2012;6(2):80–92.
[25] Song S, Ma L, Zou D, Tian D, Li C, Zhu J, et al. The Global Landscape of SARS-CoV-2 genomes, variants, and haplotypes in 2019nCoVR. Genomics Proteomics Bioinformatics 2020.
[26] Ray Stricklin W, Mench JA. Social organization. Vet Clin North Am Food Anim Pract 1987;3(2):307–22.
[27] Zhao WM, Song SH, Chen ML, Zou D, Ma LN, Ma YK, et al. The 2019 novel coronavirus reservoir. Virology 2020;422(2):212–21.
[28] Sha Y, McCauley J. GISAID: Global initiative on sharing all influenza data and shared via the GISAID Initiative, on which this research is based.
[29] Elleby S, Buckland-Merret G. Data, disease and diplomacy: GISAID’s innovative contribution to global health. Glob Chang. 2017;11(1):33–46.
[30] Gonzalez-Galarza F, McCabe A, Santos ED, Jones J, Takehisa L, Ortega-Rivera N, et al. Allele frequency net database (AFND) 2020 update: gold-standard data classification, open access genotype data and new query tools. Nucl Acids Res 2020;48(8):1494–512.
[31] Sakkiah S, Guo W, Pan R, J Z, Yavas G, Azevedo M, et al. Elucidating interactions between SARS-CoV-2 trimeric spike protein and ACE2 using homology modeling and molecular dynamics simulations. Front Chem 2020;8. https://doi.org/10.3389/fchem.2020.02632.
[32] Sievers F, Higgins DG. Clustal Omega for making accurate alignments of many protein sequences. Protein Sci. 2018;27(1):135–45.
[33] Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol. 2018;35 (6):1547-9.

[34] Chernomor O, von Haeseler A, Minh BQ. Terrace Aware Data Structure for Phylogenomic Inference from Supermatrices. Syst Biol 2016;65(6):997–1008.

[35] Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015;32(1):268–74.