REDUCED RESPONSIVENESS OF BLOOD LEUKOCYTES TO LIPOPOLYSACCHARIDE DOES NOT PREDICT NOSOCOMIAL INFECTIONS IN CRITICALLY ILL PATIENTS

Lonneke A. van Vught,* Maryse A. Wiewel,* Arie J. Hoogendijk,* Brendon P. Scicluna,* Hakima Belkasim-Bohoudi,* Janneke Horn,† Marcus J. Schultz,‡ and Tom van der Poll*‡

*Center for Experimental and Molecular Medicine, †Department of Intensive Care, and ‡Division of Infectious Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands. E-mail: l.a.vanvught@amc.uva.nl.

INTRODUCTION

Nosocomial infection is a common complication in critically ill patients and strongly associated with prolonged stay in the intensive care unit (ICU) and increased morbidity and mortality (1). Critical illness results in a disturbed homeostasis leading to features of both hyperinflammation and immune suppression (2). Although originally immune suppression was considered to follow the initial proinflammatory phase (3,4), a recent study conducted in trauma and burn patients revealed evidence for both activation and impairment of immune pathways within hours of the injury using whole-blood leukocyte transcriptional profiling (5). A hallmark functional feature of immune suppression accompanying critical illness is the reduced capacity of whole blood to produce proinflammatory cytokines on stimulation with bacterial agonists ex vivo (3,4,6).

Immune suppression is considered an important risk factor for secondary infection in ICU patients, and immunostimulatory therapy is a newly proposed treatment strategy in this population (4). A clinical challenge herein is to identify patients who may benefit from such therapies, that is, those at high risk for nosocomial infections. Although multiple ways of immune monitoring have been developed (6), whole-blood stimulation tests provide the potential advantage that they can be done in a rapid and reproducible way in a routine setting (7). In this study, we aimed to determine whether the extent of reduced whole-blood leukocyte responsiveness to lipopolysaccharide (LPS) relates to the subsequent development of ICU-acquired infections in critically ill patients.
cytokine levels in samples incubated without LPS from those measured in samples obtained after incubation with LPS.

An ICU-acquired infection was defined by the systemic therapeutic administration of antibiotics for a suspected new infection of more than 48 h after ICU admission. The presence of infection (either on admission or ICU acquired) was established for every affected organ or site using Center for Disease criteria (11) and International Sepsis Forum consensus definitions (12) as described in detail elsewhere (8). Dedicated research physicians categorized the plausibility of infection based on a post hoc review of all available clinical, radiological, and microbiological evidence (8); patients treated for a suspected infection but with a post hoc infection likelihood of none were not considered infectious.

Statistical analysis

All results are presented as numbers (percentages) for categorical variables, median and interquartile ranges (IQRs) for nonparametric quantitative variables, and mean ± SD for parametric quantitative variables. Continuous nonparametric data were analyzed using a Mann-Whitney U test or a Kruskal-Wallis test; categorical data were analyzed using a χ² or Fisher exact test. Continuous parametric data were analyzed using a Student t test or analysis of variance when appropriate. A value of $P < 0.05$ was considered statistically significant.

RESULTS

Patients and ICU-acquired infections

Seventy-three critically ill patients (Table 1) and 18 healthy age (median, 63 years [IQR, 52 – 71 years])- and sex-matched (39% male) controls were included. Admission diagnoses are provided in Table 2. In total, 47 patients (64%) had a sepsis admission diagnosis, whereas 26 patients (36%) were admitted for a noninfectious condition. Ten patients developed an

Table 1. Patient characteristics at baseline	All	ICU-AI	No ICU-AI	P
Age, years				
Median (IQR)				
	n = 73	n = 10	n = 63	0.59
Sex, n (%)				
Male	43 (58)	4 (40)	39 (62)	0.42
BMI				
Median (IQR)				
	25 (23 – 29)	25 (24 – 30)	25 (23 – 29)	0.86
Race, n (%)				
White	60 (82)	8 (80)	52 (83)	0.33
Comorbidity, n (%)				
None	20 (27)	2 (20)	18 (29)	0.72
Cancer (nonhematologic)	6 (8)	1 (10)	5 (8)	1.00
COPD	9 (12)	—	9 (14)	0.34
Diabetes mellitus	12 (16)	2 (20)	10 (16)	1.00
Hypertension	23 (32)	4 (40)	19 (30)	0.70
Immune deficiency	6 (8)	1 (10)	5 (8)	1.00
History of myocardial infarction	7 (10)	1 (10)	6 (10)	1.00
Acute morbidity on admission				
Sepsis, n (%)	47 (64)	8 (80)	39 (62)	0.31
APACHE IV score, mean (SD)	78 (27)	86 (35)	77 (26)	0.44
SOFA score, median (IQR)	7 (5 – 8)	7 (5 – 8)	7 (5 – 8)	1.00
Organ failure at admissions, n (%)				
None	4 (5)	—	4 (6)	0.63
Cardiovascular failure	56 (77)	6 (60)	50 (79)	0.08
Respiratory failure	35 (48)	5 (50)	30 (48)	1.00
Renal failure	12 (16)	3 (30)	9 (14)	0.34
Coagulation failure	1 (1)	—	1 (2)	1.00
Shock	18 (25)	3 (30)	15 (24)	0.06
Mechanical ventilation	57 (78)	8 (80)	49 (78)	1.00

Laboratory parameters first 24 h

Parameter	All	ICU-AI	No ICU-AI	P
CRP, U/L	103 (13 – 183)	183 (147 – 200)	81 (10 – 152)	0.24
Lactate max, mm/L	2.4 (1.6 – 6.1)	3.4 (2.0 – 7.4)	2.4 (1.6 – 6.0)	0.63
Platelet count, *10⁹/L	157 (121 – 211)	147 (108 – 174)	158 (129 – 212)	0.37
WBC max, *10⁹/L	13 (10 – 18)	13 (12 – 16)	13 (10 – 18)	0.60
Neutrophils, *10⁹/L	9.61 (7.2 – 12.3)	8.88 (7.48 – 11.63)	10.28 (7.12 – 12.37)	0.94
Lymphocytes, *10⁹/L	0.92 (0.67 – 1.45)	1.44 (0.72 – 1.58)	0.89 (0.68 – 1.33)	0.54
Monocytes, *10⁹/L	0.59 (0.40 – 0.93)	0.64 (0.57 – 0.94)	0.58 (0.38 – 0.93)	0.70

APACHE, Acute Physiology and Chronic Health Evaluation; BMI, body mass index; COPD, chronic obstructive pulmonary disease; CRP, C-reactive protein; ICU-AI, intensive care unit-acquired infection; SOFA, Sequential Organ Failure Assessment; WBC, white blood cell count.

*All laboratory parameters are given in medians (IQR).
Overall ICU mortality was 15% (30% in cases and 13% in ICU controls [IQR, 2–6 days] vs. 3 days in ICU controls [IQR, 2–6 days]). Cases had a longer length of ICU stay (median, 22 days [IQR, 16–24 days]; P = 0.35). The incidence of secondary infection in our ICU cohort was 13.7%. Previous studies have reported incidence rates varying between 9% and 37%, largely dependent on the population studied and the definitions used (1). Our study was conducted in a mixed surgical-medical ICU in an academic hospital. We used strict definitions and post hoc classification by dedicated research physicians to diagnose ICU-acquired infections (8).

In theory, functional tests, such as ex vivo stimulation of whole blood, represent the best method to establish the function of the innate immune system because they directly measure the capacity of relevant cells to react to a microbial challenge (6). Whole-blood stimulation is an easy-to-perform test that could be implemented in routine practice (7). In the present study, we intentionally used a short incubation period (3 h) considering that, if deemed clinically relevant, the test should yield results relatively quickly. The cytokines measured on a 3-h LPS stimulation of whole blood likely are mainly produced by monocytes. In accordance, monocytes demonstrated a reduced capacity to release proinflammatory cytokines in response to LPS in a variety of clinical settings, including sepsis and noninfectious systemic inflammatory conditions (3,6). In our cohort, whole-blood cytokine production corrected for absolute monocyte counts (collected in 81% of the patients included) also did not discriminate between patients who did and those who did not develop an ICU-acquired infection (data not shown).

DISCUSSION

In accordance with previous investigations (3,4,6), we report a strongly impaired release of TNF-α, IL-1β, and IL-6 in LPS-stimulated whole blood obtained from critically ill patients when compared with healthy controls. However, the extent of the reduction in cytokine release capacity did not relate to the subsequent development of ICU-acquired infections. These results argue against the use of whole-blood stimulation as a functional test of innate immunity applied early after ICU admission to predict nosocomial infection.

The whole-blood cytokine production capacity did not differ between those who did and those who did not develop an ICU-acquired infection (data not shown).

Whole-blood stimulations

Whole-blood leukocytes of critically ill patients, harvested on the first morning after ICU admission, released significantly less TNF-α, IL-1β, and IL-6 on stimulation with LPS than blood leukocytes from healthy controls (Fig. 1). Whole blood from patients with a sepsis admission diagnosis released less TNF-α when compared with whole blood from patients with a noninfectious admission diagnosis (P = 0.002), whereas IL-1β and IL-6 release did not differ between these groups (Fig. 2). The whole-blood cytokine production capacity did not differ between patients who subsequently developed an ICU-acquired infection and ICU controls (Fig. 1). Similarly, when analyzed separately, whole-blood cytokine production capacity in patients with a sepsis admission diagnosis did not differ between those who did and those who did not develop an ICU-acquired infection (data not shown).

Table 2. Admission diagnosis
n

Sepsis admission diagnosis
Community-acquired pneumonia
Abdominal sepsis
Urinary tract infection
Hospital-acquired pneumonia
Skin infection
Brain abscess
Mediastinitis
Primary meningitis
Pharyngitis
Sinusitis
Noninfectious admission diagnosis
Carcinoma
Subdural hematoma/intracranial hemorrhage
Cerebrovascular accident/stroke
Cardiogenic shock
Exacerbation chronic obstructive pulmonary disease
Anaphylaxis
Asthma
Coma/change in level of consciousness
Gastrointestinal ischemia
Cardiomyopathy
Gastrointestinal bleeding
Pulmonary hemorrhage
Dissected thoracic aortic aneurysm

ICU-acquired infection (cases) 10 days (median) (IQR, 8–13 days) after ICU admission, whereas 63 patients did not develop an infection during ICU stay (ICU controls). Intensive care unit–acquired infections were composed of catheter-related bloodstream infections (n = 3), pneumonia (n = 3), abdominal infections (n = 2), secondary meningitis, eye infection, wound infection, and skin infection (all n = 1). Two patients developed two ICU-acquired infections at different times during their ICU admission. Baseline characteristics, including comorbidities, a sepsis admission diagnosis, severity of illness (Acute Physiology and Chronic Health Evaluation IV and Sequential Organ Failure Assessment scores, number of organ failures and shock), and white blood cell counts, were not different between cases and ICU controls (Table 1). Cases had a longer length of ICU stay (median, 22 days [IQR, 16–24 days] vs. 3 days in ICU controls [IQR, 2–6 days]; P < 0.0001). Overall ICU mortality was 15% (30% in cases and 13% in controls, P = 0.35).

The results obtained with LPS-induced whole-blood stimulation were not able to predict the subsequent development of ICU-acquired infections. One might argue that our sample size was too small. However, although median TNF-α levels were slightly lower in patients who developed a secondary infection, based on the variation in TNF-α concentrations in the 73 patients included in the present study, we calculated that a study encompassing more than 800 patients would be required to show a statistically significant difference. Hence, such a test will unlikely be of clinical value in daily practice. We observed a relatively uniformly depressed blood leukocyte production with a noninfectious admission diagnosis (P = 0.002), whereas IL-1β and IL-6 release did not differ between these groups (Fig. 2). The whole-blood cytokine production capacity did not differ between patients who subsequently developed an ICU-acquired infection and ICU controls (Fig. 1). Similarly, when analyzed separately, whole-blood cytokine production capacity in patients with a sepsis admission diagnosis did not differ between those who did and those who did not develop an ICU-acquired infection (data not shown).
responsiveness in critically ill patients, suggesting that other factors such as the presence of absence of lines, surgical interventions, and the way care is delivered to the individual patient influence the risk for the development of nosocomial infections to a greater extent than the capacity of innate immune cells to respond to bacterial agonists such as LPS.

Previous studies investigated the value of surrogate markers of suppression of the adaptive immune system to predict secondary infections in ICU patients, especially in those admitted with sepsis. Specifically, reduced expression of human leukocyte antigen-DR and increased expression of programmed cell death (PD)-1, PD-ligand 1, and PD-ligand 2 on blood monocytes, determined by flow cytometry 3 to 5 days after ICU admission, correlated with an enhanced incidence of secondary infections in patients with septic shock (13,14). Measurements were not done earlier after ICU admission. In both earlier investigations, the incidence of nosocomial infections was much higher (24.2% and 29.7%, respectively) (13,14) than observed here (13.7%), suggesting that the populations studied and/or the definitions used for ICU-acquired infection differed. We performed whole-blood stimulation on the first morning after ICU admission, at 9:00 AM, seeking to evaluate a potential early test and avoiding potential circadian variation. Further research is needed to establish whether whole-blood stimulation conducted at later time points after ICU admission can assist in identifying patients at risk for nosocomial infections. Indeed, in a study encompassing 70 critically ill children, among whom 30 with sepsis, a reduced \textit{ex vivo} LPS-induced TNF-\(\alpha\) response in whole blood on day 7 after admission was associated with development of nosocomial infection and death (15).

CONCLUSIONS

The extent of reduced LPS responsiveness of whole-blood leukocytes in critically ill patients determined on the first
morning after ICU admission does not relate to the subsequent development of ICU-acquired infections.

ACKNOWLEDGMENTS

The authors acknowledge all members of the MARS consortium for the participation in data collection and especially acknowledge Peter M.C. Klein Klouwenberg, Lieuwe D.J. Bos, Luuk Wieske, Marleen Straat, Roosmarijn T.M. van Hooijdonk, Friso M. de Beer, and David Ong.

REFERENCES

1. Vincent JL: Nosocomial infections in adult intensive-care units. Lancet 361:2068–2077, 2003.
2. Deutschman CS, Tracey KJ: Sepsis: current dogma and new perspectives. Immunity 40:463–475, 2014.
3. Adib-Conquy M, Cavaillon JM: Compensatory anti-inflammatory response syndrome. Thromb Haemost 101:36–47, 2009.
4. Hotchkiss RS, Monneret G, Payen D: Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat Rev Immunol 13:862–874, 2013.
5. Xiao W, Mindrinos MN, Seok J, Caschieri J, Cuenca AG, Gao H, Hayden DL, Hennessey L, Moore EE, Minei JP, et al.: A genomic storm in critically injured humans. J Exp Med 208:2581–2590, 2011.
6. Monneret G, Venet F, Pachot A, Lepape A: Monitoring immune dysfunctions in the septic patient: a new skin for the old ceremony. Mol Med 14:64–78, 2008.
7. Duffy D, Rouilly V, Libri V, Hasan M, Beitz B, David M, Urrutia A, Bisiaux A, Labrie ST, Dubois A, et al.: Functional analysis via standardized whole-blood stimulation systems defines the boundaries of a healthy immune response to complex stimuli. Immunity 40:436–450, 2014.
8. Klein Klouwenberg PM, Ong DS, de Beer FM, van Hooijdonk RT, Huson MA, Straat M, van Vught LA, Wieske L, Horn J, et al. Interobserver agreement of Centers for Disease Control and Prevention criteria for classifying infections in critically ill patients. Crit Care Med 41:2373–2378, 2013.
9. Klein Klouwenberg PM, van Mourik MS, Ong DS, Horn J, Schultz MJ, Cremer OL, Bonte MJ, MARS Consortium: Electronic implementation of a novel surveillance paradigm for ventilator-associated events. Feasibility and validation. Am J Respir Crit Care Med 189:947–955, 2014.
10. Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, Schein RM, Sibbald WJ: Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 101:1644–1655, 1992.
11. Garner JS, Jarvis WR, Emori TG, Horan TC, Hughes JM: CDC definitions for nosocomial infections, 1988. Am J Infect Control 16:128–140, 1988.
12. Calandra T, Cohen J, International Sepsis Forum Definition of Infection in the ICU Consensus Conference: The international sepsis forum consensus conference on definitions of infection in the intensive care unit. Crit Care Med 33:1538–1548, 2005.
13. Guignant C, Lepape A, Huang X, Kherouf H, Denis L, Poitevin F, Malcus C, Chéron A, Allaouchiche B, Guerifier F, et al. Programmed death-1 levels correlate with increased mortality, nosocomial infection and immune dysfunctions in septic shock patients. Crit Care 15:R99, 2011.
14. Landelle C, Lepape A, Voirin N, Tognet E, Venet F, Bohé J, Vanhems P, Monneret G: Low monocyte human leukocyte antigen-DR is independently associated with nosocomial infections after septic shock. Intensive Care Med 36:1859–1866, 2010.
15. Hall MW, Knatz NL, Vetterly C, Tomarello S, Wewers MD, Volk HD, Cargillo JA: Immunoparalysis and nosocomial infection in children with multiple organ dysfunction syndrome. Intensive Care Med 37:525–532, 2011.