Lateral flow assay applied to pesticides detection: recent trends and progress

Marcia Daniela Lazo Jara · Luis Alberto Contreras Alvarez · Marco C. C. Guimarães · Paulo Wagnner Pereira Antunes · Jairo Pinto de Oliveira

Received: 29 December 2021 / Accepted: 20 April 2022 / Published online: 4 May 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Devices based on lateral flow assay (LFA) have been gaining more and more space in the detection market mainly due to their simplicity, speed, and low cost. These devices have excellent sensing format versatility and make these strips an ideal choice for field applications. The COVID-19 pandemic boosted the democratization of this method as a “point of care testing” (POCT), and the trend is that these devices become protagonists for the monitoring of pesticides in the environment. However, designing LFA devices for detecting and monitoring pesticides in the environment is still a challenge. This is because analytes are small molecules and have only one antigenic determinant, which makes it difficult to apply direct immunoassays. Furthermore, most LFA devices provide only qualitative or semi-quantitative results and have a limited number of applications in multi-residue analysis. Here, we present the state of the art on the use of LFA in the environmental monitoring of pesticides. Based on well-documented results, we review all available LFA formats and strategies for pesticide detection, which may have important implications for the future of monitoring pesticides in the environment. The main advances, challenges, and perspectives of these devices for a direction in this field of study are also presented.

Keywords Immunocromatographic strip · Nanoparticles · Environmental monitoring · Point of care testing

Introduction
With growing global environmental concerns coupled with the 2030 agenda goals for sustainable development, the need for detection and monitoring of pesticides in the environment has been widely reported. Traditional methods of pesticide detection, such as gas chromatography (GC), gas chromatography with mass spectrometry (GC-MS), and high-performance liquid chromatography (HPLC), are known to be highly sensitive and reliable. However, these methods are complex, time-consuming, with robust equipment and skilled labor, being impractical in most cases. Therefore, quick, simple, and inexpensive techniques have received considerable attention.

One of the quick and sensitive methods that have been used to monitor pesticides is the enzyme-linked immunosorbent assay (ELISA) (Lee et al. 2003; Jiang et al. 2011), but this technique is not suitable for field analysis as it requires multiple steps and trained technicians. In recent years, strategies for the use of optical transducers (Homola 2008; Zeng et al. 2014; Saylan et al. 2017; Tsagkaris et al. 2021), electrochemical (Akyüz and Koca 2019; Nagabooshanam et al. 2019; Liu et al. 2020; Hara and Singh 2021), and microfluidic systems (Tahirbegi et al. 2017; Jang et al. 2020; Nagabooshanam et al. 2020; Xu et al. 2020) have considerably expanded the range of possibilities for detecting pesticides in environmental and food samples. However, the instrument’s cost and reproducibility issues have hampered large-scale applications. Another method used is the LFA, which is a quick and simple alternative that can be performed in a single step and in situ and does not require qualified personnel.
LFA-based devices have excellent versatility of sensing formats and make these strips an ideal choice for field applications. The COVID-19 pandemic boosted the democratization of this method as a POCT, and the trend is that these devices become protagonists for the monitoring of pesticides in the environment. LFA is useful for detecting pathogens, drugs, metabolites, proteins, or nucleic acids (Corstjens et al. 2003; Lai et al. 2007; Niu et al. 2014; Xu et al. 2014; Angelini et al. 2019) and can be used in various areas such as diagnostic medicine, forensic science, aquaculture, agriculture, animal health, food safety, consumer diagnosis, therapeutic, and environmental monitoring and industries (O’Farrell 2009). LFA has been used successfully to detect different types of pesticides such as insecticides (Kim et al. 2011; Liu et al. 2011), fungicides (Luo et al. 2019), and herbicides (Byzova et al. 2010).

In this review, we present the state of art on the use of LFA in the environmental monitoring of pesticides. We cover pesticide types, their classifications, LFA principles and formats, label types, and a survey of all available LFA strategies for pesticide detection. The main advances, challenges, and perspectives of these devices for the future of monitoring pesticides in the environment are also presented.

Pesticides

A pesticide is defined as a product that incorporates a substance or mixture of substances designed to prevent, attract, repel, destroy, or mitigate a pest (EPA). They are commonly classified, on the basis of their chemical structure, mainly in organochlorines, organophosphates, carbamates, pyrethrin and pyrethroids, phenyl amides, phenoxyalkonates, triazines, benzoic acid derivatives, benzonitriles, phtalimide derivatives, and dipyrds. Some characteristics of some of these groups are presented in Table 1.

A significant increase in the use of pesticides worldwide has been promoted by the growing economy of the agricultural sector, being the main consuming countries China, USA, Thailand, Argentina, and Brazil (Sharma et al. 2019). Currently, about two million tons of pesticides are used worldwide (Sarkar et al. 2021). This accelerated increase has led to an overuse of pesticides, which has negative effects on the environment and human health, according to several studies (Yadav and Devi 2017; Sharma et al. 2019; Terziev and Petkova-Georgieva 2019; Alengebawy et al. 2021; Rani et al. 2021).

World Health Organization (WHO) has assigned a classification for pesticides in relation to their hazard based on the median lethal dose by oral or dermal route of entry (Table 2). Exposure to pesticides can be oral, dermal, or respiratory, which determines their level of toxicity. Especially workers linked to the production and application of pesticides are the most affected; however, the general population is exposed to

Table 1 Classification of pesticides according to their chemical structure
Chemical group

Organochlorines
Organophosphates
Carbamates
Pyrethrins and pyrethroids

Environment Science and Pollution Research (2022) 29:46487–46508
a greater or lesser extent (Yadav and Devi 2017; Sabarwal et al. 2018). Pesticide exposure has been linked to a number of health problems such as numerous types of cancer (Sabarwal et al. 2018; Alengebawy et al. 2021; Rani et al. 2021), diabetes (Evangelou et al. 2016), asthma and bronchitis (Ye et al. 2013), endocrine and immune system disorders (Casida and Durkin 2017), and neurological disorders such as Parkinson’s disease and Alzheimer’s disease (Sabarwal et al. 2018; Alengebawy et al. 2021).

The toxicity and persistence of synthetic chemical pesticides has led to the search for more sustainable alternatives for pest control such as biological pesticides or biopesticides, defined by the Environmental Protection Agency as products derived from natural materials such as animals, plants, bacteria, and certain minerals (EPA). Properties such as being environmentally friendly, cost-effective, non-bioaccumulative, biodegradable, and safe for humans and non-target organisms (Casida and Durkin 2017), and neurological disorders such as Parkinson’s disease and Alzheimer’s disease (Sabarwal et al. 2018; Alengebawy et al. 2021).

The toxicity and persistence of synthetic chemical pesticides has led to the search for more sustainable alternatives for pest control such as biological pesticides or biopesticides, defined by the Environmental Protection Agency as products derived from natural materials such as animals, plants, bacteria, and certain minerals (EPA). Properties such as being environmentally friendly, cost-effective, non-bioaccumulative, biodegradable, and safe for humans and non-target organisms (Lengai and Muthomi 2018; Thakur et al. 2020) have led to a growing interest in biopesticides currently having a growth in their use of almost 10% each year (Kumar et al. 2021).

MRLs of pesticides

Several pesticides are highly toxic and have bioaccumulative properties (UNEP 2007), so their excessive use represents a risk to human health and the ecosystem. Among the health conditions that have been related to exposure to pesticides are damage to the respiratory, reproductive, nervous, and immune systems and cancer (Tahir et al. 2009; Yadav and Devi 2017). Because pesticides can contaminate soils, air, surface, and groundwater, and remain in the food chain, pesticide residues may exist in food and drinking water. For these reasons, many countries have established maximum residue limits (MRLs) specifically established under the recommendations of the Codex Alimentarius Commission and pesticide drinking water maximum concentration level (MCLs).

The MRL is the maximum concentration of a pesticide residue (expressed in mg/kg), resulting from the use of a pesticide in accordance with good agricultural practices. The MRL values differ according to the country, the active ingredient, and the crop. Table 3 presents examples of MRLs established by the regulatory agencies of the European Union, the USA, and Brazil for some food products.

The monitoring of pesticide levels in food and drinking water requires detection techniques sensitive enough to detect the values established in the MRLs and guarantee the food safety of consumers. For this purpose, different detection methods and techniques have been developed in the analysis of water, air, soil, or food (Sørensen et al. 2016).

LFAs have gained popularity as detection systems for analytes such as pesticides thanks to features such as speed, ease of use, and on-site detection.

LFA: basis and formats

LFAs are analytical sensors for the detection of one or more analytes based on the recognition of these analytes by bioreceptors (antibodies, antigens, aptamers, etc.) coupled to labels (nanoparticles, enzymes, liposomes, etc.) that will generate a signal (colorimetric, fluorescent, chemiluminescent, etc.) with qualitative or quantitative information of the target analyte (Sajid et al. 2015; Bahadır and Sezgintürk 2016; Koczula and Gallotta 2016; Urusov et al. 2019). A standard LFA device is made up of four components of different materials: the sample pad, the conjugate pad, the detection membrane, and the absorption pad. When performing the test, the solution to be analyzed is placed on the sample pad. The sample flows by capillary action

Table 2 Classification of pesticides according to their hazardousness (WHO 2020)

Class	LD50 for the rat (mg/kg body weight)	Oral	Dermal
Ia	Extremely hazardous	< 5	< 50
Ib	Highly hazardous	5–50	50–200
II	Moderately hazardous	50–2 000	200–2 000
III	Slightly hazardous	Over 2 000	Over 2 000
U	Unlikely to present acute hazard	5000 or higher	

Table 3 MRLs for wheat and corn according to different legislation

Pesticides	MRL for wheat (mg/kg)	MRL for corn (mg/kg)				
	US (USDA)	EU (EC)	Brazil (MAPA)	US (USDA)	EU (EC)	Brazil (MAPA)
Glyphosate	10	30	0.05	3	5	1
2,4-D	2	2	0.2	0.05	0.05	0.2
Atrazine	0.05	0.1	–	0.05	0.2	0.25
Chlorpyrifos	0.01	–	0.2	0.01	–	0.1
Malathion	8	–	8	0.02	–	8
Imidaclorpid	0.1	0.05	0.5	0.1	0.05	0.5
through the strip. Once the sample reaches the conjugated pad, where a detection bioreceptor conjugated with a label has been immobilized, the analyte interacts with the conjugate forming an analyte-conjugate complex that migrates to the detection membrane. This membrane is generally a porous material like nitrocellulose or fiberglass (Costa et al. 2020), in which there is a capture bioreceptor forming a line called test line, acting as a capture zone for the complex or analyte and through which the qualitative, semi-quantitative, or quantitative result of the test can be determined with the naked eye or with instrumentation. Following the test line is the control line, where another capture bioreceptor has been immobilized to check the functionality of the assay. Finally, the absorbent pad has the function of giving an extra wicking force to ensure that the entire sample travels along the strip; it also serves as a waste reservoir to reduce the visual background signal and prevent the sample from returning (Anfossi et al. 2013; Chen and Yang 2015; Bahadır and Sezgintürk 2016) (Fig. 1).

There are two LFA formats, the competitive or direct and the non-competitive or indirect. Competitive LFA is used for low molecular weight molecules with a single epitope, antigens that have a single binding site for a specific antibody, such as pesticides. If the sample does not contain the analyte (negative result), the labeled reagent on the conjugate pad migrates with the sample through the strip and is captured by the capture bioreceptors immobilized in the test zone producing a signal in the test and control line. If the sample contains the analyte (positive result), it binds to the labeled bioreceptor of the conjugate pad forming a complex, the same that is captured in the control line, leaving little or no analyte to be captured by the test line, with which there is a slight or absence of signal in this zone (Fig. 2). In this format, the detectable response in the test line is inversely proportional to the analyte concentration in the sample.

Noncompetitive LFA, also called sandwich, is used for high molecular weight molecules with various epitopes; the analyte in the sample binds to the detection bioreceptor and then one of its free epitopes binds to the capture bioreceptor in the test line. Then, the result is positive when a marking is produced in the test line (Fig. 2). The detectable response in the test zone is directly proportional to the amount of analyte in the sample. For both formats, the control line is always marked regardless of the result (O’Farrell 2009; Mak et al. 2016).

Fig. 1 A Components of a lateral flow strip. B Schematic of a typical lateral flow test (Rivas et al. 2014)
Low weight molecules that do not induce an immune response, such as pesticides, are known as haptens; they are conjugated with carrier proteins such as bovine serum albumin (BSA) or ovalbumin (OVA) and are used in lateral flow assays as the capture bioreceptors in the test line.

Bioreceptors

Among the bioreceptors, antibodies are the most used in lateral flow assays mainly due to their highly specific binding to analytes (Ferrigno 2016). They can be polyclonal (pAb) that can recognize and bind to many different epitopes of a single antigen, monoclonal (mAb) that have monovalent affinity and only recognize the same epitope of an antigen, and bispecific (BmAbs) that possess two binding sites with different antigenic specificity. However, its high manufacturing costs, limited stability, and batch-to-batch variation have promoted the development of alternatives such as aptamers and molecularly imprinted polymers (MIPs).

Aptamers are single-stranded DNA or RNA oligonucleotide sequences designed through a combinatorial selection process called systemic evolution of ligands by exponential enrichment (SELEX). Due to their small size, only ~ 1–2 nm, they have a higher surface density with more binding sites per area, and they are more ideal than Ab to use in sensors for pesticide detection (Morales and Halpern 2018). Cheng et al. (2018) developed an aptamer-based LFA system with nanopairs of fluorophore extinguishers and a spectrum reader for smartphones for rapid and in situ detection of chlorpyrifos, diazinon, and malathion. They obtained a biosensor with high specificity and sensitivity, with detection limits of 0.73 ng/mL, 6.7 ng/mL, and 0.74 ng/mL, respectively (Cheng et al. 2018). Aptamers have several advantages such as high specificity, low molecular weight, easy synthesis, and modification, and aptasensors tend to be more sensitive and specific than antibody-based sensors (Liu et al. 2019a). In addition, because of low molecular weight of pesticide molecules, aptamers are more ideal than Abs to construct LFTS aptasensors for pesticide detection.

MIPs are synthetic polymers with recognition sites where analyte specificity is achieved through non-covalent bonding patterns, electrostatic interactions, or inclusion/exclusion size (Morales and Halpern 2018). They were applied by He, Yahui et al. in a lateral flow assay for the detection of triazophos in water, achieving high sensitivity with a detection limit of 20 μg/L (He et al. 2020). The use of MIPs in lateral flow assays could overcome the high manufacturing costs and limited stability of antibodies (Lowdon et al. 2020).

Labels

The labels used in LFA allow qualitative, semi-quantitative, or quantitative detection of the analyte. Depending on their physicochemical characteristics, some labels can generate a direct (visual) signal, while others produce an analytical signal, for which additional instrumentation or steps may be required. Colored nanoparticles, enzymes, fluorescent nanoparticles, and magnetic nanoparticles, among others, have been used in various studies as probes for the detection of pesticides. The advantages and disadvantages of labels used in LFAs are listed in Table 4, and some of them are discussed below.
AuNPs

LFAs that use gold nanoparticles (AuNPs) as labels are the most used because they have good optical signaling, high affinity for proteins and biomolecules and excellent stability (Sajid et al. 2015). A large number of LFAs have been extensively studied using AuNPs as labels for detecting organophosphate (Kim et al. 2011), carbamates (Wang et al. 2005), and pyrethrin and pyrethroid (Kranthi et al. 2009) pesticides. In general, it is possible to obtain fast and sensitive tests, for example, Kim et al. (2011) developed an AuNP-based immunochromatographic strip for the detection of chlorpyrifos achieving a limit of detection (LOD) of 10 ng/mL taking less than 10 min. The AuNP-based LFA developed by Shuo Wang et al. (2009) for the detection of carbaryl had a LOD of 100 μg/L, obtaining a higher sensitivity than ELISA (Parolo et al. 2020). Jianqiang et al. (2020) developed a screening test with AuNPs for the simultaneous detection of carbofuran and 3-hydroxy-carbofuran in water samples and pesticide preparations with a LOD of 10 ng/mL and with a running time of 5 min. (Figure. 3). A study developed by Liqiang Liu et al. (2017a) obtained a AuNP immunochromatographic strip for the detection of acetamiprid (AC) and thiacloprid (TC) in cucumber and apple samples achieving LODs of 5 ng/mL for AC and 2.5 ng/mL for TC in cucumber sample and 30 and 15 ng/mL in apple samples. Gui et al. (2008) made a sensitive strip labeled with AuNP for the detection of triazophos residues with a sensitivity (5 ng/mL) close to that of GC (0.1–5 ng/mL).

In order to improve efficiency and reduce costs, multiplexed systems have been developed where several types of pesticides can be detected in the same test. For the operation of these systems, pesticides must have different physical-chemical properties, and their haptons differ in their chemical structure (Wang et al. 2009). Xu et al. (2012) successfully developed a multiple analysis of imidacloprid and thiamethoxam in one step. According to the study, the results did not demonstrate a cross reaction between imidacloprid and thiamethoxam even at relatively high concentrations. The reached detection limits were 0.5 ng/mL and 2 ng/mL respectively (Xu et al. 2012).

To avoid the reciprocal interference between tests that may exist with the aforementioned strategy, individual strips arranged in parallel have been used that share a single sample. Wang et al. (2014) developed an LFA with semi-quantitative and naked eye simultaneous reading for three analytes imidacloprid, chlorpyrifos-methyl and isocarbophos. The LFA consisted of 4 strips. Each strip with 3 test zones with coated antigens for each analyte with increasing concentrations of antigens on each strip. Five detection ranges and optical detection limits were established for the three analytes and the four concentration thresholds. The test was carried out in 7 min, and the results were consistent with the HPLC results.

Another approach used in multiplexed analysis is bispecific monoclonal antibodies (BmAbs) that have specific binding sites for two antigens with different chemical structures. BmAbs are capable of simultaneously binding to two different analytes. This strategy was used by Guo et al. (2009) for the simultaneous detection of carbofuran and triazophos. They used a BmAb with binding sites for each pesticide. It achieved LODs of 64 and 8 μg/L for carbofuran and triazophos, respectively. The authors also developed a strip that used two mAbs specific for each analyte and obtained a much higher sensitivity (Wang et al. 2014).

Although AuNp-based LFAs are the most widely used, they can present drawbacks such as low sensitivity and a limited detection range (Liu et al. 2012); therefore, many researchers have replaced AuNPs with other labels, developing signal amplification techniques and reading techniques to improve LOD and working range.
Gold nanoparticles have also been used as components in Raman surface enhanced dispersion labels (SERS) that have been included in LFAs with a significant increase in sensitivity and dynamic range. SERS tags are composed of plasmonic nanoparticles, active Raman molecules adsorbed on nanoparticles, and an inorganic layer that is functionalized with antibodies. Thus, Sheng et al. (2021) prepared a surface-enhanced Raman scattering–based lateral flow assay (SERS-LFA) test strip using SERS labels that used core/shell nanoparticles. A SERS signal molecule 4-nitrothiophenol (4-NTP) was encapsulated between a silver-core and a gold shell forming the nanoprobe, and then competitive immune binding was used to detect the three pesticides simultaneously, achieving high sensitivity SERS-LFA test strips, a low detection limit, short detection time, high specificity, and low cost (Fig. 4).

Carbon nanoparticles (CNPs) are used in LFAs as colorimetric labels thanks to their dark color that contrasts with the white of the nitrocellulose membrane, which improves the sensitivity and LODs in relation to LFAs based on AuNPS (Quesada-González and Merkoçi 2015; Calucho et al. 2020). CNPs are the cheapest labels, and their suspensions are very stable and easy to prepare, and no activation is necessary (R). Šmidová et al. (2009) used CNPs as colorimetric labels in an LFA for the detection of thiabendazole in enriched fruit juice samples. The LODs obtained were lower than the allowed MRL (Šmidová et al. 2009).

Luminescent nanoparticles

Luminescent nanoparticles have been widely used in LFAs as labels to improve assay sensitivity (Quesada-González

Fig. 3 Scheme of an LFA using AuNPs as labels
and Merkoçi 2015). Within this category we find quantum dots (QDs), up-converting nanoparticles (UCNPs), and silica nanoparticles, among others.

QDs

QDs are semiconductor particles with high photostability, high absorption coefficient, and resistance to chemical degradation; they have narrow emission spectra and can be excited by a wide spectrum of light, in addition to present excellent anti-bleaching properties and a size-adjustable fluorescence emission (Chan et al. 2002; Jaiswal and Simon 2004; Huang et al. 2016; Le et al. 2018).

The QDs can be used in the LFAs in two ways, directly, measuring the fluorescence emitted by the QDs in the detection zone, once the test is finished, or indirect (Anfossi et al. 2018; Zamora-Gálvez et al. 2018), in which it is used in the quenching property of QD photoluminescence, where the decrease in fluorescence occurs through a Forster resonance energy transfer (FRET) mechanism (Clapp et al. 2006) involving energy transfer from an energy donor photoexcited to an energy acceptor. Among the acceptor materials, graphene oxide has been shown to have a high quenching efficiency (Morales-Narváez et al. 2012).

Several studies have been conducted with QD-based LFIs for the detection of pesticides with high sensitivity. Wang et al. (2017) developed a QD-based fluorescent LFI with a broad-spectrum antibody for the detection of imidacloprid with cross-reactivity with clothianidin and imidaclothiz, with detection limits of 0.5 ng/mL, 1 ng/mL, and 0.5 ng/mL, respectively.

QD-based LFAs have been shown to improve sensitivity and LODs compared to LFAs using AuNP as labels. Liu et al. (2019b), for example, developed an immunosensor to qualitatively and quantitatively detect acetamiprid. They used a QD-mAb conjugate. The visual detection limit of acetamiprid for a qualitative threshold was set at 1 ng/mL with the naked eye, lower than that presented by a AuNP-based LFA which was 10 ng/mL. In the quantitative determination, a linear range of fluorescence intensity was established from 0.098 to 25 ng/mL. For the quantitative measurement, a strip reader was used, and the results were obtained in 1 h (Liu et al. 2019a) (Fig. 5). LFAs based on QDs, and in general on fluorescent nanoparticles, require additional devices for signal excitation or reading (Calucho et al. 2020), and in some cases may require more time than LFAs with AuNPs.

On the other hand, QD assays can be as fast as AuNP-based LFAs. Zou et al. (2010) developed an immunochromatographic test strip with a QD label and a test strip reader for the rapid and sensitive detection of an organophosphate pesticide metabolite being able to detect a minimum of 1.0 ng/mL of 3,5,6-trichloropyridinol (TCP) standard analyte in 15 min (Zou et al. 2010).

Wu et al. (2019) developed a method for the quantitative visual detection of benzothiostrobin residues in strawberry using CdSe/ZnS (core/shell) QDs as labels. Three test lines were included in the strip with different concentrations of...
antigen. The results were determined visually using UV protective glasses and a gel imager for quantitative analysis, obtaining a visual detection limit of 25 μg/L (Wu et al. 2019).

UCNPs

Fluorescent materials work by two energy conversion mechanisms, down-conversion and up-conversion. Down-conversion fluorescence converts light from the ultraviolet light spectrum to the visible light region. On the other hand, up-converting nanoparticles convert near infrared (NIR) light to visible light. This property allows that the background signals that come from autofluorescence when excited with UV light are not generated, increasing the sensitivity of LFAs. Up-converting nanoparticles (UCNPs) possess high chemical stability, tunable emission colors, high photostability, low cytotoxicity, high resistance to photobleaching, multiple and narrow emission bands, and long shelf life (Huang et al. 2016; Tan et al. 2016; Zhang et al. 2019).

Zou et al. (2019) reported a UCNP-based LFA for the detection of multiple residues of three organophosphate pesticides in food samples using a broad-spectrum mAb. The UCNP-mAb conjugate was pre-mixed with the sample. The intensity of the fluorescent signal from the strips was read by a portable machine integrated with the NIR laser system that translated the information to an electronic data processing computer. The results were obtained in 40 min and showed a high sensitivity for parathion, parathion-methyl, and fenitrothion (Zou et al. 2019) (Fig. 6).

UCNP-based LFAs require a NIR laser to promote upconversion. Strip readers have now been developed that integrate a NIR laser and a smartphone due to their processing capabilities similar to those of a computer and high-tech cameras, which makes them more suitable for on-site analysis (You et al. 2017a; Jin et al. 2018; Gong et al. 2019). Jin et al. (2018) developed a portable device based on a smartphone integrated into a competitive LFA using multicolored UCNPs functionalized with aptamers as labels for the multiple detection of different analytes like ions, bacteria, and small molecules in food and water samples. The portable reader designed allowed to detect and quantify multiple targets simultaneously and obtain results through a smartphone. The authors reported a sensitive, specific, and convenient assay for in situ detection (Jin et al. 2018).

Several fluorescence detection methods based on the fluorescence quenching process have been developed using mechanisms such as resonance energy transfer (FRET), as mentioned above; however, this mechanism has high requirements for the distance between absorbers and the fluorescent material (Liu et al. 2017a). The detection method based on the internal filter effect (IFE) is more flexible and simple, without the binding of the absorber with the fluorescent material. IFE is a model of energy conversion without irradiation in spectrofluorometry, which results from the absorption of the excitation and/or emission light by the absorber in the detection system. IFE is caused by the overlap between the absorber absorption band and the excitation and/or excitation bands of the fluorophores (Chen et al. 2018). You et al. (2017b) developed an LFA with competitive UCNPs based on IFE using AuNPs as a fluorescence acceptor for the detection of the neocotinoid insecticide imidaclopid. The UCNPs were coupled to antibodies against the analyte, and the AuNPs were used as labels for the analyte. The results showed an improvement in sensitivity compared to other assays such as ELISA and the fluorescence polarization immunoassay. Furthermore, it is mentioned that the use of UCNPs eliminated the interference of background fluorescence.

Fig. 5 Schematic of an LFA using QDs as labels for the detection of pesticides. Positive (A, B) and negative (C) result (Liu et al. 2019b)
MNPs

Magnetic nanoparticles (MNPs) are colored labels that can also emit magnetic signals that can be preserved for long periods of time (Sajid et al. 2015). Generally, MNPs have been used to purify the analyte before testing (Liu et al. 2019b); however, their color intensity and the magnetic field they generate make them suitable for use as labels. LFAs occupying MNPs require a reading device for reading the emitted signal. The magnetic field generated by MNPs can be measured and studied with a reader as a useful analytical signal related to a concentration of the target (Quesada-González and Merkoçi 2015). Liu et al. (2011) developed aggregates of \(\text{Fe}_3\text{O}_4 \) magnetic particles that were obtained by crosslinking \(\text{Fe}_3\text{O}_4 \) NPs with poly-L-lysine, improving the sensitivity for the detection of the pesticide paraoxon methyl in relation to the assay that used individual \(\text{Fe}_3\text{O}_4 \) NPs, due to the amplification effect, reducing the detection limit by 40 times reaching 1.7 ng/mL maintaining the specificity of the test; it can be used to detect dangerous substances through the detection of the magnetic signal of the aggregates of \(\text{Fe}_3\text{O}_4 \) particles (Liu et al. 2011) (Fig. 7).

Enzymes

Enzymes can amplify the colorimetric signals depending on the catalytic activity of the enzyme. In LFA, a substrate is added after the test is completed to achieve this purpose by an enzymatic reaction. The most commonly used enzymes for detection are horseradish peroxidase (HRP) and alkaline phosphatase (Chen et al. 2019). Zhang et al. (2006) developed an LFA using AuNP and horseradish peroxidase (HRP) as tracers for the simultaneous qualitative or semi-qualitative detection of carbaryl and endosulfan in food samples, improving the sensitivity 10 times in relation to a test immunochromatographic based solely on AuNP (Zhang et al. 2006). Enzymes are used as chemiluminescent labels as a result of a reaction with a suitable substrate (Sajid et al. 2015). Shu et al. (2017) achieved a quantitative detection of pesticide residues using HRP and alkaline phosphatase (ALP) as chemiluminescent probes to label methyl parathion and imidacloprid haptens. The linear ranges of methyl parathion and imidacloprid were 0.1 to 250 ng/ml, with detection limits of 0.058 ng/ml. The two enzyme-catalyzed chemiluminescence reactions were triggered simultaneously by the injection of coreactants (Fig. 8).

Luciferases enzymes have become important research tools for their ability to emit light (bioluminescence, BL) by oxidation of the substrate. There are two main classes of luciferases used as research tools: firefly luciferase (Fluc) and renilla luciferase (Rluc) (Nakatsu et al. 2006; Loening et al. 2007). Ding et al. (2018) use nano luciferase (Nano-Luc) to generate recombinant tracers for the development of immunoassays, achieving good precision for the detection of imidaclothiz in agricultural samples.

Catalytic nanomaterials with enzymatic activities called nanozymes have been developed with advantages such as good stability, availability, and low cost (Chen et al. 2019).
Peroxidase-like nanozymes have been widely used in the development of biosensors (Wang et al. 2018). Platinum-palladium NP (Pt–Pd) have a catalytic activity equal to peroxidase and have been used as colorimetric labels for monitoring exposure to organophosphate pesticides (Zhao et al. 2018).

Nanosheets 2D

Two-dimensional (2D) nanosheets are materials derived from a wide range of low-dimensional solids that contain atomically thin structures, exfoliated 2D structures, and molecular membranes (Chaudhari et al. 2017). 2D nanosheets have more catalytic sites as they have a larger surface area (Wen et al. 2018). Cheng et al. (2019) developed a bidirectional LFA amplified with Pt–Ni (OH) 2D nanosheets with similar activity to peroxidase for the detection of acetochlor and fenpropathrin. LODs of 0.63 ng/mL and 0.24 ng/mL respectively were achieved. Qualitative results were obtained in 13 min, and quantitative results were obtained in 10 min with a smartphone-based

Fig. 7 Scheme of an LFA with MNPs as labels (Liu et al. 2011)
Fig. 8 Scheme of a multiplex LFA for the detection of pesticides using chemiluminescent labels as enzymes (Shu et al. 2017)

Fig. 9 Scheme of a multiplexed bidirectional LFA for the detection of pesticides with Pt–Ni (OH) nanosheets as labels (Chen et al. 2019)
readout. The results confirmed an improvement in sensitivity and detection ranges (Fig. 9).

Electrochemical LFA

The integration of the electrochemical approach in LFAs has been increasing thanks to the advantages that they present as a highly sensitive response in a wide detection range, quantitative determination, low cost, high reproducibility, absence of labels, and low detection limit (Nguyen et al. 2020; Perju and Wongkaew 2021). Du et al. (2012) used disposable screen-printed CNT electrodes for electrochemical measurement for the detection of organophosphorus pesticides through the parallel measurement of the activity of the enzyme acetylcholinesterase (AChE) post-exposure and baseline where they take advantage of the reactivation of phosphorylated AChE to allow the measurement of the total amount of AChE used as a baseline for the AChE inhibition calculation. Quantification of the phosphorylated adduct was performed by subtracting active AChE from the baseline measurement. This LFA achieved a LOD of 0.02 nM (Fig. 10).

A literature review was carried out of all available formats of LFA devices for pesticide detection until the year 2021. The conjugation of nanomaterials with biomolecules provided an excellent platform for the detection of a variety of target analytes. Overall, it has been observed that gold nanoparticles are the most used markers because of their excellent stability, good contrast, high affinity for proteins, and relatively low cost.

However, these markers have a limited detection range, and for this reason, new labels have been explored, such as luminescent nanoparticles, CNPs, QDs, UCNPs, MNPs, enzymes, and 2D nanosheets. Regarding target pesticide recognition strategies, antibodies have high specificity and have been explored for most LFIA-based pesticide detection systems. The limited stability of antibodies and batch-to-batch variation have promoted the development of alternatives such as MIPs and aptamers, which have higher surface density and more binding sites per area.

A multitude of models has been published for almost all classes of pesticides, among which qualitative, semi-quantitative, and quantitative analysis devices are described (Kim et al. 2011; Zhang et al. 2014; Ouyang et al. 2018a) with the inclusion of instrumental and software tools for the measurement of the analyte concentration (Hua et al. 2010; Cheng et al. 2019) in addition to assays for the detection of several analytes simultaneously and with modifications of the traditional design of the lateral flow assays as bidirectional assays are mentioned (Cheng et al. 2019). The use of labels other than gold generally makes the LFA more sensitive. However, it should be borne in mind that the sensitivity of an LFA depends on several factors such as materials used, type of sample, assay design, and reaction time. The detection limits found meet the limits of international legislation for agricultural and environmental samples. Finally, the average analysis time is 10 min, indicating that these devices can be useful for field analysis. LFAs based on various probes for the detection of pesticides are listed in Table 5.

Economic viability

One of the main problems of analytical techniques considered the gold standard, such as HPLC and GC-MS and their detectors, is the high cost. This makes these technologies inaccessible to farmers and many laboratories in developing countries. In this sense, many efforts have been focused on developing rapid point of service (POC) tests that feature simplicity, reliability, and above all low cost.

Although the examples cited demonstrate economic feasibility and report them as being low-cost systems, most publications do not include production costs in their discussions. However, all products including labels, biorecognition molecules, strip readers, and complete kits are being provided.
Table 5 Summary of published reports on lateral flow immunoassays applied to pesticides

No.	Target	Conjugate	Test Line	Detection limit	Time	Reference	
1	N-methylcarbamate	AuNPs		0.25 mg/L	10 min	Zhou et al. 2004	
2	Carbaryl	AuNPs		100 μg/L	5 min	Wang et al. 2005	
3	Endosulfan	AuNPs		100 μg/L	15 min	Zhang et al. 2006	
4	Triazophos	AuNPs		10 ng/mL	10 min	Guo et al. 2008	
5	Bromoxynil	AuNPs		4 ng/mL	5 min	Zhu et al. 2010	
6	Carbaryl Endosulfan	AuNPs		800 μg/L	5 min	Wang et al. 2009	
7	Cypermethrin	AuNPs		1,000 μg/L	10 min	Zhang et al. 2009	
8	Dichlorophenyltrichloroethylene (DDT)	AuNPs		113.91 ng/mL	10 min	Guo et al. 2010	
9	Chlorpyrifos-methyl	AuNPs		27 ng/mL	10 min	Hua et al. 2011	
10	Chlorpyrifos	AuNPs		0.5 ng/mL	10 min	Xu et al. 2012	
11	Chlorpyrifos spiked in sample	AuNPs		0.22 ng/mL	10 min	Lee et al. 2013	
12	Imidacloprid	AuNPs		0.001 μg/mL	10 min	Lee et al. 2013	
13	O-ethyl O-4-nitrophenylphenylphosphonothioate (EPN)	AuNPs		0.005 μg/mL	15 min	Zhang et al. 2014	
No.	Target	Nanoparticles type	Conjugate	Test line	Detection limit	Time	Reference
-----	----------------------	--------------------	---	-----------------------------	-----------------	------	----------------------------
17	Imidacloprid	AuNPs	Anti-imidacloprid mAb-AuNPs	Imidacloprid hapten-OVA	50 μg/L	7 min	Wang et al. 2014
	Chlorpyrifos-methyl		Anti-chlorpyrifos-methyl mAb-AuNPs	Chlorpyrifos-methyl hapten-OVA	100 μg/L		
	Isocarbophos		Anti-isocarbophos mAb-AuNPs	Isocarbophos hapten-OVA	100 μg/L		
18	Imidacloprid	AuNPs	Nanogold-biotinylated anti-imidacloprid mAb	Imidacloprid hapten-OVA	5 ng/ml	–	Fang et al. 2015
19	Acetamiprid	AuNPs	Anti-acetamiprid mAb-AuNPs	Acetamiprid-BSA	5 ng/mL	5 min	Liu et al. 2017c
	Tiacloprid						
20	Isocarbophos	AuNPs	AuNPs-aptamer	Cysteamine	2.48 μg/L	< 1 min	Liu et al. 2020
21	Fenpropathrin methyl	LR AuNPs	Anti-fenpropathrin methyl-AuNPs	Parathion methyl-BSA	0.17 ng/mL	15 min	Ouyang et al. 2018a
22	Carbofuran (CBF)	AuNPs	Anti-CBF mAb-AuNPs	Fenpropathrin-BSA	0.10 ng/mL	5 min	Jiang et al. 2011
	3-hydroxy-carbofuran (3-OH-CBF)		Anti-3-OH-CBF mAb-AuNPs	Hapten-OVA	7–10 ng/mL		
				1 ng/mL			
23	Chlorpyrifos diazinon malathion	AuNSs	AuNSs-aptamer	QDs-BSA- streptavidin biotinylated complementary Sequences	0.73 ng/mL, 6.7 ng/mL, 0.74 ng/mL	–	Cheng et al. 2018
24	Imidacloprid	AuNPs	mAb-AuNPs	IMI-BSA	0.02 ng/mL	10–15 min	Tan et al. 2020
		Time-Resolved fluorescent nanobeads (TRFNs)	mAb-TRFN	IMI-BSA	0.02 ng/mL	10–15 min	
25	Thiabendazole	Colloidal carbon	Anti-thiabendazole mAb-colloidal carbon	Thiabendazole-OVA	0.005 mg/kg for Apple juice, 0.5 mg/kg for pear and orange juices	–	Šmídová et al. 2009
	Methiocarb		Anti-methiocarb mAb-colloidal carbon	Methiocarb-OVA			
26	Paraaxon methyl	Fe3O4NP aggregates	Anti-paraaxon methyl pAb-Fe3O4 NP aggregates	Paraaxon methyl hapten-OVA	1.7 ng/mL	15 min	Liu et al. 2011
27	Parathion	UCNPs	PA-QA1-7B2 mAb-UCNP	PA0304-OVA	3.44 ng/mL	40 min	Zhang et al. 2019
	Parathion-methyl				3.09 ng/mL		
	Fenitrothion				12.49 ng/mL		
No.	Target	Nanoparticles type	Conjugate	Test line	Detection limit	Time	Reference
-----	---	-------------------------------------	---	----------------------------	-----------------	-------	----------------------------
28	Acetochlor	Pt-Ni (OH)₂ NSs	Anti-acetochlor Ab-Pt-Ni (OH)₂ NSs	Acetochlor-BSA	0.63 ng/mL	13 min	Cheng et al. 2019
	Fenpropathrin		Anti-fenpropathrin Ab-Pt-Ni (OH)₂ NSs	Fenpropathrin-BSA	0.24 ng/mL		
29	Chlorpyrifos and carbaryl	g-C₃N₄/BiFeO₃ NCs	g-C₃N₄/BiFeO₃ NCs-chlorpyrifos Ab. g-C₃N₄/BiFeO₃ NCs-carbaryl Ab	Chlorpyrifos-BSA	0.033 ng/mL	–	Ouyang et al. 2018b
30	Trichloropyridinol (TCP)	Quantum Dot	TCP-QD	TCP mAb	1.0 ng/mL	15 min	Zou et al. 2010
31	Imidacloprid	Quantum Dot	Anti-imidacloprid mAb-QD	Imidacloprid-OVA	0.5 ng/mL	30 min	Wang et al. 2017
32	Triazophos	(CdSe/ZnS) Quantum Dots	Anti-triazophos mAb-QD	Triazophos hapten-OVA	0.508 ng/L		Liao et al. 2019
33	Benzothiostrobin	CdSe/ZnS Quantum Dots	Anti-benzothiostrobin Ab-QD	Benzothiostrobin-BSA	25 µg/L	15 min	Wu et al. 2019
34	Acetamiprid	Quantum Dot	Anti-acetamiprid mAb-QD	Acetamiprid-OVA	1 ng/mL	60 min	Liu et al. 2019a
35	Parathion methyl	Horseradish peroxidase (HRP)	HRP hapten 1	Anti-parathion methyl-imidaclorid Ab (bispecific)	0.058 ng/mL	22 min	Zhu et al. 2017
	Imidacloprid	Alkaline phosphatase (ALP)	ALP Hapten 2				
36	Triazophos	MIP	Triazophos hapten-IgG-FITC	MIP	20 µg/mL	18 min	He et al. 2020
37	OP-AChE (organophosphorus agents)		Anti-AChE antibody-CNTs/SPCE	Anti-AChE antibody-CNTs/SPCE	0.02 nM	–	Du et al. 2012
38	Pyrethroid	AbGI	MSP-SRG- anti-pyrethroid Ab (APTES-MCM)		< 1 ppb	< 5 min	Costa et al. 2020
39	Imidacloprid	Nano luciferase (NanoLuc)	N terminus (C2-15-NanoLuc) and C terminus (NanoLuc-C2-15)	Anti-imidacloath monocolonal antibody (mAb)	6.4 ± 0.4 ng/mL	Short time	Yu et al. 2018
40	Chlorothalonil (CHL), imidacloprid (IMI), oxyfluorfen (OXY)	Ag4-NTP@Au	Coating antigen-CHL, coating antigen-IMI, coating antigen-OXY	Anti-mouse IgG	–	–	Sheng et al. 2021
by several companies at a very affordable price compared to traditional chromatography techniques. This indicates that production cost is really one of the great advantages of LFA strips. It is worth noting that with the democratization of LFA devices for pesticide detection and monitoring and the entry of new companies on the market, there is a tendency to reduce costs in the near future.

Thus, it is biased to believe that LFA strips can be one of the most effective methods for field applications, mainly because of their simplicity and because it does not require technical knowledge, which are also critical parameters for a POCT device.

Challenges

Despite the numerous advantages highlighted for LFA strips, many advances are needed for the democratization of these systems for the detection of pesticides in environmental samples. Problems such as poor reproducibility and sensitivity to high analyte concentrations are frequently reported by researchers. Also, most LFA devices provide only qualitative or semi-quantitative results. Another challenge is the need for multiplex detection systems, given that there are almost always several pesticides used in the same crop with the availability of various residues in the environment. We found a reduced number of applications in the analysis of multiresidues (Kranthi et al. 2009; Xu et al. 2012; Wang et al. 2014; Ouyang et al. 2018a; Zou et al. 2019; Cheng et al. 2019). One of the reasons is that pesticides are normally small molecules and have only one antigenic determinant, which makes applications with direct immunoassays difficult. In these cases, the competitive immunoassay is the main method of choice for detecting these analytes.

It is worth noting that environmental samples include a wide range of possibilities, such as soil, water, and food from different origins and chemical properties. These matrices may require pre-treatment steps such as centrifugation, dilution, filtration, pH adjustment, etc. The selection of the method for pre-treatment of the sample is decided according to the nature of the matrix and has a direct influence on the quality of the results. The simplification and feasibility of these steps can contribute to gains in sensitivity and reproducibility, providing greater application, especially on large scales. It is important to emphasize that the development of technologies that integrate sample collection, processing, and detection is still on a distant horizon.

Commercialization of LFA for pesticide detection has not yet maintained pace with a large amount of research activity. In addition, the high cost and technical difficulties, such as multiple steps for sample extraction and low reproducibility for detection in complex matrices, are still difficult challenges to overcome.

Finally, there is a gap in the literature on how these devices should be disposed of in the environment. Several devices feature fluorescent labels, heavy metals, and quantum dots that are potentially harmful to the environment when used on a large scale. The disposal must comply with all applicable local, regional, national, and international regulations.

Perspectives

In general, there is a great demand for the development of fast and reliable analytical techniques to control various pesticides in food, agriculture, and environmental samples. Different LFIA-based pesticide detection strategies have been published. New approaches must overcome the challenges presented and provide advances in quantitative and multiple detections of pesticides. We list some important directions for the development of future research: (1) extending detection limits by inserting new markers and tools for signal amplification; (2) improvement in the specificity and sensitivity of LFAs with the development of new recognition elements such as aptamers and MIPs; (3) simultaneous detection of several pesticides in the same matrix; (4) use of machine learning algorithms with integration with electronic devices for intelligent delivery of the result; (5) simplification of sample processing steps, such as extraction and purification, without using pipettes and equipment; (6) integration of collection, processing, and detection steps.

Conclusion

In the last decade, the development of analytical methodologies for detecting pesticides in the environment has brought significant advances. As these are mostly field applications, simple detection methods with non-scientific personnel are enthusiastically pursued.

Lateral flow test strip technology can provide a promising approach for this purpose and is becoming an increasingly exploited tool that can provide compact, lightweight, responsive, and reliable detection devices in the field. Modern developments of LFA with various strategies for pesticide detection were analyzed and discussed, as well as the economic viability, challenges, and perspectives. New technologies have been implemented in the tests to improve the performance of the LFA, enhancing its sensitivity, specificity, and reproducibility. The main driver is the need for new technologies for simplifying the steps of extraction and LFA applications in quantitative and multi-residue analysis. Nevertheless, by solving these
problems, there is no doubt that LFIA-based technologies will be able to offer robust, portable, easy-to-operate, sensitive, and multiplexable devices shortly. These devices will allow the reliable monitoring of different matrices for detecting and quantifying pesticides, which is essential for quick decision-making and compliance with legislation.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s11356-022-20426-4.

Acknowledgements To the Foundation for Research Support and Innovation of Espírito Santo – FAPES (Grant 10/2019).

Author contribution Conceptualization: Jairo Pinto de Oliveira, Marcia Daniela Lazo Jara; writing, original draft: Marcia Daniela Lazo Jara, Luis Alberto Contreras Alvarez, Jairo Pinto de Oliveira; critically review and editing: Marco C. C. Guimarães, Paulo Wagner Pereira Antunes; supervision: Jairo Pinto de Oliveira. All the authors participated in general review, edition, read, and approved the final manuscript.

Funding This work was supported by the Fundação Estadual de Amparo à Pesquisa do Estado do Espírito Santo (Grant 10/2019).

Data Availability Not applicable

Declarations

Ethics approval and consent to participate Not applicable.

Consent for publication Not applicable.

Competing interests The authors declare no competing interests.

References

Akyüz D, Koca A (2019) An electrochemical sensor for the detection of pesticides based on the hybrid of manganese phthalocyanine and polyaniline. Sensors Actuators B Chem 283:848–856. https://doi.org/10.1016/j.snb.2018.11.155

Alengebayw A, Abdelkhalak ST, Qureshi SR, Wang MQ (2021) Heavy metals and pesticides toxicity in agricultural soil and plants: ecological risks and human health implications. Toxics 9(3):42. https://doi.org/10.3390/toxics9030042

Anfossi L, Baggiani C, Giovannoli C, D’Arco G, Giraudo G (2013) Lateral-flow immunoassays for mycotoxins and phycotoxins: a review. Anal Bioanal Chem 405(2-3):467–480. https://doi.org/10.1007/s00216-012-0633-4

Anfossi L, Di Nardo F, Cavalera S, Giovannoli C, Spano G, Speranskaya ES, et al (2018) A lateral flow immunoassay for straightforward determination of fumonisins mycotoxins based on the quenching of the fluorescence of CdSe/ZnS quantum dots by gold and silver nanoparticles. Microchim Acta 185(2):94. https://doi.org/10.1007/s00604-017-2642-0

Angelini DJ, Biggs TD, Maughan MN, Feasel MG, Sisco E, Sekowski JW (2019) Evaluation of a lateral flow immunoassay for the detection of the synthetic opioid fentanyl. Forensic Sci Int 300:75–81. https://doi.org/10.1016/j.forsciint.2019.04.019

Bahadir EB, Sezginaltürk MK (2016) Lateral flow assays: principles, designs and labels. TrAC Trends Anal Chem 82:286–306. https://doi.org/10.1016/j.trac.2016.06.006

Byzova NA, Zherdev AV, Zvereva EA, Dzantiev BB (2010) Immunochromatographic assay with photometric detection for rapid determination of the herbicide atrazine and other triazines in foodstuffs. J AOAC Int 93(1):36–43. https://doi.org/10.1093/jaoae/93.1.36

Calucho E, Parolo C, Rivas L, Alvarez-Diduk R, Merkoçi A (2020) Nanoparticle-based lateral flow assays. In: In Comprehensive Analytical Chemistry, 89th edn. Elsevier, Amsterdam, pp 313–359. https://doi.org/10.1016/bso.coac.2020.04.011

Casida JE, Durkin KA (2017) Pesticide chemical research in toxicology: lessons from nature. Chem Rev Toxicol 30(1):94–104. https://doi.org/10.1021/acs.chemrev.6b00303

Chen W, Maxwell D, Gao X, Bailey R, Han M-Y, Nie S (2002) Luminiscent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 13:40–46. https://doi.org/10.1016/S0958-1669(02)00282-3

Chau AS (2018) Analysis of pesticides in water: volume I: significance, principles, Techniques, and Chemistry of Pesticides. CRC press, Washington

Chaudhari AK, Kim HJ, Han I, Tan JC (2017) Optochemically responsive 2D nanosheets of a 3D metal–organic framework material. Adv Mater 29(27):1701463. https://doi.org/10.1002/adma.201701463

Chen A, Yang S (2015) Replacing antibodies with aptamers in lateral flow immunoassay. Biosens Bioelectron 71:230–242. https://doi.org/10.1016/j.bios.2015.04.041

Chen S, Yu YL, Wang JH (2018) Inner filter effect-based fluorescent sensing systems: a review. Anal Chim Acta 999:13–26. https://doi.org/10.1016/j.aca.2017.10.026

Chen W, Huang Z, Hu S, Peng J, Liu D, Xiong Y, et al (2019) Invited review: advancements in lateral flow immunoassays for screening hazardous substances in milk and milk powder. J Dairy Sci 102(3):1887–1900. https://doi.org/10.1016/j.jds.2014.11.036

Cheng N, Song Y, Fu Q, Du D, Luo Y, Wang Y, et al (2018) Aptasensor based on fluorophore-quencher nano-pair and smartphone spectrum reader for on-site quantification of multi-pesticides. Biosensors Bioelectron 117:75–83. https://doi.org/10.1016/j.bios.2018.06.002

Cheng N, Shi Q, Zhu C, Li S, Lin Y, Du D (2019) Pt–Ni (OH) 2 nanosheets amplified two-way lateral flow immunoassays with smartphone readout for quantification of pesticides. Biosens Bioelectron 142:111498. https://doi.org/10.1016/j.bios.2019.111498

Clapp AR, Medintz IL, Mattoussi H (2006) Förster resonance energy transfer investigations using quantum-dot fluorophores. ChemPhysChem 7(1):47–57. https://doi.org/10.1002/cphc.200500217

Corstjens PL, Zuidewijk M, Nilsson M, Feindt H, Niedbala RS, Tanke HJ (2003) Lateral-flow and up-converting phosphor reporters to detect single-stranded nucleic acids in a sandwich-hybridization assay. Anal Biochem 312(2):191–200. https://doi.org/10.1016/S0003-9861(02)00505-5

Costa E, Climent E, Ast S, Wellers MG, Canning J, Rurack K (2020) Development of a lateral flow test for rapid pyrethroid detection using antibody-gated indicator-releasing hybrid materials. Analyst 145(10):3490–3494. https://doi.org/10.1039/D0AN00319K

Ding Y, Hua X, Chen H, Liu F, González-Sapien G, Wang M (2018) Recombinant peptidomimetic-nano luciferase tracers for sensitive single-step immunodetection of small molecules. Anal Chem 90(3):2230–2237. https://doi.org/10.1021/acs.analchem.7b04601

Du D, Wang J, Wang L, Lu D, Lin Y (2012) Integrated lateral flow test strip with electrochemical sensor for quantification of phosphorylated cholinerestrates: biomarker of exposure to...
organophosphorus agents. Anal Chem 84(3):1380–1385. https://doi.org/10.1021/acs.analchem.0c0019w

Evangelou E, Ntritisos G, Chondrogiorgi M, Kavoura FK, Hernández AF, Ntazeni EE, Tzoulaki I (2016) Exposure to pesticides and diabetes: a systematic review and meta-analysis. Environ Int 91:60–68. https://doi.org/10.1016/j.envint.2016.02.013

Fang Q, Wang L, Cheng Q, Cai J, Wang Y, Yang M et al (2015) A bare-eye based one-step signal amplified semiquantitative immunochromatographic assay for the detection of imidacloprid in Chinese cabbage samples. Anal Chim Acta 881:82–89. https://doi.org/10.1016/j.jca.2015.04.047

Ferrigno PK (2016) Non-antibody protein-based biosensors. Essays Biochem 60(1):19–25. https://doi.org/10.1042/EBC20150003

Gong Y, Zheng Y, Jin B, You M, Wang J, Li X et al (2019) A portable and universal upconversion nanoparticle-based lateral flow assay platform for point-of-care testing. Talanta 201:126–133. https://doi.org/10.1016/j.talanta.2019.03.105

Gui WJ, Wang ST, Guo YR, Zhu GN (2008) Development of a one-step strip for the detection of triazophos residues in environmental samples. Anal Biochem 377(2):202–208. https://doi.org/10.1016/j.ab.2008.03.013

Guo YR, Liu SY, Gui WJ, Zhu GN (2009) Gold immunochromatographic assay for simultaneous detection of carbofuran and triazophos in water samples. Anal Biochem 389(1):32–39. https://doi.org/10.1016/j.jca.2009.03.020

Hara TO, Singh B (2021) Electrochemical biosensors for detection of pesticides and heavy metal toxicants in water: recent trends and progress. ACS ES&T Water 1(3):462–478. https://doi.org/10.1021/acswater.fo00125

Hassaan MA, El Nemr A (2020) Pesticides pollution: classifications, human health impact, extraction and treatment techniques. Egypt J Aquat Res. https://doi.org/10.1016/j.ejar.2020.08.007

He Y, Hong S, Wang M, Wang J, Abd El-Aty AM, Hacimuftuglu A et al (2020) Development of fluorescent lateral flow test strips based on an electro-spin molecularly imprinted membrane for detection of triazophos residues in tap wa-ter. New J Chem 44(15):6026–6036. https://doi.org/10.1039/D0NJ00269K

Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108(2):462–493. https://doi.org/10.1021/cr068107d

Hua X, Qian G, Yang J, Hu B, Fan J, Qin N et al (2010) Development of an immunochromatographic assay for the rapid detection of chlorpyrifos-methyl in water samples. Biosens Bioelectron 26(1):189–194. https://doi.org/10.1016/j.bios.2010.06.005

Hua X, Yang J, Wang L, Fang Q, Zhang G, Liu F (2012) Development of an enzyme linked immunosorbent assay and an immunochromatographic assay for detection of organophosphorus pesticides in different agricultural products. PLoS One 7(12):e53099. https://doi.org/10.1371/journal.pone.0053099

Huang X, Aguilar ZP, Xu H, Lai W, Xiong Y (2016) Membrane-based lateral flow immunochromatographic strip with nanoparticles as reporters for detection: a review. Biosens Bioelectron 75:166–180. https://doi.org/10.1016/j.bios.2015.08.032

Jaiswal JK, Simon SM (2004) Potentials and pitfalls of fluorescent quantum dots for biological imaging. Trends Cell Biol 14(9):497–504. https://doi.org/10.1016/j.tcb.2004.07.012

Jiang L, Carrão DB, Menger RF, Moraes de Oliveira AR, Henry CS (2020) Pump-free microfluidic rapid mixer combined with a paper-based channel. ACS Sensors 5(7):2230–2238. https://doi.org/10.1021/acsensors.0c00937

Jianqiang L, Weiming S, Lijun C, Hailong Z, Yongmei F, Xiaoping D, Baomin W, Hongwei Z (2020) Simultaneous and rapid detection of carbofuran and 3-hydroxy-carbofuran in water samples and pesticide preparations using lateral flow immunochromatographic assay. Food Agric Immunol 31(1):165–175. https://doi.org/10.1080/09541055.2019.1708272

Jiang XX, Shi HY, Wu N, Wang MH (2011) Development of an enzyme-linked immunosorbent assay for diniconazole in agricultural samples. Food Chem 125(4):1385–1389. https://doi.org/10.1016/j.foodchem.2010.10.010

Jin B, Yang Y, He R, Park YI, Lee A, Bai D et al (2018) Lateral flow aptamer assay integrated smartphone-based portable device for simultaneous detection of multiple targets using upconversion nanoparticles. Sensors Actuators B Chem 276:48–56. https://doi.org/10.1016/j.snb.2018.08.074

Kim YA, Lee EH, Kim KO, Lee YT, Hammock BD, Lee HS (2011) Competitive immunochromatographic assay for the detection of the organophosphorus pesticide chlorpyrifos. Anal Chim Acta 693(1-2):106–113. https://doi.org/10.1016/j.aca.2011.03.011

Koczula KM, Gallotta A (2016) Lateral flow assays. Essays Biochem 60(1):111–120. https://doi.org/10.1042/EBC20150012

Kranthi KR, Davis M, Mayee CD, Russell DA, Shukla RM, Satija U et al (2009) Development of a colloidal-gold based lateral-flow immunoassay kit for ‘quality-control’ assessment of pyrethroid and endosulfan formulations in a novel single strip format. Crop Prot 28(5):428–434. https://doi.org/10.1016/j.cropro.2005.04.088

Kumar S, Kaushik G, Dar MA, Nimesh S, Lopez-Chuken UJ, Villarreal-Chiu JF (2018) Microbial degradation of organophosphate pesticides: a review. Pacedosphere 28(2):190–208. https://doi.org/10.1016/j.pacedosphere.2018.04.009

Lai W, Xu Y, Fung DY, Xiong Y (2007) Development of a lateral-flow assay for rapid screening of the performance-enhancing sympathomimetic drug clenbuterol used in animal production; food safety assessments. Asia Pac J Clin Nutr 16(1):106–110

Le T, Yan P, Xu J, Hao Y (2013) A novel colloidal gold-based lateral flow immunoassay for rapid simultaneous detection of cyromazine and melamine in foods of animal origin. Food Chem 138(2-3):1610–1615. https://doi.org/10.1016/j.foodchem.2012.11.077

Le T, Zhang Z, Wu J, Shi H, Cao X (2018) A fluorescence immunochromatographic strip test using a quantum dot-antibody probe for rapid and quantitative detection of 1-aminoxydantoin in edible animal tissues. Anal Bioanal Chem 410(2):565–572. https://doi.org/10.1007/s00216-017-0756-1

Lee JK, Ahn KC, Stoumattire DW, Gee SJ, Hammock BD (2003) Development of an enzyme-linked immunosorbent assay for the detection of the organophosphorus insecticide acephate. J Agric Food Chem 51(3):3695–3703. https://doi.org/10.1021/jf021020k

Lee EH, Kim YA, Lee YT, Hammock BD, Lee HS (2013) Competitive immunochromatographic assay for the detection of the organophosphorus pesticide EPN. Food Agric Immunol 24(2):129–138. https://doi.org/10.1080/09540105.2012.661703

Lengai GM, Muthomi JW (2018) Biopesticides and their role in sustainable agricultural production. J Biosci Med 6(06):7. https://doi.org/10.4236/jbm.2018.66002

Liao Y, Cui X, Chen G, Wang Y, Qin G, Li M, et al (2019) Simple and sensitive detection of triazophos pesticide by using quantum dots nanobeads based on immunosay. Food Agric Immunol 30(1):522–532. https://doi.org/10.1080/09540105.2019.1597022

Liu C, Jia Q, Yang C, Qiao R, Jing L, Wang L, Xu C, Gao M (2011) Lateral flow immunochromatographic assay for sensitive pesticide detection by using Fe3O4 nanoparticle aggregates as color reagents. Anal Chem 83(17):6778–6784. https://doi.org/10.1021/ac104626d

Liu DB, Chen WW, Wei JH, Li XB, Wang Z, Jiang XY (2012) A highly sensitive, dual-readout assay based on gold nanoparticles for organophosphorus and carbamate pesticides. Anal Chem 84:4185–4191. https://doi.org/10.1021/ac300545p
Liu L, Suryopradowo S, Zheng Q, Song S, Kuang H (2017a) Development of an immunochromatographic strip for detection of acetamiprid in cucumber and apple samples. Food Agric Immunol 28(5):767–778. https://doi.org/10.1080/09540105.2017.1312294

Liu Y, Ouyang Q, Li H, Zhang Z, Chen Q (2017c) Development of an inner filter effects-based upconversion nanoparticles–cucumber nanosystem for the sensitive sensing of fluoride ion. ACS Appl Mater Interfaces 9(21):18314–18321. https://doi.org/10.1021/acsami.7b04978

Liu M, Khan A, Wang Z, Liu Y, Yang G, Deng Y, He N (2019a) Aptasen-sors for pesticide detection. Biosens Bioelectron 130:174–184. https://doi.org/10.1016/j.bios.2019.01.006

Liu Y, Zhao Y, Zhang T, Chang Y, Wang S, Zou R et al. (2019b) Quantum dots-based immunochromatographic strip for rapid and sensitive detection of acetamiprid in agricultural products. Front Chem 7:76. https://doi.org/10.3389/fchem.2019.00076

Liu Y, Cao X, Liu Z, Sun L, Fang G, Liu J, Wang S (2020) Electrochemical detection of organophosphorus pesticides based on amino acids-conjugated P3TAA-modified electrodes. Analyst 145(24):8068–8076. https://doi.org/10.1038/s41598-019-56510-y

Loening AM, Fenn TD, Gambhir SS (2007) Crystal structures of the lucifer-ase and green fluorescent protein from Renilla reniformis. J Mol Biol 374(4):1017–1028. https://doi.org/10.1016/j.jmb.2007.09.078

Lowdon JW, Dillien H, Singhla P, Peeters M, Cleij TJ, van Grinsven B, Eersels K (2020) MIPS for commercial application in low-cost sensors and assays—an overview of the current status quo. Sensors Actuators B Chem 325:128973. https://doi.org/10.1016/j.snb.2020.128973

Luo P, Chen X, Xiao J, Zhao Y, Wang Z (2019) Rapid detection of iprodione in cucumber and apple using an immunochromatographic strip test. Food Agric Immunol 30:701–712. https://doi.org/10.1080/09540105.2019.1625309

Mak WC, Beni V, Turner AP (2016) Lateral-flow technology: from visual to instrumental. TrAC Trends Anal Chem 79:297–305. https://doi.org/10.1016/j.trac.2015.10.017

Morales MA, Halpern JM (2018) Guide to selecting a biorecognition element for biosensors. Bioconjug Chem 29(10):3231–3239. https://doi.org/10.1021/acs.bioconjugchem.8b00592

Morales-Narváez E, Pérez-López B, Pires LB, Merkoçi A (2012) Simple Förster resonance energy transfer evidence for the ultrahigh quantum dot quenching efficiency by graphene oxide compared to other carbon structures. Carbon 50(8):2987–2993. https://doi.org/10.1016/j.carbon.2012.02.081

Nagabooshanam S, Roy S, Mathur A, Mukherjee I, Krishnamurthy S, Bharadwaj LM (2019) Electrochemical micro analytical device interfaced with portable potentiostat for rapid detection of chlorpyrifos using acetylcholinesterase conjugated metal organic framework using Internet of things. Sci Rep 9(1):1–9. https://doi.org/10.1038/s41598-019-56510-y

Nagabooshanam S, Roy S, Deshmukh S, Wadhwa S, Sulania I, Mathur A et al. (2020) Microfluidic affinity sensor based on a molecularly imprinted polymer for ultrasensitive detection of chlorpyrifos. ACS Omega 5(49):31765–31773. https://doi.org/10.1021/acsomega.0c04436

Nakatsu T, Ichiyama S, Hiratake J, Saldanha A, Kobashi N, Sakata K, Kato H (2006) Structural basis for the spectral difference in luciferase bioluminescence. Nature 440(7082):372–376. https://doi.org/10.1038/nature04542

Nguyen VT, Song S, Park S, Joo C (2020) Recent advances in high-sensitivity detection methods for paper-based lateral-flow assay. Biosens Bioelectron 152:112015. https://doi.org/10.1016/j.bios.2020.112015

Niu K, Zheng X, Huang C, Xu K, Zhi Y, Shen H, Jia N (2014) A colloidal gold nanoparticle-based immunochromatographic test strip for rapid and convenient detection of Staphylococcus aureus. J Nanosci Nanotechnol 14(7):5151–5156. https://doi.org/10.1166/jnn.2014.8703

O’Farrell B (2009) Evolution in lateral flow–based immunoassay systems. In: Lateral flow immunoassay. Humana Press, Washington, pp 1–33. https://doi.org/10.1007/978-1-59745-240-3_1

Ouyang H, Tu X, Fu Z, Wang W, Fu S, Zhu C et al. (2018a) Colorimetric and chemiluminescent dual-readout immunochromatographic assay for detection of pesticide residues utilizing g-C3N4/BiFeO3 nanocomposites. Biosens Bioelectron 106:43–49. https://doi.org/10.1016/j.bios.2018.01.033

Ouyang H, Wang W, Shu Q, Fu Z (2018b) Novel chemiluminescent immunochromatographic assay using a dual-readout signal probe for multiplexed detection of pesticide residues. Analyst 143(12):2883–2888. https://doi.org/10.1039/C8AN00661J

Parolo C, Sena-Torralba A, Bergua JF, Calucho E, Fuentes-Chust C, Hu L et al. (2020) Tutorial: design and fabrication of nanoparticle-based lateral-flow immunoassays. Nat Protoc 1:29–29. https://doi.org/10.1038/s41596-020-0357-x

Perju A, Wongkaew N (2021) Integrating high-performing electrochemical trans-ducers in lateral flow assay. Anal Bioanal Chem 413(2):15–15. https://doi.org/10.1007/s00216-021-03301-y

Quesada-González D, Merkoçi A (2015) Nanoparticle-based lateral flow biosensors. Biosens Bioelectron 73:47–63. https://doi.org/10.1016/j.bios.2015.05.080

Ramírez JA, Lacasaña M (2001) Plaguicidas: clasificación, uso, toxicología y medición de la exposición. Arch Prev Riesgos Labor 4(2):67–75

Rani L, Thapa K, Kanojia N, Sharma N, Singh S, Grewal AS et al. (2021) An extensive review on the consequences of chemical pesticides on human health and environment. J Clean Prod 283:124657. https://doi.org/10.1016/j.jclepro.2020.124657

Rivas L, de La Escosura-Muñiz A, Pons J, Merkoçi A (2014) Lateral flow biosensors based on gold nanoparticles. In: In Comprehensive analytical chemistry, 66th edn. Elsevier, Amsterdam, pp 569–605. https://doi.org/10.1016/B978-0-444-63285-2.00014-6

Sabawal A, Kumar K, Singh RP (2018) Hazardous effects of chemical pesticides on human health–cancer and other associated disorders. Environ Toxicol Pharmacol 63:103–114. https://doi.org/10.1016/j.etap.2018.08.018

Sajid M, Kawe AN, Daud M (2015) Designs, formats and applications of lateral flow assay: a literature review. J Saudi Chem Soc 19(6):689–705. https://doi.org/10.1016/j.jsca.2014.09.001

Sarkar S, Gil JDB, Keeley J, Jansen K (2021) The use of pesticides in developing countries and their impact on health and the right to food. European Union, Luxembourg

Saylan Y, Akgönnülü Ş, Cimen D, Derazshamshir A, Bereli N, Yılmaz F, Denizli A (2017) Development of surface plasmon resonance sensors based on molecularly imprinted nanofluids for sensitive and selective detection of pesticides. Sensors Actuators B Chem 241:446–454. https://doi.org/10.1016/j.snb.2016.10.017

Sharma A, Kumar V, Shahzad B, Tanveer M, Sidhu GP, Hands N et al. (2019) Worldwide pesticide usage and its impacts on ecosystem. SN Appl Sci 1(11):1–16. https://doi.org/10.1007/s42452-019-1485-1

Sheng EZ, Tan Y, Lu YX, Xiao Y, Li ZX, Lu YX, Xiao Y, Li ZX, Lu YX, Xiao Y, Li ZX (2021) Sensitive time-resolved fluorescence immunoassay for quantitative determination of oxyfluorfen in food and environmental samples. Front Chem 8:1196. https://doi.org/10.3389/fchem.2020.621925

Shu Q, Wang L, Ouyang H, Wang W, Liu F, Fu Z (2017) Multiplexed immunochromatographic test strip for time-resolved chemiluminescent detection of pesticide residues using a bifunctional antibody. Biosens Bioelectron 87:908–914. https://doi.org/10.1016/j.bios.2018.05.012
Šmidová Z, Blážková M, Fušal L, Rauch P (2009) Pesticides in food-immunocromatographic detection of thiabendazole and methio- carb. Czech J Food Sci 27:124–S416. https://doi.org/10.17221/ 1100-CIFS

Sørensen NN, Tetens I, Løje H, Lassen AD (2016) The effectiveness of the Danish Organic Action Plan 2020 to increase the level of organic public procurement in Danish public kitchens. Public Health Nutr 19(18):3428–3435. https://doi.org/10.1017/S1368 99016001737

Tahir MU, Naik SI, Rehman S, Shahzad M (2009) A quantitative analy- sis for the toxic pesticide residues in marketed fruits and vegetables in Lahore, Pakistan. Biomedica 25(23):171–174

Tahirbegi IB, Eghartner J, Sulzer P, Zieger S, Kasjanow A, Paradiso M et al (2017) Fast pesticide detection inside microfluidic device with integrated optical pH, oxygen sensors and algal fluorescence. Biosens Bioelectron 88:188–195. https://doi.org/10.1016/j.bios.2016.08.014

Tan G, Zhao Y, Wang M, Chen X, Wang B, Li QX (2020) Ultrasensi- tive quantitation of imidacloprid in vegetables by colloidal gold and time-resolved fluorescent nanobead trace lateral flow immu- noassays. Food Chem 311:26055. https://doi.org/10.1016/j. foodchem.2019.126055

Tan GR, Wang M, Hsu CY, Chen N, Zhang Y (2016) Small upcon- verting fluorescent nanoparticless for biosensing and bioimaging. Adv Opt Mater 4(7):984–997. https://doi.org/10.1002/adom. 201600141

Terziev V, Petkova-Georgieva S (2019) Human health problems and classification of the most toxic pesticides. IJASOS-International E-journal of Advances in Social Sciences 5(15). http://ijasos. Orcinetjournals.org/download/article-file/882327

Thakur N, Kaur S, Tomar P, Thakur S, Yadav AN (2020) Microbial biosensors: current status and advancement for sustainable agriculture and environment. In: In New and Future Develop- ments in Microbial Biotechnology and Bioengineering. Elsevier, Amsterdam, pp 243–282. https://doi.org/10.1016/B978-0-12- 820526-6.00016-6

Tsagkaris AS, Pulkarbova J, Hajslova J (2011) Optical screening meth- ods for pesticide residue detection in food matrices: advances and emerging analytical trends. Foods 10(1):88. https://doi.org/ 10.3390/food10010088

UNEP (2007) Guidance on the Global Monitoring Plan for Persistent Organic Pollutants. In: Secretariat of the Stockholm Convention. http://www.pops.int/docs/meetings/cop_3/meetingdocs/ int14/GMPGuidanceC/Guidance.pdf. Accessed 8 March 2022

Urusov AE, Zherdev AV, Dzantiev BB (2019) Towards lateral flow quantitative assays: detection approaches. Biosensors 9(3):89. https://doi.org/10.3390/bios9030089

Wang S, Zhang C, Wang J, Zhang Y (2005) Development of colloidal gold-based flow-through and lateral-flow immunoassays for the rapid detection of the insecticide carbaryl. Anal Chim Acta 546(2):161–166. https://doi.org/10.1016/j.aca.2005.04.088

Wang S, Zhang C, Zhang Y (2009) Lateral flow colloidal gold-based immunoassay for pesticide. In: Biosensors and Biodetection. Humana Press, New York, pp 237–252. https://doi.org/10.1007/ 978-1-60327-569-9_15

Wang L, Cai J, Wang Y, Fang Q, Wang S, Cheng Q et al (2014) A bare-eye-based lateral flow immunoassay based on the use of gold nanoparticles for simultaneous detection of three pesticides. Microchim Acta 181(13-14):1565–1572. https://doi.org/10.1007/ s00604-014-1247-0

Wang S, Liu Y, Jiao S, Zhao Y, Guo Y, Wang M, Zhu G (2017) Quantum-dot-based lateral flow immunoassay for detection of neonic- toinid residues in tea leaves. J Agric Food Chem 65(46):10107– 10114. https://doi.org/10.1021/acs.jafc.7b03981

Wang Q, Wei H, Zhang Z, Wang E, Dong S (2018) Nanoyze: an emerging alternative to natural enzyme for biosensing and immunoassay. TrAC Trends Anal Chem 105:218–224. https:// doi.org/10.1016/j.trac.2018.05.012

Wen W, Song Y, Yan X, Zhu C, Du D, Wang S et al (2018) Recent advances in emerging 2D nanomaterials for biosensing and bioimaging applications. Mater Today 21(2):164–177. https:// doi.org/10.1016/j.mattod.2017.09.001

World Health Organization (2020) The WHO recommended classi- fication of pesticides by hazard and guidelines to classification 2019. World Health Organization, Geneva

Wu J, Ma J, Wang H, Qin D, An L, Ma Y et al (2019) Rapid and visual detection of benzothiostrin residue in strawberry using quantum dot-based lateral flow test strip. Sensors Actuators B Chem 283:222–229. https://doi.org/10.1016/j.snb.2018.11.137

Xu T, Xu QG, Li H, Wang J, Li QX, Shelver WL, Li J (2012) Strip- based immunoassay for the simultaneous detection of the neonicotinoid insecticides imidacloprid and thiamethoxam in agricultural products. Talanta 101:85–90. https://doi.org/10. 1016/j.talanta.2012.08.047

Xu Y, Liu Y, Wu Y, Xia X, Liao Y, Li Q (2014) Fluorescent probe- based lateral flow assay for multiplex nucleic acid detection. Anal Chem 86(12):5611–5614. https://doi.org/10.1021/ac501 0458

Xu B, Guo J, Fu Y, Chen X, Guo J (2020) A review on microfluid- ics in the detection of food pesticide residues. Electrophoresis 41(10-11):821–832. https://doi.org/10.1002/elps.201900209

Yadav IC, Devi NL (2017) Pesticides classification and its impact on human and environment. Environ Sci Eng 6:140–158

Ye M, Beach J, Martin JW, Senthilselvan A (2013) Occupational pesticide exposures and respiratory health. Int J Environ Res Public Health 10(12):6442–6471. https://doi.org/10.3390/ijerph 10126442

You H, Hua X, Feng L, Sun N, Rui Q, Wang L, Wang M (2017a) Competitive immunoassay for imidacloiaziz by using upconversion nanoparticles and gold nanoparticles as labels. Microchem Acta 184(4):1085–1092. https://doi.org/10.1007/s00604-017-2097-3

You M, Lin M, Gong Y, Wang S, Li J, Li et al (2017b) Household fluorescent lateral flow strip platform for sensitive and quanti- tative prognosis of heart failure using dual-color upconversion nanoparticles. ACS Nano 11(6):6261–6270. https://doi.org/10. 1021/acsnano.7b02466

Zamora-Gávez A, Morales-Narváez E, Romero J, Merkoçi A (2018) Photoluminescent lateral flow based on non-radiative energy transfer for protein detection in human serum. Biosens Bioelec- tron 100:208–213. https://doi.org/10.1016/j.bios.2017.09.013

Zeng S, Baillargeat D, Ho HP, Yong KT (2014) Nanomaterials enhanced surface plasmon resonance for biological and chemi- cal sensing applications. Chem Soc Rev 43(10):3426–3452. https://doi.org/10.1039/C3CS60479A

Zhang C, Zhang Y, Wang S (2006) Development of multi-analyte flow-through and lateral-flow assays using gold particles and horseradish peroxidase as tracers for the rapid determination of carbaryl and endosulfan in agricultural products. J Agric Food Chem 54(7):2502–2507. https://doi.org/10.1021/jf0531407

Zhang W, Asiri AM, Liu D, Du D, Lin Y (2014) Nanomaterial- based biosensors for environmental and biological monitoring of organophosphorus pesticides and nerve agents. TrAC Trends Anal Chem 54:1–10. https://doi.org/10.1016/j.trac.2013.10.007

Zhang J, Shikha S, Mei Q, Liu J, Zhang Y (2019) Fluorescent micro- beads for point-of-care testing: a review. Microchem Acta 186(6):361. https://doi.org/10.1007/s00604-019-3449-y

Zhao Q, Zhao Y, Yang M, Fu Q, Ouyang H, Wen W, Song Y, Zhu C, Lin Y, Du D (2018) A nanoyze-and ambient light-based smartphone platform for simultaneous detection of dual bio- markers from exposure to organophosphorus pesticides. Anal Chem 90(12):7391–7398. https://doi.org/10.1021/acs.analchem.8b00837
Zhou P, Lu Y, Zhu J, Hong J, Li B, Zhou J et al (2004) Nanocolloidal gold-based immunoassay for the detection of the N-methylcarbamate pesticide carbofuran. J Agric Food Chem 52(14):4355–4359. https://doi.org/10.1021/jf0499121

Zou Z, Du D, Wang J, Smith JN, Timchalk C, Li Y, Lin Y (2010) Quantum dot-based immunochromatographic fluorescent biosensor for biomonitoring trichloropyridinol, a biomarker of exposure to chlorpyrifos. Anal Chem 82(12):5125–5133. https://doi.org/10.1021/ac100260m

Zou R, Chang Y, Zhang T, Si F, Liu Y, Zhao Y et al (2019) Up-converting nanoparticle-based immunochromatographic strip for multi-residue detection of three organophosphorus pesticides in food. Front Chem 7:18. https://doi.org/10.3389/fchem.2019.00018

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.