Influence of different vermicompost levels on growth, yield and quality of forage Sorghum (Sorghum bicolor L. Moench)

B Nohong¹, Rinduwati¹ and M Yusuf²
¹Forage Crops and Pasture Laboratory, Faculty of Animal Science Hasanuddin University
²Forestry Extension Agencies, South Sulawesi, Indonesia.

E-mail: budiman_ek58@yahoo.com

Abstract. The objective of this study was to determine the effect of vermicompost fertilizer level on growth, dry matter yield and quality of sorghum (Sorghum bicolor (L.) Moench)). This study was arranged using a split-plot in time trial design with the main plot of each main harvest and the level of application of vermicompost fertilizer as subplots. The vermicompost fertilizer were: P₀ = 0 kg vermicompost/ha (0 kg N/ha, 0 kg P₂O₅/ha, 0 kg K₂O/ha); P₁ = 5.000 kg vermicompost/ha (30.5 kg N/ha, 11 kg P₂O₅/ha, 41 kg K₂O/ha); P₂ = 10.000 kg vermicompost/ha (61 kg N/ha, 22 kg P₂O₅/ha, 82 kg K₂O/ha); P₃ = 15.000 kg vermicompost/ha (91.50 kg N/ha, 33 kg P₂O₅/ha, 123 kg K₂O/ha), respectively. The variables in this study included the plant height, dry matter yield, crude protein, crude fiber, NDF and ADF. The results showed that if the vermicompost fertilizer dosage was increased the plant height, dry matter yield and crude protein would increase, but did not affect the crude fiber, NDF and ADF. Regrowth (ratoon) influences plant height and dry matter yield, while crude protein and crude fiber and ADF do not affect. It can be concluded that applying vermicompost fertilizer significantly increased growth, dry matter yield and significantly affected crude protein, while regrowth resulted in lower growth and dry matter yield.

1. Introduction
Sorghum [Sorghum bicolor L. (Moench)] is a cereal plant with multi uses, considered as one of the most important plants for the production of grains for humans consumption and animal feed [1-3]. Sorghum ranks fifth among the most important plants in the world [4] and has been a staple crop in the semiarid tropics of Africa and Asia for centuries [5]. Sorghum is crop mainstay of dry land farmers in semi-arid tropics owing to assured grains and fodder [6]. It is adaptive to vast environmental condition and provides palatable nutritious fodder to the animals [7]. Sorghum is more resistant than corn in drought conditions and thus grows in stress-prone semi-arid areas not suitable for corn [8]. Because of its tolerance to drought, sorghum has the potential to produce large amounts of nutritious forage during the summer [9]. In generally, conventional sorghum varieties produce higher forage but are some what lower in forage quality compared to BMR varieties [10]. Sorghum can produce ratoon plants after crop harvest. Ratoon sorghum has high production stability both below and above the average annual rainfall in semi-arid conditions [11]. Production and quality of ratoon plants is lower than that of main crops [12]. To increase the dry matter yield and quality of forage feed, it is very important to determine...
fertilizer requirements. Vermicompost is an organic fertilizer in the form of worm dung dried. Vermicompost is produced through the interaction of earthworms with microorganisms that results in the degradation of organic material [13]. The value of vermicompost as an organic manure has been well recognized for utilizing in agriculture as it contains valuable nutrients, inorganic form besides being a very effective soil ameliorant [14]. Therefore, this study was conducted to study the effect of different levels of vermicompost fertilizer on growth, dry matter yield and quality of sorghum [Sorghum bicolor L. (Moench)] Super-1 varieties.

2. Materials and methods

2.1. Experimental design
This research was arranged using a split plot in-time trial design consisting of two harvest times (main crop and ratoon) and four levels of vermicompost fertilizer application as plot: P0 = 0 kg vermicompost/ha (0 kg N/ha, 0 kg P2O5/ha, 0 kg K2O/ha); P1 = 5.000 kg vermicompost/ha (30.5 kg N/ha, 11 kg P2O5/ha, 41 kg K2O/ha); P2 =10.000 kg vermicompost/ha (61 kg N/ha, 22 kg P2O5/ha, 82 kg K2O/ha); P3 = 15.000 kg vermicompost/ha (91.50 kg N/ha, 33 kg P2O5/ha, 123 kg K2O/ha). Each treatment consisted of four replications. Each treatment used 1.50 x 2.00 meters plot of land. In one plot 12 holes were made with a distance of 0.50 meters each. Each hole is planted with 5 sorghum bowels. After the plants grow, the uniformity is done by uniforming the number of plants in each hole, which leaves two plants that have uniform growth. Fertilization is done after uniformity. Maintenance of plants until they reach physiological maturity then harvest to get data on the main crop. Harvested crop are allowed to grow back until they reach physiological maturity, then are harvested again to obtain data on ratoon.

2.2. Parameters
The parameters measured were plant height, dry matter yield, crude protein content, crude fiber, NDF and ADF. Crude protein was determined according to the method of Association of Official Analytical Chemist [15]. Neutral detergent fiber (NDF), acid detergent fiber (ADF) by the methods by [16].

2.3. Data analysis
The data were analyzed using two-way ANOVA (Analysis of Variance) technique. Post-hoc tests were used to analyze further data. Differences among the treatment means were determined by Duncan’s Multiple Range Test [17].

3. Results and discussion

3.1. Plant height
The effects of vermicompost fertilization and harvest time on plant height presented in Table 1 and table 2. Plant height were significantly (p<0.05) affected by vermicompost fertilization and harvest time. There was no interaction between the fertilization and harvest time. The height of plants with P1, P2 and P3 fertilizer application (p<0.05) was higher than that of P0 (control). The increase in plant height given vermicompost fertilizer caused by the influence of nutrients contained by vermicompost fertilizer such as nitrogen. The results of this study are in accordance with the findings of [18] in Brassia (Brassica rapa var. chinensis), that vermicompost fertilizer application can increase plant height. The height of main crop was significantly (p<0.05) higher than that plant height ratoon. According to [12] that the height plant of the sorghum ratoon is influenced by the type of sorghum.

3.2. Dry matter yield
The effects of vermicompost fertilization and harvest time on dry matter yield presented in table 1 and table 2. Dry matter yield were significantly (p<0.05) affected by vermicompost fertilization and harvest time. There was no interaction between the fertilization and harvest time. The dry matter yield was
significantly influenced by the vermicompost fertilized \((p<0.05)\). Significant differences in the dry matter yield of application vermicompost fertilized have also been reported by [19] in African Marigold plants \((Tagetes erecta)\). The use of vermicompost has a positive effect on dry matter yield [20]. Dry matter yield of main sorghum was significantly higher \((p<0.05)\) compared to ratoon. The results are consistent with reports [12] that the yield of main sorghum dry matter was higher \((22.87 \text{ tons/ha})\) compared to the yield of ratoon dry matter \((8.47 \text{ tons/ha})\).

Table 1. The effect of the level of vermicompost fertilizer on growth, production and quality of sorghum.

Parameters	P\(_0\)	P\(_1\)	P\(_2\)	P\(_3\)
Plant Height (cm)	142.33±0.35\(^d\)	169.83±37\(^c\)	202.59±32\(^b\)	220.33±29\(^a\)
Dry matter yield (tons/ha)	2.83±1.72\(^a\)	3.67±1.21\(^b\)	4.17±0.98\(^c\)	4.67±1.25\(^d\)
Crude protein (%)	7.66±0.51\(^a\)	7.67±0.52\(^b\)	8.66±0.52\(^c\)	9.33±0.51\(^d\)
Crude Fiber (%)	31.33±1.21\(^a\)	30.55±1.37\(^b\)	30.00±0.89\(^c\)	30.00±0.89\(^d\)
NDF (%)	67.67±0.52\(^a\)	67.00±0.89\(^b\)	66.17±0.40\(^c\)	66.00±0.89\(^d\)
ADF (%)	43.68±1.03\(^a\)	43.50±0.84\(^b\)	43.17±0.75\(^c\)	42.67±0.52\(^d\)

\(^{a,b,c}:\) The different superscripts within the column indicate differences \((p<0.05)\).

Table 2. The effect of harvest time on growth, dry matter yield and quality of sorghum.

Parameters	Main crop	Ratoon
Plant height (cm)	214.08±29\(^a\)	153.42±34\(^b\)
Dry matter yield (tons/ha)	4.92±0.67\(^a\)	2.75±1.06\(^b\)
Crude protein (%)	8.42±0.99\(^a\)	8.25±0.75\(^b\)
Crude fiber (%)	30.83±1.34\(^a\)	30.17±0.94\(^b\)
NDF (%)	66.75±0.97\(^a\)	66.67±0.96\(^b\)
ADF (%)	43.42±0.90\(^a\)	43.08±0.79\(^b\)

\(^{a,b,c}:\) The different superscripts within the column indicate differences \((p<0.05)\).

3.3. Crude protein

The effect of vermicompost fertilization and harvest time on the crude protein content of Sorghum presented in table 1 and table 2. The crude protein content was greatly influenced \((p<0.05)\) by vermicompost levels and harvest time, not significant effect. There was no interaction between vermicompost fertilization and harvest time. An increase in crude protein content in the application of vermicompost fertilizers was reported by [21,22]. The nitrogen content of sorghum ratoon is lower \((p>0.05)\) compared to the nitrogen content of the main plant. The results of this study are in accordance with that reported by that the main plant sorghum contains more nitrogen \((2.56\%)\) higher than the nitrogen content of ratoon \((2.40\%)\).

3.4. Crude fiber

The effects of vermicompost fertilization and harvest time on crude fiber presented in table 1 and table 2. There was no significant effect of vermicompost fertilizer and main-crop and ratoon on the crude fiber content of sorghum plants. The interaction between fertilization and harvest time (main-crop and ratoon) had no significant effect. Although there was no effect of applying vermicompost fertilizer, there was a tendency for the decrease in crude fiber from P\(_0\) \((31.33\%)\) to \((30.00\%)\) at P\(_3\) level. Likewise in the main crop \((30.83\%)\) fell to \((30.17\%)\) in ratoon.

3.5. Neutral detergent fiber (NDF)

The effects of vermicompost fertilization and harvest time on NDF content presented in table 1 and table 2. There was no interaction between the fertilization and harvest time. The NDF content was...
greatly influenced \((p<0.05)\) by vermicompost levels and harvest time not significant effect. The NDF content was significantly \((p<0.05)\) influenced by vermicompost fertilization. The NDF content was significantly decreased \((p<0.05)\) in P2 and P3 treatments. The NDF content was significantly decreased \((p<0.05)\) in P2 and P3 treatments. The decrease in NDF due to fertilization is probably caused by an increase in Brix content which is calculated as cell contents \([23]\).

3.6. Acid detergent fiber (ADF)

The effects of vermicompost fertilization and harvest time on ADF presented in Table 1 and Table 2. There was no significant effect of vermicompost fertilizer and main-crop and ratoon on ADF content of sorghum plants. The interaction between fertilization and harvest time (main-crop and ratoon) had no significant effect. Although there was no effect of applying vermicompost fertilizer, there was a tendency for the decrease in ADF from P0 (43.68\%) to (42.67\%) at P3 level. Likewise in the main crop (43.42\%) fell to (43.08\%) in ratoon.

Table 3. The effect of the level of vermicompost fertilizer on growth, production and quality of sorghum.

Parameters	Vermicompost levels
	P0
Plant Height (cm)	142.33±0.35d
Dry matter yield (tons/ha)	2.83±1.72c
Crude protein (%)	7.66±0.51c
Crude Fiber (%)	31.33±1.21a
NDF (%)	67.67±0.52b
ADF (%)	43.68±1.03a
	P1
Plant Height (cm)	169.83±37c
Dry matter yield (tons/ha)	3.67±1.21b
Crude protein (%)	7.67±0.52c
Crude Fiber (%)	30.55±1.37a
NDF (%)	67.00±0.89b
ADF (%)	43.50±0.98b
	P2
Plant Height (cm)	202.59±32b
Dry matter yield (tons/ha)	4.17±0.98b
Crude protein (%)	8.66±0.52b
Crude Fiber (%)	30.00±0.89a
NDF (%)	66.00±0.89a
ADF (%)	43.17±0.75a
	P3
Plant Height (cm)	220.33±29a
Dry matter yield (tons/ha)	4.67±1.25a
Crude protein (%)	9.33±0.51a
Crude Fiber (%)	30.00±0.89a
NDF (%)	66.00±0.89a
ADF (%)	42.67±0.52a

\(a,b,c\): The different superscripts within the column indicate differences \((p<0.05)\).

Table 4. The effect of harvest time on growth, dry matter yield and quality of sorghum.

Parameters	Main crop	Ratoon
Plant height (cm)	214.08±29a	153.42±34b
Dry matter yield (tons/ha)	4.92±0.67b	2.75±1.06b
Crude protein (%)	8.42±0.99a	8.25±0.75a
Crude fiber (%)	30.83±1.34a	30.17±0.94a
NDF (%)	66.75±0.97a	66.67±0.96a
ADF (%)	43.42±0.90b	43.08±0.79a

\(a,b,c\): The different superscripts within the column indicate differences \((p<0.05)\).

4. Conclusion

It can be concluded that applying vermicompost fertilizer significantly increased growth, dry matter yield and significantly affected crude protein, while regrowth resulted in lower growth and dry matter yield.

References

[1] Vijayaxmi, Pahuja S K, Kumardi U and Joshi U N 2019 Genetic divergence studies for agromorphological, insect pest and quality parameters in mini core collection for forage sorghum Forage Res. 44 237-41

[2] Krupa K N, Dalawai N, Shashidhar H E, Harinikumar K M, Manojkumar H B, Bharani T and Turaidar V 2017 Mechanisms of drought tolerance in sorghum: A review. Int. J. Pure App. Biosci. 5 21-37
[3] Ratnavathi C V, Patil J V and Chavan U D 2016 Sorghum Biochemistry: An Industrial Perspective (London: Academic Press)

[4] Srivastava A, Naresh K S and Aggarwal P K 2010 Assessment on vulnerability of sorghum to climate change in India Agric. Ecos. Env. 138 160-9

[5] Ratnavathi C V and Komala V V 2016 Sorghum Grain Quality In: Sorghum Biochemistry: An Industrial Perspective Ed Ratnavathi CV Patil J V and Chavan U D (London: Academic Press)

[6] Yuvaraja A, Chinithiya A, Sangeetha R, Bharathy S V and Rajarajan K 2019 Diversity analyses of forage traits in sorghum (Sorghum bicolor L.) Germplasm Forage Res. 44 242-6

[7] Satpal, Duhan B S, Joshi U N, Godara A S, Arya S and Neelam 2015 Resonse of yield, quality and economic of single cut forage sorghum genotypes to different nitrogen and phosphorus levels Forage Res. 41 170-5

[8] FAO 2011 Grassland Index: A searchable catalogue of grass and forage legumes (Italy: Rome)

[9] Marsalis M A 2011 Sorghum Forage Production in New Mexico (New Mexico State University: Extension Agronomist in the Department of Extension Plant Sciences)

[10] Getachew G, Putnam D H, De Ben C M and De Peters E J 2016 Potential of sorghum as an alternative to corn forage Am. J. Plant Sci. 7 106–21

[11] Brahmbhatt B and Patel A 1983 Role of moisture conservation practices for semi-arid condition of Gujarat Gujarat Agric. Univ. Res. J. 8 58–66

[12] Vinutha K S, Kumar G S A, Blümmel M and Rao P S 2017 Evaluation of yield and forage quality in main and ratoon crops of different sorghum lines Tropical Grasslands-Forrajes Tropicales 5 40–49

[13] Lesufi R R 2015 Effect of vermicompost on growth and yield of cabbage (Brassica oleracea var. Capitata) Dissertation (University of Limpopo: Faculty of Science and Agriculture)

[14] Vijayalakshmi A, Divya S and Sridevi Y K 2006 Studies on impact of composted pressmud on biometric and yield parameters of soyabean Indian J. Environ. Ecoplan 12 77-80

[15] AOAC 2005 Official Methods of Analysis Association (18th Ed.) (Washington: Official Analytical Chemist)

[16] Van Soest P V, Robertson J B and Lewis B A 1991 Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition J. Dairy Sci. 74 3583-97

[17] Gomez K A and Gomez A A 1984 Statistical procedure for agricultural research (New York: John Wiley)

[18] Ramnarain, Ori Y I L and Ansari A A 2018 Effect of the use of vermicompost on the plant growth parameters of pak choi (Brassica rapa var. chinensis) and on the soil structure in Suriname J. Global Agric. Écol. 8 8-15

[19] Sardoei A S, Roin A, Sadeghi T, Shahadadi F and Mokhtari T S 2014 Effect of vermicompost on the growth and flowering of African Marigold (Tagetes erecta) American-Eurasian J. Agric. Environ. Sci. 14 631-5

[20] Narkhede S D, Attarde S B, Ingle S T 2011 Study on effect of chemical fertilizers and vermicompost on growth of chilli pepper plant (Capsicum annum) J. App. Sci. Environ. Sanitation 6 327

[21] Nasab M V, Mobasser, Reza H and Ganjali H R 2015 Effect of different lake levels of vermicompost on yield and quality of maize varieties Biol. Forum – An Int. J. 7 856-60

[22] Joshi R, Singh J, Vig A P 2015 Vermicompost as an effective organic fertilizer and biocontrol agent: effect on growth, yield and quality of plants Rev. Environ. Sci. Biol/Tech. 14 37–59

[23] Nirmal S S, Solanke A V, Dudhade D D, Shinde M S, Gadakh S R, Durgude A G and Damame S V 2016 Response of forage sorghum [Sorghum bicolor (L). Moench] cultivars to nitrogen levels Int. J. Sci. Environ. Tech. 5 2605-9