Relevance of Fusion Genes in Pediatric Cancers: Toward Precision Medicine

Célia Dupain,1 Anne Catherine Harttrampf,1 Giorgia Urbinati,1 Birgit Geoerger,1 and Liliane Massaad-Massade1

1Vectorology and Anticancer Therapies, UMR 8203 CNRS, University Paris-Sud, Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France

Pediatric cancers differ from adult tumors, especially by their very low mutational rate. Therefore, their etiology could be explained in part by other oncogenic mechanisms such as chromosomal rearrangements, supporting the possible implication of fusion genes in the development of pediatric cancers. Fusion genes result from chromosomal rearrangements leading to the juxtaposition of two genes. Consequently, an abnormal activation of one or both genes is observed. The detection of fusion genes has generated great interest in basic cancer research and in the clinical setting, since these genes can lead to better comprehension of the biological mechanisms of tumorigenesis and they can also be used as therapeutic targets and diagnostic or prognostic biomarkers. In this review, we discuss the molecular mechanisms of fusion genes and their particularities in pediatric cancers, as well as their relevance in murine models and in the clinical setting. We also point out the difficulties encountered in the discovery of fusion genes. Finally, we discuss future perspectives and priorities for finding new innovative therapies in childhood cancer.

Pediatric cancers represent 1% of all cancers1 and comprise cancer cases diagnosed in children younger than 14 years and adolescents and young adults aged 15–19 years.3 Pediatric cancers include more than 60 different types of cancer derived from different tissues. More than 250,000 cases are diagnosed worldwide each year among children and adolescents younger than 20 years (http://www.childhoodcancerinternational.org). Although 80% of pediatric patients reach long-term remission after treatment, 20% die from recurrence of the malignancy; therefore, more therapeutic targets are needed to improve survival rates.1 Moreover, current treatments are based on multimodal aggressive chemotherapies, and it is well known that antineoplastic treatments have long-term side effects that could impact patients’ quality of life.3

Pediatric cancers differ from adult cancers. In fact, most pediatric cancers arise from embryonal rather than epithelial cells;1 consequently, the etiology of pediatric cancers is different. Zhang et al.6 previously reported that 8%–10% of pediatric cancers are associated with germline alterations leading to a cancer predisposition (Table 1). The involvement of environmental factors in childhood cancer etiology is still discussed, but there is clearly a lower implication of exogenous toxic effects in children than in adults (e.g., smoking, alcohol consumption, sun exposure, and overweight and sedentary lifestyle). Very few environmental factors have been related to pediatric cancers to date: ionizing radiation and electromagnetic fields are some of the effects that remain a source of controversy, whereas some chemicals such as dioxin, trichloroethane, pesticides, solvents, metals, petroleum products, boron, and pollution have been associated with specific cancer types.7,8 Other factors such as epigenetics and immune system deregulation have also been identified as being responsible for tumorigenesis.9,10

Vogelstein et al.11 highlighted that pediatric cancers usually harbor fewer genetic mutations than adult cancers. They explained that the lower mutation rate found in pediatric cancers may be due to the embryonal origin of these cancers, which did not have enough time to renew. As a consequence, the tumors harbor very few mutations at the basal state.11 These differences in mutation patterns could also be explained in part by the difference in cancer initiation, such as the implication of exogenous toxic effects.

A possible hypothesis of their etiology could be the presence of chromosome rearrangements, which is one of the first mechanisms described to be responsible for carcinogenesis.11,12 These rearrangements can lead, in some cases, to fusion genes, which are the juxtaposition of two previously separate genes localized on the same (intra-chromosomal) or two different (inter-chromosomal) chromosomes. This event can activate proto-oncogenes or inactivate tumor suppressor genes. It has also been shown in adult cancers that some tumors with driving fusions have a much lower mutational burden compared to tumors without fusions.12 Thus, pediatric cancers appear to be the consequence of chromosomal rearrangements rather than mutation events.

We should keep in mind that a recurrence of alterations (mutations and copy-number alterations) of genes involved in embryogenesis13 and epigenetic regulation are also described in pediatric cancers9 but will not be discussed here.

In this review, we describe recent molecular knowledge on fusion genes in pediatric cancers. We then outline the potential therapeutic utility of fusion genes, their relevance in murine models, and we...
describe recent findings in the clinical setting as well as challenges associated with their discovery.

History of Fusion Genes

Fusion genes were primarily discovered in leukemia and other hematological diseases. In 1962, Nowell described the first specific chromosomal rearrangement in chronic myeloid leukemia (CML). In 1973, Rowley highlighted the existence of a reciprocal translocation between the long arms of chromosomes 9 and 22, t(9q; 22q), named the “Philadelphia chromosome.” Twenty years later in the early 1980s, molecular studies of the translocation revealed a fusion between the 3′ part of the ABL1 gene in chromosome 9 and the 5′ part of the BCR1 gene in chromosome 22. This translocation resulting in BCR-ABL was one of the first specific alterations found in human neoplasm. Ten years later, a tyrosine kinase inhibitor (TKI) targeting BCR-ABL, imatinib mesylate (Glivec; Novartis), was discovered and approved by the Food and Drug Administration (FDA) in 2001 as a cancer treatment for CML. This TKI was one of the first targeted therapies used for cancer treatment and led to a major improvement of CML prognosis, with a remission in 80% of cases. After this time, it became clear that fusions can drive cancer development and are potential therapeutic targets in anti-cancer treatment in a very specific manner. Consequently to imatinib mesylate’s history, fusion genes in hematological neoplasia and sarcoma were discovered and, more recently, high-resolution sequencing technologies enabled exploration of more fusion genes in other tumors. It should be noted that most of the studies and discoveries to date were made among adult patients; nevertheless, some pediatric cancers have been described to also harbor fusion genes that are involved in patients’ diagnosis and/or targeted treatments (Table 2). However, more explorations are needed to not only identify new targets but also to understand the function of fusion genes and their correlation to tumor initiation and progression. Indeed, of all of the multiple fusions identified by next-generation sequencing in each pediatric pathology (Table 2), only a few of them received attention for extensive functional studies, thus precluding the investigation and discovery of new druggable targets.

Molecular Mechanisms Underlying Fusion Genes

Four different structural chromosomal rearrangements are observed in gene fusion: translocation, insertion, inversion, and deletion. According to the coding or regulatory sequences affected, the physiological consequences are different.

Abnormal mRNA Expression

One of the consequences of fusion genes is the abnormal expression of one of the genes involved in the fusion (usually the 3′ part of a gene). More precisely, the 5′ part of a gene (gene 1), including the regulatory sequences and the 5′ UTR part, is fused to the 3′ part of a second gene (gene 2), which often only includes the coding sequence and the 3′ UTR. The consequence of such fusion is that if gene 1 is constitutionally expressed or highly expressed and gene 2 is a proto-oncogene, then gene 2 will be upregulated by the promoter and regulatory sequences of gene 1. In this case, the result is a strong transcriptional activation of proto-oncogene 2, whose own regulatory elements are lost and is put under the complete control of the first gene. Fusion genes leading to abnormal protein expression were first described in adult tumors. Among the best-known examples are the fusions involving immunoglobulin genes and the MYC proto-oncogene, found in various hematological malignancies. Several translocations were found to be responsible for the fusion of MYC with other genes: t(8;14) led to IGH-MYC fusion, t(2;8) gave IGK-MYC, and t(8;22) resulted in IGL-MYC. MYC is an important transcription factor that binds to DNA in a non-specific manner to activate genes involved in cell cycle progression and inhibition of apoptosis. In these cases, the MYC gene is upregulated due to its 5′ fusion with immunoglobulin regulatory sequences (promoter and enhancers). Indeed, the fusion results in constitutive activation of the MYC oncogene, increasing cell proliferation and tumorigenicity.

Another often-mentioned example is the fusion TMPRSS2-ERG found in 50% of prostate cancers, affecting chromosome 21. This rearrangement puts ERG under the complete dependence of TMPRSS2 regulatory sequences, upregulated by androgens present in the tissue. This leads to an overexpression of ERG.

Chimeric Oncoproteins

Chromosomal rearrangements can also generate chimeric oncoproteins. In this case, both coding sequences of respective functional domains are conserved in the fusion. Its translation results in a protein with functional domains derived from both of the fused genes. Most of the chimeric oncoproteins characterized act as aberrant transcription factors, with a strong activation of unspecific target genes resulting in cell transformation.

Table 1. Syndromes of Genetic Predisposition Found among Children with Cancer and the Corresponding Affected Genes

Genetic Predisposition	Affected Gene(s)
Li-Fraumeni syndrome	TP53/CHK2/SNF5
Familial Wilms tumor	FTW1/2
Familial retinoblastoma	RB1
Fanconi anemia	Fanca
IgA deficiency	IGAD1
Blood syndrome	BLM
Wiskott-Aldrich syndrome	WAS
Ataxia telangiectasia	ATM
Familial adenomatous polyposis	APC
Hereditary non-polyposis colon cancer	MSH2/MLH1/PMS2
Tuberous sclerosis	TSC1/2
Beckwith-Wiedemann syndrome	Complex
Xeroderma pigmentosum	ERCC2

*Children’s Health and the Environment, WHO Training Package for the Health Sector (World Health Organization, http://www.who.int/ceb).
Pathology (Total No. of Recurrent Fusions)	Fusion Transcript (Most Frequent and Recurrent)	Chromosome Abnormality	Diagnosis	Reference	Prognosis
Leukemia (113)					
NUP98-NSD1	(5;11)	acute monoblastic, myeloblastic, and myelomonocytic leukemia	90	poor	
SET-NUP214	del(9)	acute monoblastic, myeloblastic, and myelomonocytic leukemia; T-ALL	91	poor	
IgH-MYC/CEBPDA/BCL2/CRLF2/ID4	(8;14), (8;14), (14;18), (X;14), (6;14)	ALL	92-96	poor	
MYC rearranged	(8;14), (2;8), (8;22)	various hematologic malignancies	97-99	poor	
TCRA/B/D rearranged		ALL	100-102	no prognostic value	
KMT2A-AFF1	t(1;11)	ALL, biphenotypic leukemia, AML	103	poor	
E2A-PBX1	t(1;19)	B-ALL	104	poor	
MLL-AF4	t(4;11)	B-ALL	106	poor	
PAX5-ETV6	t(9;12)	B-ALL	107	good	
ETV6-RUNXI	t(12;21)	B-ALL, AML, acute myeloblastic leukemia	108	good	
CALM-AF10	t(10;11)	T-ALL	109	poor	
TEL-AML1/RUNXI	(8;12), (12;21)	T-ALL, B-ALL	110	good	
AML-ETO	(8;21)	AML	111	good	
RPN1-PRDM16/MECOM	t(1;3), inv(3)	AML	112-113	poor	
NPM1-MLF1	t(3;5)	AML, acute erythroleukemia	114	poor	
DEK-CAN	t(6;9)	AML, acute myeloblastic leukemia	115	poor	
ETV6-MDS-1/CHIC2	(3;12), (4;12)	AML, acute myeloblastic leukemia	116-117	poor	
RUNXI-CBFA2T3	t(16;21)	AML, acute myeloblastic leukemia, acute myelomonocytic leukemia	118	good	
CBFB-MYH11	inv(16)	AML, acute monoblastic leukemia, acute myelocytic leukemia, CML	119	good	
PML-RARA	t(15;17)	AML, biphenotypic leukemia, acute promyelocytic leukemia, CML	120-121	good	
USP16-RUNXI	del(21)	CML	122	poor	
BCR-ABL	t(9;22)	CML; pediatric ALL; undifferentiated and biphenotypic leukemia	123-124	good	
IgH-MYC	(8;14)	various hematologic malignancies	125	good	
KMT2A-ELL/MLLT1	(11;19)	various hematologic malignancies	126	poor	
MLL rearranged		ALL, biphenotypic leukemia, AML	127	poor	
ZMYM2-FGFR1	(8;13)	various hematologic malignancies	128	poor	
Lymphomas (41)					
IGK-BCL10/BCL11A/FOXP1	(1;14), (2;14), (3;14)	extrasosyal marginal zone B cell lymphoma, CIL, diffuse large B cell lymphoma, MALT lymphoma	129-131	poor for t(1;14); no information available for t(2;14) and t(3;14)	
IGK-BCL2/KDSR/CDK6	t(2;18), (2;7)	follicular lymphoma, splenic marginal zone B cell lymphoma	132-133	no information available	
NPM1-ALK	t(2;5)	mature B cell neoplasms, mature T cell neoplasms	132	good	
IGL-BCL2	t(18;22)	mature B cell neoplasms, CIL	134	poor	
IGK/IGK-MYC	(2;8), (8;14)	various B cell neoplasms	135	poor	
IGK/HSP90AA1/IGL-BCL6	(3;14), (3;22)	various lymphoma types	136,137	good	
IGK-CCND1/BCL2/CEBPDA	(11;14), (14;18), (14;19)	various lymphoma types	138	no prognostic value	

(Continued on next page)
To date, several chimeric oncoproteins have been identified in blood malignancies but very few are described in carcinomas. One well-known example is the fusion RET-PTC found in papillary thyroid carcinomas, where RET (a gene involved in the regulation of cell survival, growth, differentiation, and migration) is constitutionally activated. Concerning pediatric cancers, EWS-FLI1 fusion is found in 85% of Ewing’s sarcoma, which results in a chimeric oncoprotein between the amino terminus of EWS and the carboxy terminus of FLI, giving aberrant transcriptional activity. In rhabdomyosarcomas, PAX3/7-FKHR fusions are found in 80%–85% of alveolar rhabdomyosarcomas and contain the PAX3/PAX7 DNA binding domain and the FKHR transcriptional activation domain. Therefore, PAX target genes are highly transcriptionally activated. Occasionally, cryptic fusion partners occur in these fusion-driven tumors.

To date, several chimeric oncoproteins have been identified in blood malignancies but very few are described in carcinomas. One well-known example is the fusion RET-PTC found in papillary thyroid carcinomas, where RET (a gene involved in the regulation of cell survival, growth, differentiation, and migration) is constitutionally activated. Concerning pediatric cancers, EWS-FLI1 fusion is found in 85% of Ewing’s sarcoma, which results in a chimeric oncoprotein between the amino terminus of EWS and the carboxy terminus of FLI, giving aberrant transcriptional activity. In rhabdomyosarcomas, PAX3/7-FKHR fusions are found in 80%–85% of alveolar rhabdomyosarcomas and contain the PAX3/PAX7 DNA binding domain and the FKHR transcriptional activation domain. Therefore, PAX target genes are highly transcriptionally activated. Occasionally, cryptic fusion partners occur in these fusion-driven tumors.
Gene Function Truncation

More recently, studies have shown a third impact of fusion genes resulting in the entire cutout of gene domains. The truncated gene is generally a tumor suppressor gene and is therefore inactivated by the truncation, leading to cell transformation. Inactivation of the tumor suppressor gene can occur through different mechanisms: the fusion can either act as the second hit (e.g., CDKN2A or NFI genes) or lead to a dominant effect on the wild-type protein (e.g., PAX5 fusions) or even provoke haploinsufficiency of the disrupted protein (e.g., RUNX1 fusions).29–32

Another category that does not involve chromosomal rearrangements is the occurrence of read-through transcripts. This type of modification results in transcription-induced gene fusions (TIGFs) that are not induced by a modification in the DNA sequence but are a consequence of alternative splicing. Thus, the genes stay located far apart in the same chromosome or on different chromosomes, but mRNA fusion transcripts are formed as a consequence of cis-TIGFs or trans-TIGFs.33 Most TIGFs probably represent random in vivo events with no impact on the cell’s functions and some are also artifacts of deep sequencing. Nevertheless, some cis-TIGFs have been associated with specific organ localization, such as SLC45A3-ELK4 and MSMB-NCOA4 detected in normal and neoplastic prostate tissue33,34 and SCNN1A-TNFRSF1A and CTSD-IFITM10 identified in normal and neoplastic breast tissue.35

Relevance of Fusion Genes in Pediatric Cancers

Leukemia is the most common type of pediatric cancer (around 30% of total cases) and most of the recurrent identified fusions were found in this pathology, as detailed in Table 2.

Concerning pediatric solid tumors, several fusions have been described and can be grouped into two categories. The first category concerns fusions that were considered until now only as diagnostic markers, and the second category includes fusions providing new therapeutic targets.

In the first category, the most described example is Ewing’s sarcoma. Ewing’s sarcoma is characterized by a reciprocal translocation t(11;22) (q24;q12) leading to the fusion between EWS and FLI1 genes.36 The corresponding chimeric protein acts as an aberrant transcription factor. Different translocations have been found in patients suffering from Ewing’s sarcoma involving TET/ETS partners and the list is still growing.37 Another example of fusions belonging to the first category are PAX3/7-FKHR fusions found in alveolar rhabdomyosarcomas due to the translocation t(2;13)(q35;q14) or, less commonly, t(1;13)(p36;p14), leading to PAX3-FOXO1 (55%–70%) or PAX7-FOXO1 (10%–22%) fusion genes, respectively.38 The resulting fusion proteins harbor high transcriptional activity due to the juxtaposition of the PAX protein DNA binding domain and the FKHR activation domain.38 In another example, Honeyman et al.39 identified the DNAJB1-PRKCA fusion in 100% of patients with fibrolamelar hepatocellular carcinoma (FLHCC), a rare subset of pediatric hepatocarcinoma. Although its function is not yet elucidated, this fusion provides a new and unique diagnostic biomarker for patients with FLHCC. Another fusion in this category is C11orf95-RELA, which was identified recently in ~70% of supratentorial ependymomas.40 RELA is a gene encoding for the RelA p65 subunit of the nuclear factor kB (NF-kB) complex. When fused, RELA loses its upstream regulator sequences (5’ UTR) but the coding sequence is conserved. The function of C11orf95 is still unknown. C11orf95 has been found fused with different partners, suggesting a possible role of its zinc-finger domains.41 The C11orf95-RELA fusion seems to arise through chromothripsis and leads to a constitutive activation of NF-kB signaling.40 Ependymomas are classified according to their location in the supratentorial, infratentorial region of the brain or the spinal cord.42 It is important to highlight that C11orf95-RELA is detected only in supratentorial ependymomas,43 thus providing a new molecular diagnostic biomarker and possible new therapeutic target. Finally, the reciprocal translocation t(X;18; p11,q11), which is found in all cases of synovial sarcoma, leads to fusions involving the SYT gene (also named SXX18; namely, SYT-SSX1 or SYT-SSX2 fusions).43,44 The resulting chimeric oncoproteins contain the activation domain of SYT and the regulatory domain of SXX1/2 genes. The newly protein appears to be a transcriptional co-regulator via protein-protein interactions and it has been described to be able to regulate SWI-SNF chromatin remodeling complexes.45 This fusion is not found in any other tumor types which makes SYT-SSX an important diagnostic biomarker, and also relevant for prognostic purposes.44

The second category includes fusions with therapeutic outcomes, such as ASPSCR1-TFE3,46 FGFR1-TACC1 and FGFR3-TACC3,47 KIAA1549-BRAF,48 NPM-ALK,49,50 and NTRK fusions (R. Nagasubramanian et al., 2016, J. Clin. Oncol., abstract).51 ASPSCR1-TFE3 [t(X;17)(p11.2;q25)] and, more generally, TFE3 fusions are found in more than 95% of patients with alveolar soft-part sarcoma and in a subset of patients with renal cell carcinoma.46,55 This oncoprotein acts also as an aberrant transactivator, stronger than the native TFE3 protein, and has a nuclear localization. MET is among the genes strongly transactivated by ASPSCR1-TFE3 protein.56 This may lead to sensitivity to MET inhibitors in vitro,57 which is currently being explored in a clinical trial with crizotinib (NCT01524926).

The FGFR1-TACC1 and FGFR3-TACC3 fusions were first identified in glioblastoma multiforme (GBM; also known as grade IV astrocytoma). They have since been found in various cancer types, such as bladder cancer, lung adenocarcinoma, head and neck cancer, nasopharyngeal carcinoma, and esophageal squamous cell carcinoma.47–49 The rearrangement that fuses the tyrosine kinase domains of fibroblast growth factor receptor (FGFR) to the transforming acidic coiled-coil (TACC) harbors a constitutive kinase activity. Interestingly, the inhibition of FGFR kinase by pharmacological agents counteracts the oncogenicity of the fusion in vitro and in vivo in glioblastoma.48 Therefore, the discovery of FGFR-TACC fusions is of great interest and the role of FGFR inhibitors is currently being explored in clinical trials with multiple FGFR kinase inhibitors, such as BGJ398 and AZD4547 (NCT01975701 and NCT02824133).
KIAA1549-BRAF also belongs to the second category of fusions and is found in 65%–75% of sporadic pilocytic astrocytomas, but is also detected in other pediatric brain tumors. Importantly, KIAA1549-BRAF leads to an over-activation of mitogen-activated protein kinase (MAPK) signaling, resulting in an oncogenic addiction to this pathway. The first experiments showing its therapeutic potential involved targeting cells transfected with the KIAA1549-BRAF fusion using the BRAF inhibitor vemurafenib (PLX4032), a selective BRAFV600E inhibitor, as BRAF mutations also result in MAPK signaling activation. Although the anti-tumor effects of vemurafenib in BRAF (V600E)-mutated cells are well demonstrated, the treatment of cell lines expressing KIAA1549-BRAF with PLX4032 resulted in activation of the MAPK pathway, leading to increased cell proliferation in vitro and tumor growth in vivo.

The mechanism underlying this paradoxical activation was explained by Poulikos et al., who described that PLX4032 is able to bind on RAF isoforms and induce interaction with RAS-GTP, which leads to the pathway activation. In BRAF (V600E)-mutated tumors, the level of RAS may not be sufficient to transactivate wild-type BRAF. This RAS activation is notably discussed as a mechanism responsible for the development of squamous cell carcinoma in normal skin tissue after BRAFV600E-inhibiting treatment.

Second-generation BRAF inhibitors such as PLX PB-3 are currently being developed, which lead to inhibition of KIAA1549-49-BRAF with decreased proliferation and tumorigenicity and may not induce the paradoxical MAPK activation. As a result, they could be more efficient for patients carrying KIAA1549-BRAF fusions (S.-S. Lang et al., 2012, Neurosurgery, abstract).

Because MEK is a downstream effector of RAF in the MAPK signaling pathway, KIAA1549-BRAF-positive cells may consequently be sensitive to MEK inhibitors (e.g., selumetinib and trametinib) that are able to block the pathway downstream of RAF and thus independently from the RAF alteration underlying the pathway activation. In a pre-clinical study, selumetinib (AZD6244) showed evidence of anti-tumor activity in a juvenile pilocytic astrocytoma xenograft model. This is being currently explored in patients carrying KIAA1549-BRAF fusions (NCT01089101 and NCT02124772). Taken together, these findings demonstrate the importance of testing the suitability of a drug in a relevant setting. Their effectiveness is dependent on the cellular and the molecular context of the targeted tumors, and the “general” use of kinase inhibitors may be considered with caution.

Another example is the fusion NPM-ALK, caused by the translocation t(2;5)(p23;q35), which fuses the dimerization domain of NPM with the tyrosine kinase domain of ALK. ALK is a tyrosine kinase receptor; therefore, the fusion gives a chimeric oncoprotein with a constitutively activated kinase. The translocation is found in 30%–50% of advanced-stage anaplastic large cell lymphoma cases in adults, 90% of anaplastic large cell lymphoma cases among children are ALK positive. This fusion can be targeted via ALK inhibitors such as crizotinib or ceritinib, which have been registered for patients carrying non-small cell lung cancer (NSCLC) with ALK translocations and gave promising results with high rates of response. Promising results have also been reported in pediatric patients with anaplastic large cell lymphoma (NCT00939770 and NCT01742286) (B. Georger et al., 2013, J. Clin. Oncol., abstract).

Finally, and more recently, NTRK fusions involving either NTRK1, 2, or 3 located on chromosome 1 q21-q22 have raised great interest in the clinical setting, as they are found in different neoplasms in adults and children. A total of 22 different 5 partners were found to be fused with NTRK genes. NTRK codes for the family of tropomyosin receptors, which, once fused, harbor a constitutively activated kinase function. This leads to cancer progression by activating different oncogenic pathways such as the MAPK or AKT pathways. Among childhood neoplasms harboring NTRK fusions are found soft-tissue sarcoma, congenital infantile fibrosarcoma, glioblastoma, low-grade glioma, pilocytic astrocytoma, congenital mesoblastic nephroma, acute myeloid leukemia, and various other tumor types. Therefore, for these patients, targeting NTRK is of great clinical interest and a novel inhibitor (LOXO-101) is currently being evaluated in the clinical setting (NCT02637687) (R. Nagasubramanian et al., 2016, J. Clin. Oncol., abstract).

Taken together, all of these studies emphasize the notion that fusions can be of great clinical interest not only as new therapeutic targets but also as biomarkers. Indeed, fusions specific to a cancerous disease are ideal for diagnostic purposes and for subgroup classifications; therefore, they can also be used as prognostic biomarkers. Some fusions, such as BCR-ABL in CML or NPM-ALK in ALCL, are even used to monitor the tumor load and treatment response (as minimal residual disease markers). Hence, even individual or non-recurrent fusions could have clinical value in an individual patient. It should be kept in mind that current treatments are at their limits of toxicity and efficacy. Accordingly, specific treatments are needed to treat non-responsive patients and also to improve the quality of life of cured patients.

Issues Facing Discovery of Fusion Genes in Childhood Cancers

Analyses of fusions have a strong interest in the field of childhood cancers. The discovery step is still in its infancy for these malignancies, probably because studies addressing the discovery of fusion genes encounter important difficulties. The first difficulty comes from the biopsy and the way in which the DNA or RNA was extracted. The purity and quantity of the extracted material will impact the quality of further analysis. Most of the studies involved in fusion discovery use next-generation sequencing (NGS) techniques and new bioinformatics analysis methods. It is necessary to combine the strengths of both sequencing technologies and computational strategies, together with the discrimination of events tightly correlated with cancer development. One difficulty encountered in gene fusion detection is the ability of discrimination between existent new discoveries and computer analysis artifacts. However, too stringent selection parameters applied to avoid false positives can preclude the detection of effective oncogenic fusions. Being able to cut out the artifacts from the analysis is one of the biggest challenges, since current techniques...
of deep sequencing are more sensitive than before and allow the detection of rare events; however, the risk of false positives is still present. It is also important to note that each bioinformatics tool used for fusion detection and its subsequent algorithms differ in terms of sensitivity and specificity, depending on the different filters and criteria applied. Therefore, combining several tools and even different types of analysis could be highly relevant.

Moreover, cancer and carcinomas especially often have highly rearranged genomes, and many of the gene fusions that are detected can represent “passenger” events that are caused by chromosomal instability. These passenger rearrangements are secondary events present in the tumor, which are different from the primary oncogenic event responsible for the development of the disease. They are particularly frequent in relapsing patients, where treatments by radiotherapy and ionization can lead to “passenger fusions” not involved in oncogenic processes. Among these patients, it is more difficult to distinguish the fusion gene capable of an oncogenic effect from the passenger fusions that can be constitutively present in normal and cancerous cells.

Regarding pediatric cancers, the emergence of NGS and new informatics tools to detect fusions have aimed to detect recurrent fusions with expected targetable domains, such as fusions with tyrosine kinase activities. However, considering the rarity of these types of neoplasia, the probability of finding rearranged genes is much lower than for adult cohorts. In addition, the major difficulty is linked to the intratumoral heterogeneity, where subclonal fusion events can be weakly detectable, making their identification more complex.

Pertinence of Fusion-Based Murine Models in Childhood Cancers

Most in vivo studies have assessed the tumorigenic potential of a fusion gene in xenografted tumors on immunocompromised animals. Despite the validity of this experimental approach, some questions (e.g., the role of a fusion gene in early stages of the development of a pediatric cancer) remain difficult to answer using xenografted tumors. Therefore, several mouse models were developed in order to better understand pediatric tumors’ oncogenesis. These models helped to demonstrate the importance of (1) the cell of origin, (2) the differentiation stage, and (3) a second hit in complement to the first one (fusion oncogene) necessary for disease development. With the first desire to provide new models to study pediatric cancers, four striking examples of Ewing’s sarcoma, myxoid liposarcoma, alveolar rhabdomyosarcoma, and synovial sarcoma models have provided major information on the tumorigenesis mechanisms of fusion-harboring pediatric cancers.

Lin et al. explored the role of EWS/FLI1 in Ewing’s sarcoma and showed that its specific expression in mesenchymal cells of the embryonic limb buds impaired the development of mouse limbs but did not induce tumors. This suggested that the cell of origin may not be a mesenchymal stem cell. Interestingly, when TP53 was simultaneously deleted, EWS-FLI1 promoted tumor formation. Therefore, the presence of additional mutations notably in TP53 seems to be required for the transformation process by EWS-FLI in Ewing’s sarcoma.

In myxoid liposarcoma, previous studies demonstrated that the introduction of the FUS-CHOP transgene into the mouse genome led to the development of liposarcomas, but its specific expression in differentiated aP2-expressing adipocytes did not result in tumor formation, suggesting the importance of the “stage of differentiation” in driving the tumors.

In alveolar rhabdomyosarcoma, the expression of PAX3-FKHR fusion in mouse primary mesenchymal stem cells did not lead to tumor formation, while its expression in differentiated muscle cells at a late stage of embryogenesis induced tumors but at a low frequency. The addition of TP53 or INK4A/ARF disruption increased the frequency of alveolar rhabdomyosarcoma (RMS), emphasizing the fact that additional mutations to PAX3-FKHR fusion might be necessary to generate alveolar RMS.

Finally, in synovial sarcoma, tumors were observed in mice models only when the fusion gene SYT-SSX2 was expressed in immature myoblasts. This observation again highlights the importance of both the cell of origin and the differentiation stage factors in fusion-driven tumorigenesis.

What Is Next?

Despite all of the emerging challenges related to fusion detection, identifying new fusions remains one of the most important priorities of research in pediatric cancers where new therapeutic targets are needed. The difficulty in discovering new fusion genes is minimal compared to the vast clinical consequences in terms of prognosis, diagnosis, and new therapeutic opportunities and to the importance of understanding the molecular mechanisms underlying a fusion gene.

Characterization of genomic alterations found in pediatric cancers would clarify their relevance, help to classify patients into subgroups, and aid in the discovery of new therapeutic, prognostic, diagnostic, or predictive biomarkers. Moreover, functional studies are strongly needed to better understand the relevance of the biological pathways involving fusion genes in the development of pediatric malignancies. Indeed, well-characterized fusion genes could reveal new targets in pediatric cancers for which there are currently no specific therapies available.

It is well known that only a small number of relevant molecular subsets have been characterized (e.g., the four subtypes of medulloblastoma); therefore, particular attention should be given to the rare histological subgroups. These subsets could be of strong interest for diagnosis determination, understanding new mechanisms of tumor progression or resistance, and could help to bring forward new unexpected therapeutic targets.
With small histological subgroups, high priority should be given to the future study of genomic alterations at relapse. In fact, several studies have reported the importance of analyzing tissues at relapse, and clinical trials such as MAPPYACTS (molecular profiling for pediatric and young adult cancer treatment stratification) conducted in our institute will contribute to this investigation (NCT02613962). The study of patients’ genomic patterns at relapse could lead to better knowledge of cancer-driving and resistance mechanisms but could also allow better classification of patients.

Moreover, knowing that pediatric cancers are rare diseases that differ from one patient to another, an isolated fusion found only in a single patient should not be discarded and “case-by-case” studies as well as genome-based clinical trials are required. To counteract the hurdles due to the rarity of pediatric cancers, data sharing of high-throughput genome-based clinical trials are required. To counteract the hurdles patient should not be discarded and new therapeutic technologies are emerging regarding the targeting of junction oncogenes, such as the use of small interfering RNA (siRNA). siRNAs allow inhibition of gene expression at the mRNA level, avoiding their translation. This type of strategy offers promising opportunities for targeted therapy, since it specifically targets fusion transcripts only expressed in tumor cells, without affecting other genes. Our laboratory showed previously that the inhibition of fusion oncogenes responsible for tumor progression of thyroid cancer (RET/PTC) or prostate cancer (TMPRSS2-ERG) by the injection of vectorized siRNAs led to a decrease in tumor growth.

An increased number of new fusion genes are expected to be discovered, owing to worldwide projects (The Cancer Genome Atlas [TCGA], https://tcga-data.nci.nih.gov/docs/publications/tcga/) and to data-sharing platforms (e.g., the International Cancer Genome Consortium [ICGC] platform, https://icgc.org/; and the European Genome-phenome Archive [EGA], https://ega.crg.eu/). This will provide new opportunities of treatments, such as therapies based on siRNA technology for children carrying neoplasia.

ACKNOWLEDGMENTS
This study is supported by funding from “the Fondation ARC pour la recherche sur le cancer” within the Joint Translational Call 2014 “Translational research on human tumour heterogeneity to understand and overcome recurrence and resistance to therapy” TRANSCAN-2 JTC2014, ERA-NET (“Targeting Of Resistance in PEDiatric Oncology” [TORPEDO]).

REFERENCES
1. American Cancer Society (2016). Key statistics for childhood cancers. https://www.cancer.org/cancer/cancerinchildren/detailedguide/cancer-in-children-key-statistics.
2. Bahadur, G. and Hindmarsh, P. (2000). Age de
3. Minnesota Department of Health (2016). Childhood cancers: facts and figures. https://apps.health.state.mn.us/mndata/cancer_child_childbraincancer_year,
4. Fidler, M.M.; Reulen, R.C., Winter, D.L., Kelly, J., Jenkinson, H.C., Skinner, R., Frohisher, C., and Hawkins, M.M.; British Childhood Cancer Survivor Study Steering Group (2016). Long term cause specific mortality among 34 489 five year survivors of childhood cancer in Great Britain: population based cohort study. BMJ 354, i351.
5. Marshall, G.M., Carter, D.R., Cheung, B.B., Liu, T., Mateos, M.K., Meyerowitz, J.G., and Weiss, W.A. (2014). The prenatal origins of cancer. Nat. Rev. Cancer 14, 277–289.
6. Zhang, J., Walsh, M.F., Wu, G., Edmonson, M.N., Gruber, T.A., Easton, J., Hedges, D., Ma, X., Zhou, X., Yergeau, D.A., et al. (2015). Germline mutations in predisposition genes in pediatric cancer. N. Engl. J. Med. 373, 2336–2346.
7. Kaatsch, P. (2010). Epidemiology of childhood cancer. Cancer Treat. Rev. 36, 277–285.
8. Kupfer, G.M. (2015). Childhood cancer epidemiology: overview, tools of study, cancer incidence. http://emedicine.medscape.com/article/989841-overview.
9. Huether, R., Dong, L., Chen, X., Wu, G., Parker, M., Wei, L., Ma, J., Edmonson, M.N., Hedlund, E.K., Rusc, M.C., et al. (2014). The landscape of somatic mutations in epigenetic regulators across 1,000 paediatric cancer genomes. Nat. Commun. 5, 3630.
10. Orentas, R.J., Lee, D.W., and Mackall, C. (2012). Immunotherapy targets in pediatric cancer. Front. Oncol. 2, 3.
11. Vogelstein, B., Papadopoulos, N., Velculescu, V.E., Zhou, S., Diaz, L.A., Jr., and Kinzler, K.W. (2013). Cancer genome landscapes. Science 339, 1546–1548
12. Duesberg, P.H. (1987). Cancer genes generated by rare chromosomal rearrangements rather than activation of oncogenes. Med. Oncol. Tumor Pharmacother. 4, 163–175.
13. Yoshiihara, K., Wang, Q., Torres-Garcia, W., Zheng, S., Vegenosa, R., Kim, H., and Verhaak, R.G. (2015). The landscape and therapeutic relevance of cancer-associated transcript fusions. Oncogene 34, 4845–4854.
14. Watz, A.L., Ooms, A., Gadd, S., Gerhard, D.S., Smith, M.A., Guidy Auvil, J.M., Meerman, D., Chen, Q.R., Hsu, C.H., Yan, C., et al. (2015). Recurrent DGC8R, DROSHA, and SIX homeodomain mutations in favorable histology Wilms tumors. Cancer Cell 27, 286–297.
15. Nowell, P.C. (1962). The minute chromosome (Phl) in chronic granulocytic leukaemia. Blut 8, 65–66.
16. Rowley, J.D. (1973). Letter: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243, 290–293.
17. de Klein, A., van Kessel, A.G., Grosveld, G., Bartram, C.R., Hagemeijer, A., Bootma, D., Spurr, N.K., Heisterkamp, N., Groffen, J., and Stephenson, J.R. (1982). A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukaemia. Nature 300, 765–767.
18. Basel, N. (2001) FDA approves Novartis’ unique cancer medication Glivec®. http://www.evaluategroup.com/Universal/View.aspx?type=StoryId=5838.
19. Mertens, F., Johansson, B., Fioretos, T., and Mitelman, F. (2015). The emerging complexity of gene fusions in cancer. Nat. Rev. Cancer 15, 371–381.
20. Tomlins, S.A., Rhodes, D.R., Perner, S., Dhanasekaran, S.M., Mehra, R., Sun, X.-W., Varambally, S., Cao, X., Tchinda, J., Kuebler, R., et al. (2005). Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310, 644–648.
21. Ju, Y.S., Lee, W.-C., Shin, J.-Y., Lee, S., Bleazard, T., Won, J.-K., Kim, Y.T., Kim, J.L., Kang, I.H., and Seo, J.S. (2012). A transforming KIF5B and RET gene fusion in lung adenocarcinoma revealed from whole-genome and transcriptome sequencing. Genome Res. 22, 436–445.
22. Mitelman, F., Johansson, B., and Mertens, F. (2007). The impact of translocations and gene fusions on cancer causation. Nat. Rev. Cancer 7, 233–245.
23. Griffiths, A.J.F., Gelbart, W.M., Miller, J.H., and Lewontin, R.C. (1999). Chromosomal rearrangements. In Modern Genetic Analysis, A.J.F. Griffiths, W.M. Gelbart, J.H. Miller, and R.C. Lewontin, eds. (W.H. Freeman), http://www.ncbi.nlm.nih.gov/books/NBK21367/.
24. Küppers, R. (2005). Mechanisms of B-cell lymphoma pathogenesis. Nat. Rev. Cancer 5, 251–262.
25. Schwab, M., ed. (2012). Encyclopedia of Cancer (Springer), http://link.springer.com/10.1007/978-3-642-16483-5.
26. Santoro, M., Melillo, R.M., and Fusco, A. (2006). RET/PTC activation in papillary thyroid carcinoma: European Journal of Endocrinology Prize Lecture. Eur. J. Endocrinol. 155, 645–653.

27. Ohno, T., Rao, V.N., and Reddy, E.S. (1993). EWSFili-1 chimeric protein is a trans-criptional activator. Cancer Res. 53, 5859–5863.

28. Barr, F.G. (2001). Gene fusions involving PAX and FOX family members in alveolar rhabdomyosarcoma. Oncogene 20, 5736–5746.

29. Duro, B., Bernard, O., Della Valle, V., Leblanc, T., Berger, R., and Larsen, C.J. (1996). Inactivation of the P16INK4/MTS1 gene by a chromosome translocation (9;14)(p21-22;q11) in an acute lymphoblastic leukemia of B-cell type. Cancer Res. 56, 848–854.

30. Storlazzi, C.T., Von Steyern, F.V., Domanski, H.A., Mandahl, N., and Mertens, F. (2005). Biallelic somatic inactivation of the NF1 gene through chromosomal translocations in a sporadic neurofibroma. Int. J. Cancer 117, 1055–1057.

31. Coyaud, E., Struski, S., Prade, N., Familiades, J., Eichner, R., Quelen, C., Bousquet, M., Mugneret, F., Talmant, P., Pages, M.P., et al. (2010). Wide diversity of PAX5 alterations in B-ALL: a Groupe Francophone de Cytogenetique Hematologique study. Blood 115, 3092–3097.

32. Agestarum, H., Liljebjörn, H., Lassen, C., Svedan, A., Richter, J., Vandenbergh, P., Johansson, B., and Forroets, T. (2007). Fusion gene-mediated truncation of RNU1 as a potential mechanism underlying disease progression in the 8p11 myeloproliferative syndrome. Genes Chromosomes Cancer 46, 635–643.

33. Nacu, S., Yuan, W., Kan, Z., Bhattacharya, S., Rivers, C.S., Stinson, J., Peters, B.A., Modrusan, Z., Jung, K., Seshagiri, S., and Wu, T.D. (2011). Deep RNA sequencing analysis of readthrough gene fusions in human prostate adenocarcinoma and reference samples. BMC Med. Genomics 4, 11.

34. Rickman, D.S., Pflueger, D., Moss, B., VanDoren, Y.E., Chen, C.X., de la Taille, A., Kuefer, R., Tewari, A.K., Setlur, S.R., Demicheli, F., and Rubin, M.A. (2009). SLC45A3-ELK4 is a novel and frequent erythroblast transformation-specific fusion transcript in prostate cancer. Cancer Res. 69, 2734–2738.

35. Varley, K.E., Gertz, J., Roberts, B.S., Davis, N.S., Bowling, K.M., Kirby, M.K., Nesmith, A.S., Oliver, P.G., Grizzle, W.E., Forero, A., et al. (2014). Recurrent read-through fusion transcripts in breast cancer. Cancer Res. 74, 287–297.

36. Delattre, O., Zucman, J., Plougastel, B., Derour, E., Peter, M., Kovar, H., Joubert, I., de Jong, P., Rouleau, G., et al. (1992). Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours. Nature 355, 635–638.

37. Yuan, L., Liu, Z.-H., Lin, Z.-R., Zhong, Q., and Zeng, M.-S. (2014). Detection of a recurrent DNAJB1-PRKACA chimeric transcript in hepatocellular carcinoma. Science 343, 913–916.

38. Sankar, S., and Lessnick, S.L. (2011). Promiscuous partnerships in Ewing sarcoma. Mol. Ther. 19(1), 162–167.

39. Honeyman, J.N., Simon, E.P., Robine, N., Chiaroni-Clarke, R., Darcy, D.G., Lim, J.I.P., Gleason, C.E., Murphy, J.M., Rosenberg, B.R., Teegan, L., et al. (2014). Investigation of IGF2, Hedgehog and fusion gene expression in ependymoma. Cancer Genet. 204, 902–909.

40. Parker, M., Mohankumar, K.M., Punchhiwara, C., Weinich, R., Dalton, J.D., Li, Y., Lee, R., Tatervossian, R.G., Phoenix, T.N., Thiruvengadam, R., et al. (2014). Detection of a recurrent DNAJB1-PKACA chimeric transcript in fibroblastoid hepatocellular carcinoma. Science 343, 1010–1014.

41. Jones, D.T.W., Kocialkowski, S., Liu, L., Pearson, D.J., and Johnson, M.L. (2015). FGFR3-TACC3: A novel gene fusion in cerebral cancer. Gynecol Oncol Rep 13, 53–56.

42. Amatu, A., Sartore-Bianchi, A., and Siena, S. (2016). NTRK gene fusions as novel targets of cancer therapy across multiple tumour types. ESMO Open 1, e000323.

43. Yuan, L., Iliopoulos, A., Holohan, C., Noh, J.I., Bray, J., Holding, J.F., Giles, F.J., and Johnson, M.L. (2015). FGFR3-TACC3: A novel gene fusion in cerebral cancer. Cancer Res. 75, 6651–6658.

44. Headon, J., Eaves, C.I., and Eaves, A.J. (2011). The role of SF101 in the TFE3 transcription factor pathway in malignant cells. Cancer Res. 71, 727–734.

45. Clark, J., Rocques, P.J., Crew, A.J., Gill, S., Shiplow, J., Chan, A.M., Gustinon, B.A., and Cooper, C.S. (1994). Identification of novel genes, SYT and SXX, involved in the t(X;18)(p11.2;q11.2) translocation found in human synovial sarcoma. Nat. Genet. 7, 502–508.

46. Palumbo, A., Fivano, D., and Leelamunee, P. (2013). The role of SYT-SSX fusions in the pathogenesis of synovial sarcoma. J. Clin. Oncol. 31, 1599–1608.

47. Yuan, L., Liu, Z.-H., Lin, Z.-R., Xu, L.-H., Zhong, Q., and Zeng, M.-S. (2014). Detection of a recurrent DNAJB1-PRKACA chimeric transcript in hepatocellular carcinoma. Science 343, 913–916.

48. Blando, J.M., Palumbo, A., Fivano, D., and Leelamunee, P. (2013). The role of SYT-SSX fusions in the pathogenesis of synovial sarcoma. J. Clin. Oncol. 31, 1599–1608.
PLX4032 inhibits ERK signaling and tumor cell proliferation in a V600E BRAF-selective manner. Proc. Natl. Acad. Sci. USA 107, 14903–14908.

Hatzivassiliou, G., Song, K., Yen, I., Brandhuber, B.J., Anderson, D.J., Alvarado, R., Ludlam, M.J., Stokey, D., Gloor, S.L., Vigers, G., et al. (2010). RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 464, 431–435.

Sievert, A.J., Lang, S.-S., Boucher, K.L., Madsen, P.I., Slaunwhite, E., Choudhari, N., Kellet, M., Storm, P.B., and Resnick, A.C. (2013). Paradigmatic activation and RAF inhibitor resistance of RAF protein kinase fusions characterizing pediatric astrocytomas. Proc. Natl. Acad. Sci. USA 110, 5957–5962.

Poulakis, P.I., Zhang, C., Bollag, G., Shokat, K.M., and Rosen, N. (2010). RAF inhibitors transactivate RAF dimers and ERK signaling in cells with wild-type BRAF. Nature 464, 427–430.

Holderfield, M., Nagel, T.E., and Sturt, D.D. (2014). Mechanism and consequences of RAF kinase activation by small-molecule inhibitors. Br. J. Cancer 111, 640–645.

Kolb, E.A., Gorlick, R., Houghton, P.J., Morton, C.L., Neale, G., Keir, S.T., Carol, H., Lock, R., Phelps, D., Kang, M.H., et al. (2010). Initial testing (stage 1) of AZD6244 (ARRY-142886) by the pediatric preclinical testing program. Pediatr. Blood Cancer 55, 668–677.

Gu, T.-J., Tothova, Z., Scheiben, B., Griffios, D., Holliday, D.G., and Sternberg, D.W. (2004). NPM-ALK fusion kinase of anaplastic large-cell lymphoma regulates survival and proliferative signaling through modulation of FOXO3a. Blood 103, 4622–4629.

Turner, S.D., Laman, T., Kenner, L., and Brugière, I. (2016). Anaplastic large cell lymphoma in paediatric and young adult patients. Br. J. Haematol. 173, 560–572.

Shaw, A.T., Yerap, B.Y., Solomon, B.J., Riely, G.J., Gainor, J., Engelman, J.A., Shapiro, G.L., Costa, D.B., Ou, S.H., Butaney, M., and et al. (2011). Effect of crizotinib on overall survival in patients with advanced non-small-cell lung cancer harbouring ALK gene rearrangement: a retrospective analysis. Lancet Oncol. 12, 1004–1012.

Nakagawara, A. (2001). Trk receptor tyrosine kinases: a bridge between cancer and neural development. Cancer Lett. 169, 107–114.

Arpinati, M., Tolomelli, G., Bochicchio, M.T., Castagnetti, F., Amabile, M., Bandini, G., Bonifazi, F., Stanzani, M., Rosti, G., Martinelli, G., and Baccarani, M. (2013). Molecular monitoring of BCR-ABL transcripts after allogeneic stem cell transplantation for chronic myeloid leukemia. Biol. Blood Marrow Transplant. 19, 735–740.

Kalnina, M., Krskova, L., Brizova, H., Kabickova, E., Kepak, T., and Kodet, R. (2010). Quantitative PCR detection of NPM/ALK fusion gene and CD30 gene survival in patients with advanced non-small-cell lung cancer harbouring ALK gene rearrangement: a retrospective analysis. Lancet Oncol. 12, 1004–1012.

80. Pérez-Losada, J., Pintado, B., Gutiérrez-Adán, A., Flores, T., Bañares-González, B., del Campo, J.C., Martín-Martin, J.F., Batteran, E., and Sánchez-García, I. (2000). The chimeric FUS/TLS-CHOP fusion protein specifically induces liposarcomas in transgenic mice. Oncogene 19, 2413–2422.

81. Pérez-Losada, J., Sánchez-Martin, M., Rodríguez-García, M.A., Pérez-Mancera, P.A., Pintado, B., Flores, T., Batteran, E., and Sánchez-García, I. (2000). Liposarcoma initiated by FUS/TLS-CHOP: the FUS/TLS domain plays a critical role in the pathogenesis of liposarcoma. Oncogene 19, 6015–6022.

82. Pérez-Mancera, P.A., Vicente-Dueñas, C., González-Herrero, I., Sánchez-Martin, M., Flores-Corral, T., and Sánchez-García, I. (2007). Fat-specific FUS-DFF3-transgenic mice establish PPARgamma inactivation is required to liposarcoma development. Carcinogenesis 28, 2069–2073.

83. Lagutina, I., Conway, S.J., Sublett, J., and Grosveld, G.C. (2002). Pax3-FKHR knock-in mice show developmental aberrations but do not develop tumors. Mol. Cell. Biol. 22, 7204–7216.

84. Keller, C., Arendel, B.R., Coffin, C.M., El-Bardeesy, N., DePinho, R.A., and Capcioni, M.R. (2004). Alveolar rhabdomyosarcomas in conditional Pax3-FKHR mice: cooperativity of Ink4a/ARF and Trp53 loss of function. Genes Dev. 18, 2614–2626.

85. Haldar, M., Hancock, J.D., Coffin, C.M., Lessnick, S.L., and Capcioni, M.R. (2007). A conditional mouse model of synovial sarcoma: insights into a myogenic origin. Cancer Cell 11, 375–388.

86. NHI (2015). NIH Childhood Genomics Workshop. [www.cancer.gov/types/childhood-cancers/children-genomics-workshop-summary.pdf]

87. Kool, M., Korshunov, A., Remke, M., Jones, D.T.W., Schlanslein, M., Northcott, P.A., Cho, Y.J., Koster, J., Schouten-Menater, A., van Vuurdern, D., et al. (2012). Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathol. 123, 473–484.

88. Mi, S., Lin, M., Brouwer-Visser, J., Heim, J., Smotkin, D., Hebert, T., Gunter, M.J., Goldberg, G.L., Zheng, D., and Hwang, G.S. (2016). RNA-seq identification of RACGAP1 as a metastatic driver in uterine carcinosarcoma. Clin. Cancer Res. 22, 4676–4686.

89. Elevedy, T.F., Oldridge, D.A., Bernard, V., Koster, J., Daage, I.C., Duskin, S.J., Schild, L., Bentahar, N.B., Bellini, A., Chizmad, M., et al. (2015). Relapsed neuroblastomas show frequent RAS-MAPK pathway mutations. Nat. Genet. 47, 864–871.

90. Jais, R.J., Fidler, C., Haas, O.A., Strickson, A.J., Watkins, F., Clark, K., Cross, N.C., Cheng, J.F., Aplan, P.D., Kearnery, L., et al. (2001). A novel gene, NSD1, is fused to NUP98 in the t(5;11)q(35;p15.5) in de novo childhood acute myeloid leukemia. Blood 98, 1264–1267.

91. Van Vleringerbe, P., Pieters, R., Beverloo, H.B., and Meijerink, J.P. (2008). Molecular-genetic insights in paediatric T-cell acute lymphoblastic leukaemia. Br. J. Haematol. 143, 153–168.

92. Akasaka, T., Balasas, T., Russell, L.J., Sugimoto, K.J., Majid, A., Walewska, R., Karran, E.L., Brown, D.G., Cain, K., Harder, L., et al. (2007). Five members of the CEBP transcription factor family are targeted by recurrent IGH translocations in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Blood 109, 3451–3461.

93. Nacheva, E., Kearney, L., Bower, M., Claviez, A., Gesk, S., Moorman, A.V., et al. (2008). t(6;14)(p22;q32): a frequent translocation in acute myeloid leukemia maps close to the putative promoter region of the DMRT2 gene. Genes Chromosomes Cancer 7, 123–127.

94. Russell, L.J., Akasaka, T., Majid, A., Sugimoto, K.J., Lorraine Karran, E., Nagel, L., Harder, L., Claviez, A., Gok, S., Moor tens, A.V., et al. (2008). t(6;14)(p22;p15.2): a new recurrent IGH@ translocation involving ID4 in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Blood 111, 387–391.

95. Rüssel, J., Dutta, U., Wand, D., Schlotte, D., and Hansmann, I. (2009). The Sp243 breakpoint of a constitutional t(6;9)(p12;p24) in a patient with chronic lymphocytic leukemia maps close to the putative promoter region of the DMRT2 gene. Cytogenet. Genome Res. 125, 81–86.

96. Vaishampayan, U.N., Mohamed, A.N., Dugan, M.C., Bloom, R.E., and Palutke, M. (2001). Blastic mantle cell lymphoma associated with Burkitt-type translocation and hypodiploidy. Br. J. Haematol. 115, 66–68.
Dreyling, M.H., Martinez-Climent, J.A., Zheng, M., Mao, J., Rowley, J.D., and Adriaansen, H.J., Soeting, P.W., Wolvers-Tettero, I.L., and van Dongen, J.J. (1991). www.moleculartherapy.org

Bernstein, M.L., Esseltine, D.W., Emond, J., and Vekemans, M. (1986). Acute cytologic leukemias. Analysis of 54 cases and a review of the literature. Leukemia 5, 744–751.

Allam, A., and Kabelitz, D. (2006). TCR trans-rearrangements: biological significance in antigen recognition vs the role as lymphoma biomarker. J. Immunol. 176, 5707–5712.

Shih, L.Y., Liang, D.C., Fu, J.F., Wu, J.H., Wang, P.N., Lin, T.L., Dunn, P., Kuo, M.C., Allam, A., and Kabelitz, D. (2006). TCR trans-rearrangements: biological significance in antigen recognition vs the role as lymphoma biomarker. J. Immunol. 176, 5707–5712.

Hunger, S.P., Galli, N., Carroll, A.J., Crist, W.M., Link, M.P., and Cleary, M.L. (1991). The t(1;19)(q23;p13) results in consistent fusion of E2A and PBX1 coding sequences in acute lymphoblastic leukemias. Blood 77, 687–693.

Trousseau, X., Charpentier, F., Haieou, C., Cordierion, C., Vernant, J.P., and Rochant, H. (1985). [Bone marrow necrosis disclosing multiple myeloma of bone]. Presse Med. 14, 1888.

Domer, P.H., Fahkarzadeh, S.S., Chen, C.S., Jockel, J., Johansen, L., Silverman, G.A., Domer, P.H., Fakharzadeh, S.S., Chen, C.S., Jockel, J., Johansen, L., Silverman, G.A., Kersey, J.H., and Korsmeyer, S.J. (1993). Acute mixed-lineage leukemias t(4;11)(q21;q23) generates an AML-44 fusion product. Proc. Natl. Acad. Sci. USA 90, 7884–7888.

Stehli, S., König, M., Dworzak, M.N., Kalwak, K., and Haas, O.A. (2003). PAX5/ETO, with similarity to Drosophila segmentation gene, runt. Blood 102, 687–692.

Golub, T.R., Barker, G.F., Bohlander, S.K., Hiebert, S.W., Ward, D.C., Bray-Ward, P., Morgan, E., Raimondi, S.C., Rowley, J.D., and Gilliland, D.G. (1995). Fusion of the TEL gene on 12p13 to the AML1 gene on 21q22 in acute lymphoblastic leukemia. Proc. Natl. Acad. Sci. USA 92, 4917–4921.

Dreyling, M.H., Martinez-Climent, J.A., Zheng, M., Mao, J., Rowley, J.D., and Bohlander, S.K. (1996). The t(10;11)(p13;q14) in the L337 cell line results in the fusion of the AF10 gene and CALM, encoding a new member of the AP-3 clathrin assembly protein family. Proc. Natl. Acad. Sci. USA 93, 4804–4809.

Shurtleff, S.A., Buijs, A., Behm, F.G., Rubnitz, J.E., Raimondi, S.C., Hancock, M.L., Chan, G.C., Pui, C.H., Grosveld, G., and Downing, J.R. (1995). TEL/AML1 fusion resulting from a cryptic t(12;21) is the most common genetic lesion in pediatric acute promyelocytic leukemia breakpoint cluster region on chromosome 17. Science 249, 1577–1580.

Longo, L., Doni, E., Mencarelli, A., Avanzini, G., Pegoraro, L., AlimenA, G., Tabibo, A., Venti, G., Grignani, F., and Pologn, P.G. (1998). FGFR1 is fused with a novel gene in patients with chronic myelomonocytic leukemia: frequent alterations of RAS and RUNX1 genes. BMC Cancer 8, 299.

Shivtzel, E., Lifshitz, B., Gale, R.P., and Canaan, E. (1985). Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature 315, 550–554.

Deyrup, M.H., Broun, S., Moore, A.B., and Weissman, S.M. (1998). FGFR1 is fused with a novel zinc-finger gene, ZNF18, in the t(8;19) chromosomal translocation involving the immunoglobulin kappa-chain and heavy-chain loci in a child with chronic lymphocytic leukemia. N. Engl. J. Med. 339, 1429–1433.

Babbitt, T.H. (1991). Translocations, master genes, and differences between the origins of acute and chronic leukemias. Cell 67, 641–644.

Huret, J.L., Brizard, A., Bertheas, M.F., Guilhot, F., Hählen, K., Rabbitts, T.H. (1991). Translocations, master genes, and differences between the origins of acute and chronic leukemias. Cell 67, 641–644.

Meyers, T., Ulquiza, B., Greiner, D., Park, S.T., Emsenmarch, M., Pompa di Oliveira, M., Rennert, A., Grignani, F., Pui, C.H., and Downing, J.R. (2008). Genome profiling of chronic myelomonocytic leukemia: frequent alterations of RAS and RUNX1 genes. BMC Cancer 8, 299.

Shivtzel, E., Lifshitz, B., Gale, R.P., and Canaan, E. (1985). Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature 315, 550–554.

Brambilla, T.H. (1991). Translocations, master genes, and differences between the origins of acute and chronic leukemias. Cell 67, 641–644.

Huret, J.L., Brizard, A., Slater, R., Charron, C., Bertheas, M.F., Guilhot, F., Hählen, K., Kues, W., van Leeuwen, E., Schoot, E.V., et al. (1993). Cytogenetic heterogeneity in t(11;19) acute leukemia: clinical, hematological and cytogenetic analyses of 48 patients—updated published cases and 16 new observations. Leukemia 7, 152–160.

Meyer, C., Hofmann, J., Burmeister, T., Gröger, D., Park, S.T., Emsenmarch, M., Pompa di Oliveira, M., Rennert, A., Villarose, P., Macit, E., et al. (2013). The MLL recombinome of acute leukemias in 2013. Leukemia 27, 2165–2176.

Xiao, S., Nalabolu, S.R., Ast, J.C., Ma, J., Abruzzo, L., Jaffe, E.S., Stone, R., Weissman, S.M., Hudson, T.J., and Fletcher, J.A. (1998). FGFR1 is fused with a novel zinc-finger gene, ZNF18, in the t(8;19) chromosomal translocation involving the immunoglobulin kappa-chain and heavy-chain loci in a child with chronic lymphocytic leukemia. N. Engl. J. Med. 339, 590–594.

Williams, T.G., Jadaly, D.M., Du, M.Q., Peng, H., Perry, A.R., Abdul-Rauf, M., Price, H., Karran, E., Kallukuri, O., Wlodarska, I., et al. (1999). Bcl10 is involved in the TEL-AML1 fusion gene in T-lymphoid acute lymphoblastic leukemia. Proc. Natl. Acad. Sci. USA 96, 15–20.

Wlodarska, I., Veyt, E., De Paepe, P., Vandenbergh, P., Nioojen, P., Theate, I., Michaux, L., Sagarta, X., Marynen, P., Hagemejter, A., and De Wulf-Peeters, C. (2005). FOXP1, a gene highly expressed in a subset of diffuse large B-cell lymphoma, is recurrently targeted by genomic aberrations. Leukemia 19, 1299–1305.
132. Corcoran, M.M., Mould, S.J., Orchard, J.A., Ibbotson, R.E., Chapman, R.M., Boright, A.P., Platt, C., Tsui, L.C., Scherer, S.W., and Oscier, D.G. (1999). Dysregulation of cyclin dependent kinase 6 expression in splenic marginal zone lymphoma through chromosome 7q translocations. Oncogene 18, 6271–6277.

133. Hillion, J., Meccucci, C., Aventin, A., Leroux, D., Wlodarska, I., Van Den Berge, H., and Larsen, C.J. (1991). A variant translocation t(2;18) in follicular lymphoma involves the 5′ end of bel-2 and lg kappa light chain gene. Oncogene 6, 169–172.

134. Seité, P., Leroux, D., Hillion, J., Monteil, M., Berger, R., Mathieu-Mahul, D., and Larsen, C.J. (1993). Molecular analysis of a variant 18:22 translocation in a case of lymphoblastic lymphoma. Genes Chromosomes Cancer 6, 39–44.

135. Sümegi, J., Spira, J., Bazin, H., Leroux, D., Wlodarska, I., Van Den Berghe, H., Hillion, J., Mecucci, C., Aventin, A., and Levan, G. (2001). Fusion of a novel gene, RCC17, to the TFE3 gene in t(X;17)(p11.2;q25.3) bearing papillary renal cell carcinoma. Cancer Res. 61, 4130–4135.

136. Baron, B.W., Nucifora, G., McCabe, N., Espinosa, R., 3rd, Le Beau, M.M., and McKeithan, T.W. (1993). Identification of the gene associated with the recurring chromosomal translocations t(3;14)(q27;q32) and t(3;22)(q27;q11) in B-cell lymphomas. Proc. Natl. Acad. Sci. USA 90, 5262–5266.

137. Xu, J., Chernos, J.E., Bernier, F., and Lowry, B.R. (2000). Characterization of an interstitial deletion del(13)(q23q23) using microdissection and sequential FISH and G-banding. Genet. Test. 4, 279–282.

138. Brito-Babapulle, V., Ellis, J., Matutes, E., Oscier, D., Khokhar, T., MacLennan, K., and Smith, C.I. (1984). Inversion of chromosome 14 marks human T-cell chronic lymphocytic lymphoma. Genes Chromosomes Cancer 50, 757–764.

139. Bridge, J.A., Liu, X.-Q., Sumegi, J., Nelson, G.P., Mandahl, N., Von Steyern, F.V., Domanski, H.A., Britt, J.A., Rosenberg, B.R., Teegan, L., et al. (2014). Detection of a recurrent t(6;7) chromosomal translocation. Nature 497, 498–502.

140. Bridge, J.A., Liu, X.-Q., Sumegi, J., Nelson, G.P., Mandahl, N., Von Steyern, F.V., Domanski, H.A., Britt, J.A., Rosenberg, B.R., Teegan, L., et al. (2014). Detection of a recurrent t(6;7) chromosomal translocation. Cancer Res. 74, 1020–1029.