Glacial dispersal trains in North America

Don I. Cummingsa,b,c and Hazen A. J. Russellc

aDCGeo Consulting, Aylmer, Canada; bDepartment of Earth Sciences, Carleton University, Ottawa, Canada; cGeological Survey of Canada, Ottawa, Canada

\textbf{ABSTRACT}

A map depicting glacial dispersal trains in North America has been compiled from published sources. It covers the Canadian Shield, the Arctic Islands, the Cordillera and Appalachian mountains, and Phanerozoic sedimentary basins south of the Shield. In total, 140 trains are portrayed, including those emanating from major mineral-deposit types (e.g. gold, base metal, diamondiferous kimberlite, etc.). The map took 10 years of on-and-off work to generate, and it culls data from over 150 years of work by government, industry, and academia. It provides a new tool to help companies find ore deposits in Canada: the trains are generally a better predictor of dispersal distance and direction than striations and streamlined landforms, the data typically depicted on surficial-geology maps, including the Glacial Map of Canada. It also gives new insight into sedimentation patterns and processes beneath ice sheets, a sedimentary environment that, because of its inaccessibility, remains poorly understood and controversial.

\textbf{1. Introduction}

Clastic dispersal trains – hereafter referred to simply as dispersal trains – are trails of mud, sand and/or gravel particles (clasts) that were eroded from a bedrock source, transported one or more times downflow (but not necessarily downslope) by a geophysical fluid (air, water or glacier ice), and, ultimately, deposited and preserved in the stratigraphic record (Dilabio \& Coker, 1989; Kujansuu \& Saarnisto, 1990; McClenaghan, Bobrowsky, Hall, \& Cook, 2001; Paulen \& McClenaghan, 2017). Although the term has commonly been used to describe linear or fan-shaped trails of sediment (e.g. Dilabio, 1990; Dyke \& Morris, 1988; Flint, 1947), we use it here in the broader sense (e.g. Klassen \& Thompson, 1993) to describe trails of sediment of any shape or size, from pencil-shaped trails a few meters long to ovoid trails a few thousand kilometers in extent. Every clastic particle on Earth forms part of a dispersal train thus defined, though most trains are too dilute or too indistinct to map out and trace back to source. The term can be used in any depositional setting (e.g. fluvial, eolian, turbidite, etc), but it is most commonly used in glaciated terrain. In these settings, former glaciers performed most of the sedimentary and geomorphic work, and the dispersal trains generated as a result provide insight into glacier behavior. In terms of applied science, dispersal trains are an important component of mineral exploration: identification of trails of ore particles in glacial sediment has commonly led to the discovery of mineral deposits in the bedrock beneath.

Herein, we present the first compilation of glacial dispersal trains from across North America (Main Map). It builds upon previous regional and thematic compilations (e.g. Armstrong \& Kjarsgaard, 2003; Batterson \& Liverman, 2000; Cummings, 2018; Dyke \& Dredge, 1989; Flint, 1947; Klassen \& Thompson, 1993; Lamothé, 1992; Levson, 2001; McClenaghan \& Peter, 2015; Parent, Paradis, \& Boisvert, 1995; Shilts, 1982) and, in doing so, captures over 150 years of work by geological surveys, mineral exploration companies, and academic researchers. The map can be seen as a counterpart to other continent-scale glacial maps (e.g. Flint, 1945; Fortune, 1995; Prest, Grant, \& Rampton, 1968; Shaw, Sharpe, \& Harris, 2010), and significant insight can be obtained by superimposing and viewing these maps in conjunction. It provides mineral exploration companies with a new tool to help find ore bodies in glaciated parts of North America, and will hopefully foster discussion over how ice sheets interact with the lithosphere and mobilize sediment over large temporal and spatial scales.

\textbf{2. Methods and software used}

The mapping procedure was straightforward. First, published literature was searched, portions of the gray literature notwithstanding (e.g. mineral assess-
ment reports). Second, figures that depict well-delineated glacial dispersal trains with identified bedrock sources were digitized and georeferenced using a computer mapping program (ArcGIS) and a standardized projection (Lambert conformal conic) and datum (NAD83). Adobe Illustrator was used to draft the final paper copy map (PDF file), and ArcGIS was used to generate the final digital map (kmz file). The following were not included on purpose: glacial dispersal trains that were not constrained by significant field sampling, including those mapped primarily by visual means using remotely sensed imagery (e.g. Dyke & Morris, 1988; Ross, Campbell, Parent, & Adams, 2009); trains that were mapped by exclusively sampling sediment that was reworked from till, including lake sediment, glaciofluvial sediment (e.g. eskers), or stream sediment; surface trains (Abitibi region notwithstanding); till trains lacking an identified bedrock source (e.g. Ruler kimberlite indicator mineral (KIM) train (Armstrong, 2009); Williams Lake heavy mineral train (Kjarsgaard, Plourde, Knight, & Sharpe, 2014); Churchill KIM trains (Strand, Banas, Burgess, & Baumgartner, 2008, 2009); Thompson Nickel Belt chrome diopside train (Averill, 2011; Grunsky & Baumgartner, 2008, 2009); Thompson nickel belt chrome diopside trains from the McGerrigle Mountains in the Gaspé (Charbonneau & David, 1993), the Boothia Peninsula (Tremblay, Ryan, & James, 2007), and the Otish Mountains—Lac Mistassini area in central Quebec (Bouchard & Martineau, 1984; Veillette, 2004). Readers are encouraged to consult the original references (Appendix 1) for more information on these regions. For trains defined by multiple components derived from a single bedrock source (e.g. multiple geochemical elements), only one component was digitized.

In some areas, dispersal trains were omitted on purpose to prevent visual confusion from excessive overlap. Examples include the Lake Melville region in Labrador (Batterson, Simpson, & Scott, 1988; Klassen & Thompson, 1993), the McGerrigle Mountains in the Gaspé (Charbonneau & David, 1993), the Boothia Peninsula (Tremblay, Ryan, & James, 2007), and the Otish Mountains—Lac Mistassini area in central Quebec (Bouchard & Martineau, 1984; Veillette, 2004).

The grain-size nomenclature used to describe dispersal trains in the past has commonly been confusing and inaccurate, in part because multiple grain-size classification schemes have existed over the years (Roderick, 1966). For clarity, we use the Udden–Wentworth grain-size scale herein (Table 1), the standard scale used by geologists today (e.g. Boggs, 2011). The only exception is that we define the clay–silt boundary as 0.002 mm, not 0.004 mm. Glacial geologists and mineral exploration geologists typically use the 0.002 mm (2 μm) boundary (e.g. Shilts, 1996) because there is often a stronger chemical contrast at this level (Roderick, 1966), especially for some elements of economic interest (e.g. Cu, Zn).

Two main types of glacial dispersal trains are reported in the literature, boulder trains and till dispersal trains (Figure 1). These categories are retained here for the sake of continuity. Boulder trains are trails of large, distinct particles, typically boulders but sometimes also cobbles and pebbles, which are sparsely distributed across the surface of the landscape. Till dispersal trains are trails of distinct mud (i.e. clay and/or silt), sand, or gravel particles within till. They are typically defined by (1) the geochemistry of the silt plus clay fraction (<63 μm) or clay fraction (<2 μm) of the till (or, less commonly, by the sand plus mud fraction of the till), (2) by the mineralogy of the sand and visible silt particles in the till (e.g. gold grains, kimberlite indicator minerals), and/or (3) by the lithology of the gravel clasts in the till. For simplicity, the rare trains on the map that consist of clastic particles in ‘glacial drift’ (i.e. till plus sand and gravel

Grain-size nomenclature used in this paper.
Gravel
Boulder
1.25–6 cm
Cobble
6.4–25.6 cm
Pebble
4 mm–6.4 cm
Granule
2 mm–4 mm
Sand
Very coarse
1 mm–2 mm
Coarse
0.5 mm–1 mm
Medium
0.25 mm–0.5 mm
Fine
0.125 mm–0.5 mm
Very fine
0.063 mm–0.125 mm
Mud
Silt
0.002 mm–0.063 mm
Clay
<0.002 mm
reworked from till), such as the Omar train (Prest, Donaldson, & Mooers, 2000) and the various trains emanating from the Otish Mountains area in Quebec (Veillette, 2004), are lumped into the latter category. Boulder trains may or may not be associated with till dispersal trains, and vice versa.

3. Conclusions

The map presented herein represents the first synthesis of dispersal trains from across glaciated North America. It will hopefully foster discussion and provoke debate. It should not be considered as the definitive, final product. Rather, like all maps, it is highly simplified and it is a work in progress. Dispersal trains from published literature were undoubtedly missed. All of the trains portrayed remain incompletely understood and require further study. To improve subsequent versions, authors could search the gray literature (e.g. mineral assessment reports, provincial government reports, theses, etc) more thoroughly to find additional trains; integrate in-house data from mineral exploration companies (there is a large amount of privately held data within industry); plot trains that lack known bedrock sources; depict the internal heterogeneity of trains; plot overlapping trains; and plot multiple components (e.g. multiple pebble lithologies, multiple geochemical elements) derived from individual bedrock sources. When integrated with existing data (e.g. Prest et al., 1968), these trains are key to understanding how the cryosphere interacts with the rest of the Earth system over geological time.

Acknowledgements

The dispersal-train compilation represents approximately 10 years of on-and-off work by Don Cummings (DC), with important contributions throughout by Hazen Russell (HR). The process started in 2006 when DC worked as an NSERC Visiting Fellow at the Geological Survey of Canada in Ottawa with HR, and continued periodically afterward during various contracts for government and industry, and on DC’s own spare time. (It continues today.) Jerome Lesemann compiled boulder train references with HR that were later digitized by DC. Several students at Carleton University – Liam Sawford, Alexandra Laudadio, and Neil Prowse – helped DC generate an early version of the map between 2013 and 2015. Anika Bergen and Matt Pyne generated the final digital map (kmz file), and Donna Ferguson helped touch up and complete the final paper map. Andy Bajc, Janet Campbell, Barrett Elliott, George Gao, Dan Kerr, Yuri Kinakin, Bruce Kjarsgaard, Rod Klassen, Ross Knight, Phil Larson, Jerome Lesemann, Isabelle McMartin, Michel Parent, Alain Plouffe, Vern Rampton, Martin Ross, Bill Shilts, Woody Thompson, Harvey Thorleifson, Jean Veillette and, in particular, Dave Sharpe provided data, suggestions and/or support at various stages. Early work was financed in part by the Targeted Geoscience Initiative 4 (TGI-4) of the Geological Survey of Canada, and later work was financed in part by the Slave Province Surficial Materials and Permafrost Study of the Northwest Territories Geological Survey. Journal reviewers Chris Orton, Sam Roberson, Martin Ross and GSC internal reviewer Bruce Kjarsgaard are thanked, along with journal editor Chris Clark, for their constructive comments and suggestions; your work is appreciated, and...
helped improve the map and paper. This is Natural Resources Canada contribution #20170380.

Disclosure statement
No potential conflict of interest was reported by the authors.

Funding
This work was supported by Geological Survey of Canada (Targeted Geoscience Initiative 4 (TGI-4)); Northwest Territories Geological Survey (Slave Province Surficial Materials and Permafrost).

References
*Most of the references are cited in the appendix section.
*Aber, J. S. (1980). Nature and origin of exotic-rich drift in the Appalachian Plateau. American Journal of Science, 280, 363–384.
*Aber Resources Ltd. (1998). Annual report (Unpublished technical report). 38 p.
Alberta Geological Survey. (2014). Foothills erratics train, southwestern Alberta (GIS data, point features). Digital data 2014-023.
*Anderson, J. T., & Sim, V. M. (1964). Examination of the carbonate content of drift in the area of Foxe Basin, N.W.T. Geographical Brank, Department of Mines and Technical Surveys. Geographical Bulletin, 21, 44–53.
*Anderson, R. R., & Prior, J. C. (1990). Glacial boulders in Iowa. Iowa Geology, 15, 12–15.
Armstrong, J. P. (2009). Kimberlite indicator mineral anomalies in a regional, local, and bedrock context: Examples from Canada. 24th international applied geochemistry symposium, indicator mineral methods in mineral exploration, Workshop B, 47–53.
Armstrong, J. P., & Kjarsgaard, B. A. (2003). Geological setting of kimerlites in the Archean Slave Province. In B. A. Kjarsgaard (Ed.), 8th international Kimberlite conference, slave Province and Northern Alberta field trip guidebook (pp. 31–38). Retrieved from https://geoscan.nrcan.gc.ca/starweb/geoscan/servlet.starweb?path=geoscan/fullweb&search1=R=214584
*Atkinson, N. (2006). A statistical technique for determining the source area of glacially transported granite erratics in the Queen Elizabeth Islands, Nunavut. Canadian Journal of Earth Sciences, 44, 43–59.
Averill, S. A. (2011). Viable indicator minerals in surficial sediments for two major base metal deposit types: Ni-Cu-PGE and porphry Cu. Geochemistry: Exploration, Environment, Analysis, 11, 279–291.
*Averill, S. A. (2013). Discovery and delineation of the Rainy River gold deposit using glacially dispersed gold grains sampled by deep overburden drilling: A 20 year odyssey. In R. C. Paulen & M. B.McClenaghan (Eds.), New frontiers for exploration in glaciated terrain (pp. 37–46). Geological Survey of Canada, Open File 7374.
*Averill, S. A., Holmes, D., & Hozjan, D. (2015). From Bazooka to Howitzer: A potential game-changing gold grain survey. Overburden Drilling Management, unpublished Powerpoint presentation presented to Northquest Ltd, Toronto, December 4, 2015.
*Aylsworth, J. M., & Shilts, W. W. (1991). Surficial geology of Coats and Manulik islands, Northwest territories. Geological Survey of Canada, Paper 89-23, 26 p.
*Bail, P. (1985). Un movement glaciaire vers le nord-ouest dans la region de Saint-Godefroi, Gaspesie, Quebec. Canadian Journal of Earth Sciences, 22, 1871–1876.
*Bajc, A., & Crabtree, D. C. (2001). Results of regional till sampling form Kimberlite and base metal indicator minerals, Peterlong Lake–Radisson Lake area, Northeastern Ontario. Ontario Geological Survey, Open File Report 6060, 65 p.
*Barnett, P. J. (2007). Overburden geochemical signature of the Lac des Iles platinum group element deposit, northwestern Ontario, Canada. Canadian Journal of Earth Sciences, 44, 1151–1168.
*Barnett, P. J., & Averill, S. (2010). Heavy mineral dispersal trains in till in the area of Lac des Iles PGE deposit, northwestern Ontario, Canada. Geochemistry: Exploration, Environment, Analysis, 10, 391–399.
*Batterson, M. J. (1989). Glacial dispersal from the Strange lake alkalic complex, northern Labrador. In R. N. W. Dilabio & W. B. Coker (Eds.), Drift prospecting (pp. 31–40). Geological Survey of Canada, Paper 89-20.
*Batterson, M. J., & Liverman, D. (2000). Contrasting styles of glacial dispersal in Newfoundland and Labrador: Methods and case studies. Newfoundland Department of Mines and Energy, Geological Survey, Report 2000-1, 1–31.
*Batterson, M. J., Simpson, A., & Scott, S. (1988). Quaternary mapping and drift exploration in the Central Mineral Belt (13 K/77 and 13 K/10), Labrador. Newfoundland Department of Mines, Mineral Development Division, Current Research, Report 88-1, 331–341.
*Batterson, M. J., Taylor, D. M., & Vatcher, S. V. (1985). Quaternary mapping and drift exploration in the Strange Lake area, Labrador. Newfoundland Department of Mines, Current Research, Report 85-1, 4–10.
*Beitz, I. (2017). Distribution of kimberlite indicator minerals by ice flow and glaciofluvial processes in the Lac de Gras area, Northwest Territories, Canada (Unpublished BSc thesis). Carleton University, 77 p.
*Bell, K., & Murton, J. B. (1995). A new indicator of glacial dispersal: Lead isotopes. Quaternary Science Reviews, 14, 275–287.
*Bell, R. (1870). Report on lakes superior and Nipigon. Geological Survey of Canada, Report of Progress from 1866 to 1869, 313–364.
*Bell, R. (1887). Report on an exploration of portions of the Attawapiskat and Albany rivers, Lonely Lake to James Bay. Geological and Natural History Survey of Canada, Annual Report, 1886, 2, Pt. G.
*Benton, E. R. (1878). The Richmond boulder trains. In R. C. Paulen & M. B. McClenaghan (Eds.), New frontiers for exploration in glaciated terrain (pp. 321–330). Geological Survey of Canada, Open File 7374.
*Bobrowsky, P. T., Leboe, E. R., Dixon-Warren, A., Ledwon, A., MacDougall, D., & Sibbick, S. J. (1997). Till geochemistry of the Adams Plateau–North Barriere Lake area. British Columbia Ministry of Employment and Investment, Energy and Mines Division, Open File 1997-9, 26 p.
*Boggs, S. (2011). Principles of sedimentation and stratigraphy (5th ed.). Prentice Hall, 600 p.
*Bolduc, A. M. (1990). Dispersion dans les sediment glaciaires et fluuo-glaciaires, des debris en provenance du granite hypercalcin de Strange Lake, Labrador. In S. A. Averill, A. Bolduc, W. B. Coker, R. N. W. Dilabio, Y. Maurice, M. Parent, J. J. Veillette & LaSalle, P. (Eds.), *Application de la geologie du Quaternaire a l'exploration mineraire* (pp. 108–138). Short course notes. Association professionelle des geologues et des geophysiciens du Quebec, Ste-Foy, Quebec.

*Bouchard, M. A., & Marcotte, C. (1986). Regional glacial dispersal patterns in Ungava, Nouveau-Quebec. Geological Survey of Canada, Current Research, Paper 86-1B, 295–304.

Bouchard, M. A., & Martineau, G. (1984). Les aspects regionaux de la dispersion glaciaire, Chibiougamau, Quebec. In J. Guha & E. H. Chown (Eds.), *Chibougamau-stratigraphy and mineralization* (pp. 244–260). Chibougamau, Quebec: Canadian Institute of Mining and Metallurgy, Special Volume 34.

*Bouchard, M. A., & Salonen, V. P. (1989). Glacial dispersal of boulders in the James bay Lowlands of Quebec, Canada. *Boreas*, 18, 189–199.

*Broster, B. E., Munn, M. D., & Pronk, A. G. (1997). Inferences on glacial flow from till clast dispersal, Waterford area, New Brunswick. *Geographie physique et Quaternaire*, 51, 29–39.

*Buell, I. M. (1895). Bowlder trains from the outcrops of the Waterford area, New Brunswick. *Canadian Journal of Arts and Letters, Transactions of the Wisconsin Academy of Sciences*.

*Cameron, E. M. (1977). Geochemical dispersion in mineralized soils of a permafrost environment. *Journal of Geochemical Exploration*, 7, 301–336.

*Charbonneau, R., & David, P. P. (1993). Glacial dispersal of rock debris in central Gaspesie, Quebec, Canada. *Canadian Journal of Earth Sciences*, 30, 1697–1707.

*Clements, B., Pell, J., Holmes, & Grenon, H. (2009, May 31). Following kimberlite indicator minerals to Chidliak, Baffin Island: Canada’s newest diamond district. In M. B. McClennagh & H. Thorleifson (convoners). *24th international applied geochemistry symposium, workshop B: Indicator mineral methods in mineral exploration* (pp. 83–88).

Cummins, D. I. (2018). Dispersal trains on the Canadian Shield [map]. Northwest Territories Geological Survey, Open File.

*Daigneault, R.-A. (2008). Geologie du Quaternaire du nord de la peninsule d‘Ungava, Quebec. Geological Survey of Canada, Bulleting 533, 115 p.

*David, P. P., & Bedard, P. (1986). Stratigraphy of the McGregile Mountains granite trains of Gaspesie, Quebec. Geological Survey of Canada, Current Research Paper 86-18, 319–327.

*Dell, C. I. (1963). A study of the mineralogical composition of sand in northern Ontario. *Canadian Journal of Soil Science*, 43, 189–200.

*Dilabio, R. N. W. (1981). Glacial dispersal of rocks and minerals at the south end of Lac Mistassini, Quebec, with special reference to the Icon dispersal train. Geological Survey of Canada, Bulletin 323, 46 p.

*Dilabio, R. N. W. (1982). Draft prospecting near gold occurrences on Onaman River, Ontario and Oldham, Nova Scotia. In R. W. Hodder & W. Petruk (Eds.), *Geology of Canadian gold deposits: Proceedings of the CIM gold symposium* (pp. 261–266). Montreal: Canadian Institute of Mining and Metallurgy. Special Volume 24.

*Dilabio, R. N. W. (1989). Terrain geochemistry in Canada. In R. J. Fulton (Ed.), *Quaternary geology of Canada and Greenland* (pp. 645–663). Geological Survey of Canada. Decade of North American Geology project.

Dilabio, R. N. W. (1990). Dispersal trains. In S. A. Averill (Ed.), *Application de la geologie du Quaternaire a l’exploration mineraire* (pp. 86–107). Cours intensif, APGGQ, Sainte-Foy, mars 1990. Ste-Foy: Association of Professional Geologists and Geophysicists of Quebec.

Dilabio, R. N. W., & Coker, W. B. (Eds.). (1989). *Drift prospecting*. Geological Survey of Canada. Paper 89-20, 169 p.

*Dilabio, R. N. W., & Kaszycki, C. A. (1988). An ultramafic dispersal train and associated gold anomaly in till near Osik Lake, Manitoba. Geological Survey of Canada, Current Research, Paper 88-1C, 67–71.

*Dilabio, R. N. W., Renetz, A. N., & Eggington, P. A. (1982). Biogeochemical expression of a classic dispersal train of metalliferous till near Hopetown, Ontario. *Canadian Journal of Earth Sciences*, 19, 2297–2305.

*Dionne, J. C. (1994). Les erratiques lointains de l’embouchure du Saguenay, Quebec. *Geographie physique et Quaternaire*, 48, 174–179.

*Drake, L. D. (1983). Ore plumes in till. *Journal of Geology*, 91, 707–713.

*Dredge, L. A. (1988). Drift carbonate on the Canadian Shield II: Carbonate dispersal and ice-flow patterns in northern Manitoba. *Canadian Journal of Earth Sciences*, 25, 783–787.

*Dredge, L. A. (1999). Glacial dispersal patterns and postglacial marine overla in the Langstaff Bluff area, central Baffin Island. Geological Survey of Canada, Current Research 1999–C, 1–8.

*Dredge, L. A. (2000). Carbonate dispersal trains, secondary till plumes, and ice streams in the west Foxe Sector, Laurentide ice sheet. *Boreas*, 29, 144–156.

*Dredge, L. A. (2002). *Quaternary geology of the Southern Melville Peninsula, Nunavut [Bulletin, 561].* Geological Survey of Canada.

*Dredge, L. A., & Cowan, W. R. (1989). Quaternary geology of the southwestern Canadian Shield. In R. J. Fulton (Ed.), *Quaternary geology of Canada and Greenland* (pp. 214–249). Geological Survey of Canada.

*Dredge, L. A., & Kerr, D. E. (1999). Bubble counts from till samples in Northwest Territories and western Nunavut, NTS 76, 77, 86. Geological Survey of Canada, Open File 3720.

*Dreimanis, A. (1956). Steep Rock iron ore boulder train. *Proceedings of the Geological Association of Canada*, 8, 27–70.

*Dreimanis, A. (1958). Tracing ore boulders as a prospecting method in Canada. *Canadian Mining and Metallurgical Bulletin*, 61, 49–56.

*Dunn, C. E., Coker, W. B., & Rogers, P. J. (1991). Reconnaissance and detailed geochemical surveys for gold in eastern Nova Scotia using plants, lake sediments, soil and till. *Journal of Geochemical Exploration*, 40, 143–163.

*Dyke, A. S. (1984). Quaternary geology of Boothia Peninsula and northern district of Keewatin, central Canadian Arctic. *Geological Survey of Canada, Memoir*, 407, 26 p.

*Dyke, A. S., & Dredge, L. A. (1989). Quaternary geology of the Northwestern Canadian Shield. In R. J. Fulton (Ed.), *Quaternary geology of Canada and Greenland* (pp. 189–214). Geological Survey of Canada.

*Dyke, A. S., & Morris, T. (1988). Drumlin fields, dispersal trains, and ice streams in Arctic Canada. *The Canadian Geographer*, 32, 86–90.
*Earle, S. (2001). Application of composite glacial boulder geochemistry to exploration for unconformity-type uranium deposits in the Athabasca Basin, Saskatchewan, Canada. In M. B. McClennaghan, P. T. Bobrowsky, G. E. M. Hall, & S. J. Cook (Eds.), *Drift exploration in glaciated terrain* (pp. 225–235). London: Geological Society of London, Special Publication 185.

*Edwards, K., & Campbell, T. (1992). *Geological, geochemical, geophysical assessment report for the CH 10-16 mineral claims, January 1992* Geological Branch, Assessment Report 22027, Volume 2 of 2.

*Eichenberg, D. J., Hardy, F., & Pfister, S. S. (1999). Monopros Ltd geological assessment report glacial sediment sampling for Mountain Province Mining Inc on the AK and CJ properties, Aylmer Lake area, Mackenzie Mining District, NWT. Unpublished mineral assessment report submitted to the Northwest Territories government, 37 p.

*Elson, J. A. (1987). West-southwest glacial dispersal of pillow-lava boulders, Phillipsburg–Sutton region, Eastern Townships, Quebec. *Canadian Journal of Earth Sciences*, 24, 985–991.

*Ferguson, S. A., & Freeman, E. B. (1978). Ontario occurrences of float, placer gold, and other heavy minerals. *Ontario Geological Survey, Mineral Deposits Circular, 17*, 214 p.

*Flinn, R. F. (1945). Glacial map of North America. Geological Survey of Canada, Open File 262, 173 p.

*Flinn, R. F. (1955). *Pleistocene geology of Eastern South Dakota*. United States Geological Survey, Professional Paper 262, 173 p.

*Flinn, R. F. (1945). Glacial map of North America. Geological Survey of America, Special Paper 60, 37 pages + map.

*Folinsbee, R. E. (1952). *Walmsley Lake, district of Mackenzie, Northwest territories*. Geological Survey of Canada, Map 1013A.

*Ford, K. L., Dilabio, R. N. W., & Renzcz, A. N. (1988). Geological, geophysical and geochemical studies around the Allan Lake carbonatite, Algonquin Park, Ontario. *Journal of Geoechemical Exploration*, 30, 99–121.

*Fulton, R. J. (1995). *Surficial materials of Canada*. Geological Survey of Canada, Map 1880A, 1:5,000,000 scale.

*Gadd, N. R. (1980). *Iceflow patterns, Montreal–Ottawa lowland areas*. Geological Survey of Canada, Current Research, Paper 80-1A, 375–376.

*Garrett, R. G. (1971). The dispersion of copper and zinc in glacial overburden at the Louvem deposit, Val d’Or, Quebec. In *Geochemical exploration* (pp. 157–158). Toronto: Canadian Institute of Mining and Metallurgy. Special Volume 11.

*Graves, R. M., & Finck, P. W. (1988). The provenance of tills overlying the eastern part of the South Mountain Batholith, Nova Scotia. *Maritime Sediments and Atlantic Geology*, 24, 61–70.

*Grunsky, E., & McClennaghan, M. B. (2013). An integrated study of till geochemical, indicator mineral, and pebble lithological data for the Thompson Nickel Belt, Maniotiba, Canada. In R. C. Paulen & M. B. McClennaghan (Eds.), *New frontiers for exploration in glaciated terrain* (pp. 27–36). Geological Survey of Canada, Open File 7374.

*Hashmi, S., Ward, B. C., Plouffe, A., Leybourne, M. L., & Ferbey, T. (2015). Geochemical and mineralogical dispersion in till from the Mount Polley Cu-Au porphyry deposit, central British Columbia, Canada. *Geochemistry: Exploration, Environment, Analysis*, 15, 234–249.

*Hicken, A. K. (2012). Glacial dispersal of indicator minerals from the Izok Lake Zn-Cu-Pb-Ag VMS deposit, Nunavut, Canada (Unpublished MSc thesis). Queen’s University, 234 p.

*Holmes, C. D. (1952). Drift dispersion in west-central New York. *Geological Society of America Bulletin*, 63, 993–1010.

*Holmes, G. W. (1966). Stephen Reed, M.D., and the ‘celebrated’ Richmond boulder train of Berkshire County, Massachusetts, USA. *Journal of Glaciology*, 6, 431–437.

*Hove, O. H. (1936). The Hingham red felsite boulder train. *Science*, 84, 394–396.

*Jackson, C. E. (1834). An account of the chiastolite or macle of Lancaster. *Boston Journal of Natural History*, 1, 55–62.

*Jackson, G. D. (2013). Geology, Belcher Islands, Nunavut. Geological Survey of Canada, Open File 4923, 149 p.

*Jackson, L. E., Jr. (2017). The Foothills erratics train region. In O. Slaymaker (Ed.), *Landscapes and landforms of Western Canada* (pp. 157–165). Gewerbestrasse, Switzerland: Springer.

*Jackson, L. E., Jr., Phillips, F. M., Shimamura, K., & Little, E. C. (1997). Cosmogenic 36Cl dating of the Foothills erratics train, Alberta, Canada. *Geology*, 25, 195–198.

*James, L. D., & Perkins, E. W. (1981). Glacial dispersion from sulphide mineralization, Buchans area, Newfoundland. In E. A. Swanson, D. F. Strong, & J. G. Thurlow (Eds.), *The Buchans orebodies: Fifty years of geology and mining* (pp. 269–283). Waterloo: Geological Association of Canada, Special Paper 22.

*Johnston, W. G. Q. (1994). Glacial indicator fans or trains from the Mesozoic shale outlier, Deep Bay, Reindeer Lake, Saskatchewan. Saskatchewan Research Council, Publication No. R-1210-8-E-94, 73 p.

*Karrow, P. F., & Geddes, R. S. (1987). Drift carbonate on the Canadian Shield. *Canadian Journal of Earth Sciences*, 24, 365–369.

*Karup-Moller, S., & Brummer, J. J. (1970). The George Lake zinc deposit, Wollaston Lake area, Northeastern Saskatchewan. *Economic Geology*, 65, 862–874.

*Kaszycki, C. A., Dredge, L. A., & Groom, H. (2008). *Surficial geology and glacial history, Lynn Lake–Leaf Rapids area, Manitoba*. Geological Survey of Canada, Open File 5873, 105 p.

*Kaszycki, C. A., Nielsen, E., & Gobert, G. (1996). Surficial geochemistry and response to volcanic-hosted massive sulphide mineralization in the Snow Lake region. In G. F. Bonham-Carter, A. G. Galley, & G. E. M. Hall (Eds.), *EXTECH I: A multidisciplinary approach to massive sulphide research in the Rusty Lake–Snow Lake Greenstone Belts, Manitoba* (pp. 139–154). Geological Survey of Canada, Bulletin 426.

*Kerr, D. E., & Knight, R. D. (1998). Surficial geology and implications for drift prospecting, Hope Bay volcanic belt area, Northwest Territories. Geological Survey of Canada, Current Research 1998-C, 21–28.

*Kerr, D. E., Knight, R. D., Sharpe, D. R., Cummings, D. L., Kjarsgaard, B. A., & Russell, H. A. J. (2013). Dispersal and provenance studies of clasts in till and eskers in the proposed national park reserve, East Arm of Great Slave Lake. In D. F. Wright, E. J. Ambrose, D. Lemkow, & G. F. Bonham-Carter (Eds.), *Mineral and energy resource assessment of the proposed Thaidene Nene National Park Reserve in the area of the East Arm of Great Slave Lake, Northwest Territories* (pp. 261–278). Geological Survey of Canada, Open File 7196.
*Kimberlite Indicator and Diamond Database (KIDD). Retrieved from http://nitgndata.nwtgeoscience.ca/diamondQuery.html

*Kirwan, L. D. (1979). The discovery of the Midwest Lake uranium deposit. In G. R. Parslow (Ed.), Uranium exploration techniques, proceedings of a symposium held in Regina, Canada (pp. 59–79). Regina: Saskatchewan Geological Society. November 16–17, 1978.

*Kjarsgaard, B. A., McClenaghan, M. B., Boucher, D. R., & Kivi, K. (2003). Kimberlites and ultrabasic rocks of the Wawa, Chapleau, Kirkland Lake, and Lake Timiskaming areas. In B. A. Kjarsgaard (Ed.), 8th international Kimberlite conference, Northern Ontario field trip guidebook (pp. 1–37). Geological Survey of Canada.

Kjarsgaard, B. A., Plourde, A. P., Knight, R. D., & Sharpe, D. R. (2014). Geochemistry of regional surficial sediment samples from the Thelon River to the East Arm of Great Slave Lake, Northwest Territories, Canada. Geological Survey of Canada, Open File 7649, 17 p.

*Klassen, R. A. (1995). Drift composition and glacial dispersal trains, Baker Lake area, District of Keewatin, Northwest Territories. Geological Survey of Canada, Bulletin 485, 55 p.

*Klassen, R. A., & Bolduc, A. M. (1986). Ice flow trends and drift composition, Flowers River area, Labrador. Geological Survey of Canada, Current Research Paper 86–1A, 697–712.

*Klassen, R. A., & Murton, J. B. (1996). Quaternary geology of the Buchans area, Newfoundland. Quaternary International, 33, 363–377.

*Klassen, R. A., & Thompson, F. J. (1987). Ice flow history and glacial dispersal in the Labrador Trough. Geological Survey of Canada, Current Research, Paper 87–1A, 61–71.

*Klassen, R. A., & Thompson, F. J. (1989). Ice flow history and glacial dispersal patterns, Labrador. In R. N. W. Dilabio & W. B. Coker (Eds.), Drift prospecting (pp. 21–29). Geological Survey of Canada, Paper 89–20.

Klassen, R. A., & Thompson, F. J. (1993). Glacial history, drift composition, and mineral exploration, Central Labrador. Geological Survey of Canada, Bulletin 435, 76 p.

*Knechtel, M. M. (1942). Snake Butte boulder train and related glacial phenomena, north-central Montana. Bulletin of the Geological Society of America, 53, 917–936.

Kujansuu, R., & Saarnisto, M. (Eds.). (1990). Glacial indicator Tracing. Balkinga, 252 p.

*Kupsch, B., & Armstrong, J. P. (2013). Exploration and geology of the Qilalugaq kimberlites, Rae Isthmus, Nunavut, Canada. In D. G. Pearson, et al. (Ed.), Proceedings of the 10th international Kimberlite conference (Vol. 2, pp. 67–78). Geological Society of India.

Lamothe, M. (1992). Pleistocene stratigraphic and till geochemistry of the Miramichi Zone, New Brunswick. Geological Survey of Canada, Bulletin 433, 58 p.

*Larson, P. C., & Mooers, H. D. (2005). Comment on “Subglacial erosion and englacial sediment transport modeled for North American ice sheets” by D.H.D. Hildes, G.K.C. Clarke, G.E. Flowers, S.J. Marshall. Quaternary Science Reviews, 24, 233–234.

*Hayman, C. A. (1992). Glacial geology of western Hudson Strait, Canada, with reference to Laurentide ice sheet dynamics. Geological Society of America Bulletin, 104, 1168–1177.

*Lee, H. A. (1963). Glacial fans in till from the Kirkland Lake fault: A method of gold exploration. Geological Survey of Canada, Paper 63–45, 36 p.

*Levson, V. M. (2001). Regional till geochemical surveys in the Canadian Cordillera: Sample media, methods and anomaly evaluation. In M. B. McClenaghan, P. T. Bobrowsky, G. E. M. Hall, & S. J. Cook (Eds.), Drift exploration in glaciated terrain (pp. 45–68). Geological Society, London, Special Publication 185.

*Lyell, C. (1855). On certain trains of erratic blocks on the eastern borders of Massachusetts, United States. Notices of the Proceedings at the Meetings of the Royal Institution, 2, 86–97.

Martin, L. (1932). The Physical Geography of Wisconsin. Wisconsin Geological and Natural History Survey, Bulletin XXXVI, 608 p.

Matthews, R., Koch, R., & Leppin, M. (1997). Advances in integrated exploration for unconformity uranium deposits in Western Canada. In A. G. Gubins (Ed.), Proceedings of exploration 97: Fourth decennial international conference on mineral exploration (pp. 993–1024). Toronto: Prospectors and Developers Association.

*Maurice, Y. T. (1995). The significance of various garnet types in surficial materials in southeastern Gaspe Peninsula, Quebec. Canadian Journal of Earth Sciences, 32, 730–740.

McClenaghan, M. B. (2003). Indicator mineral methods in mineral exploration. Geochemistry: Exploration, Environment, Analysis, 5, 233–245.

McClenaghan, M. B., Bobrowsky, P. T., Hall, G. E. M., & Cook, S. J. (Eds.). (2001). Drift exploration in glaciated terrain. London: Geological Society, Special Publication No. 185, 350 p.

McClenaghan, M. B., & Cabri, L. J. (2011). Review of gold and platinum group elements (PGE) indicator minerals methods for surficial sediment sampling. Geochemistry: Exploration, Environment, Analysis, 11, 251–263.

McClenaghan, M. B., & Dilabio, R. N. W. (1994). Till geochemistry and its implications for mineral exploration: Southeastern Cape Breton Island, Nova Scotia, Canada. Quaternary International, 122, 107–122.

McClenaghan, M. B., & Dilabio, R. N. W. (1996). Ice-flow history and glacial dispersal patterns, Southeastern Cape Breton Island, Nova Scotia: Implications for mineral exploration. Canadian Journal of Earth Sciences, 33, 351–362.

McClenaghan, M. B., & Kjarsgaard, B. A. (2001). Indicator mineral and geochemical methods for diamond exploration in glaciated terrain in Canada. In M. B. McClenaghan, P. T. Bobrowsky, G. E. M. Hall, & S. J. Cook (Eds.), Drift exploration in glaciated terrain (pp. 83–123). London: Geological Society. Special Publication 185.

McClenaghan, M. B., & Kjarsgaard, B. A. (2007). Indicator mineral and surficial geochemical exploration methods for kimberlite in glaciated terrain; examples from Canada. In W. D. Goodfellow (Ed.), Mineral deposits of Canada: A synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods (pp. 983–1006). Geological Association of Canada, Mineral Deposits Division, Special Publication No. 5.

McClenaghan, M. B., Parkhill, M. A., Seaman, A. A., Pronk, A. G., Averill, S. A., Rice, J. M., & Pyne, M. (2014). Indicator mineral signatures of the Sisson W-Mo deposit, New Brunswick: Part 2 till. Geological Survey of Canada, Open File 7467, 27 p.

McClenaghan, M. B., Paulen, R. C., Layton-Mathews, D., Hicken, A. K., & Averill, S. A. (2015). Glacial dispersal
of garnite from the Izok Lake Zn-Cu-Pb-Ag VMS deposit, northern Canada. Geochemistry: Exploration, Environment, Analysis, 15, 333–349.

*McClennaghan, M. B., & Peter, J. M. (2013). Till geochemical signatures of volcanogenic massive sulphide deposits in glaciated terrain: A summary of Canadian examples. Geological Survey of Canada, Open File 7354, 32 p.

McClennaghan, M. B., & Peter, J. M. (2015). Till geochemical signatures of volcanogenic massive sulphide deposits: An overview of Canadian examples. Geochemistry: Exploration, Environment, Analysis, 16, 27–47.

*McClennaghan, M. B., Ward, B. C., Kjaersgaard, I. M., Kjaersgaard, B. A., Stirling, J. A. R., Kerr, D. A., & Dredge, L. A. (2000). Indicator mineral and till geochemical dispersal associated with the Ranch Lake kimberlite, Lac de Gras region, Northwest Territories. Geological Survey of Canada, Open File 3924, 34 p.

*McDonald, B. C., & Shilts, W. W. (1971). Quaternary strata-igraphy and events in Southeastern Quebec. Geological Society of America Bulletin, 82, 683–698.

*McMartin, I. (2017). Till provenance across the terminus of the Dubawnt Lake ice stream, central Nunavut. Geological Survey of Canada, Current Research, Paper 2017-1, 13 p.

*McMartin, I., Berman, R. G., Normandeau, P. X., & Percival, J. A. (2013). Till composition of a transect across the Thelon tectonic zone, Queen Maud block, and adjacent Rae craton: Results from the Geo-Mapping Frontiers’ Chantrey Project. Geological Survey of Canada, Open File 7418, 22 p.

*McMartin, I., Campbell, J. E., & McCurdy, M. W. (2015, April 20–24). Regional till composition of the Wager Bay area, Nunavut: Implications for glacial history and mineral exploration in 27th International Applied Geochemistry Symposium. (IAGS), Program with Abstracts, Tucson, AZ, 6 p.

*McMartin, I., Dredge, L. A., Grunsky, E., & Pehrsson, S. (2016). Till geochemistry in west-central Manitoba: Interpretation of provenance and mineralization based on glacial history and multivariate data analysis. Economic Geology, 111, 1001–1020.

*McMartin, I., Henderson, P. J., Kjaersgaard, B. A., & Venance, K. (2003b). Regional distribution and chemistry of kimberlite indicator minerals, Rankin Inlet and MacQuoid Lake areas, Kivalliq region, Nunavut. Geological Survey of Canada, Open File 1575, 54 p.

*McMartin, I., Little, E. C., Ferbey, T., Ozyer, C. A., & Utting, D. J. (2003a). Ice-flow history and drift prospecting in the Committee Bay belt, central Nunavut: Results from the Targeted Geoscience Initiative. Geological Survey of Canada, Current Research 2003-C4, 11 p.

*Mihychuk, M. (1986). Quaternary mapping and exploration in the Bellburns map area (12 I/5 and 6) and Trapper Prospect areas. Newfoundland Department of Mines and Energy, Mineral Development Division, Report 86-1, 271–282.

*Miller, J. K. (1979). Geochemical dispersion over massive sulphides within the continuous permafrost zone, Bathurst Norsemines, Canada. In Prospecting in areas of glaciated terrain 1979 (pp. 101–110). London: Institute of Mining and Metallurgy.

*Miller, J. K. (1984). Model for clastic indicator trains in till. In Prospecting in areas of glaciated terrain 1984 (pp. 69–77). London: Institute of Mining and Metallurgy.

*Morris, T. (2014). The Ti-pa-haa-kaa-ning (TPK) gold grain glacial dispersal apron, northwestern Ontario, Canada. In M. B. McClennaghan, A. Plouffe, & D. Layton-Matthews (Eds.), Application of indicator mineral methods to mineral exploration (pp. 49–58). Geological Survey of Canada, Open File 7553.

*Nichol, I., & Bjorklund, A. (1973). Glacial geology as a key to geochemical exploration in areas of glacial overburden with particular reference to Canada. Journal of Geochemical Exploration, 2, 133–170.

*Nielson, S., Gutter, H., Pell, J., & Grenon, H. (2012). The evolution of kimberlite indicator mineral interpretation on the Chidliak Project, Baffin Island, Nunavut in 10th International Kimberlite Conference, Bangalore, India, extended Abstracts.

*North Arrow Minerals Inc. (2017, February 17). Exploring diamond opportunities in Canada. Unpublished corporat- ed update [Powerpoint presentation], 31 p.

*Parent, M., Beaumier, M., Girard, R., & Paradis, S. J. (2004). Diamond exploration in the Archean craton of northern Quebec – Kimberlite indicator minerals in eskers of the Saindon-Cambien corridor. Geological Survey of Canada, MB 2004-02, 15 p.

*Parent, M., Paradis, S. J., & Doiron, A. (1996). Palimpsest glacial dispersal trains and their significance for drift prospecting. Journal of Geochemical Exploration, 56, 123–140.

Parkhill, M. A., & Doiron, A. (2003). Quaternary geology of the Bathurst Mining Camp and implications for base metal exploration using drift prospecting. In W. D. Goodfellow, S. R. McCutcheon, & J. M. Peter (Eds.), Massive sulphide deposits of the Bathurst mining camp, New Brunswick and Northern Maine (pp. 631–660). Littleton, CO: Society of Economic Geologists, Economic Geology. Monograph 11.

Paulen, R. C. (2001). Glacial transport and secondary hydro-morphic metal mobilization: Examples from the southern interior of British Columbia, Canada. In M. B. McClennaghan, P. T. Bobrowsky, G. E. M. Hall, & S. Cook (Eds.), Drift exploration in glaciated terrain (pp. 323–337). Geological Society of London, Special Publication 185.

Paulen, R. C., & McClennaghan, M. B. (Eds.). (2017). New Frontiers for Exploration In Glaciated Terrain. Geological Survey of Canada, Open File 7374, 85 p.

*Paulen, R. C., McClennaghan, M. B., & Hicken, A. K. (2013). Regional and local ice-flow history in the vicinity of the Izok Lake Zn-Cu-Pb-Ag deposit, Nunavut. Canadian Journal of Earth Sciences, 50, 1209–1222.

*Pell, J., Clements, B., Gutter, H., Nielson, S., & Grenon, H. (2013). Following kimberlite indicator minerals to source in the Chidliak kimberlite province, Nunavut. In R. G. Paulen & M. B. McClennaghan (Eds.), New frontiers for exploration in glaciated terrain (pp. 47–53). Geological Survey of Canada, Open File 7374.

*Plouffe, A. (1998). Detrital transport of metals by glaciers, an example from the Pinchi Mine, Central British Columbia. Environmental Geology, 33, 183–196.

*Plouffe, A., Bednarski, J. M., Huscroft, C. A., Anderson, R. G., & McCuaig, S. J. (2011). Late Wisconsinan glacial history in the Bonaparte Lake map area, south-central British Columbia: Implications for glacial transport and mineral exploration. Canadian Journal of Earth Sciences, 48, 1091–1111.

*Plouffe, A., Ferbey, T., Hashmi, S., & Ward, B. C. (2016). Till geochemistry and mineralogy: Vectoring towards...
Cu porphyry deposits in British Columbia, Canada. Geochemistry: Exploration, Environment, Analysis, 16, 213–232.

Prest, V. K., Donaldson, J. A., & Mooers, H. D. (2000). The Omar story: The role of Omars in assessing glacial history of west-central North America. Géographie physique et Quaternaire, 54, 257–270.

Prest, V. K., Grant, D. R., & Rampton, V. N. (1968). The Glacial map of Canada. Geological Survey of Canada, Map 125A4, 1:5,000,000 scale.

Rencz, A. N., & Shilts, W. W. (1980). Nickel in soils and vegetation of glaciated terrains. In J. O. Nriagu (Ed.), Nickel in the Environment (pp. 151–188). New York: John Wiley and Sons.

Roderick, G. L. (1966). A history of particle-size limits. Iowa State University, Engineering Research Institute, Contribution No. 66-13, 43 p.

*Rogers, P. J., & Garrett, R. G. (1987). Lithophile elements and exploration using center lake bottom sediments from the East Kemptville area, southern Nova Scotia, Canada. Journal of Geochemical Exploration, 28, 467–478.

Ross, M., Campbell, J. E., Parent, M., & Adams, R. S. (2009). Contribution No. 66-13, 43 p.

*Stalker, A. M. (1956).

*Sim, V. M. (1960). A preliminary account of Late Wisconsin" glaciation in Melville Peninsula, N.W.T. Le Geographe Canadien, 21–34.

*Stea, R. R., Johnson, M., & Hanchar, D. (2009). The geometry of kimberlite indicator mineral dispersal fans in Nunavut, Canada. In R. C. Paulen & I. McMartin (Eds.), Application of till and stream sediment heavy mineral and geochemical methods to mineral exploration in Western and Northern Canada (pp. 1–13). Geological Association of Canada, Short Course Notes 18.

*Stea, R. R., Turner, R. G., Finck, P. W., & Graves, R. M. (1989). Glacial dispersal in Nova Scotia: A zonal concept. In R. N. W. Dilabio & W. B. Coker (Eds.), Drift prospecting (pp. 155–169). Geological Survey of Canada. Paper 89-20.

Strand, P., Banas, A., Baumgartner, M., & Burgess, J. (2009). Tracing kimberlite indicator mineral dispersal trains: an example from the Churchill Diamond Project, Kivalliq region, Nunavut. In R. C. Paulen & I. McMartin (Eds.), Application of till and stream sediment heavy mineral and geochemical methods to mineral exploration in Western and Northern Canada (pp. 167–175). Geological Association of Canada. GAC Short Course Notes 18.

Strand, P., Banas, A., Burgess, J., & Baumgartner, M. (2008). Two distinct kimberlite types at the Churchill diamond project. 9th International Kimberlite Conference, Extended Abstract No. IKC-A-00136, 3 p.

*Szabo, N. L., Govett, G. J. S., & Lajtai, E. Z. (1975). Dispersion trends of elements and indicator pebbles in glacial till around Mt Pleasant, New Brunswick, Canada. Canadian Journal of Earth Sciences, 12, 1534–1556.

*Taylor, F. B. (1910). Richmond and Great Barrington boulder trains. Bulletin of the Geological Society of America, 21, 747–752.

*Taylor, F. G. (1982). Reconnaissance geology of a part of the Canadian Shield, northern Quebec and Northwest Territories. Geological Survey of Canada, Memoir 399, 32 p.

Thorleifson, L. H., & Kristjansson, F. J. (1993). Quaternary geology and drift prospecting, Beadmore–Geraldton area, Ontario. Geological Survey of Canada Memoir 435, 146 p.

*Tippett, C. (1985). Glacial dispersal train of Paleozoic erratics, Central Baffin Island, N.W.T., Canada. Canadian Journal of Earth Sciences, 22, 1818–1826.

Trommelen, T., Ryan, J. J., & James, D. T. (2007). Ice flow studies in Boothia mainland (NTS 57A and 57B), Kitikmeot region, Nunavut. Geological Survey of Canada, Open File 5554, 16 p.

*Trommelen, M. S. (2011). Far North Geomapping Initiative: Quaternary geology of the Snyder–Grevstad lakes area, far northwestern Manitoba (parts of NTS 64N5) in Manitoba Geological Survey, Report of Activities 2011, 18–28.

*Trommelen, M. S., Ross, M., & Campbell, J. E. (2013). Inherited clast dispersal patterns: Implications for palaeoglaciology of the SE Keewatin sector of the Laurentide ice sheet. Boreas, 42, 693–713.

Tyrrell, J. B. (1897). Report on the Doobraunt, Kazan and Ferguson rivers and the north-west coast of Hudson Bay and on two overland routes from Hudson Bay to Lake Winnipeg. Geological Survey of Canada, 6F–193E.

*Veillette, J. J. (1990, March). La cartographie regionale des depots glaciaires et l’exploration minerale: l’Abitibi-
Temiscamingue. In S. A. Averill, A. Bolduc, W. B. Coker, R. N. W. Dilabio, Y. Maurice, M. Parent, J. J. Veillette, & LaSalle, P. (Eds.), *Application de la géologie du Quaternaire à l’exploration minérale* (pp. 58–85). Short course notes, Association professionnelle des géologues et des géophysiciens du Québec, Ste-Foy, Quebec.

Veillette, J. J. (2004). Ice-flow chronology and palimpsest, long-distance dispersal of indicator clasts, north of the St. Lawrence River valley, Quebec. *Geographie physique et Quaternaire*, 58, 187–216.

*Veillette, J. J., Paradis, S. J., & Buckle, J. (2005). Bedrock and surficial geology of the general area around Rouyn-Noranda, Quebec and Ontario. In G. F. Bonham-Carter (Ed.), *Metals in the Environment Around Smelters at Rouyn-Noranda, Quebec, and Belledune, New Brunswick: Results and Conclusions of the GSC MITE Point Sources Project*, 16 p.*

*Warren, C. H., & Powers, S. (1914). Geology of the Diamond Hill–Cumberland district in Rhode Island–Massachusetts. *Bulletin of the Geological Society of America*, 25, 435–476.*