Renormalisation group analysis of 4D spin models and self-avoiding walk

Roland Bauerschmidt∗, David Brydges† and Gordon Slade†

February 12, 2016

Abstract

We give an overview of results on critical phenomena in 4 dimensions, obtained recently using a rigorous renormalisation group method. In particular, for the n-component $|\varphi|^4$ spin model in dimension 4, with small coupling constant, we prove that the susceptibility diverges with a logarithmic correction to the mean-field behaviour with exponent $(n + 2)/(n + 8)$. This result extends rigorously to $n = 0$, interpreted as a supersymmetric version of the model that represents exactly the continuous-time weakly self-avoiding walk. We also analyse the critical two-point function of the weakly self-avoiding walk, the specific heat and pressure of the $|\varphi|^4$ model, as well as scaling limits of the spin field close to the critical point.

1 Introduction and results

$|\varphi|^4$ model Our results apply to the n-component $|\varphi|^4$ model on the 4-dimensional integer lattice \mathbb{Z}^d with $d = 4$. To define the model, we approximate \mathbb{Z}^d by a discrete torus $\Lambda = \Lambda_N = \mathbb{Z}^d/L^N \mathbb{Z}^d$ of side length L^N with L fixed (large), and eventually $N \to \infty$. To define the model and set notation, for coupling constants $g > 0$, $\nu, z \in \mathbb{R}$, a subset $X \subseteq \Lambda$, and a field $\varphi : \Lambda \to \mathbb{R}^n$, set

$$V_{g,\nu,z}(\varphi, X) = \sum_{x \in X} \left(\frac{1}{2} z \varphi_x \cdot (-\Delta \varphi_x) + \frac{1}{2} \nu |\varphi_x|^2 + \frac{1}{4} g |\varphi_x|^4 \right).$$

(1)

The $|\varphi|^4$ model is then defined as the probability measure

$$\frac{1}{Z_{g,\nu,\Lambda}} e^{-V_{g,\nu,1}(\varphi, \Lambda)} \prod_{x \in \Lambda} d\varphi_x,$$

where $d\varphi_x$ is the Lebesgue measure on \mathbb{R}^n and $Z_{g,\nu,\Lambda}$ is a normalisation constant (the partition function). Assuming (for now) existence of the limits, the two-point function and susceptibility are defined by

$$G_{g,\nu}(x) = \lim_{N \to \infty} \langle \varphi_0 \cdot \varphi_x \rangle_{g,\nu,\Lambda_N}, \quad \chi(g, \nu) = \sum_{x \in \mathbb{Z}^d} G_{g,\nu}(x).$$

(3)
where $\langle \cdot \rangle_{g,\nu,\Lambda}$ is the expectation of \cite{2}, and the pressure and (singular part of the) specific heat are $p(g, \nu) = \lim_{N \to \infty} \frac{1}{|\Lambda_N|} \log Z_{g,\nu,\Lambda_N}$ and $c_H(g, \nu) = \frac{\partial}{\partial \nu^2} p(g, \nu)$.

Weakly self-avoiding walk Let X be a continuous-time simple random walk on \mathbb{Z}^d and denote by E_0 the expectation for the process with $X(0) = 0 \in \mathbb{Z}^d$. The self-intersection local time up to time T is the random variable

$$I(T) = \int_0^T \int_0^T 1_{X(t_1) = X(t_2)} dt_1 dt_2.$$ \hspace{1cm} \text{(4)}$$

For $g > 0$ and $\nu \in \mathbb{R}$, and $x \in \mathbb{Z}^d$, the continuous-time weakly self-avoiding walk two-point function and susceptibility are defined by the (possibly infinite) integrals

$$G_{g,\nu}(x) = \int_0^\infty E_0 \left(e^{-gI(T)} 1_{X(T) = x} \right) e^{-\nu T} dT, \quad \chi(g, \nu) = \sum_{x \in \mathbb{Z}^d} G_{g,\nu}(x).$$ \hspace{1cm} \text{(5)}$$

Overviews of results on (weakly) self-avoiding walks can be found in Refs. \cite{7,30}. The weakly self-avoiding walk is believed to be in the same universality class as the strictly self-avoiding walk. It is exactly related to a supersymmetric version of the $|\varphi|^4$ model with a complex bosonic and a complex fermionic field, and this is the starting point for our analysis \cite{16,31,32}. The fermionic components effectively count negatively, and we thus refer to weakly self-avoiding walk case as the case $n = 0$ of the $|\varphi|^4$ model (with 0 interpreted as $2 - 2$).

The following theorem summarises the main results of Refs. \cite{1,6,16,20,33}. Here $A \sim B$ stands for $\lim A/B = 1$.

Theorem 1. Let $d = 4$, $n = 0, 1, 2, \ldots$, $p > 0$, and let $g > 0$ be small (depending on n and p). For the n-component $|\varphi|^4$ model ($n \geq 1$), and for the weakly self-avoiding walk ($n = 0$), there exist critical values $\nu_c = \nu_c(g, n)$ such that, as $\varepsilon \downarrow 0$ respectively $|x| \to \infty$, the following hold (with constants $A, B, D > 0$ depending on g, n, and C_p depending on p).

(i) (Ref. \cite{3}) For $n \geq 0$, the critical two-point function decays as

$$G_{g,\nu_c}(x) \sim B |x|^{-2}.$$ \hspace{1cm} \text{(6)}$$

(ii) (Refs. \cite{2,4}) For $n \geq 0$, the susceptibility obeys

$$\chi(g, \nu_c + \varepsilon) \sim A \varepsilon^{-1} (\log \varepsilon^{-1})^{(n+2)/(n+8)}.$$ \hspace{1cm} \text{(7)}$$

(iii) (Ref. \cite{8}) For $n \geq 0$, the correlation length of order $p > 0$ obeys

$$\frac{1}{\chi(g, \nu_c + \varepsilon)} \sum_x |x|^p G_{g,\nu_c+\varepsilon}(x) \sim C_p A^{-p/2} \varepsilon^{-p/2} (\log \varepsilon^{-1})^{p(n+2)/(2n+16)}.$$ \hspace{1cm} \text{(8)}$$

(iv) (Ref. \cite{3}) For $n \geq 1$, the specific heat obeys

$$c_H(g, \nu_c + \varepsilon) \sim D \begin{cases} (\log \varepsilon^{-1})^{(4-n)/(n+8)} & (n = 1, 2, 3) \\ \log \log \varepsilon^{-1} & (n = 4) \\ 1 & (n > 4) \end{cases}.$$ \hspace{1cm} \text{(9)}$$
(v) (Ref. [4] For $n \geq 1$, the spin field on the discrete torus of side length L^N converges weakly to white noise if $\nu > \nu_c$, and to a massive Gaussian free field if $\nu \downarrow \nu_c$ as $N \to \infty$ appropriately.

(vi) (Ref. [35]) For $n \geq 0$, several multi-point functions have interesting n-dependent logarithmic corrections.

The limits defining the quantities on the left-hand sides are taken along the sequence Λ_N with L large enough, and the statement includes their existence in this case. For $n = 0,1,2$, independence of the sequence of most limits is known by other methods.

Item (iii) was obtained with Tomberg and Wallace, and (vi) with Tomberg. All results rely on a general renormalisation group method, outlined in the remainder of these proceedings. Several cases of the above results have been proved previously by different renormalisation group methods. In particular, (i) and a case of (vi) was proved for $n = 1$ in Refs. [23,24] (i) for $n = 1$ was independently proved in Ref. [22] versions of (ii), (iii) for $n = 1$ were obtained in Refs. [26,27], and (i) for a version of $n = 0$ in Ref. [28]. A hierarchical version of the 4-dimensional weakly self-avoiding walk was studied in Refs. [11,14,15,25] for complex ν, which permits inversion of the Laplace transforms $G_{g,\nu}(x)$ in (5) and the analysis of the end-to-end distance. The above critical behaviour was first predicted over 40 years ago using non-rigorous methods; see in particular Refs. [10,29,34].

2 Method

The results of Theorem [11] are proved by a rigorous version of Wilson’s renormalisation group [35], developed in Refs. [1,5,6,13,16,20]. This method applies to bosonic fields (standard probability theory), fermionic fields (Grassmann fields), or both, and is compatible with supersymmetry. For brevity, we only discuss the (bosonic) $|\varphi|^4$ model.

From now on, we identify $V = (g, \nu, z) \in \mathbb{R}^3$ with the function $V_{g,\nu,z}$ defined in (1). Then for $m^2 > 0$ and $V_0 = (g_0, \nu_0, z_0)$ with $z_0 > -1$ and $g_0 > 0$, we define

$$Z_N(\varphi) = (\mathbb{E}_C \theta Z_0)(\varphi), \quad Z_0 = e^{-V_0(\varphi,\Lambda)}, \quad C = (-\Delta + m^2)^{-1} \quad (10)$$

where $\mathbb{E}_C \theta F$ denotes the convolution of F with the Gaussian measure with covariance C. By a change of variables, the original model can be studied in terms of Z_N with $g_0 = g(1+z_0)^2$ and $\nu_0 = (1+z_0)\nu - m^2$. It will be useful to carry out the analysis as a function of the four parameters (m^2, g_0, ν_0, z_0), and specialise later.

Progressive integration The starting point for the analysis of Z_N is a positive definite finite-range decomposition [11,13] of the operator $(-\Delta + m^2)^{-1}$ ($m^2 > 0$) on Λ_N as

$$(-\Delta_{\Lambda_N} + m^2)^{-1} = C_1 + \cdots + C_{N-1} + C_{N,N}, \quad (11)$$

satisfying $C_{j:x,y} = 0$ if $|x - y| > \frac{1}{2}L^j$ (finite range property), the estimates $|\nabla^a C_{j:x,y}| = O((1 + L^2(j-1)m^2)^{-s}L^{-(d-2+|a|)(j-1)})$ for any $s > 0$ and all $j < N$ (scaling estimates), and additional less significant properties. Moreover, similar estimates hold for $C_{N,N}$ for $m^2 \geq cL^{-2(N-1)}$, and we thus often write C_N instead of $C_{N,N}$. Such a covariance decomposition enables a progressive evaluation [9] of Z_N as the last element of

$$Z_{j+1} = \mathbb{E}_{C_{j+1}} \theta Z_j, \quad Z_0 = e^{-V_0(\Lambda)}. \quad (12)$$
The torus \(\Lambda_N \) is decomposed as the union over \(\mathcal{B}_j \) of disjoint blocks of side length \(L^j \) where \(\mathcal{B}_j \) is such that each block \(b \in \mathcal{B}_j \) is completely contained in a block \(B \in \mathcal{B}_{j+1} \). The set of polymers \(\mathcal{P}_j \) consists of unions of blocks in \(\mathcal{B}_j \). For any \(X \in \mathcal{P}_j \), we denote by \(\mathcal{B}_j(X) \) the blocks contained in \(X \). The finite range property asserts that the restrictions of a Gaussian field \(\zeta \) with covariance \(C_j \) to two polymers in \(\mathcal{P}_j \) that do not touch are independent.

Renormalisation group
The renormalisation group map is a description of the *global* map \(Z_j \mapsto Z_{j+1} \) in terms of *local* coordinates \(I_j \) and \(K_j \), where \(I_j \) corresponds to the relevant and marginal directions in the Wilson renormalisation group [35], and \(K_j \) to the irrelevant directions. More concretely, there is an explicit function \(W_j \) such that the coordinate

\[
I_j(X, \varphi) = \prod_{B \in \mathcal{B}_j(X)} e^{-V_j(B, \varphi)}(1 + W_j(B, V_j, \varphi)), \quad (X \in \mathcal{P}_j)
\]

is completely determined by three *coupling constants* \(V_j = (g_j, \nu_j, z_j) \in \mathbb{R}^3 \), and \(I_j \) factors over \(j \)-blocks. The irrelevant coordinate \(K_j(X, \varphi) \) has the weaker factorisation property

\[
K_j(X \cup Y, \varphi) = K_j(X, \varphi)K_j(Y, \varphi) \quad \text{for } X, Y \in \mathcal{P}_j \text{ that do not touch.}
\]

Both \(I_j(X, \varphi) \) and \(K_j(X, \varphi) \) have the locality property that they only depend on \(\varphi \) in a neighbourhood of \(X \), as well as the normalisation \(I_j(\emptyset) = K_j(\emptyset) = 1 \). They can be multiplied by the *circle product* [21]

\[
(I_j \circ K_j)(X, \varphi) = \sum_{Y \in \mathcal{P}_j(X)} I_j(X \setminus Y, \varphi)K_j(Y, \varphi).
\]

For \(j = 0 \) one then has \(Z_j(\varphi) = e^{-u_j|\Lambda|(I_j \circ K_j)(\Lambda, \varphi)} \), with \(u_0 = 0 \), \(W_0 = 0 \), and \(K_0(X, \varphi) = 1_{X=\emptyset} \). The *renormalisation group map* is a lifting of the map \(Z_j \mapsto Z_{j+1} \) to a map \((u_j, I_j, K_j) \mapsto (u_{j+1}, I_{j+1}, K_{j+1})\), with \(u_j \in \mathbb{R} \), such that

\[
e^{-u_j|\Lambda|} \mathbb{E}_{C_{j+1}} \theta(I_j \circ K_j)(\Lambda, \varphi) = e^{-u_{j+1}|\Lambda|}(I_{j+1} \circ K_{j+1})(\Lambda, \varphi).
\]

Flow of coupling constants
In Ref. [5] the map \(V_j \mapsto V_{j+1} \) is defined to second order by perturbation theory. In Refs. [19, 20] the non-perturbative correction and the complete map \((V_j, K_j) \mapsto (V_{j+1}, K_{j+1})\) are defined, as well suitable function spaces of \(K_j \) and estimates that show that \(K_j \) is contractive in these spaces.

In particular, the evolution of \(V_j \) and thus \(I_j \) is determined by a flow of coupling constants, which similarly as in Wilson’s non-rigorous analysis, are given by

\[
g_{j+1} = g_j - \beta_j g_j^2 + r_{g,j} \tag{17}
\]

\[
\mu_{j+1} = L^2 \mu_j \left(1 - \frac{n + 2}{n + 8} \beta_j g_j \right) + (\cdots) + r_{\mu,j}. \tag{18}
\]

Here \(\mu_j = L^{2j} \nu_j \), the \((\cdots) \) denote other explicit terms which are at most quadratic in \(V \), and the \(r \) are non-perturbative remainders that depend on \(K_j \) and are third order in \(V \). The explicit flow
of z_j is also important, but conceptually less significant, and we mostly ignore it in this exposition. The coefficients β_j are given by

$$\beta_j = \sum_{x \in \mathbb{Z}^d} \left(w_{j+1}(x)^2 - w_j(x)^2 \right), \quad w_j(x) = \sum_{k=1}^j C_k(x).$$

To study the approach of the critical point rather than only the critical point itself, the β_j here depend on $m^2 > 0$ through the covariances C_k. They have asymptotic behaviour $\lim_{j \to \infty} \beta_j \sim (n+8)(\log L)/(16\pi^2)$ as $j \to \infty$, and obey $\lim_{N \to \infty} \sum_j \beta_j \to (n+8)B_{m^2}$ where $B_{m^2} = \sum_{x \in \mathbb{Z}^d} [(-\Delta_x + m^2)^{-1} - 1]_2^2 \sim (n+8) \log m^2/(16\pi^2)$ is the bubble diagram of the free Green function. The logarithmic divergence of B_{m^2} is ultimately responsible for the criticality of $d = 4$ and the logarithmic corrections in Theorem 1.

The control of K_j is at the heart of the issues to obtain a mathematically rigorous result. The analysis in Refs. [19,20] exploits the finite range property of the covariances C_k to avoid the need for cluster expansions. An example of this approach in a simpler context can be found in Ref. [12].

The (non-hyperbolic) dynamical system $(V_j, K_j) \mapsto (V_{j+1}, K_{j+1})$ is analysed in Refs. [4,6]. For $(m^2, g_0) \in (0, \delta)^2$ with $\delta > 0$ small, initial conditions $(\nu_0, \nu_0) = (\nu_0^c(m^2, g_0), \nu_0^c(m^2, g_0))$ are determined such that V_j remains bounded and $K_j \to 0$, as $j \to \infty$. Along this renormalisation group trajectory the observables discussed in Theorem 1 are studied. This will be exemplified in the case of the susceptibility. The susceptibility is also fundamental to relate (ν_0^c, z_0^c) to the critical points $\nu_c(g)$ of the original models, using the change of variables mentioned below [10] and implicit function theory.

Susceptibility

We sketch the proof of (17). For a test function $h : \Lambda \to \mathbb{R}$, set $\Sigma_N(h) = \mathbb{E}_C(Z_0(\varphi)e^{(h, Ch)})$. Then, by completion of the square,

$$\frac{\Sigma_N(h)}{\Sigma_N(0)} = e^{-\frac{1}{2}(h, Ch) Z_N(Ch)} \frac{I_N(\Lambda, Ch) + K_N(\Lambda, Ch)}{I_N(\Lambda, 0) + K_N(\Lambda, 0)},$$

using that $I_N \circ K_N(\Lambda) = I_N(\Lambda) + K_N(\Lambda)$ since there is only one N-block on Λ_N. Assuming that (g, ν) and (m^2, g_0, ν_0, z_0) are related as below [10], the susceptibility is obtained (up to a factor $(1 + z_0^2)$ by differentiating twice with respect to a constant test function h. In particular, if $(m^2, g_0, \nu_0, z_0) = (m^2, g_0, \nu_0^c, z_0^c)$ is critical according to the dynamical system analysis, then $K_N \to 0$ in a suitable norm, and using $C1 = m^{-2}1$ for constant test function $1_x = 1$ as well as the explicit form of I_N, we obtain the identity

$$\chi(g, \nu) = (1 + z_0) \lim_{N \to \infty} \left(\frac{1}{m^2} - \nu_0 \right) \left(\frac{1}{m^4} D^2 W(\Lambda; 0, 1, 1) + D^2 K(\Lambda; 0, 1, 1) \right) \frac{1}{m^2}.$$

In particular, $\nu \downarrow \nu_c(g)$ corresponds to $m^2 \downarrow 0$ under the critical choice of the four coupling constants, and the singular behaviour of χ at $\nu = \nu_c(g)$ is encoded in the relationship between m^2 and (g, ν). To understand χ, we derive an equation for $\frac{\partial}{\partial g} \chi = (1 + z_0) \frac{\partial}{\partial \nu_0} \chi$. The derivative can be taken inside the limit in (21), and is taken with m^2, g_0, z_0 fixed. Then the ν_0-derivative of $1/m^2$...
vanishes and the main contribution to $\frac{\partial}{\partial \nu} \chi$ is given by $-\nu_N/m^4$ (with the contribution due to K_N again subleading), where the prime denotes the derivative with respect to ν_0. By differentiating (17)–(18), along the critical trajectory, for which coupling constants are controlled, it can be shown that

$$\nu_j' \sim (1 + O(g)) \left(\frac{g_j}{g_0} \right)^{(n+2)/(n+8)}.$$ \hfill(22)

The coupling constant g_j tends to an m^2-dependent limit g_∞. As $m^2 \downarrow 0$,

$$g_\infty \sim \frac{1}{(n + 8) B m^2} \sim \frac{16\pi^2}{(n + 8) \log m^2}.$$ \hfill(23)

This leads to

$$\frac{\partial \chi}{\partial \nu}(g, \nu) = \frac{(1 + z_0)^2}{m^4} \lim_{N \to \infty} \left(-\nu_N' + \frac{\partial}{\partial \nu_0} \frac{1}{|\Lambda|} \left(D^2 W(\Lambda; 0; 1, 1) + D^2 K(\Lambda; 0; 1, 1) \right) \right)$$

$$\sim c \frac{(\log m^2)^{n+2}/(n+8)}{m^4}.$$ \hfill(24)

From (21) and (24) we obtain $\frac{\partial}{\partial \nu} \chi \sim c (\log \chi)^{(n+2)/(n+8)} \chi^2$ as $m^2 \downarrow 0$, and the claim

$$\chi(g, \nu_c(g) + \varepsilon) \sim A \varepsilon^{-1} (\log \varepsilon^{-1})^{(n+2)/(n+8)} (\varepsilon \downarrow 0),$$ \hfill(25)

follows.

Other observables The analysis of the specific heat follows a similar strategy as that for the susceptibility. The pointwise analysis of the two-point and multi-point functions require the analysis of an additional flow of *observable coupling constants*, which depends on the bulk flow (17)–(18), but not vice-versa. In particular, it is also shown that $G_{\nu_c}(x) \sim (1 + z_0)(-\Delta)^{-1}_{0x}$ as $|x| \to \infty$. Together with (21) this allows to characterise m^2 as the *renormalised mass* and $1 + z_0$ as the *field strength renormalisation*. The scaling limit result is obtained by analysing (20) with general smooth test functions h.

Acknowledgments

This work on which this article is based was supported in part by NSERC of Canada and by the U.S. NSF under agreement DMS-1128155.

References

[1] R. Bauerschmidt. A simple method for finite range decomposition of quadratic forms and Gaussian fields. *Probab. Theory Related Fields*, **157**:817–845, (2013).

[2] R. Bauerschmidt, D.C. Brydges, and G. Slade. Scaling limits and critical behaviour of the 4-dimensional n-component $|\varphi|^4$ spin model. *J. Stat. Phys*, **157**:692–742, (2014).
[3] R. Bauerschmidt, D.C. Brydges, and G. Slade. Critical two-point function of the 4-dimensional weakly self-avoiding walk. *Commun. Math. Phys.*, **338**:169–193, (2015).

[4] R. Bauerschmidt, D.C. Brydges, and G. Slade. Logarithmic correction for the susceptibility of the 4-dimensional weakly self-avoiding walk: a renormalisation group analysis. *Commun. Math. Phys.*, **337**:817–877, (2015).

[5] R. Bauerschmidt, D.C. Brydges, and G. Slade. A renormalisation group method. III. Perturbative analysis. *J. Stat. Phys.*, **159**:492–529, (2015).

[6] R. Bauerschmidt, D.C. Brydges, and G. Slade. Structural stability of a dynamical system near a non-hyperbolic fixed point. *Ann. Henri Poincaré*, **16**:1033–1065, (2015).

[7] R. Bauerschmidt, H. Duminil-Copin, J. Goodman, and G. Slade. Lectures on self-avoiding walks. In D. Ellwood, C. Newman, V. Sidoravicius, and W. Werner, editors, *Probability and Statistical Physics in Two and More Dimensions*, pages 395–467. Clay Mathematics Proceedings, vol. 15, Amer. Math. Soc., Providence, RI, (2012).

[8] R. Bauerschmidt, G. Slade, A. Tomberg, and B. Wallace. Finite-order correlation length for 4-dimensional weakly self-avoiding walk and $|\phi|^4$ spins. Preprint, (2015).

[9] G. Benfatto, M. Cassandro, G. Gallavotti, F. Nicolò, E. Oliveri, E. Presutti, and E. Scacciatelli. Some probabilistic techniques in field theory. *Commun. Math. Phys.*, **59**:143–166, (1978).

[10] E. Brézin, J.C. Le Guillou, and J. Zinn-Justin. Approach to scaling in renormalized perturbation theory. *Phys. Rev. D*, **8**:2418–2430, (1973).

[11] D. Brydges, S.N. Evans, and J.Z. Imbrie. Self-avoiding walk on a hierarchical lattice in four dimensions. *Ann. Probab.*, **20**:82–124, (1992).

[12] D.C. Brydges. Lectures on the renormalisation group. In S. Sheffield and T. Spencer, editors, *Statistical Mechanics*, pages 7–93. American Mathematical Society, Providence, (2009). IAS/Park City Mathematics Series, Volume 16.

[13] D.C. Brydges, G. Guadagni, and P.K. Mitter. Finite range decomposition of Gaussian processes. *J. Stat. Phys.*, **115**:415–449, (2004).

[14] D.C. Brydges and J.Z. Imbrie. End-to-end distance from the Green’s function for a hierarchical self-avoiding walk in four dimensions. *Commun. Math. Phys.*, **239**:523–547, (2003).

[15] D.C. Brydges and J.Z. Imbrie. Green’s function for a hierarchical self-avoiding walk in four dimensions. *Commun. Math. Phys.*, **239**:549–584, (2003).

[16] D.C. Brydges, J.Z. Imbrie, and G. Slade. Functional integral representations for self-avoiding walk. *Probab. Surveys*, **6**:34–61, (2009).

[17] D.C. Brydges and G. Slade. A renormalisation group method. I. Gaussian integration and normed algebras. *J. Stat. Phys.*, **159**:421–460, (2015).
[18] D.C. Brydges and G. Slade. A renormalisation group method. II. Approximation by local polynomials. *J. Stat. Phys.*, **159**:461–491, (2015).

[19] D.C. Brydges and G. Slade. A renormalisation group method. IV. Stability analysis. *J. Stat. Phys.*, **159**:530–588, (2015).

[20] D.C. Brydges and G. Slade. A renormalisation group method. V. A single renormalisation group step. *J. Stat. Phys.*, **159**:589–667, (2015).

[21] D.C. Brydges and H.-T. Yau. Grad ϕ perturbations of massless Gaussian fields. *Commun. Math. Phys.*, **129**:351–392, (1990).

[22] J. Feldman, J. Magnen, V. Rivasseau, and R. Sénéor. Construction and Borel summability of infrared Φ^4_4 by a phase space expansion. *Commun. Math. Phys.*, **109**:437–480, (1987).

[23] K. Gawędzki and A. Kupiainen. Massless lattice φ^4_4 theory: Rigorous control of a renormalizable asymptotically free model. *Commun. Math. Phys.*, **99**:199–252, (1985).

[24] K. Gawędzki and A. Kupiainen. Asymptotic freedom beyond perturbation theory. In K. Osterwalder and R. Stora, editors, *Critical Phenomena, Random Systems, Gauge Theories*, Amsterdam, (1986). North-Holland. Les Houches 1984.

[25] S.E. Golowich and J.Z. Imbrie. The broken supersymmetry phase of a self-avoiding random walk. *Commun. Math. Phys.*, **168**:265–319, (1995).

[26] T. Hara. A rigorous control of logarithmic corrections in four dimensional φ^4 spin systems. I. Trajectory of effective Hamiltonians. *J. Stat. Phys.*, **47**:57–98, (1987).

[27] T. Hara and H. Tasaki. A rigorous control of logarithmic corrections in four dimensional φ^4 spin systems. II. Critical behaviour of susceptibility and correlation length. *J. Stat. Phys.*, **47**:99–121, (1987).

[28] D. Iagolnitzer and J. Magnen. Polymers in a weak random potential in dimension four: rigorous renormalization group analysis. *Commun. Math. Phys.*, **162**:85–121, (1994).

[29] A.I. Larkin and D.E. Khmel’Nitski˘i. Phase transition in uniaxial ferroelectrics. *Soviet Physics JETP*, **29**:1123–1128, (1969). English translation of Zh. Eksp. Teor. Fiz. **56**, 2087–2098, (1969).

[30] N. Madras and G. Slade. *The Self-Avoiding Walk*. Birkhäuser, Boston, (1993).

[31] A.J. McKane. Reformulation of $n \to 0$ models using anticommuting scalar fields. *Phys. Lett. A*, **76**:22–24, (1980).

[32] G. Parisi and N. Sourlas. Self-avoiding walk and supersymmetry. *J. Phys. Lett.*, **41**:L403–L406, (1980).

[33] G. Slade and A. Tomberg. Critical correlation functions for the 4-dimensional weakly self-avoiding walk and n-component $|\varphi|^4$ model. To appear in *Commun. Math. Phys.*
[34] F.J. Wegner and E.K. Riedel. Logarithmic corrections to the molecular-field behavior of critical and tricritical systems. *Phys. Rev. B*, 7:248–256, (1973).

[35] K.G. Wilson and J. Kogut. The renormalization group and the ϵ expansion. *Phys. Rep.*, 12:75–200, (1974).