K-THÉORIE OF LINE BUNDLES AND SMOOTH VARIETIES

C. HAESEMEYER AND C. WEIBEL

Abstract. We give a K-theoretic criterion for a quasi-projective variety to be smooth. If L is a line bundle corresponding to an ample invertible sheaf on X, it suffices that $K_q(X) \cong K_q(L)$ for all $q \leq \dim(X) + 1$.

Let X be a quasi-projective variety over a field k of characteristic 0. The main result of this paper gives a K-theoretic criterion for X to be smooth. For affine X, such a criterion was given in [2]: it suffices that X be K_{d+1}-regular for $d = \dim(X)$, i.e., that $K_{d+1}(X) \cong K_{d+1}(X \times \mathbb{A}^m)$ for all m. If X is affine, we also showed that K_{d+1}-regularity of X is equivalent to the condition that $K_i(X) \cong K_i(X \times \mathbb{A}^1)$ for all $i \leq d + 1$.

We also showed that K_{d+1}-regularity is insufficient for quasi-projective X; see [2, Thm. 0.2]. In this paper we prove:

Theorem 0.1. Let X be quasi-projective over a field k of characteristic 0, of dimension d, and let $L = \text{Spec}(\text{Sym} \mathcal{L})$ be the line bundle corresponding to an ample invertible sheaf \mathcal{L} on X.

If $K_i(L) \cong K_i(X)$ for all $i \leq n$ then X is regular in codimension $< n$.

If $K_i(L) \cong K_i(X)$ for all $i \leq d + 1$, then X is regular.

For example, if $K_i(L) \cong K_i(X)$ for all $i \leq d$, then X has at most isolated singularities.

In the affine case, of course, every line bundle is ample, and when $L = \mathbb{A}^1_R$ we recover our previous result, proven in [2, 0.1]:

Corollary 0.2. If R is essentially of finite type over a field of characteristic 0, and $K_i(R) \cong K_i(R[t])$ for all $i \leq n$ then R is regular in codimension $< n$.

The affine assumption in this corollary is critical. In [2], we gave an example of a curve Y which is K_n-regular for all n, but which is not regular; no affine open U is even reduced. However, $K_0(X) \neq K_0(L)$ for the line bundle associated to an ample \mathcal{L}; see Example 4.1 below. In Theorem 4.3 we give a surface X which is K_n-regular for all n, but which is not regular and such that $K_0(X) \neq K_0(L)$ for the line bundle associated to an ample \mathcal{L}; it is a cusp bundle over an elliptic curve.

As in our previous papers [1, 2, 3], our technique is to compare K-theory to cyclic homology using cdh-descent and cyclic homology. The parts of cdh descent we need are developed in Section 1, and applied to give a formula for the cyclic

Date: July 6, 2017.
Haesemeyer was supported by ARC DP-170102328.
Weibel was supported by NSF grant DMS-146502.
homology of line bundles in Section 2. The main theorem is proven in Section 3, and the two examples are given in Section 4.

Notation. If E is a presheaf of spectra, we write $\pi_n E$ for the presheaf of abelian groups $X \mapsto \pi_n E(X)$; we say that a spectrum E is n-connected if $\pi_q E = 0$ for all $q \leq n$. For example, $K_n(X)$ is the homotopy group $\pi_n K(X)$ of the spectrum $K(X)$.

Similarly, if E is a cochain complex of presheaves, we may regard it as a presheaf of spectra via Dold-Kan [15, ch. 10]. Thus $\pi_i E(X)$ is another notation for $H^{-i} E(X)$. We will use the cochain shift convention $E[i]^n = E_i + n$, so that the spectrum corresponding to $E[1]$ is the suspension of the spectrum of E, and $\pi_n E[1] = \pi_{n-1} E$. Thus if E is n-connected then $E[1]$ is $(n + 1)$-connected.

1. Zariski and cdh descent

In this paper, we fix a field of characteristic 0, and work with the category Sch of schemes X of finite type over the field. We will be interested in the Zariski and cdh topologies on Sch.

If τ is a Grothendieck topology on Sch, there is an “injective τ-local” model structure on the category $\text{Psh}(\text{Ch}(\text{Ab}))$ of presheaves of cochain complexes of abelian groups on Sch. In this model structure, a map $A \to B$ is a cofibration if $A(X) \to B(X)$ is an injection for all X, and it is a weak equivalence if $H^n A \to H^n B$ induces an isomorphism on the associated τ-sheaves. The fibrant replacement of A in this model structure is written as $A \to \mathbb{H}_{\tau}(-, A)$. We say that A satisfies τ-descent if the canonical map $A(X) \to \mathbb{H}_{\tau}(X, A)$ is a quasi-isomorphism for all X. There is a parallel notion of τ-descent for presheaves of spectra.

If A is a sheaf then $A \to \mathbb{H}_{\tau}(-, A)$ is an injective resolution; it follows that $\mathbb{H}^n_{\tau}(X, A) = H^n \mathbb{H}_{\tau}(X, A)$ for all n. For a complex A, the hypercohomology group $\mathbb{H}_{\tau}^n(X, A)$ equals $H^n \mathbb{H}_{\tau}(X, A)$. See [1, 3.3] for these facts.

The inclusion of complexes of sheaves (for a topology τ) into complexes of presheaves induces an injective τ-local model structure on complexes of sheaves, and the inclusion is a Quillen equivalence; see [3, 5.9].

For the Zariski, Nisnevich and cdh topologies, there is a parallel “injective τ-local” model structure on the category $\text{Psh}(\text{Ch}(\mathcal{O}_\tau))$ of presheaves of complexes of \mathcal{O}_τ-modules, and the functor forgetting the module structure is a Quillen adjunction. In particular, if A is a presheaf of complexes of \mathcal{O}_τ-modules, the forgetful functor sends its fibrant \mathcal{O}_τ-module replacement to a presheaf that is objectwise weak equivalent to $\mathbb{H}_{\tau}(-, A)$.

Example 1.1. The Hochschild complex HH/k satisfies Zariski descent by [17, 0.4]. By definition, the cochain complex $HH(X/k)$ is concentrated in negative cohomological degrees and has the (quasi-coherent) Zariski sheaf $\mathcal{O}_X(X) \otimes H_{n+1}$ in cohomological degree $-n$. When k is understood, we drop the '/k' from the notation. We sometimes regard HH as a sheaf of spectra, using Dold-Kan, and use the notation $\mathbb{H}_{\text{zar}}^q(X) = \pi_q HH(X)$ for $\mathbb{H}_{\text{zar}}^q(X, HH)$. Recall from [17, 4.6] that if X is noetherian then $\mathbb{H}_{\text{zar}}^q(X) = 0$ for $q < -\dim(X)$.

If E is a complex of Zariski sheaves of \mathcal{O}-modules on Sch, we may assume that $\mathbb{H}_{\text{zar}}(-, E)$ is a complex of Zariski sheaves of \mathcal{O}-modules, and similarly for
This it makes sense to form the sheaf tensor product $\mathbb{H}_{cdh}(\mathcal{F}, E)$ for the flat case. Thus it makes sense to form the sheaf tensor product $\mathbb{H}_{zar}(\mathcal{F}, E) \otimes_{\mathcal{O}_X} \mathcal{L}$ with a Zariski sheaf \mathcal{L} of \mathcal{O}_X-modules.

If E is a Zariski sheaf of \mathcal{O}_X-modules on X, then there is a Zariski sheaf E' of \mathcal{O}-modules on Sch/X, unique up to unique isomorphism, such that for every $f : Y \to X$ in Sch/X the restriction of E' to the small Zariski site of Y is naturally isomorphic to the sheaf $f^* E$. In this paper we will always work with this sheaf on the big site; so for example “an invertible sheaf \mathcal{L} on X” will indicate the sheaf on the big site associated in this way to an invertible sheaf on X.

Lemma 1.2. If \mathcal{L} is an invertible sheaf on X, \mathcal{L} is an auto-equivalence of the category $\mathcal{Sh}(Ch(\mathcal{O}_{zar}))/X$ of sheaves of complexes of \mathcal{O}_{zar}-modules on Sch/X which preserves cofibrations, fibrations and weak equivalences.

Proof. The functor \mathcal{L}^{-1} is a quasi-inverse to \mathcal{L}. Since \mathcal{L} is flat, \mathcal{L} preserves injections. Since \mathcal{L} is locally trivial on X (and hence on any X-scheme), and $A \otimes_{\mathcal{O}_X} \mathcal{O}_X \cong A$, \mathcal{L} preserves weak equivalences. Now suppose that $C \to D$ is a Zariski-local fibration; we want to see that $C \otimes \mathcal{L} \to D \otimes \mathcal{L}$ is a Zariski-local fibration. By invertibility, it suffices to observe that $A \otimes \mathcal{L}^{-1} \to B \otimes \mathcal{L}^{-1}$, a fact we have just verified.

Corollary 1.3. If \mathcal{L} is an invertible sheaf on X, and A is a complex of Zariski sheaves of \mathcal{O}-modules, then there is a quasi-isomorphism on Sch/X:

$$\mathbb{H}_{zar}(-, A) \otimes_{\mathcal{O}_X} \mathcal{L} \xrightarrow{\sim} \mathbb{H}_{zar}(-, A \otimes \mathcal{L}).$$

Proof. This follows immediately from Lemma 1.2.

We write (a^*, a_*) for the usual adjunction between Zariski and cdh sheaves associated to the change-of-topology morphism $a : (Sch/k)_{cdh} \to (Sch/k)_{zar}$. Thus if \mathcal{F} is a sheaf of \mathcal{O}_{cdh}-modules on $(Sch/X)_{cdh}$, $a_* \mathcal{F}$ is the underlying sheaf of \mathcal{O}_{zar}-modules, and for any Zariski sheaf E of \mathcal{O}_X-modules on X, we may form the Zariski sheaf $a_* \mathcal{F} \otimes_{\mathcal{O}_X} E$ on Sch/X.

Recall from [EGA, 01(5.4.1)] that a Zariski sheaf E of \mathcal{O}_X-modules is locally free if each point of X has an open neighborhood U such that $E|_U$ is a free \mathcal{O}_U-module, possibly of infinite rank.

Lemma 1.4. If E is a locally free sheaf on X, and \mathcal{F} is a cdh sheaf of \mathcal{O}_{cdh}-modules, then $a_* \mathcal{F} \otimes_{\mathcal{O}_X} E$ is a cdh sheaf on (Sch/X).

Proof. Since the question is local on X, we may replace X by an open subscheme to assume that E is free. Because the cdh-topology on Sch/X is quasi-compact, and therefore arbitrary direct sums of sheaves are sheaves, we are reduced to the trivial case $E = \mathcal{O}_X$, when $a_* \mathcal{F} \otimes_{\mathcal{O}_X} E = a_* \mathcal{F}$.

Definition 1.5. If \mathcal{F} is a cdh sheaf of \mathcal{O}_{cdh}-modules, we will write $\mathcal{F} \otimes_{\mathcal{O}_X} E$ for the cdh sheaf $a_* \mathcal{F} \otimes_{\mathcal{O}_X} E$.

Note that $\mathbb{H}_{zar}(X, \mathcal{F} \otimes_{\mathcal{O}_X} E) \neq \mathbb{H}_{zar}(X, \mathcal{F}) \otimes E(X)$. For example, $E(X) = 0$ does not imply that $(\mathcal{F} \otimes_{\mathcal{O}_X} E)(X) = 0$.

Lemma 1.6. If E is locally free on X then $\otimes_{\mathcal{O}_X} E$ preserves weak equivalences and cofibrations for complexes of cdh sheaves of \mathcal{O}_{cdh}-modules on Sch/X.
Proof. As in the proof of Lemma 1.4 we may replace X by an open subscheme and assume that E is a sheaf of free modules. Since $A \otimes_{\text{zar}} E$ is a sum of copies of A, it follows that $A \mapsto A \otimes_{\text{zar}} E$ preserves weak equivalences and cofibrations. □

Definition 1.7. Given a cochain complex A of presheaves of abelian groups on Sch, we write $F_A(X)$ for the homotopy fiber (the shifted mapping cone) of the canonical map $A(X) \to \mathbb{H}_{\text{cdh}}(X, A)$, so for each X there is a long exact sequence

$$\cdots \mathbb{H}_{\text{cdh}}^{n-1}(X, A) \to H^n F_A(X) \to H^n A(X) \to \mathbb{H}_{\text{cdh}}^n(X, A) \to H^{n+1} F_A(X) \cdots .$$

If A is a complex of sheaves (in some topology) of \mathcal{O}-modules, then $\mathbb{H}_{\text{cdh}}(X, A)$ can be represented by a complex of sheaves of \mathcal{O}-modules as well (see [8, 8.1]), and hence so can F_A. We also write $F_K(X)$ for the homotopy fiber of $K(X) \to KH(X)$.

It is well known that HH, HC and K-theory satisfy Zariski descent; it follows that F_{HH}, F_{HC} and F_K also satisfy Zariski descent.

Proposition 1.8. If \mathcal{L} is an invertible sheaf on X and A is a complex of Zariski sheaves of \mathcal{O}-modules on Sch/X, then:

$$\mathbb{H}_{\text{cdh}}(-, A) \otimes_{\text{zar}} \mathcal{L} \xrightarrow{\sim} \mathbb{H}_{\text{cdh}}(-, A \otimes \mathcal{L}).$$

Consequently, $F_A \otimes_{\text{zar}} \mathcal{L} \xrightarrow{\sim} F_{A \otimes \mathcal{L}}$.

Proof. Arguing as in the proof of Lemma 1.2, Lemma 1.4 shows that $\otimes_{\text{zar}} \mathcal{L}$ preserves cdh-local fibrations (in addition to cofibrations and weak equivalences). The first statement follows immediately from this. Because $\otimes_{\text{zar}} \mathcal{L}$ is exact, the second statement follows from the triangles

$$F_A \to A \to \mathbb{H}_{\text{cdh}}(-, A) \quad \text{and} \quad F_{A \otimes \mathcal{L}} \to A \otimes \mathcal{L} \to \mathbb{H}_{\text{cdh}}(-, A \otimes \mathcal{L}) \to .$$

Lemma 1.9. Let A_i be cochain complexes of presheaves on Sch/X. Then for every X-scheme Y, the canonical maps

$$\bigoplus_i \mathbb{H}_{\text{zar}}(Y, A_i) \to \mathbb{H}_{\text{zar}}(Y, \bigoplus_i A_i)$$

and

$$\bigoplus_i \mathbb{H}_{\text{cdh}}(Y, A_i) \to \mathbb{H}_{\text{cdh}}(Y, \bigoplus_i A_i)$$

are quasi-isomorphisms.

Proof. These sites are quasi-compact, and thus cohomology in them commutes with direct limits. □

2. Homology of line bundles

Suppose that R is a (commutative) noetherian algebra over a field k of characteristic 0. In [3, 3.2, 4.1], we showed that $NK(R) = K(R[t])/K(R)$ is isomorphic to $NF_{HC/Q}(R)[1]$ as well as $F_{HH/Q}(R)[1] \otimes_R tR[t]$. In this section, we replace $R[t]$ by the symmetric algebra $R[L] = \text{Sym}_R(L)$ of a rank 1 projective R-module, and the ideal $tR[t]$ by $LR[L]$. More generally, if \mathcal{L} is an invertible sheaf on a scheme X, we replace $X \times A^1$ by the line bundle $L = \text{Spec}(\text{Sym}_X \mathcal{L})$.
Lemma 2.1. Let L be a rank 1 projective R-module. Then the symmetric algebra $R[L] = \text{Sym}_R(L)$ satisfies:

$$HH(R[L]) \simeq HH(R) \otimes_R R[L] \oplus HH(R)[1] \otimes_R LR[L]$$
$$HC(R[L]) \simeq HC(R) \oplus HH(R) \otimes_R LR[L].$$

Similarly, if X is a scheme over R and $X[L]$ denotes $X \times_R \text{Spec}(R[L])$, then

$$HH(X[L]) \simeq HH(X) \otimes_R R[L] \oplus HH(X)[1] \otimes_R LR[L]$$
$$HC(X[L]) \simeq HC(X) \oplus HH(X) \otimes_R LR[L].$$

Note that, as an R-module, $LR[L] = R[L] \otimes_R L$ is just $\bigoplus_{j=1}^{\infty} L^{\otimes j}$.

Proof. The cochain complex $HH(R[L])$ ends: $\to R[L] \otimes R[L] \to R[L] \to 0$. Therefore there are natural maps from $R[L]$ and $R[L] \otimes L[1]$ to $HH(R[L])$. Using the shuffle product, we get a natural map $\mu(R)$ from the direct sum of $HH(R) \otimes_R R[L]$ and $HH(R) \otimes_R (R[L] \otimes L[1])$ to $HH(R[L])$. For each prime ideal \mathfrak{p} of R, we have $R_\mathfrak{p}[L] \cong R_\mathfrak{p}[t]$ and $\mu(R_\mathfrak{p})$ is a quasi-isomorphism by the Künneth formula [10 9.4.1]. It follows that $\mu(R)$ is a quasi-isomorphism. The formula for $HC(R[L])$ follows by induction on the SBI sequence, just as it does for $HC(R[t])$.

Now suppose that X is a scheme over R, the same argument applies to $\pi_*HH(O_X[L])$, the direct image along $X[L] \rightarrow X$ of the cochain complex $HH(O_X[L])$ on $X[L]$ of quasi-coherent sheaves described in Example [1.1]. Because π is affine, we have a quasi-isomorphism

$$H_{\text{zar}}(X[L], HH(O_X[L])) \cong H_{\text{zar}}(X, \pi_*HH(O_X[L])).$$

Now the assertions about $X[L]$ follow from Corollary [1.3] and Lemma [1.9] \hfill \square

Corollary 2.2. $F_{HC}(R[L]) \cong F_{HC}(R) \oplus \bigoplus_{j=1}^{\infty} \left(F_{HH} \otimes_R L^{\otimes j} \right)(R)$.

Proof. This follows from Lemma 2.1, Proposition 1.8 and Lemma 1.9 \hfill \square

Now suppose that X is a scheme of finite type over a field of characteristic 0, containing k, and write HH, HC, etc for HH/k, HC/k, etc.

Lemma 2.3. Let L be a line bundle over X, and write F_{HH} for the cochain complex of Zariski sheaves on X associated to the complex of presheaves $U \rightarrow F_{HH}(L|_U)$. Then $F_{HH}(L) \cong H_{\text{zar}}(X, F_{HH})$.

Proof. As observed after [1.7] the presheaf of complexes F_{HH} satisfies Zariski descent: $F_{HH}(L) \simeq H_{\text{zar}}(L, F_{HH})$. By [11 1.56], $H_{\text{zar}}(L, F_{HH}) \rightarrow H_{\text{zar}}(X, F_{HH})$. \hfill \square

In what follows, we write \otimes for the tensor product of O_X-modules.

Proposition 2.4. Let L be the line bundle $\text{Spec}(\text{Sym}(L))$ on X associated to an invertible sheaf L, and $p : L \rightarrow X$ the projection. Then we have quasi-isomorphisms:

$$HC(L) \simeq HC(X) \oplus H_{\text{zar}}(X, HH \otimes \text{Sym}(L) \otimes L);$$
$$H_{\text{cdh}}(X, p_*HC) \simeq H_{\text{cdh}}(X, HC) \oplus H_{\text{cdh}}(X, HH \otimes \text{Sym}(L) \otimes L);$$
$$F_{HC}(L) \simeq F_{HC}(X) \oplus \bigoplus_{j=1}^{\infty} \left(F_{HH} \otimes L^{\otimes j} \right)(X);$$
$$K(L, X) \simeq F_{HC}(L, X)[1].$$
Proof. Using Zariski descent, we may assume that $X = \text{Spec}(R)$ for some R. The first two quasi-isomorphisms are immediate from Corollary 2.1 while the third is immediate from Corollary 2.2. By Theorem 1.6 of $[2]$, $K(L)/K(X) \cong F_K(L)/F_K(X) \simeq F_{HC/Q}(L)[1]/F_{HC/Q}(X)[1]$. Now use the formula for $F_{HC}(L)$ to get the final quasi-isomorphism. \hfill \Box

Now suppose that R is a commutative \mathbb{Q}-algebra. Then $K_n(R[L], R)$ is a \mathbb{Q}-module $[13]$, and the Adams operations give an R-module decomposition

$$K_n(R[L], R) \cong \bigoplus_{i=n}^{\infty} K_n^{(i)}(R[L], R)$$

with $K_n^{(0)}(R[L], R) = 0$ for all n. The relative terms $F_K(R) \cong F_{HC}(R)[1]$ have a similar decomposition, and $F_K^{(i)}(R[L], R) \simeq F_{HC}^{(i-1)}(R[L], R)[1]$. As in $[3]$ 5.1, we define the typical piece $TK_n(R)$ to be $H^{1-n}(F_{HH}(R))$, and set $TK_n^{(i)}(R) = H^{1-n}(F_{HH}^{(i-1)}(R))$. Since these groups were determined in $[3]$, we may rephrase the last part of Proposition 2.3 as follows:

Corollary 2.5. If R is a commutative \mathbb{Q}-algebra, $K_n(R[L], R) \cong TK_n(R) \otimes_R LR[L]$ and

$$K_n^{(i)}(R[L]) \cong K_n^{(i)}(R) \oplus TK_n^{(i)}(R) \otimes_R LR[L].$$

Moreover,

$$TK_n^{(i)}(R) \cong \begin{cases} H^{i-n}_{\text{cdh}}(R), & \text{if } i < n, \\ H^{i-n}_{\text{cdh}}(R, \Omega^{i-1}), & \text{if } i \geq n + 2. \end{cases}$$

(The formulas for $TK_n^{(n)}$ and $TK_n^{(n+1)}$ are more complicated; see loc. cit.) The following special case $n = 0$ of $[2,3]$ which is an analogue of $[3] (0.5)$, shows that we cannot twist out the example in $[2]$ Theorem 0.2

Corollary 2.6. Let L be a rank 1 projective R-module, where R is a d-dimensional commutative \mathbb{Q}-algebra, with seminormalization R^+, and $R[L]$ the twisted polynomial ring. Then

$$K_0(R[L], R) \cong \left((R^+/R) \oplus \bigoplus_{p=1}^{d-1} \mathbb{H}^{p}_{\text{cdh}}(R, \Omega^p) \right) \otimes_R LR[L].$$

In particular, $K_n(R) = K_n(R[t])$ if and only if $K_n(R) = K_n(R[L])$.

Proof. This follows from the fact that $\mathbb{H}_{\text{cdh}}(X, HH^{(i)}) \cong Ra_{*}a^{*}\Omega^{i-1}[i]$, so that when $i > 1$ we have $K_0^{(i)}(R[L], R) \cong \mathbb{H}_{\text{cdh}}^{i-1}(R, \Omega^{i-1}) \otimes_R LR[L]$; see $[2]$ 2.2. \hfill \Box

Remark 2.7. Corollary 2.4 shows that $K_*(R[L], R)$ is a graded $R[L]$-module. As in $[3]$, this reflects the fact that locally $R[L]$ is a polynomial ring, and $K_*(R[t], R)$ has a continuous module structure over the ring of big Witt vectors $W(R)$, compatible with the operations V_n and F_n; when $Q \subset R$, such modules are graded $R[t]$-modules. Since $H^0(\text{Spec } R, W) = W(R)$, patching the structures via Zariski descent proves that $K_*(R[L], R)$ is a graded $R[L]$-module.

When X is no longer affine, this Zariski descent argument shows that

$$K_n(L, X) = \mathbb{H}^{1-n}(X, F_{HH} \otimes_{\text{zar}} \mathcal{L}^{\otimes i})$$

is a graded module over $S = \mathbb{H}^0(X, \mathcal{L}^{\otimes i})$. This is clear from Proposition 2.4. Previously, using $[13]$, it was only known that the $K_n(L, X)$ are continuous modules over $H^0(X, \tilde{W}) = W(k) = \prod_{i=1}^{\infty} k$.

In order to use Proposition 2.4 we need to analyze $H^{n}_{\text{zar}}(X, F_{HH/k} \otimes \mathcal{L}^j)$. For this, we use the hypercohomology spectral sequence. (See [16, 5.7.10].)

\[
E_{2}^{p,q} = H^{p}_{\text{zar}}(X, H^q E) \Rightarrow H^{p+q}_{\text{zar}}(X, E).
\]

Here E is a cochain complex which need not be bounded below and (by abuse of notation) the E_2 term denotes cohomology with coefficients in the Zariski sheaf associated to $H^q E$; the spectral sequence converges if X is noetherian and finite dimensional. When $E = F_{HH} \otimes \mathcal{L}^j$, we have $H^q E = H^q(F_{HH}) \otimes \mathcal{L}^j$, because \mathcal{L}^j is flat.

Lemma 3.2. If X is noetherian and finite dimensional, and E is a complex of Zariski sheaves such that $H^{p}_{\text{zar}}(X, H^q E) = 0$ for $1 \leq p \leq \dim(X)$ and $p + q = s, s + 1$ then $H^{s}_{\text{zar}}(X, E) \cong H^{0}_{\text{zar}}(X, H^s E)$.

Proof. This is immediate from the hypercohomology spectral sequence (3.1). □

In the remainder of this section, we will write $H^{p}(X, -)$ for $H^{p}_{\text{zar}}(X, -)$. By a “quasi-coherent” (or “coherent”) sheaf on Sch/k we mean a Zariski sheaf whose restriction to every small Zariski site is quasi-coherent (or coherent). When discussing Hochschild homology (or cyclic homology, or differentials, etc.) relative to \mathbb{Q}, we will suppress the base from the notation. For example, if X is a k-scheme then $HH_n(X)$ and $\Omega^p_\mathbb{Q}(X)$ will mean $HH_n(X/\mathbb{Q})$ and $\Omega^p_\mathbb{Q}(X/\mathbb{Q})$.

Recall that when $k \subseteq k$, the Hochschild homology complex relative to k decomposes into a direct sum of weight pieces $HH^{(j)}(-/k)$; this induces decompositions on $\mathbb{H}^{\text{cdh}}(-, HH(-/k))$, the fiber $F_{HH/k}$, and on their cohomology sheaves and hypercohomology groups as well. As in [2], we use versions of a spectral sequence introduced by Kassel and Sletsjøe in [9] to obtain information about $F_{HH/k}$ from information about F_{HH}.

Lemma 3.3. (Kassel-Sletsjøe) Let $k \subseteq k$ and $p \geq 1$ be fixed, and X a scheme over k. Then there are bounded cohomological spectral sequences of quasi-coherent sheaves on Sch/k ($p + s \geq 0$):

\[
E_1^{s,t} = \Omega^s_k \otimes_k H^{2s+t-p} HH^{(p-s)}(-/k) \Rightarrow H^{s+t-p} HH^{(p)}(-/\mathbb{Q})
\]

(for $s + t \leq 0$) and

\[
E_1^{s,t} = \Omega^s_k \otimes_k H^{s+t}(Ra_* \Omega^{(p-s)}(-/k, \text{cdh})) \Rightarrow H^{s+t}(Ra_* \Omega^p_{\text{cdh}})
\]

and a morphism of spectral sequences between them. If k has finite transcendence degree, then both spectral sequences are spectral sequences of coherent sheaves.

We remark that the second spectral sequence is just the sheafification of the spectral sequence in [2] 4.2.

Proof. If $X = \text{Spec}(R)$, the homological spectral sequence in [9] 4.3a] is

\[
p^{i+j}E_{i+j}^{0} = \Omega^s_k \otimes_k HH^{(p-i-j)}_{R/k}(R) \Rightarrow HH^{(p)}_{R\otimes \mathbb{Q}}(R)
\]

(0 $i < p$, $j \geq 0$; see [2] 4.1].

We claim that this is a spectral sequence of R-modules, compatible with localization of R. Indeed, following the construction in [9] Theorem 3.2], the exact couple underlying the spectral sequence is constructed by choosing \mathbb{Q}-cofibrant simplicial resolutions $P_\bullet \to k$ and $Q_\bullet \to R$ and then filtering the differential modules $\Omega^p_{Q_\bullet/\mathbb{Q}}$.
Theorem 3.6. Then they are in fact Q-submodules. (Although the filtration steps are defined as certain P-submodules in \cite{9} Section 3], they are in fact Q-submodules.) The identification of the associated graded via \cite{9} Lemma 3.1] is easily checked to be a B-module isomorphism. The whole construction commutes with localization because forming differential modules does.

Setting $\ell = i + j$, the spectral sequence is

$$pE^1_{-i,-\ell} = \Omega^i_k \otimes_k H^j_H[(p-i)](R/k) \Rightarrow H^s_H[p](R/k), \quad \ell \leq i.$$

As this spectral sequence is a spectral sequence of R-modules, compatible with localization and natural in R, we may sheafify it for the Zariski topology to obtain a spectral sequence of quasi-coherent sheaves. Reindexing cohomologically, with $s = i$ and $t = -\ell$, we have

$$pE^1_{s,t} = \Omega^i_k \otimes_k H^{2s+t-p}(HH^{(p-s)})(-k) \Rightarrow H^{s+t-p}(HH^{(p)}).$$

This yields the first spectral sequence. If we sheafify it for the cdh topology, and use the isomorphism $HH^{(p)} \cong \Omega^i_{cdh}[p]$, we get the second spectral sequence. That it is still a spectral sequence of quasi-coherent sheaves follows from \cite{2} lemma 2.8]. The morphism between the spectral sequences is just the change-of-topology map.

Finally, if k has finite transcendence degree, then the E_1-terms of both spectral sequences are coherent (apply \cite{2} lemma 2.8] again for the second one) and hence so are the abutments.

Corollary 3.4. There is a bounded spectral sequence of quasi-coherent sheaves

$$E^1_{s,t} = \Omega^i_k \otimes_k H^{2s+t-p}(F^{(p-s)}_{HH/k}) \Rightarrow H^{s+t-p}(F^{(p)}_{HH}).$$

If k has finite transcendence degree, this is a spectral sequence of coherent sheaves.

Proof. The morphism of spectral sequences in Lemma \ref{lem:3.3} comes from a morphism $HH^{(p)} \to HH^{(p)}_{cdh}$ of filtered complexes of quasi-coherent sheaves on Sch/k. By a lemma of Eilenberg–Moore \cite{10} Ex. 5.4.4], there is a filtration on the [shifted] mapping cone $F^{(p)}_{HH}$ of $HH^{(p)} \to HH^{(p)}_{cdh}$, yielding a spectral sequence converging to $H^*(F_{HH})$. This is the displayed spectral sequence.

Proposition 3.5. Assume that k has finite transcendence degree. If L is an ample line bundle on X, then for every n and $p \geq 0$ there is an $N_0 = N_0(n,p)$ such that for all $N > N_0$ the Zariski sheaf $H^n_F^{(p)}_{HH} \otimes \mathcal{O}^\otimes N$ is generated by its global sections, and $H^q(X, H^n_F^{(p)}_{HH} \otimes \mathcal{O}^\otimes N) = 0$ for all $q > 0$.

Proof. The complex $F^{(p)}_{HH}$ is quasi-isomorphic to the cone of the map from the structure sheaf \mathcal{O} to $R_\alpha a^*\mathcal{O}$ and thus has coherent cohomology by \cite{11} Lemma 6.5]. If $p > 0$, then by Corollary \ref{cor:3.4} the cohomology sheaves in question are coherent as well. Now apply Serre’s Theorem B.

Let L be an ample sheaf on X and L the line bundle $\text{Spec}(ext{Sym} L)$. Recall that for any Y, $F_{HC}(Y)$ is n-connected if and only if $F_{HH}(Y)$ is n-connected; see \cite{2} 1.7]. If L is a line bundle over X, we define $F_{HH/k}(L,X)$ to be the cokernel of the canonical split injection $F_{HH/k}(X) \to F_{HH/k}(L)$, and similarly for cyclic homology.

Theorem 3.6. If $F_{HC}(L,X)$ is n-connected for some ample line bundle L on X, then $F_{HH}(L,X)$ is n-connected and:

1. The Zariski sheaf F_{HH} is n-connected.
(2) X is regular in codimension $\leq n$.
(3) If $F_{\text{HC}}(\mathbb{L}, X)$ is d-connected for $d = \dim(X)$, then X is regular.

Proof. There is a finitely generated subfield k_0 of k, a k_0-scheme X_0 and an ample line bundle \mathcal{L}_0 such that $X = X_0 \otimes_{k_0} k$ and $\mathcal{L} = \mathcal{L}_0 \otimes_{k_0} k$. The Küneth formula for Hochschild homology implies that $F_{\text{HH}}(\mathbb{L}, X) = F_{\text{HH}}(\mathbb{L}_0, X_0) \otimes \Omega^*_k(k_0)$, whence $F_{\text{HH}}(\mathbb{L}, X)$ is n-connected if and only if $F_{\text{HH}}(\mathbb{L}_0, X_0)$ is. Thus we may assume that k has finite transcendence degree.

(1) Recall [2, 2.1] that $F_{\text{HH}}(\mathbb{L}, X) = \prod F_{\text{HH}}(\mathbb{L}, X)$. Thus it suffices to fix p and show that $F_{\text{HH}}^{(p)}(\mathbb{L}, X)$ is n-connected. Set $\mathcal{G}_N = \mathcal{L}^N \otimes F_{\text{HH}}^{(p)}(\mathbb{L}, X)$, and note that $H^s \mathcal{G}_N = \mathcal{L}^N \otimes H^s F_{\text{HH}}^{(p)}$. By Proposition 3.5 and Lemma 3.2, $H^s(X, \mathcal{G}_N) \cong H^0(X, H^s \mathcal{G}_N)$ for large N and all $s \geq -n$.

By assumption and Lemma 2.3, the groups $\pi_n F_{\text{HH}}^{(p)}(\mathbb{L}, X) = \mathbb{H}^s_{\text{zar}}(X, F_{\text{HH}}^{(p)}(\mathbb{L}, X)) = \mathbb{H}^s_{\text{zar}}(X, F_{\text{HH}}^{(p)}(\mathbb{L})/F_{\text{HH}}^{(p)})$ vanish for $s \leq n$. By Lemma 2.3, this implies that for all $N > 0$:

$$H^0(X, H^{-s} \mathcal{G}_N) \cong H^{-s}(X, \mathcal{G}_N) = H^{-s}(X, \mathcal{L}^N \otimes F_{\text{HH}}^{(p)}) = 0, s \leq d.$$

Since \mathcal{L} is ample, the sheaves $H^s \mathcal{G}_N = \mathcal{L}^N \otimes H^s F_{\text{HH}}^{(p)}$ are generated by their global sections $H^0(X, H^s \mathcal{G}_N)$ for large N and $s \geq -n$. This implies that the sheaves $\mathcal{L}^N \otimes H^s F_{\text{HH}}^{(p)}$ vanish, and hence that the sheaves $H^s F_{\text{HH}}^{(p)}$ vanish for $s \geq -n$. This proves (1).

Given (1), the stalks $F_{\text{HH}}(\mathcal{O}_{X,x})$ are n-connected. We proved in [2, 4.8] that this implies that each $F_{\text{HH}}(\mathcal{O}_{X,x})$ is n-connected. If $\dim(\mathcal{O}_{X,x}) \geq n$, we proved in [2, 3.1] that $\mathcal{O}_{X,x}$ is smooth over k, and hence regular. \hfill \Box

Variant 3.7. Let X, \mathcal{L} and \mathbb{L} be as in Proposition 3.6. Suppose that $F_{\text{HC}/k}(\mathbb{L}, X)$ is n-connected. Then the proof of Theorem 3.4 goes through to show that:

(1) The sheaf $F_{\text{HH}/k}$ is n-connected.
(2) X is regular in codimension $\leq n$.
(3) If $F_{\text{HH}/k}(\mathbb{L}, X)$ is d-connected for $d = \dim(X)$, then X is regular.

Proof of Theorem 4.4. Suppose that $K_i(\mathbb{L}) \cong K_i(\mathbb{L}^d)$ for all $i \leq n$. By Proposition 2.4, $F_{\text{HC}/k}(\mathbb{L}, X)$ is $(n - 1)$-connected. By Theorem 3.6, $F_{\text{HH}/k}(\mathbb{L}, X)$ is $(n - 1)$-connected and X is regular in codimension $< n$. \hfill \Box

4. Two Examples

We conclude with two quick examples. Let E be an elliptic curve over \mathbb{Q} with basepoint Q, and P a point such that $P - Q$ does not have finite order in Pic(E).

Example 4.1. Consider the non-reduced scheme $Y = \text{Spec}(\mathcal{O}_E \oplus J)$, where J is the invertible sheaf $\mathcal{O}(P - Q)$. We showed in [2, 0.2] that Y is K_n-regular for all n, because $K_n(Y \times \mathbb{A}^1) \cong K_0(Y) \cong K_n(E)$ for all n.

Let \mathcal{L} be the sheaf $\mathcal{O}(Q)$ and set $\mathbb{L} = \text{Spec} \mathcal{O}(\text{Sym} \mathcal{L})$. Then $K_0(\mathbb{L}) \cong K_0(Y) \oplus \mathbb{Q}[x, y]$.

For our second example, recall that if R is a regular \mathbb{Q}-algebra and J is a rank 1 projective R-module and A is the subring $R[J^2, J^3]$ of $R[J] = \text{Sym}_R(J)$...
then Spec(A) is an affine cusp bundle over Spec(R). For $n \geq 2$, set

$$V_n(R) = \begin{cases} J^6(i-1) \oplus (J^6(i-2) \otimes \Omega_R^2) \oplus \cdots \oplus (R \otimes \Omega_R^{n-2}), & n = 2i \geq 2; \\ J^6(i-1) \otimes \Omega_R^1 \oplus (J^6(i-2) \otimes \Omega_R^2) \oplus \cdots \oplus (R \otimes \Omega_R^{n-2}), & n = 2i + 1 \geq 3. \end{cases}$$

In particular, $V_2(R) = R$ and $V_3(R) = \Omega_R^3$. Let us write $\tilde{K}_n(A)$ for $K_n(A)/K_n(R)$.

Proposition 4.2. If $A = R[J^2, J^3]$ and R is a regular \mathbb{Q}-algebra then

$$\tilde{K}_n(A) \cong (J^5 \oplus J^6) \otimes V_n(R) \oplus (J \otimes \Omega_R^n).$$

In particular, $\tilde{K}_0(A) \cong J$, $\tilde{K}_1(A) \cong J \otimes \Omega_R^1$ and

$$\tilde{K}_2(A) \cong (J^5 \oplus J^6) \oplus (J \otimes \Omega_R^2).$$

Proof. For $J = R$, this is Theorem 9.2 of [7], which holds for any regular \mathbb{Q}-algebra R (not just for any field). In order to pass to $R[J^2, J^3]$, we need more detail. Using the classical Mayer-Vietoris sequence for $A \subset R[J]$, it is easy to see that $K_0(A)/K_0(R) \cong J$ and $K_1(A)/K_1(R) \cong J \otimes \Omega_R^1$.

For $n \geq 2$ the factors in $K_n(A)$ come from $HH_{n-1}(A)$ via the maps $HH_n(A) \to HC_n(A)$ and $\tilde{K}_n(A) \to \tilde{HC}_{n-1}(A)$. The summand $J \otimes \Omega_R^n$ of $K_n(A)$ comes from the $J \otimes \Omega_R^n$ in $K_1(A)$ (or $HH_0(A, R[J^2, J])$) by multiplication by $HH_{n-1}(R) \cong \Omega^{-1}$.

The V_n factors come from the explicit description of the corresponding cyclic homology cycles (coming from cycles in Hochschild homology $HH_{n-1}(A)$) in 4.3, 4.7 and 5.8 of [7]. Locally, J is generated by an element t; we set $x = t^2 \in J^2$, $y = t^3 \in J^3$ so that $y^2 = x^3$. The summands J^5 and J^6 of $K_2(A)$ are locally generated by the cycles $z = 2x[y] + 3y[x]$ and $tz = 2y[y] + 3x^2[x]$ in $HH_1(A)$. Multiplication by Ω_R^{n-2} gives the summands $(J^5 \oplus J^6) \otimes \Omega_R^{n-2}$ in $K_n(A)$.

Now consider the summand J^6 in the degree 2 part $A^\otimes 3$ of the Hochschild complex for A, locally generated by the element $w = [y[y] - x[x] - [x^2]].$ The product zw^j is a cycle in $HH_{2j-1}(A)$, and locally generates a summand $j^5+6(i-1)$ of $HH_{2j-1}(A)$, corresponding to the factor $j^5+6(i-1)$ of the summand $J^5 \otimes V_{2j}(R)$ of $K_{2j}(A)$. As above, multiplication by Ω_R^n gives the rest of the summands.

Remark 4.2.1. In the spirit of Corollary 2.5 we note that $NK_n(A) \cong TK_n(A) \otimes_R LR[L]$, where

$$TK_n(A) = \tilde{K}_n(A) \oplus \tilde{K}_n(A).$$

Theorem 4.3. Let J be the invertible sheaf $O(P-Q)$ on the elliptic curve E and let X denote the affine cusp bundle $Spec_E(O_E[J^2, J^3])$ over E. (X has a codimension 1 singular locus.) If J does not have finite order in Pic(E) then X is K_n-regular for all integers n: for all $m \geq 0$ we have

$$K_n(X) \cong K_n(X \times \mathbb{A}^m) \cong K_n(E).$$

On the other hand, if $L = Sym_E(O(Q))$ then $K_{-1}(L) \neq K_{-1}(X)$ and $K_0(L) \neq K_0(X)$.

Proof. Since $\Omega_E \cong O_E$, $V_n(O_E)$ is a sum of terms J^i for $i > 0$; the same is true for the pushforward of the sheaf $V_n(O_E[t_1, \ldots, t_m])$ to E. Recall that $H^p(E, J^r) = 0$ for all $r \neq 0$. From the Zariski descent spectral sequence $E_2^{p,q} = H^p(E, K_{-q}(O_E)[J^2, J^3][t_1, \ldots, t_m])/K_{-q}(O_E)) \Rightarrow K_{-p-q}(X \times \mathbb{A}^m)/K_{-p-q}(E)$ we see that $K_n(X \times \mathbb{A}^m) \cong K_n(E)$ for all n.

On the other hand, Proposition 4.2 yields $\widetilde{K}_{-1}(L) \cong \oplus_{j \geq 1} H^1(E, J \otimes \mathcal{L}^j)$ and $\widetilde{K}_0(L) \cong \oplus_{j \geq 1} H^0(E, J \otimes \mathcal{L}^j) \oplus \widetilde{K}_{-1}(L)$. These groups are nonzero because L is ample.

Acknowledgements. The authors would like to thank the Tata Institute, the University of Melbourne and the Hausdorff Institute for Mathematics for their hospitality during the preparation of this paper.

References

[1] G. Cortiñas, C. Haesemeyer, M. Schlichting and C. Weibel, Cyclic homology, cdh-cohomology and negative K-theory, *Annals of Math.*, 167 (2008), 549–563.

[2] G. Cortiñas, C. Haesemeyer and C. Weibel, K-regularity, cdh-fibran Hochschild homology, and a conjecture of Vorst, *J. AMS* 21 (2008), 547–561.

[3] G. Cortiñas, C. Haesemeyer, M. Walker and C. Weibel, Bass’ NK groups and cdh-fibran Hochschild homology, *Inventiones Math.* 181 (2010), 421–448.

[4] G. Cortiñas, C. Haesemeyer, M. Walker and C. Weibel, K-theory of cones of smooth varieties, *J. Alg. Geom.* 22 (2012), 13–34.

[5] G. Cortiñas, C. Haesemeyer, M. Walker and C. Weibel, A negative answer to a question of Bass, *Proc. AMS* 139 (2011), 1187–1200.

[6] P. du Bois, Complexes de de Rham filtré d’une variété singulière, *Bull. Soc. Math. France* 109 (1981), 41–81.

[7] S. Geller, L. Reid and C. Weibel, The cyclic homology and K-theory of curves, *J. rein. angew. Math.* 393 (1989), 39–90.

[8] J. F. Jardine, *Local Homotopy Theory*, Springer Monographs in Math., 2015.

[9] C. Kassel, A. B. Sletsjøe. Base change, transitivity and Küneth formulas for the Quillen decomposition of Hochschild homology. *Math. Scand.*, 70:186–192, 1992.

[10] R. Michler, Hodge-components of cyclic homology for affine quasi-homogeneous hypersurfaces, *Astérisque* 226 (1994), 321–333.

[11] R. W. Thomason. Algebraic K-theory and étale cohomology, *Annales Sc. Éc. Norm. Sup.* (Paris), 18:437–552, 1985.

[12] R. W. Thomason and T. Trobaugh, Higher algebraic K-theory of schemes and of derived categories, pp. 247–435 in *The Grothendieck Festschrift III*, Prog. in Math. 88, Birkhäuser. 1990.

[13] C. Weibel, Module structures on the K-theory of graded rings, *J. Algebra*, 105 (1987), 465–483.

[14] C. Weibel, Homotopy Algebraic K-theory, *Contemporary Math.* 83 (1989), 461–488.

[15] C. Weibel, Cyclic homology for schemes, *Proc. AMS* 124 (1996), 1655–1662.

[16] C. Weibel, *An introduction to homological algebra*, Cambridge Univ. Press, 1994.

[17] C. Weibel and S. Geller, Étale descent for Hochschild and cyclic homology, *Comm. Math. Helv.* 66 (1991), 368–388.

[EGA] A. Grothendieck, *Éléments de géométrie algébrique*: I. Le langage des schémas, Publ. Math. IHES (Paris) 4 (1960), 5–228.

School of Mathematics and Statistics, University of Melbourne, VIC 3010, Australia

E-mail address: christian.haesemeyer@unimelb.edu.au

Dept. of Mathematics, Rutgers University, New Brunswick, NJ 08901, USA

E-mail address: weibel@math.rutgers.edu