Endothelial Cells Use \(\alpha_2\beta_1 \) Integrin as a Laminin Receptor

Lucia R. Languino,* Kurt R. Gehlsen,* Elizabeth Wayner,† William G. Carter,‡ Eva Engvall,* and Erkki Ruoslahti*

*La Jolla Cancer Research Foundation, La Jolla, California 92037; and †Department of Biochemical Oncology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98104

Abstract. Human umbilical vein endothelial cells attach and spread on laminin-coated substrates. Affinity chromatography was used to identify the attachment receptor. Fractionation of extracts from surface-iodinated endothelial cells on human laminin-Sepharose yielded a heterodimeric complex, the subunits of which migrated with molecular sizes corresponding to 160/120 kD and 160/140 kD under non-reducing and reducing conditions, respectively. The purified receptor bound to laminin and slightly less to fibronectin and type IV collagen in a radioreceptor assay. This endothelial cell laminin receptor was classified as an \(\alpha_2\beta_1 \) integrin because monoclonal and polyclonal antibodies directed against the \(\alpha_2 \) and \(\beta_1 \) subunits immunoprecipitated the receptor. Cytofluorometric analysis and immunoprecipitation showed that the \(\alpha_2 \) subunit is an abundant integrin \(\alpha \) subunit in the endothelial cells and that the \(\alpha \) subunits associated with laminin binding in other types of cells are expressed in these cells only at low levels. The \(\alpha_2\beta_1 \) integrin appears to be a major receptor for laminin in the endothelial cells, because an anti-\(\alpha_2 \) monoclonal antibody inhibited the attachment of the endothelial cells to human laminin. These results define a new role for the \(\alpha_2 \) subunit in laminin binding and suggest that the ligand specificity of the \(\alpha_2\beta_1 \) integrin, which is known as a collagen receptor in other types of cells, can be modulated by cell type-specific factors to include laminin binding.

ADHESIVE properties of endothelial cells play an important role in the maintenance of the vessel wall integrity and in diseases such as thrombosis and atherosclerosis (Gimbrone, 1986). On the luminal side these cells form a nonthrombogenic surface, whereas on the basal side they rest on a basement membrane to which they adhere. The endothelial basement membrane contains laminin, type IV collagen, type V collagen, and proteoglycans (Madri et al., 1980; Palotie et al., 1983; Fujiwara et al., 1984; Siebold et al., 1988; for review see Timpl, 1989). Many of these basement membrane components mediate endothelial cell adherence. Laminin, in particular is thought to be important in this regard (Form et al., 1986; Madri and Williams, 1983; Herbst et al., 1988).

Various types of cells have been shown to have laminin receptors that are members of the integrin family. Integrins are heterodimeric proteins that consist of an \(\alpha \) and a \(\beta \) subunit; each integrin is, therefore, defined by its subunits (Pytela et al., 1986; Buck and Horwitz, 1987; Hynes, 1987; Ruoslahti and Pierschbacher, 1987; Hemler et al., 1987; Takada et al., 1987). Integrins \(\alpha_2\beta_1 \) (Wayner and Carter, 1987; Takada et al., 1988; Gehlsen et al., 1988; Gehlsen et al., 1989) and \(\alpha_6\beta_1 \) (Sonnenberg et al., 1988), as well as an integrin similar to \(\alpha_5\beta_1 \) (Tomasselli et al., 1988; Ignatius and Reichardt, 1988) have each been implicated as laminin receptors. Endothelial cells are known to express the \(\alpha_5\beta_1 \), \(\alpha_6\beta_1 \), and \(\alpha_6\beta_4 \) integrins (Albelda et al., 1989; Conforti et al., 1989; Giltay et al., 1989). The \(\alpha_5\beta_1 \) integrin is a fibronectin receptor (Argarves et al., 1987); \(\alpha_6\beta_1 \) is known as a laminin, fibronectin, and collagen receptor (Wayner et al., 1988); while \(\alpha_6\beta_4 \) has previously been identified as a collagen receptor in platelets and in other cells (Wayner and Carter, 1987; Kunicki et al., 1988; Staatz et al., 1989). In addition, endothelial cells also express the vitronectin receptor (\(\alpha_v\beta_3 \)) (Suzuki et al., 1987; Cheresh, 1987). Endothelial cells attach to laminin through an integrin-mediated mechanism; that is suggested by the inhibition of endothelial cell attachment to laminin by an antibody directed against the \(\beta \) integrin subunit (Cheng, Y. F., C. Damsky, and R. H. Kramer, unpublished observations). However, endothelial cells have also been suggested to interact with laminin through a 69-kD protein (Yannariello-Brown et al., 1988) that is not an integrin.

To characterize the endothelial cell receptor for laminin, we have used affinity chromatography procedures similar to those applied to other types of cells (Pytela et al., 1985a,b; Gehlsen et al., 1988), as well as antibody probes. Our results show that the endothelial cells bind laminin through an integrin composed of \(\alpha_2 \) and \(\beta_1 \). Since the \(\alpha_2\beta_1 \) integrin in other types of cells binds only to collagens, this finding reveals cell type-specific functional heterogeneity of the \(\alpha_2\beta_1 \) integrin.
Materials and Methods

Chemicals
PMSF, soybean trypsin inhibitor, 2-mercaptoethanol, BSA, Tritton X-100, EDTA, and protein A-Sepharose were purchased from Sigma Chemical Co. (St. Louis, MO). Fluorescein-conjugated goat anti-mouse or anti-rat IgG and IgM were obtained from Tago Inc. (Burlingame, CA). Rabbit anti-mouse IgG antiserum was obtained from Cappel Laboratories (Malvern, PA). 125I- Na was from Amersham Corp. (Arlington Heights, IL). Molecular size markers were from Pharmacia Fine Chemicals (Piscataway, NJ); pre-stained size markers were from Bethesda Research Laboratories (Gaithersburg, MD).

The peptide GRGDSP (Pierschbacher and Ruoslahti, 1984) modeled after the cell attachment site in fibronectin was synthesized by solid-phase synthesis in a peptide synthesizer (Applied Biosystems Inc., Foster City, CA) and purified by ion exchange HPLC. Cell culture reagents were from Irvine Scientific (Santa Ana, CA).

Proteins
Mouse type IV collagen and mouse laminin isolated from the Engelbreth-Holm-Swarm murine tumor were from Bethesda Research Laboratories; bovine type I collagen from Collaborative Research (Lexington, MA), and human type I and type IV collagens were from Teclios Pharmaceuticals (La Jolla, CA). Vitronection was purified by monoclonal antibody affinity chromatography (Hayman et al., 1983). Pepsin-extracted laminin was isolated from human placental tissue by using monoclonal antibody affinity chromatography as described (Wever et al., 1983; Engvall et al., 1986). In some experiments, the human laminin preparations were further fractionated by FPLC on a Mono Q column (Pharmacia Fine Chemicals) as described (Dillner et al., 1988). Human plasma fibronectin was purified by affinity chromatography on gelatin-Sepharose (Engvall and Ruoslahti, 1977).

Antibodies
Mouse monoclonal antibody ZE8 has been described (Engvall et al., 1986). Mouse monoclonal anti β1 antibody L44/2 was prepared against the fibronectin receptor purified from placenta in collaboration with Dr. David Cheresh, Department of Immunology, Research Institute of Scripps Clinic. Mouse monoclonal antibodies A1A3, against the β1 integrin subunit, and TS2/7, against the α1 subunit, were obtained from Dr. Martin Hemler (Dana-Farber Cancer Institute, Boston, MA). Monoclonal antibody AF3 to the β3 subunit was obtained from Dr. Tom Kunicki (The Blood Center, Milwaukee, WI). Mouse monoclonal antibodies to the α2 subunit (PIH5 and PIB4), the α5 subunit (PMG9) and the integrin complexes α5β1 (PIBS), and the α6β1 (PID6) have been described (Weyner and Carter, 1987; Weyner et al., 1988; Weyner et al., 1989). PIH5 and PID6 inhibit fibroblast and platelet adhesion to collagen- and fibronectin-coated substrates, respectively (Kunicki et al., 1988; Weyner et al., 1988). A monoclonal antibody P1H9 to the β2 (CD16) integrin subunit was also used. Rat monoclonal antibody GoH3 against the α6 integrin subunit was obtained from Dr. Arnold Sonnenberg (Netherlands Red Cross Blood Transfusion Service, Amsterdam, The Netherlands). For some experiments IgG was purified from culture supernatants on protein A-Sepharose as described (Ey et al., 1976).

Rabbit antisera against the human placental fibronectin receptor have been described (Pytel et al., 1987). Rabbit antisera prepared against peptides from the cytoplasmic domains of the α5 and α2 subunits were obtained from Drs. Eugene Marcantonio and Richard O. Hynes (Massachusetts Institute of Technology, Boston, MA) (Plantefaber and Hynes, 1989; Hynes et al., 1989). Rabbit anti α2 antisera was from Dr. M. Hemler (Dana Farber Cancer Institute, Boston, MA) (Takada and Hemler, 1989). Rabbit antisera against human laminin has been described (Wever et al., 1983).

Cells
Endothelial cells were isolated from human umbilical cords and cultured as described previously (Languino et al., 1989). The cells were used between the 1st and 10th passages. Some of the cell adhesion assays and the flow cytometric analyses were performed with human umbilical cord endothelial cells obtained from Cell Systems (Seattle, WA). Cells from each source were characterized as endothelial cells based on their cobblestone morphology and their expression of FVIIII-associated antigen (Hoyer et al., 1973).

Flow Cytometric Analysis of Receptor Expression
Expression of integrin α and β subunits on endothelial cells was quantitated by flow cytometry on an EPICS 752 dual laser cell sorter (Coulter Electronics, Inc., Hialeah, FL) with an MDADS II data processor. Relative fluorescence intensity (log fluorescence intensity) was determined on a three-cycle log scale. Fluorescence histograms were derived by plotting cell number (x axis) as a function of log fluorescence intensity (x axis) from 0 to 255 (channel number). Background fluorescence was determined with a nonimmune mouse IgG control.

Endothelial Cell Adhesion Assay
Endothelial cell attachment to protein-coated substrates was measured in a cell adhesion assay as described (Ruoslahti et al., 1982). The coating efficiencies for the extracellular matrix proteins used in the assay have been shown to be similar (Dillner et al., 1988; Hautanen et al., 1989). The endothelial cells for these assays were detached from culture flasks with 0.08% trypsin and 0.2 mM EDTA in PBS. In antibody inhibition experiments cells were incubated in MEM supplemented with (a) 1% BSA, and (b) various dilutions of the antisera, preimmune rabbit serum, or hybridoma culture media containing monoclonal antibodies or IgGs purified from culture supernatants, for 1 h at 4°C, and then transferred to the adhesion assay.

Nonadherent cells were removed after 2 h by washing with PBS and attached cells were fixed with 3% paraformaldehyde followed by staining with crystal violet. The attached cells were then dissolved in 1% SDS and the relative number of cells in each well was evaluated measuring the absorbance at 600 nm in a Multiscan ELISA reader (Flow Laboratories Inc., McLean, VA).

Alternatively, endothelial cells were labeled with Na2 125I-CO3 (50 µCi/ml) for 4 h, washed, and allowed to adhere to the substrates as described (Weyner and Carter, 1987). Attached cells were dissolved in SDS/NaOH and radioactivity was quantitated in a gamma counter.

Affinity Chromatography
Human laminin–Sepharose and 110-kD fibronectin fragment–Sepharose affinity matrices were prepared and used for receptor isolation as described previously (Pytel et al., 1985a, 1987; Gehlsen et al., 1988; Gailit and Ruoslahti, 1988).

Electrophoresis
Proteins were boiled in 3% SDS (wt/vol), 10% glycerol, 0.001% bromophenol blue, and 50 mM Tris·HCl, pH 6.8, with or without added 5% 2-mercaptoethanol. The samples were run on a 7.5% polyacrylamide gel in SDS (Laemmli, 1970) and the protein bands were visualized by Coomassie blue staining or by autoradiography.

Radioreceptor Assay
The binding of receptors to various protein ligands was examined in a radioreceptor assay as previously described (Hautanen et al., 1989). Microtiter wells were coated with 2 µg/ml of the proteins examined. The coating efficiency for various proteins has been previously shown to be >60% under the conditions used (Dillner et al., 1988; Hautanen et al., 1989). 125I-labeled laminin receptors isolated from surface-adsorbed cells were allowed to bind to the coated wells for 2 h in TBS (150 mM NaCl, 50 mM Tris·HCl, pH 7.5) containing 50 mM octyl-β-glucopyranoside, 1 mM PMSF, 1 mM CaCl2, MgCl2, with or without 1 mM MnCl2. The amount of receptor bound to the wells was measured after solubilization in 1% SDS in TBS by

The Journal of Cell Biology, Volume 109, 1989
counting the bound radioactivity. The total binding was 5–10% of the added radioactivity.

Immunoprecipitation

Endothelial cells or MG-63 cells were surface labeled and proteins were immunoprecipitated as described (Wayner and Carter, 1987); the buffer used for the immunoprecipitation contained 50 mM Tris–HCl (pH 7.5), 1 mM PMSF, 1 mM CaCl₂, 1 mM MgCl₂, and 0.5% Triton X-100 (vol/vol). Iodinated receptors were immunoprecipitated using the same buffer but with 50 mM octyl-β-glucopyranoside instead of Triton X-100.

Results

Laminin Promotes Endothelial Cell Adhesion

Pepsin-extracted human laminin and mouse laminin promoted endothelial cell adhesion to a similar extent (Fig. 1). Both laminin preparations were somewhat less active than fibronectin. Moreover, as observed earlier for other types of cells (Dillner et al., 1988), the cell morphology was different on these substrates; the cells appeared more elongated on the laminin-coated substratum than on fibronectin (not shown). A further difference between the fibronectin and laminin-induced attachment was that the cell attachment-promoting peptide, GRGDSP, inhibited the attachment of the endothelial cells to fibronectin by 90% at a concentration of 1 mg/ml but affected only marginally (19% inhibition) their attachment to human laminin.

Polyclonal antilaminin antibodies inhibited endothelial cell attachment to laminin but not to type IV collagen or fibronectin (Fig. 2). Preimmune rabbit serum used at the same dilutions as the antilaminin did not inhibit the attachment of the cells to any of these ligands. These results show that the pepsin-extracted human laminin specifically promotes the attachment of endothelial cells. We next used this laminin to identify laminin receptors by affinity chromatography.

Affinity Chromatography of Endothelial Cell Extracts on Human Laminin

Affinity chromatography was performed by applying extracts from surface iodinated endothelial cells to laminin-Sepharose. Since integrin-type receptors bind to their ligands in a divalent cation–dependent manner (e.g., Gailit and Ruoslahti, 1988) and since the attachment of endothelial cells to human laminin was inhibited by EDTA (result not shown), EDTA was used to elute the proteins bound to the affinity matrix. This procedure yielded an apparent integrin type receptor with an α and β subunit (Fig. 3). This integrin showed two bands of 160 and 140 kD under reducing conditions, while the fibronectin receptor, purified on 110-kD fibronec-tin–Sepharose affinity matrix from the same cells and shown for comparison in lanes 2 of Fig. 3, had the previously observed mobility of 140 kD. Under nonreducing conditions, the laminin-binding integrin and fibronectin receptor subunits migrated with the same approximate mobilities (160 and 120 kD). In some preparations of the laminin-binding integrin, the intensity of labeling in the α subunit was low, suggesting that the availability of this subunit for iodination on the endothelial cell surface may vary.

The Endothelial Cell Laminin-binding Integrin Is the α₂β₁ Integrin

Polyclonal and monoclonal antibodies against integrins were used to identify the subunits of the endothelial cell laminin-binding integrin. The purified integrin bound to a polyclonal antibody that reacts with both the α (α₂) and β (β₁) subunits of the placental fibronectin receptor (Fig. 4, lane I). It also bound to monoclonal antibody PIH5, directed against the α₂ subunit (Fig. 4, lane 8), to monoclonal antibody LM442 directed against the β subunit (Fig. 4, lane 12) that reacts also with the endothelial cell fibronectin receptor (Fig. 4,
The Journal of Cell Biology, Volume 109, 1989

2458

Figure 3. Electrophoretic analysis of endothelial cell laminin-binding integrin. Surface-iodinated endothelial cells were fractionated on a laminin-Sepharose or a 110-kD fibronectin fragment-Sepharose column, and the columns were eluted with 20 mM EDTA. The peak fractions from each fractionation were analyzed on a 7.5% acrylamide gel in SDS under reducing (R) and nonreducing (NR) conditions. The laminin-binding integrin (lanes 1) and fibronectin receptor (lanes 2) subunits were visualized by autoradiography. The positions of molecular size markers in kD are shown.

Figure 4. Immunoprecipitation of laminin-binding integrins purified from endothelial cells and MG-63 cells. The laminin-binding integrins purified from laminin-Sepharose affinity chromatography from surface-iiodinated endothelial cells (lanes 1, 4, 5, 6, 8, 10, and 12) or MG-63 cells (2, 3, 7, 9, and 11), and fibronectin receptor purified by chromatography on 110-kD fibronectin fragment-Sepharose from endothelial cells (lane 13), were immunoprecipitated with antibodies against integrins. The antibodies were polyclonal antifibronectin receptor antibody (lanes 1 and 2), a polyclonal antibody against the α5 cytoplasmic domain (lanes 3 and 4), a polyclonal antibody against the β1 cytoplasmic domain (lane 5), a mouse anti-α2 monoclonal antibody (PIH5) (lanes 8 and 9), and a mouse anti-β1 monoclonal antibody (LM442) (lanes 12 and 13). Nonimmune rabbit serum (lanes 6 and 7) and 2E8 antilaminin monoclonal antibody (lanes 10 and 11) were used as controls. A positive control for the anti-α2 antibody is shown in Fig. 7. The immunoprecipitates were analyzed on a 7.5% SDS-PAGE under nonreducing condition and visualized by autoradiography. The positions of prestained marker proteins in kilodaltons are shown.

Lane 13 and a polyclonal antibody prepared against the platelet α2 subunit (not shown). A variable amount of an 80-kD band was immunoprecipitated with the receptor; it may be a degradation product of either of the receptor subunits.

Exhaustive immunoprecipitations with the anti-α2 polyclonal antibody and with the LM442 anti-β1 monoclonal antibody cleared all the material reactive with the antifibronectin receptor antiserum, showing that the α2β1 integrin is the only significant component among the proteins obtained by the affinity chromatography on laminin (not shown). Moreover, the PIH5 antibody (anti-α2) immunoprecipitated from surface-labeled endothelial cells two polypeptides with mobilities identical to those seen in the laminin bound preparation (not shown). The endothelial cell laminin-binding integrin did not react with polyclonal antibodies prepared against the cytoplasmic domains of the αs (Fig. 4, lane 4) or αs (Fig. 4, lane 5) subunits, nor did it immunoprecipitate with monoclonal antibodies against αsβ1 or αsβ1 integrin complexes (not shown).

A laminin receptor isolated from the human MG-63 osteosarcoma cells was used for comparison in the immunoprecipitations. The MG-63 cell laminin receptor was also immunoprecipitated by the antifibronectin receptor antiserum (Fig. 4, lane 2). However, unlike the endothelial cell laminin-binding integrin, it reacted with the antiserum directed against the cytoplasmic domain of the αs subunit (Fig. 4, lane 3) but not with the anti-α2 monoclonal antibody PIH5 (Fig. 4, lane 9).

Taken together, these results show that the endothelial cell laminin-binding integrin is a heterodimeric molecule consisting of an αs subunit antigenically indistinguishable from the α2 subunit, and a β1 subunit antigenically indistinguishable from the integrin β1 subunit. The results also show that the endothelial cell laminin-binding integrin is different from the MG-63 osteosarcoma cell laminin receptor.

Binding Specificity of the Endothelial Cell Laminin-binding Integrin

The interaction of the purified laminin-binding integrin with laminin and other potential ligands was evaluated in a radioreceptor assay. In the presence of Mn²⁺, the laminin-binding integrin bound to human laminin, fibronectin, and human type IV collagen in a concentration-dependent manner (Fig. 5). Saturation could not be studied, because the amounts of the laminin-binding integrin available became a limiting factor. Assays performed in the presence of Ca²⁺ and Mg²⁺, without Mn²⁺, showed similar specificity except that in the absence of Mn²⁺ the laminin binding was consistently higher than the binding to fibronectin or type IV collagen. The integrin also interacted slightly with bovine type I collagen (22% of the laminin binding) as well as with human type I collagen. The fibronectin receptor isolated from endothelial cells showed significant binding only to fibronectin among these proteins in the radioreceptor assay (not shown).

To exclude the possibility that contaminants in the laminin preparation could be responsible for the observed laminin binding by the isolated integrin, we compared the binding of this integrin to different laminin preparations. There was no significant difference in the binding of this integrin to human laminin before (100%) or after (90%) FPLC purification, and it also bound well to mouse laminin (90%).

These results confirm the ability of the purified α2β1-related integrin to bind laminin to show that it can also bind to fibronectin, type IV collagen, and possibly type I collagen.

Expression of Integrin Subunits by Endothelial Cells

The integrin surface phenotype of endothelial cells was determined by flow cytometry (Fig. 6). High levels of α5, α1,
Fig. 5. Binding of endothelial cell laminin-binding integrin to extracellular matrix proteins in radioreceptor assay. Microtiter wells were coated with pepsin-extracted human laminin (LM), human plasma/fibronectin (FN), human type IV collagen (TYPE IV), or BSA, and the binding of the laminin-binding integrin isolated from surface-iodinated endothelial cells to the wells was assayed. Values are the mean of duplicate observations.

and α2 were found, α∞ was present at low levels, while α4 and α6 were present at trace levels (α4) or undetectable (α6). β1 and β3 were expressed at high levels and no β2 was detected by flow cytometry.

Immunoprecipitation of detergent extracts from surface-labeled endothelial cells confirmed the flow cytometry results (Fig. 7). Among the potential laminin receptor α subunits, high levels of α5β1 were observed (Fig. 7, lane 4) whereas α3β1 (Fig. 7, lane 2) and α6β1 (Fig. 7, lane 3) were very low or undetectable. Also in agreement with the flow cytometry results, high levels of α5β1 were detected by immunoprecipitation with an α5-specific antibody (Fig. 7, lane 4). Taken together, these data show that α5β1 is a major integrin expressed by human umbilical vein endothelial cells.

Role of α5β1 Integrin in Endothelial Cell Adhesion to Laminin

To evaluate the contribution of the α5β1 integrin in the attachment of the endothelial cells to laminin, we assayed various monoclonal antibodies for their ability to inhibit this attachment. The P1H5 monoclonal antibody, which is an anti-α2, inhibited endothelial cell adhesion to human laminin by up to 80% (Fig. 8). Inhibitory monoclonal antibodies to α2 and α6 (PIB5 and P1D6) had no effect, but an inhibitory antibody against α6 (GoH3) partially inhibited the laminin attachment. However, as shown above (Figs. 6 and 7), the endothelial cells expressed only small amounts of this potential laminin receptor, and the purified laminin-binding integrin was not immunoprecipitated by the anti-α6 antibody. Therefore, if the α6β1 integrin plays a role in the laminin attachment of endothelial cells, such a role is likely to be only a minor one under the conditions we have exam-
which is mediated by an integrin (Gehlsen et al., 1988; Sonnenberg et al., 1988, 1987; Gehlsen et al., 1989) was not inhibited by PIHS.

Discussion

The results reported here show that a laminin receptor from human umbilical vein endothelial cells is immunologically indistinguishable from the α2β1 integrin. This is a surprising finding for several reasons: the α2β1 integrin has previously been identified as a collagen receptor (Wayner and Carter, 1987; Kunicki et al., 1988), three other integrins have been found to function as laminin receptors in other cells (Ignatius and Reichardt, 1988; Gehlsen et al., 1988; Sonnenberg, 1988; Gehlsen et al., 1989), and the endothelial cell laminin receptor has been reported to be a 69-kD protein unrelated to integrins (YannareUo-Brown et al., 1988).

The role of the α2β1 integrin as a laminin receptor in endothelial cells is supported by a number of observations reported here. First, chromatography of endothelial cell extracts on a laminin matrix yielded an integrin that was essentially quantitatively immunoprecipitable with monoclonal antibodies directed against the α2 or the β1 subunit. Secondly, the isolated receptor bound to both human and mouse laminins in a radioreceptor assay. Thirdly, a monoclonal anti-α2 antibody inhibited the attachment of endothelial cells to laminin. These results show that the endothelial cells express a laminin receptor that is an integrin not previously associated with laminin binding, and they therefore define a new role for the α2β1 integrin, in addition to its previously known role as a collagen receptor.

The α2β1 integrin has been considered a collagen receptor because (a) functional antibodies directed against the α2 subunit inhibit the binding of cells to collagen (Wayner and Carter, 1987) and (b) the α2β1 integrin isolated from platelets binds to various types of collagens but has no affinity for laminin (Staatz et al., 1989). In fact, the laminin receptor of platelets is reported to be the α2β1 integrin (Sonnenberg et al., 1988). In contrast to the platelet α2β1 integrin, the integrin we have isolated from endothelial cells binds to laminin and, somewhat less efficiently, to collagens and fibronectin.

The molecular basis of the apparent specificity difference among the α2β1 integrins is unclear. The endothelial cell receptor subunits reacted with each of the monoclonal and sequence-specific polyclonal anti-α2 and anti-β1 antibodies we tested. This result argues for extensive similarity of the endothelial cell α2β1 integrin with α2β1 integrin from other cells. This similarity raises the exciting possibility that the already impressive diversity of the integrin system could be further augmented by cell type regulation of the specificities of individual integrins. Possible molecular mechanisms for such regulation include alternative mRNA splicing, posttranslational modification of the receptor, or the association of the receptor with some modifying component that differs among different cell types. One alternative splicing for integrin subunits has already been found (van Kuppevelt et al., 1989), and gangliosides would be candidates for modulating factors, since they are known to be associated with integrins (Cheresh et al., 1987).

The α2-containing integrin we have identified appears to be the main receptor on endothelial cells for laminin. This result does not agree with the recent claim that the endothelial cell laminin receptor is the laminin-binding 67–69-kD nonintegrin protein previously identified in several other cell lines (YannareUo-Brown et al., 1988). Recent data from a number of laboratories have shown that cells other than endothelial cells have integrin type laminin receptors, making it likely that this would also be the case with endothelial cells. Moreover, the sequence of the 67–69-kD protein is that of a typical cytoplasmic protein, in that it has no clearly discernible signal sequence or transmembrane sequence (Makrides et al., 1988; Hunt and Barker, 1988). The evidence therefore, strongly favors the integrin as the endothelial cell laminin receptor.

The α2β1 integrin we describe here as the laminin receptor is the fourth laminin-binding integrin described in the literature. It is difficult to see why so many different receptors would be needed for laminin. There is redundancy in the integrin system such that a single matrix protein can have more than one receptor. This is best documented with fibronectin which binds at least to the α2β1 and gp IIb/IIIa integrins (Pytel et al., 1986), the integrin studied here, and possibly by others (Gehlsen et al., 1988; Cheresh et al., 1989). Laminin may have more than one cell attachment site (reviewed in Timpl, 1989) and some receptor heterogeneity may, therefore, be needed to provide receptors for such alternative sites. However, recent evidence shows that laminin is not a single protein but a mixture of proteins with shared and unique subunits and tissue-specific distributions (Hunter et al., 1989; Ehrig et al., 1989). It is an exciting possibility that the various laminin-binding integrins might recognize only one form of laminin each, and that this would endow a cell with the ability to recognize the appropriate basement membranes.
We thank Drs. Martin Helmer, Richard Hynes, Eugene Marcantonio, and Arnold Sonnenberg for antibodies, and Dr. Kurt Benirschke for umbilical cords.

This work was supported by grant HL26383 from the National Heart, Blood, and Lung Institute to E. Ruoslahti; grant DK30051 from the National Institute of Diabetes, Digestive, and Kidney Disorders and CA45546 from the National Cancer Institute (NCI) to E. Engvall; grant BC419 from American Cancer Society and CA49259 from NCI to W. G. Carter; and Cancer Center Support grant CA30199 from NCI, the Department of Health and Human Services. L. R. Languino is a recipient of a fellowship from the European Organization for Research on Treatment of Cancer and K. R. Gehlsen is supported by fellowship GM12228 from the National Institutes of Health.

Received for publication 23 June 1989 and in revised form 7 July 1989.

References

Alberda, S. M., M. Daise, E. M. Levine, and C. A. Buck. 1989. Identification and characterization of cell-substratum adhesion receptors on cultured human endothelial cells. J. Clin. Invest. 83:1992-2002.

Argraves, W. S., S. Suzuki, H. Arai, K. Thompson, M. D. Pierschbacher, and E. Ruoslahti. 1987. Amino acid sequence of the human fibronectin receptor. J. Biol. Chem. 262:1163-1190.

Buck, C. A., and A. F. Horwitz. 1987. Cell surface receptors for extracellular matrix molecules. Annu. Rev. Cell Biol. 3:179-205.

Cheresh, D. A. 1987. Human endothelial cells synthesize and express an Arg-Gly-Asp-directed adhesion receptor involved in attachment to fibronectin and von Willebrand factor. Proc. Natl. Acad. Sci. USA. 84:6471-6475.

Cheresh, D. A., R. Pytel, M. D. Pierschbacher, F. G. Klier, E. Ruoslahti, and R. A. Reisfeld. 1987. An arg-gly-asp-directed receptor on the surface of human melanoma cells exists in a divalent cation-dependent functional complex with the dialysableglose CD2. J. Cell Biol. 105:1163-1173.

Cheresh, D. A., J. W. Smith, H. M. Cooper, and V. Quarranta. 1989. A novel vitronectin receptor integrin (x5y1) is responsible for distinct adhesive properties of carcinoma cells. Cell. 57:569-593.

Conforti, G., A. Zanetti, S. Colella, M. Abbadi, P. C. Marchisio, R. Pytel, F. Ganciotti, G. Tarone, L. R. Languino, and E. Dejana. 1989. Interaction of fibronectin with cultured human endothelial cells: characterization of the specific receptor. Blood. 73:1576-1585.

Dillner, L., K. Dickerson, M. Manthorpe, E. Ruoslahti, and E. Engvall. 1989. The neutrie-promoting domain of human laminin promotes attachment and induces characteristic morphology in non-neuronal cells. Exp. Cell Res. 177:186-207.

Ehrig, K., I. Leivo, W. S. Argraves, E. Ruoslahti, and E. Engvall. 1989. The tissue-specific basement membrane protein merosin belongs to a family of laminin-related proteins. Proc. Natl. Acad. Sci. USA. In press.

Engvall, E., and E. Ruoslahti. 1977. Binding of soluble form of fibroblast surface protein, fibronectin, to collagen. Int. J. Cancer. 20:1-5.

Engvall, E. G., E. Davis, K. Dickerson, E. Ruoslahti, S. Varon, and M. Manthorpe. 1986. Mapping of domains in human laminin using monoclonal antibodies: localization of the neurite-promoting site. J. Cell Biol. 103:2475-2485.

Ey, P. L., S. J. Prowse, and C. R. Jenkins. 1976. Isolation of pure IgG1, IgG2 and IgG2b immunoglobulins from mouse serum using PA Sepharose. Immunology. 5:29-32.

Form, D. M., B. M. Pratt, and J. A. Madri. 1986. Endothelial cell proliferation during angiogenesis: in vitro modulation by basement membrane components. Lab. Invest. 55:521-530.

Fujiwara, S., H. Wiedemann, R. Timpl, A. Lustig, and J. Engel. 1984. Structure and interactions of heparan sulfate proteoglycans from a mouse tumor basement membrane. Eur. J. Biochem. 143:145-157.

Gallit, J., and E. Ruoslahti. 1988. Regulation of the fibronectin receptor affinity by the cell. J. Biol. Chem. 263:2653-2659.

Gehlsen, K. R., R. Dickerson, W. S. Argraves, E. Engvall, and E. Ruoslahti. 1989. Subunit structure of laminin-binding integrin and localization of its binding site on laminin. J. Biol. Chem. In press.

Gehlsen, K. R., L. Dillner, E. Engvall, and E. Ruoslahti. 1988. The human laminin receptor is a member of the integrin family of cell adhesion receptors. Science (Wash. DC). 241:1228-1229.

Gillay, J. C., H. J. M. Brinkman, P. W. Modderman, A. E. G. Kr. von dem Borne, and J. A. van Mourik. 1989. Human vascular endothelial cells express a membrane protein complex immunocytochemically indistinguishable from the platelet VLA-2 (glycoprotein Ia-IIa) complex. Blood. 73:1235-1241.

Gimhrone, M. A., Jr. 1986. Endothelial dysfunction and the pathogenesis of atherosclerosis. In Proceedings of the 7th International Atherosclerosis Symposium. P. J. Nestel, editor. Elsevier Science Publishers, Amsterdam. 367-369.

Hautanen, A., J. Gallit, D. M. Mann, and E. Ruoslahti. 1989. Effects of modifications of the RGD sequence and its context on recognition by the fibronectin receptor. J. Biol. Chem. 264:1437-1442.
Takada, Y., and M. E. Hemler. 1989. The primary structure of the VLA-2/Col-
lagen receptor α2 subunit (platelet GP la): homology to other integrins and
the presence of a possible collagen-binding domain. J. Cell Biol.
109:397–407.

Takada, Y., J. L. Strominger, and M. E. Hemler. 1987. The very late antigen
family of heterodimers is a part of a superfamily of molecules involved in
adhension and embryogenesis. Proc. Natl. Acad. Sci. USA. 84:3239–3243.

Takada, Y., E. A. Wayner, W. G. Carter, and M. E. Hemler. 1988. Extracellular
matrix receptors, ECMR II and ECMR I, for collagen and fibronectin cor-
respond to VLA-2 and VLA-3 in the VLA family of heterodimers. J. Cell.
Biochem. 37:785–793.

Timpl, R. 1989. Structure and biological activity of basement membrane pro-
teins. Eur. J. Biochem. 180:487–502.

Tomaselli, K. J., C. H. Damsky, and F. L. Reicbardt. 1988. Purification and
characterization of mammalian integrins expressed by a rat neuronal cell line
(PC12): evidence that they function as α/β heterodimeric receptors for lami-
nin and type IV collagen. J. Cell Biol. 107:1241–1252.

van Kuppevelt, T., L. R. Languino, J. O. Gailit, S. Suzuki, and E. Ruoslahti.
1989. An alternative cytoplasmic domain of the integrin β1 subunit. Proc.
Natl. Acad. Sci. USA. 86:5415–5418.

Wayner, E. A., and W. G. Carter. 1987. Identification of multiple cell adhesion
receptors for collagen and fibronectin in human fibrosarcoma cells possess-
ing unique α and common β subunits. J. Cell Biol. 105:1873–1884.

Wayner, E. A., W. G. Carter, R. S. Piotrowicz, and T. J. Kunicki. 1988. The
function of multiple extracellular matrix receptors in mediating cell adhesion
to extracellular matrix: preparation of monoclonal antibodies to the fibronectin
receptor that specifically inhibit cell adhesion to fibronectin and react with
platelet glycoproteins IC-III. J. Cell Biol. 107:1881–1891.

Wayner, E. A., A. Garcia-Pardo, M. J. Humphries, J. A. McDonald, and
W. G. Carter. 1989. Identification and characterization of the lymphocyte
adhesion receptor for an alternative cell attachment domain in plasma fibro-
nectin. J. Cell Biol. 109:1312–1330.

Wewer, U., R. Albrechtsen, M. Manthorpe, S. Varon, E. Engvall, and E.
Ruoslahti. 1983. Human laminin isolated in a nearly intact, biologically ac-
tive form from placenta by limited proteolysis. J. Biol. Chem. 258:12654–
12660.

Yannariello-Brown, J., U. Wewer, L. Liotta, and J. A. Madri. 1988. Distribution
of a 69-kD laminin-binding protein in aortic and microvascular endo-
theial cells: modulation during cell attachment, spreading, and migration.
J. Cell Biol. 106:1773–1786.