Escudero, Juan García

Hypersurfaces with many A_j-singularities: explicit constructions. (English) Zbl 1291.14055
J. Comput. Appl. Math. 259, Part A, 87-94 (2014).

Summary: A construction of algebraic surfaces based on two types of simple arrangements of lines, containing the prototiles of substitution tilings, has been proposed recently. The surfaces are derived with the help of polynomials obtained from the lines generating the simple arrangements. One of the arrangements gives the generalizations of the Chebyshev polynomials known as folding polynomials. The other produces a family of polynomials which generates surfaces having more real nodes, and they can also be used, in combination with Belyi polynomials, to derive hypersurfaces in the complex projective space with many A_j-singularities. In some cases explicit expressions can be obtained from the classical Jacobi polynomials. The lower bounds for the maximum possible number of A_j-singularities in certain hypersurfaces of degree d are improved for several values of d and j.

MSC:

14J17 Singularities of surfaces or higher-dimensional varieties
14J70 Hypersurfaces and algebraic geometry

Keywords:
singularities; algebraic surfaces

Software:

AlgebraicSurface; surfex; SINGULAR

Full Text: DOI arXiv

References:

[1] Labs, O., Dessins d’enfants and hypersurfaces with many A_j-singularities, J. Lond. Math. Soc. (2), 74, 607-622, (2006) · Zbl 1112.14042

[2] Chmutov, S. V., Examples of projective surfaces with many singularities, J. Algebraic Geom., 1, 191-196, (1992) · Zbl 0785.14020

[3] Hoffman, M. E.; Withers, D., Generalized Chebyshev polynomials associated with affine Weil groups, Trans. Amer. Math. Soc., 282, 555-575, (1988)

[4] Withers, D., Folding polynomials and their dynamics, Amer. Math. Monthly., 95, 399-413, (1988) · Zbl 0695.58018

[5] Barth, W., Two projective surfaces with many nodes, admitting the symmetries of the icosahedron, J. Geometric Anal, 5, 173-186, (1996) · Zbl 0860.14032

[6] Endrass, S., A projective surface of degree eight with 168 nodes, J. Geometric Anal, 6, 325-334, (1997) · Zbl 0957.14022

[7] Labs, O., A septic with 99 real nodes, Rend. Semin. Mat. Univ. Padova, 116, 209-313, (2006) · Zbl 1112.14043

[8] Sarti, A., Pencils of symmetric surfaces in \mathcal{P}_3, J. Algebra, 246, 429-452, (2001) · Zbl 1064.14038

[9] Barth, W.; Sarti, A., Polyhedral groups and pencils of K3-surfaces with maximal Picard number, Asian J. Math., 7, 519-538, (2003) · Zbl 1063.140417

[10] Gruenbaum, B., Arrangements and spreads, (1972), American Mathematical Society Providence, RI

[11] J.G. Escudero, A construction of algebraic surfaces with many real nodes, http://arxiv.org/abs/1107.3401, 2011.

[12] Breske, S.; Labs, O.; van Straten, D., Real line arrangements and surfaces with many real nodes, (Geometric Modeling and Algebraic Geometry, 2008), Springer Berlin), 47-54 · Zbl 1132.14033

[13] Escudero, J. G., Random tilings of spherical 3-manifolds, J. Geom. Phys., 58, 1451-1464, (2008) · Zbl 1152.52009

[14] Escudero, J. G., Integer cech cohomology of a class of n-dimensional substitutions, Math. Methods Appl. Sci., 34, 587-594, (2011) · Zbl 1231.52015

[15] Escudero, J. G., Substitutions with vanishing rotationally invariant first cohomology, Discrete Dyn. Nat. Soc., 15, (2012), Article ID 818549 · Zbl 1312.52013

[16] Wolfram, S., Mathematica, (1991), Addison-Wesley Publishing Co.

[17] Greuel, G. M.; Pfister, G., A SINGULAR introduction to commutative algebra, (2008), Springer Berlin · Zbl 1344.13002
[18] S. Endrass, H. Huelf, R. Oertel, R. Schmitt, K. Schneider, J. Beigel, Surf, A computer software for visualizing real algebraic geometry, 2001.

[19] S. Holzer, O. Labs, R. Morris, Surfex-visualization of real algebraic surfaces, 2005.

[20] Ortiz-Rodríguez, A., Quelques aspects sur la géométrie des surfaces algébriques réelles, Bull. Sci. Math., 127, 149-177, (2003) · Zbl 1036.14028

[21] Adrianov, N.; Zvonkin, A., Composition of plane trees, Acta Appl. Math., 52, 239-245, (1998) · Zbl 0914.05017

[22] D.P. Roberts, Mathematical Reviews (MR2286435 (2007k:14074)), review of [1].

[23] Greuel, G. M.; Lossen, C.; Shustin, E., Introduction to singularities and deformations, (2007), Springer Berlin · Zbl 1125.32013

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.