The extended analogy of extraembryonic development in insects and amniotes

Authors
Kristen A. Panfilio¹ and Susana M. Chuva de Sousa Lopes²,³

Affiliations
¹ School of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom
² Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
³ Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium

Authors for correspondence
KAP: kristen.panfilio@alum.swarthmore.edu; http://orcid.org/0000-0002-6417-251X
SMCdSL: lopes@lumc.nl; https://orcid.org/0000-0003-3866-2803

Abstract
It is fascinating that the amnion and serosa/chorion, two extraembryonic (EE) tissues that are characteristic of the amniote vertebrates (mammals, birds, and reptiles) have also independently evolved in insects. In this review, we offer the first detailed, macroevolutionary comparison of EE development and tissue biology across these animal groups. Some commonalities represent independent solutions to shared challenges for protecting the embryo (environmental assaults, risk of pathogens) and supporting its development, including clear links between cellular properties (e.g., polyploid) and physiological function. Further parallels encompass developmental features such as the early segregation of the serosa/chorion compared to later, progressive differentiation of the amnion, and formation of the amniotic cavity from serosal-anniotic folds as a widespread morphogenetic mode across species. We also discuss common developmental roles for orthologous transcription factors and BMP signaling in EE tissues of amniotes and insects, and between EE and cardiac tissues, supported by our exploration of new resources for global and tissue-specific gene expression. This highlights the degree to which general developmental principles and protective tissue features can be deduced from each of these animal groups, emphasizing the value of broad comparative studies to reveal subtle developmental strategies and answer questions that are common across species.

Keywords (3-6 keywords)
extraembryonic development; insects; amniotes; amnion; serosa; developmental strategies
1. Extraembryonic tissues as a common strategy to the challenges of embryogenesis

Embryogenesis is a period of extraordinary change. The fertilized zygote develops to generate all tissue types, and to correctly organize these in space and time to produce the correct morphological form and physiological function of a complete organism. This delicate period of the life cycle must be buffered from the external environment. There are two major and highly successful animal groups that have achieved this though the key innovation of extraembryonic (EE) tissues within the egg or womb (Figure 1): the winged insects and the amniote vertebrates, comprised of the mammals and sauropsids (reptiles and birds). As we review here, in each of these animal groups the EE tissues develop in parallel with the embryo proper, comprising some of the earliest tissue types to differentiate and mature. This enables them to play critical roles in protecting the embryo as well as directly fostering its development at mechanical, metabolic, and genetic levels.

The EE tissues of insects and amniotes are evolutionarily independent, or analogous, as they were absent in the last common ancestor – an aquatic creature that arose over 500 million years ago (Figure 1). That both crickets and chickens, and mosquitoes and mice, develop within a fluid-filled amniotic cavity represents a convergent solution to common challenges, including the demands of a fully terrestrial lifestyle. Adaptations of the egg to prevent desiccation, chiefly including the EE tissues, have enabled insects and amniotes to colonize diverse ecological niches away from the aquatic and humid habitats to which species such as amphibians and springtails are constrained (Vargas et al., 2021; Zeh et al., 1989).

Although named after its vertebrate counterpart, the insect amnion is evolutionarily older. The amniotic cavity is a defining trait of all winged insects (Panfilio, 2008), dating back to the Early Ordovician (479 mya). Amniote vertebrates appear in the fossil record in the Carboniferous (316 mya), after holometabolous insects – those with metamorphosis via a pupal stage, such as beetles, flies, and butterflies (Figure 1, and references therein). Insects are also far older when generation times are considered, which can be months in insects compared to years in vertebrates. Thus the retention of EE tissues throughout winged insects is remarkable as an ancient trait. It is only in the last ~100 my, as holometabolous insects diversified in parallel with angiosperm radiation (Misof et al., 2014), that secondary loss of the amniotic cavity or an entire EE tissue occurred in restricted lineages of wasps and flies, including in the fruit fly Drosophila melanogaster (Panfilio, 2008; Schmidt-Ott, 2000). Meanwhile, to the best of our knowledge there have been no secondary losses of EE tissue in amniotes, although specific EE structures differ in prominence between species (Carter and Enders, 2016).

Here, we explore similarities in EE tissues and discuss biological features that govern the potential for species-specific variation. There are striking parallels in EE development between insects and amniotes, from genetic determinants to the morphogenetic basis of certain birth defects. However, a macroevolutionary comparison between these groups has been lacking. After a comparative account of EE development, with a focus on remodeling at tissue boundaries, we examine the genetic signature of the amnion. With the growing availability of stage- and tissue-specific atlases for gene expression, we document previously unrecognized commonalities that showcase avenues for future comparative investigation. We then consider morphogenetic and biomechanical properties of EE tissues, noting how EE development is intertwined with heart development, and how genomic structure (polyploidy) underpins EE tissue functions. Finally, we conclude with a brief discussion of factors enabling EE diversification, distinguishing not only live birth (viviparous) and egg-laying (oviparous) gestation strategies but also the wider environmental context of embryogenesis.
2. Anatomical comparison of amnion and serosa/chorion between insects and amniotes

There are two EE tissues in both insects and amniotes (Figure 1: “egg inventory”), albeit with a mix of semi-overlapping terminology to refer to different egg and EE structures. In both animal groups, the inner EE tissue is the **amnion**: it delimits a fluid-filled amniotic cavity that directly surrounds the embryo. The outer EE tissue, which differentiates first, has the primary role of mediating interactions with the outside world. In insects, the outer EE tissue is termed the **serosa**, and it is immediately subjacent to the eggshell, which is an acellular structure comprised of an outer chorion and inner vitelline membrane (Dorn, 1976; Rezende et al., 2016). Not to be confused with the insect eggshell, the outer EE tissue in most amniotes is termed the **chorion** (or, traditionally in sauropsids, also the serosa, (Patten, 1951)). In viviparous amniotes, it arises from the trophoblast (trophectoderm in human; EE ectoderm in mouse), and it will contribute to the placenta at the fetal-maternal interface, including in human and mouse (Chuva de Sousa Lopes and Mummery, 2006; Renfree, 2010). In oviparous amniotes, the chorion derives from the EE ectoderm, and it develops to largely supplant a degenerating vitelline membrane, such as in the chick (Patten, 1951).

Similar to the vitelline membrane of oviparous amniotes, the zona pellucida of viviparous amniotes is a transient acellular surrounding layer, from which the blastocyst embryo hatches in very early development (Gilbert and Barresi, 2016). In contrast, the insect vitelline membrane is a permanent eggshell component that in fact crucially enables live imaging throughout embryogenesis, by offering transparency while maintaining egg structure (e.g., Benton et al., 2019; Hilbrant et al., 2016).

Distinct from the amniotic cavity and perivitelline space between the serosa/chorion and eggshell, a third compartment is the yolk sac (visceral yolk sac in mice). While present in both insects and amniotes, this structure differs between species in two respects. First, for embryos that develop within an egg, the yolk sac contains lipid- and protein-rich yolk as nutrition for the developing embryo, whereas in viviparous amniotes the yolk sac content has a fluid-based composition (Dorn, 1976; Ross and Boroviak, 2020; Roth, 2004). Secondly, in amniotes the primitive endoderm (or hypoblast) extends beyond the embryo to constitute the EE endoderm as a tissue layer that surrounds the yolk (Nowotschin and Hadjantonakis, 2020). In contrast, in insects the cortical structure of the yolk is termed yolk sac, but it is not a cellular layer in its own right (Benton et al., 2013; Caroti et al., 2018; Dorn, 1976).

Amniotes also have an integral mesodermal contribution to the EE tissues that is without an insect equivalent. Differentiating from the epiblast (although in primates the EE mesoderm may arise from hypoblast), the EE mesoderm expands to fully underlie all other EE tissue layers. It is when the EE membranes mature to an EE ectodermal-mesodermal bilayer that the monolayered amniotic ectoderm and trophoderm become the bona fide amnion and chorion, respectively. Similarly, the yolk sac is an EE mesodermal-endodermal bilayer (distinct from the EE ectodermal-endodermal bilayer of the parietal yolk sac in mouse: Figure 2, below). Thus, whereas the EE complement of amniotes integrates all three germ layers across the chorion, amnion, and yolk sac, with each of these comprised of a bilayer, in insects the serosa and amnion persist as two simple (monolayer) epithelia of ectodermal origin. On the other hand, in some insects the serosa and amnion themselves adhere tightly in a bilayer to coordinate complementary morphogenetic functions in late development (Hilbrant et al., 2016).
As amniote embryogenesis proceeds, metabolic demands of the growing embryo require further maturation of EE structures. Vascularization of the yolk sac metabolizes and transports yolk via primitive blood to the embryo proper (Ross and Boroviak, 2020; van der Wagt et al., 2020). In most amniotes the EE mesodermal-endodermal allantois then stores waste products; in some eutherians (placental mammals) it contributes to the formation of a functional umbilical cord, while in sauropsids it transiently functions in respiration. In general, viviparous amniotes, where the embryo develops within the physiologically and structurally complex womb, show a pronounced reduction in the yolk sac and allantois compared with oviparous amniotes. Meanwhile, with their significantly smaller size (species-specific egg lengths of ~0.5-5 mm) and rapid embryogenesis (days to weeks), insects require neither feature. Insect yolk metabolism has been attributed to the serosa, amnion, and persistent syncytial energids – nuclei with individual cytoplasmic islands but lacking cell membranes – that remain resident throughout the yolk mass, with catabolic products sequestered either within the amniotic cavity or perivitelline space (Dorn, 1976; Panfilio, 2008; Roth, 2004).

3. Diverse strategies of early morphogenesis for EE tissue formation

Insects and amniotes are united by possession of a serosa and amnion, which help to delimit the egg compartments. To form these structures and spaces, the predominant strategy is creation of the amniotic cavity from advancing serosal-amnionic folds. Yet within each of these two major animal groups, species employ different morphogenetic processes. To capture this commonality and some of the wider morphogenetic diversity of amnion formation, we compare five key species in detail (Figure 2): the milkweed bug Oncopeltus fasciatus, the flour beetle Tribolium castaneum, the chicken (Gallus gallus), the human (Homo sapiens), and the mouse (Mus musculus).

In oviparous species of insects and amniotes, early cleavage produces the blastoderm, an epithelialized cell layer on the yolk surface. Initial differentiation distinguishes the serosa from the germ rudiment, the latter comprising the presumptive amniotic ectoderm and embryo proper (Figure 2: first row, first three species, Table 1, Figure 3). (For precision, we will use the vertebrate term “amniotic ectoderm” for this monolayered ectodermal epithelium in both animal groups, while using either serosa or chorion for the outer EE tissue.) The amniotic ectoderm typically differentiates at the periphery between the serosa and embryo proper (Figure 2: “appearance of amnion”). In most insects, amniotic cavity formation then initiates via apical constriction at the posterior egg pole (Figure 2: insects’ second row), with the bug and beetle representing the two predominant ways that this proceeds.

In species like Oncopeltus, apical constriction leads to deep invagination of the amniotic ectoderm and embryo (Figure 2: first column), with posteriorward serosal spreading maintaining tissue continuity over the yolk. Ultimately the lips of the invagination site close, sealing the serosa and the amniotic cavity (Butt, 1949; Panfilio, 2009). A notable consequence of symmetric tissue invagination is that the embryo becomes inverted, with the head at the posterior egg pole and the ventral surface of the embryo facing towards the dorsal side of the egg. Embryo inversion during amnion formation occurs throughout the hemimetabolous winged insects (non-Holometabola), with morphogenetic reversal of this orientation in late embryogenesis – events that are collectively termed blastokinesis (Panfilio, 2008). Amnion formation by invagination occurs throughout the Palaeoptera (dragonflies and mayflies), Paraneoptera (Hemiptera like Oncopeltus and close relatives such as thrips), and some species of beetle, moth, and caddisfly (Figure 1, (Panfilio, 2008)).
In contrast, in species like *Tribolium* the contiguous EE tissues envelop the embryo from advancing folds of internalizing amniotic ectoderm and spreading surface serosa, with the posterior amniotic fold particularly prominent in *Tribolium* (Figure 2: second column). Ultimately, the medially progressing anterior and posterior folds join ventrally, involving intra-tissue fusion within each of the amniotic ectoderm and serosa concomitant with the separation of the two EE tissues (Handel et al., 2000; Horn and Panfilio, 2016). Amnion formation from folds is predominant across the insects, including the many insect orders of the Polyneoptera and Holometabola (Figure 1). Note that while the embryo maintains its orientation during amnion formation in *Tribolium* and in the Holometabola generally, embryo inversion also occurs during EE fold formation in some Polyneoptera (Panfilio, 2008).

Similarly, medially progressing EE folds envelop the chick embryo (Figure 2: third column). Given the more extensive repertoire of EE tissues in vertebrates, folds of serosa-amniotic ectoderm advance in parallel with the development of the EE endoderm to envelop the yolk and of the EE mesoderm to underlie the other EE tissues and contribute to the allantois (Gilbert and Barresi, 2016; Patten, 1951). This method of amnion formation is typical of many amniotes, including sauropsids, marsupials, monotremes, and some eutherians (ungulates and cetaceans, some carnivores, some rodents and rabbits) (Eakin and Behringer, 2004) and perhaps some cetaceans (Stump et al., 1960).

In the viviparous mammals, the formation of the amnion and chorion – and in general the implantation strategies in the maternal uterus – are notoriously diverse across species for both mechanism and timing (Carson et al., 2000; Carter, 2012; McGowen et al., 2014). In insects and amniotes with EE folding morphogenesis, closure of the serosa/chorion and closure of the amniotic cavity is a single event during or after gastrulation (Table 1, Figure 3). In contrast, in amniotes such as humans, the chorion and amnion form independently, with the former already established before the amniotic ectoderm differentiates. Then, early cavitation of the germ rudiment/inner cell mass is simultaneous with differentiation and epithelialization of the amniotic ectoderm and epiblast. Thus, the amniotic cavity is fully formed and sealed as the amniotic ectoderm arises, without an intermediate morphogenetic stage. It is only subsequently that the EE mesoderm forms (Figure 2: fourth column and inset, Table 1, (Schoenwolf et al., 2020)). Cavitation to produce the amniotic cavity occurs in some primates as well as some rodents and some bats (Eakin and Behringer, 2004).

Physical and temporal uncoupling occurs in yet a different manner in the mouse (Figure 2: fifth column and inset). There is early cavitation in this species, but this involves the trophectoderm and undifferentiated germ rudiment (presumptive amniotic ectoderm and embryonic epiblast). The amniotic ectoderm differentiates relatively late, after gastrulation begins, along the posterior side of the embryo. Its morphogenesis involves lateral and anteriorward expansion, accompanied by the EE mesoderm, to fuse over the head fold and thereby form the amniotic cavity (Dobreva et al., 2010).

Across species, the amniotic cavity is jointly delimited by the amnion and the embryo proper. However, this fluid-filled space is ventral to the insect embryo while it is dorsal in amniotes. This may be a specific consequence of the general dorsal-ventral inversion of body organization between protostomes (including insects) and deuterostomes (including amniotes): in insects, the heart is dorsal, the digestive tract is medial, and the nerve cord is ventral, whereas the converse is true in vertebrates (Arendt and Nübler-Jung, 1994). Regardless, relative tissue topology is shared, with the amniotic cavity on the opposite side of
the embryo to the yolk sac (Figure 2: bottom row), ensuring that the region of the body where
the gut will form has direct access to the nutritive yolk. Although fluid-filled, in many
insects the amniotic cavity has a small volume. And, although mooted as a probable waste
sac (Section 2), the composition of the insect amniotic fluid has yet to be characterized.

As noted above, aside from specific morphogenetic mechanism, there are some
intriguing heterochronic differences in EE development between species. There is far greater
temporal variation in the appearance of the amniotic ectoderm in vertebrates, whereas this is
an early event in insects, both relatively and absolutely (Figures 2-3, Table 1). On the other
hand, not only do insects lack EE endoderm, but the endoderm of the embryo proper is an
extremely late derivative in insects, such that the embryo effectively only consists of two
germ layers during amniotic cavity formation and the period generally thought of as
gastulation (Benton, 2018; Münster et al., 2019; Roth, 2004).

Lastly, the lineage of the amniotic ectoderm may differ across insects. In most
species, the differentiating amniotic ectoderm has gene expression, cell shape, and mitotic
activity akin to its fellow germ rudiment derivative, the embryo proper, and distinct from the
serosa (Benton et al., 2019; Handel et al., 2005; Sachs et al., 2015). This may differ in the
Diptera, which exhibit reductions in amniotic tissue, loss of an amniotic cavity, conflation of
the EE tissues into a single amniochorion that only covers the yolk, and in extreme cases even
stochastic, fatal loss of the amniochorion altogether (Caroti et al., 2018; Goltsev-Snymth et al.,
2013; Goltsev et al., 2007; Schmidt-Ott, 2000). In some fly species, marker gene expression
implies that the amnion arises at the periphery of a unified EE ectodermal territory (Goltsev
et al., 2007), reassigning this tissue’s lineage (discussed in Panfilio, 2008). On the other
hand, dynamic gene expression spanning the serosa, amniotic ectoderm, and embryonic
ectoderm occurs widely in insects (e.g., Benton et al., 2019; Horn and Panfilio, 2016; Rafiqi
et al., 2010), highlighting outstanding questions about tissue-specific genetic signatures.

4. Deciphering the genetic signature of the amnion

It can be difficult to obtain amniote embryos in sufficient quantities at desired stages, as the
embryos need to be manually dissected from inside the mother for all viviparous and the
earliest oviparous embryonic stages. Also, oviparous embryos often require manual
extraction from large eggs with opaque, hard shells. One of the interesting advantages of
studying insects is that embryonic development takes place outside the mother’s body and
large numbers of embryos can be readily obtained. In many species, such as Oncopeltus and
Tribolium, fertilization is concomitant with oviposition, providing access to all embryonic
stages, and the eggshell is transparent or can be bleached. Combined with fast embryonic
development and ease to perform genetic manipulations in insects, this has led to a large body
of evidence regarding the gene regulatory networks that regulate the development of the
serosa/chorion and, increasingly, the amnion.

In both insects and amniotes, by the onset of gastrulation there are multiple early
genetic markers for the presumptive serosa/chorion. These include Tc-zen1, Tc-zen2, and Tc-
hnt for Tribolium (Sharma et al., 2013a) and Cdx2, Elf5, and Esrrb in Mus (Dobreva et al.,
2018; Nahaboo et al., 2021) (Table 2). Upstream regulation of the presumptive insect serosa
requires a subset of axial patterning determinants for anterior and dorsal regions of the
blastoderm (Figure 2, e.g., Rafiqi et al., 2010; Sachs et al., 2015)). Downstream, RNA-seq
after RNAi and pathogen-challenge studies have identified factors for serosal tissue
maturation and physiology (Gurska et al., 2020; Jacobs et al., 2014; Jacobs et al., 2021).
Specific markers for the amnion have been difficult to identify, perhaps because this tissue emerges later in development and has a less pronounced genetic signature. In Tribolium, in contrast to Mus and Gallus, there are a number of amniotic markers, including Tc-pnr and Tc-iro (Sharma et al., 2013a; van der Zee et al., 2005). However, these beetle genes are also expressed in embryonic tissues, and their respective vertebrate orthologues, Gata4 and Irx4/6 (Table 2), are associated with early heart development in Mus (Kuo et al., 1997; Nelson et al., 2014) and Gallus (Bao et al., 1999; Lopez-Sanchez et al., 2009) (see below), but not specifically with amnion formation.

In other cases, insect orthologues hold promise as a novel line of evidence in selecting new candidate genes for research into the amniotic amnion (Box 1). Transcriptomic datasets for the amnion have been generated for Mus (Dobreva et al., 2018; Nahaboo et al., 2021) and Homo (Roost et al., 2015). Moreover, single-cell RNA-seq datasets for gastrulating embryos of mouse (Mittnenzweig et al., 2021; Pijuan-Sala et al., 2019) and human (Tyser et al., 2021) are available. These datasets would benefit significantly from further exploration regarding the EE tissues, as they remain largely unexplored, with limited annotation and validation. Several open-source interactive platforms allow visual exploration of gene expression at the single-cell or tissue/organ level in Homo and Mus (Box 1). From these, we have identified TFAP2A/Tfap2a, TFAP2C/Tfap2c, DLX5/Dlx5, and GATA3/Gata3 as markers of amniotic ectoderm in Homo and Mus as well as in Gallus (Khudyakov and Bronner-Fraser, 2009; Sheng and Stern, 1999). However, these factors do not seem to cause a phenotype in the amniotic ectoderm when deleted in Mus (Auman et al., 2002; Johnson et al., 2020; Lim et al., 2000; Narboux-Neme et al., 2019), perhaps due to redundancy with other family members. DLX5 does not have a clear orthologue in Tribolium (Table 2), and the expression of Tc-AP2 (orthologue of TFAP2A) has not been investigated. However, the insect orthologue of GATA3, srp, has prominent expression in the Tribolium amnion (Benton et al., 2019) and the Drosophila amnioserosa (Abel et al., 1993; Topfer et al., 2019), suggesting a notable degree of conservation in establishing amnion identity in both amniotes and insects.

Furthermore, changes in GATA3 expression are associated with changes in BMP and FGF signaling in other vertebrate tissues (Lillevali et al., 2006; Swartz et al., 2021), and both signaling pathways are required for correct amnion development in Tribolium (Horn and Panfilio, 2016; Sharma et al., 2013b). BMP signaling has been shown to be functionally important for amnion development in Mus ((Bosman et al., 2006; Dobreva et al., 2018; Zhang and Bradley, 1996), and see below), but not FGF signaling. This points to a common regulatory network (via GATA3 and BMP signaling) for amnion formation in insects and amniotes. Also, these comparative findings perhaps argue for further investigation of potential FGF signaling involvement in amnion development in other amniotes.

5. Morphogenetic and biomechanical requirements of the amnion throughout embryogenesis

The amnion needs to combine a high degree of elasticity with mechanical strength first to accommodate its own morphogenesis during amniotic cavity formation and then to support the rapid growth of the embryo without rupturing, suggesting a set of unique biomechanical properties. In a third phase specific to insects, active withdrawal of the EE tissues in late development further places high mechanical demands on the integrity and remodeling capacity of monolayered, ectodermal epithelia.
In amniotes, where the amnion is an EE ectodermal-mesodermal bilayer, the mesoderm is critical for these properties. The amniotic mesoderm in *Mus* and *Homo* expresses high levels of *NRP1/Nrp1, POSTN/Postn, COL1A1/Coll1a1, TALGN/Tagln, ACTA2/Acta2* and *FN1/Fn1* (Dobrev et al., 2010; Nahaboo et al., 2021; Tyser et al., 2021), which are responsible for conferring both elasticity and strength. In *Mus* embryos defective for *Fn1*, gastrulation initiated and the knockout embryos formed EE mesoderm, showed a ‘closed’ amnion and chorion, and have an allantois, but the exocoelomic and amniotic cavities appeared to have defective pressure and distended shape (George et al., 1993). In contrast, *Mus* embryos defective in *Foxf1* have defects in EE mesoderm and amniotic mesoderm expansion, resulting in loss of elasticity (Mahlapuu et al., 2001).

In insects, a key factor for diverse early morphogenetic processes is *fog*, a secreted ligand that activates G-protein signaling to regulate myosin contractility and integrin activity. In addition to species-specific roles in formation and integrity of the blastoderm epithelium and efficient internalization of embryonic mesoderm (Benton et al., 2019; Dawes-Hoang et al., 2005; Urbansky et al., 2016), Fog signaling is essential for EE morphogenesis in *Tribolium*. *Te-fog* is required for initial apical constriction to drive amniotic fold formation and in the cuboidal-to-squamous cell shape transition for serosal spreading (Figure 2; second and third stages depicted, (Benton et al., 2019)). Across tissues and stages, in *Drosophila* *Dm-fog* is a regulator of *Dm-sqh* (non-muscle myosin II), (Dawes-Hoang et al., 2005), and both *Dm-sqh* and the integrin *Dm-mys* are required for late morphogenesis of the *Drosophila* amnioserosa (Goodwin et al., 2016; Hara et al., 2016; Roote and Zusman, 1995). Thus, although Fog signaling is an insect-specific innovation (Benton et al., 2019; Urbansky et al., 2016), it feeds into the regulation of fundamental components of cell shape maintenance and remodeling through G-protein-coupled receptors (GPCRs), in particular through mechanoresponsive adhesion GPCRs (Table 2; e.g., (Scholz, 2018)). Using the open-source interactive platforms mentioned above, we report expression of the orthologues of *Dm-sqh* and *Dm-mys*, MYL9/Myl9 and ITGβ1/Itgb1, respectively (Table 2), in EE mesoderm/mesenchyme in *Homo* and *Mus*.

As mentioned above, the highly conserved BMP pathway (Table 2, (van der Zee et al., 2008)) is crucial for both patterning and early amnion morphogenesis in amniotes and insects. Disrupting BMP signaling in *Mus*, via genetic deletion of the ligand Bmp2 or the cytoplasmic effector Smad5, resulted in defects in amnion/chorion closure, with subsequent malformations in heart development (Bosman et al., 2006; Dobrev et al., 2018; Zhang and Bradley, 1996). In both cases, the knockout mouse embryos developed until gastrulation, anteriorward expansion of the amnion/chorion occurred, and the EE mesoderm proliferated and created the exocoelomic cavity that lines other EE tissues and generates an allantois (Figure 2 inset). However, by the time the amniotic ectoderm and chorion EE ectoderm should detach from each other, giving rise to a closed amniotic cavity and ectoplacental cavity, this process failed, leaving an open proamniotic canal. This has severe consequences for further morphogenetic movements of the embryo, including pronounced cardiac defects. Similarly, impaired regulation of BMP signaling leads to delayed closure or a persistently open amniotic cavity in *Tribolium* (Horn and Panfilio, 2016).

As it matures, the insect amniotic ectoderm ceases mitosis and becomes polyploid (see below), yet its thinning must keep pace as the embryo rapidly doubles in length during germband extension (Benton, 2018). This period of insect amnion development is poorly studied, in part because it often occurs deep in the yolk, but it offers fascinating remodeling challenges. For example, in *Oncopeltus*, the amnion tightly encloses each of the lengthening
appendages (legs, mouthparts, and antennae), giving it the character of a custom-fitted glove (Panfilio, 2009). Yet, later the appendages fold medially and the amnion remolds to delimit a single, smoothly enlarged amniotic cavity. It would be intriguing to determine the cellular basis for such tissue structural plasticity, such as the relative roles of cell neighbor rearrangements or non-planar rotation (Pope and Harris, 2008).

Whereas in amniotes the EE tissues persist until birth/hatching, in most insects the EE tissues do not (Panfilio, 2008). In mid-embryogenesis the serosa and amnion dramatically end their lives by opening over the embryo’s head, turning inside out as they peel back from the embryo, and compacting into a tissue mass that undergoes apoptosis within the yolk (Hilbrant et al., 2016). The later phases of EE withdrawal also occur in Drosophila, where contraction of the amnioserosa to the dorsal midline is required for dorsal closure of the embryonic epidermis: literally pulling the embryo’s body together (Gorfinkiel et al., 2009). The tissues’ mechanical properties are critical, with strong inter-tissue adhesion and precise timing of apoptosis (Panfilio and Roth, 2010). Loss of EE tissue integrity (tearing) can leave constrictive belts of EE tissue encircling the insect embryo. This is strikingly similar to developmental defects in amnions known as amniotic band syndrome or the ADAM complex (amniotic deformities, adhesions, mutilations), where the amnion fractures or tears (Calvin and Oyen, 2007; Opitz et al., 2015). In Tribolium, these defects can be genetically induced and investigated with high throughput and high resolution live imaging (Hilbrant et al., 2016; Horn and Panfilio, 2016), offering an accessible research model to explore the link between early tissue mechanical properties and potentially stochastic outcomes.

6. Parallels in gene regulation and tissue properties in amnion and heart

We have noticed that some genes that are specifically expressed in the amniotic ectoderm in both insects and amniotes later become re-expressed in the heart, where they play direct roles in cardiac development. This is particularly intriguing given the tissues’ diverse topologies: whereas in amniotes the presumptive heart and amnion form an embryonic-extraembryonic boundary at the anterior of the embryonic disc, in insects the heart forms later and is not in contact with EE tissue (Koelzer et al., 2014; Panfilio and Roth, 2010). For example, ISL1 is required in cardiac progenitors in Homo (Mononen et al., 2020), and it was recently reported to be expressed in the amniotic ectoderm in Homo and other primates (Yang et al., 2021). Similarly, the Drosophila orthologue of ISL1, Dm-tup, is required in cardiac progenitors (Mann et al., 2009). This is in addition to an EE-specific role of Dm-tup in maintaining amnioserosal integrity, which profoundly affects embryo body posture and thus, secondarily, the geometry of the developing cardioblast cell row (Frank and Rushlow, 1996). This latter phenotype also occurs in Tribolium after knockdown of Tc-Doc, which has persistent amniotic expression (Horn and Panfilio, 2016).

In Tribolium, several amniotic marker genes are in fact also expressed in either mesodermal precursor tissue or in the cardioblasts themselves: Tc-iro, Tc-Doc, and Tc-pnr. Whereas a cardiac role of Tc-iro has not been investigated and Tc-Doc knockdown does not produce an obvious primary heart defect, knockdown of Tc-pnr severely affects cardiogenesis, with loss of cardioblast cells and substantial defects during heart tube formation (Horn and Panfilio, 2016; Nunes da Fonseca et al., 2010; Seibert, 2017).

Amniote orthologues of these dual amniotic/cardiac marker genes in insects vary in expression and function. The orthologue of Tc-Doc, Tbx6, does not have a prominent role in amnion or cardiac function, but rather functions in specification of paraxial mesoderm and
the formation of the somites in both mouse and chick (Chapman et al., 1996; Chapman and Papaioannou, 1998; Takemoto, 2013). However, other members of the TBX family do contribute to heart development. This includes Tbx5, which shows a high degree of overlap with Isl1, as well as IRX4/Irx4, the vertebrate orthologue of Tc-iro, in the ventricular myocardium in Mus (Nelson et al., 2014) and Gallus (Bao et al., 1999). In Gallus, single-cell transcriptomics recently clarified that IRX4 marks ventricular cells while Tbx5 specifically marks the left ventricle (Mantri et al., 2021). IRX4 seems to regulate heart chamber identity by regulating myosin and therefore contractile characteristics of the ventricular myocardium. Meanwhile, the Mus orthologue of Tc-pnr, Gata4, is an important regulator of early cardiac morphogenetic events, including tube formation and subsequent heart folding, rather than having a major role in cardiac mesoderm specification (Kuo et al., 1997; Watt et al., 2004). This function is conserved in chicken (Zhang et al., 2003). However, most probably there is redundancy between Gata4 and Gata6, making it difficult to functionally separate the two.

A degree of similarity in the genetic networks in the two tissues (cardiac primordia and amnion) could be due to the biomechanical properties of the cardiac cell layer during folding, which requires elasticity with strength. But the similarity does not end there. The amniochorion in sauropsids shows spontaneous and rhythmic contractions, in particular after amniochorion closure (peaking at day 9 in the chick, with ~15 contractions/min) (Nechaeava and Turpaev, 2002; Wu et al., 2001), and this may explain its smooth muscle-like functionality. In Mus, the amniotic mesoderm clearly presents a smooth muscle-like genetic signature (Acta2+, Tagln+, Myl9+, Tpm1+, Cnn1+). Due to limitations in culturing and live imaging a peri-implantation mouse embryo, contractile activity has so far not been described. However, in an in vitro model of amniotic injury in both Mus and Homo, amniotic cells with contractile characteristics are present at the wound edge (Costa et al., 2021). Despite the very different structure of the squamous amniotic ectoderm in insects, pulsatile and peristaltic rhythmic behavior in this tissue occurs during germband extension and dorsal closure (Horn and Panfilio, 2016; Panfilio, 2009). Even if this originates in embryonic tissues, the insect amnion sustains and propagates these behaviors. Hence, it is perhaps not surprising to observe similarities in the molecular signature between the amnion and the heart, and it is remarkable that also in this regard there are clear parallels between amniotes and insects.

7. Polyploid genomic architectures underpin EE tissue functions

Tissues that support embryogenesis – both maternal and extraembryonic – often become polyploid, with multiple copies of the genome per cell instead of the typical diploid state. There is a growing body of evidence on how it is not only gene expression but also genomic architecture that underpins regulatory, physiological, and protective tissue functions.

There are two notable polyploid EE tissues in placental mammals, each deriving from the trophectoderm via a distinct mode of polyploidization. Syncytiotrophoblasts develop by cell-cell fusion to become multinucleate, with discrete nuclei in a syncytiotrophoblast. This tissue is critical at the fetal-maternal interface, where it supports nutrient and gas exchange. It also helps maintain pregnancy by secretion of placental hormones such as progesterone (Costa, 2016), and by immunological modulation to support maternal tolerance (Ander et al., 2019). This large syncytiotrophoblast also serves as a protective barrier for the fetus, by virtue of its mechanically robust cytoskeletal meshwork and absence of intercellular junctions, which are susceptible to inflammatory responses and pathogen entry (Ander et al., 2019).
The fusogenic properties of syncytiotrophoblasts derive from domestication of genes acquired from retroviruses (Dupressoir et al., 2012). Exaptation of so-called syncytin genes occurred repeatedly in mammals, such that the genetic basis of placentation represents multiple instances of convergent evolution (Dupressoir et al., 2012). Intriguingly, marsupials have functionally equivalent viral-origin genes (Cornelis et al., 2015), although in most species the placenta is only a transient and relatively inefficient structure that precedes post-partum development within the marsupial pouch (it is known as the yolk sac placenta, or choriovitelline placenta, in contrast to the chorioallantoic placenta in eutherians, (Carter and Enders, 2016; Renfree, 2010)). Thus, the multinucleate character may be a byproduct of virally-derived invasive competence of the EE tissue.

In contrast, murine trophoblast giant cells (TGCs) become highly polyploid through endoreplication, generating up to 900 copies of the genome through DNA replication in the absence of cytokinesis (Fox and Duronio, 2013). This alternative mechanism of polyploidy also fosters strategies for physical protection and endocrinological support. As cell size is proportional to nuclear size, TGCs’ ploidy may directly support tissue integrity and epithelial barrier function (Orr-Weaver, 2015). Moreover, increased DNA content need not be uniform. TGCs exhibit selective amplification of functionally important gene loci, such as for immune and hormonal regulation to support fetal physiology (Hannibal and Baker, 2016).

Similarly, polyploidy of maternal tissues in the Drosophila ovary is thought to support high transcriptional yield of needed protein products for oocyte provisioning and eggshell production (Orr-Weaver, 2015).

Endoreplication is also a hallmark of both the serosa and amnion in insects, with tissue-specific levels of ploidy generating particularly large serosal nuclei (e.g., Hilbrant et al., 2016; Panfilio and Roth, 2010). In fact, cessation of mitosis and switch to the endocycle is among the earliest features of tissue differentiation in the serosa and even in the Drosophila amnioserosa (Gurska et al., 2020; Reim et al., 2003). Many purported tissue-scale functions of polyploidy are likely applicable in this outer EE tissue. Serosal tissue integrity as a barrier epithelium of large cells confers cellular protection via detoxification (Berger-Twelbeck et al., 2003) and innate immune responses to infection (Jacobs et al., 2014; Jacobs et al., 2021). Furthermore, in many insect species the serosa secretes a substantial cuticle that provides desiccation resistance (Farnesi et al., 2015; Goltsev et al., 2009; Jacobs et al., 2013) and mechanical protection (Gurska et al., 2020). Thus, polyploidy – and perhaps selective amplification – may support the serosa’s capacity to transcribe numerous parallel copies of genes encoding key factors such as antimicrobial peptides and cuticle structural proteins. However, the genomic basis of serosal tissue properties awaits direct investigation. Ongoing developments in single-cell profiling will provide quantitative evidence on exact polyploid architectures, including tissue-specific copy number variants, and the extent to which transcription scales with ploidy and locus copy number.

8. Ecological contexts and conclusions
EE tissues are physiological intermediaries as well as protective outer barriers. We noted degrees of EE tissue reduction in flies (Section 3), while marsupials only briefly require EE tissues before developing in a pouch (Section 7). Here, we address the wider ecological-developmental diversity seen across species (Figure 1: “embryonic environments”).

Although mammals are predominantly viviparous and sauropsids and insects are mostly oviparous, there are notable exceptions, with egg-laying monotremes and some
viviparous insects. Viviparity is a particular form of matrotrophy, the provision of nutrition
pre- or post-natally by the mother (Ostrovsky et al., 2016). Postnatal parallels in insects and
amniotes include honey bees’ secretion of royal jelly to feed queen larvae and breast-feeding
in mammals. Matrotrophy is also striking for the roles played by EE tissues. In amniotes, we
touched on EE contributions to the placenta in the previous section, and further functions in
mediating nutrition have been extensively reviewed (e.g., Blackburn and Starck, 2015).

Viviparity, known for <1% of insects, is predominantly restricted to three specialist
lineages (Ostrovsky et al., 2016), and modifications of EE tissues in this context have thus far
received limited but tantalizing study. Viviparity in aphids involves substantially smaller,
yolkless eggs with rapid development in summer months, during the parthenogenetic phase
of the life cycle, compared to overwintering oviparous eggs that retain a fully enclosing
serosa that secretes a protective cuticle (Miura et al., 2003). In the endoparasitic Strepsiptera,
females often never emerge from the host, while in turn developing embryos surrounded by
maternal tissue leave the ovary and move freely through the maternal hemolymph (Roth,
2004). Third, the dipteran superfamily Hippoboscoidea, including tsetse flies (Glossinidae)
provide nourishment in the uterus via specific gland-like structures, and this is underpinned
by novel, lineage-specific milk proteins (Attardo et al., 2019). A few other instances of
viviparity are also known. Developmental differences in eusocial termites and closely related
cockroaches with parental care await further investigation (Nalepa, 2010; Roth and Willis,
1957). Showcasing convergent similarities to placental development in mammals, earwigs
(Dermaptera) develop a structure known as the pseudoplacenta, which is formed by the
amnion and serosa together with the maternal follicular epithelium (Roth, 2004).

Oviparous insects also differ in their requirements for fully formed EE tissues. The
apocritan Hymenoptera include parasitoid wasps, such as Nasonia vitripennis, that oviposit
into the living tissues of a host (often another insect) and eusocial species with caste-based
brood care in hives, such as the honey bee. These nutritionally rich and physiologically
dynamic environments are associated with a reduced amnion that does not form an amniotic
cavity, as well as – for parasitoids – polyembryony and post-hatching redeployment of
serosal cells to modulate the host immune system (reviewed in Panfilio, 2008). However,
classical histological analyses of sawflies, which lay their eggs externally on plant tissues,
suggest that a reduced amnion may be a widespread trait within the Hymenoptera,
irrespective of the embryonic environment (Shafiq, 1954, and references therein).

Away from highly specialized, protected external environments, insect eggs exhibit
diverse levels of terrestrial adaptation. Drosophila oviposits into humid, rotting fruit and
eschews any EE covers, yet mosquitoes depend on serosal cuticle production to contend with
transient aquatic environments (Farnesi et al., 2015), and many other insects are also aquatic.
The ancient and speciose insects also present wider diversity in early amnion morphogenesis
(beyond Figure 2), such as early serosal-germ rudiment disjunction in a few diverse lineages
(Caroti et al., 2018; Panfilio, 2008). Given the high level of parental care and pervasive
viviparity in amniotes, even with hundreds of millions of years of further evolution it seems
unlikely that this animal group will reach an equivalent level of EE diversity.

That insects invented the amnion far before amniotes may surprise vertebrate
researchers. But it is undeniable that although there are several functional and many genetic
differences between the insect and the amniote amnion, there are also striking similarities. In
this regard, Tribolium – combining complete amniotic cavity formation with an array of
genetics research tools – can offer a suitable model to investigate certain aspects of early
amnion development, offering a naturally ex vivo, accessible alternative to the amniotes. At the same time, the recent extended molecular knowledge of germ layers in vertebrate EE development, particularly from single-cell transcriptomics datasets, should provide a strong backbone for future research on EE genetic signatures in insect epithelia.

Funding

This work was supported by funding from the Biotechnology and Biological Sciences Research Council (BBSRC, UKRI: grant BB/V002392/1) to KAP, and the European Research Council Consolidator Grant OVOGROWTH (ERC-CoG-2016-725722) and the Dutch Research Council (VICI-2018-91819642) to SMCdSL.

Acknowledgments

We thank Andrew Nelson and Richard Stancliffe for critical feedback on figure drafts, Bernard Roelen for discussions, and the special issue guest editors for creating the opportunity for this work.

Figure 1. The phylogenetic and environmental context of animal extraembryonic tissues. Cladogram topology and divergence time estimates (left) are based on (Benton and Donoghue, 2007; Heger et al., 2020; Misof et al., 2014; Reisz, 1997; Thomas et al., 2020), with the dashed line and paired branches indicating weak monophyletic support or paraphyly, respectively. The primitively wingless insects are shaded in pale blue to indicate that while they possess proto-EE tissues, these never fully enclose the embryo (reviewed in Panfilio, 2008). The schematic egg diagrams (center) are based on the chick and flour beetle. The small rings (“C”) indicate that these mature tissues comprise contributions from two distinct germ layers: see below and Figure 2 for developmental details for all five species in boldface type. The dashed line for the vertebrate vitelline membrane indicates its transient nature. The asterisk marks the location of the allantois (a waste sac and transient respiratory organ: not shown). The diversity of embryonic environments (right) is depicted graphically, with the location of the developing embryo in light red and the descriptors presented colinearly with the images (left-to-right, and top-to-bottom, with the first three terms applicable to amniotes and all terms applicable to insects: see main text Sections 7 and 8); clip art images reproduced from Microsoft PowerPoint 2021, v. 16.52.

Figure 2. Comparison of early EE tissue differentiation and amnion morphogenesis in selected model species. Unless otherwise indicated, images are mid-sagittal views, with a grey oval indicating anterior of the embryo proper. Dashed lines demarcate the major events of the appearance of genetically and/or morphologically distinct amniotic ectoderm and amniotic cavity closure. For Homo and Mus, the curly brackets span stages shown in further detail in the inset images (right column). The color scheme for tissue types is indicated in the legend (“EE mesoderm” and “EE endoderm” are boxed, as these structures are amniote-specific). Tissue abbreviations: Am, amnion; Ch, chorion; Ect., ectoderm; EpC: ectoplacental cone; pYS, parietal yolk sac (only in Mus); vYS, visceral yolk sac. As in Figure 1, rings in the final Mus inset image indicate the bilayered nature of amniote EE tissues. The purple asterisk indicates the site of initial outgrowth of the Gallus allantois. The white asterisk on purple tissue indicates the allantois/umbilical cord, comprised solely of EE mesoderm in Mus and of EE mesoderm and EE endoderm (not shown) in Gallus and Homo.
Note that direct juxtaposition of serosal and embryonic tissue ventrally in *Oncopeltus* is supposition, pending the identification of early amniotic marker genes in this species. The *Gallus* embryo is not shown to scale relative to the yolk mass and enclosing EE tissues. Fundamental topological similarities are shown for the first four species (bottom row), with the insects in transverse aspect and with amniote EE mesoderm omitted for clarity. In insect transverse views, the arrow points to the dorsal side of the embryo, highlighting axial inversion of the embryo after invagination. Micrographs and previous schematics were consulted from multiple sources (Chuva de Sousa Lopes and Mummery, 2006; Gilbert and Barresi, 2016; Gurska et al., 2020; Handel et al., 2005; Panfilio, 2009; Patten, 1951; Schoenwolf et al., 2020).

Figure 3. Relative staging of key EE events. Timing is shown as a percentage of total embryogenesis, graphically depicting the values for the five events detailed in Table 1 (Ser: appearance of serosa; AmEct: appearance of amniotic ectoderm; AmStart: onset of amniotic cavity formation; AmStop: closure of the amniotic cavity; Gast.: onset of gastrulation).

Table 1. Comparative timeline of key early events for formation of the amniotic cavity. Staging is given in absolute time (hours and days, as indicated) and in time relative to the total duration of embryogenesis (% from fertilization to hatching/birth). The onset of gastrulation refers to the onset of internalization of embryonic mesoderm. This independent event is highly variable: across species it occurs at three different times relative to the early events of EE development. The appearance/differentiation of the amniotic ectoderm is based on marker gene expression (not yet determined for *Oncopeltus*), which is generally concomitant with earliest cell shape changes for amniotic cavity formation. See also Figures 2 and 3 for these events.

Process / Species	Oncopeltus (at 25 °C)	Tribolium (at 30 °C)	Gallus (at 37 °C)	Homo	Mus
Appearance/differentiation of serosa/trophectoderm	28 h (14.7%)	6 h (8.3%)	20 h (3.8%)	5 d (1.9%)	3.5 d (17.5%)
Onset of gastrulation, I.	34 h (6.4%)			6.5 d (32.5%)	
Appearance/differentiation of the amniotic ectoderm	Unknown, pending marker genes	7.7 h (10.7%)	~62 h (11.7%)	8 d (3.0%)	7 d (35%)
Onset of morphogenesis for amniotic cavity formation	36 h (18.9%)	7.7 h (10.7%)	~62 h (11.7%)	8 d (3.0%)	7 d (35%)
Onset of gastrulation, II.	~50 h (26.3%)	8.5 h (11.8%)			
Closure of amniotic cavity	~60 h (31.6%)	12.1 h (16.8%)	5 d (22.7%)	9 d (3.3%)	7.5 d (37.5%)
Onset of gastrulation, III.				14 d (5.3%)	
Total duration of embryogenesis	7.9 days	3 days	22 days	266 days	20 days

Sources
- (Birkan et al., 2011; Butt, 1949; Panfilio et al., 2006)
- (Gurska et al., 2020; Handel et al., 2005; Koelzer et al., 2014)
- (Eyal-Giladi and Kochav, 1976; Hamburger and Hamilton, 1992; Sheng, 2014)
- (Schoenwolf et al., 2020)
- (Kaufman, 1992)
Table 2. Selected orthologous genes in insect and amniote model species for developmental genetics. Shaded cells indicate orthologues with EE expression and/or function (see main text). For lineage-specific duplications, paralogues may be collectively orthologous to other species’ single-copy genes: these are listed in the same table row. Orthology determined based on the resources in Box 1. Abbreviations: TF: transcription factor; bHLH: basic helix loop helix; HD, homeodomain; ZF: zinc finger.

Molecular function	Drosophila melanogaster	Tribolium castaneum	Gallus gallus	Homo sapiens	Mus musculus
Serosal expression					
TF (HD)	Dm-zen (CG1046), Dm-z2 (CG1048)	Tc-zen1 (TC000921), Tc-zen2 (TC000922)	Gg-HOXA3/B3/D3	Hs-HOXA3/B3/D3	Mm-Hoxa/b3/d3
TF (C2H2 ZF)	Dm-pub (CG12212)	Tc-hnt (TC009560)	Gg-RREB1	Hs-RREB1	Mm-Rreb1
Amnionic ectoderm and/or cardiac expression					
TF (GATA ZF)	Dm-pnr (CG3978)	Tc-pnr (TC10407)	Gg-GATA4	Hs-GATA4	Mm-Gata4
TF (HD)	Dm-ara/caup (CG10571, CG10605)	Tc-iro (TC032451)	Gg-IRX4/6	Hs-IRX6	Mm-Irx4/6
TF (T-box)	Dm-Doc1/2/3 (CG5133, CG5187, CG5093)	Tc-Doc (TC012346)	Gg-TBX6	Hs-TBX6	Mm-Tbx6
TF (other)	Dm-TFAP-2 (CG7807)	Tc-AP2 (TC009922)	Gg-TFAP2A/2C	Hs-TFAP2A/2C	Mm-Tfap2a/2c
TF (HD)	Dm-DII (CG3629)	Tc-DII (TC009351)	Gg-DLX5	Hs-DLX5	Mm-Dlx5
TF (GATA ZF)	Dm-srp (CG3992)	Tc-srp (TC10405)	Gg-GATA1/2/3/6	Hs-GATA1/2/3/6	Mm-Gata1/2/3/6
TF (HD)	Dm-tup (CG10619)	Tc-tup (TC033536)	Gg-ISL1	Hs-ISL1	Mm-Isl1
Regulation of morphogenesis/cell shape (Fog and GPCR signaling)					
Secreted ligand	Dm-fog (CG9559)	Tc-fog (TC006723)	--	--	--
Transmembrane receptor	Dm-mthl1 (CG4221)	Tc-mst (TC010654)	Gg-GPR133, GPR144	Hs-ADGRD1, ADGRD2	Mm-Adgre5
Transmembrane receptor	Dm-smog (CG31660)	Tc-smog (TC013504)	Gg-GPR158	Hs-GPR158	Mm-Gpr158
G protein, alpha subunit	Dm-cta (CG1768)	Tc-cta (TC034430)	Gg-GNA13	Hs-GNA13	Mm-Gna13
Structural protein, motor activity	Dm-sqh (CG3595)	Tc-myosin II (TC030667)	Gg-MYSL9	Hs-MYSL9	Mm-Myl9, Myl12a
Transmembrane receptor (integrin)	Dm-mys (CG1560)	Tc-mys (TC111707)	Gg-ITGB1	Hs-ITGB1	Mm-Itgb1
FGF pathway featured components					
Secreted ligand	Dm-bnl (CG4608)	Tc-fgf (TC001760)	Gg-FGF20	Hs-FGF20	Mm-Fgf20
Secreted ligand	--	Tc-fgf1 (TC034131)	--	--	--
BMP pathway featured components					
Secreted ligand	Dm-dpp (CG9885)	Tc-dpp (TC008466)	Gg-BMP2/4	Hs-BMP2/4	Mm-Bmp2/4
TF (MAD)	Dm-mad (CG12399)	Tc-mad (TC033446)	Gg-SMAD1	Hs-SMAD1	Mm-Smad1
Box 1. Websites of interest to investigate amniote and insect genetics, genomics, and gene expression in a comparative and regulatory network framework. Many of these sites are interconnected and with link-outs to wider genomic and protein classification sites.

Description and citation	Web link
Multi-species integrated resources	
Ensembl is “a genome browser for vertebrate genomes that supports research in comparative genomics, evolution, sequence variation and transcriptional regulation” (Howe et al., 2021).	https://www.ensembl.org/index.html
Ensembl Metazoa has genome information for >100 non-vertebrate species, with a strong focus on insect pest species in VectorBase, including mosquitoes, sandflies, and other flies (Howe et al., 2020).	http://metazoa.ensembl.org/index.html
i5K Workspace@NAL is the primary genome site for many insect and other arthropod species (>80 species to date). Genomes and transcriptomes are BLAST-able, and community members can directly annotate gene models in Apollo, including for Oncopeltus and Tribolium (Poelchau et al., 2015).	https://i5k.nal.usda.gov
STRING database of protein-protein interactions documents billions of interactions based on diverse evidence types across thousands of species, including human, mouse, Drosophila, and Tribolium (Szklarczyk et al., 2021).	https://string-db.org
OrthoDB provides evolutionary and functional annotation of proteins for thousands of species with sequenced genomes, including >240 vertebrate and >140 insect species. Orthology focuses on many taxonomic levels, with link-outs for InterPro, KEGG, and others (Kriventseva et al., 2019).	https://www.orthodb.org

Species-specific resources	
FlyBase for Drosophila genes and genomes can be searched for integrated gene-level information, including isoforms, (mutant) alleles, phenotypes, and also orthologues in other species (Larkin et al., 2021).	http://flybase.org/
BDGP in situ home page documents gene expression throughout Drosophila embryogenesis, with controlled vocabulary for developmental anatomy. From the Berkeley Drosophila Genome Project (BDGP) (Tomancak et al., 2002).	https://insitu.fruitfly.org/cgi-bin/ex/insitu.pl
iBeetle-Base is a database of Tribolium RNAi phenotypes, integrated into gene pages with links to the genome browser, FlyBase homologues, and OrthoDB (see above) (Dönitz et al., 2018; Schmitt-Engel et al., 2015).	https://ibeetle-base.uni-goettingen.de
GEISHA (Gallus Expression in Situ Hybridization Analysis) is the online repository of in situ hybridization and associated metadata for genes expressed during the first six days of chick embryogenesis (Darnell et al., 2007).	http://geisha.arizona.edu/geisha/index.jsp
GeneCards is “a searchable, integrative database that provides comprehensive, user-friendly information on all annotated and predicted human genes”, and also function and orthologues (Stelzer et al., 2016).	https://www.genecards.org/
MGI (Mouse Genome Informatics) is “the international database resource for the laboratory mouse, providing integrated genetic, genomic, and biological data” (Bult et al., 2019).	http://www.informatics.jax.org/
Homo open-source interactive platforms for visualization of gene expression at the single-cell or tissue/organ level: KeyGenes (Roost et al., 2015) and Human Gastrulation Data (Tyser et al., 2021).	http://www.keygenes.nl http://www.human-gastrula.net/
Mus open-source interactive platforms for visualization of gene expression at the single-cell level during and after mouse gastrulation (Ibarra-Soria et al., 2018; Jaitin et al., 2014; Pijuan-Sala et al., 2019).	https://marionilab.cruk.cam.ac.uk/MouseGastrulation2018/ https://tanaylab.weizmann.ac.il/embflow
References

Abel, T., Michelson, A.M., Maniatis, T., 1993. A *Drosophila* GATA family member that binds to Adh regulatory sequences is expressed in the developing fat body. Development 119, 623-633.

Ander, S.E., Diamond, M.S., Coyne, C.B., 2019. Immune responses at the maternal-fetal interface. Sci Immunol 4.

Arendt, D., Nübler-Jung, K., 1994. Inversion of dorsoventral axis? Nature 371, 26.

Attardo, G.M., Abd-Alla, A.M.M., Acosta-Serrano, A., Allen, J.E., Bateta, R., Benoit, J.B., Bourtzis, K., Caers, J., Caljon, G., Christensen, M.B., et al., 2019. Comparative genomic analysis of six *Glossina* genomes, vectors of African trypanosomes. Genome Biology 20, 187.

Auman, H.J., Nottoli, T., Lakiza, O., Winger, Q., Donaldson, S., Williams, T., 2002. Transcription factor AP-2gamma is essential in the extra-embryonic lineages for early postimplantation development. Development 129, 2733-2747.

Bao, Z.Z., Bruneau, B.G., Seidman, J.G., Seidman, C.E., Cepko, C.L., 1999. Regulation of chamber-specific gene expression in the developing heart by Irx4. Science 283, 1161-1164.

Benton, M.A., 2018. A revised understanding of *Tribolium* morphogenesis further reconciles short and long germ development. PLoS Biol 16, e2005093.

Benton, M.A., Akam, M., Pavlopoulos, A., 2013. Cell and tissue dynamics during *Tribolium castaneum* embryogenesis revealed by versatile fluorescence labeling approaches. Development 140, 3210-3220.

Benton, M.A., Frey, N., Nunes da Fonseca, R., von Levetzow, C., Stappert, D., Hakeemi, M.S., Conrads, K.H., Pechmann, M., Panfilio, K.A., Lynch, J.A., et al., 2019. Fog signaling has diverse roles in epithelial morphogenesis in insects. eLife 8, e47346.

Benton, M.J., Donoghue, P.C., 2007. Paleontological evidence to date the tree of life. Mol Biol Evol 24, 26-53.

Berger-Twelbeck, P., Hofmeister, P., Emmling, S., Dorn, A., 2003. Ovicide-induced serosa degeneration and its impact on embryonic development in *Manduca sexta* (Insecta: Lepidoptera). Tissue Cell 35, 101-112.

Birkan, M., Schaeper, N.D., Chipman, A.D., 2011. Early patterning and blastodermal fate map of the head in the milkweed bug *Oncopeltus fasciatus*. Evol. Dev. 13, 436-447.

Blackburn, D.G., Starck, J.M., 2015. Morphological specializations for fetal maintenance in viviparous vertebrates: An introduction and historical retrospective. J Morphol 276, E1-16.

Bosman, E.A., Lawson, K.A., Debruyyn, J., Beek, L., Francis, A., Schoonjans, L., Huylebroeck, D., Zwijsen, A., 2006. Smad5 determines murine amnion fate through the control of bone morphogenetic protein expression and signalling levels. Development 133, 3399-3409.

Bult, C.J., Blake, J.A., Smith, C.L., Kadin, J.A., Richardson, J.E., 2019. Mouse Genome Database (MGD) 2019. Nucleic Acids Res 47, D801-d806.
Butt, F.H., 1949. Embryology of the milkweed bug, *Oncopeltus fasciatus* (Hemiptera). Agriculture Experiment Station, Cornell University.

Calvin, S.E., Oyen, M.L., 2007. Microstructure and mechanics of the chorioamnion membrane with an emphasis on fracture properties. Ann. N.Y. Acad. Sci. 1101, 166-185.

Caroti, F., González Avalos, E., Noeske, V., González Avalos, P., Kromm, D., Wosch, M., Schütz, L., Hufnagel, L., Lemke, S., 2018. Decoupling from yolk sac is required for extraembryonic tissue spreading in the scuttle fly *Megaselia abdita*. eLife 7, e34616.

Carson, D.D., Bagchi, I., Dey, S.K., Enders, A.C., Fazleabas, A.T., Lessey, B.A., Yoshinaga, K., 2000. Embryo implantation. Dev Biol 223, 217-237.

Carter, A.M., 2012. Evolution of placental function in mammals: the molecular basis of gas and nutrient transfer, hormone secretion, and immune responses. Physiol Rev 92, 1543-1576.

Carter, A.M., Enders, A.C., 2016. Placentation in mammals: Definitive placenta, yolk sac, and paraplacenta. Theriogenology 86, 278-287.

Chapman, D.L., Papaioannou, V.E., 1998. Three neural tubes in mouse embryos with mutations in the T-box gene *Tbx6*. Nature 391, 695-697.

Chuva de Sousa Lopes, S.M., Mummery, C., 2006. Differentiation in early development, in: Lanza, R., Gearhart, J., Hogan, B., Melton, D., Pedersen, R., Thomas, E.D., Thomson, J. (Eds.), Essentials of stem cell biology, 1st edition ed. Elsevier Academic Press.

Cornelis, G., Vernochet, C., Carradec, Q., Souquere, S., Mulot, B., Catzeflis, F., Nilsson, M.A., Menzies, B.R., Renfree, M.B., Pierron, G., et al., 2015. Retroviral envelope gene captures and syncytin exaptation for placentation in marsupials. Proc Natl Acad Sci U S A 112, E487-496.

Costa, E., Okesola, B.O., Thrasivoulou, C., Becker, D.L., Deprest, J.A., David, A.L., Chowdhury, T.T., 2021. Cx43 mediates changes in myofibroblast contraction and collagen release in human amniotic membrane defects after trauma. Sci Rep 11, 16975.

Costa, M.A., 2016. The endocrine function of human placenta: an overview. Reprod Biomed Online 32, 14-43.

Darnell, D.K., Kaur, S., Stanislaw, S., Davey, S., Konieczka, J.H., Yatskievych, T.A., Antin, P.B., 2007. GEISHA: an *in situ* hybridization gene expression resource for the chicken embryo. Cytogenet Genome Res 117, 30-35.

Dawes-Hoang, R.E., Parmar, K.M., Christiansen, A.E., Phelps, C.B., Brand, A.H., Wieschaus, E.F., 2005. *folded gastrulation*, cell shape change and the control of myosin localization. Development 132, 4165-4178.

Dobreva, M.P., Abon Escalona, V., Lawson, K.A., Sanchez, M.N., Ponomarev, L.C., Pereira, P.N.G., Stryjewska, A., Criem, N., Huylebroeck, D., Chuva de Sousa Lopes, S.M., et al., 2018. Amniotic ectoderm expansion in mouse occurs via distinct modes and requires SMAD5-mediated signalling. Development 145.
Dobreva, M.P., Pereira, P.N., Deprest, J., Zwijsen, A., 2010. On the origin of amniotic stem cells: of mice and men. Int J Dev Biol 54, 761-777.

Dönitz, J., Gerischer, L., Hahnke, S., Pfeiffer, S., Bucher, G., 2018. Expanded and updated data and a query pipeline for iBeetle-Base. Nucleic Acids Res 46, D831-d835.

Dorn, A., 1976. Ultrastructure of embryonic envelopes and integument of Oncopeltus fasciatus Dallas (Insecta, Heteroptera) I. Chorion, amnion, serosa, integument. Zoomorphologie 85, 111-131.

Dupressoir, A., Lavialle, C., Heidmann, T., 2012. From ancestral infectious retroviruses to bona fide cellular genes: role of the captured syncytins in placentation. Placenta 33, 663-671.

Eakin, G.S., Behringer, R.R., 2004. Gastrulation in other mammals and humans, in: Stern, C.D. (Ed.), Gastrulation: from cells to embryo. Cold Spring Harbour Laboratory Press, Cold Spring Harbour, New York, USA.

Eyal-Giladi, H., Kochav, S., 1976. From cleavage to primitive streak formation: a complementary normal table and a new look at the first stages of the development of the chick. I. General morphology. Dev Biol 49, 321-337.

Farnesi, L.C., Menna-Barreto, R.F.S., Martins, A.J., Valle, D., Rezende, G.L., 2015. Physical features and chitin content of eggs from the mosquito vectors Aedes aegypti, Anopheles aquasalis and Culex quinquefasciatus: Connection with distinct levels of resistance to desiccation. J. Insect Physiol. 83, 43-52.

Fox, D.T., Duronio, R.J., 2013. Endoreplication and polyploidy: insights into development and disease. Development 140, 3-12.

Frank, L.H., Rushlow, C., 1996. A group of genes required for maintenance of the amnioserosa tissue in Drosophila. Development 122, 1343-1352.

Gavin-Smyth, J., Wang, Y.C., Butler, I., Ferguson, E.L., 2013. A genetic network conferring canalization to a bistable patterning system in Drosophila. Curr. Biol. 23, 2296-2302.

George, E.L., Georges-Labouesse, E.N., Patel-King, R.S., Rayburn, H., Hynes, R.O., 1993. Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development 119, 1079-1091.

Gilbert, S.F., Barresi, M.J.F., 2016. Developmental Biology. Sinauer Associates.

Goltsev, Y., Fuse, N., Frasch, M., Zinzen, R.P., Lanzaro, G., Levine, M., 2007. Evolution of the dorsal-ventral patterning network in the mosquito, Anopheles gambiae. Development 134, 2415-2424.

Goltsev, Y., Rezende, G.L., Vranizan, K., Lanzaro, G., Valle, D., Levine, M., 2009. Developmental and evolutionary basis for drought tolerance of the Anopheles gambiae embryo. Dev. Biol. 330, 462-470.

Goodwin, K., Ellis, S.J., Lostchuck, E., Zulueta-Coarasa, T., Fernandez-Gonzalez, R., Tenentzapf, G., 2016. Basal cell-extracellular matrix adhesion regulates force transmission during tissue morphogenesis. Dev Cell 39, 611-625.

Gorfinkiel, N., Blanchard, G.B., Adams, R.J., Arias, A.M., 2009. Mechanical control of global cell behaviour during dorsal closure in Drosophila. Development 136, 1889-1898.
Gurska, D., Vargas Jentzsch, I.M., Panfilio, K.A., 2020. Unexpected mutual regulation underlies paralogue functional diversification and promotes epithelial tissue maturation in Tribolium. Commun. Biol. 3, 552.

Hamburger, V., Hamilton, H.L., 1992. A series of normal stages in the development of the chick embryo. 1951. Dev Dyn 195, 231-272.

Handel, K., Basal, A., Fan, X., Roth, S., 2005. Tribolium castaneum twist: gastrulation and mesoderm formation in a short-germ beetle. Dev. Genes Evol. 215, 13-31.

Hannibal, R.L., Baker, J.C., 2016. Selective amplification of the genome surrounding key placental genes in trophoblast giant cells. Curr Biol 26, 230-236.

Handel, K., Grünfelder, C.G., Roth, S., Sander, K., 2000. Tribolium embryogenesis: a SEM study of cell shapes and movements from blastoderm to serosal closure. Dev. Genes Evol. 210, 167-179.

Handel, K., Basal, A., Fan, X., Roth, S., 2005. Tribolium castaneum twist: gastrulation and mesoderm formation in a short-germ beetle. Dev. Genes Evol. 215, 13-31.

Hilbrant, M., Horn, T., Koelzer, S., Panfilio, K.A., 2016. The beetle amnion and serosa functionally interact as apposed epithelia. eLife 5, e13834.

Horn, T., Panfilio, K.A., 2016. Novel functions for Dorsocross in epithelial morphogenesis in the beetle Tribolium castaneum. Development 143, 3002-3011.

Howe, K.L., Contreras-Moreira, B., De Silva, N., Maslen, G., Akanni, W., Allen, J., Alvarez-Jarreta, J., Amode, M.R., Armean, I.M., Azov, A.G., Bennett, R., Bhai, J., et al., 2020. Ensembl 2021. Nucleic Acids Res 49, D884-d891.

Ibarra-Soria, X., Jawaid, W., Pijuan-Sala, B., Ladopoulos, V., Scialdone, A., Jörg, D.J., Tyser, R.C.V., Calero-Nieto, F.J., Mulas, C., Nichols, J., et al., 2018. Defining murine organogenesis at single-cell resolution reveals a role for the leukotriene pathway in regulating blood progenitor formation. Nat Cell Biol 20, 127-134.

Jacobs, C.G.C., Rezende, G.L., Lamers, G.E.M., van der Zee, M., 2013. The extraembryonic serosa protects the insect egg against desiccation. Proc. R. Soc. B 280, 20131082.

Jacobs, C.G.C., Spaink, H.P., van der Zee, M., 2014. The extraembryonic serosa is a frontier epithelium providing the insect egg with a full-range innate immune response. eLife 3, e04111.

Jacobs, C.G.C., van der Hulst, R., Chen, Y.-T., Williamson, R.P., Roth, S., van der Zee, M., 2021. Immune function of the serosa in hemimetabolous insect eggs. bioRxiv, 2021.2009.2027.462031, scheduled for publication in the same special issue.

Jaitin, D.A., Kenigsberg, E., Keren-Shaul, H., Elefant, N., Paul, F., Zaretsky, I., Mildner, A., Cohen, N., Jung, S., Tanay, A., et al., 2014. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343, 776-779.
Johnson, A.L., Schneider, J.E., Mohun, T.J., Williams, T., Bhattacharya, S., Henderson, D.J., Phillips, H.M., Bamforth, S.D., 2020. Early Embryonic Expression of AP-2alpha Is Critical for Cardiovascular Development. J Cardiovasc Dev Dis 7.

Kaufman, M.H., 1992. The atlas of mouse development, 1st edition ed. Elsevier.

Khudyakov, J., Bronner-Fraser, M., 2009. Comprehensive spatiotemporal analysis of early chick neural crest network genes. Dev Dyn 238, 716-723.

Koelzer, S., Kölsch, Y., Panfilio, K.A., 2014. Visualizing late insect embryogenesis: Extraembryonic and mesodermal enhancer trap expression in the beetle Tribolium castaneum. PLoS One 9, e103967.

Khudyakov, J., Bronner-Fraser, M., 2009. Comprehensive spatiotemporal analysis of early chick neural crest network genes. Dev Dyn 238, 716-723.

Koelzer, S., Kölsch, Y., Panfilio, K.A., 2014. Visualizing late insect embryogenesis: Extraembryonic and mesodermal enhancer trap expression in the beetle Tribolium castaneum. PLoS One 9, e103967.

Kriventseva, E.V., Kuznetsov, D., Tegenfeldt, F., Manni, M., Dias, R., Simao, F.A., Zdobnov, E.M., 2019. OrthoDB v10: sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs. Nucleic Acids Res 47, D807-D811.

Kuo, C.T., Morrisey, E.E., Anandappa, R., Sigrist, K., Lu, M.M., Parmacek, M.S., Soudais, C., Leiden, J.M., 1997. GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev 11, 1048-1060.

Larkin, A., Marygold, S.J., Antonazzo, G., Attrill, H., Dos Santos, G., Garapati, P.V., Goodman, J.L., Gramates, L.S., Millburn, G., Strelets, V.B., et al., 2021. FlyBase: updates to the Drosophila melanogaster knowledge base. Nucleic Acids Res 49, D899-d907.

Lillevali, K., Haugas, M., Matilainen, T., Pussinen, C., Karis, A., Salminen, M., 2006. Gata3 is required for early morphogenesis and Fgf10 expression during otic development. Mech Dev 123, 415-429.

Lim, K.C., Lakshmanan, G., Crawford, S.E., Gu, Y., Grosveld, F., Engel, J.D., 2000. Gata3 loss leads to embryonic lethality due to noradrenaline deficiency of the sympathetic nervous system. Nat Genet 25, 209-212.

Lopez-Sanchez, C., Garcia-Masa, N., Ganan, C.M., Garcia-Martinez, V., 2009. Movement and commitment of primitive streak precardiac cells during cardiogenesis. Int J Dev Biol 53, 1445-1455.

Mahlapuu, M., Ormestad, M., Enerback, S., Carlsson, P., 2001. The forkhead transcription factor Foxf1 is required for differentiation of extra-embryonic and lateral plate mesoderm. Development 128, 155-166.

Mann, T., Bodmer, R., Pandur, P., 2009. The Drosophila homolog of vertebrate Islet1 is a key component in early cardiogenesis. Development 136, 317-326.

Mantri, M., Scuderi, G.J., Abedini-Nassab, R., Wang, M.F.Z., McKellar, D., Shi, H., Grodner, B., Butcher, J.T., De Vlaminck, I., 2021. Spatiotemporal single-cell RNA sequencing of developing chicken hearts identifies interplay between cellular differentiation and morphogenesis. Nat Commun 12, 1771.

McGowen, M.R., Erez, O., Romero, R., Wildman, D.E., 2014. The evolution of embryo implantation. Int J Dev Biol 58, 155-161.

Misof, B., Liu, S., Meusemann, K., Peters, R.S., Donath, A., Mayer, C., Frandsen, P.B., Ware, J., Flouri, T., Beutel, R.G., et al., 2014. Phylogenomics resolves the timing and pattern of insect evolution. Science 346, 763-767.
Mittenzweig, M., Mayshar, Y., Cheng, S., Ben-Yair, R., Hadas, R., Rais, Y., Chomsky, E., Reines, N., Uzonyi, A., Lumerman, L., et al., 2021. A single-embryo, single-cell time-resolved model for mouse gastrulation. Cell 184, 2825-2842 e2822.

Miura, T., Braendle, C., Shingleton, A., Sisk, G., Kambhampati, S., Stern, D.L., 2003. A comparison of parthenogenetic and sexual embryogenesis of the pea aphid Acyrthosiphon pisum (Hemiptera: Aphidoidea). J. Exp. Zool. (Mol. Dev. Evol.) 295B, 59-81.

Mononen, M.M., Leung, C.Y., Xu, J., Chien, K.R., 2020. Trajectory mapping of human embryonic stem cell cardiogenesis reveals lineage branch points and an ISL1 progenitor-derived cardiac fibroblast lineage. Stem Cells 38, 1267-1278.

Münster, S., Jain, A., Mietke, A., Pavlopoulos, A., Grill, S.W., Tomancak, P., 2019. Attachment of the blastoderm to the vitelline envelope affects gastrulation of insects. Nature 568, 395-399.

Nahaboo, W., Elif Eski, S., Vermeersch, M., Saykali, B., Monteye, D., Magin, T.M., Schwarz, N., Zwijsen, A., Perez-Morga, D., Pal Singh, S., et al., 2021. Keratin dynamics govern the establishment of the maternal-fetal interface. bioRxiv doi: 10.1101/2021.04.07.438772.

Nalepa, C.A., 2010. Altricial development in subsocial cockroach ancestors: foundation for the evolution of phenotypic plasticity in termites. Evol. Dev. 12, 95-105.

Narboux-Neme, N., Ekker, M., Levi, G., Heude, E., 2019. Posterior axis formation requires Dlx5/Dlx6 expression at the neural plate border. PLoS One 14, e0214063.

Nechaeva, M.V., Turpaev, T.M., 2002. Rhythmic contractions in chick amnio-yolk sac and snake amnion during embryogenesis. Comp Biochem Physiol A Mol Integr Physiol 131, 861-870.

Nelson, D.O., Jin, D.X., Downs, K.M., Kamp, T.J., Lyons, G.E., 2014. Irx4 identifies a chamber-specific cell population that contributes to ventricular myocardium development. Dev Dyn 243, 381-392.

Nowotschin, S., Hadjantonakis, A.K., 2020. Guts and gastrulation: Emergence and convergence of endoderm in the mouse embryo. Curr Top Dev Biol 136, 429-454.

Nunes da Fonseca, R., van der Zee, M., Roth, S., 2010. Evolution of extracellular Dpp modulators in insects: The roles of tolloid and twisted-gastrulation in dorsoventral patterning of the Tribolium embryo. Dev. Biol. 345, 80-93.

Opitz, J.M., Johnson, D.R., Gilbert-Barness, E.F., 2015. ADAM "sequence" part II: hypothesis and speculation. Am J Med Genet A 167a, 478-503.

Orr-Weaver, T.L., 2015. When bigger is better: the role of polyploidy in organogenesis. Trends Genet. 31, 307-315.

Ostrovsky, A.N., Lidgard, S., Gordon, D.P., Schwaha, T., Genikhovich, G., Ereskovskiy, A.V., 2016. Matrotrophy and placentation in invertebrates: a new paradigm. Biol Rev Camb Philos Soc 91, 673-711.

Panfilio, K.A., 2008. Extraembryonic development in insects and the acrobatics of blastokinesis. Dev. Biol. 313, 471-491.
Panfilio, K.A., 2009. Late extraembryonic development and its \textit{zen-RNAi}-induced failure in the milkweed bug \textit{Oncopeltus fasciatus}. Dev. Biol. 333, 297-311.

Panfilio, K.A., Liu, P.Z., Akam, M., Kaufman, T.C., 2006. \textit{Oncopeltus fasciatus zen} is essential for serosal tissue function in katatrepsis. Dev. Biol. 292, 226-243.

Panfilio, K.A., Roth, S., 2010. Epithelial reorganization events during late extraembryonic development in a hemimetabolous insect. Dev. Biol. 340, 100-115.

Patten, B.M., 1951. Early embryology of the chick, 4th edition ed. The Blakiston Company.

Pijuan-Sala, B., Griffiths, J.A., Guibentif, C., Hiscock, T.W., Jawaid, W., Calero-Nieto, F.J., Mulas, C., Ibarra-Soria, X., Tyser, R.C.V., Ho, D.L.L., et al., 2019. A single-cell molecular map of mouse gastrulation and early organogenesis. Nature 566, 490-495.

Poelchau, M., Childers, C., Moore, G., Tsavatapalli, V., Evans, J., Lee, C.Y., Lin, H., Lin, J.W., Hackett, K., 2015. The i5k Workspace@NAL--enabling genomic data access, visualization and curation of arthropod genomes. Nucleic Acids Res 43, D714-719.

Pope, K.L., Harris, T.J.C., 2008. Control of cell flattening and junctional remodeling during squamous epithelial morphogenesis in \textit{Drosophila}. Development 135, 2227-2238.

Rafiqi, A.M., Lemke, S., Schmidt-Ott, U., 2010. Postgastrular \textit{zen} expression is required to develop distinct amniotic and serosal epithelia in the scuttle fly \textit{Megaselia}. Dev. Biol. 341, 282-290.

Reim, I., Lee, H.-H., Frasch, M., 2003. The T-box encoding Dorsocross genes function in amnioserosa development and the patterning of the dorsolateral germ band downstream of Dpp. Development 130, 3187-3204.

Reisz, R.R., 1997. The origin and early evolutionary history of amniotes. Trends Ecol Evol 12, 218-222.

Renfree, M.B., 2010. Review: Marsupials: placental mammals with a difference. Placenta 31 Suppl, S21-26.

Rezende, G.L., Vargas, H.C.M., Moussian, B., Cohen, E., 2016. Composite eggshell matrices: chorionic layers and sub-chorionic cuticular envelopes, Extracellular Composite Matrices in Arthropods. Springer, pp. 325-366.

Roost, M.S., van Iperen, L., Ariyurek, Y., Buermans, H.P., Arindrarto, W., Devalla, H.D., Passier, R., Mummery, C.L., Carlotti, F., de Koning, E.J., et al., 2015. KeyGenes, a tool to probe tissue differentiation using a human fetal transcriptional atlas. Stem Cell Reports 4, 1112-1124.

Roote, C.E., Zusman, S., 1995. Functions for PS integrins in tissue adhesion, migration, and shape changes during early embryonic development in \textit{Drosophila}. Dev Biol 169, 322-336.

Ross, C., Boroviak, T.E., 2020. Origin and function of the yolk sac in primate embryogenesis. Nat Commun 11, 3760.

Roth, L.M., Willis, E.R., 1957. An analysis of oviparity and viviparity in the Blattaria. Trans. Amer. Entomol. Soc. 83, 221-238.

Roth, S., 2004. Gastrulation in other insects, in: Stern, C.D. (Ed.), Gastrulation: from cells to embryo. Cold Spring Harbour Laboratory Press, Cold Spring Harbour, New York, USA.
Sachs, L., Chen, Y.-T., Drechsler, A., Lynch, J.A., Panfilio, K.A., Lääs, M., Berg, J., Roth, S., 2015. Dynamic BMP signaling polarized by Toll patterns the dorsoventral axis in a hemimetabolous insect. eLife 4, e05502.

Schmidt-Ott, U., 2000. The amnioserosa is an apomorphic character of cyclorrhaphan flies. Dev. Genes Evol. 210, 373-376.

Schmitt-Engel, C., Schultheis, D., Schwirz, J., Ströhlein, N., Troelenberg, N., Majumdar, U., Dao, V.A., Grossmann, D., Richter, T., Tech, M., et al., 2015. The iBeetle large scale RNAi screen reveals novel gene functions for insect development and physiology. Nat. Commun. 6, 7822.

Shapiro, G., Bleyl, S.B., Brauer, P.R., Francis-West, P.H., 2020. Larsen's Human Embryology, 6th Edition ed. Elsevier.

Scholz, N., 2018. Cancer Cell Mechanics: Adhesion G Protein-coupled Receptors in Action? Front Oncol 8, 59.

Seibert, J., 2017. Characterizing multiple roles of pannier during embryogenesis, as revealed with an augmented fluorescent live imaging toolkit, in the beetle Tribolium castaneum, Mathematisch-Naturwissenschaftliche Fakultät. Universität zu Köln, Köln, p. 174.

Shafiq, S.A., 1954. A study of the embryonic development of the gooseberry sawfly, Pteronidae ribesii. Q. J. Microsc. Sci. 95, 93-114.

Sharma, R., Beermann, A., Schroder, R., 2013a. The dynamic expression of extraembryonic marker genes in the beetle Tribolium castaneum reveals the complexity of serosa and amnion formation in a short germ insect. Gene Expr Patterns 13, 362-371.

Sharma, R., Beermann, A., Schroder, R., 2013b. FGF signalling controls anterior extraembryonic and embryonic fate in the beetle Tribolium. Dev Biol 381, 121-133.

Sheng, G., 2014. Day-1 chick development. Dev Dyn 243, 357-367.

Sheng, G., Stern, C.D., 1999. Gata2 and Gata3: novel markers for early embryonic polarity and for non-neural ectoderm in the chick embryo. Mech Dev 87, 213-216.

Stelzer, G., Rosen, N., Plaschkes, I., Zimmerman, S., Twik, M., Fishelevich, S., Stein, T.I., Nudel, R., Lieder, I., Mazor, Y., et al., 2016. The GeneCards Suite: From gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics 54, 1.30.31-30.33.

Stump, C., Robins, J., Garde, M.L., 1960. The development of the embryo and membranes of the humpback whale, Megaptera nodosa (Bonnaterre). Australian Journal of Marine and Freshwater Research 11, 365-386.

Swartz, M.E., Lovely, C.B., Eberhart, J.K., 2021. Variation in phenotypes from a Bmp-Gata3 genetic pathway is modulated by Shh signaling. PLoS Genet 17, e1009579.

Szklarczyk, D., Gable, A.L., Nastou, K.C., Lyon, D., Kirsch, R., Pyysalo, S., Doncheva, N.T., Legeay, M., Fang, T., Bork, P., et al., 2021. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 49, D605-d612.

Takemoto, T., 2013. Mechanism of cell fate choice between neural and mesodermal development during early embryogenesis. Congenit Anom (Kyoto) 53, 61-66.
Thomas, G.W.C., Dohmen, E., Hughes, D.S.T., Murali, S.C., Poelchau, M., Glastad, K.,
Anstead, C.A., Ayoub, N.A., Batterham, P., Bellair, M., et al., 2020. Gene content
evolution in the arthropods. Genome Biology 21, 15.

Tomancak, P., Beaton, A., Weiszmann, R., Kwan, E., Shu, S., Lewis, S.E., Richards, S.,
Ashburner, M., Hartenstein, V., Celniker, S.E., et al., 2002. Systematic determination of
patterns of gene expression during Drosophila embryogenesis. Genome Biology 3,
Research0088.

Topfer, U., Bischoff, M.C., Bartkuhn, M., Holz, A., 2019. Serpent/dGATAb regulates Laminin
B1 and Laminin B2 expression during Drosophila embryogenesis. Sci Rep 9, 15910.

Tyser, R.C.V., Mahammadov, E., Nakanoh, S., Vallier, L., Scialdone, A., Srinivas, S., 2021.
Single-cell transcriptomic characterization of a gastrulating human embryo. Nature 600,
285–289.

Urbansky, S., González Avalos, P., Wosch, M., Lemke, S., 2016. Folded gastrulation and T48
drive evolution of coordinated mesoderm internalization in flies. eLife 5, e18318.

van der Wagt, I., de Jong, I.C., Mitchell, M.A., Molenaar, R., van den Brand, H., 2020. A
review on yolk sac utilization in poultry. Poult Sci 99, 2162-2175.

van der Zee, M., Berns, N., Roth, S., 2005. Distinct functions of the Tribolium zerknüllt genes
in serosa specification and dorsal closure. Curr Biol 15, 624-636.

van der Zee, M., da Fonseca, R.N., Roth, S., 2008. TGFbeta signaling in Tribolium: vertebrate-
like components in a beetle. Dev Genes Evol 218, 203-213.

Vargas, H.C.M., Panfilio, K.A., Roelofs, D., Rezende, G.L., 2021. Increase in egg resistance
to desiccation in springtails correlates with blastodermal cuticle formation: eco-
evolutionary implications for insect terrestrialization. Journal of Experimental Zoology
Part B: Molecular and Developmental Evolution 336, 606-619.

Watt, A.J., Battle, M.A., Li, J., Duncan, S.A., 2004. GATA4 is essential for formation of the
proepicardium and regulates cardiogenesis. Proc Natl Acad Sci U S A 101, 12573-12578.

Wu, K.C., Streicher, J., Lee, M.L., Hall, B.K., Muller, G.B., 2001. Role of motility in
embryonic development I: Embryo movements and amnion contractions in the chick and
the influence of illumination. J Exp Zool 291, 186-194.

Yang, R., Goedel, A., Kang, Y., Si, C., Chu, C., Zheng, Y., Chen, Z., Gruber, P.J., Xiao, Y.,
Zhou, C., et al., 2021. Amnion signals are essential for mesoderm formation in primates.
Nat Commun 12, 5126.

Zeh, D.W., Zeh, J.A., Smith, R.L., 1989. Ovipositors, amnions and eggshell architecture in the
diversification of terrestrial arthropods. The Quarterly Review of Biology 64, 147-168.

Zhang, H., Bradley, A., 1996. Mice deficient for BMP2 are nonviable and have defects in
amnion/chorion and cardiac development. Development 122, 2977-2986.
Bilaterian animals >500 mya

Amniotes (316 mya)
- Mammalia (placentals: mice, humans, marsupials, monstremes: platypus)
- Sauropsida (chicken, lizards)
 - Amphibia (frogs, salamanders)
 - Sarcopterygii (lobe-finned fishes, other tetrapods)
 - Other deuterostomes (starfish, sea urchins, tunicates, lamprey)
 - Spiralia (annelids, snails, squid)
 - Other arthropods (spiders, centipedes, crustaceans, springtails)
 - Wingless insects (silverfish)
 - Palaeoptera (dragonflies, mayflies)
 - Polyneoptera (crickets, cockroaches)
 - Hemiptera (bugs, aphids, cicadas)
 - Hymenoptera (wasps, bees, sawflies)
 - Coleoptera (beetles)
 - Lepidoptera (butterflies, moths)
 - Diptera (flies, midges, mosquitoes)

Insects (479 mya)
- Holo. (391 mya)

Embryonic environments:
- Oviparous / Viviparous
- Terrestrial / Aquatic
 Specialized oviposition sites:
 - Eusocial hive
 - Decaying plant matter, Parasitoid host

Egg inventory:
- Eggshell (Chorion)
- Am. cav.
- Vit. mem.
- Yolk
- Yolk sac
- Allantois

Serosa/Chorion
Amnion
Embryo
Amnion morphogenetic process

Invagination (embryo inversion)
- **Oncopeltus**
- **Tribolium**
- **Gallus**
- **Homo**
- **Mus**

Appearance of amnion
- Medially progressing folds, from anterior and posterior

Closed amniotic cavity
- Anteriorward expansion/growth

Mammalian insets
- **Homo**
- **Mus**

Fundamental topological similarities
- Serosa/Trophect.
- Germ rudiment
- Amniotic Ect.
- Embryo/Epiblast
- Yolk
- EE mesoderm
- EE endoderm

[transverse] [sagittal]
Relative staging of key EE events

% Embryogenesis

Oncopeltus, Tribolium, Gallus, Homo, Mus

Ser, AmEct, AmStart, AmStop, Gast