Bounds on sizes of caps in $AG(n, q)$ via the Croot-Lev-Pach polynomial method

Michael Bennett

June 15, 2018

Abstract

In 2016, Ellenberg and Gijswijt employed a method of Croot, Lev, and Pach to show that a maximal cap in $AG(n, 3)$ (sometimes referred to as a cap set) has size $O(2^{0.756n})$. In this paper, we show that the result can be extended to caps in $AG(n, q)$ for arbitrary q; that is, subsets of $AG(n, q)$ containing no three points on a line are exponentially small. Moreover, we will generalize the notion of caps and find upper bounds on the sizes of subsets of $AG(n, q)$ containing no m points on any $(m-2)$-flat.

1 Introduction and main theorem

Let q be a power of a prime. A cap is a set of points in the projective geometry $PG(n, q)$, no three of which lie on a common line. A cap A is maximal if for any other cap B, $|B| \leq |A|$, and we denote the size of a maximal cap in $PG(n, q)$ by $m_2(n, q)$. Caps may be similarly defined in the affine space $AG(n, q)$. The problem of finding maximal caps has been studied extensively in both types of spaces (see for instance, [9] or [11]). One of the primary motivations behind the study of caps is their application to coding theory. See, for instance, section 17.2 of [2] for a detailed explanation of the connection between caps and linear codes.

One question that arises in the investigation of maximal caps is how they grow with n. In particular, we would like to find bounds on

$$
\mu(q) = \limsup_{n \to \infty} \frac{\log_q (m_2(n, q))}{n}.
$$

While we will be working exclusively in affine space in this paper, note that if A is a maximal cap in $AG(n, q)$, then a maximal cap in $PG(n, q)$ has at most $|A|(1 + o(1))$ points. Therefore, any bounds on $\mu(q)$ apply to both affine and projective space. Trivially, we have $\mu(q) \leq 1$, and a lower bound of $2/3$ can be achieved quite easily: it is well known that a maximal cap $P \subset AG(3, q)$ has q^2 points (see, for instance, [5]). Then $P^k \subset AG(3k, q)$ is a cap of q^{2k} points.

Recently, the problem of finding better estimates for $\mu(3)$ has been of great interest. It was long suspected that $\mu(3) < 1$, but it took some time to find an appropriate method of attack. In 1985, Meshulam ([8]) proved that $m_2(n, 3) < \frac{2}{n} \cdot 3^n$ using Fourier techniques. In 2011, Bateman and
Katz ([1]) combined these Fourier techniques with spectral methods to show that there is an $\epsilon > 0$ independent of n so that $m_2(n, 3) = O\left(\frac{3^n}{n^{1+\epsilon}}\right)$. It was not until 2016 that Ellenberg and Gijswijt ([3]) used a polynomial method developed by Croot, Lev, and Pach ([3]) to show that $\mu(3) < 0.923$, rendering the problem essentially solved. Note, however, that this result is not known to be sharp. Currently, the best known bounds are (approximately) $0.724 < \mu(3) < 0.923$, with the lower bound due to Edel ([4]).

In 2001, Hirschfeld and Storme collected the best known bounds on maximal caps in $PG(n, q)$. While they are nontrivial, one can see in [7] that the best upper bounds for $m_2(n, 3)$ are $O(q^{n-1})$ (tables 4.4(i) and (ii)), while the lower bounds are $O(q^{2n/3})$ (tables 4.6(i), (ii),(iii)). In terms of $\mu(q)$, this still leaves us with the trivial bounds mentioned above: $2/3 \leq \mu(q) \leq 1$. The goal of this paper is to extend this result to caps in $AG(n, q)$ and obtain $\mu(q) < 1 - \epsilon$, where ϵ is roughly $\log_q\left(\frac{3}{2}\right)$. When q is large, the gap between $2/3$ and $1 - \epsilon$ is still quite significant; it seems that there is more work to be done before we have a good understanding of maximal caps in higher dimensions. It is also important to mention that the bound on $m_2(n, q)$ that we will derive here is only competitive with the trivial $m_2(n, q) < O(q^{n-1})$ when n is much larger than $\log(q)$.

In our main result, we will be looking at a generalization of caps. Rather than just restricting the number of points on lines, we can restrict the number of points on k-dimensional affine subspaces of $AG(n, q)$.

Definition 1.1. For any integer $m \geq 3$, a set $A \subset AG(n, q)$ is m-general if no m points of A lie on a single $(m-2)$-flat. Equivalently, A is m-general if any m-point subset of A is in general position.

Note that a cap is the same as a 3-general set. In the language of [7], an m-general set A is essentially the same as an $(|A|, m - 1)$-set, though by our definition, any m-general set is also k-general for $3 \leq k \leq m$. If the maximum size of an m-general set is $M_{m-1}(n, q)$ (the notation used in [7]), let

$$\mu_m(q) = \limsup_{n \to \infty} \frac{\log_q(M_{m-1}(n, q))}{n}.$$

Trivially, we have $\frac{1}{m-1} \leq \mu_m(q) \leq 1$. The lower bound is due to the following observation: Suppose A is an m-general set in $AG(n, q)$. Then there are precisely $\binom{|A|}{m-1}$ distinct $(m-2)$-flats each containing $m-1$ points of A. The sum of these flats covers at most $q^{n-2}\binom{|A|}{m-1}$ points of $AG(n, q)$. So as long as $q^{n-2}\binom{|A|}{m-1} < q^n$, there are other points that can be added to A to create a larger m-general set. Solving for $|A|$ gives the result.

Theorem 1.2. Let n be a positive integer, q a power of a prime p, and m an integer such that $3 \leq m \leq n+2$. Suppose also that q is odd, or m and q are both even. Then

$$M_{m-1}(n, q) < 2m + m \cdot \min_{t \in (0,1)} \left(t^{\frac{m-1}{m-2}} \cdot \frac{1-t^q}{1-t}\right)^n \leq 2m + m \cdot \left(\frac{me^{1-\alpha}}{m^2 - \alpha m + \alpha q + C}\right)^n,$$

where C depends only on m and $0 < \alpha < 1$.

In particular, this tells us that

$$\mu_m(q) \leq 1 - \log_q\left(\frac{m^2 - \alpha m + \alpha q + C}{me^{1-\alpha}}\right) + O((q \log q)^{-1}). \quad (1.1)$$
Remark 1.3. The restriction \(m \leq n + 2 \) makes sense, as in the space \(AG(n, q) \), it is not possible to have \(n + 2 \) points in general position. On the other hand, the omission of the case where \(q \) is even and \(m \) is odd is not founded on any geometric principles; it is merely an artifact of the methodology we will see here. It is very possible that a similar result holds for this case using a slightly different approach.

2 Rank of a function

Our result relies heavily on the methods of Croot, Lev, and Pach as outlined by Tao in \([10]\). Tao introduces the “rank” of a function, which has a close connection with matrix rank:

Definition 2.1. The function \(F : A^k \to X \) is said to have rank \(r \) \((\text{rank}(F) = r)\) if \(r \) is the smallest integer that allows us to write

\[
F(x_1, x_2, \ldots, x_k) = \sum_{n=1}^{r} f_n(x_{m_n})g_n(x_1, \ldots, x_{m_n-1}, x_{m_n+1}, \ldots, x_k),
\]

for some \(m_n \in \{1, 2, \ldots, k\} \) and functions

\[
f_n : A \to X \quad g_n : A^{k-1} \to X.
\]

For instance, if \(F : \mathbb{R}^2 \to \mathbb{R} \), where

\[
F(x, y) = x^2y + xy^2 + 2x + y^2 + y + 2,
\]

then \(F \) has rank 2, since \(F(x, y) \) can be written as \((x^2 + 1)y + (x + 1)(y^2 + 2)\) but cannot be written in the form \(f(x)g(y) \). We will occasionally abuse notation and write, for instance, “\(\text{rank}(x^2y + xy^2 + 2x + y^2 + y + 2) = 2 \)” when we mean “\(\text{rank}(F) = 2 \).”

It is important to note here that the rank of a function depends on the number of variables \(F \) takes. If \(F \) is a function of \(k \) variables, but only \(k - 1 \) of them appear in the definition of \(F \), then the rank of \(F \) is 1 (or 0 if \(F \) is identically 0). For instance,

\[
F(x, y, z) = x^2y + xy^2 + 2x + y^2 + y + 2
\]

is a rank 1 function, since \(F(x, y, z) = f(z)g(x, y) \), where \(f(z) = 1 \) and \(g(x, y) = F(x, y, 0) \). When clarity is needed, we will say that the \(\text{k-rank} \) of \(F \) is \(r \) \((\text{rank}_k(F) = r)\) to stress that its rank, as a function of \(k \) variables, is \(r \).

Before looking at some properties of rank, we introduce a useful bit of notation:

Definition 2.2. Let \(A = \{a_1, \ldots, a_{|A|}\} \) be a finite set and \(f \) a function on \(A \). We define \(\nu_{\text{row}}(f), \nu_{\text{col}}(f) \) to be the \(|A| \)-dimensional row vector and column vector with \(f(a_i) \) in the \(i^{\text{th}} \) position.
Proposition 2.3. Let $A = \{a_1, \ldots, a_{|A|}\}$ be a finite set, X a field, and \mathcal{F}_k the vector space over X of k-variable functions $f : A^k \to X$. Let $F, G \in \mathcal{F}_k$. Then the following properties hold:

R.1 $\text{rank}_k(F + G) \leq \text{rank}_k(F) + \text{rank}_k(G)$.

R.2 If $B \subset A$, then $\text{rank}_k(F|_B) \leq \text{rank}_k(F)$.

R.3 $\text{rank}_k(F) \leq |A|$.

R.4 If $H \in \mathcal{F}_2$ and M is the $|A| \times |A|$ matrix with $m_{ij} = H(a_i, a_j)$, then $\text{rank}_2(H) \geq \text{rank}(M)$.

For properties **R.5** **R.6** **R.7** $f_n \in \mathcal{F}_1$, $g_n \in \mathcal{F}_k$, and the function $h \in \mathcal{F}_{k+1}$ is defined by

$$h(x, y_1, y_2, \ldots, y_k) = \sum_{n=1}^r f_n(x)g_n(y_1, \ldots, y_k).$$

R.5 If $\{\tilde{f}_n : 1 \leq n \leq r \} \subset \mathcal{F}_1$ so that $\{f_n : 1 \leq n \leq r \} \subset \text{span}\{\tilde{f}_n : 1 \leq n \leq r \} \subset \mathcal{F}_k$ so that

$$h(x, y_1, \ldots, y_k) = \sum_{n=1}^r \tilde{f}_n(x)\tilde{g}_n(y_1, \ldots, y_k).$$

R.6 Let M be the $|A| \times r$ matrix whose columns are $v_{\text{col}}(f_n)$. Then $\text{rank}_{k+1}(h) \leq \text{rank}(M)$.

R.7 If $\text{rank}_{k+1}(h) = r$, then the f_n are linearly independent in \mathcal{F}_1.

Proof. Properties **R.1** and **R.2** are trivial.

R.3 Let δ_a be the function on A which is 1 at a and 0 otherwise. Then

$$F(x_1, x_2, \ldots, x_k) = \sum_{a \in A} \delta_a(x_1)F(a, x_2, x_3, \ldots, x_k).$$

R.4 Suppose F has rank r. Then $F(x, y) = \sum_{n=1}^r f_n(x)g_n(y)$ for functions $f_n, g_n : A \to X$.

For each n, let M_n be the $|A| \times |A|$ matrix $v_{\text{col}}(f_n)v_{\text{row}}(g_n)$. Since each M_n has rank at most 1, $M = \sum_{n=1}^r M_n$ is a matrix of rank at most r.

R.5 For each fixed choice of $(y_1, \ldots, y_k) \in A^k$, elementary linear algebra tells us there are elements $s_n(y_1, \ldots, y_k) \in X$ for $1 \leq n \leq r$ so that

$$\sum_{n=1}^r g_n(y_1, \ldots, y_k)v_{\text{col}}(f_n) = \sum_{n=1}^r s_n(y_1, \ldots, y_k)v_{\text{col}}(\tilde{f}_n).$$

Thus we may simply define the functions \tilde{g}_n by $\tilde{g}_n(y_1, \ldots, y_k) = s_n(y_1, \ldots, y_k)$.

Properties **R.6** and **R.7** follow immediately from **R.5**.

\[\Box \]
3 Setup for the Proof of Theorem 1.2

Fix integers \(n \) and \(m \) with \(3 \leq m \leq n + 2 \). For any set \(S \subset AG(n, q) \), define \(G^S_m : S^m \to \mathbb{F}_q \) by

\[
G^S_m(x_1, \ldots, x_m) = \sum_{t_1, \ldots, t_{m-1} \in \mathbb{F}_q} \prod_{j=1}^n \left[1 - \left(\sum_{i=1}^{m-1} t_i (x_i - x_{mj}) \right)^{q-1} \right].
\]

(3.1)

where \(x_{ij} \) is the \(j \)th coordinate of point \(x_i \).

Notice that the bracketed expression is equal to 1 if

\[
\begin{bmatrix}
 t_1 \\
 t_2 \\
 \vdots \\
 t_{m-1}
\end{bmatrix} \cdot
\begin{bmatrix}
 x_{1j} - x_{mj} \\
 x_{2j} - x_{mj} \\
 \vdots \\
 x_{(m-1)j} - x_{mj}
\end{bmatrix} = 0,
\]

and equal to 0 otherwise. Thus \(G^S_m(x_1, \ldots, x_m) \) is equal to the number of elements, modulo \(p \), in

\[
\text{null} \left\{ x_i - x_m : 1 \leq i \leq m - 1 \right\}.
\]

Since the size of a vector space over \(\mathbb{F}_q \) must be a power of \(q \), we see that \(G^S_m(x_1, \ldots, x_m) \) evaluates to 1 if the vectors of \(\{ x_i - x_m : 1 \leq i \leq m - 1 \} \) are linearly independent, and 0 otherwise.

Now suppose that the set \(A \) is \(k \)-general. If \(x_1, \ldots, x_k \) are points of \(A \), then \(\{ x_i - x_k : 1 \leq i \leq k - 1 \} \) is a set of \(k - 1 \) linearly independent vectors if and only if \(x_1, \ldots, x_k \) are all distinct. Therefore, if we define a function \(T^S_m : S^m \to \mathbb{F}_q \) for any set \(S \subset AG(n, q) \) by

\[
T^S_m(x_1, \ldots, x_m) = \begin{cases}
1 & \text{all } x_j \text{ are distinct} \\
0 & \text{otherwise}
\end{cases},
\]

(3.2)

then \(T^S_m = G^S_m \) when \(S \) is \(m \)-general.

From here, the general idea is to follow the procedure of [10]. We will divide our argument into three lemmas:

Lemma 3.1. Let \(S \subset AG(n, q) \) and \(m \geq 2 \). If \(q \) is odd or \(q \) and \(m \) are both even, then

\[
\text{rank}(T^S_m) \geq |S| - 2m + 3.
\]

Lemma 3.2. For any set \(S \subset AG(n, q) \) and \(m \geq 3 \),

\[
\text{rank}(G^S_m) \leq m \cdot \min_{t \in (0, 1)} \left(t^{-\frac{q-1}{m}} \cdot \frac{1 - t^q}{1 - t} \right)^n.
\]
Lemma 3.3. Fix an integer \(m \geq 3 \) and let
\[
h_q(x) = x - \frac{x^q}{m} \cdot \frac{1 - x^q}{1 - x}.
\]
Then on \((0,1)\), \(h_q\) attains its minimum value of
\[
\frac{m e^{1-\frac{m}{n}}}{m^2 - (m-1)\alpha} q + \Theta(1)
\]
at \(x_0 = x_0(q) = \frac{q + \alpha - 1}{q + m - 1} + O(q^{-2})\), where \(\alpha\) is the unique value in \((0,1)\) satisfying
\[
\alpha = \frac{m^2 - (m-1)\alpha}{\epsilon^{m-\alpha}}.
\]

When \(A \subset AG(n,q)\) is \(m\)-general (and \(q\) is even or \(m\) is odd) combining lemmas 3.1 and 3.2 gives us
\[
|A| - 2m + 3 \leq \text{rank}(T_m^A) = \text{rank}(G_m^A) \leq m \cdot \min_{t \in (0,1)} \left(t - \frac{\alpha + 1}{m} \cdot \frac{1 - t^q}{1 - t}\right)^n,
\]
and therefore
\[
m_2(n,q) \leq 2m + m \cdot \min_{t \in (0,1)} \left(t - \frac{\alpha + 1}{m} \cdot \frac{1 - t^q}{1 - t}\right)^n.
\]
In lemma 3.3 we verify that \(\min_{t \in (0,1)} \left(t - \frac{\alpha + 1}{m} \cdot \frac{1 - t^q}{1 - t}\right)\) is well-defined and bounded above by
\[
\frac{m e^{1-\frac{m}{n}}}{m^2 - \alpha m + \alpha} q + C,
\]
completing the proof of theorem 1.2.

Remark 3.4. In lemma 3.1 we see that the rank of \(T_m^S\) is typically around \(|S|\), but this is surprisingly does not hold when \(p = 2\) and \(m\) is odd, hence the omission of that case. Indeed, in characteristic 2 it is easy to verify that
\[
T_{2k+1}^S(x_1, x_2, \ldots, x_{2k+1}) = \sum_{i=1}^{2k+1} T_{2k}^S(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{2k+1})
\]
and thus \(\text{rank}(T_{2k+1}^S) \leq 2k + 1\).
4 Proof of lemma 3.1

We proceed by induction on m and begin with the case $m = 2$. Enumerate $B = \{b_1, \ldots, b_{|B|}\}$ and let M be the matrix with $m_{ij} = T_2^B(b_i, b_j)$. By the definition of T_2^B, M is the matrix which has zeros along the diagonal and ones everywhere else. Thus M has rank at least $|B| - 1$, and by claim 4 rank(T_2^B) $\geq |B| - 1$. (Note: The matrix M has rank $|B|$ unless $|B| \equiv 1 \mod p$, when the rank is $|B| - 1$.)

We will first consider the case where q is odd. Fix an integer $k \geq 2$ and assume that for any $S \subseteq AG(n, q)$, rank$_j(T_j^S) \geq |S| - 2j + 3$ when $2 \leq j \leq k$. Fix $B \subseteq AG(n, q)$ and let r be the $(k + 1)$-rank of T_{k+1}^B. Then there are functions $f_{i, \alpha} : B \to \mathbb{F}_q$, $g_{i, \alpha} : B^k \to \mathbb{F}_q$ so that

$$T_{k+1}^B(x_1, \ldots, x_{k+1}) = \sum_{i=1}^{k+1} \sum_{\alpha \in I_i} f_{i, \alpha}(x_i)g_{i, \alpha}(x_1, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_{k+1})$$

(4.1)

where the indexing sets I_i are disjoint and $\sum_{i=1}^{k+1} |I_i| = r$. Let $\mathbb{1}_B : B \to \mathbb{F}_q$ be the function which is identically 1 on B.

Case 1: $p \not| k$, or $p | k$ and $\mathbb{1}_B \notin \bigcap_{i=1}^{k+1} \text{span} \left(\{ f_{i, \alpha} : \alpha \in I_i \} \right)$

If $p \not| k$, let

$$H = \text{span} \left(\{ \mathbb{1}_B \} \cup \{ f_{k+1, \alpha} : \alpha \in I_{k+1} \} \right).$$

Otherwise, since T_{k+1}^B is symmetric in all variables, we may assume without loss of generality that $\mathbb{1}_B \notin \text{span} \left(\{ f_{i, \alpha} : \alpha \in I_{k+1} \} \right)$ and let

$$H = \text{span} \left(\{ f_{k+1, \alpha} : \alpha \in I_{k+1} \} \right).$$

In either case, let H^\perp be the orthogonal complement of H with respect to the usual inner product.

Because the dimension of H is at most $|I_{k+1}| + 1$, the dimension d of H^\perp is at least $|B| - |I_{k+1}| - 1$. Find a set $B' \subseteq B$ and an appropriate basis $\mathcal{U} = \{ h_1, h_2, \ldots, h_d \}$ for H^\perp so that $|B'| = d$ and

$$\begin{bmatrix} v_{\text{col}}(h_1|_{B'}) & v_{\text{col}}(h_2|_{B'}) & \cdots & v_{\text{col}}(h_d|_{B'}) \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 0 & 1 & \cdots & 1 & 1 \\ 1 & 1 & 0 & \cdots & 1 & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 1 & 1 & \cdots & 0 & 1 \\ 1 & 1 & 1 & \cdots & 1 & 1 \end{bmatrix}$$

(see definition 2.2). If $p \not| k$, we simply let $\tilde{h} = h_d$. Otherwise, since $\mathbb{1}_B \notin H$, there must be a function $\tilde{h} \in \mathcal{U}$ so that \tilde{h} is not orthogonal to $\mathbb{1}_B$, i.e. $\sum_{b \in B} \tilde{h}(b) \neq 0$.

Multiplying both sides of (4.2) by \(\tilde{h}(x_{k+1}) \) and summing over \(x_{k+1} \in B \), the right side becomes
\[
\sum_{i=1}^{k} \sum_{\alpha \in I_i} \left(f_{i,\alpha}(x_i) \sum_{x_{k+1} \in B} \tilde{h}(x_{k+1}) g_{i,\alpha}(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{k+1}) \right),
\]
which has rank at most \(r - |I_{k+1}| \).

On the left side we get
\[
\sum_{x_{k+1} \in B} \tilde{h}(x_{k+1}) T_{k+1}^B(x_1, \ldots, x_{k+1})
\]
\[
= T_k^B(x_1, \ldots, x_k) \sum_{x \in B \setminus \{x_1, \ldots, x_k\}} \tilde{h}(x)
\]
\[
= T_k^B(x_1, \ldots, x_k) \left(\sum_{x \in B} \tilde{h}(x) - \sum_{i=1}^{k} \tilde{h}(x_i) \right).
\]

Let \(B'' = \{ b \in B : \tilde{h}(b) = 1 \} \) and notice that \(|B''| \geq d - 1 \). Restrict the domain of both (4.2) and (4.3) to \((B'')^k \). By (R.2) the rank of (4.2) is still no more than \(r - |I_{k+1}| \). Note that the second sum in (4.3) simplifies to \(k \) since \(\tilde{h} |_{B''} \equiv 1 \). If \(p \nmid k \), then the first sum is 0 since \(1_B \in H \). If \(p \mid k \), then the first sum is some nonzero constant by our construction of \(\tilde{h} \). In either case, we are left with \(cT_k^{B''}(x_1, \ldots, x_k) \) for some \(c \neq 0 \), and \(\text{rank}(cT_k^{B''}) \geq |B''| - 2k + 3 \) by the inductive hypothesis. Comparing the ranks of (4.2) and (4.3) we see
\[
r - |I_{k+1}| \geq |B''| - 2k + 3 \geq |B| - |I_{k+1}| - 2k + 1
\]
and thus
\[
\text{rank}(T_{k+1}^B) = r \geq |B| - 2(k + 1) + 3.
\]

Case 2: \(p \mid k \) and \(1_B \in \bigcap_{i=1}^{k+1} \text{span} \left(\{ f_{i,\alpha} : \alpha \in I_i \} \right) \).

Notice that \(k + 1 \geq 3 \), \(T_{k+1}^B \) is symmetric, and \(r \leq |B| \) by (R.3). Therefore, we may assume without loss of generality that \(|I_k| + |I_{k+1}| < |B| \). For \(i = k, k + 1 \), let
\[
H_i = \text{span} \left(\{ f_{i,\alpha} : \alpha \in I_i \} \right)
\]
and let \(H_i^\perp \) be the orthogonal complement.

Because the dimension of \(H_i \) is \(|I_i| \) (by R.7), the dimension \(d_i \) of \(H_i^\perp \) is \(|B| - |I_i| \). Find a set \(B_i \subset B \) and an appropriate basis \(U_i = \{ h_{i,1}, h_{i,2}, \ldots, h_{i,d_i} \} \) for \(H_i^\perp \) so that \(|B_i| = d_i \) and
\[
\begin{bmatrix}
\text{v} \text{col} (h_{i,1} | B_i) & \text{v} \text{col} (h_{i,2} | B_i) & \cdots & \text{v} \text{col} (h_{i,d_i} | B_i)
\end{bmatrix} =
\begin{bmatrix}
0 & 1 & 1 & \cdots & 1 & 1 \\
1 & 0 & 1 & \cdots & 1 & 1 \\
1 & 1 & 0 & \cdots & 1 & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
1 & 1 & 1 & \cdots & 0 & 1 \\
1 & 1 & 1 & \cdots & 1 & 1
\end{bmatrix}
\]
Abbreviating \{x_1, x_2, \ldots, x_{k-1}\} as \mathcal{X} and expanding,

\[
T^B_{k-1}(x_1, \ldots, x_{k-1}) \left[\sum_{x \in \mathcal{X}} \bar{h}_k(x) \left(\sum_{y \in \mathcal{X}} \bar{h}_{k+1}(y) - \sum_{x, y \in \mathcal{B} \setminus \mathcal{X}} \bar{h}_k(x) \bar{h}_{k+1}(y) \right) \right] - \sum_{x \in \mathcal{B}} \bar{h}_k(x) \bar{h}_{k+1}(x) + \sum_{i=1}^{k-1} \bar{h}_k(x_i) \bar{h}_{k+1}(x_i) \]

we have

\[
T^B_{k-1}(x_1, \ldots, x_{k-1}) \left[\sum_{x \in \mathcal{X}} \bar{h}_k(x) \left(\sum_{y \in \mathcal{X}} \bar{h}_{k+1}(y) - \sum_{x, y \in \mathcal{B} \setminus \mathcal{X}} \bar{h}_k(x) \bar{h}_{k+1}(y) \right) \right] - \sum_{x \in \mathcal{B}} \bar{h}_k(x) \bar{h}_{k+1}(x) + \sum_{i=1}^{k-1} \bar{h}_k(x_i) \bar{h}_{k+1}(x_i) \]

for some \(c \neq 0 \).

Let \(B' = \{ x \in B : \bar{h}_{k+1}(x) = \bar{h}_k(x) = 1 \} \). By our constructions of \(\bar{h}_{k+1} \) and \(\bar{h}_k \),

\[
|B'| \geq |B_k| - 1 + |B_{k+1}| - 1 - |B| = |B| - |I_k| - |I_{k+1}| - 2. \]

Restrict the domains of both expressions \(4.4\) and \(4.5\) to \((B')^k\). Since \(p \mid k \), expression \(4.5\) simplifies to

\[
T^B_{k-1}(x_1, \ldots, x_{k-1})((k-1)^2 - c + (k-1)) = -cT^B_{k-1}(x_1, \ldots, x_{k-1}),
\]

a function whose \((k-1)\)-rank is at least \(|B'|-2k+5\) by our inductive hypothesis. Comparing the ranks of \(4.4\) and \(4.5\), we see

\[
r - |I_{k+1}| - |I_k| \geq |B'|-2k+5 \geq |B| - |I_k| - |I_{k+1}| - 2k + 3
\]
and thus
\[\text{rank}(T_{B}^{k+1}) = r \geq |B| - 2(k+1) + 5 \geq |B| - 2(k+1) + 3. \]

This completes the induction for odd \(q \).

To prove the result for even \(q \), we only need to make slight adjustments to case 2. Let \(k \geq 3 \) be odd and assume that \(\text{rank}(T_{k-1}^{S}) \geq |S| - 2(k-1) + 3 \).

Notice that when \(|B| \leq 5 \), the desired result \(\text{rank}(T_{B}^{k+1}) \geq |B| - 2(k+1) + 3 \) is trivial, and therefore we may assume \(|B| > 5 \). In particular, this allows us to assume without loss of generality that \(|I_k| + |I_{k+1}| < |B| - 2 \).

Let \(H_i = \text{span} (\{I_B\} \cup \{f_{i,\alpha} : \alpha \in I_i\}) \). This time, we only know that the dimension \(d_i \) of \(H_i^\perp \) is at least \(|B| - |I_i| - 1 \), but we still have

\[d_k + d_{k+1} \geq 2|B| - |I_k| - |I_{k+1}| - 2 > |B|. \]

We construct \(B_i, U_i, \tilde{h}_i, \) and \(B' \) as before. Again, we multiply both sides of 4.1 by \(\tilde{h}_k(x_k)\tilde{h}_{k+1}(x_{k+1}) \), sum over all \(x_k, x_{k+1} \in B \), and restrict to \(B' \) to get

\[cT_{k-1}^{B'}(x_1, \ldots, x_{k-1}) = \sum_{i=1}^{k-1} \sum_{\alpha \in I_i} f_{i,\alpha}(x_i) \sum_{x_k, x_{k+1} \in B} \tilde{h}_k(x_k)\tilde{h}_{k+1}(x_{k+1})g_{i,\alpha}(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{k+1}) \]

for some \(c \neq 0 \). However, in this case,

\[|B'| \geq |B_k| - 1 + |B_{k+1}| - 1 - |B| \geq |B| - |I_k| - |I_{k+1}| - 4. \]

Nevertheless, comparing the ranks of both sides of the equation still yields

\[\text{rank}(T_{k+1}^{B}) = r \geq |B| - 2(k+1) + 3, \]

completing the induction.

5 Proof of lemma 3.2

Looking back at equation 3.1, we see \(G_m^S \) is a polynomial in \(mn \mathbb{F}_q \)-valued variables \(x_{ij} \). Let \(P \) be the set of monomials appearing in the expansion of \(G_m^S \). Each monomial \(\rho \in P \) can be written as

\[\rho(x_1, \ldots, x_m) = c \prod_{i=1}^{m} \prod_{j=1}^{n} x_{ij}^{e_{ij}}, \]

where the coefficient \(c \in \mathbb{F}_q \) and the \(e_{ij} \in \mathbb{Z} \) depend on \(\rho \).

By 3.1 each \(e_{ij} \) is no greater than \(q - 1 \) and

\[\sum_{i=1}^{m} \sum_{j=1}^{n} e_{ij} \leq (q - 1)n. \]
Thus, there must be some index i for which $\sum_{j=1}^{n} e_{ij} \leq \frac{(q-1)n}{m}$. For each $\rho \in P$, choose such an index and call it $\kappa = \kappa(\rho)$. We then separate out the κ-factors of ρ:

$$\rho(x_1, \ldots, x_m) = e \prod_{j=1}^{n} x_{\kappa_j}^{e_{kj}} \prod_{i \neq \kappa, j=1}^{n} x_{ij}^{e_{ij}}.$$

Letting $f_{\rho}(x_{\kappa}) = \prod_{j=1}^{n} x_{\kappa_j}^{e_{kj}}$ and $g_{\rho}(x_1, \ldots, x_{\kappa-1}, x_{\kappa+1}, \ldots, x_m) = e \prod_{i \neq \kappa, j=1}^{n} x_{ij}^{e_{ij}}$, we have

$$G_{m}^{S}(x_1, \ldots, x_m) = \sum_{i=1}^{m} \sum_{\rho \in P}^{\kappa(\rho) = i} f_{\rho}(x_i) g_{\rho}(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_m).$$

Next, group together the polynomials with matching \textit{“κ-factors,”} i.e. for $e = (e_1, e_2, \ldots, e_n) \in \mathbb{Z}^n$,

$$M_i(e) = \left\{ \rho \in P : \kappa(\rho) = i, f_{\rho}(x_i) = \prod_{j=1}^{n} x_{ij}^{e_{ij}} \right\}.$$

We then reorganize the sum:

$$G_{m}^{S}(x_1, \ldots, x_m) = \sum_{i=1}^{m} \sum_{e \in \mathbb{Z}^n} \left[\left(\prod_{j=1}^{n} x_{\kappa_j}^{e_{kj}} \right) \sum_{\rho \in M_i} g_{\rho}(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_m) \right].$$

Notice that the expression in square brackets is a function of rank 1. Therefore, by the rank of G_{m}^{S} is bounded above by

$$m \cdot \max_{1 \leq i \leq m} \# \{ e \in \mathbb{Z}^n : M_i(e) \neq \emptyset \}.$$

As we observed earlier, $M_i(e)$ is empty unless $e_j \leq q - 1$ for all j and $\sum_{j=1}^{n} e_j \leq \frac{(q-1)n}{m}$. Thus the rank of G_{m}^{S} is bounded above by the number of n-tuples in \mathbb{Z}^n in which each coordinate is no greater than $q - 1$ and the sum of the coordinates is no greater than $\frac{(q-1)n}{m}$.

For $\alpha, \beta, \gamma \in \mathbb{N}$, let $\Lambda(\alpha, \beta, \gamma)$ be the number of α-tuples of elements in $\{0, 1, 2, \ldots, \beta\}$ with sum no greater than γ. It is easy to verify that the number of α-tuples with sum \textit{equal} to i is

$$[x^i] \left(\frac{1 - x^{\beta+1}}{1 - x} \right)^{\alpha}$$

and therefore

$$\Lambda(\alpha, \beta, \gamma) = \sum_{i=0}^{\gamma} [x^i] \left(\frac{1 - x^{\beta+1}}{1 - x} \right)^{\alpha}.$$

We can derive a slight variation on the familiar saddle point bound: suppose that $f(x) = \sum_{i=0}^{\infty} c_i x^i$ on $(0, 1)$ and each c_i is a non-negative real. Then for any non-negative integer N and any $t \in (0, 1)$, we have

$$\sum_{i=0}^{N} [x^i] f(x) = \sum_{i=0}^{N} c_i \leq \sum_{i=0}^{\infty} c_i t^{i-N} = t^{-N} f(t).$$
Therefore

\[\Lambda (\alpha, \beta, \gamma) \leq t^{-\gamma} \left(\frac{1 - t^{\beta+1}}{1 - t} \right)^{\alpha} \]

for all \(t \in (0, 1) \). Applying this to the problem at hand,

\[
\rank(G^S_m) \leq m \cdot \Lambda \left(n, q - 1, \left\lfloor \frac{(q-1)n}{m} \right\rfloor \right) = m \cdot \min_{t \in (0,1)} \left(t^{-\left\lfloor \frac{(q-1)n}{m} \right\rfloor} \left(\frac{1 - t^q}{1 - t} \right)^{\alpha} \right).
\]

6 Proof of lemma 3.3

To verify that the minimum at \(x_0 \) is well-defined, let \(s = \frac{q-1}{m} \) and write

\[
h_q(x) = \left(\sum_{i=0}^{\lfloor s \rfloor - 1} x^i \right) + \left(x^{\lfloor s \rfloor} + x^{\lfloor s \rfloor + 1} \right) + \left(q^{-1} \sum_{i=\lfloor s \rfloor + 2} x^i \right).
\]

As a sum of functions that are convex on \((0, 1)\), \(h_q \) is also convex. Consequently, anywhere its derivative vanishes on \((0, 1)\) must be the unique minimum on that interval. Taking the derivative, we find

\[
h'_q(x) = \frac{x - \frac{q-1}{m}}{m(1-x)} \cdot r_q(x)
\]

where

\[
r_q(x) = (q + m - 1)x - (q - 1) - x^q((q - 1)(m - 1)(1 - x) + m).
\] (6.1)

Given that

\[
h'_q(1) = \frac{q(q - 1)(m - 2)}{2m} > 0,
\]

there must indeed be a unique minimum occurring at some value \(x_0 \), and moreover, \(x_0 = \frac{q + \beta - 1}{q + m - 1} \) for some \(\beta \in (0, m) \).

To get a better estimate for \(\beta \), notice that

\[
0 = r_q \left(\frac{q + \beta - 1}{q + m - 1} \right) = \beta - \left(1 + \frac{m - \beta}{q + \beta - 1} \right)^{-q} \left[m^2 + \beta - m \beta - \frac{m(m - 1)(m - \beta)}{q + m - 1} \right]
\]

\[= \beta - \frac{m^2 - (m - 1)\beta}{e^{m-\beta}}(1 - O(q^{-1})).\]

Let \(f(x) = x - \frac{m^2 - (m - 1)x}{e^{m-x}} \). We leave it to the reader to check that
• \(f(x) \) has exactly one zero in \((0, 1)\)
• \(.25 < f'(x) < 1 \) on \((0, 1)\).

If \(\alpha \) is that unique zero, then \(f(\beta) = O(q^{-1}) \) and \(f(\alpha) = 0 \), giving us

\[
\frac{f(\alpha) - f(\beta)}{\alpha - \beta} = O(q^{-1}).
\]

Using the mean value theorem along with \(.25 < f'(x) < 1 \), we conclude that \(\alpha = \beta + O(q^{-1}) \).

To finish, we will estimate

\[
h_q \left(\frac{q + \alpha - 1}{q + m - 1} + O(q^{-2}) \right).
\]

We can simplify this computation by rearranging the equation \(r_q(x_0) = 0 \) to get

\[
1 - x_0^q = \frac{qm}{m + (q - 1)(m - 1)(1 - x_0)},
\]

and thus

\[
h_q \left(\frac{q + \alpha - 1}{q + m - 1} + O(q^{-2}) \right) = \left(\frac{q + \alpha - 1}{q + m - 1} + O(q^{-2}) \right)^{-\frac{qm}{m + (q - 1)(m - 1)\left(1 - \frac{q + \alpha - 1}{q + m - 1} - O(q^{-2})\right)}} \frac{qm(q + m - 1)(1 + O(q^{-2}))}{m(q + m - 1) + (q - 1)(m - 1)(m - \alpha)}
\]

\[
= e^{1 - \frac{q}{m}} (1 + O(q^{-1})) \cdot \frac{qm(q + m - 1)(1 + O(q^{-2}))}{m^2q - \alpha(m - 1)(q - 1)} + O(1).
\]

7 Estimates on the size of \(m \)-general sets for certain \(q \) and \(m \)

Inequality [1.1] allows us to estimate \(\mu_m(q) \) for large values of \(q \). Table [1.3] gives the asymptotic values for some small values of \(m \). These asymptotic estimates are useful when \(q \) is a fixed large number, but we can compute the exact values of \(\min_{t \in (0, 1)} \left(t^{-\frac{q - 1}{m}} \cdot \frac{1 - t^q}{1 - t} \right) \) when \(q \) is small. For instance, if \(q = m = 3 \), we can solve \(r_3(x_0) = 0 \) (see equation [0.1]) with the quadratic formula to get \(x_0 = \sqrt[3]{3} - 1 \). Theorem [1.2] then recovers the same result as [6], namely

\[
m_2(n, 3) < 6 + 3 \cdot (h_3(x_0))^n = O(2.756^n),
\]

or \(\mu(3) < 0.923 \).
Another particularly interesting case is \(q = 2, \ m = 4 \), since 2-flats in \(AG(n, 2) \) have exactly 4 points. We find that the largest set \(A \subset AG(n, 2) \) in which no 2-flat is "fully covered" by points of \(A \) has \(M_3(n, 2) < 8 + 4(1.755)^n \) points, hence \(\mu_4(2) < 0.813 \).

Table 1 shows the upper bounds for \(\mu_m(q) \) given by a direct calculation of

\[
\log_q \left(\min_{t \in (0,1)} \left(t^{-\frac{a-1}{m}} \cdot \frac{1-t^q}{1-t} \right) \right).
\]

Note that some boxes are unfilled because we did not obtain estimates in the cases where \(q \) is even and \(m \) is odd.

\(m \)	\(\mu_m(q) \ < \ldots \)	\(2 \)	\(3 \)	\(4 \)	\(5 \)	\(7 \)	\(8 \)	\(9 \)	\(11 \)
3	1 - \log_q(1.188)	0.923	0.930	0.935	0.938	0.941			
4	1 - \log_q(1.504)	0.813	0.821	0.829	0.836	0.846	0.851	0.854	0.861
5	1 - \log_q(1.853)	0.735	0.756	0.771	0.782	0.791			
6	1 - \log_q(2.212)	0.651	0.665	0.679	0.690	0.708	0.716	0.722	0.734
7	1 - \log_q(2.577)	0.609	0.636	0.657	0.673	0.685			
8	1 - \log_q(2.944)	0.544	0.562	0.577	0.591	0.613	0.622	0.631	0.644

(a) Bounds for small \(m \) and large \(q \)

(b) Bounds for specific small \(m \) and \(q \)
References

[1] M. Bateman, N. Katz, New bounds on cap sets, J. Amer. Math. Soc. 25 (2012), no. 2, 585-613.

[2] J. Bierbrauer, Introduction to Coding Theory, Second Edition, Chapman & Hall/CRC Press, 2010.

[3] E. Croot, V. Lev, P. Pach, Progression-free sets in \mathbb{Z}_n^4 are exponentially small, Ann. of Math. 185 (2017), no. 1, 331-337.

[4] Y. Edel, Extensions of generalized product caps., Des. Codes Cryptogr. 31 (2004), no. 1, 514.

[5] Y. Edel, S. Ferret, I, Landjev, L. Storme The classification of the largest caps in $AG(5, 3)$, J. Comb. Theory Ser. A 99 (2002), no. 1, 95-110.

[6] J. Ellenberg, D. Gijswijt, On large subsets of \mathbb{F}_q^n with no three-term arithmetic progression, Ann. of Math. 185 (2017), no. 1, 339-343.

[7] J. Hirschfeld, L. Storme, The packing problem in statistics, coding theory and finite projective spaces: update 2001, Finite Geometries, Proceedings 3 (2001), 201-246.

[8] R. Meshulam, On subsets of finite abelian groups with no 3-term arithmetic progressions, J. Comb. Theory Ser. A 71 (1995), no. 1, 168-172.

[9] A. Potechin, Maximal caps in $AG(6, 3)$, Des. Codes Cryptogr. 46 (2008), 243-259.

[10] T. Tao, “A symmetric formulation of the Croot-Lev-Pach-Ellenberg-Gijswijt capset bound” What’s new, 18 May 2016, https://terrytao.wordpress.com/2016/05/18/a-symmetric-formulation-of-the-croot-lev-pach-ellenberg-gijswijt-capset-bound/, accessed 17 Aug. 2017.

[11] J. Thas, On k-caps in $PG(n, q)$ with q even and $n \geq 4$, Discrete Math. 341 (2018), 1072–1077.