Principles and Applications of Rabbit Models for Atherosclerosis Research

Jianglin Fan¹, Yajie Chen¹, Haizhao Yan¹, Manabu Niimi¹, Yanli Wang² and Jingyan Liang³

¹Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
²Department of Pathology, Xi’an Medical University, Xi’an, China
³Research Center for Vascular Biology, Yangzhou University School of Medicine, Yangzhou, China

Rabbits are one of the most used experimental animals for biomedical research, particularly as a bio-reactor for the production of antibodies. However, many unique features of the rabbit have also made it as an excellent species for examining a number of aspects of human diseases such as atherosclerosis. Rabbits are phylogenetically closer to humans than rodents, in addition to their relatively proper size, tame disposition, and ease of use and maintenance in the laboratory facility. Due to their short life spans, short gestation periods, high numbers of progeny, low cost (compared with other large animals) and availability of genomics and proteomics, rabbits usually serve to bridge the gap between smaller rodents (mice and rats) and larger animals, such as dogs, pigs and monkeys, and play an important role in many translational research activities such as pre-clinical testing of drugs and diagnostic methods for patients. The principle of using rabbits rather than other animals as an experimental model is very simple: rabbits should be used for research, such as translational research, that is difficult to accomplish with other species. Recently, rabbit genome sequencing and transcriptomic profiling of atherosclerosis have been successfully completed, which has paved a new way for researchers to use this model in the future. In this review, we provide an overview of the recent progress using rabbits with specific reference to their usefulness for studying human atherosclerosis.

Key words: Animal models, Hypercholesterolemia, Atherosclerosis, Rabbits, Transgenic

Copyright©2018 Japan Atherosclerosis Society
This article is distributed under the terms of the latest version of CC BY-NC-SA defined by the Creative Commons Attribution License.
that seen in humans and proposed a causal role of cholesterol in atherosclerosis5). Their studies established the basis of atherosclerosis theory that in both humans and experimental animals, dietary cholesterol can induce atherosclerosis. Rabbit models were widely used and disclosed most of the pathophysiological significance between human atherosclerosis and lipid metabolism such as the discovery of LDL receptors and development of statins, the most prescribed lipid-lowering drugs in the world7). Compared with mice, laboratory rabbits are sensitive to a high cholesterol diet and rapidly develop hypercholesterolemia7). Therefore, it is much easier to induce hypercholesterolemia in rabbits than in other animals by feeding a high cholesterol diet. Dietary cholesterol can range from 0.3\% to 1\% depending on the research purposes. We recommend the use of 0.3\% to 0.5\% cholesterol in the diet for most experiments because it produces less health problems such as liver toxicity. If cholesterol content is too high (>1\%), rabbits develop massive hypercholesterolemia (plasma cholesterol levels > 1200 mg/dl), which is never observed in humans. Plasma cholesterol levels that are too high often lead to systemic lipid accumulation and liver dysfunction in rabbits, which is often criticized as “not physiological” by many researchers. Therefore, it is not recommended to feed rabbits with a diet containing cholesterol higher than 1\% for more than 4 weeks. In addition to cholesterol, oil, such as soybean or corn oil, is essential in the diet. This is because oil in the diet helps in absorption of intestinal cholesterol. There are many commercially available dietary oils that may be used for rabbit experiments. However, coconut oil, as an exception, is rich in saturated fatty acids, unlike other vegetable dietary oils that are rich in polyunsaturated fatty acids. Coconut oil can be used for insulin resistance studies18, 19). It should be noted that cholesterol diets without the addition of oil lead to mobilization of internal fat tissue for absorption of

Table 1. Comparison of lipid and lipoprotein metabolism features

Feature	Human	Rabbit	Mouse
Major plasma lipoproteins	LDL	LDL	HDL
CETP	Abundant	Abundant	None
Hepatic apoB mRNA editing apoB-48	Chylomicrons	Can be bound to apo(a)	VLDLs/LDLs and Chylomicrons
apoB-100	Can be bound to apo(a)	Heterogeneous	Cannot be bound to apo(a)
HDL	Heterogeneous	Absent	Homogeneous
apoAll	Dimer	Down-regulated	Monomer
Hepatic LDL receptor activity	High, liver-bound	Low, liver-bound	High, 70\% in circulation
Hepatic lipase	Mainly from hepatic synthesis	Mainly from hepatic synthesis	Mainly from dietary origin
Cholesterol pool	Low	Low	Low
Excretion of bile acid	Sensitive	Sensitive	High
Response to a high cholesterol diet			

Methods to Induce Atherosclerosis in Rabbits

In general, aortic atherosclerotic lesions in rabbits can be easily induced by feeding a high cholesterol diet alone or in combination with arterial balloon injury. Compared with other animals, especially rodents, laboratory rabbits are sensitive to a high cholesterol diet and rapidly develop hypercholesterolemia7). Therefore, it is much easier to induce hypercholesterolemia in rabbits than in other animals by feeding a high cholesterol diet. Dietary cholesterol can range from 0.3\% to 1\% depending on the research purposes. We recommend the use of 0.3\% to 0.5\% cholesterol in the diet for most experiments because it produces less health problems such as liver toxicity. If cholesterol content is too high (>1\%), rabbits develop massive hypercholesterolemia (plasma cholesterol levels > 1200 mg/dl), which is never observed in humans. Plasma cholesterol levels that are too high often lead to systemic lipid accumulation and liver dysfunction in rabbits, which is often criticized as “not physiological” by many researchers. Therefore, it is not recommended to feed rabbits with a diet containing cholesterol higher than 1\% for more than 4 weeks. In addition to cholesterol, oil, such as soybean or corn oil, is essential in the diet. This is because oil in the diet helps in absorption of intestinal cholesterol. There are many commercially available dietary oils that may be used for rabbit experiments. However, coconut oil, as an exception, is rich in saturated fatty acids, unlike other vegetable dietary oils that are rich in polyunsaturated fatty acids. Coconut oil can be used for insulin resistance studies18, 19). It should be noted that cholesterol diets without the addition of oil lead to mobilization of internal fat tissue for absorption of
RT-PCR methods. If these analyses are required, these samples should be immediately frozen in nitrogen liquid and stocked at \(-80^\circ C\).

Gross analysis usually requires Sudan IV staining to visualize atherosclerotic lesions followed by image analysis to calculate the lesion percentage of each aortic segment \(23\). Based on the gross observations, one can decide which parts to select to make paraffin-embedded sections for microscopic observations. Usually, the whole aortic arch and thoracic aorta will be cut into 10-12 segments (1-mm thick) for paraffin embedding \(23\). Serial sections can be routinely used for hematoxylin-eosin (HE) staining and elastic van Gieson (EVG). HE staining is essential to evaluate the quality of the lesions such as cellular and extracellular matrix component features and plaque vulnerability. To quantify the intimal lesion area on the sections, EVG staining is useful because it can visualize the internal elastic lamina (IEL), making it easy to measure intimal lesions and medial lesions separately. Paraffin sections can be used for direct immunohistochemical staining in most cases using most commercial antibodies. Routinely, it is essential to evaluate macrophages and smooth muscle cells using RAM-1 and smooth muscle \(\alpha\)-actin antibodies (Fig. 1).

If analysis of protein and mRNA expression is required, a piece of fresh tissue proceeded in liquid nitrogen at the time of aorta collection should be collected. In hypercholesterolemic rabbits, iliac arteries, carotid arteries and subclavian arteries seldom exhibit atherosclerosis; however, coronary lesions of rabbits can

Methods to Analyze Atherosclerosis

The rabbit aorta is mainly used for the analysis of atherosclerosis because it is easy to isolate and both gross and microscopic evaluation of aortic lesion size and quality can be made. The lesions usually start to form from the aortic arch followed by the intercostal orifice area and thoracic aorta. Abdominal aortic lesions are less frequently seen, which is different from human atherosclerosis. As the aortic lesions are large, it is also possible to collect a part of the lesions to analyze protein and mRNA expression using Western blotting and

Fig. 1. Representative aortic lesions in cholesterol-fed rabbits. A. Gross lesions of the aorta stained by Sudan IV (visualized as red area). B. Representative micrographs of early stage lesions (fatty streaks). C. A typical fibrous plaque with a lipid core covered by a fibrous cap. Serial paraffin sections of the aortic arch were stained with hematoxylin and eosin (HE) and elastic van Gieson (EVG), or immunohistochemically stained with monoclonal antibodies (mAbs) against either macrophages (M\(\phi\)) or \(\alpha\)-smooth muscle actin for smooth muscle cells (SMC).
ally expressed in the liver or macrophages to study their functions (Table 2). To date, more than 20 genes have been introduced into Tg rabbits, and have provided considerable insight into the molecular mechanisms associated with their functions in lipoprotein metabolism and atherosclerosis²⁵).

Knock-Out Rabbits

For a long time, generation of knock-out rabbits has been a dream for researchers because rabbit embryonic stem (ES) cells are not available and genomic information for rabbits is lacking. Rabbit genome sequencing was initially completed by a European group²⁶), and two years later, we along with Chinese and US groups, successfully sequenced three rabbit genomes (New Zealand White, Japanese White and Watanabe heritable hyperlipidemic rabbits) and completed transcriptomic profiling of atherosclerotic lesions and the liver for these rabbits²⁷). These genomic and RNA seq data will provide many insights into understanding the pathogenesis of atherosclerosis in rabbits. Another advancement in this field is the emergence of novel gene-editing technologies (ZFN, TALENs, CRISPR-Cas9) in succession, which has made it possible to make KO rabbits just as KO mice. The first KO rabbits were

Table 2. Transgenic rabbits for the study of human cardiovascular diseases

Genes	Expressing cells	Major phenotypes	References
Apolipoproteins:			
Apo(a)	Liver	Atherogenic	
ApoA-I	Liver	Athero-protective	
ApoA-II	Liver	Athero-protective	
ApoB-100	Liver	LDL †, HDL ‡	
ApoCⅢ	Liver	VLDL †	
ApoE2	Liver	Atherogenic	
ApoE3	Liver	Atherogenic	
Enzymes:			
Hepatic lipase	Liver	Athero-protective	
apoB mRNA editing protein	Liver	LDL ‡	
LCAT	Liver	Athero-protective	
Lipoprotein lipase	Universal	Athero-protective	
PLTP	Universal	Atherogenic	
Endothelial lipase	Liver	Athero-protective	
Vascular factors:			
Lipoprotein lipase	Macrophage	Atherogenic	
MMP-12	Macrophage	Atherogenic	
C-reactive protein	Liver	Thrombogenic	
15-lipoxygenase	Macrophage	Athero-protective	
VEGF	Liver	hemangiomas and impaired glomerular functions	

ND: not done. LCAT, lecithin: cholesterol acyltransferase; PLTP, phospholipid transfer protein; MMP, matrix metalloproteinase; VEGF, vascular endothelial cell growth factor.

be observed at the large branches such as the left and right coronary arteries. The method for rabbit coronary lesion analysis has been described in detail in the previous review⁷). Balloon injury of aortas or wire injury of iliac arteries in rabbits is sometimes used to produce intimal lesion models. However, these lesions induced by injuries are mainly composed of proliferating smooth muscle cells forming so-called “neo-intima”, which is different from fatty streaks induced by cholesterol diet feeding. However, balloon injury may also be performed in cholesterol-fed rabbits, which will accelerate the formation of the lesions²⁴).

Transgenic Rabbits

In addition to cholesterol-fed rabbits, transgenic (Tg) rabbits have also been used for the study of human cardiovascular disease and lipoprotein metabolism during the last two decades. However, in contrast to Tg mice, Tg rabbits were only used by a few institutions to study atherosclerosis. Elucidation of gene functions in terms of lipoprotein metabolism and atherosclerosis using Tg rabbits was essentially based on the premise that rabbits bear features more similar with those of humans such as metabolism and susceptibility to atherosclerosis (Table 1). Transgenes are usu-
sion regarding whether to use rabbits. The most critical point is whether experiments are designed to solve clinical problems such as for translational research.

In conclusion, rabbits are still a powerful model for the study of human atherosclerosis. With the advances in nuclease-editing technology, KO rabbits will provide a new means for translational research in this field. These new models will help develop novel therapeutics and diagnostics for cardiovascular disease in the future.

Sources of Funding
This work was supported in part by a research-grant from the National Key Research and Development Program of China (No.2016YFE0126000), Ono Medical Foundation, Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, and Technology, Japan (22390068, 25670190, and 15H04718), and the National Natural Science Foundation of China (No.81570392 and 81770457).

Conflicts of Interest
None.

References
1) Daugherty A, Tall AR, Daemen M, Falk E, Fisher EA, Garcia-Cardenas G, Luís AJ, Owens AP, 3rd, Rosenfeld ME and Virmani R: Recommendation on Design, Execution, and Reporting of Animal Atherosclerosis Studies: A Scientific Statement From the American Heart Association. Circ Res, 2017;
2) Moghadasian MH: Experimental atherosclerosis: a historical overview. Life Sci, 2002; 70: 855-865
3) Getz GS and Reardon CA: Animal models of atherosclerosis. Arterioscler Thromb Vasc Biol, 2012; 32: 1104-1115
4) Fan J and Watanabe T: Cholesterol-fed and transgenic rabbit models for the study of atherosclerosis. J Atheroscler Thromb, 2000; 7: 26-32
5) Ignatowski AC: Influence of animal food on the organism
of rabbits. S. Peterb. Izviest. Imp. Voyenno-Med. Akad., 1908; 16: 154-173
6) Steinberg D: Thematic review series: the pathogenesis of atherosclerosis. An interpretive history of the cholesterol controversy: part I. J Lipid Res, 2004; 45: 1583-1593
7) Fan J, Kitajima S, Watanabe T, Xu J, Zhang J, Liu E and Chen YE: Rabbit models for the study of human atherosclerosis: from pathophysiological mechanisms to translational medicine. Pharmacol Ther, 2015; 146: 104-119
8) Tall AR: Plasma cholesteryl ester transfer protein. J. Lipid Res., 1986; 27: 361-367
9) Barter PJ, Caulfield M, Eriksson M, Grundy SM, Kastelein JJ, Komajda M, Lopez-Sendon J, Mosca L, Tardif JC, Waters DD, Shear CL, Revkin JH, Buhr KA, Fisher MR, Tall AR, Brewer B and Investigators I: Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med, 2007; 357: 2109-2122
10) Nissen SE, Tardif JC, Nicholls SJ, Revkin JH, Shear CL, Duggan WT, Ruzyllo W, Bachinsky WB, Lasala GP and Tuzcu EM: Effect of torcetrapib on the progression of coronary artery atherosclerosis. N Engl J Med, 2007; 356: 1304-1316
11) Schwartz GG, Olsson AG, Abt M, Ballantyne CM, Barter PJ, Brumm J, Chaitman BR, Holme IM, Kallend D, Leiter LA, Leitersdorf E, McMurray JJ, Muntz H, Nicholls SJ, Shah PK, Tardif JC, Wright RS and dal Ol: Effects of dalceptrapib in patients with a recent acute coronary syndrome. N Engl J Med, 2012; 367: 2089-2099
12) Malin JH, Alsterda AJ and Arora RR: Cholesteryl Ester Transfer Protein Inhibitors: Trials and Tribulations. J Cardiovasc Pharmacol Ther, 2016;
13) Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease. N Engl J Med, 2017;
14) Zhang J, Niimi M, Yang D, Liang J, Xu J, Kimura T, Mathew AV, Guo Y, Fan Y, Zhu T, Song J, Ackermann R, Koike Y, Schwendeman A, Lai L, Pengnath S, Garcia-Barrio M, Fan J and Chen YE: Deficiency of Cholesteryl Ester Transfer Protein Proteins Against Atherosclerosis in Rabbits. Arterioscler Thromb Vasc Biol, 2017; 37: 1068-1075
15) Taylor JM and Fan J: Transgenic rabbit models for the study of atherosclerosis. Front Biosci, 1997; 2: d298-308
16) Fan J, Challah M and Watanabe T: Transgenic rabbit models for biomedical research: current status, basic methods and future perspectives. Pathol Int, 1999; 49: 583-594
17) Fan J and Watanabe T: Transgenic rabbits as therapeutic protein bioreactors and human disease models. Pharmacol Ther, 2003; 99: 261-282
18) Wacar AB, Koike T, Yu Y, Inoue T, Aoki T, Liu E and Fan J: High-fat diet without excess calories induces metabolic disorders and enhances atherosclerosis in rabbits. Atherosclerosis, 2010; 213: 148-155
19) Ning B, Wang X, Yu Y, Wacar AB, Yu Q, Koike T, Shiomi M, Liu E, Wang Y and Fan J: High-fructose and high-fat diet-induced insulin resistance enhances atherosclerosis in Watanabe heritable hyperlipidemic rabbits. Nurr Metab (Lond), 2015; 12: 30
20) Liang J, Liu E, Yu Y, Kitajima S, Koike T, Jin Y, Morimoto M, Hatakeyama K, Asada Y, Watanabe T, Sasaguri Y, Watanabe S and Fan J: Macrophage metalloelastase accelerates the progression of atherosclerosis in transgenic rab-
bits. Circulation, 2006; 113: 1993-2001
21) Poorman JA, Buck RA, Smith SA, Overturf ML and Loose-Mitchell DS: Bile acid excretion and cholesterol 7 alpha-hydroxylase expression in hypercholesterolemia-resistant rabbits. J Lipid Res, 1993; 34: 1675-1685
22) Watanabe Y: Serial inbreeding of rabbits with hereditary hyperlipidemia (WHHL-rabbit). Atherosclerosis, 1980; 36: 261-268
23) Koike T, Liang J, Wang X, Ichikawa T, Shiomi M, Sun H, Watanabe T, Liu G and Fan J: Enhanced aortic atherosclerosis in transgenic Watanabe heritable hyperlipidemic rabbits expressing lipoprotein lipase. Cardiovasc Res, 2005; 65: 524-534
24) Matsuda S, Yamashita A, Sato Y, Kitajima S, Koike T, Sugita C, Moriguchi-Goto S, Hatakeyama K, Takahashi M, Koshimoto C, Matsuura Y, Ikawaki T, Chen YE, Fan J and Asada Y: Human C-reactive protein enhances thrombus formation after noontinal balloon injury in transgenic rabbits. J Thromb Haemost, 2011; 9: 201-208
25) Peng X: Transgenic rabbit models for studying human cardiovascular diseases. Comp Med, 2012; 62: 472-479
26) Carneiro M, Rubin CJ, Di Palma F, Albert FW, Alfoldi J, Martinez Barrio A, Pieberg G, Rafati N, Sayyab S, Turner-Maier J, Younis S, Afonso S, Aken B, Alves JM, Barrell D, Bolet G, Boucher S, Burbano HA, Campos R, Chang JL, Duranton V, Fontanesi L, Garreau H, Heiman D, Johnson J, Mage RG, Peng Z, Queney G, Rogel-Gaillard C, Ruffier M, Searle S, Villafuerte R, Xiong A, Young S, Forberg-Nilsson K, Good JM, Lander ES, Ferrand N, Lindblad-Thor and Anderson L: Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication. Science, 2014; 345: 1074-1079
27) Wang Z, Zhang J, Li H, Li J, Niimi M, Ding G, Chen H, Xu J, Zhang H, Xu Z, Dai Y, Gui T, Li S, Liu Z, Wu S, Cao M, Zhou L, Lu X, Wang J, Yang J, Fu Y, Yang D, Song J, Zhu T, Ning B, Koike T, Shiomi M, Liu E, Chen L, Fan J, Chen YE and Li Y: Hyperlipidemia-associated gene variations and expression patterns revealed by whole-genome and transcriptome sequencing of rabbit models. Sci Rep, 2016; 6: 26942
28) Flisikowska T, Thorey I, Offner S, Ros F, Lilek V, Zeidler B, Rottmann O, Vincent A, Zhang L, Jenkins S, Nierbach H, Kind AJ, Gregory PD, Schnieke AE and Platter J: Efficient Immuno globulin Gene Disruption and Targeted Replacement in Rabbit Using Zinc Finger Nucleases. PLoS One, 2011; 6:
29) Yang D, Zhang J, Xu J, Zhu T, Fan Y, Fan J and Chen YE: Production of Apolipoprotein C-III Knockout Rabbits using Zinc Finger Nucleases. J Vis Exp, 2013; doi: 10.3791/50957
30) Li L, Zhang Q, Yang H, Zou Q, Lai C, Jiang F, Zhao P, Luo Z, Yang J, Chen Q, Wang Y, Newsome PN, Frampton T, Maxwell PH, Li W, Chen S, Wang D, Siu TS, Tam S, Tse HF, Qin B, Bao X, Esteban MA and Lai L: Fumaryl-acetocetate Hydrolase Knock-out Rabbit Model for Hereditary Tyrosinemia Type I. J Biol Chem, 2017; 292: 4755-4763
31) Yang D, Xu J, Zhu T, Fan J, Lai L, Zhang J and Chen YE: Effective gene targeting in rabbits using RNA-guided Cas9 nucleases. J Mol Cell Biol, 2014; 6: 97-99
32) Niimi M, Yang D, Kitajima S, Ning B, Wang C, Li S, Liu
Rabbit Models for Atherosclerosis

E, Zhang J, Eugene Chen Y and Fan J: ApoE knockout rabbits: A novel model for the study of human hyperlipidemia. Atherosclerosis, 2016; 245: 187-193

33) Rouy D, Duverger N, Lin SD, Emmanuel F, Houdebine LM, Denefle P, Viglietta C, Gong E, Rubin EM and Hughes SD: Apolipoprotein(a) yeast artificial chromosome transgenic rabbits. Lipoprotein(a) assembly with human and rabbit apolipoprotein B. J Biol Chem, 1998; 273: 1247-1251

34) Fan J, Shimoyamada H, Sun H, Marcovina S, Honda K and Watanabe T: Transgenic rabbits expressing human apolipoprotein(a) develop more extensive atherosclerotic lesions in response to a cholesterol-rich diet. Arterioscler Thromb Vasc Biol, 2001; 21: 88-94

35) Ichikawa T, Unoki H, Sun H, Shimoyamada H, Marcovina S, Shikama H, Watanabe T and Fan J: Lipoprotein(a) promotes smooth muscle cell proliferation and dedifferentiation in atherosclerotic lesions of human apo(a) transgenic rabbits. Am J Pathol, 2002; 160: 227-236

36) Sun H, Unoki H, Wang X, Liang J, Ichikawa T, Arai Y, Shiomi M, Marcovina SM, Watanabe T and Fan J: Lipoprotein(a) enhances advanced atherosclerosis and vascular calcification in WHHL transgenic rabbits expressing human apolipoprotein(a). J Biol Chem, 2002; 277: 47486-47492

37) Kitajima S, Jin Y, Koike T, Yu Y, Liu E, Shiomi M, Marcovina SM, Morimoto M, Watanabe T and Fan J: Lp(a) enhances coronary atherosclerosis in transgenic Watanabe heritable hyperlipidemic rabbits. Atherosclerosis, 2007; 193: 269-276

38) Duverger N, Kruth H, Emmanuel F, Caillaud JM, Viglietta C, Castro G, Tailleux A, Fievet C, Fruchart JC, Houdebine LM and Denefle P: Inhibition of atherosclerosis development in cholesterol-fed human apolipoprotein A-I transgenic rabbits. Circulation, 1996; 94: 713-717

39) Duverger N, Viglietta C, Berthou L, Emmanuel F, Tailleux A, Parmentier-Nihoul L, Laine B, Fievet C, Castro G, Fruchart JC, Houdebine LM and Denefle P: Transgenic rabbits expressing human apolipoprotein A-I in the liver. Arterioscler Thromb Vasc Biol, 1996; 16: 1424-1429

40) Wang Y, Niimi M, Nishijima K, Yu Y, Koike T, Kitajima K, Inoue T, Waqar AB, Liu E, Kohashi M, Ketamura Y, Yoshikawa T, Zhang J, Ma L, Zha X, Watanabe T, Asada Y, Chen YE and Fan J: Human apolipoprotein AII protects against diet-induced atherosclerosis in transgenic rabbits. Arterioscler Thromb Vasc Biol, 2013; 33: 224-231

41) Koike T, Kitajima S, Yu Y, Li Y, Nishijima K, Liu E, Sun H, Waqar AB, Shibata N, Inoue T, Wang Y, Zhang B, Kobayashi J, Morimoto M, Saku K, Watanabe T and Fan J: Expression of human apoAII in transgenic rabbits leads to dyslipidemia: a new model for combined hyperlipidemia. Arterioscler Thromb Vasc Biol, 2009; 29: 2047-2053

42) Fan J, McCormick SP, Krauss RM, Taylor S, Quan R, Taylor JM and Young SG: Overexpression of human apolipoprotein B-100 in transgenic rabbits results in increased levels of LDL and decreased levels of HDL. Arterioscler Thromb Vasc Biol, 1995; 15: 1889-1899

43) Ding Y, Wang Y, Zhu H, Fan J, Yu L, Liu G and Liu E: Hypertriglyceridemia and delayed clearance of fat load in transgenic rabbits expressing human apolipoprotein CIII. Transgenic Res, 2011; 20: 867-875

44) Huang Y, Schwendner SW, Rall SCJ, Sanan DA and Mahley RW: Apolipoprotein E2 transgenic rabbits. J Biol Chem, 1997; 272: 22685-22694

45) Fan J, Ji Z-S, Huang Y, de Silva H, Sanan D, Mahley R, Innerarity T and Taylor J: Increased expression of apolipoprotein E in transgenic rabbits results in reduced levels of very low density lipoproteins and an accumulation of low density lipoproteins in plasma. J Clin Invest, 1998; 101: 2151-2164

46) Huang Y, Ji ZS, Brecht WJ, Rall SC, Jr., Taylor JM and Mahley RW: Overexpression of apolipoprotein E3 in transgenic rabbits causes combined hyperlipidemia by stimulating hepatic VLDL production and impairing VLDL lipolysis. Arterioscler Thromb Vasc Biol, 1999; 19: 2952-2959

47) Fan J, Wang J, Bensadoun A, Lauer SJ, Dang Q, Mahley RW and Taylor JM: Overexpression of hepatic lipase in transgenic rabbits leads to a marked reduction of plasma high density lipoproteins and intermediate density lipoproteins. Proc Natl Acad Sci U S A, 1994: 91: 8724-8728

48) Yamanaka S, Bulestra ME, Ferrell LD, Fan J, Arnold KS, Taylor S, Taylor JM and Innerarity TL: Apolipoprotein B mRNA-editing protein induces hepatocellular carcinoma and dysplasia in transgenic animals. Proc Natl Acad Sci U S A, 1995; 92: 8483-8487

49) Hoeg JM, Santamarina-Fojo S, Berard AM, Cornhill JF, Herderick EE, Feldman SH, Haudenschild CC, Vaisman BL, Hoyt RF, Jr., Demosky SJ, Jr., Kauffman RD, Hazel CM, Marcovina SM and Brewer HB, Jr.: Overexpression of lecithin: cholesterol acyltransferase in transgenic rabbits prevents diet-induced atherosclerosis. Proc Natl Acad Sci USA, 1996; 93: 11448-11453

50) Hoeg JM, Kauffman RD, Herderick E, Demosky SJ, Jr., Evans W and Brousseau M: Lecithin: cholesterol acyltransferase requires functional LDL receptors to prevent atherosclerosis. Circulation, 1998; 98 (Supl): I-464 (Abstract)

51) Fan J, Unoki H, Kojima N, Sun H, Shimoyamada H, Deng H, Okazaki M, Shikama H, Yamada N and Watanabe T: Overexpression of lipoprotein lipase in transgenic rabbits inhibits diet-induced hypercholesterolemia and atherosclerosis. J Biol Chem, 2001; 276: 40071-40079

52) Masson D, Deckert V, Gautier T, Klein A, Desrumaux C, Viglietta C, Pais de Barros JP, Le Guern N, Grober J, Labbe J, Menetrier F, Ripoll PJ, Leroux-Coyau M, Jolivet G, Houdebine LM and Lagrost L: Worsening of diet-induced atherosclerosis in a new model of transgenic rabbit expressing the human plasma phospholipid transfer protein. Arterioscler Thromb Vasc Biol, 2011; 31: 766-774

53) Wang C, Nishijima K, Kitajima S, Niimi M, Yan H, Chen Y, Ning B, Matsuishi F, Liu E, Zhang J, Chen YE and Fan J: Increased Hepatic Expression of Endothelial Lipase Inhibits Cholesterol Diet-Induced Hypercholesterolemia and Atherosclerosis in Transgenic Rabbits. Arterioscler Thromb Vasc Biol, 2017; 37: 1282-1289

54) Ichikawa T, Liang J, Kitajima S, Koike T, Wang X, Sun H, Morimoto M, Shikama H, Watanabe T, Yamada N and Fan J: Macrophage-derived lipoprotein lipase increases aortic atherosclerosis in cholesterol-fed Tg rabbits. Atherosclerosis, 2005; 179: 87-95

55) Yamada S, Wang KY, Tanimoto A, Fan J, Shimajiri S, Kitajima S, Morimoto M, Tsutsui M, Watanabe T, Yasumoto
56) Kondo M, Sakai T, Komeima K, Kurimoto Y, Ueno S, Nishizawa Y, Usukura J, Fujikado T, Tano Y and Terasaki H: Generation of a transgenic rabbit model of retinal degeneration. Invest Ophthalmol Vis Sci, 2009; 50: 1371-1377

57) Shen J, Herderick E, Cornhill JB, Zsigmond E, Kim HS, Kuhn H, Guevara NA and Chan L: Macrophage-mediated 15-lipoxgenase expression protects against atherosclerosis development. J Clin Invest, 1996; 98: 2201-2208

58) Liu E, Morimoto M, Kitajima S, Koike T, Yu Y, Shiiki H, Nagata M, Watanabe T and Fan J: Increased expression of vascular endothelial growth factor in kidney leads to progressive impairment of glomerular functions. J Am Soc Nephrol, 2007; 18: 2094-2104

59) Kitajima S, Liu E, Morimoto M, Koike T, Yu Y, Watanabe T, Imagawa S and Fan J: Transgenic rabbits with increased VEGF expression develop hemangiomas in the liver: a new model for Kasabach-Merritt syndrome. Lab Invest, 2005; 85: 1517-1527

60) Ji D, Zhao G, Songstad A, Cui X and Weinstein EJ: Efficient creation of an APOE knockout rabbit. Transgenic Res, 2015; 24: 227-235

61) Yuan L, Yao H, Xu Y, Chen M, Deng J, Song Y, Sui T, Wang Y, Huang Y, Li Z and Lai L: CRISPR/Cas9-Mediated Mutation of alphaA-Crystallin Gene Induces Congenital Cataracts in Rabbits. Invest Ophthalmol Vis Sci, 2017; 58: BIO34-BIO41

62) Yuan L, Sui T, Chen M, Deng J, Huang Y, Zeng J, Lv Q, Song Y, Li Z and Lai L: CRISPR/Cas9-mediated GJA8 knockout in rabbits recapitulates human congenital cataracts. Sci Rep, 2016; 6: 22024

63) Song Y, Liu T, Wang Y, Deng J, Chen M, Yuan L, Lu Y, Xu Y, Yao H, Li Z and Lai L: Mutation of the Sry binding site in the 5' flanking region of Sry causes sex reversal in rabbits. Oncotarget, 2017; 8: 38176-38183

64) Sui T, Yuan L, Liu H, Chen M, Deng J, Wang Y, Li Z and Lai L: CRISPR/Cas9-mediated mutation of PHEX in rabbit recapitulates human X-linked hypophosphatemia (XLH). Hum Mol Genet, 2016; 25: 2661-2671

65) Lv Q, Yuan L, Deng J, Chen M, Wang Y, Zeng J, Li Z and Lai L: Efficient Generation of Myostatin Gene Mutated Rabbit by CRISPR/Cas9. Sci Rep, 2016; 6: 25029