CONFORMAL SUBALGEBRAS OF LATTICE VERTEX ALGEBRAS

MICHAEL ROITMAN

Abstract. In this paper we classify, under certain restrictions, all homogeneous conformal subalgebras L of a lattice vertex superalgebra V_L corresponding to an integer lattice Λ. We require that L is graded by an almost finite root system $\Delta \subset \Lambda$ and that L is stable under the action of the Heisenberg conformal algebra $H \subset V_\Lambda$. We also describe the root systems of these subalgebras. The key ingredient of this classification is an infinite type conformal algebra K obtained by the Tits-Kantor-Koecher construction from a certain Jordan conformal triple system J. We realize a central extension \hat{K} of K inside the fermionic vertex superalgebra V_Z, thus extending the bozon-fermion correspondence.

Introduction

One of the first origins of vertex algebras was the explicit constructions of representations of certain Lie algebras by means of so-called vertex operators. The first construction of this kind was done by Lepowsky and Wilson [22], who constructed a vertex operator representation of the affine algebra $A_1^{(1)}$. Their work was later generalized in [17]. Frenkel and Kac [10] and, independently, Segal [29] constructed the basic representations of the simply-laced affine Lie algebras using the so-called untwisted vertex operators as opposed to twisted vertex operators of Lepowsky and Wilson. Later vertex operators were used to construct a large family of modules for different types of Lie algebras, including all of the affine Kac-Moody algebras, toroidal algebras and some other extended affine Lie algebras, see e.g. [3, 12, 13, 25] and references therein. The advantage of vertex operator constructions is that they are very explicit. They have yielded a lot of interesting results for combinatorial identities, modular forms, soliton theory, etc.

It seems to be a natural problem to describe all Lie algebras, or at least a large family of Lie algebras, for which the vertex operator constructions of representations work. Our first observation is that in some of the cases described above the Lie algebras, whose representation are constructed by vertex operators, correspond to conformal algebras, introduced by Kac [15, 16], see also [26, 27]. On the other hand, vertex operators give rise to another algebraic structure, called vertex algebras, studied extensively in e.g. [4, 9, 15]. A vertex operator construction of representations of Lie algebras amounts sometimes to an embedding of a conformal algebra into a vertex algebra generated by vertex operators, so that the vertex algebra becomes an enveloping vertex algebra of these conformal algebras.

In the present work we make the first step in describing the Lie algebras representable by vertex operators. We classify the Lie algebras that can be realized by the untwisted vertex operators of Frenkel-Kac-Segal. The vertex algebra generated by these vertex operators is also called lattice vertex algebra, because its construction depends on a choice of an integer lattice. In fact there is a functor that for every lattice Λ with an integer-valued bilinear form $(\cdot | \cdot)$ gives a vertex superalgebra $V_\Lambda = \bigoplus_{\lambda \in \Lambda} V_\lambda$ graded by the lattice Λ, see [4, 9, 11, 13] and also §1.7 of this paper. If Λ is a simply-laced root lattice of a finite-dimensional simple Lie algebra, then V_Λ is a module over the corresponding affine Kac-Moody algebra. Lattice vertex algebras play an important role in different areas of mathematics and physics, in particular the celebrated Moonshine vertex algebra V^*, such that $\text{Aut} V^*$ is the Monster simple group, is closely related to the lattice vertex algebra of certain even unimodular lattice of rank 24, called the Leech lattice [4, 13].
So the problem in our case takes the following form: describe all conformal subalgebras of the vertex \(V \) of vertex algebras in terms of generators and relations. If \(V \) is constructible free vertex algebras, see [27], we can consider presentations of extended affine root systems (EARS), see [1].

Affine Kac-Moody only when \(\Delta \) is simply-laced, and then we are in the situation of [10]. We also classify all finite root systems of conformal subalgebras of \(V \), see [12]. Most of them occur if \(\Lambda \) is positive definite. In this case all indecomposable root systems \(\Delta \) are in fact classical Cartan systems of type other than \(F_4 \) and \(G_2 \). However the corresponding Lie algebras are affine Kac-Moody only when \(\Delta \) is simply-laced, and then we are in the situation of [10]. We also explain what goes on if the lattice \(\Lambda \) is semi-positive definite and outline the relation to the theory of extended affine root systems (EARS), see [1].

Another important motivation of the present work is the combinatorial approach to vertex algebras. Once we know how to construct free vertex algebras, see [27], we can consider presentations of other lattice vertex algebras and also of the Frenkel-Lepowsky-Meurman Moonshine vertex algebra \(V^\natural \).

The paper is organized as follows: We start with a review of the theory of conformal superalgebras, following mainly the lecture notes by Kac [15] and also [27]. In §1.4 we construct most of the examples of conformal superalgebras used later on. Then in §1.5–1.7 we outline the theory of vertex algebras, using again [15]. In §1.7 we describe the construction of lattice vertex superalgebras. In §2 we review the Tits-Kantor-Koeher construction and use it to get the conformal algebra \(\mathfrak{K} \). Having done that we review the so-called boxon–fermion correspondence, which is essentially the study of the lattice vertex algebra \(V_\mathbb{Z} \) corresponding to the lattice \(\mathbb{Z} \). Sections §3.1–3.2 are again taken from [15].

In sections §3.3–3.4 we explore the structure of \(V_2 \) as a module over the conformal algebra \(\mathfrak{W} \) of differential operators on a circle. This is the same as the module structure of the Lie algebra \(W_+ = \mathbb{k} \langle t, p \mid [t, p] = 1 \rangle \) of differential operators on a disk. We note that while the representation theory of the Lie algebra \(W = \mathbb{k} \langle t, t^{-1}, p \mid [t, p] = 1 \rangle \) of differential operators on a circle, as well as that of the related vertex algebra \(W_{1+\infty} \), has been extensively studied (see e.g. [14, 8]), the representation theory of \(W_+ \) seems to be mostly unknown.

In §4.1 we give a rigorous formulation of the problem and introduce the necessary definitions. Then in §4.2 we use the above results to study the subalgebras of \(V_\Lambda \) in case when \(\text{rk} \Lambda = 1 \). In §4.3 we proceed to the case when \(\text{rk} \Lambda = 2 \). This allows in §4.4 to classify the root systems for the case when the lattice \(\Lambda \) is positive definite and in §4.5 to describe all finite root systems. Finally, in §4.6 we outline the relation with the theory of EARS.

Throughout this paper all spaces and algebras are over a ground field \(\mathbb{k} \) of characteristic 0.
Acknowledgments. I am very grateful to Igor Pak for teaching me elements of combinatorics used in \cite{3,4}. I also would like to thank Stephen Berman, Yuly Billig, Jim Lepowsky, Weiqiang Wang and Efim Zelmanov for helpful conversations concerning the present work.

1. Conformal and vertex algebras

1.1. Formal series and conformal algebras. Let $L = L^0 \oplus L^1$ be a Lie superalgebra. Consider the space of formal power series $L[[z^{\pm 1}]]$. We will write an element $\alpha \in L[[z^{\pm 1}]]$ in the form

$$\alpha = \sum_{n \in \mathbb{Z}} \alpha(n) z^{-n-1}, \quad \alpha(n) \in L.$$

Denote $L[[z^{\pm 1}]]' = L^0[[z^{\pm 1}]] \oplus L^1[[z^{\pm 1}]] \subseteq L[[z^{\pm 1}]]$. The space $L[[z^{\pm 1}]]$ is endowed with a derivation $D = d/dz$ and a family of bilinear products \otimes, \oplus, $\otimes m$, $\oplus n$, β by

$$(\alpha \otimes \beta)(m) = \sum_{i=0}^{n} \binom{n}{i} \big[\alpha(n-i), \beta(m+i) \big].$$ (1)

We say that a pair of formal series $\alpha, \beta \in L[[z^{\pm 1}]]$ are local if there is $N = N(\alpha, \beta) \in \mathbb{Z}_+$ such that

$$\sum_{i=0}^{N} (-1)^i \binom{N}{i} [\alpha(n-i), \beta(m+i)] = 0$$

for all $m, n \in \mathbb{Z}$. In particular we have $\alpha \otimes \beta = 0$ for all $n \geq N$.

The Dong’s lemma \cite{2,3} states that if $\alpha, \beta, \gamma \in L[[z^{\pm 1}]]$ are three pairwise local formal series, then $\alpha \otimes \beta \gamma$ and $\gamma \otimes \alpha \beta$ are local for all $n \in \mathbb{Z}_+$.

Let $\mathfrak{L} \subset L[[z^{\pm 1}]]'$ be a subspace of pairwise local formal series closed under D and under all products \otimes. Then \mathfrak{L} is a Lie conformal superalgebra.

Alternatively, we can define a Lie conformal superalgebra axiomatically as a $k[D]$-module $\mathfrak{L} = \mathfrak{L}^0 \oplus \mathfrak{L}^1$ equipped with a family of products \otimes, $n \in \mathbb{Z}_+$ satisfying the following axioms (see e.g. \cite{3,27}):

1. (Locality) $a \otimes b = 0$ for $n \gg 0$;
2. (Da) $\otimes b = -na \otimes b$;
3. $D(a \otimes b) = (Da) \otimes b + a \otimes (Db)$;
4. (Quasisymmetry)

$$a \otimes b = -(-1)^{p(a)p(b)} \sum_{i \geq 0} (-1)^{n+i+1} \frac{1}{i!} D^i(b \otimes a);$$ (2)

5. (Conformal Jacobi identity)

$$\sum_{i=0}^{n} (-1)^i \binom{n}{i} ig[a \otimes (b \otimes c) - (a \otimes b) \otimes c - (-1)^{p(a)p(b)} \otimes (a \otimes b \otimes c) \big].$$ (3)

Here $p(a)$ is the parity of a.

One can prove that any subspace in $L[[z^{\pm 1}]]'$ of pairwise local series, closed under the products \otimes and $D = d/dz$ satisfies all these axioms.

We will often use the notation $D^n = (-1)^n \frac{1}{n!} D^n$.

1.2. The coefficient algebra. Let \mathcal{U} be a $k[D]$-module. Its space of coefficients $U = \text{Coeff } \mathcal{U}$ is constructed as follows. Consider the space $\mathcal{U} \otimes k[t, t^{-1}]$, where t is an independent variable. We will write $a \otimes t^n = a(n)$ for $a \in \mathcal{U}$. Let $E = \text{Span}_k \{ (Da)(n) + n a(n-1) \mid a \in \mathcal{U}, n \in \mathbb{Z} \}$. Then let

$$U = \text{Coeff } \mathcal{U} = \mathcal{U} \otimes k[t, t^{-1}]/E.$$

There is a homomorphism $\mathcal{U} \to U[[z^{\pm 1}]]$ given by $a \mapsto \sum_n a(n) z^{-n-1}$. This homomorphism is the universal one among all the representations of \mathcal{U} by formal series: if $\mathcal{U} \to U'[[[z^{\pm 1}]]$ is another
k[D]-homomorphism, then there is a unique homomorphism $U \rightarrow U'$ such that the diagram

$$U[[z^{\pm 1}]] \xrightarrow{\mathfrak{U}} U'[[[z^{\pm 1}]]$$

commutes.

If \mathfrak{U} has a structure of a conformal algebra, then the space $U = \text{Coeff} \mathfrak{U}$ becomes a “usual” algebra. The product on U is defined by

$$[a(m), b(n)] = \sum_{i \geq 0} {m \choose i} (a \boxtimes b)(m + n - i).$$

The sum here makes sense due to the locality of a and b. In this case U is called the coefficient algebra of \mathfrak{U}. It still has the universality property mentioned above.

Let \mathfrak{L} be a Lie conformal superalgebra and let $L = \text{Coeff} \mathfrak{L}$ be its Lie superalgebra of coefficients. Then $L = L_- \oplus L_+$ is a direct sum of subalgebras $L_- = \text{Span} \{a(n) \mid a \in \mathfrak{L}, n < 0\}$ and $L_+ = \text{Span} \{a(n) \mid a \in \mathfrak{L}, n \geq 0\}$. The derivation D is also a derivation of L, acting by $D(a(n)) = -na(n-1)$. We see that L_- and L_+ are closed under the action of D.

1.3. Conformal modules. Let as before \mathfrak{L} be a Lie conformal superalgebra and let $L = \text{Coeff} \mathfrak{L} = L_- \oplus L_+$ be its Lie superalgebra of coefficients. Denote by $\tilde{L}_+ = L_+ \oplus \mathbb{k}D$ the extension of L_+ by D. A module over \mathfrak{L} is by definition a \tilde{L}_+-module \mathfrak{U}, such that for any $u \in \mathfrak{U}$ and $a \in \mathfrak{L}$ we have $a(n)u = 0$ for $n \gg 0$. One can view \mathfrak{U} as a $\mathbb{k}[D]$-module such that for any $a \in \mathfrak{L}$, $u \in \mathfrak{U}$ and $n \in \mathbb{Z}_+$ there is an action $a \boxtimes u \in \mathfrak{U}$, so that the semidirect product $\mathfrak{L} \ltimes \mathfrak{U}$ becomes a Lie conformal superalgebra, and \mathfrak{U} being its abelian ideal.

The space of coefficients $U = \text{Coeff} \mathfrak{U}$ becomes a module over L by

$$a(m)u(n) = \sum_{i \geq 0} {m \choose i} (a \boxtimes u)(m + n - i).$$

1.4. Examples.

1.4.1. Affine algebras. Let \mathfrak{g} be an arbitrary Lie superalgebra. Consider the corresponding loop algebra $\tilde{\mathfrak{g}} = \mathfrak{g} \otimes \mathbb{k}[t, t^{-1}]$. Now for any $a \in \mathfrak{g}$, define

$$\tilde{a} = \sum_{n \in \mathbb{Z}} at^n z^{-j-1} \in \tilde{\mathfrak{g}}[[z, z^{-1}]].$$

It is easy to see that any two \tilde{a}, \tilde{b} are local with $N(\tilde{a}, \tilde{b}) = 1$ and $\tilde{a} \boxtimes \tilde{b} = (\tilde{a}, \tilde{b})$.

By the Dong’s lemma the series $\{\tilde{a} \mid a \in \mathfrak{g}\} \subset \tilde{\mathfrak{g}}[[z, z^{-1}]]$ generate a Lie conformal superalgebra \mathfrak{G}. As a $\mathbb{k}[D]$-module, $\mathfrak{G} \cong \mathbb{k}[D] \otimes \mathfrak{g}$.

In practice we are often interested in central extensions of loop algebras. Assume that \mathfrak{g} has trivial odd part, and that \mathfrak{g} is equipped with an invariant bilinear form (\cdot, \cdot). Consider then the Lie algebra $\text{Aff}(\mathfrak{g}) = (\mathfrak{g} \otimes \mathbb{k}[t, t^{-1}]) \oplus \mathbb{k}\mathfrak{c}$ with the brackets given by

$$[a(m), b(n)] = [a, b](m + n) + \delta_{m,-n} m \langle a|b\rangle \mathfrak{c}.$$

The algebra $\text{Aff}(\mathfrak{g})$ is called the affiliation of \mathfrak{g}. It is the coefficient algebra of a conformal algebra $\mathfrak{A}\text{ff}(\mathfrak{g}) \subset G[[z, z^{-1}]]$ which is generated by the series $\tilde{a} = \sum_{n} a(n) z^{-n-1}$ for $a \in \mathfrak{g}$ and $\mathfrak{c} = c(-1)$ so that $D\mathfrak{c} = 0$ and

$$\tilde{a} \boxtimes \tilde{b} = (\tilde{a}, \tilde{b}), \quad \tilde{a} \boxtimes \mathfrak{c} = (a|b) \mathfrak{c}.$$

In the case when \mathfrak{g} is an abelian Lie algebra, the corresponding Affine algebra $\text{Aff}(\mathfrak{g})$ is a Heisenberg algebra, and $\mathfrak{A}\text{ff}(\mathfrak{g})$ is a Heisenberg conformal algebra. In the physics literature the series \tilde{a} are sometimes referred to as \textit{bozons} in this case.
1.4.2. The Clifford algebra. As another example, take \(\mathfrak{g} \) to be a two-dimensional odd linear space spanned over \(k \) by \(g_1 \) and \(g_{-1} \). Consider the central extension \(Cl = \mathfrak{g} \otimes k[t, t^{-1}] \oplus k \mathfrak{c} \) of the corresponding loop algebra with the brackets given by
\[
[g_\varepsilon(m), g_{-\varepsilon}(n)] = \delta_{m+n-1} \mathfrak{c}, \quad \varepsilon = \pm 1,
\]
the rest of the brackets are 0. We let \(\mathfrak{c} \) to be even. The algebra \(Cl \) is called the Clifford Lie superalgebra. It is the coefficient algebra of the conformal Lie superalgebra \(Cl \subset Cl[[z, z^{-1}]] \) spanned over \(k[D] \) by \(\gamma_\varepsilon = g_\varepsilon, \ \varepsilon = \pm 1 \), and \(\mathfrak{c} = \mathfrak{c}(-1) \) with the products given by \(\gamma_\varepsilon \delta = \mathfrak{c} \) (the rest of the products are 0). The series \(\gamma_\pm \) are sometimes called fermions by physicists.

The Clifford algebra \(Cl \) is doubly graded: set \(p(\gamma_\varepsilon(n)) = \varepsilon \) and \(d(\gamma_\varepsilon(n)) = -n - \frac{1}{2} \) for \(\varepsilon = \pm 1 \), \(n \in \mathbb{Z} \), so we get
\[
Cl = \bigoplus_{p \in \mathbb{Z}} Cl_p, \quad Cl_p = \bigoplus_{d \in \mathbb{Z}/2} Cl_{p,d}.
\]

The conformal Clifford algebra \(Cl \) is also doubly graded such that \(d(\gamma_\varepsilon) = \frac{1}{2} \), \(p(\gamma_\varepsilon) = \varepsilon \), \(p(\mathfrak{c}) = d(\mathfrak{c}) = 0 \) and \(Cl_{p,d} = k \mathfrak{c} \mathfrak{l}_{p,d} \subset Cl_{p+p', d+d'-n-1}, \quad DCl_{p,d} \subset Cl_{p,d+1} \).

1.4.3. The Lie algebra of differential operators. Another example of conformal algebras is obtained from the Lie algebra of differential operators. Let \(A = k \{p, t^{\pm 1} | [t, p] = 1\} \) be the (localization in \(t \)) of the associative Weyl algebra. Let \(W = A((-1)) \) be the corresponding Lie algebra. It is the coefficient algebra of a Lie conformal algebra \(W \subset W[[z, z^{-1}]] \) which is spanned over \(k[D] \) by elements
\[
p_m = \sum_{n \in \mathbb{Z}} \frac{1}{m!} p^m t^n z^{n-1} \subset W[[z, z^{-1}]]
\]
with the multiplication table
\[
p_m \delta p_n = \left(\begin{array}{c} m+n-k \hfill m \hfill \\
\end{array} \right) p_{m+n-k} - (-1)^k \sum_{s=0}^{m-k} \left(\begin{array}{c} m+n-k-s \hfill n \hfill \\
\end{array} \right) D^s p_{m+n-k-s}.
\]

The algebra \(W \) has a unique central extension \(\widehat{W} = W \oplus k \mathfrak{c} \), defined by the 2-cocycle \(\phi : W \times W \rightarrow k \) given by
\[
\phi(p^m t^k, p^n t^l) = \delta_{m+n,k+l} (-1)^m m! n! \left(\begin{array}{c} k \hfill m+n+1 \hfill \\
\end{array} \right).
\]

The algebra \(\widehat{W} \) is usually referred to as \(\mathfrak{W}_{1+\infty} \), see e.g. [3]. It is the coefficient algebra of a central extension \(\mathfrak{W} = \mathfrak{W} \oplus k \mathfrak{c} \) of the conformal Lie algebra \(\mathfrak{W} \), defined by the conformal 2-cocycle \(\phi_k : \mathfrak{W} \times \mathfrak{W} \rightarrow k \mathfrak{c}, \ k \in \mathbb{Z}_+ \), given by
\[
\phi_k (p_m, p_n) = \delta_{k,m+n+1} (-1)^m \mathfrak{c}.
\]

The algebras \(W \) and \(\widehat{W} \) are graded by setting \(\deg p = \deg t^{-1} = 1 \), \(\deg t = -1 \), \(\deg \mathfrak{c} = 0 \). The conformal algebras \(\mathfrak{W} \) and \(\mathfrak{W} \) inherit the gradation from \(W \) and \(\widehat{W} \) respectively, so that we have \(\deg (p_m) = m+1 \), \(\deg D = 1 \), \(\deg \delta = -k-1 \).

1.4.4. The Virasoro conformal algebra. Here are all non-zero products in \(\mathfrak{W} \) between \(p_0 \) and \(p_1 \):
\[
p_0 \delta p_0 = \mathfrak{c}, \quad p_0 \delta p_1 = p_0, \quad p_0 \delta p_1 = \mathfrak{c},
\]
\[
p_1 \delta p_1 = D p_1, \quad p_1 \delta p_1 = 2 p_1, \quad p_1 \delta p_1 = -\mathfrak{c},
\]
\[
p_1 \delta p_0 = D p_0, \quad p_1 \delta p_0 = p_0, \quad p_1 \delta p_0 = -\mathfrak{c}.
\]

The element \(p_0 \in \mathfrak{W} \) generates a copy of the Heisenberg conformal algebra \(\mathfrak{H} = \mathfrak{H}((k) \subset \mathfrak{W} \), introduced in [4.1]. Its coefficient algebra \(H = \text{Coeff} \mathfrak{H} \) is the affinization of the one-dimensional trivial Lie algebra, so we have
\[
[p_0(m), p_0(n)] = \delta_{m, -n} m \mathfrak{c}.
\]
The element \(p_1 \in \widehat{Vir} \) generates the Virasoro conformal algebra \(\widehat{Vir} \subset \widehat{W} \). Its coefficient algebra \(Vir = \text{Coeff } \widehat{Vir} \) is spanned by \(p_1(m) \) for \(m \in \mathbb{Z} \) and \(c \) with the brackets given by

\[
[p_1(m), p_1(n)] = (m - n) p_1(m + n - 1) - \delta_{m+n,2} \binom{m}{3} c.
\]

Together \(p_0 \) and \(p_1 \) span a semidirect product \(\widehat{Vir} \ltimes \mathfrak{h} \subset \widehat{W} \).

Note that \(\deg p_0 = 1 \) and \(\deg p_1 = 2 \).

1.4.5. \(N = 2 \) simple Lie conformal superalgebra. A conformal algebra \(\mathfrak{A} \) is said to be of a finite type if it is a finitely generated module over \(\mathbb{k}[D] \). The algebras \(\widehat{Vir}, \mathcal{E}l \) and \(\mathfrak{Aff}(\mathfrak{g}) \) for finite dimensional \(\mathfrak{g} \) defined above are of a finite type. All simple and semisimple Lie conformal superalgebras of finite type are classified by Kac in [14], see also [5] for the non-super case.

Besides the algebras mentioned above we will need in the sequel the following simple finite type Lie conformal superalgebra, called the \(N = 2 \) Lie conformal superalgebra. It is spanned over \(\mathbb{k}[D] \) by two odd elements \(\gamma_{-1}, \gamma_{+1} \) and two even elements \(v, h \). Elements \(v \) and \(h \) generate respectively the Virasoro and Heisenberg Lie conformal algebra, so the even part of the \(N = 2 \) superalgebra is equal to \(\widehat{Vir} \ltimes \mathfrak{h} \). The remaining non-zero products between the generators are

\[
\gamma_{-1} \Box \gamma_1 = v + \frac{1}{2} Dh, \quad \gamma_{-1} \Box \gamma_1 = h, \quad v \Box \gamma_{\pm 1} = D \gamma_{\pm 1},
\]

\[
v \Box \gamma_{\pm 1} = \frac{3}{2} \gamma_{\pm 1}, \quad h \Box \gamma_{\pm 1} = \pm \gamma_{\pm 1}.
\]

Use (2) to get products in the other order.

1.5. Vertex algebras. In order to define vertex algebras, we need to consider the so-called fields instead of formal power series. Let \(V = V^0 \oplus V^1 \) be a vector superspace. Denote by \(gl(V) \) the Lie superalgebra of all \(\mathbb{k} \)-linear operators on \(V \). Consider the space \(F(V) \subset gl(V)[[z^\pm 1]] \) of fields on \(V \), given by

\[
F(V) = \left\{ \sum_{n \in \mathbb{Z}} a(n) z^{-n-1} \left| \forall v \in V, a(n)v = 0 \text{ for } n \gg 0 \right. \right\}.
\]

For \(\alpha(z) \in F(V) \) denote \(\alpha_-(z) = \sum_{n<0} a(n) z^{-n-1}, \alpha_+(z) = \sum_{n \geq 0} a(n) z^{-n-1} \). Denote also by \(1 = 1_{F(V)} \in F(V) \) the identity operator, such that \(1(-1) = \text{Id}_V \), all other coefficients are 0.

In addition to the products \(\Box \), \(n \in \mathbb{Z}_+ \), defined by (1), the space of fields \(F(V) \) has products \(\Box \) for \(n < 0 \). Define first \(1 \Box \) by

\[
\alpha(z) 1 \Box \beta(z) = \alpha_-(z) \beta(z) + \beta(z) \alpha_+(z).
\]

Note that the products of fields here make sense, since for any \(v \in V \) we have \(\alpha(n)v = \beta(n)v = 0 \) for \(n \gg 0 \).

Next, for any \(n < 0 \) set

\[
\alpha(z) \Box \beta(z) = \frac{1}{(-n-1)!} \left(D^{-n-1} \alpha(z) \right) 1 \Box \beta(z),
\]

where \(D = \frac{d}{dz} \). It is easy to see that

\[
\alpha 1 \Box 1 = \alpha, \quad \alpha \Box 1 = D \alpha, \quad 1 \Box \alpha = \delta_{-1,n} \alpha.
\]

It also follows easily from definitions that \(D \) is a derivation of all these products:

\[
D(\alpha \Box \beta) = D \alpha \Box \beta + \alpha \Box D \beta.
\]

We have the following explicit formula for the products: if \((\alpha \Box \beta)(z) = \sum_m (\alpha \Box \beta)(m) z^{-m-1}, \) then

\[
(\alpha \Box \beta)(m) = \sum_{s \leq n} (-1)^{s+n} \binom{n}{s-1} \alpha(s) \beta(m + n - s) - (-1)^{p(a)p(b)} \sum_{s \geq 0} (-1)^{s+n} \binom{n}{s} \beta(m + n - s) \alpha(s).
\]
The notion of locality introduced in [11] applies also to fields without any changes. The Dong’s lemma holds for fields instead of formal power series as well.

A vertex superalgebra is a subspace of fields $\mathcal{V} \subset F(V)$ such that $\mathbb{1} \in \mathcal{V}$, $\alpha, \beta \in \mathcal{V}$ for every $\alpha, \beta \in \mathcal{V}$ and $n \in \mathbb{Z}$, and every $\alpha, \beta \in \mathcal{V}$ are local to each other. For an axiomatic definition of vertex superalgebras, equivalent to the above description, we refer the reader to [11].

For a vertex superalgebra \mathcal{V} one can consider the left regular action map $\rho : \mathcal{V} \rightarrow F(\mathcal{V})$ given by $Y(a)(z) = \sum_{n \in \mathbb{Z}} (a, b) z^{-n-1}$. One of the main properties of vertex superalgebras is that Y is a vertex superalgebra homomorphism, in particular $Y(a \otimes b) = Y(a) \otimes Y(b)$, which is equivalent to the following generalization of the conformal Jacobi identity (3):

\[
\begin{align*}
(a \boxtimes b) \boxtimes c &= \sum_{s \leq n} (-1)^{s+n} \binom{n}{n-s} a \boxtimes (b \| m+n-s \| c) \\
&
- (-1)^{p(a)p(b)} \sum_{s \geq 0} (-1)^{s+n} \binom{n}{s} b \| m+n-s \| (a \boxtimes c),
\end{align*}
\]

for all $m, n \in \mathbb{Z}$.

We note that vertex superalgebras are in particular conformal superalgebras. Moreover, it can be shown that the quasisymmetry identity (3) holds in vertex superalgebras for all integer n.

1.6. Enveloping vertex algebras of a conformal algebra. Let again \mathcal{L} be a conformal superalgebra and $L = \text{Coeff } \mathcal{L} = L_+ \oplus L_-$ be its coefficient Lie superalgebra. Denote by $\hat{L} = L \oplus kD$ the extension of L by the derivation D, see §1.2. Consider a homomorphism of conformal superalgebras $\rho : \mathcal{L} \rightarrow \mathcal{V}$ of \mathcal{L} into a vertex superalgebra \mathcal{V}. If \mathcal{V} is generated as a vertex superalgebra by $\rho(\mathcal{L})$ then we call it an enveloping vertex superalgebra of \mathcal{L}.

An L-module (or \hat{L}-module) U is called a highest weight module if it is generated as a module over L by a single element $u \in U$ such that $L_+ u = D u = 0$. In this case u is called a highest weight vector.

It is well-known [14, 26, 27] that the enveloping vertex superalgebra \mathcal{V} has the structure of a highest weight module over $\hat{L} = \text{Coeff } \mathcal{L} \oplus kD$ with the highest weight vector $\mathbb{1}$ defined by $a(n)v = \rho(a) \mathbb{1} v$. Ideals of \mathcal{V} are \hat{L}-submodules and if $\rho_1 : \mathcal{L} \rightarrow \mathcal{V}_1$ and $\rho_2 : \mathcal{L} \rightarrow \mathcal{V}_2$ are two enveloping vertex algebras of \mathcal{L} and $\psi : \mathcal{V}_1 \rightarrow \mathcal{V}_2$ is a vertex algebra homomorphism such that $\rho_1 \psi = \rho_2$ then ψ is an \hat{L}-module homomorphism. Conversely, any highest weight module V over \hat{L} with the highest weight vector $\mathbb{1}$ has a structure of enveloping vertex algebra of \mathcal{L} with the map $\rho : \mathcal{L} \rightarrow V$ given by $\rho(a) = a(-1) \mathbb{1}$. In this case we have $a(n)v = \rho(a) \mathbb{1} v$ for $a \in \mathcal{L}$, and $\mathcal{L}_+ u = D u = 0$. In this case u is called a highest weight vector.

We also mention the notion of universal (or Verma) highest weight module over L. It is defined by $V(L) = \text{Ind}_L^{\hat{L}} \mathbb{1} \hat{L} = U(L) \otimes_{U(L_+)} k \mathbb{1}$. The action of the derivation D on L can be naturally extended to the action on $V(L)$, so $V(L)$ becomes an \hat{L}-module. Verma module is universal in the sense that for any other highest weight module U with highest weight vector u there is unique homomorphism $V(L) \rightarrow U$ such that $\mathbb{1} \mapsto u$. So the theorem implies that the enveloping vertex algebra corresponding to the Verma module $V(L)$ is universal in the obvious sense. It is called the universal enveloping vertex algebra of \mathcal{L}.

1.7. Lattice vertex algebras. In this section we construct a very important example of vertex superalgebras, called lattice vertex superalgebras. We mostly follow [11], see also [11, 14, 11]. The Frenkel-Lepowsky-Meurman Moonshine vertex algebra V^\natural, for example, is closely related to the vertex algebra corresponding to the Leech lattice — a simple unimodular lattice of rank 24. Also, the lattice vertex algebras play a very important role in physics.

We start from an integer lattice Λ of rank ℓ. It comes with an integer-valued bilinear form $\langle \cdot, \cdot \rangle$. Let $\mathfrak{h} = \Lambda \otimes_{\mathbb{Z}} k$ and we extend the form to \mathfrak{h}. Let $\nu : \mathfrak{h} \rightarrow \mathfrak{h}^*$ be the usual identification of \mathfrak{h} with \mathfrak{h}^* by means of this form.

Let $\mathfrak{h} \mathfrak{f}(\mathfrak{h})$ be the Heisenberg conformal algebra corresponding to the space \mathfrak{h} (see §4.1), and let $H = \text{Aff}(\mathfrak{h}) = \text{Coeff } \mathfrak{h} \mathfrak{f}(\mathfrak{h})$ be its coefficient Heisenberg algebra. Take some $\beta \in \Lambda$ and let V_β be
the canonical relation representation of \(H \), that is, a highest weight irreducible \(H \)-module generated by the highest weight vector \(v_\beta \) such that \(h(0) = (h|\beta) \text{ Id} \), \(c = \text{Id} \).

It follows from §1.0 that \(V_0 \) is an enveloping vertex algebra of \(\mathfrak{H} \), \(v_0 = 1 \). It can be shown that \(V_\beta \) is a module over the vertex algebra \(V_0 \). We define \(V_\Lambda = \bigoplus_{\beta \in \Lambda} V_\beta = V_0 \otimes k[\Lambda] \).

Let \(\varepsilon : \Lambda \times \Lambda \to \{ \pm 1 \} \) be a bimultiplicative map such that
\[
\varepsilon(\alpha, \beta) = (-1)^{(|\alpha||\beta|)+|\beta|} (-1)^{|\beta|} \varepsilon(\beta, \alpha).
\]
for any \(\alpha, \beta \in \Lambda \). We remark that it is enough to check the identity (8) only when \(\alpha \) and \(\beta \) belong to some \(\mathbb{Z} \)-basis of \(\Lambda \); then (8) will follow for general \(\alpha, \beta \) by bimultiplicativity.

Let
\[
1 \to \{ \pm 1 \} \to \hat{\Lambda} \to \Lambda \to 1
\]
be the extension of \(\Lambda \) corresponding to the cocycle \(\varepsilon \). Let \(e : \Lambda \to \hat{\Lambda} \) be a section of this extension. The extended lattice \(\hat{\Lambda} \) acts on the group algebra \(k[\Lambda] \) of \(\Lambda \) by \(e(\alpha)e^\beta = \varepsilon(\alpha, \beta)e^{\alpha+\beta} \).

For \(m \in \mathbb{Z}_+ \) let \(\mathcal{P}(m) = \{ k = (k_1, k_2, \ldots) \mid k_i \geq 0, \sum_{i \geq 1} ik_i = m \} \) be the set of partitions of \(m \).

The main result (6, 7, 11, 15) is that there is a unique vertex superalgebra structure on \(V = V_\Lambda \) such that \(a \Box v = a(n)_v \) for any \(a \in \mathfrak{H}_0 \) and \(v \in V \). The products are defined by
\[
v_\alpha \Box v_\beta = \varepsilon(\alpha, \beta) \sum_{k \in \mathcal{P}(\{0\})} \prod_{j \geq 1} \frac{\alpha(-j)}{j!} v_{\alpha+\beta}.
\]
In particular, \(v_\alpha \Box v_\beta = 0 \) if \(n \geq - (\alpha|\beta) \) and \(v_\alpha \Box \left(-\alpha|\beta\right)-1 v_\beta = \varepsilon(\alpha, \beta) v_{\alpha+\beta} \), \(v_\alpha \Box \left(-\alpha|\beta\right)-2 v_\beta = \varepsilon(\alpha, \beta)\alpha(-1) v_{\alpha+\beta} \). Note that \(V_0 \Box V_0 \subset V_{\alpha+\beta} \).

The even and odd parts of \(V \) are
\[
V^0 = \bigoplus_{\alpha \in \Lambda: (\alpha|\alpha) \in 2\mathbb{Z}} V_\alpha, \quad V^1 = \bigoplus_{\alpha \in \Lambda: (\alpha|\alpha) \in 2\mathbb{Z}+1} V_\alpha.
\]
The vertex algebra \(V \) is simple if the form \((\cdot|\cdot) \) is non-degenerate.

Under the left regular action map \(Y : V \to F(V) \) the elements \(v_\alpha \) are mapped to the so-called vertex operators
\[
Y(v_\alpha) = \Gamma_\alpha(z) = e(\alpha)z^{\alpha(0)} E_-(\alpha, z) E_+(\alpha, z),
\]
where
\[
E_\pm(\alpha, z) = \exp \sum_{n \geq 0} -\frac{\alpha(n)}{n} z^{-n} \in F(V),
\]
and the field \(z^{\alpha(0)} \in F(V) \) is defined by \(z^{\alpha(0)}|_{V_\mu} = \sum_{n \in \mathbb{Z}} \delta_{\mu, \alpha|\mu} z^n \). We also have
\[
[h(n), e(\alpha)] = \delta_{n, 0} \alpha(\alpha|h) e(\alpha).
\]

Besides the grading by the lattice \(\Lambda \), the vertex superalgebra \(V \) has another grading by the group \(\frac{1}{2} \mathbb{Z} \), so that \(\deg v_\alpha = \frac{1}{2}(\alpha|\alpha) \), \(\deg a = 1 \) for every \(a \in \mathfrak{H}_0 \), \(\deg = -n - 1 \) and \(\deg D = 1 \). We have decomposition
\[
V_\beta = \bigoplus_{d \in \frac{1}{2}(\beta|\beta) + \mathbb{Z}_+} V_{\beta,d}.
\]

Let \((\alpha_1, \ldots, \alpha_\ell) \) and \((\beta_1, \ldots, \beta_\ell) \) be dual bases of \(\mathfrak{H} \), i.e. such that \((\alpha_i|\beta_j) = \delta_{ij} \). Then the element \(\omega = \frac{1}{2} \sum_{i=1}^{\ell} \alpha_i \Box \beta_i \in V_0 \) generates a copy of the Virasoro Lie conformal algebra \(\mathfrak{Vir} \), defined in §4.4, such that \(\omega \Box v = DV \) for all \(v \in V \), \(\omega \Box v = (\deg v)v \) for all homogeneous \(v \in V \), \(\omega \Box \omega = 0 \) and \(\omega \Box \omega = \frac{1}{2} \).

We will identify the Heisenberg conformal algebra \(\mathfrak{H} \) with its image in \(V_0 \) under the map \(\tilde{h} \mapsto h(-1)1 \) for \(h \in \mathfrak{H} \), \(c \mapsto 1 \).

We remark that the vertex superalgebra structure of \(V_\Lambda \) is very explicit. A basis of \(V_\Lambda \) is given by all expressions of the form
\[
\alpha_1(n_1)\alpha_2(n_2) \ldots \alpha_\ell(n_\ell)\beta_\beta, \quad \alpha_i, \beta \in \Lambda, \quad 0 > n_i \in \mathbb{Z},
\]
and the products of these elements are easily calculated using the formula \((\alpha m, v_\beta(n)) = (\alpha|\beta) v_\beta(m + n), \quad [\alpha(m), \beta(n)] = (\alpha|\beta) m \delta_{m,-n}\)
for \(\alpha, \beta \in A, m, n \in \mathbb{Z}\), and the identities \([2]\) and \([3]\) of vertex superalgebras.

2. Jordan triple systems and Tits-Kantor-Koecher construction

2.1. The Tits-Kantor-Koecher construction. Let \(L = L_{-1} \oplus L_0 \oplus L_1\) be a three-graded Lie algebra, such that \([L_i, L_j] \subset L_{i+j}\) whenever \(i, j, i + j \in \{-1, 0, 1\}\) and \([L_1, L_1] = [L_{-1}, L_{-1}] = 0\). Assume that \(L_0 = [L_{-1}, L_1]\) and \(L_0 \cap Z(L) = 0\), where \(Z(L)\) is the center of \(L\). Consider a pair of trilinear maps

\[\varphi_{\pm}: L_1 \times L_{-1} \times L_1 \to L_1, \quad \varphi_{-}: L_{-1} \times L_1 \times L_{-1} \to L_{-1},\]

given by \(\varphi_{\pm}(a, b, c) = \frac{1}{3} [[a, b], c]\). The tuple \(J = \{(L_{-1}, L_1), \varphi_{\pm}\}\) is a so-called a Jordan pair. All Jordan pairs can be obtained in this way. In fact one can define Jordan pairs formally by imposing certain axioms on the maps \(\varphi_{\pm}\). From an abstractly defined Jordan pair \(J = \{(L_{-1}, L_1), \varphi_{\pm}\}\) one can construct a three-graded Lie algebra \(L(J) = L_{-1} \oplus L_0 \oplus L_1\), where \(L_0 = D(J)\) is the Lie algebra of inner derivations of \(J\). This is known as the Tits-Kantor-Koecher construction, see [30, 20, 21].

A Jordan pair \(J\) is simple if and only if the TKK Lie algebra \(L(J)\) is simple.

A derivation \(d = (d_{-}, d_{+})\) of a Jordan pair \(J = \{(L_{-1}, L_1), \varphi_{\pm1}\}\) is a pair of linear maps \(d_{-}: L_{-} \to L_{-}, \quad d_{+}: L_{+} \to L_{+}\), such that

\[d_{\pm}(\varphi_{\pm}(a, b, c)) = \varphi_{\pm}(d_{\pm}(a), b, c) + \varphi_{\pm}(a, d_{\pm}(b), c) + \varphi_{\pm}(a, b, d_{\pm}(c)).\]

As it is the case for other algebraic structures, the set of all derivations of \(J\) is a Lie algebra under the usual commutator operation. Let \(a \in L_{-1}, b \in L_1\). It turns out that \(d_{ab} = (\varphi_-(a, b, \cdot), \varphi_+(b, a, \cdot))\) is a derivation of \(J\), called an inner derivation. The Lie algebra \(L_0\) can be identified with the set \(D(J) = \{d_{ab} \mid a \in L_{-1}, b \in L_1\}\) of all inner derivations of \(J\) by \(d_{ab} = \frac{1}{3}[a, b]\).

There is a very important case when \(L_{-1} = L_1\) and \(\varphi_{+} = \varphi_{-}\). Then \(J\) is called a Jordan triple system. In terms of the three-graded Lie algebra \(L = L(J)\) this means that there is an involution \(\sigma: L \to L\) such that \(\sigma(L_{-\varepsilon}) = L_{-\varepsilon}, \quad \varepsilon = \pm 1\), is the identification of \(L_{-1}\) and \(L_1\). All Jordan pairs we deal with in this paper are in fact Jordan triple systems.

2.2. Example: associative algebras. Here we consider some important examples of Jordan triple systems. Let \(A\) be an associative algebra. We define a triple operation \(\varphi: A \times A \times A \to A\) by \(\varphi(a, b, c) = \frac{1}{4}(abc + cba)\). The TKK Lie algebra \(L(A)\) can be identified with a subalgebra of the Lie algebra \(gl_2(A)\) of \(2 \times 2\) matrices over \(A\) modulo the center:

\[L(A) = \text{Span}_{\mathbb{R}} \left\{ \begin{pmatrix} -d & b \\ a & c \end{pmatrix} \in gl_2(A)/Z(gl_2(A)) \left| \begin{array}{c} a, b, c, d \in A \end{array} \right. \right\}.\]

Here \(L(A)_{-1}\) consists of lower triangular matrices, \(L(A)_1\) consists of upper triangular matrices and \(L(A)_0\) is the space of all diagonal matrices in \(L(A)\). Quite often it happens that \(L(A) = gl_2(A)/Z(gl_2(A))\).

Now assume that there is an involution or an anti-involution \(\tau: A \to A\) on \(A\). Then both the set \(A^\tau\) of \(\tau\)-stable elements and the set \(A^{-\tau}\) of those elements that change sign under the action of \(\tau\) are closed under the triple operation. The corresponding TKK Lie algebra \(L(A^\pm\tau)\) can be still represented by \(2 \times 2\) matrices over \(A\). Consider the case when \(\tau: A \to A\) is an anti-involution. Then

\[L(A^\pm\tau) = \left\{ \begin{pmatrix} -\tau(x) & b \\ a & x \end{pmatrix} \left| a, b \in A^\pm\tau, \quad x \in D \subset A^{(-)} \right. \right\},\]

where \(D \subset A^{(-)}\) is a Lie subalgebra of \(A^{(-)}\) generated by all elements of the form \(ab\) for \(a, b \in A^\pm\tau\). We see that \(D = L(A^\pm\tau)_0\) is precisely the Lie algebra of inner derivations of the Jordan pair \((A^\pm\tau, A^\pm\tau)\). It acts on \(A^\pm\tau\) by \(x.a = xa + a\tau(x)\) where \(x \in D, \ a \in A^\pm\tau\). The involution \(\sigma: L(A^\pm\tau) \to L(A^\pm\tau)\) acts by \((-\tau(x)b)_{\tau}^x \tau(a \tau(x))\), therefore, \(\sigma|_D = -\tau\).
2.3. The conformal algebra $\hat{\mathfrak{r}}$. Now let $A = k \langle p, t, t^{-1} \mid [t, p] = 1 \rangle$ be the localized Weyl algebra, the one we have dealt with in §1.4.3. It has an anti-involution $\tau : A \to A$ defined by $\tau(t) = t$, $\tau(p) = -p$. The space $J = A^{-\tau}$ is a Jordan triple subsystem of A. It is easy to see that J is simple. Let $K = L(J) = J \oplus D(J) \oplus J$ be the TKK Lie algebra corresponding to J.

Lemma 1. The Lie algebra K is the coefficient algebra of a simple conformal algebra $\hat{\mathfrak{r}}$.

Proof. First we construct the $k[D]$-module \mathfrak{r}, such that $J = \text{Coeff } \mathfrak{r}$. The anti-involution τ acts also on the $k[D]$-module $\mathfrak{A} \subset A[[z, z^{-1}]]$, generated by the series $p_m = \sum_n p_m(n) z^{-n-1} \in A[[z, z^{-1}]]$, see §1.4.3. (In fact \mathfrak{A} has a structure of an associative conformal algebra, see [16, 27]). We let $\mathfrak{r} = A^{-\tau}$ to be the $k[D]$-module of \mathfrak{A} consisting of those elements of \mathfrak{A} which change sign under the action of τ. We have $J = \text{Coeff } \mathfrak{r}$.

The Weyl algebra A is spanned by the coefficients $p_m(n) = \frac{1}{m!} p^m t^n$, $m \in \mathbb{Z}_+$, $n \in \mathbb{Z}$, see §1.4.3. Therefore the space J is spanned by the elements

$$u_m(n) = \tau(p_m(n)) - p_m(n) = -\frac{1}{m!} p^m t^n + (-1)^m \sum_{i \geq 0} \binom{n}{i} \frac{1}{(m-i)!} p^{m-i} t^{n-i}$$

for all $m \in \mathbb{Z}_+$, $n \in \mathbb{Z}$. Then the series

$$u_m = \sum_{n \in \mathbb{Z}} u_m(n) z^{-n-1} = -p_m + (-1)^m \sum_{i=0}^m D^{(i)} p_{m-i} \in \mathfrak{r}$$

span \mathfrak{r} over $k[D]$. Since $u_m(n) + \tau(u_m(n)) = 0$, we have

$$u_m + (-1)^m \sum_{i \geq 0} D^{(i)} u_{m-i} = 0,$$

therefore, if m is even, then we get

$$u_m = -\frac{1}{2} \sum_{i \geq 1} D^{(i)} u_{m-i}. \quad (10)$$

The remaining series $\{u_m \mid m \in 2\mathbb{Z}_+ + 1\}$ form a basis of \mathfrak{r} over $k[D]$.

Some simple calculations show that the algebra $D(J)$ of inner derivations of $J = A^{-\tau}$ is equal to the whole $W = A^{(\tau)}$. So J is a module over W, where the action is given by $x.a = xa + a\tau(x)$ for $x \in W$ and $a \in J$. This action induces the following action of W on \mathfrak{r}:

$$p_m(k)u_n = \binom{m + n - k}{m} u_{m+n-k} - \delta_{k,0} (-1)^n \sum_{i \geq 0} \binom{m + n - i}{m} D^{(i)} u_{m+n-i} \quad (11)$$

for all $m, n \in \mathbb{Z}_+$.

So we obtain TKK conformal algebra $\mathfrak{r} = \mathfrak{r}_{-1} \oplus \mathfrak{r}_0 \oplus \mathfrak{r}_{1} \subset K[[z, z^{-1}]]$, where a $k[D]$-basis of $\mathfrak{r}_0 = W[[z, z^{-1}]]$ for $m \in \mathbb{Z}_+$, a $k[D]$-basis of $\mathfrak{r}_{-1} = \mathfrak{r}$ is given by $u_m \in J[[z, z^{-1}]] = K_{-1}[[z, z^{-1}]]$ for $m \in 2\mathbb{Z}_+ + 1$, and $\mathfrak{r}_1 = \mathfrak{r}$ is spanned over $k[D]$ by the basis $\sigma(u_m) \in K_1[[z, z^{-1}]]$ for $m \in 2\mathbb{Z}_+ + 1$. Here $\sigma : \mathfrak{r} \to \mathfrak{r}$ is the involution identifying \mathfrak{r}_1 with \mathfrak{r}_{-1}. Since the coefficients of these series span K and are linearly independent, we have $J = \text{Coeff } \mathfrak{r}$.

The formula (11) shows that p_m and u_n in $K[[z, z^{-1}]]$ are local, hence so are p_m and $\sigma(u_n)$. The series u_m and $\sigma(u_n)$ are local as well because the product $K_{-1} \times K_1 \to K_0$ is just the the associative product in A if we identify $K_{-1} = K_1 = A^{-\tau} \subset A$ and $K_0 = A$ as linear spaces. \square

Here is the multiplication table in \mathfrak{r}. The products of p_m and p_n are given by (11), the products $p_m \square u_n = p_m(k)u_n$ are given by (11),

$$p_m \square \sigma(u_n) = (-1)^{m+1} \binom{m+n}{m} \sigma(u_{m+n-k})$$

$$+ (-1)^{m+n} \sum_{i=0}^n \binom{m+n-k-i}{m-k} D^{(i)} \sigma(u_{m+n-k-i}) \quad (12)$$
\begin{equation}
\sigma(u_m) = \left(\binom{m+n-k}{m} - (-1)^m \binom{m+n}{m}\right)p_{m+n-k} \nonumber
\end{equation}

\begin{equation}
-(-1)^n \sum_{i,j,l} (-1)^i \binom{k}{l} \left(\binom{j-k}{m} - (-1)^m \binom{j-l}{m}\right)D^{(m+n-j)}p_{j-k}.
\end{equation}

Remark. We see that \(\mathfrak{K} \) has all the rights to be called a conformal Jordan triple system. We could have defined the conformal triple operation on \(\mathfrak{J} \), this would be a family of trilinear maps, depending on two integer parameters.

The algebras \(K \) and \(\mathfrak{K} \) have central extensions \(\hat{K} = K \oplus \mathfrak{k}c \) and \(\hat{\mathfrak{K}} = \mathfrak{K} \oplus \mathfrak{k}c \) respectively, defined by 2-cocycles \(\phi : K \times K \rightarrow \mathfrak{k}c \) and \(\phi_k : \mathfrak{K} \times \mathfrak{K} \rightarrow \mathfrak{k}c \), \(k \in \mathbb{Z}_+ \), given by

\[\phi(u_m(k), \sigma(u_{n(l)})) = \delta_{k+m+n+1} \binom{m+n+1}{m} \left(\binom{m+n}{m} - 1\right), \]

\[\phi_k(u_m, \sigma(u_n)) = \delta_{k,m+n+1} \binom{m+n+1}{m} \left(\binom{m+n}{m} - 1\right). \]

Remark. It is possible to show that conformal algebra \(\mathfrak{K} \) (and even its subalgebra \(\mathfrak{M} \times \mathfrak{J} \)) is not embeddable into an associative conformal algebra, though it is finitely generated and has linear locality function, see [28]. It is proved in [28] that the linearity of locality function is a necessary condition for embedding of a finitely generated conformal algebra into an associative conformal algebra.

3. Bozon-Fermion Correspondence

3.1. Lie algebras of matrices. Let \(gl_\infty \) be the Lie algebra of infinite matrices which have only finitely many non-zero entries. Denote by \(E_{ij} \) the elementary matrix that has the only non-zero entry at the \(i \)th row and \(j \)th column. Then we have

\[[E_{i,j}, E_{k,l}] = \delta_{jk}E_{il} - \delta_{il}E_{kj}. \]

Let \(M \) be the Lie algebra of infinite matrices that have only finitely many non-zero diagonals. Both algebras \(gl_\infty \) and \(M \) are graded by setting the degree of \(E_{ij} \) equal to \(j - i \).

It is well-known [14] that \(gl_\infty \) and \(M \) have unique central extensions \(\widehat{gl_\infty} = gl_\infty \oplus \mathfrak{k}c \subset \widehat{M} = M \oplus \mathfrak{k}c \) defined by the 2-cocycle \(\phi(A,B) = \text{tr}([A,B]) \), where \(J = \sum_{i < 0} E_{ii} \in M \). We set \(\text{deg}c = 0 \). The values of \(\phi \) on the elementary matrices are given by

\[\phi(E_{i,j}, E_{k,l}) = \begin{cases}
\delta_{il}\delta_{jk} & \text{if } j < 0 \text{ and } i \geq 0, \\
-\delta_{il}\delta_{jk} & \text{if } i < 0 \text{ and } j \geq 0, \\
0 & \text{otherwise}.
\end{cases} \]

The associative Weyl algebra \(A = \mathbb{k} \langle t, t^{-1}, p \mid [t, p] = 1 \rangle \) is embedded into the associative algebra of infinite matrices by

\[t \mapsto \sum_{i \in \mathbb{Z}} E_{i,i-1}, \quad t^{-1} \mapsto \sum_{i \in \mathbb{Z}} E_{i,i+1}, \quad p \mapsto -\sum_{i \in \mathbb{Z}} (i+1) E_{i,i+1}, \]

hence the Lie algebra \(W = A^{(-)} \), defined in [14,4.3], is embedded into the Lie algebra \(M \).

Lemma 2. The restriction of the 2-cocycle \(\phi \) on \(W \) precisely coincides with the 2-cocycle on \(W \) given by [4].

Proof. Express the linear generators of \(W \) in terms of elementary matrices

\[p_m(n) = \frac{1}{m!} p^m t^n = (-1)^m \sum_{i \in \mathbb{Z}} \binom{i+m}{m} E_{i,i+m-n}. \]
Then using the formula (13) we obtain by some calculations that
\[\phi(p_m(k), p_n(l)) = \delta_{m+n,k+l} (-1)^m \binom{k}{m+n+1} . \]

Therefore the central extension \(\hat{W} \) of \(W \) is embedded into the Lie algebra \(\hat{M} \).

3.2. The Clifford vertex superalgebra. Let \(\mathfrak{Cl} \) be the Clifford conformal superalgebra, defined in \(\S \ref{sec:clifford} \) and let \(Cl = \text{Coeff} \mathfrak{Cl} \) be its coefficient Lie algebra. Let \(U = U(Cl)/ (c = 1) \) be the quotient of the universal enveloping algebra of \(Cl \) over the ideal generated by the relation \(c = 1 \).

The following lemma is proved by a straightforward computation, see e.g. \cite{13}.

Lemma 3. Let \(e_{ij} = \gamma_{-1}(i)\gamma_1(-j - 1) \in U \) for \(i,j \in \mathbb{Z} \) and let
\[\hat{e}_{ij} = \begin{cases} -\gamma_1(-j-1)\gamma_{-1}(i) & \text{if } i = j \geq 0, \\ e_{ij} & \text{otherwise.} \end{cases} \]

Then the mapping \(E_{ij} \mapsto e_{ij} \) defines an embedding of the Lie algebra \(gl_\infty \) of infinite matrices (see \(\S \ref{sec:gl_infty} \)) into \(U \), and the map \(E_{ij} \mapsto \hat{e}_{ij} \), \(c \mapsto 1 \) defines an embedding of the Lie algebra \(\hat{gl}_\infty \) into \(U \).

Note that \(d(\hat{e}_{ij}) = j - i = \deg E_{ij} \), \(p(\hat{e}_{ij}) = 0 \), see \(\S \ref{sec:gl_infty} \) for notations.

Now consider the universal highest weight module \(V \) over \(Cl \), see \(\S \ref{sec:modules} \). By definition \(V \) is generated over \(Cl \) by a single element \(1 \) such that \(c 1 = 1 \), \(Cl 1 = 0 \) and \(V = U(Cl) \otimes_{U(Cl_+) \oplus k 1} k 1 \). As a linear space \(V \) can be identified with the Grassman algebra \(k[\gamma_\epsilon(n) \mid \epsilon = \pm 1, n < 0] \), on which \(c \) acts as identity, \(\gamma_\epsilon(n) \) for \(n < 0 \) acts by multiplication on the corresponding variable, and if \(n \geq 0 \) then \(\gamma_\epsilon(n) \) acts as an odd derivation. It follows that \(V \) is an irreducible \(Cl \)-module.

The module \(V \) inherits the double grading from \(Cl \), so we have
\[V = \bigoplus_{p \in \mathbb{Z}} V_p, \quad V_p = \bigoplus_{d \in \mathbb{Z}/2} V_{p,d}. \]

It is easy to see that if \(V_{p,d} \neq 0 \) then \(d - \frac{p}{2} \in \mathbb{Z} \) and \(d \geq \frac{p^2}{2} \). Indeed, let
\[w = \gamma_{-1}(n_1) \wedge \gamma_{-1}(n_2) \wedge \cdots \wedge \gamma_{-1}(n_k) \wedge \gamma_1(m_1) \wedge \gamma_1(m_2) \wedge \cdots \wedge \gamma_1(m_l) \in V, \]
\[n_1 < n_2 < \ldots < n_k < 0, \quad m_1 < m_2 < \ldots < m_l < 0, \]
be such that \(p(w) = p > 0 \). Then \(l \geq p \) and \(d(w) \geq -m_1 - m_2 - \ldots - m_l - \frac{l}{2} \geq \frac{p^2}{2} \).

Remark. There is an alternative construction of \(V \) using semi-infinite wedge products, see e.g. \cite{13} chapter 14]. It implies that in fact \(\dim_k V_{p,d} = P(d - \frac{p^2}{2}) \), where \(P(n) \) is the classical partition function.

The module \(V \) has the structure of enveloping vertex superalgebra of \(\mathfrak{Cl} \) (see \(\S \ref{sec:vertex} \)) such that the embedding \(\mathfrak{Cl} \rightarrow V \) is given by \(a \mapsto a(-1) 1 \). We will identify \(\mathfrak{Cl} \) with its image in \(V \). We have
\[V^0 = \bigoplus_{p \in \mathbb{Z}} V_p, \quad V^1 = \bigoplus_{p \in \mathbb{Z}+1} V_p. \]

A certain completion \(\overline{U} \) of the algebra \(U \) acts on the vertex algebra \(V \) — some infinite sums of the elements of \(U \) make sense as operators on \(V \). In particular the closure of the algebra \(\hat{gl}_\infty \subset U \) spanned by \(\hat{e}_{ij} \) (see Lemma 3) is the algebra \(\hat{M} \subset \overline{U} \). It follows also that the algebra \(\hat{W} \subset \hat{M} \) acts on \(V \) and there is a map \(\hat{W} \rightarrow V \) given by \(a \mapsto a(-1) 1 \). The following lemma describes the image of \(\hat{W} \subset V \), see e.g. \cite{13}.

Lemma 4. The mapping \(p_m \mapsto \gamma_{-1}(-m-1) \gamma_1 \) defines an embedding of the conformal algebra \(\hat{W} \) into \(V_0 \subset V \).
Proof. Using (10) and Lemma 3 we get:

\[
(\gamma_{-1}(m)\gamma_1(n)) = \sum_{i \leq -m-1} (-1)^m \binom{m+i}{m} \gamma_{-1}(i) \gamma_1(n - m - 1 - i) - \sum_{i > 0} (-1)^m \binom{m+i}{m} \gamma_1(n - m - 1 - i) \gamma_{-1}(i) = (-1)^m \sum_{i \in \mathbb{Z}} \binom{m+i}{m} \hat{c}_{i,i-m+n} = p_m(n)
\]

Now let us apply the construction of §3.7 to the lattice \(\Lambda = \mathbb{Z} \), generated by a single vector \(\alpha \), such that \((\alpha | \alpha) = 1 \). Then the formula (3) implies that the elements \(v_{\pm \alpha} \in V_\mathbb{Z} \) generate a conformal superalgebra isomorphic to the Clifford algebra \(\mathfrak{C} \). As a result we get that the vertex algebra \(V \) is canonically isomorphic to the vertex algebra \(V_\mathbb{Z} \) corresponding to the lattice \(\mathbb{Z} \) constructed in §3.7. This statement is known as bozon-fermion correspondence.

Let us describe the image of the algebra \(\hat{\mathfrak{M}} \) in \(V_0 \) in terms of the lattice construction. It could be easily proved that \(p_0 = -\hat{\alpha} \in \mathfrak{S} \subset V_0 \), \(p_1 = \frac{1}{2} \hat{\alpha} \hat{\alpha} - \frac{1}{2} D\hat{\alpha} = \omega - \frac{1}{2} D\hat{\alpha} \) (see (1.2)) so that \(p_1 \hat{\mathfrak{M}} \mathbb{Z} = Dv \) for all \(v \in V \). In general, for \(n \geq 2 \) we have

\[
p_n = \frac{(-1)^n}{(n+1)!} \times \left(\sum_{n=2}^{n-1} \binom{n+1}{2} \cdots \binom{n+1}{2} \cdots \binom{n+1}{2} \right).
\]

3.3. Inside the Heisenberg vertex algebra. Here we investigate further the embedding \(\hat{\mathfrak{M}} \subset V_0 \) of the conformal algebra \(\hat{\mathfrak{M}} \) into the vertex algebra \(V_0 \), constructed in §3.2.

Theorem 1. The conformal algebra \(\hat{\mathfrak{M}} \subset V_0 \) is a maximal conformal subalgebra of \(V_0 \).

By Lemma 3, the space \(V_0 \) is a module over the Lie algebra \(\hat{\mathfrak{g}}l_\infty \), and in fact over \(\hat{M} \). For the proof of Theorem 1 we need to study the \(\hat{\mathfrak{g}}l_\infty \)-module structure of \(V_0 \). Recall that the Lie algebra \(\hat{\mathfrak{g}}l_\infty \) has a structure quite similar to the structure of a Kac-Moody Lie algebra. Let \(\mathfrak{S} \subset \hat{\mathfrak{g}}l_\infty \) be the maximal toral subalgebra of \(\hat{\mathfrak{g}}l_\infty \) spanned by all diagonal matrices and \(c \). Let \(\mathfrak{S} \subset \mathfrak{S}' \) be the space of functionals on \(\mathfrak{S} \) which take only finitely many nonzero values on \(E_{ij} \) for \(i \in \mathbb{Z} \). Let \(\lambda_i \in \mathfrak{S}' \), \(i \in \mathbb{Z} \), be the functional on \(\mathfrak{S} \) such that \(\lambda_i(E_{ij}) = \delta_{ij} \), \(\lambda_i(c) = 0 \) and let \(\lambda_c \in \mathfrak{S}' \) be such that \(\lambda_c(E_{ij}) = 0 \) for all \(j \in \mathbb{Z} \) and \(\lambda_c(c) = 1 \). The algebra \(\hat{\mathfrak{g}}l_\infty \) is \(\mathfrak{S} \)-diagonalizable, the root vectors being the elements \(E_{ij}, \ i \neq j \), whose weights \(\lambda_{ij} = \lambda_i - \lambda_j \in \mathfrak{S}' \) are called the roots of \(\hat{\mathfrak{g}}l_\infty \). If \(i < j \) we call the root \(\lambda_{ij} \) positive, otherwise we call it negative.

The element

\[
\mathfrak{S} \ni H_{ij} = [E_{ij}, E_{ji}] = E_{ii} - E_{jj} + \begin{cases}
c & \text{if } j < 0 \& i > 0 \\
-c & \text{if } j > 0 \& i < 0 \\
0 & \text{otherwise}
\end{cases}
\]

is called a coroot. Denote by \(\Pi = \{ \lambda \in \mathfrak{S}' \mid \lambda(H_{ij}) \in \mathbb{Z} \text{ for all coroots } H_{ij} \} \) the set of all integral weights.

Let \(U \) be a \(\hat{\mathfrak{g}}l_\infty \)-module. It is called \(\mathfrak{S} \)-diagonalizable if \(U = \bigoplus_{\lambda \in \mathfrak{S}'} U_\lambda \), where \(U_\lambda = \{ v \in U \mid Hv = \lambda(H) v \ \forall H \in \mathfrak{S} \} \). The module \(U \) is called integrable if it is \(\mathfrak{S} \)-diagonalizable and all \(E_{ij} \) for \(i \neq j \) are locally nilpotent. Finally, \(U \) is called a lowest weight module with lowest weight \(\lambda \in \mathfrak{S}' \) if it is generated by a single vector \(v \in U_\lambda \) such that \(E_{ij}v = 0 \) when \(i > j \) and for any \(h \in \mathfrak{S} \) one has \(hv = \lambda(h) v \). A lowest weight module \(U \) of lowest weight \(\lambda \) is integrable if and only if \(\lambda \in \Pi \) and \(\lambda(H_{ij}) \leq 0 \) when \(i < j \), see [13, Chapter 10]. For a \(\mathfrak{S} \)-diagonalizable module \(U \) denote by \(\Xi(U) = \{ \lambda \in \mathfrak{S}' \mid U_\lambda \neq 0 \} \) the set of weights of \(U \).
The \widehat{gl}_∞-module V_0 is an integrable irreducible lowest weight module generated by the lowest weight vector $v_0 = 1$ of weight λ_c. Using the general theory of integrable modules over Kac-Moody algebras [13], we can easily describe the set of weights $\Xi(V_0)$. Before we do that we need a notion from combinatorics, see [24].

Let $\kappa = (k_1 \geq k_2 \geq \ldots) \in \mathcal{P}(m)$ be a partition of an integer m and let $\kappa' = (k'_1 \geq k'_2 \geq \ldots) \in \mathcal{P}(m)$ be the dual partition, i.e. corresponding to the transposed Young diagram. Let $l = l(\kappa)$ be the number of rectangles at the main diagonal of the Young diagrams of κ and κ'. Then the pair of sequences

$$\xi = (k_1, k_2 - 1, k_3 - 2, \ldots, k_l - l + 1), \quad \eta = (k'_1 - 1, k'_2 - 2, k'_3 - 3, \ldots, k'_l - l)$$

are called Frobenius coordinates of κ. We have

$$\xi_1 > \xi_2 > \ldots > \xi_l > 0, \quad \eta_1 > \eta_2 > \ldots > \eta_l \geq 0, \quad \sum_{i=1}^{l} \xi_i + \sum_{i=1}^{l} \eta_i = m.$$

The Frobenius coordinates ξ, η of κ determine the partition κ uniquely. We will write $\kappa = (\xi | \eta)$.

Lemma 5. $\Xi(V_0) = \bigcup_{m \in \mathbb{Z}_+} \Xi_m$, where

$$\Xi_m = \left\{ \mu(\kappa) = \lambda_c + \sum_{j=1}^{l(\kappa)} (\lambda_\xi_j - \lambda_{\eta_j}) \middle| \kappa = (\xi | \eta) \in \mathcal{P}(m) \right\}.$$

The homogeneous component $V_{0,m}$ of V_0 is decomposed into a direct sum of 1-dimensional root spaces

$$V_{0,m} = \bigoplus_{\lambda \in \Xi_m} V_{0,\lambda}, \quad \dim V_{0,\lambda} = 1.$$ (19)

Remark. Though this lemma could be proved using only the fact that V_0 is the irreducible lowest weight \widehat{gl}_∞-module of weight λ_c, in our case the proof is even simpler since we already know that $\dim V_{0,m} = P(m)$, so we only have to check that weights $\mu(\kappa)$ indeed appear in $\Xi(V_0)$.

We will write $l(\mu)$ instead of $l(\kappa)$ if $\mu = \mu(\kappa) \in \Xi(V_0)$ is the weight of V_0 corresponding to a partition $\kappa \in \mathcal{P}(m)$.

Next we will study the action of the elementary matrices $E_{ij} \in \widehat{gl}_\infty$ on V_0 in greater detail. Recall [13, Chapter 9] that there is a contravariant form $(\cdot | \cdot)$ on V_0 such that $(1 | 1) = 1$, $(V_{0,m} | V_{0,n}) = 0$ for $m \neq n$ and $(A u | v) = (u | A^t v)$ for any $u, v \in V_0$, $A \in \widehat{M}$, A^t being the transposed matrix of A, in particular $\alpha(n)^t = \alpha(-n)$ for $\alpha(n) \in H$. The following lemma is proved along the same lines as the analogous result about the integrable modules for Kac-Moody algebras, see [13, Chapter 10].

Lemma 6. Let $u \in V_{0,\mu}$ be a homogeneous vector of weight $\mu \in \Xi(V_0)$. If $\text{sign}(i-j) \mu(H_{ij}) > 0$ then $0 \neq E_{ij} u \in V_{0,\mu + \lambda_i - \lambda_j}$ and $(E_{ij} u | E_{ij} u) = (u | u)$, otherwise $E_{ij} u = 0$.

Here H_{ij} is given by (13). Note that from Lemma 3 follows that $\mu(E_{ij}) \in \{0, \pm 1\}$.

We now investigate the structure of V_0 as a \widehat{M}-module. By definition (see [13]) this is the same as the action of $\widehat{W} \oplus kD$ on V_0. Since $p_1(0)$ acts as D, the action of \widehat{W} on V_0 amounts only to the action of the Lie algebra $W_+ = \widehat{W}_+ = k \{ p, t | [t, p] = 1 \}$.

Lemma 7. (a) Any W_+-submodule of V_0 is homogeneous with respect to the root space decomposition (19).
(b) Let $v \in V_{0,\lambda}$ for some $\lambda \in \Xi(V_0)$. Then

$$W_+ v = \bigoplus_{\mu \in \Xi(V_0), l(\mu) \leq l(\lambda)} V_{0,\mu}.$$

Proof. Recall that V_0 is a module over the Lie algebra \widehat{M}, which is a central extension of the Lie algebra M of infinite matrices with finitely many non-zero diagonals, and that \widehat{W} is embedded in \widehat{M} by formulas (14). Let M_0 be subalgebra of diagonal matrices of M. Since $\phi(M_0, M_0) = 0$, we
get that M_0 is a subalgebra of \widehat{M}. Any functional from δ' takes values on M_0 as well, so we have $\delta' \subset M_0^*$. Let $W_0 = \text{Span} \{p_m(m) \mid m \in \mathbb{Z}\}$ be the subalgebra of W consisting of all elements of degree 0. We have $W_0 \subset M_0$ under the mapping (\cdot). To prove (2) it is enough to show that any two different weights $\lambda, \mu \in \Xi(V_0)$ remain different after restriction to W_0. But this follows from the fact that λ_i for $i \in \mathbb{Z}$ are linearly independent on M_0 because $\lambda_i(p_m(m)) = (-1)^m \binom{r+m}{m}$.

For the proof of (b) we note that by the Freiman littleo μ is an infinite linear combination of E_{ij}’s such that either $i 0$ or $j < 0$. Therefore, by Lemma 4 and (a) we get that if $\mu \in \Xi(V_0)$ then for any $i, j \in \mathbb{Z}$ such that either $i \geq 0$ or $j > 0$ the weight $\mu + \lambda - \lambda_j$ appears in W_V. Every weight λ such that $l(\lambda) \leq l(\mu)$ could be obtained by a successive application of this operation but no weight of length more than $l(\mu)$ can be obtained.

In particular all weights of $\widehat{\mathfrak{m}} \subset V_0$ are of length 1.

Proof of Theorem 2. Let $v \in V_0 \setminus \widehat{\mathfrak{m}}$. We have to prove that the conformal algebra generated by v and $\widehat{\mathfrak{m}}$ is the whole V_0. By Lemma 4 we can assume that v is homogeneous of some weight $\mu \in \Xi(V_0)$ such that $l(\mu) > 1$. The only weight of degree 4 which is not in $\Xi(\widehat{\mathfrak{m}})$ is $\lambda - 2 + \lambda - 1 - \lambda_0 - \lambda_1$ which is of length 2, hence by Lemma 6 and 7(b), $V_{0,4} \subset W_v + \widehat{\mathfrak{m}}$. Therefore it is enough to prove that V_0 is generated as a conformal algebra by $\widehat{\mathfrak{m}}$ and any element $u \in V_{0,4} \setminus \widehat{\mathfrak{m}}$. Take $u = \alpha \otimes \alpha$.

Let $\Lambda \subset V_0$ be the conformal algebra generated by $\widehat{\mathfrak{m}}$ and u. Assume on the contrary that $\Lambda \subset V_0$. Then Lemma 7(b) implies that there is an integer $l \geq 3$ such that $\Xi(\Lambda)$ does not contain weights of length l. Let E_{ij} be the minimal possible among such integers. Let $\mu = \lambda_1 + \ldots + \lambda_3 + \lambda_2 - \lambda_2 - \lambda_3 - \ldots - \lambda_1 + \lambda_e \in \Xi(V_0)$.

Let λ_i be the weight such that $\lambda_i \neq 1$, then it is not difficult to see that $\Xi(\lambda_i)$ does not contain weights of length l. Let $\hat{\lambda} = \Lambda \otimes \Lambda$. Using the Freiman littleo μ is an infinite linear combination of E_{ij}’s such that either $i \geq 0$ or $j > 0$. Therefore, by Lemma 6 and (a) we get that if $\mu \in \Xi(V_0)$ then for any $i, j \in \mathbb{Z}$ such that either $i \geq 0$ or $j > 0$ the weight $\mu + \lambda - \lambda_j$ appears in W_V. Every weight λ such that $l(\lambda) \leq l(\mu)$ could be obtained by a successive application of this operation but no weight of length more than $l(\mu)$ can be obtained.

In particular all weights of $\widehat{\mathfrak{m}} \subset V_0$ are of length 1.

3.4. Representation theory of $\widehat{\mathfrak{m}}$. The technique of Ξ allows to investigate the $\widehat{\mathfrak{m}}$-module structure of other spaces V_λ. This section deviates from the main exposition and will not be used later in this paper. We assume here that k is an algebraically closed field of characteristic 0.

Let $\Lambda = \mathbb{Z}[\beta]$ be a lattice of rank 1 generated by a single vector β. As before let $\mathfrak{h} = \Lambda \otimes \mathbb{k}$. Let $V = V_\Lambda = \bigoplus_{\mathfrak{h} \in \mathbb{Z}} V_{\beta}$ be the corresponding vertex algebra constructed in (13). Take $\alpha = \frac{\beta^2}{\sqrt{\beta \beta}} \in \mathfrak{h}$.

Then $(\alpha | \alpha) = 1$ and the field $\mathfrak{h} = \alpha(-1) \mathbb{R} \subset V_0$ generates a copy of the Heisenberg conformal algebra \mathfrak{h} and also gives an embedding of $\widehat{\mathfrak{m}}$ in V_0 by formulas (17). So V_{β} becomes a module over $\widehat{\mathfrak{m}}$ and over W_+.

If $\beta \neq 1$, then it is not difficult to see that V_{β} is an irreducible W_+-module. In fact, in this case we have $W_+ V_{\beta} = V_{\beta}$. If $\beta \neq 1$, and in this case $\Lambda = \mathbb{Z}$, then as in (13) we have an action of $\hat{\mathfrak{g}}_{\infty}$ on $V_{\beta} = V_\beta$. The module V_β is an irreducible integrable lowest weight \mathfrak{g}_{∞}-module of the lowest weight $\lambda_\beta - \lambda_0 - \lambda_1 - \ldots - \lambda_{i-1}$ if $i \geq 0$ and $\lambda_\beta + \lambda_{-1} + \ldots + \lambda_i$ if $i < 0$.

The left regular action of this elements is given by $v_P^\kappa \in \mathcal{P}(m)$ be the dual partition. Denote \(l_i(\kappa) \) the number of squares on the \(i \)th diagonal of the Young diagram of \(\kappa \), so that \(l_i(\kappa) = l_{-i}(\kappa') \). The biased Frobenius coordinates of \(\kappa \) are sequences
\[
\xi = (k_1 - i, k_2 - i - 1, \ldots, k_i - i - l_i + 1), \quad \eta = (k'_1 + i - 1, k'_2 + i - 2, \ldots, k'_{l_i+i} - l_i).
\]
They determine \(\kappa \) uniquely and we will write \(\kappa = \langle \xi|\eta \rangle_k \).

Let \(\Xi(V_i) \subset \mathcal{O} \) be the set of weights appearing in the homogeneous component of \(V_i \) consisting of elements of degree \(m + \frac{1}{2} f^2 \). As before we have \(\dim V_{i,m} = 1 \) for every \(m \in \Xi(V_i) \).

Both statements (a) and (b) of Lemma 8 remain without changes. In particular, dimensions of homogeneous components of \(W_+ \)-submodules of \(V_i \) grow polynomially.

Question 1. Is it true that all lowest weight \(W_+ \)-modules of polynomial growth are obtained in this way?

4. Conformal subalgebras of lattice vertex algebras

4.1. Conformal subalgebras of lattice vertex superalgebras

Let \(\Lambda \) be an integer lattice and let \(V_\Lambda = \bigoplus_{\lambda \in \Lambda} V_\lambda \) be the lattice vertex superalgebra constructed in §2.1. Recall that \(V_0 \) contains the Heisenberg conformal algebra \(\mathcal{H} \), which is spanned over \(\mathbb{K}[D] \) by elements of the form \(\tilde{h} \) for \(h \in \mathbb{K} \otimes \Lambda \) and \(1 \). The left regular action of this elements is given by \(Y(\tilde{h}) = \sum_{n \in \mathbb{Z}} \tilde{h}(n) z^{-n-1} \), where the operators \(\tilde{h}(n) \) define a representation of the Heisenberg algebra \(\mathcal{H} \) on \(V_\Lambda \).

Let \(\mathcal{L} \subset V_\Lambda \) be a conformal subalgebra of \(V_\Lambda \). Assume that \(\mathcal{L} \) is homogeneous with respect to the grading by \(\Lambda \), that is, \(\mathcal{L} = \bigoplus_{\lambda \in \Lambda} \mathcal{L}_\lambda \), where \(\mathcal{L}_\lambda = \mathcal{L} \cap V_\lambda \). The set \(\Delta = \{ \lambda \in \Lambda \backslash \emptyset \mid \mathcal{L}_\lambda \neq \emptyset \} \) is called the root system of \(\mathcal{L} \). We will always assume that \(\Delta = -\Delta \). This happens, for example, if \(\mathcal{L} \) is closed under the involution \(\sigma : V_\Lambda \to V_\Lambda \), corresponding to the automorphism \(\lambda \mapsto -\lambda \) of the lattice \(\Lambda \).

We will also assume that \(\mathcal{L} \) is closed under the action of the conformal algebra \(\mathcal{H} \). In this case it is easy to show that \(\mathcal{L} \) must contain the elements \(v_\lambda \) for each \(\lambda \in \Delta \). Therefore, the Lie conformal superalgebra \(\mathcal{L}' \subset V_\Lambda \) generated by the set \(\{ v_\lambda \mid \lambda \in \Delta \} \) will be a subalgebra of \(\mathcal{L} \) and will be graded by the same root system. From the formula (1) for the products in \(V_\Lambda \) follows that if \(\alpha, \beta \in \Delta \) be such that \(k = (\alpha|\beta) < 0 \) then \(v_\alpha k v_\beta = \pm v_{\alpha + \beta} \in \mathcal{L}' \), hence \(\alpha + \beta \in \Delta \).

The following proposition summarizes properties of root systems.

Proposition 1. (a) A set \(\Delta \subset \Lambda \) is a root system if and only if the Lie conformal superalgebra generated by the set \(\{ v_\lambda \mid \lambda \in \Delta \} \) does not contain any homogeneous components other than \(\mathcal{L}_\lambda \) for \(\lambda \in \Delta \) and \(\mathcal{L}_0 \).

(b) If \(\Delta \subset \Lambda \) is a root system, then \(\Delta \) is closed under the negation \(\lambda \mapsto -\lambda \) and under the partial summation:
\[
\alpha, \beta \in \Delta, \quad (\alpha|\beta) < 0 \implies \alpha + \beta \in \Delta
\]

We are mostly interested in the case when the root system \(\Delta \) is finite. If \(\Delta \) contains a vector \(\lambda \) such that \((\lambda|\lambda) < 0 \) then by Proposition 1(b) \(k\lambda \in \Delta \) for all \(k = 1, 2, \ldots \). The following lemma suggests that we should restrict ourselves to the case when the form \((\cdot|\cdot) \) is semi-positive definite.

Lemma 8. Let \(\Delta \subset \Lambda \) be a set closed under the partial summation (20) such that \(\Delta = -\Delta \) and \(\text{Span}_\mathbb{Z} \Delta = \Lambda \).

(a) Assume that the form \((\cdot|\cdot) \) is not semi-positive definite, i.e., there is \(\alpha \in \Lambda \) such that \((\alpha|\alpha) < 0 \).

Then there is some \(\delta \in \Delta \) such that \((\delta|\delta) < 0 \).
(b) Assume that the form $(\cdot | \cdot)$ is semi-positive but not positive definite. Then there exists some $\delta \in \Delta$ such that $(\delta | \delta) = 0$.

Proof. Both statements are proved by a standard argument. Let us prove (a), the proof of (b) being identical. Assume on the contrary that $(\lambda | \lambda) \geq 0$ for every $\lambda \in \Delta$. Let $\alpha \in \Delta$ be such that $(\alpha | \alpha) < 0$. Then α could be expressed as a linear combination $\alpha = k_1 \alpha_1 + \ldots + k_n \alpha_n$ of elements $\alpha_i \in \Delta$ with integer coefficients. Since $\Lambda = -\Delta$ we can assume that all $k_i > 0$. Assume that the above is a combination of this kind with the minimal possible value of $\sum_i k_i$. Then since $(\alpha_i | \alpha_j) \geq 0$ for all i and $\alpha \subset \Lambda$ we must have $(\alpha_i | \alpha_j) < 0$ for some $i \neq j$, but then $\alpha_i + \alpha_j \in \Delta$ and we could make the expression for α with a smaller sum of coefficients. \hfill \Box

The following sections will be dedicated to the classification of finite root systems. In case when the bilinear form has a non-trivial kernel, we allow for a bigger class of root systems. Let $\Lambda_0 = \{ \lambda \in \Lambda \mid (\lambda | \lambda) = 0 \} \subset \Lambda$ be the sublattice of isotropic vectors. Let $\overline{\Lambda} = \Lambda / \Lambda_0$ be the positive definite quotient. We will denote the projection of an element $\lambda \in \Lambda$ to $\overline{\Lambda}$ by $\overline{\lambda}$. A set $\Sigma \subset \Lambda$ is called almost finite if $\Sigma \subset \overline{\Lambda}$ is finite.

We will adopt the following notations. Let Λ be a semi-positive definite integer lattice and Λ_0 and $\overline{\Lambda}$ be as above. Let $\Delta \subset \Lambda$ be a root system. Denote by $\Delta_0 = \Delta \cap \Lambda_0$ the set of isotropic roots and by $\Delta^\times = \Delta \setminus \Delta_0$ the set of all real roots. Let $\overline{\Delta} = (\Delta / \Lambda_0) \setminus \{0\}$ be the positive definite root system in $\overline{\Lambda}$ obtained from the projection of Δ to $\overline{\Lambda}$.

We also need the following definition. A root system $\Delta \subset \Lambda$ is called decomposable if it can be represented as a disjoint union $\Delta = \Delta_1 \sqcup \Delta_2$ such that for any $\alpha \in \Delta_1$, $\beta \in \Delta_2$ we have $\alpha + \beta \notin \Delta$. Otherwise Δ is called indecomposable. By Proposition 3(b) if $\Delta = \Delta_1 \sqcup \Delta_2$ is decomposable then $(\Delta_1 | \Delta_2) = 0$ and the Lie conformal superalgebra \mathfrak{L} splits into a direct sum $\mathfrak{L} = \mathfrak{L}_1 \oplus \mathfrak{L}_2$ such that $[\mathfrak{L}_1, \mathfrak{L}_2] = 0$. In the other direction, however, if $\mathfrak{L} = \mathfrak{L}_1 \oplus \mathfrak{L}_2$ so that $[\mathfrak{L}_1, \mathfrak{L}_2] = 0$, and we set Δ_1 to be the root system of \mathfrak{L}_1, then though $(\Delta_1 | \Delta_2) = 0$, in general $(\Delta_1 + \Delta_2) \cap \Delta \neq \emptyset$ unless the form is positive definite.

4.2. Rank 1 case. Let $\alpha \in \Lambda$ be a vector in an integer lattice Λ. Let $\mathfrak{L} \subset V_\Lambda$ be the conformal superalgebra generated by v_α and $v_{-\alpha}$ in the lattice vertex superalgebra V_Λ, constructed in $\S 3.5$. The algebra $\mathfrak{L} = \bigoplus_{\lambda \in \Lambda} \mathfrak{L}_\lambda$ is graded by the lattice Λ. We start with determining all cases when \mathfrak{L} does not contain any homogeneous components other than $\mathfrak{L}_{-\alpha} \ni v_{-\alpha}$, $\mathfrak{L}_0 \ni 1$ and $\mathfrak{L}_\alpha \ni v_\alpha$.

Clearly, if $(\alpha | \alpha) < 0$, then take $n = -(\alpha | \alpha) - 1 \geq 0$ and get $v_\alpha \mathfrak{L} v_{-\alpha} = v_{2\alpha} \in \mathfrak{L}$. Hence all $v_{j\alpha} \in \mathfrak{L}$ for $j \in \mathbb{Z}$. Also, if $(\alpha | \alpha) = 0$ then all products in \mathfrak{L} are 0 so this case is not interesting. Therefore without a loss of generality we assume that $(\alpha | \alpha) > 0$.

Proposition 2. If $(\alpha | \alpha) = 1$ then $\mathfrak{L} = \mathfrak{C} \mathfrak{L}$ is the Clifford conformal superalgebra.

If $(\alpha | \alpha) = 2$ then $\mathfrak{L} = \mathfrak{A} \mathfrak{L}(sl_2)$ is the affine conformal algebra \widehat{sl}_2.

If $(\alpha | \alpha) = 3$ then \mathfrak{L} is the central extension of the $N = 2$ simple conformal superalgebra.

If $(\alpha | \alpha) = 4$ then \mathfrak{L} is the conformal algebra $\widehat{\mathfrak{R}}$, constructed in $\S 3.5$.

Finally, if $(\alpha | \alpha) \geq 5$ then $\mathfrak{L} = \mathfrak{V}_{\alpha}$.

Proof. First we show that if $(\alpha | \alpha) = 1, 2, 3$ or 4 the conformal algebra $\mathfrak{L} \subset V_\Lambda$ generated by v_α and $v_{-\alpha}$ is as claimed.

As it was remarked at the end of $\S 3.7$, all calculations in vertex algebra V_Λ are very explicit. So we just have to read off the defining relations of conformal superalgebra from the formula for the products in V_Λ. Of course, the case when $(\alpha | \alpha) = 1$ or 2 is well-known. Let us do the most difficult case when $(\alpha | \alpha) = 4$. In this case we can identify \mathfrak{Z}_α with $2\mathbb{Z} \subset \mathbb{Z}$ by letting $\alpha = 2$.

By Lemma 1 the elements $p_m = v_{-1} v_{m-1} v_1 \in V_\Lambda$ and 1 span a copy of $\overline{\mathfrak{L}}$ over $\mathbb{Z}[D]$ so that the products are given by (1) and (4). Set $u_m = v_{-1} v_{m-2} v_{-1} \in V_{-2}, m \geq 1$. Recall then there is an involution $\sigma : V_\Lambda \to V_\Lambda$ induced by the involution $\lambda \mapsto -\lambda$ of the lattice Λ, so that we have $\sigma(u_m) = v_1 v_{m-1} v_1 \in V_2$. We have to show that the formulas (12) hold for $p_m, u_m, \sigma(u_m) \in V_2$ and also $u_m, \mathfrak{Z} u_n = \mathfrak{Z} (u_m) \mathfrak{Z} (u_n) = 0$ for all integer $m, n \geq 1, k \geq 0$.

Let us for example check (12). First we note that
\[
v_{-1} \otimes (v_1 \otimes v_{-n-1}) = -v_1 \otimes v_{-n-1} \otimes (v_{-1} \otimes v_1) + [v_{-1}(s), v_1] \otimes v_{-n-1} v_1 = -\delta_{i,0} v_1(-n-1) 1 + (i-n-1) v_1
\]
\[
= -\delta_{i,0} \frac{1}{n!} D^n v_1 + \delta_{i,n} v_1.
\]
Using this we calculate
\[
p_m \otimes \sigma(u_n) = \left(v_{-1} \otimes \otimes v_1 \right) \otimes \left(v_1 \otimes v_{-n-1} \right)
\]
\[
= \sum_{s \leq m-1} \binom{-s-1}{m} v_{-1}(s) v_1(k-m-1-s) v_1(-n-1) v_1
\]
\[
- (-1)^m \sum_{s \geq 0} \binom{m+s}{m} v_{-1}(k-m-1-s) v_1(-n-1) v_1.
\]
The first sum here is 0 because \(k-m-1-s \geq 0 \), hence \(v_1(k-m-1-s) \) commutes with \(v_1(-n-1) \) and \(v_1(k-m-1-s) v_1 = v_1(-m-1-s) v_1 = 0 \). The second sum gives
\[
\frac{(-1)^m}{m!} v_1(k-m-1-s) (D^n v_1) - (-1)^m \binom{m+n}{m} v_1(-m-1-s) v_1,
\]
and (12) follows. The other formulas are checked in the same way. Instead of checking (10) directly, we note that by \mathfrak{H} the \mathfrak{M}-modules $U(W_+) v_{\pm 2}$ and \mathfrak{J} are both irreducible highest weight W_+-modules corresponding to the same highest weight, hence they must be isomorphic.

The verification of the conformal cocycle formula (14) is done in the same way.

We are left to show that if $n = \langle \alpha, \alpha \rangle \geq 5$, then $\Sigma = V_\Lambda$. Recall from $\S 4.2$ that we have an embedding $\mathfrak{M} \subset V_0$ given by $[\mathfrak{M}]$ such that $\mathfrak{M} = \text{Span}_k \{ p_{-1}, \ldots, D_i p_0 \} \subset V_0$ for $i \geq 1$ so that $\mathfrak{M}_i = V_{0i}$ for $0 \leq i \leq 3$. Simple calculations show that $v_{i+1} v_{i} \in \mathfrak{M}_{i-1}$ for $1 \leq i \leq 4$ and also $\{ 1, p_0, p_1, p_2 \} \in \text{Span}_k \{ v_{-a} \otimes v_{a} \mid 1 \leq a \leq 4 \}$. Since \mathfrak{M} is generated by $\{ 1, p_0, p_1, p_2 \}$, we have that $\mathfrak{M} \subset \mathfrak{L}$. However, $v_{a} \otimes v_{-a} \in \mathfrak{M}_4$, therefore, since \mathfrak{M} is a maximal conformal subalgebra in V_0 by Theorem 4, we must have $\mathfrak{L} = V_0$.

It follows that all possible finite root systems Δ of rank 1 are from the following list:

- A_1: $\Delta = \{ \pm \alpha \}, \langle \alpha, \alpha \rangle = 2$;
- B_1: $\Delta = \{ \pm \alpha \}, \langle \alpha, \alpha \rangle = 1$;
- C_1: $\Delta = \{ \pm \alpha \}, \langle \alpha, \alpha \rangle = 4$;
- BC_1: $\Delta = \{ \pm \alpha, \pm 2\alpha \}, \langle \alpha, \alpha \rangle = 1$;
- B'_1: $\Delta = \{ \pm \alpha \}, \langle \alpha, \alpha \rangle = 3$.

We will generalize this result for the case of a higher ranking integer positive definite lattice Λ and finite root system $\Delta \subset \Lambda$ in $\S 4.4$ see Theorem 2.

Of special interest is the case when we take the root system $\Delta = \{ \pm 1, \pm 2 \} \subset \mathbb{Z}$ is of type BC_1. Then the conformal superalgebra $\mathfrak{L} \subset V_\mathbb{Z}$ generated by the set $\{ v_{\pm 1}, v_{\pm 2} \}$ is isomorphic to an extension of \mathfrak{R} by the Clifford conformal superalgebra $\mathfrak{C}\mathfrak{I}$ such that $\mathfrak{L}^{0} = \mathfrak{L}_{-2} \oplus \mathfrak{L}_0 \oplus \mathfrak{L}_2 = \mathfrak{R}$ and $\mathfrak{L}_{-1} \oplus \mathfrak{L}_1 \oplus 1 = \mathfrak{C}\mathfrak{I}$.

We also remark that \mathfrak{L} and \mathfrak{R} are maximal among conformal subalgebras of $V_\mathbb{Z}$ graded by the corresponding root system.

4.3. **RANK 2 CASE.** Consider now two vectors $\alpha, \beta \in \Lambda$, where Λ is an integer lattice as before. Let V_Λ be the vertex superalgebra corresponding to Λ, and let $\mathfrak{L} \subset V_\Lambda$ be the conformal superalgebra generated by $v_{\pm \alpha}$ and $v_{\pm \beta}$. Since the generators of \mathfrak{L} are homogeneous, $\mathfrak{L} = \bigoplus_{\lambda \in \Lambda} \mathfrak{L}_\lambda$ is graded by Λ. Let $\Delta = \{ \lambda \in \Lambda \mid \mathfrak{L}_\lambda \neq 0 \} \subset \mathfrak{L}$ be the root system of \mathfrak{L}. If $\langle \alpha, \beta \rangle = 0$ then $\mathfrak{L} = \mathfrak{L}_1 \oplus \mathfrak{L}_2$ is decomposed into a direct sum of ideals $\mathfrak{L}_1 = \langle v_{\pm \alpha} \rangle$ and $\mathfrak{L}_2 = \langle v_{\pm \beta} \rangle$ and $\Delta = \Delta_1 \sqcup \Delta_2$ where $\Delta_1 \subset \mathbb{Z} \alpha$ and $\Delta_2 \subset \mathbb{Z} \beta$, so everything is reduced to the case of $\S 4.2$. Therefore without a loss of generality we assume that $\langle \alpha, \beta \rangle < 0$.

Now we formulate an analogue of Proposition 2 for the case of two vectors.
Proposition 3. Let $\Lambda = \mathbb{Z}\alpha + \mathbb{Z}\beta$ be an integer lattice of rank 2. Assume that the conformal superalgebra $\mathfrak{L} \subset V_\Lambda$ generated by $v_{\pm\alpha}$ and $v_{\pm\beta}$ is graded by a finite or an almost finite root system $\Delta \subset \Lambda$. Then there are only the following possibilities:

(i) $(\alpha|\alpha) = (\beta|\beta) = 2$, $(\alpha|\beta) = -1$
(ii) $(\alpha|\alpha) = 2$, $(\beta|\beta) = 1$, $(\alpha|\beta) = -1$
(iii) $(\alpha|\alpha) = 4$, $(\beta|\beta) = 2$, $(\alpha|\beta) = -2$
(iv) $(\alpha|\beta) = 1$, $(\alpha|\beta) = -1$
(v) $(\alpha|\beta) = 2$, $(\alpha|\beta) = -2$
(vi) $(\alpha|\beta) = 3$, $(\alpha|\beta) = -3$
(vii) $(\alpha|\beta) = 4$, $(\alpha|\beta) = -4$
(viii) $(\alpha|\beta) = 1$, $(\alpha|\beta) = -2$

In cases (i)–(iii) Λ is positive definite, in (iv)–(viii) Λ is semi-positive definite with the kernel of the bilinear form spanned by single vector δ given by $\delta = \alpha + \beta$ in cases (iv)–(vii) and $\delta = \alpha + 2\beta$ in case (viii). The root system is

$$\Delta = \begin{cases}
\{ \pm\alpha, \pm\beta, \pm(\alpha + \beta) \} & \text{in cases (i), (ii) and (iv)} \\
\{ \pm\alpha, \pm\beta, \pm(\alpha + \beta), \pm(\alpha + 2\beta) \} & \text{in case (iii)} \\
\{ k\delta, \pm\alpha + k\delta, \pm\beta + k\delta \mid k \in \mathbb{Z} \} & \text{in cases (v)–(viii)}
\end{cases}$$

If $(\lambda|\lambda) = 1$ or 2 for $\lambda \in \Delta$ then $\mathfrak{L}_\lambda \cong k[D]\nu_\lambda$, if $(\lambda|\lambda) = 3$ or 4 then $\text{rk}_k[D] \mathfrak{L}_\lambda = \infty$. For an isotropic $\lambda \in \Delta$ we have $\text{rk}_k[D] \mathfrak{L}_\lambda = 1, 2, 3, \infty, \infty$ in the cases (iv)–(viii) respectively. Finally, $\text{rk}_k[D] \mathfrak{L}_0 = 2, 1, \infty, 0, 2, 4, \infty, \infty$ in the cases (i)–(viii) respectively.

Proof. By Proposition 3 the square lengths of α and β could be only 1, 2, 3 or 4. Also, $(\alpha|\beta) \geq -\frac{1}{2}(\alpha|\alpha) + (\beta|\beta)$, because otherwise we would have $(\alpha + \beta|\alpha + \beta) < 0$. So we have only finitely many possibilities. One can easily check using formulas (9) that every choice of vectors α and β not listed in (i)–(viii) will give an infinite root system. So it remains to show that in each of the cases (i)–(viii) the conformal algebra \mathfrak{L} generated by $\{ v_{\pm\alpha}, v_{\pm\beta} \}$ will be in fact graded by the corresponding root system Δ. Let us check this for the most difficult case (iii). In this case $\mathfrak{L}_0 = \mathfrak{M}_1 \oplus \mathfrak{M}_2$ is a direct sum of two copies of \mathfrak{M}, corresponding to vectors $\frac{1}{2}\alpha$ and $\frac{1}{2}\alpha + \beta$, so that the subalgebras $\mathfrak{L}_\alpha \oplus \mathfrak{M}_\beta \oplus \mathfrak{L}_{\alpha + 2\beta}$, $\mathfrak{L}_\delta \oplus \mathfrak{M}_\beta \oplus \mathfrak{L}_{\alpha - 2\beta}$ of \mathfrak{L} are isomorphic to the conformal algebra $\hat{\mathfrak{L}}$ constructed in §2. So the claim follows from Proposition 3.

4.4. Case when the bilinear form is positive definite.

Theorem 2. Assume Λ is a positive definite integer lattice and $\Delta \subset \Lambda$ is a finite indecomposable root system of some conformal superalgebra $\mathfrak{L} = \bigoplus_{\lambda \in \Delta} \mathfrak{L}_\lambda \subset V_\Lambda$, such that $\Delta = -\Delta$ and \mathfrak{L} is generated by the set $\{ v_\lambda \mid \lambda \in \Delta \}$. Then there are only the following possibilities:

A-D-E: Δ is a simply-laced finite Cartan root system of type $A_n, n \geq 1, D_n, n \geq 4$ or $E_n, n = 6, 7, 8$ such that $(\lambda|\lambda) = 2$ for all roots $\lambda \in \Delta$.

B: Δ is a finite Cartan root system of type $B_n, n \geq 1$, the short roots have square length 1 and long roots have square length 2. (When $n = 1$, $\Delta = \{ \pm 1 \} \subset \Lambda = \mathbb{Z}$).

C: Δ is a finite Cartan root system of type $C_n, n \geq 1$, the short roots have square length 2 and long roots have square length 4. (When $n = 1$, $\Delta = \{ \pm 2 \} \subset \Lambda = \mathbb{Z}$).

BC: Δ is the union of B_n and C_n for $n \geq 1$.

B^0: Δ is a subset of B_n consisting of all the short roots of B_n and half of the long roots: if $\alpha_1, \ldots, \alpha_n$ is the basis of Δ consisting of short roots so that $(\alpha_1|\alpha_2) = 0$ then all the long roots of Δ are of the form $\alpha_i - \alpha_j, i \neq j$.

B^1: $\Delta = \{ \pm 3 \} \subset \Lambda = \mathbb{Z}$.

We will call a vector of square length 1 short, of square length 2 long and of square length 4 extra-long.
Proof. Let \(\alpha, \beta \in \Delta \) be a pair of roots. The root system which they generate must be of one of the types (i)–(iii) from Proposition 3. It follows that the Cartan number \(\langle \alpha, \beta \rangle = \frac{2\langle \alpha | \beta \rangle}{\langle \alpha | \alpha \rangle} \) is an integer, hence \(\Delta \) must lie inside a Cartan root system \(\Phi \). Moreover it follows from the structure of root systems of rank 2 in cases (i)–(iii) that \(\Phi \) cannot be of types \(F_4 \) and \(G_2 \), and the condition for the square lengths of the root vectors hold.

Next we want to prove that if \(\Delta \) is a finite Cartan root system of the type other than \(G_2 \) and \(F_4 \) and the length of roots are as prescribed by the theorem, then \(\Delta \) is indeed the root system of a subalgebra. Take \(\Delta \) as in Proposition 4. Then by the result of the previous paragraph the set \(\Delta \) is a short root then take \(\Delta = k[D]v_\alpha \). Using calculations of Proposition 2 it is easy to see that \(\Delta = \Delta_0 \oplus \bigoplus_{\alpha \in \Delta} \mathfrak{L}_\alpha \) is closed under the products (3).

Finally, if \(\Delta \) is of type \(BC \) then the conformal superalgebra \(\mathfrak{L} \) is easily obtained by combining the conformal superalgebras corresponding to the subsystems of \(\Delta \) of types \(B \) and \(C \).

So let \(\Delta \) be a finite root system, and let \(\Phi \supset \Delta \) is a minimal Cartan root system containing \(\Delta \). We prove that if \(\Phi \) is either simply-laced or of type \(C \) or \(BC \) then \(\Delta = \Phi \).

Assume first that \(\Phi \) is simply-laced. Let \(\alpha \in \Phi \setminus \Delta \). Since \(\Delta \) contains \(\Phi \) over \(\mathbb{Z} \) we can write \(\alpha \) as a linear combination of elements of \(\Delta \) with integer coefficients. Let \(\alpha = \sum_i k_i \alpha_i \), where \(k_i \in \mathbb{Z}, \alpha_i \in \Delta \), be a linear combination of the minimal length. Since \(\Delta = \Phi \), we can assume that all \(k_i > 0 \). But then since \(\langle \alpha | \alpha \rangle = \sum_i k_i \langle \alpha_i | \alpha_i \rangle = 2 \) we must have \(\langle \alpha_i | \alpha_j \rangle < 0 \) for some pair \(\alpha_i \neq \alpha_j \), hence \(\alpha_i \neq \alpha_j \) and we can make the combination shorter, contrary to our assumption. Hence \(\Delta = \Phi \).

Same argument shows that if \(\Phi \) is of type \(B \) or \(BC \) then \(\Delta \) contains all short roots, and if \(\Phi \) is of type \(C \) then \(\Delta \) contains all long roots.

Let \(\Phi \) be of type \(C \). Then \(\Delta \) contains all long roots of \(\Phi \). Since \(\Phi \) is a minimal Cartan root system containing \(\Delta \), the latter must contain at least one extra-long root \(\alpha \). Let \(\beta \) be a long root such that \(\langle \alpha | \beta \rangle = -2 \). Then by Proposition 3(iii) \(\Delta \) contains the whole root system of type \(C_2 \) generated by \(\alpha \) and \(\beta \), therefore the extra-long root \(\alpha + 2\beta \) also belongs to \(\Delta \). Continuing this argument we get that all extra-long roots lay in \(\Delta \), hence \(\Delta = \Phi \).

Assume now that \(\Phi \) is of type \(B_n \). When \(n = 1 \) or \(2 \) we refer to Proposition 2 and Proposition 3, so assume that \(n \geq 3 \). Let \(\alpha_n, \ldots, \alpha_n \in \Delta \subset \Phi \) be a basis of \(\Lambda \) consisting of pairwise orthogonal extra-long roots. Let \(\Phi_l \) be the set of all long roots in \(\Phi \). They form a simply-laced Cartan root system of type \(D_n \) (if \(n = 3 \)). The root system \(\Delta \) must contain some long roots too. Let \(\Delta_l \subset \Phi_l \) be the set of long roots of \(\Delta \). They must form a root system as well. It is not too difficult to see that for \(\Delta \) to be indecomposable the root system \(\Delta_l \) must be either equal to the whole \(\Phi_l \) or to \(\{\alpha_i - \alpha_j \mid i \neq j\} \), in which case \(\Delta_L \) is of type \(A_{n-1} \). This choice of \(\Delta_L \) is unique up to the action of the Weyl group. Therefore \(\Delta \) is either equal to \(\Phi \) or is of type \(B_0 \).

Finally, let \(\Phi \) be of type \(BC_n \). Then by the result of the previous paragraph the set \(\Delta_l \) of long roots must at least contain the set \(\{\alpha_i - \alpha_j \mid i \neq j\} \). Also, \(\Delta \) must contain at least one extra-long root. So, as in the case of type \(C \), using (iii) of Proposition 2 we obtain that \(\Delta = \Phi \).

If the root system \(\Delta \) is of the type \(A-D-E \), then the corresponding conformal algebra \(\mathfrak{L} = \bigoplus_{\lambda \in \Delta} \mathfrak{L}_\lambda \subset V_\lambda \) is the affine Kac-Moody conformal algebra and \(V_\lambda \) is Frenkel-Kac-Segal construction of its basic representation, see [10, 29]. In this case \(\mathfrak{L} \) is a central extension of a simple loop algebra, see [14]. If \(\Delta \) is of type \(C \) then \(\mathfrak{L} \) is also a central extension of a simple conformal algebra, which is a generalization of the algebra \(\mathcal{R} \), constructed in [23].

4.5. Finite root systems. In this section we describe all possible finite root systems. Let \(\Delta \subset \Lambda \) be an indecomposable root system and assume that \(|\Delta| < \infty \). As we have seen in [14], the bilinear
form (\cdot, \cdot) on Λ must be either positive or semi-positive definite. Assume that it is semi-positive definite. Let $\pi : \Lambda \to \bar{\Lambda}$ be the projection of Λ onto the positive definite lattice $\bar{\Lambda}$, and let $\bar{\Delta} = \pi(\Delta) \setminus \{0\} \subset \bar{\Lambda}$ be the positive definite finite root system obtained from the projection of Δ, see \footnote{\ref{note:projection}} for the definitions. The root system $\bar{\Delta}$ decomposes into a disjoined union $\bar{\Delta} = \bar{\Delta}_1 \cup \ldots \cup \bar{\Delta}_s$ of indecomposable root systems, each of them must be of one of the types described in Theorem \footnote{\ref{thm:decomposition}}. Denote $\Delta_1 = \pi^{-1}(\bar{\Delta}_1) \cap \Delta$.

If for some $\bar{\Delta}_i$ we have $\#\pi^{-1}(\alpha) = 1$ for all $\alpha \in \bar{\Delta}_i$, then Δ decomposes as $\Delta \cup \bigcup_{j \neq i} \Delta_j$, which is a contradiction. So we assume that each Δ_1 is a semi-positive definite root system.

Lemma 9. Let Δ be an indecomposable semi-positive definite root system such that $\bar{\Delta}$ is a positive definite indecomposable root system of type other than B or B^0. Then $|\Delta| = \infty$.

Proof. The root system Δ must contain some isotropic roots, otherwise it would be positive definite. At least some isotropic root δ must be of the form $\delta = \alpha + \beta$, where α and β are real roots. If Δ is not of type BC then α and β have square lengths more than 1 and hence we are in the situation of (v), (vi) or (vii) of Proposition \footnote{\ref{prop:isotropic}} so $k\delta \in \Delta$ for all integer k and Δ is infinite. If Δ is of type BC, then it might happen that α and β have length 1. If this is the case, let α' and β' be real roots such that $\alpha'^2 = 2\alpha$ and $\beta'^2 = 2\beta$. Then by Proposition \footnote{\ref{prop:isotropic}}(vii), $\delta' = \alpha' + \beta'$ is an isotropic root such that $k\delta'$ is also a root for all integer k.

Return now to our finite root system Δ. The lemma implies that all indecomposable components $\bar{\Delta}_i$ of $\bar{\Delta}$ are of type either B or B^0. On the other hand, assume we are given a positive definite root system Σ of $\bar{\Delta}$ such that all components Σ_i are of type either B or B^0. Let Σ_0 (respectively, Σ_1) be the set of short (respectively, long) roots of Σ. There are many degrees of freedom in reconstructing the finite semi-positive definite root system Δ. First we choose an arbitrary lattice Λ_0 and set $\Lambda = \bar{\Lambda} \oplus \Lambda_0$. Then in each Σ_i of type B we choose a subsystem Σ_i of type B_0. Denote by $\Omega \subset \Sigma$ be the set of all long roots in Σ which do not get into any of the root systems Σ_0 or Σ_1 of type B_0. For each $\alpha \in \Omega$ we choose an arbitrary isotropic vector $\delta(\alpha) \in \Lambda_0$ such that $\delta(\alpha) = -\delta(-\alpha)$ and for each short root $\beta \in \Sigma$ we choose an arbitrary finite set $\Sigma(\beta) \subset \Lambda_0$ such that $\Sigma(\beta) = -\Sigma(\beta) = \Sigma(-\beta)$. We impose the following restriction: If $\alpha \in \Omega$ and β is a short root such that $\alpha(\beta) \neq 0$ then $\delta(\alpha) \in \Sigma(\beta)$. Now we set

$$\Delta = \{\beta + \delta \mid \beta \in \Sigma_0, \delta \in \Sigma(\beta)\} \cup \{\alpha + \delta(\alpha) \mid \alpha \in \Omega\} \cup \bar{\Delta} \setminus \Omega.$$

To summarize:

Theorem 3. Assume $\Delta \subset \Lambda$ be a finite indecomposable root system. Then either Λ is positive definite and then Δ is of one of the types described in Theorem \footnote{\ref{thm:decomposition}} or Λ is semi-positive definite, the positive definite quotient of Δ decomposes into a disjoined union $\bar{\Delta} = \bar{\Delta}_1 \cup \ldots \cup \bar{\Delta}_s$ of finite positive definite root systems of type either B or B^0 and Δ could be reconstructed from $\bar{\Delta}$ by the above procedure.

4.6. **Connection to extended affine root systems.** In this section we point out the relations with the theory of extended affine root systems (EARS), see e.g. \footnote{\ref{earssources}}. By Proposition \footnote{\ref{prop:isotropic}} for any two vectors $\alpha, \beta \in \Delta$ such that $(\alpha|\alpha) \neq 0$ the Cartan number $(\alpha, \beta) = \frac{2(\alpha|\beta)}{(\alpha|\alpha)}$ is an integer. This already makes Δ look similar to an EARS. To make the similarity even more complete we must impose the following indecomposability assumption:

$$\forall \delta \in \Delta_0 \exists \alpha \in \Delta^\times \text{ such that } \delta + \alpha \in \Delta^\times. \quad (21)$$

It is easy to see that if a root system Δ satisfies (21) and $\bar{\Delta}$ is indecomposable then Δ looks inside an EARS, as defined in \footnote{\ref{earssources} page 1}. The following theorem shows that in the case when there are no short roots, the structure of Δ is much simpler than the structure of a general EARS.

Theorem 4. Assume that $\bar{\Delta}$ is an indecomposable root system of one of the following types: A_n, D_n, E_6, B_1 or C_n, i.e. Δ does not contain short roots. Assume also that the condition (21) holds. Then for any $\delta \in \Delta_0$ and $\alpha \in \Delta$ we have $\delta + \alpha \in \Delta$.

The theorem asserts that Δ_0 is a sublattice in Λ_0 and for any $\alpha \in \bar{\Delta}$ the whole equivalence class $\alpha + \Delta_0$ belongs to Δ.

Proof. Let \(\mathcal{L} = \bigoplus_{\alpha \in \Delta} \mathcal{L}_\alpha \subset V_\Lambda \) be the conformal superalgebra generated by the set \(\{ v_\alpha \mid \alpha \in \Delta \} \). We claim that for any \(h \in \mathfrak{h} = \mathbb{R} \otimes \Lambda \) we have \(h(-1) v_\delta \in \mathcal{L}_\delta \).

Let us first show that the theorem follows from this claim. Let \(\delta \in \Delta_0 \) and \(\alpha \in \Delta \). If \(\alpha \in \Delta^x \), then using (3) and (4), we get

\[
(\alpha(-1) v_\delta) \mathbb{I} v_\alpha = \pm (\alpha | \alpha) v_{\alpha + \delta} \in \mathcal{L},
\]

hence \(\alpha + \delta \in \Delta^x \). If \(\alpha \in \Delta_0 \), take some \(\beta \in \Delta^x \) and then using as before, (3) and (4), we get

\[
(\beta(-1) v_\delta) \mathbb{I} (\beta(-1) v_\alpha) = \pm (\beta | \beta) \delta(-1) v_{\alpha + \delta} \in \mathcal{L},
\]

hence \(\alpha + \delta \in \Delta_0 \).

Let us now prove the claim. The condition (21) assures that any isotropic root \(\delta \in \Delta_0 \) is obtained as a sum \(\delta = \alpha + \beta \) of two real roots \(\alpha, \beta \in \Delta^x \). Since \(\Delta \) does not have any short roots, the pair \(\alpha, \beta \) must generate a root system of type either (v) (vi) or (vii) of Proposition 3. So Proposition 3 implies that \(\alpha(-1) v_\delta, \beta(-1) v_\delta \in \mathcal{L}_\delta \).

Assume now that \(\lambda \in \Delta^x \) is such that \(\lambda(-1) v_\delta \in \mathcal{L}_\delta \) and \(\mu \in \Delta^x \) satisfies \((\lambda | \mu) \neq 0 \). Then we have

\[
(\lambda(-1) v_\delta) \mathbb{I} v_\mu = \pm (\lambda | \mu) v_{\mu + \lambda} \in \mathcal{L},
\]

hence \(\mu + \delta \in \Delta^x \). Therefore the real roots \(\mu \) and \(\mu + \delta \) form a root system of type (v), (vi) or (vii) of Proposition 3, so we get that \(\mu(-1) v_\delta \in \mathcal{L}_\delta \).

It follows that for every real root \(\lambda \in \Delta^x \) which is not orthogonal to either \(\alpha \) or \(\beta \) we have \(\lambda(-1) v_\delta \in \mathcal{L}_\delta \), therefore, since \(\Delta \) is indecomposable, \(\lambda(-1) v_\delta \in \mathcal{L}_\delta \) for all \(\lambda \in \Delta^x \). The condition (21) implies that \(\mathfrak{h} = \text{Span}_{\mathbb{R}} \Delta^x \), and the claim follows. \(\square \)

References

[1] B. N. Allison, S. Azam, S. Berman, Y. Gao, and A. Pianzola. Extended affine Lie algebras and their root systems. *Mem. Amer. Math. Soc.*, 126(603):x+122, 1997.

[2] B. Bakalov, V. G. Kac, and A. A. Voronov. Cohomology of conformal algebras. *Comm. Math. Phys.*, 200(3):561–598, 1999.

[3] Yuly Billig. Principal vertex operator representations for toroidal Lie algebras. *J. Math. Phys.*, 39(7):3844–3864, 1998.

[4] R. E. Borcherds. Vertex algebras, Kac-Moody algebras, and the Monster. *Proc. Nat. Acad. Sci. U.S.A.*, 83(10):3068–3071, 1986.

[5] A. D’Andrea and V. G. Kac. Structure theory of finite conformal algebras. *Selecta Math. (N.S.*), 4(3):377–418, 1998.

[6] C. Dong. Vertex algebras associated with even lattices. *J. Algebra*, 161(1):245–265, 1993.

[7] C. Dong and J. Lepowsky. *Generalized vertex algebras and relative vertex operators*. Birkhäuser Boston Inc., Boston, MA, 1993.

[8] E. Frenkel, V. Kac, A. Radul, and W. Wang. \(\mathcal{W}_{1+\infty} \) and \(\mathcal{W}(g\mathfrak{l}_N) \) with central charge \(N \). *Comm. Math. Phys.*, 170(2):337–357, 1995.

[9] I. B. Frenkel, Y.-Z. Huang, and J. Lepowsky. On axiomatic approaches to vertex operator algebras and modules. *Mem. Amer. Math. Soc.*, 104(494), 1993.

[10] I. B. Frenkel and V. G. Kac. Basic representations of affine Lie algebras and dual resonance models. *Invent. Math.*, 62(1):23–66, 1980/81.

[11] I. B. Frenkel, J. Lepowsky, and A. Meurman. *Vertex Operator Algebras and the Monster*. Academic Press, Boston, MA, 1988.

[12] P. Goddard, W. Nahm, D. Olive, and A. Schwimmer. Vertex operators for non-simply-laced algebras. *Comm. Math. Phys.*, 107(2):179–212, 1986.

[13] V. G. Kac. *Infinite-Dimensional Lie Algebras*. Cambridge University Press, Cambridge, third edition, 1990.

[14] V. G. Kac. Classification of infinite-dimensional simple linearly compact Lie superalgebras. *Adv. Math.*, 139(1):1–55, 1998.

[15] V. G. Kac. *Vertex Algebras for Beginners*, volume 10 of *University Lecture Series*. AMS, Providence, RI, second edition, 1998.

[16] V. G. Kac. Formal distribution algebras and conformal algebras. In *XIth International Congress of Mathematical Physics (ICMP ’97) (Brisbane)*, pages 80–97. Internat. Press, Cambridge, MA, 1999.

[17] V. G. Kac, D. A. Kazhdan, J. Lepowsky, and R. L. Wilson. Realization of the basic representations of the Euclidean Lie algebras. *Adv. in Math.*, 42(1):83–112, 1981.

[18] V. G. Kac and D. H. Peterson. Spin and wedge representations of infinite-dimensional Lie algebras and groups. *Proc. Nat. Acad. Sci. U.S.A.*, 78(6, part 1):3308–3312, 1981.

[19] V. G. Kac and A. Radul. Representation theory of the vertex algebra \(\mathcal{W}_{1+\infty} \). *Transform. Groups*, 1(1-2):41–70, 1996.
[20] I. L. Kantor. Non-linear groups of transformations defined by general norms of Jordan algebras. *Dokl. Akad. Nauk SSSR*, 172:779–782, 1967.

[21] M. Koecher. Imbedding of Jordan algebras into Lie algebras. I. *Amer. J. Math.*, 89:787–816, 1967.

[22] J. Lepowsky and R. L. Wilson. Construction of the affine Lie algebra $A_1^{(1)}$. *Comm. Math. Phys.*, 62(1):43–53, 1978.

[23] H. Li. Local systems of vertex operators, vertex superalgebras and modules. *J. Pure Appl. Algebra*, 109(2):143–195, 1996.

[24] I. G. Macdonald. *Symmetric functions and Hall polynomials*. The Clarendon Press Oxford University Press, New York, second edition, 1995. With contributions by A. Zelevinsky, Oxford Science Publications.

[25] R. V. Moody, S. E. Rao, and T. Yokonuma. Toroidal Lie algebras and vertex representations. *Geom. Dedicata*, 35(1-3):283–307, 1990.

[26] M. Primc. Vertex algebras generated by Lie algebras. *J. Pure Appl. Algebra*, 135(3):253–293, 1999.

[27] M. Roitman. On free conformal and vertex algebras. *J. Algebra*, 217(2):496–527, 1999.

[28] M. Roitman. Universal enveloping conformal algebras, 2000. To appear in *Selecta Mathematica*.

[29] G. Segal. Unitary representations of some infinite-dimensional groups. *Comm. Math. Phys.*, 80(3):301–342, 1981.

[30] J. Tits. Une classe d’algèbres de Lie en relation avec les algèbres de Jordan. *Nederl. Akad. Wetensch. Proc. Ser. A*, 65 = *Indag. Math.*, 24:530–535, 1962.

[31] H. K. Yamada. Extended affine Lie algebras and their vertex representations. *Publ. Res. Inst. Math. Sci.*, 25(4):587–603, 1989.

M.S.R.I., 1000 Centennial Dr., Berkeley, CA 94720.

E-mail address: roitman@msri.org