Inverse spin Hall effect in a closed loop circuit

Y. Omori,1 F. Auvray,1 T. Wakamuraj, Y. Niimi,1 A. Fert,2 and Y. Otani1,3

1Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8581, Japan
2Unité Mixte de Physique CNRS/Thales, 91767 Palaiseau France associée à l’Université de Paris-Sud, 91405 Orsay, France
3RIKEN-CEMS, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

(Dated: 19 June 2014)

We present measurements of inverse spin Hall effects (ISHEs) in which the conversion of a spin current into a charge current via the ISHE is detected not as a voltage in a standard open circuit but directly as the charge current generated in a closed loop. The method is applied to the ISHEs of Bi-doped Cu and Pt. The derived expression of ISHE for the loop structure can relate the charge current flowing into the loop to the spin Hall angle of the SHE material and the resistance of the loop.

PACS numbers: 72.25.Ba, 72.25.Mk, 75.70.Cn, 75.75.-c

Spintronic devices rely on the generation, manipulation, and detection of spin currents, flows of spin angular momentum \mathbf{S}. The spin Hall effect (SHE), originally predicted by Dyakonov and Perel’ in 1971 and revived by Hirsch about thirty years later, is one of the ways to convert an electric charge current into a spin current. Since the spin current does not accompany the flow of charge causing energy dissipation, effective ways to produce the spin current have been intensively studied in the field of spintronics [1,2]. However, the spin current is not a conservative quantity but a diffusive flow. Thus, it cannot be directly observed but is measured via spin accumulation, and the spatial variation of spin accumulation is the spin current.

Using the inverse process of SHE, i.e., inverse SHE (ISHE), a spin current can be converted into a charge current. In a standard open circuit measurement, the charge current induced by the ISHE gives rise to charge accumulation generating an electric voltage \mathbf{E}. Here we present experiments showing clearly that the ISHE can also be detected by the current in a closed loop. The current in the loop can be measured as the voltage between two voltage probes in the loop. Such a voltage drop in the nanoscale device is a clear evidence of the conversion of spin current into charge current, which has not directly been observed in previous experiments [3–10]. From the detailed analyses, it turns out that the amount of the charge current is determined by the spin Hall (SH) angle of SHE material and the resistance of the loop.

Samples have been fabricated on a thermally oxidized silicon substrate using electron beam lithography on polymethyl-methacrylate resist and subsequent lift-off process. We first patterned a 100 nm wide wire and deposited permalloy (Py: Ni$_81$Fe$_{19}$) by 30 nm. We also patterned a closed loop or an open end shape next to the Py wire and deposited two different SHE materials, i.e., Cu$_{99.5}$Bi$_{0.5}$ and Pt, by 20 nm. The length of the loop L is 6, 11, and 19 μm, and the distance (d) between the Py wire and the SHE wire is 500 nm. The Py and SHE wires were bridged by a 100 nm wide and 100 nm thick Cu wire transferring the spin current. We also deposited six Cu electrodes (i-vi in Fig. 1) to measure the voltage (V_{ISHE}) induced by the ISHE. Before the deposition of the Cu bridge and electrodes, a careful Ar ion etching was carried out for 30 seconds to obtain transparent interfaces between the SHE material and Cu as well as between Py and Cu. The detailed sample dimensions and other characteristics are listed in Table I.

In Fig. 1(a), we show the principle of ISHE in an SHE ring using the spin absorption method [3,11–14]. When the electric current I flows from the Py wire to the left side of the Cu wire, the resulting spin accumulation induces a pure spin current I_S on the right side of the Cu wire. The pure spin current is preferentially absorbed into the Cu$_{99.5}$Bi$_{0.5}$ or Pt ring. The opposite spin-up and spin-down electrons composing the absorbed pure spin current are deflected to the same direction by the ISHE. As we will detail later on, this conversion occurs only below the Cu bridge.

In the present work, we prepared two types of samples,
FIG. 1: (Color online) (a) Schematic of the measurement circuit. Spin-up and spin-down electrons $|e|$ (|e| is the charge of the electron) denoted by spheres with arrows are absorbed into the SHE material and scattered to the same side by the ISHE. The induced electric current in the loop I_{loop} can be measured as a voltage drop. The magnetic field H is applied along the hard direction of the Py wire. (b)-(c) Scanning electron micrographs and schematics of the 1D model for the closed loop circuit and open end circuit devices. The total length L_M of the loop [from A to B in (b) and (d)] is 11 μm. The distance L between two voltage probes (for instance, between C and D) is defined as shown in (b) and (d). The broken circle is added in (c) to emphasize that the loop is cut. r_{Cu} and r in (d) and (e) are the resistances of the Cu bridge and SHE material only below the Cu bridge, respectively. I_{loop} can be expressed as $xT/(1-x)$ using the shunting factor x. I_C is the ISHE-induced charge current. I_1, I_2 and I_{loop} are ohmic currents accompanied with voltage drops. See the text for more details. (f), (g) The ISHE resistances R_{ISHE} of Cu$_{99.5}$Bi$_{0.5}$ with the closed loop and open end structures measured at 10 K at different voltage probe positions (i-vi). The amplitude of ISHE resistance, ΔR_{ISHE}, is defined as shown in (f).

i.e., closed loop circuit and open end one, as shown in scanning electron microscopy images in Figs. (b) and (c) and in schematics in Figs. (d) and (e). Figures (f) and (g) show ISHE resistances R_{ISHE} ($= V_{ISHE}/I$) of Cu$_{99.5}$Bi$_{0.5}$ measured with the closed loop and open end circuits, respectively. R_{ISHE} increases with increasing the magnetic field H and is saturated above 2000 Oe, which is the saturation field of magnetization of the Py wire, as already shown in our previous reports [7, 11, 12, 14]. What is interesting to note is the amplitude of R_{ISHE}, i.e., ΔR_{ISHE}. In the closed loop structure, ΔR_{ISHE} depends on the distance L between two voltage positions as shown in Fig. (f). For example, ΔR_{ISHE} for $L = 8.1$ μm is about three times larger than that for $L = 2.7$ μm. Such a voltage position dependence of ΔR_{ISHE} has never been observed in the normal open end circuit [see Fig. (g)].

To see clearly the relation between ΔR_{ISHE} and L, we plot ΔR_{ISHE} of Cu$_{99.5}$Bi$_{0.5}$ and Pt rings as a function of L in Fig. (a). Both of them show a linear dependence on L, but ΔR_{ISHE} of Cu$_{99.5}$Bi$_{0.5}$ has a negative slope while that of Pt has a positive one. This is consistent with our previous works; the SH angle α_H of Cu$_{99.5}$Bi$_{0.5}$ is negative [7] while that of Pt is positive [7]. From the linear dependence of ΔR_{ISHE} on L, we can conclude that an electric current (I_{loop}) flows in the SHE ring and the direction of the current relies on the SH angle of the SHE material. From the slope of ΔR_{ISHE} vs L curve, we can estimate I_{loop} in the ring: $I_{loop} = -0.18$ nA for Cu$_{99.5}$Bi$_{0.5}$ and $I_{loop} = 0.04$ nA for Pt when $I = 0.58$ mA is applied. However, the obtained I_{loop} is too small when we simply consider the conversion of spin current into charge current via the ISHE.

We now formulate I_{loop} within the standard one-dimensional (1D) spin diffusion model [15]. As shown in Figs. (d) and (e), the generated I_S is absorbed into the SHE ring because of its strong spin-orbit interaction. In this device structure, the absorbed pure spin current can be expressed as follows:

$$I_S = \frac{\lambda_M}{t_M} \left(1 - e^{-t_M/\lambda_M}\right)^2 \left(\frac{2pF\rhoFe^{d/\lambda_N}}{(2Q_M + 1)(2Q_F + 1)e^{2d/\lambda_N} - 1}\right)$$

where λ_S is defined as an average of pure spin current flowing vertically into the Cu$_{99.5}$Bi$_{0.5}$ or Pt ring, R_S, R_F, and R_M are respectively the spin resistances of Cu, Py and Cu$_{99.5}$Bi$_{0.5}$ or Pt, and $Q_F = R_F/R_S$ and $Q_M = R_M/R_S$. The spin resistance R_X is defined as $\rho_X\lambda_X/(1 - p_X^2)A_X$, where ρ_X, λ_X, p_X and A_X are respectively the electrical resistivity, the spin diffusion length, the spin polarization, the effective cross sectional area involved in the equations of the 1D spin diffusion model and the suffix X represents each material (N, F or M). These values obtained at $T = 10$ K are shown in Table I.
The SH angle α_H is the conversion rate between the pure spin current density $j_S = \frac{I}{wL}$ and the charge current density $j_C = \frac{I_C}{wL}$. Thus, we obtain $I_C = \frac{I}{wL}\alpha_H I_S$ [see the red arrow in Figs. 1(d) and 1(e)]. For the open end case, no charge current flows in the circuit (i.e., $I_{loop} = 0$). This means that the converted charge current I_C is compensated by I_1 and I_2 as depicted in Fig. 1(c): $I_C = I_1 + I_2$. Here I_1, I_2 and I_{loop} are currents flowing in the SHE material only below the Cu bridge, in the Cu bridge, and in the SHE material outside the Cu bridge, respectively. As can be seen in Fig. 1(g), ΔR_{ISHE} has no voltage position dependence. Thus, the induced ISHE voltage ΔV_{ISHE} can be written as follows:

$$\Delta V_{ISHE} = rI_1 = \frac{1 - x}{1 - x} I_2 = \frac{1}{w_L} \alpha^{1D}_H x IS_M \rho_M$$

where r is the resistance of the SHE material below the Cu bridge [see the caption of Fig. 1]. ρ_M is the longitudinal resistivity of the SHE material, and $x \approx 0.36$ is the shunting factor, originally introduced in Ref. 11. This expression is indeed the same as Eq. (2) in Ref. 11.

In the loop structure, I_{loop} is not zero anymore as shown in Fig. 1(d) and can be expressed as:

$$I_{loop} \approx \frac{I_M}{L_M} \alpha^{1D}_H x IS_M$$

To obtain Eq. (3), we assume $L_M \gg w_L$. From this equation, we can explain that I_{loop} depends not only on α^{1D}_H but also on L_M. In addition, ΔV_{ISHE} at the end point of the loop ($L = L_M$) becomes Eq. (2) since it is a product of I_{loop} and the resistance of the loop. As I_{loop} is already obtained from Fig. 2, we can estimate α^{1D}_H with Eq. (3).

We note that unlike the case of the lateral spin valve device [11, 12, 14], α^{1D}_H, which is needed to obtain ΔV_{ISHE}, cannot be directly determined on the same device. Therefore, as shown in Table 1, we have referred to α^{1D}_H reported in our previous works [11, 13] to obtain α^{1D}_H; $\alpha^{1D}_H = -0.11$ for Cu$_{99.5}$Bi$_{0.5}$, and $\alpha^{1D}_H = 0.014$ for Pt. These results are consistent with our previous works [11, 12, 14].

So far, we have fixed $L_M = 11 \mu m$. To check Eq. (3), we prepared three different L_M rings [see Fig. 2(b)]. As expected, I_{loop} depends on L_M; for instance, I_{loop} becomes -0.31 nA for the Cu$_{99.5}$Bi$_{0.5}$ ring with $L_M = 6 \mu m$. Moreover, ΔR_{ISHE} at the end point of the loop ($L = L_M$) coincides with ΔR_{ISHE} of the open end circuit,
as can be seen in Fig. 2(b). This result also supports the above consideration.

To confirm our 1D analysis, we have also performed three-dimensional (3D) analyses for \(V_{\text{ISHE}} \) and \(I_{\text{loop}} \) using SpinFlow 3D based on the Valet-Fert formalism. In the case of the open circuit device, the distribution of \(V_{\text{ISHE}} \) is homogeneous both for the left and right sides, and the difference between the two sides corresponds to \(\Delta V_{\text{ISHE}} \), as shown in Fig. 3(a). This result also indicates that \(I_{\text{loop}} = 0 \). When the SHE material has a closed loop structure, on the other hand, \(V_{\text{ISHE}} \) gradually changes from the positive value (on the left side) to the negative one (on the right side), but \(\Delta V_{\text{ISHE}} \) obtained at the two edges next to the Cu bridge is the same as that for the open end circuit [see Fig. 3(b)]. This is consistent with the experimental result shown in Fig. 2(b).

To prove that the charge current flows in the ring, we show the charge current density distribution calculated with SpinFlow 3D in Figs. 3(c)-3(f). As in the case of the 1D model, \(j_c \) is compensated by \(j \) below the Cu bridge, but since the SHE material has a ring shape, the small leakage current flows in the ring. From the leakage current, we can also estimate \(\Delta \mathbf{V} \) by using \(\Delta \mathbf{V} = j \times \mathbf{r} \). As shown in Table I, \(\alpha_H \) is larger than \(\lambda \) for CuBi, but since the SHE material has a ring shape, the small leakage current flows in the ring. From the leakage current, we can also estimate \(\Delta \mathbf{V} \) by using \(\Delta \mathbf{V} = j \times \mathbf{r} \). These are again consistent with our previous works.

In Fig. 3, we selected Pt as an SHE material to show the current distribution in the ring. We obtain the similar current distribution for CuBi but with the opposite direction compared to Pt. However, the current distribution below the Cu bridge is much more complicated to see than that for Pt. This originates from the spreading of the spin accumulation at the side edges of the CuBi ring since \(\lambda \) is larger than \(\tau \).

Finally, we discuss how \(I_1 \), \(I_2 \) and \(I_{\text{loop}} \) are generated in the closed loop circuit and how \(I_{\text{loop}} \) can be utilized. As shown in Fig. 4, the induced \(I_S \) is injected into the SHE material from the Cu bridge. We note here that the conversion of \(I_S \) into \(I_C \) occurs only at the Cu/SHE-material junction. Thus, electrons converted from \(I_S \) lose the driving force once they go out from the junction, and are accumulated to one side. This induces the electric field in the SHE wire. For the open end circuit, the accumulated electrons are balanced with the electric field, as in the case of the normal Hall effect. As a result, \(I_C \) is cancelled out by \(I_1 \) and \(I_2 \), and the electric voltage \(\Delta V_{\text{ISHE}} \) can be measured. When the circuit is closed, the electric field also induces \(I_{\text{loop}} \) in the loop. This \(I_{\text{loop}} \) is essentially different from a current due to electromotive force induced by an alternating magnetic field through a ring. Although we have used the ac lock-in technique to obtain \(I_{\text{loop}} \), it is in principle a dc current. The present result clearly shows that by flowing \(I \) from Py to Cu non-locally, another steady current can be induced in a mesoscopic ring with a large \(\alpha_H \) via the ISHE.

As discussed above, since \(I_{\text{loop}} \) is proportional to \(t_M / L_M \), it is of the order of 1 nA at the moment. By optimizing the device structure, the value can be enhanced by a factor of ten. Furthermore, by replacing a part of SHE ring with a superconductor, we could obtain a smaller resistance of the loop compared to the resistance of the shunt (Cu bridge). In such a case, \(I_{\text{loop}} \) should be enhanced closer to \(I_C \). It is known that when there is a magnetic flux \(\phi \) threading such a mesoscopic ring, a small persistent current (of the order of 1 nA) is induced in the ring and shows an oscillation with a period of \(\phi_0 = \hbar/e \) where \(\hbar \) is the Plank constant. In the same way as a dc-SQUID magnetometer, by arranging the SHE ring on top of a sample and measuring a current in the ring precisely, one could observe a modulation of \(I_{\text{loop}} \) and thus extract the magnetization of the sample.

In summary, we have measured the ISHEs of CuBi and Pt by means of the spin absorption technique in both open end and closed loop circuits, and found that the electric current can be obtained only in the closed loop. The detected current depends on the spin Hall angle of the SHE material and also on the resistance of the loop. It is commonly considered that the ISHE converts a spin current into a charge current, but this is the first observation of the converted charge current via the ISHE of CuBi or Pt. The amount of the charge current can be quantitatively explained by our spin transport models.

We acknowledge helpful discussions with T. Kato. We would also like to thank Y. Iye and S. Katsumoto for the use of the lithography facilities. This work was supported by KAKENHI (Grant No. 24740217 and 23244071) and by Foundation of Advanced Technology Institute.

* Electronic address: niimi@issp.u-tokyo.ac.jp

[1] S. Maekawa, *Concepts in Spin Electronics* (Oxford University Press, Oxford, 2006).
[2] M. I. Dyakonov and V. I. Perel, Sov. Phys. JETP Lett. 13, 467 (1971).
[3] J. E. Hirsch, Phys. Rev. Lett. 83, 1834 (1999).
[4] T. Seki, Y. Hasegawa, S. Mitani, S. Takahashi, H. Imamura, S. Maekawa, J. Nitta and K. Takanashi, Nat. Mater. 7, 125 (2008).
[5] L. Liu, C.-F. Pai, Y. Li, H. W. Tseng, D. C. Ralph, and R. A. Buhrman, Science 336, 555 (2012).
[6] C.-F. Pai, L. Liu, Y. Li, H. W. Tseng, D. C. Ralph, and R. A. Buhrman, Appl. Phys. Lett. 101, 122404 (2012).
[7] Y. Niimi, Y. Kawanishi, D. H. Wei, C. Deranlot, H. X. Yang, M. Chshiev, T. Valet, A. Fert, and Y. Otani, Phys. Rev. Lett. 109, 156602 (2012).
[8] S. O. Valenzuela and M. Tinkham, Nature (London) 442, 176 (2006).
[9] E. Saitoh, M Ueda, H. Miyajima, and G. Tatara, Appl. Phys. Lett. 88, 182509 (2006).
[10] O. Mosendz, J. E. Pearson, F. Y. Fradin, G. E. W. Bauer, S. D. Bader, and A. Hoffmann, Phys. Rev. Lett. 104, 046601 (2010); O. Mosendz, V. Vlaminck, J. E. Pearson, F. Y. Fradin, G. E. W. Bauer, S. D. Bader, and A.
Hoffmann, Phys. Rev. B 82, 214403 (2010).

[11] Y. Niimi, M. Morota, D. H. Wei, C. Deranlot, M. Basletic, A. Hamzic, A. Fert, and Y. Otani, Phys. Rev. Lett. 106, 126601 (2011).

[12] M. Morota, Y. Niimi, K. Ohnishi, D. H. Wei, T. Tanaka, H. Kontani, T. Kimura, and Y. Otani, Phys. Rev. B 83, 174405 (2011).

[13] Y. Niimi, D. Wei, H. Idzuchi, T. Wakamura, T. Kato, and Y. Otani, Phys. Rev. Lett. 110, 016805 (2013).

[14] Y. Niimi, H. Suzuki, Y. Kawanishi, Y. Omori, T. Valet, A. Fert, and Y. Otani, Phys. Rev. B. 89, 054401 (2014).

[15] S. Takahashi and S. Maekawa, Phys. Rev. B 67, 052409 (2003); Sci. Tech. Adv. Matter. 9, 014105 (2008).

[16] T. Valet and A. Fert, Phys. Rev. B. 48, 7099 (1993).

[17] L. P. Lévy, G. Dolan, J. Dunsmuir, and H. Bouchait, Phys. Rev. Lett. 64, 2074 (1990).

[18] V. Chandrasekhar, R. A. Webb, M. J. Brady, M. B. Ketchen, W. J. Gallagher, and A. Kleinsasser, Phys. Rev. Lett. 67, 3578 (1991).

[19] D. Mailly, C. Chapelier, and A. Benoit, Phys. Rev. Lett. 70, 2020 (1993).