Sharp L^1 Inequalities for Sup-Convolution

Peter van Hintum Hunter Spink Marius Tiba

Received 12 August 2020; Published 4 July 2023

Abstract: Given a compact convex domain $C \subset \mathbb{R}^k$ and bounded measurable functions $f_1, \ldots, f_n : C \to \mathbb{R}$, define the sup-convolution $(f_1 * \ldots * f_n)(z)$ to be the supremum average value of $f_1(x_1), \ldots, f_n(x_n)$ over all $x_1, \ldots, x_n \in C$ which average to z. Continuing the study by Figalli and Jerison and the present authors of linear stability for the Brunn-Minkowski inequality with equal sets, for $k \leq 3$ we find the optimal constants $c_{k,n}$ such that

$$\int_C f^* f(x) - f(x) dx \geq c_{k,n} \int_C \text{co}(f)(x) - f(x) dx$$

where $\text{co}(f)$ is the upper convex hull of f. Also, we show $c_{k,n} = 1 - O\left(\frac{1}{n}\right)$ for fixed k and prove an analogous optimal inequality for two distinct functions. The key geometric insight is a decomposition of polytopal approximations of C into hypersimplices according to the geometry of the set of points where $\text{co}(f)$ is close to f.

1 Introduction

Let $C \subset \mathbb{R}^k$ be a compact convex domain. For a bounded function $f : C \to \mathbb{R}$, $\text{co}(f)$ is defined to be the upper convex hull of f (the infimum of all concave functions larger than f), and for bounded measurable functions $f_1, \ldots, f_n : C \to \mathbb{R}$, the sup-convolution is defined to be

$$(f_1 * \ldots * f_n)(z) := \sup \left\{ \frac{f_1(x_1) + \ldots + f_n(x_n)}{n} : \frac{x_1 + \ldots + x_n}{n} = z \right\}.$$
The operation of sup-convolution, or in its equivalent form inf-convolution $-((- f_1) * ... * (- f_n))$, naturally appears in problems of optimization, with f_1, \ldots, f_n utility functions and C representing a cost domain [174]. For a general survey, see [Str96]. Clearly $f_1 * \ldots * f_n \geq \frac{f_1 + \ldots + f_n}{n}$, and equality is attained when for example f_1, \ldots, f_n are scalings of the same concave function $f = \text{co}(f)$.

We can view the sup-convolution operation geometrically in terms of the Minkowski sum of regions in \mathbb{R}^{k+1}. Indeed, consider the hypograph

$$A_{f, \lambda} = \{(x,y) \in \mathbb{C} \times \mathbb{R} : \lambda \leq y \leq f(x)\}.$$

Then we have the closed convex hull $\text{co}(A_{f,\lambda}) = \text{co}(f,\lambda)$, and for λ sufficiently negative we have

$$A_{f_1*\ldots*f_n,\lambda} = \frac{1}{n}(A_{f_1,\lambda} + \ldots + A_{f_n,\lambda}).$$

The study of how close a Minkowski sum is to its convex hull was started by Starr-Shapley-Folkman [Sta69] and Emerson-Greenleaf [EG69], who showed that if A_1, \ldots, A_n are subsets of the unit ball in \mathbb{R}^k, then the Hausdorff distance between the Minkowski averages $\frac{1}{n}(A_1 + \ldots + A_n)$ and $\frac{1}{n}(\text{co}(A_1) + \ldots + \text{co}(A_n))$ is bounded above by $\sqrt{k/n}$. Of particular interest for us will be when $A_1 = \ldots = A_n = A$, where we are concerned with how close $\frac{1}{n}(A + \ldots + A)$ is to $\text{co}(A)$; for this equal sets case we refer the reader to the extensive survey [FMMZ18].

Ruzsa [Ruz97, Theorem 5] showed that there is a constant D_k such that for $A \subset \mathbb{R}^k$ of positive measure (taking the outer Lebesgue measure everywhere) and $n > D_k |\text{co}(A)|/|A|$, we have $|\frac{1}{n}(A + \ldots + A)| \geq \left(1 - \frac{D_n}{n} \cdot \frac{|\text{co}(A)|}{|A|}\right)^k |\text{co}(A)|$. In another direction, resolving a conjecture of Figalli and Jerison [FJ19, FJ15] on the stability of the Brunn-Minkowski inequality for homothetic sets, the present authors [vHST20b] showed that for $t \in (0, 1)$ there are constants $c_k(t)$ and $d_k(t)$ such that for subsets $A \subset \mathbb{R}^k$ of positive measure, $|tA + (1-t)A| \geq c_k(t)|\text{co}(A) \setminus A|$ provided $|(tA + (1-t)A) \setminus A| \leq d_k(t)|A|$. A nice feature of this last result is that for $A = A_{f,\lambda}$ the hypograph of a function, the $d_{k+1}(t)$ condition is always satisfied provided we take λ to be sufficiently negative. Taking $t = \frac{1}{2}$ allows us to conclude, writing f^{*n} for $f * \ldots * f$, that there exist positive constants $c_{k,n}$ such that

$$\int_C f^{*n}(x) - f(x)dx \geq c_{k,n}\int_C \text{co}(f)(x) - f(x)dx$$

(see Appendix A, where we also give an alternate self-contained proof of this particular inequality).

The constants $c_{k,n}$ one obtains in this way however are not optimal. Our first theorem establishes the optimal constants for $k \leq 3$, making progress towards Question 1.8 from [vHST20a] which asked an analogous question in the discrete setting with $n = 2$.

Theorem 1.1. If $f : C \to \mathbb{R}$ is a bounded measurable function with $C \subset \mathbb{R}^k$ a compact convex domain with $k \leq 3$, and $n \geq 1$, then

$$\int_C f^{*n}(x) - f(x)dx \geq c_{k,n}\int_C \text{co}(f)(x) - f(x)dx$$

1Formally we work with the “upper Lebesgue integral” to avoid the issue of the measurability of $f_1 * \ldots * f_n$.
with
\[c_{k,n} = \begin{cases} \frac{n-1}{n} & k = 1 \\ \frac{(2n-1)(n-1)}{2n^2} & k = 2 \\ \frac{(n-1)^2}{n^2} & k = 3. \end{cases} \]

This is sharp, taking \(f \) the indicator function on the vertices of \(C = T \) a simplex. In any dimension \(k \), letting \(e_1, \ldots, e_{k+1} \) be the standard basis vectors in \(\mathbb{R}^{k+1} \) and identifying \(C = T \) with the convex hull of \(ne_1, \ldots, ne_{k+1} \) we will see that the level sets of this particular \(f^{*\alpha} \) induce a subdivision of \(C \) into hypersimplices, where translates of the \(m \)‘th \(k \)-dimensional hypersimplex \(P_{k,m} := [0, 1]^{k+1} \cap \{ \sum x_j = m \} \) appear \(\binom{n+k-m}{k} \) times (see Section 3).

For example for \(k = 2 \) (depicting the case \(n = 4 \) below), \(f^{*\alpha} \) takes value \(\frac{n-1}{n} \) in the shaded region, the union of \(\binom{n+1}{2} \) translates of the triangle \(P_{2,1} \), and \(\frac{n-2}{n} \) in the unshaded region, the union of \(\binom{n}{2} \) translates of the triangle \(P_{2,2} \).

The shaded regions are precisely those parts of \(T \) whose points can be expressed as \(\sum x_i \) with all but one of the \(x_i \) a vertex of \(T \), and the remaining unshaded regions can be expressed with all but two of the \(x_i \) a vertex of \(T \).

For \(k = 3 \), we can subdivide \(T \) into \(\binom{n+3}{3} \) translates of \(\frac{1}{3}T = P_{3,1} \), \(\binom{n+1}{3} \) translates of the octahedron \(P_{3,2} \), and \(\binom{3}{3} \) translates of \(-P_{3,1} = P_{3,3} \), on which \(f^{*\alpha} \) takes the values \(\frac{n-1}{n}, \frac{n-2}{n}, \frac{n-3}{n} \) respectively. The partition is according to whether the maximum number of vertices of \(T \) which can be used to express the point as an \(n \)-average is \(n-1, n-2 \), or \(n-3 \) respectively.

To prove Theorem 1.1, we pass to a piecewise-linear approximation and then triangulate according to the domains of linearity of \(\co(f) \). On each simplex \(T \) we prove a sharp inequality relating \(\int_R \co(f)(x) - f^{*\alpha}(x) \, dx \) and \(\int_T \co(f)(x) - f(x) \, dx \) for \(R \) ranging over the hypersimplices in the subdivision alluded to above. This in turn is encompassed in our notion of an “\(m \)-averageable” subset of \(T \) (Section 4), and showing certain hypersimplices are “\(m \)-averageable” allows us to conclude.

We make the following conjecture for arbitrary \(k, n \geq 1 \). In what follows, write \(A(k, \ell) \) for the Eulerian number counting permutations of \(S_k \) with \(\ell \) descents.

Conjecture 1.2. If \(k, n \geq 1 \) and \(f : C \to \mathbb{R} \) is a bounded measurable function with \(C \subset \mathbb{R}^k \) a compact convex domain, then we have
\[
\int_C f^{*\alpha}(x) - f(x) \, dx \geq c_{k,n} \int_C \co(f)(x) - f(x) \, dx,
\]
where
\[c_{k,n} = \frac{1}{n^k} \sum_{m=1}^k \frac{n-m}{n} \binom{n+k-m}{k} A(k, m-1) = \frac{k+1}{n^{k+1}} (1^k + \ldots + (n-1)^k). \]
If true, this would be sharp by taking f the indicator function on the vertices of $C = T$ a simplex (see Section 3). Here $\frac{n-m}{m}$ is the value of f^{*n} on each hypersimplex $P_{k,m} + x$, $(\binom{n+k-m}{k})$ is the number of such hypersimplices, and $\frac{A(k,m-1)}{m}$ is the volume ratio of $P_{k,m}$ to T.

Remark 1.3. Omitting the $\frac{n-m}{m}$ factor, we obtain a geometric proof of the Worpitzky identity $n^k = \sum (\binom{n+k-m}{k})A(k,m-1)$. A similar observation was recently exploited by Early [Ear16, Section 3] to categorify the Worpitzky identity via the representation theory of the symmetric group.

We also show the following asymptotic result for fixed k as $n \to \infty$.

Theorem 1.4. For any $k \geq 1$ and $n \geq k + 1$, we have $c_{k,n} \geq 1 - (\frac{n}{k})^{k+1} = 1 - O(\frac{1}{n})$.

This is optimal up to the constant on $\frac{1}{n}$, which this theorem shows can be taken to be $\frac{k+1}{k!} = eO(k)$, though our conjectured extremal example gives a constant of $\frac{k+1}{2}$.

Finally, we consider the sup-convolution of distinct functions f, g, showing that f is close to $\text{co}(f)$ provided $f \ast g$ is close to $\frac{f+g}{2}$.

Theorem 1.5. If $f, g : C \to \mathbb{R}$ are bounded measurable functions with $C \subset \mathbb{R}^k$ a compact convex domain and $k \leq 3$ then

$$\int_C f \ast g(x) - \frac{f(x) + g(x)}{2} \, dx \geq \frac{k+1}{2k+1} \int_C \text{co}(f)(x) - f(x) \, dx.$$

The constant $c_{k,2} = \frac{k+1}{2k+1}$ is again sharp, as for example we can take $f = g$ the indicator function on the vertices of $C = T$ a simplex.

In Section 2 we show that Theorem 1.1, Conjecture 1.2, Theorem 1.4, and Theorem 1.5 reduce to the case that $C = T$ is a simplex, $f \leq 0$ on the vertices and $f \equiv 0$ otherwise. In Section 3 we construct our hypersimplex subdivision of T. In Section 4 we introduce a new geometric notion of “m-averageable subsets of T”, and reduce to showing certain hypersimplices in T are “m-averageable”. In Section 5 we show that the relevant hypersimplices up to dimension 3 are “m-averageable” and conclude Theorem 1.1 and Theorem 1.5. In Section 6 we prove Theorem 1.4. Finally, in Appendix A we show how the existence of a non-sharp constant in Conjecture 1.2 can be derived from [vHST20b], and we also give a quick self-contained proof.

2 Reduction to Simplices

Here we reduce Theorem 1.1, Conjecture 1.2, Theorem 1.4, and Theorem 1.5 to the case $C = T$ is a simplex, $f \leq 0$, and $f = 0$ at the vertices.

Proposition 2.1. The statements of Theorem 1.1, Conjecture 1.2, Theorem 1.4, and Theorem 1.5, respectively, are equivalent to the corresponding statements with the additional assumption that $C = T$ is a simplex, $f \leq 0$, and $f = 0$ at the vertices.
Proof. The reduction is divided in the following three steps. The first two steps will reduce to the situation that f is nonnegative with piecewise-linear $\text{co}(f)$ with finitely many domains of linearity. Considering a particular domain of linearity T, by subtracting the linear function $\text{co}(f)|_T$, we deduce the result. We shall always focus on the reduction of Conjecture 1.2, as the others follow in a similar way.

Claim 2.2. Suppose that Theorem 1.1 (resp. Conjecture 1.2, Theorem 1.4, Theorem 1.5) is true when the domain C is a polytope P, $f \geq 0$, and $f = 0$ on a neighborhood of ∂C. Then Theorem 1.1 (resp. Conjecture 1.2, Theorem 1.4, Theorem 1.5) is true.

Proof. We prove this claim for Conjecture 1.2, the other cases are similar. The inequality doesn’t change if we scale f or add a constant so assume that $f(x) \in [0, n + 1]$ for all $x \in C$. Let P_1, P_2, \ldots be a sequence of polytopes with $C \subset P_i^n$ (the interior of P_i) and $|P_i| \to |C|$. We extend f to a function f_i on P_i by setting $f_i = 0$ on $P_i \setminus C$. Then we note that for any $x \in C$, $f_i^n(x) \geq f_i(x) \geq n$, but

$$f_i(x_1) + \ldots + f_i(x_n) \leq \frac{(n+1)(n-1)}{n} < n$$

provided any $x_j \in \partial C$, so we conclude that $f_i^n|C = f^n$.

Thus as $\text{co}(f_i) \geq \text{co}(f)$,

$$\int_C f^n - f(x) dx \geq \int_{P_i} f^n(x) - f_i(x) dx - |P_i \setminus C| \cdot ||f^n||_\infty$$

$$\geq c_{k,n} \int_{P_i} \text{co}(f_i)(x) - f_i(x) dx - |P_i \setminus C| \cdot ||f^n||_\infty$$

$$\geq c_{k,n} \int_C \text{co}(f)(x) - f(x) dx - |P_i \setminus C| \cdot ||f^n||_\infty \rightarrow c_{k,n} \int_C \text{co}(f)(x) - f(x) dx,$$

where in the last step we used that $||f^n||_\infty = ||f||_\infty \leq n + 1$. \hfill \Box

Claim 2.3. Suppose that Theorem 1.1 (resp. Conjecture 1.2, Theorem 1.5) is true when the domain C is a polytope P and $\text{co}(f)$ is the upper convex hull of finitely many points $(r_i, f(r_i))$ (so is in particular piecewise linear). Then it is true when the domain C is a polytope P, $f \geq 0$, and $f = 0$ on a neighborhood of ∂C.

Proof. We prove this claim for Conjecture 1.2, the other cases are similar. Suppose $C = P$, $f \geq 0$, and $f = 0$ on a neighborhood of ∂C (but we do not necessarily know that $\text{co}(f)$ is piecewise linear).

We’ll show that $\text{co}(f)$ is continuous at all points $x \in C$. First, suppose that $x \in C^0$. Then for $y \in C^0$, let z_1, z_2 be the points on ∂C such that z_1, x, y, z_2 are collinear in that order. We have

$$\text{co}(f)(x) \geq \frac{|x - z_1|}{|y - z_1|} \text{co}(f)(y) + \frac{|x - y|}{|y - z_1|} \text{co}(f)(z_1) \geq \frac{|x - z_1|}{|y - z_1|} \text{co}(f)(y)$$

$$\text{co}(f)(y) \geq \frac{|y - z_2|}{|x - z_2|} \text{co}(f)(x) + \frac{|y - z_2|}{|x - z_2|} \text{co}(f)(z_2) \geq \frac{|y - z_2|}{|x - z_2|} \text{co}(f)(x).$$
We remark that $|| \cdot ||$ denotes the Euclidean norm, so $co(f)(y) \rightarrow co(f)(x)$ as $y \rightarrow x$. Next, instead suppose that $x \in \partial C$. Then take any linear function L which is 0 at x and positive with $\inf_{\text{supp}(f)} L > 0$, which exists as $f(x)$ is supported on a compact subset of the interior of C. We may further assume that $L_{|\text{supp}(f)} > ||f||_\infty$ by replacing L with $(1 + ||f||_\infty)(\inf_{\text{supp}(f)} L)^{-1}L$. Then $co(f)$ is sandwiched between the constant function 0 and the continuous function L which agree at x, which implies that $co(f)(x) = 0$ and $co(f)$ is continuous at x.

In particular, because $co(f)$ is continuous and concave, it is approximated in the supremum norm by concave piecewise-linear functions from above. Let c be a concave piecewise-linear approximation to $co(f)$ with $c \geq co(f)$, and $||c - co(f)||_\infty \leq \varepsilon$ for some fixed ε. Let $x_1, \ldots, x_N \in C$ be a finite collection of points for which the graph of c is the upper convex hull of the points $(x_i, c(x_i))$ (note that here we use the fact that the domain is a polytope).

We note that

$$co(f)(x) = \sup \{ \lambda_1 f(x_1) + \ldots + \lambda_\ell f(x_\ell) : \ell \in \mathbb{N}, \lambda_1, \ldots, \lambda_\ell \in [0, 1], \sum \lambda_i = 1, \sum \lambda_i x_i = x \}. $$

Hence, there exists M, points $\{x_i\}_{1 \leq i \leq M}$ and parameters $\lambda_{i,j} \in [0, 1]$ with $\sum_{j=1}^{M} \lambda_{i,j} = 1$, $\sum_{j=1}^{M} \lambda_{i,j} x_{i,j} = x_i$, and

$$co(f)(x_i) \leq \sum_{j=1}^{M} \lambda_{i,j} f(x_{i,j}) + \varepsilon. $$

Let

$$f_\varepsilon(x) = \begin{cases} f(x) + 2\varepsilon & \text{if } x = x_{i,j} \text{ for some } i, j, \\ f(x) & \text{otherwise.} \end{cases}$$

We remark that

$$\sum_{j=1}^{M} \lambda_{i,j} f_\varepsilon(x_{i,j}) = 2\varepsilon + \sum_{j=1}^{M} \lambda_{i,j} f(x_{i,j}) \geq co(f)(x_i) + \varepsilon \geq c(x_i). $$

Hence letting g be the upper convex hull of the points $(x_{i,j}, f_\varepsilon(x_{i,j}))$, we have $g \geq c \geq f$.

We claim that $co(f_\varepsilon)(x) = g$. Indeed, we trivially have $g \leq co(f_\varepsilon)$, so it suffices to show $g \geq co(f_\varepsilon)$. For $x = x_{i,j}$ we clearly have $g(x) \geq f_\varepsilon(x)$ and for $x \neq x_{i,j}$, we have $g(x) \geq f(x) = f_\varepsilon(x)$. Hence $g \geq f_\varepsilon$, so as g is concave, $g \geq co(f_\varepsilon)$.

Hence, $co(f_\varepsilon)$ is the upper convex hull of finitely many points $(r_i, f_\varepsilon(r_i))$. As $||f_\varepsilon - f||_\infty \leq 2\varepsilon$ and $f_\varepsilon \geq f$, we have by our hypothesis,

$$\int_C f^{u,n}(x) - f(x)dx + 2\varepsilon |C| \geq \int_C (f_\varepsilon)^{u,n}(x) - f_\varepsilon(x)dx \geq c_{k,n} \int_C co(f_\varepsilon)(x) - f_\varepsilon(x)dx \geq c_{k,n} \int_C co(f)(x) - f(x)dx - 2\varepsilon c_{k,n} |C|,$n

where the first inequality follows from the fact that $f^{u,n} + 2\varepsilon = (f + 2\varepsilon)^{u,n} \geq (f_\varepsilon)^{u,n}$. Letting $\varepsilon \rightarrow 0$ we conclude.

\[\square \]
Claim 2.4. Suppose that Theorem 1.1 (resp. Conjecture 1.2, Theorem 1.4, Theorem 1.5) is true when the domain C is a simplex T, $f = 0$ at the vertices of T and $f \leq 0$. Then it is true when the domain C is a polytope P and $\text{co}(f)$ is the upper convex hull of finitely many points $(r_i, f(r_i))$.

Proof. We prove this claim for Conjecture 1.2, the other cases are similar. Let f be defined on a polytopal domain $C = P$ with $\text{co}(f)$ the upper convex hull of finitely many points $(r_i, f(r_i))$. The domains of linearity of $\text{co}(f)$ decompose C into convex polytopes with vertices a subset of the r_i. Further subdivide this decomposition into triangulation \mathcal{T}. Then $\text{co}(f|_{\mathcal{T}}) = \text{co}(f)|_{\mathcal{T}}$ for all $T \in \mathcal{T}$, so $\int_C \text{co}(f)(x) - f(x)dx = \sum_{T \in \mathcal{T}} \int_T \text{co}(f|_{T})(x) - f|_{T}(x)dx$ and

$$\int_{C} f^{**}(x) - f(x)dx \geq \sum_{T} \int_{T} (f|_{T})^{**}(x) - f|_{T}(x)dx.$$

Hence it suffices to prove for every $T \in \mathcal{T}$ that

$$\int_{T} (f|_{T})^{**}(x) - f|_{T}(x)dx \geq c_{k,n} \int_{T} \text{co}(f|_{T})(x) - f|_{T}(x)dx.$$

As $\text{co}(f|_{T})$ is linear, and the inequality is preserved by subtracting linear functions from f, we may subtract $\text{co}(f|_{T})$ from f, after which $f = 0$ at the vertices of T and $f \leq 0$ on T. Thus by hypothesis we are done.

The above sequence of reductions gives the desired conclusion.

3 Hypersimplex Covering

We take T to be the convex hull of the standard basis vectors $e_1, \ldots, e_{k+1} \in \mathbb{R}^{k+1}$. Recall that the mth k-dimensional hypersimplex for $1 \leq m \leq k$ is defined to be the region in \mathbb{R}^{k+1} given by

$$P_{k,m} := \left\{(x_1, \ldots, x_{k+1}) \in [0,1]^{k+1} : \sum x_i = m \right\}.$$

Definition 3.1. Let

$$\mathcal{B}_{k,\ell} = \left\{(x_1, \ldots, x_{k+1}) \in \mathbb{Z}_{\geq 0}^{k+1} : \sum x_i = \ell \right\}.$$

Proposition 3.2. For $k, n \geq 1$ we have a polytopal subdivision

$$T = \bigcup_{m=1}^{\min(k,n)} \bigcup_{v \in \mathcal{B}_{k,n-m}} \frac{1}{n} P_{k,m} + \frac{1}{n} v.$$

Proof. Note that because $\bigcup_{v \in \mathbb{Z}^{k+1}} [0,1]^{k+1} + v$ subdivide \mathbb{R}^{k+1}, the intersections $\bigcup_{v \in \mathbb{Z}^{k+1}} ([0,1]^{k+1} + v) \cap nT$ form a polytopal subvision of nT. Let \mathcal{B} be the set of such v for which $([0,1]^{k+1} + v) \cap nT$ is k-dimensional, such that $\bigcup_{v \in \mathcal{B}} ([0,1]^{k+1} + v) \cap nT$ also forms a polytopal subvision of nT.

Discrete Analysis, 2023:7, 0pp. 7
Let $v \in \mathcal{B}$, and set $m = n - \sum v_i$. We first claim that $1 \leq m \leq k$ and

$$([0, 1]^{k+1} + v) \cap \{ \sum x_i = n \} = P_{k,m} + v.$$

Indeed, as nT lies in the $\sum x_i = n$ hyperplane and $([0, 1]^{k+1} + v) \cap nT$ is k-dimensional, we must have $n - k \leq \sum v_i \leq n - 1$, i.e. $1 \leq m \leq k$. Then it is easy to see that $([0, 1]^{k+1} + v) \cap \{ \sum x_i = n \} = P_{k,m} + v$ by definition.

Next, we claim that $v \in \mathcal{B}_{k,n-m}$, i.e. that v has no negative coordinates. Indeed, suppose that $v_1 \leq -1$. Then $([0, 1]^{k+1} + v) \cap nT \subset \{ x_1 = 0 \} \cap nT$ which is at most $k - 1$-dimensional.

Finally, we claim that

$$([0, 1]^{k+1} + v) \cap \{ \sum x_i = n \} \subset nT.$$

Indeed, as $v \in \mathcal{B}_{k,n-m}$, all coordinates are non-negative.

Conversely, suppose that we can write $y \in \mathcal{B}_{k,n-m}$ with $n - m$ of the x_i being vertices of T, but not with at least $n - m + 1$ of the x_i being vertices of T.

The key property of an m-averageable subset of a simplex T.

Definition 4.1. Given a simplex T, say that a subset $S \subset T$ is “m-averageable” if there are mappings $H_1, \ldots, H_m : T \to T$ which are generically bijective of Jacobian 1 such that $\frac{H_1 + \ldots + H_m}{m}$ is a generically bijective map $T \to S$ with constant Jacobian $|S|/|T|$.

The key property of an m-averageable set $S \subset T$ is the observation that

$$\int_S f_1 \ast \ldots \ast f_m dx \geq \frac{|S|}{|T|} \sum_{i=1}^m \int_T f_i(x) dx.$$

This observation will be used directly, and in a slightly modified form, in the propositions below.

Proposition 3.3. For $1 \leq m \leq \min(k,n)$ and $v \in \mathcal{B}_{k,n-m}$, the points in $\frac{1}{n} P_{k,m} + \frac{1}{n} v$ (the interior of $\frac{1}{n} P_{k,m} + \frac{1}{n} v$) can be written as $\frac{x_1 + \ldots + x_n}{n}$ with $n - m$ of the x_i being vertices of T, but not with at least $n - m + 1$ of the x_i being vertices of T.

Proof. For $y = \frac{1}{n} w + \frac{1}{n} v \in \frac{1}{n} P_{k,m} + \frac{1}{n} v$, we can write $y = \frac{m}{n} \left(\frac{1}{n} w + \sum v_i e_i \right)$, and $\frac{1}{n} w \in \frac{1}{m} P_{k,m} \subset T$.

Conversely, suppose that we can write $y = \frac{x_1 + \ldots + x_n}{n}$ with x_1, \ldots, x_{n-m+1} vertices of T and $x_{n-m+2}, \ldots, x_n \in T$. Then $\lfloor ny \rfloor = v$, so we obtain the contradiction

$$n - m = \sum_{i=1}^{k+1} \lfloor ny_i \rfloor \geq \sum_{i=1}^{k+1} \sum_{j=1}^n |(x_j)_i| \geq \sum_{i=1}^{k+1} \sum_{j=1}^{n-m+1} |(x_j)_i| = n - m + 1.$$

4 m-averageable sets

We now define a new notion of “m-averageable” subset of a simplex T.

Definition 4.1. Given a simplex T, say that a subset $S \subset T$ is “m-averageable” if there are mappings $H_1, \ldots, H_m : T \to T$ which are generically bijective of Jacobian 1 such that $\frac{H_1 + \ldots + H_m}{m}$ is a generically bijective map $T \to S$ with constant Jacobian $|S|/|T|$.
Example 4.2. In three dimensions, the subsimplex $S \subset T$ defined by a vertex of T and the opposite medial triangle is 2-averageable.

Indeed, we can take H_1 to be the identity map and H_2 to be the linear map fixing the common vertex v of S and T and cycling the remaining vertices $v_1 \mapsto v_2 \mapsto v_3 \mapsto v_1$. Then $\frac{H_1 + H_2}{2}$ is a linear map sending the vertices of T to the vertices of S, and is thus a constant Jacobian $\frac{1}{4}$ map $T \to S$.

Recall that for $m \in \{1, \ldots, k\}$, we denote by $P_{k,m} = [0,1]^{k+1} \cap \{\sum x_i = m\}$ for the m'th k-dimensional hypersimplex. The following two propositions reduce the theorems from the introduction to showing that certain hypersimplices embedded in T are m-averageable.

Proposition 4.3. Let $k \geq 1$ and T the convex hull of the standard basis vectors in \mathbb{R}^{k+1}, and suppose that $\frac{1}{2}P_{k,2}$ is 2-averageable. Then for bounded functions $f, g : T \to \mathbb{R}$ with $f \leq 0$ and $f(x_i) = 0$ for the vertices x_i of T, we have

$$\int_T f \ast g(x) - \frac{f(x) + g(x)}{2} dx \geq \frac{k+1}{2^{k+1}} \int_T \co(f)(x) - f(x) dx.$$

Proposition 4.4. Let T be the convex hull of the standard basis vectors in \mathbb{R}^{k+1}, and suppose that $\frac{1}{m}P_{k,m}$ is m-averageable for $m \leq \min(k, n)$. Then for a bounded function $f : T \to \mathbb{R}_{\leq 0}$ with $f(x_i) = 0$ for the vertices x_i of T, we have

$$\int_T f \ast^n (x) - f(x) dx \geq c_{k,n} \int_T \co(f)(x) - f(x) dx$$

where $c_{k,n}$ is as in Conjecture 1.2.

Proof of Proposition 4.3. Consider the $n = 2$ polytope decomposition from Proposition 3.2

$$T = \frac{1}{2}P_{k,2} \cup \bigcup_{i=1}^{k+1} e_i + \frac{T}{2}.$$

Because by hypothesis $\frac{1}{2}P_{k,2}$ is 2-averageable, there are functions H_1, H_2 such that $H_1, H_2 : T \to T$ are generically bijective with Jacobian 1, and $\frac{H_1 + H_2}{2} : T \to S$ is generically bijective with Jacobian $\frac{1}{4}$.
\[\frac{1}{|T|} = 1 - \frac{k+1}{2^k}. \] Then the result follows by adding the inequality
\[
\int_{\frac{1}{2} P_{k,2}} (f \ast g)(x)dx = \left(1 - \frac{k+1}{2^k} \right) \int_T f \ast g \left(\frac{H_1(x) + H_2(x)}{2} \right) dx \\
\geq \left(1 - \frac{k+1}{2^k} \right) \int_T f(H_1(x))dx + \int_T g(H_2(x))dx \\
= \left(1 - \frac{k+1}{2^k} \right) \int_T f(x)dx + \int_T g(x)dx
\]
to the inequality
\[
\int_{\frac{1}{2} T} (f \ast g)(x)dx = \frac{1}{2^k} \int_T f \ast g \left(\frac{e_i + x}{2} \right) dx \geq \frac{1}{2^{k+1}} \int_T f(e_i) + g(x)dx = \frac{1}{2^{k+1}} \int_T g(x)dx
\]
for \(i = 1, \ldots, k + 1. \)

Proof of Proposition 4.4. By Proposition 3.2, there is a polytope subdivision
\[
T = \bigcup_{m=1}^{\min(k,n)} \bigcup_{x \in \mathbb{Z}_{\geq 0}} \frac{1}{n} P_{k,m} + \frac{1}{n} x
\]
where
\[
\mathcal{B}_{k,\ell} = \left\{ x = (x_1, \ldots, x_{k+1}) \in \mathbb{Z}_{\geq 0}^{k+1} : \sum x_i = \ell \right\}.
\]
Let \(H_{k,1}^1, \ldots, H_{k,m}^m \) be the functions associated to the \(k \)-averageable set \(\frac{1}{m} P_{k,m} \). Then
\[
\int_{\frac{1}{2} P_{k,m} + \frac{1}{n} x} f^m(x)dx = \frac{1}{n} \frac{|P_{k,m}|}{|T|} \int_T f^m \left(\frac{H_{k,m}^1(x) + \ldots + H_{k,m}^m(x) + x_1 e_1 + \ldots + x_{k+1} e_{k+1}}{n} \right) dx \\
\geq \frac{1}{n} \frac{|P_{k,m}|}{|T|} \int_T f(H_{k,m}^1(x)) + \ldots + f(H_{k,m}^m(x)) + x_1 f(e_1) + \ldots + x_{k+1} f(e_{k+1}) dx \\
= A(k,m-1) \cdot \frac{m}{n^{k+1}} \int_T f(x)dx.
\]
Recalling that \(\text{co}(f) = 0 \), summing these inequalities and using the Worpitzky identity that \(\sum_{m} |\mathcal{B}_{k,n-m}| A(k,m-1) = \sum_{m} \binom{n+k-m}{k} A(k,m-1) = n^k \) yields the desired result. \(\square \)
5 Proofs of Theorem 1.1 and Theorem 1.5

By the propositions in the previous section, it will suffice to show that

\[P_{1,1} \subset \mathbb{R}^2 \]
\[P_{2,1} + \frac{1}{2} P_{2,2} \subset \mathbb{R}^3 \]
\[P_{3,1} + \frac{1}{2} P_{3,2} + \frac{1}{3} P_{3,3} \subset \mathbb{R}^4 \]

are all \(m \)-averageable in the corresponding convex hull of standard basis vectors \(T \) for \(m = 1 \), \(m = 1, 2 \), and \(m = 1, 2, 3 \) respectively.

The following lemma handles all cases except for \(\frac{1}{2} P_{3,2} \).

Lemma 5.1. \(P_{k,1} \) is 1-averageable and \(\frac{1}{k} P_{k,k} \) is \(k \)-averageable for all \(k \geq 1 \).

Proof. For \(n = 1 \), \(P_{k,1} = T \) so we may take \(H \) to be the identity map and there is nothing to prove.

For \(n = k \), let \(\sigma \) be the linear map taking \(e_1 \mapsto e_2 \mapsto \ldots \mapsto e_{k+1} \mapsto e_1 \). Then \(\sigma \) is an isometry, and so \(H_i = \sigma^i \) is also an isometry. The average

\[\frac{H_1 + \ldots + H_k}{k} \]

is the linear map taking \(e_i \mapsto \frac{1}{k} \sum_{j \neq i} e_j \), which is a linear bijection from the simplex \(T \) to the simplex \(\frac{1}{k} P_{k,k} \). \(\square \)

The following lemma therefore completes the proofs of Theorem 1.1 and Theorem 1.5.

Lemma 5.2. \(\frac{1}{2} P_{3,2} \) is 2-averageable.

Proof. Decompose \(T = R_{12} \cup R_{23} \cup R_{34} \cup R_{41} \) where \(R_{i(i+1)} \) is the simplex

\[R_{i(i+1)} = \text{co} \left(e_i, e_{i+1}, \frac{e_1 + e_3}{2}, \frac{e_2 + e_4}{2} \right) . \]

Indeed, viewing \(T \) as the 1-dimensional cycle connecting \(e_1 \to e_2 \to e_3 \to e_4 \to e_1 \) coned off at the points \(\frac{e_1 + e_3}{2} \) and \(\frac{e_2 + e_4}{2} \), \(R_{i(i+1)} \) corresponds to the line segment connecting \(e_i \to e_{i+1} \) coned off at the points \(\frac{e_1 + e_3}{2} \) and \(\frac{e_2 + e_4}{2} \).
Let H_1 be the identity map and $H_2 : T \to T$ be the piecewise linear local isometry defined by taking $R_{i(i+1)} \mapsto R_{(i+1)(i+2)}$, sending the vertices $e_i, e_{i+1}, \frac{e_i + e_{i+1}}{2}, \frac{e_i + e_{i+2}}{2}$ to $e_{i+1}, e_{i+2}, \frac{e_{i+1} + e_{i+2}}{2}, \frac{e_{i+1} + e_{i+3}}{2}$, respectively. Then $H_1 + H_2$ takes $R_{i(i+1)}$ to

$$S_{i(i+1)(i+2)} = \operatorname{co}\left(\frac{e_i + e_{i+1}}{2}, \frac{e_{i+1} + e_{i+2}}{2}, \frac{e_{i+2} + e_{i+3}}{2}, \frac{e_{i+3} + e_{i+4}}{2}\right),$$

and the simplices $S_{123}, S_{234}, S_{341}, S_{412}$ subdivide $\frac{1}{2} P_{3,2}$. Indeed, the octahedron $\frac{1}{2} P_{3,2}$ can be described as the one-dimensional cycle around the boundary of the square $\frac{e_1 + e_2}{2} \to \frac{e_2 + e_3}{2} \to \frac{e_3 + e_4}{2} \to \frac{e_4 + e_1}{2} \to \frac{e_1 + e_2}{2}$ coned off at the points $\frac{e_1 + e_2}{2}$ and $\frac{e_2 + e_3}{2}$, and $S_{i(i+1)(i+2)}$ is the segment connecting $\frac{e_{i+1} + e_{i+2}}{2}$ and $\frac{e_{i+2} + e_{i+3}}{2}$ coned off at the points $\frac{e_{i+1} + e_{i+2}}{2}$ and $\frac{e_{i+2} + e_{i+3}}{2}$.

Hence $H_1 + H_2$ is a bijection, and by symmetry has almost everywhere constant Jacobian. This shows $\frac{1}{2} P_{3,2}$ is 2-averageable as desired.

\[\square\]

6 Asymptotics for $c_{n,k}$ for k fixed and n large

In this section we prove Theorem 1.4 that for $n \geq k + 1$ we have

$$c_{k,n} \geq 1 - \binom{n}{k} \frac{k^{k+1}}{n^{k+1}}.$$

Proof of Theorem 1.4. Indeed, it suffices to show this $c_{k,n}$ works for functions f on a simplex $C = T$ with $f = 0$ at the vertices and $f \leq 0$ everywhere by Section 2. Set T to be the convex hull of the standard basis vectors e_1, \ldots, e_{k+1} in \mathbb{R}^{k+1}.

First, using the notation from Definition 3.1, we claim that we have a covering

$$T = \bigcup_{v \in \mathcal{B}_{k,n-k}} \frac{vT + v}{n}.$$

Indeed, take $y \in T$, and consider ny. We can write $ny = w_1 + \lfloor ny \rfloor$, and $\sum(\lfloor ny \rfloor)_i \geq n - k$. Write $\lfloor ny \rfloor = v + w_2$ with v, w_2 non-negative integral vectors such that $\sum v_i = n - k$. Then

$$y = \frac{(w_1 + w_2) + v}{n},$$

with $w_1 + w_2 \in kT$ and $v \in \mathcal{B}_{k,n-k}$.
We can then write
\[
\int_T f^n \geq \sum_{v \in \mathcal{B}_{k,n-k}} \frac{k}{n} \int_T f^n \left(\frac{kx + v_1 e_1 + \ldots + v_n e_n}{n} \right) dx
\]
\[
= \sum_{v \in \mathcal{B}_{k,n-k}} \left(\frac{k}{n} \right)^k \int_T f^n \left(\frac{kv_1 f(e_1) + \ldots + v_{k+1} f(e_{k+1})}{n} \right) dx
\]
\[
= \left(\frac{n}{k} \right)^{k+1} \int_T f(x) dx.
\]
As co(f) = 0 we can rearrange this to
\[
\int_T f^n(x) - f(x) dx \geq \left(1 - \left(\frac{n}{k} \right)^{k+1} \right) \int_T co(f)(x) - f(x) dx.
\]

\[\square\]

Appendix

A Non-sharp \(c_{k,n} \) for \(f^n \) for all \(k, n \)

We now discuss the existence of a non-sharp constant \(c_{k,n} > 0 \) in all dimensions, i.e. that for all compact convex \(C \subset \mathbb{R}^k \) and bounded measurable \(f : C \to \mathbb{R} \), we have
\[
\int_T f^n(x) - f(x) dx \geq c_{k,n} \int_C co(f)(x) - f(x) dx.
\]

We can immediately deduce the existence of such constants from following result on the stability of Brunn-Minkowski for homothetic regions.

\textbf{Theorem A.1} ([vHST20b]). For any \(k \in \mathbb{N} \) and \(t \in (0, 1) \), there are constants \(c(k,t), d(k,t) > 0 \) such that for any \(A \subset \mathbb{R}^{k+1} \) of positive measure if \(|tA + (1-t)A| - |A| \leq d(k,t)|A| \), then
\[
|tA + (1-t)A| - |A| \geq c(k,t)|co(A) \setminus A|,
\]
where we write \(co(A) \) for the convex hull of \(A \).

Indeed, the existence of the constant \(c_{k,n} \) for sup-convolution then follows by applying this theorem to the set \(A = A_{f,-N} \) where
\[
A_{f,\lambda} = \{(x,y) \in C \times \mathbb{R} : \lambda \leq y \leq f(x)\},
\]
We make the following observations.

1. \(T \) is good.

2. If \(T' \) is good and \(v \) is a vertex of \(T \), then \(\frac{(n-1)v+T'}{n} \) is good.

3. If \(T', T'' \) are good and of the same size, then \(\frac{T'+(n-1)T''}{n} \) is good.

The first observation is trivial. For the second, we note that

\[
\int_{\frac{(n-1)v+T'}{n}} f(x)dx \geq \int_{\frac{(n-1)v+T'}{n}} f^{*n}(x)dx - \int_{\frac{(n-1)v+T'}{n}} f^n(x) - f(x)dx
\]

\[
\geq \frac{1}{n^k} \int_{T'} (n-1)f(v) + f(x)dx - \int_{\frac{(n-1)v+T'}{n}} f^n(x) - f(x)dx
\]

\[
= \frac{1}{n^{k+1}} \int_T f(x)dx - \int_{\frac{(n-1)v+T'}{n}} f^n(x) - f(x)dx
\]

\[
\geq \frac{1}{n^\ell(n+1)(k+1)} \int_T f(x)dx - \left(1 + \frac{C'}{n^{k+1}} \right) \int_T f^n(x) - f(x)dx
\]

For the third observation, we note that

\[
\int_{\frac{(n-1)v+T'}{n}} f(x)dx \geq \int_{\frac{(n-1)v+T'}{n}} f^{*n}(x)dx - \int_{\frac{(n-1)v+T'}{n}} f^n(x) - f(x)dx
\]

\[
\geq \frac{(n-1)}{n} \int_T f(x)dx + \int_{T'} f^n(x)dx - \int_{\frac{(n-1)v+T'}{n}} f^n(x) - f(x)dx
\]

\[
\geq \frac{1}{n^\ell(k+1)} \int_T f(x)dx - \left(1 + \frac{(n-1)C_T + C_T'}{n} \right) \int_T f^n(x) - f(x)dx.
\]

If for some \(\ell \) we have a family \(A \) of good translates of \(\frac{1}{n}T \) which cover \(T \), then adding the inequalities together, we obtain (recalling \(\text{co}(f) = 0 \))

\[
\left(\sum_{T' \in A} C_T \right) \int_T f^{*n}(x) - f(x)dx \geq \left(1 - \frac{|A|}{n^\ell(k+1)} \right) \int_T \text{co}(f) - f(x)dx.
\]
Hence if the total number of the simplices $|A|$ is strictly less than $n^{\ell(k+1)}$, we are done.

From the second and third observations, for every face F of T (including T), the set of good translates of $\frac{1}{n^\ell}T$ is dense among the set of all translates of $\frac{1}{n^\ell}T$ incident to F. Together with the fact that simplices have a bounded inefficiency of covering space, we will be able to accomplish this task for a sufficiently large ℓ. Indeed, as each simplex $\frac{1}{n^\ell}T$ covers a $\frac{1}{n^\ell}$ volume of T, standard results from covering theory imply that we can find a family A with $|A| = O(n^{\ell}) < n^\ell \cdot n^{\ell(k)} = n^{\ell(k+1)}$ for ℓ sufficiently large.

Acknowledgments

The authors would like to thank their advisor Béla Bollobás for his continuous support, and the anonymous reviewers for their helpful comments.

References

[Ear16] Nick Early. Combinatorics and representation theory for generalized permutohedra I: Simplicial plates, 2016.

[EG69] William R Emerson and Frederick P Greenleaf. Asymptotic behavior of products $C^p = C + \cdots + C$ in locally compact abelian groups. *Transactions of the American Mathematical Society*, 145:171–204, 1969.

[FJ15] Alessio Figalli and David Jerison. Quantitative stability for sumsets in \mathbb{R}^n. *J. Eur. Math. Soc. (JEMS)*, 17(5):1079–1106, 2015.

[FJ19] Alessio Figalli and David Jerison. A sharp Freiman type estimate for semisums in two and three dimensional euclidean spaces. *Ann. Sci. Ec. Norm. Supr.*, 2019.

[FMMZ18] Matthieu Fradelizi, Mokshay Madiman, Arnaud Marsiglietti, and Artem Zvavitch. The convexification effect of Minkowski summation. *EMS Surveys in Mathematical Sciences*, 5(1):1–64, 2018.

[I74] Ekeland I. Une estimation a priori en programmation non convexe. *C.R. Acad. Sci., A; Fr.; Da. 1974; Vol. 279; No 4; pp. 149-151; Bibl. 5 Ref.*, 1974.

[Ruz97] Imre Z Ruzsa. The Brunn–Minkowski inequality and nonconvex sets. *Geometriae Dedicata*, 67(3):337–348, 1997.

[Sta69] Ross M Starr. Quasi-equilibria in markets with non-convex preferences. *Econometrica: journal of the Econometric Society*, pages 25–38, 1969.

[Str96] Thomas Strömberg. The operation of infimal convolution. *Dissertationes Math. (Rozpravy Mat.*), 352:58, 1996.
[vHST20a] Peter van Hintum, Hunter Spink, and Marius Tiba. Sets in \mathbb{Z}^k with doubling $2^k + \delta$ are near convex progressions. arXiv preprint arXiv:2004.07264, 2020.

[vHST20b] Peter van Hintum, Hunter Spink, and Marius Tiba. Sharp stability of Brunn-Minkowski for homothetic regions. J. Eur. Math. Soc. (JEMS), (to appear) 2020+.

AUTHORS

Peter van Hintum
Esmée Fairburn Junior Research Fellow New College, Oxford University
Oxford, UK
peter.vanhintum@new.ox.ac.uk
https://www.new.ox.ac.uk/peter-van-hintum

Hunter Spink
Szegö Assistant Professor
Stanford University
Stanford, California, USA
hspink@stanford.edu
https://math.stanford.edu/~hspink/

Marius Tiba
Titchmarsh Research Fellow
Oxford University
Oxford, UK
mt576@cam.ac.uk