Precision adjustment of electromagnetic emitter of large-scale systems such as GLONASS

A V Banshchikov¹, A V Daneev², V A Rusanov¹ and A A Vetrov¹

¹Matrosov Institute for System Dynamics and Control Theory of the Siberian Branch of the Russian Academy of Sciences, 130, Lermontov ave., Irkutsk, 664033, Russia
²Irkutsk State Transport University, 15, Chernyshevskogo ave., 664074, Irkutsk, Russia

Email: daneev@mail.ru

Abstract. The multidimensional nonlinear regression-tensor model is investigated in the substantiation of necessary and sufficient conditions for the optimal multi-factorial process of precision calibration of the parameters of the electromagnetic radiation source in the geostationary orbit (including the large-scale GLONASS system). A robust-adaptive strategy of a posteriori formation of the target functional of electromagnetic observability of a weighted-distributed signal in an established complex of stationary ground points is proposed on the basis of observations of this signal, made with a tolerance.

1. Introduction

Complex electronic and mechanical processes are the cornerstone of modern orbital precision verification of astrotechnique [1–5], which actualizes the issues associated with the development of their mathematical models [6]. In this context, regression models are in demand [7], including an important class formed by regression-tensor systems [8]. These systems, on the one hand, encompass polynomial models, allowing analytic description on the basis of tensor calculus [9], strong differentiability of vector mappings [10], and the theory of extremal problems. On the other hand, these models do not just idly manifest themselves, but actively work [11], acquiring a prominent role in a posteriori multifactor nonlinear mathematical modeling of electron-mechanical [12] and optical-mechanical systems [13], providing (within the optimization of the target quality functional reception of an electromagnetic signal) adaptive tuning of parameters that lower the energy level of the side lobes of electromagnetic emitters [8, 11, 14].

In this connection, the main attention below is paid to the problems posed in the conclusions of the work [14]. Particularly, there is correction of the target functional of the intensity of the observed signal of the source of electromagnetic radiation (SER) in the geostationary orbit in the regression-tensor modeling of the alignment process of the spatial-geometric parameters of the SER. In this case, regression interpretations of multiply connected conditions imposed by complex constraints [15] permitting on the basis of matrix analysis [16] the construction of an optimal mode of adaptive adjustment of SER parameters (in particular, the geometry and orientation of its antenna) in terms of the mathematical input-output model are determined. The predictive model of the SER signal is constructed from the experimental data of orbital verification tests based on the two-criteria identification by the least-squares
method (LSM) of covariant tensors [9] of the nonlinear SER equation, as a multidimensional tensor regression with a minimum coordinate-matrix norm [17].

2. Motivation, Terminology and Formulation of Problems

Let \(R \) be the field of real numbers, \(R^n \) is \(n \)-dimensional vector space over \(R \) with the Euclidean norm \(\|y\|_R = \sqrt{\sum_{i=1}^{n} y_i^2} \) \(y = (y_1, \ldots, y_n) \in R^n \) be a column vector with elements \(y_1, \ldots, y_n \in R \) and let \(M_{n,m}(R) \) be the space of all \(n \times m \)-matrices with elements from \(R \). In addition, we assume that \(T^m_n \) is the space of all covariant tensors of \(k \)-valence, that is, real multi-linear forms \(f^{k,m}: R^n \times \cdots \times R^n \to R \) with the norm \(\|f^{k,m}\|_{T^m_n} = \left(\sum_{j} t_{j}^{2} \right)^{1/2} \), where \(\{t_{j}\} \) is the "matrix of coordinates" [9, p. 246] of the tensor \(f^{k,m} \) with respect to the canonical basis in \(R^n \).

Let, in the process of orbital alignment, \(\{b_i\}_{i=1}^{n} \) be a set of stationary points for ground-based reception of the signal of the SER located on a geostationary satellite (for example, GLONASS systems, i.e., radius vectors, connecting the satellite and points \(b_i \), are constant), some fixed (reference) vector of space-angular parameters of the antenna of the SER [11–15]. \(v \) is a purposeful variation of the physical and geometric predictors [7] in the process of precision adjustment. \(w(\omega + v) \in R^n \) is the vector of the predictive intensity of the calibration signal of the SER measured at the probing points.

In this formulation, for a compact description of the nonlinear adaptive process of parametric orbital adjustment of the SER, we select for consideration a multidimensional input-output prognostic system described by the vector-tensor \(k \)-valent equation of a multi-factorial regression of the form:

\[
w(\omega + v) = \text{col} \left(\sum_{j=0}^{m-1} f_{1}^{j,m}(v_1, \ldots, v), \ldots, \sum_{j=0}^{m-1} f_{n}^{j,m}(v_1, \ldots, v) \right) + \varepsilon(\omega, v).
\]

(1)

Here \(\varepsilon(\omega,:) : R^n \to R^n \) is not a parametrizable vector function of the class:

\[
\|\varepsilon(\omega,v)\|_R = o\left((v_1^2 + \ldots + v_m^2)^{1/2}\right).
\]

(2)

\(v = \text{col} \{v_1, \ldots, v_m\} \), \(f_{i}^{0,m} \) is a "rank 0" tensor representing the intensity of the signal \(w_i \), \(i = 1, n \) in the mode of the orbital electronic geometric tuning of the transmitting antenna of the SER.

The problem of nonlinear regression-tensor modeling of the multifactor optimal process of orbital calibration of the SER is presented and studied in detail in [11, 14] for the 2-valent model (1). With that, analytical solutions of three methodological positions of this problem were obtained:

(I) for a fixed vector-predictor \(\omega \in R^n \) and its open neighborhood \(V \subset R^n \), the analytic conditions are defined for which the vector function \(w(\cdot): V \to R^n \) of the indices of the intensity of the calibration signal of the SER at the probing points satisfies the regression system (1)–(2);

(II) a direct algorithm for identifying the coordinates of the tensors \(f_{i}^{j,m} \), \(i = 1, n; j = 0,2 \) in a 2-valent regression-tensor model (1) is constructed on the basis of the solution of a two-criterion LSM-Problem of the form:

\[
\begin{aligned}
&\min \left\{ \sum_{i=1}^{g} \left(\|w_i(t) - \text{col} \left(\sum_{j=0}^{m-1} f_{1}^{j,m}(v_{i(t)}, \ldots, v_{i(t)}), \ldots, \sum_{j=0}^{m-1} f_{n}^{j,m}(v_{i(t)}, \ldots, v_{i(t)}) \right) \right)^2 \right\}^{1/2} \\
&\min \left\{ \sum_{i=1}^{n} \sum_{j=0}^{m-1} \|f_{i}^{j,m}\|_{T^m_n}^2 \right\}^{1/2},
\end{aligned}
\]

(3)
where \(w_{(l)} \in \mathbb{R}^q, v_{(l)} \in \mathbb{R}^n, l = 1, q \), respectively, are the vectors of the experimental factor-predictors of the SER, i.e. \(w_{(l)} \) is a posteriori "reaction" to the target "variation" relative to the reference vector \(\omega \) coordinates under the condition \(\|v_{(l)}\|_{\mathbb{R}^n} < 1 \). This inequality is methodologically dictated by the condition (2). \(q \) is the number of orbital experiments performed (determined by the representativeness of the model (1)), taking into account the dynamic characteristics of the SER [18, 19].

(III) for the 2-valent regression-tensor model (1), with the given predictor \(\omega \in \mathbb{R}^n \) and the nominal condition \(\varepsilon(\omega, \cdot) \equiv 0 \), an analytical solution of the orbital calibration problem is obtained, as a non-linear "\(v \) -optimizing" of the variable (relative to the \(\omega \) vector) predictors of the adjustable physical and geometric parameters of the SER:

\[
\max_{v \in \mathbb{R}^n} F(v) := r_1 w_1(\omega+v) + \ldots + r_n w_n(\omega+v),
\]

where the vector function \(v \mapsto w(\omega + v) = \text{col}(w_1(\omega + v), \ldots, w_n(\omega + v)) \) has a coordinate representation according to the LSM-identified model (1)–(3), \(r_i > 0 \) is weights reflecting the priority of the ground-based probing points of the SER signal.

Statement of problems (according to the conclusions of [14]):

(i) to determine the necessary and sufficient conditions for the solvability of the optimization task (4) for the 3-valent model (1);

(ii) to construct an algorithm for correcting sufficient conditions for the extremum of the stationary point of task (i) on the basis of a \(r \)-parametric adjustment \(r \mapsto r^T w(\omega + v) \) of the functional:

\[
v \mapsto F(v) = r^T w(\omega + v).
\]

3. Optimization of the Process of Adjusting the SER-Parameters

Let us consider the task (i) – optimization of the process of adjustment of the parameters of the SER for the model (1) with \(k = 3 \). We note that the solution of the concomitant identification Problem (II) with \(k = 3 \) is a modification of assertion 2 of [14] (see also [20]).

In such a mathematical formulation, the non-linear prognostic equation (1) can be presented in the following vector-matrix-tensor form:

\[
w(\omega + v) = c + A v + \text{col}(v^T B_1 v + f_1^3 m(v, v, v), \ldots, v^T B_n v + f_n^3 m(v, v, v)) + \varepsilon(\omega, v),
\]

where \(c \in \mathbb{R}^n, A \in M_{m,m}(R), B_i \in M_{m,m}(R), i = 1, n \). Without loss of generality, we assume that each matrix \(B_i \) has an upper triangular structure; this simplifies the implementation of the LSM-algorithm (3).

According to (1) with \(k = 3 \), the functional of electromagnetic observability (5) is twice continuously differentiable, which guarantees the equality of mixed derivatives:

\[
\frac{\partial^2 F(v_1, \ldots, v_m)}{\partial v_g \partial v_p} = \frac{\partial^2 F(v_1, \ldots, v_m)}{\partial v_p \partial v_g}, \quad \forall g, p = 1, m.
\]

Therefore, in the solution of the optimization problem (4) for the 3-valent model (6), we may assume the following Proposition 1 below being the main result, according to (7), Theorem 3 [10, p. 505] and Theorem 7.2.5 of [16]. But first let us preliminary assume that \(B_i^T := (B_i + B_i^T) \in M_{m,m}(R), i = 1, n \), where each \(B_i \) is the matrix of the system (6) (the matrix of the tensor \(f_i^{3,m} \) in the formulation, when it is not considered symmetric in the system (1)). Moreover, we consider the vector function:

\[
v \mapsto \Phi(v) := (r_1 B_1^T + \ldots + r_n B_n^T)^{-1} (A^T + [\nabla f_1^3 m(v, v, v), \ldots, \nabla f_n^3 m(v, v, v)]^T) r,
\]

where \(\nabla f_i^3 m(v, v, v) \) is the gradient of the functional \(v \mapsto f_i^3 m(v, v, v) \).

Proposition 1. The stationary points \(v^* \in \mathbb{R}^n \) of task (i) are the solutions of equation
\[v^* + \Phi(v^*) = 0. \]

A sufficient condition \(F(v^*) = \max \left| F(v) : v \in \mathbb{R}^n \right| \) is the requirement that \(v^* \), as a stationary point of the functional (5), be of elliptic type. In other words, at the point \(v^* \) for the Hessian \(G(v, r) \) of the functional (5), inequalities:

\[\det \left[b_{ij} \right]_p < 0, \quad p = 1, m, \]

must be performed, where \(\left[b_{ij} \right]_p \in M_{n, p}(R) \), \(p = 1, m \) are the main Hessian sub-matrices

\[
G(v^*, r) = r_1 \left(B_1^* + \left[\partial^2 f_n^3_m(v, v, v) / \partial v_p \partial v_p \right]_{v^*} \right) + \ldots \\
+ r_n \left(B_n^* + \left[\partial^2 f_n^3_m(v, v, v) / \partial v_p \partial v_p \right]_{v^*} \right) \in M_{m, m}(R),
\]

which is equivalent – the characteristic numbers \(\lambda_p(v^*, r) \) of the matrix \(G(v^*, r) \) satisfy:

\[\lambda_p(v^*, r) < 0, \quad p = 1, m. \]

Corollary 1. For \(k = 2 \), the Hessian of the functional (5) and the conditions (9), (10) are invariant to the position of the stationary point \(v^* \), while the Hessian is equal to \(G(r) = r_1 B_1^* + \ldots + r_n B_n^* \), which results in a linear dependence of the numbers \(\lambda_p(r) \), \(p = 1, m \) on the normalization of the vector \(r \).

If \(\text{rank} \, G(r) = m \), then the solution of equation (8) is unique and has the form \(v^* = -G^{-1}(r) A^T r \), which makes the position of the point \(v^* \) invariant to the normalization of the vector \(r \).

One of the factors, affecting the geometry of the stationary point \(v^* \) of the Proposition 1, is the digital adaptive parametric adjustment \(r \mapsto G(v^*, r) \) that results in the performance of elliptical conditions (9) or (10), which is the research subject of the next section.

4. Adaptation of the Target Functional on the r-Parameter Family of its Hessians

Let us consider the formulation (ii): for a stationary point of the optimization task (i), construct a numerical procedure for correcting the weight coefficients \(r \in \mathbb{R}^n \), starting from the fulfillment of the spectral conditions (10); ensuring the elliptic nature of the stationary point \(v^* \) of Proposition 1. This formulation is relevant in the problem of orbital calibration of the parameters of the SER, when at some ground points \(b_i \) it is necessary to weaken (i.e. \(r_j < 0 \)) the reception of the SER signal.

Let an initial vector \(r_0 \in \mathbb{R}^n \) of weight coefficients from the formulation (ii) be given. For example, a heuristic choice \(r_0 \) can be made based on the equality of its coordinates \(r_{0i}, i = 1, n \) to the values of some functions \(\Psi_j : R \to R \) that depend on the values of the functionals \(J_j(v) := w_j(\omega + v), i = 1, n \) from the auxiliary problems of optimal prediction of the quality of orbital alignment of the SER for individual target indicators \(w_j \). We denote by \(v^0 \in \mathbb{R}^n \) some stationary point of the functional (5) in case when the \(r \)-priority of the probing points is equal to \(r_0 \). Correspondingly, by \(G_0 \in M_{m, m}(R) \) we denote the Hessian of the given functional calculated for the pair \((r_0, v^0)\) and let \(G_i := B_i^* + \left[\partial^2 f_n^3_m(v, v, v) / \partial v_p \partial v_p \right]_{v^0}, \quad i = 1, n. \)

Then, for an admissible linear variation \(\Delta r \) of the coordinates of the vector \(r_0 = \text{col}(r_{01}, \ldots, r_{0n}) \) given (by virtue of the comments to formula (4)), the region of this variation \(W \subset \mathbb{R}^n \) of the form:

\[\Delta r := \text{col}(\Delta r_1, \ldots, \Delta r_n) \in W, \quad r_i = r_{0i} + \Delta r_i > 0, \quad i = 1, n, \]
\(\Delta r \)-parametric family of linear variations of the Hessian \(G(v^0, r_0 + \Delta r) \) is determined by a matrix \(m \times m \)-manifold of the form:

\[
G_0 + \sum_{i=1}^{\Delta r} G_i, \quad \Delta r \in W. \tag{11}
\]

Proposition 2. Let \(r = r_0 + \Delta r, \{ (\lambda_p(r_0), x_p), p = 1, m \} \subset R \times R^m \) be the set of eigen-pairs of Hessian \(G_0 \), i.e. \(\lambda_p(r_0)x_p = G_0x_p, p = 1, m \), and let, starting from the implementation of the manifold (11), be given the numbers \(g_{pi} = x_p^T G_r x_p / x_p^T x_p \), then the eigenvalues \(\lambda_p(v^0, r_0 + \Delta r), p = 1, m \) of the Hessian \(G(v^0, r_0 + \Delta r) \) have the form:

\[
\lambda_1(v^0, r_0 + \Delta r) = \lambda_1(r_0) + \sum_{i=1}^{\Delta r} g_{1i} \Delta r_i + o\left(\|\Delta r\|^2_{R^r}\right),
\]

\[
\lambda_m(v^0, r_0 + \Delta r) = \lambda_m(r_0) + \sum_{i=1}^{\Delta r} g_{mi} \Delta r_i + o\left(\|\Delta r\|^2_{R^r}\right).
\]

Corollary 2. Let \(k = 2, n = m, \Lambda(r_0) := \{ \lambda_1(r_0), \cdots, \lambda_m(r_0) \} \) be the vector of characteristic numbers of the matrix \((r_0 b_1^T + \cdots + r_m b_m^T) \) and \(\{ x_p \}_{p=1}^{m} \) be the eigenvectors corresponding to them. In addition, let \(\Lambda^* := \{ \lambda_1^*, \cdots, \lambda_m^* \} \) be a certain vector of characteristic numbers, "standard/exemplary" by criterion (10), and \(B := [b_{pi}] \) is the \(m \times m \) matrix with elements \(b_{pi} = x_p^T b_i^T x_p / x_p^T x_p \).

Then for \(r_0 + \Delta r \), where the variation vector has a representation \(\Delta r = B^{-1}(\Lambda^* - \Lambda(r_0)) \), the eigenvalues of the Hessian \(G(r_0 + \Delta r) \) will be \(o\left(\|\Delta r\|^2_{R^r}\right) \) – close to the reference values \(\{ \lambda_p^* \}_{p=1}^{m} \).

5. Acknowledgments

This work was funded by the Russian Foundation for Basic Research (project 19-01-00301).

References

[1] Aleshin I N, Baturin V V, Molodenkov A V et al 2002 Controlling the motion of the space platform complex. V. Algorithms for the alignment of the complex. *Proceedings of the Russian Academy of Sciences. Theory and control systems* 3 132–9

[2] Tanaka H 2011 Surface error estimation and correction of a satellite antenna based on antenna gain-analyses *Acta Astronautica* 68(7) 1062–9

[3] Lebedev D V and Tkachenko A I 2012 Parametric adjustment of the "camera and stellar sensor" complex installed on a low-orbit spacecraft. *Izvestiya RAN. Theory and control systems* 2 153–65

[4] Mitrokhin V N and Mozharov E O 2015 The radio-holographic method for controlling the profile of parabolic mirror antennas by the electromagnetic field in the near field. *Bull. of Bauman MSTU. Ser. Instrument making* 4 81–95

[5] Tkachenko A I 2017 Improvement of the methodology of flight geometric calibration using unknown landmarks *Problems of control and informatics* 2 112–21

[6] Banshchikov A V, Burlakova L A, Irtegov V D and Titorenko T N 2014 Symbolic computations in modeling and qualitative analysis of dynamic systems *Computational technologies* 19(6) 3–18

[7] Draper N R and Smith G 2007 *Applied regression analysis* (Moscow: Williams Publishing House) 912 p

[8] Kozyrev V A, Kumenko A E, Rudykh A G and Rusanov V A 2010 Nonlinear regression-tensor analysis of the optimal installation of an electromagnetic radiation source for unauthorized
scanning of its electromagnetic field. *Proc. of higher educational institutions. Instrument making* **53**(10) 10–7

[9] Glazman I M and Lyubich Yu I 1969 *Finite-dimensional linear analysis* (Moscow: Nauka Publ.) 476 p

[10] Kolmogorov A N and Fomin S V 1976 *Elements of the theory of functions and functional analysis* (Moscow: Nauka Publ.) 544 p

[11] Rusanov V A and Daneev R A 2014 On the adaptive tuning of the parameters of the source of electromagnetic radiation in the geostationary orbit *Control systems and machines* **6** 12–7

[12] Karshakov E V 2012 The task of calibrating the electromagnetic system of relative positioning *Controlling large systems* **37** 250–68

[13] Demin A V and Mendeleeva L M 2014 Algorithm for alignment of composite mirrors of high-temperature telescopes *Proc. of higher educational institutions. Instrument making* **57**(1) 51–6

[14] Rusanov V A, Banshchikov A V, Daneev A V, Kumenko A E and Vetrov A A 2016 On the adaptive adjustment of parameters for the source of electromagnetic radiation on a geostationary orbit *Far East Journal of Electronics and Communications* **16**(3) 685–701

[15] Gryanik M V and Loman V I 1987 *Developable mirror antennas of the umbrella type* (Moscow: Radio and Communication) 72 p

[16] Horn R and Johnson C 1989 *Matrix analysis* (Moscow: Mir Publ.) 656 p

[17] Kostrikin A I and Manin Yu I 1986 *Linear Algebra and Geometry* (Moscow: Nauka Publ.) 304 p

[18] Banshchikov A V 2009 Analysis of the dynamics of large-scale mechanical systems by means of computer algebra *Siberian J. of Industrial Mathematics* **12**(3) 15–27

[19] Rusanov V A, Banshchikov A V, Daneev A V, Vetrov A A and Voronov V A 2017 A posteriori simulation of the dynamic model of the elastic element of satellite-gyrostat *Far East J. of Mathematical Sci.* **101**(9) 2079–94

[20] Statnikov R B and Matusov I B 2012 On the solution of problems of multi-criteria identification and development of prototypes *Problems of mechanical engineering and reliability of machines* **5** 20–9