Health service use and health outcomes among international migrant workers compared with non-migrant workers: A systematic review and meta-analysis

Frank Pega1*, Srinivasan Govindaraj1, Nguyen Toan Tran2,3

1 Environment, Climate Change and Health Department, World Health Organization, Geneva, Switzerland, 2 Australian Centre for Public and Population Health Research, Faculty of Health, University of Technology, Sydney, NSW, Australia, 3 Faculty of Medicine, University of Geneva, Geneva, Switzerland

* pegaf@who.int

Abstract

Objectives
The review aimed to synthesise recent evidence on health service use and health outcomes among international migrant workers, compared with non-migrant workers.

Methods
A search was carried out in MEDLINE, PubMed, Embase, and CINAHL for studies published between Jan 1, 2010, and Feb 29, 2020. Included outcomes were: occupational health service use, fatal occupational injury, HIV, and depression. Two authors independently screened records, extracted data, assessed risk of bias and judged quality of evidence. We meta-analysed estimates and conducted subgroup analyses by sex, geographical origin, geographical destination, and regularity of migration.

Results
Twenty-one studies were included comprising >17 million participants in 16 countries. Most studies investigated regular migrant workers in high-income destination countries. Compared with non-migrant workers, migrant workers were less likely to use health services (relative risk 0.55, 95% confidence interval 0.41 to 0.73, 4 studies, 3,804,131 participants, I² 100%, low quality of evidence). They more commonly had occupational injuries (1.27, 95% confidence interval 1.11 to 1.45, 7 studies, 17,100,626 participants, I² 96%, low quality of evidence). There is uncertainty (very low quality of evidence) about occupational health service use (0 studies), fatal occupational injuries (5 studies, N = 14,210,820), HIV (3 studies, N = 13,775), and depression (2 studies, N = 7,512).

Conclusions
Migrant workers may be less likely than non-migrant workers to use health services and more likely to have occupational injuries. More research is required on migrant workers from...
and in low- and middle-income countries, across migration stages, migrating irregularly, and in the informal economy.

Background

An *international migrant worker* is as “a person who migrates or has migrated to a country of which they are not a national with a view to being employed other than as an own-account worker” (p. 3) [1]. Globally, 164 million people are international migrant workers; 41.6% are females [2]. Internal (in-country) migrant workers are a different population.

International migrant workers (hereafter “migrant workers”) may face unique work-related and occupational safety and health challenges. A recent systematic review and meta-analysis found that 22% (95% confidence interval (CI) 7–37) of migrant workers had occupational injuries and 47% (95% CI 29–64) had psychiatric and physical morbidities [3]. Their health service use and health outcomes may depend on their sex; their migration stage (i.e., pre-departure, travel, interception, destination, and return) [4]; region (or country) of destination or origin, or both; whether they migrated regularly or irregularly; and whether they work in the formal or informal economy, amongst other factors.

The health service use and health outcomes may differ between migrant and non-migrant workers, but previous systematic review evidence on this topic is scarce. The latest comprehensive systematic review of such evidence was published in 2007, covered the years 1990 to 2005, included 48 qualitative and quantitative studies, and found migrant workers had higher risks of fatal and non-fatal occupational injuries than non-migrant workers [5]. A 2013 systematic review of 19 qualitative and quantitative studies on fatal and non-fatal occupational injuries in China concluded that these injuries were more prevalent among (internal) migrant workers than non-migrant workers [6]. A 2017 systematic found four studies on fatal and non-fatal occupational injuries among migrant workers from Nepal compared with non-migrant workers and concluded this evidence is very uncertain [7]. A 2018 systematic review of 82 studies published between 2000 and 2016 on differences by migrant status in working conditions and occupational health outcomes in Canada and Europe found that migrant workers may experience relatively poorer working conditions and occupational health [8]. However, it noted uncertainty from large data gaps, heterogeneous study populations, and too few prospective cohort studies [8]. No meta-analysis has been published to-date.

Policy-makers require comprehensive, up-to-date systematic review and meta-analytic evidence on these differences to design, plan, cost, implement and evaluate laws, policies, and interventions that promote the health and wellbeing of workers. The last comprehensive systematic review on the topic covered data from over a decade ago, and research on migration, work and health has accelerated since. A new systematic review and first meta-analyses (if feasible) are warranted. We aimed to systematically review and meta-analyse recent evidence from quantitative studies on health service use and health outcomes among migrant workers, compared with non-migrant workers, published over the past decade (2010–2020).

Methods

Protocol

Before commencing the systematic review, we developed a protocol that guided all aspects of the systematic review.

Search strategy. We searched MEDLINE, PubMed, Embase, CINAHL and OpenGrey in March 2020 for study records published between Jan 1, 2010, and Feb 29, 2020. The search...
strategy for MEDLINE was adapted to search other databases (see S1 Appendix). We hand searched reference lists of previous systematic reviews [5–7] and records of studies included in this systematic review. The first 100 hits on Google and GoogleScholar and the webpages of ILO, IOM, UNHCR, and WHO were also searched. Experts were asked to identify eligible published and unpublished studies.

Eligibility criteria. The outcomes of interest were any health service use, any occupational safety and health service use, death from an occupational injury, any non-fatal occupational injury, HIV infection and clinical depression. S1 Table presents the eligibility criteria for populations, comparators, and outcomes. All included outcomes are or align with Sustainable Development Goals indicators [9] with relevance for health and migration (S2 Table).

Study selection. At least two review authors independently screened the titles and abstracts of potentially eligible study records from the search results against the eligibility criteria. Of records that we identified as potentially eligible, review authors independently screened the full texts to determine inclusion in the systematic review. The third review author resolved any disagreements.

Data collection process. Data extraction was conducted independently by two review authors. A standard data extraction sheet was developed and trialled by the data extractors. From each included study, we extracted data on study design (data analytic method, model used, and confounder adjustment), participants (number and type of participants), comparator, outcomes, relative risk (RR) measure, point estimate and 95% CI. The third review author resolved disagreements.

Risk of bias assessment. Following Cochrane’s approach, we assessed risk of bias by outcome at the level of the individual study and then at the level of the entire body of evidence. Risk of bias assessment tools are lacking for studies of differences in prevalence. We used the RoB-SPEO tool [10] for studies estimating prevalence in occupational health. The assessed domains were: (1) bias in selection of participants into the study; (2) bias due to a lack of blinding of study personnel; (3) bias due to exposure misclassification; (4) bias due to incomplete exposure data; (5) bias due to conflict of interest; (6) bias due to selective reporting of exposures; (7) bias due to difference in numerator and denominator; and (8) other bias. For each domain, the risk of bias was rated as “high”, “low” or “unclear” [11]. Two review authors conducted the assessment independently, and the third author resolved disagreements. Consensus ratings for each domain for each study are presented in a “Summary of risk of bias” table [11].

Evidence synthesis. Two authors independently assessed the clinical heterogeneity of included studies on the same outcome, with the third author resolving differing opinions. We combined studies judged sufficiently homogenous empirically in a meta-analysis. Measures of relative differences other than RRs (eg, odds ratios) were converted into RRs if possible using Cochrane’s guidance [12]. Studies were pooled using the inverse variance method with random effects models, because included studies estimated different, yet related effects [13]. Review Manager (RevMan 5.3) computer software was used [14]. We assessed statistical heterogeneity of studies with the I² statistic. We expected high levels of heterogeneity, so report pooled effect estimates from meta-analyses also when statistical heterogeneity is high (e.g. I² > 95%). For outcomes with evidence rated as “very low quality” (meaning that we were very uncertain about the outcome), we report forest plots of meta-analyses, but do not report pooled estimates. The results of the evidence synthesis are presented in a “Summary of findings” table [15].

Additional analyses

Subgroup analyses were conducted by sex; WHO region of destination, WHO region of origin, and regularity of the migration. Such analyses were only conducted of data presented in main meta-analyses with pooled estimates.
Quality of evidence assessment

For each outcome, we assessed the quality of its entire body of evidence, using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach [16]. Our assessment considered risk of bias, inconsistency, indirectness, imprecision, and size of the RR estimates. We applied the ratings “high”, “moderate”, “low” and “very low”. Our assessment started at “high”. For each domain, we downgraded by one level for serious concerns and by two levels for very serious concerns. Evidence was upgraded by one level and two levels if the estimated RRs were high (≥ 2.5) and very high (≥ 5.0), respectively. The “Summary of findings” table includes quality of evidence ratings and their justification [15].

Results

Study selection

Of 1607 study records identified by our search, 21 studies with 22 study records fulfilled the inclusion criteria and were included in this review (Fig 1) [17–38].

Study characteristics

The included studies comprised >17 million participants in 16 countries within five WHO regions (Africa, Americas, Eastern Mediterranean, Europe, and Western Pacific) (Table 1). Thirteen included studies were cohort studies, and eight were cross-sectional. Most studies investigated regular migrant workers from high-income countries working in the formal economy of high-income destination countries.

Risk of bias

For each outcome, we judged the risk of bias of the body of evidence to be high (see S1 and S2 Figs). Over half of all included studies (13 of 21 studies) were judged to carry a high risk of selection bias because they analysed study samples that were non-representative of national populations of either or both of migrant workers and non-migrant workers. Of note, most studies captured neither migrant workers from irregular migration nor workers in the informal economy. The risk of performance and detection bias was often judged to be overall low because most studies relied on administrative data collected for purposes other than comparing the health of migrant workers with that of non-migrant workers. Most studies carried a high risk of bias from selective reporting because migrant workers may have underreported adverse outcomes at disproportionately higher rates due to relatively higher fear of losing their work if reporting adverse outcomes. Risks of confounding and of bias from conflict of interest were generally low. Several studies carried a risk of bias from differences between the numerator and the denominator.

Findings

Use of any health services. Four studies with a total of 3,804,131 participants from four countries in three WHO regions (Africa, Europe, and South-East Asia) reported an estimate of the use of any health service among migrant workers, as compared with non-migrant workers [22, 28, 31, 36]. The populations and definitions and measurements for this outcome were somewhat heterogeneous (Table 2). Nevertheless, we judged them to be sufficiently comparable to combine them in one meta-analysis. Compared with non-migrant workers, migrant workers were an estimated 45% less likely to use any health services (RR 0.55, 95% CI 0.41 to 0.73, I² 100%, Fig 2).
We downgraded the quality of this body of evidence by two grades from “high” to “low” quality of evidence. We downgraded by one grade each for serious risk of bias and serious indirectness. We did not downgrade for inconsistency; we had expected heterogeneity to be very high, even due to the heterogeneous study population alone, and we also found very high heterogeneity in the analysis. In conclusion, migrant workers may be less likely to use any health service than non-migrant workers. Further research is very likely to have an important impact on our confidence in the conclusion and is likely to change it.

Fig 1. Flow diagram of study selection.
https://doi.org/10.1371/journal.pone.0252651.g001
Study	Study location	Migrant workers	Non-migrant workers	Study period	Occupation or industrial sector	Type of study	Number of participants or events	Female	Age (in years)	Outcomes
Al-Thani 2015	One site, Qatar	Nationals of Bangladesh, Egypt, India, Nepal, Philippines and Sri Lanka	Nationals of Qatar	4 years (2010–13)	Labourers	Cohort study	2,015 participants	0-02	32 (mean)	Has died from an occupational injury, Has had any occupational injury (major injury only), measured with the Abbreviated Injury Score
Biering 2017	One site, Denmark	Nationals of old EU, new EU and other countries	Nationals of Denmark	11 years (2003–13)	All workers	Cohort study	63,601 participants	0-47	Unclear	Has had any occupational injury, measured with physician or employer report
Byler 2018	United States of America (USA)	Workers born in Africa, Americas (other than the USA), Asia, Europe and other regions	Workers born in the United States of America	8 years (2003–10)	All workers	Cohort study	Unclear number of participants (39,048 observations)	0-08	16–67 (range)	Has died from an occupational injury, measured with administrative records
Cha 2014	Republic of Korea	Nationals of Bangladesh, Egypt, India, Nepal, Philippines and Sri Lanka	Nationals of the Republic of Korea	3 years (2005–07)	All workers	Cohort study	341,359 + 1,252,8879 participants	0-17	Any age (range)	Has died from an occupational injury, Has had any occupational injury (non-fatal only)
Dias 2017	Unclear number of sites, Portugal	Nationals of countries in the Africa, Americas, and Europe (other than Portugal)	Nationals of Portugal		Sex workers	Cross-sectional study	853 participants	1-0	35-9 (mean)	Has used any health service; measured with self-reported lifetime use of HIV testing
Giraudo 2017	Italy	Nationals of countries in Africa, Asia (except Japan and Republic of Korea), Latin America, and Central and Eastern Europe	Nationals of Italy	6 years (2000–05)	Manufacturing, Construction, and Services (industrial sectors)	Cohort study	397,986 workers with 6,629 events	0-00	16–55 (range)	Has had any occupational injury (serious occupational injury resulting in four or more days of absence)
Goldenberg 2014	Vancouver, Canada	Born outside of Canada	Born in Canada	3 years (2010–12)	Sex workers	Cross-sectional study	650 participants	1-00	34 (median)	Has human immune virus, measured with laboratory tests
Ismayilova 2014	Almaty, Kazakhstan	Nationals of Azerbaijan, China, Kyrgyzstan, Russia, Tajikistan, Turkey and Uzbekistan	Nationals of Kazakhstan (internal migrants only)	4 months (2007)	Market workers	Cross-sectional study	450 participants	0-50	27.7 (mean)	Has had clinical depression in last week, measured with the Depression Subscale of the Brief Symptom Inventory
López-Arquillos 2016	Spain	Nationals of a country other than Spain	Nationals of Spain	6 years (2003–08)	Automotive repair workshop workers	Cohort study	89,954 events	0-03	Unclear	Has had any occupational injury (bone fracture only)

(Continued)
Table 1. (Continued)

Study	Study location	Migrant workers	Non-migrant workers	Study period	Occupation or industrial sector	Type of study	Number of participants or events	Female Age (in years)	Outcomes
Mc Grath-Lone 2014 [27]	England, United Kingdom	Born outside of the United Kingdom	Born in United Kingdom	1 year (2011)	Sex workers Cohort study	2,704 participants	1-00	28 (migrant), 29 (non-migrant) (mean)	Has human immunodeficiency virus, measured with a medical test
Rakprasit 2017 [28]	Thailand	Nationals of countries other than Thailand	Nationals of Thailand	1 year (2011)	All workers Cohort study	803,817 participants	0-59	18–59 (range)	Has used any health services (for diarrhoea only), measured with administrative records
Reid 2016 [29]	Australia	Born in a country other than Australia	Born in Australian	12 years (1991–2002)	All workers Cohort study	5,156 events	0-50	15–64 (range)	Has died from an occupational injury
Ricco 2019 [30]	Autonomous Province of Trento, Italy	Born in a country in the Eastern Mediterranean	Born in Italy	14 years (2000–13)	All workers Cohort study	Unclear	Unclear	Unclear Has had any occupational injury, measured with administrative records	
Richter 2014 [31]	Three cities, South Africa	Nationals of Botswana, Democratic Republic of the Congo, Eswatini, Malawi, Mozambique, Namibia, Nigeria, Zambia, and Zimbabwe	Nationals of South Africa	1 year (2010)	Sex workers Cross-sectional study	1,653 participants	1-00	29.7 (mean)	Has used any health service in last month
Rubiales-Gutierrez 2010 [32]	Spain	Nationals of countries with a low Human Development Index score in Asia, Europe, Latin America and Oceania	Nationals of Spain	1 year (2008)	All workers Cross-sectional study	10,927 participants	0-42	(migrant), 0-41 (non-migrant) (mean)	Has had any occupational injury
Salvatore 2013 [33]	Italy	Nationals of high migration pressure countries ¹	Nationals of Italy	1 year (2007)	All workers Cohort study	60,528 participants	0-62	(migrant), 0-62 (non-migrant) (mean)	Has had any occupational injury
Sieberer 2012 [34]	Germany	Nationals of Kazakhstan, Poland, Russia, Turkey and other countries	Nationals of Germany	2 months (2008)	Health workers Cross-sectional study	2,796 participants	0-74	≥18 (range)	Is clinically depressed (CESD score ≥ 23), measured with the Center of Epidemiological Studies Depression Scale
Steege 2014 [35]	USA	Born outside the USA and USA territories	Born in the USA	5 years (2005–09)	All workers Cohort study	27,000 events	Unclear	≥15 (range)	Died from an occupational injury

¹ High migration pressure countries include: Afghanistan, Algeria, Bangladesh, Bhutan, Botswana, Cambodia, Nepal, Sri Lanka, and Timor-Leste.
In subgroup analyses by WHO region (Table 2), the likelihood among migrant workers was reduced in all WHO regions with data included in the systematic review, but it may be particularly lower in South-East Asia. There may be considerable differences in this outcome between regions (Test for subgroup differences: p = 0.02).

Use of any occupational safety and health services. Our systematic review identified no eligible study on the relative likelihood of using any occupational safety and health service among migrant workers, compared with non-migrant workers.

Fatal occupational injury. Five studies with a total of 14,210,820 participants reported an estimate of having a fatal occupational injury among migrant workers, compared with among non-migrant workers [17, 20, 21, 29, 35]. We judged the studies to potentially be sufficiently homogenous and combined them in a meta-analysis (Fig 3). We downgraded the quality of this body of evidence by three grades from “high” to “very low” quality of evidence. We downgraded by two grades for very serious risk of bias and by one grade for serious indirectness. Because of the very low quality of evidence, we do not present a pooled estimate in the forest plot. We are very uncertain about this outcome among migrant workers, compared with non-migrant workers.

Any occupational injury. Eight studies with a total of 17,100,626 participants from five countries in three WHO regions (Eastern Mediterranean, Europe, and Western Pacific) reported an estimate of having had any occupational injury among migrant workers, compared with among non-migrant workers [17, 18, 21, 23, 26, 30, 32, 33]. We judged seven studies [17, 18, 21, 23, 30, 32, 33] with 21 individual estimates from 13,063,936 participants to potentially be sufficiently homogenous despite some heterogeneity in the population and in the outcome definition and measurement. Migrant workers were 27% more likely than non-migrant workers to have an occupational injury (RR 1.27, 95% CI 1.11 to 1.44, I² 96%) (Fig 4). The eighth study [26] reported an OR of 1.07 without an estimate of statistical variance for the prioritised measure (occupational bone fracture) and was therefore not be included in the meta-analysis;
however, we carried out a sensitivity analysis, where we added this study [26] using the median standard error across the included individual effect estimates from the other included studies (0.08). The pooled effect estimate was almost identical, with an OR of 1.26 (95% CI 1.11 to 1.43; see S3 Fig for forest plot).

We downgraded this body of evidence by two grades to “low quality evidence” for serious risk of bias and serious indirectness. In conclusion, migrant workers may perhaps have a higher likelihood of having any occupational injury than non-migrant workers. Further research is very likely to have an important impact on our confidence in the conclusion and is likely to change it.

Subgroup analyses by WHO region found that the risk among migrant workers was elevated in all WHO regions with data included in this systematic review, but it may be particularly elevated in the Eastern Mediterranean and Western Pacific (Table 2). There may be considerable differences in this outcome between regions (Test for subgroup differences: p < 0.000).

Table 2. Subgroup analyses for outcomes with meta-analysis.

Subgroup	Outcome	Has used any health service (4 studies included in meta-analysis) [22, 28, 31, 36]	Has had any occupational injury (7 studies included in meta-analysis) [17, 18, 21, 23, 30, 32, 33]
Sex		(4 studies) [22, 28, 31, 36]	(1 study) [32]
Females	0.58 (0.41 to 0.81)	1.66 (1.21 to 2.28)	
Males	0.51 (0.30 to 0.88)	1.19 (0.93 to 1.52)	
Test for subgroup differences	P = 0.70, I^2 = 0%	P = 0.12, I^2 = 59%	
Country of destination (WHO region)	(4 studies) [22, 28, 31, 36]	(7 studies) [17, 18, 21, 23, 30, 32, 33]	
Africa	0.59 (0.40 to 0.87)	-	
Americas	-	-	
Eastern Mediterranean	-	4.76 (1.75 to 12.93)	
Europe	0.60 (0.44 to 0.80)	1.22 (1.09 to 1.36)	
South-East Asia	0.33 (0.23 to 0.46)	-	
Western Pacific	-	1.75 (1.68 to 1.82)	
Test for subgroup differences	P = 0.02, I^2 = 76%	P < 0.01, I^2 = 95%	
Country of origin (WHO region)	(2 studies) [31, 36]	(3 studies) [17, 18, 30]	
Africa	0.59 (0.40 to 0.87)	-	
Americas	-	-	
Eastern Mediterranean	0.80 (0.57 to 1.15)	1.13 (1.04 to 1.22)	
Europe	0.45 (0.29 to 0.71)	1.01 (0.81 to 1.25)	
South-East Asia	-	4.76 (1.75 to 12.93)	
Western Pacific	-	-	
Test for subgroup differences	P = 0.13, I^2 = 50%	P = 0.01, I^2 = 78%	
Regularity of migration		(1 study) [22]	(0 studies)
Irregular	0.61 (0.37 to 0.99)	-	
Regular	1.04 (0.64 to 1.70)	-	
Test for subgroup differences	P = 0.13, I^2 = 57%	-	

https://doi.org/10.1371/journal.pone.0252651.t002
HIV. Four studies with a total of 13,775 participants from three countries in three WHO regions (Americas, Europe, and Western Pacific) reported an estimate of having HIV among migrant workers, compared with among non-migrant workers [24, 27, 37, 38]. All studies investigated differences among sex workers. We judged three studies [24, 37, 38] to potentially be sufficiently homogenous and combined them in a meta-analysis (see S4 Fig). The fourth study [27] reported that a ratio of the odds of migrant workers divided by the odds of non-migrant workers could not be calculated because no non-migrant workers had HIV. We downgraded the quality of this body of evidence by three grades for serious risk of bias, indirectness and imprecision from “high” to “very low” quality of evidence. Because of the very low quality of evidence, we do not present a pooled estimate in the forest plot. We are very uncertain about this outcome among migrant workers, compared with non-migrant workers.

Depression. Two studies with a total of 7,512 participants from two countries in Europe reported an estimate of being clinically depressed among migrant workers, compared with non-migrant workers [25, 34]. We judged both studies to potentially be sufficiently homogenous and combined them in a meta-analysis (see S5 Fig). We downgraded the quality of this body of evidence by three grades for serious risk of bias, indirectness and imprecision to “very low” quality of evidence and do not present a pooled estimate in the forest plot. We are very uncertain about this outcome.
This systematic review and meta-analysis included 21 studies of >17 million participants in 16 countries in five regions [17–38]. Most studies investigated regular migrant workers in high-income destination countries. Compared with non-migrant workers, migrant workers may be less likely to use any health service (Table 3 summarises the findings). They may be more likely than non-migrant workers to have an occupational injury. In subgroup analyses, RRs of these outcomes differed considerably between geographical origin and/or destination regions, but not by sex. We are very uncertain about the likelihood of migrant workers, compared with non-migrant workers, to have used any occupational health services; died from an occupational injury; HIV; and depression.

Fig 3. Has died of an occupational injury, migrant workers compared with non-migrant workers, 2010–20.

https://doi.org/10.1371/journal.pone.0252651.g003

Discussion
This systematic review and meta-analysis included 21 studies of >17 million participants in 16 countries in five regions [17–38]. Most studies investigated regular migrant workers in high-income destination countries. Compared with non-migrant workers, migrant workers may be less likely to use any health service (Table 3 summarises the findings). They may be more likely than non-migrant workers to have an occupational injury. In subgroup analyses, RRs of these outcomes differed considerably between geographical origin and/or destination regions, but not by sex. We are very uncertain about the likelihood of migrant workers, compared with non-migrant workers, to have used any occupational health services; died from an occupational injury; HIV; and depression.

The body of evidence synthesised in this systematic review and meta-analyses has several limitations. Clinical heterogeneity was high across populations and some outcomes. Migrant workers as a population are diverse in terms of country of origin, stage of migration, formality of migration (regular versus irregular), country of destination, occupation, industrial sector, work in the formal versus informal economy, lengths of residence in the country of destination, gender composition, and level of education, amongst other variables. Differences in

Study or Subgroup	log(Risk Ratio)	Risk Ratio IV, Random, 95% CI
Australia, Reid 2014 (1)	-0.02	0.98 [0.76, 1.26]
Australia, Reid 2014 (2)	-0.65	0.52 [0.33, 0.62]
Australia, Reid 2014 (3)	-0.56	0.57 [0.43, 0.75]
Australia, Reid 2014 (4)	-0.05	0.95 [0.80, 1.13]
Australia, Reid 2014 (5)	-1.05	0.35 [0.16, 0.75]
Australia, Reid 2014 (6)	-0.34	0.71 [0.52, 0.92]
Australia, Reid 2014 (7)	-0.62	0.54 [0.32, 0.90]
Australia, Reid 2014 (8)	0.22	1.25 [0.96, 1.64]
Australia, Reid 2014 (9)	0.56	0.55 [0.30, 0.93]
Australia, Reid 2014 (10)	-0.76	0.47 [0.34, 0.64]
Australia, Reid 2014 (11)	-0.37	0.69 [0.50, 0.96]
Australia, Reid 2014 (12)	-0.53	0.59 [0.31, 1.10]
Australia, Reid 2014 (13)	-0.45	0.54 [0.46, 0.68]
Australia, Reid 2014 (14)	-0.33	0.72 [0.52, 0.92]
Qatar, Al-Thani 2015 (15)	0.71	2.03 [1.11, 3.62]
Republic of Korea, Cha 2014 (16)	0.55	1.73 [1.37, 2.19]
United States of America, Byler 2018 (17)	0.144	1.15 [1.11, 1.20]
United States of America, Steenge 2014 (18)	-0.12	0.89 [0.84, 0.94]
health service use and health outcomes are also influenced by up-stream, structural interventions, such as whether migrant workers are covered with employment injury compensation schemes. These upstream interventions will differ between countries. The high clinical heterogeneity observed in this systematic review may reflect these differences in migrant populations and work-related policies and programmes in the studied countries. Some outcomes were also relatively heterogenous in one or both of definition and measurement. Statistical heterogeneity was also high in the meta-analyses for most outcomes ($I^2 \geq 95\%$). We caution the interpretation of the pooled estimates and suggest these are viewed as indicative, not conclusive.

We judged the current body of evidence to be seriously indirect for most outcomes included in this review. The existing evidence covers a subpopulation of migrant workers. These are primarily migrant workers at the country of destination, residing in high-income
destination countries, who have migrated regularly and work in the formal economy. Some of the migrants covered in the included studies are North-North migrants. There is scarce scientific evidence is available on migrant workers coming from low income country and migrating to low-middle income countries. Therefore, this current body of evidence does not capture migrant workers in more vulnerable situations, including those in transit (e.g., in detention) and return (e.g., those who returned after acquiring an occupational or work-related injury or

Outcome	Illustrative comparative risks* (95% CI)	Relative effect (95% CI)	No of participants or events (studies)	Quality of evidence	Comments
Has used any health services	The assumed risk in non-migrant workers is **60 per 100**	RR 0.55 (0.41 to 0.73)	3,804,131 participants (4 studies)	Low*	Better outcomes for migrant workers indicated by higher values. Migrant workers may be less likely to use any health services than non-migrant workers.
Has used any occupational safety and health services					No evidence available on this outcome.
Has died from any occupational injury			14,210,820 participants and 130,774 events (4 studies)	Very low*	Better outcomes for migrant workers indicated by lower values. We are very uncertain about this outcome among migrant workers, compared with non-migrant workers.
Has had any occupational injury	The assumed risk in non-migrant workers is **34 per 10,000**	RR 1.27 (1.11 to 1.44)	17,100,626 participants (11 studies)	Low*	Better outcomes for migrant workers indicated by lower values. Migrant workers may be more likely to have any occupational injury than non-migrant workers.
Has human immunodeficiency virus			13,775 participants (4 studies)	Very low*	Better outcomes for migrant workers indicated by lower values. We are very uncertain about this outcome among migrant workers, compared with non-migrant workers.
Has clinical depression			7,512 participants (2 studies)	Very low*	Better outcomes for migrant workers indicated by lower values. We are very uncertain about this outcome among migrant workers, compared with non-migrant workers.

* The basis for the assumed risk is the median control group risk across studies. The corresponding risk (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).
CI: confidence interval; RR: risk ratio.
* Serious concerns for risk of bias (minus one grade).
* Serious concerns for indirectness due to study population being limited to sub-population of migrant workers (minus one grade).
* Very serious concerns for risk of bias (minus two grades).
* Very serious concerns for imprecision indicated by the 95% confidence estimate or estimates ranging from a meaningful benefit to a meaningful harm (minus two grades).

https://doi.org/10.1371/journal.pone.0252651.t003
disease in the destination country; migrant workers residing in low- and lower middle-income countries; those who have migrated irregularly (and therefore do not enter civil registration and in turn may not qualify for public services and benefits); and migrants working in informal economies. The evidence reviewed can, therefore, only partially answer the systematic review’s research questions.

High risk of bias presents a serious concern in this systematic review for several outcomes. Most included studies investigate non-representative samples. Even probability studies or complete censuses of general populations (e.g. all occupational injuries registered in the national injury register or employment injury compensation scheme) have generally either actively or de facto excluded irregular migrant workers because their lack of civil registration and entitlement for compensation means that they do not appear in official registries and compensation records, respectively. There is a high risk of bias from disproportionate underreporting of cases of occupational and work-related diseases or injuries due to fear of losing one’s job among migrant workers. For this reason, different approaches to data collection may be necessary in future research: approaches need to be able to capture information on the health outcomes of all migrant workers, including those in the informal economy or with irregular status.

The body of evidence is limited to comparisons of migrant workers in destination countries with non-migrant workers in the same country. If migrant workers who experience changes in health services or health outcomes return to their country of origin as a result (e.g., because they lose their right of residency as soon as they are no longer fit for work or have lost their employment), they are lost from official registries and national cohort studies. The adverse health effects they experienced will also not be captured in these national data and information systems. This can lead to an underestimation of the RR of migrant workers compared with non-migrant workers. Studies that compare migrant workers pre-departure in their country of origin with the same migrant workers after return to their country of origin are needed. These studied were eligible for inclusion in this systematic review, but we did not identify any.

This review was limited to migrant workers who had entered their country of destination through regular migration (with few exceptions). Fitness to work established through medical examination is often a prerequisite for regular migration for employment. This would lead to selection based on health status, where applicants for migration who are in less than ideal health are excluded from regular migration, and only relatively healthy persons can enter a country of destination as regular migrant workers. Additionally, regular migration often also depends on the applicant fulfilling minimum education and wealth requirements that generally lie above the average level achieved in non-migrant workers in the country. In summary, this health selection may explain any health advantage observed in regular migrant workers, compared with a general sample of non-migrant workers in the same country.

This review highlights that more high-quality research is needed on these differences in workers’ health services use and health outcomes by migrant status. More research is required on broader and more diverse populations of migrant workers, particularly on the forms of migration and the stages of migration, in which more careful identification of migrant workers and measurement of their health status is made. Longitudinal studies, such as cohort studies, may be particularly informative; however, large scale population-based studies, using data from population censuses for example, are also needed. This could include research on migrant workers from and in low-income countries, in migration stages other than destination, from irregular migration, and migrants working in the informal economy. Harmonized internationally standardized measures will aid comparability between studies. Further research will strengthen the evidence base for designing, planning, costing, implementing and evaluating laws, policies, and interventions that promote the safety, health and wellbeing of workers.
Supporting information

S1 Checklist. PRISMA 2009 checklist.
(DOC)

S1 Appendix. Search strategy for MEDLINE. List of search terms used in MEDLINE to identify literature for inclusion in the systematic review.
(DOCX)

S1 Table. Eligibility criteria.
(DOCX)

S2 Table. Prioritized outcomes and related Sustainable Development Goals indicators.
(DOCX)

S1 Fig. Summary of risk of bias. Figure summarising the risk of bias for included studies.
(DOCX)

S2 Fig. Risk of bias graph. Figure summarising the risk of bias for included studies.
(DOCX)

S3 Fig. Has had any occupational injury, migrant workers compared with non-migrant workers, 2010–20, sensitivity analysis. Forest plot of sensitivity analysis for outcome of “Had any occupational injury” with the López-Arquillos 2016 study included using the median standard error across the included individual effect estimates from the other included studies (0.08).
(DOCX)

S4 Fig. Has HIV, migrant workers compared with non-migrant workers, 2010–20. Figure showing the odds ratios (and 95% confidence intervals) of reported in included studies of having HIV among migrant workers compared with non-migrant workers, 2010–2020.
(DOCX)

S5 Fig. Is clinically depressed, migrant workers compared with non-migrant workers, 2010–20. Figure showing the odds ratios (and 95% confidence intervals) of reported in included studies of being clinically depressed among migrant workers compared with non-migrant workers, 2010–2020.
(DOCX)

Acknowledgments

We thank the WHO Health and Migration Programme for the feedback on an earlier draft of the manuscript and Dr Ahmad Reza Hosseinpoor for advice on the meta-analysis of health inequalities measures. The authors alone are responsible for the views expressed in this article, and they do not necessarily represent the views, decisions or policies of the institutions with which they are affiliated.

Author Contributions

Conceptualization: Frank Pega.

Data curation: Frank Pega, Srinivasan Govindaraj.

Formal analysis: Frank Pega.

Investigation: Frank Pega, Srinivasan Govindaraj, Nguyen Toan Tran.
References

1. International Labour Organization. Decent work for migrants and refugees. Geneva: International Labour Organization. Available from: http://www.ilo.org/wcmsp5/groups/public/—dgreports/—dcomm/documents/publication/wcms_524995.pdf; 2016.

2. ILO. ILO Global Estimates on International Migrant Workers: Results and Methodology. Geneva: ILO; 2018.

3. Hargreaves S, Rustage K, Nellums LB, McAlpine A, Pocock N, Devakumar D, et al. Occupational health outcomes among international migrant workers: a systematic review and meta-analysis. The Lancet Global Health. 2019; 7(7):e872–e82. https://doi.org/10.1016/S2214-109X(19)30204-9 PMID: 31122905

4. Zimmerman C, Kiss L, Hossain M. Migration and health: a framework for 21st century policy-making. PLoS medicine. 2011; 8(5):e1001034. https://doi.org/10.1371/journal.pmed.1001034 PMID: 21629681

5. Ahonen EQ, Benavides FG, Benach J. Migrant populations, work and health—a systematic literature review. Scand J Work Environ Health. 2007; 33(2):96–104. https://doi.org/10.5271/sjweh.1112 PMID: 17460797

6. Fitzgerald S, Chen X, Qu H, Sheff MG. Occupational injury among migrant workers in China: a systematic review. Inj Prev. 2013; 19(5):348–54. https://doi.org/10.1136/injuryprev-2012-040578 PMID: 23710065

7. Simkhada PP, Regmi PR, van Teijlingen E, Aryal N. Identifying the gaps in Nepalese migrant workers’ health and well-being: a review of the literature. J Travel Med. 2017; 24(4). https://doi.org/10.1093/jtm/tax021 PMID: 28426117

8. Sterud T, Tynes T, Mehlm IS, Veiersted KB, Bergbom B, Airila A, et al. A systematic review of working conditions and occupational health among immigrants in Europe and Canada. BMC public health. 2018; 18(1):770. https://doi.org/10.1186/s12889-018-6703-3 PMID: 29925349

9. United Nations General Assembly. Work of the Statistical Commission pertaining to the 2030 Agenda for Sustainable Development (A/RES/71/313). New York, NY: United Nations; 2017.

10. Pega F, Norris SL, Backes C, Bero LA, Descatha A, Gagliardi D, et al. RoB-SPEO: A tool for assessing risk of bias in studies estimating the prevalence of exposure to occupational risk factors from the WHO/ILO Joint Estimates of the Work-related Burden of Disease and Injury. Environ Int. 2019; 135:105039. https://doi.org/10.1016/j.envint.2019.105039 PMID: 31864023

11. Higgins J, Altman D, Sterne J. Chapter 8: Assessing risk of bias in included studies. In: Higgins JPT GSe, editor. Cochrane Handbook for Systematic Reviews of Interventions Version 510 [updated March 2011] The Cochrane Collaboration, 2011 Available from wwwhandbookcochraneorg2011

12. Higgins J, Deeks J, Altman D. Chapter 16: Special topics in statistics. In: Higgins JPT GSe, editor. Cochrane Handbook for Systematic Reviews of Interventions Version 510 [updated March 2011] The Cochrane Collaboration, 2011 Available from wwwhandbookcochraneorg2011

13. Deeks J, Higgins J, Altman D. Chapter 9: Analysing data and undertaking meta-analyses In: Higgins JPT GSe, editor. Cochrane Handbook for Systematic Reviews of Interventions Version 510 [updated March 2011] The Cochrane Collaboration, 2011 Available from wwwhandbookcochraneorg2011

14. Review Manager (RevMan). Version 5.3. Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration; 2014.

15. Schünemann H, Oxman A, Higgins J, Vist G, Glasziou P, Guyatt G. Chapter 11: Presenting results and ‘Summary of findings’ tables. In: Higgins JPT GSe, editor. Cochrane Handbook for Systematic Reviews of Interventions Version 510 [updated March 2011] The Cochrane Collaboration, 2011 Available from wwwhandbookcochraneorg2011

16. Schünemann H, Oxman A, Vist G, Higgins J, Deeks J, Glasziou P, et al. Chapter 12: Interpreting results and drawing conclusions. In: Higgins JPT GSe, editor. Cochrane Handbook for Systematic Reviews of Interventions Version 510 [updated March 2011] The Cochrane Collaboration, 2011 Available from wwwhandbookcochraneorg2011
17. Al-Thani H, El-Menyar A, Consunji R, Mekkodathil A, Peralta R, Allen KA, et al. Epidemiology of occupational injuries by nationality in Qatar: Evidence for focused occupational safety programmes. Injury. 2015; 46(9):1806–13. https://doi.org/10.1016/j.injury.2015.04.023 PMID: 25943291

18. Biering K, Lander F, Rasmussen K. Work injuries among migrant workers in Denmark. Occup Environ Med. 2017; 74(4):235–42. https://doi.org/10.1136/œmem-2016-103681 PMID: 27550909

19. Biering K. Correction: Work injuries among migrant workers in Denmark. Occup Environ Med. 2017; 74(7):542. https://doi.org/10.1136/œmem-2016-103681corr1 PMID: 28620123

20. Byler CG, Robinson WC. Differences in patterns of mortality between foreign-born and native-born workers due to fatal occupational injury in the USA from 2003 to 2010. Journal of immigrant and minority health. 2018; 20(1):26–32. https://doi.org/10.1007/s10903-016-0503-2 PMID: 27704387

21. Cha S, Cho Y. Fatal and non-fatal occupational injuries and diseases among migrant and native workers in South Korea. Am J Ind Med. 2014; 57(9):1043–52. https://doi.org/10.1002/ajim.22349 PMID: 24953056

22. Dias S, Gama A, Pingariho M, Simoes D, Mendão L. Health services use and HIV prevalence among migrant and National Female sex Workers in Portugal: are we providing the services needed? AIDS and Behavior. 2017; 21(8):2316–21. https://doi.org/10.1007/s10461-016-1511-x PMID: 27475942

23. Giraudo M, Bena A, Costa G. Migrant workers in Italy: an analysis of injury risk taking into account occupational characteristics and job tenure. BMC public health. 2017; 17(1):351. https://doi.org/10.1186/s12889-017-4240-9 PMID: 28431498

24. Goldenberg SM, Liu V, Nguyen P, Chettiar J, Shannon K. International migration from non-endemic settings as a protective factor for HIV/STI risk among female sex workers in Vancouver, Canada. J Immigr Minor Health. 2015; 17(1):21–8. https://doi.org/10.1007/10903-014-0011-1 PMID: 24700025

25. Ismayilova L, Lee HN, Shaw S, El-Bassel N, Gilbert L, Terlikbayeva A, et al. Mental health and migration: depression, alcohol abuse, and access to health care among migrants in Central Asia. J Immigr Minor Health. 2014; 16(6):1138–48. https://doi.org/10.1007/10903-013-9942-1 PMID: 24186359

26. López-Aquíllas O, Ríos-Toledo N. Analysis of workplace accidents in automotive repair workshops in Spain. Safety and health at work. 2016; 7(3):231–6. https://doi.org/10.1016/j.shaw.2016.01.004 PMID: 27630793

27. Mc Grath-Lone L, Marsh K, Hughes G, Ward H. The sexual health of female sex workers compared with other women in England: analysis of cross-sectional data from genitourinary medicine clinics. Sex Transm Infect. 2014; 90(4):344–50. https://doi.org/10.1136/sextrans-2013-015381 PMID: 24493858

28. Rakprasit J, Nakamura K, Seino K, Morita A. Healthcare use for communicable diseases among migrant workers in comparison with Thai workers. Ind Health. 2017; 55(1):67–75. https://doi.org/10.1080/0036363420100003 PMID: 22486/indhealth.2016-0107 PMID: 24953056

29. Reid A, Peters S, Felipe N, Lenguerrand E, Harding S. The impact of migration on deaths and hospital admissions from work-related injuries in Australia. Aust N Z J Public Health. 2016; 40(1):49–54. https://doi.org/10.1111/1753-6405.12407 PMID: 26122013

30. Ricó M, Garbarino S, Bragazzi NL. Migrant workers from the eastern-mediterranean region and occupational injuries: a retrospective database-based analysis from North-Eastern Italy. International journal of environmental research and public health. 2019; 16(4):673. https://doi.org/10.3390/ijerph16040673 PMID: 30823571

31. Richter M, Chersich MF, Vearey J, Sartorius B, Temmerman M, Lucht S. Migration status, work conditions and health utilization of female sex workers in three South African cities. J Immigr Minor Health. 2014; 16(1):7–17. https://doi.org/10.1007/10903-012-9758-4 PMID: 23238581

32. Rubiales-Gutierrez E, Agudelo-Suarez AA, Lopez-Jacob MJ, Ronda-Pérez E. Differences in occupational accidents in Spain according to the worker’s country of origin. Salud Publica Mex. 2010; 52(3):199–206. https://doi.org/10.1590/s0036-36342010000300003 PMID: 20485882

33. Salvatore MA, Baglio G, Cacciani L, Spagnolo A, Rosano A. Work-related injuries among immigrant workers in Italy. J Immigr Minor Health. 2013; 15(1):182–7. https://doi.org/10.1007/s10903-012-9673-8 PMID: 22752688

34. Sieberer M, Maksimovic S, Ersoz B, Macleidt W, Ziegenbein M, Calliest IT. Depressive symptoms in first-and second-generation migrants: a cross-sectional study of a multi-ethnic working population. Int J Soc Psychiatry. 2012; 58(6):605–13. https://doi.org/10.1177/0020764011418418 PMID: 21875903

35. Steege AL, Baron SL, Marsh SM, Menendez CC, Myers JR. Examining occupational health and safety disparities using national data: a cause for continuing concern. Am J Ind Med. 2014; 57(5):527–38. https://doi.org/10.1002/ajim.22297 PMID: 24436156

36. Straiton M, Benefoit A, Diaz E. Immigrants’ use of primary health care services for mental health problems. BMC Health Serv Res. 2014; 14:341. https://doi.org/10.1186/1472-6963-14-341 PMID: 25127890
37. Wong WC, Yim YL, Lynn H. Sexually transmitted infections among female sex workers in Hong Kong: the role of migration status. J Travel Med. 2011; 18(1):1–7. https://doi.org/10.1111/j.1708-8305.2010.00453.x PMID: 21199136

38. Zhou Y, Li X, Zhang C, Tan G, Stanton B, Zhang X, et al. Rates of HIV, syphilis, and HCV infections among different demographic groups of female sex workers in Guangxi China: evidence from 2010 national sentinel surveillance data. AIDS Care. 2013; 25(11):1433–41. https://doi.org/10.1080/09540121.2013.772282 PMID: 23438031