INTRODUCTION

Pituitary apoplexy is a well-known clinical syndrome typically characterized by a sudden onset of headache, visual impairment, signs of meningeal irritation, disturbances of consciousness, and hormonal dysfunction. It is usually the result of hemorrhagic infarction associated with a pituitary adenoma or, occasionally, hemorrhage within a nonadenomatous tumor or a normal gland (1, 2). However, the presenting condition may vary from asymptomatic hemorrhage (1, 3, 4), aseptic meningitis (5–8), vascular accident (9–12), subarachnoid hemorrhage (13, 14), massive hemorrhage (13), and even to sudden death (3).

The incidence of pituitary apoplexy ranges from 0.6% to 16.6% of pituitary adenomas according to its definition (3, 4). Asymptomatic hemorrhage or infarction accounts for 14 to 22% of pituitary tumors, while clinical apoplexy accounts for 0.6 to 9% (15). Although this wide range of incidence reflects the variable degree of severity or urgency in the presenting symptoms, the exact mechanisms of pituitary apoplexy and its subsequent presentation remain unknown.

In this report, a case of pituitary apoplexy complicated by aseptic chemical meningitis and cerebral infarction is described, and the feasible sequence of events is reviewed based on the available literature.

CASE REPORT

A 41-yr-old man was admitted with acute headache, neck stiffness, and febrile sensation. Cerebrospinal fluid examination showed pleocytosis, an increased protein level and, a decreased glucose concentration. No organisms were observed on a culture study. An imaging study revealed pituitary macroadenoma with hemorrhage. On the 7th day of the attack, confusion, dysarthria, and right-sided facial paralysis and hemiparesis were noted. Cerebral infarction on the left basal ganglia was confirmed. Neurologic deficits gradually improved after removal of the tumor by endoscopic transnasal transsphenoidal approach. It is likely that the pituitary apoplexy, aseptic chemical meningitis, and cerebral infarction are associated with each other. This rare case can serve as a prime example to clarify the chemical characteristics of pituitary apoplexy.

Key Words: Cerebral Infarction; Meningitis; Pituitary Apoplexy

Byung Chan Jeon, Yong Sook Park, Hyung Suk Oh, Young Soo Kim, Bong Kwon Chun

Departments of Neurosurgery, Pathology*, Kosin University College of Medicine Gospel Hospital, Busan, Korea

Received: 10 November 2006
Accepted: 22 January 2007

Address for correspondence
Yong Sook Park, M.D.
Department of Neurosurgery, Kosin University College of Medicine Gospel Hospital, 34 Amnam-dong, Seo-gu, Busan 602-702, Korea
Tel: +82-51-990-6465, Fax: +82-51-990-3042
E-mail: cuttage@empal.com
morphs 71% and lymphocyte 23%), protein 118 mg/dL, and glucose 44 mg/dL. On the 7th day of apoplexy, the patient complained of aggravated headache and exhibited intermittent confusion, dysarthria, and right-side facial paralysis and hemiparesis. Follow-up CT scan showed low density on the head of the caudate nucleus, the genu of the internal capsule, and the anterior portion of the putamen and globus pallidus on the left side. Diffusion-weighted image of the MRI scan showed a bright signal in the corresponding area (Fig. 2). The patient’s neurologic deficits gradually improved, and subsequent images also indicated decreased size of infarction. The pituitary tumor was removed via endoscopic transnasal transsphenoidal approach. The histology revealed a typical hemorrhagic infarction of pituitary adenoma compatible with pituitary apoplexy (Fig. 3). Postoperative panhypopituitarism and diabetes insipidus required hormonal replacement.

DISCUSSION

The meningeal irritation sign is a fairly common symptom of pituitary apoplexy with an incidence ranging from 16.7 to
85% (16, 17). These signs are caused by subarachnoid hemorrhage accompanied by pituitary apoplexy (3, 13, 16) or by sterile chemical meningitis (5-7). The reported series of chemical meningitis characterized by the state of acute headache, fever, and spinal pleocytosis were clinically indistinguishable from infectious meningitis. In fact, the possibility of infectious or tuberculous meningitis in the present patient was not clearly ruled out, nor were his visual symptoms urgent. As a result, tumor removal was delayed. Cerebral infarction contributed to the surgical delay as well. Following surgery, his visual symptoms were resolved completely. Considering the frequency of meningismus, sterile meningitis confirmed with CSF examination is not common. It is thought that chemical meningitis induced by pituitary apoplexy might be underestimated. The laboratory confirmation of meningitis is possible only with CSF examination. The abrupt onset of altered consciousness, visual loss, and ocular palsy that occur in pituitary apoplexy require urgent surgical decompression. Furthermore, the pituitary apoplexy in large-sized pituitary adenomas generally makes one reluctant to proceed with lumbar puncture. In addition, accurate, fast, noninvasive radiologic tools are available for diagnosing the patient’s state.

The probable causes of the cerebral vasospasm related with pituitary adenomas are subarachnoid blood released from hemorrhagic, necrotic pituitary adenoma or from intraoperative spillage, direct arterial wall injury, hypothalamic damage, some chemical substances or mechanical compression by a tumor (9, 18). Cardoso et al. clearly demonstrated an example of vasospasm induced by subarachnoid hemorrhage liberated from pituitary apoplexy (19). They noticed a large amount of blood in the basal cisterns at the time of transcranial approach to remove a pituitary adenoma and reported marked spasm of both internal carotid arteries, as well as the anterior and middle cerebral arteries. There were also a few reports of cerebral vasospasm after surgery for pituitary macroadenoma without pituitary apoplexy (18, 20). These reports concluded that the most probable cause of vasospasm after transsphenoidal tumor removal was subarachnoid hematoma in the basal cisterns. It is not clear whether mechanical vessel compression by macroadenomas causes pituitary apoplexy or whether it results from the sudden expansion of tumor volume induced by pituitary apoplexy. Rosenbaum et al. reported a patient who had pituitary apoplexy 12 hr after angiography (11). They detected focal spasm and occlusion.
of the internal carotid arteries on follow-up angiography and confirmed the restoration of pulsation after tumor removal. They concluded that the cause of cerebral ischemia was a mechanical obstruction by the tumor. In another report of a case involving cerebral infarction concomitant with pituitary apoplexy, Clark et al. suggested that the nature of the angiographic narrowing was more suggestive of encasement rather than spasm or artheroma (10). On the other hand, other authors have hypothesized that ischemia in the internal carotid artery was the primary event leading to infarction in the pituitary macroadenoma (21, 22).

Although several mechanisms have been suggested, in our case, the causative materials or events leading to chemical meningitis and cerebral infarction are thought to be in the same lineage. There was no definitive evidence of subarachnoid hemorrhage on imaging studies or CSF examination. This means that the probable cause was related not to hemorrhage, but to some vasoactive substances from tumor debris or from the pituitary gland. Preoperative vasospasm and ischemia may occur on the very day or even some days after the pituitary apoplexy (9, 14). Surgery, which inevitably destroys the tumor itself, could also precipitate a vascular accident (9, 23). These provide some supporting evidence of a vasospastic material in pituitary adenomas. Despite their rare frequencies, other intracranial neoplasms also can induce vasospasm or ischemia (24). The fact that pituitary adenomas are one of the common disease entities that could coexist with cerebral aneurysm may be a reflection of the intrinsic vasculopathy of pituitary adenomas (25). In a recent report of their histologic and clinical correlations, pituitary apoplexy, hemorrhagic apoplexy, and pure infarcted apoplexy exhibited different clinical presentations, courses, and outcomes (26). This also suggests that pituitary apoplexy produces a protean clinical syndrome as a histologic characteristics.

It is likely that, in this sequence, pituitary apoplexy, aseptic chemical meningitis, and cerebral infarction are associated with each other. Pituitary apoplexy occurs as a result of unknown events in preexisting pituitary adenoma; blood or necrotic material induces chemical meningitis, and this could precipitate vasospasm and sometimes overt cerebral infarction. Meningismus after pituitary apoplexy is a sign of meningeal irritation caused by blood or chemical substances from the pituitary adenoma; therefore, early surgical intervention may be suitable, in spite of spinal pleocytosis. This rare case can be a prime example to clarify the chemical characteristics of pituitary apoplexy or pituitary adenoma.

ACKNOWLEDGMENT

The authors wish to thank Hae Sun Lee for her excellent secretarial support for the study.

REFERENCES

1. Onesti ST, Wisniewski T, Post KD. Pituitary hemorrhage into a Rathke’s cleft cyst. Neurosurgery 1990; 27: 644-6.
2. Reid RL, Quigley ME, Yen SS. Pituitary apoplexy. A review. Arch Neurol 1985; 42: 712-9.
3. Wakai S, Fukushima T, Teramoto A, Sano K. Pituitary apoplexy: its incidence and clinical significance. J Neurosurg 1981; 55: 187-93.
4. Mohr G, Hardy J. Hemorrhage, necrosis, and apoplexy in pituitary adenomas. Surg Neurol 1982; 18: 181-9.
5. Reutens DC, Edis RH. Pituitary apoplexy presenting as aseptic meningitis without visual loss or ophthalmoplegia. Aust N Z J Med 1990; 20: 590-1.
6. Valente M, Marroni M, Stagni G, Floridi P, Perriello G, Santeusanio F. Acute sterile meningitis as a primary manifestation of pituitary apoplexy. J Endocrinol Invest 2003; 26: 754-7.
7. Brouns R, Crols R, Enghelborgs S, De Deyn PP. Pituitary apoplexy presenting as chemical meningitis. Lancet 2004; 364: 502.
8. Kim SY, Jung YS. Pituitary apoplexy presenting as meningitis. J Korean Soc Emerg Med 2002; 13: 94-6.
9. Akutsu H, Noguchi S, Tsunoda T, Sasaki M, Matsumura A. Cerebral infarction following pituitary apoplexy—case report. Neurol Med Chir (Tokyo) 2004; 44: 479-83.
10. Clark JD, Freer CE, Wheatley T. Pituitary apoplexy: an unusual cause of stroke. Clin Radiol 1987; 38: 75-7.
11. Rosenbaum TJ, Houser OW, Laws ER. Pituitary apoplexy producing internal carotid artery occlusion. Case report. J Neurosurg 1977; 47: 599-604.
12. Lath R, Rajeshkhar V. Massive cerebral infarction as a feature of pituitary apoplexy. Neurol India 2001; 49: 191-3.
13. Satyarthee GD, Mahapatra AK. Pituitary apoplexy in a child presenting with massive subarachnoid and intraventricular hemorrhage. J Clin Neurosci 2005; 12: 94-6.
14. Pozzati E, Frank G, Nasi MT, Giuliani G. Pituitary apoplexy, bilateral carotid vasospasm, and cerebral infarction in a 15-year-old boy. Neurosurgery 1987; 20: 56-9.
15. Semple PL, Webb MK, de Villiers JC, Laws ER Jr. Pituitary apoplexy. Neurosurgery 2005; 56: 65-72.
16. Dubuisson AS, Beckers A, Stevenaert A. Classical pituitary tumour apoplexy: Clinical features, management and outcomes in a series of 24 patients. Clin Neurol Neurosurg 2007; 109: 63-70.
17. Ebersold MJ, Laws ER Jr, Scheithauer BW, Randall RV. Pituitary apoplexy treated by transsphenoidal surgery. A clinicopathological and immunocytochemical study. J Neurosurg 1983; 58: 315-20.
18. Nishioita H, Ito H, Haraoka J. Cerebral vasospasm following transsphenoidal removal of a pituitary adenoma. Br J Neurosurg 2001; 15: 44-7.
19. Cardoso ER, Peterson EW. Pituitary apoplexy and vasospasm. Surg Neurol 1983; 20: 391-5.
20. Camp PE, Paxton HD, Buchan GC, Gahbauer H. Vasospasm after trans-sphenoidal hypophysectomy. Neurosurgery 1980; 7: 382-6.
21. Mukherjee S, Majumder A, Dattamunshi AK, Maji D. Ischaemic stroke leading to left hemiparesis and autophysectomy in a case of pituitary macroadenoma. J Assoc Physicians India 1995;
22. Rovit RL, Fein JM. Pituitary apoplexy: a review and reappraisal. J Neurosurg 1972; 37: 280-8.
23. Mawk JR, Ausman JL, Erickson DL, Maxwell RE. Vasospasm following transcranial removal of large pituitary adenomas. Report of three cases. J Neurosurg 1979; 50: 229-32.
24. Aoki N, Origitano TC, al-Mefty O. Vasospasm after resection of skull base tumors. Acta Neurochir (Wien) 1995; 132: 53-8.
25. Wakai S, Fukushima T, Furihata T, Sano K. Association of cerebral aneurysm with pituitary adenoma. Surg Neurol 1979; 12: 503-7.
26. Semple PL, De Villiers JC, Bowen RM, Lopes MB, Laws ER Jr. Pituitary apoplexy: do histological features influence the clinical presentation and outcome? J Neurosurg 2006; 104: 931-7.