A Model for Accelerating Rice Planting in Paddy Fields to Provide Food in Banten Province during the Covid-19 Pandemic

Kardiyono, T Mulyaqin, P N Susilawati, D Haryani, I Setyowati and Ismatul H.
Banten Assessment Institute for Agricultural Technology, Indonesian Agency for Agricultural Research and Development (IAARD), Jl. Ciptayasa km.01 Ciruas Serang Banten Indonesia Jl. Ciptayasa Km 01 Ciruas, Serang, Banten Province, Indonesia

E-mail: Kardiyono70@gmail.com

ABSTRACT The Indonesian government continues to ensure the availability of rice as a staple food through various programs, including optimization of paddy fields. Paddy field management is directed and encouraged more intensively by accelerating planting and minimizing idle land. The form of support and stimulation provided by the government to farmers is in the form of counseling and assistance, providing seed assistance, and facilitation of agricultural machinery and other facilities so that rice fields can be more intensive and productive. The study was conducted in Lebak Regency and Serang City, Banten Province from April to August 2020. Data and information were obtained through surveys and interviews with farmers, extension agents, researchers, and agricultural department officials. The research method used a systems approach based on soft systems methodology. The results of the study showed the acceleration of planting as an indicator of the optimization of wetland land in Lebak Regency and Serang City had been achieved as targeted. The role of the extension agents as a driving force was very decisive in the achievement of additional planting areas. The use of information technology, such as applications for monitoring standing crops, was very helpful for extension agents in detecting land to be planted, planting achievements, and reported data. The system of coordination and guidance between agencies and officers to accelerate planting was quite effective and efficient. Support and facilities for agricultural extension agents had to be improved to achieve accelerated planting performance.

1. Introduction
Rice is the staple food for Indonesian. The government needs to ensure national rice production’s sufficient to support national food security. Banten is one of the national rice producers with a potential agricultural land of about 96,285 hectares of rice fields, including irrigated rice fields about 98,227 hectares and rainfed about 98,058 hectares, also has dryland about 203,728 hectares [1]. The most rice producers in Banten are Pandeglang District, Lebak District, Serang District, and Tangerang District. Banten Province in 2018 produced rice about 1,643,046 tons [2].

Rice production in Banten Province can be increased by intensifying the land, Government is supporting to increase the planting area and productivity. Intensification programs provide tangible results to increase production [3]. Increasing the planting area or increasing the cropping index still takes into account land resources and the environment. [4] Increasing productivity by applying location-specific technologies,
including the use of early age seeds, mechanization, and site-specific fertilization. The application of technology at the farm level is still low and the technology adoption process is gradual. They will select the technology components that are seen as having a big influence on rice production. Several considerations in selective technology are economic, social, and environmental factors. Economic and social factors determine the adoption of technology at the farm level. For farmers, good technology is still difficult to obtain, and even though there is an application, it is difficult because it usually requires the use of more input factors. As a result, even though it is known by farmers, most of them are doubtful to apply the new technology in their rice production. Phenomenal innovation is the green revolution in rice agribusiness through the discovery and use of new high yielding, short-lived, superior varieties that are resistant to pests and diseases.

2. Material and Methods
The research was conducted in Banten Province from April to August 2020. Data and information were collected through surveys, Focus Group Discussions (FGD), and in-depth interviews with farmers, extension agents, and policymakers. Data collected in this research is harvested area data, productivity, production, agricultural tools and machinery, and the response of farmers and extension agents to the program. This study used the Soft Systems Methodology (SSM) approach to find problems in the field, the concept of the model changes offered to the opportunities for implementing the model in solving problems such as the stages of SSM research Figure 1 [5,6]

![Figure 1. Stages of research with the Soft Systems Methodology (SSM)](image)

Seven steps were taken in the research, (1) Identify the problem; the rice production intensification problem, (2) Express the problem situation (Expressing the problem situation) knowing the problems and the roles of various parties involved in the rice production system (3) Formulate root definitions of relevant systems of purposeful activity, which is to identify the stakeholders involved, transformation,
Weltanschauung (perspective), and the environment to then build a system definition of human activities needed to improve problem situation. (4) Build conceptual models of the systems named in the root definitions (build a conceptual model) based on the Root Definition for each defined element, then build the conceptual model needed to achieve the ideal goal. (5) Compare models with real-world action (comparison between conceptual models and problem situations / comparing models with reality) is to compare the conceptual system models created with what happens in the real world. (6) Defining possible changes that are both desirable and feasible is to create a public debate to identify these feasible changes. (7) Take action to improve the problem situation (take corrective action) using an action plan to improve the problem situation. The scope of this research was up to stage 4 considering the limited time.

3. Results and Discussion
3.1. Potential of Agricultural Land
The rice field area in Banten Province is shown in Table 1. About 50.04% of the rice field is irrigated rice fields and about 49.96% of the rice field is rainfed rice fields [7]. The most potential rice field to be increased in the cropping index is irrigated rice fields. The irrigated rice field is the rice field with a good water resource and infrastructure that can provide water every season of the year. In contrast, the rainfed land can only be planted once a year.

Regency / City	Number of Regions	Rice Field (ha)	dryland (ha)					
	villages / Sub-	Irrigation	rainfed	amount	plantation	forest	Not cultivated	
	districts							
Pandeglang	35	339	27.746	32.022	54.768	63.331	31.408	4,990
Lebak	28	345	22.747	25.006	47.753	19.062	28.131	2,772
Tangerang	29	274	23.744	12.687	36.231	9.241	0	1,202
Serang	29	326	23.887	147	47.578	19.266	7.269	631
Serang City	13	104	316	1.503	463	546	36	246
Cilegon City	8	43	0	3.152	1.503	2.715	1.871	1,133
Serang City	6	67	4.787	54	7.939	7.279	1.723	0
Tangerang City	7	54	0	54	47.28	478	375	23
Summary	155	1,552	98.227	98.058	196.285	121.918	70.813	10,997

3.2 Availability of agricultural machinery
Agricultural machinery is an important means needed for agricultural intensification. The types of agricultural machinery needed for accelerated planting were a tractor for tillage, a transplanter for planting, a Thresher / combine harvester for harvesting tools. Based on the data on the availability and adequacy of the tools and machines, most of them were fulfilled optimally. The tools and machines that were quite adequate were tractors. Meanwhile, transplants and combine harvesters were in a very poor status. For the threshing tool, some areas in the Serang Regency had exceeded (saturated) status, while the districts/cities with very poor status (Table 2).
Table 2. Adequacy of agricultural machinery in districts/cities in Banten Province

Types of agricultural machinery	Regency / City	Needs (unit)	Availability (unit)	Deficiency (unit)	Adequacy (%)	Adequacy status
Tractor	Serang city	753	334	419	44	Less
	Lebak	2283	2202	81	96	Enough
	Pandeglang	2803	2239	564	80	Enough
	Serang	2654	2040	614	77	Enough
	Tangerang	2186	1462	724	67	Enough
	Serang city	84	4	80	5	Very less
	Lebak	254	95	159	37	Very less
Transplanter	Pandeglang	312	94	218	30	Very less
	Serang	295	77	218	26	Very less
	Tangerang	243	79	164	33	Very less
	Serang city	1117	99	1072	8	Very less
Thresher	Lebak	3551	282	3269	8	Very less
	Pandeglang	4361	201	4160	5	Very less
	Serang	4128	6078	-	147	Saturated
	Tangerang	3401	67	3334	2	Very less
	Serang city	88	24	64	27	Very less
Combine Harvester	Lebak	267	64	203	24	Very less
	Pandeglang	328	86	242	26	Very less
	Serang	310	75	235	24	Very less
	Tangerang	256	32	224	12	Very less

3.3 Rice production intensification program

To increase rice production, the Government sets a rice production target for each district/city in Banten Province every year. In 2020, Banten was targeted for rice production of about 1,707,721 tons of rice with a harvested area of about 325,872 hectares. Furthermore, in 2020, Banten Province has set rice planting targets in each district/city as presented in Table 3.

Table 3. Target of Rice Planting Areas in Banten Province in 2019/2020

Regency / City	Rice Paddy planting period (month)		
	October - March	April - September	Amount
Pandeglang	76.736	59.767	136.503
Lebak	53.471	48.329	101.800
Tangerang	28.756	28.334	57.690
Serang	46.334	44.580	90.914
Tangerang city	296	211	507
Cilegon city	1.262	641	1.903
Serang city	7.680	6.136	13.816
Tangsel city	36	40	76
Total	214.752	188.638	403.210

To achieve these targets, the government provided production facilities assistance to farmers in the form of 45,000 ha of inbred rice seeds and agricultural machinery consisting of 20 units of power thresher; 2 units of power thresher, husker, and polisher. Besides, the agriculture machinery assistance, the government also
assists in increasing knowledge of the farmer and agriculture extension agent about rice production intensification program and technology. During the Covid 19 pandemic, the assistance was carried out virtually. This method was only used during the pandemic period from July to August. We analyzed the response of assistance and the effectiveness of the training method. It was done virtually to record and the feedback on the methods and material presented from the participants. The topic of material conveyed by the planting calendar information technology was a tool for reference in designing a planting schedule in line with climate change [8].

The training or assistance was conducted for agricultural extension agents in Lebak Regency in July 2020 with 74 participants. The purpose of this training is to increase the participants' knowledge of the Cropping Calendar Information System (CCIS). The participant ranges from aged 20 to 50 years old and 43% of the participant has a formal education until high school, 57% of the participant has a formal education until college education. The study showed 74% of participants had never previously attended training on the planting calendar information system. Then, 27% of participants had used planting calendar information technology recommendations and 35% of participants had recommended SI Katam information to farmers. Participants responded well enough and provided benefits in carrying out their duties to be used as a reference in coaching farmers.

Table 4. Participants' responses to planting calendar information Katam

Description	Not yet known	Already known
Have attended Katam Training	55	19
	74.32%	25.68%
Already using Katam	47	27
	63.51%	36.49%
Disseminate katam information to farmers	39	35
	52.70%	47.30%

Table 5. Participants' responses to the development of planting calendar information technology

Description	Not good	pretty good	good
Information material as needed	0	47	27
	-	63.51%	36.49%
adequacy of implementation time	0	56	18
	-	75.68%	24.32%
the ability of the resource person	0	41	33
	-	55.41%	44.59%
suitability of training media (virtual)	1	59	14
	1.35%	79.73%	18.92%
Ease of receiving materials	1	49	24
	1.35%	66.22%	32.43%
Effectiveness of media for training	2	56	16
	2.70%	75.68%	21.62%

3.4 Rice Production Performance in Lebak Regency and Serang City

During the period of 2015 to 2019, the production performance of Lebak district shows harvested areas ranging from 101,712 - 154,506 ha/year with an average of 118,998 ha/year, production 607,222-869,869 t / year with an average of 709,693 t / year). Furthermore, productivity ranges from 5.63 to 6.30 t / ha with an average productivity of 6.02 tonnes/ha. The area of harvest and production experienced positive growth of 0.45 and 0.38 respectively, while productivity experienced negative growth of (-0.053) (Table 7.). These results indicate that the increase in lowland rice production in Kab. Lebak contributed more from the harvested area, not from the productivity of rice production. Now and in the future, dryland conversion is one of the rice production problems, so if it just depends on the harvested area it will be difficult to maintain rice production. It is needed to increase rice production through optimization land with increased rice cropping index and the application of technology to encourage increased rice productivity.
Table 6. Lowland Rice Production and Productivity in Lebak regency and Serang city

Commodity and Variables	Years	average	Growth				
	2015	2016	2017	2018	2019		
Lebak regency							
a. Harvest area (ha)	101.712	107.114	107.809	120.542	154.506	118.336	0.459
b. Production (ton)	607.222	674.818	657.634	738.922	869.869	709.693	0.386
c. Productivity (t/ha)	5.97	6.30	6.10	6.13	5.63	6.02	-0.053
Serang city							
a. Harvest area (ha)	13.455	15.550	14.418	13.820	14.305	14.309	0.076
b. Production (ton)	77.837	88.862	80.755	80.443	80.254	77.630	0.126
c. Productivity (t/ha)	5.78	5.73	5.60	5.60	5.45	5.63	-0.052

Lowland rice production performance has the same pattern as the production performance of Lebak Regency, where there was positive growth in the planting area and production with a value of 0.076 and 0.126, while productivity had negative growth with a value of -0.052. The role of planted area and productivity on production gave a pattern like in the province of East Java [9].

3.5 Rice Production Problems
The problems faced in increasing the planting area, harvested area, and productivity were closely related to the availability of land resources, including land-use change, availability of agricultural equipment and machinery, human resources (capacity and capability), and government programs to increase rice production. [5] In summary, production problems and solution efforts that can be done by connecting all actors involved in the production, namely Customers / Clients, Actors, Transformation Processes, Weltanschauung, Owners, Environment Constraints (CATWOE) are shown in Table 8.

Table 7. Root Definition of rice production

Component	Definition
1 Customer/ Clients	Farmer Group
2 Actors	Government
3 Transformation Process	Increased facilities and knowledge of farmer groups about climate, planting schedules, management of agricultural machinery
4 Weltanschauung	Optimization of land supports increased rice production.
5 Owner	Government
6 Environment Constraint	Climate change and conversion of agricultural land.

Client or customer is a group of farmers who act as beneficiaries to move farmers to optimize agricultural land, agricultural machinery so that they are more productive in producing rice. Actors who play a role are the government as the driving force, regulation so that business actors are able to follow programs and targets to meet food needs. The transformation is carried out in the form of intensification and optimization of agricultural land through accelerating planting and increasing the index so that rice production will increase. The Weltanschauung step is the effort to optimize agricultural land to increase rice production and national food supply. As Owner, the government through the Ministry of Agriculture has a role to ensure
the availability of food for the Indonesian community. Meanwhile, Environment Constraints are aspects that have the potential to hinder the implementation of programs to be carried out by various parties, including climate change and conversion of agricultural land functions. [10].

3.6 Conceptual Model of increasing the rice planting index

Based on the results of the analysis, a conceptual model can be built for intensification of agricultural land so that there will be an increase in the cropping index and rice production in Banten province [11,12]. Figure 2 is a conceptual model for intensification or improvement of the cropping index with 9 stages and activities starting from evaluation in production in terms of land, human resources, application of technology, facilities, and programs so that problems and needs are needed in the field can be identified. Furthermore, planning efforts to increase production are carried out.

Figure 2. Conceptual Model of increasing cropping index and harvested area to increase production

Important efforts that need to be made for this purpose can be grouped into two aspects, namely increasing production facilities and increasing the capacity of human resources. These two aspects will further improve and enhance the ability of business actors in designing planting schedules, managing agricultural machinery, and improving mastery of cultivation and post-harvest technology. Through these stages, changes in the cropping index will be obtained and then re-evaluated. Program evaluation and performance achievements include effectiveness, efficiency, and efficacy.
4. Conclusion

Rice production in Banten Province was more influenced by planted area and harvested area than crop productivity. This was reflected in the positive growth in Lebak Regency 0.459 and Kota Serang 0.126. The cropping index (planting area) could be increased again through increasing the capacity of human resources (farmers, Gapoktan), especially in designing planting schedules, managing agricultural machinery, and applying cultivation and post-harvest technology. Another important thing was that the government needs to provide support so that production facilities are fulfilled optimally, especially agricultural machinery such as tractors, transplanters, combine harvesters, and water pumps.

References

[1] BPS, 2018. Provinsi Banten Dalam Angka. Badan Pusat Statistik Provinsi Banten
[2] BPS, 2019. Provinsi Banten Dalam Angka. Badan Pusat Statistik Provinsi Banten
[3] Agus Hudoyo dan Indah Nurmayasari, 2018. Pengaruh Program Intensifikasi Terhadap Peningkatan Produktivitas Padi Di Indonesia. Prosiding Forum Komunikasi Perguruan Tinggi Pertanian Indonesia (FKPTPI) 2018 Universitas Syiah Kuala Banda Aceh
[4] Krishna Prasad Devkotaa, Estela Pasuquina, Abigail Elmido-Mabilangana, Rowell Dikitanana, Grant R. Singletona, Alexander M. Stuart, Duangporn Vithoonjitb, Ladda Vidiyangkurac, Arlyna Budi Pustikad, Riefna Afrianid, Charisma Lia Listyowatid, R.S.K. Keerthisenae, Nguyen Thi Kieuf, Arelene Julia Malabayabasa, Ruifa Hug, Junfeng Panh, Sarah E.J. Beebouta. Economic and environmental indicators of sustainable rice cultivation: A comparison across intensive irrigated rice cropping systems in six Asian countries. Ecological Indicators 105 (2019) 199–214
[5] Checkland, Peter. 1999. Systems Thinking, Systems Practice : Includes a 30-year retrospective. Chichester : John Wiley & Sons.
[6] Checkland, Scholes. 1990. Soft Systems Methodology in Action. Chichester : John Wiley & Sons.
[7] BPS, 2020 Luas Panen dan Produksi Padi di Provinsi Banten 2020 No.55/11/36/Th.XIV, 2 November 2020.
[8] P.L. Poultona, N.P. Dalgliesha, S. Vangb, C.H. Roth, 2016. Resilience Of Cambodian Lowland Rice Farming Systems To Futureclimate Uncertainty. Field Crops Research 198 (2016) 160–170
[9] Fuad Hasan, 2010. Peran Luas dan Produktivitas terhadap pertumbuhan produksi tanaman pangan di Jawa Timur. Jurnal Embio Vol 7 no 1.
[10] R. Wassmann,b, J. Villanuevac, M. Khounthavongd, B.O. Okumud, T.B.T. Voae, B.O. Sanderf. Adaptation, mitigation and food security: Multi-criteria ranking system for climate-smart agriculture technologies illustrated for rainfed rice in Laos. Global Food Security 23 (2019) 33–40
[11] Aprilia Triasni, Syahrullah, 2020. Seleksi Varietas Padi Potensi Teknologi Ratum Untuk Peningkatan Indeks Panen (IP). Jurnal Ilmiah Agrotani ISSN: 2686-3332 Vol. 2 | No. 1 | April 2020
[12] Arif Anshori, 2018. Strategi Peningkatan Indeks Pertanaman Padi Di Kabupaten Gunungkidul. Prosiding Seminar Nasional Pertanian Peternakan Terpadu Ke-3 ISBN : 978-602-60782-2-3